Module 2: Priority Queues

CS 240 - Data Structures and Data Management

Mark Petrick Lesley Istead
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2016

Abstract Data Types

Abstract Data Type (ADT): A description of *information* and a collection of *operations* on that information.

The information is accessed *only* through the operations.

We can have various realizations of an ADT, which specify:

- How the information is stored (data structure)
- How the operations are performed (algorithms)

Priority Queue ADT

Priority Queue: An ADT consisting of a collection of items (each having a *priority*) with operations

- insert: inserting an item tagged with a priority
- deleteMax: removing the item of highest priority

deleteMax is also called extractMax.

Applications: typical "todo" list, simulation systems

The above definition is for a *maximum-oriented* priority queue. A *minimum-oriented* priority queue is defined in the natural way, by replacing the operation *deleteMax* by *deleteMin*.

Realizations of Priority Queues

Attempt 1: Use unsorted arrays

• insert: *O*(1)

deleteMax: O(n)

Using unsorted linked lists is identical.

Attempt 2: Use sorted arrays

insert: O(n)

deleteMax: O(1)

Using sorted linked-lists is identical.

Third Realization: Heaps

A *heap* is a certain type of binary tree.

Recall binary trees:

A binary tree is either

- empty, or
- consists of three parts: a node and two binary trees (left subtree and right subtree).

Terminology: root, leaf, parent, child, level, sibling, ancestor, descendant, etc. .

Heaps

A max-heap is a binary tree with the following two properties:

- Structural Property: All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are left-justified.
- ② Heap-order Property: For any node i, key (priority) of parent of i is larger than or equal to key of i.

A min-heap is the same, but with opposite order property.

Lemma: Height of a heap with n nodes is $\Theta(\log n)$.

Insertion in Heaps

- Place the new key at the first free leaf
- The heap-order property might be violated: perform a bubble-up:

```
bubble-up(v)

v: a node of the heap

1. while parent(v) exists and key(parent(v)) < key(v) do

2. swap v and parent(v)

3. v \leftarrow parent(v)
```

The new item bubbles up until it reaches its correct place in the heap.

Time: O(height of heap) = $O(\log n)$.

deleteMax in Heaps

- The maximum item of a heap is just the root node.
- We replace root by the last leaf (last leaf is taken out).
- The heap-order property might be violated: perform a bubble-down:

```
bubble-down(v)

v: a node of the heap

1. while v is not a leaf do

2. u \leftarrow \text{child of } v \text{ with largest key}

3. if key(u) > key(v) then

4. swap v and u

5. v \leftarrow u

6. else

7. break
```

Time: $O(\text{height of heap}) = O(\log n)$.

Priority Queue Realization Using Heaps

heapInsert(A, x)

A: an array-based heap, x: a new item

- 1. $size(A) \leftarrow size(A) + 1$
- 2. $A[size(A) 1] \leftarrow x$
- 3. bubble-up(A, size(A) 1)

heapDeleteMax(A)

A: an array-based heap

- 1. $max \leftarrow A[0]$
- 2. swap(A[0], A[size(A) 1])
- 3. $\operatorname{size}(A) \leftarrow \operatorname{size}(A) 1$
- 4. bubble-down(A, 0)
- 5. return max

Insert and deleteMax: $O(\log n)$

Building Heaps

Problem statement: Given *n* items (in $A[0 \cdots n-1]$) build a heap containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

heapify1(A) A: an array

- 1. initialize H as an empty heap
- 2. **for** $i \leftarrow 0$ **to** size(A) 1 **do**
- heapInsert(H, A[i])

This corresponds to going from $0 \cdots n-1$ in A and doing bubble-ups Worst-case running time: $\Theta(n \log n)$.

Storing Heaps in Arrays

Let H be a heap (binary tree) of n items and let A be an array of size n. Store root in A[0] and continue with elements *level-by-level* from top to bottom, in each level left-to-right.

It is easy to find parents and children using this array representation:

- the *left child* of A[i] (if it exists) is A[2i + 1],
- the right child of A[i] (if it exists) is A[2i + 2],
- the parent of A[i] $(i \neq 0)$ is $A[\lfloor \frac{i-1}{2} \rfloor]$ (A[0] is the root node).

Building Heaps

Problem statement: Given n items (in $A[0 \cdots n-1]$) build a heap containing all of them.

Solution 2: Using *bubble-downs* instead:

```
heapify(A)
A: an array
1. n \leftarrow size(A) - 1
2. for i \leftarrow \lfloor n/2 \rfloor downto 0 do
3. bubble-down(A, i)
```

A careful analysis yields a worst-case complexity of $\Theta(n)$. A heap can be built in linear time.

Using a Priority Queue to Sort

```
PQ - Sort(A)
1. initialize PQ to an empty priority queue
2. for i \leftarrow 0 to n-1 do
3. PQ.insert(A[i], A[i])
4. for i \leftarrow 0 to n-1 do
5. A[n-1-i] \leftarrow PQ.deleteMax()
```

HeapSort

```
HeapSort(A)

1. initialize H to an empty heap

2. for i \leftarrow 0 to n-1 do

3. heapInsert(H, A[i])

4. for i \leftarrow 0 to n-1 do

5. A[n-1-i] \leftarrow heapDeleteMax(H)
```

```
HeapSort(A)

1. heapify(A)

2. for i \leftarrow 0 to n-1 do

3. A[n-1-i] \leftarrow heapDeleteMax(A)
```

Running time of HeapSort: $O(n \log n)$

Selection

Problem Statement: The *k*th-max problem asks to find the *kth largest item* in an array *A* of *n* numbers.

Solution 1: Make k passes through the array, deleting the maximum number each time.

Complexity: $\Theta(kn)$.

Solution 2: First sort the numbers. Then return the kth largest number.

Complexity: $\Theta(n \log n)$.

Solution 3: Scan the array and maintain the k largest numbers seen so far in a min-heap

Complexity: $\Theta(n \log k)$.

Solution 4: Make a max-heap by calling heapify(A). Call deleteMax(A) k times.

Complexity: $\Theta(n + k \log n)$.