EVML

ADVANCED CNN

JEROEN VEEN

DL REPORT TEMPLATE

Questions?

AGENDA

- Object detection
- Object tracking
- Semantic segmentation
- Variational autoencoder

TYPICAL CNN ARCHITECTURE

- Perform classification
- Conv, pool, dense layers

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

CNN SUMMARY

- Emulate the behavior of a visual cortex (e.g. receptive fields)
- Higher-level representations of image content
- No feature definition, but automated extraction
- Biologically inspired perceptrons
- Multilayer perceptrons usually mean fully connected networks, which makes them prone to overfitting
- CNNs can be considered as regularized versions of multilayer perceptrons

CONVOLUTIONAL LAYER SUMMARY

- Local connectivity
- Shared weights
- 3D volumes of neurons
- Output is a stack if feature maps

MORE TRANSFER LEARNING HINTS

https://keras.io/api/applications

CLASSIFICATION AND LOCALIZATION

Add second dense output layer to predict coordinates (regression)

JACCARD INDEX

- Performance metric: intersection over Union (IoU)
- measures similarity between finite sample sets

OBJECT DETECTION

SLIDING WINDOW

SLIDING WINDOWS

Source: https://www.pyimagesearch.com/2020/06/22/turning-any-cnn-image-classifier-into-an-object-detector-with-keras-tensorflow-and-opency/

REGION-BASED CNN

FPN: FEATURE PYRAMID NETWORK

• FPN: Feature Pyramid Network (2016) - KiKaBeN

OBJECT DETECTION METHODS

YOLO V9

YOLO

Intro: https://youtu.be/LvArU0AH8s8?t=35s

• Explanation: https://www.youtube.com/watch?v=svn9-xV7wjk&t=170s

I'll give a short version ©

YOU ONLY LOOK ONCE (YOLO)

YOLO BASIC ARCHITECTURE

LOSS FUNCTION

Total Loss = $L_1 + L_2 + L_3 + L_4 + L_5$

L₁: Localization Loss

 $\lambda \text{coord } \Sigma[(x_pred - x_true)^2 + (y_pred - y_true)^2]$

Penalizes incorrect center positions (x,y)

L₃: Confidence Loss

Σ(C_pred - C_true)²

Penalizes incorrect object confidence

L_s: Classification Loss

 $\Sigma \Sigma(p_pred(c) - p_true(c))^2$

Penalizes incorrect class predictions

L₂: Size Loss

λcoord $Σ[(√w_pred - √w_true)^2 + (√h_pred - √h_true)^2]$

Penalizes incorrect box dimensions (w,h)

L₄: No-object Loss

λnoobj Σ(C_pred - C_true)2

Penalizes false positive detections

Key Points:

- λcoord: Typically 5, gives more weight to spatial predictions
- λnoobj: Typically 0.5, reduces impact of background
- Square root in size loss helps normalize impact of small vs large boxes

NECK

Feature Flow Process

- 1. Backbone → generates initial features
- 2. FPN \rightarrow top-down pathway (large \rightarrow small)
- 3. PAN \rightarrow bottom-up path (small \rightarrow large)
- 4. Final features sent to detection heads

Feature Pyramid Network (FPN)

Purpose: Top-down pathway to build feature pyramids

- Large features → detect large objects
- Small features → detect small objects
- Creates multi-scale feature maps (e.g., P3, P4, P5)
- Uses lateral connections to preserve spatial information

Path Aggregation Network (PAN)

Purpose: Bottom-up path augmentation

- Enhances flow of low-level features
- Shortens information path
- · Improves feature hierarchy
- Better propagation of low-level patterns

Non-Max Suppression (NMS)

Post-Processing Step (Not part of neck)

Input:

- Multiple bounding boxes
- Confidence scores
- IoU threshold

Process:

- 1. Sort boxes by confidence
- 2. Keep highest confidence
- 3. Remove overlapping boxes
- 4. Repeat until done

KEY TECHNICAL IMPROVEMENTS ACROSS VERSIONS:

- Early Versions (v1-v3)
 - v1: Single-stage detection
 - v2: Batch norm & anchor boxes
 - v3: Multi-scale predictions
- Middle Era (v4-v7)
 - v4: CSP & Mosaic augmentation
 - v5: Adaptive anchors
 - v7: Dynamic head & label assignment
- Modern Era (v8-v11)
 - V8: Anchor-free detection
 - v9: Programmable gradients
 - v11: Transformer integration

ANCHOR-BASED VS ANCHOR-FREE APPROACHES

OBJECT TRACKING WITH CNN

Fully-convolutional network tracker (FCNT)

SEMANTIC SEGMENTATION

CLASSIFICATION VS. DETECTION VS. SEMANTIC SEGMENTATION VS INSTANCE SEGMENTATION

FULLY CONVOLUTIONAL NETWORKS

TRANSPOSED CONVOLUTION

- Upsampling layer to recover spatial information
 - 1. stretching
 - 2. filtering

SEGNET

RECALL DATA AUGMENTATION

AUTOENCODERS

Generating augmented data

CONDITIONAL VARIATIONAL AUTOENCODER

• Output determined by latent variables, chance and metadata.

