13 - Derivabilità delle Funzioni Composte, Omeomorfismi e Derivabilità delle Funzioni Inverse

Proposizione 13.1: F-derivabilità delle funzioni composte (Regola della catena)

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(Z, \|\cdot\|_Z)$ tre spazi normati.

Sia $A \subseteq X$.

Sia $B \subseteq Y$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f:A \to Y$ una funzione F-derivabile in \mathbf{x}_0 , tale che $f(A) \subseteq B$ e $f(\mathbf{x}_0) \in \overset{\circ}{B}$.

Sia g:B o Z una funzione F-derivabile in $f(\mathbf{x}_0)$.

Si hanno i seguenti fatti:

- $g \circ f$ è F-derivabile in \mathbf{x}_0 ;
- $(g \circ f)'(\mathbf{x}_0) = g'(f(\mathbf{x}_0)) \circ f'(\mathbf{x}_0).$

Dimostrazione

Per mostrare le due affermazioni, si provi che

$$\lim_{\mathbf{u} \to \mathbf{0}_X} \frac{g\big(f(\mathbf{x}_0 + \mathbf{u})\big) - g\big(f(\mathbf{x}_0)\big) - g'\big(f(\mathbf{x}_0)\big)\big(f'(\mathbf{x}_0)(\mathbf{u})\big)}{\|\mathbf{u}\|_X} = \mathbf{0}_Z.$$

Sia intanto $\delta_0 > 0$ tale che $B(\mathbf{x}_0, \delta_0) \subseteq A$; esso esiste in quanto $\mathbf{x}_0 \in \overset{\circ}{A}$.

Si definiscano le funzioni $\varphi: B(\mathbf{x}_0, \delta_0) \to Y$ e $\psi: f(B(\mathbf{x}_0, \delta_0)) \to Z$, ponendo rispettivamente:

•
$$\varphi(\mathbf{u}) = f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{u})$$
, per ogni $\mathbf{u} \in B(\mathbf{0}_X, \delta_0)$;

$$\psi(\mathbf{v}) = g(f(\mathbf{x}_0) + \mathbf{v}) - g(f(\mathbf{x}_0)) - g'(f(\mathbf{x}_0))(\mathbf{v})$$
, per ogni $\mathbf{v} \in f(B(\mathbf{x}_0, \delta_0))$.

Per ogni $\mathbf{u} \in B(\mathbf{0}_X, \delta_0) \setminus \{\mathbf{0}_X\}$, si ha

$$\psiig(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)ig)=gig(f(\mathbf{x}_0)+\mathbf{u}ig)-gig(f(\mathbf{x}_0)ig)-g'ig(f(\mathbf{x}_0)ig)ig(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)ig)$$

Per definizione di ψ

$$g(f(\mathbf{x}_0+\mathbf{u}))-gig(f(\mathbf{x}_0)ig)=\psiig(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)ig)+g'ig(f(\mathbf{x}_0)ig)ig(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)ig)$$

$$\implies gig(f(\mathbf{x}_0+\mathbf{u})ig)-gig(f(\mathbf{x}_0)ig)=\psiig(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)ig)+g'ig(f(\mathbf{x}_0)ig)ig(arphi(\mathbf{u})+f'(\mathbf{x}_0)(\mathbf{u})ig)$$

Dalla definizione di φ , in quanto $f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) = \varphi(\mathbf{u}) + f'(\mathbf{x}_0)(\mathbf{u})$

$$\Rightarrow gig(f(\mathbf{x}_0+\mathbf{u})ig)-gig(f(\mathbf{x}_0)ig)=\psiig(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)ig)+g'ig(f(\mathbf{x}_0)ig)ig(arphi(\mathbf{u})ig)+g'ig(f(\mathbf{x}_0)ig)ig(f'(\mathbf{x}_0)\mathbf{u}ig)$$

Per linearità di $g'(f(\mathbf{x}_0))$

$$\implies g\big(f(\mathbf{x}_0+\mathbf{u})\big)-g\big(f(\mathbf{x}_0)\big)-g'\big(f(\mathbf{x}_0)\big)\big(f'(\mathbf{x}_0)(\mathbf{u})\big)=\psi\big(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)\big)+g'\big(f(\mathbf{x}_0)\big)\big(\varphi(\mathbf{u})\big)$$

$$\overset{\Longrightarrow}{=} \frac{g\big(f(\mathbf{x}_0+\mathbf{u})\big)-g\big(f(\mathbf{x}_0)\big)-g'\big(f(\mathbf{x}_0)\big)\big(f'(\mathbf{x}_0)(\mathbf{u})\big)}{\|\mathbf{u}\|_X} = \frac{\psi\big(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)\big)}{\|\mathbf{u}\|_X} + \frac{g'\big(f(\mathbf{x}_0)\big)\big(\varphi(\mathbf{u})\big)}{\|\mathbf{u}\|_X}$$

Dividendo ambo i membri per $\|\mathbf{u}\|_X$, non nullo in quanto $\mathbf{u} \neq \mathbf{0}_X$

Dall'uguaglianza ottenuta segue che, per provare quanto si vuole, basta mostrare che

$$\lim_{\mathbf{u} o \mathbf{0}_X} rac{\psiig(f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0)ig)}{\|\mathbf{u}\|_X} + rac{g'ig(f(\mathbf{x}_0)ig)ig(arphi(\mathbf{u})ig)}{\|\mathbf{u}\|_X} = \mathbf{0}_Z$$
 .

Si ha
$$\lim_{\mathbf{u} o \mathbf{0}_X} rac{g'ig(f(\mathbf{x}_0)ig)ig(arphi(\mathbf{u})ig)}{\|\mathbf{u}\|_X} = \mathbf{0}_Z$$
 .

Infatti,
$$\lim_{\mathbf{u} \to \mathbf{0}_X} \frac{g'ig(f(\mathbf{x}_0)ig)ig(arphi(\mathbf{u})ig)}{\|\mathbf{u}\|_X} = \lim_{\mathbf{u} \to \mathbf{0}_X} g'ig(f(\mathbf{x}_0)ig)\left(\frac{arphi(\mathbf{u})}{\|\mathbf{u}\|_X}\right)$$
 per linearità di $g'ig(f(\mathbf{x}_0)ig)$;

$$\text{inoltre, } \lim_{\mathbf{u} \to \mathbf{0}_X} \frac{\varphi(\mathbf{u})}{\|\mathbf{u}\|_X} = \lim_{\mathbf{u} \to \mathbf{0}_X} \frac{f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{u})}{\|\mathbf{u}\|_X} = \mathbf{0}_Y \text{ per F-derivabilità di } f \text{ in } \mathbf{x}_0.$$

Segue quindi
$$\lim_{\mathbf{u} \to \mathbf{0}_X} g' \big(f(\mathbf{x}_0) \big) \left(\frac{\varphi(\mathbf{u})}{\|\mathbf{u}\|_X} \right) = \mathbf{0}_Z$$
 per continuità di $g' \big(f(\mathbf{x}_0) \big)$.

Per acquisire la tesi, resta perciò da provare che $\lim_{\mathbf{u} \to \mathbf{0}_X} \frac{\psi \big(f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0)\big)}{\|\mathbf{u}\|_X} = \mathbf{0}_Z$.

Sia quindi $\mathbf{u} \in B(\mathbf{x}_0, \delta_0) \neq \{\mathbf{0}_X\}.$

Se
$$f(\mathbf{x}_0 + \mathbf{u}) = f(\mathbf{x}_0)$$
, si ha $\frac{\psi(f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0))}{\|\mathbf{u}\|_X} = \mathbf{0}_Z$, per come è definita ψ .

Si supponga ora $f(\mathbf{x}_0 + \mathbf{u}) \neq f(\mathbf{x}_0)$; si ha

$$rac{\psiig(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)ig)}{\|\mathbf{u}\|_X} = rac{\psiig(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)ig)}{\|f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)\|_Y} rac{\|f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)\|_Y}{\|\mathbf{u}\|_X}.$$

Si vogliono studiare questi due rapporti in funzione di u.

$$\frac{\|f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)\|_Y}{\|\mathbf{u}\|_X}$$
 è limitato in un opportuno intorno di $\mathbf{0}_X$.

Infatti, per F-derivabilità di f in \mathbf{x}_0 , in corrispondenza a $\varepsilon = 1$ esiste $\delta_1 > 0$ tale che, se $\|\mathbf{u}\|_X < \delta_1$, allora $\left\| \frac{f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{u})}{\|\mathbf{u}\|_X} \right\|_Y < 1.$

Allora, se $\|\mathbf{u}\|_X < \delta_1$, si ha

$$rac{\|f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)-f'(\mathbf{x}_0)(\mathbf{u})\|_Y}{\|\mathbf{u}\|_X} < 1$$

Assoluta omogeneità di $\|\cdot\|_Y$

$$\implies \|f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{u})\|_Y < \|\mathbf{u}\|_X$$

$$\implies \|f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0)\|_Y - \|f'(\mathbf{x}_0)(\mathbf{u})\|_Y < \|\mathbf{x}\|_X$$

Dalla seconda disuguaglianza triangolare delle norme

$$\implies \|f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0)\|_Y < \|\mathbf{u}\|_X + \|f'(\mathbf{x}_0)(\mathbf{u})\|_Y$$

$$\implies \|f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0)\|_Y < \|\mathbf{u}\|_X + \|f'(\mathbf{x}_0)\|_{\mathcal{L}(X,Y)} \cdot \|\mathbf{u}\|_X$$

$$\implies \frac{\|f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)\|_Y}{\|\mathbf{u}\|_X} < 1 + \|f'(\mathbf{x}_0)\|_{\mathcal{L}(X,Y)}$$

Dalla disuguaglianza fondamentale della norma $\|\cdot\|_{\mathcal{L}(X,Y)}$

Dividendo ambo i membri per $\|\mathbf{u}\|_X$, non nullo in quanto $\mathbf{u} \neq \mathbf{0}_X$

$$rac{\psiig(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)ig)}{\|f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0)\|_Y}$$
 è infinitesimo per $\mathbf{u} o\mathbf{0}_X$.

Infatti, $\lim_{\mathbf{u}\to\mathbf{0}_X} f(\mathbf{x}_0+\mathbf{u}) - f(\mathbf{x}_0) = \mathbf{0}_X$ in quanto f è continua in \mathbf{x}_0 , essendo ivi F-derivabile.

Inoltre,
$$\lim_{\mathbf{v} \to \mathbf{0}_Y} \frac{\psi(\mathbf{v})}{\|\mathbf{v}\|_Y} = \lim_{\mathbf{v} \to \mathbf{0}_Y} \frac{g(f(\mathbf{x}_0) + \mathbf{v}) - g(f(\mathbf{x}_0)) - g'(f(\mathbf{x}_0))(\mathbf{v})}{\|\mathbf{v}\|_Y} = \mathbf{0}_Z$$
 per F-derivabilità di g in $f(\mathbf{x}_0)$.

Dunque, ne segue che $\lim_{\mathbf{u} \to \mathbf{0}_X} \frac{\psi \big(f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) \big)}{\| f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) \|_Y} = \mathbf{0}_Z.$

Pertanto, $\frac{\psi(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0))}{\|\mathbf{u}\|_X}$ è nullo se $f(\mathbf{x}_0+\mathbf{u})=f(\mathbf{x}_0)$, altrimenti è prodotto di un'espressione limitata in un opportuno intorno di $\mathbf{0}_X$ per \mathbf{u} , con un'espressione infinitesima per $\mathbf{u}\to\mathbf{0}_X$.

Ne segue che $\lim_{\mathbf{u}\to\mathbf{0}_X}\frac{\psi(f(\mathbf{x}_0+\mathbf{u})-f(\mathbf{x}_0))}{\|\mathbf{u}\|_X}=\mathbf{0}_Z$, come si voleva ottenere.

\mathcal{H} Notazione: $\mathcal{O}(X,Y)$

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi di Banach.

Si denota con $\mathcal{O}(X,Y)$ l'insieme degli omeomorfismi lineari da X in Y, ossia le funzioni da X in Y lineari, continue, biunivoche e con inversa continua.

Q Osservazione

Si ha $\mathcal{O}(X,Y)\subseteq\mathcal{L}(X,Y)$.

Proposizione 13.2: Caratterizzazione degli omeomorfismi lineari

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi di Banach.

Sia $f: X \to Y$ un operatore lineare continuo e biunivoco.

Allora, f^{-1} è anch'essa continua.

In altri termini, sono equivalenti le seguenti affermazioni:

- $ullet f\in \mathcal{O}(X,Y);$
- f è lineare, continua e biunivoca.

Proposizione 13.3: Insieme degli omeomorfismi lineari è aperto nell'insieme degli operatori lineari continui

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi di Banach.

Si hanno i seguenti fatti:

- $\mathcal{O}(X,Y)$ è aperto in $\mathcal{L}(X,Y)$;
- L'operatore $\mathcal{O}(X,Y) o \mathcal{L}(Y,X)$ è continuo. $arphi \mapsto arphi^{-1}$

Dimostrazione

Se $X = \{0\}$, l'unico operatore lineare è la funzione identicamente nulla.

Allora, $\mathcal{L}(Y,X)$ è un singoletto, per cui la topologia definita su di esso è discreta.

Segue allora che $\mathcal{O}(X,Y)$ è aperto in $\mathcal{L}(X,Y)$, e l'operatore $\mathcal{O}(X,Y) \to \mathcal{L}(Y,X)$ è continuo (le funzioni su uno spazio discreto $\varphi \mapsto \varphi^{-1}$ sono automaticamente continue).

Si supponga ora $X \neq \{0\}$.

Si fissi $\varphi \in \mathcal{O}(X,Y)$;

essendo $X \neq \{0\}$ e φ biunivoca, né φ né φ^{-1} sono identicamente nulle, per cui $\|\varphi\|_{\mathcal{L}(X,Y)} \neq 0$ e $\|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \neq 0$.

Per provare che $\mathcal{O}(X,Y)$ è aperto, si mostri che $B\left(arphi,rac{1}{\|arphi^{-1}\|_{\mathcal{L}(Y,X)}}
ight)\subseteq\mathcal{O}(X,Y).$

Sia dunque $\psi \in \mathcal{L}(X,Y)$ tale che $\|\psi - \varphi\|_{\mathcal{L}(X,Y)} < \frac{1}{\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}};$

si provi che ψ è biunivoca; facendo uso della [Proposizione 13.2], basta dunque mostrare che ψ è biunivoca (la linearità e la continuità di ψ sono garantite dal fatto che $\psi \in \mathcal{L}(X,Y)$).

Fissato allora $\mathbf{y} \in Y$, si vuole provare l'esistenza e l'unicità di $\mathbf{x} \in X$ tale che $\psi(\mathbf{x}) = \mathbf{y}$.

Si definisca la funzione $g: X \to X$ ponendo $g(\mathbf{x}) = \varphi^{-1}(\mathbf{y} + \varphi(\mathbf{x}) - \psi(\mathbf{x}))$ per ogni $\mathbf{x} \in X$.

Si osserva che

$$\psi(\mathbf{x}) = \mathbf{y} \Longleftrightarrow \mathbf{y} + arphi(\mathbf{x}) - \psi(\mathbf{x}) = arphi(\mathbf{x})$$

 $\iff \varphi^{-1}(\mathbf{y} + \varphi(\mathbf{x}) - \psi(\mathbf{x})) = \mathbf{x}$ Per biunivocità di φ

 $\iff g(\mathbf{x}) = \mathbf{x}$ Per definizione di g

Cioè, $\psi(\mathbf{x}) = \mathbf{y}$ se e solo se \mathbf{x} è un punto fisso per g.

Per provare che ψ è biunivoca, basta allora provare che g ammette un solo punto fisso in X.

Richiamo: Teorema del punto fisso di Banach-Caccioppoli

Sia (S, d) uno spazio metrico completo.

Sia $f: S \to S$ una contrazione (tale cioè che esista $L \in [0; 1]$ per cui $d(f(x), f(y)) \leq L d(x, y)$).

Allora, f ammette un unico punto fisso, vale a dire un unico $\tilde{x} \in S$ tale che $f(\tilde{x}) = \tilde{x}$.

Essendo X completo in quanto spazio di Banach e $g:X\to X$, in virtù di tale teorema si mostri che g è una contrazione.

Fissati $\mathbf{x}, \mathbf{z} \in X$, si ha

$$g(\mathbf{x}) - g(\mathbf{z}) = \varphi^{-1}(\mathbf{y} + \varphi(\mathbf{x}) - \psi(\mathbf{x})) - \varphi^{-1}(\mathbf{y} + \varphi(\mathbf{z}) - \psi(\mathbf{z})) \quad \text{Per definizione di } g$$

$$= \varphi^{-1}(\mathbf{y} + \varphi(\mathbf{x}) - \psi(\mathbf{x}) - (\mathbf{y} + \varphi(\mathbf{z}) - \psi(\mathbf{z}))) \quad \text{Per linearità di } \varphi^{-1} \text{ (L'inversa di una funzione lineare è anch'essa lineare)}$$

$$= \varphi^{-1}(\psi(\mathbf{x} - \mathbf{z}) - \varphi(\mathbf{x} - \mathbf{z})) \quad \text{Per linearità di } \varphi \in \psi$$

$$= \varphi^{-1}((\psi - \varphi)(\mathbf{x} - \mathbf{z})) \quad \text{Per definizione di } \psi - \varphi$$

$$\Rightarrow \quad \|g(\mathbf{x}) - g(\mathbf{z})\|_X = \|\varphi^{-1}((\psi - \varphi)(\mathbf{x} - \mathbf{z}))\|_X \quad \text{Per quanto appena ottenuto}$$

$$\leq \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|(\psi - \varphi)(\mathbf{x} - \mathbf{z})\|_X \quad \text{Per la disuguaglianza fondamentale della norma}$$

$$\|\cdot\|_{\mathcal{L}(X,Y)}$$

$$\leq \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\psi - \varphi\|_{\mathcal{L}(X,Y)} \cdot \|\mathbf{x} - \mathbf{z}\|_X \quad \text{Per la disuguaglianza fondamentale della norma}$$

$$\|\cdot\|_{\mathcal{L}(X,Y)}$$

Dunque, $\|g(\mathbf{x}) - g(\mathbf{z})\|_X \le \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\psi - \varphi\|_{\mathcal{L}(X,Y)} \cdot \|\mathbf{x} - \mathbf{z}\|_X$ per ogni $\mathbf{x}, \mathbf{z} \in X$;

essendo $\|\psi - \varphi\|_{\mathcal{L}(X,Y)} < \frac{1}{\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}$, ne segue che $\|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\psi - \varphi\|_{\mathcal{L}(X,Y)} < 1$, per cui g è una contrazione.

Pertanto, $\mathcal{O}(X,Y)$ è aperto in $\mathcal{L}(X,Y)$.

Fissato $\psi \in B\left(\varphi, \frac{1}{\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}\right)$, che è biunivoco per quanto appena mostrato, si vuole ora fornire una stima di $\|\psi^{-1}\|_{\mathcal{L}(Y,X)}$.

Dunque, si fissi $\mathbf{y} \in X$, e si definisca $g: X \to X$ come prima $(\mathbf{x} \mapsto \varphi^{-1}(\mathbf{y} + \varphi(\mathbf{x}) - \psi(\mathbf{x})))$.

Sia $\mathbf{x}_0 = \psi^{-1}(\mathbf{y})$; si ha

$$\|\mathbf{x}_0\|_X = \|g(\mathbf{x}_0)\|_X$$

$$= \|\varphi^{-1}(\mathbf{y} + \varphi(\mathbf{x}_0) - \psi(\mathbf{x}_0)\|_X$$
Per definizione di g

$$= \|\varphi^{-1}(\mathbf{y} + (\varphi - \psi)(\mathbf{x}_0)\|_X$$
Per definizione di $\varphi - \psi$

$$= \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\mathbf{y} + (\varphi - \psi)(\mathbf{x}_0)\|_Y$$
Per la disuguaglianza fondamentale della norma $\|\cdot\|_{\mathcal{L}(Y,X)}$

$$\leq \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot (\|\mathbf{y}\|_Y + \|(\varphi - \psi)(\mathbf{x}_0)\|_Y)$$
Per subadditività delle norme

Dunque,

$$\|\mathbf{x}_0\|_X \leq \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \left(\|\mathbf{y}\|_Y + \|\varphi - \psi\|_{\mathcal{L}(X,Y)} \cdot \|\mathbf{x}_0\|_X\right)$$

$$\implies \left(1 - \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi - \psi\|_{\mathcal{L}(X,Y)}\right) \|\mathbf{x}_0\|_X \leq \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\mathbf{y}\|_Y \quad \text{Portando a primo membro tutti i termini con fattore } \|\mathbf{x}_0\|_X$$

$$\implies \|\mathbf{x}_0\|_X \leq \frac{\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}{1 - \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi - \psi\|_{\mathcal{L}(X,Y)}} \cdot \|\mathbf{y}\|_Y \quad \text{Dividendo ambo i membri per } 1 - \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi - \psi\|_{\mathcal{L}(X,Y)}, \text{ valore strettamente positivo in quanto}$$

$$\psi \in B\left(\varphi, \frac{1}{\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}\right)$$

$$\implies \|\psi^{-1}(\mathbf{y})\|_X \leq \frac{\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}{1 - \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi - \psi\|_{\mathcal{L}(X,Y)}} \cdot \|\mathbf{y}\|_Y \quad \text{Per definizione di } \mathbf{x}_0$$

Per la disuguaglianza fondamentale della norma $\|\cdot\|_{\mathcal{L}(X,Y)}$

Quest'ultima disuguaglianza vale per ogni $\mathbf{y} \in Y$;

 $\leq \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot (\|\mathbf{y}\|_{Y} + \|\varphi - \psi\|_{\mathcal{L}(X,Y)} \cdot \|\mathbf{x}_{0}\|_{X})$

dalla definizione di $\|\cdot\|_{\mathcal{L}(X,Y)}$ segue che

$$\|\psi^{-1}\|_{\mathcal{L}(X,Y)} \leq \frac{\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}{1 - \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi - \psi\|_{\mathcal{L}(X,Y)}}.$$

Questa è la stima cercata.

Per provare la continuità dell'operatore $\mathcal{O}(X,Y) \to \mathcal{L}(Y,X)$, se ne mostri la sequenziale continuità. $\varphi \mapsto \varphi^{-1}$

Fissati dunque $\varphi \in \mathcal{O}(X,Y)$ e una successione $\{\varphi_n\}_{n\in\mathbb{N}}\subseteq \mathcal{O}(X,Y)$ convergente a φ , si provi che $\{\varphi_n^{-1}\}$ converge a φ^{-1} , ossia

$$\lim_n \|\varphi_n^{-1} - \varphi^{-1}\|_{\mathcal{L}(Y,X)} = 0.$$

Poiché $\varphi_n \xrightarrow{\mathcal{L}(X,Y)} \varphi$, in corrispondenza a $\varepsilon = \frac{1}{2\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}$ esiste $\nu \in \mathbb{N}$ tale che, per ogni $n \in \mathbb{N}$ tale che $n \geq \nu$, si abbia $\|\varphi - \varphi_n\|_{\mathcal{L}(X,Y)} < \frac{1}{2\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}$.

Ricordando che $\|\varphi_n^{-1} - \varphi^{-1}\|_{\mathcal{L}(Y,X)} = \sup_{\|\mathbf{y}\|_Y = 1} \|\varphi_n^{-1}(\mathbf{y}) - \varphi^{-1}(\mathbf{y})\|_X$, si fissi $\mathbf{y} \in Y$ tale che $\|\mathbf{y}\|_Y = 1$;

si ponga inoltre $\mathbf{x}_n = \varphi_n^{-1}(\mathbf{y})$ per ogni $n \in \mathbb{N}$, e anche $\mathbf{x} = \varphi^{-1}(\mathbf{y})$.

Per ogni $n \in \mathbb{N}$, si ha

$$\|\varphi(\mathbf{x}_n) - \varphi(\mathbf{x})\|_Y = \|\varphi(\mathbf{x}_n) - \varphi_n(\mathbf{x}_n)\|_Y \quad \text{In quanto } \varphi(\mathbf{x}) = \mathbf{y} = \varphi_n(\mathbf{x}_n)$$

$$= \|(\varphi - \varphi_n)(\mathbf{x}_n)\|_Y \quad \text{Per definizione di } \varphi - \varphi_n$$

$$\leq \|\varphi - \varphi_n\|_{\mathcal{L}(X,Y)} \cdot \|\mathbf{x}_n\|_X \quad \text{Per la disuguaglianza fondamentale di } \|\cdot\|_{\mathcal{L}(X,Y)}$$

Fissato allora $n \geq \nu$, si ha

$$\varphi_n \in B\left(\varphi, \frac{1}{2\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}\right) \subseteq B\left(\varphi, \frac{1}{\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}\right) \quad \text{Per costruzione di } \nu$$

$$\implies \|\varphi_n^{-1}\|_{\mathcal{L}(Y,X)} \leq \frac{\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}{1-\|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi-\varphi_n\|_{\mathcal{L}(X,Y)}} \quad \text{Per la stima sulla norma dell'inversa ricavata prima}$$

$$\implies \|\varphi_n^{-1}\|_{\mathcal{L}(Y,X)} \leq 2\|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \qquad \qquad \text{In quanto } \|\varphi-\varphi_n\|_{\mathcal{L}(X,Y)} < \frac{1}{2\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}}, \text{ e dunque } \\ 1-\|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi-\varphi_n\|_{\mathcal{L}(X,Y)} > \frac{1}{2}$$

Si osservano ora i seguenti fatti:

1.
$$\|\mathbf{x}_n\|_X \leq \|\varphi_n^{-1}\|_{\mathcal{L}(Y,X)}$$
 per ogni $n \in \mathbb{N}$. Infatti,

$$\|\mathbf{x}_n\|_X = \|\varphi_n^{-1}(\mathbf{y})\|_X$$
 Per definizione di \mathbf{x}_n
$$\leq \|\varphi_n^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\mathbf{y}\|_Y$$
 Per la disuguaglianza fondamentale di $\|\cdot\|_{\mathcal{L}(Y,X)}$
$$= \|\varphi_n^{-1}\|_{\mathcal{L}(Y,X)}$$
 In quanto era stato posto $\|\mathbf{y}\|_Y = 1$

2.
$$\|\mathbf{z}\|_X \leq \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi(\mathbf{z})\|_Y$$
. Infatti,

$$\|\mathbf{z}\|_X = \|\varphi^{-1}(\varphi(\mathbf{z}))\|_X$$
 Per biunivocità di φ
 $\leq \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi(\mathbf{z})\|_Y$ Per la disuguaglianza fondamentale di $\|\cdot\|_{\mathcal{L}(Y,X)}$

Sia dunque $n \ge \nu$; si ha

$$\|\varphi_n^{-1}(\mathbf{y}) - \varphi^{-1}(\mathbf{y})\|_X = \|\mathbf{x}_n - \mathbf{x}\|_X \qquad \text{Per definizione di } \mathbf{x}_n \in \mathbf{x}$$

$$\leq \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi(\mathbf{x}_n - \mathbf{x})\|_Y \qquad \text{Per il fatto } \mathbf{2}.$$

$$= \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi(\mathbf{x}_n) - \varphi(\mathbf{x})\|_Y \qquad \text{Per linearità di } \varphi$$

$$= \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi(\mathbf{x}_n) - \varphi_n(\mathbf{x}_n)\|_Y \qquad \text{In quanto } \varphi(\mathbf{x}) = \mathbf{y} = \varphi_n(\mathbf{x}_n)$$

$$= \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|(\varphi - \varphi_n)(\mathbf{x}_n)\|_Y \qquad \text{Per definizione di } \varphi - \varphi_n$$

$$\leq \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi_n - \varphi\|_{\mathcal{L}(X,Y)} \cdot \|\mathbf{x}_n\|_X \qquad \text{Per la disuguaglianza fondamentale di } \|\cdot\|_{\mathcal{L}(X,Y)}$$

$$\leq \|\varphi^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\varphi_n - \varphi\|_{\mathcal{L}(X,Y)} \cdot \|\varphi_n^{-1}\|_{\mathcal{L}(Y,X)} \qquad \text{Per il fatto } \mathbf{1}.$$

$$\|<2\|arphi^{-1}\|_{\mathcal{L}(Y,X)}^2\cdot \|arphi_n-arphi\|_{\mathcal{L}(X,Y)}$$

Avendo mostrato che $\|arphi_n^{-1}\|_{\mathcal{L}(Y,X)} \leq 2 \|arphi^{-1}\|_{\mathcal{L}(Y,X)}$ per $n \geq
u$

 $\text{Dunque, per } n \geq \nu \text{ si ha } \|\varphi_n^{-1}(\mathbf{y}) - \varphi^{-1}(\mathbf{y})\|_X < 2\|\varphi^{-1}\|_{\mathcal{L}(Y,X)}^2 \cdot \|\varphi_n - \varphi\|_{\mathcal{L}(X,Y)} \text{ per ogni } \mathbf{y} \in Y \text{ tale che } \|\mathbf{y}\|_Y = 1.$

Ne viene che $\| \varphi_n^{-1} - \varphi^{-1} \|_{\mathcal{L}(Y,X)} \leq 2 \| \varphi^{-1} \|_{\mathcal{L}(Y,X)}^2 \cdot \| \varphi_n - \varphi \|_{\mathcal{L}(X,Y)}$ per ogni $n \geq \nu$.

Essendo $\lim_n \| \varphi_n - \varphi \|_{\mathcal{L}(X,Y)} = 0$ per ipotesi su $\{ \varphi_n \}_{n \in \mathbb{N}}$, segue per confronto che

$$\lim_n \|\varphi_n^{-1} - \varphi^{-1}\|_{\mathcal{L}(Y,X)} = 0.$$

Proposizione 13.4: F-derivabilità delle funzioni inverse.

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi di Banach.

Sia $A \subseteq X$.

Sia $f: A \rightarrow Y$ una funzione;

si supponga che f sia un omeomorfismo tra A e f(A).

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$, tale che $f(\mathbf{x}_0) \in (f(A))^{\circ}$.

Si supponga f F-derivabile in \mathbf{x}_0 .

Sono equivalenti i seguenti fatti:

- 1. f^{-1} è F-derivabile in $f(\mathbf{x}_0)$;
- 2. $f'(\mathbf{x}_0) \in \mathcal{O}(X, Y)$.

In tal caso, si ha inoltre $(f^{-1})'(f(\mathbf{x}_0)) = (f'(\mathbf{x}_0))^{-1}$.

Osservazioni preliminari

1. Siano *U* e *V* due insiemi.

Siano $h: U \to V$ e $k: V \to U$ tali che $k \circ h = \mathrm{id}_U$ e $h \circ k = \mathrm{id}_V$ (id g denota l'identità sull'insieme g).

Allora, h e k sono biunivoche, e sono l'una l'inversa dell'altra.

Infatti, k è per ipotesi inversa destra e sinistra di h; pertanto h è biunivoca, e k è la sua inversa.

Analogamente, h è per ipotesi inversa destra e sinistra di k, per cui anche k è biunivoca, con inversa h.

2. Siano $X, Y \in Z$ tre spazi topologici.

Sia $\varphi: X \to Y$ un omeomorfismo.

Sia $g: Y \to Z$.

Sia $y_0 \in Y$ non isolato (dimodoché si possano effettuare limiti per $y \to y_0$)

Sia $z \in Z$.

Si ha
$$\lim_{y o y_0} g(y) = z$$
 se e solo se $\lim_{x o arphi^{-1}(y_0)} g(arphi(x)) = z$.

Infatti, si supponga $\lim_{y o y_0} g(y) = z$.

Sia V un intorno di z.

Per ipotesi, esiste U intorno di y_0 tale che $g(U) \subseteq V$.

Essendo φ un omeomorfismo tra X e Y, l'insieme $W = \varphi^{-1}(U)$ è un intorno di $\varphi^{-1}(y_0)$, e si ha $g(\varphi(W)) = g(U) \subseteq V$.

Ne segue che $\lim_{x o arphi^{-1}(y_0)} g(arphi(x)) = z$

Viceversa, si supponga $\lim_{x o arphi^{-1}(y_0)} g(arphi(x)) = z.$

Sia V un intorno di z

Per ipotesi, esiste W intorno di $\varphi^{-1}(y_0)$ tale che $g(\varphi(W)) \subseteq V$.

Essendo φ un omeomorfismo tra X e Y, l'insieme $U=\varphi(W)$ è un intorno di y_0 , e si ha $g(U)=g(\varphi(W))\subseteq V$.

Ne segue che $\lim_{y \to y_0} g(y) = z$.

Dimostrazione (1. \Rightarrow 2.)

Si supponga f^{-1} F-derivabile in $f(\mathbf{x}_0)$; si provi che $f'(\mathbf{x}_0) \in \mathcal{O}(X,Y)$.

Sono soddisfatte le ipotesi della regola della catena ([Proposizione 13.1]), per $f^{-1} \circ f$ e $f \circ f^{-1}$, su \mathbf{x}_0 e $f(\mathbf{x}_0)$ rispettivamente.

dunque, esse sono F-derivabili in \mathbf{x}_0 e $f(\mathbf{x}_0)$ rispettivamente, e si ha

$$(f^{-1}\circ f)'(\mathbf{x}_0)=(f^{-1})'ig(f(\mathbf{x}_0)ig)\circ f'(\mathbf{x}_0); \ (f\circ f^{-1})'ig(f(\mathbf{x}_0)ig)=f'ig(f^{-1}ig(f(\mathbf{x}_0)ig)ig)\circ (f^{-1})'ig(f(\mathbf{x}_0)ig)=f'(\mathbf{x}_0)\circ (f^{-1})'ig(f(\mathbf{x}_0)ig).$$

D'altra parte, si ha $f^{-1} \circ f = \mathrm{id}_A$ e $f \circ f^{-1} = \mathrm{id}_{f(A)}$.

 id_A è restrizione su A di $id_X \in \mathcal{L}(X, X)$; quest'ultimo è F-derivabile in \mathbf{x}_0 con derivata pari a id_X stesso, essendo un operatore lineare continuo.

Allora, essendo $\mathbf{x}_0 \in \overset{\circ}{A}$, anche id_A è F-derivabile in \mathbf{x}_0 , e $\mathrm{id}_A'(\mathbf{x}_0) = \mathrm{id}_X'(\mathbf{x}_0) = \mathrm{id}_X$.

Analogamente, $id_{f(A)}$ è restrizione su A di $id_Y \in \mathcal{L}(Y,Y)$; quest'ultimo è F-derivabile in $f(\mathbf{x}_0)$ con derivata pari a id_Y stesso, essendo un operatore lineare continuo.

Allora, essendo $f(\mathbf{x}_0) \in (f(A))^\circ$, anche $\mathrm{id}_{f(A)}$ è F-derivabile in $f(\mathbf{x}_0)$, e $\mathrm{id}'_{f(A)}\left(f(\mathbf{x}_0)\right) = \mathrm{id}'_Y\left(f(\mathbf{x}_0)\right) = \mathrm{id}_Y$.

Dall'uguaglianza delle derivate segue che

$$\operatorname{id}_X = (f^{-1} \circ f)'(\mathbf{x}_0) = (f^{-1})' \big(f(\mathbf{x}_0) \big) \circ f'(\mathbf{x}_0);$$

 $\operatorname{id}_Y = (f \circ f^{-1})'(\mathbf{x}_0) = f'(\mathbf{x}_0) \circ (f^{-1})' \big(f(\mathbf{x}_0) \big).$

Dall'osservazione preliminare 1. segue allora che $f'(\mathbf{x}_0)$ è biunivoca; essendo anche $f'(\mathbf{x}_0) \in \mathcal{L}(X,Y)$, segue allora che $f'(\mathbf{x}_0) \in \mathcal{O}(X,Y)$ per la [Proposizione 13.2];

inoltre, sempre per tale osservazione si ha $(f^{-1})'(f(\mathbf{x}_0)) = (f'(\mathbf{x}_0))^{-1}$.

Si supponga $f'(\mathbf{x}_0) \in \mathcal{O}(X,Y)$.

Per provare sia la F-derivabilità di f^{-1} in $f(\mathbf{x}_0)$ che l'uguaglianza $(f^{-1})'(f(\mathbf{x}_0)) = (f'(\mathbf{x}_0))^{-1}$, si mostri che

$$\lim_{\mathbf{y} \to f(\mathbf{x}_0)} \frac{f^{-1}(\mathbf{y}) - f^{-1}(\mathbf{y}_0) - \left(f'(\mathbf{x}_0)\right)^{-1}\left(\mathbf{y} - f(\mathbf{x}_0)\right)}{\|\mathbf{y} - f(\mathbf{x}_0)\|_Y} = \mathbf{0}_X.$$

Essendo f un omeomorfismo tra A e f(A), per l'osservazione preliminare 2. ciò equivale a provare che

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\frac{\mathbf{x}-\mathbf{x}_0-\left(f'(\mathbf{x}_0)\right)^{-1}\left(f(\mathbf{x})-f(\mathbf{x}_0)\right)}{\|f(\mathbf{x})-f(\mathbf{x}_0)\|_Y}=\mathbf{0}_X.$$

Si definisca $\varphi: A \setminus \{\mathbf{x}_0\} \to Y$ ponendo $\varphi(\mathbf{x}) = \frac{f(\mathbf{x}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)}{\|\mathbf{x} - \mathbf{x}_0\|_X}$ per ogni $\mathbf{x} \in A \setminus \{\mathbf{x}_0\}$; si osserva che, per definizione di F-derivabilità di f in \mathbf{x}_0 , si ha

$$\lim_{\mathbf{x} o \mathbf{x}_0} arphi(\mathbf{x}) = \mathbf{0}_Y$$
.

Si definisca $\psi: A \setminus \{\mathbf{x}_0\} \to X$ ponendo $\psi(\mathbf{x}) = \big(f'(\mathbf{x}_0)\big)^{-1} \big(\varphi(\mathbf{x})\big)$ per ogni $\mathbf{x} \in A \setminus \{\mathbf{x}_0\}$.

Sempre per ogni $\mathbf{x} \in A \setminus \{\mathbf{x}_0\}$, tale legge si può scrivere così:

$$\psi(\mathbf{x}) = \left(f'(\mathbf{x}_0)\right)^{-1} \left(\frac{f(\mathbf{x}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)}{\|\mathbf{x} - \mathbf{x}_0\|_X}\right) \quad \text{Per definizione di } \varphi$$

$$= \frac{\left(f'(\mathbf{x}_0)\right)^{-1} \left(f(\mathbf{x}) - f(\mathbf{x}_0)\right) - (\mathbf{x} - \mathbf{x}_0)}{\|\mathbf{x} - \mathbf{x}_0\|_X} \quad \text{Per linearità di } \left(f'(\mathbf{x}_0)\right)^{-1}, \text{ appartenendo a } \mathcal{O}(X, Y) \text{ per ipotesi}$$

Ne segue che $\|\mathbf{x} - \mathbf{x}_0\|_X \cdot \psi(\mathbf{x}) = (f'(\mathbf{x}_0))^{-1} (f(\mathbf{x}) - f(\mathbf{x}_0)) - (\mathbf{x} - \mathbf{x}_0)$ per ogni $\mathbf{x} \in A \setminus \{\mathbf{x}_0\}$;

provare che
$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\mathbf{x} - \mathbf{x}_0 - \left(f'(\mathbf{x}_0)\right)^{-1} \left(f(\mathbf{x}) - f(\mathbf{x}_0)\right)}{\|f(\mathbf{x}) - f(\mathbf{x}_0)\|_Y} = \mathbf{0}_X$$
 equivale allora a provare che

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\|\mathbf{x} - \mathbf{x}_0\|_X \cdot \psi(\mathbf{x})}{\|f(\mathbf{x}) - f(\mathbf{x}_0)\|_Y} = \mathbf{0}_X.$$

Si osserva intanto che vale $\lim_{\mathbf{x}\to\mathbf{x}_0}\psi(\mathbf{x})=\mathbf{0}_X$.

Infatti, $\lim_{\mathbf{x}\to\mathbf{x}_0}\psi(\mathbf{x}) = \lim_{\mathbf{x}\to\mathbf{x}_0} (f'(\mathbf{x}_0))^{-1}(\varphi(\mathbf{x})) = \mathbf{0}_X$, in quanto $\lim_{\mathbf{x}\to\mathbf{x}_0}\varphi(\mathbf{x}) = \mathbf{0}_Y$ e $(f'(\mathbf{x}_0))^{-1}$ è lineare e continua essendo $f'(\mathbf{x}_0) \in \mathcal{O}(X,Y)$ per ipotesi.

In corrisponenza a $\varepsilon = 1$, sia allora $\delta > 0$ (si supponga tale che $B(\mathbf{x}_0, \delta) \subseteq A$, il che è lecito in quanto $\mathbf{x}_0 \in A$), dimodoché $\|\psi(\mathbf{x})\|_X < 1$ per ogni $\mathbf{x} \in B(\mathbf{x}_0, \delta) \setminus \{\mathbf{x}_0\}$.

Si consideri l'uguaglianza

 $\|\mathbf{x} - \mathbf{x}_0\|_X \cdot \psi(\mathbf{x}) = (f'(\mathbf{x}_0))^{-1} (f(\mathbf{x}) - f(\mathbf{x}_0)) - (\mathbf{x} - \mathbf{x}_0)$, che era stata ottenuta prima per ogni $\mathbf{x} \in A \setminus \{\mathbf{x}_0\}$, e dunque vale a maggior ragione per ogni $\mathbf{x} \in B(\mathbf{x}_0, \delta) \setminus \{\mathbf{x}_0\}$.

Per ogni $\mathbf{x} \in B(\mathbf{x}_0, \delta) \setminus \{\mathbf{x}_0\}$, si ricava che

$$\|\mathbf{x}-\mathbf{x}_0\|_X\cdot\|\psi(\mathbf{x})\|_X=ig\|ig(f'(\mathbf{x}_0)ig)^{-1}ig(f(\mathbf{x})-f(\mathbf{x}_0)ig)-(\mathbf{x}-\mathbf{x}_0)ig\|_X$$

Passando alla norma in X di entrambi i membri e applicando l'assoluta omogeneità al primo membro

$$\geq \left|\left\|\left(f'(\mathbf{x}_0)
ight)^{-1}\left(f(\mathbf{x})-f(\mathbf{x}_0)
ight)
ight\|_X - \|\mathbf{x}-\mathbf{x}_0\|_X
ight|$$

Seconda disuguaglianza triangolare delle norme

$$\|\mathbf{x} - \mathbf{x}_0\|_X - \left\| \left(f'(\mathbf{x}_0)
ight)^{-1} \left(f(\mathbf{x}) - f(\mathbf{x}_0)
ight)
ight\|_X$$

$$\implies \|\mathbf{x} - \mathbf{x}_0\|_X \cdot \left(1 - \|\psi(\mathbf{x})\|_X\right) \leq \left\|\left(f'(\mathbf{x}_0)\right)^{-1} \left(f(\mathbf{x}) - f(\mathbf{x}_0)\right)\right\|_X$$

Manipolando il primo e l'ultimo membro della catena di disuguaglianze appena ottenuta

$$\leq \big\| \big(f'(\mathbf{x}_0)\big)^{-1} \big\|_{\mathcal{L}(Y,X)} \cdot \|f(\mathbf{x}) - f(\mathbf{x}_0)\|_Y$$

Per la disuguaglianza fondamentale della norma $\|\cdot\|_{\mathcal{L}(Y,X)}$

$$\|\mathbf{x} - \mathbf{x}_0\|_X \cdot ig(1 - \|\psi(\mathbf{x})\|_Xig) \leq ig\|ig(f'(\mathbf{x}_0)ig)^{-1}ig\|_{\mathcal{L}(Y,X)} \cdot \|f(\mathbf{x}) - f(\mathbf{x}_0)\|_Y$$

$$\implies \frac{\|\mathbf{x} - \mathbf{x_0}\|_X \cdot \|\psi(\mathbf{x})\|_X}{\|f(\mathbf{x}) - f(\mathbf{x_0})\|_Y} \le \frac{\|\left(f'(\mathbf{x_0})\right)^{-1}\|_{\mathcal{L}(Y,X)} \cdot \|\psi(\mathbf{x})\|_X}{1 - \|\psi(\mathbf{x})\|_X}$$

Moltiplicando ambo i membri per $\|\psi(\mathbf{x})\|_X$, e dividendo ambo i membri per $\|f(\mathbf{x}) - f(\mathbf{x}_0)\|_Y$, strettamente positivo in quanto $\mathbf{x} \neq \mathbf{x}_0$ e f è un omeomorfismo, e per $1 - \|\psi(\mathbf{x})\|_X$, strettamente positivo in quanto $\mathbf{x} \in B(\mathbf{x}_0, \delta)$

Ciò significa in particolare che

$$\left\| \frac{\|\mathbf{x} - \mathbf{x_0}\|_X \cdot \psi(\mathbf{x})}{\|f(\mathbf{x}) - f(\mathbf{x_0})\|_Y} \right\|_X \le \frac{\left\| \left(f'(\mathbf{x_0}) \right)^{-1} \right\|_{\mathcal{L}(Y,X)} \cdot \|\psi(\mathbf{x})\|_X}{1 - \|\psi(\mathbf{x})\|_X} \text{ per ogni } \mathbf{x} \in B(\mathbf{x_0}, \delta) \setminus \{\mathbf{x_0}\}.$$

Poiché
$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\left\| \left(f'(\mathbf{x}_0) \right)^{-1} \right\|_{\mathcal{L}(Y,X)} \cdot \|\psi(\mathbf{x})\|_X}{1 - \|\psi(\mathbf{x})\|_X} = 0$$
, segue per confronto che

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\left|\left|\frac{\|\mathbf{x}-\mathbf{x}_0\|_X\cdot\psi(\mathbf{x})}{\|f(\mathbf{x})-f(\mathbf{x}_0)\|_Y}\right|\right|_X=0, \text{ ossia}$$

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\frac{\|\mathbf{x}-\mathbf{x}_0\|_X\cdot\psi(\mathbf{x})}{\|f(\mathbf{x})-f(\mathbf{x}_0)\|_Y}=\mathbf{0}_X \text{ , come si voleva provare.}$$