Introductory Econometrics

Lecture 11: Goodness of fit, estimation of σ^2

Instructor: Ma, Jun

Renmin University of China

October 14, 2021

Fitted values

- Consider the multiple regression model with k regressors: $Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i$.
- ► Let $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$ be the OLS estimators.
- ► The fitted (or predicted) by the model value of *Y* is: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1,i} + \hat{\beta}_2 X_{2,i} + \ldots + \hat{\beta}_k X_{k,i}$.
- ► The residual is: $\hat{U}_i = Y_i \hat{Y}_i$.
- ► Consider the average of \hat{Y} :

$$\bar{\hat{Y}} = \frac{1}{n} \sum_{i=1}^{n} \hat{Y}_{i}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \hat{U}_{i})$$

$$= \bar{Y} - \frac{1}{n} \sum_{i=1}^{n} \hat{U}_{i} = \bar{Y}$$

because when there is an intercept, $\sum_{i=1}^{n} \hat{U}_i = 0$.

Sum-of-Squares

► The total variation of *Y* in the sample is:

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$
 (Total Sum-of-Squares).

► The explained variation of *Y* in the sample is:

$$SSE = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$
 (Explained or Model Sum-of-Squares).

► The residual (unexplained or error) variation of *Y* in the sample is:

$$SSR = \sum_{i=1}^{n} \hat{U}_{i}^{2}$$
 (Residual Sum-of-Squares).

► If the regression contains an intercept:

$$SST = SSE + SSR$$
.

Proof of SST=SSE+SSR

► First,

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

$$= \sum_{i=1}^{n} (\hat{Y}_i + \hat{U}_i - \bar{Y})^2$$

$$= \sum_{i=1}^{n} ((\hat{Y}_i - \bar{Y}) + \hat{U}_i)^2$$

$$= \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} \hat{U}_i^2 + 2\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y}) \hat{U}_i$$

► Next, we will show that $\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y}) \hat{U}_i = 0$.

Proof of SST=SSE+SSR

► Since $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1,i} + ... + \hat{\beta}_k X_{k,i}$,

$$\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y}) \hat{U}_{i} = \sum_{i=1}^{n} ((\hat{\beta}_{0} + \hat{\beta}_{1} X_{1,i} + \dots + \hat{\beta}_{k} X_{k,i}) - \bar{Y}) \hat{U}_{i}$$

$$= \hat{\beta}_{0} \sum_{i=1}^{n} \hat{U}_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} X_{1,i} \hat{U}_{i} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} X_{k,i} \hat{U}_{i} - \bar{Y} \sum_{i=1}^{n} \hat{U}_{i}.$$

► The OLS normal equations for a model with an intercept:

$$\sum_{i=1}^{n} \hat{U}_{i} = \sum_{i=1}^{n} X_{1,i} \hat{U}_{i} = \ldots = \sum_{i=1}^{n} X_{k,i} \hat{U}_{i} = 0.$$

► It follows that $\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y}) \hat{U}_i = 0$.

► Consider the following measure of goodness of fit:

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}$$

$$= \frac{SSE}{SST}$$

$$= 1 - \frac{SSR}{SST}$$

$$= 1 - \frac{\sum_{i=1}^{n} \hat{U}_{i}^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}.$$

- ▶ $0 \le R^2 \le 1$.
- $ightharpoonup R^2$ measures the proportion of variation in Y in the sample explained by the X's.

R^2 is a non-decreasing function of the number of the regressors

► Consider two models:

$$\begin{array}{rcl} Y_i & = & \tilde{\beta}_0 + \tilde{\beta}_1 X_{1,i} + \tilde{U}_i, \\ Y_i & = & \hat{\beta}_0 + \hat{\beta}_1 X_{1,i} + \hat{\beta}_2 X_{2,i} + \hat{U}_i. \end{array}$$

► We will show that

$$\sum_{i=1}^{n} \tilde{U}_i^2 \ge \sum_{i=1}^{n} \hat{U}_i^2$$

and therefore R^2 that corresponds to the regression with one regressor is less or equal than R^2 that corresponds to the regression with two regressors.

► This can be generalized to the case of k and k + 1 regressors.

Proof

Consider

$$\sum_{i=1}^{n} (\tilde{U}_i - \hat{U}_i)^2 = \sum_{i=1}^{n} \tilde{U}_i^2 + \sum_{i=1}^{n} \hat{U}_i^2 - 2 \sum_{i=1}^{n} \tilde{U}_i \hat{U}_i.$$

► We will show that

$$\sum_{i=1}^n \tilde{U}_i \hat{U}_i = \sum_{i=1}^n \hat{U}_i^2.$$

► Then,

$$0 \le \sum_{i=1}^{n} (\tilde{U}_i - \hat{U}_i)^2 = \sum_{i=1}^{n} \tilde{U}_i^2 - \sum_{i=1}^{n} \hat{U}_i^2,$$

or

$$\sum_{i=1}^n \tilde{U}_i^2 \ge \sum_{i=1}^n \hat{U}_i^2.$$

Proof

$$\begin{split} \sum_{i=1}^{n} \tilde{U}_{i} \hat{U}_{i} &= \sum_{i=1}^{n} \left(Y_{i} - \tilde{\beta}_{0} - \tilde{\beta}_{1} X_{1,i} \right) \hat{U}_{i} \\ &= \sum_{i=1}^{n} Y_{i} \hat{U}_{i} - \tilde{\beta}_{0} \sum_{i=1}^{n} \hat{U}_{i} - \tilde{\beta}_{1} \sum_{i=1}^{n} X_{1,i} \hat{U}_{i} \\ &= \sum_{i=1}^{n} Y_{i} \hat{U}_{i} - \tilde{\beta}_{0} \cdot 0 - \tilde{\beta}_{1} \cdot 0 \\ &= \sum_{i=1}^{n} \left(\hat{\beta}_{0} + \hat{\beta}_{1} X_{1,i} + \hat{\beta}_{2} X_{2,i} + \hat{U}_{i} \right) \hat{U}_{i} \\ &= \hat{\beta}_{0} \cdot 0 + \hat{\beta}_{1} \cdot 0 + \hat{\beta}_{2} \cdot 0 + \sum_{i=1}^{n} \hat{U}_{i}^{2} \\ &= \sum_{i=1}^{n} \hat{U}_{i}^{2} \end{split}$$

Adjusted R^2

- ▶ Since R^2 cannot decrease when more regressors are added, even if the additional regressors are irrelevant, an alternative measure of goodness-of-fit has been developed.
- Adjusted R^2 : the idea is to adjust SSR and SST for degrees of freedom:

$$\bar{R}^2 = 1 - \frac{SSR/(n-k-1)}{SST/(n-1)}.$$

- ► $\bar{R}^2 < R^2$.
- $ightharpoonup \bar{R}^2$ can decrease when more regressors are added.

Estimation of σ^2

► In the multiple linear regression model, we can estimate $\sigma^2 = E\left[U_i^2\right]$ as follows:

Let

$$\hat{U}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \hat{\beta}_2 X_{2,i} - \dots - \hat{\beta}_k X_{k,i}.$$

An estimator for σ^2 is

$$s^{2} = \frac{1}{n-k-1} \sum_{i=1}^{n} \hat{U}_{i}^{2}$$
$$= \frac{SSR}{n-k-1}.$$

▶ The adjustment k + 1 is for the number of parameters we have to estimate in order to construct \hat{U} 's:

$$\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_k$$

Estimation of σ^2

$$s^2 = \frac{1}{n - k - 1} \sum_{i=1}^{n} \hat{U}_i^2.$$

- ► s^2 is an unbiased estimator of σ^2 (i.e., $E[s^2] = \sigma^2$) when the following conditions hold:
 - 1. $Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i$.
 - 2. Conditional on X's, $E[U_i] = 0$ for all i's.
 - 3. Conditional on X's, $E\left[U_i^2\right] = \sigma^2$ for all i's (homoskedasticity).
 - 4. Conditional on *X*'s $E[U_iU_j] = 0$ for all $i \neq j$.

regress rent avginc pop enroll

Source		df	MS	Number of obs		64
				F(3, 60)	=	29.05
Model	368241.042	3	122747.014	Prob > F	=	0.0000
Residual	253521.396	60	4225.35659	R-squared	=	0.5923
				Adj R-squared	=	0.5719
Total	621762.438	63	9869.24504	Root MSE	=	65.003

rent	Coef.	Std. Err.	t	P> t	•	Interval]
avginc	.0119416	.001318	9.06	0.000	.0093052	.014578
pop	0003538	.0001621	-2.18	0.033	0006781	0000296
enroll	.0025595	.001264	2.02	0.047	.0000311	.0050879
_cons	120.772	34.53081	3.50	0.001	51.70009	189.8439

- ▶ We have 64 observations (n = 64) and 3 regressors (k = 3).
- ► SSE is displayed under Model SS (Sum of Squares): 368241.042.
- ▶ The Model df (degrees of freedom) is k = 3.
- ► The Model MS (Mean Squares) is SSE/k = 368241.042/3 = 122747.014.

. regress rent avginc pop enroll

Source	ss	df	MS		Number of obs	
Model Residual	368241.042	3 1227 60 4225	747.014 5.35659		Prob > F R-squared Adj R-squared	= 0.0000 = 0.5923
Total		63 9869			Root MSE	= 65.003
rent		Std. Err.		P> t	[95% Conf.	-
avginc pop enroll _cons	.0119416 0003538 .0025595	.001318 .0001621 .001264 34.53081	9.06 -2.18 2.02 3.50	0.000 0.033 0.047 0.001	.0093052 0006781 .0000311 51.70009	.014578 0000296 .0050879 189.8439

- ► SSR is displayed under Residual SS: 253521.396.
- ► The Residual df is n k 1 = 64 3 1 = 60.
- ► The Residual MS is $SSR/(n-k-1) = s^2$.
- ightharpoonup The Residual MS is 253521.396/60 = 4225.35659.

. regress rent avginc pop enroll

Source |

SS

df

		3 1227				= 29.05 = 0.0000
Model Residual	368241.042 253521.396	60 4225	.35659		Prob > F R-squared	= 0.5923
Total	621762.438	63 9869			Adj R-squared Root MSE	= 0.5719 = 65.003
rent		Std. Err.		P> t		Interval]
avginc pop	.0119416 0003538	.001318 .0001621	9.06 -2.18 2.02	0.000 0.033	.0093052 0006781	.014578

3.50

MS

- ► SST is displayed under Total SS: 621762.438.
- ► The Total df is n 1 = 64 1 = 63.
- ► The Total MS is SST/(n-1) = 621762.438/63 = 9869.24504.

. regress rent avginc pop enroll

Source	ss	df	MS		Number of obs	
Model Residual	368241.042 253521.396	3 1227 60 4225	47.014 .35659		Prob > F R-squared Adj R-squared	= 0.0000 = 0.5923
Total	621762.438	63 9869	.24504		Root MSE	= 65.003
					 195% Conf.	
rent	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
rent avginc	Coef. .0119416	Std. Err. 	t 9.06	P> t 0.000	[95% Conf. 	Interval] .014578
rent	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]

$$R^2 = 1 - \frac{SSR}{SST} = 1 - \frac{253521.396}{621762.438} = 0.5923.$$

$$\bar{R}^2 = 1 - \frac{SSR/(n-k-1)}{SST/(n-1)} = 1 - \frac{253521.396/60}{621762.438/63} = 0.5719.$$

► Root MSE (Mean Squared Error) is
$$s = \sqrt{s^2} = \sqrt{4225.35659} = 65.003$$
.