Final Review

Section A01& A02 Borun Song, Hanran Wu, Stuti Shah

Announcements

- Exam 4 will be held 2:50pm
 on July 28th in lecture hall
- Extra Credit Project will be due on July 31st at 11:59pm
- Homework 11 (ungraded) has been released. Use it as a practice

CIOS Incentive

If we are able to get 85% response rate, there will be 1% added towards the final score.

Piazza Participation

- There is a 5% participation grade in your final grade, and 2% is coming from piazza participation.
- "Piazza participation accounts for 2% (Provide answers to peer questions; Ask questions; Work out past exams collaboratively, etc.); Note: We will use the summary stats from Piazza in the following categories: "views", "contributions", "questions", "answers". The exact weightage of each is not revealed to the students, but I am sure the students are savvy enough to know which would count for more!"

Overview of Review Session Today

- IO
- Disk
- File System
- Networking

I/0

Disk Drive

Unix File System Command

Unix command	Semantics	Elaboration
touch <name></name>	Create a file with the	Creates a zero byte file with the
	name <name></name>	name <name> and a creation time</name>
		equal to the current wall clock time
mkdir <sub-dir></sub-dir>	Create a sub-directory	The user must have write privilege
	<sub-dir></sub-dir>	to the current working directory (if
		<pre><sub-dir> is a relative name) to be</sub-dir></pre>
		able to successfully execute this
		command
rm <name></name>	Remove (or delete) the	Only the owner of the file (and/or
	file named <name></name>	superuser) can delete a file
rmdir <sub-dir></sub-dir>	Remove (or delete) the	Only the owner of the <sub-dir></sub-dir>
	sub-directory named	(and/or the superuse) can remove
	<sub-dir></sub-dir>	the named sub-directory
ln -s <orig> <new></new></orig>	Create a name <new></new>	This is name equivalence only; so
	and make it symbolically	if the file <orig> is deleted, the</orig>
	equivalent to the file	storage associated with <orig> is</orig>
	<orig></orig>	reclaimed, and hence <new> will be a dangling reference to a non-</new>
		existent file
ln <orig> <new></new></orig>	Create a name <new></new>	Even if the file <orig> is deleted,</orig>
in torigations	and make it physically	the physical file remains accessible
	equivalent to the file	via the name <new></new>
	<orig></orig>	via the name snews
chmod <rights> <name></name></rights>	Change the access rights	Only the owner of the file (and/or
	for the file <name> as</name>	the superuser) can change the
	specified in the mask	access rights
	<rights></rights>	
chown <user> <name></name></user>	Change the owner of the	Only superuser can change the
	file <name> to be <user></user></name>	ownership of a file
chgrp <group> <name></name></group>	Change the group	Only the owner of the file (and/or
	associated with the file	the superuser) can change the
	<name> to be <group></group></name>	group associated with a file
cp <orig> <new></new></orig>	Create a new file <new></new>	The copy is created in the same
	that is a copy of the file	directory if <new> is a file name;</new>
	<orig></orig>	if <new> is a directory name, then</new>
		a copy with the same name <orig></orig>
	D 41 61 4 1 5	is created in the directory <new></new>
mv <orig> <new></new></orig>	Renames the file <orig> with the name <new></new></orig>	Renaming happens in the same directory if <new> is a file name;</new>
	with the name < new>	if <new> is a file name;</new>
		the file <orig> is moved into the</orig>
		directory <new> preserving its</new>
		name <orig></orig>
cat/more/less <name></name>	View the file contents	name vong/
VIEW THE THE CONTENTS		

Q2 Unix File Systems

24 Points

A friend is learning how to use the file system on her Linux distribution and has some questions about how it works. She runs ls -l and gets the following output on her current directory:

```
-rw-r--r-- 2 sam 2200tas 4591 Nov 22 23:10 backup-ta-info.txt
-rwxr-xr-- 1 sam 2200tas 1809 May 2 21:23 calc-scores.py
drwxr-xr-x 1 sam 2200tas 0 Nov 22 22:41 exam-answers/
drwxr-xr-x 1 aj 2200tas 0 Nov 23 02:31 homework-answers/
lrwxrwxrwx 1 jack 2200tas 33 Aug 27 23:35 projects -> ~/prj/
-rw-r--r-- 2 sam 2200tas 4591 Nov 22 23:10 ta-info.txt
```

Given the following specifications for a disk drive:

256 bytes per sector

12 sectors per track

20 tracks per surface

3 platters

Average seek time of 20 ms

Rotational speed 3600 RPM

What would be the time to read 6 contiguous sectors from the same track?

What would be the time to read 6 sectors at random?

Solution

- Time to read 1 random sector
 - = Avg seek time + Avg rotational latency + Sector read time
 - = a + (60/(r * 2)) + (60/(r * s)) seconds
 - = 0.02 + (60 / (3600 * 2)) + (60 / (3600 * 12)) = 0.0297 seconds
- Time to read 6 contiguous sectors
 - = 0.02 + (60/(3600 * 2)) + ((60/(3600 * 12)) * 6) = 0.0366 seconds
- Time to read 6 random sectors
 - = (0.02 + (60 / (3600 * 2)) + (60 / (3600 * 12))) * 6 = 0.1783 seconds

File System

Given the following:

```
Size of index block = 512 bytes

Size of data block = 2048 bytes

Size of pointer = 8 bytes (to index or data blocks)
```

The i-node consists of

2 direct data block pointers,

1 single indirect pointer, and

1 double indirect pointer.

An index block is used for the i-node as well as for the index blocks that store pointers to other index blocks and data blocks. Note that the index blocks and data blocks are allocated on a need basis.

- (a) What is the maximum size (in bytes) of a file that can be stored in this file system?
- (b) How many data blocks are needed for storing the same data file of 266 KB?
- (c) How many index blocks are needed for storing a data file of size 266 KB?

Solution

a) Maximum file size:

An index block can hold 512/8 = 64 entries

2 direct data block pointers in i-node

64 entries in first-level index

64 * 64 entries in second-level index

Total: 4162 blocks * 2048 bytes = 8,523,776 bytes

b) Number of data blocks to hold 266KB:

266 * 210 / 2048 = 266 / 2 = 133 blocks

(c) How many index blocks to hold 266KB (133 blocks):

2 direct + 64 first-level blocks + (64 + 3) second-level blocks

1 i-node + 1 first-level index + 1 + 2 second-level index

Size of index block = 512 bytes Size of data block = 2048 bytes Size of pointer = 8 bytes (to index or data blocks)

The i-node consists of

2 direct data block pointers,

I single indirect pointer, and

I double indirect pointer.

Networking

What is the bit stream represented by the following Manchester encoding of the stream?

Given the following:

```
Message size
                                    1900 Kbits
Header size per packet
                                    1000 bits
Packet size
                                    20 Kbits
Bandwidth on the wire
                                    400,000 bits/sec
Time of flight
                                    2 secs
Window size
                                    10
Processing Delay at the Sender
Processing Delay at the Receiver
Size of ACK message
                                    negligible (take it as 0)
```

Assuming an error free network and in-order delivery of packets, what is the total time to accomplish the above message delivery?