Departamento de Ingeniería de Sistemas y Computación

SISTEMAS TRANSACCIONALES - ISIS2304

TALLER 1

Franklin Smith Fernandez Romero Código: 202215103
f.fernandezr@uniandes.edu.co

Andres Mateo Chilito Avella Código: 202214992 a.chilitoa@uniandes.edu.co

Este documento presenta la solución para el proyecto número uno de la materia Sistemas Transaccionales.

Universidad de los Andes

Bogotá - Colombía

19 de febrero de 2024

BANCO DE LOS ANDES

1. Modelo Conceptual UML Para este UML se han tomado diversas decisiones de diseño, por cada

Figura 1: Representación modelo conceptual UML para Banco De Los Andes

clase y relación. Empezando con Usuario, esta clase muestra la entidad con sus detalles personales y de contacto, la cual generaliza el comportamiento de las personas que hacen parte de la lógica de negocio, ya sea cliente o empleado. Para tener un bajo nivel de acople, en la primera iteración del modelo conceptual, se propuso diversas herencias para generalizar más la solución y separar responsabilidades. Sin embargo, pensando en las necesidades a futuro y dialogando con nuestro cliente (profesor), tomamos la decisión de usar enumeraciones para facilitar y acotar un poco más las operaciones en la BD. Antes teníamos modelado otro tipo de productos como CDT, aunque nuevamente tras consultar con el cliente, este no lo vio necesario, por ello por solo dos productos en el banco, cuentas o préstamos. Para cada una de estas relaciones generalizamos sus operaciones y especializamos ene la propias de cada producto. Con respecto a integridad y consistencia en los datos, nos fijamos especialmente en las restricciones de integridad como llaves foráneas y únicas que deben ser implementadas para mantener la consistencia. Por ejemplo, en numCuenta en la clase Cuenta es única para cada cliente. Asi mismo, la integridad transaccional es asegurada mediante el uso de transacciones en la base de datos para operaciones que involucren múltiples tablas. Cabe resaltar que este diseño que proponemos permite la adición de nuevas clases y relaciones sin requerir una reestructuración completa. Por ejemplo, si el banco decide ofrecer seguros, el diseño cumple con la incorporación fácil de una nueva clase Seguro y sus respectivas operaciones. Finalmente, si hablamos de usabilidad y mantenibilidad, el modelo conceptual esta diseñado para ser muy intuitivo, lo que nos lleva a un fácil mantenimiento. Las operaciones comunes son eficientes. En general, nuestro diseño debe es robusto, seguro, y flexible, garantizando que se puede manejar tanto las operaciones cotidianas como el crecimiento y los cambios en el futuro.

a) Clases

1) Usuario

- ♦ tipoIdentificacion: Tipo de identificación del usuario, puede ser CC o TI.
- ♦ numIdentificacion: Número único de identificación del usuario.
- ♦ contrasena: Clave de acceso para el usuario.
- ♦ **nombre**: Nombre completo del usuario.
- ⋄ nacionalidad, direccion, email, telefono, ciudad, departamento, codigoPostal: Datos personales y de contacto del usuario.

2) Empleado

♦ Tipo: Tipo de empleado, puede ser cajero, gerente de oficina o gerente general.

3) Oficina

- ⋄ nombre: String
- ⋄ numPuntosAtencion: Integer
- direction: Stringhorario: Date

4) Cliente

♦ **persona**: Tipo de persona, puede ser natural o jurídica.

5) Cuenta

- ♦ numCuenta: Número único de la cuenta.
- ♦ tipo: Tipo de cuenta, puede ser ahorro o corriente.
- ♦ estado: Estado de la cuenta, puede ser activa, cerrada o desactivada.
- ♦ saldo: Float
- \diamond **fechaUltimaTransaccion**: DateTime
- \diamond **fechaCreacion**: Date

6) PuntoAtencion

- ⋄ ubicacionGeografica: String
- \diamond operacionesRealizadas: Integer
- ♦ **TipoPuntoAtencion**: Enumeración (cajero automatico, AppWeb)

7) Préstamo

- ◊ tipo: Tipo de préstamo, puede ser vivienda, estudio, automóvil o libre inversión.
- \diamond estado: Estado del préstamo, puede ser solicitado, aprobado, rechazado o pagado.
- ♦ monto: Float
- ♦ interes: Float
- \diamond numCuotas: Integer
- \diamond diaPago: Integer
- ♦ valorCuota: Float

8) OperacionCuenta

- ♦ IDOperacion: Integer
- ♦ tipoOperacion: Enumeración (consignación, retiro, transferencia, crear, cerrar)

9) OperacionPrestamo

- \diamond **IDOperacion**: Integer
- ♦ tipoOperacion: Enumeración (pago extraordinario, pago_ordinario)

10) Punto de atención

- ♦ ubicacionGeografica: Localización del punto de atención.
- ♦ operacionesRealizadas: Número de operaciones realizadas en el punto.

b) Relaciones

- Usuario está asociado con Cliente y Empleado, indicando que un usuario puede desempeñar roles como cliente o empleado dentro del sistema.
- ♦ Oficina tiene una relación con PuntoAtencion, representando la ubicación física donde se ofrecen los servicios del banco y los puntos específicos donde se realizan transacciones.
- Cliente tiene cuentas asociadas y puede realizar OperacionCuenta y OperacionPrestamo, representando las diferentes transacciones y préstamos que el cliente puede tener.
- Prestamo y Cuenta están vinculados a las operaciones bancarias a través de OperacionPrestamo y OperacionCuenta respectivamente, detallando las acciones que se pueden realizar sobre ellos.

2. Modelo Conceptual E/R

Figura 2: Representación modelo conceptual E/R para Banco De Los Andes

Para empezar, en cada una de las entidades se muestra su obligatoriedad con un *, lo que es una buena práctica para garantizar la integridad de los datos. Existen cuatro herencias que, en el diseño de bases de datos, permite una mayor reutilización de atributos comunes, mejorando asi la modularidad de la BD. La cardinalidad y multiplicidad de cada relación ha sido debatida y reconsiderada en el grupo, llevándonos a tener un modelo que con la claridad y calidad suficiente en estas relaciones para el seguimiento correcto de las transacciones financieras. Como se mencionó antes, la integridad de los datos se mantiene mediante el uso de llaves primarias como id para Operaciones Bancarias y idPrestamos para Prestamos, lo que garantiza la unicidad de cada registro. Las llaves foráneas vinculan las operaciones con las cuentas y préstamos específicos, asegurando la integridad referencial. El diseño de la BD es escalable y puede manejar el aumento de clientes como transacciones.

- 3. **Restricciones** Las siguientes son restricciones que hemos notado o decidido implementar apra garantizar la integridad de la BD y la soluciones propuesta:
 - a) Identificación Única de Usuarios: Los usuarios deben ser identificados de manera única a través de su documento de identificación y no pueden registrar más de una dirección electrónica. Sin embargo, una dirección electrónica puede estar asociada a múltiples clientes.
 - b) Roles de Usuarios y Datos de Contacto: Se requiere que los usuarios registren su rol dentro del banco (cliente, cajero, gerente de oficina, gerente general) y proporcionen datos de contacto completos.

- c) Manejo de Cuentas y Préstamos: Las cuentas pueden ser de ahorros, corriente, y AFC, y su estado puede ser activo, cerrado, o desactivado. Los préstamos pueden ser para vivienda, estudio, automóvil, o de libre inversión, y también tienen estados (solicitado, aprobado, rechazado, pagado).
- d) Operaciones Bancarias: El sistema debe garantizar la coherencia de las operaciones bancarias. No debe aceptar operaciones que no puede cumplir y debe garantizar que la operación solicitada corresponda al tipo de usuario, entre otras condiciones. Esto implica restricciones sobre quién puede realizar ciertas operaciones (por ejemplo, ciertas operaciones pueden requerir un gerente, mientras que otras pueden ser realizadas por clientes o cajeros) y cómo estas operaciones afectan el estado de cuentas y préstamos. Esto garantiza la coherencia (Nuestro modelo lo implementa, además de que una parte se le asocia a la lógica).
- e) Restricciones de Creación y Borrado de Puntos de Atención: Para registrar un punto de atención, es necesario definir su tipo (atención personalizada, cajero automático, digital) y su localización geográfica. Los puntos de atención personalizada y los cajeros automáticos deben asociarse a una oficina existente. Además, un punto de atención solo puede ser borrado si no se ha realizado ninguna operación en él, lo que implica restricciones sobre cómo y cuándo se pueden modificar estos registros en la base de datos.
- f) Cambio de Estado de Cuentas: Para cambiar el estado de una cuenta a çerrada.º "desactivada", se deben cumplir ciertas condiciones, como que el saldo debe ser cero para cerrarla y que su estado anterior sea .ªctiva"para cualquier cambio. Además, se menciona que, debido a regulaciones bancarias, toda la información de la cuenta debe persistir.
- g) Registro de Operaciones Sobre Cuentas y Préstamos: Las operaciones sobre cuentas y préstamos deben ser registradas de manera que actualicen el saldo y el estado de los mismos, siguiendo reglas específicas para cada tipo de operación.
- h) Consultas con Respecto a la Privacidad: Se enfatiza la importancia de respetar la privacidad en las consultas, limitando la información disponible según el rol del usuario que realiza la consulta.
- 4. Modelo De Datos Relacional Se encuentra adjunto como archivo de Excel. Aunque acá se describen las tablas al usar el algoritmo modificado de Chen.
 - a) Usuarios

Se implementa la relación normal, es decir, todos los atributos con las restricciones necesa-

Figura 3: Relación Usuarios

rias para garantizar los principios mencionados en anteriores items. La PK en este caso es tipoIdentificacion con numIdentificacion, esto para garantizar un buen manejo de datos, para eventuales cambios de documento en los usuarios, de esta manera continuaremos almacenando la información de pasados documentos y la de su actual identificación.

b) Clientes

onomico o								
Persona:TipoPersona	tipoldentificacion	numldentificacion	ubicacionGeografica					
NN,ENUM(natural,jurid ica), UA	PK, FK[Usuario.tipoldentificaci on], NN, UA	PK, FK[Usuario.numldentifica cion],NN,UA, CK[XXXXXXX], ND	NN, FK[PuntoAtencion.ubic aciónGeografica]					

Figura 4: Relación Clientes

En este caso, modelamos la herencia de usuario, teniendo ahora como PK y FK las PK de usuario, mencionadas anteriormente. Se aplican restricciones para evitar atributos Nulos e incongruentes, por ello se aplican Checks.

c) Empleados

Acá contamos con enumeraciones restringidas por NN, una PK con el numero de identificación del empleado. Como en el caso de Clientes, los empleados también se modelan con llaves foráneas, siendo estas las PK de usuario.

Tipo:TipoEmpleado	tipoldentificacion	numIdentificacion	nombre
NN, ENUM(cajero,	PK,	PK,FK[Usuario.numldenti	FK[Oficina.nombre],
gerente_oficina,	FK[Usuario.tipoIdentificaci	ficacion],NN,UA,	ND
gerente_general), UA	on], NN, UA	CK[XXXXXXX], ND	ND

Figura 5: Relación Empleados

d) Oficinas

Tiene como PK el nombre de la oficina, esto porque hemos tomado la decisión de diseño de que cada oficina tendrá un nombre único. En la misma relación hemos definido formatos como el de dirección para evitar que el usuario asigne valores que no son lógicos.

nombre	numPuntosAtencion	direction	horario
PK	NN, CK[>=1]	NN, CK[Calle X #Carrera Y - W]	NN

Figura 6: Relación Oficinas

e) Cuentas

Cuentas tiene una relación uno a muchos, por lo que la FK queda como la PK de Cliente. La PK de esta relación es el numero de cuenta. Además, se establecen restricciones como fecha, para evitar errores en la asignación de valores por parte del usuario.

Figura 7: Relación Cuentas

f) PuntosAtencion

Como en el anterior caso tenemos una relación uno a muchos no con el lado univalor no obligatorio, por lo que modelamos la FK en puntos de atención como la PK de Oficina. La PK

en este caso es la ubicación geográfica, que hemos decidido es una georeferenciación, con esto podemos tener una ubicación precisa y que seguro no se va a repetir entre los diversos puntos, por mas que este cerca o dentro uno del otro.

ubicacionGeografica	operacionesRealizadas	tipo:TipoPuntoAtencion	nombre	
PK, NN, CK[X,X] CK[0,inf], NN		NN, ENUM(cajero_automatic o, AppWeb)	FK[Oficina.nombre]	

Figura 8: Relación Puntos Atención

g) Prestamos

Prestamos también tiene una relación uno a muchos, aunque en este caso la FK queda en Operaciones préstamo, ya que este es el extremo multivalor. Para prestamos la PK es la id del producto (préstamo), cabe resaltar que para cada id en el modelo hemos definido un Check que es una cantidad de números que más adelante en la lógica nos sera de ayuda ya que, por ejemplo, una operacional en un préstamo tiene el id de la operación, id de operación sobre préstamo y el numero de préstamo, esto para la seguridad e integridad de datos.

Figura 9: Relación Prestamos

h) Operaciones Bancarias

Nuevamente una relación uno a muchos, acá se guarda como PK la FK de Punto atención, al ser este el extremo multivalor. La PK de esta relación es el id de la operación. Se establecen formatos para fecha y hora, así como check que verifica que el monto sea un número positivo.

Figura 10: Relación Operaciones Bancarias

i) Operaciones Cuenta

Al ser una herencia, se guarda como FK la PK de operación bancaria. La PK de esta relación es el id de la operación sobre la cuenta. Además tiene como FK la PK de Cuenta, por sus relación uno a muchos (OperacionesCuenta es el extremo multivalor)

-p								
idOperacion	TipoOperacion:Operacion esCuenta	numCuenta	id					
PK	PK NN, ENUM(deposito, retiro, transferencia)		NN,SA, FK[OperacionBancaria. id]					

Figura 11: Relación Operaciones Cuenta

j) OperacionesPrestamo

Al ser una herencia, se guarda como FK la PK de operación bancaria. La PK de esta relación es el id de la operación sobre el préstamo. Además tiene como FK la PK de préstamo al ser este el extremo multivalor de la relación uno a muchos.

	idOperacion	TipoOperacion:Operacion esPrestamo	id	idPrestamo					
	PK	NN, PK ENUM(pago_extraordina fio, pago ordinario)		FK[Prestamo.idPrestam o], NN					
ſ									

Figura 12: Relación Operaciones Préstamo

- 5. Nivel de normalización Para empezar, cumple con la primera forma normal (1NF), cada entidad tiene atributos con valores atómicos y cada atributo tiene un valor único en cada instancia. Para la segunda forma normal (2NF), partimos de que cumple con 1NF, aparte todos los atributos no clave(llave) dependen completamente de la llave primaria y no hay dependencias parciales por lo que cumple con 2NF. Para la tercera forma normal (3NF), cumple con 2NF, los atributos no clave solo dependen de las llaves primarias, no de otros atributos no clave, el diseño muestra que cada entidad se relaciona con otras a través de ser llaves foráneas, mostrando una buena separación de preocupaciones que es consistente con 3NF. Finalmente, para la forma normal de Boyce-Codd (BCNF), cumple con 3NF y cada determinante es una llave candidata. La tabla cumple con BCNF porque todas sus dependencias funcionales implican que los determinantes son superclaves. Es decir, para cada dependencia funcional en la tabla, el conjunto de atributos que determina otro atributo es siempre una superclave, asegurando que no existen dependencias funcionales entre un conjunto de atributos no clave y cualquier otro atributo. Como resultado, se eliminan las redundancias y las anomalías de inserción, actualización y eliminación, manteniendo la integridad de los datos en la base de datos. Por lo anterior, tenemos un diseño normalizado.
- 6. **Pruebas** Disponibles en el Excel adjunto.

a) Usuarios

Para asegurar la integridad de nuestra base de datos, realizamos pruebas de unicidad de tuplas en la tabla específica. Primero, insertamos una tupla con una llave primaria (PK) única y luego intentamos insertar otra tupla con la misma PK. Como esperado, la tabla rechaza la segunda inserción, demostrando así el correcto funcionamiento de las restricciones de unicidad, acá adjuntamos algunas inserciones que hicimos, mostrando el correcto funcionamiento.

tipoldentificacion	numidentificacion	contraseña	nombre	apelido	nacionalidad	direction	email	telefono	ciudad	departamento	codePostal
PK,NN,UA	PK,NN,UA, CKDOOXXXXQ, ND	NN	NN	NN	NN	NN, CK[Calle X #Carrera Y - W]	cktx@xxq	NN, CKDOOOOOOOOQ	NN	NN	NN
TI	1075819487	u1RDt8iD)L	Robert	Stuart	Colombiana	Calle 41 # 44, 49	Iroberts@morris-vance.info	3905686236	Cali	Valle del Cauca	484196
CC	1014096185	SNADhKfk)1	Heather	Calhoun	Colombiana	Calle 50 # 15, 27	hmclaughlin@osborn.biz	3385233170	Medellin	Antioquia	156309
TI	1030768108	Tw@KwxPMj9	Darin	Carson	Colombiana	Calle 50 # 4, 7	brownjohnathan@yahoo.com	3384502062	Bogotá	Bogotá	809770
CC	1054630419	sb8M9LVsVp	Elizabeth	Miller	Colombiana	Calle 66 # 28, 30	teresa81@hotmail.com	3972871787	Cali	Valle del Cauca	142718
TI	1023578186	ob4#Xj2a\$b	Justin	Larson	Colombiana	Calle 86 # 44, 43	amcfarland@gmail.com	3900459092	Barranquilla	Atlantico	478161
CC	1074413616	elsz3M0oi+	Charles	Morgan	Colombiana	Calle 56 # 6, 30	nicole85@gmail.com	3886907919	Cali	Valle del Cauca	112238
CC	1038656617	9BFT9Kp%_j	Courtney	Kramer	Colombiana	Calle 44 # 12, 8	donnacarr@williams.com	3197141776	Medellin	Antioquia	769903
CC	1061627499	i_f6lZkl1	Britany	Jefferson	Colombiana	Calle 6 # 19, 25	copelandmelanie@yahoo.com	3686591902	Medellin	Antioquia	529764
TI	1082244024	m&6(YRGdv^	Sharon	Calhoun	Colombiana	Calle 88 # 1, 31	sadkins@pacheco.net	3751839560	Medellin	Antioquia	202412
CC	1093433030	2_493^Fhic	Keith	Harris	Colombiana	Calle 4 # 20, 1	tnabrown@madden-lester.net	3301079062	Cali	Valle del Cauca	954805

Figura 13: Relación Usuarios

b) Clientes

En nuestras pruebas de integridad referencial, insertamos una tupla con una clave foránea (FK) que ya existe en la tabla referenciada, lo cual se procesó exitosamente. Sin embargo, al intentar insertar otra tupla con una FK inexistente en la tabla referenciada, la tabla muestra correctamente su incongruencia en la inserción, validando así nuestras reglas de integridad.

Persona:TipoPersona	tipoldentificacion	numldentificacion	ubicacionGeoPuntoAteo ionAsistido	
NN,ENUM(natural,jurid ica), UA			NN, FK[PuntoAtencion.ubic aciónGeografica]	
juridica	TI	1075819487	53.9086915 , 15.664848	
natural	CC	1014096185	-47.387398 , 66.666681	
juridica	juridica TI 1 natural CC 1 juridica TI 1		-70.7604155 , 2.358511	
natural			41.978842 , 114.518774	
juridica			19.215057 , -39.742208	

Figura 14: Relación Clientes

c) Empleados

Para profundizar en las pruebas de integridad referencial, intentamos insertar tuplas con claves foráneas no registradas en las tablas referenciadas. Como resultado, la tabla no se veía lógica, lo que mostraría en una implementación real el bloqueó de estas inserciones, confirmando la efectividad de las restricciones de integridad foránea.

Tipo:TipoEmpleado	tipoldentificacion	numldentificacion	nombreOficinaAtendida
NN, ENUM(cajero, gerente_oficina, gerente_general), UA	PK, FK[Usuario.tipoIdentificaci on], NN, UA	PK,FK[Usuario.numldenti ficacion],NN,UA, CK[XXXXXXX], ND	FK[Oficina.nombre], ND
cajero	СС	1074413616	Oficina Lake Michaelmouth
gerente_oficina	gerente_oficina CC 103		Oficina Perryfort
gerente_general	gerente_general CC		Oficina East Timothyview
gerente_oficina	TI	1082244024	Oficina West Eric
gerente_oficina	CC	1093433030	Oficina Port Johnfort

Figura 15: Relación Empleados

d) Oficinas

Combinamos inserciones válidas e inválidas (respecto a las FK) en nuestras pruebas en la tabla. Esto no solo verificó la integridad referencial sino que también nos ayudó a identificar áreas de mejora en las decisiones que tomamos para las relaciones.

nombre	numPuntosAtencion	direccion	horario
PK	NN, CK[>=1]	NN, CK[Calle X #Carrera Y - W]	NN
Oficina Lake Michaelmouth	10	Calle 84 # 17, 49	8AM - 6PM
Oficina Perryfort	3	Calle 36 # 6, 8	8AM - 5PM
Oficina East Timothyview	2	Calle 23 # 40, 20	9AM - 8PM
Oficina West Eric	7	Calle 74 # 22, 39	8AM - 6PM
Oficina Port Johnfort	3	Calle 47 # 40, 17	9AM - 8PM
Oficina North Christopherfurt	1	Calle 84 # 26, 3	8AM - 8PM
Oficina Kristinborough	2	Calle 9 # 30, 24	9AM - 6PM
Oficina North Johnside	5	Calle 63 # 30, 21	8AM - 5PM
Oficina Torresshire	6	Calle 72 # 7, 29	9AM - 7PM
Oficina West Christopherport	9	Calle 85 # 38, 43	10AM - 5PM

Figura 16: Relación Oficinas

e) Cuentas

Al probar las restricciones de chequeo, intentamos insertar tuplas que violaban las reglas establecidas (por ejemplo, rangos de valores inadecuados para un campo específico). En ese caso se vio como la tabla muestra la restricción, lo que en la implementación representaría el rechazó de estas inserciones, asegurando que solo los datos válidos sean almacenados.

PK,SA,NN	NN, ENUM(ahorro, corrierte, AFC), UA	NN, ENUM(activa, cerrada, desactivada),	CK(0,Hf), NN	NN, CKĮDDIMMAAAA]	NN, CKĮDD/MM/AAAA]	FK[Cliente.tipoldentificacio n], NN, UA	FK[Cliente numidentificacion], N N, UA, CKD0000000, ND
122187	corriente	activa	\$ 54.788.000,00	27/07/2023	13/05/2023	TI	1075819487
148928	ahorro	cerrada	0,00	4/05/2023	28/11/2021	CC	1014096185
134571	corriente	activa	\$ 830.250.000,00	14/12/2023	6/12/2019	TI	1030768108
108087	ahorro	activa	\$ 39.724.000,00	30/03/2023	30/04/2019		1054630419
120061	corriente	desactivada	0,00	18/04/2023	20/01/2020	TI	1023578186

Figura 17: Relación Cuentas

f) PuntosAtencion

Simulamos escenarios de uso real insertando datos con FK válidas e inválidas, lo que nos permitió evaluar como se observa la tabla en condiciones cercanas a la producción y observamos que son claras las reglas propuesta por lo que se asegura que nuestro sistema es robusto y confiable bajo diferentes situaciones.

ubicacionGeografica	ubicacionGeografica operacionesRealizadas		nombreOficina
PK, NN, CK[X,X]	CK[0,inf], NN	NN, ENUM(cajero_automatic o, AppWeb)	FK[Oficina.nombre]
-53.9086915 , 15.664848	-53.9086915 , 15.664848 9949		Oficina Lake Michaelmouth
-47.387398 , 66.666681	6215	cajero_automatico	Oficina Perryfort
-70.7604155 , 2.358511	5167	AppWeb	Oficina East Timothyview
-41.978842 , 114.518774	3920	cajero_automatico	Oficina West Eric
19.215057 , -39.742208	9275	cajero_automatico	Oficina Port Johnfort
47.018013 , 91.634821	2864	AppWeb	Oficina North Christopherfurt
-68.2183505 , 57.657214	2299	AppWeb	Oficina Kristinborough
47.429962 , -167.213314	1225	AppWeb	Oficina North Johnside
-89.5736245, 3.699025	8715	AppWeb	Oficina Torresshire
11.953283 , 31.806022	, , , , , , , , , , , , , , , , , , ,		Oficina West Christopherport

Figura 18: Relación Puntos Atención

g) Prestamos

Además de las inserciones, probamos actualizaciones en tuplas existentes para verificar que las restricciones de unicidad se mantengan. Al intentar cambiar una PK a un valor ya existente, en la tabla se observa claramente la invalidez de esta acción, lo que en el software se vería como un bloqueo en la operación, manteniendo la integridad de los datos.

idPrestamo							valorCusta
PK	NN, ENUM(vivienda, estudio, automovil, libre_inversion)	NN, ENUM(solicitado, aprobado, rechazado, pagado)	CK(0,ing, NN	CK[0,irt], NN	CIQ0,72], NN	СК(0,31), NN	CK(0,inf), NN
947150	libre_inversion	rechazado	\$ 7.586.000,00	6%	20	17	\$ 381.196,50
369054	vivienda	aprobado	\$ 233.095,00	13%	6	15	\$ 39.270,03
255410	estudio	pagado	\$ 2,469,610,00	7%	59	6	\$ 42.101,97
414337	automovil	solicitado	\$ 1,423,336,00	11%	35	4	\$ 41,039,52
648867	estudio	pagado	\$ 1.289.614,00	8%	22	13	\$ 59,009,61
926805	libre_inversion	aprobado	\$ 3.317.612,00	8%	16	16	\$ 208.733,09
466037	automovil	solicitado	\$ 8,415,767,00	9%	43	16	\$ 197.183,38
115969	estudio	pagado	\$ 6.200.629,00	9%	29	10	\$ 215,418,40
469384	vivienda	rechazado	\$ 502.218,00	6%	17	5	\$ 29,689,95
982820	automovil	solicitado	\$ 8.719.138,00	1196	48	23	\$ 183.313,82

Figura 19: Relación Prestamos

h) OperacionesBancarias

Generamos conjuntos de datos de prueba específicos que abarcan todos los posibles casos de borde para las restricciones de chequeo. Este enfoque nos asegura que cualquier violación potencial sea identificada y corregida antes de la implementación en producción.

id	monto		fecha	hora	ubicacionGeograficaTransac cionRealizada
PK,NN,SA		CK[0,inf], NN	NN, CK[DD/MM/AAAA]	NN, CK[HH:MM:SS]	FK[PuntoAtencion.ubicacion Geografica], NN, CK[X,X]
4393	\$	9.241,37	16/08/2023	00:25:05.233952	-53.9086915 , 15.664848
4093	\$	7.263,00	14/01/2024	02:56:05.233961	-47.387398 , 66.666681
7885	\$	3.477,08	5/08/2023	00:01:05.233966	-70.7604155 , 2.358511
2228	\$	413,65	18/03/2023	13:58:05.233971	-41.978842 , 114.518774
5324	\$	3.322,47	2/07/2023	19:08:05.233975	19.215057 , -39.742208
6068	\$	5.367,63	1/11/2023	13:22:05.233980	47.018013 , 91.634821
3770	\$	5.249,09	25/12/2023	04:02:05.233985	-68.2183505 , 57.657214
2441	\$	5.458,21	10/10/2023	09:13:05.233989	47.429962 , -167.213314
7091	\$	6.521,78	25/02/2023	19:38:05.233994	-89.5736245 , 3.699025
1226	\$	3.559,21	11/04/2023	07:08:05.233999	11.953283 , 31.806022

Figura 20: Relación Operaciones Bancarias

i) OperacionesCuenta

Implementamos pruebas que simulan transacciones completas, involucrando múltiples operaciones de inserción, actualización y borrado, para asegurar que las restricciones de unicidad y FK se mantengan a lo largo de toda la transacción.

idOperacion	TipoOperacion:Operacion esCuenta	numCuentaBanco	idOperacion
PK	NN, ENUM(deposito, retiro, transferencia)	SA,NN, FK[Cuenta.numCuenta]	NN,SA, FK[OperacionBancaria. id]
7091	retiro	122187	4393
6068	transferencia	148928	4093
2228	deposito	134571	7885
7885	retiro	108087	2228
3770	transferencia	120061	5324

Figura 21: Relación Operaciones Cuenta

i) OperacionesPrestamo

Además de verificar la funcionalidad, realizamos auditorías de seguridad específicas para nuestras restricciones de chequeo, asegurándonos de que no existan brechas que puedan ser explotadas para insertar datos maliciosos o comprometer la integridad del sistema, por ejemplo, como se menciono antes tenemos varios identificadores por operación.

idOperacion	TipoOperacion:Operacion esPrestamo	id	idPrestamo
PK	NN, ENUM(pago_extraordina rio, pago_ordinario)	NN,SA, FK[OperacionBancaria.id	FK[Prestamo.idPrestam o], NN
5324	pago_extraordinario	6068	947150
2228	pago_ordinario	3770	369054
4393	pago_extraordinario	2441	255410
6068	pago_extraordinario	7091	414337
7885	pago_extraordinario	1226	648867

Figura 22: Relación Operaciones Préstamo