Processeu Nono 1et 2

Cédric Bois Benjamin Sientzoff

10 décembre 2014

Table des matières

1	Réa	disation de Nono-1	4
	1.1	Opcode des instructions	4
	1.2	L' unité arithmétique et logique	4
	1.3	Le contrôleur de saut	4
	1.4	Décodeur d'instructions	4
	1.5	Sélection des registres	4
	1.6	Le banc de registres	4
2	Pro	cesseurs Nono-1 et Nono-2	7
	2.1	Nono-1	7
	22	None 2	7

Introduction

Dans le cadre du cours intitulé Architecture des ordinateurs, nous devons recréer un processeur Nono-1. Par la suite, ce processeur sera modifier pour devenir le processeur Nono-2. Ce rapport retrace comment nous avons réalisé ces processeurs MIPS.

Les montages électroniques sont produits avec Logisim. La version numérique de ce rapport fournie les montages électroniques présentés ici et les différents fichier permettant notamment de programmer le processeur. Ces fichiers sont typiquement les images RAM qui peuvent être directement charger dans la mémoire du processeur.

Dans une première partie, nous présentons les différents sous circuits composant le processeur Nono-1. Une seconde partie présente sont fonctionnement global et les modification apporté à Nono-1 pour implémenter les fonctions de Nono-2.

1 Réalisation de Nono-1

1.1 Opcode des instructions

 ${\bf titre} \hspace{0.3in} {\bf xflmxcflmfldglmdf}$

Instruction	Format	Opcode	paramètres	?
add r_d , r_s , r_t	F_1	1000		
sub r_d , r_s , r_t	F_1	1001		
or \mathbf{r}_d , \mathbf{r}_s , \mathbf{r}_t	F_1	1010		
and \mathbf{r}_d , \mathbf{r}_s , \mathbf{r}_t	F_1	1011		
not r_d , r_s	F_1	1100		
shl r_d , r_s , r_t	F_1	1101		
shr_d , r_s , r_t	F_1	1110		
li r _d , val	F_2	1111		
halt	F_1	0000		
b offset	F_3	0001		
beq r_s , r_t , offset	F ₃	0010		
bne r_s , r_t , offset	F_3	0011		
bge r_s , r_t , offset	F_3	0100		
ble r_s , r_t , offset	F_3	0101		
bgt r_s , r_t , offset	F_3	0110		
blt r_s , r_t , offset	F_3	0111		

1.2 L'unité arithmétique et logique

 $intro,\ explications$

1.3 Le contrôleur de saut

intro, explications

1.4 Décodeur d'instructions

intro, explications

1.5 Sélection des registres

intro, explications

1.6 Le banc de registres

intro, explications

FIGURE 1 – Schéma électronique de l'Unité Arithmétique et Logique

FIGURE 2 – Schéma électronique pour le contrôleur de sauts

Figure 3 – Schéma électronique pour le décodeur d'instructions

FIGURE 4 – Schéma électronique pour la sélection de registres

Figure 5 – Schéma électronique pour le banc de registres

- 2 Processeurs Nono-1 et Nono-2
- 2.1 Nono-1
- 2.2 Nono-2

Conclusion

je conclu