VPPM-...-C1 比例压力调节阀

FESTO

Festo SE & Co. KG Ruiter Straße 82 73734 Esslingen Deutschland +49 711 347-0

www.festo.com

9110159

操作说明 8110158 2021-11f [8110167]

原版操作手册的译本

© 2022 Festo SE & Co. KG 保留一切权利

1 适用文件

有关产品的所有可用文件 → www. festo. com/sp。

2 安全

2.1 安全注意事项

- 仅在原装状态下使用产品,请勿擅自进行改动。
- 请仅在技术状态完好的情况下使用本产品。
- 请注意使用场所的环境条件。
- 在产品上作业前:关断电源,并做好防重启保护。
- 在阴凉、干燥、防紫外线、防腐蚀的环境中存放本产品。存放时间不可过 长。

2.2 按规定使用

按照规定,比例压力调节阀用于根据给定的额定值按比例调节压力。本产品设计用于工业领域。

2.3 专业人员的资质

关于产品的一切工作仅允许由具备资质的专业人员进行,这些专业人员对工作 进行评估并识别出危险。 专业人员拥有处理电气气动控制技术的知识和经 验。

2.4 认证

本章节信息和产品上的 UL 检验标志,均表示符合美国和加拿大 Underwriters Laboratories Inc. 公司 (UL) 的认证条件 公司的的认证条件。

UL 认证信息

0. 秋斯自恋	
产品类别编码	QUYX, QUYX7
文件编号	E322346
遵守的标准	UL 610101, CAN/CSAC22.2 No. 610101
UL 标志	C UL US LISTED

表格 1: UL 认证信息

- 为该单元配备的电源应满足 IEC/EN/UL/CSA 61010-1 对有限能量电路、IEC/EN/UL/CSA 60950-1 或 IEC/EN/UL/CSA 62368-1 对有限功率电源 (LPS) 或者 NEC 或 CEC 对 2 级电路的要求。

电气参数和环境条件

-B 45 30411			
电源电压	24 V DC		
最大功率 VPPM-6, VPPM-8	7 W		
最大功率 VPPM-12	12 W		
额定压力	最大 1.1 MPa		
最大安装高度	2000 m		

表格 2: 电气参数和环境条件

3 其他信息

- 技术问题请联系当地 Festo 联络人 → www. festo. com.
- 附件和备件 → www. festo. com/catalogue。

4 产品概况

4.1 功能

比例压力调节阀根据给定的额定值按比例调节压力。集成式压力传感器可感测到工作接口的压力,并将其与额定值进行比较。当额定值和实际值出现偏差时,将运行比例压力调节阀,直到输出压力达到额定值。

插图 1: 气动开关符号

4.2 结构特点

插图 2:接口和安装孔(管式阀)

- 1 用于固定的通孔
- 2 电气连接插头
- 3 工作气接口(2)
- 4 气源口 (1)
- 5 排气接口(3)

插图 3: 气接口(法兰阀)

插图 4: 显示元件和操作元件

- 1 按钮 [Edit]
- 2 按钮 [UP]

- 3 显示屏
- 4 按钮 [DOWN]

菜单级 别	图标	说明
0ut	■戸	开关输出已设置,开关输出未设置
	Out	开关输出
	SP SP	阈值比较器 开关点
	SP max SP min	窗口比较器 上开关点 下开关点
	SP. 0.	SetPoint OK
	HY	迟滞

菜单级 别	图标	说明
Out	NO NC	常开触点 常闭触点
In	In	输入
	min max	压力下限值 压力上限值
	mA 或 V ¹⁾ ,% ,bar, psi, kPa ²⁾	输入的单位
Force	Force	手动额定值设定
Set ···	Set 1, Set 2, Set 3	出厂参数组
SPEC	SPEC	特殊菜单
	Lock	安全代码已激活,禁止未经授权的编程
	kPa, psi, bar	压力单位, 可转换
		柱形图压力显示

1) 取决于 VPPM---- 的派生型 2) 取决于 SPEC 菜单中设置的单位 表格 3: 显示屏上的图标

5 运输

使用原装包装运输本产品。注意重量、尺寸和环境条件。

6 装配

6.1 安装间距

装配时注意为电缆接头和气管接头留出空间。请将设备安放在尽量靠近负载设备的地方。这样可以达到更好的控制精度和更短的响应时间。

6.2 墙面安装(管式阀)

VPPM-6L-... 和 VPPM-8L-...

- 将 VPPM-... [2] 用 2 个 M4 螺钉固定。必要时使用支架 VAME-P1-A [1]。
 - 紧固扭矩: 1.5 Nm

i

借助支架安装 VPPM-... 时, VPPM-... 只能承受静态负载。

VPPM-12L-...

- 用 2 个 M5 螺钉固定 VPPM-...。
 - 紧固扭矩: 2.0 Nm

6.3 H 型导轨安装(管式阀)

VPPM-6L-... 和 VPPM-8L-...

- 1. 用 2 个螺钉将 H 型导轨连接件 VAME-P1-T [2] 固定到 VPPM-... [1] 上。
 - 螺钉: M4 x 65 用于 VPPM-6L-..., M4 x 77 用于 VPPM-8L-...
 - 紧固扭矩: 1.5 Nm

2. 将 VPPM-... 挂入 H 型导轨。

- 3. 使用 H 型导轨连接件的固定螺丝 [2] 固定 VPPM-...。
 - 紧固扭矩: 1.5 Nm

6.4 气路板模块安装(法兰阀)

VPPM-6F-... 和 VPPM-8F-...

- 将 VPPM-... [2] 用 2 个螺钉固定到气路板模块 [1] 上。
 - 螺钉: M4 x 65 用于 VPPM-6F-..., M4 x 77 用于 VPPM-8F-...
 - 紧固扭矩: 1.5 Nm

7 安装

7.1 气动部分安装

- 1. 移除气接口上的堵头。
- 2. 为气源口(1)和工作气接口(2)接上气管 → 插图 2。
- 3. 在排气接口(3)上安装消声器或通过接管的方式排气 → 插图 2。

工作介质

提示

压缩空气中的残油含量过高会缩短阀的使用寿命。

• 使用生物润滑油(以合成酯或植物油为基础制成的润滑油,例如菜籽油)时,剩余油含量不允许超过 0.1 mg/m3 (ISO 8573-1:2010 [-:-:2])。

7.2 电气部分安装

▲ 警告

电击导致受伤危险。

- 请只使用符合 IEC60204-1/EN60204-1 标准的超低压保护电路供电 (Protective Extra-Low Voltage, PELV)。
- 注意遵守 IEC60204-1/EN60204-1 标准对于 PELV 电路的常规要求。
- 请仅使用符合 IEC60204-1/EN60204-1 标准,并且能够确保与供电电网可靠 隔离的电源。

提示

由于抗干扰能力受损而导致故障

信号线过长会降低抗干扰性。

• 使用尽可能短的信号线。

提示

- 连接插头不得从规定位置扭转。
- 带电缆插头插座 M12 的紧固扭矩不得超过 0.5 Nm。

提示

将 Y 型连接电缆 NEBV-M12G8-KD-..-M12G5 连接到 CPX I/O 模块时,不再能够保证 I/O 模块的电气隔离。

1. 根据型号铭牌检查所涉及的阀派生型。

阀派生型	VPPMV1C1	VPPMA4C1
电压型	0 ··· 10 V DC	
电流型	4 ··· 20 mA	

- 2. 铺设连接电缆时避免挤压、弯折和拉伸。
- 3. 如果连接使用屏蔽的连接电缆,请将阀远端的电缆末端屏蔽层接地。

4. 按照相应的接线图连接 VPPM-...。

针脚分配

电气接口上的针脚分配如下:

插图 5: 针脚分配

针脚	芯线颜色 1)	接口名称		
		VPPMV1C1		
1	白色 (WH)	数字量输入 D1		
2	棕色 (BN)	+24 V DC 电源电压		
3	绿色 (GN)	模拟量输入 W- (- 额定值)		
4	黄色(YE)	模拟量输入 W+ (+ 额定值) 0 ··· 10 V	模拟量输入 W+ (+ 额定值) 4 ··· 20 mA	
5	灰色 (GY)	数字量输入 D2		
6	粉红色 (PK)	模拟量输出 X (实际值)		
7	蓝色 (BU)	GND 电源接地		
8	红色 (RD)	数字量输出 D3 ²⁾		

- 1) 使用附件中的带电缆接线盒。
- 2) 数字量比较器输出 D3 的迟滞为 0.5% FS。

表格 4: 针脚分配

表格 5: 电路图 VPPM-... 开关输出

8 调试

▲ 警告

基于机器/设备的性能,篡改信号状态可能导致严重的人身伤害或财产损失。

- 请注意,在 EDIT 模式下修改开关输出端的开关特性,将立即生效。
- 激活密码保护(安全码)。

8.1 使用工厂设置进行快速调试

VPPM-... 的出厂设置如下:

- 开关特性: 阈值比较器
- 开关点: 40 % Full Scale (FS)

开关点仅在选择了比较器(阈值比较器或窗口比较器)时有效。

- 迟滞: 0.5 % Full Scale (FS)
- 开关特性: NO(常开触点)

手动设置开关点

i

接通工作电压后, VPPM-... 自动进入 RUN 模式(初始位置)。为确保 VPPM-... 处于 RUN 模式,按住 [Edit] 按钮 3 秒钟。可以手动设置开关点。

如果要使用出厂设置,但要为 "0ut" 指定不同的开关点,请执行以下操作:

- 要激活 EDIT 模式,请按下 [Edit] 按钮。
 □ 显示 "Out" 闪烁。
- . 按下 [Edit] 按钮 2 次。
- ♥ 显示 "SP" 闪烁。 3. 使用 [UP] 和 [DOWN] 按钮更改显示的阈值。
- 4. 按住 [Edit] 按钮 3 秒钟。
 - ♥ VPPM-... 位于 RUN 模式。

8.2 调试准备

i

- 使 VPPM -... 远离高频辐射,以避免增加输出压力的公差。
- 当额定值信号小于满量程 (FS) 的 1 % 时, VPPM-... 将其解析为 0 V 或 4 mA。这种情况下,工作压力将设置为环境压力。
- 在低于 3.6 mA 的典型输入值下,阀检测到电缆断裂,并且最后设置的压力保持不变。长时间的泄漏会导致压力变化。

在首次调试期间,会显示 RUN 模式。RUN 模式显示当前测量值。短暂按下 [DOWN] 按钮时,将显示额定值。

如下所示,可以从其他模式进入 RUN 模式:

- 按住 [Edit] 按钮 3 秒钟。
- 监控时间结束后(Timeout)→表格 7 用于显示菜单结构的图标。

调试准备

- 1. 接通工作电压。
 - ♥ VPPM-... 位于 RUN 模式。
- 2. 通过将额定值应用于模拟量输入来检查 VPPM-... 的功能。
- 3. 为了通过数字量输入或显示屏设置调节特性,请注意以下事项:
 - 如果通过工厂参数组选择调节特性,请确保数字量输入 D1 和 D2 上有 0 信号。
 - 在 EDIT 模式中选择所需的工厂参数组 → 8.3.3 EDIT 模式。参数组 "Set 2" 为预选参数组。

ī

通过数字量输入 D1 和 D2 选择的调节特性,优先于 VPPM-... 中的出厂参数组。

4. 如果要通过数字量输入预选调节特性,则必须将以下信号应用于数字量输入 D1 和 D2:

1		输入 D1 针脚 1	输入 D2 针脚 5
1	快速调节特性	1 (24 V DC)	0 (0 V DC)
2	通用调节特性(出厂设置)	0 (0 V DC)	1 (24 V DC)
3	精确调节特性	1 (24 V DC)	1 (24 V DC)
	通过 VPPM 的显示屏选择所需的 参数组	0 (0 V DC)	0 (0 V DC)

表格 6: 参数组

8.3 模式的菜单结构

用于显示菜单结构的图标

1				
图标	含义			
(Timeout)	在监控时间结束后(例如 80 秒)自动返回到基本状态(RUN 模式)。			
EDIT (Cancel) → 3s ○	要手动返回基本状态(RUN 模式),按住 [Edit] 按钮 3 秒钟。			
Out	显示屏上的图标闪烁。			
P	安全码已激活,禁止未经授权的编程。			
0	安全码未激活。			
P	按下按钮。			
	按下 [UP] 或 [DOWN] 按钮设置数值或选择功能。			
	按下 [UP] 或 [DOWN] 按钮,切换菜单中的功能。			
⊙ Edit	按下 [Edit] 按钮。			

表格 7: 用于显示菜单结构的图标

8.3.1 RUN 模式

RUN 模式显示输出 "Out" 的当前压力值。

• 要显示输入 "In" 的额定值, 短按 [DOWN] 按钮。

1) 取决于在 EDIT 模式下 "Out"菜□中的□置

插图 6: SHOW 模式

如果 VPPM-... 处于 RUN 模式,按下 [UP] 按钮或 [DOWN] 按钮两次以激活 SHOW 模式。

如果选择输出 "Out",则每次按下 [UP] 按钮时都会显示输出 "Out" 的 当前设置。

如果选择输入 "In",按下 [DOWN] 按钮显示输入 "In" 的最小压力值和 最大压力值。

SHOW 模式将显示下列设置和数值:

"Out" 的设置:

- 开关功能(阈值比较器/窗口比较器/ "SP. 0.")
- 开关点 "SP" 或 "SP min" 和 "SP max"
- 迟滞 "HY"
- 开关特性 ("NO" / "NC")
- 1. 连续多次按下 [UP] 按钮并检查 [Out] 的当前数值和设置。
- 显示开关特性后,按[UP]按钮返回 RUN 模式。
- "In" 的设置:
- 最小压力值:显示 "min"
- 最大压力值:显示 "max"
- 1. 连续多次按下 [DOWN] 按钮并检查 "In" 的当前数值。
- 2. 显示最大压力后,按 [DOWN] 按钮返回 RUN 模式。

8.3.3 EDIT 模式

1) 取决于 VPPM-...-C1 的□型 2) 取决于 "SPEC"菜□中的□置

插图 7: EDIT 模式

EDIT 模式允许:

菜单中显示	选择			
OUT	- 选择开关功能(阈值比较器/窗口比较器/ "SP.0.")。 - 选择开关点 "SP" 或 "SP min" 和 "SP max" 以及迟滞 "HY"。 - 选择开关特性("NO"/"NC")。			
IN	- 设置压力调节范围的最小和最大压力。 - 选择压力单位 "kPa"、"psi"、"bar"(根据菜单 "SPEC" 中的设置)或 "mA" / "V" 或 "%"。			
Set	- 选择出厂参数组 "Set1" 、"Set2" 或 "Set3"。			
SPEC	- 设置安全码 "Lock" 和压力单位(kPa、psi、bar)。			

表格 8: 菜单

配置 VPPM-...

更改压力范围和额定值显示的配置 8. 4. 1

1. 要激活 EDIT 模式,请按下 [Edit] 按钮。

🦫 安全锁定处于激活状态时,显示 "Lock" 闪烁。

使用 [UP] 和 [DOWN] 按钮设置选定的安全码, 然后按下 [Edit] 按钮确 认。

♥ 显示 "Out" 闪烁。 按下 [UP] 或 [DOWN] 按钮直到 "In" 在显示屏中闪烁。

按下 [Edit] 按钮。

➡ 显示 "min" 闪烁。

- 使用 [UP] 和 [DOWN] 按钮设置最小压力值。
- 按下 [Edit] 按钮。
 - ♥ 显示 "max" 闪烁。
- 使用 [UP] 和 [DOWN] 按钮设置最大压力值。
- 按下 [Edit] 按钮。
 - 🌣 额定值的当前显示类型闪烁。
 - 显示 "mA" 或 "V" 闪烁。显示取决于 VPPM-... 的派生型 。 显示 "%" 闪烁。

 - 显示 "kPa"、 "psi" 或 "bar" 闪烁。显示取决于 "SPEC" 菜单中设置的单位。
- 使用 [UP] 和 [DOWN] 按钮选择额定值的显示类型并按下 [Edit] 按钮确
 - ♥ VPPM-... 再次进入 RUN 模式。

8.4.2 配置开关量输出 "Out"

• 确定开关量输出 D3 的所需开关特性。

表格 9: 开关点 "SP..." 和迟滞 "HY'

表格 10: 设置 "NO" 时的开关点 "SP…" 和迟滞 "HY"

配置开关量输出 "Out"

- 1. 要激活 EDIT 模式,请按下 [Edit] 按钮。
 - 🌣 安全锁定处于激活状态时,显示 "Lock" 闪烁。
- 使用[UP] 和 [DOWN] 按钮设置选定的安全码,然后按下 [Edit] 按钮确 认。
 - 吟 显示 "Out" 闪烁。
- - ⇒当前开关特性闪烁。
- 4. 使用 [UP] 和 [DOWN] 按钮选择所需的开关特性(阈值比较器、窗口比较器或 "SP.0.") 并按下 [Edit] 按钮确认。
 - 吟 使用开关功能 "阈值比较器或窗口比较器" 时,显示 "SP" 或显示 "SP min"闪烁。
- 5. 使用 [UP] 和 [DOWN] 按钮设置开关点 "SP" 或 "SP min", 然后按下 [Edit] 按钮确认。
 - ♥ 使用开关功能 "窗口比较器" 时,显示 "SP max" 闪烁。
- 6. 使用 [UP] 和 [DOWN] 按钮设置开关点 "SP max", 然后按下 [Edit] 按钮确认。
 - 吟 显示 "HY" 闪烁。
- 使用 [UP] 和 [DOWN] 按钮设置迟滞 "HY", 然后按下 [Edit] 按钮确 认。
 - ♥ 显示 "NO" 或显示 "NC" 闪烁。
- 使用 [UP] 和 [DOWN] 按钮设置开关特性, 然后按下 [Edit] 按钮确认。
 ♥ VPPM-... 再次进入 RUN 模式。

8.4.3 强制输入

- 1. 要激活 EDIT 模式,请按下 [Edit] 按钮。
 - ♡ 安全锁定处于激活状态时,显示 "Lock" 闪烁。
- 2. 使用 [UP] 和 [DOWN] 按钮设置选定的安全码,然后按下 [Edit] 按钮确 认。
 - ♥ 显示 "Out" 闪烁。
- 3. 按下 [UP] 或 [DOWN] 按钮, 直到 "Force" 在显示屏中闪烁。
- 4. 按下 [Edit] 按钮。
 - ➡ 显示 "Force" 闪烁。
- . 按下 [UP] 或 [DOWN] 按钮更改默认值。
- 🌣 控制器立即采用新设置的默认值。
- . 要退出 Force 模式,请按下 [Edit] 按钮。 输入的模拟量电压值或电流值重新生效。
 - ♥ VPPM-... 再次进入 RUN 模式。

8.4.4 选择出厂参数组

- I. 要激活 EDIT 模式,请按下 [Edit] 按钮。
 - ♥ 安全锁定处于激活状态时,显示 "Lock" 闪烁。

- 2. 使用 [UP] 和 [DOWN] 按钮设置选定的安全码,然后按下 [Edit] 按钮确 认。
 - ♥ 显示 "Out" 闪烁。
- 3. 按下 [DOWN] 按钮, 直到显示 "Set1"、"Set2" 和 "Set3" 在显示 屏上闪烁。
- 4. 按下 [Edit] 按钮。
 - ♥ 显示 "Set1"、"Set2" 或 "Set3" 闪烁。
- 5. 使用 [UP] 和 [DOWN] 按钮选择所需的工厂参数组。
 - "Set1" (参数组 1): 快速调节特性
 - "Set2" (参数组 2): 通用调节特性
 - "Set3" (参数组 3): 精确调节特性 □ 所选参数组闪烁。
- 6. 按下 [Edit] 按钮。
 - ♥ VPPM-... 再次进入 RUN 模式。

8.4.5 设置单位和安全码

- 要激活 EDIT 模式,请按下 [Edit] 按钮。
 - ♥ 安全锁定处于激活状态时,显示 "Lock" 闪烁。
- 2. 使用 [UP] 和 [DOWN] 按钮设置选定的安全码,然后按下 [Edit] 按钮确 、
 - ♥ 显示 "Out" 闪烁。
- 3. 按下 [DOWN] 按钮, 直到显示 "SPEC" 在显示屏中闪烁。
- 4. 按下 [Edit] 按钮。
 - ⇒ 当前单位 "kPA"、"psi"或 "bar" 闪烁。
- 6. 按下 [Edit] 按钮。

 - 显示屏上显示 "OFF" 或安全码。
- 7. **i**
 - 安全码最多可以有 4 位数字。
 - 保存重新找回的安全码。
 - OFF = 无保护

使用 [UP] 和 [DOWN] 按钮设置所需的安全码并按下 [Edit] 按钮确认。 ♥ VPPM-... 再次进入 RUN 模式。

8.5 调试 VPPM-...

提示

安全位置:如果电压型的额定值电缆断裂,则输出压力被设置为 0 MPa。如果电流型的电缆断裂(检测到输入值低于 3.6 mA)或供电电压丢失,输出压力保持不变。长时间的泄漏会导致压力变化。

1. 将 VPPM-... 与额定值信号相连。VPPM-... 具有一个差分输入。将额定值信号 0 ··· 10 V 提供给触点 3 和 4。将较低的电位连接至触点 3,将较高的电位连接至触点 4。

i

触点 3(- 额定值)可连接触点 7(0 V DC)。

- 2. 为 VPPM-... 提供直流电。
 - 电源电压 UV = 24 V DC ±10 %
- 3. 为控制器选择一个合适的参数组。

以下 3 个表格显示了不同气动接口的推荐参数组:

推荐的 VPPM-6	推荐的 VPPM-6 参数组				
气管长度 1)	开放式系统	输出量,单位 ml			
		0 100	100 1000	> 1000	
0 m	3	3	2	1	
1 m	3	3	2	2	
3 m	3	3	3	2	
> 5 m	3	3	3	2	

) 气管内径为 6 mm 或 8 mm 时

表格 11: 推荐的 VPPM-6... 参数组

推荐的 VPPM-8 参数组					
气管长度 1)	开放式系统	输出量,单位 ml			
		0 500	500 2000	> 2000	
0 m	3	1	2	3	
1 m	3	1	2	3	
3 m	3	2	3	3	
≥ 5 m	3	3	3	3	

1) 气管直径为 8 mm 或 10 mm 时

表格 12: 推荐的 VPPM-8... 参数组

推荐的 VPPM-12L 参数组					
气管长度 1)	开放式系统	输出量,单位 ml			
		0 2000	2000 ··· 10000	> 10000	
0 m	3	1	2	3	
1 m	3	1	2	3	

推荐的 VPPM-12L 参数组				
气管长度 1)	开放式系统	输出量,单位 ml		
		0 2000	2000 ··· 10000	> 10000
3 m	3	2	3	3
\geq 5 m	3	3	3	3

¹⁾ 气管直径为 12 mm 或 16 mm 时

表格 13: 推荐的 VPPM-12L-... 参数组

运行

提示

确保在关断 VPPM-... 时,首先将额定值设置为 0,然后关断气源压力,最后 关断电源电压。

9. 1 将 VPPM-... 恢复至出厂设置

恢复至出厂设置后, 当前的设置将丢失。

i

- 如果找不到安全码,也可以重置 VPPM-...。
- 1. 按住 [UP]、[DOWN] 和 [Edit] 按钮。
- 2. 接通工作电压。
- 3. 松开 [UP]、[DOWN] 和 [Edit] 按钮。
- 4. 使用 [UP] 和 [DOWN] 按钮来选择将哪些参数重置为出厂设置。

 - "Out" 闪烁: 重置所有输出参数。
 "In" 闪烁: 重置所有输入参数。
 "ALL" 闪烁: 重置所有输入参数。
 "ALL" 闪烁: 重置所有输出参数和输入参数以及安全码。
- 5. 要重置所选参数,请按下 [Edit] 按钮。
 - ♥ VPPM-... 再次进入 RUN 模式。

维护 10

10. 1 拆卸

提示

- 确保在关断 VPPM-... 时,首先将额定值设置为 0,然后关断气源压力,最 后关断电源电压。
- 1. 关断以下能源:
 - 工作电压
 - 压缩空气
- 2. 断开设备的各个接口。
- 3. 从安装面或 H 型导轨上拆卸设备。

清洁

- 1. 进行外部清洁时,请关断下列能源:
 - 工作电压
 - 压缩空气
- 2. 如果需要,请使用软布清洁设备外部。

11 故障

故障显示 11.1

显示屏上的故障 显示	原因	
ER. 01	硬件故障	
ER. 05	供电电压过低	
ER. 09	低于极限值(额定值)	
ER. 10	超出极限值(额定值)	
ER. 26	供电电压过高	
ER. 28	超出设备中的温度范围	

表格 14: 故障显示

11.2 故障排除

	故障	可能的原因	补救方法		
	设备无反应	无电源电压,LED 指示灯 [Power]不亮。	检查 24VDC 供电电压的连接。		
		无数据通信。	- 检查控制单元。 - 检查连接。		
	流量太小	接口原因导致流量截面狭窄。	使用其他可替换接头。		
	压力上升太慢	气缸容量大,气管长度长。	- 选择其他参数组。 - 使用公称通径更大的设备。		
	尽管修改了额定值设定,压力	断开连接电缆。	更换连接电缆。		
	仍保持不变	气源压力 P1 过低。	增加供给压力。		
无法通过设备上的 [UP] 和 [DOWN] 按钮手动选择参数组		数字量输入 D1 和 D2 上存在 电压。	为数字量输入 D1 和 D2 提供 0 V DC。		

表格 15: 故障排除

12 技术参数

主要技术参数		
结构特点		比例压力调节阀
安装位置		任意,优先采用水平位置,显示元件朝上
材料		
外壳		铝塑合金
盖板		PAXMD6 GF50/gr-P PA6-GB20, GF10/gr-P
密封件		丁腈橡胶
润滑		不含硅酮
重量		
VPPM-6	[g]	400
VPPM-8	[g]	560
VPPM-12	[g]	2050
表格 16: 主要技术	参数	·

工作条件和环境条件			
介质		压缩空气符合 ISO 8573-1:2010 [7.4.4],惰性气体	
有关工作介质的注意事项		不能采用润滑介质工作	
防护等级		已安装、固定螺丝已拧紧且已连接附件中的接线盒 时可达到 IP65。	
环境温度	[° C]	0 60	
介质温度	[° C]	10 50	
贮存温度	[° C]	- 10 ··· +70	
振动和冲击			
振动		已检测, 符合 DIN/IEC 68/ EN 60068 标准第 2-6 部分; 墙面安装时: 0.35 mm 位移量(10 ··· 60 Hz 时), 5 g 加速度 (60 ··· 150 Hz 时) ¹⁾	
冲击		已检测,符合 DIN/IEC 68/ EN 60068 第 2-27 部分;墙面安装时: ±30 g (11 ms 持续时间);每个方向 5 次冲击 ¹⁾	

1)将 VPPM-.../VPPX-... 安装在支架 VAME-P1-A/-T 上时,该数据不适用。

表格 17: 工作条件和环境条件

VPPM		0L2H	OL6H	OL10H
压力范围				
允许的输入压力 P1	[MPa]	0 0. 4	0 0. 8	0 1. 1
	[bar]	0 4	0 8	0 11
	[psi]	0 58	0 116	0 ••• 159. 5
调节范围(输出压力 p2) ¹⁾	[MPa]	0. 002 0. 2	0. 006 0. 6	0. 01 ••• 1
	[bar]	0. 02 2	0. 06 6	0.1 ••• 10
	[psi]	2. 9 · · · 29	8. 7 ··· 87	1. 45 ••• 145
产品为全新状态时的总泄漏量	[I/h]	< 5		•
接口		G 1/8, 1/8 NPT,	G 1/4, 1/4 NPT,	G 1/2, 1/2 NPT
公称通径				
供气	[mm]	VPPM-6 为 6 VPPM-8 为 8 VPPM-12 为		
排气	[mm]	VPPM-6 为 4 VPPM-8 为 6 VPPM-12 为	ı	

1) 输入压力 P1 至少比输出压力 P2 高 0.1 MPa (1 bar, 14.5 psi)。

表格 18: 气动特性值

电气特性值

表格 19: 电气特性值

控制特性值 1)	制特性值 ¹⁾		
线性度	1% Full Scale (FS) / 2% Full Scale (FS)		
迟滞	0.5% Full Scale (FS)		
重复精度	0.5% Full Scale (FS)		
整体精度	1. 25 % (S1) / 2. 25 (2%)		
温度系数	0. 04 %/K		

1) 最大偏差,根据 IS010094 在室温下确定的特性值。线性度基于理想的特性值。 表格 20: 控制特性值