Math 625 Professor Erhan Bayraktar

Linfeng Li llinfeng@umich.edu

September 2, 2014

1 Week 1

1.1 Tue: 2014-09-02

1.1.1 Basics

Exam (in class, 90 minutes): Tue, Oct 7; Tue, Nov 11; Tue, Dec 9. —— 25%, 30 % and 40 %. 5% attendance. **Textbook:** Probability and Statistics (took the class from the writer, available through library). Probability with **Martingale**, the latter is the emphasis.

Exercises: Book has exercises, but not graded homework.

1.1.2 Beginning: measure theory

Sigma-algebra Given a set E (a universal set), \mathcal{E} , a nonempty collection of subsets of E, is called a σ -algebra if closed under complements & countable unions.

• The most trivial sigma-algebra $\{\emptyset, E\}$ is called the trivial σ -algebra.

Definition 1.1.1 (σ algebra generated by \mathcal{C}). Given a collection \mathcal{C} of subsets (of E), $\sigma(\mathcal{C})$ will denote the smaller σ -algebra containing \mathcal{C} .

Definition 1.1.2. σ -algebra generated by open sets is called **Borel** σ -algebra.

 $p ext{-system}$ A collection of $\mathcal C$ which is closed under (finite) intersection.

"p" for product, could also use π -system. The latter in Greek.

d-system A collection \mathcal{D} is called a d-system if

- (i) $E \in \mathcal{D}$,
- (ii) $A, B \in \mathcal{D}, A \supset B \implies A \setminus B \in \mathcal{D}$
- (iii) $(A_n) \subset \mathcal{D}$ and $A_n \uparrow A \implies A \subset \mathcal{D}$.

("d" for Dynkin)

Note: curly characters are for collection of sets.

Proposition 1.1.3. \mathcal{E} is a σ -algebra if and only if it is a p-system and a d-system.

1.1 Tue: 2014-09-02 1 WEEK 1

Proof. \Rightarrow is trivial.

 \Leftarrow : Let \mathcal{E} be a collection which is a *p*-system and a *d*-system.

1. Closed under complements (to be a sigma algebra). Let $A \in \mathcal{E} \implies E \setminus A \in \mathcal{E}$ by (ii) for property of d-system.

- 2. Closed under finite unions: $A, B \in \mathcal{E} \implies A \bigcup B = (A^c \cap B^c)^c$ by 1 above and property of p-system.
- 3. Closed under countable unions: for $(A_n) \subset \mathcal{E}$, $\bigcup_n A_n \in \mathcal{E}$? We construct an increasing sequence of (B_n) :

Let $B_1 = A_1$, $B_2 = A_1 \bigcup A_2 \in \mathcal{E} \ldots \bigcup_n A_n = \bigcup_n B_n$. Then by (iii) for property of d-system, the conclusion follows.

Lemma 1.1.4. For \mathcal{D} , a d-system, fix $D \in \mathcal{D}$. Define $\hat{\mathcal{D}} := \{A \in \mathcal{D} : A \cap D \in \mathcal{D}\}$. Then, $\hat{\mathcal{D}}$ is also a d-system.

Monotone Class Theorem [Very useful tool in showing an arbitrary collection of sets is a σ -algebra]

Theorem 1.1.5. If a d-system contains a p-system, then it also contains the σ -algebra generated by the p-system.

Proof. Symbolic expression: $\mathcal{C} \subset \mathcal{D} \implies \sigma(\mathcal{C}) \subset \mathcal{D}$.

Step 1:

Let \mathcal{C} be a p-system. \mathcal{D} is the smallest d-system that contains \mathcal{C} . ¹

Enough to show $\mathcal{D} \supset \sigma(\mathcal{C})$.

If fact, we will show \mathcal{D} is a σ -algebra. By proposition, it is enough to show it is a p-system.

Step 2:

Fix $B \in \mathcal{C}$ and let $\mathcal{D}_1 := \{A \in \mathcal{D} : A \cap B \in \mathcal{D}\}$. 1) By the lemma 1.1.4, \mathcal{D}_1 is a d-system. 2) $\mathcal{C} \subset \mathcal{D}_1$.

1) and 2) $\Longrightarrow \mathcal{D}_1 = \mathcal{D}$.

Setp 3:

Fix $A \in \mathcal{D}$, let $\mathcal{D}_2 := \{B \in \mathcal{D} : B \cap A \in \mathcal{D}\}.$

- 1) by the lemma, \mathcal{D}_2 is a d-system. 2) by step 2, $\mathcal{C} \subset \mathcal{D}_2$.
- 1) and 2) $\Longrightarrow \mathcal{D}_2 = \mathcal{D}$.

Step 1-3 gives that \mathcal{D} is a *p*-system.

In here, $\mathcal{D} = \sigma(\mathcal{C})$. [But in the theorem, this is not a necessary conclusion.]

Measurable space (E, \mathcal{E}) is a measurable space. $[\mathcal{E}$ is a σ -algebra on E.]

Products of measure spaces (E, \mathcal{E}) , (F, \mathcal{F}) . Then $(E \times F, \mathcal{E}light - product \mathcal{F})$ where \times is regular set product; and the light-product is σ (generated by measurable rectangles)

Measurable functions (random variables)

Lemma 1.1.6. A mapping $f: E \to F$ and (inverse mapping) $f^{-1}(A) := \{x \in E : f(x) \in A\}$. Then, $f^{-1}\emptyset = \emptyset$. $f^{-1}(F) = E$. $f^{-1}(B \setminus C) = f^{-1}(B) \setminus f^{-1}(C)$. $f^{-1}(\bigcup_i B_i) = \bigcup_i f^{-1}(B_i)$ and $f^{-1}(\bigcap B_i) = \bigcap_i f^{-1}(B_i)$. (set operation passes through the inverse function operation.)

¹(***: little result – the intersections of d-systems is a d-system [to obtain the "smallest"]. Also, the "smallest" matters.)

1.1 Tue: 2014-09-02 1 WEEK 1

Definition 1.1.7. $(E,\mathcal{E}),\ (F,\mathcal{F}).\ f:E\to F$ is "measurable" relative to $\mathcal{E\&F}$ if $f^{-1}(B)\in\mathcal{E},\ \forall B\in\mathcal{F}.$