Lecture 16, Oct. 5

16.1 Theorem. Let F(n) be a statement about an integer n. Let $m \in \mathbb{Z}$

Suppose F(m) is true

Suppose that for all $k \ge m$, if F(k) is true then F(k+1) is true

Then F(n) is true for all $n \ge m$

Proof Method

Let F(n) be a statement about an integer and let $m \in \mathbb{Z}$

To prove F(n) is true for all $n \ge m$, we can do the following.

- 1. Prove that F(n) is true
- 2. Let $k \ge m$ be arbitrary and suppose, inductively, that F(k) is true
- 3. Prove F(k+1) is true

Alternatively, suppose F(k-1) prove F(k)

A slightly different proof method

To prove that F(n) is true for all $n \ge m$ we can do the following:

- 1. Prove that F(m) is true and that F(m+1) is true
- 2. Let $k \ge m+2$ be arbitrary and suppose that F(k-1) and F(k-2) are true
- 3. Prove that F(k) is true

Another Proof Method

we can prove that F(n) is true for all $n \ge m$ as follows.

- 1. Let $n \ge m$ be arbitrary and suppose that F(k) is true for all k with $m \le k < n$
- 2. prove that F(n) is true.
- **16.2 Theorem. Strong Mathematical Induction** Let F(n) be a statement about an integer n and let $m \in \mathbb{Z}$

Suppose that for all $n \ge m$, if F(k) for all $k \in \mathbb{Z}$ with $m \le k < n$, then F(n) is true.

Then F(n) is true for all $n \ge m$.

Proof. Let G(n) be a statement "F(n) is true for all $k \in \mathbb{Z}$ with $m \le k < n$ "

Note that G(m) is true vacuously. (since there is no value of $k \in \mathbb{Z}$ with $m \le k < n$)

Let $n \ge m$ be arbitrary.

Suppose G(n) is true, that is "F(n) is true for all $k \in \mathbb{Z}$ with $m \le k < n$ "

Since F(n) is true for all $k \in \mathbb{Z}$ with $m \le k < n$, then F(n) is true for all $k \in \mathbb{Z}$ with $m \le k < n + 1$. In other words, G(n+1) is true.

Now let $n \ge m$ be arbitrary. Since G(k) is true for all $k \ge m$, in particular G(n+1). In other words, F(k) is true for all k with $m \le k < n+1$. In particular F(n) is true

Since $n \ge m$ was arbitraty, F(n) is true for all $n \ge m$.

16.3 Example. Let $(x_n)_{n\geq 0}$ be the sequence which is defined recursively by $x_0=2$, $x_1=2$ and $x_n=2x_{n-1}+3x_{n-2}$ for all $x\geq 2$

Find a closed formula for x_n

Solution. Observe that $x_n = 3^n + (-1)^n$

When n = 0, $x_0 = 2$ and $3^0 + (-1)^0 = 2$, so $x_n = 3^n + (-1)^n$ is true when n = 0

When n = 1, $x_1 = 2$ and $3^1 + (-1)^1 = 2$, so $x_n = 3^n + (-1)^n$ is true when n = 1

Let $n \ge 2$ be arbitrary.

Suppose that $x_{n-1} = 3^{n-1} + (-1)^{n-1}$ and $x_{n-2} = 3^{n-2} + (-1)^{n-2}$

$$x_n = 2x_{n-1} + 3x_{n-2}$$

$$= 2(3^{n-1} + (-1)^{n-1}) + 3(3^{n-2} + (-1)^{n-2})$$

$$= 9^{n-2} + (3-2)(-1)^{n-2}$$

$$= 3^n + (-1)^n$$

By induction, $x_n = 3^n + (-1)^n$ for all $n \ge 0$

Binomial Theorem

16.4 Definition. For $n, k \in \mathbb{N}$ with $0 \le k \le n$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}$$