Equazioni differenziali del II ordine

1. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y'' - 5y' + 6y = 0\\ y(0) = 0\\ y'(0) = 1 \end{cases}$$

- **2.** Determinare l'integrale generale della seguente equazione differenziale: y'' 5y' + 6y = f(x), con a) f(x) = 7, b) $f(x) = e^x$, c) $f(x) = e^{2x}$.
- **3.** Sia y la soluzione del seguente problema di Cauchy:

$$\begin{cases} y'' - 5y' + 6y = 18x \\ y(0) = 1 \\ y'(0) = 0, \end{cases}$$

si calcoli y'(1).

- **4.** Determinare l'integrale generale della seguente equazione differenziale: y'' 4y' + 4y = 0.
- 5. Determinare l'integrale generale della seguente equazione differenziale: y'' + 3y = 0.
- **6.** Determinare l'integrale generale della seguente equazione differenziale: $y'' + 3y = x + 2\cos x$.
- 7. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y'' + 2y' + 3y = 0 \\ y(0) = 1 \\ y'(0) = 2 \end{cases}$$

- 8. Determinare l'integrale generale della seguente equazione differenziale: $y'' + 2y' + 3y = 2e^{3x}$.
- 9. Determinare una soluzione particolare della seguente equazione differenziale: $3y'' + 8y' + 4y = e^{-x} + \sin x$.

- 10. Determinare una soluzione particolare della seguente equazione differenziale: y'' 2y' + y = f(x), con a) $f(x) = x^3 6x^2$, b) $f(x) = e^x + e^{2x}$.
- 11. Determinare una soluzione particolare della seguente equazione differenziale: $y'' + y = \sin x$.
- 12. Determinare una soluzione particolare della seguente equazione differenziale: y'' + 5y' + 6y = f(x), con a) $f(x) = 2e^{-2x}$, b) $f(x) = \cos x$.
- 13. Determinare l'integrale generale della seguente equazione differenziale: $y'' + 4y = 4\cos 2x$.
- 14. Sia y la soluzione dell'equazione differenziale: y''+4y'+4y=0, tale che $\lim_{x\to +\infty}y'(x)e^{2x}=2$. Si determini y(0).
- 15. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y'' - 4y = 4e^{2x} \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$$

16. Risolvere il seguente problema di Cauchy:

$$\begin{cases} 4y'' + y = 1 \\ y(0) = 0 \\ y'(0) = 3 \end{cases}$$

17. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y'' + y = \cos 2x \\ y(\frac{\pi}{2}) = 0 \\ y'(\frac{\pi}{2}) = \frac{1}{2} \end{cases}$$

18. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y'' + 4y' = x \\ y(0) = 0 \\ y'(0) = \frac{1}{16}, \end{cases}$$

e tracciare il grafico della soluzione in un intorno di x=0.

- 19. Determinare l'integrale generale della seguente equazione differenziale: $y'' 3y' + 2y = 2x^3 x^2 + 1$.
- **20.** Determinare l'integrale generale della seguente equazione differenziale: $y'' + 4y' + 13y = \sin 3x$.
- **21.** a) Determinare $a, b \in \mathbb{R}$ tali che $y = xe^{-5x}$ sia soluzione di y'' + ay' + by = 0. b) Scrivere l'integrale generale dell'equazione coi valori di a e b trovati. c) Determinare la soluzione del problema di Cauchy con dati iniziali y(0) = 0, y'(0) = 2, e calcolarne l'ordine di infinitesimo per $x \to 0$.
- **22.** Determinare f(x) tale che la funzione $y(x) = 1 + \cos 4x$ sia soluzione dell'equazione y'' + 4y = f(x). Determinare l'integrale generale dell'equazione avente come termine noto la funzione f(x) trovata.
- **23.** Assegnata l'equazione differenziale y'' ay' = 0, con $a \neq 0$, dire come deve essere scelto il parametro reale a affinché tutte le soluzioni siano limitate per x > 0. Determinare poi l'integrale generale dell'equazione y'' ay' = x, e stabilirne il comportamento asintotico per $x \to +\infty$.
- **24.** Trovare la soluzione dell'equazione differenziale y'' + 4y' = x che passa per l'origine ed è tangente nell'origine alla retta $y = \frac{1}{16}x$. Tracciare inoltre un grafico locale nell'intorno di x = 0 e scrivere la formula di Mac-Laurin arrestata al IV ordine.

Soluzioni.

1.
$$y = -e^{2x} + e^{3x}$$
.

2. a)
$$y = c_1 e^{2x} + c_2 e^{3x} + \frac{7}{6}$$
, b) $y = c_1 e^{2x} + c_2 e^{3x} + \frac{1}{2} e^x$, c) $y = c_1 e^{2x} + c_2 e^{3x} - x e^{2x}$.

3.
$$y = -\frac{3}{2}e^{2x} + \frac{5}{2} + 3x$$
, $y'(1) = 3 - 3e^2$.

4. a)
$$y = c_1 e^{2x} + c_2 x e^{2x}$$
.

5. a)
$$y = c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x$$

6.
$$y = c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x + \frac{1}{3}x + \cos x$$
.

7.
$$y = e^{-x} \left(\cos \sqrt{2}x + \frac{3}{\sqrt{2}} \sin \sqrt{2}x \right)$$
.

8.
$$y = e^{-x} \left(c_1 \cos \sqrt{2}x + \sin \sqrt{2}x \right) + \frac{1}{9} e^{3x}$$
.

9.
$$\bar{y} = -e^{-x} - \frac{8}{65}\cos x + \frac{1}{65}\sin x$$
.

10. a)
$$\bar{y} = x^3 - 6x - 12$$
, b) $\bar{y} = \frac{1}{2}x^2e^x + e^{2x}$.

11.
$$y = -\frac{1}{2}x\cos x$$
.

12. a)
$$\bar{y} = 2xe^{-2x}$$
, b) $\bar{y} = \frac{1}{10}\cos x + \frac{1}{10}\sin x$.

13.
$$y = c_1 \cos 2x + c_2 \sin 2x + x \sin 2x$$
.

14.
$$y = -e^{-2x}$$
, $y(0) = -1$.

15.
$$y = xe^{2x}$$
.

16.
$$y = -\cos\frac{1}{2}x + 6\sin\frac{1}{2}x + 1.$$

17.
$$y = -\frac{1}{2}\cos x - \frac{1}{3}\sin x - \frac{1}{3}\cos 2x$$
.

18.
$$y = \frac{1}{32} \left(1 - e^{-4x} + 4x^2 - 2x \right)$$
, $y(0) = 0, y'(0) = \frac{1}{16}, y''(0) = -4y'(0) = -\frac{1}{4} < 0$, quindi la soluzione passa per l'origine, è tangente alla retta $y = \frac{1}{16}x$ e ha la concavità verso il basso.

19.
$$y = c_1 e^x + c_2 e^{2x} + x^3 + 4x^2 + 9x + 10$$

20.
$$y = e^{-2x}(c_1 \cos 3x + c_2 \sin 3x) - \frac{3}{40} \cos 3x + \frac{1}{40} \sin 3x$$
.

21. a)
$$a = 10, b = 25$$
. b) $y = c_1 e^{-5x} + c_2 x e^{-5x}$. c) $y = 2x e^{-5x} \sim 2x$ per $x \to 0$, l'ordine di infinitesimo è 1.

22.
$$f(x) = 4(1 - 3\cos 4x)$$
. $y = c_1\cos 2x + c_2\sin 2x + 1 + \cos 4x$.

- **23.** L'integrale generale del'equazione omogenea è $y(x) = c_1 e^{ax} + c_2$, le soluzioni sono limitate se a < 0. L'integrale generale dell'equazione completa è $y(x) = c_1 e^{ax} + c_2 \frac{1}{2a} x^2 \frac{1}{a^2} x$. Per $x \to +\infty$, $y \sim -\frac{1}{2a} x^2$ se a < 0, $y \sim c_1 e^{ax}$ se a > 0.
- **24.** $y(x) = \frac{1}{32}(1 e^{-4x} + 4x^2 2x), y''(0) = -4y'(0) = -\frac{1}{4}$, quindi la soluzione in un intorno di x = 0 è crescente e concava. Derivando l'equazione si ottiene $y'''(0) = 2, y^{(4)}(0) = -8$, quindi $y(x) = \frac{1}{16}x \frac{1}{8}x^2 + \frac{1}{3}x^3 \frac{1}{3}x^4 + o(x^4)$.