§4.3: THE DEFINITE INTEGRAL

Dr. Mike Janssen

April 5, 2021

ANNOUNCEMENTS

PREVIEW ACTIVITY DISCUSSION

MOTIVATION AND DEFINITION

As n grows larger, L_n , M_n , and R_n approach the same value.

MOTIVATION AND DEFINITION

As n grows larger, L_n , M_n , and R_n approach the same value.

Definition

The definite integral of a continuous function f on the interval [a,b], denoted $\int_a^b f(x) dx$, is the real number given by

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x \text{ where } \Delta x = \frac{b-a}{n}, x_i = a + i \Delta x \text{ (for } i = 0, 1, \dots, n), \text{ and } x_i^* \text{ satisfies } x_{i-1} \le x_i^* \le x_i \text{ (for } i = 1, 2, \dots, n).$$

WHAT DOES THE DEFINITE INTEGRAL GIVE US?

Answer: the integral $\int_a^b f(x) dx$ gives net signed area under the curve y = f(x) between x = a and x = b.

WHAT DOES THE DEFINITE INTEGRAL GIVE US?

Answer: the integral $\int_a^b f(x) dx$ gives net signed area under the curve y = f(x) between x = a and x = b. Let's compute $\int_1^3 (x+2) dx$.

ACTIVITY 4.3.2

•
$$\int_a^a f(x) \, dx = 0$$

•
$$\int_a^a f(x) \, dx = 0$$

•
$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

•
$$\int_a^a f(x) \, dx = 0$$

•
$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

•
$$\int_b^a f(x) \, dx = -\int_a^b f(x) \, dx$$

•
$$\int_a^a f(x) \, dx = 0$$

•
$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

•
$$\int_b^a f(x) \, dx = -\int_a^b f(x) \, dx$$

• (Constant Multiple Rule)
$$\int_a^b k \cdot f(x) dx = k \int_a^b f(x) dx$$

•
$$\int_a^a f(x) \, dx = 0$$

•
$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

•
$$\int_b^a f(x) \, dx = -\int_a^b f(x) \, dx$$

• (Constant Multiple Rule)
$$\int_a^b k \cdot f(x) dx = k \int_a^b f(x) dx$$

• (Sum Rule)
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

ACTIVITY 4.3.3

AVERAGE VALUE

AVERAGE VALUE

Theorem (Average Value of a Function)

If f is a continuous function on [a, b], then its average value on [a, b] is given by the formula

$$f_{AVG[a,b]} = \frac{1}{b-a} \cdot \int_a^b f(x) \, dx$$

ACTIVITY 4.3.4