

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2003年 3月 7日
Date of Application:

出願番号 特願2003-061584
Application Number:

[ST. 10/C] : [JP 2003-061584]

出願人 株式会社デンソー
Applicant(s):

2003年12月15日

特許庁長官
Commissioner,
Japan Patent Office

今井康泰

【書類名】 特許願

【整理番号】 IP7831

【提出日】 平成15年 3月 7日

【あて先】 特許庁長官殿

【国際特許分類】 G01L 9/04

【発明者】

【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】 勝間田 卓

【発明者】

【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】 豊田 稲男

【発明者】

【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】 田中 宏明

【特許出願人】

【識別番号】 000004260

【氏名又は名称】 株式会社デンソー

【代理人】

【識別番号】 100100022

【弁理士】

【氏名又は名称】 伊藤 洋二

【電話番号】 052-565-9911

【選任した代理人】

【識別番号】 100108198

【弁理士】

【氏名又は名称】 三浦 高広

【電話番号】 052-565-9911

【選任した代理人】

【識別番号】 100111578

【弁理士】

【氏名又は名称】 水野 史博

【電話番号】 052-565-9911

【手数料の表示】

【予納台帳番号】 038287

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 半導体圧力センサ

【特許請求の範囲】

【請求項1】 主表面が(110)面である半導体基板(10)と、
前記半導体基板の前記主表面上に形成された圧力検出用のダイアフラム(30)
と、

このダイアフラムに形成された前記ダイアフラムの歪みに伴う検出信号を出力す
るためのブリッジ回路(100)を構成する歪みゲージ抵抗(Rc1、Rc2、
Rs1、Rs2)と、を備え、

前記歪みゲージ抵抗は、<110>結晶軸方向に沿って前記ダイアフラムの中
心部に配置された一対のセンターゲージ(Rc1、Rc2)と、前記センターゲ
ージよりも前記ダイアフラムの周辺部に配置された一対のサイドゲージ(Rs1
、Rs2)とから構成されている半導体圧力センサにおいて、

前記サイドゲージは、抵抗の長手方向が<110>結晶軸方向に沿って配置さ
れた第1のゲージ部(Rs1a、Rs2a)と、抵抗の長手方向が<100>結
晶軸方向に沿って配置された第2のゲージ部(Rs1b、Rs2b)とが直列に
接続されたものであることを特徴とする半導体圧力センサ。

【請求項2】 前記歪みゲージ抵抗(Rc1、Rc2、Rs1、Rs2)において、個々の前記センターゲージ(Rc1、Rc2)および個々の前記サイド
ゲージ(Rs1、Rs2)の抵抗値が同じ大きさであることを特徴とする請求項
1に記載の半導体圧力センサ。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、主表面が(110)面である半導体基板に圧力検出用のダイアフラム
および歪みゲージ抵抗とを形成してなるダイアフラム式の半導体圧力センサに
関する。

【0002】

【従来の技術】

この種の半導体圧力センサは、主表面が（110）面である半導体基板と、半導体基板の主表面に形成された圧力検出用のダイアフラムと、このダイアフラムに形成されダイアフラムの歪みに伴う検出信号を出力するためのブリッジ回路を構成する歪みゲージ抵抗とを備えたものである（例えば、特許文献1参照）。

【0003】

ここで、（110）面に配置される歪みゲージ抵抗は、<110>結晶軸方向に沿ってダイアフラムの中心部に配置された一対のセンターゲージと、センターゲージよりもダイアフラムの周辺部に配置された一対のサイドゲージとから構成される（例えば、特許文献2参照）。

【0004】

ここで、図4は、上記半導体基板を用いた半導体圧力センサにおける半導体基板10の主表面に形成されたダイアフラム30における歪みゲージ抵抗Rc1、Rc2、Rs1、Rs2の配置状態を示す図である。半導体基板10の主表面である（110）面には、その構造上、相直交する2つの結晶軸<110>と<100>とが存在する。

【0005】

ここで、<110>結晶軸方向に発生する応力の感度は、<100>結晶軸方向に発生する応力の感度と比べてピエゾ抵抗係数が非常に大きいため、（110）面における応力検出においては、<100>結晶軸方向ではなく、<110>結晶軸方向に発生する応力を用いることになる。

【0006】

そして、（110）面においては<110>は1方向しか存在しないため、より感度の高い結晶軸に対してより高い出力を得ようすると、必然的に、図4に示す様な歪みゲージ抵抗Rc1、Rc2、Rs1、Rs2の配置を探らざるを得ない。

【0007】

つまり、<110>結晶軸方向に沿ってダイアフラム30の中心寄りに配置されたセンターゲージRc1、Rc2と、該センターゲージRc1、Rc2よりも該ダイアフラム30の周辺部に配置されたサイドゲージRs1、Rs2とを設け

、これら4個の歪みゲージ抵抗でブリッジ回路を構成して〈110〉結晶軸方向に発生する応力を検出する。

【0008】

具体的には、図5に示すように、センターゲージRc1の抵抗値をRA、センターゲージRc2の抵抗値をRD、サイドゲージRc3の抵抗値をRB、サイドゲージRc4の抵抗値をRAとして、これら歪みゲージ抵抗は互いに直列接続されて4辺形の閉回路を形成し、ホイートストンブリッジを構成している。

【0009】

そして、図5に示すブリッジ回路においては、入力端子IaとIbとの間に直流定電流Iを与えた状態で、ダイアフラム30の歪みが歪みゲージ抵抗RA、RB、RC、RDの抵抗値変化として現れ、出力端子PaとPbとの間から被検出圧力に応じたレベルの電圧（検出信号）すなわち中点電位Voutが出力されるようになっている。

【0010】

【特許文献1】

特開2001-356061号公報（第3頁、第1図）

【0011】

【非特許文献1】

特開平11-94666号公報（第11頁、第15図）

【0012】

【発明が解決しようとする課題】

ところで、通常、このような半導体圧力センサは、図示しないが、上記特許文献1に示されているように、例えば半導体基板10にガラス台座が陽極接合等により貼り合わされた構造となっている。

【0013】

半導体基板10とガラス台座とは熱膨張係数が異なるため、温度が変化すると両者の間に熱応力が発生し、それはダイアフラム30上の歪みゲージ抵抗Rc1、Rc2、Rs1、Rs2へと伝達する。ここで、センターゲージRc1、Rc2とサイドゲージRs1、Rs2にかかる熱応力は、そのダイアフラム30上の

位置の違いから大きさが異なる。

【0014】

その結果、サイドゲージR s 1、R s 2とセンターゲージR c 1、R c 2にかかる熱応力の差分がノイズとして出力されてしまう。そして、この熱応力の差分は温度に依存して非線形に変化するため、出力のオフセットの温度特性は温度に對して曲がりを持ったものとなる。

【0015】

よって、出力のオフセットの温度特性において、室温～高温間のオフセットの温度に対する勾配と、低温～室温間のオフセットの温度に対する勾配との間に差が生じる。この差はTNO (Temperature Nonlinearity Offset) と呼ばれ、このTNOはセンサの精度を決める重要な特性である。

【0016】

また、半導体圧力センサの小型化すなわち半導体基板10の小型化を狙う場合、大きな面積を占めるダイアフラム30を縮小することが考えられるが、そうすると、本発明者らの検討によると、サイドゲージR s 1、R s 2とセンターゲージR c 1、R c 2の熱応力差が大きくなる。

【0017】

そのため、ダイアフラム30のサイズが小さくなればなるほど、上記TNO特性は悪化してしまう。よって、TNO特性を悪化させずに改善するセンサ構造が求められる。

【0018】

本発明は上記問題に鑑み、主表面が(110)面である半導体基板に圧力検出用のダイアフラムおよび歪みゲージ抵抗とを形成してなる半導体圧力センサにおいて、センターゲージとサイドゲージに加わる熱応力に差があっても、両者の抵抗変化量が極力等しくなるゲージ構造を実現することを目的とする。

【0019】

【課題を解決するための手段】

本発明者らは、(110)面である半導体基板を用いた半導体圧力センサにお

ける歪みゲージ抵抗について、センターゲージとサイドゲージに加わる熱応力の大きさについて有限要素法（FEM）を用いて解析を行った。その結果を図6に示す。

【0020】

図6に示すように、ダイアフラム30の周辺部に位置するサイドゲージR_{s1}、R_{s2}に加わる熱応力 σ_s の方が、ダイアフラム30の中央部に位置するセンターゲージR_{c1}、R_{c2}に加わる熱応力 σ_c よりも大きいことを見出した。

【0021】

そして、熱応力に対する歪みゲージ抵抗の抵抗変化量は、その抵抗値の大きさにはほぼ比例することから、センサに熱応力が加わった場合、サイドゲージの抵抗変化量をセンターゲージの抵抗変化量よりも小さくすることに着目した。本発明は、上記した知見に基づいて創出されたものである。

【0022】

すなわち、請求項1に記載の発明では、主表面が（110）面である半導体基板（10）と、半導体基板の主表面に形成された圧力検出用のダイアフラム（30）と、このダイアフラムに形成されダイアフラムの歪みに伴う検出信号を出力するためのブリッジ回路（100）を構成する歪みゲージ抵抗（R_{c1}、R_{c2}、R_{s1}、R_{s2}）と、を備え、歪みゲージ抵抗は、<110>結晶軸方向に沿ってダイアフラムの中心部に配置された一対のセンターゲージ（R_{c1}、R_{c2}）と、センターゲージよりもダイアフラムの周辺部に配置された一対のサイドゲージ（R_{s1}、R_{s2}）とから構成されている半導体圧力センサにおいて、サイドゲージは、抵抗の長手方向が<110>結晶軸方向に沿って配置された第1のゲージ部（R_{s1a}、R_{s2a}）と、抵抗の長手方向が<100>結晶軸方向に沿って配置された第2のゲージ部（R_{s1b}、R_{s2b}）とが直列に接続されたものであることを特徴とする。

【0023】

それによれば、サイドゲージ（R_{s1}、R_{s2}）において、抵抗の長手方向が<110>結晶軸方向に沿って配置された第1のゲージ（R_{s1a}、R_{s2a}）は、応力変化に対して感度を有する有感ゲージ部となり、抵抗の長手方向が<1

00> 結晶軸方向に沿って配置された第2のゲージ部 (R_s1b、R_s2b) は応力変化に対して実質的に感度を持たない無感ゲージ部となる。

【0024】

そして、サイドゲージにおける第1のゲージ部 (R_s1a、R_s2a) の抵抗値は、センターゲージ (R_c1、R_c2) の抵抗値よりも小さいものにできるため、サイドゲージに対してセンターゲージよりも大きな熱応力が加わったとしても、サイドゲージ全体の熱応力による出力は、ある程度相殺される。

【0025】

例えば、センターゲージ (R_c1、R_c2) に加わる熱応力 σ_c がサイドゲージ (R_s1、R_s2) に加わる熱応力 σ_s の 70% である場合、センターゲージの抵抗値を R、サイドゲージにおける第1のゲージ部 (R_s1a、R_s2a) の抵抗値を 0.7R とする。

【0026】

このようにすれば、熱応力に対する歪みゲージ抵抗の抵抗変化量はその抵抗値の大きさにほぼ比例することから、センサに熱応力が加わったとき、この熱応力によるセンターゲージ (R_c1、R_c2) の抵抗変化量とサイドゲージ (R_s1、R_s2) の抵抗変化量とは、ほぼ同程度にできる。

【0027】

また、実際の半導体圧力センサにおいては、一対のセンターゲージおよび一対のサイドゲージの四つの歪みゲージ抵抗は、その抵抗値が互いに同程度であるのが通常であり、このことは、微小な抵抗変化を検出するのに必要なことである。つまり、圧力が 0 のときにブリッジ回路においてオフセット出力を極力 0 にすることが容易になる。

【0028】

ここにおいて、本発明では、サイドゲージ (R_s1、R_s2) を第1のゲージ部 (R_s1a、R_s2a) と第2のゲージ部 (R_s1b、R_s2b) とに分割して、第1のゲージ部の抵抗値をセンターゲージの抵抗値よりも小さいものにできるが、第2のゲージ部が存在することによって、サイドゲージ全体の抵抗値はセンターゲージの抵抗値と同程度にできることが容易に可能である。

【0029】

そのため、本発明によれば、圧力が0のときにブリッジ回路（100）におけるオフセット出力を極力0にすることが容易になる。逆に言えば、サイドゲージ（R_{s1}、R_{s2}）において第2のゲージ部（R_{s1b}、R_{s2b}）が存在しないと、圧力が0のときのオフセット出力が大きくなってしまい、信号処理回路側での補正が困難になってしまう。

【0030】

以上のように、本発明によれば、半導体圧力センサにおいて、センターゲージとサイドゲージに加わる熱応力に差があっても、両者の抵抗変化量が極力等しくなるゲージ構造を実現することができる。

【0031】

ここで、請求項2に記載の発明のように、歪みゲージ抵抗（R_{c1}、R_{c2}、R_{s1}、R_{s2}）において、個々のセンターゲージ（R_{c1}、R_{c2}）および個々のサイドゲージ（R_{s1}、R_{s2}）の抵抗値が同じ大きさであることが好ましい。

【0032】

それによれば、ブリッジ回路（100）における四つの歪みゲージ抵抗（R_{c1}、R_{c2}、R_{s1}、R_{s2}）の抵抗値がすべて同じ大きさとなるため、圧力が0のときにブリッジ回路におけるオフセット出力を極力0にすることが容易になる。

【0033】

つまり、本発明では、一つのサイドゲージ（R_{s1}、R_{s2}）における第1のゲージ部（R_{s1a}、R_{s2a}）と第2のゲージ部（R_{s1b}、R_{s2b}）との抵抗値の和が、一つのセンターゲージの抵抗値と同じ大きさとなる。

【0034】

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。

【0035】

【発明の実施の形態】

以下、本発明を図に示す実施形態について説明する。図1は、本発明の実施形態に係る半導体圧力センサS1の概略断面図であり、図2は、図1中の上視平面図であって、このセンサS1における半導体基板10に形成されたダイアフラム30の平面形状を示す図である。

【0036】

半導体基板10は、主表面11、12の面方位が(110)面である単結晶シリコン基板である。つまり、図1において、半導体基板10の一面(図1中の下面)11および他面(図1中の上面)12が(110)面となっている。

【0037】

この半導体基板10には、半導体基板10の一面11から凹んだ凹部20が形成されている。この凹部20の形成に伴い薄肉部となった凹部20の底面側すなわち半導体基板10の他面12側には、圧力検出用のダイアフラム30が形成されている。

【0038】

本例では、図2に示すように、ダイアフラム30の平面形状は八角形となっている。詳しくは、ダイアフラム30は、<110>結晶軸方向に沿った一対の辺と<100>結晶軸方向に沿った一対の辺との四つの辺とこれら四つの辺の間をつなぐ辺とからなる八角形となっている。

【0039】

また、図1、図2に示すように、半導体基板10の他面12には、ダイアフラム30の歪みに伴う検出信号を出力するためのブリッジ回路を構成する歪みゲージ抵抗Rc1、Rc2、Rs1、Rs2が形成されている。この歪みゲージ抵抗Rc1、Rc2、Rs1、Rs2は、注入や拡散等により形成された拡散ゲージ抵抗である。

【0040】

ここにおいて、歪みゲージ抵抗Rc1、Rc2、Rs1、Rs2は、抵抗の長手方向が<110>結晶軸方向に沿って配置されたものであり、ダイアフラム30の中心部に配置された一対のセンターゲージRc1、Rc2と、センターゲージRc1、Rc2よりもダイアフラム30の周辺部に配置された一対のサイドゲ

ージR s 1、R s 2とから構成されている。

【0041】

特に、サイドゲージR s 1、R s 2は、それぞれ、抵抗の長手方向が<110>結晶軸方向に沿って配置された第1のゲージ部R s 1 a、R s 2 aと、抵抗の長手方向が<100>結晶軸方向に沿って配置された第2のゲージ部R s 1 b、R s 2 bとが直列に接続されたものである。

【0042】

図2に示す例では、各歪みゲージ抵抗R c 1、R c 2、R s 1、R s 2は、折り返された配線形状を有しており、この折り返された抵抗配線の長手方向が抵抗の長手方向となっている。

【0043】

これら各歪みゲージ抵抗R c 1、R c 2、R s 1、R s 2は、図示しない拡散層等からなる配線により結線されてブリッジ回路を構成している。図3は、そのブリッジ回路の結線図である。

【0044】

ここで、センターゲージR c 1の抵抗値をR A、センターゲージR c 2の抵抗値をR D、サイドゲージR s 1における第1のゲージ部R s 1 aの抵抗値をR B 1、第2のゲージ部R s 1 bの抵抗値をR B 2、サイドゲージR s 2における第1のゲージ部R s 2 aの抵抗値をR C 1、第2のゲージ部R s 2 bの抵抗値をR C 2とする。

【0045】

この場合、四つの歪みゲージ抵抗R c 1、R c 2、R s 1、R s 2は、図3に示すようなブリッジ回路100を構成して<110>結晶軸方向に発生する応力を検出するようになっている。つまり、これら歪みゲージ抵抗R c 1、R c 2、R s 1、R s 2は互いに直列接続されて4辺形の閉回路を形成し、ホイートストンブリッジを構成している。

【0046】

また、本実施形態では、サイドゲージR s 1、R s 2において、抵抗の長手方向が<110>結晶軸方向に沿って配置された第1のゲージR s 1 a、R s 2 a

は、応力変化に対して感度を有する有感ゲージ部となり、抵抗の長手方向が〈100〉結晶軸方向に沿って配置された第2のゲージ部R_{s1b}、R_{s2b}は応力変化に対して実質的に感度を持たない無感ゲージ部となる。

【0047】

そのため、図3に示すブリッジ回路100においては、入力端子I_aとI_bとの間に直流定電流Iを与えた状態で、ダイアフラム30の歪みは、歪みゲージ抵抗R_A、R_{B1}、R_{C1}、R_Dの抵抗値変化として現れる。そして、この抵抗値変化に基づいて出力端子P_aとP_bとの間から被検出圧力に応じたレベルの電圧（検出信号）すなわち中点電位V_{out}が输出されるようになっている。

【0048】

また、図1に示すように、この半導体圧力センサS1は、半導体基板10の一面において、ガラス台座40に陽極接合等により接合されている。本例では、ガラス台座40によって凹部20内は密閉されて、基準圧力室となっており、絶対圧型の圧力センサを構成する。

【0049】

なお、図示しないが、ガラス台座40には、外部と凹部20とを連通する圧力導入通路を形成し、この圧力導入通路から、凹部20内へ被測定圧力を導入してダイアフラム30の裏面に受圧させるタイプとしてもよい。

【0050】

このような半導体圧力センサS1は、次のようにして形成することができる。まず、主表面すなわち一面11および他面12の面方位が（110）面である半導体基板10を用意する。そして、この半導体基板10の他面12に、イオン注入や拡散等の半導体製造技術を用いて歪みゲージ抵抗R_{c1}、R_{c2}、R_{s1}、R_{s2}や各種配線等を形成する。

【0051】

本実施形態では、歪みゲージ抵抗R_{c1}、R_{c2}、R_{s1}、R_{s2}のパターンは、サイドゲージR_{s1}、R_{s2}について従来とは異なるパターンとしているが、このパターンは、イオン注入に際のマスクの開口部形状を同じパターンとすることにより容易に形成可能である。

【0052】

その後、半導体基板10の一面11に、所定形状の開口部を有するエッチングマスク（図示せず）を形成する。このエッチングマスクは、CVD等により成膜されたシリコン塗化膜等からなるものにできる。

【0053】

このようにして半導体基板10の一面11側にエッチングマスクを形成した後、半導体基板10の一面11からエッチングを行うことにより、半導体基板10に凹部20を形成するとともに、半導体基板10のうち凹部20の底面側すなわち他面12側にダイアフラム30を形成する。

【0054】

なお、ダイアフラム形成のためのエッチングとしては、KOH（水酸化カリウム）やTMAH（テトラメチルアンモニウムハイドライド）等のアルカリエッチング液を用いる異方性エッチング等を採用できる。

【0055】

このようにして、歪みゲージ抵抗Rc1、Rc2、Rs1、Rs2およびダイアフラム30を有する半導体圧力センサS1ができる。この後、半導体圧力センサS1は、上記エッチングマスクをエッチング等により除去し、その後、陽極接合等によってガラス台座40と接合される。

【0056】

ところで、本実施形態によれば、サイドゲージRs1、Rs2において、抵抗の長手方向が<110>結晶軸方向に沿って配置された第1のゲージRs1a、Rs2aは、応力変化に対して感度を有する有感ゲージ部となり、抵抗の長手方向が<100>結晶軸方向に沿って配置された第2のゲージ部Rs1b、Rs2bは応力変化に対して実質的に感度を持たない無感ゲージ部となる。

【0057】

そして、サイドゲージにおける第1のゲージ部Rs1a、Rs2aの抵抗値は、センターゲージRc1、Rc2の抵抗値よりも小さいものにできるため、サイドゲージRs1、Rs2に対してセンターゲージRc1、Rc2よりも大きな熱応力が加わったとしても、サイドゲージRs1、Rs2全体の熱応力による出力

は、ある程度相殺される。

【0058】

一例として、本発明者らのFEM解析によるシミュレーションによれば、本実施形態において、ダイアフラム30の縦横寸法L（図2参照）を450μmとした場合、センターゲージRc1、Rc2に加わる熱応力 σ_c はサイドゲージRs1、Rs2に加わる熱応力 σ_s の70%であることがわかった。

【0059】

この場合、本実施形態においては、センターゲージRc1、Rc2の抵抗値をR、サイドゲージRs1、Rs2における第1のゲージ部Rs1a、Rs2aの抵抗値を0.7Rとする。

【0060】

つまり、上記図3に示したブリッジ回路100において、有感ゲージ部の抵抗はRB1=RC1=0.7RA=0.7RD=0.7Rとし、無感ゲージ部の抵抗はRB2=RC2=0.3RA=0.3RD=0.3Rとする。

【0061】

このようにすれば、熱応力に対する歪みゲージ抵抗の抵抗変化量はその抵抗値の大きさにほぼ比例することから、センサS1に熱応力が加わったとき、この熱応力によるセンターゲージRc1、Rc2の抵抗変化量とサイドゲージRs1、Rs2の抵抗変化量とは、ほぼ同程度にすることができる。

【0062】

また、実際の半導体圧力センサにおいては、一対のセンターゲージおよび一対のサイドゲージの四つの歪みゲージ抵抗は、その抵抗値が互いに同程度であるのが通常であり、このことは、微小な抵抗変化を検出するのに必要なことである。つまり、圧力が0のときにブリッジ回路においてオフセット出力を極力0にすることが容易になる。

【0063】

ここにおいて、本実施形態では、サイドゲージRs1、Rs2を第1のゲージ部Rs1a、Rs2aと第2のゲージ部Rs1b、Rs2bとに分割して、第1のゲージ部Rs1a、Rs2aの抵抗値をセンターゲージRc1、Rc2の抵抗

値よりも小さいものにできるが、第2のゲージ部R_{s1b}、R_{s2b}が存在することによって、サイドゲージR_{s1}、R_{s2}全体の抵抗値はセンターゲージR_{c1}、R_{c2}の抵抗値と同程度にすることが容易に可能である。

【0064】

つまり、上記した一例のように、一つのサイドゲージR_{s1}、R_{s2}における第1のゲージ部R_{s1a}、R_{s2a}と第2のゲージ部R_{s1b}、R_{s2b}との抵抗値の和（つまり、0.7R+0.3R）が、一つのセンターゲージR_{c1}、R_{c2}の抵抗値Rと同じ大きさとすればよい。

【0065】

それにより、歪みゲージ抵抗R_{c1}、R_{c2}、R_{s1}、R_{s2}において、個々のセンターゲージR_{c1}、R_{c2}および個々のサイドゲージR_{s1}、R_{s2}の抵抗値が同じ大きさとなる。

【0066】

そして、それによれば、ブリッジ回路100における四つの歪みゲージ抵抗R_{c1}、R_{c2}、R_{s1}、R_{s2}の抵抗値が、実質的にすべて同じ大きさとなるため、圧力が0のときにブリッジ回路100におけるオフセット出力を極力0にすることが容易になる。

【0067】

逆に言えば、サイドゲージR_{s1}、R_{s2}において第2のゲージ部R_{s1b}、R_{s2b}が存在しないと、圧力が0のときのオフセット出力が大きくなってしまい、信号処理回路側での補正が困難になってしまう。

【0068】

なお、上述した70%というようなセンターゲージに加わる熱応力とサイドゲージに加わる熱応力との比率は、ダイアフラムのサイズや形状および歪みゲージ抵抗のサイズや形状等が変われば、それに伴って変わるために、各々のダイアフラムや歪みゲージ抵抗のサイズや形状にあった比率を、FEM解析にて求める必要がある。

【0069】

以上述べてきたように、本実施形態によれば、半導体圧力センサS1において

、センターゲージRc1、Rc2とサイドゲージRs1、Rs2に加わる熱応力に差があっても、両者の抵抗変化量が極力等しくなるゲージ構造を実現することができる。そして、ダイアフラム30を小型化しても、TNO特性の良好な半導体圧力センサS1を提供できる。

【図面の簡単な説明】

【図1】

本発明の実施形態に係る半導体圧力センサの概略断面図である。

【図2】

図1に示すセンサにおける半導体基板に形成されたダイアフラムの平面形状を示す図である。

【図3】

図1に示すセンサにおける歪みゲージ抵抗により構成されるブリッジ回路の結線図である。

【図4】

従来の主表面が(110)面である半導体基板を用いた半導体圧力センサにおける半導体基板の主表面における歪みゲージ抵抗の配置状態を示す図である。

【図5】

図4に示す歪みゲージ抵抗により構成されるブリッジ回路の結線図である。

【図6】

主表面が(110)面である半導体基板を用いた半導体圧力センサにおける歪みゲージ抵抗に加わる熱応力の大きさを有限要素法(FEM)を用いて解析した結果を示す図である。

【符号の説明】

10…半導体基板、30…ダイアフラム、100…ブリッジ回路、
Rc1、Rc2…センターゲージ、Rs1、Rs2…サイドゲージ、
Rs1a、Rs2a…サイドゲージの第1のゲージ部、
Rs1b、Rs2b…サイドゲージの第2のゲージ部。

【書類名】

図面

【図1】

【図2】

【図3】

【図 4】

【図5】

【図6】

【書類名】 要約書

【要約】

【課題】 主表面が(110)面である半導体基板にダイアフラムおよび歪みゲージ抵抗とを形成してなる半導体圧力センサにおいて、センターゲージとサイドゲージに加わる熱応力に差があっても、両者の抵抗変化量が極力等しくなるゲージ構造を実現する。

【解決手段】 (110)面である半導体基板10の主表面12にダイアフラム30が形成され、ダイアフラム30には、<110>結晶軸方向に沿って中心部に配置された一対のセンターゲージRc1、Rc2と、該センターゲージよりも周辺部に配置された一対のサイドゲージRs1、Rs2とから構成される歪みゲージ抵抗が形成されている。サイドゲージは、抵抗の長手方向が<110>結晶軸方向に沿って配置された第1のゲージ部Rs1a、Rs2aと、抵抗の長手方向が<100>結晶軸方向に沿って配置された第2のゲージ部Rs1b、Rs2bとが直列に接続されたものとなっている。

【選択図】 図2

特願2003-061584

出願人履歴情報

識別番号 [000004260]

1. 変更年月日 1996年10月 8日

[変更理由] 名称変更

住所 愛知県刈谷市昭和町1丁目1番地
氏名 株式会社デンソー