R Package FME: Inverse Modelling, Sensitivity, Monte Carlo – Applied to a Steady-State Model

Karline Soetaert

NIOO-CEME The Netherlands

Abstract

Rpackage **FME** (Soetaert and Petzoldt 2010) contains functions for model calibration, sensitivity, identifiability, and Monte Carlo analysis of nonlinear models.

This vignette, (vignette("FMEsteady")), applies FME to a partial differential equation, solved with a steady-state solver from package rootSolve

A similar vignette (vignette("FMEdyna")), applies the functions to a dynamic similation model, solved with integration routines from package **deSolve**

A third vignette (vignette("FMEother")), applies the functions to a simple nonlinear model

vignette("FMEmcmc") tests the Markov chain Monte Carlo (MCMC) implementation

Keywords: steady-state models, differential equations, fitting, sensitivity, Monte Carlo, identifiability, R.

1. A steady-state model of oxygen in a marine sediment

This is a simple model of oxygen in a marine (submersed) sediment, diffusing along a spatial gradient, with imposed upper boundary concentration oxygen is consumed at maximal fixed rate, and including a monod limitation.

See (Soetaert and Herman 2009) for a description of reaction-transport models.

The constitutive equations are:

$$\frac{\partial O_2}{\partial t} = -\frac{\partial Flux}{\partial x} - cons \cdot \frac{O_2}{O_2 + k_s}$$

$$Flux = -D \cdot \frac{\partial O_2}{\partial x}$$

$$O_2(x = 0) = upO2$$

> par(mfrow=c(2, 2))
> require(FME)

First the model parameters are defined...

> pars <- c(up02 = 360, # concentration at upper boundary, mmol02/m3
+ cons = 80, # consumption rate, mmol02/m3/day</pre>

```
+ ks = 1, # 02 half-saturation ct, mmol02/m3
+ D = 1) # diffusion coefficient, cm2/d
```

Next the sediment is vertically subdivided into 100 grid cells, each 0.05 cm thick.

```
> n <- 100  # nr grid points

> dx <- 0.05  #cm

> dX <- c(dx/2, rep(dx, n-1), dx/2)  # dispersion distances; half dx near boundaries

> X <- seq(dx/2, len = n, by = dx)  # distance from upper interface at middle of box
```

The model function takes as input the parameter values and returns the steady-state condition of oxygen. Function steady.1D from package rootSolve ((Soetaert 2009)) does this in a very efficient way (see (Soetaert and Herman 2009)).

```
> 02fun <- function(pars)</pre>
   {
     derivs <- function(t, 02, pars)
     with (as.list(pars),{
       Flux <- -D* diff(c(up02, 02, 02[n]))/dX
       d02 < -diff(Flux)/dx - cons*02/(02 + ks)
       return(list(dO2, UpFlux = Flux[1], LowFlux = Flux[n+1]))
     })
    }
+
    # Solve the steady-state conditions of the model
    ox <- steady.1D(y = runif(n), func = derivs, parms = pars,
                     nspec = 1, positive = TRUE)
    data.frame(X = X, 02 = ox\$y)
The model is run
> ox <- 02fun(pars)
and the results plotted...
> plot(ox$02, ox$X, ylim = rev(range(X)), xlab = "mmol/m3",
        main = "Oxygen", ylab = "depth, cm", type = "1", lwd = 2)
```

2. Global sensitivity analysis: Sensitivity ranges

The sensitivity of the oxygen profile to parameter cons, the consumption rate is estimated. We assume a normally distributed parameter, with mean = 80 (parMean), and a variance=100 (parCovar). The model is run 100 times (num).

Figure 1: The modeled oxygen profile - see text for R-code

The results can be plotted in two ways:

```
> par(mfrow = c(1, 2))
> plot(Sens2, xyswap = TRUE, xlab = "02",
+     ylab = "depth, cm", main = "Sensitivity runs")
> plot(summary(Sens2), xyswap = TRUE, xlab = "02",
+     ylab = "depth, cm", main = "Sensitivity ranges")
> par(mfrow = c(1, 1))
```

3. Local sensitivity analysis: Sensitivity functions

Local sensitivity analysis starts by calculating the sensitivity functions

```
> 02sens <- sensFun(func=02fun,parms=pars)
```

The summary of these functions gives information about which parameters have the largest effect (univariate sensitivity):

```
> summary(02sens)
```


Figure 2: Results of the sensitivity run - left: all model runs, right: summary - see text for R-code

```
value scale L1
                       L2 Mean
                                     Min
                                             Max
                                                    N
up02
       360
             360 7.0 0.88
                           7.0
                                 1.0e+00 13.4176 100
              80 8.1 1.14 -8.1 -2.2e+01 -0.0084 100
cons
        80
ks
         1
               1 2.2 0.37
                            2.2
                                 1.2e-04 9.6137 100
D
               1 8.1 1.14 8.1 8.4e-03 22.0312 100
```

In bivariate sensitivity the pair-wise relationship and the correlation is estimated and/or plotted:

> pairs(02sens)

> cor(02sens[,-(1:2)])

```
D
           up02
                                    ks
                       cons
up02
      1.0000000 -0.9787945
                             0.8375806
                                        0.9787945
cons -0.9787945
                 1.0000000 -0.9317287 -1.0000000
      0.8375806 -0.9317287
                             1.0000000
                                        0.9317287
ks
D
      0.9787945 -1.0000000
                             0.9317287
                                         1.0000000
```

Multivariate sensitivity is done by estimating the collinearity between parameter sets (Brun, Reichert, and Kunsch 2001).

```
> Coll <- collin(02sens)</pre>
> Coll
```

```
upO2 cons ks D N collinearity
               0 0 2
                               7.7
1
      1
2
                                2.9
      1
           0
               1 0 2
```


Figure 3: pairs plot - see text for R-code

```
7.7
3
               0 1 2
                1 0 2
                                 4.4
4
5
                         25364766.4
                0 1 2
6
      0
                                 4.4
            0
                1 1 2
7
      1
            1
                1 0 3
                                25.5
8
      1
                0 1 3
                         96597623.3
            1
                1 1 3
9
                                25.5
10
      0
            1
                1 1 3
                        118375710.3
                1 1 4
11
      1
            1
                                 NaN
```

```
> plot(Coll, log = "y")
```

4. Fitting the model to the data

Assume both the oxygen flux at the upper interface and a vertical profile of oxygen has been measured.

These are the data:

```
> 02dat <- data.frame(x = seq(0.1, 3.5, by = 0.1),

+ y = c(279,260,256,220,200,203,189,179,165,140,138,127,116,

+ 109,92,87,78,72,62,55,49,43,35,32,27,20,15,15,10,8,5,3,2,1,0))

> 02depth <- cbind(name = "02", 02dat) # oxygen versus depth

> 02flux <- c(UpFlux = 170) # measured flux
```

First a function is defined that returns only the required model output.

```
> 02fun2 <- function(pars)
+ {</pre>
```


Figure 4: collinearity - see text for R-code

The function used in the fitting algorithm returns an instance of type modCost. This is created by calling function modCost twice. First with the modeled oxygen profile, then with the modeled flux.

```
> Objective <- function (P)
+ {
+    Pars <- pars
+    Pars[names(P)] <-P
+    mod02 <- 02fun2(Pars)
+
+    # Model cost: first the oxygen profile
+    Cost <- modCost(obs = 02depth, model = mod02[[1]],</pre>
```

```
x = "x", y = "y")
+
+
    # then the flux
    modFl \leftarrow c(UpFlux = modO2\$UpFlux)
    Cost <- modCost(obs = O2flux, model = modFl, x = NULL, cost = Cost)
    return(Cost)
   }
We first estimate the identifiability of the parameters, given the data:
> print(system.time(
+ sF<-sensFun(Objective, parms = pars)
+ ))
          system elapsed
   user
  0.158
           0.000
                    0.163
> summary(sF)
     value scale
                    L1
                          L2
                              Mean
                                         Min Max
up02
       360
              360 4.25 0.97
                              4.25
                                      0.5069 13.3 36
cons
         80
               80 3.68 0.99 -3.65 -15.3722 0.5 36
          1
                              0.40
                                    -0.0069 3.1 36
ks
                1 0.40 0.14
                1 3.68 0.99
D
          1
                              3.68
                                      0.0342 15.4 36
> collin(sF)
   upO2 cons ks D N collinearity
1
               0 0 2
                               8.6
2
               1 0 2
                               3.1
      1
               0 1 2
                               8.7
3
      1
            0
      0
               1 0 2
                               4.2
4
            1
5
      0
            1
               0 1 2
                              50.6
      0
               1 1 2
                               4.2
6
            0
7
      1
            1
               1 0 3
                              14.2
8
      1
               0 1 3
                              50.8
9
      1
            0
              1 1 3
                              14.7
10
      0
            1
               1 1 3
                              50.6
                              51.0
11
      1
            1 1 1 4
```

The collinearity of the full set is too high, but as the oxygen diffusion coefficient is well known, it is left out of the fitting. The combination of the three remaining parameters has a low enough collinearity to enable automatic fitting. The parameters are constrained to be >0

```
> collin(sF, parset = c("up02", "cons", "ks"))
```

```
upO2 cons ks D N collinearity
          1 1 0 3
> print(system.time(
+ Fit <- modFit(p = c(upO2 = 360, cons = 80, ks = 1),
                     f = Objective, lower = c(0, 0, 0)
   user system elapsed
  1.154
          0.000
                  1.181
> (SFit<-summary(Fit))</pre>
Parameters:
     Estimate Std. Error t value Pr(>|t|)
up02 292.937
                   2.104 139.242
                                    <2e-16 ***
                   2.367
                                    <2e-16 ***
cons
       49.686
                          20.991
ks
        1.297
                   1.363
                           0.951
                                     0.348
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1
Residual standard error: 4.401 on 33 degrees of freedom
Parameter correlation:
       up02
              cons
up02 1.0000 0.5791 0.2976
cons 0.5791 1.0000 0.9012
     0.2976 0.9012 1.0000
We next plot the residuals
> plot(Objective(Fit$par), xlab = "depth", ylab = "",
          main = "residual", legpos = "top")
and show the best-fit model
> Pars <- pars
> Pars[names(Fit$par)] <- Fit$par
> mod02 <- 02fun(Pars)
> plot(O2depth$y, O2depth$x, ylim = rev(range(O2depth$x)), pch = 18,
        main = "Oxygen-fitted", xlab = "mmol/m3", ylab = "depth, cm")
> lines(mod02$02, mod02$X)
```

5. Running a Markov chain Monte Carlo

We use the parameter covariances of previous fit to update parameters, while the mean squared residual of the fit is use as prior fo the model variance.

Figure 5: residuals - see text for R-code

Figure 6: Best fit model - see text for R-code

```
> Covar
          <- SFit$cov.scaled * 2.4^2/3
> s2prior <- SFit$modVariance
We run an adaptive Metropolis, making sure that ks does not become negative...
> print(system.time(
+ MCMC <- modMCMC(f = Objective, p = Fit$par, jump = Covar,
        niter = 1000, ntrydr = 2, var0 = s2prior, wvar0 = 1,
        updatecov = 100, lower = c(NA, NA, 0))
   ))
number of accepted runs: 698 out of 1000 (69.8%)
   user system elapsed
          0.014 47.333
 44.432
> MCMC$count
     dr_steps
                   Alfasteps num_accepted num_covupdate
                        2007
                                        698
          669
Plotting the results is similar to previous cases.
```

```
> plot(MCMC,Full=TRUE)
```

> hist(MCMC, Full = TRUE)

> pairs(MCMC, Full = TRUE)

or summaries can be created:

> summary(MCMC)

```
up02
                                       var_model
                   cons
                                 ks
mean 293.594183 53.29859 4.13261370
                                      444.678619
sd
       3.553675 6.04871 4.51586531
                                     5275.931582
min 279.370844 45.00931 0.05953663
                                        1.834256
max 310.219626 88.54040 30.41515080 92818.328060
q025 291.794396 49.80339 1.52401520
                                       12.030278
                         2.83631889
q050 293.307729 51.83109
                                       28.434982
q075 295.008615 54.32504 4.75585058
                                       75.127856
```

> cor(MCMC\$pars)

```
up02
                                 ks
                    cons
upO2 1.0000000 0.5959485 0.3364379
cons 0.5959485 1.0000000 0.9249786
     0.3364379 0.9249786 1.0000000
ks
```


Figure 7: MCMC plot results - see text for R-code

Figure 8: MCMC histogram results - see text for R-code

Figure 9: MCMC pairs plot - see text for R-code

Figure 10: MCMC range plot - see text for R-code

Note: we pass to sensRange the full parameter vector (parms) and the parameters sampled during the MCMC (parInput).

```
> plot(summary(sensRange(parms = pars, parInput = MCMC$par, f = O2fun, num = 500)),
+ xyswap = TRUE)
> points(O2depth$y, O2depth$x)
```

6. Finally

This vignette is made with Sweave (Leisch 2002).

References

Brun R, Reichert P, Kunsch H (2001). "Practical Identifiability Analysis of Large Environmental Simulation Models." Water Resources Research, 37(4), 1015–1030.

- Leisch F (2002). "Dynamic Generation of Statistical Reports Using Literate Data Analysis." In W Härdle, B Rönz (eds.), "COMPSTAT 2002 Proceedings in Computational Statistics," pp. 575–580. Physica-Verlag, Heidelberg.
- Soetaert K (2009). *rootSolve:* Nonlinear Root Finding, Equilibrium and Steady-State Analysis of Ordinary Differential Equations. R package version 1.6, URL http://CRAN.R-project.org/package=rootSolve.
- Soetaert K, Herman PMJ (2009). A Practical Guide to Ecological Modelling. Using R as a Simulation Platform. Springer-Verlag, New York.
- Soetaert K, Petzoldt T (2010). "Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package **FME**." *Journal of Statistical Software*, **33**(3), 1–28. URL http://www.jstatsoft.org/v33/i03/.

Affiliation:

Karline Soetaert
Centre for Estuarine and Marine Ecology (CEME)
Netherlands Institute of Ecology (NIOO)
4401 NT Yerseke, Netherlands
E-mail: k.soetaert@nioo.knaw.nl

URL: http://www.nioo.knaw.nl/users/ksoetaert