

Proyecto Integrador 1° Semestre

Modelo predicitivo de días estancia hospitalaria como herramienta para optimización de recursos

Maestría en Ciencia de los Datos y Analítica

Grupo 8 - Semestre 2024-2

- · Gustavo Andrés Rubio Castillo
- · Juan Pablo Bertel Morales
- · Gustavo Adolfo Jerez Tous

¡¡¡Advertencia!!!

• Este notebook fue desarrollado en Google Colab PRO.

∨ CONFIGURACIÓN DE EJECUCIÓN

Importante:

Por la dimensionalidad y cardinalidad del dataset en sus variables categóricas, fue necesario ejecutar este notebook en un ambiente Colab PRO, pues los recursos de memoria y procesador utilizados por los algoritmos de reducción de dimensionalidad desbordaban la capacidad de nuestros computadores personales. Se entiende que para efectos de despliegue en producción del modelo desarrollado esto no es necesario, pues la predicción es soportable por un servidor común dedicado a la ejecución de este tipo de modelos.

Instalar librerías que no vienen por defecto en Colab:

- · pycaret: torneo de modelos
- prince: MCA

!pip install prince
!pip install pycaret

Show hidden output

Silenciar warnings y otras alertas menores

```
%load_ext autoreload
%autoreload 2

import warnings
warnings.filterwarnings('ignore')
warnings.filterwarnings("ignore", category=DeprecationWarning)

import pandas as pd
import numpy as np
import plotly.express as px
```

```
1/12/24, 10:25 p.m.
import re
import pycaret
```

Cargar funciones utilitarias propias para visualizar distribución de variables

```
import funcs_utils as fu
```

ETAPA 1 - ASEGURAR CALIDAD DEL DATASET

La etapa inicial del proceso, aquí se depura y estandariza el dataset de modelación para que pueda ser procesado más adelante y realizar los análisis estadísticos correspondientes.

Pasos realizados

- · Carga del dataset desde S3 bucket(o local)
- Definición de variables de modelación y variable de respuesta
- · Separación de variables numéricas y categóricas para análisis
- · Limpieza de texto en variables categóricas
- · Eliminación de registros nulos y duplicados

Resultado final

Dataset limpio y estandarizado para realizar análisis exploratorio de datos (EDA)

Cargar el dataset desde AWS S3

```
!pip install boto3
```

Show hidden output

Las claves de acceso son temporales, pues estamos restringidos por la licencia educativa para crear usuarios persistentes con credenciales permanentes. En caso de querer probar esta parte de la carga, favor pedirnos la creación de credenciales temporales.

```
#aws_access_key_id=ASIAQ4FS56V3QHBQZA6P
#aws_secret_access_key=COPSG9Q3CLAkz/dsOgH93ghVNpNroyX7ptLGx0g2
#aws_session_token=IQoJb3JpZ2luX2VjEAsaCXVzLXdlc3QtMiJHMEUCIGRucAtge3zx8yjjhB74HnBipQ6otLV1lqsYQqL+K01JAiEA3J0muf9wyuDghJ06uJf0A
import boto3
import pandas as pd
from io import BytesIO
def download_from_s3_with_temp_credentials(bucket_name, file_key, aws_access_key_id, aws_secret_access_key, aws_session_token):
    # Crear un cliente de S3 con credenciales temporales
    s3 = boto3.client(
        "s3",
        aws_access_key_id=aws_access_key_id,
        aws_secret_access_key=aws_secret_access_key,
        aws_session_token=aws_session_token,
    )
    try:
        # Descargar el archivo desde S3
        response = s3.get_object(Bucket=bucket_name, Key=file_key)
        # Leer el contenido del archivo Excel como DataFrame
        df = pd.read excel(BytesIO(response["Body"].read()), engine="openpyxl")
        print(f"Archivo {file_key} descargado exitosamente.")
        return df
    except Exception as e:
        print(f"Error al descargar el archivo: {e}")
        return None
# Configuración
BUCKET_NAME = "proyectointegrador"
```

FILE_KEY_TO_DOWNLOAD = "zona_raw/dataset_estancia_hospitalaria.xlsx" # Cambia la extensión a .xlsx

```
# Credenciales temporales
AWS_ACCESS_KEY_ID = "ASIAQ4FS56V3QHBQZA6P"
AWS_SECRET_ACCESS_KEY = "COPSG9Q3CLAkz/ds0gH93ghVNpNroyX7ptLGx0g2"
AWS_SESSION_TOKEN = "IQoJb3JpZ2luX2VjEAsaCXVzLXdlc3QtMiJHMEUCIGRucAtge3zx8yjjhB74HnBipQ6otLV1lqsYQqL+K01JAiEA3J0muf9wyuDghJ06uJf
# Descargar el archivo desde S3
data = download_from_s3_with_temp_credentials(
   BUCKET_NAME,
   FILE_KEY_TO_DOWNLOAD,
   AWS_ACCESS_KEY_ID,
   AWS_SECRET_ACCESS_KEY,
   AWS_SESSION_TOKEN.strip() # Elimina espacios en blanco adicionales
# Mostrar los datos descargados
if data is not None:
 data = data_.drop(['fecha', 'unidad_x_edad', 'año', 'mes'],axis=1)
 print("No se pudo descargar el dataset desde S3")
data.head()
```

Archivo zona_raw/dataset_estancia_hospitalaria.xlsx descargado exitosamente.

estancia_en_	_uci	ir_cdm	ir_grd_base	nivel_de_complejidad	<pre>procedimiento_principal</pre>	diagnostico_principal	ed
0	0	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	01426 - MH OTRAS ENFERMEDADES DEL SISTEMA NERV	Baja Complejidad	89.39 - OTRAS MEDICIONES Y EXAMENES NO QUIRURG	D43.2 - Tumor de comportamiento incierto o des	
1	0	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	01101 - PH PROCEDIMIENTOS VASCULARES INTRACRAN	Alta Complejidad	41.31 - BIOPSIA DE MEDULA OSEA	C69.2 - Tumor maligno de la retina	
2	0	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	01426 - MH OTRAS ENFERMEDADES DEL SISTEMA NERV	Mediana Complejidad	-	I69.4 - Secuelas de accidente vascular encefal	
3	0	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	01426 - MH OTRAS ENFERMEDADES DEL SISTEMA NERV	Baja Complejidad	99.99 - OTRO PROCEDIMIENTO MISCELANEO NCOC	I67.8 - Otras enfermedades cerebrovasculares e	
4	0	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	01130 - PH PROCEDIMIENTOS ESPINALES	Baja Complejidad	80.51 - ESCISION DE DISCO INTERVERTEBRAL	M51.1 - Trastornos de disco lumbar y otros, co	

Cargar el dataset desde archivo local

```
data = pd.read_excel('INSUMOS/dataset_estancia_hospitalaria.xlsx', index_col = None)
#data['f_analisis'] = data['año']*100 + data['mes']
data = data.drop(['fecha', 'unidad_x_edad', 'año', 'mes'],axis=1)
data.shape

$\frac{1}{2}$ (78052, 10)

data.head()
```

e	diagnostico_principal	<pre>procedimiento_principal</pre>	nivel_de_complejidad	ir_grd_base	ir_cdm	estancia_en_uci
	D43.2 - Tumor de comportamiento incierto o des	89.39 - OTRAS MEDICIONES Y EXAMENES NO QUIRURG	Baja Complejidad	01426 - MH OTRAS ENFERMEDADES DEL SISTEMA NERV	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	o 0
	C69.2 - Tumor maligno de la retina	41.31 - BIOPSIA DE MEDULA OSEA	Alta Complejidad	01101 - PH PROCEDIMIENTOS VASCULARES INTRACRAN	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	1 0
	l69.4 - Secuelas de accidente vascular encefal	-	Mediana Complejidad	01426 - MH OTRAS ENFERMEDADES DEL SISTEMA NERV	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	2 0
	I67.8 - Otras enfermedades cerebrovasculares e	99.99 - OTRO PROCEDIMIENTO MISCELANEO NCOC	Baja Complejidad	01426 - MH OTRAS ENFERMEDADES DEL SISTEMA NERV	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	3 0
	M51.1 - Trastornos de disco lumbar y otros, co	80.51 - ESCISION DE DISCO INTERVERTEBRAL	Baja Complejidad	01130 - PH PROCEDIMIENTOS ESPINALES	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	4 0

Definir las variables de modelación y respuesta

Se remueven las columnas innecesarias para que el procesamiento sea más directo

```
data = data[feats_train + [feat_target]]
data.head()
```

eda	estancia_en_uci	diagnostico_principal	${\tt procedimiento_principal}$	${\tt nivel_de_complejidad}$	ir_grd_base	ir_cdm	
Ş	0	D43.2 - Tumor de comportamiento incierto o des	89.39 - OTRAS MEDICIONES Y EXAMENES NO QUIRURG	Baja Complejidad	01426 - MH OTRAS ENFERMEDADES DEL SISTEMA NERV	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	0
	0	C69.2 - Tumor maligno de la retina	41.31 - BIOPSIA DE MEDULA OSEA	Alta Complejidad	01101 - PH PROCEDIMIENTOS VASCULARES INTRACRAN	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	1
ŧ	0	I69.4 - Secuelas de accidente vascular encefal	-	Mediana Complejidad	01426 - MH OTRAS ENFERMEDADES DEL SISTEMA NERV	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	2
(0	I67.8 - Otras enfermedades cerebrovasculares e	99.99 - OTRO PROCEDIMIENTO MISCELANEO NCOC	Baja Complejidad	01426 - MH OTRAS ENFERMEDADES DEL SISTEMA NERV	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	3
2	0	M51.1 - Trastornos de disco lumbar y otros, co	80.51 - ESCISION DE DISCO INTERVERTEBRAL	Baja Complejidad	01130 - PH PROCEDIMIENTOS ESPINALES	01 - ENFERMEDADES Y TRASTORNOS DEL SISTEMA NER	4

Separar variables categóricas y numericas para facilitar el análisis

data[feats_numericas].describe()

→		estancia_en_uci	edad	costo_operativo_estimado	peso_ir_estimado
	count	78052.000000	78052.000000	7.805200e+04	78052.000000
	mean	1.458335	41.395711	1.743718e+07	1.820014
	std	5.720490	27.512572	2.576580e+07	1.777316
	min	0.000000	0.000000	2.296900e+02	0.000000
	25%	0.000000	15.000000	4.607076e+06	0.636500
	50%	0.000000	41.000000	9.537359e+06	1.360200
	75%	0.000000	65.000000	1.942217e+07	2.404025

data[list(feats_numericas) + [feat_target]].corr()

•	estancia_en_uci	edad	costo_operativo_estimado	peso_ir_estimado	estancia_total
estancia_en_uci	1.000000	0.000672	0.674788	0.527176	0.594789
edad	0.000672	1.000000	0.072235	0.069794	0.050194
costo_operativo_estimado	0.674788	0.072235	1.000000	0.497779	0.816013
peso_ir_estimado	0.527176	0.069794	0.497779	1.000000	0.424316

vascular encefalico, no ...

trastornos de disco lumbar y

otras enfermedades

cerebrovasculares

otros, con radicu...

especific...

Remover texto no informativo de las variables categoricas

```
import unicodedata
def remover_texto_no_informativo(text):
    return re.sub(r'^.*? -', '', text)
def remover_tildes_y_simbolos(text):
    # Normalize the input string into a decomposed form (NFD)
    nfkd_form = unicodedata.normalize('NFD', text)
    # Remove characters that are non-spacing marks (diacritical marks)
    return ''.join([char for char in nfkd_form if unicodedata.category(char) != 'Mn'])
def remover_espacios_y_minusculas(text):
    return re.sub(r'\s+', ' ', text).strip().lower()
for f in feats_categoricas:
  data[f] = data[f].apply(remover_texto_no_informativo)
  data[f] = data[f].apply(remover_tildes_y_simbolos)
  data[f] = data[f].apply(remover_espacios_y_minusculas)
data.head()
∓
             ir_cdm ir_grd_base nivel_de_complejidad procedimiento_principal diagnostico_principal estancia_en_uci edad cost
        enfermedades
                           mh otras
          y trastornos
                       enfermedades
                                                             otras mediciones y examenes
                                                                                         tumor de comportamiento
                                            baia compleiidad
                                                                                                                               0
                                                                                                                                    96
                         del sistema
           del sistema
                                                                         no quirurgicos
                                                                                          incierto o desconocido...
                           nervioso
             nervioso
        enfermedades
                                ph
          y trastornos
                      procedimientos
                                             alta compleiidad
                                                                  biopsia de medula osea
                                                                                         tumor maligno de la retina
                                                                                                                               0
                                                                                                                                     4
           del sistema
                         vasculares
                       intracraneales
             nervioso
        enfermedades
                           mh otras
                                                                                            secuelas de accidente
          y trastornos
                       enfermedades
                                         mediana complejidad
                                                                                                                                    57
```

otro procedimiento miscelaneo

escision de disco intervertebral

ncoc

data.sample(5)

del sistema

enfermedades

enfermedades

y trastornos

del sistema

nervioso

v trastornos

del sistema

nervioso

nervioso

del sistema

nervioso

mh otras

nervioso

espinales

ph

enfermedades

procedimientos

del sistema

baja complejidad

baja complejidad

66

45

 $\overline{\mathbf{T}}$

ir_cdm	ir_grd_base	${\tt nivel_de_complejidad}$	${\tt procedimiento_principal}$	diagnostico_principal	estancia_en_uci	edad
enfermedades y trastornos de oido, nariz, boca	mh enfermedades orales y dentales	baja complejidad	otras mediciones y examenes no quirurgicos	gingivoestomatitis y faringoamigdalitis herpetica	0	7
enfermedades y trastornos del aparato urinario	mh neoplasia de rinon y tracto urinario e insu	baja complejidad	e.m. muestra de otro sitio cultivo	otras insuficiencias renales agudas	0	62
enfermedades y trastornos sistema musculoesque	ph procedimientos sobre tejidos blandos	baja complejidad	bursectomia	bursitis del olecranon	0	63
enfermedades y trastornos del sistema nervioso	ph craneotomia	mediana complejidad	otras craniectomias	perdida de liquido cefalorraquideo	0	71
enfermedades y trastornos de piel, tejido subc	mh traumatismo de piel, tejido subcutaneo y mama	baja complejidad	radiografia, otra y no especificada	herida de otras partes de la pierna	0	38
	enfermedades y trastornos de oido, nariz, boca enfermedades y trastornos del aparato urinario enfermedades y trastornos sistema musculoesque enfermedades y trastornos del sistema nervioso enfermedades y trastornos del piel, tejido	enfermedades y trastornos de oido, nariz, boca enfermedades y trastornos del aparato urinario enfermedades y trastornos sistema musculoesque enfermedades y trastornos del sistema nervioso enfermedades y trastornos del sistema nervioso enfermedades y trastornos del sistema nervioso enfermedades y trastornos del piel, tejido subcutaneo y	enfermedades y trastornos de oido, nariz, boca dentales enfermedades y trastornos del aparato urinario e insu enfermedades y trastornos sistema musculoesque blandos enfermedades y trastornos del sistema nervioso enfermedades y trastornos del piel, tejido subcutaneo y subcu enfermedades y trastornos de piel, tejido subcutaneo y subcu enfermedades y trastornos de piel, tejido subcutaneo y subcu mh traumatismo de piel, tejido subcutaneo y baja complejidad subcutaneo y	enfermedades y trastornos de oido, nariz, boca dentales enfermedades y trastornos del aparato urinario e insu enfermedades y trastornos sistema musculoesque blandos enfermedades y trastornos del apiel, tejido subcutaneo y subc enfermedades y trastornos del piel, tejido subcutaneo y subc enfermedades y trastornos del piel, tejido subcutaneo y subc enfermedades y trastornos del piel, tejido subcutaneo y supporte para de nor sitio de nor sitio cultivo e.m. muestra de otro sitio cu	enfermedades y trastornos de oido, nariz, orales y boca enfermedades y trastornos del aparato urinario e insu enfermedades y trastornos del aparato urinario musculoesque enfermedades y trastornos del sistema nusculoesque enfermedades y trastornos del sistema nusculoesque enfermedades y trastornos del sistema nervioso enfermedades y trastornos del sistema nervioso enfermedades y trastornos del piel, tejido subcutaneo y trastornos de piel, tejido subcutaneo y enfermedades y trastornos del piel, tejido subcutaneo y enfermedades y trastornos del piel, tejido subcutaneo y enfermedades y trastornos de piel piela de otras partes de la principa de otras partes de la principa d	trastornos de oido, nariz, boca enfermedades y trastornos del aparato urinario enfermedades y trastornos del aparato urinario benfermedades y trastornos del aparato urinario enfermedades y trastornos del aparato urinario benfermedades y trastornos sistema musculoesque enfermedades y trastornos del sistema nervioso enfermedades y trastornos del piel, tejido subc enfermedades y trastornos del piel, tejido subcutaneo y baja complejidad radiografia, otra y no de piel, tejido subcutaneo y baja complejidad especificada especificada enfermedades y trastornos del piel, tejido subcutaneo y baja complejidad radiografia, otra y no de piel, tejido subcutaneo y baja complejidad especificada especificada enfermedades y trastornos del piel, tejido subcutaneo y baja complejidad especificada especificada piema le riadiografia, otra y no de piel, tejido subcutaneo y baja complejidad especificada piema le riadiografia, otra y no de piel, tejido subcutaneo y le riadiografia, otra y no de piel, tejido subcutaneo y le riadiografia, otra y no de piel, tejido subcutaneo y le riadiografia, otra y no de piel, tejido subcutaneo y le riadiografia, otra y no de piel, tejido subcutaneo y le riadiografia, otra y no de piel, tejido subcutaneo y le riadiografia, otra y no de piel, tejido subcutaneo y le riadiografia de liquido corradio le riadiografia, otra y no de piel, tejido subcutaneo y le riadiografia de liquido corradiografia de liquido corradio la radiografia de liquido corrad

Validar registros nulos

Hay una limitación en numpy para reconocer string vacias como un dato nulo(NaN) por lo que toca remover estas filas manualmente

_		ir_cdm	ir_grd_base	nivel_de_complejidad	procedimiento_principal	diagnostico_principal	estancia_en_uci	edad	cost
	0	enfermedades y trastornos del sistema nervioso	mh otras enfermedades del sistema nervioso	baja complejidad	otras mediciones y examenes no quirurgicos	tumor de comportamiento incierto o desconocido	0	96	
	1	enfermedades y trastornos del sistema nervioso	ph procedimientos vasculares intracraneales	alta complejidad	biopsia de medula osea	tumor maligno de la retina	0	4	
	2	enfermedades y trastornos del sistema nervioso	mh otras enfermedades del sistema nervioso	baja complejidad	otro procedimiento miscelaneo ncoc	otras enfermedades cerebrovasculares especific	0	66	
	3	enfermedades y trastornos del sistema nervioso	ph procedimientos espinales	baja complejidad	escision de disco intervertebral	trastornos de disco lumbar y otros, con radicu	0	45	
	4	enfermedades y trastornos del sistema nervioso	ph procedimientos de derivacion ventricular	alta complejidad	derivacion ventricular a localizacion extracra	meningitis por hemofilos	10	48	

Validar registros duplicados

ETAPA 2 - ANÁLISIS EXPLORATORIO DE DATOS

Con el dataset depurado se avalizan las variables para entender mejor el comportamiento esperado durante el entrenamiento y los resultados obtenidos del proceso. En la etapa de exploración se busca hacer un análisis estadístico descriptivo de todas las variables disponibles, desde un enfoque univariado (completitud, tendencia central, significancia, distribución) y multivariado (Correlación total y parcial, variabilidad, explicabilidad).

Pasos realizados

- · Visualización inicial
 - o Scatter plot en relación con la variable de respuesta
 - o Boxplot e histogramas de distribución
- Estadísticos y gráficas descriptivas complementarias
 - o Análisis de frecuencias
 - o Medidas de tendencia y dispersión
 - o Pruebas de normalidad
 - o Funciones de densidad y normalidad
- Correlaciones

Resultado final

Comprensión de los datos disponibles e insights para la transformación de características

Feats numéricas

Boxplot e histogramas interactivos iniciales

```
for f in feats_numericas:
    df = data.groupby([f]).agg(conteo=(feat_target, 'count')).reset_index()
    df['perc'] = round((df['conteo'] / df['conteo'].sum())*100, 1)
    df = df.sort_values(by='perc', ascending=False)
    fig = px.histogram(df, x = f, y = 'conteo', text_auto=True, title = f)
    fig.show()
```


for f in feats_numericas:
 fig = px.box(data, y=f, width=600, height=400)
 fig.update_layout(title_text = f)
 fig.show()

estancia_en_uci

edad

costo_operativo_estimado

peso_ir_estimado

Relación con la variable de respuesta

```
from plotly.subplots import make_subplots
fig = make_subplots(rows=2, cols=2)

for f in feats_numericas:
    fig = px.scatter(data, x = f, y = feat_target, trendline="ols", width=600, height=400)
    fig.update_layout(title_text = f)
    fig.show()
```


estancia_en_uci

edad

costo_operativo_estimado

peso_ir_estimado

Estadísticos y descriptivas

```
for f in feats_numericas:
   print('\n\t\t',str.upper(f), '\n')
   fu.inter_uncond_descrp_num_var(f, col = data[f])
```


ESTANCIA_EN_UCI

EDAD

COSTO_OPERATIVO_ESTIMADO

PESO_IR_ESTIMADO

Correlaciones

feats = list(feats_numericas) + [feat_target]
fu.print_corr_var(data[feats])

Feats categóricas

Test ANOVA de significancia sobre la relación con la variable de respuesta

```
from scipy.stats import f_oneway

for f in feats_categoricas:
   categories = data[f].unique()
   groups = [data[data[f] == category][feat_target] for category in categories]

  f_stat, p_value = f_oneway(*groups)
   print(f"\nANOVA p-value de la variable {f}: {p_value}")

   ANOVA p-value de la variable ir_cdm: 0.0
   ANOVA p-value de la variable ir_grd_base: 0.0
```

```
ANOVA p-value de la variable nivel_de_complejidad: 0.0

ANOVA p-value de la variable procedimiento_principal: 0.0

ANOVA p-value de la variable diagnostico_principal: 0.0
```

Como las p-values son significativos (p < 0.05), se infiere que hay relación entre las variables categoricas y la de respuesta

> Promedio de target por categoria

```
[ ] → 1 cell hidden
```

Estadísticos y descriptivas

```
for f in feats_categoricas:
    print('\n\t\t',str.upper(f), '\n')
    fu.inter_uncond_descrp_cat_var(f, col = data[f])
```


IR_CDM

IR GRD BASE

NIVEL_DE_COMPLEJIDAD

PROCEDIMIENTO_PRINCIPAL

DIAGNOSTICO_PRINCIPAL

Feat target

```
fig = px.box(data, y=feat_target, width=600, height=400)
fig.update_layout(title_text = feat_target)
fig.show()
```

 $\overline{\Sigma}$

estancia_total

ETAPA 3 - FEATURE ENGINEERING

Una vez se han analizado las variables de modelación, se procede a realizar las transformaciones necesarias para reducir el sesgo durante el entrenamiento y generar confianza sobre la evaluación de los modelos obtenidos.

Pasos realizados

- · Identificar outliers en variables numéricas
 - o Evaluar distancia de Mahalanobis
 - o Aplicar clustering DBSCAN
- Identificar outliers en variables categóricas
 - o Aplicar moda de variable a las categorias potenciales outliers
 - o Aplicar Multiple Corresponde Analisys (MCA)
 - o Evaluar distancia de Hamming
- Consolidar y remover outliers del dataset
- Acotar (Winsorizing) variable de respuesta para mitigar sesgos por outliers

Resultado final

Dataset sin outliers para modelación

```
from sklearn.preprocessing import RobustScaler, StandardScaler, MinMaxScaler from sklearn.metrics import silhouette_score, davies_bouldin_score from scipy.spatial.distance import cdist from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.neighbors import NearestNeighbors from sklearn.cluster import DBSCAN from plotly.subplots import make_subplots import seaborn as sns import plotly.express as px import matplotlib.pyplot as plt
```

3.1 Identificar outliers de feats numéricas

```
data_numerica = data[feats_numericas]
print(data_numerica.shape)
```

data_numerica.head()

→ (76258, 4)

	estancia_en_uci	edad	costo_operativo_estimado	peso_ir_estimado	
0	0	96	1540005.10	0.3326	
1	0	4	23759810.59	4.0919	
2	0	66	4997120.16	1.7552	
3	0	45	8939942.81	0.9393	
•					

Distancia de Mahalanobis

data_numerica.describe()

 \rightarrow

	estancia_en_uci	edad	${\tt costo_operativo_estimado}$	peso_ir_estimado
count	76258.000000	76258.000000	7.625800e+04	76258.000000
mean	1.484880	41.637795	1.763403e+07	1.833033
std	5.777062	27.489393	2.588949e+07	1.788586
min	0.000000	0.000000	2.296900e+02	0.000000
25%	0.000000	16.000000	4.671039e+06	0.641700
50%	0.000000	41.000000	9.670476e+06	1.369100
75%	0.000000	65.000000	1.969744e+07	2.420525

```
data_numerica = data_numerica.values
scaler = RobustScaler()
data_numerica_std = scaler.fit_transform(data_numerica)
data_numerica_std.shape
→ (76258, 4)
punto_central = np.mean(data_numerica_std, axis=0)
punto_central
→ array([1.48488027, 0.01301623, 0.52997104, 0.26080872])
pca = PCA(n_components=2)
pca_result = pca.fit_transform(data_numerica_std)
matriz_covarianza = np.cov(data_numerica_std, rowvar=False)
matriz_covarianza
→ array([[ 3.33744452e+01, -5.64849368e-03, 6.73906231e+00,
               3.06541570e+00],
             [-5.64849368e-03, 3.14730004e-01, 6.71193038e-02,
               3.79227245e-02],
6.73906231e+00, 6.71193038e-02, 2.96850207e+00,
             [ 6.73906231e+00,
               8.64154924e-01],
             [ 3.06541570e+00,
                                  3.79227245e-02, 8.64154924e-01,
               1.01100422e+00]])
covarianza_inversa = np.linalg.inv(matriz_covarianza)
covarianza_inversa
→ array([[ 0.06111498, 0.0360978 , -0.11345044, -0.08968607],
             [ 0.0360978 , 3.21858559 , -0.11677109 , -0.13036938] , [-0.11345044 , -0.11677109 , 0.65983488 , -0.21562573] , [-0.08968607 , -0.13036938 , -0.21562573 , 1.45024426]])
mahalanobis = []
for i, x in enumerate(data_numerica_std):
```

```
distancia = (x - punto\_central).T.dot(covarianza\_inversa).dot(x - punto\_central)
 mahalanobis.append(distancia)
mahalanobis = np.array(mahalanobis)
from scipy.stats import chi2
corte = chi2.ppf(0.95, data_numerica_std.shape[1])
outliers_feats_num_mahalanobis = np.where(mahalanobis > corte )[0]
print('Index de outliers de variables numericas')
print(outliers_feats_num_mahalanobis)
#print(data_numerica[mahalanobis > corte , :])
    Index de outliers de variables numericas
    [ 50
           72 83 ... 75369 76216 76219]
corte
→ 9.487729036781154
outliers = mahalanobis > np.sqrt(corte)
outliers
→ array([ True, True, False, ..., False, True, False])
len(outliers_feats_num_mahalanobis)
<del>→</del> 4450
mahalanobis[outliers_feats_num_mahalanobis]
pca_result[0]
→ array([-1.74563676, -0.81360753])
plt.scatter(pca_result[:, 0], pca_result[:, 1], c=outliers, cmap='coolwarm', marker='o')
plt.title("Distancia de Mahalanobis con PCA", fontsize=16)
plt.xlabel('Componente 1')
plt.ylabel('Componente 2')
plt.colorbar(label="Outliers")
plt.show()
```


DBSCAN

```
scaler = StandardScaler()
df_scaled = scaler.fit_transform(data[feats_numericas])
df_scaled = pd.DataFrame(df_scaled, columns=feats_numericas)
df_scaled.head()
```

→		estancia_en_uci	edad	costo_operativo_estimado	peso_ir_estimado
	0	-0.257032	1.977583	-0.621647	-0.838899
	1	-0.257032	-1.369184	0.236614	1.262943
	2	-0.257032	0.886246	-0.488113	-0.043517
	3	-0.257032	0.122310	-0.335818	-0.499690

```
neighbors = NearestNeighbors(n_neighbors=5)
neighbors_fit = neighbors.fit(df_scaled)
distances, indices = neighbors_fit.kneighbors(df_scaled)
sorted_distances = np.sort(distances[:, -1], axis=0)

df_k = pd.DataFrame(sorted_distances).reset_index()
df_k.columns = ['registros', 'distancias']

fig = px.line(df_k, x="registros", y="distancias", title="Distancias al 5° vecino más cercano")
fig.show()
```


Distancias al 5º vecino más cercano

De la gráfica anterior se infiere que el codo se presenta cuando k=1

```
dbscan = DBSCAN(eps=1, min_samples=5, n_jobs=-1)
df_scaled['Outlier'] = dbscan.fit_predict(df_scaled)

df_scaled['Outlier'] = df_scaled['Outlier'] == -1
df_scaled.groupby('Outlier')['edad'].count()

edad

Outlier
False 75852
```

True

406

```
# Reduce the data to 2D using PCA for visualization
pca = PCA(n_components=2)
X_pca = pca.fit_transform(df_scaled)
outliers = df_scaled[df_scaled['Outlier'] == True]
# Add the PCA components to the dataframe
df_scaled['PCA1'] = X_pca[:, 0]
df_scaled['PCA2'] = X_pca[:, 1]
fig = px.scatter(df_scaled, x='PCA1', y='PCA2', color='Outlier',
                 title='DBSCAN Clustering (Proyección PCA )',
                 labels={'PCA1': 'PCA Componente 1', 'PCA2': 'PCA Componente 2'},
                 color_continuous_scale='Viridis',
                 category_orders={'Cluster': [-1, 0, 1, 2]},
# Add hover information (e.g., point index and cluster label)
fig.update_traces(marker=dict(size=5), hoverinfo='x+y+text',
                  hovertext=df_scaled.index.astype(str) + '<br/>br>Cluster: ' + df_scaled['Outlier'].astype(str))
# Show the plot
fig.show()
```


 $\overline{\Rightarrow}$

DBSCAN Clustering (Proyección PCA)


```
df = df_scaled.loc[df_scaled.Outlier == True].reset_index()
outliers_feats_num_dbscan = list(df['index'])
print(len(outliers_feats_num_dbscan))
```

Se valida la correcta aplicación de DBSCAN con el score Silhouette que evidencia una buena separación de grupos de datos para facilitar la identificación de outliers

3.2 Identificar outliers de feats categóricas

```
for f in feats_categoricas:
    categories = data[f].unique()
    print('La variable',f,'tiene categorias distintas:', len(categories))

→ La variable ir_cdm tiene categorias distintas: 22
    La variable ir_grd_base tiene categorias distintas: 254
    La variable nivel_de_complejidad tiene categorias distintas: 3
    La variable procedimiento_principal tiene categorias distintas: 1069
    La variable diagnostico_principal tiene categorias distintas: 3870
```

∨ Reemplazando moda en categorías con poca frecuencia

```
def reemplazar_categorias_poca_frecuencia(df, feats_agrupar, threshold=1):
    for f in feats_agrupar:
        conteos_categorias = df[f].value_counts()
        moda = conteos_categorias.idxmax()
        #top5 = conteos_categorias.head(5)
```

La variable ir_cdm tiene categorias distintas: 22
La variable ir_grd_base tiene categorias distintas: 247
La variable nivel_de_complejidad tiene categorias distintas: 3
La variable procedimiento_principal tiene categorias distintas: 652
La variable diagnostico_principal tiene categorias distintas: 1995

print('La variable',f,'tiene categorias distintas:', len(categories))

data_categorica = data[feats_categoricas]
print(data_categorica.shape)
data_categorica.head()

→ (76258, 5)

diagnostico_principal	<pre>procedimiento_principal</pre>	nivel_de_complejidad	ir_grd_base	ir_cdm	
tumor de comportamiento incierto o desconocido	otras mediciones y examenes no quirurgicos	baja complejidad	mh otras enfermedades del sistema nervioso	enfermedades y trastornos del sistema nervioso	0
tumor maligno de la retina	biopsia de medula osea	alta complejidad	ph procedimientos vasculares intracraneales	enfermedades y trastornos del sistema nervioso	1
otras enfermedades cerebrovasculares especific	otro procedimiento miscelaneo ncoc	baja complejidad	mh otras enfermedades del sistema nervioso	enfermedades y trastornos del sistema nervioso	2
traetornos de disco lumbar v otros			nh procedimientos	enfermedades y	

Multiple Correspondence Analysis (MCA) - Feats categóricas

MCA con One-Hot encoding

```
oh_data_cat = pd.get_dummies(data_categorica)
oh_data_cat.shape
→ (76258, 2919)
import prince
mca = prince.MCA(
    n_components=2,
    n_iter=3,
    copy=True,
    check_input=True,
    engine='sklearn',
    random_state=42,
    one_hot=False
mca = mca.fit(oh_data_cat)
mca.eigenvalues_summary
\overline{2}
                 eigenvalue % of variance % of variance (cumulative)
      component
          0
                       0.683
                                      0.12%
                                                                   0.12%
```

```
mca_coordenadas = mca.transform(oh_data_cat)
print(mca_coordenadas.head())

0 1
0 -0.409548 0.355293
1 -0.431348 0.706937
2 -0.516768 0.468471
3 0.860031 0.459029
4 0.234757 0.498882
```

Se valida la correcta aplicación de MCA con el score Silhouette que evidencia una buena separación de grupos de datos para facilitar la identificación de outliers

```
kmeans = KMeans(n_clusters=3)
clusters = kmeans.fit_predict(mca_coordenadas)
silhouette = silhouette_score(mca_coordenadas, clusters)
print(f"Silhouette Score: {silhouette}")
→ Silhouette Score: 0.6069958275284768
centroide = mca_coordenadas.mean(axis=0)
distancias = cdist(mca_coordenadas, [centroide], metric='euclidean')
corte = np.mean(distancias) + 2 * np.std(distancias)
outliers_feats_cat_OH = np.where(distancias > corte)[0]
df_mca = list(zip(mca_coordenadas.iloc[:, 0], mca_coordenadas.iloc[:, 1], distancias[:, 0]))
df_mca = pd.DataFrame(df_mca, columns = [0,1,'distancia'])
df_mca.head()
\overline{\Rightarrow}
               0
                        1 distancia
     0 -0.409548 0.355293
                            0.542183
                            0.828143
     1 -0.431348 0.706937
     2 -0.516768 0.468471
                            0.697505
     3 0.860031 0.459029
                            0.974864
def plot_PC_outliers(df_mca, outliers, x, y):
  fig = make_subplots()
  fig.add_trace(
      px.scatter(df_mca, x = x, y = y, hover_data = ['distancia']).data[0]
  fig['data'][0]['showlegend']=True
  fig['data'][0]['name']='Aceptados'
  fig.add_trace(
      px.scatter(df_mca.iloc[outliers[:]], x = x, y = y, hover_data = ['distancia'], color_discrete_sequence=['red']).data[0]
  fig['data'][1]['showlegend']=True
  fig['data'][1]['name']='Outliers'
  fig.update_layout(title_text = f'PC{x} vs PC{y}')
  fig.show()
plot_PC_outliers(df_mca, outliers_feats_cat_OH, 0, 1)
```


PC0 vs PC1

MCA con factorización

factorized_data_cat = data_categorica.apply(lambda col: pd.factorize(col)[0])
factorized_data_cat.shape

→ (76258, 5)

Se suma 1 al encoding para garantizar la división al momento de ajustar MCA. Esto no afecta el resultado.

factorized_data_cat = factorized_data_cat + 1
factorized_data_cat.head()

₹		ir_cdm	ir_grd_base	nivel_de_complejidad	procedimiento_principal	diagnostico_principal
	0	1	1	1	1	1
	1	1	2	2	2	2
	2	1	1	1	3	3
	3	1	3	1	4	4
				-	<u>-</u>	

import prince

```
mca = prince.MCA(
    n_components=2,
    n_iter=10,
    copy=True,
    check_input=True,
    engine='sklearn',
    random_state=42,
    one_hot=False
)
mca = mca.fit(factorized_data_cat)
```

mca.eigenvalues_summary

eigenvalue % of variance % of variance (cumulative)

```
component
0 0.218 61.67% 61.67%
```

3 0.849697 0.530767 4 0.847616 0.552439

Se valida la correcta aplicación de MCA con el score Silhouette que evidencia una buena separación de grupos de datos para facilitar la identificación de outliers

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3)
clusters = kmeans.fit_predict(mca_coordenadas)
silhouette = silhouette_score(mca_coordenadas, clusters)
print(f"Silhouette Score: {silhouette}")
→ Silhouette Score: 0.5737581285609583
from scipy.spatial.distance import cdist
centroide = mca_coordenadas.mean(axis=0)
distancias = cdist(mca_coordenadas, [centroide], metric='euclidean')
corte = np.mean(distancias) + (3 * np.std(distancias)) # Regla 3-sigma que cubre el 99% de la distribución
outliers_feats_cat_fact = np.where(distancias > corte)[0]
corte
→ 2.0408802356239644
len(outliers_feats_cat_fact)
→ 2561
 df_mca = list(zip(mca\_coordenadas.iloc[:, 0], mca\_coordenadas.iloc[:, 1], distancias[:, 0])) \\
df_mca = pd.DataFrame(df_mca, columns = [0,1, 'distancia'])
df_mca.head()
₹
                       1 distancia
     0 0.748909 1.035695
                            1.075105
     1 0.789773 0.852219
                           0.962943
     2 0.896402 0.324286
                           0.803928
     3 0.849697 0.530767
                           0.824408
```

plot_PC_outliers(df_mca, outliers_feats_cat_fact, 0, 1)

PC0 vs PC1

> DBSCAN - Distancia de Hamming

[] → 6 cells hidden

3.3 Remover outliers calculados

> Cargar indices de outliers calculados previamente

♠ 1 cell hidden

Consolidar y exportar indices de outliers

```
print('Outliers de variables numéricas - Mahalanobis:', len(outliers_feats_num_mahalanobis))
print('\nOutliers de variables numéricas - DBSCAN:', len(outliers_feats_num_dbscan))
print('\nOutliers de variables categóricas - One Hot:', len(outliers_feats_cat_OH))
print('\nOutliers de variables categóricas - Factorización:', len(outliers_feats_cat_fact))
Outliers de variables numéricas - Mahalanobis: 4450
    Outliers de variables numéricas - DBSCAN: 406
    Outliers de variables categóricas - One Hot: 2092
    Outliers de variables categóricas - Factorización: 2561
from itertools import chain
outliers = list(chain(outliers_feats_num_dbscan, outliers_feats_cat_fact, outliers_feats_cat_OH))
outliers = list(set(outliers))
data_sin_outliers = data.drop(data.index[outliers])
print('\nCantidad de oultiers total removidos:', len(outliers))
     Cantidad de oultiers total removidos: 5030
perc = 1 - data sin outliers.shape[0] / data.shape[0]
print("\nRegistros del dataset inicial: ", data.shape[0])
```

```
print("\nRegistros del dataset sin outliers: ", data_sin_outliers.shape[0])
print("\nPorcentaje de datos removidos como outliers: "+"{:.1%}".format(perc))
```

```
Registros del dataset inicial: 76258

Registros del dataset sin outliers: 71228

Porcentaje de datos removidos como outliers: 6.6%
```

Validar aplicación adecuada de outliers

```
for f in feats_numericas:
    fig = px.box(data_sin_outliers, y=f, width=600, height=400)
    fig.update_layout(title_text = f)
    fig.show()
Show hidden output
```

3.4 Acotar variable de respuesta por encima de percentil 99 (Winsorizing)

count	71228.000000		
nean	9.174426		
std	9.826989		
min	0.000000		
1%	0.000000		
10%	2.000000		
20%	3.000000		
25%	3.000000		
40%	5.000000		
50%	6.000000		
75%	11.000000		
90%	21.000000		
95%	30.000000		
99%	54.000000		
max	54.000000		

> Ejecutar UNICAMENTE cuando se actualicen los outliers para exportar a CSV

```
[ ] → 1 cell hidden
```

ETAPA 4 - PREPARACIÓN DE LOS DATOS DE MODELACIÓN

Con el dataset depurado de outliers se puede proceder a la preparación final de datos para el proceso de modelación.

Pasos realizados

• Particionar el dataset en conjuntos de train y test

- · Aplicar target encoding regularizado a las variables categóricas
- Estandarizar los datos codificados para reducir la varianza de entrenamiento
- Validar multicolinearidad del dataset final de entrenamiento

Resultado final

Dataset listo para modelar

```
from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score, precision_score, recall_score, roc_curve from sklearn.preprocessing import StandardScaler import category_encoders as ce
```

4.1 Particionar, codificar y estandarizar el dataset

```
feats_train = list(data_sin_outliers.columns)
feats_train.remove(feat_target)
feats_train
   ['ir_cdm',
      'ir grd base',
      'nivel_de_complejidad',
      'procedimiento_principal',
      'diagnostico_principal',
      'estancia_en_uci',
      'edad',
      'costo_operativo_estimado',
      'peso_ir_estimado']
#Definir variables dependientes e independientes
X = data_sin_outliers[feats_train]
y = data_sin_outliers[feat_target]
#Generar particiones
X_train, X_test, y_train, y_test = train_test_split(X,
                                                   test_size=0.1,
                                                   stratify=y,
                                                   random state=42)
perc_train = X_train.shape[0] / data_sin_outliers.shape[0]
print("Porcentaje de datos en partición train: "+"{:.1%}".format(perc_train)+" - registros: "+str(X_train.shape[0]))
perc test = X test.shape[0] / data sin outliers.shape[0]
 print("Porcentaje de datos en partición test: "+"\{:.1\%\}".format(perc_test) + "- registros: "+str(X_test.shape[0])) \\
# Codificar variables categoricas de entrenamiento
smoothing = 1
encoder = ce.TargetEncoder(cols=list(feats_categoricas), smoothing=smoothing)
X_train_encoded = encoder.fit_transform(X_train, y_train)
X_test_encoded = encoder.transform(X_test)
# Estandarizar datos de entrenamiento
scaler = StandardScaler()
#scaler = MinMaxScaler()
#scaler = RobustScaler()
X_train_std = scaler.fit_transform(X_train_encoded[feats_train])
X_test_std = scaler.transform(X_test_encoded[feats_train])
Porcentaje de datos en partición train: 90.0% - registros: 64105
     Porcentaje de datos en partición test: 10.0% - registros: 7123
df = X_test
null_mask = df.isnull().any(axis=1)
null_rows = df[null_mask]
null_rows
₹
       ir_cdm ir_grd_base nivel_de_complejidad procedimiento_principal diagnostico_principal estancia_en_uci edad costo_oper
```

4.2 Validar multicolinearidad en data de entrenamiento

from statsmodels.stats.outliers_influence import variance_inflation_factor vif_data = pd.DataFrame() vif_data["Variable"] = X_train[feats_train].columns vif_data["VIF"] = [variance_inflation_factor(X_train_std, i) for i in range(X_train_std.shape[1])] vif_data $\overline{\Rightarrow}$ Variable VIF 0 ir_cdm 1.181699 1 ir_grd_base 2.939995 2 nivel_de_complejidad 2.304809 3 procedimiento_principal 1.592875 4 diagnostico_principal 1.322133 5 estancia_en_uci 2.112041 edad 1.038850 7 costo_operativo_estimado 2.187669

ETAPA 5 - TORNEO DE SELECCIÓN DE MODELOS

En este punto, antes de iniciar el proceso de ajuste de mejor modelo, se realizan torneos de selección de modelos para definir cuales tipos de regresión son las que ofrecen mejores resultados para la estimación de la estancia hospitalaria. Del mejor torneo resultante, se toma el top 3 de modelos para luego proceder al ajuste de hiperparámetros y así llegar al modelo final.

Pasos realizados

- Torneos de modelos variando configuraciones de:
 - o Tipos de outliers removidos
 - o Regularización del target encoding
 - o Tipo de estandarización de variables
 - o Aplicación de winsorizing

Resultado final

Modelos seleccionados para ajuste de hiperparámetros

Definir data final de entrenamiento para torneo de modelos

```
data_train = pd.DataFrame(X_train_std, columns = feats_train)
data_train[feat_target] = y_train.reset_index()[feat_target]
data_train.head()
```

→		ir_cdm	ir_grd_base	nivel_de_complejidad	procedimiento_principal	diagnostico_principal	estancia_en_uci	edad	cost
	0	-0.303008	0.628577	1.827805	0.073536	-0.071589	-0.316623	0.866342	
	1	0.325284	0.142597	1.827805	-0.134502	0.365664	1.152745	1.808474	
	2	1.326591	0.373973	0.066423	0.019791	-1.386132	-0.316623	-0.293206	
	3	-0.633815	0.461289	-0.766410	-1.087831	2.676500	-0.316623	-1.488989	
	4	0.981151	1.274282	1.827805	2.645030	-0.093765	-0.316623	1.373644	

Configurar experimentos en el módulo de regresión de PyCaret