

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 955 368 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
10.11.1999 Bulletin 1999/45

(51) Int Cl. 6: C12N 15/53, C12N 15/60,

C12N 1/21, C12N 1/20,

C12P 13/14

// (C12N1/20, C12R1:22, 1:18,
1:01)

(21) Application number: 99105507.0

(22) Date of filing: 17.03.1999

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 18.03.1998 JP 6910698
07.08.1998 JP 22490998(71) Applicant: Ajinomoto Co., Ltd.
Tokyo (JP)

(72) Inventors:

- Moriya, Mika c/o Ajinomoto Co., Inc.
Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)

- Izui, Hiroshi c/o Ajinomoto Co., Inc.
Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)
- Ono, Eiji c/o Ajinomoto Co., Inc.
Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)
- Matsui, Kazuhiko c/o Ajinomoto Co., Inc.
Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)
- Ito, Hisao c/o Ajinomoto Co., Inc.
Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)
- Hara, Yoshihiko c/o Ajinomoto Co., Inc.
Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)

(74) Representative: Strehl Schübel-Hopf & Partner
Maximilianstrasse 54
80538 München (DE)

(54) L-glutamic acid-producing bacterium and method for producing L-glutamic acid

(57) A method for producing L-glutamic acid which comprises culturing a microorganism belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea* and having an ability to produce L-glutamic acid in a culture medium, and collecting produced L-glutamic acid from the culture medium. The microbial strain used is preferably a strain

which decreases in or is deficient in an activity of an enzyme catalyzing a reaction branching from a pathway for L-glutamic acid biosynthesis and producing a compound other than L-glutamic acid, or a strain which increases in an activity of an enzyme catalyzing a reaction for L-glutamic acid biosynthesis.

Description**BACKGROUND OF THE INVENTION**

- 5 [0001] The present invention relates to a novel L-glutamic acid-producing bacterium and a method for producing L-glutamic acid by fermentation using the same. L-Glutamic acid is an important amino acid as food, drugs and the like.
- [0002] L-Glutamic acid has conventionally been produced by fermentation methods utilizing the so-called coryneform L-glutamic acid-producing bacteria which principally belong to the genera *Brevibacterium*, *Corynebacterium*, and *Microbacterium* or variants thereof ("Amino Acid Fermentation", Gakkai Shuppan Center, pp.195-215, 1986). As methods for producing L-glutamic acid by fermentation utilizing other bacterial strains, there have been known the methods utilizing microorganisms of the genera *Bacillus*, *Streptomyces*, *Penicillium* and the like (United States Patent No. 3,220,929), the methods utilizing microorganisms of the genera *Pseudomonas*, *Arthrobacter*, *Serratia*, *Candida* and the like (United States Patent No. 3,563,857), the methods utilizing variant strains of *Escherichia coli* (Japanese Patent Application Laid-Open (KOKAI) No. 5-244970(1993)) and the like.
- 10 [0003] Though the productivity of L-glutamic acid has considerably been improved by breeding of such microorganisms as mentioned above or improvements of production methods, it is still desired to develop a more inexpensive and more efficient method for producing L-glutamic acid in order to meet the expected markedly increasing future demand of the amino acid.
- 15

SUMMARY OF THE INVENTION

- [0004] The object of the present invention is to find novel L-glutamic acid-producing bacterium having a high ability to produce L-glutamic acid, thereby developing a more inexpensive and more efficient method for producing L-glutamic acid.
- 20 [0005] To achieve the aforementioned object, the present inventors intensively searched for and studied microorganisms having the ability to produce L-glutamic acid that are different from the previously reported microorganisms. As a result, they found that certain strains derived from microorganisms belonging to the genus *Klebsiella* or the genus *Erwinia* had a high ability to produce L-glutamic acid, and have completed the present invention.
- [0006] Thus the present invention provides:
- 25

- (1) a microorganism belonging to the genus *Klebsiella*, the genus *Erwinia* or the genus *Pantoea* and having an ability to produce L-glutamic acid;
- (2) a microorganism of the above (1) which is *Klebsiella planticola* or *Pantoea agglomerans*;
- 30 (3) a microorganism of the above (1) or (2) which increases in an activity of an enzyme catalyzing a reaction for L-glutamic acid biosynthesis;
- (4) a microorganism of the above (3) wherein the enzyme catalyzing the reaction for the L-glutamic acid biosynthesis is at least one selected from the group consisting of citrate synthase (abbreviated as "CS" hereinafter), phosphoenolpyruvate carboxylase (abbreviated as "PEPC" hereinafter), and glutamate dehydrogenase (abbreviated as "GDH" hereinafter);
- 35 (5) a microorganism of the above (4) wherein the enzyme catalyzing the reaction for the L-glutamic acid biosynthesis includes all of CS, PEPC, and GDH;
- (6) a microorganism of any one of the above (1) to (5) which decreases in or is deficient in an activity of an enzyme catalyzing a reaction branching from a pathway for L-glutamic acid biosynthesis and producing a compound other than L-glutamic acid;
- 40 (7) a microorganism of the above (6) wherein the enzyme catalyzing the reaction branching from the pathway for L-glutamic acid biosynthesis and producing the compound other than L-glutamic acid is α -ketoglutarate dehydrogenase (abbreviated as " α KGDH" hereinafter); and
- (8) a method for producing L-glutamic acid which comprises culturing the microorganism as defined in any one of the above (1) to (7) in a liquid culture medium to produce and accumulate L-glutamic acid in the culture medium, and collecting the L-glutamic acid from the culture medium.
- 45
- 50

- [0007] Because the microorganism of the present invention have a high ability to produce L-glutamic acid, it is considered to be possible to impart a further higher production ability to the microorganism by using the breeding techniques previously known for the coryneform L-glutamic acid-producing bacteria and the like, and it is expected to contribute to development of a more inexpensive and more efficient method for producing L-glutamic acid by appropriately selecting culture conditions and the like.
- 55

BRIEF EXPLANATION OF THE DRAWINGS

- [0008] Figure 1 shows construction of a plasmid pMWCPG having a *gltA* gene, a *ppc* gene and a *gdhA* gene.
 [0009] Figure 2 shows construction of a plasmid pMWG having the *gdhA* gene.
 5 [0010] Figure 3 shows construction of a plasmid pMWC having the *gltA* gene.
 [0011] Figure 4 shows construction of a plasmid RSF-Tet having a replication origin of a wide-host-range plasmid RSF1010 and a tetracycline resistance gene.
 [0012] Figure 5 shows construction of a plasmid RSFCPG having the replication origin of the wide-host-range plasmid RSF1010, the tetracycline resistance gene, the *gltA* gene, the *ppc* gene and the *gdhA* gene.

DETAILED DESCRIPTION OF THE INVENTION

- [0013] The present invention will be explained in detail hereinafter.
 [0014] Examples of the microorganism belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea* that can be used for
 15 the present invention are listed below.

Klebsiella planticola
Klebsiella terrigena
Erwinia herbicola (now classified as *Pantoea agglomerans*)
 20 *Erwinia ananas*
Erwinia cacticida
Erwinia chrysanthemi
Erwinia mallotivora
Erwinia persicinus
 25 *Erwinia psidii*
Erwinia quercina
Erwinia rhamontici
Erwinia rubrifaciens
Erwinia salicis
 30 *Erwinia uredovora*
Pantoea agglomerans
Pantoea dispersa

- [0015] More preferably, those bacterial strains listed below can be mentioned:
 35 *Klebsiella planticola AJ13399*
Erwinia herbicola IAM1595 (Pantoea agglomerans AJ2666)
 [0016] The *Klebsiella planticola AJ13399* was deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry on February 19, 1998, and received an accession number of FERM P-16646, and then transferred to an international deposition under the
 40 Budapest Treaty on January 11, 1999, and received an accession number of FERM BP-6616. Microorganisms which have been classified as *Erwinia herbicola* are now classified as *Pantoea agglomerans*. Therefore, the *Erwinia herbicola* IAM1595 is designated as *Pantoea agglomerans AJ2666*, and was deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry on February 25, 1999 as an international deposition under the Budapest Treaty and received an accession number of
 45 FERM BP-6660.
 [0017] The *Klebsiella planticola AJ13399* is a strain isolated from soil in Sapporo-shi, Hokkaido, Japan.
 [0018] Physiological properties of AJ13399 are as follows:

- 50 (1) Cell morphology: Rod-shaped
 (2) Motility: Absent
 (3) Spore formation: Absent
 (4) Colony morphology on LabM nutrient agar: Circular, smooth surface, cream in color, even, raised, and glistening
 (5) Glucose OF test: Positive for fermentability
 (6) Gram stain: Negative
 55 (7) Behavior for oxygen: Facultative anaerobe
 (8) Catalase: Positive
 (9) Oxidase: Negative
 (10) Urease: Positive

(11) Cytochrome oxidase: Negative
 (12) β -Galactosidase: Positive
 (13) Arginine dehydrolase: Negative
 (14) Ornithine decarboxylase: Negative
 5 (15) Lysine decarboxylase: Positive
 (16) Tryptophan deaminase: Negative
 (17) Voges-Proskauer reaction: Positive
 (18) Indole production: Positive
 (19) Hydrogen sulfide production in TSI culture medium: Negative
 10 (20) Citric acid assimilability: Positive
 (21) m-Hydroxybenzene acid assimilability: Negative
 (22) Gelatin liquefaction: Negative
 (23) Production of acid from sugar

15 Glucose: Positive
 Mannitol: Positive
 Rhamnose: Positive
 Arabinose: Positive
 Sucrose: Positive
 20 Sorbitol: Positive
 Inositol: Positive
 Melibiose: Positive
 Amygdalin: Positive
 Adonitol-peptone-water: Positive
 25 Celllobiose-peptone-water: Positive
 Dulcitol-peptone-water: Negative
 Raffinose-peptone-water: Positive

(23) Growth temperature: Good growth at 37°C, no growth at 45°C

30 [0019] From these bacteriological properties, AJ13399 is determined to be *Klebsiella planticola*.
 [0020] In the "Bergey's Manual of Determinative Bacteriology, ninth edition," *Erwinia helbica* is not described and microorganisms which have been classified as *Erwinia helbica* are classified as *Pantoea agglomerans*. Thus the microorganisms belonging to genus *Erwinia* and the microorganisms belonging to the genus *Pantoea* are closely related to each other. Therefore, any of microorganisms belonging to the genus *Erwinia* and the genus *Pantoea* can be used in the present invention.
 35 [0021] The sugar metabolism by bacteria belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea* such as those mentioned above is achieved via the Embden-Meyerhof pathway, and pyruvate produced in the pathway is oxidized in the tricarboxylic acid cycle as for aerobic conditions. L-Glutamic acid is biosynthesized from α -ketoglutaric acid which is an intermediate of the tricarboxylic acid cycle by GDH or glutamine synthetase/glutamate synthase. Thus, these microorganisms share the same biosynthetic pathway for L-glutamic acid, and microorganisms belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea* are encompassed within a single concept according to the present invention. Therefore, microorganisms belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea* other than species and strains specifically mentioned above also fall within the scope of the present invention.
 40 [0022] The microorganism of the present invention is a microorganism belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea* and having an ability to produce L-glutamic acid. The expression "having an ability to produce L-glutamic acid" as herein used means to have an ability to accumulate L-glutamic acid in a culture medium during cultivation. The ability to produce L-glutamic acid may be either one possessed by a wild-type strain as its property, or one imparted or enhanced by breeding. The examples of the microorganism belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea* and having the ability to produce L-glutamic acid include, for example, such microorganisms which increase in an activity of an enzyme catalyzing a reaction for L-glutamic acid biosynthesis, and such microorganisms which decrease in or are deficient in an activity of an enzyme catalyzing a reaction branching from a pathway for L-glutamic acid biosynthesis and producing a compound other than L-glutamic acid. The examples of the microorganism further include those increasing in the activity of the enzyme catalyzing the reaction for the L-glutamic acid biosynthesis, and decreasing in or being deficient in the activity of the enzyme catalyzing the reaction branching from the pathway for L-glutamic acid biosynthesis and producing the compound other than L-glutamic acid.
 45 [0023] As examples of the enzyme catalyzing the reaction for L-glutamic acid biosynthesis, there can be mentioned GDH, glutamine synthetase, glutamate synthase, isocitrate dehydrogenase, aconitate hydratase, CS, PEPC, pyruvate

dehydrogenase, pyruvate kinase, enolase, phosphoglyceromutase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, fructose bisphosphate aldolase, phosphofructokinase, glucose phosphate isomerase and the like. Among these enzymes, one or two or three kinds of CS, PEPC and GDH are preferred. As for the microorganism of the present invention, it is further preferred that activities of all of the three kinds of enzymes, CS, PEPC and GDH, are increased. Whether a microorganism increases in an activity of a target enzyme, and degree of the increase of the activity can be determined by measuring the enzyme activity of a bacterial cell extract or a purified fraction, and comparing it with that of a wild type strain or a parent strain.

[0024] The microorganism of the present invention, which belongs to the genus *Klebsiella*, *Erwinia* or *Pantoea*, and increases in the activity of the enzyme catalyzing the reaction for L-glutamic acid biosynthesis, can be obtained as, for example, a variant where mutation has been made in a gene encoding the enzyme or a genetic recombinant strain by using any of the microorganisms mentioned above as a starting parent strain.

[0025] To enhance the activity of CS, PEPC or GDH, for example, a gene encoding CS, PEPC or GDH can be cloned in a suitable plasmid, and the aforementioned starting parent strain as a host can be transformed with the resulting plasmid. This can increase the copy number of each of the genes encoding CS, PEPC and GDH (hereinafter abbreviated as "gltA gene", "ppc gene", and "gdhA gene", respectively), and as a result the activities of CS, PEPC and GDH can be increased.

[0026] One or two or three kinds selected from the cloned gltA gene, ppc gene and gdhA gene in any combination are introduced into the starting parent strain mentioned above. When two or three kinds of the genes are introduced, either the two or three kinds of the genes are cloned in one kind of plasmid, and introduced into the host, or they are separately cloned in two or three kinds of plasmids that can exist in the same host, and introduced into the host.

[0027] The plasmid is not particularly limited so long as it can autonomously replicate in a microorganism belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea*. Examples of the plasmid include, for example, pUC19, pUC18, pBR322, pHSG299, pHSG298, pHSG399, pHSG398, RSF1010, pMW119, pMW118, pMW219, pMW218 and the like. Other than these plasmids, phage DNA vectors can also be utilized.

[0028] Transformation can be achieved by, for example, the method of D.M. Morrison (Methods in Enzymology 68, 326 (1979)), the method by increasing permeability of recipient cells for DNA with calcium chloride (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1970)), or the like.

[0029] The activities of CS, PEPC and GDH can also be increased by using multiple copies of the gltA gene, the ppc gene and/or the gdh gene present on the chromosome DNA of the starting parent strain as a host. In order to introduce multiple copies of the gltA gene, the ppc gene and/or the gdhA gene into a chromosome DNA of a microorganism belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea*, sequences present on chromosome DNA in a multiple copy number such as repetitive DNA, and inverted repeats present at an end of transposition factors can be utilized. Alternatively, multiple copies of the genes can also be introduced into a chromosome DNA by utilizing transposition of transposons carrying the gltA gene, the ppc gene, or the gdhA gene. These techniques can increase the copy number of the gltA gene, the ppc gene, and the gdhA gene in transformant cells, and as a result increase the activities of CS, PEPC and GDH.

[0030] Any organisms can be used as a source of the gltA gene, the ppc gene and the gdhA gene used for increasing the copy numbers, so long as the organisms have the CS, PEPC and GDH activities. Among such organisms, bacteria, i.e., prokaryotes, such as those bacteria belonging to the genus *Enterobacter*, *Klebsiella*, *Erwinia*, *Pantoea*, *Serratia*, *Escherichia*, *Corynebacterium*, *Brevibacterium*, or *Bacillus* are preferred. As a specific example, *Escherichia coli* can be mentioned. The gltA gene, the ppc gene and the gdhA gene can be obtained from a chromosome DNA of such microorganisms as mentioned above.

[0031] The gltA gene, the ppc gene and the gdhA gene can each be obtained from a chromosome DNA of any of the aforementioned microorganisms by isolating a DNA fragment complementing auxotrophy of a variant strain lacking the CS, PEPC or GDH activity. Alternatively, because the nucleotide sequences of these genes of bacteria of the genus *Escherichia* or *Corynebacterium* have already been elucidated (Biochemistry, Vol. 22, pp.5243-5249, 1983; J. Biochem. Vol. 95, pp.909-916, 1984; Gene, Vol. 27, pp.193-199, 1984; Microbiology, Vol. 140, pp.1817-1828, 1994; Mol. Gen. Genet. Vol. 218, pp.330-339, 1989; and Molecular Microbiology, Vol. 6, pp.317-326, 1992), the genes can be obtained by PCR using primers synthesized based on each of the elucidated nucleotide sequences, and the chromosome DNA as a template.

[0032] The activity of CS, PEPC or GDH can also be increased by, other than by the gene amplification mentioned above, enhancing expression of the gltA gene, the ppc gene or the gdhA gene. For example, the expression is enhanced by replacing the promoter of the gltA gene, the ppc gene, or the gdhA gene with another stronger promoter. Examples of such a strong promoter include, for example, a lac promoter, a trp promoter, a trc promoter, a tac promoter, a P_R promoter and a P_L promoter of lambda phage and the like. The gltA gene, the ppc gene, or the gdhA gene of which promoter has been substituted is cloned into a plasmid and introduced into a host microorganism, or introduced into a chromosome DNA of host microorganism using a repetitive DNA, inverted repeat, transposon or the like.

[0033] The activities of CS, PEPC or GDH can also be increased by replacing the promoter of the gltA gene, the ppc

gene, or the *gdhA* gene on a chromosome with another stronger promoter (see WO87/03006, and Japanese Patent Application Laid-Open (KOKAI) No. 61-268183(1986)), or inserting a strong promoter at the upstream of each coding sequence of the genes (see Gene, 29, pp. 231-241, 1984). Specifically, these are achieved by homologous recombination between the *gltA* gene, the *ppc* gene, or the *gdhA* gene of which promoter is replaced with a stronger promoter or DNA containing a part of them, and a corresponding gene on the chromosome.

[0034] Specific examples of the microorganism belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea* of which CS, PEPC or GDH activity is increased include, for example, *Klebsiella planticola* ATJ13399/RSFCPG, and *Erwinia herbicola* IAM1595/RSFCPG.

[0035] Examples of the enzyme catalyzing the reaction branching from the pathway of L-glutamic acid biosynthesis and producing the compound other than L-glutamic acid include, for example, α KGDH, isocitrate lyase, phosphate acetyltransferase, acetate kinase, acetohydroxy acid synthase, acetolactate synthase, formate acetyltransferase, lactate dehydrogenase, L-glutamate decarboxylase, 1-pyrroline dehydrogenase and the like. Among these enzymes, α KGDH is preferred.

[0036] In order to obtain such decrease or deficiency of enzyme activity as mentioned above in a microorganism belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea*, a mutation causing the decrease or deficiency of the enzyme activity can be introduced into a gene encoding the enzyme by a conventional mutagenesis technique or genetic engineering technique.

[0037] Examples of the mutagenesis technique include, for example, the method utilizing irradiation of X-ray or ultraviolet light, the method utilizing treatment with a mutagenic agent such as N-methyl-N'-nitro-N-nitrosoguanidine and the like. The site of gene to which a mutation is introduced may be a coding region encoding an enzyme protein, or an expression regulatory region such as a promoter.

[0038] Examples of the genetic engineering technique include, for example, genetic recombination, genetic transduction, cell fusion and the like. For example, a drug resistance gene is inserted into a target gene to produce a functionally inactivated gene (defective gene). Then, this defective gene is introduced into a cell of a microorganism belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea*, and the target gene on a chromosome is replaced with the defective gene by homologous recombination (gene disruption).

[0039] Whether a microorganism decreases in an activity of a target enzyme or is deficient in the activity, or degree of the decrease of the activity can be determined by measuring the enzyme activity of a bacterial cell extract or a purified fraction of a candidate strain, and comparing it with that of a wild-type strain or a parent strain. The α KGDH enzymatic activity can be measured by, for example, the method of Reed et al. (L.J. Reed and B.B. Mukherjee, Methods in Enzymology 1969, 13, p.55-61).

[0040] Depending on the target enzyme, a target variant can be selected based on a phenotype of the variant. For example, a variant which is deficient in the α KGDH activity or decreases in the activity cannot grow on a minimal medium containing glucose, or a minimal medium containing acetic acid or L-glutamic acid as an exclusive carbon source, or shows markedly reduced growth rate therein under aerobic conditions. However, even under the same condition, it can exhibit normal growth by addition of succinic acid or lysine, methionine and diaminopimelate to the minimal medium containing glucose. Based on these phenomena, a variant that is deficient in the α KGDH activity or decreases in the activity can be selected.

[0041] A method for producing a *Brevibacterium lactofermentum* strain lacking the α KGDH gene based on homologous recombination is detailed in WO95/34672, and a similar method can be used for microorganisms belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea*.

[0042] In addition, procedures of genetic cloning, cleavage and ligation of DNA, transformation and the like are detailed in Molecular Cloning, 2nd edition, Cold Spring Harbor Press (1989) and the like.

[0043] An example of the variant strain that is deficient in the α KGDH activity or decreases in the activity obtained as described above is *Klebsiella planticola* AJ13410. The *Klebsiella planticola* AJ13410 was deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry on February 19, 1998, received an accession number of FERM P-16647, and then transferred to an international deposition under the Budapest Treaty on January 11, 1999, and received an accession number of FERM BP-6617.

[0044] Bacterial strains belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea* and decreasing in the activity of α KGDH activity or being deficient in the activity, or those increasing in the activity of CS, PEPC or GDH obtained as described above would have the ability to produce L-glutamic acid as shown in the examples hereinafter.

[0045] As for microorganisms belonging to the genus *Escherichia*, which is classified into the enteric bacteria like the genus *Klebsiella*, *Erwinia* or *Pantoea*, there have been known that strains which decrease in the activity of the α KGDH or are deficient in the activity may produce L-glutamic acid (Japanese Patent Application Laid-Open No. 5-244970(1993)), that strains which decrease in the activity of the α KGDH or are deficient in the activity and increase in the activities of PEPC and GDH may produce a further increased amount of L-glutamic acid (Japanese Patent Application Laid-Open No. 7-203980(1995)), and that strains exhibiting valine sensitivity and having enhanced activities

of CS and GDH may produce L-glutamic acid (WO97/08294).

[0046] As for microorganisms belonging to the genus *Enterobacter*, which is similarly classified into the enteric bacteria, the present inventors found that strains which decrease in the activity of the α KGDH or are deficient in the activity, or strains which increase in activities of PEPC, GDH and CS may produce L-glutamic acid (Japanese Patent Application No. 10-69068(1998)).

[0047] Further, as also for microorganisms belonging to the genus *Serratia*, the present inventors found that strains having enhanced activities of PEPC, GDH and CS may produce L-glutamic acid (Japanese Patent Application No. 10-69068(1998)).

[0048] From these facts, it is readily expected, as for bacteria belonging to the genus *Klebsiella*, *Erwinia*, *Pantoea*, *Escherichia*, *Enterobacter* or *Serratia* other than the strains described in the Examples, that strains decreasing in the activity of the α KGDH or being deficient in the activity, or strains increasing in the activities of PEPC, GDH and CS may produce L-glutamic acid. As demonstrated in the Examples, it is strongly supported that the fact that the ability to produce L-glutamic acid could be imparted to *Klebsiella planticola* AJ13399 by deleting the α KGDH may be applied to the other bacteria of the genus *Klebsiella*, *Erwinia* or *Pantoea*.

[0049] L-Glutamic acid can be produced by culturing the microorganism belonging to the genus *Klebsiella*, *Erwinia* or *Pantoea* and having the ability to produce L-glutamic acid in a liquid culture medium to produce and accumulate L-glutamic acid in the medium, and collecting it from the culture medium.

[0050] The culture medium may be an ordinary nutrient medium containing a carbon source, a nitrogen source, and inorganic salts, as well as organic nutrients such as amino acids, vitamins and the like, as required. It can be a synthetic medium or a natural medium. Any carbon sources and nitrogen sources can be used for the culture medium so long as they can be utilized by the microorganism to be cultured.

[0051] The carbon source may be a saccharide such as glucose, glycerol, fructose, sucrose, maltose, mannose, galactose, starch hydrolysates, molasses and the like. Further, an organic acid such as acetic acid and citric acid may also be used alone or in combination with other carbon sources.

[0052] The nitrogen source may be ammonia, ammonium salts such as ammonium sulfate, ammonium carbonate, ammonium chloride, ammonium phosphate, and ammonium acetate, nitrates and the like.

[0053] As organic trace nutrients, amino acids, vitamins, fatty acids, nucleic acids, materials containing them such as peptone, casamino acid, yeast extract, and soybean protein decomposition products and the like are used, and when an auxotrophic variant which requires an amino acid or the like for its growth is used, it is necessary to complement the nutrient required.

[0054] As the inorganic salt, phosphates, magnesium salts, calcium salts, iron salts, manganese salts and the like are used.

[0055] As for the culture conditions, cultivation may be performed under aerobic conditions at a temperature of 20 to 42°C and a pH of 4 to 8. The cultivation can be continued for 10 hours to 4 days to accumulate a considerable amount of L-glutamic acid in the liquid culture medium.

[0056] After the completion of the cultivation, L-glutamic acid accumulated in the culture medium may be collected by a known method. For example, it can be isolated by a method comprising concentrating the medium after removing the cells to crystallize the product, ion exchange chromatography or the like.

40 Examples

[0057] The present invention will be explained more specifically with reference to the following examples.

(1) Construction of plasmid having *gltA* gene, *ppc* gene and *gdhA* gene

[0058] Procedure for construction of a plasmid having a *gltA* gene, a *ppc* gene and a *gdhA* gene will be explained by referring to Figures 1, 2 and 3.

[0059] A plasmid pBRGDH having a *gdhA* gene derived from *Escherichia coli* (Japanese Patent Application Laid-Open (KOKAI) No. 7-203980(1995)) was digested with *Hind*III and *Sph*I, and the both ends were blunt-ended by a treatment with T4 DNA polymerase. Then, a DNA fragment containing the *gdhA* gene was purified and collected. On the other hand, a plasmid pMWCP having a *gltA* gene and a *ppc* gene derived from *Escherichia coli* (WO97/08294) was digested with *Xba*I, and the both ends were blunt-ended by a treatment with T4 DNA polymerase. This was mixed with the DNA fragment having the *gdhA* gene purified above, and ligated with T4 ligase, giving a plasmid pMWCPG, which corresponds to the pMWCP further carrying the *gdhA* gene (Figure 1).

[0060] A DNA fragment having the *gdhA* gene obtained by digesting the pBRGDH with *Hind*III and *Sal*I was purified and collected, and introduced into the *Hind*III-*Sal*I site of a plasmid pMW219 (purchased from Nippon Gene) to obtain a plasmid pMWG (Figure 2). Furthermore, a plasmid pTWVC having the *gltA* gene derived from *Escherichia coli* (WO97/08294) was digested with *Hind*III and *Eco*RI, and the resulting DNA fragment having the *gltA* gene was purified

and collected, and introduced into the *Hind*III-*Eco*RI site of the plasmid pMW219 to obtain a plasmid pMWC (Figure 3). [0061] At the same time, a product obtained by digesting a plasmid pVIC40 having a replication origin of a wide-host-range plasmid RSF1010 (Japanese Patent Application Laid-Open (KOKAI) No. 8-047397(1996)) with *Nos*I, followed by T4 DNA polymerase treatment and *Pst*I digestion, and a product obtained by digesting pBR322 with *Eco*T141, followed by T4 DNA polymerase treatment and *Pst*I digestion, were mixed and ligated with T4 ligase to obtain a plasmid RSF-Tet having the replication origin of RSF1010 and a tetracycline resistance gene (Figure 4).

[0062] Then, the pMWCPG was digested with *Eco*RI and *Pst*I, and a DNA fragment having the *gltA* gene, the *ppc* gene and the *gdhA* gene was purified and collected. Similarly, the RSF-Tet was digested with *Eco*RI and *Pst*I, and a DNA fragment having the replication origin of RSF1010 was purified and collected. Those DNA fragments were mixed and ligated with T4 ligase to obtain a plasmid RSFCPG composed of RSF-Tet carrying the *gltA* gene, the *ppc* gene and the *gdhA* gene (Figure 5). Expression of the *gltA* gene, the *ppc* gene and the *gdhA* gene by the resulting plasmid RSFCPG was confirmed based on complementation of auxotrophy of *Escherichia coli* strains lacking the *gltA* gene, the *ppc* gene or the *gdhA* gene, and measurement of each enzyme activity. Similarly, expression of the *gdhA* gene or the *gltA* gene by the pMWG or the pMWC was confirmed based on complementation of auxotrophy of *Escherichia coli* strains lacking the *gdhA* gene or the *gltA* gene, and measurement of each enzyme activity.

(2) Introduction of RSFCPG, pMWC and pMWG into genus *Klebsiella* bacterium and genus *Erwinia* (*Pantoea*) bacterium and evaluation of L-glutamic acid productivity

[0063] The *Erwinia herbicola* IAM1595 (*Pantoea agglomerans* AJ2666) and *Klebsiella planticola* AJ13399 were transformed with the RSFCPG, pMWC and pMWG by electroporation (Miller J.H., "A Short Course in Bacterial Genetics; Handbook" Cold Spring Harbor Laboratory Press, USA, 1992) to obtain transformants exhibiting tetracycline resistance.

[0064] Each of the resulting transformants and the parent strains was inoculated into 50 ml-volume large size test tube containing 5 ml of a culture medium comprising 40 g/L glucose, 20 g/L ammonium sulfate, 0.5 g/L magnesium sulfate heptahydrate, 2 g/L potassium dihydrogenphosphate, 0.5 g/L sodium chloride, 0.25 g/L calcium chloride heptahydrate, 0.02 g/L ferrous sulfate heptahydrate, 0.02 g/L manganese sulfate tetrahydrate, 0.72 mg/L zinc sulfate dihydrate, 0.64 mg/L copper sulfate pentahydrate, 0.72 mg/L cobalt chloride hexahydrate, 0.4 mg/L boric acid, 1.2 mg/L sodium molybdate dihydrate, 2 g/L yeast extract, and 30 g/L calcium carbonate, and cultured at 37°C with shaking until the glucose contained in the culture medium was consumed. To the culture medium of the transformants, 25 mg/L of tetracycline was added. After the cultivation was completed, L-glutamic acid accumulated in the culture medium was measured. The results are shown in Table 1.

Table 1:

Accumulated amount of L-glutamic acid	
Bacterial strain	Accumulated amount of L-glutamic acid
IAM1595	0.0 g/L
IAM1595/RSFCPG	5.0
AJ13399	0.0
AJ13399/RSFCPG	3.1
AJ13399/pMWC	2.5
AJ13399/pMWG	0.8
Culture medium alone	0.2

[0065] While the *Erwinia herbicola* IAM1595 and *Klebsiella planticola* AJ13399 did not accumulate L-glutamic acid, the strains whose CS, PEPC and GDH activities were amplified by introducing RSFCPG accumulated 5.0 g/L and 3.1 g/L of L-glutamic acid, respectively. The AJ13399 strain of which CS activity alone was amplified accumulated 2.5 g/L of L-glutamic acid, and the strain of which GDH activity alone was amplified also accumulated 0.8 g/L of L-glutamic acid.

(3) Cloning of fragment having part of α KGDH gene of *Klebsiella planticola* AJ13399

[0066] Cloning of a fragment having a part of the α KGDH gene of *Klebsiella planticola* AJ13399 was performed by PCR using oligonucleotides each having a nucleotide sequence of a homologous region of the α KGDH gene of the organisms whose nucleotide sequences had been already reported, i.e., *Azotobacter vinelandii*, *Bacillus subtilis*, *Escherichia coli*, *Corynebacterium glutamicum*, *Haemophilus influenzae*, human and *Saccharomyces cerevisiae* (Eur. J. Biochem. Vol. 187, pp.235-239, 1990; Mol. Gen. Genet. Vol. 234, pp.285-296, 1992; Eur. J. Biochem. Vol. 141, pp.

351-359, 1984; Microbiology, Vol. 142, pp.3347-3354, 1996; Science, Vol. 269, pp.496-512, 1995; Proc. Natl. Acad. Sci. U.S.A., Vol. 89, pp.1963-1967, 1992; and Mol. Cel. Biol. Vol. 9, pp.2695-2705, 1989), and an EcoRI site as primers.

[0067] Specifically, the followings are used as the primers.

5

(Primer 1)

5' CCGGGAATTCTGGTGACGTNAARTAYCA 3' (SEQ ID NO: 1)

10

(Primer 2)

5' GGCGAATTCTGGAACGGGTASAGYTGYTC 3' (SEQ ID NO: 2)

[0068] The chromosome DNA of the *Klebsiella planticola* AJ13399 used as a template of PCR was isolated by the same method as conventionally used for extracting chromosome DNA from *Escherichia coli* (Seibutsu Kogaku Jikken-sho (Textbook of Bioengineering Experiments), Ed. by the Society of Fermentation and Bioengineering, Japan, p.97-98, Baifukan, 1992).

[0069] The PCR was performed with a cycle consisting of 94°C for 1 minute, 50°C for 1 minute, and 73°C for 3 minutes, which was repeated for 30 cycles, and the resulting DNA fragment was digested with EcoRI, and inserted into a vector plasmid pT7Blue digested with EcoRI to obtain a recombinant plasmid pT7KP. The vector plasmid pT7Blue (ampicillin resistant) used was a commercial product from Novagen.

[0070] The DNA nucleotide sequence of the cloned fragment and the amino acid sequence encoded by the sequence are shown in SEQ ID NO: 3. The same amino acid sequence is solely represented in SEQ ID NO: 4. The sequence showed 82.3% of homology to the αKGDH-E1 subunit gene of *Escherichia coli* (hereinafter referred to as "sucA gene"), and it is clearly recognized as a part of the sucA gene of *Klebsiella planticola* AJ13399. In the nucleotide sequence shown in SEQ ID NO: 3, the nucleotide numbers 18-1659 are derived from the sucA gene, and the nucleotide numbers 0-17 and 1660-1679 are derived from the primers.

(4) Acquisition of strain deficient in αKGDH derived from *Klebsiella planticola* AJ13399

30

[0071] A strain of *Klebsiella planticola* deficient in αKGDH was obtained by homologous recombination using the fragment having a part of the sucA gene of *Klebsiella planticola* obtained as described above.

[0072] First, pT7KP was digested with BstEII and, to this cleaved site, a kanamycin resistance gene fragment, which had been cloned by PCR from a plasmid pNEO (purchased from Pharmacia) and into both ends of which BstEII sites were introduced, was introduced to obtain a plasmid pT7KPKm, in which the kanamycin resistance gene was inserted into the central part of the sucA gene of *Klebsiella planticola*.

[0073] The primers used for the cloning of the kanamycin resistance gene were as follows.

40

(Primer 3)

5' TACTGGGTACCTGACAGCTTATCATCGAT 3' (SEQ ID NO: 5)

45

(Primer 4)

5' CGTTCGGTGACCACCAAAGCGGCCATCGTG 3' (SEQ ID NO: 6)

[0074] Then, the PT7KPKm was cleaved with KpnI and, to this cleaved site, a tetracycline resistance gene fragment, which had been cloned by PCR from a plasmid pBR322 (purchased from Takara Shuzo) and into both ends of which KpnI sites were introduced, was introduced to obtain a plasmid pT7KPKmTc, in which the kanamycin resistance gene was inserted into the central part of the sucA gene of *Klebsiella planticola* together with the inserted flanking tetracycline resistance gene.

[0075] The primers used for the cloning of the tetracycline resistance gene were as follows.

55

(Primer 5)

5' GGGTACCCAAATAGGCGTATCACGAG 3' (SEQ ID NO: 7)

5

(Primer 6)

5' GGGTACCCGCGATGGATATGTTCTG 3' (SEQ ID NO: 8)

10

[0076] Subsequently, the plasmid pT7KPKmTc was digested with *Sac* and *Xba* to cut out a DNA fragment having the kanamycin resistance gene inserted into the central part of the *sucA* gene of *Klebsiella planticola* together with the inserted flanking tetracycline resistance gene, and this was inserted into a gram-negative bacterium chromosome-inserted plasmid vector pGP704 (Marta Herrero et al., Journal of Bacteriology, 1990, 172, p.6557-6567) digested with *Sac* and *Xba* to obtain a plasmid pUTONOK.

[0077] Using the plasmid pUTONOK obtained as described above, *Klebsiella planticola* AJ13399 was transformed by electroporation, and a strain in which the plasmid pUTONOK was inserted into the chromosome by homogenous recombination of the *sucA* gene fragment was selected based on the tetracycline resistance and the kanamycin resistance. From this strain, a *Klebsiella planticola* AJ13410 strain lacking the *sucA*, in which the *sucA* gene on the chromosome was replaced with the *sucA* gene into which the kanamycin resistance gene was inserted at the central part, was further obtained based on the tetracycline sensitivity and the kanamycin resistance.

[0078] To confirm that the AJ13410 strain obtained as described above was deficient in the α KGDH activity, its enzymatic activity was determined by the method of Reed (L.J. Reed and B.B. Mukherjee, Methods in Enzymology 1969, 13, p.55-61). As a result, the α KGDH activity could not be detected in the AJ13410 strain as shown in Table 2, and thus it was confirmed that the strain lacked the *sucA* as desired.

Table 2:

α KGDH activity	
Bacterial strain	α KGDH activity (Δ ABS/min/mg protein)
AJ13399	0.101
AJ13410	<0.002

(5) Evaluation of L-glutamic acid productivity of *Klebsiella planticola* strain deficient in α KGDH

[0079] Each of the AJ13399 and AJ13410 strains was inoculated into a 500 ml-volume flask containing 20 ml of a culture medium comprising 40 g/L glucose, 20 g/L ammonium sulfate, 0.5 g/L magnesium sulfate heptahydrate, 2 g/L potassium dihydrogenphosphate, 0.5 g/L sodium chloride, 0.25 g/L calcium chloride heptahydrate, 0.02 g/L ferrous sulfate heptahydrate, 0.02 g/L manganese sulfate tetrahydrate, 0.72 mg/L zinc sulfate dihydrate, 0.64 mg/L copper sulfate pentahydrate, 0.72 mg/L cobalt chloride hexahydrate, 0.4 mg/L boric acid, 1.2 mg/L sodium molybdate dihydrate, 2 g/L yeast extract, 30 g/L calcium carbonate, 200 mg/L L-lysine monohydrochloride, 200 mg/L L-methionine, and DL- α , ϵ -diaminopimelic acid (DAP), and cultured at 37°C with shaking until the glucose contained in the culture medium was consumed. After the cultivation was completed, L-glutamic acid and α -ketoglutaric acid (abbreviated as " α KG" hereinafter) accumulated in the culture medium were measured. The results are shown in Table 3.

Table 3:

Accumulated amounts of L-glutamic acid and α KG		
Bacterial strain	Accumulated amount of L-glutamic acid	Accumulated amount of α KG
AJ13399	0.0 g/L	0.0 g/L
AJ13410	12.8	1.5

[0080] The AJ13410 strain deficient in the α KGDH activity accumulated 12.8 g/L of L-glutamic acid, and simultaneously accumulated 1.5 g/L of α KG.

(6) Introduction of RSFCPG into *Klebsiella planticola* strain deficient in α KGDH and evaluation of L-glutamic acid productivity

[0081] The AJ13410 strain was transformed with the RSFCPG, and the resulting RSFCPG-introduced strain, AJ13410/RSFCPG, was inoculated into a 500 ml-volume flask containing 20 ml of a culture medium comprising 40 g/L glucose, 20 g/L ammonium sulfate, 0.5 g/L magnesium sulfate heptahydrate, 2 g/L potassium dihydrogenphosphate, 0.5 g/L sodium chloride, 0.25 g/L calcium chloride heptahydrate, 0.02 g/L ferrous sulfate heptahydrate, 0.02 g/L manganese sulfate tetrahydrate, 0.72 mg/L zinc sulfate dihydrate, 0.64 mg/L copper sulfate pentahydrate, 0.72 mg/L cobalt chloride hexahydrate, 0.4 mg/L boric acid, 1.2 mg/L sodium molybdate dihydrate, 2 g/L yeast extract, 25 mg/L tetracycline, 30 g/L calcium carbonate, 200 mg/L L-lysine monohydrochloride, 200 mg/L L-methionine, and DL- α,ϵ -DAP, and cultured at 37°C with shaking until the glucose contained in the culture medium was consumed. After the cultivation was completed, L-glutamic acid and α KG accumulated in the culture medium were measured. The results are shown in Table 4.

Table 4:

Accumulated amounts of L-glutamic acid and α KG		
Bacterial strain	Accumulated amount of L-glutamic acid	Accumulated amount of α KG
AJ13410	12.8 g/L	1.5 g/L
AJ13410/RSFCPG	24.2	0.0

[0082] In the strain of which CS, PEPC and GDH activities were amplified by the introduction of RSFCPG, the accumulated amount of α KG was reduced, and the accumulated amount of L-glutamic acid was further improved.

25

30

35

40

45

50

55

Annex to the description

[0083]

5

SEQUENCE LISTING

10 <110> Ajinomoto Co., Inc.
 <120> L-Glutamic acid-producing bacterium and method for producing L-
 glutamic acid
 <130> EPA-53127
 <150> JP 10-69106
 <151> 1998-03-18
 15 <150> JP 10-224909
 <151> 1998-08-07
 <160> 8
 <170> PatentIn Ver. 2.0

20 <210> 1
 <211> 27
 <212> DNA
 <213> Artificial Sequence
 25 <220>
 <221> misc_feature
 <222> (19)
 <223> n=a or c or g or t
 <220>
 30 <223> Description of Artificial Sequence: primer
 <400> 1
 ccgggaattc ggtgacgtta artayca 27

35 <210> 2
 <211> 29
 <212> DNA
 <213> Artificial Sequence
 <220>
 40 <223> Description of Artificial Sequence: primer
 <400> 2
 ggcgaattcg ggaacgggtt sagytgytc 29

45 <210> 3
 <211> 1679
 <212> DNA
 <213> Klebsiella planticola
 <220>

50 <221> CDS
 <222> (1)..(1679)
 <400> 3
 ggt gac gtg aaa tat cac atg ggc ttc tct tct gac atg gaa acc gaa 48
 Gly Asp Val Lys Tyr His Met Gly Phe Ser Ser Asp Met Glu Thr Glu
 55 1 5 10 15
 ggc ggc ctg gtg cac ctg gcg ctg gcg ttt aac aac ccg tca cac ctc gaa 96

	Gly	Gly	Leu	Val	His	Leu	Ala	Leu	Ala	Phe	Asn	Pro	Ser	His	Leu	Glu	
	20																30
5	atc	gtc	agc	ccg	gtg	gtt	atc	ggg	tcg	gtt	cgc	gcg	cgt	ctc	gat	cgt	144
	Ile	Val	Ser	Pro	Val	Val	Ile	Gly	Ser	Val	Arg	Ala	Arg	Leu	Asp	Arg	
	35																45
10	ctc	gac	gag	ccg	agc	agc	aat	aaa	gtg	ctg	ccg	att	act	atc	cac	ggc	192
	Leu	Asp	Glu	Pro	Ser	Ser	Asn	Lys	Val	Leu	Pro	Ile	Thr	Ile	His	Gly	
	50																60
15	gac	gcc	gca	gtg	acg	ggt	cag	ggc	gtg	gtt	cag	gaa	acc	ctg	aac	atg	240
	Asp	Ala	Ala	Val	Thr	Gly	Gln	Gly	Val	Val	Gln	Glu	Thr	Leu	Asn	Met	
	65																80
20	tcc	aag	gcg	cgt	ggc	tac	gaa	gtg	ggc	gga	acc	gta	cgt	atc	gtt	atc	288
	Ser	Lys	Ala	Arg	Gly	Tyr	Glu	Val	Gly	Gly	Thr	Val	Arg	Ile	Val	Ile	
	85																95
25	aac	aac	cag	gtg	ggc	ttc	act	acc	tcg	aac	ccg	ctg	gat	gcg	cgc	tcc	336
	Asn	Asn	Gln	Val	Gly	Phe	Thr	Ser	Asn	Pro	Leu	Asp	Ala	Arg	Ser		
	100																110
30	acg	cca	tac	tgc	acc	gat	atc	ggt	aaa	atg	gtt	cag	gcg	ccg	atc	ttc	384
	Thr	Pro	Tyr	Cys	Thr	Asp	Ile	Gly	Lys	Met	Val	Gln	Ala	Pro	Ile	Phe	
	115																125
35	cac	gtg	aac	gcg	gac	gat	ccg	gaa	gcc	gtt	gct	ttc	gtt	acc	cgc	ctg	432
	His	Val	Asn	Ala	Asp	Asp	Pro	Glu	Ala	Val	Ala	Phe	Val	Thr	Arg	Leu	
	130																140
40	gcg	ctg	gat	ttc	cgt	aat	acc	ttc	aaa	cgc	gat	gtc	ttc	atc	gac	ctg	480
	Ala	Leu	Asp	Phe	Arg	Asn	Thr	Phe	Lys	Arg	Asp	Val	Phe	Ile	Asp	Leu	
	145																160
45	gtg	tgc	tac	ccg	cgt	cac	ggc	cat	aac	gaa	gcc	gac	gag	ccg	agc	gca	528
	Val	Cys	Tyr	Arg	Arg	His	Gly	His	Asn	Glu	Ala	Asp	Glu	Pro	Ser	Ala	
	165																175
50	acg	cag	ccg	ctg	atg	tat	cag	aaa	atc	aaa	aaa	cat	ccg	acc	ccg	cgc	576
	Thr	Gln	Pro	Leu	Met	Tyr	Gln	Lys	Ile	Lys	Lys	His	Pro	Thr	Pro	Arg	
	180																190
55	aaa	atc	tac	gcc	gac	aaa	ctt	gag	cag	gac	aaa	gtg	tcg	acc	ctg	gaa	624
	Lys	Ile	Tyr	Ala	Asp	Lys	Leu	Glu	Gln	Asp	Lys	Val	Ser	Thr	Leu	Glu	
	195																205
60	gat	gcg	acc	gaa	ctg	gtt	aac	ctc	tat	cgt	gat	gcg	ctg	gat	gcc	ggc	672
	Asp	Ala	Thr	Glu	Leu	Val	Asn	Leu	Tyr	Arg	Asp	Ala	Leu	Asp	Ala	Gly	
	210																220
65	gaa	tgc	gtg	gtt	gag	gaa	tgg	cgt	ccg	atg	aac	ctg	cac	tcc	ttt	acc	720
	Glu	Cys	Val	Val	Glu	Glu	Trp	Arg	Pro	Met	Asn	Leu	His	Ser	Phe	Thr	
	225																240
70	tgg	tca	ccg	tac	ctc	aac	cac	gag	tgg	gat	gag	agc	tac	ccg	agt	aaa	768
	Trp	Ser	Pro	Tyr	Leu	Asn	His	Glu	Trp	Asp	Glu	Ser	Tyr	Pro	Ser	Lys	
	245																255
75	gtc	gag	atg	aaa	cgt	ctg	cag	gag	ctg	gct	aaa	cgc	att	agc	act	gtg	816
	Val	Glu	Met	Lys	Arg	Leu	Gln	Glu	Leu	Ala	Lys	Arg	Ile	Ser	Thr	Val	
	260																270

EP 0 955 368 A2

	ccg gac agc att gaa atg cag tct cgc gtg gcg aag att tat ggc gat	864
	Pro Asp Ser Ile Glu Met Gln Ser Arg Val Ala Lys Ile Tyr Gly Asp	
5	275 280 285	
	cgc cag gcg atg gcc gcc ggc gag aag ctg ttc gac tgg ggg gcg gcg	912
	Arg Gln Ala Met Ala Ala Gly Glu Lys Leu Phe Asp Trp Gly Ala Ala	
	290 295 300	
10	gaa aac ctg gct tac gcc acg ctg gtt gat gaa ggg att ccg att cgc	960
	Glu Asn Leu Ala Tyr Ala Thr Leu Val Asp Glu Gly Ile Pro Ile Arg	
	305 310 315 320	
	ctg tcc ggt gaa gac tcc ggt cgc ggt acg ttc ttc cac cgc cat tcc	1008
	Leu Ser Gly Glu Asp Ser Gly Arg Gly Thr Phe Phe His Arg His Ser	
15	325 330 335	
	gtg att cat aac cag gtg aac ggt tcg acc tac acg ccg ctg cag cat	1056
	Val Ile His Asn Gln Val Asn Gly Ser Thr Tyr Thr Pro Leu Gln His	
	340 345 350	
20	gtg cat aac ggc cag gag cat ttc aaa gtc tgg gac tcc gtg ctt tct	1104
	Val His Asn Gly Gln Glu His Phe Lys Val Trp Asp Ser Val Leu Ser	
	355 360 365	
	gaa gaa gcg gtg ctg gcg ttc gaa tac ggc tac gcc act gcg gaa ccg	1152
	Glu Glu Ala Val Leu Ala Phe Glu Tyr Gly Tyr Ala Thr Ala Glu Pro	
25	370 375 380	
	cgc acc ctg act atc tgg gaa gcg cag ttc ggt gac ttt gct aac ggc	1200
	Arg Thr Leu Thr Ile Trp Glu Ala Gln Phe Gly Asp Phe Ala Asn Gly	
	385 390 395 400	
30	gct caa gtg gtg atc gat cag ttc atc agc tcc ggc gag cag aag tgg	1248
	Ala Gln Val Val Ile Asp Gln Phe Ile Ser Ser Gly Glu Gln Lys Trp	
	405 410 415	
	ggc cggttgtggctgtatgctgtccgttgcacggcactgaa	1296
35	Gly Arg Met Cys Gly Leu Val Met Leu Leu Pro His Gly Tyr Glu Gly	
	420 425 430	
	cag ggc ccg gag cac tcc tcc gcg cgt ctg gaa cgc tat ctg cag ctg	1344
	Gln Gly Pro Glu His Ser Ser Ala Arg Leu Glu Arg Tyr Leu Gln Leu	
	435 440 445	
40	tgt gct gaa cag aat atg cag gtt tgt gtg cca tcg act ccg gct cag	1392
	Cys Ala Glu Gln Asn Met Gln Val Cys Val Pro Ser Thr Pro Ala Gln	
	450 455 460	
	gtt tac cac atg ctg cgt cgt cag gcg ctg cgc ggt atg cgt cgt ccg	1440
45	Val Tyr His Met Leu Arg Arg Gln Ala Leu Arg Gly Met Arg Arg Pro	
	465 470 475 480	
	ctg gtg gtg atg tcg ccg aaa tct ctg ctg cgc cat ccg ctg gcg gtc	1488
	Leu Val Val Met Ser Pro Lys Ser Leu Leu Arg His Pro Leu Ala Val	
	485 490 495	
50	tcc agc ctg gac gag ctg gcg aac ggc acc ttc ctg ccg gcc atc ggt	1536
	Ser Ser Leu Asp Glu Leu Ala Asn Gly Thr Phe Leu Pro Ala Ile Gly	
	500 505 510	
55	gaa atc gat gac ctc gac ccg aaa gcg gtg aag cgt gtt gtc ctg tgc	1584
	Glu Ile Asp Asp Leu Asp Pro Lys Ala Val Lys Arg Val Val Leu Cys	

	515	520	525	
5	tct ggt aag gtt tat tac gat ctg ctg gaa caa cgc cgt aag aac gac			1632
	Ser Gly Lys Val Tyr Tyr Asp Leu Leu Glu Gln Arg Arg Lys Asn Asp			
	530	535	540	
10	caa aaa gat gtc gct atc gtg cgt ata gaa caa ctg tac ccg ttc cc			1679
	Gln Lys Asp Val Ala Ile Val Arg Ile Glu Gln Leu Tyr Pro Phe			
	545	550	555	
15	<210> 4			
	<211> 559			
	<212> PRT			
	<213> Klebsiella planticola			
	<400> 4			
20	Gly Asp Val Lys Tyr His Met Gly Phe Ser Ser Asp Met Glu Thr Glu			
	1	5	10	15
	Gly Gly Leu Val His Leu Ala Leu Ala Phe Asn Pro Ser His Leu Glu			
	20	25	30	
25	Ile Val Ser Pro Val Val Ile Gly Ser Val Arg Ala Arg Leu Asp Arg			
	35	40	45	
	Leu Asp Glu Pro Ser Ser Asn Lys Val Leu Pro Ile Thr Ile His Gly			
	50	55	60	
30	Asp Ala Ala Val Thr Gly Gln Gly Val Val Gln Glu Thr Leu Asn Met			
	65	70	75	80
	Ser Lys Ala Arg Gly Tyr Glu Val Gly Gly Thr Val Arg Ile Val Ile			
	85	90	95	
35	Asn Asn Gln Val Gly Phe Thr Thr Ser Asn Pro Leu Asp Ala Arg Ser			
	100	105	110	
	Thr Pro Tyr Cys Thr Asp Ile Gly Lys Met Val Gln Ala Pro Ile Phe			
	115	120	125	
40	His Val Asn Ala Asp Asp Pro Glu Ala Val Ala Phe Val Thr Arg Leu			
	130	135	140	
	Ala Leu Asp Phe Arg Asn Thr Phe Lys Arg Asp Val Phe Ile Asp Leu			
	145	150	155	160
45	Val Cys Tyr Arg Arg His Gly His Asn Glu Ala Asp Glu Pro Ser Ala			
	165	170	175	
	Thr Gln Pro Leu Met Tyr Gln Lys Ile Lys Lys His Pro Thr Pro Arg			
	180	185	190	
50	Lys Ile Tyr Ala Asp Lys Leu Glu Gln Asp Lys Val Ser Thr Leu Glu			
	195	200	205	
	Asp Ala Thr Glu Leu Val Asn Leu Tyr Arg Asp Ala Leu Asp Ala Gly			
	210	215	220	
	Glu Cys Val Val Glu Glu Trp Arg Pro Met Asn Leu His Ser Phe Thr			
	225	230	235	240
	Trp Ser Pro Tyr Leu Asn His Glu Trp Asp Glu Ser Tyr Pro Ser Lys			
	245	250	255	
55	Val Glu Met Lys Arg Leu Gln Glu Leu Ala Lys Arg Ile Ser Thr Val			
	260	265	270	

Pro Asp Ser Ile Glu Met Gln Ser Arg Val Ala Lys Ile Tyr Gly Asp
 275 280 285
 Arg Gln Ala Met Ala Ala Gly Glu Lys Leu Phe Asp Trp Gly Ala Ala
 5 290 295 300
 Glu Asn Leu Ala Tyr Ala Thr Leu Val Asp Glu Gly Ile Pro Ile Arg
 305 310 315 320
 Leu Ser Gly Glu Asp Ser Gly Arg Gly Thr Phe Phe His Arg His Ser
 10 325 330 335
 Val Ile His Asn Gln Val Asn Gly Ser Thr Tyr Thr Pro Leu Gln His
 340 345 350
 Val His Asn Gly Gln Glu His Phe Lys Val Trp Asp Ser Val Leu Ser
 15 355 360 365
 Glu Glu Ala Val Leu Ala Phe Glu Tyr Gly Tyr Ala Thr Ala Glu Pro
 370 375 380
 Arg Thr Leu Thr Ile Trp Glu Ala Gln Phe Gly Asp Phe Ala Asn Gly
 20 385 390 395 400
 Ala Gln Val Val Ile Asp Gln Phe Ile Ser Ser Gly Glu Gln Lys Trp
 405 410 415
 Gly Arg Met Cys Gly Leu Val Met Leu Leu Pro His Gly Tyr Glu Gly
 420 425 430
 25 Gln Gly Pro Glu His Ser Ser Ala Arg Leu Glu Arg Tyr Leu Gln Leu
 435 440 445
 Cys Ala Glu Gln Asn Met Gln Val Cys Val Pro Ser Thr Pro Ala Gln
 450 455 460
 Val Tyr His Met Leu Arg Arg Gln Ala Leu Arg Gly Met Arg Arg Pro
 30 465 470 475 480
 Leu Val Val Met Ser Pro Lys Ser Leu Leu Arg His Pro Leu Ala Val
 485 490 495
 Ser Ser Leu Asp Glu Leu Ala Asn Gly Thr Phe Leu Pro Ala Ile Gly
 35 500 505 510
 Glu Ile Asp Asp Leu Asp Pro Lys Ala Val Lys Arg Val Val Leu Cys
 515 520 525
 Ser Gly Lys Val Tyr Tyr Asp Leu Leu Glu Gln Arg Arg Lys Asn Asp
 40 530 535 540
 Gln Lys Asp Val Ala Ile Val Arg Ile Glu Gln Leu Tyr Pro Phe
 545 550 555
 45 <210> 5
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 50 <223> Description of Artificial Sequence: primer
 <400> 5
 tactgggtca cctgacagct tatcatcgat 30
 55 <210> 6

<211> 30	
<212> DNA	
5 <213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer	
<400> 6	
10 cgttcggta ccaccaaagc ggccatcgta	30
<210> 7	
<211> 27	
15 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer	
<400> 7	
20 ggggtaccca aataggcgta tcacgag	27
<210> 8	
<211> 26	
25 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer	
<400> 8	
30 ggggtacccg cgatggatat gttctg	26

35

Claims

1. A microorganism belonging to the genus Klebsiella, the genus Erwinia or the genus Pantoea and having the ability to produce L-glutamic acid.
- 40 2. A microorganism according to claim 1 which is Klebsiella planticola or Pantoea agglomerans.
3. A microorganism according to claim 1 or 2 which has increased activity of an enzyme catalyzing a reaction in the L-glutamic acid biosynthesis.
- 45 4. A microorganism according to claim 3 wherein the enzyme catalyzing the reaction in the L-glutamic acid biosynthesis is at least one selected from the group consisting of citrate synthase, phosphoenolpyruvate carboxylase, and glutamate dehydrogenase.
5. A microorganism according to claim 4 wherein the enzyme catalyzing the reaction in the L-glutamic acid biosynthesis includes all of citrate synthase, phosphoenolpyruvate carboxylase, and glutamate dehydrogenase.
- 50 6. A microorganism according to any one of claims 1 to 5 which has decreased activity or is deficient in the activity of an enzyme catalyzing a reaction branching from the pathway for L-glutamic acid biosynthesis and producing a compound other than L-glutamic acid.
7. A microorganism according to claim 6 wherein the enzyme catalyzing the reaction branching from the pathway for L-glutamic acid biosynthesis and producing a compound other than L-glutamic acid is α -ketoglutarate dehydroge-

nase.

8. A method for producing L-glutamic acid which comprises culturing the microorganism as defined in any one of claims 1 to 7 in a liquid culture medium to produce and accumulate L-glutamic acid in the culture medium, and
5 collecting the L-glutamic acid from the culture medium.

10

15

20

25

30

35

40

45

50

55

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5