Основные понятия реляционных баз данных

Лекция 2

Реляционная модель данных (РМД) некоторой предметной области представляет собой набор отношений, изменяющихся во времени.

Основные понятия реляционных баз данных:

Элемент реляционной модели	Форма представления
Отношение	Таблица
Заголовок (схема) отношения	Заголовок таблицы
Кортеж	Строка таблицы
Сущность	Описание свойств объекта
Атрибут	Заголовок столбца таблицы
Домен	Множество допустимых значений атрибута
Значение атрибута	Значение поля в записи
Первичный ключ	Один или несколько атрибутов
Тип данных	Тип значений элементов таблицы

Отношение

Отношение представляет собой двумерную таблицу, содержащую некоторые данные.

В шапке таблицы записана схема отношения.

В строках записаны кортежи отношения.

Имена столбцов данной таблицы соответствуют именам атрибутов.

- 1. Все строки таблицы должны быть различными, т.е. не может быть двух строк с одинаковыми значениями.
- 2. Имена столбцов таблицы должны быть различными.
- 3. В каждой ячейке таблицы должно быть записано только одно значение из домена, соответствующего столбцу.
- 4. Все строки одной таблицы должны иметь одинаковую структуру, соответствующую шапке таблицы.
- 5. Порядок размещения строк в таблице может быть произвольным

Сущность

Сущность есть объект любой природы, данные о котором хранятся в базе данных. Данные о сущности хранятся в отношении.

Сущность определена как «нечто», о чем необходимо записывать информацию "

Сущности имеют некоторые свойства (properties).

Домен

Домен представляет собой множество всех возможных значений определенного атрибута отношения.

Атрибуты

Атрибуты представляют собой свойства, характеризующие сущность. В структуре таблицы каждый атрибут именуется и ему соответствует заголовок некоторого столбца таблицы.

Заголовок отношения (схема отношения)

Заголовком (или схемой) RelHead отношения Rel называется конечное множество упо-рядоченных пар вида **<A, T>,** где **A** – <u>имя</u> <u>атрибута</u>, а **T** - <u>имя</u> <u>базового</u> <u>типа</u> или ранее определенного <u>домена</u>

Кортеж

Кортежем RelTrip, соответствующим *заголовку* RelHead, называется последовательность *упорядоченных триплетов* вида <**A**, **T**, **v**>, по одному такому триплету для каждого *атрибута* в заголовке RelHed. Третий элемент – **v** – триплета <**A**, **T**, **v**> должен являться допустимым значением типа данных или домена **T**.

Тело

Телом (или **содержимым отношения**) **RelBody** *отношения* **Rel** называется произвольное множество *кортежей* RelTrip. Могут существовать такие *кортежи* RelTrip, которые соответствуют *заголовку* RelHed, но не входят в тело RelBody.

Значение

Значением RelVal (Relation value) *отношения* Rel называется пара множеств RelHead и RelBody.

Переменная отношения

Таблицы в БД фактически являются **переменными** отношений, т.е. их значения –это **значения** отношений (различные значения отношений в разное время).

Переменной отношения RelVar называется именованный контейнер, который может содержать любое допустимое *значение* RelVal. В изменчивой *реляционной базе данных* хранятся *отношения*, *значения* которых изменяются во времени.

Пример

Назв.Предмета	Часы
Общая алгебра	102
ΤΦΚΠ	85
TAP	68
ДМ	85

Назв.Предмета	Часы
Общ. алгебра	102
ТФКП	85
TAP	68

Таблица 2.2 ПРЕДМЕТ

Таблица 2.3. Таблица ПРЕДМЕТ после удаления строки.

Старое значение отношения ПРЕДМЕТ заменено новым значением отношения.

Старое и новое значения концептуально являются разными.

Операция удаления строки – это упрощенный способ записи для определенной операции *реляционного присвоения*.

$$\rho$$
= σ \(ДМ, 85)

 $\Pi P E D M E T := \Pi P E D M E T MINUS$ (ПРЕДМЕТ WHERE Назв. Предмета = ' ДМ');

Степень отношения

Степенью или **«арностью»**, заголовка отношения, кортежа, тела отношения, значения отношения и переменной отношения называется **мощность** заголовка отношения.

Степень отношения СТУДЕНТ равна четырем, т. е. оно является 4-арным (кватернарным).

Кардинальность- количество кортежей в отношении.

Первичный ключ

Первичным ключом (ключом отношения, ключевым атрибутом)

называется атрибут (множество атрибутов) отношения, однозначно идентифицирующий каждый из его кортежей.

<u>Ключ</u> состоящий из одного атрибута называют **простым**, а состоящий из нескольких атрибутов- составным (сложным).

Пусть K — множество атрибутов переменной-отношения R. Множество K будет **потенциальным ключом** переменной-отношения R тогда и только тогда, когда оно обладает следующими свойствами:

- а) **Уникальность.** Никакие допустимые значения переменнойотношения **R** не содержат двух различных кортежей с одинаковыми значениями атрибутов множества *К*.
- б) **Неизбыточность**. Никакое из собственных подмножеств множества К не обладает свойством уникальности.

Ключи используют для достижения следующих целей:

- 1) исключения дублирования значений в ключевых атрибутах (остальные атрибуты в расчет не принимаются);
- 2) упорядочения кортежей;
- 3) ускорения обращения к кортежами отношения;
- 4) организации связывания таблиц.

Внешний ключ (foreign key)

Пусть в отношении R2 имеется атрибут B, значения которого являются значениями ключевого атрибута A другого отношения R1. Тогда говорят, что атрибут B отношения R2 есть внешний ключ.

Пусть R2— некоторая переменная-отношение. **Внешний ключ** (FK) в переменной-отношении R2 представляет собой множество атрибутов этой переменной-отношения, такое что:

- а) существует переменная-отношение R1 с потенциальным ключом (РК) (переменные-отношения R1 и R2 необязательно различны);
- б) каждое значение внешнего ключа FK в текущем значении переменной-отношения R2 обязательно совпадает со значением ключа PK некоторого кортежа в текущем значении переменной-отношения R1.

Атрибут называется **внешним ключом,** потому что его значения однозначно характеризуют сущности, представленные *кортежами* некоторого другого *отношения* (т. е. задают значения их *первичного ключа*).

Номер л.д.	ФИО	Группа	Специальность
1232	Алексеев А. А.	И-12	ИС
1233	Борисов Б. Б.	И-12	ИС
1234	Васькин В.В.	И-12	ИС
1235	Гришин Г. Г.	У-11	Сист. Управ.

Таблица 2.4 Отношение СТУДЕНТ.

<u>Предмет</u>	Часы
Общая алгебра	102
ТФКП	85
TAP	68
Теория Алгоритмов	85

Таблица 2.5 Отношение ПРЕДМЕТ (Назв.Предмета., Часы).

Номер л.д.	ФИО	Предмет	Оценка
1232	Алексеев А. А.	Общая алгебра	Xop.
1233	Борисов Б. Б.	Общая алгебра	отл.
1234	Васькин В.В.	Общая алгебра	Удовл.
1232	Алексеев А. А.	ΤΦΚΠ	Xop.

Таблица 2.6 Отношение СТУДЕНТ_ПРЕДМЕТ

Тип данных

Значения данных, хранимые в реляционной базе данных, являются типизированными, т. е. известен тип каждого хранимого значения.

Тип данных задает множество значений данного типа, набор операций, применимых к значениям типа и способ внешнего представления значений типа (литералов).

Обычно в современных реляционных базах данных допускается хранение символьных, числовых данных (точных и приблизительных), специализированных числовых данных («деньги»), специальных «темпоральных» данных (дата, время, временной интервал).

Фундаментальные свойства отношений

Свойство 1: Отсутствие кортежей-дубликатов.

Свойство 2: Отсутствие упорядоченности кортежей (сверху вниз).

Свойство 3: Отсутствие упорядоченности атрибутов (слева направо).

Свойство 4: Атомарность значений атрибутов, первая нормальная форма отношения.

В РБД допускаются только нормализованные отношения, или отношения, представленные в первой нормальной форме (1НФ).

Группа		Von FRYERII	
Номер л.д.	ФИО	Код_группы	
1232	Алексеев А. А.	И-12	
1233	Борисов Б. Б.		
1234	Васькин В.В.		
1235	Гришин Г. Г.	У-11	

Таблица 2.7 ненормализованное отношение

Номер л.д.	ФИО	Группа
1232	Алексеев А. А.	И-12
1233	Борисов Б. Б.	И-12
1234	Васькин В.В.	И-12
1235	Гришин Г. Г.	У-11

Таблица 2.8 нормализованное отношение