LocalViT: Bringing Locality to Vision Transformers

Yawei Li¹ Kai Zhang¹ Jiezhang Cao¹ Radu Timofte¹ Luc Van Gool^{1,2}
¹Computer Vision Lab, ETH Zurich, Switzerland ²KU Leuven, Belgium

Presenter: Junming CHEN

arXiv:2104.05707v1 [cs.CV] 12 Apr 2021

Problem in Original ViT

- Lacking a locality mechanism for information exchange within a local region.
 - Locality is essential for images since it pertains to structures like lines, edges, shapes, and even objects.

Idea

Insert a depthwise convolution between two MLPs in Transformer encoder.

- a. Original MLPs in ViT
- b. Inverted residual blocks
- c. Proposed method

$$\mathbf{Z}^r = \mathrm{Seq2Img}(\mathbf{Z}), \mathbf{Z}^r \in \mathbb{R}^{h \times w \times d},$$
 where $h = H/p$ and $w = W/p$. $\mathbf{Y}^r = f(f(\mathbf{Z}^r \circledast \mathbf{W}_1^r) \circledast \mathbf{W}_d) \circledast \mathbf{W}_2^r,$ $\mathbf{Y} = \mathrm{Img2Seq}(\mathbf{Y}^r),$

Idea

Before apply the convolution: Rearrange

$$\mathbf{Z}^r = \mathrm{Seq2Img}(\mathbf{Z}), \mathbf{Z}^r \in \mathbb{R}^{h \times w \times d},$$

where $h = H/p$ and $w = W/p$.
 $\mathbf{Y}^r = f(f(\mathbf{Z}^r \circledast \mathbf{W}_1^r) \circledast \mathbf{W}_d) \circledast \mathbf{W}_2^r,$
 $\mathbf{Y} = \mathrm{Img2Seq}(\mathbf{Y}^r),$

Idea

What about classification token? Bypass: split and concatenation

$$\mathbf{Z}^r = \operatorname{Seq2Img}(\mathbf{Z}), \mathbf{Z}^r \in \mathbb{R}^{h \times w \times d},$$

$$\text{where } h = H/p \text{ and } w = W/p.$$

$$\mathbf{Y}^r = f(f(\mathbf{Z}^r \circledast \mathbf{W}_1^r) \circledast \mathbf{W}_d) \circledast \mathbf{W}_2^r,$$

$$\mathbf{Y} = \operatorname{Img2Seq}(\mathbf{Y}^r),$$

$$\mathbf{Y} = \operatorname{Img2Seq}(\mathbf{Y}^r),$$

Results

Classification on ImageNet 2012:

Network	γ	DW	Params (M)	FLOPs (G)	Top-1 Acc. (%)
DeiT-T [41]	4	No	5.7	1.3	72.2
LocalViT-T	4	No	5.7	1.3	72.5 (0.3 [†])
LocalViT-T*	4	Yes	5.8	1.3	73.7 (1.5 [†])
DeiT-T [41]	6	No	7.5	1.6	73.1†
LocalViT-T	6	No	7.5	1.6	74.3 (1.2 [†])
LocalViT-T*	6	Yes	7.7	1.6	76.1 (3.0 [†])

Results

Activation functions.

Activation	Params (M)	FLOPs (G)	Top-1 Acc. (%)
Deit-T [41]	5.7	1.3	72.2
ReLU6	5.8	1.3	73.7 (1.5\(\dagger)\)
h-swish	5.8	1.3	74.4 (2.2 [†])
h-swish + ECA	5.8	1.3	74.5 (2.3 [†])
h-swish + SE-192	5.9	1.3	74.8 (2.6 [†])
h-swish + SE-96	6.0	1.3	74.8 (2.6 [†])
h-swish + SE-48	6.1	1.3	75.0 (2.8†)
h-swish + SE-4	9.4	1.3	75.8 (3.6 [†])

Results

- Placement of locality.
 - Locality is important in lower layers.

DW Placement	Layer	Params (M)	FLOPs (G)	Top-1 Acc. (%)
High	9~12	5.78	1.26	69.1
Mid	5~8	5.78	1.26	72.1
Low	1~4	5.78	1.26	73.1
Low	1~8	5.84	1.27	74.0
All	1~12	5.91	1.28	74.8

Takeaway

- Global and local interaction are both significant.
- Convolution can improve the performance of the baseline transformer.
- A better activation function after convolution can result in a significant performance gain.
- Locality is more important for lower layers.
- Expanding the hidden dimension of the feed-forward network leads to a larger model capacity and a higher classification accuracy.

Vision Transformers for Dense Prediction

René Ranftl

Alexey Bochkovskiy

Vladlen Koltun

Intel Labs

rene.ranftl@intel.com

Presenter: Junming CHEN

Motivation

Shortcomes of convolutional encoder

- Convolutional backbones progressively downsample the input image to extract features at multiple scales.
- Feature resolution and granularity are lost in the deeper stages of the model and can thus be hard to recover in the decoder.
- However, feature resolution and granularity are critical for dense prediction.

Why use Transformer for dense prediction?

- It processes representations at a constant and relatively high resolution. Therefore it should have higher feature resolution and granularity.
- It has a global receptive field at every stage.

Method - Overall

Transformer Encoder + Convolutional Decoder

Method - Reassemble

Read

- O Ignore Read_{ignore} $(t) = \{t_1, \dots, t_{N_p}\}$
- O Add Read_{add} $(t) = \{t_1 + t_0, \dots, t_{N_p} + t_0\}$
- $\qquad \qquad \mathsf{Projection} \qquad \qquad \frac{\mathsf{Read}_{proj}(t) = \{\mathsf{mlp}(\mathsf{cat}(t_1, t_0)), \ldots, \\ \mathsf{mlp}(\mathsf{cat}(t_{N_v}, t_0))\} }{\mathsf{mlp}(\mathsf{cat}(t_{N_v}, t_0))\} }$

Concatenate

Sequence to lattice. (Patch resolution: p x p)

Concatenate :
$$\mathbb{R}^{N_p \times D} \to \mathbb{R}^{\frac{H}{p} \times \frac{W}{p} \times D}$$
.

Resample

s denotes the output size ratio

$$\operatorname{Resample}_s: \mathbb{R}^{\frac{H}{p} \times \frac{W}{p} \times D} \to \mathbb{R}^{\frac{H}{s} \times \frac{W}{s} \times \hat{D}}.$$

 $\mathsf{Reassemble}_s^{\hat{D}}(t) = (\mathsf{Resample}_s \circ \mathsf{Concatenate} \circ \mathsf{Read})(t),$

Method - Fusion

- RefineNet-based feature fusion
 - progressively upsample the representation
 by a factor of two in each fusion stage.

What about positional encoding of various resolution? Interpolation.

Results - Monocular depth estimation

Set new SOTA.

,	Training set	DIW	ETH3D	Sintel	KITTI	NYU	TUM
		WHDR	AbsRel	AbsRel	$\delta > 1.25$	$\delta > 1.25$	$\delta > 1.25$
DPT - Large	MIX 6	10.82 (-13.2%)	0.089 (-31.2%)	0.270 (-17.5%)	8.46 (-64.6%)	8.32 (-12.9%)	9.97 (-30.3%)
DPT - Hybrid	MIX 6	11.06 (-11.2%)	0.093 (-27.6%)	0.274 (-16.2%)	11.56 (-51.6%)	8.69 (-9.0%)	10.89 (-23.2%)
MiDaS	MIX 6	12.95 (+3.9%)	0.116 (-10.5%)	0.329 (+0.5%)	16.08 (-32.7%)	8.71 (-8.8%)	12.51 (-12.5%)
MiDaS 30	MIX 5	12.46	0.129	0.327	23.90	9.55	14.29
Li [22]	MD [22]	23.15	0.181	0.385	36.29	27.52	29.54
Li [21]	MC [21]	26.52	0.183	0.405	47.94	18.57	17.71
Wang [40]	WS [40]	19.09	0.205	0.390	31.92	29.57	20.18
Xian [45]	RW [45]	14.59	0.186	0.422	34.08	27.00	25.02
Casser [5]	CS 8	32.80	0.235	0.422	21.15	39.58	37.18

Table 1. Comparison to the state of the art on monocular depth estimation. We evaluate zero-shot cross-dataset transfer according to the protocol defined in [30]. Relative performance is computed with respect to the original MiDaS model [30]. Lower is better for all metrics.

Results - Segmentation

Set new SOTA.

	Backbone		pixAcc [%]	mIoU [%]
OCNet	ResNet101	[50]	_	45.45
ACNet	ResNet101	14	81.96	45.90
DeeplabV3	ResNeSt-101	7.51	82.07	46.91
DeeplabV3	ResNeSt-200	7 51	82.45	48.36
DPT-Hybrid	ViT-Hybrid		83.11	49.02
DPT-Large	ViT-Large		82.70	47.63

Table 4. Semantic segmentation results on the ADE20K validation set.

Results - Ablation

Choice of *Read* operation.

	HRWSI	BlendedMVS	ReDWeb	Mean
Ignore	0.0793	0.0780	0.0892	0.0822
Add	0.0799	0.0789	0.0904	0.0831
Project	0.0797	0.0764	0.0895	0.0819

Table 7. Performance of approaches to handle the readout token. Fusing the readout token to the individual input tokens using a projection layer yields the best performance.

Results - Inference resolution

 Conjecture: global receptive field in every layer makes DPT less dependent on inference resolution. (Training resolution: 384×384 pixels)

Figure 4. Relative loss in performance for different inference resolutions (lower is better).