

TUTORIAL Auto Code Generation for F2806X Target

August 2017

PSIM's SimCoder Module, combined with the F2806x Hardware Target, can generate ready-to-run code from a PSIM control schematic for hardware based on TI F2806x series fixed-point DSP.

This tutorial describes, in step by step, how to generate code in PSIM, compile and upload the code in Code Composer Studio (CCS 6.1), and run it on F2806x DSP hardware.

To illustrate the process, we use the circuit "3-ph sine wave with SCI monitoring.psimsch" as an example. This example is located in the sub-folder "Examples\SimCoder\F2806x Target\3-ph sine wave with SCI" in the PSIM directory.

To keep the original example unchanged, we will copy the folder to "C:\F28069 SCI", and use this folder as the working folder in this tutorial.

1. PSIM Setup for Code Generation

In PSIM, load the schematic file "3-ph sine wave with SCI monitoring.psimsch" as shown below.

This example generates the code for the F28069 Piccolo Experimenter Kit (TMDSDOCK28069). To simulate this circuit, select **Simulate** >> **Run Simulation**.

For fixed-point code generation, a circuit must contain elements from the F2806x Target library. The library is located at **Elements** >> **SimCoder** >> **F2806x Target**. A list of the library is shown below.

Simulation Control Parameters

Before the code is generated, SimCoder parameters must be properly set in the Simulation Control dialog. Double click on the Simulation Control block (the clock image). Click on the SimCoder tab, and set the parameters as shown below.

The settings are:

Hardware Target: Set to F2806x and RamDebug. RamDebug is selected in this example for

debugging.

CPU Version: Select F28069 (100pin).

InstaSPIN enabled: Check this box if an InstaSPIN enabled DSP is used, such as F28069M or

F28069F. Leave this box unchecked a DSP without InstaSPIN. In this example, since the F28069 controlCARD is used which does not include InstaSPIN, the

box will be unchecked.

Check Fixed-Point Range: Check this box to check the fixed-point range for overflow.

Default Data Type: Select IQ20 for this example.

Note that checking the fixed-point range for overflow requires additional computation. It is recommended that one perform this check after the circuit is close to be finalized.

Also, if an InstaSPIN enabled DSP is used, the checkbox *InstaSPIN enabled* must be checked. Otherwise the code will not run properly.

Currently, PSIM can generate project files for CCS v3.3 only. When using a CCS version newer than v3.3, one needs to use the function "Import Legacy v3.3 Project".

Defining F2806x Target Elements

In this circuit, several F2806x Target library elements are used. All these elements must be properly configured according to the specific target hardware settings.

F2806x Hardware Configuration: This element defines the I/O ports of the F2806x hardware. One must unlock this element to change the designation of the I/O port, and must lock it afterwards. In this example:

- GPIO1 and GPIO2 are defined as PWM outputs;
- GPIO28 and GPIO29 are defined for SCI communication; and
- GPIO30 is used as a digital output.

DSP Clock: There is no DSP Clock element on this schematic, which means the default clock setting as below will be used in this project.

DSP Clock Source: Internal oscillator 1

External Clock (MHz): 10DSP Speed (MHz): 90

SCI Configuration: Specify the I/O pins, speed, and parity check of the SCI port. The output buffer size is determined by the desired waveform resolution and available memory space. SCI communication provides a convenient way to utilize PSIM's DSP Oscilloscope function. The DSP Oscilloscope is used to control the buck converter's output voltage and monitor the values inside the DSP. The SCI input allows the reference value to be changed by the DSP Oscilloscope in real time, and SCI outputs are used to display signals it the DSP Oscilloscope in real time.

Digital Output (16 channel): Specify the corresponding GPIO port for output. In this example, GPIO30 on D0 is chose to indicate if the PWM interrupt executing is on time.

PWM Module (single phase): Specify the PWM module source, output mode, switching frequency, and many other settings of a single-phase PWM module. For further detailed information, please refer to the SimCoder User Manual.

Defining Fixed-Point Positions

In the F2806x Target code, TI's IQmath library is used for fixed-point calculation. As shown in the figure below, each of the non-hardware-related elements can be set as *Default*, *Integer*, or fixed point with the IQ number from 1 to 30.

In this example, the *Default* fixed-point position is selected for the range limiter block LIMIT_RANGE1, which means that the output of this block will use the fixed-point position of IQ20 as defined in *DefaultFixed-Point Position* in Simulation Control.

In fixed-point calculation, the selection of the fixed-point position is important. If the fixed-point range is too narrow, the variable value may overflow. But if the fixed-point range is too wide, the calculation resolution will suffer. To address this problem, PSIM provides the function to check the fixed-point range from simulation results, and give indication if a particular output is close to overflow or already overflow, or is too conservative in the fixed-point position setting.

In this example, after the simulation is completed, if the box *Check Fixed-Point Range* under **Simulation Control** >> **SimCoder** is checked, the following dialog window will appear.

The dialog window shows that, for example, the output of the range limiter LIMIT_RANGE1 is set to IQ20, and the required setting is IQ21, which is close to overflow. These variables are shown vellow in the window and need to decide if a wider range needed.

However, as an example, if the default fixed-position is set to IQ24, it will not be sufficient as some of the variables will overflow. The fixed-point range check results are shown below:

The results show that the outputs of the following elements will overflow:

UDELAY1, LIMIT RANGE1, SUM2, SUMP1 and SUMP2

The range check function provides a convenient way to handle fixed-point positions.

Generating Code

To generate code, select **Simulate** >> **Generate Code**. The generated code will be displayed in a separate window, as shown below.

```
- - X
                                      C:\F28069 SCI\3-ph sine wave with SCI monitoring (C code)\3-ph sine wave with SCI monitoring.c
                                      1 Section 1. Section 1
                                         // This code is created by SimCoder Version 10.0 for F2806x Hardware Target
                                         // SimCoder is copyright by Powersim Inc., 2009-2015
                                          // Date: February 04, 2016 11:59:29
                                       #define GLOBAL O 20
            (80-pi
                                       long GlobalQ = GLOBAL_Q; // Used for legacy GEL & Graph Debug.
            F2806
                                        #include "IQmathLib.h"
                                       #include "PS_bios.h"
                                       #define GetCurTime() PS_GetSysTimer()
             F280
            File
                                        interrupt void Task();
     (alobal I
                                       const Uint16 PSD_CpuClock = 90; // MHz
     Data po
     via RS-2
    SCI inpu
        "Amp")
3. One data
```

PSIM will create a subfolder inside the folder containing the PSIM circuit file and is named the same as the PSIM circuit but with (C code) added at the end. For this example project, this subfolder is C:\F28069 SCI\3-ph sine wave with SCI monitoring (C code).

In addition to the C code file, PSIM also generates project files, link command files, as well as all other files necessary for four different project building configurations: RAM Debug, RAM Release, Flash Release, and Flash RAM Release. All these files are stored in the newly created subfolder C:\F28069 SCI\3-ph sine wave with SCI monitoring (C code).

2. CCS Setup

The generated project is for CCS v3.3. If you are using CCS v3.3, the project can be opened directly. For CCS 4 or higher, you must use the *Import Legacy v3.3 Project* function in CCS. Below CCS v6.1 is used to show how to load and debug the program.

Import Project into CCS

Launch CCS v6.1. If this is the first time you load the project, go to **Project** >> **Import Legacy CCSv3.3 Project**. The dialog is shown below on the left. Click on **Browse...** to choose "C:\F28069 SCI\3-ph sine wave with SCI monitoring (C code)\3_ph_sine_wave_with_SCI_monitoring.pjt", then click on **Next**.The dialog will be shown as below on the right. Click on **Finish** to start importing.

If there is no problem in importing, the converted project will be automatically loaded. Project Explorer of the CCS will appear as shown below.

Note that the project configuration is set to *RAM Debug*. With this setting, all program and data will be loaded to the RAM memory.

To compile the project, right click on the project name "3_ph_sine_wave_with_SCI_monitoring" in the panel of the Project Explorer. Then click on **Build Project** in the popup menu. Or click on the

8

project name in the panel of Project Explorer to select it as the current project (the project name changes to bold). Select **Project** >> **Build** to build the project or **Project** >> **Rebuild All** to rebuild the whole project. After the compiling is complete, CCS will display the following:

```
CDT Build Console [3] ph_sine_wave_with_SCI_monitoring]
with ScI monitoring (C code)/RamDebug" --obj_directory="C:/F28069 SCI/3-ph sine wave with ScI monitoring (C code)/RamDebug" --obj_directory="C:/F28069 SCI/3-ph sine wave_with_SCI_monitoring (C code)/RamDebug/3_ph_sine_wave_with_SCI_monitoring, map"
--stack_size=0x7b0 --warn_sections -i"C:/fi/ccsv6/tools/compiler/ti-cgt-c2000_6.4.6/linb"
-i"C:/fi/ccsv6/tools/compiler/ti-cgt-c2000_6.4.6/include" -i"C:/F28069 SCI/3-ph sine wave with SCI monitoring (C code)/3_ph_sine_wave_with_SCI_monitoring" -i"C:/F28069 SCI/3-ph sine wave with SCI monitoring (C code)" --reread_libs
--diag_wrap=off --display_error_number --xml_link_info="3_ph_sine_wave_with_SCI_monitoring_inkInfo.xml"
--entry_point=code_start --rom_model -o "C:/F28069 SCI/3-ph sine wave with SCI monitoring_(C code)/3_ph_sine_wave_with_SCI_monitoring_(C code)/3_ph_sine_wave_with_SCI_monitoring_(C code)/7_s2069_SCI/3-ph sine_wave_with_SCI_monitoring_(C code)/F2806y_Hadders_nonBIOS.cmd" "C:/F28069_SCI/3-ph_sine_wave_with_SCI_monitoring_(C code)/F2806y_F2806y_Hadders_nonBIOS.cmd" "C:/F28069_SCI/3-ph_sine_wave_with_SCI_monitoring_(C code)/F28069_SCI/3-ph_sine_wave_with_SCI_monitoring_(C code)/F28069_SCI/3
```

The warning message can be ignored. This warning message is displayed when program is not saved in the flash memory.

Note: If you use CCS v7.0 or higher, when compiling the project, you will see an error message as below:

Product 'XDAIS' v1.0.0 is not currently installed and no compatible version is available. Please install this product or a compatible version.

To fix the error, right click on the project and select **Properties**. On the dialog window, select **General** on the left menu, and click on the **Products** tab, as shown below.

Then uncheck the box XDAIS, and recompile.

CCS Target Configuration

Before loading a program to the target, we need to create a target configuration for the target board. In this example, a TI's TMS320F28069 controlCARD is used. Select **View >> Target Configurations**. A dialog window will appear as follows in CCS.

Right click on **User Defined** in the Target Configuration dialog. Then select **New Target Configuration** in the pop-up menu. A dialog will appear as below.

Change the file name as you wish (here it is called "F2806x", and the file extension will be "ccxml"), then click on **Finish**. A dialog named "F2806x.ccxml" will appear as below.

In the "Connection" combo box, choose the emulator you will use (for example, "Texas Instruments XDS100v2 USB Debug Probe"), then check "Experimenter's Kit - Piccolo F28069" in the list box of "Board of Device". Click on **Save** to save the configuration.

Back to the "Target Configurations" dialog, right click on the "F2806x.ccxml" configuration, and move the cursor to "Link File to Project" in the popup menu. All projects will be displayed in the sub-menu. Select the project "3 ph sine wave with SCI monitoring" as shown below.

Now, check if "F2806x.ccxml" is added to the project in the Project Explorer, as shown below.

3. Target Hardware Setup

The F28069 Piccolo Experimenter Kit is shown below, with the F28069 controlCARD (non-isolated type).

Connect the JP2 connector of the docking station board to the computer's USB port. The kit provides an on-board XDS100v2 emulator. The USB port also supplies the power to the board when the switch SW1 on the docking station board is at OFF position.

The USB port provides the second channel for RS-232C communication. Note that one needs to short-circuit Jumper J9 on the docking station board in order to use the USB port to communicate with the DSP for waveform monitoring.

4. Running Code in DSP

Loading Code to DSP

In CCS, click on "3_ph_sine_wave_with_SCI_monitoring" project to set it as the current project (the current project name will appear in bold). Then select **Run** >> **Debug** to connect the computer to the DSP. If the connection is successful, the program will be uploaded to the target, and the F28069 DSP will automatically reset and run to the start place of the main function as shown below.

Loading Code to DSP (Flash Release Version)

There are 4 configurations in a generated project:

RamRelease: Load program to RAM area and run in RAM
RamDebug: Load program to RAM area and run in RAM
FlashRelease: Load program to flash memory and run in flash

FlashRamRelease: Load program to flash memory but copy program into RAM and ran

in RAM

Note that in order to run the code in either flash release mode or flash RAM release mode so that the code will run when the controlCARD is disconnected from the computer and the DSP board is powered on again, make sure that the controlCARD has the following DIP switch setting:

For the F28069 non-isolated controlCARD, set the switch 2 of the DIP switch SW1 to ON. In this position, the controlCARD can be programmed and can also run in the flash mode.

For the F28069 or F28069M isolated controlCARD, set the switch 1 of the DIP switch SW3 to ON for programming. After the controlCARD is programmed, set the switch to OFF to run in the flash mode.

To use a different configuration, right click on the project name in Project Explorer. Move the cursor to **Build Configurations** in the popup menu and select a configuration of your choice, as shown below.

After changing configuration, the project needs to be compiled again, and the code can be uploaded to the DSP with the same procedure as described before.

Run Code in DSP Target

To run the code in the DSP, we can use the toolbar in the "Debug" toolbar as shown below to resume, stop, step into, step over, and step return to run the program.

5. Monitoring Waveforms with DSP Oscilloscope

Once the code is running in the targeted DSP, one can use PSIM's DSP Oscilloscope feature to monitor the variables inside the DSP and to control the converter output voltage.

To set up DSP Oscilloscope for waveform monitoring, refer to the tutorial "Tutorial – Using SCI for waveform monitoring.pdf". To launch the DSP Oscilloscope, in PSIM, select **Utilities** >> **DSP Oscilloscope**. The interface is shown below.

Set the correct serial port number, baud rate, and parity check. They must be identical to these in the SCI Configuration block in the PSIM circuit.

Click the **Connect** button at the left bottom of the scope panel. All names of SCI output and input variables will be listed on the left side of the panel, as shown below.

The 4 variables available for monitoring are Angle, u, v and w. Select the variables to display on the scope screen.

To change the output of the 3-phase PWM, modify the value AngleStep and/or Amp then click the **Update** button. The Angle waveform will be changed if AngleStep changes; the waveforms of u, v and w will be changed if AngleStep and/or Amp change. The figure below shows the waveforms with the new values for Angle and Amp.

