Predicción de popularidad de canciones K-Pop

Trabajo de Fin de Master Master Universitario en Ciencia de Datos

Alumna: Paula de Jaime de Toro

Tutor: Sergio Trilles Oliver

Profesor: Albert Solé Ribalta

ENERO 2020

Índice

- 1. Contexto y motivación
- 2. Objetivos
- 3. Datos
- 4. Modelos
- 5. Evaluación
- 6. Conclusión

Contexto y motivación

- El K-pop es música pop surcoreana
- Producto importante de Corea del Sur
- Agencias de entretenimiento (SM, YG, JYP, etc.)
- Reclutamiento y entrenamiento de artistas
- Hit Song Science y Music Information Retrieval
- Interés personal y curiosidad
- No se han encontrado trabajos o proyectos iguales

Objetivos

- Predecir si canciones surcoreanas serán populares en Corea del Sur
- Investigar el estado del arte para conocer los métodos que previamente se han usado en este tipo de problemas.
- Encontrar fuentes de datos y adquirir estos.
 Preprocesar datos y obtener un dataset con datos válidos.
- Generar modelos predictivos y ajustar estos para lograr mejores resultados.
- Comparar y evaluar la eficiencia de múltiples modelos predictivos.

Datos: Fuentes de datos

- Gaon Digital Chart
- Septiembre 2020 hasta Enero 2010
- Granularidad mensual
- Top 25% y bottom 25%
- Spotify API
- Títulos en inglés o coreano
- Artistas en coreano, inglés o romanizado
- DBKpop

Datos II: Creación del dataset

- Problemas de codificación
- Limpieza de datos
 - Artistas internacionales
 - Colaboraciones
 - Bandas sonoras
 - Programas de televisión
 - Transformar el artista en inglés
 o romanizado

- Se aprende a leer coreano
- Spotify API + Google
- 67% canciones no encontradas →
 manualmente
- 3629 a 3070 canciones

- QQ-Plot Shapiro-Wilk Test

- La popularidad parece independiente del número de artistas
- Los single tienen más canciones populares
- Las compilaciones tienen más canciones no populares
- Hay más canciones explícitas no populares

- Análisis visual
- No se observa mucha diferencia en los valores numéricos
- Valores atípicos

- Las canciones populares son más bailables y tienen más energía que las no populares
- La música K-Pop varía en el tiempo (ANOVA)
- Correlación alta entre loudness y energy
- De los atributos categóricos sólo el tipo de álbum no es independiente de la clase (Chi-Square Independence)
- Hay diferencias significativas entre las canciones populares y no populares para las variables numéricas (Kruskal-Wallis)

Modelos

- Problema de clasificación supervisada
- Problema balanceado
- Maximizar precision
- Dividir datos en train y test (hold-out)
- Validación mediante 3-fold cross-validation

- Grid search
- Curvas de aprendizaje
- Data leakage
- Pipelines
- Transformaciones propias
- Baseline

Modelos II

- Atributos numéricos
 - Standarization
 - RobustScaler
- Atributos categóricos
 - Agrupación de valores (low entropy of categorical attributes)
 - One Hot Encoding
 - Label Encoding

Modelos III

- Logistic Regression
 - Regularización (Lasso, Ridge o Elasticnet)
 - Fuerza regularización
 - No es necesario escalar los datos
 - Se prueba:
 - Transformaciones logarítmicas, raíz cuadrada, polinomios e interacciones entre atributos

Modelos IV

K-NN

- Número vecinos (k)
- Pesos (uniform y distance)

SVC

- Tipo de kernel (poly, rbf y linear)
- Fuerza regularización
- Coeficiente gamma

Random Forest

- Número de árboles
- Número de atributos
- Profundidad de los árboles
- Número mínimo de instancias para que un nodo sea considerado hoja
- No hace falta escalar los datos

Evaluación

- Se eligen los mejores modelos
- Los baseline no son mejores que un modelo aleatorio
- Algunos sufren de high bias y otros de overfitting
- Resultados bastante malos
- Los resultados de los cuatro modelos son muy parecidos

Evaluación II

- El modelo elegido es el K-NN
- Es el que más *precision* junto con *f1* consigue

Evaluación III

- Permutation Importance
- Se exploran los atributos que más han contribuido a la predicción
- No hay ningún atributo extremadamente importante

Weight	Feature
0.0315 ± 0.0275	danceability
0.0239 ± 0.0113	loudness
0.0238 ± 0.0327	first_time_in_chart_year
0.0226 ± 0.0157	acousticness
0.0191 ± 0.0244	tempo
0.0162 ± 0.0176	valence
0.0145 ± 0.0155	liveness
0.0138 ± 0.0204	first_time_in_chart_month
0.0136 ± 0.0060	album
0.0116 ± 0.0071	stone music entertainment
0.0104 ± 0.0090	카카오 m
0.0103 ± 0.0050	sm entertainment
0.0098 ± 0.0051	지니뮤직
0.0097 ± 0.0082	is_collab
0.0096 ± 0.0053	other
0.0083 ± 0.0059	is_ost
0.0080 ± 0.0086	other
0.0074 ± 0.0185	energy
0.0074 ± 0.0108	single
0.0070 ± 0.0148	speechiness
0.0046 ± 0.0141	duration_ms
0.0039 ± 0.0119	summer
0.0036 ± 0.0076	other
0.0035 ± 0.0135	holiday
0.0034 ± 0.0029	for_reality_tvshow
0.0018 ± 0.0012	stone music entertainment
0.0015 ± 0.0000	explicit
0.0011 ± 0.0016	compilation
-0.0005 ± 0.0052	instrumentalness
-0.0007 ± 0.0023	yg entertainment
-0.0012 ± 0.0012	jyp entertainment

Conclusión

- Objetivos cumplidos
- Presencia de dificultades
- Aprendidas nuevas técnicas o métodos
- Decepción por los resultados de los modelos

Conclusión

Algunas líneas futuras

- Web app interactiva para el usuario
- Buscar canciones no populares en otro sitio
- Utilizar datos semanales y no mensuales
- Utilizar más atributos con información de los artistas

Fin.

¿Alguna pregunta?