

Campus Heilbronn

Campus Künzelsau Reinhold-Würth-Hochschule Campus Schwäbisch Hall Sicherheitstechnik, 4. Vorlesung (Safety Technology)

Fred Härtelt, Heilbronn

TECHNIK

WIRTSCHAFT

INFORMATIK

Beispiel (1996): Absturz der Ariane 5

Raumfahrt: Abstürze durch Fehler

08.05.2009

Über 30 Jahre später, am 4. Juni 1996 um 9.34 Uhr morgens, drückte im Raumfahrtzentrum Kourou ein Mitarbeiter im Kontrollzentrum wieder einen roten Knopf – und zerstörte die Ariane 5 auf ihrem Jungfernflug. Die Rakete war nach 37 Sekunden Flug vom Kurs abgewichen und drohte auseinanderzubrechen. Auch ihre Trümmer stürzten anschließend in die Karibik.

Problematik:

- Neue Hardware mit bestehender Software (Übernahme aus Ariane 4)
- Geschwindigkeit / Beschleunigung deutlich höher als bei Ariane 4
- Speicherüberlauf durch Umrechnung der höheren Geschwindigkeit (von einem 64 bit in einen 16 bit Wert), keine Tests

Quellen: www.wikipedia.de, www.chip.de

Sicherheitstechnik: zeitlicher Überblick

- ▶ 1. V: Definition Sicherheit, Normen und Vorschriften (14.03.2022)
- 2. V: Festlegung von Grenzen und Gefährdungen (21.03.2022)
- 3. V: Risikobeurteilung, -minimierung, Risikograph (28.03.2022)
- ▶ 4. V: Verteilungsfunktion, Ausfallraten, Fehlerbeherrschung (04.04.2022)
- ▶ 5. V: Fehlervermeidung, Fehlerentdeckung, FMEA (11.04.2022)
- Keine Vorlesung am 18.04.2022 (Ostermontag)
- Keine Vorlesung am 25.04.2022
- ▶ 6. V: Redundanz, Strukturierungsmaßnahmen, FTA (02.05.2022)
- 7. V: Berechnung von Ausfallraten, FMEDA, Aufgabenstellung Belegarbeit, Einteilung der Gruppen (09.05.2022)
- 8. V: Prozess vs. Technik, Besonderheiten HW/SW, Zuverlässigkeit SW Entwicklungsprozess, Bsp. Belegarbeit, Beginn der Gruppenarbeit (16.05.2022)
- Rückfragen bezüglich Gruppenarbeit am 23.05., 30.05. und 13.06.2022 (WebEx)
- Abgabetermin der Gruppenarbeiten: 20.06.2022 (vor Beginn der Präsentationen)
- Präsentationstermine der Gruppen: 20.06.2022 (vorläufiger Stand)

Sicherheitstechnik: Wiederholung

Sicherheitstechnik: Wiederholung

▶ 1. Berechnung des Performance Level (PL) mit einem Risikograph

S	Schwere der Verletzung
S1 – leicht (üblicherweise reversible Verletzung)	S2 – ernst (üblicherweise irreversible Verletzungen einschließlich Tod)
F	Häufigkeit und Dauer der Gefahrdungsexposition
F1 – selten bis weniger häufig und/oder die Dauer der Gefahrdungsexposition ist kurz (nicht häufiger als 2-Mal am Tag und insgesamt nicht langer als 15 min.)	F2 – häufig bis dauernd und/oder die Dauer der Gefahrdungsexposition ist lang
P	Vermeidung der Gefährdung
P1 – möglich unter bestimmten Bedingungen	P2 – kaum möglich

Sicherheitstechnik: Wiederholung

Kategorien nach ISO 13849:

Merkmal	Kategorie				
	В	1	2	3	4
Gestaltung gemäß zutreffender Normen, zu erwartenden Einflüssen standhalten	x	х	x	х	x
Grundlegende Sicherheitsprinzipien	x	х	х	х	х
Bewährte Sicherheitsprinzipien		х	х	x	x
Bewährte Bauteile		х			
Mean Time to Dangerous Failure - MTTF _d	niedrig bis mittel	hoch	niedrig bis hoch	niedrig bis hoch	hoch
Fehlererkennung (Tests)			Х	X	х
Einfehlersicherheit				X	x
Berücksichtigung von Fehlerakkumulation					х
Diagnosedeckungsgrad - DC _{avg}	kein	kein	niedrig bis mittel	niedrig bis mittel	hoch
Maßnahmen gegen Fehler gemeinsamer Ursache (CCF)			(X) bedingt	x	x
Hauptsächlich charakterisiert durch	Bauteilaus	swahl	Struktur		

TECHNIK

WIRTSCHAFT INFORMATIK

Sicherheitstechnik: Wiederholung

Erreichung des Performance Level (PL) mit einem Risikograph

Abb. B-4.1: Beziehung zwischen Kategorien und PL

Sicherheitstechnik: Übung 5

Sicherheitstechnik: Lösung Übung 5

Sicherheitstechnik Inhalte

- Definition Sicherheit
- Aktuelle Normen und Vorschriften
- Methoden und Verfahren
 - Risikobeurteilung und –minderung, Risikograph
 - Verteilungsfunktionen, Ausfallraten, Fehlerbeherrschung und Vermeidung, Fehlerentdeckung, Redundanz
 - Strukturierungsmaßnahmen, FMEA, FTA, FMEDA u.a.
 - Unterscheidung Prozess vs. Technik
- Besonderheiten hinsichtlich Hardware und Software (Zuverlässigkeit SW Entwicklungsprozess)

Verteilungsfunktion

- Hintergrund Verteilungsfunktion (siehe Mathematik 3 Vorlesung -> Kategorie von Messfehlern)
- Normalverteilung als eine beispielhafte Verteilungsfunktion (weitere: Hypergeometrische Verteilung, Binominalverteilung, Poissonverteilung, ...)
- Die Abweichung kann zu einer Fehlerfortpflanzung führen

$$p(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Verteilungsfunktion

Bedeutung

Aufgrund der Fehlerfortpflanzung und den Einfluss auf die Fehlerraten (Vererbung von Fehlern -> siehe auch Gaußsches Fehlerfortpflanzungsgesetz).

$$\sigma_y = \sqrt{\left(\frac{\partial y}{\partial x_1} \cdot \sigma_1\right)^2 + \left(\frac{\partial y}{\partial x_2} \cdot \sigma_2\right)^2 + \dots + \left(\frac{\partial y}{\partial x_n} \cdot \sigma_n\right)^2}$$

▶ Dies hat Auswirkung auf die Absicherung von Fehlern und wie man diese verhindern kann (Einfachfehler, Mehrfachfehler, ...).

Fehlerraten

- = Fehlerquote
- der relative Anteil von fehlerhaften Elementen im Verhältnis zur Gesamtheit
- relative Häufigkeit, mit der ein Fehler bei einem Produkt, einer Dienstleistung, einem Produktionsprozess oder der Arbeitsqualität auftaucht
- Wird vor allem im Qualitätsmanagement verwendet
- Einheit: z.B. Maß, Prozent, ppm, ...
- Wird in verschiedensten Handbüchern referenziert

Fehlerraten

Bsp. Siemensnorm:

					Kon	nplexität	in Bit	/ Com	olexity	in bits			
			512 ¹⁾ 16K	32K 64K	128K 256K	512K 1M	2M 4M	8M 16M	32M 64M	128M 256M	512M 1G	2G 4G	<i>θ</i> _{vj,1}
							λ _{ref} i	n FIT					in °C
Bipolar	RAM, FIFO	statisch static	50	60	-	-	-	-	-	-	-	-	75
·	PROM		60	80	-	-	-	-	-	-	-	-	
MOS, CMOS,	RAM	dynamisch dynamic	50	30	20	10	10	15	20	25		-	55
BICMOS			-	-	-	-	-	-	-	-	70	(100)	70
	RAM, FIFO	statisch langsam >=30ns static slow 2)	15	10	10	10	10	30	50	-	-	-	55
		statisch schnell <30ns static fast ²⁾	30	25	15	25	40	55	90	-	-	-	70
	ROM n	nask	50	30	15	15	15	15	25	-	-	-	55
	EPRON UV-lösc	II, OTPROM hbar <i>UV eraseable</i>	30	30	20	20	20	20	40	-	-	-	
	FLASH		-	-	30	30	40	50	70	(100)	-	-	
			-	-	-	-	-	-	-	-	(200)	-	70
	EEPRO	M, EAROM	30	30	30	50	-	-	-	-	-	-	55

Fehlerraten

Bsp.: Birolini

Table 3.4 Indicative values for failure modes of electronic components (%)

Component	Shorts	Opens	Drift	Functional
Digital bipolar ICs	50*△	30*	_	20
Digital MOS ICs	20∆	60*	_	20
Linear ICs	_	25+	_	75++
Bipolar transistors	85	15	_	_
Field effect transistors (FET)	80	15	5	_
Diodes (Si) general purpose	80	20		_
Zener	70	20	10	
Thyristors	20	20	50	10♦
Optoelectronic devices	10	50	0 40	_
Resistors, fixed (film)	—	40	60	
Resistors, variable (Cermet)	_	70	20	10#
Capacitors foil	15	80	5	
ceramic	70	10	20	
Ta (solid)	80	15	5	_
Al (wet)	30	30	40	_
Coils	20	70	5	5
Relays	20	_	_	80 [†]
Quartz crystals		80	20	_

^{*} input and output half each; $^{\Delta}$ short to V_{CC} or to GND half each; $^{+}$ no output; $^{++}$ improper output; 0 fail to off; $^{\#}$ localized wearout; † fail to trip / spurious trip $\approx 3/2$

Fehlerbeherrschung

- Verschiedene Möglichkeiten (z.B. durch die Vermeidung von Einzel- und Mehrfachfehlern) werden angewendet in der Hardware und Software
- Hardware: z.B. Redundanz (2 Kanäle)
- Software: z.B. Überwachungsfunktionen
- Verschiedene Analyseverfahren: FMEA, FTA, FMEDA
- Weitere Möglichkeiten bestehen in der Anwendung von standardisierten Prozessen

TECHNIK

RTSCHAFT I

INFORMATIK

ISO 26262: Gefahren- und Risikoanalyse

		C1	C2	СЗ
	E1	QM	QM	QM
S1	E2	QM	QM	QM
31	E3	QM	QM	ASIL A
	E4	QM	ASIL A	ASIL B
	E1	QM	QM	QM
	E2	QM	QM	ASILA
S2	E3	QM	ASIL A	ASIL B
	E4	ASIL A	ASIL B	ASIL C
	E1	QM	QM	ASIL A
S3	E2	QM	ASIL A	ASIL B
	E3	ASIL A	ASILB	ASIL C
	E4	ASIL B	ASIL C	ASIL D

S: Estimation of potential severity

Class	so	S1	S2	S3
Description	No injuries	Light and moderate injuries	threatening injuries	Life threatening injuries (survival uncertain), fatal injuries

E: Estimation of probability of exposure in driving and operating situation

Class	E1	E2	E3	E4
Description	Very low probability	Low probability	Medium probability	High probability

C: Estimation of controllability

Class	со	C1	C2	C3
Description	Controllable in general	Simply controllable	Normally controllable	Difficult to control or uncontrollable

Übung 11

		C1	C2	C3
	E1	QM	QM	QM
S1	E2	QM	QM	QM
51	E3	QM	QM	ASIL A
	E4	QM	ASIL A	ASIL B
	E1	QM	QM	QM
	E2	QM	QM	ASILA
S2	E3	QM	ASIL A	ASIL B
	E4	ASIL A	ASIL B	ASIL C
	E1	QM	QM	ASIL A
\$3	E2	QM	ASIL A	ASIL B
	E3	ASIL A	ASILB	ASIL C
	E4	ASIL B	ASIL C	

S: Estimation of potential severity

Severe and life Life threatening injuries Description No injuries injuries (survival injuries (survival uncertain) fat	Class	so	S1	S2	S3
probable) injuries	Description	No injuries		threatening injuries (survival	injuries (survival uncertain), fatal

E: Estimation of probability of exposure in driving and operating situation

Class	E1	E2	E3	E4
Description	Very low probability	Low probability	Medium probability	High probability

C: Estimation of controllability

Class	со	C1	C2	C3
Description	Controllable in general	Simply controllable	Normally controllable	Difficult to control or uncontrollable

Lösung Übung 11

Gefährdung	Fahrzeug während der Fahrt	Fahrzeug in Stillstand
Ungewollte Beschleunigung des Fahrzeugs	S = 3 E = 2 C = 3	S = 3 E = 3 C = 2
	ASIL = B	ASIL = B

ISO 26262: Beispiele für Gefährdungen

<u>Beispiel</u>

WIRTSCHAFT INFORMATIK

ISO 26262: Verantwortlichkeiten

ISO 26262: Sicherheitskonzept (3-Ebenen Modell)

ISO 26262: Sicherheitskonzept

Schema zur Absicherung einer Wirkkette

1) Bestimmung Sicherheitsziel und Sicherheitsanforderungen

Sicherheitsziel

Fehlertoleranzzeit

Sicherer Zustand

ASIL

2) Definition Sicherheitsfunktion, z.B. Überwachung von Parametern

3) Absicherung Sicherheitskette gemäß ASIL (Teil 5, Annex D)

Absicherung Signale (Soll-/Ist-Zustand System) (D.3, D.7, D.8, D.11)

Absicherung Logik (μC) (D.2, D.4 – D.10) Absicherung Aktuatorik (Abschaltpfad) (D.3, D.12)

TECHNIK

WIRTSCHAFT

INFORMATIK

ISO 26262: Sicherheitskonzept

TECHNIK

RTSCHAFT IN

INFORMATIK

ISO 26262: Motorsteuerung

Sicherheitsziel	Vermeidung ungewollter Beschleunigung	ASIL B
Sicherer Zustand	Motor "Aus" bzw. Einspritzmengenbegrenzung	500ms
Sicherheitsanforderung	"Das gestellte Drehmoment muss kontinuierlich auf Grenzwertüberschreitung überwacht werden."	

ISO 26262: Sicherheitskonzept (3-Ebenen Modell)

ISO 26262: Motorsteuerung

INFORMATIK

ISO 26262: Batteriesteuerung

Sicherheitsziel Vermeidung Überhitzung der Batterie ASIL C

Sicherer Zustand Galvanische Trennung HV-Stromkreis 1 – 30s

"Die Batterieparameter müssen kontinuierlich auf Sicherheitsanforderung Grenzwertüber- und -unterschreitung überwacht

werden." (<=> Thermal Runaway)

HNIK WIRTSCHAFT INFOR

ISO 26262: Batteriesteuerung

