ANALOG ADT7410 使用

ワイドな測定範囲:-55℃~+150℃ ±0.5℃精度 16Bit (分解能: 0.0078℃)

高精度・高分解能 I2C・16Bit 温度セ

- ◆本モジュールはアナログ・デバイセズ社の ADT7410(SOIC) を実装した高精度・高分解能デジタル温度センサ基板です。
- ◆ADT7410 はバンドギャップ温度リファレンスと 13/16 ビット ADC を内蔵し、分解能 0.0625℃(13 ビット設定時) または 0.0078℃(16 ビット設定時)で I2C インターフェースに高精度温度データとしてデジタル・シリアル信号を出力します。
- ◆ADT7410 の動作は 2.7V ~ 5.5V の電源電圧で保証されています。3.3V 駆動時の電源消費電流は 210μA (tvp) です。 シャットダウン・モード時には、デバイスがパワーダウンして待機電流は 2uA (tvo) となります。
- ◆モジュール基板には、動作に必要な部品がすべて実装・はんだ付けされ、電源、GND、SCL、SDA の 4 線を配線するだ けで動作します。

■主な技術仕様と特長

- ・温度精度:±0.5℃@-40℃~+105℃(2.7V~3.6V) ±0.4℃@-40℃~ +105℃(3.0V)
- · 温度分解能 (0℃を基準とした+/-符号ビットを含む): 0.0078℃(16 ビット設定時) / 0.0625℃(13 ビット設定時)
- ・動作 / 測定温度範囲: -55℃~ +150℃
- ・温度校正および温度補正、直線性補正等は一切不要
- ・I2C 互換インターフェース

- ・電圧範囲: DC+2.7V ~ +5.5V
- ・消費電流 (@V_{DD}=3.3V、T_A=+25℃)

ノーマル・モード: 210µA(typ)

パワーセービング・モード (1 サンプル/1 秒): 46µA(typ) シャットダウン・モード: 2uA(tvp)

- ·基板サイズ: 15×11 ミリ
- ・基板上の入出力端子: 4個「Vpp, GND, SCL, SDA]

■基板外観と端子配置

基板上に4カ所のジャンパ・パターンがあります。 それぞれの設定・使用方法は各項をご参照ください。

J1 J2 (約2倍スケールです)

■端子配線例

ブレットボードなどで使うときに便利な 標準的な取り付け方です。

◆ 例 2: 雷線を使用する場合

◆ 例 1-a: 付属のピンヘッダを使用する場合 [垂直]◆ 例 1-b: 付属のピンヘッダを使用する場合 [水平]

◆ 測定物に貼り付ける場合の応用例

■全体回路図

■I2C バスアドレス選択

I2C のバスアドレスは、ADT7410 の3番・4番ピンで設定します。 基板のデフォルト状態で A1-A0:0-0(0x48) です。

その他のアドレスを設定するときは、J3・J4 の各ジャンパ・パターン をはんだ付けしてショートします(下表をご参照ください)。 一先

はんだ付け

	A 1	A 0	Hex	J 4 設定	J 3 設定
	0	0	0x48	オープン	オープン
	0	1	0x49	オープン	ショート
	1	0	0x4A	ショート	オープン
	1	1	0x4B	ショート	ショート
-					

備考: A6 ~ A2 は "10010" で IC 内部固定です。

■パーツリスト

* ピンヘッダ以外、全部品実装・はんだ付け済。

部品番号	部品名	サイズ	備考
U1	ADT7410	SOIC(R8)	
C1	0.1µF		耐圧 16V 以上
R1	10kΩ	1005(1.0×0.5 ミリ)	1/16W (SCL プルアップ用)
R2	10kΩ	1005(1.0×0.5 ミリ)	1/16W (SDA プルアップ用)
R3	10kΩ	1005(1.0×0.5 ミリ)	1/16W (A0 プルダウン用)
R4	10kΩ	1005(1.0×0.5 ミリ)	1/16W (A1 プルダウン用)
専用基板	AE-ADT7410	15×11 ミリ	全部品実装・はんだ付け済 *
	4 ピンヘッダ	細ピンタイプ	通販コード C-04392

※電気的動作に影響がない場合、各部品は予告なく変更されることがあります。

- 13~ =7=2 1.4%4K=30 0	- n.		
■ピン配置と機能説明	Pin No.	Mnemonic	Description
	1	SCL	I^2C Serial Clock Input. The serial clock is used to clock in and clock out data to and from any register of the ADT7410. Open-drain configuration. A pull-up resistor is required, typically 10 k Ω .
SCL 1 8 V _{DD} SDA 2 ADT7410 7 GND	2	SDA	l^2C Serial Data Input/Output. Serial data to and from the part is provided on this pin. Open-drain configuration. A pull-up resistor is required, typically $10 k\Omega$.
	3	A0	I ² C Serial Bus Address Selection Pin. Logic input. Connect to GND or V₀₀ to set an I ² C address.
A0 3 TOP VIEW 6 CT	4	A1	12 C Serial Bus Address Selection Pin. Logic input. Connect to GND or V_{DD} to set an 12 C address.
A1 4 (Not to Scale) 5 INT	5*	INT	Overtemperature and Undertemperature Indicator. Logic output. Power-up default setting is as an active low comparator interrupt. Open-drain configuration. A pull-up resistor is required, typically $10~\mathrm{k}\Omega$.
Pin Configuration	6*	СТ	Critical Overtemperature Indicator. Logic output. Power-up default polarity is active low. Open-drain configuration. A pull-up resistor is required, typically 10 k Ω .
	7	GND	Analog and Digital Ground.
*5 番、6 番ピンは本モジュール では未使用です。	8	V_{DD}	Positive Supply Voltage (2.7 V to 5.5 V). The supply should be decoupled with a 0.1 µF ceramic capacitor to ground.

ABSOLUTE MAXIMUM RATINGS

Parameter	Rating
V _{DD} to GND	-0.3 V to +7 V
SDA Voltage to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
SCL Output Voltage to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
A0 Input Voltage to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
A1 Input Voltage to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
ESD Rating (Human Body Model)	2.0 kV
Operating Temperature Range	−55°C to +150°C
Storage Temperature Range	-65°C to +160°C
Maximum Junction Temperature, T _{JMAX}	150°C
8-Lead SOIC-N (R-8)	
Power Dissipation	$W_{MAX} = (T_{JMAX} - T_A)/\theta_{JA}$
Thermal Impedance	
θ_{JA} , Junction-to-Ambient (Still Air)	121°C/W
θ_{JC} , Junction-to-Case	56°C/W

■温度換算式(抜粋)

TEMPERATURE CONVERSION FORMULAS

16-Bit Temperature Data Format

Positive Temperature = $ADC\ Code\ (dec)/128$ Negative Temperature = $(ADC\ Code\ (dec)-65,536)/128$ where $ADC\ Code$ uses all 16 bits of the data byte, including the sign bit.

Negative Temperature = (ADC Code (dec) – 32,768)/128 where Bit 15 (sign bit) is removed from the ADC code.

13-Bit Temperature Data Format

Positive Temperature = ADC Code (dec)/16 Negative Temperature = (ADC Code (dec) – 8192)/16 where ADC Code uses the first 13 MSBs of the data byte, including the sign bit.

Negative Temperature = $(ADC\ Code\ (dec) - 4096)/16$ where Bit 15 (sign bit) is removed from the ADC code.

13-Bit Temperature Data Format

T	Digital Output			
Temperature	(Binary) Bits[15:3]	(Hex)		
−55°C	1 1100 1001 0000	0x1C90		
−50°C	1 1100 1110 0000	0x1CE0		
−25°C	1 1110 0111 0000	0x1E70		
−0.0625°C	1 1111 1111 1111	0x1FFF		
0°C	0 0000 0000 0000	0x000		
+0.0625°C	0 0000 0000 0001	0x001		
+25°C	0 0001 1001 0000	0x190		
+50°C	0 0011 0010 0000	0x320		
+125°C	0 0111 1101 0000	0x7D0		
+150°C	0 1001 0110 0000	0x960		

MSB は符号ビットとして出力されます。 0℃を基準として、零下は MSB が "1" で表現されます。

SPECIFICATIONS

 $T_A = -55$ °C to +150°C, $V_{DD} = 2.7$ V to 5.5 V, unless otherwise noted

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
TEMPERATURE SENSOR AND ADC					
Accuracy		-0.05	±0.4	°C	$T_A = -40$ °C to $+105$ °C, $V_{DD} = 3.0 \text{ V}$
ADC Resolution		13 16		Bits Bits	Twos complement temperature value of the sign bit plus 12 ADC bits (power-up default resolution) Twos complement temperature value of the sign bit
		10		DILS	plus 15 ADC bits (Bit 7 = 1 in the configuration register)
Temperature Resolution					
13-Bit		0.0625		°C	13-bit resolution (sign + 12-bit)
16-Bit		0.0078		°C	16-bit resolution (sign + 15-bit)
Temperature Conversion Time		240		ms	Continuous conversion and one-shot conversion mode
Fast Temperature Conversion Time		6		ms	First conversion on power-up only
1 SPS Conversion Time		60		ms	Conversion time for 1 SPS mode
Temperature Hysteresis		±0.002		°C	Temperature cycle = 25°C to 125°C and back to 25°C
Repeatability		±0.015		°C	T _A = 25°C
DC PSRR		0.1		°C/V	T _A = 25°C
DIGITAL INPUTS					
Input Current			±1	μΑ	$V_{IN} = 0 V to V_{DD}$
Input Low Voltage, V _{IL}			0.4	V	
Input High Voltage, V _{IH}	$0.7 \times V_{DD}$			V	
SCL, SDA Glitch Rejection		50		ns	Input filtering suppresses noise spikes of less than 50 ns
Pin Capacitance		5	10	рF	
POWER REQUIREMENTS					
Supply Voltage	2.7		5.5	V	
Supply Current					
At 3.3 V		210	250	μΑ	Peak current while converting, I ² C interface inactive
At 5.5 V		250	300	μΑ	Peak current while converting, I ² C interface inactive
1 SPS Current					
At 3.3 V		46		μΑ	$V_{DD} = 3.3 \text{ V}, 1 \text{ SPS mode}, T_A = 25^{\circ}\text{C}$
At 5.5 V		65		μΑ	$V_{DD} = 5.5 \text{ V}, 1 \text{ SPS mode}, T_A = 25^{\circ}\text{C}$
Shutdown Current					
At 3.3 V		2.0	15	μΑ	Supply current in shutdown mode
At 5.5 V		5.2	25	μA	Supply current in shutdown mode
Power Dissipation Normal Mode		700		μW	$V_{DD} = 3.3 \text{ V, normal mode at } 25^{\circ}\text{C}$
Power Dissipation 1 SPS		150		μW	Power dissipated for $V_{DD} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$

