EEE104 – Digital Electronics (I) Lecture 20

A Revision Class

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

Binary Numbers

The weighting structure

$$2^{n-1} cdots cdot 2^3 cdot 2^2 cdot 2^1 cdot 2^0 cdot 2^{-1} cdot 2^{-2} cdot cdot cdot 2^{-n}$$

Binary point

 To convert binary to decimal, sum the weights of all bits that are 1.

Decimal-to-Binary Conversion

- The sum-of-weights method
- Repeated division-by-2 method for whole numbers
- Repeated multiplication by 2 for fractions

Hexadecimal Numbers and BCD

Decimal	Binary	Hexadecimal
0	0000	
1	0001	1
2	0010	2
3	0011	3
w 1. 4 4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	C
13	1101/2006	\mathbf{D}
14	1110	\mathbf{E}
15	1111	F

- A BCD digit varies from 0000 to 1001.
- If a 4-bit sum is greater than 9 or generates a carry, add 6 (0110) to the sum.

Signed Numbers

 In the 2's complement system, a positive number is represented in the original form; a negative number is the 2's complements of the corresponding positive number.

The weight of the sign bit is negative.

In binary addition, discard any final carry bit.

Binary Numbers

Pitfalls

- Forget to add 0110 in BCD addition.
- Add 0110 more than once in BCD addition.
- Forget to discard the sign bit in the result of signed number addition.
- Only the final result is given. The process leading to the solution is missing.
- For binary addition, carry out the decimal addition and convert the result back to binary.
- Forget to add one in the calculation of 2's complements.

Logic Gates

1. Inverter

$$X = \overline{A}$$

3. OR Gate

$$X = A + B$$

5. NOR Gate

$$X = \overline{A + B}$$

2. AND Gate

$$X = AB$$
 $X = A \cdot B$

4. NAND Gate

$$A \longrightarrow X$$

$$X = \overline{AB}$$

6. XOR Gate

$$X = A \oplus B$$

Logic Gates

Pitfalls

- Mix the logic symbols for AND gates and OR gates.
- There is no such logic gate.

 In drawing the waveforms of a circuit, forget to copy the input waveforms, and/or forget to use dashed lines to align inputs and outputs.

Laws and Rules of Boolean Algebra

$$L1 \quad A + B = B + A \quad AB = BA$$

L2
$$A + (B + C) = (A + B) + C$$
 $A(BC) = (AB)C$

L3
$$A(B+C) = AB + AC$$

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{A} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{A}B = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

DeMorgan's Theorems

Break the bar, change the sign.

$$\overline{XY} = \overline{X} + \overline{Y}$$

$$\longrightarrow \longrightarrow \longrightarrow$$
NAND Negative-OR

Boolean Expressions

 A literal is a variable or its complement.

A product term is the product of literals.

A sum-of-products
 (SOP) is the sum of
 product terms.

$$(A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

 A sum term is the sum of literals. A product-of-sums
 (POS) is the product of sum terms.

Karnaugh Map SOP Minimization

Grouping the 1s

- The goal is to maximize the size of the groups and to minimize the number of groups.
- A group may contain 1, 2, 4, 8, or 16 adjacent cells.
- Each 1 must be included in one or more groups.

In adjacent order

Karnaugh Map SOP Minimization

Determine the Minimum SOP

- When a variable appears in both complemented and uncomplemented form in a group, that variable is eliminated.
 - Variables that are the same for all cells of the group must appear 1 for uncomplemented form and 0 for complemented form.

Karnaugh Map SOP Minimization

(b) Without "don't cares" $Y = A\overline{B}\overline{C} + \overline{A}BCD$ With "don't cares" Y = A + BCD

Don't cares

- If a don't care X can contribute to the extension of a 1's group, then it is thought as 1.
- If it is not helpful to the extension of a 1's group, then it is thought as 0.

Karnaugh Maps

Pitfalls

- Variable values should be sorted in 00, 01, 11, 10.
- Variable identifiers are sorted according to alphabetical order or from MSB to LSB, e.g. AB/C, WX/YZ, Q2Q1/Q0
- 1's groups are not fully maximized forget warp-around adjacency.
- Don't know how to use don't cares. X's are ignored in the process of grouping 1's.
- Don't know much about K-maps for POS.

Decoders

- A decoder is used to detect a specified combination of input bits (code), e.g. 7 is active-LOW for inputs 0111.
- When enabled, only one output is active for 4-line-to-16-line decoder; one or more output will be active for a BCD-to-7segment decoder.
- When disabled, no output will be active.

Multiplexers

- A multiplexer (MUX), also known as a data selector, outputs one of its multiple data inputs.
- The data select inputs will decide which data input is to be switched to the output line.

Latches – The S-R Latch

INPUTS		OUTPUTS_		
5	R	Q	\overline{Q}	
1	1	Q_0	\overline{Q}_0	
0	1	1	0	
1	0	0	1	
0	0	?	?	

INPUTS		OUTPUTS		
5	R	Q	Q	
0	0	Q_0	\overline{Q}_0	
0	1	0	1	
1	0	1	0	
1	1	?	Manageras	

Latches – The S-R Latch

Edge-Triggered Flip-Flops

	OUTPUTS		INPUTS	
COMMENTS	\overline{Q}	Q	CLK	D
SET (stores a 1)	0	1	1	1
RESET (stores a 0)	1	0	1	0

	INPUTS		OUTPUTS		
J	Κ	CLK	Q	Q	COMMENTS
0	0	1	Q_0	\overline{Q}_0	No change
0	1	1	0	1	RESET
1	0	1	1	0	SET
1	1	1	\overline{Q}_0	Q_0	Toggle

- J and K are HIGH for all flip-flops.
- Each flip-flop, except the first, is clocked by the output of the preceding one if it is negative edge-triggered.
- If it is positive-edge triggered, it is clocked by complemented output of the preceding one.

- A truncated sequence can be produced by clearing and/or presetting the flip-flops at proper states.
- For a decade counter, once state 1010 (this is 10, not 9) appears, the decoder will reset the counter.

- All the flip-flops are clocked by the same CLK.
- J and K of the flip-flops other than the first one are the decoding result of the outputs.

For IC synchronous counters

- Count enable (CTEN) of the 1st counter is HIGH.
- CTEN of each of other counters is connected to Terminal count (TC) output of the preceding counter.

Truncated sequences can be realized by *decoding* the terminal count and then clearing the counters, e.g. a divide-by-6 counter.

If CLR is synchronous, decode terminal count.

If CLR is asynchronous, then decode terminal count + 1.

Truncated sequences can also be realized by *loading* an initial count at the terminal count. e.g. a divide-by-6 counter.

Shift Registers

- A shift register is made up of a set of cascaded flip-flops which store and move data.
- Serial In/Serial Out and Serial In/Parallel Out

Shift Registers

- Parallel In/Serial Out
- A Parallel In/Parallel Out shift register is a set of separate flip-flops sharing the same clock.

