Funcons-beta: Multisets

The PLanCompS Project

Funcons-beta/Values/Composite/Multisets/Multisets.cbs*

Multisets (bags)

```
[ Type multisets
Funcon multiset
Funcon multiset-elements
Funcon multiset-occurrences
Funcon multiset-insert
Funcon multiset-delete
Funcon is-submultiset ]

Meta-variables GT <: ground-values

Built-in Type multisets(GT)
```

multisets(GT) is the type of possibly-empty finite multisets of elements of GT.

```
Built-in Funcon multiset(_{-}:(GT)^{*}): \Rightarrow multisets(GT)
```

Note that $\mathsf{multiset}(\cdots)$ is not a constructor operation. The order of argument values is ignored, but duplicates are significant, e.g., $\mathsf{multiset}(1,2,2)$ is equivalent to $\mathsf{multiset}(2,1,2)$, but not to $\mathsf{multiset}(1,2)$ or $\mathsf{multiset}(2,1)$.

```
Built-in Funcon multiset-elements(_{-}: multisets(GT)): \Rightarrow(GT)*
```

For each multiset MS, the sequence of values V^* returned by multiset-elements (MS) contains each element of MS the same number of times as MS does. The order of the values in V^* is unspecified, and may vary between multisets.

^{*}Suggestions for improvement: plancomps@gmail.com. Issues: https://github.com/plancomps/CBS-beta/issues.

```
Assert multiset(multiset-elements(S)) == S
```

Built-in Funcon multiset-occurrences($_{-}:GT,_{-}:multisets(GT)$): \Rightarrow natural-numbers multiset-occurrences(GV,MS) returns the number of occurrences of GV in MS.

Built-in Funcon multiset-insert($_{-}:GT,_{-}:$ natural-numbers, $_{-}:$ multisets(GT)): \Rightarrow multisets(GT) multiset-insert(GV,N,MS) returns the multiset that differs from MS by containing N more copies of GV.

Built-in Funcon multiset-delete($_{-}$: multisets(GT), $_{-}$: GT, $_{-}$: natural-numbers): \Rightarrow multisets(GT) multiset-delete(MS, GV, N) removes N copies of V from the multiset MS, or all copies of GV if there are fewer than N in MS.

 $Built-in\ Funcon\ is-submultiset(_: multisets(GT), _: multisets(GT)): \Rightarrow booleans$ is-submultiset(MS_1, MS_2) tests whether every element of MS_1 has equal or fewer occurrences in MS_1 than in MS_2 .