CS 330: Network Applications & Protocols

Application Layer: FTP, SMTP, DNS

Galin Zhelezov
Department of Physical Sciences
York College of Pennsylvania

Overview of Application Layer

- Network Application Architectures
- HyperText Transfer Protocol (HTTP)
- File Transfer and Email protocols (FTP, SMTP)
 - FTP
 - SMTP, POP3, IMAP
- Domain Name System (DNS)
- Peer-to-Peer Applications (P2P)

FTP: File Transfer Protocol

- Used to transfer files to/from a remote host
- Client/server model
 - Client: side that initiates transfer (either to/from remote)
 - Server: remote host
- ftp: RFC 959
- ftp server: port 21

FTP: Separate Control / Data Connections

- FTP client contacts FTP server on port 21, using TCP
- Uses two parallel TCP connections:
 Control and Data
- Client authorized over control connection
- Client browses remote directory, sends commands over control connection
- Control connection is persistent
- FTP server maintains "state": (i.e. current directory, authentication information)

- When server receives file transfer command, server opens 2nd TCP data connection (for file) to client
- After transferring one file, server closes data connection
 - A separate TCP data connection is opened for each transferred file

FTP Commands / Responses

Commands are sent as plain ASCII text over the control channel

USER username : sends username to server

PASS password : sends password to server in plain text!!

: returns a list of files in current directory

RETR filename : retrieves (gets) file

STOR filename : stores (puts) file onto remote host

FTP server responds with status codes on the control channel

331 Username OK, password required

125 data connection already open; transfer starting

425 Can't open data connection

452 Error writing file

Electronic Mail

Three major components:

- User agents
- Mail servers
- Simple mail transfer protocol: SMTP

User Agent

- Composing, editing, reading mail messages
- e.g. Outlook, Thunderbird, iPhone mail client
- Outgoing, incoming messages stored on server

Electronic Mail: Mail Servers

Mail servers:

- Mailbox contains incoming messages for user
- Message queue of outgoing (to be sent) mail messages
- Uses SMTP protocol between mail servers to send email messages
 - Client: sending mail server
 - "Server": receiving mail server

Electronic Mail: SMTP

- Uses TCP to reliably transfer email message from client to server on port 25
- Direct transfer: sending server to receiving server
- Three phases of transfer
 - Handshaking (greeting)
 - Transfer of messages
 - Closure
- Command/response interaction (like HTTP, FTP)
 - Commands are in ASCII text
 - Server responds with status code and phrase
- Messages must be in 7-bit ASCII
 - All binary objects (i.e. attachments MUST be converted to ASCII to send)

Scenario: Alice Sends Message to Bob

- (1) Alice uses her mail client to compose message "to" bob@someschool.edu
- (2) Alice's mail client sends her message to her mail server; the message is placed in a message queue
- (3) Client side of SMTP opens TCP connection with Bob's mail server

- (4) SMTP client sends Alice's message over the TCP connection
- (5) Bob's mail server places the message in Bob's mailbox
- (6) Bob invokes his mail client to read message

Sample SMTP Interaction

```
C: telnet smtp.fakeplace.edu 25
S: 220 fakeplace.edu
C: HELO ycp.edu
S: 250 Hello ycp.edu, pleased to meet you
C: MAIL FROM: alice@ycp.edu
S: 250 <u>alice@ycp.edu</u>... Sender ok
C: RCPT TO: bob@fakeplace.edu
S: 250 bob@fakeplace.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: This is a test email.
   More testing.
S: 250 Message accepted for delivery
C: QUIT
S: 221 fakeplace.edu closing connection
```

SMTP: Final Words

- SMTP uses persistent connections
- SMTP requires message (header & body) to be in 7-bit ASCII
- SMTP server uses CRLF. CRLF to determine end of message
- Comparison with HTTP:

HTTP	SMTP
Persistent/Non-persistent connections	Persistent connections
Pulls data from server	Pushes data to server
Accepts binary objects	Accepts only 7-bit ASCII
Each object in its own response msg	Multiple objects sent in multipart msg

Mail Message Format

SMTP: protocol for exchanging email msgs

• RFC 822: standard for text
message format:

- Header lines, e.g.
To:
From:
Subject:
- Different from SMTP 'MAIL
FROM', 'RCPT TO' commands!

• Body: the "message"
- ASCII characters only

Mail Access Protocols

- SMTP used for delivery/storage of message to receiver's mail server
- Mail access protocols used to retrieve messages from mail server
 - POP: Post Office Protocol [RFC 1939]: authorization, download
 - IMAP: Internet Mail Access Protocol [RFC 1730]: more features, including manipulation of stored msgs on server
 - HTTP: gmail, Hotmail, Yahoo! Mail, etc.

POP3 Protocol

```
    Authorization phase

                                                S: +OK POP3 server ready
  - Client commands:
                                                C: user bob
      user: declare username
                                                C: pass hungry
      pass: password
                                                S: +OK user successfully logged on
  - Server responses
      +OK
                                                S: 2 912
      -ERR
                                                C: retr 1

    Transaction phase

                                                S: <message 1 contents>
  - Client commands:
                                                C: dele 1
      list : list message numbers
                                                C: retr 2
      retr: retrieve message by
                                                S: <message 1 contents>
      number
                                                C: dele 2
      dele: delete message
      quit
                                                S: +OK POP3 server signing off
```

IMAP

- Internet Mail Access Protocol
- More sophisticated than POP3 (POP3 is stateless across sessions)
- Allows user to organize messages in folders
- Messages can be moved from one folder to another
- Users can get only headers or other components of the message

Overview of Application Layer

- Network Application Architectures
- HyperText Transfer Protocol (HTTP)
- File Transfer and Email protocols (FTP, SMTP)
- Domain Name System (DNS)
 - Function
 - Distributed Structure
 - DNS Caching
 - DNS Records
 - DNS Vulnerabilities
- Peer-to-Peer Applications (P2P)

DNS: Domain Name System

- DNS servers translate a host name to IP address
 - e.g. www.ycp.edu → 54.210.214.116
 - Would be painful to browse Internet and remember IP addresses
- Hosts and name servers communicate to resolve names
 - address → name translation
- Distributed database of all hosts in the universe
 - Avoids single point of failure
 - Distributes name resolution traffic
 - Geographically distributed
 - Easier to maintain
- Often used by other application-layer protocols (e.g. SMTP, HTTP, FTP) to translate hostnames to IP addresses

Other Services Provided By DNS

Host aliasing

- Provides canonical name when alias name is provided
- www.gmail.com → googlemail.l.google.com

Mail server aliasing

Load distribution

- Why not centralize DNS?
- Replicated web servers, many IP addresses correspond to one name

DNS Example

- Nslookup -type=a yahoo.com
- Nslookup -type=ns yahoo.com
- Nslookup -query=mx yahoo.com
- Nslookup -type=any yahoo.com

DNS: A Distributed, Hierarchical Database

Client wants IP for www.amazon.com

- Client queries root server to find com DNS server
- Client queries .com DNS server to get amazon.com DNS server
- Client queries amazon.com DNS server to get IP address for www.amazon.com

Root DNS Servers

- Contacted by local name server that can not resolve name
- Root name server:
 - Contacts authoritative name server if name mapping not known
 - Gets mapping
 - Returns mapping to local name server

Top-Level Domain & Authoritative DNS servers

Top-Level Domain (TLD) Servers

- Responsible for com, org, net, edu, aero, jobs, museums, and all toplevel country domains (e.g. uk, fr, ca, jp)
- Verisign maintains servers for .com TLD (and many others)
- Educause maintains servers for .edu TLD

Authoritative DNS Servers

- Organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- Can be maintained by organization or service provider

Local DNS Name Server

- Does not strictly belong to the DNS hierarchy
- Each ISP (residential ISP, company, university) has one
 - Also called "default name server"
- When host makes DNS query, query is sent to its local DNS server
 - Has local cache of recent name-to-address translation pairs (but may be out of date!)
 - Acts as proxy, forwards query into hierarchy

DNS Name Resolution Example

- Host at cs.ycp.edu wants IP address for www.amazon.com
- Iterated query:
 - Contacted server replies with name/address of server to contact
 - "I don't know this name, but ask this server"

DNS Caching / Updating Records

- Once (any) name server learns mapping, it caches mapping
 - Cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - Thus root name servers not often visited
- Cached entries may be out-of-date (best effort name-to-address translation!)
 - If a named host changes its IP address, may not be known Internetwide until all TTLs expire

DNS Records

Resource Record (RR) format stored by DNS servers

```
-RR: (name, value, type, ttl)
```

Four different RR types

Type=A

name is hostname

value is IP address

Type=NS

name is domain (e.g. foo.com)

value is hostname of authoritative
name server for this domain

Type=CNAME

name is alias name for some
"canonical" (the real) name

www.ibm.com is really
servereast.backup2.ibm.com

value is canonical name

Type=MX

value is name of mail server
associated with name

DNS Message Format

- Query and Reply messages, both use same message format
 - Message Header
 - Identification: 16 bit # for query, reply includes same #
 - Flags:
 - Query or reply
 - Recursion desired
 - Recursion available
 - Reply is authoritative
 - Question section: contains name and type fields for the query
 - Answer section: contains RRs in response to a query
 - Authority section: contains RR for authoritative servers

	015	
Identification	Flags	
# Questions	# Answer RRs	
# Authority RRs	# Additional RRs	
Questions (variable # of questions)		
Answers (variable # of answers)		
Authority (variable # of RRs)		
Additional Info (variable # of RRs)		

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server:
 (networkutopia.com, dns1.networkutopia.com, NS)
 (dns1.networkutopia.com, 212.212.212.1, A)
- create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com

DNS Vulnerabilities

- Distributed Denial of service attacks on name server
 - Bombard root servers with traffic
 - Not successful to date
 - Root servers are protected by traffic filters
 - Local DNS servers cache IP addresses of TLD servers, allowing root server bypass
 - Bombard TLD servers
 - Potentially more dangerous
- Redirect attacks
 - Man-in-middle
 - Intercept queries and return bogus replies
 - DNS poisoning
 - Send bogus replies to DNS server which then caches that info