

WIFI 模组串口通讯协议

V2.30

技术部 2017/02/15

版本号	修改日期	修改人员	修改说明	审 核	备注
				人员	
V1.00	2016-08-07	黄锦强	创建		
V1.01	2016-08-07	黄锦强	更新文档指令和格式		
V1.02	2016-10-08	黄锦强	修正示例		
V1.03	2016-10-11	黄锦强	增加数据端点上报不推送告警		
V1.04	2016-10-17	黄锦强	修改描述错误地方		
V2. 20	2016-11-16	黄锦强	增加外网数据发送回调,适合于		
			SDK34000 及以上版本		
V2. 30	2017-02-15	黄锦强	修正更新		

目录

一、	协议说明	2
二、	硬件接口	2
三、	命令格式	3
四、	指令表	4
五、	使用流程	5
六、	通用命令说明	6
5.	1 (0x00)查询 WIFI 模组 MAC 地址	6
5.	2(0x01)查询 WIFI 模组连接状态	7
5.	3 (0x02)查询 WIFI 模组的 PID 和 PKEY	7
5.	4 (0x03)设置 WIFI 模组的 PID 和 PKEY	7
5.	5(0x04)设置 WIFI 模组进入配网模式	8
5.	6(0x05)重启 WIFI 模组	8
5.	7(0x06)重置 WIFI 模组	8
5.	8 (0x07)查询 WIFI 模组固件版本	8
5.	9 (0x08) 获取 WIFI 模组本地模糊时间	9
5.	10 (0x09) 设置 WIFI 模组被发现状态	9
六、	控制指令说明	10
6.	1 (0x82) WIFI 模组向 MCU 转发接收到的数据端点数据	10
6.	4 (0x83)MCU 向 WIF 模组发送数据端点数据	10
6.	5 (0x84)MCU 向 WIFI 模组发送所有数据端点数据	11
6	6(0v85)MCII 向 WIEI 发送数据端占数据	11

一、协议说明

1. 目的

主要目的为 MCU 设备通过此串口协议并借助于 WIFI 模组连接到互联网,实现设备联网。

2. 系统框图

3. 术语

- WIFI 模组: 指能连接无线路由器的模组;
- MCU 设备: 指没有连接互联网能力的硬件设备,简称 MCU;
- 配网:指先将 WIFI 模组设置处于接收状态,然后由 APP 发送无线路由器的 SSID 和 KEY 给 WIFI, WIFI 模组接收到 SSID 和 KEY 后连接到无线路由器的过程;
- 配网状态: WIFI 模组处于接收状态:
- PID:产品 ID,由平台在创建产品时产生,是 MCU 设备连接到平台的凭证;
- PKEY:产品秘钥,由平台在创建产品时产生,是 MCU 设备连接到平台的凭证;
- 数据端点:为一种数据类型或数据块,如开关、亮度和温度等,具体定义见: "https://github.com/xlink-corp/device-sdk/blob/master/docs/4.数据端点文档.md";
- 触发告警: 在平台上创建的告警规则绑定对应的数据端点时,当数据端点的值满足告警条件时,设定的告警被触发。

二、硬件接口

1. 串口参数

接口: 3线串口(分别为: TX、RX和GND),

波特率: 115200(以具体需求而定)

数据位: 8 奇偶校验: 无

停止位: **1** 数据流控: 无

2. 供电与控制接口

WIFI 模块电源: 通常 3.3V DC 供电, 具体依硬件而定;

WIFI 模块复位引脚:通常为低电平有效,具体依硬件而定;

WIFI 模块配网引脚:通常为低电平有效,具体依硬件而定。

三、命令格式

1. 帧格式

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	2 字节	1字节	N 字节	1 字节	0xFE

2. 协议约定

- (1) 帧头和帧尾分别固定为 0xFF 和 0xFE 表示; 当遇到 0xFF 表示帧头, 遇到 0xFE 表示帧 尾; 从 0xFF 到 0xFE 的数据内容表示一帧数据;
- (2) 帧头和帧尾用了 OxFF 和 OxFE 表示,其中数据长度、指令、数据和异或校验可能出现 OxFF 与 OxFE,所以需要使用 OxFD 进行换码;
- (3) 串口发送数据时,遇到 0xFF、0xFE 和 0xFD 时换码方式:

0xFF -> 0x7F 0xFD

0xFE -> 0x7E 0xFD

0xFD -> 0x7D 0xFD

示例:

当 mcu 设备需要发送数据帧 FF 00 05 00 FF FE FD F9 FE 时,串口发送时候需要转换转换为 FF 00 05 00 7F FD 7E FD 7D FD F9 FE 发送:

注意:换码是在协议打包完整后换码的,换码的内容为数据长度、指令、数据和异或校验,帧头和帧尾不需要换码。

(4) 串口接收到数据帧时,除帧头和帧尾外,帧头到帧尾之间的数据需要进行换码,如下:

0x7F 0xFD -> 0xFF

0x7E 0xFD -> 0xFE

0x7D 0xFD -> 0xFD

示例:

当 mcu 设备接收到数据帧 FF 00 05 00 7F FD 7E FD 7D FD F9 FE 时,需要将 FF 到 FE 之间的数据转换为 FF 00 05 00 FF FE FD F9 FE;

- (5) 数据长度范围:为指令、数据与异或校验字节数的总和,数据长度为在转码前的长度;
- (6) 指令范围: 0x00-0xFF;
- (7) 数据内容:根据不同指令而定;
- (8) 异或校验范围: 为数据长度、指令、与数据的异或结果, 校验的结果为在转码前的数据:

(9) 整个协议中采用(大端)高字节在前,低字节在后;如数据长度 0x1234,在协议格式表示为 0x12 0x34。

四、指令表

指令	指令	功能	方向	备注
类型				
	0x00	查询 WIFI 模组	发送:	MAC 地址为 wifi 的 MAC 地址,作为
		的 MAC 地址	MCU->WIFI	与云服务器的通讯凭证
			返回:	
			WIFI->MCU	
	0x01	查询 WIFI 模组	发送:	通常为 MCU 主动查询,当 WIFI 自
		连接状态	MCU->WIFI	身的连接状态发生变化后会主动通
			返回:	知 MCU
			WIFI->MCU	
	0x02	查询 WIFI 模组	发送:	当 WIFI 模组未被设置 PID 和 PKEY
		的 PID 和 PKEY	MCU->WIFI	时,查询 PID 和 KEY 返回数据内容
			返回:	为空;如 WIFI 模组被设置 PID 和
			WIFI->MCU	PKEY,返回数据内容为所设置 PID
				和 PKEY;建议 MCU 在启动时先查
				再设置,减少对 flash 的擦写
	0x03	设置 WIFI 模组	发送:	MCU 将 PID 和 PKEY 设置到 WIFI 模
		的 PID 和 PKEY	MCU->WIFI	组,这是 WIFI 模组连接到云平台的
参数			返回:	凭证;设置 PID 和 PKEY 后 WIFI 模
指令			WIFI->MCU	组会重启
111 4	0x04	设置 WIFI 模组	发送:	目的为将WIFI模组设置进入配网状
		进入配网模式	MCU->WIFI	态,WIFI 模组进入此状态时不可控
			返回:	(如配网不成功需要通过 I/O 口重
			WIFI->MCU	启 WIFI 模组)
	0x05	重启 WIFI 模组	发送:	重启 wifi 模组
			MCU->WIFI	
			返回:	
			WIFI->MCU	
	0x06	重置 WIFI 模组	发送:	此操作会清空 WIFI 连接服务器所有
			MCU->WIFI	保存的信息,包括所 PID 和 PKEY,
			返回:	可理解为恢复到出厂状态
			WIFI->MCU	
	0x07	查询 WIFI 模组	发送:	查询 WIFI 模组的固件版本
		固件版本	MCU->WIFI	
			返回:	
			WIFI->MCU	
	0x08	获取 WIFI 模组	发送:	获取 WIFI 模组的时间, 其中时间是

				公 中于知识
		本地模糊时间	MCU->WIFI	否准确依赖于 WIFI 模组是否连接上
		一个1501天190 F 1 F 1 F 1	返回:	云服务器
			WIFI->MCU	
	0x09	设置 WIFI 模组	发送:	如果发现状态被打开后,APP 可以
	0.003	被发现状态	MCU->WIFI	通过内外发现 WIFI 设备,同时支持
		似义为小人心	返回:	外网订阅 WIFI 设备,否则不支持;
			WIFI->MCU	默认状态为打开,重启 WIFI 后默认
			WIII > IVICO	状态都为打开
保留	0x0A-0x81			 小公平 出b > 3 1 1 > 1
	0x82	WIFI 模组向	发送:	当 WIFI 模组接收到 APP 或云平台发
	0.02	MCU 转发数据	WIFI->MCU	来的设置数据端点数据后转发给
		端点数据	返回:	MCU,数据端点内容可以为1个或
		一年		多个数据端点数据
	0x83	MCU 向 WIFI 模	发送:	MCU 需要向 APP 或云平台发送更新
	UXOS	组发送数据端	及心: MCU->WIFI	数据端点数据时,通过此指令发送
		塩及医剱奶場 点数据(触发	返回:	给 WIFI,如果条件满足时会触发告
		点数¼(融及 告警)	返回: WIFI->MCU	知 WIFI,如木米下俩足的云脑及口 警
控制	0x84	MCU 向 WIFI 模	发送 :	WiFi 模组启动或连接上服务器时,
指令	UX64	组发送所有数	及心: MCU->WIFI	MCU 需发送所有数据端点给 WiFi
		据端点数据 据端点数据	返回:	模块,WIFI模组只会保存,不会上
		1/6/11/11/11/12/1/16	巡回: WIFI->MCU	传到 APP 和服务器;目的为 APP 与
			WIFI->IVICU	服务器能查询到最新的状态
	005	NACLI CONTROL ET	47.14	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	0x85	MCU 向 WIFI 模	发送:	MCU 需要向 APP 或云平台发送更新
		组发送数据端	MCU->WIFI	数据端点数据时,通过此指令发送
		点数据(不触	返回:	给 WIFI,如果条件满足时不会触发
로프 다	0.000.75	发告警)	WIFI->MCU	告 <u></u>
预留	0x86-0xFF			

注:

- 其中 0x82、0x83、0x84 和 0x85 使用到数据端点,数据端点格式定义查看 "https://github.com/xlink-corp/device-sdk/blob/master/docs/4.数据端点文档.md" 文档:
- 一个设备可包含多个数据端点,每个设备的数据端点定义见设备数据端点定义文 档.
- 所有数据端点数据内容大小必须小于 1000 字节;
- 当 WIFI 没连接上无线路由器时候操作 0x80-0x85 指令会失败无效;
- 数据端点数量最多为 200 个;其中 String(字符串)和 Bins(字节数组)总个数小于 16 个,每个 String(字符串)或 Bins(字节数组)的数据内容最大 64 字节;这些个数视硬件资源而定。

五、使用流程

1. 步骤

- (1) MCU 通过 0x01 指令查询 WiFi 模组连接路由器状态;
- (2) 如果 WiFi 模组需要配网时, 需通过 I/O 口或发送 0x04 指令设置 WiFi 模组进入配网状态:
- (3) WiFi 模组连接上路由器后, MCU 通过 0x02 查询 WiFi 模组是否配置 PID 和 PKEY;
- (4) 如果没设置 PID 和 PKEY, MCU 通过 0x03 指令配置 PID 和 PKEY, 如已配置此步骤可省略;
- (5) MCU 通过 0x84 指令发送所有数据端点给 WIFI 模组;
- (6) 如 WiFi 模组只连接上路由器,只能进行内网通信;
- (7) 如 WiFi 模组连接上服务器,可以进行内网或外网通信;
- (8) 每当 WiFi 连接上服务器后,需通过 0x85 指令发送所有的数据端点给 WiFi,目的是让服务器和 APP 能获取到 MCU 的最新状态。

2. 流程图

六、通用命令说明

5.1 (0x00) 查询 WIFI 模组 MAC 地址

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x00	无	xx	0xFE

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0xxx	0x00	MAC	xx	0xFE

说明: WIFI 的 MAC 地址长度根据不同的硬件设备而定, MAC 长度范围为 1-32 字节。

示例:

发送: FF 00 02 00 02 FE

返回: FF 00 08 00 01 02 03 04 05 06 0F FE

5.2 (0x01) 查询 WIFI 模组连接状态

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x01	无	xx	0xFE

返回: WIFI -> MCU(当 WIFI 模组的连接状态改变后,会主动向 MCU 发送此状态)

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x04	0x01	ww+ss	xx	0xFE

ww 和 ss 分别表示连接路由器和服务器状态,它们只由 0 或 1 表示; 1 表示已连接上,否则 没连接上; WiFi 模组启动时候会发出 ww=2, ss=0 的状态,表示 WiFi 模块启动。

示例:

发送: FF 00 02 01 03 FE

返回: FF 00 04 01 01 01 05 FE

5.3 (0x02) 查询 WIFI 模组的 PID 和 PKEY

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x02	无	xx	0xFE

返回: WIFI -> MCU

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0xxx	0x02	ii+kk	xx	0xFE

说明: ii 和 kk 分别表示 PID 和 PKEY,它们长度各为 32 字节,由云平台产生。当 WIFI 模组 没被设置时,ii 和 kk 为空。

示例:

发送: FF 00 02 02 03 FE 返回: FF 00 02 02 00 FE

5.4 (0x03) 设置 WIFI 模组的 PID 和 PKEY

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0xxx	0x03	ii+kk	xx	0xFE

ii 和 kk 分别表示产品 ID 和产品 KEY, 它们长度各为 32 字节, 由云平台产生。

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x03	无	xx	0xFE

发送: FF 00 42 03 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 30 31 32 33 34 35 36 37 41 FE

返回: FF 00 02 03 01 FE

5.5 (0x04) 设置 WIFI 模组进入配网模式

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x04	无	xx	0xFE

返回: WIFI -> MCU

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x04	无	xx	0xFE

注:进入配网状态后,WIFI模组不响应任何指令,需要通过硬件重启WIFI模组。

示例:

发送: FF 00 02 04 06 FE 返回: FF 00 02 04 06 FE

5.6 (0x05) 重启 WIFI 模组

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾		
0xFF	0x00 0x02	0x05	无	xx	0xFE		
NET MIEL AND							

返回: WIFI -> MCU

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x05	无	xx	0xFE

示例:

发送: FF 00 02 05 07 FE 返回: FF 00 02 05 07 FE

5.7 (0x06) 重置 WIFI 模组

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x06	无	xx	0xFE

返回: WIFI -> MCU

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x06	无	xx	0xFE

示例:

发送: FF 00 02 06 04 FE 返回: FF 00 02 06 04 FE

5.8 (0x07) 查询 WIFI 模组固件版本

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x07	无	xx	0xFE

返回: WIFI -> MCU

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x04	0x07	2 字节的版	xx	0xFE
			本,0-65535		

示例:

发送: FF 00 02 07 05 FE

返回: FF 00 04 07 00 01 02 FE

5.9 (0x08) 获取 WIFI 模组本地模糊时间

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x08	无	xx	0xFE

返回: WIFI -> MCU

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x0A	0x08	年(2字节)	xx	0xFE
			+月(1字节)		
			+日(1字节)		
			+时(1字节)		
			+分(1 字节)		
			+秒(1字节)		
			+时区(1 字		
			节)		

示例:

发送: FF 00 02 08 05 FE

返回: FF 00 0A 08 78 23 02 12 14 20 01 08 74 FE

5.10 (0x09) 设置 WIFI 模组被发现状态

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x03	0x09	ff	xx	0xFE

ff 由 0 或 1 表示,0 表示不可发现,1 表示可以发现,可发现状态下设备才能被订阅,默认为可发现状态。

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x09	无	xx	0xFE

发送: FF 00 03 09 01 0B FE 返回: FF 00 02 09 0B FE

六、控制指令说明

6.1 (0x82) WIFI 模组向 MCU 转发接收到的数据端点数据

发送: WIFI -> MCU

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x## 0x##	0x82	数据内容大	xx	0xFE
			小根据数据		
			长度而定		

返回: MCU -> WIFI (通常可不回)

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x02	0x82	无	xx	0xFE

示例:

发送: FF 00 06 82 00 00 01 01 84 FE

返回: FF 00 02 82 80 FE

6.4 (0x83) MCU 向 WIF 模组发送数据端点数据

发送规则: MCU 向 WiFi 发送数据后,需要等待 WiFi 回复后才能发送第二包数据,在内网通信下只回复转发成功;在有外网下,发送到服务器后会有响应状态 2 的数据包,如果外网不通情况下,WiFi 不会回复响应状态 2 数据包;如平台设置的告警规则条件满足可以触发告警。

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x## 0x##	0x83	数据内容大	xx	0xFE
			小根据数据		
			长度而定		

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x03	0x83	1 字节; 0 表	xx	0xFE
			示(转发)成		
			功,1表示失		
			败,2表示服		
			务器收到应		
			答(内网通信		
			不会回此状		

	态),其他保	
	留	

发送: FF 00 06 83 00 00 01 01 85 FE

返回: FF 00 02 83 81 FE

6.5 (0x84) MCU 向 WIFI 模组发送所有数据端点数据

发送: MCU -> WIFI

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x## 0x##	0x84	数据内容大	xx	0xFE
			小根据数据		
			长度而定		

返回: WIFI -> MCU

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x03	0x84	1 字节; 0 表	xx	0xFE
			示成功,1表		
			示失败,其他		
			保留		

示例:

发送: FF 00 06 84 00 00 01 01 82 FE

返回: FF 00 02 84 86 FE

6.6 (0x85) MCU 向 WIFI 发送数据端点数据

发送规则: MCU 向 WiFi 发送数据后,需要等待 WiFi 回复后才能发送第二包数据,在内网通信下只回复转发成功;在有外网下,发送到服务器后会有响应状态 2 的数据包,如果外网不通情况下,WiFi 不会回复响应状态 2 数据包;如平台设置的告警规则条件满足不会触发告警。

发送: MCU -> WIFI

<i>></i> 					
帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x## 0x##	0x85	数据内容大	xx	0xFE
			小根据数据		
			长度而定		

帧头	数据长度	指令	数据	异或校验	帧尾
0xFF	0x00 0x03	0x85	1 字节; 0 表	xx	0xFE
			示 (转发) 成		
			功,1表示失		
			败,2表示服		
			务器收到应		
			答(内网通信		
			不会回此状		

	态),其他保	
	留	

发送: FF 00 06 85 00 00 01 01 83 FE

返回: FF 00 02 85 87 FE