العلامة		مخمي ومرد 1 مدين مراشر (
مجنوع	مجزأة	عنصر الإجلية (الموضوع الأول)
		التصريف الأولى (04 نفتط)
		1) أ− برمان بالترفيع أن: ±ً < ي∎
	0.25	$rac{1}{e} < rac{5}{4e}: rac{1}{e} < w_0: e = 0$ نتطق من صحة القاصوة من أجل e
	0.25x	$[0;+x]$ و تقرض من أبيل عدد طبيعي π أن u و $\frac{1}{\pi}$ و f متزايدة تماما على $[0;+x]$
١ ا	2	$\cdot \frac{1}{e} < u_{n+1}$ و منه $f\left(\frac{1}{e}\right) < f\left(u_n\right)$: پلات
	0.25	$u_{n+1} - u_n = rac{m v_n (rac{1}{e} - u_n)}{m v_n + 1} : \pi$ بـ - تبوان آنه من أبول كل عند طنهمي
		ومنه و من أجل كل عدد طبيعي $\mu_{a+1} = \mu_a < 0$ ه المنافقة بمضا σ
		ومعدودة من الأسقل بالعدد 🚽 فهي متقاربة .
Oι	0.5 0.25×2	$: u_{n+1} = rac{2 e u_n}{e v_n - 1} : n$ اگرات ان (v_n) عندسیة : من لیل کل عدد طبیعی $q = 1$ م $v_n = 5 imes 2^n$ و $v_n = 5 imes 2^n$ و $v_n = 2 v_n$
	63×5	: $u_n = \frac{5 \times 2^n}{e(5 \times 2^n - 1)}$: $u_n = \frac{1}{eu_n - 1}$ الخطق أن $eu_n = 1 + \frac{1}{eu_n - 1}$ (3)
01.25	0.25	$\lim_{s\to\infty} \sigma_s = \frac{1}{\varepsilon}$
	0.5	$S_{n} = 5 \times \frac{2^{n+1}-1}{2-1} = 5 \left[2^{n+1}-1\right]$. مجرع مقالیة هندسیة : $S_{n} = 5 \times \frac{2^{n+1}-1}{2-1} = 5$
		$2^{12} = 1[7]$
0.75	0.5	$2^{3a+1} = 2[7] (k \in \mathbb{N}) : \{1; 2; 4\}$ على 7 هي 7 على 7 أ) يولاني قسمة 2^{a} على 7 هي 7
	0.25	$2^{3a+1} = 2[7] (k \in \mathbb{N}) : \{1; 2; 4\}$ يولاي قدمة $2^{3a+2} = 4[7]$ $3^{3a+2} = 4[7]$ يولاي قدمة $2^{3a+2} = 4[7]$ يولاي قدمة $2^{3a+2} = 4[7]$ و منه $3a = 3a + 2$

الإجابة النموذجية لموضوع الحيار مائة: الرياطيات/ الشعبة: تقني رياهي/ بكالوريا: 2018

$\overline{}$		A 1 to that a wife a call
• 1	0.5×2	(التعربية الثاني: : (04) نقاط) (1) معادلة المستري (Q) الذي يشمل ادر (2:2:-1) شعاع ناظمي له هي : (2:-2:-2:-2:-2-0)
6 1	0.5×2	2) تمثیل رسوطی المستایم (۸): x = 2t y = 2t
01.25	0.25×2 0,5 0.25	(a) اً) التمثق أن $a=5+2e+7$ و $a=2e+7$ معادلة بيكارتية للممثري (a)
0.75	0.25 0.25 0.25	4) أنسين فيم ا : ا [4] المبين فيم ا : ا [4] المبين فيم ا : ا [4] (4) المبين فيم ا : ا [4] (2;2;1) المبين فيم المبين الم
81.5	0.5×3	ا) عل المطالة : ع م 1 آباء 2 أباء - 1 الكرين الثقاف : ا) عل المطالة : ع م 1 آباء 2 أباء - 1 أباء -
1.25	0.5×2 0.25	$\frac{1}{z_a} = \frac{1}{2}e^{i\frac{\pi}{2}}$, $z_a = 7e^{i\frac{\pi}{2}}$ $e^{i\frac{\pi}{2}}$ and $e^{i\frac{\pi}{2}}$
1.25	0.25 0.5=2	$z_c = -\sqrt{2} + 3i\sqrt{2}$ $z_c - z_o = -3(z_b - z_o)$ (2)
1,5	0.5×3	$z_{o} = -i(z_{o} - z_{o})$ (3)
9.5	0.25	4) تبيان أن بـ = - -

الإجابة التموذجية لموضوع الحيار مادة: الرياضيات/ الشعبة: تقني رياضي/ بكالوريا: 2018

		القرين الرابع: (06 نقاباً)
		/ دلالة معرفة على المجال 1:m-[ب: " ع لن لا) }
	0.542	$\lim_{x\to\infty} f(x) -\infty$ نوازات د مه $f(x) \to \infty$ انوازات د مه $f(x)$
8L25	D.25	r=1 (b) معادلة مقارب عمودي
	0.25	$f(x) = \frac{\left(-x^{3} + x - t\right)}{\left(x - 1\right)^{2}}e^{-x} : x \in \left[-\infty; t\right]$ بيان أن من أبها. (2)
1	0.25	من أجل] cost [r c : 0 > (۲ x) . ﴿ وَلَا مَنْظُمَاهُ نَمَاماً عَلَى كُلُ الْمَجَالَ] cost [ارتام- أ
	. 0.5	جدول التغيرات.
	0.5	$(T): \mathcal{Y} \to x \in \mathbb{C}$ عند (T) عند (T)
		ب- انتجاه نغير الدقاة بل : بيان أن من أجل]ا:co: [x) = -e' +1 : x ∈]
	0.25	من أجل [0:∞ [x + 0 كا x 1 ك + متناقصة تماما على مجال [0:∞-[
••		من أجل [0;1] ع م : (1) ﴿ 5) مِنْ أَجِلَ [0;1] مِنْ أَجِلَ [0;1]
	0,25	0 (0) 4 فيمة حدية صبخرى الدالة الماعلي المجال](منه : 0 ≤ (x) با
	0.25	$f(x)+x - \frac{x h(x)}{x-1} : x \in] -\infty; [$ بيان أن من أنهان $[x] = x + (x)$
		ـ الرضع النبي العلمي (ج) بالنبية العماس (٣) :
		من ليل]0;جه (ع: د المتمنى (ج) يقع اوق المماس (۲)
	0,25	(T) من لَجِل $(x_i) \in \pi$: المنطنى (x_i) يقع نست المماس (x_i)
9.75		من أجل a = ج الممكن (٣) يخترق المنحني (٣)
	0.25	تصير الهندسي : مبدأ المطم ۞ بقطة التعطاف المنحني (٢٠)
8.75	0.25 0. 5	. (ح) معادلة المستقيم $\frac{r^2}{2} = -\frac{r^2}{2}$ و المنطق (T) ، (T) معادلة المستقيم (T)
		$rac{z}{x-1} \le f(x) < v^{-1} : x < [1:0] ا- إثبات أنه من قبل [0:1] > x < [1:0]$
		$f(x) - \frac{x}{x-1} = \frac{x(x^{-1}-1)}{x-1} : x \in [-1;0]$ هن ليال من ليال $-$
0.5	0.5	$f(\pi) \ge \frac{x}{x+1}$ من أجل $\frac{x}{x+1} \ge 0$ ء : فدولا 120 - ت ء ر 20 $\frac{x}{x+1}$ إلان $\frac{x}{x+1} \le (\pi)$
		$f(x) \cdot e^{-x} = rac{e^{-x}}{x-1} : x \in [-1:0]$ النينا من ليل $\frac{1}{x}$
		من أبطل (۱٫۱۵] x = (۱٫۱۵ = و ۱۰۵ x (۱٬۵ = ۱۰۵ من أبطل (۱٫۵ = ۱۰۵ عدد ۱۰۵ عدد ۱۰۵ عدد ۱۰۵ عدد ۱۰۵ عدد ۱۰۵ عدد ۱

الإجابة النموذجية لموضوع اخبار مائة: الرياضيات/ الشعبة: تقني رياضي/ بكالوريا: 2018

	0.25	$\frac{x}{x-1} = 1 + \frac{1}{x-1}$ $\frac{x}{x-1} = \frac{1}{x-1} + \frac{1}{x-1}$ $\frac{x}{x-1} \le f(x) < e^{-x} : x \in [-1;0]$ $\int_{-1}^{1} \left(\frac{1}{x-1}\right) dx \le \int_{-1}^{1} e^{-x} dx : \frac{1}{x-1} \int_{-1}^{1} (1 + \frac{1}{x-1}) \int_{-1}^{1} (1 + \frac{1}{x-1}) dx$
0.5	0.25	$4\ln \left[x + \ln(1-x)\right]_{1}^{n} \le \int_{0}^{\infty} f(x) dx < \left[-e^{-x}\right]_{1}^{n}$ $1 - \ln 2 \le \int_{0}^{\infty} f(x) dx < e - 1$
		7) المماثلة : f(x)=mx علول المماثلة هي فواصل تقط تقاطع (إن) مع المستقيم ذو المعاثلة عصد ر
0.25	0.25	$= \frac{c^2}{3}$ ان $\frac{c^2}{3}$ جہ فین المطعلة علین متمارزین .
		إذا كان $-1 = \frac{2}{3} = 1$ من قان المعادلة ثلاث حارل متعارزة . [ذا كان]2-4:1-]2 من فإن المعادلة حلا وحيدا

العلامة		a minute of the first search of
مجنوع	مجززة	عناصر الإجفية (المويضوع الثالي)
0.75	0.25×3	$w_{n+1} = rac{5}{3} v_n$ التبرين الأولى: (0.3 فلاط) $v_{n+1} = rac{5}{3} v_n$ أبن
0.75	D.25	$w_{ij} = \frac{5}{2} \left(\frac{5}{3}\right)^{n}$ این لیل کل بر من نا ، (2)
	0.5	استختاج الله من أجل كل ١٣ من ١٠٠ "3 = ١٠٠ ع = ٧
01	01	$3^2 = 1[8] \cdot 3^1 = 3[8] \cdot 3^0 \equiv 1[8]$ (3 $3^{2k+1} \equiv 3[8] \cdot 3^{2k} = 1[8] \cdot k \in \mathbb{N}$ (3) $5^2 = 1[8] \cdot 5^1 \equiv 5[8] \cdot 5^0 \equiv 1[8]$ $5^2 = 1[8] \cdot k \in \mathbb{N}$ (4) $5^{2k+1} = 5[8] \cdot k \in \mathbb{N}$
0.5	0.5	$ u_{2k+1}\equiv 6[8]$ ين أجل كل $k\in [8]$ ء $k\in [8]$ ين أجل كل $v_{2k}\equiv 4[8]$
01.5	0.5×3	hoنظاف) القطرين الثاني : $ ho$ نظافين الثون $ ho$: $ ho$
61.5	0.5×3	$p(B)=1- ho(A)=rac{3}{7}$." مستب كرتين من نفس اللون $rac{3}{7}$
	-	(1) [1] البربر فيم المتخبر العشوالي المتخبر المتخب
01.5	0.5	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	0.25	$E(X) = -\alpha + rac{300}{7}$: نبیان ان ϵ
0.5	0.25	$E(X)>0$ عنى نكون اللعبة في مسلح اللاعب بيب أن يكون $\alpha<(X)>0$ اي: $\alpha<42.85$ منه $\alpha<42.85$

1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7	العلامة		A Still of Advisor State of the
1.5 $z_1 = \frac{1}{4} + \frac{\sqrt{3}}{4}i j z_1 = \frac{1}{4} - \frac{\sqrt{3}}{4}i i \Delta = -12 = \left(2\sqrt{3}i\right)^2 \left(1\left(\frac{1}{4}i\right)^2\right)^2 + \frac{1}{2} = 1 + \sqrt{3}i = 2e^{i(\frac{\pi}{3}i)} + \frac{1}{2}i = 2e^$	سيسرع	موزاة	عقاصر الإجابة (الموضوع الثاني)
1.25 0.5 $\frac{z_B - z_A}{z_C - z_A} = \frac{e^{i(\frac{\pi}{2})}}{z_C - z_A} : \frac{z_B - z_A}{z_C - z_A} \text{ where } (i)$ (1 (1) 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.26 0.25 0.26 0.25 0.25 0.25 0.26 0.25	15	I	(المُتَعَرِينَ المُتَالِثَةِ (04 نَفَاطُ) $z_1 = \frac{1}{4} + \frac{\sqrt{3}}{4}i$ ر $z_2 = \frac{1}{4} + \frac{\sqrt{3}}{4}i$ ر $\Delta = -12 = \left(2\sqrt{3}i\right)^2$ (1 (1
1.25 (م. منظرت ABC منظرت ABC (المنظرة (المنظرة المنظرة ABC (المنظرة المنظرة ABC (المنظرة ABC (المنظرة (المنظرة ABC (المنظرة ABC (المنظرة (المنظرة ABC (المنظرة ABC (المنظرة (المنظرة ABC (المنظرة المنظرة ABC (المنظرة المنظرة		0.5	$ \frac{1}{z_2} = 1 - \sqrt{3} i = 2e^{i(\frac{-\pi}{3})} i \frac{1}{z_1} = 1 + \sqrt{3} i = 2e^{i(\frac{\pi}{3})} \left(-\frac{\pi}{3} \right) $
1.25 (م. منظرت ABC منظرت ABC (المنظرة (المنظرة المنظرة ABC (المنظرة المنظرة ABC (المنظرة ABC (المنظرة (المنظرة ABC (المنظرة ABC (المنظرة (المنظرة ABC (المنظرة ABC (المنظرة (المنظرة ABC (المنظرة المنظرة ABC (المنظرة المنظرة		0.5	$\frac{z_n - z_n}{z_n} = e^{i(-\frac{z_n}{3})} : \frac{z_n - z_n}{z_n - z_n} : t \to 0 $
0.5 0.25 $z_D - z_A = z_B - z_C$; $\sqrt{AD} = \overline{CB}$ also, $T_{\overline{CB}}(A) = D$ (7 0.25 $z_D - z_A = z_B - z_C$; $\sqrt{AD} = CB$ also, $T_{\overline{CB}}(A) = D$ (7 one) $T_{\overline{CB}}(A) = D$ (8 one) $T_{\overline{CB}}(A) = D$ (9 one) $T_{\overline{CB}}(A) = D$ (15 one) T_{\overline	1.25	0.25	$z_{C} - z_{A}$
0.25 0.25 $ a_{ij} = b$ 0.25 $ a_{ij} = b$ 0.26 $ a_{ij} = b$ 0.26 $ a_{ij} = b$ 0.26 $ a_{ij} = a$ 0.27 $ a_{ij} = a$ 0.28 $ a_{ij} = a$ 0.29 $ a_{ij} = a$ 0.20 $ a_{ij} = a$ 0.20 $ a_{ij} = a_{ij} = a$ 0.20 $ a_{ij} = a_{ij} = a$ 0.21 $ a_{ij} = a$ 0.22 $ a_{ij} = a$ 0.23 $ a_{ij} = a$ 0.24 $ a_{ij} = a$ 0.25 $ a_{ij} = a$ 0.25 $ a_{ij} = a$ 0.26 $ a_{ij} = a$ 0.27 $ a_{ij} = a$ 0.28 $ a_{ij} = a$ 0.29 $ a_{ij} = a$ 0.20 $ a_{ij} = a$		0.5	$(-rac{\pi}{3})$ هي مسورة C بالدوران الذي مركزه A ر زاريته $rac{\pi}{3}$
0.5 0.5 $ z-(1+i\sqrt{3}) = z-(1-i\sqrt{3}) $ $ z-(1-i\sqrt{3}) = z-(1-i\sqrt{3}) $ $ z-(1-i\sqrt{3}) = z-(1-i\sqrt{3}) $ $ z-($	0.5	0.25	$z_D - z_A = z_B - z_C$: ای $\overline{AD} = \overline{CB}$ معلاء $T_{\overline{CR}}(A) = D$ (2)
0.5 0.5 $ z-(1+i\sqrt{3}) = z-(1-i\sqrt{3}) $ معناه $M \in (\gamma)$ معناه $M \in (\gamma)$ معناه $M \in (\gamma)$ المعناه $M \in (\gamma)$ معناه $M \in (\gamma)$ المعناه $M \in (\gamma)$ معناه $M \in (\gamma)$ معناه $M \in (\gamma)$ المعناه $M \in (\gamma)$ معناه $M \in (\gamma)$ المعناه المعناه بالمعناء بالمعناء $M \in (\gamma)$ معناه $M \in (\gamma)$ مع		0.25	و منه <i>: 13√2+4=₀= ،</i> الزياعي ACBD معيّن.
BM = CM و بالثانى (y) هي محرر القطعة $[BC]$ (محور الغواصل). $BM = CM$ و ABC المعيطة بالمعتلث $BM = CM$ و $ABC = BG = CG$ و ABC المعيطة بالمعتلث $BM = CM$ و $BM = C$			3) اتكن M نقطة لامقتها ع . استان السالة الامقتها ع .
$G \in (y)$ ربنه $G \in (y)$ ربنه $G \in (y)$ مركز الدائرة المعيطة بالمثلث $G \in (x)$ أي $G \in (y)$ مركز الدائرة المعيطة بالمثلث $G \in (x)$ أي	0.5	0.5	_ ' ' ' '
$g'(x) = -1 + \frac{1}{x} = \frac{1-x}{x} > 0$ ، $g'(x) = -1 + \frac{1}{x} = \frac{1-x}{x} > 0$ ، $g'(x) = -1 + \frac{1}{x} = \frac{1-x}{x} > 0$ ، $g'(x) = -1 + \frac{1}{x} = \frac{1-x}{x} > 0$ ، $g'(x) = -1 + \frac{1}{x} = \frac{1-x}{x} > 0$ ، $g'(x) = 0$. $g'(x$			
$g'(x) = -1 + \frac{1}{x} = \frac{1-x}{x} > 0$ ، $]0;1[$ ن البل غل x من البل غل x من $[0;1]$. $[0;1]$ من البل غل $[0;1]$ من البل على $[0;1]$ من البل على $[0;1]$ و بالنائي على $[0,15;0,16]$ و مستمرة و متزايدة ثماما على $[0;1]$ و بالنائي على $[0,15;0,16]$ و $[0,15] \times g(0,16) \times g(0,16)$	0.25	0.25	$G \in (y)$ مركز الدائرة المحيطة بالمثلث $AG = BG = CG$ أي $ABC = G \in (y)$ مركز الدائرة المحيطة بالمثلث
و منه قدلة g متزايدة تماما على $]0;1[$. $]0$ $[$ $]0;1[$ $]0$ $[$ $]0;1[$ $]0$ $]0;1[$ $]0;1[$ $]0;1[$ $]0$ $]0;1[$ $]0$ $]0$ $]0;1[$ $]0$ $]0$ $]0$ $]0$ $]0$ $]0$ $]0$ $]0$			<u> (التمريان الرابع: (</u> 98 نكاط)
[0.15;0.16] و مستمرة ر متزايدة ثماما على $[0.15]$ ر بالثاني على $[0.15;0.16]$ ر $[0.15;0.16]$ و $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$ $[0.15]$		1	$g'(x) = -1 + \frac{1}{x} = \frac{1-x}{x} > 0$ و $g'(x) = -1 + \frac{1}{x} = \frac{1-x}{x} = 0$ این الجل کل x من الجل x م
g (0,15)×g (0,16)<0 إنن حسب مبرهنة القيم المترسطة يوجد α رجود حيث g(α)=0 . و(α)=0 . و(α)=0 . و(α)=0			ر منه الدالة ع متزايدة تملما على]1;0[.
g(0,15)*g(0,16)<0 ان عسب میرهه اهیم استوست بوجد که رسود عیت 0,15<α<0,16 ر g(α)=0 و ان عسب میرهه اهیم استوست بوجد که رسود عیت	2.75	.	
		1	· · · · · · · · · · · · · · · · · · ·
		0.75	$g(\alpha)=0$ ر $g(x)=0$ 0,15< $a<0$,16 واستثناج إشارة $g(x)=0$ واستثناج إشارة $g(x)=0$ واستثناج إشارة $g(x)=0$

العلامة		e atili o desemble I de Miller de desemble de la compansión de la compansi
مهنوع	مجزاة	عقاصر الإجابة (المويقوع الثاني)
01	0.5 0.5	$\lim_{x \to \infty} f(x) = -\infty$ ، $\lim_{x \to \infty} f(x) = -2$ (1 {آآ $x \to \infty$ ، $\lim_{x \to \infty} f(x) = -2$) يقبل مستقيمين مقاربين معادلتهما $\lim_{x \to \infty} x = 1$ و $\lim_{x \to \infty} f(x) = -2$.
92.5	1	$f'(x) = \frac{g(\frac{1}{x})}{(x-1)^2}$: $f(x) = \frac{g(\frac{1}{x})}{(x-1)^2}$: $f'(x) = \frac{g(\frac{1}{x})}{(x-1)^2}$: $f'(x)$ بثمارة $f'(x)$: $f'(x)$ بثمارة $f'(x)$: $f'(x)$
	ı	ب چياره (ع.) ۲٫۰ — <u>و </u>
	Q. 5	. f الدالة f .
0.75	0.25	(3) دراسة الوضع اللسبي لـ (C_f) و (Δ) . $\frac{1}{x} = \frac{-1 + \ln x}{x - 1}$ (4) و $(x) + 2 = \frac{-1 + \ln x}{x - 1}$
	0.5	(C_f) في المجال $[e;+\infty[$ المنطق (C_f) يكون تحت (Δ) ، في المجال $[e;+\infty[$ المنطق $x=c$ المنطق (Δ) ، رائما $x=c$ في النقطة (Δ) ، رائما (Δ) بقطع بقطع أنظع أنظع أنطع أنطع أنطع أنطع أنطع أنطع أنطع أنط
0.5	0.5	(4) رمم المستقيمات المقاربة و المدحى (C_f) .
0.5	0.5	. علين مثمايزين $m \in \int \left(rac{1}{lpha} ight)$ علين مثمايزين $m \in \int \left(rac{1}{lpha} ight)$ علين مثمايزين $m \in \int \left(rac{1}{lpha} ight)$