$\overrightarrow{OP} = \langle 3, 2 \rangle = 3\mathbf{i} + 2\mathbf{j}$ $|\overrightarrow{OP}| = \sqrt{13}$

53. a. Hyperbola **b.** Foci $(\pm \sqrt{3}, 0)$, vertices $(\pm 1, 0)$, directrices $x = \pm \frac{1}{\sqrt{3}}$ **c.** $e = \sqrt{3}$

d. $y = -\sqrt{2}x$ $y = -\sqrt{2}x$

55. a. Hyperbola **b.** Foci $(0, \pm 2\sqrt{5})$, vertices $(0, \pm 4)$, directrices $y = \pm \frac{8}{\sqrt{5}}$ **c.** $e = \frac{\sqrt{5}}{2}$

y = -2x 6 y = 2x 4 x

57. a. Ellipse **b.** Foci $(\pm \sqrt{2}, 0)$, vertices $(\pm 2, 0)$, directrices $x = \pm 2\sqrt{2}$ **c.** $e = \frac{\sqrt{2}}{2}$

59. $y = \frac{3}{2}x - 2$

$$y = \frac{x}{2}$$

$$y = 10$$

$$y = 10$$

$$y = 10$$

$$(0, 4)$$

$$y = 10$$

$$(0, 4)$$

$$y = -1$$

$$y = -10$$

69. $e = 2/3, y = \pm 9, (\pm 2\sqrt{5}, 0)$ **71.** $m = \frac{b}{a}$

75. a. $x = \pm a \cos^{2/n} t$, $y = \pm b \sin^{2/n} t$ **c.** The curve becomes more rectangular as *n* increases. **CHAPTER 13**

Section 13.1 Exercises, pp. 813-816

3. There are infinitely many vectors with the same direction and length as **v**. **5.** $\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$ **7.** No **9.** $|\langle v_1, v_2 \rangle| = \sqrt{v_1^2 + v_2^2}$ **11.** If *P* has coordinates (x_1, y_1) and *Q* has coordinates (x_2, y_2) , then the magnitude of \overrightarrow{PQ} is given by $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$. **13.** a, c, e **15.** a. 3**v** b. 2**u** c. -3**u** d. -2**u** e. v **17.** a. 3**u** + 3**v** b. **u** + 2**v** c. 2**u** + 5**v** d. -2**u** + 3**v** e. 3**u** + 2**v** f. -3**u** - 2**v** g. -2**u** - 4**v** h. **u** - 4**v** i. -**u** - 6**v**

b. $\overrightarrow{QP} = \langle -1, 0 \rangle = -\mathbf{i}$ $|\overrightarrow{QP}| = 1$

23.
$$\overrightarrow{QT}$$
 25. $\langle -4, 10 \rangle$ **27.** $\langle 52, -30 \rangle$ **29.** $2\sqrt{2}$

31. w - u **33.**
$$13\left\langle -\frac{5}{13}, \frac{12}{13} \right\rangle$$
 35. $\langle 3, 3\sqrt{3} \rangle$

37.
$$\left\langle \frac{15}{13}, -\frac{36}{13} \right\rangle$$
 39. $\left\langle \frac{30}{\sqrt{13}}, -\frac{20}{\sqrt{13}} \right\rangle$ 41. $-\mathbf{i} + 10\mathbf{j}$

43.
$$\pm \frac{1}{\sqrt{61}} \langle 6, 5 \rangle$$
 45. $\left\langle -\frac{28}{\sqrt{74}}, \frac{20}{\sqrt{74}} \right\rangle, \left\langle \frac{28}{\sqrt{74}}, -\frac{20}{\sqrt{74}} \right\rangle$

47. a.
$$\left\langle \frac{3}{5}, -\frac{4}{5} \right\rangle, \left\langle -\frac{3}{5}, \frac{4}{5} \right\rangle$$
 b. $b = \pm \frac{2\sqrt{2}}{3}$ **c.** $a = \pm \frac{3}{\sqrt{10}}$

49.
$$\langle -4\sqrt{3}, 4 \rangle$$
 51. $\langle 15\sqrt{3}, -15 \rangle$ **53. a.** $\mathbf{v}_a = \langle -320, 0 \rangle;$ $\mathbf{w} = \langle -20\sqrt{2}, -20\sqrt{2} \rangle;$ $\mathbf{v}_g = \langle -320 - 20\sqrt{2}, -20\sqrt{2} \rangle$

b. Approx. 349.4 mi/hr; approx.
$$4.6^{\circ}$$
 south of west

55. Approx. 490.3 mi/hr with a heading of about 1.2° west of north 57. $5\sqrt{65}$ km/hr ≈ 40.3 km/hr 59. 1 m/s in the direction 30° east of north **61. a.** $(20, 20\sqrt{3})$ **b.** Yes **c.** No **63.** $250\sqrt{2}$ lb

g. False **h.** True **67.**
$$\mathbf{x} = \left\langle \frac{1}{5}, -\frac{3}{10} \right\rangle$$
 69. $\mathbf{x} = \left\langle \frac{4}{3}, -\frac{11}{3} \right\rangle$

71.
$$4\mathbf{i} - 8\mathbf{j}$$
 73. $\langle a, b \rangle = \left(\frac{a+b}{2}\right)\mathbf{u} + \left(\frac{b-a}{2}\right)\mathbf{v}$

75. a. 0 b. The 6:00 vector **c.** Sum any six consecutive vectors. **d.** A vector pointing from 12:00 to 6:00 with a length 12 times the radius of the clock

77.
$$\mathbf{u} + \mathbf{v} = \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle = \langle u_1 + v_1, u_2 + v_2 \rangle$$

= $\langle v_1 + u_1, v_2 + u_2 \rangle = \langle v_1, v_2 \rangle + \langle u_1, u_2 \rangle$
= $\mathbf{v} + \mathbf{u}$

79.
$$a(c\mathbf{v}) = a(c\langle v_1, v_2 \rangle) = a\langle cv_1, cv_2 \rangle$$

 $= \langle acv_1, acv_2 \rangle = \langle (ac)v_1, (ac)v_2 \rangle$
 $= ac\langle v_1, v_2 \rangle = (ac)\mathbf{v}$

81.
$$(a+c)\mathbf{v} = (a+c)\langle v_1, v_2 \rangle$$

$$= \langle (a+c)v_1, (a+c)v_2 \rangle$$

$$= \langle av_1 + cv_1, av_2 + cv_2 \rangle$$

$$= \langle av_1, av_2 \rangle + \langle cv_1, cv_2 \rangle$$

$$= a\langle v_1, v_2 \rangle + c\langle v_1, v_2 \rangle$$

$$= a\mathbf{v} + c\mathbf{v}$$

85. a. $\{u, v\}$ are linearly dependent. $\{u, w\}$ and $\{v, w\}$ are linearly independent. **b.** Two linearly dependent vectors are parallel. Two linearly independent vectors are not parallel. 87. a. $\frac{5}{3}$ b. -15

Section 13.2 Exercises, pp. 823-827

1. Move 3 units from the origin in the direction of the positive *x*-axis, then 2 units in the direction of the negative y-axis, and then 1 unit in the direction of the positive z-axis. 3. It is parallel to the yz-plane and contains the point (4, 0, 0). **5. u** + **v** = (9, 0, -6); $3\mathbf{u} - \mathbf{v} = \langle 3, 20, -22 \rangle$ 7. (0, 0, -4) 9. A(3, 0, 5), B(3, 4, 0),C(0,4,5) 11. A(3,-4,5), B(0,-4,0), C(0,-4,5)

23.
$$(x-1)^2 + (y-2)^2 + (z-3)^2 = 16$$

25.
$$(x+2)^2 + y^2 + (z-4)^2 \le 1$$

27. $(x-\frac{3}{2})^2+(y-\frac{3}{2})^2+(z-7)^2=\frac{13}{2}$ **29.** A sphere centered at (1,0,0) with radius 3 **31.** A sphere centered at (0,1,2) with radius 3 33. All points on or outside the sphere with center (0, 7, 0)and radius 6 35. The ball centered at (4, 7, 9) with radius 15 **37.** The single point (1, -3, 0) **39. a.** $\langle 12, -7, 2 \rangle$

b.
$$\langle 16, -13, -1 \rangle$$
 c. 5 **41. a.** $\langle -4, 5, -4 \rangle$ **b.** $\langle -9, 3, -9 \rangle$

c.
$$3\sqrt{2}$$
 43. a. $\langle -15, 23, 22 \rangle$ **b.** $\langle -31, 49, 33 \rangle$ **c.** $3\sqrt{5}$ **45. a.** $\overrightarrow{PQ} = \langle 2, 6, 2 \rangle = 2\mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$ **b.** $|\overrightarrow{PQ}| = 2\sqrt{11}$

c.
$$\left\langle \frac{1}{\sqrt{11}}, \frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}} \right\rangle$$
 and $\left\langle -\frac{1}{\sqrt{11}}, -\frac{3}{\sqrt{11}}, -\frac{1}{\sqrt{11}} \right\rangle$
47. a. $\overrightarrow{PQ} = \langle 0, -5, 1 \rangle = -5\mathbf{j} + \mathbf{k}$ b. $|\overrightarrow{PQ}| = \sqrt{26}$

47. a.
$$\overrightarrow{PO} = \langle 0, -5, 1 \rangle = -5\mathbf{i} + \mathbf{k}$$
 b. $|\overrightarrow{PO}| = \sqrt{26}$

c.
$$\left\langle 0, -\frac{5}{\sqrt{26}}, \frac{1}{\sqrt{26}} \right\rangle$$
 and $\left\langle 0, \frac{5}{\sqrt{26}}, -\frac{1}{\sqrt{26}} \right\rangle$

c.
$$\left\langle 0, -\frac{5}{\sqrt{26}}, \frac{1}{\sqrt{26}} \right\rangle$$
 and $\left\langle 0, \frac{5}{\sqrt{26}}, -\frac{1}{\sqrt{26}} \right\rangle$
49. a. $\overrightarrow{PQ} = \langle -2, 4, -2 \rangle = -2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ b. $|\overrightarrow{PQ}| = 2\sqrt{6}$

c.
$$\left\langle -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}} \right\rangle$$
 and $\left\langle \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right\rangle$

51. a.
$$20\mathbf{i} + 20\mathbf{j} - 10\mathbf{k}$$
; **b.** 30 mi/hr

53. The speed of the plane is approximately 220 mi/hr; the direction is slightly south of east and upward.

55. $5\sqrt{6}$ knots to the east, $5\sqrt{6}$ knots to the north, 10 knots upward **57. a.** False **b.** False **c.** False **d.** True **59.** All points in \mathbb{R}^3 except those on the coordinate axes 61. A circle of radius 1 centered at (0, 0, 0) in the xy-plane

63. A circle of radius 2 centered at (0, 0, 1) in the horizontal plane

$$z = 1$$
 65. $(x - 2)^2 + (z - 1)^2 = 9, y = 4$ **67.** $6\left\langle \frac{1}{3}, -\frac{2}{3}, \frac{2}{3} \right\rangle$

69.
$$\left\langle -\frac{15}{4}, \frac{5}{2}, -\frac{5\sqrt{3}}{4} \right\rangle$$
 71. $\langle 12, -16, 0 \rangle, \langle -12, 16, 0 \rangle$

73. $\langle -\sqrt{3}, -\sqrt{3}, \sqrt{3} \rangle$, $\langle \sqrt{3}, \sqrt{3}, -\sqrt{3} \rangle$ **75. a.** Collinear; Q is between P and R. **b.** Collinear; P is between Q and R.

c. Noncollinear d. Noncollinear 77.
$$\left\langle \frac{500\sqrt{3}}{9}, 0, -\frac{500}{3} \right\rangle$$

$$\left\langle -\frac{250\sqrt{3}}{9}, -\frac{250}{3}, -\frac{500}{3} \right\rangle, \left\langle -\frac{250\sqrt{3}}{9}, \frac{250}{3}, -\frac{500}{3} \right\rangle$$

Section 13.3 Exercises, pp. 833-837

1.
$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$
 3. -40 5. $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$, so

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}\right)$$
 7. $\left\langle -\frac{4}{3}, \frac{2}{3}, \frac{4}{3} \right\rangle$ 9. -1 11. 2

13.
$$\frac{\pi}{2}$$
; 0 **15.** 100; $\frac{\pi}{4}$ **17.** $\frac{1}{2}$ **19.** 0; $\frac{\pi}{2}$ **21.** 1; $\pi/3$

23. -2; 93.2° **25.** 2; 87.2° **27.** -4; 104° **29.**
$$\angle P = 78.8$$
°, $\angle Q = 47.2$ °, $\angle R = 54.0$ ° **31.** $\langle 3, 0 \rangle$; 3 **33.** $\langle 0, 3 \rangle$; 3 **35.** $\frac{6}{5} \langle -2, 1 \rangle$; $\frac{6}{\sqrt{5}}$ **37.** $\frac{14}{19} \langle -1, -3, 3 \rangle$; $-\frac{14}{\sqrt{19}}$

35.
$$\frac{6}{5}\langle -2, 1 \rangle; \frac{6}{\sqrt{5}}$$
 37. $\frac{14}{19}\langle -1, -3, 3 \rangle; -\frac{14}{\sqrt{16}}\langle -1, -3, 3 \rangle$

39.
$$-\mathbf{i} + \mathbf{j} - 2\mathbf{k}$$
; $\sqrt{6}$ **41.** $750\sqrt{3}$ ft-lb **43.** $25\sqrt{2}$ J

45. 400 J **47.**
$$\frac{1}{2}\langle 5\sqrt{3}, -15 \rangle, \frac{1}{2}\langle -5\sqrt{3}, -5 \rangle$$
 49. $\langle 490, -490 \rangle,$

 $\langle -490, -490 \rangle$ **51. a.** False **b.** True **c.** True **d.** False

e. False **f.** True **53.** $c = \frac{4}{9}$ **55.** (1, a, 4a - 2), a real

57. **a.** $\operatorname{proj}_{\mathbf{k}}\mathbf{u} = |\mathbf{u}| \cos 60^{\circ} \left(\frac{\mathbf{k}}{|\mathbf{k}|}\right) = \frac{1}{2}\mathbf{k}$, for all such \mathbf{u} **b.** Yes

59. The heads of the vectors lie on the line y = 3 - x.

61. The heads of the vectors lie on the plane z = 3.

63.
$$\mathbf{u} = \left\langle -\frac{4}{5}, -\frac{2}{5} \right\rangle + \left\langle -\frac{6}{5}, \frac{12}{5} \right\rangle$$

65.
$$\mathbf{u} = \left\langle 1, \frac{1}{2}, \frac{1}{2} \right\rangle + \left\langle -2, \frac{3}{2}, \frac{5}{2} \right\rangle$$
 67. $3x - 7y = -36$

69.
$$-\frac{5}{3}$$
 71. $\mathbf{I} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}, \mathbf{J} = -\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j};$

$$i = \frac{1}{\sqrt{2}}(I - J), j = \frac{1}{\sqrt{2}}(I + J)$$
 73. a. $|I| = |J| = |K| = 1$

$$\mathbf{b} \cdot \mathbf{I} \cdot \mathbf{J} = 0, \mathbf{I} \cdot \mathbf{K} = 0, \mathbf{J} \cdot \mathbf{K} = 0 \quad \mathbf{c} \cdot \langle 1, 0, 0 \rangle = \frac{1}{2} \mathbf{I} - \frac{1}{\sqrt{2}} \mathbf{J} + \frac{1}{2} \mathbf{K}$$

75. a. The faces on y = 0 and z = 0 b. The faces on y = 1 and z = 1 **c.** The faces on x = 0 and x = 1 **d.** 0 **e.** 1 **f.** 2

77. **a.**
$$\left(\frac{2}{\sqrt{3}}, 0, \frac{2\sqrt{2}}{\sqrt{3}}\right)$$
 b. $\mathbf{r}_{OP} = \langle \sqrt{3}, -1, 0 \rangle, \mathbf{r}_{OQ} = \langle \sqrt{3}, 1, 0 \rangle,$

$$\mathbf{r}_{PQ} = \langle 0, 2, 0 \rangle, \mathbf{r}_{OR} = \left\langle \frac{2}{\sqrt{3}}, 0, \frac{2\sqrt{2}}{\sqrt{3}} \right\rangle, \mathbf{r}_{PR} = \left\langle -\frac{\sqrt{3}}{3}, 1, \frac{2\sqrt{2}}{\sqrt{3}} \right\rangle$$

83. a.
$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$$

$$= \left(\frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}||\mathbf{i}|}\right)^2 + \left(\frac{\mathbf{v} \cdot \mathbf{j}}{|\mathbf{v}||\mathbf{j}|}\right)^2 + \left(\frac{\mathbf{v} \cdot \mathbf{k}}{|\mathbf{v}||\mathbf{k}|}\right)^2$$
$$= \frac{a^2}{a^2 + b^2 + c^2} + \frac{b^2}{a^2 + b^2 + c^2} + \frac{c^2}{a^2 + b^2 + c^2} = 1$$

b.
$$\langle 1, 1, 0 \rangle, 90^{\circ}$$
 c. $\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1 \rangle, 45^{\circ}$ **d.** No. If so,

$$\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 + \cos^2 \gamma = 1$$
, which has no solution. **e.** 54.7°

85.
$$|\mathbf{u} \cdot \mathbf{v}| = 33 = \sqrt{33} \cdot \sqrt{33} < \sqrt{70} \cdot \sqrt{74} = |\mathbf{u}| |\mathbf{v}|$$

Section 13.4 Exercises, pp. 842-844

1. 0 **3.** a. u is orthogonal to v. b. u is parallel to v. 5. $\sqrt{2}/2$

7.
$$-3\mathbf{i} - 2\mathbf{j} + 7\mathbf{k}$$
 9. $\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 u_2 & u_3 \\ v_1 v_2 & v_3 \end{vmatrix}$ 11. 15 \mathbf{k}

23.
$$\mathbf{u} \times \mathbf{v} = \langle -30, 18, 9 \rangle, \mathbf{v} \times \mathbf{u} = \langle 30, -18, -9 \rangle$$
25. $\mathbf{u} \times \mathbf{v} = \langle 6, 11, 5 \rangle, \mathbf{v} \times \mathbf{u} = \langle -6, -11, -5 \rangle$
27. $\mathbf{u} \times \mathbf{v} = \langle 8, 4, 10 \rangle, \mathbf{v} \times \mathbf{u} = \langle -8, -4, -10 \rangle$
29. 11
31. $3\sqrt{10}$
33. $\sqrt{11}/2$
35. $4\sqrt{2}$
37. $9\sqrt{2}$
41. Not collinear
43. $\langle 3, -4, 2 \rangle$
45. $\langle 0, 20, -20 \rangle$
47. The force $\mathbf{F} = 5\mathbf{i} - 5\mathbf{k}$ produces the greater torque.
49. $5/\sqrt{2}$ N-m
51. $|\tau| = 13.2$ N-m; direction: into the page

53. The magnitude is $20\sqrt{2}$ at a 135° angle with the positive x-axis in the xy-plane.

55. $4.53 \times 10^{-14} \,\mathrm{kg \cdot m/s^2}$ **57. a.** False **b.** False **c.** False

d. True **e.** False **59.** $\langle u_1, u_1 + 2, u_1 + 1 \rangle, u_1 \text{ real}$

61.
$$\frac{\sqrt{(ab)^2 + (ac)^2 + (bc)^2}}{2}$$

63. $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = |\mathbf{u}| |\mathbf{v} \times \mathbf{w}| |\cos \theta|$, where $|\mathbf{v} \times \mathbf{w}|$ is the area of the base of the parallelepiped and $|\mathbf{u}| |\cos \theta|$ is its height.

67. $1.76 \times 10^7 \,\mathrm{m/s}$

Section 13.5 Exercises, pp. 852-855

1. $\langle 4, -8, 9 \rangle$ **3.** $\langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle$ **5.** Perpendicular

7. A point and a normal vector 9. (-6, 0, 0), (0, -4, 0), (0, 0, 3)

11. $x = 4t, y = 7t, z = 1; \mathbf{r} = \langle 0, 0, 1 \rangle + t \langle 4, 7, 0 \rangle$

13. $x = 0, y = t, z = 1; \mathbf{r} = \langle 0, 0, 1 \rangle + t \langle 0, 1, 0 \rangle$

15. $x = t, y = 2t, z = 3t; \mathbf{r} = t\langle 1, 2, 3 \rangle$

17. $x = -2t, y = 8t, z = -4t; \mathbf{r} = t\langle -2, 8, -4 \rangle$

19. $x = -2t, y = -t, z = t; \mathbf{r} = t\langle -2, -1, 1 \rangle$

21. x = -2, y = 5 - 2t, z = 3 - t; $\mathbf{r} = \langle -2, 5, 3 \rangle + t \langle 0, -2, -1 \rangle$ **23.** x = 1 - 4t, y = 2 + 6t, z = 3 + 14t;

 $\mathbf{r} = \langle 1, 2, 3 \rangle + t \langle -4, 6, 14 \rangle$ **25.** x = 4, y = 3 - 9t, z = 3 + 6t; $\mathbf{r} = \langle 4, 3, 3 \rangle + t \langle 0, -9, 6 \rangle$ **27.** $x = t, y = 2t, z = 3t, 0 \le t \le 1$

29. x = 2 + 5t, y = 4 + t, z = 8 - 5t, $0 \le t \le 1$ **31.** Intersect

at (1, 3, 2) 33. Skew 35. Same line 37. Parallel, distinct lines

39. 13 **41. a.** Yes **b.** No **c.** $13.16^{\circ} < \theta < 18.12^{\circ}$

43. x + y - z = 4 **45.** 2x + y - 2z = -2

47. x + 4y + 7z = 0 **49.** 7x + 2y + z = 10

51. -x + 2y - 4z = -17 **53.** 3y - 2z = 0

55. 8x - 7y + 2z = 0 **57.** x + 3y - z = -3

59. Yes; 2x - y = -1

61. Intercepts

$$x = 2, y = -3, z = 6;$$

3x - 2y = 6, z = 0;

3x + z = 6, y = 0

63. Intercepts

$$x = 30, y = 10, z = -6;$$

$$x + 3y = 30, z = 0;$$

-2y + z = 6, x = 0; and x - 5z = 30, y = 0; and

3y - 5z = 30, x = 0

65. Orthogonal **67.** Neither **69.** Q and T are identical; Q, R, and T are parallel; S is orthogonal to Q, R, and T.

71. $\mathbf{r} = \langle 2 + 2t, 1 - 4t, 3 + t \rangle$

73. x = t, y = 1 + 2t, z = -1 - 3t

75. $x = \frac{7}{5} + 2t, y = \frac{9}{5} + t, z = -t$ **77.** (3, 3, 3) **79.** (1, 1, 2)

81. a. True b. False c. False d. True e. False f. False

g. True **83.** 6 **85.** $\frac{x-1}{4} = \frac{y-2}{7} = \frac{z}{2}$ **87.** Approx. 43°

89. 6x - 4y + z = d **91.** The planes intersect in the point (3, 6, 0).

b. Positive

c. 2x + y = 40, line in the

xy-plane

Section 13.6 Exercises, pp. 863-865

1. z-axis; x-axis; y-axis 3. Intersection of the surface with a plane parallel to one of the coordinate planes 5. Ellipsoid

7. a. *x*-axis

9. a. *y*-axis

11. a. *z*-axis

13. a. *x*-axis

15. Ellipsoid; xy-trace: $x^2 + y^2 = 1$ (circle); xz-trace:

$$x^{2} + \frac{z^{2}}{25} = 1$$
 (ellipse); yz-trace: $y^{2} + \frac{z^{2}}{25} = 1$ (ellipse)

17. Paraboloid; xy-trace: (0, 0, 0) (a single point); xz-trace:

 $z=25x^2$ (parabola); yz-trace: $z=25y^2$ (parabola) **19.** Hyperboloid of two sheets; xz-trace: $z^2-25x^2=25$ (hyperbola);

yz-trace: $z^2 - 25y^2 = 25$ (hyperbola) **21.** Hyperbolic paraboloid

23. Elliptic paraboloid 25. Hyperbolic cylinder

27. Elliptic paraboloid

29. a.
$$x = \pm 1, y = \pm 2,$$
 $z = \pm 3$

b.
$$x^2 + \frac{y^2}{4} = 1, x^2 + \frac{z^2}{9} = 1,$$

$$\frac{y^2}{4} + \frac{z^2}{9} = 1$$

c. Ellipsoid

33. a.
$$x = \pm 5, y = \pm 3, \text{ no } z\text{-intercept}$$

b.
$$\frac{x^2}{25} + \frac{y^2}{9} = 1, \frac{x^2}{25} - z^2 = 1, \frac{y^2}{9} - z^2 = 1$$

c. Hyperboloid of one sheet

35. a.
$$x = y = z = 0$$
 b. $\frac{x^2}{9} - y^2 = 0, z = \frac{x^2}{9}, z = -y^2$

c. Hyperbolic paraboloid

37. a.
$$x = y = z = 0$$

b. Origin,
$$\frac{y^2}{4} = z^2$$
, $x^2 = z^2$
c. Elliptic cone

b. Origin,

$$x - 9y^2 = 0, 9x - \frac{z^2}{4} = 0$$

c. Elliptic paraboloid

45. a.
$$x = y = z = 0$$

b.
$$5x - \frac{y^2}{5} = 0$$
, $5x + \frac{z^2}{20} = 0$, **b.** $\frac{y^2}{18} = 2x^2$, $\frac{z^2}{32} = 2x^2$, origin

$$-\frac{y^2}{5} + \frac{z^2}{20} = 0$$

c. Hyperbolic paraboloid

39. a.
$$x = \pm 3, y = \pm 1, z = \pm 6$$

b.
$$\frac{x^2}{3} + 3y^2 = 3, \frac{x^2}{3} + \frac{z^2}{12} = 3,$$

$$3y^2 + \frac{z^2}{12} = 3$$

c. Ellipsoid

43. a. No *x*-intercept,

$$y = \pm 12, z = \pm \frac{1}{2}$$

b.
$$-\frac{x^2}{4} + \frac{y^2}{16} = 9$$
,

$$-\frac{x^2}{4} + 36z^2 = 9, \frac{y^2}{16} + 36z^2 = 9$$

c. Hyperboloid of one sheet

47. a.
$$x = y = z = 0$$

b.
$$\frac{y^2}{18} = 2x^2, \frac{z^2}{32} = 2x^2$$
, origin

c. Elliptic cone

- **49.** a. No x-intercept, $y = \pm 2$, no z-intercept
- **b.** $-x^2 + \frac{y^2}{4} = 1$, no xz-trace, $\frac{y^2}{4} \frac{z^2}{9} = 1$
- c. Hyperboloid of two sheets

- **51.** a. No *x*-intercept, $y = \pm \frac{\sqrt{3}}{3}$, no *z*-intercept
- **b.** $-\frac{x^2}{3} + 3y^2 = 1$, no xz-trace, $3y^2 \frac{z^2}{12} = 1$
- c. Hyperboloid of two sheets

- **53.** The graph of the ellipsoid $x^2 + 4y^2 + 9z^2 + 54z = 19$ is obtained by shifting the graph of the ellipsoid $x^2 + 4y^2 + 9z^2 = 100$ down 3 units. 55. Hyperboloid of one sheet 57. Hyperboloid of two sheets 59. a. True b. True c. True d. False e. False 61. All except
- the hyperbolic paraboloid **63.** 8 **65. b.** $\frac{x^2 + z^2}{(10.55/\pi)^2} + \frac{y^2}{(5.55)^2} = 1$
- **67.** $4x^2 + 8y^2 + 4(z 3)^2 = 9, 3 \le z \le 4.3$

Chapter 13 Review Exercises, pp. 865-867

- 1. a. True b. False c. True d. False e. True f. True
- **3.** $\langle 3, -6 \rangle$ **5.** $\langle -5, 8 \rangle$ **7.** $\sqrt{221}$ **9.** $12 \left\langle \frac{1}{3}, -\frac{2}{3}, \frac{2}{3} \right\rangle$ **11.** $\left\langle \frac{10}{3}, -\frac{20}{3}, \frac{20}{3} \right\rangle$ **13.** $\langle 58, 26, 44 \rangle$ **15.** a = -3

- 17. **a.** $\mathbf{v} = -275\sqrt{2}\mathbf{i} + 275\sqrt{2}\mathbf{j}$ **b.** $-275\sqrt{2}\mathbf{i} + (275\sqrt{2} + 40)\mathbf{j}$ 19. $\{(x, y, z): (x 1)^2 + y^2 + (z + 1)^2 = 16\}$ 21. $\{(x, y, z): x^2 + (y 1)^2 + z^2 > 4\}$ 23. A ball centered at $(\frac{1}{2}, -2, 3)$ of radius $\frac{3}{2}$ 25. All points outside a sphere of radius 10 centered at (3, 0, 10) 27. 50.15 m/s; 85.4° below the horizontal in the northerly horizontal direction 29. 50 lb; 36.9° north of east
- **31.** A circle of radius 1 centered at (0, 2, 0) in the vertical plane y = 2
- **33. a.** 0.68 radian **b.** $\frac{7}{9}\langle 1, 2, 2 \rangle; \frac{7}{3}$ **c.** $\frac{7}{3}\langle -1, 2, 2 \rangle; 7$
- **35.** $250\sqrt{2}$ ft-lb **37.** $90\sqrt{3}$ lb; 90 lb **39.** 11
- **41.** $\pm \left\langle \frac{12}{\sqrt{197}}, \frac{7}{\sqrt{197}}, \frac{2}{\sqrt{197}} \right\rangle$ **43.** $\langle -10, 10, 10 \rangle$

- **45.** $|\tau|(\theta) = 39.2 \sin \theta$ has a maximum value of 39.2 N-m (when $\theta = \pi/2$) and a minimum value of 0 N-m (when $\theta = 0$). Direction does *not* change. **47.** $\mathbf{r} = (0, -3, 9) + t(2, -5, -8), 0 \le t \le 1$ **49.** $\mathbf{r} = \langle t, 1 + 6t, 1 + 2t \rangle$
- **51. a.** 18x 9y + 2z = 6 **b.** $x = \frac{1}{3}, y = -\frac{2}{3}, z = 3$
- **53.** x = t, y = 12 9t, z = -6 + 6t **55.** 4x + 2y + 13z = 39 **57.** 3x + y + 7z = 4 **59.** 3

- **61. a.** Hyperbolic paraboloid **63. a.** Elliptic cone **b.** $y^2 = 4x^2, z = \frac{x^2}{36}, z = -\frac{y^2}{144}$ **b.** $y^2 = 4x^2$, origin, $y^2 = \frac{z^2}{25}$

- 65. a. Elliptic paraboloid
- **b.** Origin, $z = \frac{x^2}{16}$, $z = \frac{y^2}{36}$

- 67. a. Hyperboloid of one sheet **b.** $y^2 - 2x^2 = 1$, $4z^2 - 2x^2 = 1$, $y^2 + 4z^2 = 1$ **c.** No *x*-intercept, $= \pm 1, z = \pm \frac{1}{2}$

- 69. a. Hyperboloid of one sheet
- **b.** $\frac{x^2}{4} + \frac{y^2}{16} = 4, \frac{x^2}{4} z^2 = 4, \frac{y^2}{16} z^2 = 4$
- c. $x = \pm 4$, $y = \pm 8$, no z-intercept

d.

71. a. Ellipsoid **b.** $\frac{x^2}{4} + \frac{y^2}{16} = 4, \frac{x^2}{4} + z^2 = 4, \frac{y^2}{16} + z^2 = 4$

c.
$$x = \pm 4, y = \pm 8, z = \pm 2$$

73. a. Elliptic cone **b.** Origin, $\frac{x^2}{9} = \frac{z^2}{64}$, $\frac{y^2}{49} = \frac{z^2}{64}$ **c.** Origin

75. a. A **b.** D **c.** C **d.** B

CHAPTER 14

Section 14.1 Exercises, pp. 873-875

1. One 3. Its output is a vector.

5. $\lim_{t \to a} \mathbf{r}(t) = \langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \rangle$ 7. $\mathbf{r}(t) = t \mathbf{i} + 2t \mathbf{j} + 3t \mathbf{k}$

9. $\mathbf{r}(t) = \langle 2 + 2t, 3 + 3t, 7 - 4t \rangle$

11. $\mathbf{r}(t) = \langle 3 + 2t, 4, 5 - t \rangle$

13. $\mathbf{r}(t) = \langle 1 - t, 2, 1 + 2t \rangle$, for $0 \le t \le 1$

17.

19.

21.

23.

25.

27.

29. When viewed from above, the curve is a portion of the

parabola $y = x^2$.

31. $-\mathbf{i} - 4\mathbf{j} + \mathbf{k}$ **33.** $-2\mathbf{j} + \frac{\pi}{2}\mathbf{k}$ **35.** \mathbf{i} **37.** \mathbf{a} . True \mathbf{b} . False

c. True **d.** True **39.** $\{t: |t| \le 2\}$ **41.** $\{t: 0 \le t \le 2\}$ **43.** $\{4, 8, 16\}$ **45. a.** E **b.** D **c.** F **d.** C **e.** A **f.** B

47. $\mathbf{r}(t) = \langle 2 \cos t, 2 \sin t, 4 \rangle$ **49.** $\mathbf{r}(t) = \langle 5 \cos t, 5 \sin t, 10 \cos t + 10 \sin t \rangle$

51. a. Ball has a parabolic trajectory in the yz-plane; 1200 ft

b. Approx. 1199.7 ft c. 1196 ft 53. Hyperboloid of one sheet

55. Ellipsoid **57.** (4, 2, 2); $\sqrt{179}$

The curve lies on the sphere $x^2 + y^2 + z^2 = 1$.

61. $\frac{2\pi}{(m,n)}$, where (m,n) = greatest common factor of m and n