الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

دورة: 2020

الديوان الوطنى للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: آداب وفلسفة، لغات أجنبية

المدة: 02 سا و 30 د اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

[الموضوع الأول]

التمرين الأول: (06 نقاط)

c = 1441 و b = 2970 ، a = 2020 : و b ، a و b ، a و b ، b و b ، a

.9 عين باقى القسمة الإقليدية لكلّ من الأعداد b ، a و b على (1

بترديد 9 متوافقان بترديد 9 تحقّق أنّ العددين b و (a+5) متوافقان بترديد

.9 على على القسمة الإقليدية للعدد $(2a)^{31}$ على على $(3a)^{31}$ على 19 على 9.

.9 يقبل القسمة على $(3a-2b-12c^2)$ يقبل العدد

التمرين الثاني: (06 نقاط)

 $u_1+u_3=16$ و $u_2-u_0=4$:حيث u_0 و أساسها u_0 و أساسها و u_0 لتكن $u_1+u_3=16$

 $.(u_n)$ احسب الحدّ u_1 ، ثمّ الحدّ u_2 ، ثمّ الحدّ الأساس الحدّ u_2 ، ثمّ الحدّ الحسب الحدّ u_2

 $u_n = 4 + 2n$:معرّف بـ معرّف الحدّ العام للمتتالية (u_n) معرّف بـ (2

 (u_n) حدّد مع التّبرير اتجاه تغيّر المتتالية

3) بيّن أنّ العدد 2020 حدّ من حدود المتتالية (u_n) ، محدّدا رُتبته.

 $S = u_0 + u_1 + \dots + u_{1008}$: Land S land S land (4

التمرين الثالث: (08 نقاط)

، $f(x) = x^3 - 6x^2 + 9x - 4$ بنا الدالة العددية f معرّفة على \mathbb{R}

 (C_f) التّمثيل البياني لـ f في المستوي المنسوب الى المعلم المتعامد المتجانس و (C_f) .

 $-\infty$ احسب نهایة الدّالة f عند کلّ من $-\infty$ و $-\infty$

. \mathbb{R} على على f'(x) = 3(x-1)(x-3) : x على عدد حقيقي عدد حقيقي . f'(x) = 3(x-1)(x-3) على . f'(x) = 3(x-1)(x-3) $oldsymbol{\psi}$. استنتج اتجاه تغیّر f ثمّ شکّل جدول تغیّراتها.

.2 التي فاصلتها A التي فاصلتها (C_f) المماس للمنحنى (T_f) التي فاصلتها (3

 $f(x) = (x-1)^2(x-4)$: x عدد حقیقی عدد کلّ عدد الّه من أجل کلّ عدد دقیقی الّه من أجل کلّ عدد دقیقی

ب. حل في \mathbb{R} المعادلة f(x)=0 ثمّ استنتج نقط تقاطع (C_f) وحامل محور الفواصل.

انتهى الموضوع الأول $\cdot (C_f)$ و (T) من کلا من f(0) احسب (5

الموضوع الثاني

التمرين الأول: (06 نقاط)

 $u_3 \times u_5 = 2916$: متتالية هندسية حدّها الأول u_1 ، حدودها موجبة تماما حيث (u_n) متتالية

- u_4 احسب الحد (1
- . 3 هو $\left(u_{n}\right)$ علما أنّ $u_{3}=18$ ، تحقق أنّ أساس المتتالية (2
- n بدلالة u_n بدلالة عبارة الحد العام u_n بدلالة (3
 - $(729 = 3^6)$ عيّن رتبة الحدّ الذي قيمته 1458. (لاحظ أنّ: (36 = 729)
- $S_n = u_1 + u_2 + \dots + u_n$ المجموع S_n حيث: n المجموع (5

التمرين الثاني: (06 نقاط)

. b = 2020 ، $a \equiv 2[7]$ عددان صحیحان حیث: $a \equiv 2$

- . 7 عين باقى القسمة الإقليدية للعدد b على (1
- . 7 يقبل القسمة على $\left(a^2+b^2\right)^{1962}-8$ بيّن أنّ $a^2+b^2\equiv -1$ يقبل القسمة على (2 بيّن أنّ يأت أنّ
 - 2 . عين بواقى القسمة الإقليدية لكلّ من الأعداد 2 ، 4 و 2 على 3
 - $4^{3n+1} \equiv 4$ [7] : ثمّ استنتج أنّ: $4^{3n} \equiv 1$ [7] : n عدد طبیعي بين أنّه من أجل كلّ عدد طبیعي
 - $b^{21} \equiv 1[7] \equiv 1[7]$ ج. بيّن أنّ
 - . $4^n + a + b^{21} \equiv 0$ [7] عيّن الأعداد الطبيعية n بحيث يكون: (4

التمرين الثالث: (08 نقاط)

 $f(x) = \frac{1}{3}x^3 + 2x^2 + 3x$:ب الدّالة العددية المعرّفة على \mathbb{R} بعتبر f

- $\left(O;ec{t}\,,ec{j}\,
 ight)$ التمثيل البياني للدّالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس المستوي المستوي
 - $+\infty$ و $-\infty$ مند كل من الدّالة و الدّالة f
- \mathbb{R} على \mathbb{R} . المتنتج اتجاه تغیّر f'(x) = (x+3)(x+1) : x على x على x المتنتج اتجاه تغیّر x ، ثمّ شکّل جدول تغیّراتها.
 - $A\left(C_f
 ight)$ بيّن أنّ النّقطة $A\left(-2;rac{-2}{3}
 ight)$ هي نقطة انعطاف للمنحنى (3
 - . A اكتب معادلة لـ D المماس للمنحنى النقطة (C_f) اكتب معادلة لـ (D) المماس
 - $.(C_f)$ احسب (D) ثمّ ارسم کلا من (D) و (5

(انتهى الموضوع الثاني

العلامة		/ * # £ \$ 1
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		التمرين 01: (06 نقاط)
2.25	3x 0.75	c = 1[9] $b = 0[9]$ $a = 4[9]$ (1
1	1	و $(a+5)$ متوافقان بتردید 9. التحقق أنّ العددین b التحقق أنّ العددین
1.5	0.5	2a = -1[9]: التحقق أنّ (3)
	0.5X2	$: \left(2a ight)^{31}$ للعدد 9 للعدد الإقليدية على 9 للعدد .
		$(2a)^{31} \equiv 8[9]$
1.25	5x0.25	$a = (3a - 2b - 12c^2)$ تبيان أنّ العدد $a = (3a - 2b - 12c^2)$ يقبل القسمة على
		التمرين 02: (06 نقاط)
1.75	0.75+2x0.5	$r=2$, $u_0=4$, $u_2=8$ (1
1 25	0.5	$u_n = 4 + 2n$: تبیان أنّ (2
1.25	0.75	ب لدینا $r>0$ ومنه (u_n) متزایدة تماما $r>0$
1.5	0.75	$n = 1008$ يكافئ $u_n = 2020$ (3
	0.75	الرتبة هي 1009
1.5	1.25	4) نجد: s = 1021108) نجد
		التمرين 03: (08 نقاط)
1	0.5+0.5	$\lim_{x \to -\infty} f(x) = -\infty \qquad \text{i} \qquad \lim_{x \to +\infty} f(x) = +\infty \qquad \textbf{(1)}$
3	2x0.5	f'(x) = 3(x-1)(x-3) (5 (2)
	1	f'(x) دراسة إشارة
	0.5+0.5	ب) اتجاه التغير وجدول التغيرات
1	1	y = -3x + 4 معادلة المماس: $y = -3x + 4$
1.5	0.5	$f(x) = (x-1)^2(x-4)$: أُلتحقق أن
	0.5+0.5	ب) حل المعادلة $f(x)=0$ واستنتاج نقط التقاطع
	0.25	f(0) حساب (5
1.5	0.75+0.5	(C_f) و (T) ورسم (T)

مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)		
	• ,			
		التمرين 01: (06 نقاط)		
1	1	$u_4 = 54$ (1		
1.25	1.25	. 3 هو (u_n) التحقق أنّ أساس المتتالية (u_n) هو		
1.25	0.75+0.5	$u_n = 2(3)^{n-1}$, $u_1 = 2$ (3)		
1.25	0.5+0.75	$n=7$ لدينا $u_n=1458$ يكافئ $n=7$		
1.25	1.25	$S_n = 3^n - 1$ (5		
التمرين 02: (06 نقاط)				
1	1	. 7 تعيين باقي القسمة الإقليدية للعدد b على b تعيين باقي القسمة الإقليدية للعدد		
1	0.5	$a^2 + b^2 \equiv -1[7]$: تبیان أنّ (2		
	0.5	. 7 يقبل القسمة على $\left(a^2+b^2 ight)^{1962}-8$ استنتاج أنّ		
	0.75	3) أ) تعيين بواقي القسمة الإقليدية لكلّ من الأعداد 4، 4^2 و 4^3 على 7		
,	0.75	$4^{3n} \equiv 1[7] : n$ تبیان أنّه من أجل كلّ عدد طبیعي تبیان أنّه من أجل كلّ عدد طبیعي		
3	0.5	$.4^{3n+1} \equiv 4[7] \equiv 4$ استنتاج أنّ		
	1	$b^{21} \equiv 1[7] \equiv 1$ بیان أنّ: (7		
1	1	$4^{n} + a + b^{21} \equiv 0$ [7] تعيين الأعداد الطبيعية n بحيث يكون: (4		
		التمرين 03: (08 نقاط)		
1	0.5+0.5	$\lim_{x \to -\infty} f(x) = -\infty i \lim_{x \to +\infty} f(x) = +\infty (1)$		
3	0.5x2	\mathbb{R} على $f'(x) = (x+3)(x+1)$ و إشارة $f'(x) = (x+3)(x+1)$		
	1	$[-1;+\infty[$ و $]-\infty;-3]$ متزايدة تماما على كل من المجالين f		
		[-3;-1] ومتناقصة تماما على المجال		
	1	جدول التغيرات		
		$:\!\left(C_{f} ight)$ هي نقطة انعطاف للمنحنى A (3		
1.5	0.5x3	. f "(x) اشارة f ($x=-2$) و هو f "(x) اشارة f "(x) حساب f "(x) جل المعادلة		
1	1	(D): $y = -x - \frac{8}{3}$ (4		
	0.25	f(0) = 0 (5		
1.5	0.25	ورسم کلا من $\left(C_f ight)$ و $\left(D ight)$ و رسم کلا من $\left(C_f ight)$		