nRF24L01 无线串口 产品使用说明

目录

技术	ド参数	3
硬件	牛结构	3
典型	型应用	4
1.	使用方式介绍	5
2.	USB 串口驱动安装	6
2.1	安装设备驱动	6
2.2	修改设备编号	8
3.	设备状态说明	10
4.	通信格式及命令详解	10
4.1	传输有效字节数	11
4.2	串口通信波特率	12
4.3	无线通信传输速率	13
4.4	无线通信地址设定	13
4.5	无线通讯信道设置	14
4.6	无线 CRC 校验设置	15
4.7	系统参数信息查询	15
4.8	系统初始化命令	16
4.9	查询固件版本	16
4.10	0 命令简介汇总表	17
5.	无线串口通信实验	17

技术参数

■ 2.4G 无线芯片:nRF24L01+

■ LED 绿灯:状态指示灯

■ 串口默认波特率:115200bps

■ 支持 WINDOWS 98/ME/2000/XP/Win7/Win8 /Win10 32 位/64 位系统

■ 单次传输有效字节数:1----128字节

■ 与其他无线模块通信格式:第0位为传输数据帧的字节长度

■ 系统参数设置掉电不丢失,上电后,保持上次状态

硬件结构

USB 串口和 TTL 串口:

本质上都是串口,USB 的是加了 USB 转串口 TTL 的芯片,接口形式在电脑上识别出来是 COM 设备,TTL 无线串口,串口电平是 TTL,可以直接接单片机串口。

USB 串口版本-PC 使用

产品硬件特点,RFX2401C 射频前端放大芯片,可以将无线信号放大到最大 22dBm,大功率可以有效增加信号通信的距离。

产品硬件特点,采用专业的USB转串口的芯片,USB端串口通信更稳定可靠,适用操作系统范围更广泛。

TTL 串口版本-MCU 使用

典型应用

- 无线遥控,数传
- 无线抄表系统
- 无线监测系统
- mcudev.taobao.com 嵌入式开发网
- 无线数据采集系统
- VOIP 系统
- 门禁系统
- 无线标签、无线 232、无线 422/485 数据通信

1. 使用方式介绍

1、两台电脑一对一通信

提示: 串口通信为计算机低速通信方式

2、一台电脑和多台电脑间相互通信

3、一台电脑对一个单片机通信

4、一台电脑对多个单片机通信

5、一台电脑对多个单片机通信

以下使用方式,需要自己做 nRF24L01 模块的程序开发

2. USB 串口驱动安装

2.1 安装设备驱动

在资料文件夹下,找到"nRF24L01P无线串口--USB驱动程序"文件夹,打开文件夹

驱动程序文件

双击打开上图所示安装程序,根据提示点"安装"

如果是 win7 以上的系统,请在安装过程选择跳过从 windows Update 下载驱动,否则安装过程很慢,并且不容易成功安装驱动

提示驱动预安装成功后

点确定完成驱动的安装。

然后插入 USB 无线串口模块,系统会根据预装的驱动自动适配并分配相应的串口号。 WIN7 系统如下图所示,系统自动分配 COM3

查看串口的方法: 计算机右键>-管理>-设备管理器>-端口(com 和 LPT)

2.2 修改设备编号

如果软件系统支持的 COM 号是固定的,可以自己写修改 COM 号。例如将 COM3 修改为 COM6,操作方式如下:

鼠标右键点击设备管理器里的 COM 设备: 选择"属性"

在设备属性对话框里,选择

如果 COM 号系统显示"使用中",但是,您确认是没有设备的,也可以强制占用该 COM 号。最好使用未被占用的 COM 号。

选择好 COM2 后,点确定,完成设置,系统则会改变原有的 COM3 编号为 COM2 编号

3. 设备状态说明

设备组成是:

- 1、 USB 接口无线串口=射频前端放大器+nRF24L01+CPU+USB 转串口芯片。
- 2、 TTL 无线串口=射频前端放大器+nRF24L01+CPU

两种设备,都可通过--串口调试助手软件,设置参数

设备最终形态都是串口,TTL 无线串口,可以通过客户自己的 USB 转串口 TTL 模块连接 到电脑上,通过串口调试助手软件,设置参数; 也可以通过客户 MCU 控制设置参数。

设备上绿色状态指示灯一直常亮,串口收发数据及无线端收发数据的时候,LED 灯闪烁,通信完成后,LED 处于常亮状态。则说明设备供电及启动是正常,设备正常工作。

系统参数设置掉电不丢失,上电后,保持上次状态。

出厂默认设备参数:

类别	参数	属性
串口帧数据长度	1128 个字节(最长 128 字节)	动态
数据帧最小间隔时长	10mS(数据帧间隔必须大于 10mS)	不可变
串口波特率	115200bps	可修改
无线通信信道	2.400GHz	可修改
无线通信速率	2Mbps	可修改
无线通信校验方式	16 位 CRC	可修改
本机地址	0x11,0x22,0x33,0x44,0x55	可修改
目标机地址	0x11,0x22,0x33,0x44,0x55	可修改

射频发送功率: nRF24L01 默认设置为 0dBm, 射频前端放大后,最大可达 22dBm(由于设计及环境因素,无线功率实际使用值小于理论值),发送功率无法通过设置改变,功率越大,通信效果越好。

4. 通信格式及命令详解

注: 所有命令均为大写, 标点符号必须英文状态下的半角标点, 无空格!

不可更改的参数: 地址长度必须为 5 位 数据长度必须是 32 个字节 发射功率为 0dbm (实际发送功率和射频前端芯片有关系,射频前端最大功率可以达到 22dBm)。

4.1 传输有效字节数

nRF24L01 无线串口模块单次传输有效字节数为 1----128 字节,数据帧之间间隔需要大于 10mS。(就是数据字节时间,接收时间间隔大于 10mS,则视为一帧数据结束)

nRF24L01 实际发送字节数为 32 个,用户可用的字节为 1-31 个,第 0 个字节系统保留,用于每次传输的数据包长度统计;例如串口发送"abcd"(ASCII 码,4 个字节),实际传输时 4abcd(第 0 个字节就为 4),接收端实际处理时应根据第 0 字节中的数来判断收到的数据包长度。模块传输协议如下表 3-1 所示:

表 3-1:

Buffer [0]	Buffer [1]	Buffer [2]	Buffer [3]	Buffer []	Buffer []	Buffer [31]
Length	Byte1	Byte2	Byte3			Byte31

Byte0 是系统保留位,用于统计数据包长度。Byte1~Byte31 是用户数据操作位。

用法 1: 无线串口模块之间通信

上面图示组合形式,不需要考虑协议,通信频率、空中传输速率、CRC 校验方式相同, 发送方的目标地址等于接收方的接收地址即可相互通信,数据透明传输。

用法 2: 无线串口模块发送,单片机接收

单片机需从 Buffer[1]开始读,读 Buffer[0]个长度的字节。Buffer[1]是电脑发送的第一个字节。 电脑发送"ABCD"单片机接收 C 语言示例:

```
for(i=0;i< Buffer[0];i++) //此例 Buffer[0]=4("ABCD"一共 4 个字节)
{
    Reserve[i] = Buffer[i+1]; // Reserve[ ] 是实际接收到的"ABCDE"
}
```

用法 3: 单片机发送,无线串口模块接收

单片机发送时,需将 Buffer[0]置本次传输的总字节数,传输 1 个字节,Buffer[0]就是 "0x01",传输 31 个字节 Buffer[0]就是"0x1F" 单片机发送"ABCDE"无线串口模块接收 C 语言示例:

```
// "ABCDE"一共 5 个字节,所以 Send[0]=5;
Unsigned char Send[32] ={5,'A','B','C','D','E' ,...};
NRF24L01_TxPacket (Send);
```

4.2 串口通信波特率

可选波特率: 4800,9600,14400,19200,38400,57600,115200。涵盖常用波特率,(出厂默认波特率为 115200) 波特率修改指令: 发送 ASCII 码【AT+BAUD=n】(n为 1,2,3,4,5,6,7分别对应 4800,9600,14400,19200,38400,57600,115200 的波特率)

如:修改波特率为 115200,则串口调试助手发送 ASCII 码【AT+BAUD=7】,系统回复:

通讯波特率设置成功!!

波特率:115200

此时波特率为 115200, 串口调试助手需要切换至 115200 才能与模块进行通讯。 注:命令字母必须均为大写!

4.3 无线通信传输速率

可选速率: 250Kbps, 1Mbps, 2Mbps (出厂默认 2Mbps)

传输速率设置命令: 发送 ASCII 码【AT+RATE=n】(n 为 1, 2, 3 分别对应 250Kbps, 1Mbps, 2Mbps 的传输速率)

如:修改传输速率为 250Kbps,则串口调试助手发送 ASCII 码【AT+RATE=1】,系统回复:

传输速率设置成功!!

发射功率:0dBm

传输速率: 250Kbps

低噪声放大增益:开启

理论上 250Kbps 的通信距离是最大的。

4.4 无线通信地址设定

nRF24L01 无线模块 5 位地址(长度固定),目标地址和本地接收地址 0 (出厂默认都是 0x11 0x22 0x33 0x44 0x55)

地址设置命令:

(一) 设置本地接收地址 0:发送 ASCII 码【AT+RXA=0x??,0x??,0x??,0x??,0x??)

(0x??为要设定的地址","逗号,必须是英文半角的逗号)

如:修改地址为 0xAA,0xBB,0xCC,0xDD,0xEE , 则串口调试助手发送 ASCII 码

【AT+RXA=0xAA,0xBB,0xCC,0xDD,0xEE】, 系统回复:

地址设置成功!!

本地接收地址 0:0xAA,0xBB,0xCC,0xDD,0xEE

(二) 设置目标板地址:发送 ASCII 码【AT+TXA=0x??,0x??,0x??,0x??,0x??] (0x??为要设定的地址 ", " 逗号,必须是英文半角的逗号)

如:修改地址为 0x11,0x22,0x33,0x44,0x55 , 则串口调试助手发送 ASCII 码【AT+TXA=0x11,0x22,0x33,0x44,0x55】, 系统回复:

地址设置成功!

目标地址: 0x11,0x22,0x33,0x44,0x55

4.5 无线通讯信道设置

范围: 2.400GHz~2.525GHz(出厂默认 2.400GHz)

通讯频率设置命令,发送 ASCII 码【AT+FREQ=2.xxxG】, 2. xxx 为要设定的频率,范围是 2.400GHz~2.525GHz,超过范围无效,小数点后面为三位数字,不足三位需补零,命令后面大写字母"G"不可缺少。

如:修改通讯频率为 2.424Ghz,则串口调试助手发送 ASCII 码 【AT+FREQ=2.424G】,

系统回复:

通讯频率设置成功!!

通讯频率: 2.424GHz

4.6 无线 CRC 校验设置

8 位或者 16 位 CRC 校验(出厂默认 16 位 CRC 校验模式)

CRC 校验设置命令: 【AT+CRC=n】(n 等于 8 或者 16) 如:设置校验模式为 8 位 CRC 校

验,则串口调试助手发送 ASCII 码

(AT+CRC=8),

系统回复:

CRC 校验模式设置成功!!

校验模式:8 位 CRC 校验

4.7 系统参数信息查询

查询命令:发送 ASCII 码【AT?】,

系统回复:

OK

系统信息:

波特率:115200

目标地址: 0x11,0x22,0x33,0x44,0x55

本地接收地址 0: 0x11,0x22,0x33,0x44,0x55

通讯频率: 2.400GHz

校验方式:16 位 CRC 校验

发射功率:0dBm

空中传输速率:2Mbps

低噪声放大增益:开启

4.8 系统初始化命令

当客户应用设置错乱,不记得之前设置过的所有参数的时候,可以用此命令,恢复成出厂设置: 串口波特率也不记得,可以尝试换不同波特率来发送如下命令。

系统初始化设置命令:【AT+init】

系统回复:

OK,系统恢复初始参数成功

系统信息:

波特率:115200

目标地址: 0x11,0x22,0x33,0x44,0x55

本地接收地址 0: 0x11,0x22,0x33,0x44,0x55

通讯频率: 2.400GHz

校验方式:16 位 CRC 校验

发射功率:0dBm

空中传输速率:2Mbps

低噪声放大增益:开启

4.9 查询固件版本

每个设备出厂都有一个固件版本号,如遇厂家升级固件,厂家会更新此固件版本号码。

查询固件版本命令:【AT+VER】

系统回复:

系统固件版本!!

Ver: 1.00

4.10 命令简介汇总表

参数设置命令	命令格式	参数说明
设置串口波特率	AT+BAUD=n	n 为 1, 2, 3, 4, 5, 6, 7 分别对应 4800, 9600, 14400, 19200, 38400, 57600, 115 200 的波特率。
无线通信传输速率	AT+RATE=n	n 为 1, 2, 3 分别对应 250Kbps , 1Mbps, 2Mbps 的传输速率。
无线接收本机地址	AT+RXA=0x??,0x??,0x??,0x??,0x??	0x??为要设定的地址","逗号,必须是英文半角的逗号。
无线发送目标地址	AT+TXA=0x??,0x??,0x??,0x??,0x??	0x??为要设定的地址","逗号,必须是英文半角的逗号。
无线通讯信道设置	AT+FREQ=2.xxxG	信道 2. xxx 为要设定的频率, 范围是 2. 400GHz ² 2. 525GHz, 超过范围无效。
无线 CRC 校验设置	AT+CRC=n	n 等于 8 或者 16, AT+CRC=8 设置校验模式 为 8 位 CRC 校验。
参数信息査询	AT?	系统回复当前系统参数。
初始化命令	AT+init	系统参数恢复出厂设置
查询固件版本	AT+VER	方便确定软件版本,解决系统 bug。

特别注意:以上设置过的参数,设置后,立即生效;系统再次上电,参数不会丢失,系统参数设置完成后,会自动存储到通信模块中,避免客户每次设置完成后,下次使用再设置参数的麻烦。

5. 无线串口通信实验

按照上面的方法,出厂 nRF24L01 参数设置是一样的,可以不用配置,相互间即可直接通信,把两个串口模块都插到电脑的 USB 口,打开两个串口调试助手,选择相应的串口号,串口波特率选择 115200,设置串口基本的参数,如下所示

在其中一个串口调试助手中输入数据,比如[12345],点击发送,在另一个串口调试助手的接收栏中显示收到[12345]。