Analyseur de Réseaux

Samuel HUET & Thomas COUTANT

22 avril 2018

SOMMAIRE

1	Cali	ibrations	3
Ca	alibra 1.1 1.2	Calibrations possibles	3 4 4
2	Mes	sures des filtres	5
Μ	esur	es des filtres	5
	2.1	Cablage	5
	2.2	Passe bas	5
	2.3	Passe haut	8
3	Ass	ociation des filtres	11
\mathbf{A}	ssoci	ation des filtres	11
	3.1	Cablage	11
	3.2	Mesures	11
4	Div	iseur de puissance	13
\mathbf{D}	iviseı	ır de puissance	13
	4.1		13
		4.1.1 Cablage	13
		4.1.2 Mesures	13
	4.2	Isolation	15
		9	15
		4.2.2 Mesures	15
5	Cou	pleur directif	16
C	ouple	eur directif	16
	5.1	Transmission	16
		5.1.1 Cablage	16
		5.1.2 Mesures	16
	5.2	1 0	18
		5.2.1 Cablage	18

Conclusion														20									
6	Con	clusio	n																				20
		5.3.2	Mesures		•		•						•		•	•				•			19
		5.3.1	Cablage																				19
	5.3	Isolati	on																				19
		5.2.2	Mesures							•													18

Calibrations

Afin de mesurer avec précision les paramètres S de notre système, il est nécéssaire de calibrer l'appareil afin de minimiser au possible les erreurs internes. Mais avant l'étape de la calibration, nous pouvons déjà brancher le système et regarder sur quelle gamme de fréquence et sur quelle puissance faut il calibrer.

Une fois cela fait, nous pouvont aller dans le menu de calibration en appuyant sur \mathbf{CAL} , et voici ce que l'on y trouve :

Calibrations possibles

Nous pouvons voir 6 boutons qui correspondent en réalité à 6 types de calibration différentes :

- **FULL TWO PORT** représente une calibration sur les deux ports, donc des 4 paramètres. C'est la calibration la plus longue car elle nécéssite de brancher et débrancher sur les deux ports.
- **FULL ONE PORT** ne va calibrer uniquement qu'un seul port, afin de calculer les paramètres S11 et S21 (ou S22 et S12)
- ONE PATH TWO PORT Ne calibrera que dans le but de mesurer les paramètres S21 et S12.
- TRANS NORM???????
- **REFL NORM**???????
- TRANS AND REFL NORM???????

Pour nos mesures, nous avons utilisé la calibration **FULL TWO PORT** afin d'analyser le plus de paramètres possible.

Connecteur

Avant de se lancer dans une quelconque manipulation, faisons un petit tour des connecteurs courants. Dans l'ordre d'apparition, de gauche à droite, nous avons :

- Le connecteur N. C'est sur celui-ci que débouchent les ports 1 et 2 de l'analyseur
- Le connecteur **BNC**. Facilement repérable de par sa connecteur en bayonette.
- Le connecteur **SMA**. Plutot petit, il s'addapte bien aux modules (coupleur, mixer, etc). Son composant isolant est en téflon.
- Le connectuer **K**. Ce connecteur est très comparable au SMA, à la seule différence près que sa matière isolante est l'air.

Mesures des filtres

Cablage

Passe bas

En rouge nous avons la transmission (S12) et en bleu l'adaptation(S11). On remarque donc facilement que nous avons à faire à un filtre passe bas. Grâce au logiciele rfsim99 on peut se déplacér librement sur les courbes. on obtiens donc une fréquence de coupure inferieure à -1dB de 203.747MHz

Les paramètres de réflexions (S11 et S22) sont proche l'un de lautre comme on peut le voir sur le graphique si dessous

Cependant on peut remarquer que aux alentours de la fréquence de coupure les deux courbes sont réellement superposé On peut aussi remarquer que l'on a une adaptation convenable, puisque nous sommes au maximum à -20dB en ce qui concerne la bande passante du filtre.

Sur ce graphique (Abaque) on peut y trouver l'impédence à la fréquence de coupure du filtre passe bas. Qui est de 39,29R-j18,45 pour S11. Et de 35,17R-j12,39 pour S22

Et de 35,17R-j12,39

Passe haut

De la même façon que pour le passe bas, on distingue facilement qu'il sagit d'un passe haut. Avec toujours en rouge la transmission (S12) ten bleu l'adaptation (S11). Pour le passe haut on a donc une fréquence de coupure à -1dB de 147.992MHz.

Pour le passe haut on peut voir que les deux courbes de réflexions ne sont pas tout à fait identique au niveau de la fréquence de coupure -11,6dB pour S22 et -10.2dB pour S11. Cependant elles se suivent parfaitement et l'adaptation et suffisante puisque l'on reste en dessous des -10dB.

Pour S11 nous avons une impédence de 41,9R+j28,62 à 147,992MHz.

Pour S22 nous avons une impédence de 28,97R+j7,12 à 147,992MHz.

Association des filtres

Cablage

Lors de nos relevé la bande passante à -3dB est de 75,143MHz (215,71MHz-140,567MHz). La bande passante à -40dB est de 226,681MHz (91,724MHz-318,405MHz). Lors des mesures pour le passe bas et le passe haut nous n'avons décelé aucune ondulation. Ainsi il semble normal de ne toruver aucune ondulation pour le passe bande. Puisqu'il est composé du passe haut et du passe bas étudier précédement. Les pertes d'insertions sont quant-à-elle faible puisque l'on est à -0.75dB.

Ce filtre est donc un filtre passe bande butterworth, on peut le remarquer grâce aux pentes qui ne sont pas raide et ene l'absence d'ondulation.

Diviseur de puissance

Transmission & Adaptation

Cablage

Isolation

Cablage

Coupleur directif

Transmission

Cablage

Couplage

Cablage

Isolation

Cablage

Conclusion