Si ahora nos figumos en el PMOS se tine que $V_G = V_{in} = 0V$ y $V_S = 5V$ \Rightarrow $V_{os} = -8V < -2,5V = V_{i}$ Esto quiere decir que hay canal P. Además, sabemos que la corriente en toda la rama es cero, por lo que si hay canal que $I_{DS} = 0$ ha de ser $V_{DS} = 0V$. Como $V_S = 5V \Rightarrow V_D = 5V$ y $V_{out} = V_{DP} = 5V$.

Si Vin = 5V estamos en el caso simétrico. Si nos figumos primero en el PMOS se tiene que Vo = Vin = 5V, Vs = 5V y

Vos = 0V > -2,5V = VI. Por tanto no hay canal P y la

corriente en toda la roma es de 0A (estamos en corte).

Si ahora vemos el NMOS tonemos una cituación en la que

Vo = 5V, Vs = 0V => Vos = 5V > 2,5V = VI por lo que hay

canal N. Como Jos = 0A por lo que sucede en el PMOS se liene que

Nos tiene que ser Vos = 0V. => Vp = 0V.

Ejercicio 7.- Si $V_f = 1V$ y $K = 2\frac{mA}{V^2}$ de termina en que vegion de operación se encuentra el transistor y calcula Ips. Vos y Vos.

Por tanto Vout = Von= OV

En primer lugar $V_G = SV - R_1 \overline{X}_G = SV$ $V_S = OV$ Y $V_D = 20V + 500 \Omega I_{DS}$