Logic

Chapter 3

MATH 280 Discrete Mathematical Structures

Conjunction

► Logical and

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

- ▶ The only way to obtain a 1 (true) is if both operands are true
- Mathematics: $a \wedge b$ Digital logic: abC++: a && b Python: a and b

Proposition

- ▶ A *proposition* is a sentence that is one of either *true* or *false*
 - A proposition is also known as a *statement*
- ► Possible propositions:
 - ► The wall is tan.
 - **▶** 5 < 10
 - Tennessee is a state.
 - Animals live beneath the surface of Mars.
- ► Non-propositions:
 - ► The painting is beautiful.
 - ▶ When is Christmas?
 - ► He is tall. Who?
 - ► x < 10 x = ?
- \triangleright We can use variables such as p, q, and r to represent propositions
 - ▶ p might represent "5 < 10"

Truth Tables

- ► We can construct compound propositions from simpler propositions using logical operators
- ► The common logical operators include to *and*, *or*, and *not*
- ► A *truth table* shows the possible range of true values for a compound proposition
 - 0 represents false
 - ▶ 1 represents true

p	q	f(p,q)
0	0	0
0	1	1
1	0	0
1	1	1

Disjunction

► Logical or

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

- ▶ The only way to obtain a 0 (false) is if both operands are false
- Mathematics: $a \lor b$ Digital logic: a + bC++: $a \mid \mid b$ Python: a or b

Negation

► Logical not

$$\begin{array}{c|c} p & \neg p \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

- ▶ Negation is a unary operator and so requires only one operand
- ► Mathematics: $\neg a \sim a \quad a'$

Digital logic: \overline{a} C++: !a

Python: not a

Conditional Operator

▶ Logical *if* ... *then*, or *implies*

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

- \triangleright p is the antecedent, and q is consequent
- Example: If it is raining, the grass is wet
 - ▶ If it raining and the grass is wet, the statement is a true statement
 - ► If is raining but the grass is not wet, the statement is not true
 - ► If it is not raining and the grass is not wet, the statement cannot be false; it only makes a claim about when it is raining
 - ▶ The most interesting case: If it is not raining and the grass is wet, the statement cannot be false; it only makes a claim about when it is raining. If it is not raining, the grass could be wet for other reasons, such as a sprinkler system or dew.

Converse

- ▶ The converse of $p \rightarrow q$ is $q \rightarrow p$
- ► These two propositions are **not** logically equivalent
- ▶ Given the propositions r = "it is raining" and w = "the grass is wet", if the compound proposition $r \rightarrow w$ is true, we cannot conclude that its converse $(w \rightarrow r)$ also is true.
 - ► The grass could be wet due to sprinklers
- ▶ A logical fallacy: affirming the consequent

Biconditional Operator

▶ if and only if (iff)

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

- ▶ Short for $(p \rightarrow q) \land (q \rightarrow p)$
- ► Represents logical equivalence

English Equivalents

	l = // =
$p \rightarrow q$	$p \leftrightarrow q$
if p , then q	p if and only if q
p implies q	p is necessary and sufficient for q
q follows from p	p is equivalent to q
q, if p	if p , then q , and if q , then p
p, only if q	if p , then q and conversely
p is sufficient for q	
q is necessary for p	

Compound Propositions

- ► If p and q are propositions (e.g., p = "The tree is tall", q = "The lake is deep")
 - $p \land q$ is a proposition "The tree is tall and the lake is deep."
 - $p \lor q$ is a proposition "The tree is tall or the lake is deep."
 - ightharpoonup is a proposition "The tree is not tall." (or "The tree is short.")
 - (p) is a proposition (use parentheses for grouping)
- ▶ This applies recursively: $(p \land q) \lor \neg p$ is a proposition
- Generally understood precedence rules: negation first, conjunction second, disjunction third
 - $\triangleright p \land q \lor r$ is equivalent to $(p \land q) \lor r$
 - $ightharpoonup \neg p \land q$ is equivalent to $(\neg p) \land q$
- ▶ What about \rightarrow and \leftrightarrow ?

Truth Table for Compound Proposition

 $ightharpoonup \neg p \lor q$

p	q	$\neg p$	
0	0		
0	1		
1	0		
1	1		

Truth Table for Compound Proposition

Truth Table for Compound Proposition

Truth Table for Compound Proposition

$$ightharpoonup
eg p \lor q$$

p	q	$\neg p$	
0	0	1	
0	1	1	
1	0	0	
1	1	0	

$$ightharpoonup
eg p \lor q$$

p	q	$\neg p$	$\neg p \lor q$	
0	0	1		
0	1	1		
1	0	0		
1	1	0		

ightharpoonup abla q

p	q	$\neg p$	$\neg p \lor q$	
0	0	1	1	
0	1	1	1	
1	0	0	0	
1	1	0	1	

Truth Table for Compound Proposition

$$ightharpoonup \neg p \lor q$$

n	q	$ \neg p $	$\neg p \lor q$	$p \rightarrow q$
Ρ_		P	$P \vee q$	P ' Y
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

Truth Table for Compound Proposition

$$ightharpoonup \neg p \lor q$$

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

The propositions $\neg p \lor q$ and $p \to q$ are equivalent

Truth Table for Compound Proposition

► Construct a truth table for $(p \land q) \lor (\neg q \land r)$

p	q	r	$p \wedge q$	$\neg q$	$\neg q \wedge r$	$(p \land q) \lor (\neg q \land r)$
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Truth Table for Compound Proposition

► Construct a truth table for $(p \land q) \lor (\neg q \land r)$

p	q	r	$p \wedge q$	$\neg q$	$\neg q \wedge r$	$(p \wedge q) \vee (\neg q \wedge r)$
0	0	0	0			
0	0	1	0			
0	1	0	0			
0	1	1	0			
1	0	0	0			
1	0	1	0			
1	1	0	1			
1	1	1	1			
			'	'		1

Truth Table for Compound Proposition

▶ Construct a truth table for $(p \land q) \lor (\neg q \land r)$

p	q	r	$p \wedge q$	$ \neg q$	$\neg q \wedge r$	$(p \land q) \lor (\neg q \land r)$
0	0	0	0	1		
0	0	1	0	1		
0	1	0	0	0		
0	1	1	0	0		
1	0	0	0	1		
1	0	1	0	1		
1	1	0	1	0		
1	1	1	1	0		

Truth Table for Compound Proposition

► Construct a truth table for $(p \land q) \lor (\neg q \land r)$

p	q	r	$p \wedge q$	$\neg q$	$\neg q \wedge r$	$(p \land q) \lor (\neg q \land r)$
0	0	0	0	1	0	
0	0	1	0	1	1	
0	1	0	0	0	0	
0	1	1	0	0	0	
1	0	0	0	1	0	
1	0	1	0	1	1	
1	1	0	1	0	0	
1	1	1	1	0	0	

Truth Table for Compound Proposition

► Construct a truth table for $(p \land q) \lor (\neg q \land r)$

p	q	r	$p \wedge q$	$\neg q$	$ \neg q \wedge r$	$(p \wedge q) \vee (\neg q \wedge r)$
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	0	0	1

Logial Equivalence

▶ Recall that $\neg p \lor q$ and $p \to q$ are equivalent propositions

p	q	$\neg p \lor q$	$p \rightarrow q$	$ \mid (\neg p \lor q) \leftrightarrow (p \to q) $
0	0	1	1	
0	1	1	1	
1	0	0	0	
1	1	1	1	

Logial Equivalence

▶ Recall that $\neg p \lor q$ and $p \to q$ are equivalent propositions

p	q	$\neg p \lor q$	$p \rightarrow q$	$(\neg p \lor q) \leftrightarrow (p \to q)$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	1	1	1

Logial Equivalence

▶ Recall that $\neg p \lor q$ and $p \to q$ are equivalent propositions

p	q	$\neg p \lor q$	$p \rightarrow q$	$(\neg p \lor q) \leftrightarrow (p \to q)$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	1	1	1

► A proposition that always is true regardless of the truth values of its variables is called a *tautology*

A column consisting of all 1s represents a tautology

- ▶ If $p \leftrightarrow q$ is a tautlogy, p and q are equivalent propositions
- ▶ $p \Leftrightarrow q$ indicates that p and q represent equivalent propositions (i.e., $p \leftrightarrow q$ is a tautology)

Negating a Conjunction

- $ightharpoonup \neg (p \land q) \Leftrightarrow \neg p \lor \neg q ?$
- p = "I am tall" q = "I am smart"
- $\neg (p \land q)$ represents "I am not both tall and smart"
- $ightharpoonup \neg p \lor \neg q$ represents "I am not tall or I am not smart"
- ► The propositions will be true for some people and false for others, but both expressions will have the *same truth value* for the *same person*
- ▶ You can prove it with a truth table

Negating a Conjunction

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
0	0						
0	1						
1	0						
1	1						

Negating a Conjunction

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
0	0	0					
0	1	0					
1	0	0					
1	1	1					

Negating a Conjunction

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
0	0	0	1				
0	1	0	1				
1	0	0	1				
1	1	1	0				

Negating a Conjunction

I	D	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
(0	0	0	1	1			
(0	1	0	1	1			
	1	0	0	1	0			
	1	1	1	0	0			

Negating a Conjunction

0

1

Negating a Conjunction

Negating a Conjunction

Negating a Conjunction

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
0	0	0	1	1	1	1	1
0	1	0	1	1	0	1	1
1	0	0	1	0	1	1	1
1	1	1	0	0	0	0	1

▶ The tautology proves $\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$

Contradiction

$$p \wedge (\neg p \vee q) \wedge \neg q$$

p	q	$\neg p$	$\neg p \lor q$	$p \wedge (\neg p \vee q)$	$\neg q$	$p \wedge (\neg p \vee q) \wedge \neg q$
0	0					
0	1					
1	0					
1	1					

Contradiction

$$p \wedge (\neg p \vee q) \wedge \neg q$$

p	q	$\neg p$	$\neg p \lor q$	$p \wedge (\neg p \vee q)$	$\neg q$	$p \wedge (\neg p \vee q) \wedge \neg q$
0	0	1				
0	1	1				
1	0	0				
1	1	0				

Contradiction

$p \wedge (\neg p \vee q) \wedge \neg q$

p	q	$\neg p$	$\neg p \lor q$	$p \land (\neg p \lor q)$	$\neg q$	$p \land (\neg p \lor q) \land \neg q$
0	0	1	1			
0	1	1	1			
1	0	0	0			
1	1	0	1			

Contradiction

$$p \wedge (\neg p \vee q) \wedge \neg q$$

p	q	$\neg p$	$\neg p \lor q$	$p \wedge (\neg p \vee q)$	$\neg q$	$p \land (\neg p \lor q) \land \neg q$
0	0	1	1	0		
0	1	1	1	0		
1	0	0	0	0		
1	1	0	1	1		

Contradiction

$$p \wedge (\neg p \vee q) \wedge \neg q$$

p	q	$\neg p$	$ \neg p \lor q$	$p \wedge (\neg p \vee q)$	$\neg q$	$p \wedge (\neg p \vee q) \wedge \neg q$
0	0	1	1	0	1	
0	1	1	1	0	0	
1	0	0	0	0	1	
1	1	0	1	1	0	

Contradiction

$$p \wedge (\neg p \vee q) \wedge \neg q$$

p	q	$\neg p$	$\neg p \lor q$	$p \wedge (\neg p \vee q)$	$\neg q$	$p \wedge (\neg p \vee q) \wedge \neg q$
0	0	1	1	0	1	0
0	1	1	1	0	0	0
1	0	0	0	0	1	0
1	1	0	1	1	0	0

A column of all 0s represents a *contradiction*

Tautologies and Contradictions

- ► A proposition that is always true is a *tautology*
 - $\triangleright p \lor \neg p$ is always true regardless of the truth value of p
 - ► We represent a tautology as 1
- ► A proposition that can never be true under any circumstances is a *contradiction*
 - $\triangleright p \land \neg p$ is always false regardless of the truth value of p
 - ► We represent a contradiction as 0
- ▶ A proposition that can be either true of false is a *contingency*
 - ightharpoonup p
 ightharpoonup q is false if p is true and q is false; otherwise, it is true

Truth Table Facts

- ▶ A truth table with two variables has how many rows? 4
- ▶ A truth table with three variables has how many rows? 8
- ► A truth table with four variables has how many rows? 16
- ▶ A truth table with n variables has how many rows? 2^n
- ► A truth table with 2 variables can have how many unique columns?

A Full Truth Table

p	q	0	$b \lor d$	<i>b</i> ← <i>d</i>)_	р	$d \leftarrow b$) \vdash	ь	$b \oplus d$	$b \wedge d$	$b\Delta q$	$b \leftrightarrow d$	b	$d \leftarrow b$	d-	$b \leftarrow d$	p∑q	_
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Fundamental Laws of Logic

Commutative	$p \land q \Leftrightarrow q \land p$
	$p \lor q \Leftrightarrow q \lor p$
Associative	$p \land (q \land r) \Leftrightarrow (p \land q) \land r$
	$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$
Distributive	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
Identity	$p \wedge 1 \Leftrightarrow p$
	$p \lor 0 \Leftrightarrow p$
Negation	$p \land \neg p \Leftrightarrow 0$
	$p \lor \neg p \Leftrightarrow 1$
Idempotence	$p \land p \Leftrightarrow p$
	$p \lor p \Leftrightarrow p$
Null	$p \wedge 0 \Leftrightarrow 0$
	$p \lor 1 \Leftrightarrow 1$
Absorption	$p \land (p \lor q) \Leftrightarrow p$
	$p \lor (p \land q) \Leftrightarrow p$
DeMorgan's	$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$
	$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$
Involution	$\neg(\neg p) \Leftrightarrow p$

Inference Rules

- ▶ If $r \rightarrow s$ is a tautology, we say $r \rightarrow s$ is an *inference rule*
- Your author uses the notation $r \Rightarrow s$ to denote an inference rule
- ▶ Note that unlike an equivalence $(a \Leftrightarrow b)$, an inference rule $(a \Rightarrow b)$ goes only one direction

Inference Rules

Detachment	$(p \to q) \land p \Rightarrow q$
Indirect reasoning	$(p \to q) \land \neg q \Rightarrow \neg p$
Disjunctive addition	$p \Rightarrow p \lor q$
Conjunction	$p,q \Rightarrow p \land q$
Conjunctive simplification	$p \land q \Rightarrow p$
Disjunctive simplification	$(p \lor q) \land \neg p \Rightarrow q$
Chain rule	$(p \to q) \land (q \to r) \Rightarrow p \to r$
Conditional equivalence	$p o q \Leftrightarrow \neg p \lor q$
Biconditional equivalence	$p \leftrightarrow q \Leftrightarrow (p \to q) \land (q \to p)$
Contrapositive	$p o q \Leftrightarrow \neg q o \neg p$

Mathematical System

A mathematical system consists of

- ▶ a set or universe, *U*
- definitions—sentences that explain the meaning of concepts that relate to the universe
- axioms—assertions about the properties of the universe and rules for creating and justifying more assertions
- theorems—additional assertions derived from the axioms of the mathematical system

Propositional Calculus

- ▶ The logic we have covered so far is part of propositional calculus
- ► A theorem is a true proposition derived from the axioms of the system
- A theorem proved to be true is an extension of the axioms of the system
- ► Theorems are usually expressed as a finite number of premises (propositions) with a conclusion (a proposition) $p_1 \land p_2 \land p_3 \land \ldots \land p_n \Rightarrow C$

Proof

- ▶ Proof of a theorem: a finite sequence of logically valid steps that demonstrate that the premises of a theorem imply its conclusion
- ▶ The form of a proof can vary depending on its intended audience
- ▶ A proof in propositional calculus can be verified mechanically
- ► Truth tables are sufficient to prove theorems in propositional calculus, but they often are not convenient

Formal Proof

- ► A proof must end in a finite number of steps
- ► Each step must be either a premise or a proposition implied from previous steps using a valid equivalence or rule of inference; each step requires explicit justification
- ► For a direct proof, the last step must be the conclusion; for an indirect proof the last step must be a contradicion

Direct Proof

Theorem: $(p \rightarrow r) \land (q \rightarrow s) \land (p \lor q) \Rightarrow s \lor r$

Statement	Reason
1. $p \lor q$	premise
2. $\neg(\neg p) \lor q$	1, involution
3. $\neg p \rightarrow q$	2, conditional rule
4. $q \rightarrow s$	premise
5. $\neg p \rightarrow s$	3, 4, chain rule
6. $\neg s \rightarrow \neg (\neg p)$	5, contrapositive
7. $\neg s \rightarrow p$	6, involution
8. $p \rightarrow r$	premise
9. $\neg s \rightarrow r$	7, 8, chain rule
10. $\neg(\neg s) \lor r$	9, conditional rule
11. $s \vee r$	10, involution ■

Direct Proof (Extra detail)

Theorem: $(p \rightarrow r) \land (q \rightarrow s) \land (p \lor q) \Rightarrow s \lor r$

	Statement	Reason
1.	$p \lor q$	premise
2.	$\neg(\neg p)\lor q$	1, involution
3.	eg p o q	2, conditional rule
4.	$q \rightarrow s$	premise
5.	$(\neg p \to q) \land (q \to s)$	3, 4, conjunction
6.	$\neg p \rightarrow s$	5, chain rule
7.	$\neg s \rightarrow \neg (\neg p)$	6, contrapositive
8.	$\neg s \rightarrow p$	7, involution
9.	$p \rightarrow r$	premise
10.	$(\neg s \to p) \land (p \to r)$	8, 9, conjunction
11.	$\neg s \rightarrow r$	10, chain rule
12.	$\neg(\neg s) \lor r$	11, conditional rule
13.	$s \vee r$	12, involution ■

Direct Proof

Theorem: $(\neg p \lor q) \land (s \lor p) \land \neg q \Rightarrow s$

	Statement	Reason
1.	$\neg p \lor q$	premise
2.	$\neg q$	premise
3.	$\neg p$	1, 2, disjunctive simplification
4.	$s \vee p$	premise
5.	S	3, 4, disjunctive simplification ■

Worksheet Problem #1

Theorem: $(p \rightarrow q) \land (\neg p \rightarrow q) \Rightarrow q$

	Statement	Reason
1.	p o q	premise
2.	eg p o q	premise
3.	$\neg q \rightarrow \neg p$	1, contraposition
4.	eg q o q	2, 3, chain rule
5.	$\neg(\neg q)\lor q$	4, conditional equivalence
6.	$q \lor q$	5, involution
7.	q	6, idempotence

Worksheet Problem #2

Theorem: $\neg(a \land b) \land \neg(\neg c \land a) \land \neg(c \land \neg b) \Rightarrow \neg a$

	Statement	Reason
1.	$\neg(a \land b)$	premise
2.	$\neg(\neg c \land a)$	premise
3.	$\neg(c \land \neg b)$	premise
4.	$\neg a \lor \neg b$	1, de Morgan's law
5.	$\neg b \lor \neg a$	4, commutative law
6.	$b \rightarrow \neg a$	5, conditional equivalence
7.	$\neg(\neg c) \lor \neg a$	2, de Morgan's law
8.	$\neg c \rightarrow \neg a$	7, conditional equivalence
9.	$\neg c \lor \neg (\neg b)$	3, de Morgan's law
10.	$\neg(\neg b) \lor \neg c$	9, commutative law
11.	$\neg b \rightarrow \neg c$	10, conditional equivalence
12.	$\neg b \rightarrow \neg a$	8, 11, chain rule
13.	$(b \to \neg a) \land (\neg b \to \neg a)$) 6, 12, conjunction
14.	$\neg a$	13, Worksheet Problem #1

A Useful Equivalence

A Useful Equivalence

p	h	с	$p \to (h \to c) \leftrightarrow (p \land h) \to c$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Conditional Conclusions

- ▶ When the conclusion of a theorem is a conditional proposition, the premise of the condition can be added as a premise in the proof of the theorem
- $\blacktriangleright \ p \to (h \to c) \Leftrightarrow (p \land h) \to c$

Conditional Conclusions

$$[p \to (q \to s)] \land (\neg r \lor p) \land q \Rightarrow r \to s$$
$$[p \to (q \to s)] \land (\neg r \lor p) \land q \land r \Rightarrow s$$

	Statement	Reason
1.	$\neg r \lor p$	premise
2.	r	added premise
3.	p	1, 2, disjunctive simplification
4.	$p \rightarrow (q \rightarrow s)$	premise
5.	$q \rightarrow s$	3, 4, detachment
6.	q	premise
7.	S	5, 6, detachment ■

Validity of Verbal Arguments

- ➤ You can check the validity of a verbal argument (sales pitch, political speech, etc.) using the tools we have seen so far, as long as the argument uses simple declarative statements
- Consider the following announcement made by a government official:

If the interest rates drop, the housing market will improve. Either the federal discount rate will drop or the housing market will not improve. Interest rates will drop; therefore, the federal discount rate will drop.

- Use the following variables to represent the individual propositions:
 - r: Interest rates will drop.
 - ▶ h: The housing market will improve.
 - ▶ *f*: The federal discount rate will drop.

to produce $(r \rightarrow h) \land (f \lor \neg h) \land r \Rightarrow f$

Validity of Verbal Arguments

- Use the following variables to represent the individual propositions:
 - r: Interest rates will drop.
 - ▶ *h*: The housing market will improve.
 - ▶ *f*: The federal discount rate will drop.

to produce $(r \rightarrow h) \land (f \lor \neg h) \land r \Rightarrow f$

	Statement	Reason
1.	$r \rightarrow h$	premise
2.	$f \vee \neg h$	premise
3.	r	premise
4.	$\neg h \lor f$	2, commutative
5.	$h \rightarrow f$	4, conditional equivalence
6.	$r \rightarrow f$	1, 5, chain rule
7.	f	3, 6, detachment

Proof by Contradiction

- ► As known as an *indirect proof*
- Stategy: Show that the premises coupled with the negation of the conclusion lead to a contradiction
- ► The contradiction can appear in various forms:
 - ► For proofs involving propositional calculus: a proposition of the form $p \land \neg p$
 - For proofs involving numbers: 0 = 1 or 0 < 0
 - For proofs involving sets: $x \in \emptyset$ or $x \in S \land x \in S^C$

Proof by Contradiction Justification

- ► Consider a theorem $P \Rightarrow C$, where P represents the premises $p_1 \land p_2 \land \ldots \land p_n$
- $\blacktriangleright \ (P \land \neg C \to 0) \to (P \to C)$

		I	ı	ı	I	1	$(P \land -C \land 0)$
P	C	$\neg C$	$P \wedge \neg C$	0	$P \land \neg C \rightarrow 0$	$P \rightarrow C$	$ (P \land \neg C \to 0) $ $\to (P \to C) $
0	0	1	0	0	1	1	1
0	1	0	0	0	1	1	1
1	0	1	1	0	0	0	1
1	1	0	0	0	1	1	1

Proof by Contradiction

Theorem: $(p \to r) \land (q \to s) \land (p \lor q) \Rightarrow s \lor r$

Statement	Reason
1. $\neg (s \lor r)$	negated conclusion
2. $\neg s \land \neg r$	1, DeMorgan's law
3. ¬ <i>s</i>	2, conjunctive simplification
4. $q \rightarrow s$	premise
5. ¬ <i>q</i>	3, 4, indirect reasoning
6. ¬ <i>r</i>	2, conjunctive simplification
7. $p \rightarrow r$	premise
8. $\neg p$	6, 7, indirect reasoning
9. $\neg p \land \neg q$	5, 8, conjunction
10. $\neg (p \lor q)$	9, DeMorgan's law
11. $p \vee q$	premise
12. $\neg (p \lor q) \land (p \lor q)$	10, 11, conjunction
13. 0	12, negation $\rightarrow \leftarrow$

Higher-level Proofs

- ► Most mathematicians write proofs at a higher level than the proofs we have seen so far
- ► The difference is like the difference between programming in a higher-level language vs. assembly language programming
- Most proofs consist largely of natural language text (like English) and do not explicitly mention the inference rules involved
- ▶ Prove that the sum of any two odd numbers is even

Background for Proof

Prove that the sum of any two odd numbers is even

- We need to establish some definitions and facts that go beyond those we have seen so far:
 - ► Only integers may be classified as even or odd
 - ► Any even number may be expressed as 2k, for some integer k. Even numbers are multiples of two.
 - Any odd number many be expressed as 2k + 1, for some integer k. Odd numbers are not multiples of two.
 - ► The set of integers is closed under addition. This means if you add any two integers the result is guaranteed to be an integer.
 - ► The set of integers is closed under multiplication. This means if you multiply any two integers the result is guaranteed to be an integer.
 - ► The normal rules of algebra apply.

The Proof

Prove that the sum of any two odd numbers is even

Let m and n be any two odd integers. There exist $k, p \in \mathbb{Z}$ such that m = 2k + 1, and n = 2p + 1. (Why use two different variables, k and p?)

$$m+n = (2k+1)+(2p+1)$$

$$= 2k+2p+1+1$$

$$= 2k+2p+2$$

$$= 2(k+p+1)$$

k+p+1 is an integer because the set of integers is closed under addition. Thus, the sum of any two odd numbers is an even number.

Proof by Contradiction

- Prove that $\sqrt{2}$ is irrational.
- ► Background: An irrational number is a number that may not be represented as the ratio of two integers
 - Examples include π , e, and $\sqrt{2}$

The product of two even numbers is even, and the product of two odd numbers is odd.

➤ To prove by contradiction, we will assume the conclusion is false and produce a contradiction

Prove $\sqrt{2}$ is Irrational

Suppose $\sqrt{2}$ is rational. Let $\sqrt{2} = \frac{m}{n}$, where $m, n \in \mathbb{Z}$, and $n \neq 0$.

Further, let $\frac{m}{n}$ be a fraction reduced the lowest terms (this means m and n have no common factors except 1).

Square both sides of the equation to obtain

$$2 = \frac{m^2}{n^2}$$

Multiplying both sides by n^2 yields

$$2n^2 = m^2$$

Thus, m is an even number, because the product of two odd numbers is odd. Since m is even, we can express it as m = 2k, for some integer k.

Prove $\sqrt{2}$ is Irrational

Since m = 2k, for some integer k, we can rewrite

$$2n^2 = m^2$$

as

$$2n^2 = (2k)^2$$

or

$$2n^2 = 4k^2$$

Dividing both sides by 2 produces

$$n^2 = 2k^2$$

which means n is an even number. Since both m and n are even, they have a common factor of 2, and this contradicts the premise that $\frac{m}{n}$ is a fraction reduced to lowest terms. $\rightarrow \leftarrow$

Proof by Contradiction (2)

- ▶ Prove the following theorem: If x + x = x, then x = 0.
- ▶ To produce a contradiction, assume x + x = x and $x \neq 0$.

$$2x = x$$

$$\frac{2x}{x} = \frac{x}{x}$$

x + x = x

Premise

Combine like terms

 $\frac{x}{x} = \frac{x}{x}$ Divide both sides by a non-zero number

 $=\frac{\cancel{x}}{\cancel{x}}$ Cancel equal factors

 $\rightarrow \leftarrow$

Mathematical Induction

- Some have said this is only kind of proof that computer scientists can do
 - ► (This is an exageration)
- Mathematical induction is valuable for proving theorems about positive integers
 - Or just about anything that in some way ties into positive integers
 - Perhaps surprisingly, many things that computer scientists do relate somehow to the positive integers
- ▶ A proof using mathematical induction is a two step process:
 - basis
 - induction

Mathematical Induction

- ► A proof using mathematical induction is a two step process:
 - basis
 - induction
- ▶ To show that property P(n) is true for all positive integers:
 - ightharpoonup Show P(1); that is, show the property is true for 1 (basis)
 - Show that for an arbitrary integer k, $P(k) \rightarrow P(k+1)$ (induction)
- ► The basis step is almost always trivial.
- ► The induction step usually is more interesting

Induction Example

Prove:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Basis (Show P(1))

$$\sum_{i=1}^{1} i = 1 = \frac{2}{2} = \frac{1 \cdot 2}{2} = \frac{1(1+1)}{2}$$

▶ **Induction** (Show $P(k) \rightarrow P(k+1)$

$$\begin{split} \sum_{i=1}^{k+1} i &= \sum_{i=1}^{k} i + \sum_{i=k+1}^{k+1} i = \sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1) \\ &= \frac{k(k+1)}{2} + \frac{2k}{2} + \frac{2}{2} = \frac{k(k+1) + 2k + 2}{2} \\ &= \frac{k^2 + k + 2k + 2}{2} = \frac{k^2 + 3k + 2}{2} = \frac{(k+1)(k+2)}{2} \\ &= \frac{(k+1)([k+1] + 1)}{2} \end{split}$$

Non-inductive Proof

Prove:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Let
$$s = \sum_{i=1}^{n} i$$

$$s = 1 + 2 + 3 + \dots + (n-2) + (n-1) + n$$

+ $s = n + (n-1) + (n-2) + \dots + 3 + 2 + 1$

$$2s =$$

$$(n+1)+(n-1+2)+(n-2+3)+\dots(n-2+3)+(n-1+2)+(n+1)$$

$$2s = (n+1) + (n+1) + (n+1) + \dots + (n+1) + (n+1) + (n+1)$$

How many terms? n

$$2s = n(n+1)$$
$$s = \frac{n(n+1)}{2}$$

Ladder Analogy

► The concept of mathematical induction is analogous to climbing a ladder

Ladder Analogy

- ► The concept of mathematical induction is analogous to climbing a ladder
- ► Proving the basis step indicates that you can get on the first rung of the ladder

Ladder Analogy

- ► The concept of mathematical induction is analogous to climbing a ladder
- ► Proving the basis step indicates that you can get on the first rung of the ladder
- Proving the induction step indicates that if you are on any rung of the ladder, you can get to the next rung of the ladder

Ladder Analogy

- ► The concept of mathematical induction is analogous to climbing a ladder
- ► Proving the basis step indicates that you can get on the first rung of the ladder
- Proving the induction step indicates that if you are on any rung of the ladder, you can get to the next rung of the ladder
- ➤ Together the two parts show that you climb to any rung of the ladder as high as you wish

Fence Example

► A fence is built by connecting fence segments to fence posts

- ► The length of a fence is determined by the number of segments it contains
- ▶ Prove that any fence built with n segments will contain n+1 fenceposts.

Fence Example Proof—Basis

Basis

A fence containing one segment contains two posts

▶ Consider a fence that contains k+1 segments.

Fence Example Proof—Induction

- ► Induction
- \triangleright Consider a fence that contains k+1 segments.

- \triangleright Embedded within a k+1 long fence is a fence of length k.
- The fence of length k+1 adds one segment and one fencepost to the fence of length k so the number of fenceposts in a fence of length k+1 is the number of fenceposts in a fence of length k, plus one.
- ▶ By the inductive hposthesis, the number of fenceposts in the fence of length k is k+1, so the number of fenceposts in the fence of length k+1 is (k+1)+1. ■

Induction on Inequalities

When proving x = y we use a chain of equalities beginning at x and ending at y:

$$x = \dots = y$$

Proving that x < y, $x \le y$, x > y, or $x \ge y$ is a little different.

- ▶ For example, to show $x \le y$, we use a chain of expressions as before, but we may use = and \le to connect the expressions.
- ▶ For example, to show x < y, we use a chain of expressions as before, but we may use =, \leq , and < to connect the expressions.

Review:

- \triangleright $x \le x + a$, if $a \ge 0$
- \triangleright x < x + a, if a > 0
- \triangleright x < ax, if a > 1
- \triangleright x < ax, if a > 1

Induction Example

Prove:

$$5n^2 + n + 10 < n^3$$
, for all $n \ge 6$

Basis (Show P(6))

$$5 \cdot 6^2 + 6 + 10 = 5 \cdot 36 + 16 = 180 + 16 = 196 < 216 = 6^3$$

▶ **Induction** (Show $P(k) \rightarrow P(k+1)$)

$$5(k+1)^{2} + (k+1) + 10 = 5(k^{2} + 2k + 1) + k + 1 + 10$$

$$= 5k^{2} + 10k + 5 + k + 1 + 10$$

$$= 5k^{2} + k + 10 + 10k + 5 + 1$$

$$= 5k^{2} + k + 10 + 10k + 6$$

$$< k^{3} + 10k + 6 \quad \text{(Inductive hypothesis)}$$

$$\leq k^{3} + 10k + k \quad (k \geq 6)$$

$$= k^{3} + 11k$$

$$< k^{3} + 18k$$

Induction Example (continued)

▶ **Induction** (Show $P(k) \rightarrow P(k+1)$)

$$5(k+1)^{2} + (k+1) + 10 = 5(k^{2} + 2k + 1) + k + 1 + 10$$

$$= 5k^{2} + 10k + 5) + k + 1 + 10$$

$$= 5k^{2} + k + 10 + 10k + 5 + 1$$

$$= 5k^{2} + k + 10 + 10k + 6$$

$$< k^{3} + 10k + 6$$

$$\le k^{3} + 10k + k$$

$$= k^{3} + 11k$$

$$< k^{3} + 18k$$

$$= k^{3} + 3 \cdot 6 \cdot k$$

$$\le k^{3} + 3 \cdot k \cdot k \quad (k \ge 6)$$

$$= k^{3} + 3k^{2}$$

$$< k^{3} + 3k^{2} + 3k + 1$$

$$= (k+1)^{3} \blacksquare$$

Quantifiers

- ► Existential quantifier (∃)
 - there exists
 - ▶ $(\exists x)[P(x)]$ means there is at least one element in the set for which property P is true
 - \blacktriangleright ($\exists k \in \mathbb{Z}$)(3k = 102) says that 102 is a multiple of three (true statement)
 - \blacktriangleright ($\exists k \in \mathbb{Z}$)($\exists k = 100$) says that 100 is a multiple of three (false statement)
 - We can write $(\exists k \in \mathbb{Z})(3k = 100)$
- ▶ When the set of interest, sometimes called *domain of discourse*, is understood, we can omit the set associated with the quantifier: $(\exists k)(3k = 102)$

Quantifiers

- ► Universal quantifier (∀)
 - for all
 - $(\forall x)[P(x)]$ means that property *P* is true for every element in the set
 - $\forall x \in \mathbb{R}$) $(x^2 \ge 0)$
 - $(\forall n \in \mathbb{Z})(n+0=n=0+n)$
- ▶ When the domain of discourse is understood, we can omit the set associated with the quantifier: $(\forall x)(x^2 \ge 0)$

Quantifiers

- Let the universal set *U* be everything in the world
- Let P(x) mean "x is a parrot"
- Let G(x) mean "x is green"
- ► How do we express the following? "All parrots are green"
- \blacktriangleright $(\forall x \in U)[P(x) \land G(x)]$
 - "Everything in the world is a green parrot"
- $(\forall x \in U)[P(x) \to G(x)]$
 - ► "Anything that is a parrot must be green"
- ightharpoonup Almost always, \rightarrow and \forall work together
 - ▶ Almost never, \land and \forall go together

Quantifiers

- Let the universal set *U* be everything in the world
- \blacktriangleright Let P(x) mean "x is a parrot"
- \blacktriangleright Let G(x) mean "x is green"
- ► How do we express the following? "There is a green parrot"
- \blacktriangleright $(\exists x \in U)[P(x) \to G(x)]$
 - ▶ This is equivalent to $(\exists x \in U)[\neg P(x) \lor G(x)]$
 - ► "Something exists in the world that is not a parrot or is green"
 - ▶ Because of the ∨ this is true as long as you can find something (x) in the world that is not a parrot!
- \blacktriangleright $(\exists x \in U)[P(x) \land G(x)]$
 - ► "Something exists in the world that is both a parrot and green"
- \triangleright Almost always, \land and \exists work together
 - ▶ Almost never, \rightarrow and \exists go together

Negating Quantifiers

- $\neg \{(\forall x)[P(x)]\} \Leftrightarrow (\exists x)[\neg P(x)]$
- Let A be the set of all animals
 - \blacktriangleright W(x) means x lives in water
 - \triangleright F(x) means x is a fish
 - ► Is the following statement true? $(\forall x \in A)[W(x) \to F(x)]$
 - ▶ No. Consider dolphins, and other sea mammals
 - ► The following **is** true:

$$\neg \{ (\forall x \in A)[W(x) \to F(x)] \}$$

$$\neg \{ (\forall x \in A)[W(x) \to F(x)] \} \Leftrightarrow (\exists x \in A) \{ \neg [W(x) \to F(x)] \}$$

$$\Leftrightarrow (\exists x \in A) \{ \neg [\neg W(x) \lor F(x)] \}$$

$$\Leftrightarrow (\exists x \in A) \{ [W(x) \land \neg F(x)] \}$$

Negating Quantifiers

- $ightharpoonup \neg \{(\exists x)[P(x)]\} \Leftrightarrow (\forall x)[\neg P(x)]$
- Let H be the set of all humans alive today
 - ightharpoonup T(x) means x is taller than six feet
 - \triangleright C(x) means x is less than one year old
 - Is the following statement true? $(\exists x \in H)[T(x) \land C(x)]$
 - ► No.
 - The following **is** true: $\neg \{(\exists x \in H)[T(x) \land C(x)]\}$

$$\neg \{ (\exists x \in H)[T(x) \land C(x)] \} \quad \Leftrightarrow \quad (\forall x \in H) \{ \neg [T(x) \land C(x)] \}$$
$$\Leftrightarrow \quad (\forall x \in H)[\neg T(x) \lor \neg C(x)]$$
$$\Leftrightarrow \quad (\forall x \in H)[T(x) \to \neg C(x)]$$

Multiple Quantifiers

- ► Multiple variables require multiple qualifiers
 - $P(x,y) \text{ could mean } x^2 y^2 = (x+y)(x-y)$
 - This is true for all real numbers x and y
 - $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})[x^2 y^2 = (x + y)(x y)]$
- You may arrange multiple universal quantifiers in any order without changing the logical meaning:
 - $(\forall x)(\forall y)[P(x,y)] \Leftrightarrow (\forall y)(\forall x)[P(x,y)]$
- ightharpoonup P(x,y) could mean x+y=4 and x-y=2
 - ▶ This is true for only two real numbers, x = 3 and y = 1
 - $(\exists x \in \mathbb{R})(\exists y \in \mathbb{R})[(x+y=4) \land (x-y=2)]$
- You may arrange multiple existential quantifiers in any order without changing the logical meaning:
 - $(\exists x)(\exists y)[P(x,y)] \Leftrightarrow (\exists y)(\exists x)[P(x,y)]$

Mixing Universal and Existential Quantifiers

- Order matters
- Consider the set *P* consisting of all the people in the world. Let likes (*x*, *y*) mean "*x* likes *y*." Interpret each of the following statements:
 - $\forall x \in P$)($\exists y \in P$)[likes(x, y)]
 - "Everyone likes somebody"
 - \vdash $(\exists y \in P)(\forall x \in P)[\text{likes}(x,y)]$
 - ► "There is somebody that everyone likes"
 - ► These are not the same
 - $(\exists x \in P) (\forall y \in P) [likes(x, y)]$
 - ► "There is somebody that likes everyone"
- $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x+y=0=y+x)$
 - For every integer (x) you can find an integer (y) such that the sum of the two is zero (x+y=0).
 - Every integer has an additive inverse: x + (-x) = 0 = (-x) + x
- $(\exists y \in \mathbb{Z})(\forall x \in \mathbb{Z})(x+y=0=y+x)$
 - ► There is an integer (y) that may be added to any integer (x) to produce zero.
 - There is no such integer that works for any integer

Proof Methods

- ▶ Theorems in mathematics are expressed in one of two ways:
 - If P, then C $P \Rightarrow C$
 - ightharpoonup P if and only if C $P \Leftrightarrow C$
 - ▶ In order to prove $P \Leftrightarrow C$, we must prove $(P \Rightarrow C) \land (C \Rightarrow P)$
- ▶ Ways to prove $P \Rightarrow C$:
 - ▶ **Direct**: Assume *P* is true and deduce *C*
 - ▶ Indirect (proof by contradiction): Assume *P* is true and *C* is false and derive a contradiction to a premise, theorem, or other basic concept

Exhaustive Proof

- ▶ If the theorem involves a small, finite number of cases, an exhaustive proof may be possible
 - ▶ Demonstrate the theorem's correctness in all possible cases
- ▶ Prove: $(\forall m \in \mathbb{N})(\forall n \in \mathbb{N})[(m < 4 \land n < 4) \rightarrow (m \cdot n < 10)]$
 - ▶ Build a multiplication table

Dana a manapireano				
	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	4	6
3	0	3	6	9

▶ Most interesting theorems deal with properties of infinite sets like \mathbb{N} , \mathbb{Z} , and \mathbb{R}

Examples and Counterexmples

- ► Unless an exhaustive enumeration of all the cases is possible, "proof by example" is **not** a proof!
 - Prove: The sum of two integers equals the product of those two integers
 - Example: $2+2=4=2 \cdot 2$; therefore, the sum of two integers equals the product of those integers
 - ► Is this true in general?
 - No. $2+3=5\neq 6=2\cdot 3$
- We cannot use an example to prove a theorem, but we use an example to disprove a proposed theorem
- An example that disproves a proposed theorem is called a counterexample
- A counterexample is an easy way to disprove a theorem, but a counterexample may not always be easy to find

Examples and Counterexmples

- Examples provide evidence that a theorem may be true
- Examples may suggest a strategy for constructing a proof, but do not constitute a proof
- ► Prove or disprove that all numbers in the sequence 12, 121, 1211, 12111, 121111, 1211111,... are composite
 - ▶ A composite number has factors (divisors) other than 1 and itself
 - Try some examples and perhaps find a quick counterexample:

-		Y Y Y
1	12	$3 \cdot 4$
2	121	$11 \cdot 11$
3	1211	$7 \cdot 173$
4	12111	$3 \cdot 4,037$
5	121111	281 · 431
6	1211111	$11 \cdot 110,101$
7	12111111	$3 \cdot 4,037,037$
8	121111111	11 · 11,010,101
9	1211111111	7 · 173,015,873
10	12111111111	3 · 4,037,037,037

► Looking good!

Examples and Counterexmples

- Prove or disprove that all numbers in the sequence 12, 121, 1211, 12111,... are composite
 - Try some examples:

1	12	3 · 4
2	121	$11 \cdot 11$
3	1211	$7 \cdot 173$
4	12111	$3 \cdot 4,037$
5	121111	281 · 431
6	1211111	$11 \cdot 110,101$
7	12111111	$3 \cdot 4,037,037$
8	121111111	11 · 11,010,101
9	1211111111	7 · 173,015,873
10	12111111111	3 · 4,037,037,037

- ► Write a computer program to check
- ▶ But . . .

is a prime number (not composite)