Serie 3

Aufgabe 1

Es seien (X, \mathfrak{M}, μ) ein Massraum, $f, g: X \to [0, \infty]$ messbar und $E \in \mathfrak{M}$. Zeige:

(a) Ist $f \leq g$, so ist $\int_E f \, d\mu \leq \int_E g \, d\mu$.

Beweis. Per Definition 2.5 ist $\int_E f \, \mathrm{d}\mu$ das Supremum über den Integralen $\int_E s \, \mathrm{d}\mu$, mit s einfach und messbar und $0 \le s \le f$. Für all solche s gilt auch $0 \le s \le g$, also kann $\int_E g \, \mathrm{d}\mu$ als Supremum über einer Obermenge solcher s nicht kleiner sein als $\int_E f \, \mathrm{d}\mu$.

(b) Für $A, B \in \mathfrak{M}$ mit $A \subset B$ gilt $\int_A f \, \mathrm{d}\mu \leq \int_B f \, \mathrm{d}\mu$.

Beweis. Für alle Mengen $Z \subset X$ gilt $A \cap Z \subset B \cap Z$. Mit Proposition 2.4 gilt dann $\mu(A \cap Z) \leq \mu(B \cap Z)$. Für alle einfache messbare s mit $s \leq f$ und $c_i \in \mathbb{R}^+, C_i \subset X, i = 1, \ldots, n$, sodass $s = \sum_{i=1}^n c_i \chi_{C_i}$ gilt dann wegen Gleichung 2.2 im Skript:

$$\int_A s \, \mathrm{d}\mu \le \int_B s \, \mathrm{d}\mu.$$

Daraus folgt direkt die Behauptung.

(c) $\int_E cf \,\mathrm{d}\mu = c \int_E f \,\mathrm{d}\mu, c \in [0, \infty].$

Beweis. Für einfache messbare Funktionen s bemerken wir:

$$\int_E cs \, \mathrm{d}\mu = \sum_{i=1}^n c\alpha_i \mu(A_i \cap E) = c \sum_{i=1}^n \alpha_i \mu(A_i \cap E) = c \int_E s \, \mathrm{d}\mu,$$

mit α_i, A_i wie im Skript, (2.2). Folglich auch

$$\begin{split} \int_E cf \,\mathrm{d}\mu &= \sup \{ \int_E cs \,\mathrm{d}\mu : cs \text{ einfach, messbar, } 0 \le cs \le cf \} \\ &= \sup \{ c \int_E s \,\mathrm{d}\mu : s \text{ einfach, messbar, } 0 \le s \le f \} \\ &= c \sup \{ \int_E s \,\mathrm{d}\mu : s \text{ einfach, messbar, } 0 \le s \le f \} \\ &= c \int_E f \,\mathrm{d}\mu. \end{split}$$

(d) Ist $f(x) = 0, x \in E$, so ist $\int_E f d\mu = 0$.

Beweis. Die einfachen messbaren Funktionen s aus Definition 2.5 können wir so schreiben, dass $\alpha_1=0, A_1=E$ mit A_2,\ldots,A_n so, dass $A_1\cap A_i=\emptyset, i=2,\ldots,n$. Es folgt für alle solchen s

$$\int_X s \, \mathrm{d}\mu = 0$$

und mithin die Behauptung.

(e) Ist $\mu(E) = 0$, so gilt $\int_E f d\mu = 0$.

Beweis. Für $Z \subset X$ gilt $Z \cap E \subset E$. Aus Proposition 2.4(iii) folgt: $\mu(Z \cap E) = 0$. Somit $\int_E s \, d\mu = 0$ für alle relevanten s wie in Definition 2.5. Folglich $\int_E f \, d\mu = 0$.

(f) $\int_E f \, \mathrm{d}\mu = \int_X \chi_E f \, \mathrm{d}\mu$.

Beweis. Wir schätzen zuerst $\int_E f \, \mathrm{d}\mu$ ab. Sei s einfach und messbar mit $0 \le s \le f$ und schreibe $s = \sum_{i=1}^n \alpha_i \chi_{A_i}$ mit $A_i \in \mathfrak{M}$. Wegen $\chi_A(x)\chi_B(x) = \chi_{A\cap B}(x), \ x \in X, A, B \subset X$, gilt:

$$\int_{E} s \, d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E)$$

$$= \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E \cap X)$$

$$= \int_{X} \sum_{i=1}^{n} \alpha_{i} \chi_{A_{i} \cap E} \, d\mu$$

$$= \int_{X} \sum_{i=1}^{n} \alpha_{i} \chi_{A_{i}} \chi_{E} \, d\mu$$

$$= \int_{X} \chi_{E} \sum_{i=1}^{n} \alpha_{i} \chi_{A_{i}} \, d\mu$$

$$= \int_{X} \chi_{E} s \, d\mu.$$

Da $0 \le \chi_E s \le \chi_E f$, fliessen also alle $\int_E s \, \mathrm{d}\mu$ auch in die Berechnung von $\int_X \chi_E f \, \mathrm{d}\mu$ ein. Also:

$$\int_{E} f \, \mathrm{d}\mu \le \int_{X} \chi_{E} f \, \mathrm{d}\mu.$$

Sei nun s einfach und messbar mit $0 \le s \le \chi_E f$. Dann $s = \chi_E s$ (denn $(\chi_E f)|_{X \setminus E} \equiv 0, (\chi_E f)|_E \equiv f|_E$). Wegen der obigen Überlegung folgt

$$\int_X s \, \mathrm{d}\mu = \int_X \chi_E s \, \mathrm{d}\mu = \int_E s \, \mathrm{d}\mu.$$

Also $\int_E \chi_E f \, d\mu = \int_X \chi_E f \, d\mu$. Wegen $\chi_E f \leq f$ folgt mit Teil (a):

$$\int_{E} f \, \mathrm{d}\mu \le \int_{X} \chi_{E} f \, \mathrm{d}\mu = \int_{E} \chi_{E} f \, \mathrm{d}\mu \le \int_{E} f \, \mathrm{d}\mu.$$

Aufgabe 2

(a) Ist $\mathfrak{M} := \{E \subset [0,1] : \chi_E \text{ Riemann-integrierbar "uber } [0,1] \}$ eine Algebra bzw. eine σ -Algebra in [0,1]? Antwort. [0,1] gehört klar zu \mathfrak{M} .

Die Abbildung χ_E ist auf [0,1] genau dann Riemann-integrierbar, wenn die Menge ihrer Unstetigkeitsstellen eine Lebesgue-Nullmenge ist (Ana1). Wir bemerken, dass χ_E und $\chi_{[0,1]\setminus E}$ dieselben Unstetigkeitsstellen haben, sodass

$$A \in \mathfrak{M} \Rightarrow A^c \in \mathfrak{M}$$

gilt.

Wir bemerken weiter, dass Punktmengen zu \mathfrak{M} gehören. Abzählbare Vereinigungen solcher Singletons gehören aber nicht alle zu \mathfrak{M} , denn $\chi_{[0,1]\cap\mathbb{Q}}$ ist die Einschränkung der Dirichletfunktion auf [0,1] und diese ist nicht Riemann-integrierbar (Ana1). Folglich ist \mathfrak{M} keine σ -Algebra.

Um zu überprüfen, ob \mathfrak{M} eine Algebra ist, müssen wir kontrollieren, ob $A, B \in \mathfrak{M} \Rightarrow A \cup B \in \mathfrak{M}$ gilt. Seien also χ_A, χ_B Riemann-integrierbar. Dann ist auch ihr Produkt Riemann-integrierbar. Wegen $\chi_A \chi_B = \chi_{A \cap B}$, ist auch $A \cap B \in \mathfrak{M}$. Da auch $A^c, B^c \in \mathfrak{M}$ folgt: $A^c \cap B^c \in \mathfrak{M}$. Also $(A \cup B)^c = [0, 1] \cap (A^c \cap B^c) \in \mathfrak{M}$. Also auch $A \cup B = ((A \cup B)^c)^c \in \mathfrak{M}$. Induktiv liegt die endliche Vereinigung von Mengen in \mathfrak{M} wieder in \mathfrak{M} . Also ist \mathfrak{M} schon eine Algebra.

(b) Zeige, dass im Lemma von Fatou die strikte Ungleichung

$$\int_X \liminf_{n \to \infty} f_n \, \mathrm{d}\mu < \liminf_{n \to \infty} \int_X f_n \, \mathrm{d}\mu$$

auftreten kann.

Antwort. Es sei $X=[0,1], \mathfrak{M}$ die Borel-Menge und μ so, dass $\mu((a,b])=b-a, 0\leq a\leq b\leq 1$. Definiere für $n=1,2,\ldots$ die Funktion

$$f_n : [0, 1] \to \mathbb{R},$$

$$x \mapsto \begin{cases} n, & 0 < x \le 1/n, \\ 0, & \text{sonst.} \end{cases}$$

Es gilt $\int_X f_n d\mu = 1$ für alle $n = 1, 2, \ldots$ Also $\lim_{n \to \infty} \int_X f_n d\mu = 1$. Die Folge $(f_n)_{n \in \mathbb{N}_{\geq 1}}$ konvergiert jedoch punktweise zur Nullabbildung. Aus Aufgabe 1 folgt $\int_X \lim_{n \to \infty} f_n d\mu = 0$.

Aufgabe 3

Es seien (X, \mathfrak{M}, μ) ein Massraum, $(f_n)_{n \in \mathbb{N}}$ eine punktweise konvergente Folge messbarer Funktionen $X \to \overline{\mathbb{R}}$ mit $f_1 \geq f_2 \geq \cdots \geq 0$ und $f_1 \in \mathscr{L}_1(\mu)$. Beweise, dass $f := \lim_{n \to \infty} f_n \in \mathscr{L}_1(\mu)$ und

$$\int_X f \, \mathrm{d}\mu = \lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu.$$

Kann man zum Beweis obiger Gleichung auf die Voraussetzung $f_1 \in \mathcal{L}_1(\mu)$ verzichten?

Beweis. Aus Aufgabe 1(a) und $f_1 \in \mathcal{L}_1$ folgt

$$\infty > \int_X f_1 d\mu \ge \int_X f_i d\mu \ge \int_X f_{i+1} d\mu \ge 0,$$

 $i=1,2,\ldots$ Da $f_n=|f_n|$ für $n\in\mathbb{N}$, liegen alle f_n in \mathcal{L}_1 . Wähle $g=f_1$. Dann liegt die Grenzfunktion mit Satz 3.4 in \mathcal{L}_1 .

Definiere nun eine Folge $(g_n)_{n\in\mathbb{N}}$ mit

$$g_n = f_1 - f_n,$$

für alle $n \in \mathbb{N}$. Bemerke, dass diese Folge monoton steigend und nicht-negativ ist und zur Funktion $g = f_1 - f$ konvergiert. Mit Sätzen 2.9 und 3.2 gilt

$$\int_{X} f_{1} d\mu - \lim_{n \to \infty} \int_{X} f_{n} d\mu = \lim_{n \to \infty} \int_{X} f_{1} d\mu - \int_{X} f_{n} d\mu$$

$$= \lim_{n \to \infty} \int_{X} f_{1} - f_{n} d\mu$$

$$= \int_{X} f_{1} - f d\mu$$

$$= \int_{X} f_{1} d\mu - \int_{Y} f d\mu.$$

Also $\int_X f d\mu = \lim_{n \to \infty} \int_X f_n d\mu$.

Man kann nicht auf die Voraussetzung $f_1 \in \mathcal{L}_1$ verzichten, denn dann können wir nicht immer eine majorisierende Funktion $g \in \mathcal{L}_1$ finden. Im Extremfall bestünde die Folge aus nur einer rekurrenten Funktion $h \notin \mathcal{L}_1$, womit die Grenzfunktion klar nicht in \mathcal{L}_1 läge.

Aufgabe 4

Es seien (X, \mathfrak{M}, μ) ein Massraum $f \in \mathscr{L}_1(\mu)$ mit $f \geq 0$. Beweise, dass es für alle $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass es für alle $A \in \mathfrak{M}$ mit $\mu(A) < \delta$ folgt:

$$\int_A f \, \mathrm{d}\mu < \varepsilon.$$

Beweis. Wegen $f \geq 0$ haben wir es mit einer Funktion $X \to \mathbb{R}$ zu tun (die Bedingung macht keinen Sinn auf \mathbb{C}). Definiere $f_n : X \to \mathbb{R}, f_n(x) = \min\{f(x), n\}, n \in \mathbb{N}$. Bemerke, dass:

- (i) $f_n \leq f$ für alle $n \in \mathbb{N}$;
- (ii) $0 \le f_0 \le f_1 \le \dots$;

- (iii) $f_n(x) \to f(x), n \to \infty, x \in X$;
- (iv) Wegen (i) und (ii): $f f_i \ge f f_{i+1}, i \in \mathbb{N}$;
- (v) $f_n \leq n\chi_X$, also $\int_A f_n \,\mathrm{d}\mu \leq \int_A n\chi_X \,\mathrm{d}\mu = n\mu(A)$ für $A \in \mathfrak{M}$. Folglich:

$$\int_{E} f \, \mathrm{d}\mu = \int_{E} f - f_n + f_n \, \mathrm{d}\mu$$

$$= \int_{E} f - f_n \, \mathrm{d}\mu + \int_{E} f_n \, \mathrm{d}\mu$$

$$\leq \int_{E} f - f_n \, \mathrm{d}\mu + \int_{E} n\chi_X \, \mathrm{d}\mu$$

$$= \int_{E} f - f_n \, \mathrm{d}\mu + n\mu(E).$$

Sei nun $\varepsilon > 0$ vorgegeben. Wegen (iii) konvergiert $f - f_n$ zur Nullfunktion. Wegen (iv) greift das Lemma aus Aufgabe 3, also:

$$\lim_{n \to \infty} \int_E f - f_n \, \mathrm{d}\mu = 0.$$

Wir können also $N\in\mathbb{N}$ finden, sodass $\int_E f-f_n\,\mathrm{d}\mu<\varepsilon/2$ für $n\geq N$. Setze $\delta\leq\varepsilon/(2N)$. Für $E\in\mathfrak{M}$ mit $\mu(E)<\delta$ gilt dann

$$\int_{E} f \, \mathrm{d}\mu \le \varepsilon/2 + N\mu(E) < \varepsilon/2 + \varepsilon/2.$$