Relational Algebra (Part IV)

R & G, Chapter 4

Join + Set Operations Quiz

- Quiz of last lecture: Find the name of sailors with age over 20 who have not reserved a red boat
 - Find sids of sailors with age over 20 as set S1
 - Find sids of sailors who have reserved a red boat as set S2
 - Take the set difference of S1 and S2
 - Join with sailors, and return name of the sailors from join result
- Answer:

$$\rho(S1,\pi_{sid}(\sigma_{age}>20(Sailors)))$$

$$\rho(S2,\pi_{sid}((\sigma_{color}='red'(Boats)))\bowtie Reserves)$$

$$\pi_{sname}(Sailors)\bowtie (S1-S2))$$

Find the name of sailors with age over 20 who have not reserved a red boat

Solution 1

$$\rho(T1,\pi_{sid}(\sigma_{age}>20(Sailors))\bowtie Boats\bowtie Reserves)$$

$$\rho(T2,\pi_{sid}(\sigma_{color}='red'(Boats))\bowtie Reserves\bowtie Sailors)$$

$$\pi_{sname}(Sailors\bowtie (T2-T1))$$

- Is this solution correct?
- This solution is wrong because T1 does not include those sailors (e.g., Lubber) who have not reserved any boat

Sid	Bid	day			
22	101	10/10/96			
58	103	11/12/96			
Reserves					

Bid	Bname	Color
101	Interlake	Blue
102	Interlate	Red
103	Clipper	Green
104	Marine	red

Boats

Sid	Sname	Rating	Age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.5

Sailors

3

Find the name of sailors with age over 20 who have not reserved a red boat

Solution 2

$$\pi_{sname}(\sigma_{age>20}(Sailors)\bowtie\sigma_{color\neq'red'}(Boats)\bowtie Reserves)$$

- Is this solution correct?
- This solution is wrong because it may return the sailors (e.g., Dustin) who have reserved a red boat and a non-red boat.

			Bid	Bname	Color				
Sid	Bid	day	101	Interlake	Blue	Sid	Sname	Rating	Age
22	101	10/10/96	102	Interlate	Red	22	Dustin	7	45.0
58	103	11/12/96	103	Clipper	Green	31	Lubber	8	55.5
22	102	12/10/96	104	Marine	red	58	Rusty	10	35.5

Reserves Boats Sailors

Division

- Useful for expressing "for all" queries like: Find sids of sailors who have reserved all boats.
- Division A/B: Attributes of B MUST be a subset of attrs of A.

Sno	pno		
S1	P1	Pno	Sno
S1	P2	P2	S1
S1	P3	P4	S4
S1	P4	В	
S2	P1	D	A/B
S2	P2		
S3	P2		
S4	P2		
S4	P4	A	

Division (I)

- Find the names of sailors who've reserved all boats
 - The way of thinking:
 - find the set of of sailors (with sid, bid) who have reserved some boats.
 - find the set B of all boats (with bid).
 - take A / B to get (sid of) sailors who have reserved all boats

Why do we need the projections on Reserves & Boats?

$$\rho(Tempsids,(\pi_{sid,bid}(Reserves))/(\pi_{bid}(Boats)))$$

$$\pi_{sname}$$
 (Tempsids \bowtie Sailors)

Division (II)

- Find the names of sailors who've reserved all 'Interlake' boats
 - The way of thinking:
 - find the set A of sailors (with sid, bid)who have reserved some boats.
 - find the set B of all 'Interlake' boats (with bid).
 - take A / B to get (sid of) sailors who have reserved all 'Interlake' boats

$$\rho(T1,(\pi_{sid,bid}(\text{Reserves}))/\pi_{bid}(\sigma_{bname='Interlake'}(\text{Boats})))$$

$$\pi_{sname}(T1 \bowtie Sailors)$$

Division (III)

Find the names of sailors who have reserved boats of all colors

- The way of thinking:
 - find the set A of sailors (with sid, color)who have reserved some boats.
 - find the set B of all colors of boats.
 - take A / B to get (sid of) sailors who have reserved boats of all colors

Solution

$$\pi_{sname}((\pi_{sid,color}(\text{Reserves}\bowtie Boats)/\pi_{color}(Boats))\bowtie Sailors)$$

Aggregate Queries by Relational Algebra

- Relational algebra does not provide any aggregate function in general.
- Relational algebra handles aggregate queries in a complicated way

Aggregate Queries

- Find the names of sailors who have reserved at least two different boats
 - The way of thinking:
 - Find sailors S1 who reserved at least one boat
 - From S1, find sailors who reserved at least two boats
 - Select sailors with two different boats reserved

have reserved at least ONE boat
$$\rightarrow P(R, (\pi_{sid,sname,bid}(Reserves) Sailors))$$

Sailors who

$$\begin{array}{c} P \ (RPairs, (1->sid1, 2->sname1, 3->bid1, 4->sid2, \\ 5->sname2, 6->bid2), R \bowtie \\ \text{Renaming to eliminate duplicate attributes} \end{array} \\ Sid1=Sid2$$

$$\pi_{sname1} (\sigma_{bid1 \neq bid2} RPairs)$$

Running Example (1/3)

Reserves

 Sid
 Bid
 day

 22
 101
 10/10/96

 58
 103
 11/12/96

 22
 102
 12/10/96

Boats

Douts						
Bid	Bname	Color				
101	Interlake	Blue				
102	Interlate	Red				
103	Clipper	Green				
104	Marine	red				

Sailors

Sid	Sname	Rating	Age				
22	Dustin	7	45.0				
31	Lubber	8	55.5				
58	Rusty	10	35.5				

 $P(R,(\pi_{sid,sname,bid}(Reserves \bowtie Sailors)))$

Sailors who have reserved at least ONE boat

Sid	Sname	bid
22	Dustin	101
22	Dustin	102
58	Rusty	103

Running Example (2/3)

Sid	Sname	bid
22	Dustin	101
22	Dustin	102
58	Rusty	103

P (RPairs,(1->sid1,2->sname1,3->bid1,4->sid2, 5->sname2,6->bid2), $R \square Sid1=Sid2$

Sid1	Sname1	bid1	Sid2	Sname2	bid2
22	Dustin	101	22	Dustin	101
22	Dustin	101	22	Dustin	102
22	Dustin	102	22	Dustin	101
22	Dustin	102	22	Dustin	102
58	Rusty	103	58	Rusty	103

14

R

Running Example (3/3)

Sid1	Sname1	bid1	Sid2	Sname2	bid2
22	Dustin	101	22	Dustin	101
22	Dustin	101	22	Dustin	102
22	Dustin	102	22	Dustin	101
22	Dustin	102	22	Dustin	102
58	Rusty	103	58	Rusty	103

RPairs

$$\pi_{sname1}$$
 ($\sigma_{bid1 \neq bid2}$ RPairs)

Returns "Dustin"

Further Thinking

 Find the names of sailors who have reserved at least two different boats

Same sailor but two different boats

- Questions:
- (1) Can we remove 'sname' from R?
- (2) Can we change equal-join in Rpairs to be cross-product?
- (3) How can we write the query: Find the names of sailors who have reserved at least three different boats