

Session 2.6

Module 2

Mouli Sankaran

Introduction to Karnaugh map

Session 2.6: Focus

- Introduction to Karnaugh map
- Examples
 - SOP form
 - POS form
 - Both SOP and POS
 - Implementation
 - 5-variable K-map
- Don't cares in K-map
 - Example

Karnaugh map Simplification Method

Maurice Karnaugh

Maurice Karnaugh (October 4, 1924 – Nov 8, 2022) is an American physicist and mathematician known for the Karnaugh map used in Boolean algebra.

Karnaugh Map

- The **Karnaugh map**, also known as the **K-map**, is a method to simplify Boolean algebra expressions.
- Maurice Karnaugh introduced it in 1953
- It reduces the need for extensive calculations by taking advantage of humans' pattern recognition capability
- The required Boolean results are **transferred from** a **truth table** onto a **two-dimensional grid**
 - Where the cells are **ordered** in **Gray code**, and
 - Each cell position represents one combination of input conditions
 - while each cell value represents the corresponding output value

Sample: Karnaugh Map - corrected

This image actually shows
Two Karnaugh maps:
for the function f,
Using minterms
(colored rectangles)
and
for its complement f',
using maxterms
(gray rectangles).

Courtasy: Wikipidea

Why Gray Code in K-map?

- The variable combinations in the K-kap in the adjacent cells differ only by one bit, by ordering them using Gray codes
- This helps in simplifying them by combing the adjacent elements if both output **one** (for minterms) or **zero** (for maxterms) since they differ by only one value

Example 1 (SOP)

Out=
$$\overline{AB}CD + \overline{AB}CD + \overline{AB}CD + \overline{AB}\overline{CD} + \overline{AB}\overline{CD} + \overline{AB}\overline{CD} + \overline{AB}\overline{CD}$$

Groups must be a power of 2.

Example 2 (SOP)

Out=
$$\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D}$$

Example 3 (SOP)

Out=
$$\overline{A}\overline{B}\overline{C}\overline{D}$$
 + $\overline{A}\overline{B}\overline{C}D$ + $\overline{A}\overline{B}CD$ + $\overline{A}\overline{B}CD$ + $\overline{A}\overline{B}CD$ + $\overline{A}\overline{B}CD$

Example 4 (SOP)

Out= $\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}CD + \overline{A}\overline{B}C\overline{D} + \overline{B}\overline{C}D + \overline{B}\overline{C}D + \overline{B}\overline{C}D + \overline{B}\overline{C}D$

Example 5 (SOP)

Out=
$$\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}C\overline{D} + A\overline{B}\overline{C}\overline{D} + ABCD$$

Example 6 (SOP)

Out=
$$\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

Example 7 (SOP)

Out=
$$\overline{A}\overline{B}\overline{C}\overline{D}$$
 + $\overline{A}\overline{B}\overline{C}D$ + $\overline{A}\overline{B}\overline{C}D$ + $\overline{A}B\overline{C}D$ + $\overline{A}B\overline{C}D$ + $\overline{A}B\overline{C}D$ + $\overline{A}B\overline{C}D$ + $\overline{A}B\overline{C}D$

A _B CI	00 00	01	11	10
00	ſī	1	1	
01	1	1)	1.	
11	1	1	1	
10				

A _B CI	00	01	11	10
00		$\overline{1}$	1	
01	1	1	1	
11	<u>1</u>	1	1	
10				

A _B C	D 00	01	11	10
0.0	ſī	[1]	[i]	
01	1	E)	1	
11	1	11	1	
10				

Out=
$$\overline{AC}$$
 + \overline{AD} + \overline{BC} + \overline{BD}

Example 8 (SOP)

Out=
$$\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}CD + \overline{A}B\overline{C}\overline{D} + \overline{A}\overline{B}CD + \overline{A}\overline{B}\overline{C}\overline{D}$$

+ $\overline{A}B\overline{C}D$ + $\overline{A}BCD$ + $\overline{A}\overline{B}C\overline{D}$ + $\overline{A}\overline{B}CD$

Example 9 (SOP)

Simplification by Boolean Algebra

Out=
$$\overline{C}$$
+ABCD

Applying rule $\mathbf{A} + \overline{\mathbf{A}}\mathbf{B} = \mathbf{A} + \mathbf{B}$ to the $\overline{\mathbf{C}} + \overline{\mathbf{A}}\mathbf{B} \subset \mathbf{C}$

Out =
$$\overline{C}$$
 + ABD

SOP and POS Forms

SOP

$$F = B'D' + B'C' + A'C'D$$

Combing 0 terms yields:

$$F' = AB + CD + BD'$$

Applying DeMorgan's theorem

Complement of F' is F

POS

$$F = (A' + B')(C' + D')(B' + D)$$

Example 1 (POS)

Example 2 (POS)

Out =
$$(\overline{A} + \overline{B} + \overline{C})$$

Maxterm = $\overline{A} + \overline{B} + \overline{C}$
Numeric = 0 0 0
Complement = 1 1 1 1
 A^{BC}
0 0 011110
0 1 1 1 1
1 1 0 1

Example 3 (POS) ... contd in the next slide

Out =
$$(A+B+C)(A+B+\overline{C})$$

Maxterm= $(A+B+C)$ Maxterm= $(A+B+\overline{C})$
Numeric= 1 1 1 Numeric= 1 1 0
Complement= 0 0 0 Complement= 0 0 1
 A^{BC}
0 0 0 1 1
1 1 1 1 1

Example 3 (POS) - contd

Out =
$$(A + B + C)(A + B + \overline{C})$$
 $A = \begin{bmatrix} A & B & C \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$
 $A = B & C = 0 & 0 & X$

Complement = $1 & 1 & X$

Sum-term = $(A + B)$
Out = $(A + B)$

Quiz 1

Simplify the Boolean expression using K-map

Out=
$$(A+B+C+\overline{D})(A+B+\overline{C}+D)(A+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)$$

 $(\overline{A}+\overline{B}+\overline{C}+D)(\overline{A}+B+C+\overline{D})(\overline{A}+B+\overline{C}+D)$

Quiz 1: Solution

Quiz 2:

Simplify the **Product-Of-Sums** Boolean expression below, providing a **result** in **SOP** form

Out=
$$(A+B+C+\overline{D})(A+B+\overline{C}+D)(A+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)$$

 $(\overline{A}+\overline{B}+\overline{C}+D)(\overline{A}+B+C+\overline{D})(\overline{A}+B+\overline{C}+D)$

Quiz 2: Solution

Simplify the Product-Of-Sums Boolean expression below, providing a **result** in **SOP** form

Out=
$$(A+B+C+\overline{D})(A+B+\overline{C}+D)(A+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)$$

 $(\overline{A}+\overline{B}+\overline{C}+D)(\overline{A}+B+C+\overline{D})(\overline{A}+B+\overline{C}+D)$

Out=
$$\overline{CD}$$
 + CD+ ABD

Same Example: Both SOP and POS

Out=
$$(A+B+C+\overline{D})(A+B+\overline{C}+D)(A+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)$$

 $(\overline{A}+\overline{B}+\overline{C}+D)(\overline{A}+B+C+\overline{D})(\overline{A}+B+\overline{C}+D)$

Out=
$$\overline{ ext{CD}}$$
 + $ext{CD+ ABD}$

Out=
$$(B+C+\overline{D})(A+C+\overline{D})(\overline{C}+D)$$

Implementation

Out =
$$(B+C+\overline{D})(A+C+\overline{D})(\overline{C}+D)$$

Out=
$$\overline{CD}$$
 + CD+ ABD

Session 2.6: Summary

- Introduction to Karnaugh map
- Examples
 - SOP form
 - POS form
 - Both SOP and POS
 - Implementation