"Advanced" Topics in Morphological Evolution

What my interests are?

Photograph: E.A.B. Almeida

Oxaea flavescens Klug, 1807

What my interests are?

Overview

1. Morphological data in Bayesian analyses.

2. Extensions and additions to Mk model.

3. Exploiting the Bayesian "machinery" to answer questions about morphological evolution.

Particulars of morphological data

<u>DNA</u>:

- 1. Only 4 bases
- 2. Meaning across sites
- 3. Homology: alignment
- 4. Discrete

Morphology:

- 1. N states
- 2. No meaning across chars
- 3. Homology: expertise
- 4.1. Discrete:
 - binary/multistate
 - absence/presence
 - qualities
- 4.2. Continuous:
 - raw/ratios

The "pieces" of a Bayesian analysis

Photograph: D.S. Porto

Bayesian Inference X Parsimony

<u>Bayesian Inference:</u>

- 1. Expected # substitutions
- 2. Shared branch lengths
- 3. Invariable sites
- 4. Posterior sample of trees
- 5. Posterior probability

Parsimony:

- 1. Minimum # changes
- 2. Individual branch lengths
- 3. Only variable characters
- 4. Most parsimonious tree
- 5. Bootstrap/Bremer

Mk model: instantaneous ratematrix (Q)

JC69						Mk (Lewis 2001)				
	Α	C	G	Т			0	1	•••	k
A	-3β	β	β	β		0	1 - k	1	•••	1
C	β	-3β	β	β	α	1	1	1 - k	•••	1
G	β	β	-3β	β	u	:	:	:	1 - k	:
Т	β	β	β	-3β		k	1	1	•••	1 - k

Mk model: assumptions

Assumptions of JC69:

- 1. All substitutions equally likely
- 2. Base frequencies equal
- 3. Every site has equal probability of substitution
- 4. Process is constant through time
- 5. Sites are independent of each other
- 6. Substitution is Markovian (memoryless)
- 7. All sites have the same evolutionary history

Mk model: assumptions

- 1. All changes equally likely
- 2. State frequencies equal
- 3. Every character has equal probability of change
- 4. Process is constant through time
- 5. Characters are independent of each other
- 6. Change is Markovian (memoryless)
- 7. All chars have the same evolutionary history
- 8. Only informative chars are included (usually).

Extensions to Mk model

Mk model: some tweaks we can make

- 1. All changes equally likely (exchangeabilities)
- 2. State frequencies equal (equilibrium freqs.)
- 3. Every character has equal probability of change
- 4. Process is constant through time
- 5. Characters are independent of each other
- 6. Change is Markovian (memoryless)
- 7. All chars have the same evolutionary history

Mk model: some tweaks we can make

- 1. All changes equally likely (exchangeabilities)
- 2. State frequencies equal (equilibrium freqs.)
- 3. Every character has equal probability of change
- 4. Process is constant through time
- 5. Characters are independent of each other
- 6. Change is Markovian (memoryless)
- 7. All chars have the same evolutionary history

Tweak I: unequal char-state frequencies

Wright et al. (2016): Syst. Biol. 65: 602-611

Mk model: some tweaks we can make

- 1. All changes equally likely (exchangeabilities)
- 2. State frequencies equal (equilibrium freqs.)
- 3. Every character has equal probability of change
- 4. Process is constant through time
- 5. Characters are independent of each other
- 6. Change is Markovian (memoryless)
- 7. All chars have the same evolutionary history

Tweak II: among-character rate var. (ACRV)

ACRV:

- 1. Shared or individual
- 2. More categories
- 3. Lognormal distribution

Lognormal distribution

O'Maera (2012): Annu. Rev. Ecol. Evol. Syst. 43: 267-285

Gamma distribution

Tweak II: among-partition rate var. (APRV)

<u>APRV</u>:

- 1. Rate multipliers
- 2. Unlinked branch lengths

O'Maera (2012): Annu. Rev. Ecol. Evol. Syst. 43: 267-285

Mk model: some tweaks we can make

- 1. All changes equally likely (exchangeabilities)
- 2. State frequencies equal (equilibrium freqs.)
- 3. Every character has equal probability of change
- 4. Process is constant through time
- 5. Characters are independent of each other
- 6. Change is Markovian (memoryless)
- 7. All chars have the same evolutionary history

Tweak III: other Markovian Models

Hidden Markov Model (HMM) + Structured Markov Model (SMM)

2 characters

TC	00	01	10	11
00	-	1	1	0
01	1	-	0	1
10	1	0	-	1
11	0	1	1	-

TC	00	01	10	11
00	-	0	1	0
01	0	-	0	1
10	1	0	-	1
11	0	1	1	-

3 characters

	IV /I	M	•
J	IVI	IVI	•

- 1. Correlations
- 2. Hierarchy

<u>HMM</u>:

- 1. Visible layer
- 2. Hidden layer

Mk model: some tweaks we can make

- 1. All changes equally likely (exchangeabilities)
- 2. State frequencies equal (equilibrium freqs.)
- 3. Every character has equal probability of change
- 4. Process is constant through time
- 5. Characters are independent of each other
- 6. Change is Markovian (memoryless)
- 7. All chars have the same evolutionary history

Tweak IV: renewal process (and others)

VOL. 195, NO. 2 THE AMERICAN NATURALIST FEBRUARY 2020

Symposium

Memory in Trait Macroevolution*

Emma E. Goldberg^{1,†,‡} and Jasmine Foo^{2,†}

1. Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota 55108; 2. Department of Mathematics, University of Minnesota, Minnesota, Minnesota 55455

Submitted November 6, 2018; Accepted April 16, 2019; Electronically published December 27, 2019 Online enhancements: appendix, code.

Goldberg & Foo (2020): Am. Nat. 195: 300-314

- 1. Renewal process
- 2. Threshold models
- 3. Random walk models

Mk model: some tweaks we can make

- 1. All changes equally likely (exchangeabilities)
- 2. State frequencies equal (equilibrium freqs.)
- 3. Every character has equal probability of change
- 4. Process is constant through time
- 5. Characters are independent of each other
- 6. Change is Markovian (memoryless)
- 7. All chars have the same evolutionary history

gene regulatory networks (GRN)

Photographs: D.S. Porto

Photographs: D.S. Porto

Serb & Oakley (2005): Bioessays 27:1158-1166

Bayesian Machinery: Information Theory

Information Theory: Entropy (Shannon 1948)

PRIOR

- 1. more uncertainty
- 2. higher entropy
- 3. equiprobable outcomes

POSTERIOR

- 1. less uncertainty
- 2. lower entropy
- 3. unequal probability

Bayesian Phylogenetic Information (BPI)

Information (Lindley 1953)

l = H* - H

Phylogenetic dissonance (= conflict)

Photographs: D.S. Porto

Applications: some examples

Example I: information content

anatomical partitions

Porto et al. (2020): Syst. Biol.

Example II: conflict among partitions

"structure trees"

Porto et al. (2020): Syst. Biol.

Example II: conflict among partitions

"structure trees"

Porto et al. (2020): Syst. Biol.

Example III: address evolutionary hypotheses

