## Summer-2019 UM-SJTU JI Ve311 Homework #2

Instructor: Dr. Chang-Ching Tu

Due: 10:00 am, June 13, 2019 (Thursday) in class

Note:

(1) Please use A4 size papers.

(2) Please use the SPICE model below for simulation.

.model Dbreak D Is=1e-14 Rs=0 N=1 TT=0 Cjo=0pF

- 1. [Half-Wave Rectifier] Design a half-wave rectifier circuit, such as below, which can convert a sinusoidal voltage input,  $V_s = 5\sin(2\pi 60 \cdot time)$ , to an almost constant voltage output.
  - (a) [20%] Assuming  $V_{on}=0.7~V$  and  $R=5~k\Omega$ , calculate C which makes the ripple voltage  $(V_r)$  is smaller than 0.1 V. Estimate  $V_{dc}$ ,  $I_{dc}$ ,  $\theta_c$ ,  $\Delta T$ ,  $I_{peak}$ ,  $I_{surge}$  and PIV of the designed half-wave rectifier.
  - (b) [15%] In Pspice, plot  $V_s$  and  $V_{out}$  versus time on the sample graph to find out the values of  $V_{dc}$ ,  $I_{dc}$ ,  $V_r$  and PIV. Comment on the simulation results compared to the hand-calculated ones.
  - (c) [15%] In Pspice, plot  $I_D$  versus time to find out the values of  $I_{peak}$  and  $I_{surge}$ . Comment on the simulation results compared to the hand-calculated ones.



- 2. [Full-Wave Bridge Rectifier] Design a full-wave bridge rectifier circuit, such as below, which can convert a sinusoidal voltage input,  $V_s = 5\sin(2\pi60 \cdot time)$ , to an almost constant voltage output.
  - (a) [20%] Assuming  $V_{on}=0.7~V$  and  $R=5~k\Omega$ , calculate C which makes the ripple voltage  $(V_r)$  smaller than 0.1 V. Estimate  $V_{dc}$ ,  $I_{dc}$ ,  $\theta_c$ ,  $\Delta T$ ,  $I_{peak}$ ,  $I_{surge}$  and PIV of the designed full-wave bridge rectifier.
  - (b) [15%] In Pspice, plot  $V_s$  (using "voltage differential marker" function) and  $V_{out}$  versus time on the sample graph to find out the values of  $V_{dc}$ ,  $I_{dc}$ ,  $V_r$  and PIV. Comment on the simulation results compared to the hand-calculated ones.
  - (c) [15%] In Pspice, plot  $I_{D2}$  and  $I_{D3}$  versus time on the same graph to find out the values of  $I_{peak}$  and  $I_{surge}$ . Comment on the simulation results compared to the hand-calculated ones.

