

NUMERICAL METHODS

 $github.com/ \textcolor{red}{KCE}/NM$

Er. Shiva K. Shrestha Head, Computer Department Khwopa College of Engineering

NUMERICAL COMPUTING

Numerical computations play an indispensable role in solving real life mathematical, physical & engineering problems.

It is an approach for solving complex mathematical problems using only simple arithmetic operations.

NUMERICAL COMPUTING PROCESS

NM DEALS

Traditional Numerical Computing Methods deals with:

- ✓ Finding Roots of Equation
- ✓ Solving Systems of Linear Algebraic Equations
- ✓ Interpolation & Regression Analysis
- Numerical Integrations
- Numerical Differentiation
- ✓ Solution of Differential Equations
- ✓ Boundary Value Problems
- Solution of Matrix Problems

FORMS OF MATH EQUATIONS

NM BOOKS

COURSE CONTENT

- 1. Introduction, **Approximation and Errors** of Computation
- 2. Solutions of Non-linear **Equations**
- 3. Solution of System of 7. Numerical Solution of **Linear Algebraic Equations**
- 4. Interpolation

- 5. Numerical Differentiation and Integration
- Solution of Ordinary Differential Equations (ODE)
- Partial Differential Equation (PDE)

INTRODUCTION, APPROXIMATION AND ERRORS OF COMPUTATION (4)

- 1.1. Introduction, Importance of Numerical Methods
- 1.2. Approximation and Errors in Computation
- 1.3. Taylor's Series
- 1.4. Newton's Finite Differences (Forward, Backward, Central Difference, Divided Difference)
- 1.5. Difference Operators, Shift Operators, Differential Operators
- 1.6. Uses and Importance of Computer Programming in Numerical Methods.

INTRODUCTION, APPROXIMATION AND ERRORS OF COMPUTATION (4)

Forward difference table

х	у	Ду	$\Delta^2 y$	$\Delta^{\beta}y$	$\Delta^{I}y$	$\Delta^5 y$
x_0	y_0	XVV				
x_1	y_1	Δy_0	$\Delta^2 y_0$			
$(=x_0+h)$		Δy_1		$\Delta^3 y_0$		
$(=x_0+2h)$	y_2	Δy_2	$\Delta^2 y_1$	$\Delta^3 y_1$	$\Delta^4 y_0$	$\Delta^5 y_0$
x_3	y_3		$\Delta^2 y_2$		$\Delta^4 y_1$	30
$= (x_0 + 3h)$	V	Δy_3	$\Delta^2 y_3$	$\Delta^3 y_2$		
$= (x_0 + 4h)$	y_4	Δy_4				
<i>x</i> ₅	y_5					
$= (x_0 + 5h)$						

Backward difference table

x	у	Vy	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$	$\nabla^5 y$	
x_0	y_0	Var					
x_1	y_1	∇y_1	$\nabla^2 \boldsymbol{y}_2$	0.000			
$(=x_0+h) \\ x_2$	y_2	∇y_2	$ abla^2 y_3$	$\nabla^3 y_3$	$ abla^4 y_4$		
$(=x_0+2h)$		∇y_3		$\nabla^3 y_4$		$\nabla^5 \mathbf{y}_5$	
$(=x_0^3+3h)$	y_3	∇y_4	$ abla^2 y_4$	$\nabla^3 y_5$	$\nabla^4 y_5$		
$(=x_0^2+4h)$	y_4	∇y_5	$ abla^2 y_5$				
x_5	y_5	- 5					
$(=x_0+5h)$							

SOLUTIONS OF NON-LINEAR EQUATIONS (5 HRS.)

- 2.1. Bisection Method
- 2.2. Newton Raphson Method (Two Equation Solution)
- 2.3. Regula-Falsi Method, Secant Method
- 2.4. Fixed-point Iteration Method
- 2.5. Rate of Convergence and Comparisons of These Methods

SOLUTIONS OF NON-LINEAR

EQUATIONS (5 HRS.)

SOLUTIONS OF NON-LINEAR EQUATIONS (5 HRS.)

Applications:

Computer/Electrical Engineering

Design of an Electric Circuit

Civil/Environmental Engineering

Open-Chanel Flow, Greenhouse Gases & Rainwater

Mechanical/Aerospace Engineering

Vibration Analysis, Pipe Friction

Chemical/Bio Engineering

Ideal & Non-ideal Gas Laws

SOLUTION OF SYSTEM OF LINEAR ALGEBRAIC EQUATIONS (8 HRS.)

- 3.1. Gauss Elimination Method with Pivoting Strategies
- 3.2. Gauss-Jordan Method
- 3.3. LU Factorization
- 3.4. Iterative Methods
- 3.4.1. Jacobi Method,
- 3.4.2. Gauss-Seidel Method
- 3.5. Eigen Value and Eigen Vector using Power Method

EAR Chapter

SOLUTION OF SYSTEM OF LINEAR ALGEBRAIC EQUATIONS (8 HRS.)

$$x_{1}^{1} = \frac{1}{a_{11}} (b_{1} - a_{12}x_{2}^{2} - \dots - a_{1n}x_{n}^{2})$$

$$x_{i}^{k+1} = \frac{1}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i} a_{ij}x_{j}^{k} - \sum_{j=i+1}^{i} a_{ij}x_{j}^{i} - \sum_{j=i+1}^{i$$

Example: Power Method

Consider
$$A = \begin{bmatrix} 2 & 8 & 10 \\ 8 & 3 & 4 \\ 10 & 4 & 7 \end{bmatrix}$$
 Assume all eigenvalues are equally important, since we don't know which one is dominant $\begin{bmatrix} 2 & 8 & 10 \end{bmatrix}(1) = \begin{bmatrix} 20 \end{bmatrix} = \begin{bmatrix} 0.9524 \end{bmatrix}$

$$Az^{(1)} = \begin{bmatrix} 2 & 8 & 10 \\ 8 & 3 & 4 \\ 10 & 4 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 20 \\ 15 \\ 21 \end{bmatrix} = (21) \begin{bmatrix} 0.9524 \\ 0.7143 \\ 1.0 \end{bmatrix}$$
Eigenvalue estimate
Eigenvector

Gauss-Seidel Method: Example 1

Rewriting each equation

$$a_1 = \frac{106.8 - 5a_2 - a_3}{25}$$

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix} \qquad a_2 = \frac{177.2 - 64a_1 - a_3}{8}$$

$$a_3 = \frac{279.2 - 144a_1 - 12a_2}{1}$$

SOLUTION OF SYSTEM OF LINEAR ALGEBRAIC EQUATIONS (8 HRS.)

Applications:

Computer/Electrical Engineering

Current & Voltages in Resistor Circuits

Civil/Environmental Engineering

Analysis of a Statically Determinate Truss

Mechanical/Aerospace Engineering

Spring-Mass Systems

Chemical/Bio Engineering

Steady-State Analysis of a System of Reactors

INTERPOLATION (8 HRS.)

- 4.1. Newton's Interpolation (Forward, Backward)
- 4.2. Central Difference Interpolation: Stirling's Formula, Bessel's Formula
- 4.3. Lagrange Interpolation
- 4.4. Least Square Method of Fitting Linear and Nonlinear Curve for Discrete Data and Continuous Function
- 4.5. Spline Interpolation (Cubic Spline)

INTERPOLATION (8 HRS.)

Central Difference Method

Lagrange Interpolation

Problem: Given

x_{i}	x_0	X_1	 \mathcal{X}_n
y_i	y_0	y_1	 y_n

Find the polynomial of least order $f_n(x)$ such that:

$$f_n(x_i) = f(x_i)$$
 for $i = 0,1,...,n$

Lagrange Interpolation Formula: $f_n(x) = \sum_{i=0}^n f(x_i) \ell_i(x)$

$$\ell_i(x) = \prod_{j=0, j \neq i}^{n} \frac{\left(x - x_j\right)}{\left(x_i - x_j\right)}$$

CISE301_Topic5

KFUPM

INTERPOLATION (8 HRS.)

Applications:

Computer/Electrical Engineering

Fourier Analysis

Civil/Environmental Engineering

Use of Spline to Estimate Heat Transfer

Mechanical/Aerospace Engineering

Analysis of Experimental Data

Chemical/Bio Engineering

Linear Regression and Population Model

NUMERICAL DIFFERENTIATION AND INTEGRATION (6 HRS.)

- 5.1. Numerical Differentiation Formulae
- 5.2. Maxima and Minima
- 5.3. Newton-Cote General Quadrature Formula
- 5.4. Trapezoidal, Simpson's 1/3, 3/8 Rule
- 5.5. Romberg Integration
- 5.6. Gaussian Integration (Gaussian Legendre Formula 2-point & 3-point)

Chapter 5

NUMERICAL DIFFERENTIATION AND INTEGRATION (6 HRS.)

NUMERICAL DIFFERENTIATION AND INTEGRATION (6 HRS.)

Applications:

Computer/Electrical Engineering

Root-Mean-Square (RMS) Current by Numerical Integration

Civil/Environmental Engineering

• Effective Force on the Mast of Racing Sailboat

Mechanical/Aerospace Engineering

Numerical Integration to Compute Work

Chemical/Bio Engineering

Integration to Determine the Total Quantity of Heat

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS (6 HRS.)

- 6.1. Euler's & Modified Euler's Method
- 6.2. Runge Kutta Methods for 1st and 2nd Order Ordinary Differential Equations
- 6.3. Solution of Boundary Value problem by Finite Difference Method & Shooting Method

Chapter 6

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS (6 HRS.)

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS (6 HRS.)

Applications:

Computer/Electrical Engineering

Simulating Transient Current for an Electric Circuit

Civil/Environmental Engineering

Predator-Prey Models & Chaos

Mechanical/Aerospace Engineering

The Swinging Pendulum

Chemical/Bio Engineering

Using ODEs to analyze the Transient Response of a Reactor

NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATION (8 HRS.)

- 7.1. Classification of Partial Differential Equation (Elliptic, Parabolic, and Hyperbolic)
- 7.2. Solution of Laplace Equation (Standard 5-Point Formula with Iterative Method)
- 7.3. Solution of Poisson Equation (Finite Difference Approximation)
- 7.4. Solution of Elliptic Equation by Relaxation Method
- 7.5. Solution of One-Dimensional Heat Equation by Schmidt Method

0.04

0.035

0.03

0.025

Chapter 7

Finite Difference solution to Poisson Equation

 $u_{xx} + u_{yy} = 0$

Laplace equation remains invariant under rotation of 45° .

Value of *u* at any grid point is the average of its values at four diagonal points.

Laplace Equation

$$u_{i,j} = \frac{1}{4} \left[u_{i-1,j+1} + u_{i-1,j-1} + u_{i+1,j-1} + u_{i+1,j+1} \right]$$

Error in Diagonal formula is FOUR TIMES than that in Standard formula.

Standard Five-point Formula should be preferred, if possible.

NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATION (8 HRS.)

Applications:

Computer/Electrical Engineering

2D Electrostatic Field Problems

Civil/Environmental Engineering

Deflections of a Plate

Mechanical/Aerospace Engineering

Finite-Element Solution of a Series of Springs

Chemical/Bio Engineering

1D Mass Balance of a Reactor

WANT TO STUDY NM APPLICATIONS IN DETAIL?

PRACTICAL

Algorithm & Program Development in C Programming Language of Following:

- 1. Generate Difference Table.
- 2. At least two from Bisection Method, Newton-Raphson Method, Secant Method
- 3. At least one from Gauss Elimination Method or Gauss Jordan method. Finding Largest Eigen Value and Corresponding Vector by Power Method.
- 4. Lagrange Interpolation, Curve Fitting by Least Square Method.
- 5. Differentiation by Newton's Finite Difference Method. Integration using Simpson's 3/8 Rule
- Solution of 1st Order Differential Equation using RK-4 Method
- 7. Partial Differential Equation (Laplace Equation)
- 8. Numerical Solutions using MATLAB.

REFERENCES

- Dr. B.S.Grewal, "Numerical Methods in Engineering and Science", Khanna Publication, 7th edition.
- 2. E Balagurusamy, "Numerical Methods", Mc Graw Hill Education
- 3. Dr. Santosh Kumar, "Computer Based Numerical & Statistical Techniques", S. Chand
- 4. Steven C. Chopra, Raymond P. Canale, "Numerical Methods for Engineeris", TATA McGraw Hill
- 5. W.H. Press and et. Al., "Numerical Recipes in C", Cambridge
- 6. Robert J schilling, Sandra I harries Applied Numerical Methods for Engineers using MATLAB and C", 3rd edition Thomson Brooks/cole.
- Richard L. Burden, J.Douglas Faires, "Numerical Analysis 7th edition", Thomson / Brooks/cole
- 8. John. H. Mathews, Kurtis Fink , "Numerical Methods Using MATLAB 3rd edition" ,Prentice Hall publication
- JAAN KIUSALAAS, "Numerical Methods in Engineering with MATLAB", Cambridge Publication

Q/A?

Thank You!

Er. Shiva K. Shrestha

computer.khwopa@gmail.com

nm.khwopa@gmail.com

github.com/KCE/NM