Санкт-Петербургский Политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Лабораторная работа №2

Дисциплина: Статистическое моделирование

Выполнил: студент группы 5130904/10102

Иванов К. А.

Преподаватель: Чуркин В. В.

Цель работы:

- 1.Практическое освоение методов получения случайных величин, имеющих дискретный характер распределения.
- 2. Разработка программных датчиков дискретных случайных величин.
- 3. Исследование характеристик моделируемых датчиков:
- 3.1. Оценка точности моделирования: вычисление математического ожидания и дисперсии, сравнение полученных оценок с соответствующими теоретическими значениями.
- 4.Графическое представление функции плотности распределения и интегральной функции распределения.

Ход работы:

1. Дискретное распределение

Алгоритм 1:

+ ·	 Оценка 	+-	IRNUNI	 -+	Погрешность	i	+ Теоретическое значение +
1 1	M D	I I			0.3017646418391635 3.4225036452413633		50.5 833.25
+		+-		+		-+	+

Рисунок 1 - Результаты равномерного распределения

Рисунок 2 - Плотность распределения

Рисунок 3 - Функция распределения

2. Биномиальное распределение

Объем выборки: 10⁴, N=10, p=0,5

Алгоритм 1: рекуррентный метод

Алгоритм 2: нормальная аппроксимация

IR = RNNORM(N*p,SQRT(N*p*(1.0-p))) + 0.5

+- +-	 Оценка	-+ -+	IRNBIN	İ	IRNBNL	i	 Теоретическое значение	+ -
 	M D	I I	4.9959 2.498863190000031		5.004344496592488 2.5028184140029017	I I	5.0 2.5	I I
+-		-+						+

Рисунок 4 - Результаты биномиального распределения

Рисунок 5 - Плотность распределения

Рисунок 6 - Функция распределения

3. Геометрическое распределение

Объем выборки: 10^4, p=0,5

Алгоритм 1: рекуррентный метод

Алгоритм 2: Прямой метод заключается в получении псевдослучайной последовательности равномерно распределенных случайных чисел u[1], u[2],... в интервале [0,1], до тех пор пока не найдется u[k] "успешный", который меньше или равен р.

Алгоритм 3: вариация первого алгоритма

$$k = int[ln(u)/ln(q)]+1$$

+-		+		+-		+		+-	+
I	Оценка		IRNGEO_1		IRNGEO_2		IRNGEO_3		Теоретическое значение
+-		+		+-		+		+-	+
1	M		1.98988		2.00475		2.00209		2.0
1	D	1.97	04975855988898		2.0102874374993487		2.009405631899556		2.0
+-		+		+-		+		+-	+

Рисунок 7 - Результаты геометрического распределения

Рисунок 8 - Плотность распределения

Рисунок 9 - Функция распределения

4. Распределение Пуассона

Объем выборки: 10⁴, mu=10

Алгоритм 1: рекуррентный метод

Алгоритм 2: перемножении равномерно распределенных случайных чисел до тех пор, пока выполняется условие

Ro -mu
$$\Pi$$
 x[i] >= e i=0

+-		-+		+		+		+
1	Оценка	1	IRNPOI	Ī	IRNPSN	Ī	Теоретическое	значение
+-		-+		+		+		+
1	M	1	9.99058	Ī	10.032733613485187	Ī	10.0	1
1	D	1	10.070291263598396	Ī	9.996152381913673	Ī	10.0	1
+-		-+		+		+		+

Рисунок 10 - Результаты распределения Пуассона

Рисунок 11 - Плотность распределения

Рисунок 12 - Функция распределения

Индивидуальное задание, Вариант 9

Цель:

Реализовать один из тестов на случайность из набора тестов Д. Кнута — проверка интервалов. Описание теста приведено на стр. 140 [3], проверить сгенерированную выборку, разрядность слов и длина выбирается в соответствии с рекомендациями в [3].

Ход работы:

Проверка интервалов. Данный тест проверяет равномерность распределения символов в исследуемой последовательности, анализируя длины подпоследовательностей, все элементы которых принадлежат определенному числовому интервалу.

Пусть $\varepsilon = \varepsilon_1 \varepsilon_2 \dots \varepsilon_n$ — последовательность m-разрядных чисел. Пусть α и β — два целых числа, таких, что $0 \le \alpha < \beta \le 2^m - 1$. Подсчитываются длины интервалов между числами, лежащими в промежутке $[\alpha; \beta]$. После этого определяется число интервалов v_i , $i = \overline{0, t}$, длины $0, 1, 2, \dots, t$ и рассчитывается статистика:

$$\chi^{2}(obs) = \sum_{i=0}^{t} \frac{\left[\nu_{i} - \eta \frac{\beta - \alpha}{2^{m}} \left(1 - \frac{\beta - \alpha}{2^{m}}\right)^{i}\right]^{2}}{\eta \frac{\beta - \alpha}{2^{m}} \left(1 - \frac{\beta - \alpha}{2^{m}}\right)^{i}},$$

где $\eta = \sum_{i=0}^{t} v_i$ – общее число интервалов.

Полученный результат анализируется при помощи критерия χ^2 с числом степеней свободы, равным t.

[5, 6, 5, 5, 6, 6, 6, 7, 6, 7, 6, 6, 5, 4, 5, 3, 8, 3, 4, 5, 2, 5, 4, 5, 5, 4, 7, 5, 4, 5, 5, 3, 7, 7, 5, 3, 6, 8, 6, 5, 3, 2, 5, 8, 4, 4, 7, 5, 6, 2]

[0, 3, 6]

[0, 0, 0]

xи2 = 0

хи2_крит = 5.991464547107979

Таким образом, проверка интервалов прошла тест

GitHub: https://github.com/bpllqd/matstat/tree/main/Lab2