

COMP110: Principles of Computing

4: Logic and memory

Learning outcomes

- Distinguish the basic types of logic gate
- ▶ Use logic gates to build simple circuits
- ► Explain how computer memory works

Logic gates

▶ Works with two values: True and FALSE

- Works with two values: True and False
- Foundation of the digital computer: represented in circuits as on and off

- Works with two values: True and False
- ► Foundation of the **digital computer**: represented in circuits as **on** and **off**
- ► Representing as 1 and 0 leads to binary notation

- Works with two values: True and False
- Foundation of the digital computer: represented in circuits as on and off
- ► Representing as 1 and 0 leads to binary notation
- One boolean value = one bit of information

- Works with two values: True and False
- Foundation of the digital computer: represented in circuits as on and off
- ► Representing as 1 and 0 leads to binary notation
- One boolean value = one bit of information
- Programmers use boolean logic for conditions in if and while statements

NOT A is TRUE if and only if A is FALSE

NOT A is TRUE if and only if A is FALSE

Α	пот А
False	TRUE
TRUE	False

NOT A is True if and only if A is False

Α	пот А
FALSE	TRUE
TRUE	False

A AND B is True
if and only if
both A and B are True

A AND B is TRUE
if and only if
both A and B are TRUE

Α	В	A and B
False	False	False
False	TRUE	False
True	False	False
True	TRUE	TRUE

A AND B is TRUE
if and only if
both A and B are TRUE

Α	В	A and B
False	False	False
False	TRUE	False
True	False	False
True	TRUE	True

Or

Or

A OR B is TRUE
if and only if
either A or B, or both, are TRUE

Or

A OR B is TRUE
if and only if
either A or B, or both, are TRUE

Α	В	A and B
False	False	False
False	TRUE	TRUE
True	False	TRUE
TRUE	TRUE	TRUE

A OR B is TRUE
if and only if
either A or B, or both, are TRUE

Α	В	A and B
False	False	False
False	TRUE	TRUE
True	False	TRUE
True	TRUE	TRUE

What is the value of

A AND $(B \cap C)$

when

A = TRUE

B = FALSE

 $C = \mathsf{TRUE}$

What is the value of

(NOT A) AND ($B ext{ OR } C$)

when

A = TRUE

B = FALSE

 $C = \mathsf{TRUE}$

For what values of A, B, C, D is

A AND NOT B AND NOT $(C \text{ OR } \overline{D}) = \text{True}$

What is the value of

A or not A

What is the value of

A AND NOT A

What is the value of

A or A

What is the value of

A and A

What expression is equivalent to this circuit?

Operation	Python	C family	Mathematic	CS
not A	not a	! a	$\neg A$ or \overline{A}	Ī

Operation	Python	C family	Mathematics
NOT A	not a	!a	$\neg A$ or \overline{A}
A and B	a and b	a && b	$A \wedge B$

Operation	Python	C family	Mathematics
NOT A	not a	!a	$\neg A$ or \overline{A}
A and B	a and b	a && b	$A \wedge B$
A or B	a or b	a b	$A \lor B$

Operation	Python	C family	Mathematics
NOT A	not a	!a	$\neg A$ or \overline{A}
A and B	a and b	a && b	$A \wedge B$
A or B	a or b	a b	$A \lor B$

Other operators can be expressed by combining these

A XOR B is TRUE
if and only if
either A or B, but not both, are TRUE

A XOR B is TRUE if and only if either A or B, but not both, are TRUE

Α	В	A and B
False	False	False
False	TRUE	TRUE
True	False	TRUE
True	TRUE	False

A XOR B is TRUE
if and only if
either A or B, but not both, are TRUE

Α	В	A and B
False	False	False
False	True	TRUE
True	False	TRUE
True	True	False

How can $A \times B$ be written using the operations AND, OR, NOT?

NAND , NOR , XNOR are the **negations** of AND , OR , XOR

NAND, NOR, XNOR are the **negations** of AND, OR, XOR

A NAND B = NOT (A AND B)A NOR B = NOT (A OR B)A XNOR B = NOT (A XOR B)

NAND, NOR, XNOR are the **negations** of AND, OR, XOR

A NAND B = NOT (A AND B)A NOR B = NOT (A OR B)A XNOR B = NOT (A XOR B)

