Roth's Theorem on 3-Term Arithmetic Progressions

DYLAN TOH FOR EDUCATIONAL PURPOSES

Outline

- 1. The Question: 3-Term APs
- 2. Attempts and Intuition
- 3. Proof Sketch (The 5 Ideas)
- 4. The 5 Ideas, Explained
- 5. Beyond Roth's Theorem

Notation

- $\{1, 2, ..., N\}$ and [N] are used interchangeably.
- C and c refer to generic large and small constants respectively. In different places, they may refer to different constants. For example, $(cx^2 Cx C)/(Cx + C) \ge cx$ for $x \ge C$.
- Some equations, although not explicitly stated, only apply to large N.
- Blue items are additional technical pointers.

The Question: 3-Term APs

$$0 < \alpha \le 1$$

$$A \subseteq \{1, 2, \dots, N\}, |A| = \alpha N$$
, s.t. A has no 3-term APs. How big can $|A|$ be?

$$\alpha_{\mathsf{max}}(\mathsf{N}) \coloneqq \max_{\mathsf{A} \subseteq \mathsf{IM}} \{\alpha\}$$
 (1)

When $N \to +\infty$, does $\alpha_{max} \to 0$?

Intuition

Arithmetic progressions have rich structure:

- AP-indexed subsequences of APs are also APs.
- The common difference may be viewed as the "period" of occurence.
- (a, b, c) is a 3-term AP iff a + c = 2b.
- $\{1, 2, \dots, N\}$ may be replaced with any N-term AP.

Intuition

Suppose the structure of interest was instead (a, b, c) where a + b = c. Then $\alpha_{\text{max}} \approx \frac{1}{2}$ for all N. (Exercise)

This tells us that:

- The rich structure of APs and 3-term APs is **very important**.
- Techniques related to number theory might be required.

Intuition

Considering consecutive triples, $\alpha \leq \frac{2}{3} + \frac{2}{N}$. This settles N = 1, 2, 3, 4, 5, 6.

For N=7, consider the middle element. $|A|_{max}=4$.

For N=8 and N=9, $|A|_{max}=4$ and $|A|_{max}=5$ respectively.

 3×3 grid pattern for N=9 may improve the $\frac{2}{3}$ bound (consider N=27); possible approach to consider a $3 \times 3 \times \cdots \times 3$ lattice. (Hales-Jewett)

SPOILER ALERT

If you wish to try the problem yourself, stop here.

The Answer: Roth's Theorem

(Roth, 1953) We may upper-bound α_{\max} in terms of N as follows:

$$\alpha_{\text{max}} \le \frac{C}{(\log \log N)^{1/5}} \tag{2}$$

In particular, $\alpha_{\max} \to 0$ when $N \to +\infty$.

Proof Sketch

Note: this is not Roth's original proof, but it is chosen for its elegance of integrating key ideas.

Density-Increment: $\alpha' = \alpha + c\alpha^6$

Indicator
Functions
$$f \coloneqq \mathbf{1}_A - \alpha \mathbf{1}_{[N]}$$

 $AP_3 \coloneqq \mathbb{E}_{\mathsf{x},d} g_1(\mathsf{x}) g_2(\mathsf{x} + d) g_3(\mathsf{x} + 2d)$

Cauchy-Schwarz
and
$$U^2$$
-norm
 $|AP_3(g_1, g_2, g_3)| \leq ||g_i||_{U^2}$
 $||f||_{U^2} \geq c\alpha^3$

Discrete Fourier

$$\exists P' \subseteq [N], |P'| \ge N^{1/3},$$

 $\exists N \qquad \text{s.t.}$
 $\sum_{x \in P'} f(x) \ge c\alpha^6 |P'|$

$$\alpha_{\mathsf{max}} \leq \frac{\mathsf{C}}{(\log\log \mathsf{N})^{1/2}}$$

Idea 1: Density Increment Strategy

Density-Increment: $\alpha' = \alpha + c\alpha^6$

Indicator **Functions**

Functions
$$f := \mathbf{1}_{A} - \alpha \mathbf{1}_{[N]}$$

$$AP_{3} := \mathbb{E}_{x,d} q_{1}(x) q_{2}(x + 1)$$

 $d)a_{3}(x + 2d)$

Cauchy-Schwarz and U²-norm $|AP_3(g_1,g_2,g_3)| \leq ||g_i||_{U^2}$

 $\|f\|_{U^2} \geq c \alpha^3$

Analysis $\exists \theta \in [\mathsf{o},\mathsf{1}] \text{ s.t.}$

Discrete Fourier

$$|\sum f(x)e(\theta x)| \ge c\alpha^6 N$$

Hardy-Littlewood
Circle Method
$$\exists P' \subseteq [N], |P'| \ge N^{1/3},$$

$$x) > c_0$$

$$\sum_{\mathbf{x}\in P'}f(\mathbf{x})\geq \mathbf{c}\alpha^{6}|P'|$$

$$\alpha_{\mathsf{max}} \leq \frac{\mathsf{C}}{(\log\log \mathsf{N})^{1/2}}$$

Idea 1: Density-Increment Strategy

3E19 18

Suppose $A \subseteq [N]$, $|A| = \alpha N$, and A has no 3-term APs. If $N \ge C\alpha^{-C}$, then:

There is a sub-AP $P' \subseteq [N]$ of length $|P'| \ge N^{1/3}$ with $|A \cap P'| = \alpha' |P'|$ s.t.

$$\alpha' \ge \alpha + \mathbf{c}\alpha^6$$

$$1/5E5$$
(3)

Idea 1: Density-Increment Strategy

3E19 18

Suppose $A \subseteq [N], |A| = \alpha N$, and A has no 3-term APs. If $N \ge C\alpha^{-C}$, then:

There is a sub-AP $P' \subseteq [N]$ of length $|P'| \ge N^{1/3}$ with $|A \cap P'| = \alpha' |P'|$ s.t.

$$\alpha' \ge \alpha + \mathbf{c}\alpha^6$$

$$1/5E5$$

Suppose the Density-Increment statement is true.

3E19 18

Let $N_0 = N$, $P_0 = [N]$, $A_0 = A$, and $\alpha_0 = \alpha$. Now for each $i \in \mathbb{N}$, if $N_i \geq C\alpha_i^{-C}$:

- There is some sub-AP $P_{i+1} \subset P_i$ of length $N_{i+1} > N_i^{1/3}$ such that,
- Setting $A_{i+1} = A_{i+1} \cap P_{i+1}$ and $|A_{i+1}| = \alpha_{i+1} N_{i+1}$.
- One has $a_{j+1} \geq \alpha_j + c \alpha_i^6$.

The α_i 's are increasing rapidly:

- Starting from $\alpha_0 = \alpha$, it would take $\leq \frac{1}{c\alpha^5} = C\alpha^{-5}$ iterations for it to double to 2α .
- The next double to 4α would be reached in $\leq C(2\alpha)^{-5}$ more iterations.
- The k-th double to $2^k \alpha$ would require $\leq C\alpha^{-5}2^{-5k}$ iterations.

However, the α_i 's are also bounded above by 1.

Therefore, the total number of iterations is at most

$$i_{\text{max}} = C\alpha^{-5}(1 + 2^{-5} + 2^{-10} + \dots) \le C\alpha^{-5}.$$
5.17E5

Since the iterations must stop, therefore $N_{i_{max}} \leq C\alpha_{i_{max}}^{-C} \leq C\alpha^{-C}$.

Since
$$N_{i_{\max}} \ge N^{(1/3)^{i_{\max}}} \ge N^{(1/3)^{c_{\alpha}-5}}$$
, thus $N^{(1/3)^{c_{\alpha}-5}} \le C\alpha^{-C}$.

Taking double-log, $\log \log N - (\log 3)C\alpha^{-5} \leq \log(C - C \log \alpha)$.

Note that $\log(C - C \log \alpha) \le C\alpha^{-5}$.

Therefore $\log \log N \leq C\alpha^{-5}$.

Rearranging, $\alpha \leq \frac{c}{(\log \log N)^{1/5}}$.

Density-Increment: $\alpha' = \alpha + c\alpha^6$

Indicator **Functions**

Functions
$$f := 1_A - \alpha 1_{[N]}$$

$$AP_3 := \mathbb{E}_{x,d}g_1(x)g_2(x + y)$$

 $d)q_3(x+2d)$

Cauchy-Schwarz and U²-norm

$$|\mathsf{AP}_3(g_1, g_2, g_3)| \le \|g_i\|_{U^2} \ \|f\|_{U^2} \ge c\alpha^3$$

Discrete Fourier Analysis $\exists \theta \in [\mathsf{o},\mathsf{1}] \text{ s.t.}$

$$\exists \theta \in [\mathsf{o}, \mathsf{1}] \text{ s.t.}$$

 $|\sum f(\mathsf{x}) \mathsf{e}(\theta \mathsf{x})| \geq \mathsf{c} \alpha^6$

$$|\sum f(x)e(\theta x)| \geq c\alpha^6 N$$

Hardy-Littlewood
Circle Method
$$\exists P' \subseteq [N], |P'| \ge N^{1/3},$$

$$(x) > c\alpha^6$$

$$\sum_{\mathbf{x}\in P'}f(\mathbf{x})\geq \mathbf{c}\alpha^{6}|P'|$$

We want to a function to count the number of 3-term APs in A.

Define indicator 1_A as $1_A(x) := \{1 \text{ if } x \in A, \text{ o if } x \notin A\}$.

N' is chosen this way to prevent counting of wrap-around APs.

Consider the finite abelian group $G = \mathbb{Z}/N'\mathbb{Z}$ where N' = 2N + 1.

|A| arises from the trivial d = 0 solutions.

Then $\mathbb{E}_{x,d\in G} 1_A(x) 1_A(x+d) 1_A(x+2d) = (|A|+2\cdot \# 3\text{-term APs in }A)/N'^2$.

Each 3-term AP is double-counted by $\pm d$.

We therefore consider the linear indicator function $AP_3(g_1, g_2, g_3) := \mathbb{E}_{x,d \in G} g_1(x) g_2(x+d) g_3(x+2d)$.

This term, $\approx \alpha/4N$, is small.

Since A has no 3-term APs, thus $AP_3(1_A, 1_A, 1_A) = |A|/N'^2 = \alpha N/(2N+1)^2$.

We compare A to a random subset of [N] of size α N.

$$AP_3(\alpha 1_{[N]}, \alpha 1_{[N]}, \alpha 1_{[N]}) = \alpha^3 AP_3(1_{[N]}, 1_{[N]}, 1_{[N]}).$$

Note that [N] has $\geq \lfloor N/3 \rfloor^2$ 3-term APs formed by $x, d = 1, 2, \dots, \lfloor N/3 \rfloor$.

$$\approx 1/18 \qquad 1/19 \qquad 50$$
 Thus $AP_3(1_{[N]}, 1_{[N]}, 1_{[N]}) \ge (N + 2\lfloor N/3\rfloor^2)/(2N + 1)^2 \ge c$ for $N \ge C$.

So for
$$N \ge C$$
, $AP_3(\alpha 1_{[N]}, \alpha 1_{[N]}, \alpha 1_{[N]}) \ge c\alpha^3$.

We now compare $AP_3(1_A, 1_A, 1_A) \leq \frac{\alpha}{4N}$ to $AP_3(\alpha 1_{[N]}, \alpha 1_{[N]}, \alpha 1_{[N]}) \geq c\alpha^3$.

Define function $f := 1_A - \alpha 1_{[N]}$. f is balanced because $\mathbb{E}_{x \in G} f(x) = 0$.

Expanding linearly,
$$AP_3(1_A, 1_A, 1_A) = AP_3(\alpha 1_{[N]}, \alpha 1_{[N]}, \alpha 1_{[N]}) + AP_3(f, \alpha 1_{[N]}, \alpha 1_{[N]}) + AP_3(\alpha 1_{[N]}, f, \alpha 1_{[N]}) + AP_3(\alpha 1_{[N]}, f) + AP_3(f, f, \alpha 1_{[N]}) + AP_3(f, f, \alpha 1_{[N]}, f) + AP_3(f, f, \alpha 1_{[N]}, f) + AP_3(f, f, \alpha 1_{[N]}, f)$$

Since f is balanced, the 7 terms of the form $AP_3(f,*,*)$, $AP_3(*,f,*)$, and $AP_3(*,*,f)$ should be small; however, the equation above says otherwise.

Explicitly, we have that $|AP_3(g_1, g_2, g_3)| \ge \frac{1}{7}(c\alpha^3 - \frac{\alpha}{4N})$ for 1-bounded functions g_1, g_2, g_3 among which $g_i = f$ for some $i \in \{1, 2, 3\}$.

For
$$N \ge C\alpha^{-c}$$
, $\frac{1}{7}(c\alpha^3 - \frac{\alpha}{4N}) \ge c\alpha^3$.

To make sense of the AP_3 indicator function, we will relate $|AP_3(g_1, g_2, g_3)|$ to the "norm"s of g_1 , g_2 , and g_3 . We hope that this will give us a lower bound for the "norm" of f, which in turn gives us information about A.

Density-Increment: $\alpha' = \alpha + c\alpha^6$

Indicator **Functions**

$$f := \mathbf{1}_{A} - \alpha \mathbf{1}_{[N]}$$

$$AP_{3} := \mathbb{E}_{x,d}g_{1}(x)g_{2}(x + d)g_{2}(x + 2d)$$

Cauchy-Schwarz and U²-norm

$$|AP_3(g_1, g_2, g_3)| \le ||g_i||_{U^2} ||f||_{U^2} \ge c\alpha^3$$

Discrete Fourier Analysis $\exists \theta \in [\mathsf{o},\mathsf{1}] \text{ s.t.}$

$$|P_3(g_1,g_2,g_3)| \le ||g_i||_{U^2} \qquad \exists \theta \in [0,1] \text{ s.t.}$$
 $||f||_{U^2} \ge c\alpha^3 \qquad |\sum f(x)e(\theta x)| \ge c\alpha^6 N$

$$|\sum f(x)e(\theta x)| \geq c\alpha^6 N$$

$$\exists P' \subseteq [N], |P'| \ge N^{1/3},$$
 $N \qquad \text{s.t.}$
 $\sum_{x \in P'} f(x) \ge c\alpha^6 |P'|$

Hardy-Littlewood

Circle Method

$$\alpha_{\mathsf{max}} \leq \frac{\mathsf{C}}{(\log\log\mathsf{N})^{1/2}}$$

To bound AP_3 , we will attempt to use the Cauchy-Schwarz Inequality. We first rephrase the statement with the use of expected value: for any functions $\beta, \gamma: X \to \mathbb{C}$,

$$|(\mathbb{E}_{\mathbf{x}\in\mathbf{X}}\beta(\mathbf{x})\overline{\gamma(\mathbf{x})})|^2 \le \mathbb{E}_{\mathbf{x}\in\mathbf{X}}|\beta(\mathbf{x})|^2\mathbb{E}_{\mathbf{x}'\in\mathbf{X}}|\gamma(\mathbf{x}')|^2$$
(5)

Note that by setting $\gamma := \overline{\gamma}$, we may remove the conjugation on the left.

If β is 1-bounded, then $|\mathbb{E}_{x \in X} \beta(x) \gamma(x)|^2 \leq \mathbb{E}_{x \in X} |\gamma(x)|^2$.

We now apply Cauchy-Schwarz to bound $AP_3(g_1, g_2, g_3)$ in terms of g_1 alone; to do this, we will use the fact that g_2 and g_3 are 1-bounded.

Note that $AP_3(g_1,g_2,g_3)=\mathbb{E}_{x,y\in G}g_1(2x-y)g_2(x)g_3(y)$. There is some freeplay in parameterising 3-term

Since g_2 is 1-bounded, we let $\gamma(x) := \mathbb{E}_{y \in G} g_1(2x - y) g_3(y)$. Then, $\overline{\mathsf{APs}}$.

$$|AP_3(g_1, g_2, g_3)|^2 \le \mathbb{E}_{x \in G} |\mathbb{E}_{y \in G} g_1(2x - y) g_3(y)|^2$$
 (6)

which we may rewrite as $\mathbb{E}_{x \in G} \mathbb{E}_{y \in G} g_1(2x - y) g_3(y) \mathbb{E}_{y' \in G} \overline{g_1(2x - y')} g_3(y')$.

We apply Cauchy-Schwarz once again: $g_3(y)\overline{g_3(y')}$ is 1-bounded, thus

$$|\mathbb{E}_{y,y',x\in G}g_1(2x-y)\overline{g_1(2x-y')}g_3(y)\overline{g_3(y')}|^2\leq \mathbb{E}_{y,y'\in G}|\mathbb{E}_{x\in G}g_1(2x-y)\overline{g_1(2x-y')}|^2$$

which we rewrite as
$$\mathbb{E}_{x,x',y,y'\in G}g_1(2x-y)\overline{g_1(2x-y')g_1(2x'-y)}g_1(2x'-y')$$
,

and reparameterise as
$$\mathbb{E}_{x,d_1,d_2\in G}g_1(x)\overline{g_1(x+d_1)g_1(x+d_2)}g_1(x+d_1+d_2)$$
.

This is solely in terms of g_1 , and is non-negative! "norm"-worthy.

Define the Gowers U^2 -norm on function $F:G\to\mathbb{C}$ as

$$||F||_{U^2} := \sqrt[4]{\mathbb{E}_{x,d_1,d_2 \in G}F(x)\overline{F(x+d_1)F(x+d_2)}F(x+d_1+d_2)}$$
 (7)

As its norm-related properties will not be used, we postpone the proof that it is in fact a norm to the end of the slides.

The two applications of Cauchy-Schwarz show $|AP_3(g_1, g_2, g_3)|^4 \le ||g_1||_{H^2}^4$.

Thus $|AP_3(q_1, q_2, q_3)| \le ||q_1||_{U^2}$.

Similarly, we may also show $|AP_3(g_1, g_2, g_3)| \le ||g_2||_{U^2}, ||g_3||_{U^2}$.

We know that $|AP_3(g_1, g_2, g_3)| \ge c\alpha^3$ for $N \ge C\alpha^{-C}$ and 1-bounded functions g_1, g_2, g_3 among which $g_i = f$ for some $i \in \{1, 2, 3\}$.

Thus for $N \geq C\alpha^{-C}$, $||f||_{U^2} \geq c\alpha^3$.

We will now make sense of $||f||_{U^2}$ using Discrete Fourier Analysis.

Density-Increment: $\alpha' = \alpha + c\alpha^6$

Indicator

 $d)a_3(x+2d)$

Functions and
$$U^2$$
-norm $f := \mathbf{1}_A - \alpha \mathbf{1}_{[N]}$ $|AP_3(g_1, g_2, g_3)| \le \|g_1 - g_2\|_{L^2}$ $\|f\|_{U^2} \ge c\alpha^3$

 $|\mathsf{AP}_3(g_1,g_2,g_3)| \leq ||g_i||_{U^2}$

Cauchy-Schwarz

$$|(g_1, g_2, g_3)| \le ||g_i||_{U^2}$$

 $||f||_{U^2} \ge c\alpha^3$

Analysis
$$\exists heta \in [\mathsf{o}, \mathsf{1}] \; \mathsf{s.t.}$$
 $f(x)e(heta x)| \geq c lpha^6$

Discrete Fourier

$$||f||_{U^2} \ge c\alpha^3 \qquad |\sum f(x)e(\theta x)| \ge c\alpha^6 N$$

$$\exists P' \subseteq [N], |P'| \ge N^{1/3},$$
 s.t.

$$\sum_{\mathbf{x}\in P'}f(\mathbf{x})\geq \mathbf{c}\alpha^{6}|P'|$$

$$\alpha_{\max} \leq \frac{C}{(\log \log N)^{1/5}}$$

A trained eye would recognise that the U^2 -norm can be treated with Fourier Analysis. We first establish the basic tools required.

For function $f:G=\mathbb{Z}/N'\mathbb{Z} \to \mathbb{C}$, define its transform $\hat{f}:\mathbb{Z}/N'\mathbb{Z} \to \mathbb{C}$ as

$$\hat{f}(r) := \mathbb{E}_{\mathbf{x} \in G} f(\mathbf{x}) \exp\left(-2\pi i \frac{r\mathbf{x}}{N'}\right) \tag{8}$$

To simplify notation, we define $e(x) := \exp(2\pi i x)$, which has period 1. Then

$$\hat{f}(r) := \mathbb{E}_{x \in G} f(x) e(-\frac{rx}{N'}) \tag{9}$$

The elegance of the Fourier transform shows in the inverse transform:

$$f(x) = \sum_{r \in G} \hat{f}(r)e(\frac{rx}{N'}) \tag{10}$$

To see why this is true:

$$\sum_{r \in G} \hat{f}(r) e(\frac{rx}{N'}) = \sum_{r \in G} \mathbb{E}_{y \in G} f(y) e(-\frac{ry}{N'}) e(\frac{rx}{N'}) = \sum_{y \in G} f(y) \mathbb{E}_{r \in G} e(\frac{r(x-y)}{N'})$$

Neat trick to swap \sum with \mathbb{E} over the variables y and r.

The critical observation is

$$\mathbb{E}_{r \in G} e(\frac{r(x-y)}{N'}) = \{1 \text{ if } x = y, \text{ o if } x \neq y\} = \delta_{xy}$$

which we immediately apply to achieve

$$\sum_{r\in G} \hat{f}(r)e(\frac{rx}{N'}) = \sum_{y\in G} f(y)\mathbb{E}_{r\in G}e(\frac{r(x-y)}{N'}) = \sum_{y\in G} f(y)\delta_{xy} = f(x)$$

as desired. The fact that the inverse transform involves a summation (Σ) instead of an expected value (\mathbb{E}) is important.

Here are other facts required: Note that \mathbb{E} is applied to the original function while \sum is applied to the transform.

- 1. Define the norms $||f||_2 = (\mathbb{E}_{x \in G} |f(x)|^2)^{1/2}$ and $||\hat{f}||_2 = (\sum_{r \in G} |\hat{f}(r)|^2)^{1/2}$. Then $||f||_2 = ||\hat{f}||_2$. Again, we omit the proof of the norm-related properties.
- 2. Define the *convolution* of two functions as $f * g(x) := \mathbb{E}_{y \in G} f(y) g(x y)$. Then this operation is commutative, and $\widehat{(f * g)}(r) = \widehat{f}(r) \widehat{g}(r)$.
- 3. Define $\|\hat{f}\|_4 = (\sum_{r \in G} |\hat{f}(r)|^4)^{1/4}$. Then $\|f\|_{U^2} = \|\hat{f}\|_4$.

In particular, Statement 3 is relevant to interpreting the U^2 -norm.

We shall prove Statements 1, 2, and 3 in sequence. For Statement 1,

$$||f||_2^2 = \mathbb{E}_{\mathbf{x} \in G}|f(\mathbf{x})|^2 = \mathbb{E}_{\mathbf{x} \in G}f(\mathbf{x})\overline{f(\mathbf{x})} = \mathbb{E}_{\mathbf{x} \in G}\sum \hat{f}(r)e(\frac{r\mathbf{x}}{N'})\hat{f}(r')e(\frac{r'\mathbf{x}}{N'}) = \dots$$

Reshuffling,

$$\cdots = \sum_{r,r'\in G} \hat{f}(r)\overline{\hat{f}(r')}\mathbb{E}_{\mathbf{x}\in G}e(\frac{(r-r')\mathbf{x}}{\mathsf{N}'}) = \sum_{r,r'\in G} \hat{f}(r)\overline{\hat{f}(r')}\delta_{rr'} = \sum_{r\in G} |\hat{f}(r)|^2 = \|\hat{f}\|_2^2$$

For Statement 2.

$$\widehat{(f*g)}(r) = \mathbb{E}_{x \in G}(f*g)(x)e(-\frac{rx}{Nt}) = \mathbb{E}_{x,y \in G}f(y)g(x-y)e(-\frac{rx}{Nt}) = \dots$$

Reparameterising x as x' = x - y.

$$\cdots = \mathbb{E}_{x',y \in G} f(y) g(x') e(-\frac{r(y+x')}{N'}) = \mathbb{E}_{x',y \in G} f(x') e(-\frac{rx'}{N'}) f(y) e(-\frac{ry}{N'}) = \hat{f}(r) \hat{g}(r)$$

For Statement 3, we reparameterise the U^2 -norm:

$$\|f\|_{U^{2}}^{4} = \mathbb{E}_{x \in G} \mathbb{E}_{y,y' \in G} f(y) f(x-y) \overline{f(y') f(x-y')} = \mathbb{E}_{x \in G} (f*f)(x) \overline{(f*f)(x)} = \|f*f\|_{2}^{2}$$

We then apply Statements 1 and 2:

$$\|f*f\|_{2}^{2} = \|\widehat{f*f}\|_{2}^{2} = \sum_{r \in C} \widehat{(f*f)}(r) \overline{\widehat{(f*f)}(r)} = \sum_{r \in C} \widehat{f}(r)^{2} \overline{\widehat{f}(r)^{2}} = \sum_{r \in C} |\widehat{f}(r)|^{4} = \|\widehat{f}\|_{4}^{4}$$

Therefore $||f||_{L^2} = ||\hat{f}||_{\iota}$. \square

For Statement 3, we reparameterise the U^2 -norm:

$$\|f\|_{U^{2}}^{4} = \mathbb{E}_{x \in G} \mathbb{E}_{y,y' \in G} f(y) f(x-y) \overline{f(y') f(x-y')} = \mathbb{E}_{x \in G} (f * f)(x) \overline{(f * f)(x)} = \|f * f\|_{2}^{2}$$

We then apply Statements 1 and 2:

$$\|f*f\|_{2}^{2} = \|\widehat{f*f}\|_{2}^{2} = \sum_{r \in C} \widehat{(f*f)}(r) \overline{\widehat{(f*f)}(r)} = \sum_{r \in C} \widehat{f}(r)^{2} \overline{\widehat{f}(r)^{2}} = \sum_{r \in C} |\widehat{f}(r)|^{4} = \|\widehat{f}\|_{4}^{4}$$

Therefore $||f||_{L^2} = ||\hat{f}||_{\iota}$. \square

Linking back to the problem at hand: for $N \ge C\alpha^{-C}$, $\|\hat{f}\|_4 \ge c\alpha^3$.

Each $\hat{f}(r)$ represents the values of f weighted in a certain periodic fashion. Note that $f(x) = \{\alpha \text{ if } x \in A, \alpha - 1 \text{ if } x \notin [N] \setminus A, \text{ o otherwise}\}$. If $|\hat{f}(r)|$ is big for some $r \in G$, this could indicate an unequal density distribution related to some period.

In particular, we shall show that if function $f: G = \mathbb{Z}/N'\mathbb{Z}$ is 1-bounded and $\|\hat{f}\|_{L} > \delta$, then $|\hat{f}(r)| > \delta^2$ for some $r \in G$.

Since f is 1-bounded, thus $\|\hat{f}\|_2 = \|f\|_2 \le 1$.

Let $\|\hat{f}\|_{\infty} = \max_{r \in G} |\hat{f}(r)|$. Then

$$\delta^4 \leq \|\hat{f}\|_4^4 = \sum |\hat{f}(r)|^4 \leq \|\hat{f}\|_{\infty}^2 \sum |\hat{f}(r)|^2 = \|\hat{f}\|_{\infty}^2 \|\hat{f}\|_2^2 \leq \|\hat{f}\|_{\infty}^2$$

thus $\|\hat{f}\|_{\infty} > \delta^2$.

So for $N \ge C\alpha^{-c}$, there is some $r \in G$ such that $|\hat{f}(r)| \ge (c\alpha^3)^2 = c\alpha^6$.

Let $\theta := -\frac{r}{N'} \pmod{1}$. Then we may write

$$|\hat{f}(r)| = |\mathbb{E}_{\mathbf{x} \in G} f(\mathbf{x}) e(-\frac{r\mathbf{x}}{N'})| = \frac{1}{N'} |\sum_{\mathbf{x} \in [N]} f(\mathbf{x}) e(\theta \mathbf{x})|$$

and therefore (N' = 2N + 1)
$$|\sum_{x \in [N]} f(x)e(\theta x)| \ge c\alpha^6 N' \ge c\alpha^6 N$$

Density-Increment: $\alpha' = \alpha + c\alpha^6$

Indicator **Functions**

 $AP_3 := \mathbb{E}_{x d} q_1(x) q_2(x +$

 $d)a_3(x+2d)$

Indicator Cauchy-Schwarz D
Functions and
$$U^2$$
-norm $f := 1_A - \alpha 1_{[M]}$ $|AP_3(g_1, g_2, g_3)| \le ||g_i||_{U^2}$

Discrete Fourier Analysis

$$||f||_{U^2} \ge c\alpha^3$$
 $|\sum f(x)e(\theta x)| \ge c\alpha^6 N$

Circle Method $\exists \theta \in [0, 1] \text{ s.t.} \qquad \exists P' \subseteq [N], |P'| \geq N^{1/3},$ s.t.

Hardy-Littlewood

 $\sum_{\mathbf{x}\in\mathbf{P}'}f(\mathbf{x})\geq c\alpha^6|\mathbf{P}'|$

Note for any subset $S \subseteq [N]$, the value $\sum_{x \in S} f(x)$ tells us about the density of A in S. In particular, if $\sum_{x \in S} f(x) > 0$, then $|A \cap S| > \alpha |S|$, and vice versa.

We therefore wish to consider sub-APs $P \subseteq [N]$ of which for $x \in P$, the values of $e(\theta x)$ are nearly identical.

This is in fact true when the common difference d is such that $\|\theta d\|_{\mathbb{R}/\mathbb{Z}}$ is small, and the length of the sub-AP is not too large ($|P| \cdot \|\theta d\|_{\mathbb{R}/\mathbb{Z}}^2 \ll 1$).

We first show that we can pick d such that $\|\theta d\|_{\mathbb{R}/\mathbb{Z}}$ is small.

Let $\delta > 0$; then we can pick $d \in \{1, 2, ..., \lfloor 1/\delta \rfloor \}$ such that $\|\theta d\|_{\mathbb{R}/\mathbb{Z}} \leq \delta$.

To show this, apply Pigeonhole Principle to $0, \theta, 2\theta, \dots, \lfloor 1/\delta \rfloor \theta \pmod{1}$ on \mathbb{R}/\mathbb{Z} . There must be at least one pair $a\theta, b\theta$ of distance $\|a\theta - b\theta\|_{\mathbb{R}/\mathbb{Z}} \leq \delta$.

Set d = |a - b|; then $\|\theta d\|_{\mathbb{R}/\mathbb{Z}} \le \delta$ as desired.

Now we consider dividing [N] into sub-APs of common difference d.

There would be d sub-APs, each of length $\geq \lfloor N/d \rfloor \geq \lfloor \delta N \rfloor$.

We wish to further subdivide these APs such that the values of $e(\theta x)$ are nearly identical, so that

$$|\sum_{x \in P} f(x)e(\theta x)| \approx |\sum_{x \in P} f(x)|$$

to sufficient proximity.

Let $P = a_0 - \lfloor \frac{|P|}{2} \rfloor d, \ldots, a_0 - d, a_0, a_0 + d, \ldots, a_0 + (\lceil \frac{|P|}{2} \rceil - 1)d$. Then $|\sum_{x \in P} f(x)| = |\sum_{x \in P} f(x)e(\theta a_0)|$. So

$$\left|\sum_{\mathbf{x}\in P}f(\mathbf{x})e(\theta\mathbf{x})\right| = \left|\sum_{\mathbf{x}\in P}f(\mathbf{x})e(\theta a_{o}) + \sum_{\mathbf{x}\in P}f(\mathbf{x})(e(\theta\mathbf{x}) - e(\theta a_{o}))\right|$$

Let $\Delta_P = ||\sum_{x \in P} f(x)e(\theta x)| - |\sum_{x \in P} f(x)||$. By Triangle Inequality,

$$\Delta_P \leq \left| \sum_{\mathsf{x} \in P} f(\mathsf{x}) (e(\theta \mathsf{x}) - e(\theta a_\mathsf{o})) \right| \leq \sum_{\mathsf{x} \in P} |e(\theta \mathsf{x}) - e(\theta a_\mathsf{o})|$$

f is 1-bounded

We can evaluate and bound the RHS.

Note that
$$|e(x) - e(y)| = 2\sin(\pi ||x - y||_{\mathbb{R}/\mathbb{Z}}) \le 2\pi ||x - y||_{\mathbb{R}/\mathbb{Z}}$$
. Therefore

$$\sum_{\mathbf{x} \in P} |e(\theta \mathbf{x}) - e(\theta \mathbf{a}_{\mathsf{o}})| \leq 2\pi \sum_{\mathbf{x} \in P} \|\theta \mathbf{x} - \theta \mathbf{a}_{\mathsf{o}}\|_{\mathbb{R}/\mathbb{Z}} = 2\pi \sum_{\mathbf{y} \in O} \|\theta d\mathbf{y}\|_{\mathbb{R}/\mathbb{Z}}$$

where
$$Q = \lfloor \frac{|P|}{2} \rfloor, \ldots, -2, -1, 0, 1, 2, \ldots, \lceil \frac{|P|}{2} \rceil - 1$$
.

Since $\|\theta d\|_{\mathbb{R}/\mathbb{Z}} < \delta$, thus

$$2\pi \sum_{\mathbf{y} \in O} \|\theta d\mathbf{y}\|_{\mathbb{R}/\mathbb{Z}} \leq 2\pi \sum_{\mathbf{y} \in O} |\mathbf{y}| \cdot \|\theta d\|_{\mathbb{R}/\mathbb{Z}} \leq 2\pi \delta \sum_{\mathbf{y} \in O} |\mathbf{y}|^2 \leq 2\pi \delta \frac{|\mathbf{P}|^2}{4} = \frac{\pi}{2} \delta |\mathbf{P}|^2$$

and ultimately $\Delta_P \leq \frac{\pi}{2}\delta |P|^2$.

We now return to the problem at hand. We partition [N] into sub-APs P_1, P_2, \ldots, P_k , having common difference d; then for $N \ge C\alpha^{-c}$,

$$\frac{1/9800}{c\alpha^6N} \leq |\sum_{\mathbf{x} \in [N]} f(\mathbf{x}) e(\theta \mathbf{x})| \leq \sum_{j=1}^k |\sum_{\mathbf{x} \in P_j} f(\mathbf{x}) e(\theta \mathbf{x})| \leq \sum_{j=1}^k \left(|\sum_{\mathbf{x} \in P_j} f(\mathbf{x})| + \Delta_{P_j} \right)$$

Therefore

$$\sum_{j=1}^{k} |\sum_{x \in P_j} f(x)| \ge c\alpha^6 N - \sum_{j=1}^{k} \Delta_{P_j} \ge c\alpha^6 N - \sum_{j=1}^{k} \frac{\pi}{2} \delta |P_j|^2$$

1/1.54E6

We now carefully set our variables for success. Let $\delta = c\alpha^6 N^{-1/3}$ and d as defined previously.

Now [N] may be partitioned into d sub-APs, each of common difference d and length $\geq \lfloor \delta N \rfloor \geq \lfloor c\alpha^6 N^{2/3} \rfloor$. Taking away $\lceil N^{1/3} \rceil$ at a time, the only cases left to consider is when $\lfloor N^{1/3} \rfloor$ or $\lfloor N^{1/3} \rfloor - 1$ remains. Since $\lfloor c\alpha^6 N^{2/3} \rfloor \geq 2\lceil N^{1/3} \rceil$, thus the APs may be chopped finer into sub-APs of length $\geq N^{1/3}$ and $\leq 2N^{1/3}$. Since $N^{1/3} \geq 2$, we may split the remainder true if $N \geq (3E19)\alpha^{-18}$ between two of the $\lceil N^{1/3} \rceil$ blocks.

Linking back,

$$\sum_{j=1}^{k} \frac{\pi}{2} \delta |P_{j}|^{2} \leq \sum_{j=1}^{k} \frac{1/1.54E6}{2} (c\alpha^{6}N^{-1/3})(2N^{1/3})|P_{j}| = c\alpha^{6} \sum_{j=1}^{k} |P_{j}| = c\alpha^{6}N$$

Therefore

$$\sum_{i=1}^{k} |\sum_{x \in P} \frac{1/9800}{f(x)}| \ge c\alpha^{6}N - c\alpha^{6}N = c\alpha^{6}N$$

Finally, we apply the fact that f is balanced:

$$\sum_{j=1}^k \sum_{\mathbf{x} \in P_j} f(\mathbf{x}) = \sum_{\mathbf{x} \in [N]} f(\mathbf{x}) = 0$$

to get

$$\sum_{i=1}^k \left(|\sum_{\mathbf{x} \in P_i} f(\mathbf{x})| + \sum_{\mathbf{x} \in P_i} f(\mathbf{x}) \right) \frac{1/1E4}{\geq c\alpha^6 N} \frac{1/1E4}{\leq c\alpha^6} \frac{k}{\sum_{j=1}^k |P_j|}$$

Ultimately, there is some $j \in \{1, 2, \dots, k\}$ such that

$$\sum_{\mathbf{x}\in P_j} f(\mathbf{x}) \geq \frac{1}{2} c\alpha^6 |P_j| = c\alpha^6 |P_j|$$

Now P_i has length $> N^{1/3}$, and $|A \cap P_i| \ge (\alpha + c\alpha^6)|P_i|$.

3*E*19 18

This proves the Density-Increment under the condition $N > C\alpha^{-c}$.

Proof Summary

Density-Increment: $\alpha' = \alpha + c\alpha^6$

Indicator **Functions** Cauchy-Schwarz and U²-norm

Discrete Fourier Analysis $\exists \theta \in [\mathsf{O},\mathsf{1}] \text{ s.t.}$

Hardy-Littlewood Circle Method $\exists P' \subseteq [N], |P'| \geq N^{1/3},$

 $f := \mathbf{1}_{\mathsf{A}} - \alpha \mathbf{1}_{\mathsf{INI}}$ $AP_3 := \mathbb{E}_{x d} q_1(x) q_2(x +$

 $|AP_3(g_1,g_2,g_3)| \leq ||g_i||_{U^2}$ $||f||_{U^2} \ge c\alpha^3$ $|\sum f(x)e(\theta x)| \ge c\alpha^6 N$

s.t. $\sum_{\mathbf{x}\in \mathbf{P}'} f(\mathbf{x}) \geq c\alpha^6 |\mathbf{P}'|$

 $d)a_3(x+2d)$

Alternative Approaches

Apart from the approach detailed in these slides (Probabilistic Method + Fourier Analysis), it is worth exploring others:

- (Hales-Jewett) In a $3 \times 3 \times \cdots \times 3$ hypercube with $\alpha 3^n$ selected cells, there is a combinatorial line of n selected cells. (Ergodic Theory)
- (Corners) In an $N \times N$ grid of αN^2 selected cells, there is a "corner" triplet $\{(x,y),(x+h,y),(x,y+h)\}$. (Graph Theory)

Extensions

- (Szemeredi) Consider k-term APs.
- Consider multidimensional APs.
- (Leibman, Bergelson) Consider polynomial progressions.
- (Erdös) Strengthen the density condition to large sets, $\sum \frac{1}{a_i} \to +\infty$.