Machine Learning

Lab 04

```
import pandas as pd
import numpy as np
import statistics
import seaborn as sns
import matplotlib.pyplot as plt
import random
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import pickle
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
```

```
def create_intensity_classes(df):
    # Define thresholds based on percentiles or domain knowledge
    low_threshold = df['max'].quantile(0.33)
    high_threshold = df['max'].quantile(0.66)

# Create class labels
    conditions = [
        (df['max'] < low_threshold),
        (df['max'] >= low_threshold) & (df['max'] < high_threshold),
        (df['max'] >= high_threshold)
    ]
    class_labels = [0, 1, 2] # or ['Low', 'Medium', 'High']
```

```
return np.select(conditions, class labels)
data = pd.read csv("combined seismic data.csv")
data["class"] = create intensity classes(data)
class 1 and 2 = data[data['class'].isin([1, 2])]
# Extract features and labels again after filtering
X = class 1 and 2[['max', 'distance to event']].values
y = class 1 and 2['class'].values
# Split the data into training and test sets (70% train, 30% test)
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
filename = "Lab03 KNN.pkl"
loaded model = pickle.load(open(filename, 'rb'))
# Make predictions on the training and test sets
y train pred = loaded model.predict(X train)
y test pred = loaded model.predict(X test)
# Confusion Matrix for both training and test sets
train confusion matrix = confusion matrix(y train, y train pred)
test confusion matrix = confusion matrix(y test, y test pred)
# Print confusion matrices
print("Training Confusion Matrix:")
print(train confusion matrix)
print("\nTest Confusion Matrix:")
print(test confusion matrix)
print("\nTraining Classification Report:")
print(classification report(y train, y train pred))
print("\nTest Classification Report:")
print(classification report(y test, y test pred))
    Training Confusion Matrix:
     [[200 0]
```

[0 197]]

Test Confusion Matrix: [[80 0]

[1 90]]

Training Classification Report:

	precision	recall	f1-score	support
1	1.00	1.00	1.00	200
2	1.00	1.00	1.00	197
accuracy			1.00	397
macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00	397 397

Test Classification Report:

	precision	recall	f1-score	support
1	0.99	1.00	0.99	80
2	1.00	0.99	0.99	91
accuracy			0.99	171
macro avg	0.99	0.99	0.99	171
weighted avg	0.99	0.99	0.99	171

Given that the model performs almost perfectly on both the training and test data, with only a very small drop in performance on the test set, the model is most likely regular-fit (well-generalized).

It is not underfitting because the model is achieving near-perfect results on both training and test data. It is also not overfitting because the performance drop from training to test data is minimal and within acceptable ranges.

```
data = np.load("payements true predicted.npz")
true data = data['arr 0']
predicted data = data['arr 1']
def mse(v true, v pred):
    return np.mean((y true - y pred) ** 2)
def rmse(y true, y pred):
   return np.sqrt(mse(y true, y pred))
def mape(y true, y pred):
    return np.mean(np.abs((y true - y pred) / y true)) * 100
def r2(y true, y pred):
    ss total = np.sum((y true - np.mean(y true)) ** 2)
   ss residual = np.sum((y true - y pred) ** 2)
   return 1 - (ss residual / ss total)
print("MSE: ", mse(true data, predicted data))
print("RMSE: ", rmse(true data, predicted data))
print("MAPE: ", mape(true data, predicted data))
print("R2: ", r2(true data, predicted data))
→ MSE: 6.664296927307107e-28
     RMSE: 2.5815299586305613e-14
     MAPE: 4.210920741310997e-15
     R2: 1.0
```

We see that all the values are nearly 0. Thus, it is an accurate model.

```
def generate_data():
   # Generate X and Y values randomly between 1 and 10
   X = np.random.uniform(1, 10, 20)
   Y = np.random.uniform(1, 10, 20)
    classes = []
   for i in range(20):
       if Y[i] > X[i]:
            classes.append(1) # Red
        else:
            classes.append(0) # Blue
   # Create a DataFrame to store the data
   df = pd.DataFrame({
       'X': X,
        'Y': Y,
        'Class': classes
   })
    return df
# Generate the data
data = generate data()
# Display the data
print("Generated Data:")
print(data)
# Plot the data
plt.figure(figsize=(10, 8))
colors = ['blue', 'red']
labels = ['Class 0 (Blue)', 'Class 1 (Red)']
# Separate the classes for plotting
class0 = data[data['Class'] == 0]
class1 = data[data['Class'] == 1]
```

```
# Plot each class with a different color
plt.scatter(class0['X'], class0['Y'], c='blue', label='Class 0 (Blue)', s=100, alpha=0.7)
plt.scatter(class1['X'], class1['Y'], c='red', label='Class 1 (Red)', s=100, alpha=0.7)
# Add a line showing the decision boundary (y = x in this case)
plt.plot([1, 10], [1, 10], 'k--', alpha=0.5, label='Decision Boundary (y = x)')
# Add labels and title
plt.xlabel('X Feature', fontsize=12)
plt.vlabel('Y Feature', fontsize=12)
plt.title('Scatter Plot of Training Data with Class Labels', fontsize=14)
plt.grid(True, alpha=0.3)
plt.legend()
# Set axis limits
plt.xlim(0, 11)
plt.ylim(0, 11)
plt.tight layout()
plt.show()
# Count the number of points in each class
class counts = data['Class'].value counts().sort index()
print("\nClass Distribution:")
print(f"Class 0 (Blue): {class counts[0]} points")
print(f"Class 1 (Red): {class counts[1]} points")
```

→ Generated Data:

GCII	ci acca bac	.	
	X	Υ	Class
0	2.794021	9.539072	1
1	2.751098	9.723387	1
2	6.150988	2.768890	0
3	3.316542	7.085660	1
4	3.359011	6.001209	1
5	1.589732	9.237257	1
6	3.474290	8.726618	1
7	4.929774	6.562814	1
8	2.993207	4.803703	1
9	9.951057	6.416653	0
10	7.414347	9.848709	1
11	1.226742	1.523556	1
12	1.382787	4.407397	1
13	6.151307	4.329128	0
14	6.088565	4.206655	0
15	1.445249	9.489158	1
16	2.624563	8.908155	1
17	6.235109	2.643684	0
18	9.875273	7.695026	0
19	8.224976	8.424575	1

Scatter Plot of Training Data with Class Labels

Class Distribution:

Class 0 (Blue): 6 points Class 1 (Red): 14 points

```
def generate training data():
   # Generate X and Y values randomly between 1 and 10
   X = np.random.uniform(1, 10, 20)
   Y = np.random.uniform(1, 10, 20)
   # Assign classes based on a simple rule: if y > x, then class 1 (Red), else class 0 (Blue)
    classes = []
   for i in range(20):
        if Y[i] > X[i]:
            classes.append(1) # Red
        else:
            classes.append(0) # Blue
   # Create a DataFrame to store the data
   df = pd.DataFrame({
        'X': X,
        'Y': Y,
        'Class': classes
   })
    return df
def generate_test_data():
   # Create a grid of points from 0 to 10 with 0.1 increments
   x = np.arange(0, 10.1, 0.1)
   y = np.arange(0, 10.1, 0.1)
   # Create all combinations of x and y
   X, Y = np.meshgrid(x, y)
   X_flat = X.flatten()
   Y flat = Y.flatten()
   # Create a DataFrame to store the test data
```

```
test df = pd.DataFrame({
        'X': X flat,
        'Y': Y flat
   })
    return test df, X, Y
def knn classification(train df, test df, k=3):
   # Extract features and target from training data
   X train = train df[['X', 'Y']].values
   y train = train df['Class'].values
    # Create and train the kNN classifier
    knn = KNeighborsClassifier(n neighbors=k)
    knn.fit(X train, y train)
   # Make predictions on the test data
   X test = test df[['X', 'Y']].values
   y pred = knn.predict(X test)
   # Add predictions to the test DataFrame
   test df['Predicted Class'] = y pred
    return test df, knn
def visualize results(train df, test df, X grid, Y grid):
    plt.figure(figsize=(12, 10))
   # Create a meshgrid for coloring the decision regions
    predictions = test df['Predicted Class'].values
   Z = predictions.reshape(X grid.shape)
   # Plot the decision boundary
    plt.contourf(X grid, Y grid, Z, alpha=0.3, cmap=plt.cm.coolwarm)
   # Plot the training data
    class0 = train_df[train_df['Class'] == 0]
```

```
class1 = train df[train df['Class'] == 1]
plt.scatter(class0['X'], class0['Y'], c='blue', edgecolors='k', s=150, marker='o', label='Training Class 0 (Blue)')
plt.scatter(class1['X'], class1['Y'], c='red', edgecolors='k', s=150, marker='o', label='Training Class 1 (Red)')
# Add labels and title
plt.xlabel('X Feature', fontsize=14)
plt.ylabel('Y Feature', fontsize=14)
plt.title('kNN Classification (k=3) Decision Boundary', fontsize=16)
plt.grid(True, alpha=0.3)
plt.legend(loc='upper right')
# Set axis limits
plt.xlim(0, 10)
plt.ylim(0, 10)
# Add a reference line for y = x
plt.plot([0, 10], [0, 10], 'k--', alpha=0.5, label='y = x line')
plt.tight layout()
# Create a separate figure for a small sample of test points
plt.figure(figsize=(12, 10))
# Sample test points for visualization (to avoid plotting all 10,000+ points)
sample size = 1000
test sample = test df.sample(sample size, random state=42)
# Plot the sampled test points
test class0 = test sample[test sample['Predicted Class'] == 0]
test class1 = test sample[test sample['Predicted Class'] == 1]
plt.scatter(test class0['X'], test class0['Y'], c='blue', s=30, alpha=0.6, label='Test Class 0 (Blue)')
plt.scatter(test class1['X'], test class1['Y'], c='red', s=30, alpha=0.6, label='Test Class 1 (Red)')
# Plot the training data on top
plt.scatter(class0['X'], class0['Y'], c='blue', edgecolors='k', s=150, marker='o', label='Training Class 0 (Blue)')
```

```
plt.scatter(class1['X'], class1['Y'], c='red', edgecolors='k', s=150, marker='o', label='Training Class 1 (Red)')
   # Plot the y = x line
    plt.plot([0, 10], [0, 10], 'k--', alpha=0.5)
    # Add labels and title
    plt.xlabel('X Feature', fontsize=14)
    plt.ylabel('Y Feature', fontsize=14)
    plt.title('Test Data Classification with kNN (k=3)', fontsize=16)
    plt.grid(True, alpha=0.3)
    plt.legend(loc='upper right')
    # Set axis limits
    plt.xlim(0, 10)
    plt.ylim(0, 10)
    plt.tight layout()
train data = generate training data()
test data, X grid, Y grid = generate test data()
classified test data, knn model = knn classification(train data, test data, k=3)
print("Training Data Summary:")
print(f"Number of points: {len(train data)}")
print(f"Class 0 (Blue): {len(train data[train data['Class'] == 0])}")
print(f"Class 1 (Red): {len(train data[train data['Class'] == 1])}")
print("\nTest Data Summary:")
print(f"Number of points: {len(test data)}")
print(f"Predicted Class 0 (Blue): {len(classified test data[classified test data['Predicted Class'] == 0])}")
print(f"Predicted Class 1 (Red): {len(classified test data[classified test data['Predicted Class'] == 1])}")
# Visualize results
visualize results(train data, classified test data, X grid, Y grid)
```

Show plots
plt.show()

→ Training Data Summary: Number of points: 20 Class 0 (Blue): 15 Class 1 (Red): 5

> Test Data Summary: Number of points: 10201

Predicted Class 0 (Blue): 8057 Predicted Class 1 (Red): 2144

✓ A5

```
def knn classification(train df, test df, k):
   # Extract features and target from training data
   X train = train df[['X', 'Y']].values
   y train = train df['Class'].values
    # Create and train the kNN classifier
   knn = KNeighborsClassifier(n neighbors=k)
    knn.fit(X train, y train)
   # Make predictions on the test data
   X test = test df[['X', 'Y']].values
   y pred = knn.predict(X test)
   # Add predictions to the test DataFrame
   test df[f'Predicted Class k{k}'] = y pred
    return test df, knn
# Step 4: Visualize the results for multiple k values
def visualize results for multiple k(train df, test df, X grid, Y grid, k values):
   # Create a figure for the multiple subplots
   fig, axes = plt.subplots(len(k values)//2 + len(k values)%2, 2, figsize=(16, 4*len(k values)//2 + 4*len(k values)%2))
    axes = axes.flatten() # Flatten the axes array for easier indexing
   for i, k in enumerate(k values):
        # Get the predictions for the current k value
        pred col = f'Predicted Class k{k}'
        predictions = test df[pred col].values
        Z = predictions.reshape(X grid.shape)
        # Plot the decision boundary
        im = axes[i].contourf(X_grid, Y_grid, Z, alpha=0.3, cmap=plt.cm.coolwarm)
```

2/26/25, 9:08 PM

```
# Plot the training data
    class0 = train df[train df['Class'] == 0]
    class1 = train df[train df['Class'] == 1]
    axes[i].scatter(class0['X'], class0['Y'], c='blue', edgecolors='k', s=100, marker='o', label='Training Class 0')
    axes[i].scatter(class1['X'], class1['Y'], c='red', edgecolors='k', s=100, marker='o', label='Training Class 1')
    # Add a reference line for y = x (the true boundary)
    axes[i].plot([0, 10], [0, 10], 'k--', alpha=0.7, label='y = x line')
    # Add labels
    axes[i].set xlabel('X Feature', fontsize=12)
    axes[i].set ylabel('Y Feature', fontsize=12)
    axes[i].set title(f'k={k}', fontsize=14)
    axes[i].grid(True, alpha=0.3)
    axes[i].set xlim(0, 10)
    axes[i].set ylim(0, 10)
    # Only add legend to the first plot to avoid cluttering
    if i == 0:
        axes[i].legend(loc='upper right')
# Remove any empty subplots
for j in range(i+1, len(axes)):
    fig.delaxes(axes[j])
plt.tight layout()
plt.suptitle('kNN Decision Boundaries for Different k Values', fontsize=16, y=1.02)
# Create a more detailed figure showing the evolution of the boundary as k increases
plt.figure(figsize=(16, 12))
# Use a colormap to distinguish different k values
cmap = plt.cm.viridis
colors = cmap(np.linspace(0, 1, len(k values)))
# Plot the training data
```

```
class0 = train df[train df['Class'] == 0]
    class1 = train df[train df['Class'] == 1]
    plt.scatter(class0['X'], class0['Y'], c='blue', edgecolors='k', s=150, marker='o', label='Training Class 0')
    plt.scatter(class1['X'], class1['Y'], c='red', edgecolors='k', s=150, marker='o', label='Training Class 1')
   # Plot the y = x line (true boundary)
    plt.plot([0, 10], [0, 10], 'k--', linewidth=2, label='True Boundary (y = x)')
   # Create a grid for extracting contours
    plt.grid(True, alpha=0.3)
   # Plot the decision boundary contours for each k
   for i, k in enumerate(k values):
        pred col = f'Predicted Class k{k}'
        predictions = test df[pred col].values
        Z = predictions.reshape(X grid.shape)
        \# Plot the contour line where Z = 0.5 (the decision boundary)
        contour = plt.contour(X grid, Y grid, Z, levels=[0.5], colors=[colors[i]], linewidths=2)
    plt.xlabel('X Feature', fontsize=14)
    plt.ylabel('Y Feature', fontsize=14)
    plt.title('Comparison of kNN Decision Boundaries for Different k Values', fontsize=16)
    plt.xlim(0, 10)
    plt.ylim(0, 10)
    plt.legend(loc='upper right')
    plt.tight layout()
# Main execution
train data = generate training data()
test data, X grid, Y grid = generate test data()
# Define a range of k values to test
k \text{ values} = [1, 3, 5, 7, 9, 11, 15, 19]
```

```
# Perform classification with different k values
for k in k values:
   test data, = knn classification(train data, test data, k)
# Print summary
print("Training Data Summary:")
print(f"Number of points: {len(train data)}")
print(f"Class 0 (Blue): {len(train data[train data['Class'] == 0])}")
print(f"Class 1 (Red): {len(train data[train data['Class'] == 1])}")
print("\nTest Data Summary:")
for k in k values:
    pred col = f'Predicted Class k{k}'
   print(f"k={k}:")
   print(f" Predicted Class 0 (Blue): {len(test data[test data[pred col] == 0])}")
    print(f" Predicted Class 1 (Red): {len(test data[test data[pred col] == 1])}")
# Visualize results for multiple k values
visualize results for multiple k(train data, test data, X grid, Y grid, k values)
plt.show()
```

```
\overline{\mathbf{T}}
```

Training Data Summary: Number of points: 20 Class 0 (Blue): 12 Class 1 (Red): 8 Test Data Summary: k=1: Predicted Class 0 (Blue): 5235 Predicted Class 1 (Red): 4966 k=3: Predicted Class 0 (Blue): 5637 Predicted Class 1 (Red): 4564 k=5: Predicted Class 0 (Blue): 5043 Predicted Class 1 (Red): 5158 k=7: Predicted Class 0 (Blue): 5501 Predicted Class 1 (Red): 4700 k=9: Predicted Class 0 (Blue): 5934 Predicted Class 1 (Red): 4267 k=11: Predicted Class 0 (Blue): 6151 Predicted Class 1 (Red): 4050 k=15: Predicted Class 0 (Blue): 8041 Predicted Class 1 (Red): 2160 k=19: Predicted Class 0 (Blue): 10201 Predicted Class 1 (Red): 0

kNN Decision Boundaries for Different k Values

10 -

Y Feature

2 -

X Feature

k=5


```
# A3: Make a scatter plot of the training data colored by class
def plot training data(data):
    plt.figure(figsize=(10, 8))
   # Scatter plot with colors based on class
   for class label, color, label in zip([1, 2], ['green', 'red'], ['Medium', 'High']):
        mask = data['class'] == class label
        plt.scatter(
            data.loc[mask, 'max'],
            data.loc[mask, 'distance to event'],
            c=color,
            label=f'Class {label}',
            alpha=0.7,
            edgecolors='k'
    # Add labels and title
    plt.xlabel('Maximum Amplitude (max)', fontsize=12)
    plt.ylabel('Distance to Event', fontsize=12)
    plt.title('Seismic Data: Max Amplitude vs Distance to Event', fontsize=14)
    plt.grid(True, alpha=0.3)
    plt.legend()
    plt.tight layout()
   # Display class distribution
    class counts = data['class'].value counts().sort index()
    print("Class Distribution:")
   for i, count in enumerate(class counts):
        class name = ['Low', 'Medium', 'High'][i]
        print(f"Class {i} ({class name}): {count} samples")
    return plt
```

```
# A4: Generate test grid and apply kNN classification
def apply knn classification(train data, k=3):
   # Create a grid of test points
   x min, x max = train data['max'].min(), train data['max'].max()
   y min, y max = train data['distance to event'].min(), train data['distance to event'].max()
   # Add some margin
   x margin = (x max - x min) * 0.05
   y_{margin} = (y_{max} - y_{min}) * 0.05
    x min -= x margin
    x max += x margin
   y min -= y margin
   y max += y margin
   # Create grid with reasonable increments
   x step = (x max - x min) / 100
   y step = (y max - y min) / 100
   xx, yy = np.meshgrid(
        np.arange(x min, x max, x step),
        np.arange(y_min, y_max, y_step)
    )
   # Transform the grid into a feature array
   test points = np.c [xx.ravel(), yy.ravel()]
   # Fit a kNN classifier
   X train = train data[['max', 'distance to event']].values
   y train = train data['class'].values
    # Scale the features for better distance calculation
    scaler = StandardScaler()
   X train scaled = scaler.fit transform(X train)
   test points scaled = scaler.transform(test points)
```

2/26/25, 9:08 PM

```
knn = KNeighborsClassifier(n neighbors=k)
    knn.fit(X train scaled, y train)
   # Predict the class for each test point
   y pred = knn.predict(test points scaled)
   # Reshape the predictions to match the grid
    grid predictions = y pred.reshape(xx.shape)
    # Visualize the results
    plt.figure(figsize=(12, 10))
    # Plot the decision boundaries
    plt.contourf(xx, yy, grid predictions, alpha=0.3, cmap=plt.cm.viridis)
   # Plot the training data
   for class label, color, label in zip([1, 2], ['green', 'red'], ['Medium', 'High']):
        mask = train data['class'] == class label
        plt.scatter(
            train data.loc[mask, 'max'],
            train data.loc[mask, 'distance to event'],
            c=color,
            label=f'Class {label}',
            edgecolors='k'
    plt.xlabel('Maximum Amplitude (max)', fontsize=14)
    plt.ylabel('Distance to Event', fontsize=14)
    plt.title(f'kNN Classification (k={k}) of Seismic Data', fontsize=16)
    plt.grid(True, alpha=0.3)
    plt.legend()
    plt.tight layout()
    return plt, grid predictions
# A5: Compare different k values
```

```
def compare k values(train data, k values):
   # Create a figure for multiple subplots
   n rows = len(k values) // 2 + len(k values) % 2
   fig, axes = plt.subplots(n rows, 2, figsize=(16, 5*n rows))
    axes = axes.flatten() if n rows > 1 else [axes] if isinstance(axes, np.ndarray) else [axes]
   # Create a grid of test points
   x min, x max = train data['max'].min(), train data['max'].max()
   y min, y max = train data['distance to event'].min(), train data['distance to event'].max()
   # Add some margin
   x margin = (x max - x min) * 0.05
   v margin = (v max - v min) * 0.05
    x min -= x margin
   x_max += x_margin
   y min -= y margin
   y max += y margin
   # Create grid with reasonable increments
   x step = (x max - x min) / 100
   y step = (y max - y min) / 100
   xx, yy = np.meshgrid(
        np.arange(x min, x max, x step),
        np.arange(y min, y max, y step)
   # Transform the grid into a feature array
   test points = np.c [xx.ravel(), yy.ravel()]
   # Prepare the training data
   X train = train data[['max', 'distance to event']].values
   y train = train data['class'].values
    # Scale the features
    scaler = StandardScaler()
```

```
X train scaled = scaler.fit transform(X train)
test points scaled = scaler.transform(test points)
# For each k value
for i, k in enumerate(k values):
    # Fit a kNN classifier
    knn = KNeighborsClassifier(n neighbors=k)
    knn.fit(X train scaled, y train)
    # Predict the class for each test point
    y pred = knn.predict(test points scaled)
    # Reshape the predictions to match the grid
    grid predictions = y pred.reshape(xx.shape)
    # Plot on the corresponding subplot
    axes[i].contourf(xx, yy, grid predictions, alpha=0.3, cmap=plt.cm.viridis)
    # Plot the training data
    for class label, color in zip([1, 2], ['green', 'red']):
        mask = train data['class'] == class label
        axes[i].scatter(
            train data.loc[mask, 'max'],
            train data.loc[mask, 'distance to event'],
            c=color,
            s=50,
            alpha=0.7,
            edgecolors='k'
    axes[i].set xlabel('Maximum Amplitude (max)')
    axes[i].set ylabel('Distance to Event')
    axes[i].set title(f'k={k}')
    axes[i].grid(True, alpha=0.3)
# Hide any unused subplots
for j in range(i+1, len(axes)):
```

2/26/25, 9:08 PM

```
axes[j].set visible(False)
   plt.suptitle('kNN Classification with Different k Values', fontsize=16)
    plt.tight layout(rect=[0, 0, 1, 0.96]) # Adjust for the suptitle
    return plt
data = pd.read csv("combined seismic data.csv")
data["class"] = create intensity classes(data)
# A3: Plot the training data
training plot = plot training data(data)
plt.show()
# A4: Apply kNN with k=3
knn plot, predictions = apply knn classification(data, k=3)
plt.show()
# A5: Compare different k values
k_{values} = [1, 3, 5, 7, 9, 15]
comparison plot = compare k values(data, k values)
plt.show()
```