

Politechnika Wrocławska

Towards identifying software project clusters with regard to defect prediction

Marian Jureczko, Wrocław University of Technology Lech Madeyski, Wrocław University of Technology

Agenda

- Introduction
- Data acquisition
- Study design
- Results
- Conclusions

Introduction

Motivation - Why defect prediction?

20% of classes contain 80% of defects

We can use the software metrics to predict error prone classes and therefore prioritize and optimize tests.

Motivation - Why clustering projects?

- Defect prediction is sometime impossible because lack of training data:
 - It may be the first release of a project
 - The company or the project may be to small to afford collecting training data
- With well defined project clusters the cross-project defect prediction will be possible

Definitions

Defect

- Interpreted as a defect in the investigated project
- Commented in the version control system (CVS or SVN)
- Defect prediction model

Data acquisition

- 19 different metrics were calculated with the CKJM tool (http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm)
 - Chidamber & Kemerer metrics suite
 - QMOOD metrics suite
 - Tang, Kao and Chen's metrics (C&K quality oriented extension)
 - Cyclomatic Complexity, LCOM3, Ca, Ce and LOC
- Defects were collected with BugInfo (http://kenai.com/projects/buginfo)

Data acquisition

- 92 versions of 38 projects were analysed
 - 6 proprietary projects (5 custom build solutions from insurance domain, 1 quality assurance tool)
 - 17 academic projects
 - 15 open-source projects (Apache Ant, Apache Camel, Ckjm, Apache Forrest, Apache Ivy, JEdit, Apache Log4j, Apache Lucene, PBeans, Apache POI, Apache Synapse, Apache Tomcat, Apache Velocity, Apache Xalan-Java, Apache Xerces)
- Metrics Repository (

http://purl.org/MarianJureczko/MetricsRepo

Study design - clustering

Results

Cluster	Is the cluster model better?	P value (statistical test)
1st of 2	YES	0.954
2nd of 2	NO	-
proprietary A	NO	-
proprietary B	YES	0.035
proprietary / open	YES	0.005
open-source	NO	-

Results

- Cluster 'Proprietary B'
 - custom build solutions;
 - heavy weight, plan driven development process;
 - already installed in the customer environment;
 - insurance domain;
 - manual tests;
 - similar development period;
 - use database;
 - proprietary the same company.

- Cluster 'proprietary / open'
 - text processing domain;
 - SVN and Jira or Bugzilla used;
 - medium size international team;
 - automatization in the testing process;
 - do not use database

Conclusions

- 92 releases of 38 proprietary, open-source and academic projects were analysed
- 2 methods of clustering were applied

6 clusters were identified and the existence of 2 of

them were proven

Politechnika Wrocławska

Thank You for Your attention