Teoria da computação Q2.2018 - Lista 3

João Carlos Pandolfi Santana

August 2018

1 Problema 1

Assumindo que o problema de satisfatibilidade (SAT) é NP-completo, prove que os seguintes problemas também são NP-completo: 3SAT, Clique, Independent set, Vertex Cover, Subset Sum, Knapsack, Partition, Longest Path, Rudrata Path, Traveling Salesman e Integer Linear Programming.

É sabido que:

- Uma variável booleana barrada ou não, é um literal.
- Uma cláusula é composta por um ou mais literais conectados por \vee (ous).
- Uma expressão booleana está na Forma Normal Conjuntiva (**FNC**) se, e somente se, for composta de uma ou mais cláusulas conectadas por \land (es).
- $\bullet\,$ Uma expressão booleana é uma fórmula-FNC se estiver na Forma Normal Conjuntiva
- SAT é uma formula-FNC satisfazível
- SAT é NP-Completo
- A prova de um problema K NP-Completo é dividido em duas partes. (i) Provar que K é NP. (ii) Provar que todo problema NP pode ser reduzido
 para K em tempo polinomial. (Teorema de Cook-Levin para SAT)
- Outra forma de provar um problema K é NP-Completo segue em duas partes. (i) - Provar que K é NP. (ii) - Reduzir algum problema NP-Completo para K em tempo polinomial

1.1 3SAT

Prova de NP-Completude para 3SAT

- 1. Mostrar que **3SAT** está em NP
- 2. Ao tomar como premissa SAT como NP-Completo, reduzir SAT para 3SAT em tempo polinomial prova que este é NP-Completo
- 3. Para fazer a redução de SAT, converte-se a fórmula-FNC F para fórmula-3FNC F', de forma que: sendo F satisfazível $\Leftrightarrow F'$ é satisfazível.

- Assumimos que C_1 , C_2 , C_3 ..., C_n são cláusulas de F onde F está descrita na fórmula 3NFC (cada cláusula C_i deve haver 3 ou menos literais), assumimos que F' é F.
- Em cada cláusula (C_i) que possuir 1 ou dois Literais (L_i), descrita da seguinte forma (L_1). Replicamos o L_1 conectados por \vee até a cláusula C_i conter 3 Literais. Ex.: Dado $F=(L_1\vee L_2)$, aplicamos o "algoritmo" e obtemos $F'=(L_1\vee L_2\vee L_1)$.
- Assim se F' é satisfazível, o valor de L_1 deve ser igual a 1 (true)
- Para C_i onde a quantidade de Literais é igual a 3, nenhuma mudança é aplicada.
- Para $C_i = (L_1 \vee L_2, L_3 ... \vee L_n)$ onde n > 3, reescrevemos da seguinte forma: $(L_1 \vee L_2 \vee Y_1) \wedge (\neg Y_1 \vee L_3 \vee Y_2) ... \wedge (\neg Y_k \vee L_{n-1} \vee L_n)$.
- Desta forma, se F' é satisfazível, o valor de C_i deve ser igual a 1 (true)

1.2 Clique

Prova de NP-Completude para Clique

- 1. Como foi provado, 3SAT é NP-Completo, portanto, vamos reduzir o 3SAT para Clique.
- 2. Se esta conversão for possível em tempo polinomial, o problema *Clique* é NP-Completo.
- 3. Tomando F como uma fórmula-3CNF, sendo C_1 , C_2 ,..., C_n cláusulas de F e $L_1, L_2, ..., L_m$ literais de C_k .
- 4. Construímos o grafo G, tal que: F é satisfazível $\Leftrightarrow G$ é satisfazível.
 - Prova por contraposição
 - Para cada literal $L_{a,b}$ é criado um **vértice** representativo em G.
 - \bullet G contém todos as arestas, exceto se:
 - (a) Há dois vértices representando a mesma cláusula
 - (b) Há dois vertices conectados sendo estes a respectiva negação do literal. Ex.: L $_c$ conectado com $\neg L_c$
- 5. Temos que: G é um k-clique $\Leftrightarrow F$ é satisfazível
 - ullet Se G for um K-clique tem que a contecer:
 - (a) O K-clique deve ter um uma aresta para cada cláusula
 - (b) Nenhum vértice será a negação de outro no clique
 - Portanto, quando for setado o correspondente literal para 1 (true),
 F será satisfazível.
- 6. Se F for satisfazível, pelo menos um literal em cada cláusula é definido como 1 (true) no espaço satisfazível.
- 7. Então os vértices satisfazívels correspondem a um clique. Então G tem um K-clique.
- 8. Logo se G puder ser construído a partir de F em tempo polinomial do 3SAT para o Clique, temos que o problema Clique é $\bf NP-Completo$

1.3 Independent set

Prova de NP-Completude para Independent Set

1.4 Vertex Cover

Prova de NP-Completude para vertex Cover

1.5 Subset Sum

Prova de NP-Completude para Subset Sum.

- 1. Como foi provado, 3SAT é NP-Completo, portanto, vamos reduzir o $Subset\ Sum\ para\ 3SAT$ em tempo polinomial.
- 2. Supondo que A está descrito na fórmula-3NFC e que $l_1, l_2, l_3, ..., l_n$ são literais e que $C_1, C_2, C_3, ..., C_m$ são as cláusulas. Transforma-se A em um um novo conjunto P de 2n + 2m elementos numéricos, de forma que cada m contenha n + m dígitos.
- 3. Para cada literal l_i , são definidos dois números y_i e z_i , onde o iésimo digito será 1.
- 4. (i) se l_i estiver em C_k , define-se o (n+k) ésimo digito de y_i , até 1, (ii) se $\neg x_i$, estiver em C_m , define-se o (m+k) ésimo dígito de z_i até 1. Os outros dígitos de y_i e z_i serão setados a 0.
- 5. A deve conter um par de números iguais, g_k e h_k para cada cláusula em C_k , onde (n+k) ésimo dígito é setado para 1.
- 6. Seja t = 111...13333...3 [j '1' seguidos por k '3'] número alvo. É preciso mostrar que F é satisfazível ⇔ algum subconjunto de S adiciona t. Supondo que F seja satisfazível, então seleciona-se y_i se x_i for verdadeiro. Caso contrário, selecionamos z_i. Se adicionarmos os números definidos até então então, (i) Os dígitos j à esquerda estão corretamente posicionados e (ii) cada um dos k dígitos restantes está entre 1 e 3. Próximo passo é selecionar um g_k e/ou h_k adequado para preencher as diferenças, chegando portanto em t.
- 7. Ao supormos que um subconjunto S some t. Então, podemos dizer que exatamente um dos y_i ou z_i está presente neste subconjunto. Definindo x_i verdadeiro quando y_i está no subconjunto, e falso quanto z_i está no subconjunto, então podemos dizer que F foi satisfeito, de forma a considerarmos os números no subconjunto cujo (n+k) iésimo bit é 1.
- 8. Podem haver 3 desses números, portanto, algum deles deve respeitar a regra do y_i ou z_i . Caso seja y_i , significa que C_k contém x_i e deve ser assinalado como **verdadeiro**. Caso seja z_i significa que C_k contém $\neg x_i$ e deve ser assinalado como **falso**. Em ambos os casos C_k foi satisfeito.
- 9. Desta forma, com todas as Cláusulas e F satisfeitos, mostramos que $(F) \in 3SAT \Leftrightarrow (St,t) \in Subset-Sum$. Assim, Subset-Sum é NP-Completo.

1.6 Partition

Prova de NP-Competude para Partition

- 1. Como provamos que Subset-sum é NP-Completo, basta reduzirmos Partition para Subset-sum.
- 2. Para determinar se S,k está em Subset-sum, definimos que X é a soma dos valores em S. Construímos S' adicionando dois números 2X-k e X+k a S.
- 3. Assim $(S,k) \in Subset\text{-}sum \Leftrightarrow (S') \in Partition$. Desta forma, Partition é NP-Completo.

1.7 Knapsack

Prova de NP-Competude para Knapsack

- 1. Como provamos que Partition é NP-Completo, basta reduzir Knapsack em tempo polinomial para NP-Completo.
- 2. Estabelecemos $S = \{s_1, s_2, ..., s_i\}$ como um conjunto de inteiros positivos.
- 1.8 Longest Path
- 1.9 Rudrata Path
- 1.10 Traveling Salesman
- 1.11 Integer Linear Programming

2 Problema 2

O problema de encontrar todos os fatores primos de um dado número inteiro é NPcompleto? Ele pertence à classe NP?

- Não, atualmente ainda não se sabe se o problema da Fatoração está em *NP-Completo*, e até agora não conseguiram provar que está em *P*.
- Sim, ele pertence a classe NP

3 Problema 3

Arquivo com a implementação dos problemas em anexo. np-complete.py