Fortgeschrittenen Praktikum Teil 1: IKF

Versuch 1: $\gamma\gamma$ - Koinzidenzen Betreuer: Alexander Schottelius

Gruppe 1: Reinhold Kaiser, Florian Stoll

14.04.2018

Inhaltsverzeichnis

1	Zielsetzung				
2	Theoretische Grundlagen 2.1 Betazerfall von ^{22}Na und ^{60}Co	3			
	2.2 Wechselwirkungen elektromagnetischer Strahlung mit Materie				
	2.3 Die Paarvernichtung	3			
	2.4 Koinzidenztheorie				
	2.5 γ - γ -Winkelkorrelation	5			
3	Versuchsaufbau und Messgeräte				
4	Versuchsteil 1	5			
	4.1 Durchführung	5			
	4.2 Auswertung				
5	Versuchsteil 2	5			
	5.1 Durchführung	5			
	5.2 Auswertung				
6	Zusammenfassung/Fazit	5			

1 Zielsetzung

2 Theoretische Grundlagen

- 2.1 Betazerfall von ^{22}Na und ^{60}Co
- 2.2 Wechselwirkungen elektromagnetischer Strahlung mit Materie

Der Photo-Effekt

Der Compton-Effekt

2.3 Die Paarvernichtung

Wie jedes Elementarteilchen besitzt auch das Elektron ein Anti-Teilchen mit gleichem Spin und gleicher Ruhemasse, jedoch mit entgegengesetzter Ladung. Dieses wird als Positron bezeichnet. Als Formelzeichen verwendet man hier e^+ um die positive Ladung kennzuzeichnen. Dieses Positron kann als Nebenprodukt bei radioaktiven Atomkernen (β^+ - Zerfall) oder durch die Paarbildung eines γ - Quants, das in ein Positron und eine Elektron zerfällt, entstehen. Die sogenannte Paarvernichtung ist der Umkehrprozess zur Paarbildung. Dabei wird ein Elektron-Positron-Paar wieder in elektromagnetische Strahlung umgewandelt. Dabei können jedoch unterschiedliche Anzahl an Photonen entstehen. Auch hier muss aber ein Stoß vorliegen, da sonst Impuls- und Energieerhaltung verletzt werden würden. Ein sogenannter Ein-Quanten-Zerfall, bei dem ein Paar tatsächlich nur in ein Photon umgewandelt wird, kann aus den gleichen Gründen nur bei einem Stoß mit einem Impuls- und Energieaufnahmefähigen Partner vorkommen, was nur im Festkörper vorkommt. Dieser Zerfall ist allerdings sehr unwahrscheinlich, und wird für diesen Versuch auch nicht berücksichtigt. Da das Elektron und das Positron beide den Spin $\frac{1}{2}$ haben, gibt es zwei verschiedene Einstellmöglichkeiten der Spins zueinander. Liegen die Spins parallel, besitzt das Paar einen Gesamtspin von 1, liegen sie anti-parallel ergibt sich ein Gesamtspin von 0. Der Grundzustand mit S=0 ist dabei nicht entartet, der Zustand mit S=1 ist dreifach entartet. Daraus ergibt sich eine Wahrscheinlichkeit von 3:1 für einen Zerfall des Triplett-Zustands, da die Wahrscheinlichkeiten für die Einstellmgölichkeiten der beiden Spins alle gleich sind. Die bei der Paarvernichtung entstehenden Quanten haben allerdings den Spin 1. Darum kann der Grundzustand nur in zwei γ - Quanten zerfallen, während der Triplett-Zustand in drei Photonen zerfallen muss. Das stellt allerdings einen Prozess höherer Ordnung dar und ist daher deutlich unwahrscheinlicher. Im durchgeführten Versuch werden wir uns auch ausschließlich auf Paarvernichtungen aus dem Singulett - Zustand, d.h. mit zwei auftretenden γ - Quanten beschränken.

2.4 Koinzidenztheorie

Eine Koinzidenz ist dann vorhanden, wenn zwei Detektoren innerhalb eines Zeitintervalls, der Koinzidenzzeit, beide ein Signal messen. Unterschieden werden muss dabei zwischen den wahren Koinzidenzen und den zufälligen Koinzidenzen. Bei den wahren Koinzidenzen

Tabelle 1: Beispieltabelle

	Netzteil	Multimeter	Oszilloskop
Spannung	5V	5,076V	5,19V
Abweichung	0%	1,5%	3,8%

können die beiden Signale einem einzigen physikalischen Prozess zugeordnet werden. Die zufälligen Koinzidenzen entstehen durch Detektion zweier Teilchen, die durch unabhängige physikalische Vorgänge innerhalb de Koinzidenzzeit emittiert wurden. Im Experiment soll erreicht werden, dass das Verhältnis von wahren zu zufälligen Koinzidenzen möglichst hoch ist, was durch geeignetes Wählen der Versuchsbedingungen erreicht wird.

Des Weiteren wird eine möglichst hohe Koinzidenzrate angestrebt. Die Einzelzählraten der beiden Detektoren ergeben sich aus

$$Z_i = \varepsilon_i \omega_i Q, \quad i = 1, 2, \tag{1}$$

wobei ε_i die Ansprechempfindlichkeit ist, ω_i der Raumwinkel, unter dem der Detektor die Signalqualle sieht und Q die Zerfallsrate der Probe.

Um die Koinzidenzrate zu erhalten, muss die Zählrate des 1. Detektors mit der Wahrscheinlichkeit multipliziert werden, dass der 2. Detektor ein Signal registriert. Diese Wahrscheinlichkeit kann vom Winkel abhängen, unter dem beide Signale gemessen werden, daher wergibt sich für die Wahrscheinlichkeit einer Koinzidenz mit der Winkelverteilung $W(\vartheta)$:

$$P(\vartheta) = \epsilon_2 \omega_2 W(\vartheta) \tag{2}$$

Die echte Koinzidenzrate ist daher:

$$Z_{eK} = \varepsilon_1 \omega_1 \varepsilon_2 \omega_2 QW(\vartheta) \tag{3}$$

Um die Rate der zufälligen Koinzidenzen zu erhalten, betrachtet man die Wahrscheinlichkeit, dass nach dem Messen von Detektor 1 innerhalb der Koinzidenzzeit τ ein unkorreliertes Signal im Detektor 2 gemessen wird: $Z_2 \cdot \tau$

Die Rate zufälliger Koinzidenzen ist daher:

$$Z_{zK} = \tau Z_1 Z_2 \tag{4}$$

Und das Verhältnis von echten zu zufälligen Koinzidenzen ist dann:

$$\frac{Z_{eK}}{Z_{zK}} = \frac{1}{\tau Q} \tag{5}$$

Für die Versuchbedingungen bedeutet das, die Koinzidenzzeit so gering wie möglich zu wählen. Außerdem sollten eine radioaktive Probe genutzt werden, deren Zerfallsrate nicht zu hoch ist, aber dennoch nicht so gering, dass man mit einem akzeptablen Zeitaufwand ein statistisch relevantes Ergebnis erhält.

2.5 γ - γ -Winkelkorrelation

Entstehen bei einem radiaktiven Zerfall oder einer Annihilation zwei Gamma-Quanten, sind sie in ihrem Winkel zueinander korreliert. Das heißt, dass es eine Winkelverteilung der Intensität der Koinzidenzen gibt, die charakteristisch für diese Art Zerfall ist.

Der einfachste Fall ist die Annihilation von Positron und Elektron, bei der Gesamtimpuls von 0 erhalten bleibt. So werden die Gamma-Quanten unter einem Winkel von 180° zueinander gemessen.

Im Fall eines Kerns, der über eine Kaskade von 2 Gamma-Quanten zerfällt wird die Annahme gemacht, dass die Lebensdauer des Zwischenzustands so kurz ist, dass sich die Orientierung des Kerns im Vergleich zum ersten Zerfall nicht verändert.

3 Versuchsaufbau und Messgeräte

$$U_{eff} = \frac{U_0}{\sqrt{2}} = \frac{\frac{U_{PeakPeak}}{2}}{\sqrt{2}} = \frac{17,4V}{2\sqrt{2}} \approx 6,15V$$
 (6)

- 4 Versuchsteil 1
- 4.1 Durchführung
- 4.2 Auswertung
- 5 Versuchsteil 2
- 5.1 Durchführung
- 5.2 Auswertung
- 6 Zusammenfassung/Fazit

Text