ALGEBRA PER INFORMATICA 2020-21

FOGLIO DI ESERCIZI 11: SOLUZIONE DI ALCUNI ESERCIZI

Esercizio 1. Si consideri il seguente sottoinsieme dei numeri complessi:

$$Z = \{a + ib : a, b \in \mathbb{Z}\}$$

con le operazioni di somma e prodotto indotte da \mathbb{C} . Gli elementi di Z vengono chiamati *interi di Gauss*.

- (1) (Z,+) è un sottomonoide di $(\mathbb{C},+)$? È un sottogruppo?
- (2) $(Z \setminus \{0\}, \cdot)$ è un sottomonoide di (\mathbb{C}^*, \cdot) ? È un sottogruppo?

Soluzione.

- (1) (Z,+) è un sottogruppo, e quindi anche un sottomonoide, di $(\mathbb{C},+)$.
- (2) $(Z \setminus \{0\}, \cdot)$ è un sottomonoide di (\mathbb{C}^*, \cdot) , ma non è un sottogruppo. Ad esempio si ha che $2 \in Z$, ma $2^{-1} = \frac{1}{2} \notin Z$.

Esercizio 2. Stabilire se le seguenti coppie di gruppi sono isomorfe oppure no e in caso affermativo esibire un isomorfismo di gruppi:

- (1) $(\mathbb{R},+)$ e $(\mathbb{R}_{>0},\cdot)$;
- (2) $(U(\mathbb{Z}_{36}), \cdot)$ e $(\mathbb{Z}_{36}, +)$;
- (3) $(U(\mathbb{Z}_7), \cdot)$ e $(\mathbb{Z}_6, +)$;
- (4) $(U(\mathbb{Z}_8), \cdot)$ e $(\mathbb{Z}_4, +)$;
- (5) $(\mathbb{Z}_2 \times \mathbb{Z}_3, +)$ e $(\mathbb{Z}_6, +)$;
- (6) $(\mathbb{Z}_3 \times \mathbb{Z}_3, +)$ e $(\mathbb{Z}_9, +)$;
- (7) $(\mathbb{R} \times \mathbb{R}, +)$ e $(\mathbb{C}, +)$;
- (8) $(\mathbb{R}^* \times \mathbb{R}^*, \cdot)$ e (\mathbb{C}^*, \cdot) ;
- (9) $(\mathbb{Q}, +)$ e $(\mathbb{R}, +)$.

Soluzione.

- (1) Sì, un isomorfismo di gruppi è dato dalla funzione esponenziale exp : $\mathbb{R} \to \mathbb{R}_{>0}$.
- (2) No, perché \mathbb{Z}_{36} ha ordine 36 mentre $U(\mathbb{Z}_{36})$ ha ordine $\varphi(36) \neq 36$.
- (3) Sì, un isomorfismo di gruppi è dato da $\varphi : \mathbb{Z}_6 \to \mathrm{U}(\mathbb{Z}_7)$ tale che $\varphi(x) = 3^x$.
- (4) No, perché $U(\mathbb{Z}_8) = \{1, 3, 5, 7\}$ non ha nessun elemento di ordine 4, mentre \mathbb{Z}_4 sì.
- (5) Sì, un isomorfismo di gruppi è dato da $\varphi : \mathbb{Z}_6 \to \mathbb{Z}_2 \times \mathbb{Z}_3$ tale che $\varphi(1) = (1,1)$.
- (6) No, perché $\mathbb{Z}_3 \times \mathbb{Z}_3$ non ha nessun elemento di ordine 9, mentre \mathbb{Z}_9 sì.
- (7) Sì, un isomorfismo di gruppi è dato da $\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ tale che $\varphi(a,b) = a + ib$.
- (8) No, perché \mathbb{C}^* ha un elemento di ordine 4, ad esempio i, mentre $\mathbb{R}^* \times \mathbb{R}^*$ non ha nessun elemento di ordine 4. Infatti $\not\exists (a,b) \in \mathbb{R}^* \times \mathbb{R}^*$ tale che $(a^4,b^4) = (1,1)$ e $(a^2,b^2) \neq (1,1)$.
- (9) No, perché \mathbb{Q} e \mathbb{R} non sono equipotenti, quindi non esiste nessuna bigezione tra i due insiemi e in particolare nessun isomorfismo.

Esercizio 3. Determinare tutti i sottogruppi di $(\mathbb{Z}_8,+)$ e tutti i sottogruppi di $(\mathbb{Z}_7,+)$.

Soluzione. I sottogruppi di \mathbb{Z}_8 sono: $\{0\}$, $\{0,4\}$, $\{0,2,4,6\}$, \mathbb{Z}_8 . I sottogruppi di \mathbb{Z}_7 sono: $\{0\}$, \mathbb{Z}_7 .

Esercizio 5. Stabilire per quali $k \in \mathbb{Z}$ la funzione $f_k : \mathbb{Z} \to \mathbb{Z}$ definita da $f_k(n) = 2n + k$ è un omomorfismo di gruppi additivi¹. Per quali k è un isomorfismo?

Soluzione. Affinchè f_k sia un omomorfismo di gruppi si deve avere $f_k(0) = 0$. Questo implica $0 = f_k(0) = 2 \cdot 0 + k = k$, cioè k = 0. E' facile verificare che $f_0(a+b) = 2(a+b) = 2a + 2b = f_0(a) + f_0(b)$, quindi f_0 è un omomorfismo di gruppi. Non si tratta di un isomorfismo, perché f_0 non è surgettiva. Ad esempio $f_0^{-1}(1) = \emptyset$.

Esercizio 9. Si consideri la funzione valore assoluto f(x) = |x|.

- (1) Stabilire se f è un omomorfismo di gruppi $f:(\mathbb{R},+)\to(\mathbb{R},+)$ e in caso affermativo determinarne il nucleo e l'immagine.
- (2) Stabilire se f è un omomorfismo di gruppi $f:(\mathbb{R}^*,\cdot)\to(\mathbb{R}^*,\cdot)$ e in caso affermativo determinarne il nucleo e l'immagine.

Soluzione.

- (1) Non si tratta di un omomorfismo di gruppi perché f(1+(-1)) = f(0) = |0| = 0, ma f(1) + f(-1) = |1| + |-1| = 1 + 1 = 2.
- (2) f è un omomorfismo di gruppi perché |1|=1 e $|a\cdot b|=|a|\cdot |b|$ per ogni $a,b\in\mathbb{R}^*$. Il nucleo di f è

$$\ker f = \{ x \in \mathbb{R}^* : |x| = 0 \} = \{ 0 \}.$$

L'immagine di f è $\mathbb{R}_{>0}$.

Esercizio 10. Siano $f,g:\mathbb{Z}_{36}\to\mathbb{Z}_{36}$ le funzioni date da $f(\overline{x})=2\overline{x}$ e $g(\overline{x})=7\overline{x}$. Determinare se f e g sono omomorfismi di gruppi. In caso affermativo, determinarne il rispettivo nucleo e stabilire se si tratta di isomorfismi.

Soluzione. Si verifica facilmente che sia f che g sono omomorfismi di gruppi. La funzione g è un isomorfismo, l'omomorfismo inverso è dato da $g^{-1}(\overline{x}) = \overline{7}^{-1}\overline{x}$, dove $\overline{7}^{-1}$ è l'inverso della classe di 7 in \mathbb{Z}_{36} . Tale inverso esiste perché MCD(7,36)=1. Al contrario $\overline{2}$ non è invertibile in \mathbb{Z}_{36} perché $MCD(2,36)=2\neq 1$. Pertanto l'omomorfismo f di moltiplicazione per $\overline{2}$ risulta non iniettivo in quanto $f(\overline{18})=\overline{2}\cdot\overline{18}=\overline{36}=\overline{0}=f(\overline{0})$. Quindi f non è un isomorfismo.

I nuclei sono $\ker g = {\overline{0}}$ e

$$\ker f = \{ \overline{x} \in \mathbb{Z}_{36} : \ \overline{2}\overline{x} = \overline{0} \} = \{ \overline{0}, \overline{18} \},$$

dove gli elementi di ker f sono stati determinati risolvendo l'equazione diofantea 2x = 0 + 36k e prendendo le relative classi delle soluzioni.

Esercizio 12. Sia $G = \mathbb{Z}_3 \times S_3$, dove S_3 è il gruppo delle permutazioni di un insieme di 3 elementi (vedi esercizio 4).

(1) Qual è l'ordine di G? È abeliano?

¹Cioè un omomorfismo $f_k: (\mathbb{Z},+) \longrightarrow (\mathbb{Z},+)$

(2) Determinare, se possibile, un sottogruppo di ordine 8 e uno di ordine 9 di G.

Soluzione.

(1) Abbiamo $|\mathbb{Z}_3| = 3$ e $|S_3| = 3! = 6$, pertanto l'ordine di G è $|G| = 3 \cdot 6 = 18$. Vediamo che G non è un gruppo abeliano. Se $\varphi, \psi \in S_3$ sono le funzioni tali che $\varphi(1) = 2$, $\varphi(2) = 1$, $\varphi(3) = 3$ e $\psi(1) = 2$, $\psi(2) = 3$, $\psi(3) = 1$, si ha $\varphi \circ \psi \neq \psi \circ \varphi$. Pertanto si ha $(0, \varphi) *_G (0, \psi) = (0, \varphi \circ \psi) \neq (0, \psi \circ \varphi) = (0, \psi) *_G (0, \varphi)$,

quindi G non è abeliano.

(2) Se H è un sottogruppo di G, per il teorema di Lagrange, l'ordine di H è un divisore di |G|=18. Perciò non esiste un sottogruppo di ordine 8 di G. Un sottogruppo di ordine 9 è dato da

$$H = \mathbb{Z}_3 \times \{ \mathrm{Id}, \psi, \psi^2 \}$$

= \{ (0, \text{Id}), (0, \psi), (0, \psi^2), (1, \text{Id}), (1, \psi), (1, \psi^2), (2, \text{Id}), (2, \psi), (2, \psi^2) \}.