Examen final de Ecuaciones Diferenciales II Martes, 24 de enero de 2023

- 1. ¿Verdadero o falso? Justificar cada respuesta de manera razonada y concisa.
 - (a) Para (E) x'' + p(t)x' + q(t)x = 0, con p y q continuas en \mathbb{R} , las funciones $\varphi_1(t) = t$ y $\varphi_2(t) = t^2$ no pueden ser ambas soluciones de (E) en todo \mathbb{R} .
 - (b) El wronskiano de 3 soluciones cualesquiera de (E) $x''' 3tx' + (t^2 + 1)x = 0$ es constante.
 - (c) Si f es una función continua en \mathbb{R}^2 , entonces la función $\varphi(t) = \operatorname{sen}(\frac{1}{t})$ puede ser solución de la ecuación (E) x' = f(t,x) en el intervalo abierto $(0,\infty)$.
 - (d) Las soluciones maximales de (E) $x' = \arctan(x^{\frac{1}{3}})$ están definidas todas ellas en \mathbb{R} .
 - (e) El problema $(P)\{x'=t+x^{\frac{1}{3}}; x(0)=0\}$ tiene solución local única a la izquierda de 0.
 - (a) La afirmación es verdadera. Supóngase, por reducción al absurdo, que $\varphi_1(t) = t$ y $\varphi_2(t) = t^2$ resuelven (E) x'' + p(t)x' + q(t)x = 0 en \mathbb{R} . Entonces, por ser φ_1 solución de (E), se tiene, para todo $t \in \mathbb{R}$,

$$p(t) + tq(t) = 0$$

Por otro lado, por ser φ_2 solución de (E), para todo $t \in \mathbb{R}$ se verifica

$$2 + 2tp(t) + t^2q(t) = 0$$

Ahora bien,

$$2 + 2tp(t) + t^2q(t) = 2 + t(2p(t) + tq(t)) = 2 + t(p(t) + p(t) + tq(t)) = 2 + tp(t)$$

Se verificaría entonces 2+tp(t)=0 para todo $t\in\mathbb{R}$. En particular, para t=0, se tendría 2=0, que es falso.

(*b*) La afirmación es verdadera. Si φ_1 , φ_2 y φ_3 son soluciones de (*E*) en un intervalo *I*, entonces, por la fórmula de Abel-Liouville-Jacobi,

$$W(\varphi_1, \varphi_2, \varphi_3)'(t) = -a_1(t)W(\varphi_1, \varphi_2, \varphi_3)(t)$$

para todo $t \in I$, donde a_1 es el coeficiente de x'' en la ecuación. Como $a_1 \equiv 0$, entonces $W(\varphi_1, \varphi_2, \varphi_3)'(t) = 0$ para todo $t \in I$, luego el wronskiano de las tres soluciones es constante.

- (c) La afirmación es falsa. Considérese la sucesión $\{\frac{1}{2\pi k}\}_{k=1}^{\infty}$. Como $\lim_{k\to\infty}\frac{1}{2\pi k}=0$ y además $\varphi(\frac{1}{2\pi k})=\sin(2\pi k)=0$, entonces (0,0) es punto límite de la gráfica de φ para $t\to 0$. Además, para cualquier a>0 y b>0, se tiene que $Q_{a,b}^{0,+}=[t_1,t_1+a]\times\overline{B}_{\|\cdot\|_{\mathbb{R}^n}}(0,b)\subset\mathbb{R}^2$, y como f es continua en \mathbb{R}^2 , entonces es acotada en $Q_{a,b}^{0,+}$. Si φ resolviese (E), entonces, por el lema de Wintner (versión lateral izquierda), existiría $\lim_{t\to 0^+}\varphi(t)$, que es falso.
- (d) La afirmación es verdadera. Considérese la función $g\colon \mathbb{R} \to \mathbb{R}$ dada por $g(x) = \arctan(x^{\frac{1}{3}})$. Sea $\varphi\colon I \to \mathbb{R}$ una solución maximal de (E) y veamos que $I = \mathbb{R}$. Como \mathbb{R}^2 es abierto, por el resultado sobre soluciones maximales con gráficas en abiertos, se tiene que I = (a,b). Además, si t^* es un extremo finito de I, entonces, o bien $\lim_{t \to t^*} |\varphi(t)| = \infty$, o bien la gráfica de φ tiene algún punto límite para $t \to t^*$, y este y todos los puntos límite de la gráfica de φ para $t \to t^*$ se encuentran en $\partial \mathbb{R}^2$. Como $\partial \mathbb{R}^2 = \emptyset$, lo segundo es imposible; veamos que lo primero también. Supongamos primero que $t^* = a$. Fijando cualquier $t_0 \in (a,b)$, se tiene que

 $\varphi' = g$ es acotada en $(a, t_0]$, luego, por el resultado sobre soluciones con derivada acotada, φ es acotada en $(a, t_0]$, luego no $|\varphi|$ puede tener límite infinito en a. Análogamente se prueba que $t^* = b$ es imposible. La conclusión es que I no puede tener extremos finitos, es decir, que $I = \mathbb{R}$.

- (e) La afirmación es verdadera. En primer lugar, para cada $t \in \mathbb{R}$, la función $f_t \colon \mathbb{R} \to \mathbb{R}$ dada por $f_t(x) = t + x^{\frac{1}{3}} = f(t,x)$ es creciente a la izquierda de 0, así que, por el criterio de unicidad de Peano, el problema (P) tiene, a lo sumo, una solución a la izquierda de 0. Además, como $f \in \mathcal{C}(\mathbb{R}^2,\mathbb{R})$, para a,b>0 cualesquiera, se tiene que $Q_{a,b}^- = [-a,0] \times \overline{B}_{\|\cdot\|_{\mathbb{R}^n}}(0,b) \subset D = \mathbb{R}^2$ y $f \in \mathcal{C}(Q_{a,b}^-,\mathbb{R})$, luego, por el TEL, el problema (P) tiene solución local a la izquierda de 0, que además es única por lo razonado antes.
- 2. Resolver el siguiente problema de datos iniciales, justificando los cálculos con resultados teóricos vistos en clase:

$$(P) \begin{cases} y''' - 6y'' + 11y' - 6y = -e^t, \\ y(0) = 0, \ y'(0) = 0, \ y''(0) = -1 \end{cases}$$

Considérense la ecuación (E) $y''' - 6y'' + 11y' - 6y = -e^t$, y la ecuación homogénea asociada, (E_H) y''' - 6y'' + 11y' - 6y = 0. La ecuación (E) es una ecuación diferencial lineal de orden 3 con coeficientes constantes. Sabemos que su solución general es $\varphi(t) = \varphi_h(t) + \varphi_p(t)$, donde φ_h es la solución general de (E_H), e φ_p es una solución particular de (E_H).

Se procede primero al cálculo de φ_h . La ecuación característica de (E_H) es $\lambda^3 - 6y^2 + 11\lambda - 6 = 0$. Hallamos sus raíces: se tiene que $\lambda^3 - 6y^2 + 11\lambda - 6 = (\lambda - 1)(\lambda^2 - 5\lambda + 6) = (\lambda - 1)(\lambda - 2)(\lambda - 3)$, luego los autovalores de (E_H) son $\lambda_1 = 1$, $\lambda_2 = 2$ y $\lambda_3 = 3$, todos reales y de multiplicidad 1. Por tanto, un sistema fundamental de soluciones reales de (E_H) es

$$\mathcal{F}_{\mathbb{R}}=\{e^t,e^{2t},e^{3t}\},$$

luego la solución general de (E_H) sería

$$\varphi_h(t) = c_1 e^t + c_2 e^{2t} + c_3 e^{3t}, \quad c_1, c_2, c_3 \in \mathbb{R}$$

A continuación, se va a echar mano del método de los coeficientes indeterminados para hallar una solución particular de (E). Se observa que el término independiente de (E) es de la forma

$$a_0(t) = e^{\alpha t} (q_1(t)\cos(\beta t) + q_2(t)\sin(\beta t)),$$

con $\alpha=1$, $\beta=0$, y donde $q_1(t)=-1$, $q_2(t)=0$ son polinomios de grado 0. En consecuencia, (E) posee una solución particular del tipo

$$\varphi_p(t) = t^{m(\mu)} e^{\alpha t} (Q_1(t) \cos(\beta t) + Q_2(t) \sin(\beta t)),$$

donde $Q_1(t) = A$ y $Q_2(t) = B$ son polinomios reales de grado 0 y $m(\mu)$ es la multiplicidad de $\mu = \alpha + i\beta = 1$ como autovalor de (E_H) . Se tiene entonces

$$\varphi_p(t) = Ate^t$$

$$\varphi'_p(t) = Ae^t + Ate^t$$

$$\varphi''_p(t) = Ae^t + Ae^t + Ate^t = 2Ae^t + Ate^t$$

$$\varphi'''_p(t) = 2Ae^t + Ae^t + Ate^t = 3Ae^t + Ate^t$$

luego

$$\varphi_p$$
 es solución de (E) $\iff \varphi_p'''(t) - 6\varphi_p''(t) + 11\varphi_p'(t) - 6\varphi_p(t) = -e^t$
 $\iff 3Ae^t + Ate^t - 12Ae^t - 6Ate^t + 11Ae^t + 11Ate^t - 6Ate^t = -e^t$
 $\iff 2Ae^t = -e^t$
 $\iff A = -\frac{1}{2}$

Tenemos entonces que $\varphi_p(t) = -\frac{1}{2}te^t$ es solución de (E), así que la solución general de (E) no es más que

$$\varphi(t) = c_1 e^t + c_2 e^{2t} + c_3 e^{3t} - \frac{1}{2} t e^t, \quad c_1, c_2, c_3 \in \mathbb{R}$$

Por último, queda hallar las constantes $c_1, c_2, c_3 \in \mathbb{R}$ que consigan que se satisfagan los datos iniciales. Se tiene que

$$\varphi'(t) = c_1 e^t + 2c_2 e^{2t} + 3c_3 e^{3t} - \frac{1}{2} e^t - \frac{1}{2} t e^t;$$

$$\varphi''(t) = c_1 e^t + 4c_2 e^{2t} + 9c_3 e^{3t} - e^t - \frac{1}{2} t e^t,$$

asíque

$$\begin{cases} \varphi(0) = 0 \\ \varphi'(0) = 0 \\ \varphi''(0) = -1 \end{cases} \iff \begin{cases} c_1 + c_2 + c_3 = 0 \\ c_1 + 2c_2 + 3c_3 = 1/2 \\ c_1 + 4c_2 + 9c_3 = 0 \end{cases} \iff \begin{cases} c_1 = -5/4 \\ c_2 = 2 \\ c_3 = -3/4 \end{cases}$$

Se concluye que la única solución del problema dado es $\varphi(t) = -\frac{5}{4}e^t + 2e^{2t} - \frac{3}{4}e^{3t} - \frac{1}{2}te^t$, definida en todo \mathbb{R} .

3. Probar, mencionando los resultados teóricos que se apliquen, que el problema

$$(P) \begin{cases} x' = \frac{1}{t}x^2 \operatorname{sen}(x) \\ x(1) = 1 \end{cases}$$

tiene solución maximal única definida en $(0,\infty)$. Ayuda: para llegar hasta 0 o ∞ , quizás haya que conocer algunas soluciones constantes de la ecuación asociada a (P).

Considérese la función $f: D \to \mathbb{R}$ definida mediante $f(t,x) = \frac{1}{t}x^2 \operatorname{sen}(x)$, donde $D = (0,\infty) \times \mathbb{R}$. Como $f \in \mathcal{C}^1(D,\mathbb{R})$, entonces $f \in \mathcal{C}(D,\mathbb{R}) \cap \operatorname{Lip}_{\operatorname{loc}}(x,D,\mathbb{R})$. Además, $(1,1) \in \mathring{D}$, así que, por el TEUL, el problema (P) tiene solución local única, que puede extenderse de manera única (gracias a la PUG, que también se verifica por tenerse $f \in \mathcal{C}(D,\mathbb{R}) \cap \operatorname{Lip}_{\operatorname{loc}}(x,D,\mathbb{R})$) a una solución maximal $\varphi \colon I \to \mathbb{R}$.

Por otra parte, se observa que la función nula es solución de (E) x' = f(t,x) pero no de (P). Como se verifica la PUG, la gráfica de φ no puede cortar a la gráfica de la función nula, o, en otras palabras, $\varphi(t) \neq 0$ para todo $t \in I$. Como $\varphi(1) = 1 > 1$, por continuidad, ha de ser $\varphi(t) > 0$ para todo $t \in I$. Pero también sabemos que la función constante π es solución de (E) x' = f(t,x) y no de (P), así que la gráfica de φ tampoco puede cortar a la de la función constante π . Y como $\varphi(1) = 1 < \pi$, entonces para todo $t \in I$ se tiene que $0 < \varphi(t) < \pi$.

Asimismo, como D es abierto, por el resultado sobre soluciones maximales con gráficas en abiertos, puede asegurarse que I=(a,b), con $0 \le a < 1 < b \le \infty$. Y, por el mismo resultado, si b fuese un extremo finito de I, entonces se verifica una de las dos siguientes circunstancias:

(i)
$$\lim_{t\to b^-} |\varphi(t)| = \lim_{t\to b^-} \varphi(t) = \infty$$
.

(ii) La gráfica de φ tiene un punto límite para $t \to b$, y este y todos los puntos límite de la gráfica de φ para $t \to b$ están en ∂D .

Nótese que (i) es manifiestamente falso por tenerse $0 < \varphi(t) < \pi$ para todo $t \in I$. Y si se diese (ii), como $\partial D = \{0\} \times \mathbb{R}$, los puntos límite de la gráfica de φ para $t \to b$ serían de la forma (0,x) con $x \in \mathbb{R}$, y esto es imposible porque b > 0. Por tanto, ha de ser $b = \infty$.

El objetivo ahora es probar que a=0, lo que terminará el ejercicio. Por reducción al absurdo, supóngase que a>0, y considérese la función $\varphi^-\colon (a,1]\to \mathbb{R}$ dada por $\varphi^-(t)=\varphi(t)$. Sabemos que $0<\varphi^-(t)<\pi$ para todo $t\in(a,1]$, luego $\Gamma=\operatorname{gráf}(\varphi^-)\subset[a,1]\times[0,\pi]=K\subset D$. Como f es continua en D, entonces también lo es en el compacto K, así que f es acotada en K. Ahora bien, por ser $a>-\infty$, el resultado sobre soluciones con derivada acotada nos brindaría la existencia de $A=\lim_{t\to a^+}\varphi^-(t)\in[0,\pi]$. Y como $(a,A)\in K\subset D$, entonces φ^- admite una prolongación estricta a la izquierda, lo que contradice que φ sea solución maximal del problema (P).

4. Realizar un estudio, lo más exhaustivo posible, de las soluciones maximales de la ecuación

$$(E) x' = 1 - \cos(x),$$

y esbozar el aspecto de las gráficas de estas posibles soluciones.

Si se considera la función $g: \mathbb{R} \to \mathbb{R}$ definida por $g(x) = 1 - \cos(x)$, tenemos que la ecuación (E) x' = g(x) es una ecuación diferencial escalar autónoma de primer orden. Primero se hallan las soluciones constantes:

$$1 - \cos(x) = 0 \iff \cos(x) = 1 \iff x = 2\pi k, \quad k \in \mathbb{Z}$$

Por tanto, para cada $k \in \mathbb{Z}$, la función $\varphi_k \equiv 2\pi k$ es una solución constante de (E). Además, como (E) verifica la PUG en \mathbb{R}^2 (pues $g \in \mathcal{C}^1(\mathbb{R},\mathbb{R})$), la gráfica de cualquier solución maximal no constante no corta a la gráfica de ninguna función φ_k . En otras palabras, si $\varphi \colon I \to \mathbb{R}$ es una solución maximal de (E), entonces existe $k \in \mathbb{Z}$ tal que gráf $(\varphi) \subset D_k$, donde, para cada $k \in \mathbb{Z}$,

$$D_k = \mathbb{R} \times (2\pi(k-1), 2\pi k)$$

En consecuencia, la gráfica de cualquier solución maximal de (E) se encuentra encerrada entre la gráfica de dos soluciones constantes, luego $I=\mathbb{R}$. Además, como para todo $x\in\mathbb{R}$ se cumple $\cos(x)\leq 1$, entonces $\varphi'(t)=1-\cos(\varphi(t))>0$ para todo $t\in\mathbb{R}$ (la desigualdad es estricta porque $2\pi(k-1)<\varphi(t)<2\pi k$ para todo $t\in\mathbb{R}$ y, en consecuencia, $\cos(\varphi(t))<1$ para todo $t\in\mathbb{R}$). Por tanto, φ es estrictamente creciente, así que existen $A=\lim_{t\to\infty}\varphi(t)$ y $B=\lim_{t\to\infty}\varphi(t)$, y además se verifica $A,B\in\{2\pi(k-1),2\pi k\}$ (no puede ser $2\pi(k-1)< A,B<2\pi k$ porque se obtendrían soluciones constantes de (E) distintas de las descritas anteriormente). Por tanto, el crecimiento estricto de φ permite afirmar que $A=2\pi(k-1)$ y $B=2\pi k$.