BIASING CIRCUITS

BIASING CIRCUITS

COLLECTOR TO BASE BIAS CIRCUIT

FIXED BIAS CIRCUIT

- Simplest DC bias configuration.
- Transistors base current, I_B remains constant for given values of V_{CC}, and therefore the transistors operating point must also remain fixed.
- Positive terminal of Battery is connected to Collector and Base Resistor.

FIXED BIAS CIRCUIT

INPUT CIRCUIT

$$V_{cc} - I_B R_B - V_{BE} = 0$$

$$I_B = \frac{V_{cc} - V_{BE}}{R_B}$$

$$I_B \approx \frac{V_{CC}}{R_B}$$

OUTPUT CIRCUIT

$$V_{cc} - I_C R_C - V_{CE} = 0$$

$$V_{CE} = V_{cc} - I_c R c$$

$$Ic = \beta I_B$$

$$I_C = \frac{V_{cc} - V_{CE}}{R_C}$$

$$I_{C(sat)} = \frac{V_{cc}}{R_C}$$

Given the fixed bias circuit with VCC = 12V, RB = 240 k Ω , RC = 2.2 k Ω and β = 75. Determine the values of operating point.

Equation for the input loop is:

$$I_{B} = [V_{CC} - V_{BE}] / R_{B} \text{ where } V_{BE} = 0.7V$$

$$I_{B} = [12 - 0.7] / [240 * 10^{3}]$$

$$I_{B} = 47.08 \mu A$$

$$I_{C} = \beta I_{B} = 75 * 47.08 \mu A = 3.53 mA$$

$$V_{CE} = V_{CC} - I_{C}R_{C} = 12 - ((3.53 * 10^{-3}) * (2.2 * 10^{3})) = 4.23V$$

Determine the Q-point values of IC and VCE for the circuit. Assume VCE = 8 V, RB = 360 k Ω and RC = 2 k Ω . β = 100 Construct the dc load line and plot the Q-point.

Equation for the input loop is:

$$\begin{split} I_{B} &= [V_{CC} - V_{BE}] \, / \, R_{B} \text{ where } V_{BE} = 0.7V \\ I_{B} &= [8V - 0.7V] \, / \, [360 * 10^{3}] = 20.28 \mu \text{A} \\ I_{C} &= \beta I_{B} = 100 * 20.28 \mu \text{A} = 2.028 \text{mA} \\ V_{CE} &= V_{CC} - I_{C} R_{C} = 8V - (2.028 \text{mA} * ((2 * 10^{3})) = 3.94V \\ V_{CE(sat)} &= 0 \; ; I_{C} = \frac{V_{cc} - V_{CE}}{R_{C}} = \frac{V_{cc} - 0}{R_{C}} \; ; I_{C(sat)} = \frac{V_{cc}}{R_{C}} = \frac{8V}{2 \; \text{k}\Omega} = 4 \text{mA} \\ I_{C(cutoff)} &= 0 \; ; V_{CE(cutoff)} = V_{CC} = 8V \end{split}$$

FIXED BIAS CIRCUIT

ADVANTAGES

- Simple circuit, uses very few components.
- The operating point can be selected any where in the active region, by simply changing value of $R_{\rm B.}$ Thus it provides maximum flexibility in the design.

DISADVANTAGES

- Thermal stability is not provided in the circuit. Thus Q-point is not maintained.
- Since I_B is already fixed, I_C depends on β which changes unit to unit and shifts the Q-point. Thus stability is very poor.

- Also called Collector-feedback bias.
- The base resistor, R_B, is connected to the collector rather than to V_{CC}, as in the base bias arrangement.
- Collector gives a negative feedback to achieve stability.

- Improved version of Fixed Bias Circuit.
- The negative feedback creates a compensating effect that tends to keep the Q-point stable.
- Assume a temperature Increase, it will increase I_C, which cause more voltage drop across R_C.
- With more voltage drop across R_C, V_C will decrease
- The decrease in V_C causes, V_{CB} to decrease, which reduces $I_{B.}$
- As I_B is decreased I_C will decrease
- Thus, the original increase in temperature is compensated by a smaller bias current by negative feedback

INPUT ANALYSIS

$$V_{CC} - (I_C + I_B)R_C - I_BR_B - V_{BE} = 0$$

$$V_{CC} = I_C R_C + I_B (R_B + R_C) + V_{BE}$$

$$I_{C} = \beta I_{B}$$

$$V_{CC} = \beta R_C I_B + I_B (R_B + R_C) + V_{BE}$$

$$V_{CC} = (\beta R_C + R_C + R_B)I_B + V_{BE}$$

$$V_{CC} = ((\beta + 1)R_C + R_B)I_B + V_{BE}$$

When $V_{BE} \approx 0$

$$I_{B} = \frac{V_{CC} - VBE}{(\beta + 1)RC_{+}RB}$$

$$I_B \approx \frac{V_{CC}}{(\beta + 1)RC_+ R_B}$$

INPUT ANALYSIS

$$V_{CE} = V_{CB} - V_{BE}$$

$$I_B = V_{CB} / R_B$$

When temperature 1

 I_{C}

voltage drop across $R_C \uparrow$

 $V_C \downarrow$

 $V_{CB} \downarrow$

 $I_B \downarrow$

 $I_C \downarrow$

OUTPUT ANALYSIS

$$V_{CC} - (I_C + I_B)R_C - V_{CE} = 0$$

$$V_{CE} = V_{CC} - (I_C + I_B)R_C$$

If
$$I_C >> I_B$$
,

$$V_{CE} \approx V_{CC} - I_C R_C$$

- If there is change in β due to transistor replacement or change in I_{CEO} increase due to change in increase in temperature then I_C increases
- $I_C = \beta I_B + I_{CEO}$
- Since, $V_{CE} = V_{CC} (I_C + I_B)R_C$ then if I_C increases, V_{CE} decreases
- Since, $V_{CB} = V_{CE} + V_{BE}$
- With decrease in V_{CF}, V_{CB} decreases
- $IB = V_{CB} / R_B$ base current I_B , decreases
- Thus, the with the decrease in base current the circuit tends to maintain stable value collector current, keeping Q point fixed.

ADVANTAGES

- Simple circuit, as it uses very few components.
- Better stabilization than fixed bias circuit.

DISADVANTAGES

- Poor stability, as Stability factor (S) is high.
- Since it provides negative feedback through $R_{\rm B}$, the gain of the amplifier is reduced.

EMITTER BIAS CIRCUIT

- Modification of Fixed Bias or Collector to Base bias circuit by adding a Emitter Resistor R_E
- Emitter Resistance provide more stability.

EMITTER BIAS CIRCUIT

INPUT ANALYSIS

$$V_{CC} - I_B R_B - V_{BE} - I_E R_E = 0$$

$$V_{CC} = I_B R_B + V_{BE} + I_E R_E$$

$$I_{B} = \frac{V_{CC} - V_{BE} - I_{E}R_{E}}{R_{B}}$$

EMITTER BIAS CIRCUIT

OUTPUT ANALYSIS

$$V_{CC} - I_C R_C - V_{CE} - I_E R_E = 0$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$

$$I_{B} = \frac{V_{CC} - V_{BE} - I_{E}R_{E}}{R_{B}}$$

$$I_{C} = \beta I_{B}$$

$$I_C = \beta \frac{(V_{CC} - V_{BE} - IERE)}{R_B}$$

- Voltage Divider Bias Circuit is the most stable circuit of the basic transistor bias circuits.
- Two resistors R1 and R2 are connected to V_{CC} to provide biasing.
- Resistors R1 and R2 constitute a voltage divider that divides the supply voltage to produce the base bias voltage (V_B).
- Collector resistor (R_C) and an emitter resistor (R_E)
 connected in series with the transistor.
- The emitter resistance R_E provides Stabilization.
- Voltage drop across R2, make Base emitter junction Forward biased, and the base current produced make collector current to flow in the zero signal conditions.

$$R_{eq} = R_{TH} = \frac{R_1 R_2}{R_1 + R_2}$$

$$I = \frac{V_{CC}}{R_1 + R_2}$$
$$V_{TH} = R_2 \times I$$

$$V_{TH} = R_2 \times R_2$$

$$V_{TH} = \frac{V_{CC} \, R_2}{R_1 + R_2}$$

$$R_{TH} = \frac{R_1 R_2}{R_1 + R_2}$$

$$V_{TH} = \frac{V_{CC} R_2}{R_1 + R_2}$$

VOLTAGE DIVIDER BIAS CIRCUIT - ANALYSIS

$$V_{TH} - I_B R_{TH} - V_{BE} - I_E R_E = 0$$

$$V_{TH} = I_B R_{TH} + V_{BE} + I_E R_E$$

$$I_E = I_C + I_{B;} I_C = \beta I_B$$

$$I_{E} = (\beta + 1)I_{B}$$

$$V_{TH} = I_B R_{TH} + V_{BE} + (\beta + 1)I_B R_E$$

$$V_{TH} = I_B(R_{TH} + (\beta + 1)R_E) + V_{BE}$$

$$I_{B} = \frac{V_{TH} - V_{BE}}{R_{TH} + (\beta + 1)R_{E}}$$

If, $V_{BE} \approx 0$, and R_E is very small V_{TH}

$$I_{B} \approx \frac{V_{TH}}{R_{TH} + \beta R_{E}}$$

VOLTAGE DIVIDER BIAS CIRCUIT - ANALYSIS

$$I_C = \beta I_B$$

$$I_{B} = \frac{V_{TH} - V_{BE}}{R_{TH} + (\beta + 1)R_{E}}$$

$$I_{C} = \beta \left(\frac{V_{TH} - V_{BE}}{R_{TH} + (\beta + 1)R_{E}} \right)$$

$$R_{TH} = \frac{R_1 R_2}{R_1 + R_2}$$

$$V_{TH} = \frac{V_{CC} R_2}{R_1 + R_2}$$

$$I_E = (\beta + 1)(\frac{V_{TH} - V_{BE}}{R_{TH} + (\beta + 1)R_E})$$

If, $V_{BE} \approx 0$, and R_E is very small $I_C \approx \beta \left(\frac{V_{TH}}{R_{TH} + \beta R_E} \right)$

VOLTAGE DIVIDER BIAS CIRCUIT - ANALYSIS

$$V_{CC} - I_{C}R_{C} - V_{CE} - I_{E}R_{E} = 0$$

$$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$

If,
$$I_E \approx I_C$$

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

ADVANTAGES

- Stability factor is Independent of β
- Voltage divider biasing is thermally stable.

DISADVANTAGES

 Input resistance affected by parallel combination of R1 and R2. It can overcome by using 2 power supplies.

Need For Bias Stabilization?

- Transistor parameters are temperature dependent
- Parameters like β for transistor changes from one unit to the other.
- The process of making operating point independent of temperature, parameter variations or transistor replacement is called **Bias Stabilization.**

Need For Bias Stabilization?

Temperature Dependence of I_C

$$Ic = \beta I_B + I_{CEO}$$
 $I_{CEO} = (1 + \beta)I_{CBO}$

- Reverse saturation current I_{CBO} doubles for every 10 degree rise in temperature.
- So I_{CE0} increases $\beta + 1$ times of I_{CB0} .
- I_C dependent on I_{CE0} , so I_C also increases $\beta + 1$ times of I_{CBO} .
- Power dissipation of transistor, $P = V_C I_C$.
- So power dissipation at the junction Increases with collector current, which further increases temperature.
- The process repeats and excess heat may even burn or destroy transistor, and the situation is described as **Thermal Runaway.**

Requirements of Biasing Circuits

- Operating point is to be fixed in the middle of the Active region to protect the signal from distortion.
- Stabilize the collector current against the variations of temperature.
- Making the operating point independent of transistor parameters.

STABILITY FACTOR

• The **stability factor S**, is the change of collector current with respect to the reverse saturation current, keeping β and V_{BE} constant.

$$S = \frac{\delta I_c}{\delta I_{co}} = \frac{\Delta I_c}{\Delta I_{co}}$$

Where I_{CO} – Reverse Saturation Current

STABILITY FACTOR

• The **stability factor S'**, is the variation of collector current with respect to V_{BE}, keeping β and reverse saturation current constant.

$$\mathbf{S}' = \frac{\delta I_{c}}{\delta V_{BE}} = \frac{\Delta I_{c}}{\Delta V_{BE}}$$

Where V_{BE} – Base emitter voltage

STABILITY FACTOR

• The **stability factor S"**, is the variation of collector current with respect to β , keeping V_{BE} and reverse saturation current constant.

$$\mathbf{S}'' = \frac{\delta I_c}{\delta \beta} = \frac{\Delta I_c}{\Delta \beta}$$

Where β – Current amplification factor

$$\Delta I_C = (S * \Delta I_{CO}) + (S' * \Delta V_{BE}) + (S'' * \Delta \beta)$$

Stability factor for Fixed Bias Circuit

$$Ic = \beta I_B + (\beta + 1)I_{CO}$$

$$I_{B} = \frac{V_{cc} - V_{BE}}{R_{B}}$$

$$Ic = \beta(\frac{V_{cc} - V_{BE}}{R_B}) + (\beta + 1)I_{CO}$$

$$1 = 0 + (\beta + 1) (1/S)$$

$$S = (\beta + 1)$$

Stability factor for Collector Bias Circuit

$$s = \frac{\beta + 1}{1 + \beta \left(\frac{R_C}{R_C + R_B}\right)}$$

Stability factor for Voltage Divider Bias Circuit

$$s = \frac{R_B}{R_E}$$

QSTN: Calculate the emitter current in the voltage divider circuit shown in Fig.
Also find the value of VCE and collector potential VC.

The Voltage, V2
$$V_2 = \left(\frac{V_{CC}}{R_1 + R_2}\right) R_2 = \left(\frac{20}{10 + 10}\right) 10 = 10 \text{ V}$$

$$V_2 = V_{BE} + I_E R_E$$

As V_{BE} is generally small, therefore, it can be neglected.

$$\begin{array}{lll} :. & I_E &=& \frac{V_2}{R_E} = \frac{10 \, \mathrm{V}}{5 \, \mathrm{k} \Omega} = 2 \, \mathrm{mA} \\ & \mathrm{Now} & I_C \simeq I_E = 2 \, \mathrm{mA} \\ :. & V_{CE} = V_{CC} - I_C \, (R_C + R_E) = 20 - 2 \, \mathrm{mA} \, (6 \, \mathrm{k} \Omega) \\ & = 20 - 12 = 8 \, \mathrm{V} \\ & \mathrm{Collector \, potential}, \, V_C = V_{CC} - I_C R_C = 20 - 2 \, \mathrm{mA} \times 1 \, \mathrm{k} \Omega \\ & = 20 - 2 = 18 \, \mathrm{V} \end{array}$$

QSTN: With reference to the following circuit, draw the load line and mark the Q point of the Silicon BJT transistor.

 $R1 = 39k\Omega$ $R2 = 3.9k\Omega$ $RC = 10k\Omega$ $RE = 1.5k\Omega$ VBE = 0.7V VCC = 22V $\beta = 100$

$$R_{TH} = \frac{R_1 R_2}{R_1 + R_2}$$

$$V_{TH} = \frac{V_{CC} R_2}{R_1 + R_2}$$

$$I_{B} = \frac{V_{TH} - V_{BE}}{R_{TH} + (\beta + 1)R_{E}}$$

$$I_C = \beta I_B$$

$$I_E \approx I_C$$

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

$$V_{CE(Cutoff)} = V_{CC}$$

$$I_{C(Sat)} = \frac{V_{CC}}{R_C + R_E}$$

 $R1 = 39k\Omega$

 $R2 = 3.9k\Omega$

 $RC = 10k\Omega$

 $RE = 1.5k\Omega$

VBE = 0.7V

VCC = 22V

 $\beta = 100$

QSTN: Design a clamper circuit to get the following transfer characteristics, assuming voltage drop across the diodes 0.7V.

$$-0.7 + X = 2.3$$

 $X = 2.3 + 0.7 = 3V$

DC LOAD LINE

