НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Дисциплина: «Дискретная математика»

Домашнее задание 1

Исследование комбинационных схем Вариант 181

Выполнил: kk, студент гр. 02.

Преподаватель: Авдошин С.М., профессор департамента программной инженерии факультета компьютерных наук $7X_7 \oplus 186X_6 \oplus 213X_5 \oplus 21X_4 \oplus 238X_3 \oplus 142X_2 \oplus 30X_1 \oplus 191X_0 = 183$

Переведем коэффициенты уравнения в двоичную систему счисления. $7_{10}=00000111_2, 186_{10}=10111010_2, 213_{10}=11010101_2, 21_{10}=00010101_2, 238_{10}=11101110_2, 142_{10}=10001110_2, 30_{10}=00011110_2, 191_{10}=10111111_2, 183_{10}=10110111_2.$ Составим расширенную матрицу коэффициентов соответствующей системы линейных уравнений в GF(2) и решим систему.

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0$$

В описаниях преобразований строки обозначены как (1), (2), ..., (8), а выражение $(i) \oplus = (j)$ обозначает «заменить все числа в строке (i) на их сумму по модулю 2 с соответствующими числами строки (j)».

Получаем решение: X7=1, X6=1, X5=1, X4=0, X3=1, X2=1, X1=0, X0=1. Составим таблицу истинности функции F.

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
С	0	1	0	1	0	1	0	1
F	1	1	1	0	1	1	0	1

Десятичный номер функции F равен $2^7 + 2^6 + 2^5 + 2^3 + 2^2 + 2^0 = 237$.

 N_{2}

Представим таблицу листинности логической функции F в виде карты Карно.

F	0	0	1	1	A
1	0	1	1	0	В
0	1	1	0	1	
1	1	0	1	1	
С					

№3

Выполним дизъюнктивны разложения Шеннона логической функции F.

$$\begin{pmatrix} A & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ B & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix} = \overline{A} \cdot \begin{pmatrix} B & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 1 & 0 & 1 \end{pmatrix} + A \cdot \begin{pmatrix} B & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 0 & 1 \end{pmatrix} = \overline{A} \cdot (B \mid C) + A \cdot (B \Rightarrow C)$$

$$\begin{pmatrix} A & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ B & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 1 & 0 & 1 & 1 & 1 \end{pmatrix} = \overline{B} \cdot \begin{pmatrix} A & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 1 & 1 \end{pmatrix} + B \cdot \begin{pmatrix} A & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 \\ F & 1 & 0 & 0 & 1 \end{pmatrix} = \overline{B} + B \cdot (A \equiv C)$$

$$\begin{pmatrix} A & 0 & 0 & 0 & 1 & 1 \\ F & 1 & 1 & 1 & 1 \end{pmatrix} = \overline{C} \cdot \begin{pmatrix} A & 0 & 0 & 1 & 1 \\ B & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 1 & 0 \end{pmatrix} + C \cdot \begin{pmatrix} A & 0 & 0 & 1 & 1 \\ B & 0 & 1 & 0 & 1 \\ F & 1 & 0 & 1 & 1 \end{pmatrix} = \overline{C} \cdot (A \mid B) + C \cdot (A \Leftarrow B)$$

 $N_{\underline{0}4}$

Совершенная дизъюнктивная нормальная форма

$$F(A,B,C) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}\bar{B}\bar{C} + A\bar{B}\bar{C} + A\bar{B}C + ABC \tag{1}$$

 $N_{\overline{2}}5$

Минимальные дизъюнктивные формы

$$F(A, B, C) = \overline{B} + AC + \overline{AC}$$

$$N^{0}6$$
(2)

Из дизъюнктивных разложений получаем новые представления

$$\begin{split} F(A,B,C) &= \overline{A} \cdot (B \mid C) \oplus A \cdot (B \Rightarrow C) \\ F(A,B,C) &= \overline{B} \oplus B \cdot (A \equiv C) \\ F(A,B,C) &= \overline{C} \cdot (A \mid B) \oplus C \cdot (A \Leftarrow B) \\ F(A,B,C) &= \bar{A}\bar{B}\bar{C} \oplus \bar{A}\bar{B}C \oplus \bar{A}\bar{B}\bar{C} \oplus A\bar{B}\bar{C} \oplus A\bar{B}C \oplus A\bar{B}C \end{split}$$

Выполним конъюнктивные разложения Шеннона логической функции F.

$$\begin{pmatrix} A & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ B & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} A + \begin{pmatrix} B & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \overline{A} + \begin{pmatrix} B & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 0 & 1 \end{pmatrix} \end{pmatrix} = (A + (B \mid C)) \cdot (\overline{A} + (B \Rightarrow C))$$

$$\begin{pmatrix} A & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ B & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} B + \begin{pmatrix} A & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \overline{B} + \begin{pmatrix} A & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 \\ F & 1 & 0 & 0 & 1 \end{pmatrix} \end{pmatrix} = B \cdot (\overline{B} + (A \equiv C))$$

$$\begin{pmatrix} A & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ B & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 0 & 1 \\ C & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} C + \begin{pmatrix} A & 0 & 0 & 1 & 1 \\ B & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 1 & 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \overline{C} + \begin{pmatrix} A & 0 & 0 & 1 & 1 \\ B & 0 & 1 & 0 & 1 \\ F & 1 & 0 & 1 & 1 \end{pmatrix} \end{pmatrix} = (C + (A \mid B)) \cdot (\overline{C} + (A \rightleftharpoons B))$$

№8

Совершенная конъюнктивная нормальная форма.

$$F(A, B, C) = (A + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C)$$

$$N^{\underline{o}}9$$
(3)

Минимальные конъюнктивные нормальные формы.

$$F(A, B, C) = (A + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C)$$

$$N^{\underline{0}} 10$$
(4)

 $F(A, B, C) = A \oplus C \oplus AB \oplus BC$

 $N_{\overline{2}}11$

```
\begin{array}{l} (0,0,0): F(A,B,C) = A \oplus C \oplus AB \oplus BC \\ (0,0,1): F(A,B,C) = 1 \oplus A \oplus B \oplus (C \oplus 1) \oplus AB \oplus B(C \oplus 1) \\ (0,1,0): F(A,B,C) = A(B \oplus 1) \oplus (B \oplus 1)C \\ (0,1,1): F(A,B,C) = (B \oplus 1) \oplus A(B \oplus 1) \oplus (B \oplus 1)(C \oplus 1) \\ (1,0,0): F(A,B,C) = 1 \oplus (A \oplus 1) \oplus B \oplus C \oplus (A \oplus 1)B \oplus BC \\ (1,0,1): F(A,B,C) = (A \oplus 1) \oplus (C \oplus 1) \oplus (A \oplus 1)B \oplus B(C \oplus 1) \\ (1,1,0): F(A,B,C) = (B \oplus 1) \oplus (A \oplus 1)(B \oplus 1) \oplus (B \oplus 1)C \\ (1,1,1): F(A,B,C) = (A \oplus 1)(B \oplus 1) \oplus (B \oplus 1)(C \oplus 1) \end{array}
```

№12

$$F(A, B, C) = 0 \equiv (A + B) \equiv (B + C)$$

Nº13

$$\begin{array}{l} (0,0,0): F(A,B,C) = 0 \equiv (A \equiv 0) \equiv (C \equiv 0) \equiv ((A \equiv 0) + (B \equiv 0)) \equiv ((B \equiv 0) + (C \equiv 0)) \\ (0,0,1): F(A,B,C) = (A \equiv 0) \equiv (B \equiv 0) \equiv C \equiv ((A \equiv 0) + (B \equiv 0)) \equiv ((B \equiv 0) + C) \\ (0,1,0): F(A,B,C) = 0 \equiv ((A \equiv 0) + B) \equiv (B + (C \equiv 0)) \\ (0,1,1): F(A,B,C) = 0 \equiv B \equiv ((A \equiv 0) + B) \equiv (B + C) \\ (1,0,0): F(A,B,C) = A \equiv (B \equiv 0) \equiv (C \equiv 0) \equiv (A + (B \equiv 0)) \equiv ((B \equiv 0) + (C \equiv 0)) \\ (1,0,1): F(A,B,C) = 0 \equiv A \equiv C \equiv (A + (B \equiv 0)) \equiv ((B \equiv 0) + C) \\ (1,1,0): F(A,B,C) = 0 \equiv B \equiv (A + B) \equiv (B + (C \equiv 0)) \\ (1,1,1): F(A,B,C) = 0 \equiv (A + B) \equiv (B + C) \end{array}$$

№14

- $F \in T_0$, t.k. F(0,0,0) = 0
- $F \notin T_1$, t.k. F(1,1,1) = 0

- $F \notin T_*$ т.к. F(0,0,0) = 0, F(1,1,1) = 0
- $F \notin T_{\leq}$ t.k. F(1,0,0) = 1 > F(1,0,1) = 0
- $F \notin T_L$ T.K. $F(A,B,C) = A \oplus C \oplus AB \oplus BC$

 $N_{\overline{2}}15$

- 0 = F(A, A, A)
- (A * B) = F(A, F(A, A, A), F(A, B, B))
- $(A \Rightarrow B) = F(A, B, B)$
- A = F(A, F(A, A, A), F(A, A, A))
- $(A \Leftarrow B) = F(A, A, B)$
- B = F(A, F(A, B, B), F(A, A, B))
- $(A \oplus B) = F(A, F(A, A, A), B)$
- (A + B) = F(A, F(A, A, A), F(A, A, B))