

UNIVERSIDAD JUÁREZ AUTÓNOMA DE TABASCO DIVISIÓN ACADÉMICA DE CIENCIAS BÁSICAS LICENCIATURA EN ACTUARÍA

ECONOMÉTRIA

MODELO ECONOMÉTRICO DE LA DEMANDA DEL SEGURO DE GASTOS MÉDICOS MAYORES EN TABASCO 2005-2019.

MI-LAI YAMAMOTO JOO

21 DE JULIO DE 2021

Contenido

Introducción	2
Datos y variables	3
Variable dependiente	4
Variables explicativas	4
Media y Desviación estándar.	5
Correlación	6
Autocorrelación	7
Prueba Durbin-Watson	7
Prueba Breusch Godfrey	8
Pruebas de raíz unitaria (test de Dickey-Fuller)	9
Heterocedasticidad	16
Método Gráfico	16
Histograma de los errores estimados	17
Q-norm de errores estimados	18
Prueba de Shapiro-Wilk	19
Prueba de Shapiro-Francia	19
Asimetría y Curtosis	19
Prueba Jarque – Bera	20
Prueba White	21
Prueba Breusch-Pagan	21
Criterio de Akaike	22
Pruebas para variables omitidas (Prueba de Ramsey)	23
Estimación por mínimos cuadrados ordinarios (MCO)	23
Explicación de la salida de un modelo de regresión lineal múltiple estimado en Stata	24
Pruebas de Hipótesis	25
Prueba de significancia individual	25
Prueba de significancia global	
Conclusión	
Base de datos	28

Introducción

Ante la pandemia muchas personas se vieron afectadas al desembolsar enormes cantidades de dinero por causa de Covid-19 en los hospitales y medicinas.

Contar con un seguro de gastos médicos mayores te brinda la protección financiera en caso de que tú o tus dependientes económicos necesiten atención médica por accidente o enfermedad.

El objetivo general de este proyecto es analizar e identificar cuáles son los principales factores macroeconómicos que determinan la demanda de los seguros de gastos médicos mayores en Tabasco para el periodo de 2005-2019.

El periodo de análisis se da por el acceso a los datos, del cual se logra recopilar información de la emisión de primas (variable dependiente) en el ramo gastos médicos mayores por la Comisión Nacional de Seguros y Fianzas (CNSF) y nuestras otras variables como son: siniestros ocurridos, siniestros pagados ,el Ingreso laboral per cápita a pesos corrientes (nominal) anual, defunciones, esperanza de vida, Índice de la Tendencia Laboral de la Pobreza (ITLP) ,nivel de ingresos: Más de 5 salarios mínimos, PIB, población ocupada, unidades médicas privadas, personas alfabetas femeninas 15-24, mediana del ingreso nominal de la población de 15 a 29 años ocupada que reportan ingreso, población económicamente activa, población en edad de trabajar, tasa de participación y el índice de sobremortalidad masculina, mediante el Instituto Nacional de Estadística y Geografía (INEGI) y El Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL).

Datos y variables

Variable	Definición
PE	Prima emitida
SIN_OC	Siniestros ocurridos
SIN_PAG	Siniestros pagados
ILPA	Ingreso laboral per cápita a pesos corrientes (nominal) anual
DEF	Defunciones
EV	Esperanza de vida
ITLP	Índice de la Tendencia Laboral de la Pobreza (ITLP)
T_NI5	Nivel de ingresos: Más de 5 salarios mínimos
PIB	PIB (Total millones de pesos)
POB_OCUPADA	Población Ocupada
UMP	Unidades médicas privadas
PFALF_15-24	Personas alfabetas femeninas 15-24
MINPO_15_29	Mediana del ingreso nominal de la población de 15 a 29 años ocupada que reportan ingreso
PEA_15	Población económicamente activa - 15 años y más
POET	Población en edad de trabajar (15 años y más)
TP_15	Tasa de participación - 15 años y más
ISM	Índice de sobremortalidad masculina

AÑO	PE 🔻	SIN_OC	SIN_PAG	ILPA	DEF	EV	ITLP	PIB	POB_OCUPAD	T_NI5
2005.0	68120390.0	31194696.0	30760775.0	1322.2	9050.0	75.3	1.1	421079.7	759149.5	71024.0
2006.0	57255631.0	38611631.0	38243274.0	1536.3	9244.0	75.4	0.9	445309.6	777830.5	99418.0
2007.0	68444386.0	93044278.0	95551681.0	1601.6	9403.0	75.3	1.0	454079.1	822573.8	86949.5
2008.0	95290504.0	47462663.0	48486861.0	1720.7	9809.0	75.2	0.9	475202.8	835810.0	91801.0
2009.0	132686000.8	54531601.2	56506856.7	1689.1	10432.0	75.1	1.0	495944.2	844133.3	93286.0
2010.0	154568656.0	79988066.0	81932810.0	1689.0	11511.0	74.7	1.0	525011.9	845015.3	72378.0
2011.0	153197552.9	77056600.8	84204247.8	1674.9	11067.0	74.8	1.0	549751.1	872238.3	71332.7
2012.0	252305034.6	83237701.0	81207323.7	1833.6	11189.0	74.8	1.1	564003.8	871406.3	80527.0
2013.0	235885051.7	85563136.7	93132585.1	1878.9	12145.0	74.9	1.1	553628.2	899111.0	81697.0
2014.0	272414589.5	124984553.1	133486367.4	1932.3	12548.0	74.8	1.0	564794.2	909862.0	77405.0
2015.0	268184684.0	150276680.0	139769670.0	1948.6	13160.0	74.5	1.0	562212.3	907599.3	53147.0
2016.0	283003061.0	141220440.0	129965108.0	1869.1	13690.0	74.7	1.1	534685.5	928967.3	34838.0
2017.0	346092764.0	127239522.0	131685185.0	1843.1	13369.0	74.7	1.3	509388.4	919710.0	28198.0
2018.0	342291361.0	111672078.0	117828226.0	1904.3	13965.0	74.8	1.3	466935.1	935431.3	30847.0
2019.0	79417077.0	35103127.0	37093226.0	2144.2	15147.0	74.9	1.2	448555.3	986906.5	31193.5

UMP	PFALF_15- 24 ▼	MINPO_15 _29	PEA_15	POET	TP_15	ISM
53.0	212965.0	2386.3	785104.5	1439087.3	54.6	138.8
52.0	213850.0	2585.0	806015.5	1459973.3	55.2	140.5
53.0	214607.0	2793.8	860673.3	1499773.8	57.4	146.2
50.0	215194.0	2988.5	875981.0	1530339.0	57.3	139.2
48.0	216959.0	3031.5	895718.0	1547496.5	57.9	141.0
47.0	217093.0	3082.8	913980.5	1567080.0	58.3	142.7
47.0	217044.0	3186.5	933016.3	1595473.0	58.5	142.4
49.0	216830.0	3440.0	923909.0	1614445.5	57.2	138.7
49.0	216473.0	3570.0	963094.3	1653401.5	58.2	136.5
49.0	216686.0	3902.5	972619.3	1682592.5	57.8	134.7
50.0	215969.0	4096.3	973243.8	1693388.0	57.5	135.3
50.0	215172.0	4150.0	1003588.5	1718577.5	58.4	136.5
48.0	214347.0	3935.0	988887.5	1748287.3	56.6	131.4
48.0	213613.0	4152.8	1008350.5	1776367.5	56.8	132.9
49.0	212913.0	4822.5	1062143.5	1804249.3	58.9	133.0

Variable dependiente

Primas Emitidas: son los valores cobrados por la compañía sobre riesgos asumidos, en un período determinado. Dichos valores corresponden a la sumatoria de primas que recibe la compañía por cualquier tipo de contrato de seguro.

Variables explicativas

- Siniestros ocurridos: son los siniestros que ocurren antes del cierre de la información financiera.
- Siniestros pagados: aquellos cuyas consecuencias económicas han sido completamente indemnizadas o reparadas por la entidad aseguradora.
- Ingreso laboral per cápita a pesos corrientes: hace referencia a todas las entradas económicas que recibe una persona, una familia, una empresa, una organización, etc.
- Defunciones: cantidad de personas fallecidas.
- Esperanza de Vida: cálculo demográfico sobre la edad media que pueden alcanzar los individuos de una población concreta en una época determinada.
- Índice de la Tendencia Laboral de la Pobreza (ITLP): que muestra trimestralmente la tendencia de la proporción de personas que no pueden adquirir la canasta alimentaria con el ingreso de su trabajo.
- Nivel de ingresos: Más de 5 salarios mínimos: es una variable que resulta fundamental para establecer la capacidad adquisitiva de la demanda potencial, así como para determinar desequilibrios de mercado o indicadores de esfuerzo financiero necesario para asumir el teórico coste de un préstamo hipotecario.
- El producto interior bruto (PIB): es un indicador económico que refleja el valor monetario de todos los bienes y servicios finales producidos por un país.
- Población Ocupada: está compuesta por las personas que tienen un empleo remunerado o ejercen una actividad independiente y han trabajado al menos una hora durante la semana.
- Unidades médicas privadas: aquéllas que no pertenecen a una institución del Sector Salud y que cuente con (y haya utilizado) camas de hospitalización censables.
- Personas alfabetas femeninas 15-24: personas del sexo femenino con capacidad de leer y escribir de 15 a 24 años.
- Mediana del ingreso nominal de la población de 15 a 29 años ocupada que reportan ingreso.
- Población económicamente activa: comprende a las personas de 15 años y más que durante el período de referencia estaban trabajando (ocupados) o buscando activamente un trabajo (desempleados).
- Población en edad de trabajar (PET). Es aquella población definida por las normas internacionales (OIT), como apta en cuanto a edad para ejercer funciones productivas (de 15 años y más de edad).
- Tasa de participación 15 años y más. es un indicador de la proporción de la población en edad de trabajar de un país que participa activamente en el mercado de trabajo, ya sea trabajando o buscando empleo.
- Índice de sobremortalidad masculina: es la relación de las defunciones masculinas por cada cien defunciones femeninas. Las cifras se refieren a las defunciones por entidad federativa de residencia habitual de la persona fallecida.

Media y Desviación estándar.

. sum

Variable	Obs	Mean	Std. Dev.	Min	Max
ao	15	2012	4.472136	2005	2019
pe	15	1.87e+08	1.03e+08	5.73e+07	3.46e+08
sin_oc	15	8.54e+07	3.92e+07	3.12e+07	1.50e+08
sin_pag	15	8.67e+07	3.81e+07	3.08e+07	1.40e+08
ilpa	15	1772.532	199.1712	1322.16	2144.23
def	15	11715.27	1908.904	9050	15147
ev	15	74.92733	.2694304	74.5	75.43
itlp	15	1.058667	.1026691	.93	1.26
pib	15	504705.4	49857.22	421079.7	564794.3
pob_ocupada	15	874382.9	61504.93	759150	986907
t_ni5	15	66936.11	24852.51	28198	99418
ump	15	49.46667	1.9223	47	53
pfalf_1524	15	215314.3	1526.095	212913	217093
minpo_15_29	15	3474.883	688.338	2386.25	4822.5
pea_15	15	931088.3	76912.19	785104.5	1062144
poet	15	1622035	114783	1439087	1804249
tp_15	15	57.355	1.204204	54.55	58.875
ism	15	137.9867	4.172678	131.4	146.2

Figura 1.0

. sum lpe lump lpfalf_1524 lminpo_15_29 lpea_15 lpoet

Variable	Obs	Mean	Std. Dev.	Min	Max
lpe lump lpfalf_1524 lminpo_15_29 lpea_15	15 15 15 15 15	18.87602 3.900605 12.27983 8.13477 13.74084	.6384853 .0384172 .0070946 .200347 .0843036	17.86304 3.850147 12.26864 7.777478 13.57357	19.66222 3.970292 12.28808 8.481048 13.8758
lpoet	15	14.29684	.0710444	14.17952	14.40565

Figura 1.05

Correlación

Necesitamos saber si existe una relación entre nuestra variable dependiente (Las primas emitidas) respecto a todas las otras variables como son: siniestros ocurridos, los siniestros pagados, el Ingreso laboral per cápita a pesos corrientes (nominal) anual, las defunciones, la esperanza de vida, Índice de la Tendencia Laboral de la Pobreza (ITLP), las unidades médicas privadas, etc. Por ello realizamos una correlación múltiple.

En la figura 1.1 se muestra la correlación múltiple de todas nuestras variables y en la figura 1.2 aplicamos logaritmo a cada una.

. correlate pe sin_oc sin_pag ilpa def ev itlp pib pob_ocupada t_ni5 ump pfalf_1524 minpo_15_29 pea_15 poet tp_15 ism (obs=15)

	pe	sin_oc	sin_pag	ilpa	def	ev	itlp	pib	pob_oc~a	t_ni5	ump	pfa~1524	minpo~29
pe sin_oc sin_pag ilpa def ev itlp pob_ocupada t_nis ump pfalf_1524 minpo_15_29 pea_15 poet tp_15 ism	1.0000 0.8329 0.8526 0.5481 0.6495 -0.7763 0.6062 0.6175 0.6200 -0.5769 -0.4976 0.2317 0.6073 0.6431 0.7118 0.1849 -0.6535	1.0000 0.9890 0.4636 0.5291 -0.7554 0.6398 0.5151 -0.4749 -0.2403 0.2882 0.5195 0.395 0.2882 0.5195 0.287 0.287	1.0000 0.4744 0.5333 -0.7494 0.3017 0.6485 0.5334 -0.4606 -0.2988 0.3103 0.5184 0.5582 0.5805 0.2958 -0.3801 tp_15	1.0000 0.8916 -0.6838 0.4834 0.4491 0.9507 -0.5705 -0.5093 0.1006 0.9449 0.9389 0.9096 0.6695 -0.6659	1.0000 -0.7652 0.7296 0.3250 0.9620 -0.8521 -0.5202 -0.0983 0.9783 0.9677 0.9821 0.5274 -0.7837	1.0000 -0.4660 -0.7465 -0.7353 0.6260 0.6618 -0.4020 -0.7205 -0.7756 -0.7557 0.4912	1.0000 -0.017 0.6536 -0.8265 -0.4237 -0.3636 0.6437 0.6581 0.7555 0.0610 -0.7485	1.0000 0.3961 -0.0202 -0.5560 0.8255 0.3347 0.4304 0.5476 -0.1327	1.0000 -0.7507 -0.5568 0.0126 0.9785 0.9961 0.9790 0.6604 -0.7080	1.0000 0.3015 0.4117 -0.7910 -0.7573 -0.8308 -0.1938 0.7295	1.0000 -0.5410 -0.4465 -0.6042 -0.5419 -0.6120 0.2769	1.0000 -0.0955 0.0582 -0.0746 0.5313 0.3335	1.0000 0.9695 0.9768 0.5523 -0.7761
pea_15 poet tp_15 ism	1.0000 0.9778 0.6828 -0.6887	1.0000 0.5153 -0.8029	1.0000 -0.0096	1.0000									

Figura 1.1

.correlate | pe | lsin_oc | lsin_pag | lilpa | ldef | lev | litlp | lpob_ocupada | t_ni5 | lpib | lump | lpfa|f_1524 | lminpo_15_29 | lpea_15 | lpoet | ltp_15 | lism (obs=15)

	l lpe	lsin_oc	lsin_pag	lilpa	ldef	lev	litlp	1pob_o~a	1t_ni5	lpib	lump	1pf~1524	lminp~29	1pea_15	lpoet	1tp_15
lpe lsin_oc lsin_pag lilpa ldef lev litlp lpob_ocupada lt_nis lpib lump lpfalf_1524 lminpo_15_29 lpea_15 lpoet ltp_15 lism	1.0000 0.8375 0.8430 0.5984 -0.8376 0.5401 0.6495 -0.4719 0.7444 -0.5992 0.4037 0.6583 0.7081 0.3309 -0.5761	1.0000 0.9951 0.4897 0.5156 -0.7499 0.2379 0.5195 -0.3430 0.7077 -0.3309 0.4155 0.5246 0.5497 0.5429 0.3636 -0.2698	1.0000 0.5074 0.5262 -0.7473 0.2643 0.5415 -0.3784 0.4328 0.5336 0.5731 0.5601 0.3949 -0.2732	1.0000 0.8852 -0.6952 0.4623 0.9480 -0.5434 -0.5274 0.1545 0.9477 0.9063 0.6944 -0.6374	1.0000 -0.8000 0.7266 0.9612 -0.8177 0.3935 -0.5534 -0.0324 0.9676 0.9676 0.9833 0.5543 -0.7754	1.0000 -0.4827 -0.7487 0.5570 -0.7510 0.6563 -0.4019 -0.7608 -0.7889 -0.7888 0.4920	1.0000 0.6468 -0.8375 0.0118 -0.4301 -0.3432 0.6349 0.6430 0.7477 0.0776 -0.7511	1.0000 -0.7299 0.4349 -0.5653 0.0476 0.9845 0.9795 0.6776 -0.6982	1.0000 0.0395 0.2854 0.4661 -0.77561 -0.7272 -0.8153 -0.1619 0.7504	1.0000 -0.5683 0.8310 0.4171 0.4728 0.3907 0.5659 -0.1282	1.0000 -0.5403 -0.4892 -0.6157 -0.5483 -0.6100 0.2658	1.0000 -0.0118 0.0985 -0.0440 0.5345 0.3380	1.0000 0.9771 0.9830 0.5918 -0.7613	1.0000 0.9770 0.7024 -0.6747	1.0000 0.5345 -0.7976	1.0000 -0.0121
lism	1.0000															

Figura 1.2

. correlate lpe lump lpfalf_1524 lminpo_15_29 lpea_15 lpoet
(obs=15)

	1pe	lump	1pf~1524	lminp~29	1pea_15	lpoet
lpe lump lpfalf_1524 lminpo_15_29 lpea_15 lpoet	1.0000 -0.5992 0.4037 0.6553 0.6803 0.7081	1.0000 -0.5403 -0.4892 -0.6157 -0.5483	1.0000 -0.0118 0.0985 -0.0440	1.0000 0.9771 0.9830	1.0000 0.9770	1.0000

Figura 1.3

Dado que existe una correlación positiva entre nuestras variables respecto a la variable dependiente, luego de varias pruebas, elegimos el modelo más adecuado. La figura 1.3 muestra la correlación de nuestro modelo de regresión.

Autocorrelación

Si existe un patrón sistemático de comportamiento en dicha gráfica, se presume que hay indicios de autocorrelación en los errores. Para generar los residuos rezagados en un periodo, en Stata hacemos uso del operador L, por lo tanto, $e_1 = L.e$

Figura 2.1

En la Figura 2.1 de residuos versus los residuos rezagados muestra un comportamiento no tan sistemático, por consiguiente, se puede pensar que no existe autocorrelación en los errores del modelo. Obsérvese que a medida que los residuos rezagados aumentan, los residuos disminuyen. No obstante, el método gráfico es muy subjetivo y por ello debe ser validado con pruebas formales, como los que se presentan a continuación.

Prueba Durbin-Watson

. estat dwatson

Durbin-Watson d-statistic(6, 15) = 2.32165

Se tiene las siguientes hipótesis:

H0: no existe autocorrelación

Ha: existe autocorrelación

Como el estadístico de prueba dw es mayor a 2, entonces no se rechaza H0, por lo que no existe autocorrelación

Prueba Breusch Godfrey

. estat bgodfrey, lags(1)

Breusch-Godfrey LM test for autocorrelation

> - lags(p)	chi2	df	Prob > chi2
> -	1.371	1	0.2417

HO: no serial correlation

Figura 2.2

En la figura 2.2 se muestra un p-value igual a 0.2417 > 0.05 entonces no rechazamos la hipótesis nula. Por lo que no hay problemas de autocorrelación.

Figura 2.3 Autocorrelación de los errores.

La figura 2.3 muestra como se distribuyen los errores

Figura 2.4

Pruebas de raíz unitaria (test de Dickey-Fuller)

Las hipótesis en esta prueba son H0: $\delta = 0$ vs Ha: $\delta < 0$. Si no se rechaza la hipótesis nula, entonces la serie posee raíz unitaria, es decir, no es estacionaria. Si se rechaza, la serie es estacionaria.

Graficamos la tendencia de todas nuestras variables

Figura 3.1 Primas Emitidas 2005-2019

La figura 3.1 presenta una tendencia clara positiva. Además, escogemos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.1008>0.05 nivel de significancia del 5%, por tanto, no se rechaza la hipótesis nula y se concluye que la serie no es estacionaria.

Figura 3.2 Siniestros Ocurridos 2005-2019

La figura 3.2 no presenta una tendencia clara. Por lo que incorporamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.0178 < 0.05 nivel de significancia del 5%, por tanto, se rechaza la hipótesis nula y se concluye que la serie es estacionaria.

Figura 3.3 Siniestros Ocurridos 2005-2019

La figura 3.3 no presenta una tendencia clara. Incorporamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.0315<0.05 nivel de significancia del 5%, por tanto, se rechaza la hipótesis nula y se concluye que la serie es estacionaria.

Figura 3.4 Defunciones 2005-2019

La figura 3.4 muestra una tendencia clara de las defunciones. Incorporamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.4531>0.05 nivel de significancia del 5%, por tanto, no se rechaza la hipótesis nula y se concluye que la serie no es estacionaria.

Figura 3.5 Esperanza de Vida 2005-2019

La figura 3.5 no muestra una tendencia clara. Incorporamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.0371<0.05 nivel de significancia del 5%, por tanto, se rechaza la hipótesis nula y se concluye que la serie es estacionaria.

. atuller itl Augmented Dick			root	Numb	per of obs =	11
	Test Statistic	1% Crit	ical	5% Cri	distribution — itical 10 ilue	% Critical Value
Z(t)	0.208	-3	.143		-1.943	-1.440
p-value for Z D.itlp	(t) = 0.5788 Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
itlp L1. LD. L2D. L3D.	.0857529 .0885325 7380952 4391875	.4128581 .4614346 .4730882 .4085576	0.21 0.19 -1.56 -1.07	0.842 0.854 0.170 0.324	9244745 -1.040557 -1.8957 -1.438892	1.09598 1.217622 .4195099 .560517
_cons	0501673	.4211866	-0.12	0.909	-1.080774	.9804392

Figura 3.6 índice de Tendencia Laboral de Pobreza 2005-2019

La figura 3.6 parece una tendencia positiva, aunque no muy precisa. Incorporamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.5788>0.05 nivel de significancia del 5%, por tanto, no se rechaza la hipótesis nula y se concluye que la serie no es estacionaria.

Figura 3.7 Ingreso Laboral per cápita 2005-2019

La figura 3.7 se observa el Ingreso Laboral per cápita 2005-2019. Incorporamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.2380>0.05 nivel de significancia del 5%, por tanto, no se rechaza la hipótesis nula y se concluye que la serie no es estacionaria.

Figura 3.8 Producto Interno Bruto 2005-2019

La figura 3.8 no muestra una tendencia clara, por lo que implementamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.0379 < 0.05 nivel de significancia del 5%, por tanto, se rechaza la hipótesis nula y se concluye que la serie es estacionaria.

Figura 3.9 Población Ocupada 2005-2019

La figura 3.9 muestra que la Población Ocupada va aumentando respecto aumenta el tiempo. Además, implementamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.4836 > 0.05 nivel de significancia del 5%, por tanto, no se rechaza la hipótesis nula y se concluye que la serie no es estacionaria.

Figura 3.10 Nivel de Ingresos: más de 5 salarios mínimos. 2005-2019

La figura 3.10 muestra una tendencia decreciente. Además, implementamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.4651>0.05 nivel de significancia del 5%, por tanto, no se rechaza la hipótesis nula y se concluye que la serie no es estacionaria

Figura 3.11 Unidades Médicas Privadas 2005-2019

La figura 3.11 no muestra una tendencia clara. Implementamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p= 0.0118 < 0.05 nivel de significancia del 5%, por tanto, se rechaza la hipótesis nula y se concluye que la serie es estacionaria.

	- 22					
Augmented Dick	key-Fuller tes	st for unit	root	Numb	er of obs =	11
	Test Statistic	1% Crit		5% Cri	istribution — tical 10 lue	% Critical Value
Z(t)	-1.582	-3	. 143	-	1.943	-1.440
p-value for Z	(t) = 0.0824					
D.pfalf_1524	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pfalf_1524 L1. LD. L2D. L3D.	3618723 .376826 .4185021 .4082856 77869.88	.2288041 .3381965 .3517316 .3602008	-1.58 1.11 1.19 1.13	0.165 0.308 0.279 0.300	9217359 4507111 4421541 473094	.1979913 1.204363 1.279158 1.289665

Figura 3.12 P. Alfabeta Fem. de 15-24 años 2005-2019

En la figura 3.12 se observa una tendencia creciente y luego decreciente de la población femenina que sabe leer y escribir de 15 a 24 años. Por eso implementamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.0824>0.05 nivel de significancia del 5%, por tanto, no se rechaza la hipótesis nula, y la serie no estacionaria.

Figura 3.13 Mediana de Ingreso nominal de la población de 15-29 años. 2005-2019

En la figura 3.13 se observa una tendencia positiva, también implementamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p= 0.7770 > 0.05 nivel de significancia del 5%, por tanto, no se rechaza la hipótesis nula, y la serie no estacionaria.

Figura 3.14 Población Económicamente activa 15+ años. 2005-2019

En la figura 3.14 se observa una tendencia positiva, también implementamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p= 0.7770 > 0.05 nivel de significancia del 5%, por tanto, no se rechaza la hipótesis nula, y la serie no estacionaria.

rigura 5.15 i obiación en cuad de trabajar. 2005-2019

En la figura 3.15 se observa una tendencia positiva, también implementamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.6883>0.05 nivel de significancia del 5%, por tanto, no se rechaza la hipótesis nula, y la serie no estacionaria.

Figura 3.16 Tasa de participación 15+. 2005-2019

En la figura 3.16 se observa una tendencia positiva, también implementamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.0309<0.05 nivel de significancia del 5%, por tanto, se rechaza la hipótesis nula, y se concluye que la serie es estacionaria.

Figura 3.17 índice de Sobremortalidad Masculina 2005-2019

En la figura 3.17 se observa una tendencia negativa, además implementamos la prueba de Dickey-Fuller aumentado. Los resultados muestran un valor p=0.5156>0.05 nivel de significancia del 5%, por tanto, no se rechaza la hipótesis nula, y se concluye que la serie no es estacionaria.

Modelo Econométrico de la demanda de los Seguros de Gastos Médicos Mayores.

Se realizaron distintos modelos de regresión hasta llegar a uno adecuado. Usaremos series de tiempo donde la variable dependiente será la emisión de primas en los seguros de gastos médicos mayores, esta se encuentra en función de las unidades médicas privadas, personas alfabetas femeninas 15-24, mediana del ingreso nominal de la población de 15 a 29 años ocupada que reportan ingreso, población económicamente activa, y población en edad de trabajar (15 años y más).

El modelo para estimar la demanda de los seguros de Gastos Médicos Mayores en Tabasco para el periodo de 2005-2019 se plantea de la siguiente forma:

$$Log(pe) = \beta_0 + \beta_1 log(ump) + \beta_2 log(pfalf_1524) + \beta_3 log(minpo_1529) + \beta_4 log(pea15) + \beta_5 log(poet)$$

En donde: β es el coeficiente estimado de los regresores y ϵ t es el error.

Gráficos de correlación de las variables independientes con la variable dependiente:

Heterocedasticidad

A continuación, realizaremos las pruebas de detección de heterocedasticidad de los errores mediante diferentes métodos.

Método Gráfico

En la figura 5.1 se observan cambios en la variabilidad de los errores asociados a distintos momentos del tiempo.

Figura 5.1 Errores

Figura 5.2 Residuos estudentizados

En la figura 5.2 Observamos a nuestros residuos estudentizados, dado que son superiores a 2 en valor absoluto se considera que la observación asociada es atípica, lo que implica un cuidado especial en el análisis.

Figura 5.3

En la figura 5.3 Observamos como los errores siguen una distribución normal.

Figura 5.4 Residuals versus fitted values

Histograma de los errores estimados

Figura 5.5

. hist error, normal (bin=3, start=-.18229726, width=.17255204)

En la figura 5.5, observamos el histograma de los errores estimados, aparentemente se distribuyen normal.

Q-norm de errores estimados

La figura 5.6 representa la distribución normal acumulada en forma de recta. Sobre ella se grafican ordenados los errores estimados de forma creciente, como estos se aproximan a la línea de la distribución normal, podemos decir que los errores estimados tienen distribución normal.

Figura 5.6.

Figura 5.7

La figura 5.7 presenta una gráfica de los errores estimados en función del tiempo para comprobar la aleatoriedad de estos y que no presenten secuencias temporales provenientes de la posible temporalidad de los datos.

Prueba de Shapiro-Wilk

Las hipótesis para contrastar son: H0: los errores tienen distribución normal vs. Ha: los errores no son normales.

. swilk error

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
error	15	0.92365	1.480	0.776	0.21889

Figura 5.8

En la tabla que muestra la figura 3.8 se observa un valor p de 0.21889 mayor que el nivel de significancia del 5%, por lo que H0 no se rechaza.

Prueba de Shapiro-Francia

. sfrancia error

Shapiro-Francia W' test for normal data

Variable	Obs	W '	٧'	Z	Prob>z
error	15	0.92517	1.609	0.827	0.20424

Figura 5.9

En esta prueba obtenemos un valor p de 0.20424 mayor que el nivel de significancia del 5%, entonces no rechazamos la hipótesis nula, lo que nos indica que si existe normalidad. (véase figura 5.9)

Asimetría y Curtosis

. sktest error

Skewness/Kurtosis tests for Normality

Variable	Obs	Pr(Skewness)	Pr(Kurtosis)		Prob>chi2
 error	15	0.1051	0.5760	3.44	0.1788

Figura 6.1

Los resultados de la figura 6.1 muestran un valor p de 0.1788 mayor que el nivel de significancia del 5% podemos concluir que efectivamente existe normalidad de los errores.

En la figura 6.2 se observa un valor de 0.8364844 para la asimetría y 2.884218 Curtosis.

. sum error, d

Resi	dι.	เล โ	S

1% 5% 10%	Percentiles 1822973 1822973 1399013	Smallest 1822973 1399013 1269562	Obs	15
25%	1186612	1186612	Sum of Wgt.	15
50%	032987	.1100012	Mean	3.10e-11
		Largest	Std. Dev.	.1451427
75%	.1213062	.1213062		
90%	.1890614	.1433331	Variance	.0210664
95%	.3353589	.1890614	Skewness	.8364844
99%	.3353589	.3353589	Kurtosis	2.884218

Figura 6.2

Prueba Jarque - Bera

La hipótesis para contrastar es la siguiente:

H0: $\gamma 1 = 0$ y $\gamma 2 = 3$ son asintóticamente independientes y siguen una distribución N (0, 1) vs. Ha: no son normales

Bajo la hipótesis nula, el estadístico de prueba JB se distribuye aproximadamente como una v.a. χ 2 con dos grados de libertad. Con nivel de significancia 5%.

```
. scalar jb=(_N)*(0.8364844^2/6+((2.884218-3)^2)/24)
.
. display jb
1.7576438
.
. display "valor critico= " invchi2(2,0.95)
valor critico= 5.9914645
.
. display "p-value= " chi2tail(2,jb)
p-value= .41527186
```

Figura 6.3

Según la figura 6.3, dado que el p-value 0.4152 > 0.05 no se e rechaza H0. Además, el valor obtenido para el estadístico de prueba JB* es menor que el valor crítico tabulado ($\chi^2 = 5.9914$ para un nivel de significación del 5%), por lo tanto, los errores son asintóticamente independientes y siguen una distribución N (0, 1).

Prueba White

Es una prueba general para probar heterocedasticidad, donde la hipótesis nula es que no hay heterocedasticidad versus la hipótesis alterna, que considera que hay heterocedasticidad.

H0: $Var(\varepsilon)=0$ vs Ha: $Var(\varepsilon) \neq 0$

```
. quietly reg lpe lump lpfalf_1524 lminpo_15_29 lpea_15 lpoet
```

. imtest, white

White's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chi2(14) = 15.00 Prob > chi2 = 0.3782

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	15.00 6.51 0.04	14 5 1	0.3782 0.2597 0.8502
Total	21.55	20	0.3657

Figura 6.4

Los resultados de la figura 6.4 arrojan un valor p = 0.3782 > 0.05, por lo tanto no se rechaza H0. Es decir, la varianza de los errores es constante, por lo tanto, no hay presencia de heterocedasticidad.

Prueba Breusch-Pagan

La hipótesis para contrastar es $H0: \alpha 2 = \alpha 3 = \alpha p = 0$, vs.. Ha : $\alpha i \neq 0$ para alguna i = 2, ... p.

H0: no hay heterocedasticidad vs Ha: hay heterocedasticidad.

- . display e(rss) .29492958
- . gen e2=error∧2
- . gen $e2_bp = e2 / (e(rss)/e(N))$

. reg e2_bp error_est

Source	SS	df		MS		Number of obs = $F(1, 13) =$	15 0.00
Model Residual	.005493965 28.2577714	1 13		493965 367472		Prob > F = R-squared =	0.9607
Total	28.2632654	14	2.01	880467		Root MSE =	
e2_bp	Coef.	Std.	Err.	t	P> t	[95% Conf. In	terval]
error_est _cons	.0318603 .3986045	.6337 11.96		0.05 0.03	0.961 0.974		1.40095 6.25465

Figura 6.5

```
. display e(mss)
.00549396
. display "Estadístico de prueba = " e(mss) / 2
Estadístico de prueba = .00274698
. scalar est_prb=e(mss) / 2
. display "p-value= " chi2tail(1,e(mss) / 2) p-value= .95820068
 display "valor critico= " invchi2(1,0.05)
valor critico= .00393214
. quietly reg lpe lump lpfalf_1524 lminpo_15_29 lpea_15 lpoet
. hettest
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
          Ho: Constant variance
          Variables: fitted values of lpe
          chi2(1)
                               0.00
          Prob > chi2 =
                             0.9582
```

Figura 6.6 Prueba de Breusch-Pagan-Godfrey.

Los resultados presentados en la figura 6.6 muestran un valor p=0.9582, lo que implica que los errores del modelo sobre la demanda de las primas emitidas no presentan heterocedasticidad, pues no se rechaza la hipótesis nula a un nivel de significancia del 5%.

Criterio de Akaike

```
AIC = 2(-L(likelihood) + k)
```

Donde k es el número de regresores incluidos, n el número de observaciones y L(likelihood) es el logaritmo de la verosimilitud del modelo máximo.

Figura 7.1

La figura 7.1 muestra el coeficiente de AIC igual a 17.8581 , por ende se concluye que nuestro modelo es relativamente bueno.

Pruebas para variables omitidas (Prueba de Ramsey)

H0: el modelo está bien especificado, es decir, que los coeficientes asociados a los términos adicionados son simultáneamente iguales a 0.

Ha: es que el modelo está mal especificado, es decir, que al menos uno de los coeficientes asociados a las variables adicionadas es diferente de 0.

p-value > α

. ovtest

```
Ramsey RESET test using powers of the fitted values of lpe Ho: model has no omitted variables
F(3, 6) = 1.17
Prob > F = 0.3950
```

Figura 7.2

Los resultados de la figura 7.2 indican un valor p de 0.3950, por lo que no se rechaza la hipótesis nula, al nivel de significancia del 5%. Por lo que el modelo está bien especificado.

Estimación por mínimos cuadrados ordinarios (MCO)

Incorporamos un modelo lineal en su forma funcional log-log. Usamos estimación por mínimos cuadrados ordinarios (MCO). El modelo ajustado es:

$$Log(pe) = -1459.601 + 6.616log(ump) + 90.457log(pfalf_1524) - 5.501log(minpo_1529) - 15.498log(pea15) + 41.9383log(poet)$$

El modelo estimado y la explicación detallada de la información retornada por el Stata se muestra en la Figura 8.1

. reg | lpe | lump | lpta|t_1524 | lminpo_15_29 | lpea_15 | lpoet

Source	SS	df		MS			
Model Residual	5.41235894 .294929585	5 9	1.08247179 .032769954			Prob > F R-squared Adj R-squared	= 0.0000 = 0.9483
Total	5.70728852	14	. 407	663466	Root MSE		= .18102
1pe	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
lump lpfalf_1524 lminpo_15_29 lpea_15 lpoet _cons	6.615647 90.45656 -5.500498 -15.49826 41.9383 -1459.601	2.752 11.62 1.990 4.261 5.506 191.1	881 338 584 481	2.40 7.78 -2.76 -3.64 7.62 -7.64	0.040 0.000 0.022 0.005 0.000 0.000	.3892357 64.15037 -10.00296 -25.13863 29.48178 -1892.006	12.84206 116.7627 998041 -5.857883 54.39483 -1027.197

Figura 8.1 Estimación MCO en Stata.

Explicación de la salida de un modelo de regresión lineal múltiple estimado en Stata

La regresión estimada en la cual figura la variable dependiente primas emitidas seguida por las variables independientes: unidades médicas privadas, personas alfabetas femeninas 15-24, mediana del ingreso nominal de la población de 15 a 29 años ocupada que reportan ingreso, población económicamente activa y población en edad de trabajar.

Model-df=k= 5: representa los grados de libertad asociados a la suma explicada de cuadrados. Residual-df= 9: representa los grados de libertad asociados a la suma residual de cuadrados. Total-df= 14: representa los grados de libertad asociados a la suma total de cuadrados o STC. n=15: representa el número de observaciones.

$$\begin{aligned} \mathbf{SSR} &= 0.294929585 \\ \mathbf{SSM} &= 5.41235894 \\ \mathbf{MSR} &= \frac{SSR}{n-p} = \frac{0.294929585}{15-6} = 0.03276995 \\ &\text{. dis } .294929585 \ / (15-6) \\ &.03276995 \end{aligned}$$

$$\mathbf{MSM} = \frac{SSM}{k} = \frac{5.41235894}{5} = 1.0824718$$

$$1.0824718$$

$$\mathbf{F0} = \frac{MSM}{MSR} = \frac{1.0824718}{0.03276995} = 33.032448$$

. dis 5.41235894/5

$$STC = SSM + SSR = 5.41235894 + 0.294929585 = 5.70728852$$

Prob >**f**= 0.0000: es el valor p asociado al estadístico F.

R-squared: representa el coeficiente de determinación o el R2, definido como:

$$R^2 = \frac{SSM}{STC} = \frac{5.41235894}{5.70728852} = 0.9483$$

Es decir, el 94.83 % de la variabilidad de las primas emitas es explicada por el modelo propuesto.

El **R2 ajustado** está dado por

$$R_{adj}^2 = 1 - \frac{SCE/(n-p)}{SCT/(n-1)} = 1 - \frac{0.294929585/(9)}{5.70728852/(14)} = 0.9196$$

Root-RSE= 0.18102: representa la desviación estándar estimada del error, es decir, la raíz cuadrada de la varianza estimada del error.

```
\hat{Y} = -1459.601 + 6.616log(ump) + 90.457log(pfalf_1524) - 5.501log(minpo_1529) - 15.498log(pea15) \\ + 41.9383log(poet) . dis 90.45656 /100 .9045656 . dis -5.500498 /100 -.05500498 . dis -15.49826/100 -.1549826
```

. dis 41.9383/100 .419383

. dis 6.615647 /100 .06615647

Nuestro modelo explica que las primas emitidas aumentan 0.06615647% cuando hay un incremento de 1% en las unidades médicas privadas. Análogamente, cuando la población alfabeta femenina de 15-24 años crece 1%, el porcentaje de primas emitidas del seguro de gastos médicos mayores aumenta 0.9045656%. Por otro lado, disminuyen 0.05500498% cuando la mediana del ingreso nominal de la población de 15 a 29 años ocupada que reportan ingreso aumenta 1%, así mismo cuando la población económicamente activa crece 1%, las primas emitidas disminuyen 0.1549826%. Finalmente, sí la población en edad de trabajar aumenta 1%, existe un cambio de 0.419383 en la variación porcentual de primas emitidas del Seguro de GMM.

Pruebas de Hipótesis

Prueba de significancia individual

Con relación a la inferencia estadística alrededor de los coeficientes de regresión poblacionales, el Stata incorpora en la salida mostrada en la figura 8.1, lo que se conoce como pruebas de significancia individual, cuya estructura es:

H0: $\beta i = 0$ vs Ha: $\beta i \neq 0$ con i = 1,2,3,4,5

. * lpoet Pob. en edad de trabajar

. *t tabla

. display "t(15, 0.975)= " invttail(15,0.025)
$$t(15, 0.975)= 2.1314495$$

```
. *Significancia individual de la regresión
. * lump: Unidades médicas privadas
 display "t-value" = ( 6.615647/ 2.752422)
t-value2.4035729
. *Significancia individual de la regresión
. * lump: Unidades médicas privadas
. display "t-value
                       " = (6.615647/2.752422)
           2.4035729
t-value
. * pfalf_1524 Pob.femenina alfabeta
. display "t-value
                       " = (90.45656/11.62881)
           7.7786601
t-value
. * lminpo_15_29 Mediana de ingreso
                       " = (
. display "t-value
                               -5.500498 / 1.990338 )
           -2.7636
t-value
. * lpea_15 Pob. Economicamente activa
                       " = (
. display "t-value
                                -15.49826/ 4.261584 )
            -3.636737
t-value
```

Para el estadístico de prueba de todas nuestras variables explicativas $|t^*| > t$ (160, 0.975), entonces la hipótesis nula de no significancia individual se rechaza, es decir, $\beta 1, \beta 2, \beta 3, \beta 4$ y $\beta 5$ poblacional son significativas, lo que implica que las variables asociadas al mismo contribuyen a la explicación de la variable dependiente (primas emitidas).

Prueba de significancia global

```
. display ( 5.41235894/5) /(.294929585 /9)
33.032448
. display Ftail(5,9,33.032448)
.00001572
```

Dado que el valor del estadístico de prueba $|F^*|=33.032448$ es mayor al valor p asociado 0.00001572, esto implica que se rechaza la hipótesis nula de no significancia global, es decir, al menos uno de los coeficientes de regresión que acompañan a las variables explicativas es diferente de 0, por lo que nuestro modelo es significativo globalmente.

Conclusión

Es importante mencionar que en Tabasco el 68.5% de la población se encuentra afiliada a servicios de salud (INEGI). Por esta razón, las aseguradoras aún tienen un campo de crecimiento bastante amplio y se encuentran en la obligación de implementar diferentes métodos de venta que las lleven a conseguir más clientes y aumentar el porcentaje de la población asegurada, lo que se traduce a una mayor emisión de primas y mayor utilidad para las aseguradoras.

Anteriormente el Covid-19 como nueva enfermedad no era un riesgo asegurable, sin embargo, como se trata de una enfermedad respiratoria muchas compañías de seguros ya lo toman en cuenta.

Bajo la intención de conocer la dependencia de la demanda de los seguros de GMM, se realizó este proyecto. En un principio se pensaba que los siniestros ocurridos, los siniestros pagados, el Ingreso laboral per cápita a pesos corrientes (nominal) anual, las defunciones, la esperanza de vida, y el Índice de la Tendencia Laboral de la Pobreza (ITLP) eran factores de suma importancia, pues se creía que había una relación entre las defunciones y las primas emitidas ya que es consecuencia de cualquier enfermedad mortal y eso hace que las personas se vean en la necesidad de comprar un seguro de GMM. Además, sí el Ingreso laboral per cápita a pesos corrientes aumentaba las personas tendrían mayor posibilidad de adquirirlo, entre otras.

Después de modelar con distintos grupos de variables y establecer nuestro modelo más adecuado, nos dimos cuenta de que cuando hay un incremento de 1% en las unidades médicas privadas, las primas emitidas aumentan 0.06615647%. Esto se debe a que, al haber más espacio y personal médico, los asegurados obtienen una mejor calidad de servicio en la salud. Después sí la población femenina alfabeta de 15-24 años crecía 1%, el porcentaje de primas emitidas del seguro de gastos médicos mayores aumentaba 0.9045656%. Por esto la educación es un factor muy importante, pues así los jóvenes tienen oportunidad de tener una mejor calidad de vida. Según la Condusef en promedio una póliza de seguro de gastos médicos mayores tiene un valor de \$11,696 para hombres, y \$15,261 para Mujeres de entre 20 y 30 años con una suma asegurada con cobertura básica de 40 millones de pesos.

La estabilidad económica durante los últimos 15 años en Tabasco no ha contribuido al crecimiento de la emisión de primas en este ramo de seguro, pues estas disminuyen 0.05500498% cuando la mediana del ingreso nominal de la población de 15 a 29 años ocupada que reportan ingreso aumenta 1% y cuando la población económicamente activa crece 1%, las primas emitidas disminuyen 0.1549826%. No obstante, dicho crecimiento económico ha llevado a una reducción en la pobreza y a mayor cobertura de educación, lo que lleva a que las personas entiendan el funcionamiento de un seguro, logrando así mitigar riesgos futuros y que esto los motive a comprar este tipo de servicios.

Finalmente, muchas empresas ofrecen a sus colaboradores el seguro de GMM, como son Western Unión, FedEx Express, Steren y Mars México, esto explica que exista un cambio de 0.419383% en la variación porcentual de las primas emitidas sí la población en edad de trabajar de Tabasco aumenta 1%.

Atravesamos por una situación nunca vista, la pandemia se considera una de las mayores catástrofes de estos tiempos. El sector asegurador tiene grandes retos, una de ellas promover la cultura del seguro en el país.

Los resultados como se explican en el análisis son útiles para poder cuantificar el impacto que tiene el cambio en políticas monetarias sobre la demanda de seguros, en este caso expresado por ciertas variables macroeconómicas que influyen finalmente en la decisión de los consumidores, sobre si compran o no compran un seguro de gastos médicos mayores. Se demuestra que variables como unidades médicas privadas, personas alfabetas femeninas 15 a 24, mediana del ingreso nominal de la población de 15 a 29 años ocupada que reportan ingreso, población económicamente activa y población en edad de trabajar influyen en la demanda de seguros de GMM.

Base de datos

CNSF. Entidades Supervisadas. Seguro de Gastos Médicos Mayores. 2005-2019. Recuperado de: https://www.cnsf.gob.mx/EntidadesSupervisadas/InstitucionesSociedadesMutualistas/Paginas/InformacionConsolidada.aspx

INEGI. https://www.inegi.org.mx/sistemas/olap/consulta/general_ver4/MDXQueryDatos.asp?#Regreso&c=11144

INEGI. Mortalidad. Defunciones Generales 2005-2019. Consultado en:

https://www.inegi.org.mx/app/tabulados/interactivos/?px=Mortalidad 09&bd=Mortalidad

Índice de la Tendencia Laboral de la Pobreza (ITLP) en Tabasco. 2005-2019

Ingreso laboral per cápita a pesos corrientes (nominal) anual. Tabasco. Base de datos 2005-2019.

 $\underline{https://www.coneval.org.mx/coordinacion/entidades/Tabasco/Paginas/itlp.aspx}$

Producto Interno Bruto. Recuperado de: PIB_TABASCO

INEGI. Población Ocupada. https://www.inegi.org.mx/programas/pibent/2013/#Tabulados

 $\underline{https://www.inegi.org.mx/sistemas/olap/consulta/general\ ver4/MDXQueryDatos\ colores.asp?c=}$