PNS Chapter 7

Membrane Potential

Plan of Action

- Introduction to neuroscience
 - Chapter 1 The brain and behavior
 - Chapter 2 Nerve cells and behavior
- How are neural signals generated?
 - Chapter 7 Membrane potential
 - Chapter 9 Propagated signaling: the action potential
- How do neurons communicate with each other?
 - Chapter 10 Overview of synaptic transmission
 - Chapter 12 Synaptic integration

Membrane Potential

- Reading assignment from Principles of Neural Science:
 - Chapter 7 Membrane Potential
 - Chapter 9 Propagated Signaling: The Action Potential
- Information carried within & between neurons w/ electrical & chemical signals.
- Transient electrical signals (action potentials) critical for transmitting time-sensitive data rapidly and over long distances.
- Action potentials produced by temporary changes in current flow in/out of cell.
- This is turn changes the electrical potential across the cell membrane – the membrane potential.
- Current flow controlled by ion channels in membrane.

Membrane Potential

Charge Separation Across Membrane

At rest, excess of + charge outside --- cell membrane; - charge inside.

 Membrane maintains this separation by blocking diffusion.

Membrane potential definition:

$$V_m = V_{in} - V_{out}$$

- Resting membrane potential $(V_r) = V_m$ when *gated channels* are closed.
- V_r typically = -60 mV to -70 mV.
- Electric current carriers are positive (cations) and negative (anions) ions.
- Direction of current flow defined as direction of net movement of + charge.

Resting and Gated Ion Channels

- Resting channels
 - Normally open.
 - Not influenced by membrane potential.
 - Important for maintaining resting membrane potential.
- Gated channels
 - Normally closed.
 - Probability of opening is a function of external factors.
 - External factors: mechanical (pressure or strech) forces, changes in membrane potential, or ligand (chemical transmitter) binding

Recording the Membrane Potential

Resting Potential Determined by Resting Ion Channels

- No ion species is distributed equally inside/ outside membrane.
- Table shows giant squid axon concentrations; ionic concentrations in vertebrates are 2-3x lower, but concentration gradients similar.

Table 7.1 Distribution of the Major lone Across a Neuronal Membrane at Rost: the Giant Avon of the Squid

Species of ion	Concentration in cytoplasm (mM)	Concentration in extracellular fluid (mM)	Equilibrium potential ¹ (mV)
K^+	400	20	−75
Na ⁺	50	440	+55
Cl ⁻	52	560	-60
A ⁻ (organic anions)	385	_	

¹The membrane potential at which there is no net flux of the ion species across the cell membrane.

Concentration Gradients & Resting Potential

- Start with glia (membranes permeable to only K+)
- A high concentration of K⁺ and A⁻ exists inside the cell.
- A high concentration of Na⁺ and Cl⁻ exists outside the cell.
- Intuition:
 - species that can't transport through ion channels must stay put (inside or outside of cell)
 - species (i.e., K⁺) that *can* transport through ion channels can potentially do so but there must be a driving force.

Equilibrium Potential

Sketch of Drift and Diffusion Currents

Concentration Gradients & Resting Potential

- K⁺ ions diffuse from inside to outside of cell (down concentration gradient) creating diffusion current.
- Thus, outside accumulates a slight excess of + charge (K +) and inside accumulates a slight excess of charge (lack of K+).
- 3. Excess charges attract, forming sheet charges along membrane.
- 4. Sheet charges create electric (E) field, pointing from outside to inside (+ to –).
- 5. E-field applies force (drift) on K⁺ ions in direction of E-field (outside to in). This creates drift current.
- At equilibrium (no net current flow), a specific E-field exists such that drift current is equal and opposite diffusion current.

Deriving the Nernst Equation

Concentration Gradients & Resting Potential

- The potential difference across the membrane associated with this specific E-field is termed the equilibrium potential (E_K) .
- As per previous table, E_K = -75 mV.
 Note: don't be confused, here E is a voltage not an electric field.
- Equilibrium potential for arbitrary ion X given by Nernst equation:

$$E_x = \frac{RT}{zF} ln \frac{[X]_o}{[X]_i}$$

R is the gas constant, T is temperature in Kelvin, z is the valence of the ion, F is the Faraday constant and $[X]_o$ and $[X]_i$ are chemical concentrations outside and inside of cell

Calculating Resting Potential

Calculating Resting Potential

• Since RT/F = 25 mV at room temperature (25° C), we can write:

$$E_x = \frac{25mV}{z} \ln \frac{[X]_o}{[X]_i}$$

• Or, including a factor of 2.3 to convert $\ln \log_{10}$:

$$E_x = \frac{58mV}{z} \log \frac{[X]_o}{[X]_i}$$

• And, with z = 1 for K^+ :

$$E_x = 58mV \log \frac{[20]}{[400]} = -75mV$$

Calculating Resting Potential

- Nernst Equation can be used to find the equilibrium (resting) potential of any ion that is present on both sides of a membrane permeable to that ion.
- See previous table (repeated here for convenience) for equilibrium potentials associated with each ion present in the giant squid axon:

Species of ion	Concentration in cytoplasm (mM)	Concentration in extracellular fluid (mM)	Equilibrium potential ¹
K^+	400	20	-75
Na ⁺	50	440	+55
Cl ⁻	52	560	-60
A (organic anions)	385		_

Concentration Gradients & Resting Potential

- What about neurons (instead of glia)?
 - Neurons at rest are permeable to Na+ and Clions, in addition to K+ ions.
 - A- ions unable to permeate; thus set aside.
 - When multiple ion species can permeate membrane, a new resting potential is established such that net current flow is zero (steady state).

Equilibrium Potential with 2 Ions

Understanding Resting Potential w/ 2 Species

Understanding Resting Potential w/ 2 Species

Why isn't Na+ influx huge?

 Ion flux is the product of electrochemical driving force and membrane conductance to that ion:

ion flux = (electrical driving force + chemical driving force) \times membrane conductance

 There are relatively few <u>resting</u> Na⁺ channels (compared w/ resting K⁺ channels) so the conductance to Na⁺ is quite low.

Na+ - K+ Pump

- Now assume that the resting potential has been achieved.
- Passive movement of K⁺ out of cell = passive movement of Na⁺ into cell.
- But these concentrations gradients will eventually run down, thereby reducing the resting membrane potential!
- Need Na⁺ K⁺ pump.
- Moves Na⁺ and K⁺ against their net electrochemical gradients.
- Moves Na⁺ out of cell; moves K⁺ into cell.
- Pump requires energy (ATP hydrolysis).
- Continuous passive influx of Na+ and efflux of K+ through resting channels is counterbalanced by Na+ - K+ pump.
- Pump: membrane-spanning protein; 3 Na⁺ ions out for every 2 K⁺ ions in.

Quick Peek at Action Potentials

- If the membrane is depolarized past the "threshold voltage" then voltage-gated Na+ channels open rapidly.
- Thus Na⁺ influx exceeds K⁺ efflux → further depolarization → even more voltage-gated Na⁺ channels open → ... (positive feedback system)
- Takes V_R very close to $E_{Na} = +55$ mV because permeability to Na^+ is predominant.
- Why does membrane ever repolarize, to end action potential?
 - Voltage-gated Na⁺ channels gradually inactivate.
 - Voltage-gated K⁺ channels are slow, but eventually open.

Multiple Ions: Goldman Equation

Goldman-Hodgkin-Katz or Constant Field Model

Nernst Planck Equation:

$$I_{j} = -z_{j}FD_{j}\left(\frac{d\left[C_{j}\right]}{dx} + \frac{Fz_{j}\left[C_{j}\right]}{RT}\frac{dV}{dx}\right)$$

Assumptions:

- lons move independently through the membrane
- Variation in the electric field across membrane is constant

$$\frac{dV}{dx} = \text{constant} = \frac{V_m}{l}$$

Solution:

$$I_{j} = -z_{j}^{2} P_{j} \frac{F^{2} V_{m}}{RT} \left(\frac{\left[C_{j}\right]_{i} - \left[C_{j}\right]_{o} e^{-\frac{z_{j} F V_{m}}{RT}}}{1 - e^{-\frac{z_{j} F V_{m}}{RT}}} \right)$$

Where:

$$P_j = permeability = \frac{D_j}{I}$$

This is the GHK Current Equation

Deriving the GHK Voltage Equation

 For multiple ion species, at equilibrium, the net current flux is zero. So, starting with:

$$\sum_{j} I_{j} = \sum_{j} -z_{j}^{2} P_{j} \frac{F^{2} V_{m}}{RT} \left(\frac{\left[C_{j} \right]_{i} - \left[C_{j} \right]_{o} e^{-\frac{z_{j} F V_{m}}{RT}}}{1 - e^{-\frac{z_{j} F V_{m}}{RT}}} \right) = 0$$

If only monovalent ions are present, then:

$$V_{m} = \frac{RT}{F} \ln \left(\frac{\sum_{\text{positive ions}} P_{X}[X]_{outer} + \sum_{\text{negative ions}} P_{Y}[Y]_{inner}}{\sum_{\text{positive ions}} P_{X}[X]_{inner} + \sum_{\text{negative ions}} P_{Y}[Y]_{outer}} \right)$$

Goldman Equation: V_R w/ Multiple Species

- Membrane conductance (1/resistance) is a convenient measure of how readily an ion crosses the membrane.
- Permeability (P, units of cm/s) is another convenient measure; similar to a diffusion constant.
- Membrane potential is easy to calculate w/ Goldman Equation:

$$V_m = \frac{RT}{F} ln \frac{P_K[K^+]_o + P_{Na}[Na^+]_o + P_{Cl}[Cl^-]_i}{P_K[K^+]_i + P_{Na}[Na^+]_i + P_{Cl}[Cl^-]_o}$$

- Species with highest concentration and permeability dominates. Consider limit cases:
 - At rest, permeability of K⁺ dominates.
 - At peak of action potential, permeability of Na⁺ dominates.

Dynamic range of action potential waveform

Table 7-1 Distribution of the Major lons Across a Neuronal Membrane at Rest: the Giant Axon of the Squid

Species of ion	Concentration in cytoplasm (mM)	Concentration in extracellular fluid (mM)	Equilibrium potential ¹ (mV)
K ⁺	400	20	-75
Na ⁺	50	440	+55
Cl ⁻	52	560	-60
A (organic anions)	385		

¹The membrane potential at which there is no net flux of the ion species across the cell membrane.

K⁺ Channel

Mechanism of Na⁺/K⁺ ATP-ase

- Pump bound with ATP binds 3 intracellular Na+ ions
- 2. ATP hydrolized
- 3. Pump undergoes conformation change, Na+ ions released outside
- 4. Pump binds 2 extracellular K+ ions
- 5. Pump reverts conformational state
- 6. K+ ions released inside

GABA during development

- γ-aminobutyric acid is a
 In adult neurons, [Cl-] is "neurotransmitter" that is usually inhibitory
- GABA_A receptor is a "ligand-gated" ion channel
- Potassium-chloride transporters normally maintain

- 140 mM outside and 7 mM inside.
- In baby neurons, [Cl⁻] inside is closer to 40 mM
- What are the different resting membrane potentials?

Chloride Resting Potentials

$$E_x = \frac{25mV}{z} \ln \frac{[X]_o}{[X]_i}$$

GABA during development

 GABA excitatory during development, inhibitory in adulthood!

The cellular membrane as an equivalent circuit

Passive Membrane Properties

- R is the resistance of the membrane ------
- C is the capacitance.
- V is the voltage across the membrane.
- \bullet i_{C} and i_{R} are currents through the capacitor and resistor.

$$i = i_C + i_R$$
 \Rightarrow

$$i = C\frac{dV}{dt} + \frac{V}{R}$$

$$\frac{i}{C} = \frac{d(V)}{d(t)} + \frac{1}{RC}V$$

$$V = iR(1 - e^{-\frac{t}{RC}})$$

Typical values for resistance and capacitance

Specific resistance = 10^4 - $10^5 \Omega$ cm²

Total resistance = 1-10 G Ω

Specific capacitance = $1 \mu F cm^{-2}$

Total capacitance = 10 pF

Passive Membrane Properties

- What is the relative capacitance of a big neuron vs a small neuron?
- Which will be able to depolarize faster?

Equivalent Circuit w/Ion Channels

Equivalent Circuit w/Ion Channels

