Assignment -4

Assignment Date	06 November 2022
Student Name	Monesh Kumar P
Student Roll Number	812719104023
Maximum Marks	4 Marks

```
import pandas as pd
import numpy as np
from natplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression

df=pd.read_csv("/content/drive/NyDrive/Colab Notebooks/sbalone.csv")

d-F['age']=d-F['Rings']+1.5
df = df.drop('Rings', axis = 1)
```

Univariate Analysis

```
df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 38)
    array([[<matplotlib.axes._subplots.AxesSubplot object at 8x7f3d1b8fb698>,
             <matplotlib.axes._subplots.AxesSubplot object at 0x7f3d1ade4d98>,
             <matplotlib.axes._subplots.AxesSubplot object at 0x7f3dladaa398>,
             \verb|\matplotlib.axes._subplots.AxesSubplot| object at Bx7f3d1ad60998>]|,
             [\verb|<matplotlib.axes._subplots.AxesSubplot| object at 0x7f3dladl6f98>|,
             <matplotlib.axes._subplots.AxesSubplot object at Bx7f3d1acda5d8>,
             <matplotlib.axes._subplots.AxesSubplot object at Bx7f3dlac8fc58>,
             <matplotlib.axes._subplots.AxesSubplot object at 8x7f3dlac53ld8>]],
           dtype=object)
                                                                                                                                         Whole weight
      400
                                                                                   1400
      350
                                                                                                                           250
                                             300
                                                                                   1200
                                             250
                                                                                                                           200
      250
                                             200
      200
                                                                                                                           150
                                             250
      150
                                                                                                                           100
                                             300
      100
                                              50
                                                                                    200
                                                                04 65
                                                                                                                                        18
                                                                                                                                            15
                                                            0.3
                                                                                                      0.6
                                                                                                           0.8
                  Shucked weight
                                                         Viscera weight
                                                                                                  Shell weight
                                                                                                                                             age
                                                                                                                           700
      350
      300
                                             300
                                                                                                                           500
      250
                                             250
      200
                                                                                    700
      150
                                                                                                                           300
                                             150
                                                                                    150
                                                                                                                           200
      100
                                             300
                                                                                    100
                                              50
                                                                                                                           100
                                                                                     50
```

Length Diameter Height whole weight Shucked weight Viscera weight Shell weight age

Sex

Bivariate Analysis

М

numerical_features = df.select_dtypes(include = [np.number]).columns
sns.pairplot(df[numerical_features])

Descriptive statistics

df.	describe()							
		Diameter	Height	whole weight	Shucked weight	viscera weight	Shell weight	
	Length							age
count 417	7.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000

max 0.815000 0.650000 1.130000 2.825500 1.488000 0.760000 1.005000 30.500000

Check for missin

g values

```
df.isnull().sum()
```

Outlier handling

```
df - pd.get dummies(df) dummy_data = df.
copy()
var = 'Viscera weight' plt.scatter(x
= df[var], y = df['age'],) plt.grid(True)
```

```
\# outliers removal d-F.drop(df[(d-F['VI scera weight']>0.5) & (df-['age']<20)]. Index, inplace=True) df.drop(df[(df['Uiscera weight']<0.5) & (df['age'] > 25)].index, inplace=True) var - 'Shell weight' plt.scatter(x = df[var], y = df['age'],) plt.grid(True) #Outliers removal df.drop(df[(df['Shell weight']> 0.6) & (df['age'] < 25)].index, inplace=True) df.drop(df[(df['Shell weight']<8.8) 8 (df['age'] > 25)].index, inplace=True)
```

```
var = 'Shucked weight'
plt.scatter(x = df[var], y =
df['age'],) plt.grid(True)
#Outlier removal df.drop(df[(df['Shucked weight']>= 1) & (df['age'] <
28)].index, inplace=True) df.drop(df[(df['Shucked weight']<1) &
(df['age'] > 28)].iudex, inplace=True)
```

```
var = ' Diameter "
pit . scatter (x = df-[var] , y = df[ 'age '] )
p1t . grid(True)
df.drop (df-[(df['Diazeten'] <8.1) &
\label{eq:condition} $$ \{df['age'] < 5)].index, inplace - True \} $$ df. drop(df-{(df['Diameter'] < 0.6) & (
d-F[ 'age '] : 25)] . Index, 1nplace = True)
d-F- . drop(df-[ (d1"[ 'Diameter '] :=0. 6) & (
df-[ 'age '] (25)]. Index, 1nplace = True)
var = ' Nhole weight '
pit . scatter (x = df-[var] , y = df[ ' age ' ] ) p1t . grid(True)
df.drop(df[(df['Whole weight'] >= 2.5) &
             (df['age'] < 25)].index, inplace =
             True)
df. drop(df-[ (df[ ' Nhole weight ' ] <2. 5) & ( d-F[ ' age ' ] \rightarrow
25)].Index, 1nplace = True) var
p1t . scatter (x - df[var] , y - df[ ' age ' ] ) p1t . grid(True)
d-F. drop(d-I- [ (df-[ ' Height ' ] > 6 . 4) &
            (df['age'] < 15)]. Index, Inplace = True)
d-F. drop(df-[ (d-F[ ' Height '] <0. 4) & ( d-I°[ '
age ' ] > 25) ] . index, 1nplace = True)
```


Categorical columns

 $numerical_features = df.select_dtypes(include = [np.number]).columns \\ categorica1_features = df.select_dtypes(include = [np.object]).columns$

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: Deprecationwarning: 'up.object' is a deprecated alias for the builtin 'object' To siler Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.8-notes.html#deprecations

categon ca _featunes

numerical_features

Index(['Length','Dl ameter', 'Height','Mhole weight','Shucked weight', 'Uiscera weight', 'Shell weight', 'age'], dtype='object')

Index(['Sex'], dtype='object')

ENCODING

from sklearn.preprocessing import LabelEncoder le=LabelEncoder()
print(df.Sex.value_counts())

M 1525 1 1341 F 1301

Name: Sex, dtype: int64

M 0.455

x=df.iloc[:, :5]

0

Sex Length Diameter Helght Nhole we1ght

0.365 0.095

0.5140

1	М	0.350	0.265	0.090	0.2255
2	F	0.530	0.420	0.135	0.6770
3	М	0.440	0.365	0.125	0.5160
4		0.330	0.255	0.080	0.2050
		0.565	0.450	0.165	
4172	F				0.8870
4173	M	0.590	0.440	0.135	0.9660
4174	M	0.600	0.475	0.205	1.1760

4175 F 0.625 0.485 0.150 1.0945 4176 M 0.710 0.555 0.195 1.9485

4167 rows • 5 columns

Train, Test, Split

y=df.iloc[:,5:]

	Shucked weight	Vlscera weight	Shell weight	age	0
q	0.2245	0.1010	0.1500	16.5	
1	0.0995	0.0485	0.0700	8.5	
2	0.2565	0.1415	0.2100	10.5	
3	0.2155	0.1140	0.1550	11.5	
4	0.0895	0.0395	0.0550	8.5	
4172	0.3700	0.2390	0.2490	12.5	
4173	0.4390	0.2145	0.2605	11.5	
4174	0.5255	0.2875	0.3080	10.5	
4175	0.5310	0.2610	0.2960	11.5	
4176	0.9455	0.3765	0.4950	13.5	
4407					

4167 rows 4 columns

from sk1earn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

Model Building

from sklearn.linear_model import LinearRegression mlr=LinearRegression() mlr.fit(x_train,y_train)

Train and Test model

x_test [6 : 5]

Sex Length Diameter Height Nhole we1ght

		0.535	0.450	0.170	0.781
661					
370	F	0.650	0.545	0.165	1.566
2272	М	0.635	0.510	0.210	1.598
1003	М	0.595	0.455	0.150	1.044
1145	М	0.580	0.455	0.195	1.859

y_test[0:5]

		Shucked we1ght	vlscera we1ght	Shell we1ght age	
	661	0.3055	0.1555	0.295	
	370	0.6645	0.3455	0.415 17.5	
2	272	0.6535	0.2835	0.580	
1	003	0.5180	0.2205	0.270 10.5	
1	145	0.9450	0.4260	0.441	

Feature Scaling

 $from \ sklearn.preprocessing \ import \ StandardScaler \\ ss=StandardScaler() \ x_train=ss.fit_transform(x_train) \\ mlrpred=mlr.predict(x_test[B:9]) \ mlrpred \\ Performance \ measure$

I-rom sklearn .metric s Import r2_score r2_s core(m1r . predict (x_test) , y_test)

0.5597133867640833