Elektron v elektrickém poli

Elektron s hmotností m, nábojem -e a počáteční (v čase t=0) rychlostí $\vec{u}_0=u_0\vec{e}_y$ je vypuštěn do konstantního elektrického pole $\vec{E}_0=E_0\vec{e}_x$ (neboli kolmo k poli). Budeme studovat ne-intuitivní chování při relativistických rychlostech a trajektorii urychleného elektronu.

(1) Dokažte, že relativistický Lorentzův faktor urychleného elektronu je dán vztahem:

$$\gamma(t) = \sqrt{1 + \frac{(eE_0t)^2 + p_0^2}{m^2c^2}}$$

kde $p_0 = mu_0/\sqrt{1-u_0^2/c^2}$ je počáteční hybnost elektronu a c rychlost světla.

- (2) Odvod'te rovnici pro rychlosti elektronu $u_x(t)$ a $u_y(t)$
- (3) Vytvořte graf, kde jsou $u_x(t)/u_0$ a $u_y(t)/u_0$ zobrazeny jako funkce času. Vyjádřete čas na horizontální ose v jednotkách $(-eE_0t)/\sqrt{p_0^2+m^2c^2}$
- (4) Diskutujte a vysvětlete počáteční i asymptotické chování pro $u_x(t)$ a speciálně pro $u_y(t)$, které ukazuje ne-Newtonovské chování částice je zpomalována, i přestože na ni nepůsobí síla.

Jedním z efektů rozšiřování svazku zejména v urychlovačích a v elektronovém mikroskopu je to v oblasti zdroje a křižišť, je Columbovské odpuzování. V další části úkolu se právě tomuto budeme věnovat.

Předpokládejme problém v souřadné soustavě společného těžiště, kdy první elektron je v čase t=0 na pozici $x_1(t=0)=x_0$ a druhý elektron $x_2(t=0)=-x_0$. Oba elektrony jsou na počátku v klidu ($\dot{x}_1(t=0)=\dot{x}_2(t=0)=0$). Předpokládejme, že rychlosti v težišťové soustavě jsou podstatně menší než rychlost světla, ,tudíž ne-relativistické řešení je povoleno.

(5) Dokažte, že čas pro elektron, potřebný k přesunutí z vzdálenosti x_0 do x je dán rovnicí:

$$\frac{t}{t_0} = \sqrt{\left(\frac{x}{x_0} - 1\right)\frac{x}{x_0} + \ln\left(\sqrt{\frac{x}{x_0} - 1} + \sqrt{\frac{x}{x_0}}\right)}$$

kde $t_0 = \sqrt{\frac{8\pi\epsilon_0 m x_0^3}{e^2}}$. Nápověda: Použijte konverzi potenciální energie na kinetickou.

- (6) Vykreslete graf $\frac{t}{t_0}$ jako funkce x od $x=x_0$ do $x=5x_0$. Odvoď te vztah pro asymptotickou rychlost v_{∞} pro elektron, kde $|x|\gg |x_0|$. Přidejte do grafu křivku zobrazující pohyb při konstantní rychlosti v_{∞} . Pro které hodnoty x_0 je nerelativistický výpočet oprávněný?. Diskutujte, jestli může nastat v realitě situace, kdy ne-relativistická aproximace není vhodná.
- (7) Předpokládejme problém v laboratorní soustavě souřadné, kdy se oba elektrony pohybují počáteční rychlostí $v_z \gg v_\infty$ v z-tovém směru. $x_{1,2}(0) = \pm x_0$, $\dot{x}_{1,2}(0) = 0$, $\dot{z}_{1,2}(0) = v_z$. Odvoď te rovnici pro vektor elektrické intenzity a magnetické indukce v důsledku elektronu 2 v pozici x_0 prvního elektronu.
- (8) Při relativistických rychlostech je Coloumbovská interakce naštěstí oslabena. Vypočtěte sílu působící druhým elektronem na první elektron jako funkci x_1 . Použijte předpoklad, že

 $v_z\gg v_\infty$, tedy že Lorentzův faktor může být vyjádřen jako $\gamma=1/\sqrt{1-v_z^2/c^2}$. Dokažte, že odpuzování je v laboratorní soustavě zmenšeno faktorem $1/\gamma^2$ oproti situaci v težišťové soustavě souřadné. Použijte relativistické efekty - jako dilatace času a relativistické zvýšení hmotnosti k vysvětlení tohoto zmenšení.