Let R Make Your Life Easier:

An Introduction to the MplusAutomation Package

Graham G. Rifenbark

February 1, 2017

Contents

	Talk Objectives	3
	Load MplusAutomation Library	3
	View Available Functions	3
	View Available Functions Cont'd	4
Si	ngle Model	4
	Step No. 1	4
	Variable Names	4
	Variable Names Cont'd	5
	Number of Units Per Level	5
	Goal	5
	Mplus Syntax – TITLE/VARIABLE	5
	Mplus Syntax – ANALYSIS	6
	Mplus Syntax – MODEL	6
	Mplus Syntax – OUTPUT	6
	Prepare Data File	6
	Estimate Model From R via runModels()	7
	Extract Output	7
	Determine Slots Available For First Element	7
	\$errors & \$warnings	8
	\$summaries	8
	\$parameters	8
	Extract Parameter Estimates	8

	Store Fixed and Random Components	9
	Combine into single data.frame	9
	Check Summary Statistics	9
Si	mulation	10
	Sim Conditions	10
	Sim Recap	10
	Steps To Run Simulation	10
	Step 1: init	11
	Create Input Files	11
	Run Models	11
	Read in Models	11
	Investigate list object	12
	What information to store	12
	Tip	12
	Model 2: Fixed and Random Components	13
	Consult Errors	13
	Error No. 1	13
	Error No. 2	13
	Error No. 3	14
	Where is the Standard Error Estimate?!	14
	Extract Parameter Name, Estimate, & Standard error	14
	Check Parameter Est. & SE Values	15
	Extract Parameter Names: The Problem	15
	The Fix	15
	Check Parameter Names from $paste0()$	16
	Incorporate Parameter Name and Estimates	16
	Extract Model Summary	16
	No. Params & LL	16
	AIC & BIC	17
	Extract Rep and Condition IDs	17
	$\operatorname{strsplit}() \ldots \ldots$	18
	Pull Numeric Values	18

Compile All Results	18
Matrix Storage	19
Utilize an incremental loop	19
Let's Run Through It	19
Grab Bag	19
Error Variances	19
MplusAutomation Implementation	20
MplusAutomation Implementation	20
MplusAutomation Implementation	20
MplusAutomation Implementation	21
MplusAutomation Implementation	2.
MplusAutomation Implementation	22
Interactive Run Models	22

Talk Objectives

- 1. Run a single model from R and extract parameter estimates.
- 2. Generate unique Mplus input files for a simulation.
- 3. Estimate simulation files.
- 4. Extract simulation results.
- 5. Grab bag of tricks

Load MplusAutomation Library

```
library(MplusAutomation)
```

View Available Functions

```
lsp(MplusAutomation)[1:15]
```

```
## [1] "cd" "compareModels"
## [3] "createModels" "createSyntax"
## [5] "extract" "extract.mplus.model"
```

```
## [7] "extract.mplusObject" "extractModelParameters"
## [9] "extractModelSummaries" "extractModIndices"
## [11] "getSavedata_Bparams" "getSavedata_Data"
## [13] "getSavedata_Fileinfo" "HTMLSummaryTable"
## [15] "LatexSummaryTable"
```

View Available Functions Cont'd

lsp(MplusAutomation)[16:30]

```
[1] "lookupTech1Parameter"
                                        "mplus.traceplot"
    [3] "mplusModeler"
                                        "mplusObject"
##
    [5] "mplusRcov"
                                        "paramExtract"
   [7] "parseMplus"
                                        "prepareMplusData"
##
                                        "runModels"
   [9] "readModels"
##
## [11] "runModels_Interactive"
                                        "showSummaryTable"
## [13] "SummaryTable"
                                        "testBParamCompoundConstraint"
## [15] "testBParamConstraint"
```

Single Model

Step No. 1

• Read in data

```
simDat <- read.csv("templateDat.csv",header = TRUE)</pre>
```

Variable Names

• Outcome Variable and Level Identifiers

```
colnames(simDat)[1:3]
## [1] "Y" "SSID" "SCHID"
```

Variable Names Cont'd

• Level One Predictors

```
colnames(simDat)[4:8]
## [1] "X1" "X2" "X3" "X4" "X5"
```

Number of Units Per Level

```
# Level 2
length(unique(simDat$SCHID))

## [1] 200

# Level 1
length(unique(simDat$SSID))

## [1] 10000
```

Goal

- Estimate an organizational MLM including random effects for:
 - the intercept: γ_{00}
 - all within level slopes: γ_{10} : γ_{50}

Mplus Syntax - TITLE/VARIABLE

```
twoLevel <- mplusObject(
TITLE = "Template;",

VARIABLE = "

NAMES = Y SSID SCHID X1 X2 X3 X4 X5;

USEVARIABLES = Y X1 X2 X3 X4 X5;

CLUSTER = SCHID;

WITHIN = X1 X2 X3 X4 X5;",

## ...</pre>
```

$\mathbf{Mplus}\ \mathbf{Syntax} - \mathbf{ANALYSIS}$

```
ANALYSIS = "TYPE = TWOLEVEL RANDOM;",
```

$\mathbf{Mplus}\ \mathbf{Syntax}-\mathbf{MODEL}$

```
MODEL = "
%WITHIN%

S1 | Y ON X1;

S2 | Y ON X2;

S3 | Y ON X3;

S4 | Y ON X4;

S5 | Y ON X5;

%BETWEEN%

Y WITH S1 S2 S3 S4 S5;

S1 WITH S2 S3 S4 S5;

S2 WITH S3 S4 S5;

S3 WITH S4 S5;

S4 WITH S5;

",
```

$\mathbf{Mplus}\ \mathbf{Syntax} - \mathbf{OUTPUT}$

```
OUTPUT = "TECH1;")
```

Prepare Data File

Estimate Model From R via runModels()

```
##
## Running model: knitr_template.inp
## System command: C:\windows\system32\cmd.exe /c cd "C:\Users\grr13002\Dropbox\Conn\Consults\McCoach"
```

Extract Output

runModels(filefilter = "knitr*")

```
singRun <- readModels()

## Reading model: C:/Users/grr13002/Dropbox/Conn/Consults/McCoach/knitr_template.out

## Reading model: C:/Users/grr13002/Dropbox/Conn/Consults/McCoach/template.out

names(singRun)

## [1] "knitr_template.out" "template.out"</pre>
```

Determine Slots Available For First Element

```
names(singRun[[1]])
   [1] "input"
                           "warnings"
                                             "errors"
   [4] "summaries"
                           "parameters"
                                             "class_counts"
##
   [7] "residuals"
                           "tech1"
                                             "tech3"
                           "tech7"
## [10] "tech4"
                                             "tech9"
## [13] "tech12"
                           "fac_score_stats" "gh5"
```

\$errors & \$warnings

• Good, no estimation warnings or errors!

\$summaries

```
names(singRun[[1]]$summaries)
```

```
## [1] "Mplus.version" "Title" "AnalysisType"

## [4] "DataType" "Estimator" "Observations"

## [7] "Parameters" "LL" "LLCorrectionFactor"

## [10] "AIC" "BIC" "aBIC"

## [13] "AICC" "Filename"
```

\$parameters

```
names(singRun[[1]] $parameters)
```

Extract Parameter Estimates

[1] "unstandardized"

```
paramEst <- singRun[[1]]$parameters$unstandardized
colnames(paramEst)</pre>
```

```
## [1] "paramHeader" "param" "est" "se"
## [5] "est_se" "pval" "BetweenWithin"
```

Store Fixed and Random Components

Combine into single data.frame

```
singleRunEST <- rbind(gammaEst,tauEst,sigmaEst)
singleRunEST[seq(1,12,2),]</pre>
```

```
##
      paramHeader param
                                 se est_se pval BetweenWithin
                          est
## 17
                      Y 0.038 0.020 1.939 0.052
            Means
                                                       Between
                     S2 0.013 0.014 0.870 0.384
## 19
            Means
                                                       Between
## 21
            Means
                     S4 0.180 0.014 12.965 0.000
                                                       Between
                     Y 0.077 0.007 10.573 0.000
## 23
        Variances
                                                       Between
                     S2 0.041 0.004 10.105 0.000
## 25
        Variances
                                                       Between
## 27
        Variances
                     S4 0.037 0.003 10.802 0.000
                                                       Between
```

Check Summary Statistics

```
singRun[[1]]$summaries$Parameters

## [1] 28

singRun[[1]]$summaries$LL
```

[1] -1090.369

	Fixed Conditions	
Level Two Units:	50	
Level One Units:	200	
Total Sample Size:	10000	
Fixed Components:	Γ	
Level Two Random Components:	$\tau_{00,11:33}=0.801,0.04$	
Level One Random Component:	$\sigma^2=0.046$	
Estimator:	Full Maximum Likelihood	
	Varying Conditions	
X4 Slope Variance (τ_{44}):	0.04, 0.02, 0.01, 0.001, 0.000	
X4 Slope Variance (τ_{55}):	0.04, 0.02, 0.01, 0.001, 0.000	

Note: Random simulation facets are fully crossed, resulting in 15 conditions

singRun[[1]]\$summaries\$AIC

[1] 2236.738

Simulation

Sim Conditions

Sim Recap

- Conditions
 - 15, condition specific directories
- Data file structure:
 - $\ dat_mplus_cond_nCond_nRep.dat$
- Model remains the same across all conditions

Steps To Run Simulation

- 1. Alter single run input file
- 2. Use R to generate all input files via createModels()
- 3. Estimate all models via runModels()
- 4. Extract all model information via readModels()

Step 1: init

 $\bullet\,$ The init section goes on top of your standard mplus input file.

```
[[init]]
iterators = conds rep;
conds = 1:15;
rep = 1:10;
filename = "cond_[[conds]]_[[rep]].inp";
outputDirectory =
"C:/Users/grr13002/Dropbox/Conn/Consults...
/McCoach/Simulation/c[[conds]]";
[[/init]]
```

Create Input Files

```
createModels("knitr_template.txt")
```

Run Models

- From the top level directory, we can set the recursive logical to TRUE
- The argument, "modifiedDate", tells MplusAutomation to estimate models for which the modified date of the input file is more recent than its respective output file.

Read in Models

```
mplus.Extract <- readModels(recursive = TRUE)</pre>
```

• Determine all output files have been read in:

```
-150 = (10 \text{ rep } * 15 \text{ conds})
```

length(mplus.Extract)

[1] 150

Investigate list object

• Notice the same slot names are available as before

names(mplus.Extract[[1]])

```
## [1] "input" "warnings" "errors"

## [4] "summaries" "parameters" "class_counts"

## [7] "residuals" "tech1" "tech3"

## [10] "tech4" "tech7" "tech9"

## [13] "tech12" "fac_score_stats" "gh5"
```

What information to store

- 1. All fixed components:
- 2. All random components:
- 3. Model Summaries:
 - Number of Free Parameters
 - Loglikelihood
 - Akaike's information criterion
 - Bayesian information criterion
- 4. Data set identifier
 - Rep & Condition Number

Tip

- Extract the needed information for a single replication
 - Once you do, its easy to do so for all 150 models

Model 2: Fixed and Random Components

• Where is the Standard Error Estimate?!

mplus.Extract[[2]]\$parameters\$unstandardized[1:6,]

${\tt BetweenWithin}$	est	param	paramHeader	##	
Within	0.045	Y	Residual.Variances	## 1	
Between	0.012	S1	Y.WITH	## 2	
Between	0.010	S2	Y.WITH	## 3	
Between	0.010	S3	Y.WITH	## 4	
Between	0.000	S4	Y.WITH	## 5	
Between	-0.001	S5	Y.WITH	## 6	

• We should check the errors...

Consult Errors

• How many errors?

```
length(mplus.Extract[[2]]$errors)
```

[1] 3

Error No. 1

```
mplus.Extract[[2]]$errors[[1]]
```

```
## [1] "THE MODEL ESTIMATION DID NOT TERMINATE NORMALLY DUE TO AN ILL-CONDITIONED"
```

[2] "FISHER INFORMATION MATRIX. CHANGE YOUR MODEL AND/OR STARTING VALUES."

Error No. 2

```
mplus.Extract[[2]]$errors[[2]]
```

```
## [1] "THE MODEL ESTIMATION DID NOT TERMINATE NORMALLY DUE TO A NON-POSITIVE"
```

[2] "DEFINITE FISHER INFORMATION MATRIX. THIS MAY BE DUE TO THE STARTING VALUES"

```
## [3] "BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION. THE CONDITION"
## [4] "NUMBER IS 0.541D-10."
```

Error No. 3

```
mplus.Extract[[2]]$errors[[3]]

## [1] "THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES COULD NOT BE"

## [2] "COMPUTED. THIS IS OFTEN DUE TO THE STARTING VALUES BUT MAY ALSO BE"

## [3] "AN INDICATION OF MODEL NONIDENTIFICATION. CHANGE YOUR MODEL AND/OR"

## [4] "STARTING VALUES. PROBLEM INVOLVING THE FOLLOWING PARAMETER:"

## [5] "Parameter 3, %BETWEEN%: [ S2 ]"
```

Where is the Standard Error Estimate?!

- This model did not converge, therefore, no standard errors are printed.
- This will cause problems when extracting estimates across all 150 models.
- Figure out the number of columns to make things easier later:

```
ncol(mplus.Extract[[2]]$parameters$unstandardized)
```

```
## [1] 4
```

Extract Parameter Name, Estimate, & Standard error

```
r2c1.pe <-unlist(mplus.Extract[[2]]
$parameters
$unstandardized[c(1,17:28),3])

r2c1.se <- ifelse(
ncol(mplus.Extract[[2]]$parameters$unstandardized) == 4,
NA,
unlist(mplus.Extract[[2]]
$parameters</pre>
```

```
$unstandardized[c(1,17:28),4])
)
```

Check Parameter Est. & SE Values

```
comb.PeSe <- rbind(r2c1.pe,r2c1.se)
comb.PeSe[,1:4]

## [,1] [,2] [,3] [,4]

## r2c1.pe 0.045 0.037 -0.041 0.001

## r2c1.se NA NA NA NA</pre>
```

Extract Parameter Names: The Problem

```
tail(mplus.Extract[[2]]$parameters$unstandardized)
```

```
##
      paramHeader param
                          est BetweenWithin
## 23
                      Y 0.064
        Variances
                                     Between
## 24
        Variances
                     S1 0.035
                                     Between
## 25
        Variances
                     S2 0.044
                                     Between
                                     Between
## 26
        Variances
                     S3 0.039
## 27
        Variances
                     S4 0.000
                                     Between
## 28
        Variances
                     S5 0.000
                                     Between
```

The Fix

```
paramID.1 <- unlist(mplus.Extract[[2]]

$parameters

$unstandardized[c(1,17:28),1])

   paramID.2 <- unlist(mplus.Extract[[2]])

$parameters

$unstandardized[c(1,17:28),2])

paramName <- paste0(paramID.1,".",paramID.2)</pre>
```

Check Parameter Names from paste0()

```
sample(paramName,3)
## [1] "Variances.Y" "Variances.S2" "Means.S3"
```

Incorporate Parameter Name and Estimates

Extract Model Summary

 $\bullet \ \ {\it Recall that this model did not converge, therefore, there will be fewer values available from {\it \$summaries}}$

```
- Determine number of values
```

```
length(mplus.Extract[[2]]$summaries)

## [1] 7
length(mplus.Extract[[3]]$summaries) # Converged

## [1] 14
```

No. Params & LL

```
r2c1.nParm <- ifelse(
length(mplus.Extract[[2]]$summaries) < 14,

NA,
unlist(mplus.Extract[[2]]
$summaries
$Parameters)</pre>
```

```
r2c1.ll <- ifelse(
length(mplus.Extract[[i]]$summaries) < 14,

NA,
unlist(mplus.Extract[[i]]
$summaries
$LL)
)</pre>
```

AIC & BIC

```
r2c1.aic <- ifelse(
length(mplus.Extract[[2]]$summaries) < 14,

NA,
unlist(mplus.Extract[[2]]
$summaries

$AIC)
)

r2c1.bic <- ifelse(
length(mplus.Extract[[2]]$summaries) < 14,

NA,
unlist(mplus.Extract[[2]]$summaries) < 14,

Summaries
$BIC)
)</pre>
```

Extract Rep and Condition IDs

```
repID <- unlist(mplus.Extract[[2]]$summaries$Filename)</pre>
```

• Notice that this is a character value, but we need the numeric value...

```
repID
## [1] "cond_1_10.out"
  • Notice how the condition number is between \_ & \_?
strsplit()
splt <- strsplit(repID,c("_",".out"))</pre>
length(splt[[1]])
## [1] 3
splt
## [[1]]
## [1] "cond"
                          "10.out"
print(idCond <- as.numeric(splt[[1]][2]))</pre>
## [1] 1
Pull Numeric Values
splt[[1]][3]
## [1] "10.out"
print(idRep <- as.numeric(</pre>
    strsplit(splt[[1]][3],".out")[1]))
## [1] 10
Compile All Results
```

18

• Must create empty matrices to store all information:

1. Parameter estimates - 13 cols

2. Standard Errors - 13 cols

- 3. Rep & Cond IDs 2 cols
- 4. Model Information 4 cols
- Each matrix needs 150 rows, corresponding to each simulation run

Matrix Storage

```
paramE <- matrix(NA,ncol = 13, nrow = 150)
seE <- matrix(NA,ncol = 13, nrow = 150)
simR.C <- matrix(NA,ncol = 2, nrow = 150)
sumStat <- matrix(NA,ncol = 4,nrow = 150)</pre>
```

Utilize an incremental loop

• Because we want to automate this process, we must alter our code minimally:

```
for (i in 1:length(mplus.Extract)){
paramE[i, ] <- unlist(mplus.Extract[[i]])
$parameters
$unstandardized[c(1,17:28),3])
...
}</pre>
```

Let's Run Through It

• You should have all the necessary files.

Grab Bag

Error Variances

- Given a set of manifest variables, R can generate the appropriate Mplus syntax to model:
 - Homogeneous

- Heterogeneous
- Compound Symmetry
- Toeplitz
- Autoregressive
- Unstructured

 ${\tt timeV}$

```
## [1] "t1" "t2" "t3" "t4" "t5"
```

MplusAutomation Implementation

• Homogeneous

```
mplusRcov(timeV, "homogenous", collapse = TRUE)

## t1 t2 t3 t4 t5 (e);

## t1 WITH t2@0 t3@0 t4@0 t5@0;

## t2 WITH t3@0 t4@0 t5@0;

## t3 WITH t4@0 t5@0;

## t4 WITH t5@0;
```

MplusAutomation Implementation

• Heterogeneous

```
mplusRcov(timeV, "heterogenous", collapse = TRUE)

## t1 t2 t3 t4 t5;

## t1 WITH t2@0 t3@0 t4@0 t5@0;

## t2 WITH t3@0 t4@0 t5@0;

## t3 WITH t4@0 t5@0;

## t4 WITH t5@0;
```

MplusAutomation Implementation

• Compound Symmetry

```
mplusRcov(timeV,"cs",collapse = TRUE)

## t1 t2 t3 t4 t5 (e);

## t1 t2 t3 t4 PWITH t2 t3 t4 t5 (rho);

## t1 t2 t3 PWITH t3 t4 t5 (rho);

## t1 t2 PWITH t4 t5 (rho);

## t1 PWITH t5 (rho);
```

MplusAutomation Implementation

• Toeplitz

```
mplusRcov(timeV,"toeplitz",collapse = TRUE)

## t1 t2 t3 t4 t5 (e);

## t1 t2 t3 t4 PWITH t2 t3 t4 t5 (rho);

## t1 t2 t3 PWITH t3 t4 t5 (rho2);

## t1 t2 PWITH t4 t5 (rho3);

## t1 PWITH t5 (rho4);
```

MplusAutomation Implementation

• Autoregressive

```
mplusRcov(timeV, "ar", collapse = TRUE)
## t1 t2 t3 t4 t5 (e);
```

```
## t1 t2 t3 t4 t5 (e);
## t1 t2 t3 t4 PWITH t2 t3 t4 t5 (rho);
## t1 t2 t3 PWITH t3 t4 t5 (rho2);
## t1 t2 PWITH t4 t5 (rho3);
## t1 PWITH t5 (rho4);
## MODEL CONSTRAINT:
## rho2 = ((rho/e)^2) * e;
## rho3 = ((rho/e)^3) * e;
## rho4 = ((rho/e)^4) * e;
```

${\bf Mplus Automation} \ {\bf Implementation}$

```
• Unstructured: \frac{p*(p+1)}{2}

- p = No. of parameters

mplusRcov(timeV, "un", collapse = TRUE)

## t1 t2 t3 t4 t5;

## t1 WITH t2 t3 t4 t5;

## t2 WITH t3 t4 t5;

## t3 WITH t4 t5;

## t4 WITH t5;
```

Interactive Run Models

```
runModels_Interactive()
```