

Tietoliikenteensovellusprojekti

Juuso Toratti/Teemu Niemi Tietotekniikan tutkinto-ohjelma, ohjelmistokehitys / laite- ja tuotesuunnittelu

Projektin tarkoitus

Projektin perimmäisenä tarkoituksena oli oppia lisää Linux-palvelimista, Bluetoothista, tietokantojen muokkaamisesta, Pythonneuroverkoista ja mikrokontrollereista. Projektissa käytettiin NRF5340DK-mikrokontrolleria, joka oli kytketty kiihtyvyysanturiin. Kiihtyvyysanturi mittaa kiihtyvyyttä x-, y- ja z-akseleiden suunnassa ja palauttaa näiden kiihtyvyysarvot kokonaislukuina.

Kuva 1. Kiihtyvyysanturi ja nRF5340 DK mikrokontrolleri

Viikot 1-7

Projekti käynnistettiin luomalla GitHub-repositorio, arkkitehtuurikaavio ja alustamalla Kanban-taulu projektinhallintaa varten. Raspberry Pi -laitteen käyttöönotto suoritettiin onnistuneesti ilman merkittäviä ongelmia. Toisella viikolla projekti eteni siihen vaiheeseen, että kiihtyvyysanturi konfiguroitiin lähettämään XYZ-dataa kehitysalustan Bluetoothtoiminnallisuuden avulla älypuhelimeen ladattuun nRF Connect- sovellukseen. Kolmannella viikolla Linux-palvelimelle asennettiin ja otettiin käyttöön Netfilterpalomuurisovellus esimerkkiskriptin avulla.

Raspberry Pi -laitteelle luotiin Python-ohjelma nanotekstieditorilla. Ohjelma vastaanottaa dataa kehitysalustalta Bluetoothin välityksellä, hyödyntäen Bleakkirjastoa. Vastaanotettu data lähetettiin MySQL-tietokantaan, joka oli valmiiksi määritelty 172.20.241.9-palvelimella. Neljäs viikko: Visual Studio Codeen asennettiin Thunder Client -lisäosa REST-API:en testaamiseen. Ilmatieteen laitoksen rajapinnasta haettiin Oulun säätiedot, ja HTTP GET -kyselyjen toimivuutta testattiin sisältäen tarkistuksia, kuten vastauksen JSON-muotoisuus ja tiettyjen merkkijonojen esiintyminen. Viides viikko: Luotiin neuroverkkoluokittelija, joka ottaa inputtina kolme arvoa: x, y, z. Neuroverkko suunniteltiin luokittelemaan syöte kuuteen eri luokkaan. Neuroverkon pohjana käytettiin Kerasin tarjoamaa esimerkkiä MNIST-konvoluutiomallista.

Lopputuotteen arviointi

Sensori lähetti kiihtyvyysarvoja ja suuntatietoja Linux-palvelimella sijaitsevaan tietokantaan onnistuneesti Python-koodin avulla. Tietokannasta haettiin oman ryhmän tunnusluvun alla olevia tietoja toisen ohjelman avulla, ja nämä tiedot tallennettiin CSV-tiedostoon. Tätä tiedostoa käytettiin apuna K-meansalgoritmin kuvantamisessa mittauksista.

Kuva 3. Hämmennysmatriisi

K-means-algoritmin avulla saatiin kuusi keskipistettä, jotka tallennettiin tekstitiedostoon. Tästä tekstitiedostosta saatiin arvot, joita käytettiin C-kielen ohjelmassa, joka tulosti hämmennysmatriisin. Kiihtyvyysanturilla tehtiin 100 mittausta eri suunnista, ja ohjelma laski, mihin keskipisteeseen oli lähin matka 3D-tilassa mitatusta pisteestä. Jos suunta vastasi keskipistettä, niin matriisi tulostui oikein.

Lopputulos

Päätehtävä onnistui hyvin, ja haasteista selvittiin.
Lisätehtävät lisäsivät Linux osaamista. Harjaantumista lisättiin GitHubin ammattimaiseen käyttöön ja dokumentoitiin.
Työskentelyalustoina toimi VScode, nRF5340DK alusta, Google Colab, Raspberry Pi ja MySQL-palvelin.