Reg. No

B.Tech DEGREE EXAMINATION, DECEMBER 2023

Fifth Semester

18EIE304T - MACHINE LEARNING

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
ii. Part - B and Part - C should be answered in answer booklet.

ime	e: 3 Hours		Max. I	Marks	: 100
	$PART - A (20 \times 1 =$	20 Marks)	Mar	ks BL	со
	Answer all Que	estions			
1.	Machine learning is termed as (A) The autonomous acquisition of knowledge through the use of manual programs (C) The selective acquisition of	(B) The selective acquisition of knowledge through the use of manual programs (D) The autonomous acquisition of	1	1	1
	knowledge through the use of computer programs	knowledge through the use of computer programs			
2.	Analysis of ML algorithm needs (A) Statistical learning theory (C) both statistical and computational learning	(B) computational learning theory (D) Information theory	1	1	1
3.	Which of the following is an example of a(A) Predicting the age of a person based on their income(C) Predicting the weight of a person based on their height	classification problem? (B) Predicting the price of a house based on its features (D) Predicting whether a loan will be approved or not for a customer	1	1	1
4.	Among the following option identify the c (A) unsupervised (C) Semi-unsupervised	one which is not a type of learning (B) supervised (D) Reinforcement	1	1	1
5.	Suppose, the target variable is whether a passenger will survived or not. What type of technique is required to predict the target variable? (A) regression (B) classification (C) dimensionality reduction (D) clustering		, 1	1	2
6.	To remove noise and inconsistent data is needed. (A) Data Integration		1	1	2
7.	Random error or variance in a measured v (A) Noise (C) inconsistent data	rariable is termed as (B) incomplete data (D) faulty data	1		2
8.	Which of the following is an example of a (A) Decision tree (C) K-means	(B) Random forest (D) Gradient descent	1	1	2

9.	What is the minimum number of variables/		1	1	3
7	(A) 0 (C) 2	(B) 1 - (D) 3			
10			,		•
10.	If the data points can be separated using separable		1	1	3
	(A) linearly	(B) non-linearly			
	(C) not	(D) probably			
11.	Which of the following clustering requires	0 0 11	1	1	3
	(A) Partitional (C) Naive Bayes	(B) Hierarchical (D) Spectral			
10			_		
12.	 Which of the following can act as possible For a fixed number of iterations. The assignment of observations to clus 	termination conditions in K-Means? ters does not change between iterations.	1	1	3
	3. Centroids do not change between succe	essive iterations.			
	(A) Only 1 and 2	(B) Only 2 and 3			
	(C) Only 1 and 3	(D) all 1, 2 and 3			
13.	What is purpose of Axon?		1	1	4
	(A) receptors	(B) transmitter			
	(C) transmission	(D) absorption			
14.	What do the gradients of backpropagation of	(*)	1	1	4
	(A) Profit Function	(B) Loss Function			
	(C) Positive Function	(D) Negative Function			
15.	the gradient for each iteration	from a dataset that is used for calculating	1	1	4
	(A) batch (C) sample	(B) task			
		(D) node			
16.	Gradient descent is highly used in	(D) II	1	1	4
	(A) Reinforced learning(C) Supervised Machine learning	(B) Unsupervised learning			
	-	(D) Semi supervised learning			
17.	Which of the following statements about sp		1	1	5
	(A) It is based on the concept of centroid distance.	(B) It can handle datasets with varying density.			
	(C) It requires the number of clusters as	(D) It is particularly effective for image			
	an input parameter.	segmentation.			
1 <u>8</u> .	Which of the following statements about the		1	1	5
	(A) It requires the number of clusters as	(B) It can handle datasets with varying	-	_	-
	an input parameter.	density.			
	(C) It forms clusters by minimizing the	(D) It is based on the concept of			
	within-cluster variance.	centroid distance.			
19.	Identify the clustering method which takes		1	1	4
	(A) Hierarchical	(B) Decision Tree			
	(C) k-means	(D) Gaussian mixture model			
20.	In the K-means algorithm for partitioning, objects in the cluster.		1 =	1	5
	(A) Mean	(B) Median			
	(C) Mode	(D) Member			
	$PART - B (5 \times 4 = 26)$	0 Marks)	Marks	BL	CO
	Answer any 5 Que	estions			

nine learning techniques	4	2	1	
gram, the supervised classification model	4	2	1	
ice measure used in nearest neighbourhood algorithm?	4	2	2	
cal clustering approach	4	2	3	
on which computes AND logic with diagram	4	2	4	
pectral clustering	4	2	3	
	4	2	5	
PART - C (5 × 12 = 60 Marks) Answer all Questions	Mark	s BL	CO	
ail the different types of machine learning algorithms with lexamples	12	2	1	
S III	ce measure used in nearest neighbourhood algorithm? cal clustering approach on which computes AND logic with diagram octral clustering of affinity propagation method in ML PART - C (5 × 12 = 60 Marks) Answer all Questions il the different types of machine learning algorithms with	ram, the supervised classification model ce measure used in nearest neighbourhood algorithm? cal clustering approach on which computes AND logic with diagram dectral clustering of affinity propagation method in ML PART - C (5 × 12 = 60 Marks) Answer all Questions il the different types of machine learning algorithms with	ram, the supervised classification model ce measure used in nearest neighbourhood algorithm? cal clustering approach on which computes AND logic with diagram dectral clustering of affinity propagation method in ML PART - C (5 × 12 = 60 Marks) Answer all Questions il the different types of machine learning algorithms with 2 4 2 Marks BL	ram, the supervised classification model ce measure used in nearest neighbourhood algorithm? cal clustering approach on which computes AND logic with diagram of affinity propagation method in ML PART - C (5 × 12 = 60 Marks) Answer all Questions il the different types of machine learning algorithms with A 2 1 4 2 2 4 2 3 6 4 2 3 6 5 Marks BL CO

(OR)

(b) Describe and draw the decision tree for predicting the disease risk for the following data:

Age	Hypertension	Smoker	Risk of disease
Young	less	Yes	low
Young	more	Yes	high
Middle	more	No	low
Middle	less	Yes	low
Middle	more	no	low
Old	more	yes	high
Middle	less	yes	low
Middle	more	no	low
Young	less	no	low
Young	more	yes	high
Old	less	no	low
Old	more	no	low

Show the results for test data shown below based on the decision tree

Age	Hypertension	Smoker	Risk of disease	
Young	more	no	?	
Old	less	yes	?	

- 29. (a) Illustrate the various tasks used in data preprocessing for ML with diagrams. 12 4 (OR)
 - (b) Classify the test data using k-NN algorithm for k = 3 with Euclidean's distance and show the working.

Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)	Class
3.2	4.7	1.4	lris-versicolor
3.2	4.5	The Control of Administration beautiful and	Iris-versicolor
3.1	4.9		lris-versicolor
3.5	1.4		Iris-setosa
2.8	4.6	1.5	Iris-versicolor
2.9	5.6		Verginica
3	1.4	0.2	Iris-setosa
3.2	1.3	A NOTICE FARE MAY 1 . THE NOT A SAMPLE.	Iris-setosa
2.7	5.1		Verginica
3	5.9	2.1	Verginica
2.3	4	1.3	Iris-versicolor
3.1	1.5		Iris-setosa
3.6	1.4		lris-setosa
3	5.8	Andreas - Andrews - Contract - Contract -	Verginica
3	6.6	2.1	Verginica

Test data:

Sepal	Sepal	Petal	Petal	Class
Length	Width	Length	Width	
(cm)	(cm)	(cm)	(cm)	
4.5	2.3	1.3	0.3	7

30. (a) Describe in detail the steps involved in hierarchical clustering technique with example

(OR)

(b) Illustrate the process involved in developing Bayesian network for unsupervised learning

31. (a) Explain in detail the backpropagation algorithm and its application 12 3

(b) Determine the optimisation technique using Gradient descent algorithm

- 32. (a) Apply clustering algorithm to determine the fingerprint and explain the steps 12 3 5 (OR)
 - (b) Illustrate in detail the steps involved in affinity propagation algorithm
