NOTES ON UPPER AND LOWER BOUNDING t(N)

TERENCE TAO

1. Basics

The symbol *p* will always denote a prime. The primes 2, 3 will play a special role here and will be referred to as *tiny primes*.

We use $v_p(a/b) = v_p(a) - v_p(b)$ to denote the *p*-adic valuation of a positive natural number a/b, that is to say the number of times *p* divides the numerator *a*, minus the number of times *p* divides the denominator *b*. For instance, $v_2(32/27) = 5$ and $v_3(32/27) = -3$. If one applies a logarithm to the fundamental theorem of arithmetic, one obtains the identity

$$\sum_{p} v_{p}(r) \log p = \log r \tag{1.1}$$

for any positive rational r.

Asymptotically, it is known that

$$\frac{1}{e} - \frac{O(1)}{\log N} \le \frac{t(N)}{N} \le \frac{1}{e} - \frac{c_0 + o(1)}{\log N}$$

where

$$c_0 := \frac{1}{e} \int_0^1 \left\lfloor \frac{1}{x} \right\rfloor \log \left(ex \left\lceil \frac{1}{ex} \right\rceil \right) dx$$
$$= \frac{1}{e} \int_1^\infty \lfloor y \rfloor \log \frac{\lceil y/e \rceil}{y/e} \frac{dy}{y^2}$$
$$= 0.3044 \dots$$

We recall Legendre's formula

$$v_p(N!) = \sum_{j=1}^{\infty} \left\lfloor \frac{N}{p^j} \right\rfloor = \frac{N - s_p(N)}{p - 1}.$$
 (1.2)

To bound the factorial, we have the explicit Stirling approximation [4]

$$N\log N - N + \log \sqrt{2\pi N} + \frac{1}{12N+1} \le \log N! \le N\log N - N + \log \sqrt{2\pi N} + \frac{1}{12N}, \quad (1.3)$$
 valid for all natural numbers N .

We use $O_{\leq}(X)$ to denote any quantity whose magnitude is bounded by at most X (note the absence of an additional constant factor).

To estimate the prime counting function, we have the following good asymptotics up to a large height.

Theorem 1.1 (Buthe's bounds). [1] For any $2 \le x \le 10^{19}$, we have

$$li(x) - \frac{\sqrt{x}}{\log x} \left(1.95 + \frac{3.9}{\log x} + \frac{19.5}{\log^2 x} \right) \le \pi(x) < li(x)$$

and

$$\operatorname{li}(x) - \frac{\sqrt{x}}{\log x} \le \pi^*(x) < \operatorname{li}(x) + \frac{\sqrt{x}}{\log x}.$$

For $x > 10^{19}$ we have the bounds of Dusart [2]. One such bound is

$$\psi(x) = x + O_{\leq} \left(59.18 \frac{x}{\log^4 x}\right).$$

2. Criteria for upper bounding t(N)

We have the trivial upper bound $t(N) \le (N!)^{1/N}$. This can be improved to $t(N) \le N/e$ for $N \ne 1, 2, 4$, answering a conjecture of Guy and Selfridge [3]; see [5]. This was derived from the following slightly stronger criterion, which asymptotically gives $\frac{t(N)}{N} \le \frac{1}{e} - \frac{c_0 + o(1)}{\log N}$:

Lemma 2.1 (Upper bound criterion). [5, Lemma 2.1] Suppose that $1 \le t \le N$ are such that

$$\sum_{p > \frac{t}{\lfloor \sqrt{t} \rfloor}} \left\lfloor \frac{N}{p} \right\rfloor \log \left(\frac{p}{t} \left\lceil \frac{t}{p} \right\rceil \right) > \log N! - N \log t \tag{2.1}$$

Then t(N) < t.

A surprisingly sharp upper bound comes from linear programming.

Lemma 2.2 (Linear programming bound). Let N be an natural number and $1 \le t \le N/2$. Suppose for each prime $p \le N$, one has a non-negative real number w_p which is weakly non-decreasing in p (thus $w_p \le w_{p'}$ when $p \le p'$), and such that

$$\sum_{p} w_{p} v_{p}(j) \ge 1 \tag{2.2}$$

for all $t \leq j \leq N$, and such that

$$\sum_{p} w_{p} v_{p}(N!) < N. \tag{2.3}$$

Then t(N) < t.

Proof. We first observe that the bound (2.2) in fact holds for all $j \ge t$, not just for $t \le j \le N$. Indeed, if this were not the case, consider the first $j \ge t$ where (2.2) fails. Take a prime p dividing j and replace it by a prime in the interval $\lfloor p/2, p \rfloor$ which exists by Bertrand's postulate

(or remove p entirely, if p = 2); this creates a new j' in [j/2, j) which is still at least t. By the weakly decerasing hypothesis on w_p , we have

$$\sum_{p} w_{p} v_{p}(j) \ge \sum_{p} w_{p} v_{p}(j')$$

and hence by the minimality of j we have

$$\sum_{p} w_{p} v_{p}(j) > 1,$$

a contradiction.

Now suppose for contradiction that $t(N) \ge t$, thus we have a factorization $N! = \prod_{j \ge t} j^{m_j}$ for some natural numbers m_i summing to N. Taking p-valuations, we conclude that

$$\sum_{j>t} m_j \nu_p(j) \le \nu_p(N!)$$

for all $p \leq N$. Multiplying by w_p and summing, we conclude from (2.2) that

$$N = \sum_{j > t} m_j \le \sum_p w_p v_p(N!),$$

contradicting (2.3).

This bound is sharp for all $N \le 600$, with the exception of N = 155, where it gives the upper bound $t(155) \le 46$. A more precise integer program gives t(155) = 45.

Remark 2.3. A variant of the linear programming method also gives good lower bound constructions. Specifically, one can use linear programming to find non-negative real numbers m_j for $t \le j \le N$ that maximize the quantity $\sum_{t \le j \le N} m_j$ subject to the constraints

$$\sum_{t < i < N} m_j v_p(j) \le v_p(N!).$$

The expression $\prod_{t \le j \le N} j^{\lfloor m_j \rfloor}$ will then be a subfactorization of N! into $\sum_{t \le j \le N} \lfloor m_j \rfloor$ factors j, each of which is at least t. If $\sum_{t \le j \le N} \lfloor m_j \rfloor \ge N$, this demonstrates that $t(N) \ge t$. Numerically, this procedure attains the exact value of t(N) for all $N \le 600$; for instance for N = 155, it shows that $t(155) \ge 45$.

2.1. **Asymptotic analysis of upper bound.** We refine the upper bound in [5] slightly.

Proposition 2.4. For large N, one has

$$\frac{t(N)}{N} \le \frac{1}{e} - \frac{c_0}{\log N} + O\left(\frac{1}{\log^2 N}\right).$$

Proof. We apply Lemma 2.1 with

$$t := \frac{1}{e} - \frac{c_0}{\log N} + \frac{C_0}{\log^2 N}$$

with C_0 a large absolute constant to be chosen later. From the Stirling approximation one sees that

$$\log N! - N \log t \ge c_0 \frac{N}{\log N} + (C_0 - O(1)) \frac{N}{\log^2 N}$$

so it will suffice to establish the upper bound

$$\sum_{p>\frac{t}{|\sqrt{t}|}} \left\lfloor \frac{N}{p} \right\rfloor \log \left(\frac{p}{t} \left\lceil \frac{t}{p} \right\rceil \right) \le c_0 \frac{N}{\log N} + O\left(\frac{N}{\log^2 N} \right).$$

For N large enough, we have $\frac{t}{|\sqrt{t}|} \leq \frac{N}{\log N}$, so it suffices to show that

$$\sum_{\frac{N}{\log N} \leq p \leq N} \left \lfloor \frac{N}{p} \right \rfloor \log \left(\frac{p}{t} \left \lceil \frac{t}{p} \right \rceil \right) \leq c_0 \frac{N}{\log N} + O\left(\frac{N}{\log^2 N} \right).$$

The summand is a piecewise monotone function of p, with $O(\log N)$ pieces, and bounded in size by O(N). A routine application of the prime number theorem (with classical error term) and summation by parts then allows one to express the left-hand side as

$$\int_{N/\log N}^{N} \left\lfloor \frac{N}{x} \right\rfloor \log \left(\frac{x}{t} \left\lceil \frac{t}{x} \right\rceil \right) \frac{dx}{\log x} + O\left(\frac{N}{\log^2 N} \right)$$

(in fact the error term can be made much stronger than this). We use the approximation

$$\frac{1}{\log x} = \frac{1}{\log N} + O\left(\frac{\log(N/x)}{\log^2 N}\right).$$

To control the error term, we observe from Taylor expansion that

$$\log\left(\frac{x}{t}\left\lceil\frac{t}{x}\right\rceil\right) \ll \frac{\left\lceil\frac{t}{x}\right\rceil - \frac{t}{x}}{t/x} \ll \frac{x}{t} \ll \frac{x}{N}$$
 (2.4)

and the contribution of the error term is

$$\ll \int_{N/\log N}^{N} \frac{N}{x} \frac{x}{N} \frac{\log(N/x)}{\log^2 N} dx \ll \frac{N}{\log^2 N}$$

which is acceptable. As for the main term, we see from (2.4) that we can complete the integral to

$$\int_0^N \left\lfloor \frac{N}{x} \right\rfloor \log \left(\frac{x}{t} \left\lceil \frac{t}{x} \right\rceil \right) \frac{dx}{\log N}$$

up to an acceptable error of $O(N/\log^2 N)$. But this expression rescales to $c_0 \frac{N}{\log N}$, giving the claim.

3. A GENERAL FACTORIZATION ALGORITHM

In this section we present and then analyze an algorithm that, when given parameters $1 \le t \le N$, will attempt to construct a factorization $N! = \prod \mathcal{B}$ of N! by a finite multiset \mathcal{B} of N elements that are all at least t. The algorithm will not always succeed, but when it does, it will certify that $t(N) \ge t$.

3.1. **Notational preliminaries.** We begin with some key definitions.

Let $\mathcal{B} = \{b_1, \dots, b_M\}$ be a finite multiset of natural numbers (thus each natural number may appear in \mathcal{B} multiple times); the ordering of elements in the multiset will not be of relevance to us. The *cardinality* $|\mathcal{B}| = M$ of the multiset is the number of elements counting multiplicity; for example,

$$|\{2,2,3\}|=3.$$

The *product* $\prod \mathcal{B}$ of the finite multiset is defined by $\prod \mathcal{B} := \prod_{b \in \mathcal{B}} b$, where we count for multiplicity; for example

$$\prod \{2, 2, 3\} = 12.$$

The tuple \mathcal{B} is a factorization of a natural number M if $\mathcal{B} = M$, and a subfactorization if $\mathcal{B}|M$. For example, $\{2,2,3\}$ is a factorization of 12 and a subfactorization of 24.

By the fundamental theorem of arithmetic (or (1.1)), we see that a finite multiset \mathcal{B} is a factorization of M if and only if

$$v_p(M/\prod B)=0$$

for all primes p, and a subfactorization if and only if

$$v_p(M/\prod B) \ge 0$$

for all primes p. We refer to $v_p(M/\prod B)$ as the p-surplus of B (as an attempted factorization of M) at prime p, and $-v_p(M/\prod B) = v_p(\prod B/M)$ as the p-deficit, and say that the factorization is p-balanced if $v_p(M/\prod B) = 0$. Thus a subfactorization (resp. factorization) occurs when one has non-negative surpluses (resp. balance) at all primes p.

Example 3.1. Suppose one wishes to factorize $5! = 2^3 \times 3 \times 5$. The attempted factorization $\mathcal{B} := \{3, 4, 5, 5\}$ has a 2-surplus of $v_2(5!/\prod \mathcal{B}) = 1$, is in balance at 3, and has a 5-deficit of $v_2(\prod \mathcal{B}/5!) = 1$, so it is not a factorization or subfactorization of 5!. However, if one replaces one of the copies of 5 in \mathcal{B} with a 2, this erases both the 2-surplus and the 5-deficit, and creates a factorization $\{2, 3, 4, 5\}$ of 5!.

A finite multiset \mathcal{B} is said to be *t-admissible* for some t > 0 if $b \ge t$ for all $b \in \mathcal{B}$. Then t(N) is largest quantity such that there exists a t(N)-admissible factorization of N! of cardinality N.

Call a natural number 3-smooth if it is of the form $2^n 3^m$ for some natural numbers n, m. Given a positive real number x, we use $\lceil x \rceil^{\langle 2,3 \rangle}$ to denote the smallest 3-smooth number greater than or equal to x. For instance, $\lceil 5 \rceil^{\langle 2,3 \rangle} = 6$ and $\lceil 10 \rceil^{\langle 2,3 \rangle} = 12$.

- 3.2. **Description of algorithm.** We now describe an algorithm that, for given $1 \le t \le N$, either successfully demonstrates that $t(N) \ge t$, or halts with an error.
 - (0) Select a natural number A and another parameter $K \ge 1$ such that $K^2(1 + \frac{3}{A}) < t$. There is some freedom to select parameters here, but roughly speaking one would like to have $\log N \ll A \ll K \ll \sqrt{t}$.

6 TERENCE TAO

- (1) Let I denote the elements of the interval¹ (t, t(1+3/A)] that are coprime to 6. Let $\mathcal{B}^{(1)}$ be the elements of I, each occurring with multiplicity A. This multiset is t-admissible, and $\prod \mathcal{B}^{(1)}$ is not divisible by tiny primes 2, 3. (It will have approximately the right number of primes for 3 , though it may have quite different prime factorization at primes <math>p > t/K.)
- (2) Remove any element from $\mathcal{B}^{(1)}$ that contains a prime factor p with p > t/K, and call this new multiset $\mathcal{B}^{(2)}$. It remains t-admissible with no tiny prime factors.
- (3) For each p > t/K, add in $v_p(N!)$ copies of the number $p\lceil t/p \rceil$ to $\mathcal{B}^{(2)}$, and call this new multiset $\mathcal{B}^{(3)}$. (A variant of the method: add in $p\lceil t/p \rceil^{(2,3)}$ instead. This is slightly less efficient, but slightly easier to analyze.) Now $\mathcal{B}^{(3)}$ is t-admissible and in balance at all primes p > t/K, but will typically be in a slight deficit at primes 3 , particularly in the range <math>3 . (It will now also contain a few tiny prime factors, but will generally still have a large surplus at those primes.)
- (4) For each prime $3 at which there is a surplus <math>v_p(N!/\prod B) > 0$, replace $v_p(N!/\prod B)$ copies of p in the prime factorizations of elements of $\mathcal{B}^{(3)}$ with $\lceil p \rceil^{\langle 2,3 \rangle}$ instead, and call this new multiset $\mathcal{B}^{(4)}$. Thus $\mathcal{B}^{(4)}$ has no surplus at primes 3 (and is still <math>t-admissible and in balance for p > t/K).
- (5) For the primes $3 at which there is a deficit <math>v_p(\prod B/N!) > 0$, multiply all these primes together, and use the greedy algorithm to group them into factors x_1, \ldots, x_M in the range $(\sqrt{t/K}, t/K]$, together with possibly one exceptional factor x_* in the range (1, t/K]. For each of these factors x_i or x_* , add the quantity $x_i \lceil t/x_i \rceil^{\langle 2,3 \rangle}$ or $x_* \lceil t/x_* \rceil^{\langle 2,3 \rangle}$ to $\mathcal{B}^{(4)}$, and call this new multiset $\mathcal{B}^{(5)}$.
- (6) By construction, $\mathcal{B}^{(5)}$ is t-admissible and will be in balance at all primes p > 3, and is thus $N!/\prod \mathcal{B}^{(5)}$ is of the form $2^n 3^m$ for some integers n, m. If at least one of n, m is negative, then HALT the algorithm with an error. Otherwise, select a 3-smooth number $2^{n_1} 3^{m_1}$ greater than equal to t with $n_1/m_1 \le n/m$ (which one can interpret as $n_1 m \le n m_1$ in case some of the denominators here vanish), and similarly select a 3-smooth number $2^{n_2} 3^{m_2}$ greater than or equal to t with $n_2/m_2 \ge n/m$. (It is reasonable to select the smallest such 3-smooth numbers in both cases, although this is not absolutely necessary for the algorithm to be successful.) By construction, we can express (n, m) as a positive linear combination $\alpha_1(n_1, m_1) + \alpha_2(n_2, m_2)$ of (n_1, m_1) and (n_2, m_2) . Add $\lfloor \alpha_1 \rfloor$ copies of $2^{n_1} 3^{m_1}$ and $\lfloor \alpha_2 \rfloor$ copies of $2^{n_2} 3^{m_2}$ to $\mathcal{B}^{(5)}$, and call this tuple $\mathcal{B}^{(6)}$. (This will largely eliminate the surplus at 2 and 3.)
- (7) If the multiset $\mathcal{B}^{(6)}$ has cardinality less than N, HALT the algorithm with an error. Otherwise, delete elements from $\mathcal{B}^{(6)}$ to bring the cardinality to N, and arbitrarily distribute any surplus primes to one of the remaining elements, and call the resulting multiset $\mathcal{B}^{(7)}$. By construction, $\mathcal{B}^{(7)}$ is a t-admissible factorization of N! into N numbers, demonstrating that $t(N) \geq t$.
- 3.3. **Analysis of Step 7.** We now analyze the above algorithm, starting from the final step (7) and working backwards to (1), to establish sufficient conditions for the algorithm to successfully demonstrate that $t(N) \ge t$.

¹Numerically, it would be slightly better to use the closed interval [t, t(1 + 3/A)] instead of the half-open interval (t, t(1+3/A)], but we will consistently aim to use half-open intervals here to be compatible with standard notation for the prime counting function $\pi(x)$.

It will be convenient to introduce the following notation. For $a_+, a_- \in [0, +\infty]$, we define the asymmetric norm $|x|_{a_+,a_-}$ of a real number x by the formula

$$|x|_{a_+,a_-} := \begin{cases} a_+|x| & x \ge 0 \\ a_-|x| & x \le 0. \end{cases}$$

If a_+ , a_- are finite, this function is Lipschitz with constant $\max(a_+, a_-)$. One can think of a_+ as the "cost" of making x positive, and a_- as the "cost" of making x negative.

We now begin the analysis of Step 9. This procedure will terminate successfully as long as the length $|\mathcal{B}^{(6)}|$ of the tuple is at least N. To ensure this, we introduce the *t-excess* of a multiset \mathcal{B} by the formula

$$E_t(\mathcal{B}) := \prod_{b \in \mathcal{B}} \log \frac{b}{t} = \log \prod \mathcal{B} - |\mathcal{B}| \log t.$$

Thus, to ensure the success of this step, it suffices to establish the inequality

$$E_t(\mathcal{B}^{(6)}) \le \log \prod \mathcal{B}^{(6)} - N \log t.$$

From (1.1) we have

$$\log \prod \mathcal{B}^{(6)} = \log N! - \sum_{p} v_{p} \left(\frac{N!}{\prod \mathcal{B}^{(6)}} \right) \log p,$$

so we can rewrite the previous condition (using the fact that $\mathcal{B}^{(6)}$ is a subfactorization of N!) as

$$\mathbb{E}_{t}(\mathcal{B}^{(6)}) + \sum_{p} \left| v_{p} \left(\frac{N!}{\prod \mathcal{B}^{(6)}} \right) \right|_{\log p, \infty} \leq \log N! - N \log t.$$

If we assume that $t = N/e^{1+\delta}$ for some $\delta > 0$, we can use the Stirling approximation (1.3) to reduce to the sufficient condition

$$E_{t}(\mathcal{B}^{(6)}) + \sum_{p} \left| v_{p} \left(\frac{N!}{\prod \mathcal{B}^{(6)}} \right) \right|_{\log p, \infty} \le \delta N + \log \sqrt{2\pi N}. \tag{3.1}$$

3.4. **Analysis of Step 6.** Now we analyze Step 6. For any $L \ge 1$, let κ_L be the least quantity such that

$$x \le \lceil x \rceil^{\langle 2,3 \rangle} \le \exp(\kappa_L) x \tag{3.2}$$

holds for all $x \ge L$. Just from considering the powers of two, we have the trivial upper bound

$$\kappa_L \le \log 2. \tag{3.3}$$

We shall obtain better estimates on this quantity in Section 4. For now we use this quantity to help achieve efficient subfactorizations of 3-smooth numbers, as follows.

Lemma 3.2. Let $L \ge 1$. Let t > 3L and let $2^n 3^m$ be a 3-smooth number with n, m > 0 obeying the conditions

$$\frac{\log(3L) + \kappa_L}{\log t - \log(3L)} \le \frac{n\log 2}{m\log 3} \le \frac{\log t - \log(2L)}{\log(2L) + \kappa_L}.$$
(3.4)

Then one can find a t-admissible subfactorization \mathcal{B} of 2^n3^m such that

$$E_{t}(\mathcal{B}) \le \kappa_{L} \frac{n \log 2 + m \log 3}{\log t}$$
(3.5)

and

$$|\nu_2(2^n 3^m / \mathcal{B})|_{\log 2, \infty} + |\nu_3(2^n 3^m / \mathcal{B})|_{\log 3, \infty} \le 2(\log t + \kappa_L). \tag{3.6}$$

In practice, $\log t$ will be significantly larger than $\log(2L)$ or $\log(3L)$, and so the hypothesis (3.4) will be quite mild, as long as n and m are both reasonably large.

Proof. Let 2^{n_0} , 3^{m_0} be the largest powers of 2 and 3 less than or equal to t/L respectively, thus

$$L \le \frac{t}{2^{n_0}} \le 2L \tag{3.7}$$

and

$$L \le \frac{t}{3^{m_0}} \le 3L. \tag{3.8}$$

From (3.2), the 3-smooth numbers $\lceil t/2^{n_0} \rceil^{\langle 2,3 \rangle} = 2^{n_1}3^{m_1}$, $\lceil t/3^{m_0} \rceil^{\langle 2,3 \rangle} = 2^{n_2}3^{m_2}$ obey the estimates

$$\frac{t}{2^{n_0}} \le 2^{n_1} 3^{m_1} \le e^{\kappa_L} \frac{t}{2^{n_0}} \tag{3.9}$$

and

$$\frac{t}{3^{m_0}} \le 2^{n_2} 3^{m_2} \le e^{\kappa_L} \frac{t}{3^{m_0}},\tag{3.10}$$

or equivalently

$$t \le 2^{n_0 + n_1} 3^{m_1}, 2^{n_2} 3^{m_0 + m_2} \le e^{\kappa_L} t. \tag{3.11}$$

We can use (3.7), (3.9) to bound

$$\frac{n_0 + n_1}{m_1} \ge \frac{n_0}{\log(e^{\kappa_L} \frac{t}{2^{n_0}}) / \log 3}$$

$$\ge \frac{(\log t - \log(2L)) / \log 2}{(\log(2L) + \kappa_L) / \log 3}$$

(with the convention that this bound is vacuously true for $m_1 = 0$). Similarly, from (3.8), (3.10) we have

$$\frac{n_2}{m_0 + m_2} \le \frac{\log(e^{\kappa} \frac{t}{3m_0}) / \log 2}{m_0}$$

$$\le \frac{(\log(3L) + \kappa) / \log 2}{(\log t - \log(3L)) / \log 3}$$

and hence by (3.4)

$$\frac{n_2}{m_0 + m_2} \le \frac{n}{m} \le \frac{n_0 + n_1}{m_1}. (3.12)$$

Thus we can write (n, m) as a non-negative linear combination

$$(n, m) = \alpha_1(n_0 + n_1, m_1) + \alpha_2(n_2, m_0 + m_2)$$

for some real $\alpha_1, \alpha_2 \geq 0$. We now take our subfactorization \mathcal{B} to consist of $\lfloor \alpha_1 \rfloor$ copies of the 3-smooth number $2^{n_0+n_1}3^{m_1}$ and $\lfloor \alpha_2 \rfloor$ copies of the 3-smooth number $2^{n_2}3^{m_0+m_2}$. By (3.11), each term $2^{n'}3^{m'}$ here is admissible and contributes a t-excess of at most κ_L , which is in turn bounded by $\kappa_L \frac{n' \log 2 + m' \log 3}{\log t}$. Adding these bounds together, we obtain (3.5).

The expression $2^n 3^m / \prod B$ contains at most $n_0 + n_1 + n_2$ factors of 2 and at most $m_0 + m_2 + m_1$ factors of 3, hence

$$v_2(2^n 3^m / \prod B) \log 2 + v_3(2^n 3^m / \prod B) \log 3 \le \log 2^{n_0 + n_1} 3^{m_1} + \log 2^{n_2} 3^{m_0 + m_2},$$
 and the bound (3.6) follows from (3.11).

We now use this lemma to analyze Step 6 as follows.

Proposition 3.3. Let $L \ge 1$. Let $3L < t = N/e^{1+\delta}$ for some $\delta > 0$, and let $1 \le K \le t$ and $A \ge 1$. Suppose that the algorithm in Section 3.2 with the indicated parameters reaches the end of Step 5 with a multiset $\mathcal{B}^{(5)}$ obeying the following hypotheses:

(i) (Small excess and surplus at non-tiny primes)

$$E_{t}(\mathcal{B}^{(5)}) + \sum_{p>3} \left| v_{p} \left(\frac{N!}{\prod \mathcal{B}^{(5)}} \right) \right|_{\log p, \infty} \leq \delta N + \log \sqrt{2\pi} - \frac{3}{2} \log N - (\kappa_{L} \log \sqrt{12}) \frac{N}{\log t}.$$
 (3.13)

(ii) (Large surpluses at tiny primes) The surpluses $v_2(N!/\prod \mathcal{B}^{(5)})$, $v_3(N!/\prod \mathcal{B}^{(5)})$ are positive (so in particular Step 7 does not halt with an error) and obey the bounds

$$\frac{\log(3L) + \kappa_L}{\log t - \log(3L)} \leq \frac{\nu_2(N! / \prod \mathcal{B}^{(5)}) \log 2}{\nu_3(N! / \prod \mathcal{B}^{(5)}) \log 3} \leq \frac{\log t - \log(2L)}{\log(2L) + \kappa_L}.$$

Then $t(N) \geq t$.

Proof. Write $n := v_2(N!/\prod \mathcal{B}^{(5)})$ and $m := v_3(N!/\prod \mathcal{B}^{(5)})$. From (1.2) we have $n \le N$ and $m \le N/2$, hence

$$n\log 2 + m\log 3 \le N\log \sqrt{12}.$$

Applying Lemma 3.2, we can find a subfactorization \mathcal{B}' of $2^n 3^m$ with an excess of at most $(\kappa_L \log \sqrt{12}) \frac{N}{\log t}$, and with

$$\left| v_2 \left(\frac{2^n 3^m}{\prod \mathcal{B}'} \right) \right|_{\log 2, \infty} + \left| v_3 \left(\frac{2^n 3^m}{\prod \mathcal{B}'} \right) \right|_{\log 3, \infty} \le 2(\log t + \kappa_L) \le 2 \log N$$

where we have used (3.3) and the fact that $\log t \le \log N - 1$. Then $\mathcal{B}^{(6)} = \mathcal{B}^{(5)} \cup \mathcal{B}'$ is another t-admissible multiset, and from (3.13), we obtain the previous sufficient condition (3.1). \square

3.5. Analysis of Step 5.

Proposition 3.4. Let $1 \le K \le t \le N$, $A \ge 1$, and $L \ge 1$ be parameters such that $9L < t = N/e^{1+\delta}$ for some $\delta > 0$. Suppose that the algorithm in Section 3.2 with the indicated parameters reaches the end of Step 4 to produce a multiset $\mathcal{B}^{(4)}$ obeying the following hypotheses.

(i) (Small excess and surplus at non-tiny primes)

$$E_{t}(\mathcal{B}^{(4)}) + \sum_{3
$$\le \delta N - \frac{3}{2} \log N - \kappa_{L} (\log \sqrt{12}) \frac{N}{\log t}.$$
(3.14)$$

(ii) (Large surpluses at tiny primes) Whenever n_{**} , m_{**} are natural numbers obeying the bounds

$$n_{**}\log 2 + m_{**}\log 3 \leq \sum_{3$$

then $v_2(N!/\prod \mathcal{B}^{(4)}) > n_{**}$, $v_3(N!/\prod \mathcal{B}^{(4)}) > m_{**}$, and furthermore

$$\frac{\log(3L) + \kappa_L}{\log t - \log(3L)} \le \frac{(\nu_2(N!/\prod \mathcal{B}^{(4)}) - n_{**})\log 2}{(\nu_3(N!/\prod \mathcal{B}^{(4)}) - m_{**})\log 3} \le \frac{\log t - \log(2L)}{\log(2L) + \kappa_L}.$$

Then $t(N) \geq t$.

Proof. By (3.14), $\mathcal{B}^{(4)}$ is a subfactorization of N!. Consider all the p-surplus primes in the range $3 , thus each such prime is considered with multiplicity <math>v_p(N!/\prod \mathcal{B}^{(4)})$. Using the greedy algorithm, one can factor the product of all these primes into M factors c_1, \ldots, c_M in the interval $(\sqrt{t/K}, t/K]$, times at most one exceptional factor c_* in $(1, \sqrt{t/K}]$, for some M. If we let M' denote the number of factors in c_1, \ldots, c_M that are not divisible by a prime larger than $\sqrt{t/K}$, we have the bound

$$\left(\sqrt{t/K}\right)^{M'} \leq \prod_{3$$

and hence on taking logarithms

$$M' \leq \sum_{3$$

Restoring the factors divisible by primes $p > \sqrt{t/K}$, we conclude that

$$M \le \sum_{3$$

For each of the M factors c_i , we introduce the 3-smooth number $\lceil t/c_i \rceil^{\langle 2,3 \rangle} = 2^{n_i}3^{m_i}$, which by (3.2) lies in the interval $\lfloor t/c_i, e^{\kappa_K}t/c_i \rfloor$; similarly, for the exceptional factor c_* we introduce a 3-smooth number $\lceil t/c_* \rceil^{\langle 2,3 \rangle} = 2^{n_*}3^{m_*}$ in the interval $\lfloor t/c_*, e^{\kappa_K}t/c_* \rfloor$. If we then adjoin the 3-smooth numbers $\lceil t/c_i \rceil^{\langle 2,3 \rangle}c_i = 2^{n_i}3^{m_i}c_i$ for $i=1,\ldots,M$ as well as $\lceil t/c_* \rceil^{\langle 2,3 \rangle}c_* = 2^{n_*}3^{m_*}c_*$ to the t-admissible multiset $\mathcal{B}^{(4)}$ to create a new t-admissible multiset $\mathcal{B}^{(5)}$. The quantity $\log \lceil t/c_* \rceil^{\langle 2,3 \rangle} = n_i \log 2 + m_i \log 3$ is bounded by $\log \sqrt{tK} + \kappa_K$, and the quantity

 $\log \lceil t/c_* \rceil^{\langle 2,3 \rangle} = n_* \log 2 + m_* \log 3$ is similarly bounded by $\log t + \kappa$, hence if we denote $n_{**} := n_1 + \dots + n_M + n_*$ and $m_{**} := m_1 + \dots + m_M + m_*$, we have

$$n_{**}\log 2 + m_{**}\log 3 \leq \frac{\log \sqrt{tK} + \kappa_K}{\log \sqrt{t/K}} \sum_{3$$

Each of the new factors in $\mathcal{B}^{(5)}$ contributes an excess of at most κ_K , so the total excess of $\mathcal{B}^{(5)}$ is at most

$$E_t(\mathcal{B}^{(4)}) + \kappa_K M + \kappa_K$$

which by (3.15) is bounded by

$$E_{t}(\mathcal{B}^{(4)}) + \sum_{3$$

We conclude that $\mathcal{B}^{(5)}$ obeys the hypotheses of Proposition 3.3 (using (3.3) to bound κ_K by $\log \sqrt{2\pi}$), and the claim follows.

3.6. Analysis of Step 4.

Proposition 3.5. Let $L \ge 1$. Let $9L < t = N/e^{1+\delta}$ for some $\delta > 0$, and suppose that the algorithm reaches the end of Step 3 to produce a multiset $\mathcal{B}^{(3)}$ obeying the following hypotheses:

(i) (Small excess and surplus at non-tiny primes) One has

$$E_{t}(\mathcal{B}^{(3)}) + \sum_{3
$$\le \delta N - \frac{3}{2} \log N - \kappa_{L} (\log \sqrt{12}) \frac{N}{\log t}.$$
(3.16)$$

(ii) (Large surpluses at tiny primes) Whenever n_{**} , m_{**} are natural numbers obeying the bounds

$$\begin{split} n_{**} \log 2 + m_{**} \log 3 &\leq \sum_{3$$

$$\begin{split} & then \; v_2(N!/\prod \mathcal{B}^{(3)}) > n_{**}, \, v_3(N!/\prod \mathcal{B}^{(3)}) > m_{**}, \, and \, furthermore \\ & \frac{\log(3L) + \kappa_L}{\log t - \log(3L)} \leq \frac{(v_2(N!/\prod \mathcal{B}^{(3)}) - n_{**})\log 2}{(v_3(N!/\prod \mathcal{B}^{(3)}) - m_{**})\log 3} \leq \frac{\log t - \log(2L)}{\log(2L) + \kappa_L}. \end{split}$$

Then $t(N) \ge t$.

Proof. Suppose there is a non-tiny prime p > 3 with a positive p-deficit $|v_p(N!/\prod \mathcal{B}^{(3)})|_{0,1} > 0$. We locate an element of $\mathcal{B}^{(3)}$ that contains p as a factor, and replaces it with $\lceil p \rceil^{\langle 2,3 \rangle} = 2^{n_p} 3^{m_p}$, which increases that factor by at most $\exp(\kappa_p)$ thanks to (3.2). This procedure reduces the p-deficit by one, adds at most κ_p to the t-excess, and decrements $v_2(N!/\prod \mathcal{B}^{(3)})$, $v_3(N!/\prod \mathcal{B}^{(3)})$

by n_p, m_p respectively. Since $n_p \log 2 + m_p \log 3 \le \log p + \kappa_p$, if we apply this procedure to clear all deficits at non-tiny primes, the resulting multiset $\mathcal{B}^{(4)}$ has a *t*-excess of

$$E_t(\mathcal{B}^{(4)}) \le E_t(\mathcal{B}^{(3)}) + \sum_{p>3} |\nu_p(N!/\prod \mathcal{B})|_{0,\kappa_p}$$

and we have

$$v_2(N!/\prod \mathcal{B}^{(4)}) = v_2(N!/\prod \mathcal{B}^{(3)}) - n', \quad v_3(N!/\prod \mathcal{B}^{(4)}) = v_3(N!/\prod \mathcal{B}^{(3)}) - m'$$

with

$$n' \log 2 + m' \log 3 \le \sum_{p>3} \left| v_p \left(\frac{N!}{\prod \mathcal{B}^{(3)}} \right) \right|_{0, \log p + \kappa_p}.$$

The hypotheses of Proposition 3.4 are now satisfied, and we are done.

3.7. **Analysis of Steps 1,2,3.** To apply Proposition 3.5, we now compute the various statistics of $\mathcal{B}^{(3)}$ produced by Steps 1-3.

We begin with the analysis of $\mathcal{B}^{(1)}$, constructed in Step 1 of the algorithm. To count elements coprime to 6, we use the following lemma:

Lemma 3.6. For any interval (a, b] with $0 \le a \le b$, the number of natural numbers in the interval that are coprime to 6 is $\frac{b-a}{3} + O_{\le}(4/3)$.

Proof. By the triangle inequality, it suffices to show that the number of natural numbers coprime to 6 in [0, a], minus a/3, is $O_{\leq}(2/3)$. The claim is easily verified for $0 \leq a \leq 6$, and the quantity in question is 6-periodic in a, giving the claim.

The excess of $\mathcal{B}^{(1)}$ is clearly given by

$$E_t(\mathcal{B}^{(1)}) = A \sum_{n \in I} \log \frac{n}{t}.$$

By the fundamental theorem of calculus, this is

$$A\int_0^{3t/A} |I\cap(t,t+h)| \,\frac{dh}{t+h}.$$

Bounding $\frac{1}{t+h}$ by $\frac{1}{t}$ and applying Lemma 3.6, we conclude that

$$E_t(\mathcal{B}^{(1)}) \le A \int_0^{3t/A} \left(h + \frac{4}{3}\right) \frac{dh}{t} = \frac{9t}{2A} + 4.$$
 (3.17)

Next, we compute *p*-valuations $v_p(\mathcal{B}^{(1)})$. By construction, this quantity vanishes at tiny primes p = 2, 3. For p > 3, we can use Lemma 3.6 again to conclude

$$\begin{split} v_p(\mathcal{B}^{(1)}) &= A \sum_{1 \leq j \leq \frac{\log N}{\log p}} |I \cap p^j \mathbb{Z}| \\ &= A \sum_{1 \leq j \leq \frac{\log N}{\log p}} \left(\frac{t}{p^j A} + O_{\leq}(4/3) \right) \\ &= \frac{t}{p-1} + O_{\leq} \left(\frac{3t}{N(p-1)} \right) + O_{\leq} \left(\frac{4A}{3} \left\lceil \frac{\log N}{\log p} \right\rceil \right) \\ &= \frac{t}{p-1} + + O_{\leq} \left(\frac{4A+1}{3} \left\lceil \frac{\log N}{\log p} \right\rceil \right) \end{split}$$

since $\frac{3t}{N(p-1)} \le \frac{3}{4e} \le \frac{1}{3}$. Meanwhile, from (1.2) one has

$$v_p(N!) = \frac{t}{p-1} + O_{\leq} \left(\left\lceil \frac{\log N}{\log p} \right\rceil \right)$$

and thus

$$v_p(N!/\mathcal{B}^{(1)}) = O_{\leq}\left(\frac{4A+4}{3}\left[\frac{\log N}{\log p}\right]\right).$$
 (3.18)

Now we pass to $\mathcal{B}^{(2)}$ by performing Step 3 of the algorithm. Removing elements from a *t*-admissible multiset cannot increase the *t*-excess, so from (3.17) we have

$$E_{t}(\mathcal{B}^{(2)}) \le \frac{9t}{2A} + 4. \tag{3.19}$$

The elements removed are of the form pm with $m \le K(1 + \frac{3}{A})$ coprime to 6, and p in the interval $(\frac{t}{\min(m,K)}, \frac{t}{m}(1 + \frac{3}{A})]$. We conclude that

$$v_p(N!/\mathcal{B}^{(2)}) = v_p(N!/\mathcal{B}^{(1)})$$

for $K(1 + \frac{3}{4}) . For <math>3 one has$

$$v_{p}(N!/\mathcal{B}^{(2)}) = v_{p}(N!/\mathcal{B}^{(1)}) + A \sum_{m \le K(1+\frac{3}{A})} v_{p}(m) \left(\pi \left(\frac{t}{m} (1+\frac{3}{A}) \right) - \pi \left(\frac{t}{\min(m,K)} \right) \right). \tag{3.20}$$

Finally, by construction we are in balance

$$v_p(N!/\mathcal{B}^{(2)}) = 0$$

for p > t/K, while for tiny primes p = 2, 3 we have

$$v_p(N!/\mathcal{B}^{(2)}) = v_p(N!)$$

We now pass to $\mathcal{B}^{(3)}$ by performing Step 3 of the algorithm. We first consider the simpler version of this step in which we add $v_p(N!)$ copies of $p\lceil t/p\rceil^{\langle 2,3\rangle}$ for each prime p>t/K. The

excess here is given by

$$E_{t}(\mathcal{B}^{(3)}) = E_{t}(\mathcal{B}^{(2)}) + \sum_{p > t/K} v_{p}(N!) \log \frac{\lceil t/p \rceil^{\langle 2, 3 \rangle}}{t/p}.$$
 (3.21)

For primes p > t/K, one is now in balance:

$$v_p(N!/\mathcal{B}^{(3)}) = 0.$$

For primes 3 , no change has been made to the*p*-surplus or*p*-deficit:

$$v_p(N!/\mathcal{B}^{(3)}) = v_p(N!/\mathcal{B}^{(2)}).$$

Finally, at a tiny prime $p_0 = 2, 3$ we have

$$\nu_{p_0}(N!/\mathcal{B}^{(3)}) = \nu_{p_0}(N!) - \sum_{p>t/K} \nu_p(N!) \nu_{p_0}(\lceil t/p \rceil^{\langle 2,3 \rangle}).$$

4. Powers of 2 and 3

We now obtain good bounds on the quantity κ_L . Clearly κ_L is a non-increasing function of L with $\kappa_1 = \log 2$. The following lemma gives improved control on κ_L for large L:

Lemma 4.1. If n_1, n_2, m_1, m_2 are natural numbers such that $n_1 + n_2, m_1 + m_2 \ge 1$ and

$$1 \le \frac{3^{m_1}}{2^{n_1}}, \frac{2^{n_2}}{3^{m_2}}$$

then

$$\kappa_{\min(2^{n_1+n_2},3^{m_1+m_2})/6} \le \log \max \left(\frac{3^{m_1}}{2^{n_1}},\frac{2^{n_2}}{3^{m_2}}\right).$$

Thus, for instance, setting $n_1 = 3$, $m_1 = 2$, $n_2 = 2$, $m_2 = 1$, we have

$$\kappa_{4.5} \le \log \frac{2^2}{3} = 0.28768 \dots,$$

setting $n_1 = 3$, $m_1 = 2$, $n_2 = 5$, $m_2 = 3$, we have

$$\kappa_{40.5} \le \log \frac{2^5}{3^3} = 0.16989 \dots$$

and setting $n_1 = 11$, $m_1 = 7$, $n_2 = 8$, $m_2 = 5$, we have

$$\kappa_{2^{18}/3} \le \log \frac{3^7}{2^{11}} = 0.06566 \dots$$

 $(2^{18}/3 = 87381.33...).$

Proof. If $\min(2^{n_1+n_2}, 3^{m_1+m_2})/6 \le t \le 2^{n_2-1}3^{m_1-1}$, then we have

$$t \le 2^{n_2 - 1} 3^{m_1 - 1} \le \max\left(\frac{3^{m_1}}{2^{n_1}}, \frac{2^{n_2}}{3^{m_2}}\right) t,\tag{4.1}$$

so we are done in this case. Now suppose that $t > 2^{n_2-1}3^{m_1-1}$. If we write $\lceil t \rceil^{\langle 2,3 \rangle} = 2^n 3^m$ be the smallest 3-smooth number that is at least t, then we must have $n \ge n_2$ or $m \ge m_1$ (or both). Thus at least one of $\frac{2^{n_1}}{3^{m_1}}2^n 3^m$ and $\frac{3^{m_2}}{3^{n_2}}2^n 3^m$ is an integer, and is thus at most t by construction. This gives (4.1), and the claim follows.

Some efficient choices of parameters for this lemma are given in Table 1. For instance, $\kappa_{4.5} \le 0.28768...$ and $\kappa_{40.5} \le 0.16989...$

n_1	m_1	n_2	m_2	$\min(2^{n_1+n_2},3^{m_1+m_2})/6$	$\log \max(3^{m_1}/2^{n_1}, 2^{n_2}/3^{m_2})$
1	1	1	0	1/2 = 0.5	$\log 2 = 0.69314$
1	1	2	1	$2^2/3 = 1.33 \dots$	log(3/2) = 0.40546
3	2	2	1	$3^2/2 = 4.5$	$\log(2^2/3) = 0.28768\dots$
3	2	5	3	$3^4/2 = 40.5$	$\log(2^5/3^3) = 0.16989\dots$
3	2	8	5	$2^{10}/3 = 341.33$	$\log(3^2/2^3) = 0.11778\dots$
11	7	8	5	$2^{18}/3 = 87381.33$	$\log(3^7/2^{11}) = 0.06566\dots$

TABLE 1. Efficient parameter choices for Lemma 4.1. The parameters which attain the minimum or maximum are indicated in **boldface**.

Remark 4.2. It should be unsurprising that the continued fraction convergents 1/1, 2/1, 3/2, 8/5, 19/12, ... to

$$\frac{\log 3}{\log 2} = 1.5849\dots = [1; 1, 1, 2, 2, 3, 1, \dots]$$

are often excellent choices for n_1/m_1 or n_2/m_2 , although occasionally other approximants such as 11/7 are also usable.

Asymptotically, we have logarithmic-type decay:

Lemma 4.3 (Baker bound). We have

$$\kappa_L \ll \log^{-c} L$$

for all $L \ge 2$ and some absolute constant c > 0.

Proof. From the classical theory of continued fractions, we can find rational approximants

$$\frac{p_{2j}}{q_{2j}} \le \frac{\log 3}{\log 2} \le \frac{p_{2j+1}}{q_{2j+1}} \tag{4.2}$$

to the irrational number $\log 3/\log 2$, where the convergents p_i/q_i obey the recursions

$$p_j = b_j p_{j-1} + p_{j-2}; \quad q_j = b_j q_{j-1} + q_{j-2}$$

with $p_{-1} = 1$, q = -1 = 0, $p_0 = b_0$, $q_0 = 1$, and

$$[b_0; b_1, b_2, \dots] = [1; 1, 1, 2, 2, 3, 1 \dots]$$

is the continued fraction expansion of $\frac{\log 3}{\log 2}$. Furthermore, $p_{2j+1}q_{2j}-p_{2j}q_{2j+1}=1$, and hence

$$\frac{\log 3}{\log 2} - \frac{p_{2j}}{q_{2j}} = \frac{1}{q_{2j}q_{2j+1}}. (4.3)$$

By Baker's theorem, $\frac{\log 3}{\log 2}$ is a Diophantine number, giving a bound of the form

$$q_{2j+1} \ll q_{2j}^{O(1)} \tag{4.4}$$

and a similar argument (using $p_{2j+2}q_{2j+1} - p_{2j+1}q_{2j+2} = -1$) gives

$$q_{2j+2} \ll q_{2j+1}^{O(1)}. (4.5)$$

We can rewrite (4.2) as

$$1 \le \frac{3^{q_{2j}}}{2^{p_{2j}}}, \frac{2^{p_{2j+1}}}{3^{q_{2j+1}}}$$

and routine Taylor expansion using (4.3) gives the upper bounds

$$\frac{3^{q_{2j}}}{2^{p_{2j}}}, \frac{2^{p_{2j+1}}}{3^{q_{2j+1}}} \le \exp\left(O\left(\frac{1}{q_{2j}}\right)\right).$$

From Lemma 4.1 we obtain

$$\kappa_{\min(2^{p_{2j}+p_{2j+1}},3^{q_{2j}+q_{2j+1}})/6} \ll \frac{1}{q_{2j}}.$$

The claim then follows from (4.4), (4.5) after optimizing in j.

It seems reasonable to conjecture that c can be taken to be arbitrarily close to 1, but this is essentially equivalent to the open problem of determining that irrationality measure of $\log 3/\log 2$ is equal to 2.

5. ASYMPTOTIC EVALUATION OF t(N)

In this section we establish the lower bound

$$\frac{t}{N} \ge \frac{1}{e} - \frac{c_0}{\log N} - O(\log^{1-c} N)$$

for some absolute constant c > 0.

Let N be sufficiently large. We introduce parameters

$$A := \lfloor \log^2 N \rfloor$$

and

$$K := \log^3 N.$$

Let I denote the integers in the interval [t, t+3t/A] that are coprime to 6, and let \mathcal{B} be the tuple consisting of these integers, each appearing with multiplicity A. This tuple is t-admissible, and the t-excess can be estimated as

$$E_t(\mathcal{B}) \le |\mathcal{B}| \log(1 + 3/A) \ll A \frac{t}{A} \frac{1}{A} \ll \frac{N}{\log^2 N}$$

by choice of A. As none of the elements of \mathcal{B} are divisible by tiny primes, we have a considerable surplus at those primes. Indeed, from (1.2) we have

$$v_p(N!/\prod \mathcal{B}) = v_p(N!) = \frac{N}{p-1} - O(\log N)$$

for the tiny primes p = 2, 3.

6. Guy-Selfridge conjecture for $N>10^{19}$

7. Guy-Selfridge conjecture for medium values of N

REFERENCES

- [1] J. Büthe, Estimating $\pi(x)$ and related functions under partial RH assumptions, Math. Comp., 85(301), 2483–2498, Jan. 2016.
- [2] P. Dusart, Explicit estimates of some functions over primes, Ramanujan J. 45 (2018) 227–251.
- [3] R. K. Guy, J. L. Selfridge, Factoring factorial n, Amer. Math. Monthly 105 (1998) 766–767.
- [4] H. Robbins, A Remark on Stirling's Formula, Amer. Math. Monthly 62 (1955) 26–29.
- [5] T. Tao, Decomposing factorials into bounded factors, preprint, 2025. https://arxiv.org/abs/2503. 20170