Lezione 9

Scelta intertemporale

Scelta intertemporale

- Di solito il reddito arriva ad intervalli, per esempio lo stipendio mensile.
- Quindi si pone il problema di decidere se (e quanto) risparmiare in un periodo per consumare più tardi.
- Oppure si può decidere di prendere a prestito risorse da periodi futuri per finanziare il consumo attuale.

Valori presenti e futuri

- · Iniziamo con un esempio semplice.
- Consideriamo due periodi: 1 e 2.
- Sia r il tasso di interesse relativo ad un periodo.

Valore futuro

- Per es., se r = 0,1, €100 risparmiate all'inizio del periodo 1 diventano €110 all'inizio del periodo 2.
- Il valore che il prossimo periodo avrà €1 risparmiato oggi è il valore futuro di quell'euro.

Valore futuro

 Dato il tasso di interesse r il valore futuro fra un periodo di €1 è

$$FV = 1 + r$$
.

 Dato un tasso di interesse r il valore futuro fra un periodo di €m è

$$FV = m(1+r).$$

Valore presente

- Supponiamo che si possa pagare oggi per ottenere €1 all'inizio del prossimo periodo.
- Quanto si dovrebbe pagare al max?
- **€**1?
- No. Se investissimo €1 oggi all'inizio del prossimo periodo avremmo €(1+r) > €1, quindi pagare €1 oggi per €1 il prossimo periodo non è un buon affare.

Valore presente

- D: Quanto si deve risparmiare oggi per avere €1 il prossimo periodo?
- R: €m risparmiati oggi diventano €m(1+r) all'inizio del prossimo periodo, quindi si vuole un m tale che

m(1+r) = 1Quindi, m = 1/(1+r), il valore attuale di $\in 1$ all'inizio del prossimo periodo.

Valore presente

• Quindi il valore attuale di €1 disponibile all'inizio del prossimo periodo è

$$\mathsf{PV} = \frac{1}{1+r}$$

• E il valore attuale di €m disponibile all'inizio del prossimo periodo è

$$PV = \frac{m}{1+r}.$$

Valore presente

• Per es. se r = 0,1 il massimo che si dovrebbe pagare oggi per avere €1 il prossimo periodo è

$$PV = \frac{1}{1+0.1} = 0.91$$

Il problema di scelta intertemporale

- Siano m₁ e m₂ i redditi ricevuti rispettivamente nel periodo 1 e 2.
- Siano c₁ e c₂ i consumi rispettivamente nel periodo 1 e 2.
- Siano p₁ e p₂ i prezzi del bene di consumo nel periodo 1 e 2.

Il problema di scelta intertemporale

- Il problema di scelta intertemporale:
 Dati i redditi m₁ e m₂, e dati i prezzi dei
 beni di consumo p₁ e p₂, quale è il miglior
 paniere di consumo intertemporale (c₁,
 c₂)?
- Per rispondere dobbiamo conoscere:
 - il vincolo di bilancio intertemporale
 - le preferenze intertemporali di consumo

Vincolo di bilancio intertemporale

• Per cominciare ignoriamo gli effetti dei prezzi assumendo che:

$$p_1 = p_2 = \text{ } \text{ } \text{ } 1.$$

Vincolo di bilancio intertemporale

- Supponiamo che il consumatore scelga di non risparmiare, nè di prendere a prestito.
- D:Cosa sarà consumato nel periodo 1?
- R: c₁ = m₁.
- D:Cosa sarà consumato nel periodo 2?
- A: $c_2 = m_2$.

Vincolo di bilancio intertemporale Quindi $(c_1, c_2) = (m_1, m_2)$ è il paniere di consumo se il consumatore sceglie di non risparmiare o prendere a prestito m_2 m_1 c_1

Vincolo di bilancio intertemporale

 Ora supponiamo che il consumatore non spenda nulla in consumo nel periodo 1; cioè che c₁ = 0 e che il consumatore risparmi

$$s_1 = m_1$$
.

- Il tasso di interesse è r.
- · Quanto consumerà nel periodo 2?

Vincolo di bilancio intertemporale

- Il reddito del periodo 2 è m₂.
- Il risparmio più interessi del periodo 1 ammonta a (1 + r)m₁.
- Quindi il reddito totale disponibile nel period 2 è m₂ + (1 + r)m₁.
- Quindi il consumo nel periodo 2 è

$$c_2 = m_2 + (1+r)m_1$$

Vincolo di bilancio intertemporale

- Supponiamo che il consumatore spenda tutto ciò che può per il consumo del periodo 1 (c₂ = 0).
- Quant'è il max che può prendere a prestito nel periodo 1 dato il suo reddito nel periodo 2 di €m₂?
- Sia b₁ l'ammontare preso a prestito nel periodo 1.

Vincolo di bilancio intertemporale

- Solo €m₂ saranno disponibili nel periodo 2 per restituire €b₁ presi a prestito nel periodo 1.
- Quindi $b_1(1 + r) = m_2$.
- Cioè $b_1 = m_2 / (1 + r)$.
- Quindi il max consumo possibile nel periodo 1 è

$$\mathbf{c}_1 = \mathbf{m}_1 + \frac{\mathbf{m}_2}{1+\mathbf{r}}$$

Vincolo di bilancio intertemporale

 Supponiamo che c₁ unità siano consumate nel periodo 1. Questo costa €c₁ e fa risparmiare m₁- c₁. Il consumo nel periodo 2 sarà:

$$c_2 = m_2 + (1+r)(m_1 - c_1)$$

Vincolo di bilancio intertemporale

 Supponiamo che c₁ unità siano consumate nel periodo 1. Questo costa €c₁ e fa risparmiare m₁- c₁. Il consumo nel periodo 2 sarà:

$$c_2 = m_2 + (1+r)(m_1 - c_1)$$
 che è
$$c_2 = -(1+r)c_1 + m_2 + (1+r)m_1.$$
 pendenza intercetta

Vincolo di bilancio intertemporale $(1+r)c_1+c_2=(1+r)m_1+m_2$

è il vincolo di bilancio in termini di valore futuro dato che tutti i termini sono portati al periodo 2. Una forma equivalente è

$$c_1 + \frac{c_2}{1+r} = m_1 + \frac{m_2}{1+r}$$

che rappresenta il vincolo di bilancio in termini di valore attuale dal momento che tutti i termini sono in valori attuali.

Vincolo di bilancio intertemporale

- Ora aggiungiamo i prezzi p₁ e p₂ per il consumo nei periodi 1 e 2.
- · Come cambia il vincolo di bilancio?

Scelta intertemporale

- Data la sua dotazione (m₁,m₂) e i prezzi p₁, p₂ quale paniere di consumo intertemporale (c_1^*,c_2^*) sarà scelto dal consumatore?
- · La max spesa possibile nel periodo 2 è $m_2 + (1+r)m_1$
- · quindi il max consumo possibile nel periodo 2 è $c_2 = \frac{m_2 + (1+r)m_1}{}$.

Scelta intertemporale

· Allo stesso modo, la max spesa possibile nel periodo 1 è

$$m_1 + \frac{m_2}{1 + r}$$

 $m_1 + \frac{m_2}{1+r} \label{eq:m1}$ quindi il max consumo possibile nel periodo 1 è

$$c_1 = \frac{m_1 + m_2 / (1 + r)}{p_1}.$$

Scelta intertemporale

 Infine, se c₁ unità sono consumate nel periodo 1 il consumatore spende p₁c₁ in 1, lasciando m₁ - p₁c₁ come risparmio del period 1. Il reddito disponibile nel periodo 2 sarà

$$p_2c_2 = m_2 + (1+r)(m_1 - p_1c_1).$$

Scelta intertemporale

$$\begin{aligned} \textbf{p}_2\textbf{c}_2 &= \textbf{m}_2 + (1+\textbf{r})(\textbf{m}_1 - \textbf{p}_1\textbf{c}_1)\\ \text{che diventa} \end{aligned}$$

$$(1+r)p_1c_1 + p_2c_2 = (1+r)m_1 + m_2$$
.

Questo è il vincolo di bilancio in termini di valore futuro dal momento che tutti i termini sono espressi in valori del periodo 2. Si può anche scrivere in termini di valore attuale

$$p_1c_1 + \frac{p_2}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$

Inflazione

• Sia π il tasso di inflazione, dove

$$p_1(1+\pi) = p_2.$$

· Per esempio,

 $\pi\,$ = 0,2 significa 20% di inflazione e

 π = 1 significa 100% di inflazione.

Inflazione

 Possiamo semplificare l'analisi assumendo che p₁=1 e quindi

$$p_2 = 1 + \pi$$
.

 Possiamo allora riscrivere il vincolo di bilancio

$$p_1c_1 + \frac{p_2}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$

come

$$c_1 + \frac{1+\pi}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$

Inflazione

$$c_1 + \frac{1+\pi}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$

diventa

$$c_2 = -\frac{1+r}{1+\pi}c_1 + \frac{1}{(1+\pi)}(m_1(1+r) + m_2)$$

quindi la pendenza del vincolo di bilancio intertemporale è $-\frac{1+r}{2}$.

Inflazione

- Quando non c'è inflazione (p₁=p₂=1) la pendenza è -(1+r).
- Se c'è inflazione, la pendenza del vincolo di bilancio è -(1+r)/(1+ π).
 Questo può essere scritto come

$$-\left(1+\rho\right)=-\frac{1+\mathsf{r}}{1+\pi}$$

 ρ è detto tasso di interesse reale.

Tasso di interesse reale

$$(1+\rho) = \frac{1+r}{1+\pi}$$

Si ottiene

$$\rho = \frac{\mathbf{r} - \pi}{1 + \pi}.$$

Per bassi tassi di inflazione ($\pi \approx 0$), $\rho \approx r - \pi$. Per alti tassi di inflazione l'approssimazione è meno buona.

Tasso di interesse reale

$$(1+\rho) = \frac{1+r}{1+\pi}$$

Rappresenta la quantità di consumo addizionale che si può ottenere nel periodo 2 rinunciando ad una parte del consumo del periodo 1

Statica comparata

· La pendenza del vincolo di bilancio è

$$-(1+\rho)=-\frac{1+r}{1+\pi}.$$

• La retta si appiattisce se il tasso di interesse r cala o se l'inflazione π aumenta (entrambi diminuiscono il tasso di interesse reale).

Statica comparata

Statica comparata

Equazione di Slutsky e scelta intertemporale

- Come nel caso di una variazione di prezzo, anche in seguito ad una variazione del tasso di interesse reale vi sarà un effetto di reddito ed un effetto di sostituzione.
- Se aumenta il tasso di interesse l'effetto di sostituzione determina un minor consumo nel periodo corrente.

Equazione di Slutsky e scelta intertemporale

- L'effetto di reddito dipende dalla condizione di partenza.
- Se l'individuo era un risparmiatore, continuerà a risparmiare (preferenze rivelate) e l'effetto reddito è positivo.
- Se prendeva a prestito dovrà pagare più interessi quindi dovrà consumare meno: effetto reddito negativo.