

DISTANCE-BASED DIMENSIONALITY REDUCTION FOR BIG DATA

ADRIÀ CASANOVA LLOVERAS

Thesis supervisor

PEDRO DELICADO USEROS (Department of Statistics and Operations Research)

Thesis co-supervisor

CRISTIAN PACHÓN GARCIA (Department of Statistics and Operations Research)

Degree

Master's Degree in Data Science

Master's thesis

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Abstract

Dimensionality reduction aims to project a data set into a low-dimensional space. Many techniques have been proposed, most of them based on the inter-individual distance matrix. When the number of individuals is really large, the use of full distance matrices is prohibitive because of their quadratic memory complexity. There are algorithms that extend classical multidimensional scaling (a long-established dimensionality reduction method based on distances) to the big data setting. In this TFM, we adapt these algorithms to any generic distance-based dimensionality reduction method.

Contents

1	Intr	roduction, motivation, and objectives	4		
	1.1	Introduction	4		
	1.2	Motivation	4		
	1.3	Objectives	5		
2	Sta	te of the art	6		
	2.1	A few dimensionality reduction techniques	6		
		2.1.1 Non-classical MDS: the SMACOF algorithm	6		
		2.1.2 LMDS	6		
		2.1.3 Isomap			
		2.1.4 t-SNE			
	2.2	Multidimensional scaling for big data			
	2.3	Landmark Isomap and the out-of-core dimensionality reduction framework	8		
	2.4	openTSNE, an outstanding implementation of t-SNE	9		
9	C	aifaction and design of the colution	10		
3	-	ecification and design of the solution	10		
	3.1	Orthogonal Procrustes transformation	11		
4	Dev	velopment of the proposal	13		
	4.1	Python implementation of divide-and-conquer DR			
	4.2	Experiment's methodology and parameter tuning	13		
5	Exp	perimentation and evaluation of the proposal	15		
	5.1	Initial benchmark	15		
	5.2	No overhead in divide-and-conquer DR	16		
	5.3	Experiments on SMACOF	17		
		5.3.1 Swiss roll let's goooooo	17		
		5.3.2 MNIST time, COME. ON. !!!	17		
	5.4	LMDS now	18		
		5.4.1 Oh girl, LMDS is so bad on the swiss roll	18		
		5.4.2 What abou MNIST tough? WHAT ABOUT IT????	18		
	5.5	Isomap, the sionist swiss killer queen	19		
	5.6	Swiss roll	19		
		5.6.1 MNIST	19		
	5.7	t-SNE	19		
	5.8	Swiss roll o, com a mi m'agrada nombrar-lo, volteret suís	19		
		5.8.1 t-SNE MNIST-TSINM, daddy, daddy, oh -!- oooooooooo	19		
6	Ana	alysis of sustainability and ethical implications	20		
7	Cor	nclusions	22		
	7.1	Future work	22		
8	Anı	nexes	28		

1 Introduction, motivation, and objectives

1.1 Introduction

Dimensionality Reduction (DR) techniques embed high-dimensional datasets into signficantly lower-dimensional spaces while preserving the structure of the original data. Their primary goal is to tackle the common challenges of working with high-dimensional data, such as sparsity (caused by the curse of dimensionality) or large computational and storage costs. That being said, DR is mainly used for visualization purposes. In this setting, complex high-dimensional data is projected into \mathbb{R}^2 , making patterns and clusters more apparent.

Many DR methods have been proposed since principal component analysis (PCA) (being the standard linear method) was first introduced (Pearson, 1901), each with distinct approaches and objectives. In particular, non-linear techniques have turned out to be very useful thanks to their ability to preserve complex relationships. Some examples are classical multidimensional scaling (classical MDS) (Torgerson, 1952; Gower, 1966), local multidimensional scaling (local MDS) (Chen and Buja, 2009), Isomap (J. B. Tenenbaum, Silva, and Langford, 2000), t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton, 2008), uniform manifold approximation and projection (UMAP) (McInnes, Healy, and Melville, 2018) and autoencoders (Baldi and Hornik, 1989; Kramer, 1991). All these methods differ in how they define and maintain relationships between points, although most of them try to preserve global structure and local neighborhoods.

Despite their utility, DR methods face a few limitations. Many algorithms require computing and/or keeping in memory pairwise distances between all data points, resulting in quadratic time complexity and memory requirements. This becomes prohibitive for large datasets with millions of points. Parameter selection presents challenges too, since there is no general consensus on the best way to tune them nor how to measure the quality of an embedding with a validation set. The substantial time complexities of these algorithms makes k-fold cross-validation very costly as well. Finally, understanding which aspects of the data are preserved and which are distorted when reducing the dimensionality is crucial to correctly interpret the results.

1.2 Motivation

The recent advent of large data has led to new challenges and technologies to face them. When the number of observations of a dataset is very big, distance-based DR methods become computationally prohibitive because of their quadratic time and memory complexities. For example, working with a dataset of 100,000 individuals would require to keep a distance-matrix of 10 billion floating-point numbers in memory. If double precision is used, then the computer in use shall have at least 80 GB of RAM.

Recently, Delicado and Pachón-García (2024) studied existing and new modifications of classical MDS to tackle big datasets, demonstrating significant improvements in computational efficiency while maintaining embedding quality. Even though most of them could not be generalized to arbitrary DR techniques, two of them followed more common approaches: divide-and-conquer and recursion. These consist in partitioning the distance matrix into submatrices small enough for the system to keep in main memory. Then, classical MDS is applied to every partition independently and the resulting embeddings are aligned and merged with Procustes transformations. That being said, the recursive approach suffers from low-quality embeddings because it might divide the distance matrix

into too small partitions. Therefore, we were interested in generalizing the divide-and-conquer proposal to DR methods beyond classical MDS.

1.3 Objectives

The primary goal of this thesis is to propose a divide-and-conquer framework for any generic distance-based dimensionality reduction method that effectively decreases the method's time and memory complexities. Specifically, we aim to:

- 1. Review the literature to analyze the properties and applications of the most used DR techniques.
- 2. Develop a generalized framework for distance-based DR methods that leverages the divide-and-conquer strategy and the Procrustes transformation to reduce time and memory complexities.
- 3. Implement and parallelize the proposed framework for specific DR algorithms such as non-classical MDS, Local MDS, Isomap and t-SNE.
- 4. Empirically evaluate the performance of the adapted algorithms in terms of computational efficiency, size limitations and quality of embeddings on benchmark datasets of varying sizes.
- 5. Compare the results with the traditional counterpart of each tested DR method.
- 6. Provide guidelines and best practices for selecting and tuning the proposed DR methods based on dataset characteristics and desired properties of the embedding.

The successful completion of these objectives will contribute to making dimensionality reduction techniques accessible for very large datasets, democratizing their use across scientific and industrial applications where data scale is a present challenge.

2 State of the art

Many nonlinear DR techniques and big data solutions discovered in recent years have lead to our divide-and-conquer proposal. Hence, we shall first review them to understand the advances they have achieved. In section 2.1, our goal is to review four dimensionality reduction techniques that we will later apply our divide-and-conquer framework to. Next, in section 2.2, we will showcase in more detail the work of Delicado and Pachón-García (2024) with respect to classical MDS in big data to motivate our choosing of the divide-and-conquer approach. Finally, sections 2.3 and 2.4 offer a discussion about three more solutions to the big data problem in DR and how they relate to our proposal: landmark Isomap (Silva and J. Tenenbaum, 2002), the out-of-core dimensionality reduction framework (Reichmann, Hägele, and Weiskopf, 2024) and novel Python t-SNE implementations.

2.1 A few dimensionality reduction techniques

2.1.1 Non-classical MDS: the SMACOF algorithm

SMACOF (Scaling by MAjorizing a COmplicated Function) is a multidimensional scaling procedure that minimizes metric stress using a majorization technique (Joseph B. Kruskal, 1964b; Joseph B Kruskal, 1964a). Given the distance matrix $\mathbf{D}_{\mathbf{X}} = (\delta_{ij})$ of the original high-dimensional data and its corresponding low-dimensional distance matrix $\mathbf{D}_{\tilde{\mathbf{Y}}} = (d_{ij})$, metric stress determines how much different $\mathbf{D}_{\mathbf{X}}$ and $\mathbf{D}_{\tilde{\mathbf{Y}}}$ are by the expression

$$STRESS_{M}(\mathbf{D_{X}}, \mathbf{D_{\tilde{Y}}}) = \sqrt{\frac{\sum_{i < j} (\delta_{ij} - d_{ij})^{2}}{\sum_{i < j} \delta_{ij}^{2}}}.$$

SMACOF (see Algorithm 1) is faster for this problem than general optimization methods, such as gradient descent, and it consists on iterative Guttman transformations (Guttman, 1968) applied to the embedded data.

2.1.2 LMDS

Local multidimensional scaling (LMDS) is a variant of non-classical multidimensional scaling that differs in how large distances are treated (Chen and Buja, 2009). Specifically, a repulsive term between distant points is added to the stress function to further separate points in the low-dimensional configuration (see Algorithm 2). Parameters τ (which must be in the unit interval) and k may be tuned with k'-cross validation thanks to the LC (Local Continuity) meta-criteria (Chen and Buja, 2009). (POSSIBLE ANNEX)

2.1.3 Isomap

Isomap (J. B. Tenenbaum, Silva, and Langford, 2000) is a nonlinear technique that preserves geodesic distances between points in a manifold (see Algorithm 3). The key insight of Isomap is that large distances between objects are estimated from the shorter ones by the shortest path length. Then, shorter and estimated-larger distances have the same importance in a final classical MDS step.

The only tuning parameter of Isomap is the bandwidth, which can be interpreted as the limiting distance of nearest neighbors, ε , or the amount of nearest neighbors per point, k. However, there is no consensus on what is the best method to choose it.

Algorithm 1 SMACOF

Require: $\mathbf{D}_{\mathbf{X}} = (\delta_{ij})$, the $n \times n$ matrix of observed distances; q, the embedding's dimensionality; n_i the maximum number of iterations; and ε , the convergence threshold. **Ensure:** \mathbf{Y} , a configuration in a q-dimensional space.

- 1: Initialize at random $\tilde{\mathbf{Y}}^{(0)} \in \mathbb{R}^{n \times q}$
- $2: k \leftarrow 0$
- 3: repeat
- Compute the distance matrix of $\tilde{\mathbf{Y}}^{(k)}$, $\mathbf{D}_{\tilde{\mathbf{Y}}^{(k)}}$, with entries $d_{ij}^k = \|\tilde{y}_i^{(k)} \tilde{y}_j^{(k)}\|$ Compute the metric stress: $STRESS_M(\mathbf{D_X}, \mathbf{D_{\tilde{\mathbf{Y}}^{(k)}}})$
- 5:
- Compute the Guttman transform: $\tilde{\mathbf{Y}}^{(k+1)} = n^{-1}\mathbf{B}(\tilde{\mathbf{Y}}^{(k)})\tilde{\mathbf{Y}}^{(k)}$ where $\mathbf{B}(\tilde{\mathbf{Y}}^{(k)}) = (b_{ii}^k)$: 6:

$$b_{ij}^k = \begin{cases} -\delta_{ij}/d_{ij}^k & \text{if } i \neq j \text{ and } d_{ij}^k > 0\\ 0 & \text{if } i \neq j \text{ and } d_{ij}^k = 0\\ -\sum_{j \neq i} b_{ij}^k & \text{if } i = j \end{cases}$$

- $k \leftarrow k + 1$
- 8: until $k \ge n$ iter or $|STRESS_M(D_{\mathbf{X}}, \tilde{\mathbf{Y}}^{(k-1)}) STRESS_M(D_{\mathbf{X}}, \tilde{\mathbf{Y}}^{(k)})| < \varepsilon$
- 9: return $ilde{\mathbf{Y}}^{(k)}$

2.1.4 t-SNE

t-distributed stochastic neighbor embedding (t-SNE) is a nonlinear dimensionality reduction technique that preserves local neighborhoods by modeling similarities between points as conditional probabilities (Maaten and Hinton, 2008). The difference between these probability distributions in high and low-dimensional spaces is then minimized (see Algorithm 4).

t-SNE focuses on retaining the local structure of the data while ensuring that every point \mathbf{v}_i in the low-dimensional space will have the same number of neighbors, making it particularly effective for visualizing clusters. The use of the Student's t distribution with 1 degree of freedom (or Cauchy distribution) in the low-dimensional space addresses the crowding problem by allowing dissimilar points to be modeled far apart (Maaten and Hinton, 2008). The characteristic parameter of t-SNE is the perplexity, which can be interpreted as the average effective number of neighbors of the high-dimensional datapoints \mathbf{x}_i . Typical values are between 5 and 50.

2.2 Multidimensional scaling for big data

Delicado and Pachón-García (2024) compared four existing versions of MDS with two newly proposed (divide-and-conquer MDS and interpolation MDS) to handle large datasets. As can be seen in Figure 1, these can be grouped into four categories:

• Interpolation-based: landmark MDS, interpolation MDS and reduced MDS apply classical multidimensional scaling to a subset of $l \ll n$ points and then interpolate the projection of the remaining data. They differ in how the interpolation is computed: landmark MDS uses distance-based triangulation; interpolation MDS, the l-points Gower interpolation formula; and reduced MDS, the 1-point Gower interpolation formula.

Algorithm 2 LMDS

Require: $\mathbf{D}_{\mathbf{X}} = (\delta_{ij})$, the $n \times n$ matrix of observed distances; q, the embedding's dimensionality; k, the size of neighborhoods; and τ , the weight of the repulsive term.

Ensure: Y, a configuration in a q-dimensional space.

- 1: Compute the symmetrized k-NN graph of $\mathbf{D}_{\mathbf{X}}$, \mathcal{N}_{k} 2: Calculate $t = \frac{|\mathcal{N}_{k}|}{|\mathcal{N}_{k}^{C}|} \cdot \operatorname{median}_{\mathcal{N}_{k}}(\delta_{ij}) \cdot \tau$
- 3: Minimize the modified stress function:

$$\tilde{\mathbf{Y}} = \min_{\mathbf{Y} \in \mathbb{R}^{n \times q}} \sum_{(i,j) \in \mathcal{N}_k} \left(\delta_{ij} - \|\mathbf{y}_i - \mathbf{y}_j\| \right)^2 - t \sum_{(i,j) \notin \mathcal{N}_k} \|\mathbf{y}_i - \mathbf{y}_j\|$$

4: return $ilde{\mathbf{Y}}$

Algorithm 3 Isomap

Require: $\mathbf{D}_{\mathbf{X}}$, the $n \times n$ matrix of observed distances; q, the embedding's dimensionality; and ε , the limiting distance of nearest neighbors, or k, the amount of nearest neighbors per point.

Ensure: $\dot{\mathbf{Y}}$, a configuration in a q-dimensional space.

- 1: Find the graph \mathcal{N} given by the radius $\varepsilon > 0$ or the k-NN
- 2: Compute the distance matrix of \mathcal{N} , $\mathbf{D}_{\mathcal{N}}$
- 3: Apply classical MDS to $\mathbf{D}_{\mathcal{N}}$: $\mathbf{Y} = \mathrm{MDS}(\mathbf{D}_{\mathcal{N}}, q)$
- 4: return Y
 - Approximation-based: pivot MDS approximates the SVD of the full inner product matrix with the SVD of the inner product matrix between a subset of $l \ll n$ points and all the points in the dataset.
 - Divide-and-conquer: In divide-and-conquer MDS, the dataset is randomly partitioned into subsets of up to $l \ll n$ points into which MDS is independently applied. Then, the resulting embeddings are aligned with Procrustes transformations.
 - Recursive: fast MDS is similar in spirit to divide-and-conquer MDS, but it partitions the data recursively.

2.3Landmark Isomap and the out-of-core dimensionality reduction framework

Silva and J. Tenenbaum (2002) first introduced landmark MDS as a step in landmark Isomap, a variation of Isomap that reduced the time complexity from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2l)$, where $l \ll n$ is the amount of landmark points. Other big data versions of MDS can be used with Isomap similarly. Nonetheless, interpolation-based and approximation-based algorithms cannot be trivially generalized to other nonlinear dimensionality reduction methods because they depend on the eigendecomposition computed in classical MDS.

Later, Reichmann, Hägele, and Weiskopf (2024) proposed the out-of-core dimensionality reduction framework. Similar to interpolation MDS, this algorithm applies a DR method that produces a mapping between high- and low-dimensional spaces (i.e. PCA, MDS, t-SNE, UMAP, autoencoders) to a small subset of the data and then projects the

Algorithm 4 t-SNE

Require: $\mathbf{D}_{\mathbf{X}} = (\delta_{ij})$, the $n \times n$ matrix of observed distances; q, the embedding's dimensionality; Perp, the perplexity.

Ensure: \mathbf{Y} , a configuration in a q-dimensional space.

1: For every point \mathbf{x}_i , find $\sigma_i > 0$ so that the conditional probability ditribution

$$p_{j|i} = \frac{\exp(-\delta_{ij}^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\delta_{ik}^2/2\sigma_i^2)} \text{ if } i \neq j, \, p_{i|i} = 0$$

has perplexity $Perp = 2^{-\sum_{j} p_{j|i} \log_2 p_{j|i}}$

- 2: Symmetrize conditional distributions: $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$ 3: Consider Cauchy-distributed joint probabilities for the low-dimensional data \mathbf{y}_i :

$$q_{ij} = \frac{(1 + ||y_i - y_j||^2)^{-1}}{\sum_{h \neq k} (1 + ||y_h - y_k||^2)^{-1}}$$

4: Minimize the sum of Kullback-Leibler divergences between the joint distributions over all datapoints:

$$\tilde{\mathbf{Y}} = \min_{\mathbf{Y} \in \mathbb{R}^{n \times q}} \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

5: return Y

remaining datapoints in blocks. In order to obtain the aforementioned mappings, Reichmann, Hägele, and Weiskopf (2024) gathered a different projection mechanism for every method. PCA and autoencoders learn a parametric mapping between the original data and the embedding, so projecting new points is straightforward. For non-classical MDS, stress is minimized for a single point while keeping others fixed, a process known as single scaling in the literature (Basalaj, 1999). A similar strategy is used for t-SNE (Zhang et al., 2021) and UMAP (McInnes, Healy, and Melville, 2018), which leverage the k-NN of the projecting point to initialize the optimizer.

2.4 openTSNE, an outstanding implementation of t-SNE

Maybe because of its popularity, t-SNE has been optimized for large data environments in Python through iterative implementations. P. G. Poličar, Stražar, and Zupan (2024) considered many of them and published openTSNE, a package that includes several t-SNE extensions "to address scalability issues and the quality of the resulting visualizations". Furthermore, they compared their proposal with those of other popular packages in serial and parallel configurations. In Figure 2 it can be seen that, thanks to these advances, the challenges of big data have already been solved in the specific case of t-SNE.

(POSSIBLE ANNEX)

Figure 1: Schematic representation of the six MDS algorithms for big data described in Delicado and Pachón-García, 2024 (Source: original publication).

3 Specification and design of the solution

Our solution to the problem of applying dimensionality reduction techniques to large datasets consists in dividing the data into partitions small enough for the computer to process and then merge their embeddings. As stated earlier, we follow the same approach as Delicado and Pachón-García (2024). By means of an efficient alignment procedure named *Procustes transformation*, we manage to orient every embedding to a specific alignment, with the goal that the final embedding will be coherent. Therefore, even though partitioning the data might induce errors in the embedding's structure, our approach allows any system to tackle arbitrarily large datasets and leverage parallelization.

In order to preserve the topology of the partition's embedding, we narrow Procustes transformations to rigid motions; that is, rotations and reflections. Moreover, we diminish the overhead computation of merging the embeddings by computing the transformation matrix with only a few datapoints. Specifically, if partitions have l (or l-1) points, we sample c < l from the first partition and stack them temporarily to every other partition. Later, we embed the first partition and extract the result of the c sampled points, $\tilde{\mathbf{Y}}_{\mathcal{C}}$. Afterward, for every remaining partition, we project the stacked data with the chosen DR method and separate the c points corresponding to the first partition, $\tilde{\mathbf{Y}}_{\mathcal{C}}^{(i)}$, from those of the current partition, $\tilde{\mathbf{Y}}_{c}^{(i)}$ and apply it to the larger matrix $\tilde{\mathbf{Y}}_{i}$, all without needing to process two full partitions.

For a more detailed specification of our solution, see Algorithm 5, which depicts the divide-and-conquer dimensionality reduction algorithm, and section 3.1, which shows how the Procrustes transformation can be obtained.

Figure 2: Benchmark of the best open-source t-SNE Python implementations by P. Poličar, 2023 (Source: original webpage).

3.1 Orthogonal Procrustes transformation

Our problem of aligning the partitions' embeddings is known in the literature as the *Procustes problem* (Borg and Groenen, 2005). Depending on the kind of fitting desired, many solutions can be found. For example, orthogonal transformations consist of rotations and reflections, but one may also desire dilations and shifts. In fact, the transformation could be any linear distortion.

That being said, in order to preserve the structure of every partitions' embedding, we considered best to narrow the problem down to rigid motions, or in other words, rotations and reflections. Now, let $\mathbf{A} \in \mathbb{R}^{c \times q}$ be the target configuration ($\tilde{\mathbf{Y}}_{\mathcal{C}}$ in Algorithm 5) and $\mathbf{B} \in \mathbb{R}^{c \times q}$ the corresponding testee ($\tilde{\mathbf{Y}}_{\mathcal{C}}^{(i)}$ in Algorithm 5). We wish to fit \mathbf{B} to \mathbf{A} by rigid motions. That is, we want to find the best orthogonal matrix \mathbf{T} such that $\mathbf{A} \simeq \mathbf{B}\mathbf{T}$.

To measure the \simeq relation, we may use the sum-of-squares criterion L. Then, the transformation \mathbf{T} should be chosen to minimize L. Expressed in matrix notation, our problem is

$$\min_{\mathbf{T} \in O(q)} L(\mathbf{T}) = \min_{\mathbf{T} \in O(q)} \operatorname{tr}(\mathbf{A} - \mathbf{B}\mathbf{T})(\mathbf{A} - \mathbf{B}\mathbf{T})',$$

where O(q) is the orthogonal group in dimension q.

 $(POSSIBLE\ ANNEX)$

By expanding the expression of $L(\mathbf{T})$ and applying a lower bound inequality on traces derived by Kristof, 1970, Borg and Groenen, 2005 found a global solution to the minimization problem. Let $\mathbf{U}\Sigma\mathbf{V}'$ be the singular value decomposition of $\mathbf{A}'\mathbf{B}$, where $\mathbf{U}'\mathbf{U} = \mathbf{I}, \mathbf{V}'\mathbf{V} = \mathbf{I}$, and Σ is the diagonal matrix with the singular values. Then, $L(\mathbf{T})$ is minimal if

$$VU'$$
.

Therefore, the Procrustes procedure we used would be as follows:

Algorithm 5 Divide-and-conquer dimensionality reduction

Require: $\mathbf{X} \in \mathbb{R}^{n \times p}$, the high-dimensional data; \mathcal{M} , the DR method; l, the partition size; c, the amount of connecting points; q, the embedding's dimensionality; and arg, \mathcal{M} 's specific parameters.

Ensure: $\tilde{\mathbf{Y}}$, a configuration in a q-dimensional space.

- 1: if $n \leq l$ then
- 2: **return** $\mathcal{M}(\mathbf{X}, q, arg)$
- 3: end if
- 4: Partition data into k subsets: $\mathcal{P} = \{\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_k\}$ where $|\mathcal{P}_i| \leq l$ for all i
- 5: Sample c connecting points from \mathcal{P}_1 : $\mathcal{C} \subset \mathcal{P}_1$ with $|\mathcal{C}| = c$
- 6: Apply DR method to first partition: $\tilde{\mathbf{Y}}_1 = \mathcal{M}(\mathbf{X}_{\mathcal{P}_1}, q, arg)$
- 7: Extract embedding of C: $\tilde{\mathbf{Y}}_{\mathcal{C}} = \tilde{\mathbf{Y}}_{1}[C,:]$
- 8: **for** i = 2 to k **do**
- 9: Stack connecting points to current partition: $\mathbf{X}_{\text{stack}} = [\mathbf{X}_{\mathcal{C}}; \mathbf{X}_{\mathcal{P}_i}]$
- 10: Project stacked data: $\tilde{\mathbf{Y}}_{\text{stack}} = \mathcal{M}(\mathbf{X}_{\text{stack}}, q, arg)$
- 11: Separate embedding of $\mathbf{X}_{\mathcal{C}}$: $\tilde{\mathbf{Y}}_{\mathcal{C}}^{(i)} = \tilde{\mathbf{Y}}_{\text{stack}}[1:c,:]$ and $\tilde{\mathbf{Y}}_i = \tilde{\mathbf{Y}}_{\text{stack}}[(c+1):,:]$
- 12: Align projection using Procrustes: $\tilde{\mathbf{Y}}_i = \text{Procrustes}(\tilde{\mathbf{Y}}_{\mathcal{C}}, \tilde{\mathbf{Y}}_{\mathcal{C}}^{(i)}, \tilde{\mathbf{Y}}_i)$
- 13: end for
- 14: Combine all projections: $\tilde{\mathbf{Y}}' = [\tilde{\mathbf{Y}}_1; \tilde{\mathbf{Y}}_2; \dots; \tilde{\mathbf{Y}}_k]$
- 15: Reorder rows to match original ordering: $\tilde{\mathbf{Y}}' = \tilde{\mathbf{Y}}'[\text{order},:]$
- 16: Apply PCA to center and rotate for maximum variance: $\tilde{\mathbf{Y}} = \text{PCA}(\tilde{\mathbf{Y}}', q)$
- 17: return $\tilde{\mathbf{Y}}$

Algorithm 6 Procrustes procedure

Require: $\mathbf{A} \in \mathbb{R}^{c \times q}$, the target matrix; $\mathbf{B} \in \mathbb{R}^{c \times q}$, the testee matrix; and $\mathbf{C} \in \mathbb{R}^{m \times q}$, the matrix to transform.

Ensure: C', the matrix C after alignment.

- 1: Multiply $\mathbf{M} = \mathbf{A}'\mathbf{B}$
- 2: Compute singular value decomposition: $\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}' = \text{SVD}(\mathbf{M})$
- 3: Construct orthogonal matrix: T = VU'
- 4: Align C: C' = CT
- 5: return C'

4 Development of the proposal

4.1 Python implementation of divide-and-conquer DR

Given that R and Python are the standard programming languages in the data science field, we chose them as appropriate to implement the divide-and-conquer DR algorithm. Initially, we aimed to develop and publish an R library because the thesis directors already had experience with the language. However, after reviewing the literature on DR for big data, we realized that many solutions were implemented in Python instead (Reichmann, Hägele, and Weiskopf, 2024). So, in order to leverage the existing coding ecosystem, we switched to Python. From that moment onward, we documented the code development on an open-source GitHub repository (https://github.com/airdac/TFM_Adria). This system allowed us to easily update and share our implementations and experiments.

With time, the Pyhton functions and classes we have written in different modules have become structured in a directory tree, hence taking the form of a package. Even though our project has not been published in any Python package index yet, it effectively works as a library. The main function is divide_conquer, which implements Algorithm 5 in parallel through the concurrent.futures module. divide_conquer also depends on private methods and requires a DRMethod object as one of its arguments. This class, inherited from enum.Enum, lists the supported DR methods in our package, which can be called through the get_method_function method.

We have implemented and tested four DR algorithms: SMACOF, LMDS, Isomap and t-SNE. All but LMDS are wrappers to methods coded in other efficient and parallelized Python libraries. Specifically, we used the sklearn.manifold module (Pedregosa et al., 2011) for Isomap and SMACOF and openTSNE (P. Poličar, 2023) for t-SNE. LMDS, on the other hand, is a less popular method and, up to our knowledge, it has no public Python implementation at the moment. However, the R library smacofx (Leeuw and Mair, 2009) does, so we translated it to Python with the help of the scipy.spatial.distance and sklearn.neighbors modules. This also allowed us to optimize the LMDS runtime with the numba just-in-time compiler (Lam, Pitrou, and Seibert, 2015; Aycock, 2003).

As shown in section 5, our implementation does not add a significant computation overhead when compared to standard DR techniques. In fact, divide-and-conquer DR leverages parallelization and provides a significant speed up to standard DR methods. Most DR techniques have quadratic time complexity (Joseph B. Kruskal, 1964b; Joseph B Kruskal, 1964a; Chen and Buja, 2009; Maaten and Hinton, 2008), except for Isomap, whose computation time is $\mathcal{O}(n^2\log(n))$ (J. B. Tenenbaum, Silva, and Langford, 2000). Meanwhile, divide-and-conquer DR applies a DR method on n/l partitions of l individuals, resulting in linear time complexity: $\mathcal{O}(nl)$ in general and $\mathcal{O}(nl\log(l))$ for Isomap. The only exception is t-SNE, given that it has been thouroughly optimized in the openTSNE library (P. G. Poličar, Stražar, and Zupan, 2024). Finally, since we only keep in memory the inter-individual distance matrix of the partitions being embedded at each moment, our DR framework reduces space complexity from $\mathcal{O}(n^2)$ to $\mathcal{O}(l^2)$.

4.2 Experiment's methodology and parameter tuning

Once our framework was developed and we had implemented a few DR methods to test it, we run a series of experiments on the numerical EMNIST (Cohen et al., 2017) and the swiss roll (J. B. Tenenbaum, Silva, and Langford, 2000) datasets. We downloaded the EMNIST dataset from the NIST webpage (Standards and Technology, 2024) and

generated points in the swiss roll manifold with the sklearn.datasets.make_swiss_roll function (Pedregosa et al., 2011). All these experiments were executed, logged, plotted and dicussed on Jupyter notebooks (Kluyver et al., 2016) with the Python packages numpy (Harris et al., 2020), pandas (McKinney, 2010), matplotlib.pyplot (Hunter, 2007), os, time, sys, shutil, logging and warnings. Furthemore, results were serialized with the pickle module in final tests.

The general experimental methodology we used consisted in a series of steps. Given that working with big datasets is costly, we randomly sampled a subset of 1000 points and embedded them into \mathbb{R}^2 with a traditional DR technique. To distinguish it from its divide-and-conquer variation, we called it a *bare* technique. Then, before increasing the size of the dataset, we tuned the parameters of the method by applying it to the same dataset with different combinations of the parameters' values. We measured their runtime and qualitatively assessed the embeddings' plots. Our goal was to find parameter values that provided a good trade-off between speed and preserving the structure of the data. In section 5 we enter in more detail on the qualitative assessment of embeddings.

Once parameters were tuned with a small enough subset of the data for our system to handle, we applied divide-and-conquer DR to larger datasets with partitions of l=1000 points. In comparison, when we applied the *bare* techniques to big datasets, execution would crash because of a lack of main memory. Hence, as shown in section 5, we managed to extend the functionality of DR techniques to arbitrarily large datasets.

The numerical EMNIST dataset consisted of 345035 images represented in \mathbb{R}^{784} . On the other hand, the swiss roll dataset was sampled from a bidimensional object in \mathbb{R}^3 . In order to measure the time complexity of divide-and-conquer DR, we randomly generated datasets with sizes ranging between 10^3 and 10^8 points. A good embedding of the swiss roll into \mathbb{R}^2 should intuitively be a rectangle, as if the swiss roll were unfolded. In numerical EMNIST, we would like to obtain 10 clearly distinct clusters that would separate all digits.

5 Experimentation and evaluation of the proposal

- plot_benchmark.ipynb
- dc_bottlenecks.ipynb
- SMACOF/SMACOF_examples.ipynb
- LMDS/LMDS_examples.ipynb
- (maybe) LMDS/plots/
- Isomap/Isomap_examples.ipynb
- (maybe) old_figures/ and results/ for Isomap and LMDS
- t-SNE/tSNE_examples.ipynb

We first showcase a benchmark on the swiss roll dataset with different sizes. The goal is to show time complexity is linear.

5.1 Initial benchmark

Our main development computer was a Macbook Pro (14-inc, Nov 2023) with 16 GB of RAM and the Apple M3 chip. However, we noticed that the concurrent futures module used for parallelizaiton does not work in Mac computers with ARM chipsets, so we used a Windows system in tests if not said otherwise. Specifically, our PC was an Asus ROG G513QM-HF026 laptop with the AMD Ryzen 7 5800H CPU, 16 GB of DDR4-3200MHz RAM, an SSD M.2 NVMe PCIe 3.0 secondary memory and an NVIDIA RTX 3060 GPU.

We tested divide-and-conquer Isomap on the swiss roll dataset with different parameter combinations and compared parallel execution against serial. The number of connecting points for the Procrustes transformation is 100. We chose this number in all tests because, based on the thesis director's experience on big data MDS (Delicado and Pachón-García, 2024), it guaranteed good links between partitions' embeddings and efficient computations. Figure 3 shows the average runtime of 20 experiments for every set of parameters and dataset size. Parameters were previously chosen to ensure embeddings that preserve the structure of the data as described in section 4.2 applying bare Isomap to swiss rolls of 1,000, 3,162 and 10,000 points, following a logarithmic sequence. Notice that the number of neighbors increases with the size of the dataset, since it becomes more dense when adding points. We performed more tests with l=3162 and 10 neighbors because the obtained embedding was very good (see Figure 4) and time was significantly lower than with l=10,000 and 15 neighbors. Color represents the angle of rotation of the rollito suizo.

In Figure 3, we can see how divide-and-conquer Isomap can effectively handle arbitrary large datasets in a standard computer (up to 10^8 points in about 3 hours). It is efficient too, since, to give an example, it can embed a 1 million points swiss roll into \mathbb{R}^2 in about two minutes. We can also observe that parallelization decreases the time complexity of divide-and-conquer Isomap significantly. Overall, the experiment shows a linear time complexity os divide-and-conquer Isomap.

Next, we performed the same test on t-SNE (see Figure 5). However, t-SNE was way slower on this dataset, so we only tested divide-and-conquer t-SNE with one parameter

Time complexity of D&C Isomap on Windows with respect to the number of points of the swiss roll dataset

Figure 3: Isomap benchmark.

combination, c = 100, l = 1,000, Perp = 30, $n_iter = 250$, where n_iter is the number of iterations in the minimization of the Kullback-Leibler divergence in the t-SNE algorithm.

Even though divide-and-conquer t-SNE is about two orders of magnitude (100x) slower than divide-and-conquer Isomap, complexity is again linear, proving the expected results.

5.2 No overhead in divide-and-conquer DR

Yeah, like Table 1 shows that with a 5000 points subset of numerical EMNIST, dividing the dataset and merging adds a minimal overhead to Algorithm 5. Specifically, in this test, the overhead per partition was 10,000 times faster than the embedding procedure.

Operation	Divide	Project	Merge
Duration (s)	6.88×10^{-3}	37.88	7.47×10^{-4}

Table 1: Execution time (in seconds) for each step of the divide-and-conquer algorithm on a 5000-point subset of numerical EMNIST.

plots, system=Windows, parallel=True dataset=swiss_roll, n=100000000, l=3162 c_points=100, method=Isomap, n_neighbors=10 Run 1/1

Figure 4: Isomap huge.

5.3 Experiments on SMACOF

5.3.1 Swiss roll let's goooooo

SMACOF is not able to unfold a 3000 points swiss roll. This is what we can extract from Figure 6. With 10,000 points, bare SMACOF crashed. But with 7,500 points the same as with 3000 points happens (see Figure 7)

To conclude, even though the SMACOF algorithm is not capable to properly embedd the swiss roll, we can see a clear advantage in using it with our divide-and-conquer approach. Indeed, divide-and-conquer is about 22x faster than the bare method and the embedding obtained is very similar for all number of datapoints. The only visual differences are noisier edges and wider shapes in the divide-and-conquer embedding.

Finally, bare SMACOF is not capable of embedding a 10000 points swiss roll on a system with 16 GB of RAM and takes about 17 min to embed a swiss roll of 75000 points. On the other hand, divide-and-conquer can easily and performantly handle larger datasets.

5.3.2 MNIST time, COME. ON. !!!

After trying to run bare SMACOF on the whole partition 1 (with 172518 images) for 12 min, we stopped its execution because no message was being printed (which might mean that the Kernel would eventually crash). Next, we try with a subpartition of 5000 images, since that worked properly with the swiss roll. We tried a few parameter combinations and

Time complexity of D&C Isomap and t-SNE on Windows with respect to the number of points of the swiss roll dataset

Figure 5: t-SNE benchmark.

obtained the best for ... Figure 8 shows it is not bad, although 4, 7 and 9 are expectedly mixed. 5 could also be confused by 2 and 8 and viceversa. All normal here, their shapes are indeed similar.

Maybe I should talk about dimension correlation between SMACOF and divide-and-conquer SMACOF. The point of this is the framework, not the DR method, you know? Merda, i falta el temps.

5.4 LMDS now

5.4.1 Oh girl, LMDS is so bad on the swiss roll...

Consider a swiss roll of 1,000 points. Well, LMDS makes trash out of it. Figure 9.

5.4.2 What abou MNIST tough? WHAT ABOUT IT???

Same 5000 points numeric EMNIST subset, mate. Oh, but this is very bad... Like, worse than SMACOF HAHAHAHAHA.

Parla del temps i la correlació dimensionaaaaaaal.

Bare vs D&C SMACOF on a 3000 points swiss roll

Figure 6: SMACOF vs 3000 swiss roll muahahahaha.

5.5 Isomap, the sionist swiss killer queen

5.6 Swiss roll

Aaaaah... I don't have the same here. Gotta get those damn plots. Well we've seen this before, in the initial benchmark. Just go see Figure 4.

5.6.1 MNIST

There you go, Figure 11. It's just so bad HAHAHAHAHAH I can't handle this anymore.

5.7 t-SNE

5.8 Swiss roll o, com a mi m'agrada nombrar-lo, volteret suís

t-SNE is specially useful for visualization, so we will focus on numerical EMNIST. Nonetheless, here's the swiss roll. Figure 12.

5.8.1 t-SNE MNIST-TSINM, daddy, daddy, oh -!- ooooooooooh

AAAAAAAA bé, l'original no només és millor; també és més ràpid! Va, mira què passa quan busquem una combinació de paràmetres pel t-SNE que funcioni bé amb 1000 dibuixets de números. Figure 14. Però és que mira el bare hahahahahah Figure 15.

Conclusió: no hem guanyat aquesta batalla perquè la competència és un F1 i el nostre és un turisme. Però oi que no t'emportaries un F1 a la muntanya? Aaaaah-mic!

I ja estaria, xd. Anem bé de pàgines, béeeeeeeee.

Bare vs D&C SMACOF on a 7500 points swiss roll

Figure 7: SMACOF vs 7500 swiss roll muahahahaha.

SMACOF's embedding of 5000 points MNIST subset Bivariate density estimation per digit and method after Procrustes transformation. Contour lines at 70%

Figure 8: SMACOF vs 5000 MNIST. kde rocks.

6 Analysis of sustainability and ethical implications

DESCRIPTION OF THIS SECTION FROM THE REGULATION:

It must include an analysis of the impact of the following gender-related technical aspects:

- issues related to data management and analysis
- issues related to equity, where possible biases are identified and assessed both in the data and in the processes carried out in relation to data management and analysis
- actions carried out to eliminate or mitigate such biases

ACTUAL CONTENT:

• D&C can be used in normal computers, while traditional DR methods require supercomputers to work on big datasets. Hence, we will reduce computing emissions.

Figure 9: LMDS devorant rollito de suís sionista, 1954.

• Maybe (it needs testing) DR methods could emphasize biases in the data. This happens because when projecting only a few coordinates, small clusters could be left behind in the remaining not projected coordinates and do not show in the final embedding. Hence, in theory, small communities could become invisible.

Local MDS's embedding of 5000 points MNIST subset Bivariate density estimation per digit and method after Procrustes transformation. Contour lines at 70%

Figure 10: L'LMDS es menja el 4.

Isomap's embedding of 5000 points MNIST subset Bivariate density estimation per digit and method after Procrustes transformation Contour lines at 70%

Figure 11: Isomap, babyyyyyy.

7 Conclusions

Està molt bé.

7.1 Future work

Crear un paquet de Python.

Comparar amb Reichmann, Hägele, and Weiskopf (2024).

Investigar perquè LMDS falla a l'Isomap.

Fer més experiments per veure com afecta c al rendiment i la qualitat. Aplicar a més datasets.

Swiss roll of 1000 points Embedding with perplexity=30, n iter=5000, learning rate=10

Figure 12: t-SNE on the rollet suís, germà.

References

Aycock, John (2003). "A brief history of just-in-time". In: *ACM Comput. Surv.* 35.2, pp. 97–113. DOI: 10.1145/857076.857077.

Baldi, Pierre and Kurt Hornik (1989). "Neural networks and principal component analysis: Learning from examples without local minima". In: *Neural Networks* 2.1, pp. 53–58. DOI: 10.1016/0893-6080(89)90014-2.

Basalaj, Wojciech (1999). "Incremental multidimensional scaling method for database visualization". In: *Visual Data Exploration and Analysis VI*. Ed. by Robert F. Erbacher, Philip C. Chen, and Craig M. Wittenbrink. Vol. 3643. International Society for Optics and Photonics. SPIE, pp. 149–158. DOI: 10.1117/12.342830.

Borg, I. and P. Groenen (2005). *Modern Multidimensional Scaling. Theory and Applications*. Springer. ISBN: 978-0-387-25150-9.

Chen, Lisha and Andreas Buja (2009). "Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Drawing, and Proximity Analysis". In: *Journal of the American Statistical Association* 104.485, pp. 209–219. DOI: 10.1198/jasa.2009.0111.

tSNE's embedding of 5000 points MNIST subset Bivariate density estimation per digit and method after Procrustes transformation. Contour lines at 70%

Figure 13: t-SNE on the numerets, germà gran.

Cohen, Gregory, Saeed Afshar, Jonathan Tapson, and André van Schaik (2017). "EMNIST. Extending MNIST to handwritten letters". In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 2921–2926. DOI: 10.1109/IJCNN. 2017.7966217.

Delicado, Pedro and Cristian Pachón-García (2024). "Multidimensional scaling for big data". In: Advances in Data Analysis and Classification. DOI: 10.1007/s11634-024-00591-9.

Gower, John C (1966). "Some distance properties of latent root and vector methods used in multivariate analysis". In: *Biometrika* 53.3-4, pp. 325–338. DOI: 10.1093/biomet/53.3-4.325.

Guttman, Louis (1968). "A General Nonmetric Technique for Finding the Smallest Coordinate Space for a Configuration of Points". In: *Psychometrika* 33.4, pp. 469–506. DOI: 10.1007/BF02290164.

Harris, Charles R., K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant (2020). "Array programming with NumPy". In: Nature 585.7825, pp. 357–362. DOI: 10.1038/s41586-020-2649-2.

Hunter, J. D. (2007). "Matplotlib. A 2D graphics environment". In: Computing in Science & Engineering 9.3, pp. 90–95. DOI: 10.1109/MCSE.2007.55.

Kluyver, Thomas, Benjain Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing, and Jupyter Development Team (2016). "Jupyter Notebooks—a publishing format for reproducible computational workflows". In: *IOS Press.* IOS Press, pp. 87–90. DOI: 10.3233/978-1-61499-649-1-87.

Kramer, Mark A. (1991). "Nonlinear principal component analysis using autoassociative neural networks". In: *AIChE Journal* 37.2, pp. 233–243. DOI: 10.1002/aic. 690370209.

D&C t-SNE on the 345035-points numeric training dataset of MNIST Bivariate density estimation per digit I=1000, c_points=100, runtime: 25796.18 s. Contour lines at 70%

Figure 14: t-SNE on the tots numerets, germà gran, i dividint i conquerint!

Kristof, Walter (1970). "A theorem on the trace of certain matrix products and some applications". In: *Journal of Mathematical Psychology* 7.3, pp. 515–530. DOI: 10.1016/0022-2496(70)90037-4.

Kruskal, Joseph B (1964a). "Nonmetric multidimensional scaling. A numerical method". In: *Psychometrika* 29.2, pp. 115–129. DOI: 10.1007/BF02289694.

— (1964b). "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis". In: *Psychometrika* 29.1, pp. 1–27. DOI: 10.1007/BF02289565.

Lam, Siu Kwan, Antoine Pitrou, and Stanley Seibert (2015). "Numba. A llvm-based python jit compiler". In: *Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC*. Association for Computing Machinery, pp. 1–6. ISBN: 978-1-4503-4005-2. DOI: 10.1145/2833157.2833162.

Leeuw, Jan de and Patrick Mair (2009). "Multidimensional Scaling Using Majorization. SMACOF in R". In: *Journal of Statistical Software* 31.3, pp. 1–30. DOI: 10.18637/jss.v031.i03.

Maaten, Laurens van der and Geoffrey Hinton (2008). "Visualizing Data using t-SNE". In: Journal of Machine Learning Research 9.86, pp. 2579–2605.

Bare t-SNE on the 345035-points numeric training dataset of MNIST Bivariate density estimation per digit I=1000, c_points=100, runtime: 178.94 s. Contour lines at 70%

Figure 15: t-SNE on the tots numerets, germà gran, openTSNE!

McInnes, L., J. Healy, and J. Melville (2018). "UMAP. Uniform Manifold Approximation and Projection for Dimension Reduction". ArXiv e-prints. URL: https://doi.org/10.48550/arXiv.1802.03426.

McKinney, Wes (2010). "Data Structures for Statistical Computing in Python". In: *Proceedings of the 9th Python in Science Conference*. Ed. by Stéfan van der Walt and Jarrod Millman. SciPy, pp. 56–61. DOI: 10.25080/Majora-92bf1922-00a.

Pearson, Karl (1901). "LIII. On lines and planes of closest fit to systems of points in space". In: *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science* 2.11, pp. 559–572. DOI: 10.1080/14786440109462720.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. (2011). "Scikit-learn. Machine learning in Python". In: *Journal of machine learning research* 12.Oct, pp. 2825–2830.

Poličar, Pavlin (2023). openTSNE. Extensible, parallel implementations of t-SNE. Version 1.0.2. URL: https://opentsne.readthedocs.io/en/stable/benchmarks.html.

- Poličar, Pavlin G., Martin Stražar, and Blaž Zupan (2024). "openTSNE. A Modular Python Library for t-SNE Dimensionality Reduction and Embedding". In: *Journal of Statistical Software* 109.3, pp. 1–30. DOI: 10.18637/jss.v109.i03.
- Reichmann, Luca, David Hägele, and Daniel Weiskopf (2024). "Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample Extensions". In: 2024 IEEE 14th Symposium on Large Data Analysis and Visualization (LDAV). Institute of Electrical and Electronics Engineers, pp. 43–53. ISBN: 979-8-3315-1692-5. DOI: 10.1109/LDAV64567.2024.00008.
- Silva, Vin and Joshua Tenenbaum (2002). "Global Versus Local Methods in Nonlinear Dimensionality Reduction". In: *Advances in Neural Information Processing Systems*. Ed. by S. Becker, S. Thrun, and K. Obermayer. Vol. 15. MIT Press.
- Standards, National Institute of and Technology (2024). The EMNIST dataset. URL: ht tps://www.nist.gov/itl/products-and-services/emnist-dataset (visited on 05/30/2025).
- Tenenbaum, Joshua B., Vin de Silva, and John C. Langford (2000). "A Global Geometric Framework for Nonlinear Dimensionality Reduction". In: *Science* 290.5500, pp. 2319–2323. DOI: 10.1126/science.290.5500.2319.
- Torgerson, Warren S. (1952). "Multidimensional scaling. I. Theory and method". In: *Psychometrika* 17.4, pp. 401–419. DOI: 10.1007/BF02288916.
- Zhang, Haili, Pu Wang, Xuejin Gao, Yongsheng Qi, and Huihui Gao (2021). "Out-of-sample data visualization using bi-kernel t-SNE". In: *Information Visualization* 20.1, pp. 20–34. DOI: 10.1177/1473871620978209.

8 Annexes