Since we don't quite know enough yet to work with vectors and operators in Hilbert space, we'll begin by working with vectors and operators in \mathbb{R}^2 , the Euclidean plane. We'll use standard notation like \vec{A} and \vec{B} for the vectors. Consider the two operators, R_{30} and T_{45} , defined as follows:

- The operator R_{30} rotates any vector by 30° counter-clockwise.
- The operator T_{45} reflects any vector through the line that makes a 45° angle with the x axis, *i.e.* the line with slope 1.

In other words, if \vec{A} is an arbitrary vector, then the vector $\vec{B} = R_{30}\vec{A}$ is the vector obtained by rotating \vec{A} 30° counter-clockwise. The vector $\vec{C} = T_{45}\vec{A}$ is the vector obtained by reflecting \vec{A} through the line with slope 1.

(1) On the axes below, implement these operators for two or three example vectors, by explicitly constructing $\vec{B} = R_{30}\vec{A}$ and $\vec{C} = T_{45}\vec{A}$.

$$\vec{B} = R_{30}\vec{A}$$

-2

$$\vec{C} = T_{45}\vec{A}$$

- (2) In quantum mechanics, operators are supposed to be linear, meaning that
 - 1. $\hat{A}(c|\Psi\rangle) = c(\hat{A}|\Psi\rangle)$, where c is a scalar (a complex number).
 - 2. $\hat{A}(|\Psi\rangle + |\Phi\rangle) = \hat{A}|\Psi\rangle + \hat{A}|\Phi\rangle$.

Show by explicit construction, using the axes below, that R_{30} and T_{45} are linear. (Of course in this context, the scalar c is a real number.)

When adding vectors together, use the tip-to-tail rule to add them graphically.

Property 1

Property 2

