

RF Exposure Evaluation declaration

Product Name : NAIL PRINTER

Trade Name : Jolimark Model No. : NP311D

FCC ID. : WAGNP311D

Applicant: KONG YUE ELECTRONICS & INFORMATION

INDUSTRY LTD.

Address: 18 Kongyue Road, Jinguzhou Zone, Xinhui District,

Jiangmen City, Guangdong Province, China

Date of Receipt : Mar. 26, 2019

Date of Declaration: Jan. 10, 2020

Report No. : 1930412R-RFUSP02V00

Report Version : V1.0

The declaration results relate only to the samples calculated.

The declaration shall not be reproduced except in full without the written approval of DEKRA Testing and Certification Co., Ltd..

RF Exposure Evaluation Declaration

Issued Date: Jan. 10, 2020

Report No.: 1930412R-RFUSP02V00

Product Name : NAIL PRINTER

KONG YUE ELECTRONICS & INFORMATION INDUSTRY

Applicant : LTD.

18 Kongyue Road, Jinguzhou Zone, Xinhui District, Jiangmen

Address : City, Guangdong Province, China

KONG YUE ELECTRONICS & INFORMATION INDUSTRY

Manufacturer : LTD.

Model No. : NP311D

FCC ID : WAGNP311D

Trade Name : Jolimark

Applicable Standard : FCC 47 CFR Part 2.1091 Radiofrequency radiation exposure

evaluation: mobile devices.

Test Lab : Hsin Chu Laboratory

Address : No.372-2, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu

County 310, Taiwan, R.O.C.

TEL: +886-3-582-8001 / FAX: +886-3-582-8958

Test Result : Complied

Tested By : E/win Lin

(Elwin Lin / Engineer)

Approved By : Louis Hou

(Louis Hsu / Deputy Manager)

Revision History

Report No.	Version	Description	Issued Date
1930412R-RFUSP02V00	V1.0	Initial issue of report	Jan. 10, 2020

1. General Information

1.1. Test Facility

Ambient conditions in the laboratory:

Items	Test Item	Required (IEC 68-1)	Actual	Test Site
Temperature (°C)	FCC 2.091	15 - 35	20	2
Humidity (%RH)	Peak Power Output	25 - 75	50	3

Note: Test site information refers to Laboratory Information.

USA : FCC Registration Number: TW3024

The related certificate for our laboratories about the test site and management system can be downloaded from DEKRA Testing and Certification Co., Ltd. Web Site:

http://www.dekra.com.tw/english/about/certificates.aspx?bval=5

The address and introduction of DEKRA Testing and Certification Co., Ltd. laboratories can be founded in our Web site: http://www.dekra.com.tw/index en.aspx

If you have any comments, Please don't hesitate to contact us. Our test sites as below:

- 1 No. 75-2, 3rd Lin, WangYe Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan (R.O.C.) TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail: info.tw@dekra.com
- 3 No.372-2, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County 31061, Taiwan, R.O.C.

1.2. List of Test Equipment

Peak Power Output / SR10-H

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
High Speed Peak Power	Anritsu	ML2496A	1602004	2018/12/17	2019/12/16
Meter Dual Input					
Pulse Power Sensor	Anritsu	MA2411B	1531043	2018/12/17	2019/12/16
Pulse Power Sensor	Anritsu	MA2411B	1531044	2018/12/17	2019/12/16
Power Meter	Keysight	8990B	MY51000248	2018/06/07	2019/06/06
Power Sensor	Keysight	N1923A	MY57240005	2018/06/07	2019/06/06

Note:

All equipment upon which need to calibrated are with calibration period of 1 year.

1.3. Uncertainty

Test item	Uncertainty	
Peak Power Output	± 2.26 dB	

Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)	
	(A) Limits for Occupational/ Control Exposures				
300-1500			F/300	6	
1500-100,000			5	6	
(E	(B) Limits for General Population/ Uncontrolled Exposures				
300-1500			F/1500	6	
1500-100,000			1	30	

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18° C and 78° MH.

2.3. Test Result of RF Exposure Evaluation

Product	NAIL PRINTER
Test Mode	Transmit
Test Condition	RF Exposure Evaluation

Antenna Gain

Antenna Gain: The maximum Gain is 2 dBi or 1.58 dBi in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

IEEE 802.11b (ANT 0)				
WLAN Function				
Channal	Channel Frequency	Output Power to Antenna	Power Density at R = 20 cm	
Channel	(MHz)	(mW)	(mW/cm ²)	
1	2412	126.474	0.040	
6	2437	113.240	0.036	
11	2462	91.622	0.029	

IEEE 802.11g (ANT 0)				
WLAN Function				
Ch arra al	Channel Frequency	Output Power to Antenna	Power Density at R = 20 cm	
Channel	(MHz)	(mW)	(mW/cm ²)	
1	2412	152.055	0.048	
6	2437	174.181	0.055	
11	2462	156.315	0.049	

IEEE 802.11n (20MHz) (ANT 0)					
WLAN Function	WLAN Function				
Channal	Channel Frequency	Output Power to Antenna	Power Density at R = 20 cm		
Channel	(MHz)	(mW)	(mW/cm ²)		
1	2412	143.549	0.045		
6	2437	172.187	0.054		
11	2462	146.218	0.046		

IEEE 802.11n (40MHz) (ANT 0)				
WLAN Function				
Channel	Channel Frequency	Output Power to Antenna	Power Density at R = 20 cm	
Channel	(MHz)	(mW)	(mW/cm ²)	
3	2422	92.257	0.029	
6	2437	148.252	0.047	
9	2452	129.718	0.041	

BLE			
Channal	Channel Frequency	Output Power to Antenna	Power Density at R = 20 cm
Channel	(MHz)	(mW)	(mW/cm ²)
00	2402	1.125	0.0004
19	2440	1.400	0.0004
39	2480	0.993	0.0003

The power density Pd (4th column) at a distance of 20 cm calculated from the Friis transmission formula is far below the limit of 1 mW/cm².

The results are evaluated using the maximum power.