

LLMs, LangChain and Conversational Flows

22 Maggio 2025

Michele Ferro michele.ferro@aitho.it

Data Scientist & BE Developer

Agenda

- From ML to NLP and GenAl
 The rise of a new Al era
- LangChain
 Managing conversational flows with LLMs
- LangGraph
 Building stateful and dynamic conversational flows
- Example Notebook

From ML to NLP and GenAl

The rise of a new Al era

From classic ML to language understanding

Classic Machine Learning

- Works well with structured data (tables, numbers, labels)
- Uses algorithms like regression, decision trees, SVMs
- Requires manual feature engineering and domain expertise

The Challenge

- Language is unstructured, ambiguous and contextdependent
- Traditional ML struggles to capture meaning, syntax and semantics

NLP Evolution, GenAl and the rise of LLMs

Natural Language Processing (NLP)	Generative AI (GenAI)	Large Language Models (LLMs)
 Field of AI that deals with the automatic processing of natural language (text or human voice) Early approaches: rule-based systems, bag-of-words, TF-IDF Then: statistical models, followed by word embeddings (Word2Vec, Glove) Breakthrough: Transformers (2017) → enabled true deep contextual understanding 	 Field of AI that focuses on generating content (i.e. text, images, code, audio, video) Produces original, high-quality outputs Enables multimodal interaction (e.g. text-to-image, code from natural language) Fuels next-gen applications in productivity, creativity and automation 	 Foundation models trained on massive text corpora Can generate, translate, summarize and reason over language Examples: GPT (OpenAI), Gemini (Google), LLaMA (Meta), Claude (Anthropic), Mistral (Mistral AI)

Overlapping fields in Modern Al

How these areas of AI relate to each other?

Aside is a Venn diagram showing how key Al domains **intersect** and **contain** one another

These overlaps highlight how today's most powerful AI systems combine multiple subfields into a unified capability

Why LLMs matter?

- Understand context, nuance, and intent in language
- Can be used for zero-shot and few-shot learning: less data, more generalization
- Enable new capabilities:
 - Conversational Al
 - Semantic search
 - Code generation
 - Document analysis
- Shift from task-specific ML to general-purpose language intelligence

Managing conversational flows with LLMs

Introduction to LangChain

What is LangChain?

- Open-source framework for building applications powered by Large Language Models (LLMs)
- Facilitates the creation of complex conversational agents
- Easily integrates with databases, APIs, external files, and ML models
- Available on Python and JavaScript

Key components of LangChain

Model I/O

Standardized interface for interacting with different language models

Memory

Manages conversational memory for more human-like interactions

Chain

Modular sequences of model calls (**prompt** → **LLM** → **actions**)

Agents

Autonomous entities that dynamically decide actions using models

Managing Conversational Flows

Memory Types

- BufferMemory (full conversation history)
- SummaryMemory (automatic summarization)
- EntityMemory (tracks specific entities)

Dynamic Routing

LangChain can select different conversational flows based on the context

Integrating Language Models

- Supports models like OpenAI, Hugging Face, Cohere,
 Anthropic and more
- PromptTemplate
 Creates reusable, parameterized prompts

```
prompt_template = PromptTemplate.from_template("Tell me a joke about {topic}")
prompt_template.invoke({"topic": "cats"})
```

Model Wrappers

Integrate diverse APIs while maintaining a consistent application logic

Use Cases and Benefits

Use Cases

Smart chatbots, custom search engines, document automation tools

Benefits

- Modular and flexible
- Greatly reduces development time
- Extensible with custom plugins

LangGraph

Building Stateful and Dynamic Conversational Flows

What is LangGraph?

- LangGraph = LangChain + State Machines + Graph Logic
 - Graph-based extension of LangChain for building complex, dynamic LLM flows
 - Inspired by finite state machines and directed acyclic graphs
 (DAGs)
 - Nodes represent steps (e.g. LLM calls, logic), while edges define conditional transitions
 - Enables non-linear flows, loops, and real-time decision branches
- Why it matters:
 - Traditional chains are linear
 - LangGraph brings structure + flexibility to conversations

LangGraph's Key Features and Use Cases

Key Features

- Loop & branching: perfect for iterative reasoning or fallback logic
- State tracking: handles memory and user context across steps
- Composable: build reusable graph components for complex tasks
- Integrated with LangChain tools, memory and agents

Use Cases

- Multi-step chatbots with error recovery
- Conversational agents with decision logic
- Adaptive workflows (e.g. document intake, customer support)

LangGraph: Flow example

Source: ionio.ai

Let's look at the code!

Thank you!

partners@aitho.it

Any question?

