Gaussian Elimination

Gaussian Elimination

A method to solve simultaneous linear equations of the form [A][X]=[C]

Two steps

- 1. Forward Elimination
- 2. Back Substitution

The goal of forward elimination is to transform the coefficient matrix into an upper triangular matrix

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.21 \\ 0.735 \end{bmatrix}$$

A set of *n* equations and *n* unknowns

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

•

•

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$

(n-1) steps of forward elimination

Step 1

For Equation 2, divide Equation 1 by a_{11} and multiply by a_{21}

$$\left[\frac{a_{21}}{a_{11}}\right](a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1)$$

$$a_{21}x_1 + \frac{a_{21}}{a_{11}}a_{12}x_2 + \dots + \frac{a_{21}}{a_{11}}a_{1n}x_n = \frac{a_{21}}{a_{11}}b_1$$

Subtract the result from Equation 2.

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$- a_{21}x_1 + \frac{a_{21}}{a_{11}}a_{12}x_2 + \dots + \frac{a_{21}}{a_{11}}a_{1n}x_n = \frac{a_{21}}{a_{11}}b_1$$

$$\left(a_{22} - \frac{a_{21}}{a_{11}}a_{12}\right)x_2 + \dots + \left(a_{2n} - \frac{a_{21}}{a_{11}}a_{1n}\right)x_n = b_2 - \frac{a_{21}}{a_{11}}b_1$$

or
$$a'_{22}x_2 + ... + a'_{2n}x_n = b'_2$$

Repeat this procedure for the remaining equations to reduce the set of equations as

End of Step 1

Step 2

Repeat the same procedure for the 3rd term of Equation 3.

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2n}x_n = b'_2$$

$$a''_{33}x_3 + \dots + a''_{3n}x_n = b''_3$$

$$\vdots$$

$$a''_{n3}x_3 + \dots + a''_{nn}x_n = b''_n$$

End of Step 2

At the end of (n-1) Forward Elimination steps, the system of equations will look like

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$$

$$a'_{22}x_{2} + a'_{23}x_{3} + \dots + a'_{2n}x_{n} = b'_{2}$$

$$a''_{33}x_{3} + \dots + a''_{3n}x_{n} = b''_{3}$$

$$\vdots$$

$$a_{nn}^{(n-1)}x_{n} = b_{n}^{(n-1)}$$

End of Step (n-1)

Matrix Form at End of Forward Elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a'_{22} & a'_{23} & \cdots & a'_{2n} \\ 0 & 0 & a''_{33} & \cdots & a''_{3n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & a_{nn}^{(n-1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b''_3 \\ \vdots \\ b'^{(n-1)} \\ b'_n \end{bmatrix}$$

Back Substitution

Solve each equation starting from the last equation

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.21 \\ 0.735 \end{bmatrix}$$

Example of a system of 3 equations

Back Substitution Starting Eqns

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$$

$$a'_{22}x_{2} + a'_{23}x_{3} + \dots + a'_{2n}x_{n} = b'_{2}$$

$$a''_{33}x_{3} + \dots + a''_{n}x_{n} = b''_{3}$$

$$a_{nn}^{(n-1)}x_{n} = b_{n}^{(n-1)}$$

Back Substitution

Start with the last equation because it has only one unknown

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$

Back Substitution

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$

$$x_{i} = \frac{b_{i}^{(i-1)} - a_{i,i+1}^{(i-1)} x_{i+1} - a_{i,i+2}^{(i-1)} x_{i+2} - \dots - a_{i,n}^{(i-1)} x_{n}}{a_{ii}^{(i-1)}}$$
 for $i = n-1,...,1$

$$x_{i} = \frac{b_{i}^{(i-1)} - \sum_{j=i+1}^{n} a_{ij}^{(i-1)} x_{j}}{a_{ii}^{(i-1)}}$$
for $i = n-1,...,1$

Example 1

The upward velocity of a rocket is given at three different times

Table 1 Velocity vs. time data.

Time, $t(s)$	Velocity, $v(m/s)$			
5	106.8 177.2 279.2			
8				
12				

The velocity data is approximated by a polynomial as:

$$v(t) = a_1 t^2 + a_2 t + a_3$$
, $5 \le t \le 12$.

Find the velocity at t=6 seconds.

Example 1 Cont. Assume

$$v(t) = a_1 t^2 + a_2 t + a_3$$
, $5 \le t \le 12$.

Results in a matrix template of the form:

$$\begin{bmatrix} t_1^2 & t_1 & 1 \\ t_2^2 & t_2 & 1 \\ t_3^2 & t_3 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

Using data from Table 1, the matrix becomes:

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

Example 1 Cont.

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix} \Rightarrow \begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix}$$

- 1. Forward Elimination
 - 2. Back Substitution

Number of Steps of Forward Elimination

Number of steps of forward elimination is (n-1)=(3-1)=2

Forward Elimination: Step 1

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \end{bmatrix}$$

multiply it by 64,
$$\frac{64}{25} = 2.56$$

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \end{bmatrix} \times 2.56 = \begin{bmatrix} 64 & 12.8 & 2.56 & \vdots & 273.408 \end{bmatrix}$$

Subtract the result from Equation 2

$$\begin{bmatrix}
64 & 8 & 1 & \vdots & 177.2 \\
-[64 & 12.8 & 2.56 & \vdots & 273.408] \\
\hline
[0 & -4.8 & -1.56 & \vdots & -96.208]
\end{bmatrix}$$

Substitute new equation for Equation 2

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix}$$

Forward Elimination: Step 1 (cont.)

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix}$$

Divide Equation 1 by 25 and multiply it by 144, $\frac{144}{25} = 5.76$

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \end{bmatrix} \times 5.76 = \begin{bmatrix} 144 & 28.8 & 5.76 & \vdots & 615.168 \end{bmatrix}$$

Subtract the result from Equation 3

$$\begin{bmatrix}
 144 & 12 & 1 & \vdots & 279.2 \\
 -[144 & 28.8 & 5.76 & \vdots & 615.168] \\
 \hline
 [0 & -16.8 & -4.76 & \vdots & -335.968]
 \end{bmatrix}$$

Substitute new equation for Equation 3

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 0 & -16.8 & -4.76 & \vdots & -335.968 \end{bmatrix}$$

Forward Elimination: Step 2

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 0 & -16.8 & -4.76 & \vdots & -335.968 \end{bmatrix}$$

Divide Equation 2 by -4.8and multiply it by -16.8, $\frac{-16.8}{-4.8} = 3.5$

$$\begin{bmatrix} 0 & -4.8 & -1.56 & \vdots & -96.208 \end{bmatrix} \times 3.5 = \begin{bmatrix} 0 & -16.8 & -5.46 & \vdots & -336.728 \end{bmatrix}$$

Subtract the result from Equation 3

$$\begin{bmatrix}
0 & -16.8 & -4.76 & \vdots & 335.968 \\
-[0 & -16.8 & -5.46 & \vdots & -336.728] \\
\hline
[0 & 0 & 0.7 & \vdots & 0.76]
\end{bmatrix}$$

Substitute new equation for Equation 3

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 0 & 0 & 0.7 & \vdots & 0.76 \end{bmatrix}$$

Back Substitution

Back Substitution

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.2 \\ 0 & 0 & 0.7 & \vdots & 0.7 \end{bmatrix} \Rightarrow \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.208 \\ 0.76 \end{bmatrix}$$

Solving for a_3

$$0.7a_3 = 0.76$$

$$a_3 = \frac{0.76}{0.7}$$

$$a_3 = 1.08571$$

Back Substitution (cont.)

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.208 \\ 0.76 \end{bmatrix}$$

Solving for
$$a_2$$

$$-4.8a_2 - 1.56a_3 = -96.208$$

$$a_2 = \frac{-96.208 + 1.56a_3}{-4.8}$$

$$a_2 = \frac{-96.208 + 1.56 \times 1.08571}{-4.8}$$

$$a_2 = 19.6905$$

Back Substitution (cont.)

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.2 \\ 0.76 \end{bmatrix}$$

Solving for a_1

$$25a_1 + 5a_2 + a_3 = 106.8$$

$$a_1 = \frac{106.8 - 5a_2 - a_3}{25}$$

$$= \frac{106.8 - 5 \times 19.6905 - 1.08571}{25}$$

$$= 0.290472$$

Gaussian Elimination Solution

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.290472 \\ 19.6905 \\ 1.08571 \end{bmatrix}$$

Example 1 Cont.

Solution

The solution vector is

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.290472 \\ 19.6905 \\ 1.08571 \end{bmatrix}$$

The polynomial that passes through the three data points is then:

$$v(t) = a_1 t^2 + a_2 t + a_3$$

= 0.290472 t^2 + 19.6905 t + 1.08571, $5 \le t \le 12$

$$v(6) = 0.290472(6)^2 + 19.6905(6) + 1.08571$$

= 129.686 m/s.

Pitfall#. Large Round-off Errors

$$\begin{bmatrix} 20 & 15 & 10 \\ -3 & -2.249 & 7 \\ 5 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 45 \\ 1.751 \\ 9 \end{bmatrix}$$

Exact Solution

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Pitfall# Large Round-off Errors

$$\begin{bmatrix} 20 & 15 & 10 \\ -3 & -2.249 & 7 \\ 5 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 45 \\ 1.751 \\ 9 \end{bmatrix}$$

Solve it on a computer using 6 significant digits with chopping

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.9625 \\ 1.05 \\ 0.999995 \end{bmatrix}$$

Gauss Jordan Elimination

In this method, the element above and below the major diagonal are eliminated.

a_{11}	0	0	• • •	0	$ x_1 $	b_1
0	$a_{22}^{'}$	0	• • •	0	x_2	$b_{2}^{'}$
0	0	$a_{33}^{"}$	• • •	0	X_3	$b_3^{''}$
•	•	•	• • •	•	•	•
0	0	0	0	$a_{nn}^{(n-1)}$	$\lfloor x_n \rfloor$	$\left\lfloor b_n^{(n-1)} ight floor$

Inverse of Matrix by Gauss-Jordan Method

Formation of Augmented matrix A with identity matrix I

[AI]

By application of Gauss-Jordan method, augmented matrix is transferred to the following form

$$IA^{-1}$$