Chương 2 Đại số Boole

Nội dung chương 2

- Cấu trúc đại số Boole
- Các tiên đề, định lý cơ bản
- Hàm Boole
- Biểu diễn hàm Boole
- Tối giản hàm Boole

Cấu trúc đại số Boole

- Các hằng và biến trong đại số Boole chỉ có hai giá trị 0 và 1
- Trong đại số Boole không có phân số, số âm, lũy thừa, căn số,
 ...
- Đại số Boole chỉ có 3 toán tử: nhân logic (AND), cộng logic (OR) và bù logic (NOT)

x	y	<i>x</i> . <i>y</i>
0	0	0
0	1	0
1	0	0
1	1	1

x	y	x + y
0	0	0
0	1	1
1	0	1
1	1	1

x	\overline{x}
0	1
1	0

Các tiên đề

• Tính giao hoán:

$$x + y = y + x$$
$$x \cdot y = y \cdot x$$

• Tính kết hợp:

$$(x + y) + z = x + (y + z)$$

 $(x.y).z = x.(y.z)$

• Tính phân phối:

$$x.(y + z) = x.y + x.z$$

 $x + (y.z) = (x + y).(x + z)$

• Phần tử đồng nhất:

$$x + 1 = 1$$

 $x + 0 = x$
 $x \cdot 1 = x$
 $x \cdot 0 = 0$

• Phần tử bù:

$$x + \overline{x} = 1$$
$$x \cdot \overline{x} = 0$$

Các định lý cơ bản

- $\bar{\bar{\mathbf{x}}} = \mathbf{x}$
- $\mathbf{x} + \mathbf{x} = \mathbf{x}$
- \bullet $x \cdot x = x$
- Định lý hấp thu:

```
(1)
                                         x + x \cdot y = x
<u>Chứng minh:</u> x + x \cdot y = x (1 + y) = x \cdot 1 = x
                                         x \cdot (x + y) = x
(2)
Chứng minh: x \cdot (x + y) = x \cdot x + x \cdot y = x + x \cdot y = x
(3)
                                         \mathbf{x} + (\bar{\mathbf{x}} \cdot \mathbf{y}) = \mathbf{x} + \mathbf{y}
<u>Chứng minh:</u> x + (\bar{x} \cdot y) = (x + \bar{x}) \cdot (x + y) = 1 \cdot (x + y) = x + y
(4)
                                         \mathbf{x} \cdot (\bar{\mathbf{x}} + \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}
Chứng minh: x \cdot (\bar{x} + y) = x \cdot \bar{x} + x \cdot y = 0 + x \cdot y = x \cdot y
(5)
                                         \mathbf{x} \cdot \mathbf{y} + \overline{\mathbf{x}} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{y} + \overline{\mathbf{x}} \cdot \mathbf{z}
Chứng minh: x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z + y \cdot z(x + \overline{x})
                                                                    = x \cdot y + \overline{x} \cdot z + x \cdot y \cdot z + \overline{x} \cdot y \cdot z
                                                                    = (x \cdot y + x \cdot y \cdot z) + (\overline{x} \cdot z + \overline{x} \cdot y \cdot z)
                                                                    = x \cdot y + \overline{x} \cdot z
```

Các định lý cơ bản (tt)

• Định lý De Morgan:

$$\overline{x+y} = \overline{x} \cdot \overline{y} \quad (1)$$
$$\overline{x \cdot y} = \overline{x} + \overline{y} \quad (2)$$

Chứng minh (1):

x	y	x + y	$\overline{x+y}$	\overline{x}	\overline{y}	$\overline{x}.\overline{y}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Mở rộng cho n biến:

$$\overline{x_1 + x_2 + \dots + x_n} = \overline{x_1}.\overline{x_2}...\overline{x_n}$$

$$\overline{x_1 x_2 ... x_n} = \overline{x_1} + \overline{x_2} + \dots + \overline{x_n}$$

Các định lý cơ bản (tt)

• Áp dụng các tiên đề, định lý của đại số Boole rút gọn các biểu thức sau:

1.
$$AB\bar{C} + \overline{AB\bar{C}} = 1$$

2.
$$A + \overline{B}C + \overline{D}(A + \overline{B}C) = A + \overline{B}C$$

3.
$$(A + \overline{B})(\overline{A}B + BCD) = (A + \overline{B})BCD = ABCD$$

4.
$$\bar{A}(B+\bar{C})(A+\bar{B}C)=0$$

Hàm Boole

- Định nghĩa: Hàm Boole là một biểu thức được tạo bởi các biến Boole và các phép toán cộng, nhân và bù logic
 Ví dụ: f(x, y, z) = x.y + x̄. ȳ. z
- Với giá trị cho trước của các biến, hàm Boole sẽ có giá trị 0 hoặc 1
- Tính chất:
 - Nếu f(x) là hàm Boole thì $\overline{f(x)}$ cũng hàm Boole
 - Nếu $f_1(x)$ và $f_2(x)$ là những hàm Boole thì các hàm $f_1(x) + f_2(x)$ và $f_1(x).f_2(x)$ cũng là những hàm Boole

Biểu diễn hàm Boole

- Phương pháp biểu diễn hàm Boole:
 - Bảng chân trị
 - Biểu thức logic
 - Dạng chính tắc 1 (chính tắc tuyển)
 - Dạng chính tắc 2 (chính tắc hội)
 - Bång Karnaugh

• Bằng bảng chân trị:

- Bảng chân trị chia làm hai phần:
 - Phần dành cho biến gồm các
 tổ hợp giá trị có thể có của biến
 - Phần dành cho hàm gồm giá trị của hàm ra tương ứng với các tổ hợp của biến
- Ví dụ: $f(x, y, z) = x.y + \overline{x}. \overline{y}. z$

x	y	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- Bằng biểu thức logic:
 - **Tích chuẩn** (minterm): là các số hạng tích của n biến mà hàm Boole phụ thuộc với quy ước biến đó có bù nếu nó là 0 và không bù nếu nó là 1
 - Tổng chuẩn (Maxterm): là các số hạng tổng của n biến mà hàm Boole phụ thuộc với quy ước biến đó có bù nếu nó là 1 và không bù nếu nó là 0

x	y	Z	Tích chuẩn	Tổng chuẩn
0	0	0	$\overline{x}\overline{y}\overline{z}$	x + y + z
0	0	1	$\overline{x}\overline{y}z$	$x + y + \overline{z}$
0	1	0	₹y₹	$x + \bar{y} + z$
0	1	1	₹yz	$x + \overline{y} + \overline{z}$
1	0	0	x y z	$\bar{x} + y + z$
1	0	1	xȳz	$\bar{x} + y + \bar{z}$
1	1	0	xy z	$\bar{x} + \bar{y} + z$
1	1	1	xyz	$\bar{x} + \bar{y} + \bar{z}$

- Bằng biểu thức logic:
 - Chính tắc 1 (Chính tắc tuyển):
 Tổng của các tích chuẩn làm
 cho hàm Boole có giá trị bằng 1
 - Chính tắc 2 (Chính tắc hội):
 Tích của các tổng chuẩn làm
 cho hàm Boole có giá trị bằng 0
 - Ví dụ: Tìm dạng chính tắc 1 và 2 của hàm Boole với bảng chân trị bên:

x	у	Z	f	
0	0	0	0	$\rightarrow x+y+z$
0	0	1	1	→ x̄ȳz
0	1	0	1	→ xyz
0	1	1	0	$\rightarrow x+\overline{y}+\overline{z}$
1	0	0	0	$\rightarrow \bar{x}+y+z$
1	0	1	1	→ xȳz
1	1	0	1	→ xyz̄
1	1	1	1	→ xyz

CT1:
$$f(x, y, z) = \bar{x}\bar{y}z + \bar{x}y\bar{z} + x\bar{y}z + xy\bar{z} + xyz = \sum (1, 2, 5, 6, 7)$$

CT2: $f(x, y, z) = (x + y + z)(x + \bar{y} + \bar{z})(\bar{x} + y + z) = \prod (0, 3, 4)$

- Bằng biểu thức logic:
 - Trường hợp hàm Boole có giá trị tùy định (don't care):

Hàm Boole n biến có thể không được định nghĩa hết tất cả tổ hợp của n biến; khi đó tại các tổ hợp không sử dụng này, hàm Boole sẽ nhận giá trị tùy định (có thể 0 hoặc 1)

х	y	Z	f
0	0	0	X
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	X

CT1:
$$f(x, y, z) = \sum (1, 2, 5, 6) + d(0,7)$$

CT2: $f(x, y, z) = \prod (3, 4) \cdot d(0,7)$

Bằng bảng Karnaugh:

- Bảng Karnaugh gồm các ô vuông, mỗi ô vuông biểu diễn cho một tổ hợp n biến. Như vậy bảng Karnaugh cho n biến sẽ có 2ⁿ ô.
- Hai ô kề cận nhau khi tổ hợp biến mà chúng biểu diễn chỉ khác nhau một biến (mã Gray)
- Trong ô ghi giá trị của hàm tại tổ hợp đó

Bằng bảng Karnaugh:

• Ví dụ: Biểu diễn bảng Karnaugh của hàm Boole với bảng chân trị sau: $f(x, y, z) \begin{array}{c} xy \\ 00 & 01 & 11 & 10 \end{array}$

x	y	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

z	00	01	11	10
0	0	0	1	0
1	1	0	1	0
f(x, y, z) yz x	0	1		
00	0	1		
01	0	0		
11	1	1		
10	0	0		

- Dùng bảng Karnaugh
 - Ví dụ bảng Karnaugh 2, 4, 5 biến:

- Dùng bảng Karnaugh
 - Ví dụ bảng Karnaugh 6 biến:

f(a,b,c,d,e,f) about	001	011	010	110	111	101	100
000							
001							
011							
010							
110							
111							
101	 						
100							

Tổi thiểu hàm Boole

- Phương pháp tối thiểu hàm Boole:
 - Phương pháp đại số
 - Phương pháp bảng Karnaugh

- Phương pháp đại số:
 - Dựa vào các tiên đề, định lý của đại số Boole
 - Ví dụ:

```
f(x,y) = \overline{x}y + x\overline{y} + xy
= \overline{x}y + x(\overline{y} + y)
= \overline{x}y + x
= y + x
f(x,y,z) = \overline{x}yz + x\overline{y}\overline{z} + x\overline{y}z + xy\overline{z} + xyz
= \overline{x}yz + x\overline{y}(\overline{z} + z) + xy(\overline{z} + z)
= \overline{x}yz + x\overline{y} + xy
= \overline{x}yz + x(\overline{y} + y)
= \overline{x}yz + x
= yz + x
```

Phương pháp bảng Karnaugh:

- Bước 1: Biểu diễn các hàm đã cho trên bảng Karnaugh
- Bước 2: Nhóm các ô với nhau theo các quy tắc:
 - Biểu diễn theo dạng chính tắc 1 thì nhóm các ô có giá trị bằng 1 và tùy định
 - Biểu diễn theo dạng chính tắc 2 thì nhóm các ô có giá trị bằng 0 và tùy định
 - Các ô này phải nằm kề nhau
 - Tổng số ô phải có dạng 2^n và lớn nhất
 - Khi nhóm 2^n ô kế cận sẽ loại được n biến, những biến bị loại là những biến khi ta đi vòng qua các ô kế cận mà giá trị của chúng thay đổi
 - Vòng nhóm là hợp lệ khi nó có ít nhất 1 ô chưa thuộc vòng nhóm nào

- Phương pháp bảng Karnaugh:
 - Ví dụ nhóm 2 ô kế cận:

- Phương pháp bảng Karnaugh:
 - Ví dụ nhóm 4 ô kế cận:

- Phương pháp bảng Karnaugh:
 - Ví dụ nhóm 8 ô kế cận:

- Phương pháp bảng Karnaugh:
 - Ví dụ nhóm 8 ô kế cận:

- Phương pháp bảng Karnaugh:
 - Ví dụ 1: Tối thiểu hóa hàm Boole sau:
 - Dạng chính tắc 1:

$$f(A, B, C) = AC + \overline{BC}$$

- Phương pháp bảng Karnaugh:
 - Ví dụ 1: Tối thiểu hóa hàm Boole sau:
 - Dạng chính tắc 2:

- Phương pháp bảng Karnaugh:
 - Ví dụ 2: Tối thiểu hóa hàm Boole sau:
 - Dạng chính tắc 1:

$$f(A, B, C, D) = \overline{B}\overline{C}\overline{D} + BC + CD$$

- Phương pháp bảng Karnaugh:
 - Ví dụ 2: Tối thiểu hóa hàm Boole sau:
 - Dạng chính tắc 2:

$$f(A, B, C, D) = (\overline{B} + C)(C + \overline{D})(B + \overline{C} + D)$$