PAMSI			
Wydział: Elektroniki	Grupa: 07di	Sprawozdanie z laboratorium nr 4	
Imię i nazwisko: Roberto Pietruszka-Orozco		Termin zajęć: czw, 16:15 - 18:30	
Prowadzący kurs: mgr. inż. Andrzej Wytyczak-Partyka		Data wykonania: 15.03.2017	

1. Pomiar

Tabela zawiera średni czas sortowania szybkiego (z dwudziestu realizacji) n-elementowej tablicy w trzech przypadkach, gdy dane wejściowe są posortowane, losowe oraz gdy wszystkie dane są takie same dla trzech różnych wyborów pivota.

Wybór pivota: Pierwszy Element

Liczba elementów	Rodzaj danych wejściowych			
	Takie same	Losowe	Posortowane	
10	0.0000015	0.0000014	0.0000010	
100	0.0000133	0.0000382	0.0000320	
1000	0.0001914	0.0013804	0.0034000	
10000	0.0026515	0.0207646	0.2593007	
100000	0.0286006	0.2668841	25.8677988	
1000000	0.3381204	3.6782809		
10000000	3.8593528	44.9492653		

Tabela 1.1

Wybór pivota: Losowy

Liczba	Rodzaj danych wejsciowych		
elementów	Takie same	Losowe	Posortowane
10	0.0000146	0.0000145	0.0000143
100	0.0001537	0.0001510	0.0001556
1000	0.0020189	0.0017729	0.0017334
10000	0.0171302	0.0171594	0.0161914
100000	0.1679981	0.1657257	0.1619374
1000000	1.7478504	1.7098242	
10000000	18.0133225	17.4779416	

Wybór pivota: Mediana z trzech

Liczba	Rodzaj danych wejściowych		
elementów	Takie same	Losowe	Posortowane
10	0.0000019	0.0000021	0.0000014
100	0.0000186	0.0000198	0.0000188
1000	0.0002342	0.0004784	0.0013195
10000	0.0033263	0.0089746	0.0882454
100000	0.0334967	0.1140980	8.6154737
1000000	0.3845574	1.5229157	
10000000	4.3411726	18.3192610	

Tabela 1.3

2. Wykresy

a. Wykres złożoności obliczeniowej dla danych wejściowych posortowanych

b. Wykres złożoności obliczeniowej dla losowych danych wejściowych

c. Wykres złożoności obliczeniowej dla takich samych danych wejściowych

3. Wnioski

Złożoność oczekiwana sortowania szybkiego wynosi $\Theta(nlogn)$, jednak w pesymistycznym przypadku degraduje się do $\Theta(n^2)$. Na pesymistyczny przypadek można trafić jeśli element tablicy wybrany jako pivot jest zawsze elementem największym(bądź najmniejszym), aby temu zapobiec proponuje się losowe wybieranie pivota. Dla dużych tablic, trafienie skrajnych wartości jest stosunkowo małe. Na podstawie *Tabeli 1.2* można zauważyć, że średni czas sortowania jest do siebie zbliżony niezależnie od danych wejściowych. Inną możilwością wyboru pivota jest wybranie mediany z elementów środkowego, pierwszego oraz ostatniego. Taki wybór pivota poprawia złożoność w przypadku pesymistycznym, niestety dalej jest w $\Theta(n^2)$.