群論 (第6回)

6. 群の準同型

今回は群の準同型について解説します.

定義 6-1(準同型)

群の間の写像 $f:G_1 \longrightarrow G_2$ が**準同型**とは

$$f(xy) = f(x)f(y) \quad (\forall x, \forall y \in G_1)$$

を満たすことである. また, このとき,

$$\ker f = \{x \in G_1 \mid f(x) = 1_{G_2}\}, \quad \operatorname{Im} f = \{f(x) \mid x \in G_1\}.$$

と置き, $\ker f$ を f の核, $\operatorname{Im} f$ を f の像と言う.

定義から準同型は群の演算を保つような写像と言えます. では、例題で準同型の例を確認しておきます.

例題 6-1

写像 $f: \mathbb{R}^2 \longrightarrow \mathbb{R} ((x,y) \longmapsto x-y)$ は準同型であり、 さらに ker f と Imf を求めよ.

[証明]

copyright ⓒ 大学数学の授業ノート

 $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ に対して,

$$f((x_1, y_1) + (x_2, y_2)) = f((x_1 + x_2, y_1 + y_2))$$

$$= (x_1 + x_2) - (y_1 + y_2)$$

$$= (x_1 - y_1) + (x_2 - y_2)$$

$$= f((x_1, y_1)) + f((x_2, y_2)).$$

従って f は準同型である. また

$$\ker f = \{(x, y) \in \mathbb{R}^2 \mid x - y = 0\} = \{(t, t) \mid t \in \mathbb{R}\}.$$

次に $y \in \mathbb{R}$ に対して, P = (y,0) と置くと, f(P) = f((y,0)) = y. よって f は全射. 特に $\mathrm{Im} f = \mathbb{R}$.

問題 6-1 $f: \mathbb{C}^{\times} \longrightarrow \mathbb{R}$ $(x \longmapsto \log |x|)$ が準同型であることを示せ. また $\ker f$ と $\mathrm{Im} f$ を求めよ.

問題 6-2 $f: \mathbb{Z}^3 \to \mathbb{Z} ((x,y,z) \mapsto x - 2y - 2z)$ を考える.

- (1) f が準同型であることを示せ.
- (2) 集合 M を

$$M = \{(x, y, z) \in \ker f \mid x^2 + y^2 + z^2 < 4\}$$

で定めるとき、Mに含まれる元をすべて求めよ.

次に準同型の性質についてみます.

定理 6-1

群の間の準同型 $f: G_1 \longrightarrow G_2$ について次が成り立つ.

- (1) $f(1_{G_1}) = 1_{G_2}$.
- (2) $x \in G_1$ に対して $f(x^{-1}) = f(x)^{-1}$.
- (3) ker f は G_1 の部分群.
- (4) $\operatorname{Im} f$ は G_2 の部分群.
- (5) $\ker f = \{1_{G_1}\} \iff f$ が単射.

[証明]

(1) f は準同型より, $f(1_{G_1})=f(1_{G_1}\cdot 1_{G_1})=f(1_{G_1})f(1_{G_1})$. この両辺に $f(1_{G_1})^{-1}$ をかけると, $1_{G_2}=f(1_{G_1})$ を得る.

(2) $f(x)f(x^{-1})=f(xx^{-1})=f(1_{G_1})=1_{G_2}$. この両辺に左から $f(x)^{-1}$ をかけると $f(x^{-1})=f(x)^{-1}$ を得る.

- (3) について.

 - (ii) $x_1,x_2 \in \ker f$ とすると、 $f(x_1) = f(x_2) = 1_{G_2}$. よって、 $f(x_1x_2) = f(x_1)f(x_2) = 1_{G_2}$ であるから、 $x_1x_2 \in \ker f$.
- (iii) $x \in \ker f$ を取る. $f(x) = 1_{G_2}$ より $f(x^{-1}) = f(x)^{-1} = 1_{G_2}^{-1} = 1_{G_2}$. 従って, $x^{-1} \in \ker f$. 以上より $\ker f$ は G_1 の部分群である.
- (4) 問題 6-3 を参照のこと.
- (5) f が単射と仮定する. $x \in \ker f$ とすると, $1_{G_1} \in \ker f$ より $f(x) = 1_{G_2} = f(1_{G_1})$. 仮定から f は単射なので $x = 1_{G_1}$. よって $\ker f = \{1_{G_1}\}$.

逆に $\ker f = \{1_{G_1}\}$ を仮定する. $x, y \in G_1(f(x) = f(y))$ とすると,

$$1_{G_2} = f(x)f(y)^{-1} = f(x)f(y^{-1}) = f(xy^{-1}).$$

よって $xy^{-1} \in \ker f = \{1_{G_1}\}$. これより $xy^{-1} = 1_{G_1}$ であり, x = y が従う. 従って f は単射.

問題 6-3 定理 6-1 (4) を示せ.

問題 6-4 群の単射準同型 $f:G_1 \to G_2$ と $a \in G_1$ を考える. このとき, |f(a)| = |a| を示せ.