Математические модели в морфологии Введение. Теория формальных языков.

Алексей Сорокин

спецкурс, ОТИПЛ МГУ, осенний семестр 2017—2018 учебного года

 Морфологический анализ (базовый случай: определение части речи);

- Морфологический анализ (базовый случай: определение части речи);
- Лемматизация (приведение слова к базовой форме);

- Морфологический анализ (базовый случай: определение части речи);
- Лемматизация (приведение слова к базовой форме);
- Морфологический синтез (построение словоформы по базовой форме и грамматической характеристике);

- Морфологический анализ (базовый случай: определение части речи);
- Лемматизация (приведение слова к базовой форме);
- Морфологический синтез (построение словоформы по базовой форме и грамматической характеристике);
- Автоматическое разбиение на морфемы.

- Морфологический анализ (базовый случай: определение части речи);
- Лемматизация (приведение слова к базовой форме);
- Морфологический синтез (построение словоформы по базовой форме и грамматической характеристике);
- Автоматическое разбиение на морфемы.
- Автоматическое построение, дополнение и извлечение парадигм.

- Уточнение вероятностной модели языка (машинный перевод, классификация, исправление опечаток, ...):
 - Во многих приложениях (классификация, анализ тональности) не нужно разделять словоформы одной лексемы.

- Уточнение вероятностной модели языка (машинный перевод, классификация, исправление опечаток, ...):
 - Во многих приложениях (классификация, анализ тональности) не нужно разделять словоформы одной лексемы.
 - Данные становятся менее разреженными.

- Уточнение вероятностной модели языка (машинный перевод, классификация, исправление опечаток, ...):
 - Во многих приложениях (классификация, анализ тональности) не нужно разделять словоформы одной лексемы.
 - Данные становятся менее разреженными.
- Машинный перевод (переход между поверхностным и глубинным представлением).

- Уточнение вероятностной модели языка (машинный перевод, классификация, исправление опечаток, ...):
 - Во многих приложениях (классификация, анализ тональности) не нужно разделять словоформы одной лексемы.
 - Данные становятся менее разреженными.
- Машинный перевод (переход между поверхностным и глубинным представлением).
- Корпусная лингвистика (автоматическая разметка, пополнение лексических ресурсов).

• Поиск по словарю.

- Поиск по словарю. Недостаток "словарного" подхода:
 - Нужен очень большой словарь (в языках с развитой морфологией).

- Поиск по словарю. Недостаток "словарного" подхода:
 - Нужен очень большой словарь (в языках с развитой морфологией).
 - Всё равно остаются неологизмы, производные слова.

- Поиск по словарю. Недостаток "словарного" подхода:
 - Нужен очень большой словарь (в языках с развитой морфологией).
 - Всё равно остаются неологизмы, производные слова.
 - В большинстве языков развитая регулярная омонимия.

- Поиск по словарю. Недостаток "словарного" подхода:
 - Нужен очень большой словарь (в языках с развитой морфологией).
 - Всё равно остаются неологизмы, производные слова.
 - В большинстве языков развитая регулярная омонимия.
- Двухуровневая морфология (конечные преобразователи).

- Поиск по словарю. Недостаток "словарного" подхода:
 - Нужен очень большой словарь (в языках с развитой морфологией).
 - Всё равно остаются неологизмы, производные слова.
 - В большинстве языков развитая регулярная омонимия.
- Двухуровневая морфология (конечные преобразователи).
- Статистический анализ (на основе корпуса).

- Поиск по словарю. Недостаток "словарного" подхода:
 - Нужен очень большой словарь (в языках с развитой морфологией).
 - Всё равно остаются неологизмы, производные слова.
 - В большинстве языков развитая регулярная омонимия.
- Двухуровневая морфология (конечные преобразователи).
- Статистический анализ (на основе корпуса).
- Современный подход: комбинация статистических моделей и конечных преобразователей.

- Поиск по словарю. Недостаток "словарного" подхода:
 - Нужен очень большой словарь (в языках с развитой морфологией).
 - Всё равно остаются неологизмы, производные слова.
 - В большинстве языков развитая регулярная омонимия.
- Двухуровневая морфология (конечные преобразователи).
- Статистический анализ (на основе корпуса).
- Современный подход: комбинация статистических моделей и конечных преобразователей.
- Совсем современный подход: нейронные сети (с использованием вероятностных моделей и конечных преобразователей).

Пусть зафиксирован конечный алфавит Σ .

• Базовые регулярные выражения: элементы алфавита,

- Базовые регулярные выражения: элементы алфавита,
- Также есть константы 0 (пустой язык) и 1 (язык, содержащий только пустое слово ε).

- Базовые регулярные выражения: элементы алфавита,
- Также есть константы 0 (пустой язык) и 1 (язык, содержащий только пустое слово ε).
- Бинарные операции: | (объединение) и · (конкатенация): $u \cdot v = uv$,

- Базовые регулярные выражения: элементы алфавита,
- Также есть константы 0 (пустой язык) и 1 (язык, содержащий только пустое слово ε).
- Бинарные операции: | (объединение) и · (конкатенация): $u \cdot v = uv$,
- Унарная операция * (итерация, взять любое количество раз): L^* состоит из слов вида $u_1 \ldots u_r$, где $r \in \mathbb{N}, u_1, \ldots, u_r \in L$.

- Базовые регулярные выражения: элементы алфавита,
- Также есть константы 0 (пустой язык) и 1 (язык, содержащий только пустое слово ε).
- Бинарные операции: | (объединение) и · (конкатенация): $u \cdot v = uv$,
- Унарная операция * (итерация, взять любое количество раз): L^* состоит из слов вида $u_1 \dots u_r$, где $r \in \mathbb{N}, \ u_1, \dots, u_r \in L$.
- ullet Если lpha регулярное выражение, то L(lpha) задаваемый им язык.

- Базовые регулярные выражения: элементы алфавита,
- Также есть константы 0 (пустой язык) и 1 (язык, содержащий только пустое слово ε).
- Бинарные операции: | (объединение) и \cdot (конкатенация): $u \cdot v = uv$,
- Унарная операция * (итерация, взять любое количество раз): L^* состоит из слов вида $u_1 \dots u_r$, где $r \in \mathbb{N}, \ u_1, \dots, u_r \in L$.
- ullet Если lpha регулярное выражение, то L(lpha) задаваемый им язык.
- Например, $L((a|b)^*) = \{\varepsilon, a, b, aa, ab, ba, bb, \ldots\}.$

- Базовые регулярные выражения: элементы алфавита,
- Также есть константы 0 (пустой язык) и 1 (язык, содержащий только пустое слово ε).
- Бинарные операции: | (объединение) и \cdot (конкатенация): $u \cdot v = uv$,
- Унарная операция * (итерация, взять любое количество раз): L^* состоит из слов вида $u_1 \dots u_r$, где $r \in \mathbb{N}, \ u_1, \dots, u_r \in L$.
- ullet Если lpha регулярное выражение, то L(lpha) задаваемый им язык.
- Например, $L((a|b)^*) = \{\varepsilon, a, b, aa, ab, ba, bb, \ldots\}$.
- Приоритет операций: итерация, конкатенация, объединение. При этом значок конкатенации можно опускать.

- Базовые регулярные выражения: элементы алфавита,
- Также есть константы 0 (пустой язык) и 1 (язык, содержащий только пустое слово ε).
- Бинарные операции: | (объединение) и · (конкатенация): $u \cdot v = uv$,
- Унарная операция * (итерация, взять любое количество раз): L^* состоит из слов вида $u_1 \dots u_r$, где $r \in \mathbb{N}, \ u_1, \dots, u_r \in L$.
- ullet Если lpha регулярное выражение, то L(lpha) задаваемый им язык.
- ullet Например, $L((a|b)^*) = \{ arepsilon, a, b, aa, ab, ba, bb, \ldots \}$.
- Приоритет операций: итерация, конкатенация, объединение. При этом значок конкатенации можно опускать.
- Сокращения $\alpha^+ = \alpha \alpha^*$ (положительная итерация), $\alpha? = (\alpha|1)$ (опциональное вхождение α).

Пусть зафиксирован конечный алфавит Σ .

- Базовые регулярные выражения: элементы алфавита,
- Также есть константы 0 (пустой язык) и 1 (язык, содержащий только пустое слово ε).
- Бинарные операции: | (объединение) и · (конкатенация): $u \cdot v = uv$,
- Унарная операция * (итерация, взять любое количество раз): L^* состоит из слов вида $u_1 \dots u_r$, где $r \in \mathbb{N}, \ u_1, \dots, u_r \in L$.
- ullet Если lpha регулярное выражение, то L(lpha) задаваемый им язык.
- ullet Например, $L((a|b)^*)=\{arepsilon,a,b,aa,ab,ba,bb,\ldots\}$.
- Приоритет операций: итерация, конкатенация, объединение. При этом значок конкатенации можно опускать.
- Сокращения $\alpha^+ = \alpha \alpha^*$ (положительная итерация), $\alpha? = (\alpha|1)$ (опциональное вхождение α).

Язык регулярный, если он задаётся регулярным выражением.

• Все слова в алфавите $\{a,b\}$: $(a|b)^*$,

- Все слова в алфавите $\{a,b\}$: $(a|b)^*$,
- ullet Слова в алфавите $\{a,b,c\}$, где предпоследняя буква b: $(a|b|c)^*b(a|b|c)$.

- Все слова в алфавите $\{a,b\}$: $(a|b)^*$,
- ullet Слова в алфавите $\{a,b,c\}$, где предпоследняя буква b: $(a|b|c)^*b(a|b|c)$.
- ullet Слова в алфавите $\{a,b,c\}$, содержащие ровно 2 буквы a: $(b|c)^*a(b|c)^*a(b|c)^*$.

- Все слова в алфавите $\{a,b\}$: $(a|b)^*$,
- ullet Слова в алфавите $\{a,b,c\}$, где предпоследняя буква b: $(a|b|c)^*b(a|b|c)$.
- Слова в алфавите $\{a,b,c\}$, содержащие ровно 2 буквы a: $(b|c)^*a(b|c)^*a(b|c)^*$.
- ullet Слова нечётной длины в алфавите $\{a,b\}$: $((a|b)(a|b))^*(a|b)$.

- Все слова в алфавите $\{a,b\}$: $(a|b)^*$,
- ullet Слова в алфавите $\{a,b,c\}$, где предпоследняя буква b: $(a|b|c)^*b(a|b|c)$.
- Слова в алфавите $\{a,b,c\}$, содержащие ровно 2 буквы a: $(b|c)^*a(b|c)^*a(b|c)^*$.
- ullet Слова нечётной длины в алфавите $\{a,b\}$: $((a|b)(a|b))^*(a|b)$.
- Слова в алфавите $\{a,b,c\}$, содержащие чётное число букв a:

- Все слова в алфавите $\{a,b\}$: $(a|b)^*$,
- ullet Слова в алфавите $\{a,b,c\}$, где предпоследняя буква b: $(a|b|c)^*b(a|b|c)$.
- Слова в алфавите $\{a,b,c\}$, содержащие ровно 2 буквы a: $(b|c)^*a(b|c)^*a(b|c)^*$.
- ullet Слова нечётной длины в алфавите $\{a,b\}$: $((a|b)(a|b))^*(a|b)$.
- Слова в алфавите $\{a,b,c\}$, содержащие чётное число букв а: $((b|c)^*a(b|c)^*a)(b|c)^*$

- Все слова в алфавите $\{a,b\}$: $(a|b)^*$,
- ullet Слова в алфавите $\{a,b,c\}$, где предпоследняя буква b: $(a|b|c)^*b(a|b|c)$.
- ullet Слова в алфавите $\{a,b,c\}$, содержащие ровно 2 буквы a: $(b|c)^*a(b|c)^*a(b|c)^*$.
- ullet Слова нечётной длины в алфавите $\{a,b\}$: $((a|b)(a|b))^*(a|b)$.
- Слова в алфавите $\{a,b,c\}$, содержащие чётное число букв a: $((b|c)^*a(b|c)^*a)(b|c)^*$.
- ullet Слова в алфавите $\{a,b,c\}$, где перед a идёт только b:

- Все слова в алфавите $\{a, b\}$: $(a|b)^*$,
- ullet Слова в алфавите $\{a,b,c\}$, где предпоследняя буква b: $(a|b|c)^*b(a|b|c)$.
- ullet Слова в алфавите $\{a,b,c\}$, содержащие ровно 2 буквы a: $(b|c)^*a(b|c)^*a(b|c)^*$.
- ullet Слова нечётной длины в алфавите $\{a,b\}$: $((a|b)(a|b))^*(a|b)$.
- Слова в алфавите $\{a,b,c\}$, содержащие чётное число букв a: $((b|c)^*a(b|c)^*a)(b|c)^*$.
- Слова в алфавите $\{a,b,c\}$, где перед a идёт только b: ((b|c)*ba)*(b|c)*

- Все слова в алфавите $\{a, b\}$: $(a|b)^*$,
- ullet Слова в алфавите $\{a,b,c\}$, где предпоследняя буква b: $(a|b|c)^*b(a|b|c)$.
- ullet Слова в алфавите $\{a,b,c\}$, содержащие ровно 2 буквы a: $(b|c)^*a(b|c)^*a(b|c)^*$.
- ullet Слова нечётной длины в алфавите $\{a,b\}$: $((a|b)(a|b))^*(a|b)$.
- Слова в алфавите $\{a,b,c\}$, содержащие чётное число букв $a: ((b|c)^*a(b|c)^*a)(b|c)^*$.
- ullet Слова в алфавите $\{a,b,c\}$, где перед a идёт только b: $((b|c)^*ba)^*(b|c)^*.$
- Непустые слова в алфавите $\{a,b\}$, в которых одинаковые буквы не идут подряд:

- Все слова в алфавите $\{a, b\}$: $(a|b)^*$,
- ullet Слова в алфавите $\{a,b,c\}$, где предпоследняя буква b: $(a|b|c)^*b(a|b|c)$.
- ullet Слова в алфавите $\{a,b,c\}$, содержащие ровно 2 буквы a: $(b|c)^*a(b|c)^*a(b|c)^*$.
- ullet Слова нечётной длины в алфавите $\{a,b\}$: $((a|b)(a|b))^*(a|b)$.
- Слова в алфавите $\{a,b,c\}$, содержащие чётное число букв a: $((b|c)^*a(b|c)^*a)(b|c)^*$.
- ullet Слова в алфавите $\{a,b,c\}$, где перед a идёт только b: $((b|c)^*ba)^*(b|c)^*.$
- Непустые слова в алфавите $\{a,b\}$, в которых одинаковые буквы не идут подряд: $(a(ba)^*(b|1))|(b(ab)^*(a|1))$

- Все слова в алфавите $\{a,b\}$: $(a|b)^*$,
- ullet Слова в алфавите $\{a,b,c\}$, где предпоследняя буква b: $(a|b|c)^*b(a|b|c)$.
- ullet Слова в алфавите $\{a,b,c\}$, содержащие ровно 2 буквы a: $(b|c)^*a(b|c)^*a(b|c)^*$.
- ullet Слова нечётной длины в алфавите $\{a,b\}$: $((a|b)(a|b))^*(a|b)$.
- Слова в алфавите $\{a,b,c\}$, содержащие чётное число букв a: $((b|c)^*a(b|c)^*a)(b|c)^*$.
- ullet Слова в алфавите $\{a,b,c\}$, где перед a идёт только b: $((b|c)^*ba)^*(b|c)^*$.
- Непустые слова в алфавите $\{a,b\}$, в которых одинаковые буквы не идут подряд: $(a(ba)^*(b|1))|(b(ab)^*(a|1))$.
- Слова в алфавите $\{a,b,c\}$, в которых одинаковые буквы не идут подряд:

- Все слова в алфавите $\{a, b\}$: $(a|b)^*$,
- ullet Слова в алфавите $\{a,b,c\}$, где предпоследняя буква b: $(a|b|c)^*b(a|b|c)$.
- ullet Слова в алфавите $\{a,b,c\}$, содержащие ровно 2 буквы a: $(b|c)^*a(b|c)^*a(b|c)^*$.
- ullet Слова нечётной длины в алфавите $\{a,b\}$: $((a|b)(a|b))^*(a|b)$.
- Слова в алфавите $\{a,b,c\}$, содержащие чётное число букв a: $((b|c)^*a(b|c)^*a)(b|c)^*$.
- ullet Слова в алфавите $\{a,b,c\}$, где перед a идёт только b: $((b|c)^*ba)^*(b|c)^*.$
- Непустые слова в алфавите $\{a,b\}$, в которых одинаковые буквы не идут подряд: $(a(ba)^*(b|1))|(b(ab)^*(a|1))$.
- Слова в алфавите $\{a,b,c\}$, в которых одинаковые буквы не идут подряд: $(H|1)(cH)^*(1|c)$, где H ответ на предыдущий пункт.

- Корректное разбиение на слоги:
 - ullet В каждом слоге ровно одна гласная: $C^*(V|\overline{V})C^*$.
 - Ровно один слог ударный.

- Корректное разбиение на слоги:
 - ullet В каждом слоге ровно одна гласная: $C^*(V|\overline{V})C^*$.
 - Ровно один слог ударный.
 - ullet Пусть X ударный слог, Y безударный, тогда искомое выражение $(Y-)^*[(X-(Y-)^*Y)|X]$.

- Корректное разбиение на слоги:
 - ullet В каждом слоге ровно одна гласная: $C^*(V|\overline{V})C^*$.
 - Ровно один слог ударный.
 - Пусть X ударный слог, Y безударный, тогда искомое выражение $(Y-)^*[(X-(Y-)^*Y)|X]$.
 - Эквивалентно $(Y-)^*X(-Y)^*=(C^*VC^*-)^*C^*\overline{V}C^*(-C^*VC^*)^*$.

- Корректное разбиение на слоги:
 - ullet В каждом слоге ровно одна гласная: $C^*(V|\overline{V})C^*$.
 - Ровно один слог ударный.
 - Пусть X ударный слог, Y безударный, тогда искомое выражение $(Y-)^*[(X-(Y-)^*Y)|X]$.
 - Эквивалентно $(Y-)^*X(-Y)^* = (C^*VC^*-)^*C^*\overline{V}C^*(-C^*VC^*)^*$.
- Разбиение слова на слоги, содержащее ровно 1 открытый слог (ударность не учитывается).

- Корректное разбиение на слоги:
 - ullet В каждом слоге ровно одна гласная: $C^*(V|\overline{V})C^*$.
 - Ровно один слог ударный.
 - Пусть X ударный слог, Y безударный, тогда искомое выражение $(Y-)^*[(X-(Y-)^*Y)|X]$.
 - Эквивалентно $(Y-)^*X(-Y)^* = (C^*VC^*-)^*C^*\overline{V}C^*(-C^*VC^*)^*$.
- Разбиение слова на слоги, содержащее ровно 1 открытый слог (ударность не учитывается). $(C^*VC^+-)^*(C^*V)(-C^*VC^+)^*$

- Корректное разбиение на слоги:
 - ullet В каждом слоге ровно одна гласная: $C^*(V|\overline{V})C^*$.
 - Ровно один слог ударный.
 - Пусть X ударный слог, Y безударный, тогда искомое выражение $(Y-)^*[(X-(Y-)^*Y)|X]$.
 - Эквивалентно $(Y-)^*X(-Y)^*=(C^*VC^*-)^*C^*\overline{V}C^*(-C^*VC^*)^*$
- Разбиение слова на слоги, содержащее ровно 1 открытый слог (ударность не учитывается). $(C^*VC^+-)^*(C^*V)(-C^*VC^+)^*$
- "Гармония гласных" (гласные типа V_1 и V_2 не встречаются вместе): $(C|V)^*(V_1(C|V_1|V)^*|V_2(C|V_2|V)^*)$

- Множественное число существительного в английском:
 - -es после шипящих (s, x, z, ch, sh, zh).
 - ullet -y после согласных перед -s переходит в -ie.

- Множественное число существительного в английском:
 - *-es* после шипящих (*s*, *x*, *z*, *ch*, *sh*, *zh*).
 - ullet -y после согласных перед -s переходит в -ie.
- Удобней разбирать witches = witche+s, enemies = enemie+s.

- Множественное число существительного в английском:
 - -es после шипящих (s, x, z, ch, sh, zh).
 - ullet -y после согласных перед -s переходит в -ie.
- Удобней разбирать witches = witche+s, enemies = enemie+s.
- ullet Искомое выражение $X=\mathit{Ys}$, где Y- выражение для основы.

- Множественное число существительного в английском:
 - -es после шипящих (s, x, z, ch, sh, zh).
 - ullet -y после согласных перед -s переходит в -ie.
- ullet Удобней разбирать witches = witche+s, enemies = enemie+s.
- ullet Искомое выражение $X=\mathit{Ys}$, где Y- выражение для основы.
- ullet Основа всё, что не кончается на $s, x, z, ch, sh, zh, {\it Cy}.$

- Множественное число существительного в английском:
 - -es после шипящих (s, x, z, ch, sh, zh).
 - ullet -y после согласных перед -s переходит в -ie.
- ullet Удобней разбирать witches = witche+s, enemies = enemie+s.
- ullet Искомое выражение X=Ys, где Y- выражение для основы.
- ullet Основа всё, что не кончается на $s,\ x,\ z,\ ch,\ sh,\ zh,\ {\it Cy}.$
- Хочется задать отрицание условия...

- Множественное число существительного в английском:
 - -es после шипящих (s, x, z, ch, sh, zh).
 - ullet -y после согласных перед -s переходит в -ie.
- ullet Удобней разбирать witches = witche+s, enemies = enemie+s.
- ullet Искомое выражение $X=\mathit{Ys}$, где Y- выражение для основы.
- ullet Основа всё, что не кончается на $s, x, z, ch, sh, zh, {\it Cy}.$
- Хочется задать отрицание условия...
- Симулируется через перечисление.

• Корректная основа:

- Корректная основа:
 - Заканчивается на гласный, не равный $y: (C|V)^*(a|e|i|o|u)$.

- Корректная основа:
 - Заканчивается на гласный, не равный $y: (C|V)^*(a|e|i|o|u)$.
 - Заканчивается на гласный+y: $(C|V)^*Vy$.

- Корректная основа:
 - Заканчивается на гласный, не равный y: $(C|V)^*(a|e|i|o|u)$.
 - Заканчивается на гласный +y: $(C|V)^*Vy$.
 - Содержит гласный и заканчивается на согласный, но не на s,x,z,h (\mathbf{C}' полный список таких согласных): $(C|V)^*V(C|V)^*C'$

- Корректная основа:
 - ullet Заканчивается на гласный, не равный $y\colon (C|V)^*(a|e|i|o|u)$.
 - Заканчивается на гласный+y: $(C|V)^*Vy$.
 - Содержит гласный и заканчивается на согласный, но не на s,x,z,h (\mathbf{C}' полный список таких согласных): $(C|V)^*V(C|V)^*C'$
 - Содержит гласный и заканчивается на h или C''h, где C'' обозначает любой согласный, кроме s, c, h: $(C|V)^*V((C|V)^*C'')$?h

- Корректная основа:
 - ullet Заканчивается на гласный, не равный y: $(C|V)^*(a|e|i|o|u)$.
 - Заканчивается на гласный+y: $(C|V)^*Vy$.
 - Содержит гласный и заканчивается на согласный, но не на s,x,z,h (\mathbf{C}' полный список таких согласных): $(C|V)^*V(C|V)^*C'$
 - Содержит гласный и заканчивается на h или C''h, где C'' обозначает любой согласный, кроме s, c, h: $(C|V)^*V((C|V)^*C'')$?h
- Всё вместе: $(C|V)^*((a|e|i|o|u|Vy) | V(h|(C|V)^*(C'|C''h))s$.

Определение конечного автомата

Пусть Σ — конечный алфавит.

Определение конечного автомата

Конечный автомат: кортеж $M=\langle Q, \Sigma, \Delta, q_0, F
angle$, где

Определение конечного автомата

Пусть Σ — конечный алфавит.

Определение конечного автомата

Конечный автомат: кортеж $M=\langle Q, \Sigma, \Delta, q_0, F
angle$, где

• Q — конечное множество состояний

Определение конечного автомата

Пусть Σ — конечный алфавит.

Определение конечного автомата

Конечный автомат: кортеж $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$, где

- Q конечное множество состояний
- $\Delta \subseteq Q imes (\Sigma \cup \{arepsilon\}) imes Q$ конечное множество переходов

Определение конечного автомата

Пусть Σ — конечный алфавит.

Определение конечного автомата

Конечный автомат: кортеж $M=\langle Q, \Sigma, \Delta, q_0, F
angle$, где

- Q конечное множество состояний
- $\Delta \subseteq Q imes (\Sigma \cup \{arepsilon\}) imes Q$ конечное множество переходов
- ullet $q_0\in Q$ стартовое состояние
- ullet $F\subseteq Q$ завершающие состояния.

Определение конечного автомата

Пусть Σ — конечный алфавит.

Определение конечного автомата

Конечный автомат: кортеж $M=\langle Q, \Sigma, \Delta, q_0, F
angle$, где

- Q конечное множество состояний
- $\Delta \subseteq Q imes (\Sigma \cup \{arepsilon\}) imes Q$ конечное множество переходов
- ullet $q_0 \in Q$ стартовое состояние
- ullet $F\subseteq Q$ завершающие состояния.

Неформально, конечный автомат — граф с выделенными стартовой и заверщающими вершинами, рёбра которого помечены символами алфавита или пустым словом.

Определение конечного автомата

Пусть Σ — конечный алфавит.

Определение конечного автомата

Конечный автомат: кортеж $M=\langle Q, \Sigma, \Delta, q_0, F
angle$, где

- Q конечное множество состояний
- $\Delta \subseteq Q imes (\Sigma \cup \{arepsilon\}) imes Q$ конечное множество переходов
- ullet $q_0 \in Q$ стартовое состояние
- ullet $F\subseteq Q$ завершающие состояния.

Неформально, конечный автомат — граф с выделенными стартовой и заверщающими вершинами, рёбра которого помечены символами алфавита или пустым словом.

L(M) — метки путей из начального состояния в завершающие. Язык автоматный — задаётся некоторым конечным автоматом.

Примеры конечных автоматов

• Закрытый слог

Примеры конечных автоматов

• Закрытый слог

Примеры конечных автоматов

• Закрытый слог

• Слово с 2 гласными, разделёнными хотя бы одним согласным:

Примеры конечных автоматов

• Закрытый слог

• Слово с 2 гласными, разделёнными хотя бы одним согласным:

Примеры конечных автоматов

• Закрытый слог

• Слово с 2 гласными, разделёнными хотя бы одним согласным:

• Слогоделение ровно с одним открытым слогом:

Примеры конечных автоматов

• Закрытый слог

• Слово с 2 гласными, разделёнными хотя бы одним согласным:

• Слогоделение ровно с одним открытым слогом:

Конечные автоматы: примеры

ullet Каждой a непосредственно предшествует b, алфавит a,b,c.

Конечные автоматы: примеры

ullet Каждой a непосредственно предшествует b, алфавит a,b,c.

Конечные автоматы: примеры

ullet Каждой a непосредственно предшествует b, алфавит a,b,c.

• Справа от каждой a есть парная ей b, между парными буквами нет a, c, алфавит a, b, c, d.

Конечные автоматы: примеры

ullet Каждой a непосредственно предшествует b, алфавит a,b,c.

• Справа от каждой a есть парная ей b, между парными буквами нет a, c, алфавит a, b, c, d.

Конечные автоматы: примеры

Нет повторяющихся букв, алфавит a, b, c. Состояния соответствуют буквам:

Конечные автоматы: примеры

ullet Формы множественного числа представимы в виде $\mathrm{stem}+\mathrm{s}$, где

Конечные автоматы: примеры

- ullet Формы множественного числа представимы в виде ${
 m stem}$ + s, где
- stem обязательно содержит гласную и не кончается на:
 -s, -x, -z, -sh, -ch, -zh (шипящие).

 - Cv.

Конечные автоматы: примеры

- ullet Формы множественного числа представимы в виде ${
 m stem}$ + s, где
- stem обязательно содержит гласную и не кончается на: • -s, -x, -z, -sh, -ch, -zh (шипящие).
 - -s, -x, -z, -sh, -ch, -zh (шипящие).
 Су.
- Автомат для основ

$$(C_0 = C - \{s, x, z, c, h\}, C_1 = C_0 \cup \{s, x, z\})$$
:

Автоматы с однобуквенными переходами

Теорема

Каждый автоматный язык распознаётся автоматом с однобуквенными переходами.

Автоматы с однобуквенными переходами

Теорема

Каждый автоматный язык распознаётся автоматом с однобуквенными переходами.

- Сделать завершающими все состояния, из которых достижимо по ε (возможно, за несколько шагов) другое завершающее.
- Добавить все рёбра вида $\langle q_1,a \rangle o q_2$,для которых существуют состояние q_3 , такое что есть ребро $(\langle q_3,a \rangle o q_2) \in \Delta$ и arepsilon-путь из q_1 в q_3 .
- ullet Удалить arepsilon-рёбра.

Определение

Автомат с однобуквенными переходами — детерминированный, если ни из какого состояния не выходит двух рёбер, помеченных одинаковыми буквами.

Теорема

Каждый автоматный язык распознаётся детерминированным автоматом.

Определение

Автомат с однобуквенными переходами — детерминированный, если ни из какого состояния не выходит двух рёбер, помеченных одинаковыми буквами.

Теорема

Каждый автоматный язык распознаётся детерминированным автоматом.

Схема доказательства

• Новые состояния — множества старых состояний.

Определение

Автомат с однобуквенными переходами — детерминированный, если ни из какого состояния не выходит двух рёбер, помеченных одинаковыми буквами.

Теорема

Каждый автоматный язык распознаётся детерминированным автоматом.

- Новые состояния множества старых состояний.
- Ребро, помеченное a, ведёт из Q_1 в Q_2 , если Q_2 содержит в точности состояния,достижимые из Q_1 по a.

Определение

Автомат с однобуквенными переходами — детерминированный, если ни из какого состояния не выходит двух рёбер, помеченных одинаковыми буквами.

Теорема

Каждый автоматный язык распознаётся детерминированным автоматом.

- Новые состояния множества старых состояний.
- Ребро, помеченное a, ведёт из Q_1 в Q_2 , если Q_2 содержит в точности состояния,достижимые из Q_1 по a.
- ullet Стартовое множество состояний $Q_0=\{q_0\}.$

Определение

Автомат с однобуквенными переходами — детерминированный, если ни из какого состояния не выходит двух рёбер, помеченных одинаковыми буквами.

Теорема

Каждый автоматный язык распознаётся детерминированным автоматом.

- Новые состояния множества старых состояний.
- ullet Ребро, помеченное a, ведёт из Q_1 в Q_2 , если Q_2 содержит в точности состояния,достижимые из Q_1 по a.
- ullet Стартовое множество состояний $Q_0 = \{q_0\}.$
- Завершающие состояния: множества, содержащие хотя бы одно завершающее.

