Generalized Linear Models

A generalized linear model can also include other parameters such as variance or overdispersion terms and/or cutpoints for latent responses. When formally writing out a GLM, it is important to include these three components:	We have seen linear regression and logistic regression, both of which are examples of generalized linear models (GLMs), but there are many other possible generalized linear models.
cutpoints for latent responses.	
When formally writing out a GLM, it is important to include these three components:	
When formally writing out a GLM, it is important to include these three components:	
When formally writing out a GLM, it is important to include these three components:	
	When formally writing out a GLM, it is important to include these three components:

Chapter 15 in ROS mentions another set of GLMs which we will cover:

- Poisson and negative binomial models for count data
- logistic-binomial model, where y_i is a set of n_i Bernoulli trials and a related (beta-binomial model)
- The probit model for binary data
- Multinomial logit (and probit models) for categorical data, both ordered and unordered
- Robust regression, using non-normal errors for continuous data.

Count Regression

The motivating example that we will use for this scenario is a dataset that contains the total number of daily bike rentals from the Capital Bikeshare System in Washington, DC.

```
bikes <- read csv("https://raw.githubusercontent.com/STAT506/GLM Lectures/main/daily bike.csv")
## Parsed with column specification:
## cols(
     instant = col_double(),
##
     dteday = col_character(),
##
##
     season = col_double(),
     yr = col_double(),
##
     mnth = col_double(),
##
     holiday = col_double(),
##
##
     weekday = col_double(),
##
     workingday = col_double(),
##
     weathersit = col_double(),
     temp = col_double(),
##
##
     atemp = col_double(),
##
     hum = col_double(),
##
     windspeed = col_double(),
##
     casual = col_double(),
     registered = col_double(),
##
##
     cnt = col double()
## )
bikes <- bikes %>% mutate(temp_centered = scale(temp))
```

Casual User Bike Rentals from Capital Bike Share

Casual User Bike Rentals vs Scaled Temperature

Model Fitting and Intepreting Coefficients

```
nb_model <- stan_glm(casual ~ temp_centered, family = neg_binomial_2, data = bikes, refresh = 0)</pre>
print(nb_model)
## stan_glm
## family:
                 neg_binomial_2 [log]
## formula:
                 casual ~ temp_centered
## observations: 731
## predictors:
## ----
##
                 Median MAD_SD
## (Intercept)
                 6.6
                        0.0
## temp_centered 0.6
                        0.0
##
## Auxiliary parameter(s):
                         Median MAD_SD
## reciprocal_dispersion 2.1
## ---
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
```

plot(nb_model) + theme_bw() + ggtitle('Credible Intervals for Model Parameters')

Credible Intervals for Model Parameters

As with other regression frameworks, posterior predictive checks can be a useful tool for model checking.

```
pois_model <- stan_glm(casual ~ temp_centered, family = poisson, data = bikes, refresh = 0)
pp <- posterior_predict(pois_model)</pre>
```

This can either be done visually

or by comparing summary statistics between the simulated datasets and the observed data.

```
sim_max = apply(pp,1,max)
data_max = max(bikes$casual)
tibble(sim_max = sim_max) %>% ggplot(aes(x = sim_max)) + geom_histogram(bins = 50) +
    geom_vline(xintercept = data_max) + theme_bw() +
    ggtitle("Comparison of maximum value from simulation vs model fit")
```


Figure 1: Vertical line represents maximum value in observed dataset