TensorFlow Cheatsheet October 4, 2024

1 Introduction

TensorFlow is an open-source library for numerical computation and ma-1 # Reshaping chine learning, especially deep learning. It allows for the creation and training of neural networks with flexible architecture.

1.1 Installation

pip install tensorflow

1.2 Importing TensorFlow

import tensorflow as tf

2 Tensors

2.1 Creating Tensors

```
# Scalar
scalar = tf.constant(7)
# Vector
vector = tf.constant([1, 2, 3])
# Matrix
matrix = tf.constant([[1, 2], [3, 4]])
# Random Tensor
tensor = tf.random.normal((3, 3))
```

2.2 Tensor Attributes

```
tensor.shape # Shape of tensor
tensor.dtype # Data type
```

3 Tensor Operations

3.1 Mathematical Operations

```
1 a = tf.constant([1, 2, 3])
2 b = tf.constant([4, 5, 6])
3
4 add = a + b
5 sub = a - b
6 mult = a * b
7 div = a / b
8
9 # Matrix Multiplication
10 mat_mult = tf.matmul(a[tf.newaxis, :], b[:, tf.newaxis])
```

3.2 Tensor Manipulation

```
1 # Reshaping
2 reshaped = tf.reshape(a, (3, 1))
3 # Slicing
4 slice_a = a[0:2]
5 # Concatenation
6 concatenated = tf.concat([a, b], axis=0)
```

4 Building Models

4.1 Sequential Model

4.2 Compiling the Model

5 Training Models

5.1 Data Preparation

Assuming X_train and y_train are prepared

5.2 Model Fitting

```
model.fit(X_train, y_train, epochs=10,
     validation_split=0.2)
6 Evaluating Models
```

6.1 Model Evaluation

```
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Loss: {loss}, Accuracy: {accuracy}')
```

6.2 Making Predictions

```
predictions = model.predict(X_new)
```

7 Advanced Topics

7.1 Custom Layers

7.2 Callbacks