Probabilistic Combination of Classifier and Cluster Ensembles for Non-transductive Learning

Ayan Acharya, Eduardo R. Hruschka, Joydeep Ghosh, Badrul Sarwar, Jean-David Ruvini

Dept. of ECE, UT Austin

May 3, 2013

Motivations and Applications

Motivations?

- Unsupervised models provide a variety of supplementary constraints for classifying new data.
- Similar new instances in the target set are more likely to share the same class label.

Applications?

- Improve performance given "weak" classifiers/few labeled data.
- Semi-supervised and transfer learning.

Pedagogical Example

Figure: Class Labels from the Classifier Ensemble.

Figure: Class Labels from BC³E.

Overview of BC³E

Bayesian Combination of Classifier and Clustering Ensemble

Overview of BC³E – continued

	$\mathbf{w}_1^{(1)}$	$\mathbf{w}_{2}^{(1)}$	 $\mathbf{w}_{r_1}^{(1)}$
\mathbf{x}_1	2	3	 1
x ₂	1	3	 1
×Ν	2	3	 3

Table: From Classifiers

	$\mathbf{w}_{1}^{(2)}$	$\mathbf{w}_{2}^{(2)}$		$\mathbf{w}_{r_2}^{(2)}$
\mathbf{x}_1	4	5		4
x ₂	2	4		4
• • • •				
×Ν	2	4	• • •	2

Table: From Clustering Algorithms

Limitations of Earlier Methods

- C^3E (Acharya *et. al.*, 2012) has a tuning parameter α which controls how much weight the unsupervised information should be assigned not always suitable for transfer learning applications.
- LWE (Gao *et. al.*, 2008) is relatively insensitive to such parameter tuning but performance is inferior.
- Neither of the above two methods offer privacy w.r.t. the class/cluster labels.

Background – Bayesian Clustering Ensemble (BCE)

Figure: Graphical Model for BCE (Wang et. al., 2011)

- **①** Choose $\theta_n \sim \mathsf{Dir}(\alpha)$.
- **②** $\forall m \in \{1, 2, \dots, r_2\}.$
 - Choose $\mathbf{z}_{nm} \sim \text{multinomial}(\boldsymbol{\theta}_n)$ where \mathbf{z}_{nm} is a vector of dimension k with only one component being unity and others being zero.
 - **Q** Choose $w_{nm}^{(2)} \sim \text{multinomial}(\boldsymbol{\beta}_{r\mathbf{z}_{nm}}).$

Graphical Model of BC³E

$$f(\mathbf{y}_n) = \left(\frac{\exp(y_{ni})}{\sum_i \exp(y_{ni})}\right)_{i=1}^k$$
 is the softmax function.

→ □ ト ← □ ト ← 重 ト → 重 → りへで

Generative Process of BC³E

- For each $\mathbf{x}_n \in \mathcal{X}$, choose $\mathbf{y}_n \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} \in \mathbb{R}^k$ is the mean and $\boldsymbol{\Sigma} \in \mathbb{R}^{k \times k}$ is the covariance.
- Choose $\theta_n \sim \mathcal{N}(\mathbf{y}_n, \delta^2 I_k)$, where $\delta^2 \geq 0$ is the scaling factor of the covariance of the normal distribution centered at \mathbf{y}_n , and I_k is the identity $k \times k$ matrix.
- $\forall I \in \{1, 2, \dots, r_1\}$, choose $\mathbf{w}_{nI}^{(1)} \sim f(\mathbf{y}_n)$.
- $\bullet \ \forall m \in \{1, 2, \cdots, r_2\}:$
 - ① Choose $\mathbf{z}_{nm} \sim f(\boldsymbol{\theta}_n)$, where \mathbf{z}_{nm} is a k-dimensional vector with 1-of-k representation.
 - **2** Choose $\mathbf{w}_{nm}^{(2)} \sim \text{multinomial}(\beta_{r\mathbf{z}_{nm}})$.

Distributions of BC³E

Joint Distribution of BC³E:

$$p(\mathbf{X}, \mathbf{Z}|\zeta_0) = \prod_{n=1}^{N} p(\mathbf{y}_n|\boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{\theta}_n|\mathbf{y}_n, \delta^2 I_k) \prod_{l=1}^{r_1} p(w_{nl}^{(1)}|f(\mathbf{y}_n)) (1)$$
$$\prod_{m=1}^{r_2} p(\mathbf{z}_{nm}|f(\boldsymbol{\theta}_n)) p(w_{nm}^{(2)}|\boldsymbol{\beta}, \mathbf{z}_{nm}).$$

• Variational Distribution of BC³E:

$$q(\mathbf{Z}|\{\zeta_n\}_{n=1}^N) = \prod_{n=1}^N q(\mathbf{y}_n|\boldsymbol{\mu}_n, \boldsymbol{\Sigma}_n) q(\boldsymbol{\theta}_n|\boldsymbol{\epsilon}_n, \boldsymbol{\Delta}_n) \prod_{m=1}^{r_2} q(\mathbf{z}_{nm}|\boldsymbol{\phi}_{nm}).$$
(2)

Updates in BC³E

$$\mathcal{L}_{[\mu_n]} = -\frac{1}{2} \sum_{i=1}^k \frac{(\mu_{ni} - \mu_i)^2}{\sigma_i^2} - \frac{1}{2\delta^2} \sum_{i=1}^k (\mu_{ni} - \epsilon_{ni})^2$$

$$+ \sum_{l=1}^{r_1} \sum_{i=1}^k w_{nli}^{(1)} \mu_{ni} - \frac{r_1}{\xi_n} \sum_{i=1}^k \exp(\mu_{ni} + \sigma_{ni}^2/2).$$
(3)

$$\mathcal{L}_{[\epsilon_n]} = \sum_{m=1}^{r_2} \sum_{i=1}^k \phi_{nmi} \epsilon_{ni} - \frac{1}{\xi_n} \sum_{i=1}^k \exp(\epsilon_{ni} + \delta_{ni}^2/2)$$

$$- \frac{1}{2} \sum_{i=1}^k \frac{(\epsilon_{ni} - \mu_{ni})^2}{\delta^2}.$$
(4)

$$\phi_{nmi}^* \propto \exp\left(\epsilon_{ni} + \sum_{j=1}^{k^{(m)}} \beta_{mij} w_{nmj}^{(2)}\right).$$
 (5)

Distributed Learning Scenarios

Figure: Arbitrarily Distributed Ensemble

Parameter Updates in Distributed Learning

Dataset from eBay Inc.

Switch to advanced tool Help

Tell us what you're selling

Before you create your listing, tell us what you're selling and we'll help you choose the right category so buyers can find your item easily. We'll also look for similar items to give you a starting point for your listing.

Give us a title for your listing (include brand, size, color, material, etc.)

Start here

You can also enter the UPC or ISBN of your item

Go

Sell a vehicle or auto part | Sell tickets | Browse to find a category

Dataset from eBay Inc. - continued

39 top level nodes called *meta-categories* and 20K+ bottom level nodes called *leaf categories*.

Transfer learning on text data from eBay Inc.

Group ID	$ \mathcal{X} $	k-NN	BGCM	LWE	C ³ E-Ideal	BC ³ E
42	1299	64.90	73.78 (± 0.94)	76.86 (\pm 1.01)	83.99 (± 0.41)	83.68 (± 1.09)
84	611	63.67	69.23 (± 0.17)	75.24 (± 0.26)	81.18 (± 0.16)	76.27 (\pm 1.31)
86	2381	77.66	84.33 (± 2.74)	83.29 (± 1.02)	92.78 (± 0.35)	87.20 (± 0.91)
67	789	72.75	72.75 (± 0.07)	78.03 (± 0.72)	82.64 (± 0.82)	81.75 (± 1.37)
52	1076	76.95	77.01 (± 1.18)	77.49 (± 1.41)	88.38 (± 0.22)	85.04 (± 2.14)
99	827	84.04	85.12 (± 0.52)	86.90 (± 0.92)	91.54 (± 0.27)	91.17 (± 0.82)
48	3445	86.33	86.19 (± 0.25)	90.38 (± 1.03)	92.71 (± 0.31)	92.71 (± 1.16)
94	440	79.32	81.08 (± 0.73)	82.52 (± 0.83)	85.45 (± 0.09)	85.45 (± 0.79)
35	4907	82.41	82.10 (± 0.37)	85.08 (± 1.39)	88.16 (± 0.17)	88.22 (± 1.21)
45	1952	74.80	73.12 (± 0.81)	73.64 (± 1.68)	84.32 (± 0.23)	77.97 (± 0.47)

Table: Performance of BC^3E on text classification data — Avg. Accuracies \pm (Standard Deviations).

Semisupervised learning on UCI Data

Dataset (% of tr. data)	$ \mathcal{X} $	Ensemble	Best	BGCM	C³E	BC³E
Half-moon(2%)	784	92.53(±1.83)	93.02(±0.82)	92.16(±1.47)	99.64(±0.08)	98.23(±2.03)
Circles(2%)	1568	60.03(±8.44)	95.74(±5.15)	78.67(±0.54)	99.61(±0.83)	97.91(±0.74)
Pima(2%)	745	68.16(±5.05)	69.93(±3.68)	69.21(±4.83)	70.31(±4.44)	72.83 (±0.49)
Heart(7%)	251	77.77(±2.55)	79.22(±2.20)	82.78(±4.82)	82.85 (±5.25)	82.53(±1.14)
G. Numer(10%)	900	70.96(±1.00)	70.19(±1.52)	73.70(±1.06)	74.44(±3.44)	74.61 (±1.62)
Wine(10%)	900	79.87(±5.68)	80.37(±5.47)	75.37(±13.66)	83.62 (±6.27)	82.20(±1.07)

Table: Comparison of BC^3E with C^3E and BGCM — Avg. Accuracies \pm (Standard Deviations).

Questions?

References:

- An Optimization Framework for Semi-Supervised and Transfer Learning using Multiple Classifiers and Clusterers, Acharya et. al. [Link].
- Knowledge Transfer via Multiple Model Local Structure Mapping, Gao et. al. [Link].
- Bayesian Cluster Ensembles, Wang et. al. [Link].
- Probabilistic Combination of Classifier and Cluster Ensembles for Non-transductive Learning [Link].