Is BIBO unstable if there exists a bounded input uct) s.t. yet) is unbounded ("blow-unit of the pole o	ial Stability	3							
Is BIBO unstable if there exists a bounded input uct) s.t. yet) is unbounded ("blow-up Notes: By uct) bounded we mean there exist (3) M >0 s.t. lu(t) 4 M. Vt >0. Need a test that involves the model of LTI System i.e. TF model denoted by G(s) THM 2: A LTI system with TF G(s) is BIBO stable if and only if all poles of G(s) are in OLHF system is BIBO unstable if G(s) has at least one pole in ORHP or on j-axis. OLHP JIMO PRE(S) BIBO stable Example: LC circuit G(s) = 3*+LC Y(s) = G(s) : U(s) TAIL Y(s) = G(s) - U(s) = 1/LC Poles of G(s)	Bounded In	put Bounde	d Output S	Stability					
Need a test that involves the model of LTI System. i.e. TF model denoted by Gis) THM 2: A LTI System with TF Gis) is BIBO stable if and only if all poles of Gis) are in OLHF system is BIBO unstable if Gis) has at least one pole in ORHF or on j-axis. OLHF Amis) Ress)				J					
Is BIBO unstable if there exists a bounded input uct) s.t. yet) is unbounded c"blow-up Notes: By uct) bounded we mean there exist (3) M 70 s.t. [uct) 4 M. Vt 80. Need a test that involves the model of LTI System i.e. TF model denoted by GLS) THM 2: A LTI system with TF G(s) is BIBO stable if and only if all poles of G(s) are in OLHF system is BIBO unstable if G(s) has at least one pole in ORHP or on j-onis. OLHP Inds) *** *** *** ** *** ** ** **	D. A 1.77	a	DIDD dable .	Con. Low	Jad	us also sua			The
Need a test that involves the model of LTI System. i.e. TF model denoted by G(5) THM 2: A LTI system with TF G(5) is BIBO stable: if and only if all poles of G(5) are in OLMP System is BIBO unstable if G(5) has at least one pole in ORMP or on j-onis. OLMP In(5) Re(5) RE(5) RE(5) RE(6) RE(5) PRE(5) L C - 9 poles of G: p. 2 = 2 1/LC Y(2) = G(5) · U(5) PRE(5) RE(6) PRE(6) PRE(7) In(1) PRE(8) PRE(9) PRE(9) This is BIBO unstable. L C circuit is BIBO unstable. In(1) In(1) PRE(1) PRE(2) PRE(3) PRE(4) PRE(5) PRE(5) PRE(6) PRE(6) PRE(7) PRE(8) PRE(8) PRE(8) PRE(8) PRE(9) PRE(9) PRE(9) PRE(1)	DET: A CIT	system is	RTRO SLODIE .	t any bound	ded input i	uct), the out	put yeth is b	ounaea.	. Ine
Need a test that involves the model of LTI System. i.e. TF model denoted by Gis) THM 2: A LTI System with TF G(s) is BIBO stable if and only if all poles of G(s) are in OLHP system is BIBO unstable if G(s) has at least one pole in ORHP or on j-anis. OLHP a Imis) Re(s) **Re(s) **Re(s) **Re(s) **Re(s) **Re(s) **Poles of G: p., 2 = 2 Vic Re(s) Consider U(s) = 3 + 1/10 U(s) = sin(40 t) + 1/10 U(s) **The system is BIBO unstable. Consider U(s) = 3 + 1/10 U(s) = sin(40 t) + 1/10 U(s) **The system is BIBO unstable. **Re(s)									
Need a test that involves the model of LTI System. i.e. TF model denoted by Gis) THM 2: A LTI System with TF G(s) is BIBO stable if and only if all poles of G(s) are in OLHP system is BIBO unstable if G(s) has at least one pole in ORHP or on j-anis. OLHP a Imis) Re(s) **Re(s) **Re(s) **Re(s) **Re(s) **Re(s) **Poles of G: p., 2 = 2 Vic Re(s) Consider U(s) = 3 + 1/10 U(s) = sin(40 t) + 1/10 U(s) **The system is BIBO unstable. Consider U(s) = 3 + 1/10 U(s) = sin(40 t) + 1/10 U(s) **The system is BIBO unstable. **Re(s)	is BLB	.O unstable if	there exists	s a bounde	ed input uc	t) s.t. 4(t)	is unbounde	ed l"ble	ow-us
Need a test that involves the model of LTI System. i.e. TF model denoted by Gis) THM 2: A LTI system with TF Gis) is BIBO stable: if and only if all poles of Gis) are in OLMP System is BIBO unstable if Gis) has at least one pole in ORMP or on j-oxis. OLMP Indis) Reis) Reis) Reis) Press) Example: LC circuit Gis) = \$\frac{1}{5}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}									
Need a test that involves the model of LTI System. i.e. TF model denoted by Gis) THM 2: A LTI system with TF Giss is BIBO stable: if and only if all poles of Giss are in OLHP System is BIBO unstable if Giss has at least one pole in ORHP or on j-axis. OLHP Imiss Reiss Reiss Reiss Poles of Giss = 3*+LC Giss = 3*+LC Giss = 3*+LC Giss = 3*+LC Yies = Giss : Uies By THM 2: LC circuit is BIBO unstable. Consider Uies = 3*+LC Yies = Giss : Uies Initial Poles of Uies double properties The complete RLC circuit is BIBO unstable. Enample: RLC circuit is BIBO unstable. Enample: RLC circuit is BIBO unstable. Enample: RLC circuit is BIBO unstable. By THM 2: the system is BIBO stable Poles of Uies	Marco Du			thoma au'at	(7) 44 50		, V+ - A		
Need a test that involves the model of LTI System. i.e. TF model denoted by G(s) THM 2: A LTI system with TF G(s) is BIBO stable: if and only if all poles of G(s) are in OLHP system is BIBO unstable: if G(s) has at least one pole in ORHP or on j-onis. OLHP IN(s) Re(s) Re(s) DIBO stable Example: LC circuit G(s) = 3-1/LC Y(s) = G(s) - U(s) PRE(s) PRE(s) PRE(s) Y(s) = G(s) - U(s) PRE(s) PRE(s) Y(s) = G(s) - U(s) PRE(s) Y(s) = G(s) - U(s) PRE(s) Y(s) = G(s) - U(s) Y(s) = G(s) - U(s) PRE(s) Y(s) = G(s) - U(s) Poles of G(s) Poles of G(s) Poles of G(s) PRE(s) PRE(s) PRE(s)	Notes : by	u(t) Dounded	we mean	mere exist	(3) M 70 3	S.T. IUCTII = P	4, Vt 30.		
Need a test that involves the model of LTI System. i.e. TF model denoted by G(s) THM 2: A LTI system with TF G(s) is BIBO stable if and only if all poles of G(s) are in OLHP system is BIBO unstable if G(s) has at least one pole in ORHP or on j-onis. OLHP IN(s) Re(s) RE(s) RE(s) PRE(s) PRE(s) PRE(s) PRE(s) In(III Consider U(s) = \$\frac{1}{2}\text{-1/LC} \text					' /				
Need a test that involves the model of LTI System. i.e. TF model denoted by G(s) THM 2: A LTI system with TF G(s) is BIBO stable: if and only if all poles of G(s) are in OLHP system is BIBO unstable: if G(s) has at least one pole in ORHP or on j-oxis. OLHP IN(s) Re(s) RE(s) RE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) Y(s) = G(s) · U(s) PRE(s) PRE(s) Y(s) = G(s) · U(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s)		$\wedge \wedge$							
Need a test that involves the model of LTI System. i.e. TF model denoted by G(s) THM 2: A LTI system with TF G(s) is BIBO stable: if and only if all poles of G(s) are in OLHP system is BIBO unstable: if G(s) has at least one pole in ORHP or on j-oxis. OLHP IN(s) Re(s) RE(s) RE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) Y(s) = G(s) · U(s) PRE(s) PRE(s) Y(s) = G(s) · U(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s)		1///							
Need a test that involves the model of LTI System. i.e. TF model denoted by G(s) THM 2: A LTI system with TF G(s) is BIBO stable: if and only if all poles of G(s) are in OLHP system is BIBO unstable: if G(s) has at least one pole in ORHP or on j-oxis. OLHP IN(s) Re(s) RE(s) RE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) Y(s) = G(s) · U(s) PRE(s) PRE(s) Y(s) = G(s) · U(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s) PRE(s)		VV			······································				
THM 2: A LTI system with TF G(S) is BIBO stable if and only if all poles of G(S) are in OLHP system is BIBO unstable if G(S) has at least one pole in ORHP or on j-axis. DLHP Im(S) Ress) Ress) Ress) PROMPIE: LC circuit G(S) = \$\frac{1}{16\text{LC}}\$ Yes = G(S) \(U(S) \) Ress) PROMPIE: LC circuit is BIBO unstable. In(S) Ress) Poles of G: p.,2 = \$\frac{1}{17\text{LC}}\$ \text{Poles of U(S)} = \frac{1}{17\text{LC}}\$ \text{Poles of U(S)} P		STADIE			MISTADIE				
THM 2: A LTI system with TF G(S) is BIBO stable if and only if all poles of G(S) are in OLHP system is BIBO unstable if G(S) has at least one pole in ORHP or on j-onis. DLHP Im(S) RetS) RetS) RetS) EXAMPle: LC circuit \$\frac{1}{2} \text{ poles of G} \text{ p.12.2.2.1} \text{ poles of U(S)} \text{ another poles of U(S) = \$\frac{1}{2}\text{ poles of U(S)} \text{ poles of U(S) = \$\frac{1}{2}\text{ poles of U(S)} \text{ poles of G(S)} \text{ poles of U(S)} poles of U(S)									
THM 2: A LTI system with TF G(S) is BIBO stable if and only if all poles of G(S) are in OLHP system is BIBO unstable if G(S) has at least one pole in ORHP or on j-axis. DLHP Im(S) Ress) Ress) Ress) PROMPIE: LC circuit G(S) = \$\frac{1}{16\text{LC}}\$ Yes = G(S) \(U(S) \) Ress) PROMPIE: LC circuit is BIBO unstable. In(S) Ress) Poles of G: p.,2 = \$\frac{1}{17\text{LC}}\$ \text{Poles of U(S)} = \frac{1}{17\text{LC}}\$ \text{Poles of U(S)} P	Need a tes	t that invo	ives the mod	lel of LTI S	ustem. i.e. 7	if model de	noted by Gus	5)	
system is BIBO unstable if G(s) has at least one pole in ORHP or on j-axis. Into orthorized by the system is BIBO stable Example: LC circuit G(s) = \$\frac{1}{2} \frac{1}{2} \frac{1}{2					3		J		
system is BIBO unstable if G(s) has at least one pole in ORHP or on J-oxis. DLHP Im(s) Re(s) Re(s) Re(s) Re(s) Property of G(s) = 3*+LC Re(s) Property of G(s) = 3*+LC Consider U(s) = 3*+LC U(t) = sin(\(\frac{1}{1\text{LC}}\) to \(\frac{1}{1\text{LC}}\) to \(\frac{1}{1\tex				5-55					
Resonable: LC circuit $ \begin{array}{cccccccccccccccccccccccccccccccccc$	THM 2: A L	11 system wi	th It GCD is	s RIBO stab	le it and o	nly it all p	oles of G(s)	are in	OLHP
Resonable: LC circuit $ \begin{array}{cccccccccccccccccccccccccccccccccc$									
Resonable: LC circuit $ \begin{array}{cccccccccccccccccccccccccccccccccc$	suster	n is RIBO W	nstable if Go	s has at le	ast one or	ole in ORHP	or on i-axis		
Resonable: LC circuit $ \begin{array}{cccccccccccccccccccccccccccccccccc$	3	OLHP To			Im(s) ORL	IP	J. 07, J C		
Example: LC circuit G(s) = 3*+LC Y(s) = G(s) · U(s) poles of G: p.,2 = 1/LC Consider U(s) = 3*+1/LC V(s) = G(s) · U(s) Poles of U(s) · U(s) Poles of U(s) · U(s) Ress By THM 2: LC circuit is BIBO unstable. Int(s) Poles of U(s) · U(s) Ress Ress By THM 2: LC circuit is BIBO unstable. Int(s) Poles of U(s) · U(s) Ress Ress Poles of U(s) · U(s) Ress Ress Ress Poles of U(s) · U(s) Ress			2)						
Example: LC circuit ### G(s) = \$\frac{1}{16}C\$ ### G(s)						Detex			
Example: RLC circuit C		* >	Re(S)		**************************************	KEG)			
Example: LC circuit $ \begin{array}{c} $			4 0		BTDD unetob	40			
$G(S) = \frac{1}{S^2 + LC} \qquad Y(S) = G(S) \cdot U(S)$ $V(S) = G(S) \cdot U(S)$ $V(S) = \frac{1}{S^2 + 1} = \frac{1}{LC} \qquad Y(S) = \frac{1}{LC} \qquad $		BLO SIU			PTPO mistor	AL .			
$G(S) = \frac{1}{S^2 + LC} \qquad Y(S) = G(S) \cdot U(S)$ $V(S) = G(S) \cdot U(S)$ $V(S) = \frac{1}{S^2 + 1} = \frac{1}{LC} \qquad Y(S) = \frac{1}{LC} \qquad $									
$u \stackrel{\text{(2)}}{=} C \stackrel{\text{(3)}}{=} y$ $\Rightarrow \text{ poles of } G: p_{1/2} = \pm j\sqrt{LC}$ $\text{Ress.} \text{By Thm 2: LC circuit is BIBO unstable.}$ $\text{Consider } U(s) = \frac{1/(LC)}{s^2 + 1/LC} \stackrel{\text{(4)}}{\Rightarrow} u(t) = \sin(\frac{1}{4LC}t) \cdot \text{fl(t)}$ $\text{Y(s)} = G(s) \cdot U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^2 + 1/LC)^2} \stackrel{\text{(4)}}{\Rightarrow} u(t) = t \cdot \sin(\frac{1}{4LC}t) \cdot \text{fl(t)}$ $\text{Example: RLC circuit}}$ $\text{Example: RLC circuit}$ $\text{G(s)} = \frac{1/LC}{s^2 + (R/L)s + 1/LC} \text{poles: p_{1/2} are in OLHP for any R.L.C.} \Rightarrow \text{poles of U(s)}$ $\text{By Thm 2: the system is BIBO stable}$ poles of U(s) Poles of U(s) Poles of U(s)	Example: L	C circuit							
$u \stackrel{\text{(2)}}{=} C \stackrel{\text{(3)}}{=} y$ $\Rightarrow \text{ poles of } G: p_{1/2} = \pm j\sqrt{LC}$ $\text{Ress.} \text{By Thm 2: LC circuit is BIBO unstable.}$ $\text{Consider } U(s) = \frac{1/(LC)}{s^2 + 1/LC} \stackrel{\text{(4)}}{\Rightarrow} u(t) = \sin(\frac{1}{4LC}t) \cdot \text{fl(t)}$ $\text{Y(s)} = G(s) \cdot U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^2 + 1/LC)^2} \stackrel{\text{(4)}}{\Rightarrow} u(t) = t \cdot \sin(\frac{1}{4LC}t) \cdot \text{fl(t)}$ $\text{Example: RLC circuit}}$ $\text{Example: RLC circuit}$ $\text{G(s)} = \frac{1/LC}{s^2 + (R/L)s + 1/LC} \text{poles: p_{1/2} are in OLHP for any R.L.C.} \Rightarrow \text{poles of U(s)}$ $\text{By Thm 2: the system is BIBO stable}$ poles of U(s) Poles of U(s) Poles of U(s)			<u>.</u>						
$u \stackrel{\text{(2)}}{=} C \stackrel{\text{(3)}}{=} y$ $\Rightarrow \text{ poles of } G: p_{1/2} = \pm j\sqrt{LC}$ $\text{Ress.} \text{By Thm 2: LC circuit is BIBO unstable.}$ $\text{Consider } U(s) = \frac{1/(LC)}{s^2 + 1/LC} \stackrel{\text{(4)}}{\Rightarrow} u(t) = \sin(\frac{1}{4LC}t) \cdot \text{fl(t)}$ $\text{Y(s)} = G(s) \cdot U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^2 + 1/LC)^2} \stackrel{\text{(4)}}{\Rightarrow} u(t) = t \cdot \sin(\frac{1}{4LC}t) \cdot \text{fl(t)}$ $\text{Example: RLC circuit}}$ $\text{Example: RLC circuit}$ $\text{G(s)} = \frac{1/LC}{s^2 + (R/L)s + 1/LC} \text{poles: p_{1/2} are in OLHP for any R.L.C.} \Rightarrow \text{poles of U(s)}$ $\text{By Thm 2: the system is BIBO stable}$ poles of U(s) Poles of U(s) Poles of U(s)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n	$\frac{\overline{LC}}{e^2 + \overline{LC}}$	Y(8) = G	es al lees				
Consider U(s) = \(\frac{1}{\lambda \cdot			30/ - 3 TLL	1,0,0,0	_ Im(s)				
Consider $U(s) = \frac{1/\sqrt{LC}}{s^2 + 1/LC}$ $U(t) = \sin(\sqrt{LC} t) \cdot 1/(Ct)$ $U(t) = \cos(\sqrt{LC} t)$	4(2)	CT-8			Reiss				
Consider $U(s) = \frac{1/\sqrt{LC}}{s^2 + 1/LC}$ $U(t) = \sin(\sqrt{LC} t) \cdot 1/(Ct)$ $U(t) = \cos(\sqrt{LC} t)$			poles of G:	>2: ±j\tc	1	By THM2: LC	circuit is BIBO	unstable	
$Y(s) = G_{R}(s) \cdot U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = G_{R}(s) \cdot U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = G_{R}(s) \cdot U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = 1/($									
$Y(s) = G_{R}(s) \cdot U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = G_{R}(s) \cdot U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = G_{R}(s) \cdot U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = \frac{1/(LC)^{\frac{1}{2}}}{(s^{2}+1/LC)^{2}} \xrightarrow{f} y(t) = t \cdot sin(\sqrt{LC} \ t) \ 11(t)$ $U(s) = 1/($		1/10		4	-{\/\/	>t	y poles	of Uwid	ouble p
Y(s) = (x(s)·U(s) = \frac{1/(LC)^2}{(s^2+1/LC)^2} \frac{1}{y(t)} = t \cdot sin(\frac{1}{LC} t) \frac{1}{U}(t) \text{unbounded} \text{poles of G(s)} \text{Poles of G(s)} \text{Poles of U(s)} \text{Poles of U(s)} \text{Poles of U(s)} \text{Poles of U(s)} \text{Poles of U(s)} \text{Poles of U(s)} \q	Conside	T U(S)= 5-+1/	LC - U(4):	= BIU(4FC £). IFC4				C	# 均低
Example: RLC circuit ### C			1/4(2)2 1-1					→Reus)	
Example: RLC circuit ### C		Y(s) = G(s) · U(s) =	(S'+1/LC)2 - u	(t)= t-sin(([C t)	II(t)	inbounded	* poles	of Gus	
G(s) = 5°+1R/LIS+1/LC poles: p _{1/2} are in OLHP for any R.L.C >0 In(s) By THM 2: the system is BIBO stable Recs)									
G(s) = 5°+1R/LIS+1/LC poles: p _{1/2} are in OLHP for any R.L.C >0 In(s) By THM 2: the system is BIBO stable Recs)									
By THM 2: the system is BIBO stable ** poles of U(s) Re(s)	Example: RLC	eircuit							
By THM 2: the system is BIBO stable ** poles of U(s) Re(s)									
By THM 2: the system is BIBO stable ** poles of U(s) Re(s)	u 🖭 🖰	T-9 Grass	ALDU ISALAC D	oles. D Ove	n OI HD for o	DICSD			
⇒By THM 2: the system is BIBO stable Poles of Uss >Recs)] (4.7-3	**************************************	oles: pliz are i	N OLAP IOF C	Inco			
Recs)						*			
Re(S)		Dy THE	12: the system	is BIBO stable		× * pok	es of U(s)		
							→ Re(S)		
K: dissipates energy, stablize the system poles of G(s)						×			
		R: dissip	octes energy, s	tablize the sy	stem	# * pole	is of GC)		