GENERIC CHARACTER SHEAVES ON DISCONNECTED GROUPS AND CHARACTER VALUES

G. Lusztig

Introduction

The theory of character sheaves [L3] on a reductive group G over an algebraically closed field and the theory of irreducible characters of G over a finite field are two parallel theories; the first one is geometric (involving intersection cohomology complexes on G), the second one involves functions on the group of rational points of G. In the case where G is connected, a bridge between the two theories was constructed in [L1] and strengthened in [L2], [S]. In this paper we begin the construction of the analogous bridge in the general case, extending the method of [L1]. Here we restrict ourselves to character sheaves which are "generic" (in particular their support is a full connected component of G) and show how such character sheaves are related to characters of representations (see Theorem 1.2).

Contents

- 1. Statement of the Theorem.
- 2. Constructing representations of G^F .
- 3. Proof of Theorem 1.2.

1. Statement of the Theorem

1.1. Let \mathbf{k} be an algebraic closure of a finite field \mathbf{F}_q . Let G be a reductive algebraic group over \mathbf{k} with identity component G^0 such that G/G^0 is cyclic, generated by a fixed connected component D. We assume that G has a fixed \mathbf{F}_q -rational structure with Frobenius map $F:G\to G$ such that F(D)=D. Let I be a prime number invertible in I be an algebraic closure of the I-adic numbers. All group representations are assumed to be finite dimensional over I0. We say "local system" instead of "I0-local system".

Let \mathcal{B} be the variety of Borel subgroups of G^0 . Now $F: G \to G$ induces a morphism $\mathcal{B} \to \mathcal{B}$ denoted again by F. We fix $B^* \in \mathcal{B}$ and a maximal torus T of B^* such that $F(B^*) = B^*$, F(T) = T. Let U^* be the unipotent radical of B^* . Let

Supported in part by the National Science Foundation.

 NB^* (resp. NT) be the normalizer of B^* (resp. T) in G. Let $\tilde{T} = NT \cap NB^*$, a closed F-stable subgroup of G with identity component T. Let $\tilde{T}_D = \tilde{T} \cap D$.

Let $\mathcal{N} = NT \cap G^0$. Let $W = \mathcal{N}/T$ be the Weyl group. Let $D: T \xrightarrow{\sim} T$, $\underline{D}: W \xrightarrow{\sim} W$ be the automorphisms induced by $Ad(d): \mathcal{N} \to \mathcal{N}$ where d is any element of T_D . Now $F: \mathcal{N} \to \mathcal{N}$ induces an automorphism of W denoted again by F. For $w \in W$ let [w] be the inverse image of w under the obvious map $\mathcal{N} \to W$ and let w be the automorphism $Ad(x): T \to T$ for any $x \in [w]$. For $w \in W$ let \mathcal{O}_w be the G^0 -orbit in $\mathcal{B} \times \mathcal{B}$ (G^0 acting by simultaneous conjugation on both factors) that contains (B^*, xB^*x^{-1}) for some/any $x \in [w]$. Define the "length function" $l: W \to \mathbf{N}$ by $l(w) = \dim \mathcal{O}_w - \dim \mathcal{B}$. For any $y \in G^0$ we define $k(y) \in \mathcal{N}$ by $y \in U^*k(y)U^*$. For $y \in G^0, \tau \in \tilde{T}$ we have $k(\tau y \tau^{-1}) = \tau k(y)\tau^{-1}$ and F(k(y)) = k(F(y)). For $x \in G^0$ we define $F_x : G \to G$ by $F_x(g) = xF(g)x^{-1}$; this is the Frobenius map for an \mathbf{F}_q -rational structure on G. (Indeed if $y \in G^0$ is such that $x = y^{-1}F(y)$, then $Ad(y): G \xrightarrow{\sim} G$ carries F_x to F.) If $w \in W$ satisfies $\underline{D}(w) = w$ and $x \in [w]$ then T, \tilde{T} are F_x -stable; thus F_x is the Frobenius map for an \mathbf{F}_q -rational structure on \tilde{T} whose group of rational points is \tilde{T}^{F_x} . Since $\tilde{T}_D^{F_x}$ is the set of rational points of \tilde{T}_D (a homogeneous T-space under left translation) for the rational structure defined by $F_x: \tilde{T}_D \to \tilde{T}_D$, we have $\tilde{T}_D^{F_x} \neq \emptyset$.

Let
$$Z_{\emptyset} = \{(B_0, g) \in \mathcal{B} \times D; gB_0g^{-1} = B_0\}$$
. Let $d \in \tilde{T}_D$. We set

$$\dot{Z}_{\emptyset,d} = \{ (h_0 U^*, g) \in (G^0/U^*) \times D; h_0^{-1} g h_0 d^{-1} \in B^* \}.$$

Define $a_{\emptyset}: \dot{Z}_{\emptyset,d} \to Z_{\emptyset}$ by $(h_0U^*,g) \mapsto (h_0B^*h_0^{-1},g)$. Now a_{\emptyset} is a principal T-bundle where T acts (freely) on $\dot{Z}_{\emptyset,d}$ by $t_0: (h_0U^*,g) \mapsto (h_0t_0^{-1},g)$. Define $p_{\emptyset}: Z_{\emptyset} \to D$ by $(B_0,g) \mapsto g$. We define $b_{\emptyset}: \dot{Z}_{\emptyset,d} \to T$ by $(h_0U^*,g) \mapsto k(h_0^{-1}gh_0d^{-1})$. Note that b_{\emptyset} commutes with the T-actions where T acts on T by

- (a) $t_0: t \mapsto t_0 t \underline{D}(t_0^{-1}).$
- Let \mathcal{L} be a local system of rank 1 on T such that
 - (i) $\mathcal{L}^{\otimes n} \cong \mathbf{Q}_l$ for some $n \geq 1$ invertible in \mathbf{k} ;
 - (ii) $\underline{D}^*\mathcal{L} \cong \mathcal{L}$;

From (i),(ii) we see (using [L3, 28.2(a)]) that \mathcal{L} is equivariant for the T-action (a) on T. Hence $b_{\emptyset}^*\mathcal{L}$ is a T-equivariant local system on $\dot{Z}_{\emptyset,d}$. Since a_{\emptyset} is a principal T-bundle there is a well defined local system $\tilde{\mathcal{L}}_{\emptyset}$ on Z_{\emptyset} such that $a_{\emptyset}^*\tilde{\mathcal{L}}_{\emptyset} = b_{\emptyset}^*\mathcal{L}$. Note that the isomorphism class of $\tilde{\mathcal{L}}_{\emptyset}$ is independent of the choice of d. Assume in addition that:

- (iii) $\{w \in W; \underline{D}(w) = w, \underline{w}^* \mathcal{L} \cong \mathcal{L}\} = \{1\}.$ We show:
- (b) $p_{\emptyset!}\tilde{\mathcal{L}}_{\emptyset}$ is an irreducible intersection cohomology complex on D. We identify Z_{\emptyset} with the variety $X = \{(g, xB^*) \in G \times G^0/B^*; x^{-1}gx \in NB^*\}$ (as in [L3, I, 5.4] with $P = B^*, L = T, S = \tilde{T}_D$) by $(g, xB^*) \leftrightarrow (xB^*x^{-1}, g)$. Then $\tilde{\mathcal{L}}_{\emptyset}$ becomes the local system $\bar{\mathcal{E}}$ on X defined as in [L3, I, 5.6] in terms of the local system $\mathcal{E} = j^*\mathcal{L}$ on \tilde{T}_D where $j: \tilde{T}_D \to T$ is $y \mapsto d^{-1}y$. (Note that \mathcal{E} is equivariant

for the conjugation action of T on \tilde{T}_D .) In our case we have $\bar{\mathcal{E}} = IC(X, \bar{\mathcal{E}})$ since X is smooth. Hence from [L3, I, 5.7] we see that $p_{\emptyset!}\bar{\mathcal{E}}$ is an intersection cohomology complex on D corresponding to a semisimple local system on an open dense subset of D which, by the results in [L3, II, 7.10], is irreducible if and only if the following condition is satisfied: if $w \in W, x \in [w]$ satisfy $\mathrm{Ad}(x)(\tilde{T}_D) = \tilde{T}_D$ and $\mathrm{Ad}(x)^*\mathcal{E} \cong \mathcal{E}$, then w = 1. This is clearly equivalent to condition (iii). This proves (b).

From (b) and the definitions we see that $p_{\emptyset!}\tilde{\mathcal{L}}_{\emptyset}[\dim D]$ is a character sheaf on D in the sense of [L3, VI]. A character sheaf on D of this form is said to be *generic*. We can state the following result.

Theorem 1.2. Let A be a generic character sheaf on D such that $F^*A \cong A$ where $F: D \to D$ is the restriction of $F: G \to G$. Let $\psi: F^*A \to A$ be an isomorphism. Define $\chi_{\psi}: D^F \to \bar{\mathbf{Q}}_l$ by $g \mapsto \sum_{i \in \mathbf{Z}} (-1)^i \mathrm{tr}(\psi, \mathcal{H}_g^i(A))$ where \mathcal{H}^i is the i-th cohomology sheaf and \mathcal{H}_g^i is its stalk at g. There exists a G^F -module V and a scalar $\lambda \in \bar{\mathbf{Q}}_l^*$ such that $\chi_{\psi}(g) = \lambda \mathrm{tr}(g, V)$ for all $g \in D^F$.

The proof is given in §3. We now make some preliminary observations. In the setup of 1.1 we have $A = p_{\emptyset!} \tilde{\mathcal{L}}_{\emptyset}[\dim D]$ where \mathcal{L} satisfies 1.1(i),(ii),(iii) and $F^*(p_{\emptyset!}\tilde{\mathcal{L}}_{\emptyset}) \cong p_{\emptyset!}\tilde{\mathcal{L}}_{\emptyset}$. Hence we have $p_{\emptyset!}\widetilde{F^*\mathcal{L}}_{\emptyset} \cong p_{\emptyset!}\tilde{\mathcal{L}}_{\emptyset}$. By a computation in [L3, IV, 21.18] we deduce that there exists $w' \in W$ such that $\underline{D}(w') = w', \underline{w}'^*F^*\mathcal{L} \cong \mathcal{L}$. Setting w = F(w') we see that

(a)
$$\underline{D}(w) = w, F^*\underline{w}^*\mathcal{L} \cong \mathcal{L}.$$

1.3. Let $\mathbf{w} = (w_1, w_2, \dots, w_r)$ be a sequence in W. Let $l_{\mathbf{w}} = l(w_1) + l(w_2) + \dots + l(w_r)$. Let

$$Z_{\mathbf{w}} = \{(B_0, B_1, \dots, B_r, g) \in \mathcal{B}^{r+1} \times D; gB_0g^{-1} = B_r, (B_{i-1}, B_i) \in \mathcal{O}_{w_i} (i \in [1, r])\}.$$

This agrees with the definition in 1.1 when r = 0, that is $\mathbf{w} = \emptyset$. Let $d \in \tilde{T}_D$. We define $\dot{Z}_{\mathbf{w},d}$ as in 1.1 when r = 0 and by

$$\dot{Z}_{\mathbf{w},d} = \{ (h_0 U^*, h_1 B^*, \dots, h_{r-1} B^*, h_r U^*, g) \in
(G^0/U^*) \times (G^0/B^*) \times \dots \times (G^0/B^*) \times (G^0/U^*) \times D;
k(h_{i-1}^{-1} h_i) \in [w_i] (i \in [1, r]), h_r^{-1} g h_0 d^{-1} \in U^* \};$$

when $r \geq 1$. Define $a_{\mathbf{w}} : \dot{Z}_{\mathbf{w},d} \to Z_{\mathbf{w}}$ as in 1.1 when r = 0 and by

$$(h_0U^*, h_1B^*, \dots, h_{r-1}B^*, h_rU^*, g) \mapsto$$

 $(h_0B^*h_0^{-1}, h_1B^*h_1^{-1}, \dots, h_{r-1}B^*h_{r-1}, h_rB^*h_r^{-1}, g),$

when $r \geq 1$. Note that $a_{\mathbf{w}}$ is a principal T-bundle where T acts (freely) on $\dot{Z}_{\mathbf{w},d}$ as in 1.1 when r = 0 and by

$$t_0: (h_0U^*, h_1B^*, \dots, h_{r-1}B^*, h_rU^*, g) \mapsto (h_0t_0^{-1}U^*, h_1B^*, \dots, h_{r-1}B^*, h_rdt_0^{-1}d^{-1}U^*, g)$$

when $r \geq 1$. Define $p_{\mathbf{w}}: Z_{\mathbf{w}} \to D$ by $(B_0, B_1, \dots, B_r, g) \mapsto g$.

In the remainder of this subsection we assume that $w_1w_2...w_r = 1$; this holds automatically when r = 0. We define $b_{\mathbf{w}} : \dot{Z}_{\mathbf{w},d} \to T$ as in 1.1 when r = 0 and by

$$(h_0U^*, h_1B^*, \dots, h_{r-1}B^*, h_rU^*, g) \mapsto k(h_0^{-1}h_1)k(h_1^{-1}h_2)\dots k(h_{r-1}^{-1}h_r)$$

when $r \geq 1$. Note that $b_{\mathbf{w}}$ commutes with the T-actions where T acts on T as in 1.1(a).

Let \mathcal{L} be a local system of rank 1 on T such that 1.1(i),(ii) hold. As in 1.1, \mathcal{L} is equivariant for the T-action 1.1(a) on T. Hence $b_{\mathbf{w}}^*\mathcal{L}$ is a T-equivariant local system on $\dot{Z}_{\mathbf{w},d}$. Since $a_{\mathbf{w}}$ is a principal T-bundle there is a well defined local system $\tilde{\mathcal{L}}_{\mathbf{w}}$ on $Z_{\mathbf{w}}$ such that $a_{\mathbf{w}}^*\tilde{\mathcal{L}}_{\mathbf{w}} = b_{\mathbf{w}}^*\mathcal{L}$.

Lemma 1.4. Assume that $w_1 w_2 \dots w_r = 1$ and that \mathcal{L} (as in 1.3) satisfies (i) $\check{\alpha}^* \mathcal{L} \not\cong \bar{\mathbf{Q}}_l$ for any coroot $\check{\alpha} : \mathbf{k}^* \to T$. Then $p_{\mathbf{w}!} \tilde{\mathcal{L}}_{\mathbf{w}}[l_{\mathbf{w}}](l_{\mathbf{w}}/2) \cong p_{\emptyset!} \tilde{\mathcal{L}}_{\emptyset}$. (Note that $l_{\mathbf{w}}$ is even.)

Assume first that for some $i \in [1, r]$ we have $w_i = w_i'w_i''$ where w_i', w_i'' in W satisfy $l(w_i'w_i'') = l(w_i') + l(w_i'')$. Let

$$\mathbf{w}' = (w_1, w_2, \dots, w_{i-1}, w_i', w_i'', w_{i+1}, \dots, w_n).$$

The map $(B_0, B_1, \ldots, B_{r+1}, g) \mapsto (B_0, B_1, B_{i-1}, B_{i+1}, \ldots, B_{r+1}, g)$ defines an isomorphism $Z_{\mathbf{w}'} \to Z_{\mathbf{w}}$ compatible with the maps $p_{\mathbf{w}'}, p_{\mathbf{w}}$ and with the local systems $\tilde{\mathcal{L}}_{\mathbf{w}'}, \tilde{\mathcal{L}}_{\mathbf{w}}$. Since $l_{\mathbf{w}'} = l_{\mathbf{w}}$ we have

(a) $p_{\mathbf{w}!} \tilde{\mathcal{L}}_{\mathbf{w}}[l_{\mathbf{w}}](l_{\mathbf{w}}/2) \cong p_{\mathbf{w}'!} \tilde{\mathcal{L}}_{\mathbf{w}'}[l_{\mathbf{w}'}](l_{\mathbf{w}'}/2).$

Using (a) repeatedly we can assume that $l(w_i) = 1$ for all $i \in [1, r]$. We will prove the result in this case by induction on r. Note that r is even. When r = 0 the result is obvious. We now assume that $r \geq 2$. Since $w_1w_2 \dots w_r = 1$, we can find $j \in [1, r - 1]$ such that $l(w_1w_2 \dots w_j) = j$, $l(w_1w_2 \dots w_{j+1}) = j - 1$. We can find a sequence $\mathbf{w}' = (w'_1, w'_2, \dots, w'_r)$ in W such that $l(w'_i) = 1$ for all $i \in [1, r]$, $w'_1w'_2 \dots w'_j = w_1w_2 \dots w_j$, $w'_j = w'_{j+1}$, $w'_i = w_i$ for $i \in [j+1, r]$. Let

 $\mathbf{u} = (w_1 w_2 \dots w_j, w_{j+1}, \dots, w_r) = (w'_1 w'_2 \dots w'_j, w'_{j+1}, \dots, w'_r).$

Using (a) repeatedly we see that

$$p_{\mathbf{w}!}\tilde{\mathcal{L}}_{\mathbf{w}}[l_{\mathbf{w}}](l_{\mathbf{w}}/2) \cong p_{\mathbf{u}!}\tilde{\mathcal{L}}_{\mathbf{u}}[l_{\mathbf{u}}](l_{\mathbf{u}}/2) \cong p_{\mathbf{w}'!}\tilde{\mathcal{L}}_{\mathbf{w}'}[l_{\mathbf{w}'}](l_{\mathbf{w}'}/2).$$

Replacing \mathbf{w} by \mathbf{w}' we see that we may assume in addition that $w_j = w_{j+1}$ for some $j \in [1, r-1]$. We have a partition $Z_{\mathbf{w}} = Z'_{\mathbf{w}} \cup Z''_{\mathbf{w}}$ where $Z'_{\mathbf{w}}$ (resp. $Z''_{\mathbf{w}}$) is defined by the condition $B_{j-1} = B_{j+1}$ (resp. $B_{j-1} \neq B_{j+1}$). Let $\mathbf{w}' = (w_1, w, \ldots, w_{j-1}, w_{j+2}, \ldots, w_r)$, $\mathbf{w}'' = (w_1, w, \ldots, w_{j-1}, w_{j+1}, \ldots, w_r)$. Define $c: Z'_{\mathbf{w}} \to Z_{\mathbf{w}'}$ by

$$(B_0, B_1, \ldots, B_r, g) \mapsto (B_0, B_1, \ldots, B_{j-1}, B_{j+2}, \ldots, B_r, g).$$

This is an affine line bundle and $\tilde{\mathcal{L}}_{\mathbf{w}}|_{Z'_{\mathbf{w}}} = c^* \tilde{\mathcal{L}}_{\mathbf{w}'}$. Let $p'_{\mathbf{w}}$ be the restriction of $p_{\mathbf{w}}$ to $Z'_{\mathbf{w}}$. We have $p'_{\mathbf{w}} = p_{\mathbf{w}'}c$. Since the induction hypothesis applies to \mathbf{w}' we have

$$p'_{\mathbf{w}!}(\tilde{\mathcal{L}}_{\mathbf{w}}|_{Z'_{\mathbf{w}}})[l_{\mathbf{w}}](l_{\mathbf{w}}/2) = p_{\mathbf{w}'!}c_!c^*\tilde{\mathcal{L}}_{\mathbf{w}'}[l_{\mathbf{w}}](l_{\mathbf{w}}/2)$$
(b)
$$= p_{\mathbf{w}'!}\tilde{\mathcal{L}}_{\mathbf{w}'}[-2](-1)[l_{\mathbf{w}}](l_{\mathbf{w}}/2) = p_{\mathbf{w}'!}\tilde{\mathcal{L}}_{\mathbf{w}'}[l_{\mathbf{w}'}](l_{\mathbf{w}'}/2) = p_{\emptyset!}\tilde{\mathcal{L}}_{\emptyset}.$$

Define $e: Z''_{\mathbf{w}} \to Z_{\mathbf{w}''}$ by

$$(B_0, B_1, \ldots, B_r, g) \mapsto (B_0, B_1, \ldots, B_{j-1}, B_{j+1}, \ldots, B_r, g).$$

Let $p''_{\mathbf{w}}$ be the restriction of $p_{\mathbf{w}}$ to $Z''_{\mathbf{w}}$. We have $p''_{\mathbf{w}} = p_{\mathbf{w}''}e$. We show that $p''_{\mathbf{w}!}(\tilde{\mathcal{L}}_{\mathbf{w}}|Z''_{\mathbf{w}}) = 0$. It is enough to show that

(c)
$$p_{\mathbf{w}''!}e_!(\tilde{\mathcal{L}}_{\mathbf{w}}|_{Z''_{\mathbf{w}}}) = 0.$$

Hence it is enough to show that $e_!(\tilde{\mathcal{L}}_{\mathbf{w}}|_{Z''_{\mathbf{w}}}) = 0$. It is also enough to show that, if E is a fibre of e, then $H_c^i(E, \tilde{\mathcal{L}}_{\mathbf{w}}|_E) = 0$ for any i. As in the proof of [L3, VI, 28.10] we may identify $E = \mathbf{k}^*$ in such a way that $\tilde{\mathcal{L}}_{\mathbf{w}}|_E$ becomes $\check{\alpha}^*(\mathcal{L})$ for some coroot $\check{\alpha}: \mathbf{k}^* \to T$. We then use that $H_c^i(\mathbf{k}^*, \check{\alpha}^*\mathcal{L}) = 0$ which follows from $\check{\alpha}^*\mathcal{L} \ncong \bar{\mathbf{Q}}_l$. Using (c) and the exact triangle

$$(p_{\mathbf{w}''!}e_!(\tilde{\mathcal{L}}_{\mathbf{w}}|_{Z''_{\mathbf{w}}}), p_{\mathbf{w}!}\tilde{\mathcal{L}}_{\mathbf{w}}, p'_{\mathbf{w}!}(\tilde{\mathcal{L}}_{\mathbf{w}}|_{Z'_{\mathbf{w}}}))$$

we see that

$$p_{\mathbf{w}!}\tilde{\mathcal{L}}_{\mathbf{w}}[l_{\mathbf{w}}](l_{\mathbf{w}}/2) = p'_{\mathbf{w}!}(\tilde{\mathcal{L}}_{\mathbf{w}}|_{Z'_{\mathbf{w}}})[l_{\mathbf{w}}])(l_{\mathbf{w}}/2) = p_{\emptyset!}\tilde{\mathcal{L}}_{\emptyset}$$

(the last equality follows from (b)). The lemma is proved.

Lemma 1.5. Assume that \mathcal{L} (as in 1.3) satisfies 1.1(iii). Then \mathcal{L} satisfies 1.4(i).

Let $R_{\mathcal{L}}$ be the set of roots $\alpha: T \to \mathbf{k}^*$ such that the corresponding coroot $\check{\alpha}$ satisfies $\check{\alpha}^*\mathcal{L} \cong \bar{\mathbf{Q}}_l$. Let $W_{\mathcal{L}}$ be the subgroup of W generated by the reflections with respect to the various $\alpha \in R_{\mathcal{L}}$. Since $\underline{D}^*\mathcal{L} \cong \mathcal{L}$ we have $\underline{D}(W_{\mathcal{L}}) = W_{\mathcal{L}}$. Assume that 1.4(i) does not hold. Then $R_{\mathcal{L}} \neq \emptyset$ and $W_{\mathcal{L}} \neq \{1\}$. By [DL, 5.17] the fixed point set of $\underline{D}: W_{\mathcal{L}} \to W_{\mathcal{L}}$ is $\neq \{1\}$. Let $w \in W_{\mathcal{L}} - \{1\}$ be such that $\underline{D}(d)w = w$. Since $w \in W_{\mathcal{L}}$ we have $\underline{w}^*\mathcal{L} \cong \mathcal{L}$ (see [L3, VI, 28.3(b)]). Thus 1.1(iii) does not hold. The lemma is proved.

2. Constructing representations of G^F

2.1. In this section we construct some representations of G^F using the method of [DL]. See [M],[DM] for other results in this direction.

Let \mathcal{L} be a local system of rank 1 on T such that 1.1(i) holds. For any $t \in T$ let \mathcal{L}_t be the stalk of \mathcal{L} at t. Assume that we are given $w \in W$ and $x \in [w]$ such that

(i) $F_x^* \mathcal{L} \cong \mathcal{L}$;

 $(F_x: T \to T \text{ as in 1.1})$. Let $\phi: F_x^*\mathcal{L} \to \mathcal{L}$ be the unique isomorphism of local systems on T which induces the identity map on \mathcal{L}_1 . For $t \in T$, ϕ induces an isomorphism $\mathcal{L}_{F_x(t)} \xrightarrow{\sim} \mathcal{L}_t$. When $t \in T^{F_x}$ this is an automorphism of the 1-dimensional vector space \mathcal{L}_t given by multiplication by $\theta(t) \in \bar{\mathbf{Q}}_l^*$. It is well known that $t \mapsto \theta(t)$ is a group homomorphism $T^{F_x} \to \bar{\mathbf{Q}}_l^*$.

Following [DL] we define

$$Y = \{hU^* \in G^0/U^*; h^{-1}F(h) \in U^*xU^*\}.$$

For $(g,t) \in G^{0F} \times T^{F_x}$ we define $e_{g,t}: Y \to Y$ by $hU^* \mapsto ght^{-1}U^*$. Note that $(g,t) \mapsto e_{g,t}$ is an action of $G^{0F} \times T^{F_x}$ on Y. Hence $G^{0F} \times T^{F_x}$ acts on $H_c^i(Y) := H_c^i(Y, \bar{\mathbf{Q}}_l)$ by $(g,\tau) \mapsto e_{g^{-1},\tau^{-1}}^*$. We set

$$H_c^i(Y)_{\theta} = \{ \xi \in H_c^i(Y); e_{1,t^{-1}}^* \xi = \theta(t)^{-1} \xi \text{ for all } t \in T^{F_x} \};$$

this is a $G^{0F} \times T^{F_x}$ -stable subspace of $H_c^i(Y)$.

For $g \in G^{0F}$ we define $\epsilon_g : H_c^i(Y)_\theta \to H_c^i(Y)_\theta$ by $\epsilon_g(\xi) = e_{g^{-1},1}^*$. This makes $H_c^i(Y)_\theta$ into a G^{0F} -module.

We can find an integer $r \geq 1$ such that

$$F^{r}(x) = x, \quad xF(x)...F^{r-1}(x) = 1.$$

Indeed we first find an integer $r_1 \geq 1$ such that $F^{r_1}(x) = x$ and then we find an integer $r_2 \geq 1$ such that $(xF(x) \dots F^{r_1-1}(x))^{r_2} = 1$. Then $r = r_1r_2$ has the required properties. Then $hU^* \mapsto F^r(h)U^*$ is a well defined map $Y \to Y$ denoted again by F^r . Also,

$$F^r = F_x^r : G \to G.$$

(We have $F_x^r(g) = (xF(x) \dots F^{r-1}(x))F^r(g)(xF(x) \dots F^{r-1}(x))^{-1} = F^r(g)$.) Hence F^r acts trivially on T^{F_x} . We see that $F^r: Y \to Y$ commutes with $e_{g,t}: Y \to Y$ for any $(g,t) \in G^{0F} \times T^{F_x}$. Hence $(F^r)^*: H_c^i(Y) \to H_c^i(Y)$ leaves stable the subspace $H_c^i(Y)_\theta$. Note that:

for any i, all eigenvalues of $(F^r)^*: H^i_c(Y) \to H^i_c(Y)$ are of the form root of 1 times $q^{nr/2}$ where $n \in \mathbf{Z}$.

(See [L1, 6.1(e)] and the references there.)

Replacing r by an integer multiple we may therefore assume that r satisfies in addition the following condition:

- (a) for any i, all eigenvalues of $(F^r)^*: H_c^i(Y) \to H_c^i(Y)$ are of the form $q^{nr/2}$ where $n \in \mathbf{Z}$.
- **2.2.** We preserve the setup of 2.1 and assume in addition that \mathcal{L} satisfies 1.4(i). Let $i_0 = 2 \dim U^* l(w)$. Note that
- (a) $H_c^i(Y)_\theta = 0$ for $i \neq i_0$; if $i = i_0$ then all eigenvalues of $(F^r)^* : H_c^i(Y)_\theta \to H_c^i(Y)_\theta$ are of the form $q^{ir/2}$.

For the first statement in (a) see [DL, 9.9] and the remarks in the proof of [L1, 8.15]. The second statement in (a) is deduced from 2.1(a) as in the proof of [L1, 6.6(c)].

- **2.3.** We preserve the setup of 2.1 and assume in addition that \mathcal{L} satisfies 1.1(ii) and that $w \in W$ satisfies $\underline{D}(w) = w$. From the definitions we see that $\underline{D}: T \to T$ commutes with $F_x: T \to T$ hence \underline{D} restricts to an automorphism of T^{F_x} and that
- (a) $\theta(\underline{D}(t)) = \theta(t)$ for any $t \in T^{F_x}$. We show:
- (b) there exists a homomorphism $\tilde{\theta}: \tilde{T}^{F_x} \to \bar{\mathbf{Q}}_l^*$ such that $\tilde{\theta}|_{T^{F_x}} = \theta$. Let $d \in \tilde{T}_D^{F_x}$. Let $n = |G/G^0| = |\tilde{T}^{F_x}/T^{F_x}|$. Then $t_0 := d^n \in T^{F_x}$. Let $c \in \bar{\mathbf{Q}}_l^*$ be such that $c^n = \theta(t_0)$. For any $t \in T^{F_x}$ and $j \in \mathbf{Z}$ we set $\tilde{\theta}(d^jt) = c^j\theta(t)$. This is well defined: if $d^jt = d^{j'}t'$ with $j, j' \in \mathbf{Z}$, $t, t' \in T^{F_x}$ then $j' = j + nj_0$, $j_0 \in \mathbf{Z}$ and $t' = t_0^{j_0}t$ so that $\theta(t') = c^{nj_0}\theta(t)$ and $c^j\theta(t) = c^{j'}\theta(t')$. We show that if $j, j' \in \mathbf{Z}$, $t, t' \in T^{F_x}$ then $\tilde{\theta}(d^jtd^{j'}t') = \tilde{\theta}(d^jt)\tilde{\theta}(d^{j'}t')$ that is $c^{j+j'}\theta(\underline{D}^{-j'}(t)t') = c^j\theta(t)c^{j'}\theta(t')$; this follows from (a). This proves (b).

Let $\Gamma = \{(g,\tau) \in G^F \times \tilde{T}^{F_x}; g\tau^{-1} \in G^0\}$, a subgroup of $G^F \times \tilde{T}^{F_x}$. For $(g,\tau) \in \Gamma$ we define $e_{g,\tau}: Y \to Y$ by $hU^* \mapsto gh\tau^{-1}U^*$. To see that this is well defined we assume that $h \in G^0$ satisfies $h^{-1}F(h) \in U^*xU^*$ and $(g,\tau) \in \Gamma$; we compute

$$(gh\tau^{-1})^{-1}F(gh\tau^{-1}) = \tau h^{-1}g^{-1}gF(h)F(\tau^{-1})$$

= $\tau h^{-1}F(h)F(\tau^{-1}) \in \tau U^*xU^*F(\tau^{-1}) = U^*\tau xF(\tau^{-1})U^* = U^*xU^*,$

since $\tau x F(\tau^{-1}) = x$ (that is $F_x(\tau) = \tau$). Note that $(g,\tau) \mapsto e_{g,\tau}$ is an action of Γ on Y (extending the action of $G^{0F} \times T^{F_x}$). Hence Γ acts on $H_c^i(Y)$ by $(g,\tau) \mapsto e_{g^{-1},\tau^{-1}}^*$. Note that $H_c^i(Y)_\theta$ is a Γ -stable subspace of $H_c^i(Y)$. This follows from the identity

$$e_{g^{-1},\tau^{-1}}e_{1,t^{-1}} = e_{1,\tau^{-1}t^{-1}\tau}e_{g^{-1},\tau^{-1}}$$

for $g \in G^F$, $\tau \in \tilde{T}^{F_x}$, $t \in T^{F_x}$ together with the identity $\theta(t) = \theta(\tau^{-1}t\tau)$ which is a consequence of (a).

For $g \in G^F$ we define $\epsilon_g : H_c^i(Y)_\theta \to H_c^i(Y)_\theta$ by

$$\epsilon_g(\xi) = \tilde{\theta}(\tau) e_{q^{-1},\tau^{-1}}^* \xi$$

for any $\xi \in H_c^i(Y)_\theta$ and any $\tau \in \tilde{T}^{F_x}$ such that $g\tau^{-1} \in G^0$. Assume that $\tau' \in \tilde{T}^{F_x}$ is another element such that $g\tau'^{-1} \in G^0$. Then $\tau' = \tau t$ with $t \in T^{F_x}$ and

$$\tilde{\theta}(\tau')e_{g^{-1},\tau'^{-1}}^*\xi = \tilde{\theta}(\tau)\theta(t)e_{g^{-1},\tau^{-1}}^*e_{1,t^{-1}}^*\xi = \tilde{\theta}(\tau)e_{g^{-1},\tau^{-1}}^*\xi$$

so that ϵ_g is well defined. For g, g' in G^F we choose τ, τ' in \tilde{T}^{F_x} such that $g\tau^{-1} \in G^0, g'\tau'^{-1} \in G^0$; we have

$$\epsilon_g \epsilon_{g'} \xi = \tilde{\theta}(\tau') \tilde{\theta}(\tau) e_{g^{-1}, \tau^{-1}}^* e_{g'^{-1}, \tau'^{-1}}^* \xi = \tilde{\theta}(\tau \tau') e_{(gg')^{-1}, (\tau \tau')^{-1}}^* \xi = \epsilon_{gg'} \xi.$$

We see that

 $g \mapsto \epsilon_g$ defines a G^F -module structure on $H_c^i(Y)_\theta$ extending the G^{0F} -module structure in 2.1.

(Note that this extension depends on the choice of θ .) We show:

(c) If $(g, \tau) \in \Gamma$ then $F^r e_{g,\tau} : Y \to Y$ is the Frobenius map of an \mathbf{F}_q -rational structure on Y.

Since $e_{g,t}$ is a part of a Γ -action, it has finite order. Since $F^r = F_x^r : G \to G$ (see 2.1), we see that $F^r : Y \to Y$ commutes with $e_{g,\tau} : Y \to Y$. Hence (c) holds.

2.4. We preserve the setup of 2.3 and assume in addition that \mathcal{L} satisfies 1.3(i). Let $i_0 = 2 \dim U^* - l(w)$. Using 2.2(a), 2.3(c) and Grothendieck's trace formula we see that for $(g, d) \in \Gamma$ we have

$$\begin{split} &(-1)^{l(w)}\tilde{\theta}(d)q^{i_0r/2}\mathrm{tr}(\epsilon_g,H_c^{i_0}(Y)_\theta)\\ &=\tilde{\theta}(d)\sum_i(-1)^i\mathrm{tr}((F^r)^*\epsilon_g,H_c^i(Y)_\theta)=\sum_i(-1)^i\mathrm{tr}((F^r)^*e_{g^{-1},d^{-1}}^*,H_c^i(Y)_\theta)\\ &=\sum_i(-1)^i|T^{F_x}|^{-1}\sum_{t\in T^{F_x}}\mathrm{tr}((F^r)^*e_{g^{-1},d^{-1}}^*e_{1,t^{-1}}^*,H_c^i(Y))\theta(t)\\ &=|T^{F_x}|^{-1}\sum_{t\in T^{F_x}}\sum_i(-1)^i\mathrm{tr}((F^r)^*e_{g^{-1},(dt)^{-1}}^*,H_c^i(Y))\theta(t)\\ &=|T^{F_x}|^{-1}\sum_{t\in T^{F_x}}|Y^{F^re_{g^{-1},(dt)^{-1}}}|\theta(t)\\ &=|T^{F_x}|^{-1}\sum_{t\in T^{F_x}}|\{hU^*\in (G^0/U^*);h^{-1}F(h)\in U^*xU^*,h^{-1}g^{-1}F^r(h)dt\in U^*\}|\theta(t). \end{split}$$

3. Proof of Theorem 1.2

3.1. Let A, ψ, χ_{ψ} be as in 1.2. Let \mathcal{L}, w be as in the end of 1.2. Let $x \in [w]$. From 1.2(a) we see that 2.1(i) holds. Let $r \geq 1$ be as in 2.1. Let

$$\mathbf{w} = (w, F(w), \dots, F^{r-1}(w)).$$

By the choice of r we have $wF(w) \dots F^{r-1}(w) = 1$. Define a morphism $\tilde{F}: Z_{\mathbf{w}} \to Z_{\mathbf{w}}$ by

$$\tilde{F}(B_0, B_1, \dots, B_r, g) = (F(g^{-1}B_{r-1}g), F(B_0), F(B_1), \dots, F(B_{r-1}), F(g)).$$

We show:

(a) Let $g \in D^F$ and let $\tilde{F}_g : p_{\mathbf{w}}^{-1}(g) \to p_{\mathbf{w}}^{-1}(g)$ be the restriction of $\tilde{F} : Z_{\mathbf{w}} \to Z_{\mathbf{w}}$. Then \tilde{F}_g is the Frobenius map of an \mathbf{F}_q -rational structure on $p_{\mathbf{w}}^{-1}(g)$. It is enough to note that the map $\mathcal{B}^{r+1} \to \mathcal{B}^{r+1}$ given by

$$(B_0, B_1, \dots, B_r) \mapsto (F(g^{-1}B_{r-1}g), F(B_0), F(B_1), \dots, F(B_{r-1}))$$

is the composition of the map

$$F': (B_0, B_1, \dots, B_r) \mapsto (F(B_0), F(B_1), \dots, F(B_r))$$

(the Frobenius map of an \mathbf{F}_q -rational structure on \mathcal{B}^{r+1}) with the automorphism

$$(B_0, B_1, \dots, B_r) \mapsto (g^{-1}B_{r-1}g, B_0, B_1, \dots, B_{r-1})$$

of \mathcal{B}^{r+1} which commutes with F' and has finite order (since q has finite order in

Let $d \in \tilde{T}_D^{F_x}$. Define a morphism $\tilde{F}' : \dot{Z}_{\mathbf{w},d} \to \dot{Z}_{\mathbf{w},d}$ by

$$\tilde{F}'(h_0U^*, h_1B^*, \dots, h_{r-1}B^*, h_rU^*, g) = (h_0'U^*, h_1'B^*, \dots, h_{r-1}'B^*, h_r'U^*, F(g))$$

where

$$h'_0 = F(g^{-1}h_{r-1}k(h_{r-1}^{-1}h_r))x^{-1}d, \quad h'_r = F(h_{r-1}k(h_{r-1}^{-1}h_r)x^{-1},$$

 $h'_i = F(h_{i-1}) \text{ for } i \in [1, r-1].$

This is well defined since

$$(F(h_{r-1}k(h_{r-1}^{-1}h_r)x^{-1})^{-1}F(g)F(g^{-1}h_{r-1}k(h_{r-1}^{-1}h_r))x^{-1})dd^{-1} = 1.$$

We show that the T-action on $\dot{Z}_{\mathbf{w},d}$ (see 1.3) satisfies $\tilde{F}'(t_0\tilde{x}) = F_x(t_0)\tilde{F}'(\tilde{x})$ for $t_0 \in T, \tilde{x} \in Z_{\mathbf{w},d}$. Let (h_i) be as above. We must show:

$$F(g^{-1}h_{r-1}k(h_{r-1}^{-1}h_rdt_0^{-1}d^{-1}))x^{-1}d = F(g^{-1}h_{r-1}k(h_{r-1}^{-1}h_r))x^{-1}dxF(t_0^{-1})x^{-1},$$

$$F(h_{r-1}k(h_{r-1}^{-1}h_rdt_0^{-1}d^{-1})x^{-1} = F(h_{r-1}k(h_{r-1}^{-1}h_r)x^{-1}dxF(t_0)^{-1}x^{-1}d^{-1},$$

which follow from $F(d) = x^{-1}dx$. Note that

(b)
$$a_{\mathbf{w}}\tilde{F}' = \tilde{F}a_{\mathbf{w}} : \dot{Z}_{\mathbf{w},d} \to Z_{\mathbf{w}}$$

We show:

(c)
$$|a_{\mathbf{w}}^{-1}(y)^{F'}| = |T^{F_x}| \text{ for any } y \in Z_{\mathbf{w}}^F.$$

(c) $|a_{\mathbf{w}}^{-1}(y)^{\tilde{F}'}| = |T^{F_x}|$ for any $y \in Z_{\mathbf{w}}^{\tilde{F}}$. Since $a_{\mathbf{w}}^{-1}(y)$ is a homogeneous T-space this follows from Lang's theorem applied to (T, F_x) .

We have

(d)
$$p_{\mathbf{w}}\tilde{F} = Fp_{\mathbf{w}} : Z_{\mathbf{w}} \to D.$$

3.2. We show:

(a)
$$b_{\mathbf{w}}\tilde{F}' = F_x b_{\mathbf{w}} : \dot{Z}_{\mathbf{w},d} \to T$$
.
Let $(h_0, h_1, \dots, h_r, g) \in (G^0)^{r+1} \times D$ be such that

$$(h_0U^*, h_1B^*, \dots, h_{r-1}B^*, h_rU^*, g) \in \dot{Z}_{\mathbf{w},d}.$$

G. LUSZTIG

Let $(h'_1, h'_2, \ldots, h'_r)$ be as in 3.1. We set

$$\mu = k(h_0^{-1}h_1)k(h_1^{-1}h_2)\dots k(h_{r-1}^{-1}h_r) \in T,$$

$$\mu' = k(h_0^{-1}h_1)k(h_1^{-1}h_2)\dots k(h_{r-2}^{-1}h_{r-1}) \in B^*F^{r-1}(x)^{-1}B^*$$

$$\tilde{\mu} = k(h_0'^{-1}h_1')k(h_1'^{-1}h_2')\dots k(h_{r-1}'^{-1}h_r') \in T$$

so that $\mu = \mu' k(h_{r-1}^{-1} h_r)$ and

$$\begin{split} \tilde{\mu} &= k(d^{-1}xF(k(h_{r-1}^{-1}h_r)^{-1}h_{r-1}^{-1}gh_0)) \\ &\times k(F(h_0^{-1}h_1))\dots k(F(h_{r-3}^{-1}h_{r-2}))k(F(h_{r-2}^{-1}h_{r-1}k(h_{r-1}^{-1}h_r))x^{-1}) \\ &= d^{-1}xF(k(h_{r-1}^{-1}h_r)^{-1})F(d)k(F(d^{-1})F(h_{r-1}^{-1}gh_0))F(\mu')F(k(h_{r-1}^{-1}h_r))x^{-1} \\ &= d^{-1}xF(d)F(\mu)x^{-1} = xF(\mu)x^{-1} = F_x(\mu), \end{split}$$

as required.

3.3. Let $\phi: F_x^*\mathcal{L} \xrightarrow{\sim} \mathcal{L}$, $\theta: T^{F_x} \to \bar{\mathbf{Q}}_l^*$ be as in 2.1. We shall denote by? the various isomorphisms induced by ϕ such as:

(a)
$$\tilde{F}'^*b_{\mathbf{w}}^*\mathcal{L} = b_{\mathbf{w}}^*F_x^*\mathcal{L} \xrightarrow{\sim} b_{\mathbf{w}}^*\mathcal{L}$$
 (see 3.2(a)),

(b)
$$\tilde{F}'^* a_{\mathbf{w}}^* \tilde{\mathcal{L}}_{\mathbf{w}} \xrightarrow{\sim} a_{\mathbf{w}}^* \tilde{\mathcal{L}}_{\mathbf{w}}$$
 (coming from (a)),
(c) $a_{\mathbf{w}}^* \tilde{F}^* \tilde{\mathcal{L}}_{\mathbf{w}} \xrightarrow{\sim} a_{\mathbf{w}}^* \tilde{\mathcal{L}}_{\mathbf{w}}$ (see (b) and 3.1(b)).

(c)
$$a_{\mathbf{w}}^* \tilde{F}^* \tilde{\mathcal{L}}_{\mathbf{w}} \xrightarrow{\sim} a_{\mathbf{w}}^* \tilde{\mathcal{L}}_{\mathbf{w}}$$
 (see (b) and 3.1(b))

(d)
$$\tilde{F}^* \tilde{\mathcal{L}}_{\mathbf{w}} \xrightarrow{\sim} \tilde{\mathcal{L}}_{\mathbf{w}}$$
 (coming from (c)),

(e)
$$p_{\mathbf{w}!}\tilde{F}^*\tilde{\mathcal{L}}_{\mathbf{w}} \xrightarrow{\sim} p_{\mathbf{w}!}\tilde{\mathcal{L}}_{\mathbf{w}}$$
 (coming from (d)),

(f)
$$F^*p_{\mathbf{w}!}\tilde{\mathcal{L}}_{\mathbf{w}} \xrightarrow{\sim} p_{\mathbf{w}!}\tilde{\mathcal{L}}_{\mathbf{w}}$$
 (coming from (e) and 3.1(d)).

(g)
$$F^*(p_{\mathbf{w}!}\tilde{\mathcal{L}}_{\mathbf{w}}[l_{\mathbf{w}}]) \xrightarrow{\sim} p_{\mathbf{w}!}\tilde{\mathcal{L}}_{\mathbf{w}}[l_{\mathbf{w}}]$$
 (coming from (f)).

3.4. For any $q \in D^F$ we compute

$$\sum_{i} (-1)^{i} \operatorname{tr}(?, \mathcal{H}_{g}^{i}(p_{\mathbf{w}!} \tilde{\mathcal{L}}_{\mathbf{w}})) = \sum_{i} (-1)^{i} \operatorname{tr}(?, H_{c}^{i}(p_{\mathbf{w}}^{-1}(g), \tilde{\mathcal{L}}_{\mathbf{w}}))$$

$$= \sum_{y \in p_{\mathbf{w}}^{-1}(g); \tilde{F}(y) = y} \operatorname{tr}(?, (\tilde{\mathcal{L}}_{\mathbf{w}})_{y})$$

where \mathcal{H}^i is the *i*-th cohomology sheaf. (The last two sums are equal by the Grothendieck trace formula applied in the context of 3.1(a).) Using 3.1(c) we see that the last sum equals

$$|T^{F_x}|^{-1} \sum_{\tilde{y} \in a_{\mathbf{w}}^{-1}(p_{\mathbf{w}}^{-1}(g))^{\tilde{F}'}} \operatorname{tr}(?, (a_{\mathbf{w}}^* \tilde{\mathcal{L}}_{\mathbf{w}})_{\tilde{y}}) = |T^{F_x}|^{-1} \sum_{\tilde{y} \in a_{\mathbf{w}}^{-1}(p_{\mathbf{w}}^{-1}(g))^{\tilde{F}'}} \operatorname{tr}(?, (b_{\mathbf{w}}^* \mathcal{L}_{\mathbf{w}})_{\tilde{y}})$$

$$= |T^{F_x}|^{-1} \sum_{\tilde{y} \in a_{\mathbf{w}}^{-1}(p_{\mathbf{w}}^{-1}(g))^{\tilde{F}'}} \operatorname{tr}(?, (\mathcal{L}_{\mathbf{w}})_{b_{\mathbf{w}}(\tilde{y})}).$$

Now $a_{\mathbf{w}}^{-1}(p_{\mathbf{w}}^{-1}(g))^{\tilde{F}'}$ can be identified with the set of all

$$(h_0U^*, h_1B^*, \dots, h_{r-1}B^*, h_rU^*) \in (G^0/U^*) \times (G^0/B^*) \times \dots \times (G^0/B^*) \times (G^0/U^*)$$

such that

- (a) $k(h_{i-1}^{-1}h_i) \in F^{i-1}(x)T$ for $i \in [1, r]$,
- (b) $h_r^{-1}gh_0d^{-1} \in U^*$,
- (c) $h_0U^* = F(g^{-1}h_{r-1}k(h_{r-1}^{-1}h_r))x^{-1}dU^*,$
- (d) $h_i B^* = F(h_{i-1}) B^*$ for $i \in [1, r-1]$.

(We then have automatically $h_rU^* = F(h_{r-1}k(h_{r-1}^{-1}h_r)x^{-1}U^*)$.) If h_0U^* is given, then (d) determines successively $h_2B^*, \ldots h_{r-1}B^*$ in a unique way and (b) determines h_rU^* in a unique way. We see that the equations (a)-(d) are equivalent to the following equations for h_0U^* :

$$h_0^{-1}F(h_0) \in B^*xB^*, \quad F^{r-1}(h_0)^{-1}gh_0d^{-1} \in B^*F^{r-1}(x)B^*,$$

$$F^r(h_0)^{-1}gh_0d^{-1}U^* = k(F^r(h_0)^{-1}gF(h_0)F(d^{-1}))x^{-1}U^*$$

(if $r \geq 2$) and

$$h_0^{-1}gh_0d^{-1} \in B^*xB^*, \quad F(h_0)^{-1}gh_0d^{-1}U^* = k(F(h_0)^{-1}gF(h_0)F(d^{-1}))x^{-1}U^*$$

(if r = 1). In both cases these equations are equivalent to

(e)
$$h_0^{-1}F(h_0) \in U^*txF(t)^{-1}U^*, \quad F^r(h_0)^{-1}gh_0d^{-1} \in F^r(t)U^*$$

for some $t \in T$. We then have $F^{r-1}(h_0)^{-1}gh_0d^{-1} \in U^*F^{r-1}(t)F^{r-1}(x)U^*$. For h_0U^* , t as in (e) we compute

$$k(h_0^{-1}F(h_0))k(F(h_0)^{-1}F^2(h_0))\dots k(F^{r-2}(h_0)^{-1}F^{r-1}(h_0))k(F^{r-1}(h_0)^{-1}gh_0d^{-1})$$

$$= (txF(t)^{-1})(F(t)F(x)F^2(t^{-1}))\dots (F^{r-2}(t)F^{r-2}(x)F^{r-1}(t)^{-1})(F^{r-1}(t)F^{r-1}(x))$$

$$= txF(x)\dots F^{r-1}(x) = t.$$

By 3.2(a) the result of the last computation is necessarily in T^{F_x} . Thus $F_x(t) = t$. Hence $F^r(t) = t$ and the equations (e) become

(f)
$$h_0^{-1}F(h_0) \in U^*xU^*, \quad F^r(h_0)^{-1}gh_0d^{-1} \in T^{F_x}U^*.$$

We see that

$$\sum_{i} (-1)^{i} \operatorname{tr}(?, \mathcal{H}_{g}^{i}(p_{\mathbf{w}!} \tilde{\mathcal{L}}_{\mathbf{w}})) = |T^{F_{x}}|^{-1} \sum_{t \in T^{F_{x}}} a_{t} = |T^{F_{x}}|^{-1} \sum_{t' \in T^{F_{x}}} a'_{t'}$$

where

$$a_t = |\{hU^* \in (G^0/U^*); h^{-1}F(h) \in U^*xU^*, dh^{-1}g^{-1}F^r(h)t \in U^*\}|\theta(t),$$

$$a'_{t'} = |\{hU^* \in (G^0/U^*); h^{-1}F(h) \in U^*xU^*, h^{-1}g^{-1}F^r(h)dt' \in U^*\}|\theta(dt'd^{-1}).$$

Comparing with the last formula in 2.4 and using $\theta(dt'd^{-1}) = \theta(t')$ for $t' \in T^{F_x}$ we obtain (with i_0 as in 2.4):

$$\sum_{i} (-1)^{i} \operatorname{tr}(?, \mathcal{H}_{g}^{i}(p_{\mathbf{w}!} \tilde{\mathcal{L}}_{\mathbf{w}})) = (-1)^{l(w)} \tilde{\theta}(d) q^{i_0 r/2} \operatorname{tr}(\epsilon_g, H_c^{i_0}(Y)_{\theta}).$$

Let us choose an isomorphism $p_{\mathbf{w}!}\tilde{\mathcal{L}}_{\mathbf{w}}[l_{\mathbf{w}}] \cong p_{\emptyset!}\tilde{\mathcal{L}}_{\emptyset}$. (This exists by 1.4; note that 1.4(i) holds by 1.5.) Via this isomorphism, the isomorphism 3.3(g) corresponds to an isomorphism $F^*(p_{\emptyset!}\tilde{\mathcal{L}}_{\emptyset}) \to p_{\emptyset!}\tilde{\mathcal{L}}_{\emptyset}$ that is to an isomorphism $\psi': F^*A \xrightarrow{\sim} A$ so that

$$\sum_{i} (-1)^{i} \operatorname{tr}(?, \mathcal{H}_{g}^{i}(p_{\mathbf{w}!} \tilde{\mathcal{L}}_{\mathbf{w}})) = \sum_{i} (-1)^{i} \operatorname{tr}(\psi', \mathcal{H}_{g}^{i}(A))$$

for any $g \in D^F$. (We use that $l_{\mathbf{w}}$ is even.) Since A is irreducible, we must have $\psi = \lambda' \psi'$ for some $\lambda' \in \bar{\mathbf{Q}}_I^*$. It follows that

$$\sum_{i \in \mathbf{Z}} (-1)^i \operatorname{tr}(\psi, \mathcal{H}_g^i(A)) = \lambda'(-1)^{l(w)} \tilde{\theta}(d) q^{i_0 r/2} \operatorname{tr}(\epsilon_g, H_c^{i_0}(Y)_{\theta})$$

for any $g \in D^F$. Thus Theorem 1.2 holds with V being the G^F -module $H_c^{i_0}(Y)_{\theta}$, which is irreducible (even as a G^{0F} -module) if G^0 has connected centre, but is not necessarily irreducible in general.

References

- [DL] P.Deligne and G.Lusztig, Representations of reductive groups over finite fields, Ann.Math. **103** (1976), 103-161.
- [DM] F.Digne and J.Michel, Groupes réductifs non connexes, Ann.Sci. École Norm.Sup. 27 (1994), 345-406.
- [L1] G.Lusztig, Green functions and character sheaves, Ann.Math. 131 (1990), 355-408.
- [L2] G. Lusztig, Remarks on computing irreducible characters, J.Amer.Math.Soc. 5 (1992), 971-986.
- [L3] G.Lusztig, Character sheaves on disconnected groups, I, Represent. Th. (electronic) 7 (2003), 374-403; II 8 (2004), 72-124; III 8 (2004), 125-144; IV 8 (2004), 145-178; Errata 8 (2004), 179-179; V 8 (2004), 346-376; VI 8 (2004), 377-413; VII 9 (2005), 209-266; VIII 10 (2006), 314-352; IX 10 (2006), 353-379.
- [M] G.Malle, Generalized Deligne-Lusztig characters, J.Algebra 159 (1993), 64-97.
- [S] T.Shoji, Character sheaves and almost characters of reductive groups, Adv.in Math. 111 (1995), 244-313; II 111 (1995), 314-354.

DEPARTMENT OF MATHEMATICS, M.I.T., CAMBRIDGE, MA 02139