东南大学考试卷(A)

课程名称_复变函数考试学期_21-22-1	得分 _
-----------------------	------

适用专业 选学复变函数各专业 考试形式 闭卷 考试时间长度 120 分钟

题号	_	三	四	五	六	七
得分						
评阅人						

(注:以下积分中的积分闭曲线除了有特殊说明外,指的都是正向闭曲线)

- 一、选择题(本题共5小题,每小题4分,满分20分)
- 1. f(z) 在 z_0 可导是 f(z) 在 z_0 解析的 _____.
- A. 充分非必要条件
- B. 必要非充分条件

C. 充分必要条件

- D. 既非充分也非必要条件
- 2. 满足不等式 $\left| \frac{z-3}{z-2} \right| < 1$ 的所有点 z 构成的集合是 ______.
- A. 有界单连通区域

B. 无界单连通区域

C. 有界复连通区域

- D. 无界复连通区域
- 3. 下列命题中正确的是 _____.
- A. i < 2i.
- B. $\ln(z_1 z_2) = \ln z_1 + \ln z_2 \ (\forall z_1, \ z_2 \neq 0).$
- $C. xy^2$ 不可能成为一个解析函数的实部.
- D. 幂级数 $\sum_{n=0}^{+\infty} C_n(z-2)^n$ 在 z=0 收敛且 在 z=3 发散.

4. 积分
$$\oint_{|z|=2} \left[\cos z + \frac{z^2 + 1}{(z-i)^2} \right] dz = \underline{\qquad}$$

- $D. 4\pi i$

- $D. -2\pi i$
- 二、 填空题(本题共7小题, 每小题4分, 满分28分)
- 2. $(-i)^i =$ ______

- 4. z平面上的曲线 $x^2 + (y-1)^2 = 1$ 在映射 w = 1/z 下的像为 w平面上的曲线
- 5. Res $[(\frac{1}{z} + \frac{1}{z^2})e^{2z}, 0] = \underline{\hspace{1cm}}$.
- 7. $\oint_{|z|=1} (\bar{z})^m dz =$ _____($m = 0, \pm 1, \pm 2, \cdots$).
- 三、(本题满分6分) 求方程 $z^4 = (z+1)^4$ 的一切复数解.

四、(本题满分8分) 证明 $v = -x^3 + 3xy^2$ 是调和函数, 并求相应的解析函数 f(z) = u + iv, 满足 f(0) = 1.

五、(本题共2小题,每小题8分,满分16分)

1. 将函数 $f(z) = \frac{1}{z^2(z-i)}$ 在以 i 为中心的圆环域内展开成洛朗级数, 并指出其收敛范围.

2. 设 $f(z) = \sec \frac{1}{z-1}$,求 f(z) 在扩充复平面上的所有孤立奇点,并判别它们的类型. 如果是极点,指出它的级.

六、 用复变函数论的方法计算下列实积分(本题共2小题,每小题8分,满分16分)

1.
$$\int_0^{+\infty} \frac{1}{(x^2 + a^2)(x^2 + b^2)} dx \ (a > 0, \ b > 0, \ a \neq b).$$

$$2. \int_0^{2\pi} \frac{\mathrm{d}\theta}{(2+\cos\theta)^2}.$$

七、(本题满分6分) 设 (1) f(z) 在实轴上有一个一级极点 x_0 , 且 f(z) 在 $0 < |z - x_0| < R$ 内解析, $\mathrm{Res}[f(z), x_0] = B$; (2) C_ρ 为圆周 $|z - x_0| = \rho$ 的上半部分, 取顺时针方向, 其中 $0 < \rho < R$. 证明: $\lim_{\rho \to 0^+} \int_{C_\rho} f(z) \mathrm{d}z = -B\pi i$.