Capacité d'un vaccin à prévenir une épidémie dans une population

Mouad Obeidi N° 21106

Plan

1 Le modèle S.I.R

Le modèle S.V.I.R

Étude de la stabilité de l'équilibre sans maladie

Etude d'une situation plus complexe

- Étude de la stabilité de l'équilibre sans maladie
- Le contrôle de l'épidémie par les mesures sanitaires

Modèle 5 R (modèle de Kermack-McKendrick) [1]

Hypothèses du modèle:

☐ La population garde un nombre constant☐ Les gens rétablis ne s'infectent pas une deuxième fois

compartiment	Désignation
N	Nombre total de personnes $N = S + I + R$ ($N = 10^7$)
S	(nombre de personnes susceptibles à être infectées à l'instant t)/N
ı	(nombre de personnes infectées à l'instant t)/N
R	(nombre de personnes rétablies à l'instant t)/N

Modèle 5 R (modèle de Kermack-McKendrick) [1]

Le paramètre β

En posant $\beta = \alpha.N$ le nombre total d'infectées engendrées par jour est $\alpha.S.N.I.N = \beta.S.I.N$ le nombre total d'infectées engendrées par jour/N est $\beta.S.I$

Le paramètre γ

C'est l'inverse de la durée d'infection

Si on a
$$\frac{dI}{dt} = -\gamma I$$

Modèle 5 R (modèle de Kermack-McKendrick) [1]

paramètre	Désignation	valeur	dimension
β	le taux d'infection	0,25	$[T]^{-1}$
γ	le taux de rétablissement	1/10	$[T]^{-1}$

$$\frac{dS}{dt} = -\beta.S.I$$

$$\frac{dI}{dt} = \beta.S.I - \gamma.I$$

$$\frac{dR}{dt} = \gamma.I$$

Comparaison du modèle avec la réalité

Courbe issue du modèle

la courbe issue du modèle 0.025 0.020 0.005 0.000 50 75 100 125 150 175

Courbe des données réelles

Modèle SVIR [2]

ω	taux de vaccination	0,01	$[T]^{-1}$
е	Efficacité du vaccin	0,5	sans dimension
δ	Taux de mortalité du virus	1/50	$[T]^{-1}$
n	personne nais par jour divisé par N	2197×10^{-7}	$[T]^{-1}$
m	Taux de mortalité	1/(80 x 365)	$[T]^{-1}$

Modèle **SVIR**[2]

$$\frac{dS}{dt} = n - \beta.S.I - \omega.S - m.S$$

$$\frac{dV}{dt} = \omega.S - \beta.(1 - e).V.I - m.V$$

$$\frac{dI}{dt} = \beta.S.I + \beta.(1 - e).V.I - \gamma.I - \delta.I - m.I$$

$$\frac{dR}{dt} = \gamma . I - m . R$$

Mise en évidence de l'effet de la vaccination

Simulation du modèle SIR

Mise en évidence de l'effet de la vaccination

Simulation du modèle SVIR

Problématique

Quelle est l'efficacité minimale d'un vaccin pour exterminer une épidémie ?

« l'Équilibre sans maladie (DFE)»

$$\frac{dS}{dt} = 0$$
, $\frac{dV}{dt} = 0$, $\frac{dI}{dt} = 0$, $\frac{dR}{dt} = 0$

À l'équilibre:

À l'équilibre:
$$\begin{cases} \frac{dS}{dt} = 0 \\ \frac{dV}{dt} = 0 \\ \frac{dI}{dt} = 0 \end{cases} \Rightarrow \begin{cases} n - \beta.S.I - \omega.S - m.S = 0 \\ \omega.S - \beta.(1-e).V.I - m.V = 0 \\ \beta.S.I + \beta.(1-e) - \gamma.I - \delta.I - m.I = 0 \\ \gamma.I - m.R = 0 \end{cases}$$
 La solution qui correspond à l'équilibre sans maladie est telle que $I = 0$,

La solution qui correspond à l'équilibre sans maladie est telle que I=0, donc:

$$S_{
m \'eq}=rac{n}{\omega+m}$$
 , $V_{
m \'eq}=rac{\omega.n}{m.(\omega+m)}$ et $I_{
m \'eq}=R_{
m \'eq}=0$

On veillera à ce que cet état d'équilibre soit stable c'est-à-dire que: pendant cet état d'équilibre, et après une petite perturbation (ajout d'une personne infectée) le système regagne l'équilibre sans maladie.

 Au voisinage de l'équilibre on peut considérer que :

$$S = S_{\acute{e}q}$$
 et $V = V_{\acute{e}q}$ et $R = R_{\acute{e}q}$

Donc au voisinage de l'équilibre on a:

$$\frac{dI}{dt} = (\beta.S_{\acute{e}q} + \beta.(1-e).V_{\acute{e}q} - m - \gamma - \delta).I$$

Il suffit que ce coefficient soit négatif

Où:
$$S_{\acute{e}q} = \frac{n}{\omega + m}$$
 et $V_{\acute{e}q} = \frac{\omega . n}{m . (\omega + m)}$

Ceci est équivalent à:

$$\frac{\beta n}{(m+\omega)(m+\gamma+\delta)} \Big(1 + (1-e)\frac{\omega}{m}\Big) < 1$$

et note:

$$R = \frac{\beta n}{(m+\omega)(m+\gamma+\delta)} \left(1 + (1-e)\frac{\omega}{m}\right)$$

C'est le taux de reproduction de base

Ou à:

$$e > \left[1 - \frac{(m+\omega)(m+\delta+\gamma)}{\beta n}\right] \frac{m}{\omega} + 1$$

Application numérique:

$$e > e_{min} = 0,92$$

Simulation de la réponse du système en DFE à un ajout d'une personne infectée

0.0

100

200

temps en jours

250

300

350

0.0

200

temps en jours

Interprétation

Le taux de reproduction de base R

Définition

C'est le nombre moyen de personnes infectées engendrées par une personne infectée

Exemple Pour $R_O = 2$:

Interprétation

Le taux de reproduction de base R

Pour que l'épidémie disparait il faut que **R** < 1

• La durée en jour d'infection d'une personne est : $\frac{1}{m+\delta+\gamma}$

• chaque jour elle infecte:

$$\beta . S_{\acute{e}q} + \beta . (1-e). V_{\acute{e}q}$$

donc elle infecte:

$$\frac{1}{m+\delta+\gamma}.(\beta.S_{\acute{e}q}+\beta.(1-e).V_{\acute{e}q})$$

donc

$$R = \frac{\beta n}{(m+\omega)(m+\gamma+\delta)} \left(1 + (1-e)\frac{\omega}{m}\right)$$

е	0,5	e_{min}	0,85	1
R	2,18	1	0,79	0,19
	*	*		

Une situation plus complexe

C'est une situation où il existe deux compartiments de personnes infectées : car le virus, parfois, apparaît selon deux aspects, ceci aggrave la situation car le vaccin ne peut empêcher que contre un seul état du virus.

Modélisation

Une situation plus complexe

paramètre	Désignation	valeur	dimension
eta_1	Taux d'infection relatif à I_1	0,25	$[T]^{-1}$
eta_2	Taux d'infection relatif à I_2	0,025	$[T]^{-1}$
С	taux de transmission du compartiment I_1 vers I_2	0,1	$[T]^{-1}$

Le modèle élaboré

$$\frac{dS}{dt} = n - \omega . S - (\beta_1 . I_1 + \beta_2 . I_2) . S - m. S$$

$$\frac{dV}{dt} = \omega . S - \beta_1 . (1 - e) . V . I_1 - \beta_2 . V . I_2 - m. V$$

$$\frac{dI_1}{dt} = \beta_1 . (S + (1 - e) . V) . I_1 - (m + \delta + c) . I_1$$

$$\frac{dI_2}{dt} = c . I_1 + \beta_2 . (S + V) . I_2 - (m + \delta + \gamma) . I_2$$

Une situation plus complexe

Simulation des courbes issues du modèle

Il existe encore un état d'équilibre sans maladie on cherchera aussi à ce qu'il soit stable

À l'équilibre:

$$\begin{cases} \frac{dS}{dt} = 0 \\ \frac{dV}{dt} = 0 \\ \frac{dI_1}{dt} = 0 \\ \frac{dI_2}{dt} = 0 \end{cases} \Rightarrow \begin{cases} n - \omega . S - (\beta_1 . I_1 + \beta_2 . I_2) . S - m. S = 0 \\ \omega . S - \beta_1 . (1 - e) . V . I_1 - \beta_2 . V . I_2 - m. V = 0 \\ \beta_1 . (S + (1 - e) . V) . I_1 - (m + \delta + c) . I_1 = 0 \\ c . I_1 + \beta_2 . (S + V) . I_2 - (m + \delta + \gamma) . I_2 = 0 \end{cases}$$

La solution qui correspond à l'équilibre sans maladie est telle que $I_1=I_2=0$ Donc la solution correspondante est :

$$S_{
m \acute{e}q}=rac{n}{\omega+m}$$
 , $V_{
m \acute{e}q}=rac{\omega.n}{m.(\omega+m)}$ et $I_{1,
m \acute{e}q}=I_{2,
m \acute{e}q}=0$

Il suffit que le taux de reproduction R soit inferieur à 1

Problématique : comment calculer le taux de reproduction **R** dans ce cas ?

on appliquera la méthode de *p. Van Den Driessche* et *James Watmough* [3],[4]

On déterminera une matrice **M** qui s'appelle la matrice de la prochaine génération puis:

$$R = \max_{\lambda \in sp(M)} |\lambda|$$

R est le rayon spectrale de la matrice M on note $R = \rho(M)$

p. van den Driessche et James Watmough deux spécialistes en mathématiques appliquées leurs sujets de recherche comprennent la biomathématique, l'analyse matricielle et la théorie de la stabilité.

Notations

Soit $x = (v_1, v_2, v_3, v_4)$ et $x_{éq} = (S_{éq}, V_{éq}, 0, 0)$:

Le modèle peut être écrit de la forme suivante:

$$\frac{dx}{dt} = g(x)$$

Où

$$g(x) = (g_1(x), g_2(x), g_3(x), g_4(x))$$

Et

$$\begin{split} g_1(x) &= n - \omega.S - (\beta_1.I_1 + \beta_2.I_2).S - \text{m.S} \\ g_2(x) &= \omega.S - \beta_1.(1-e).V.I_1 - \beta_2.V.I_2 - m.V \\ g_3(x) &= \beta_1.(S + (1-e).V).I_1 - (m + \delta + c).I_1 \\ g_4(x) &= c.I_1 + \beta_2.(S + V).I_2 - (m + \delta + \gamma).I_2 \end{split}$$

La fonction g peut être décomposée de la façon suivante:

$$g = f + v$$

$$f = (f_1, f_2, f_3, f_4)$$

$$v = (v_1, v_2, v_3, v_4)$$

Où f_1, f_2, f_3, f_4 décrivent l'apparition des nouveaux infectées respectivement dans les compartiments S, V, I_1, I_2 ($f_1 = f_2 = 0$)

Et v_1, v_2, v_3, v_4 décrivent la sortie ou l'entrée par toute autre manière (mort , vaccination...) respectivement du ou vers les compartiments v_1, v_2, v_3, v_4

1^{ère} étape

Identifier les fonctions f_i et v_i nécessaires

Au voisinage de l'équilibre on considère que : $S=S_{
m \acute{e}q}$, $V\!=\!V_{
m \acute{e}q}$, $I_1\ll 1$ et $I_2\ll 1$

Pour x au voisinage de $x_{éq}$:

$$g_{3}(x) = \beta_{1} \cdot \left(S_{\acute{e}q} + (1 - e) \cdot V_{\acute{e}q}\right) \cdot I_{1} - (m + \delta + c) \cdot I_{1}$$

$$f_{3}(x) \qquad v_{3}(x)$$

$$g_{4}(x) = \beta_{2} \cdot \left(S_{\acute{e}q} + V_{\acute{e}q}\right) \cdot I_{2} + c \cdot I_{1} - (m + \delta + \gamma) \cdot I_{2}$$

$$f_{4}(x) \qquad v_{4}(x)$$

$$f_3(x) = \beta_1 \cdot \left(S_{\acute{e}q} + (1 - e) \cdot V_{\acute{e}q} \right) \cdot I_1$$

$$v_3(x) = -(m + \delta + c) \cdot I_1$$

$$f_4(x) = \beta_2 \cdot \left(S_{\acute{e}q} + V_{\acute{e}q} \right) \cdot I_2$$

$$v_4(x) = c \cdot I_1 - (m + \delta + \gamma) \cdot I_2$$

2^{ème} étape

Calculer les matrices jacobiennes des fonctions f et v au point $x_{\acute{e}q}$

Les matrices jacobienne de f et de v ont les formes suivantes

$$J_f(x_{\acute{e}q}) = \begin{pmatrix} 0 & 0 \\ 0 & F \end{pmatrix} \qquad J_v(x_{\acute{e}q}) = \begin{pmatrix} J_1 & J_2 \\ 0 & V \end{pmatrix}$$

$$F = \begin{pmatrix} \beta_1 \cdot (S_{\acute{e}q} + (1 - e) \cdot V_{\acute{e}q}) & 0 \\ 0 & \beta_2 \cdot (S_{\acute{e}q} + V_{\acute{e}q}) \end{pmatrix}$$

et

$$V = \begin{pmatrix} -(m+\delta+c) & 0 \\ c & -(m+\delta+\gamma) \end{pmatrix}$$

3^{ème} étape

Calculer la matrice $-FV^{-1}$

$$V^{-1} = \begin{pmatrix} \frac{-1}{(m+\delta+c)} & 0\\ \frac{-c}{(m+\delta+c)(m+\delta+\gamma)} & \frac{-1}{(m+\delta+\gamma)} \end{pmatrix}$$

$$-FV^{-1} = \begin{pmatrix} \frac{\beta_1.\left(S_{\acute{e}q} + (1-e).V_{\acute{e}q}\right)}{(m+\delta+c)} & 0 \\ \frac{\beta_2.\left(S_{\acute{e}q} + V_{\acute{e}q}\right).c}{(m+\delta+c)(m+\delta+\gamma)} & \frac{\beta_2.\left(S_{\acute{e}q} + V_{\acute{e}q}\right)}{(m+\delta+\gamma)} \end{pmatrix}$$
 Cette matrice s'appelle la matrice de la prochaine génération

Interprétation

Si on a des nombres I_1 et I_2 d'inféctées

$$-FV^{-1} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} \frac{\beta_1 \cdot \left(S_{\acute{e}q} + (1-e) \cdot V_{\acute{e}q}\right)}{(m+\delta+c)} & 0 \\ \frac{\beta_2 \cdot \left(S_{\acute{e}q} + V_{\acute{e}q}\right) \cdot c}{(m+\delta+c)(m+\delta+\gamma)} & \frac{\beta_2 \cdot \left(S_{\acute{e}q} + V_{\acute{e}q}\right)}{(m+\delta+\gamma)} \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\beta_1 \cdot \left(S_{\acute{e}q} + (1-e) \cdot V_{\acute{e}q}\right)}{(m+\delta+c)} & I_1 \\ \frac{\beta_2 \cdot \left(S_{\acute{e}q} + V_{\acute{e}q}\right) \cdot c}{(m+\delta+c)(m+\delta+\gamma)} & I_1 + \frac{\beta_2 \cdot \left(S_{\acute{e}q} + V_{\acute{e}q}\right)}{(m+\delta+\gamma)} & I_2 \end{pmatrix}$$
Les infectées engendrées par I_2

$$\text{Les infectées engendrées par } I_2$$

La condition de stabilité est R < 1

Les valeurs propres de $-FV^{-1}$ sont :

$$\lambda_1 = \frac{\beta_1 \cdot \left(S_{\acute{e}q} + (1 - e) \cdot V_{\acute{e}q} \right)}{(m + \delta + c)}$$

et

$$\lambda_2 = \frac{\beta_2. (S_{\text{\'e}q} + V_{\text{\'e}q})}{(m + \delta + \gamma)} = 1,45$$

Et
$$R = \max(|\lambda_1|, |\lambda_2|)$$

Donc il faut que $|\lambda_1| < 1$ et $|\lambda_2| < 1$

Donc il faut que

$$e > rac{1}{V_{cute{e}q}} \left(S_{cute{e}q} - rac{(m+\delta+c)}{eta_1}
ight) + 1$$
 A.N

 λ_2 dépasse 1 on devra faire appelle au mesure sanitaire à savoir le confinement

$$\frac{dI_1}{dt} = \beta_1.(S + (1 - e).V).I_1 - (m + \delta + c).I_1$$

$$\frac{dI_2}{dt} = c.I_1 + \beta_2.(S+V).I_2 - (m+\delta+\gamma+q).I_2$$

donc

$$\lambda_2 = \frac{\beta_2 \cdot \left(S_{\acute{e}q} + V_{\acute{e}q}\right)}{\left(m + \delta + \gamma + q\right)}$$

Dans ce cas il faut que

$$q > \beta_2 \cdot \left(S_{\acute{e}q} + V_{\acute{e}q}\right) - (m + \delta + \gamma)$$

A.N q > 0.05

Simulation de la réponse du système en DFE à un ajout d'une personne infectée

Annexe 6

sans confinement

$pour e > e_{min}$

Avec confinement q = 0.06

Synthèse

Le contrôle de l'épidémie peut se faire par la modélisation mathématique, il s'agit en premier lieu à modéliser sa propagation, d'estimer ses paramètres, et d'appliquer la méthode de *p. Van Den Driessche* et *James Watmough* pour calculer R et essayer de le maintenir inférieur à 1

Contraintes

Le cas réel est plus complexe:

- Les paramètres ne peuvent pas être parfaitement estimés
- De plus ces paramètres ne sont pas constants le long de la période d'étude
- La propagation du virus est plus complexe, les personnes rétablies peuvent se réinfecter


```
#courbe_des_infectés_par_modélisation_sir
                                                                        #courbe réelle
import numpy as np
                                                                        import sqlite3
import matplotlib.pyplot as plt
                                                                        #connection à la base et accés aux données
S = []; V = []; I = []; NI = []; R = []
                                                                        db = sqlite3.connect("C:/Users/smart asus/Desktop/mon_tipe/BD_1.db")
Sn = 1 - 394*10**-7; In = 394*10**-7; NIn = 394*10**-7; Rn = 0
                                                                        cur = db.cursor()
beta = 0.25 ; gamma = 1/10
                                                                        R1 = '''SELECT new_cases*0.0000001
for i in range(185):
                                                                                FROM Bd 1
                                                                                WHERE date >= \'2021-06-01\' and date<= \'2021-12-01\' '''
  S.append(Sn)
  I.append(In)
                                                                        cur.execute(R1)
                                                                        #traçage_de_la_courbe_réelle
  NI.append(NIn)
  R.append(Rn)
                                                                        import numpy as np
                                                                        import matplotlib.pyplot as plt
  Sn = Sn - beta*Sn*In
  In = In + beta*Sn*In - gamma*In
                                                                        NI = []
                                                                        for e in cur:
  NIn = beta*Sn*In
                                                                            NI.append(e[0])
  Rn = Rn + gamma*In
                                                                        t = np.arange(1,len(NI)+1)
t = np.arange(0,185,1)
                                                                        plt.plot(t,NI,'.',color='r')
plt.plot(t,NI,'.',color='r')
                                                                        plt.xlabel('temps')
plt.xlabel('temps')
                                                                        plt.ylabel('cas infectés')
plt.ylabel('personne infectées')
                                                                        plt.title('la courbe des données réelles')
plt.title('la courbe issue du modèle')
                                                                        fig = plt.gcf()
fig = plt.gcf()
                                                                        fig.set_size_inches(10,7)
fig.set_size_inches(10,7)
                                                                        plt.show()
plt.show()
```

```
#modèle sir:
import numpy as np
import matplotlib.pyplot as plt
S = [] ; I = [] ; R = []
Sn = 1-394*10**(-7); In = 394*10**(-7); Rn = 0
beta = 0.25; gamma = 1/10; m = 1/(80*365); n = 2197*10**-7;
delta = 1/50
for i in range(250):
  S.append(Sn)
 I.append(In)
 R.append(Rn)
  Sn = Sn - beta*Sn*In - m*Sn + n
 In = In + beta*Sn*In - gamma*In -m*In -delta*In
 Rn = Rn + gamma*In - m*Rn
t = np.arange(0,250,1)
#T
plt.plot(t,I,'r',label='I')
plt.axhline(y = max(I),ls = '--',color='r')
plt.xlabel('temps en jours')
plt.ylabel('nbr_de_personne/nbr_total')
plt.legend()
plt.ylim([0,0.5])
plt.grid(which='major', axis='y')
plt.title('les inféctées\nmodèle sir')
fig = plt.gcf()
fig.set_size_inches(10,7)
plt.show()
```

```
#S
plt.subplot(211)
plt.plot(t,S,'y',ls = '--',label='S')
plt.title('susceptibles')
plt.xlabel('temps en jours')
plt.ylabel('nbr_de_personne/nbr_total')
plt.legend()
plt.subplot(212)
plt.plot(t,R,'g',ls = '--',label='R')
plt.xlabel('temps en jours')
plt.ylabel('nbr_de_personne/nbr_total')
plt.title('rétablies')
plt.legend()
fig = plt.gcf()
fig.set_size_inches(10,7)
fig.tight layout()
plt.show()
```

#modèle_svir:	#S
import numpy as np	plt.subplot(311)
<pre>import matplotlib.pyplot as plt</pre>	plt.plot(t,S,'y',ls = '',label='S')
S = []; V = []; I = []; R = []	plt.title('susceptibles')
Sn = 1-394*10**(-7); $In = 394*10**(-7)$; $Vn = 0$; $Rn = 0$	plt.xlabel('temps en jours')
beta = 0.25 ; gamma = 1/10 ; m = 1/(80*365) ; n = 2197*10**-7;	plt.ylabel('nbr_de_personne/nbr_total')
delta = 1/50 ; e = 0.5 ; w = 0.01	plt.legend()
for i in range(250):	#V
S.append(Sn)	plt.subplot(312)
V.append(Vn)	plt.plot(t,V,'b',ls = '',label='V')
I.append(In)	plt.title('vaccinées')
R.append(Rn)	
Sn = Sn - beta*Sn*In - w*Sn - m*Sn + n	plt.xlabel('temps en jours')
Vn = Vn + w*Sn - beta*(Vn - e*Vn)*In - m*Vn	plt.ylabel('nbr_de_personne/nbr_total')
In = In + beta*Sn*In + beta*(Vn - e*Vn)*In - gamma*In - m*In - delta*In	
Rn = Rn + gamma*In - m*Rn	plt.legend()
t = np.arange(0,250,1)	#R
#I	plt.subplot(313)
plt.plot(t,I,'r',label='I')	plt.plot(t,R,'g',ls = '',label='R')
plt.axhline(y = max(I),ls = '',color='r')	plt.xlabel('temps en jours')
plt.xlabel('temps en jours')	<pre>plt.ylabel('nbr_de_personne/nbr_total')</pre>
plt.ylabel('nbr_de_personne/nbr_total')	plt.title('rétablies')
plt.legend()	plt.legend()
plt.ylim([0,0.5]) plt.grid(which='major', axis='y')	fig = plt.gcf()
	fig.set_size_inches(10,7)
plt.title('les inféctées\nmodèle_svir') fig = plt.gcf()	fig.tight_layout()
fig.set_size_inches(10,7)	plt.show()
plt.show()	
DCC.31low()	

```
#étude de l'équilibre du DFE
import numpy as np
import matplotlib.pyplot as plt
beta = 0.25; gamma = 1/10; m = 1/(80*365); n = 2197*10**-7;
delta = 1/50 ; w = 0.01
Seq = n/(m+w)
Veq = (w/m)*Seq
emin = (1-(m+w)*(m+delta+gamma)/(beta*n))*(m/w)+1
e = ?
R0 = (1/(m+delta+qamma)*(m+w))*(beta*n*(1+(1-e)*w/m))
S = [Seq for k in range(40)]
V = [Veq for k in range(40)]
I = [0 \text{ for } k \text{ in } range(39)] + [10**-7]
R = [0 \text{ for } k \text{ in } range(40)]
for l in range(365):
  s = len(S); v = len(V); i = len(I); r = len(R)
  Sn = S[s-1]; Vn = V[v-1]; In = I[i-1]; Rn = R[r-1]
  Sn = Sn - beta*Sn*In - w*Sn - m*Sn + n
  Vn = Vn + w*Sn - beta*(Vn - e*Vn)*In - m*Vn
  In = In + beta*Sn*In + beta*(Vn - e*Vn)*In - gamma*In - delta*In
  Rn = Rn + qamma*In - m*Rn
  S.append(Sn)
  V.append(Vn)
  I.append(In)
 R.append(Rn)
t = np.arange(0,405,1)
fiq = plt.qcf()
plt.plot(t,I,'r',label='I')
plt.xlabel('temps en jours')
plt.ylabel('nbr de personne/nbr total')
plt.title('réponse à la perturbation pour e = ?')
fig.set size inches(10,7)
```

```
#I2
#une_situation_plus_complexe_:_deux_compartiments_inféctées
                                                                            plt.subplot(212)
import numpy as np
                                                                            plt.plot(t,I2,color = 'purple',label='I2')
import matplotlib.pyplot as plt
                                                                            plt.xlabel('temps en jours')
S = []; V = []; I1 = []; I2 = []; R = []
                                                                            plt.ylabel('nbr de personne/nbr total')
                                                                            plt.legend()
Sn = 1-394*10**(-7); I1n = 394*10**(-7); I2n = 0; Vn = 0; Rn = 0
                                                                            plt.title('les inféctées du type 2')
betal = 0.25 ; beta2 = 0.025 ; gamma = 1/10 ; m = 1/(80*365) ; n = 2197*10**-7
                                                                            fig = plt.gcf()
delta = 0.01 ; e = 0.5 ; w = 0.01 ; x = 300 ; c = 1/10
                                                                            fig.set_size_inches(10,7)
for i in range(x):
                                                                            plt.tight_layout()
                                                                            plt.show()
   S.append(Sn)
   V.append(Vn)
                                                                            plt.subplot(211)
   Il.append(Iln)
                                                                            plt.plot(t,S,'y',ls = '--',label='S')
   I2.append(I2n)
                                                                            plt.title('susceptibles')
                                                                            plt.xlabel('temps en jours')
   Sn = Sn + n - (betal*Iln + beta2*I2n)*Sn - w*Sn - m*Sn
                                                                            plt.ylabel('nbr_de_personne/nbr_total')
   Vn = Vn +w*Sn - betal*(1-e)*Vn*Iln - beta2*Vn*I2n -m*Vn
                                                                            plt.legend()
   Iln = Iln + betal*(Sn + (1-e)*Vn)*Iln - (m + delta + c)*Iln
   I2n = I2n + c*I1n + beta2*(Sn + Vn)*I2n - (m + delta + gamma )*I2n
                                                                            plt.subplot(212)
                                                                            plt.plot(t,V,'b',ls = '--',label='V')
t = np.arange(0, x, 1)
                                                                            plt.title('vaccinées')
                                                                            plt.xlabel('temps en jours')
plt.subplot(211)
                                                                            plt.ylabel('nbr de personne/nbr total')
plt.plot(t,I1,'r',label='I1')
                                                                            plt.ylabel('nbr_de_personne/nbr_total')
plt.xlabel('temps en jours')
                                                                            plt.legend()
                                                                            fig = plt.gcf()
plt.ylabel('nbr_de_personne/nbr_total')
                                                                            fig.set size inches(10,7)
plt.title('les inféctées du type 1')
                                                                            plt.tight layout()
plt.legend()
                                                                            plt.show()
```

```
#stabilité_du_dfe_pour_la_situation_complexe
import numpy as np
import matplotlib.pyplot as plt
betal = 0.25; beta2 = 0.025; gamma = 1/10; m = 1/(80*365); n = 2197*10**-7
delta = 0.01 ; w = 0.01 ; c = 1/10
Seq = n/(m+w)
Veq = (w/m)*Seq
emin = (Seq - (m+delta+c)/betal)/Veq + 1
e = 0.9
S = [Seq for k in range(40)]
V = [Veq for k in range(40)]
I1 = [0 for k in range(39)]+[10**-7]
I2 = [0 for k in range(40)]
for l in range(500):
   s = len(S); v = len(V); i1 = len(I1); i2 = len(I2)
   Sn = S[s-1]; Vn = V[v-1]; I1n = I1[i1-1]; I2n = I2[i2-1]
   Sn = Sn + n - (betal*Iln + beta2*I2n)*Sn -w*Sn -m*Sn
   Vn = Vn + w*Sn - betal*(1-e)*Vn*Iln - beta2*Vn*I2n - m*Vn
   Iln = Iln + betal*(Sn + (1-e)*Vn)*Iln - (m + delta + c)*Iln
   I2n = I2n + c*I1n + beta2*(Sn + Vn)*I2n - (m + delta + gamma + 0.07)*I2n
   S.append(Sn)
   V.append(Vn)
   Il.append(Iln)
   I2.append(I2n)
t = np.arange(0,540,1)
```

```
plt.subplot(211)
plt.plot(t,I1,'r',label='I')
plt.xlabel('temps en jours')
plt.vlabel('nbr de personne/nbr_total')
plt.title('réponse à la perturbation pour e = 0.9')
plt.subplot(212)
plt.plot(t,I2,color='purple',label='I')
plt.xlabel('temps en jours')
plt.ylabel('nbr de_personne/nbr_total')
plt.title('réponse à la perturbation pour e = 0.9')
plt.tight layout()
fig = plt.gcf()
fig.set size inches(10,7)
```