# Definição

Seja G um grafo dirigido, bipartido, com conjunto de vértices patricionado nos subconjuntos V e W, e tal que toda aresta de G vao de V a W. (Propriedade (\*))

- Um MATCHING em G é um subconjunto de arestas sem vértices em comum.
- Um MATCHING MAXIMAL é um matching com o máximo número possível de arestas.
- Um MATCHING COMPLETO é um matching M tal que, p.t  $v \in V$ , existe  $w \in W$  com  $(v, w) \in M$ .

# Exemplo

Quatro pessoas: A, B, C, D.

Aplicam p/os trabalhos:  $J_1, J_2, J_3, J_4, J_5$ 

### É sabido que:

- A é qualificada p/ $J_2$  e  $J_5$ .
- B é qualificada p/ $J_2$  e  $J_5$ .
- C é qualificada p/ $J_1$ ,  $J_3$ ,  $J_4$  e  $J_5$ .
- D é qualificada p/ $J_2$  e  $J_5$ .

## **Pergunta**



Existe a aresta (x,y) se a pessoa x é qualificada p/o trabalho y.





A partir de um grafo G com a propriedade (\*), costruímos uma rede seguindo os passos:

- 1) Adicionamos um vértice fonte  $a_i$  e todas as arestas de forma (a, v) com  $v \in V$ .
- 2) Adicionamos um vértice sumidouro z, e todas as arestas de forma (w, z) com  $w \in W$ .
- 3) Assignamos a capacidade 1 a todas as arestas.

#### **Teorema**

Seja G com a propriedade (\*). Então:

- (a) Um fluxo na rede de matching associada a G induz um matching em G.
- (b) Um fluxo maximal F, com  $F_{ij} \in \{0,1\}$ , p.t (i,j), corresponde a um matching maximal.
- (c) Um fluxo com valor (V) corresponde a um matching completo.



#### **Prova**

Dem/ Seja R a rede de matching induzida por G

Seja F fluxo em R. Definimos

$$M=\{(v,w)\in E/F_{vw}1\}$$

#### E: arestas de G

Pela conservação de fluxo,





 $(\Rightarrow)$  no conjunto M não há arestas que incidam no mesmo  $v \in V$ , nem no mesmo  $w \in W$ . Logo M é um MATCHING em G.

(b) e (c) ficam como exercício.

Deduzimos do item (b) que o algoritmo de fluxo maximal (Ford-Fulkerson) acha um matching maximal.

Discutiremos a existência de um matching completo. Seja  $S\subseteq V$  e

$$R(s) = \{v \in W/\exists (v, w) \text{ aresta de G com } v \in S\}$$

## Teorema Hall's Marriage (1935)

Seja G um grafo com a propriedade (\*). Então G possui um matching completo se, e somente se,

$$|R(s)| \geq |S|, ext{ p.t } S \subseteq V$$

### **Prova**

Dem/ (⇒) É imediato (fica como exercício)

(⇐) Supomos que:

$$|R(s)| \geq |S|$$
 p.t.  $S \subseteq V$ 

Seja R a rede associada a G, e  $(P,\bar{P})$  um corte minimal em R. Queremos mostrar que  $C(P,\bar{P})=|V|=:n$ 

Supomos pelo contrário que  $C(P, \bar{P}) < n$ 

$$C(P, \bar{P}) = |C|$$

onde:

$$C:=\{(x,y)/x\in P\ \mathrm{e}\ y\in ar{P}\}$$



Se  $e \in C$ , então é de algumd estes tipos:

- Tipo I: e=(a,v) com  $v\in V$
- $\bullet \ \ \mathsf{Tipo} \ \mathsf{II} \hbox{:} \ e = (v,w) \ \mathsf{com} \ v \in V \hbox{,} \ w \in W$
- Tipo III: e=(w,z) com  $w\in W$

Vamos estimar o número de arestas de cada tipo.

Se  $V\subseteq \bar{P}$ , então  $C(P,\bar{P})=n$ . Isto contradiz a hipótese  $V\nsubseteq \bar{P}$  . Então  $V\cap P=V^*\neq \phi$ 



Logo há  $n-|V^*|$  arestas do Tipo I em C.

Particionamos  $R(V^*)$  nos conjuntos disjuntos:

$$W_1:=R(V^*)\cap P \ W_2:=R(V^*)\cap ar{P}$$

Há pelo menos  $|W_1|$  arestas de tipo II.

Então:

$$\#$$
 arestas Tipo II  $<\underbrace{n-(n-|V^*|)}_{\# ext{ arestas Tipo I}} - \underbrace{|W_1|}_{\# ext{ arestas Tipo II}}$   $\downarrow$   $C(P,\bar{P}) < n$   $//|V^*| \leq |W_1| + |W_2| = |R(V^*)|$ 

Cada vértice de  $W_2$  contribui no máximo com uma aresta do tipo II. Logo:

$$|W_2| \leq \# ext{Arestas do tipo II} < |V^*| - |W_1|$$

Isto é,

$$\underbrace{|W_1|+|W_2|}_{R(S^*)}<|V^*|\leq |R(V^*)|$$