

CSE 554 Lecture 4: Contouring

Fall 2018

Review

- Binary pictures
 - Pros:
 - Natural geometric form for images
 - Easy to operate on
 - Cons:
 - Blocky boundary
 - Large memory footprint

Geometric Forms

Continuous forms

- Defined by mathematical functions
- E.g.: parabolas, splines, subdivision surfaces

Discrete forms

- Disjoint elements with connectivity relations
- E.g.: polylines, triangle surfaces, pixels and voxels

Boundary Representations

- Polylines (2D) or meshes (3D) that tile the object boundary
 - Smoother appearance
 - Less storage (no interior elements)

Binary picture

Boundary mesh

Boundary Representations

We will cover (in a sequence of lectures):

- Extracting a boundary from a grayscale image (volume)
- Denoising
- Simplification
- Alignment
- Deformation

Thresholding - Revisited

- Creates a binary picture from a grayscale image
- How to define a smooth boundary at the threshold?
 - Such boundary is known as a contour (or level set, iso-curve, iso-surface, etc.)

Grayscale image

Thresholded binary picture

Boundary curve

Contours: Definition

- Given a continuous function f defined over the space
 - f is defined on any arbitrary point, not just at pixels/voxels
- A contour at iso-value c is the set of all points where f
 evaluates to be c

Contours: Examples

Contours of 2D functions (iso-curves)

$$\{\{x,y\} | f(x,y) = c\}$$

Contours: Examples

Contours of 3D functions (iso-surfaces)

$$\{\{x, y, z\} \mid f(x, y, z) = c\}$$

Contours: Properties

Closed

- With a well-defined inside and outside
 - Separates points above/below the isovalue

Contours: Properties

Closed

- With a well-defined inside and outside
 - Separates points above/below the isovalue
- In general, a manifold
 - A non-degenerate curve (surface)
 without branching or boundaries
 - Except at critical points (local maxima, minima, saddle)
- Orthogonal to gradient directions
 - Critical points: where gradient is zero

Black curves: contours at multiple iso-values
Green dots: critical points
Red arrows: gradient directions

Discrete Contours

- Image as a sampling of some continuous function f
 - Values only known at pixels
- Compute discrete approximations of contours of f
 - As polylines (2D) or meshes (3D)

"Good" Approximations: 2D

- Closed (with inside and outside)
 - A vertex is shared by even # of edges
- Manifold
 - A vertex is shared by 2 edges
- Non-intersecting

"Good" Approximations: 3D

- Closed (with inside and outside)
 - An edge is shared by even # of polygons
- Manifold
 - An edge is shared by 2 polygons, and a vertex is contained in a ring of polygons
- Non-intersecting

A closed, manifold, non-intersecting triangular mesh

"Good" Approximations: 3D

- Closed (with inside and outside)
 - An edge is shared by even # of polygons
- Manifold
 - An edge is shared by 2 polygons, and a vertex is contained in a ring of polygons
- Non-intersecting

A closed, manifold, non-intersecting triangular mesh

Contouring (On A Grid)

Input

- A grid where each grid point (pixel or voxel) has a value (color)
- An iso-value (threshold)

Output

A closed, manifold, nonintersecting polyline (2D) or mesh
(3D) that separates grid points
above the iso-value from those
that are below the iso-value.

Contouring (On A Grid)

Input

- A grid where each grid point (pixel or voxel) has a value (color)
- An iso-value (threshold)

Output

 Equivalently, we extract the zerocontour (separating negative from positive) after subtracting the isovalue from the grid points

Algorithms

- Primal methods
 - Marching Squares (2D), Marching Cubes (3D)
 - Placing vertices on grid edges

- Dual methods
 - Dual Contouring (2D,3D)
 - Placing vertices in grid cells

- For each grid cell with a sign change
 - Create one vertex on each grid edge with a sign change
 - Connect vertices by lines

 For each grid cell with a sign change

- Create one vertex on each grid edge with a sign change
- Connect vertices by lines

- Creating vertices: linear interpolation
 - Assuming the underlying, continuous function is linear on the grid edge
 - Find the zero-crossing between the function and the grid edge

$$t = \frac{f_0}{f_0 - f_1}$$

$$x = x_0 + t(x_1 - x_0)$$

$$y = y_0 + t(y_1 - y_0)$$

- For each grid cell with a sign change
 - Create one vertex on each grid edge with a sign change

Connect vertices by lines

- Connecting vertices by lines
 - Lines shouldn't intersect
 - Each vertex is used once
 - So that it will be used exactly twice by the two cells incident on the edge
- Two approaches
 - Do a walk around the grid cell
 - Connect consecutive pair of vertices
 - Or, using a pre-computed look-up table
 - 2⁴=16 sign configurations
 - For each sign configuration, it stores the indices of the grid edges whose vertices make up the lines.

- For each grid cell with a sign change
 - Create one vertex on each grid edge with a sign change
 - Connect vertices into triangles

 For each grid cell with a sign change

- Create one vertex on each grid edge with a sign change
- Connect vertices into triangles

- Creating vertices: linear interpolation
 - Assuming the underlying, continuous function is linear on the grid edge
 - Find the zero-crossing between the function and the grid edge

$$t = \frac{f_0}{f_0 - f_1}$$

$$x = x_0 + t(x_1 - x_0)$$

$$y = y_0 + t(y_1 - y_0)$$

$$z = z_0 + t(z_1 - z_0)$$

- For each grid cell with a sign change
 - Create one vertex on each grid edge with a sign change

Connect vertices into triangles

- Connecting vertices by triangles
 - Triangles shouldn't intersect
 - To be a closed manifold:
 - Each vertex used by a triangle "fan"
 - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)

- Connecting vertices by triangles
 - Triangles shouldn't intersect
 - To be a closed manifold:
 - Each vertex used by a triangle "fan"
 - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)

- Connecting vertices by triangles
 - Triangles shouldn't intersect
 - To be a closed manifold:
 - Each vertex used by a triangle "fan"
 - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)

- Connecting vertices by triangles
 - Triangles shouldn't intersect
 - To be a closed manifold:
 - Each vertex used by a triangle "fan"
 - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)
 - Each mesh edge on the grid face is shared between adjacent cells

- Connecting vertices by triangles
 - Triangles shouldn't intersect
 - To be a closed manifold:
 - Each vertex used by a triangle "fan"
 - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)
 - Each mesh edge on the grid face is shared between adjacent cells
- Look-up table
 - 2^8=256 sign configurations
 - For each sign configuration, it stores indices of the grid edges whose vertices make up the triangles

Sign: "0 0 0 1 0 1 0 0"

Triangles: {{2,8,11},{4,7,10}}

Implementation Notes

- Avoid computing one vertex multiple times
 - Compute the vertex location once, and store it in a hash table
- If the grid point's value is the iso-value
 - Treat it either as "above" or "below", but be consistent.

Algorithms

- Primal methods
 - Marching Squares (2D), Marching Cubes (3D)
 - Placing vertices on grid edges

- Dual methods
 - Dual Contouring (2D,3D)
 - Placing vertices in grid cells

Dual Contouring (2D)

- For each grid cell with a sign change
 - Create one vertex
- For each grid edge with a sign change
 - Connect the two vertices in the adjacent cells with a line segment

Dual Contouring (2D)

 For each grid cell with a sign change

- Create one vertex
- For each grid edge with a sign change
 - Connect the two vertices in the adjacent cells with a line segment

Dual Contouring (2D)

- Creating the vertex within a cell
 - Compute one point on each grid edge with a sign change (by linear interpolation, as in Marching Squares)
 - Take the centroid of these points

Dual Contouring (3D)

- For each grid cell with a sign change
 - Create one vertex (same way as 2D)
- For each grid edge with a sign change
 - Create a quad (or two triangles)
 connecting the four vertices in the adjacent grid cubes
 - No look-up table is needed!

Dual Contouring: Discussion

Closed

 Each mesh edge is shared by even number of quads

Possibly non-manifold

- An edge may be shared by 4 quads
- A vertex may be shared by 2 rings of quads

Can be fixed

 But with more effort (e.g., multiple vertices per cell)

Duality

- The two outputs have a dual structure
 - Vertices and quads of Dual Contouring correspond (roughly) to untriangulated polygons and vertices produced by Marching Cubes

Marching Cubes

Dual Contouring

Primal vs. Dual

Marching Cubes

- ✓ Always manifold
- Requires look-up table in 3D
- Solution of the contract of the c

Dual Contouring

- Can be non-manifold
- ✓ No look-up table needed
- ✓ Generates better-shaped polygons

Marching Cubes

Dual Contouring

Primal vs. Dual

Marching Cubes

- ✓ Always manifold
- Requires look-up table in 3D
- Material Strategy
 Material Strategy<
- Restricted to uniform grids

Dual Contouring

- Can be non-manifold
- ✓ No look-up table needed
- ✓ Generates better-shaped polygons
- ✓ Can be applied to any type of grid

Further Readings

Marching Cubes:

- "Marching cubes: A high resolution 3D surface construction algorithm", by Lorensen and Cline (1987)
 - >14000 citations on Google Scholar
- "A survey of the marching cubes algorithm", by Newman and Yi (2006)

Dual Contouring:

- "Dual contouring of hermite data", by Ju et al. (2002)
 - >700 citations on Google Scholar
- "Manifold dual contouring", by Schaefer et al. (2007)