OSNOVE BAZA PODATAKA

(8)

<u>Projektovanje baza podataka</u> Prevođenje MOV u Relacioni model

PREVOĐENJE MOV U RELACIONI MODEL

- Obzirom da ne postoji komercijalno raspoloživ SUBP zasnovan na MOV, u praktičnoj realizaciji potrebno je model podatak izrađen prema MOV prevesti u neki od modela za koji postoji SUBP.
- Prevođenje iz MOV najčešće se vrši u Relacioni model za koji postoji veliki broj komercijalnih softvera.
- Kod prevođenja jednog semantički bogatog modela u semantički manje bogat model dolazi do neslaganja, u smislu da svakom konceptu strukture jednog modela ne mora odgovarati koncept strukture drugog modela.

PREVOĐENJE MOV U RELACIONI MODEL

- Po pravilu se deo semantike iskazan strukturom semantički bogatog modela mora predstaviti semantičkim ograničenjima manje bogatog modela.
- Iz toga sledi da apstraktnoj operaciji semantički bogatog modela odgovara procedura semantički manje bogatog modela, u našem slučaju Relacionog modela.
- Postoji više postupaka za prevođenje MOV u relacioni model.
- Ovde se izlaže jedan praktičan postupak prevođenja koji se može automatizovati.

PREVOĐENJE MOV U RELACIONI MODEL

- Postupak prevođenja se može potpuno formalizovati, tako da postoje softverski alati za prevođenje koji konceptualnu šemu baze podataka predstavljenu MOV prevode u SQL script relacione šeme baze podataka.
- Postoje pravila za prevođenje MOV u relacioni model podataka.
- Opšta pravila iz kojih se izvode sva pojedinačna su:
 - Obezbediti jedinstvenost ključa.
 - Izbeći višeznačna obeležja.
 - Izbegavati neprimenljiva svojstva.
 - Obezbediti minimalan skup šema relacija

POSTUPAK PREVOĐENJA

- PRAVILA ZA OBJEKTE
 - Svaki objekat iz MOV postaje šema relacije.
 - Naziv tipa objekta postaje naziv šeme relacije.
 - Atributi objekta postaju obeležja šeme relacije
 - Za "jake" objekte identifikator objekta postaje primarni ključ šeme relacije.
 - Svaki slabi objekat takođe postaje šema relacije
 - Identifikator nadređenog objekta postaje jedno od obeležja šeme relacije koja odgovara slabom objektu, i postaje deo ključa šeme relacije slabog objekta, zajedno sa obeležjima koja jednoznačno identifikuju pojavljivanje "slabog" objekta u okviru pojavljivanja njemu nadređenog objekta.

<u>Prevodjenje – SLABI OBJEKAT</u>

Svaki slabi objekat takođe postaje šema relacije

 Identifikator nadređenog objekta postaje jedno od obeležja šeme relacije koja odgovara slabom objektu, i postaje deo ključa šeme relacije slabog objekta, zajedno sa obeležjima koja jednoznačno identifikuju pojavljivanje "slabog" objekta u okviru pojavljivanja njemu nadređenog objekta.

```
A (\underline{AA}_1, AA_2)

B (\underline{AA}_1, \underline{AB}_1, AB_2)

Uslovi integriteta:

B [\underline{AA}_1] \subseteq A [\underline{AA}_1]
```

POSTUPAK PREVOĐENJA

- Objekat nadtip (generalizovani tip objekta) postaje šema relacije.
 - Ako je specijalizacija ekskluzivna tada šema relacije nadtipa sadrži i obeležje po kojem se vrši specijalizacija.
- Objekat podtip takođe postaje šema relacije
 - Naziv tipa objekta postaje naziv šeme relacije.
 - Atributi podtipa postaju obeležja šeme relacije.
 - Identifikator nadtipa predstavlja ključ šeme relacije podtipa.

<u>Prevodjenje podtipa i nadtipa</u>

<u>Pravila za prevođenje binarnih veza:</u>

U praksi i literaturi često se pri razmatranju kardinalnosti preslikavanja i njihovog označavanja navode samo gornje granice dok se:

- Donja granica DG = 0 zamenjuje rečima veza je PARCIJALNA, a
- DG = 1 veza je <u>TOTALNA</u>

Tako da se može govoriti o sledećim tipovaima veza:

- Veza tipa 1 : 1 koja obuhvata
 - \blacksquare (0,1): (0,1) parcijalna sa obe strane
 - (0,1): (1,1) parcijalna sa jedne i totalna sa druge strane
 - \blacksquare (1,1): (1,1) totalna sa obe strane

<u>Pravila za prevođenje binarnih veza:</u>

- Veza tipa 1 : M koja obuhvata
 - \blacksquare (0,1): (0,M) parcijalna sa obe strane
 - (0,1): (1,M) parcijalna sa strane 1 i totalna sa strane M
 - (1,1): (0,M) parcijalna sa strane M i totalna sa strane 1
 - \blacksquare (1,1): (1,M) totalna sa obe strane
- Veza tipa M : M koja obuhvata
 - (0,M): (0,M) parcijalna sa obe strane
 - (0,M): (1,M) parcijalna sa jedne i totalna sa druge strane
 - \blacksquare (1,M): (1,M) totalna sa obe strane

<u>Pravila za binarne veze</u>

- Ako je veza sa obe strane totalna,
 - Sama veza i oba objekta koji u vezi učestvuju postaju jedna šema relacije.
 - Obeležja šeme relacije su svi atributi jednog i drugog objakta i atributi veze (odnosno agregacije).
 - Kandidati za ključ u ovoj šemi relacije su identifikatori i jednog i drugog objekta koji su vezi.
 - Za primarni ključ se ravnopravno bira samo jedan od identifikatora objekata koji su u vezi.

<u>Prevođenje veze 1:1 – totalna sa obe strane</u>

VEZA Tipa 1:1 Totalna sa obe strane

AB (AA1, AA2, AB1, AB2)

- Ako je veza sa obe strane totalna,
 - Sama veza i oba objekta koji u njoj učestvuju postaju jedna šema relacije.
 - Obeležja šeme relacije su svi atributi jednog i drugog objakta i atributi veze (odnosno agregacije).
 - Kandidati za ključ u ovoj šemi relacije su identifikatori i jednog i drugog objekta koji su vezi.
 - Za primarni ključ se ravnopravno bira samo jedan od identifikatora objekata koji su u vezi.

Pravila za binarne veze

- Veza sa jedne strane totalna
 - Dva objekta u vezi i sama veza daju dve šeme relacija s tim što se
 - Identifikator jednog od objekata koji su u vezi uvrsti u obeležja druge šeme relacije .
 - Veza se predstavlja spoljnim ključem u onoj šemi relacije u kojoj vrednost tog obeležja mora biti data.

<u>Prevođenje veze 1:1 – sa jedne strane totalna</u>

VEZA Tipa 1:1 sa jedne strane totalna

A (AA1, AA2, AB1)

B (<u>AB</u>1, AB2)

 $A[AB_1] \subseteq B[AB_1]$

Veza se predstavlja spoljnim ključem u onoj šemi relacije u kojoj vrednost tog obeležja mora biti data.

- Dva objekta u vezi i sama veza daju dve šeme relacija s tim što se
- Identifikator jednog od objekata koji su u vezi uvrsti u obeležja druge šeme relacije.
- Veza se predstavlja spoljnim ključem u onoj šemi relacije u kojoj vrednost tog obeležja mora biti data.

Pravila za binarne veze

- Parcijalna sa obe strane
 - Kreiraju se tri šeme relacija.
 - Obeležja u šemi relacije koja odgovara vezi su i identifikatori objekata koji su u vezi i oba su kandidati za ključ.
 - Za primarni ključ se bira jedan od indentifikatora objekata koji učestvuju u vezi

Prevodjenje veze 1:1 - parcijalna sa obe strane

(0, 1)

A (<u>AA</u>₁, AA₂) B (<u>AB</u>₁, AB₂)

V (<u>AA</u>1, AB1)

 $V[AA_1] \subseteq A[AA_1]$ $V[AB_1] \subseteq B[AB_1]$

VEZA TIPA 1:1

(0, 1)

- Parcijalna sa obe strane
 - Kreiraju se tri šeme relacija.
 - Obeležja u šemi relacije koja odgovara vezi su i identifikatori objekata koji su u vezi i oba su kandidati za ključ.
 - Za primarni ključ se bira jedan od indentifikatora objekata koji učestvuju u vezi

<u>Pravila za binarne veze</u>

- Koja je sa strane 1 totalna:
 - Ne postaje posebna šema relacije,
 - Već identifikator objekta za koji je GG=M postaje obeležje šeme relacije koja odgovara objektu sa strane za koju je GG=1.
- Veza između jakog i slabog objekta kao i veza između podtipa i nadtipa ne postaje posebna šema relacije.
- Parcijalna sa strane 1
 - Postaje posebna šema relacije
 - Obeležja te šeme relacije su identifikatori objekata koji su u vezi, a
 - Ključ šeme relacije je identifikator objekta za koji je GG=1.

<u>Prevodjenje veze 1:M - totalna sa strane 1</u>

Prevodjenje veze 1:M parcijalna sa strane 1

<u>Pravila za binarne veze</u>

VEZA TIPA M:M

- Uvek postaje posebna šema relacije
- Obeležja šeme relacije su identifikatori objekata koji su u vezi, a
- Primarni ključ je složen i sastoji se od identifikatora objekata koji su u vezi.
- Atributi veze (odnosno agregacije) postaju obeležja šeme relacije.
- Agregacija mešoviti tip Objekat-Veza se prevodi kao odgovarajući tip veze, a obeležja agregacije idu u šemu relacije kojom se rešava veza.

Prevođenje veze tipa M:M

VEZA Tipa M: M

A (<u>AA</u>1, AA2) B (<u>AB</u>1, AB2)

AB (<u>AA1, AB1</u>)

Uslovi integriteta:

 $AB[AA_1] \subseteq A[AA_1]$

 $AB[AB_1] \subseteq B[AB_1]$

- Uvek postaje posebna šema relacije
- Obeležja šeme relacije su identifikatori objekata koji su u vezi, a
- Primarni ključ je složen i sastoji se od identifikatora objekata koji su u vezi.
- Atributi veze (odnosno agregacije) postaju obeležja šeme relacije.

Prevođenje Agregacije

PREVODJENJE AGREGACIJE

Agregacija – mešoviti tip Objekat-Veza se prevodi kao odgovarajući tip veze, a obeležja agregacije idu u šemu relacije kojom se rešava veza.

A (<u>AA</u>1, AA2)

B (AB₁, AB₂)

V (AA1, AB1, AV1, AV2)

 $V[AA_1] \subseteq A[AA_1]$

 $V[AB_1] \subseteq B[AB_1]$

Prevođenje Agregacije 1-M -totalna sa strane 1

PREVODJENJE AGREGACIJE

- Kao veza 1: M (Totalna sa strane 1)

Agregacija – mešoviti tip Objekat-Veza se prevodi kao odgovarajući tip veze, a obeležja agregacije idu u šemu relacije kojom se rešava veza.

 $A (\underline{AA_1}, AA_2, AB_1, AV_1, AV_2)$ $B (\underline{AB_1}, AB_2)$ $A [AB_1] \subseteq B [AB_1]$

Prevođenje Agregacije 1-M -parcijalne sa strane 1

PREVODJENJE AGREGACIJE

- Kao veza 1: M (Parcijalna sa strane 1)

Agregacija – mešoviti tip Objekat-Veza se prevodi kao odgovarajući tip veze, a obeležja agregacije idu u šemu relacije kojom se rešava veza.


```
A (\underline{AA}_1, AA_2)
B (\underline{AB}_1, AB_2)
V (\underline{AA}_1, AB_1, AV_1, AV_2)
V [\underline{AA}_1] \subseteq A [\underline{AA}]
V [\underline{AB}_1] \subseteq B [\underline{AB}_1]
```

Prevođenje Agregacije M:M

PREVODJENJE AGREGACIJE

- Kao veza M : M

Agregacija – mešoviti tip Objekat-Veza se prevodi kao odgovarajući tip veze, a obeležja agregacije idu u šemu relacije kojom se rešava veza.

A (<u>AA</u>1, AA2)

B (AB1, AB2)

V (AA1, AB1, AV1, AV2)

 $V[AA_1] \subseteq A[AA_1]$

 $V[AB_1] \subseteq B[AB_1]$

REZIME POSTUPKA PREVOĐENJA (1/3)

- Pravila se ne moraju primenjivati redom kako su zadata, već se
- Prevođenje vrši primenjujući sva odgovarajuća pravila odjednom na pojedine objekte i veze u sistemu, po redosledu koji je obično očigledan iz samog modela.
- Za svaki objekat se pored vrste kojoj pripada, utvrđuje da li će prilikom prevođenja veze doći prostiranja ključa ili će se formirati posebna šema relacije.
- Kada se na ovaj način postupi sa svim objektima prevode se preostale veze po pravilima za prevođenje veza.

REZIME POSTUPKA PREVOĐENJA (2/3)

- Pod pretpostavkom da je DOV korektno urađen njegovim prevođenjem u relacioni model dobijaju se šeme relacija koje su u 3NF u kojima ne postoje Null – vrednosti kao neprimenljiva svojstva.
- Pri prevođenju MOV u relacioni model, pored šema relacija koje se dobijaju mora se definisati skup posebnih pravila integriteta, kako bi se zadržala semantika MOV.
- Posebna pravila integriteta mogu biti statička i dinamička.
- Statičkim pravilima integriteta određeni su uslovi koji moraju važiti pre i posle izvršenja bilo koje operacije nad bazom podataka.
- Dinamičkim pravilima integriteta definisane su procedure u relacionom modelu, koje odgovaraju apstraktnim operacijama MOV-a i koje garantuju ostvarenje uslova integriteta.

REZIME POSTUPKA PREVOĐENJA (2/3)

- Prvi korak ka formiranju šeme baze podataka zadate skupom SQL naredbi je formiranje logičkog skupa šema relacija.
- Zatim se na osnovu logičkog skupa šema relacija i ograničenja dobijenih prevođenjem MOV u relacioni model SQL naredbama formira script šeme baze podataka razumljiv relacionom SUBP.

STATIČKA PRAVILA INTEGRITETA

- Do statičkih pravila integriteta dolazimo posmatranjem veze i objekata koji u njoj učestvuju.
- Na primer, neka su objekti A i B povezani vezom (0,M):(0,M) parcijalnom sa obe strane.
- Šeme relacija koje prema pravilima prevođenja dobijamo su:

```
A(<u>SifA</u>,....)
B(<u>SifB</u>,....)
VEZA(SifA, SifB)
```

- Neka je a vrednost obeležja SifA, a b obeležja SifB u šemi relacije VEZA.
- Pravilo integriteta za dati tip veze dva objekta može se iskazati sledećim zahtevom:

STATIČKA PRAVILA INTEGRITETA

- Da vrednost a mora postojati kao vrednost ključa u relaciji A i
- Vrednost b mora postojati kao vrednost ključa u relaciji B
- Ovaj integrite odgovara referencijalnom integritetu relacionog modela i može se zapisati na sledeći način:

```
VEZA[sIFa] \subseteq A[sIFa]
VEZA[sIFb] \subseteq B[sIFb]
```

Kako oba uslova moraju biti ispunjena podrazumevamo da je između njih logički operator AND.