

Course	12 Methods Year12
Student name:	Teacher name:
Task type:	Response
Time allowed for this	s task:40 mins
Number of questions:7	
Materials required:	No calculators nor classpads
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations
Marks available:	40 marks
Task weighting:	_10%
Formula sheet provided: Yes	
Note: All part questions	worth more than 2 marks require working to obtain full marks.

Q1 (2, 3 & 3 = 8 marks) (3.1.7-3.1.8)

Determine \overline{dx} for each of the following.(No need to simplify)

a)
$$y = \frac{3}{x}$$

b)
$$y = (3x^2 + 4x)(5x - 1)$$

c)
$$y = \frac{x+1}{5-x^2}$$

Consider
$$f(x) = (4x - 2)^5$$
.

- a) Determine f'(0)
- b) Determine the equation of the tangent at x = 0

Q3 (1, 1, 3 & 3 = 8 marks) (3.1.7-3.1.8, 3.1.15)

Consider the following functions f & g .

- a) Determine the derivative of f(x) when x = -2
- b) Determine the derivative of $^{3}g(x)$ when x=0
- c) Determine the derivative of f(x)g(x) when x=0.

d) Determine the derivative of f(g(x)) when x = 0.

Q4 (2, 3 & 2 = 7marks) (3.1.13 – 3.1.17)

The following is the graph of f'(x), the derivative of f(x).

a) State the x values of all stationary points of f(x).

b) State the nature of each stationary point above and justify.

c) State approximate x value for an infection point(s) and explain why.

Q5 (3 & 2 = 5 marks) (3.1.12)

The displacement of a body from the origin O, at time $\,^t\,$ seconds, is $\,^\chi\,$ metres where

$$x = \frac{t^3}{3} - \frac{5t^2}{2} + 6t + 1$$

a) Determine the time(s) that the velocity is zero metres/second.

b) Determine when the acceleration is zero.

Q6 (3 marks) (3.1.10)

The period T of a swinging pendulum of length l is given by $T = 2\pi \sqrt{\frac{l}{10}}$

Using the increments formula, determine the approximate percentage change in $\,^T$ if $\,^l$ changes by 3%

.Q7 (4 marks) (3.1.16) Consider a hollow cylindrical container that has one open end. The surface area of the container is $\frac{1}{2}$ $50cm^2$. Determine the **exact** value of the radius of the closed end that maximises the volume. (Justify) (Hint- refer to formula sheet)

Total surface area 50cm²