Memory Networks for Relation Extraction

曾双 2020.4.12

IJCAI 2017

Effective Deep Memory Networks for Distant Supervised Relation Extraction

Xiaocheng Feng, Jiang Guo, Bing Qin, Ting Liu, Yongjie Liu SCIR, Harbin Institute of Technology, Harbin, China {xcfeng, jguo, qinb, tliu, yongjieliu}@ir.hit.edu.cn Knowledge Base Barack Obama, EmployedBy, United States

Triples: Barack Obama, BornIn, United States

Latent Label	Sentence		
EmployedBy S1: United States President Barack Obama meets NBA player LeBron James Today.			
BornIn	S2: Obama was born in the United States just as he has always said.		
	S3: Obama ran for the united States Senate in 2004.		

Figure 1: Training sentences generated through distant supervision for a knowledge base containing two facts.

- Not all context words contribute equally to the inference of relation for an entity pair.
- There exists dependencies (e.g., entailment, conflict) between
 different relations, which is a crucial cue to infer some instances
 with implicit relation expression. For instance, if triple (A, capital,
 B) holds, another triple (A, contains, B) will hold as well.

Word Level Attention

$$g_i = \tanh(W_{word-att}[m_i; w_{eh}; w_{et}] + b_{word-att})$$

$$\alpha_i = \frac{\exp(g_i)}{\sum_{j=1}^w \exp(g_j)}$$

$$x = \sum_{i=1}^{w} \alpha_i m_i$$

Selective-Attention over Instances

$$z_i = x_i A v_{r_j}$$

$$\beta_i = \frac{\exp(z_i)}{\sum_{p=1}^n \exp(z_p)}$$

$$R_j = \sum_{i=1}^n \beta_i x_i$$

Selective-Attention over Relations

$$h_i = R_i B R_j$$

$$\gamma_i = \frac{\exp(h_i)}{\sum_{q=1}^k \exp(h_q)}$$

$$R_j^* = \sum_{i=1}^k \gamma_{ji} R_i$$

Feature-based methods

(1) Mintz: [Mintz et al., 2009] proposed distant supervision paradigm and developed a multi-class logistic regression for classification. (2) Multir is a multi-instance learning method that was proposed by [Hoffmann et al., 2011] with a deterministic "at-least-one" decision . (3) MIML [Surdeanu et al., 2012] is a multi-instance multi-label approach for distant supervision using a graph model.

Neural-based methods

(1) **PCNN** [Zeng *et al.*, 2015] is a convolutional neural network based method for relation extraction. This method models overlapping relations by combining sentence-level relation extraction features into entity-pair-level results. (2) **ATT**: [Lin *et al.*, 2016] pointed out that distant supervision suffers from the entity pair wrong labeling problem. They developed a sentence-level attention model which can dynamically reduce the weights of those noisy instances and achieves state-of-the-art results.

Dataset	Sentences	Pos EPs	Neg EPs	relations
Training	112,941	4,266	61,460	26
Testing	152,416	1,732	91,842	26

Table 1: Statistics of the filtered NYT10 dataset, where EP denotes entity pair.

	Top 100	Top 200	Top 500	Average
Mintz	0.77	0.71	0.55	0.676
Multir	0.83	0.74	0.59	0.720
MIML	0.85	0.75	0.61	0.737
PCNN	0.84	0.77	0.64	0.750
ATT	0.86	0.80	0.68	0.780
DMN	0.89	0.82	0.68	0.797

Table 2: Precision values for the top 100, top 200, and top 500 extracted relation instances.

Figure 4: Precision-recall curves of various methods.

NAACL 2019

Relation Extraction with Temporal Reasoning Based on Memory Augmented Distant Supervision

Jianhao Yan¹, Lin He¹, Ruqin Huang², Jian Li³; and Ying Liu¹
¹Institute for Network Sciences and Cyberspace, Tsinghua University
²Department of Computer Science and Technology, Tsinghua University
³Institute for Interdisciplinary Information Sciences, Tsinghua University
{yjh16, he-l14, hrq16}@mails.tsinghua.edu.cn
lijian83@tsinghua.edu.cn, liuying@cernet.edu.cn

- DS RE : encoding and fusion
- The former encodes each instance into a low-dimensional representation.
- The latter combines representation of each instance. Then, their combination is used to predict the relation.

- They all use a separate but identical encoding module among instances and introduce no difference temporally.
- They only adopt single step of fusion and introduce no sentencelevel reasoning.

- Angelina Jolie and Brad Pitt (using Wikidata). The knowledge base contains a factual relation of spouse between them with the valid period from August 2014 to September 2016.
- However, the extracted mention set contains instances about their marriage in 2014, as well as their divorce in 2016.
- Existing models may predict the relation of marriage since the instances may suggest a higher confidence for the relation of marriage.

Figure 1: Overall TempMEM architecture

- The temporal encodings should comply with the chronological order of instances.
- The difference between two time spots determines the similarity between two temporal encodings.

$$PE(j) = \begin{cases} sin(j/10000^{d/d_m}) & if \ d\%2 = 0\\ cos(j/10000^{(d-1)/d_m}) & if \ d\%2 = 1 \end{cases}$$

$$m_j = [O_j; \lambda \cdot PE(j)].$$

Query Construction

We construct each query with the guidance of the following intuition.

• Relation extraction within instances is equal to the query "what is the *relation* between *head* and *tail* at time spot t_i ?".

$$q_r = R_r + (E_{head} + E_{tail}) * \Phi_q,$$

$$q_{r,i} = [q_r; \lambda \cdot PE(i)].$$

Memory Addressing In addressing, we compute the similarity between the query vector $q_{i,r}$ and each candidate memory slot key K_i . Note that the encoding output m_i is not in the same continuous space as the query vector. So, we adopt linear projections to both memory keys:

$$\boldsymbol{K}_j = \boldsymbol{A}_h^T \cdot \boldsymbol{m}_j, \tag{10}$$

where $A_h \in \mathbb{R}^{D_m * D_r}$. Then, we compute the similarity score and importance probability using the bilinear form,

$$s_{i,j} = \mathbf{q}_{i,r}^T \cdot \mathbf{W}_a \cdot \mathbf{K}_j, \tag{11}$$

$$s_{i,j} = \mathbf{q}_{i,r}^T \cdot \mathbf{W}_a \cdot \mathbf{K}_j, \tag{11}$$

$$p_{i,j} = \frac{exp(s_{i,j})}{\sum_{\hat{j}=1}^M exp(s_{i,\hat{j}})}, \tag{12}$$

Memory reading The value of each memory slot, which is also projected by an affine matrix $B \in \mathbb{R}^{D_m * D_r}$, is read by computing the weighted sum over all memory slots with the importance probability derived in the addressing step:

$$\hat{q}_i = \sum_j p_{i,j} V_j, \tag{14}$$

where
$$V_j = B_h^T \cdot m_j$$
.

Figure 1: Overall TempMEM architecture

Method	P@N_100	P@N_200	P@N_300
CNN_ATT	67.33	67.66	66.45
CNN_ONE	70.3	68.66	65.78
TempMEM	81.18	82.09	78.41
TempMEM+R	79.21	78.61	75.42
TempMEM+P	81.19	79.1	77.41

Table 2: Comparison with previous models. P@N_100/200/300 refers to the precision for the highest 100, 200 and 300 predictions in WIKI-TIME.

Method	Bag-level F1	Query-level F1
CNN_ATT	39.66	-
CNN_ONE	40.15	-
TempMEM	47.88	54.75
TempMEM+R	46.76	47.83
TempMEM+P	54.86	60.01

Table 3: Manual evaluation of Bag-level and Query-level F1 scores in WIKI-TIME.

id	Relation	Time Spot	Sentence	
0	NA	1957-01-01	Her early career was marked by	
			her collaboration with singer Stelios	
			Kazantzidis.	
1	NA	1960-01-01	instances of Marinella in films of	
			Greek cinema, from the 1960 by 1966	
			with Stelios Kazantzidis	
2	Spouse	1964-05-07	Marinella married Stelios	
			Kazantzidis on 7 May 1964	
3	Spouse	1964-05-07	Stelios Kazantzidis married	
			Marinella on 7 May 1964	
4	NA	1966-09-01	In September 1966 he divorced	
			Marinella	
5	NA	1968-01-01	Following Marinella's departure Litsa	
			Diamandi	
6	NA	1968-01-01	Marinella sang on some songs	
7	NA	1968-01-01	Marinella had an "answer back" to	
			that latter song	

Table 4: Aligned sentences of \langle Stelios Kazantzidis , Marinella \rangle

Thanks!