Assignment 3

Group size: 1 individual max

Deadline: 25th December 2020

Statement

In this assignment you have to implement a clustering technique. Format of the dataset is as follows: 214
11

1	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.00	0.00	1
2	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.00	0.00	1
3	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.00	0.00	1
4	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.00	0.00	1
5	1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0.00	0.00	1
6	1.51596	12.79	3.61	1.62	72.97	0.64	8.07	0.00	0.26	1
7	1.51743	13.30	3.60	1.14	73.09	0.58	8.17	0.00	0.00	1
8	1.51756	13.15	3.61	1.05	73.24	0.57	8.24	0.00	0.00	1
9	1.51918	14.04	3.58	1.37	72.08	0.56	8.30	0.00	0.00	1
4.0	4 54755	42 00	3 60	4 36	72 00	0.57	0.40	0.00	0.44	4

- The digit "214" in first row is the number of rows
- Digit "11" in second row is the number of columns
- Third row is an empty one
- Rest is a grid of data.

Input data sets:

Download the following dataset and transform it in the above mentioned format.

• http://archive.ics.uci.edu/ml/datasets/Iris

Write an application, in any programming language, to apply the following tasks to the input datasets.

Tasks to do:

Calculation Correlation Matrix:

- Create a correlation matrix from the data matrix using Pearson's correlation coefficient
- The correlation matrix will be a *NXN* matrix (where *N* is number of records in your input dataset) containing Pearson's correlation coefficient between each of the row in data matrix
- Pearson's correlation coefficient formula:

$$\sum (x-\overline{x})(y-\overline{y})/\sqrt{\sum (x-\overline{x})^2}\sum (y-\overline{y})^2$$

Discretize:

• Calculate median/mean of each column of the correlation matrix and set all the values in that column that are above the calculated median/mean to 1 and rest to 0

Visualize:

• Convert the discretized matrix into bitmap. Sample image follow.

