Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №3 по дисциплине «Методы машинного обучения» на тему «Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.»

Выполнил: студент группы ИУ5-23М Богомолов Д.Н.

Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.

- 1 import numpy as np
- 2 import pandas as pd
- 3 pd.set_option('display.max.columns', 100)
- 4 %matplotlib inline
- 5 import matplotlib.pyplot as plt
- 6 import seaborn as sns
- 7 import warnings
- 8 warnings.filterwarnings('ignore')

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnin import pandas.util.testing as tm

Загрузка и первичный анализ данных

- data = pd.read_csv("/content/drive/My Drive/train.csv", sep=',')
- 2 data.head()

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandConto
0	1	60	RL	65.0	8450	Pave	NaN	Reg	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	
2	3	60	RL	68.0	11250	Pave	NaN	IR1	
3	4	70	RL	60.0	9550	Pave	NaN	IR1	
4	5	60	RL	84.0	14260	Pave	NaN	IR1	

1 data.shape

(1460, 81)

1 data.dtypes

```
Id int64
MSSubClass int64
 LotArea object float64
MoSold int64
YrSold int64
SaleType object
SaleCondition object
int64
                   . . .
 Length: 81, dtype: object
 data.isnull().sum()
 Ιd
                     0
 MSSubClass
                     0
 MSZoning
 LotFrontage 259
 LotArea
 MoSold
 YrSold
 SaleType
 SaleCondition
 SalePrice
 Length: 81, dtype: int64
total_count = data.shape[0]
 print('Bcero cτροκ: {}'.format(total_count))
 Всего строк: 1460
```

1. Обработка пропусков в данных

1.1. Простые стратегии - удаление или заполнение нуля

Удаление колонок, содержащих пустые значения

Удаление строк с пустыми значениями

```
data_new_2 = data.dropna(axis=0, how='any')
(data.shape, data_new_2.shape)
```

```
((1460, 81), (0, 81))
```

1 data.head()

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandConto
0	1	60	RL	65.0	8450	Pave	NaN	Reg	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	
2	3	60	RL	68.0	11250	Pave	NaN	IR1	
3	4	70	RL	60.0	9550	Pave	NaN	IR1	
4	5	60	RL	84.0	14260	Pave	NaN	IR1	

- 1 # Заполнение всех пропущенных значений нулями
- 2 # В данном случае это некорректно, так как нулями заполняются в том числе колонки сод
- 3 data_new_3 = data.fillna(0)
- 4 data_new_3.head()

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandConto
0	1	60	RL	65.0	8450	Pave	0	Reg	
1	2	20	RL	80.0	9600	Pave	0	Reg	
2	3	60	RL	68.0	11250	Pave	0	IR1	
3	4	70	RL	60.0	9550	Pave	0	IR1	
4	5	60	RL	84.0	14260	Pave	0	IR1	

1.2. "Внедрение значений" - импьютация (imputation)

↓ 1.2.1. Обработка пропусков в числовых данных

Выберем числовые колонки с пропущенными значениями

Цикл по колонкам датасета

```
1 num_cols = []
2 for col in data.columns:
3  # Количество пустых значений
4 temp_null_count = data[data[col].isnull()].shape[0]
5 dt = str(data[col].dtype)
6 if temp_null_count>0 and (dt=='int64' or dt=='float64'):
```

```
7    num_cols.append(col)
8    temp_perc = round((temp_null_count / total_count) * 100.0, 2)
9    print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format
```

Колонка LotFrontage. Тип данных float64. Количество пустых значений 259, 17.74%. Колонка MasVnrArea. Тип данных float64. Количество пустых значений 8, 0.55%. Колонка GarageYrBlt. Тип данных float64. Количество пустых значений 81, 5.55%.

- 1 data_num = data[num_cols]
- 2 data_num

	LotFrontage	MasVnrArea	GarageYrBlt
0	65.0	196.0	2003.0
1	80.0	0.0	1976.0
2	68.0	162.0	2001.0
3	60.0	0.0	1998.0
4	84.0	350.0	2000.0
•••	•••		
1455	62.0	0.0	1999.0
1456	85.0	119.0	1978.0
1457	66.0	0.0	1941.0
1458	68.0	0.0	1950.0
1459	75.0	0.0	1965.0

1460 rows × 3 columns

Гистограмма по признакам

- 1 for col in data_num:
- plt.hist(data[col], 50)
- 3 plt.xlabel(col)
- 4 plt.show()

1 data[data['LotFrontage'].isnull()]

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	Land
7	8	60	RL	NaN	10382	Pave	NaN	IR1	
12	13	20	RL	NaN	12968	Pave	NaN	IR2	
14	15	20	RL	NaN	10920	Pave	NaN	IR1	
16	17	20	RL	NaN	11241	Pave	NaN	IR1	
24	25	20	RL	NaN	8246	Pave	NaN	IR1	
1429	1430	20	RL	NaN	12546	Pave	NaN	IR1	
1431	1432	120	RL	NaN	4928	Pave	NaN	IR1	
1441	1442	120	RM	NaN	4426	Pave	NaN	Reg	
1443	1444	30	RL	NaN	8854	Pave	NaN	Reg	
1446	1447	20	RL	NaN	26142	Pave	NaN	IR1	

259 rows × 81 columns

Запоминание индексы строк с пустыми значениями

```
1 flt_index = data[data['LotFrontage'].isnull()].index
```

2 flt_index

Проверка вывода нужных строк

1 data[data.index.isin(flt_index)]

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	Land
7	8	60	RL	NaN	10382	Pave	NaN	IR1	
12	13	20	RL	NaN	12968	Pave	NaN	IR2	
14	15	20	RL	NaN	10920	Pave	NaN	IR1	
16	17	20	RL	NaN	11241	Pave	NaN	IR1	
24	25	20	RL	NaN	8246	Pave	NaN	IR1	
1429	1430	20	RL	NaN	12546	Pave	NaN	IR1	
1431	1432	120	RL	NaN	4928	Pave	NaN	IR1	
1441	1442	120	RM	NaN	4426	Pave	NaN	Reg	
1443	1444	30	RL	NaN	8854	Pave	NaN	Reg	
1446	1447	20	RL	NaN	26142	Pave	NaN	IR1	

259 rows × 81 columns

Фильтр по колонке

1 data_num[data_num.index.isin(flt_index)]['LotFrontage']

```
7
       NaN
12
       NaN
14
       NaN
16
       NaN
24
       NaN
1429
       NaN
1431
       NaN
1441
       NaN
1443
       NaN
1446
       NaN
```

Name: LotFrontage, Length: 259, dtype: float64

```
data_num_LotFrontage = data_num[['LotFrontage']]
```

² data_num_LotFrontage.head()

```
1
  from sklearn.impute import SimpleImputer
2
   from sklearn.impute import MissingIndicator
   # Фильтр для проверки заполнения пустых значений
1
   indicator = MissingIndicator()
2
  mask_missing_values_only = indicator.fit_transform(data_num_LotFrontage)
3
   mask_missing_values_only
   array([[False],
           [False],
           [False],
           [False],
           [False],
           [False]])
   strategies=['mean', 'median', 'most_frequent']
1
1
  def test_num_impute(strategy_param):
       imp_num = SimpleImputer(strategy=strategy_param)
2
3
       data_num_imp = imp_num.fit_transform(data_num_LotFrontage)
4
       return data_num_imp[mask_missing_values_only]
```

strategies[0], test_num_impute(strategies[0])

1

```
('mean',
 array([70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837, 70.04995837,
        70.04995837, 70.04995837, 70.04995837, 70.04995837]))
```

```
('median',
strategies[2], test_num_impute(strategies[2])
('most_frequent',
```

Задание колонки и видаимпьютации

```
def test_num_impute_col(dataset, column, strategy_param):
    temp_data = dataset[[column]]

indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(temp_data)

imp_num = SimpleImputer(strategy=strategy_param)
data_num_imp = imp_num.fit_transform(temp_data)
```

```
10
         filled_data = data_num_imp[mask_missing_values_only]
11
12
         return column, strategy_param, filled_data.size, filled_data[0], filled_data[fill
    data[['MasVnrArea']].describe()
 1
             MasVnrArea
     count 1452.000000
      mean
              103.685262
             181.066207
      std
      min
               0.000000
      25%
               0.000000
      50%
               0.000000
      75%
             166.000000
      max
            1600.000000
   test_num_impute_col(data, 'MasVnrArea', strategies[0])
     ('MasVnrArea', 'mean', 8, 103.68526170798899, 103.68526170798899)
   test_num_impute_col(data, 'MasVnrArea', strategies[1])
     ('MasVnrArea', 'median', 8, 0.0, 0.0)
   test_num_impute_col(data, 'MasVnrArea', strategies[2])
     ('MasVnrArea', 'most_frequent', 8, 0.0, 0.0)
```

1.2.2. Обработка пропусков в категориальных данных

Выбор категориальных колонок с пропущенными значениями

```
# Цикл по колонкам датасета
   cat_cols = []
 3
   for col in data.columns:
         # Количество пустых значений
 4
         temp_null_count = data[data[col].isnull()].shape[0]
 5
 6
         dt = str(data[col].dtype)
         if temp_null_count>0 and (dt=='object'):
 7
 8
            cat_cols.append(col)
            temp_perc = round((temp_null_count / total_count) * 100.0, 2)
 9
             print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format
10
```

Колонка Alley. Тип данных object. Количество пустых значений 1369, 93.77%. Колонка MasVnrType. Тип данных object. Количество пустых значений 8, 0.55%. Колонка BsmtQual. Тип данных object. Количество пустых значений 37, 2.53%. Колонка BsmtCond. Тип данных object. Количество пустых значений 37, 2.53%. Колонка BsmtExposure. Тип данных object. Количество пустых значений 38, 2.6%. Колонка BsmtFinType1. Тип данных object. Количество пустых значений 37, 2.53%. Колонка BsmtFinType2. Тип данных object. Количество пустых значений 38, 2.6%. Колонка Electrical. Тип данных object. Количество пустых значений 1, 0.07%. Колонка FireplaceQu. Тип данных object. Количество пустых значений 690, 47.26%. Колонка GarageType. Тип данных object. Количество пустых значений 81, 5.55%. Колонка GarageFinish. Тип данных object. Количество пустых значений 81, 5.55%. Колонка GarageQual. Тип данных object. Количество пустых значений 81, 5.55%. Колонка GarageCond. Тип данных object. Количество пустых значений 81, 5.55%. Колонка PoolQC. Тип данных object. Количество пустых значений 1453, 99.52%. Колонка Fence. Тип данных object. Количество пустых значений 1179, 80.75%. Колонка MiscFeature. Тип данных object. Количество пустых значений 1406, 96.3%.

```
cat_temp_data = data[['MasVnrType']]
cat_temp_data.head()
```

```
MasVnrType
0 BrkFace
1 None
2 BrkFace
3 None
4 BrkFace
```

```
cat_temp_data['MasVnrType'].unique()
array(['BrkFace', 'None', 'Stone', 'BrkCmn', nan], dtype=object)

cat_temp_data[cat_temp_data['MasVnrType'].isnull()].shape
(8, 1)
```

Импьютация наиболее частыми значениями

```
2    np.unique(data_imp2)
    array(['BrkCmn', 'BrkFace', 'None', 'Stone'], dtype=object)
```

Импьютация константой

→ 2. Преобразование категориальных признаков в числов

```
cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
cat_enc
```

```
c1
  0
       BrkFace
  1
          None
  2
       BrkFace
  3
          None
  4
       BrkFace
1455
         None
1456
         Stone
1457
         None
1458
         None
1459
          None
1460 rows × 1 columns
```

→ 2.1. Кодирование категорий целочисленными значения

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder

le = LabelEncoder()
cat_enc_le = le.fit_transform(cat_enc['c1'])

cat_enc['c1'].unique()
array(['BrkFace', 'None', 'Stone', 'BrkCmn'], dtype=object)

np.unique(cat_enc_le)
array([0, 1, 2, 3])

le.inverse_transform([0, 1, 2, 3])
array(['BrkCmn', 'BrkFace', 'None', 'Stone'], dtype=object)
```

→ 2.2. Кодирование категорий наборами бинарных значен

```
ohe = OneHotEncoder()
cat_enc_ohe = ohe.fit_transform(cat_enc[['c1']])
```

```
cat_enc.shape
 (1460, 1)
cat_enc_ohe.shape
 (1460, 4)
cat_enc_ohe
 <1460x4 sparse matrix of type '<class 'numpy.float64'>'
         with 1460 stored elements in Compressed Sparse Row format>
 cat_enc_ohe.todense()[0:10]
 matrix([[0., 1., 0., 0.],
         [0., 0., 1., 0.],
         [0., 1., 0., 0.],
         [0., 0., 1., 0.],
         [0., 1., 0., 0.],
         [0., 0., 1., 0.],
         [0., 0., 0., 1.],
         [0., 0., 0., 1.],
         [0., 0., 1., 0.],
         [0., 0., 1., 0.]
 cat_enc.head(10)
          c1
  0 BrkFace
       None
  2 BrkFace
  3
       None
    BrkFace
  5
       None
  6
       Stone
  7
       Stone
  8
       None
```

→ 2.3. Pandas get_dummies - быстрый вариант one-hot коди

```
1 pd.get_dummies(cat_enc).head()
```

9

None

	c1_BrkCmn	c1_BrkFace	c1_None	c1_Stone
0	0	1	0	0
1	0	0	1	0
2	0	1	0	0
3	0	0	1	0
4	0	1	0	0

1
2 pd.get_dummies(cat_temp_data, dummy_na=True).head()

	MasVnrType_BrkCmn	MasVnrType_BrkFace	MasVnrType_None	MasVnrType_Stone	MasVnrTy
0	0	1	0	0	
1	0	0	1	0	
2	0	1	0	0	
3	0	0	1	0	
4	0	1	0	0	

→ 3. Масштабирование данных

1 from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer

→ 3.1. МіпМах масштабирование

```
1  sc1 = MinMaxScaler()
2  sc1_data = sc1.fit_transform(data[['SalePrice']])
1  plt.hist(data['SalePrice'], 50)
2  plt.show()
```


- 1 plt.hist(sc1_data, 50)
- 2 plt.show()

→ 3.2. Масштабирование данных на основе Z-оценки - Stan

```
1  sc2 = StandardScaler()
2  sc2_data = sc2.fit_transform(data[['SalePrice']])
1  plt.hist(sc2_data, 50)
2  plt.show()
```


→ 3.3. Нормализация данных

```
1  sc3 = Normalizer()
2  sc3_data = sc3.fit_transform(data[['SalePrice']])
1  plt.hist(sc3_data, 50)
2  plt.show()
```


Список литературы

- [1] Гапанюк Ю. Е. Лабораторная работа «Разведочный анализ данных. Исследование и визуализация данных» [Электронный ресурс] // GitHub. 2019. Режим досту- па: https://github.com/ugapanyuk/ml_course/wiki/LAB_EDA_VISUALIZATION (дата обращения: 15.02.2020).
- [2] Scikit-learn. Boston house-prices dataset [Electronic resource] // Scikit-learn. 2018. Access mode: https://scikit-learn.org/0.20/modules/generated/sklearn.datasets.load_boston.html (online;accessed: 18.02.2020).
- [3] Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource] // Read the Docs. 2019. Access mode: https://ipython.readthedocs.io/en/ stable/ (online; accessed: 20.02.2020).
- [4] Waskom M. seaborn 0.9.0 documentation [Electronic resource] // PyData. 2018. Access mode: https://seaborn.pydata.org/(online; accessed: 20.02.2020).
- [5] pandas 0.24.1 documentation [Electronic resource] // PyData. 2019. Access mode: http://pandas.pydata.org/pandas-docs/stable/(online; accessed: 20.02.2020).