Inductive Specification

Exercise 1.1

1.
$$\{3n + 2 \mid n \in N\}$$

Definition (top-down) A natural number n is in S if and only if

1.
$$n = 2$$
, or

2.
$$n$$
 − 3 ∈ S .

Definition (bottom-up) *Define the set S to be the smallest set contained in N and satisfying the following two properties:*

- *1.* 2 ∈ S, and
- 2. *if* n ∈ S, *then* n + 3 ∈ S.

Definition (rules of inference)

$$2 \in S$$

$$\frac{n \in S}{n+3 \in S}$$

We generate some elements of *S*.

- 1. $2 \in S$.
- 2.

$$\frac{2 \in S}{(2+3) \in S}$$

3.

$$\frac{5 \in S}{(5+3) \in S}$$

2.
$$\{2n + 3m + 1 \mid n, m \in N\}$$

Definition (top-down) *Natural numbers n, m are in S if and only if*

- 1. n + m = 1, or
- 2. n − 2 ∈ S, or
- 3. m − 3 ∈ S.

Definition (bottom-up) *Define the set S to be the smallest set contained in N and satisfying the following three properties:*

- *1.* 1 ∈ S, and
- 2. if $n \in S$, then $n + 2 \in S$, and
- 3. if $m \in S$, then $m + 3 \in S$.

Definition (rules of inference)

$$1 \in S$$

$$\frac{n \in S}{(n+2) \in S}$$

$$\frac{m \in S}{(m+3) \in S}$$

We generate some elements of *S*.

- 1. $1 \in S$.
- 2.

$$\frac{1 \in S}{(1+2) \in S}$$

3.

$$\frac{3 \in S}{(3+2) \in S}$$

4.

$$\frac{5 \in S}{(5+2) \in S}$$

We could have derived $7 \in S$ in a different manner.

$$\frac{1 \in S}{(1+3) \in S}$$
$$(4+3) \in S$$

3.
$$\{(n,2n+1)|n\in N\}$$

Definition (top-down) A pair p of natural numbers n is in the set S if and only if

1. the first