Projeto de Processamento de Imagens Médicas - PTC-5892

Igor Topcin Setembro de 2013

Análise e Aplicação do Filtro de Kuan em Imagens com Ruído Speckle

I. Introdução

O filtro de Kuan [1] está entre as diversas técnicas propostas na literatura para redução de ruído em imagens. O objetivo deste trabalho é implementar o algoritmo proposto no artigo original, desenvolver uma metodologia de medição da eficácia do filtro, e apresentar os resultados obtidos em imagens produzidas artificialmente.

II. Filtro de Kuan

II.a Forma Geral

Kuan é baseado em um modelo estatístico de imagem em que a média e variância são não estacionárias. O modelo de ruído multiplicativo é da forma g = f + f(n-1), que na realidade é derivação da forma aditiva g = f + n, onde g é o sinal da imagem observada, f é o sinal original e n é o ruído. A partir do modelo estatístico e do ruído multiplicativo, os autores desenvolveram a estimação linear do erro quadrático médio (EQM) mínimo, expressa da seguinte forma geral:

$$\hat{f}(i,j) = \bar{f}(i,j) + \frac{v_f(i,j)}{v_f(i,j) + \sigma_n^2(i,j)} (g(i,j) - \bar{g}(i,j))$$
(1)

O artigo mostra que localmente $\bar{f} = \bar{g}$. As estatísticas locais $\bar{g}(i,j), v_g(i,j)$ e $v_f(i,j)$ de uma janela de tamanho (2r+1)(2s+1) são dadas por:

$$\bar{g}(i,j) = \frac{1}{(2r+1)(2s+1)} \sum_{p=i-r}^{i+r} \sum_{q=j-s}^{j+s} g(p,q)$$
 (2)

$$v_g(i,j) = \frac{1}{(2r+1)(2s+1)} \sum_{p=i-r}^{i+r} \sum_{q=j-s}^{j+s} (g(p,q) - \bar{g}(i,j))^2$$
(3)

$$v_f(i,j) = v_g(i,j) - \sigma_n^2(i,j) \tag{4}$$

II.b Filtro de Kuan para Ruídos Multiplicativos

A equação geral para o filtro foi mostrada em 1, porém para ruídos multiplicativos a estimação \hat{f} é representada da seguinte forma:

$$\hat{f}(i,j) = \bar{f}(i,j) + \frac{v_f(i,j)}{v_f(i,j) + \frac{\sigma_u^2}{E(u)}[(\bar{f}(i,j))^2 + v_f(i,j)]} (g(i,j) - \bar{f}(i,j))$$
(5)

Aqui, u é o ruido multiplicativo cuja média e variância são estacionárias. Com v_f dada por:

$$v_f(i,j) = \frac{\sigma_g^2(i,j) - \frac{\sigma_u^2}{E(u)^2} E(g(i,j))^2}{1 + \frac{\sigma_u^2}{E(u)^2}}$$
(6)

Podemos também reescrever a equação 5 da seguinte forma:

$$\hat{f}(i,j) = \bar{f}(i,j) + w(i,j)(g(i,j) - \bar{f}(i,j))$$

$$\Rightarrow \hat{f}(i,j) = w(i,j)g(i,j) + \bar{f}(1 - w(i,j)) \tag{7}$$

Sendo w(i,j) definida por:

$$w(i,j) = \frac{v_f(i,j)}{v_f(i,j) + C_u[(\bar{f}(i,j))^2 + v_f(i,j)]}$$
(8)

 C_u é o coeficiente de variação do ruído, que aqui assumimos ser estacionário, e portanto pode ser facilmente estimado com o cálculo da seguinte equação em uma região homogênea da imagem:

$$C_u = \frac{\sigma_u^2}{E(u)} \tag{9}$$

Sendo assim, podemos reescrever 6 substituindo $\frac{\sigma_u^2}{E(u)}$ por C_u :

$$v_f(i,j) = \frac{\sigma_g^2(i,j) - C_u E(g(i,j))^2}{1 + C_u}$$

$$= \frac{\sigma_g^2(i,j) - C_u(\bar{g}(i,j))^2}{1 + C_u}$$
(10)

Substituindo 10 em 8 e assumindo $\bar{f} = \bar{g}$ teremos:

$$w(i,j) = \frac{v_f(i,j)}{v_f(i,j) + C_u[(\bar{f}(i,j))^2 + v_f(i,j)]} = \frac{v_f(i,j)}{v_f(i,j) + C_u(\bar{g}(i,j))^2 + C_u v_f(i,j)}$$

$$= \left[\frac{\sigma_g^2(i,j) - C_u(\bar{g}(i,j))^2}{1 + C_u}\right] \cdot \left[\frac{1}{\frac{\sigma_g^2(i,j) - C_u(\bar{g}(i,j))^2}{1 + C_u}}(1 + C_u) + C_u(\bar{g}(i,j))^2\right]$$

$$= \left[\frac{\sigma_g^2(i,j) - C_u(\bar{g}(i,j))^2}{1 + C_u}\right] \cdot \left[\frac{1}{\sigma_g^2(i,j) - C_u(\bar{g}(i,j))^2 + C_u(\bar{g}(i,j))^2}\right]$$

$$= \frac{\sigma_g^2(i,j) - C_u(\bar{g}(i,j))^2}{(1 + C_u)\sigma_g^2(i,j)} = \frac{\sigma_g^2(i,j)}{(1 + C_u)\sigma_g^2(i,j)} - \frac{C_u(\bar{g}(i,j))^2}{(1 + C_u)\sigma_g^2(i,j)}$$

$$= \frac{1}{1 + C_u} - \frac{C_u(\frac{\bar{g}(i,j)}{\sigma_g})^2}{1 + C_u}$$

$$= \frac{1 - C_u(\frac{\bar{g}(i,j)}{\sigma_g})^2}{1 + C_u}$$

$$= \frac{1 - C_u(\frac{\bar{g}(i,j)}{\sigma_g})^2}{1 + C_u}$$

$$(11)$$

Fazendo $C_i(i,j) = \frac{\sigma_x(i,j)}{\bar{g}(i,j))}$ e substituindo em 11, temos:

$$w(i,j) = \frac{1 - \frac{C_u}{C_i}}{1 + C_u} \tag{12}$$

III. Implementação e Testes

III.a Implementação

Usamos Python e algumas bibliotecas científicas como IPython [4], SciPy [5] e NumPy [6] em todos os algoritmos e testes.

Para o filtro de Kuan, foram implementadas as equações 7 e 13. O algoritmo para cálculo de w(i, j) é apresentado na listagem abaixo:

```
def weight(window, cu):
1
       ci = variation(window)
2
       ci_2 = ci * ci
3
       cu_2 = cu * cu
4
5
       if cu_2 > ci_2:
           w = 0.0
        else:
            w = (1.0 - (cu_2 / ci_2)) / (1.0 + cu_2)
10
       return w
11
```

E a listagem a seguir mostra o algoritmo do filtro de Kuan:

Listagem 2: método *filter* de kuan.py

```
def filter(img, window_size, cu):
       img = np.float64(img)
2
       img_filtered = np.zeros_like(img)
3
4
       N, M = img.shape
5
       win_offset = window_size / 2
6
       for i in xrange(0, N):
            xleft = i - win_offset
           xright = i + win_offset
           # (...)
11
12
           for j in xrange(0, M):
13
                yup = j - win_offset
14
                ydown = j + win_offset
15
16
17
                window = img[xleft:xright, yup:ydown]
18
                w = weight(window, cu)
19
                img_filtered[i, j] = round((img[i, j] * w) + (window.mean() * (1.0 -
20
                     w)))
21
       return img_filtered
22
```

Algumas partes do código foram omitidas para manter a clareza. O código pode ser consultado na íntegra em http://github.com/igortopcin/ptc5892.

III.b Medição da Eficácia

Como Kuan é um filtro adaptativo, espera-se que ele se comporte como um filtro de média nas regiões homogêneas da imagem, e um filtro identidade nas bordas. Por esse motivo foram usados dois critérios para a medição da eficácia do filtro implementado. Em cada teste, quantificamos a preservação da média e a redução do desvio padrão em regiões homogêneas. Além desse critério, também quantificamos a preservação das bordas da imagem usando Pratt's Figure of Merit (FOM) [2], também usado por Yu et al. para medir e comparar o desempenho do filtro SRAD PDE [3].

A equação que define o FOM é dada por:

$$FOM = \frac{1}{max\{\hat{N}, N_{ideal}\}} \sum_{i=1}^{\hat{N}} \frac{1}{1 + d_i^2 \alpha}$$
 (13)

Onde \hat{N} é o número de pixels de borda detectados, N_{ideal} é o número de pixels de borda do nosso $padrão\ ouro,\ d_i$ é a distância euclideana entre o i-ésimo pixel de borda detectado e o mais próximo pixel de borda do $padrão\ ouro.$

Assim como Yu, usamos o detector de bordas Canny [7] em nossa implementação do FOM, mostrado na listagem 3. Para evitar que Canny suavize demasiadamente a imagem, usamos desvio padrão $\sigma=0,1$. Na prática, o valor do FOM pode variar de 0 a 1, sendo 1 o valor para o padrão ouro.

```
def fom(img, img_gold_std, alpha = DEFAULT_ALPHA):
1
       edges_img = canny(img, 0.1)
2
       edges_gold = canny(img_gold_std, 0.1)
3
       dist = distance_transform_edt(np.invert(edges_gold))
5
       fom = 1.0 / np.maximum(
           np.count_nonzero(edges_img),
           np.count_nonzero(edges_gold))
9
10
       N, M = img.shape
11
12
       for i in xrange(0, N):
13
            for j in xrange(0, M):
14
                if edges_img[i, j]:
15
                    fom += 1.0 / ( 1.0 + dist[i, j] * dist[i, j] * alpha)
16
17
       fom /= np.maximum(
18
           np.count_nonzero(edges_img),
19
           np.count_nonzero(edges_gold))
20
21
       return fom
22
```

III.c Imagens de Teste

Aplicou-se um ruído *speckle* às imagens 1a e 3a, e um ruído Gaussiano à imagem 2a. As imagens com esses ruídos são 1b, 2b e 3b, que foram em seguida submetidas ao filtro de Kuan. Os testes do filtro resultaram nas imagens 1c, 2c e 3c.

Figura 1: Imagem de teste 1, com figuras geométricas e ruído do tipo speckle

IV. Resultados

IV.a Média e Desvio Padrão

Escolhemos arbitrariamente duas áreas homogêneas de cada uma das 3 imagens de teste. Para cada área, comparamos sua média e desvio padrão na imagem original e filtrada. Os resultados são mostrados na tabela 1. Repare que em todas as áreas, exceto na área II da imagem 2c, a média local sofreu leves alterações, enquanto que o desvio padrão diminuiu acentuadamente. Já na área II da imagem 2c, a média e desvio padrão permaneceram quase inalterados. Isso também pode ser percebido visualmente nas imagens 2b e 2c. A área II é o cisto mais escuro, no topo da imagem. Veja que o ruído nessa área da imagem permaneceu quase o mesmo após a filtragem. Isso se deve à escolha do Cu usado no filtro de Kuan, que difere muito do Ci da área II.

Figura 2: Imagem de teste 2, com cistos e ruído do tipo Gaussiano de 10dB

Figura 3: Imagem de teste 3, com cistos e ruído do tipo speckle

Imagem	C_u		Área I			Área II	
		Média	Desvio Padrão	C_i	Média	Desvio Padrão	C_i
1b com ruído	0,090	77,10	10,23	0,133	110,78	10,21	0,092
1c filtrada		72,07	6,63	0,092	107,87	4,40	0,041
2b com ruído	0,045	96,99	3,80	0,039	19,79	3,87	0,195
2c filtrada		97,70	0,92	0,009	19,73	3,79	$0,\!192$
3b com ruído	0,200	87,92	20,17	0,229	138,11	16,24	0,118
3c filtrada		95,32	12,84	$0,\!135$	149,30	10,61	0,071

Tabela 1: Média e desvio padrão antes e após o filtro de Kuan

IV.b Preservação das Bordas

Na seção III.b, Medição da Eficácia, apresentamos o FOM de Pratt como o método escolhido para quantificar o critério de preservação das bordas da imagem. As figuras 4 e 5 mostram como o filtro de Kuan se comporta com relação a esse critério.

Repare que as imagens 4a e 5b se aproximam muito mais do padrão ouro que 5a.

A tabela 2 apresenta os valores do FOM antes e após a filtragem com o algoritmo de Kuan. A imagem de teste 2, com ruído Gaussiano, teve o melhor resultado. A imagem do teste 3, com maior nível de ruído speckle, teve o pior resultado.

Figura 4: Teste 1; (a) e (b) são resultados do detector de bordas Canny aplicado à imagem filtrada e padrão ouro, respectivamente. (c) é a transformada da distância de (b), usada no cálculo do FOM

Figura 5: Testes 2 e 3; (a) e (b) são resultados do detector de bordas Canny aplicado às imagens filtradas 2c e 3c, respectivamente. (c) é Canny aplicado ao padrão ouro de ambos os testes. (d) é a transformada da distância de (c), usada no cálculo do FOM

Imagem	FOM com ruído	FOM filtrada
Teste 1	0.1766	0.3481
Teste 2	0.0430	0.4453
Teste 3	0.0462	0.0735

Tabela 2: Valores do FOM antes e após a filtragem

V. Conclusões

Neste trabalho conseguimos mostrar a viabilidade da implementação do filtro de Kuan para imagens com ruído multiplicativo. Também mostramos dois critérios de quantificação da eficácia do algoritmo, que permitem avaliar seu desempenho em regiões homogêneas e nas bordas da imagem. Tais critérios também foram implementados e publicados para livre uso em fins científicos ou comerciais.

Após a discussão sobre a implementação do filtro e os critérios de avaliação de desempenho, conduzimos 3 experimentos em imagens produzidas artificialmente, e apresentamos os resultados qualitativos e quantitativos de cada um deles. Algumas conclusões que merecem destaque são:

- A escolha de um bom valor de C_u é fundamental.
- Conhecer o tipo de ruído é essencial para obter resultados ótimos.

Referências

- [1] D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, No. 2, (1985)
- [2] W. K. Pratt, Digital Image Processing, Nova Iorque, Wiley, (1977)
- [3] Y. Yu and S. T. Acton, Speckle Reducing Anisotropic Diffusion, IEEE Transactions on Image Processing, Vol. 11, No. 11, (2002)
- [4] F. Pérez, B. E. Granger, *IPython: A System for Interactive Scientific Computing*, Computing in Science and Engineering, Vol. 9, No. 3, (2007)
- [5] E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open Source Scientific Tools for Python, (2001)
- [6] T. Oliphant et al., Python for Scientific Computing, Computing in Science and Engineering, Vol. 9, No. 3, (2007)
- [7] J. Canny, A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, (1986)