International Rectifier

IRLML9301TRPbF

HEXFET® Power MOSFET

V _{DS}	-30	V
V _{GS Max}	± 20	V
$R_{DS(on) max}$ (@V _{GS} = -10V)	64	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = -4.5V)	103	$\mathbf{m}\Omega$

Application(s)

System/Load Switch

Features and Benefits

Features

Low $R_{DS(on)}$ ($\leq 64m\Omega$)
Industry-standard pinout
Compatible with existing Surface Mount Techniques
RoHS compliant containing no lead, no bromide and no halogen
MSL1, Consumer qualification

Benefits

Lower switching losses
Multi-vendor compatibility
Easier manufacturing
Environmentally friendly
Increased reliability

	results in
logen	\Rightarrow

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	-30	V
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	-3.6	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	-2.9	Α
I _{DM}	Pulsed Drain Current	-15	
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	W
P _D @T _A = 70°C	Maximum Power Dissipation	0.8	VV
	Linear Derating Factor	0.01	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
T_{J}, T_{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
R _{eJA}	Junction-to-Ambient (t<10s) ®		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

Electric Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			٧	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = -1mA
В	Static Drain-to-Source On-Resistance		51	64	0	V _{GS} = -10V, I _D = -3.6A ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		82	103	mΩ	$V_{GS} = -4.5V, I_D = -2.9A$ ②
$V_{GS(th)}$	Gate Threshold Voltage	-1.3		-2.4	V	$V_{DS} = V_{GS}, I_D = -10\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1		V_{DS} =-24V, V_{GS} = 0V
	Diam-to-Source Leakage Current			150	μA	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	$V_{GS} = -20V$
	Gate-to-Source Reverse Leakage			100	IIA	$V_{GS} = 20V$
R _G	Internal Gate Resistance		12		Ω	
gfs	Forward Transconductance	5.0			S	$V_{DS} = -10V, I_{D} = -3.6A$
Q_g	Total Gate Charge	_	4.8			$I_D = -3.6A$
Q_{gs}	Gate-to-Source Charge		1.2		nC	V _{DS} =-15V
Q_{gd}	Gate-to-Drain ("Miller") Charge		2.5			V _{GS} = -4.5V ②
t _{d(on)}	Turn-On Delay Time		9.6			V _{DD} =-15V②
t _r	Rise Time		19		ns	I _D = -1A
t _{d(off)}	Turn-Off Delay Time		16		115	$R_G = 6.8\Omega$
t _f	Fall Time		15			$V_{GS} = -4.5V$
C _{iss}	Input Capacitance		388			V _{GS} = 0V
C _{oss}	Output Capacitance		93		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		65			f = 1.0KHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			-1.3		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			-15		integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	٧	$T_J = 25^{\circ}C$, $I_S = -1.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		14	21	ns	$T_J = 25^{\circ}C$, $V_R = -24V$, $I_F = -1.3A$
Q _{rr}	Reverse Recovery Charge		7.2	11	nC	di/dt = 100A/µs ②

International TOR Rectifier

IRLML9301TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML9301TRPbF

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

International

TOR Rectifier

500 $R_{\mbox{\footnotesize{DS}}}(\mbox{\scriptsize{on}}), \mbox{ Drain-to -Source On Resistance } (m\Omega)$ 400 300 200 Vgs = -10V100 0 5 10 20 25 35 15 30 -I_D, Drain Current (A)

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

International IOR Rectifier

IRLML9301TRPbF

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS						
SYMBOL	MILLIM	ETERS	INCHES			
STIVIDOL	MIN	MAX	MIN	MAX		
Α	0.89	1.12	0.035	0.044		
A1	0.01	0.10	0.0004	0.004		
A2	0.88	1.02	0.035	0.040		
b	0.30	0.50	0.012	0.020		
С	0.08	0.20	0.003	0.008		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E1	1.20	1.40	0.047	0.055		
е	0.95	BSC	0.037	BSC		
e1	1.90	BSC	0.075	BSC		
L	0.40	0.60	0.016	0.024		
L1	0.54	REF	0.021	REF		
L2	0.25	BSC	0.010	BSC		
0	0	8	0	8		

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 3. CONTROLLING DIMENSION: MILLIMETER.
- A CONTROLLING DIMENSION MILLIMETER.

 ADATUM PLANE HIS LOCATED AT THE MOLD PARTING LINE.

 ADATUM AND B TO BE DETERMINED AT DATUM PLANE H.

 ADMENSIONS D AND E1 ARE MEASUPED AT DATUM PLANE H. DIMENSIONS DOES NOT INCLIDE MOLD PROTINGIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.

 ADMENSION LIS THE LEAD LEAVING THE ORDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 228 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

DATE CODE MARKING INSTRUCTIONS WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YE.	AR	Υ	WEEK	W
2011	2001	1	01	A
2012	2002	2	02	В
2013	2003	3	03	С
2014	2004	4	04	D
2015	2005	5		
2016	2006	6		
2017	2007	7		
2018	2008	8	1	1
2019	2009	9	7	7
2020	2010	0	24	X
			25	Υ
			26	Z

WW = (27-52) IF PRECEDED BY ALETTER

YE	AR	Υ	WORK WEEK	W
2011	2001	Α	27	Α
2012	2002	В	28	В
2013	2003	С	29	С
2014	2004	D	30	D
2015	2005	E		
2016	2006	F		
2017	2007	G		
2018	2008	Н		
2019	2009	J	7	1
2020	2010	K	50	X
			51	Υ
			52	7

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3™ (SOT-23)Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Orderable part number)rdorable part number Backage Type		Pack	Note
Orderable part number	Package Type	Form	Quantity	
IRLML9301TRPbF	Micro3 (SOT-23)	Tape and Reel	3000	

Qualification information[†]

Qualification level	Cans umer ^{††}	
	(per JE DE C JES D47F ^{†††} guidelines)	
Moisture Sensitivity Level	Micro3 (SOT-23)	MS L1
		(per IPC/JEDECJ-STD-020D ^{†††})
RoHS compliant	Yes	

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- 3 Surface mounted on 1 in square Cu board
- Refer to application note #AN-994.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.02/2012