Brac University

Department of Electrical & Electronic Engineering

Semester Summer-24

Course Number: EEE101L

Course Title: Electrical Circuits I Laboratory

Section: 06

Lab Report

Experiment no.

01

Name of the experiment: Verification of KVL and KCL (Software Simulation)

Prepared by:

Name: Tanzeel Ahmed ID: 24321367

Group Number: 02

Other Group members:

SI.	ID	Name
1.	24121083	Abontika Das
2.	24121046	Lamea Akter Shimla
3.	24121238	Tahosin Tasnia Nuha

Electrical Circuits I Laboratory EEE 101L

Department of Electrical & Electronic Engineering (EEE) Brac University

Experiment No. 1

Verification of KVL and KCL

Part-A: Verification of KVL

- 1. **Objective:** This experiment is intended to verify Kirchhoff's voltage law (KVL) with the help of series circuits.
- **2. Theoretical Background:** KVL states that around any closed circuit the algebraic sum of the voltage rises equals the algebraic sum of the voltage drops.
- 3. Equipment:
 - One multimeter
 - Three Resistors
 - One DC power supply

Selection of Voltage Source

Selection of Resistor

Selection of Ground

Resistor set (R value set)

Begin Simulation

<u>Figure:</u> Verification of KVL simulated in PSpice Schematics

4. Circuit Diagram:

Fig. 1: Series circuit to demonstrate KVL

5. Procedure:

- i. Connect the resistors R₁, R₂ and R₃ in series to a DC power supply as shown in Fig. 1.
- ii. Take readings of V_1 , V_2 , V_3 , V_s using a multimeter.
- iii. Verify KVL as $V_S = V_1 + V_2 + V_3$.

6. Data Table:

Verification of KVL:

V _S (V)	V ₁	V ₂	V ₃	V ₁ +V ₂ +V ₃
	(V)	(V)	(V)	(V)
20V	1.2	6.75	12.05	1.2+6.75+12.05 = 20

Faculty Signature and Date

7. Lab report directions:

- 1. State the rules of connecting voltmeter and ammeter in the circuit.
- 2. How do you calculate the power dissipation of a resistor?

Part-B: Verification of KCL

- **1. Objective:** This experiment is intended to verify Kirchhoff's current law (KCL) with the help of a series-parallel circuit.
- **2. Theoretical Background:** KCL states that the algebraic sum of the currents entering any node equals the sum of the currents leaving the node.

3. Equipment:

- Three resistors
- One multimeter
- One DC supply

4. Circuit Diagram:

Fig. 2: Verification of KCL

5. Procedure:

- i. Connect the resistors in series-parallel across the power supply as shown in Fig. 2.
- ii. Measure the voltage drop across the resistors.
- iii. Calculate the currents I_1 , I_2 and I_3 by using $I_1 = V_1/R_1$, $I_2 = V_2/R_2$ and $I_3 = V_2/R_3$ as given above and prove that $I_1 = I_2 + I_3$.

Figure: Verification of KCL simulated in PSpice Schematics

6. Data Table:

Verification of KCL:

R ₁	R ₂	R ₃	V ₁	V ₂	$I_1=V_1/R_1$	$I_2=V_2/R_2$	I ₃ =V ₂ /R ₃	l ₂ +l ₃
$(k\Omega)$	$(k\Omega)$	(kΩ)	(V)	(V)	(mA)	(mA)	(mA)	(mA)
1	5.6	10	4.36	15.64	4.358	2.793	1.564	4.358

Faculty Signature and Date

7. Lab report directions:

- 1. Calculate the total power supplied by the source and power absorbed by each of the resistor.
- 2. Is the supplied power equal to total power absorbed?

Discussion of the software simulation

Equipments required:

- 1. PSpice Schematics software
- 2. Suitable device (PC or Laptop)

Simulation procedure:

Part-A: Verification of KVL

- 1. Open PSpice Schematics software.
- 2. Open the parts menu (click on the icon).
- 3. Search the necessary parts for the KVL experiment (VDC, GND, R).
- 4. Place the parts on designated places following the provided diagram and close the parts menu.
- 5. Using the wire tool connect all the parts in a series circuit.
- 6. Set the values of all the parts.
- 7. Rename all the parts for easier identification (VDC=Vs)
- 8. Use the Draw Text and Text Box tool to mark necessary information.
- 9. Enable Bias Voltage and Current display.
- 10. Use the zoom to fit page tool.
- 11. Save the file with a suitable name.
- 12. Begin circuit simulation.
- 13. Attach a screenshot of the circuit in the report document.
- 14. Fill out the data tables with necessary information and verify KVL using the given formula (Vs= V1+V2+V3).

Part-B: Verification of KCL

- 1. Open PSpice Schematics software.
- 2. Open the parts menu (click on the icon).
- 3. Search the necessary parts for the KCL experiment (VDC, GND, R).
- 4. Place the parts on designated places following the provided diagram and close the parts menu.
- 5. Using the wire tool connect all the parts in a series-parallel circuit.
- 6. Set the values of all the parts.
- 7. Rename all the parts for easier identification (VDC=Vs)
- 8. Use the Draw Text and Text Box tool to mark necessary information.
- 9. Enable Bias Voltage and Current display.
- 10. Use the zoom to fit page tool.
- 11. Save the file with a suitable name.
- 12. Begin circuit simulation.
- 13. Attach a screenshot of the circuit in the report document.
- 14. Fill out the data tables with necessary information and verify KCL using the given formula (I1=I2+I3).