Метод ветвей и границ

Метод ветвей и границ

В основе метода лежит идея последовательного разбиения (ветвления) исходного множества допустимых решений на подмножества и вычислении верхних и нижних оценок (границ) на подмножествах.

Если оптимального решения в подмножестве быть не может, то все множество отбрасывается, иначе разбивается на более мелкие.

Метод ветвей и границ

Пусть D — множество допустимых решений задачи,

 x^* — лучшее решение в D (оптимальное решение),

 $f(x^*)$ - значение целевой функции на решении x^*

LB(D) - нижняя оценка оптимума

HB(D) - верхняя оценка

$$LB(D) \le f(x^*) \le HB(D)$$

 $d \subseteq D$ — некоторое подмножество допустимых решений

 \tilde{x} — лучшее решение в d

$$LB(d) \le f(\tilde{x}) \le HB(d)$$

В зависимости от того на максимум или на минимум задача одна из оценок является построенным допустимым решением, а другая просто оценкой на решение

Основная идея метода ветвей и границ

Пусть x^* — текущий рекорд (изначально получен жадным алгоритмом).

Вычисляем границы LB(D) и HB(D), если $LB(D) = HB(D) = f(x^*)$, то STOP, x^* — оптимальное решение задачи.

В противном случае разбиваем D на подмножества $D=d_1\cup\ldots\cup d_k$.

Если граница на подмножестве d_i хуже чем $f(x^*)$, то выбрасываем d_i , иначе дробим d_i на подмножества.

Так как D — конечное множество, то процесс конечен и дает точное решение задачи.

Описание метода ветвей и границ

На каждом шаге имеется:

- x^* текущий рекорд и его значение $f(x^*)$,
- Просмотренная часть $P \subset D$, известно, что $\forall \ x \in P, \ f(x) \ \text{хуже} \ f(x^*)$ $P = d_{1_2} \cup d_{1_5}$.
- Разбиение множества $D \backslash P$ на подмножества $d_{i_1} \cup \ldots \cup d_{i_k}$.

$$D \backslash P = d_{1_3} \cup d_{1_4} \cup d_2 \cup d_3.$$

Основной шаг метода ветвей и границ

- 1. Выбрать элемент разбиения из $D \setminus P$, например d.
- 2. Построить допустимое решение x из области d. Если f(x) лучше $f(x^*)$, то сменить рекорд x^* .
- 3. Вычислить оценку на множество d
 - 3.1 Если оценка на множество d хуже $f(x^*)$, то добавить d к P, т.к. в этой области нет хороших решений и перейти на шаг 1.
 - 3.2 Если оценка хуже, но известно лучшее решение \tilde{x} из области d, то если $f(\tilde{x})$ лучше $f(x^*)$, то сменить рекорд x^* , добавить d к P, т.к. в этой области нет решения еще лучше и перейти на шаг 1.
 - 3.3 Если оценка хуже и элемент \tilde{x} не найден, то разбиваем множество d на более мелкие подмножества $d = d_1 \cup \dots \cup d_k$ и переходим к шагу 1, имея новое разбиение $D \setminus P$

Необходимые алгоритмы для применения метода ветвей и границ

- 1. Схему хранения подмножества разбиения.
- 2. Алгоритм вычисления нижней границы.
- 3. Алгоритм вычисления верхней границы.
- 4. Алгоритм выбора подмножества для ветвления.
- 5. Алгоритм ветвления (алгоритм разбиения подмножества).

В зависимости от того задача на максимум или на минимум алгоритм 2 или алгоритм 3 должны строить хорошее допустимое решение.

Необходимые алгоритмы для применения метода ветвей и границ

Выбор подмножества из разбиения $D \setminus P$

Две основные схемы:

- многосторонняя схема ветвления, когда выбирается подмножество d' с наилучшей границей
- ▶ односторонняя схема ветвления, когда всегда выбираем последняя добавленная область.

Первая схема требует много оперативной памяти, но в среднем просматривает меньше вершин, чем вторая. Возможна комбинация этих схем: сначала первая, пока хватает памяти, затем вторая.

Метод ветвей и границ для 0-1 задачи о рюкзаке

Постановка задачи

Даны n предметов с весом p_i и стоимостью c_i , где p_i и c_i — положительные целые числа, $1 \le i \le n$ и натуральное число W. Найти булев вектор выбора предметов (x_1, \dots, x_n) , такой что ценность максимальна, а вес не превышает W.

$$f(x_1,...,x_n) = \sum c_i x_i$$
 максимальна и $\sum p_i x_i \leq W$

Необходимые алгоритмы для применения МВиГ к задаче о 0-1 рюкзаке

1. Подмножество разбиения задаётся с помощью частичного решения.

Выбрано множество предметов $(i_1, ..., i_s)$ для которых фиксированы значения переменных $(x_{i_1}^*, ..., x_{i_s}^*)$.

2. Алгоритм вычисления верхней границы. Рассмотрим вещественную задачу о рюкзаке, в которой вещи можно резать. Решим такую задачу для заданного множества $(i_1, ..., i_s)$ и обозначим $F_R(x_{i_1}^*, ..., x_{i_s}^*)$. Как решать? Для вещей из множества $(i_1, ..., i_s)$ все решено, далее добавляем вещи жадным образом целиком (по соотношению c_i/c_i). Последний предмет добавляем частично.

Определим
$$HB(x_{i_1}^*,...,x_{i_s}^*) = [F_R(x_{i_1}^*,...,x_{i_s}^*)].$$

- 3. Алгоритм вычисления нижней границы. Находим допустимое решение задачи $(x_1, ..., x_n)$ с помощью жадного алгоритма, $LB(x_{i_1}^*, ..., x_{i_s}^*) = F(x_1, ..., x_n)$.
- 4.-5. Алгоритм ветвления. Используется односторонняя схема ветвления. Пусть подмножество $(x_{i_1}^*, \dots, x_{i_s}^*)$ не удалось проверить. Выбираем ведущий элемент $i_{s+1} = argmax \left\{ {^c_i}/{p_i} \mid i \notin \{i_1, \dots, i_s\} \right\}$ и разбиваем подмножество $(x_{i_1}^*, \dots, x_{i_s}^*)$ на два подмножества $(x_{i_1}^*, \dots, x_{i_s}^*, 0)$ и $(x_{i_1}^*, \dots, x_{i_s}^*, 1)$. Для дальнейшего ветвления выбирается второе подмножество. Если подмножество проверено, то выбираем подмножество последнее из непросмотренных подмножеств.

Особенности реализации алгоритма

Элементы можно упорядочить по убыванию плотности. Тогда выбор ведущего элемента происходит за одну операцию.

Информацию о непросмотренных подмножествах допустимых решений можно хранить с помощью единственного вектора частичного решения (x_1^*, \dots, x_s^*) . Каждому $k, 1 \le k - s$, для которого $x_k = 1$ соответствует оставленное не просмотренным подмножество $(x_1^*, \dots, 1 - x_k^*)$.

Если частичное решение $(x_1^*, \dots, x_s^*, 1)$ допустимо, то $HB(x_1^*, \dots, x_s^*) = HB(x_1^*, \dots, x_s^*, 1)$ и $LB(x_1^*, \dots, x_s^*) = LB(x_1^*, \dots, x_s^*, 1)$. Поэтому вычисление верхней и нижней границ можно совместить с процессом ветвления.

Метод ветвей и границ в задаче коммивояжера

Множество решений D это перестановки

Разбиение множества D представляется в виде бинарного дерева.

Каждой вершине дерева соответствует частичный тур и список запретов.

Например, вершине d_6 соответствует частичный тур 1,5 и запреты $\{4,3\}$ на выход из города 5

Метод ветвей и границ в задаче коммивояжера

Алгоритм вычисления нижней границы: Примитивная нижняя оценка для вершины дерева,

например, d_6 при n = 5:

$$LB(d_6) = c_{15} + \sum_{i=2}^{5} a_i + \sum_{j=1}^{4} b_j$$

Верхняя оценка — алгоритм «Иди в ближайший».

Выбор переменной для ветвления

Основная идея — угадать оптимальное решение на подмножестве d_{i_k} и ветвиться по дугам этого тура: для частичного тура $i_1,...,i_k$ выбираем минимальный элемент в строке i_k матрицы $c_{ij}'' = c_{ij} - a_i - b_j, j \neq i_1,...,i_k$ для частичного тура $i_1,...,i_k$ строим верхнюю оценку и ветвимся по дуге $(i_1,...,i_{k+1})$. для частичного тура $i_1,...,i_k$ решаем задачу о назначениях и ветвимся вдоль цикла, проходящего через вершину i_k .

