Las Positas College 3000 Campus Hill Drive Livermore, CA 94551-7650 (925) 424-1000 (925) 443-0742 (Fax)

Course Outline for ELEC 59

OPTICAL ELECTRONICS

Effective: Fall 2016

I. CATALOG DESCRIPTION:

ELEC 59 — OPTICAL ELECTRONICS — 2.00 units

Fundamental principles of light, geometric and wave optics, sources of light, displays, optical sensors, fiber optics, and opto-isolators. System applications of optical electronics. Prerequisite: Electronics Technology 50 or equivalent. 1 hour lecture, 3 hours laboratory.

1.00 Units Lecture 1.00 Units Lab

Prerequisite

ELEC 50 - Fundamentals of Electronics

or

Grading Methods:

Letter or P/NP

Discipline:

	MIN
Lecture Hours:	18.00
Lab Hours:	54.00
Total Hours:	72.00

- II. NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: 1
- III. PREREQUISITE AND/OR ADVISORY SKILLS:

Before entering the course a student should be able to:

A. ELEC50

IV. MEASURABLE OBJECTIVES:

Upon completion of this course, the student should be able to:

- 1. describe the basic characteristics of light
- 2. use simple lenses for gathering or collimating light
- 3. choose the best light source for an application
- 4. use a character display to display numbers or other symbols
- 5. describe how CRTs function as graphical displays 6. use a typical optical sensor to detect a light signal
- 7. use fiber-optics to transmit digital and analog circuits
 8. use an electro-optic isolator to couple isolated electronic circuits
- V. CONTENT:

 - A. The nature of light and optical measurements.

 B. Geometric optics—lenses, mirrors, absorption, and dispersion.

 C. Wave optics—polarization, interference, and diffraction.

 - C. Wave optics—polarization, interference, and diffraction.
 D. Sources—incandescent and fluorescent lamps, LEDs, and lasers.
 E. Displays—character displays and graphic displays; the CRT
 F. Sensors—photoconductive and photovoltaic detectors, imagers.
 G. Optical transmission—optical isolators and fiber-optics.
 H. Optical systems, including fiber-optic communication links.

VI. METHODS OF INSTRUCTION:

- A. Lecture -B. Lecture -
- C. Demonstration -
- D. Lab Laboratory experiments

VII. TYPICAL ASSIGNMENTS:

A. Reading: 1. Read Electro-Optics, Chapter 2. Discuss the differences between laser light and light from an LED. B. Writing: 1. Describe how a CRT display works. C. Laboratory: 1. Build a circuit using optical components that will automatically turn on a lamp when the room becomes dark.

VIII. EVALUATION:

A. Methods

- Exams/Tests
 Quizzes
 Class Participation
 Home Work
 Lab Activities
 Other:
 Wookh ass

- - a. Weekly assignments
 b. Class participation
 c. Lab assignments
 d. Quizzes

 - e. Final examination

B. Frequency

- Weekly quizzes
 Weekly reading and homework
 One final examination

IX. TYPICAL TEXTS:
1. Electro-optics, Heathkit EB-611 and accompanying workbook

X. OTHER MATERIALS REQUIRED OF STUDENTS: