

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 September 2003 (04.09.2003)

PCT

(10) International Publication Number
WO 03/072338 A1

(51) International Patent Classification⁷: B29C 55/02,
55/14, 55/18, B32B 31/08, 31/16

(21) International Application Number: PCT/US03/05640

(22) International Filing Date: 24 February 2003 (24.02.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/358,871 22 February 2002 (22.02.2002) US

(71) Applicant: CLOPAY PLASTIC PRODUCTS COMPANY, INC. [US/US]; 8585 Duke Boulevard, Mason, OH 45040-3101 (US).

(72) Inventors: McAMISH, Larry, Hughey; 11610F Currier Lane, Cincinnati, OH 45249 (US). LILLY, Kenneth, L.; 1320 Lance Court, Lebanon, OH 45036 (US).

(74) Agents: MILLER, Martin, J. et al.; Dinsmore & Shohl LLP, 1900 Chemed Center, 255 East Fifth Street, Cincinnati, OH 45202 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: FILM, LAMINATED SHEET AND METHODS OF MAKING SAME

WO 03/072338 A1

(57) Abstract: A method of making a microporous laminate sheet having a first film layer and a second layer. The first film layer includes a pore initiator and is bonded to the second layer in order to form a laminate sheet. The laminate sheet is then stretched using at least one CD intermeshing stretcher (28) and at least one MDO stretching unit (29). Methods of making a microporous film laminate are also provided, along with an apparatus for stretching a film or laminate.

FILM, LAMINATED SHEET AND METHODS OF MAKING SAME

Larry Hughey McAmish

Kenneth L. Lilly

BACKGROUND OF THE INVENTION

Processes for the production of microporous films are well known in the art. For example, U.S. Patent No. 3,870,593 (which is incorporated herein by reference) describes a process wherein a microporous film is produced by: (1) dispersing finely divided particles of a non-hygroscopic inorganic salt such as calcium carbonate in a polymer; (2) forming a film from the polymer; and (3) stretching the film to provide microporosity. Such microporous films are used for a variety purposes, such as breathable barriers (e.g., in diapers).

Although there are numerous prior art references which disclose microporous films, most (such as U.S. Patent No. 4,353,945) do not define the stretching process other than to specify unidirectional or biaxial stretching. The three most common stretching techniques are MDO (machine direction orientation), tenter ovens, and intermeshing ring rolls (also called interdigitating rollers). MDO stretching units were available in the early days of microporous film from vendors such as Marshall & Williams, Inc. of Providence, Rhode Island. Typical MDO stretching units have heated rolls and nips, with downstream rolls running at a faster speed in order to provide stretching in the machine direction only.

20

Tenter ovens were also available from several vendors, including Marshall & Williams. Tenter ovens function by grasping the edges of a film passing through a heated oven and stretching the film in a cross-machine direction. Films stretched in the cross-direction exit the oven substantially wider than their original width.

25
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055<br

U.S. Patent No. 4,153,751, for example, describes the use of interdigitating rollers having grooves which extend substantially parallel to the axis of the rollers in order to stretch films in the cross-machine direction.

5 Methods of making composites of a microporous film and a nonwoven fabric are also known in the art. A microporous film may be bonded directly to the fabric by a variety of means, including adhesive, thermal, and/or ultrasonic bonding. As further discussed below, such composites have also been prepared by extrusion-coating a polymer extrudate onto a nonwoven fabric
10 and then rendering the film microporous (such as by stretching).

It may also be desirable to stretch microporous film/fabric composites, however, stretching has its drawbacks. For instance, for microporous films, typical positive effects of stretching include higher vapor breathability and
15 improved surface aesthetics. Vapor breathability (also referred to as water vapor transmission rate, "WVTR") can be estimated by laboratory test methods, and is a function of the size and frequency of the micropores in the film. Additional stretching of an already microporous film is known to increase the size of existing pores and create new pores. Therefore, highly stretched
20 microporous films and microporous film/fabric composites generally have higher vapor breathability as compared to similar materials which have been stretched to a lesser degree.

Likewise, surface feel and drapability are known to be improved by
25 stretching. Film/fabric composites tend to be more stiff and harsh than either of the individual components alone. Stretching such composites tends to break down the rigid structure, thereby providing a softer surface feel and improved drapability.

30 On the other hand, stretching microporous film/fabric composites can result in decreased bond strength and increased pinholing. Stretching improves the softness and drapability by destroying the connection between film and fabric. This results in decreased bond strength in the laminate. Stretching can also cause undesirable damage to the laminate, such as

pinholing, tearing, or shredding of the film, the fabric, or the composite as a whole.

Rather than bonding a microporous film to a fabric, it is also possible to first bond a non-porous film to a fabric, and then stretch the resulting composite in order to render the film microporous. For example, U.S. Patent No. 5,865,926 describes a method wherein the film/nonwoven composite is incrementally stretched. U.S. Patent No. 5,910,225 (which is incorporated herein by reference) uses MDO stretching and/or tenter oven stretching. In some instances, the prior art methods have been only partially successful due to damage to the composite caused by the stretching process. Damage includes, but is not limited to, pinholes, tears, and other functional and aesthetic defects.

Similarly, U.S. Patent No. 6,013,151 (which is incorporated herein by reference) teaches that a film/nonwoven fabric laminate can be made microporous and breathable upon incremental stretching at high speeds. The resulting microporous laminates have a high water vapor transmission rate (WVTR). It has also been found that a flat film/nonwoven laminate can be incrementally stretched more uniformly than an embossed film/nonwoven laminate. More uniform stretching provides higher WVTR and fewer pinholes.

The bonding of a film and fabric also may be carefully controlled to avoid creating other functional and aesthetic problems. For example, in the case of extrusion coating a polyethylene extrudate onto a spunbond polypropylene web, process conditions such as melt temperature and nip pressure determine the intrusion of the fibers into the film structure. At the minimum level of intrusion, however, the film and fabric have little or no bond, and therefore tend to delaminate. At the maximum level of intrusion, on the other hand, the film and fabric essentially mold together and become one. Such a laminate, however, acquires the worst properties of the two individual components and tends to be both rigid and fragile. Too much bond strength is also known to limit the amount of stretching which may be performed without the risk of forming pinholes. Simply stated, if the bond between film

and fabric is too large, the stretched film will sometimes fracture prior to delaminating, leaving a pinhole.

There is a continuing need for improvements in the performance and
5 appearance of microporous films and composites of microporous films and nonwoven fabrics. In particular, improvements are desired for producing microporous films and microporous film/fabric composites having higher breathability, while avoiding pinholes and other functional and aesthetic defects.

10

SUMMARY OF THE INVENTION

One embodiment of the present invention provides a method of making a microporous laminate sheet comprising a first film layer and a second layer. The method comprises:

15

- (a) bonding a first film layer to a second layer in order to form a laminate sheet, wherein the first film layer includes a pore initiator; and
- (b) stretching the laminate sheet using at least one CD intermeshing stretcher and at least one MDO stretching unit.

20

In one embodiment, the second layer comprises a fabric layer, whereas in another embodiment the second layer comprises another film layer which includes a pore initiator. In a particular embodiment of this method, the laminate sheet may be stretched by at least one CD intermeshing stretcher either immediately before or immediately after being stretched by at least one MDO stretching unit. The engagement depth of the CD intermeshing stretcher may be from about 0.025 to about 0.1 inches and the MDO stretch ratio may be between about 1.1:1 and about 4:1.

25

The film layer may be formed from a thermoplastic composition. When the second layer is a fabric, the step of bonding the film layer to the fabric layer may comprise extruding the thermoplastic composition onto said fabric layer. For example, the thermoplastic composition may be extruded into a cast roll nip station along with the fabric layer, wherein the cast roll nip station includes a pair of rollers having a nip therebetween.

The thermoplastic composition may be polyolefin based and comprise:

- at least one polypropylene, polyethylene, or functionalized polyolefin; and
- 5 -calcium carbonate as a pore initiator.

One particular composition comprises:

- one or more polyethylenes;
- about 40% to about 60% calcium carbonate; and
- 10 -about 1% to 10% of one or more additives chosen from the group consisting of: pigments, processing aids, antioxidants, and polymeric modifiers.

The basis weight of the first film layer of the laminate may be between about 10 and about 40 gsm.

- 15 The fabric layer may be a polyolefin based nonwoven material. For example, the fabric layer may be chosen from the group consisting of: spunbond polypropylene; spunbond polyethylene; and carded, thermal bonded polypropylene. The basis weight of the fabric layer may be between about 10 and about 30 gsm, and the resulting laminate may have a water vapor transmission rate of greater than about 500 grams per square meter per day and a hydrohead in excess of about 60 cm.
- 20

Another embodiment of the present invention provides a method of making a microporous film, comprising the steps of :

- 25 (a) extruding a thermoplastic film from a polymer composition which includes a pore initiator; and
- (b) stretching the film using at least one CD intermeshing stretcher and at least one MDO stretching unit.

In a particular embodiment, the microporous film is stretched by at least one 30 CD intermeshing stretcher either immediately before or immediately after being stretched by at least one MDO stretching unit.

Yet another embodiment of the present invention provides a method of making a microporous laminate sheet comprising at least two film layers, comprising the steps of:

- (a) bonding a first film layer to a second film layer in order to form a laminate sheet, wherein the first film layer includes a pore initiator; and
- 5 (b) stretching the laminate sheet using at least one CD intermeshing stretcher and at least one MDO stretching unit.

In a particular embodiment, each of the film layers is formed from a thermoplastic composition, and the step of bonding the first film layer to the 10 second film layer comprises co-extruding said thermoplastic compositions.

The present invention also provides an apparatus for stretching a film or a film/fabric laminate, comprising a CD intermeshing stretcher and a MDO stretching unit, wherein the CD intermeshing stretcher and the MDO stretching unit are arranged such that a film or film/fabric laminate may be 15 stretched by the CD intermeshing stretcher either immediately before or immediately after being stretched by the MDO stretching unit.

BRIEF DESCRIPTION OF THE DRAWINGS

20 Figure 1 is a schematic view of an apparatus for producing a laminate sheet according to one embodiment of the present invention;

Figure 2 is a schematic view of a pair of CD intermeshing ring rollers according to one embodiment of the present invention;

25 Figure 3 is a SEM photomicrograph of a film stretched by CD intermeshing rollers;

Figure 4 is a SEM photomicrograph of a film stretched by an MDO stretching unit;

Figure 5 is a SEM photomicrograph of a film stretched by CD intermeshing rollers, followed by MD intermeshing rollers;

5 Figure 6 is a SEM photomicrograph of a film stretched by CD intermeshing rollers, followed by an MDO stretching unit;

10 Figure 7 is a SEM photomicrograph of the surface of an A/B/A film laminate stretched by an MDO unit;

15 Figure 8 is a SEM photomicrograph of the cross-section of an A/B/A film laminate stretched by an MDO unit;

20 Figure 9 is a SEM photomicrograph of the surface of an A/B/A film laminate stretched by CD intermeshing rollers, followed by an MDO stretching unit; and

25 Figure 10 is a SEM photomicrograph of the cross-section of an A/B/A film laminate stretched by CD intermeshing rollers, followed by an MDO stretching unit

30

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method of making microporous films which exhibit exceptional physical and aesthetic properties. These microporous films can comprise a single film layer, or may comprise a 25 laminate of two or more film layers. Such film laminates may be formed, for example, by co-extrusion of two or more thermoplastic extrudates. The present invention also provides a method of making a laminated sheet comprising at least one microporous film layer and at least one fabric layer. Such laminated sheets may be made by bonding a microporous film to a 30 fabric layer. Alternatively, a precursor film may be bonded to a fabric layer to form a laminate, and the laminate then stretched to provide microporosity in the film layer. Regardless of which technique is employed, the resulting laminated sheet having a microporous film layer and a fabric layer provides a

breathable composite satisfactory for any of a variety of end uses, particularly those requiring a composite which will not delaminate, acts as a liquid barrier having high water vapor permeability, and/or is soft and cloth-like (such as for use in hygiene applications – e.g., diaper backsheets).

5

Applicants have found that, by proper selection of the stretching methods, microporous films and laminates having improved properties can be produced. In particular, by sequentially stretching the film or laminate with CD intermeshing ring rolls and an MDO unit, microporous films and laminates having unexpectedly improved properties are produced. Unless indicated otherwise, the term "laminate" refers to film laminates comprising two or more film layers, as well as film/fabric laminates comprising at least one film layer and at least one fabric layer.

15

In one embodiment, a film/fabric laminate is prepared and is then stretched to provide microporosity. A polymeric composition which can be activated to become microporous is extrusion coated onto a fabric and then stretched using the methods described herein to form a breathable composite satisfactory for many end uses, such as a liquid barrier having high water vapor permeability.

20

The most desirable property of a microporous, breathable film or laminate is the combination of high WVTR with a low incidence of pinholes. The optimum pore size distribution to attain this combination is a high frequency of small pores. Scanning electron microscope (SEM) analysis of film prototypes stretched only with a CD intermeshing unit (see FIG. 3) revealed pores which were located in specific locations along lanes running in the machine direction, due to the nature of the metal rollers physically contacting the film. When this film was later stretched via a MD intermeshing unit (see FIG. 5), the pores formed by the CD intermeshing unit were enlarged but few new pores were formed. Therefore, CD intermeshing followed by MD intermeshing is not the optimum process. However, when the film was processed by CD intermeshing followed by MDO stretching (see FIG. 6), the results were much improved. New pores were readily created in those lanes

that contained no pores after only CD intermeshing. Since the film should generally be stretched until the desired WVTR is achieved, this CD intermeshing plus MDO technique is able to produce high WVTR by creating a larger number of smaller pores with less frequency of pinholes. If one were 5 to attempt to achieve the same level of WVTR using only CD intermeshing or only MDO stretching, pinholing would be more frequent.

The methods of the present invention may be used to form microporous films (and film layers of laminates) from any suitable polymer (or mixture of polymers) which is capable of forming a film and which includes a 10 pore initiator (such as an inorganic filler) dispersed therein. The polymer composition, having one or more pore initiators dispersed therein, is formed into a film, such as a continuous film formed by extrusion. The resulting film is then stretched using one or more cross machine (CD) intermeshing stretchers and one or more machine direction orientation (MDO) stretching units. In one 15 embodiment, stretching by a CD intermeshing stretcher either immediately precedes, or immediately follows stretching by an MDO stretching unit. As used herein, the phrases "immediately precedes" and "immediately follows" simply mean that no other stretching is performed between stretching by a CD intermeshing stretcher and stretching by an MDO stretching unit. It is 20 contemplated that other types of stretching units may be employed either before or after this sequence, and it is also contemplated that the film may be stretched only by one or more CD intermeshing stretchers and one or more MDO stretching units.

25 By using CD intermeshing stretching in combination with MDO stretching, Applicants have found that the resulting micropores are more numerous, smaller and more uniform in size and shape (see FIG. 6) as compared to films stretched with a CD intermeshing stretcher alone (see FIG. 3), an MDO stretcher alone (see FIG. 4), or a CD intermeshing stretcher 30 followed by a MD intermeshing stretcher (see FIG. 5).

In order to form a microporous film/fabric laminate, after the microporous film is prepared in the manner described above, the microporous film may be bonded to one or more fabric layers to form a laminate structure. Alternatively, a non-microporous film may first be bonded to one or more 5 fabric layers to form a laminate structure, and this laminate structure may then be stretched in the manner described above in order to render the film layer microporous. The film and fabric layers may be bonded to one another by any of a variety of methods, such as adhesive bonding, electromagnetic bonding, hot plate bonding and ultrasonic bonding. In one embodiment, the 10 film-forming polymer having one or more pore initiators dispersed therein may be extruded onto a fabric in order to form a laminate comprising a film layer bonded to a fabric layer. The resulting laminate sheet may then be stretched in the same manner as described above in order to render the film microporous. Even when extrusion coating is used to adhere the film to the 15 fabric, bonding may be improved by the use of any of a variety of additional bonding methods, such as adhesive bonding, electromagnetic bonding, hot plate bonding and ultrasonic bonding. It should also be pointed out that the film/fabric laminates of the present invention may include any number of film and fabric layers, in any desired arrangement.

20

The same techniques used to form film/fabric laminates may also be used to form film laminates which comprise two or more film layers, wherein at least one of the film layers is microporous. Thus, a microporous film may be bonded to one or more other film layers to form a laminate structure. 25 Alternatively, a non-microporous film may first be bonded to one or more other non-microporous film layers to form a laminate structure, and this laminate structure may then be stretched in the manner described above in order to render the film layers microporous. The film layers may be bonded to one another by any of a variety of methods, such as adhesive bonding, electromagnetic bonding, hot plate bonding and ultrasonic bonding. Film 30 laminates may also be formed by co-extrusion. Film-forming polymer compositions having one or more pore initiators dispersed therein may be co-extruded in order to form a laminate comprising two or more film layers bonded to one another. The resulting laminate sheet may then be stretched

in the same manner as described previously in order to render the film layers microporous.

The composition of each film layer in the film laminate may be selected
5 in order to achieve desired properties for each film layer, and therefore the composition of each film layer may be the same or different. For example, one or more of the film layers may include a greater quantity of pore initiator such that more pores will be formed in that layer during stretching. In this manner, properties such as WVTR for each film layer in the resulting film
10 laminate may be individually controlled. In one exemplary embodiment, a film laminate comprising three microporous layers may be formed, wherein the middle layer has a smaller amount of filler as compared to the two outer layers.

15 Figure 1 is a schematic illustration of one embodiment of an apparatus which may be used to produce a laminate sheet in accordance with one embodiment of the present invention, wherein the film layer is a thermoplastic film and the fabric layer is a nonwoven fibrous web. Using the apparatus of Fig. 1, the thermoplastic film is laminated to the nonwoven fibrous web during
20 extrusion by introducing the nonwoven web into the nip of a pair of rollers along with the thermoplastic extrudate. The resulting laminate sheet is then stretched in the manner described previously. If only a microporous film is desired rather than a laminate, the web of nonwoven fabric 33 on roller 32 may be eliminated. Likewise, if a film laminate is desired, multiple
25 thermoplastic extrudates may be introduced into the nip of the pair of rollers, thus providing a co-extruded film laminate.

In order to produce a continuous laminate sheet, the thermoplastic composition of the film layer is fed from an extruder 21 through slot die 22 to form the extrudate 26 (which corresponds to the film layer of the resulting laminate sheet). Extrudate 26 is fed into the nip ("cast station nip") between a cast roll 24 (typically a metal roll) and a backup roll 25 (typically a rubber roll). An air knife 23 may be used to assist in the elimination of draw resonance, as
30

described in, for example, U.S. Pat. No. 4,626,574. Alternatively, the air cooling devices described in U.S. Patent Application Serial No. 09/489,095 (filed January 20, 2000) may be employed to prevent draw resonance. A web of nonwoven fabric 33 from roller 32 is pulled into the cast station nip between rolls 25 and 24. In this nip, fabric 33 is extrusion coated with the molten film (or extrudate) 26 which has just exited the slot die 22. In essence, the fibers are embedded in, and encapsulated by the film during the extrusion lamination process.

After the laminate sheet leaves the nip between rolls 24 and 25, the laminate sheet is then stretched at two or more stretching stations. In one embodiment, the laminate sheet is stretched using one or more CD intermeshing stretchers and one or more MDO stretching units, wherein the sheet is stretched by one of the CD intermeshing stretchers immediately prior to or immediately after being stretched by one of the MDO stretching units. In addition, one or more temperature controlled rollers (such as roller 45) may be provided in order to heat the laminate prior to stretching.

In the embodiment of Fig. 1, a CD intermeshing stretcher is provided at first stretching station 28, and a MDO stretching unit is provided at second stretching station 29. A CD intermeshing stretcher generally comprises a pair of rolls which are located so as to form a nip therebetween. Thus, the CD intermeshing stretcher at first stretching station 28 generally comprises incremental stretching rollers 30 and 31. While stretching rollers 30 and 31 may be of any of a variety of configurations, Fig. 2 is a schematic view of one exemplary embodiment of CD intermeshing ring rollers 30 and 31. Each ring roller has a plurality of grooves which extend around the surface of the roller, parallel to the circumference of the roller. When the rollers are brought together in close engagement, the grooves on one roller will intermesh with the grooves on the other roller. When a film or laminate is passed between the two rollers, the film or laminate will be incrementally stretched in the cross direction, as is known to those skilled in the art.

In the exemplary embodiment of Fig. 2, each incremental stretching roller (or "ring roller") essentially comprises a cylindrical roller 37 and a plurality of annular rings 38 secured to the outer circumference of cylindrical roller 37. Annular rings 38 are generally evenly spaced along the length of cylindrical roller 37. However, the rings on stretching roller 30 are offset from the rings on stretching roller 31 such that when the rings are brought together in the manner shown in Fig. 2, the rings (and grooves therebetween) of stretching roller 30 will be intermeshed with the rings (and grooves therebetween) of stretching roller 31. In this manner, as the laminate sheet is passed between stretching rollers 30 and 31, the laminate sheet will be incrementally stretched in the cross direction (i.e., perpendicular to the machine direction in the apparatus of Fig. 1).

In one exemplary embodiment, the shafts of the ring rollers may be disposed between two machine side plates, the lower shaft being located in fixed bearings and the upper shaft being located in bearings in vertically slid able members. The slideable members are adjustable in the vertical direction by wedge shaped elements operable by adjusting screws. Screwing the wedges out or in will move the vertically slideable member respectively down or up to further engage or disengage the gear-like teeth of the upper intermeshing roll with the lower intermeshing roll. Micrometers mounted to the side frames are operable to indicate the depth of engagement of the teeth of the intermeshing roll.

Air cylinders may be employed to hold the slideable members in their lower engaged position firmly against the adjusting wedges to oppose the upward force exerted by the material being stretched. These cylinders may also be retracted to disengage the upper and lower intermeshing rolls from each other for purposes of threading material through the intermeshing equipment or in conjunction with a safety circuit which would open all the machine nip points when activated.

Since the CD intermeshing elements are often capable of large engagement depths, it may be necessary for the equipment to incorporate a

means of causing the shafts of the two intermeshing rolls to remain parallel when the top shaft is raising or lowering. This may be necessary to assure that the teeth of one intermeshing roll always fall between the teeth of the other intermeshing roll and potentially damaging physical contact between intermeshing teeth is avoided. This parallel motion is assured by a rack and gear arrangement wherein a stationary gear rack is attached to each side frame in juxtaposition to the vertically slid able members. A shaft traverses the side frames and operates in a bearing in each of the vertically slid able members. A gear resides on each end of this shaft and operates in engagement with the racks to produce the desired parallel motion.

The drive for the CD intermeshing stretcher will generally operate both upper and lower intermeshing rolls, except in the case of intermeshing stretching of materials having a relatively high coefficient of friction. The drive need not be ant backlash, however, because a small amount of machine direction misalignment or drive slippage will cause no problem. The reason for this will become evident with a description of the CD intermeshing elements.

In the exemplary embodiment of Fig. 2, the CD intermeshing elements may be machined from a solid material but can best be described as an alternating stack of two different diameter disks. In one embodiment, the intermeshing disks would be 6" in diameter, 0.031" thick, and have a full radius on their edge. The spacer disks separating the intermeshing disks would be 5 1/2" in diameter and 0.069" in thickness. Two rolls of this configuration would be able to be intermeshed up to 0.231" leaving 0.019" clearance for material on all sides, and this CD intermeshing element configuration would have a 0.100" pitch. Alternatively, the CD intermeshing rollers may comprise cylindrical rollers having a series of annular rings extending about the circumference of the rollers.

30

Although the CD intermeshing rolls described above are capable of greater engagement depths, the engagement depth may be advantageously selected to be between about 0.025 and about 0.1 inches, more

advantageously between about 0.04 and about 0.075 inches. Such engagement depths may avoid damage to the film.

In the exemplary embodiment of Fig. 1, after passing through the CD intermeshing rollers, the film or composite moves through second stretching station 29 which includes a MDO stretching unit. Typical MDO stretching equipment known to those skilled in the art can be rather complicated but the principles are simple. Film or film/fabric composites are passed through the nips of two pairs of rollers. However, the second pair of rollers are rotated at a faster speed than the first pair of rollers such that the film or film/fabric composite will be pulled by the second pair of rollers and hence stretched in the machine direction.

In some roller assemblies of an MDO stretching unit, one or more of the rolls are heated to assist in the stretching process. Alternatively, a separate heated roll may be included and at least one of the roller assemblies may therefore comprise three rolls. In such an arrangement, the first roll is an internally heated roll which warms the film or composite prior to presentation to the nip. This heated first roll is not in physical contact with any other roll of the roller assembly. The second roll is coated with a resilient material such as rubber to allow nipping (i.e. physical contact) with the third roll, which is metal, without damage. Typically, only one of the two rolls in contact with one another is driven, such as the metal third roll. However the non-driven roll will rotate due to the contact between the two rolls. While both of the rolls may be driven in contact with one another, if desired, such an arrangement requires more precise speed control.

In the exemplary embodiment of Fig. 1, a MDO stretching unit is provided at second stretching station 29. The first roller assembly of the MDO stretching unit comprises a heated roll 50, a coated second roll 51, and a metal third roll 52 (which is driven). The film or composite is passed through the nip between rolls 51 and 52. The second roller assembly of the MDO stretching unit in Fig. 1 is similar to the first, however, the second roller

assembly only comprises a coated roll 61 and a driven metal roll 62 (without an additional heated roll). The film or composite is passed through the nip between rolls 61 and 62.

5 During operation, both nips of the MDO stretching unit are closed. The film or composite is nipped between rolls 51 and 52 and between rolls 61 and 62. However, rolls 61 and 62 are driven at a faster circumferential speed than rolls 51 and 52, thereby causing the film or composite to be stretched in the air gap between the two nips. A typical air gap dimension is between about
10 0.005" and about 0.550", or between about 0.005" and about 0.050".

In an MDO stretching unit, the "MDO stretch ratio" is defined as the ratio of the velocity of the second pair of rolls to the velocity of the first pair of rolls. In the embodiment of Fig. 1, the MDO stretch ratio is the ratio of the
15 velocity of roll 62 to the velocity of roll 52. In one embodiment, the MDO stretch ration may be advantageously selected to be between about 1.1:1 and about 4:1, more advantageously about 2:1. Such MDO stretch ratios may avoid damage to the film. After leaving the MDO stretcher unit, the film or composite will be longer and thinner than its initial dimensions.

20 The apparatus and methods of the present invention are particularly suited to producing laminate sheets comprising at least one microporous film layer and at least one fabric layer. The film composition which is extruded into the nip may include filler particles (a pore initiator) such that, when the
25 laminate sheet is stretched, micropores will be formed in the film layer at the locations of the filler particles. The fabric layer may comprise, for example, a nonwoven fibrous web of staple fibers or spun-bonded filaments. In addition, the incremental stretching provided by the CD intermeshing stretch provides a very soft fibrous finish to the composite that looks like cloth. The result of
30 such incremental or intermesh stretching is a composite that has excellent breathability and liquid-barrier properties, as well as soft cloth-like textures.

Materials for the Film and Composite

Processes for the production of microporous films are well known in the art. The film is produced by blending finely divided particles of an inorganic 5 filler (such as calcium carbonate or other salt) into a suitable polymer, forming a film of the filled polymer, and stretching the film to provide microporosity and breathability.

A microporous film is often characterized by the size of the pores 10 present. Pores with equivalent diameters in the range of 0.01 to 0.25 microns are known to prevent the flow of non-wetting liquids. If the frequency of these pores is sufficiently high, the material will allow a reasonable passage of water vapor while maintaining an effective barrier to liquid water.

15 According to one embodiment of the present invention, the film (including the film layer of a film/fabric composite and the individual film layers of a film laminate) may comprise a polyolefin-based composition, such as one or more polypropylenes, polyethylenes, functionalized polyolefins, or combinations thereof. One suitable composition comprises a blend of one or 20 more polyethylenes (such as a blend of LLDPE and LDPE) and a pore initiator. The type and amount of each polyethylene employed will depend, in large part, upon the intended use of the film or laminate. In one embodiment, about 40% to about 60% of a pore initiator may be included. For example, one particular formulation for the film according to an embodiment of the 25 present invention may be obtained by first melt blending a composition comprising:

- (a) about 35% to about 45% by weight of a linear low density polyethylene ("LLDPE"),
- 30 (b) about 3% to about 10% by weight of a low density polyethylene ("LDPE"),
- (c) about 40% to about 60% by weight calcium carbonate filler particles (such as calcium carbonate surface coated with a fatty acid), and

(d) optionally, about 1% to about 10% by weight of one or more of the following additives: pigments, processing aids, antioxidants, and polymeric modifiers.

5 The above composition may be extruded into the nip between two rollers (such as rollers 24 and 25 described previously) in order to form a film at a speed of about 550 fpm to about 1200 fpm (or faster), without draw resonance. In one embodiment, the resulting film layer may have a basis weight of between about 10 and about 40 gsm (g/m^2), more particularly between about 20 and about 30 gsm. The resulting film may then be stretched in the manner described previously.

10 One particular film composition may comprise about 51% by weight polyethylene, and about 44% by weight calcium carbonate filler particles having an average particle size of about 1 micron. The polyethylene may be provided as a blend of LLDPE and LDPE, with the amount of each type dependent upon the intended use for the film or laminate, including the desired aesthetic and physical properties (including properties such as drapability and surface feel). In some instances, it may be desirable to 15 include high density polyethylene in order to increase stiffness. The film color (whiteness) can be controlled by including one or more pigments. A white colored film, for example, can be provided by including up to about 4% by weight titanium dioxide. A processing aid such as a fluorocarbon polymer in an amount of about 0.1% to about 0.5% by weight may also be added, such as 20 1-propene,1,1,2,3,3-hexafluoro copolymer with 1,1-difluoroethylene. Antioxidants such as Irganox 1010 and Irgafos 168 may also be added at a 25 total concentration of about 500 to about 4000 ppm.

30 Although the above-described film compositions may be used to form microporous films using the stretching methods described herein, composite structures may also be formed by bonding a film layer (such as those formed from the compositions described above) to a fabric layer or another film layer. The film layer may be rendered microporous by stretching prior to bonding to the fabric or additional film layer. Alternatively, an unstretched film layer of

the compositions described above may be bonded to a fabric layer or another film layer and the resulting composite structure then stretched in order to render the film layer(s) microporous.

- 5 As yet another alternative, a fabric layer may be fed into the nip between two rollers (such as rollers 24 and 25 described previously) along with the extrudate. In this manner, the polymeric composition of the film layer is extruded onto the fabric layer. The resulting laminate sheet is then stretched in the same manner as described previously to provide a laminate sheet having a microporous film layer and a fabric layer. In one embodiment, the fabric layers of the various laminate structures described herein may have a basis weight of between about 10 and about 30 gsm, or even between about 15 and about 25 gsm. The WVTR of the laminate may be greater than about 500 grams per square meter per day and the hydrohead of the laminate may be in excess of about 60 cm (measured as the minimum height of a column of water that generates leakage in the laminate). In one embodiment, the WVTR may exceed about 1000 grams per square meter per day, or even exceed about 3000 grams per square meter per day.
- 10 15 20 25 Similarly, two or more extrudates may be fed into the nip between two rollers (such as rollers 24 and 25 described previously). In this manner, the polymeric compositions are co-extruded in order to form a laminate of two or more film layers. The resulting laminate sheet is then stretched in the same manner as described previously to provide a laminate sheet having two or more microporous film layers.

30 Suitable fabric layers include natural or synthetic fibers or filaments, which are bonded or otherwise consolidated into a web structure. Suitable fabrics include woven and nonwoven fabrics such as spunmelt, spunlace, carded, thermal or adhesive bonded fabric webs. Exemplary fabrics which may be used include spunbond polypropylene, spunbond polyethylene, and carded, thermal bonded polypropylene.

Test Methods

The properties of films and laminate sheets produced according to the present invention may be tested in a variety of manners. For example, the 5 water vapor transmission rate ("WVTR") may be determined in accordance with ASTM E 96, "Standard Test Methods for Water Vapor Transmission of Materials." A known amount of desiccant is put into a cup-like container along with the sample and held securely by a retaining ring and gasket. The assembly is placed in a constant temperature (40°C) and humidity (75% RH) 10 chamber for 5 hours. The amount of moisture absorbed by the desiccant is determined gravimetrically and used to estimate the WVTR (units of g/m²•24 hr) of the sample.

ASTM E 1294-89: "Standard Test Method for Pore Size Characteristics 15 of Membrane Filters using Automated Liquid Porosimeter" may be used to measure the maximum pore size (MPS). This method measures the MPS (units of microns) for microporous films and laminate sheets using a liquid displacement technique that depends on the capillary rise created by the surface tension and uses the Washburn equation for calculating the pore 20 diameter.

The number of pinholes may be determined using the Clopay Pinhole Test Method (HCTM-02) which measures the resistance of coated and laminated fabrics to the penetration of an alcohol solution (100 ml of 70% 25 Isopropyl alcohol with 1.0 ml of red food color dye). This test is conducted by exposing approximately six square feet of composite to 72 ml of the solution onto the film side of the sample. The solution is evenly spread with a brush to cover the marked off area of the sample. The solution is allowed to rest for ten minutes, then patted dry with napkins. The sample is turned over and the 30 dye marks are counted. The number of pinholes in the tested area are reported.

Examples

The following examples illustrate one method of making films, film laminates and film/fabric laminates according to one embodiment of the present invention. In light of these examples and this further detailed description, it will be apparent to a person of ordinary skill in the art that variations thereof may be made without departing from the scope of this invention. The listing of these examples is provided merely to show one skilled in the art how to apply the principals of this invention as discussed herein. These examples are not intended to limit the scope of the claims appended to this invention.

In the following examples, an apparatus similar to that shown in Fig. 1 was employed. However, in Example 1, since only a microporous film was formed and not a laminate, the web of nonwoven fabric 33 on roller 32, as well as rolls 24 and 25 which form the cast station nip, were not employed.

EXAMPLE 1:

A film formulation containing 50% calcium carbonate, 47% polyethylene resin, and 3% titanium dioxide was extruded using standard cast film equipment and process conditions. The extruder speed and line speed were set so that a 45 g/m^2 film layer was produced. This was film 1A. Film 1B was created by passing film 1A through a pair of CD Intermeshing ring rollers. The ring rollers had rings every 0.100 inches. FIG. 3 is a photomicrograph of film 1B. Film 1C was created by passing film 1A through a MDO stretching unit only. FIG. 4 is a photomicrograph of film 1C. Film 1D was created by stretching film 1A with both the CD and MDO units. The final film thickness of 1D was such that the basis weight of the film was about 23 g/m^2 for an MDO stretch ratio of about 2:1. FIG. 6 is a photomicrograph of film 1D. For comparison, film 1A was also stretched with the CD Intermeshing unit and then an MD (machine direction) intermeshing unit, to create film 1E. FIG. 5 is a photomicrograph of film 1E.

The physical property results shown in Table #1 represent typical data for the above films at the engagement depth on the CD intermeshing rollers and the ratio of speeds in and out of the MDO unit specified above. As noted in the table, the properties of the film stretched by the CD intermeshing rollers followed by the MDO stretching unit are superior to any other option. The photomicrographs of FIGS. 3-6 also demonstrate that the stretching methods of the present invention provide a high number of small diameter, round pores which are responsible for the high MVTR (or WVTR) as compared to the other films. The "air flow" measurement reported in Table 1 was obtained by applying high pressure air to the film and measuring air flow through the film over a short period of time (five seconds).

TABLE 1:

Sample Description	Basis Weight (g/m ²)	Pinhole Count (#/m ²)	Air Flow (ml/min @ 90psi)	MVTR (g/m ² /day)
1A - precursor	45	0	0	100
1B - CD Int. only	35	0	1128	1800
1C - MDO only	25	0	1511	2500
1D - CD Int. & MDO	31	0	6030	3400
1E - CD Int. & MD Int.	23	0	4400	3000

EXAMPLE 2 :

A film formulation containing 50% calcium carbonate, 47% polyethylene resin, and 3% titanium dioxide was extruded using standard cast film equipment and process conditions. A 20 g/m² thermal point bonded, carded, polypropylene web was threaded from the unwind into the cast station nip so that it contacted the molten film stream during run conditions. The extruder speed and line speed was set so that an 40 g/m² film layer was added to the fabric. This created Laminate 2A. The film/fabric laminate 2A was then passed through the CD Intermeshing ring rollers to make Laminate

2B. The ring rollers had rings every 0.100 inches. Laminate 2C was created by passing Laminate 2A through a MDO stretching unit only. Laminate 2D was created by stretching Laminate 2A with both the CD and MDO units. For comparison, Laminate 2A was also stretched with the CD Intermeshing unit and then the MD intermeshing unit, to create Laminate 2E. The physical property results shown in Table #2 represent typical data for these prototypes depending upon the engagement depth on the CD intermeshing rollers and the ratio of speeds in and out of the MDO unit. As noted in the table, the properties of the laminate stretched by the CD intermeshing rollers followed by the MDO stretching unit are superior to any other option.

Table 2

Sample Description	Basis Weight (g/m ²)	Pinhole Count (#/m ²)	Air Flow (ml/min @ 90psi)	MVTR (g/m ² /day)
2A - precursor	60	0	0	50
2B - CD Int. only	53	0	414	1100
2C - MDO only	49	0	611	1200
2D - CD Int. & MDO	46	0	1780	3169
2E - CD Int. & MD Int.	51	0	872	1743

EXAMPLE 3:

15 Standard cast film equipment and process conditions were used to prepare a co-extruded film laminate comprising three film layers (A/B/A) and having a basis weight of 85 g/m². The polymeric composition for the first and third layers contained 57% calcium carbonate and 43% polyethylene resin, and had a basis weight of 30 g/m². The polymeric composition for the middle layer contained 54% calcium carbonate and 46% polyethylene resin, and had a basis weight of 25 g/m². None of the layers contained titanium dioxide. This was designated film 3A. Film 3B was created by passing film 3A through

a MDO stretching unit only. MDO stretching was performed at 215 F, using a stretch ratio of 2.5 and a stretch gap of 5 mil. FIG. 7 is a photomicrograph of the surface of film 3B, and FIG. 8 is a photomicrograph of a cross-section of film 3B. Film 3C was created by stretching film #3A with a CD intermeshing unit followed by stretching with a MDO unit. CD intermesh stretching was performed at 75F using an engagement depth of 0.040". MDO stretching was performed at 215 F, using a stretch ratio of 2.0 and a stretch gap of 5 mil. FIG. 9 is a photomicrograph of the surface of film 3C, and FIG. 10 is a photomicrograph of a cross-section of film 3C.

The physical property results for films 3A, 3B and 3C are shown in Table #3. As noted in the table, the properties of the film stretched by the CD intermeshing rollers followed by the MDO stretching unit are superior to the film stretched only with an MDO unit. The photomicrographs of FIGS. 7-10 also demonstrate that the stretching methods of the present invention provide a high number of small diameter, round pores which are responsible for the high MVTR (or WVTR) as compared to the other films.

TABLE 3:

Sample Description	Basis Weight (g/m ²)	Pinhole Count (#/m ²)	MVTR (g/m ² /day)
3A - precursor	85	0	50
3B - MDO only	36	0	2850
3C - CD Int. & MDO	33	0	9946

WHAT WE CLAIM IS:

1. A method of making a microporous laminate sheet comprising a first film layer and a second layer, comprising:

(a) bonding a first film layer to a second layer in order to form a laminate sheet, wherein said first film layer includes a pore initiator; and

5 (b) stretching said laminate sheet using at least one CD intermeshing stretcher and at least one MDO stretching unit.

2. The method of claim 1, wherein said second layer comprises a fabric layer.

3. The method of claim 1, wherein said second layer comprises another film layer which includes a pore initiator.

4. The method of claim 1, wherein the laminate sheet is stretched by at least one CD intermeshing stretcher either immediately before or immediately after being stretched by at least one MDO stretching unit.

5. The method of claim 1, wherein the engagement depth of the CD intermeshing stretcher is from about 0.025 to about 0.1 inches and the MDO stretch ratio is between about 1.1:1 and about 4:1.

6. The method of claim 2, wherein said film layer is formed from a thermoplastic composition, and said step of bonding the film layer to the fabric layer comprises extruding said thermoplastic composition onto said fabric layer.

7. The method of claim 6, wherein said thermoplastic composition is extruded into a cast roll nip station along with said fabric layer, wherein said cast roll nip station includes a pair of rollers having a nip therebetween.

8. The method of claim 6, wherein said thermoplastic composition is polyolefin based and comprises:

- at least one polypropylene, polyethylene, or functionalized polyolefin; and
- calcium carbonate as a pore initiator.

9. The method of claim 6, wherein said thermoplastic composition is polyolefin based, and comprises:
 - one or more polyethylenes;
 - about 40% to about 60% calcium carbonate; and
 - about 1% to 10% of one or more additives chosen from the group consisting of: pigments, processing aids, antioxidants, and polymeric modifiers.
10. The method of claim 1, wherein the basis weight of the first film layer of the laminate is between about 10 and about 40 gsm.
11. The method of claim 2, wherein said fabric layer is a polyolefin based nonwoven material.
12. The method of claim 2, wherein said fabric layer is chosen from the group consisting of: spunbond polypropylene; spunbond polyethylene; and carded, thermal bonded polypropylene.
13. The method of claim 12, wherein the basis weight of the fabric layer is between about 10 and about 30 gsm.
14. The method of claim 2, wherein said laminate has a water vapor transmission rate of greater than about 500 grams per square meter per day and a hydrohead in excess of about 60 cm.
15. A method of making a microporous film, comprising:
 - (a) extruding a thermoplastic film from a polymer composition which includes a pore initiator; and

(b) stretching said film using at least one CD intermeshing stretcher and at least one MDO stretching unit.

16. The method of claim 15, wherein the microporous film is stretched by at least one CD intermeshing stretcher either immediately before or immediately after being stretched by at least one MDO stretching unit.

17. The method of claim 15, wherein the engagement depth of the CD intermeshing stretcher is from about 0.025 to about 0.1 inches and the MDO stretch ratio is between about 1.1:1 and about 4:1.

18. The method of claim 15, wherein said polymer composition is polyolefin based and comprises:

-at least one polypropylene, polyethylene, or functionalized polyolefin; and

5 -calcium carbonate as a pore initiator.

19. The method of claim 15, wherein said polymer composition is polyolefin based, and comprises:

-one or more polyethylenes;

-about 40% to about 60% calcium carbonate; and

5 -about 1% to 10% of one or more additives chosen from the group consisting of: pigments, processing aids, antioxidants, and polymeric modifiers.

20. The method of claim 15 wherein the basis weight of the film layer of the laminate is between about 10 and about 40 gsm.

21. A method of making a microporous laminate sheet comprising at least two film layers, comprising:

(a) bonding a first film layer to a second film layer in order to form a laminate sheet, wherein said first film layer includes a pore initiator; and

(b) stretching said laminate sheet using at least one CD intermeshing stretcher and at least one MDO stretching unit.

22. The method of claim 21 wherein each of said film layers is formed from a thermoplastic composition, and said step of bonding the first film layer to the second film layer comprises co-extruding said thermoplastic compositions.

23. The method of claim 22, wherein each of said thermoplastic compositions is polyolefin based, and comprises:

-at least one polypropylene, polyethylene, or functionalized polyolefin;

and

5 -calcium carbonate as a pore initiator.

24. An apparatus for stretching a film or a film/fabric laminate, comprising a CD intermeshing stretcher and a MDO stretching unit, wherein said CD intermeshing stretcher and said MDO stretching unit are arranged such that a film or film/fabric laminate may be stretched by said CD intermeshing
5 stretcher either immediately before or immediately after being stretched by said MDO stretching unit.

FIG. 1

Figure 3
CD Intermeshing only @ 2000X

Figure 4
MDO only @ 2000X

Figure 5
CD & MD Intermesh @ 2000X

Figure 6
CD Intermeshing + MDO @ 2000x

Figure 7
3B MDO only. Surface @ 1000 X

Figure 8
3B MDO only. Cross-Section @ 2000X

Figure 9
3C CD Intermeshed & MDO. Surface @ 1000X

Figure 10
3C CD Intermeshed & MDO. Cross-Section @ 2000X

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/05640

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : B29C 55/02, 55/14, 55/18; B32B 31/08, 31/16
 US CL : 156/229, 244.24, 324; 264/288.4, 290.2

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 156/229, 244.24, 324, 244.27, 160, 163, 217, 220; 264/288.4, 288.8, 282, 290.2, 413, 414, 464

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6,031,151 A (WU et al) 11 January 2000 (11.01.2000), column 5, lines 3-36 and column 9, lines 28-49	1-4, 6-8, 11, 12, 15, 16, 18, 19, 21-23
Y		5, 9, 10, 13, 14, 17, 20, 24
Y	US 4,223,059 A (SCHWARZ) 16 September 1980 (16.09.1980), column 3, lines 56-68 and column 4, lines 44-68.	5, 17
A	US 6,258,308 B1 (BRADY et al) 10 July 2001 (10.07.2001).	1-24
A, P	US 6,475,591 B2 (MUSHABEN) 05 November 2002 (05.11.2002).	1-24
A	US 5,865,926 A (WU et al) 02 February 1999 (02.02.1999).	1-24
A	US 5,861,074 A (WU et al) 19 January 1999 (01.19.1999).	1-24

<input type="checkbox"/>	Further documents are listed in the continuation of Box C.	<input type="checkbox"/>	See patent family annex.
*	Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"	document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E"	earlier application or patent published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O"	document referring to an oral disclosure, use, exhibition or other means		
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

21 May 2003 (21.05.2003)

Date of mailing of the international search report

19 JUN 2003

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US
 Commissioner for Patents
 P.O. Box 1450
 Alexandria, Virginia 22313-1450

Facsimile No. (703)305-3230

Authorized officer

Rick Crispino

Telephone No. 703-306-1495