FYS1210

Robin A. T. Pedersen

January 23, 2016

Contents

1	Uke	3	2
	1.1	Serie- og parallellkobling	2
		1.1.1 Seriekobling	2
		1.1.2 Parallellkobling	3
	1.2	Kirchhoff	3
		1.2.1 Kirchhoffs lov om strømmer	3
		1.2.2 Kirchhoffs lov om spenninger	3
	1.9	1.2.3 Spenningsdeler	3
	1.3	Superposisjon	$\frac{4}{4}$
2	$\mathbf{U}\mathbf{k}\mathbf{e}$	4	7
3	$\mathbf{U}\mathbf{k}\mathbf{e}$	5	7
4	$\mathbf{U}\mathbf{k}\mathbf{e}$	6	7
5	$\mathbf{U}\mathbf{k}\mathbf{e}$	7	7
6	$\mathbf{U}\mathbf{k}\mathbf{e}$	8	7
7	Uke	9	7
8	$\mathbf{U}\mathbf{k}\mathbf{e}$	10	7
9	$\mathbf{U}\mathbf{k}\mathbf{e}$	11	7
10	$\mathbf{U}\mathbf{k}\mathbf{e}$	12	7
11	$\mathbf{U}\mathbf{k}\mathbf{e}$	13	7
12	Uke	14	7
13	Uke	15	7

14 Uke 16	7
15 Uke 17	7
16 Uke 18	7
17 Uke 19	7
18 Uke 20	7
19 Uke 21	7
20 Uke 22	7
21 Uke 23	7

Abstract

Dette dokumentet er hovedsaklig skrevet for meg selv i et forsøk på å tvinge hjernen min til å behandle informasjonen inneholdt i pensum. Kanskje vil det bli noe andre kan bruke hvis de ikke gidder å lese hele læreboka, eller det kan brukes som oppsummering før eksamen?

Se etter feil og si ifra hvis du gidder.

1 Uke 3

Ledere, isolatorer, halvledere, Ohms lov, serie- og parallellkobling, Kirchoff, superposisjon og Thevenin.

1.1 Serie- og parallellkobling

1.1.1 Seriekobling

I denne kretsen er 3 motstander koblet sammen i serie. Den totale motstanden i en seriekobling er gitt ved:

$$R_{total} = R_1 + R_2 + \dots + R_n$$

1.1.2 Parallellkobling

Den totale motstanden i en parallellkobling gis via den *inverse* av totalen.

$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$$

Tilfellet med kunn to motstander kan forenkles.

$$R_{total} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

1.2 Kirchhoff

1.2.1 Kirchhoffs lov om strømmer

TODO

1.2.2 Kirchhoffs lov om spenninger

TODO

1.2.3 Spenningsdeler

Vi ser på tilfellet med to motstander seriekoblet til et batteri.

Hva er spenningen V_1 over motstanden R_1 ?

$$V_1 = \frac{R_1}{R_1 + R_2} \cdot V_{batteri}$$

Du kan tenke på det som dette: Hvor stor del av kaka tar R_1 ? sin rettferdige andel: $\frac{R_1}{R_1+R_2}$ Hvor mye kake er det egentlig? $V_{batteri}$

1.3 Superposisjon

Superposisjonsprinsippet brukes til å finne verdier i kretser med mer enn én spenningskilde. For å finne spenningen rundt en komponent ser man på bidraget fra én spenningskilde om gangen. Når bidraget fra alle kildene er funnet, legger man det sammen for å få totalverdien.

1.3.1 Eksempel

Krets med to spenningskilder

I denne kretsen er det to spenningskilder som begge bidrar til å skape spenning V_1 rundt motstanden R_1 .

Bidrag fra første spenningskilde

Vi later som den ene spenningskilden V_{S2} ikke eksisterer og regner ut bidraget fra V_{S1} .

Motstandene R_1 og R_3 danner en parallellkobling som vi kan betrakte som én motstand R_{EQ} .

Siden R_1 og R_3 er parallellkoblet får man R_{EQ} via den inverse.

$$\frac{1}{R_{EQ}} = \frac{1}{R_1} + \frac{1}{R_3}$$

Eller, siden det bare er to motstander, via forenklingen.

$$R_{EQ} = \frac{R_1 \cdot R_3}{R_1 + R_3} = \frac{1 \cdot 1}{1 + 1} = \frac{1}{2}$$

Spenningen over R_1 vil være den samme som over R_3 , fordi de er parallellkoblet. Det er den samme spenningen som over hele R_{EQ} .

Siden vi vil finne spenningen over R_1 holder det da å regne ut spenningen over R_{EQ} .

$$V_{EQ} = V_{1(S1)} = \frac{R_{EQ}}{R_{EQ} + R_2} \cdot V_{S1} = \frac{\frac{1}{2}}{\frac{1}{2} + 1} \cdot 15 = 5 \text{ V}$$

 $V_{1(S1)}$ er da den delen av spenningen V_1 forårsaket av V_{S1} .

Bidrag fra andre spenningskilde

Denne gangen later vi som V_{S1} ikke eksisterer.

Tegnet på en annen måte ser vi at R_1 og R_2 også danner en parallellkobling. Den kan vi betrakte som R_{FQ} og regne ut på samme måte. Totalmotstanden til R_{FQ} gis på samme måte som ista.

$$R_{FQ} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{1}{2}$$

Spenningen over R_{FQ} er lik spenningen over R_1 som er lik spenningen over R_2 .

$$V_{FQ} = V_{1(S2) = \frac{R_{FQ}}{R_{FQ} + R_3} \cdot V_{S2}} = \frac{\frac{1}{2}}{\frac{1}{2} + 1} \cdot 3 = 1 \text{ V}$$

Total spenning!

Nå som vi har regnet ut begge bidragene $V_{1(S1)}$ og $V_{1(S2)}$ kan vi legge dem sammen og få den totale spenningen V_1 .

$$V_1 = V_{1(S1)} + V_{1(S2)} = 5 + 1 = 6 \text{ V}$$

- 2 Uke 4
- 3 Uke 5
- 4 Uke 6
- 5 Uke 7
- 6 Uke 8
- 7 Uke 9
- 8 Uke 10
- 9 Uke 11
- 10 Uke 12
- 11 Uke 13
- 12 Uke 14
- 13 Uke 15
- 14 Uke 16
- 15 Uke 17
- 16 Uke 18
- 17 Uke 19
- 18 Uke 20
- 19 Uke 21
- 20 Uke 22
- 21 Uke 23