MECHANICALENGINEERING

Effect of surface roughness on slip flows in nanoscale polymer films Molecular dynamics simulations versus continuum predictions

Anoosheh Niavarani and Nikolai V. Priezjev

Motivation to investigate the slip phenomena at interfaces

What is *THE* boundary condition for liquid on solid flow in the presence of slip?
Still *no fundamental understanding* of slip or what is proper BC for continuum studies.
Navier slip boundary condition (1827) assumes constant slip length. *Is this always true?*How does surface roughness affect slip flow and conformation of a polymer chains?
How does molecular dynamics simulations compare with continuum results?

Details of molecular dynamics (MD) simulations

Equations of motion $m\ddot{y}_i + m\Gamma \dot{y}_i = -\sum \frac{\partial V_{ij}}{\partial x_i} + f_i$

 $\Gamma = \tau^{-1}$ friction coefficient $f_i = \text{Gaussian random force}$ $\langle f_i(t) f_i(t') \rangle = 2mk_B T \Gamma \delta(t - t')$ Langevin thermostat: T=1.1 ε/k_B

Lennard-Jones potential $V_{LJ}(r) = 4\varepsilon \left[\left(\frac{r}{\sigma} \right)^{-12} - \left(\frac{r}{\sigma} \right)^{-6} \right]$

 σ - molecular length scale ε - energy scale $\tau = \sqrt{\frac{m\sigma^2}{\varepsilon}}$ LJ time scale

otential Nonlinear elastic spring $V_{\text{FENE}}(r) = \frac{1}{2} k r_0^2 \ln \left(1 - \frac{r^2}{2} \right)$

ngth scale $k=30 \text{ ss}^{-2}$ and $r_0=1.5$

10³~10⁵ fluid molecules

N = 20 bead-spring polymer chains

 $\lambda = 7.5\sigma$

a=0.2 σ R_{gx} R_{gy}

Conformation of polymer chains near corrugated wall

To study the conformation of polymer chains, *radius of gyration* is calculated:

$$R_{g_{\alpha}}^{2} = \frac{1}{N} \sum_{i=1}^{N} (R_{i\alpha} - R_{G_{\alpha}})^{2}$$

$$R_{G\alpha} = \frac{1}{N} \sum_{i=1}^{N} R_{i} \qquad (\alpha \equiv x, y, z)$$

 R_i = Position of *ith* bead of the polymer chain

 R_G = Position of *center of mass* of the polymer chain

	DUIK	1.70	1.11	ı
acts	top wall	1.64	1.25	
	peak	1.66	1.24	
	valley	1.53	1.28	
	a=1.4 σ	R_{gx}	R_{gy}	
	a=1.4 σ bulk	1.79	<i>R_{gy}</i> 1.10	

- Radius of gyration R_{gx} increases with the shear rate in the bulk
- For a fixed amplitude *a* in a shear flow:
- R_{gx} <u>increases above peaks</u> and <u>decreases in valleys</u> in comparison with its value near top wall
- R_{ov} <u>increases in valleys</u>
- R_{oz} <u>decreases near top and bottom walls</u>

Rheology of a polymer melt near rough surfaces

Fluid velocity profiles

Continuum modeling of slip flow past a curved boundary

Pressure increases

 $U_{top} = 0.5 \, \sigma / \tau$

Slip length: comparison between MD and continuum

 $U_{ton} = 0.5 \, \sigma/v$

Conclusions

- At small wavelengths $\lambda \sim R_g$, polymer chains tend to stretch in the direction of the shear flow in the regions above peaks of sinusoidal corrugation and elongate inside valleys along the y direction.
- Molecular dynamics results recover the continuum solutions in the Stokes regime in the limit of small surface roughness ka and λ =66.6 σ .
- Effective slip length is reduced at small wavelengths λ and/or large amplitude a of the corrugated surface.

References

- D. Einzel, P. Panzer, M. Liu, Phys. Rev. Lett. **64**, 2269 (1990).
- N. V. Priezjev, S. M. Troian, J. Fluid Mech. **554**, 25 (2006).
- A. Jabbarzadeh, J. D. Atkinson, R. I. Tanner, Phys. Rev. E 61, 690 (2000).

 $U_{x} \sigma / \tau$