Adaptive Location of Replicas An algorithm based on the Ant Colony algorithm

Amadeo Ascó

SyncFree - Work Package 1 M12

 21^{st} October 2014

Overview

SyncFree

"Large-scale computation without synchronisation"

Considerations

Different considerations

Accessibility

Bandwidth consumption/availability

Access cost

Scalability

Execution time

Storage consumption

Makespan

Adaptive Replication

Adaptive Replication

Current Considerations

Bandwidth consumption

Execution time

Accessibility

Types of Replication

Partial Replication

Adaptive Location of Replicas

Partial Replication

Avoid replicating large data structures

Partial Replication

Avoid replicating large data structures

Not all the full data is required

Data structures which allow breaking data into parts

Adaptive Location of Replicas

- ♦ <u>Location</u>: On which DCs to place the replicas
 - o Improve latency: reduce distance between user and replica

◦ Improve data transmission quality
 ⋄ Selection: Which data to replicate

- ♦ Number: How many replicas to have
 - Reduce unnecessary replicas
 - Reduce storage consumption
 - Reduce network bandwidth

- ♦ Reads reinforce the strength of a replica
- ♦ Writes reinforce and weaken the strength of a replica
 - Reinforces replica in the DC the write was originally requested on
 - Weaken the strength of the data replicas in all other DCs
- ♦ The strength of the replica decay on time

- ♦ DC without replica
 - Strength must exceed a threshold to generate a new replica
- ♦ DC with replicate
 - The strength has some limits
 - Upper
 - Lower, i.e. zero
 - Remove replica if strength become zero*

- ♦ The strength of a replica decay in time
 - o Multiple possible approaches

♦ There must be at least a minimum number of replicas

Other possible constraints:

No replicas of personal data outside of Europe

At least one replica of the data at a pre-set DC

Sequence Diagrams

Characteristics

- ♦ Not really an ant colony algorithm
- Reads only need to be known on the DC the read is requested
- ♦ Writes need to be known by all DCs with replicas
 - Use already available data, e.g. DCs with replicas
 - Use operations that would be already sent (updates)

The Problem Adaptive Replication Algorithm Characteristics

aas@trifork.com www.trifork.com

Any Questions?

Thank You!

- Ouri Wolfson. A distributed algorithm for adaptive replication of data. Technical report,
 Department of Computer Science, Columbia University, 1990
- Iwan Briquemont. Optimising client-side geo-replication with partially replicated data structures. Masters thesis, Louvain-laNeuve, September 2014
- Aimee Chanthadavong. Internet of things to drive expression of useful data: Emc. Technical report, ZDNet, April 2014
- R. Kingsy Grace and R. Manimegalai, Dynamic replica placement and selection strategies in data grids a comprehensive survey. J. Par fiel Dis. Comput., 74(2):20992108, February 2014. ISSN 0743-7315. doi: 10.1016/j.jpdc.2013.10.09
- Cisco. The zettabyte era-trends and analysis. Technical report, Cisco, June 2014
- Noriyani Mohd. Zin, A. Noraziah, Ainul Azila Che Falizi, and Tutut Herawan. Replication techniques in data grid environments. In Jeng-Shyang Pan, Shyi-Ming Chen, and NgocThanh Nguyen, editors, Intelligent Information and Database Systems, volume 7197 of Lecture Notes in Computer Science, pages 549-559. Springer Berlin Heidelbeyg, 2012. ISBN 978-3-642-28489-2. doi: 10.1007/978-3-642-28490-8-57
- T. Hey, Tansley S, and K. Tolle. The fourth paradigm: Data-intensive scientific discovery.
- Shaik Naseera and K.V. Madhu Murthy. Agent based replica placement in a data grid environment. Computational Intelligence, Communication Systems and Networks, International Conference on, 0:426-430, 2009. doi: http://doi.org/omputersociety.org/10.1109/CICSYN.2009.77
- Xiaohua Dong, Ji Li, Zhongfu Wu, Dacheng Zhang, and Jie Xu. On dynamic replication strategies in data service grids. In Object Or ented Real-Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium on pages 1,5161, May 2008. doi:
- Sushant Goel and Rajkumar Buyya. Data replication strategies in wide area distributed systems. In Robin G. Qiu, editor, Enter- prise Service Computing: From Concept to Deployment, pages 211241. Idea Group Inc, 2006
- M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di Milano, Italy, $1992\,$