Exercício 01:

Uma metalúrgica deseja maximizar sua receita bruta. A Tabela 2.1 ilustra a proporção de cada material na mistura para a obtenção das ligas passíveis de fabricação. O preço está cotado em Reais por tonelada da liga fabricada. Também em toneladas estão expressas as restrições de disponibilidade de matéria-prima. Formular o modelo de Programação Matemática.

TABELA 2.1 RESTRIÇÕES/CUSTOS DO EXEMPLO 1

	Liga Especial de Baixa Resistência (*)	Liga Especial de Alta Resistência (*)	Disponibilidade de Matéria-prima
Cobre	0,5	0,2	16 Ton
Zinco	0,25	0,3	11 Ton
Chumbo	0,25	0,5	15 Ton
Preço de Venda (R\$ por Ton)	R\$3.000	R\$5.000	(*) Ton de minério Ton de liga

FONTE: (GOLDBARG e LUNA, 2005)

Exercício 02:

O objetivo do presente programa é determinar, em uma dieta para a redução calórica, as quantidades de certos alimentos que deverão ser ingeridos diariamente, de modo que determinados requisitos nutricionais sejam satisfeitos a custo mínimo. Existem vários problemas abordando esse tema, o presente exemplo é um dos mais simples possíveis.

Suponha que, por motivos justificáveis, uma certa dieta alimentar esteja restrita a leite desnatado, carne magra de boi, carne de peixe e uma salada de composição bem conhecida. Sabendo-se ainda que os requisitos nutricionais serão expressos em termos de vitaminas A, C e D e controlados por suas quantidades mínimas (em miligramas), uma vez que são indispensáveis à preservação da saúde da pessoa que estará se submetendo à dieta. A Tabela 2.2 resume a quantidade de cada vitamina em disponibilidade nos alimentos e a sua necessidade diária para a boa saúde de uma pessoa.

TABELA 2.2 RESTRIÇÕES DE NUTRIENTES NA DIETA ALIMENTAR DO EXEMPLO 6

Vitamina	Leite (litro)	Carne (kg)	Peixe (kg)	Salada (100g)	Requisito Nutricional Mínimo
Α	2 mg	2 mg	10 mg	20 mg	11 mg
С	50 mg	20 mg	10 mg	30 mg	70 mg
D	80 mg	70 mg	10 mg	80 mg	250 mg
Custo	2 reais	4 reais	1,5 real	1 real	

Formular o programa para a otimização dos recursos envolvidos:

FONTE: (GOLDBARG e LUNA, 2005)

Exercício 03:

Uma grande fábrica de móveis dispõe em estoque de 250 metros de tábuas, 600 metros de pranchas e 500 metros de painéis de conglomerado. A fábrica normalmente oferece uma linha de móveis composta por um modelo de escrivaninha, uma mesa de reunião, um armário e uma prateleira. Cada tipo de móvel consome uma certa quantidade de matéria-prima, conforme a Tabela 2.12. A escrivaninha é vendida por 100 unidades monetárias (u. m.), a mesa por 80 u.m., o armário por 120 u.m. e a prateleira por 20 u.m. Pede-se exibir um modelo de Programação Linear que maximize a receita com a venda dos móveis.

TABELA 2.12 RESTRIÇÕES/CUSTOS DO EXEMPLO 2

	Quantidade de material em metros consumidos por unidade de produto			Disponibilidade do Recurso (m)	
	Escrivaninha	Mesa	Armário	Prateleira	
Tábua	1	1	1	4	250
Prancha	0	1	1	2	600
Painéis	3	2	4	0	500
Valor de Revenda (u.m.)	100	80	120	20	

FONTE: (GOLDBARG e LUNA, 2005)

Exercício 04:

Problema de localização de ponto comercial

Um empreendedor deseja instalar uma papelaria próxima de duas escolas. Em um mapa as coordenadas de ambas escolas estão situadas nos pontos A(20,0) e B(0,20). No ponto (0,0) existe uma loja com características similares e de acordo com as leis municipais a posição da nova papelaria deve ser de pelo menos 400 metros da que existe hoje.

Determine o ponto no qual a nova papelaria deve ser instalada de forma a minimizar a soma das distancias quadráticas das duas escolas.

Fonte: (MORI)

Exercício 05:

Projetar um tanque circular fechado em ambas extremidades para ter um volume de $250m^3$. O custo de fabricação é proporcional a área superficial do metal. O custo do metal é $$400/m^2$. O tanque deve ser colocado em um compartimento que possui um telhado inclinado. Portanto a altura do tanque H é limitada pela relação $H \le (10 - D/2)$, onde D é o diâmetro do tanque. Formular o projeto com o custo mínimo.

Fonte: (MORI)

Bibliografia

GOLDBARG, M. C.; LUNA, H. P. L. Otimização combinatória e programação linear: modelos e algoritmos. Segunda. ed. Rio de Janeiro: Elsevier, 2005.

MORI, F. Programação Não Linear. USJT. São Paulo. (Apostila da disciplina de Pesquisa Operacional).