

Eletrotécnica I

Aula – 07 Circuito aberto e curto-circuito

Eleilson Santos Silva

• Muitas vezes circuito aberto e curtocircuito podem significar problema num determinado circuito, porém tem vezes que esse tipo de situação faz parte do funcionamento normal do circuito.

CIRCUITO ABERTO

 Um "aberto" em qualquer parte de um circuito é, na verdade, uma resistência extremamente alta que implica ausência de fluxo de corrente através do circuito.

CIRCUITO ABERTO

- Uma interrupção na linha principal, a corrente não chegará a nenhum dos ramos em paralelo.
- Quando houver uma "aberto" num dos ramos, não haverá corrente apenas nessa ramo.

• Exemplo 1: a) Calcule a corrente no circuito abaixo. b) Qual a tensão em casa resistor? E a tensão entre os pontos i) e ii)?

• Exemplo 2: a) Calcule a corrente no circuito abaixo. b) Qual a tensão em casa resistor? E a tensão entre os pontos i) e ii)?

• Exemplo 3: a) Calcule a corrente em cada ramo em paralelo. b) Se o resistor do segundo ramo queimar, calcule as novas correntes nos ramos.

o (CEFET/MG – 2005 – modificada) No circuito elétrico abaixo, dois resistores de resistências elétricas R1 e R2, invariáveis com a temperatura, estão ligados numa tomada de 120 V.

- a) Ao se ligar a chave **ch**, a **Potência** total dissipada pelo circuito aumenta, diminui ou permanece constante? **JUSTIFIQUE**.
- b) Sabendo que, com a chave desligada, a potência é igual a **480W**, calcule o valor da resistência **R** 1.

CURTO CIRCUITO

- o Um "curto" em qualquer parte de um circuito, é na verdade uma resistência extremamente baixa.
- Como consequência, a corrente tende a se desviar em sua maior parte, para o curto.

Fig. 5-9 Curto num circuito paralelo

• Exemplo 4: a) Qual a corrente em R2 no circuito abaixo? Calcule a corrente fornecida pela fonte do circuito abaixo.

• Exemplo 5: a) Qual a corrente em R2 no circuito abaixo? Calcule a corrente fornecida pela fonte do circuito abaixo.

• Abaixo está ilustrada a tradicional "gambiarra", que o brasileiro tanto adora! O circuito é formado por duas lâmpadas, fios de conexão, chave liga/desliga e tomada, a fonte de energia. Após ligar a chave, com as lâmpadas acesas, é correto afirmar que:

- a) L2 se apaga e L1 aumenta seu brilho.
- b) L2 se apaga e L1 mantém seu brilho.
- c) L2 não se apaga e L1 aumenta seu brilho.
- d) L2 não se apaga e L1 mantém seu brilho.

 (UFVJM/2007) Entre os pontos A e B do circuito representado na figura abaixo é aplicada uma diferença de potencial de 120 V.
Nessas condições, quanto vale a corrente elétrica que passa pelo resistor de 6 Ω?

o (UFMG/2009) Observe este circuito, constituído de três resistores de mesma resistência R; um amperímetro A; uma bateria ε; e um interruptor S:

Considere que a resistência interna da bateria e a do amperímetro são desprezíveis e que os resistores são ôhmicos. Com o interruptor S inicialmente desligado, observa-se que o amperímetro indica uma corrente elétrica I. Com base nessas informações, é CORRETO afirmar que, quando o interruptor S é ligado, o amperímetro passa a indicar uma corrente elétrica A) 2I. B) 1. C) 21.

D) 3 /

Resolvendo circuitos elétricos com fios

• Exemplo 1 – Determine as intensidades das correntes i1 e i2

Dúvida: como pode haver uma corrente elétrica i1 através do fio se não existe uma ddp entre as extremidades dele?

Resolvendo circuitos elétricos com fios

 Exemplo 2 – Determine a tensão fornecida pela bateria

Resolvendo circuitos elétricos com fios

• Exemplo 3 – Sabendo que $i_1 - i_2 = 2A$ determine a fem da bateria.

• Material Retirado de:

Valkenburgh, Val. Eletricidade Básica, Vol 2. Ed ao livro técnico

Gussow, Milton

Eletricidade básica / Milton Gussow

Tradução: Aracy Mendes da Costa

São Paulo: Pearson Makron Books, 1997.

Robert L. Boylestad

Introductory Circuit Analysis, 10ed.