# MULTI- COMPONENT DISTILLATION

## OBJECTIVES :

- · To perform multi-component distillation of methanol-ethanol-butanol in a laboratory-scale distillation column.
- · To radoulate minimum no. of trays (stages) via Fenske's Equation.

## THEORY:

DISTILLATION - method of separating components from a liquid niextwee based on the difference in boiling points of the individual components and the distribution of the components between a liquid and a the components between a liquid and a gas phase in the niexture.

The vaporisation process changes liquid to the vaporisation process changes liquid to questions state. At equilibrium, the eastes of questions state. At equilibrium, the sates of the two processes are the same. Pressure the two processes are the same. Pressure exerted by the vapor at the equilibrium exerted by the vapor at the equilibrium that is called the NAPOR PRESSURE of the liquid.

The following methods can be used to calculate vapor pressure:

a) CLAUSIS - CLAPEYRON EQ.N.
$$ln\left(\frac{P^2}{P^2}\right) = \frac{\lambda}{R}\left(\frac{1}{T_1} - \frac{1}{T_1}\right)$$

A: molar latent heat of vaporization

b) ANTOINE EQ.N.
$$ln(P^{\vee}) = A - \frac{B}{T+C}$$

RELATIVE VOLATILITY is the measure of difference in volatility between componente, & hence, their boiling points.



VAPOR- LIQUID EQUILIBRIUM PLOT

Replaix Ralio = ( Flow returned on regent (R) Flow of stop product siemoved)

For Quantitative Analysis, Gas chromatography is performed. It analyses different components in a sample. Gas chromatography (GC) is an analytical method withing a gas chromatograph. Two major relevant constituents include:

- @ Thermal Conductivity Detector (TCD)
- (FID) Flame Jonization Detector (FID) FID is a scientific instrument that measures analytes in a gas stream, and is used as a detector for GC.



#### OBSERVATIONS :

Area: mv \* min (under curve)

# Observation Tables.

### 1. TOTAL REFUX:

Temp. at top of column (Tit) = 63.3°C
Temp. at bottom (Tib) = 76.6°C

|            | wt. of CH | Area  | Area<br>GH6 | Area<br>CuH10 | Aneg  |
|------------|-----------|-------|-------------|---------------|-------|
| Distillate | 5.008     | 10.54 | 15.73       | 0.15          | 75.95 |
| Bottoms    | 4.997     | 9.00  | 10.25       | 16.71         | 62.77 |

2. R = 1.9:

Temp. at lop of column (T26) = 64.8°C Temp. at bottom (T26) = 79.4°C

|            | 1      | ١,    |       |        |       |
|------------|--------|-------|-------|--------|-------|
|            | rut of | trea  | trea  | Area   | dreg  |
|            | CH     | CHu   | C2H6  | Certio | C1-1  |
| Distillate | 5.038  | 36.90 | 2.31  | 0.18   | 42.34 |
| Bottoms    | 5.025  | प.37  | 25.72 | 16.65  | 64.11 |

R=1:  
Temp. at top of column 
$$(T_{3t}) = 65.7^{\circ}$$
  
Temp. at bollown  $(T_{3b}) = 82.3^{\circ}$ C

o Distillate = 250 ml

|            | wt. of<br>CH | area<br>CH4 | ourca<br>O2H6 | area<br>CyHo | area<br>CH |
|------------|--------------|-------------|---------------|--------------|------------|
| Dissillate | 4.996        | 22.15       | 11.54         | 0.29         | 63.58      |
| Bottoms    | 5.023        | 5.15        | 11.28         | 18:44        | 65.41      |

o Distillate = 500 ml

|            | nut of | area<br>CHy | area<br>ezHe | area<br>CyHio | ch    |
|------------|--------|-------------|--------------|---------------|-------|
| Distillate | 5.001  | 23.43       | 25.58        | 0.12          | 61.85 |
| Bottoms    | 5.000  | 2.42        | 13.65        | 20.13         | ₹2·33 |

<u>Initial</u> (Feed) Composition: C4H10 C2 H6 CH4 0.75 weights 0.75 1.5 Mass/Molar Mass. Moles (M)= 34.04 g/mol Mo (CHy) Mo (C2H6) = 46.07 9/mol Mo ( CuH10) = 74.13 g/mol. CyHo C2H6 CH4 10.12 16.28 46.82 Moles (mol) MCHy + MC2H6 + MC4HW Total Moles = 73.22 mol (approx.) moles of component (Mi) Mol. fraction = total moles (n) Cy Hio 9H6 CHy 0.139 0.222 0.639 mol. praction

where 
$$M = 1.293$$
,  $1.4527$ ,  $1.0115$   
 $10 = 0.1829$ ,  $0.0604$ ,  $0.016$ 

## CALCULATIONS -

| 0 101712 | 0 | TOTAL | REFLUX: | DISTILLATE |
|----------|---|-------|---------|------------|
|----------|---|-------|---------|------------|

| 0 101/10 |               |                 |        |                  |  |
|----------|---------------|-----------------|--------|------------------|--|
|          | Area<br>Ratio | weight<br>Ratio | weight | Mol.<br>fraction |  |
| Methanol | 0.14          | 0.36            | 1.81   | 0.61             |  |
| Ethanol  | 0.18          | 0.32            | 1.58   | 0.37             |  |
| Butanol  | 0.00          | 0-02            | 0.09   | 0.01             |  |

### BOTTOMS

|          | Area<br>Ratio | nuto<br>Ralio | weight | Mole<br>fraction |
|----------|---------------|---------------|--------|------------------|
| Methanol | 0.14          | 0.37          | 1.84   | 0.51             |
| Ethanol  | 0.18          | 0.33          | 1.63   | 0.32             |
| Butanol  | 0.27          | 0.29          | 1,43   | 0.17             |

## · R = 1.9:

### DISTILLATE

|          | Area .<br>Ratio | Weight<br>Ratio | Weight | Mole<br>Jraction |
|----------|-----------------|-----------------|--------|------------------|
| Methanol | 0.87            | 1.31            | 6.60   | 0.71             |
| Ethanol  | 0.49            | 0.77            | 3.86   | 0.29             |
| Butanol  | 0.00            | 0.02            | 0.10   | 0.005            |

#### BOTTOMS

|          | Area<br>Ratio | Weigh<br>Ratio | Weight | Mole fraction |
|----------|---------------|----------------|--------|---------------|
| Methanol | 0-11          | 0.33           | 1.87   | 6.49          |
| Ethanol  | 0.19          | 0.33           | 1.66   | 0.34          |
| Butanol  | 0.26          | 0.28           | 1.40   | 0.18          |

R=1:

250 ml

DISTILLATE

|          | Area<br>Ratio | Wt.<br>Ratio | Weight | Mole<br>Praction |
|----------|---------------|--------------|--------|------------------|
| Methanol | 0.35          | 0.63         | 3.16   | 0-70             |
| Ethanol  | 0.22          | 0.38         | 1.90   | 0.29             |
| Butanos  | 0.00          | 0.02         | 0.10   | 0.01             |
|          |               | ВЛТ          | OMS    |                  |
| Methanol | 0.08          | 0.28         | 1.43   | 0.45             |
| Ethanol  | 0.17          | 0.30         | 1.53   | 0.34             |
| Butanol  | 0.28          | 0.30         | 1.51   | 0.21             |

| 500 ml    |               | DISTIL       | LATE   |               |  |
|-----------|---------------|--------------|--------|---------------|--|
|           | Irea<br>Ratio | wt.<br>Ratio | Weight | Mole fraction |  |
| Methanol  | 0.38          | 0.67         | 3.36   | 0.70          |  |
| Effaction | 0.24          | 0.40         | 2.02   | 0.29          |  |
| Butanol   | 0.00          | 0.02         | 0.09   | 0.01          |  |

#### BOTTOMS

|          | Area<br>Ratio | Wt.<br>Ratio | weight | Mole fractions |
|----------|---------------|--------------|--------|----------------|
| Methanol | 0.03          | 0.23         | 1.13   | 0.48           |
| Ellranol | 0.07          | 0.16         | 0.82   | 0.24           |
| Butanol  | 0.28          | 0.30         | 1.49   | 0.27           |