1D Slow oscillations (A<<C0) (Analytical)

- C(t) is a **periodic** function:
 - Average \bar{C}
 - Period T
 - Amplitude A.
- **Slow** oscillations: the period T is **large** compared to the other timescale(s) of the system.
- The average \bar{C} is positive
- A<< C0: the amplitude is small compared to its average, so C(t) is
 - Strictly positive $C(t) > 0 \quad \forall t$
 - Far from zero.

If the average is negative, from the 0D analysis we expect all domains to disappear (exponentially fast in time). So we're not interested in this case.

Main results

- The time-scale of the system $au_{linear} \sim C^{-1}$ is always of the same order

$$au_{linear} \sim ar{C}^{-1}$$

Slow oscillations

$$T\gg au_{linear}\sim ar{C}^{-1}$$
 $\epsilon\simrac{ au_{linear}}{T}\ll1$

The leading order correction to the shape of an isolated kink is

$$egin{align} \delta u(x,t) &= \epsilon eta_1(t) u_{k_1}(\chi); \quad \chi = C^{1/2}(t) x \ eta_1(t) &= rac{1}{2} C^{-3/2}(t) (\epsilon^{-1} \partial_t C(t)) \ \end{split}$$

(where a term of order $\sim \epsilon$ comes from $\partial_t C(t)$ so $\beta_1 \sim 1$)

$$u_{k_0}+\chi\partial_\chi u_{k_0}=\partial_{\chi\chi}u_{k_1}+u_{k_1}-3u_{k_0}^2\partial_\chi u_{k_1}$$

while this is the equation determining the shape $u_{k_1}(\chi)$

$$u_{k_0}(\chi) o \pm 1$$

$$u_{k_1}(\chi) o \mp rac{1}{2}$$

• Kinks dynamics is not affected by a time depending C(t) to leading order (neglecting terms of order higher than $\epsilon \delta u_{k_0}$, $\delta u_{k_0}^2$)

$$\dot{x_n}(t) = 16C^{rac{1}{2}}(t)rac{[e^{-2^{rac{1}{2}}C(t)^{rac{1}{2}}l_n} - e^{-2^{rac{1}{2}}C(t)^{rac{1}{2}}l_{n+1}}]}{\int_{\chi_{n-0.5}}^{\chi_{n+0.5}} d\chi \partial_\chi u_p(\chi)}$$

that for two isolated kinks leads to a decay of the distance

$$\dot{d}(t) \simeq -24\sqrt{2}C^{rac{1}{2}}(t)e^{-2^{rac{1}{2}}C(t)^{rac{1}{2}}d}$$

that is the formula found for constant C, with $C \to C(t)$.

Table of contents

- Main results
- Table of contents
- Multiple scale analysis
 - Timescale of the system
 - Introducing new time variables
 - Time derivative
- Kink shape correction
- Kink dynamics

Multiple scale analysis

If C(t) is a periodic function of time, there are at least two time-scales in the system

- au_{linear} it is the time-scale associated to the growth of unstable modes in the linear regime.
- T is the period of C(t).

Timescale of the system

The time-scale $au_{linear}\sim C^{-1}$ but now C(t) is a function of time! As the amplitude A of the oscillation is small compared to the average \bar{C} , then $C^{-1}(t)$ is kept of the same order (\bar{C}^{-1}) at any time. So

$$au_{linear} \sim ar{C}^{-1}$$

As there are different time-scales in the system, then different processes of the dynamics may be characterized by different time-scales.

The idea of the multiple scale analysis is to introduce new time variables

$$t
ightarrow t_0, t_1, t_2, \ldots$$

where each variable t_i is associated to a different time-scale τ_i , explicitly

$$\delta t_i \sim 1 \iff \delta t \sim \tau_i$$

and then we **hope** to **simplify** the calculations, by capturing processes characterized by different time-scales τ_i in **different equations** (each containing only derivatives respect to one variable t_i)

Introducing new time variables

As we are considering T large compared to the other timescale(s) of the system

$$T\gg au_{linear}\simar{C}^{-1}$$

As we identify only two time-scales, we **naturally** introduce **just two** new time-variables t_0, t_1 associated respectively to τ_{linear} and T.

This **change of variables** $t o t_0, t_1$ implies in general

$$\partial_t = (\partial_t t_0) \partial_{t_0} + (\partial_t t_1) \partial_{t_1}$$

but, as t_1 describes the variation at the timescale T of C(t)

$$\partial_{t_0} C(t) = 0$$

this is where we use the idea of the multiple scale analysis.

Time derivative

If we consider the average value of the oscillation \bar{C} to be **of order 1**, then $au_{linear} \sim 1$. It follows that

$$\delta t_0 \sim 1 \iff \delta t \sim \tau_{linear} \sim 1$$

is true if $t_0 = t$

Instead, requiring

$$\delta t_1 \sim 1 \iff \delta t \sim T$$

is true if $t_1=rac{t}{T}=trac{ au_{linear}}{T}$ (as $au_{linear}\sim 1$)

Now, as we are analyzing the **case where T is large, then

$$T\gg au_{linear} \implies \epsilon = rac{ au_{linear}}{T} \ll 1$$

$$t_0 = t; \quad t_1 = \epsilon t$$

$$\partial_t = \partial_{t_0} + \epsilon \partial_{t_1}$$

where ϵ is a small parameter**.

Kink shape correction

Here we look for a correction to the kink's shape (deviation from the conventional shape $u_{k_0}(\chi) \sim \tanh(2^{1/2}\chi)$) to leading order in ϵ .

Anstatz

$$u(x,t) = u_0(x,t) + \epsilon u_1(x,t) + O(\epsilon^2)$$

inside the TDGL eq. $(\partial_t u = \partial_{xx} u + Cu - u^3)$ and

- · considering only terms of order zero
- using $\partial_t = \partial_{t_0} + \epsilon \partial_{t_1}$

$$\partial_{t_0}u_0=\partial_{xx}u_0+C(t)u_0-u_0^3$$

that is the stationary TDGL equation, that has single-kink solution

$$u_0(x,t)=eta(t)u_{k_0}(\chi)\quad \chi=C(t)^{1/2}x\quad eta(t)=C(t)^{1/2} \ u_k(\chi)= anh(2^{1/2}\chi)$$

Ansatz

$$u_1(x,t)=eta_1(t)u_{k_1}(\chi)$$

using this inside the TDGL equation and

- using the result on u_0
- considering ony terms of order one

$$\partial_{t_1} C^{1/2}(t) (u_{k_0} + \chi \partial_\chi u_{k_0}) = C(t) eta_1 (\partial_{\chi\chi} u_{k_1} + u_{k_1} - 3 u_{k_0}^2 \partial_\chi u_{k_1})$$

Solvability condition

We require this condition in order to get rid ∂_{t_1} derivatives and leave an equation with only ∂_χ derivatives

$$C(t)\beta_1 = \partial_{t_1}C^{1/2}(t)$$

That determines the amplitude of the first order correction to the kink's shape

$$eta_1(t) = rac{1}{2} C^{-3/2}(t) (\partial_{t_1} C(t))$$

and we're left with the equation

$$u_{k_0}+\chi\partial_\chi u_{k_0}=\partial_{\chi\chi}u_{k_1}+u_{k_1}-3u_{k_0}^2\partial_\chi u_{k_1}$$

that can be solved numerically.

It's interesting to look at the limits ($\chi \to \pm \infty$):

$$u_{k_0}(\chi) o \pm 1$$

$$u_{k_1}(\chi) o \mp rac{1}{2}$$

so the sign is opposite.

Kink dynamics