Big O Notation.

$$f(n) = O(g(n)) \Rightarrow f(x) \le c \times g(x)$$

Ex) Let
$$f(x) = 2x^2 + 3$$
, $g(x) = x^2$. Then, $f(x) = O(g(x))$?

Sol) Let $f(x) \le c \times g(x)$, this inequality is as follows $2x^2 + 3 \le cx^2$.

if
$$c = 1 -> 2x^2 + 3 \le x^2$$
 (x)

if
$$c = 2 \rightarrow 2x^2 + 3 \le 2x^2$$
 (x)

if
$$c = 3 \rightarrow 2x^2 + 3 \le 3x^2$$

In this case, the following inequality forms: $3 \le x^2$

if
$$x = 1 -> 3 \le 1$$
 (x)

if
$$x = 2 \rightarrow 3 \le 4$$
 (o)

Therefore, f(x) = O(g(x)) is true when c = 3 and $x \ge 2$.

Big Ω Notation.

$$f(n) = \Omega(g(n)) \Rightarrow f(n) > c \times g(n)$$
 for all $n > n_0$

Ex) Let
$$f(x) = 2x^2 + 3$$
, $g(x) = x^2$. Then, $f(x) = \Omega(g(x))$?

Sol) Let
$$f(x) \leq c \times g(x)$$
.

if
$$c = 1 \rightarrow 2x^2 + 3 > x^2$$
 (o)

Therefore, $f(x) = \Omega(g(x))$ is true.

Big Θ Notation.

$$f(n) = \Theta(g(n))$$
 when, $f(x) = O(g(x))$ and $f(x) = \Omega(g(x))$.

Ex) Let
$$f(x) = 2x^2 + 3$$
, $g(x) = x^2$. Then, $f(x) = \Theta(g(x))$?

Sol) There are
$$f(x) = O(g(x))$$
 and $f(x) = \Omega(g(x))$.

Therefore, $f(n) = \Theta(g(n))$ is true.