UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

LUIS GUILHERME MACHADO CAMARGO MARCELO TEIDER LOPES MATHEUS SILVA ARAÚJO

ROBÔ EXPLORADOR DE AMBIENTES

MONOGRAFIA

CURITIBA

2011

LUIS GUILHERME MACHADO CAMARGO MARCELO TEIDER LOPES MATHEUS SILVA ARAÚJO

ROBÔ EXPLORADOR DE AMBIENTES

Monografia apresentada ao Departamento Acadêmico de Eletrônica da Universidade Tecnológica Federal do Paraná como requisito parcial para aprovação na Disciplina de Oficina de Integração 2.

Orientadora: Profa. Dra. Myriam Regattieri De

Biase da Silva Delgado

CURITIBA

2011

AGRADECIMENTOS

Este trabalhado não teria sido possível sem o projeto anteriormente apresentado por Bruno Meneguele, Fernando Padilha e Vinicius Arcanjo. Por emprestar o robô e pelos diversos esclarecimentos (muitas vezes sobre assuntos que não os envolviam) nosso muito obrigado.

À Professora Myriam nossos agradecimentos por aceitar o desafio de nos orientar. Ao Professor Hugo.

RESUMO

CAMARGO, Luis Guilherme M.; LOPES, Marcelo Teider; ARAÚJO, Matheus Silva. ROBÔ EXPLORADOR DE AMBIENTES. 16 f. Monografia – Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná. Curitiba, 2011.

Texto do resumo (máximo de 500 palavras).

Palavras-chave: Palavra-chave 1, Palavra-chave 2, ...

ABSTRACT

CAMARGO, Luis Guilherme M.; LOPES, Marcelo Teider; ARAÚJO, Matheus Silva. AMBIENCE EXPLORER ROBOT. 16 f. Monografia – Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná. Curitiba, 2011.

Abstract text (maximum of 500 words).

Keywords: Keyword 1, Keyword 2, ...

LISTA DE FIGURAS

FIGURA 1	-	Exemplo de uma figura	12
----------	---	-----------------------	----

LISTA DE TABELAS

TABELA 1	_	Exemplo de uma tabela											. . .	· • •								13	3
----------	---	-----------------------	--	--	--	--	--	--	--	--	--	--	--------------	-------	--	--	--	--	--	--	--	----	---

LISTA DE SIGLAS

CPGEI Programa de Pós-graduação em Engenharia Elétrica e Informática Industrial

DAELN Departamento Acadêmico de Eletrônica UTFPR Universidade Tecnológica Federal do Paraná

LISTA DE SÍMBOLOS

- comprimento de onda velocidade λ
- v
- ffrequência

SUMÁRIO

1 INTRODUÇÃO	10			
1.1 MOTIVAÇÃO	10			
1.2 OBJETIVOS	10			
1.2.1 Objetivo Geral	10			
1.2.2 Objetivos Específicos				
2 DESENVOLVIMENTO				
2.1 FIGURAS				
2.2 TABELAS				
2.3 EQUAÇÕES	13			
2.4 SIGLAS E SÍMBOLOS	13			
3 CONCLUSÃO	14			
Apêndice A – NOME DO APÊNDICE				
Anexo A - NOME DO ANEXO				

1 INTRODUÇÃO

O presente documento é um exemplo de uso do estilo de formatação LATEX elaborado para atender às Normas para Elaboração de Trabalhos Acadêmicos da UTFPR. O estilo de formatação normas-utf-tex.cls tem por base o pacote ABNTEX – cuja leitura da documentação (??) é fortemente sugerida – e o estilo de formatação LATEX da UFPR.

Para melhor entendimento do uso do estilo de formatação normas-utf-tex.cls, aconselha-se que o potencial usuário analise os comandos existentes no arquivo TEX (modelo_*.tex) e os resultados obtidos no arquivo PDF (modelo_*.pdf) depois do processamento pelo software LATEX + BIBTEX (????). Recomenda-se a consulta ao material de referência do software para a sua correta utilização (???????).

1.1 MOTIVAÇÃO

Uma das principais vantagens do uso do estilo de formatação normas-utf-tex.cls para LATEX é a formatação *automática* dos elementos que compõem um documento acadêmico, tais como capa, folha de rosto, dedicatória, agradecimentos, epígrafe, resumo, abstract, listas de figuras, tabelas, siglas e símbolos, sumário, capítulos, referências, etc. Outras grandes vantagens do uso do LATEX para formatação de documentos acadêmicos dizem respeito à facilidade de gerenciamento de referências cruzadas e bibliográficas, além da formatação – inclusive de equações matemáticas – correta e esteticamente perfeita.

1.2 OBJETIVOS

1.2.1 OBJETIVO GERAL

Prover um modelo de formatação LAT_EX que atenda às Normas para Elaboração de Trabalhos Acadêmicos da UTFPR (??) e às Normas de Apresentação de Trabalhos Acadêmicos do DAELN (??).

1.2.2 OBJETIVOS ESPECÍFICOS

- Obter documentos acadêmicos automaticamente formatados com correção e perfeição estética.
- Desonerar autores da tediosa tarefa de formatar documentos acadêmicos, permitindo sua concentração no conteúdo do mesmo.
- Desonerar orientadores e examinadores da tediosa tarefa de conferir a formatação de documentos acadêmicos, permitindo sua concentração no conteúdo do mesmo.

2 DESENVOLVIMENTO

A seguir ilustra-se a forma de incluir figuras, tabelas, equações, siglas e símbolos no documento, obtendo indexação automática em suas respectivas listas. A numeração sequencial de figuras, tabelas e equações ocorre de modo automático. Referências cruzadas são obtidas através dos comandos \label{} e \ref{}. Por exemplo, não é necessário saber que o número deste capítulo é 2 para colocar o seu número no texto. Isto facilita muito a inserção, remoção ou relocação de elementos numerados no texto (fato corriqueiro na escrita e correção de um documento acadêmico) sem a necessidade de renumerá-los todos.

2.1 FIGURAS

Na figura 1 é apresentado um exemplo de gráfico flutuante. Esta figura aparece automaticamente na lista de figuras. Para uso avançado de gráficos no LATEX, recomenda-se a consulta de literatura especializada (??).

Figura 1: Exemplo de uma figura onde aparece uma imagem sem nenhum significado especial.

Fonte: (??)

2.2 TABELAS

Também é apresentado o exemplo da tabela 1, que aparece automaticamente na lista de tabelas. Informações sobre a construção de tabelas no L^AT_EX podem ser encontradas na literatura especializada (????????).

Tabela 1: Exemplo de uma tabela mostrando a correlação entre x e y.

Fonte: Autoria própria.

2.3 EQUAÇÕES

A transformada de Laplace é dada na equação (1), enquanto a equação (2) apresenta a formulação da transformada discreta de Fourier bidimensional¹.

$$X(s) = \int_{t=-\infty}^{\infty} x(t) e^{-st} dt$$
 (1)

$$F(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \exp\left[-j2\pi \left(\frac{um}{M} + \frac{vn}{N}\right)\right]$$
 (2)

2.4 SIGLAS E SÍMBOLOS

O pacote ABNTEX permite ainda a definição de siglas e símbolos com indexação automática através dos comandos $sigla{}{}$ e $simbolo{}$. Por exemplo, o significado das siglasCPGEI,DAELN eUTFPR aparecem automaticamente na lista de siglas, bem como o significado dos símbolos λ , ν e f aparecem automaticamente na lista de símbolos. Mais detalhes sobre o uso destes e outros comandos do ABNTEX são encontrados na sua documentação específica (??).

¹Deve-se reparar na formatação esteticamente perfeita destas equações!

3 CONCLUSÃO

Espera-se que o uso do estilo de formatação LATEX adequado às Normas para Elaboração de Trabalhos Acadêmicos da UTFPR (normas-utf-tex.cls) facilite a escrita de documentos no âmbito desta instituição e aumente a produtividade de seus autores. Para usuários iniciantes em LATEX, além da bibliografia especializada já citada, existe ainda uma série de recursos (??) e fontes de informação (????) disponíveis na Internet.

Recomenda-se o editor de textos Kile como ferramenta de composição de documentos em LATEX para usuários Linux. Para usuários Windows recomenda-se o editor TEXnicCenter (??). O LATEX normalmente já faz parte da maioria das distribuições Linux, mas no sistema operacional Windows é necessário instalar o software MIKTEX (??).

Além disso, recomenda-se o uso de um gerenciador de referências como o JabRef (??) ou Mendeley (??) para a catalogação bibliográfica em um arquivo BIBTEX, de forma a facilitar citações através do comando \cite{} e outros comandos correlatos do pacote ABNTEX. A lista de referências deste documento foi gerada automaticamente pelo software LATEX + BIBTEX a partir do arquivo reflatex.bib, que por sua vez foi composto com o gerenciador de referências JabRef.

O estilo de formatação IATEX da UTFPR e este exemplo de utilização foram elaborados por Diogo Rosa Kuiaski (diogo.kuiaski@gmail.com) e Hugo Vieira Neto (hvieir@utfpr.edu.br), com contribuições de César Vargas Benitez. Sugestões de melhorias são bem-vindas.

APÊNDICE A - NOME DO APÊNDICE

Use o comando \apendice e depois comandos \chapter{} para gerar títulos de apên-dices.

ANEXO A - NOME DO ANEXO

 $Use\ o\ comando\ \backslash \texttt{anexo}\ e\ depois\ comandos\ \backslash \texttt{chapter}\{\}\ para\ gerar\ t\'itulos\ de\ anexos.$