10 Numerical Integration

- A large number of engineering/scientific fields require integration, for example calculating average fluid flow, centres of mass, position of an object using accelerometer data etc.
- Some integrals can be dealt with analytically (as seen in calculus classes), others have no closed-form solution and therefore require approximation.
- When we derived the definite integral in calculus we used the midpoint rule to estimate the area under a curve using rectangles. This method is useful for simple approximations by hand, however we will focus on numerical methods that yield more accurate results.

10.1 Trapezium Rule

Also known as the Trapezoid or Trapezoidal Rule, this method uses the area of a trapezium to estimate the area under the curve.

For a single interval [a, b] we approximate as:

$$\int_{a}^{b} f(x) \, dx \approx \frac{1}{2} \left[f(a) + f(b) \right] (b - a)$$

The limitation of this method is demonstrated in the next example.

Use the trapezium rule to numerically integrate the following **EXAMPLE 1** function between $0 \le x \le 0.8$.

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Function values

$$f(0) = 0.2$$

$$f(0) = 0.2$$
 $f(0.8) = 0.232$

Trapezium rule

$$I = (0.8 - 0) \frac{0.2 + 0.232}{2} = 0.1728$$

True value = 1.640533

Notice the large error since evaluating the function at the endpoints was not a fair representation of the function.

Composite Trapezium Rule

We can improve upon the previous estimate by partitioning the domain into subintervals of width h and using the trapezium rule on each part.

$$I = h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + \dots + h \frac{f(x_{n-1}) + f(x_n)}{2}$$

$$= \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

EXAMPLE 2 Use the composite trapezium rule to perform the same integral as **Example 1** with n = 2.

Subinterval width

$$n = 2 \Rightarrow h = (0.8 - 0)/2 = 0.4$$

Function values at subinterval endpoints

$$f(0) = 0.2$$

$$f(0.4) = 2.456$$

$$f(0) = 0.2$$
 $f(0.4) = 2.456$ $f(0.8) = 0.232$

Composite trapezium rule formula

$$I = 0.8 \frac{0.2 + 2(2.456) + 0.232}{4} = 1.0688$$

Notice the error decreases for increasing *n*:

n	h	I	$\boldsymbol{\varepsilon}_{t}$ (%)
2	0.4	1.0688	34.9
3	0.2667	1.3695	16.5
4	0.2	1.4848	9.5
5	0.16	1.5399	6.1
6	0.1333	1.5703	4.3
7	0.1143	1.5887	3.2
8	0.1	1.6008	2.4
9	0.0889	1.6091	1.9
10	0.08	1.6150	1.6

Error Estimate for Composite Trapezium Rule

Let $x_i = a + ih$ then examine the area underneath one of the subintervals $[x_i, x_{i+1}]$:

Integration by parts

$$\int_{x_{i}}^{x_{i}+1} f(x) dx = \int_{0}^{h} f(t+x_{i}) dt = \left[(t+A)f(t+x_{i}) \right]_{0}^{h} - \int_{0}^{h} (t+A)f'(t+x_{i}) dt$$

$$= \left[(t+A)f(t+x_{i}) \right]_{0}^{h} - \left[\left(\frac{(t+A)^{2}}{2} + B \right) f'(t+x_{i}) \right]_{0}^{h}$$

$$+ \int_{0}^{h} \left(\frac{(t+A)^{2}}{2} + B \right) f''(t+x_{i}) dt, \qquad \text{Integration by parts again}$$

Normally we omit the constants A and B until the end of integration by parts but here it serves to help us retrieve a formula for the error estimate. Now the right-hand side represents the true area of under the curve on the subinterval $[x_i, x_{i+1}]$. Let us choose the first constant such that,

$$\left[(t+A)f(t+x_i) \right]_0^h$$

is the trapezium approximation of the area.

- This will mean that the other 2 terms on the right-hand side will correspond with the error.
- Equating the above part with the trapezium area gives:

$$(h+A)f(h+x_i) - Af(x_i) = (f(x_i) + f(x_{i+1}))h/2$$

□ Solving this gives A = -h/2.

■ Now for the other 2 terms which account for the error, let us choose a value of B so that the 2nd term becomes 0 and all of the error is pushed into the last term. The 2nd term is:

$$\left[\left(\frac{(t+A)^2}{2} + B \right) f'(t+x_i) \right]_0^h = \left(\frac{(h/2)^2}{2} + B \right) f'(h+x_i) - \left(\frac{(-h/2)^2}{2} + B \right) f'(x_i)$$

So if $B = -h^2/8$ the above becomes 0. Substituting this into the 3rd term gives us the error from the trapezium rule on the subinterval:

$$E_T(i) = \int_0^h \left(\frac{(t - h/2)^2}{2} - \frac{h^2}{8} \right) f''(t + x_i) dt$$

So the trapezium rule can be written as:

$$\int_{x_i}^{x_i+1} f(x) \ dx = \frac{h(f(x_i) + f(x_{i+1}))}{2} + \int_0^h \left(\frac{(t - h/2)^2}{2} - \frac{h^2}{8}\right) f''(t + x_i) \ dt$$

Add up all the errors from each subinterval:

$$E_T = E_T(0) + E_T(1) + \dots + E_T(n-1)$$

$$= \int_0^h \left(\frac{(t-h/2)^2}{2} - h^2/8 \right) f''(t+x_0) dt$$

$$+ \dots +$$

$$\int_0^h \left(\frac{(t-h/2)^2}{2} - h^2/8 \right) f''(t+x_{n-1}) dt$$

$$= \int_0^h \left(\frac{(t-h/2)^2}{2} - h^2/8 \right) \left(f''(t+x_0) + \dots + f''(t+x_{n-1}) \right) dt$$

We also assume that the 2nd derivative of the function is finite. In other words:

$$|f''(x)| \le K \text{ for } a \le x \le b$$

Taking the absolute value of the error then gives:

$$|E_{T}| = \left| \int_{0}^{h} \left(\frac{(t - h/2)^{2}}{2} - \frac{h^{2}}{8} \right) \left(f''(t + x_{0}) + \dots + f''(t + x_{n-1}) \right) dt \right|$$

$$\leq \int_{0}^{h} \left| \left(\frac{(t - h/2)^{2}}{2} - \frac{h^{2}}{8} \right) \left(f''(t + x_{0}) + \dots + f''(t + x_{n-1}) \right) \right| dt$$

$$= \int_{0}^{h} \left| \frac{(t - h/2)^{2}}{2} - \frac{h^{2}}{8} \right| \left| f''(t + x_{0}) + \dots + f''(t + x_{n-1}) \right| dt$$

$$\leq \int_{0}^{h} \left| \frac{(t - h/2)^{2}}{2} - \frac{h^{2}}{8} \right| \left(|f''(t + x_{0})| + \dots + |f''(t + x_{n-1})| \right) dt$$

$$\leq nK \int_{0}^{h} \left| \frac{(t - h/2)^{2}}{2} - \frac{h^{2}}{8} \right| dt.$$

f(t) = t(t - h)/2 which is negative on $0 \le t \le h$

Now we can remove the absolute bars and integrate:

$$\int_0^h \left| \frac{(t - h/2)^2}{2} - \frac{h^2}{8} \right| dt = \int_0^h \left(\frac{h^2}{8} - \frac{(t - h/2)^2}{2} \right) dt = \left[\frac{h^2 t}{8} - \frac{(t - h/2)^3}{6} \right]_0^h$$
$$= \left(\frac{h^3}{8} - \frac{(h/2)^3}{6} + \frac{(-h/2)^3}{6} \right) = \frac{h^3}{12}.$$

So our total error becomes:

$$|E_T| \le \frac{nKh^3}{12} = \frac{K(b-a)^3}{12n^2}$$

where K is an upper bound for the 2^{nd} derivative on the interval [a, b].

Note that this is only an estimate of the error since we have to choose a value for K. □ It is common to use the average value of the 2nd derivative to rewrite the error instead of an upper bound:

$$\bar{f}''\cong\frac{\sum\limits_{i=1}^{n}f''(\xi_i)}{n}$$
 For each ξ_i in the i th subinterval

We therefore have an approximate error formula as:

$$E_a = -\frac{(b-a)^3}{12n^2} \bar{f}''$$

where the negative sign comes from consideration of the concavity of the function.

Or go to www.pollev.com/jsands601

If the function is concave down on a subinterval will the trapezium rule give a positive or negative error?

Positive

Negative

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Lecture 10 **Numerical Methods** © MCGRAW HILL

If the function is concave down is $ar f''(\xi)$ positive or negative (for $a \leq \xi \leq b$)?

Positive

Negative

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Lecture 10 **Numerical Methods** © MCGRAW HILL **EXAMPLE 3** Calculate the approximate error from **Examples 1 & 2** which correspond with the trapezium rule with n = 1 and 2.

2nd derivative

$$f''(x) = -400 + 4,050x - 10,800x^2 + 8,000x^3$$

Average value

$$\bar{f}''(x) = \frac{\int_0^{0.8} (-400 + 4,050x - 10,800x^2 + 8,000x^3) \, dx}{0.8 - 0} = -60$$

Error estimate for n = 1

$$E_a = -\frac{1}{12} (-60)(0.8)^3 = 2.56$$

Error estimate for n = 2

$$E_a = -\frac{0.8^3}{12(2)^2} (-60) = 0.64$$

Algorithm for Trapezium Rule

- Partition the domain and calculate the subinterval width, h.
- Evaluate the function at the domain endpoints and interior subinterval points.
- Apply the summation formula in an appropriate loop or in vectorised Matlab code:

$$A = \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

10.2 Simpson's Rules

Simpson's rules for estimating the area under curves come from either partitioning the domain into 2 parts and approximating the curve with a parabola, or partitioning the domain into 3 parts and approximating the curve with a cubic polynomial.

Simpson's 1/3 Rule

■ We select 3 points x_0 , x_1 and x_2 from the domain and apply Lagrange interpolation for a quadratic (parabola):

$$I = \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) \right] dx$$

$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) dx$$

Integrating term by term (with $a = x_0$, $b = x_2$) gives:

$$I = (b - a) \frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$$

Defining h = (b - a)/2 we obtain the 1/3 Rule:

$$I = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

The approximate error for this rule is given as:

Common to use average value of 4th derivative here

$$E_a = -\frac{1}{90} h^5 f^{(4)}(\xi) = -\frac{(b-a)^5}{2880} f^{(4)}(\xi)$$

for some ξ between a and b.

EXAMPLE 4 Use Simpson's 1/3 rule with n = 2 to integrate the function from **Example 1** between 0 and 0.8 (same as previous examples).

$$n = 2(h = 0.4)$$
: $f(0) = 0.2$ $f(0.4) = 2.456$ $f(0.8) = 0.232$

$$I = 0.8 \frac{0.2 + 4(2.456) + 0.232}{6} = 1.367467 \quad E_a = -\frac{0.8^5}{2880} (-2400) = 0.2730667$$

Composite Simpson's 1/3 Rule

We can partition the domain into more subintervals as long as we choose n to be an even number.

$$I = 2h \frac{f(x_0) + 4f(x_1) + f(x_2)}{6} + 2h \frac{f(x_2) + 4f(x_3) + f(x_4)}{6}$$
$$+ \dots + 2h \frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{6}$$

Remember that n
 corresponds with the number
 of partitions, not the number
 of data points (n + 1).

In summation notation we have:

$$I = (b-a) \frac{f(x_0) + 4\sum_{i=1,3,5}^{n-1} f(x_i) + 2\sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)}{3n}$$

where we used the fact that h = (b - a)/n.

The approximate error is given as:

$$E_a = -\frac{(b-a)^5}{180n^4} \bar{f}^{(4)}$$
 Average value of the 4th derivative

22

EXAMPLE 5 Repeat **Example 4** with n = 4.

$$n = 4(h = 0.2)$$
: $f(0) = 0.2$ $f(0.2) = 1.288$ $f(0.4) = 2.456$
 $f(0.6) = 3.464$ $f(0.8) = 0.232$

$$I = 0.8 \frac{0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232}{12} = 1.623467$$

$$E_a = -\frac{(0.8)^5}{180(4)^4} (-2400) = 0.017067$$

Algorithm for Simpson's 1/3 Rule

- Partition the domain into an even number of segments.
- Sum the values of the function at odd interval numbers then multiply by 4 (excluding end-points).
- Sum the values of the function at even interval numbers then multiply by 2 (excluding end-points).
- Add the above results to the function values at the endpoints then multiply by (b a)/3n.
- Be careful about the indexes used in Matlab for odd/even interval numbers in the formula.

Which Matlab code represents Simpson's 1/3 rule if we have defined f as an anonymous function?

$$(b-a)/(3*n)*(f(x(1)) + 4*sum(f(x(2:2:end))) + 2*sum(f(x(1:2:end))) + f(x(end)))$$

$$(b-a)/(3*n)*(f(x(1)) + 4*sum(f(x(2:2:end-2))) + 2*sum(f(x(1:2:end-1))) + f(x(end)))$$

$$(b-a)/(3*n)*(f(x(1)) + 4*sum(f(x(2:2:end-1))) + 2*sum(f(x(1:2:end-2))) + f(x(end)))$$

$$(b-a)/(3*n)*(f(x(1)) + 4*sum(f(x(2:2:end-2))) + 2*sum(f(x(3:2:end-1))) + f(x(end)))$$

$$(b-a)/(3*n)*(f(x(1)) + 4*sum(f(x(2:2:end-1))) + 2*sum(f(x(3:2:end-2))) + f(x(end)))$$

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Lecture 10 **Numerical Methods** © MCGRAW HILL

25

Simpson's 3/8 Rule

- Used for odd segmented domains (n is odd).
- We use 4 points from the domain and fit with a cubic Lagrange polynomial. Integration as before yields:

or,
$$I = (b - a) \frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8}$$

$$I = \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$$

$$I = \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$$

The approximate error is given as:

$$E_a = -\frac{3}{80} h^5 f^{(4)}(\xi) = -\frac{(b-a)^5}{6480} f^{(4)}(\xi)$$

EXAMPLE 6 Use Simpson's 3/8 rule to integrate the function from the previous examples using 4 points in the domain.

4 equispaced points in the domain

$$f(0) = 0.2$$
 $f(0.2667) = 1.432724$
 $f(0.5333) = 3.487177$ $f(0.8) = 0.232$

$$I = 0.8 \frac{0.2 + 3(1.432724 + 3.487177) + 0.232}{8} = 1.51917$$

We can make a composite 3/8 Simpson's rule formula too however it is more common to combine Simpson's 1/3 rule with the 3/8 rule by splitting the domain segments into an odd and several even parts.

EXAMPLE 7

Use a combination of Simpson's 1/3 rule and 3/8 rule to integrate the function from the previous examples using 5

pieces in the domain.

6 equispaced points

$$f(0) = 0.2$$

$$f(0.16) = 1.296919$$

$$f(0.32) = 1.743393$$
 $f(0.48) = 3.186015$

$$f(0.48) = 3.186015$$

$$f(0.64) = 3.181929$$
 $f(0.80) = 0.232$

$$f(0.80) = 0.232$$

1/3 rule

$$I = 0.32 \, \frac{0.2 + 4(1.296919) + 1.743393}{6} = 0.3803237$$

3/8 rule

$$I = 0.48 \frac{1.743393 + 3(3.186015 + 3.181929) + 0.232}{8}$$
$$= 1.264754$$

Total integral
$$I = 0.3803237 + 1.264754 = 1.645077$$

© MCGRAW HILL

10.3 Integration with Uneven Spacing

- It is common in engineering practice to not have a known function that represents our system.
- Instead we often have data measured at certain intervals.
- Quite often the spacing between the data points is not the same so we must be able to integrate in such situations.
- We apply the trapezium method to each subinterval:

$$I = h_1 \frac{f(x_0) + f(x_1)}{2} + h_2 \frac{f(x_1) + f(x_2)}{2} + \dots + h_n \frac{f(x_{n-1}) + f(x_n)}{2}$$

Notice the input data (independent variable) must be <u>ordered</u> for the above formula to work.

EXAMPLE 8 Use the trapezium rule for unequally spaced data points to integrate the following.

x	f(x)	x	f(x)
0.00	0.200000	0.44	2.842985
0.12	1.309729	0.54	3.507297
0.22	1.305241	0.64	3.181929
0.32	1.743393	0.70	2.363000
0.36	2.074903	0.80	0.232000
0.40	2.456000		

$$I = 0.12 \frac{0.2 + 1.309729}{2} + 0.10 \frac{1.309729 + 1.305241}{2}$$
$$+ \dots + 0.10 \frac{2.363 + 0.232}{2} = 1.594801$$

Lecture 10 Numerical Methods © MCGRAW HILL

30

Use the trapezium rule to estimate the distance travelled.

Time (hours)	Velocity (kph)	
0	30	
0.5	40	
2	32	
1.5	42	

53 km

77 km

90 km

Τc

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Lecture 10 Numerical Methods © MCGRAW HILL

31

10.4 Matlab Built-In Functions

- Previously we saw the diff function from the symbolic toolbox that allowed us to differentiate symbolic functions.
- We can also use it on vectors to return another vector giving the consecutive differences between the vector elements:

This is useful for checking data when implementing the trapezium rule for unequally spaced data:

```
>> any(diff(x)<0)
ans =
logical 1</pre>
```

Matlab trapz and cumtrapz

□ The trapz function implements the trapezium rule for data vectors x and y.

```
>> x = [0 \ 0.12 \ 0.22 \ 0.32 \ 0.36 \ 0.4 \ 0.44 \ 0.54 \ 0.64 \ 0.7 \ 0.8];
>> y = 0.2 + 25*x - 200*x.^2 + 675*x.^3 - 900*x.^4 + 400*x.^5;
>> trapz(x,y)
ans =

1.5948
```

The cumtrapz function does the same thing but stores the area underneath the curve between the first data point and the current data point.

Matlab integral

- We can use the integral function to find the definite integral of Matlab functions.
- It's basic usage requires 3 inputs:
 - The function
 - Starting point
 - End point

```
>> f = @(x) 0.2 + 25*x - 200*x.^2 + 675*x.^3 - 900*x.^4
+ 400*x.^5;

>> integral(f,0,0.8)
ans =
    1.6405
```

We can also pass parameters into functions to integrate:

```
>> f = @(x,a) \sin(a*x);
\Rightarrow integral (@(x) f(x,1),0,pi)
ans
     2.0000
                                         Changing
\rightarrow integral (@(x) f(x,2),0,pi)
                                         parameter
ans =
  -2.7756e-17
\Rightarrow integral (@(x) f(x,3),0,pi)
ans =
     0.6667
```