2016 元旦欢乐赛

Gromah

题目名称	Fibnacci	Monster Star			
可执行文件名	fibnacci	monster	star		
输入文件名	fibnacci.in	monster.in	star.in		
输出文件名	fibnacci.out	monster.out	star.out		
单个测试点时限	2 s	1 s	1 s		
内存限制	512 MB	512 MB	512 MB		
测试点个数	10	10	10		
单个测试点分数	10	10	10		
是否有部分分	否	否	否		
题目类型	传统	传统	传统		
提交文件须加后缀:					
对于 C++ 语言	fibnacci.cpp	monster.cpp	star.cpp		
对于 C 语言	fibnacci.c	monster.c	star.c		
对于 Pascal 语言	fibnacci.pas	monster.pas	star.pas		

注意事项

- 本套题考试时间为 8:00 开始到 12:00 结束, 持续 4 个小时, 请大家注意好考试时间。
- 数据在 Windows 下生成, 评测在 Windows 7 的 Lemon 下进行, 请大家注意相关细节。

1 Fibnacci

1.1 题目描述

从前,有一个长为n的序列并给定所有元素的初始值,以及m个操作,操作分为两种:

- 形如 "11r" 的操作,意为给 [l,r] 中的每一个元素 A_i 都加上 F_{i-l+1} ,其中 F_x 表示第 x 个斐波那契数,规定 $F_0=0,F_1=1$ 。
- 形如 "21r" 的操作,意为查询序列在 [l,r] 内的元素和并输出其对 10^9+1 取模的结果。

1.2 输入格式

输入第一行两个正整数 n, m, 意义如题所述。

第二行 n 个非负整数,表示序列所有的初始值。

接下来 m 行,每行三个正整数 op, l, r,表示一次操作,保证 l < r。

1.3 输出格式

输出若干行,每行一个非负整数,表示每次询问操作的答案对 $10^9 + 1$ 取模的结果。

1.4 样例输入输出

fibnacci.in	fibnacci.out
5 2	6
0 0 0 0 0	
1 1 4	
2 2 5	

1.5 样例解释

序列最后是长这样的: 11230

所以在 [2,5] 内的元素和就是 1+2+3=6 了。

1.6 数据范围及约定

测试点编号	n	m	特殊性质
0,1	≤ 1000	≤ 1000	无
2,3	≤ 40000	≤ 40000	无
4,5	$\leq 10^{5}$	$\leq 10^{5}$	r-l 为定值
6,7,8,9	$\leq 10^{5}$	$\leq 10^{5}$	无

2 Monster

2.1 题目描述

从前,有 2^n 个点,标号从 0

3 Star

3.1 题目描述

从前,有一片夜空,夜空下有 n 颗流星,每颗流星都会沿着一条直线运动,保证流星的轨迹两两不重合,并且一颗流星所划过的轨迹上的所有点的亮度都会增加一点,问时间足够久之后,夜空中亮度最大的点的亮度为多少,以及有多少个这样的点,保证这样的点有限。

注意: 我们考虑把夜空抽象成一个平面直角坐标系,那么流星的运动轨迹就会是一个一次函数,故给出的流星的轨迹就会是 Ax + By + C = 0 这样的形式。

3.2 输入格式

输入第一行仅一个正整数 n,表示流星的数目。

接下来 n 行,每行三个整数 A_i, B_i, C_i ,表示第 i 颗流星的轨迹方程。

3.3 输出格式

输出仅一行两个整数,分别为最大亮度,以及亮度最大的点的个数。

3.4 样例输入输出

star.in	star.out
3	2 3
0 1 0	
1 0 0	
1 1 -1	

3.5 样例解释

最大亮度为 2, 有 (0,0), (1,0), (0,1) 这三个点的亮度为 2。

3.6 数据范围及约定

测试点编号	n	$ A_i , B_i $	$ C_i $
0,1	≤ 10	≤ 100	$\leq 10^{6}$
2,3	≤ 70	≤ 1000	$\leq 10^{8}$
4,5	≤ 200	≤ 1000	$\leq 10^{8}$
6,7,8,9	≤ 1000	≤ 1000	$\leq 10^{8}$