Общая Алгебра

Адамович Ольга Маратовна 19 декабря 2019 г.

Содержание

Теория групп 5				
1	ия №1			
	1.1	Определение группы. Примеры 5		
	1.2	Определение кольца. Примеры 6		
	1.3	Определение поля		
	1.4	Область целостности		
	1.5	Делимость в области целостноти		
	1.6	Наибольший общий делитель элементов области це-		
		лостности		
	1.7	Евклидово кольцо		
	1.8	Алгорим Евклида		
	1.9	Взаимно простые элементы области целостности 11		
2	Лекц	дия №2		
	2.1	Простые элементы области целостности 12		
	2.2	Разложение на простые множители в евклидовом		
		кольце		
	2.3	Факториальное кольцо		
	2.4	Аксиомы группы		
	2.5	Следствия аксиом группы		
	2.6	Порядок группы		
	2.7	Таблица Кэли		
	2.8	Изоморфизм групп		
3 Лекция №3		дия №3		
	3.1	Важные примеры групп		
	3.2	Кольцо вычетов по модулю n		
	3.3	Подгруппа		
	3.4	Степень элемента группы		
	3.5	Порядок элемента группы		
4	Лекп	дия №4		
	4.1	Циклические группы		

Содержание 2

	4.2	Подгруппы циклической группы	28	
5	Лекция №5		28	
	5.1	Симметрическая группа S_n	30	
6	Лекц	ия №6	34	
	6.1	Система порождающих элементов группы	35	
	6.2	Группа диэдра	37	
7	Лекция №7			
	7.1	Группа кватернионов	39	
	7.2	Сравнение элементов группы по модулю подгруппы	41	
	7.3	Смежные классы группы по подгруппе	41	
	7.4	Теорема Лагранжа и следствия из неё:	43	
8	Лекц	ия №8	45	
	8.1	Определение операции на смежных классах	45	
	8.2	Нормальная подгруппа	45	
	8.3	Факторгруппа	46	
	8.4	Гомоморфизм групп	47	
	8.5	Образ гомоморфизма	48	
	8.6	Ядро гомоморфизма	49	
	8.7	Изоморфизм групп	50	
	8.8	Порядок образа элемента группы при гомоморфизме	50	
	8.9	Теорема о гомоморфизме	51	
9	Лекц	Лекция №9		
	9.1	Автоморфизм групп	52	
	9.2	Действия группы на множестве	54	
	9.3	Действия группы на самой себе G:G	54	
	9.4	Теорема Кэли	55	
10	Лекц	Лекция №10		
	10.1	Четвёртая группа клейна V_4	59	
	10.2	Коммутант	61	
11	Лекц	ия №11	62	
12	Лекц	ия №12	66	
	12.1	Прямые произведения (прямые суммы) групп	66	
	12.2	Внешнее прямое произведения групп	66	

Содержание 3

	12.3	Внутреннее прямое произведение подгрупп	67
13	З Лекция №13		
	13.1	Примарные группы (р - группы)	73
	13.2	Функция Эйлера	74
	13.3	Изоморфизм колец индукции	74
	13.4	Разложение конечнопорождённых абелевых групп в	
		прямую сумму циклических групп	75
14	Лекци	ия №14	77
15	Лекци	ия №15	83
	15.1	Группы правильных многогранников	83

Содержание 4

Теория групп

1 Лекция №1

1.1 Определение группы. Примеры.

Опр. Группа (G, \cdot) - множество с бинарной операцией $\forall g_1, g_2 \in G \longmapsto g_1g_2 \in G$:

- 1) $(g_1g_2)g_3 = g_1(g_2g_3) \ \forall g_1, g_2, g_3 \in G$
- 2) $\exists e \in G : q \cdot e = e \cdot q = q \quad \forall q \in G$
- 3) $\forall g \in G \exists g^{-1} \in G : g \cdot g^1 = g^{-1} \cdot g = e$

Примеры:

- а) ($\mathbb{R}^{n\times n}$, ·) не является группой.
- б) $GL_n(\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} : det A \neq 0\}$ является группой
- в) $(V^3, +)$ коммутативная или абелева группа

Опр. Группа G называется коммутативной(абелевой), если $a \cdot b = b \cdot a \quad \forall \, a,b \in G$

NOTE:

- 1) Если операция коммутавина, то она чаще называется сложением
- 2) Если операция некоммутативна, то она никогда не называется сложением.

Примеры:

г) V — линейное пространство, dim $V=n < \infty$

L(V,V) - множество линейных операторов на V - не является группой

д) GL(V,V) = GL(V) — множество биективных линейных операторов - группа. $(GL(V),\cdot)$ — некоммутативная группа

1.2 Определение кольца. Примеры.

A — множество с двумя операциями , $a,b \in A \longmapsto \left\{ egin{array}{l} a+b \in A \\ a\cdot b \in A \end{array}
ight.$

1)
$$a+b=b+a \ \forall \ a,b \in A$$

2)
$$(a+b) + c = a + (b+c) \forall a, b, c \in A$$

3)
$$\exists \overline{0} : a + \overline{0} = \overline{0} + a = a \ \forall a \in A$$

4)
$$\forall a \in A \exists (-a) : a + (-a) = (-a) + a = \overline{0}$$

5)
$$a(b+c)=ab+bc \quad \forall a,b,c\in A \ (a+b)c=ac+bc \quad \forall a,b,c\subset A$$
 дистрибутивность

$$1)...5) \Rightarrow A$$
 - кольцо

6)
$$ab = ba \quad \forall a, b \in A$$

$$1)...6) \Rightarrow A$$
 - коммутативное кольцо

7)
$$(ab)c = a(bc) \quad \forall a, b, c \in A$$

$$(1)...5),7)\Rightarrow A$$
 - ассоциативное кольцо

8)
$$\exists 1 \in A : 1a = a1 = a \quad \forall a \in A$$

1)...5), 8)
$$\Rightarrow$$
 A - кольцо с 1

1)...8) $\Rightarrow A$ - коммутативное ассоциативное кольцо с 1

Примеры:

- $1)~(\mathbb{Z},+,\cdot)$ коммутативное ассоциативное кольцо с 1
- 2) ($\mathbb{R}^{n \times n}, +, \cdot$) некоммутативное ассоциативное кольцо с 1
- 3) $\mathbb{R}[x]$ коммутативное ассоциативное кольцо с 1

1.3 Определение поля

Опр.
$$(A, +, \cdot)$$
 - поле , $a, b \in \longrightarrow \begin{cases} a+b \in A \\ ab \in A \end{cases}$
1)
2)
3)
4)
5)
6)
7)
8)
9) $\forall a \in A \ \{\overline{0}\} \ \exists \ a^{-1} \in A : \ aa^{-1} = a^{-1}a = 1$
10) $|A| > 1 \iff (\overline{0} \neq 1)$ (в A не менее 2-х элементов)

1.4 Область целостности

Примеры: 1) \mathbb{Q} 2) \mathbb{R} 3) \mathbb{C}

Опр.
$$A$$
 - кольцо, $a,b \in A$ называются делителями нуля, если $\begin{cases} a \neq 0 \\ b \neq 0 \end{cases}$, но $ab = \overline{0}$
$$\underline{\Pi \text{ример:}} \quad \mathbb{R}^{2x2} \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Опр.

Коммутативное ассоциативное кольцо с 1 без делителей нуля называется областью целостности (целостным кольцом).

Примеры:

- 1) \mathbb{Z} область целостности,
- 2) $\mathbb{R}[x]$ область целостности

Утв. 1.
$$A$$
 - область целостности $a, b \in A$ $ab = \overline{0} \Rightarrow \begin{bmatrix} a = \overline{0} \\ b = \overline{0} \end{bmatrix}$

Утв. 2. A – область целостности $a,b,c\in A$ $\left\{\begin{array}{l} a\neq 0\\ a\cdot b=a\cdot c \end{array}\right.\Rightarrow b=c$

Док-во: $a(b-c) = 0 \Rightarrow b-c = 0 \Rightarrow b = c$

Опр. Пусть A — ассоциативное кольцо с 1, $a \in A$ называется обратимым, если $\exists b \in A : ab = ba = 1$ $(b = a^{-1})$

Обозначение: A^* — множество обратимых элементов кольца

Примеры:
$$\mathbb{Z}^* = \{1, -1\}, \quad (\mathbb{R}^{n \times n})^* = \{A \in \mathbb{R}^{n \times n} : det A \neq 0\},$$

 $(\mathbb{R}[x])^* = \{f(x) \in \mathbb{R}[x] : deg f(x) = 0\}$

1.5 Делимость в области целостноти

Опр. A — область целостности $a,b\in A,$ a делится на b $(a : b) \Leftrightarrow b$ делит a (b | a), \Leftrightarrow если $\exists c \in A : a = c \cdot b$

Опр. A – область целостности, $a, b \in A$,

aассоциирован сb $(a \sim b),$ если $\exists\, q \in A^*: \ a = q \cdot b$

Пример: $13 \in \mathbb{Z}$ $-13 \sim 13$

Утв. 3. $a \sim b$ отношение эквивалентности, т.е

- 1) $a \sim a \ \forall a \in A$ (рефлексивность)
- 2) $a \sim b \Rightarrow b \sim a \ \forall a, b \in A$ (симметричность)
- 3) $a \sim b, b \sim c \Rightarrow a \sim c \, \forall a, b, c \in A$ (транзитивность)

Следствие: Область целостности разбивается на непересекающиеся классы эквивалентности - классы ассоциированных друг с другом элементов.

Пример: $\mathbb{Z} = {\overline{0}} \cup {\pm 1} \cup {\pm 2} \dots \cup {\pm n} \dots$

Утв. 4. A — область целостности, $a,b \in A$ $a \sim b \Leftrightarrow \left\{ \begin{array}{ll} a \mid b \\ b \mid a \end{array} \right.$

Док-во:

 \Leftrightarrow

$$a \sim b$$
 $a = q \cdot b \Rightarrow b \mid a$
 $b \sim a$ $b = p \cdot a \Rightarrow a \mid b$

$$\begin{cases} a \mid b \Rightarrow b = p \cdot a \\ b \mid a \Rightarrow a = q \cdot b \end{cases} \Rightarrow a = q \cdot p \cdot a \Rightarrow \begin{bmatrix} a = 0 \Rightarrow b = 0 \Rightarrow a \sim b \\ a \neq 0 \quad q \cdot p = 1 \Rightarrow q \cdot p \in A^* \Rightarrow a \sim b \end{cases}$$

1.6 Наибольший общий делитель элементов области целостности

Опр. A — область целостности, $a,b,d\in A$ d называется общим делителем a и b, если $\left\{ \begin{array}{l} d\mid a\\ d\mid b \end{array} \right.$

Опр. A — область целостности, $a,b \in A$, наибольший общий делитель a и b — $HOД\{a,b\}=(a,b)$ — общий делитель a и b, который делится на \forall их общий делитель в \mathbb{Z} .

Пример:
$$(18,24) = 6$$

Утв. 5. A - область целостности, $a, b \in A$ Если $\exists \ HOД\{a,b\} = (a,b)$, то он единственный с точностью до ассоциированности.

Док-во: Следует из определения и утверждения 4.

Пример:
$$(18, 24) = 6 \sim -6$$

1.7 Евклидово кольцо

Опр. Область целостности A называется евклидовым кольцом, если \exists функция, называемая нормой (высотой): $N:A\diagdown\{0\}\to\mathbb{Z}_+=\mathbb{N}\cup\{0\}$:

- 1) $N(ab)\geqslant N(a) \ \ \forall \ a,b\in A,$ причём $N(ab)=N(a) \ \Leftrightarrow \ b\in A^*$
- $2) \ \forall \ a, b \in A, \quad b \neq 0$

$$\exists \ q,r \in A: \ a=qb+r,$$
 где $\left[egin{array}{c} r=\overline{0} \\ N(r) < N(b) \end{array}
ight.$

Примеры:

- 1) ($\mathbb{Z}, +, \cdot$) область целостности, N(a) = |a|
- 2) ($\mathbb{R}[x],+,\cdot$) область целостности, $N(f(x))=\deg f(x)$

1.8 Алгорим Евклида

Теорема
$$A$$
 - евклидово кольцо \Rightarrow $\forall a,b \in A \; \exists \; (a,b) \; \mathsf{u} \; (a,b) = au + bv, \; \mathsf{где} \; \; u,v \in A$

Док-во:

1)
$$b = 0$$
 $(a, b) = (a, 0) = a = 1a + 0b$

2)
$$b|a(a,b) = b = 0a + 1b$$

3)
$$b \neq 0$$
, $b \not | a$, тогда

$$r_{n-2} = q_n r_{n-1} + r_n, \quad N(r_n) < N(r_{n-1})$$

$$r_{n-1} = q_{n+1}r_n$$

$$r_n$$
 - будет НОД (a,b) , $r_n=(a,b)$

(*) ↑
$$r_n|r_{n-1} \Rightarrow r_n|r_{n-2} \Rightarrow r_n|r_{n-3}\dots r_n|r_1 \Rightarrow r_n|b \Rightarrow r_n|a$$
 r_n - общий делитель a,b

(*)
$$\int r_1 = a - q_1 b = a u_1 + b r_1, \quad r_2 = b - q_2 r_1 = a u_2 + b r_2 \dots$$

$$r_3 = ..., r_n = r_{n-2} - q_n r_{n-1} = au_n + bv_n = au + bv$$

Пусть d - общий делитель a и b, a=dt, b=ds

$$r_n = au + bv$$

$$r_n = d(tu + sv) \Rightarrow d \mid r_n$$

 r_n — общий делитель a и b, который делится на любой их общий делитель $\Rightarrow r_n = (a,b)$

Способ нахождения (a,b), описанный в теореме, называется алгоритмом Евклида.

1.9 Взаимно простые элементы области целостности

Опр. A - область целостности, $a,b \in A$ называются взаимно простыми, если (a,b)=1

Утв. 6.
$$A$$
 — евклидово кольцо, $a, b \in A$ $(a, b) = 1 \Leftrightarrow \exists u, v \in A : au + bv = 1$

Док-во:

⇔ смотри теорему

$$\bigoplus$$
 Пусть d — общий делитель a и b : $a=dt,\ b=ds$ $au+bv=1\Rightarrow d(tu+sv)=1\Rightarrow$ $\Rightarrow 1: d\Rightarrow d\in A^* \quad d\sim 1\Rightarrow (a,b)=1$

Утв. 7.
$$A$$
 — евклидово кольцо, $a,b,c\in A, (a,b)=1, \begin{vmatrix} a\mid c\\b\mid c \end{vmatrix}\Rightarrow ab\mid c$

Док-во:

$$c = aq$$
, $c = bp$, $au + bv = 1 \mid \cdot c$ $cau + cbv = c$
 $abpu + abqv = c$ $ab(pu + qv) = c$ $ab \mid c$

Утв. 8. *A* - евклидово кольцо, $a, b, c \in A$, (a, b) = 1, $a \mid bc \Rightarrow a \mid c$

Док-во:

$$bc = aq$$
 $au + bv = 1 \mid \cdot c$ $acu + aqv = c$ $a(cu + qv) = c \Rightarrow a \mid c$

2 Лекция №2

2.1 Простые элементы области целостности

Опр. A - область целостности. $\overline{0} \neq p \in A \backslash A^*(p \in A \backslash (A^* \cup \{0\}))$ p — ненулевой необратимый элемент A называется простым элемент, если его нельзя представить в виде произведения 2-х необратимых элементов, т.е если $p = ab \ a, b \in A \Rightarrow \begin{bmatrix} a \in A^* \\ b \in A^* \end{bmatrix}$

Примеры:

- ① \mathbb{Z} , $\pm p$, где $p \in N$ простое число ± 7 простые элементы \mathbb{Z} , ± 1 , $\overline{0}$, $6 = 2 \cdot 3 = (-2)(-3)$ не являются простыми в \mathbb{Z} .
- (2) K[x], K поле. Простой элемент неприводимый многочлен

В
$$\mathbb{R}[x]$$
 простые элементы = мн-ны $\left\{ egin{array}{ll} 1\text{-ой степени} \\ 2\text{-ой степени}, \ D<0 \end{array} \right.$ В $\mathbb{C}[x]$ простые элементы = многочлены 1-ой степени

2.2 Разложение на простые множители в евклидовом кольце

Лемма.

A - евклидово кольцо, p - его простой элемент, $a_1,...,a_n\in A$ $p|a_1,...,a_n\Rightarrow \exists i\in\{1,...,n\}:\ p|a_i$

Док-во: (индукция по n)

1)
$$n=2$$
 $p|a_1a_2$ и пусть $p\not|a_1 \Rightarrow (p_1,a_1)=1$ $\Rightarrow p|a_2$

2) Пусть верно для n-1. Докажем для n:

$$p|a_1\ (a_2...a_n)\Rightarrow \left[egin{array}{c} p|a_1\ p|a_2...a_n \end{array} \ \text{по предположению индукции} \Rightarrow \ \exists \ i\in\{2...n\}\ p|a_i$$

Теорема.

A - евклидово кольцо \Longrightarrow

 \forall ненулевой необратимый элемент A $a \in A \setminus (A^* \cup \{0\})$ можно представить в виде $a=p_1,p_2,...,p_n$, где p_i - простой элемент A $i=\overline{1,n}$, причём это разложение единственно с точностью до ассоциированности, то есть если $a=p_1...p_n=q_1...q_m$ - 2 разложения на простые множители, то n=m и после перенумерации $p_1\sim q_1,\; p_2\sim q_2,\; ...\;,\; p_n\sim q_n.$

Опр. Целостное кольцо с однозначным (в смысле ассоциированности) разложением на простые множители называется факториальным кольцом. (Не путать с факторкольцом!).

Используя этот термин, теорему можно сформулировать так:

Теорема.

Евклидово кольцо является факториальным.

Док-во:

1) \exists разложение на простые множители $\forall a \in A \setminus (A^* \cup 0)$

Докажем от противного:

Пусть \exists элементы $\in A \setminus (A^* \cup 0)$, которые нельзя разложить на простые множители.

Рассмотрим c - самый маленький по норме N из этих элементов $N:A\diagdown\{0\}\ \longrightarrow\ \mathbb{Z}_+=\mathbb{N}\cup\{0\},$

c не может быть простым $\Rightarrow c = ab$, оба a и b необратимые и ненулевые.

Если a,b раскладываются на простые множители $\Rightarrow c$ раскладывается на множители $\stackrel{\wedge}{\times}$ \Rightarrow

- $\Rightarrow a$ или b не раскладывается на простые множители. Например, это элемент $a,\ N(a) < N(a,b) = N(c)$ $\mbox{\ensuremath{\not\sim}}$ \Rightarrow
- $\Rightarrow \nexists$ элемента, который не раскладывается на простые множители.
- 2) Пусть $a \in A \setminus (A^* \cup \{0\})$ $a = p_1...p_n = q_1...q_n$ имеет 2 разложения на простые множители.

Докажем, что n=m и после перенумерации $\begin{cases} p_1 \sim q_1 \\ p_2 \sim q_2 \\ \vdots \\ p_n \sim q_n \end{cases}$

(а однозначно раскладывается на простые с точностью до ассоцииро-

ванности)

индукцией по n:

Если n=1

$$p_1 = q_1...q_m$$
 p_1 - простое $\Rightarrow \left\{ \begin{array}{l} m = 1 \\ p_1 = q_1 \end{array} \right.$

Пусть утверждение верно для n-1, докажем для n:

$$p_1...p_n = q_1...q_n \implies p_1|q_1...q_m \implies$$
 по лемме $\exists \ i \in \{1,...,m\}$

 $p_1|q_i$, но q_i - простой $\Rightarrow p_1 \sim q_i$ ассоциирваны.

Назовём
$$q_i=q_1 \qquad q_1=\varepsilon p_1, \qquad \varepsilon\in A^*$$

$$p_1p_2...p_n = q_1q_2...q_m = \varepsilon p_1q_2...q_m = p_1\widetilde{q}_2...q_m \ (\widetilde{q}_2 \sim q_2)$$

$$p_2...p_n = \widetilde{q}_2...q_m$$

по предположению индукции
$$n=m$$

$$\left\{ \begin{array}{l} p_2 \sim \widetilde{q_2} \sim q_2 \\ . \ . \ . \\ p_n \sim q_m \end{array} \right.$$

2.3 Факториальное кольцо

Утв 1. В факториальном кольце простых элементов бесконечно много.

Док-во: Пусть $p_1,...,p_n$ - все простые элементы кольца A. Рассмотрим $c=p_1p_2...p_n+1$ p_i/c $\forall i=\overline{1,n}\Rightarrow c\in A\setminus (A^*\cup\{0\}).$ A — факториальное кольцо $\Rightarrow c$ должно раскладываться на простые множители $\Rightarrow c$ - должно делиться на простой элемент X Мы пришли к противоречию x простых элементов бесконечное число.

Утв 2. A - евклидово кольцо (факториальное кольцо) $a \in A$ $a = p_1^{k_1}...p_n^{k_n}$ - разложение a на простые $p_i \neq p_j$ при $i \neq j$ Тогда $d \mid a \Rightarrow d = p_1^{l_1}...p_n^{l_n}$, где $0 \leqslant l_i \leqslant k_i$

Док-во: $d \mid a \Rightarrow a = dc$ разложим d и c на простые множители: $d = q_1^{l_1}...q_m^{l_m}, \ c = q_{m+1}^{s_{m+1}}...q_t^{s_t} \Rightarrow a = p_1^{k_1}...p_n^{k_n} = q_1^{l_1}...q_m^{l_m}q_{m+1}^{s_{m+1}}...q_t^{s_t}$ однозначно до ассоциированности $\Rightarrow d = p_1^{l_1}...p_m^{l_m}, \quad 0 \leqslant l_i \leqslant k_i, \quad i = \overline{1,m}$

Опр. A - область целостности, $a,b\in A$, наименьшим общим кратным $\mathrm{HOK}\{a,b\}=[a,b]$ называется $c\in A$:

$$\begin{cases}
a \mid c \\
b \mid c
\end{cases} \quad \text{и } \forall \text{ элемент,}$$

который делится на a и b (кратный им), делится на c

$$\left(\forall f: \quad \begin{array}{cc} a \mid f \\ b \mid f \end{array}\right) \Rightarrow [a, b] \mid f$$

Утв 3. В \forall факториальном кольце A

$$\forall a, b, \in A \quad \exists [a, b] \ \mathsf{и} \ a, b = ab$$

Доказать самим

Группа
$$(G, \cdot) \forall g_1, g_2 \in G \longmapsto g_1 \cdot g_2 \in G$$
:

2.4 Аксиомы группы

- 1) $(g_1g_2)g_3 = g_1(g_2g_3) \ \forall g_1, g_2, g_3 \in G$ ассоциативность
- 2) $\exists e \in G : g \cdot e = e \cdot g = g \quad \forall g \in G \ (\exists \text{ нейтрального элемента})$
- 3) $\forall g \in G \exists g^{-1} \in G: g \cdot g^1 = g^{-1} \cdot g = e \quad (\exists \text{ обратного элемента})$

2.5 Следствия аксиом группы

Следствия:

- 1) е (нейтральный элемент) единственный
- 2) $\forall g \in G \ g^{-1}$ единственен
- 3) $gh_1=gh_2 \Rightarrow h_1=h_2 \ \forall h_1,h_2,g\in G$ возможны сокращения
- 4) Уравнения gx = h имеет в G единственное реш. $x = g^{-1}h \ \forall \ g, h \in G$
- 5) Уравнения xg=h имеет в G единственное реш. $x=hg^{-1} \ \forall \ g,h \in G$
- 6) $\forall g_1, g_2 \in G \exists (g_1g_2)^{-1} = g_2^{-1}g_1^{-1}$ Доказать самим.

2.6 Порядок группы

Опр.

Число элементов в группе называется её порядком и обозначается |G|. Если в группе бесконечное число элементов, то говорят, что её порядок равен бесконечности $|G| = \infty$.

Примеры:

1)
$$\mathbb{R}^* = \mathbb{R} \setminus \{0\}$$

$$(\mathbb{R}^*,\cdot)$$
 - группа $|\mathbb{R}^*|=\infty$

2)
$$1, -1 \in \mathbb{Z}$$

$$(\{1,-1\},\cdot)$$
 - группа $|G|=2$

2.7 Таблица Кэли

Таблица Кэли - таблица умножения элементов группы.

В любой её строке и любом столбце встречается каждый элемент группы по одному разу.

Пример:
$$G_1 = (\{1, -1\}, \cdot)$$

$$|G_1|=2$$

Пусть $G_2 = \{e, a\}, \ a \neq e$

Если $a\cdot a=a$, то a=e, что противоречит условию \Rightarrow

$$\Rightarrow aa = e$$
.

Таблица Кэли для G_2 аналогична таблице G_1 .

•	е	a
е	е	a
a	a	е

2.8 Изоморфизм групп

Опр. $(G_1,\cdot)(G_2,*)$ - группы

 $f: G_1 \longrightarrow G_2$ - отображение называется изоморфизмом групп, если:

- 1) $f(a_1 \cdot a_2) = f(a_1) * f(a_2) \quad \forall a_1, a_2 \in G_1$
- 2) f биекция

Опр. Если \exists изоморфизм $f:G_1\longrightarrow G_2$, то G_1 и G_2 называются изоморфными группами $G_1\simeq G_2$

NOTE:

$$|G_1| = |G_2| < \infty$$

таблицы Кэли одинаковы с точностью до перенумерации элементов

 $\Leftrightarrow G_1 \simeq G_2$ изоморфизм.

Пример показывает, что с точностью до изоморфизма

 $\exists !$ группа G : |G| = 2.

Эта группа абелева, так как таблица Кэли симметрична относительно главной диагонали.

3 Лекция №3

3.1 Важные примеры групп

- 1) X множество, $f: X \longrightarrow X$ отображение в себя преобразование X.
- S(X) множество биективных преобразований множества X
- $(S(X), \cdot)$ группа, так как

$$f_1, f_2 \in S(X) \Rightarrow f_1 f_2 \in S(X)$$

- 1) $(f_3 \circ f_2) \circ f_1 = f_3 \circ (f_2 \circ f_1)$ ассоциативность (см. 2 семестр)
- 2) $\exists e = id \in S(X) : id \circ f = f \circ id = f \ \forall \ f \in S(X)$
- 3) $\forall f \in S(X) \ \exists f^{-1} \in S(X): \ f^{-1} \circ f = f \circ f^{-1} = id \text{ (cm. 2 cemectr)}$

19

В частности, если X конечное множество

$$|X|=n, \qquad X=\{1,2,...,n\}, \qquad \alpha$$
 - подстановка, $\alpha\in S(X)$
$$\alpha=\begin{pmatrix}1&2&3&...&n\\3&2&1&...&..\end{pmatrix}, \quad S(X)=S_n$$
 - симметрическая группа степени n (группа подстановок из n элементов), $|S_n|=n!$

2) E^2 - евклидова плоскость

f - движение E^2 - биективное преобразование $E^2,$ сохраняющее расстояние.

Множество всех движений E^2 —

 $Isom E^2$ — группа

Аналогично, $Isom E^3$ — группа

3.2 Кольцо вычетов по модулю п

3) $(\mathbb{Z}_n,+,\cdot)$ - кольцо вычетов по модулю n,

Опр. $a,b\in\mathbb{Z}$ сравнимы по модулю n $a\equiv b\ (mod\ n)$, если $a-b\ \vdots\ n\Leftrightarrow a,b$ имеют одинаковые остатки при делении на n. $a\equiv b\ (mod\ n)$ - отношение эквиваентности

- 1) $a \sim a$ рефлексивность
- 2) $a \sim b \Rightarrow b \sim a$ симметричность
- 3) $a \sim b, \ b \sim c \Rightarrow a \sim c$ транзитивность
- $[a] = \{b \in \mathbb{Z}: \ a \sim b\}$ класс эквивалентных элементов

 \mathbb{Z} разбивается на непересекающиеся классы a эквивалентности. Классы можно пронумеровать остатками от деления на $n: \overline{0}, \overline{1}, \overline{2}, ..., \overline{n-1}$

Опр. Отношение эквивалентности называется согласованным с операцией *,

если
$$\left\{\begin{array}{ll} a \sim a_1 \\ b \sim b_1 \end{array}\right. \Rightarrow a*b \sim a_1*b_1$$

Тогда можно определить: [a] * [b] = [a * b]

Докажем, что сравнимость по *mod n* согласована

с операциями $+, \cdot$ в \mathbb{Z}

$$\left. \begin{array}{l} a \sim a_1 \\ b \sim b_1 \end{array} \right\} \Rightarrow \begin{array}{l} a + b \sim a + b_1 \sim a_{1+b_1} \\ ab \sim ab_1 \sim a_1b_1 \end{array}$$

Onp.
$$[a] + [b] = [a+b], \quad [a][b] = [ab]$$

 $(\mathbb{Z}_n,+,\cdot)$ — ассоциативное коммутативное кольцо с 1

Св-ва операций в \mathbb{Z} , выражаемые тождествами, наследуются в \mathbb{Z}_n

 $(\mathbb{Z}_n,+)$ - группа (аддитивная группа кольца)

$$|\mathbb{Z}_n| = n \quad \mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, ... \overline{n-1}\} = \{[0], [1], [2], ..., [n-1]\}$$

Пусть \mathbb{Z}_n^* - множество обратимых относительно умножения элементов \mathbb{Z}_n

Утв. 1. $\overline{a} \in \mathbb{Z}_n$ является обратимым $(\overline{a} \in \mathbb{Z}_N^*) \Leftrightarrow (a,n) = 1$

Док-во:
$$(\overline{a} \in \mathbb{Z}_n^*) \Leftrightarrow \exists \overline{x} \in \mathbb{Z}_n : \overline{a} \ \overline{x} = \overline{1} \Leftrightarrow ax = 1 + ny$$

$$\exists x, y \in \mathbb{Z} : ax + ny = 1 \Leftrightarrow (a, n) = 1$$

Примеры:

$$\mathbb{Z}_{12}$$
 $\overline{5} \in \mathbb{Z}_{12}^*$ т.к. $(5,12) = 1$, $\overline{5}^{-1} = \overline{5}$

$$|\mathbb{Z}_n^*| = \varphi(n) = |\{k \in \mathbb{N} : k < n, (k,n) = 1\}|$$
 - функция Эйлера

Позже мы докажем, что если $n=p_1^{S_1}...p_e^{S_e}$

 $p_1,...,p_e$ — простые различные между собой числа, то

$$\varphi(n) = n\left(1 - \frac{1}{p}\right)...\left(1 - \frac{1}{p_e}\right)$$

Лемма: В поле нет делителей нуля.

Док-во:
$$F$$
 — поле $a,b\in F$ Пусть $\left\{ \begin{array}{l} a\neq 0 \\ b\neq 0 \end{array} : ab=0, \quad \exists a^{-1}\in F\Rightarrow a^{-1}ab=a^{-1}0\Rightarrow b=0 \right.$ противоречие. $\stackrel{\diamondsuit}{\times}$

Утв. 2.
$$(\mathbb{Z}_n,+,\cdot)$$
 является полем $\Leftrightarrow \left\{ \begin{array}{l} n\geqslant 2\\ n-$ простое число

$$\mathcal{L}$$
ок-во: \bigoplus Пусть $n-$ составное, $n=kl$
 $\overline{k}\cdot\overline{l}=0$
 $\overline{k}\neq0$ $\overline{l}\neq0$
 $\Rightarrow \overline{k},\overline{l}$ делители 0 в $\mathbb{Z}_n\Rightarrow\mathbb{Z}$ не поле $\Rightarrow n-$ простое $\Rightarrow (n,r)=1 \ \forall r-$ остатка от деления на $n, \ \overline{r}\in\mathbb{Z}_n^*$
 $\forall \overline{r}\in\mathbb{Z}_n\backslash\{0\}\Rightarrow\mathbb{Z}_n-$ поле

Обозначение: n — простое $\Rightarrow \mathbb{Z}_n = \mathbb{F}_n$ (\mathbb{Z}_n — поле), например, $\mathbb{Z}_5 = \mathbb{F}_5$

Утв. 3.
$$(A, +, \cdot)$$
 — ассоциативное кольцо с $1 \Rightarrow (A^*, \cdot)$ — группа (мультипликативная группа кольца) В частности, A — поле $\Rightarrow (A^*, \cdot)$ — мультипликативная группа поля. Доказать самим.

3.3 Подгруппа

Опр. (G,\cdot) — группа. Непустое подмножество G $\emptyset \neq H \subset G$ — называется её подгруппой, если H является группой, относительно операций, определённых в G и ограниченных на H.

Обозначение: H < G

$$H < G \Leftrightarrow$$

$$\Leftrightarrow H \neq \varnothing \text{ M} \begin{cases} 0) h_1, h_2 \in H \Rightarrow h_1 h_2 \in H \quad \forall h_1, h_2 \in H \\ 1) (h_1 h_2) h_3 = h_1 (h_2 h_3) \quad \forall h_1, h_2, h_3 \in H \\ 2) \exists e_H \in H : e_H \cdot h = h \cdot e_H \quad \forall h \in H \\ 3) \forall h \in H \quad \exists h^{-1} \in H : h \cdot h^{-1} = h^{-1} \cdot h = e_H \end{cases}$$

Утв. 4. Критерий того, что H является подгруппой G

$$H < G \Leftrightarrow \begin{cases} \textcircled{1} & e \in H \quad (e \in G) \\ \textcircled{2} & h_1, h_2 \in H \Rightarrow h_1 h_2 \in H \\ \textcircled{3} & \forall h \in H \quad \exists h^{-1} \in H \end{cases}$$

Док-во: \bigoplus Пусть $H < G \Rightarrow 0) \Rightarrow 2$

$$H \neq \emptyset \Rightarrow \textcircled{1} \exists e_H \in H$$

Рассмотрим $e_H e_H = e_H$, так как $e_H \in G \ \exists e_H^{-1} \Rightarrow e_H = e \in H$

3)
$$\forall h \in H \ \exists h^{-1} \in H : hh^{-1} = h^{-1}h = e_H = e \Rightarrow 3$$

$$\bigoplus$$
 ① \Rightarrow $H \neq \emptyset$ ② \Rightarrow 0)

- 1) ассоциативность сделует из ассоциативности в G
- 2) в качестве e_H возьмём $e \in G$
- $3) \Leftarrow (3)$ (учитывая, что $e_H = e$)

Примеры:

(1)
$$(\mathbb{Z}, +) > (2\mathbb{Z}, +)$$

1)
$$0 \in 2\mathbb{Z}$$

2)
$$h_1, h_2 \in 2\mathbb{Z} \Rightarrow h_1 + h_2 \in 2\mathbb{Z}$$

$$h_1 = 2k$$
 $h_2 = 2l \Rightarrow h_1 + h_2 = 2(k+l)$

3)
$$h \in 2\mathbb{Z} \Rightarrow -h \in 2\mathbb{Z}$$

(2)
$$Isom E^2 > Sym \Omega$$
 (Ω - фигура)

 $Sym \; \Omega$ - множество движений $E^2,$ сохраняющих фигуру $\Omega.$ Доказать самим.

3.4 Степень элемента группы

Опр. G - группа, $g \in G$, $\forall n \in \mathbb{Z}$ определено g^n

1)
$$n = m \in \mathbb{N}$$
 $g^n = g^m = g...g \ (n \text{ pa3})$

2)
$$n = 0$$
 $g^0 = e^{-\frac{\pi}{2}}$

3)
$$n = -m$$
 $g^n = g^{-m} = (g^{-1})^m = g^{-1}...g^{-1}$ (m pas)

NOTE: $g^n = g^m \Leftrightarrow g^{n-m} = e$ $g \in G$

Свойства

- $1) g^m g^k = g^{m+k},$
- $2) \ (g^m)^{-1} = g^{-m}, \qquad \forall \, m,k \in \mathbb{Z}$
- 3) $(g^m)^k = g^{mk}$ Доказать самим.

3.5 Порядок элемента группы

Опр. G - группа, $g \in G$, $ord\ g$ - наименьшее натуральное число $n\colon g^n=e$

Если не существует $n \in \mathbb{N} : g^n = e, \ ord g = \infty$

(В адитивной записи (G,+) $g \in G$ $ord_+g = n,$ если n- наименьшее натуральное число : ng = g + ... + g = 0)

Примеры:

- ② (\mathbb{R}^*, \cdot) ord 1 = 1, ord(-1) = 2
- (\mathbb{C}^*, \cdot) ord i = 4, ord $\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = ord e^{i\frac{2\pi}{3}} = 3$

Лекция №4 4

4.1 Циклические группы

G — группа, $g \in G$ $\langle g \rangle = \{g^n, n \in \mathbb{Z}\} \langle G$ — циклическая подгруппа, порождённая q.

Если $\exists g \in G : G = \langle g \rangle$, то G — циклическая группа, порождаемая g.

Пример: $(\mathbb{Z}, +) = <1> = <-1>$

Note: G = < g > является абелевой, так как $g^k \cdot g^l = g^{k+l} = g^l \cdot g^k$

Опр. G — группа, $n \in \mathbb{N}$ называется порядком $g \in G$, если n-minнатуральное число: $q^n = e$,

Обозначение: $n = ord \ q$

Если $\not\exists n \in \mathbb{N} : g^n = e$, то $ord g = \infty$

Утв. 1. G – группа $ord\ q = \infty \Rightarrow q^m \neq q^k$ при $m \neq k$

Док-во: Пусть $g^m = g^k$, при $m \neq k$ и пусть $m > k \Rightarrow g^{m-k} = e$ $m-k \in \mathbb{N}$ \mathfrak{R} , ord $g=\infty \Rightarrow$ Все степени различны

Следствие. Если в группе $G \exists g \in G : ord g = \infty \Rightarrow |G| = \infty$

Утв. 2.
$$G$$
 – группа $ord\ g = n < \infty$ $g^m = e \Leftrightarrow m:n(\Leftrightarrow n|m)$

Док-во: ⊜

1)
$$m = 0$$
 $q^m = q^0 = e$ o: n

2) Заметим, что $g^m=e\Rightarrow g^{-m}=(g^m)^{-1}=e\Rightarrow$ можно считать $m\in\mathbb{N}$

$$\exists S,r\in\mathbb{Z}_+\quad m=ns+r,$$
 где
$$\begin{bmatrix} r=0\Leftrightarrow m:n\\ 0< r< n \end{bmatrix}$$
 Пусть $0< r< n$
$$g^m=g^{ns+r}=g^{ns}\cdot g^r=(e^s)g^r=g^r=e\Rightarrow \text{χ}$$
 противоре-

чит тому, что $ord q = n > r \Rightarrow m:n$

$$\bigoplus m : n \Leftrightarrow m = ns \qquad g^m = g^{ns} = (g^n)^s = (e)^s = e$$

Утв.3
$$G$$
 – группа, $g \in G$: $ord g = n < \infty$ $g^m = g^l \Leftrightarrow m \equiv l \pmod{n} \Leftrightarrow (m-l)$: n

Док-во:
$$q^m = q^l \Leftrightarrow q^{m-l} = e \Leftrightarrow (m-l): n \Leftrightarrow m \equiv l \pmod{n}$$

Утв.4
$$G = \langle g \rangle \Rightarrow |G| = |\langle g \rangle| = ord g$$

Док-во: 1) ord $g=\infty$ $< g>= \{g^n, n\in \mathbb{Z}\}$, причём $g^m\neq g^l$ при $m\neq l\Rightarrow |< g>|=\infty$

2) ord
$$g=n<\infty$$
 $< g>=\{g^n,n\in\mathbb{Z}\}=\{g^0=e,g^1,g^2,...,g^{n-1}\}$ — все различные между собой

 $\overset{\mathbf{Утв.3}*}{\Rightarrow} \forall$ степень g^k , совпадает с одним из этих элементов \Rightarrow | < g > | = n = ord G

Примеры:

$$(\mathbb{Z}, +) = (\langle 1 \rangle, +) \text{ or } d_{+}1 = \infty \quad |(\mathbb{Z}, +)| = \infty$$

(2)
$$2 \in \mathbb{R}^*$$
, $(\langle 2 \rangle, \cdot) = \{2^n, n \in \mathbb{Z}\}$ ord $2 = \infty$ $|(\langle 2 \rangle, \cdot)| = \infty$

$$(\mathfrak{Z}_n,+)$$
 or $d_+1=n$ $|(\mathbb{Z}_n,+)|=n=ord 1$

циклическая группа ord $e^{i\frac{2\pi k}{n}}=n, \quad |(C_n,\cdot)|=n$

Утв.5
$$G = \langle g \rangle, \quad |\langle g \rangle| = \infty \Rightarrow (G, \cdot) \cong (\mathbb{Z}, +)$$

Док-во: Построим изоморфизм $f:(\mathbb{Z},+) \to (G,\cdot):$

$$\forall n \in \mathbb{Z} \ f(n) = g^n \in G$$

1)
$$f$$
 — сюръекция, т.к. $\forall g^k \in \langle g \rangle \quad \exists k \in \mathbb{Z} \ : \ f(k) = g^k$

2)
$$f$$
 — инъекция, т.к. $f(k) = f(m) \Leftrightarrow g^k = g^m \Rightarrow k = m \ (ord \ g = \infty)$

$$(1),2) \Rightarrow f$$
 — биекция

3)
$$f(m+n) = g^{m+n} = g^m g^n = f(m) f(n) \Rightarrow f$$
 - гомоморфизм

$$(1),2),3) \Rightarrow f$$
 - изоморфизм

Примеры:

$$\mathbb{R}^* > (<2>, \cdot) \simeq (\mathbb{Z}, +)$$

$$\mathbb{Z} > (<2>, +) = 2\mathbb{Z} \simeq (\mathbb{Z}, +)$$

Утв. 6
$$G = \langle g \rangle$$
 (циклическая группа) , $|\langle g \rangle| = n \Rightarrow (G, \cdot) \cong (\mathbb{Z}_n, +)$

Док-во: Построим изоморфизм. $f:(\mathbb{Z}_n,+)\longrightarrow (G,\cdot)$

Положим: $\overline{k} \in \mathbb{Z}_n$ $f(\overline{k}) = g^k$

Это определение корректно, т.к.

$$\overline{k} = \overline{l} \Leftrightarrow k \equiv l \pmod{n} \Rightarrow g^k = g^l \Leftrightarrow f(\overline{k}) = f(\overline{l})$$

- 1) f сюрьективно, т.к. $\forall \ g^k \in \langle g \rangle \ \exists \overline{k} \in \mathbb{Z}_n : f(\overline{k}) = g^k$
- 2) f инъективно, т.к. $f(\overline{k}) = f(\overline{l}) \Leftrightarrow k \equiv l \pmod{n} \Leftrightarrow \overline{k} = \overline{l}$

3)
$$f(\overline{k}+\overline{l})=f(\overline{k+l})=g^{k+l}=g^kg^l=f(\overline{k})f(\overline{l})\Rightarrow f$$
 - гомоморфизм

$$(1),2)\Rightarrow$$
 биекция. $(1),2),3)\Rightarrow$ изоморфизм.

$$(G,\cdot)\cong (\mathbb{Z}_n,+)$$

$$\begin{array}{ll} \underline{\Pi \text{ример:}} & (\mathbb{C}_n, \cdot) \cong (\mathbb{Z}_n, +) \\ Rot \bigcirc = <\varphi_{\frac{2\pi}{6}} = \varphi_{\frac{\pi}{3}} > & |Rot \bigcirc| = 6 \\ ord \varphi_{\frac{\pi}{2}} = 6 & Rot \bigcirc \simeq (\mathbb{Z}_6, +) \simeq (\mathbb{C}_6, \cdot) \end{array}$$

Утв. 7.
$$G$$
 - группа $ord g = n < \infty \Rightarrow ord g^k = \frac{n}{(n,k)}$

Док-во:
$$k = 0$$
. $ord g^k = ord g^0 = ord l = 1 = \frac{n}{n}, \quad n = (n, 0)$

$$k \neq 0$$
. Пусть $(n,k) = d \Rightarrow \begin{cases} n = dn_1 \\ k = dk_1 \Rightarrow n_1 = \frac{n}{d} = \frac{n}{(n,k)} \end{cases}$

Пусть
$$(g^k)^m = e$$

 $(g^k)^m = g^{km} = e \Rightarrow km : n \Leftrightarrow km = ns$

$$k = dk_1, \ n = dn_1, \ n_1 \in \mathbb{N} \Rightarrow dk_1 m = dn_1 s \Rightarrow k_1 m = n_1 s$$

$$(n_1, k_1) = 1$$
 $k_1 m : n_1$
 $\Rightarrow m : n_1 \Rightarrow m = n_1 t$
 $(g^k)^m = e \Rightarrow (g^k)^{-m} = ((g^k)^m)^{-1} = e \Rightarrow \text{ можно}$
рассматривать $m \in \mathbb{N}$ $m = n_1 t \Rightarrow t \in \mathbb{N}$
 $ord g^k = min\{m \in \mathbb{N} : (g^k)^m = e\} = min\{n_1 t \in \mathbb{N} : (g^k)^{n_1 t} = e\} = n_1 = \frac{n}{(n_1 k)}$

Проверим, что
$$(g^k)^{n_1}=e$$
 $(g^k)^{n_1}=g^{kn_1}=g^{dk_1n_1}=g^{(dn_1)k_1}=(g^n)^{k_1}=e^{k_1}=e$, т.к. $n=ord$ $g^{k_1}=g^{k_2}=g^{k_1}=e$

Утв.8 Пусть $|G| = n < \infty$, тогда

G является циклической группой $\Leftrightarrow \exists \ g \in G: \ ord \ g = n$

$$\left. \begin{array}{l} |\langle g \rangle| = \operatorname{ord} g = n = |G| \\ \langle g \rangle < G \end{array} \right\} \Rightarrow G = \langle g \rangle$$

 $|Sim \ \ \ \ | = 4, \ \ \, \ \ \ \ \,$ элемента порядка 4. $Sim \ \ \ \ \ \$ не является циклической. Эта группа называется четверная группа Клейна

NOTE: Порождающим элементам циклической группы является элемент, порядок которого совпадает с её порядком.

Следствие 1: $G = \langle g \rangle$ ord g = n = |G| q^k является порождающим элементом $G \Leftrightarrow (n,k) = 1$.

Следствие 2: Количество различных порождающих элементов в группе < g > : ord g = n равно $\varphi(n)$ - значению функции Эйлера от n.

Следствие 3: В $< g>: ord g = n \ \forall$ элемент является порождающим $\Leftrightarrow n$ - простое.

4.2 Подгруппы циклической группы

Утв. 9. Любая подгруппа циклической группы циклическая.

Док-во: H < G = < g >

- 1) $H = \langle e \rangle = \langle g^0 \rangle$ циклическая
- $2) \exists q^k \in H: q^k \neq l$

 $\Rightarrow g^{-k}\in H,$ так как $g^{-1}=(g^k)^{-1}\in H\Rightarrow$ можно считать $k\in\mathbb{N}$ $m=min\{k\in\mathbb{N}:\ g^k\in H\}\Rightarrow\ <\!g^m\!>=H$

Докажем это:

$$k = ms + r$$

$$\begin{cases} r = 0 \implies g^k = g^{ms} = (g^m)^s \\ 0 < r < m \implies g^k = g^{ms+r} = ord g^k = \frac{n}{(k,n)} = d \end{cases}$$

5 Лекция №5

$$0 < r < m \Rightarrow g^k \in H \quad g^m \in H \Rightarrow (g^m)^s \in H \Rightarrow g^{-ms} \in H \Rightarrow$$
 $\Rightarrow g^{-ms}g^k = g^r \in H \quad \stackrel{0}{X}$ выбору $m \Rightarrow r = 0 \Rightarrow k = ms$ $g^k = g^{ms} = (g^m)^s \quad g^k \in < g^m > \Rightarrow H = < g^m >$

Утв. 10
$$G = \langle g \rangle$$
 $|G| = n \Rightarrow \forall k \in \mathbb{N} : n : k \exists ! H < G : |H| = k$

Док-во:

①Док-во единственности: Пусть $H_1 < G : |H_1| = k$

$$\begin{aligned} |H_1| &= < g^s > \quad ord \; g^s = \frac{n}{n,\,s} = k \quad n = k(n,s) \Rightarrow (n,s) = m, \\ \text{где } (l,k) &= 1 \quad g^s = (g^m)^l \in H = < g^m > \\ |H_1| &= |H| \end{aligned} \right\} \Rightarrow H_1 = H$$

Пример:
$$\mathbb{C}_{12} = \{z \in \mathbb{C} : z^{12} = 1\} = \{e^{\frac{2\pi k}{12}i}, \ k = \overline{0,11}\} = \langle e^{\frac{2\pi}{12}i} = e^{\frac{\pi}{6}i} \rangle$$
 $|\mathbb{C}_{12}| = 12$ Дел $12 : k = 1, 2, 3, 4, 6, 12$

$$k=1$$
 $H_1=<1> H_1=1 $k=12$ $H_2=\mathbb{C}_{12}$ $H_2=12$ } тривиальные
 (несобственные) подгруппы$

Собственные подгруппы:

$$k = 2 \quad |H_3| = 2 \quad H_3 = \langle e^{\frac{\pi 6i}{6}} \rangle = \langle e^{\pi i} \rangle = \{1, -1\} \cong (\mathbb{Z}_2, +)$$

$$k = 3 \quad |H_4| = 3 \quad H_4 = \langle e^{\frac{\pi 4i}{6}} \rangle = \langle e^{\frac{2\pi}{3}i} \rangle \cong (\mathbb{Z}_3, +)$$

$$k = 4 \quad |H_5| = 4 \quad H_5 = \langle e^{\frac{i\pi^3}{6}} \rangle = \langle e^{\frac{\pi}{2}i} \rangle \cong (\mathbb{Z}_4, +)$$

$$k = 6 \quad |H_6| = 6 \quad H_6 = \langle e^{\frac{i\pi^2}{6}} \rangle = \langle e^{\frac{\pi}{3}i} \rangle \cong (\mathbb{Z}_6, +)$$

5.1 Симметрическая группа S_n

Опр. Пусть X - конечное множество, $|X| = n, X = \{1, 2, ..., n\}$

S(X) - группа биективных преобразований X называется симметрической группой степени n (группой подстановок) и обозначается S_n

$$\alpha \in S(X) = S_n, \quad \alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$
 - подстановка из n элементов

$$|X| = n \Rightarrow S(X) = S_n \Rightarrow |S_n| = n!$$

$$\alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix} \qquad \beta = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$$
$$\beta \alpha = \beta \circ \alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix} \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix} =$$

$$= \begin{pmatrix} i_1 & i_2 & \dots & i_n \end{pmatrix} \begin{pmatrix} 1 & 2 & \dots & i_n \end{pmatrix}$$
$$= \begin{pmatrix} i_1 & i_2 & \dots & i_n \\ k_1 & k_2 & \dots & k_n \end{pmatrix} \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix} = \begin{pmatrix} 1 & 2 & \dots & n \\ k_1 & k_2 & \dots & k_n \end{pmatrix}$$

Пример:
$$\alpha, \beta \in S_5$$
 $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 4 & 2 \end{pmatrix}$

$$\beta \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3$$

$$= \begin{pmatrix} 2 & 3 & 5 & 4 & 1 \\ 3 & 5 & 2 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1 \end{pmatrix}$$

В S_n нейтральный элемент $id = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$,

$$\forall \alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix} \Rightarrow \alpha^{-1} = \begin{pmatrix} i_1 & i_2 & \dots & i_n \\ 1 & 2 & \dots & n \end{pmatrix}$$

Пример:

$$\alpha = \overline{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix}} \Rightarrow \alpha^{-1} = \begin{pmatrix} 2 & 3 & 5 & 4 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix}$$

Название "симмертическая группа" связано с действием S_n на многочлены от n переменных

$$f \in \mathbb{R}[x_1, x_2, ..., x_n]$$
 $\alpha \in S_n$ $(\alpha f) = f(x_{\alpha(1)}, x_{\alpha(2)}, ..., x_{\alpha(n)}) \in \mathbb{R}[x_1, x_2, ..., x_n]$ $f = x_1 x_2 x_3^2, \ \alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \Rightarrow \alpha f = x_1 x_3 x_2^2$ $f \in \mathbb{R}[x_1, x_2, ..., x_n]$ - симметрический многочлен $\Leftrightarrow \alpha f = f \ \forall \alpha \in S_n$

Например:

 $x_1x_2...x_n$ - симметрический многочлен, $x_1+x_2+...+x_n$ - симметрический многочлен

Пример

$$\alpha \in S_{11} \qquad \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 3 & 2 & 5 & 4 & 6 & 8 & 9 & 10 & 7 & 1 & 11 \end{pmatrix} = (1356810)(4)(73)(2)(11)$$

Утв. 1. $\forall \ \alpha \in S_n$ можно разложить в произведения независимых циклов.

Утв. 2. Независимые циклы перестановочны между собой (коммутируют).

Утв.3 Разложение подстановки в произведение независимых циклов единственно (с точностью до перестановки циклов).

 $y_{TB.4}$

$$lpha=(i_1,i_2,...,i_l)$$
 — цикл длинны l
$$ord\ lpha=ord(i_1,...,i_l)=l$$

Док-во:
$$\alpha(i_k) = i_{k+1}$$
 $\alpha(i_l) = i_1$ $\alpha^s(i_k) = i_{k+s}$ $\alpha^l(i_k) = i_k$

Опр. Цикленным типом подстановки $\alpha \in S_n$ называется набор длин независимых циклов, в произведение которых раскладывается α .

$$\{\alpha\} = \{l_1, l_2, ..., l_s\}$$

 $l_1 \geqslant l_2 \geqslant ... \geqslant l_s, \ l_1 + l_2 + ... + l_s = n$

Утв.5
$$\{\alpha\} = \{l_1, l_2, ..., l_3\} \Rightarrow ord \ \alpha = HOK\{l_1, l_2, ... l_s\}$$

Док-во: Пусть $\alpha=\beta_1\beta_2...\beta_s$ - разложение α в произведение независимых циклов $\alpha^k=\beta_1^k\beta_2^k...\beta_s^k=id$ $\beta_i^k=id$ $i=\overline{1,s}$ k \vdots l_i $i=\overline{1,s}$ k \vdots l_i $i=\overline{1,s}$

Опр. $\alpha = \begin{pmatrix} i_1 & i_2 & \dots & i_n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$ называется чётной, если $[i_1, i_2, \dots, i_n] + [j_1, j_2, \dots, j_n]$ – чётное число, нечётной в противном случае.

NOTE: Это определение корректно, тк \forall подстановку α можно записать в виде $\begin{pmatrix} 1 & 2 & \dots & n \\ k_1 & k_2 & \dots & k_n \end{pmatrix}$, с точностью до перестановки пары столбцов. При перестановке столбцов, происходит изменение четности верхней и нижней перестановок. \Rightarrow чётность суммарного числа инверсий не изменятся.

Опр.

Пусть
$$\alpha = \begin{pmatrix} i_1 & i_2 & \dots & i_n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$$
.

Знаком подстановки α называется число $sgn\ \alpha = (-1)^{[i_1,i_2,...,i_n]+[j_1,j_2,...,j_n]}.$ $sgn\ \alpha = 1 \Leftrightarrow \alpha$ — чётная; $sgn\ \alpha = -1 \Leftrightarrow \alpha$ — нечётная.

Утв. 6.
$$\forall \alpha, \beta \in S_n \ sqn \ (\alpha\beta) = sqn \ \alpha \cdot sqn \ \beta$$

Док-во:
$$\alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}.$$
 $\alpha = \begin{pmatrix} j_1 & \dots & j_n \\ k_1 & \dots & k_n \end{pmatrix}$

$$sgn \alpha = (-1)^{[j_1, \dots, j_n] + [k_1, \dots, k_n]} \qquad sgn \beta = (-1)^{[1, \dots, n] + [j_1, \dots, j_n]}$$

$$\alpha\beta = \begin{pmatrix} j_1 & j_2 & \dots & j_n \\ k_1 & j_2 & \dots & k_n \end{pmatrix} \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix} = \begin{pmatrix} 1 & 2 & \dots & n \\ k_1 & k_2 & \dots & k_n \end{pmatrix}$$

$$sgn(\alpha\beta) = (-1)^{[1,\dots,n]+[k_1,\dots,k_n]} =$$

$$= (-1)^{([1,\dots,n]+[j_1,\dots,j_n])+([j_1,\dots,j_n]+[k_1,\dots,k_n])} =$$

$$= (-1)^{[1,\dots,n]+[j_1,\dots,j_n]} (-1)^{[j_1,\dots,j_n]+[k_1,\dots,k_n]} =$$

$$= sgn \beta sgn \alpha$$

Пусть $A_n = \{ \alpha \in S_n : sgn \ \alpha = 1 \}$ - множество чётных подстановок.

Утв. 7.
$$A_n < G$$

Док-во: 1)
$$id \in A_n$$
, т.к. $id = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$, $sgn(id) = 1$
2) $\alpha, \beta \in A_n$, то есть $sgn \alpha = 1$, $sgn \beta = 1 \Rightarrow sgn(\alpha\beta) = sgn(\alpha) sgn(\beta) = 1 \cdot 1 = 1 \Rightarrow \alpha\beta \in A_n$
3) $\alpha \in A_n$, $\alpha = \begin{pmatrix} i_1 & i_2 & \dots & i_n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$ $sgn \alpha = (-1)^{[i_1, \dots, i_n] + [j_1, \dots, j_n]} = 1 \Rightarrow sgn \alpha^{-1} = (-1)^{[j_1, \dots, j_n] + [i_1, \dots, i_n]} = (-1)^{[i_1, \dots, i_n] + [j_1, \dots, j_n]} = 1$.

Опр. A_n называется знакопеременной группой

 $\left(A_n \text{ сохраняет знакопеременный многочлен } \prod_{1 \leq i \leq j \leq n} (x_i - x_j)\right).$

Утв. 8.
$$|A_n| = \frac{n!}{2}$$

Док-во: $\alpha \in A_n \Leftrightarrow \alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$: $[i_1, i_2, \dots, i_n]$ - чётное, так

то есть $(i_1, i_2, ..., i_n)$ - чётная перестановка. Их число $\frac{n!}{2}$.

Подстановка (i,j) называется транспозицией.

$$(ij)^{-1} = (ji) \ ord(ij) = 2$$

(ij) - нечётная перестановка

$$(ij)$$
 - нечётная перестановка,
$$(ij) = \begin{pmatrix} 1 & \dots & i-1 & i & \dots & j-1 & j & \dots & n \\ 1 & \dots & i-1 & \mathbf{j} & \dots & j-1 & \mathbf{i} & \dots & n \end{pmatrix}$$
 $sgn(ij) = -1$

NOTE:
$$\alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$

$$(i_k i_l)\alpha = \begin{pmatrix} 1 & 2 & \dots & i_k & \dots & i_l & j & \dots & n \\ 1 & 2 & \dots & i_l & \dots & i_k & j & \dots & n \end{pmatrix} \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix} =$$

$$= \begin{pmatrix} i_1 & \dots & i_k & \dots & i_l & \dots & i_n \\ i_1 & \dots & i_l & \dots & i_k & \dots & i_n \end{pmatrix} \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix} = \begin{pmatrix} 1 & 2 & \dots & i_k & \dots & i_l & \dots & n \\ i_1 & i_2 & \dots & i_l & \dots & i_k & \dots & n \end{pmatrix}$$

Утв. 9. $\forall \alpha \in S_n$ можно представить в виде произведения транспозиций.

Лекция №6

Док-во:
$$\alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}, \quad (j_1 1)\alpha = \begin{pmatrix} 1 & 2 & \dots & l & \dots & n \\ 1 & j_2 & \dots & j_1 & \dots & j_n \end{pmatrix}, \quad \tau_1 = (j_1 1) \Rightarrow \\ \Rightarrow \exists \ \tau_1, \tau_2, \dots, \tau_s \ : \ \tau_s, \dots, \tau_3, \tau_2, \tau_1 \alpha = id \\ \alpha = (\tau_s, \dots, \tau_2, \tau_1)^{-1} id = \tau_1, \tau_2, \dots, \tau_s$$

 ${f y}$ тв. 10. Чётная подстановка представляется в виде чётного числа

транспозиций; нечётная - нечётного;

Док-во: $\alpha = \tau_1, \tau_2, ..., \tau_s$ $sgn \ \alpha = sgn \ \tau_1 \ sgn \ \tau_2, ..., \ sgn \ \tau_s = (-1)^s$ α — чётная подстановка $\Leftrightarrow s$ — чётное число, α — нечётная подстановка $\Leftrightarrow s$ — нечётное число.

Утв. 11.
$$\alpha = (i_1, ..., i_k) \in S_n \implies sgn \ \alpha = (-1)^{k-1}$$

Док-во:
$$(i_1,i_2,...,i_k)=$$
 $=(i_1i_2)(i_2i_3)...(i_{k-1}i_k)$ - произведение $(k-1)$ транспозиций

Утв. 12. $\alpha \in S_n$, цикленный тип $\{\alpha\} = \{k_1, k_2, ..., k_l\}, \Rightarrow sgn \ \alpha = (-1)^{n-l}$

Док-во:
$$\alpha=(i_1,...,i_{k_1})...(i_1...i_{k_l})$$
 $sgn\ \alpha=(-1)^{(k_1-1)+...+(k_l-1)}=(-1)^{(k_1+...+k_l)-l}=(-1)^{n-l}$

Утв. 13. $\forall \alpha \in A_n$ при $n \geqslant 3$ можно представить в виде произведения тройных циклов.

Док-во: $\forall \alpha \in A_n < S_n$ представляется в виде чётного числа транспозиций

Докажем, что (i,j)(k,l) — можно представить в виде тройных циклов.

- 1) $(i,j)(j,k)=(kij),\quad i,j,k$ различны
- 2) $(i,j)(k,l)=(i,j)(j,k)(j,k)(k,l)=(kij)(ljk), \quad ((j,k)(j,k)=id).$ i,j,k,l различны

6.1 Система порождающих элементов группы

Пусть
$$G$$
 — группа, $\emptyset \neq S \subset G$, $\langle S \rangle = \{g_1^{\varepsilon_1}...g_k^{\varepsilon_k}, \ k \in \mathbb{N}, \ \varepsilon_i = \pm 1, \ i = \overline{1,k}\} \Rightarrow \langle S \rangle \subset G$

Утв. 1. < S > < G

Док-во:

- 1) $\exists g \in S \Rightarrow gg^{-1} = e \in \langle S \rangle$
- 3) $h = g_1^{\varepsilon_1} ... g_k^{\varepsilon_k} \in \langle S \rangle \Rightarrow h^{-1} = g_k^{-\varepsilon_k} ... g_1^{-\varepsilon_1} \in \langle S \rangle$

NOTE:

 < S > минимальная по включению подгруппа, содержащее мн-во S, т.к.
 $S \subset < S >$, а вместе с S в подгруппу должны войти все произведения нужного вида.

Опр. Если G = < S >, то говорят, что G порождается системой S, или S — система порождающих G.

Примеры:

- a) $k \in \mathbb{N}$ $g^k = g...g$ (k pas)
- 6) k = 0 $q^0 = e = qq^{-1}$
- в) k = -m $g^k = g^{-m} = g^{-1}...g^{-1}$ (m раз) $m \in \mathbb{N}$
- 2Утв.9 означает, что мн-во всевозможных транспозиций из n элементов
- (i,j) $i \neq j$ $i,j = \overline{1,n}$ система порождающих S_n
- $(S_n$ порождается транспозициями)

Например,
$$S_3 = \{(1,2), (1,3), (2,3), (1,2,3), (1,3,2), id\} = <(1,2), (1,3), (2,3) >$$

З Утверждение 13 означает, что A_n порождается тройными циклами Например, $A_3 = \{(1,2,3), (1,3,2), id\} = <(1,2,3)>$

6.2Группа диэдра

 $O_2 \subset Isom E^2$

 O_2 - множество движений плоскости, оставляющих на месте начальную точку $O.\ O_2 < Isom\ E^2.\ O_2$ - ортогональная группа.

F - фигура на плоскости. $\Rightarrow Sym F < Isom E^2$

F - фигура с центром $\Rightarrow Sym F < O_2 < Isom E^2$

Пример:

F - окружность с центром в точке $O, Sym F = O_2$

F - правильный n-угольник, $n\geqslant 3$

 $Sym \, F = Sym \, \widehat{\circ} = D_n$ - группа диэдра

В D_n входят повороты на углы $\frac{2\pi}{n}k$, $k=\overline{0,n-1}$ (или $k=\overline{1,n}$) и отражения относительео прямых, соединяющих центр и одну из вершин или центр и середину одной из сторон.

 $|D_n| = 2n \ (n \ \text{отражений } n \ \text{поворотов})$

 S_1 - отражение относительно $l_1,$ S_2 - отражение относительно $l_2.$

 $S_2S_1=U_{lpha}$ - поворот на lpha

 D_n - некоммутативная группа

$$D_n = \{id, U_{\frac{2\pi}{n}}, U_{\frac{2\pi}{n}2}, ..., U_{\frac{2\pi}{n}(n-1)}, S_1, ..., S_n\} = \langle U_{\frac{2\pi}{n}}, S_1 \rangle$$

 $U_{\frac{2\pi}{n}}, S_1$ - система порождающих $D_n,$

где $U_{\frac{2\pi}{n}}$ - поворот на $\frac{2\pi}{n}$ против часовой стрелки, S_1 - одно из отражений (симметрий).

$$ord U_{\frac{2\pi}{n}} = n$$
, $ord S_1 = 2$, $S_1 U_{\frac{2\pi}{n}} S_1 = U_{-\frac{2\pi}{n}} = U_{\frac{2\pi}{n}}^{-1}$

Теорема (достачное условие того, что группа изоморфна группе диэдра):

Если
$$G=< a,b>, \ ord\ a=n,\ n\geqslant 3,\ ord\ b=2,\ bab=a^{-1},$$
 то $G\cong D_n$

Док-во:

1)
$$b^{-1} = b$$
, $ab = ba^{-1}(*)$, $a^{-1}b = ba(**)$

2) Покажем, что все элементы группы G имеют вид a^k , k=0,1,...,n или ba^k , k=0,1,...,n.

Если в выражении g через a,b встречается только $a\Rightarrow g=a^k,$

где
$$k = \overline{0, n-1}$$

Если в выражении g через a и b встречается b^{-1} , заменим его на b Все b можно вытащить вперёд, пользуясь (*),(**), $b^2 = e \Rightarrow$ впереди b останется только в первой степени (или исчезнет).

3) a)
$$g_1 = a^k$$
, $g_2 = a^m$, $k, m = \overline{0, n - 1}$, $\Rightarrow g_1 g_2 = a^{k+m}$
6) $g_1 = a^k$, $k = \overline{0, n - 1}$, $g_2 = ba^l$, $l = \overline{0, n - 1} \Rightarrow$

$$\Rightarrow g_1g_2 = a^kba^l = ba^{-k}a^l = ba^{l-k},$$

$$g_2g_1 = ba^la^k = ba^{l+k}$$

B)
$$g_1 = ba^k$$
, $k = \overline{0, n-1}$, $g_2 = ba^l$, $l = \overline{0, n-1}$

$$g_1 g_2 = ba^k \cdot ba^l = b^2 a^{-k} a^l = a^{l-k}$$

Ясно, что таблица Кэли группы определяется однозначно ⇒ с точностью до изоморфизма имеется ровно одна группа G, удовлетворяющая данным условиям $\Rightarrow G \cong D_n$.

Пример:
$$|D_3| = 6$$
, $|\mathbb{Z}_6| = 6$, $D_3 \not\simeq Z_6 \simeq \mathbb{C}_6$, $|S_3| = 6$, $S_3 \simeq D_3$

7 Лекция №7

7.1Группа кватернионов

Пусть
$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$

	i	j	k
i	-1	k	-j
j	-k	-1	i
k	j	-i	-1

Умножение символов i, j, k происходит так же, как векторное умножение векторов базиса $<\overline{i},\overline{j},\overline{k}>,\,i^2=j^2=k^2=-1.$

 Q_8 можно реализовать в виде группы матриц $\{\pm E, \pm I, \pm J, \pm K\}$.

$$1 \to E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - 1 \to -E = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad i \to I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$
$$-i \to -I = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \quad j \to J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad -j \to -J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$k \to K = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad -k \to -K = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

$$ord \ 1 = 1$$
, $ord(-1) = 2$, $(-1)^{-1} = 1$, $ord(\pm i) = 4$, $i^{-1} = -i$, $(-i)^{-1} = i$, $ord(\pm j) = 4$, $j^{-1} = -j$, $ord(\pm k) = 4$, $k^{-1} = k$.

 Q_8 — некоммутативная группа: $|Q_8| = 8$

 \exists ещё некоммутативная группа: |G| = 8 $G = D_4$ $Q_8 \not\cong D_4$

Сравним количество элементов определенного порядка в этих группах.

Q_8 :			
Порядок	1	1	6
Количество	1	2	4

$$Q_8=< i,j>=< i,k>=< j,k>$$
 Покажем, что $Q_8=< i,j>$, ord $i=4$, $i^2=j^2$ $((j)^{-1}ij)=-jij=kj=-i=i^{-1}$ $1=i\cdot i\cdot i\cdot i=i(-i)=i(i)^{-1}$ $-1=i\cdot i$ $i=i;$ $-i=(i)^{-1};$ $j=j$ $(-j)=(j)^{-1}=-j;$ $k=ij;$ $-k=ji$

Теорема(достаточное условие того, что группа изоморфна группе кватернионов):

Если
$$G = \langle a, b \rangle$$
, ord $a = 4$, $a^2 = b^2$, $b^{-1}ab = a^{-1}$, то $G \cong Q_8$

Док-во:

1) ord
$$b = 4 \implies b^{-1} = b^3$$
, $ab = ba^{-1} = ba^3$ (*) ord $a = 4 \implies a^{-1} = a^3$

2) $g \in G$ выражается через порождающие a,b. Заменим в его выражении a^{-1} на a^3 , b^{-1} на b^3 , a^2 на $b^2 \Rightarrow$ В его выражении через a и b могут встречаться $aa^{-1}=e,a^2,b,a^3$ (*) $\Rightarrow b$ можно вынести вперёд.

$$a^{3}b = a^{2}ba^{3} = aba^{3}a^{3} = ba^{3}a^{3}a^{3} = ba$$
 $bab = bba^{3} = a^{5} = a$
 $ba^{2}b = baba^{3} = bba^{3}a^{3} = b^{2}a^{6} = a^{8}$
 $ba^{3}b = ba^{2}ba^{3} = baba^{6} = b^{2}a^{9} = a^{11} = a^{3}$

 $G = \{e, a, a^2, a^3, b, ba, ba^2, ba^3\}, \quad |G| = 8$

Таблица Кэли определяется однозначно.

e	a	a^2	a^3	b	ba	ba^2	ba^3
a	a^2	a^3	e	ba^3	b	ba	ba^2
a^2	a^3	e	a	ba^2	ba^3	b	ba
a^3	e	a	a^2	ba	ba^2	ba^3	b
b	ba	ba^2	ba^3	a^2	a^3	e	a
ba	ba^2	ba^3	b	a	a^2	a^3	e
ba^2	b^3	b	ba	e	a	a^2	a^3
ba^3	b	ba	ba^2	a^3	e	a	a^2

 \Rightarrow C точностью до изоморфизма $\exists !$ такая группа G. Но мы знаем такую группу - $Q_8 \;\Rightarrow\; G \cong Q_8$

7.2 Сравнение элементов группы по модулю подгруппы

Опр. G - группа, H < G, $g_1, g_2 \in G$ называются сравнимыми по $mod\ H$ $g_1 \equiv g_2(mod\ H)$, если $g_1^{-1}g_2 \in H$. (в аддитивной записи $(-g_1)+g_2 \in H$)

Утв. 1. Сравнимость по $mod\ H$ - отношение эквивалентности.

- 1) $g \equiv g(mod\ H)$, (рефлексивность),
- т.к $g^{-1}g = e \in H$
- 2) $g_1 \equiv g_2 \pmod{H} \Rightarrow g_2 \equiv g_1 \pmod{H}$, (симметричность),

T.K.
$$g_1^{-1}g_2 \in H \Rightarrow (g_1^{-1}g_2)^{-1} = g_2^{-1}g_1 \in H \Rightarrow g_2 \equiv g_1(mod\ H)$$

3) $g_1 \equiv g_2(mod\ H), g_2 \equiv g_3(mod\ H) \Rightarrow g_1 \equiv g_3(mod\ H),$ (транзитивость),

т.к.
$$g_1^{-1}g_2 \in H, \ g_2^{-1}g_3 \Rightarrow (g^{-1}g_2)(g_2^{-1}g_3) = g_1^{-1}g_3 \in H \Rightarrow g_1 \equiv g_3 \pmod{H}$$

7.3 Смежные классы группы по подгруппе.

Отношение эквивалентности разбивает группу G на непересекающиеся классы эквивалентности - **левые смежные классы** группы G по подгруппе H $Lg_1=\{g\in G: g_1\equiv g(mod\ H)\}$

Утв. 2.
$$Lg_1 = g_1H = \{g \in G : \exists h \in H : g = g_1h\}$$

Док-во: $g \in Lg_1 \Leftrightarrow g_1 \equiv g \pmod{H} \Leftrightarrow g^{-1}g \in H \Leftrightarrow \exists h \in H : g^{-1}g = h \Leftrightarrow g \in g^{-1}H$

Если рассмотрим другое отношение эквивалентности $g_1 \equiv g_2 \pmod{H} \Leftrightarrow g_1g_2^{-1} \in H$ получим **правые смежные классы** группы G по подгруппе $H: Rg_1 = Hg_1$.

Обозначения:

- 1) Мно-во всех левых смежных классов группы G по подгруппе H обозначим $G/_H$
- 2) Мно-во всех правых смежных классов группы G по подгруппе H обозначим ${}_{H}\!\!\setminus^{G}$

$$S_{3} = \overline{\{id, (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)\}}$$

$$H = \langle (1, 2) \rangle = \{id, (1, 2)\} \langle G$$

$$L_{(1,3)} = (1, 3)H = \{(1, 3), (1, 3)(1, 2) = (2, 3, 1)\} = (2, 3, 1)H = L_{(2,3,1)} = E_{(1,2,3)}$$

$$L_{(2,3)} = (2, 3)H = \{(2, 3), (2, 3)(1, 2) = (2, 1, 3)\} = (2, 1, 3)H = L_{(2,1,3)} = E_{(1,3,2)}$$

$$R_{(1,3)} = H(1, 3) = \{(1, 3), (1, 2)(1, 3) = (3, 2, 1)\} = H(3, 2, 1) = R_{(3,2,1)} = E_{(1,3,2)}$$

$$R_{(2,3)} = H(2, 3) = \{(2, 3), (1, 2)(2, 3) = (3, 1, 2)\} = H(3, 1, 2) = R_{(3,1,2)} = E_{(1,2,3)}$$

$$S_{3}/_{<(1,2)} \neq \langle (1,2) \rangle \rangle^{S_{3}}$$

Утв. 3. В абелевой группе $G/_H = H \setminus G$

Док-во: gh = hg Lg = gH = Hg = Rg

Утв. 4. \exists взаимно-однозначное соответствие между $^G/_H$ и $_H\backslash ^G$

Док-во: Рассмотрим $f: G \to G$, $f(g) = g^{-1} \Rightarrow f$ - биекция $\forall gh \in gH \stackrel{f}{\longmapsto} (gh)^{-1} = h^{-1}g^{-1} \in Hg^{-1} \Rightarrow gH \stackrel{f}{\longmapsto} Hg^{-1}$, $Lg \stackrel{f}{\longmapsto} Rg^{-1}$, $f: {}^G/_H \to {}_H\backslash {}^G$ - биекция, т.к.

- 1) $\forall Rg \exists Lg^{-1} : f(Lg^{-1}) = Rg,$
- 2) Если $f(Lg_1) = f(Lg_2)$, т.е. $Rg_1^{-1} = Rg_2^{-1} \iff g_1^{-1}g_2 \in H \iff Lg_1 = Lg_2$.

Опр. Количество левых (правых) смежных классов группы G по подгуруппе H называется индексом подгруппы H в группе G и обозначается |G:H|.

Утв. 5.

$$G$$
 - группа, $H < G$: $|G:H| = 2 \Rightarrow \forall g \in G$ $Lg = Rg$

Док-во:
$$g \notin H$$
 $G = H \cup Lg$, $H \cap Lg = \varnothing$, $G = H \cup Rg$, $H \cap Rg = \varnothing \Rightarrow Lg = Rg$ Утв. 6. G - группа, $H < G$: $|H| = n < \infty \Rightarrow \forall \, q \in G \, |qH| = |H| = n$

Док-во:

$$H=\{e,h_1.h_2,...,h_{n-1}\},\ h_k \neq h_m,\ k \neq m,\ k,m=\overline{1,n-1}$$
 $gH=\{g,gh_1,gh_2,...,gh_{n-1}\},$ где $gh_k \neq gh_m, \qquad k \neq m, \qquad k,m=\overline{1,n-1},$ т.к. $h_k \neq h_m$

7.4 Теорема Лагранжа и следствия из неё:

Теорема Лагранжа.

$$G$$
 - группа, $|G| < \infty$, $H < G \Rightarrow$ $|G| = |H| \cdot |G| : H|$

Док-во: Рассмотрим разбиения G на левые смежные классы по H. Их количество - |G:H|. Количество элементов в \forall классе - |H|.

Следствие 1.
$$\begin{array}{c} |G| < \infty \\ H < G \end{array} \Big\} \Rightarrow |G| \ \vdots \ |H| \quad \left(|H| \Big| |G|\right)$$

Док-во:
$$\forall g \in G$$
 рассмотрим $H = \langle g \rangle$, $|H| = ord g \Rightarrow |G| : |H| = ord g$

Следствие 3. |G|=p - простое число $\Rightarrow G$ - циклическая группа

Док-во:
$$g \in G \left[\begin{array}{c} \operatorname{ord} g = 1 \iff g = e \\ \operatorname{ord} g = p = |G| \implies < g >= G \end{array} \right.$$

Следствие 4.
$$|G| = n < \infty \Rightarrow \forall g \in G \ g^n = e$$

Док-во: Пусть
$$ord g = m \Rightarrow$$

 $\Rightarrow n : m \Rightarrow n = mk \Rightarrow g^n = g^{mk} = (g^m)^k = e^k = e$

Следствие 5. Малая теорема Ферма.

$$p$$
 - простое, $\quad a \in \mathbb{Z}, \quad (a,p) = 1 \ \Rightarrow \ a^{p-1} \equiv 1 (mod \, p)$

Док-во:
$$\overline{a} \in \mathbb{Z}_p^*$$
, \mathbb{Z}_p^* - группа, $|\mathbb{Z}_p^*| = p-1 \Rightarrow \overline{a}^{p-1} = \overline{1}$ в $\mathbb{Z}_p^* \Leftrightarrow a^{p-1} \equiv 1 \pmod{p}$ в \mathbb{Z}

Следствие 6. Теорема Эйлера.

$$\left. \begin{array}{c} n \in \mathbb{N}, \ a \in \mathbb{Z} \\ (a,n) = 1 \end{array} \right\} \Rightarrow a^{\varphi(n)} \equiv 1 (mod \, n)$$

Док-во:
$$\overline{a} \in \mathbb{Z}_n^*$$
, \mathbb{Z}_n^* - группа, $|\mathbb{Z}_n^*| = \varphi(n) \Rightarrow \overline{a}^{\varphi(n)} = \overline{1}$ в $\mathbb{Z}_n^* \Leftrightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$

Следствие 7. Теорема Вильсона

$$p \in \mathbb{N}$$
 — простое число $\Rightarrow (p-1)! \equiv -1 \pmod{p}$

Док-во:
$$p$$
 - простое число $\Rightarrow \mathbb{Z}_p = \mathbb{F}_p$ - поле $\overline{1}, \overline{2}, ..., \overline{p-1} \in \mathbb{F}_p^* = \mathbb{Z}_p^* \qquad |\mathbb{Z}_p^*| = |\mathbb{F}_p^*| = p-1$ $\forall \, x \in \mathbb{Z}_p \quad x^{p-1} = \overline{1} \Rightarrow \overline{1}, \overline{2}, ..., \overline{p-1}$ - корни многочлена $x^{p-1} - \overline{1}$ над $\mathbb{F}_p \Rightarrow x^{p-1} - \overline{1} = (x-\overline{1})(x-\overline{2})...(x-(\overline{p-1}))$ над \mathbb{F}_p , Сравним свободные члены левой и правой части $-\overline{1} = (-1)^{p-1}\overline{1} \cdot \overline{2}...(\overline{p-1}) = \overline{1} \cdot \overline{2}...(\overline{p-1})$ при $p \neq 2$, $1! = 1 \equiv -1 \pmod{2}$ $(p-1)! \equiv -1 \pmod{p} \quad \forall \, p \in \mathbb{N}$ - простого

8 Лекция №8

8.1 Определение операции на смежных классах

ПустьH < G. Хотим определить операцию на G/H: $(g_1H)(g_2H) = g_1g_2H. \quad \exists \text{то можно сделать корректно} \Leftrightarrow \Leftrightarrow \text{Отношение сравнения по } mod\ H \text{ согласовано с операцией в } G,$ т.е. $\begin{cases} g_1 \equiv \widetilde{g_2} \ (mod\ H) \\ g_2 \equiv \widetilde{g_2} \ (mod\ H) \end{cases} \Rightarrow g_1g_2 \equiv \widetilde{g_1}\widetilde{g_2} \ (mod\ H)$

Критерий согласованности отношения сравнения по mod H с операпией в G.

$$\left. egin{aligned} g_1g_2 &\equiv \widetilde{g_1}\widetilde{g_2}(mod\,H), \ \text{если} \\ \widetilde{g_1} &\in g_1H, \ \text{т.е.} \ \widetilde{g_1} &= g_1h_1 \\ \widetilde{g_2} &\in g_2H, \ \text{т.е.} \ \widetilde{g_2} &= g_2h_2 \end{aligned} \right\} \Longleftrightarrow (g_1g_2)^{-1}\widetilde{g_1}\widetilde{g_2} \in H \Longleftrightarrow \\ \Longleftrightarrow g_2^{-1}g_1^{-1}g_1h_1g_2h_2 \in H \Longleftrightarrow g_2^{-1}h_1g_2h_2 \in H \Longleftrightarrow g_2^{-1}h_1g_2 \in H \Longleftrightarrow \\ \Longleftrightarrow ghg^{-1} \in H \qquad \forall h \in H \qquad \forall g \in G$$

8.2 Нормальная подгруппа

Опр. Подгруппа H < G называется нормальной подгруппой (нормальным делителем), если $ghg^{-1} \in H \ \ \, \forall \, h \in H, \ \ \, \forall \, g \in G$

Обозначение: $H \triangleleft G$ $(G \triangleright H)$

Утв. 1. Следующие условия эквивалентны:

1)
$$ghg^{-1} \in H$$
, $\forall h \in H \ \forall g \in G$

2)
$$gHg^{-1} = H \quad \forall g \in G$$

3)
$$gH = Hg \quad \forall g \in G$$

Док-во: 1)
$$\Leftrightarrow gHg^{-1} \subset H$$
 (1) $\forall g \in G \Rightarrow$
 $\Rightarrow g^{-1}(gHg^{-1})g \subset g^{-1}Hg \quad \forall g \in G \Rightarrow H \subset g^{-1}Hg(2)$
 $\Rightarrow (1), (2) \Rightarrow H = gHg^{-1}$
1) \iff 2) \iff 3)

8.3 Факторгруппа

Утв. 2. Пусть $H \triangleleft G$. Тогда множество G/H (= $H \backslash G$) с операцией $(g_1H)(g_2H) = g_1g_2H$ является группой.

Док-во:

- 1) ассоциативность в G/H наследуется из ассоциативности в G $((g_1H)(g_2H))(g_3H)=(g_1g_2H)(g_3H)=(g_1g_2)g_3H=g_1(g_2g_3)H=(g_1H)(g_2g_3H)==(g_1H)(g_2H)(g_3H)$
- 2) $e_{G/\!\!/_{\!\! H}}=H$ нейтральный элемент, так как $\ H=eH$ $\left\{ egin{array}{l} gHeH=gH & \forall\,gH\in {}^G/\!\!/_{\!\! H} \\ eHgH=gH \end{array} \right.$
- 3) $\forall gH \in {}^G/_H \quad \exists \, (gH)^{-1} = g^{-1}H \in {}^G/_H$ $(gH)g^{-1}H) = gg^{-1}H = H$ $(g^{-1}H)(gH = g^{-1}gH = H$ 1),2),3) ${}^G/_H$ группа.

Опр. $G \triangleleft H$, $G/_H$ с операцией $(g_1H)(g_2H) = g_1g_2H$ называется факторгруппой группы G по подгруппе H.

$$\frac{\Pi \text{ример:}}{H=m\mathbb{Z}=< m>} \quad G=(\mathbb{Z},+)=<1> \text{ абелева}$$

$$H=m\mathbb{Z}=< m> \quad H \triangleleft G \qquad m\mathbb{Z} \triangleleft \mathbb{Z} \qquad \mathbb{Z}/_{m\mathbb{Z}}=\mathbb{Z}_m$$

Утверждения 3-6 доказать самим.

Утв. 3. G - абелева группа, $H < G \Rightarrow H \triangleleft G$.

Утв. 4. G - группа, H < G, $|G : H| = 2 \Rightarrow H \triangleleft G$.

Утв. 5. G - абелева группа, $H < G \Rightarrow G/_H$ - абелева группа.

Утв. 6. G - циклическая группа, $H < G \Rightarrow {}^G/_{\!H}$ - циклическая группа.

8.4 Гомоморфизм групп

Опр. Пусть $(G, \cdot), (H, *)$ - группы.

Отображение $f: G \longrightarrow H$ называется гомоморфизмом групп, если $f(g_1 \cdot g_2) = f(g_1) * f(g_2) \; \forall \, g_1, g_2 \in G$

 $(f(g_1g_2) = f(g_1)f(g_2)$, если обозначить операции в группах G и H одинаково).

Примеры:

- 1) $f: G \longrightarrow H$ $G = GL_n(\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} : \det A \neq 0\}.$ $f(A) = \det A, \quad H = \mathbb{R}^*$ $f: GL_n(\mathbb{R}) \longrightarrow \mathbb{R}^*$ гомоморфизм, так как $\det(AB) = \det(A)\det(b)$
- 2) $f: S_n \longrightarrow \mathbb{R}^*$ $f(\alpha) = sgn(\alpha)$ гомоморфизм, т.к. $sgn(\alpha\beta) = sgn(\alpha)sgn(\beta)$

Утв. 7. $f: G \longrightarrow H$ гомоморфизм групп $\Rightarrow f(e_G) = e_H$

Док-во: $e_G e_G = e_G \Rightarrow f(e_G) f(e_G) = f(e_G) \in H$ $\exists (f(e_G))^{-1} \Rightarrow f(e_G) = e_H$

Утв. 8.
$$f: G \longrightarrow H$$
 гомоморфизм групп \Rightarrow $\Rightarrow \forall g \in G \quad f(g^{-1}) = (f(g))^{-1}$

Док-во:
$$f(g)f(g^{-1}) = f(gg^{-1}) = f(e_G) = e_H$$

 $f(g^{-1})f(g) = f(g^{-1}g) = f(e_G) = e_H$

8.5 Образ гомоморфизма

Опр. $f: G \longrightarrow H$ гомоморфизм групп. Образом гомоморфизма f называется множество $Im \ f = \{h \in H: \exists g \in G: f(g) = h\}.$

Утв. 9. Im f < H

Док-во: 1) $e_H \in Im f$, так как $f(e_G) = e_H$

2)
$$h_1, h_2 \in Im f$$
, T.e. $\exists g_1, g_2 \in G : \begin{cases} h_1 = f(g_1) \\ h_2 = f(g_2) \end{cases} \Rightarrow f(g_1g_2) = f(g_1)f(g_2) = h_1h_2 \Rightarrow h_1h_2 \in Im f$

3)
$$\forall h \in Im f$$
, t.e. $\exists g \in G : f(g) = h$, $\Rightarrow h^{-1} = f(g^{-1}) \in Im f$

Очевидно

Опр. Сюръектиный гомоморфизм групп называется эпиморфизмом.

8.6 Ядро гомоморфизма

Опр. $f: G \longrightarrow H$ гомоморфизм групп.

Ядром гомоморфизма f назывется множество

$$Ker f = \{g \in G : f(g) = e_H\}.$$

Утв. 11. Ker f < G

Док-во: 1) $e_G \in Ker f$, т.к. $f(e_G) = e_H$

2)
$$g_1, g_2 \in Ker f$$
, T.E. $f(g_1) = f(g_2) = e_H \Rightarrow f(g_1g_2) = f(g_1)f(g_2) = e_H e_H = e_H \Rightarrow g_1g_2 \in Ker f$

3)
$$g \in Ker f$$
, T.e. $f(g) = e_H \Rightarrow f(g^{-1}) = (f(g))^{-1} = e_H^{-1} = e_H \Rightarrow g^{-1} \in Ker f$

Утв. 12. $f: G \longrightarrow H$ гомоморфизм групп $\Rightarrow Ker f \triangleleft G$

Док-во:
$$\forall \widetilde{g} \in Ker f$$

 $f(g\widetilde{g}g^{-1}) = f(g)f(\widetilde{g})f(g^{-1}) = f(g)e_H f(g^{-1}) = e_H \Rightarrow$
 $\Rightarrow g\widetilde{g}g^{-1} \in Ker f \ \forall g \in G$

Примеры:

(1)
$$f: GL_n(\mathbb{R}) \to \mathbb{R}^*, \ f(A) = \det A$$

$$Ker f = SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R}), Im f = \mathbb{R}^*$$

(2)
$$f: S_n \to \mathbb{R}^*$$
, $f(\alpha) = sgn \alpha$ $Ker f = A_n \triangleleft S_n$, $Im f = \mathbb{C}_2$

Утв. 13. $f: G \to H$ гомоморфизм групп.

$$f(g_1) = f(g_2) \Leftrightarrow g_1 \equiv g_2(mod Ker f) \Leftrightarrow g_1^{-1}g_2 \in Ker f$$

Док-во:
$$f(g_1) = f(g_2) \Leftrightarrow (f(g_1))^{-1} f(g_2) = e_H \Leftrightarrow f(g_1^{-1}) f(g_2) = e_H \Leftrightarrow f(g_1^{-1}g_2) = e_H \Leftrightarrow g_1^{-1}g_2 \in Ker f$$

Очевидно

Утв. 14. $f: G \to H$ гомоморфизм является инъективным

Опр. Инъективный гомоморфизм групп называется мономорфизмом.

8.7 Изоморфизм групп

Утв. 15. $f:G\to H$ гомоморфизм групп является изоморфизмом $\Leftrightarrow \left\{ \begin{array}{l} Im\,f=H\\ Ker\,f=\{e_G\} \end{array} \right.$

Док-во:
$$f$$
 - гомоморфизм является изоморфным $\Leftrightarrow f$ - биекция $\Leftrightarrow \left\{ \begin{array}{l} f$ - сюрьективно $\Leftrightarrow \left\{ \begin{array}{l} f$ - эпиморфизм $\Leftrightarrow \left\{ \begin{array}{l} Im \ f = H \\ Ker \ f = \{e_G\} \end{array} \right. \end{array} \right.$

8.8 Порядок образа элемента группы при гомоморфизме

Утв. 16. Пусть $f:G\to H$ гомоморфизм групп, $g\in G: ord\, y=n{<}\infty,$ тогда $ord\, f(g)\mid ord\, g=n$

Док-во:
$$(f(g))^n = f(g^n) = f(e_G) = e_H \Rightarrow n : ord f(g) \Leftrightarrow ord f(g) \mid ord g$$

Утв. 17. Если $f:G \to H$ изоморфизм групп, $g \in G: ord \, g = n < \infty,$ то $ord \, f(g) = ord \, g$

Док-во: Следует из утв. 16 для f и f^{-1} .

Утв. 18. Если
$$f:G \to H$$
 изоморфизм, $g \in G: ord \, g = \infty,$ то $ord \, f(g) = \infty$

Док-во: Если $\operatorname{ord} f(g) < \infty$, то $\operatorname{ord} g = f^{-1}(f(g)) = \operatorname{ord} f(g)$.

Утв. 17.
Утв. 18.
$$\Rightarrow$$
 Следствие: $f: G \to H$ изоморфизм \Rightarrow $\Rightarrow ord g = ord f(g) \quad \forall g \in G$

8.9 Теорема о гомоморфизме

$$f:G \to H$$
 гомоморфизм $\Rightarrow G/_{Ker\,f} \simeq Im\,H$

Док-во:
$$Ker f \triangleleft G \quad \exists \ ^G/_H$$
 - факторгруппа с операцией $(g_1Ker f)(g_2Ker f) = g_1g_2 = Ker f$

Построим $F: G/_{Ker f} \to Im f$

- 1) F гомоморфизм $F(g_1Ker\ f \cdot g_2Ker\ f) = F(g_1g_2Ker\ f) = f(g_1g_2) = f(g_1)f(g_2) = F(g_1Ker\ f)\ F(g_2Ker\ f)$
- 2) F эпиморфизм $\forall\,h\in Im\,f\;\;\exists\,g\in G:f(g)=h\Rightarrow\exists\,g\,Ker\,f\in {}^G\!/_{Ker\,f}\,:\,F(g\,Ker\,f)=f(g)=h$
- 3) F мономорфизм

$$Ker F = \{g Ker f : F(g Ker f) = f(g) = e_H\}$$

 $Ker F = \{Ker f\} = \{e_{G/Ker f}\}$

F - изоморфизм групп $^{G}/_{Ker\,f}$ и $Im\,f,\,\,$ т.е. $^{G}/_{Ker\,f}\simeq Im\,f$

Примеры:

(1)
$$f: GL_n(\mathbb{R}) \to \mathbb{R}^*$$

$$f(A) = \det A \ \forall A \in GL_n(\mathbb{R}).$$
 f - гомоморфизм, т.к. $\det(A_1A_2) = \det A_1 \det A_2,$
 $Ker \ f = SL_n(\mathbb{R})$
 $Im \ f = \mathbb{R}^*$, так как $\forall \lambda \in \mathbb{R}^* \ \exists A \in GL_n(\mathbb{R}) : \det A = \lambda,$
например, $A = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$
 $\frac{GL_n(\mathbb{R})}{SL_n(\mathbb{R})} \cong \mathbb{R}^*$

(2)
$$f: S_n \to \mathbb{R}^*$$
, $f(\alpha) = sgn \alpha$,
 f - гомоморфизм, $Ker f = A_n$,
 $Im f = \{-1, 1\} \simeq \mathbb{C}_2 \simeq \mathbb{Z}_2$
 $S_n/A_n \simeq \mathbb{Z}_2 \simeq \mathbb{C}_2$

NOTE: $\forall N \triangleleft G \quad \exists \varphi : G \rightarrow {}^{G}\!/_{N}$ - естественный (канонический) гомоморфизм : $Ker \ \varphi = N$, а именно $\varphi(g) = gN$ φ - гомоморфизм, т.к. $\varphi(g_{1}g_{2}) = (g_{1}g_{2})N = g_{1}Ng_{2}N = \varphi(g_{1})\varphi(g_{2})$ $Ker \ \varphi = \{g \in G : gN = N\} = N$

NOTE: Если $f:G\to H$ - эпиморфизм, то \exists естественный $\varphi:G\to^G/_{Ker\ f}\simeq H$ \Rightarrow $\exists!$ эпиморфизм G в H

9 Лекция №9

9.1 Автоморфизм групп

Опр. $f:G\to G$ - гомоморфизм группы в себя называется эндоморфизмом.

<u>Пример:</u> $\forall g \in G \quad f(g) = e \Rightarrow f$ - эндоморфизм (тривиальный)

Опр. $f:G\to G$ - изоморфизм группы на себя называется автоморфизмом.

Множество всех автоморфизмов $G \to G$ обозначается $Aut \ G$

Примеры:

(1)
$$G = GL_n(\mathbb{R})$$
 $f_1 : G \to G$ $f_1(A) = A^{-1}$ - биекция $f_1(AB) = (AB)^{-1} = B^{-1}A^{-1},$ $f_1(A)f_1(B) = A^{-1}B^{-1}$ f_1 не является гомоморфизмом, т.к G некоммутативная группа $f_1 \not\in Aut \ GL_n(\mathbb{R}).$

(2)
$$G = GL_n(\mathbb{R}), \quad f_2 : G \to G, \quad f_2(A) = A^T$$
 - биекция $f_2(AB) = (AB)^T = B^T A^T, \quad f_2(A) f_2(B) = A^T B^T$ $f_2 \mathscr{L} Aut \ GL_n(\mathbb{R}), \ \text{т.к.} \ G$ некоммутативная группа.

(3)
$$G = GL_n(\mathbb{R})$$
 $f_3 = f_2 \circ f_1 : G \to G$ биекция $f_3(A) = (A^{-1})^T$
 $f_3(AB) = ((AB)^{-1})^T = (B^{-1}A^{-1})^T = (A^{-1})^T(B^{-1})^T = f_3(A)f_3(B)$
 $f_3 \in Aut \ GL_n(\mathbb{R})$

Утв. 1.
$$G$$
 - группа $\Rightarrow Aut \ G$ - группа

Док-во: $Aut\ G\subset S(G)$, где S(G) - группа всех биективных отображений G в G.

Докажем: Aut G < S(G)

- 1) $id \in Aut G$
- 2) $f_1, f_2 \in AutG$

$$\begin{cases} f_1(g_1g_2) = f_1(g_1)f_1(g_2) \\ f_2(g_1g_2) = f_2(g_1)f_2(g_2) \end{cases} \Rightarrow (f_1f_2)(g_1g_2) = f_1(f_2(g_1g_2)) = \\ = f_1(f_2(g_1)f_2(g_2)) = f_1(f_2(g_1))f_1(f_2(g_2)) = (f_1f_2)(g_1)(f_1f_2)(g_2) \Rightarrow \\ \Rightarrow f_1f_2 \text{ - гомоморфизм} \\ \begin{cases} f_1 \\ f_2 \end{cases} \end{cases} \text{- биекция} \Rightarrow f_1f_2 \text{ - биекция} \Rightarrow f_1f_2 \in Aut G$$

$$3) \ f \in Aut \ G$$
 f - биекция $\Rightarrow \exists f^{-1}: G \to G$ - биекция f - гомоморфизм, т.е. $f(g_1g_2) = f(g_1)f(g_2) \Rightarrow$ $\Rightarrow f^{-1}(g_1g_2) = f^{-1}(f(f^{-1}(g_1)f^{-1}(g_2))) =$ $= (f^{-1}f)(f^{-1}(g_1)f^{-1}(g_2)) = f^{-1}(g_1)f^{-1}(g_2) \Rightarrow$

$$\Rightarrow f^{-1}$$
 - гомоморфизм. $\Rightarrow f^{-1} \in Aut \; G$

1)
2)
$$Aut G < S(G) \Rightarrow Aut G - \text{группа}$$
3)

9.2 Действия группы на множестве

$$G$$
 - группа, X - мн-во,
$$S(x)$$
 - группа всех биектвных преобразований X $\varphi: G \to S(X)$ - гомоморфизм групп.
$$\varphi(g) \in S(X) \quad \varphi(g)(x) = \varphi(g)x = gx \ \, \forall \, x \in X$$

$$Im \, \varphi < S(X) \text{ - группа преобразований } X$$

$$G/_{Ker \, \varphi} \simeq Im \, \varphi < S(X)$$

Опр. Если задан $\varphi: G \to S(X)$ гомоморфизм, говорят G действует на X - G: X Элементы мн-ва X называются точками.

Опр. $Ker\ \varphi$ - ядро неэффективности, если $Ker\ \varphi = \{e\}$ тривиально, то говорят, что действие группы на X эффективно.

9.3 Действия группы на самой себе G:G

(1) Действие левыми сдвигами

G - группа S(G) группа биективных отображений G в G $l:G\to S(G):l(g)(x)=gx\quad\forall\,g\in G,\quad\forall\,x\in G$

Утв. 2. $l: G \to S(G)$ - гомоморфизм

Док-во:

- 0) l(g) биекция.
- а) l(g) сюрьекция, т.к $\forall y \in G \exists x \in G : y = l(g)(x) = l(g)x = gx$, а именно $x = g^{-1}g \in G$.

55

б)
$$l(g)$$
 - инъекция, т.к $l(g)x_1 = l(g)x_2 \Leftrightarrow gx_1 = gx_2 \Leftrightarrow \Leftrightarrow x_1 = x_2 \ \forall x_1, x_2 \in G \Rightarrow$ а),б) $\Rightarrow l: G \to S(G)$

1)
$$l(g_1g_2)x=(g_1g_2)=g_1(g_2x)=l(g_1)(l(g_2)(x_2))=l(g_1)\circ l(g_2)(x_2)$$
 $l:G\to S(G)$ - гомоморфизм

NOTE: l(g) не является автоморфизмом, $l(g) \not\in Aut(G)$, если $g \neq e$ l(g) - биекция, но l(g) не гомоморфизм, т.к.

Утв. 3. $l: G \to S(G)$ мономорфизм

Док-во:
$$Ker\ l = \{g \in G : l(g) = id\} =$$

= $\{g \in G : l(g)x = x \quad \forall x \in G\} = \{g \in G : gx = x \quad \forall x \in G\} = \{e\}$

Следствие: $G \simeq Im \ l$

Док-во: по теореме о гомоморфизме $l:G \to S(G)$ гомоморфизм является мономорфизмом, $Ker \, l = \{e\}$

 $G/_{Ker \, l} \simeq Im \, l \ \Rightarrow \ G \simeq Im \, l$

9.4 Теорема Кэли

 \forall конечная группа порядка n изоморфна некоторой подгруппе в группе $S_n.$

Док-во:
$$G$$
 - группа, $|G| = n < \infty$ $l: G \to S(G) = S_n$ $G \simeq Im \, l < S_n$

(2) Действие группы на себя правыми сдвигами

$$r(g):G \rightarrow G: r(g)(x)=xg \ \ \forall \, g \in G, \ \ \forall \, x \in G.$$
.. аналогично (1)

(3) Действие группы на себя сопряжениями

$$a(g): G \to G$$
 $x \in G$ $a(g)x = gxg^{-1} \in G$

Утв. 4. $a: G \to S(G)$ гомоморфизм

Док-во:

- 1) a(g) биекция
- а) a(g) сюръекция, т.к. $\forall\,y\in G\quad\exists\,x\in G:y=a(g)x=gxg^{-1},$ а именно $x=g^{-1}yq\in G$
- б) a(g) инъекция, т.к. $a(g)x_1=a(g)x_2 \Leftrightarrow gx_1g^{-1}=gx_2g^{-1} \Leftrightarrow x_1=x_2$ а),б) $\Rightarrow a:G\to S(G)$
- $(2) \ a : G \to S(G)$ гомоморфизм

$$a(g_1g_2)(x) = (g_1g_2)x(g_1g_2)^{-1} = g_1g_2xg_2^{-1}g_1^{-1} = g^{-1}(a(g_2)(x))g^{-1} =$$

$$= a(g_1)(a(g_2)(x)) = (a(g_1)a(g_2))x \quad \forall x \in G \Rightarrow$$

$$\Rightarrow a(g_1g_2) = a(g_1)a(g_2)$$

Утв. 5.
$$a(q) \in Aut G \quad \forall q \in G$$

Док-во:

- $(2) a(g)(x_1x_2) = g(x_1x_2)g^{-1} = (gx_1g^{-1})(gx_2g^{-1}) = a(g)(x_1) \cdot a(g(x_2))$ $\Rightarrow a(g)$ - эндоморфизм
- $\left. \begin{array}{c} 1) \\ 2) \end{array} \right\} \Rightarrow \quad \begin{array}{c} a(g) \text{ изоморфизм } G \text{ в себя,} \\ \text{ т.е автоморфизм } a(g) \in Aut \, G \end{array}$
- **Опр.** a(g) называется внутренним автоморфизмом $\forall g \in G$. Мн-во всех внутренних автоморфизмов обозначается Int G.

NOTE:
$$Int G = Im \, a < S(G) \Rightarrow Int \, G$$
 - группа $Int \, G \subset Aut \, G \Rightarrow Int \, G < Aut \, G < S(G)$

Опр. Центром группы
$$G$$
 называется $Z(G) = \{h \in G : gh = hg \ \forall g \in G\}.$

Утв.6
$$Ker a = Z(G)$$

Док-во:
$$Ker \ a = \{g \in G : a(g) = id\} =$$

= $\{g \in G : gxg^{-1} = x \quad \forall x \in G\} =$
= $\{g \in G : gx = gx \quad \forall x \in G\} = Z(G)$

Утв. 7.
$$G/Z(G) \simeq Int G$$

Док-во:
$$a:G\to S(G)$$
 - гомоморфизм \Rightarrow \Rightarrow $G/_{Ker\;a}\simeq Im\;a,\;\;$ т.е. $G/_{Z(G)}\simeq Int\;G$

Утв. 8.
$$\forall n \ge 3$$
 $Z(S_n) = \{id\}$

Док-во:
$$\forall \alpha \in S_n \quad \alpha \neq id \quad \exists \beta \in S_n : \ \alpha\beta \neq \beta\alpha$$
 Пусть $\alpha(i) = j \quad i \neq j$ Рассмотрим $\beta = (j,k), \quad k \neq i,j$ (это возможно при $n \geqslant 3$) $(\alpha\beta)(i) = \alpha(\beta(i)) = \alpha(i) = j$ $(\beta\alpha)(i) = \beta(\alpha(i)) = \beta(j) = k$ $\Rightarrow (\alpha\beta)(i) \neq (\beta\alpha)(i) \Rightarrow \alpha\beta \neq \beta\alpha \Rightarrow Z(S_n) = \{id\}$ при $n \geqslant 3$

10 Лекция №10

Следствие: $Int S_n = S_n$ при $n \geqslant 3$

Док-во:

$$Int G = \{a_g \in Aut G : a_g(x) = gxg^{-1} \quad \forall x \in G\}$$

$$Int G \simeq G/Z(G), \quad G = S_n \quad Z(S_n) = \{id\} \quad n \geqslant 3$$

$$Int S_n \simeq S_n/\{id\} = S_n$$

Утв. 1.
$$Aut S_3 = S_3$$

Док-во: $T = \{(12), (13), (23)\}$ - мн-во всех элементов второго порядка

группы S_3

 $f \in Aut\,S_3 \Rightarrow f$ - сохраняет порядок элемента $\Rightarrow f: T \to T$

Можно определить $\Phi: Aut S_3 \to S(T) \simeq S_3$

Автоморфизм f однозначно задаётся своим действием на T, поскольку $S_3=<(12),(13),(23)>\Rightarrow \Phi$ - мономорфизм

$$|Aut S_3| \leqslant |S(T)| = |S_3| \quad (1)$$

$$S_3 \simeq Int S_3 < Aut S_3 \quad |S_3| \leqslant |Aut S_3| \quad (2)$$

$$(1)$$

$$(2)$$

$$\Rightarrow |Aut S_3| = |S_3| \Rightarrow Aut S_3 = Int S_3 \simeq S_3$$

Утв. 2. $Aut \mathbb{Z} \simeq \mathbb{Z}_n^*$

Док-во:
$$f: \mathbb{Z}_n \to \mathbb{Z}_n$$
 - эндоморфизм : $f(\overline{1}) = \overline{k} \in \mathbb{Z}$ $f(\overline{x}) = f(\overline{1} + \dots + \overline{1}) = \underbrace{f(\overline{1}) + \dots + f(\overline{1})}_{x} = xf(\overline{1}) = f(\overline{1})\overline{x} = \overline{k}\overline{x}$

f - биекция $\Leftrightarrow \exists f^{-1}: \mathbb{Z}_n \to \mathbb{Z}_n$ эндоморфизм

$$\begin{split} f(\overline{1}) &= \overline{k} \quad \exists \ f^{-1}(\overline{1}) = \overline{l} \quad (f^{-1}f)(\overline{1}) = f^{-1}(f(\overline{1})) = f^{-1}(\overline{k}) = \overline{l} \cdot \overline{k} \\ (f^{-1}f)(\overline{1}) &= id(1) = \overline{1} \quad \overline{l} \cdot \overline{k} = 1 \Leftrightarrow \overline{k} \in \mathbb{Z}^* \end{split}$$

$$f$$
 - автоморфизм $f(1) = k \Leftrightarrow \overline{k} \in \mathbb{Z}^*$

Рассмотрим: $\Phi : Aut \mathbb{Z}_n \to \mathbb{Z}_n^*$

$$\forall f \in Aut \, \mathbb{Z}_n \quad \Phi(f) = f(\overline{1}) \in \mathbb{Z}_n^*$$

1) Φ - гомоморфизм

$$\Phi(f_1 \circ f_2) = (f_1 \circ f_2)(1) = f_1(f_2(1)) = f_1(f_2(\overline{1})) =
= f_1(\overline{1})f_2(\overline{1}) = \Phi(f_1) \cdot \Phi(f_2) \implies \Phi(f_1 \circ f_2) = \Phi(f_1) \circ \Phi(f_2)$$

2)
$$Ker \Phi = \{ f \in Aut \mathbb{Z}_n : \Phi(f) = \overline{1} \} = \{ f \in Aut \mathbb{Z}_n : f(\overline{1}) = \overline{1} \} = \{ f \in Aut \mathbb{Z}_n : f(\overline{x}) = f(\overline{1})\overline{x} = \overline{x} \quad \forall x \in \mathbb{Z}_n \} = \{ f \in Aut \mathbb{Z}_n : f(x) = x \quad \forall x \in \mathbb{Z}_n \} = \{ id \}$$

- 3) $Im \Phi = \mathbb{Z}_n^*$
- a) $Im \Phi \subset \mathbb{Z}_n^*$
- б) $\forall \overline{k} \in \mathbb{Z}_n^* \quad \exists f \in Aut \mathbb{Z}_n$, а именно

$$f(\overline{1})=\overline{k},\,\mathrm{T.e}\;\Phi(f)=\overline{k}\;\;\mathbb{Z}_n^*\subset Im\,\Phi\quad {\rm a)\atop 6)}\right\}\Rightarrow Im\,\Phi=\mathbb{Z}_n^*\Leftrightarrow\Phi\text{ -эпиморфизм}$$

$$1)\atop 2)\atop 3)}\right\}\Rightarrow\Phi\text{ - эпиморфизм }\quad Aut\,\mathbb{Z}\simeq\mathbb{Z}_n^*$$

1) 2)
$$\Rightarrow \Phi$$
 - эпиморфизм $Aut \mathbb{Z} \simeq \mathbb{Z}_n^*$

NOTE: $Int \mathbb{Z}_n = \{id\}$, т.к \mathbb{Z}_n - абелева

Утв. 3. G - группа $\Rightarrow Int G \triangleleft Aut G$

Док-во:
$$\forall \, a_g \in Int \, G \quad \forall \, f \in Aut \, G \quad \forall \, x \in G$$
 $(fa_gf^{-1})(x) = f(a_g(f^{-1}(x))) = f(gf^{-1}(x)g^{-1}) = f(g)f(f^{-1}(x))f(g^{-1}) = f(g)x \, f(g)^{-1} = a_{f(g)}(x)$ $\forall \, a_g \in Int \, G \quad \forall \, f \in Aut \, G$ $fa_gf^{-1} = a_{f(g)} \in Int \, G \Rightarrow Int \, G \triangleleft Aut \, G$

NOTE: \exists Aut $G/_{Int(G)}$ - (группа внешних автоморфизмов).

NOTE: G - группа, H < G

$$H \triangleleft G \Leftrightarrow a_g(H) = H \quad \forall a_g \in IntG$$

т.е H инвариантна относительно всех внутренних автоморфизмов группыG

$$a_g(H) = gHg^{-1} = H$$

Четвёртая группа клейна V_4

Группа симметрий прямоугольника $Sym_R = \{id, u_\pi, s_1, s_2\} = \{id, u_\pi, s_1, s_2\}$ = группе симметрий ромба Sim[⋄] $u_{\pi} \longmapsto (1\,3)(2\,4)$ $V_4 < S_4$ - четвёртая группа Клейна

$$s_1 \longmapsto (14)(23)$$

$$s_2 \longmapsto (12)(34)$$

 $Sym \square \simeq V_4 = \{id, (12)(34), (13)(24), (14)(23)\}$

Утв. 4.
$$V_4 \triangleleft S_4 \bowtie S_4/_{V_4} \simeq S_3$$

Док-во: Рассмотрим многочлены от x_1, x_2, x_3, x_4

$$P_1 = x_1 x_2 + x_3 x_4$$
 $P_2 = x_1 x_3 + x_2 x_4$ $P_3 = x_1 x_4 + x_2 x_3$

 S_4 действует на мн-ве $P = \{P_1, P_2, P_3\}$

 $\alpha \in S_4$ $\alpha P_1 = x_{\alpha(1)}x_{\alpha(2)} + x_{\alpha(3)}x_{\alpha(4)}$ аналогично определяются αP_2 , αP_3 .

$$S_4 = <(12), (13), (14) >$$

$$(12) \longmapsto \mathfrak{S}, p_2 \leftrightarrow p_3$$

$$(13) \longmapsto \mathfrak{S}, p_1 \leftrightarrow p_3$$

$$(14) \longmapsto \mathfrak{S}_{p_3}, p_1 \leftrightarrow p_2$$

$$\Phi: S_4 \to S(P) = S_3$$

1) Φ - гомоморфизм

2) $Im \Phi = S_3$ а) $Im \Phi \subset S_3$ б) \forall транспозицию $(p_1, p_2), (p_2, p_3), (p_1, p_3)$ можно получить с помощью Φ

$$\Phi(14) = (p_1, p_2), \quad \Phi(13) = (p_1, p_3), \quad \Phi(12) = (p_2, p_3)$$

Вся группа $S(P) = S_3$ порождаются этими транспозициями

По теореме о гомоморфизме $S_4/_{Ker\,\Phi} \simeq Im\,\Phi = S_3$

$$Ker \Phi = \{ \alpha \in S_4 : \alpha(p_i) = p_i \quad i = 1, 2, 3 \}$$

Очевидно,
$$V_4 = \{id, (12)(34), (13)(24), (14)(23)\} < Ker \Phi$$

Из т.о гомоморфизме $|S_n|=|Im\Phi||Ker\Phi|=|S_3||Ker\Phi|$

$$|Ker \Phi| = \frac{|S_4|}{|S_3|} = 4 \quad |V_4| = 4 \Rightarrow V_4 = Ker \Phi \Rightarrow V_4 \triangleleft S_4, \quad S_4/V_4 \simeq S_3$$

NOTE: $V_4 < A_4 \triangleleft S_4 \Rightarrow V_4 \triangleleft A_4$, t.k $H \triangleleft G$

$$H < K < G \Rightarrow H \triangleleft K$$

$$gHg^{-1} \in H \quad \forall h \in H \quad \forall g \in G \quad \forall h \in H \quad \forall k \in K < G$$

$$V_4 \triangleleft A_4 \qquad |A_4|_{V_4} = \frac{12}{4} = 3 \qquad A_4|_{V_4} \simeq \mathbb{C}_3 \simeq \mathbb{Z}_3$$

10.2 Коммутант

Опр. G - группа, $\forall a, b \in G$, коммутатор $a, b \quad [a, b] = aba^{-1}b^{-1}$

Утв. 5.
$$[a,b] = e \Leftrightarrow ab = ba$$

Док-во: $aba^{-1}b^{-1} = e \Leftrightarrow ab = ba$

Утв. 6.
$$[a,b]^{-1} = [b,a]$$

Док-во:
$$[a,b]^{-1} = (aba^{-1}b^{-1}) = (a^{-1}b^{-1})^{-1}(ab)^{-1} = bab^{-1}a^{-1} = [b,a]$$

Опр. Подгруппа группы G, порождённая всеми коммутаторами её элементов, называется коммутантом группы G и обозначается G'([G,G])

NOTE: В выражении $g \in G'$ через коммутаторы можно использовать только положительные степени.

Утв. 7.
$$G, H$$
 - группы $f: G \to H$ гомоморфизм $\forall a, b \in G \quad f([a,b]) = [f(a),f(b)]$

Док-во:
$$f([a,b]) = f(aba^{-1}b^{-1}) = f(a)f(b)f(a^{-1})f(b^{-1}) = f(a)f(b)(f(a))^{-1}(f(b))^{-1} = [f(a),f(b)]$$

Следствие 1. $f: G \to H$ - гомоморфизм $\Rightarrow f(G') < H'$

Следствие 2. $f:G \to H$ - эпиморфизм $\Rightarrow f(G') = H'$

Следствие 3. $G' \triangleleft G$

Док-во: $\forall a_g \in Int \, G, \quad a_g \, : \, G \to G, \quad a_g(G') = G' \Rightarrow G' \triangleleft G$

62

11 Лекция №11

Утв. 1.
$$\left. \begin{array}{c} H < G \\ G' < H \end{array} \right\} \Rightarrow H \triangleleft G$$

Док-во: $\forall \, g \in G \quad \forall \, h \in H \quad ghg^{-1} = ghg^{-1}h^{-1}h = [g,h]h \in H \Rightarrow H \triangleleft G$ $[g,h] \in G' < H$

Следствие: $G' \triangleleft G(2$ -ое док-во нормальности G')

Теорема: $G' \triangleleft G$ - наименьшая по включению нормальная подгруппа G, факторгруппа, по которой абелева, т.е:

1)
$$G/G'$$
 - абелева группа
2) $H \triangleleft G$, G/H - абелева группа $\} \Rightarrow G' < H$

Док-во: $G' \triangleleft G$

- 1) Пусть $\Psi: G \to^G/_{G'}$ естественный (канонический) гомоморфизм $\forall g \in G \quad \Psi(g) = gG'$ эпиморфизм $\Rightarrow \Psi(G') = (^G/_{G'})'$ по определению $\Psi(G') = e_{G'_{G'}}$ ($^G/_{G'}$)' = $\{e_{G'_{G'}}\} \Leftrightarrow ^G/_{G'}$ абелева группа
- 2) Пусть $H \triangleleft G$

 $\Psi:G o G/_H$ - естественный (канонический) гомоморфизм $\Psi(g)=gH$ эпиморфизм $\Rightarrow \Psi(G')=(G/_H)'$

 $^{G}\!/_{\!H}\,$ - абелева группа $\Leftrightarrow (^{G}\!/_{\!H}\,)'=\{e_{G\!/_{\!H}}\,\}=\{H\}$

$$\Psi(G') = \{H\} \Rightarrow G' < H$$

Утв. 2.

 A_n при $n \geqslant 3$ порождается тройными циклами ((ijk)) A_n при $n \geqslant 5$ порождается парой независимых транспозиций ((ij)(kl))

Док-во: $A_n < S_n$

 \forall подстановка $\alpha \in S_n$ может быть разложена в произведение транспозиций. $\alpha \in A_n$ раскладывается в чётное число транспозиций $\Rightarrow \alpha \in A_n$

раскладывается в произведение пар транспозий.

- 1) пара зависимых транспозиций (ij)(jk) = (kij) = (ijk)
- 2) пара независимых транспозиций (ij)(kl) = ((ij)(jk)) = ((jk)(kl)) = (ijk)(jkl)

i, j, k, l различны

 $k \geqslant 5$ 3) пара зависимых транспозиций (ij)(jk) = (ij)(lm)(jk)(lm) = ((ij)(lm))((jk)(lm))

- i,j,k,l,m различны
- $(3)\Rightarrow$ при $n\geqslant 5$ A_n порождается парами независимых транспозиций

Утв. 3.
$$Z(A_n) = \{id\}$$
 при $n \geqslant 4$

Док-во:

Пусть
$$\alpha \in Z(A_n)$$
 $\alpha \in Z(A_n)$ $\alpha \in Z(A_n)$ $\alpha \neq id$ $\beta = (j, k, l)$ $\beta = (j, k,$

NOTE.
$$A_3=\{(123)(132)id\}\simeq \mathbb{Z}_3$$
 абелева \Rightarrow $Z(A_3)=A_3\quad A_3'=\{id\}$

Утв. 4.
$$H \triangleleft G, |H| = 2 \Rightarrow H < Z(G)$$

Док-во:
$$H = \{e, h\}$$
 $h \neq e$
$$H \triangleleft G \Leftrightarrow \forall g \in G \quad ghg^{-1} \in H \Rightarrow ghg^{-1} = \begin{bmatrix} e \Rightarrow h = e \\ h \Rightarrow gh = hg \Rightarrow h \in Z(G) \end{bmatrix} \Rightarrow H < Z(G)$$

Утв. 5.
$$n \ge 3$$
 $S'_n = A_n$

Док-во:

$$1)A_n \triangleleft S_n \quad \left|S_n/A_n\right| = 2 \Rightarrow S_n/A_n \cong \mathbb{Z}_2$$
 - абелева группа. $\Rightarrow S_n' < A_n$

$$(2)S_3 \triangleright A_3 > S_3', \quad |A_3| = 3 \Rightarrow |S_3'| = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \Leftrightarrow S_3' = \begin{bmatrix} \{id\} \Leftrightarrow S_3 \text{ - абелева} & X_3 \\ A_3 \end{bmatrix}$$

 $S_3' = A_3 = \{(123), (132), id\}$ включает все тройные циклы

из 3-х элементов

3) $S_{n}^{'}$ содержит все тройные циклы,

 A_n порождается тройными циклами при $n\geqslant 3\Rightarrow A_n < S_n'$

$$1),3) \Rightarrow S'_n = A_n \qquad n \geqslant 3.$$

NOTE.

$$A_3^{'} = \{id\}$$
, т.к. A_3 - абелева

Утв. 6.

$$A_{4}^{'} = V_{4}$$

$$A'_n = A_n \qquad n \geqslant 5$$

Док-во:

1)
$$A_4 \rhd V_4$$
, $|A_4/V_4| = 12/4 = 3 \Rightarrow$
 $\Rightarrow A_4/V_4 \simeq \mathbb{Z}_3$ - абелева $\Rightarrow A_4' < V_4$

$$|V_4| = 4 \Rightarrow |A'_4| \begin{vmatrix} 4 \Rightarrow |A'_4| = \begin{bmatrix} 1 \\ 2 \Rightarrow 4 \end{vmatrix}$$

 $A_4' = V_4 = \{(12)(34), (13)(24), (14)(23)\}$ содержит всевозможные произведения пар независимых транспозиций из 4-х элементов

2) A'_n содержит всевозможные произведения пар независимых транспо-

зиций 4-х элементов

 A_n при $n\geqslant 5$ порождается произведениями пар независимых транспозиций \Rightarrow

$$\Rightarrow A_n < A_n' \quad n \geqslant 5$$
 очевидно, $A_n' < A_n$ $\} \Rightarrow A_n' = A_n$ при $n \geqslant 5$

Опр. $G^{(1)}=G',\ G^{(2)}=(G')'...G^{(k)}=(G^{(k-1)})'$ - кратные коммутанты $G>G^{(1)}>G^{(2)}>...>G^{(k)}>...$

Опр. Группа G - называется разрешимой, если $\exists\, m\in\mathbb{N}\ :\ G^{(m)}=\{e\}$

Примеры.

(1)
$$S_3$$

$$S_3^{(1)} = S_3' = A_3$$

$$S_3^{(2)} = (S_3')' = A_3' = \{id\}$$
 S_3 - разрешима.

(2)
$$S_4$$

$$S_4' = A_4$$

$$S_4^{(2)} = A_4' = V_4$$

$$S_4^{(3)} = A_4^{(2)} = V_4' = \{id\}, \text{ т.к. } V_4$$
 - абелева. S_4 - разрешима.

(3)
$$S_n, n \ge 5$$

 $S_n^{(1)} = S_n' = A_n$
 $S_n^{(2)} = A_n' = A_n$
 $S_n^{(3)} = A_n' = A_n$
 $n \ge 3$ S_n неразрешима.

Утв. 7. G - разрешима \Rightarrow любая её подгруппа разрешима. Доказать самим.

Утв. 8. G - разрешима, $H \lhd G \Rightarrow G/H$ разрешима. Доказать самим.

12 Лекция №12

12.1 Прямые произведения (прямые суммы) групп

12.2 Внешнее прямое произведения групп

$$G_1,G_2,...,G_k$$
 - группы
$$G_1\times G_2\times...\times G_k=\{(g_1,g_2,...,g_k),\ g_i\in G,\ i=\overline{1,k}\}$$

$$(g_1,g_2,...,g_k)(\widetilde{g_1},\widetilde{g_2},...,\widetilde{g_k})=(g_1\widetilde{g_1},g_2\widetilde{g_2},...,g_k\widetilde{g_k})\in G_1\times G_2\times...\times G_k$$
 Очевидны утв. 1,2,3

Утв. 1.
$$G_1 \times G_2 \times ... \times G_k$$
 - группа

Утв. 2. $G_1 \times G_2 \times ... \times G_k$ - коммутативная группа \Leftrightarrow G_i - коммутативная группа $\forall i=\overline{1,k}$

Утв. 3.
$$|G_1 \times G_2 \times ... \times G_k| = |G_1| \cdot |G_2| \cdot ... \cdot |G_k|$$

В случае абелевой группы можно говорить о прямой сумме

$$G_1 \bigoplus G_2 \bigoplus ... \bigoplus G_k$$

$$\mathbb{C}_3 \times \mathbb{C}_2 \simeq \mathbb{Z}_2 \bigoplus \mathbb{Z}_3 = \mathbb{Z}_2 \times \mathbb{Z}_3$$

 $\mathbb{Q}_8 \times \mathbb{Z}_2$

Утв. 4.
$$g = (g_1, g_2, ..., g_k) \in G_1 \times G_2 \times ... \times G_k \Rightarrow$$

 $\Rightarrow ord g = HOK\{ord g_1, ord g_2, ..., ord g_k\}$

Док-во:
$$g^n = e \in G \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} g_1^n = e_1 \\ g_2^n = e_2 \\ \vdots \\ g_k^n = e_k \end{cases} \iff \begin{cases} n : ord g_1 \\ n : ord g_2 \\ \dots \\ n : ord g_k \end{cases} \Rightarrow n \text{ кратно } ord g_1, ord g_2, \dots, ord g_k \Rightarrow \\ n : ord g_k \end{cases}$$
$$\Rightarrow n = ord g \Leftrightarrow n = \text{HOK} \{ ord g_1, ord g_2, \dots, ord g_k \}$$

Утв. 5.

Если
$$G_1=< g_1>,\ G_2=< g_2>$$
 $|G_1|=m,\ |G_2|=n,$ то $G_1\times G_2$ - циклическая группа $\Leftrightarrow (m,n)=1$

Док-во:
$$|G_1 \times G_2| = |G_1| \cdot |G_n| = m \cdot n$$
 $ord(\widetilde{g_1}, \widetilde{g_2}) = HOK\{ord\ \widetilde{g_1}, ord\ \widetilde{g_2}\} \leqslant ord\ \widetilde{g_1} \cdot ord\ \widetilde{g_2} \leqslant m \cdot n$ $G_1 \times G_2$ - цикл. $\Leftrightarrow \exists (\widetilde{g_1}, \widetilde{g_2}) \in G_1 \times G_2 : ord(\widetilde{g_1}, \widetilde{g_2}) = |G_1 \times G_2| = m \cdot n \Leftrightarrow \Leftrightarrow (m, n) = 1.$

В этом случае

$$G_1 \times G_2 = \langle (g_1, g_2) \rangle$$

Примеры.

(1)
$$\mathbb{Z}_2 \times \mathbb{Z}_3 \simeq \mathbb{Z}_6$$
, т.к. $(2,3) = 1$

(2)
$$\mathbb{Z}_2 \times \mathbb{Z}_2 \not\simeq \mathbb{Z}_4$$

 $\mathbf{B} \ \mathbb{Z}_2 imes \mathbb{Z}_2$ нет элементов 4-го порядка.

Наибольший порядок элемента в $\mathbb{Z}_2 \times \mathbb{Z}_2$ - 2. В \mathbb{Z}_4 порождающий элемент имеет порядок 4.

12.3 Внутреннее прямое произведение подгрупп

Опр.
$$G$$
 - группа. $G_1, G_2, ..., G_k < G$

Говорят, что G является внутренним прямым произведением своих подгрупп, если

$$\begin{bmatrix} 1)\ \forall g\in G \text{ - однозначно представляется в виде произведения}\\ g_1,g_2,...,g_k\ где\ g_i\in G^i,\quad i=\overline{1,k}\\ 2)\ g_ig_j=g_jg_i\quad i\neq j\quad i,j=\overline{1,k} \end{bmatrix}$$

Утв. 6.

Если группа G является внутренним прямым произведением своих подгрупп $G_1, G_2, ..., G_k < G_1$, то $G \simeq G_1 \times G_2 \times ... \times G_k$

Док-во:

Рассмотрим отображение
$$\psi: G_1 \times G_2 \times ... \times G_k \to G$$

 $\psi((g_1, g_2, ..., g_k)) = g_1, g_2, ..., g_k \in G$

 $1) \psi$ - гомоморфизм.

$$\psi((g_1\widetilde{g_1}, g_2\widetilde{g_2}, ..., g_k\widetilde{g_k})) = g_1\widetilde{g_1}, g_2\widetilde{g_2}, ..., g_k\widetilde{g_k} = g_1g_2...g_k \cdot \widetilde{g_1}\widetilde{g_2}...\widetilde{g_k} = \psi((g_1, g_2, ..., g_k)) \cdot \psi((\widetilde{g_1}, \widetilde{g_2}, ..., \widetilde{g_k}))$$

2) ψ - эпиморфизм. ($Im \psi = G$)

 $\forall g \in G$ можно представить в виде.

$$g=g_1\cdot g_2\cdot ...\cdot g_k$$
, где $g_i\in G_i,\ i=\overline{1,k}\Rightarrow$ $\Rightarrow\exists (g_1,g_2,...,g_k)\in G_1\times G_2\times ...\times G_k;$ $\psi((g_1,g_2,...,g_k))=g_1g_2...g_k=g\Rightarrow g\in Im\,\psi$ $\Rightarrow\psi$ - эпиморфизм

 $3) \ \psi$ - мономорфизм

$$\psi((g_1,g_2,...,g_k)) = \psi((\widetilde{g_1},\widetilde{g_2},...,\widetilde{g_k})) \Rightarrow$$

$$\Rightarrow g_1g_2...g_k = \widetilde{g_1}\widetilde{g_2}...\widetilde{g_k}$$

$$\Rightarrow \begin{cases} g_1 = \widetilde{g_1} \\ g_2 = \widetilde{g_2} \\ ... \\ g_k = \widetilde{g_k} \end{cases} \Rightarrow (g_1,g_2,...,g_k) = (\widetilde{g_1},\widetilde{g_2},...,\widetilde{g_k}) \Rightarrow$$

$$\vdots$$

$$g_k = \widetilde{g_k}$$

$$\Rightarrow \psi$$
 - мономорфизм $\Leftrightarrow Ker \psi = \{(e_1,...,e_k)\}$ - тривиальное

По теореме о гомоморфизме

$$G_1 \times G_2 \times ... \times G_k / Ker \psi \simeq Im \psi$$

 $G_1 \times G_2 \times ... \times G_k \simeq G$

Утв. 7.
$$G=G_1\times G_2\times ...\times G_k$$
 - внешнее произведение, $\widetilde{G}_i=\{(e_1,e_2,...e_{i-1},g^i,e_{i+1},...,e_k),\ g_i\in G_i\}< G; \ \widetilde{G}_i\simeq G_i,\ i=\overline{1,k}$ G является внутренним прямым производных своих подгрупп \widetilde{G}_i $i=\overline{1,k}$

Док-во:

1)
$$\widetilde{G_i}$$
 - подгруппа $G_1 \times G_2 \times ... \times G_k = G$ по критерию подгруппы $i = \overline{1,k}$

2)
$$\varphi : \widetilde{G}_i \to G_i$$

 $\varphi((e_1, e_2, ..., e_{i-1}, g_i, e_{i+1}, ..., e_k)) = g_i$

$$\left. egin{array}{ll} arphi$$
 - гомоморфизм $arphi$ - эпиморфизм $arphi$ - мономорфизм $\widetilde{G}_i = G_i \end{array}
ight.$ $\Rightarrow arphi$ - изоморфизм

3)
$$G = G_1 \times ... \times G_n$$
 является внутреннем прямым произведением $\widetilde{G}_1, \ \widetilde{G}_2, \ ..., \ \widetilde{G}_k$

$$1) \ \forall \, (g_1,g_2,...,g_k) \in G_1 \times G_2 \times ... \times G_k$$

$$(g_1,g_2,...,g_k) = (g_1,e_2,...,e_k)(e_1,g_2,...,e_k)...(e_1,...,e_{k-1},g_k)$$
 единственным образом представляется в виде произведения элементов $\widetilde{G_1},\ \widetilde{G_2},\ ...,\ \widetilde{G_k}$

2)
$$(e_1, ..., e_{i-1}, g_i, e_{i+1}, ..., e_k)(e_1, ..., e_{j-1}, g_j, e_{j+1}, ..., e_k) = (e_1, ...g_i ...g_j ...e_k) = (e_1 ...g_1 ...e_k)(e_1 ...g_j ...e_k)$$

Утв. 6 и 7 показывают тесную связь между понятиями внешнего и внутреннего произведений групп. Поэтому употребляются одинаковые обозначения для этих произведений.

$$G = G_1 \times G_2 \times \ldots \times G_k$$

Утв. 8.
$$G$$
 - группа, $G_1, G_2, ..., G_k < G,$ $G = G_1 \times G_2 \times ... \times G_k \Leftrightarrow$ $\begin{cases} 1) \ \forall g \in G \ \text{единственным образом представляется в виде} \end{cases}$ \Leftrightarrow $\begin{cases} g = g_1 g_2 ... g_k, \ g_i \in G_i, \ i = \overline{1, k} \end{cases}$ $(i = \overline{1, k})$

Лекция №13 13

Опр.
$$G$$
- группа

$$G_1, G_2, ..., G_k < G$$

$$G_1 \times G_2 \times ... \times G_k$$
 если

1) $\forall g \in G$ единственным в образом представляется в виде $g=g_1g_2...g_k$ $g_i \in G_i \quad i=\overline{1,k}$ 2) $g_ig_j=g_jg_i \quad i\neq j \quad i,j=\overline{1,k}$

Утв. 8.
$$G > G_1, G_2, ..., G_k$$

$$G = G_1 \times G_2 \times ... \times G_k \Leftrightarrow$$

 $\Leftrightarrow \left\{ \begin{array}{l} 1) \ \forall g \in G \ \text{единственным в образом представляется} \\ \text{в виде } g = g_1g_2...g_kg_i \in G_i \quad i = \overline{1,k} \\ 2) \ G_i \triangleleft G \quad \forall i = \overline{1,k} \end{array} \right.$

Док-во:
$$\bigoplus$$

$$1) = 1)' \begin{cases} 1 \\ 2 \end{cases} \Rightarrow 2)'$$
 $G_i \triangleleft G \Leftrightarrow \forall \widetilde{g_i} \in G_i \ \forall g \in G \qquad g\widetilde{g_i}g^{-1} \in G_i$

$$1) \Rightarrow g = g_1 g_2 ... g_i ... g_k$$

$$g \widetilde{g}_i g^{-1} = g_1 g_2 ... g_i ... g_k \widetilde{g}_i g_k^{-1} ... g_i^{-1} ... g_1^{-1} =$$

$$= g_1 g_2 ... g_i ... \widetilde{g}_i g_k g_k^{-1} ?? ... g_i^{1} ... g_1^{-1} =$$

$$g_1 g_2 ... g_i \widetilde{g}_i g_i^{-1} ... g_2^{-1} g_1^{-1} =$$

$$g_1 g_2 ... \widetilde{\widetilde{g}}_i ... g_2^{-1} g_1^{-1} =$$

$$= \widetilde{\widetilde{g}}_i \in G_i \ \forall \widetilde{g}_i \in G_i \ \forall g \in G \Rightarrow G_i \triangleleft G$$

$$\widetilde{\widetilde{g}}_i \in G_i$$

Утв. 9. В случае 2-х подгрупп $G_1, G_2 < G$

 $\forall g$ единственным образом представляется

в виде
$$g=g_1g_2,\ g_1\in G_1\ g_2\in G_2\Leftrightarrow$$
 \Leftrightarrow $\left\{ egin{array}{l} 1)\ G=G_1G_2\ 2)\ G_1\cap G_2=\{e\} \end{array} \right.$

Док-во: 🕕

Пусть g един обр предствл. ??

$$g = g_1 g_2$$

Пусть
$$g \in G_1 \cap G_2$$
 $g \in G_1, G_2$
$$g = ge = eg \Rightarrow g = e \Rightarrow G_1 \cap G_2 = \{e\}$$

$$\bigoplus$$
 Пусть $g = g_1 g_2 = \widetilde{g}_1 \widetilde{g}_2$
 $g_1 g_2 = \widetilde{g}_1 \widetilde{g}_2$
 $G_1 \ni \widetilde{g}_1^{-1} g_1 = \widetilde{g}_2 g_2^{-1} \in G_2$
т.к. $G_1 \cup G_2 = \{e\} \Rightarrow \begin{cases} \widetilde{g}_1^{-1} g_1 = e \\ \widetilde{g}_2 g_2^{-1} = e \end{cases} \Leftrightarrow$
 \Leftrightarrow $\begin{cases} g_1 = \widetilde{g}_1 \\ g_2 = \widetilde{g}_2 \end{cases}$

Следствие. G - группа $G_1, G_2 < G$ $G = G_1 \times G_2 \Leftrightarrow$

$$\Leftrightarrow \begin{cases} 1) \ G = G_1 G_2 \\ 2) \ G_1 \cap G_2 = \{e\} \\ 3) \ g_1 g_2 = g_2 g_1, \quad g_1 \in G_1, g_2 \in G_2 \end{cases} \Leftrightarrow \begin{cases} 1) \ G = G_1 G_2 \\ 2) \ G_1 \cap G_2 = \{e\} \\ 3) \ G_1, G_2 \triangleleft G \end{cases}$$

Примеры:

(1) (\mathbb{Z} , +) нельзя разложить в прямое произведение(сумму) подгрупп. т.к. являются подгруппами $H < \mathbb{Z}$ имеет вид $H = m\mathbb{Z}$ $\forall H_1, H_2 < \mathbb{Z}$, т.е $m\mathbb{Z}, k\mathbb{Z} < \mathbb{Z}$ имеют нетривиальное пересечение $m\mathbb{Z} = \cap k\mathbb{Z} = [m, k]\mathbb{Z}$ $[m, k] = \mathrm{HOK}\{m, k\}$

(2)
$$\mathbb{C}^* = \mathbb{R}_+^* \times \mathbb{U}$$
 $z \in \mathbb{C}^*$ $z = \rho e^{i\varphi}$ единственным образом ($\mathbb{R}_+^* \cap \mathbb{U} = \{1\}$) $\rho \in \mathbb{R}_+^*$, $e^{i\varphi} \in \mathbb{U} = \{z \in \mathbb{C} : |z| = 1\}$ \mathbb{R}_+^* , $\mathbb{U} \lhd \mathbb{C}^*$, т.к. \mathbb{C} - абнлнва группа ??

Утв. 10.
$$G = G_1 \times G_2 \Rightarrow$$

 $G/G_1 \simeq G_2, \ G/G_2 \simeq G_1$

Док-во:

$$\left.\begin{array}{l} \varphi_1:G\to G_2\\ \varphi_1((g_1,g_2))=g_2\\ 1)\ \varphi_1\ \text{гомоморфизм}\\ 2)\ Ker\ \varphi_1=G_1\times\{e_2\}\simeq G_1\\ 3)\ Im\ \varphi_1=G_2 \end{array}\right\}\ \Rightarrow$$
 по теореме о гомоморфизме
$$G/G_1\simeq G_2$$

$$\varphi_2: G \to G_1$$

$$\varphi_2\Big((g_1, g_2)\Big) = g_1$$

$$- || -$$

$$- || -$$

$$- || -$$

$$- || -$$

NOTE: обратное утверждение неверно.

$$\mathbb{Z}_4/_{\mathbb{Z}_2} \simeq \mathbb{Z}_2 \qquad \qquad \mathbb{Z}_4 \simeq \mathbb{Z}_2 imes \mathbb{Z}_2$$

13.1 Примарные группы (р - группы)

Опр. Группа называется примарной или р-группой, если её порядок равен $p^k, \ k \in \mathbb{N}, p$ - простое.

Утв. 1. \forall циклическая конечномерная группа является прямым произведением примарных циклических групп.

Док-во:

$$|G|=n<\infty$$

$$n=p_1^{S_1}p_2^{S_2}...p_m^{S_m}$$

$$p_i$$
 - простые числа, $p_i\neq p_j$ при $i\neq j$ $i,j=\overline{1,m}$

индукция т

$$1) \ m=1$$

$$n=p_1^{S_1}$$

$$\mathbb{Z}_n=\mathbb{Z}_{p^{S_1}}$$
- примарная?? группа

2) Пусть утверждение верно для m-1, докажем для m

$$n = (p_1^{S_1} p_2^{S_2} ... p_m^{S_m}) p_m^S$$

 \mathbb{Z}_{mn} - циклическая группа раскладывается в прямое произведение $\mathbb{Z}_{mn}\simeq\mathbb{Z}_m\times\mathbb{Z}_n\Leftrightarrow (m,n)=1$

$$(p_1^{S_1}...p_{m-1}^{S_{m-1}},p_m^{S_m})=1$$
 $\mathbb{Z}_{p_1^{S_1}...p_{m-1}^{S_{m-1}}} imes \mathbb{Z}_{p_m^{S_m}} \simeq \mathbb{Z}_n \Rightarrow$ по предположению индукции $\mathbb{Z}_n \simeq \mathbb{Z}_{p_1^{S_{m1}}} imes ... imes \mathbb{Z}_{p_{m-1}^{S_{m-1}}} imes \mathbb{Z}_{p_m^{S_m}}$ Пример: $60=2^2\cdot 3\cdot 5$

74

$$\mathbb{Z}_{60} = \mathbb{Z}_{2^2} \times \mathbb{Z}_3 \times \mathbb{Z}_5$$

Утв. 2. Примарную циклическую группу нельзя представить в виде прямого произведения 2-х нетривиальных подгрупп.

Док-во:

$$\begin{aligned} |G| &= p^S \\ G &\simeq \mathbb{Z}_{p^S} \\ \Pi \text{усть } G &= H_1 \times H_2 \qquad H_1, H_2 < G \qquad |H_1|, |H_2| \mid p^S \\ \Rightarrow \left\{ \begin{array}{ll} |H_1| &= p^k \quad k < S \\ |H_2| &= p^l \quad l < S \end{array} \right. \\ H_1 &\simeq \mathbb{Z}_{p^k} \quad H_2 \simeq \mathbb{Z}_{p^e} \\ \mathbb{Z}_{p^S} &\simeq \mathbb{Z}_{p^k} \times \mathbb{Z}_{p^e} \end{aligned}$$

Наибольший порядок элемента?? в $\mathbb{Z}_{p^k} \times \mathbb{Z}_{p^e}$ $p^{max\{k,e\}} < p^S$ - наибольший порядок элемента в \mathbb{Z}_{p^S} X

13.2 Функция Эйлера

 $\mathbb{Z}_{mn}\simeq \mathbb{Z}_m \times \mathbb{Z}_n$ (m,n)=1 изоморффизм групп порождает и изоморфизм колец

f - изоморфизм

$$\begin{split} f(\overline{S}) &= f(\overline{1}+\ldots+\overline{1}) \text{ (S - раз)} = f(\overline{1})+\ldots+f(\overline{1}) \text{ (S - раз)} \\ f(\overline{St}) &= f(\overline{1}+\ldots+\overline{1}) \text{ (St - раз)} = \\ &= f(\overline{1})+\ldots+f(\overline{1}) \text{ (t - раз)} f(\overline{1})+\ldots+f(\overline{1}) \text{ (S - раз)} \end{split}$$

13.3 Изоморфизм колец индукции

$$\mathbb{Z}_{mn}^*\simeq \mathbb{Z}_m^* imes \mathbb{Z}_n^*$$
 групы обратимых элементов по умножению $arphi(n)=|\mathbb{Z}_n^*|$

75

$$|\mathbb{Z}_{mn}^*| = |\mathbb{Z}_m^*||\mathbb{Z}_n^*|$$

$$\varphi(mn) = \varphi(m)\varphi(n)$$
 $n = p_1^{S_1}p_2^{S_2}...p_m^{S_m}$ - разложение на простые множиетли $p_i \neq p_j$ $i \neq j$ $i,j = \overline{1,m}$
$$\mathbb{Z}_n = \mathbb{Z}_{p_1^{S_1}} \times \mathbb{Z}_{p_2^{S_2}} \times ... \times \mathbb{Z}_{p_m^{S_m}}$$

$$\mathbb{Z}_n^* = \mathbb{Z}_{p_1^{S_1}}^* \times \mathbb{Z}_{p_2^{S_2}}^* \times ... \times \mathbb{Z}_{p_m^{S_m}}^*$$

$$\varphi(n) = \varphi(p_1^{S_1})\varphi(p_2^{S_2})...\varphi(p_m^{S_m})$$

$$\varphi(p^S) = p^S - p^{S-1} = p^S(1 - \frac{1}{p})$$

$$\varphi(n) = p_1^{S_1}(1 - \frac{1}{p_1})p_2^{S_2}(1 - \frac{1}{p_2})...p_m^{S_m}(1 - \frac{1}{p_m}) =$$

$$= p_1^{S_1}p_2^{S_2}...p_m^{S_m} \prod_{i=1}^m (1 - \frac{1}{p_i}) = n \prod_{i=1}^m (1 - \frac{1}{p_i})$$

13.4 Разложение конечнопорождённых абелевых групп в прямую сумму циклических групп

Теорема: ∀ конечнопорождённая абелева группа является прямым произведением бесконечных циклических подгрупп и примарных циклических групп, причём набор порядков этих групп определён однозначно.

$$G_1 \simeq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{3^3} \times \mathbb{Z}_5$$

$$G_2 \simeq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{3^2} \times \mathbb{Z}_3 \times \mathbb{Z}_5$$

$$G_1 \simeq G_2$$

Теорема: ∀ конечная абелева группа является прямым произведением примарных циклических групп, причём набор порядков этих групп

определён однозначно.

Пример:

Перечислим все абелевы группы |G| = 36

$$36 = 2^3 \cdot 3^2$$

1)
$$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$$

2)
$$\mathbb{Z}_{2^2} \times \mathbb{Z}_3 \times \mathbb{Z}_3$$

3)
$$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{3^2}$$

4)
$$\mathbb{Z}_{2^2} \times \mathbb{Z}_{3^2}$$

Все эти группы не изоморфны.

Пример:

Изоморфны ли группы?

1)
$$\mathbb{Z}_{24} \times \mathbb{Z}_9$$
 и $\mathbb{Z}_4 \times \mathbb{Z}_{54}$

$$24 = 2^3 \cdot 3 \qquad 54 = 2 \cdot 3^3$$

$$\mathbb{Z}_{24} = \mathbb{Z}_{2^3} \times \mathbb{Z}_3 \times \mathbb{Z}_{3^2} \not\simeq \mathbb{Z}_4 \times \mathbb{Z}_{54} = \mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_{3^3}$$

2)
$$\mathbb{Z}_6 \times \mathbb{Z}_{36}$$
 и $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$

$$6 = 2 \cdot 3$$
 $12 = 2^2 \cdot 3$

$$36 = 2^2 \cdot 3^2$$
 $18 = 2 \cdot 3^2$

$$\mathbb{Z}_6 \times \mathbb{Z}_{36} = \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{3^2}$$

$$\mathbb{Z}_{12} \times \mathbb{Z}_{18} = \mathbb{Z}_{2^2} \times \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_{3^2}$$

$$\mathbb{Z}_6 \times \mathbb{Z}_{36} \simeq \mathbb{Z}_{12} \times \mathbb{Z}_{18}$$

14 Лекция №14

G - группа

 φ - гомоморфизм.

$$\varphi: G \to S(x)$$

$$G : X \qquad \forall x \in X \text{ onp. } \varphi(g)x = gx$$

Опр. Пусть $G:X,\ x,y\in X$ называются эквивалентными относительно действия $G:x\sim y,$ если $\exists\,g\in G:y=gx$

Утв. 1 $x \sim y$ - отнощение эквивалентности (Проверить самим)

Опр. Смежные классы эквивалентности $x \sim y$ называются орбитами действия G на X

$$G(x) = \{ y \in X : y = gx \ \forall g \in G \}$$

Опр. Действие G на X (или сама группа G) называется транзитивным, если: $\forall x,y\in X\quad\exists\, g\in G: y=gx,$ т.е \exists всего одна орбита действия группы G.

Опр. Стабилизатаром точки $x \in X$ называется $G_x = \{g \in G : gx = x\}$

Утв. 2 $G_x < G$ (док-ть самим, используя критерий подгрупп)

Примеры.

(1)
$$\overline{G=Isom}\,E^2$$
 $\exists\,t_{\overline{xy}}\in Isom\,E^2$ - пара переносов на \overline{xy} $t_{\overline{xy}}x=y$

транзитивное действие $G(x) = E^2$, $G_x = O_2$

(2)
$$G = O_2 : E^2 \quad G(O) = O \quad G_O = O_2$$

G(x) - окружность, проходящая через x с центром O

$$G_x = \{id, S_{Ox}\}$$

(3) G: G сопряжение

$$x,y\in G\quad y=gxg^{-1}\quad\forall\,g\in G$$

$$x \in Z(G)$$
 $gxg^{-1} = x$ $\forall g \in G$ $G_x = G = Z(x)$ $G(x) = x = C(x)$

$$x \not\in Z(G)$$
 орбита $G(x) = \{y \in G : y = gxg^{-1}\} =$

=C(x) - класс сопряжений.

$$G_x = \{g \in G : gxg^{-1} = x\} = Z(x)$$

(4) $S_n : S_n$ сопряжение

 $G(\alpha)=C(\alpha)$ - все элементы, имеющие циклический тип $\{\alpha\},$ и только они

$$G_{\alpha} = Z(\alpha)$$

Утв. 3. G: x

$$G_{qx} = gG_xg^{-1}$$

Док-во:

1)
$$h \in G_x$$
 $ghg^{-1}(gx) = g(h(x)) = g(x) = gx \Rightarrow ghg^{-1} \in G_{gx}$,

т.е
$$gG_xg^{-1}\subset G_{gx}$$

$$2) x = g^{-1}(gx)$$

$$g^{-1}G_{gx}g\subset G_x$$

$$gg^{-1}G_{qx}gg^{-1} \subset gG_xg^{-1}$$

$$G_{gx} \subset gG_gg^{-1}$$

$$\begin{cases} 1 \\ 2 \end{cases} \Rightarrow G_{gx} = gG_xg^{-1}$$

Teopema: G: X

$$x \in X$$
 $f: G(x) o G/G_x$: $f(gx) = gG_x$ f - биекция

Док-во:

0) Опр f корректно

$$g_1 x = g_2 x \Rightarrow x = g_1^{-1} g_2 x \Rightarrow g_1^{-1} g_2 \in G_x \Rightarrow g_1 G_x = g_2 G_x$$

1) f - инъективно, т.к

$$f(g_1x) = f(g_2x) \Rightarrow g_1G_x = g_2G_x \Rightarrow g_1^{-1}g_2 \in G_x \Rightarrow g_1^{-1}g_2x = x \Rightarrow g_1x = g_2$$

(2) f - сюръективно, т.к

$$\forall \ gG_x \in G/G_x \quad \exists \ gx \in G(x) \ : \ f(gx) = gG_x \quad f$$
 - биекция

Опр. Длиной орбиты |G(x)| называется количество точек в ней.

Следствие 1.
$$|G| < \infty, G: X \Rightarrow \forall x \in X \quad |G(x)| = |G: G_x|$$

Следствие 2.
$$|G| < \infty, G: X \Rightarrow \forall x \in X \quad |G| = |G_x| \cdot |G(x)|$$

Следствие 3.
$$|G| < \infty, G: X \Rightarrow \forall x \in X \quad |G(x)| \mid |G|$$

Следствие 4.
$$|G| < \infty, G : X \Rightarrow \forall x \in X \quad |G| = |Z(x)||C(x)|$$

В части, в т.р №4 $G = S_4$

$$|G(\alpha)| = |C(x)| = N_{\{\alpha\}}$$

$$|G_{\alpha}| = |Z(\alpha)|$$

$$|Z(\alpha)| \cdot |C(x)| = |Z(\alpha)|N_{\{\alpha\}}| = |S_n| = n!$$

Утв. 4. Примарная группа имеет нетривиальный центр.

$$|G|=p^m\;(p$$
 - простое число, $m\in\mathbb{N})\Rightarrow Z(G)\neq\{e\}$

Док-во: Рассмотрим G: G сопряж.

$$G = Z(G) \cup G(x_1) \cup G(x_2) \cup ... \cup G(x_k) = Z(G) \cup C(x_1) \cup C(x_2) \cup ... \cup C(x_k)$$

$$x_i \not\in Z(G)$$
 $x_i \neq x_j$ $i, j = \overline{1, k}$

$$|C(x_i)|$$
 $|G|$ $\forall i = \overline{1, k} \Rightarrow |C(x_i)| = p^{l_i}$ $1 \leqslant l_i \leqslant m$

$$|G| = |Z(G)| + \sum_{i=1}^{k} |C(x_i)|$$

$$1 \leq |Z(G)| = |G| - \sum_{i=1}^{k} |C(x_i)| = p^m - \sum_{i=1}^{k} p^{l_i} : p$$

$$\Rightarrow |Z(G)| : p \Rightarrow Z(G) \neq \{e\}$$

Утв. 5
$$|G| < \infty$$
 $|G/Z(G)|$ - цикл. группа $\Rightarrow G$ - абелева группа

Док-во: Пусть $G/Z(G) = \langle aZ(G) \rangle$ $a \in G$

 $\forall g \in G$ имеет a^kz , где $z \in Z(G)$, но элементы такого вида коммутируют $g_1 = a^{k_1}z_1, g_2 = a^{k_2}z_2$

$$g_1g_2=a^{k_1}z_1a^{k_2}z_2=a^{k_1+k_2}z_1z_2=a^{k_2}a^{k_1}z_2z_1=a^{k_2}z_2a^{k_1}z_1=g_2g_1\Rightarrow$$
 \Rightarrow G - абелева

Утв. 6.
$$|G| = p^2$$
, p - простое $\Rightarrow G$ - абелева.

Док-во:

Пусть G не является абелевой, т.е. $G \neq Z(G),$

$$\Rightarrow 1 \neq |Z(G)| = p \Rightarrow |G/Z(G)| = p \Rightarrow G/Z(G) \simeq \mathbb{Z}_p$$
 (цикл) $\Rightarrow G = Z(G) \Rightarrow G$ - абелева.

Утв. 7.
$$G$$
 - неабелева

$$|G|=2p,\,p$$
 - простое \Rightarrow $\Rightarrow G\simeq D_p$

Док-во:

 $\forall\,g\in G\ ord\,g\,|\,2p$

Если
$$\exists g \in G : ord g = 2p \Rightarrow G$$
 - циклическая \Rightarrow абелева. $\overset{\wedge}{\times}$ Если $\forall g \in G, \ q \neq e, \ ord \ q = 2 \Rightarrow G$ - абелева. $\overset{\wedge}{\times}$

$$\exists u \in G : orda = p$$

Рассмотрим
$$H = \langle u \rangle |G:H| = 2$$

$$G = H \cup bH$$

$$b \notin < u >$$

$$H \triangleleft G G/_{H} \mathbb{Z}_{2}$$

$$(bH)(bH) = H \Rightarrow b^2 \in H$$

$$ord\,b=\left[\begin{array}{c}2p\Rightarrow G\text{ - циклическая }\Rightarrow\text{ абелева. }\%\\p\Rightarrow b=bb^p=b^{p+1}=b^{2m}=(b^2)^m\in H\text{ }\%\\2\end{array}\right.$$

$$b \notin H \Rightarrow ord \, b = 2 \Rightarrow$$

$$\Rightarrow ba \notin H \Rightarrow ord \, ba = 2$$

$$ba \, ba = e \Rightarrow bab = a^{-1}$$

$$G = \langle a, b \rangle$$

$$ord \, a = p$$

$$ord \, b = z$$

$$bab = a^{-1}$$

$$\Rightarrow G \simeq D_p$$

Утв. 8. G - неабелева группа,

$$|G|=8 \ \Rightarrow \ G \simeq \left[\begin{array}{c} Q_4 \\ Q_8 \end{array}\right.$$

Док-во:

Если
$$\exists g \in G : ord g = 8 \Rightarrow G$$
 - циклическая \Rightarrow абелева. $x \not = 0$

Если
$$\forall g \in G, g \neq e, ord g = 2 \Rightarrow G$$
 - абелева. X

$$\exists a \in G : ord \, a = 4$$

Рассмотрим
$$H = \langle a \rangle$$
: $|G:H| = 2 \Rightarrow H \triangleleft G$

$$G/Z(G) \simeq \mathbb{Z}_2$$

$$|G| = 2^3 \Rightarrow Z(G) \neq \{e\}$$

$$|Z(G)| =$$
 $\begin{cases} 8 \Rightarrow G \text{ - абелева.} & \\ 4 \Rightarrow |G/Z(G)| = 2 \Rightarrow G/Z(G) \text{ - циклическая } \Rightarrow G \text{ - абелева} \\ 2 \end{cases}$

$$Z(G) = \{e, z\}$$

Если
$$z \notin H$$
 $G = H \cup zH$

$$\Rightarrow$$
 \forall $g=a^kz,\;\;z\in Z(G)\Rightarrow G$ - абелева. X

$$\Rightarrow z \in H, \ \, ord\,z = z, \ \, z = a^2$$

$$\exists b \notin \langle a \rangle, Z(G)$$

$$\Rightarrow G = H \cup bH \Rightarrow$$

$$\Rightarrow G = \langle a, b \rangle$$

$$bab^{-1}\in H=< a>$$
, т.к. $H\lhd G$ $bab^{-1}=a\Rightarrow ba=ab\Rightarrow G$ - абелева. \nearrow $bab^{-1}=a^3=a^{-1}$

1)
$$\operatorname{ord} b = 2$$

 $G = \langle a, b \rangle$
 $\operatorname{ord} a = 4$
 $\operatorname{ord} b = 2$
 $\operatorname{bab}^{-1} = \operatorname{a}^{-1}$ $\Rightarrow G \simeq D_4$

2)
$$ord b = 4, c = b^{-1}, ord c = 4$$
 $G = \langle a, b \rangle = \langle a, c \rangle$
 $ord a = 2$
 $a^2 = z = c^2$
 $c^{-1}ac = a^{-1}$
 $\Rightarrow G \simeq Q_8$

Группы малых порядков

G	абелева	неабелева
1	$\{e\} \simeq \mathbb{Z}_1$	_
2 - простое	\mathbb{Z}_2	_
3 - простое	\mathbb{Z}_3	_
$4=2^2$	$\mathbb{Z}_4, \ \mathbb{Z}_2 \times \mathbb{Z}_2 \simeq V_4$	_
5 - простое	\mathbb{Z}_5	_
$6=2\cdot 3$	$\mathbb{Z}_2 imes \mathbb{Z}_3 \simeq \mathbb{Z}_6$	$D_3 \simeq S_3$
7 - простое	\mathbb{Z}_7	_
$8 = 2^3$	$\mathbb{Z}_8, \ \mathbb{Z}_2 \times \mathbb{Z}_4, \ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$	D_4, Q_8
$9 = 3^2$	$\mathbb{Z}_9,\ \mathbb{Z}_3 imes\mathbb{Z}_3$	_
$10=2\cdot 5$	$\mathbb{Z}_2 imes \mathbb{Z}_5$	D_5
11 - простое	\mathbb{Z}_{11}	_

15 Лекция №15

15.1 Группы правильных многогранников

Правильные многогранники:

- 1) тетраэдр
- 2) куб (гексаэдр) (двойственен 3)
- 3) октаэдр (двойственен 2)
- 4) додекаэдр (двойственен 5)
- 5) аксаэдр (двойственен 4)

Центры граней двойственныъ многогранников являются вершинами другого двойственного многогранника.

Тетраэдр двойственен сам себе.

$$(Rot M) \sim Sym_+ M < Sym M = \{ \alpha \in Isom E^3 : \alpha(M) = M \} < O_3$$

Название	Число граней	Число рёбер	Число вершин	Sym M	$ Sym_+ M $
тетраэдр	4	$\frac{4\cdot 3}{6} = 6$	4	24	12
куб	6	$\frac{6\cdot 4}{2}$	8	48	24
октаэдр	8	$\frac{8\cdot 3}{2} = 12$	6	48	24
додекаэдр	12	$\frac{12 \cdot 5}{2} = 30$	$\frac{12\cdot 5}{3} = 20$	120	60
искосаэдр	20	$\frac{20\cdot 3}{2} = 30$	$\frac{20\cdot 3}{5} = 12$	120	60

Найдём |Sym M|

T - тетраэдр.

G = Sym T

G : множество вершин (t - top)

транзитивно

$$|G| = |G(t)| |G_t| = 4 \cdot 6 = 24$$

$$|G(t)| = 4$$

 G_t : множество рёбер, исходящих из верщины $t\ (e\ \mbox{-}\ edge)$ действие транзитивно

$$|G_t| = |G_t(e)||G_{t_e}| = 3 \cdot 2 = 6$$

$$|G_t(e)| = 3$$

$$G_{t_e} = \{id, S\}$$

S - отражение относительно плоскости, проходящей через ребро e и центр T

$$|G_{t_e}| = 2$$

Найдём $|Sym_+M|$

T - тетраэдр.

$$G = Sym_+ T$$

G: множество вершин t

транзитивно

$$|G| = |G(t)| |G_t| = 4 \cdot 3 = 12$$

$$|G(t)| = 4$$

 G_t : множество рёбер, исходящих из верщины $t\ (e$ - edge)

действие транзитивно

$$|G_t| = |G_t(e)||G_{t_e}| = 3 \cdot 1 = 3$$

$$|G_t(e)| = 3$$

$$G_{t_e} = \{id\}$$

Найдём |Sym M|

K - куб.

$$G = Sym K$$

G: множество вершин t

транзитивно

$$|G| = |G(t)| |G_t| = 8 \cdot 6 = 48$$

$$|G(t)| = 8$$

 G_t : множество рёбер, исходящих из верщины $t\ (e$ - edge)

действие транзитивно

$$|G_t| = |G_t(e)||G_{t_e}| = 3 \cdot 2 = 6$$

$$|G_t(e)| = 3$$

$$G_{t_e} = \{id, S\} \Rightarrow |G_{t_e}| = 2$$

S - отражение относительно плоскости,

проходящей через ребро e и центр

Найдём $|Sym_+M|$

$$K$$
 - куб.

$$G = Sym_+ T$$

G: множество вершин t

транзитивно

$$|G| = |G(t)| |G_t| = 8 \cdot 3 = 24$$

$$|G(t)| = 8$$

 G_t : множество рёбер, исходящих из верщины $t\ (e\ -\ edge)$

действие транзитивно

$$|G_t| = |G_t(e)||G_{t_e}| = 3 \cdot 2 = 6$$

$$|G_t(e)| = 3$$

$$G_{t_e} = \{id\} \Rightarrow |G_{t_e}| = 24$$

ОКТАЭДРА В ЛЕКЦИИ НЕ БЫЛО

Найдём |Sym M|

T - октаэдр.

```
Найдём |Sym_+M| T - октаэдр.
```

```
Найдём |Sym\ M| M=D - додекаэдр. G=Sym\ D G : множество вершин t транзитивно |G|=|G(t)|\,|G_t|=20\cdot 6\cdot 2=240 |G(t)|=20 G_t : множество рёбер, исходящих из вершины t\ (e - edge) действие транзитивно |G_t|=|G_t(e)||G_{t_e}|=6\cdot 2=12 |G_t(e)|=3,\cdot 2=6 G_{t_e}=\{id,S\} \Rightarrow |G_{t_e}|=2
```

 $Sym_{+}M$ содержит повороты относительно осей, проходящих черещ центр и граничную точку.

```
вершина середина ребра центр грани Sym_+T
```

1 шт. 1) *id*

 $4\cdot 2=8$ шт. 2) поворот, относитель проходящий через вершину и центр

(и через центр y) на $\frac{2\pi}{3}, \frac{2\pi \cdot 2}{3}$ $\frac{G}{2}=3$ 3) поворот относительно оси, проходящей через середину ребра и центр (и середину противоположного ребра) на π

 $Sym_{+}K$ 1 шт. 1) id $\frac{8}{2} \cdot 2 = 8$ шт. 2) поворот, относитель проходящий через вершину и центр (и через противоположную вершину) на $\frac{2\pi}{3}$, $\frac{2\pi \cdot 2}{3}$ $\frac{12}{2} \cdot 1 = 6$ 3) поворот относительно оси, проходящей через середину ребра и центр (и середину противоположного ребра) на π $\frac{6}{2} \cdot 1 = 9$ (всего 24) 4) поворот относительно оси проходязей через центр грани (и центр противоположной грани) на $\frac{2\pi}{4}$, $\frac{2\pi \cdot 2}{4}$ $\frac{2\pi \cdot 3}{4}$

$$Sym_+D$$
 1 шт. 1) id $\frac{20}{2}\cdot 2=20$ шт. 2) поворот, относитель проходящий через вершину и центр (и через противоположную вершину) на $\frac{2\pi}{3}, \frac{2\pi\cdot 2}{3}$ $\frac{30}{2}\cdot 1=15$ 3) поворот относительно оси, проходящей через середину ребра и центр (и середину противоположного ребра) на π $\frac{12}{2}\cdot 4=24$ (24) 4) поворот относительно оси проходязей через центр грани (и центр противоположной грани) на $\frac{2\pi}{5}, \frac{2\pi\cdot 2}{5}$ $\frac{2\pi\cdot 3}{5}$ $\frac{2\pi\cdot 4}{5}$

Задача:

88

Посчитать |Sym M| и $|Sym_+M|$

Рассмотрим действия

- 1) на мн-во ребер
- 2) на мн-во граней (граней face)

Утв. 1 $Sym T \simeq S_4$

Док-во:

 $F: Sym T \to S_4 \qquad f \in Sym T$

 $F(f) = \alpha$, которые осуществляет ту же перестановку вершин тетраэдра

Очевидно, F - гомоморфизм

$$F(f_2f_1) = F(f_2)F(f_1)$$

F - сюрьективно

$$S_4 = <(12), (13), (14) >$$

$$\exists f_1 \in Sym T : F(f_1) = (12)$$

 f_1 - отражение относительно пл-ти, проходящей через e_{34} и центр T

$$\exists f_2 \in Sym T : F(f_2) = (1 3)$$

 f_2 - отражение относительно пл-ти, проходящей через e_{24} и центр T

$$\exists f_3 \in Sym T : F(f_3) = (14)$$

 f_3 - отражение относительно пл-ти, проходящей через e_{23} и центр T

 $\Rightarrow F$ - сюрьективно

F - инъективно т.к $|Sym\,T| = |S_4| = 4! = 24$

 $\Rightarrow F$ - изоморфизм

Утв. 2 $Sym_+T \simeq A_4$

Док-во:

 $F: Sym T \to A_4 \qquad f \in Sym T$

 $F(f) = \alpha$, которые осуществляет ту же перестановку вершин тетраэдра

Очевидно, F - гомоморфизм

$$F(f_2f_1) = F(f_2)F(f_1)$$

F - сюрьективно

$$A_4 = <(12), (13), (14) >$$

$$\exists f_1 \in Sym T : F(f_1) = (1 2 3)$$

 f_1 - поворот относительно прямой, проходящей через t_4 и центр, на $\frac{2\pi}{3}$

F - сюрьективна

F - инъективна

 $|Sym_+T|=|Au|=12\Rightarrow F$ - изоморфизм

Утв. 3. $Sym_+ K \simeq S_4$

 $F: Sym_+K \to S_u \quad \forall f \in Sym_+K$

 $F(t) = \alpha \in Su$, которая осуществляет ту же перестановку диагоналей (доделать самим)

Утв. 4. $Sym_+ D \simeq A_5$ (доказать самим)