Детерміновані класи складності за часом. Клас складності $\mathcal P$

Андрій Фесенко

Означення (DTIME)

Для довільної конструктивної за часом функції $t \colon \mathbb{N} \to \mathbb{N}$ класом складності DTIME(t) називають множину таких мов $L_1 \subseteq \{0,1\}^*$, для яких існує детермінована машина Тюрінга M, що вирішує мову L_1 за час $\mathcal{O}(t(n))$.

Означення (DTIME)

Для довільної конструктивної за часом функції $t \colon \mathbb{N} \to \mathbb{N}$ класом складності DTIME(t) називають множину таких мов $L_1 \subseteq \{0,1\}^*$, для яких існує детермінована машина Тюрінга M, що вирішує мову L_1 за час $\mathcal{O}(t(n))$.

Зауваження

ullet також позначають як DTIME(t(n)) $(TIME(t(n)),\ TIME(t))$

1

Означення (DTIME)

Для довільної конструктивної за часом функції $t \colon \mathbb{N} \to \mathbb{N}$ класом складності DTIME(t) називають множину таких мов $L_1 \subseteq \{0,1\}^*$, для яких існує детермінована машина Тюрінга M, що вирішує мову L_1 за час $\mathcal{O}(t(n))$.

- ullet також позначають як DTIME(t(n)) $(TIME(t(n)),\ TIME(t))$
- можна використовувати не конструктивні за часом функції

Означення (DTIME)

Для довільної конструктивної за часом функції $t \colon \mathbb{N} \to \mathbb{N}$ класом складності DTIME(t) називають множину таких мов $L_1 \subseteq \{0,1\}^*$, для яких існує детермінована машина Тюрінга M, що вирішує мову L_1 за час $\mathcal{O}(t(n))$.

- ullet також позначають як DTIME(t(n)) $(TIME(t(n)),\ TIME(t))$
- можна використовувати не конструктивні за часом функції
- ullet теорема про лінійне прискорення призводить до ${\mathcal O}$ нотації

Означення (DTIME)

Для довільної конструктивної за часом функції $t \colon \mathbb{N} \to \mathbb{N}$ класом складності DTIME(t) називають множину таких мов $L_1 \subseteq \{0,1\}^*$, для яких існує детермінована машина Тюрінга M, що вирішує мову L_1 за час $\mathcal{O}(t(n))$.

- ullet також позначають як DTIME(t(n)) $(TIME(t(n)),\ TIME(t))$
- можна використовувати не конструктивні за часом функції
- ullet теорема про лінійне прискорення призводить до ${\mathcal O}$ нотації
- ullet DTIME $^{strict}(t)$ вирішує мову за час t(n)

Означення (DTIME)

Для довільної конструктивної за часом функції $t \colon \mathbb{N} \to \mathbb{N}$ класом складності DTIME(t) називають множину таких мов $L_1 \subseteq \{0,1\}^*$, для яких існує детермінована машина Тюрінга M, що вирішує мову L_1 за час $\mathcal{O}(t(n))$.

- ullet також позначають як DTIME(t(n)) $(TIME(t(n)),\ TIME(t))$
- можна використовувати не конструктивні за часом функції
- ullet теорема про лінійне прискорення призводить до ${\mathcal O}$ нотації
- ullet DTIME $^{strict}(t)$ вирішує мову за час t(n)
- ullet може залежати від обраної моделі обчислень $DTIME_1(t),\ DTIME_k(t),\ DTIME_*(t)$

Детерміновані класи складності за часом

```
REALTIME = DTIME^{strict}(id)
LIN = DTIME(n) (лінійний)
NLT = DTIME(n(\log n)^{\mathcal{O}(1)}) (майже лінійний)
QL = \bigcup_{k \in \mathbb{N}} DTIME(n(\log n)^k + k) (квазі-лінійний)
P = \bigcup_{k \in \mathbb{N}} DTIME(n^k) = DTIME(n^{\mathcal{O}(1)}) abo PTIME
QPLIN = DTIME\left(n^{\mathcal{O}(\log n)}\right) (лінійний квазі-поліноміальний)
QP = \bigcup_{k \in \mathbb{N}} DTIME(2^{\log^k n}) (квазі-поліноміальний)
SUBEXP = \bigcap_{\varepsilon \subset \mathbb{R}^+} DTIME(2^{n^{\varepsilon}}) (субекспоненційний)
E = \bigcup_{k \in \mathbb{N}} DTIME(k^n) = DTIME(2^{\mathcal{O}(n)}) abo ETIME
EE = \bigcup_{k \in \mathbb{N}} DTIME(k^{k^n}) = DTIME(2^{2^{\mathcal{O}(n)}})
EEE = \bigcup_{k \in \mathbb{N}} DTIME(k^{k^n}) = DTIME(2^{2^{2^{O(n)}}})
EXP = \bigcup_{k \in \mathbb{N}} DTIME(2^{n^k}) abo EXPTIME
2-EXP = \bigcup_{\nu \subset \mathbb{N}} DTIME(2^{2^{n^k}}) aδο 2-EXPTIME, EEXP
m-EXP = \bigcup_{k \in \mathbb{N}} DTIME(2 \uparrow \uparrow m_m^{n^k}) abo m-EXPTIME
ELEMENTARY = \bigcup_{m \in \mathbb{N}} m - EXP
PR — клас примітивно рекурсивних мов
```

Сучасні можливості комп'ютерів

Лідер списку ТОР500 (top500.org)

Найкращий суперкомп'ютер на даний момент (11.2021)

Supercomputer Fugaku, A64FX 48C 2.2GHz має теоретичну швидкодію 0.5 exaFLOPS $\approx 5 \cdot 10^{17}$ FLOPS

Сучасні можливості комп'ютерів

Лідер списку TOP500 (top500.org)

Найкращий суперкомп'ютер на даний момент (11.2021)

Supercomputer Fugaku, A64FX 48C 2.2GHz має теоретичну швидкодію 0.5 exaFLOPS $\approx 5 \cdot 10^{17}$ FLOPS

t	n = 10	n = 100	n = 1000
n	$2 \cdot 10^{-17} \text{ c}$	$2 \cdot 10^{-16} \text{ c}$	$2 \cdot 10^{-15} \text{ c}$
n^2	$2\cdot 10^{-16}$ c	$2\cdot 10^{-14}$ c	$2\cdot 10^{-12}$ c
n^3	$2\cdot 10^{-15}$ c	$2\cdot 10^{-12}$ c	$2\cdot 10^{-9}$ c
n^6	$2\cdot 10^{-12}$ c	$2\cdot 10^{-6}$ c	2 c
n^{12}	$2\cdot 10^{-6}$ c	24 дні	$7\cdot 10^{10}$ років
2^{n}	$2\cdot 10^{-15}$ c	70000 років	$7 \cdot 10^{275}$ років
3 ⁿ	$1.2 \cdot 10^{-13} \text{ c}$	$3\cdot 10^{22}$ років	10 ⁴⁵² років
2^{2n}	$2\cdot 10^{-12}$ c	10 ³⁵ років	$7\cdot 10^{576}$ років

Сучасні можливості комп'ютерів

t	n = 10	n = 100	n = 1000
n	$2 \cdot 10^{-17}$ c	$2 \cdot 10^{-16}$ c	$2 \cdot 10^{-15} \text{ c}$
n^2	$2\cdot 10^{-16}$ c	$2\cdot 10^{-14}$ c	$2\cdot 10^{-12}$ c
n^3	$2\cdot 10^{-15}$ c	$2\cdot 10^{-12}$ c	$2\cdot 10^{-9}$ c
n^6	$2\cdot 10^{-12}$ c	$2\cdot 10^{-6}$ c	2 c
n^{12}	$2\cdot 10^{-6}$ c	24 дні	$7\cdot 10^{10}$ років
2 ⁿ	$2\cdot 10^{-15}$ c	70000 років	$7 \cdot 10^{275}$ років
3 ⁿ	$1.2 \cdot 10^{-13} \; \mathrm{c}$	$3\cdot 10^{22}$ років	10 ⁴⁵² років
2^{2n}	$2\cdot 10^{-12}$ c	10 ³⁵ років	7 · 10 ⁵⁷⁶ років

Вік Всесвіту становить ≈ 13.8 мільярдів років або $\approx 13.8 \cdot 10^9$ років $7 \cdot 10^{275}$ років — це $7 \cdot 10^{266}$ мільярдів років

Вплив збільшення швидкодії

Закон Гордона Мура

Кількість транзисторів на кристалі подвоюється кожні 2 роки (1975)

Швидкодія: подвоюється кожні 2 роки (\mathcal{L} авид Xаус)

або збільшується в $\sqrt{2}$ кожні 2 роки (Φ ред Поллак)

Вплив збільшення швидкодії

Закон Гордона Мура

Кількість транзисторів на кристалі подвоюється кожні 2 роки (1975) Швидкодія: подвоюється кожні 2 роки (Давид Хаус) або збільшується в $\sqrt{2}$ кожні 2 роки (Фред Поллак)

t	сьогодні	в 100 разів (≈ 26 років)	в 1000 разів (≈ 40 років)	в 10000 разів (≈ 53 роки)
n	N_1	100 <i>N</i> ₁	1000 <i>N</i> ₁	10000 <i>N</i> ₁
n^2	N_2	$10N_2$	$31.6N_2$	$100 N_2$
n^3	N_3	$4.6N_{3}$	$10N_3$	$21.5N_3$
n^6	N_4	$2.1 N_4$	$3.2N_{4}$	$4.6N_{4}$
n^{12}	N_5	$1.5N_5$	$1.8N_5$	$2.2N_{5}$
2^n	N_6	$N_6 + 6.64$	$N_6 + 9.97$	$N_6 + 13.29$
3 ⁿ	N_7	$N_7 + 4.19$	$N_7 + 6.29$	$N_7 + 8.38$
2^{2n}	N ₈	$N_8 + 3.32$	$N_8 + 4.98$	$N_8 + 6.64$

Задачі, які розв'язуються ефективно

Теза Кобхема (Кобхема-Едмондса), 1965 р.

Ефективним розв'язком є тільки розв'язок з поліноміальним обмеженням на використовувані ресурси.

P — клас мов (задач), які розв'язуються ефективно (tractable problems)

EXP — клас мов (задач), які **не розв'язуються ефективно**

Властивості класу складності P

Pros	Cons	
Всі обчислювальні моделі є по-	Можлива складність $10^{100} n^{2000}$	
ліноміально еквівалентними	Можлива складність $10^{-100}2^n$	
Всі "розумні" схеми кодування є поліноміально еквівалентними	Відсутність конструктивного алгоритму	
P є найменшим незмінним класом, який містить $DTIME(n)$		
На практиці $\mathcal{O}(n^2)$ або $\mathcal{O}(n^3)$		
Замкненість відносно операцій та композиції		

Діаграма класів складності за часом

Поліноміальне зведення

Клас складності P є замкненим відносно перетину, об'єднання, конкатенації, замикання Кліні, обернення та доповнення мов.

Поліноміальне зведення

Клас складності P є замкненим відносно перетину, об'єднання, конкатенації, замикання Кліні, обернення та доповнення мов.

Для довільних нетривіальних мов $L_1, L_2 \in P$ є правильним твердження, що $L_1 \leq_m L_2$.

Поліноміальне зведення

Клас складності P є замкненим відносно перетину, об'єднання, конкатенації, замикання Кліні, обернення та доповнення мов.

Для довільних нетривіальних мов $L_1, L_2 \in P$ є правильним твердження, що $L_1 \leq_m L_2$.

Означення

Мова $L_1\subseteq\{0,1\}^*$ поліноміально (або за Карпом) зводиться до мови $L_2\subseteq\{0,1\}^*$, якщо існує m-зведення мови L_1 до мови L_2 , в якому для функції зведення існує поліноміальна детермінована машина Тюрінга, яка обчислює значення функції зведення. Позначають це як $L_1\le_p L_2$ (іноді позначають як $L_1\propto L_2$ або $L_1\le_m^p L_2$).

Зведення за Куком

Означення

Мова $L_1\subseteq \{\,0,1\,\}^*$ за Куком (або поліноміально за Тюрінгом) зводиться до мови $L_2\subseteq \{\,0,1\,\}^*$, якщо мова L_1 зводиться за Тюрінгом до мови L_2 за час T(n) і при цьому існує поліном $p\colon \mathbb{N}\to \mathbb{N}$ такий, що $T(n)\le p(n)$ для всіх чисел $n\in \mathbb{N}$. Позначають це як $L_1\le_C L_2$ (іноді позначають як $L_1\le_T^P L_2$).

Зведення за Куком

Означення

Мова $L_1\subseteq \{\,0,1\,\}^*$ за **Куком** (або **поліноміально за Тюрінгом**) зводиться до мови $L_2\subseteq \{\,0,1\,\}^*$, якщо мова L_1 зводиться за Тюрінгом до мови L_2 за час T(n) і при цьому існує поліном $p\colon \mathbb{N}\to \mathbb{N}$ такий, що $T(n)\le p(n)$ для всіх чисел $n\in \mathbb{N}$. Позначають це як $L_1\le_C L_2$ (іноді позначають як $L_1\le_T^P L_2$).

Наслідок

Зведення за Карпом та зведення за Куком є рефлексивними та транзитивними відношеннями на множині всіх мов.

Зведення за Куком

Означення

Мова $L_1\subseteq \{\,0,1\,\}^*$ за **Куком** (або **поліноміально за Тюрінгом**) зводиться до мови $L_2\subseteq \{\,0,1\,\}^*$, якщо мова L_1 зводиться за Тюрінгом до мови L_2 за час T(n) і при цьому існує поліном $p\colon \mathbb{N}\to \mathbb{N}$ такий, що $T(n)\le p(n)$ для всіх чисел $n\in \mathbb{N}$. Позначають це як $L_1\le_C L_2$ (іноді позначають як $L_1\le_T^P L_2$).

Наслідок

Зведення за Карпом та зведення за Куком є рефлексивними та транзитивними відношеннями на множині всіх мов.

Твердження

Поліноміальне зведення є сильнішим за m-зведення. Зведення за Куком є сильнішим за зведення за Тюрінгом. Поліноміальне зведення є сильнішим за зведення за Куком. $L_1 \leq_p L_2 \Rightarrow L_1 \leq_m L_2, \ L_1 \leq_p L_2 \Rightarrow L_1 \leq_C L_2 \Rightarrow L_1 \leq_T L_2$

Властивості зведень

Клас складності P є замкненим відносно поліноміального зведення та зведення за Куком.

Властивості зведень

Клас складності P є замкненим відносно поліноміального зведення та зведення за Куком.

- клас складності P є незамкнутим відносно зведення за Куком, якщо розглянути множину функціональних задач 2^{2^k} через піднесення до квадрату;
- але зведення за Куком є корисним при зведенні інших типів задач до задач розпізнавання

Властивості зведень

Клас складності P є замкненим відносно поліноміального зведення та зведення за Куком.

- клас складності P є незамкнутим відносно зведення за Куком, якщо розглянути множину функціональних задач 2^{2^k} через піднесення до квадрату;
- але зведення за Куком є корисним при зведенні інших типів задач до задач розпізнавання

Довільна мова $L_1 \in P$ поліноміально зводиться до довільної нетривіальної мови $L_2 \subset \set{0,1}^*$.