The Entity-Relationship Model

Chapter 2

Instructor: Vladimir Zadorozhny

vladimir@sis.pitt.edu Information Science Program School of Information Sciences, University of Pittsburgh

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710 Instructor: Vladimir Zadorozhny

Database: a Set of Relations (Tables)

customer_id	customer_name	customer_street		customer_city	
192-83-7465	Johnson 12 A		Alma St.		Palo Alto
677-89-9011	Hayes	3 M	ain St.		Harrison
182-73-6091	Turner	123 Putnam A		e.	Stamford
321-12-3123	Jones	100 Main St.		Harrison	
336-66-9999	Lindsay	175 Park Ave.		Pittsfield	
019-28-3746	Smith	72 North St.		Rye	
(a) The <i>customer</i> table					
uccount_number balance					
	A-10	1	500		
	A-21	5	700		
	A-10	2	400		
	A-30		350		
	A-20		900		
	A-21		750		
	A-22	2	700		
(b) The account table					
	customer_id account_number				
	192-83-7465	A-101		1	
	192-83-7465		A-201		
	019-28-3746		A-215		
	677-89-9011	1	A-102	1	
	182-73-6091		A-305	1	
	321-12-3123		A-217	1	
	336-66-9999		A-222	1	
	019-28-3746		A-201		
(c) The <i>depositor</i> table					

Find the name of the customer with customer-id 192-83-7465

select customer.customer_name

from customer

where *customer_id* = '192-83-7465'

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710

Instructor: Vladimir Zadorozhny

Database Design

The process of designing the general structure of the database:

- * Requires that we find a "good" collection of relation schemas.
 - Business decision What attributes should we record in the database?
 - IS decision What relation schemas should we have and how should the attributes be distributed among the various relation schemas?
- Deciding on the physical layout of the database

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710 Instructor: Vladimir Zadorozhny

Conceptual Database Design

- * <u>Conceptual design</u>: (ER Model is used at this stage.)
 - What are the *entities* and *relationships* in the enterprise?
 - What information about these entities and relationships should we store in the database?
 - What are the *integrity constraints* or *business rules* that hold?
 - A database `schema' in the ER Model can be represented pictorially (ER diagrams).
 - Can map an ER diagram into a relational schema.

- Entity: Real-world object distinguishable from other objects. An entity is described (in DB) using a set of attributes.
- <u>Entity Set</u>: A collection of similar entities.
 E.g., all employees.
 - All entities in an entity set have the same set of attributes. (Until we consider ISA hierarchies, anyway!)
 - Each entity set has a key.
 - Each attribute has a *domain*.

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710

Instructor: Vladimir Zadorozhny

ssn

name

lot

5

ER Model Basics (Contd.)

- * <u>Relationship</u>: Association among two or more entities. E.g., Attishoo works in Pharmacy department.
- * Relationship Set: Collection of similar relationships.
 - An n-ary relationship set R relates n entity sets E1 ... En; each relationship in R involves entities e1 in E1, ..., en in En
 - Same entity set could participate in different relationship sets, or in different "roles" in same set.

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710

Instructor: Vladimir Zadorozhny

Weak Entities

- * A *weak entity* can be identified uniquely only by considering the primary key of another (*owner*) entity.
 - Owner entity set and weak entity set must participate in a one-tomany relationship set (one owner, many weak entities).
 - Weak entity set must have total participation in this *identifying* relationship set.

ISA (`is a') Hierarchies

*As in C++, or other PLs, attributes are inherited.

*If we declare A ISA B, every A entity is also considered to be a B entity.

- Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed)
- Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)
- Reasons for using ISA:
 - To add descriptive attributes specific to a subclass.
 - To identify entitities that participate in a relationship.

Conceptual Design Using the ER Model

- Design choices:
 - Should a concept be modeled as an entity or an attribute?
 - Should a concept be modeled as an entity or a relationship?
- Constraints in the ER Model:
 - A lot of data semantics can (and should) be captured.
 - But some constraints cannot be captured in ER diagrams.

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710 Instructor: Vladimir Zadorozhny

Summary of Conceptual Design

- * Conceptual design follows requirements analysis,
 - Yields a high-level description of data to be stored
- ER model popular for conceptual design
 - Constructs are expressive, close to the way people think about their applications.
- * Basic constructs: *entities, relationships,* and *attributes* (of entities and relationships).
- ❖ Some additional constructs: weak entities, ISA hierarchies.
- ❖ Note: There are many variations on ER model.

Summary of ER (Contd.)

- Several kinds of integrity constraints can be expressed in the ER model: key constraints, participation constraints, and overlap/covering constraints for ISA hierarchies. Some foreign key constraints are also implicit in the definition of a relationship set.
 - Some constraints (notably, functional dependencies) cannot be expressed in the ER model.
 - Constraints play an important role in determining the best database design for an enterprise.

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710 Instructor: Vladimir Zadorozhny

13

Summary of ER (Contd.)

- * ER design is *subjective*. There are often many ways to model a given scenario! Analyzing alternatives can be tricky, especially for a large enterprise. Common choices include:
 - Entity vs. attribute, entity vs. relationship, whether or not to use ISA hierarchies.
- Ensuring good database design: resulting relational schema should be analyzed and refined further. FD information and normalization techniques are especially useful.

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710

Instructor: Vladimir Zadorozhny

14

Logical DB Design: ER to Relational

Entity sets to tables:

CREATE TABLE Employees (ssn CHAR(11), name CHAR(20), lot INTEGER, PRIMARY KEY (ssn))

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710

Instructor: Vladimir Zadorozhny

15

Relationship Sets to Tables

- In translating a relationship set to a relation, attributes of the relation must include:
 - Keys for each participating entity set (as foreign keys).
 - This set of attributes forms a *superkey* for the relation.
 - All descriptive attributes.

CREATE TABLE Works_In(
ssn CHAR(1),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)
REFERENCES Employees,
FOREIGN KEY (did)
REFERENCES Departments)

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710

Instructor: Vladimir Zadorozhny

16

Translating ER Diagrams with Key Constraints

- Map relationship to a table:
 - Note that did is the key now!
 - Separate tables for Employees and Departments.
- Since each department has a unique manager, we could instead combine Manages and Departments.

```
CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)
```

```
CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)
```

Review: Participation Constraints

- Does every department have a manager?
 - If so, this is a *participation constraint*: the participation of Departments in Manages is said to be *total* (vs. *partial*).
 - Every *did* value in Departments table must appear in a row of the Manages table (with a non-null *ssn* value!)

Participation Constraints in SQL

• We can capture participation constraints involving one entity set in a binary relationship, but little else (without resorting to CHECK constraints).

```
CREATE TABLE Dept_Mgr(
    did INTEGER,
    dname CHAR(20),
    budget REAL,
    ssn CHAR(11) NOT NULL,
    since DATE,
    PRIMARY KEY (did),
    FOREIGN KEY (ssn) REFERENCES Employees,
    ON DELETE NO ACTION)
```

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710

Instructor: Vladimir Zadorozhny

19

Review: Weak Entities

- ❖ A weak entity can be identified uniquely only by considering the primary key of another (owner) entity.
 - Owner entity set and weak entity set must participate in a one-to-many relationship set (1 owner, many weak entities).
 - Weak entity set must have total participation in this *identifying* relationship set.

Translating Weak Entity Sets

- Weak entity set and identifying relationship set are translated into a single table.
 - When the owner entity is deleted, all owned weak entities must also be deleted.

```
CREATE TABLE Dep_Policy (
pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,
ON DELETE CASCADE)
```


to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

Database Management Systems, R. Ramakrishnan and J. Gehrke

INFSCI2710

Instructor: Vladimir Zadorozhny

23

Translating ISA Hierarchies to Relations

- General approach:
 - 3 relations: Employees, Hourly_Emps and Contract_Emps.
 - *Hourly_Emps*: Every employee is recorded in Employees. For hourly emps, extra info recorded in Hourly_Emps (*hourly_wages*, *hours_worked*, *ssn*); must delete Hourly_Emps tuple if referenced Employees tuple is deleted).
 - Queries involving all employees easy, those involving just Hourly_Emps require a join to get some attributes.
- Alternative: Just Hourly_Emps and Contract_Emps.
 - Hourly_Emps: <u>ssn</u>, name, lot, hourly_wages, hours_worked.
 - Each employee must be in one of these two subclasses.