Algebra 2R, lista 6.

Zadanie domowe: jak zwykle (zadania oznaczone minusem nie mogą być zadaniami domowymi, nie mogą też być deklarowane).

- 1. Udowodnić, że w definicji rozszerzenia ciał przez pierwiastniki możemy założyć, że $L_k \subseteq L_0$ jest Galois¹.
- 2. Załóżmy, że G jest grupą oraz $H \triangleleft G$. Udowodnić, że jeśli H i G/H są rozwiązalne, to G jest rozwiązalna.
- 3. Znaleźć $a \in L$ takie, że $L = \mathbb{Q}(a)$, gdzie L jest ciałem rozkładu nad \mathbb{Q} wielomianu:
 - (a) $X^3 3$,
 - (b) $(X^3 3)(X^2 2)$.
- 4. Znaleźć $a \in L$ takie, że L = K(a), gdzie
 - (a) $K = \mathbb{Q}$ i L jest ciałem rozkładu wielomianu $X^4 2$ nad K
 - (b) $K = \mathbb{Q}(i)$ i L jest ciałem rozkładu wielomianu $X^4 2$ nad K
- 5. Niech $K = F_p(X^p, Y^p)$ i $L = F_p(X, Y)$. Udowodnić, że nie istnieje $a \in L$ taki, że L = K(a).
- 6. Wyznaczyć G(L/K) gdy:
 - (a) $K = \mathbb{C}(X^4), L = \mathbb{C}(X),$
 - (b) $K = \mathbb{Q}$ i $L = \mathbb{Q}(\sqrt[4]{2}, i)$
- 7. Wyznaczyć G(L/K) gdy:
 - (a) $K = \mathbb{Q}$ i L jest ciałem rozkładu wielomianu $(X^3 3)(X^2 2)$ nad K,
 - (b) $K = \mathbb{Q}$ i L jest ciałem rozkładu wielomianu $(X^3 3)(X^3 2)$ nad K. Uwaga: w tym i poprzednim zadaniu "wyznaczyć G(L/K)" oznacza: opisać strukturę algebraiczną tej grupy.
- 8. Znaleźć (poprzez wskazanie ich generatora nad Q) wszystkie ciała pośrednie
 - (a) między \mathbb{Q} i $\mathbb{Q}(\sqrt{5}, \sqrt{7})$
 - (b) między \mathbb{Q} i $\mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$.

¹Bso $L_0 \subseteq \widehat{L_k}$. Niech L' będzie normalnym domknięciem L_0 nad L_k , w $\widehat{L_k}$. Wtedy L' jest złożeniem ciał $f_0[L_0], \ldots, f_m[L_0]$ dla pewnych skończenie wielu $f_0, \ldots, f_m \in Gal(\widehat{L_k}/L_k)$, gdzie $f_0 = id$. Używając ciał $f_i[L_j]$ (w odpowiedniej kolejności) wydłużyć ciąg $L_k \subset L_{k-1} \subset \ldots \subset L_0$ tak, by kończył się ciałem L'.