

Введение в Машинное обучение

Приложения на основе машинного обучения

Business/ML Problem

Description

Ranking

Помощь пользователям в поиске наиболее релевантной вещи

Recommendation

Предоставление пользователям то, что они могут быть наиболее заинтересованы в

Classification

Выяснение того, что что-то такое

Regression

Прогнозирование численного значения

Clustering

Сгруппировав похожие объекты вместе

Anomaly Detection

Поиск необычных вещей

Business/ML Problem

Description

Ranking

Помощь пользователям в поиске наиболее релевантной вещи

Recommendation

Предоставление пользователям того, в чем они могут быть наиболее заинтересованы

Classification

Выяснение того, что что-то такое

Regression

Прогнозирование численного значения вещи

Clustering

Сгруппировав похожие объекты вместе

Anomaly Detection

Поиск необычных вещей

Example

Ends in 03:25:54

\$8.99 - \$37.49

Amazon's Choice

Panasonic RP-HJE120-PPK In-Ear Stereo Earphoi by Panasonic

\$818 prime | FREE One-Day Get it by Tomorrow, Apr 24 FREE One-Day Shipping on qualifying orders over \$35

\$7.99 (37 new offers)

See newer model of this item

Business/ML Problem

Description

Ranking

Помощь пользователям в поиске наиболее релевантной вещи

Recommendation

Предоставление пользователям того, в чем они могут быть наиболее заинтересованы

Classification

Выяснение того, что что-то такое

Regression

Прогнозирование численного значения

Clustering

Сгруппировав похожие объекты вместе

Anomaly Detection

Поиск необычных вещей

Example

Product classification for our catalog

High-Low Dress

Straight Dress

Striped Skirt

Graphic Shirt

Business/ML Problem Description Помощь пользователям в поиске наиболее Ranking релевантной вещи Предоставление пользователям того, в чем они могут быть наиболее заинтересованы Recommendation Выяснение того, что что-то такое Classification Прогнозирование численного значения Regression Сгруппировав похожие объекты вместе Clustering Поиск необычных вещей **Anomaly Detection**

Business/ML Problem Description Помощь пользователям в поиске наиболее Ranking релевантной вещи Предоставление пользователям того, в чем они могут быть наиболее заинтересованы Recommendation Выяснение того, что что-то такое Classification Прогнозирование численного значения Regression Сгруппировав похожие объекты вместе Clustering Поиск необычных вещей **Anomaly Detection**

Business/ML Problem
Ranking

Description

Помощь пользователям в поиске наиболее релевантной вещи

Recommendation

Предоставление пользователям то, что они могут быть наиболее заинтересованы в

Classification

Выяснение того, что что-то такое

Regression

Прогнозирование численного значения вещи

Clustering

Сгруппировав похожие объекты вместе

Anomaly Detection

Поиск необычных вещей

Что такое машинное обучение?

What is Data Science?

Wikipedia describes Data Science as:

"междисциплинарная область, которая использует научные методы, процессы, алгоритмы и системы для извлечения знаний и информации из структурированных и неструктурированных данных."

https://en.wikipedia.org/wiki/Data_science

What is Machine Learning?

"Машинное обучение (ML) - это основная ветвь искусственного интеллекта, цель которой - дать компьютерам возможность учиться без явного программирования."

Arthur Samuel (1959) – Computer Scientist

Why ML? Why now?

- Data
 - большие объемы данных, легко производить, собирать и хранить
- Compute
 - мощные вычислительные единицы, аппаратное ускорение, параллелизация вычислений
- Algorithms
 - Рамки ML, библиотеки, улучшенные и более эффективные методы

Machine Learning Lifecycle

Некоторые важные понятия ML

ML	Statistics/Math/other	Simply Put	
Label/Target/y	Dependent/Response/Output Variable	То, что вы пытаетесь предсказать	
Feature/x	Independent/Explanatory/Input Variable	Данные, которые помогут вам делать прогнозы	
Feature Engineering	Transformation	Изменение данных, чтобы получить больше значения	
1d, 2d, nd	Dimensionality	Количество функций	
Model Parameters	Weights	Набор чисел, встроенных в модель, который может предсказывать метки	
Model Training	Optimization	Поиск «лучшего» набора параметров модели	

Контролируемое и неконтролируемое обучение

Supervised vs. Unsupervised Learning

Business/ML Problem Description Помощь пользователям в поиске наиболее Ranking релевантной вещи Supervised Learning Предоставление пользователям то, что они Recommendation могут быть наиболее заинтересованы в Classification Выяснение того, что что-то такое Regression Прогнозирование численного значения вещи Unsupervised Clustering Сложив подобные вещи вместе Learning **Anomaly Detection** Поиск необычных вещей

Data is

provided

with the

correct

labels

Data is

provided without labels

Supervised vs. Unsupervised Learning

Supervised Learning Данные предоставляют ся с правильными метками Classification Regression Модель (Quantity) (Category) учится, просматривая эти примеры **Neural Net** Logistic Linear Trees KNN

Данные предостав ляются без меток

Модель находит закономер ности в данных

Supervised Learning: Regression

Data is **Supervised Learning** provided with the correct labels Model Classification learns by Regression (Category) looking at (Quantity) these examples **Neural Net** Logistic

Label

Price	Bedrooms	SqFootage	Age
280.000	3	3292	14
210.030	2	2465	6
/	•••	111	

Features

Supervised Learning: Classification

Data is **Supervised Learning** provided with the correct labels Model learns by Classification Regression looking at (Quantity) (Category) these examples **Neural Net** Logistic Linear

Label

Star	Points	Edges	Size
1	5	10<	750
0	0	>9	150
/	•••		•••

Features

Unsupervised Learning: Clustering

Features

Age Music Books

21 Classical Practical Magic

47 Jazz The Great Gatsby
... ...

Data is provided without labels

Model finds patterns in data

Unsupervised Learning: Clustering

Features

AgeMusicBooks21ClassicalPractical Magic47JazzThe Great Gatsby.........

Data is provided without labels

Model finds patterns in data

Sample ML Problem

Food Delivery Problem

- Джон любит заказывать еду онлайн для дома и работы.
- Он хочет предсказать, будет ли его заказ доставлен вовремя заранее.
- Он зарегистрировал свои предыдущие 45 заказов.

BadWeather Плохая погода	RushHour Час пик	MilesFromR estaurant Расстояние	UrbanAddress Городской адрес	Late
10	1	5	1	0
78	0	7	0	1
14	1	2	1	0
58	1	4.2	1	1
82	0	7.8	0	0
	•••	•••		

Two classes: 1/late and 0/on time

Food Delivery Problem

• Метод К ближайших соседей (KNN) прогнозирует новые точки данных на основе К аналогичных записей из набора данных.

•

К какому классу относятся? [?]

Bad Weather

Food Delivery Problem

Выбрать К = 3

K Nearest Neighbors (KNN) predicts new data points based on K similar

records from a dataset.

? К какому классу относятся? Посмотрите на ближайшие К точки данных:

- Рассчитать расстояния от всех точек данных 🛚 ?
- Найти ближайших соседей К
- Выберите класс большинства:

Food Delivery Problem Hands-on

• Давайте использовать пример доставки еды Джона и обучить алгоритм К ближайших соседей для прогнозирования новой точки данных.

Плохая погода

Model Evaluation

Regression Metrics

Metrics	Equations
Mean Squared Error (MSE)	$MSE = \frac{1}{n} \sum_{i=0}^{n} (y^{(i)} - \hat{y}^{(i)})^2$
Root Mean Squared Error (RMSE)	$RMS = \sqrt{\frac{1}{n} \sum_{i=0}^{n} (y^{(i)} - \hat{y}^{(i)})^2}$
Mean Absolute Error (MAE)	$MAE = \frac{1}{n} \sum_{i=0}^{n} y^{(i)} - \hat{y}^{(i)} $
R Squared (R ²)	$R^{2} = 1 - \frac{\sum_{i=0}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i=0}^{n} (y^{(i)} - \bar{y})^{2}}$

: Data values

: $\hat{\mathfrak{P}}^{(i)}$ redicted values

: Mean value of data values,

: Number of data records

$$\bar{y} = \frac{1}{n} \sum_{i=0}^{n} y^{(i)}$$

Classification Metrics

True Positive: Predicted 'Positive'
when the actual is 'Positive'
False Positive: Predicted 'Positive'
when the actual is 'Negative'
False Negative: Predicted 'Negative'
when the actual is 'Positive'
True Negative: Predicted 'Negative'
when the actual is 'Negative'

Classification Metrics: Accuracy

Accuracy*: Процент (коэффициент) случаев, классифицированных правильно

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Accuracy = \frac{18+15}{18+1+3+15} = 0.89$$

 $(bad) 0 \le Accuracy \le 1 (good)$

Classification Metrics: Accuracy

Парадокс высокой точности:

Точность вводит в заблуждение при работе с несбалансированными набор данных - несколько True Positives, "редкий" класс, и многие True Negatives, "доминирующий" класс. Высокая точность даже тогда, когда мало истинных срабатываний.

$$Accuracy = \frac{2+88}{2+2+8+88} = 0.90$$

Classification Metrics: Precision

Precision*: Точность прогнозируемого положительного результата

$$Precision = \frac{TP}{TP + FP}$$

$$Precision = \frac{2}{2+2} = 0.50$$

 $*(bad) 0 \le Precision \le 1 (good)$

Classification Metrics: Recall

Recall*: Измеряет способность модели прогнозировать положительный результат

$$Recall = \frac{TP}{TP + FN}$$

$$Recall = \frac{2}{2+8} = 0.20$$

 $*(bad) 0 \le Recall \le 1 (good)$

Classification Metrics: F1 Score

Train – Validation – Test Datasets

Training – Validation – Test Sets

Тестовый набор недоступен модели для обучения, он используется только обобщения (прогноза) модель на новых данных (данных, на которых она не обучалась)".

Training – Validation – Test Sets

	bac	i_weather	is_rusin_inour	mile_distance	urban_address	iate
	0	0.0	1.0	5.00	1.0	0.0
	1	1.0	0.0	7.00	0.0	1.0
	2	0.0	1.0	2.00	1.0	0.0
	3	1.0	1.0	4.20	1.0	0.0
	4	0.0	0.0	7.80	0.0	1.0
L	5	1.0	0.0	3.90	1.0	0.0
	6	0.0	1.0	4.00	1.0	0.0
	7	1.0	1.0	2.00	0.0	0.0
	8	0.0	0.0	3.50	0.0	1.0
Г	9	1.0	0.0	2.60	1.0	0.0
1	0	0.0	0.0	4.10	0.0	1.0

Это хорошая практика, чтобы перетасовать набор данных до разделения, чтобы избежать смещения в результате наборов.

K-fold Cross Validation (K = 5)

Average or combine validation performance metrics

K-fold Cross-Validation (CV) это метод проверки, чтобы увидеть, насколько хорошо обученная модель обобщается для независимого набора проверки.

Используйте К различные набора для проверки модели, каждый раз обучая остальные образцы:

- Разделение набора учебных данных на независимые поднаборы (фолды) К.
- Повторите следующие времена К:
 - Зафиксируйте фолд Kth данных test set.
 - Тренируйте модель на других фолдах (поднаборах) train set.
 - Проверьте модель на validation set.
- Усредните или объедините метрики качества модели.

Underfitting & Overfitting

Model Evaluation: Underfitting

Underfitting: Модель недостаточно хороша для описания взаимосвязи между входным данными (x_1, x_2) и выходом у: : {Class 1, Class 2}.

- Модель **слишком проста** для определения важных закономерностях в учебных данных.
- Модель **будет плохо работать** на обучение и проверку (и / или тест).

Model Evaluation: Overfitting

Overfitting: Модель запоминает или имитирует учебные данные и не может хорошо обобщить новые «невидимые» данные (тестовые данные).

- Модель слишком сложна.
- Модель подхватывает шум вместо лежащих в основе отношений.
- Модель будет хорошо работать на обучение, но плохо на проверку (и / или тест).

Model Evaluation: Good Fit

Appropriate fitting: Модель фиксирует общую взаимосвязь между входным данными (x_1, x_2) и выходом у: : {Class 1, Class 2}.

- Модель не слишком простая, не слишком сложная.
- Модель находит основные отношения, а не шум в обучении.
- Модель будет достаточно хорошо работать на обучение и проверку (и / или тест).

Overfitting Hands-on

- Давайте еще раз возьмем пример доставки еды Джона.
- Мы обучаем модель К ближайших соседей и анализируем переобучение.

Bad Weather

Exploratory Data Analysis (EDA)

Exploratory Data Analysis

• Exploratory Data Analysis (EDA) это подход к анализу набора данных и определении основных его характеристик.

- Сбор (Collect) или агрегирование данных
- Выполните первоначальные исследования, чтобы обнаружить закономерности, точечные аномалии, проверить гипотезу и проверить предположения
 - Краткая статистика
 - Graphical/visual представления (histograms, plots)
- Процесс данных для получения значимой информации

Descriptive Statistics

- Overall statist df.head(), df.shape, df.info()
 - Количество примеров (i.e. number of rows)
 - Количество функций (i.e. number of columns)
- Univariate statistics (single feature)
 - Статистика по численным характеристикам (mean, variance, histogram) -
 - Статистика по категоричным признакам (histograms, mode, most/least frequent values, percentage, number of unique values)
 df.describe(), hist(df[feature])
 - Histogram of value df[feature].value_counts() or seaborn's distplot()
 - Target statistics
 - Class distributio df[target].value_counts() or np.bincount(y)
- Multivariate statistics (more than one feature)
 - Correlation df.plot.scatter(feature1, feature2), df[[feature1, feature2]].corr()

Univariate Statistics: Histograms

Numerical features:

import matplotlib.pyplot as plt

df[num_feature].plot.hist(bins = 7)
plt.show()

Categorical features:

import matplotlib.pyplot as plt

df[cat_feature].value_counts().plot.bar()
plt.show()

Correlations: Scatterplot

• Correlations: Насколько сильно связаны пары функций.

df.plot.scatter(feature1,feature2)
plt.show()

Матрицы точечной диаграммы визуализируют взаимосвязь между признаками.

Correlations: Correlation Matrix

Correlations: How strongly pairs of features are related.

cols = [feature1, feature2]
df[cols].corr()

Матрицы корреляции измеряют **линейную** зависимость между признаками; легче читать; могут использовать тепловые карты.

	feature1	feature2
feature1	1	0.0128493
feature2	0.0128493	1

	feature1	feature2
feature1	1	0.882106
feature2	0.882106	1

Значения корреляции между -1 и 1: -1 означает идеальную отрицательную корреляцию, 1 означает идеальную положительную корреляцию, а 0 означает отсутствие связи между двумя переменными.

Correlations

- Высоко коррелированные (положительные или отрицательные) функции могут ухудшить производительность некоторых моделей ML, таких как линейные и логистические модели регрессии.
 - Выберите одну из коррелированных функций и отбросьте другую (ие).
 - Другие модели ML, такие как деревья решений, в основном невосприимчивы к этой проблеме.
- В то время как высоко target-correlated (положительные или отрицательные) функции могут повысить производительность линейных и логистических регрессионных моделей.

•

Imbalanced Datasets

Классовый дисбаланс

- Количество образцов в классе распределяется неравномерно.
- Модель ML может плохо работать для редких классов.
- Examples:
 - Обнаружение мошенничества
 - Обнаружение аномалий
 - Медицинская диагностика

Amazon review dataset: Количество 5 звездных отзывов почти равно сумме 4 других типов звездных отзывов вместе взятых.

Class Imbalance

• Как решить проблемы классового дисбаланса?

Down-sampling

Уменьшите размер доминирующего или частого класса

Up-sampling

Увеличьте размер редкого или малого класса

Data generation

Создавайте новые записи (примеры), похожие, но не идентичные.

Sample weights

Для модели, в которой используется функция стоимости (Loss), присвойте более высокие веса редким классам и более низкие веса доминирующим классам.

Missing Data

Обработка Missing Data

- Удалить (Drop) строки и / или столбцы с пропущенными значениями: удалите эти строки и / или столбцы из набора данных.
 - Меньшее количество примеров обучающих данных и / или меньшее количество функций может привести к переобучению / недообучению
 - Внести (заполнить) недостающие значения:
 - **Среднее значение** отсутствующих числовых значений: замените средним значением в столбце df['col'].fillna((df['col'].mean())) df['col'].fillna((df['col'].mode()))
 - Расчет по общей точке для отсутствующих категориальных значений: замените наиболее распространенным значением для этого столбца
 - **Placeholder**: назначьте общее значение для местоположения отсутствующих данных
 - Advanced imputation: Прогнозируйте недостающие значения из полных выборок с помощью методов машинного обучения. Например, AWS Datawig использует нейронные сети для прогнозирования отсутствующих значений табличных данных https://github.com/awslabs/datawig

SimpleImputer in sklearn

• SimpleImputer: в sklearn для заполнения пропущенных значений-

.fit(), .transform()

- •SimpleImputer(missing_values=nan, strategy='mean', fill_value=None)
 - numerical data:
 - Strategy = "mean", заменить отсутствующие значения, используя среднее значение по каждому столбцу
 - Strategy = "median", заменить отсутствующие значения с помощью медианы по каждому столбцу
 - numerical or categorical data:
 - Strategy = "most_frequent", заменить отсутствующее, используя наиболее частое значение в каждом столбце
 - Strategy = "constant", заменить отсутствующие значения на fill_value

Feature Scaling

Feature Scaling

- Motivation: Многие алгоритмы чувствительны к функциям, находящимся в разных масштабах, например, алгоритмы на основе метрик (KNN, K Means) и алгоритмы на основе градиентного спуска (регрессия, нейронные сети).
- Примечание: древовидные алгоритмы (деревья решений, случайные леса) не имеют этой проблемы.
- Solution: Привести функции к одному масштабу
 - Общие варианты (оба линейные):
 - Mean/variance стандартизация
 - MinMax масштабирование

Standardization in sklearn

• StandardScaler: sklearn масштабирование, значения масштабирования должны быть сосредоточены вокруг среднего 0 со стандартным отклонением 1

Transform:
$$x_{scaled} = \frac{x - x_{mean}}{x_{std}}$$

.fit(), .transform()

```
from sklearn.preprocessing import StandardScaler stdsc = StandardScaler()

raw_data = np.array([[-3.4], [4.5], [50], [24], [3.4], [1.6]]) scaled_data = stdsc.fit_transform(raw_data) print(scaled_data.reshape(1,-1))
```

[[-0.90560498 - 0.47848383 1.98151777 0.57580257 - 0.53795639 - 0.63527514]]

MinMax Scaling in sklearn

0.14794007 1.

• MinMaxScaler: sklearn масштабирование, значения масштабирования должны быть сосредоточены вокруг среднего 0 со стандартным отклонением 1 -

0.51310861 0.12734082 0.09363296]]

.fit(), .transform()

Transform: $x_{scaled} = \frac{x - x_{min}}{x_{max} - x_{min}}$

```
from sklearn.preprocessing import MinMaxScaler
minmaxsc = MinMaxScaler()

raw_data = np.array([[-3.4], [4.5], [50], [24], [3.4], [1.6]])
scaled_data = minmaxsc.fit_transform(raw_data)
print(scaled_data.reshape(1,-1))
```

редактор: Діагоу

[[0.