· Definite integrals

- · Integrals are used to calculate cumulative totals, averages, a areas.
- · Area under a curve
 - 1) Divide region into rectangles
 - @ Add up area of rectangles
 - 3) Take limit as rectangles become thin

$$Ex$$
 $f(x) = x^2$ $a = 0$, $b = arbitrary$

1) Divide [0,6] into nintervals of length b

2 Heights of rectangles: lst:
$$x = \frac{b}{n}$$
, height = $(\frac{b}{h})^2$
• 2nd $x = \frac{2b}{n}$, height = $(\frac{2b}{n})^2$

Add up the areas of the rectangles:

$$\left(\frac{b}{n}\right)\left(\frac{b}{n}\right)^{2} + \left(\frac{b}{n}\right)\left(\frac{2b}{n}\right)^{2} + \dots + \left(\frac{b}{n}\right)\left(\frac{nb}{n}\right)^{2} = \frac{b^{3}}{n^{3}}\left(1^{2} + 2^{2} + \dots + n^{2}\right)$$

In a separate step below, we will show that

(*)
$$\frac{1}{3} < \frac{1^2 + 2^2 + \dots + n^2}{n^3} < \frac{1}{3} \frac{(n+1)^3}{n^3}$$

. Thus as n →∞ (i.e, as the rectangles become infinitely thin) we have

$$\frac{b^3}{n^3} \left(1^2 + 2^2 + \dots + n^2 \right) \xrightarrow{n \to \infty} \frac{1}{3} b^3.$$

Hence, the area under the curve $y=x^2$ from 0 to b is $\frac{b^3}{3}$.

· To establish the inequalities in (*), We consider the following 3-d staircase pyramid:

Side view

top View

- . 1st level is an nxnxi layer of volume n2
- . 2nd level is an (n-1)x(n-1)x1 layer of volume (n-1)2 , etc.
- . The total volume of the staircase pyramid is $N^2 + (N-1)^2 + \cdots + 1$
- · The volume of the staircase pyramid is the Volume of the inner prism: $1^{2} + 2^{2} + ... + n^{2} > \frac{1}{3} \cdot base \cdot height = \frac{1}{3} n^{2} \cdot n = \frac{7}{3} n^{3}$
- · Similarly, it is < the volume of the outer prism: $1^{2} + 2^{2} + \cdots + n^{2} \left(\frac{1}{3} (n+1)^{2} (n+1)^{2} \right)^{3}$
- . These two inequalities together imply (*) as docinel.

Ex: f(x) = X. Reasoning Similar to the previous example gives that $\frac{b^2}{n^2} (1 + 2 + ... + n) \rightarrow \frac{1}{2} b^2$ as $n \rightarrow \infty$.

Thus, He area under the curve from o to b is $\frac{1}{2}b^2$.

This is the area of the triangle below:

Important pattern: $\frac{d}{db}\left(\frac{b^3}{3}\right) = b^2$ $\frac{d}{db}\left(\frac{b^2}{2}\right) = b$

. The area A(b) under the curve yzf(x) from 0 to b Should satisfy A'(b) = F(b).

· General Picture

- Divide [9,6] into a equal pieces of length $\Delta x = \frac{b-q}{n}$. Pick any C_i in the ith interval and use $f(c_i)$ as the height of the rectangle
- · Sum of dreds: f(G) AX + f(G) AX +... + f(G) AX
- . Using Summation notation, we can write the sum as

Riemann Sum

 $\lim_{N\to\infty} \sum_{i=1}^{j=1} f(c_i) \Delta x = \int_{0}^{6} f(x) dx$. De finition Definite integral of f(x) dx represents the area under the curve

Y= f(x) shove the interval [4,6].