化学原理 Chemical Principles

(9)

内容回顾

> 键的极性

非极性共价键

极性共价键

▶ 晶体

▶ 体心立方堆积(bcc)

金属晶体

- ➢ 六方最密堆积(hcp)
- ➤ 面心立方最密堆积(ccp)

金属键理论

电子海模型

能带理论

9.2 晶格能 (实验室无法测量的)

离子键的强弱常用晶格能(U)的大小来表示。

晶格能(U)指远离的气态正离子与负离子结合成 1mol 离子晶体时所释放的能量的负值。

$$M_aX_b(s) \rightarrow aM^{b+}(g) + bX^{a-}(g)$$

Born-Haber 循环 Born-Haber Cycle

化学领域世界上最伟大的研究机构之一

DEPARTMENTS

https://www.fhi.mpg.de/

Born-Haber 循环

标准摩尔生成焓

$$U = -\Delta_{r} H_{m,6}^{\Theta}$$

$$= -[\Delta_{r} H_{m}^{\Theta} - (\Delta_{r} H_{m,1}^{\Theta} + \Delta_{r} H_{m,2}^{\Theta} + \Delta_{r} H_{m,3}^{\Theta} + \Delta_{r} H_{m,4}^{\Theta} + \Delta_{r} H_{m,5}^{\Theta})]$$

对于相同类型的离子晶体,离子电荷越高,正负离子的核间距越小,晶格能越大,离子键越强,则晶体具有较高的熔点、沸点和硬度。

表 4-5 晶格能与离子型化合物的物理性质									
NaCl 型晶体	Nal	NaBr	NaCl	NaF	ВаО	SrO	CaO	MgO	BeO
离子电荷	1	1	1	1	2	2	2	2	2
核间距/pm	318	294	279	231	277	257	240	210	165
晶格能/kJ·mol-1	686	732	786	891	3 041	3 204	3 476	3 916	_
熔点/K	933	1 013	1 074	1 261	2 196	2 703	2 843	3 073	2 833
硬度 (莫氏标准)	_		_		3. 3	3. 5	4. 5	6. 5	9. 0

离子晶体

晶格能

Born-Haber 循环 Born-Haber Cycle

9.3 离子晶体的结构

将正负离子看成球体,因离子键没有方向性和饱和性,离子晶体的排列与金属晶体 类似,正负离子趋向于密堆积形成离子晶体, 还必须考虑离子的电荷和离子的半径

离子化合物,有几种典型的晶体结构类型:

- NaCl型
- CsCl型
- ZnS型

- CaF₂型
- 金红石型
- 钙钛矿型

(1) NaCl型

NaCl, LiCl, KBr, AgCl, MgO, CaO,

Cl⁻ 形成面心立方晶格, Na⁺占据八面体空隙

配位比 6:6, 晶胞形状为立方体, 面心立方晶格。每个晶胞中有4个Na+和4个Cl-

(2) CsCl型

CsCl, CsBr, CsI, TlCl, CaS,

Cl·形成简单立方晶格 Cs+填入立方体空隙

配位比8:8

晶胞形状为立方体,简单立方晶格。每个晶胞中有1个Cs⁺和Cl⁻

(3) 立方ZnS型 (闪锌矿型)

ZnS, CuCl, CdS, HgS,

S2-形成面心立方晶格

Zn²⁺填入半数的四面 体空隙

配位比 4:4

晶胞形状为立方体,面心立方晶格。每个晶胞中有4个S²-和Zn²⁺

9.4 离子半径与配位数

----r+/r-与配位数的关系

NaCl 六配位, CsCl 八配位, ZnS 四配位。 均为立方晶系 AB 型晶体, 为何配位数不同?

半径比规则

中心原子的周围空间被配体的球体配位时,只有当中心原子(离子)与它周围各个相邻配体尽可能保持紧密"接触"时才可能趋于稳定,这就要求中心原子(离子)的半径与其周围采取一定空间构型排列的配体的半径之间,具有确定的比值关系,即遵循所谓的**半径比规则**,才能使中心原子(离子)与配体达到紧密堆积,从而既不致"松动脱落",又不致"容纳不下"。

$r_{ m M}/r_{ m L}$	配位数	空间构型	$ m r_{M}/r_{L}$	配位数	空间构型
< 0.155	2	直线形	0.414-0.732	6	正八面体
0.155-0.225	3	平面三角形	0.732-1.000	8	立方体
0.225-0.414	4	正四面体	> 1.00	12	二十面体
0.414-0.732	4	平面正方形			

半径比规则

配位数为3的配合物

AC=BC=CD= R+r BF=R 在直角三角形△AFD中,存在30度的锐角

BC/BF= $2/\sqrt{3}$ R/(r+R)= $\sqrt{3}/2$ r/R= 0.155

半径比规则

配位数为4的配合物

四面体的棱长 AB =2R

四面体顶点到体心的距离=R+r = 顶点到地面距离的2/3 r+R=AC*2/3 BD=R,存在30度角,BC=R*2/ $\sqrt{3}$

三角形ABC也是直角三角形, 推导出: r/R = 0.225

6配位的边界条件

六配位的介稳 状态的中间一层的 俯视图。ADBC 是 正方形。

同号阴离子 相切,异号 离子相离 不稳定

同号阴离子 相切,异号 离子相切 介稳状态

同号阴离子 相离,异号 离子相切 稳定

$$AB = \sqrt{2} AC$$

$$2(r^{+} + r^{-}) = \sqrt{2}(2r^{-})$$

$$r^{+} = (\sqrt{2} - 1)r^{-}$$

$$\frac{r^{+}}{r^{-}} = 0.414$$

此时,为介稳状态,如果 r + 再大些,则出现离子同号相离,异号相切的稳定状态。

所以r+/r>0.414, 配位数为 6。

当 r+减小, r+/r < 0.414 时, 阴离子相切, 阴离子阳离子相离的不稳定状态,配位数变成 4。

(2)8配位的边界条件

八配位的介稳状态。下图所示,八配位的介稳状态的对角面图。ABCD 是矩形。

同号阴离子 相切,异号 离子相切 介稳状态

 $r^+/r = 0.732$

所以0.414 < r⁺ / r < 0.732时,采用6配位的 NaCl晶体结构 当 r^+ 继续增加,达到并超过 $r^+/r^->0.732$ 时,即阳离子周围可容纳更多阴离子时,采用 8 配位。

同样,根据4配位和12配位的临界状态,可算出r+/r分别为 0.225和1.000

0.225

0.155

0.225 ~ 0.414 4 配位 ZnS型

0.414 ~ 0.732 6 配位 NaCl型

0.732 ~ 1.000 8 配位 CsCl型

几点说明:

(1) 以上结果在大多数情况下与实际相符,有个别例外。

RbCl: r+/r = 1.48/1.81 = 0.82, 理论 配位数为8, CsCl型, 但实际上为 NaCl型, 配位数为6。

(2) 当r+/r处于极限时,可能有两种构型。

 GeO_2 : r+/r = 0.53/1.40 = 0.38, 推测是 ZnS 构型, 配位数为4。也很容易转变为 NaCl 型, 有两种构型同时存在。

AX型化合物的结构类型与r₊/r₋的关系

结构类型	r ₊ /r ₋		实例(右边数	据为 r+/r-比值)
CsCl 型	1.000~0.732	CsCl 0.91	CsBr 0.84	CsI 0.75	
		KF 1.00	SrO 0.96	BaO 0.96	RbF 0.89
		RbCl 0.82	BaS 0.82	CaO 0.80	CsF 0.80
		PbBr 0.76	BaSe 0.75	NaF 0.74	KCl 0.73
N-CLE	0.722.0.414	SrS 0.73	RbI 0.68	KBr 0.68	BaTe 0.68
NaCl 型	0.732~0.414	SrSe 0.66	CaS 0.62	KI 0.61	SrTe 0.60
		MgO 0.59	LiF 0.59	CaSe 0.56	NaCl 0.54
		NaBr 0.50	CaTe 0.50	MgS 0.49	NaI 0.44
		LiCl 0.43	MgSe 0.41	LiBr 0.40	LiF 0.35
ZnS 型 0.42	0.414.0.225	MgTe 0.37	BeO 0.26	BeS 0.20	BeSe 0.18
	0.414~0.225	BeTe 0.17			

9.5 离子极化

离子由原子核和电子组成,具有正电中心和负电中心。 在外电场作用下,正电中心偏离负电中心,离子发生变形。

概念: 阴阳离子之间相互作用,使得离子电荷中心不重合,产生了诱导的偶极作用。极端的情况: 阴离子的电子云被阳离子无限大的吸引,阳离子的电子云被阴离子无限大的吸引,结果就是电子云重叠,形成: 共价作用。

离子化合物中离子键纯粹不纯粹?

用途: 研究阴阳离子离子键中的附加共价作用。

阴阳离子间除了静电引力外,还存在极化作用。

离子的极化作用

极化力: 某离子使其它离子变形的能力

• 电荷高的阳离子具有较强的极化作用 $Na^+ < Mg^{2+} < Al^{3+}$

电荷相等电子层相似时,半径小的离子具有较强的极化力。

$$Ba^{2+} < Mg^{2+}$$
 $La^{3+} < Al^{3+}$ $Cl^{-} < F^{-}$

• 对于不同电子层结构的阳离子,极化力的大小:

8电子构型 < 9~17电子构型 < 18和18+2电子构型 Na+, Mg²⁺ Fe²⁺, Ni²⁺, Cr³⁺ Cu⁺, Pb²⁺

• 复杂离子的极化力较小。 SO₄²⁻、PO₄³⁺

离子的变形性

极化率:某离子变形能力的量度

- 对于不同电子层结构的阳离子,极化率的大小: 8电子构型 < 9~17电子构型 < 18和18+2电子构型
- 结构相同的离子,正电荷越高,极化率越小:
 Si⁴⁺ < Al³⁺ < Mg²⁺ < Na⁺ < F⁻ < O²⁻
- 电子层构型相同的离子,电子层越多,极化率越高:

 $Li^+ < Na^+ < K^+ < Rb^+ < Cs^+; F^- < Cl^- < Br^- < I^-$

• 复杂离子的极化率较小。 ClO₄ < F < NO₃ < OH < CN < Cl < Br < I

离子间的极化

- 阳离子极化力强。阴离子半径较大,外壳层 上有较多的电子,容易发生变形,极化率高。
- 一般正离子引起负离子的极化是主要的,所以负离子的极化率比正离子的极化率大,且离子半径愈大,极化率愈大

当正离子易变形(18电子构型、18+2电子构型、9-17电子构型)时,负离子也可使正离子发生较强极化,此时离子键的共价程度较大

随着离子间极化的增强,离子间的核间距缩短,会引起化学键型的变化,键的性质可能从离子键逐步过渡到共价键。即经过一系列中间状态的极化键,最后可转变为极化很小的共价键。

离子相互极化的增强

键的极性增大

理想离子键 基本是离子键 过渡键型 基本是共价键 (无极化) (轻微极化)(较强极化)(强烈极化)

离子间极化的结果:

1. 熔点和沸点降低: BeCl₂、MgCl₂、CaCl₂的熔点依次为410°C、714°C、782°C。

Be²⁺离子半径最小,又是2电子构型,因此Be²⁺有很大的极化能力,使Cl·发生比较显著的变形,Be²⁺和 Cl·之间的键有较显著的共价性。

- 2. 溶解度降低: 离子极化使离子键逐步向共价键过渡, 导致化合物在水中的低溶解度。
- 3. 化合物的颜色: 一般情况下,如果组成化合物的离子是无色的,该化合物也无色,如 NaCl、KNO₃等; 如果其中一种离子无色,则另一种离子的颜色就是该化合物的颜色,如 K₂CrO₄呈黄色。

4. 较强的极化作用也会影响离子化合物晶型的转变

Compound	AgF	AgCl	AgBr	AgI
-+/r-	0.85	0.63	0.57	0.51
Crystalline type	NaCl	NaCl	NaCl	ZnS
Coordination number	6:6	6:6	6:6	4:4
Compound	CuF	CuCl	CuBr	CuI
r+/r-	0.72	0.53	0.49	0.44
r+/r- Crystalline type Coordination		0.53 ZnS	0.49 ZnS	0.44 ZnS

问题:为什么下列各物质溶解度依次减小,颜色逐渐加深?

	AgF	AgCl	AgBr	AgI
在水中的溶解度 mol·L ⁻¹	1.4×10^{-1}	2.0×10^{-4}	2.9×10^{-5}	2.7×10^{-7}
	白色	白色	淡黄色	黄色

为什么Na₂S易溶于水,ZnS难溶于水?

碳酸盐的稳定性解释

$(1) \quad H_2CO_3 < MHCO_3 < M_2CO_3$

$$H_2CO_3 \longrightarrow H_2O + CO_2(g)$$

 $2M^IHCO_3 \longrightarrow M_2^ICO_3 + H_2O + CO_2$
 $M^{II}CO_3 \longrightarrow M^{II}O + CO_2(g)$

(2) 同一族金属的碳酸盐稳定性从上到下增加

$$BeCO_3$$
 $MgCO_3$ $CaCO_3$ $SrCO_3$ $BaCO_3$ $T_{\text{分解}}$ /°C 100 540 900 1290 1360

(3) 过渡金属碳酸盐稳定性差

$$\mathbf{M}^{2+} \left[\bigcirc C \right]^{2-}$$

 $r(M^{2+})$ 愈小, M^{2+} 极化力愈大, MCO_3 愈不稳定; M^{2+} 为18e,(18+2)e,(9-17)e 构型相对于8e构型的极化率大,其 MCO_3 相对不稳定。

内容回顾

- > 离子晶体的结构
 - NaCl型
 - CsCl型
 - ZnS型

- > 离子半径与配位数
- > 离子极化 (极端的情况?)

极化力: 某离子使其它离子变形的能力

极化率: 某离子变形能力的量度

十、分子晶体

分子通过分子间作用力或氢键形成的晶体,称为分子晶体。

分子晶体大都很软,熔、沸点低,易挥发(升华),固体不导电,熔化时也不导电, 机械加工性能很差。

10.1 极性分子与非极性分子

分子中具有正电荷部分(原子核)与负电荷部分(核外电子),因此分子中存在一个正电中心和负电中心。

非极性分子: 正电中心与负电中心重合

极性分子: 正电中心与负电中心不重合

对于复杂的多原子分子:

非极性共价键组成的分子

 S_8

 $\mathbf{P_4}$

极性共价键组成的分子

臭氧: O₃

 O_3 的分子结构

二氧化硫

二氧化碳

C: sp杂化

简单类型分子的极性

分子类型及其空间结构	极性或非极性	1列
单原子分子 A	非极性	举士与
半原プカプ A	月下7久7王	稀有气体
双原子分子 A2	非极性	N_2 , H_2 , O_2
AB	极性	CO, HCl
三原子分子 ABA(直线型)	非极性	CO_2 CS_2
ABA (弯曲型)	极性	H ₂ O ₂ SO ₂
ABC(直线型)	极性	OCS、HCN
四原子分子 AB3(平面三角形)	非极性	BCl ₃
AB3(棱锥体)	极性	NH ₃ 、AsCl ₃
五原子分子 AB4(四面体)	非极性	CH4、SnCl4
AB ₃ C(四面体)	极性	CH ₃ Cl