1 充配电总成

1.1 布置位置

充配电总成布置在车辆前舱上部

1.2 低压引脚定义

低压接插件投影图如下:

引脚定义如下:

引脚号	端口名称	端口定义	线束接法	备注
1	OFF-12V-1	常电1	接 12V 常电	
2	OFF-12V-1	常电 2	接 12V 常电	
3	GND	常电电源地 1	电源地	
4	CC	充电连接确认	接交流充电口-2	
5	CP	充电控制导引	接交流充电口-1	
6	CC-BMC	充电连接信号	接 BMC02-20	
7/	T-CDK	充电口温度检测	接交流充电口-7	
8	SOURSE-JCQ	直流充电正极/直流充电负极 接触器电源	接 BMC01-15	
9	9 CONTROL-JCQ+ 直流充电正极接触器控制信号		接 BMC01-33	
10 CONTROL-JCQ-		直流充电负极接触器控制信 号	接 BMC01-24	
11	SJJC	直流充电接触器烧结检测信 号	接 BMC02-7	
12	12 DCHS-IN 直流高压互锁输入		接 PTC 控制器互锁	风加热 PTC 配置
12	12 DCHS-IN 直流高压互锁输入		接电池包 D-29	水加热 PTC 二合一配置
13	13 DCHS-OUT 直流高压互锁输出		接 BMC02-05	

14	DCHS-IN	交流高压互锁输出	接 BMC02-11
15	DCHS-OUT	交流高压互锁输入	接 BMC02-10
16 CAN-H 动力网 CAN 线		动力网 CAN 线	
17 CAN-L		动力网 CAN 线	
18 GND		直流充电接触器烧结检测信 号地	信号地
19 GND		常电电源地 2	电源地
20-33 (空)			

1.3 结构说明

序号	定义	对接说明
1	辅助定位(Φ11)	安装在前舱大支架上
2	出水口	连接冷却水管
3	排气口	连接排气管
4	进水口	连接冷却水管
5	主定位(φ9)	安装在前舱大支架上
6	交流充电输入	连接交流充电口
7	直流充电输入	连接直流充电口
8	空调压缩机配电	连接空调压缩机
9	空调 PTC 配电	连接空调 PTC
10	辅助定位(Φ11)	安装在前舱大支架上

11	低压正极输出	连接蓄电池
12 辅助定位 (φ11)		安装在前舱大支架上
13	低压信号	连接低压线束
14	电机控制器配电	连接电机控制器
15 高压直流输入/输出		连接电池包

1.4 故障诊断

1 把车开进维修间

下一步

2 检查蓄电池电压

标准电压值:

11~14V

如果电压值低于11V,在进行下一步之前请 充电或更换蓄电池。

下一步

3 参考故障诊断表

结果	进行
现象不在故障诊断表中	Α
现象在故障诊断表中	В

В

转到第5步

Α

4 全面诊断

下一步

5 调整,维修或更换

下一步

下一步

7 结束

1.4.1 故障码列表

序号	故障码	故障描述	
OBC 故障码			
1	P157016	交流侧电压低	
2	P157017	交流侧电压高	
3	P157219	直流侧过流	
4	P157216	直流侧电压低	
5	P157217	直流侧电压高	
6	P157400	供电设备故障	
7	P157616	低压供电电压过低	
8	P157617	低压供电电压过高	
9	P157897	CC 信号异常	
10	P15794B	温度采样1高	
11	P157A37	充电电网频率高	
12	P157A36	充电电网频率低	
13	P157B00	交流侧过流	
14	P157C00	硬件保护	
15	P157E11	充电连接信号外部对地短路	
16	16 P157E12 充电连接信号外部对电源短		
17	P157F11	交流输出端短路	
18	P15834B	温度采样 2 高	
19	P158798	充电口温度严重过高	
20	P158900	充电口温度采样异常	
21	P158A00	电锁异常	
22	P151100	交流端高压互锁故障	
23	U011100	BMC 通讯超时	
24	U015500	组合仪表通讯超时	
25	U024500	多媒体通讯超时	
26	P151500	水温传感器故障	
27	27 P15FD00 冷却水温高		
28	28 U014087 BCM 通讯超时		
29	29 U011181 BMC 报文数据异常		
30	U015587	587 组合仪表报文数据异常	
31	U024587	U024587 多媒体报文数据异常	
32	32 U014081 BCM 报文数据异常		

13		10	
33	U011182	BMC 循环计数器异常	
34	P15FE00	主控与子模块通讯故障	
35	P15FF00	内部温度传感器故障	
		DCDC 故障码	
1	P1EC000	降压时高压侧电压过高	
2	P1EC100	降压时高压侧电压过低	
3	P1EC600	降压时高压侧电流过高	
4	P1EC200	降压时低压侧电压过高	
5	P1EC300	降压时低压侧电压过低	
6	P1EC400	降压时低压侧电流过高	
7	P1EC700	降压时硬件故障	
8	P1EE000	散热器过温	
9	U011100	与动力电池管理器通讯故障	
10	U014000	与 BCM 通讯故障	
11	P1ED317	低压供电电压过低	
12	P1ED316	低压供电电压过高	
	漏电传感器故障码		
1	P1CA100	严重漏电故障	
2	P1CA200	一般漏电故障	
3	P1CA000	漏电传感器自身故障	

全面诊断

1.4.2 不能交流充电故障诊断流程

当车辆出现无法充电的故障时, 按照以下流程初步判断故障原因

1 检查充配电总成外部接口是否对接良好,交流充电插座低压接插件是否对接良好

NG 对接接插件

OK

2 检测是否可以 OK 档行驶

NG

检查电池管理器及电机

OK

3 OK 档下是否可以充电

OK

4 更换充配电总成

1.4.3 DC 降压故障

当车辆出现无法充电的故障时,按照以下流程初步判断故障原因

- 1 检查动力电池电压
- a) 整车上 ON 档。
- b) 用 VDS2000 读取电池管理器发出的动力电池电压。

动力电池	正常值
	约 280-470V
24 + 12 34 + 17	(HDEB)
动力电池电压	约 265-445V
	(HDEA)

NG

动力电池故障

OK

- 2 检测高压母线电压
- a) 整车上 OK 档
- b)用 VDS2000 读取 DC 母线电压是否正常

DC	正常值
	约 280-470V
DI WA CHI CT	(HDEB)
母线电压	约 265-445V(
	HDEA)

Ok

检查电池包及高压线路

3 更换充配电总成

1.4.4 漏电传感器故障

P1CA000		000	漏电传感器自身故障
尝试清除故障码,清除故障		清除故障	码故障依旧更换充配电总成。
P1CA100		00	严重漏电故障

检查整车高压电器、高压线路及电池包。使用绝缘电阻测试仪或万用表分别排查绝缘故障

1.5 更换充配电总成

1.5.1 车辆退至 OFF 档

车辆熄火(退至 OFF 挡), 拆副仪表台;

1.5.2 拆卸外部接口

1) 使用水管钳拆卸进水管、出水管、排气管;

2) 手工拆卸高压直流输入/输出接插件、低压线束接插件、空调 PTC 接插件、空调 压缩机接插件、交流充电输入接插件;

3) 使用 13 号套筒工具拆卸低压正极线、2 条搭铁线。

1.5.3 拆卸充配电总成上盖

用专用工具拆卸充配电总成大盖上的 19 个十字槽盘头螺钉组合件_M5×12_表面镀彩 锌_8.8 级和 1 个 M5×10 的内五花螺栓。

1.5.4 拆卸充配电总成内部线鼻子

拆开充配电总成小盖后,用万用表测量直流母线电压,电压为 0 后再进行下一步操作。用 10 号套筒工具拆卸电控甩线和直流充电线束共 8 个 M6 螺栓。

1.5.5 装配充配电总成上盖

用专用工具装上上盖 20 颗 M5 螺栓,其中 1 颗内五花螺栓,19 颗十字槽盘头螺钉组合件。

1.5.6 拆卸充配电总成安装脚

用 13 号套筒工具拆卸充配电总成安装脚 4 个 M8 螺栓。

1.5.7 装配说明

取出故障充配电总成,更换一个新的充配电总成,按照拆卸的倒序,用同样的工具,装配好充配电总成。

其中 M5 螺栓安装力矩 2.8±0.3N.m, M6 螺栓安装力矩 9±1 N.m, M8 螺栓安装力矩 22±1N.m。