

Общероссийский математический портал

Л. А. Аксентьев, И. А. Зорин, Классы многолистных аналитических функций, решающих задачу Гильберта, $Tp.~ceм.~no~\kappa paee.~sadaчaм,~1992,$ выпуск 27,~22–37

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 178.205.19.235

7 июня 2024 г., 16:24:42

Л.А.Аксентьев, И.А.Зорин

КЛАССЫ МНОГОЛИСТНЫХ АНАЛИТИЧЕСКИХ ФУНКЦИЙ, РЕШАКЦИХ ЗАДАЧУ ГИЛЬБЕРТА

Анализ геометрических свойств решений краевых задач развит в статье [I] одного из авторов данной работы и продолжен в статье [2]. Мы дополняем статьи [I] и [2], опираясь, главным образом, на геометрический смысл решения задачи Гильберта в наибо — лее простых вариантах. В частности, доказаны теоремы 5 и 6,сформулированные в [2].

І. Решением задачи Гильберта является аналитическая функция, отображающая единичный круг, вообще говоря, неоднолистно на некоторую область, свойства которой полностью определяются поведением коэффициентов, входящих в краевое условие. Поэтому между решениями задачи Гильберта и классами многолистных функций, обладающих определенными геометрическими свойствами, можно установить соответствие.

Рассмотрим вначале в круге $E = \{ \mathcal{Z} : |\mathcal{Z}| \le 1 \}$ задачу Гильберта с кусочно-постоянными коэффициентами

$$Im\left[e^{-i\mathcal{J}_{K}}f(e^{i\theta})\right] = C_{K}, \theta \in (\mathcal{G}_{K}, \mathcal{G}_{K+1}), \kappa = \overline{1,\pi}, \qquad (I)$$

 $\mathcal{G}_{n+1}=\mathcal{G}_1+2\pi$; \mathcal{G}_K , \mathcal{C}_K — постоянные величины. Обозначим через $\mathcal{H}(\mathcal{Q}_1,\dots,\mathcal{Q}_S)$ класс решений этой задачи, ограниченных в точках $\mathcal{C}_K=e^{i\mathcal{G}_K}$, $\kappa=\overline{1,S}$ $\leq \pi$, и не ограниченных в остальных $\pi-S$ точках стыка.

Для доказательства теорем из статьи [2], показывающих зависимость листности решения задачи (I) от индекса, сформулируем и обоснуем предварительное утверждение.

<u>Лемма I.</u> Решением задачи (I) в классе $h(a_1,...,a_g)$ являет—

$$\int_{C} \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x} \right) (1 - \bar{b}_{\kappa} \mathcal{Z}) \prod_{\kappa=1}^{m} (\mathcal{Z} - e^{id_{\kappa}}) \prod_{\kappa=1}^{n} (\mathcal{Z} - e^{ig_{\kappa}}) \int_{C} \frac{\partial}{\partial x} d\mathcal{Z} + C_{2}, \quad (2)$$

причем индекс задачи и параметри, входящие в виражение (2), связаны соотношением

$$\mathcal{X} = 2 - n + 2q + m \quad ; \tag{3}$$

 C_1 , C_2 , C_k — комплексные параметры; $|C_k| < 1$, $\kappa = \overline{1,q}$; $O < \xi < 1$, $\kappa = \overline{1,s}$; $-1 < \xi < 0$, $\kappa = \overline{q,n}$, и δ_{κ} зависит от $\delta_{\kappa-1}$, δ_{κ} ; $\delta_{\kappa} < 1$. До казательство. Решением задачи (I) является функция, отображающая круг E на область, ограниченную прямыми с уравнениями $\mathcal{I}m(e^{-i\theta_{\kappa}}w) = C_{\kappa}$, $\kappa = \overline{1,\pi}$, или их частями. По-этому функцию, решающую задачу Гильберта (I), можно записать при помощи обобщенного интеграла Кристоффеля— Шварца, отображающего E на многолистный многоугольник. Точки $C_{\kappa} = e^{-i\theta_{\kappa}}$, $\kappa = \overline{1,\pi}$, должны отображаться в угловые точки. Обозначим через C_{κ} , $\kappa = \overline{1,\pi}$, нули производной C_{κ} , т.е. прообразы точек ветвления внутри круга E и через C_{κ} — нули производной C_{κ} 0 на ∂E 1.

должны отображаться в угловые точки. Обозначим через $\mathcal{E}_{\mathcal{K}}$, $\mathcal{K}=\frac{1}{\sqrt{2}}$, нули производной $\mathcal{F}(\mathcal{Z})$, т.е. прообразы точек ветвления, внутри круга \mathcal{E} и через $\mathcal{E}^{z \times \mathcal{K}}$ — нули производной $\mathcal{F}(\mathcal{Z})$ на $\partial \mathcal{E}$. Показатели степеней у множителей $(\mathcal{Z}-\mathcal{Q}_{\mathcal{K}})^{\mathcal{K}-1}$ определямотоя таким образом: $\mathcal{O} < \mathcal{O}_{\mathcal{K}} < 1$, если ищется решение, ограни — ченное в окрестности точки $\mathcal{Q}_{\mathcal{K}}$, и $-1 < \mathcal{O}_{\mathcal{K}} \leq \mathcal{O}$, если ищется решение, которое неограничено в окрестности $\mathcal{Q}_{\mathcal{K}}$. Из условия (I) после дифференцирования по \mathcal{O} и из сравнения его с видом функ — ции $\mathcal{F}(\mathcal{Z})$ из (2) получим

$$\delta_{\mathcal{K}} = (\mathcal{J}_{\mathcal{K}-1} - \mathcal{J}_{\mathcal{K}}) / \mathcal{I} - \mathcal{X}_{\mathcal{K}} , \qquad (4)$$

лене $\mathscr{X}_{\mathcal{K}}$ — целое число, положительное или отрицательное, или 0. Тем самым для $f(\mathcal{Z})$ получено представление (2).

Это представление не всегда будет отображать круг на область с прямолинейными границами. Действительно, для обеспечения прямолинейности границ необходимо и достаточно, чтобы $\frac{d}{d\theta} \arg(e^{i\theta}f(e^{i\theta})) = 0$ для всех θ , лежащих на интервалах, которые не содержат точек $\mathcal{G}_{\mathcal{K}}$ и $\mathcal{A}_{\mathcal{K}}$. Так как $(e^{i\theta}-b_{\mathcal{K}})(1-b_{\mathcal{K}}e^{i\theta}) = e^{i\theta}|1-b_{\mathcal{K}}e^{-i\theta}|^2, e^{i\theta}-e^{i\mathcal{G}_{\mathcal{K}}} = 2i\sin\frac{\theta-\mathcal{G}_{\mathcal{K}}}{2}e^{i\theta}$

$$\arg\left(e^{i\theta} f(e^{i\theta})\right) = (q+1)\theta + m\theta/2 + \sum_{\kappa=1}^{n} (\delta_{\kappa}-1)\theta/2 + A(\theta) ,$$

причем функция $A(\theta)$ является кусочно-постоянной, т.е. в точках дифференцируемости $A'(\theta)=0$. Поэтому

$$\frac{d}{d\theta} \arg \left[e^{i\theta} f(e^{i\theta}) \right] = 0 \Leftrightarrow q + 1 + m/2 + \left(\sum_{\kappa=1}^{n} \delta_{\kappa} - n \right) / 2 = 0 .$$

Так как
$$\sum_{\kappa=\ell}^{n} \mathscr{H}_{\kappa} = \mathscr{H}$$
 — индекс задачи и $\sum_{\kappa=\ell}^{n} (\mathscr{J}_{\kappa-\ell} - \mathscr{J}_{\kappa}) = \mathcal{O}$

то с учетом (4) подучим (3). Лемма доказана.

С использованием лемми докажем несколько более общее утверждение, чем сформулированная в [2]теорема 5. Предварительно напомним определения некоторых классов многолистных функций, которые ввел Стайер [3].

Определение I. Функция $f(\mathcal{Z})$ принадлежит классу $S_{w}(\rho)$ — слабо звездных функций порядка ρ , если $f(\mathcal{Z})$ регулярна в E, и существует регулярная функция $h(\mathcal{Z}) = \mathcal{Z} + \mathcal{Q}_{\mathcal{Z}} + \dots$, однолистная, звездная и такая, что

$$f(z) = h^{p}(z) \prod_{\kappa=1}^{p} \varphi(z, z_{\kappa}),$$

где $\mathcal{G}(\mathcal{Z},\mathcal{Z}_{\kappa})=(\mathcal{Z}-\mathcal{Z}_{\kappa})(1-\bar{\mathcal{Z}}_{\kappa}\mathcal{Z})/\mathcal{Z}$, $|\mathcal{Z}_{\kappa}|\leq 1$, $\kappa=\overline{1,\rho}$. Определение 2. Регулярная в Е функция $\mathcal{F}(\mathcal{Z})$, $\mathcal{F}(\mathcal{O})=\mathcal{O}$, принадлежит классу $\mathcal{K}_{w}(\rho)$ слабо почти выпуклых функций порядка ρ , если существует функция $\mathcal{F}(\mathcal{Z})\in\mathcal{S}_{w}(\rho)$, $\mathcal{F}(\mathcal{O})=\mathcal{O}$, такая, что $\mathcal{R}c$ (\mathcal{Z} $\mathcal{F}(\mathcal{Z})/\mathcal{L}(\mathcal{Z})>\mathcal{O}$, \mathcal{Z} \in \mathcal{E}

Теорема I. Решение $f(\mathcal{Z})$ задачи Гильберта (I) принадлежит классу $K_W(\rho)$, где $\rho = \lfloor (\mathscr{X} + n)/2 \rfloor$, $\lfloor \alpha \rfloor$ — целая часть числа α . Если $\mathscr{X} + n = 2$, то $f(\mathcal{Z}) \in \mathcal{S}^{\circ}(1)$ — классу однолист — ных выпуклых функций; при $\mathscr{X} + n = 3$ решение $f(\mathcal{Z})$ принадлежит классу K(I) однолистных почти выпуклых функций.

Доказательство. В силу лемми I решением задачи (I) является функция (2) с условием (3) на параметри функции и индекс задачи. При отрицательном индексе решение должно удовлет — ворять — $\mathcal{X}-1$ условиям разрешимости, при положительном — сущест — вует $\mathcal{X}+1$ линейно независимых решений.

Решением задачи является функция, отображающая круг E на прямолинейный n -угольник, возможно, с m разрезами и Q точками ветвления. Некоторые из вершин могут лежать на ∞ . Для существования такой функции достаточно выполнения $-\mathcal{X}-1=n-3-m$ - 2q условий разрешимости. С другой стороны, теорема Римана дает n-3 условий разрешимости. Разница в числе условий объясняется тем, что заранее не фиксируются значения точек ветвления и концов разрезов. За счет подбора m+2q действительных параметров часть условий естественным образом снимается.

Из формулы (3) следует, что $\mathcal{H}+n > 2$. В связи с этим изучим последовательно 4 случая: $\mathcal{H}+n=2$, $\mathcal{H}+n=3$, $\mathcal{H}+n=3$ четное и 2, $\mathcal{H}+n=3$ нечетное и 2.

Случай І. Пусть $\mathscr{X}+n=2$. Тогда в силу (3) получим q=m=0 . Решение задачи будет иметь вид

$$f(z) = C_1 \int_0^z \prod_{\kappa=1}^n (z - a_{\kappa})^{\delta_{\kappa} - 1} dz + C_2.$$

Функция $g(\mathcal{X}) = \mathcal{Z} f'(\mathcal{Z}) = \mathcal{C}_{\mathcal{X}} \mathcal{Z} \prod_{\kappa=1}^{n} (\mathcal{X} - \mathcal{A}_{\kappa})^{\kappa}$ удовлетворяет условию

$$arg g(e^{i\theta}) = \theta + \sum_{\kappa=1}^{n} (\delta_{\kappa} - 1) \frac{3}{2} + A(\theta) = A(\theta)$$

(так как $\sum_{\kappa=2}^{n} \delta_{\kappa} - n + 2 = -\mathcal{H} - n + 2 = 0$), где $A(\mathcal{O})$ постоянна

при $\theta \in (\mathcal{G}_{\kappa}, \mathcal{G}_{\kappa+1})$, $\kappa = \overline{I,n}$. Поэтому g(E) является плоскостью с n радиальными разрезами. В силу известной связи

$$g(\mathcal{Z}) = \mathcal{Z}f'(\mathcal{Z}) \in \mathcal{S}(I) \Leftrightarrow f(\mathcal{Z}) \in \mathcal{S}'(I)$$

получим выпуклость и однолистность функции $f(\mathcal{Z})$.

Случай 2. Пусть $\mathcal{H}+m=3$. Формула (3) дает m=1, $\mathcal{G}=0$ и функция (2) принимает вид

$$f(z) = C_1 \int_{0}^{\infty} (z - e^{id}) \prod_{\kappa=1}^{m} (z - a_{\kappa})^{\delta_{\kappa} - 1} dz + C_2$$

и соответственно
$$\mathcal{Z}f(\mathcal{Z}) = \mathcal{C}_{\mathcal{I}}\mathcal{Z}(\mathcal{Z}-\mathcal{C})\prod_{K=1}^{n}(\mathcal{Z}-\alpha_{K})^{\delta_{K}-1}$$
.

Рассмотрим два возможных варианта. В первом варианте все значения $\mathcal{S}_{\kappa} \in (\mathcal{O}, 1)$, $\kappa = \overline{I, n}$. Предположим, что $\mathcal{Q}_{\kappa} \neq \mathcal{C}^{id}$ $\kappa = \overline{I, n}$. Так как $\sum_{\kappa=1}^n \mathcal{S}_{\kappa} = n-3$, то существует такой набор $\{\mathcal{S}_{\kappa}\}_{\kappa=1}^n$, что $\mathcal{S}_{\kappa} \leq \mathcal{S}_{\kappa} \leq 1$ и $\sum_{\kappa=1}^n \mathcal{S}_{\kappa} = n-2$. Так же, как и $\mathcal{G}(\mathcal{A})$ в случае I, функция $\mathcal{G}_{\kappa}(\mathcal{A}) = \mathcal{A}_{\kappa=1}^n (\mathcal{A}-\mathcal{A}_{\kappa})^k \in \mathcal{S}(1)$ звездная. Функция

$$g_2(\mathcal{Z}) = (\mathcal{Z} - e^{i\alpha}) / \prod_{\kappa=1}^{n} (\mathcal{Z} - a_{\kappa})^{\epsilon_{\kappa}} - \delta_{\kappa}$$

$$\mathcal{O} < \mathcal{O}_{\mathcal{K}} - \mathcal{S}_{\mathcal{K}} < 1$$
 , $\mathcal{K} = \overline{1,72}$ и $\sum_{\kappa=1}^{72} (\mathcal{O}_{\kappa} - \mathcal{S}_{\kappa}) = 1$. В частности, можно положить $\mathcal{O}_{\kappa} - 1 = 2(\mathcal{O}_{\kappa} - 1)/3$ и $\mathcal{S}_{\kappa} - \mathcal{O}_{\kappa} = (\mathcal{O}_{\kappa} - 1)/3$.

Если для некоторого $\kappa = \kappa_o$ $\alpha_{\kappa_o} = e^{2\alpha}$, то полагая $\alpha_{\kappa_o} = 1$ видим, что функция

$$g_{2}(\mathcal{Z}) = (\mathcal{Z} - a_{\kappa_{o}})^{\delta_{\kappa_{o}}} / \prod_{\kappa=1, \kappa \neq \kappa_{o}}^{\pi} (\mathcal{Z} - a_{\kappa})^{\delta_{\kappa} - \delta_{\kappa}}$$

отображает E на угол раствора $\mathcal{E}_{\kappa} \mathscr{T} < \mathscr{T}$ с радиальными разре — зами. Поэтому существует такое $\mathcal{J} \in (-\mathscr{T}, \mathscr{T}]$, что $Re(e^{-t}\mathcal{J}_{\mathcal{Q}_{\kappa}}(\mathscr{E})) > 0$, $\mathscr{E} \in E$. Следовательно, $Re(e^{-t}\mathcal{J}_{\mathcal{Z}_{\kappa}}(\mathscr{E}))/\mathcal{C}_{1}g_{1}(\mathscr{E})) > 0$, т.е. $f(\mathscr{E}) \in \mathcal{K}(1)$. (5)

Образом единичного круга $\mathfrak{D}=f(E)$ является при $q_{\kappa}\neq e^{id}$ гоугольник с внутренними углами, меньшими \mathscr{T} , и единственным прямолинейным разрезом. При $\alpha_{\kappa_0} = e^{i\alpha}$ имеем многоугольник, все внутренние углы которого, за исключением одного, меньше \mathscr{G} . Величина угла при вершине $A_{\kappa}=f(\alpha_{\kappa})$ равна $(\delta_{\kappa}+1)\overline{\chi}>\overline{\chi}$. Во втором варианте существует хотя бы одно δ_{κ} из проме —

жугка (-I, 0]. Полагаем $g_I(\mathcal{Z}) = \mathcal{L}_I \mathcal{Z} \prod_{\kappa=1}^{n} (\mathcal{Z} - a_{\kappa})^{\delta_{\kappa} - i} (\mathcal{Z} - a_{\kappa})$ и $g_2(\vec{x})=(\vec{x}-e^{i\vec{\alpha}})/(\vec{x}-\alpha_{\kappa_1})$. В силу того, что $g_{\vec{x}}(\vec{x})\in S(t)$, получаем при некотором f повторение (5).

Случай 3. Считаем $\mathscr{X}+\mathcal{P}$ четным и \geqslant 4. Из (3) будет

следовать, что m — четное число или \mathbb{O}_* выберем из множества значений $\{\alpha_k\}_{k=1}^m$ попарно совпание: $2\{\alpha_{kl}\}_{k=1}^{m_2}$, оставшееся подмножество разобьем на две части $\{\alpha_{k2}\}_{k=1}^{m_2}$, $\{\alpha_{k3}\}_{k=1}^{m_2}$ так, чтобы выполнялось усле попарно совпадатак, чтобы выполнялось условие $\alpha_{\kappa_3}<\alpha_{\kappa_2}<\alpha_{(\kappa_{+1})_3}$, $\kappa=\overline{1,m_2}$, $\alpha_{(m_2+1)_3}=\alpha_{13}+2\%$. В трех подмножествах окажется $2m_1+m_2+m_2=m$ — четное число элемен тов. Отсюда $m_1 + m_2 = m/2$

Dynking $g_2(\mathcal{Z}) = C_1 \prod_{\kappa=1}^{m_2} (\mathcal{Z} - e^{i\alpha_{\kappa_3}}) / (\mathcal{Z} - e^{i\alpha_{\kappa_2}})$

отображает круг E на m_2 -листную полуплоскость, поэтому существует такое $\mathcal{J} \in (-\mathcal{I}, \mathcal{I}]$, что $Re(e^{ig}g_2(z)) > 0$. Учитывая, что $\mathcal{G}(\mathcal{Z},\mathcal{O})=1$, функцию $\mathcal{G}_{\mathcal{L}}(\mathcal{Z})=\mathcal{Z}f(\mathcal{Z})/\mathcal{G}_{\mathcal{L}}(\mathcal{Z})$ представим в виде

$$\begin{split} g_{I}(\mathcal{Z}) &= \mathcal{Z}^{\rho} \prod_{\kappa=1}^{q} \frac{(\mathcal{Z} - b_{\kappa})(1 - \overline{b_{\kappa}} \mathcal{Z})}{\mathcal{Z}} \prod_{\kappa=1}^{m_{I}} \frac{(\mathcal{Z} - e^{id_{\kappa I}})^{2} m_{2}}{\mathcal{Z}} \frac{(\mathcal{Z} - e^{id_{\kappa Z}})^{2} n}{\mathcal{Z}} \prod_{\kappa=1}^{m_{I}} (\mathcal{Z} - \alpha_{\kappa})^{\delta_{\kappa} - 1} \\ &= \int_{R}^{\rho} (\mathcal{Z}) \prod_{\kappa=1}^{q+m/2+1} \varphi(\mathcal{Z}, \mathcal{Z}_{\kappa}) , \end{split}$$

причем $h(\mathcal{Z}) = \mathcal{Z} \prod_{\kappa=1}^n (\mathcal{Z} - \alpha_{\kappa})^{\ell}$, $\rho = q + m/2 + i = (\mathcal{X} + n)/2$; $\mathcal{Y}(\mathcal{Z}, \mathcal{Z}_{\kappa})$ взяты из определения I и множество $\{\mathcal{Z}_{\kappa}\}_{\kappa=1}^{\ell}$, $|\mathcal{Z}_{\kappa}| \leq 1$, состоит из $\mathcal{Z}_{\rho} = \mathcal{O}$, $\{\mathcal{B}_{\kappa}\}_{\kappa=1}^{\mathcal{G}}$ и $\{\mathcal{C}^{\alpha_{\kappa j}}\}_{\kappa=1}^{m_j}$, $\mathcal{J} = \mathbb{I}$, \mathcal{Z} . Как и в случае I, можно проверить, что $h(\mathcal{Z}) \in \mathcal{S}(i)$. Следовательно, $g_i(\mathcal{Z}) \in \mathcal{S}_{w}(\rho) \Rightarrow f(\mathcal{Z}) \in \mathcal{K}_{w}(\rho)$, $\rho = (\mathcal{X} + \kappa)/2$.

Случай 4. $\mathcal{H}+\mathcal{R}=2\rho+1$ — нечетное число и \geqslant 5. Из (3) следует, что m — нечетное число. Как в случае 2, выделим 2 варианта.

I) $\mathcal{S}_{n} \in (0,1)$ для любого κ . Аналогично случаю 3 соста — вим пары $(e^{i\alpha_{K3}}, e^{i\alpha_{K2}})$, $\kappa = \overline{1,m_{2}}$, однократных нулей производной $f(\mathcal{S})$. В силу нечетности m останется еще один нуль производной, за которым сохраним прежнее обозначение $e^{i\alpha_{m_{2}}}$. Предпо — лагаем, что $\alpha_{13} < \alpha_{12} < \ldots < \alpha_{m_{2}3} < \alpha_{m_{2}2} < \alpha_{m} < \alpha_{3} + \mathcal{II}$. Докажем следую — ший результат.

Без ограничения общности можно считать, что между $e^{i\alpha_m}$ и $e^{i\alpha_{13}}$ (т.е. на дуге с $\alpha_m < \theta < \alpha_{23} + 2\pi$) раположены точки α_2 , ..., α_{χ} ($1 < \chi < n$) из совокугности $\{\alpha_{\chi}\}_{\kappa'=1}^n$, которые харак — теризуются соотношением

$$\sum_{K=1}^{\ell} \delta_{K} \leq \ell - 1 \quad , \tag{6}$$

где δ_{κ} соответствует $a_{\kappa} = e^{-\varepsilon \mathcal{G}_{\kappa}}$ в представлении (2).

Действительно, если $m_2=0$, т.е. однократный нуль у $f(\mathscr{E})$ является единственным, то берем весь набор $\{a_{\kappa}\}_{\kappa=1}^{n}$, причем для него неравенство (6) выполняется: $\sum_{\kappa=1}^{\infty} \delta_{\kappa} = n - 2\rho - 1 < n - 1$

При условии, что однократных нулей будет $2m_2+1>1$, рассмотрим $2m_2+1$ дуг ℓ_j , следующих друг за другом, с концами в этих нулях. Начальную точку ℓ_j причислим к ней, конечную точку ℓ_j отнесем к ℓ_{j+1} . Это значит, что U $\ell_j = \partial E$ без перекрытий и без пропусков. Пусть на дуге ℓ_j расположено ℓ_j чек $\{a_{K}^{(j)}\}_{K=1}^{n_j} = \{a_{K}^{(j)}\}_{K=1}^{n_j}$ и на каждой дуге ℓ_j выполняется неравенство, противоположное (6), т.е.

$$\sum_{\kappa=1}^{n_j} \delta_{\kappa}^{(j)} > n_j - 1.$$

Просуммировав эти неравенства по f , будем иметь

$$\sum_{\kappa=1}^{n} \delta_{\kappa} > n-1-2m_2.$$

Но $2m_2+1 \le m < 2\rho+1$, следовательно, $n-\sum\limits_{k=1}^n \delta_k < 2\rho+1$. Этого не может онть, так как $\mathscr{X}+n=2\rho+1$ и $\mathscr{X}=-\sum\limits_{k=1}^n \delta_k$.

Значит, хотя бы для одной дуги ℓ_j будет выполняться нух — ное неравенство вида (6). Выполнения самого неравенства (6) до — бъемся переобозначением наборов $\{\mathscr{Q}_{\kappa}\}_{\kappa=j}^{n}$ и $\{\mathscr{E}^{z\alpha}_{\kappa}\}$.

Опираясь на доказанный результат, возьмем для представления $\mathcal{Z}f(\mathcal{Z})=g_{_{\mathcal{I}}}(\mathcal{Z})$ $g_{_{\mathcal{J}}}(\mathcal{Z})$ функцию

$$g_{2}(\mathcal{Z}) = \mathcal{C}_{1} \prod_{\kappa=1}^{m} \frac{\mathcal{Z} - e^{i\alpha_{\kappa 3}}}{\mathcal{Z} - e^{i\alpha_{\kappa 2}}} \cdot \frac{\mathcal{Z} - e^{i\alpha_{m}}}{\prod_{\kappa=1}^{2} (\mathcal{Z} - \alpha_{\kappa})^{\delta_{\kappa} - \delta_{\kappa}}}$$

Вторая дробь в этом произведении строится так же, как и в первом варианте случая 2.

Функция $g_2(\mathcal{Z})$ отображает \mathcal{E} на риманову поверхность, состоящую из m_2 полуплоскостей и одного сектора с углом при вер — шине $\leq \mathcal{G}$ и радиальными разрезами. Поэтому существует такое $\delta \in \epsilon$ (- \mathcal{I} , \mathcal{G}), что $Re(e^{i\delta}g_2(\mathcal{Z})) > \mathcal{O}$, $\mathcal{Z} \in \mathcal{E}$.

Функцию $g_{z}(\mathcal{Z}) = \mathcal{Z} f'(\mathcal{Z}) / g_{z}(\mathcal{Z})$ представим в виде

$$g_{1}(z) = z^{\rho} \prod_{\kappa=1}^{q_{1}} \frac{(z-b_{\kappa})(1-\bar{b}_{\kappa}z)}{z} \prod_{\kappa=1}^{m_{1}} \frac{(z-e^{id_{\kappa i}})^{2}}{z} \prod_{\kappa=1}^{m_{2}} \frac{(z-e^{id_{\kappa i}})^{2}}{z} \prod_{\kappa=1}^{m_{1}} (z-a_{\kappa})^{\delta_{\kappa}-1} =$$

$$= h^{\rho}(\mathcal{Z}) \prod_{\kappa=1}^{q+(m-1)/2+1} \varphi(\mathcal{Z}, \mathcal{Z}_{\kappa}),$$

причем
$$f_{n}(\mathcal{Z}) = \mathcal{Z} \prod_{K=1}^{n} (\mathcal{Z} - \mathcal{Q}_{K})^{(\beta_{K}-1)/p}$$
, $\rho = q + (m-1)/2 + 1 = [(\mathcal{H} + n)/2]$.

Можно проверить, что $h(\mathcal{Z}) \in \mathcal{S}(1)$, поэтому $g_{\mathcal{I}}(\mathcal{Z}) = \mathcal{S}_{\mathcal{W}}([(\mathscr{U}+n)/2])$ и, следовательно, $f(\mathcal{Z}) \in \mathcal{K}_{\mathcal{W}}([(\mathscr{U}+n)/2])$.

2) Если существует хотя бы одно значение $\delta_{\kappa_o} \in (-1,0]$, то полагая $g_2(z) = C_1 \prod_{\kappa=1}^{m_2+1} (z-e^{i\,\mathcal{A}_{\kappa 3}})/(z-e^{i\,\mathcal{A}_{\kappa 2}})$, где

 $\exp(id_{(m_2+1)2})=a_{\kappa_0}$, и проводя рассуждения, как и в предыдущем случае, получим утверждение теоремы. Теорема полностью доказана.

Задача (I), когда $\mathscr{T}_{\mathcal{A}}$ поочередно равно 0 и $\mathscr{T}/2$, а число участков является четным (n=2m), называется смешанной крае — вой задачей. Для такой задачи получим из теоремы I

Следствие. Решение смещанной краевой задачи, имеющей 2m точек стика $\{a_{\kappa}, b_{\kappa}\}$, $\kappa = 1, m$, с постоянными коэффициентами c_{κ} , будет ρ -листной функцией, причем величина ρ не превышает следующих значений:

- I) $\lfloor m/2 \rfloor$ для решения, ограниченного во всех точках стыка,
- 2) m для решения, ограниченного в окрестности точек \mathcal{Q}_{K} и неограниченного в окрестности точек \mathcal{G}_{K} , $K = \overline{1,m}$;
- 3) [3m/2] для решения, неограниченного в окрестности всех точек $\{a_{\kappa}, \ell_{\kappa}\}_{\kappa=1}^{m}$.

Доказательство основано на том, что максимальный порядок листности по теореме I равен $[(\varkappa+2m)/2]$. Индекс \varkappa задачи в трех отмеченных вариантах равен соответственно -m, 0, m. Поэтому для оценки порядка листности имеем числа [m/2], m и [3m/2].

Замечание. Можно найти и наименьшее число листов для реше — ния в вариантах I) — 3). Такими числами будут I и $[m/2]+\delta(m/4)$, где

 $\delta(\beta) = \{ \mathcal{O}, \beta = \mathcal{Q} - \text{целое число}; 1, \beta \neq \mathcal{Q} \}$. Достижение I в первом случае обосновывается примером задачи с однолистным решением. В двух оставшихся вариантах наименьшее число листов определяется из характера поведения решения в окрестности ∞ . Действительно, во втором случае самое большее 2 из четырех последовательных вершин могут лежать на ∞ и при этом располагаться на одном листе. Всех листов окажется m/2 при четном m и $\lfloor m/2 \rfloor + 1$ — при нечетном m. Аналогично и в варианте 3.

2. В структурные формулы классов многолистных функций входят множители вида $\mathcal{Z}-\mathcal{Q}_{\mathcal{K}}$, $|\mathcal{A}_{\mathcal{K}}| \leq I$, характеризующие либо нули функции, либо нули ее производной. Поэтому, чтобы устано—вить соответствие между решением задачи Гильберта и некоторым классом многолистных функций, необходимо знать возможное число нулей решения.

Рассмотрим краевую задачу Гильберта для единичного круга $\mathcal{I}m\left[e^{-i\omega(\theta)}f(e^{i\theta})\right]=c(\theta)$, $\theta\in[0,2\pi]$, (7)

с разрывными кусочно-гёльдеровыми коэффициентами. Пусть функции, входящие в краевое условие (7), имеют разрывы первого рода: $\omega(\theta)$ в точках $\theta = \varphi_{\kappa}$, $\kappa = \overline{I, m}$.

Обозначим через $\mathcal{H}_{\mathbf{N}}$ индекс задачи (7) в классе неограниченных (по возможности) в точках стыка функций [4], пусть $\mathcal{H} = [\mathcal{H}_{\mathbf{N}}/2]$. Обозначим через $\mathcal{N}(E)$ число нулей решения задачи (7), лежащих в \mathbb{E} . Пусть $\mathcal{J}(\mathcal{J}) = \iint_{\mathbb{R}} (\mathcal{J} - e^{z \cdot Q_{\mathbf{K}}})^{\delta_{\mathbf{K}}} \mathcal{P}(\mathcal{J}) \mathcal{F}_{\mathbf{G}}(\mathcal{J})$, где $\delta_{\mathbf{K}} \in (-1,1)$, $\mathcal{K} = \underbrace{1}_{\mathbf{N}} \mathcal{T}_{\mathbf{K}} = \underbrace{1}_{\mathbf{N}} \mathcal{T}_{\mathbf{N}} = \underbrace{1}_{\mathbf{N}} = \underbrace$

<u>Лемма 2.</u> Если существует конечное число точек, в которых $C(\theta)$ обращается в 0, причем при переходе через $2\pi_C$ нулей или точек разрыва $C(\theta)$ меняет знак, то $N(E) \leq \mathscr{X}_0 + n_C$. Если $C(\theta) \neq 0$, когда θ пробегает интервал [$0,2\pi$], то $N(E) = \mathscr{X}_0 + n_C$. Для однородной задачи выполняется равенство $2N(E) + N(\partial E) = \mathscr{X}_0 + n_C$.

Замечания. І. Если ${\mathcal H}$ — индекс задачи в искомом классе функций — отрицательное число, то лемма будет верна при выполне — нии — ${\mathcal H}-1$ условий разрешимости.

2. Если коэйбициенты задачи удовлетворяют условию Гельдера, то значение \mathcal{H}_{H} в формулировке лемми надо заменить на \mathscr{H}

Доказательство. І. Рассмотрим случай, когда решение не обращается в 0 на границе, т.е. $\mathcal{N}(\partial E) = 0$.

а) Решением задачи Шварца $\mathcal{I}m[f(e^{i\theta})] = c(\theta), \theta \in [0,2\pi]$, которая является частным случаем задачи (7) при $\omega(\mathcal{O}) \equiv \mathcal{O}$, бупет аналитическая функция, имеющая логарифмические особенности в Tourax paspuba $C(\theta)$,

$$f(\mathcal{Z}) = \frac{\dot{c}}{2\pi} \int_{0}^{2\pi} c(\theta) \frac{e^{i\theta} + \mathcal{Z}}{e^{i\theta} - \mathcal{Z}} d\theta + c_{0} = iS(c(\theta), \mathcal{Z}) + c_{0},$$

где C_{α} - произвольная действительная постоянная. Отсюда, применяя формулу для предельных значений интеграла Шварца, получим:

$$f(e^{i\varphi}) = iC(\varphi) - \frac{1}{2\pi} \int_{0}^{2\pi} c(\varphi) ctg \frac{\theta - \varphi}{2} d\theta + c_{0}, \varphi \neq \varphi_{\kappa}, \kappa = \overline{1, m}. (8)$$

Образ $\mathcal{I}(E)$ под действием постоянной C_o будет перемещать ся парадлельно вещественной оси, заметая некоторую полосу. Если бы у f(x) при каком-то значении c_o число нулей $\mathcal{N}(\mathcal{E})$ было больше n_{c} , то по принципу аргумента число витков вокруг начала координат кривой с уравнением (8) превысило бы n_c . Следовательно, в этом случае число точек смены знака функции $c(\varphi)$ должно быть больше $2n_c$, то противоречит условию теоремы. Поэтому $\mathcal{N}(E) \leq n_c$

Если $c(\theta) \neq 0$, когда θ пробегает интервал $[0,2\pi]$, но при этом существует $2\pi_{C}$ точек, при переходе через которые $C(\mathcal{O})$ меняет знак, то это означает, что действительная ось покрывается областью f(E) ровно π_c раз. В этом случае $\mathcal{N}(E) = \pi_c$.

б) Решением неоднородной задачи, по возможности неограниченным в точках стыка, является функция

$$f(\mathcal{Z}) = \mathcal{Z} \stackrel{\mathcal{Z}_{O}}{\leftarrow} e^{-i\mathcal{X}(\mathcal{Z})} \stackrel{\pi}{/} (\mathcal{Z} - \alpha_{\kappa}) \stackrel{\mathcal{S}_{K}}{\leftarrow} \mathcal{Q}(\mathcal{Z}) , \qquad (9)$$

$$\text{ГДЕ } \delta_{\kappa} = [\omega(\mathcal{Q}_{\kappa} - \mathcal{O}) - \omega(\mathcal{Q}_{\kappa} + \mathcal{O})] / \overline{\pi} - \mathcal{X}_{\kappa} , \delta_{\kappa} \in (-1, \mathcal{O}] , \kappa = 2, \pi ,$$

$$\delta_{\iota} = [\omega(\mathcal{Q}_{\iota} - \mathcal{O}) - \omega(\mathcal{Q}_{\iota} + \mathcal{O})] / \overline{\pi} - \mathcal{X}_{\iota} + \delta(\mathcal{X}_{\iota} / 2) ,$$

$$\delta(\beta) = \left\{ \mathcal{O} , \beta = \mathcal{Q} - \text{ Целое}; 1, \beta \neq \mathcal{Q} \right\} ,$$

$$\delta(\beta) = \left\{ \mathcal{O} , \beta = \mathcal{Q} - \text{ Целое}; 1, \beta \neq \mathcal{Q} \right\} ,$$

$$\delta_{\iota} \in (-1, \mathcal{O}] , \text{ если } \mathcal{X}_{\mathcal{H}} - \text{ Четное}, \delta_{\iota} \in (\mathcal{O}, 1] , \text{ если } \mathcal{X}_{\mathcal{H}} - \text{ не} - \text{ Четное};$$

$$-3I -$$

$$\begin{split} &\mathcal{J}(\vec{x}) = S\left[\;\omega(\theta) - \rho\theta - \sum_{\kappa=1}^{n} \; \delta_{\kappa} \; arg\left(e^{i\theta} - \alpha_{\kappa}\right), \; \vec{x}\right] \;, \\ &\omega_{I}(\theta) = \mathcal{I}m \; \mathcal{J}\left(e^{i\theta}\right) \;, \\ &\mathcal{Q}(\vec{x}) = iS\left[\;e^{i\theta} - c(\theta) \int_{\kappa=1}^{n} \left|\;e^{i\theta} - a_{\kappa}\right| \right] + \\ &+ a_{0} + i \, b_{0} \, \delta\left(2e_{H}/2\right) (\vec{x} + a_{I}) / (\vec{x} - a_{I}) + \sum_{\kappa=1}^{\infty} \left(c_{\kappa} \; \vec{x}^{\kappa} + \vec{c}_{\kappa} \; \vec{x}^{-\kappa}\right) \;, \\ &\alpha_{o} \;, \; b_{o} \; \in \; \mathbb{R} \; \;, \; c_{o} = a_{o} + i \, b_{o} \; \;, \; c_{\kappa} \; \in \; \mathbb{C} \; \;, \; \kappa = \overline{1, 2e_{o}} \end{split}$$

При изменении значений параметров C_{κ} , $\kappa=\overline{\mathcal{O},\mathcal{H}_o}$, гра — ничные точки области $\mathcal{D}=\mathcal{Q}(E)$ будут перемещаться параллельно вещественной оси.

Пусть индекс \mathscr{H}_H — неотрицательное число, тогда число по-люсов функции $\mathcal{Q}(\mathscr{Z})$, расположенных в 0, не превышает величины $\mathscr{C}=\max\{\kappa\colon c_\kappa\neq 0\}$, а число $\mathscr{N}(E)$ нулей не превышает \mathscr{H}_C в силу рассуждений из предыдущего пункта. Следовательно, разность между N_Q нулей функции $\mathscr{Q}(\mathscr{Z})$ и числом \mathscr{P}_Q ее полосов будет удовлетворять неравенству - $\mathscr{H}_Q \in \mathscr{N}_Q - \mathscr{P}_Q \leq \mathscr{H}_Q$. Если \mathscr{H}_H — нечетное число, то функция $\mathscr{Q}(\mathscr{Z})$ имеет полос первого порядка на границе в точке $\mathscr{Z}=\mathscr{Q}_1$, но за счет множителя $(\mathscr{Z}-\mathscr{Q}_1)^{\delta_2}$, $\mathscr{S}_1\in(\mathscr{O},1)$ получим, что $\mathscr{J}(\mathscr{Z})$ в точке $\mathscr{Z}=\mathscr{Q}_1$ имеет особенность порядка $1-\mathscr{S}_1$.

Так как $\Delta_{\partial E(1-\mathcal{E})} arg(\mathcal{A} - \mathcal{A}_{\kappa})^{\mathcal{E}_{\kappa}} = 0$, где $\partial E(1-\mathcal{E}) = \{\mathcal{A}: |\mathcal{A}| = 1-\mathcal{E}, \mathcal{E} > 0\}$, $\kappa = \overline{1, \kappa}$, то для нулей функции (9) имеем оценки $\mathcal{O}' \leq \mathcal{E}(E) \leq \mathcal{H}_{\kappa} + \mathcal{H}_{\kappa}$

Решение задачи, ограниченное в точках стыка, можно рассмат — ривать как частный случай функции вида (9), когда некоторые точки множества $\left\{\alpha_{\mathcal{K}}\right\}_{\mathcal{K}=1}^{\mathcal{H}}$ являются корнями уравнения $\mathcal{Q}(\mathcal{Z})=\mathcal{O}$ соответ—ствующей кратности. При этом происходит уменьшение числа действи—тельных параметров, от которых зависит решение, но оценка $\mathcal{O}^{\leq}\mathcal{N}(E)^{\leq}$ $\leq \mathcal{X}_{\mathcal{O}} + \mathcal{H}_{\mathcal{C}}$, очевидно, сохранится.

Если теперь индекс задачи $\mathcal{X}_{\mathcal{H}}$ – стрицательное число, то в представлении (9) $\mathcal{Q}(\mathcal{Z}) = i\mathcal{S}\left[e^{\frac{\omega_{\mathcal{I}}(\mathcal{O})}{\mathcal{C}}} \int_{\kappa=1}^{\hbar} |e^{\frac{i\mathcal{O}}{\mathcal{O}}} \int_{\kappa}^{\mathcal{S}_{\mathcal{X}}} |+ \alpha_{\mathcal{O}} + i\mathcal{O}_{\mathcal{O}}^{\mathcal{S}} \mathcal{O}\left(\frac{\mathcal{X}_{\mathcal{H}}}{\mathcal{Z}}\right) \frac{\mathcal{Z} + \alpha_{\mathcal{I}}}{\mathcal{Z} - \alpha_{\mathcal{I}}}\right]$.

Все предыдущие рассуждения будут иметь место. Условие $\mathcal{H}_o + n_c > 0$ можно рассматривать как необходимое условие разрешимости.

2. Пусть решение обращается в 0 в некоторой точке гланици, т.е. существует такое значение $\mathcal{X}_o = e^{zQ}$, что $Q(\mathcal{X}_o) = O$. Так как пересечением граничной кривой, уравнение которой $W = Q(e^{zQ})$, с действительной осых является конечное множество точек, то в плоскости W существует такая окрестность 0, что ни через одну точку этой окрестности (за исключением 0) не проходит граничная кривая. Поэтому для функций

$$f_{M}(z) = z e^{z \cdot \mathcal{J}(z)} \int_{\kappa=1}^{n} (z - a_{\kappa})^{\delta_{\kappa}} (Q(z) + c_{M}) ,$$

где $\mathcal{O} < \mathcal{E}_{\mathcal{M}} < \mathcal{E}$, \mathcal{E} — радиус окрестности, которые являются решением задачи (6), выполняются утверждения теоремы. Значит, $\mathcal{N}(E) \le \mathscr{X}_0 + n_{\mathcal{C}}$ для $f_{\mathcal{M}}(\mathscr{Z})$ при любом \mathscr{M} . Последовательность функций $f_{\mathcal{M}}(\mathscr{Z})$ равномерно сходится к $f(\mathscr{Z})$ внутри E при $\mathcal{E}_{\mathcal{M}} \to \mathcal{O}$. Поэтому для $f(\mathscr{Z})$ также будет выполняться неравенство $\mathcal{N}(E) \le \mathscr{X}_0 + n_{\mathcal{C}}$.

3. Пусть $c(\theta) \neq 0$. Используя принцип аргумента для функции $Q(\mathcal{Z})$, получим $N_Q - P_Q = n_C$. Поэтому для функции $f(\mathcal{Z})$: $N(E) = \mathcal{Z}_0 + n_C$. В частном случае, когда $c(\theta) > 0$ $(c(\theta) < 0)$, $N(E) = \mathcal{Z}_0$. Для задачи Шварца $N(E) = n_C$

4. Представим решение однородной задачи $(c(\mathcal{B}) \equiv \mathcal{O})$ в виде

$$f(z) = \prod_{\kappa=1}^{n} (z - a_{\kappa})^{\delta_{\kappa}} f_{o}(z)$$
 . Функция $f_{o}(z)$ является решением

некоторой однородной задачи с гельдеровыми коэффициентами, причем индекс этой задачи равен индексу задачи (?) в искомом классе функций. Для функции $f_o(\mathcal{Z})$, а следовательно, и для $f(\mathcal{Z})$ выполняется равенство $2N(E)+N(\partial E)=\mathscr{X}$ ([5], с.19?). Лемма доказана.

Замечание. Равенство (3) в лемме I можно получить, используя лемму 2. Перейдя от краевого условия (I) к краевому условию для функции $g(\mathcal{Z}) = i\mathcal{Z} f'(\mathcal{Z})$,

$$\mathcal{I}m\left[e^{-i\eta\kappa}g\left(e^{i\theta}\right)\right]=0, \qquad (10)$$

где решение ищется в классе функций, имеющих особенности порядка не выше второго, заметим, что индексы задач (I) и (I0) связаны $\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} x_n$

соотношением $\mathscr{X}_f = \sum_{\kappa=1}^n \mathscr{X}_\kappa = \sum_{\kappa=1}^n (\mathscr{X}_\kappa + 1) - n = \mathscr{X}_g - n$. В силу лемми 2 для однородной задачи (IO) имеем равенство $\mathscr{X}_g = 2(q+1) + m$, где q — число нулей $f(\mathscr{X})$, лежащих в E, m — число нулей $f(\mathscr{X})$, лежащих на ∂E . Отсюда сразу получаем равенство (3).

Используя доказанную лемму, сформулируем условия на коэффициенты задачи Гильберта, при выполнении которых устанавливается принадлежность решения задачи некоторому классу многолистных функций.

Обозначим через \mathcal{M} класс функций $\omega(\theta)$, имеющих конечное число точек разрыва первого рода, неубивающих, гёльдеровых между точками разрыва. Справедлива следующая

Теорема 2. Решение однородной задачи Гильберта

$$\overline{Im\left[e^{-i\omega(\theta)}f(e^{i\theta})\right]} = 0 , \theta \in [0,2\pi] ,$$

принадлежит классу $\mathcal{S}_{w}(\mathscr{X})$ — слабо звездных функций порядка \mathscr{H} , где \mathscr{H} — индекс задачи, если $\omega(\mathscr{O})\in \mathscr{M}$.

Решением задачи Гильберта

$$\mathcal{I}_{m}\left[e^{-i\omega(\theta)}f'(e^{i\theta})\right] = c(\theta) , \theta \in [0,2\pi] ,$$

является слабо почти выпуклая функция порядка $\mathscr{X}+1$ если $C(\theta)> > \mathcal{O}(C(\theta)<0)$ и $\omega(\theta)+\theta\in\mathcal{M}$. Если $C(\theta)=0$, то $f(\mathscr{Z})\in\mathcal{S}_{w}^{\circ}$ ($\mathscr{X}+1$) , т.е. слабо выпуклая порядка $\mathscr{X}+1$ при условии, что $\omega(\theta)+\theta\in\mathcal{M}$.

В работе [2] была сформулирована теорема о конечнолистной разрешимости задачи Гильберта с разрывными коэффициентами, доказательство которой мы сейчас приведем.

Естественным обобщением класса однолистных функций, выпуклых в n направлениях [6], является класс $K(\rho,n)$, ρ -листных выпуклых в n направлениях функций.

Определение 3. Функция $\mathcal{F}(\mathscr{Z})$ принадлежит классу $\mathcal{K}(p,n)$, если существует функция $\mathcal{h}(\mathscr{Z}) \in \mathcal{S}(\mathscr{L})$, отображающая единичний круг \mathscr{E} на плоскость с n радиальными разрезами такая, что

$$\mathcal{J}(z) = \int_{0}^{z} \frac{h^{\rho}(t)}{t} \prod_{\kappa=1}^{\rho} \varphi(t, z_{\kappa}) \rho_{o}(t) dt ,$$

где $\zeta'(\mathcal{A},\mathcal{A}_{\kappa})=(\mathcal{A}-\mathcal{A}_{\kappa})(1-\overline{\mathcal{A}}_{\kappa}\,\mathcal{A})/\mathcal{A}$, $|\mathcal{A}_{\kappa}|<1$, $\kappa=\overline{1.p}$, функция $\rho_o(\mathcal{A})$, $\rho_o(\mathcal{O})=1$, регулярна в E и удовлетворяет условию $Re\ e^{i\delta}\,\rho_o(\mathcal{A})>0$ с некоторым $\delta\in(-\pi/2\,,\pi/2)$.

Пусть функция f(z) регулярна в круге E , непрерывно продолжима на границу, за исключением конечного числа точек, в кото — рых она имеет порядок роста, меньший единицы, и удовлетворяет условию

$$Im\left[e^{-i\mathbf{T}_{\kappa}}f(e^{i\theta})\right] = c_{\kappa}(\theta) , \theta \in (\mathcal{G}_{\kappa}, \mathcal{G}_{\kappa+\ell}) , \qquad (II)$$

 $0 < \underline{\varphi}_1 < \underline{\varphi}_2 < \ldots < \underline{\varphi}_n < 2\pi$, $\underline{\varphi}_{n+1} = \underline{\varphi}_1 + 2\pi$; \mathcal{J}_{κ} — постоянные величины, $\kappa = \overline{I,n}$.

Теорема 3. Решение задачи (IO) в классе функций, ограни — ченных в точках стыка или имеющих там особенности с порядками, меньшими $\delta_{\kappa} = (\gamma_{\kappa} - \gamma_{\kappa-1})/\overline{x}$, $\kappa = \overline{2,n}$, $\delta_{t} = (\gamma_{t} - \gamma_{n} + 2\overline{x}\rho)/\overline{x}$, будет не более чем p — листным в круге E, если $O < \gamma_{t} < \gamma_{t} < \gamma_{n} < 2\overline{x}\rho$, $\gamma_{\kappa-1} < \overline{x}$, $\kappa = \overline{2,n}$, $\gamma_{t} - \gamma_{n} < \overline{x} - 2\overline{x}\rho$ и $c_{\kappa}(\theta)$ — возрастающие дафференцируемые по O функции.

Доказательство. Покажем, что решение принадлежит классу выпуклых в n направлениях порядка ρ функций. По лемме 2 решение задачи

$$\mathcal{I}_{m}\left[e^{-i\mathcal{J}_{\kappa}+i\mathcal{I}/2}e^{i\theta}f(e^{i\theta})\right]=c_{\kappa}'(\theta), \ \theta \in (\varphi_{\kappa}, \varphi_{\kappa+1}), \quad (12)$$

полученной дифференцированием краевого условия (II) по параметру θ , имеет \mathscr{X}_{μ} нулей. В нашем случае $\mathscr{X}_{\mu} = \rho$.

При построении решения используем функцию

$$\mathcal{Y}(\vec{x}) = \prod_{\kappa=1}^{p} c_{k}(\vec{x}, \vec{x}_{\kappa}) \prod_{\kappa=1}^{n} (1 - \bar{a}_{\kappa} \vec{x})^{-(\eta_{\kappa} - \eta_{\kappa-1})/\bar{n}}$$

отображающую круг на ρ -листную область, внешность прямолиней - ных разрезов, проведенных под углами $\mathcal{F}_{\mathcal{K}}$ к положительному направлению действительной оси. Нули функции $\mathscr{Y}(\mathcal{Z})$ должны совпадать с нулнми функции $\mathscr{Z}_{\mathcal{K}}$. Умножим (I2) на $|\mathscr{Y}(e^{z\theta})|^{-1}$. Учитывая граничное поведение $\mathscr{Y}(\mathcal{Z})$, имеем

$$Re\left[e^{i\theta}f'(e^{i\theta})/\mathcal{Y}(e^{i\theta})\right] = c_{\kappa}'(0)/|\mathcal{Y}(e^{i\theta})|.$$

Функция f(z) аналитична в круге, на границе может иметь особенности порядка не выше первого и $Re[e^{z\theta}f(e^{z\theta})/\mathcal{Y}(e^{z\theta})]>0$. Так как выполняются условия леммы из [7], то $Re[zf(z)/\mathcal{Y}(z)]>0$. Следовательно, $f(z)\in K(\rho,\pi)$, и теорема 3 доказана.

3. В п.І было отмечено, что задача Гильберта (I) с отрица — тельным индексом \mathcal{X} , которая имеет решение при выполнении $-\mathcal{X}-I$ условий разрешимости, в некотором смысле эквивалентна задаче отображения на полигональные области. Знание геометрических свойств решения задачи Гильберта помогает видоизменить задачу так, чтобы она стала корректной.

- 35 -

В связи с этим интересно било бы найти варианты постановки задачи Гильберта (I) или (7) со свободными параметрами, за счет выбора которых задача становится корректно поставленной.

Одно из таких видоизменений дает краевое условие в форме $Re(e^{-i\partial_{\kappa}}f(e^{i\theta}))=c_{\kappa}+d_{\kappa}$, $\theta\in(\varphi_{\kappa}^{-},\varphi_{\kappa+\ell}^{-})$, $\kappa=\overline{I,\pi}$,

причем количество неизвестных параметров \mathscr{A}_{κ} равно $-\mathscr{x}$ -1 . Для других видоизменений можно привлекать $\{\gamma_{\kappa}\}$ и $\{\mathscr{C}_{\kappa}\}$.

В заключение обратим внимание на истолкование с точки зрения многолистных функций классов корректности задачи Римана, которые предложены Φ .Д.Гаховым.

В своей монографии ($\{4\}$, с. $\{18\}$) Ф.Д.Гахов при обсуждении вопросов корректности предлагает переходить от задачи Римана с индексом, отличным от нуля, к задаче Римана с нулевым индексом. Переход осуществляется с помощью функций, которые могут быть локально многолистными и покрывать окрестности конечных точек листами в количестве, равном \mathscr{X}_+ для функции $\mathscr{Q}^+(\mathscr{X})$ и \mathscr{X}_- — для функции $\mathscr{Q}^-(\mathscr{X})$, причем $\mathscr{X}_+ + \mathscr{X}_- = \mathscr{X}_-$ в случае положительного индекса \mathscr{X}_- .

В случае отрицательного индекса количество листов, покрыватилих окрестность ∞ , будет равно $|\mathscr{X}| = |\mathscr{X}_+| + |\mathscr{X}_-|$, где $|\mathscr{X}_+| = 0$ порядок листности в ∞ от $\mathscr{P}^+(\mathscr{X})$ и $|\mathscr{X}_-| = 0$ порядок листности в ∞ от $\mathscr{P}^+(\mathscr{X})$. Тем самым можно утверждать, что задача Римана оказывается корректно поставленной в классе функций, который состоит из аналитических функций не менее, чем \mathscr{X}_+ —листных для $\mathscr{P}^+(\mathscr{X})$ и не менее, чем \mathscr{X}_+ —листных для $\mathscr{P}^+(\mathscr{X})$ и не менее, чем \mathscr{X}_+ —листных для $\mathscr{P}^+(\mathscr{X})$ и в расширенном классе аналитических функций с добавлением полярных особенностей, превращающих $\mathscr{P}^-(\mathscr{X})$ в не менее, чем $|\mathscr{X}_+|$ —листную функцию и $\mathscr{P}^+(\mathscr{X})$ в не менее, чем $|\mathscr{X}_+|$ —листную функцию (\mathscr{X}_+ + \mathscr{X}_+ = \mathscr{X}_+ \mathscr{P}^+

Видимо, расширение класса искомых функций с добавлением по-лярных особенностей с суммарным порядком $-\mathcal{X}-1$, $\mathcal{X}<\mathcal{O}$, сделает корректной такую постановку и для задачи Гильберта.

Литература

- І. Аксентьев Л. А. Достаточные условия многолист ности интегральных представлений // Тр. семин. по краев. задачам. Казань. 1980. Вып. 17. С.2 17.
- 2. Аксентьев Л. А., Зорин И. А. Условия конечнолистности интегральных представлений // Тр. семин. по краев.задачам. Казань, 1990. — Вып. 25. — С.20 — 31.
- 3. S t y e r D. Close to convex multivalent functions with respect to weakly starlike functions // Trans. Amer. Math. Soc. 1972. V.169. N 7. P. 105 II2.
- 4. Гахов Ф. Д. Краевые задачи. М.: Наука, 1977. 640 с.
- 5. Векуа И. Н. Обобщенные аналитические функции. М.: Наука, 1988. — 509 с.
- 6. Прохоров Д. В., Рахманов Б. Н. Обинте гральном представлении одного класса однолистных функций // Матем. заметки. 1976. Т.19. № 1. С.41 48.
- 7. Аксентьев Л. А. Достаточные условия однолистности решения обратной задачи теории фильтрации // УМН. — 1959. — Т.14. — Вып. 4. — С.133 — 140.

Ф.Х.Арсланов, С.Р.Насиров

НЕКОТОРЫЕ ОБОБЩЕНИЯ УСЛОВИЙ ОДНОЛИСТНОСТИ БЕККЕРА ДЛЯ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

Пусть функция $f(\mathcal{Z})$ регулярна и локально однолистна в единичном круге $\mathcal{E} = \{ \mathcal{Z} : |\mathcal{Z}| < \ell \}$. Хорошо известно, что $f(\mathcal{Z})$ будет однолистна в \mathcal{E} , если выполняется одно из условий [1]:

$$|f'(z)/f'(z)| \le 1/(1-|z|^2), z \in E,$$
 (I)

(или [2])

$$|\int f'(z)/f'(z)| \leq 3.05 \dots, \quad z \in E . \tag{2}$$

Естественно поставить вопрос о "соединении" этих двух условий, то есть получении достаточных условий однолистности вида — 37 —