SARIMA Time Series Forecast Crime

April 15, 2017

```
In [2]: import matplotlib.pyplot as plt
       import numpy as np
       import pandas as pd
       import seaborn as sns
       import matplotlib.ticker as tkr
       from vertica_util import *
       from scipy import stats
       import math
       import statsmodels
       import statsmodels.api as sm
       from dateutil.relativedelta import relativedelta
       import datetime
       %matplotlib inline
In [3]: df = pd.read_csv('monthly_crime.csv', sep=',', header=0)
In [4]: df.head()
Out[4]:
          Month Count
       0 Jan-08 45391
       1 Feb-08 39741
       2 Mar-08 44187
       3 Apr-08 43086
       4 May-08 45261
In [5]: sm.graphics.tsa.plot_acf(df.Count)
Out [5]:
```


In [6]: sm.graphics.tsa.plot_pacf(df.Count)

Out[6]:

/Users/asimonoff/anaconda/lib/python2.7/site-packages/statsmodels/base/model.py:496: Convergence "Check mle_retvals", ConvergenceWarning)

Statespace Model Results

Dep. Variable: No. Observations: 96 Count Model: SARIMAX(1, 0, 0)x(4, 1, 1, 12) Log Likelihood -753.427 Date: Sat, 15 Apr 2017 AIC 1520.854 Time: 12:51:24 BIC 1538.805 HQIC 1528.110 Sample: - 96

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.0638	0.034	1.895	0.058	-0.002	0.130
ar.S.L12	-1.0340	0.116	-8.881	0.000	-1.262	-0.806
ar.S.L24	-0.0626	0.034	-1.856	0.063	-0.129	0.004
ar.S.L36	-0.0372	0.024	-1.553	0.120	-0.084	0.010
ar.S.L48	-0.0120	0.016	-0.735	0.462	-0.044	0.020
ma.S.L12	0.9871	0.228	4.330	0.000	0.540	1.434
sigma2	3.029e+06	1.62e-07	1.87e+13	0.000	3.03e+06	3.03e+06
Ljung-Box (Q):			89.54	Jarque-Bera	======================================	3.4
Prob(Q):			0.00	Prob(JB):		0.1
Heteroskedasticity (H):			1.33	Skew:		-0.2
<pre>Prob(H) (two-sided):</pre>			0.45	Kurtosis:		3.8
========				========	========	.=========

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 8.05e+28. Standard err

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x1192029d0>


```
In [9]: start = datetime.datetime.strptime("2016-01-01", "%Y-%m-%d")
        date_list = [start + relativedelta(months=x) for x in range(0,60)]
In [10]: dates_formatted=[]
         for i in range(60):
             dates_formatted.append(str(date_list[i].strftime('%b'))
                                    + "-" + str(date_list[i].year))
In [11]: future = pd.DataFrame(index=dates_formatted, columns= df.columns).reset_index()
         future['Month'] = future['index']
         del future['index']
         df2 = pd.concat([df, future]).reset_index(drop=True)
In [12]: start = datetime.datetime.strptime("2008-01-01", "%Y-%m-%d")
         date_list = [start + relativedelta(months=x) for x in range(0,156)]
         df2['date'] = date_list
In [13]: df2['forecast'] = results.predict(start = 70, end = 156, dynamic= True)
         df2=df2.set_index('date')
         plt.figure(figsize=(12,8))
         plt.plot(df2[['Count', 'forecast']])
         plt.title('Historical Crime Data 2008-2015 and Projection Through 2020')
Out[13]: <matplotlib.text.Text at 0x11bbd4390>
```

