70087 ExerciseTypes.CW1

Coursework 1

Submitters

sf23 Shihan Fu

9/10. Good work. Well done.

Emarking

(a)

A best case input is any array A that the first element in A does not equal to x. Or A is an empty array. An example of this case is that x=1 and A=[2,1].

 $T_{COUNTWHILE}(N)=c$, where c is a positive constant. So $T_{COUNTWHILE}(N)=\Theta(1)$.

A worst case input is any array A that each element in A equals to x. An example of this case is that x=1 and A=[1, 1,...,1].

 $T_{COUNTWHILE}(N)=aN+b$, where a, b are positive constants. So $T_{COUNTWHILE}(N)=\Theta(N)$.

Not 1. Use some constant, c.

 $T_{cf}(N) = 1$ if N = 0

$$T_{cf}(N) = T_{cf}(N-1) + d$$
 if N>1

(c)

For the worst case, $T_{cf}(N) = T_{cf}(N-1) + d$ if N>1 (a)

$$T_{cf}(N-1) = T_{cf}(N-2) + d$$
 if N>2 (b)

Replace $T_{cf}(N-1)$ in formula (a) with the definition in (b), we gain the following formula.

$$T_{cf} = T_{cf}(N-2) + 2d$$

By continuing, we can extract a general form $T_{cf}(N) = T_{cf}(N-i)$ +id if N>i>1

Setting i=N-1, we have $T_{cf}(N)=T_{cf}(1)+(N-1)d$ if N>1

Since $T_{cf}(1)$ is a constant, $T_{cf}(N) = \Theta(N)$.

(d)

For a best case input, $T_{cw}(N) = \Theta(1)$.

For a worst case input, $T_{cw}(N) = \Theta(N)$.

So,
$$T_{cw}(N) = \Omega(1)$$

$$T_{cw}(N) = O(N)$$

There is no 0 bound because the time complexity is different depending on the input.

(e)

For the upper bound, the recursive function will be called a maximum time. $A_{cw}(N) = \Theta(N)$.

For the lower bound, it reflects the minimal space needed for a single non-recursive call.

$$A_{cw}(N) = \Theta(1)$$
.

So,
$$A_{cw}(N) = \Omega(1)$$

$$A_{cw}(N) = O(N)$$