MATH 364: Lecture 30 (12/05/2024)

Today: Praetice final exam.

Today: Fractice final exam.

3. Word selection IP:

Let
$$X_j = 1$$
 if word j is selected, and ordinarwise,

 $j = 1 = AFT$, $j = 2 = FAR$, ..., $j = 7 = ZAP$. (or1).

Let $l_i = Sum$ of letter i scores, $i = 1/2, 3$. (70)

Data: $S_i = total$ score for word i .

 $S_i = score$ (AFT) = 27 , ..., $97 = score$ ($2AP$) = 43 .

Max $Z = \sum_{l=1}^{7} 8_l x_l$ (total score)

S.t. $l_i = X_i + 6X_2 + ... + 26X_7$ (letter 1 score)

 $l_i = 6X_i + X_2 + ... + X_7$ (letter 2 score)

 $l_i = 20X_i + 18X_2 + ... + 16X_7$
 $l_i = 20X_i + 18X_2 + ... + 16X_7$
 $l_i = 10$
 $l_i = 10$

$$\sum_{i=1}^{7} x_i = 4 \quad (pick 4 \text{ words})$$

$$X_2 \le 1 - x_7 \quad (2AP \implies \text{no FAR})$$

$$X_3 = x_4 \quad (JOE 8 \text{ KEN, or neither})$$

 l_1, l_2, l_3 will all be integers. We want $l_1 < l_2 < l_3$. Hence we can write $l_1 \leq l_2 - 1 \qquad \text{(letter 1 score} \leq \text{let. 2 score})$ $l_2 \leq l_3 - 1 \qquad \text{(letter 2 score} \leq \text{let. 3 score})$ $X_j \in 30,13$, j=1,...,7 (binary vars)

5. if |2x+5y| > 2 then $|3x+4y| \ge 5$. $\Rightarrow \text{ either } |2x+5y| \le 2 \text{ or } |3x+4y| \ge 5$ $\Rightarrow \text{ either } (2x+5y) \le 2 \text{ AND } 2x+5y = 2 \text{ or } |3x+4y| \ge 5$ $\Rightarrow \text{ either } (2x+5y \le 2 \text{ AND } 2x+5y = 2 \text{ or } |3x+4y| \ge 5)$ $\Rightarrow \text{ either } (2x+5y \le 2 \text{ AND } 2x+5y = 2 \text{ or } |3x+4y| \le -5)$ $\Rightarrow \text{ either } (2x+5y-2 \le 0 \text{ AND } -2x-5y-2 \le 0) \text{ or } (-3x-4y+5 \le 0 \text{ or } |3x+4y+5 \le 0)$ $\Rightarrow \text{ (3)}$

Let $t_i = 1$ if Statement (i) holds; i = 1, 2, 3, 4.

But (1) AND (2) is one option, 80 we use t_i in place of t_i . $2x + 5y - 2 \le M(1 - t_i)$ or, you could use t_i for (2), but $-2x - 5y - 2 \le M(1 - t_i)$ write $t_i + t_2 + t_3 + t_4 \ne 1$ $t_i \in \{0,1\}^2$, i = 1, 3, 4