Essentials of Analytical Geometry and Linear Algebra. Lecture 3.

Vladimir Ivanov

Innopolis University

September 18, 2020

End of Lecture #2

Review. Lecture 2

- Part 1. The Dot Product and its properties
 - Norm of a vector
 - Cauchy-Schwarz inequality
 - Triangle Inequality
- Part 2. Vector Cross Product
- Part 3. Matrices (2x2, 3x3).

Quiz in class

Go to http://b.socrative.com

Type Room: LINAL

Answer questions.

Lecture 3. Outline

- Part 1 (recap). Matrices. Transpose, Addition, Scalar multiplication
- Part 2. Matrix multiplication
- Part 3. Determinants. Scalar Triple Product
- Part 4. Change of basis and coordinates

Hey, Professor, there is a truck behind you!

Part 1. Matrices

Definition

Matrix A is a rectangular table of numbers with m rows and n columns.

Example of a
$$3 \times 3$$
 matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Example of a 2×3 matrix

$$\mathsf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Different kinds of matrices

A is a $m \times n$ matrix

- \bigcirc Square (m=n)
- \bigcirc Rectangular matrix $(m \neq n)$
- \bigcirc Symmetric matrix $(A^{\top} = A)$
- (Upper) Triangular matrix ($\forall i, j$, such that i > j: $a_{i,j} = 0$)
- O Diagonal matrix $(\forall i, j, \text{ such that } i \neq j : a_{i,j} = 0)$
- \bigcirc Identity matrix (IA = AI = A)
- \bigcirc Zero matrix (0 + A = A)

Examples

(1) Square matrix: (#rows = #columns) (9) Column matrix (
$$n$$
 - vector)

Main lagonat

(8) Row matrix (n - vector):

[1 7 -3] is a 3 - vector

(2) Upper triangular matrix:

(3) Lower triangular matrix:

[3 -1 -3]

(4 7)

(5) Diagonal matrix:

[3 0 0]

(6) Identity matrix:

(7) Zero matrix:

 $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (7) Zero matrix:

 $I_{2s2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $I_{2s3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Source: https://medium.com/@nithishraghav/linear-algebra-for-aspiring-data-scientists-part-i-37a9b63c031f

Operations. Transpose a matrix

Transpose of matrix

If A is an $m \times n$ matrix, the *transpose* A^T is an $n \times m$ matrix defined by $(A^T)_{ij} = A_{ji}$.

$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}^{\top} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\forall A, (A^{\top})^{\top} = A$$

Operations. Addition, multiplication by a scalar

Element-wise addition:

$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} + \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix} = \begin{bmatrix} 1+a & 4+d \\ 2+b & 5+e \\ 3+c & 6+f \end{bmatrix}$$

Properties. A, B, C are matrices of the same size (!)

- \bigcirc A + B = B + A (commutative)
- \bigcirc A + (B + C) = (A + B) + C (associative)
- \bigcirc $B = \lambda A, \lambda \in \mathbb{R}$ (multiplication by a scalar λ , element-wise)

$$B = \lambda A, \quad \forall 1 \le i \le m; 1 \le j \le n : b_{ij} = \lambda a_{ij}$$

Trace of a matrix

Definition of trace of a square matrix A

$$Tr(A) = \sum_{i=1}^{m} a_{ii}$$

$$Tr(A+B) = Tr(A) + Tr(B)$$

$$\forall \lambda \in \mathbb{R}, \quad Tr(\lambda A) = \lambda Tr(A)$$

Linearity of the trace operator means

$$Tr(\alpha A + \beta B) = \alpha Tr(A) + \beta Tr(B)$$

Part 2. Matrix multiplication

Definition

Definition

Let

A be $m \times n$ matrix;

B be $n \times p$ matrix

Then exists C = AB,

C must be $m \times p$ matrix

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj},$$

for i = 1, ..., m and j = 1, ..., p

Most important!

Before you multiply two matrices A and B. A is $m \times n$ matrix; B is $k \times p$ matrix

Commit into your memory: matrix multiplication is not commutative.
 So, in general:

$$AB \neq BA$$

Most important!

Before you multiply two matrices A and B. A is $m \times n$ matrix; B is $k \times p$ matrix

Commit into your memory: matrix multiplication is not commutative.
 So, in general:

$$AB \neq BA$$

- Check sizes of the two matrices:
 - if you multiply AB $(m \times n)(k \times p)$, then check that n = k

Most important!

Before you multiply two matrices A and B. A is $m \times n$ matrix; B is $k \times p$ matrix

Commit into your memory: matrix multiplication is not commutative.
 So, in general:

$$AB \neq BA$$

- Check sizes of the two matrices:
 - if you multiply AB $(m \times n)(k \times p)$, then check that n = k
- Calculate the size of the result:
 - if you multiply AB $(m \times n)(k \times p)$, then the result is a $m \times p$ matrix.

Illustration

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix} \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 \\ c_4 & c_5 & c_6 \\ c_7 & c_8 & c_9 \end{bmatrix}$$

Python Code

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} =$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$AB = \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ 3 & 4 \end{bmatrix} \begin{bmatrix} \mathbf{a} & b \\ \mathbf{c} & d \end{bmatrix} = \begin{bmatrix} 1a + 2c & * \\ * & * \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$AB = \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & \mathbf{b} \\ c & \mathbf{d} \end{bmatrix} = \begin{bmatrix} 1a + 2c & 1b + 2d \\ * & * \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 2 \\ \mathbf{3} & \mathbf{4} \end{bmatrix} \begin{bmatrix} \mathbf{a} & b \\ \mathbf{c} & d \end{bmatrix} = \begin{bmatrix} 1a + 2c & 1b + 2d \\ 3a + 4c & * \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 2 \\ \mathbf{3} & \mathbf{4} \end{bmatrix} \begin{bmatrix} a & \mathbf{b} \\ c & \mathbf{d} \end{bmatrix} = \begin{bmatrix} 1a + 2c & 1b + 2d \\ 3a + 4c & 3b + 4d \end{bmatrix}$$

Your turn!

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$BA = ?$$

Your turn!

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$BA = ?$$

True or False?

$$AB = BA$$
?

Your turn!

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$BA = ?$$

True or False?

$$AB = BA$$
?

$$(AB)C = A(BC) = ABC$$
?

Exercise

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 6 \end{bmatrix}, B = \begin{bmatrix} x & u & a \\ y & v & b \\ z & w & c \end{bmatrix}$$
$$AB = ?$$

- row-oriented view
- column-oriented view
- layer-oriented view

row-oriented view

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} a & b \end{bmatrix} + 2 \begin{bmatrix} c & d \end{bmatrix} \\ 3 \begin{bmatrix} a & b \end{bmatrix} + 4 \begin{bmatrix} c & d \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1a & 1b \end{bmatrix} + \begin{bmatrix} 2c & 2d \end{bmatrix} \\ \begin{bmatrix} 3a & 3b \end{bmatrix} + \begin{bmatrix} 4c & 4d \end{bmatrix} \end{bmatrix}$$

Here result is still a 2×2 matrix.

It has two rows, but each row is a 1×2 vector (!)

column-oriented view

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a \begin{bmatrix} 1 \\ 3 \end{bmatrix} + c \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \quad b \begin{bmatrix} 1 \\ 3 \end{bmatrix} + d \begin{bmatrix} 2 \\ 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1a \\ 3a \end{bmatrix} + \begin{bmatrix} 2c \\ 4c \end{bmatrix}, \quad \begin{bmatrix} 1b \\ 3b \end{bmatrix} + \begin{bmatrix} 2d \\ 4d \end{bmatrix} \end{bmatrix}$$

Here result is still a 2×2 matrix.

It has two columns, but each column is a 2×1 vector (!)

layer-oriented view

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1a & 1b \\ 3a & 3b \end{bmatrix} + \begin{bmatrix} 2c & 2d \\ 4c & 4d \end{bmatrix} = \begin{bmatrix} 1a+2c & 1b+2d \\ 3a+4c & 3b+4d \end{bmatrix}$$

Here result is still a 2×2 matrix. It is represented as a sum of 'simpler' matrices.

AB =

Assignment

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 2 & 1 & 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}$$

Order of operations

$$(ABCD)^{\top} = D^{\top}C^{\top}B^{\top}A^{\top}$$

Very special and important case

Matrix - vector multiplication

 $A\mathbf{x}$

 $\mathbf{x}^{\top}A$

Matrix - vector multiplication

Result is always a vector!

 $A\mathbf{x}$

$$(m \times n)(n \times 1) \rightarrow (m \times 1)$$
 is a column-vector

$$\mathbf{x}^{\top} A$$

$$(1 \times m)(m \times n) \rightarrow (1 \times n)$$
 is a row-vector

So, we can see that matrix multiplication transforms vectors. Matrix A is a linear map.

Matrix as a linear transformation

Again, it is important! Matrix *A* is a linear map.

Vector \mathbf{x} was a $(n \times 1)$ column-vector

 $A\mathbf{x}$

$$(m \times n)(n \times 1) \rightarrow (m \times 1)$$
 column-vector

Result is $(m \times 1)$ column-vector

A maps vectors in \mathbb{R}^n to vectors in \mathbb{R}^m

Examples of transformations. Rotation

Rotation matrix

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

A rotates any vector $\mathbf{x} = [x_1, x_2]^{\mathsf{T}}$ by an angle θ counter-clockwise!

$$A\mathbf{x} = \begin{bmatrix} x_1 \cos(\theta) - x_2 \sin(\theta) \\ x_1 \sin(\theta) + x_2 \cos(\theta) \end{bmatrix}$$

Demo in Geogebra

Coding

Here we run some code in Colab.

https://colab.research.google.com/drive/

 $1 \\ K f v 4 2 5 3 b 5 dua P - K j Q T k 4 A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X \# s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X M s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X M s croll To = R N d M s t v G E U f O R A i 19 r j R 4 5 p C X M s croll To = R N d M s t v G E U f O R A i 19 r j R A i 1$

A very interesting case

What if multiplication Aw work as follows?

$$A\mathbf{w} = \lambda \mathbf{w}, \quad \lambda \in \mathbb{R}$$

Example

$$\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix} = \mathbf{4} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Interesting indeed!

 λ is called eigenvalue \mathbf{w} is called eigenvector

Break, 5 min.

Part 3. Determinants

Determinant. Concept and application

Notation

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \text{ is a } 2 \times 2 \text{ determinant,}$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \text{ is a } 3 \times 3 \text{ determinant}$$

- Determinant is a **single** number $det(A) \in \mathbb{R}$
- Defined only for square matrices!
- det(A)=0 if A contains linearly dependent columns. Matrix in this case is called singular.

Determinant. Concept and applications

Applications

- Calculating Area/Volume of shape specified by coordinates in matrix
- Finding matrix inverse (later in this course).

2x2 Determinant

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

What if we swap rows of the matrix?

$$\begin{vmatrix} a & a\beta \\ b & b\beta \end{vmatrix} = 1$$

Examples

$$\begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = ?$$

$$\begin{vmatrix} -1 & 2 \\ 4 & -5 \end{vmatrix} = ?$$

Examples

$$\begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = ?$$

$$\begin{vmatrix} -1 & 2 \\ 4 & -5 \end{vmatrix} = ?$$
What λ makes the following determinant zero?
$$\begin{vmatrix} 1 & 2 \\ 4 & \lambda \end{vmatrix} = ?$$

$$\begin{vmatrix} 5-\lambda & -1/3 \\ 2 & 1 \end{vmatrix} = ?$$

3x3 Determinant

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - ceg - afh - bdi$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$

$$= aei + bfg + cdh - ceg - afh - bdi$$
Source:

http://thejuniverse.org/PUBLIC/LinearAlgebra/LOLA/detDef/special.html

Examples

$$\begin{vmatrix} 1 & 1 & 2 \\ 2 & 2 & 1 \\ 4 & 3 & 0 \end{vmatrix} = ?$$

Yes, there exists one single general super formula for calculation of $\det(A)$ for arbitrary square matrix A.

https://en.wikipedia.org/wiki/Determinant

Meaning of the Determinant. Area of a parallelogram

Meaning of the Determinant. Volume of parallelepiped

Scalar Triple Product

Scalar Triple Product. Definition

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

Meaning: $V = \|a \times b\|(\|c\||\cos(\phi)|)$ = Area of base * Height

Check the following properties

$$o det(A) = det(A^{\top})$$

Break, 5 min.

Part 4. Changing Basis and Coordinates

Theory and derivation

We are going to derive a formula for changing basis Check the following material in moodle **before** the lecture, please!

Matrices. Changing of Basis and Coordinates 🖋

Lecture 3. Part 4 🧳

Examples for changing basis

Homework assignment

Prove

$$Tr(BC) = Tr(CB)$$

•••

End of Lecture #3

Useful links

- https://www.geogebra.org
- https://youtu.be/fNk_zzaMoSs
- http://immersivemath.com/ila