01/24/2023-Shift 1

1

EE24BTECH11016 - DHWANITH M DODDAHUNDI

- 1) Let the six numbers $a_1, a_2, a_3, a_4, a_5, a_6$ be in A.P and $a_1 + a_2 = 10$. If the mean of these six numbers is $\frac{19}{2}$ and their variance is σ^2 , then $8\sigma^2$ is equal to
 - a) 220
 - b) 210
 - c) 200
 - d) 105
- 2) Let f(x) be a function such that $f(x+y)=f(x)\cdot f(y)$ for all $x, y\in \mathbb{N}$. If f(1)=3 and $\sum_{k=1}^{n}f(k)=3279$, then the value of n is
 - a) 6
 - b) 8
 - c) 7
 - d) 9
- 3) The number of real solutions of the equations $3\left(x^2 + \frac{1}{x^2}\right) 2\left(x + \frac{1}{x}\right) + 5 = 0$, is
 - a) 4
 - b) 0
 - c) 3
 - d) 2
- 4) If $f(x) = \frac{2^{2x}}{2^{2x}+2}$, $x \in \mathbb{R}$, then $f\left(\frac{1}{2023}\right) + f\left(\frac{2}{2023}\right) + \dots + f\left(\frac{2022}{2023}\right)$ is equal to
 - a) 2011
 - b) 1010
 - c) 2010
 - d) 1011
- 5) If $f(x) = x^3 x^2 f'(1) + x f''(2) f'''(3), x \in \mathbb{R}$, then
 - a) 3f(1) + f(2) = f(3)
 - b) f(3) f(2) = f(1)
 - c) 2f(0) f(1) + f(3) = f(2)
 - d) f(1) + f(2) + f(3) = f(0)
- 6) The number of integers, greater than 7000 that can be formed, using the digits 3,5,6,7,8 without repetition, is
 - a) 120
 - b) 168
 - c) 220
 - d) 48
- 7) If the system of equations x + 2y + 3z = 3

$$4x + 3y - 4z = 4$$

$$8x + 4y - \lambda z = 9 + \mu$$

has infinitely many solutions, then the ordered pair (λ, μ) is equal to

- a) $\left(\frac{72}{5}, \frac{21}{5}\right)$ b) $\left(\frac{-72}{5}, \frac{-21}{5}\right)$ c) $\left(\frac{72}{5}, \frac{-21}{5}\right)$ d) $\left(\frac{-72}{5}, \frac{21}{5}\right)$

- 8) The value of $\left(\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}}\right)^3$ is
 - a) $\frac{-1}{2}(1-i\sqrt{3})$
 - b) $\frac{1}{2}(1-i\sqrt{3})$
 - c) $\frac{z}{3}(\sqrt{3}-i)$
 - d) $\frac{1}{2}(\sqrt{3}+i)$
- 9) The equations of the sides AB and AC of a triangle ABC are

 $(\lambda + 1)x + \lambda y = 4$ and $\lambda x + (1 - \lambda)y + \lambda = 0$ respectively. Its vertex A is on the y-axis and its orthocentre is (1,2). The length of the tangent from the point C to the part of the parabola $y^2 = 6x$ in the first quadrant is

- a) $\sqrt{6}$
- b) $2\sqrt{2}$
- c) 2
- d) 4
- 10) The set of all values of a for which

 $\lim_{x\to a}([x-5]-[2x+2])=0$, where [x] denotes the greatest integer less than or equal to ∞ is equal to

- a) (-7.5, -6.5)
- b) (-7.5, -6.5]
- c) [-7.5, -6.5]
- d) [-7.5, -6.5)
- 11) If $({}^{30}C_1)^2 + 2({}^{30}C_2)^2 + 3({}^{30}C_3)^2 + \dots + 30({}^{30}C_{30})^2 = \frac{\alpha 60!}{(30)^2}$, then α is equal to
 - a) 30
 - b) 60
 - c) 15
 - d) 10
- 12) Let the plane containing the line of intersection of the planes

$$P1: x + (\lambda + 4)y + z = 1$$
 and

P2: 2x + y + z = 2 pass through the points (0, 1, 0) and (1, 0, 1). Then the distance of the point $(2\lambda, \lambda, -\lambda)$ from the plane P2 is

- a) $5\sqrt{6}$
- b) $4\sqrt{6}$
- c) $2\sqrt{6}$
- d) $3\sqrt{6}$
- 13) $\vec{\alpha} = 4\hat{i} + 3\hat{j} + 5\hat{k}$ and $\vec{\beta} = \hat{i} + 2\hat{j} 4\hat{k}$. Let $\vec{\beta}_1$ be parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ be perpendicular

to $\vec{\alpha}$. If $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, then the value of $5\vec{\beta}_2 \cdot (\hat{i} + \hat{j} + \hat{k})$ is

- a) 6
- b) 11
- c) 7
- d) 9
- 14) The locus of the mid points of the chords of the circle C_1 : $(x-4)^2 + (y-5)^2 = 4$ which subtend an angle θ_i at the center of the circle C_1 , is a circle of radius r_i . If $\theta_1 = \frac{\pi}{3}$, $\theta_3 = \frac{2\pi}{3}$ and $r_1^2 = r_2^2 + r_3^2$ then θ_2 is equal to

 - a) $\frac{\pi}{4}$ b) $\frac{3\pi}{4}$ c) $\frac{\pi}{6}$ d) $\frac{\pi}{2}$
- 15) If the foot of the perpendicular drawn from (1,9,7) to the line passing through the point (3, 2, 1) and parallel to the planes x + 2y + z = 0 and 3y - z = 3 is (α, β, γ) , then $\alpha + \beta + \gamma$ is equal to
 - a) -1
 - b) 3
 - c) 1
 - d) 5