Math 164 Homework 1

Jiaping Zeng

1/15/2021

1. Let $A \in \mathbb{R}^{m \times n}$ and rank(A) = m. Show that $m \leq n$.

Answer: By definition of matrix rank, rank(A) is the dimension of the column span of A, which cannot exceed the number of columns in the matrix, i.e. rank(A) $\leq m$. It is also the dimension of the row span which cannot exceed the number of rows in the matrix, i.e. rank(A) $\leq n$. Therefore rank(A) $\leq \min(m, n)$. By definition of minimum, if rank(A) = $m \leq \min(m, n)$, we must have $n \geq m$.

2. Fill in the blanks in the following 2×2 matrix

$$\begin{bmatrix} -1 & ? \\ ? & ? \end{bmatrix}$$

so that $||A||_{\infty} = 3$.

Answer:

$$\begin{bmatrix} -1 & 0 \\ -2 & 0 \end{bmatrix}$$

3. Show that for any two vectors $x, y \in \mathbb{R}^n$, $|||x|| - ||y||| \le ||x - y||$.

Answer: We have $|||x|| - ||y|||^2 = (\sqrt{\langle x, x \rangle} - \sqrt{\langle y, y \rangle})^2 = \langle x, x \rangle + \langle y, y \rangle - ||x|| ||y||$. By Cauchy-Schwarz inequality, $|\langle x, y \rangle| \le ||x|| ||y||$, then $|||x|| - ||y|||^2 \le \langle x, x \rangle + \langle y, y \rangle - ||x|| ||y|| = (\langle x, x \rangle - \langle x, y \rangle) - (\langle x, y \rangle + \langle y, y \rangle) = \overline{\langle x - y, x \rangle} - \langle x - y, y \rangle$. Since $x, y \in \mathbb{R}^{\ltimes}$, $\overline{\langle x - y, x \rangle} = \langle x - y, x \rangle$. Then $|||x|| - ||y|||^2 \le \langle x - y, x \rangle - \langle x - y, y \rangle = \langle x - y, x - y \rangle = ||x - y||^2$. Since both |||x|| - ||y||| and ||x - y|| must be nonnegative, we have $|||x|| - ||y||| \le ||x - y||$.

4. Prove that for every positive integer N the following statement holds: For any set of vectors $x_1, x_2, \ldots, x_N \in \mathbb{R}^n$, $||x_1 + x_2 + \cdots + x_N|| \le ||x_1|| + ||x_2|| + \cdots + ||x_N||$.

Answer: By induction on N.

Base case: N=2, we want to show that $||x_1+x_2|| \le ||x_1|| + ||x_2||$, which is true by triangle inequality. Inductive step: Suppose that $||x_1+x_2+\cdots+x_{N-1}|| \le ||x_1|| + ||x_2|| + \cdots + ||x_{N-1}||$, we want to show that $||x_1+x_2+\cdots+x_N|| \le ||x_1|| + ||x_2|| + \cdots + ||x_N||$. Let $x_m=x_1+\cdots+x_{N-1}$, then $||x_m||=||x_1+\cdots+x_{N-1}|| \le ||x_1|| + ||x_2|| + \cdots + ||x_{N-1}||$ by inductive hypothesis. Now by substitution and triangle inequality, we have $||x_1+x_2+\cdots+x_N|| = ||x_m+x_N|| \le ||x_m|| + ||x_N|| \le ||x_1|| + ||x_2|| + \cdots + ||x_N||$.

1

Therefore we have proved the statement by induction.

5. Prove that the system $Ax = b, A \in \mathbb{R}^{m \times n}$, has a unique solution if and only if $\operatorname{rank}(A) = \operatorname{rank}([A, b]) = n$.

Answer:

- \Rightarrow : Assume Ax = b has a unique solution, we want to show that $\operatorname{rank}(A) = \operatorname{rank}([A,b]) = n$. Since Ax = b has a solution, b must be in the colspan of A, so $\operatorname{rank}(A) = \operatorname{rank}([A,b])$. Since the solution is also unique, the columns of A mush be linearly independent, so $\operatorname{rank}(A) = n$. Therefore $\operatorname{rank}(A) = \operatorname{rank}([A,b]) = n$.
- \Leftarrow : Assume that $\operatorname{rank}(A) = \operatorname{rank}([A,b]) = n$, we want to show that Ax = b has a unique solution. Since $\operatorname{rank}(A) = n$, its columns must be linearly independent. Then since $\operatorname{rank}([A,b]) = \operatorname{rank}(A)$, b must be in the colspan of A. Therefore Ax = b has a unique solution.
- 6. Let $\lambda_1, \dots, \lambda_n$ be the eigenvalues of the matrix $A \in \mathbb{R}^{n \times n}$. Show that the eigenvalues of the matrix $\mathbb{I}_n A$ are $1 \lambda_1, \dots, 1 \lambda_n$. Here \mathbb{I}_n is an identity matrix.

Answer: Since A has n eigenvalues, we can diagonalize A (under the basis of its eigenvectors) to have $\lambda_1, \dots, \lambda_n$ on the main diagonal. Then, since \mathbb{I}_n has only 1 on the main diagonal, $\mathbb{I}_n - A$ has $1 - \lambda_i$ on its main diagonal, therefore its eigenvalues are $1 - \lambda_1, \dots, 1 - \lambda_n$.

7. Find the nullspace of

$$A = \begin{pmatrix} 4 & -2 & 0 \\ 2 & 1 & -1 \\ 2 & -3 & 1 \end{pmatrix}.$$

Answer: We can find the nullspace by solving Ax = 0 as follows:

$$\begin{pmatrix} 4 & -2 & 0 \\ 2 & 1 & -1 \\ 2 & -3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$\implies 4x_1 - 2x_2 = 0, 2x_1 + x_2 - x_3 = 0, x_1 - 3x_2 + x_3 = 0$$

$$\implies x_1 = \frac{x_3}{4}, x_2 = \frac{x_3}{2}$$

Therefore the null space is any scalar multiple of the vector $[\frac{1}{4},\frac{1}{2},1]^{\top}.$

8. Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Show that $\mathcal{R}(A)$ is a subspace of \mathbb{R}^m and $\mathcal{N}(A)$ is a subspace of \mathbb{R}^n .

Answer: Let $y \in \mathcal{R}(A)$. By definition, there must exist some $x \in \mathbb{R}^n$ such that Ax = y. Then the dimension of y is outer dimensions of A and x, which gives us $y \in \mathbb{R}^m$. Therefore every vector in $\mathcal{R}(A)$ is in \mathbb{R}^m , so $\mathcal{R}(A)$ is a subspace of \mathbb{R}^m .

Now let $x \in \mathcal{N}(A)$, then we must have Ax = 0; since $A \in \mathbb{R}^{m \times n}$ and the inner dimensions of A and x must match, we have $x \in \mathbb{R}^n$. Therefore every vector in $\mathcal{N}(A)$ is in \mathbb{R}^n , so $\mathcal{N}(A)$ is a subspace of \mathbb{R}^n .

9. Let $A \in \mathbb{R}^{m \times n}$ be a matrix with $A^{\top}A = \mathbb{I}_n$. Show that $P = AA^{\top}$ is an orthogonal projection of $\mathcal{R}(A)$. **Answer**: Since $A^{\top}A = \mathbb{I}_n$, we have $P^2 = (AA^{\top})(AA^{\top}) = A(A^{\top}A)A^{\top} = AA^{\top} = P$. In addition, $P^* = P^{\top} = (AA^{\top})^{\top} = (A^{\top})^{\top}A^{\top} = AA^{\top} = P$. Now let $y \in \mathcal{R}(A)$, then there must exist some $x \in \mathbb{R}^n$

2

such that Ax = y. Note that $P(y) = AA^{\top}y = (AA^{\top})Ax = A(A^{\top}A)x = Ax = y \in \mathcal{R}(A)$. Therefore we have $P : \mathcal{R}(A) \to \mathcal{R}(A)$ where P is both idempotent and self-adjoint, therefore P is an orthogonal projection of $\mathcal{R}(A)$.

10. Consider the vector space \mathbb{R}^2 equipped with the standard ℓ_2 norm. Let $x = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$. Find the best approximation

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

to x such that the entries of y satisfy the constraint $y_2 = 2y_1$.

Answer: let
$$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, then $\min_{y_1} \left\| \begin{bmatrix} y_1 \\ 2y_1 \end{bmatrix} - \begin{bmatrix} 5 \\ 6 \end{bmatrix} \right\|_2^2 = \min_{y_1} \left\| \begin{bmatrix} 1 \\ 2 \end{bmatrix} y_2 - \begin{bmatrix} 5 \\ 6 \end{bmatrix} \right\|_2^2 = \min \|Ay - x\|_2^2$. Since

$$A^{\top}A = 5$$
 is invertible, the unique minimizer is given by $y_2 = A^+x = (A^{\top}A)^{-1}A^{\top}x = \frac{1}{5}\begin{bmatrix} 1 & 2 \end{bmatrix}\begin{bmatrix} 5 \\ 6 \end{bmatrix} =$

$$\frac{17}{5}$$
. Therefore $y = \begin{bmatrix} y_1 \\ 2y_2 \end{bmatrix} = \begin{bmatrix} \frac{17}{5} \\ \frac{34}{5} \end{bmatrix}$.