

Project description

Filipe Rodrigues

Francisco Pereira

DTU Management EngineeringDepartment of Management Engineering

Outline

- Rules
- Important dates
- Common mistakes, misconceptions and advice
- Great projects from last year
- Take-away ideas

Rules

- Topic is **free** (creativity highly encouraged!)
- No constraints on the dataset
- If in doubt, talk with us!
- We also provide some suggestions for projects

Important dates

Important dates

- April 24 Milestone 1
 - Research question
 - ullet First draft of model(s) that you plan to try out (PGM + generative process)
 - Initial notebook (descriptive stats, data preparation)

Important dates

- April 24 Milestone 1
 - Research question
 - First draft of model(s) that you plan to try out (PGM + generative process)
 - Initial notebook (descriptive stats, data preparation)
- May 15 Final delivery (Part I)
 - Full self-explanatory notebook
- May 18 Final delivery (Part II)
 - 2-page report (excluding figures and tables)

• No point putting priors on observed variables without any parents, unless doing imputation, otherwise these variables are always given

- No point putting priors on observed variables without any parents, unless doing imputation, otherwise these variables are always given
- Makes no sense to include observed variables that block the information path in the PGM
 - ullet Consider for example: Intelligence o Course grade o Recommendation letter
 - If course grade is always observed, then it blocks the path between intelligence and recommendation letter. Therefore, "Intelligence \rightarrow Course grade" and "Course grade \rightarrow Recommendation letter" become two independent models.
 - There is no point estimating them jointly because there is no flow of information between the two (unless there is an alternative path, of course...)

- No point putting priors on observed variables without any parents, unless doing imputation, otherwise these variables are always given
- Makes no sense to include observed variables that block the information path in the PGM
 - ullet Consider for example: Intelligence o Course grade o Recommendation letter
 - If course grade is always observed, then it blocks the path between intelligence and recommendation letter. Therefore, "Intelligence \rightarrow Course grade" and "Course grade \rightarrow Recommendation letter" become two independent models.
 - There is no point estimating them jointly because there is no flow of information between the two (unless there is an alternative path, of course...)
- Don't just think about what variables depend on other variables, and their distribution types. Think also of how you should model those dependencies (e.g. how to condition the parameters of a Beta distribution on another variable?)

• Be careful with the inclusion of latent variables that are discrete. Remember that they require special treatment in STAN/Pyro

- Be careful with the inclusion of latent variables that are discrete. Remember that they require special treatment in STAN/Pyro
- Choice of priors is often more of an art than a science. However, there are some recommendations and guidelines that you can try to follow, and people in statistics write papers about this a lot, but in the end it often boils down to a lot of trial and error. I recommend that you have a look at: https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

- Be careful with the inclusion of latent variables that are discrete. Remember that they require special treatment in STAN/Pyro
- Choice of priors is often more of an art than a science. However, there are some recommendations and guidelines that you can try to follow, and people in statistics write papers about this a lot, but in the end it often boils down to a lot of trial and error. I recommend that you have a look at: https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
- Try different types of inference algorithms: VI and MCMC, and make sure they
 are doing the right thing and you can trust the results

- Be careful with the inclusion of latent variables that are discrete. Remember that they require special treatment in STAN/Pyro
- Choice of priors is often more of an art than a science. However, there are some recommendations and guidelines that you can try to follow, and people in statistics write papers about this a lot, but in the end it often boils down to a lot of trial and error. I recommend that you have a look at: https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
- Try different types of inference algorithms: VI and MCMC, and make sure they
 are doing the right thing and you can trust the results
- It is a generally good idea to start with a simple model and incrementally make it
 more complex towards the idealised/conceived PGM. Plus, try to have some
 baseline models for comparison whenever possible

- Be careful with the inclusion of latent variables that are discrete. Remember that they require special treatment in STAN/Pyro
- Choice of priors is often more of an art than a science. However, there are some recommendations and guidelines that you can try to follow, and people in statistics write papers about this a lot, but in the end it often boils down to a lot of trial and error. I recommend that you have a look at: https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
- Try different types of inference algorithms: VI and MCMC, and make sure they are doing the right thing and you can trust the results
- It is a generally good idea to start with a simple model and incrementally make it
 more complex towards the idealised/conceived PGM. Plus, try to have some
 baseline models for comparison whenever possible
- Use ancestral sampling to generate artificial data, and run inference on the model using Pyro/STAN to see if it is able to recover the true values/parameters that were used to generate the data. This is a great way of guarantying that the model is correctly implemented, and that inference is working correctly

2019 proj.: Analysis group membership in Social Networks I

- Graph data of human interaction is called social networks. The interaction could for example being friends on Facebook or talking to each other.
- The project inferred groups in social networks based on Game Of Thrones. Take a look at the data here https://github.com/mathbeveridge/gameofthrones
- Tried different models. Results below is from a Mixed membership stochastic block model - MMSBM.

2019 proj.: Analysis group membership in Social Networks II

- **1** For n = 1...N
 - **1** draw $\pi_n \sim \mathsf{Dirichlet}(\alpha)$
- **2** For $k, k' = \{1, 2, \dots, K\} \times \{1, 2, \dots, K\}$ where $k \neq k'$
 - **1** draw $\lambda_{k,k'} \sim \mathsf{Gamma}(a,b)$
- \bigcirc For k in 1..K
 - **1** draw $\lambda_{k,k} \sim \mathsf{Gamma}(c,d)$
- **4** For all pairs $i,j \in \{1,2,...N\} \times \{1,2,...N\}$ where $i \neq j$

Figure: PGM for Mixed membership stochastic block model

2019 proj.: Analysis group membership in Social Networks III

Figure: Each node is a GoT character from season 5. Colors indicate one of 5 inferred groups.

Figure: The histogram shows posterior probabilities of belonging to one of 5 groups for 4 main characters of GoT

2019 project: Bayesian semi-parametric soccer analysis

- Apply the time-to-event analysis methods to analyze the intensity with which goal scoring occurs in soccer matches
- Tried different time-to-event models from the class of Cox proportional hazards models and extend these to incorporate non-linear effects by use of the highly flexible Gaussian processes from the Bayesian non-parametrics toolbox
- ullet The hazard in the i-th match at time interval j is

$$\lambda_{ij} = \lambda_j \exp(\beta_1 * skill_gap + \beta_2(t) * x_goal)$$

- Baseline of Cox model is a GP: $\log \lambda_0 \sim \mathcal{GP}(\mathbf{0}, K(t, t'))$
- Implemented everything in STAN and did a very good experimental evaluation

2019 project: Movie recommendations - MovieLens dataset

 Inspired by the example in Bishop's "Model-based Machine Learning" book, but with a good mix of creativity, lots of experimentation and insightful discussions

Take-away ideas

- Dwell time prediction in Copenhagen (Movia)
- Mixture of (interpretable) experts
- Predicting COVID-19 spread

Dwell time prediction in Copenhagen (Movia)

• Remember the dwell time example PGM?

- It was quite naive in many aspects
- The goal of this project is to make a more realistic model of dwell time
 - Combine with weather information (we already have it)
 - Allow the probability of stopping $p(z_n=1)$ to depend on other features (previous buses, previous stops for that bus, weather, etc.)
 - Similar for the k_n variables: turn it into a time-series model!
 - Can use Gaussian processes instead of linear relationships
- Real data from Movia for a few bus stops in Copenhagen

Mixture of (interpretable) experts

- We often seek interpretable models (e.g. linear models, like linear regression and logistic regression)
- However, their linear assumptions are typically too naive :-(

- We can make progress by subdividing the input space into non-linear regions
 - E.g. fully-connected neural network that, given the input \mathbf{x} , assigns it to one of the sub-regions $z_n \sim \text{Bernoulli}(z_n|\text{NNet}(\mathbf{x}, \boldsymbol{\theta}))$
 - For each sub-region, build an interpretable model (e.g. logistic regression, discrete choice model, Poisson regression)
- Each linear model only has to "specialize" in modelling well the data in its sub-region!

Mixture of (interpretable) experts

- Goal: jointly infer non-linear sub-region assignment model that subdivides the input space, and a linear interpretable model for each sub-region
- A possible generative story:
- $oldsymbol{0}$ Draw NNet parameters $oldsymbol{ heta} \sim \mathcal{N}(oldsymbol{ heta} | oldsymbol{0}, oldsymbol{I})$
- **2** For each sub-region $r \in \{1, \dots, R\}$
 - f 0 Draw coefficients of sub-region-specific linear model $m \eta_r \sim \mathcal{N}(m \eta_r | m 0, m I)$
- **3** For each data point \mathbf{x}_n
 - **1** Draw sub-region assignment $z_n \sim \mathsf{Bernoulli}(z_n|\mathsf{NNet}(\mathbf{x}, \boldsymbol{\theta}))$
 - 2 Draw class label from corresponding linear model $y_n \sim \text{Bernoulli}(y_n|\text{Sigmoid}(\mathbf{x}_n, \boldsymbol{\eta}_{z_n}))$

Predicting COVID-19

- Unfortunately, COVID-19 became an unavoidable topic in our world during this semester
- Predicting its spread is by no means a minor task, but it is a very important one and very prone to a PGM way of thinking:
 - It can be cast as a multivariate linear dynamical system (confirmed, deaths, recovered)
 - One can see clear dependencies (deaths and recovered clearly depend on confirmed)
 - There are many other factors that could be useful to predict (e.g. population density, WHO indicators of the country, which measures were taken)
- All data is available here:

https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/