

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/018524

International filing date: 10 June 2004 (10.06.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US
Number: 60/320,262
Filing date: 12 June 2003 (12.06.2003)

Date of receipt at the International Bureau: 16 August 2004 (16.08.2004)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

1204566

UNITED STATES GOVERNMENT PRINTING OFFICE
THE GREAT SEAL OF THE UNITED STATES PRESENTS: STANIS, GENEVA

"TO AN INVENTOR OR OTHER PERSON PRESENTS: STANIS, GENEVA,

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

August 09, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE.

APPLICATION NUMBER: 60/320,262
FILING DATE: June 12, 2003
RELATED PCT APPLICATION NUMBER: PCT/US04/18524

Certified by

Jon W Dudas

Acting Under Secretary of Commerce
for Intellectual Property
and Acting Director of the U.S.
Patent and Trademark Office

**Electronic Filing System (EFS) Data
Electronic Patent Application Submission
USPTO Use Only**

EFS ID: 41786
Application ID: 60320262
Title of Invention: 2-difluoromethylphenyl-
containing substrates for an
analyte dependent enzyme
activation system
First Named Inventor: Mark Bobrow
Domestic/Foreign Application: Domestic Application
Filing Date: 2003-06-12
Effective Receipt Date: 2003-06-12
Submission Type: Provisional Application
Filing Type: new-utility
Confirmation number: 1407
Attorney Docket Number: NONE

Total Fees Authorized: 160.0
Payment Category: Credit Card
Credit Card Number: ****6836
Expiration Date: 01312006
Card Holder Name: Tom Mullinax
Postal Code: 02118
RAM Payment Status: RAM success
RAM User ID: EFSPROD
RAM Accounting Date: 2003-06-12
RAM Sequence Number: 710386

Digital Certificate Holder: Not trusted entity.
Certificate Message Digest: 1f8bec35b5d173fd2de56258df6141f92dcbf981

02499 USPTO pro
60/320262
06/12/03

TRANSMITTAL

Electronic Version v1.1
Stylesheet Version v1.1.0

Title of Invention	2-difluoromethylphenyl-containing substrates for an analyte dependent enzyme activation system
Application Number:	
Date:	
First Named Applicant: Dr. Mark Norman Bobrow	
Confirmation Number:	
Attorney Docket Number:	

I hereby certify that the use of this system is for OFFICIAL correspondence between patent applicants or their representatives and the USPTO. Fraudulent or other use besides the filing of official correspondence by authorized parties is strictly prohibited, and subject to a fine and/or imprisonment under applicable law.

I, the undersigned, certify that I have viewed a display of document(s) being electronically submitted to the United States Patent and Trademark Office, using either the USPTO provided style sheet or software, and that this is the document(s) I intend for initiation or further prosecution of a patent application noted in the submission. This document(s) will become part of the official electronic record at the USPTO.

Submitted by:	Elec. Sign.	Sign. Capacity
Dr. Leslie Levine Registered Number: 35245	LL549-3	Attorney

Documents being submitted	Files
us-request	CARDP-usreq.xml us-request.dtd
us-fee-sheet	us-request.xsl CARDP-usfees.xml us-fee-sheet.xls
application-body	us-fee-sheet.dtd CARDAP1-trans.xml

us-application-body.xsl
application-body.dtd
wipo.ent
mathml2.dtd
mathml2-qname-1.mod
isoamsa.ent
isoamsb.ent
isoamsc.ent
isoamsn.ent
isoamso.ent
isoamsr.ent
isogr3.ent
isomfrk.ent
isomopf.ent
isomscr.ent
isotech.ent
isobox.ent
isocyr1.ent
isocyr2.ent
isodia.ent
isolat1.ent
isolat2.ent
isonum.ent
isopub.ent
mmlextra.ent
mmlalias.ent
soextblk.dtd
Fig1c.tif

Comments

FEE TRANSMITTAL

Electronic Version v08
 Stylesheet Version v08.0

Title of Invention	2-difluoromethylphenyl-containing substrates for an analyte dependent enzyme activation system
Application Number:	
Date:	
First Named Applicant: Dr. Mark Norman Bobrow	
Attorney Docket Number:	

TOTAL FEE AUTHORIZED \$160

Patent fees are subject to annual revisions on or about October 1st of each year.

Filing as large entity

BASIC FILING FEE

Fee Description	Fee Code	Amount \$	Fee Paid \$
Provisional Filing Fee	1005	160	160
Subtotal For Basic Filing Fee: \$160			

AUTHORIZED BILLING INFORMATION

The commissioner is hereby authorized to charge indicated fees and credit any overpayments to:

Credit account number: 6836

Expiration Date (YYYYMMDD): 2006-01-31

Authorized name: Tom Mullinax

Billing address: 02118

APPLICATION DATA SHEET

Electronic Version v14
Stylesheet Version v14.0

Title of Invention

2-difluoromethylphenyl-containing substrates for an analyte dependent enzyme activation system

Application Type: provisional, utility

Correspondence address:

Customer Number:

36761

Inventor Information:

Inventor 1:

Applicant Authority Type: Inventor

Citizenship: US

Name prefix: Dr.

Given Name: Mark

Middle Name: Norman

Family Name: Bobrow

City of Residence: Lexington

State of Residence: MA

Country of Residence: US

Address-1 of Mailing Address: 11 Battle Green Rd.

Address-2 of Mailing Address:

City of Mailing Address: Lexington

State of Mailing Address: MA

Postal Code of Mailing Address:

Country of Mailing Address: US

Phone:

Fax:

E-mail:

Electronic Version

Stylesheet Version v1.1.1

Description

2-difluoromethylphenyl-containing substrates for an analyte dependent enzyme activation system

DETAILED DESCRIPTION

[0001] Catalyzed reporter deposition (CARD) is a novel method of signal amplification which constitutes the subject matter of U.S. Pat. Nos. 5,731,158, 5,583,001 and 5,196,306. It is also discussed, and assays described in Bobrow et al., *Journal of Immunological Methods*, 125: 279-285 (1989) and in Bobrow et al., *Journal of Immunological Methods*, 137:103-112 (1991).

[0002] The CARD method utilizes an analyte-dependent enzyme activation system ("ADEAS") to catalyze the deposition of reporter or hapten groups (labels) onto a solid phase or proteins. These enzymatically deposited labels are detected directly or indirectly, resulting in signal amplification and improved detection limits. In the previously disclosed references, a peroxidase was the preferred enzyme.

[0003] The present invention involves methods and compounds for use with hydrolytic enzymes such as esterases, alkaline phosphatase and beta-galactosidase. These methods offer advantages over peroxidase based methods in that they are slower and more linear, allowing for greater

control and dynamic range.

[0004] As disclosed herein, the present invention relates to the use of 2-difluoromethylphenyl-containing compounds incorporated into hydrolase substrates. The term analyte dependent enzyme activation system (ADEAS) refers to an enzyme system wherein (i) at least one enzyme is coupled, in any manner known to those skilled in the art, to a member of a specific binding pair, or (ii) the enzyme need not be coupled to a member of a specific binding pair when it is the analyte. The enzyme, either by itself or in connection with a second enzyme, catalyzes the formation of a reactive intermediate which then is deposited wherever there is a receptor for the reactive intermediate.

[0005] The term surface as used herein means any solid support or phase known to those skilled in the art including, but not limited to cells, tissues, membranes, slides, beads and the surface of proteins.

[0006] The term amplification as used herein means amplification of reporter signal.

[0007] The term reactive intermediate means the 2-difluoromethylphenyl-containing compounds have been primed by the enzyme to bind to the receptor.

[0008] The term receptor means a site which will bind to the reactive intermediate through the formation of a covalent bond.

[0009]

The term detectably labeled means that the 2-difluoromethylphenyl-

containing compounds, in addition to the substrate characteristics, are coupled to a reporter or an unlabeled first member of a specific binding pair. In the case in which the compound is coupled to an unlabeled member of a specific binding pair, after the reactive intermediate is covalently bound to the receptor, the substrate-specific binding pair complex is reacted with the second member of the binding pair which is coupled to a reporter.

[0010] Members of specific binding pairs suitable for use in practicing the invention can be of the immune or non-immune type. Immune specific binding pairs are exemplified by antigen/antibody systems or hapten/anti-hapten systems such as dinitrophenyl (DNP)-anti-DNP. The antibody member, whether polyclonal, monoclonal or an immunoreactive fragment thereof, of the binding pair can be produced by customary methods familiar to those skilled in the art. The terms immunoreactive antibody fragment or immunoreactive fragment mean fragments which contain the binding region of the antibody. Such fragments may be Fab type fragments which are defined as fragments devoid of the Fc portion, e.g., Fab, Fab' and F(ab')₂ fragments, or may be so-called "half molecule" fragments obtained by reductive cleavage of the disulfide bonds connecting the heavy chain components of the intact antibody. If the antigen member of the specific binding pair is not immunogenic, e.g., a hapten, it can be covalently coupled to a carrier protein to render it immunogenic.

[0011]

Non-immune binding pairs include systems wherein the two

components share a natural affinity for each other but are not antibodies. Exemplary non-immune binding pairs are biotin-avidin or biotin-streptavidin, folic acid-folate binding protein, complementary probe nucleic acids, etc. Also included are non-immune binding pairs which form a covalent bond with each other. Exemplary covalent binding pairs include sulphydryl reactive groups such as maleimides haloacetyl derivatives and amine reactive groups such as isothiocyanates, succinimidyl esters, sulfonyl halides, and coupler dyes such as 3-methyl-2-benzothiazolinone hydrazone (MBTH) and 3-(dimethyl-amino) benzoic acid (DMAB), etc.

[0012] The term deposition means directed binding of a reactive intermediate to the receptor which results from the formation of a covalent bond.

[0013] The enzyme catalyzes the deposition of a 2-difluoromethylphenyl-containing compound by converting the compound to a reactive intermediate which is capable of covalently binding to a receptor.

[0014] The present invention also concerns 2-difluoromethylphenyl-containing compounds which heretofore have not been described as enzyme substrates.

[0015] Enzymes suitable for use with 2-difluoromethylphenyl-containing compounds of the present invention include hydrolases. More particularly, phosphatases, glycosidases and esterases can be employed. One particularly preferred enzyme which is suitable for the novel substrates of the invention is alkaline phosphatase.

[0016] A wide variety of detectable labels are available for linking to the 2-difluoromethylphenyl-containing moiety, and the present invention is limited to any specific label. The detectable label can be a reporter as a radioactive isotope such as ^{125}I , enzymes, fluorescent reagents or groups such as fluorescein, tetramethylrhodamine, cyanine dyes, Alexa dyes or BODIPY dyes, chemiluminescent reagents or groups, or electrochemical materials. The detectable label can also be a member of a specific binding pair as described above. Other labels will be readily apparent to one of skill in the art.

[0017] Compounds for use in assays of the present invention generally have the structure:

wherein Y is a moiety capable of being cleaved by a hydrolytic enzyme, L is a detectable label and X is a group linking L to the 2-difluoromethylphenyl moiety.

[0018] Moieties capable of being cleaved by hydrolytic enzymes include phosphate esters, glycoside esters such as galactose and glucose, and alkyl esters cleavable by non-specific esterases.

[0019]

The linker, X, group can be virtually any linker group capable of linking the detectable label to the 2-difluoromethylphenyl moiety, and the

invention is not limited to the use of any specific linkers. Any linear or branched alkyl (C₁ to C₁₀ for example) or aryl group can serve as a linker, the only requirement being that it links the 2-difluoromethylphenyl moiety with the label.

[0020] In another embodiment, novel compounds which are substrates for hydrolytic enzymes are disclosed. One example of such a compound is:

wherein Y is a group capable of being cleaved by a hydrolytic enzyme, L is a reporter and X is a group linking L to the 2-difluoromethylphenyl moiety.

[0021] A second example of a compound which is a substrate for hydrolytic enzymes is:

wherein Y is phosphate, L is a detectable label and X is a group linking L to the 2-difluoromethylphenyl moiety.

Claims

[c1] In an assay for detecting or quantitating an analyte, employing an analyte dependent enzyme activation system which reacts with a substrate portion of a conjugate which comprises a detectably labelled substrate for said enzyme, so as to form an activated conjugate, which activated conjugate covalently binds to a site on a surface having a receptor for said activated conjugate, said receptor not being reactive with the analyte dependent enzyme activation system, wherein the detectably labeled portion of the bound conjugate either directly or indirectly generates a signal which is detected or quantitated, the improvement comprising: using as said conjugate a 2-difluoromethylphenyl-containing compound having the structure:

wherein Y is a moiety capable of being cleaved by a hydrolytic enzyme, L is a detectable label and X is a group linking L to the 2-difluoromethylphenyl moiety.

[c2] The assay according to claim 1, wherein Y is phosphate and L is a first member of a specific binding pair.

- [c3] The assay according to claim 2, wherein L is biotin or dinitrophenyl
- [c4] The assay according to claim 1, wherein Y is phosphate and L is a fluorescent group.
- [c5] The assay according to claim 4, wherein L is fluorescein, tetramethylrhodamine, sulforhodamine 101, a cyanine dye, Alexa dye or BODIPY dye.
- [c6] The assay according to claim 1, wherein Y is a glycoside and L is a first member of a specific binding pair.
- [c7] The assay according to claim 6, wherein L is biotin or dinitrophenyl
- [c8] The assay according to claim 1, wherein Y is a glycoside and L is a fluorescent group.
- [c9] The assay according to claim 8, wherein L is fluorescein, tetramethylrhodamine, sulforhodamine 101 a cyanine dye, Alexa dye or BODIPY dye.
- [c10] A 2-difluoromethylphenyl-containing compound having the structure:

wherein Y is a group capable of being cleaved by a hydrolytic enzyme, L is a reporter and X is a group linking L to the 2-difluoromethylphenyl moiety.

- [c11] A compound according to claim 10, wherein L is a fluorescent group.
- [c12] A compound according to claim 11, wherein L is fluorescein, tetramethylrhodamine, sulforhodamine 101, a cyanine dye, Alexa dye or BODIPY dye.
- [c13] A compound according to claim 10 wherein Y is phosphate.
- [c14] A compound according to claim 10 wherein Y is phosphate and L is a fluorescent group.
- [c15] A compound according to claim 14, wherein L is fluorescein, tetramethylrhodamine, sulforhodamine 101, a cyanine dye, Alexa dye or BODIPY dye.
- [c16] A compound according to claim 10 wherein Y is a glycoside.
- [c17] A compound according to claim 10 wherein Y is a glycoside and L is a fluorescent group.
- [c18] A compound according to claim 17 wherein L is fluorescein, tetramethylrhodamine, sulforhodamine 101, a cyanine dye, Alexa dye or BODIPY dye.
- [c19] A 2-difluoromethylphenyl-containing compound having the

structure:

wherein Y is phosphate, L is a first member of a specific binding pair and X is a group linking L to the 2-difluoromethylphenyl moiety.

- [c20] A compound according to claim 19, wherein L is biotin.
- [c21] A compound according to claim 19, wherein L is dinitrophenyl.
- [c22] A 2-difluoromethylphenyl-containing compound having the structure:

wherein Y is a glycoside, L is a first member of a specific binding pair other than biotin and X is a group linking L to the 2-difluoromethylphenyl moiety.

- [c23] A compound according to claim 22, wherein L is dinitrophenyl.
- [c24] A 2-difluoromethylphenyl-containing compound having the structure:

wherein Y is a glycoside other than galactose, L is a first member of a specific binding pair, and X is a group linking L to the 2-difluoromethylphenyl moiety.

2-difluoromethylphenyl-containing substrates for an analyte dependent enzyme activation system

Abstract

This invention relates to 2-difluoromethylphenyl-containing compounds and the use of 2-difluoromethylphenyl-containing compounds as hydrolytic enzyme substrates in a variety of applications such as catalyzed reporter deposition