Tutorial 2 (ComplexNum+TrigIdentities)

(You should practise writing proper steps.)

- 1. Let z_1 and z_2 be two complex numbers given as $z_1 = 2 3i$ and $z_2 = 1 + 2i$. Compute the following.
 - (a) $z_1 \bar{z}_1$ 13
 - (b) z_1z_2 8-i +i
 - (c) $(z_1 + 3z_2)^2$ 16+30i
 - (d) $[z_1 + (1+z_2)]^2$ 15+8i -8i
- 2. Express the following in the form a + bi, where a and b are real numbers.
 - (a) $\frac{1+4i}{5-12i}$ -43/169 + 32i/169
 - (b) $(2+i)^3$ 2+11i
 - (c) $3\sqrt{-50} + \sqrt{-72}$ 450i+72i=522i 3/-(25*2) + /-(36*2) 3(5)*/2 i + 6*/2 i 21*/2 i
 - (d) $\frac{1}{5-3i} \frac{1}{5+3i}$ i/6 3/17 25+9=34
- 3. (a) What is Euler's formula? $e^0 = \cos 0 + i \sin 0$ $e^1 = \cos 0 + i \sin 0$
 - (b) Use Euler's formula to derive the identities
 - (i) $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$
 - (ii) $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$
- 4. Prove the identities
 - (i) $\sin 2\theta = 2\sin \theta \cos \theta$
 - (ii) $\cos 2\theta = \cos^2 \theta \sin^2 \theta$

in two ways as described below.

- (a) By setting $\alpha = \theta$ and $\beta = \theta$ in the identities $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$
- (b) By using Euler's formula and the identity $e^{i(2\theta)} = (e^{i\theta})^2 = e^{i\theta} \cdot e^{i\theta}$

$$\frac{(\cos 0 + i \sin 0)(\cos 0 + i \sin 0)}{\cos 20 + i \sin 20 = \frac{\cos^2 2}{\cos^2 0 + i (2\cos 0 \sin 0)} - \frac{\sin^2 2}{\sin^2 2}$$

TMA1101 Calculus, T2, 2015/16

5. Derive the identity that expresses $\sin 3\theta$ in terms of $\sin \theta$ and $\cos \theta$ by using

Euler's formula and the identity $e^{i(3\theta)} = \left(e^{i\theta}\right)^3$. $\sin 3O = -(\sin^3 O + 3\cos^2 O \sin O) \cos^3 O + 3\cos^2 O \sin O - 3\cos O\sin^2 O - i\sin^3 O = (\sin^3 O + 3\cos^2 O \sin O) \sin^3 O = ^*$

6. Derive the identity that expresses $\cos 3\theta$ in terms of $\sin \theta$ and $\cos \theta$ by using Euler's formula and the identity $e^{i(3\theta)} = (e^{i\theta})^3$.

- 7. Express $\sin 4x \sin 5x$ in a form involving the difference of two cosines. -1/2(cos9x-cosx)
- 8. Express $\cos 5x \cos 2x$ in a form involving the sum of two cosines. $1/2(\cos 7x + \cos 3x)$
- 9. Express $\sin 5x \cos 2x$ in a form involving the sum of two sines. $\frac{1}{2}(\sin 7x + \sin 3x)$
- 10. Express $\cos 5x \sin 3x$ in a form involving the difference of two sines. $1/2(\sin 8x-\sin 2x)$
- 11. Derive the subtraction formulas
 - (i) $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
 - (ii) $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$ in two ways as described below.
 - (a) By replacing β with $-\beta$ in the following two identities you have derived earlier $\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$ $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$
 - (b) By using Euler's formula and the identity $e^{i\alpha} \cdot e^{-i\beta} = e^{i(\alpha-\beta)}$
- 12. Obtain the addition formula and subtraction formula for tangent. Use the addition and subtraction formulas for sine and cosine to express $\tan(\alpha + \beta)$ and $\tan(\alpha \beta)$ in terms of $\tan \alpha$ and $\tan \beta$.

[Note that
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
.]

13. Use the special angles $\alpha = \frac{4\pi}{3}$ and $\beta = \frac{\pi}{3}$ to verify that all the addition and subtraction formulas for sine, cosine and tangent hold.

[You may need help in understanding what this question asks.]

(nby, Nov 2015)