THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Calculus

MATHEMATICS 1A CALCULUS.

Section 1: - Functions and Graphs.

1. Numbers.

We will use the following notation:

The set of natural numbers, denoted by \mathbb{N} , consists of all the whole numbers $\{0, 1, 2, \ldots\}$. The set of integers, denoted by \mathbb{Z} , consists of all the whole numbers $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$. The set of rational numbers, denoted by \mathbb{Q} , consists of all numbers of the form $\frac{p}{q}$ where p, q are integers and $q \neq 0$.

The ancient Greeks initially thought that this was all there was (they didn't believe in negative numbers and zero either), until they discovered that $\sqrt{2}$ could not be written as a rational number.

Theorem: $\sqrt{2}$ is irrational.

Proof:

 $[\]sqrt{2}$ and numbers such as π and e are examples of irrational numbers. We think of the set of all real numbers are points which lie on the real line. Giving a formal definition of real numbers is difficult.

We will use the following set notation:

 $\{x \in A : P(x)\}\$ denotes the set of all elements x of A satisfying property P. For example, $\{x \in \mathbb{R} : -1 \le x \le 1\}$ denotes all the real numbers between -1 and 1 (inclusive).

 $A \cap B$ is the intersection of A and B and denotes all the elements that are in both A and B.

 $A \cup B$ is the union of A and B and denotes all the elements that are in either A or B (or both).

 \emptyset is the set which has no elements, for example $\{x \in \mathbb{R} : x^2 < -1\} = \emptyset$.

Inequalities:

You are aware of the following facts about inequalities:

For $x, y, z \in \mathbb{R}$ we have

i. if x > y then x + z > y + z

ii. if x > y and z > 0 then xz > yz and if z < 0 we have xz < yz.

Note carefully the definition for |x|.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

So for example, |a-3| is equal to a-3 if $a \ge 3$ and -(a-3) = 3-a if a < 3.

Note then that |x| < 3 means -3 < x < 3 and that |-x| = |x|. Also note that $\{x : |x-3| < 2\}$ represents the set of all real numbers whose distance from 3 is less that 2.

Finally note that |xy| = |x||y| and that $|x + y| \le |x| + |y|$. This last result is called the **triangle inequality.** You will see a complex version of this in the algebra strand of the course.

Also of importance is:

Theorem: (AM-GM inequality).

If $x, y \ge 0$ are real numbers then

$$\frac{x+y}{2} \ge \sqrt{xy}.$$

(This says that the arithmetic mean of two positive real numbers exceeds their geometric mean.)

Proof:

Ex: Prove that for x > 0, we have $x + \frac{1}{x} \ge 2$.

Ex: Suppose a, b, c are positive real numbers. Prove that $a^2 + b^2 + c^2 \ge ab + ac + bc$.

Intervals: We will use the following notation when dealing with intervals. A round bracket means we do not include the endpoint while we do when a square bracket is used. For example (3, 9] means the interval $3 < x \le 9$. Note that since infinity is NOT a real number, if we wish to represent the interval from 3 onwards we write this as $[3, \infty)$ (never use a square bracket with infinity.). Here are some further examples:

$$\{x \in \mathbb{R} : x > 3\} \cap \{x \in \mathbb{R} : x < 5\} = (3, 5)$$
$$\{x \in \mathbb{R} : x > 3\} \cup \{x \in \mathbb{R} : x < 5\} = \mathbb{R}$$
$$\{x \in \mathbb{R} : x > 5\} \cup \{x \in \mathbb{R} : x < 3\} = (-\infty, 3) \cup (5, \infty)$$
$$\{x \in \mathbb{R} : x > 5\} \cap \{x \in \mathbb{R} : x < 3\} = \emptyset$$

Solving Inequalities:

These are very similar to equations except that we must careful when multiplying by an unknown. You should be familiar with solving quadratic inequations such as Ex: Find $\{x: x^2-2x-3>0\}$.

For more difficult inequalities we use the following idea.

Ex: Solve $x > 1 + \frac{2}{x}$.

Ex: Solve $\frac{2}{x} \le \frac{3}{x-1}$.

Functions:

You should be familiar with the function concept from school. Roughly speaking, a function $f:A\to B$ is a rule or formula which associates to each element of a set A (called the domain) **exactly one** element from another set B (called the co-domain). For the most part, we will have $A=B=\mathbb{R}$. The range of the function is the set of values b in B for which there is an $a\in A$ with f(a)=b. In less formal terms, the range consists of the output of the function. You will need to be able to find the domain and range of basic functions.

Ex: Find the domain and range of $f(x) = \sqrt{1 - x^2}$.

It often helps if the function is even or odd. You will recall that f is **even** if f(x) = f(-x) and f is **odd** if f(-x) = -f(x). Even functions are symmetric about the y axis and odd

functions have a central symmetry with respect to the origin.

Thus, if we can draw such a function on the positive half plane we get the rest of the picture for free.

Note that if f is odd and has 0 in its domain, then f(0) = 0.

We say that f is periodic of period T if f(x+T)=f(x) for all real x in the domain of f.

You have met the trig. functions which are periodic with period 2π .

Ex: Sketch:
$$f(x) = (x-3)^2 + 4$$
, and $f(x) = \frac{1}{x^2-1}$.

Ex: Sketch: f(x) = x if $0 \le x < 1$ and f(x+1) = f(x) for all x.

Ex: Sketch $f(x) = x^2$ for 0 < x < 1, f is periodic of period 2 and f is even.

Floor and Ceiling Functions:

Ex: Sketch $f(x) = x - \lfloor x \rfloor$.

Combining Functions:

If f and g are two functions, we can add, subtract and multiply them in the obvious way. We can also divide them provided g is not zero. If the range of g equals the domain of f we compose the two functions to form $f \circ g$ which we define to be

$$f \circ g(x) = f(g(x)).$$

 $f \circ g$ is called the composite function of f and g.

Ex: Find $f \circ g$ and $g \circ f$ if $f(x) = x^3$ and $g(x) = \sqrt{x^2 + 1}$.

Note that some functions cannot be defined by one simple equation. Many functions which occur in the real world are defined piecewise.

Ex:
$$f(x) = \begin{cases} \cos x & \text{if } x < 0\\ \frac{1}{2} & \text{if } x = 0\\ \sin x & \text{if } x > 0 \end{cases}$$

Conic Sections:

An important class of implicitly defined functions arises from the *conic sections* (so called because they are obtained by slicing a cone with various planes.)

You will need to recognise these:

(i) **Circle**
$$x^2 + y^2 = r^2$$

(ii) Ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $a, b \neq 0$.

(iii) **Hyperbola**
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a, b \neq 0.$$

(iv) Rectangular Hyperbola $y = \frac{a}{x}, a \neq 0$.

Other Functions:

It is assumed that you are familiar with the basic properties of polynomial functions, rational functions, the trigonometric functions, the exponential and logarithmic functions.

Graph
$$y = \frac{x^2}{x^2 - 1}$$
.