

MATHEMATICS EXTENSION 2

TOPIC 5: VOLUMES

Exercise vol5_p002

Find the volume ${\cal V}$ of an ellipsoid formed by the rotation of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 about the X-axis.

Solution

Volume of solid of revolution about the X axis is

$$V = \pi \int_{a}^{b} y^{2} \, dx$$

The limits of integration are $x_a = -a$ and $x_b = a$.

The function $y = f(x) \ge 0$ in the interval $[-a \ a]$ is

$$y = b \left(1 - \frac{x^2}{a_2} \right)^{1/2}$$
 $y^2 = b^2 \left(1 - \frac{x^2}{a^2} \right)$

The volume of the ellipsoid is

$$V = \pi \int_{-a}^{a} b^{2} \left(1 - \frac{x^{2}}{a^{2}} \right) dx = \frac{2\pi b^{2}}{a^{2}} \int_{0}^{a} \left(a^{2} - x^{2} \right) dx$$

$$V = \frac{2\pi b^{2}}{a^{2}} \left[a^{2} x - \frac{1}{3} x^{3} \right]_{0}^{a}$$

$$V = \frac{4\pi a b^2}{3}$$

For a sphere of radius
$$a$$
 $a = b$ $V_{sphere} = \frac{4 \pi a^3}{3}$ QED

