Aula 01 – Introdução aos Sistemas Operacionais

Por Sediane Carmem Lunardi Hernandes

1. Visão geral

 Um Sistema Operacional (SO) atua como um intermediário entre o usuário de um computador e o hardware do computador

usuários

Sistema Operacional

Hardware

1. Visão geral (cont.)

Finalidade:

 fornecer um ambiente no qual o usuário possa executar programas

2. Definição

 Um Sistema Operacional, por mais complexo que possa parecer, "é apenas um conjunto de rotinas executado pelo processador, de forma semelhante aos programas de usuário." (MACHADO, MAIA, 2007).

• Principal função:

 Controlar o funcionamento de um computador, gerenciando a utilização e o compartilhamento dos seus diversos recursos, como processadores, memória e dispositivos de entrada e saída

2. Definição (cont.)

- Um SO não é executado de forma linear como a maioria das aplicações, com início, meio e fim
 - Suas rotinas são executadas concorrentemente em função de eventos assíncronos, ou seja, eventos que podem ocorrer a qualquer momento

3. Histórico

- Década de 50 transistor, memória magnética, fitas
 - Primeiro SO
 - chamado de MONITOR
 - desenvolvido em 1953
 - pelos usuários do IBM
 701 do Centro de
 Pesquisas da General
 Motors
 - reescrito posteriormente para o computador IBM 704

IBM 701

IBM 704

- Década de 50
 - Linguagens de programação de alto nível permitiram que outros SO fossem implementados
 - SOS (SHARE Operating System)
 - FMS (FORTRAN Monitor System)
 - IBSYS → máquinas IBM
 - criaram o conceito de *independência de dispositivos*
 - programador não implementa rotina específica de leitura e gravação para cada dispositivo
 - Atlas
 - Desenvolvido pela Universidade de Manchester (Inglaterra)
 - Memória hierarquizada
 - Paginação por demanda para transferir informações da memória secundária para a principal

- Década de 60

 - circuitos integrados Multiprogramação
 - SO MCP (Master Control Program)
 - desenvolvido para o computador B-5000
 - SO OS/360
 - desenvolvido para computadores das linhas System/360 da IBM
 - → ainda não existia interação do usuário com sistema
 - Tempo compartilhado

Computer .. Science Center University of Virginia

Burroughs B5500 Computer Installed July 1964

- Década de 60
 - SO CTSS (Compatible Time-Sharing System)
 - Desenvolvido para computador IBM 7094
 - suportava 32 usuários interativos
 - através de comandos interativos permitia compilar e executar programas

base MULTICS

- SO MULTICS (Multiplexed) Information and Computing Service)
 - Desenvolvido para computador GE 645
- SO Unix (1969)
 - Desenvolvido para PDP-7 por Ken Thompson

- Década de 70
 - Microprocessadores (Intel 4004, Intel 8080, Apple II)
 - SO CP/M (Control Program Monitor)
 da Digital Research
 - SO predominante nos primeiros SOs
 - Curiosidades:
 - 1971: Niklaus Wirth desenvolve a linguagem Pascal
 - 1975: Dennis Ritchie desenvolve a linguagem C e, junto com Ken Thompson, portam o SO Unix para o computador PDP-11

PDP 11

- Década de 80, 90, 2000
 - SO DOS (Disk Operating System)
 - SO SunOS e Sun Solaris
 - HP-UX, IBM-AIX
 - Linux FreeBSD
 - SOs para celulares, palmtops

4. Papel do Sistema Operacional

 O Sistema Operacional controlar o hardware e coordenar seus uso pelos diversos programas aplicativos

4. Papel do Sistema Operacional (cont.)

- Sistema Computacional:
 - Hardware (CPU, memória e dispositivos de I/O)
 - fornece os RECURSOS BÁSICOS de computação do sistema
 - Sistema Operacional
 - Programas aplicativos
 - definem as formas pelas quais esses recursos são utilizados para resolver os problemas computacionais dos usuários
 - Usuários

3. Papel do Sistema Operacional (cont.)

Papel do SO – ponto de vista do computador

- Programa mais intimamente envolvido com o hardware
 - Alocador de recursos: administra e aloca recursos (tempo de CPU, espaço de memória, espaço de armazenamento em disco, dispositivos de I/O – input/output, entre outros) necessários a resolução de um problema
 - Programa de controle: gerencia a execução dos programas de usuário para evitar erros e o uso impróprio do computador. Se preocupa principalmente com a operação e o controle de dispositivos de I/O

Papel do SO – ponto de vista do usuário

- PC projetado para um único usuário: SO projetado para facilidade de uso
- Terminal conectado a um mainframe, no qual, outros usuários acessam o mesmo computador por intermédio de outros terminais: SO projetado para maximizar o uso de recursos
 - assegura que todo o tempo de CPU, memória e I/O disponíveis sejam utilizados eficientemente e que nenhum usuário individual ocupe mais do que sua cota
- Estações de trabalho conectadas a rede com outras estações de trabalho e servidores: SO projetado para estabelecer um compromisso entre usabilidade individual e utilização de recursos

Importante saber:

- Para que um computador comece a operar, precisa dispor de um programa inicial para executar (programa bootstrap)
 - Programa armazenado na ROM (BIOS <u>Basic Input Otput</u> <u>System</u>)
 - Inicializa todos os aspectos do sistema, dos registradores da CPU, dos controladores de dispositivos e conteúdos da memória
 - Necessita saber como carregar o SO e como iniciar sua execução
 - Programa deve alocar e carregar na memória o kernel (núcleo) do SO. SO começa a executar o primeiro processo e aguarda que ocorra algum evento ② interrrupção de hardware ou software (chamada de sistema)

5. Tipos de Sistemas Operacionais

5.1 Sistemas Monoprogramáveis/monotarefa

- Sistema voltado a execução de um único programa/tarefa (primeiros SOs – década de 60 e 70)
 - Qualquer outra aplicação, para ser executada, deve aguardar o término da corrente
- Processador, memória e periféricos exclusivamente dedicados a execução de um único programa
- Tarefa do SO passa a ser unicamente transferir o controle de um job (programa e dados) para outro
- <u>Desvantagem:</u> memória subutilizada, processador ocioso

5.2 Sistemas Multiprogramáveis/Multitarefa

- Implementa o conceito de Multiprogramação:
 - SO mantém vários jobs na memória simultaneamente, e a
 CPU é dividida entre eles
 - Parte deles fica em uma fila de jobs no disco (todos os processos residentes em disco aguardando alocação na memória principal)
 - SO seleciona e começa a executar um dos jobs na memória
 - Se job pode ter de aguardar que alguma tarefa seja concluída
 - SO passa para um novo job e o executa
 - Se job tem que aguardar, CPU seleciona outro job e assim por diante CPU nunca ficará ociosa

5.2 Sistemas Multiprogramáveis/Multitarefa (cont.)

Sistemas Multiprogramáveis/
Multitarefa fornecem um
ambiente em que os diversos
recursos do sistema (p. e.,
CPU, memória e dispositivos
periféricos) são utilizados
eficientemente

Sistemas Multiprogramáveis/Multitarefa X Sistemas Monoprogramáveis/Monotarefa

Run Wait Run Wait Sistemas Time Monoprogramados Uniprogramming Program A Run Wait Wait Run Program B Wait Run Wait Run Wait Program C Wait Wait Wait Run Run Sistemas Run Run Run Run Run Run Wait Combined Wait Multiprogramados Time

Multiprogramming with three programs

5.2 Sistemas Multiprogramáveis/Multitarefa (cont.)

- A partir do número de usuários que interagem com o sistema, os sistemas multiprogramáveis são classificados como:
 - Monousuário
 - Multiusuário

	Um usuário	Dois ou mais usuário
Sistema Monoprogramado	Monousuário	Não
Sistema Multiprogramado	Monousuário	Multiusuário

5.2 Sistemas Multiprogramáveis/Multitarefa (cont.)

 Classificados pela forma com que suas aplicações são gerenciadas

5.2.1 Sistemas Batch

- Sistema Operacional em lote, era utilizado por terminais de máquinas de grande porte, que reuniam um "lote de programas" para enviar para execução
- Com o passar do tempo, a palavra batch passou a designar um processo onde o usuário não interage com o seu programa
- Todas a entradas e saídas de dados da aplicação são implementadas por algum tipo de memória secundária
- Exemplos de aplicações:
 - Programas envolvendo cálculo numérico
 - Compilações
 - Backups
 - Outras que não exigem interação com o usuário

5.2.1 Sistemas Batch (cont.)

5.2.2 Sistemas de tempo compartilhado (*Time-Sharing*)

- Permitem que diversos programas sejam executados a partir da divisão do tempo do processador em pequenos intervalos, denominados fatia de tempo (time-slice)
- Caso fatia de tempo insuficiente para conclusão do programa
 - Programa interrompido pelo SO e substituído por outro
 - Enquanto isso aguarda por nova fatia de tempo
- Sistema cria um ambiente de trabalho próprio, dando a impressão de que todo o sistema está dedicado, exclusivamente para cada usuário

5.2.2 Sistemas de tempo compartilhado (*Time-Sharing*) (cont.)

- Permitem a interação do usuário com o sistema através de terminais que incluem vídeo, teclado e mouse
 - Usuário interage com sistema através de comandos
 - Possível verificar arquivos armazenados em disco ou cancelar a execução de um programa
 - Sistema responde em poucos segundo a execução dos comandos
- Aplicações comerciais utilizam esses sistemas

5.2.3 Sistemas de tempo real

- Implementados de forma semelhante aos Sistemas de tempo real, exceto que:
 - Não existe a ideia de fatia de tempo
 - Programa utiliza o processador o tempo que for necessário ou até que apareça outro mais prioritário (definida pela aplicação)
- Sistemas presentes em aplicações de controle de processos
 - Monitoramento de refinarias de petróleo
 - Controle de tráfego aéreo
 - Controle de usinas termoelétricas e nucleares
 - Qualquer aplicação onde tempo de resposta é fator fundamental

5.2.4 Sistemas com múltiplos processadores

- Caracterizam-se por possuir dois ou mais processadores interligados e trabalhando em conjunto
- Vantagem:
 - Vários programas executando ao mesmo tempo, ou;
 - Mesmo programa subdividido em partes para serem executadas simultaneamente em mais de um processador
- Possibilidade de implementação de aplicações voltadas para processamento científico
 - Simulações
 - Processamento de imagens
 - Desenvolvimento aeroespacial

5.2.4 Sistemas com múltiplos processadores (cont.)

- Características:
 - Multiprogramação
 - Escalabilidade
 - Capacidade de ampliar o poder computacional do sistema adicionando novos processadores
 - Disponibilidade
 - Capacidade de manter o sistema em operação mesmo diante de falhas
 - Balanceamento de carga
 - Possibilidade de distribuir o processamento entre os diversos processadores

5.2.4 Sistemas com múltiplos processadores (cont.)

- Classificação quanto a forma de comunicação entre os processadores e o grau de compartilhamento da memória e os dispositivos de entrada e saída
 - Sistemas fortemente acoplados
 - Sistemas fracamente acoplados

a) Sistemas fortemente acoplados

b) Sistemas fracamente acoplados

b) Sistemas fracamente acoplados (cont.)

- Sistemas Operacionais de Rede
 - Permitem que um computador (host) compartilhe seus recursos (p.e., impressora, diretório) com os demais hosts da rede.
 - Usados em redes locais (estação oferece serviços de impressão e arquivos para as demais estações da rede, entre outros)
 - Exemplo: Windows 2000, Novell Netware, Linux
- Sistemas Operacionais Distribuídos
 - Sistema operacional esconde os detalhes dos hosts individuais e passa a tratá-los como um conjunto único
 - Exemplo: Amoeba

 Tanembaum, 1991

6. Partes de um Sistema Operacional

- Gerência de processos
- Gerência de memória
- Gerência de armazenamento em massa
- Gerência do sistema de arquivos
- Gerência de dispositivos

6.1 Gerência de processos

- Processo é um programa em execução
- Atividades relacionadas ao gerenciamento de processos:
 - Escalonamento de processos e threads;
 - Criação e exclusão de processos de usuário e de sistema;
 - Suspensão e retomada de processos;
 - Fornecimento de mecanismos de sincronização entre processos;
 - Fornecimento de mecanismos de comunicação entre processos.

6.2 Gerência de memória

- Para executar programa necessita estar na memória
- Atividades relacionadas ao gerenciamento de memória:
 - Controlar que partes da memória estão em uso corrente e quem as está usando;
 - Decidir que processos (ou parte deles) e dados devem ser transferidos para dentro e fora da memória;
 - Alocar e desalocar espaço na memória conforme necessário.

6.3 Gerência de armazenamento em massa

- Atividades relacionadas ao gerenciamento de disco:
 - Gerenciamento do espaço livre;
 - Alocação de espaço de armazenamento;
 - Escalonamento de alocação de disco.

6.4 Gerência do sistema de arquivos

- Atividades relacionadas ao gerencimento de arquivos:
 - Criar e apagar arquivos;
 - Criar e apagar diretórios para organizar arquivos;
 - Suportar a manipulação de arquivos e diretórios;
 - Mapear arquivos para a memória secundária;
 - Criar cópias de arquivos em mídias de armazenamento secundárias.

6.5 Gerência de dispositivos

 Ocultar dos usuários as peculiaridades dos dispositivos de hardware específicos

Bibliografia

- SILBERSCHATZ, Abraham, GALVIN, Peter, GAGNE, Greg. Fundamentos de Sistemas Operacionais. 8^a.
 Ed. Rio de Janeiro: LTC, 2010.
- MACHADO, Francis B.; MAIA, Luiz Paulo. Arquitetura de Sistemas Operacionais. 3ª ed. Rio de Janeiro : LTC, 2002.