

Justifica convenientemente as tuas respostas e indica os principais cálculos.

1.	Recentemente foi posto à venda um novo modelo de telemóvel. Neste tipo de telemóvel, o código de acesso (PIN) é constituído apenas por um algarismo (de 1 a 9) e um símbolo (\sharp,\star,\flat,\S) , exactamente por esta ordem.			
	Assim sendo, o número total de PIN's possíveis para este telemóvel é:			
	\square 45			
2.	O par ordenado $(2,0.5)$ é solução de apenas um dos seguintes sistemas. Qual?			
	$ \begin{bmatrix} 4(y-x) = 5x + y \\ 5x + y = -3x + 2 + 3y \end{bmatrix} $ $ \begin{bmatrix} 3x + 2y = 7 \\ 5x + 4y = 12 \end{bmatrix} $			
	$ \begin{bmatrix} 0.5x - 3y = 6 \\ 3x - 5y = 23 \end{bmatrix} $ $ \begin{bmatrix} 5x + 2y = 6 \\ 3x - 10y = 26 \end{bmatrix} $			
3.	O é o centro da circunferência. Supondo que $P \widehat{O} Q = 54^{\rm o}$ e que $P \widehat{N} M = 67^{\rm o},$ então \widehat{QM} será igual a:			
	121°			
	□ 70° □ 90°			
4.	Na figura está representado um hexágono regular inscrito na circunferência de centro O. Diz se é Verdadeira ou Falsa cada uma das afirmações:			
	$\square R_{O,-120^{\mathrm{o}}}\left(F\right) = \left(C\right) \qquad \qquad \square R_{D,240^{\mathrm{o}}}\left(E\right) = \left(O\right) \qquad \qquad E \qquad \qquad B$			
	$\square \ R_{O,180^{\mathrm{o}}}\left([FE]\right) = [CB] \qquad \qquad \square \ R_{F,-120^{\mathrm{o}}}\left(A\right) = E$			
Grupo I				
5.	Num saco temos 22 bolas: 7 amarelas, 5 brancas e 10 pretas. Tira-se uma bola do saco ao acaso. Qual é a probabilidade de a bola não ser preta?			
	Grupo II			
6.	Resolve e classifica o seguinte sistema			

7. Na figura ao lado está desenhado um alvo. Se um dardo atingir a zona escura o jogador recebe 6 pontos, se atingir a zona branca perde 4 pontos. O Pedro, depois de ter lançado 30 dardos, obteve 20 pontos. Pretende-se saber quantos dardos atingiram cada uma das zonas.

Traduz o problema por um sistema de equações e resolve-o.

Grupo III

8. O pai do Pedro decidiu construir uma piscina e, para decidir que tipo de torneira irá instalar, fez um pequeno estudo para ver que tipo de relação existe entre o tempo de enchimento e o caudal da torneira. A tabela seguinte mostra parte desse estudo:

Caudal (litros/minuto)	50	80	96	
Tempo de enchimento (horas)		32		20

Completa a tabela.

9. Quando se deixa derreter um pedaço de gelo que esteja a $-40^{\rm o}\,C$, a sua temperatura aumenta até aos $0^{\rm o}\,C$ e permanece aí até estar completamente descongelado. Se aquecer-mos a água, a temperatura vai aumentando até chegar aos $100^{\rm o}\,C$, como mostra o gráfico:

- (a) Quanto tempo permanece a temperatura constante?
- (b) Entre os 10 e os 20 minutos a temperatura da água aumentou. Quantos graus por cada minuto?

Grupo IV

10. Determina, sob a forma de **intervalo de números reais**, o conjunto-solução da seguinte conjunção de inequações:

$$4x \le 6x - 3$$
 \land $2x - 1 < \frac{3}{2} - \frac{3 - 8x}{6}$

11. O Sr. Inocêncio decidiu dedicar-se aos desportos radicais e, para avaliar as suas capacidades, vai alugar um par de patins em linha. Nas duas lojas de aluguer que encontrou verificou os seguintes preços:

Loja A
Taxa Fixa: 10.25€
+
0.21 € por cada metro percorrido

Perante o dilema, o Sr. Inocênio pretende saber a partir de quantos metros é que a loja A é mais vantajosa do que a loja B!

Designando por m o número de metros a percorrer, escreve uma inequação que traduza matematicamente a situação descrita e resolve-a, dando uma resposta ao dilema do Sr. Inocêncio.

Grupo V

12. A circunferência ao lado tem centro A e a recta PQ é tangente à circunferência em P.

Determina o valor de \widehat{A}

Grupo VI

13. Resolve a seguinte equação do 2.º grau sem utilizar a fórmula resolvente:

$$2x^2 + 4 - 3x = (x+2)^2$$

14. A um terreno rectangular de $80m \times 50m$ foram retiradas duas partes, também rectangulares, para a construção de estradas, como se mostra na figura. O resultado foi que a área do terreno ficou em metade. Traduz o problema por uma equação e determina o valor de x.

Grupo VII

15. A certa hora do dia, os raios solares são projectados com uma inclinação de $58^{\rm o}$ em relação ao solo. O comprimento da sombra de um prédio, nesse momento, era de $60\,m$. Determina a altura do prédio.

