Steam Turbine

Introduction

A steam turbine converts the energy of high-pressure, high temperature steam produced by a steam generator into shaft work. The energy conversion is brought about in the following ways:

- 1. The high-pressure, high-temperature steam first expands in the nozzles emanates as a high velocity fluid stream.
- 2. The high velocity steam coming out of the nozzles impinges on the blades mounted on a wheel. The fluid stream suffers a loss of momentum while flowing past the blades that is absorbed by the rotating wheel entailing production of torque.
- 3. The moving blades move as a result of the impulse of steam (caused by the change of momentum) and also as a result of expansion and acceleration of the steam relative to them. In other words they also act as the nozzles.

A steam turbine is basically an assembly of nozzles fixed to a stationary casing and rotating blades mounted on the wheels attached on a shaft in a row-wise manner. In 1878, a Swedish engineer, Carl G. P. de Laval developed a simple impulse turbine, using a convergent-divergent (supersonic) nozzle which ran the turbine to a maximum speed of 100,000 rpm. In 1897 he constructed a velocity-compounded impulse turbine (a two-row axial turbine with a row of guide vane stators between them.

Auguste Rateau in France started experiments with a de Laval turbine in 1894, and developed the pressure compounded impulse turbine in the year 1900.

In the USA, Charles G. Curtis patented the velocity compounded de Lavel turbine in 1896 and transferred his rights to General Electric in 1901.

In England, Charles A. Parsons developed a multi-stage axial flow reaction turbine in 1884.

Steam turbines are employed as the prime movers together with the electric generators in thermal and nuclear power plants to produce electricity. They are also used to propel large ships, ocean liners, submarines and to drive power absorbing machines like large compressors, blowers, fans and pumps.

Turbines can be condensing or non-condensing types depending on whether the back pressure is below or equal to the atmosphere pressure.

Flow Through Nozzles

A *nozzle* is a duct that increases the velocity of the flowing fluid at the expense of pressure drop. A duct which decreases the velocity of a fluid and causes a corresponding increase in pressure is a *diffuser*. The same duct may be either a nozzle or a diffuser depending upon the end conditions across it. If the cross-section of a duct decreases gradually from inlet to exit, the duct is said to be convergent. Conversely if the cross-section increases gradually from the inlet to exit, the duct is said to be divergent. If the cross-section initially decreases and then increases, the duct is called a convergent-divergent nozzle. The minimum cross-section of such ducts is known as throat. A fluid is said to be *compressible* if its density changes with the change in pressure brought about by the flow. If the density does not changes or changes very little, the fluid is said to be incompressible. Usually the gases and vapors are compressible, whereas liquids are *incompressible*.

Next |