Mariana Osorio Rojas - 464679
Fabio Andrés Guzman Figueroa
Universidad Pontifica Bolivariana - Facultad de Ingeniería
Ingeniería de Sistemas e Informática - Sistemas Operativos

PRÁCTICA N7 - THREADING VS MULTIPROCESSING EN PYTHON

1. ¿Qué es el Global Interpreter Lock (GIL) en Python?

- a. Un mecanismo que permite la ejecución paralela de hilos.
- b. Un bloqueo que asegura que solo un hilo se ejecute a la vez en un proceso de Pvthon.
- c. Una herramienta para mejorar el rendimiento de los hilos en entornos multi- núcleo.
- d. Un sistema para sincronizar la ejecución de varios procesos.

2. ¿Cómo afecta el GIL al rendimiento del threading en Python?

- a. Permite la ejecución simultánea de múltiples hilos, aumentando el rendimiento.
- b. No tiene ningún efecto en el rendimiento de los hilos.
- c. Limita la ejecución de los hilos a secuencias concurrentes, no paralelas.
- d. Aumenta el rendimiento de las tareas limitadas por I/O.

3. ¿Cuál es la principal ventaja del multiprocessing sobre el threading en Python para tareas intensivas en CPU?

- a. Menor uso de memoria.
- b. Mejor uso de los núcleos de CPU para ejecución paralela.
- c. No requiere sincronización entre procesos.
- d. Reduce la complejidad del código.

4. ¿Qué mecanismos utiliza Python para la comunicación segura entre hilos?

- a. Global Interpreter Lock (GIL) y semáforos.
- b. Colas y tuberías (pipes).
- c. Colas y bloqueos (locks).
- d. Multiprocessing y semáforos.

5. Al elegir entre threading y multiprocessing en Python, ¿qué aspecto NO es correcto considerar?

- a. El número de núcleos de CPU disponibles.
- b. La cantidad de memoria RAM en el sistema.
- c. La necesidad de ejecución simultánea de código Python.
- d. La compatibilidad con versiones anteriores de Python 2.

6. ¿Qué afirmación describe mejor los procesos en Python?

- e. Los procesos comparten el mismo espacio de memoria, facilitando la comunicación entre ellos.
- f. Los procesos en Python no pueden ejecutarse en paralelo debido al GIL.
- g. Cada proceso tiene su propio espacio de memoria y puede ejecutarse en paralelo en diferentes núcleos de CPU.
- h. La creación de procesos es menos costosa en recursos que la creación de hilos.

7. En el contexto de Python, ¿qué tarea se beneficiaría más del uso de threading en lugar de multiprocessing?

- a. Un programa que realiza cálculos matemáticos intensivos.
- b. Una aplicación que necesita realizar múltiples operaciones de entrada/salida (I/O) de manera concurrente.
- c. Un proceso que requiere un alto grado de ejecución paralela para aumentar la velocidad.
- d. Una tarea que necesita un gran volumen de intercambio de datos entre procesos.

8. ¿Cuál es el propósito principal de utilizar colas en la programación multi-hilo en Python?

- a. Asegurar que solo un hilo se ejecute a la vez para evitar el GIL.
- b. Permitir la ejecución paralela de hilos sin restricciones.
- c. Facilitar la comunicación segura y el intercambio de datos entre hilos.
- d. Aumentar la velocidad de ejecución de las operaciones de entrada/salida (I/O).

9. ¿Qué mecanismo de sincronización se recomienda para proteger los datos compartidos en un entorno multi-hilo en Python?

a. Utilizar el Global Interpreter Lock (GIL) exclusivamente.

- b. Implementar tuberías (pipes) entre hilos.
- c. Usar bloqueos (locks) y semáforos para controlar el acceso a los datos.
- d. Dividir el código en procesos en lugar de hilos para evitar la necesidad de sincronización.

10. ¿Cuál de las siguientes afirmaciones es verdadera sobre el impacto del GIL en las aplicaciones Python?

- a. El GIL mejora el rendimiento de las aplicaciones multi-hilo en sistemas multi- núcleo.
- b. El GIL no tiene ningún impacto en las aplicaciones que utilizan multiprocessing.
- c. El GIL asegura que múltiples procesos puedan acceder simultáneamente a objetos de Python sin conflictos.
- d. El GIL incrementa la eficiencia de las operaciones de entrada/salida (I/O) en programas multi-hilo.