INFO-F408: Computability & complexity

Rémy Detobel

13 novembre, 2017

1 Cook-Leving

Rappel: SAT est NP-Complet.

Ce qui signifie que $A \in NP$ et \exists une machine de turing non déterministe N $\phi = \phi_{cell} \wedge \phi_{start} \wedge \phi_{accept} \wedge \phi_{move}$

1.1 Exemple

$$\delta(q_1, a) = \{(q_1, b, R)\}$$

Qui signifie que si on lit a sur le tape, on écrit b en q_1 et on se déplace vers la droite. On a donc ici une machine non déterministe, on a donc un set mais dans les faits ce set n'a qu'un seul élément il est donc déterministe.

$$\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}\$$

Si on lit b sur le tape, on peut soit écrite c sur q_2 et se déplacé vers la gauche ou aller à droite en écrivant a sur q_2 .

Tableaux:

$a q_1 b$	b b b
q_2 a c	c b b
Ce tableau est légal/valide	Ce tableau est légal/valide
# b a	a b a
# b a	a a a
Ce tableau est légal/valide	Ce tableau n'est pas valide
$\begin{bmatrix} a & q_1 & b \end{bmatrix}$	$a \mid q_1 \mid a$
q_2 a a	a b a
Ce tableau n'est pas valide	Ce tableau n'est pas valide

$$* = \bigvee_{a_1,a_2,\dots,a_6 \text{est une fenêtre légal}} \left(X_{i,j-1,a_1} \wedge X_{i,j,a_2} \wedge X_{i,j+1,a_3} \wedge X_{i+1,j,a_4} \wedge \dots \wedge X_{i+1,j+1,a_6} \right)$$

Si ϕ as une taille polynomial alors ϕ est satisfaisable $\Leftrightarrow w$ est accepté par N.

2 3-SAT

Forme normal conjonctive se note "CNF" en anglais. La formule de la FNC-4 s'écrit :

$$\bigwedge_{j} \left(l_{i_1,j} \vee l_{i_2,j} \vee l_{i_3,j} \right)$$

On appel donc ce qu'il y a dans le grand "ET" une clause et chaque élément de cette close s'appel un litéral et est soit une variable, soit une variable négative.

2.1 3 SAT est NP-Complet

- ϕ peut être écrit en FNC (seulement ϕ_{move} doit être transformé)
- Maintenant les clauses ne doivent pas avoir une taille de 3. Pourquoi faire ? Supposons une clause : $(a_1 \lor a_2 \lor ... \lor a_l)$

$$(a_1 \lor a_2 \lor Z_1) \land$$

$$(\bar{Z}_1 \lor a_3 \lor Z_2) \land$$

$$(\bar{Z}_2 \lor a_4 \lor Z_3) \land$$

$$\dots \land$$

$$(\bar{Z}_{l-3} \lor a_{l-1} \lor a_l)$$

Exemple $a_4 = T, a_{i \neq 4} = F$

$$(a_1 \lor a_2 \lor Z_1 = T) \land (\bar{Z}_1 \lor a_3 \lor Z_2 = T) \land (\bar{Z}_2 \lor a_4 = T \lor Z_3 = F) \land (\bar{Z}_3 \lor a_5 \lor Z_4 = F) \land (\bar{Z}_4...)$$

3 CLIQUE est NP-Complet

3.1 Vertex Cover

K-Vertex cover:

$$\phi = (X_1 \lor x_1 \lor x_2) \land (\bar{x_1} \lor \bar{x_2} \lor \bar{x_2}) \land (x_1 \lor x_2 \lor x_2)$$

Une solution est de mettre $x_1 = T$ et $x_2 = F$

4 Hamiltonian Path

Hamiltonian VS Eulerian Euler : "Bridge of Königsberg"

 $HamPath = \{ \langle G, S, t \rangle | G \text{ est un graph dirigé avec un chemin Hamiltonien de S a t} \}$

Théorème

Hamiltonian Path est NP-Complet

Pour une formule 3-FNC ϕ on peut construire G,s,t tel que ϕ est SAT Leftrightarrow G a un chemin Hamiltonien de S à t.

"Hard" direction : \exists Une chemin Hamiltonien $\Rightarrow \exists$ un assignement au problème de SAT.