Instituto Federal de Goiás

CURSO: Bacharelado em Ciência da Computação

TURMA: 1° período

Disciplina: Fundamentos Matemáticos

Lista de Exercícios - Vetores

I – Tratamento Geométrico:

4) O paralelogramo ABCD (Figura 1.30) é determinado pelos vetores \overrightarrow{AB} e \overrightarrow{AD} , sendo M e N pontos médios dos lados DC e AB, respectivamente. Determinar:

a)
$$\overrightarrow{AD} + \overrightarrow{AB}$$

d)
$$\overrightarrow{AN} + \overrightarrow{BC}$$

b)
$$\overrightarrow{BA} + \overrightarrow{DA}$$

e)
$$\overrightarrow{MD} + \overrightarrow{MB}$$

c)
$$\overrightarrow{AC}$$
 - \overrightarrow{BC}

f)
$$\overrightarrow{BM} - \frac{1}{2} \overrightarrow{DC}$$

Figura 1.30

6) Determinar o vetor \vec{x} nas figuras:

- 11) Na Figura 1.35 estão representados os vetores coplanares \vec{u} , \vec{v} e \vec{w} . Indicar, na própria figura, os vetores
 - a) $\vec{a} \cdot \vec{v} = \vec{b} \cdot \vec{w}$ tal que $\vec{u} = \vec{a} \cdot \vec{v} + \vec{b} \cdot \vec{w}$
 - b) $\alpha \vec{u} = \beta \vec{w}$ tal que $\vec{v} = \alpha \vec{u} + \beta \vec{w}$ Teria sido possível realizar este exercício no caso de os vetores \vec{u} , \vec{v} e \vec{w} serem $n\tilde{a}o$ -coplanares?

Figura 1.35

12) Sabendo que o ângulo entre os vetores u e v é de 60°, determinar o ângulo formado pelos vetores

- a) $\vec{u} \cdot \vec{v} = \vec{v}$ b) $-\vec{u} \cdot \vec{v} = \vec{v}$ c) $-\vec{u} \cdot \vec{v} = \vec{v}$ d) $3\vec{u} \cdot \vec{v} = 5\vec{v}$

II - Tratamento Algébrico

- 1) Dados os vetores $\vec{u} = 2\vec{i} 3\vec{j}$, $\vec{v} = \vec{i} \vec{j}$ e $\vec{w} = -2\vec{i} + \vec{j}$, determinar
 - a) $2\vec{u} \vec{v}$

c) $\frac{1}{2}\vec{u} - 2\vec{v} - \vec{w}$

b) $\vec{v} - \vec{u} + 2\vec{w}$

- d) $3\vec{u} \frac{1}{2}\vec{v} \frac{1}{2}\vec{w}$
- 3) Dados os pontos A(-1, 3), B(2, 5), C(3, -1) e O(0, 0), calcular
 - a) $\overrightarrow{OA} \overrightarrow{AB}$

b) \overrightarrow{OC} - \overrightarrow{BC}

- c) $3\overrightarrow{BA} 4\overrightarrow{CB}$
- 5) Dados os pontos A(3, -4) e B(-1, 1) e o vetor $\vec{v} = (-2, 3)$, calcular
 - a) $(B A) + 2\vec{v}$

c) B + 2(B - A)

b) (A - B) - v

- d) $3\vec{v} 2(A B)$
- 16) Dados os vetores $\vec{u} = (1, -1), \vec{v} = (-3, 4) e \vec{w} = (8, -6), calcular$
 - a) lul
- c) lw l
- e) | 2 u w |
- $g)\frac{v}{\overrightarrow{|v|}}$

- b) $|\vec{v}|$ d) $|\vec{u} + \vec{v}|$ f) $|\vec{w} 3\vec{u}|$
- h) $\left| \frac{\vec{u}}{|\vec{u}|} \right|$
- 17) Calcular os valores de a para que o vetor $\vec{u} = (a, -2)$ tenha módulo 4.
- 18) Calcular os valores de a para que o vetor $\vec{u} = (a, \frac{1}{2})$ seja unitário.
- 22) Encontrar o vetor unitário que tenha (I) o mesmo sentido de \vec{v} e (II) sentido contrário a v, nos casos:
 - a) $\vec{v} = -\vec{i} + \vec{j}$

b) $\vec{v} = 3 \vec{i} - \vec{j}$

c) $\vec{v} = (1, \sqrt{3})$

- d) $\vec{v} = (0, 4)$
- 23) Dado o vetor $\vec{v} = (1, -3)$, determinar o vetor paralelo a \vec{v} que tenha:
 - a) sentido contrário ao de v e duas vezes o módulo de v;
 - b) o mesmo sentido de v e módulo 2;
 - c) sentido contrário ao de v e módulo 4.

			_			_	
28)	Calcular a	dietância	dΩ	nonto	$\Delta (3)$	4	-2)
20,	Calculat a	uistancia	uU	POLICO	T N \cup	7,	-2,

a) ao plano xy;

d) ao eixo dos x;

b) ao plano xz;

e) ao eixo dos y;

c) ao plano yz;

f) ao eixo dos z.

51) Determinar o valor de a para que $\vec{u} = (a, -2a, 2a)$ seja um versor.

- 56) Dado o vetor $\vec{v} = (2, -1, -3)$, determinar o vetor paralelo a \vec{v} que tenha
 - a) sentido contrário ao de v e três vezes o módulo de v;
 - b) o mesmo sentido de v e módulo 4;
 - c) sentido contrário ao de v e módulo 5.

Produto Escalar

1) Dados os vetores
$$\vec{u} = (2, -3, -1) e \vec{v} = (1, -1, 4)$$
, calcular

a)
$$2\vec{u} \cdot (-\vec{v})$$

c)
$$(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v})$$

b)
$$(\vec{u} + 3\vec{v}) \cdot (\vec{v} - 2\vec{u})$$

d)
$$(\vec{u} + \vec{v}) \cdot (\vec{v} - \vec{u})$$

3) Dados os pontos A (4, 0, -1), B (2, -2, 1) e C (1, 3, 2) e os vetores $\vec{u} = (2, 1, 1)$ e $\vec{v} = (-1, -2, 3)$, obter o vetor \vec{x} tal que

a)
$$3\vec{x} + 2\vec{v} = \vec{x} + (\overrightarrow{AB} \cdot \vec{u})\vec{v}$$

b)
$$(\overrightarrow{BC} \cdot \overrightarrow{v}) \overrightarrow{x} = (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{v} - 3\overrightarrow{x}$$
.

- 5) Determinar o vetor \vec{v} , sabendo que $|\vec{v}| = 5$, \vec{v} é ortogonal ao eixo Ox, \vec{v} . $\vec{w} = 6$ e $\vec{w} = \vec{i} + 2\vec{j}$.
- 12) Calcular $|\vec{u} + \vec{v}|$, $|\vec{u} \vec{v}|$ e $(\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v})$, sabendo que $|\vec{u}| = 4$, $|\vec{v}| = 3$ e o ângulo entre \vec{u} e \vec{v} é de 60°.
- 20) Encontrar os vetores unitários paralelos ao plano yOz e que são ortogonais ao vetor $\vec{v} = (4, 1 2)$.
- 21) Determinar o vetor \vec{u} tal que $|\vec{u}| = 2$, o ângulo entre \vec{u} e $\vec{v} = (1,-1,0)$ é 45° e \vec{u} é ortogonal a $\vec{w} = (1,1,0)$.
- 22) Seja o vetor $\vec{v} = (2, -1, 1)$. Obter
 - a) um vetor ortogonal a v ;
 - b) um vetor unitário ortogonal a v;
 - c) um vetor de módulo 4 ortogonal a v.
- 23) Sendo $\vec{a} \perp \vec{b}$, $|\vec{a}| = 6 e |\vec{b}| = 8$, calcular $|\vec{a} + \vec{b}| e |\vec{a} \vec{b}|$.

25) Determinar o ângulo entre os vetores

a)
$$\vec{u} = (2, -1, -1) e \vec{v} = (-1, -1, 2).$$

b)
$$\vec{u} = (1, -2, 1) \vec{e} \vec{v} = (-1, 1, 0).$$

- 26) Seja o triângulo de vértices A(3, 4, 4), B(2, -3, 4) e C(6, 0, 4). Determinar o ângulo interno ao vértice B. Qual o ângulo externo ao vértice B?
- 32) Calcular os ângulos diretores do vetor $\vec{v} = (6, -2, 3)$.
- 33) Os ângulos diretores de um vetor a são 45°, 60° e 120° $\vec{a} = 2$. Determinar \vec{a} .
- 40) Dados os vetores $\vec{u} = (3, 0, 1)$ e $\vec{v} = (-2, 1, 2)$, determinar proj \vec{u} e proj \vec{v} .
- 41) Determinar os vetores projeção de $\vec{v} = 4\vec{i} 3\vec{j} + 2\vec{k}$ sobre os eixos cartesianos x. yez.
- 42) Para cada um dos pares de vetores \vec{u} e \vec{v} , encontrar a projeção ortogonal de \vec{v} sobre \vec{u} e decompor \vec{v} como soma de \vec{v}_1 com \vec{v}_2 , sendo \vec{v}_1 // \vec{u} e $\vec{v}_2 \perp \vec{u}$.

a)
$$\vec{u} = (1, 2, -2)$$
 e $\vec{v} = (3, -2, 1)$

b)
$$\vec{u} = (1, 1, 1)$$
 e $\vec{v} = (3, 1, -1)$

- 49) Determinar o valor de a para que seja 45 ° o ângulo entre os vetores $\vec{u} = (2, 1)$ e $\vec{v} = (1, a).$
- 50) Para cada um dos pares de vetores u e v, encontrar o vetor projeção ortogonal de v sobre \vec{u} e decompor \vec{v} como soma de \vec{v}_1 com \vec{v}_2 , sendo \vec{v}_1 // \vec{u} e $\vec{v}_2 \perp \vec{u}$.

a)
$$\vec{u} = (1, 0) e \vec{v} = (4, 3)$$
 c) $\vec{u} = (4, 3) e \vec{v} = (1, 2)$

c)
$$\vec{u} = (4, 3) e \vec{v} = (1, 2)$$

b)
$$\vec{u} = (1, 1) e \vec{v} = (2, 5)$$

III - Produto Vetorial

1) Se
$$\vec{u} = 3\vec{i} - \vec{j} - 2\vec{k}$$
, $\vec{v} = 2\vec{i} + 4\vec{j} - \vec{k}$ e $\vec{w} = -\vec{i} + \vec{k}$, determinar

e)
$$(\vec{u} - \vec{v}) \times \vec{w}$$

a)
$$|\vec{u} \times \vec{u}|$$
 e) $(\vec{u} - \vec{v}) \times \vec{w}$ i) $\vec{u} \times \vec{v} + \vec{u} \times \vec{w}$
b) $(2\vec{v}) \times (3\vec{v})$ f) $(\vec{u} \times \vec{v}) \times \vec{w}$ j) $(\vec{u} \times \vec{v}) \cdot \vec{v}$

b)
$$(2 v) x (3 v)$$

$$f)(\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w}$$

$$j)(\vec{u} \times \vec{v}) \cdot \vec{v}$$

- 9) Determinar um vetor simultaneamente ortogonal aos vetores $\vec{u} + 2\vec{v} = \vec{v} \vec{u}$, sendo $\vec{u} = (-3, 2, 0) \vec{e} = (0, -1, -2).$
- 17) Dados os vetores $\vec{u} = (3, -1, 2) e \vec{v} = (-2, 2, 1)$, calcular
 - a) a área do paralelogramo determinado por u e v;
 - b) a altura do paralelogramo relativa à base definida pelo vetor v.

- 21) Sabendo que $|\vec{u}| = 6$, $|\vec{v}| = 4$ e 30° o ângulo entre \vec{u} e \vec{v} , calcular
 - a) a área do triângulo determinado por u e v;
 - b) a área do paralelogramo determinado por \vec{u} e (\vec{v});
 - c) a área do paralelogramo determinado por $\vec{u} + \vec{v} = \vec{u} \vec{v}$.
- 23) Calcular a distância do ponto P(4, 3, 3) à reta que passa por A(1, 2, -1) e B(3, 1, 1).
- 24) Calcular a área do triângulo ABC e a altura relativa ao lado BC, sendo dados
 - a) A(-4, 1, 1), B(1, 0, 1) e C(0, -1, 3)
 - b) A(4, 2, 1), B(1, 0, 1) e C(1, 2, 0)

Produto Misto

- 1) Dados os vetores $\vec{u} = (3, -1, 1), \vec{v} = (1, 2, 2) e \vec{w} = (2, 0, -3), calcular$ a) $(\vec{u}, \vec{v}, \vec{w})$ b) $(\overline{\mathbf{w}}, \overline{\mathbf{u}}, \overline{\mathbf{v}})$
- 2) Sabendo que $(\vec{u}, \vec{v}, \vec{w}) = -5$, calcular a) $(\vec{w}, \vec{v}, \vec{u})$ b) $(\vec{v}, \vec{u}, \vec{w})$ c) $(\vec{w}, \vec{u}, \vec{v})$ d) $\vec{v} \cdot (\vec{w} \times \vec{u})$
- 3) Sabendo que $\vec{u} \cdot (\vec{v} \times \vec{w}) = 2$, calcular c) $(\overrightarrow{v} \times \overrightarrow{w}) \cdot \overrightarrow{u}$ e) $\overrightarrow{u} \cdot (2\overrightarrow{w} \times \overrightarrow{v})$ d) $(\overrightarrow{u} \times \overrightarrow{w}) \cdot (3\overrightarrow{v})$ f) $(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} \times \overrightarrow{w})$ a) $\vec{\mathbf{u}} \cdot (\vec{\mathbf{w}} \times \vec{\mathbf{v}})$ b) $\vec{\mathbf{v}} \cdot (\vec{\mathbf{w}} \times \vec{\mathbf{u}})$

 - 9) Qual o volume do cubo determinado pelos vetores \vec{i} , \vec{j} e \vec{k} ?
- 10) Um paralelepípedo é determinado pelos vetores $\vec{u} = (3, -1, 4), \vec{v} = (2, 0, 1)$ e $\overrightarrow{w} = (-2, 1, 5)$. Calcular seu volume e a altura relativa à base definida pelos vetores $\overrightarrow{u} = \overrightarrow{v}$.
- 11) Calcular o valor de m para que o volume do paralelepípedo determinado pelos vetores $\vec{v}_1 = (0, -1, 2), \ \vec{v}_2 = (-4, 2, -1) \ \vec{v}_3 = (3, m, -2) \ \text{seja igual a } 33.$ Calcular a altura deste paralelepípedo relativa à base definida por $\overset{\rightarrow}{v_1} \vec{e} \overset{\rightarrow}{v_2}$.
- 19) Sendo |u| = 3, |v| = 4 e 120° o ângulo entre os vetores u e v, calcular c) o volume do paralelepípedo determinado a) $|\vec{u} + \vec{v}|$ por u x v, u e v. b) $|\vec{u} \times (\vec{v} - \vec{u})|$