Математический анализ

Данил Заблоцкий

31 декабря 2023 г.

Оглавление

5	Дис	фференциальное исчисление функций многих перемен-	
	ных		2
	5.1	Производная по вектору	2
	5.2	Основные теоремы дифференциального исчисления функций	
		многих переменных	4
	5.3	Производные высших порядков	7
	5.4	Формула Тейлора	9
	5.5	Экстремумы функций многих переменных	11

Глава 5

Дифференциальное исчисление функций многих переменных

Лекция 1: Функции многих переменных

от 01 сен 10:28

Производная по вектору 5.1

Пусть $x = (x_1, x_2, x_3) = x(t), f(x(t)) = f(x_1, x_2, x_3),$ тогда:

$$\frac{df(x(t))}{dt} = \frac{\delta f}{\delta x_1} \cdot \frac{dx_1}{dt} + \frac{\delta f}{\delta x_2} \cdot \frac{dx_2}{dt} + \frac{\delta f}{\delta x_3} \cdot \frac{dx_3}{dt} =$$

$$= \frac{\delta f}{\delta x_1} \cdot v_1 + \frac{\delta f}{\delta x_2} \cdot v_2 + \frac{\delta f}{\delta x_3} \cdot v_3,$$

где $\vec{v} = \{v_1, v_2, v_3\}$ – скорость частицы, перемещающейся по γ -ну x(t).

Определение 1 (Производная функции по вектору). Пусть D в \mathbb{R}^n – область, $f:D\to\mathbb{R},\ x_0\in D,$ вектор $v\in T\mathbb{R}^n_{x_0}$ – касательное пространство к R^n в точке x_0 (совокупность всех векторов, исходящих из точки x_0). Производной функции f по вектору v называется величина

$$\dfrac{\delta f}{\delta \vec{v}} = D \vec{v} f(x_0) \coloneqq \lim_{t o 0} \dfrac{f(x_0 + tv) - f(x_0)}{t}, \; \text{если} \; \lim \exists.$$

Утверждение. Пусть $f:D\to\mathbb{R}$ – дифференцируемо в точке $x_0\in D$. Тогда $\forall \vec{v}\in T\mathbb{R}^n_{x_0}\exists \frac{\delta f}{\delta \vec{v}}(x_0):$ $\frac{\delta f}{\delta \vec{v}}(x_0)=\frac{\delta f}{\delta x_1}(x_0)\cdot v_1+\frac{\delta f}{\delta x_2}(x_0)\cdot v_2+\ldots+\frac{\delta f}{\delta x_n}(x_0)\cdot v_n=df(x_0)\cdot \vec{v},$

$$\frac{\delta f}{\delta \vec{v}}(x_0) = \frac{\delta f}{\delta x_1}(x_0) \cdot v_1 + \frac{\delta f}{\delta x_2}(x_0) \cdot v_2 + \ldots + \frac{\delta f}{\delta x_n}(x_0) \cdot v_n = df(x_0) \cdot \vec{v}$$

где $df(x_0) \cdot \vec{v}$ – скалярное произведение,

$$df(x_0) = \left\{ \frac{\delta f}{\delta x_1}(x_0), \frac{\delta f}{\delta x_2}(x_0), \dots, \frac{\delta f}{\delta x_n}(x_0) \right\},$$

$$\vec{v} = \{v_1, v_2, \dots, v_n\}$$

Доказательство. Рассмотрим отображение $\gamma:[0;1]\to\mathbb{R}^n$:

$$\vec{\gamma}(t) = \vec{x_0} + \vec{v} \cdot t \Leftrightarrow \vec{\gamma}(t) = \left\{ \begin{array}{l} x_1 = x_0^{(1)} + v_1 \cdot t \\ x_2 = x_0^{(2)} + v_2 \cdot t \\ \vdots \\ x_n = x_0^{(n)} + v_n \cdot t \end{array} \right\}, \quad t \in [0; 1]$$

Заметим, что $\gamma(t)$ дифференцируемо в точке $t=0\Rightarrow$ отображение $f\circ\gamma:[0;1]\to\mathbb{R}$ — дифференцируемо в точке t=0.

$$f \circ \gamma = f(\gamma(t)) \Rightarrow$$

$$\Rightarrow \frac{df(\gamma(t))}{dt}\Big|_{t=0} = \left(\frac{\delta f}{\delta x_1} \cdot \frac{dx_1}{dt} + \frac{\delta f}{\delta x_2} \cdot \frac{dx_2}{dt} + \dots + \frac{\delta f}{\delta x_n} \cdot \frac{dx_n}{dt}\right)\Big|_{t=0} =$$

$$= \left(\frac{\delta f}{\delta x_1} \cdot v_1 + \frac{\delta f}{\delta x_2} \cdot v_2 + \dots + \frac{\delta f}{\delta x_n} \cdot v_n\right)\Big|_{t=0} = df(\gamma(0)) \cdot \vec{v}$$

Если f дифференцируемо в точке $x_0 \Rightarrow \forall \vec{\gamma}(t) = \vec{x_0} + \vec{v} \cdot t$:

$$\frac{df(\gamma(t))}{dt} := \lim_{t \to 0} \frac{f(x_0 + v \cdot t) - f(x_0)}{t} = \frac{\delta f}{\delta \vec{v}}(x_0)$$

Утверждение (Известно из алгебры). Если $L:\mathbb{R}^n \to \mathbb{R}$ – линейное, то $\exists ! \vec{a} \in \mathbb{R}^n : \forall x \in \mathbb{R}^n$

$$L(x) = \vec{a} \cdot \vec{x},$$

$$(L(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 L(x_1) + \lambda_2 L(x_2))$$

где $\vec{a}\cdot\vec{x}$ – скалярное произведение.

Определение 2 (Градиент функции в точке). Пусть $f: D \to \mathbb{R}, D$ – область в \mathbb{R}^n , f – дифференцируема в точке $x \in D$. Вектор $\vec{a} \in \mathbb{R}^n$:

$$df(x) \cdot h = \vec{a} \cdot h, \quad h \in \mathbb{R}$$

называется градиентом функции f в точке $x \in \mathbb{R}^n$ и обозначается

Если в \mathbb{R}^n зафиксировать ортонормированный базис, то

$$gradf(x) = \left\{ \frac{\delta f}{\delta x_1}(x), \frac{\delta f}{\delta x_2}(x), \dots, \frac{\delta f}{\delta x_n}(x) \right\}$$

Определение 3 (Производная по направлению вектора). Если $\vec{v} \in T\mathbb{R}^n_{x_0}$, $|\vec{v}|=1$, то $\frac{\delta f}{\delta \vec{v}}(x)$ называется производной по направлению вектора \vec{v} .

Пример.

$$\begin{cases} \cos\alpha = \cos\langle\vec{v},0x\rangle \\ \cos\beta = \cos\langle\vec{v},0y\rangle \end{cases} - направляющие косинусы$$

Рис. 5.1: $\vec{v} = \{\cos \alpha, \cos \beta\}$

Так как при данных условиях $\vec{v} = \{\cos \alpha_1, \cos \alpha_2, \dots, \cos \alpha_n\}$:

$$\frac{\delta f}{\delta \vec{v}}(x) = \frac{\delta f}{\delta x_1} \cdot \cos \alpha_1 + \ldots + \frac{\delta f}{\delta x_n} \cdot \cos \alpha_n.$$

Смысл градиента: градиент показывает направление самого быстрого возрастания функции.

5.2 Основные теоремы дифференциального исчисления функций многих переменных

Теорема 1 (О среднем). Пусть D — область в \mathbb{R}^n , $x \in D$, $x + h \in D$, $[x, x + h] \subset D$, $f : D \to \mathbb{R}$ — дифференцируемо на (x, x + h) и непрерывно на [x, x + h]. Тогда $\exists \xi \in (x, x + h)$:

$$f(x+h) - f(x) = f'(\xi) \cdot h = \frac{\delta f}{\delta x_1}(\xi) \cdot h^1 + \frac{\delta f}{\delta x_2}(\xi) \cdot h^2 + \dots + \frac{\delta f}{\delta x_n}(\xi) \cdot h^n,$$

где $\{1,2,\ldots,n\}$ над h – индексы.

Доказательство. Рассмотрим отображение $\gamma:[0;1]\to D,$ определен-

$$\gamma(t) = x + t \cdot h, \quad \gamma(t) = \begin{cases} x_1(t) = x_1 + t \cdot h^1 \\ x_2(t) = x_2 + t \cdot h^2 \\ \vdots \\ x_n(t) = x_n + t \cdot h^n \end{cases},$$

$$x = (x_1, x_2, \dots, x_n), \quad h = \{h^1, h^2, \dots, h^n\}, \ t \in [0; 1],$$

$$\gamma(0) = x,$$

$$\gamma(1) = x + h , \quad [0; 1] \xrightarrow{\gamma} [x; x + h].$$

Заметим, что gamma(t) дифференцируемо на (0;1), непрерывно на [0; 1], причем $(x_i(t))' = h^i$.

Рассмотрим функцию $F(t) = f(\gamma(t)), F: [0;1] \to \mathbb{R}$. Имеем:

- 1. F дифференцируема на (0;1) (как композиция двух дифференцируемых).
- 2. F непрерывна на [0;1] (как композиция двух непрерывных).

Следовательно, по теореме Лагранжа:

$$F(1) - F(0) = F'(\tau) \cdot (1 - 0), \ \tau \in (0; 1)$$

$$f(x + h) - f(x) = \left(f(\gamma(\tau))\right)' \cdot 1$$

$$\left(f(\gamma(\tau))\right)' \cdot 1 = f'(\gamma(\tau)) \cdot \gamma'(\tau) = \frac{\delta f}{\delta x_1} \cdot h' + \frac{\delta f}{\delta x_2} \cdot h_2 + \dots + \frac{\delta f}{\delta x_n} \cdot h^n.$$

Пусть
$$\gamma(\tau) = \xi \in D$$
, тогда:
$$f(x+h) - f(x) = \begin{pmatrix} \frac{\delta f}{\delta x_1}(\xi) & \frac{\delta f}{\delta x_2}(\xi) & \cdots & \frac{\delta f}{\delta x_n}(\xi) \end{pmatrix} \cdot \begin{pmatrix} h^1 \\ h^2 \\ \vdots \\ h^n \end{pmatrix} = f'(\xi) \cdot h.$$

Следствие. Пусть D – область в \mathbb{R}^n , $f:D\to\mathbb{R}$ – дифференцируема на D и $\forall x\in D$ d(fx)=0 (то есть $\forall i$ $\frac{\delta f}{\delta x_i}=0$). Тогда f(x)=const.

Доказательство. Пусть $x_0 \in D$ и $B(x_0, \rho) \subset D$ – шар \exists , так как D – область. Тогда $\forall x \in B(x_0, \rho) \quad [x_0; x] \subset B(x_0, \rho) \subset D$. Следовательно:

$$f(x) - f(x_0) = f'(\xi) \cdot (x - x_0) = 0.$$

$$\begin{cases} \frac{\delta f}{\delta x_1}(\xi), \dots, \frac{\delta f}{\delta x_n}(\xi) \end{cases}$$

Таким образом, $\forall x \in B(x_0, \rho) \ f(x) = f(x_0)$.

Построим путь из точки x_0 к некоторой точке $x \in D$:

$$\gamma: [0;1] \to D, \qquad \begin{array}{c} \gamma(0) = x_0 \\ \gamma(1) = x \end{array}.$$

По определению пути, γ – непрерывно. Тогда $\exists \delta: \ \forall 0 \leqslant t \leqslant \delta$

$$\gamma(t) \in B(x_0, \rho) \Rightarrow f(\gamma(t)) = f(x_0), \ t \in [0; \delta],$$

где t – точка из $B(x_0, \rho)$.

Пусть $\Delta = \sup \delta \Rightarrow f(\gamma(\Delta)) = f(x_0)$. Покажем, что $\Delta = 1$.

Пусть $\Delta < 1 \ (\Delta \neq 1)$. Построим шар $B(\gamma(\Delta), \rho_{\Delta})$. Тогда $\exists \varepsilon > 0 : \Delta - \varepsilon < t < \Delta + \varepsilon$.

Но тогда $f(\gamma(\Delta+\varepsilon)) = f(x_0)$ (так как точка $\gamma(\Delta+\varepsilon) \in B(\gamma(\Delta), \rho_{\Delta})$) – противоречие с тем, что $\Delta = \sup \delta \Rightarrow \Delta = 1$.

 $\gamma(1)=x$ и $f(x)=f(x_0)\Rightarrow$ так как $x\in D$ – произведение точек, то имеем, что $\forall x\in D$ $f(x)=f(x_0)\Rightarrow f(x)-const.$

Теорема 2 (Достаточное условие дифференцируемости функции). Пусть D – область в $\mathbb{R}^n,\ f:D\to\mathbb{R},\ f$ имеет непрерывные частные производные в каждой окрестности точки $x\in D$. Тогда f – дифференцируема в точке x.

Доказательство. Без ограничения общности, будем считать, что окрестность точки $x_0 \in D$ является шаром $B(x_0, \rho) \subset D$.

Пусть $h: x_0 + h \in B(x_0, \rho)$. Здесь

$$x_0 = (x^1, x^2, \dots, x^n)$$

 $x_0 + h = (x^1 + h^1, x^2 + h^2, \dots, x^n + h^n)$.

Заметим, что точки

$$x_{1} = (x^{1}, x^{2} + h^{2}, \dots, x^{n} + h^{n})$$

$$x_{2} = (x^{1}, x^{2}, x^{3} + h^{3}, \dots, x^{n} + h^{n})$$

$$\vdots$$

$$x_{n-1} = (x^{1}, x^{2}, x^{3}, \dots, x^{n-1}, x^{n} + h^{n})$$

$$\in B(x_{0}, \rho).$$

$$f(x_0+h)-f(x_0)=\\ =f(x_0+h)-f(x_1)+f(x_1)-f(x_2)+f(x_2)-\dots\\ \dots-f(x_{n-1})+f(x_{n-1})-f(x_0)=\\ =f(x^1+h^1,\dots,x^n+h^n)-f(x^1,x^2+h^2,\dots,x^n+h^n)+\\ +f(x^1,x^2+h^2,\dots,x^n+h^n)-f(x^1,x^2,\dots,x^n+h^n)+\\ +f(x^1,x^2,\dots,x^n+h^n)-\dots-f(x^1,x^2,\dots,x^{n-1},x^n)+\\ +f(x^1,x^2,\dots,x^{n-1},x^n+h^n)-f(x^1,x^2,\dots,x^n)=\\ =\left|\begin{array}{c} \text{Теорема Лагранжа для}\\ \text{функции одной переменной} \end{array}\right|=\\ =\frac{\delta f}{\delta x_1}(x^1+\theta^1h^1,x^2+h^2,\dots,x^n+h^n)\cdot h^1+\\ +\frac{\delta f}{\delta x^2}(x^1,x^2+\theta^2h^2,\dots,x^n+h^n)\cdot h^2+\dots\\ \dots+\frac{\delta f}{\delta x^n}(x^1,x^2,\dots,x^n+\theta^nh^n)\cdot h^n.$$

Используя непрерывность частных производных, запишем:

$$f(x_0 + h) - f(x_0) =$$

$$= \frac{\delta f}{\delta x^1}(x^1, x^2, \dots, x^n) \cdot h^1 + \alpha^1(h^1) + \dots$$

$$\dots + \frac{\delta f}{\delta x^n}(x^1, x^2, \dots, x^n) \cdot h^n + \alpha^n(h^n),$$

где $\alpha^1,\alpha^2,\dots,\alpha^n$ стремятся к нулю при $\vec{h}\to 0.$ Это означает, что:

$$f(x_0+h) - f(x_0) = L(x_0) \cdot h + \underset{h \to 0}{o}(h)$$
 (где $L(x_0) = \frac{\delta f}{\delta x^1}(x_0) \cdot h^1 + \ldots + \frac{\delta f}{\delta x^n}(x_0) \cdot h^n = df(x_0)$) \Rightarrow

 \Rightarrow по определению f(x) дифференцируема в точке x_0 .

Лекция 2: Производные высших порядков

от 06 сен 08:47

5.3 Производные высших порядков

Определение 4 (Вторая производная функции по переменным). Пусть $f:D\to \mathbb{R},\ D$ — область в \mathbb{R}^n . Производная по переменной x^j от производной по переменной x^i называется *второй производной функции* f по переменным x^i, x^j и обозначается

$$\frac{\delta^2 f}{\delta x^i \delta x^j}(x)$$
 или $f_{x^i,x^j}^{\prime\prime}(x)$.

Теорема 3 (О смешанных производных). Пусть D – область в \mathbb{R}^n , f: $D \to \mathbb{R}, x \in D, f$ имеет в D непрерывные смешанные производные (второго порядка). Тогда эти производные не зависят от порядка дифференцирования.

Доказательство. Пусть $\frac{\delta^2 f}{\delta x^i \delta x^j}$ и $\frac{\delta^2 f}{\delta x^j \delta x^i}$ – непрерывны в точке $x \in D$. Так как остальные переменные фиксированы, то можно считать,

что f зависит только от двух переменных. Тогда $D\subset\mathbb{R}^2,\ f:D\to\mathbb{R}$ и $\frac{\delta^2 f}{\delta x \delta y}$ и $\frac{\delta^2 f}{\delta y \delta x}$ – непрерывны в точке $x_0 = (x, y) \in D.$

Покажем, что $\frac{\delta^2 f}{\delta x \delta y} = \frac{\delta^2 f}{\delta y \delta x}$. Рассмотрим функции:

$$\begin{array}{l} \phi(t) = f(x+t\cdot\Delta x, y+\Delta y) - f(x+t\cdot\Delta x, y) \\ \psi(t) = f(x+\Delta x, y+t\cdot\Delta y) - f(x, y+t\cdot\Delta y) \end{array}, \quad t \in [0;1].$$

Имеем:

$$\phi(1) - \phi(0) = f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y) - f(x, y + \Delta y) + f(x, y)$$

$$\psi(1) - \psi(0) = f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y) - f(x + \Delta x, y) + f(x, y)$$

Тогда:

$$\phi(1) - \phi(0) = \psi(1) - \psi(0) \tag{5.1}$$

$$\begin{split} \phi(1) - \phi(0) &= \phi'(\xi) \cdot (1 - 0) = \\ &= \frac{\delta f}{\delta x} (x + \xi \cdot \Delta x, y + \Delta y) \cdot \Delta x + \frac{\delta f}{\delta y} (x + \xi \cdot \Delta x, y + \Delta y) - \\ &\quad - \frac{\delta f}{\delta x} (x + \xi \cdot \Delta x, y) \cdot \Delta x - \frac{\delta f}{\delta y} (x + \xi \cdot \Delta x, y) \cdot 0 = \\ &= \left(\frac{\delta f}{\delta x} (x + \xi \cdot \Delta x, y + \Delta y) - \frac{\delta f}{\delta x} (x + \xi \cdot \Delta x, y) \right) = \\ &= \left| \begin{array}{c} \text{по теореме Лагранжа для} \\ \text{функции 1-ой переменной} \end{array} \right| = \\ &= \frac{\delta^2 f}{\delta x \delta y} (x + \xi \cdot \Delta x, y + \eta \cdot \Delta y) \Delta x \Delta y. \end{split}$$

Положим $(x + \xi \Delta x, y + \eta \cdot \Delta y) = P \in \Pi$.

Аналогично:

$$\begin{split} \psi(1) - \psi(0) &= \psi'(\xi) \cdot (1-0) = \\ &= \frac{\delta f}{\delta x} (x + \Delta x, y + \xi \cdot \Delta y) \cdot 0 + \frac{\delta f}{\delta y} (x + \Delta x, y + \xi \cdot \Delta y) \cdot \Delta y - \\ &\quad - \frac{\delta f}{\delta x} (x, y + \xi \cdot \Delta y) \cdot 0 - \frac{\delta f}{\delta y} (x, y + \xi \cdot \Delta y) \cdot \Delta y = \\ &= \left(\frac{\delta f}{\delta y} (x + \Delta x, y + \xi \cdot \Delta y) - \frac{\delta f}{\delta y} (x, y + \xi \cdot \Delta y) \right) \Delta y = \\ &= \left| \begin{array}{c} \text{по теореме Лагранжа для} \\ \text{функции 1-ой переменной} \end{array} \right| = \\ &= \frac{\delta^2 f}{\delta y \delta x} (x + \tau \cdot \Delta x, y + \xi \cdot \Delta y) \Delta y \Delta x \end{split}$$

Положим, что $(x+\tau\cdot\Delta x,y+\xi\cdot\Delta y)=Q.$ Тогда из 5.1 следует, что:

$$\begin{array}{cccc} \frac{\delta^2 f}{\delta x \delta y}(P) \Delta x \Delta y & = & \frac{\delta^2 f}{\delta y \delta x}(Q) \Delta x \Delta y \\ & \parallel & & \parallel & & \parallel \\ \frac{\delta^2 f}{\delta x \delta y}(x + \xi \cdot \Delta x, y + \eta \cdot \Delta y) & = & \frac{\delta^2 f}{\delta y \delta x}(x + \tau \cdot \Delta x, y + \xi \cdot \Delta y) \end{array}.$$

Используя непрерывность частных производных при $\Delta x \to 0$ и $\Delta y \to 0 \Rightarrow$

$$x + \xi \cdot \Delta x \to x, \quad y + \eta \cdot \Delta y \to y.$$

Таким образом,

$$\frac{\delta^2 f}{\delta x \delta y} = \frac{\delta^2 f}{\delta y \delta x}.$$

5.4 Формула Тейлора

Определение 5 (Гладкая функция класса $C^{(k)}$). Пусть D — область в \mathbb{R}^n , $f:D\to\mathbb{R}$. Будем говорить, что f является гладкой функцией класса $C^{(k)}$ (k-го порядка), то есть $f\in C^{(k)}(D,\mathbb{R})$, если f имеет непрерывные частные производные до k-го порядка включительно.

Теорема 4 (Формула Тейлора). Пусть D – область в $\mathbb{R}^n,\ f:D\to\mathbb{R},\ f\in C^{(k)}(D,\mathbb{R}),\ x\in D,\ x+h\in D,\ [x;x+h]\subset D.$ Тогда:

$$f(x+h) = f(x) + \sum_{i=1}^{k-1} \frac{1}{i!} \left(\frac{\delta}{\delta x^1} \cdot h^1 + \dots + \frac{\delta}{\delta x^n} \cdot h^n \right)^i \cdot f(x) + R^k,$$

где R^k – остаточный член,

$$R^{k} = \frac{1}{k!} \left(\frac{\delta}{\delta x^{1}} \cdot h^{1} + \dots + \frac{\delta}{\delta x^{n}} \cdot h^{n} \right)^{k} \cdot f(x + \xi \cdot h),$$
$$x = (x^{1}, \dots, x^{n}), \quad h = (h^{1}, \dots, h^{n}).$$

Доказательство. Рассмотрим функцию:

$$\phi(t) = f(x + t \cdot h), \ t \in [0; 1]$$

Применим формулу Тейлора к $\phi(t)$:

$$\phi(1) = \phi(0) + \frac{1}{1!} \cdot \phi'(0) \cdot (1 - 0) + \frac{1}{2!} \cdot \phi''(0) \cdot (1 - 0)^2 + \frac{1}{3!} \cdot \phi'''(0) \cdot (1 - 0)^3 + \dots + \frac{1}{k!} \cdot \phi^{(k)} \cdot (1 - 0)^k.$$
 (5.2)
$$\phi(1) = f(x + h), \quad \phi(0) = f(x).$$

$$\begin{split} \phi'(0) &= f'(x+th) \cdot (x+t \cdot h)_k' \Big|_{t=0} = \\ &= \left(\frac{\delta f(x+t \cdot h)}{\delta x^1} \quad \frac{\delta f(x+t \cdot h)}{\delta x^2} \quad \cdots \quad \frac{\delta f(x+t \cdot h)}{\delta x^n} \right) \cdot \begin{pmatrix} h^1 \\ h^2 \\ \vdots \\ h^n \end{pmatrix} \Big|_{t=0} = \\ &= \left(\frac{\delta f(x+t \cdot h)}{\delta x^1} \cdot h^1 + \frac{\delta f(x+t \cdot h)}{\delta x^2} \cdot h^2 + \cdots + \frac{\delta f(x+t \cdot h)}{\delta x^n} \cdot h^n \right) \Big|_{t=0} = \\ &= \frac{\delta f}{\delta x^1}(x) \cdot h^1 + \frac{\delta f}{\delta x^2}(x) \cdot h^2 + \cdots + \frac{\delta f}{\delta x^n}(x) \cdot h^n = \\ &= \left(\frac{\delta}{\delta x^1} \cdot h^1 + \cdots + \frac{\delta}{\delta x^n} \cdot h^n \right) \cdot f(x) \end{split}$$

$$\phi''(0) = \left(\sum_{i=1}^{n} \frac{\delta f(x+t \cdot h)}{\delta x^{i}} \cdot h^{i}\right)'_{t}\Big|_{t=0} =$$

$$= \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\delta^{2} f(x+t \cdot h)}{\delta x^{i} \delta x^{j}} \cdot h^{i} h^{j}\right)\Big|_{t=0} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\delta^{2} f(x)}{\delta x^{i} \delta x^{j}} \cdot h^{i} h^{j} =$$

$$= \left(\frac{\delta}{\delta x^{1}} \cdot h^{1} + \dots + \frac{\delta}{\delta x^{n}} \cdot h^{n}\right)^{2} \cdot f(x)$$

И так далее. Подставим получившиеся выражения в 5.2 и получим искомое.

Пример. Запишем формулу Тейлора для функции f(x,y):

$$f(x,y) = f(x_0, y_0) + \frac{1}{1!} \left(\frac{\delta f}{\delta x}(x_0, y_0) \Delta x + \frac{\delta f}{\delta y}(x_0, y_0) \Delta y \right) +$$

$$+ \frac{1}{2!} \left(\frac{\delta^2 f}{\delta x^2}(x_0, y_0) \cdot (\Delta x)^2 +$$

$$+ 2 \cdot \frac{\delta^2 f}{\delta x \delta y}(x_0, y_0) \Delta x \Delta y + \frac{\delta^2 f}{\delta y^2}(x_0, y_0) \cdot (\Delta y)^2 \right) +$$

$$+ \frac{1}{3!} \cdot \left(\frac{\delta^3 f}{\delta x^3}(x_0, y_0) \cdot (\Delta x)^3 + 3 \cdot \frac{\delta^3 f}{\delta x^2 \delta y}(x_0, y_0) \cdot (\Delta x)^2 \Delta y +$$

$$+ 3 \cdot \frac{\delta^3 f}{\delta x \delta y^2}(x_0, y_0) \cdot \Delta x (\Delta y)^2 + \frac{\delta^3 f}{\delta y^3}(x_0, y_0) \cdot (\Delta y)^3 \right) + \dots$$

$$\dots + \frac{1}{k!} \cdot \left(\frac{\delta}{\delta x} \Delta x + \frac{\delta}{\delta y} \Delta y \right)^k \cdot f(x_0 + \xi \cdot \Delta x, y_0 + \eta \cdot \Delta y),$$

$$\Delta x = x - x_0, \quad \Delta y = y - y_0.$$

5.5 Экстремумы функций многих переменных

Определение 6 (Точка локального максимума (минимума)). Пусть X — метрическое пространство (МП), $f: X \to \mathbb{R}$. Точка x_0 называется точкой локального максимума (минимума), если $\exists U(x_0) \subset X: \forall x \in U(x_0)$

$$f(x) \leqslant f(x_0) \quad (f(x) \geqslant f(x_0))$$

Теорема 5 (Необходимое условие локального экстремума). Пусть D – область в \mathbb{R}^n , $f:D\to\mathbb{R},\ x_0\in D$ – точка локального экстремума, тогда в точке $x_0\ \forall i=\overline{1,n}$

$$\frac{\delta(x_0)}{\delta x^i} = 0.$$

Доказательство. Фиксируем все переменные за исключением x^i , тогда можно рассматривать функцию $f(x^1,\dots,x^i,\dots,x^n)$ как функцию одной переменной, для которой x_0 – точка локального экстремума, следовательно $\frac{\delta f}{\delta x^i}(x_0)=0,$

i – произвольная $\Rightarrow \forall i$ выполняется.

Определение 7 (Критическая точка функции). Пусть D – область в $\mathbb{R}^n,\ f:D\to\mathbb{R}^k$ – дифференцируемо в точке $x_0\in D$. Точка x_0 называ-

ется *критической точкой функции* f(x), если:

$$rank\Im f(x_0) < \min(n,k),$$

где $\Im f(x_0)$ – матрица Якоби функции $f(x_0)$.

Пример. $f: \mathbb{R}^3 \to \mathbb{R}^2$

$$\begin{split} f(x,y,z) &= \begin{pmatrix} x \cdot y \\ y-z \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} \\ \Im f(x,y,z) &= \begin{pmatrix} \frac{\delta u}{\delta x} & \frac{\delta u}{\delta y} & \frac{\delta u}{\delta z} \\ \frac{\delta v}{\delta x} & \frac{\delta v}{\delta y} & \frac{\delta v}{\delta z} \end{pmatrix} = \begin{pmatrix} y & x & 0 \\ 0 & 1 & -1 \end{pmatrix} \quad \Rightarrow \quad \end{split}$$

$$\Rightarrow (x_0) = \left\{ \begin{array}{ll} x = 0 \\ y = 0 & - \text{ критическая точка.} \\ z = t \end{array} \right.$$

$$n = 3, \quad k = 2$$

Множество точек прямой, получаемой пересечением плоскостей x=0 и y=0 – множество критических точек функции f(x,y,z).

Определение 8 (Квадратичная форма на касательном пространстве). Пусть D – область в $\mathbb{R}^n,\ f:D\to\mathbb{R},\ f$ имеет производную в точке $x_0\in D$. На касательном пространстве $T\mathbb{R}^n_{(x_0)}$ определим квадратичную форму

$$Q(h) = \sum_{i,j=1}^{n} \frac{\delta^{2} f}{\delta x^{i} \delta x^{j}}(x_{0}) \cdot h^{i} h^{j}, \quad Q: T\mathbb{R}^{n} \to \mathbb{R}.$$

Теорема 6 (Достаточное условие локального экстремума). Пусть D – область в $\mathbb{R}^n,\ f:D\to\mathbb{R}$ дифференцируема в точке $x\in D,\ x$ – критическая точка для $f,\ f\in C^n(D,\mathbb{R}),\ n=2.$ Тогда, если:

- 1. Q(h) знакоположительна, то в точке x локальный минимум.
- 2. Q(h) знакоотрицательна, то в точке x локальный максимум.
- 3. Q(h) может принимать различные значения (> 0,< 0), тогда в точке x нет экстремума.

Доказательство. По формуле Тейлора:

$$\begin{split} f(x+h) - f(x) &= \frac{1}{2} \cdot \sum_{i,j=1}^n \frac{\delta^2 f(x)}{\delta x^i \delta x^j} \cdot h^i h^j + o\big(\|h\|^2\big) = \\ &= \frac{\|h\|^2}{2} \cdot \left(\sum_{i,j=1}^n \frac{\delta^2 f(x)}{\delta x^i \delta x^j} \cdot \frac{h^i}{\|h\|} \frac{h^j}{\|h\|} + \alpha(h) \right) = \left| \begin{array}{c} \text{где } \alpha(h) \to 0 \text{ при } \\ h \to 0 \end{array} \right| = \\ &= \frac{\|h\|^2}{2} \cdot \left(Q\left(\frac{h}{\|h\|}\right) + \alpha(h) \right). \end{split}$$

Вектор $\frac{h}{\|h\|} < S^{(n-1)}$ — единичная (n-1)-мерная сфера. Сфера $S^{(n-1)}$ — компактное множество \Rightarrow по теореме Больцано - Вейерштраса, $\exists e_1, e_2 \in S^{(n-1)}$:

$$Q_1(e_1) = \max Q(h) = M, \quad Q_2(e_2) = \min Q(h) = m$$

1. Если Q(h) — знакоположительна $\Rightarrow m>0$. Следовательно, $\exists \delta>0$: $\forall h \ \|h\|<\delta, \ |\alpha(h)|< m$

$$Q\left(\frac{h}{\|h\|}\right) + \alpha(h) > 0,$$

следовательно, $\forall h: ||h|| < \delta$

$$f(x+h) - f(x) > 0,$$

по определению, x — точка локального минимума (здесь $\|h\| < \delta$ — аналог понятия окрестности точки x).

2. Если Q(h) – знакоотрицательна, то M<0. Тогда $\exists \delta>0: \forall h \; \|h\|<\delta\; |\alpha(h)|<-M$

$$Q\left(\frac{h}{\|h\|}\right) + \alpha(h) < 0,$$

следовательно, $\forall h: \ \|h\| < \delta$

$$f(x+h) - f(x) < 0,$$

тогда x — точка локального максимума.

3. Если Q(h) – знакопеременна, то $m < 0 < M, \ \forall t > 0$

$$Q(t \cdot e_2) < 0, \quad Q(t \cdot e_1) > 0,$$

13

тогда в точке x нет экстремума.

Замечание. На практике для определения max и min можно пользоваться критерием Сильвестра из алгебры.

Определение 9 (Наеявно заданная уравнением функция). Пусть D – область в $\mathbb{R}^k,~\Omega$ – область в $\mathbb{R}^k,~F:D\times\Omega\to\mathbb{R}^k.$

Пусть функция $f:D\to \Omega$:

$$y = f(x) \Leftrightarrow F(x, y) = 0.$$

Говорят, что уравнение F(x,y)=0 неявно задает функцию y=

Пример.
$$x^2 + y^2 = 1$$

$$y = \pm \sqrt{1 - x^2}, \quad y = \left\{ \begin{array}{ll} \sqrt{1 - x^2}, & x \in Q \\ -\sqrt{1 - x^2}, & x \notin Q \end{array} \right.$$