Warby Parker is a transformative lifestyle brand with a lofty objective: to offer designer eyewear at a revolutionary price while leading the way for socially conscious businesses. Founded in 2010 and named after two characters in an early Jack Kerouac journal, Warby Parker believes in creative thinking, smart design, and doing good in the world. For every pair of eyeglasses and sunglasses sold, a pair is distributed to someone in need.

In this project, we will analyze different Warby Parker's marketing funnels in order to calculate conversion rates. Here are the funnels and the tables given:

Quiz Funnel:

survey

Home Try-On Funnel:

- quiz
- home try on
- purchase

This project was a collaboration with Warby Parker's Data Science team (thank you!) and uses fictional data.

Let's get started!

1.

To help users find their perfect frame, Warby Parker has a Style Quiz that has the following questions:

- 1. "What are you looking for?"
- 2. "What's your fit?"
- 3. "Which shapes do you like?"
- 4. "Which colors do you like?"
- 5. "When was your last eye exam?"

The users' responses are stored in a table called survey.

Select all columns from the first 10 rows. What columns does the table have?

SELECT * FROM survey LIMIT 10;

2.

Users will "give up" at different points in the survey. Let's analyze how many users move from Question 1 to Question 2, etc.

Create a quiz funnel using the GROUP BY command.

What is the number of responses for each question?

question	COUNT(DISTINCT user_id)
1. What are you looking for?	500
2. What's your fit?	475
3. Which shapes do you like?	380
4. Which colors do you like?	361
5. When was your last eye exam?	270

SELECT question,

COUNT(DISTINCT user_id)

FROM survey

GROUP BY 1;

3. Using a spreadsheet program like Excel or Google Sheets, calculate the percentage of users who answer each question:

Which question(s) of the quiz have a lower completion rates?

What do you think is the reason?

We divide the number of people completing each step by the number of people completing the previous step:

4.

Warby Parker's purchase funnel is:

Take the Style Quiz \rightarrow Home Try-On \rightarrow Purchase the Perfect Pair of Glasses

During the Home Try-On stage, we will be conducting an A/B Test:

- 50% of the users will get 3 pairs to try on
- 50% of the users will get **5** pairs to try on

Let's find out whether or not users who get more pairs to try on at home will be more likely to make a purchase.

The data will be distributed across three tables:

- quiz
- home_try_on
- purchase

Examine the first five rows of each table

What are the column names?

```
SELECT *
FROM quiz
LIMIT 5;
```

```
SELECT *

FROM home_try_on

LIMIT 5;

SELECT *

FROM purchase

LIMIT 5;
```

user_id	style	fit	shape	color
4e8118dc-bb3d-49bf-85fc-c ca8d83232ac	Women's Styles	Medium	Rectangula r	Tortoise
291f1cca-e507-48be-b063- 002b14906468	Women's Styles	Narrow	Round	Black
75122300-0736-4087-b6d8- c0c5373a1a04	Women's Styles	Wide	Rectangula r	Two-Tone
75bc6ebd-40cd-4e1d-a301- 27ddd93b12e2	Women's Styles	Narrow	Square	Two-Tone
ce965c4d-7a2b-4db6-9847- 601747fa7812	Women's Styles	Wide	Rectangula r	Black
user_id	number_of _pairs	address		
d8addd87-3217-4429-9a01- d56d68111da7	5 pairs	145 New York 9a		
f52b07c8-abe4-4f4a-9d39-b a9fc9a184cc	5 pairs	383 Madison Ave		

8ba0d2d5-1a31-403e-9fa5- 79540f8477f9	5 pairs	287 Pell St			
4e71850e-8bbf-4e6b-accc-4 9a7bb46c586	3 pairs	347 Madison Square N			
3bc8f97f-2336-4dab-bd86-e 391609dab97	5 pairs	182 Cornelia St			
user_id	product_id	style	model_na	color	pric
			me		е
00a9dd17-36c8-430c-9d76- df49d4197dcf	8	Women's Styles	Lucy	Jet Black	150
00e15fe0-c86f-4818-9c63-3 422211baa97	7	Women's Styles	Lucy	Elderflower Crystal	150
017506f7-aba1-4b9d-8b7b-f 4426e71b8ca	4	Men's Styles	Dawes	Jet Black	150
0176bfb3-9c51-4b1c-b593- 87edab3c54cb	10	Women's Styles	Eugene Narrow	Rosewood Tortoise	95
01fdf106-f73c-4d3f-a036-2f 3e2ab1ce06	8	Women's Styles	Lucy	Jet Black	150

5. We'd like to create a new table with the following layout:

User_id || is_home_try_on||

user_id is_home_try_on Number of pairs is_purchase	user_id	is_home_try_on	Number of pairs	is_purchase
--	---------	----------------	-----------------	-------------

01fdf106-f73c-4d3f-a	true	3	false
036-2f3e2ab1ce06			

Each row will represent a single user from the browse table:

- If the user has any entries in home try on, then is home try on will be 'True'.
- number of pairs comes from home try on table
- If the user has any entries in is purchase, then is purchase will be 'True'.

Use a LEFT JOIN to combine the three tables, starting with the top of the funnel (quiz) and ending with the bottom of the funnel (purchase).

Select only the first 10 rows from this table (otherwise, the query will run really slowly).

```
SELECT DISTINCT q.user_id,
h.user_id IS NOT NULL AS 'is_home_try_on',
h.number_of_pairs,
p.user_id IS NOT NULL AS 'is_purchase'

FROM quiz AS 'q'

LEFT JOIN home_try_on AS 'h'

ON q.user_id = h.user_id

LEFT JOIN purchase AS 'p'

ON p.user_id = q.user_id

LIMIT 10;
```

Query Results			
user_id	is_home_try_on	number_of_pairs	is_purchase
4e8118dc-bb3d-49bf-85fc-cca8d8323	1	3 pairs	0
2ac			

291f1cca-e507-48be-b063-002b14906 468	1	3 pairs	1
75122300-0736-4087-b6d8-c0c5373a 1a04	0		0
75bc6ebd-40cd-4e1d-a301-27ddd93b 12e2	1	5 pairs	0
ce965c4d-7a2b-4db6-9847-601747fa7 812	1	3 pairs	1
28867d12-27a6-4e6a-a5fb-8bb544011 7ae	1	5 pairs	1
5a7a7e13-fbcf-46e4-9093-79799649d 6c5	0		0
0143cb8b-bb81-4916-9750-ce956c9f9 bd9	0		0
a4ccc1b3-cbb6-449c-b7a5-03af42c97 433	1	5 pairs	0
b1dded76-cd60-4222-82cb-f6d464104 298	1	3 pairs	0

6.

Once we have the data in this format, we can analyze it in several ways:

- We can calculate overall conversion rates by aggregating across all rows.
- We can compare conversion from quiz—home_try_on and home_try_on—purchase.

- We can calculate the difference in purchase rates between customers who had 3
 number of pairs with ones who had 5.
- And more!

We can also use the original tables to calculate things like:

- The most common results of the style quiz.
- The most common types of purchase made.
- And more!

What are some actionable insights for Warby Parker?

```
WITH funnels AS(SELECT DISTINCT q.user_id,
h.user_id IS NOT NULL AS 'is_home_try_on',
h.number_of_pairs,
p.user_id IS NOT NULL AS 'is_purchase'

FROM quiz AS 'q'

LEFT JOIN home_try_on AS 'h'

ON q.user_id = h.user_id

LEFT JOIN purchase AS 'p'

ON p.user_id = q.user_id)

SELECT COUNT(*),

SUM(is_home_try_on) AS 'num_home_try',

SUM(is_purchase) AS 'num_purchase',

1.0 * SUM(is_home_try_on) / COUNT(user_id) AS 'quiz_to_home_try_on',

1.0 * SUM(is_purchase) / SUM(is_home_try_on) AS 'home_try_to_purchase'

FROM funnels;
```

Query Results				
COUNT(*)	num_home_try	num_purchase	quiz_to_home_try_o	home_try_to_purchas
			n	е
1000	750	495	0.75	0.66

```
SELECT

COUNT(DISTINCT CASE

WHEN number_of_pairs = '5 pairs' THEN user_id

END) AS '5 pair home try',

COUNT(DISTINCT CASE

WHEN number_of_pairs = '3 pairs' THEN user_id

END) AS '3 pair home try'

FROM home_try_on;
```

5 pair home try	3 pair home try
371	379

The sqlite code for details of the funnels:

```
WITH q AS(

SELECT '1-quiz' AS stage ,COUNT(DISTINCT user_id)

FROM quiz
),
h AS (

SELECT '2-home try on' AS satge,COUNT(DISTINCT user_id)

FROM home_try_on
),
p AS (

SELECT '3-purchase' AS satge,COUNT(DISTINCT user_id)

FROM purchase
)

SELECT * FROM q
```

UNION ALL SELECT * FROM h UNION ALL SELECT * FROM p;

And the funnel looks like

stage	COUNT(DISTINCT user_id)
1-quiz	1000
2-home try on	750
3-purchase	495

We can calculate the difference in purchase rates between customers who had 3 number_of_pairs with ones who had 5.

Code is updated as conversion rates.sqlite in github handle.