Week 3: Multiple Random Variables

Example: Toss a coin thrice

A fair coin is tossed thrice. Naturally, there can be three random variables.

Let $X_i = 1$ if *i*-th toss is heads and $X_i = 0$ if *i*-th toss is tails, i = 1, 2, 3.

Example: Toss a coin thrice

A fair coin is tossed thrice. Naturally, there can be three random variables.

Let $X_i = 1$ if *i*-th toss is heads and $X_i = 0$ if *i*-th toss is tails, i = 1, 2, 3.

Together, the 3 random variables completely describe the outcome of the experiment.

The event $X_1 = 1$ is independent of $X_2 = 1$ and $X_3 = 1$.

A 2-digit number from 00 to 99 is selected at random. Partial information is available about the number as two random variables. Let X be the digit in units place. Let Y be the reminder obtained when the number is divided by 4.

$$X \in \text{Uniform}(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\})$$

$$Y \in \text{Uniform}(\{0, 1, 2, 3\})$$

A 2-digit number from 00 to 99 is selected at random. Partial information is available about the number as two random variables. Let X be the digit in units place. Let Y be the reminder obtained when the number is divided by 4.

$$X \in \mathsf{Uniform}(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\})$$

 $Y \in \mathsf{Uniform}(\{0, 1, 2, 3\})$

Suppose the event X = 1 has occurred. What about the event Y = 0?

A 2-digit number from 00 to 99 is selected at random. Partial information is available about the number as two random variables. Let X be the digit in units place. Let Y be the reminder obtained when the number is divided by 4.

$$X \in \mathsf{Uniform}(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\})$$

 $Y \in \mathsf{Uniform}(\{0, 1, 2, 3\})$

Suppose the event X = 1 has occurred. What about the event Y = 0?

When two random variables are defined in the same probability space, the value of one can influence the value of the other.

Let X = number of runs in the over. Let Y = number of wickets in the over.

Consider the events: Y = 0, Y = 1, Y = 2

Let X = number of runs in the over. Let Y = number of wickets in the over.

Consider the events: Y = 0, Y = 1, Y = 2

Given Y = 0, we expect X to take larger values than when Y = 1.

Given Y = 2, we expect X to take significantly lower values.

Let X = number of runs in the over. Let Y = number of wickets in the over.

Consider the events: Y = 0, Y = 1, Y = 2

Given Y = 0, we expect X to take larger values than when Y = 1.

Given Y = 2, we expect X to take significantly lower values.

In complex experiments, such relationships between random variables are useful in modeling.

Section 1

Two random variables: Joint, marginal, conditional PMFs

Two discrete random variables: Joint PMF

Definition (Joint PMF)

Suppose X and Y are discrete random variables defined in the same probability space. Let the range of X and Y be T_X and T_Y , respectively. The joint PMF of X and Y, denoted f_{XY} , is a function from $T_X \times T_Y$ to [0,1] defined as

$$f_{XY}(t_1, t_2) = P(X = t_1 \text{ and } Y = t_2), t_1 \in T_X, t_2 \in T_Y.$$

- Joint PMF is usually written as a table or a matrix
- $P(X = t_1 \text{ and } Y = t_2)$ is denoted $P(X = t_1, Y = t_2)$

Example: Toss a fair coin twice

Let $X_i = 1$ if *i*-th toss is heads and $X_i = 0$ if *i*-th toss is tails, i = 1, 2.

•
$$f_{X_1X_2}(0,0) = P(X_1 = 0 \text{ and } X_2 = 0) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

•
$$f_{X_1X_2}(0,1) = P(X_1 = 0 \text{ and } X_2 = 1) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

Example: Toss a fair coin twice

Let $X_i = 1$ if *i*-th toss is heads and $X_i = 0$ if *i*-th toss is tails, i = 1, 2.

•
$$f_{X_1X_2}(0,0) = P(X_1 = 0 \text{ and } X_2 = 0) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

•
$$f_{X_1X_2}(0,1) = P(X_1 = 0 \text{ and } X_2 = 1) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

 $X = \text{units place}, Y = \text{number } \underline{\underline{\text{modulo 4}}}$ remainder when divided by 4

- $f_{XY}(0,0) = P(X = 0 \text{ and } Y = 0)$ = P(number ends in 0 and multiple of 4)= $P(\{00, 20, 40, 60, 80\}) = 5/100 = 1/20$
- $f_{XY}(1,0) = P(\text{number ends in 1 and multiple of 4}) = 0$
- $f_{XY}(4,2) = P(\text{number ends in } 4 \text{ and } 2 \frac{7 + 2}{\text{mod } 4})$ = $P(\{14, 34, 54, 74, 94\}) = 5/100 = 1/20$

X =units place, Y =number modulo 4

•
$$f_{XY}(0,0) = P(X = 0 \text{ and } Y = 0)$$

= $P(\text{number ends in 0 and multiple of 4})$
= $P(\{00, 20, 40, 60, 80\}) = 5/100 = 1/20$

- $f_{XY}(1,0) = P(\text{number ends in 1 and multiple of 4}) = 0$
- $f_{XY}(4,2) = P(\text{number ends in 2 and 2 mod 4})$ = $P(\{14, 34, 54, 74, 94\}) = 5/100 = 1/20$

Table of $f_{XY}(t_1, t_2)$

$t_2 \setminus t_1$	• 0	1	2	3	4	5	6	7	8	9
-0	$\frac{1}{20}$	0	$\frac{1}{20}$	0	$ \begin{array}{c} \frac{1}{20} \\ 0 \\ \frac{1}{20} \\ 0 \end{array} $	0	$\frac{1}{20}$	0	1 20 0	0
1	0	$\frac{1}{20}$	0	$\frac{1}{20}$	0	$\frac{1}{20}$	0	$\frac{1}{20}$	U	$\frac{1}{20}$
2	$\frac{1}{20}$	$\frac{1}{20}$	$ \begin{array}{c} $	0	$\frac{1}{20}$	0	$ \begin{array}{c c} \hline 20 \\ 0 \\ \hline 1 \\ \hline 20 \\ \hline 0 \end{array} $	$\frac{1}{20}$	$\frac{1}{20}$	$\begin{array}{c} \frac{1}{20} \\ 0 \end{array}$
3	0	$\frac{1}{20}$	0	$ \begin{array}{c c} 0 \\ \frac{1}{20} \\ 0 \\ \frac{1}{20} \end{array} $	0	$ \begin{array}{c} 0 \\ \frac{1}{20} \\ 0 \\ \frac{1}{20} \end{array} $	0	$\frac{1}{20}$	²⁰ 0	$\frac{1}{20}$

Two random variables: Marginal PMF

Definition (Marginal PMF)

Suppose X and Y are jointly distributed discrete random variables with joint PMF f_{XY} . The PMF of the individual random variables X and Y are called as marginal PMFs. It can be shown that

$$f_X(t) = P(X = t) = \sum_{t' \in T_Y} f_{XY}(t, t')$$
 $f_Y(t) = P(Y = t) = \sum_{t' \in T_X} f_{XY}(t', t),$

where T_X and T_Y are the ranges of X and Y, repectively.

- Proof
 - ▶ Suppose $T_Y = \{y_1, \dots, y_K\}$
 - $(X = t) = (X = t \text{ and } Y = y_1) \text{ or } \cdots \text{ or } (X = t \text{ and } Y = y_K)$
 - $P(X = t) = P(X = t, Y = y_1) + \cdots + P(X = t, Y = y_K)$
- Note that the marginal PMF is simply a PMF

Example: Toss a fair coin twice

Table of
$$f_{X_1X_2}(t_1, t_2)$$

$t_2 \setminus t_1$	0	1	$f_{X_2}(t_2)$
0	1/4	1/4	→ 1/2
1	1/4	1/4	1/2
$f_{X_1}(t_1)$	1/2	1/2	

- Marginal PMF of X_1 : add over the columns of joint PMF table
 - $f_{X_1}(0) = f_{X_1X_2}(0,0) + f_{X_1X_2}(0,1)$
 - $f_{X_1}(1) = f_{X_1X_2}(1,0) + f_{X_1X_2}(1,1)$
- Marginal PMF of X_2 : add over the rows of joint PMF table
 - $f_{X_2}(0) = f_{X_1X_2}(0,0) + f_{X_1X_2}(1,0)$
 - $f_{X_2}(1) = f_{X_1X_2}(0,1) + f_{X_1X_2}(1,1)$

Example: Marginal from joint PMF

Table of $f_{X_1X_2}(t_1, t_2)$

$t_2 \setminus t_1$	0	1	$f_{X_2}(t_2)$
0	0.05	0.35	0.40
1	0.25	0.35	0.60
$f_{X_1}(t_1)$	0.30	0.70	

Example: Same marginal PMF from different joint PMFs

Case 1								
$t_2 \setminus t_1$	0	1	$f_{X_2}(t_2)$					
0	1/4	1/4	1/2					
1	1/4	1/4	1/2					
$f_{X_1}(t_1)$	1/2	1/2						

Case 2

$t_2 \setminus t_1$	0	1	$f_{X_2}(t_2)$
0	X	1/2 - x	1/2
1	1/2 - x	X	1/2
$f_{X_1}(t_1)$	1/2	1/2	

• For every x between 0 and 1/2, we get a joint PMF that results in the same marginal.

				Tabl	e of a	$f_{XY}(t$	$(1, t_2)$				
$t_2 \setminus t_1$	0	1	2	3	4	5	6	7	8	9	$f_Y(t_2)$
0	$\frac{1}{20}$	0	$\frac{1}{20}$	0	$\frac{1}{20}$	0	$\frac{1}{20}$	0	$\frac{1}{20}$	0	1/4
1	0	$\frac{1}{20}$	1/4								
2	$\frac{1}{20}$	0	1/4								
3	0	$\frac{1}{20}$	1/4								
$f_X(t_1)$	$\frac{1}{10}$										

$$X \sim \text{Uniform}[0,1,...,9]$$

 $Y \sim \text{Uniform}[0,1,2,3]$
 $P(X=0,Y=0)=P(X=0 \text{ and } Y=0)=\frac{1}{20}$
 $P(X=0)P(Y=0)=\frac{1}{10}\cdot\frac{1}{4}=\frac{1}{40}$

Conditional distribution of a random variable given an event

Definition (Conditional distribution given an event)

Suppose X is a discrete random variable with range T_X , and A is an event in the same probability space. The conditional PMF of X given A is defined as the PMF

$$Q(t) = P(X = t|A), \qquad t \in T_X.$$

We will use the notation $f_{X|A}(t)$ for the above conditional PMF, and (X|A) to denote the "conditional" random variable.

Conditional distribution of a random variable given an event

Definition (Conditional distribution given an event)

Suppose X is a discrete random variable with range T_X , and A is an event in the same probability space. The conditional PMF of X given A is defined as the PMF

$$Q(t) = P(X = t|A), \qquad t \in T_X.$$

We will use the notation $f_{X|A}(t)$ for the above conditional PMF, and (X|A) to denote the "conditional" random variable.

$$f_{X|A}(t) = \frac{P((X=t) \cap A)}{P(A)}$$

• Important: Range of (X|A) can be different from \mathcal{T}_X and will depend on A

Conditional distribution of one random variable given another

Definition (Conditional distribution of Y given X = t)

Suppose X and Y are jointly distributed discrete random variables with joint PMF f_{XY} . The conditional PMF of Y given X = t is defined as the PMF

$$Q(t') = P(Y = t'|X = t) = \frac{P(Y = t', X = t)}{P(X = t)} = \frac{f_{XY}(t, t')}{f_X(t)}.$$

We will use the notation $f_{Y|X=t}(t')$ for the above conditional PMF, and (Y|X=t) to denote the "conditional" random variable.

Conditional distribution of one random variable given another

Definition (Conditional distribution of Y given X = t)

Suppose X and Y are jointly distributed discrete random variables with joint PMF f_{XY} . The conditional PMF of Y given X = t is defined as the PMF

$$Q(t') = P(Y = t'|X = t) = \frac{P(Y = t', X = t)}{P(X = t)} = \frac{f_{XY}(t, t')}{f_X(t)}.$$

We will use the notation $f_{Y|X=t}(t')$ for the above conditional PMF, and (Y|X=t) to denote the "conditional" random variable.

$$f_{XY}(t,t') = f_{Y|X=t}(t')f_X(t)$$

• Important: Range of (Y|X=t) can be different from range of Y and will depend on t

Example: Compute conditional PMFs from joint PMF

Joint PMF
$$f_{XY}(t_1, t_2)$$

Example: Compute marginal/conditional PMFs from joint PMF

Example: Throw a die and toss coins

Throw a die and toss a coin as many times as the number shown on die. Let X be the number shown on die. Let Y be the number of heads. What is the joint PMF of X and Y?

X ~ Uniform(1,2,3,4,5,6)
$$f_{x}(t) = \frac{1}{6}$$
 $1 \le t \le 6$
 $(y|x=t) \sim \text{Binomid}(t,y_{2})$ $f_{y|x=t}(t') = tC_{t}, (\frac{1}{4})\cdot(\frac{1}{4})$

$$= tC_{t}, (\frac{1}{4})\cdot(\frac{1}{4})$$

$$= tC_{t}, (\frac{1}{4})\cdot(\frac{1}$$

Example: Poisson number of coin tosses

Let $N \sim \text{Poisson}(\lambda)$. Given N = n, toss a fair coin n times and denote the number of heads obtained by X. What is the distribution of X?

$$f_{N}(n) = e^{\lambda} \frac{\lambda^{n}}{n!}, n = 0,1,2,...$$

$$f_{X}(n) = e^{\lambda} \frac{\lambda^{n}}{n!}, n = 0,1,2,...$$

$$f_{NX}(n,k) = e^{\lambda} \frac{\lambda^{n}}{n!} \cdot \binom{n}{k} \binom{1}{2} \quad k = 0,1,...,n$$

$$f_{NX}(n,k) = e^{\lambda} \frac{\lambda^{n}}{n!} \cdot \binom{n}{k} \binom{1}{2} \quad k = 0,1,...,n$$

$$f_{X}(k) = \sum_{n=0}^{\infty} f_{NX}(n,k) = \sum_{n=k}^{\infty} e^{\lambda} \frac{\lambda^{n}}{n!} \cdot \binom{n}{k} \binom{1}{2} = \sum_{n=k}^{\infty} e^{\lambda} \frac{\lambda^{n}}{n!} \cdot \binom{n}{n} \binom{n}{k} \binom{n}{k} \binom{n}{k} \binom{n}{k} \binom{n}{k} \binom{n}{k} \binom{n}{k} \binom{n}{k$$

Let X = number of runs in the over. Let Y = number of wickets in the over. Assume the following:

$$Y \sim \left\{ \begin{array}{c} 13/16 & 1/8 & 1/16 \\ 0 & , 1 & , 2 \end{array} \right\},$$

$$(X|Y=0) \sim \text{Uniform}\left\{ \begin{array}{c} 6,7,8,9,10,11,12 \end{array} \right\},$$

$$(X|Y=1) \sim \text{Uniform}\left\{ \begin{array}{c} 2,3,4,5,6 \end{array} \right\},$$

$$(X|Y=2) \sim \text{Uniform}\left\{ \begin{array}{c} 0,1,2,3,4,5,6 \end{array} \right\}.$$

$$f_{XY}(t,t') = f_{Y}(t') \cdot f_{XY=t}(t')$$

$$f_{XY}(t) = \frac{1}{8} \cdot \frac{1}{4} \cdot \frac{1}{16} \cdot \frac{1}{4} \cdot \frac{1$$

Section 2

More than two random variables: Joint, marginal, conditional PMFs

Multiple discrete random variables: Joint PMF

Definition (Joint PMF)

Suppose X_1, X_2, \ldots, X_n are discrete random variables defined in the same probability space. Let the range of X_i be T_{X_i} . The joint PMF of X_i , denoted $f_{X_1 \cdots X_n}$, is a function from $T_{X_1} \times \cdots \times T_{X_n}$ to [0,1] defined as

$$f_{X_1\cdots X_n}(t_1,\ldots,t_n)=P(X_1=t_1 \text{ and } \cdots \text{ and } X_n=t_n), t_i\in \mathcal{T}_{X_i}.$$

- Joint PMF could be written as a table in small examples
- $P(X_1 = t_1 \text{ and } \cdots \text{ and } X_n = t_n)$ is denoted $P(X_1 = t_1, \dots, X_n = t_n)$

Example: Toss a fair coin thrice

Let $X_i = 1$ if *i*-th toss is heads and $X_i = 0$ if *i*-th toss is tails, i = 1, 2, 3.

t_1	t_2	t ₃	$f_{X_1X_2X_3}(t_1,t_2,t_3)$
0	0	0	1/8
0	0	1	1/8
0	1	0	1/8
0	1	1	1/8
1	0	0	1/8
1	0	1	1/8
1	1	0	1/8
1	1	1	1/8

Example: Random 3-digit number 000 to 999

X= first digit from left, Y= number modulo 2, Z= first digit from right

XE {0, 1,2,..., 9}

• Table is too long

$$\begin{array}{l}
Y \in \{0, 1, 2, \dots, 9\} \\
F_{XYZ}(0,0,0) = P(Starts with years and number is and earn number in years and in years
$$= \frac{10}{1000} = \frac{1}{100} \\
f_{XYZ}(1,0,1) = \frac{1}{100}, f_{XYZ}(1,0,1) = 0
\end{array}$$

$$\begin{array}{l}
f_{XYZ}(1,0,1) = 0 \\
f_{XYZ}(1,0,1) = 0
\end{array}$$

$$\begin{array}{l}
f_{XYZ}(1,0,1) = 0 \\
f_{XYZ}(1,0,1) = 0
\end{array}$$

$$\begin{array}{l}
f_{XYZ}(1,0,1) = 0 \\
f_{XYZ}(1,0,1) = 0
\end{array}$$

$$\begin{array}{l}
f_{XYZ}(1,0,1) = 0 \\
f_{XYZ}(1,0,1) = 0
\end{array}$$

$$\begin{array}{l}
f_{XYZ}(1,0,1) = 0 \\
f_{XYZ}(1,0,1) = 0
\end{array}$$

$$\begin{array}{l}
f_{XYZ}(1,0,1) = 0 \\
f_{XYZ}(1,0,1) = 0
\end{array}$$

$$\begin{array}{l}
f_{XYZ}(1,0,1) = 0 \\
f_{XYZ}(1,0,1) = 0
\end{array}$$

$$\begin{array}{l}
f_{XYZ}(1,0,1) = 0 \\
f_{XYZ}(1,0,1) = 0
\end{array}$$$$

Suppose the over has 6 deliveries. Let X_i denote the number of runs scored in the i-th delivery.

Multiple discrete random variables: Marginal PMF (individual)

Definition (Marginal PMF (individual))

Suppose X_1, X_2, \ldots, X_n are jointly distributed discrete random variables with joint PMF $f_{X_1 \cdots X_n}$. The PMF of the individual random variables X_1, X_2, \cdots, X_n are called as marginal PMFs. It can be shown that

$$f_{X_{1}}(t) = P(X_{1} = t) = \sum_{t'_{2} \in T_{X_{2}}, t'_{3} \in T_{X_{3}}, \dots, t'_{n} \in T_{X_{n}}} f_{X_{1} \dots X_{n}}(t, t'_{2}, t'_{3}, \dots, t'_{n}),$$

$$f_{X_{2}}(t) = P(X_{2} = t) = \sum_{t'_{1} \in T_{X_{1}}, t'_{3} \in T_{X_{3}}, \dots, t'_{n} \in T_{X_{n}}} f_{X_{1} \dots X_{n}}(t'_{1}, t, t'_{3}, \dots, t'_{n}),$$

$$\vdots$$

$$f_{X_{n}}(t) = P(X_{n} = t) = \sum_{t'_{1} \in T_{X_{1}}, \dots, t'_{n-1} \in T_{X_{n-1}}, t \in T_{X_{n}}} f_{X_{1} \dots X_{n}}(t'_{1}, \dots, t'_{n-1}, t),$$

where T_{X_i} is the range of X_i .

Example: Toss a fair coin thrice

Let $X_i = 1$ if *i*-th toss is heads and $X_i = 0$ if *i*-th toss is tails, i = 1, 2, 3.

Joint PMF: $f_{X_1X_2X_3}(t_1, t_2, t_3) = 1/8$ for $t_i \in \{0, 1\}$

Example: Toss a fair coin thrice

Let $X_i = 1$ if *i*-th toss is heads and $X_i = 0$ if *i*-th toss is tails, i = 1, 2, 3.

Joint PMF: $f_{X_1X_2X_3}(t_1, t_2, t_3) = 1/8$ for $t_i \in \{0, 1\}$

$$f_{X_1}(0) = f_{X_1X_2X_3}(0,0,0) + f_{X_1X_2X_3}(0,0,1) + f_{X_1X_2X_3}(0,1,0) + f_{X_1X_2X_3}(0,1,1)$$

$$= 1/8 + 1/8 + 1/8 + 1/8 = 1/2$$

$$f_{X_1}(1) = f_{X_1X_2X_3}(1,0,0) + f_{X_1X_2X_3}(1,0,1) + f_{X_1X_2X_3}(1,1,0) + f_{X_1X_2X_3}(1,1,1)$$

$$= 1/8 + 1/8 + 1/8 + 1/8 = 1/2$$

Note:
$$f_{X_1}(0) + f_{X_1}(1) = 1$$

Example: Random 3-digit number 000 to 999

X =first digit from left, Y =number modulo 2, Z =first digit from right

• $X \sim \text{Uniform}\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Example: Random 3-digit number 000 to 999

X =first digit from left, Y =number modulo 2, Z =first digit from right

- $X \sim \text{Uniform}\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $Y \sim \mathsf{Uniform}\{0,1\}$

Example: Random 3-digit number 000 to 999

X= first digit from left, Y= number modulo 2, Z= first digit from right

- $\bullet \ \, X \sim \mathsf{Uniform}\{0,1,2,3,4,5,6,7,8,9\}$
- $Y \sim \mathsf{Uniform}\{0,1\}$
- $\bullet \ \ Z \sim \mathsf{Uniform}\{0,1,2,3,4,5,6,7,8,9\}$

Suppose the over has 6 deliveries. Let X_i denote the number of runs scored in the i-th delivery.

Suppose the over has 6 deliveries. Let X_i denote the number of runs scored in the i-th delivery.

 $X_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$: How to assign probabilities?

Suppose the over has 6 deliveries. Let X_i denote the number of runs scored in the i-th delivery.

 $X_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$: How to assign probabilities?

Ball 1: 0 - 957 matches, 1 - 429 matches, 2 - 57 matches, 3 - 5 matches, 4 - 138 matches, 5 - 8 matches, 6 - 4 matches (out of 1598 matches)

Idea: Assign probabilities in the same proportion as data

Suppose the over has 6 deliveries. Let X_i denote the number of runs scored in the i-th delivery.

 $X_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$: How to assign probabilities?

Ball 1: 0 - 957 matches, 1 - 429 matches, 2 - 57 matches, 3 - 5 matches, 4 - 138 matches, 5 - 8 matches, 6 - 4 matches (out of 1598 matches)

Idea: Assign probabilities in the same proportion as data

	0	1	2	3	4	5	6
f_{X_1}	0.5989	0.2685	0.0357	0.0031	0.0864	0.0050	0.0025
f_{X_2}	0.5551	0.2791	0.0438	0.0031	0.1083	0.0044	0.0063
f_{X_3}	0.5338	0.2847	0.0444	0.0044	0.1139	0.0025	0.0163
f_{X_4}	0.5344	0.2516	0.0394	0.0031	0.1489	0.0038	0.0188
f_{X_5}	0.5313	0.2672	0.0407	0.0056	0.1358	0.0025	0.0169
f_{X_6}	0.5056	0.2954	0.0394	0.0050	0.1414	0.0013	0.0119

Marginalisation

Suppose $X_1, X_2, X_3 \sim f_{X_1X_2X_3}$ and $X_i \in T_{X_i}$.

We have discussed the marginal PMF f_{X_i} of the individual random variables X_1 , X_2 and X_3 .

What about $f_{X_1X_2}$, the joint PMF of X_1 and X_2 ? What about $f_{X_1X_3}$, $f_{X_2X_3}$?

Marginalisation

Suppose $X_1, X_2, X_3 \sim f_{X_1X_2X_3}$ and $X_i \in T_{X_i}$.

We have discussed the marginal PMF f_{X_i} of the individual random variables X_1 , X_2 and X_3 .

What about $f_{X_1X_2}$, the joint PMF of X_1 and X_2 ? What about $f_{X_1X_3}$, $f_{X_2X_3}$?

$$f_{X_1X_2}(t_1, t_2) = P(X_1 = t_1 \text{ and } X_2 = t_2) = \sum_{t_3' \in T_{X_3}} f_{X_1X_2X_3}(t_1, t_2, t_3')$$
 $f_{X_1X_3}(t_1, t_3) = P(X_1 = t_1 \text{ and } X_3 = t_3) = \sum_{t_2' \in T_{X_2}} f_{X_1X_2X_3}(t_1, t_2', t_3)$
 $f_{X_2X_3}(t_2, t_3) = P(X_2 = t_2 \text{ and } X_3 = t_3) = \sum_{t_1' \in T_{X_1}} f_{X_1X_2X_3}(t_1', t_2, t_3)$

Marginalisation

Suppose $X_1, X_2, X_3 \sim f_{X_1X_2X_3}$ and $X_i \in T_{X_i}$.

We have discussed the marginal PMF f_{X_i} of the individual random variables X_1 , X_2 and X_3 .

What about $f_{X_1X_2}$, the joint PMF of X_1 and X_2 ? What about $f_{X_1X_3}$, $f_{X_2X_3}$?

$$\begin{split} f_{X_1X_2}(t_1,t_2) &= P(X_1 = t_1 \text{ and } X_2 = t_2) = \sum_{t_3' \in T_{X_3}} f_{X_1X_2X_3}(t_1,t_2,t_3') \\ f_{X_1X_3}(t_1,t_3) &= P(X_1 = t_1 \text{ and } X_3 = t_3) = \sum_{t_2' \in T_{X_2}} f_{X_1X_2X_3}(t_1,t_2',t_3) \\ f_{X_2X_3}(t_2,t_3) &= P(X_2 = t_2 \text{ and } X_3 = t_3) = \sum_{t_1' \in T_{X_1}} f_{X_1X_2X_3}(t_1',t_2,t_3) \end{split}$$

Marginalisation: Sum over everything you do not want!

Example: $X_1, X_2, X_3 \sim f_{X_1 X_2 X_3}$

$\overline{t_1}$	t ₂	t ₃	$f_{X_1X_2X_3}(t_1,t_2,t_3)$
0_	0	0	1/9
Ō	0	<u>0</u> 1✓	1/9
0	0	2 *	1/9
0	1	1 🗸	1/9
0_	_1	2 ⁴	1/9
1	0	0*	1/9
1_	0	2	1/9
1	1	0	1/9
1	_1	1	1/9

Working

Marginalisation: More examples

Suppose $X_1, X_2, X_3, X_4 \sim f_{X_1X_2X_3X_4}$ and $X_i \in T_{X_i}$.

$$f_{X_1}(t_1) = P(X_1 = t_1) = \sum_{t_2', t_3', t_4'} f_{X_1 X_2 X_3 X_4}(t_1, t_2', t_3', t_4')$$

$$f_{X_1 X_2}(t_1, t_2) = P(X_1 = t_1 \text{ and } X_2 = t_2) = \sum_{t_3', t_4'} f_{X_1 X_2 X_3 X_4}(t_1, t_2, t_3', t_4')$$

$$f_{X_2 X_4}(t_2, t_4) = P(X_2 = t_2 \text{ and } X_4 = t_4) = \sum_{t_1', t_3'} f_{X_1 X_2 X_3 X_4}(t_1', t_2, t_3', t_4)$$

$$f_{X_1 X_3 X_4}(t_1, t_3, t_4) = \sum_{t_1'} f_{X_1 X_2 X_3 X_4}(t_1, t_2', t_3.t_4)$$

Marginalisation: Sum over everything you do not want!

Multiple discrete random variables: Marginal PMF (general)

Definition (Marginal PMF (general))

Suppose X_1, X_2, \ldots, X_n are jointly distributed discrete random variables with joint PMF $f_{X_1\cdots X_n}$. The joint PMF of the random variables $X_{i_1}, X_{i_2}, \ldots, X_{i_k}$, denoted $f_{X_{i_1}\cdots X_{i_k}}$, is given by

$$f_{X_{i_1}...X_{i_k}}(t_{i_1},...,t_{i_k}) = \sum_{\substack{t_1,...,t'_{i_1-1},t'_{i_1+1},...,\\...,t'_{i_k-1},t'_{i_k+1},...,t_n}} f_{X_1...X_n}(t_1,...,t'_{i_1-1},t_{i_1},t'_{i_1+1},...,t'_{i_k-1},t_{i_k},t'_{i_k+1},...,t_n).$$

Suppose $X_1, X_2, X_3, X_4 \sim f_{X_1 X_2 X_3 X_4}$ and $X_i \in T_{X_i}$.

Suppose $X_1, X_2, X_3, X_4 \sim f_{X_1X_2X_3X_4}$ and $X_i \in T_{X_i}$.

$$(X_1|X_2=t_2) \sim f_{X_1|X_2=t_2}(t_1) = \frac{f_{X_1X_2}(t_1,t_2)}{f_{X_2}(t_2)}$$

Suppose $X_1, X_2, X_3, X_4 \sim f_{X_1X_2X_3X_4}$ and $X_i \in T_{X_i}$.

$$(X_1|X_2=t_2) \sim f_{X_1|X_2=t_2}(t_1) = rac{f_{X_1X_2}(t_1,t_2)}{f_{X_2}(t_2)}$$
 $(X_1,X_2|X_3=t_3) \sim f_{X_1X_2|X_3=t_3}(t_1,t_2) = rac{f_{X_1X_2X_3}(t_1,t_2,t_3)}{f_{X_3}(t_3)}$

Suppose $X_1, X_2, X_3, X_4 \sim f_{X_1X_2X_3X_4}$ and $X_i \in T_{X_i}$.

$$(X_1|X_2=t_2) \sim f_{X_1|X_2=t_2}(t_1) = rac{f_{X_1X_2}(t_1,t_2)}{f_{X_2}(t_2)} \ (X_1,X_2|X_3=t_3) \sim f_{X_1X_2|X_3=t_3}(t_1,t_2) = rac{f_{X_1X_2X_3}(t_1,t_2,t_3)}{f_{X_3}(t_3)} \ (X_1|X_2=t_2,X_3=t_3) \sim f_{X_1|X_2=t_2,X_3=t_3}(t_1) = rac{f_{X_1X_2X_3}(t_1,t_2,t_3)}{f_{X_2X_3}(t_2,t_3)}$$

Suppose $X_1, X_2, X_3, X_4 \sim f_{X_1X_2X_3X_4}$ and $X_i \in T_{X_i}$.

$$(X_1|X_2=t_2) \sim f_{X_1|X_2=t_2}(t_1) = \frac{f_{X_1X_2}(t_1,t_2)}{f_{X_2}(t_2)}$$

$$(X_1,X_2|X_3=t_3) \sim f_{X_1X_2|X_3=t_3}(t_1,t_2) = \frac{f_{X_1X_2X_3}(t_1,t_2,t_3)}{f_{X_3}(t_3)}$$

$$(X_1|X_2=t_2,X_3=t_3) \sim f_{X_1|X_2=t_2,X_3=t_3}(t_1) = \frac{f_{X_1X_2X_3}(t_1,t_2,t_3)}{f_{X_2X_3}(t_2,t_3)}$$

$$(X_1,X_3|X_2=t_2,X_4=t_4) \sim f_{X_1X_3|X_2=t_2,X_4=t_4}(t_1,t_3) = \frac{f_{X_1X_2X_3X_4}(t_1,t_2,t_3,t_4)}{f_{X_2X_4}(t_2,t_4)}$$

Example: $X_1, X_2, X_3, X_4 \sim f_{X_1 X_2 X_3 X_4}$

t_1	t_2	<i>t</i> ₃	t_4	$f_{X_1\cdots X_4}(t_1,\ldots$	(t_{4})
0	0	0	0	1/12	(4/12) (3/12)
(0)	0	0	1)	1/12	() Jahr
0	(0)	1	1	1/12	(x/x=0)~(0, 1)
0	(0/	2	0	1/12	1/2 /X
0	1	1	0	1/12	(X((X=0,X=1)~10,1)
\ 0	1	1	1	1/12	(11/3) 4 / ()
(0/	1	2	0	1/12	x,,x4 x =0
1	0	0		1/12	5012
1	[0]	2	0	1/12	0 1/4 1/4 2/4
1	(g)	2	1	1/12	1,1
1	ĭ	0	1)	1/12	1 1/2 1/2 0
1	1	1	0	1/12	
Tx,={0,	·β	4	, ار ^ح } چَ	د)	

Working

$$f_{X_1\cdots X_4}(t_1,\ldots,t_4)=P(X_1=t_1 \text{ and } X_2=t_2 \text{ and } X_3=t_3 \text{ and } X_4=t_4)$$

$$f_{X_1\cdots X_4}(t_1,\ldots,t_4) = P(X_1=t_1 \text{ and } X_2=t_2 \text{ and } X_3=t_3 \text{ and } X_4=t_4)$$

= $P(X_1=t_1 \text{ and } (X_2=t_2 \text{ and } X_3=t_3 \text{ and } X_4=t_4))$

$$f_{X_1...X_4}(t_1,...,t_4) = P(X_1 = t_1 \text{ and } X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)$$

$$= P(X_1 = t_1 \text{ and } (X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4))$$

$$= P(X_1 = t_1 | (X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4))$$

$$P(X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)$$

$$f_{X_1...X_4}(t_1,...,t_4) = P(X_1 = t_1 \text{ and } X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)$$

$$= P(X_1 = t_1 \text{ and } (X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4))$$

$$= P(X_1 = t_1 | (X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4))$$

$$P(X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)$$

$$= P(X_1 = t_1 | X_2 = t_2, X_3 = t_3, X_4 = t_4)$$

$$P(X_2 = t_2 | X_3 = t_3, X_4 = t_4) P(X_3 = t_3, X_4 = t_4)$$

$$\begin{split} f_{X_1 \dots X_4}(t_1, \dots, t_4) &= P(X_1 = t_1 \text{ and } X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4) \\ &= P(X_1 = t_1 \text{ and } (X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)) \\ &= P(X_1 = t_1 | (X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)) \\ &= P(X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4) \\ &= P(X_1 = t_1 | X_2 = t_2, X_3 = t_3, X_4 = t_4)) \\ &= P(X_2 = t_2 | X_3 = t_3, X_4 = t_4) P(X_3 = t_3, X_4 = t_4) \\ &= P(X_1 = t_1 | X_2 = t_2, X_3 = t_3, X_4 = t_4)) \\ &= P(X_2 = t_2 | X_3 = t_3, X_4 = t_4) \\ &= P(X_3 = t_3 | X_4 = t_4) P(X_4 = t_4) \end{split}$$

$$\begin{split} f_{X_1 \dots X_4}(t_1, \dots, t_4) &= P(X_1 = t_1 \text{ and } X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4) \\ &= P(X_1 = t_1 \text{ and } (X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)) \\ &= P(X_1 = t_1 | (X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)) \\ &= P(X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4) \\ &= P(X_1 = t_1 | X_2 = t_2, X_3 = t_3, X_4 = t_4)) \\ &= P(X_2 = t_2 | X_3 = t_3, X_4 = t_4) P(X_3 = t_3, X_4 = t_4) \\ &= P(X_1 = t_1 | X_2 = t_2, X_3 = t_3, X_4 = t_4)) \\ &= P(X_2 = t_2 | X_3 = t_3, X_4 = t_4) \\ &= P(X_3 = t_3 | X_4 = t_4) P(X_4 = t_4) \\ &= f_{X_1 | X_2 = t_2, X_3 = t_3, X_4 = t_4}(t_1) f_{X_2 | X_3 = t_3, X_4 = t_4}(t_2) \\ &= f_{X_3 | X_4 = t_4}(t_3) f_{X_4}(t_4) \end{split}$$

Example: $X_1, X_2, X_3 \sim f_{X_1 X_2 X_3}$

t_1	t_2	t ₃	$f_{X_1X_2X_3}(t_1,t_2,t_3)$
0	0	0	1/9
0	0	1	1/9
0	0	2	1/9
0	1	1	1/9
0	1	2	1/9
1 (0	0	1/9
1	0	2	1/9
1	1	0	1/9
1	1	1	1/9

Working

$$f_{X_1...X_4}(t_1,...,t_4) = P(X_1 = t_1 \text{ and } X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)$$

$$f_{X_1\cdots X_4}(t_1,\ldots,t_4) = P(X_1=t_1 \text{ and } X_2=t_2 \text{ and } X_3=t_3 \text{ and } X_4=t_4)$$

= $P(X_4=t_4 \text{ and } X_3=t_3 \text{ and } X_2=t_2 \text{ and } X_1=t_1)$

Suppose
$$X_1, X_2, X_3, X_4 \sim f_{X_1 X_2 X_3 X_4}$$
 and $X_i \in T_{X_i}$.
$$f_{X_1 \cdots X_4}(t_1, \dots, t_4) = P(X_1 = t_1 \text{ and } X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)$$
$$= P(X_4 = t_4 \text{ and } X_3 = t_3 \text{ and } X_2 = t_2 \text{ and } X_1 = t_1)$$
$$= f_{X_4 \mid X_3 = t_3, X_2 = t_2, X_1 = t_1}(t_4) f_{X_3 \mid X_2 = t_2, X_1 = t_1}(t_3)$$
$$f_{X_2 \mid X_1 = t_1}(t_2) f_{X_1}(t_1)$$

$$f_{X_1 \cdots X_4}(t_1, \dots, t_4) = P(X_1 = t_1 \text{ and } X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)$$

$$= P(X_4 = t_4 \text{ and } X_3 = t_3 \text{ and } X_2 = t_2 \text{ and } X_1 = t_1)$$

$$= f_{X_4|X_3 = t_3, X_2 = t_2, X_1 = t_1}(t_4) f_{X_3|X_2 = t_2, X_1 = t_1}(t_3)$$

$$f_{X_2|X_1 = t_1}(t_2) f_{X_1}(t_1)$$

$$f_{X_1\cdots X_4}(t_1,\ldots,t_4) = P(X_3=t_3 \text{ and } X_2=t_2 \text{ and } X_1=t_1 \text{ and } X_4=t_4)$$

$$f_{X_1 \cdots X_4}(t_1, \dots, t_4) = P(X_1 = t_1 \text{ and } X_2 = t_2 \text{ and } X_3 = t_3 \text{ and } X_4 = t_4)$$

$$= P(X_4 = t_4 \text{ and } X_3 = t_3 \text{ and } X_2 = t_2 \text{ and } X_1 = t_1)$$

$$= f_{X_4|X_3 = t_3, X_2 = t_2, X_1 = t_1}(t_4) f_{X_3|X_2 = t_2, X_1 = t_1}(t_3)$$

$$f_{X_2|X_1 = t_1}(t_2) f_{X_1}(t_1)$$

$$f_{X_1...X_4}(t_1,...,t_4) = P(X_3 = t_3 \text{ and } X_2 = t_2 \text{ and } X_1 = t_1 \text{ and } X_4 = t_4)$$

$$= f_{X_3|X_2 = t_2, X_1 = t_1, X_4 = t_4}(t_3) f_{X_2|X_1 = t_1, X_4 = t_4}(t_2)$$

$$f_{X_1|X_4 = t_4}(t_1) f_{X_4}(t_4)$$

Example: $X_1, X_2, X_3 \sim f_{X_1 X_2 X_3}$

t_1	t ₂	t ₃	$f_{X_1X_2X_3}(t_1,t_2,t_3)$
0	0	0	1/9
0	0)	1	1/9
0	0/	2	1/9
0	1	1	1/9
0/	1	2	1/9
1	0	0	1/9
1	0	2	1/9
1	1	0	1/9
1	1	1	1/9

$$f_{x_1x_2x_3}(0,0,0) = f_{x_1}(0) \cdot f_{x_2|x_1=0} f_{x_3|x_1=0}, x_{1=0}$$

Independence of two random variables

Definition (Independence (two random variables))

Let X and Y be two random variables defined in a probability space with ranges T_X and T_Y , respectively. X and Y are said to be independent if any event defined using X alone is independent of any event defined using Y alone. Equivalently, if the joint PMF of X and Y is f_{XY} , X and Y are independent if

$$f_{XY}(t_1,t_2) = f_X(t_1)f_Y(t_2)$$

for $t_1 \in T_X$, $t_2 \in T_Y$.

- General case vs independent case
 - General: $f_{XY}(t_1, t_2) = f_X(t_1) f_{Y|X=t_1}(t_2)$ (always true)
 - Independent: $f_{Y|X=t_1}(t_2) = f_Y(t_2)$
- If X and Y are independent
 - ▶ Joint PMF equals product of marginal PMFs
 - ► Conditional PMF equals marginal PMF

Simple examples

$$\frac{t_2 \setminus t_1 \quad 0 \quad 1 \quad f_Y}{0 \quad 1/4 \quad 1/4 \quad 1/2}$$

$$\frac{1}{f_X} \quad \frac{1/4 \quad 1/4}{1/4 \quad 1/2}$$

$$\frac{f_X}{f_{X}} \quad \frac{1}{f_X} \quad \frac{1}{f_X$$

Simple examples

$\overline{t_2 \setminus t_1}$	0	1	f_Y		
0	1/4	1/4	1/2		
1	1/4	1/4	ソレ		
f_X	1/2	1/2			
indep					

Simple examples

$t_2 \setminus t_1$	0	1	f_Y
0	1/4	1/4	
1	1/4	1/4	
f_X		14	

$\overline{t_2 \setminus t_1}$	0	1	f_Y
0	1/2	1/4	
1	1/8	1/8	
f_X	not	,- let	

$\overline{t_2 \setminus t_1}$	0	1	$\overline{f_Y}$
0	Х	1/2 - x	
1	1/2 - x	X	1/2
f_X	1/2	γ_{ν}	
	if	x=14)	indep not indep

$t_2 \setminus t_1$	0	1	2	f_{Y}	
0	1/9	1/9	1/9	7/3	
1	1/9	1/9	1/9	1/3	
2	1/9	1/9	1/9	1/3	
f_X	413	1/3	1/3		
inly					

$\overline{t_2 \setminus t_1}$	0	1	2	f_Y
0	1/9	1/9	1/9	
1	1/9	1/9	1/9	
2	1/9	1/9	1/9	
f_X		Lakel	k	

$t_2 \setminus t_1$	0	1	2	f_Y
0	1/6	1/12	1/12	1/3
1	7 1/4	1/8	1/8	-1/2
2	$(1/12)^{2}$	1/24	1/24	-76
f_X	12	1/4	1/4	
	ind	legy .	•	

$t_2 \setminus t_1$	0	1	2	f_{Y}
0	1/9	1/9	1/9	
1	1/9	1/9	1/9	
2	1/9	1/9	1/9	
f _X		اسا	f	

$\overline{t_2 \setminus t_1}$	0	1	2	f_Y
0	1/6	1/12	1/12	
1	1/4	1/8	1/8	
2	1/12	1/24	1/24	
f_X	į.	nlep		
		()		

$t_2 \setminus t_1$	0	1	2	f_Y
0	†(0)	1/8	1/8	1/4
1	1/8	1/8	1/8	3/8
2	1/8	1/8	1/8	3/8
f_X	1/4	3/8	3/8	
	defindent			

$t_2 \setminus t_1$	0	1	2	f_{Y}
0	1/9	1/9	1/9	
1	1/9	1/9	1/9	
2	1/9	1/9	1/9	
f_X		inde	4	

$t_2 \setminus t_1$	0	1	2	f_{Y}
0	1/6	1/12	1/12	
1	1/4	1/8	1/8	
2	1/12	1/24	1/24	
f_X	Ö	ndef		

$\overline{t_2 \setminus t_1}$	0	1	2	f_Y
0	0	1/8	1/8	
1	1/8	1/8	1/8	
2	1/8	1/8	1/8	
f_X	ď	leb		

$t_2 \setminus t_1$	0	1	2	f_Y
0	1/6	1/12	1/8	
1	1/4	1/12 1/8 1/24	(I / O)	1/2
2	1/24	1/24	1/24/	^
f_X			7/24	
dek				

Independent vs dependent random variables

To show X and Y are independent, verify

$$f_{XY}(t_1, t_2) = f_X(t_1)f_Y(t_2)$$

for all $t_1 \in T_X$, $t_2 \in T_Y$.

• To show X and Y are dependent, verify

$$f_{XY}(t_1, t_2) \neq f_X(t_1) f_Y(t_2)$$

for **some** $t_1 \in T_X$ and $t_2 \in T_Y$.

• Special case: $f_{XY}(t_1, t_2) = 0$ when $f_X(t_1) \neq 0$, $f_Y(t_2) \neq 0$

Example: Random 2-digit number

A 2-digit number from 00 to 99 is selected at random. Partial information is available about the number as two random variables. Let X be the digit in units place. Let Y be the reminder obtained when the number is divided by 4.

$$x \sim U_{\text{inform}} \{0, 1, 2, ..., 9\}$$

 $Y \sim U_{\text{inform}} \{0, 1, 2, 3\}$
 Y_{4}
 $f_{xy}(1, 0) = 0 \neq f_{x}(1) \cdot f_{y}(0)$
 $f_{xy}(1, 0) = 0 \neq f_{x}(1) \cdot f_{y}(0)$

Example: IPL powerplay over

Let X = number of runs in the over. Let Y = number of wickets in the over.

Are X & Y indefendent?

Independence of multiple random variables

Definition (Independence of random variables)

Let X_1, \ldots, X_n be random variables defined in a probability space with range of X_i denoted $T_{X_i}, X_1, \ldots, X_n$ are said to be independent if events defined using different X_i are mutually independent. Equivalently, X_1, \ldots, X_n are independent iff

$$f_{X_1\cdots X_n}(t_1,\ldots,t_2) = f_{X_1}(t_1)f_{X_2}(t_2)\cdots f_{X_n}(t_n)$$

for all $t_i \in T_{X_i}$.

- If X and Y are independent
 - Joint PMF equals product of marginal PMFs
 - Conditional PMF equals unconditioned PMF
- All subsets of independent random variables are independent

Example: Toss a fair coin thrice

Let $X_i = 1$ if *i*-th toss is heads and $X_i = 0$ if *i*-th toss is tails, i = 1, 2, 3.

Joint PMF: $f_{X_1X_2X_3}(t_1, t_2, t_3) = 1/8$ for $t_i \in \{0, 1\}$

Example: Toss a fair coin thrice

Let $X_i = 1$ if *i*-th toss is heads and $X_i = 0$ if *i*-th toss is tails, i = 1, 2, 3.

Joint PMF: $f_{X_1X_2X_3}(t_1, t_2, t_3) = 1/8$ for $t_i \in \{0, 1\}$

• $X_i \sim \text{Uniform}\{0,1\}$

$$f_{X_1X_2X_3}(t_1, t_2, t_3) = f_{X_1}(t_1)f_{X_2}(t_2)f_{X_3}(t_3)$$

Example: Toss a fair coin thrice

Let $X_i = 1$ if *i*-th toss is heads and $X_i = 0$ if *i*-th toss is tails, i = 1, 2, 3.

Joint PMF:
$$f_{X_1X_2X_3}(t_1, t_2, t_3) = 1/8$$
 for $t_i \in \{0, 1\}$

• $X_i \sim \text{Uniform}\{0,1\}$

$$f_{X_1X_2X_3}(t_1, t_2, t_3) = f_{X_1}(t_1)f_{X_2}(t_2)f_{X_3}(t_3)$$

 X_1, X_2, X_3 : Independent random variables

Example: Random 3-digit number 000 to 999

X= first digit from left, Y= number modulo 2, Z= first digit from right

- $\bullet \ \, X \sim \mathsf{Uniform}\{0,1,2,3,4,5,6,7,8,9\}$
- $Y \sim \mathsf{Uniform}\{0,1\}$
- $\bullet \ \ Z \sim \mathsf{Uniform}\{0,1,2,3,4,5,6,7,8,9\}$

Example: Random 3-digit number 000 to 999

X= first digit from left, Y= number modulo 2, Z= first digit from right

- $X \sim \mathsf{Uniform}\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $Y \sim \mathsf{Uniform}\{0,1\}$
- $Z \sim \mathsf{Uniform}\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- *X*, *Z*
 - $f_{XZ}(t_1, t_3) = 1/100 = f_X(t_1)f_Z(t_3)$
 - Independent
- X, Y
 - $f_{XY}(t_1, t_2) = 1/20 = f_X(t_1)f_Y(t_2)$
 - Independent
- Y, Z
 - $f_{YZ}(1,2) = 0 \neq f_Y(1)f_Z(2)$
 - Not independent

Example: Random 3-digit number 000 to 999

X= first digit from left, Y= number modulo 2, Z= first digit from right

- $X \sim \mathsf{Uniform}\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $Y \sim \mathsf{Uniform}\{0,1\}$
- $Z \sim \mathsf{Uniform}\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- *X*, *Z*
 - $f_{XZ}(t_1, t_3) = 1/100 = f_X(t_1)f_Z(t_3)$
 - Independent
- X, Y
 - $f_{XY}(t_1, t_2) = 1/20 = f_X(t_1)f_Y(t_2)$
 - Independent
- *Y*, *Z*
 - $f_{YZ}(1,2) = 0 \neq f_Y(1)f_Z(2)$
 - Not independent

X, Y, Z: Dependent random variables

Example: Even parity

$\overline{t_1}$	t_2	t ₃	$f_{X_1X_2X_3}(t_1,t_2,t_3)$
0	0	0	1/4
0	1	1	1/4
1	0	1	1/4
1	1	0	1/4

• Number of 1s in (X_1, X_2, X_3) is even (hence, the name)

Example: Even parity

t_1	t_2	<i>t</i> ₃	$f_{X_1X_2X_3}(t_1,t_2,t_3)$
0	0	0	1/4
0	1	1	1/4
1	0	1	1/4
1	1	0	1/4

- Number of 1s in (X_1, X_2, X_3) is even (hence, the name)
- $X_i \sim \mathsf{Uniform}\{0,1\}$
- All pairs are independent
- $f_{X_1X_2X_3}(0,0,1) = 0 \neq f_{X_1}(0)f_{X_2}(0)f_{X_3}(1)$

Example: Even parity

t_1	t_2	<i>t</i> ₃	$f_{X_1X_2X_3}(t_1,t_2,t_3)$
0	0	0	1/4
0	1	1	1/4
1	0	1	1/4
1	1	1	1/4

- Number of 1s in (X_1, X_2, X_3) is even (hence, the name)
- $X_i \sim \text{Uniform}\{0,1\}$
- All pairs are independent
- $f_{X_1X_2X_3}(0,0,1) = 0 \neq f_{X_1}(0)f_{X_2}(0)f_{X_3}(1)$

 X_1, X_2, X_3 : Dependent random variables

Independent and Identically Distributed (i.i.d.)

Definition (i.i.d.)

Random variables X_1, \ldots, X_n are said to be independent and identically distributed (i.i.d.), if

- they are independent,
- ② the marginal PMFs f_{X_i} are identical.

Independent and Identically Distributed (i.i.d.)

Definition (i.i.d.)

Random variables X_1, \ldots, X_n are said to be independent and identically distributed (i.i.d.), if

- they are independent,
- 2 the marginal PMFs f_{X_i} are identical.
 - Repeated trials of an experiment creates i.i.d. sequence of random variables
 - ► Toss a coin multiple times
 - Throw a die multiple times

Independent and Identically Distributed (i.i.d.)

Definition (i.i.d.)

Random variables X_1, \ldots, X_n are said to be independent and identically distributed (i.i.d.), if

- they are independent,
- 2 the marginal PMFs f_{X_i} are identical.
 - Repeated trials of an experiment creates i.i.d. sequence of random variables
 - ► Toss a coin multiple times
 - ► Throw a die multiple times

Notation: X_1, X_2, \dots, X_n are i.i.d. with distribution X means that f_{X_i} is the same as f_X

Problem: i.i.d. Geometric

Let X_1, \ldots, X_n be i.i.d. with a Geometric(p) distribution. What is the probabilty that all of these random variables are larger than some positive ? X~ Geometric(1): Xe / 1,2,3, - - - . \ P(x=k)=1-15-1p integer *i*? P(X,>i,X,>i,...,X,>i)=P(X,7i)P(X,7i)....P(X,>i) $= (P(x > i))^{n} = (1-t)^{3n}$ $= (x > i)^{n} = (1-t)^{3n}$ $= (1-t)^{3n} = (1-t)^{3n}$ $= (1-t)^{3n} = (1-t)^{3n}$

Problem: i.i.d. samples

1/2 1/4 1/8 1/16 1/16 Let $X \sim \{0, 1, 2, 3, 4\}$, and let X_1, \ldots, X_n be i.i.d. samples with distribution X. ~i.i.d. X

- What is the probability that 4 is missing in the samples?
- What is the probability that 4 appears exactly once in the samples?
- What is the probability that 3 and 4 appear at least once in the samples?

samples?

$$P(X_1 \neq 4) \times_2 \neq 4, \dots, X_n \neq 4) = (P(X \neq 4)) = (15/16)^n$$

(2)
$$P(4 \text{ of poiss exercise}) = P(X_1 + 1), X_2 = 4, X_3 + 4, ..., X_n + 4) + ... + P(X_1 + 4, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) = n. P(X_1 + 1) P(X_1 + 4, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) = n. P(X_1 + 1) P(X_1 + 4, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) = n. P(X_1 + 1) P(X_1 + 4, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) = n. P(X_1 + 1) P(X_1 + 1) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n - \frac{1}{4}, X_n = \frac{1}{4}) P(X_1 + 1, ..., X_n$$

Problem: Memoryless property of Geometric

Let $X \sim \text{Geometric}(p)$. Find the following.

1
$$P(X > n)$$

②
$$P(X > m + n | X > m)$$

$$(1-b)^{n}b = (1-b)^{n}b + (1-b)^{n}b + \cdots$$

$$= (1-b)^{n}b = (1-b)^{n}b + (1-b)^{n}b + \cdots$$

$$= (1-b)^{n}b = (1-b)^{n}b =$$

$$\frac{1-(1-1)}{P(x>m+n)} = \frac{P(x>m+n)}{P(x>m)} = \frac{P(x>m+n)}{P(x>m)} = \frac{P(x>m+n)}{P(x>m)} = \frac{P(x>m+n)}{P(x>m)}$$

$$= \frac{(1-1)^m}{(1-1)^m} = (1-1)^n$$

$$= \frac{P(x>m+n)}{(1-1)^m} = P(x>n)$$

Section 4

Functions of random variables

Example: Throw a die twice

A fair die is thrown twice. What is the probability that the sum of the two numbers seen is 6? What is the PMF of the sum?

$$F(S=2) = \frac{1}{36}, P(S=3) = \frac{2}{36}, P(S=4) = \frac{3}{36}, \dots$$

Example: Area of a random rectangle

The length of a rectangle $L \sim \text{Uniform}\{5,7,9,11\}$. Given L = I, the breadth $B \sim \text{Uniform}\{I-1,I-2,I-3\}$.

PMF of $g(X_1, \ldots, X_n)$

Definition (PMF of a $g(X_1, ..., X_n)$)

Suppose X_1, \ldots, X_n have joint PMF $f_{X_1 \cdots X_n}$ with T_{X_i} denoting the range of X_i . Let $g: T_{X_1} \times \cdots \times T_{X_n} \to \mathbb{R}$ be a function with range T_g . The PMF of $X = g(X_1, \ldots, X_n)$ is given by

$$f_{X}(t) = P(g(X_{1}, \ldots, X_{n}) = t) = \sum_{\substack{(t_{1}, \ldots, t_{n}) : g(t_{1}, \ldots, t_{n}) = t \\ }} f_{X_{1} \cdots X_{n}}(t_{1}, \ldots, t_{n}).$$

- Proof: write the event and use definition of joint PMF
- Directly useful for small problems
- Can be extended for joint PMF of two functions g and h

Example: Given a small table for joint PMF

tits altertials tentials
$$\frac{t_1}{t_2}$$
 t_3 $\frac{t_1}{t_2}$ t_3 $\frac{t_1}{t_2}$ t_3 $\frac{t_1}{t_2}$ t_3 $\frac{t_1}{t_2}$ t_3 $\frac{t_1}{t_2}$ t_4 $\frac{t_2}{t_3}$ $\frac{t_3}{t_4}$ $\frac{t_4}{t_2}$ $\frac{t_4}{t_3}$ $\frac{t_4}{t_4}$ $\frac{t_4}{t_2}$ $\frac{t_4}{t_3}$ $\frac{t_4}{t_4}$ $\frac{t_4}{t_$

Working

Example: Binomial from Bernoulli trials

Let X_1, \ldots, X_n be the results of n i.i.d. Bernoulli(p) trials. The sum of the n random variables $X_1 + \cdots + X_n$ is Binomial(n, p).

of successes Bernoulli trilo in nindely Bernoulli trilo

- Sum of n indef Bernalli(p) = Binomial (m,p)

Example: Sum of two uniforms

Let $X \sim \mathsf{Uniform}\{0,1,2,3\}$ and $Y \sim \mathsf{Uniform}\{0,1,2,3\}$ be independent. Find the PMF of Z = X + Y.

Sums of two random variables taking integer values

Suppose X and Y take integer values and let their joint PMF be f_{XY} . Let Z = X + Y.

Sums of two random variables taking integer values

Suppose X and Y take integer values and let their joint PMF be f_{XY} . Let Z = X + Y.

Let z be some integer.

$$P(Z = z) = P(X + Y = z)$$

$$= \sum_{x = -\infty} P(X = x, Y = z - x)$$

$$= \sum_{x = -\infty} f_{XY}(x, z - x)$$

$$= \sum_{y = -\infty} f_{XY}(z - y, y)$$

Sums of two random variables taking integer values

Suppose X and Y take integer values and let their joint PMF be f_{XY} . Let Z = X + Y.

Let z be some integer.

$$P(Z = z) = P(X + Y = z)$$

$$= \sum_{x = -\infty}^{\infty} P(X = x, Y = z - x)$$

$$= \sum_{x = -\infty}^{\infty} f_{XY}(x, z - x)$$

$$= \sum_{y = -\infty}^{\infty} f_{XY}(z - y, y)$$

Convolution: If X and Y are independent,

$$f_{X+Y}(z) = \sum_{x=-\infty}^{\infty} f_X(x) f_Y(z-x)$$

Sum of two independent Poissons

Let $X \sim \mathsf{Poisson}(\lambda_1)$ and $Y \sim \mathsf{Poisson}(\lambda_2)$ be independent.

- Find the PMF of Z = X + Y.
- 2 Find the conditional distribution of X|Z.

$$\frac{1}{2} \left(\frac{1}{2}\right) = \frac{1}{2} \int_{X} |x| \int_{Y} |z-x| = \frac{1}{2} \int_{X} \frac{1}{2} \cdot \frac{1}{$$

• If X and Y are independent, g(X) and h(Y) are independent for any two functions g and h

- If X and Y are independent, g(X) and h(Y) are independent for any two functions g and h
- If X_1, X_2, X_3, X_4 are mutually independent,

- If X and Y are independent, g(X) and h(Y) are independent for any two functions g and h
- If X_1, X_2, X_3, X_4 are mutually independent,
 - $g(X_1, X_2)$ is independent of $h(X_3, X_4)$

- If X and Y are independent, g(X) and h(Y) are independent for any two functions g and h
- If X_1, X_2, X_3, X_4 are mutually independent,
 - $g(X_1, X_2)$ is independent of $h(X_3, X_4)$
 - $g(X_1, X_2, X_3)$ is independent of $h(X_4)$

- If X and Y are independent, g(X) and h(Y) are independent for any two functions g and h
- If X_1, X_2, X_3, X_4 are mutually independent,
 - $g(X_1, X_2)$ is independent of $h(X_3, X_4)$
 - $g(X_1, X_2, X_3)$ is independent of $h(X_4)$
- Functions of non-overlapping sets of independent random variables are also independent.

Exercises

- Sum of independent Binomial(m, p) and Binomial(n, p)
- Sum of independent Geometric(p) and Geometric(q)
- Sum of r i.i.d. Geometric(p)
- Sum of independent Negative-Binomial(r, p) and Negative-Binomial(s, p)

Minimum of two random variables

$$X, Y \sim f_{XY}$$

 $Z = \min(X, Y)$: function of X and Y

Ex: Throw a die twice. Z = minimum of the two numbers seen.

Minimum of two random variables

$$X, Y \sim f_{XY}$$
 $Z = \min(X, Y)$: function of X and Y

Ex: Throw a die twice. $Z = \min \min$ of the two numbers seen.

$$f_Z(z) = P(\min(X, Y) = z)$$

= $P((X = z \text{ and } Y = z) \text{ or } (X = z \text{ and } Y > z)$
or $(X > z \text{ and } Y = z))$
= $f_{XY}(z, z) + \sum_{t_2 > z} f_{XY}(z, t_2) + \sum_{t_1 > z} f_{XY}(t_1, z)$

Minimum of two random variables

$$X, Y \sim f_{XY}$$
 $Z = \min(X, Y)$: function of X and Y

Ex: Throw a die twice. $Z = \min \min$ of the two numbers seen.

$$f_Z(z) = P(\min(X, Y) = z)$$

= $P((X = z \text{ and } Y = z) \text{ or } (X = z \text{ and } Y > z)$
or $(X > z \text{ and } Y = z))$
= $f_{XY}(z, z) + \sum_{t_2 > z} f_{XY}(z, t_2) + \sum_{t_1 > z} f_{XY}(t_1, z)$

What about maximum?

Example: Throw a die twice

Throw a die twice. Z = minimum of the two numbers seen.

	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	/1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	\ 1/36 <i>)</i>	1/36	1/36	1/36	1/36	1/36
$P(z=1)=\frac{1}{36}$ $P(z=2)=\frac{9}{36}$ $P(z=3)=\frac{7}{36}$						
P(Z=4)=	5	P(7=5	5)=3	. 7(7=6)=	
[[]=1]-	36	, (0	36	,	/	26

Independent case: cumulative distribution function (CDF) of maximum

Definition (CDF of a random variable)

Cumulative distribution function of a random variable X is a function $F_X:\mathbb{R}\to [0,1]$ defined as

$$F_X(x) = P(X \le x).$$

Independent case: cumulative distribution function (CDF) of maximum

Definition (CDF of a random variable)

Cumulative distribution function of a random variable X is a function $F_X:\mathbb{R}\to [0,1]$ defined as

$$F_X(x) = P(X \le x).$$

Suppose X and Y are **independent** and $Z = \max(X, Y)$.

$$F_Z(z) = P(\max(X, Y) \le z)$$

= $P((X \le z) \text{ and } (Y \le z))$
= $P(X \le z)P(Y \le y)$

Independent case: cumulative distribution function (CDF) of maximum

Definition (CDF of a random variable)

Cumulative distribution function of a random variable X is a function $F_X : \mathbb{R} \to [0,1]$ defined as

$$F_X(x) = P(X \le x).$$

Suppose X and Y are **independent** and $Z = \max(X, Y)$.

$$F_Z(z) = P(\max(X, Y) \le z)$$

$$= P((X \le z) \text{ and } (Y \le z))$$

$$= P(X \le z)P(Y \le y)$$

$$= F_X(z)F_Y(z)$$

Independent: CDF of maximum is product of CDFs. What about min?

Problem: Min and max of i.i.d. sequences

Let $X_1, \ldots, X_n \sim \text{i.i.d.} X$. Find the distribution of the following:

$$P(mex(X_1,...,X_n)\leq z) = P(X_1\leq z, X_2\leq z,...,X_n\leq z)$$

$$=(P(X\leq z))^n = (F_X(z))^n$$

Problem: Min of two independent Geometrics

Let $X \sim \text{Geometric}(p)$ and $Y \sim \text{Geometric}(p)$ be independent. Find the distribution of $\min(X,Y)$.

$$P(\frac{min(x,y)}{2}) = P(x,y,k) \cdot P(y,k)$$

$$= (1-k)^{-1} (1-k)^{-1} = ((1-k)^{-1})^{-1}$$

$$P(\frac{min(x,y)}{2}) = k+1 = ((1-k)^{-1})^{-1} = ((1-k)^{-1})^{-1}$$

$$P(\frac{min(x,y)}{2}) = k = P(\frac{min(x,y)}{2}) = P(\frac{min(x,y)}{2}) = k+1$$

$$= q^{k-1} - q^{k} = q^{k-1}(1-q)$$

$$min(x,y) \sim Geometric(1-q)$$

$$x_1 \sim Geometric(k_1) \cdot x_2 \sim Geometric(k_2) \cdot indef$$

$$min(x_1,x_2) \sim Geometric(1-(1-k_1)(1-k_2)) \rightarrow k_1 + k_1 - k_1 + k_2 - k_1 + k_2 + k_2 + k_2 + k_3 + k_4 + k_4$$