

Università degli Studi di Brescia, Facoltà di Ingegneria Corso di Elaborazione Numerica dei Segnali con Laboratorio Esercitazioni di Matlab, A.A. 2010/2011

Esercitazione N.1

[Esercizio 1] SEGNALI E OPERAZIONI ELEMENTARI

I segnali a tempo discreto vengono normalmente visualizzati con il comando **stem**. Util-lzzando tale comando:

- (i) Generare e visualizzare il segnale $x_1[n] = A \cdot \delta[n]$, con A impostabile;
- (ii) Generare e visualizzare il segnale $x_2[n] = B \cdot \epsilon[n]$, con B impostabile;
- (iii) Generare e visualizzare il segnale $x_3[n] = C \cdot rect_N[n]$, con C e N impostabile;
- (iv) Generare e visualizzare il segnale $x_4[n] = a^n \cdot \epsilon[n]$, con a impostabile;
- (v) Generare e visualizzare il segnale $x_5[n] = D \cdot sen(2\pi f_0 n)$, con D e f_0 impostabili. Che succede se f_0 è irrazionale?
- (vi) Si sviluppi una funzione per traslare uno qualunque dei segnali appena costruiti di una quantitá n_0 . Provare a visualizzare $x_1[n-4]$;
- (vii) Si sviluppi una funzione che ribalti il segnale attorno all'origine. Provare a visualizzare $x_3[-n]$;
- (viii) Si generi la sequenza $x_6[n] = x_4[3-n]$ utilizzando le funzioni dei punti precedenti;
- (ix) Si visualizzino le sequenze $x_{6D}[n]$, versione di $x_6[n]$ decimata di un fattore D=2, e $x_{6I}[n]$, versione di $x_6[n]$ interpolata di un fattore I=3.

[Esercizio 2] SEGNALI PERIODICI E CONVOLUZIONE

I seguenti due comandi generano un segnale x composto da p ripetizioni del segnale memorizzato nella colonna col:

```
x = col * ones(1,p);
x = x(:);
```

Usando questo sistema:

(i) Generare un'onda quadra periodica discreta, ripetendo in modo opportuno il segnale rettangolo $x_3[n]$ definito nell'esercizio precedente.

La convoluzione discreta viene eseguita dal comando **conv**. Usando i segnali definiti nell'esercizio precedente:

- (ii) Effettuare e visualizzare la convoluzione tra due rettangoli r_1 e r_2 di ampiezza $A_1 = 4$ e $A_2 = 3$ e di durata $N_1 = 5$ e $N_2 = 3$ rispettivamente. Verificare cosa accade traslando uno dei segnali;
- (iii) Effettuare e visualizzare la convoluzione tra un segnale esponenziale causale $x_4[n]$ con a = 0.75 e il rettangolo r_1 .