# FOXO single cell tracking

Jerry 2014/09/15

#### FOXO sensor with IAA treatment



## Single cell tracking

- Segmentation (ImageJ)
  - → macro-create-mask-xx-opp/nic.ijm
  - → output: measure-mask/cytosol-xxxxxx.csv
- Tracking (Perl)
  - $\rightarrow$  trackXX.pl
  - → output: output.ratio/pos/mean....-xxxxxxx.csv
- Single-cell image generation (ImageJ)
  - → macro cropX.ijm
  - → output:: single cell movies
- Post-analysis (Matlab)
  - → normplotX.m
  - → output:: single-trace plots & parameters

# Segmentation



|    | Area | Mean     | StdDev  | Min | Max  | Χ        | Υ      | Perim. | Circ. | Median | %Area  | Slice | AR    | Round | Solidity |
|----|------|----------|---------|-----|------|----------|--------|--------|-------|--------|--------|-------|-------|-------|----------|
| 1  | 163  | 709.233  | 249.531 | 358 | 1352 | 1248.85  | 6.377  | 47.799 | 0.897 | 633    | 100    | 1     | 1.028 | 0.973 | 0.939    |
| 2  | 345  | 787.246  | 371.616 | 0   | 1551 | 1248.888 | 8.141  | 75.113 | 0.768 | 779    | 99.42  | 1     | 1.222 | 0.818 | 0.796    |
| 3  | 236  | 1089.339 | 308.922 | 633 | 1787 | 461.042  | 10.025 | 55.941 | 0.948 | 1065   | 100    | 1     | 1.089 | 0.918 | 0.94     |
| 4  | 493  | 1096.56  | 360.438 | 80  | 1790 | 461.131  | 10.908 | 83.841 | 0.881 | 1119   | 100    | 1     | 1.069 | 0.936 | 0.898    |
| 5  | 175  | 619.549  | 143.744 | 358 | 994  | 85.066   | 15.563 | 50.284 | 0.87  | 587    | 100    | 1     | 1.72  | 0.582 | 0.933    |
| 6  | 445  | 593.542  | 257.697 | 0   | 1179 | 85.08    | 15.585 | 78.184 | 0.915 | 607    | 99.551 | 1     | 1.405 | 0.712 | 0.964    |
| 7  | 216  | 843.176  | 232.082 | 504 | 1512 | 358.144  | 15.963 | 57.113 | 0.832 | 794    | 100    | 1     | 1.682 | 0.595 | 0.929    |
| 8  | 512  | 737.16   | 425.286 | 0   | 1728 | 358.107  | 15.895 | 84.426 | 0.903 | 732    | 98.828 | 1     | 1.388 | 0.721 | 0.962    |
| 9  | 309  | 1289.576 | 493.06  | 397 | 2423 | 384.267  | 21.319 | 67.113 | 0.862 | 1158   | 100    | 1     | 1.53  | 0.654 | 0.941    |
| 10 | 647  | 1244.328 | 664.088 | 0   | 2423 | 384.23   | 21.44  | 95.012 | 0.901 | 1296   | 99.845 | 1     | 1.344 | 0.744 | 0.965    |
| 11 | 162  | 508.864  | 157.27  | 268 | 1065 | 494.506  | 25.593 | 46.284 | 0.95  | 471    | 100    | 1     | 1.177 | 0.85  | 0.931    |
| 12 | 416  | 618.966  | 304.248 | 0   | 1255 | 494.572  | 25.591 | 74.184 | 0.95  | 556    | 99.76  | 1     | 1.105 | 0.905 | 0.963    |
| 13 | 286  | 1164.818 | 395.789 | 330 | 2189 | 827.584  | 40.871 | 61.941 | 0.937 | 1033   | 100    | 1     | 1.185 | 0.844 | 0.95     |

# Tracking: Algorithm



Read Input file (X,Y,Slice,Mean,Area)

Finding Shortest points in adjacent slices

Back-Tracking: for new objects (mitosis?)

Post-possessing: Removing incorrect tracks by mean/area checking; removing duplicate tracks

### Tracking: output



0.541237 0.551727 0.524322 0.517486 0.474551

0.657031

0.638946 0.542708

0.78087 0.803792 0.858342 0.903587 0.947557 0.949097

0.445294 0.417805

0.52509

0.522865

0.917112

0.524822

0.80978 0.837926 0.815634 0.802544

0.437129 0.431178 0.423484

0.88142 0.834662

8

0.475023 0.495661 0.496217 0.490586

0.8501

0.79702

0.674175

0.933337 0.912667

0.667966 0.740822

0.484122

0.608055

0.73964 0.785606

0.49659 0.528408

0.79113 0.794125

0.576611

0.78996

0.92497 0.931306 0.910304 0.921473 0.867979

0.693039

0.882926 0.717079

Track file

Data file

Time Series file

0.459

0.582

# Single cell traces









# Single cell traces



# Multiple Traces analysis (Matlab)



#### Amplitude, Frequency & alpha(DFA)



## Segmentation Script (ImageJ)

- Macro-Create-Mask-10-nic.ijm
  - → For NIC images only
  - → Usage :: assign **site** number (batch model)
  - → Usage :: change input & output directories

- Macro-Create-Mask-10-opp.ijm
  - → For Operetta images
  - → Usage :: assign row & col
  - → Usage :: change input & output directories

## Tracking Script (Perl)

- Track12.pl
- Move/copy this script into the output directory of segmentation outputs
- Usage (NIC)::>perl track12.pl start\_site end\_site 99 99
- Usage (Opp)::
   >perl track12.pl start\_row end\_row start\_col
   end\_col

### Trace files generation (Perl)

- Crop01.pl
- Copy this script to the output directory
- Usage::
  - >perl crop01.pl site/well
- Examples::
  - >perl crop01.pl s1 (NIC images)
  - >perl crop01.pl 002002 (Operetta images)
- This script will create a new directory using the well/site name for trace files

#### Single-cell movie generation (ImageJ)

- Macro\_crop2.ijm
- Pre-request > Import image sequence and rename the stack into "Image1"
- Usage:: run this macro with ImageJ and then pick the trace file of interest

### Ratio CSV file importing (Matlab)

- Ratio\_xls\_import.m
- Usage
  - → change **filename**
  - → assign output parameter (WellSxx)
- Output
  - → ratio matrix (WellSxx)

# Analysis & trace plot (Matlab)

- Normplot5.m
- Input → the ratio matrix generated/imported by ratio\_xls\_import.m
- Usage::

[period, Db, DFA]=normplot5(WellSxx, number)

 Output:: plot single-cell traces & powerspectrum and store oscillation parameters