التنقيط الموضّوع

ت<u>مرین1:</u>

: يتفاعل 2-برومو-2-ميثيل بروبان CH_3 ر $_3$ CBr و الذي سنرمز له بRBr مع الماء وفق تفاعل كلي معادلته

 $RBr + H_2O \rightarrow ROH + H^+(aq) + Br^-(aq)$

نحضر خليطا يتكون من حجما $V(eau) = 100\,m$ من الماء المقطر و حجما $V(RBr) = 1\,m$ و قليلا من الأستون. دور الأستون هو الحصول على خليط متجانس لأن الماء و RBr غير قابلين للإمتزاج.

نقيس تغيرات مواصلة الخليط بواسطة مقياس ثابتة خليته k=0.01m ، فُنحصل على المنحنى 1 و ذلك عند درجة الحرارة $\theta=25^{\circ}C$.

 $\rho(eau) = 1 \text{ g.mL}^{-1}, \quad M(RBr) = 136.9 \text{ g.mol}^{-1}, \quad d(RBr) = 0.87$: معطیات

- 1

1 1 - لماذا يمكن تتبع تطور التحول بقياس المواصلة.

1 2 - اعط طريقة أخرى تمكن من تتبع تطور هذا التحول.

- 2

. البدئية RBr كمية البدئية - $\mathbf{1}$ 2

 $\frac{2}{2}$ اعط جدول التقدم.

 $\lambda(Br^-)$ و $\lambda(H^+)$ ، k ، V عن مواصلة الخليط خلال التحول بدلالة تقدم التفاعل x ، حجم الخليط $\lambda(H^+)$ ، و

 $\lambda(Br^-)$ و $\lambda(H^+)$ ، k ، G(t) عبر عن السرعة المجمية للتفاعل بدلالة -4

.2 نفس التجربة السابقة عند درجة الحرارة $\theta'=45^{\circ}C$. فنحصل على المنحنى 5

5 1 - فسر ميكروسكوبيا كيف تتزايد سرعة التفاعل مع ازدياد درجة الحرارة.

2 - 2 فسر لماذا المنحيين 1 و2 لا يصلان إلى نفس الحالة النهائية و ذلك انطلاقا من علاقة السؤال 3 - 2

- 6

 $\lambda(Br^-)$ و $\lambda(H^+)$ ، k ، V ، n_0 بدلالة G_f بدلالة النهائية في الحالة الخايط في الحالة النهائية و G_f

 $x(t) = n_0 \frac{G(t)}{G_f}$ بين أن - **2 6**

 $G(t_{1/2}) = \frac{G_f}{2}$: بين أن - **3** 6

 $\theta'=45^{\circ}C$ و $\theta=25^{\circ}C$ و المالتين $\theta=25^{\circ}C$ و $\theta=45^{\circ}C$

<u>تمرین2</u>

مياه البحر، حيث تعمل مصلحة الهيدروغرافيا بالمديرية على توثيق و معالجة المعطيات المحصلة من عملية المراقبة و ذلك قصد تدقيق و تحديد خصائص المد و الجزر في جميع مواقع المراقبة.

و فيما يلي نعطي نموذج لجهاز قياس يمكن من تحديد عمق مياه البحر H بالموانئ.

الباعث يبعث دفعات من موجات فوق صوتية و يلتقطها المستقبل بعد انعكاسها على سطح الماء، و انطلاقا من قياس المدة الفاصلة بين بعث و استقبال الدفعات يتم تحديد العمق H.

- 1 تنعث الموجات فوق الصوتية بموجات ميكانيكية طولية. علل هذا النعث.
- 2 عبر عن المدة Δt الفاصلة بين بعث و استقبال الدفعات بدلالة L و u: سرعة الصوت في الهواء.
 - Δt و ν ، D بدلالة H و Δt
- 4 -بتاريخ 2005/07/31 تم التوصل بالنتائج التالية. أتمم الجدول التالي علما أن سرعة الصوت في الهواء هي $v=340\,m.s^{-1}$ و أن $v=340\,m.s^{-1}$

H(m) مستوى الماء	$\Delta t(ms)$	الساعة	التاريخ
	40,76	03 <i>h</i> 19	
	14,70	09h00	2005/05/24
	40,00	1 <i>5h</i> 52	2005/07/31
	13,94	21h32	

- قي نفس اليوم 2005/07/31 أعطى جهاز مماثل في ميناء آخر عند الساعة 15h52 نفس الإرتفاع H و لكن انطلاقا من قيمة $\Delta t_2 \succ 40.00 \, ms$ من قيمة
 - . Δt في قيمة Δt انطلاقا من علاقة السؤال 3- ماهو العامل الذي يؤثر في قيمة Δt
 - 5 هل قيمة العامل المحدد في السؤال السابق تتناقص أم تترايد.
 - 5 3 علل تواجد مقياس الحرارة في جهاز قياس عمق البحر.
 - أراد أحد التلاميذ محاكاة الجهاز السابق باستعمال معدات مخبرية كما يوضح الشكل جانبه:

قام هذا التلميذ بضبط الباعث على دفعات من موجات فوق صوتية فحصل على المنحيين التاليين:

م الموجود داخل المخبار المدرج. علما أن $D=43\,cm$ و أن سرعة الصوت عند ظروف $v=340\,m.s^{-1}$.

تمرین<u>3:</u>

 $r_1=31,1^\circ$ نرسل على الوجه الأول لموشور حزمة رقيقة من الضوء الأبيض بزاوية $i=75^\circ$. فينكسر الشعاع الأحمر بزاوية $r_2=29,8^\circ$.

- 1 أحسب معامل انكسار زجاج الموشور بالنسبة للشعاع الأحمر.
- 2 أحسب معامل انكسار زجاج الموشور بالنسبة للشعاع البنفسجي.
- 3 حما خاصية الموجات الضوئية التي تبقى ثابتة عند الإنتقال من وسط إلى آخر.
- 4 أحسب سرعة انتشار كل من الشعاع الأحمر و البنفسجي داخل زجاج الموشور.
 - 5 طماذا يسمى زجاج الموشور وسط مبدد.