An Invitation to Probability

Le Chen lzc0090@auburn.edu

(Creative Commons Zero 1.0)

Science Center Auditorium

5:30pm-6:30pm, June~08,~2022

Github Hash: f5b08f4

2022-06-08 02:23:46 -0400

https://github.com/chenle02/2012_Science_Summer_Institute_Auburn_Probability_by_Le

Summer Science Institute 2022 Auburn University What is chance

How to measure chance

Birthday problem

Rolling three dices

Poker

Tyche – The Greek goddess of chance

Fortuna – The goddess of chance in Roman religion

Democritus (460 – 370 BC) — Father of modern science

Atomic theory of the universe:

A physical chance affecting all the atoms that made up the universe.

Games of chance — using knucklebones or dice

Known to Egyptians, Babylonians, Romans, ...

ì

How about measure length?

The determination of a "right and lawful rood" or rod in the early sixteenth century in Germany by measuring an essentially random selection of 16 men as they leave church ¹.

¹Stephen Stigler (1996). Statistics and the Question of Standards, *Journal of Research of the National Institute of Standards and Technology*, vol. 101.

To measure probability,

we first find or make equally probable cases,
 then we count.

$$\mathbb{P}(A) = \frac{\text{no. of cases in which } A \text{ occurs}}{\text{total no. of cases}}$$

To measure probability,

- 1. we first find or make equally probable cases,
- 2. then we count.

$$\mathbb{P}(A) = \frac{\text{no. of cases in which } A \text{ occurs}}{\text{total no. of cases}}$$

To measure probability,

- 1. we first find or make equally probable cases,
- 2. then we count.

$$\mathbb{P}(A) = \frac{\text{no. of cases in which } A \text{ occurs}}{\text{total no. of cases}}$$

To measure probability,

- 1. we first find or make equally probable cases,
- 2. then we count.

$$\mathbb{P}(A) = \frac{\text{no. of cases in which } A \text{ occurs}}{\text{total no. of cases}}$$

To measure probability,

- 1. we first find or make equally probable cases,
- 2. then we count.

$$\mathbb{P}(A) = \frac{\text{no. of cases in which } A \text{ occurs}}{\text{total no. of cases}}$$

- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.
- 3. If A and B never occur in the same case, then

$$\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B)$$

In particular, the probability of an event not occurring is equal to $\mathbb{P}(\text{not }A)=1-\mathbb{P}(A).$

- 1. Probability should be never negative.
- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.
- 3. If A and B never occur in the same case, then

$$\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B).$$

$$\mathbb{P}(\text{not }A)=1-\mathbb{P}(A).$$

- 1. Probability should be never negative.
- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.
- 3. If A and B never occur in the same case, then

$$\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B).$$

$$\mathbb{P}(\text{not }A)=1-\mathbb{P}(A).$$

- 1. Probability should be never negative.
- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.
- 3. If A and \overline{B} never occur in the same case, then

$$\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B).$$

$$\mathbb{P}(\text{not }A) = 1 - \mathbb{P}(A).$$

- 1. Probability should be never negative.
- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.
- 3. If A and \overline{B} never occur in the same case, then

$$\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B).$$

$$\mathbb{P}(\text{not }A) = 1 - \mathbb{P}(A).$$

- 1. Probability should be never negative.
- 2. If A occurs in all cases, then $\mathbb{P}(A) = 1$.
- 3. If \boldsymbol{A} and \boldsymbol{B} never occur in the same case, then

$$\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B).$$

In particular, the probability of an event not occurring is equal to

$$\mathbb{P}(\text{not }A)=1-\mathbb{P}(A).$$

1

Question: How likely do two students have the same birth day if there are

- 1. 2
- 2. 5
- 3. 15
- 4. 23
- 5. 46
- 6. 64
- 7. 366

Question: How likely do two students have the same birth day if there are

- 1. 2
- 2. 5
- 3. 15
- 4. 23
- 5.46
- 6. 64
- 7. 366

Question: How likely do two students have the same birth day if there are

- **1**. 2
- 2. 5
- **3**. 15
- 4. 23
- 5. 40
- 6. 64
- 7. 366

Question: How likely do two students have the same birth day if there are

- 1. 2
- 2. 5
- **3**. 15
- 4. 23
- **5.** 40
- 6.64
- 7. 366

Question: How likely do two students have the same birth day if there are

- 1. 2
- 2. 5
- **3**. 15
- 4. 23
- 5. 46
- **6**. 64
- 7. 366

Question: How likely do two students have the same birth day if there are

- 1. 2
- 2. 5
- **3**. 15
- 4. 23
- **5**. 46
- **6**. 64
- 7. 366

Question: How likely do two students have the same birth day if there are

- 1. 2
- 2. 5
- **3**. 15
- 4. 23
- 5. 46
- 6. 64
- 7. 366

► Suppose n = 5.

- ▶ Let *A* be the **event** that two students have the same birth day.
- ightharpoonup Let (A) denote the probability that this event A will happen.
- ightharpoonup It is not easy to compute (A) directly.
- \triangleright However, one can compute (A'), the complement of event A, namely.

the probability that no two students have the same birthday, or

all students have different birthday,

as follows:

$$\mathbb{P}(A') = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{361}{365}$$

► Hence,

$$\mathbb{P}(A) = 1 - (A') = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365} \approx 0.027$$

- ▶ Suppose n = 5.
- ► Let A be the **event** that two students have the same birth day.
- ightharpoonup Let (A) denote the probability that this event A will happen.
- ightharpoonup It is not easy to compute (A) directly.
- \triangleright However, one can compute (A'), the complement of event A, namely,

all students have different birthday,

as follows:

$$\mathbb{P}(A') = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365}$$

▶ Hence.

$$\mathbb{P}(A) = 1 - (A') = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{361}{365} \approx 0.027$$

- ▶ Suppose n = 5.
- ► Let *A* be the **event** that two students have the same birth day.
- ightharpoonup Let (A) denote the probability that this event A will happen.
- ightharpoonup It is not easy to compute (A) directly.
- \triangleright However, one can compute (A'), the complement of event A, namely,

all students have different birthday,

as follows:

$$\mathbb{P}(A') = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365}$$

Hence.

$$\mathbb{P}(A) = 1 - (A') = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{361}{365} \approx 0.027$$

- ► Suppose n = 5.
- ► Let A be the **event** that two students have the same birth day.
- ightharpoonup Let (A) denote the probability that this event A will happen.
- ► It is not easy to compute (A) directly.
- \triangleright However, one can compute (A'), the complement of event A, namely.

all students have different birthday,

as follows:

$$\mathbb{P}(A') = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{361}{365}$$

▶ Hence.

$$\mathbb{P}(A) = 1 - (A') = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{361}{365} \approx 0.027$$

- ► Suppose n = 5.
- ► Let A be the **event** that two students have the same birth day.
- ightharpoonup Let (A) denote the probability that this event A will happen.
- ► It is not easy to compute (A) directly.
- ightharpoonup However, one can compute (A'), the complement of event A, namely,

all students have different birthday,

as follows:

$$\mathbb{P}(A') = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{361}{365}$$

Hence.

$$\mathbb{P}(A) = 1 - (A') = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365} \approx 0.027$$

- ► Suppose n = 5.
- ► Let A be the **event** that two students have the same birth day.
- ightharpoonup Let (A) denote the probability that this event A will happen.
- ► It is not easy to compute (A) directly.
- ightharpoonup However, one can compute (A'), the complement of event A, namely,

all students have different birthday,

as follows:

$$\mathbb{P}(A') = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365}$$

► Hence.

$$\mathbb{P}(A) = 1 - (A') = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365} \approx 0.027$$

- ▶ Suppose n = 5.
- ► Let A be the **event** that two students have the same birth day.
- ightharpoonup Let (A) denote the probability that this event A will happen.
- ► It is not easy to compute (A) directly.
- \blacktriangleright However, one can compute (A'), the complement of event A, namely,

all students have different birthday,

as follows:

$$\mathbb{P}(A') = \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{362}{365} \frac{361}{365}$$

► Hence,

$$\mathbb{P}(A) = 1 - (A') = 1 - \frac{365}{365} \frac{364}{365} \frac{363}{365} \frac{361}{365} \approx 0.027.$$

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
(A)							1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
(A)	0.0027						1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
(<i>A</i>)	0.0027	0.0271					1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
(A)	0.0027	0.0271	0.2529				1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
(A)	0.0027	0.0271	0.2529	0.5073			1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
(A)	0.0027	0.0271	0.2529	0.5073	0.9483		1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
(A)	0.0027	0.0271	0.2529	0.5073	0.9483	0.9972	1.0

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

n	2	5	15	23	46	64	366
(A)	0.0027	0.0271	0.2529	0.5073	0.9483	0.9972	1.0

When time permits, we will try some simulations!

Source codes are here:

https://github.com/chenle02/2012_Science_Summer_Institute_Auburn_Probability_by_Le

A question asked by Grand Duke of Tuscany to Galileo in early seventh century

Three dice are thrown, such as

9:

10 :

11:

12 :

Counting combinations of numbers, 10 and 11 can be made in 6 ways, as can 9 and 12. Yet it is known that long observation has made dice-players consider 10 and 11 to be more advantageous than 9 and 12. How can this be?

$$3 = \square + \square + \square$$

$$4 = \mathbf{O} + \mathbf{O} + \mathbf{O}$$

$$5 = \bigcirc + \bigcirc + \bigcirc = \bigcirc + \bigcirc + \bigcirc + \bigcirc$$

$$12 = \bigcirc + \boxtimes + \square = \bigcirc + \bigcirc + \square + \square = \bigcirc + \boxtimes + \boxtimes + \boxtimes = \bigcirc + \bigcirc + \square + \square = \bigcirc + \bigcirc + \square + \square = \square + \square + \square + \square$$

$$13 = \boxed{ } + \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ } + \boxed{$$

$$16 = \square + \square + \square = \square + \square + \square + \square$$

$$17 = \square + \square + \square$$

$$18 = \Box + \Box + \Box$$

$$3 = 1 + 1 + 1$$

$$4 = 1 + 1 + 2$$

$$5 = 1 + 1 + 3 = 1 + 2 + 2$$

$$6 = 1 + 1 + 4 = 1 + 2 + 3 = 2 + 2 + 2$$

$$7 = 1 + 1 + 5 = 1 + 2 + 4 = 2 + 2 + 3 = 3 + 3 + 1$$

$$8 = 1 + 1 + 6 = 1 + 2 + 5 = 1 + 3 + 4 = 2 + 2 + 4 = 2 + 3 + 3$$

$$9 = 1 + 2 + 6 = 1 + 3 + 5 = 1 + 4 + 4 = 2 + 2 + 5 = 2 + 3 + 4 = 3 + 3 + 3$$

$$10 = 1 + 3 + 6 = 1 + 4 + 5 = 2 + 2 + 6 = 2 + 3 + 5 = 2 + 4 + 4 = 3 + 3 + 4$$

$$11 = 1 + 4 + 6 = 1 + 5 + 5 = 2 + 3 + 6 = 2 + 4 + 5 = 3 + 3 + 5 = 3 + 4 + 4$$

$$12 = 1 + 5 + 6 = 2 + 4 + 6 = 2 + 5 + 5 = 3 + 3 + 6 = 3 + 4 + 5 = 4 + 4 + 4$$

$$13 = 1 + 6 + 6 = 2 + 5 + 6 = 3 + 4 + 6 = 3 + 5 + 5 = 4 + 4 + 5$$

$$14 = 2 + 6 + 6 = 3 + 5 + 6 = 4 + 4 + 6 = 4 + 5 + 5$$

$$15 = 3 + 6 + 6 = 4 + 5 + 6 = 5 + 5 + 5$$

$$16 = 4 + 6 + 6 = 5 + 5 + 6$$

$$17 = 5 + 6 + 6$$

$$18 = 6 + 6 + 6$$

k	Probability of a sum of k	≈
3	1/216	0.5%
4	3/216	1.4%
5	6/216	2.8%
6	10/216	4.6%
7	15/216	7.0%
8	21/216	9.7%
9	25/216	11.6%
10	27/216	12.5%
11	27/216	12.5%
12	25/216	11.6%
13	21/216	9.7%
14	15/216	7.0%
15	10/216	4.6%
16	6/216	2.8%
17	3/216	1.4%
18	1/216	0.5%

AKQJ 10

#1 ROYAL FLUSH

98765

#2 STRAIGHT FLUSH

A A A A 9

#3 FOUR OF A KIND

00011

#4 FULL HOUSE

A J 9 6 3

#5 FLUSH

98765

#6 STRAIGHT

5 Q 2 2 2 #7 THREE OF A KIND

AAKK9

#8 TWO PAIR

4 5 8 A A

#9 ONE PAIR

5 6 J Q A

#10 HIGH CARD

Table 10-1. Ways to Deal Five-Card Poker Hands

7,920

6,336

4,752

3,168

1,584

Sevens

Sixes

Fives

Fours

Threes

.06711

.07016

.07260

.07443

.07564

Hand	Number of ways		Probabili when t	ty that oppon he number of	ent has a bett opposing har	ter hand ^a nds is:	
	_	1	2	3	4	5	6
Straight flush	40	0	0	0	0	0	0
Four of a kind	624	.00002	.00003	.00005	.00006	.00008	.00009
Full house	3,744	.00026	.00051	.00078	.00102	.00128	.00153
Flush	5,108	.00170	.00339	.00509	.00677	.00847	.01015
Straight	10,200	.00366	.00731	.01094	.01457	.01817	.02177
Three of a kind	54,912	.00759	.01511	.02259	.03000	.03736	.04466
Two pairs: Aces high Kings Queens Jacks Tens Nines	19,008 17,424 15,840 14,256 12,672 11,088	.02871 .03603 .04273 .04883 .05431 .05919	.05660 .07076 .08364 .09527 .10568 .11487	.08369 .10424 .12280 .13945 .15425 .16726	.11001 .13651 .16028 .18146 .20019 .21655	.13556 .16762 .19617 .22143 .24362 .26292	.16038 .19761 .23052 .25945 .28470 .30655
Eights	9,504	.06345	.12288	.17854	.23067	.27948	34086

.12972

.13540

.13992

.14331

.14556

.34086

.35367

.36378

.37126

.37620

.29344

.30491

.31397

.32071

.32515

.24261

.25246

.26027

.26608

.26993

.18812

.19606

.20236

.20707

.21019

Table 10-1. continued

Hand	Number of ways				nent has a bet f opposing ha		
		1	2	3	4	5	6
One pair:		alle.	-4				
Aces	84,480	.07625	.14669	.21176	.27187	.32739	.37868
Kings	,,	.10876	.20569	.29208	.36907	.43769	.49885
Queens	,,	.14126	.26257	.36674	.45620	.53302	.59899
Jacks	"	.17377	.31734	.43597	.53398	.61496	.68187
Tens	,,	.20627	.37000	.49995	.60310	.68497	.74995
Nines	"	.23878	.42054	.55891	.66423	.74441	.80544
Eights	"	.27129	.46898	.61303	.71801	.79451	.85026
Sevens	, ,,,	.30379	.51529	.66254	.76506	.83643	.88612
Sixes	"	.33630	.55950	.70764	.80596	.87121	.91452
Fives	"	.36880	.60159	.74852	.84127	.89981	.93676
Fours	"	.40131	.64157	.78541	.87153	.92309	.95395
Threes	"	.43381	.67943	.81850	.89724	.94182	.96706
Deuces	,,	.46632	.71518	.84800	.91888	.95671	.97690
No pair	1,302,540	.49882	.74882	.87411	.93691	.96838	.98415
All hands	2,598,960			_		-	a

a. Assuming that you have the best hand of its type-for example, ace-high if you have no pair.