Задание по практической части курсовой работы для студентов ИВТ 1,2

1. задания по линеаризации

1.1. Постройте линеаризованную модель для звена, которое описывается нелинейным дифференциальным уравнением (значения T, q_2, q_1, k определяются из <u>таблицы</u> по номеру варианта)

$$T\frac{dy}{dt} + q_2y^2 + q_1y = kx$$

В номинальном режиме установившееся значение $y = y^0 = 0.5$.

- 1.2. Определите установившееся значение $x = x^{0}$.
- 1.3. Постройте передаточную функцию линеаризованного звена. Как называется такое звено?
- 1.4. Найдите импульсную характеристику (весовую функцию) этого звена.
- 1.5. Решив полученное линейное дифференциальное уравнение, найдите переходный процесс на выходе линеаризованного звена при ступенчатом входном сигнале x(t) = 1(t).
- 1.6. Постройте и сравните переходные процессы (в отклонениях от номинального режима) в линейной и нелинейной системе при ступенчатом входном сигнале x(t) = 1(t).

2. Разомкнутые системы

2.1 Определите, какие простейшие звенья можно выделить в составе звена с передаточной функцией (значения коэффициентов a_i и b_i определяются из таблицы по номеру варианта)

$$W(s) = \frac{a_1 s + a_0}{b_2 s^2 + b_1 s + b_0}.$$

- 2.2 Чему равен коэффициент усиления этого звена в установившемся режиме?
- 2.3 Является ли звено устойчивым? Почему?
- 2.4 Является ли звено минимально-фазовым?
- 2.5 Запишите модель этого звена в виде дифференциального уравнения.
- 2.6 Запишите модель этого звена в пространстве состояний. Единственно ли такое представление?
- 2.7 Сделайте обратный переход от модели в пространстве состояний к передаточной функции.
- 2.8 Постройте переходную характеристику этого звена.

3. Замкнутые системы

- 3.1 Пусть объект управления имеет передаточную функцию W(s), регулятор передаточную функцию K(s), а измерительная система передаточную функцию H(s). Нарисуйте типовую блок-схему системы автоматического регулирования, обозначив задающий сигнал g(t), сигнал управления u(t), регулируемый сигнал y(t), внешнее возмущение w(t), сигнал обратной связи f(t), сигнал ошибки e(t).
- 3.2 Предположив, что K(s) = k = const H(s) = h = const, постройте передаточные функции (ПФ):
 - G(s) от входа g(t) к выходу y(t);
 - $G_{u}(s)$ от входа g(t) к выходу u(t);

$$G_{e}(s)$$
 от входа $g(t)$ к выходу $e(t)$;

$$G_{fe}(s)$$
 от входа $w(t)$ к выходу $e(t)$.

- 3.3 Используя критерий Гурвица, определите, при каких значениях k и h замкнутая система устойчива.
- 3.4 Приняв h = 1, выберите k так, чтобы запас устойчивости по амплитуде был не менее 6 дБ, а запас по фазе не менее 30° (используйте ЛАФЧХ разомкнутой системы без регулятора).
- 3.5 Постройте переходный процесс на выходе при выбранном значении k.
- 3.6 Оцените время переходного процесса и перерегулирование, покажите их на графике.
- 3.7 Является ли замкнутая система астатической? Почему?
- 3.8 Используйте пропорционально-интегральный регулятор (ПИ-регулятор) с передаточной функцией

$$K(s) = \frac{k(s+\alpha)}{s}$$
 при $\alpha = 1$.

С помощью критерия Гурвица определите, какие ограничения должны быть наложены на k, чтобы система была устойчивой. Выберите коэффициент k, равный среднему арифметическому между минимальным и максимальным допустимыми значениями.

- 3.9 Постройте переходный процесс на выходе при выбранном регуляторе. Оцените время переходного процесса и перерегулирование, покажите их на графике.
- 3.10 Постройте амплитудную частотную характеристику полученной замкнутой системы и определите показатель колебательности M .
- 3.11 Является ли замкнутая система астатической по возмущению? Почему?
- 3.12 Постройте переходный процесс на выходе при $g(t) \equiv 0$ и ступенчатом возмущении w(t) = 1(t).

Вариант	T	q_2	q_1	k	a_1	a_0	b_2	b_1	b_0
1	1.0	0.1	1.0	0.5	-0.1	1.0	1.0	5. 0	1.0
2	1.1	0.2	0.9	0.6	-1.1	1.3	1.1	4.5	0.9
3	1.2	0.3	0.8	0.7	-0.2	1.2	1.2	4.2	0.8
4	1.3	0.4	0.7	0.8	-1.2	1.1	1.3	4. 0	0.9
5	1.4	0.5	0.6	0.7	-0.3	1.0	1.4	3.5	1.0
6	1.5	0.4	0.5	0.6	-1.3	1.1	1.5	3. 0	0.9
7	1.6	0.3	0.6	0.5	-0.4	1.2	1.6	2.5	0.8
8	1.7	0.2	0.7	0.6	-1.4	1.1	1.7	2.2	0.9
9	1.8	0.1	0.8	0.7	-0.5	1.0	1.8	2. 0	1.0
10	1.9	0.2	0.9	0.8	-1.5	1.1	1.9	1.8	0.9
11	2.0	0.3	1.0	0.7	-0.6	1.2	1.8	1.6	1.0
12	2.1	0.4	1.1	0.6	-1.6	1.3	1.7	1.4	0.9
13	2.1	0.5	1.2	0.5	-0.7	1.4	1.6	1.3	0.8
14	2.3	0.4	1.3	0.6	-1.7	1.3	1.5	1.1	0.9
15	2.4	0.3	1.4	0.7	-0.8	1.2	1.4	1.0	1.0
16	2.5	0.2	1.5	0.8	-1.8	1.3	1.3	0.9	0.9
17	2.6	0.1	1.4	0.7	-0.9	1.4	1.2	1.0	0.8
18	2.7	0.2	1.3	0.6	-1.9	1.3	1.1	1.1	0.9
19	2.8	0.3	1.2	0.5	-1.0	1.2	1.0	1.2	1.0
20	2.9	0.4	1.1	0.4	-2. 0	1.5	1.1	1.3	0.9