

Б. Е. Аксенов, А. М. Александров, А. Н. Баканов, Применение обобщенного пуассоновского потока к исследованию методов повышения достоверности, *Пробл. передачи информ.*, 1973, том 9, выпуск 3, 80–86

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 95.27.66.115

7 апреля 2015 г., 23:42:39

УДК 624.391.1:519.152

ПРИМЕНЕНИЕ ОБОБЩЕННОГО ПУАССОНОВСКОГО ПОТОКА К ИССЛЕДОВАНИЮ МЕТОДОВ ПОВЫШЕНИЯ ДОСТОВЕРНОСТИ

Б. Е. Аксенов, А. М. Александров, А. Н. Баканов

Рассматривается возможность использования обобщенного пуассоновского потока для исследования методов повышения достоверности.

1. В [1, 2] было показано, что одномерное распределение потока ошибок дискретного канала с приемлемой точностью аппроксимируется соответствующим распределением обобщенного пуассоновского потока (ОПП), который может быть использован в качестве математической модели канала. Принятие такой математической модели потока приводит к признанию зависимости интервалов между ошибками, т. е. модели канала с памятью.

Данная работа посвящена исследованию возможности использования указанной модели канала для расчета характеристик методов повышения постоверности.

Обобщенный пуассоновский поток полностью определяется одной из следующих функций: $F(\lambda)$, $\varphi(t)$ или $v_0(t)$ [$^{1-4}$]. Здесь $F(\lambda)$ и $\varphi(t)$ — функции распределения соответственно случайного параметра исходного пуассоновского потока и интервалов между соседними событиями ОПП, $v_0(t)$ — вероятность отсутствия событий ОПП на промежутке времени t. В соответствии с этим вероятность того, что на последовательно расположенных промежутках времени t_1, \ldots, t_n появится соответственно k_1, \ldots, k_n событий ОПП, есть [$^{1-4}$]:

(1)
$$v_{\mathbf{k}}(\mathbf{t}) = P\{\xi(\tau_{i}) - \xi(\tau_{i-1}) = k_{i}, i = 1, n\} =$$

$$= \int_{0}^{\infty} \prod_{i=1}^{n} \frac{(\lambda t_{i})^{k_{i}}}{k_{i}!} e^{-\lambda t_{i}} dF(\lambda) = (-1)^{k} \prod_{i=1}^{n} \frac{t_{i}^{k_{i}}}{k_{i}!} \frac{d^{k} v_{0}(\tau_{n})}{d\tau_{n}^{k}} =$$

$$= (-1)^{k-1} \alpha \prod_{i=1}^{n} \frac{t_{i}^{k_{i}}}{k_{i}!} \frac{d^{k-1} \varphi(\tau_{n})}{d\tau_{n}^{k-1}}.$$

Здесь $\xi(\tau)$ — количество событий обобщенного пуассоновского потока, появившихся в промежутке времени $(0, \tau)$; $\mathbf{k} = \{k_1, \ldots, k_n\}$, $\mathbf{t} = \{t_1, \ldots, t_n\}$,

$$k=k_1+\ldots+k_n,\;\; au_n=t_1+\ldots+t_n,\;\;$$
 далее $\;\; lpha=-{v_0}'(0)=\{\int\limits_0^\infty \phi(t)\,dt\}^{-1}-$

параметр ОПП. Функции $v_0(t)$ и $\varphi(t)$ связаны известным соотношением Пальма — Хинчина:

(2)
$$v_0(t) = \alpha \int_t^{\infty} \varphi(x) dx; \ \varphi(t) = -\alpha^{-1} v_0'(t).$$

Пусть $0 < \tau_1 < \tau_2 < \ldots$ некоторая последовательность фиксированных моментов времени. Далее, пусть $\eta(\tau)$ — некоторый показатель метода повышения достоверности такой, что $\eta(\tau)=1$ или 0 в зависимости от того, выполняется или не выполняется в момент времени τ некоторое интересующее нас событие, характеризующее метод повышения достоверности. Таким событием может быть, например, появление искаженного кодового слова или появление в кодовом слове необнаруженной ошибки и т. д.

Так как показатели методов повышения достоверности зависят от свойств ошибок, то $\xi(\tau)$ и $\eta(\tau)$ зависимы между собой. Рассмотрим случайный процесс $\{\xi(\tau),\ \eta(\tau)\}$. Обозначим через $A^{(i)}$ событие $\{\eta(\tau_i)=1\}$, через B_k — событие $\{\xi(\tau_i)-\xi(\tau_{i-1})=k\}$. Очевидно,

$$P(A^{(i)}) = P\{\eta(\tau_{i}) = 1\} = \sum_{k=0}^{\infty} P\{\xi(\tau_{i}) - \xi(\tau_{i-1}) = k\} \times$$

$$\times P\{\eta(\tau_{i}) = 1 | \xi(\tau_{i}) - \xi(\tau_{i-1}) = k\} = \sum_{k=0}^{\infty} v_{k}(t_{i}) P(A^{(i)} | B_{k}) =$$

$$= \int_{0}^{\infty} P(A_{k}^{(i)}) dF(\lambda),$$

$$t_{i} = \tau_{i} - \tau_{i-1}, \ i \ge 1, \ \tau_{0} = 0; \ v_{k}(t_{i}) = P(B_{k}); \ P(A_{k}^{(i)}) =$$

$$= \sum_{k=0}^{\infty} \frac{(\lambda t_{i})^{k}}{k!} e^{-\lambda t_{i}} P(A^{(i)} | B_{k}).$$

 $P(A_{\lambda}^{(i)})$ определяет вероятность событий $A^{(i)}$ для (обычного) пуассоновского потока. В дальнейшем будем считать, что $\tau_i - \tau_{i-1} = t$, $i \geq 1$, так что события $A^{(i)}$ могут происходить только в моменты времени t, 2t, 3t, Обозначим $\eta(\tau_i) \equiv \eta_i$. Таким образом, η_i является случайным процессом с дискретным временем. Если рассмотреть однородную последовательность из n таких моментов (которую можно назвать блоком длины n), то на ней можно обнаружить или 0, или $1, \ldots$, или n событий $A^{(i)}$. Обозначим через $p_i(n)$ вероятность того, что на блоке длины n появится t событий A, τ . е.

$$p_{\cdot}(n) = P\left\{\sum_{j=1}^{n} \eta_{j} = i\right\}.$$

Таким образом, $p_i(n)$ есть распределение, например, числа искаженных кодовых слов или числа кодовых слов с необнаруженными ошибками и т. д. в общем числе n переданных кодовых слов. Если события $A^{(i)}$ и $A^{(i)}$ при $i \neq j$ взаимно независимы, то распределение вероятностей $p_i(n)$ является биномиальным распределением. Однако ошибки в каналах связи в общем случае зависимы между собой, как это следует из эксперимента и из модели ОПП. Поэтому зависимы между собой и события $A^{(i)}$ и $A^{(j)}$ при $i \neq j$. В связи с этим биномиальное распределение нельзя использовать для вычисления вероятности $p_i(n)$.

Из определений вероятности $p_i(n)$ и ОПП (1) следует, что

(4)
$$p_i(n) = C_n^i \int_0^\infty P^i(A_\lambda) \left[1 - P(A_\lambda)\right]^{n-i} dF(\lambda).$$

Отсюда непосредственно видно, что события $A^{(i)}$ и $A^{(j)}$ при $i \neq j$ в общем случае зависимы между собой. Из этого же выражения следует, что случайный процесс η_i является одним из вариантов обобщенного биномиального потока (биномиального потока со случайной вероятностью появления события [5]). После несложных преобразований (4) получим соотношение для $p_i(n)$ в более удобном виде:

(5)
$$p_i(n) = C_n^{i} \sum_{j=i}^{n} (-1)^{j-i} C_{n-i}^{j-i} \int_{0}^{\infty} P^j(A_{\lambda}) dF(\lambda).$$

Аналогичным путем можно получить общее выражение для $p_i(\mathbf{n})$ — многомерного распределения числа событий A на m последовательно расположенных блоках n_1, \ldots, n_m :

(6)
$$p_{i}(\mathbf{n}) = \prod_{l=1}^{m} C_{n_{l}}^{i_{l}} \sum_{j_{1}=i_{1}}^{n_{1}} \dots \sum_{j_{m}=i_{m}}^{n_{m}} (-1)^{j-i} \prod_{l=1}^{m} C_{n_{l}-i_{l}}^{j_{l}-i_{l}} \int_{0}^{\infty} P^{j}(A_{\lambda}) dF(\lambda),$$

где $j=j_1+\ldots+j_m$, $i=i_1+\ldots+i_m$, $\mathbf{i}=\{i_1,\ldots,i_m\}$, $\mathbf{n}=\{n_1,\ldots,n_m\}$. Это аналог выражения (1) для потока событий A. Необходимо иметь в виду, что $p_i(n)$ есть одномерное распределение для потока событий A. Относительно же исходного потока ошибок это вариант многомерного распределения. Поэтому, например, проверка $p_i(n)$ на соответствие эксперименту— это проверка многомерного распределения для потока ошибок, т. е. проверка самой модели канала связи.

г. т. е. проверка самой модели канала связи.
$$P(A|B_s) = \left\{egin{array}{ll} 1 & ext{при } s=k, \ 0 & ext{при } s
eq k, \ k \geqslant 0. \end{array}
ight.$$

Тогда $P(A_{\lambda})=[\,(\lambda t)^{\,\hbar}/\,k!\,]e^{-\lambda t}$. Так как

$$\int_{0}^{\infty} P^{j}(A_{\lambda}) dF(\lambda) = (-1)^{jk} \frac{t^{jk}}{(k!)^{j}} \frac{d^{jk}v_{0}(\tau_{j})}{d\tau_{j}^{jk}},$$

где $\tau_j = jt;$ $v_0(\tau_j) = \int\limits_0^\infty e^{-\lambda jt} dF(\lambda) -$ вероятность отсутствия ошибок на интервале времени τ_i , то из (6)

(7)
$$p_{\mathbf{i}}(\mathbf{n}) = \prod_{l=1}^{m} C_{n_{l}}^{i_{l}} \sum_{i=1}^{n_{1}} \dots \sum_{i=1}^{n_{m}} (-1)^{j-i+M} \prod_{l=1}^{m} C_{n_{l}-i_{l}}^{j_{l}-i_{l}} \frac{t^{k_{l}j_{l}}}{(k_{l}!)^{j_{l}}} \frac{d^{M}v_{0}(\tau_{j})}{d\tau_{j}^{M}},$$

 $M = k_1 j_1 + \ldots + k_m j_m$. Предполагается, что параметр k для каждого блока может быть различным. Аналогично получается выражение, если для каждого блока различным является также параметр t.

Принимая во внимание (2), можно написать, что

(8)
$$p_{i}(\mathbf{n}) = \alpha \sum_{j=i}^{n} (-1)^{j(k+1)-i-1} C_{n-i}^{j-i} \frac{t^{jk}}{(k!)^{j}} \frac{d^{jk-1} \varphi(\tau_{j})}{d\tau_{j}^{jk-1}}, \quad jk \geqslant 1.$$

Таким образом получен весьма важный результат, состоящий в том, что как для исходного потока ошибок, так и для потока событий A для определения $p_i(n)$ достаточно задать одну из следующих функций: $F(\lambda)$, $v_0(t)$, $\varphi(t)$. Для важного в практическом отношении частного случая k=0 из (7) следует, что

(9)
$$p_{\mathbf{i}}(\mathbf{n}) = \prod_{l=1}^{m} C_{n_{l}}^{i_{l}} \sum_{j_{1}=i_{1}}^{n_{1}} \dots \sum_{j_{m}=i_{m}}^{n_{m}} (-1)^{j-i} \prod_{l=1}^{m} C_{n_{l}-i_{l}}^{j_{l}-i_{l}} v_{\mathbf{0}} (jt).$$

Рассмотрим еще несколько полезных форм представления потока событий A.

Заметим, что

$$\int\limits_{0}^{\infty} \prod_{l=1}^{m} \left[\frac{(\lambda t)^{h_{l}}}{k_{l}!} e^{-\lambda t} \right]^{j_{l}} dF(\lambda) = \prod_{l=1}^{m} \frac{(j_{l}k_{l})!}{(j^{h_{l}}k_{l}!)^{j_{l}}} v_{j_{l}k_{1}, \ldots, j_{m}k_{m}} (j_{1}t, \ldots, j_{m}t),$$

тде $v_{jk}(jt)$ — вероятность появления jk ошибок на интервале времени jt. Отсюда вместо (8) можно написать:

(10)
$$p_{i}(\mathbf{n}) = \prod_{l=1}^{m} C_{n_{l}}^{i_{l}} \sum_{j_{1}=i_{1}}^{n_{1}} \dots \sum_{j_{m}=i_{m}}^{n_{m}} (-1)^{j-i} \times \prod_{l=1}^{m} C_{n_{l}-i_{l}}^{j_{l}-i_{l}} \frac{(j_{l}k_{l})!}{(j_{1}^{k_{l}}k_{l}!)^{j_{l}}} v_{j_{1}i_{1},\dots,j_{m}k_{m}} (j_{1}t,\dots,j_{m}t).$$

Таким образом, если известны значения $v_{j_1k_1,\ldots,j_mk_m}(j_1t,\ldots,j_mt)$ (например, из эксперимента), то с помощью (10) можно непосредственно вычислить $p_i(\mathbf{n})$.

Нетрудно вычислить вероятность появления события A ровно в n-й момент времени. Обозначив эту вероятность через $\pi(n)$, получим, что (11) $\pi(n) = p_0(n-1) - p_0(n) =$

$$= \int_{0}^{\infty} P(A_{\lambda}) [1 - P(A_{\lambda})]^{n-1} dF(\lambda) = n^{-1} p_{1}(n).$$

В частности, если $P(A_{\lambda}) = e^{-\lambda t}$, то

$$\pi(n) = \sum_{j=1}^{n} (-1)^{j-1} C_{n-1}^{j-1} v_0(jt).$$

Следующая задача данной работы состоит в вычислении вероятности отсутствия события A на блоке длины n при условии, что этот промежуток времени отмеряется от момента появления предыдущего события A (а не от произвольно выбранного момента времени, как в случае вероятности $p_0(n)$). Обозначим эту вероятность через h(n). Для потоков с непрерывным временем этой вероятностью является функция Пальма —

Хинчина $\varphi(t)$. В случае дискретного времени между h(n) и $p_0(n)$ существует связь, аналогичная связи между $\varphi(t)$ и $v_0(t)$, задаваемой соотношениями (2): $-\Delta p(n+1) = p_0(n) - p_0(n+1) = p_1(n)h(n), \ n \geqslant 1$. Легко видеть, что $p_1(1) = P(A)$. Поэтому $h(n) = -P^{-1}(A)\Delta p_0(n+1)$, или $h(n) = P^{-1}(A)\pi(n+1) = p_1(n+1) / [(n+1)P(A)], \ h(0) = 1$.

Вероятность того, что событие A произойдет ровно в n-й момент времени (после наступления предыдущего события A), есть

(12)
$$f(n) = -\Delta h(n) = P^{-1}(A) \int_{0}^{\infty} P^{2}(A_{\lambda}) [1 - P(A_{\lambda})]^{n-1} dF(\lambda) =$$

$$= \frac{2p_{2}(n+1)}{n(n+1)P(A)}.$$

2. Таким образом, если рассматривать поток ошибок в канале связи как обобщенный пуассоновский, то можно вычислить различные характеристики передачи информации по каналу связи, имея для этого только набор значений функций v_0 или ϕ или их производных для различных значений их аргументов. Это обстоятельство упрощает проведение различных расчетов и ставит на практическую основу задачи анализа различных методов повышения достоверности, так как для широкого класса каналов эти функции известны и могут быть представлены в виде, например, гиперболического распределения или обобщенного экспоненциального распределения [6].

Рассмотрим некоторые примеры использования полученных результатов. В работах [1, 2] было показано, что поток ошибок в телефонном тропосферном канале может быть описан с помощью обобщенного пауссоновского процесса, причем функция распределения интервалов между ошибками для этого канала может быть принята в виде

(13)
$$\varphi(t) = (a / (a + t))^{v},$$

где a и v — некоторые характеристики потока. В этом случае функция $F(\lambda)$ есть гамма-распределение.

Используя соотношение (13), преобразуем формулы (7) или (8) для m=1 к виду

(14)
$$p_{i}(n) = C_{n}^{i} \sum_{j=i}^{n} (-1)^{j-i} C_{n-j}^{j-i} \left(\frac{t}{a+jt}\right)^{jk} \times \frac{(v+jk-2)_{ik}}{(k!)^{j}} \left(\frac{a}{a+jt}\right)^{v-1}$$

где
$$(x)_r = x(x-1) \dots (x-r+1), (x)_0 \equiv 1.$$

В общем случае для аппроксимации $\phi(t)$ может оказаться необходимым прибегнуть к использованию выражений, отличных от (13). Так, например, в [2, 6] для телеграфного КВ радиоканала предлагается взять

(15)
$$\varphi(t) = \exp(\lambda a^{1-\nu}) \exp[-\lambda (a+t)^{1-\nu}] \left(\frac{a}{a+t}\right)^{\nu}, \quad t \ge 0,$$

где $\lambda,\,a,\,v$ — некоторые параметры $\phi(t)$. В этом случае

(16)
$$v_0(t) = \exp(\lambda a^{1-\nu}) \exp[-\lambda (a+t)^{1-\nu}].$$

Таблица 1

	i	$\bar{p}_{i}^{(n)}$	Расчетные значения по формулам			
Тип канала			(14)	(9)	(17)	дск
Тропосферный телефонный канал	0÷1	0,00167 0,00135	0,00274 0,00077	0,00218 0,00040	0,00001 0,00006	0,00002 0,00192
t = 64, n = 4, k = 0 $p_{\text{out}} = 10^{-3} \div 10^{-4}$	3 4	0,01440 0,99258	0,00131 0,99516	0,00468 0,99274	0,01301	0,06895 0,92911
Тропосферный телефонный канал $t=256,\ n=12,\ k=0$ $p_{\rm om}=10^{-3}\div 10^{-4}$	0÷9 10 11 12	0,01035 0,00737 0,02197 0,96031	0,02812 0,00396 0,01164 0,95628	0,00439 0,00502 0,02984 0,96075	0,00009 0,00336 0,08193 0,91462	0,04831 0,15899 0,37888 0,41382
Кабельный телефонный канал $t=128,\ n=12,\ k=0$ $p_{\rm out}=10^{-3}$	0÷9 40 41 42	0,00622 0,00164 0,00557 0,98657	0,01976 0,00213 0,00406 0,97405	0,00430 0,00184 0,00681 0,98705	0,00003 0,00162 0,05774 0,94061	0,49111 0,27192 0,18147 0,05551
Телеграфный КВ радиоканал $t=64,\ n=4,\ k=0$ $p_{\rm om}=6\cdot 10^{-3}$	0÷1 2 3 4	0,05926 0,07149 0,16598 0,70327	0,06385* 0,05410* 0,17921* 0,70284*		0,00731 0,07311 0,33702 0,58256	0,08862 0,27099 0,40895 0,23144
Радиорелейный телефонный канал $t=256,\ n=4,\ k=2$ $p_{\rm out}=10^{-3}$	$ \begin{vmatrix} 0 \\ 1 \\ 2 \\ 3 \div 4 \end{vmatrix} $	0,99466 0,00525 0,00038 0,00001	0,9955 ₁ 0,00327 0,00102 0,00020	0,99556 0,00325 0,00099 0,00020	0,99419 0,00580 0,00001 0,00000	0,89881 0,09718 0,00394 0,00007

Примечание: значения с индексом * рассчитаны на основе формул (9) и (16).

Таблица 2

i \bar{p}_i			Расчетные значения по формулам		-,,	Расчетные значения по формулам	
	p _i (n)	(14)	(17)	i.	$p_{i}^{(n)}$	(14)	(17)
0÷3 4	0,01610 0,00791	0,02168 0,00511	0,00011 0,00447	5 6	0,01875 0,95724	0,00924 0,96387	0,09811 0,89731

В табл. 1 представлены некоторые экспериментальные и расчетные результаты для различных каналов. Ограниченный объем статьи не позволяет привести более полные результаты исследований. Длина кодового слова t варьировалась в диапазоне $t=64\div256$ двоичных знаков. Число кодовых слов n, на котором рассматривалось распределение числа событий A, изменялось в диапазоне $n=4\div12$ блоков. Таким образом, длина передаваемого массива $t\cdot n$ изменялась в пределах $256\div3072$ двоичных знаков.

Значения $p_i(n)$ для тропосферного канала связи получены по формулам (14) и (9), (10). По этим же формулам рассчитаны величины $p_i(n)$ для кабельного и радиорелейного каналов. Это равносильно использованию для последних функций $\varphi(t)$ вида (13). В качестве величин $v_0(jt)$ в (9) использовались экспериментально полученные частоты $\bar{v}_0(jt)$ появления блоков длины jt, на которых отсутствуют ошибки. В этой же таблице приводятся значения $p_i(n)$, полученные в предположении о независимости событий A, т. е. рассчитанные по формуле

(17)
$$p_i(n) = C_n^i p^i(A) [1 - P(A)]^{n-i},$$

где $P(A) = v_k(t)$. В качестве $v_k(t)$ использованы экспериментальные значения $\bar{v}_k(t)$.

Для сравнения в табл. 1 приведены значения $p_i(n)$, определенные в предположении, что распределение ошибок в канале связи описывается биномиальным распределением, что соответствует двоичному симметричному каналу без памяти (ДСК).

В этой же таблице приведены значения $\bar{p}_i(n)$, полученные экспериментальным путем. Исследования на основе критерия согласия Матузита показывают, что при уровне значимости, равном 10%, распределения, задаваемые формулами (14) и (9), не противоречат экспериментальным данным. В то же время использование формулы (17), т. е. гипотезы о независимости распределения ошибок в смежных кодовых словах, приводит к выводу о ее противоречии эксперименту.

В заключение рассмотрим определение некоторых характеристик одного простейшего метода повышения достоверности. Этот метод заключается в многократном повторении информации, закодированной обнаруживающим ошибки кодом. В качестве кода используется циклический (52, 45)-код с образующим полиномом ($x^6 + x^5 + 1$) (x + 1).

В табл. 2 приведено распределение на n числа принятых кодовых слов, полученное как расчетным путем по формуле (14) при k=0, так и из эксперимента ($\bar{p}_i(n)$) при работе по тропосферному каналу связи. Для сравнения приводятся и результаты расчета по формуле (17).

Для этого же метода повышения достоверности можно получить аналитическое выражение для распределения $p_i(n)_{\text{н.о.}}$ числа кодовых слов, которые содержат не обнаруженные при декодировании ошибки. Для n=6 эксперимент и расчет при i=0 дали 0,99957 и 0,99963, а при i=1 дали 0,00043 и 0,00037, соответственно.

ЛИТЕРАТУРА

- 1. Аксенов Б. Е., Александров А. М. Об одном методе исследования потоков ошибок в каналах связи. Проблемы передачи информации, 1968, 4, 4, 79—83.
- 2. Аксенов Б. Е., Александров А. М. О потоках со случайными параметрами и их применений для исследования ошибок в каналах связи. Тр. семинара по кибернетике, 6. Кишинев, Изд-во АН МолдССР, 1968, 3—23.
- Хинчин А. Я. Работы по математической теории массового обслуживания. М., Физматгиз, 1963.
- 4. Беляев Ю. К. Случайные потоки и теория восстановления. В кн. Кокс Д., Смит В. «Теория восстановления». М., «Сов. радио», 1967, 237-288.
- 5. Феллер В. Введение в теорию вероятностей и ее приложения, 2. М., «Мир», 1967.
- 6. Аксенов Б. Е., Воронин Е. А. Обобщенный экспоненциальный закон распределения и статистика ошибок в каналах связи. Электросвязь, 1968, 6, 74—75

Поступила в редакцию 9 декабря 1970 г. После переработки 7 августа 1972 г.