• Gợi ý phân số $\frac{a}{b}$ xác định khi $b \neq 0$

Câu 1. Điều kiện xác định của hàm số $y = \frac{1}{\sin 2r} + \frac{1}{\cos 2r}$ là

A.
$$R \setminus \{k\frac{\pi}{2}, k \in Z\}$$
 B. $R \setminus \{k2\pi, k \in Z\}$ **C.** $R \setminus \{k\frac{\pi}{4}, k \in Z\}$ **D.** $R \setminus \{k\pi, k \in Z\}$

$$\mathbf{B} \cdot R \setminus \{k2\pi, k \in Z\}$$

$$\mathbb{C}. R \setminus \{k \frac{\pi}{4}, k \in Z\}$$

D.
$$R \setminus \{k\pi, k \in Z\}$$

Câu 2. Tập xác định của hàm số $y = \frac{2022}{\tan x - 1}$

$$\mathbf{A.}\,R\backslash\,\{\frac{\pi}{4}+k\pi,k\in Z\}$$

B.
$$R \setminus \{\frac{\pi}{2} + k\pi, k \in Z\}$$

$$\mathbf{C.} \ R \setminus \{\frac{\pi}{4} + k2\pi, k \in Z\}$$

$$\mathbf{D.} R \setminus \{\frac{\pi}{2} + k\pi; \frac{\pi}{4} + k\pi, k \in Z\}$$

Câu 3. Hàm số $y = \cot x$ có chu kì là:

A.
$$-\pi$$
 B. $\frac{\pi}{2}$

B.
$$\frac{\pi}{2}$$

$$\mathbf{C}.\pi$$

D.
$$2\pi$$

* Gọi ý Hàm số chẵn
$$F(x) = F(-x)$$

Hàm số lẻ $F(x) = -F(-x)$

Câu 4 . Trong các hàm số sau đây, hàm số nào là hàm số chẵn?

A.
$$y = \tan 4x$$
.

B.
$$y = \cos 3x$$
.

C.
$$y = \cot 5x$$
.

D.
$$y = \sin 2x$$
.

Câu 5. Trong các hàm số sau, hàm số nào là hàm số chẵn?

$$\mathbf{A.} \ \ y = \cos x . \tan 2 \, \mathbf{x} \ .$$

B.
$$y = \frac{\tan x}{\sin x}$$
.

$$\mathbf{C.} \ \ y = x \cos x \,.$$

D.
$$y = \sin 3x$$
.

Câu 6. Trong các hàm số sau đây, hàm số nào **không** là hàm số lẻ?

$$\mathbf{A.} \ \ y = \cos x.$$

B.
$$y = \sin x$$
.

$$\mathbf{C.} \ \ y = \tan x.$$

D.
$$y = \cot x$$
.

Câu 7: Phương trình $\tan\left(x + \frac{\pi}{3}\right) = 0$ có nghiệm là

A.
$$x = -\frac{\pi}{3} + k2\pi, (k \in Z).$$

B.
$$x = -\frac{\pi}{2} + k\pi, (k \in Z)..$$

D. $x = \frac{\pi}{3} + k\pi, (k \in Z).$

C.
$$x = -\frac{3}{3} + k\pi, (k \in \mathbb{Z}).$$

D.
$$x = \frac{\pi}{3} + k\pi, (k \in Z)$$

 $\mathbf{B.} \begin{vmatrix} x = \frac{\pi}{4} + k\pi \\ x = \frac{5\pi}{4} + k\pi \end{vmatrix} (k \in \square).$

Câu 8: Tất cả các nghiệm của phương trình $\sin\left(2x + \frac{\pi}{3}\right) = -\frac{1}{2}$ là.

 $\mathbf{A.} \begin{vmatrix} x = -\frac{\pi}{4} + k\pi \\ x = \frac{5\pi}{12} + k\pi \end{vmatrix} (k \in \square) .$

Gợi ý sử dụng khai triển nhị thức Niu-Tơn

Câu 16: Tìm hệ số của x^2 trong khai triển của biểu thức $(x + 2)^2$?

A. 1

Câu 17: Tìm hệ số của x^3 trong khai triển của biểu thức $(x+2)^9$?

B. 5472.

D. 5624.

Câu 18: Tổng $S = C_{2016}^0 + C_{2016}^1 + ... + C_{2016}^{2016}$ có kết quả bằng: **A.** 2^{2015} **B.** 2^{2017} **C.** 2^{2014} **D.** 2^{2016}

Câu 19: Tổng $C_{2016}^1 + C_{2016}^2 + C_{2016}^3 + ... + C_{2016}^{2016}$ bằng :

A. $2^{2016} - 1$.

 $\mathbf{D.4}^{2016}$

Gọi ý: Bước 1: Tìm không gian mẫu (ω) là tất cả các trường họp có thể xảy ra Bước 2: Tìm các trường hợp thỏa mãn để bài

Bước 3: Lập phân số $\frac{b \text{wớc 2}}{\omega}$ ta được kết quả

Câu 20: Gieo một đồng tiền. Tính xác suất của biến cố A: "Đồng tiền xuất hiện mặt ngửa

A. $P(A) = \frac{3}{8}$. **B.** $P(A) = \frac{1}{2}$. **C.** $P(A) = \frac{1}{4}$. **D.** $P(A) = \frac{7}{8}$.

Câu 21: Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A: "Lần đầu tiên xuất hiện mặt sấp"

A. $P(A) = \frac{3}{8}$. **B.** $P(A) = \frac{1}{2}$. **C.** $P(A) = \frac{1}{4}$. **D.** $P(A) = \frac{7}{8}$.

Câu 22: Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A: "Kết quả ba lần gieo giống nhau"

A. $P(A) = \frac{3}{8}$. **B.** $P(A) = \frac{1}{2}$. **C.** $P(A) = \frac{1}{4}$. **D.** $P(A) = \frac{7}{8}$.

Câu 23: Cho dãy số (u_n) , biết $\begin{cases} u_1 = 4 \\ u_{n+1} = 3u_n - 2 \end{cases}$ (với $n \in N^*$). Tìm số hạng thứ năm của dãy số.

A. $u_5 = 244$. **B.** $u_5 = 82$. **C.** $u_5 = 730$. **D.** $u_5 = 2188$.

Câu 24: Cho cấp số cộng gồm 5 số hạng: 1; $\frac{5}{2}$; 4; $\frac{11}{2}$; 7. Tìm công sai d của cấp số cộng.

A. $d = \frac{5}{2}$. **B.** $d = \frac{2}{5}$. **C.** $d = \frac{3}{2}$. **D.** $d = \frac{2}{3}$.

Câu 25: Dãy số nào dưới đây là một cấp số nhân.

A. 1;
$$\frac{1}{2}$$
; $\frac{1}{3}$; $\frac{1}{4}$; $\frac{1}{5}$.

A. 1;
$$\frac{1}{2}$$
; $\frac{1}{3}$; $\frac{1}{4}$; $\frac{1}{5}$. **B.** $\frac{1}{2}$; $\frac{2}{3}$; $\frac{3}{4}$; $\frac{4}{5}$; $\frac{5}{6}$.

Câu 26: Cho hình chóp S.ABC. Số mặt bên của hình chóp là:

D. 6.

Câu 27: Cho hình chóp S.ABCD. Số mặt bên của hình chóp là:

D. 6.

Câu 28: Cho lăng trụ tam giác ABC.A'B'C'. Tìm giao tuyến của hai mặt phẳng (*ACC*') và (*A'BC*).

D. AC'.

Tự luận

Bài 1. Giải các phương trình sau:

$$a/\tan(x-15^{\circ}) = \sqrt{3}$$
.

b/
$$2\sin 4x - 1 = 0$$
.

Bài 2. Viết khai triển biểu thức sau theo công thức nhị thức Niu – ton: $(x+2)^4$.

Bài 3. Dùng phương pháp quy nạp, chứng minh rằng với mọi $n \in N^*$ thì " $A_n = 7^n + 3n^2 - 3n - 1$ chia hết cho 6".

Bài 4. Cho hình chóp *S.ABCD* có đáy *ABCD* là hình thang, *AD* là đáy lớn.

a/ Tìm giao tuyến của hai mặt phẳng (SAB) và (SAD).

 \mathbf{b} / Goi M là trung điểm của SA. Tìm giao điểm N của SD và mp(MBC).