LATEX 入门介绍

桂义林

2014年11月9日

提纲

TEX/LATEX 概述

为什么要使用 LATEX

LATEX 文档制作入门

TEX/LATEX 概述

什么是 T_EX 什么是 L^AT_EX

为什么要使用 LATEX

LATEX 的优势 LATEX 的劣势

LATEX 文档制作入门

LATEX 排版命令 数学公式排版 BibTeX 文献管理 制作演讲稿(slide)

T_EX/L^AT_EX 概述 什么是 T_EX

什么是 LATEX

为什么要使用 LATEX

LATEX 的优势 LATEX 的劣势

MTFX 文档制作入门

LATEX 排版命令

数学公式排版

BibTeX 文献管理

制作演讲稿(slide)

什么是 TEX

▶ 高纳德, TAOCP 的作者

- ► T_EX 是由著名的计算机科学家 Donald E. Knuth 发明的电子 排版系统
- ► T_EX 排版生成高质量的 DVI(DeVice Independent) 文件,几 乎可以在所有的输出设备上输出

什么是 TEX

- ▶ T_EX 是学术界内公认的标准,一些顶级期刊、会议只接受 T_EX 排版的论文投稿
- ▶ TFX 是免费的, Knuth 公开了所有源代码
- ▶ T_EX 版本号: 3.14159265 → π

TEX/LATEX 概述

什么是 TFX

什么是 LATEX

为什么要使用 LATEX

LATEX 的优势 LATEX 的劣势

MTFX 文档制作入门

LATEX 排版命令

数学公式排版

BibTeX 文献管理

制作演讲稿(slide)

什么是 LATEX

- ▶ T_EX 提供了功能强大的排版语言,900 多条指令,用户可通过宏进行功能扩展
- ► Knuth 设计了一个名为 Plain TeX 的基本宏集,以与低层次的 TeX 呼应。该宏集的重点还仅仅在于如何排版的角度, 而非从作者的角度出发,使用它需要较多编程技巧
- ▶ LATEX 由 Leslie Lamport 开发,是目前最流行的 TeX 宏集,它提供了一组生成复杂文档所需的高级命令,使用者没有较深入的排版和编程知识也可以充分利用 TeX 的强大功能,可以在短时间内生成具有印刷品级质量的文档。对于生成复杂表格和数学公式,LaTeX 的表现尤为出色

TEXATEX 如何发音

- ▶ T_EX 的名字来自于大写的希腊字母 (tau, epsilon, chi) 组成。 在希腊语中这个词的意思是"科技"和"艺术"
- ▶ T_FX 读作"tech", LAT_FX 读作"lei tech"
- ▶ latex(|lateks|) 在英文中是"橡胶浆"的意思

TeX Users Group

在 TeX 出生两岁时,第一个 TeX 用户组织于 1980 年 2 月 22 日在斯坦福大学成立,简称 TUG。它是由对排版技术和字体设计感兴趣的 TeX 系统用户自发组成的社团,其宗旨是促进和扩展 TeX 系统的应用、维护 TeX 系统的完整性和可移植性、支持高质量电子文稿制作的改革与创新。

TEX 软件套装 (发行版)

TeXLive TUG 官方的发行版,各大平台通吃。TeXLive2014

MikTeX Windows 平台下用户最多的发行版

MacTeX Mac OS X 上的版本

CTeX 国内流行的 MikTeX 衍生版本, www.ctex.org

TFX/IATFX 概述

什么是 T_EX 什么是 L^AT_EX

为什么要使用 LATEX

LATEX 的优势 LATEX 的劣势

LATEX 文档制作入门

LATEX 排版命令 数学公式排版 BibTeX 文献管理 制作演讲稿(slide)

TEX/LATEX 概述

什么是 TEX 什么是 LATEX

为什么要使用 LATEX

LATEX 的优势

LATEX 的劣势

LATEX 文档制作入门

LATEX 排版命令

数学公式排版

BibTeX 文献管理

制作演讲稿(slide)

LATEX 的优势

高质量的输出 专业级的排版系统,稳定、美观、质量高 简单而又灵活 通过文本文件保存,熟悉后直接阅读源码也能看 懂大部分内容。除了排版文字,还可以排版乐谱、 象棋棋谱等

可编程 使用代码控制章节、图表、参考文献等,精确 超级技术支持 T_EX 并不是由某个公司垄断开发的,所以世界各 地的使用者采用统一的技术支持方式: E-mail, WWW. FTP。免费、分享

TFX/IATFX 概述

什么是 TEX 什么是 LATEX

为什么要使用 LATEX

LATEX 的优势

LATEX 的劣势

IATEX 文档制作入门

LATEX 排版命令 数学公式排版 BibTeX 文献管理

制作演讲稿(slide)

◆ロ > ◆部 > ◆差 > ◆差 > 差 め Q @

LATEX 的劣势

学习曲线 上手易,精通难

易用性 在处理对格式要求不严格的文档时,可能还是 Word 好用

可见性 LATEX 非所见即所得(WYSIWYG), 需要经过编译 生成可见文档

MFX 与 Word 的比较

- * Word 简单易用, 针对可视编辑, 所见即所得
- * 适合普通办公文档编辑
- ▶ LATFX 稳定,针对文章逻辑结构,所想即所得(WYTIWYG)
- ▶ 生成的文档质量比 Word 高
- ▶ 数学公式编辑能力很强
- ▶ 适合科技论文书籍的排版

TEX/IATEX 概述

什么是 T_EX 什么是 L^AT_EX

为什么要使用 LATEX

LATEX 的优势 LATEX 的劣势

ATEX 文档制作入门

LATEX 排版命令 数学公式排版 BibTeX 文献管理 制作演讲稿(slide)

TEX/IATEX 概述

什么是 T_EX 什么是 LAT_EX

为什么要使用 LATEX

LATEX 的优势 LATEX 的劣势

LATEX 文档制作入门

LATEX 排版命令

数学公式排版

BibTeX 文献管理

制作演讲稿(slide)

LATEX 排版命令

T_EX 系统是根据命令(预定义宏/函数)编译文档的,LAT_EX的命令一般有如下形式

 \setminus command[options]argument

```
典型的文档头声明示例
\documentclass{article}
\usepackage{graphicx}
\title{Test}
\author{Test}
\date{\today}
```

LATEX 文档结构

▶ LATEX 预制了几种不同类型的文档

- article: 一般的期刊文章

- book: 书

- report: 研究报告

▶ CTeX 宏包定义了一些中文文档类

ctexart

- ctexbook

- ctexrep

字体与字号

尺寸	25	20	17	14	12
Word	一号	二号	三号	四号	小四
LaTeX	\Huge	\huge	\LARGE	\Large	\large
尺寸	10	9	8	7	5
Word	五号	小五	六号	小六	七号
LaTeX	\normalsize	\small	\footnotesize	\scriptsize	\tiny

用法参考:

这是 {\normalsize 普通字体}, 这是 {\small 小字体}

特殊符号示例

```
Greek Letters
    \alpha
                       \theta
                                                        \tau
B
    \beta
                      \vartheta
                                   \pi
                                        \pi
                                                        \upsilon
    \gamma
                      \iota
                                        \varpi
                                                        \phi
    \delta
                      \kappa
                                        \rho
                                                        \varphi
                   к
    \epsilon
                      \lambda
                                       \varrho
                                                        \chi
    \varepsilon
                      \mu
                                        \sigma
                                                    1/2
                                                        \psi
                                   \sigma
    \zeta
                       \nu
                                        \varsigma
                                                        \omega
    \eta
                       \xi
    \Gamma
                      \Lambda
                                        \Sigma
                                                        \Psi
    \Delta
                      \Xi
                                        \Upsilon
                                                        \Omega
(-)
                       \Pi
                                        \Phi
    \Theta
```

大部分符号需要包括 amsmath 宏包:

\usepackage{amsmath}

章节环境

- ▶ 篇(part)
- ▶ 章 (chapter)
- ▶ 节 (section)
- ▶ 小节(subsection, subsubsection)
- ▶ 段(paragraph, subparagraph)

用法示例:

\section{简介}

TEX/IATEX 概述

什么是 T_EX 什么是 LAT_EX

为什么要使用 LATEX

LATEX 的优势 LATEX 的劣势

ATEX 文档制作入门

LATEX 排版命令

数学公式排版

BibTeX 文献管理

制作演讲稿(slide)

数学公式排版

- ▶ 行中数学公式
 - \begin{math} 数学公式 \end{math}
 - ▶ 简式 1: \(数学公式 \)
 - ▶ 简式 2: \$ 数学公式 \$
- ▶ 行间数学公式
 - \begin{equation} 数学公式 \end{equation}
 - ▶ 简式 1: \[数学公式 \]
 - ▶ 简式 2: \$\$ 数学公式 \$\$

数学公式排版

上帝创造了欧拉公式: $e^{i\pi} + 1 = 0$ 。

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty} e^{\frac{-x^2}{2}} dx = 1$$

$$\begin{bmatrix} 1 & 6 & 9 \\ 7 & 90 & f(x) \\ 9 & \psi(x) & g(x) \end{bmatrix}$$

TEX/IATEX 概述

什么是 TEX 什么是 LATEX

为什么要使用 LATEX

LATEX 的优势 LATEX 的劣势

ATEX 文档制作入门

LATEX 排版命令 数学公式排版

BibTeX 文献管理

制作演讲稿(slide)

BibTeX 文献管理

BibTeX 是一种格式和一个程序,用于协调 LATEX 的参考文献。它使用数据库的方式来管理参考文献,数据库后缀名.bib。数据库中存放参考文献条目,例如:

```
@inproceedings {perez2003poisson, title={Poisson image editing}, author={P{\'e}rez, Patrick and Gangnet, Michel and Blake, Andrew}, booktitle={ACM Transactions on Graphics (TOG)}, volume={22}, number={3}, pages={313--318}, year={2003}, organization={ACM}} }
```

BibTeX 文献管理

在你的整个研究生涯,可以只维护一个.bib 文件,它就是一个数据库,每个参考文献是一个记录,由一个唯一的 ID 描述。 当你需要引用相关文献时,使用 \cite{} 即可引用你的文献数据 库中的论文。

TEX/LATEX 概述

什么是 TEX 什么是 LATEX

为什么要使用 LATEX

LATEX 的优势 LATEX 的劣势

LATEX 文档制作入门

LATEX 排版命令 数学公式排版 BibTeX 文献管理

制作演讲稿(slide)

LATEX 制作 slide 的实现途径

- beamer
- foiltex
- prosper
- pdfscreen

关于 Beamer

Beamer 是 LATEX 上用来制作 slide 的一个文档类,它的特点是同标准 LATEX 结合度高,不需要其他后处理程序:

- 1. 使用 part, section, subsection 等命令组织逻辑结构
- 2. 使用 frame 命令组织内容
- 3. 使用 theme, template, logo 改变缺省风格
- 4. 使用 overlay 选项控制临时效果
- 5. 通过文档类选项控制输出格式等

总结

- ▶ 使用 LATEX 撰写高质量的科技类文档
- ▶ LATEX 是科研界的标准
- ▶ LATEX 专注于文章逻辑内容,不适合大量图文混排文档
- ▶ 使用 BibTeX 管理文献
- ▶ 使用 Beamer 制作风格简洁,内容清晰的演示文稿

关于 LATFX 学习的建议

- ▶ 在使用中学习,多查文档
- ▶ 记录使用中出现的问题,如编译错误的解决过程,某个具体问题的解决方法
- ▶ 多积累模板,打造自己的模板库

完

谢谢!

对于出卖其灵魂的人来说, LAT_FX 不能很好的工作...

Ishort