Computer Systems

12 | Linux Overview | Command Shell

Dr Stuart Thomason

Linux History

- Linux is an open-source operating system
 - You can download its code to see how it works
 - And contribute changes/improvements
- Usually packaged into distributions that all use the same Kernel but add other opensource system software and libraries

- Kernel was developed by Linus Torvalds
 - Inspired by Minix (itself based on Unix)
 - · Packaged with GNU versions of Unix system software

Unix and GNU

- The Unix (1971) source code was written in assembly language
 - Thompson, Ritchie, Kernighan and McIlroy
 - Invented the C language and implemented its first compiler
 - Rewrote and recompiled Unix in high-level C
 - Unix was proprietary software owned by AT&T and Bell Labs
- GNU is a recursive acronym (GNU is Not Unix)
 - The GNU Project began in 1984
 - Aimed to build a free operating system (free to use, share, study, modify)
 - Implemented many system utilities but lacked a kernel
 - Torvalds built Linux kernel using GNU software (eg. C compiler)
 - First "GNU Linux" distribution released in 1992

Linux Market Share

- Desktops & Laptops
 - 3% Linux / 87% Windows / 10% MacOS (Unix)
- Web & Cloud Services (ie. back-end systems)
 - 96% Linux / 2% Windows / 2% FreeBSD
- Mobiles & Tablets
 - 71% Android (Linux) / 28% iOS (Unix) / 1% Other
- Film Production
 - DreamWorks, Pixar, Weta Digital, ILM all use Linux farms
 - Around 95% of CGI effects generated on Linux servers

Linux System Architecture

System Calls

- User programs need to access I/O devices
 - So they can interact with the user (mouse, keyboard, display)
 - And send/receive data from disk or the network
 - But the protection ring prevents direct access
- Operating systems provide a collection of system calls
 - Often implemented as an interrupt
 - Along with other useful functions these form the application programmer interface (API) of the operating system
- Library code is included or imported at the top of your source code
 - Provides a wrapper that makes system calls look like ordinary subroutine calls
 - Libraries (user mode) use system calls (kernel mode) to carry out privileged tasks

Kernel Modules

- The kernel is privileged (in any operating system)
 - Can do anything without any restrictions
 - Access any device, memory location, etc.
- Device drivers also need privileged access to hardware
- Linux has trusted device drivers built into the kernel itself

	Monolithic Kernel	Modular Kernel	
Advantage	All drivers included when kernel is compiled	Specific drivers loaded when the system boots up	
Disadvantages	 Kernel image is very big on disk and in memory Need to recompile kernel to add new drivers or functionality 	 Fragmentation of kernel memory as file systems and modules are loaded Security and stability risk from loading bad modules 	

Graphical and Terminal (Text) Shells

- The original Unix/Linux shell was purely text based
 - Type a command and press ENTER
 - See result as text in a single scrolling terminal
- Latest Linux distributions include various graphical shells
 - WIMP (windows, icons, menus, pointer)
 - GUI (graphical user interface)
 - User can install and boot into their preferred desktop shell (KDE, Gnome, etc.)
 - Shell and Window Manager run as user level processes
- On this module we will use a terminal shell by connecting to our remote Linux farm
 - Navigate the Linux file system and see how files are stored
 - Investigate how processes are created and managed

Department Linux Farm

- We have our own Linux farm in the department
 - Sixteen servers called lxfarm01, lxfarm02 ... lxfarm16
 - Connect to lxfarmXX.csc.liv.ac.uk
 - Each server has 8 physical CPUs (with 4 cores in each CPU)
- Your usual MWS login details should already work
 - You need to be on campus or using the VPN service
 - You might be asked to confirm a Duo 2FA login request
- After successful login you will see the command line prompt
 - Type commands at the prompt (check spelling) and press ENTER
 - Type logout or exit to close the connection to the server

Your Home Directory

- We often use the word 'folder' in a GUI desktop environment
 - Folders contain files
 - Folders can contain other folders in a nested manner
- On the command line (terminal shell) we usually call them a 'directory'
 - Means the same thing
 - Directories contain files and other nested directories
- Your home directory has a special name called ~ (tilde character)
 - When you first login, the command prompt will be in your home directory
 - It will contain some dotfiles that Linux uses to store your preferences and settings
- You can type pwd to see the path name of the current directory

Special Directory Names

- The root of the file system is the forward slash
- The current directory (wherever you are) uses a single period
- The parent of the current directory uses a double period
- Use the cd command to change directory (followed by the name or path to change to)
- Paths can be absolute (from root) or relative (to where you are)

Command Options

- Almost all Linux commands can be augmented with options
 - Options usually start with a minus sign followed by a letter
 - The case (upper or lower) of the letter is <u>important</u>
 - You can use more than one option at the same time
 - Remember that the command line is very unforgiving of typos

```
[scap21@lxfarm01 ~]$ ls -la

total 4

drwx--x--x. 4 scap21 nobody 4 Feb 10 11:51 .

drwxr-xr-x. 6 root root 0 Feb 10 11:49 ..

-rw-----. 1 scap21 nobody 0 Feb 10 11:51 hello.txt

drwx--x--x. 3 scap21 nobody 3 Feb 10 11:50 .local

dr-xr-xr-x. 4 root root 4 Feb 8 17:15 .zfs
```

- Each command also has its own manual page
 - Type man followed by the command (eg. man ls)
 - This will show all the options and explain what they do

File Permissions

Permissions are shown on the left of a long file listing

```
drwxr-x---
-rw-r--r--
```

- The 10-character string is split into four parts
 - First character indicates directories and other special files
 - User permissions (read, write, execute)
 - Group permissions
 - Other permissions (ie. everyone on the system)
- On Linux systems...
 - Every user belongs to a group (can be in multiple groups)
 - Every process is owned by a user and a group (even system processes)

Root User

- Linux has a special user called root
 - Anyone logged in as root has full access to everything
 - Permissions don't apply to the root user
 - Many system files and background processes are owned by the root user (shown when you view their permissions)
- Most modern Linux systems disable the root login
 - The root user still exists but just can't login to the system
 - Privileged actions are performed by a user temporarily requesting root permissions with the sudo command
- Don't confuse this with the root file directory, which is using the word 'root' with a different meaning (root means top level)

Setting Octal and Mnemonic Permissions

- Use the chmod command to change the permissions of a file
- To add write permission for the group: chmod g+w filename
- Or to remove read permission for everyone else (others): chmod o-r filename
- You can also use octal numbers to change permissions quickly

(add up)	User	Group	Other
Read	4	4	4
Write	2	2	2
Execute	1	1	1

- Most files are set to 640 and most directories to 750
 - 640 is -rw-r--- (user read/write, group read)
 - 750 is drwxr-x--- (user read/write/exec, group read/exec)

Warning

DO NOT SEND BROADCAST MESSAGES TO OTHER USERS

Your use of the Linux Farm is subject to the IT Acceptable Use Policy