	-						
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}}{(t_1 + 2k^2t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_1^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

Lagrangian density $ \begin{split} \text{-t}_1 \omega_{,\alpha}^{ \alpha \prime} \omega_{\kappa\alpha}^{ \kappa} - t_1 \omega_{,\kappa}^{ \kappa \lambda} \omega_{\kappa\lambda}^{ \prime} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 2 r_1 \partial_{,} \omega^{\kappa\lambda}_{ \kappa}^{ \lambda} - t_1 \omega_{,\alpha}^{ \kappa \lambda} + f^{\alpha\beta} \tau_{\alpha\beta}^{ \kappa} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}^{ \kappa} + 2 r_1 \partial_{,} \omega_{,\kappa}^{ \kappa}^{ \kappa} - \frac{2}{3} r_1 \partial_{,} \omega_{\alpha\beta}^{ \kappa}^{ \kappa} + \frac{2}{3} r_1 \partial_{,} \omega_{\alpha\beta}^{ \kappa}^{ \kappa}^{ \kappa} + \frac{2}{3} r_1 \partial_{,} \omega_{\alpha\beta}^{ \kappa}^{ \kappa}^{ \kappa} + \frac{2}{3} r_1 \partial_{,} \omega_{\alpha\beta}^{ \kappa}^{ \kappa}^{$
$t_{1} \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{,} + t_{1} \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa} f'_{,} + 2t_{1} \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{,} - t_{1} \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f'_{,} + 2t_{1} \omega_{\iota\kappa\theta} \partial^{\kappa} f'^{\theta} - t_{1} \omega_{\iota\alpha}^{\alpha} \partial^{\kappa} f'_{,} + t_{1} \omega_{\iota\lambda}^{\lambda} \partial^{\kappa} f'_{,} + t_{2} \omega_{\kappa\alpha}^{\beta} \partial^{\kappa} f_{\lambda\alpha} + t_{2} \omega_{\kappa\alpha}^{\beta} \partial^{\kappa} f'_{,} + t_{2} \omega_{\kappa\alpha}^{\beta} \partial^{\kappa}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

~ I							
$f_{1^-}^{\#2}$	0	0	0	$\bar{i} k t_1$	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{\imath}kt_1$
$f_{1}^{\#1}{}_{\!$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}_{+}{}_{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	- t 1	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
,	$_{1}^{\#1} + ^{\alpha\beta}$	$_{1}^{#2} + \alpha \beta$	$_{1}^{\#1}+^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} \dagger^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

	$\omega_{0^+}^{\sharp 1}$	$f_{0}^{\#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0^{-}}^{\sharp 1}$ †	0	0	0	$-t_1$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $k^2 t_1$

 $0 k^2 r_1 + \frac{t_1}{2}$

 $\omega_{2}^{\#1} \dagger^{\alpha\beta}$

 $\omega_2^{\#1} \dagger^{lphaeta\chi}$

 $f_{2+}^{\#1} \dagger^{\alpha\beta} \frac{i kt_1}{\sqrt{2}}$

Source constraints				
SO(3) irreps	#			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1^{-}}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{i}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total #:	16			

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$-\frac{1}{t_1}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_0^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ \dagger

	Massive particle		
?	Pole residue:	$-\frac{1}{r_1} > 0$	
$J^P = 2^-$	Polarisations:	5	
$\frac{1}{k^{\mu}}$?	Square mass:	$-\frac{t_1}{2r_1} > 0$	
?	Spin:	2	
	Parity:	Odd	

(No massless particles)