07/21 Reinforcement learning state st Hward r Challenges - uncertainty - explore or exploit - delayed Ws inmediate feedback - evaluative us instructive feedback - Complex worlds, computational guarantees Markov decision processes (MDPs) Definiti on - State space & with states S & & - action space * with actions a & A - transition probabilities for all state action pairs (s, a) P(s'|s,a) = P(s+=s' | s+=s, a+=a) prob moving from states to states after taking action a.

```
Assumptions:
      - time - independent
       P(s+=s'|s+=s, a+=a)
               = P(S++A+1 = S' | S++A = S, q++A = a)
      - Markov Condition
        P(S++1 | S+, a+) = P(S++1 | S+, a+, S+1, a+-1, S+2-=
                Conditional independence.
    Defn (could)
  - reward function.
         R(5°, S', a) = real-valued reward signal after
        taking action a in State 3 and moving to
      state s'
    Simplifications for LSE 150
    discrete, finite state space & / vs continuous,
    discrete, finite action space A
    reward function R(s,s',a) = R(s) = Rs
         only depends on current state
     bounded, deterministic rewards, max |Rs | < 00
Ex: board game with dice (eg. backgammon, nonopoly,...)
     & = board position and roll of dice (right before
    · agent decides to move )
```

discount factor 0 4 Y < 1

P(s'|s,a) = how state changes due to agent's move opponent rolls dice, opponents move, agent rolls R(s) = Stl win

2-1 lose
O otherwise (at any other move) -MDP = 58, A, P(s'(s, a), R(s)} * Decision-making policy: deterministic mapping from state to actions # policies = 1A1 181 exponential in # states dynamics under policy TT P(s'|s, Ti(s))

and on taken by agent in states experience under policy TI State so $q_0 = \Pi(s_0)$ S, $a_1 = \Pi(s_1)$ S2 reward r_0 action r_1 r_2 How to measure accumulated rewards over time? long-term discounted return

	return = E Y r, t=0
	t=0
	Possibilities
	γ=0 → only immediate reward at t=0 mathers
	Y << 1 > near-sighted agents
	Y=1 -> far-sighted agents
	11: + Sap 1
	Intuitially: Y < 1
_	near future weighted more heavily than distant future
	confidence in MDP as model of real world may
- 1-11-1	diminish with far off predictions
	Also, mathematically convenient: leads to recursive
	algorithms whose convergence is calculated by y.
	State value function
	V "(s) = expected discounted return following policy
	To from initial state . s.
	$V^{\pi}(s) = F^{\pi}\left[\sum_{t=0}^{\infty} Y^{t}R(s_{t}) s_{s}=s\right]$
	expectation operator
	((omputing mean)
	(Company)

te Relating value function in different states: VT(S) = ETT[2(S) + YR(S,) + YR(S,) + [So=S] = R(s) + Y E T [R(s1) + YR(s2) + Y2R(s3)+-- | S0=5] R(S) + Y = P(S'|S,T(S)) = [R(S,)+ TR(S2)+-- | 5=5'] $V^{T}(s) = R(s) + Y \stackrel{n}{\leq} P(s'|s, TI(s)) V^{T}(s')$ Bellman equation Action-value function QT (s,a) = expected return from viitial states, taking action a, then following policy TI. = ET[\ Y + R(s+) | So=s, 90=Q]

L+=0 L+a may equal TT(s), $Q^{T}(s,a) = R(s) + Y \ge P(s'|s,a) V^{T}(s')$ optimality in MDPs Thm: there is always (at least) one optimal policy TI* for which VT (s) > VT (s)

for all policies TT and states S+S.

	Goal: how to compute optimal policy Tt ?
*	Optimal state-value function
	Optimal state-value function V*(s) = V T*(s)
牛	optimal action-value function
	$Q^{+}(s,a) = Q^{\Pi^{+}}(s,a)$
	No.X +
	Note: V* (s) = max q * (s,a)
	Thomas many has a strictle and a strictle to the strictle of
	There may be multiple optimal policies, but optimal value functions are unique.
ĸ	Relations -given MDP, how to recover TI* from
	, Q
	$\Pi^*(s) = \operatorname{argmax} \left[Q^*(s, q) \right]$
	= argmax [R(s) + Y \ P(s' s,a) V* (s')]
	= argmax [= R(s'1s, a) V* (s')]

Planning

Assume complete world of environment as MDP = SB, A, P(s'|s,a), R(s)3, also Y < 1how to compute $TI^*(s)$, or equivalently $V^*(s)$ or $Q^*(s,a)$

) Policy evaluation

How to compute VT(s)?

From Bellman egn:

 $V^{\pi}(s) = R(s) + \gamma \stackrel{N}{\leq} P(s/|s, \pi(s)) V^{\pi}(s')$

for 5=1,2, ..., N where N=# state;

This is a system of linear equations: M equations, N unknowns V (s), s=1, - N

Put Put all unknowns on left side:

V"(s) - Y = { P(s' | s, Ti(s)) V"(s')} = R(s)

 $\sum_{s'=1}^{n} \left\{ \left[\left[\left[\left[\left(s, s' \right) - \gamma \right] P(s') \right] , \left[\pi(s) \right] \right] \right\} \right\} = R(1)$ indicator
function


```
Define "gready" st policy.
         T'(s) = greedy [T]
                  = argmax [OF (s,a)]
                  = argnax [ & P(s'|s,a) VT (s')]
  The greedy policy Ti' everywhere performs better or
         equal to original policy IT
             VT'(s) > VT (s) for all s
      Intuition: if better to choose action a over ti(s)
      vi states s before following policy is, it's always better to choose action a in states (for all times)
Proof: V^{\pi}(s) = Q^{\pi}(s, \pi(s))
                   < max QT (S, Q)
                   = Q^{\pi}(s, \pi'(s))
                   = R(s) + r \ge P(s'|s, \Pi'(s)) V^{\pi}(s')
        So far: better to (take one step under Ti, then resort to TI), than to (always For follow TI)
       "one-step' inequality.

V^{\pi}(s) \leq R(s) + Y \leq P(s'|s, \pi'(s)) V^{\pi}(s')
```

Apply one-step inequality to itself on the right side: $V^{\pi}(s) \leq R(s) + Y \leq P(s'|s, \pi'(s)) \left[R(s') + Y \leq s''\right]$ P(s" 1's' \(\tau'(s')) \(V''(s'')) Better to take two steps under Ti, then revert to TI, then to always follow policy Ti. Apply this one-step inequality to itself t-times to get t-step inequality: better -lo take t steps under Ti' (then revert to Ti), than to always follow Ti. Let $t\to\infty$: always better to follow Ti' than TT. $V^{T}(s) \leq V^{T'}(s)$ for all states s since right Side converges for Y < 1.