TUGAS STRUKTUR DATA

Dosen Pengampu:

Adam Bachtiar S, kom, M, MT

Disusun oleh:

Nama: M. Yudastiran

Nim: 24241080

Kelas: c

PROGRAM STUDI PENDIDIKAN TEKNOLOGI INFORMASI FAKULTAS SAINS, TEHNIK DAN TERAPAN UNIVERSITAS PENDIDIKAN MANDALIKA MATARAM TAHUN 2025

PRAKTEK KE 1

```
Array > coba.py > ...

1  # impor library numpy

2  import numpy as np

3

4  # membuat array dengan numpy

5  nilai_siswa = np.array([85, 55, 40, 90])

6

7  # akses data pada array

8  print[(nilai_siswa[3])]

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

PS C:\Users\user\OneOrive\Dokumen\modul 04\STRUKTUR DATA - RIMA NOVA UTAMI\n/Python313/python.exe "c:/Users/user/OneOrive/Dokumen/modul 04\STRUKTUR DATA - PORTS

90

PS C:\Users\user\OneOrive\Dokumen\modul 04\STRUKTUR DATA - RIMA NOVA UTAMI\n/Python313/python.exe "c:/Users/user/OneOrive/Dokumen/modul 04\STRUKTUR DATA - RIMA NOVA UTAMI\n/Python313/python.exe "c:/Users/user/OneOrive/Dokumen/modul 04\STRUKTUR DATA - RIMA NOVA UTAMI\n/Python313/python.exe "c:/Users/user/OneOrive/Dokumen/modul 04\STRUKTUR DATA - RIMA NOVA UTAMI\n/Python313/python.exe "c:/Users/user/OneOrive\Dokumen\modul 04\STRUKTUR DATA - RIMA NOVA UTAMI\n/Python313/python314 - RIMA NOVA UTAMI\n/Python314 - RIMA NOVA UTAMI\n/Pytho
```

Baris 2

import numpy as np

Baris ini **mengimpor library** bernama numpy dan memberi alias np, sehingga Anda bisa menggunakan fungsi-fungsi NumPy dengan menulis np.nama_fungsi().

NumPy adalah library Python yang sangat kuat untuk perhitungan numerik dan manipulasi array.

```
Baris 5 nilai_siswa = np.array([85,
```

55, 40, 90])

Anda membuat sebuah **array NumPy satu dimensi** yang berisi data nilai-nilai siswa: 85, 55, 40, 90.

Ini berbeda dari list biasa Python. Array NumPy lebih efisien dan memiliki banyak fitur tambahan seperti operasi vektor/matriks.

Baris 8

```
print(nilai_siswa[3])
```

Anda mencetak nilai pada indeks ke-3 dari array nilai_siswa.

Dalam Python (dan NumPy), indeks dimulai dari 0, sehingga:

```
 nilai_siswa[0] → 85
```

- nilai siswa[1] \rightarrow 55
- nilai siswa[2] \rightarrow 40
- nilai_siswa[3] → 90 (yang dicetak)

Jadi, output dari program ini adalah:

90

PERAKTEK KE 2

```
12
     # membuat array dengan numpy
14    nilai_siswa_1 = np.array([75, 65, 45, 80])
    nilai_siswa_2 = np.array([[85, 55, 40], [50, 40, 99]])
    # cara akses elemen array
     print(nilai_siswa_1[0])
     print(nilai_siswa_2[1][1])
     # mengubah nilai elemen array
    nilai_siswa_1[0] = 88
     nilai_siswa_2[1][1] = 70
     # cek perubahannya dengan akses elemen array
     print(nilai_siswa_1[0])
     print(nilai_siswa_2[1][1])
     # Cek ukuran dan dimensi array
     print("Ukuran Array : ", nilai_siswa_1.shape)
     print("Ukuran Array : ", nilai_siswa_2.shape)
     print("Dimensi Array : ", nilai_siswa_2.ndim)
```

```
PS C:\Users\user\OneDrive\Dokumen\modul 04\S
n/Python313/python.exe "c:/Users/user/OneDri
75
40
88
70
Ukuran Array : (4,)
Ukuran Array : (2, 3)
Dimensi Array : 2
PS C:\Users\user\OneDrive\Dokumen\modul 04\S
```

Baris 13

import numpy as np

Mengimpor library NumPy dengan alias np.

Baris 14-15

```
nilai_siswa_1 = np.array([75, 65, 45, 80])
nilai_siswa_2 = np.array([[85, 55, 40], [50, 40, 99]])
```

- nilai_siswa_1: array 1 dimensi dengan 4 elemen.
- nilai_siswa_2: array 2 dimensi (2 baris × 3 kolom).

Baris 18–19: Akses elemen array print(nilai_siswa_1[0])

```
# Output: 75
```

```
print(nilai siswa 2[1][1]) # Output: 40
```

- nilai_siswa_1[0]: elemen pertama (75)
- nilai_siswa_2[1][1]: baris ke-2, kolom ke-2 → 40

Baris 22-23: Ubah nilai elemen array

```
nilai_siswa_1[0] = 88 nilai_siswa_2[1][1]
= 70
```

- Elemen pertama nilai_siswa_1 diubah dari 75 → 88
- Elemen baris ke-2 kolom ke-2 nilai_siswa_2 dari 40 → 70

Baris 26-27: Cek perubahan print(nilai_siswa_1[0])

Output: 88 print(nilai_siswa_2[1][1]) # Output:

Baris 30–32: Cek ukuran & dimensi print("Ukuran

Array: ", nilai_siswa_1.shape) print("Ukuran

Array : ", nilai_siswa_2.shape) print("Dimensi

Array: ", nilai_siswa_2.ndim)

shape: menunjukkan ukuran/tata letak array ○ nilai_siswa_1.shape →

 $(4,) \rightarrow \text{array 1 dimensi dengan 4 elemen } \circ \text{nilai_siswa_2.shape} \rightarrow (2, 3) \rightarrow$

2 baris, 3 kolom • ...ndim: menunjukkan **jumlah dimensi** o

nilai_siswa_2.ndim \rightarrow 2 \rightarrow array 2D

Ringkasan Output:

75

40

88

70

Ukuran Array: (4,)

Ukuran Array: (2, 3)

Dimensi Array: 2

PERAKTEK KE 3

```
Array > 🏺 coba.py > .
      import numpy as np
      a = np.array([1, 2, 3])
      b = np.array([4, 5, 6])
      # menggunakan operasi penjumlahan pada 2 array
      print(a + b)
      # Indexing dan Slicing pada Array
     arr = np.array([10, 20, 30, 40])
      print(arr[1:3]) # array([20, 30])
 17 for x in arr:
          print(x)
 18
                                 TERMINAL
PS C:\Users\user\OneDrive\Dokumen\modul 04\STRUKTUR DATA - F
n/Python313/python.exe "c:/Users/user/OneDrive/Dokumen/modul
[5 7 9]
[20 30]
10
20
30
40
```

KODE PROGRAM DENGAN PENJELASAN:

Membuat dua array 1 dimensi

```
a = np.array([1, 2, 3]) b = np.array([4, 5,
```

6]) a dan b adalah array NumPy satu

Isi array:

dimensi.

- a = [1, 2, 3]
- b = [4, 5, 6]

Penjumlahan dua array

print(a + b) # array([5, 7, 9])

Ini melakukan **penjumlahan elemen per elemen** (bukan menjumlahkan semua angka).

Hitungannya:

- 1 + 4 = 5
- 2 + 5 = 7
- 3+6=9

Hasil: [5, 7, 9]

Indexing dan slicing pada array arr

= np.array([10, 20, 30, 40])

print(arr[1:3]) # array([20, 30])

arr[1:3] artinya ambil elemen dari indeks 1 sampai sebelum 3:

- indeks 0 = 10
- indeks 1 = 20
- indeks 2 = 30
- indeks 3 = 40 (tidak diambil)

Hasil: [20, 30]

Iterasi (perulangan) pada array

for x in arr: print(x)

Ini akan mencetak **semua elemen dalam array** satu per satu:

10

20

30

40

RINGKASAN FUNGSI YANG DIPAKAI Fungsi

/ Konsep Penjelasan np.array([...])

Membuat array dari list a + b

Menjumlahkan elemen array per posisi

in arr: Mengulang setiap elemen di dalam array

4.PERAKTEK KE 4

1. Membuat array (dalam bentuk list biasa, bukan NumPy)

arr adalah list biasa di Python (bukan array dari NumPy). List ini berisi 5 elemen: [1, 2, 3, 4, 5]

2. Linear Traversal ke tiap elemen arr

print("Linear Traversal: ", end=" ")

Baris ini mencetak teks "Linear Traversal: " tanpa pindah baris, karena end=" " mengganti karakter akhir default \n (newline) menjadi spasi.

for i in arr:

```
print(i, end=" ")
```

Ini adalah loop for untuk mengakses setiap elemen di dalam list arr.

- i akan bernilai 1, lalu 2, lalu 3, lalu 4, lalu 5.
- Setiap angka dicetak di baris yang sama, karena end=" " print()

Ini mencetak baris kosong untuk mengakhiri output traversal tadi, agar kursor turun ke baris baru setelah selesai.

OUTPUT PROGRAM:

Linear Traversal: 12345

APA ITU LINEAR TRAVERSAL?

Linear traversal adalah proses menelusuri atau mengunjungi setiap elemen dalam urutan satu per satu, dari awal sampai akhir.

5.PERAKTEK KE 5

```
Array > coba.py > ...

1  # membuat array

2  arr = [1, 2, 3, 4, 5]

3

4  # Reverse Traversal dari elemen akhir

5  print("Reverse Traversal: ", end="")

6  for i in range(len(arr) - 1, -1, -1):

7  print(arr[i], end=" ")

8  print()

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

PS C:\Users\user\OneDrive\Dokumen\modul 04\STRUKTUR
n/Python313/python.exe "c:/Users/user/OneDrive/Doku
Reverse Traversal: 5 4 3 2 1
```

KODE PROGRAM DAN PENJELASAN

1. Membuat array (list)

Kamu membuat sebuah ${f list}$ Python yang berisi angka:

[1, 2, 3, 4, 5]

Traversal mundur (dari belakang ke depan) print("Reverse Traversal: ", end="")

Ini mencetak teks "Reverse Traversal: " tanpa pindah baris karena end="".

```
for i in range(len(arr) - 1, -1, -1):
```

```
print(arr[i], end=" ")
```

Penjelasan bagian range(len(arr) - 1, -1, -1):

- len(arr) 1 → posisi indeks terakhir → 4
- -1 → batas akhir (tidak termasuk -1) → jadi sampai 0
- -1 → langkah mundur

Jadi, range(4, -1, -1) menghasilkan:

4, 3, 2, 1, 0

Kemudian arr[i] mencetak elemen berdasarkan indeks itu:

- $arr[4] \rightarrow 5$
- $arr[3] \rightarrow 4$
- $arr[2] \rightarrow 3$
- $arr[1] \rightarrow 2$
- $arr[0] \rightarrow 1$

print()

Ini untuk **pindah baris** setelah traversal selesai.

OUTPUT PROGRAM:

Reverse Traversal: 5 4 3 2 1

CATATAN TAMBAHAN:

Penjelasan

Membuat urutan angka dari start ke stop (tidak termasuk),

range(start,stop,step)

dengan langkah step

len(arr) Mengembalikan jumlah elemen dalam list end=" "

Mencegah pindah baris setelah print, diganti dengan spasi

[Text Wrapping Break]Kalau kamu ingin versi **terbalik otomatis** tanpa for, bisa juga pakai:

for i in reversed(arr):

print(i, end=" ")

6.PERAKTEK KE 6

KODE DAN PENJELASAN

1. Membuat array (list biasa) arr =

[1, 2, 3, 4, 5]

Kamu membuat list berisi 5 angka: [1, 2, 3, 4, 5]

2. Mendeklarasikan nilai awal n =

len(arr) # n akan berisi 5 (panjang list) i =

0 # i adalah indeks awal

Variabel:

- n menyimpan panjang list (jumlah elemen)
- i adalah indeks yang akan dipakai untuk menelusuri list

print("Linear Traversal using while loop: ", end=" ")

Mencetak teks pembuka, tanpa pindah baris (karena end=" ").

3. Traversal menggunakan while

loop while i < n:

```
print(arr[i], end=" ")
```

Ini adalah loop while:

- Selama i kurang dari n (yaitu 5), program akan:
- Cetak elemen arr[i]
- o Tambahkan i satu per satu

Urutan yang terjadi:

$$i = 0 \rightarrow arr[0] = 1 i$$

$$=1 \rightarrow arr[1] = 2 i =$$

$$2 \rightarrow arr[2] = 3 i = 3$$

$$\rightarrow$$
 arr[3] = 4 i = 4

$$\rightarrow$$
 arr[4] = 5

Setelah i = 5, kondisi i < n menjadi salah, maka loop berhenti.

print()

Untuk pindah ke baris baru setelah traversal selesai.

OUTPUT PROGRAM:

Linear Traversal using while loop: 1 2 3 4 5

PERBEDAAN DENGAN FOR LOOP for loop while loop

Lebih ringkas Butuh inisialisasi dan peningkatan i

Cocok saat tahu jumlah pengulangan Cocok saat butuh kontrol lebih fleksibel

7.PERAKTEK KE 7

```
# membust screy

arr = [1, 2, 3, 4, 5]

# mondeklerssikan milai swal

start = 0

end = len(arr) - 1

print("Reverse Traversal using while loop: ", end=" ")

# Reverse Traversal dengan bmile

while start < end:

arr[start], arr[end] = arr[end], arr[start]

start += 1

end -= 1

print(arr)

PROBLEMS OUTPUT DEBUS CONSOLE TERMINAL FORDS

PS C:\Users\user\OneOrive\Dokumen\modul 64\STRUKTUR DATA - RIMA NOVA UTAV
n/Pythonlays - c:\Users\user\oneOrive\Dokumen\modul 64\STRUKTUR DATA - RIMA NOVA UTAV

Reverse Traversal using while loop: [5, 4, 3, 2, 1]

PS C:\Users\user\OneOrive\Dokumen\modul 64\STRUKTUR DATA - RIMA NOVA UTAV

PS C:\Users\user\OneOrive\Dokumen\modul 64\STRUKTUR DATA - RIMA NOVA UTAV

PS C:\Users\user\OneOrive\Dokumen\modul 64\STRUKTUR DATA - RIMA NOVA UTAV

PS C:\Users\user\OneOrive\Dokumen\modul 64\STRUKTUR DATA - RIMA NOVA UTAV
```

KODE PROGRAM DAN PENJELASAN

1. Membuat array

Kamu membuat list biasa Python dengan elemen [1, 2, 3, 4, 5].

2. Mendeklarasikan nilai awal start = 0 end =

```
len(arr) - 1
```

Kamu menyiapkan dua indeks:

- start = 0 → indeks pertama (elemen paling kiri)
- end = 4 (karena panjang list = 5) → indeks terakhir (elemen paling kanan)

print("Reverse Traversal using while loop: ", end=" ")

Mencetak teks pembuka, tanpa pindah baris (karena end=" ").

3. Reverse traversal menggunakan while loop while

```
start < end:
```

```
arr[start], arr[end] = arr[end], arr[start]
```

Penjelasan logika:

- Selama start < end, kamu tukar posisi elemen kiri dan kanan
- Lalu, start maju ke kanan dan end mundur ke kiri
- Ini disebut in-place reverse (membalik tanpa membuat list baru)

Langkah-langkahnya:

- Pertama: tukar arr[0] dan arr[4] → jadi [5, 2, 3, 4, 1]
- Kedua: tukar arr[1] dan arr[3] → jadi [5, 4, 3, 2, 1]
- Ketiga: start = 2, end = $2 \rightarrow$ kondisi start < end salah \rightarrow loop berhenti

print(arr)

Cetak list hasil akhir setelah dibalik: [5, 4, 3, 2, 1]

OUTPUT PROGRAM:

Reverse Traversal using while loop: [5, 4, 3, 2, 1]

INTI LOGIKA:

Kamu **tidak hanya menelusuri mundur**, tapi juga **membalik urutan elemen** list dengan cara:

- Menukar elemen dari ujung kiri dan ujung kanan
- Terus bergerak ke tengah

PERAKTEK KE 8

KODE DAN PENJELASAN:

1. Membuat array (list) arr = [12, 16, 20, 40, 50, 70]

Kamu membuat list arr berisi 6 elemen angka.

2. Cetak array sebelum penyisipan print("Array

```
Sebelum Insertion: ", arr)
```

Mencetak isi list sebelum elemen baru ditambahkan.

Output sementara:

Array Sebelum Insertion: [12, 16, 20, 40, 50, 70]

3. Cetak panjang array sebelum penyisipan

```
print("Panjang Array : ", len(arr))
```

Menampilkan jumlah elemen di dalam list sebelum ditambah apa pun.

Output sementara:

Panjang Array: 6

4. Menyisipkan elemen di akhir menggunakan .append()

arr.append(26)

Fungsi .append() digunakan untuk menambahkan 1 elemen di bagian akhir list.

Setelah baris ini, arr akan menjadi:

5. Cetak array setelah penyisipan print("Array

```
Setelah Insertion: ", arr)
```

Menampilkan isi list setelah elemen baru (26) ditambahkan ke akhir.

Output:

Array Setelah Insertion: [12, 16, 20, 40, 50, 70, 26]

6. Cetak panjang array setelah penyisipan

```
print("Panjang Array : ", len(arr))
```

Menampilkan jumlah elemen setelah penambahan.

Output:

Panjang Array: 7

INTISARI:

Fungsi/Perintah Penjelasan arr.append(x) Menambahkan elemen x ke **akhir list** len(arr) Mengembalikan jumlah total elemen di dalam list

Cetak sebelum/sesudah Berguna untuk melihat perubahan list karena operasi tertentu

PERAKTEK KE 9

```
1 S nombust array
2 are = [12, 16, 20, 40, 30, 70]
3 C cetax are selected pemylatipus
5 print("Array Sebelum Transtlem; ", are)
7 S cetax penjang array sebelum penylatipus
9 print("Penjang Array; ", len(are))
18 S nomylatipus array poda tempah elemen manggunatan lineart(pod, x)
19 C cetax err setalan penylatipus
19 print("Array Setalah Intertion: ", arr)
10
11 S cetax err setalah penylatipus
17 print("Tanjang Array; ", len(arr))
18 Potata penjang array setalah penylatipus
19 print("Tanjang Array; ", len(arr))
19 Potata Cutur (Texasconecut REMANAL FORM)
19 Potata Potata
```

KODE DAN PENJELASAN:

- 1. Membuat array (list) arr = [12, 16, 20, 40, 50, 70] Membuat list arr dengan 6 elemen awal.
- Cetak array sebelum penyisipan print("Array Sebelum Insertion: ", arr) Menampilkan isi list sebelum perubahan.

Output:

Array Sebelum Insertion: [12, 16, 20, 40, 50, 70]

3. Cetak panjang array sebelum penyisipan

print("Panjang Array : ", len(arr))

Menampilkan panjang list sebelum disisipkan elemen baru.

Output:

Panjang Array: 6

4. Menyisipkan elemen 5 pada indeks 4 menggunakan .insert()

arr.insert(4, 5)

.insert(pos, x) menyisipkan elemen x pada indeks pos (posisi ke-4 dalam list).

- Indeks ke-4 saat ini adalah elemen 50
- Elemen baru 5 akan disisipkan di posisi ini
- Elemen di posisi 4 dan sesudahnya bergeser ke kanan

Setelah ini, arr jadi:

[12, 16, 20, 40, 5, 50, 70]

5. Cetak array setelah penyisipan print("Array

Setelah Insertion: ", arr)

Menampilkan list setelah elemen baru disisipkan. Output:

Array Setelah Insertion: [12, 16, 20, 40, 5, 50, 70]

6. Cetak panjang array setelah penyisipan

print("Panjang Array : ", len(arr))

Menampilkan panjang list setelah penambahan.

Output:

Panjang Array: 7

INTISARI:

Fungsi/Perintah	Penjelasan
.insert(pos, x)	Menyisipkan elemen x di indeks pos
Indeks list dimulai dari 0	Posisi ke-4 artinya elemen ke-5 dalam list

Elemen setelah posisi pos akan bergeser ke kanan secara otomatis

Berikut adalah penjelasan baris per baris dari kode Python yang Anda berikan:

Baris arr = [1, 2,

3, 4, 5]

• Membuat sebuah **array/list** bernama arr dengan elemen: 1, 2, 3, 4, 5.

Baris

start = 0

• Menginisialisasi variabel start sebagai indeks awal dari list, yaitu indeks pertama

Baris end =

len(arr) - 1

- Menginisialisasi variabel end sebagai indeks akhir dari list.
- len(arr) adalah panjang list (yaitu 5), sehingga end = 5 1 = 4 (indeks terakhir dari array).

Baris

print("Reverse Traversal using while loop: ", end=" ")

- Mencetak teks "Reverse Traversal using while loop: " tanpa pindah baris (end=" berarti cetak spasi, bukan newline).
- Ini hanya untuk memberi tahu bahwa proses berikutnya adalah traversal terbalik.

Baris while start

```
< end:
```

```
arr[start], arr[end] = arr[end], arr[start]
```

```
start += 1 end -= 1
```

Baris

- while start < end: adalah kondisi perulangan. Loop akan berjalan selama indeks start masih lebih kecil dari end. Baris arr[start], arr[end] = arr[end], arr[start]
- Menukar elemen pada posisi start dengan end. Ini adalah cara membalik urutan elemen array secara in-place (langsung di dalam array, tanpa membuat array baru).

Baris

start += 1

Menaikkan nilai start agar mendekati ke tengah dari array. Baris

end -= 1

Menurunkan nilai end agar juga mendekati tengah.

Loop ini akan terus berjalan dan menukar elemen dari luar ke dalam hingga start tidak lagi kurang dari end.

Baris print(arr)

• Setelah loop selesai (array sudah dibalik), baris ini mencetak isi array yang baru.

Output

Reverse Traversal using while loop: [5, 4, 3, 2, 1]

• Elemen array arr telah **dibalik** dari [1, 2, 3, 4, 5] menjadi [5, 4, 3, 2, 1].

PERAKTEK KE 10

```
# series 12, 16, 20, 60, 50, 70]

# # cuth arm tabelow pampilizes

print("Armay Setelow Invertion : ", arm)

# # cuth penjang armay tabelow population

print("Manjang Armay : ", len(arm))

# # menginipkan armay pada tangah eleman menggunatan .invertioos, x)

# # menginipkan armay pada tangah eleman menggunatan .invertioos, x)

# # menginipkan armay pada tangah eleman menggunatan .invertioos, x)

# # menginipkan armay pada tangah eleman menggunatan .invertioos, x)

# # menginipkan armay pada tangah eleman menggunatan .invertioos, x)

# # cuth penjang armay satelan penyilipan

## cuth penjang armay intelan penyilipan

## cuth penjang armay satelan penyilipan

## cuth penjang armay intelantion in
```

membuat array

Komentar ini menunjukkan bahwa baris berikut akan membuat array (dalam Python disebut list).

```
arr = [12, 16, 20, 40, 50, 70]
```

Membuat sebuah list bernama arr yang berisi 6 elemen:

```
[12, 16, 20, 40, 50, 70] cetak
```

arr sebelum penyisipan

Komentar bahwa baris berikut akan mencetak isi array sebelum dilakukan penyisipan.

```
print("Array Sebelum Insertion : ", arr)
```

Menampilkan isi array sebelum ditambahkan elemen:

Array Sebelum Insertion: [12, 16, 20, 40, 50, 70]

cetak panjang array sebelum penyisipan

Komentar ini menjelaskan bahwa kita akan mencetak jumlah elemen dalam array sebelum penambahan.

print("Panjang Array : ", len(arr))

Menggunakan fungsi len() untuk menghitung jumlah elemen dalam array. Hasilnya adalah 6:

Panjang Array: 6 menyisipkan array pada tengah elemen

menggunakan .insert(pos, x)

Komentar yang menjelaskan bahwa akan dilakukan penyisipan elemen di posisi tertentu menggunakan .insert(posisi, nilai).

arr.insert(4, 5)

Baris ini menyisipkan angka 5 ke dalam array pada indeks ke-4 (ingat: indeks dimulai dari 0).

Sebelum penyisipan:

Index: 0 1 2 3 4 5

Value: 12 16 20 40 50 70

Setelah insert(4, 5) dijalankan, angka 5 akan masuk di posisi ke-4 (sebelum angka 50), menjadi:

[12, 16, 20, 40, 5, 50, 70]

cetak arr setelah penyisipan

Komentar bahwa baris berikutnya akan mencetak isi array setelah penyisipan.

print("Array Setelah Insertion : ", arr)

Mencetak array setelah elemen 5 disisipkan:

Array Setelah Insertion: [12, 16, 20, 40, 5, 50, 70] cetak

panjang array setelah penyisipan

Komentar bahwa kita akan menghitung ulang jumlah elemen setelah ada penyisipan.

print("Panjang Array : ", len(arr))

Mencetak panjang array setelah penambahan elemen. Karena ada satu elemen tambahan, hasilnya sekarang:

Panjang Array: 7

Kesimpulan:

- insert(posisi, nilai) menyisipkan elemen pada posisi tertentu tanpa menghapus elemen lain.
- Elemen-elemen setelah posisi itu akan bergeser ke kanan len() digunakan untuk melihat jumlah elemen sebelum dan sesudah perubahan.
- Kalau kamu ingin, aku juga bisa tunjukkan cara menghapus elemen dari list setelah penyisipan.

11.PERAKTEK KE 11

```
a = [10, 20, 30, 40, 50]
      print("Array Sebelum Deletion : ", a)
      # menghapus elemen array pertama yang nilainya 30
      a.remove(30)
      print("Setelah remove(30):", a)
      # menghapus elemen array pada index 1 (20)
      popped_val = a.pop(1)
      print("Popped element:", popped_val)
      print("Setelah pop(1):", a)
     # Menghapus elemen pertama (10)
     del a[0]
16 print("Setelah del a[0]:", a)
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS
PS C:\Users\HP\OneOrive\dyni python\modul 2> & C:/Users/HP/AppData/Local/Prog
Array Sebelum Deletion : [10, 20, 30, 40, 50]
Setelah remove(30): [10, 20, 40, 50]
Popped element: 20
Setelah pop(1): [10, 40, 50]
Setelah del a[0]: [40, 50]
PS C:\Users\HP\OneOrive\dyni python\modul 2>
```

Berikut adalah penjelasan baris per baris dari kode Python yang kamu berikan:

```
membuat array a = [10, 20, 30, 40, 50]
```

Artinya: Membuat sebuah list (array) bernama a yang berisi lima elemen: 10, 20, 30, 40, dan 50.

```
print("Array Sebelum Deletion : ", a)
```

Artinya: Menampilkan isi list a sebelum dilakukan penghapusan elemen.

• menghapus elemen array pertama yang nilainya 30

```
a.remove(30)
```

Artinya: Menghapus elemen pertama yang memiliki nilai 30 dari list. Jika ada lebih dari satu elemen dengan nilai 30, hanya yang pertama yang akan dihapus.

```
print("Setelah remove(30):", a)
```

Artinya: Menampilkan isi list setelah elemen bernilai 30 dihapus.

menghapus elemen array pada index 1 (20) popped_val = a.pop(1)

Artinya: Menghapus elemen di indeks ke-1 (elemen ke-2) dari list, yaitu 20, dan menyimpannya ke dalam variabel popped_val.

print("Popped element:", popped_val)

Artinya: Menampilkan elemen yang telah dihapus tadi (yaitu 20).

print("Setelah pop(1):", a)

Artinya: Menampilkan isi list setelah elemen di indeks ke-1 dihapus. Menghapus

elemen pertama (10)

del a[0]

Artinya: Menghapus elemen di indeks ke-0 (elemen pertama) dari list, yaitu 10,

menggunakan kata kunci del. print("Setelah del a[0]:", a)

Artinya: Menampilkan isi list setelah elemen pertama dihapus.

PERAKTEK KE 12

```
Welcome
                                 tugas1.py X
                aray.py
 🕏 tugas1.py > ...
       # impor library numpy
       import numpy as np
       # membuat matiks dengan numpy
       matriks_np = np.array([[1,2,3],
                                [4,5,6],
                                [7,8,9]])
   7
 PROBLEMS
           OUTPUT
                    DEBUG CONSOLE
                                   TERMINAL
                                             PORTS
 PS C:\Users\elsan\OneDrive\Dokumen\modul 2> & C:/Users/el
 umen/modul 2/tugas1.py"
 PS C:\Users\elsan\OneDrive\Dokumen\modul 2>
```

Berikut adalah penjelasan *baris per baris* dari kode Python yang kamu berikan:

```
# *Baris 1:*

python
# impor library numpy
```

Ini adalah *komentar* (ditandai dengan #), artinya baris ini tidak akan dieksekusi.

Tujuannya adalah memberi penjelasan bahwa baris berikutnya akan melakukan import library numpy.

#*Baris 2:*

python import

numpy as np

- Ini adalah baris yang **mengimpor library numpy** dan memberinya alias np.
- numpy adalah library Python yang digunakan untuk komputasi numerik, terutama untuk *mengolah array atau matriks*.
- Dengan menulis as np, kamu bisa menggunakan np sebagai singkatan dari numpy, sehingga lebih ringkas saat memanggil fungsinya.

Baris ini membuat sebuah *array dua dimensi* (atau bisa disebut matriks) menggunakan numpy.

Fungsi np.array() digunakan untuk mengubah list (daftar) biasa menjadi array numpy.

Di dalam np.array, terdapat list 2 dimensi:

```
* Baris pertama: [1, 2, 3]

* Baris kedua: [4, 5, 6]

* Baris ketiga: [7, 8, 9]

Hasilnya adalah matriks berukuran *3x3*.

*Kesimpulan:*

Kode ini membuat sebuah *matriks 3x3* dengan numpy, isinya:

[[1 2 3]
[4 5 6]
[7 8 9]]
```

PERAKTEK KE 13

```
X = np.array([
           [12,7,3],
           [4,5,6],
           [7,8,9]])
      Y = np.array(
          [[5,8,1],
          [6,7,3],
[4,5,9]])
      result = X + Y
    print("Hasil Penjumlahan Matriks dari NumPy")
print((result))
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS
PS C:\Users\user\OneOrive\Dokumen\modul 04\STRUKTUR DATA - RIMA NOVA UTAMI
1/Programs/Python/Python313/python.exe "c:/Users/user/OneOrive/Ookumen/mc
Hasil Penjumlahan Matriks dari NumPy
[[17 15 4]
[10 12 9]
[11 13 18]]
PS C:\Users\user\OneDrive\Dokumen\modul 04\STRUKTUR DATA - RIMA NOVA UTAMI
```

Berikut adalah penjelasan baris perbaris dari kode python tersebut

#Program penjumlahan matriks yang dibuat dari list

```
X = [[12,7,3],

[4,5,6],

[7,8,9]]

Y = [[5,8,1],

[6,7,3],

[4,5,9]]

result = [[0,0,0],

[0,0,0],
```

proses penjumlahan dua matriks menggunakan nested loop
mengulang sebanyak row (baris)

```
for i in range(len(X)):
 # mengulang sebanyak column (kolom)
 for j in range(len(X[0])):
    result[i][j] = X[i][j] + Y[i][j]
print("Hasil Penjumlahan Matriks dari LIST")
# cetak hasil penjumlahan secara iteratif
for r in result:
 print(r)
Berikut adalah penjelasan baris per baris dari kode Python untuk penjumlahan matriks
yang dibuat dari list:
python
# Program penjumlahan matriks yang dibuat dari list
- Komentar yang menjelaskan tujuan program, yaitu menjumlahkan dua matriks yang
direpresentasikan sebagai list di Python.
python
X = [[12,7,3],
  [4,5,6],
  [7,8,9]]
- Mendefinisikan matriks X sebagai list dua dimensi (list of lists) dengan 3 baris dan 3
kolom.
python
Y = [[5,8,1],
  [6,7,3],
```

```
[4,5,9]]
```

- Mendefinisikan matriks Y juga sebagai list dua dimensi dengan ukuran yang sama seperti X.

- Membuat matriks result dengan ukuran 3x3 yang diinisialisasi dengan nol sebagai tempat penyimpanan hasil penjumlahan.

```
python
```

proses penjumlahan dua matriks menggunakan nested loop

mengulang sebanyak row (baris)

for i in range(len(X)):

- Loop pertama (i) berjalan dari 0 sampai jumlah baris matriks X (3 baris). Ini mengontrol iterasi per baris.

python

```
# mengulang sebanyak column (kolom)
```

for j in range(len(X[0])):

- Loop kedua (j) berjalan dari 0 sampai jumlah kolom matriks X (3 kolom). Ini mengontrol iterasi per kolom dalam setiap baris.

python

```
result[i][j] = X[i][j] + Y[i][j]
```

- Menjumlahkan elemen pada posisi [i][j] dari matriks X dan Y, lalu menyimpan hasilnya di posisi yang sama pada matriks result.
python print("Hasil Penjumlahan Matriks
dari LIST")
- Mencetak teks sebagai judul hasil penjumlahan matriks.
python
cetak hasil penjumlahan secara iteratif
for r in result:
print(r)
- Loop untuk mencetak setiap baris dari matriks result satu per satu, sehingga hasil penjumlahan ditampilkan dalam format matriks.
Ringkasan

Kode ini membuat dua matriks 3x3, menjumlahkan elemen-elemen yang bersesuaian dari kedua matriks tersebut menggunakan nested loop, menyimpan hasilnya di matriks

baru, dan mencetak hasilnya baris per baris.

PERAKTEK 14

```
tugas1.py > ...
      # impor library numpy
      import numpy as np
      # Membuat matriks dengan numpy
      X = np.array([
           [12,7,3],
[4,5,6],
           [7,8,9]])
      Y = np.array(
           [[5,8,1],
           [6,7,3],
           [4,5,9]])
     # Operasi penjumlahan dua matrik numpy
result = X + Y
PROBLEMS
          OUTPUT DEBUG CONSOLE TERMINAL
                                                PORT
PS C:\Users\elsan\OneDrive\Dokumen\modul 2> & C:
umen/modul 2/tugas1.py"
Hasil Penjumlahan Matriks dari NumPy
[[17 15 4]
[10 12 9]
[11 13 18]]
```

Berikut adalah penjelasan baris per baris dari kode Python tersebut:

impor library numpy import

numpy as np

Penjelasan:

Mengimpor library NumPy dan memberinya alias np. NumPy adalah library Python yang digunakan untuk operasi matematika dan manipulasi array/matriks.

Membuat matriks dengan numpy

```
X = np.array([
[12,7,3],
[4,5,6],
[7,8,9]])
```


Baris 2 kolom 2: 5 + 7 = 12 Baris 3 kolom 3: 9 + 9 = 18 Hasilnya disimpan dalam variabel result. # cetak hasil print("Hasil Penjumlahan Matriks dari NumPy") print(result) Penjelasan: Mencetak teks informasi, lalu mencetak isi dari matriks result, yaitu hasil penjumlahan dari X dan Y. Output program: Hasil Penjumlahan Matriks dari NumPy [[17 15 4] [10 12 9] [11 13 18]]

PERAKTEK KE 15

```
🕏 tugas1.py 🗦 ...
      # impor library numpy
      import numpy as np
      # Membuat matriks dengan numpy
      X = np.array([
          [12,7,3],
          [4,5,6],
          [7,8,9]])
      Y = np.array(
          [[5,8,1],
          [6,7,3],
          [4,5,9]])
      # Operasi pengurangan dua matrik numpy
      result = X - Y
                   DEBUG CONSOLE
PROBLEMS
          OUTPUT
                                  TERMINAL
PS C:\Users\elsan\OneDrive\Dokumen\modul 2> & C:,
umen/modul 2/tugas1.py"
Hasil Pengurangan Matriks dari NumPy
[[7-1 2]
 [-2 -2 3]
 [3 3 0]]
PS C:\Users\elsan\OneDrive\Dokumen\modul 2>
```

Berikut adalah penjelasan *baris per baris* dari kode Python tersebut yang menggunakan *NumPy* untuk melakukan *pengurangan dua matriks*:

python
impor library numpy
> Ini adalah komentar yang menjelaskan bahwa baris berikutnya akan mengimpor library *NumPy*, sebuah library populer di Python untuk komputasi numerik, terutama operasi matriks dan array.
Baris 2
python import
numpy as np
> Mengimpor library *NumPy* dan memberi alias np agar lebih ringkas saat digunakan dalam kode.
Baris 5–8
python
X = np.array([
[12,7,3],
[4,5,6],
[7,8,9]])
> Membuat *matriks (array 2 dimensi)* X menggunakan fungsi np.array. Matriks ini berukuran *3x3* dengan nilai-nilai sebagai berikut:
[12, 7, 3]
[4, 5, 6]
[7, 8, 9]

Baris 10–13 python Y = np.array(

[[5,8,1], [6,7,3],

[4,5,9]])

> Membuat *matriks kedua* Y, juga berukuran 3x3, dengan nilai:

[6, 7, 3]

[4, 5, 9]

Baris 15

python

result = X - Y

> Melakukan *pengurangan elemen-elemen dari dua matriks* (element-wise subtraction). Setiap elemen pada posisi yang sama di X dan Y akan dikurangkan:

- 12 5 = 7
- 7 8 = -1
- 3 1 = 2
- dan seterusnya...

Hasilnya adalah matriks result:
[7,-1, 2]
[-2, -2, 3]
[3, 3, 0]
Baris 18
Dalis 10
python print("Hasil Pengurangan Matriks dari
NumPy")
> Menampilkan teks judul agar hasil yang dicetak lebih mudah dipahami.
Baris 19
python print(result)
> Menampilkan hasil pengurangan matriks yang telah disimpan dalam variabel result.
> Wellampilkan hasii pengurangan matriks yang telah disimpah dalam variaber result.
Kesimpulan
Kode ini menunjukkan *cara menggunakan NumPy untuk membuat dua matriks dan mengurangkannya secara langsung*. Ini jauh lebih efisien daripada menggunakan nested
loop seperti pada Python standar.

PERAKTEK KE 16

```
tugas1.py > ...
      # impor library numpy
      import numpy as np
      # Membuat matriks dengan numpy
      X = np.array([
           [12,7,3],
           [4,5,6],
           [7,8,9]])
      Y = np.array(
 10
           [[5,8,1],
 11
           [6,7,3],
           [4,5,9]])
      # Operasi perkalian dua matrik numpy
      result = X * Y
 16
                                   TERMINAL
PROBLEMS
          OUTPUT
                   DEBUG CONSOLE
PS C:\Users\elsan\OneDrive\Dokumen\modul 2> &
umen/modul 2/tugas1.py
Hasil Perkalian Matriks dari NumPy
[[60 56 3]
 [24 35 18]
 [28 40 81]]
```

Berikut adalah *penjelasan baris per baris* dari kode Python yang menggunakan *NumPy* untuk melakukan *perkalian dua matriks* secara *element-wise (per elemen)*:

Baris 1

python

impor library numpy

> Komentar yang menjelaskan bahwa baris selanjutnya akan mengimpor library *NumPy*, yang digunakan untuk operasi numerik di Python.

```
# Baris 2
python import
numpy as np
> Mengimpor *NumPy* dan memberi alias np agar lebih singkat saat digunakan dalam
kode.
# Baris 5-8
python
X = np.array([
  [12,7,3],
  [4,5,6],
  [7,8,9]])
> Membuat *matriks (array 2 dimensi)* X menggunakan np.array. Matriks ini berukuran
*3x3* dengan elemen:
[12, 7, 3]
[4, 5, 6]
[7, 8, 9]
# Baris 10-13
python
Y = np.array(
  [[5,8,1],
```

[6,7,3],
[4,5,9]])
> Membuat *matriks kedua* Y, juga berukuran *3x3*, dengan elemen:
[5, 8, 1]
[6, 7, 3]
[4, 5, 9]
Baris 15
python
result = X * Y
> Melakukan *perkalian elemen-per-elemen (element-wise multiplication)* antara
matriks X dan Y. Ini *bukan perkalian matriks biasa (dot product)*, tetapi setiap elemen dikalikan dengan elemen pada posisi yang sama:
and the San Green pass position for the San
* 12 * 5 = 60
* 7 * 8 = 56
* 3 * 1 = 3
* dan seterusnya
Hasilnya:
[60, 56, 3]
[24, 35,18]
[28, 40,81]

= X @ Y

PERAKTEK KE 17

```
tugas1.py >.
      # Praktek 17 : Operasi Pembagian Matriks dengan numpy
      # impor library numpy
      import numpy as np
      # Membuat matriks dengan numpy
      X = np.array([
          [12,7,3],
          [4,5,6],
          [7,8,9]])
      Y = np.array(
          [[5,8,1],
          [6,7,3],
          [4,5,9]])
      # Operasi pembagian dua matrik numpy
      result = X / Y
PROBLEMS
          OUTPUT DEBUG CONSOLE
                                  TERMINAL
PS C:\Users\elsan\OneDrive\Dokumen\modul 2> & C:/Users/elsan/Ap
umen/modul 2/tugas1.py"
Hasil Pembagian Matriks dari NumPy
[[2.4
             0.875
                       3.
 [0.66666667 0.71428571 2.
                                  11
 [1.75
```

Berikut penjelasan baris per baris dari kode Python yang kamu berikan:

Praktek 17: Operasi Pembagian Matriks dengan numpy

Komentar ini memberikan informasi bahwa ini adalah praktik ke-17 dan berisi contoh operasi pembagian matriks menggunakan library NumPy.

impor library numpy

Komentar yang menjelaskan bahwa kita akan mengimpor library NumPy.

import numpy as np

Baris ini mengimpor library NumPy dan memberi alias np, sehingga kita bisa menggunakan np untuk memanggil fungsi-fungsi dalam NumPy.

python X = np.array([[12, 7, 3], [4, 5, 6], [7, 8, 9]])

Baris ini membuat matriks 3x3 bernama X dari list Python menggunakan fungsi np.array(). Matriks X:

```
12 7 3
4 5 6
7 8 9

python
Y = np.array([
    [5, 8, 1],
    [6, 7, 3],
    [4, 5, 9]
])
```

Membuat matriks 3x3 bernama Y yang juga berasal dari list Python. Matriks Y:

```
5 8 1
6 7 3
4 5 9
result = X / Y
```

Operasi pembagian dua matrik numpy

Komentar ini menjelaskan bahwa operasi selanjutnya adalah pembagian dua matriks.

Baris ini melakukan pembagian elemen per elemen (element-wise division) antara matriks X dan Y. Artinya:

```
python
```

```
result[i][j] = X[i][j] / Y[i][j]
```

Contoh:

```
* result[0][0] = 12 / 5 = 2.4 * result[0][1] = 7 / 8 = 0.875
```

cetak hasil

Komentar bahwa baris berikut akan mencetak hasil ke layar.

python print("Hasil Pembagian Matriks dari

NumPy")

print(result)

^{*} dan seterusnya...

- * print("Hasil Pembagian Matriks dari NumPy") mencetak judul output.
- * print(result) mencetak hasil dari pembagian matriks X dan Y dalam bentuk matriks 3x3.

Contoh Output:

Jika dijalankan, akan muncul hasil seperti ini (dibulatkan untuk tampilan):

Hasil Pembagian Matriks dari NumPy

```
[[2.4 0.875 3. ]
[0.666666667 0.71428571 2. ]
[1.75 1.6 1. ]]
```

PERAKTEK 18

```
tugas1.py > ...
      # impor library numpy
      import numpy as np
      # membuat matriks
      matriks_a = np.array([
          [1, 2, 3],
          [4, 5, 6],
          [7, 8, 9]
      1)
      # cetak matriks
      print("Matriks Sebelum Transpose")
      print(matriks_a)
      # transpose matriks_a
      balik = matriks_a.transpose()
PROBLEMS
          OUTPUT DEBUG CONSOLE TERMINAL
umen/modul 2/tugas1.py"
Matriks Sebelum Transpose
[[1 2 3]
[4 5 6]
 [7 8 9]]
Matriks Setelah Transpose
[[1 4 7]
[2 5 8]
 [3 6 9]]
PS C:\Users\elsan\OneDrive\Dokumen\modul 2>
```

Berikut adalah penjelasan baris per baris dari kode Python yang menggunakan NumPy untuk melakukan transpose (permutasi baris dan kolom) pada matriks:

```
# Baris 1
```

python

impor library numpy

> Komentar yang menjelaskan bahwa kode akan menggunakan library NumPy.# Baris 2

```
python import
numpy as np
> Mengimpor library NumPy dan memberi alias np untuk mempersingkat penulisan
fungsi-fungsinya.
# Baris 5-9
python matriks_a =
np.array([
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9]
])
> Membuat matriks 2 dimensi matriks_a menggunakan np.array. Matriks ini memiliki
ukuran 3x3, dengan elemen:
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
# Baris 12
python print("Matriks Sebelum
Transpose")
```

> Menampilkan teks untuk memberi tahu bahwa output berikut adalah matriks sebelum dilakukan operasi transpose.
Baris 13
python print(matriks_a)
> Menampilkan isi dari matriks_a.
Baris 16
python balik =
matriks_a.transpose()
> Melakukan transpose, yaitu **menukar baris menjadi kolom dan kolom menjadi baris.
> Hasil transpose dari matriks_a adalah:
[1, 4, 7]
[2, 5, 8]
[3, 6, 9]
Matriks ini disimpan dalam variabel balik.
Alternatif penulisan transpose:

python balik =
matriks_a.T
Baris 19
python print("Matriks Setelah
Transpose")
> Menampilkan teks penjelas bahwa output berikut adalah matriks hasil transpose.
Baris 20
nuth on
python
print(balik)
> Menampilkan hasil dari operasi transpose yang sudah disimpan dalam variabel balik.
Thenanipilian hash dan operasi danspose yang sadan disimpan dalam tahaser sama
Kesimpulan:
Kode ini memperlihatkan bagaimana menggunakan NumPy untuk:
* Membuat matriks 2 dimensi
* Melihat isi matriks sebelum dan sesudah di-transpose
Transpose sangat penting dalam aljabar linear, seperti dalam operasi dot product, rotasi, atau manipulasi data tabular.