

Random Number Generation

Guilherme Souza Rodrigues guilhermerodrigues@unb.br

- ✓ Properties of Random Numbers
- ✓ Pseudo-Random Numbers
- ✓ Generating Random Numbers
 - Linear Congruential Method

"Every Cause has its Effect; every Effect has its Cause; everything happens according to Law; Chance is but a name for Law not recognized; there are many planes of causation, but nothing escapes the Law."

The Kybalion

- ✓ Approach: Arithmetically generation (calculation) of random numbers.
- ✓ "Pseudo", because generating numbers using a known method renders it deterministic.

✓ Goal: To produce a sequence of numbers in [0,1] that simulates, or imitates, the ideal properties of random numbers (RN).

Important properties of good random number routines:

- ✓ Fast
- ✓ Portable to different computers
- ✓ Have sufficiently long cycle
- √ Replicable

Verification and debugging

Use identical stream of random numbers for different systems

✓ Closely approximate the ideal statistical properties of

Uniformity and

Independence

Random number R_i must be independently drawn from a uniform distribution with PDF:

$$f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

$$E(R) = \int_0^1 x dx = \frac{x^2}{2} \Big|_0^1 = \frac{1}{2}$$

PDF for random numbers

Problems when generating pseudo-random numbers

- ✓ The generated numbers might not be uniformly distributed
- ✓ The generated numbers might be discrete-valued instead of continuous-valued
- ✓ The mean of the generated numbers might be too high or too low
- ✓ The variance of the generated numbers might be too high or too low

There might be dependence:

- ✓ Autocorrelation between numbers
- ✓ Numbers successively higher or lower than adjacent numbers
- ✓ Several numbers above the mean followed by several numbers below the mean

✓ To produce a sequence of integers $X_1, X_2, ...$ between 0 and m-1 by following a recursive relationship:

- ✓ Assumption: m > 0 and a < m, c < m, $X_0 < m$
- ✓ The selection of the values for a, c, m and X_0 drastically affects the statistical properties and the cycle length
- ✓ The random integers X_i are being generated in [0, m-1]

✓ Convert the integers X_i to random numbers $R_i = \frac{X_i}{m}$, i = 1,2,...

✓ Note
$$X_i \in \{0, 1, ..., m-1\}$$

 $R_i \in [0, (m-1)/m]$

Example 1:

Use: X_0 =27, a=17, c=43, m=100

$$X_1 = (17 \times 27 + 43) \mod 100 = 502 \mod 100 = 2$$
 \Rightarrow $R_1 = 0.02$ $X_2 = (17 \times 2 + 43) \mod 100 = 77$ \Rightarrow $R_2 = 0.77$ $X_3 = (17 \times 77 + 43) \mod 100 = 52$ \Rightarrow $R_3 = 0.52$ \Rightarrow $R_4 = (17 \times 52 + 43) \mod 100 = 27$

. . .

Mestrado de Estatística Estatística Computacional

Example 2:

Use: X_0 =27, a=13, c=0, m=64

- ✓ The period of the generator is very low
- ✓ Seed X_0 influences the sequence

The LCG has full period if and only if the following three conditions hold (Hull and Dobell, 1962):

- The only positive integer that (exactly) divides both m and c is 1
- 2. If q is a prime number that divides m, then q divides a-1
- 3. If 4 divides m, then 4 divides a-1

i	$X_i \atop X_0=1$	X_i $X_0=2$	X_i $X_0=3$	X_i $X_0=4$
	1	, ,	3	4
0	_	2	_	4
1	13	26	39	52
2	41	18	59	36
3	21	42	63	20
4	17	34	51	4
5	29	58	23	
6	57	50	43	
7	37	10	47	
8	33	2	35	
9	45		7	
10	9		27	
11	53		31	
12	49		19	
13	61		55	
14	25		11	
15	5		15	
16	1		3	

Proper choice of parameters

```
For m a power 2, m=2^b, and c\neq 0
Longest possible period P=m=2^b is achieved
if c is relative prime to m and a=1+4k, where k is an integer
```

For m a power 2, $m=2^b$, and c=0Longest possible period $P=m/4=2^{b-2}$ is achieved if the seed X_0 is odd and $\alpha=3+8k$ or $\alpha=5+8k$, for k=0,1,...

✓ For m a prime and c=0 Longest possible period P=m-1 is achieved if the multiplier a has property that smallest integer k such that a^k -1 is divisible by m is k=m-1

$$X_{i+1} = g(X_i, X_{i-1}, ...) \mod m$$

✓ where g() is a function of previous X_i 's $X_i \in [0, m\text{-}1], R_i = X_i/m$

✓ Quadratic congruential generator

Defined by:
$$g(X_i, X_{i-1}) = aX_i^2 + bX_{i-1} + c$$

✓ Multiple recursive generators

Defined by:
$$g(X_i, X_{i-1},...) = a_1X_i + a_2X_{i-1} + ... + a_kX_{i-k}$$

√ Fibonacci generator

Defined by:
$$g(X_{i}, X_{i-1}) = X_{i} + X_{i-1}$$

Characteristics of a Good Generator

Exemplo 1 -Gerador Congruencial Linear

```
m <- 100;a <- 17;c <- 43;seed <- 27;n<-10
xn=seed
x=numeric(n)
for (i in 1:n){
 xn=(a*xn+c)%%m #resto da divisão
 x[i]=xn
```

OBRIGADO!