CS 228 : Logic in Computer Science

Krishna. S

Quantifier Rank

Let φ be a FO formula over words. Define the quantifier rank of φ denoted $c(\varphi)$

- If φ is atomic $(x = y, x < y, S(x, y), Q_a(x))$ then $c(\varphi) = 0$
- $c(\neg \varphi) = c(\varphi)$
- $ightharpoonup c(\varphi \wedge \psi) = max(c(\varphi), c(\psi))$
- $ightharpoonup c(\exists x\varphi) = c(\varphi) + 1$
- ▶ Quantifier free formulae written in DNF : $C_1 \lor C_2 \lor \cdots \lor C_n$
- ▶ Formulae of quantifier rank k+1 written as a disjunction of the conjunction of formulae, each formula of the form $\exists x \varphi, \neg \exists x \varphi$ or φ , with $c(\varphi) \leqslant k$. Eliminate repeated disjuncts/conjunts. (Think Prenex normal form)

Number of FO formulae of rank $\leq c$

Let $\mathcal V$ be a finite set of first order variables, and let $c\geqslant 0$. There are finitely many FO formulae in normal form (therefore, upto equivalence) with rank $\leqslant c$ over $\mathcal V$.

Proof ideas in the following slides.

Number of FO formulae of rank $\leq c$

Let $\mathcal V$ be a finite set of first order variables. Fix a finite signature τ . Let there be m atomic formulae over τ having variables from $\mathcal V$.

- ▶ If \mathcal{V} has 2 variables x, y, and τ has $Q_a, S, <$.
- ▶ Atomic formulae : $\{Q_a(x), Q_a(y), S(x, y), x < y\}$
- Let $G = \{Q_a(x), \neg Q_a(x), Q_a(y), \neg Q_a(y), S(x,y), \neg S(x,y), x < y, \neg (x < y)\}$ be the closure of all atomic formulae containing all formulae and their negations.
- ▶ Each subset of *G* is a possible conjunct *C_i*.
- ▶ All possible disjuncts using each C_i: formulae in DNF of rank 0

Number of FO formulae of rank $\leq c$

Let $\mathcal V$ be a finite set of first order variables. Fix a finite signature τ . Let there be m atomic formulae over τ having variables from $\mathcal V$.

- ▶ 2*m* atomic/negated atomic formulae
- ▶ Number of conjunctions C_i possible $\leq 2^{2m}$
- Number of formulae in DNF $\leq 2^{2^{2m}}$ (c = 0)

Rank 1

Let there be p formulae φ of rank 0.

- ▶ 2*p* formulae of the form $\exists x \varphi$, $\neg \exists x \varphi$
- ▶ 2^{2p} conjunctions of rank 1
- Conjuncting any one of the p formulae of rank 0 gives all conjuncts of rank 1 : p2^{2p} more
- ▶ Possible conjuncts of rank 1 is $q = (p+1)2^{2p}$
- Possible disjuncts of these: 2^q

Some Notation

Given a word $w = a_1 \dots a_n$, and a finite set of variables V, define a V-enriched-word with respect to w as

- \blacktriangleright $(a_1, U_1)(a_2, U_2) \dots (a_n, U_n)$ where
- $ightharpoonup \bigcup_i U_i = \mathcal{V}$
- $ightharpoonup U_i \cap U_i = \emptyset$
- ▶ A V-enriched-word is over the alphabet $\Sigma \times 2^{V}$
- ▶ $(a, \{x\})(b, \{y, z\})(c, \emptyset)(d, \{u, v\})$ is a $\{x, y, z, u, v\}$ -enriched word with respect to the word *abcd*.
- ▶ We will refer to \mathcal{V} -enriched-word structures as \mathcal{V} -structures from here on

Notational Semantics

```
Given a V-structure w = (a_1, S_1) \dots (a_n, S_n),

ightharpoonup w \models Q_a(x) iff there exists j such that a_i = a and x \in S_i
          • (a, \{y\})(b, \{u, v\})(a, \{x\}) \models Q_a(x)
  • w \models (x = y) iff there exists j such that x, y \in S_i
          ► (a, \{x\})(b, \{y, z\})(c, \emptyset) \nvDash (x = y)
  • w \models x < y iff there exists i < j such that x \in S_i, y \in S_i
          ► (a, \{x\})(b, \{y, z\})(c, \emptyset) \models x < y
   w \models \exists x Q_a(x) iff there exists i such that
      (a_1, S_1) \dots (a_i, S_i \cup \{x\}) \dots (a_n, S_n) \models Q_a(x)
          ▶ (b, \{v, z\})(a, \{u\})(c, \emptyset) \models \exists xQ_a(x) since
             (b, \{y, z\})(a, \{x, u\})(c, \emptyset) \models Q_a(x)
```

Notational Semantics

```
▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \models \forall x \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) iff

▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \models \neg \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] iff

▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \nvDash \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] iff

▶ (a,\{x\})(a,\emptyset)(b,\emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] and

▶ (a,\emptyset)(a,\{x\})(b,\emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] and

▶ (a,\emptyset)(a,\emptyset)(b,\{x\}) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])]

▶ (a,\{x\})(a,\emptyset)(b,\{y\}) \vDash \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) iff

▶ (a,\{x\})(a,\emptyset)(b,\{y\}) \vDash (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])

Similarly, (a,\emptyset)(a,\{x\})(b,\{y\}) \vDash (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) and

(a,\emptyset)(a,\emptyset)(b,\{x,y\}) \vDash (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])
```

Logical Equivalence

- ▶ Let w_1 , w_2 be two \mathcal{V} -structures and let $r \ge 0$.
- ▶ Write $w_1 \sim_r w_2$ iff w_1, w_2 satisfy the same set of FO formulae of rank $\leq r$.
- $(a,\emptyset)(b,\emptyset) \sim_0 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $(a,\emptyset)(b,\emptyset) \sim_2 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $(a,\emptyset)(b,\emptyset) \sim_1 (a,\emptyset)(b,\emptyset)(a,\emptyset)?$
- $ightharpoonup \sim_r$ is an equivalence relation
- Finitely many equivalence classes : each class consists of words that behave the same way on formulae of rank $\leq r$

Non-Expressibility in FO: The Game Begins

Come, Lets Play

- ▶ Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2
- ► There are 2 players : Spoiler and Duplicator
- ▶ Play for r-rounds, $r \ge 0$
- ▶ Spoiler wants to show that w_1, w_2 are different $(w_1 \sim_r w_2)$
- ▶ Duplicator wants to show that they are same $(w_1 \sim_r w_2)$
- ▶ Each player has r pebbles $z_1, ..., z_r$

Moves of the Game

- At the start of each round, spoiler chooses a structure.
- Duplicator gets the other structure
- Spoiler places his pebble say z_i on one of the positions of his chosen word
- Duplicator must keep the pebble z_i on one of the positions of her word
- A pebble once placed, cannot be removed
- ► The game ends after r rounds, when both players have used all their pebbles

A Play

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$
 - After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)
- Round 2:
 - Spoiler continues on the structure w₂'
 - Duplicator gets w₁ to play
 - Spoiler: $(a, \{z_1\})(b, \emptyset)(a, \{z_2\})$
 - ▶ Duplicator : $(a, \{z_1, z_2\})(b, \emptyset)$ or $(a, \{z_1\})(b, \{z_2\})$

Winner

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$
- ► Each round changes the structures
- ▶ At the end of *r*-rounds, we have two \mathcal{V} -structures (w'_1, w'_2)
- ▶ Duplicator wins iff for every atomic formula α , $w'_1 \models \alpha$ iff $w'_2 \models \alpha$
- ▶ That is, $w'_1 \sim_0 w'_2$
- ► Spoiler wins otherwise.

Winner

Given two word structures (w_1, w_2) , duplicator wins on (w_1, w_2) if for every atomic formula α , $w_1 \models \alpha$ iff $w_2 \models \alpha$

Play continues

- Who won in the earlier play?
- We had

```
• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) and (a, \{z_1, z_2\})(b, \emptyset)

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models (z_1 < z_2)

• (a, \{z_1, z_2\})(b, \emptyset) \nvDash (z_1 < z_2) or

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) and (a, \{z_1\})(b, \{z_2\})

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models Q_a(z_2)

• (a, \{z_1\})(b, \{z_2\}) \nvDash Q_a(z_2)
```

- Spoiler wins in two rounds
- ▶ If the game was played only for one round, who will win?

Unique Winner

Given structures w_1 , w_2 , and a number of rounds r, exactly one of the players win.

- ► Think of a tree of all possible sequences of plays.
- ▶ The root is (w_1, w_2) , and nodes are all possible pairs (w'_1, w'_2) of obtainable structures.
- Mark a leaf node as S or D depending on whether Spoiler won or Duplicator won.
- ► An interior node corresponding to a move of Duplicator is labeled D if there any children labeled D; likewise for Spoiler

Logical Equivalence and Winning

Let w_1, w_2 be \mathcal{V} -structures and let $r \ge 0$. Then $w_1 \sim_r w_2$ iff Duplicator has a winning strategy in the r-round game on (w_1, w_2) .

Logical Equivalence and Winning

Assume $w_1 \sim_r w_2$, and induct on r

- ▶ Base : r = 0 and $w_1 \sim_0 w_2$. Duplicator wins, since by assumption, w_1 , w_2 agree on all atomic formulae.
- Assume for r-1: $w_1 \sim_{r-1} w_2 \Rightarrow$ Duplicator has a winning strategy in a r-1 round game

Logical Equivalence and Winning

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w₁, places a pebble z₁ somewhere on w₁
 - The resultant structure is w₁'
 - ► In response, duplicator places her pebble somewhere on w₂
 - The resultant structure is w₂'
 - ▶ By assumption, spoiler wins the r-1 round game on (w'_1, w'_2)
 - ▶ By inductive hypothesis, $w'_1 \sim_{r-1} w'_2$
 - Let ψ be the conjunction of all formulae of rank r-1 in normal form that are satisfied by w_4'
 - ▶ Then $w'_1 \models \psi, w'_2 \nvDash \psi$
 - We thus have

$$\mathbf{w}_1 \models \exists \mathbf{z}_1 \psi, \mathbf{w}_2 \nvDash \exists \mathbf{z}_1 \psi$$

contradicting $w_1 \sim_r w_2$

Logical Equivalence and Winning: Converse

Assume Duplicator wins r-round games on (w_1, w_2) and induct on r

- ▶ Base : r = 0 and Duplicator wins. Then w_1 , w_2 agree on all atomic formulae, and hence $w_1 \sim_0 w_2$
- Assume for r-1: Duplicator has a winning strategy in a r-1 round game $\Rightarrow w_1 \sim_{r-1} w_2$

Logical Equivalence and Winning: Converse

- Now, let duplicator win in the *r* round game, but $w_1 \sim_r w_2$.
 - ▶ $w_1 \nsim_r w_2 \Rightarrow$ there is some formula ψ , $c(\psi) = r$ such that $w_1 \models \psi$, $w_2 \nvDash \psi$
 - Assume $\psi = \exists z_1 \varphi$. Then $c(\varphi) = r 1$
 - Since w₁ ⊨ ∃z₁φ, spoiler can keep pebble z₁ somewhere in w₁ obtaining w₁ satisfying φ
 - ▶ In reply, duplicator keeps pebble z_1 on w_2 obtaining w_2'
 - ▶ By assumption, $w_2' \nvDash \varphi$
 - Also, by assumption, duplicator wins the r-1 round game on (w'_1, w'_2) : this by inductive hypothesis says that $w'_1 \sim_{r-1} w'_2$
 - ▶ That is, either both w'_1 , w'_2 satisfy φ , or both dont, a contradiction.

FO-definable languages

Assume *L* is FO-definable, and $L = L(\varphi)$ with rank of φ being *k*.

- ▶ Let $L = \{v_1, v_2, v_3, ...\}$ and $\overline{L} = \{w_1, w_2, w_3, ...\}$
- ▶ Play a k round game on $v_i \in L$ and $w_j \notin L$. Let ψ_{v_i,w_j} be the formula of rank k that distinguishes the two words.
- Consider the formula

$$[\psi_{v_1,w_1} \wedge \psi_{v_1,w_2} \wedge \cdots \wedge \psi_{v_1,w_n} \wedge \ldots]$$

$$\vee$$

$$[\psi_{v_2,w_1} \wedge \psi_{v_2,w_2} \wedge \cdots \wedge \psi_{v_2,w_n} \wedge \ldots]$$

$$\vee$$

$$\vdots$$

FO-definable languages

$$\psi_{L} = \bigvee_{\mathbf{v} \in L} \bigwedge_{\mathbf{w} \notin L} \psi_{\mathbf{v}\mathbf{w}}$$

- ▶ Each ψ_{VW} has rank atmost k
- ▶ Upto equivalence, there are finitely many formulae of rank *k*
- ▶ Hence the disjunction and conjunction are finite
- ψ_L is a proper formula (of finite size)
- ▶ ψ_L captures L since each $v \in L$ satisfies $\bigwedge_{w \notin L} \psi_{vw}$ while none of the $w \notin L$ satisfy $\bigwedge_{w \notin L} \psi_{vw}$

FO-definable languages

Given a property \mathcal{K} , if for any pair $v \in \mathcal{K}$ and $w \notin \mathcal{K}$, spoiler has a winning strategy in the k-round EF game on v and w, then there is a rank k FO formula $\varphi_{\mathcal{K}}$ that defines the property \mathcal{K} .

$$\varphi_{\mathcal{K}} = \bigvee_{\mathbf{v} \in \mathcal{K}} \bigwedge_{\mathbf{w} \notin \mathcal{K}} \psi_{\mathbf{v}\mathbf{w}}$$

where ψ_{vw} is as explained in the previous slide.

Note that k is fixed in the above, and is independent of the choices of the words.

Implications of the Game on FO definability

FO Definability

L is FO definable \Rightarrow there exists an *r* such that for every (w_1, w_2) pair, such that $w_1 \in L$, $w_2 \notin L$, spoiler wins in *r* rounds

Non FO Definability

For all $r \ge 0$, there exists a (w_1, w_2) pair with $w_1 \notin L$, $w_2 \in L$, duplicator wins in r rounds $\Rightarrow L$ is not FO definable

- Assume that there is a sentence φ that defines words of even length, with $c(\varphi) = r$.
- ▶ Then, $a^i \models \varphi$ iff i is even
- ▶ Show that for all r > 0, $a^{2^r} \sim_r a^{2^r-1}$

- ▶ Base case : $(a, \emptyset)(a, \emptyset)$ and (a, \emptyset) for r = 1
- ▶ In one round, duplicator wins on $(a, \emptyset)(a, \emptyset)$ and (a, \emptyset)
- ▶ Consider (aaaa, aaa) for r = 3. Who wins?
- ▶ Consider (aaaa, aaa) for r = 2. Who wins?

- Show that for all $k \ge 2^r 1$, duplicator has a winning strategy for the *r*-round game in (a^k, a^{k+1}) , for all $r \ge 0$
- ▶ Induct on r
- ▶ If r = 1, then on (a, aa) duplicator wins in one round
- ▶ Assume now that the claim is true for $\leq r 1$

▶ Let $k \ge 2^r - 1$, and consider the structures

$$(a^{k}, a^{k+1})$$

ightharpoonup Spoiler puts pebble z_1 in one of the words obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^t$$

▶ $s \leqslant \frac{k-1}{2}$ or $t \leqslant \frac{k-1}{2}$

▶ Assume $s \leq \frac{k-1}{2}$. Duplicator puts her pebble z_1 on the (s+1)th letter of the other word obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

where t' = t + 1 or t' = t - 1.

The structures after round 1 are thus

$$(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t},(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t'}$$

- ▶ We have $2^r 1 \le k = min(t, t') + s + 1 \le min(t, t') + \frac{k-1}{2} + 1$
- ► Hence $min(t, t') \ge \frac{k-1}{2} \ge 2^{r-1} 1$
- ▶ By inductive hypothesis, duplicator has a winning strategy for the r-1 round game on $(a^t, a^{t'})$.

Duplicator's Win

▶ Use the duplicator's winning strategy for the r-1 round game on $(a^t, a^{t'})$, to obtain a winning strategy in r-1 rounds on

$$(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t},(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t'}$$

- ▶ Whenever spoiler plays on a structure on letter $i \le s + 1$, duplicator plays on the same position on the other structure
- When spoiler plays at a position i > s + 1 in either word, duplicator plays in the part of the other word > s + 1 using her winning strategy in (a^t, a^{t'})

Duplicator's Win

- ▶ At the end of r rounds, we have structures w'_1, w'_2 .
- ▶ For $i \le s + 1$, pebble z_j appears at position i of w'_1 iff pebble z_j appears at position i of w'_2
- Lets erase the first s + 1 letters in w'_1, w'_2 , obtaining v'_1, v'_2
- v_1', v_2' are the words that result after $r' \le r 1$ rounds of play on $(a^t, a^{t'})$. Recall that duplicator won this.
- ▶ Show that w'_1 , w'_2 satisfy the same atomic formulae

Duplicator's Win

- ▶ Atomic Formulae : $Q_a(z_i)$: Both w'_1, w'_2 satisfy this.
- $w'_1 \models z_i < z_j$. If z_i, z_j are in the first s + 1 letters, then $w'_2 \models z_i < z_j$.
- ▶ If z_i, z_j occur in the last $|w_1'| s 1$ positions, then $v_1' \models z_i < z_j$. By duplicator's win in $(a^t, a^{t'}), v_2' \models z_i < z_i$
- ▶ If z_i appears among the first s + 1 letters and z_j after the first s + 1 letters of w'_1 , same is true in w'_2 .

Historically Speaking

The games that we saw are due to Ehrenfeucht and Fraissé

Reference: Finite Automata, Formal Logic and Circuit Complexity, by Howard Straubing.