第二章 应用题参考答案

- 6 若有一组作业 J1, …, Jn, 其执行时间依次为 S1, …, Sn。如果这些作业同时到达 系统,并在一台单 CPU 处理器上按单道方式执行。试找出一种作业调度算法,使得 平均作业周转时间最短。(10 分)
- 答: 首先,对 n 个作业按执行时间从小到大重新进行排序,则对 n 个作业: J1', …, Jn',它们的运行时间满足: $S1' \leq S2' \leq \dots \leq S(n-1)' \leq Sn'$ 。那么有:

$$T=[S_1^{'}+(S_1^{'}+S_2^{'})+(S_1^{'}+S_2^{'}+S_3^{'})+\cdots+(S_1^{'}+S_2^{'}+S_3^{'}+\cdots+S_n^{'})]/n$$

$$=[n\times S_1^{'}+(n-1)\times S_2^{'}+(n-3)\times S_3^{'}]+\cdots+S_n^{'}]]/n$$

$$=(S_1^{'}+S_2^{'}+S_3^{'}+\cdots+S_n^{'})-[0\times S_1^{'}+1\times S_2^{'}+2\times S_3^{'}+\cdots+(n-1)\ S_n^{'}]/n$$
 由于任何调度方式下, $S_1^{'}+S_2^{'}+S_3^{'}+\cdots+S_n^{'}$ 为一个确定的数,而当 $S_1^{'}\leqslant S_2^{'}\leqslant\cdots\leqslant S_{(n-1)}^{'}\leqslant S_n^{'}$ 时才有: $0\times S_1^{'}+1\times S_2^{'}+2\times S_3^{'}+\cdots+(n-1)\ S_n^{'}$ 的值最大,也就是说,此时 T 值最小。所以,按短作业优先调度算法调度时,使得平均作业周转时间最短。

8 在道数不受限制的多道程序系统中,有作业进入系统后备队列时立即进行作业调度。 现有4个作业进入系统,有关信息列于下表,当作业调度和进程调度均采用高优先级算 法时(规定数大则优先级高)。(10分)

作业名	进入后备队列时间	执行时间	优先级
JOB1	8:00	60分	1
JOB2	8:30	50分	2
JOB3	8:40	30分	4
JOB4	8:50	10分	3

试填充下表。

作业名	进入后备	执行	开始执	结束执	周转	带权周
	队列时间	时间	行时间	行时间	时间	转时间
1/						
11						
1. 1						
平均周	周转时间 T=					
带权平均周	周转时间 ₩=		·			

解:

作业名	进入后备	执行	开始执	结束执	周转	带权周
	队列时间	时间	行时间	行时间	时间	转时间
JOB1	8:00	60分	8:00	9:00	60	60/60
JOB3	8:40	30分	9:00	9:30	50	50/30
JOB4	8:50	10分	9:30	9:40	50	50/10
JOB2	8:30	50分	9:40	10:30	120	120/50

平均周转时间 T=	(60+50+50+120)/4=70
带权平均周转时间W=	(1+5/3+5+12/5)/4=2.52

9 对某系统进行监测后表明,每个进程在 I/O 阻塞之前的运行时间为 T。一次进程切换的系统开销时间为 S。若采用时间片长度为 Q 的时间片轮转法,对下列各种情况算出 CPU 利用率。(10 分)

1) Q=∞ 2) Q>T 3) S<Q<T 4) Q=S 5) Q接近于 0。

答: 1) Q=∞ CPU 利用率=T/(T+S)

2) Q>T CPU 利用率=T/(T+S)

3) T>Q>S CPU 利用率=Q/(Q+S)

4) Q=S CPU 利用率=50%

5) Q→0 CPU 利用率→0

19 单处理机多道分时系统中,有3道作业依次提交:(10分)

作业	作业提交时间	运行时间	其中
		(单位:小时)	I/O 时间 CPU 时间
Job1	8.0	0.36	0.18 0.18
Job2	8.2	0.32	0.16 0.16
Job3	8.4	0.36	0.18 0.18

- (1) 若每道作业的 I/O 等待时间占各自的总运行时间的一半;
- (2)分时运行两道作业, CPU 将有 20%的时间空闲;
- (3)除 CPU,系统有充足的资源供作业使用。 试计算各作业运行完成时间。

答:分时系统中,作业进程轮流占用 CPU,按时间片轮转。已知单道运行时,I/O 等待时间各占总运行时间的 50%;若两个作业进程分时运行,则 CPU 有 20%的时间空闲、两道运行 CPU 空闲缩短了、即 CPU 为各进程平均运行 40%。结果见下表。

作业	提交	道数	CPU	占用	运行	作业	进度	还需
提交时间	并调用		等待	CPU	时间			时间
8.0-8.2	Job1	1	50%	50%	0.2	Job1	0.1	0.08
8.2-8.4	Job2	2	20%	40%	0.2	Job1	0.08	0
						Job2	0.08	0.08
8.4-8.6	Job3	2	20%	40%	0.2	Job2	0.08	0
						Job3	0.08	0.1
8.6-8.8		1	50%	50%	0.2	Job3	0.1	0
作业完 成时间	Job1 为 8.4 ,job2 为 8.6 ,job3 为 8.8							

27 某多道程序系统供用户使用的主存为 100K, 磁带机 2 台, 打印机 1 台。采用可变分区主存管理,采用静态方式分配外围设备,忽略用户作业 I/O 时间。现有作业序列如下:

作业号	进入输入井时间	运行时间	主存需求量	磁带需求	打印机需求
1	8:00	25 分钟	15K	1	1
2	8:20	10 分钟	30K	0	1
3	8:20	20 分钟	60K	1	0
4	8:30	20 分钟	20K	1	0
5	8:35	15 分钟	10K	1	1

作业调度采用 FCFS 策略,优先分配主存低地址区且不准移动已在主存的作业,在主存中的各作业平分 CPU 时间。(共 14 分)

- 现求: (1)作业被调度的先后次序? (6分)
- (2)全部作业运行结束的时间? (4分)
- (3)作业平均周转时间为多少? (2分)
- (4)最大作业周转时间为多少? (2分)
- 答: (1)作业调度选择的作业次序为: 作业 1、作业 3、作业 4、作业 2 和作业 5。
 - (2)全部作业运行结束的时间 9:30。
 - (3)周转时间:作业 1 为 30 分钟、作业 2 为 55 分钟、作业 3 为 40 分钟、作业 4 为 40 分钟和作业 5 为 55 分钟。
 - (4)平均作业周转时间=44分钟。
 - (5))最大作业周转时间为55分钟。
- 分析: 本题综合测试了作业调度、进程调度、及对外设的竞争、主存的竞争。
- 8:00 作业1到达,占有资源并调入主存运行。
- 8:20 作业 2 和 3 同时到达,但作业 2 因分不到打印机,只能在后备队列等待。作业 3 资源满足,可进主存运行,并与作业 1 平分 CPU 时间。
- 8:30 作业 1 在 8:30 结束,释放磁带与打印机。但作业 2 仍不能执行,因不能移动而没有 30KB 的空闲区,继续等待。作业 4 在 8:30 到达,并进入主存执行,与作业 3 分享 CPU。
- 8:35 作业 5 到达, 因分不到磁带机/打印机, 只能在后备队列等待。
- 9:00 作业 3 运行结束,释放磁带机。此时作业 2 的主存及打印机均可满足,投入运行。作业 5 到达时间晚,只能等待。
- 9:10 作业 4 运行结束,作业 5 因分不到打印机,只能在后备队列继续等待。
- 9:15 作业 2 运行结束,作业 5 投入运行。
- 9:30 作业全部执行结束。

- 29 上题中, 若允许移动已在主存中的作业, 其他条件不变, 现求: (共 16 分)
- (1)FIFO 算法选中作业执行的次序及作业平均周转时间。(8分)
- (2) SJF 算法选中作业执行的次序及作业平均周转时间。(8分)

答:

解: 1. 先来先服务算法。说明:

- (1) 8:30 作业 A 到达并投入运行。注意它所占用的资源。
- (2) 8:50 作业 B 到达,资源满足进主存就绪队列等 CPU。
- (3) 9:00 作业 C 到达, 主存和磁带机均不够, 进后备作业队列等待。
- (4) 9:05 作业 D 到达,磁带机不够,进后备作业队列等待。后备作业队列有 C、D。
- (5) 9:10 作业 A 运行结束,归还资源磁带,注意归还的主存能移动,这样主存中空出了 80KB 的空闲区。作业 B 投入运行。这时作业 E 也到达了,后备作业队列中依次有作业 C、D、E。这时作业 D 和作业 E 都满足条件,均进主存就绪队列等 CPU。
- (6)9:35 作业 B 运行结束,作业 D 投入运行。这时作业 C 因磁带不满足而继续在后备作业队列等待。
- (7)9:55 作业 D 运行结束,作业 E 投入运行。这时作业 C 因资源满足而调入主存进就 绪队列等 CPU。
 - (8)10:05 作业 E 运行结束,作业 C 投入运行。
 - (9)10:40 作业 C 运行结束。

作业执行次序	进输入井时间	装入主存时间	开始执行时间	执行结束时间	周转时间
作业 A	8:30	8:30	8:30	9:10	40(分)
作业 B	8:50	8:50	9:10	9:35	45
作业 D	9:05	9:10	9:35	9:55	50
作业E	9:10	9:10	9:55	10:05	55
作业 C	9:00	9:55	10:05	10:40	100
作业平均周转	封间	(40+45+50+55+100)/5=58 分钟			

- 2. 短作业优先算法。说明:
 - (1) 8:30 作业 A 到达并投入运行。注意它所占用的资源。
 - (2) 8:50 作业 B 到达,资源满足进主存就绪队列等 CPU。
 - (3) 9:00 作业 C 到达, 主存和磁带机均不够, 进后备作业队列等待。
 - (4) 9:05 作业 D 到达,磁带机不够,进后备作业队列等待。后备作业队列有 C、D。
- (5) 9:10 作业 A 运行结束, 归还资源磁带, 但注意主存能移动。作业 B 投入运行。由于作业 E 也到达后备队列, 后备作业队列有作业 C、D、E 等待。这时已有 80KB 主存可用, 按 SJF, 先调作业 E, 再调作业 D 进主存就绪队列等待。而作业 C 因主存和磁带均不足

继续等在后备队列。
(6)9:35 作业 B 运行结束,作业 E 投入运行。这时作业 C 因**磁带机不够**继续在后备作

业队列等待。
(7)9:45 作业 E 运行结束,作业 D 投入运行。作业 C 调入主存进就绪队列等 CPU。

(8)10:05 作业 D 运行结束,作业 C 投入运行。

(9)10:40 作业 C 运行结束。

作业执行次序	进输入井时间	装入主存时间	开始执行时间	执行结束时间	周转时间
作业 A	8:30	8:30	8:30	9:10	40(分)
作业 B	8:50	8:50	9:10	9:35	45
作业 E	9:10	9:10	9:35	9:45	35
作业 D	9:05	9:10	9:10 9:45		60
作业 C	9:00	9:45	10:05	10:40	100
作业平均周转时	村间	(40+45+35+50+100)/5=56 分钟			

30 多道批处理系统中配有一台处理器和两台外设(II和 I2),用户存储空间为 100MB。已知系统的作业调度及进程调度采用可抢占的高优先数调度算法,主存采用不允许移动的可变分区分配策略,设备分配按照动态分配原则。今有 4 个作业同时提交给系统,如下表所示。试求作业平均周转时间。

作业名	优先数	运行时间与顺序(分钟)	主存需求
A	7	CPU-1 分,I1-2 分,I2-2 分	50MB
В	3	CPU-3 分,I1-1 分	10MB
С	9	CPU-2 分,I1-3 分,CPU-2 分	60MB
D	4	CPU-4 分,I1-1 分	20MB

- 答:本题是综合性题目,考核要点是作业调度、主存分配及作业周转时间等。当4个作业进入系统后:
- (1)按照高优先级调度算法,系统先调度作业 C。主存被 C 占有 60M,还有 40M 可用空间。系统再装入 D 和 B。
- (2)同样按照高优先级算法,让 C 先运行。两分钟后 C 让出 CPU,并占用 II。作业 D 开始在 CPU 上执行。
- (3)又过去 3 分钟,作业 C 使用 Π 完毕,被唤醒后立即抢占 CPU,使作业 D 回到就绪队列等待。
- (4)2 分钟后,作业 C 运行完。系统将 C 卸出主存,继而装入作业 A。因 A 的优先数较高,故立即得到运行。
- (5)作业 A 运行1分钟后,转而使用 II 进行 I / O。空出的 CPU 运行作业 D。
- (6)1 分钟过后,作业 D 放弃 CPU,请求 I1 因不能满足而等待。作业 B 开始运行。又过去 3 分钟, B 运行完。

CPU 的使用情况如下 (其中一个格代表 1 分钟):

C C	D	D	D	C	C	A	D	В	В	В
I1 的(吏用情	青况如一	۲:							
		<u> </u>								
	C	С	C				A	A	D	В
	/									
I2 的使	用情	况如下	:							
									A	A
主存使用	目情况	₹:								

C (60)	C (60)	空	A (50)
			空(10)
	D (20)	D (20)	D(20)
空(40)	B (10)	B(10)	B(10)
	空(10)	空(10)	空(10)
装入C	装 入	卸出C	装入 A
	D, B		

作业周转时间: A=12, B=12, C=7, D=11 平均作业周转时间=(12+12+7+11)/4=42/4=10.5(分钟)

31 设计一个进程定时唤醒队列和定时唤醒处理程序: (1)说明一个等待唤醒进程入队的过程。(2)说明时钟中断时,定时唤醒处理程序的处理过程。(3)现有进程 P1 要求 20 秒后运行,经过 40 秒后再次运行; P2 要求 25 秒后运行; P3 要求 35 秒后运行,经过 35 秒后再次运行; P4 要求 60 秒后运行。试建立相应的进程定时唤醒队列。(10 分)

答:

组织如下的定时唤醒队列。

定时队列头指针	1	P1	P2	P3	P1	P4	Р3	 进程
	1	20	5	10	5	20	10	 唤醒时间

- (1) 当一个需定时唤醒的进程要入队时,根据它要唤醒的时间,被扦入队列的适当位置, 注意,唤醒时间按增量方式存放。
- (2) 每当时钟中断时,时钟中断例程判别把队列中的第一个进程的时间量减 1,直到该值时为唤醒进程工作。同时队列中下一个进程成为队列头。
- 33 在 UNIX 系统中运行以下程序,最多可产生出多少进程?画出进程家属树。

```
main(){
   fork(); /*←pc(程序计数器), 进程 A
   fork();
   fork();
} (10 分)
```

解: 首先采用 fork()创建的子进程,其程序是复制父进程的;其次,父、子进程都从调用后的那条语句开始执行。

当进程 A 执行后,派生出子进程 B,其程序及状态如下:

```
main() {
                                   main() {
   fork();
                                   fork();
                                   fork(); /*←pc(程序计数器), 进程 B*/
   fork(); /*←pc(程序计数器), 进程 A */
                                   fork();
                                   }
 }
   当进程 A、B 执行后,各派生出子进程 C、D,其程序及状态如下:
main() {
                                   main() {
   fork();
                                   fork();
   fork();
                                   fork();
   fork(); /*←pc(程序计数器), 进程 A*/
                                  fork(); /*←pc(程序计数器), 进程 B */
main() {
                                   main() {
   fork();
                                   fork();
   fork();
                                   fork();
                                  fork(); /*←pc(程序计数器), 进程 D*/
   fork(); /*←pc(程序计数器), 进程 C*/
```

当进程 A、B、C、D 执行后,各派生出子进程 E、F、G、H,且所有进程的 PC 均指向程序结束处。这时进程 A 共派生出 7 个子进程。

