Practice Set: 3

- 3.5.1. Use closure under union to show that the following languages are context-
 - (a) $\{a^mb^n: m \neq n\}$
 - (b) $\{a,b\}^* \{a^nb^n : n \ge 0\}$
 - (c) $\{a^m b^n c^p d^q : n = q, \text{ or } m \le p \text{ or } m + n = p + q\}$
 - (d) $\{a,b\}^* L$, where L is the language $L = \{babaabaaab \dots ba^{n-1}ba^nb : n \ge 1\}$ (e) $\{w \in \{a,b\}^* : w = w^R\}$

$$L = \{babaabaaab \dots ba^{n-1}ba^nb : n \ge 1\}$$

- 3.5.2. Use Theorems 3.5.2 and 3.5.3 to show that the following languages are not context-free.

 - (a) $\{a^p : p \text{ is a prime}\}$ (b) $\{a^{n^2} : n \ge 0\}$ (c) $\{www : w \in \{a, b\}^*\}$
 - (d) $\{w \in \{a, b, c\}^* : w \text{ has equal numbers of } a\text{'s, } b\text{'s, and } c\text{'s}\}$

3.6.1. Convert the context-free grammar G given in Example 3.1.3 generating arithmetic expressions into an equivalent context-free grammar in Chomsky normal form. Apply the dynamic programming algorithm for deciding whether the string $x = (\mathsf{id} + \mathsf{id} + \mathsf{id}) * (\mathsf{id})$ is in L(G).

3.6.2. How would you modify the dynamic programming algorithm in such a way that, when the input x is indeed in the language generated by G, then the algorithm produces an actual derivation of x in G?