COMPLEXITY

Algorithms Efficiency

In the beginning of this section, we established that it is reasonable to measure an algorithm's efficiency as a function of a parameter indicating the size of the algorithm's input. But there are many algorithms for which running time depends not only on an input size but also on the specifics of a particular input. Consider, as an example, sequential search. This is a straightforward algorithm that searches for a given item (some search key K) in a list of n elements by checking successive elements of the list until either a match with the search key is found or the list is exhausted. Here is the algorithm's pseudocode, in which, for simplicity, a list is implemented as an array. (It also assumes that the second condition $A[i] \neq K$ will not be checked if the first one, which checks that the array's index does not exceed its upper bound, fails.)

```
ALGORITHM SequentialSearch(A[0..n-1], K)
```

```
#Searches for a given value in a given array by sequential search #Input: An array A[0..n-1] and a search key K #Output: The index of the first element of A that matches K or -1 if there are no matching elements i \leftarrow 0 while i < n and A[i] \neq K do i \leftarrow i+1 if i < n return i else return -1
```

Clearly, the running time of this algorithm can be quite different for the same list size n. In the worst case, when there are no matching elements or the first matching element happens to be the last one on the list, the algorithm makes the largest number of key comparisons among all possible inputs of size n: $C_{worst}(n) = n$.

Before we leave this section, let us summarize the main points of the framework outlined above.

- Both time and space efficiencies are measured as functions of the algorithm's input size.
- Time efficiency is measured by counting the number of times the algorithm's basic operation is executed. Space efficiency is measured by counting the number of extra memory units consumed by the algorithm.
- The efficiencies of some algorithms may differ significantly for inputs of the same size. For such algorithms, we need to distinguish between the worst-case, average-case, and best-case efficiencies.
- The framework's primary interest lies in the order of growth of the algorithm's running time (extra memory units consumed) as its input size goes to infinity.

Asymptotic Notations and Basic Efficiency Classes

As pointed out in the previous section, the efficiency analysis framework concentrates on the order of growth of an algorithm's basic operation count as the principal indicator of the algorithm's efficiency. To compare and rank such orders of growth, computer scientists use three notations: O(big oh), $\Omega(\text{big omega})$, and $\Theta(\text{big theta})$. First, we introduce these notations informally, and then, after several examples, formal definitions are given. In the following discussion, t(n) and g(n) can be any nonnegative functions defined on the set of natural numbers. In the context we are interested in, t(n) will be an algorithm's running time (usually indicated by its basic operation count C(n)), and g(n) will be some simple function to compare the count with.

Informal Introduction

Informally, O(g(n)) is the set of all functions with a smaller or same order of growth as g(n) (to within a constant multiple, as n goes to infinity). Thus, to give a few examples, the following assertions are all true:

$$n \in O(n^2),$$
 $100n + 5 \in O(n^2),$ $\frac{1}{2}n(n-1) \in O(n^2).$

Indeed, the first two functions are linear and hence have a smaller order of growth than $g(n) = n^2$, while the last one is quadratic and hence has the same order of growth as n^2 . On the other hand,

$$n^3 \notin O(n^2)$$
, $0.00001n^3 \notin O(n^2)$, $n^4 + n + 1 \notin O(n^2)$.

Indeed, the functions n^3 and $0.00001n^3$ are both cubic and hence have a higher order of growth than n^2 ; and so has the fourth-degree polynomial $n^4 + n + 1$.

The second notation, $\Omega(g(n))$, stands for the set of all functions with a larger or same order of growth as g(n) (to within a constant multiple, as n goes to infinity). For example,

$$n^3 \in \Omega(n^2)$$
, $\frac{1}{2}n(n-1) \in \Omega(n^2)$, but $100n + 5 \notin \Omega(n^2)$.

Finally, $\Theta(g(n))$ is the set of all functions that have the same order of growth as g(n) (to within a constant multiple, as n goes to infinity). Thus, every quadratic function $an^2 + bn + c$ with a > 0 is in $\Theta(n^2)$, but so are, among infinitely many others, $n^2 + \sin n$ and $n^2 + \log n$. (Can you explain why?)

Hopefully, the preceding informal discussion has made you comfortable with the idea behind the three asymptotic notations. So now come the formal definitions.

O-notation

DEFINITION 1 A function t(n) is said to be in O(g(n)), denoted $t(n) \in O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \le cg(n)$$
 for all $n \ge n_0$.

The definition is illustrated in Figure 2.1 where, for the sake of visual clarity, n is extended to be a real number.

As an example, let us formally prove one of the assertions made in the introduction: $100n + 5 \in O(n^2)$. Indeed,

$$100n + 5 \le 100n + n \text{ (for all } n \ge 5) = 101n \le 101n^2.$$

Thus, as values of the constants c and n_0 required by the definition, we can take 101 and 5, respectively.

Note that the definition gives us a lot of freedom in choosing specific values for constants c and n_0 . For example, we could also reason that

$$100n + 5 \le 100n + 5n$$
 (for all $n \ge 1$) = $105n$

to complete the proof with c = 105 and $n_0 = 1$.

FIGURE 2.1 Big-oh notation: $t(n) \in O(g(n))$

Ω -notation

DEFINITION 2 A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \ge cg(n)$$
 for all $n \ge n_0$.

The definition is illustrated in Figure 2.2.

FIGURE 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

Here is an example of the formal proof that $n^3 \in \Omega(n^2)$:

$$n^3 \ge n^2$$
 for all $n \ge 0$,

i.e., we can select c = 1 and $n_0 = 0$.

⊕-notation

DEFINITION 3 A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constant c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \le t(n) \le c_1g(n)$$
 for all $n \ge n_0$.

The definition is illustrated in Figure 2.3.

For example, let us prove that $\frac{1}{2}n(n-1) \in \Theta(n^2)$. First, we prove the right inequality (the upper bound):

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2 \text{ for all } n \ge 0.$$

Second, we prove the left inequality (the lower bound):

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n \text{ (for all } n \ge 2) = \frac{1}{4}n^2.$$

Hence, we can select $c_2 = \frac{1}{4}$, $c_1 = \frac{1}{2}$, and $n_0 = 2$.

FIGURE 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

Useful Property Involving the Asymptotic Notations

Using the formal definitions of the asymptotic notations, we can prove their general properties (see Problem 7 in Exercises 2.2 for a few simple examples). The following property, in particular, is useful in analyzing algorithms that comprise two consecutively executed parts.

THEOREM If
$$t_1(n) \in O(g_1(n))$$
 and $t_2(n) \in O(g_2(n))$, then $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$.

(The analogous assertions are true for the Ω and Θ notations as well.)

PROOF (As you will see, the proof extends to orders of growth the following simple fact about four arbitrary real numbers a_1 , b_1 , a_2 , and b_2 : if $a_1 \le b_1$ and $a_2 \le b_2$. then $a_1 + a_2 \le 2 \max\{b_1, b_2\}$.) Since $t_1(n) \in O(g_1(n))$, there exist some positive constant c_1 and some nonnegative integer n_1 such that

$$t_1(n) \le c_1 g_1(n)$$
 for all $n \ge n_1$.

Similarly, since $t_2(n) \in O(g_2(n))$.

$$t_2(n) \le c_2 g_2(n)$$
 for all $n \ge n_2$.

Let us denote $c_3 = \max\{c_1, c_2\}$ and consider $n \ge \max\{n_1, n_2\}$ so that we can use both inequalities. Adding the two inequalities above yields the following:

$$\begin{split} t_1(n) + t_2(n) &\leq c_1 g_1(n) + c_2 g_2(n) \\ &\leq c_3 g_1(n) + c_3 g_2(n) = c_3 \big[g_1(n) + g_2(n) \big] \\ &\leq c_3 2 \max\{g_1(n), g_2(n)\}. \end{split}$$

Hence, $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$, with the constants c and n_0 required by the O definition being $2c_3 = 2 \max\{c_1, c_2\}$ and $\max\{n_1, n_2\}$, respectively.

So what does this property imply for an algorithm that comprises two consecutively executed parts? It implies that the algorithm's overall efficiency is determined by the part with a larger order of growth, i.e., its least efficient part:

$$\left| \begin{array}{c} t_1(n) \in O(g_1(n)) \\ \hline t_2(n) \in O(g_2(n)) \end{array} \right| \qquad t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\}).$$

For example, we can check whether an array has identical elements by means of the following two-part algorithm: first, sort the array by applying some known sorting algorithm; second, scan the sorted array to check its consecutive elements for equality. If, for example, a sorting algorithm used in the first part makes no more than $\frac{1}{2}n(n-1)$ comparisons (and hence is in $O(n^2)$) while the second part makes no more than n-1 comparisons (and hence is in O(n)), the efficiency of the entire algorithm will be in $O(\max\{n^2, n\}) = O(n^2)$.

Using Limits for Comparing Orders of Growth

Though the formal definitions of O, Ω , and Θ are indispensable for proving their abstract properties, they are rarely used for comparing the orders of growth of two specific functions. A much more convenient method for doing so is based on computing the limit of the ratio of two functions in question. Three principal cases may arise:

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0 & \text{implies that } t(n) \text{ has a smaller order of growth than } g(n) \\ c > 0 & \text{implies that } t(n) \text{ has the same order of growth as } g(n) \\ \infty & \text{implies that } t(n) \text{ has a larger order of growth than } g(n).^3 \end{cases}$$

Note that the first two cases mean that $t(n) \in O(g(n))$, the last two mean that $t(n) \in \Omega(g(n))$, and the second case means that $t(n) \in \Theta(g(n))$.

The limit-based approach is often more convenient than the one based on the definitions because it can take advantage of the powerful calculus techniques developed for computing limits, such as L'Hôpital's rule

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \lim_{n \to \infty} \frac{t'(n)}{g'(n)}$$

and Stirling's formula

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 for large values of n .

Here are three examples of using the limit-based approach to comparing orders of growth of two functions.

EXAMPLE 1 Compare the orders of growth of $\frac{1}{2}n(n-1)$ and n^2 . (This is one of the examples we used at the beginning of this section to illustrate the definitions.)

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}.$$

Since the limit is equal to a positive constant, the functions have the same order of growth or, symbolically, $\frac{1}{2}n(n-1) \in \Theta(n^2)$.

EXAMPLE 2 Compare the orders of growth of $\log_2 n$ and \sqrt{n} . (Unlike Example 1, the answer here is not immediately obvious.)

$$\lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n\to\infty} \frac{\left(\log_2 n\right)'}{\left(\sqrt{n}\right)'} = \lim_{n\to\infty} \frac{\left(\log_2 e\right)\frac{1}{n}}{\frac{1}{2\sqrt{n}}} = 2\log_2 e \lim_{n\to\infty} \frac{\sqrt{n}}{n} = 0.$$

The fourth case, in which such a limit does not exist, rarely happens in the actual practice of analyzing algorithms. Still, this possibility makes the limit-based approach to comparing orders of growth less general than the one based on the definitions of O, Ω , and Θ .

Since the limit is equal to zero, $\log_2 n$ has a smaller order of growth than \sqrt{n} . (Since $\lim_{n\to\infty}\frac{\log_2 n}{\sqrt{n}}=0$, we can use the so-called *little-oh notation*: $\log_2 n\in o(\sqrt{n})$. Unlike the big-oh, the little-oh notation is rarely used in analysis of algorithms.)

EXAMPLE 3 Compare the orders of growth of n! and 2^n . (We discussed this issue informally in the previous section.) Taking advantage of Stirling's formula, we get

$$\lim_{n\to\infty}\frac{n!}{2^n}=\lim_{n\to\infty}\frac{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}{2^n}=\lim_{n\to\infty}\sqrt{2\pi n}\frac{n^n}{2^ne^n}=\lim_{n\to\infty}\sqrt{2\pi n}\left(\frac{n}{2e}\right)^n=\infty.$$

Thus, though 2^n grows very fast, n! grows still faster. We can write symbolically that $n! \in \Omega(2^n)$; note, however, that while big-omega notation does not preclude the possibility that n! and 2^n have the same order of growth, the limit computed here certainly does.

Basic Efficiency Classes

Even though the efficiency analysis framework puts together all the functions whose orders of growth differ by a constant multiple, there are still infinitely many such classes. (For example, the exponential functions a^n have different orders of growth for different values of base a.) Therefore, it may come as a surprise that the time efficiencies of a large number of algorithms fall into only a few classes. These classes are listed in Table 2.2 in increasing order of their orders of growth, along with their names and a few comments.

You could raise a concern that classifying algorithms by their asymptotic efficiency would be of little practical use since the values of multiplicative constants are usually left unspecified. This leaves open a possibility of an algorithm in a worse efficiency class running faster than an algorithm in a better efficiency class for inputs of realistic sizes. For example, if the running time of one algorithm is n^3 while the running time of the other is 10^6n^2 , the cubic algorithm will outperform the quadratic algorithm unless n exceeds 10^6 . A few such anomalies are indeed known. For example, there exist algorithms for matrix multiplication with a better asymptotic efficiency than the cubic efficiency of the definition-based algorithm (see Section 4.5). Because of their much larger multiplicative constants, however, the value of these more sophisticated algorithms is mostly theoretical.

Fortunately, multiplicative constants usually do not differ that drastically. As a rule, you should expect an algorithm from a better asymptotic efficiency class to outperform an algorithm from a worse class even for moderately sized inputs. This observation is especially true for an algorithm with a better than exponential running time versus an exponential (or worse) algorithm.

TABLE 2.2 Basic asymptotic efficiency classes

Class	Name	Comments
1	constant	Short of best-case efficiencies, very few reasonable examples can be given since an algorithm's running time typically goes to infinity when its input size grows infinitely large.
log n	logarithmic	Typically, a result of cutting a problem's size by a constant factor on each iteration of the algorithm (see Section 5.5). Note that a logarithmic algorithm cannot take into account all its input (or even a fixed fraction of it): any algorithm that does so will have at least linear running time.
n	linear	Algorithms that scan a list of size n (e.g., sequential search) belong to this class.
n log n	"n-log-n"	Many divide-and-conquer algorithms (see Chapter 4), including mergesort and quicksort in the average case, fall into this category.
n^2	quadratic	Typically, characterizes efficiency of algorithms with two embedded loops (see the next section). Elementary sorting algorithms and certain operations on <i>n</i> -by- <i>n</i> matrices are standard examples.
n ³	cubic	Typically, characterizes efficiency of algorithms with three embedded loops (see the next section). Several nontrivial algorithms from linear algebra fall into this class.
2"	exponential	Typical for algorithms that generate all subsets of an <i>n</i> -element set. Often, the term "exponential" is used in a broader sense to include this and larger orders of growth as well.
n!	factorial	Typical for algorithms that generate all permutations of an <i>n</i> -element set.