Αλγόριθμοι και Πολυπλοκότητα Ιούλιος 2007

1.(12) Τοποθετήστε τις παρακάτω συναρτήσεις σε ένα νέο πίνακα έτσι ώστε: δυο συναρτήσεις f(n), g(n) να βρίσκονται στην ίδια γραμμή αν και μόνο αν $f(n) = \Theta(g(n))$ και μια συνάρτηση f(n) να βρίσκεται κάτω από μια συνάρτηση g(n) αν και μόνο αν f(n) = o(g(n))

$\frac{n}{\log n} + \log^3 n^2$	$3^{\log n}$	$\frac{n^{\sqrt{n}}}{200}$	$\frac{n^n}{6^n+1}$	300(n-1)!	$n\log_2\sqrt{n}$	$n\log^2 n$	n ^{log n}
$0.3\log n + \frac{\log 8n}{n}$	$\frac{1}{6}\log^8 n^n$	$6^{\sqrt{n}}$	$\left(\frac{n}{6}\right)^{\frac{n}{8}}$	$\frac{n!}{600}$		log(n!)	2 ⁿ

2.(16) Χαρακτηρίστε τις επόμενες προτάσεις ως αληθείς, ψευδής ή ανοικτά προβλήματα. Κάθε λάθος απάντηση μειώνει κατά μια μονάδα την βαθμολογία(με εξήγηση).

Το πρόβλημα primarily ανήκει στην κλάση NP
Υπάρχει πλήρες πρόβλημα για την κλάση P το οποίο ανήκει στην κλάση NP
Για το πρόβλημα διάσχισης γράφων δεν έχει βρεθεί μέχρι στιγμής πολυωνυμικός αλγόριθμος ως προς το πλήθος των κόμβων
Αν το συμπλήρωμα ενός συνόλου S είναι αποκρίσιμο τότε το σύνολο S είναι καταγράψιμο.
Κάθε(όχι απαραιτήτως γνήσια) φθίνουσα ακολουθία ακεραίων είναι σωρός.
Υπάρχει πρόβλημα το οποίο λύνεται σε $O(n^3)$ βήματα και το οποίο ανάγεται σε πρόβλημα 3SAT.

Ο αλγόριθμος στοιχεία.	hipsort	χρειάζεται	Ω(n)	βήματα	για να	διατάξει	οποιαδήποτε
Ο αλγόριθμος τουλάχιστον εκ		· · ·	εί δι	ναμικό	προγρ	αμματισμό	χρειάζεται

3.(10) Δ ίνονται δυο πολυώνυμα A(x) και B(x) βαθμού η το πολύ και θέλουμε να βρούμε το γινόμενο τους C(x).

α. Ποια είναι η πολυπλοκότητα του προφανούς αλγόριθμου;

β. Δώστε ένα αλγόριθμο «Διαίρει και κυρίευε» πολυπλοκότητας $O(n^{\log_2 3})$. Αποδείξτε την ορθότητα του.

4.(10) Για το παρακάτω γράφημα να βρείτε τις ελάχιστες αποστάσεις από την κορυφή 1 προς όλες τις άλλες κορυφές χρησιμοποιώντας τον αλγόριθμο του Dijkstra.

6.(10) Να βρεθεί αποδοτικός Αλγόριθμος που βρίσκει διάμετρο ενός δένδρου (μονοπάτι με μέγιστη απόσταση). Υπόδειξη: Αποδείξτε ότι για οποιοδήποτε κόμβο ν ενός γράφου, ο w με την μέγιστη απόσταση από τον ν είναι άκρο διαμέτρου.

7.(10) Δίνεται ένας μη κατευθυνόμενος γράφος G = (V, E) με μη αρνητικά βάρη στις ακμές του $w(e) \ge 0$ στον οποίο έχουμε υπολογίσει ένα ελάχιστο συνεκτικό δέντρο(minimum spanning tree) και τα συντομότερα μονοπάτια από έναν συγκεκριμένο κόμβο $s \in V$ προς όλους τους κόμβους.

Έστω ότι αυξάνουμε το βάρος κάθε ακμής κατά ένα. Τα νέα βάρη είναι w'(e) = w(e) + 1.

- α. Αλλάζει το ελάχιστο συνεκτικό δέντρο; Δώστε ένα παράδειγμα στο οποίο αλλάζει ή αποδείξτε ότι δεν αλλάζει.
- β. Αλλάζουν τα συντομότερα μονοπάτια? Δώστε ένα παράδειγμα στο οποίο αλλάζουν ή αποδείξτε ότι δεν αλλάζουν.