

Visual Camera Re-Localization Using Graph Neural Networks and Relative Pose Supervision

Mehmet Özgür Türkoğlu¹, Eric Brachmann², Konrad Schindler¹, Gabriel J. Brostow^{2,3}, Áron Monszpart²

¹ETH Zurich; ²Niantic; ³University College London

with edge dropout

1 Visual Re-localization

means using a single image as input to estimate the camera's location and orientation relative to a pre-recorded environment.

Query image **Algorithm**

6-DoF camera pose

2 Motivation for Learning-based Approaches

Structure-based methods [3] achieve SOTA. So why look beyond structure-based methods?

- Intrinsics are often not available or reliable
- Geometric optimization is costly
- Work best for scenes with easy-to track feature points

3 Deep Absolute vs Relative Pose Regression

	APR	RPR
Scene-agnostic training		6
Generalize to unseen scene		8
Time complexity	6	••
Pose accuracy	8	•••

😩=weak 😐=okay 😎=promising 💪= strong

training = only during

training

= during both training/test

4 Method

Our method consists:

- Visual Encoding
- Image retrieval
- Graph construction
- Message passing

Trained with only

relative pose supervision

5 Experimental Results

		# test frames	Chess	Fire	Heads	Office	Pumpkin	Kitchen	Stairs	Avg.
q. based	DSAC* [11]*	1	$0.02, 1.1^{\circ}$	0.02, 1.2°	$0.01,1.8^{\circ}$	0.03, 1.2°	0.04, 1.4°	0.03, 1.7°	$0.04,1.4^{\circ}$	0.03, 1.4°
	VidLoc [21]*	200	0.18, -	0.26, -	0.14, -	0.26, -	0.36, -	0.31, -	0.26, -	0.25, -
	LsG [69]*	7	0.09, 3.3°	0.26, 10.9°	0.17, 12.7°	0.18, 5.5°	0.20, 3.7°	0.23, 4.9°	0.23, 11.3°	$0.19, 7.5^{\circ}$
	MapNet [12]*	3	0.08, 3.3°	0.27, 11.7°	0.18, 13.3°	0.17, 5.2°	0.22, 4.0°	0.23, 4.9°	0.30, 12.1°	$0.21, 7.8^{\circ}$
Se	GL-Net [70]*?	8	0.08, 2.8°	0.26, 8.9°	0.17, 11.4°	0.18, 5.1°	0.15, 2.8°	0.25, 4.5°	0.23, 8.8°	0.19, 6.3°
Image based APR	PoseNet [36]*	1	0.32, 6.6°	0.47, 14.0°	0.30, 12.2°	0.48, 7.2°	0.49, 8.1°	0.58, 8.3°	0.48, 13.1°	0.45, 9.9°
	Bayesian PoseNet [34]	* 1	$0.37, 7.2^{\circ}$	0.43, 13.7°	$0.31,12.0^{\circ}$	$0.48, 8.0^{\circ}$	0.61, 7.1°	0.58, 7.5°	0.48, 13.1°	$0.47, 9.8^{\circ}$
	Geometric PoseNet [35	5]* 1	$0.13, 4.5^{\circ}$	0.27, 11.3°	$0.17,13.0^{\circ}$	$0.19, 5.6^{\circ}$	$0.26, 4.8^{\circ}$	0.23, 5.4°	0.35, 12.4°	0.23, 8.1°
	MLFBPPose [66]*	1	0.12, 5.8°	0.26, 12.0°	0.14, 13.5°	0.18, 8.2°	0.21, 7.1°	0.22, 8.1°	0.26, 13.6°	$0.20, 9.8^{\circ}$
	Hourglass [44]*	1	$0.15, 6.2^{\circ}$	$0.27, 10.8^{\circ}$	$0.19, 11.6^{\circ}$	0.21, 8.5°	0.25, 7.0°	0.27, 10.2°	$0.29, 12.5^{\circ}$	0.23, 9.5°
	LSTM-Pose [63]*	1	$0.24, 5.8^{\circ}$	0.34, 11.9°	$0.21,13.7^{\circ}$	0.30, 8.1°	0.33, 7.0°	0.37, 8.8°	0.40, 13.7°	$0.31, 9.9^{\circ}$
	BranchNet [67]*	1	$0.18, 5.2^{\circ}$	0.34, <u>9.0</u> °	$0.20,14.2^{\circ}$	0.30, 7.1°	0.27, 5.1°	0.33, 7.4°	0.38, 10.3°	0.29, 8.3°
	ANNet [13]*	1	0.12, 4.3°	$0.27, 11.6^{\circ}$	$0.16, 12.4^{\circ}$	$0.19, 6.8^{\circ}$	0.21, 5.2°	$0.25, 6.0^{\circ}$	$0.28, 8.4^{\circ}$	$0.21, 7.9^{\circ}$
	GPoseNet [14]*	1	$0.20, 7.1^{\circ}$	0.38, 12.3°	$0.21,13.8^{\circ}$	$0.28, 8.8^{\circ}$	0.37, 6.9°	0.35, 8.2°	0.37, 12.5°	$0.31, 10.0^{\circ}$
	AttLoc [64]*	1	0.10, 4.1°	0.25, 11.4°	0.16, 11.8°	0.17, 5.3°	0.21, 4.4°	0.23, 5.4°	0.26, 10.5°	0.20, 7.6°
	AnchorPoint [48]*?	1	0.06 , <u>3.9</u> °	0.16 , 11.1°	0.09 , 11.2°	0.11 , 5.4°	0.14 , <u>3.6</u> °	0.13 , 5.3°	0.21 , 11.9°	<u>0.13</u> , 7.5°
R	DenseVLAD [58]	1	0.21, 12.5°	0.33, 13.8°	0.15, 14.9°	0.28, 11.2°	0.31, 11.2°	0.30, 11.3°	0.25, 12.3°	0.26, 12.5
	DenseVLAD+Inter [54	1	0.18, 10.0°	0.33, 12.4°	$0.14,14.3^{\circ}$	$0.25,10.1^{\circ}$	$0.26, 9.4^{\circ}$	0.27, 11.1°	$0.24,14.7^{\circ}$	0.24, 11.7
RPR	NN-Net [38]	1	$0.13, 6.5^{\circ}$	0.26, 12.7°	0.14, 12.3°	0.21, 7.4°	0.24, 6.4°	0.24, 8.0°	0.27, 11.8°	0.21, 9.3°
	RelocNet [3]	1	0.12, 4.1°	0.26, 10.4°	0.14, <u>10.5</u> °	0.18, <u>5.3</u> °	0.26, 4.2°	0.23, <u>5.1</u> °	0.28, <u>7.5</u> °	0.21, 6.7°
	EssNet [72]	1	$0.13, 5.1^{\circ}$	0.27, 10.1°	$0.15, 9.9^{\circ}$	$0.21, 6.9^{\circ}$	0.22, 6.1°	0.23, 6.9°	$0.32, 11.2^{\circ}$	0.22, 8.0°
	EssNet [72] reprod.	1	-	-	-	-	-	-	$0.32, 9.8^{\circ}$	-
	NC-EssNet [72]	1	$0.12, 5.6^{\circ}$	0.26, 9.6°	$0.14,10.7^{\circ}$	$0.20 , 6.7^{\circ}$	0.22, 5.7°	0.22, 6.3°	0.31, 7.9°	0.21, 7.5°
	NC-EssNet [72] reprod	l. 1	0.13, 5.5°	-				-	-	-
	CamNet [24]?	1	-	-	-	-	-	-	-	0.05, 1.8°
	Ours	1	<u>0.09</u> , 2.7 °	<u>0.24</u> , 7.5 °	<u>0.13</u> , 8.7 °	<u>0.15</u> , 4.1 °	<u>0.17</u> , 3.5 °	<u>0.20</u> , 3.7 °	<u>0.23</u> , 6.5 °	0.17, <u>5.2</u> °
= main competitor/ours = baseline unreproducible w/public version of the										e code

6 Contributions

First to apply GNNs for relative pose re-localization.

New reproducible SOTA baseline for learning-based RPR approaches.

Significantly reduces RPR methods' time complexity.

References

[1] Kendall et al. "Posenet: A convolutional network for real-time 6-dof camera relocalization." In ICCV, 2015. [2] Laskar et al. "Camera relocalization by computing pairwise relative poses using convolutional neural network." In

[3] Sattler et al. "Understanding the limitations of CNN-based absolute camera pose regression." In CVPR, 2019

7 Lessons Learned

- Communication of multiple views
 - **GNNs** allow efficient info exchange between multiple views
- Diversity vs. Overlap
 - GNNs work best with enough diversity and enough overlap from what image retrieval provides
- Attention in message passing
 - Important to focus on different features for different view pairs
- Training with multiple scenes allows
 - Learn more robust/less scene specific features