Programme de colles - Semaine 28

I Bases de la thermodynamique

- Insuffisance de la mécanique, notion d'échelles microscopique, mésoscopique, macroscopique, passage du microscopique au macroscopique (moyennes statistiques).
- Système thermodynamique : définition, isolé, fermé, ouvert, homogène, hétérogène, paramètre d'état (P, T, V, n, ...), extensifs ou intensifs, équilibre thermodynamique, équation d'état.
- Energie interne : échange d'énergie par travail ou transfert thermique (pas de détail pour le moment), énergie cinétique, énergie potentielle et énergie de cohésion.

II Du gaz parfait aux fluides réels et aux phases condensées

- Comportement des gaz réels à basse pression : diagramme d'Amagat, loi de Boyle-Mariotte, loi des gaz parfaits.
- Modèle du GPM: hypothèses, distribution de vitesse (vitesse moyenne et vitesse quadratique moyenne), pression cinétique, relation entre température et énergie cinétique; relation entre R, k_B et N_A ; ordres de grandeur.
- Énergie interne du GP : définition de C_V , C_{V_m} et c_V , expression de C_{V_m} pour le GPM, énoncé de la première loi de Joule.
- Gaz parfaits polyatomiques et gaz réels : évolution de C_{V_m} avec la température, introduction aux gaz réels (équation de van der Waals évoquée mais non exigible).
- Phases condensées : coefficient de compressibilité isotherme et de de dilatation isobare, modèle de phase condensée idéale, équation d'état, énergie interne.

III Bilans d'énergie - Premier principe de la thermodynamique

- Transformations thermodynamiques : isotherme, isobare, isochore, monotherme, monobare, adiabatique, quasistatique, brutale, réversible, irréversible, diagramme d'état (P,T) et diagramme de Watt (P,V).
- Premier principe : création/annihilation ou échanges, énergie d'un système thermodynamique, énoncé du premier principe (principe d'équivalence, de conservation, cas d'un système macroscopiquement au repos), cas d'une transformation infinitésimale, nature des transferts.
- Grandeurs énergétiques typiques : énergie interne d'un gaz parfait et d'une phase condensée idéale, travail des forces de pression, travail électrique, transfert thermique.
- Bilan d'énergie pour les transformations usuelles : isochore, isotherme, isobare/monobare (fonction enthalpie, capacité thermique à pression constante, relation de Mayer), adiabatique, loi de Laplace.
- Applications : détente de Joule et Gay-Lussac, calorimétrie.

IV Bilans d'entropie - Deuxième principe de la thermodynamique

- Insuffisance du premier principe : sens d'évolution pour un système isolé, critère d'évolution, causes d'irréversibilité
- Deuxième principe : énoncé, cas adiabatique, cas isotherme, variation d'entropie d'une thermostat.
- Température et pression thermodynamique : définitions, intérêt, identité thermodynamique (HP).
- Entropie d'un GP en variables (T, P) ou (T, V) ou (P, V), d'une PCI, loi de Laplace.
- Applications : détente de Joule et Gay-Lussac avec utilisation d'une transformation réversible fictive.
- Entropie statistique (HP) : notion de macroétat, notion de microétat, nombre de complexion et loi de Boltzmann, retour sur la détente de Joule et Gay-Lussac.

V Machines thermiques*

- Principe : fluide caloporteur, caractéristiques du fluide, schématisation des échanges entre machine et sources, bilans d'énergie et d'entropie (inégalité de Clausius).
- Machines monothermes : impossibilité du moteur thermique monotherme.
- Machines ditherme : diagramme de Raveau, identification des zones moteur utiles et récepteurs utiles, efficacité d'une machine thermique quelconque, rendement d'un moteur, efficacité d'un réfrigérateur, efficacité d'une pompe à chaleur, cycle réversible de Carnot, discussion puissance/énergie.

^{*}Merci de ne poser que des questions de cours ou des exercices très proches du cours sur ces sujets. Les exercices du TD n'ont pas encore été traités.