Numerical Methods (ENUME 2019) – Project Assignment B: Approximation of functions

1. Make a graph of the function:

$$f(x) = \sqrt{1 - x^2} e^{x - \frac{1}{3}}$$
 for $x \in [-1, 1]$

and indicate a sequence of its values which will be next used for approximation:

$$\{y_n = f(x_n) | n = 1, 2, ..., N\}, \text{ where } x_n = -1 + 2 \frac{n-1}{N-1}$$

Repeat this exercise for N = 10, 20 and 30.

2. Develop a program for the least-squares approximation of the function f(x) on the basis of the data $\{(x_n, y_n) | n = 1, ..., N\}$, using the operator of pseudoinversion "\" implemented in MATLAB. Use the Chebyshev polynomials defined by the tripart formula:

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$ for $k = 2, ..., K$

as a basis of linearly independent functions. Check the correctness of the program for several pairs of the values of N and K. Add the results of approximation to the corresponding graphs made according to the instruction provided in Section 1.

3. Carry out a systematic investigation of the dependence of the accuracy of approximation on the values of N and K. Use the following accuracy indicators for this purpose:

$$\delta_{2}(K, N) = \frac{\left\|\hat{f}(x; K, N) - f(x)\right\|_{2}}{\left\|f(x)\right\|_{2}} \quad \text{(the root-mean-square error)}$$

$$\delta_{\infty}(K, N) = \frac{\left\|\hat{f}(x; K, N) - f(x)\right\|_{\infty}}{\left\|f(x)\right\|_{\infty}} \quad \text{(the maximum error)}$$

where $\hat{f}(x;K,N)$ is an approximating function obtained for N and K. Make the three-dimensional graphs of the functions $\delta_2(K,N)$ and $\delta_\infty(K,N)$ for $N \in \{5,...,50\}$ and K < N.

- **4.** Carry out a systematic investigation of the dependence of the indicators $\delta_2(K, N)$ and $\delta_{\infty}(K, N)$ on the standard deviation $\sigma_y \in [10^{-5}, 10^{-1}]$ of random errors the data used for approximation are corrupted with. For this purpose:
 - Generate the error-corrupted data according to the formula:

$$\tilde{y}_n = y_n + \Delta \tilde{y}_n$$
 for $n = 1, ..., N$

where $\{\Delta \tilde{y}_n\}$ are pseudorandom numbers following the zero-mean normal distribution with the variance σ_y^2 , obtained by means of the MATLAB operator *randn*.

- For each value of the standard deviation σ_y , determine the values \breve{N} and \breve{K} minimising $\delta_2(K,N)$ and compute $\delta_{2,MIN}(\sigma_y) \equiv \delta_2(\breve{K},\breve{N})$.
- Approximate the sequence of pairs $\langle \sigma_y, \delta_{2,MIN}(\sigma_y) \rangle$, determined for several dozen values of σ_y , by means of the MATLAB operator *polyfit*; present the result of approximation using the logarithmic scale on both axes.