

TD1: Variables aléatoires continues

Module: Techniques d'estimation pour l'ingénieur

En 1955, Wechler a proposé de mesurer le QI (Quotient Intellectuel) des adultes grâce à deux échelles permettant de mesurer les compétences verbales et les compétences non verbales. On compare le score global de la personne testée avec la distribution des scores obtenue par un echantillon représentatif de la population d'un âge donné, dont les performances suivent une loi normale ayant pour moyenne 100 et pour écart-type 15.

1

Soit X : la v.a qui représente le score QI chez un adulte.

$$X \sim \mathcal{N}(100, 15)$$
 , $Z = rac{X-100}{15} \sim \mathcal{N}(0, 1)$

1. Quel est le pourcentage de personnes dont le QI est inférieur à 80 ?

$$\mathbb{P}(X \le 80) = \mathbb{P}\left(Z \le \frac{80 - 100}{15}\right)$$

$$= \mathbb{P}\left(Z \le \frac{-20}{15}\right)$$

$$= \mathbb{P}\left(Z \le \frac{-4}{3}\right)$$

$$= \mathbb{P}\left(Z \ge \frac{4}{3}\right)$$

$$= \mathbb{P}\left(Z \le a\right)$$

Lecture de table

 $\mathbb{P}(X \le 80) = 0.09176$

1,33=1,3+0.03 Loi normale réduite : probabilités unilatérales

Cette table donne p tel que P(Z > a) = p , où Z est la loi normale réduite

а	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0,50000	0,49601	0,49202	0,4 803	0,48405	0,48006	0,47608	0,47210	0,46812	0,46414
0,10	0,46017	0,45620	0,45224	0,4 828	0,44433	0,44038	0,43644	0,43251	0,42858	0,42465
0,20	0,42074	0,41683	0,41294	0,4 905	0,40517	0,40129	0,39743	0,39358	0,38974	0,38591
0,30	0,38209	0,37828	0,37448	0,3 070	0,36693	0,36317	0,35942	0,35569	0,35197	0,34827
0,40	0,34458	0,34090	0,33724	0,3 360	0,32997	0,32636	0,32276	0,31918	0,31561	0,31207
0,50	0,30854	0,30503	0,30153	0,2 806	0,29460	0,29116	0,28774	0,28434	0,28096	0,27760
0,60	0,27425	0,27093	0,26763	0,2 435	0,26109	0,25785	0,25463	0,25143	0,24825	0,24510
0,70	0,24196	0,23885	0,23576	0,2 270	0,22965	0,22663	0,22363	0,22065	0,21770	0,21476
0,80	0,21186	0,20897	0,20611	0,2 327	0,20045	0,19766	0,19489	0,19215	0,18943	0,18673
0,90	0,18406	0,18141	0,17879	0,1 619	0,17361	0,17106	0,16853	0,16602	0,16354	0,16109
1,00	0,15866	0,15625	0,15386	0,1 151	0,14917	0,14686	0,14457	0,14231	0,14007	0,13786
1,10	0,13567	0,13350	0,13136	0,1 924	0,12714	0,12507	0,12302	0,12100	0,11900	0,11702
1,20	0,11507	0,11314	0,11123	0,1 935	0,10749	0,10565	0,10383	0,10204	0,10027	0,09853
1,30	0,03600	0,03510	0,09342	0,09176	0,09012	0,08851	0,08691	0,08534	0,08379	0,08226
1,40	0,08076	0,07927	0,07780	0,07636	0,07493	0,07353	0,07215	0,07078	0,06944	0,06811
1,50	0,06681	0,06552	0,06426	0,06301	0,06178	0,06057	0,05938	0,05821	0,05705	0,05592
1,60	0,05480	0,05370	0,05262	0,05155	0,05050	0,04947	0,04846	0,04746	0,04648	0,04551
1,70	0,04457	0,04363	0,04272	0,04182	0,04093	0,04006	0,03920	0,03836	0,03754	0,03673
1,80	0,03593	0,03515	0,03438	0,03362	0,03288	0,03216	0,03144	0,03074	0,03005	0,02938
1.90	0.02872	0.02807	0.02743	0.02680	0.02619	0.02559	0.02500	0,02442	0.02385	0.02330

2. Quelle chance a-t-on d'obtenir un QI compris entre 100 et 110 ?

$$\mathbb{P}(100 \le X \le 110) = \mathbb{P}\left(0 \le Z \le \frac{10}{15}\right) \\
= F(0.66) - F(0) \\
= \mathbb{P}(Z \le 0.66) - \mathbb{P}(Z \le 0) \\
= (1 - \mathbb{P}(Z > 0.66)) - (1 - \mathbb{P}(Z > 0)) \\
= \mathbb{P}(Z > 0) - \mathbb{P}(Z > 0.66)$$

4

Lecture de table

 $\mathbb{P}(100 \le X \le 110) = 0.50 - 0.25463 \simeq 0.25$

а	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0,50000	0,49601	0,49202	0,48803	0,48405	0,48006	0,47508	0,47210	0,46812	0,46414
0,10	0,46017	0,45620	0,45224	0,44828	0,44433	0,44038	0,43544	0,43251	0,42858	0,42465
0,20	0,42074	0,41683	0,41294	0,40905	0,40517	0,40129	0,39743	0,39358	0,38974	0,38591
0,30	0,38209	0,37828	0,37448	0,37070	0,36693	0,36317	0,35942	0,35569	0,35197	0,34827
0,40	0,34458	0,34090	0,33724	0,33360	0,32997	0,32636	0,32276	0,31918	0,31561	0,31207
0,50	0,30854	0,30503	0,30153	0,29806	0,29460	0,29116	0,28774	0,28434	0,28096	0,27760
0,60	0,27425	0,27033	0,20703	0,20433	0,20109	0,23783	0,25463	0,25143	0,24825	0,24510
0,70	0,24196	0,23885	0,23576	0,23270	0,22965	0,22663	0,22363	0,22065	0,21770	0,21476
0,80	0,21186	0,20897	0,20611	0,20327	0,20045	0,19766	0,19489	0,19215	0,18943	0,18673
0,90	0,18406	0,18141	0,17879	0,17619	0,17361	0,17106	0,16853	0,16602	0,16354	0,16109

3. Trouvons la valeur du QI telle que 5 % des patients présentent un score qui lui est supérieur

$$\mathbb{P}(X \ge a) = 0.05 \Leftrightarrow \mathbb{P}\left(Z \ge \frac{a - 100}{15}\right) = 0.05$$

Lecture inverse de table

$$\mathbb{P}(X \ge a) = 0.05 \Leftrightarrow \frac{a-100}{15} = 1,64 \Leftrightarrow a = 124,6$$

1,60+0.04=1,64

Loi normale réduite : probabilités unilatérales

Cette table donne p tel que P(Z > a) = p, où Z est la loi normale réduite

	а	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
Ī	0,00	0,50000	0,49601	0,49202	0,48803	0,48 405	0,48006	0,47608	0,47210	0,46812	0,46414
[0,10	0,46017	0,45620	0,45224	0,44828	0,44 433	0,44038	0,43644	0,43251	0,42858	0,42465
	0,20	0,42074	0,41683	0,41294	0,40905	0,40517	0,40129	0,39743	0,39358	0,38974	0,38591
	0,30	0,38209	0,37828	0,37448	0,37070	0,36693	0,36317	0,35942	0,35569	0,35197	0,34827
	0,40	0,34458	0,34090	0,33724	0,33360	0,32997	0,32636	0,32276	0,31918	0,31561	0,31207
[0,50	0,30854	0,30503	0,30153	0,29806	0,29460	0,29116	0,28774	0,28434	0,28096	0,27760
	0,60	0,27425	0,27093	0,26763	0,26435	0,26109	0,25785	0,25463	0,25143	0,24825	0,24510
	0,70	0,24196	0,23885	0,23576	0,23270	0,22965	0,22663	0,22363	0,22065	0,21770	0,21476
[0,80	0,21186	0,20897	0,20611	0,20327	0,20045	0,19766	0,19489	0,19215	0,18943	0,18673
	0,90	0,18406	0,18141	0,17879	0,17619	0,17361	0,17106	0,16853	0,16602	0,16354	0,16109
	1,00	0,15866	0,15625	0,15386	0,15151	0,14917	0,14686	0,14457	0,14231	0,14007	0,13786
	1,10	0,13567	0,13350	0,13136	0,12924	0,12714	0,12507	0,12302	0,12100	0,11900	0,11702
	1,20	0,11507	0,11314	0,11123	0,10935	0,10749	0,10565	0,10383	0,10204	0,10027	0,09853
	1,30	0,09680	0,09510	0,09342	0,09176	0,01012	0,08851	0,08691	0,08534	0,08379	0,08226
Ī	1,40	0,08076	0,07927	0,07780	0,07636	0,01493	0,07353	0,07215	0,07078	0,06944	0,06811
1	1,50	0,06681	0,06552	0,06426	0,06301	0.0 178	0,06057	0,05938	0,05821	0,05705	0,05592
П	1,60	0,05188	0,05370	0,05202	0,03133	0,05050	0,04947	0,04846	0,04746	0,04648	0,04551
Ī	1,70	0,04457	0,04363	0,04272	0,04182	0,04093	0,04006	0,03920	0,03836	0,03754	0,03673
	1,80	0,03593	0,03515	0,03438	0,03362	0,03288	0,03216	0,03144	0,03074	0,03005	0,02938
[1,90	0,02872	0,02807	0,02743	0,02680	0,02619	0,02559	0,02500	0,02442	0,02385	0,02330
	2,00	0,02275	0,02222	0,02169	0,02118	0,02068	0,02018	0,01970	0,01923	0,01876	0,01831

4. En dessous de quel QI se trouve le tiers des individus ?

$$\mathbb{P}(X \le a) = \frac{1}{3} \iff \mathbb{P}\left(Z \le \frac{a - 100}{15}\right) = \frac{1}{3}$$

$$\Leftrightarrow \mathbb{P}\left(Z > \frac{a - 100}{15}\right) = \frac{2}{3}$$

En posant $\alpha = \frac{a-100}{15}$, on obtient

$$\mathbb{P}(Z > \alpha) = \frac{2}{3} \notin \mathsf{Table} \Leftrightarrow \mathbb{P}(Z > -\alpha) = \frac{1}{3} \in \mathsf{Table}$$

Remarque
$$Soit \ Z \sim \mathcal{N}(0,1), \ \mathsf{alors} \ \mathsf{on} \ \mathsf{a} :$$

$$\mathbb{P}(Z>a) = b \notin \mathsf{Table} \Leftrightarrow \mathbb{P}(Z>-a) = 1-b \in \mathsf{Table}$$

Lecture inverse de table

$$\mathbb{P}(X \le a) = \frac{1}{3} \Leftrightarrow -\alpha = 0.43 \Leftrightarrow a = 93.55$$

040+0.03=0.43

Loi normale réduite : probabilités unilatérales

Cette table donne p tel que P(Z > a) = p, où Z est la loi normale réduite

		Cette tab	e donne p	ter que r	12 - 01	P / 00 L	esc la loi il	of finale red	uice	
а	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0,50000	0,49601	0,49202	0,48803	0,48405	0,48006	0,47608	0,47210	0,46812	0,46414
0,10	0,46017	0,45620	0,45224	0,44828	0,44433	0,44038	0,43644	0,43251	0,42858	0,42465
0,20	0,42074	0,41683	0,41294	0,40905	0,40517	0,40129	0,39743	0,39358	0,38974	0,38591
0.30	0,38209	0,37828	0,37448	0,37070	0,36693	0,36317	0,35942	0,35569	0,35197	0,34827
0,40	0,34450	0,34030	0,33724	0,33360	0,32997	0,32636	0,32276	0,31918	0,31561	0,31207
0,50	0,30854	0,30503	0,30153	0,29806	0,29460	0,29116	0,28774	0,28434	0,28096	0,27760
0,60	0,27425	0,27093	0,26763	0,26435	0,26109	0,25785	0,25463	0,25143	0,24825	0,24510
0,70	0,24196	0,23885	0,23576	0,23270	0,22965	0,22663	0,22363	0,22065	0,21770	0,21476
0,80	0,21186	0,20897	0,20611	0,20327	0,20045	0,19766	0,19489	0,19215	0,18943	0,18673
0,90	0,18406	0,18141	0,17879	0,17619	0,17361	0,17106	0,16853	0,16602	0,16354	0,16109
1,00	0,15866	0,15625	0,15386	0,15151	0,14917	0,14686	0,14457	0,14231	0,14007	0,13786
1,10	0,13567	0,13350	0,13136	0,12924	0,12714	0,12507	0,12302	0,12100	0,11900	0,11702
1,20	0,11507	0,11314	0,11123	0,10935	0,10749	0,10565	0,10383	0,10204	0,10027	0,09853
1,30	0,09680	0,09510	0,09342	0,09176	0,09012	0,08851	0,08691	0,08534	0,08379	0,08226
1,40	0,08076	0,07927	0,07780	0,07636	0,07493	0,07353	0,07215	0,07078	0,06944	0,06811
1,50	0,06681	0,06552	0,06426	0,06301	0,06178	0,06057	0,05938	0,05821	0,05705	0,05592
1,60	0,05480	0,05370	0,05262	0,05155	0,05050	0,04947	0,04846	0,04746	0,04648	0,04551
1,70	0,04457	0,04363	0,04272	0,04182	0,04093	0,04006	0,03920	0,03836	0,03754	0,03673
1,80	0,03593	0,03515	0,03438	0,03362	0,03288	0,03216	0,03144	0,03074	0,03005	0,02938
1,90	0.02872	0.02807	0.02743	0.02680	0.02619	0.02559	0.02500	0.02442	0.02385	0.02330

