2018年《概率论与数理统计》试卷(理工)

一、填空题(每小题3分,本题满分21分)

1. $\begin{tabular}{ll} \begin{tabular}{ll} \$

2. 设每次试验成功的概率为 p(0 ,则在三次独立重复试验中至少成功一次的概率为()。

(A) p^3 (B) $1-p^3$ (C) $(1-p)^3$ (D) $1-(1-p)^3$

3. 若随机变量 $X \sim N(1,1)$,其概率密度函数为 f(x),则下列结论正确的是()。

(A) $P\{X \le 0\} = P\{X \ge 0\} = 0.5$ (B) $f(x) = f(-x), x \in (-\infty, +\infty)$

(C) $P\{X \le 1\} = P\{X \ge 1\} = 0.5$ (D) $F(x) = 1 - F(-x), x \in (-\infty, +\infty)$

4. 设随机变量 $X \sim U(0,4)$,则 $P\{D(X) < X < E(X)\} =$ 。

5. 设随机变量 X, Y 独立同分布且方差都大于 0, 令 $\xi = X + aY$, $\eta = X + bY$, 其中

a, b 为常数且 $ab \neq 0$,则当 ξ, η 不相关时,有 ()。

(A) ab = 1 (B) ab = -1 (C) a = b (D) a, b 为任意非零常数

6. 设 X₁, X₂,..., X₂₀₁₉ 为来自标准正态总体的简单随机样本,已知统计量

 $Y = \frac{cX_{2019}}{\sqrt{X_1^2 + X_2^2 + \dots + X_{2019}^2}}$ 服从 t 分布,则常数 c =_______。

7. 设两独立样本 X_1, X_2, \dots, X_{n_1} 和 Y_1, Y_2, \dots, Y_{n_2} 分别来自总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$,

 $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$ ~_____。(写出分布和参数)

二、(本题满分 10 分) 有两个袋子,甲袋中有 2 只白球, 1 只黑球; 乙袋中有 1 只白 球,2 只黑球。从甲袋中任取一只球放入乙袋,再从乙袋中任取一只球。(1) 求从乙 袋中取出的球为白球的概率;(2)若发现从乙袋中取出的是白球,问从甲袋中取出放 入乙袋的球,黑、白哪种颜色可能性大?

三、(本题满分 13 分)设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} kx^{\alpha}, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$, 其中 k、 α 为常数且 k > 0 , $\alpha > 0$, 又已知 E(X) = 0.75 。(1) 求常数 k 和 α ; (2) 求 X 的分布函 数 F(x); (3) 求概率 $P\{\frac{1}{2} < X < 1\}$; (4) 求 D(X) 。

四、(本题满分 13 分)设二维随机变量 (X,Y)的联合概率密度函数为 $f(x,y) = \begin{cases} 6x, & 0 \le x \le y \le 1 \\ 0, & \text{其他} \end{cases}$ 。(1)求X和Y的边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$;(2)问X与Y是否独立?为什么?(3)求X与Y的相关系数 ρ_{XY} 。

五、(本题满分 8 分) 设 X、Y 是相互独立的随机变量,密度函数分别为 $f_X(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{其他} \end{cases}, \ f_Y(y) = \begin{cases} \mathrm{e}^{-y}, & y > 0 \\ 0, & y \le 0 \end{cases}, \ \bar{x} \ Z = X + Y \text{ 的密度函数}.$

六、(本题满分 13 分) 设 $X_1, X_2, ..., X_n$ 为来自总体 X 的一个简单随机样本, $x_1, x_2, ..., x_n$ 为对应的样本值。

- (1)若总体 $X\sim P(\lambda)$,其分布律为 $P\{X=k\}=\frac{\lambda^k\mathrm{e}^{-\lambda}}{k!}$, $k=0,1,2,\cdots$, $\lambda>0$ 为未知参数。 求参数 λ 的极大似然估计量 $\hat{\lambda}_{MLE}$,并判断 $\hat{\lambda}_{MLE}$ 是否为 λ 的无偏估计。
- (2) 若总体 X 的概率密度函数为 $f(x) = \begin{cases} \frac{6x}{\theta^3}(\theta-x), & 0 < x < \theta \\ 0, & \text{其中} \theta > 0 未知。求参数 \\ \theta$ 的矩估计量 $\hat{\theta}_M$ 。

七、(本题满分 14 分) 某高校 2017 级《概率论与数理统计》期末考试成绩服从正态分布 $N(\mu, \sigma^2)$,为了评估考试成绩,现从所有考生中抽取了 31 名考生,算得他们的平均

成绩为 73 分,标准差为 8 分。(1) 求总体方差 σ^2 的置信度为 95%的双侧置信区间。

(2) 某位老师说这次考试的年级平均成绩为 75 分, 你赞同这位老师的观点吗? ($\alpha = 0.05$)

(参考数据: $z_{0.05}=1.645$, $z_{0.025}=1.960$, $t_{0.025}(30)=2.0423$, $t_{0.05}(30)=1.6973$,

 $t_{0.025}(31) = 2.0395$, $t_{0.05}(31) = 1.6955$, $\chi^2_{0.025}(30) = 46.979$, $\chi^2_{0.025}(31) = 48.232$, $\chi^2_{0.975}(30) = 16.791$, $\chi^2_{0.975}(31) = 17.539$, $\sqrt{30} = 5.477$, $\sqrt{31} = 5.568$)

八、(本题满分 8 分) 设随机变量 X 的概率密度函数为 $f_X(x) = \begin{cases} \frac{1}{9}x^2, & 0 < x < 3 \\ 0, & x \le 0 \end{cases}$,令 $Y = \begin{cases} 2, & X \le 1 \\ X, & 1 < X < 2 \text{ 。求(1)} Y$ 的分布函数;(2) $P\{X \le Y\}$ 。 1, $X \ge 2$