Računarske mreže 1 5. deo: Wireless LAN

Predavač:

Prof. dr Slavko Gajin, slavko.gajin@rcub.bg.ac.rs

Asistent:

Stefan Tubić, stefan.tubic@etf.bg.ac.rs Marko Mićović, micko@etf.bg.ac.rs Kristijan Žiza, ziza@etf.bg.ac.rs

http://elearning.rcub.bg.ac.rs

2020. god

WLAN – Wireless LAN

- WLAN (Wireless LAN) Bežične lokalne računarske mreže
- WLAN standard IEEE 802.11
 - Deljeni medijum jedna frekvencija
 - half-duplex samo jedna stanica može da šalje podatke u jednom trenutku
 - nije Ethernet!
- Kolizija se ne može detektovati:
 - tokom slanja podataka, prijem podataka je isključen kolizija se ne može detektovati kao kod "žičanog" Etherneta
 - Zbog slabljenja signala ne može se garantovati da će svi uređaji da detektuju koliziju (tzv. "hidden station")
- Izbegavanje kolizije Collision Avoidance (CSMA/<u>CA</u>)
 - Zahteva se slanje potvrde za uspešan prijem svakog okvira

- "Service Set" grupa povezanih bežičnih uređaja WLAN mreža
- Ad-hoc mod:
 - IBSS Independent Basic Service Set
 - svi učesnici ravnopravni
- Infrastrukturni mod:
 - BSS Basic Service Set
 - centralni AP uređaj Access Point
 - sva komunikacije se obavlja preko AP-a
 - ESS Extended Service Set više AP povezanih preko sviča

- AP Access Point
 - centralni uređaj u WLAN mreži
- WLAN ćelija (cell)
 - oblast dometa signala jednog AP
- Refleksija od objekata u okruženju stvara izobličavanje signala
 - dve antene na AP razmaknute za ½ talasne dužine - kompenzacija izobličenja

- SSID Service Set Identifier
 - Naziv grupe bežičnih uređaja naziv WLAN mreže
 - Tekst do 32 karaktera
 - beacon okvir
 - Periodično oglašava AP
 - Sadrži SSID i MAC adresu AP
 - Mreža postao vidljiva za ostale uređaje ("mreže u dometu")

- Asocijacija učlanjenje u bežičnu mrežu
- Osnovni proces učlanjivanja (asocijacije)
 - association request message klijent šalje zahtev AP-u
 - association reply message AP odgovara klijentu prihvata ili odbija zahtev
- Složeniji proces učlanjenja
 - više poruka, opcija i sigurnosnih parametara
- Uslov za povezivane:
 - Kompatibilnost (podržani standardi, frekvencije itd.)
 - SSID korisnik se povezuje na izabranu mrežu
 - Autentifikacija korisnika

 Sva komunikacije na fizičkom nivou se obavlja preko AP-a:

Komunikacija sa drugim klijentima u WLAN-u

Komunikacija sa ostalim uređajima u povezanom LAN-u

AP prenosi i okvire sa podacima i potvrde

 Svi uređaju mogu da detektuju okvire, ali ih prihvataju samo od AP

Rešenje i za "hidden station"

Povezivanje u LAN mrežu

- AP je aktivni uređaj
 - Zahteva napajanje
- AP ima i Ethernet karticu
 - Povezuje se na svič bridge mode između WLAN i LAN
- Power Over Ethernet (PoE)
 - Posebni svičevi koji prenose DC napajanje preko UTP kablova
 - AP se može napajati preko PoE

Povezivanje u LAN mrežu

Integracija sa VLAN-ovima

- mapiranje
 SSID-a u VLAN
- više SSID-a na jednom AP uređaju – u odvojene VLAN-ove
 - trank link sa svičem

Povezivanje u LAN mrežu

- Proširivanje SSID na više AP uređaja preko LAN mreže
- Svaki SSID jedan VLAN
- trank između AP i sviča

WLAN kanali

- Kanali, frekvencijski domen širine od 22Mhz
- WLAN podržava više kanala
- AP radi samo na jednom kanalu
- Skeniranje kanala traži se kanal na kom je signal najjači
 - Pasivno skeniranje
 - Uređaj čeka da AP oglasi beacon okvir

- Aktivno skeniranje
 - Uređaj šalje se poseban upit za raspoložive kanale – Request Probe paket

WLAN kanali

- Pokrivanje većeg prostora ćelije moraju da se preklope
- Susedni kanali su razdvojeni za 5 MHz
 - međusobno su preklopljeni
- Preklopljene ćelije koriste različite i dovoljno udaljene kanale

WLAN pokrivenost

- Roming (roaming)
 - Prelazak iz jedne ćelije u drugu bez gubitka veze
- Omogućava mobilnost korisnika

CSMA/CA

Dva pristupa za izbegavanje kolizije na MAC nivou:

- Centralizovana koordinacija
 (PCF Point Coordination Function)
 - Jedan centralni uređaj (AP) "proziva" ostale uređaje i daje im dozvolu za slanje
 - Samo Infrastrukturne mreže
 - Retko se koristi u praksi
- Distribuirana koordinacija
 (DCF Distributed Coordination Function)
 - Svi uređaji su jednaki (uključujući i AP) i "nadmeću" se za zauzimanje medijuma
 - Infrastrukturne i ad-hoc mreže
 - Dominantan pristup u praksi

DCF – Distriburirana koordinacija

- Kada stanica želi da šalje podatak (okvir), ona "sluša" medijum:
 - Ako je medijum slobodan okvir se šalje
 - Ako je medijum zauzet
 - čeka se da se medijum oslobodi
 - čeka se fiksni vremenski interval
 DIFS Distributed Inter Frame Space
 - dodatno se čeka i slučajan vremenski interval back-off
 - Back-off
 - vreme čekanja, izraženo u broju slot-time vremena (npr. ST=20µs)
 - bira se slučajan broj R (od 0 do CW Contention Window)
 - back-off time = R x ST
 - sa brojem neuspešnih pokušaja eksponencijano se povećava CW (do 255)
 Contention Window

DCF – Distriburirana koordinacija

Ako medijum postane zauzet tokom čekanja back-off vremena

- back-off vreme se zaustavlja
- back-off vreme nastavlja da teče kada se mediju oslobodi

DCF – Distriburirana koordinacija

- Izbegavanje kolizije obavezna potvrda prijema
 Positive Acknowledgement (ACK)
 - Svaki okvir koji se uspešno primi bez kolizije mora da se potvrdi
 - Ako ima kolizije, potvrda izostaje u očekivanom vremenu, okvir se reemituje

Dva režima prenosa okvira (od A do B)

- Prenos u dva koraka (two-way handshake, Positive Acknowledgement)
 - 1. (A -> B) okvira sa podacima (A -> B)
 - 2. (B -> A) potvrda (*Acknowledgement*)
- Prenos u četiri koraka (four-way handshake, RTS/CTS)
 - 1. (A -> B) zahtev za prenos (RTS Request To Send)
 - 2. (B -> A) odobravanje prenosa (CTS Clear To Send)
 - 3. (A -> B) okvira sa podacima
 - 4. (B -> A) potvrda (*Acknowledgement*)

DCF - Prenos u dva koraka

- Prenos u dva koraka (two-way handshake)
 - 1. (A -> B) okvira sa podacima (A -> B)
 - 2. (B -> A) potvrda (*Acknowledgement*)
- SIFS Short Inter Frame Space
 - kratko vreme čekanja da pristigne ACK okvir

DCF - Prenos u četiri koraka

- Prenos u četiri koraka (four-way handshake, RTS/CTS)
 - 1. (A -> B) zahtev za prenos (RTS Request To Send)
 - 2. (B -> A) odobravanje prenosa (CTS Clear To Send)
 - 3. (A -> B) okvira sa podacima
 - 4. (B -> A) potvrda (Acknowledgement)
- Rezerviše se period za slanje okvira
- Obično se koristi kod slanja velikih okvira

Format okvira

- Frame Control različiti flegovi
- CRC kontrola greške
- Zbog prenos okvira preko AP, postoji više vrsta adresa:
 - Source Address (SA) izvorišni uređaj
 - Transmitter Address (TA) izvorišni uređaj ili AP
 - Receiver Address (RA) odredišni uređaj ili AP
 - Destination Address (DA) odredišni uređaj
 - SSID AP
- Korišćenje adresnih polja zavisi od konkretne namene
 - Određeno sa dva flega u kontrolnom polju: "To DS", "From DS"
 (Distribution System)

,	ToDS	From DS	Address 1	Address 2	Address 3	Address 4
	0	0	RA = DA	TA = SA	BSSID	N/A
	0	1	RA = DA	TA = BSSID	SA	N/A
	1	0	RA=BSSID	TA = SA	DA	N/A
	1	1	RA	TA	DA	SA

Vreme zauzeća medijuma

Procena vremena zauzeća medijuma - Network Allocation Vector (NAV)

- zavisi od veličine okvira i brzine prenosa okvira
- polje u zaglavlju okvira sadrži procenu vremena korišćenja medijuma
- ostali uređaji znaju kada će se medijum osloboditi Octets: 2 6 0 - 23124 Frame Duration/ Sequence Frame Address 1 Address 2 | Address 3 Address 4 CRC Control Control ID Body
- Osluškivanje medijuma (Carrier Sense)
 - Fizičko sluša se da li je medijum slobodan ili zauzet

MAC Header

Virtuelno – tokom trajanja NAV vremena

- Sigurnosni problemi
 - Deljeni medijum svi članovi mreže mogu da čitaju pakete
 - Kontrola pristupa povezivanje i bez fizičkog prisustva objektu
- Rešenja
 - WEP Wired Equivalent Privacy
 - WPA Wi-Fi Protected Access
 - IEEE 802.1i (WPA2 WiFi Protected Access 2)

WEP – Wired Equivalent Privacy

- Uvodi se šifrovanje paketa statičkim simetričnim ključem
- Problemi:
 - Statičko definisanje ključa svaki korisnim mora ručno da podešava ključ (komplikovano, nepromenljivo)
 - Ključ je nedovoljne dužine
 - Ukupna dužina 64 bita, ali se za šifrovanje koristi samo 40 bita
 - slaba zaštita, relativno se lako "provali" automatizovanim variranjem svih vrednosti (*brute force attack*)
- Ad-hoc rešenja proizvođača
 - Sakrivanje SSID naziva AP ne oglašava SSID
 - Filtriranje po MAC adresama ručno se dozvoljava pristup samo za određene MAC adrese

WPA - Wi-Fi Protected Access

Wi Fi

- Wi-Fi aliance proizvođača wireless opreme
 - sinonim za WLAN standarde
- Industrijski de facto standard
- Prednosti:
 - Dinamička razmena ključeva mogućnost česte promene ključa
 - Autentifikacija korisnika
 - pristupni ključ
 - username/password (802.1x)
- Posledice
 - Velika podrška proizvođača
 - Sertifikacija od strane Wi-Fi alijanse
 - Nastavljen proces formalne standardizacije

IEEE 802.1i (WPA2 - WiFi Protected Access 2)

- Formalni standard (2005)
- WPA2 neformalni, ali uobičajeni naziv
- Unapređena sigurnost
 - AES Advanced Encryption Standard
 - Sigurniji algoritam šifrovanja
 - Ključ veće dužine
- Nekompatibilan sa WEP i WAP
- Preporuka za korišćenje u današnjim wireless mrežama

Wireless standardi

- IEEE 802.11a (1999)
 - 5Ghz, od 6 Mbps do 54 Mbps
 - skuplji, manja pokrivenost
- IEEE 802.11b (2000)
 - 2.4 GHh, max protok 11Mbps (*Dynamic data rate scaling*-1, 2, 5.5 i 11Mbps)
 - jeftiniji, mala brzina
- IEEE 802.11g (2003)
 - 2.4 GHz, max protok 54 Mbps (6, 9, 12, 18, 36, 48 i 54 Mbps)
 - kompatibilan sa 802.11b "najmanji" zajednički standard
 - Ako je jedan uređaj povazan preko 802.11b, AP će automatski da pređe na 802.11b – maksimalna brzina limitirana na 11 Mbps!
- IEEE 802.11n (2007)
 - 2.4 i 5 GHz, do 450Mbps (u realnosti max oko 240Mbps
 - kompatibilan sa 802.11b i 802.11g
- IEEE 802.11ac (2013)
 - Teorijska max protok 1300Mbps, u realnosti oko 700Mbps

Kako koristi WLAN

- WiFi bez ključa su nebezbedne
 - Svako može da pristupi
 - Nema šifrovanja podataka
- Podešavanje WiFi uređaja
 - Birati nepersonalizovani SSID
 - Postaviti WPA2 i "jak" ključ (lozinka)
 - Izabrati kanal koji je najmanje zauzet
 - WiFi Analyzer
 - besplatna mobilna aplikacije (ali sadrži reklame)

