

.....

Mécanique Quantique Travaux Dirigés et Examens Filières SMP (S4) et SMC (S4)

Said OUANNASSER

Mécanique quantique Filières: SMP (S4), SMC (S4) Prof. : Saïd Ouannasser

Travaux dirigés Série nº: 1

Exercice 1 : Cellule photo-électrique

Une cellule photoélectrique comporte une cathode constituée d'une surface métallique dont l'énergie d'extraction est $W_0 = 2.8$ eV. Un dispositif expérimental permet d'éclairer cette cathode par des radiations lumineuses afin de produire un courant photoélectron. Les longueurs d'ondes utilisées dans cette expérience sont:

λ (nm) 300	400	500	600
------------	-----	-----	-----

- 1. Rappeler la relation qui relie la fréquence v à la longueur d'onde λ . Calculer alors les fréquences des différents rayonnements utilisés (Présenter les résultats sous forme d'un tableau).
- 2. Déterminer la fréquence v_0 du seuil photoélectrique. Parmi les quatre longueurs d'ondes utilisées, quelles sont celles susceptibles d'arracher des électrons à la plaque métallique. Justifier votre réponse.
- 3. Ecrire l'équation d'Einstein reliant l'énergie cinétique E_c des électrons extraits du métal, la fréquence v de la lumière utilisée et le travail d'extraction W_0 . Quelle est la nature de la courbe $E_c = f(v)$? Quelle est la grandeur principale qu'on puisse obtenir à partir de cette courbe ?
- 4. Soit v la vitesse des photoélectrons. Déterminer l'expression de v en fonction de v, v_0 , la constante de Planck h et la masse m de l'électron. Calculer v pour les radiations dont l'effet photoélectrique est satisfait.

Données: $m = 9,1.10^{-31} \text{ kg}; \ c = 3.10^8 \text{ m.s}^{-1}; \ h \approx 6,6262.10^{-34} \text{ j.s}; \ 1 \text{ eV} = 1,6.10^{-19} \text{ j.s}$

Exercice 2: Modèle de Bohr et le spectre atomique

Au début du $20^{\mathrm{ème}}$ siècle, Bohr a proposé un modèle permettant de prévoir les longueurs d'onde présentes dans la lumière émise par l'hydrogène, et plus généralement par un hydrogénoïde (He+, Li++, etc). Celui-ci est composé d'un noyau de masse M et de charge Ze (positive), autour duquel gravite un seul électron de masse m et de charge -e (négative). Pour une orbite circulaire de rayon r, l'électron tourne à vitesse v constante autour du noyau et il est soumis au potentiel coulombien $V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$.

L'hypothèse fondamentale de Bohr est que la norme du moment cinétique L=mvr de l'électron est quantifiée:

$$L=n\hbar$$
, avec $\hbar=\frac{h}{2\pi}$ et n un entier naturel

- 1. Ecrire la loi fondamentale de la dynamique pour l'électron, et en déduire une relation entre le rayon r de l'orbite circulaire et la vitesse v de l'électron.
- 2. En utilisant l'hypothèse de Bohr, montrer que le rayon de la trajectoire de l'électron est lui aussi quantifié et que son expression est donnée par :

$$r_n = n^2 \frac{a_0}{Z}$$

où a_0 est appelé rayon de Bohr. Déterminer l'expression puis la valeur de a_0 .

3. Montrer que l'expression de l'énergie total de l'électron peut se mettre sous la forme:

$$E_n = -Ry\frac{Z^2}{n^2}$$

Où Ry est la constante de Rydberg. Donner son expression puis calculer sa valeur.

- 4. On cherche à déterminer le spectre de l'atome d'hydrogène. Soit λ_{mn} la longueur d'onde de la lumière lorsqu'un électron transite d'un niveau m vers un niveau n, (m n).
 - a) Déterminer l'expression λ_{mn} .
 - b) Calculer les longueurs d'onde des raies spectrales correspondantes aux transitions suivantes:
 - i) n = 1 (série de Lyman)
 - ii) n = 2 (série de Balmer)
 - iii) n = 3 (série de Paschen)
 - c) Quelle série correspond au domaine visible?

Données: $m = 9.1 \cdot 10^{-31} \text{ kg}$; $e = 1.6 \cdot 10^{-19} \text{ C}$; $c = 3 \cdot 10^8 \text{ m/s}$; $\hbar \approx 1.0545 \cdot 10^{-34} \text{ j.s}$

Mécanique quantique Filières: SMP (S4), SMC (S4) Prof. : Saïd Ouannasser

Travaux dirigés Série nº: 2

Exercice 1: Particule dans une boîte unidimensionnelle

Une particule de masse m et d'énergie E effectue un mouvement linéaire (direction x) dans une boîte de longueur L. On suppose que le potentiel à l'intérieur de cette boîte ($0\langle x\langle L)$) est nul et que la particule ne peut pas se trouver à l'extérieur de l'intervalle [0,L].

- 1. On cherche à déterminer les fonctions propres $\varphi(x)$ de l'hamiltonien H de la particule qui sont solutions de l'équation de Schrödinger stationnaire.
- a) Résoudre cette équation et montrer que les solutions sont de la forme:

$$\varphi(x) = A e^{+ikx} + B e^{-ikx}$$
 (A et B des constantes)

Donner l'expression du module du vecteur d'onde k.

b) En utilisant les conditions aux limites fixes $(\varphi(0) = \varphi(L) = 0)$, montrer que le vecteur d'onde k est quantifié (dépend d'un entier n) et que les fonctions d'onde peuvent s'écrire sous la forme:

$$\varphi_n(x) = C\sin(\frac{n\pi}{L}x)$$

Donner la constante C en fonction de A et B.

- 2. Ecrire la condition de normalisation des fonctions d'onde (ou condition de probabilité de présence de la particule à l'intérieur de la boîte) puis déterminer C en fonction de L.
- 3. Déterminer l'expression des niveaux d'énergie E_n puis celle de $\Delta E = E_{n+1} E_n$.
- 4. Le modèle de la particule dans une boîte est souvent utilisé pour estimer de façon approximative la longueur L d'une molécule donnée. Pour une transition du niveau n=2 vers le niveau n=1, la variation d'énergie est estimée à $\Delta E=1,1$ eV.

Calculer la longueur L de la molécule en Angström.

On donne: $m = 9,1.10^{-31} \,\mathrm{kg}$; $h = 6,62.10^{-34} \,\mathrm{j.s}$

Exercice 2 : Barrière de potentiel et effet tunnel

On considère une particule de masse m et d'énergie E dont le mouvement s'effectue à une dimension (direction x). Cette particule arrive du côté gauche sur une barrière de potentiel rectangulaire de hauteur V_0 et de largeur a (voir figure). On s'intéresse dans cette étude au cas où l'énergie de la particule E est inférieure à la hauteur V_0 .

Fig.1 : Barrière de potentiel

- 1. Quel est le point de vue de la physique classique?
- 2. On cherche les fonctions propres $\varphi(x)$ de l'hamiltonien de la particule qui sont solutions de l'équation de Schrödinger stationnaire. Résoudre cette équation dans les trois régions possibles et montrer que les solutions sont de la forme:

$$\begin{cases} \varphi_{1}(x) = Ae^{+ikx} + Be^{-ikx} & si \ x \land 0 \\ \varphi_{2}(x) = Ce^{-Kx} + De^{+Kx} & si \ 0 \land x \land a \\ \varphi_{3}(x) = Ee^{+ikx} & si \ x \land a \end{cases}$$

Donner les expressions des modules des vecteurs d'onde k et K.

3. Les probabilités de réflexion R et de transmission T sont définies par:

$$R = \left\| \frac{B}{A} \right\|^2$$
 ; $T = \left\| \frac{E}{A} \right\|^2$

En écrivant les conditions de continuité de $\varphi(x)$ et sa dérivée première en x=0 et x=a, déterminer les expressions de R et T.

- 4. Tracer l'allure de T en fonction de a et discuter les cas limites suivants:
 - i) $Ka \langle \langle 1 : Barrière étroite$
 - ii) $Ka \rangle \rangle 1$: Barrière épaisse

Mécanique quantique Filières: SMP (S4), SMC (S4) Prof.: Saïd Ouannasser

Travaux dirigés Série nº: 3

Exercice 1

Un opérateur linéaire est par définition un être mathématique qui, à toute fonction ψ d'un certain espace fonctionnel, fait correspondre une et une seule fonction bien déterminée de ce même espace. Cette correspondance étant linéaire, c'est à dire:

$$A\left(\lambda_1 \,\psi_1(x) + \lambda_2 \,\psi_2(x)\right) = \lambda_1 \,A \,\psi_1(x) + \lambda_2 \,A \,\psi_2(x)$$

On considère les opérateurs A_i (i = 1, ..., 6) tels que:

$$\begin{split} A_1 \psi(x) &= \left[\psi(x) \right]^2 & ; \qquad A_2 \psi(x) = x^2 \left[\psi(x) \right] \\ A_3 \psi(x) &= \sin(\psi(x)) & ; \qquad A_4 \psi(x) = \frac{d \psi(x)}{d x} \\ A_5 \psi(x) &= \frac{d^2 \psi(x)}{d x^2} & ; \qquad A_6 \psi(x) = \int_0^x \psi(x') dx' \\ \end{split}$$

Parmi ces opérateurs, lesquels sont linéaires?

Exercice 2

L'opérateur adjoint A^{\dagger} d'un opérateur linéaire A peut être défini comme suit :

$$\langle \psi | A^+ | \varphi \rangle = \langle \varphi | A | \psi \rangle^*$$

où $|\varphi\rangle$ et $|\psi\rangle$ sont deux kets de l'espace des états.

Montrer les propriétés suivantes:

$$i)$$
 $(A^+)^+ = A$

$$(\lambda A)^{+} = \lambda^{*} A^{+}$$

ii)
$$(\lambda A)^{+} = \lambda^{*} A^{+}$$

iii) $(A+B)^{+} = A^{+} + B^{+}$

$$iv$$
) $(AB)^+=B^+A^+$

$$v$$
) $\left(A^{n}\right)^{+} = \left(A^{+}\right)^{n}$

Exercice 3

Soient A et B deux opérateurs linéaires dont les représentations matricielles, dans une base orthonormée, sont données par :

$$A = \begin{bmatrix} 1 & 0 & -i \\ 0 & 2 & 3i \\ i & -3i & 4 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 5 & 1 & 4 \\ 1 & 3 & 2i \\ 4 & -2i & 1 \end{bmatrix}$$

- 1. Calculer la trace de A, B, (A+B) et AB.
- 2. Déterminer les adjoints de A et B.
- 3. Ces opérateurs sont ils hermitiques?

Exercice 4

1. On appelle commutateur de deux opérateurs A et B, l'opérateur défini par :

$$\lceil A,B \rceil = AB - BA$$

Si AB = BA, on dit que A et B commutent.

En utilisant la définition ci-dessus, montrer que:

i)
$$[A,B] = -[B,A]$$

$$ii)$$
 $A+B,C = A,C + B,C$

$$iii)$$
 $[AB,C] = A[B,C] + [A,C]B$

$$iv$$
) $[A,B]^+ = [B^+,A^+]$

2. Soient M et N, deux opérateurs hermitiques. Montrer que MN est hermitique si et seulement si M et N commutent.

Exercice 5

On définit le ket $|\varphi_n\rangle$ comme vecteur propre d'un opérateur A avec valeur propre a_n , s'il satisfait la relation : $A|\varphi_n\rangle = a_n|\varphi_n\rangle$.

- 1. On suppose que l'opérateur A est hermitique.
 - a) Montrer que a_n est réelle.
 - b) Soit $\left|\varphi_{p}\right\rangle$ un autre vecteur propre de A correspondant à la valeur propre a_{p} . Sachant que $\left(a_{p}\neq a_{n}\right)$, montrer que $\left\langle \varphi_{n}\left|\varphi_{p}\right\rangle =0$.
 - **2.** Soit $\big\{|e_1\rangle,|e_2\rangle\big\}$ une base orthonormée dont laquelle l'opérateur A s'écrit sous la forme:

$$A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$$

Déterminer les valeurs propres (λ_1, λ_2) de A ainsi que les vecteurs propres $(|\varphi_1\rangle, |\varphi_2\rangle)$ qui leur sont associés.

Mécanique quantique Filières: SMP (S4), SMC (S4) Prof. : Saïd Ouannasser

Travaux dirigés Série nº: 4

Exercice 1

Un système physique est décrit par un espace de Hilbert à trois dimensions, dont une base orthonormée est $\{|u_1\rangle,|u_2\rangle,|u_3\rangle\}$. Dans cette base, l'opérateur hamiltonien H de ce système est représenté par la matrice suivante:

$$H = \hbar\omega \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

1. L'état du système est représenté par le vecteur :

$$|\psi\rangle = N(|u_1\rangle + |u_2\rangle + |u_3\rangle)$$

Quelle est la valeur de N?

- ${f 2.}$ Quels sont les valeurs propres et les vecteurs propres de ${\cal H}.$ Ya t-il des valeurs propres dégénérées?
- 3. Le résultat de la mesure de l'énergie du système donne la valeur $\hbar\omega$.
 - a) Quelle est la probabilité d'une telle mesure?
 - b) Quel est l'état du système juste après la mesure?
- 4. Refaire les mêmes calculs dans le cas où le résultat de la mesure de l'énergie donne la valeur $2\hbar\omega$.
- 5. Déterminer la valeur moyenne de l'énergie $\langle H \rangle$ du système.

Exercice 2

L'évolution du vecteur d'état d'un système $|\psi(t)\rangle$ est gouvernée par l'équation de Schrödinger:

$$i\hbar \frac{\partial |\psi(t)\rangle}{\partial t} = H(t)|\psi(t)\rangle$$

où H est l'hamiltonien du système.

Soit $\big\{|arphi_n\rangle\big\}$ une base orthonormée formée des états propres de H:

$$H|\varphi_n\rangle = E_n|\varphi_n\rangle$$

où E_n sont les valeurs propres de H.

Le vecteur d'état $|\psi(t)\rangle$ peut se décomposer dans la base $\{|\varphi_n\rangle\}$ sous la forme :

$$|\psi(t)\rangle = \sum_{n} \alpha_{n}(t) |\varphi_{n}\rangle$$

Déterminer la dépendance temporelle des coefficients $\alpha_n(t)$.

Exercice 3

On considère un système physique décrit dans un espace de Hilbert à deux dimensions. Soit $\{|e_1\rangle,|e_2\rangle\}$ une base orthonormée dont laquelle l'opérateur hamiltonien s'écrit sous la forme d'une matrice 2×2 :

$$H = \begin{bmatrix} 0 & W \\ W & 0 \end{bmatrix}$$

où W a la dimension d'une énergie et s'appelle le couplage.

- 1. Ecrire l'équation aux valeurs propres de H et déterminer les valeurs propres λ_1 et λ_2 de l'hamiltonien ainsi que les vecteurs propres $|\varphi_1\rangle$ et $|\varphi_2\rangle$ qui leur sont associés.
- **2.** A l'instant t = 0, l'état du système est $|\psi(t=0)\rangle = |e_1\rangle$.
 - a) Exprimer $|\psi(t=0)\rangle$ dans la base des vecteur s propres $\{|\varphi_1\rangle, |\varphi_2\rangle\}$.
 - b) La mesure de l'énergie du système ne fournit qu'une valeur propre de l'hamiltonien. Quelle est la probabilité de chaque mesure à t=0. Calculer la valeur moyenne de l'énergie $\langle H \rangle$ à cet instant.
- 3. Soit $|\psi(t)\rangle$ le vecteur d'état du système à un instant t donné. Déterminer son expression en tenant compte de la condition initiale.
- **4.** Montrer que la valeur moyenne de l'énergie $\langle H \rangle$ est indépendante du temps.
- **5.** Montrer que la probabilité de trouver le système à l'instant t dans l'état $|e_2\rangle$ est une fonction oscillante du temps. En déduire la fréquence de cette oscillation.

Examen, Session Ordinaire (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1 (10 points)

On considère une particule de masse m et d'énergie E dont le mouvement s'effectue dans la direction x. Cette particule est plongée dans un potentiel V(x) en forme de marche de potentiel (figure 1):

$$\begin{cases} V(x) = 0 & \text{si } x \langle 0 & (r\acute{e}gion 1) \\ V(x) = V_0 & \text{si } x \rangle 0 & (r\acute{e}gion 2) \end{cases}$$

On s'intéresse dans cette étude uniquement au cas où l'énergie de la particule est supérieure à la hauteur de la marche, c'est-à-dire $E \setminus V_0$.

Fig.1 : Marche de potentiel

- 1. Rappeler l'équation de Schrödinger des états stationnaires $\varphi(x)$ d'une particule puis écrire les équations différentielles que doit obéir les fonctions propres $\varphi_1(x)$ et $\varphi_2(x)$ de la particule dans chacune des deux régions respectivement.
- 2. Résoudre les équations précédentes et montrer que les solutions peuvent s'écrire:

$$\begin{cases} \varphi_1(x) = A \ e^{+ikx} + B \ e^{-ikx} & \text{si } x \langle 0 \ (r\acute{e}gion 1) \\ \varphi_2(x) = C \ e^{+iKx} + D \ e^{-iKx} & \text{si } x \rangle 0 \ (r\acute{e}gion 2) \end{cases}$$

Donner les expressions de k et K.

3. On fixera D=0 pour éviter la réflexion dans la région 2. Après avoir écrire les équations de continuité de la fonction d'onde et de sa dérivée au point x=0, déterminer les expressions des rapports $\frac{B}{A}$ et $\frac{C}{A}$.

4. En déduire les coefficients de réflexion $R = \left\| \frac{B}{A} \right\|^2$ et de transmission $T = \left\| \frac{C}{A} \right\|^2$ puis vérifier que R + T = 1. Calculer les limites $(E \to V_0)$ et $(E \to \infty)$ de R et de T.

Exercice 2 (10 points)

On considère un système dont l'espace des états, qui est à trois dimensions, est rapporté à la base orthonormée formée par les trois kets $\{|e_1\rangle,|e_2\rangle,|e_3\rangle\}$. Dans la base de ces trois vecteurs, l'opérateur hamiltonien H du système s'écrit:

$$H = \hbar \omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

- 1. Vérifier que l'opérateur H est hermitique et calculer sa trace. Que peut-on dire des valeurs propres et des vecteurs propres d'un opérateur hermitique.
- 2. Ecrire l'équation aux valeurs propres de H et déterminer ses valeurs propres ainsi que les vecteurs propres associés.
- **3.** A l'instant t = 0, le système se trouve dans l'état:

$$\left|\psi(0)\right\rangle = \frac{1}{\sqrt{2}}\left|e_1\right\rangle + \frac{1}{2}\left|e_2\right\rangle + \frac{1}{2}\left|e_3\right\rangle$$

- a) On mesure l'énergie du système à t=0. Quelles valeurs peut-on trouver et avec quelles probabilités ?
- b) Calculer la valeur moyenne $\langle H \rangle_0$ de l'énergie du système dans l'état $|\psi(0)\rangle$.
- 4. Le vecteur d'état du système à un instant t quelconque peut se développer comme suit:

$$|\psi(t)\rangle = \alpha(t)|e_1\rangle + \beta(t)|e_2\rangle + \gamma(t)|e_3\rangle$$

- a) En utilisant l'équation de Schrödinger (postulat d'évolution) et en tenant compte de l'état initial $|\psi(0)\rangle$, déterminer les expressions des coefficients $\alpha(t)$, $\beta(t)$ et $\gamma(t)$. En déduire l'état du système $|\psi(t)\rangle$.
- b) Calculer la valeur moyenne $\langle H \rangle_t$ de l'énergie du système dans l'état $|\psi(t)\rangle$. Conclusion.

Année universitaire 2014/2015 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session de Rattrapage (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1 (10 points)

D'après le modèle de Bohr, les niveaux d'énergie de l'électron dans l'atome d'hydrogène sont quantifiés et ont pour expression:

$$E_n = -\frac{Ry}{n^2}$$

où Ry = 13,6 eV est la constante de Rydberg.

- 1. Soit λ_{mn} la longueur d'onde de la lumière lorsqu'un électron passe d'un niveau m vers un niveau n.
 - a) Déterminer l'expression de λ_{mn} .
 - b) Calculer les longueurs d'onde des raies spectrales correspondantes aux transitions m=3, m=2 vers l'état fondamental. Y a-t-il émission ou absorption d'énergie?
- 2. La fonction d'onde de l'état fondamental de l'atome d'hydrogène a pour expression:

$$\varphi(r) = A \exp(-\frac{r}{a_0})$$

où A est une constante réelle positive et a_0 le rayon de Bohr.

Représenter l'allure de la densité de probabilité de présence $\|\varphi(r)\|^2$ en fonction de r.

- 3. Donner l'expression de la probabilité pour trouver l'électron dans un volume élémentaire $dv = 4\pi r^2 dr$. Quelle est la condition de probabilité de présence dans tout l'espace.
- 4. Déterminer la constante A en fonction de a_{o} . On pourra utiliser le développement

suivant:
$$\int_{0}^{\infty} e^{-\alpha r} r^{n} dr = \frac{n!}{\alpha^{n+1}}$$

5. Calculer la probabilité pour que l'électron se trouve dans une sphère de rayon a_0 , centrée en r=0.

On donne: $c = 3.10^8 \text{ m.s}^{-1}$; $h = 6,62.10^{-34} \text{ J.s}$; $1 \text{ eV} = 1,6.10^{-19} \text{ J}$, $a_0 = 0,53 \text{ Å}$

Exercice 2 (10 points)

On considère un système physique dont l'espace de Hilbert est défini à deux dimensions. Cet espace est rapporté à une base orthonormée formée par deux kets $|u_1\rangle$ et $|u_2\rangle$. Soit A un opérateur quantique représenté, dans la base $\{|u_1\rangle,|u_2\rangle\}$, par la matrice hermitique suivante :

$$A = \begin{pmatrix} m & 1 \\ 1 & m \end{pmatrix}$$

où *m* est une constante.

- 1. On cherche à déterminer le spectre de l'opérateur A.
 - a) Ecrire l'équation aux valeurs propres de A et déterminer ses valeurs propres λ_1 et λ_2 .
 - b) Déterminer les vecteurs propres $|\varphi_1\rangle$ et $|\varphi_2\rangle$ associés aux valeurs propres λ_1 et λ_2 .
- **2.** L'état quantique du système, à un instant t_0 , est représenté par le ket suivant:

$$|\psi(t_0)\rangle = C(|\varphi_1\rangle + |\varphi_2\rangle)$$

où C est une constante positive.

- a) L'état du système étant normé, en déduire la constante C.
- b) Déterminer la probabilité pour chaque mesure de l'opérateur A à l'instant t_0 .
- c) Calculer la valeur moyenne $\left\langle A \right\rangle_{t_0}$ de l'opérateur A dans l'état $\left| \psi(t_0) \right\rangle$.
- 3. On définit l'opérateur hamiltonien du système par $H = \hbar \omega A$ et on suppose que le vecteur d'état du système à un instant t donné peut se développer sous la forme:

$$\left|\psi(t)\right\rangle = \alpha_1(t)\left|\varphi_1\right\rangle + \alpha_2(t)\left|\varphi_2\right\rangle$$

On cherche à déterminer l'expression de $|\psi(t)\rangle$ en tenant compte de la condition initiale.

- a) En utilisant l'équation de Schrödinger, déterminer les expressions de $\alpha_1(t)$ et $\alpha_2(t)$. En déduire l'état du système $|\psi(t)\rangle$.
- b) Calculer la valeur moyenne $\left\langle H \right\rangle_t$ de l'énergie du système dans l'état $\left| \psi(t) \right\rangle$.

Année universitaire 2015/2016 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session Ordinaire (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1 (10 points)

Une particule de masse m et d'énergie E est animée d'un mouvement, dans un espace à une dimension, suivant la direction x (x >0). Cette particule est soumise à un potentiel de type coulombien d'expression:

$$V(x) = -\frac{A}{x}$$

où A est une constante positive.

- 1. Donner l'expression de l'opérateur hamiltonien H et écrire l'équation de Schrödinger des états stationnaires $\varphi(x)$ de la particule.
- 2. Cette équation différentielle admet une solution, appartenant à l'espace des fonctions d'onde, de la forme:

$$\varphi(x) = Cx \exp\left(-\frac{x}{a}\right)$$

où C et a sont des constantes.

Déterminer la constante a et l'énergie E de la particule en fonction de m, A et \hbar .

- **3.** Ecrire la relation de normalisation de la fonction d'onde $\varphi(x)$ puis établir l'expression de la constante C.
- **4.** Donner l'expression de la densité de probabilité de présence D(x) de la particule. Montrer que D(x) présente un maximum pour une valeur de x que l'on calculera en fonction de a.
- **5.** Représenter l'allure de la densité de probabilité de présence D(x) en fonction de x.

Exercice 2 (10 points)

On considère un système physique dont l'espace des états, de dimensions trois, est rapporté à une base orthonormée $\{|u_1\rangle,|u_2\rangle,|u_3\rangle\}$. Dans cette base, l'opérateur hamiltonien H du système est représenté par la matrice suivante:

$$H = \begin{pmatrix} E_0 & W & 0 \\ W & E_0 & W \\ 0 & W & E_0 \end{pmatrix}$$

où W et E_0 sont des constantes réelles positives.

On suppose qu'à l'instant $t = t_0$, le système physique se trouve dans l'état:

$$|\psi(t_0)\rangle = K\left(\frac{1}{\sqrt{2}}|u_1\rangle + \frac{1}{\sqrt{2}}|u_2\rangle + i|u_3\rangle\right)$$

où K est une constante réelle.

- 1. On cherche tout d'abord à déterminer le spectre énergétique du système.
 - a) Ecrire l'équation caractéristique pour l'opérateur H et déterminer ses valeurs propres.
 - b) Déterminer les vecteurs propres associés aux valeurs propres de H.
- 2. Calculer la constante K de manière que l'état du système soit normé.
- **3.** On mesure l'énergie du système à l'instant $t=t_0$. Quelles valeurs peut-on obtenir et avec quelles probabilités ?
- **4.** Si la mesure de l'énergie du système donne la valeur E_0 , quel sera l'état du système juste après la mesure ? De quel postulat s'agit-il ?
- 5. Déterminer les valeurs moyennes $\langle H \rangle$ et $\langle H^2 \rangle$ dans l'état $|\psi(t_0)\rangle$. En déduire l'écart quadratique moyen $\Delta H = \sqrt{\left\langle H^2 \right\rangle \left\langle H \right\rangle^2}$.

Année universitaire 2015/2016 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session de Rattrapage (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1 (10 points)

On réalise une expérience d'effet photoélectrique en utilisant une cellule photoélectrique d'argent dont l'énergie d'extraction est W = 4,30 eV. Ce dispositif permet d'éclairer cette cellule par des radiations lumineuses afin de produire un courant photoélectron (I_{ph}).

- 1. Donner le schéma du montage permettant de réaliser une expérience d'effet photoélectrique.
- **2.** En fonction de la fréquence ν de la radiation lumineuse, le photo-courant (I_{ph}) peut avoir l'allure suivante:

Expliquer brièvement cette courbe puis calculer la fréquence v_0 de la cellule d'argent.

3. Les longueurs d'ondes des radiations utilisées dans cette expérience sont regroupées dans le tableau suivant:

λ (nm)	100	200	300	400	
, ,					

Calculer les fréquences ν des différents rayonnements utilisés (Présenter les résultats sous forme d'un tableau). Parmi les quatre longueurs d'ondes utilisées, quelles sont celles susceptibles de satisfaire l'effet photoélectrique?

4. Après avoir écrire l'équation d'Einstein pour la conservation de l'énergie, déterminer l'expression de la vitesse v des photoélectrons en fonction de v, v_0 , la constante de Planck h et la masse m de l'électron. Calculer v pour les radiations qui sont susceptibles de produire l'effet photoélectrique.

Données: $m = 9.1.10^{-31} \text{ kg}$; $c = 3.10^8 \text{ m.s}^{-1}$; $h = 6.62.10^{-34} \text{ J.s}$; $1 \text{ eV} = 1.6.10^{-19} \text{ J}$

Exercice 2 (10 points)

Dans un espace des états à trois dimensions, rapporté à une base orthonormée $\{|e_1\rangle,|e_2\rangle,|e_3\rangle\}$, un opérateur quantique A d'un système physique est représenté par la matrice suivante:

$$A = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & -i \ 0 & i & 0 \end{bmatrix}$$

On suppose qu'à l'instant $t = t_0$, le système physique se trouve dans l'état:

$$\left|\psi(t_0)\right\rangle = \frac{1}{2}\left|e_1\right\rangle + \frac{\sqrt{2}}{2}\left|e_2\right\rangle + \frac{1}{2}\left|e_3\right\rangle$$

- 1. Vérifier que l'opérateur A est hermitique et calculer sa trace. Que peut-on dire des valeurs propres et des vecteurs propres d'un opérateur hermitique.
- 2. Ecrire l'équation aux valeurs propres de A et déterminer ses valeurs propres ainsi que ses vecteurs propres. Y'a t-il des valeurs propres dégénérées ?
- 3. Si on effectue une mesure de l'opérateur A à l'instant t_0 , quels sont les résultats possibles et avec quelles probabilités ?
- **4.** Soit $H = \hbar \omega A$, l'opérateur hamiltonien de ce système. Quels sont les valeurs propres et les vecteurs propres de H? Calculer la valeur moyenne de l'énergie $\langle H \rangle$ à l'instant t_0 .
- **5.** Le vecteur d'état du système à un instant t quelconque peut s'écrire sous la forme:

$$|\psi(t)\rangle = \alpha(t)|e_1\rangle + \beta(t)|e_2\rangle + \gamma(t)|e_3\rangle$$

En utilisant l'équation de Schrödinger (postulat d'évolution) et en tenant compte de l'état initial $|\psi(t_0)\rangle$, déterminer les coefficients $\alpha(t)$, $\beta(t)$ et $\gamma(t)$. En déduire l'expression de l'état du système $|\psi(t)\rangle$.

Année universitaire 2016/2017 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session Ordinaire (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1 (10 points)

Une particule de masse m et d'énergie E est animée d'un mouvement de vibrations, dans un espace à une dimension suivant la direction x ($x \in]-\infty, +\infty[$). Cette particule est soumise à un potentiel d'expression:

$$V(x) = \frac{1}{2}m\omega^2 x^2$$
; ω la pulsation des vibrations.

- 1. Donner l'expression de l'opérateur hamiltonien H et écrire l'équation de Schrödinger des états stationnaires $\varphi(x)$ de la particule.
- 2. La fonction d'onde de l'état fondamental, solution de l'équation différentielle précédente, est de la forme:

$$\varphi(x) = A e^{-\alpha x^2}$$
; A et α des réels positifs

En vérifiant qu'elle est bien solution de l'équation différentielle, déterminer la constante α ainsi que l'énergie propre E de la particule en fonction de m, \hbar et ω .

- **3.** Ecrire la relation de normalisation de la fonction d'onde $\varphi(x)$ puis établir l'expression de la constante A en fonction de m, \hbar et ω .
- **4.** Soit P(x) la densité de probabilité de présence de la particule. Donner l'expression de P(x) puis tracer son allure en fonction de x.

On pourra utiliser l'intégrale suivante:
$$\int_{-\infty}^{+\infty} \exp(-ax^2) dx = \sqrt{\frac{\pi}{a}}$$

Exercice 2 (10 points)

On considère un système physique dont l'espace des états, de dimensions trois, est rapporté à une base orthonormée $\{|e_1\rangle,|e_2\rangle,|e_3\rangle\}$. L'opérateur hamiltonien H de ce système est représenté par la matrice suivante:

$$H = \begin{pmatrix} E_0 & \frac{\lambda}{\sqrt{2}} & \frac{\lambda}{\sqrt{2}} \\ \frac{\lambda}{\sqrt{2}} & E_0 & 0 \\ \frac{\lambda}{\sqrt{2}} & 0 & E_0 \end{pmatrix}$$

où λ et E_0 sont des constantes réelles positives.

- 1. Ecrire l'équation caractéristique pour l'opérateur H et déterminer ses valeurs propres.
- 2. Déterminer les vecteurs propres associés aux valeurs propres de H.
- **3.** A l'instant $t=t_0$, le système physique est supposé être dans l'état $|\psi(t_0)\rangle = |e_1\rangle$. On mesure l'énergie du système à cet instant, quelles valeurs peut-on obtenir et avec quelles probabilités ?
- **4.** Déterminer la valeur moyenne de l'énergie $\langle H \rangle$ dans l'état $|\psi(t_0)\rangle$ en utilisant deux chemins différents.

Année universitaire 2016/2017 Filières SMP(S4), SMC(S4) Prof.: Said Ouannasser

Examen, Session de Rattrapage (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1 (10 points)

On considère une particule de masse m animée d'un mouvement dans un espace à une dimension suivant la direction Ox. Soient H l'opérateur hamiltonien associé à cette particule et $\psi(x,t)$ sa fonction d'onde qui peut s'écrire sous la forme:

$$\psi(x,t) = Ce^{-\frac{x}{a}}e^{i(kx-\omega t)}$$
 avec $x \in [0,+\infty[$

C et a sont des constantes positives.

- 1. Déterminer la constante C pour que la fonction d'onde $\psi(x,t)$ soit normée à l'unité.
- **2.** Que représente la quantité $\|\psi(x,t)\|^2$? Tracer l'allure de $\|\psi(x,t)\|^2$ en fonction de x.
- **3.** Quelle est la probabilité P(a) de trouver la particule dans l'intervalle [0, a]?
- **4.** Ecrire l'équation d'évolution de $\psi(x,t)$ en fonction du temps (équation de Schrödinger) et déterminer la valeur moyenne de l'énergie de la particule, soit $\langle H \rangle$.

On rappelle que la valeur moyenne d'une observable A quelconque dans l'état $\psi(x,t)$ est définie par : $\langle A \rangle = \int \psi^* A \psi dx$

Exercice 2 (10 points)

On considère un système physique décrit dans un espace de Hilbert à deux dimensions. Soit $\{|u_1\rangle,|u_2\rangle\}$ une base orthonormée dont laquelle l'opérateur hamiltonien s'écrit sous la forme de la matrice suivante:

$$H = \begin{bmatrix} E_0 & -\delta \\ -\delta & E_0 \end{bmatrix}$$

où E_0 et δ sont des constantes positives.

- 1. On cherche à déterminer le spectre de l'hamiltonien.
 - a) Ecrire l'équation caractéristique pour H et déterminer ses valeurs propres λ_1 et λ_2 .
 - b) Déterminer les vecteurs propres $|\varphi_1\rangle$ et $|\varphi_2\rangle$ associés aux valeurs propres λ_1 et λ_2 .
- **2.** A l'instant initial (t=0), l'état quantique du système est représenté par le vecteur d'état $|\psi(t=0)\rangle = A(|u_1\rangle+2|u_2\rangle)$, où A est une constante positive.

- a) Normaliser l'état du système $|\psi(t=0)\rangle$ à l'unité puis en déduire la constante A.
- b) Calculer la probabilité pour chaque mesure de l'énergie à t = 0.
- c) Quelle alors la valeur moyenne de l'énergie du système à cet instant?
- **3.** Soit $|\psi(t)\rangle = \alpha_1(t)|u_1\rangle + \alpha_2(t)|u_2\rangle$ le vecteur d'état du système à un instant t donné.
 - a) En utilisant le postulat d'évolution (équation de Schrödinger) et en tenant compte de la condition initiale, déterminer les coefficients $\alpha_1(t)$ et $\alpha_2(t)$. En déduire $|\psi(t)\rangle$.
 - b) Calculer la valeur moyenne de l'énergie du système dans l'état $\left|\psi(t)\right>$. Conclusion.

Année universitaire 2017/2018 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session Ordinaire (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1 (8 points)

Une particule est animée d'un mouvement dans un espace à une dimension suivant la direction Ox. Sa fonction d'onde $\psi(x,t)$ s'écrit sous la forme:

$$\psi(x,t) = Ce^{-\frac{|x|}{a}}e^{i(kx-\omega t)}$$
 avec $x \in \square$

où C et a sont des constantes positives.

- 1. Déterminer la constante C pour que la fonction d'onde $\psi(x,t)$ soit normée à l'unité.
- **2.** Exprimer la densité de probabilité $\|\psi(x,t)\|^2$ puis tracer son allure en fonction de x.
- **3.** Quelle est la probabilité P de trouver la particule dans l'intervalle $\left[-\frac{a}{2}, \frac{a}{2}\right]$.
- **4.** Calculer la valeur moyenne $\langle x \rangle$ de la position de la particule. On rappelle que la valeur moyenne d'une grandeur A dans l'état $\psi(x,t)$ est définie par: $\langle A \rangle = \int \psi^*(x,t) A \psi(x,t) dx$.

Exercice 2 (6 points)

On considère trois opérateurs quantiques A, B et C.

- **1.** Exprimer le commutateur [A, BC] en fonction des commutateurs [A, B] et [A, C].
- **2.** Sachant que A, A, B = 0, montrer la relation suivante:

$$\left[A, B^n\right] = nB^{n-1}\left[A, B\right]$$

3. On suppose que [A, B] = iC et que les opérateurs A et B sont hermitiques. Montrer que l'opérateur C est aussi hermitique.

Exercice 3 (6 points)

Dans un espace des états à deux dimensions, rapporté à une base orthonormée $\left\{|e_1\rangle,|e_2\rangle\right\}$, un opérateur quantique A d'un système physique est représenté par la matrice suivante:

$$A = \begin{bmatrix} 1 & \sin \theta \\ \cos \theta & 1 \end{bmatrix}, \ 0 \le \theta \le \pi$$

- 1. Calculer la trace des opérateurs A, A^+ et AA^+ . Pour quelle valeur de l'angle θ l'opérateur A est-il hermitique ?
- 2. Par la suite, on prendra la valeur de θ pour laquelle A est hermitique et on cherchera à déterminer le spectre de cet opérateur.
 - a) Ecrire l'équation aux valeurs propres de A et déterminer ses valeurs propres λ_1 et λ_2 .
 - b) Déterminer les vecteurs propres $|\varphi_1\rangle$ et $|\varphi_2\rangle$ associés aux valeurs propres λ_1 et λ_2 .

Année universitaire 2017/2018 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session de Rattrapage (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1

Une particule de masse m et de charge q est animée d'un mouvement suivant la direction x $(x \in [0, +\infty[)$. Cette particule est soumise à un potentiel de type coulombien d'expression:

$$V(x) = -\frac{q^2}{4\pi\varepsilon_0 x}$$

- 1. Soient E l'énergie de la particule et $\varphi(x)$ sa fonction d'onde d'état stationnaire. Donner l'expression de l'opérateur hamiltonien H puis écrire l'équation de Schrödinger des états stationnaires de cette particule.
- 2. L'équation différentielle précédente peut avoir une solution de la forme:

$$\varphi(x) = Ax \exp(-\alpha x)$$

où A et α sont des constantes positives.

- a) En injectant cette fonction dans l'équation différentielle précédente, déterminer la constante α ainsi que l'énergie propre E de la particule en fonction de m, q, \hbar et ε_0 .
- b) Ecrire la relation de normalisation de la fonction d'onde $\varphi(x)$ puis établir l'expression de

la constante A. On pourra utiliser le résultat de l'intégrale suivante: $\int_{0}^{\infty} e^{-\lambda x} x^{n} dx = \frac{n!}{\lambda^{n+1}}$

3. La fonction d'onde totale $\psi(x,t)$ de la particule peut s'écrire sous la forme:

$$\psi(x,t) = \varphi(x)e^{-i\omega t}$$

- a) Ecrire l'équation de Schrödinger à laquelle obéit la fonction d'onde $\psi(x,t)$.
- b) Que représente la quantité $\|\psi(x,t)\|^2$? Montrer que $\|\psi(x,t)\|^2$ présente un maximum pour une valeur de x que l'on calculera en fonction de m, q, \hbar et ε_0 .
- c) Tracer l'allure graphique de $\|\psi(x,t)\|^2$ en fonction de x.

Exercice 2

On considère un système physique décrit dans un espace de Hilbert à deux dimensions. Soit $\{|u_1\rangle,|u_2\rangle\}$ une base orthonormée de cet espace et dont laquelle trois opérateurs quantiques A,B et C sont représentés par les matrices suivantes:

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; B = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- 1. Parmi ces opérateurs lesquels sont hermitiques ? Que peut-on dire des valeurs propres et des vecteurs propres d'un opérateur hermitique ?
- **2.** Calculer la trace des opérateurs A, B, C, A^2 , B^2 et C^2 .
- 3. Montrer que A, B et C obéissent aux relations de commutation suivantes:

$$[A, B] = \lambda C; [B, C] = \lambda A \text{ et } [C, A] = \lambda B$$

où λ est une constante à déterminer.

4. Déterminer les valeurs propres ainsi que les vecteurs propres des opérateurs A, B et C.

Année universitaire 2018/2019 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session Ordinaire (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1 (10 points)

On considère une particule de masse m dont le mouvement est assimilé à un oscillateur harmonique à une dimension suivant la direction x ($x \in]-\infty, +\infty[$). Cette particule est soumise à un potentiel V(x) d'expression:

$$V(x) = \frac{1}{2}m\omega^2 x^2$$

où ω la pulsation des oscillations harmoniques.

La fonction d'onde $\psi(x,t)$ de l'état fondamental de la particule s'écrit sous la forme:

$$\psi(x,t) = C e^{-\alpha x^2} e^{-i\frac{E_0}{\hbar}t}$$

où C et α des constantes positives, et E_0 l'énergie de l'état fondamental de la particule.

- 1. Donner l'expression de l'opérateur hamiltonien H de la particule et rappeler l'équation de Schrödinger décrivant l'évolution de la fonction d'onde $\psi(x,t)$ en fonction du temps.
- **2.** En injectant l'expression de $\psi(x,t)$ dans l'équation précédente, déterminer la constante α et l'énergie E_0 en fonction de m, \hbar et ω .
- 3. Ecrire la relation de normalisation de la fonction d'onde $\psi(x,t)$ puis établir l'expression de la constante C en fonction de m, \hbar et ω .
- **4.** Déterminer l'expression de $\|\psi(x,t)\|^2$ puis tracer son allure en fonction de x. Que représente cette quantité ?
- **5.** La valeur moyenne d'une observable A quelconque dans l'état $\psi(x,t)$ est définie par :

$$\langle A \rangle = \int \psi^*(x,t) A \psi(x,t) dx$$

Déterminer la valeur moyenne de l'énergie totale $\langle H \rangle$ de la particule dans l'état fondamental.

On pourra utiliser dans cet exercice l'intégrale suivante: $\int_{-\infty}^{+\infty} e^{-\lambda x^2} dx = \sqrt{\frac{\pi}{\lambda}}$

Exercice 2 (10 points)

On considère un système physique décrit dans un espace de Hilbert à trois dimensions. Soit $\{|e_1\rangle,|e_2\rangle,|e_3\rangle\}$ une base orthonormée dont laquelle la représentation matricielle d'une observable A est écrite sous la forme:

$$A = \begin{pmatrix} 0 & 0 & i \\ 0 & 1 & 0 \\ -i & 0 & 0 \end{pmatrix}$$

- 1. Rappeler l'équation caractéristique permettant de diagonaliser l'opérateur A et calculer ses valeurs propres. Y'a t-il des valeurs propres dégénérées ?
- 2. Déterminer les vecteurs propres associés aux valeurs propres de A.
- ${\bf 3.}$ L'état du système, à un instant t_0 donnée, est représenté par le ket suivant:

$$|\psi(t_0)\rangle = C(|e_1\rangle + i|e_2\rangle + |e_3\rangle)$$

- où C est une constante réelle positive.
- a) Déterminer la valeur de la constante de normalisation *C*.
- b) Si on effectue une mesure de l'opérateur A à l'instant t_0 , quels sont les résultats possibles et avec quelles probabilités ?
- **4.** L'opérateur hamiltonien H du système est défini par la relation: $H = \hbar \omega A$.
- a) Donner, sans faire de calculs, les valeurs propres et les vecteurs propres de H.
- b) Déterminer la valeur moyenne de l'énergie $\langle H \rangle$ de ce système à l'instant t_0 en utilisant deux chemins différents.

Année universitaire 2018/2019 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session de Rattrapage (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1

On considère un atome hydrogénoïde de numéro atomique Z. En appliquant le modèle de Bohr à ce système, on peut montrer que les niveaux d'énergie de l'électron sont quantifiés et ont pour expression:

$$E_n = -Ry\frac{Z^2}{n^2}$$

où Ry = 13,6 eV est la constante de Rydberg.

- 1. Soit λ_{mn} la longueur d'onde de la lumière lorsqu'un électron passe d'un niveau m vers un niveau n.
- a) Que représente la constate Ry pour l'atome d'hydrogène? Justifier votre réponse.
- b) Déterminer l'expression de la longueur d'onde λ_{mn} de la lumière lorsque l'électron de l'hydrogénoïde passe d'un niveau m vers un niveau n. Donner les conditions sur m et n pour avoir: i) l'absorption de la lumière, ii) l'émission de la lumière.
- 2. La fonction d'onde de l'état fondamental de l'atome d'hydrogénoïde peut s'écrire:

$$\varphi(r) = A e^{-Zr/a_0}$$

où A est une constante réelle et a_0 le rayon de Bohr.

- a) Quelle est l'énergie (valeur propre) associée à la fonction d'onde $\varphi(r) = A \, e^{-Zr/a_0}$?
- b) Représenter l'allure de la fonction $\|\varphi(r)\|^2$ en fonction de r. Que représente cette quantité?
- c) Donner l'expression de la probabilité pour trouver l'électron dans un volume élémentaire dV en coordonnées sphériques. En déduire la condition de probabilité de présence dans tout l'espace.
- d) En utilisant la relation de normalisation de la fonction d'onde $\varphi(r)$, établir l'expression de la constante A en fonction de Z et a_{α} .

Exercice 2

On considère un système physique dont l'espace de Hilbert est défini à trois dimensions. Cet espace est rapporté à une base orthonormée notée $\{|u_1\rangle,|u_2\rangle,|u_3\rangle\}$. Soit H l'opérateur hamiltonien de ce système et qui est représenté par la matrice suivante:

$$H = \hbar\omega \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 1. Quels sont les valeurs propres et les vecteurs propres de H. Ya t-il des valeurs propres dégénérées?
- **2.** A l'instant t = 0, le système physique est supposé être dans l'état:

$$|\psi(0)\rangle = K(|u_1\rangle + i|u_2\rangle + \sqrt{2}|u_3\rangle)$$

- où K est une constante réelle.
- a) Déterminer la constante K de manière que l'état du système soit normé.
- b) On mesure l'énergie du système à t=0. Quelles valeurs peut-on trouver et avec quelles probabilités ?
- c) En déduire la valeur moyenne $\left\langle H \right\rangle_0$ de l'énergie du système dans l'état $\left| \psi(0) \right\rangle$.
- **3.** Soit $|\psi(t)\rangle$ le vecteur d'état du système à un instant t donné. Cet état peut se décomposer dans la base $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ sous la forme:

$$|\psi(t)\rangle = \alpha(t)|u_1\rangle + \beta(t)|u_2\rangle + \gamma(t)|u_3\rangle$$

- a) En utilisant l'équation de Schrödinger (postulat d'évolution) et en tenant compte de l'état initial, déterminer les coefficients $\alpha(t)$, $\beta(t)$ et $\gamma(t)$. En déduire l'expression de l'état du système $|\psi(t)\rangle$.
- b) Calculer la valeur moyenne $\langle H \rangle_t$ de l'énergie du système dans l'état $|\psi(t)\rangle$. Conclusion.

Année universitaire 2020/2021 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session Ordinaire (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1: Atome d'hydrogène

Dans le cas de l'atome d'hydrogène, l'électron de masse m et de charge -e gravite à une vitesse \vec{v} constante autour du noyau en décrivant une orbite circulaire de rayon r. L'énergie potentielle d'interaction électrostatique entre l'électron et le proton a pour expression : $U(r) = -K \frac{e^2}{r}$, où $K = \frac{1}{4\pi\varepsilon_0}$ est la constante électrostatique.

- 1. Ecrire la loi fondamentale de la dynamique pour l'électron, et en déduire une relation entre le rayon r de l'orbite circulaire et la vitesse v de l'électron.
- 2. L'hypothèse de Bohr stipule que la norme du moment cinétique orbital (L = mvr) de l'électron est quantifiée: $L = n\hbar$, avec $\hbar = \frac{h}{2\pi}$ et n un entier naturel.

En utilisant cette hypothèse, montrer que le rayon de l'orbite circulaire de l'électron est quantifié et a pour expression $r_n=n^2\alpha_0$. Donner l'expression de α_0 (rayon de Bohr) en fonction de m,e,\hbar et K.

3. Montrer que l'expression de l'énergie totale de l'électron peut se mettre sous la forme:

$$E_n = -\frac{Ry}{n^2}$$

Donner l'expression de Ry (constante de Rydberg) en fonction de m, \hbar et a_0 .

- 4. La fonction d'onde du premier état excité de l'atome d'hydrogène peut s'écrire sous la forme $\varphi(r)=Are^{-r/2a_0}$, où A une constante positive et a_0 le rayon de Bohr.
- a) Montrer que la fonction $\varphi(r)$ présente un maximum en un point que l'on déterminera. Tracer l'allure de $\varphi(r)$ en fonction de r.
- b) En utilisant la relation de normalisation de la fonction d'onde $\varphi(r)$, établir l'expression de la constante A en fonction de a_{σ}

On pourra utiliser le développement suivant: $\int\limits_0^\infty e^{-\alpha r}\,r^n\,dr=\frac{n!}{\alpha^{n+1}}$

Exercice 2: Marche de Potentiel

Dans une description à une dimension, une particule de masse m et d'énergie E effectue un mouvement dans la direction x. Cette particule est soumise à l'action d'un potentiel V(x) en forme de marche (voir figure 1).

Figure 1 : Marche de potentiel

Dans cette étude, on s'intéresse uniquement au cas où l'énergie de la particule est inférieure à la hauteur de la marche $(E < V_0)$.

- 1. Rappeler l'équation de Schrödinger des états stationnaires $\varphi(x)$ d'une particule puis écrire les équations différentielles que doit obéir les fonctions propres $\varphi_1(x)$ et $\varphi_2(x)$ de la particule dans chacune des deux régions respectivement.
- 2. Résoudre les équations précédentes et montrer que les solutions peuvent s'écrire:

$$\begin{cases} \varphi_1(x) = A e^{ikx} + B e^{-ikx} & \text{si } x \langle 0 \text{ (région 1)} \\ \varphi_2(x) = C e^{Kx} + D e^{-Kx} & \text{si } x \rangle 0 \text{ (région 2)} \end{cases}$$

Donner les expressions de k et K.

- 3. Par la suite, on fixera D = 0 (Satisfaire le critère de sommabilité des fonctions d'onde). Ecrire les équations de continuité de la fonction d'onde et de sa dérivée au point x = 0 et déterminer les coefficients B et C en fonction du coefficient A.
- 4. Déterminer le coefficient de réflexion $R = \left\| \frac{B}{A} \right\|^2$ puis en déduire le coefficient de transmission T. Faire une conclusion.

Année universitaire 2020/2021 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session de Rattrapage (Durée: 1h 30 min) Module 24: Mécanique Quantique

Question de Cours

Soit $\psi(\vec{r},t)$ la fonction d'onde d'une particule de masse m et d'énergie E. Cette fonction d'onde, solution de l'équation de Schrödinger, peut se mettre sous la forme :

$$\psi(\vec{r},t) = \varphi(\vec{r})\chi(t)$$

où $\varphi(\vec{r})$ la partie spatiale (dépendante de \vec{r}) de la fonction d'onde et $\chi(t)$ sa partie temporelle (dépendante du temps).

- 1. En utilisant l'équation de Schrödinger, montrer qu'on obtient deux équations (une pour la partie spatiale et l'autre pour la partie temporelle).
- **2.** Résoudre l'équation de la partie temporelle et donner la solution de $\chi(t)$.

Exercice 1

Une manipulation d'effet photoélectrique est réalisée à l'aide d'un dispositif expérimental comportant une cellule photoélectrique dont l'énergie d'extraction est $W_0 = 8,30$ eV.

- 1. Expliquer brièvement l'effet photoélectrique et donner le schéma du montage permettant de produire un photo-courant $I_{\rm ph}$.
- 2. Que représente l'énergie d'extraction ? Calculer la fréquence v_0 du seuil photoélectrique puis donner l'allure de la courbe du courant $I_{\rm ph}$ en fonction de la fréquence v de la lumière.
- 3. Nous avons utilisé, dans cette expérience, trois longueurs d'ondes λ différentes (voir tableau). Calculer les fréquences des rayonnements utilisés. Parmi les trois longueurs d'ondes utilisées, quelles sont celles qui satisfont l'effet photoélectrique ? Justifier votre réponse.

λ (nm)	100	200	300
ν			

4. En utilisant le bilan énergétique d'Einstein, établir l'expression de la vitesse v des photoélectrons en fonction de v, v_0 , h et m. Calculer la valeur numérique de v pour les radiations qui satisfont l'effet photoélectrique.

Données: Masse d'un électron $m = 9,11.10^{-31}$ kg; Constante de Planck $h = 6,6262.10^{-34}$ J.s Célérité $c = 3.10^8$ m.s⁻¹; $1 \text{ eV} = 1,6.10^{-19}$

Exercice 2

On considère une particule de masse m et d'énergie E qui se déplace librement, dans la direction x, sur un segment de longueur L. Sa fonction d'onde spatiale peut s'écrire: $\varphi(x) = Ae^{ikx}$, où A une constante positive et k la composante du vecteur d'onde de la particule.

- 1. En utilisant l'équation de Schrödinger stationnaire, déterminer l'expression de l'énergie E de la particule libre.
- 2. En utilisant les conditions aux limites périodiques ($\varphi(x+L) = \varphi(x)$), montrer que k est quantifié (dépend d'un entier n). En déduire l'expression quantifiée de l'énergie E_n de la particule.
- **3.** Ecrire la condition de normalisation de la fonction d'onde $\varphi(x)$ puis déterminer la constante A en fonction de L.

Année universitaire 2021/2022 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session Ordinaire (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1 (10 points)

On réalise une expérience d'effet photoélectrique en utilisant une cellule photoélectrique d'argent dont l'énergie d'extraction est W = 4,30 eV. Ce dispositif permet d'éclairer cette cellule par des radiations lumineuses afin de produire un courant photoélectron (I_{ph}).

- 1. Donner le schéma du montage permettant de réaliser une expérience d'effet photoélectrique.
- **2.** En fonction de la fréquence ν de la radiation lumineuse, le photo-courant (I_{ph}) peut avoir l'allure suivante:

Expliquer brièvement cette courbe puis calculer la fréquence v_0 de la cellule d'argent.

3. Les longueurs d'ondes des radiations utilisées dans cette expérience sont regroupées dans le tableau suivant:

λ (nm)	100	200	300	400
--------	-----	-----	-----	-----

Calculer les fréquences ν des différents rayonnements utilisés (Présenter les résultats sous forme d'un tableau). Parmi les quatre longueurs d'ondes utilisées, quelles sont celles susceptibles de satisfaire l'effet photoélectrique?

4. Après avoir écrire l'équation d'Einstein pour la conservation de l'énergie, déterminer l'expression de la vitesse v des photoélectrons en fonction de v, v_0 , la constante de Planck h et la masse m de l'électron. Calculer v pour les radiations qui sont susceptibles de produire l'effet photoélectrique.

On donne: $m = 9.1.10^{-31} \text{ kg}$; $c = 3.10^8 \text{ m.s}^{-1}$; $h = 6.62.10^{-34} \text{ J.s}$; $1 \text{ eV} = 1.6.10^{-19} \text{ J}$

Exercice 2 (10 points)

Une particule de masse m et d'énergie E est animée d'un mouvement, dans un espace à une dimension, suivant la direction x (x \rangle 0). Cette particule est soumise à un potentiel de type coulombien d'expression:

$$V(x) = -\frac{A}{x}$$

où A est une constante positive.

- 1. Donner l'expression de l'opérateur hamiltonien H et écrire l'équation de Schrödinger des états stationnaires $\varphi(x)$ de la particule.
- 2. Cette équation différentielle admet une solution, appartenant à l'espace des fonctions d'onde, de la forme:

$$\varphi(x) = Cx \exp\left(-\frac{x}{a}\right)$$

où C et a sont des constantes.

Déterminer la constante a et l'énergie E de la particule en fonction de m, A et \hbar .

- **3.** Ecrire la relation de normalisation de la fonction d'onde $\varphi(x)$ puis établir l'expression de la constante C.
- **4.** Donner l'expression de la densité de probabilité de présence D(x) de la particule. Montrer que D(x) présente un maximum pour une valeur de x que l'on calculera en fonction de a.
- **5.** Représenter l'allure de la densité de probabilité de présence D(x) en fonction de x.

Année universitaire 2021/2022 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session de Rattrapage (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1 (10 points)

On considère un atome hydrogénoïde de numéro atomique Z. En appliquant le modèle de Bohr à ce système, on peut montrer que les niveaux d'énergie de l'électron sont quantifiés et ont pour expression:

$$E_n = -Ry\frac{Z^2}{n^2}$$

où Ry est la constante de Rydberg.

- 1. Soit λ_{mn} la longueur d'onde de la lumière lorsqu'un électron passe d'un niveau m vers un niveau n.
- a) Que représente la constante Ry pour l'atome d'hydrogène ? Justifier votre réponse.
- b) Déterminer l'expression de la longueur d'onde λ_{mn} de la lumière. Donner les conditions sur m et n pour avoir: i) l'absorption de la lumière, ii) l'émission de la lumière.
- 2. La fonction d'onde de l'état fondamental de l'atome d'hydrogénoïde peut s'écrire:

$$\varphi(r) = A e^{-Zr/a_0}$$

où A est une constante positive et a_0 le rayon de Bohr.

- a) Donner le niveau d'énergie correspondant à la fonction d'onde $\varphi(r)$.
- b) En utilisant la relation de normalisation de la fonction d'onde $\varphi(r)$, établir l'expression de la constante A en fonction de Z et a_{g}

On pourra utiliser le développement suivant: $\int_{0}^{\infty} e^{-\alpha r} r^{n} dr = \frac{n!}{\alpha^{n+1}}$

c) Déterminer la probabilité $P(a_0)$ pour que l'électron se trouve dans une sphère de rayon a_0 , centrée en r=0.

Exercice 2 (10 points)

Une particule de masse m et d'énergie E est animée d'un mouvement de vibrations, dans un espace à une dimension suivant la direction x ($x \in]-\infty, +\infty[$). Cette particule est soumise à un potentiel d'expression:

$$V(x) = \frac{1}{2}m\omega^2 x^2$$

où ω la pulsation des vibrations.

- 1. Donner l'expression de l'opérateur hamiltonien H et écrire l'équation de Schrödinger des états stationnaires $\varphi(x)$ de la particule.
- 2. La fonction d'onde de l'état fondamental, solution de l'équation différentielle précédente, est de la forme:

$$\varphi(x) = A e^{-\alpha x^2}$$

où A et α des constantes positives.

En injectant l'expression de $\varphi(x)$ dans l'équation différentielle, déterminer la constante α ainsi que l'énergie propre E de la particule en fonction de m, \hbar et ω .

3. Ecrire la relation de normalisation de la fonction d'onde $\varphi(x)$ puis établir l'expression de la constante A en fonction de m, \hbar et ω .

On pourra utiliser l'intégrale suivante: $\int_{-\infty}^{+\infty} \exp(-ax^2) dx = \sqrt{\frac{\pi}{a}}$

4. Que représente la quantité $\|\varphi(x)\|^2$? Donner son expression puis tracer son allure en fonction de x