Computer Simulation of Liquids Michael P. Allen and Dominic J. Tildesley

Second edition, Oxford University Press, 2017 List of errata up to March 21, 2023

Line numbers below do not include section headings, equations, figures etc. Negative line numbers are counted up from the bottom of the page.

Chapter 1

p11 ℓ -16 'It quite possible' \rightarrow 'It is quite possible'. p14 In eqn (1.15) the signs of the odd-order terms are wrong:	F Perez 2017-10-07 MPA 2017-04-04
$+T_{\alpha} \to -T_{\alpha} \qquad \text{and} \qquad + \frac{1}{3}T_{\alpha\beta\gamma} \to -\frac{1}{3}T_{\alpha\beta\gamma}.$ $\mathbf{p15} \text{ In eqn } (1.20), T_{\alpha\beta} \to T_{\alpha\beta}^{ab}. \text{ In eqn } (1.21), A_{\alpha\beta} \to A_{\alpha\beta}^{ab}.$ $\mathbf{p17} \text{ In eqn } (1.22), B_{\alpha\beta} \to B_{\alpha\beta}^{ab}, T_{\alpha\beta} \to T_{\alpha\beta}^{ab}, (\alpha^a)^{-1} \to (\alpha^a)_{\alpha\beta}^{-1}.$ $\text{In eqn } (1.23) \text{ and } \ell \text{ 15}, \tilde{T}_{\alpha\beta} \to \tilde{T}_{\alpha\beta}^{ab}. \text{ Also in this equation the factor } 4\pi\epsilon_0$ $\text{should be omitted for consistency with eqn } (1.17).$ $\mathbf{p35} \ell \text{ 11}, \text{ 'see Chapter } 13' \to \text{ 'see Chapter } 14'.$ $\mathbf{p36} \ell \text{ 7}, v(r) \sim r^3 \to v(r) \sim r^{-3}.$ $\ell \text{ 8}, \text{ 'Chapter 5'} \to \text{ 'Chapter 6'}.$ $\mathbf{p42} \ell \text{ 3 Remove sentence 'Some of these methods } \dots \text{ Appendix A.'}$	MPA 2019-08-09 MPA 2019-08-09 MPA 2019-07-30 Bian Li 2022-04-02 MPA 2019-07-30 MPA 2019-07-30
Chapter 2	2019-07-30 MPA 2019-08-11 MPA & Y Yang 2019-07-22 MPA 2019-08-13 MPA 2019-07-18

Chapter 3

A Fleury 2018-08-02

p116 All the masses in eqns (3.49ab) should be raised to the power -1:

$$\begin{split} \mathbf{r}_{12}(t+\delta t) &= \mathbf{r}_{12}'(t+\delta t) + \left(m_1^{-1} + m_2^{-1}\right) \lambda_{12}^{(r)} \mathbf{r}_{12}(t) - m_2^{-1} \lambda_{23}^{(r)} \mathbf{r}_{23}(t) \\ \mathbf{r}_{23}(t+\delta t) &= \mathbf{r}_{23}'(t+\delta t) - m_2^{-1} \lambda_{12}^{(r)} \mathbf{r}_{12}(t) + \left(m_2^{-1} + m_3^{-1}\right) \lambda_{23}^{(r)} \mathbf{r}_{23}(t). \end{split}$$

The same correction should be applied to eqns (3.53ab); in addition, all the bond vectors in eqns (3.53ab) should be evaluated at $t + \delta t$:

$$\mathbf{v}_{12}(t+\delta t) = \mathbf{v}_{12}'(t+\delta t) + \left(m_1^{-1} + m_2^{-1}\right)\lambda_{12}^{(v)}\mathbf{r}_{12}(t+\delta t) - m_2^{-1}\lambda_{23}^{(v)}\mathbf{r}_{23}(t+\delta t)$$

$$\mathbf{v}_{23}(t+\delta t) = \mathbf{v}_{23}'(t+\delta t) - m_2^{-1}\lambda_{12}^{(v)}\mathbf{r}_{12}(t+\delta t) + \left(m_2^{-1} + m_3^{-1}\right)\lambda_{23}^{(v)}\mathbf{r}_{23}(t+\delta t)$$

p120 ℓ 14 'eqn (2.161)' \rightarrow 'eqn (2.167)'.

MPA 2019-08-1

2019-08-13 MPA 2023-02-11

p131 ℓ 19, the sentence should read: 'It is relatively straightforward to combine it with constraint algorithms (Ryckaert and Ciccotti, 1986); see, however, Peters et al. (2014).'

MPA

2023-03-21

p139 ℓ –3, the last 3 sentences of section 3.8, beginning with 'Also...', should be replaced by: 'Also, the distribution is not canonical (it may tend to isokinetic as $\tau \to 0$ and microcanonical as $\tau \to \infty$ (Morishita, 2000)). Recently it has been shown that these equations of motion do not preserve *any* distribution (Petersen and Searles, 2022). The Berendsen thermostat is quite widely used, but in view of the risk of generating incorrect results (see e.g. Braun et al., 2018), alternatives are to be preferred.'

p141 In the equation at the top of the page the sign of $\mathbf{r} \cdot \mathbf{f}$ is wrong, and a factor 1/dV was omitted from the correction term:

MPA 2017-04-30 2019-08-21

$$\mathcal{P}' = \mathcal{P} + (1/gV)\mathbf{p} \cdot \mathbf{p}/m = \frac{1}{dV}(\alpha \mathbf{p} \cdot \mathbf{p}/m + \mathbf{r} \cdot \mathbf{f}) - \frac{\partial V}{\partial V}.$$

p142 The expression for iL'_2 should have a factor of d:

MPA 2017-04-30

$$iL_2' = d(\mathcal{P}' - P)V\frac{\partial}{\partial p_{\varepsilon}}.$$

p145 In the equations, $T_{\alpha\beta} \to T_{\alpha\beta}^{ab}$ and $\left|\mathbf{p}_{\mu^a}\right|^2/m_{\mu^a} \to \left|\mathbf{p}_{\mu^a}\right|^2/2m_{\mu^a}$.

MPA 2019-08-14

Chapter 4

p162 In the second part of eqn (4.34), defining the terms $V_m^{(12)}$ and $V_m^{(6)}$, the negative sign is wrong: $-V_m^{(6)} \to +V_m^{(6)}$, giving

$$\mathcal{V}_{m} = 4\epsilon \sum_{i} \sum_{j>i} \left(\frac{\sigma}{L_{m} s_{ij}^{m}} \right)^{12} - 4\epsilon \sum_{i} \sum_{j>i} \left(\frac{\sigma}{L_{m} s_{ij}^{m}} \right)^{6}$$
$$= \mathcal{V}_{m}^{(12)} + \mathcal{V}_{m}^{(6)}.$$

Chapter 6

p218 ℓ –4 '(see Fig. 5.6(b))' \rightarrow '(see Fig. 6.2(b))'. **p222** Equation (6.16) has the wrong sign:

MPA

2019-08-15

MPA

2019-08-16

MPA

2017-04-19 snafumeander

2019-01-24

J Dürholt

2018-04-13

B Vorselaars

2023-02-11

$$(\mathbf{f}_{ij})_{\alpha} = q_i \widehat{T}_{\alpha\beta} \mu_{j\beta} - q_j \widehat{T}_{\alpha\beta} \mu_{i\beta}.$$

p229 ℓ 8 'charges densities' \rightarrow 'charge densities'.

Also, in eqn (6.43) there is a superfluous right parenthesis in the denominator, should be

$$b(k_x) = \frac{\exp(\mathrm{i}(P-1)k_x\ell)}{\sum_{q=0}^{P-2} \exp(\mathrm{i}k_x\ell q) M_P(q+1)}.$$

p251 In eqn (6.106) the factor V should be 1/V:

 $V_{\text{correction}}^{qq} = \frac{2\pi}{V} \left(\sum_{i} q_i z_i \right)^2$

Chapter 9

p323 ℓ 5 The sentence beginning 'SMC' should read 'Asymptotically, the rejection rate of both sMC, and FB with $\lambda = \frac{1}{2}$, approaches zero, proportional to the third power of the typical step size (see section 12.3 and e.g. Gupta et al., 1990; Vorselaars, 2023).'

and e.g. Gupta et al., 1990; Vorselaars, 2023).

p333 ℓ 14 '(see Section 4.5)' \rightarrow '(see Section 4.4)', ℓ -2 '(eqn (4.41))' \rightarrow '(eqn (4.42))'.

p337 ℓ 21 'liquid-vapour' \rightarrow 'liquid-vapour'.

MPA

2019-08-15

Chapter 10

p344 In eqn (10.2b) $\int_{r \in A} \to \int_{r \in B}$.

Chapter 11

	MPA
p360 ℓ -7 'eqn (2.153)' \rightarrow 'eqn (2.159)'.	2019-08-13
p362 ℓ 6 'Fig. 9.4' \rightarrow 'Fig. 1.15(b)'.	MPA
	2019-07-30
p379 ℓ –16 'Chapter 9' \rightarrow 'Chapter 3'.	MPA
	2019-07-30

Chapter 12

p388 ℓ –5 Before the sentence starting 'A sample...', insert 'Typically, the rejection rate for a single-step нмс move is proportional to δt^3 at small δt (Gupta et al., 1990).'.

B Vorselaars

Chapter 13

p420
$$\ell$$
 -5 'described by eqn (1.36)' \rightarrow 'described by eqn (1.20)'.MPA
2019-08-10
MPA
2019-08-01**p443** ℓ -12 'described in Section 13.4' \rightarrow 'described in Section 13.2'.MPA
2019-08-01**p444** ℓ 9 'described in Section 13.4' \rightarrow 'described in Section 13.2'.MPA
2019-08-01

Appendix D

p502 ℓ –5 'eqns (D.1a) and (D.2b)' \rightarrow 'eqns (D.1a) and (D.1b)'. **p505** ℓ –5 'integral of eqn (D.14a)' \rightarrow 'integral of eqn (D.14b)'.

MPA

MPA

2019-08-19

Appendix E

Bibliography (additional items)

- Braun, E., Moosavi, S. M., and Smit, B. (2018). Anomalous effects of velocity rescaling algorithms: the flying ice cube effect revisited. *J. Chem. Theor. Comput.* **14**, 5262–5272.
- Gupta, S., Irbäc, A., Karsch, F., and Petersson, B. (1990). The acceptance probability in the hybrid Monte Carlo method. *Phys. Lett. B* **242**, 437–443.
- Peters, E. A. J. F., Goga, N., and Berendsen, H. J. C. (2014). Stochastic dynamics with correct sampling for constrained systems. *J. Chem. Theor. Comput.* **10**, 4208–4220.
- Petersen, C. F. and Searles, D. J. (2022). Equilibrium distribution functions: connection with microscopic dynamics. *Phys. Chem. Chem. Phys.* **24**, 6383–6392.
- Vorselaars, B. (2023). Efficient Langevin and Monte Carlo sampling algorithms: the case of field-theoretic simulations. *J. Chem. Phys.* **158**, 114117.