3.41) Control Design via State Space

Let's revist state space modeling quickly dynamics x = Ax + Bu< output equation y = Cx + Du A controller is trying to achieve a set of goals for y, subject to input u -> We want to alter the behavior in A Recall also that the eigenvalues of A are the poles of the system These are also the things we have been trying to move around with our classical control techniques -> It follows that by transforming from SS to s-space, we can use all our friendly classical controls techniques Thowever, we can also work directly through the SS matrix. and these techniques, called "Modern Control" apply to a wider range of system types in cluding non-linear and MIMO

> In this course, nowever, we'll focus on applying them to linear systems

Our classical methods have for	
locations of the dominant se	cond order poles, then
crossing our fingers that the don't mess up our second or	e other poles and zeros
don't Mess up our second or	der approximation too
MUCYI.	
→ We have a limited numb	per of "tuning knobs"
-> one or two compensate	or poles or zeros
Wouldn't it be nice to just place	ALL the closed loop poles
wherever we want them?	
Wouldn't it be nice to just place wherever we want them? I need n adjustable porame I and we need a way to a	tes to place n poles
-) and we need a way to a	djust them efficiently
Enter Modern Control Methods!	?
"Modern" control methods work	a little differently
Let's look at a block diagram:	
Classical Controls	State Space Methods
R(s) C C C C	eference Kr Plant
$ \begin{array}{c c} \hline & & & & & & & & & & & & & & & & & & $	
<u></u>	7 1 x
	Scaling / K Currens
	term / > current
	1 State vector
	gain matrix
	Controller
/mo	dern controllers use different
tec	chniques to get these)
	-Alle Placement
	JLOR *

The state equations for this new system are $\dot{x} = Ax + Bu = Ax + B(-Kx+r) = (A - BK)x + Br$ y = Cx

The	goal i	s to	find t	he va	lues of location	Kis to	get to
The some	destrea e impo	rtant (ca loop question	p pole s:	, location	18. SO P	nere one
	1) How	do I f	ind the	closed	d loop po	les?	
	3) How	do 1	solve fe	r the	Kis to acl	nieve th	is goal?
We	know	bits	of th	nese a	nswers :		
						For the	closed loop e the closed
	Syster 100p	n, the poles	eigenv	alues c	of (A-BK) will be	e the closed
	2) We 1	know a	lot al	veody	about how	u to fina	d a desired
	pole	(000(10)	7, 110/71	00 30		sign rego	
	3) We each	need other	to set	the a	nswers to	i) and	2) equal to
Let ?	s look	. at	an ex	comple	2		

$$\dot{x} = \begin{bmatrix} 6 & 1 \\ 6 & -1 \end{bmatrix} \times + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \times$$

$$\det (A - \lambda I) = 0$$

$$\det (\begin{bmatrix} -\lambda & 1 \\ 6 & -1 - \lambda \end{bmatrix}) = \lambda^2 + \lambda - 6 = 0$$

$$\lambda = -3$$
, 2 plant is unstable

So let's add feedback and find the poles as a function of the ki

$$A_{CL} = A - BK = \begin{bmatrix} 0 & 1 \\ 6 & -1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} K_1 & K_2 \end{bmatrix}$$
$$= \begin{bmatrix} -K_1 & 1-K_2 \\ 6 & -1 \end{bmatrix}$$

det (ACL -)I)=0

$$(1+K_1) = (p_1 + p_2)$$
 and $(K_1 - 6 + 6K_2) = p_1p_2$
so if we want poles at -3 and -5:
 $1+K_1 = 3+5=8 \Rightarrow K_1 = 7$
 $K_1 - 6 + 6K_2 = (3)(5) = 15$
 $7 - 6 + 6K_2 = 15$
 $1+6K_2 = 15$
 $K_2 = 14/6 = 2.33$
if we want poles at -2 and -1
 $(1+K_1) = 2+1=3$ $K_1 = 2$
 $K_1 - 6 + 6K_2 = (2)(1) = 2$
 $2 - 6 + 6K_2 = 2$
 $6K_2 = 6$
 $1K_2 = 1$
and so by so wing for these ks we can put our poles anywhere we want!

You can imagine that as the number of state variables increase that this guickly becomes difficult to do by hand So let's repeat our example in Modtab pole placement ex 1 · m Okay, so it's stable, but we have a ss error problem. We need to scale the system by some value to reduce the SSE. We call this Kr there is an easy way to do this -> degain computes the low frequency gain of a system. We know the low frequency gain is related to SSE. So we can just adust this gain value to get to our desired SSE Kr + V B + X S X C Y $Kr = \frac{1}{dcgain}$

The state equations for this new system are $\dot{x} = Ax + Bu = Ax + B(-Kx+k_r) = (A - BK)x + Bk_r - y = Cx$

This technique is called pole placement and it lets you
solve for a set of gain's, one for each state, that let
you put your poles Anywhere
so this is great! Why would we ever need anything else? I know now to put anything into SS, and then I write all of 6 lines of Matlab code and BAM- perfect control,
I know now to put anything into SS, and then I write
all of 6 lines of Matlab code and BAM- perfect control,
every time!
Well it's not always that easy
These pains are sort of like PD controllers -> think about a
These gains are sort of like PD controllers - think about a 2-state system - one gain for the state X1, one for the
derivative state X2
>important procheal difference
→ PD controllers find D in controller
PP controllers feed D back as a state
You need to know the states to feed them back?
→ observe directly w/ sensor
 ⇒ observe directly w1 sensor ⇒ estimate them from what you can observe
Practical considerations on possible response time
Beyond that, we actually need to be able to influence the states
through the control signal u. If we can't actually influence
Beyond that, we actually need to be able to influence the states through the control signal u. If we can't actually influence them, we can't control them.
So our states need to be controllable and
observable or this isn't going to work!