

Multi-Level Graph Encoding with Structural-Collaborative Relation Learning for Skeleton-Based Person Re-Identification

Shihao Xu^{1,2,3} Haocong Rao^{1,2}

¹ SIAT, CAS

Xiping Hu^{1,2,3} Jun Cheng^{1,2}

² CUHK, HK ^{3}LZU Bin Hu^{4,3}

⁴BIT

Paper, Code and Data: https://github.com/Kali-Hac/MG-SCR

Goal

Skeleton-based person re-identification (Re-ID) aims to reidentify a specific person via 3D skeletons in different views or scenes.

• Input: **3D Skeletons** (3D coordinates of body joints)

3D Skeleton-based Re-ID Task

Motivation

Overview of Multi-level Graph Encoding Model

Contributions

Multi-level Graphs ► Fully model body structure MSRL ► Learn structural correlations of adjacent joints **CCRL** ► Learn collaboration between body components **SSP** ► Encode graph dynamics and capture high-level semantics with a self-supervised prediction task

Method

Experiments on Skeleton Re-ID Benchmarks

				BIWI		IAS-A		IAS-B		KGBD		KS20	
▶ Outperform		Id	Methods	Rank-1	nAUC	Rank-1	nAUC	Rank-1	nAUC	Rank-1	nAUC	Rank-1	nAUC
•		1	Gait Energy Image [2010]	21.4	73.2	25.6	72.1	15.9	66.0	_	_	_	
state-of-the-art	Depth-Based	2	3D CNN + Average Pooling [2010]	27.8	84.0	33.4	81.4	39.1	82.8	_	_	_	_
Methods 3 Gait Energy Volume [2011]		25.7	83.2	20.4	66.2	13.7	64.8	_	_	_	_		
skeleton-based		4	3D LSTM [2016]	27.0	83.3	31.0	77.6	33.8	78.0	_	_	_	_
methods		5	PCM + Skeleton [2014a]	42.9	_	27.3	_	81.8	_	_	_	_	
		6	Size-Shape descriptors + SVM [2016]	20.5	87.2	_	_	_	_	_	_	_	_
	Multi-Modal	7	Size-Shape descriptors + LDA [2016]	22.1	88.5	_	_	_	_	_	_	_	_
	Methods	8	DVCov + SKL [2017]	21.4	_	46.6	_	45.9	_	_	_	_	_
Superior to		9	ED + SKL [2017]	30.0	_	52.3	_	63.3	_	_	_	_	_
		10	CNN-LSTM with RTA [2018]	50.0	_	_	_	_	_	_	_	_	
many depth-		11	D^{13} descriptors + KNN [2014b]	39.3	64.3	33.8	63.6	40.5	71.1	46.9	90.0	58.3	78.0
based and			Single-layer LSTM [2016]	15.8	65.8	20.0	65.9	19.1	68.4	39.8	87.2	80.9	92.3
based and	Skeleton-Based	13	Multi-layer LSTM [2019]	36.1	75.6	34.4	72.1	30.9	71.9	46.2	89.8	81.6	94.2
multi-modal	Methods	14	D^{16} descriptors + Adaboost [2019]	41.8	74.1	27.4	65.5	39.2	78.2	69.9	90.6	59.8	78.8
mun-modai	Methous	15	PostGait [2020]	33.3	81.8	41.4	79.9	37.1	74.8	90.6	97.8	70.5	94.0
methods		16	Attention Gait Encodings [2020]	59.1	86.5	56.1	81.7	58.2	85.3	87.7	96.3	86.5	94.7
		17	MG-SCR (Ours)	61.6	91.9	56.5	87.0	65.9	93.1	96.3	99.9	87.3	95.5

Evaluation on Model-Estimated Skeletons (from CASIA B)

▶ Outperform state-of-theart supervised method under cross-view evaluation

Methods	0 °	18°	36°	54°	72°	90°	108°	126°	144°	162°	18
PoseGait	10.7	37.4	52.5	28.3	24.3	18.9	23.5	17.2	23.6	18.8	4.
Ours	20.0	63.1	60.3	52.0	54.0	80.4	75.1	74.3	65.6	39.1	25

Component Analysis and Relation Visualization

MS	RL	CCRL	SSP	$oldsymbol{h}_f$	\mathbf{AP}	Rank-1	nA	
Single-Level	Multi-Level							
√					✓	56.8	89	
	✓				✓	57.3	89	
✓			\checkmark	✓		56.9	89	
	✓		\checkmark	✓		57.6	90	
✓			\checkmark		✓	57.2	89	
	✓		✓		✓	59.3	91	
	✓	\checkmark		✓		58.4	89	
	✓	\checkmark			✓	59.1	90	
	✓	\checkmark	\checkmark	✓		59.7	91	
	✓	✓	✓		✓	61.6	91	

(MSRL, CCRL, SSP). "Single-Level" denotes using only joint-level graph. "AP" indicates exploiting average prediction of encoded sequence-level predictions graph states h_1, \dots, h_f rather than final state h_f for person Re-ID.

- ► Multi-level graphs improve Re-ID performance compared with joint-level graphs
- ► Combining MSRL and CCRL can produce higher performance gain
- ► SSP pre-training task enhances graph dynamics encoding for better person Re-ID
- Table 2: Performance of our model with different components ► Average prediction (AP) encourages better

▶ Our model can capture global/local collaborative relations between body components.

Related Works

- ▶ 3D Skeleton-Based Person Re-ID:
- [1] [T-PAMI 2021] A Self-Supervised Gait Encoding Approach with Locality-Awareness for 3D Skeleton Based Person Re-Identification
- [2] [IJCAI 2020] Self-Supervised Gait Encoding with Locality-Aware Attention for Person Re-Identification
- ► Multi-Scale Skeleton Graphs:
- [3] SM-SGE: A Self-Supervised Multi-Scale Skeleton Graph Encoding Framework for Person Re-Identification