

Aprendizagem 2021/22

Homework I

Deadline 18/10/2021 23:59 via Fenix as PDF

- Homework limited to 4 pages (2.5-3pp for part I, 1-1.5pp for part II) according to the provided template
- Include your programming code as an Appendix (maximum 1 page)
- Submission Gxxx.PDF in Fenix where xxx is your group number. Please note that it is possible to submit several
 times on Fenix to prevent last-minute problems. Yet, only the last submission is considered valid
- Exchange of ideas is encouraged. Yet, if copy is detected after automatic/manual clearance, homework is nullified
 and IST guidelines apply for content sharers and consumers, irrespectively of the underlying intent
- Please consult the FAQ before posting questions to your faculty hosts

I. Pen-and-paper [12.5v]

Considering the following training data:

	y_1	y_2	y_3	y_4	class
x_1	0.6	Α	0.2	0.4	0 (N)
χ_2	0.1	В	-0.1	-0.4	0
x_3	0.2	A	-0.1	0.2	0
χ_4	0.1	C	0.8	0.8	0
<i>X</i> 5	0.3	В	0.1	0.3	1 (P)
χ_6	-0.1	C	0.2	-0.2	1
X 7	-0.3	С	-0.1	0.2	1
<i>X</i> 8	0.2	В	0.5	0.6	1
X9	0.4	A	-0.4	-0.7	1
X10	-0.2	С	0.4	0.3	1

- 1) [4.5v] Train a Bayesian classifier assuming: i) independence and equal importance between {y1}, {y2} and {y3,y4} variable sets, and ii) numeric variable sets are normally distributed.
- [4.5v] Draw a confusion matrix for the training observations.
 Note: you can use programming packages to support your calculus, yet show intermediary results.
- 3) [1v] Evaluate the training F1 score.
- 4) [2.5v] Identify the decision probability threshold that optimizes training accuracy. Comment.

II. Programming and critical analysis [7.5v]

Considering the breast.w.arff dataset available at the Homeworks tab in the course webpage

- 5) [1.5v] Draw the class-conditional distributions per variable using a 3x3 plot grid.
- 6) [3v] Using a 10-fold cross validation with seed=<group number>, assess the accuracy of kNN under $k \in \{3,5,7\}$, Euclidean distance and uniform weights. Show empirically, which k is less susceptible to the overfitting risk?
- 7) [1.5v] Fixing k = 3, and assuming accuracy estimates are normally distributed, test the hypothesis "kNN is statistically superior to Naïve Bayes (multinomial assumption)".
- 8) [1.5v] Given the empirical data collected along 5-7, enumerate two reasons that can underlie the differences in performance between *k*NN and Naïve Bayes.