

Ambientes de Desenvolvimento e Operações - DevOps

Aula 01 — Apresentação Inicial Rodolfo Riyoei Goya rodolfo.goya@faculdadeimpacta.com.br

Sumário

- Introdução
 - Programação do Curso
 - Bibliografia
 - Critério de Avaliação
 - Virtualização

Programação do Curso

20 aulas: 80 horas

- Virtualização
- Computação em Nuvem
- Tipos de Serviços em Nuvem
- Economia, Arquitetura, Operação e Segurança
- Storage e Networking em Nuvem

Referências Bibliográficas

- GAVANDA, M.;MAURO, A.; VALSECCHI, P.; NOVAK, K. Mastering VMware vSphere 6.7: Effectively deploy, manage, and monitor your virtual datacenter with VMware vSphere 6.7. 756p. Packt Publishing -2^a ed. – Mar./2019
- MARSHALL, N.; BROWN, M.; FRITZ, G.B.; JOHNSON, R. Mastering
 VMware vSphere 6.7 848p. Sybex 1^a ed. Nov./2018
- MALOO, S.; AHMED, F. CCNP and CCIE Data Center Core DCCOR
 350-601 Official Cert Guide 1056p. Cisco Press 1^a ed. Abr./2020
- HALABI, S. Hyperconverged Infrastructure Data Centers:
 Demystifying HCI (Networking Technology) 545p. Cisco Press 1^a ed. Jan./2019

Avaliação

- 30% ACs: 4 melhores de 5
- 40% Prova Semestral/Prova Substitutiva
- 30% PAI
- Aprovação: Frequência acima de 75% <u>E</u> Média Final maior ou igual a 6.0

Ambiente para a Disciplina

- AWS Academy
 - Login:https://awsacademy.instructure.com/login/canvas
 - Você recebeu um convite no seu e-mail da impacta
- Identifique no seu e-mail @aluno.faculdadeimpacta. com.br o e-mail "Convite para o curso" para acessar o curso "AWS Academy Learner Lab [14012]"

- Clique no botão Começar para abrir o link de acesso e siga as instruções
- A tela deve aparecer:

- Se já fez algum curso da AWS Academy na Impacta, clique em "I Have a Canvas Account", faça seu login e já terá acesso ao curso dessa disciplina
- Se ainda não tem login, clique em "Create My Account"

 Nesta tela: clique em Student Login, faça o login com sua conta do AWS Academy

Você será direcionado para a página do curso que foi inscrito

- Opcional
- Clique "Painel de Controle", no menu lateral para ver os cursos que está inscrito
- No curso dessa disciplina (AWS Academy Cloud Foundations) clique no menu de contexto e altere o nome de exibição para facilitar a identificação, caso tenha mais cursos

- Dentro do curso você vai encontrar a seção "Módulos"
- Todo o material para estudar e preparar-se para aula está neste ambiente
 - Veja o cronograma de estudo no plano de ensino

- Para acessar o ambiente depois que fizer o cadastro:
 - Acesse: https://awsacademy.instructure.com/login/canvas
 - Faça o login com o e-mail e senha cadastrados, caso ainda não esteja autenticado

Introdução: Virtualização e Nuvem

Introdução: Virtualização e Nuvem

- Com a evolução da tecnologia de redes, uma série de componentes de infraestrutura puderam ser "Virtualizados"
- Um componente "Virtualizado" quando parte ou toda a sua instalação, operação e manutenção podem ser de algum modo tornado abstrato para o seu usuário
- A "Computação em Nuvem" abrange a noção de virtualização proporcionada por infraestrutura própria ou por terceiros e comunicação que pode incluir a Internet
- A "Computação em Nuvem" traz muitos benefícios tais como: redução de custo e consumo de energia, flexibilidade para adaptação a diferentes demandas, acesso a novas tecnologias e presença global entre outras
- Este curso detalha sobre como isso funciona e é possível

Material de Referência

- https://en.wikipedia.org/wiki/Hypervisor
- https://aws.amazon.com/pt/certification/
- https://www.cisco.com/c/en/us/training-events/training-certifications/certifications/professional/ccnp-data-center-v2.html

Primórdios

- Máquinas de propósito específico
 - Mark 1: balística
 - Colossus: criptografia
- Computadores eram projetos de engenharia para a solução de um dado problema
- Algoritmo embutido no hardware

Hardware Específico para cada Problema

Colossus

Mark I

06.02.22

Ambientes de Desenvolvimento e Operações – DevOps Rodolfo Goya

Primeira Geração

- Máquinas de programa armazenado
 - Eniac
- Programas armazenados em memória
- Diferentes programas poderiam ser executados na mesma máquina

Memória

Programa de Aplicação

Hardware Específico

Segunda Geração

- Um Sistema Operacional torna o hardware abstrato
- Os programas são produzidos em linguagem de programação
- Programas executados em batch
- Dois modos de operação:
 - Usuário
 - Supervisor

Terceira Geração

- Tempo Compartilhado
 - Múltiplos programas podem ser mantidos em execução
 - Programas isolados um do outro
- Dois modos de operação:
 - Usuário (programas)
 - Supervisor (S.O.)

Virtualização

- Hypervisor executar múltiplos sistemas operacionais
 - "Guests" sobre um "Host"
 - Quatro modos de operação
 - 0: S.O. Host
 - 1: Hypervisor
 - 2: S.O. Guest
 - 3: Programa de Aplicação
 - VirtualBox
 - Hyper-V

- Nos mainframes, já era usado desde os anos 60
- Como o Sistema Operacional era chamado de Supervisor, chamaram o sistema de virtualização de "Hypervisor"
- Os Sistemas Operacionais hóspedes ("Guests") têm a sensação de estarem sendo executados em uma máquina física exclusiva para si ("Máquina Virtual")
- Isso só se tornou possível para microprocessadores, a partir de 2.005 (Intel VT-X e AMD-V):
 - https://en.wikipedia.org/wiki/X86 virtualization
 - Passou-se de 2 para 4 níveis de operação da CPU
 - Com o sucesso, hardware para virtualização de E/S foi desenvolvido

Virtualização Bare-Metal

- Hypervisor executar múltiplos sistemas operacionais
 - "Guests" sobre um "Hypervisor"
 - Quatro modos de operação
 - 0: Hypervisor
 - 1: S.O. Guest
 - 2: Reservado
 - 3: Programa de Aplicação
 - VMWare, Xen

- Padronização do hardware:
 - Sem virtualização, os fabricantes de hardware precisam produzir máquinas e drivers para diversos sistemas operacionais

Virtualização - Características

- Com a virtualização, possibilitou-se criar múltiplos servidores em um mesmo hardware, cada um com sua configuração
- Cada servidor é perfeitamente funcional, podendo usar recursos como armazenamento externo e comunicação de rede
- Cada servidor virtual é completamente isolado dos demais servidores no mesmo hardware sendo incapaz de acessar a memória RAM, registradores de CPU e demais recursos um do outro

- Padronização da interface sistema operacional hardware:
 - Sem virtualização, os fabricantes de S.O. precisam produzir programas compatíveis com tipos diferentes de hardware

Ambientes de Desenvolvimento e Operações – DevOps Rodolfo Goya

- Padronização da interface sistema operacional hardware:
 - Com virtualização, os fabricantes de hardware e de S.O. procuram compatibilidade apenas com um Hypervisor

06.02.22

Ambientes de Desenvolvimento e Operações – DevOps Rodolfo Goya

- Backup/Upgrade de hardware:
 - Com virtualização, a migração de uma máquina para outra é simplificada
 - O Hypervisor faz uma "Imagem": um arquivo contendo todo os dados em memória e no disco (aplicações e sistema operacional)

- Pode-se criar uma nova máquina virtual em um novo hardware e copiar a imagem para lá
- Criar uma nova máquina a partir de um imagem pode ser mais rápido e confiável que reinstalar e configurar todo o sistema operacional e aplicações

Backup/Upgrade de hardware:

- Consolidação de servidores:
 - Apesar de ser possível colocar vários servidores em uma mesma máquina física, isso não é recomendável
 - Riscos de segurança (por exemplo: DNS e DBMS)
 - Gerenciamento de desempenho problemático
 - Através da virtualização, múltiplos servidores podem ser instalados de modo isolado em menos máquinas físicas
 - Economia: não há necessidade de superdimensionamento de hardware
 - Maior velocidade e agilidade para implantação de servidores
 - Simplicidade para configuração de réplicas de configuração
 - Redução de consumo de energia e espaço ocupado (Green IT)

Consolidação de servidores:

- Consolidação de servidores:
 - Segurança: Máquinas virtuais isoladas
 - Redimensionamento simplificado
 - Maior agilidade

06.02.22

Tipos de Virtualização

- Tipo 1
- Tipo 2

Tipos de Virtualização

Tipo 1

Tipo 2

Tipos de Virtualização

- Tipo 1 (Bare metal)
 - Não há sistema operacional hospedeiro
 - Microsoft Hyper-V (https://www.microsoft.com/pt-br/evalcenter/evaluate-hyper-v-server-2019)
 - Oracle VM-Server (X86 e SPARC)
 (https://www.oracle.com/virtualization/technologies/vm/)
 - VMWare-ESXi (https://en.wikipedia.org/wiki/VMware)
 - Xen (<u>https://en.wikipedia.org/wiki/Xen</u>)
- Tipo 2
 - Hypervisor executado sobre um sistema operacional hospedeiro
 - Bhyve (https://en.wikipedia.org/wiki/Bhyve)
 - Oracle VirtualBox (https://www.virtualbox.org/)
 - VMware player (https://en.wikipedia.org/wiki/VMware_Workstation_Player)
 - KVM Kernel-Based Virtual Machine (https://en.wikipedia.org/wiki/Kernel-based Virtual Machine)

Tipos de Virtualização – casos de uso

- Tipo 1 (Bare metal)
 - Uso corporativo
 - Consolidação de servidores: uma grande quantidade de servidores pode ser instalada em um conjunto menor de máquinas
- Tipo 2
 - Sistemas para aplicações de testes ou que exijam agilidade
 - Sistemas isolados que compartilham um mesmo kernel de sistema operacional
 - Docker
 - Kubernetes
 - bhyve
 - KVM

Market share – Type 1 Hypervisors - 2019

Market share – Type 1 Hypervisors – 2020

Outras formas de virtualização

Containers

- Ambientes isolados para aplicações que compartilham um mesmo sistema operacional
- Kubernetes (<u>https://en.wikipedia.org/wiki/Kubernetes</u>)
- Docker (<u>https://en.wikipedia.org/wiki/Docker (software)</u>)
- Compatíveis com virtualização

Virtualização de Desktop

- Plataforma cliente limitada (por exemplo, celulares), antigas, BYOD e trabalhadores remotos
- Processamento remoto e E/S local
- Citrix Virtual Apps (https://en.wikipedia.org/wiki/Citrix_Virtual Apps)
- VMware Horizon (https://en.wikipedia.org/wiki/VMware Horizon)
- Windows Virtual Desktop (https://en.wikipedia.org/wiki/Windows Virtual Desktop)

Conclusões

- Vimos aqui as características da tecnologia de virtualização
- Há dois tipos de virtualização (tipo 1 e 2), cada uma com suas características e aplicações
- Com a virtualização, várias tarefas de operação de datacenter são aceleradas, otimizadas e tem seus custos diminuídos
- A virtualização é o fundamento para configuração do processamento na "computação em nuvem"

Dúvidas?