Data Science And Bussiness Analytics Intern At TheSparksFoundation

GRIPJAN21

Author- Rajat Kumar

Task 2:-Prediction Using Unsupervised ML

Problem Statement:- From the given 'Iris' dataset, predict the optimum number of clusters and represent it Visually.

Step 1:- Importing all libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

	Step 2:-Reading Data-Set
In [30]:	<pre>iris = pd.read_csv(r"E:\TSF\Task2\iris.csv") iris.head() # it will show first five row of data set</pre>

Out[30]:	ı	d SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1 5.1	3.5	1.4	0.2	Iris-setosa
	1	2 4.9	3.0	1.4	0.2	Iris-setosa
	2	3 4.7	3.2	1.3	0.2	Iris-setosa
	3	4 4.6	3.1	1.5	0.2	Iris-setosa
	4	5 5.0	3.6	1.4	0.2	Iris-setosa

In [29]: iris.tail() # It will show last five row of data set Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm **Species** Out[29]: **145** 146 6.7 3.0 5.2 2.3 Iris-virginica 6.3 2.5 5.0 **146** 147 1.9 Iris-virginica **147** 148 6.5 3.0 5.2 2.0 Iris-virginica 3.4 **148** 149 6.2 2.3 Iris-virginica **149** 150 5.9 3.0 5.1 1.8 Iris-virginica

Step 3:-Discribing About Data.

In [21]:	iris.describ	e().T							
Out[21]:		count	mean	std	min	25%	50%	75%	max
	ld	150.0	75.500000	43.445368	1.0	38.25	75.50	112.75	150.0
	SepalLengthCm	150.0	5.843333	0.828066	4.3	5.10	5.80	6.40	7.9
	SepalWidthCm	150.0	3.054000	0.433594	2.0	2.80	3.00	3.30	4.4
	PetalLengthCm	150.0	3.758667	1.764420	1.0	1.60	4.35	5.10	6.9
	PetalWidthCm	150.0	1.198667	0.763161	0.1	0.30	1.30	1.80	2.5
In [31]:	<pre>sns.set(style="ticks",color_codes=True)</pre>								

iris=sns.load_dataset("iris") g=sns.pairplot(iris) 4.5 4.0 2.0 2.5 -2.0 -

petal_width

Out[17]: (150, 5)

In [17]:

sepal_length

x=iris.iloc[:,:-1].values

from sklearn.cluster import KMeans

Step 4:-Finnding Optimum number of clusters for KMean.

sepal_width

petal_length

```
In [18]:
             WCSS=[]
             for i in range(1,11):
                  kmeans = KMeans(n_clusters=i, init ="k-means++", random_state=42)
                  kmeans.fit(x)
            WCSS.append(kmeans.inertia_)
plt.plot(range(1, 11), WCSS)
            plt.title("The Elbow Method ")
plt.xlabel("Numer Of clusters")
             plt.ylabel("WCSS")
             plt.show()
                                         The Elbow Method
```

250000 200000 150000 100000 50000 Numer Of clusters step 5:-Applying K-Means to the dataset

kmeans=KMeans(n_clusters=3,init="k-means++",

```
In [19]:
                      max_iter=300, n_init=10, random_state=0)
         y_kmeans=kmeans.fit_predict(x)
         In [23]:
         plt.scatter(x[y_kmeans==1,0], x[y_kmeans==1,1],
                   s=100, c="green", label = "Iris-versicolour")
         plt.scatter(x[y_kmeans=2,0], x[y_kmeans=2,1],
                    s=100, c="black", label = "Iris-virginica" )
         plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],
                    s=100, c="yellow", label="centroids")
         plt.title("clusters of species")
         plt.legend()
         plt.show()
                          clusters of species
                Iris-setosa
```


Thank You