Problem Statement:

Design the following 4-bit ALU (Arithmetic Logic Unit):

S2	S1	S0	Output	Function
1	1	0	Ai — Bi	Subtract
0	1	1	Ai + Bi	Add
1	1	1	$A_i + B_i + 1$	Add with Carry
0	1	0	A _i + 1 + 1	Transfer A with Carry
1	0	Χ	Ai . Bi	AND
0	0	Х	Ai⊕ Bi	XOR

Function Generation:

S2	S1	S0	Z	X	Y	Output	Function
1	1	0	1	Ai	Bi'	Ai — Bi	Subtract
0	1	1	0	Ai	В	Ai + Bi	Add
1	1	1	1	Ai	В	$A_i + B_i + 1$	Add with Carry
0	1	0	1	Ai	all(1)	A _i + 1 + 1	Transfer A with Carry
1	0	Х	0	A _i . B _i	0 0	Ai . Bi	AND
0	0	Х	0	A _i ⊕ B _i		Ai 🕀 Bi	XOR

E,	~	С.	ın	cti	_	n	V	•
г	"	Гι	411	CU	U	••	Л	•

<u>K-Map</u> :

S_2S_1 S_0	S ₂ ' S ₁ '	S ₂ ' S ₁	S_2S_1	S ₂ S ₁ '
S ₀ '	$A_i \oplus B_i$	Ai	Ai	$A_i B_i$
S ₀	$A_i \oplus B_i$	Ai	Ai	A _i B _i

So , From the K-Map –

=
$$S_1 A_i + S_2 S_1' A_i B_i + S_2' S_1' (A_i \oplus B_i)$$

For Function Y:

<u>K-Map</u>:

S ₂ S ₁	S ₂ ' S ₁ '	S2' S1	S ₂ S ₁	S ₂ S ₁ '
So'		1	Bi'	
So		Bi	Bi	

So , From the K-Map -

$$= S_2S_1S_0'B_i' + S_2'S_1S_0' + S_1S_0B_i$$

=
$$S_1 S_0' (B_i' S_2 + S_2') + S_1 S_0 B_i$$

=
$$S_1 S_0' (B_i' + S_2') + S_1 S_0 B_i$$

For Function Z:

<u>K-Map</u>:

S ₂ S ₁	S ₂ ' S ₁ '	S2' S1	S ₂ S ₁	S ₂ S ₁ '
So'		1		
So			1	

So , From the K-Map –

$$= S_1 S_0' + S_2 S_1$$

$$= S_1(S_0' + S_2)$$