第 7/12 章 几何 (一)

例 1、如图,FN 交HE 、MD 于点 A 、点 C ,过 C 作射线 CG 交HE 于点 B .若 $\angle EAF = \angle NCM = \angle MCB = 46^{\circ}$.

- (1) 求证: AB / /CD;
- (2) 求 ∠ABG 的度数.

例 2、如图,在 $\triangle ABC$ 中, D 是 AB 中点, E 是 BC 边上一点,且 BE = 4EC , CD 与 AE 交于点 F ,连接 BF . 若 $\triangle BEF$ 的面积是 4,则 $\triangle ABC$ 的面积是 ____.

例 3、如图,在 $\triangle ABC$ 中, $\angle ABC$ = 90°, BD 是 AC 边上的高, AE 是 $\angle BAC$ 的角 平分线,分别交 BD、BC 于点 G、E,过点 B 作 AE 的垂线 BF,分别交 AE、AC 于点 H、F.

- (1) 求证: *BF* 平分 ∠*DBC*;
- (2) 若 $\angle ABF = 3\angle C$, 求 $\angle C$ 的度数.

例4、【探究】

(1) 如图 1, $\angle ADC = 120^{\circ}$, $\angle BCD = 130^{\circ}$, $\angle DAB$ 和 $\angle CBE$ 的平分线交于点 F,则 $\angle AFB =$ 。;

(2) 如图 2, $\angle ADC = \alpha$, $\angle BCD = \beta$, 且 $\alpha + \beta > 180^{\circ}$, $\angle DAB$ 和 $\angle CBE$ 的平分线交于点 F, 则 $\angle AFB =$; (用 α 、 β 表示)

(3) 如图 3, $\angle ADC = \alpha$, $\angle BCD = \beta$,当 $\angle DAB$ 和 $\angle CBE$ 的平分线 $AG \setminus BH$ 平行时, $\alpha \setminus \beta$ 应该满足怎样的数量关系?请证明你的结论.

【挑战】

如果将(2)中的条件 $\alpha + \beta > 180^{\circ}$ 改为 $\alpha + \beta < 180^{\circ}$,再分别作 $\angle DAB$ 和 $\angle CBE$ 的平分线,你又可以找到怎样的数量关系?画出图形并直接写出结论。

课后练习:

1、一个多边形的内角和是外角和的2倍,这个多边形是()

A. 四边形

B. 五边形

C. 六边形

D. 八边形

2、给出下列 4 个命题: ①四边形的内角和等于外角和; ②有两个角互余的三角形是直角三角形; ③若|x|=2,则x=2; ④同旁内角的平分线互相垂直. 其中真命题的个数为()

A. 1个

B. 2个

C. 3个

D. 4个

3、在一个多边形中,小于120度的内角最多有 个.

4、如图,已知 *AB / /CD*, ∠*EHG* = 60°, ∠*HGF* = 20°,则 ∠*BEF* = _____°.

5、如图,把一副常用的三角板如图所示拼在一起,那么图中 $\angle CEF = ___$ 。.

6、如图,BE 是 ΔABC 的中线,点 D 是 BC 边上一点,BD=3CD,BE 、AD 交 于点 F ,若 ΔABC 的面积为 20,则 ΔBDF 与 ΔAEF 的面积之差 S_{ABDE} 等于(

A.
$$\frac{10}{3}$$

B. 5

C. 4

D. 3

7、如图,在 $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, $\angle B - \angle A = 10^{\circ}$, D 是 AB 上一点,将 $\triangle ACD$ 沿 CD 翻折后得到 $\triangle CED$, 边 CE 交 AB 于点 F . 若 $\triangle DEF$ 中有两个角相等,则 $\angle ACD$ 的度数为 ()

- A. 15°或20°
- B. 20°或30°
- C. 15°或30°
- D. 15°或25°

8、在正方形网格中, $\triangle ABC$ 的位置如图所示. 将 $\triangle ABC$ 平移,点C 恰好落在C' 处.

- (1) 请画出平移后的 $\triangle A'B'C'$, 其中, $A' \setminus B'$ 分别为 $A \setminus B$ 的对应点;
- (2) 若图中每个小正方形的边长都为 1,则△ A'B'C'的面积为;
- (3) 在线段 MN 上是否存在格点 P,使得 \triangle PA'B' 的面积是 \triangle PA'C' 面积的 2 倍,若存在,请画出所有这样的格点 P_1 、 P_2 、...,若不存在,请说明理由.

9、已知:如图, $\angle 1 = \angle C$, $\angle 2 + \angle 3 = 180^{\circ}$.求证: AD / / EF.

10、如图,在四边形 ABCD 中, $\angle A$ 与 $\angle C$ 互补, $\angle ABC$ 、 $\angle ADC$ 的平分线分别 交 CD 、 AB 于点 E 、 F . EG//AB , 交 BC 于点 G .

- (1) ∠1与∠2有怎样的数量关系?为什么?
- (2) 若 ∠A = 100°, ∠1 = 42°, 求 ∠CEG 的度数.

11、已知 $\angle A$,在 $\angle A$ 的两边上分别取点 B、C,在 $\angle A$ 的内部取一点 O,连接 OB、OC. 设 $\angle OBA = \angle 1$, $\angle OCA = \angle 2$, 探索 $\angle BOC$ 与 $\angle A$ 、 $\angle 1$ 、 $\angle 2$ 之间的数量关系.

【初步感知】

如图 1, 当点 O 在 $\triangle ABC$ 的边 BC 上时, $\angle BOC$ = 180°,此时 $\angle A$ + $\angle 1$ + $\angle 2$ = 180°,则 $\angle BOC$ 与 $\angle A$ 、 $\angle 1$ 、 $\angle 2$ 之间的数量关系是 $\angle BOC$ = $\angle A$ + $\angle 1$ + $\angle 2$.

【问题再探】

- (1) 如图 2, 当点 O 在 $\triangle ABC$ 的内部时,请写出 $\angle BOC$ 与 $\angle A$ 、 $\angle 1$ 、 $\angle 2$ 之间的数量关系并说明理由;
- (2) 如图 3,当点 O 在 $\triangle ABC$ 的外部时, $\angle BOC$ 与 $\angle A$ 、 $\angle 1$ 、 $\angle 2$ 之间的数量关系是 _____;

【拓展延伸】

(1) 如图 4, $\angle 1$ 、 $\angle 2$ 的外角平分线相交于点 P.

- ①若 $\angle A = 50^{\circ}$, $\angle BOC = 100^{\circ}$,则 $\angle P = ____{\circ}$;
- ②若 $\angle BOC = 4 \angle A$ 且 $\angle P = 30^{\circ}$,则 $\angle A = ^{\circ}$;
- ③直接写出 $\angle BOC$ 与 $\angle A$ 、 $\angle P$ 之间的数量关系;
- (2) 如图 5, \angle 1 的平分线与 \angle 2 的外角平分线相交于点 Q ,则 $\angle Q$ = ____ (用 $\angle BOC$ 、 $\angle A$ 表示)

第 7/12 章 几何(二)

例 1、如图,将四边形纸片 ABCD 沿 MN 折叠,点 $A \times D$ 分别落在 $A \times D$,处,若 $\angle 1 + \angle 2 = 144^{\circ}$, $\bigcirc \square \angle B + \angle C = \underline{\hspace{1cm}}^{\circ}$.

例 2、如图, $\triangle ABC$ 中, $\angle C = 90^{\circ}$, 将 $\triangle ABC$ 沿 DE 折叠, 使得点 B 落在 AC 边上 的点 F 处,若 $\angle CFD = 60^{\circ}$ 且 $\triangle AEF$ 中有两个内角相等,则 $\angle A$ 的度数为(

- B. 40°或50°
- C. 50°或60°

例 3、如图, 在 $\triangle ABC$ 中, AG = BG, BD = DE = EC, CF = 4AF, 若四边形 DEFG的面积为 14,则 $\triangle ABC$ 的面积为(

- A. 24
- B. 28
- C. 35
- D. 30

例 4、如果三角形的两个内角 α 与 β 满足 $2\alpha + \beta = 90^{\circ}$,那么我们称这样的三角形 为"准直角三角形".

(1) 如图①,在Rt Δ ABC中, \angle ACB=90°, BD是 Δ ABC的角平分线. 求证: ΔABD 是"准直角三角形".

- (2) 关于"准直角三角形",下列说法:
- ①在 $\triangle ABC$ 中,若 $\angle A=100^{\circ}$, $\angle B=70^{\circ}$, $\angle C=10^{\circ}$,则 $\triangle ABC$ 是准直角三角形;
- ②若 $\triangle ABC$ 是 "准直角三角形", $\angle C > 90^{\circ}$, $\angle A = 60^{\circ}$, 则 $\angle B = 20^{\circ}$;
- ③"准直角三角形"一定是钝角三角形.其中,正确的是 .(填写所有正确结 论的序号)

(3) 如图②,B、C为直线l上两点,点A在直线l外,且 $\angle ABC = 50^{\circ}$.若P是 l上一点,且 ΔABP

是"准直角三角形",请直接写出 ∠APB 的度数.

课后练习:

1、若多边形的每个内角都相等,且它的每一个外角是它的邻补角的 $\frac{1}{5}$,则该多边形是()

A. 十边形

B. 十二边形

C. 十五边形

D. 十六边形

2、如图,把一副常用的三角板如图所示拼在一起,那么图中∠CEF=___。.

- 3、对于下列命题:
- ①若 a > b ,则 $a^2 > b^2$;
- ②在直角三角形中,任意两个内角的和一定大于第三个内角;
- ③无论 x 取何值,代数式 $x^2 + 2x + 2$ 的值都不小于 1;
- ④在同一个平面内,有两两相交的三条直线,这些相交直线构成的所有角中,至少有一个角小于 60°.

其中真命题有()

A. 1个

B. 2个

C. 3个

D. 4个

- 4、写出命题"直角三角形的两个锐角互余"的逆命题: ______
- 5、如图, $\triangle ABC$ 的角平分线 CD, BE 相交于点 F, $\angle BAC = \angle AGB$, AG / /BC,下列结论中不一定成立的是()

A. $\angle BAG = 2\angle CBE$

B. $\angle EFC = 90^{\circ} - \frac{1}{2} \angle BAC$

C. $\angle AEB = \angle GBE$

D. $\angle ADC = \angle AEB$

- 6、如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.
- (1) 画出 $\triangle ABC$ 向下平移 1 个单位, 再向右平移 4 个单位后的图形 $\triangle A_iB_iC_i$;
- (2) 画出 $\triangle ABC$ 的 AB 边上的高 CD, 垂足为 D;
- (3) 求出 Δ*ABC* 的面积为____;
- (4) 图中,能使 $S_{\Delta OBC} = 3$ 的格点Q,共有____个.

- 7、如图, $\triangle ABC$ 中,D 为 BC 上一点, $\angle C = \angle BAD$, $\triangle ABC$ 的角平分线 BE 交 AD 于点 F .
- (1) 求证: ∠*AEF* = ∠*AFE* ;
- (2) G 为 BC 上一点, 当 FE 平分 $\angle AFG$ 且 $\angle C = 30$ ° 时, 求 $\angle CGF$ 的度数.

- 8、如图, $\triangle ABC$ 中,D 为 AC 边上一点,过 D 作 DE / / AB ,交 BC 于 E ; F 为 AB 边上一点,连接 DF 并延长,交 CB 的延长线于 G ,且 $\angle DFA$ = $\angle A$.
- (1) 求证: *DE* 平分 ∠*CDF*;
- (2) 若 $\angle C = 80^{\circ}$, $\angle ABC = 60^{\circ}$, 求 $\angle G$ 的度数.

- 9、去年汛期期间,防汛指挥部在某重要河流的一段危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况. 如图 1,灯 A 射线自 AM 顺时针旋转至 AN 便立即回转,灯 B 射线自 BP 顺时针旋转至 BQ 便立即回转,两灯不停交叉照射巡视. 若灯 A 转动的速度是 15 度 / 秒,灯 B 转动的速度是 5 度 / 秒.假定这一带两岸河堤是平行的,即 PO//MN,且 $\angle BAN = 45^{\circ}$.
- (1) 若灯 B 射线先转动 4 秒,灯 A 射线才开始转动,在灯 B 射线到达 BQ 之前, A 灯转动几秒,两灯的光束互相平行?
- (2) 如图 2,两灯同时转动,在灯 A 射线到达 AN 之前.若灯 A 射出的光束与灯 B 射出的光束交于点 C ,过 C 作 $CD \perp AC$ 交 PQ 于点 D ,则在转动过程中, $\angle BAC$ 与 $\angle BCD$ 的数量关系是否发生变化?若不变,请直接写出其数量关系;若改变,请说明理由.

10、如图,MN / / GH ,点 A 、B 分别在直线 MN 、GH 上,点 O 在直线 MN 、GH 之间,若 $\angle NAO$ = 116°, $\angle OBH$ = 144° .

- (1) $\angle AOB = __\circ$;
- (2) 如图 2, 点 C 、 D 是 $\angle NAO$ 、 $\angle GBO$ 角平分线上的两点,且 $\angle CDB = 35^{\circ}$,求 $\angle ACD$ 的度数;
- (3) 如图 3,点 F 是平面上的一点,连结 FA 、 FB , E 是射线 FA 上的一点,若 $\angle MAE = n\angle OAE$, $\angle HBF = n\angle OBF$,且 $\angle AFB = 60^\circ$,求 n 的值.

第八章 幂的运算

运算法则: 文字描述- , 符号表示

【例 1】已知 $2^x = 8$, $2^y = 5$, $2^z = 40$ 那么下列关于x, y, z之间满足的等量关系 正确的是()

A. x + y = z

B. xy = z C. 2x + y = z D. 2xy = z

【变式 1-1】计算: $-a \cdot (-a)^2 \cdot (-a)^3 \cdot (-a)^4 \cdot (-a)^5 =$

【变式 1-2】若(2020 × 2020 × ... × 2020) × (2020 + 2020 + ... + 2020)=2020ⁿ, 共 2020 个

则 n= ()

A. 2022

B. 2021

C. 2020

【变式 1-3】(已知 $2^a = 5, 2^b = 3.2, 2^c = 6.4, 2^d = 10$,则a + b + c + d的值为

【考点 2 同底数幂乘法的逆用】 符号表

【例 2】若 $x = 2^n + 2^{n+1}$, $y = 2^{n+2} + 2^{n+3}$ 其中n为整数,则x与y的数量关系为()

A. x = 4y

B. y = 4x

C. x = 12y D. y = 12x

【变式 2-1】若 $3^x = 12$, $3^y = 4$,则 $3^{x+y} = 1$.

【变式 2-2】已知 2x + y - 4 = 0,则 $4^x \cdot 2^y$ 的值是

【变式 2-3】阅读理解: ①根据幂的意义, a^n 表示 $n \cap a$ 相乘;则 $a^{m+n} = a^m \cdot a^n$;

 $(2)a^n = m$,知道a和n可以求m,我们不妨思考;如果知道a,m,能否求n呢?对 于 $a^n = m$, 规定[a, m] = n, 例如: $6^2 = 36$, 所以[6, 36] = 2. 记[5, x] = 4m, [5, y-3] = 4m + 2; y与x之间的关系式为

【考点3 幂的乘方运算】

运算法则: 文字描述- , 符号表示

【例 3】已知 $2^a = 3$, $2^b = 27$, 求 $\frac{b}{a}$ 的值

【变式 3-1】计算 $(-0.125)^{2022} \times 2^{6066}$ 的结果是()

A. 1

D. -8

【变式 3-2】(1) 已知 $a^m = 3$, $a^n = 4$, 求 a^{2m+3n} 的值;

(2) 已知 $9^{n+1} - 9^n = 72$,求 *n* 的值.

【变式 3-3】已知,有一组不为零的数 a, b, c, d, e, f, m, 满足 $\frac{a}{b} = \frac{c}{a} = \frac{e}{b} = m$,

解: : a=bm, c=md, e=fm

$$\therefore \frac{a+c+e}{b+d+f} = \frac{bm+dm+fm}{b+d+f} = m$$

利用数学的恒等变形及转化思想, 试完成:

(1) 2⁴⁴, 3³³, 4²²的大小关系是_____

(2) 已知 a, b, c 不相等且不为零,若 $\frac{ab}{a+b} = \frac{1}{3}, \frac{cb}{c+b} = \frac{1}{4}, \frac{ac}{a+c} = \frac{1}{5}, 求 \frac{abc}{ab+bc+ac}$ 的 值.

【考点4	幂的乘方的逆用】	符号表示

【例 4】若 m, n 均为正整数,且 $2^{m-1} \times 4^n = 32$,则 m+n 的所有可能值为 .

【变式 4-1】若 $3 \times 9^m \times 27^m = 3^{11}$,求 *m* 的值.

【变式 4-2】已知 $4^x = 25^y = 10$,则(x - 1)(y - 1) + xy + 2005的值_____.

【变式 4-3】已知 $2^a = 8^b = 64^c$,求代数式 $\frac{a-b-c}{a+b+c}$ 的值.

【考点5 积的乘方】

运算法则: 文字描述- _______, 符号表示

【例 5】计算: $(-3x^2)^3 + (-5x)^2 \cdot x^4 =$ _____

【变式 5-1】计算: $(-0.125)^5 \times (-2)^{16} = ($)

A. 1 B. -1 C. 2 D. -2

【变式 5-2】已知($\frac{x}{2}$ +y) $2=\frac{1}{1024}$,($\frac{1}{2}$) $2x=\frac{1}{16}$,求($\frac{1}{2}$) 4y 的值.

【变式 5-3】阅读下列各式: $(a \cdot b)^2 = a^2b^2$, $(a \cdot b)^3 = a^3b^3$, $(a \cdot b)^4 = a^4b^4$ ……回答下列三个问题:

①验证: $\left(2 \times \frac{1}{2}\right)^{100} = ______$, $2^{100} \times \left(\frac{1}{2}\right)^{100} = _____$;

②通过上述验证,归纳得出: $(a \cdot b)^n = ____; (a \cdot b \cdot c)^n = ____;$

(3)请应用上述性质计算: $(-0.125)^{2019} \times 2^{2018} \times 4^{2017}$

【考点 6 积的乘方的逆用】符号表示______

【例 6】已知 $3^{x+1} \cdot 5^{x+1} = 15^{2x-3}$,则 $x = ____$.

【变式 6-1】如果 $2^a = 3$, $3^a = 5$,那么 $12^a - 6^a = 1$

【变式 6-2】计算(-2.5)²⁰¹⁵×(-4)²⁰¹⁶÷(-10)²⁰¹⁵= .

【变式 6-3】已知 6^x=192,32^y=192,则(-2019)^{(x-1) (y-1) -1}= .

【考点7 同底数幂的除法】

运算法则: 文字描述- , 符号表示

【例 7】①若 3×27*n*÷9=3²⁰,则 *n*=

 $(2) - (2y - x)^{4} \div (x - 2y)^{3} = \underline{\hspace{1cm}} .$

【变式 7-1】已知 $a^m = -3$, $a^n = 2$,则 $a^{3m-2n} = _____$.

【变式 7-2】已知 3a=2、3b=5、 $3c=\frac{40}{9}$,那么 a、b、c 之间满足的等量关系是_____.

【变式 7-3】已知 $4^{m+3} \cdot 8^{m+1} \div 2^{4m+7} = 32$,求 m 的值.

【考点8 同底数幂的除法的逆用】 符号表示

【例 8】已知 $10^a=20$, $100^b=50$,则 2a+4b-3 的值是 ()

A. 9

- B. 5
- C. 3
- D. 6

【变式 8-1】已知 x^a=3, x^b=4,则 x^{3a-2b}的值是()

- B. $\frac{27}{16}$
- D. 19

【变式 8-2】已知 2x - 3y - 2 = 0,则 $9^x \div 27^y$ 的值为

【变式 8-3】(1) 已知 $5^x = 36$, $5^y = 2$, 求 5^{x-2y} 的值.

(2) 已知 $x^{2n} = 2$,求 $(3x^{3n})^2 - 4(x^2)^{2n}$ 的值.

【考点9 零指数幂的运用】

运算法则: 文字描述-

,符号表示

【例 9】计算: $-2^2 + \left(-\frac{1}{2}\right)^{-1} + \left(\frac{\pi}{3}\right)^0 - \sqrt[3]{8}$.

【变式 9-1】计算 $\left(\frac{1}{2}\right)^0 - 2^3 =$ _____.

【变式 9-2】下列运算正确的是()

A.
$$(-\pi)^0 = 0$$

B.
$$x^4x^5 = x^{20}$$

A.
$$(-\pi)^0 = 0$$
 B. $x^4x^5 = x^{20}$ C. $(ab^2)^3 = a^3b^5$ D. $2a^2a^{-1} = a^3b^{-1}$

D.
$$2a^2a^{-1} =$$

2a

【变式 9-3】已知 $(x-3)^{x-2}=1$,则x=.

【考点10 负整数指数幂的运用】

运算法则: 文字描述-

【例 10】已知 $2^{x+3} \times 3^{x+3} = 36^{x+1}$,那么2022^{-x}的值是(

- B. 1

【变式 10-1】若 $3 \times 9^{-m} \times 27^m = 3^4$,则 m 的值为 ()

- A. 3
- B. 2
- C. 1

【变式 10-2】在① $-x^5 \cdot (-x)^2$; ② $-(-x)^6 \cdot (\frac{1}{r})^{-4}$; ③ $-(-x^2)^3 \cdot (x^3)^2$;

(4) $[-(-x)^2]^5$ 中,计算结果是 $-x^{10}$ 的是()

- B. 2 个
- C. 3个

【变式 10-3】如果 $a = (-2019)^0$, $b = (-0.1)^{-1}$, $c = (-\frac{5}{3})^{-2}$,那么 a,b,c 三数的 大小为()

- A. a > b > c B. c > a > b C. a > c > b D. c > b > a

【考点11 用科学记数法表示绝对值小于1的数】 符号表示

【例 11】面对国外对芯片技术的垄断,我国科学家奋起直追,2020年11月26 号,上海微电子宣布由我国独立研发的光刻机为光源完成了 22nm 的光刻水准,

1nm=1.0×10⁻⁹m,用科学记数法表示 **22nm**,则正确的结果是(

- A. 22×10⁻⁹m B. 22×10⁻⁸m C. 2.2×10⁻⁸m D. 2.2×10⁻¹⁰m

【变式 11-1】新型冠状病毒体积很小,这种病毒外直径大概在 0.00000 011 米,则 0.00000011 这个数字可用科学记数法表示为(

- A. 1.1×10^{-6} B. 1.1×10^{-7} C. 1.1×10^{-8} D. 0.11×10^{-8}

【变式 11-2】人体中枢神经系统中约含有 1 千亿个神经元,某种神经元的直径约 为 62 微米 (1 微米=0.000001 米). 将 62 微米用科学记数法表示为 ()

- A. $0.62 \times 10^{-5} \%$ B. $6.2 \times 10^{-6} \%$ C. $6.2 \times 10^{-5} \%$ D. $62 \times 10^{-6} \%$

【考点12还原用科学记数法表示的小数】

【例 12】某种细胞的直径约为 0.0...08 米. 将 0.0...08 米用科学记数法表示为 8× 10^{-6} 米,则原数中小数点后"0"的个数为()

A. 4

- B. 5
- C. 6
- D. 7

【变式 12-1】某H品牌手机上使用 5nm 芯片,1nm=0.0000001cm,则 5nm 用科 学记数法表示为()

- A. 50×10^{-8} cm B. 0.5×10^{-7} cm C. 5×10^{-7} cm D. 5×10^{-8} cm

【变式 12-2】世界上最小的开花结果的植物的果实像一个微小的无花果,其质量 只有 7.6×10°g. 将 7.6×10° 用小数表示为 . .

【变式 12-3】下列哪一个数值最小()

- A. 9.5×10^{-9} B. 2.5×10^{-9} C. 9.5×10^{-8} D. 2.5×10^{-8}

【考点13 利用幂的运算进行比较大小】

【例 13】若 $a=3^{555}$, $b=4^{444}$, $c=5^{333}$,比较 a、b、c 的大小()

A. a > b > c

- B. b > a > c C. c > a > b D. c > b > a

【变式 13-1】阅读下列材料:

若 $a^3 = 2$, $b^5 = 3$,则 a,b 的大小关系是 a b (填"<"或">").

解:因为 $a^{15} = (a^3)^5 = 2^5 = 32$, $b^{15} = (b^5)^3 = 3^3 = 27$, $3^3 = 27$, 所以 $3^{15} > b^{15}$, 所以a > b.

解答下列问题:

- (1)上述求解过程中,逆用了哪一条幂的运算性质
- A. 同底数幂的乘法 B. 同底数幂的除法 C. 幂的乘方 D. 积的乘方

(2)已知 $x^5 = 2$, $y^7 = 3$, 试比较 x 与 y 的大小.

【变式 13-2】阅读探究题:..

【阅读材料】

比较两个底数大于1的正数幂的大小,可以在底数(或指数)相同的情况下,比 较指数(或底数)的大小,

如: $2^5 > 2^3$, $5^5 > 4^5$

在底数(或指数)不相同的情况下,可以化相同,进行比较,如: 2710与325,

ME: $27^{10} = (3^3)^{10} = 3^{30}$, $\therefore 30 > 25$, $\therefore 3^{30} > 3^{25}$

[类比解答]比较25⁴,125³的大小.

[拓展拔高]比较3⁵⁵⁵,4⁴⁴⁴,5³³³的大小.

【变式 13-3】阅读:已知正整数a, b, c, 若对于同底数, 不同指数的两个幂 a^b 和 a^c $(a \neq 1)$, 当b > c时,则有 $a^b > a^c$;若对于同指数,不同底数的两个幂 a^b 和 c^b , 当a > c时,则有 $a^b > c^b$,根据上述材料,回答下列问题.[注(2),(3)写 出比较的具体过程]

- (1)比较大小: 5²⁰ 4²⁰, 9⁶¹ 27⁴¹; (填">"、"<"或"=")
- (2)比较233与322的大小;
- (3)比较 $3^{12} \times 5^{10} = 3^{10} \times 5^{12}$ 的大小。
- (4) 计算 $4^{2021} \times 0.25^{2020} 8^{2021} \times 0.125^{2020}$.

【考点14 幂的混合运算】

【例 14】计算

- (1) $(m-n)^2 \cdot (n-m)^3 \cdot (n-m)^4$ (2) $(b^{2n})^3 (b^3)^{4n} \div (b^5)^{n+1}$
 - (3) $(a^2)^3 a^3 \cdot a^3 + (2a^3)^2$
- $(4)(-4a^{m+1})^3 \div [2(2a^m)^2 \cdot a] \quad (5) \left(2x^3 \cdot x^5\right)^2 + (-x)^2 \cdot (-x^2)^3 \cdot (x^2)^4.$
- $(6)x \cdot x^2 \cdot x^3 + (x^2)^3 2(x^3)^2; \qquad (7)(-4a^{m+1})^3 + [2(2a^m)^2 \cdot a].$
- (8) $x^2 \cdot x^4 + (x^3)^2 5x^6$ (9) $(-2a)^6 (-3a^3)^2 + [-(2a)^2]^3$

【考点 15 利用幂的运算进行简便计算】

A. - 1

【例 15】计算 $0.25^{100} \times \left(-\frac{1}{2}\right)^{101} \times 8^{101} = ____.$

【变式 15-1】计算(-0.25)²⁰²²×4²⁰²¹的结果是()

B. 1

- 【变式 15-2】用简便方法计算: $-3^5 \times (-\frac{2}{3})^5 \times (-5)^6$

D. 44020

【考点 16 幂的运算中的新定义问题】

【例 16】阅读材料:

定义: 如果 $10^a = n$, 那么称 a 为 n 的劳格数, 记为a = d(n),

例如: $10^2 = 100$, 那么称 2 是 100 的劳格数, 记为 2 = d(100).

填空:根据劳格数的定义,在算式a=d(1000)中,_____相当于定义中的n,所

以 $d(1000) = ____;$

直接写出d(10-8) =____;

探究: 某数学研究小组探究劳格数有哪些运算性质, 以下是他们的探究过程

若 a、b、m、n 均为正数,且 $10^a = p$, $10^b = q$,

根据劳格数的定义: d(p) = a, d(q) =

 $: 10^a \cdot 10^b = pq$

 $\therefore 10^{a+b} = pq$, 这个算式中, 相当于定义中的 a, 相当于定义中的 n,

∴ d(pq) = , $\mathbb{H}d(pq) = d(p) + d(q)$,

请你把数学研究小组探究过程补全

拓展:根据上面的推理,你认为: $d\left(\frac{m}{n}\right) = \underline{\hspace{1cm}}$.

【变式 16-1】(2022·北京·清华附中八年级期中)定义一种新运算(a, b),若 $a^c = b$,

则(a, b) = c,例(2, 8) = 3,(3, 81) = 4.若(3, 5) + (3, 7) = (3, x),则x的值为

【变式 16-2 】(2022·江苏连云港·七年级期中)阅读下列材料: 小明为了计算 $1+2+2^2+\cdots+2^{2020}+2^{2021}$ 的值,采用以下方法:

设 $S = 1 + 2 + 2^2 + \dots + 2^{2020} + 2^{2021}$ ①

则 $2S = 2 + 2^2 + \dots + 2^{2021} + 2^{2022}$ ②

②一①得, $2S - S = S = 2^{2022} - 1$.

请仿照小明的方法解决以下问题:

- (1) $2 + 2^2 + \cdots + 2^{20} = ____;$
- (2) $\begin{picture}(2) \begin{picture}(2) \begin{$
- (3) 求 $(-2) + (-2)^2 + \dots + (-2)^{100}$ 的和;(请写出计算过程)
- (4) 求 $a + 2a^2 + 3a^3 + \cdots + na^n$ 的和(其中 $a \neq 0$ 且 $a \neq 1$).(请写出计算过程)

第9章 整式乘法与因式分解

- ,	知识回	顾								
1. 虫	这式乘 法	<u> </u>								
(1)	单项式	乘单项式	式法则,	(2) 单项	可式乘多	项式法贝	J, (3)	多项式乘	多项式法	去则,
(4)	乘法	公式:	完全平	方公式	×				平方:	差公
式										
2. 艮	式分解	;								
(1)	因式分	解与整:	式乘法的	均关系:					_•	
(2)	因	式	分	解	的	_	般	思
路:								•		
<u> </u>	典型例	题								
例 1.	计算:									
		1				1	1	45		
(1)	(5a –	$\frac{-b}{5}$			()	2) $(-\frac{1}{3})$	$(x-1)(-\frac{1}{3})$	(x-1)		
		5				3	3			

(5) 先化简, 再求值: $(x-5y)(-x-5y)-(-x-5y)^2$, 其中 x=0.5, y=-1.

(4) (x-2y+3z)(x+2y-3z)

例 2. 若 $(x^2 - mx + 2)(2x + 1)$ 的积中 x 的二次项系数和一次项系数相等,求 m 的值.

例 3. 分解因式:

(3) $(m-n-3)^2$

(1)
$$-x^3 + 2x^2y - xy^2$$
 (2) $x^2(x-2) + 4(2-x)$

(3)
$$(b^2+9)^2-36b^2$$
 (4) $(x-3)(x+1)+4$

例 4. 利用分解因式说明: 25⁷-5¹² 能被 60 整除.

例 5. 已知
$$a(a-2)-(a^2-2b)=-4$$
 . 求代数式 $\frac{a^2+b^2}{2}-ab$ 的值.

例 6. (1) 如果
$$9x^2 + kx + 1$$
 是一个完全平方式,那么 $k =$ _____. (2) 如果 $x^2 - 2(m-1)x + 1$ 是一个完全平方式,那么 m 的值_____.

例 7. (1) 若
$$m^2 + n^2 + 2m - 6n + 10 = 0$$
,则 $m = ____$, $n = ____$.
(2) 求证: 无论 x 、 y 为何值, $4x^2 - 12x + 9y^2 + 30y + 35$ 的值恒为正.

(3) 已知
$$a$$
、 b 、 c 是 $\triangle ABC$ 的三条边,说明 $a^2 - 2ab + b^2 - c^2$ 的值小于 0 .

- 例 8. 已知长方形的长为a,宽为b,周长为 16,两边的平方和为 14. (1)求此长方形的面积;(2)求 $ab^3+2a^2b^2+a^3b$ 的值.
- 例 9. 我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式. 例如图(1)可以得到(a+2b)(a+b)= $a^2+3ab+2b^2$. 请解答下列问题: (1)写出图(2)中表示的数学等式;
 - (2) 利 用 (1) 中 得 到 的 结 论 , 解 决 下 面 的 问 题 : 已 知 a+b+c=11, ab+bc+ac=38,求 $a^2+b^2+c^2$ 的值;

- (3)图(3)中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片,请利用所给的纸片拼出一个几何图形,使得用两种不同的方法计算它的面积时,能够得到数学公式: $2a^2+5ab+2b^2=(2a+b)(a+2b)$;
- (4)小明同学用 2 张边长为a的正方形,3 张边长为b的正方形,5 张边长分别为 a、b的长方形纸片重新拼出一个长方形,那么该长方形较长一边的边长为

三、课后练习

1. 下列计算正确的是()

A.
$$a + 2a^2 = 3a^2$$
 B. $a^8 \div a^2 = a^4$ C. $(a^3)^2 = a^6$

$$B . \quad a^8 \div a^2 = a^4$$

$$(a^3)^2 = a^3$$

D.
$$a^3 \cdot a^2 = a^6$$

2. 下列等式由左边向右边的变形中,属于因式分解的是(

A.
$$x^2 + 5x - 1 = x(x+5) - 1$$

A.
$$x^2 + 5x - 1 = x(x+5) - 1$$

B. $x^2 + 3x - 4 = x(x+3 - \frac{1}{x})$

C.
$$(x+2)(x-2) = x^2 - 4$$

C.
$$(x+2)(x-2) = x^2 - 4$$
 D. $x^2 - 4 = (x+2(x-2))$

3. 如果 $a = (-2014)^0$, $b = (-\frac{1}{2})^{-2}$, $c = (-0.1)^2$. 则 a、 b、 c 的大小关系是()

A. a > b > cf B. b > a > c C. c > a > b D. b > c > a

- - A. m = -1, n = 5 B. m = 1, n = -5 C. m = -1, n = -5

- D. m = 1, n = 5
- 5. 若 a 、 b 都是有理数,且 $a^2 2ab + 2b^2 + 4b + 4 = 0$,则 ab 等于() *c.* −8

- 6. 某种生物细胞的直径约为 0. 000056 m, 用科学记数法表示为
- 7. $\exists \exists s + t = 4$, $\exists s = 1$.
- 8. $\exists \exists x^m = 6, x^n = 3$, $\exists x^{m-n} = \underline{\qquad}$; $(-x^m) \div x^{-n} = \underline{\qquad}$.
- 9. 已知 $(x-1)^{x+2}=1$,则整数x= .
- 10. 已知 m > 0, 并且使得 $x^2 + (m-2)x + 16$ 是完全平方式,则 m 的值
- 11. 如果当 x = 3 时,式子 $px^3 + qx + 1$ 的值为 2023,则当 x = -3 时,式子 $px^3 + qx + 1$ 的值是 .
- 12. 计算: (1) $(-2ab^2)^2 \cdot (3a^2b-2ab-1)$; (2) $4(a-b)^2-(2a+b)(-b+2a)$;

(3)
$$(x+3y)(x^2+9y^2)(x-3y)$$
; (4) $(1+x-y)(x+y-1)$;

(4)
$$(1+x-v)(x+v-1)$$
:

13. 因式分解: (1) 4m(m-n)+4n(n-m); (2) $81(a-b)^2-16(a+b)^2$;

(2)
$$81(a-h)^2-16(a+h)^2$$

(3)
$$4(a+b)^2-12(a+b)+9$$
; (4) $(x^2+y^2)^2-4x^2y^2$.

$$(4) (x^2+v^2)^2-4x^2v^2$$

14. 若 a+b=5, ab=6, 求 a^4+b^4 的值.

15.

- (1) 若 m、n 为任意有理数,则 $4m^2 + n^2$ 4mn(填">、<、>、<、>、<="):
- (2) 阅读下列因式分解的过程,再回答所提出的问题:

$$1+x+x(x+1)+x(x+1)^2=(1+x)[1+x+x(x+1)]=(1+x)^2(1+x)=(1+x)^3$$

- ①上述分解因式的方法是______法,共应用了_____次;
- ②若分解 $1+x+x(x+1)+x(x+1)^2+\cdots+x(x+1)^{2023}$,则需要应用上述方法_____次,分解因式后的结果是 ;
- ③请用以上的方法分解因式: $1+x+x(x+1)+x(x+1)^2+\cdots+x(x+1)^n(n$ 为正整数),必须有简要的过程.

16. 问题:对于形如 $x^2 + 2xa + a^2$ 这样的二次三项式,可以用公式法将它分解成 $(x+a)^2$ 的形式。但对于二次三项式 $x^2 + 2xa - 3a^2$,就不能直接运用公式了。此时,我们可以在二次三项式 $x^2 + 2xa - 3a^2$ 中先加上一项 a^2 ,使它与 $x^2 + 2xa$ 的和成为一个完全平方式,再减去 a^2 ,整个式子的值不变,于是有:

$$x^{2} + 2xa - 3a^{2} = (a^{2} + 2ax + a^{2}) - a^{2} - 3a^{2} = (x + a)^{2} - 4a^{2} = (x + a)^{2} - (2a)^{2}$$
$$= (x + 3a)(x - a)$$

像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为"配方法",利用"配方法",解决下列问题:

- (1) 利用"配方法"分解因式: $a^2 6a + 8$;
- (2) 利用"配方法"比较代数式 $x^2 1$ 与 2x 3 的大小.

第10章 二元一次方程(组)

二元一次方程(组)

1. 已知 $x^{a^{-1}}+y^{2b^{-3}}=1$ 是关于 x, y 的二元一次方程,则 a+b=_____.

2. 方程 3x - 5y = 9,用含 x 的代数式表示 y 为(

A.
$$y = \frac{9-3x}{5}$$

B.
$$x = \frac{9-5x}{3}$$

C.
$$x = \frac{9 + 5y}{3}$$

A.
$$y = \frac{9-3x}{5}$$
 B. $x = \frac{9-5x}{3}$ C. $x = \frac{9+5y}{3}$ D. $y = \frac{3x-9}{5}$

3. 已知关于 x, y 的方程 (m+2) $x^{|m|-1}+y^{2n+m}=5$ 是二元一次方程,求 m, n 的值.

4. 已知: $|2x - y - 3| + (4x - 3y - 5)|^2 = 0$,则 x 和 y 的值为(

A.
$$\begin{cases} x=1 \\ y=2 \end{cases}$$

B.
$$\begin{cases} x=2 \\ y=2 \end{cases}$$

$$A. \ \begin{cases} x=1 \\ y=2 \end{cases} \qquad B. \ \begin{cases} x=2 \\ y=2 \end{cases} \qquad C. \ \begin{cases} x=2 \\ y=1 \end{cases} \qquad D. \ \begin{cases} x=-2 \\ y=2 \end{cases}$$

D.
$$\begin{cases} x = -2 \\ y = 2 \end{cases}$$

5. 如图,长方形 ABCD 中放置 9 个形状、大小都相同的小长方形, AD 与 AB 的 差为 2, 小长方形的周长为 14, 则图中阴影部分的面积为 ()

A. 26

B. 25

C. 24

D. 23

二元一次方程组的解

6. 已知关于x, y的二元一次方程组 $\begin{cases} a_1 x + b_1 y = c_1 \\ a_2 x + b_2 y = c_2 \end{cases}$ 的解为 $\begin{cases} x = 2 \\ y = 3 \end{cases}$,则关于x, y

A.
$$\begin{cases} x = 2014 \\ y = -2019 \end{cases}$$

B.
$$\begin{cases} x=2024 \\ y=2025 \end{cases}$$

C.
$$\begin{cases} x = -2020 \\ x = -2010 \end{cases}$$

D.
$$\begin{cases} x = -2020 \\ y = 2025 \end{cases}$$

的方程组 $\begin{cases} a_1(x+2022) + b_1(y-2022) = c_1 \\ a_2(x+2022) + b_2(y-2022) = c_2 \end{cases}$ 的解为())
A. $\begin{cases} x=2014 \\ y=-2019 \end{cases}$ B. $\begin{cases} x=2024 \\ y=2025 \end{cases}$ C. $\begin{cases} x=-2020 \\ y=-2019 \end{cases}$ D. $\begin{cases} x=-2020 \\ y=2025 \end{cases}$ 7. 我们知道二元一次方程组 $\begin{cases} 2x-3y=3 \\ 3x-4y=5 \end{cases}$ 的解是 $\begin{cases} x=3 \\ y=1 \end{cases}$ 现给出另一个二元一次方程组 $\begin{cases} 2(2x+1)-3(3y-1)=3 \\ 3(2x+1)-4(3y-1)=5 \end{cases}$ 它的解是())
A. $\begin{cases} x=-1 \\ y=\frac{2}{3} \end{cases}$ B. $\begin{cases} x=-1 \\ y=\frac{2}{3} \end{cases}$ C. $\begin{cases} x=1 \\ y=\frac{2}{3} \end{cases}$ D. $\begin{cases} x=1 \\ y=\frac{2}{3} \end{cases}$

A.
$$\begin{cases} x=-1 \\ y=\frac{2}{3} \end{cases}$$

8. 若关于 x, y 的二元一次方程组 $\begin{cases} 3x+y=11k \\ x-2y=7k \end{cases}$ 的解也是二元一次方程 2x+3y=4

的解,则k的值为(

9. 方程组 $\begin{cases} 2\mathbf{x} - \mathbf{y} = \triangle \\ \mathbf{x} - \mathbf{y} = 4 \end{cases}$ 的解为 $\begin{cases} \mathbf{x} = -2 \\ \mathbf{y} = \nabla \end{cases}$,则被 \triangle 和 ∇ 遮盖的两个数分别为() A. -10, 6 B. 2, -6 C. 2, 6 D. 10, -6

郑外七年级(下)期末复习讲义

- 10. 已知,关于 x,y 的二元一次方程组 $\begin{cases} 3x-5y=36 \\ bx+ay=-8 \end{cases}$ 与方程组 $\begin{cases} 2x+5y=-26 \\ ax-by=-4 \end{cases}$ 有相同的解。
 - (1) 求这两个方程组的相同解:
 - (2) 求 $(2a+b)^{2023}$ 的值.

用二元一次方程组解决问题

11. 方案类问题

例题:宁波杨梅季,本地慈溪杨梅在宁波人的心中是一种家乡的味道. 今年是杨梅大年,菜杨梅种植大户为了能让居民品尝到物美价廉的杨梅,对 1000 斤的杨梅进行打包方式优惠出售. 打包方式及售价如下:圆篮每篮 8 斤,售价 160 元;方篮每篮 18 斤,售价 270 元. 假如用这两种打包方式恰好全部装完这 1000 斤杨梅.

- (1)若销售 a 篮圆篮和 a 篮方篮共收入 8600 元, 求 a 的值;
- (2)当销售总收入为 16760 元时,
- ①若这批杨梅全部售完,请问圆篮共包装了多少篮,方篮共包装了多少篮;
- ②若杨梅大户留下b(b>0)篮圆篮送人,其余的杨梅全部售出,请确定该杨梅大户有哪几种包装方案.

12. 销售利润问题

例题: 某商店决定购进 A、B 两种纪念品出售,若购进 A 种纪念品 10 件,B 种纪念品 5 件,则需要 215 元;若购进 A 种纪念品 5 件,B 种纪念品 10 件,则需要 205 元

- (1)求 A、B 两种纪念品的购进单价;
- (2)已知商店购进两种纪念品32件,共花费450元,两种纪念品均标每件18元出售,其中有5件B种纪念品以七五折售出,求这32件纪念品的销售利润.

13. 几何类问题

如图,用若干张长方形纸板和正方形纸板作侧面和底面,制作A款(无盖包装盒) 和 B 款 (有盖包装盒)若干; 现仓库有 360 张长方形纸板和 140 张正方形纸板, 问 A、B 两款包装盒各做多少个时,仓库中的纸板刚好全部用完?

课后练习

二元一次方程(组)

1. 已知关于 x, y 的方程 (m+2) $x^{|m|-1}+y^{2n+m}=5$ 是二元一次方程, 求 m, n 的值.

二元一次方程组的解

2. 已知
$$\begin{cases} \mathbf{x}=-2 \\ \mathbf{y}=1 \end{cases}$$
是二元一次方程组 $\begin{cases} \mathbf{m}\mathbf{x}+\mathbf{n}\mathbf{y}=7 \\ \mathbf{n}\mathbf{y}-\mathbf{m}\mathbf{x}=3 \end{cases}$ 的解,则 m , n 的值分别是()

A.
$$\begin{cases} m=-1 \\ n=5 \end{cases}$$

B.
$$\begin{cases} m=-1 \\ n=-5 \end{cases}$$

C.
$$\begin{cases} m=1 \\ n=5 \end{cases}$$

D.
$$\begin{cases} m=1 \\ n=-5 \end{cases}$$

2. 已知 $\begin{cases} \mathbf{x} = -2 \\ \mathbf{y} = 1 \end{cases}$ 是二元一次方程组 $\begin{cases} \mathbf{m} \mathbf{x} + \mathbf{n} \mathbf{y} = 7 \\ \mathbf{n} \mathbf{y} - \mathbf{m} \mathbf{x} = 3 \end{cases}$ 的解,则 m ,n 的值分别是())

A. $\begin{cases} \mathbf{m} = -1 \\ \mathbf{n} = 5 \end{cases}$ B. $\begin{cases} \mathbf{m} = -1 \\ \mathbf{n} = -5 \end{cases}$ C. $\begin{cases} \mathbf{m} = 1 \\ \mathbf{n} = 5 \end{cases}$ D. $\begin{cases} \mathbf{m} = 1 \\ \mathbf{n} = -5 \end{cases}$ 3. 已知方程组 $\begin{cases} 5\mathbf{x} + \mathbf{y} = 3 \\ \mathbf{x} - 2\mathbf{y} = 5 \end{cases}$ $\begin{cases} \mathbf{a} \mathbf{x} + 2\mathbf{y} = 1 \\ 2\mathbf{x} + \mathbf{b} \mathbf{y} = 8 \end{cases}$ $\begin{cases} \mathbf{a} \mathbf{x} - 2\mathbf{b} \mathbf{y} = 9 \\ 2\mathbf{x} - \mathbf{y} = 7 \end{cases}$ $\begin{cases} \mathbf{a} \mathbf{a} \mathbf{x} - 5\mathbf{b} \mathbf{y} = 9 \\ \mathbf{a} \mathbf{x} - \mathbf{y} = 11 \end{cases}$ 有相同的解,则 a + b 的值是()

值是(

5. 若方程组 $\begin{cases} 2\mathbf{x}+\mathbf{y}=\mathbf{m} \\ 2\mathbf{x}-\mathbf{y}=10 \end{cases}$ 的解为 $\begin{cases} \mathbf{x}=4 \\ \mathbf{y}=\mathbf{n} \end{cases}$ 小亮求解时不小心滴上了两滴墨水,刚好

遮住了m和n两数,则这两数分别为()

A. 6和 - 2 B. 10 和 2 C. -6 和 4 D. 4 和 6 6. 我们知道二元一次方程组 $\begin{cases} 2x-3y=3 \\ 3x-4y=5 \end{cases}$ 的解是 $\begin{cases} x=3 \\ y=1 \end{cases}$. 现给出另一个二元一次方程组 $\begin{cases} 2(2x+1)-3(3y-1)=3 \\ 3(2x+1)-4(3y-1)=5 \end{cases}$ 它的解是 () A. $\begin{cases} x=-1 \\ y=\frac{2}{3} \end{cases}$ B. $\begin{cases} x=-1 \\ y=\frac{2}{3} \end{cases}$ C. $\begin{cases} x=1 \\ y=\frac{2}{3} \end{cases}$ D. $\begin{cases} x=1 \\ y=\frac{2}{3} \end{cases}$

程组
$${2(2x+1)-3(3y-1)=3, chm}$$
 它的解是()

A.
$$\begin{cases} x=-1 \\ y=\frac{2}{3} \end{cases}$$

B.
$$\begin{cases} x=-1 \\ y=\frac{2}{2} \end{cases}$$

C.
$$\begin{cases} x=1 \\ y=\frac{2}{3} \end{cases}$$

D.
$$\begin{cases} x=1 \\ y=\frac{2}{3} \end{cases}$$

用二元一次方程组解决问题

7. 方案类问题:

去年年底,重庆疫情形势严峻,除了医务人员和志愿者们主动请缨走向抗疫前线,众多企业也纷纷伸出援助之手。某公司租用 A、B 两种货车向重庆运送抗疫物资,已知用 2 辆 A 型车和 3 辆 B 型车载满货物一次可运物资 21 吨;用 1 辆 A 型车和 4 辆 B 型车载满货物一次可运物资 23 吨.

(1)求 1 辆 A 型车和 1 辆 B 型车都装满货物一次可分别运送多少吨物资?

(2)现有 60 吨抗疫物资需要运往重庆,该公司计划同时租用 A 型车和 B 型车(两种型号车均要租用),一次运完,且恰好每辆车都装满货物。若 A 型车每辆需租金1000 元/次,B 型车每辆需租金1500 元/次。那么该公司有哪几种租车方案,并且哪种方案租车费用最少。

8. 几何类问题

- 某工厂准备用图甲所示的 A 型正方形板材和 B 型长方形板材,制作成图乙所示的 竖式和横式两种无盖箱子.
 - (1) 若现有 A 型板材 120 张, B 型板材 240 张 可制作竖式和横式两种无盖箱子各多少个?
 - (2) 若该工厂准备用 12000 元资金去购买 A, B 两种型号板材,制作竖式,横式箱子共 100 个,已知 A 型板材每张 10 元,B 型板材每张 30 元,发现资金恰好用完,问可以制作竖式箱子多少个?
 - (3) 若该工厂新购得 65 张规格为 $3m \times 3m$ 的 C 型正方形板材,将其全部切割成 A 型或 B 型板材(不记损耗),用切割的板材制作成两种类型的箱子,要求竖式箱子不少于 10 个,且材料恰好用完,则最多可以制作竖式箱子多少个?

第 11 章 一元一次不等式

课堂例题

不等式的基本性质

- A. a-1 < b-1 B. 2a < 2b C. $-\frac{a}{3} > -\frac{b}{3}$ D. $a^2 < b^2$

2. 若实数a, b, c 在数轴上对应的点如图所示,则下列式子中正确的是()

- A. a+c > b+c B. a-c < 0 C. ac > bc

3. 【阅读】在证明命题"如果a > b > 0,c < 0,那么 $a^2 + bc > ab + ac$ "时,小明 的证明方

法如下:

证明: :: a > b > 0,

 $\therefore a^2 > \underline{\qquad} \therefore a^2 + bc > \underline{\qquad}.$

 $:: a > b, \quad c < 0,$

 $\therefore bc > \underline{\qquad} \therefore ab + bc > \underline{\qquad}$

 $\therefore a^2 + bc > ab + ac.$

【问题解决】

(1) 请将上面的证明过程填写完整:

(2) 有以下几个条件: ①a > b, ②a < b, ③a < 0, ④b < 0.

请从中选择两个作为已知条件,得出结论|a|>|b|.

你选择的条件序号是 ____,并给出证明过程.

解一元一次不等式

4. 若关于x的不等式 $x \le a + 5$ 恰有 3 个正整数解,则字母a的取值范围是()

- A. $a \le -1$ B. $-2 \le a < -1$ C. a < -1 D. $-2 < a \le -1$

5. 关于 x 的不等式 $x-a \ge 3$ 的解集如图所示,则 a 的值是 .

6. 已知关于x, y的方程组 $\begin{cases} x-y=1+3m \\ x+3y=1+m \end{cases}$, 且 $-1 < x \le 2$,则y的取值范围是_____.

7. 小明的数学研学作业单上有这样一道题: 已知 -x + y = 2,且 x < 3, $y \ge 0$, 设w=x+y-2,

那么 w 的取值范围是什么?

【回顾】

小明回顾做过的一道简单的类似题目:已知:-1 < x < 2,设y = x + 1,那么y的 取值范围是 ____. (请你直接写出答案)

【探究】

小明想: 可以将研学单上的复杂问题转化为上面回顾的类似题目.

由 -x + y = 2 得 y = 2 + x ,则 w = x + y - 2 = x + 2 + x - 2 = 2x ,

郑外七年级(下)期末复习讲义

由x < 3, $y \ge 0$, 得关于x的一元一次不等式组 ____,

解该不等式组得到x的取值范围为 $_{---}$,

则 w 的取值范围是 ____.

【应用】

- (1) 已知a-b=4,且a>1,b<2,设t=a+b,求t的取值范围;
- (2)已知 a-b=n(n 是大于 0 的常数),且 a>1, $b\le 1$, 2a+b 的最大值为 ____(用 含 n 的代数式表示);

【拓展】

- 8. 已知x、y满足3x+2y=6.
- (1) 若y满足y>3, 求x的取值范围;
- (2) 若x、y满足-3x+2y=k,且 $x<\frac{1}{2}$, $y\ge 1$,求k的取值范围.

一元一次不等式组

9. 若关于x的不等式组 $\begin{cases} x \ge -1 \\ 2x < a \end{cases}$ 有解,则a的取值范围是()

A. $a \leq -2$

- B. a < -2
- C. $a \ge -2$
- D. a > -2
- 10. 已知关于x、y的方程ax-3y=4,给出以下结论: ①将方程化为y=kx+m

的形式,则 $m = \frac{4}{3}$;②若 $\begin{cases} x = -2 \\ y = 4 \end{cases}$ 是方程 ax - 3y = 4 的解,则 a = -8;③当 a = 5 时,

方程满足 $-10 \le x \le 10$ 的整数解有 7 个; ④当a = -2 且 $-2 < x \le 1$ 时,y 的取值范围为 $-2 < y \le 0$. 其中正确的结论是()

- A. (1)(2)
- B. (2)(3)
- C. (2)(4)
- D. (3)(4)
- 11. 如图,数轴上表示的是关于x的一元一次不等式组 $\begin{cases} x-m<0\\ 2(x+1)>3x \end{cases}$ 的解集,则m

_____的取值范围是 _____.

12. 若关于x的一元一次不等式组 $\begin{cases} x-m<0\\2x+1>3 \end{cases}$ 仅有 2 个整数解,则m 的取值范围

13. 已知关于
$$x$$
 的不等式组
$$\begin{cases} 2x+1>x+a \\ x-1 \le \frac{2x+a+2}{3} \end{cases}$$
 (a 为整数)的所有整数解的和 S 满

足 $21.6 \le S < 33.6$,则所有这样的 a 的和为_____.

14. 已知关于
$$x$$
 , y 的二元一次方程组 $\begin{cases} x + 2y = 5m + 3 \\ 2x - y = 6 \end{cases}$ (m 是常数).

- (1) 若方程组的解满足3x + y = 14, 求m的值;
- (2) 若方程组的解满足x-3y≤5, 求m的取值范围.

- 15. 已知非负数 x、y满足 $\frac{x-2}{4} = \frac{3-y}{3} = k$,设 L = 2x + y 3k.
 - (1) 求k的取值范围;
 - (2) 求满足条件的 L 的所有整数值.

用一元一次不等式解决问题

16. 党的十八大以来,党中央把脱贫攻坚工作纳入"五位一体"总体布局和"四个全面"战略布局,作出一系列重大部署和安排,全面打响脱贫攻坚战. 为帮助苏州市对口扶贫城市某省 A 市将 58 吨水果运往外地销售,苏州市某公司计划租用 A, B 两种车型的箱式货车共 9 辆,其中 A 型箱式货车至少要租 2 辆. 两种货车的运载量和运费如下表所示:

车型	A	В
运载量(吨/辆)	5	8
运费(元/辆)	1000	1200

- (1) 请写出符合公司要求的租车方案,并说明理由;
- (2) 若将这批水果一次性运送到水果批发市场,那么哪种租车方案运费最少?并求出最少运费.

- 17. 我市对居民生活用水实行"阶梯水价". 小李和小王查询后得知:每户居民年用水量 180 吨以内部分,按第一阶梯到户价收费;超过 180 吨且不超过 300 吨部分,按第二阶梯到户价收费;超过 300 吨部分,按第三阶梯到户价收费. 小李家去年1-9月用水量共为 175 吨,
- 10月、11月用水量分别为 25吨、22吨,对应的水费分别为 118.5元、109.12元.
- (1) 求第一阶梯到户价及第二阶梯到户价(单位:元/吨);
- (2) 若小王家去年的水费不超过856元, 试求小王家去年年用水量的范围(单位:吨,结果保留到个位).

课后练习

不等式的基本性质

A. a + 2c < b + 2c B. 2c - a < 2c - b C. a + 2c > b + 2c D. 2ac < 2bc

2. 已知a > b > c,则下列结论不一定成立的是()

A. a+c>b+c B. ac>bc C. 4a-c>4b-c D. c-2a< c-2b

3. 命题"若 $a \ge b$,则 $ac \ge bc$ "是 命题. (填"真"或"假")

解一元一次不等式

4. 关于x的不等式a-x≥2的解集如图所示,则a的值是 .

5. 不等式 2x-1<5 的正整数解为 _____

6. 已知关于x, y的二元一次方程组 $\begin{cases} x+2y=3m+1\\ 3x-y=2m+3 \end{cases}$, 且x, y满足x+y>3. 则

m 的取值范围是 .

7. 已知 x-2y=3 且 $x \ge y$. 若 k=3x-5y ,则 k 的最小值为 _____

8. 已知a+b-1=0,且a>b>-1,则a的取值范围为 _____.

9. 已知 $2^{x+y} = 1$,且 -1 < x < 2,则 y 的取值范围是 _____.

10. n 边形的内角和比它的外角和至少大 120° , n 的最小值是____.

 12. 对非负实数 x "四舍五入" 到个位的值记为 < x > . 即当 n 为非负整数时,若 $n - \frac{1}{2} \le x < n + \frac{1}{2}$,则 < x >= n . 如: < 3.2 >= 3 , < 3.5 >= 4 , < 3.8 >= 4 . 根据以上材料,解决下列问题:

- (1) 填空: <3.45>=___;
- (2) 若 < 2x+1 >= 3, 求x满足的条件;
- (3) 下面两个命题: ①如果 x 开0 , m 为非负整数,那么 < x + m >= m + < x > ; ② 如果 $x \ge 0$, k 为非负整数,那么 < kx >= k < x > ; 请判断在这两个命题中属于假命题的是 _____,并举反例说明;
- (4) 满足 $< x >= \frac{2}{3}x + 1$ 的所有非负实数 x 的值为 _____.

13. 我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为"云不等式",

其中一个不等式是另一个不等式的"云不等式".

- (1) 在不等式①2x-1<0,② $x\le 2$,③x-(3x-1)<-5中,不等式 $x\ge 2$ 的"云不等式"是 _____;(填序号)
- (2) 若关于x的不等式 $x+2m \ge 0$ 不是2x-3 < x+m的"云不等式", 求m的取值范围;
- (3) 若 $a \neq -1$,关于 x 的不等式 $x+3 \geq a$ 与不等式 ax-1 < a-x 互为 "云不等式",求 a 的取值范围.

一元一次不等式组

14. 不等式组 $\begin{cases} x-1>0 \\ 4-2x \ge 0 \end{cases}$ 的解集在数轴上表示为()

- 15. 若关于 x 的不等式组 $\begin{cases} 2(x+1) > 4 \\ x > a \end{cases}$ 的解集是 x > 1 ,则 a 的取值范围是 ()
 - A. a < 1
- B. *a* ≤1
- C. a > 1
- D. $a \ge 1$
- 16. 请写出一个解集是 $-1 < x < \frac{1}{2}$ 的不等式组: ____.

- 17. 已知 2-a 和 3-2a 的值的符号相反,则 a 的取值范围是 .

- 18. 如果不等式组 $\begin{cases} x > 1 \\ x \le m \end{cases}$ 恰有 $2 \land \text{正整数解}$,则实数 m 的取值范围是 _____.

 19. 若不等式组 $\begin{cases} 4x 1 \ge x + 8 \\ x \le m \end{cases}$ 只有一个整数解,则 m 的取值范围是 _____.

 20. 解不等式组 $\begin{cases} x 2(x 1) \ge 2 \\ \frac{1 + x}{3} > x 1 \end{cases}$ $\begin{cases} -3x \le 9 \\ x > -2 \\ 2(x + 1) < x + 3 \end{cases}$
- 21. 解不等式组: $\begin{cases} 2(x-1) < x+2 \\ \frac{x+1}{2} < x \end{cases}$,把它解集在数轴上表示出来,并写出它的最

大整数解.

- 22. 已知方程组 $\begin{cases} x + y = 6 m \\ x y = 2 + 3m \end{cases}$ 的解满足 $x \setminus y$ 均为非负数.
- (1) 求m 的取值范围:
- (2) 当 m 为绝对值最小值数时, 求原方程组的解.
- 23. 已知关于x的不等式组 $\begin{cases} x > -1 \\ x < 4 \end{cases}$.
- (1) 当k = -2 时,求不等式组的解集;
- (2) 若不等式组的解集是-1 < x < 4,求k的范围;
- (3) 若不等式组有 3 个整数解, 求 k 的范围.

用一元一次不等式解决问题

- 24. 某公司有甲、乙两个口罩生产车间,甲车间每天生产普通口罩 6 万个, N95口罩 2.2 万个. 乙车间每天生产普通口罩和 N95口罩共 10 万个,且每天生产的普通口罩比 N95口罩多 6 万个.
- (1) 求乙车间每天生产普通口罩和 N95 口罩各多少万个?
- (2) 现接到市防疫指挥部要求:需要该公司提供至少 156 万个普通口罩和尽可能 多的 N95 口罩.因受原料和生产设备的影响,两个车间不能同时生产,且当天只能确保一个车间的生产.已知该公司恰好用 20 天完成防疫指挥部下达的任务.问:①该公司至少安排乙车间生产多少天?
- ②该公司最多能提供多少个 N95 口罩?

- 25. 大浮杨梅是我市特色水果, 古称"吴越佳果". 某水果店以 20 元/千克的价格购进一批杨梅, 由于销售状况良好, 该店再次购进同一种杨梅, 第二次进货价格比第一次每千克便宜了 0.5 元. 该水果店两次共购进杨梅 110 千克, 共花去 2160元.
- (1) 该水果店两次分别购买了多少千克的杨梅?
- (2) 在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的杨梅有10%的损耗,第二次购进的杨梅有15%的损耗,该水果店希望售完这些杨梅获利不低于500元,则该杨梅每千克售价至少为多少元?

26. 某公园的门票价格如表所示:

购票人数	1~50	51~80	100 以上
票价(元/人)	10	8	5

某校七年级甲、乙两个班共 100 多人去该公园举行游园活动,其中甲班有 50 多人, 乙班不足 50 人. 如果以班为单位分别买门票,两个班一共应付 928 元;如果两个 班联合起来作为一个团体购票,一共只要 520 元.

- (1) 甲、乙两班分别有多少人?
- (2) 游园过程中,学校组织全体学生坐船游玩"畅沁湖". 坐小船 4 人一艘,每艘小船价格 20 元; 坐大船 8 人一艘,每艘大船价格 50 元, 领队只剩下 620 元. 在保证每艘船都坐满的情况下,请问至少需要租多少艘小船?

27. 为了增强公民的节水意识,合理利用水资源,某市出台了居民用水"阶梯价格"制度来引导市民节约用水,下表是用水价格的标准:

阶梯	一户居民每月用水量 (单位:立方米)	水费价格 (单位:元/立方米)
一档	不超过 15 立方米	a
二档	超过 15 立方米的部分	b

已知该市某户居民今年4月份用水16立方米,缴纳水费50元;5月份用水20立方米,缴纳水费70元.

- (1) 求出表格中a、b的值:
- (2)6月份是用水高峰期,该户居民计划6月份水费支出不超过85元,那么该户居民6月份最多可用水多少立方米?