ACH2138 - Modelagem e Simulação de Sistemas Complexos Conteúdo: Exemplos de Simulação

Marcelo S. Lauretto

Referências:

Morris DeGroot, Mark Schervish. Probability and Statistics. 4th Ed. - 4o capítulo

Ilya M. Sobol. A Primer for the Monte Carlo Method. CRC Press, 1994.

www.each.usp.br/lauretto

Problema 1: Programa de Monty Hall I

- Você está participando de um programa de televisão, onde tem a chance de ganhar um bom prêmio
- São apresentadas três portas fechadas, sendo que em apenas uma delas está o prêmio (colocado de forma aleatória), sendo que o apresentador sabe onde ele está.
- O jogo:
 - Você escolhe uma porta inicial;
 - O apresentador abre uma porta sem o prêmio e lhe pergunta se você quer trocar ou não
 - Você deve decidir se troca de porta ou não
- Qual é a estratégia com maior chance de ganho?
- No Capítulo 2 calculamos analiticamente que a probabilidade de ganho com a estratégia de trocar de porta é de 2/3. O raciocínio é apresentado a seguir.

Problema 1: Programa de Monty Hall II

- Variáveis aleatórias do experimento:
 - $X \in \{1,2,3\}$: porta onde está o prêmio
 - Y $\in \{1,2,3\}$: 1^a porta escolhida por você
 - Espaço amostral: (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)
 - Variável aleatória de interesse:

$$Z = \begin{cases} 1 \text{ se você ganhar o prêmio} \\ 0 \text{ caso contrário} \end{cases}$$

Com a estratégia de trocar sempre de porta, Z=0 somente se X=Y, ou seja, em 1/3 dos pares possíveis. Se considerarmos que todos os 9 pares são equiprováveis, então $P(Z=0)=3/9=1/3 \Rightarrow P(Z=1)=2/3$.

Problema 1: Programa de Monty Hall III

- Note que Z é uma variável aleatória com distribuição de Bernoulli, e portanto E(Z) = P(Z = 1) (ver o Capítulo 4). Logo, calcular P(Z = 1) é o mesmo que calcular $\mu_Z = E(Z)$.
- ▶ Estimando $\mu_Z = E(Z)$ através de simulação:
 - 1. Para i = 1, ..., N (onde N é um número grande):
 - Gere independentemente valores para as variáveis categóricas X e Y, cada qual com distribuição uniforme nos inteiros 1, 2, 3; denotamos esses dois valores x(i) e y(i) onde (i) indexa a i-ésima iteração;
 - Verifique se $x_{(i)} \neq y_{(i)}$; em caso afirmativo, atribua $z_{(i)} = 1$; caso contrário, atribua $z_{(i)} = 0$.
 - 2. Calcule $\hat{\mu}_Z = \frac{\sum_{i=1}^N z_{(i)}}{N}$.

Problema 1: Programa de Monty Hall IV

- Cada iteração i = 1, ..., N simula uma realização hipotética (ou tentativa) do jogo.
- O valor $\hat{\mu}_Z$, que é simplesmente a proporção de ganhos em relação ao total de tentativas, será uma aproximação para μ_Z e, portanto, para P(Z=1). (A notação $\hat{\mu}_Z$ com chapéu denota que estamos obtendo uma estimativa para μ_Z)

Problema 2: Sistema de atendimento I

- Considere um sistema simples para atendimento de requisições com n "linhas" (ou "canais").
- ▶ O sistema recebe requisições chegando em instantes aleatórios: $T_1 < T_2 < ... < T_k < ...$
- Seja T_k o instante de chegada da k-ésima requisição. Se a linha 1 estiver livre em T_k, ela inicia o atendimento da requisição, o que consome t_h (t_h é o tempo de espera da linha). Se a linha 1 estiver ocupada, a requisição é imediatamente transferida para a linha 2, e assim sucessivamente...
- Se todas as n linhas estiverem ocupadas no instante T_k , o sistema rejeita a requisição.
- O problema é determinar quantas requisições (em média) o sistema conseguirá satisfazer durante um intervalo de tempo T, quantas serão rejeitadas e a proporção de requisições rejeitadas nesse intervalo.

Problema 2: Sistema de atendimento II

- A modelagem do fluxo de requisições é usualmente feita através de observações de sistemas similares sob longos períodos, sob várias condições.
- Por simplicidade, consideraremos, para este problema, que a sequência de requisições é um processo de Poisson, no qual o intervalo entre dois eventos (requisições) consecutivos é uma variável aleatória independente com função de densidade de probabilidade

$$f(x|\lambda) = \lambda \exp(-\lambda x), \ 0 < x < \infty.$$

- Essa densidade é denominada distribuição exponencial (exemplos no próximo slide); no Capítulo 3, apresentamos o método da transformação inversa para gerar variáveis aleatórias com distribuição exponencial.
- Apresentamos na sequência um método de simulação para estimação dos números esperados de requisições aceitas e rejeitadas.

Problema 2: Sistema de atendimento III

Exemplos de distribuições exponenciais com $\lambda = 1$ e $\lambda = 2$.

Problema 2: Sistema de atendimento IV

- Parâmetros do programa:
 - n: número de linhas
 - λ: parâmetro da distribuição exponencial, modela a taxa de entrada de requisições
 - $ightharpoonup t_h$: tempo de atendimento de cada linha
 - T: intervalo de tempo total sobre o qual se deseja calcular as médias de aceitações e rejeições
 - N: número de iterações da simulação.
- Variáveis do programa e condições iniciais:
 - $ightharpoonup T_r$: instante da última requisição de entrada; inicialmente, $T_r = 0$.
 - ▶ t: vetor com n posições, onde $t[j] \ge 0$ denota o instante em que a linha j estará disponível. Inicialmente, todas as linhas estão disponíveis, e portanto t[j] = 0, j = 1, ..., n.
 - \triangleright x: contador de requisições aceitas; inicialmente, x = 0.
 - \triangleright y: contador de requisições rejeitadas; inicialmente, y = 0.
 - w: proporção de requisições rejeitadas: w = y/(x + y)

Problema 2: Sistema de atendimento V

- Simulação de uma única sequência de requisições no intervalo de tempo T:
 - 1. Gere o intervalo de tempo da próxima requisição: $z \sim \text{expon}(\lambda)$; se $T_r + z > T$, interrompa e retorne x, y e w = y/(x + y).
 - 2. Atribua $T_r = T_r + z$
 - 3. Verifique se $t[1] \le T_r$; em caso afirmativo, isso significa que a linha está livre no instante T_r e pode atender a requisição; nesse caso, atribua $t[1] = T_r + t_h$; caso contrário, teste $t[2] \le T_r$, $t[3] \le T_r$, e assim sucessivamente.
 - 4. Se ao menos uma das linhas estava disponível no passo anterior, incremente x; se nenhuma linha estava disponível, a requisição deve ser rejeitada e, portanto, y deve ser incrementada.
 - volte ao passo 1.

Problema 2: Sistema de atendimento VI

- Simulação completa:
 - 1. Execute o procedimento descrito no slide anterior N vezes, obtendo, na i-ésima chamada, a tupla $(x_{(i)}, y_{(i)}, w_{(i)})$.
 - Os valores médios de X, Y, W serão estimados, respectivamente, por

$$\hat{\mu}_X = \frac{\sum_{i=1}^N x_{(i)}}{N}, \ \hat{\mu}_Y = \frac{\sum_{i=1}^N y_{(i)}}{N}, \ \hat{\mu}_W = \frac{\sum_{i=1}^N w_{(i)}}{N}.$$

Problema 3: Sistema de atendimento com clientes impacientes I

- Considere a seguinte variante do Problema 2:
- O sistema é um balcão de atendimento com n guichês ("linhas"), e os clientes ("requisições") chegam de acordo com um processo de Poisson com uma taxa λ.
- Quando todos os guichês estão ocupados, forma-se uma fila única na qual o 1º cliente da fila é atendido pelo 1º guichê a ficar disponível disponível;
- ▶ Cada cliente que chega conta o comprimento r da fila e decide ir embora imediatamente (sem entrar na fila) com probabilidade $p_r = r/(r+n)$, para r = 1, 2, ...
- Quando o cliente decide entrar na fila, ele aguarda em sua ordem de chegada até seu atendimento.
- ightharpoonup O tempo de atendimento a cada cliente, depois que sua chegada no balcão, é uma variável aleatória exponencial com parâmetro μ .
- Todos os tempos de atendimento são independentes uns dos outros e também independentes dos tempos de chegada.

Problema 3: Sistema de atendimento com clientes impacientes II

- Perguntas:
 - Qual o número esperado de clientes atendidos até o instante T?
 - Qual o número esperado de clientes que foram embora até o instante T?
 - Qual a proporção de clientes que foram embora?
 - Qual o comprimento esperado da fila no instante T?
 - Considerando apenas os clientes que foram efetivamente atendidos, qual o valor esperado do tempo máximo de permanência dos clientes desde sua chegada até o término de seu atendimento?
- Parâmetros do programa de simulação:
 - n: número de guichês
 - \triangleright λ : taxa de entrada de clientes
 - μ: taxa de atendimentos a clientes por cada guichê
 - T: intervalo de tempo total sobre o qual se deseja calcular as médias de aceitações e rejeições
 - N: número de iterações da simulação.

Problema 3: Sistema de atendimento com clientes impacientes III

- Variáveis do programa e condições iniciais:
 - T_c : instante de chegada do último cliente até o momento; inicialmente, $T_c = 0$.
 - ▶ gt_{disp} : vetor com n posições; $gt_{disp}[j] \ge 0$ denota o instante em que o guichê j estará disponível. Inicialmente, todos os guichês estão disponíveis, e portanto $gt_{disp}[j] = 0, j = 1, ..., n$.
 - k: contador de clientes que entraram na fila até o momento; inicialmente, k = 0.
 - ct_{cheg} : vetor de tamanho variável em que $ct_{cheg}[k] > 0$ denota o instante em que o k-ésimo cliente chegou.

Problema 3: Sistema de atendimento com clientes impacientes IV

- \triangleright x: contador de clientes já atendidos; inicialmente, x = 0.
- y: contador de clientes que foram embora sem entrar na fila; inicialmente, y = 0.
- r: comprimento atual da fila; inicialmente, r = 0
- w: proporção de clientes que foram embora: w = y/(x + y + r)
- tm: tempo máximo de permanência dentre todos os clientes atendidos até o momento.

Problema 3: Sistema de atendimento com clientes impacientes V

- Simulação de uma única realização de atendimentos no intervalo de tempo T:
 - 1. Gere o intervalo de tempo de chegada do próximo cliente: $z \sim \text{expon}(\lambda)$: se $T_c + z > T$, interrompa e retorne x, y, r, w e tm.
 - 2. Atribua $T_c = T_c + z$; k = k + 1; $ct_{chea}[k] = T_c$
 - 3. Enquanto $min(gt_{disp}) \le T_c$ e x < k: // existe algum quichê livre para atender o 1º cliente da fila
 - 3.1 Atribua x = x + 1; $j = \arg\min(gt_{disp})$
 - 3.2 Gere o tempo de atendimento do guichê j: $a \sim \exp(\mu)$
 - 3.3 Atribua $gt_{disp}[j] = \max\{gt_{disp}[j], ct_{chea}[x]\} + a$
 - 3.4 Atribua $tm = \max\{tm, (gt_{disp}[i] ct_{cheq}[x])\}$
 - 4. Atribua $r = \max\{0, (k-1) x\}$ // não considera o último cliente
 - 5. Gere o indicador de que o cliente que acabou de chegar irá embora: $s \sim Ber(p_r)$ onde $p_r = r/(r+n)$ Se s = 1, atribua k = k - 1; y = y + 1
 - 6. Atribua r = k x; w = y/(x + y + r)
 - 7. volte ao passo 1.

Problema 3: Sistema de atendimento com clientes impacientes VI

- Comentários sobre o procedimento acima:
 - A condição de parada na linha 1 ocorre quando o instante em que o último cliente chega $(T_c + z)$ é posterior ao intervalo de tempo total analisado (T).
 - Na linha 2, atualiza-se temporariamente o contador de clientes a entrar na fila, bem como o instante de chegada do cliente que acabou de chegar. (O contador k será posteriormente decrementado na linha 4 se esse cliente for embora.)
 - As linhas 3.1–3.4 processam o atendimento do primeiro cliente da fila, no intervalo de tempo transcorrido entre o penúltimo e o último clientes a chegarem.
 - ▶ A linha 5 simula o evento s do cliente que chegou por último ir embora, com probabilidade p_r proporcional ao comprimento da fila: $p_r = r/(r+n)$. Se s = 1, deve-se decrementar k.

Problema 3: Sistema de atendimento com clientes impacientes VII

- Simulação completa:
 - 1. Execute o procedimento descrito no slide anterior N vezes, obtendo, na i-ésima chamada, a tupla $(x_{(i)}, y_{(i)}, r_{(i)}, w_{(i)}, tm_{(i)})$.
 - 2. As médias

$$\hat{\mu}_{X} = \sum_{i=1}^{N} x_{(i)}/N, \ \hat{\mu}_{Y} = \sum_{i=1}^{N} y_{(i)}/N, \ \hat{\mu}_{R} = \sum_{i=1}^{N} r_{(i)}/N, \ \hat{\mu}_{W} = \sum_{i=1}^{N} w_{(i)}/N \ \hat{\mu}_{tm} = \sum_{i=1}^{N} tm_{(i)}/N$$
 for necessarias,