•

- 1) Um cliente bancário possui senha numérica de dez dígitos decimais que dá acesso à conta de seus investimentos. Por segurança, o banco sugere que os clientes devam armazenar tal senha codificada por meio de dígitos binários ($bits \equiv binary\ digits$). Se todos os dígitos da senha decimal forem distintos e cada um deles for codificado na base 2 (individualmente), determine a quantidade de bits que os clientes precisarão utilizar.
- **2)** A localização de \bar{x} do centróide de um setor circular (como esboçado na figura, meramente ilustrativa) obtém-se através de $\bar{x}=\frac{2rsen\theta}{3\theta}$. Determine o valor do ângulo θ (graus), com duas casas decimais de precisão, considerando que $\bar{x}=\frac{r}{3}$.

3) Considere o sistema Ax = b abaixo:

A =	2	-1	0	0	0	0	
	-1	2	-1	0	0	0	
	0	-1	2	-1	0	0	
	0	0	-1	2	-1	0	
	0	0	0	-1	2	-1	
	0	0	0	0	-1	2	

Aplicando-se o método da Eliminação de Gauss ao sistema, através da fatoração **LDU** de **A**, afirma-se:

- Os valores dos elementos de L, obtidos na fase de eliminação de variáveis, são todos iguais a 1/2;
- II. O determinante de A é obtido pelo produto de todos os elementos pertencentes à diagonal de D;
- III. Os elementos \mathbf{U}_{ij} são iguais a \mathbf{L}_{ji} , $\forall i \neq j$.

Pede-se avaliar, <u>justificadamente</u>, como verdadeira (V) ou falsa (F) cada uma das afirmativas.

4) O sistema ao lado deve ser resolvido através do Método de Newton. Partindo-se de $x_1^{(0)} = 1,0$ e $x_2^{(0)} = 0,5$, pede-se determinar $x_1^{(1)}$ e $x_2^{(1)}$.

$$\begin{cases} x_1^2 + x_2^2 = 2\\ e^{x_1 - 1} + x_2^3 = 2 \end{cases}$$

5)

х	2 3		4 5		6	7	
f(x)	0,13	0,19	0,27	0,38	0,51	0,67	

Para interpolar valores na tabela, pede-se determinar:

- I) Com o polinômio linear, o valor aproximado para f(5,2);
- Usando-se os 3 últimos pontos da tabela, o polinômio quadrático na forma de Newton;
- **6)** Considere a função $\varphi(x) = ae^{x^2} + bx^3$ a ser ajustada através do Método dos Mínimos Quadrados aos pontos da tabela a seguir:

х	-1	0	1	
у	0	1	2	

Pede-se determinar:

- I) O parâmetro a;
- II) O parâmetro b.

- **7)** Deseja-se calcular a área delimitada por $f(x) = x^2 e g(x) = x + 6$. Pede-se obter com a Regra dos Trapézios repetida 5 vezes o valor desta área.
- 8) Pela Regra dos Trapézios Repetida, obter o valor aproximado de $I=\int_0^2\frac{1}{x+4}dx \ , \ com \ erro \ inferior \ a \ 10^{-5}, \ adotando \ o \ menor \ número \ de \ subdivisões \ do \ intervalo \ de \ integração \ necessário \ ao \ referido \ cálculo.$
- **9)** Um carro de corrida leva 79 segundos para percorrer uma determinada pista. A velocidade v (m/s) do carro na pista, registrada por sensores dispostos em certos pontos do percurso, encontra-se na tabela a seguir.

t (s)	0	0,5	1	1,5	48	48,5	49	59	69	79
v (m/s)	62	74	73,5	60,5	49,5	42,5	39	44,5	58	61,5

Pede-se determinar o valor que melhor representa a distância percorrida (km) pelo carro na pista.

10) Pede-se obter um valor aproximado para a solução da equação $\frac{dy}{dt} = y - t^2 + 1$, em y(0,4). Adote o método de Euler Modificado, com y(0) = 0.5 e o passo de integração igual a 0,2.