

CONSISTENT INDUCTORS

Why

It is natural to want to infer a relation which is consistent with the dataset.

Definition

Let $(x_1, y_1), \ldots, (x_n, y_n)$ be a dataset in $X \times Y$. Let \mathcal{R} be the set of all relations on $X \times Y$.

A consistent inductor $\{G_n : (X \times Y)^n \to \mathcal{R}\}_n$ is one for which, for all $n \in \mathbb{N}$, for all $D_n \in (X \times Y)^n$, D is consistent with $G_n(D_n)$. In other words, a consistent inductor always produces a relation with which the dataset is consistent.

The interpretation follows. Fix a relation R^* . And let every dataset "shown" to the algorithm G_n be constructed by selecting elements from R^* . In other words, every dataset is a sequence in R^* .

