Examen de THEG

Mars 2018, S6, ING1.

- Aucun document ni appareil électronique autorisé.
- Noircir les cases au stylo (pas de crayon à papier) et sans déborder sur les voisines car la correction est automatisée.
- Certaines réponses incorrectes apportent des points négatifs. Dans le doute, s'abstenir.
- Marquez toutes les réponses correctes dans les questions marquées avec .
- Lorsqu'une réponse numérique demande plusieurs chiffres, les chiffres sont lus de haut en bas.

Rayon et diamètre

Soit G = (V, E, w) un graphe connexe où chaque arête $e \in E$ est pondérée par une longueur $w(e) \ge 0$. Pour deux sommets v_1 et $v_2 \in V$, on note $d(v_1, v_2)$ la longueur du plus court chemin les reliant. L'excentricité du sommet $v \in V$, notée exc(v), est sa distance au sommet le plus éloigné :

$$exc(v) = max\{d(v, u) \mid u \in V\}.$$

Le rayon de G, noté r(G), est la valeur de la plus petite excentricité, tandis que le diamètre D(G) est la plus grande :

$$r(G) = \min\{exc(v) \mid v \in V\}$$

 $D(G) = \max\{exc(v) \mid v \in V\}$

Question 1 ♣ Soit M la matrice des distances calculée en appliquant l'algorithme de Floyd-Warshall sur G.

- D(G) est la plus grande valeur de M.
- ☐ r(G) est la plus petite valeur de M.
- D(G) s'obtient en calculant d'abord le minimum m_i pour chaque ligne i de M, puis en retournant le maximum de ces m_i.
- r(G) s'obtient en calculant d'abord le maximum m_i pour chaque ligne i de M, puis en retournant le minimum de ces m_i.
- \square On a toujours $D(G) = 2 \times r(G)$.
- On a toujours $r(G) \le D(G) \le 2 \times r(G)$.
- On a toujours $r(G) < D(G) < 2 \times r(G)$.
- \square D(G) = r(G) si et seulement si G est complet.
- $D(G) = 2 \times r(G) \text{ si et seulement si } G \text{ est complet.}$

Question 2 \clubsuit On considère le graphe $G_1 = (V_1, E_1, w_1)$ où, V_1 représente les stations du métro parisien, E_1 relie les stations voisines sur une ligne de métro, et w_1 donne le temps (supposé constant) de parcours entre deux stations voisines. On néglige les coûts de correspondance.

- L'excentricité d'une station donne le temps maximum pour rejoindre n'importe quelle autre station.
- Il existe une ou plusieurs stations dont l'excentricité est égale à D(G₁).
- D(G₁) est la durée de la plus longue balade que l'on puisse faire dans le métro sans passer deux fois au même endroit.
- D(G₁) est un temps suffisant pour aller de l'importe quel endroit à n'importe quel autre.
- L'excentricité d'une station donne le temps minimum pour rejoindre n'importe quelle autre station.
- Il existe une ou plusieurs stations dont l'excentricité est égale à r(G₁).

On considère le graphe G₂ ci-contre, où toutes les arêtes ont pour poids 1.

Durée: I heure

Question 3 Le rayon de G2 est

Question 4 Le diamètre de G2 est

				-	_		_
0 1			. In-		-		
	144	3	4 13	1 16	1 17	18	1 19 1
				Seement.	Second .	-	

2 Coloration Gloutone

Le nombre chromatique d'un graphe G = (V, E) est le nombre de couleurs minimum nécessaire pour colorier les sommets du graphe de façon à ce que deux sommets voisins ne partagent pas la même couleur.

Question 5 Quel est le nombre chromatique du graphe G₂ de la question 3?

0 1	Пэ П	3 4		П6	П7	□8 □	19
	_Je [5 1	LJ0	1	ш,	- P	-15.4

L'algorithme suivant calcule un coloriage des sommets du graphe. Les sommets sont parcourus dans un ordre donné en argument, et coloriés par la première couleur disponible et non-utilisée par les voisins déjà coloriés. Pour un sommet $x \in V$, on note adj(x) l'ensemble des sommets voisins : $adj(x) = \{y \mid (x,y) \in E\}$, qu'on suppose stockés sous la forme d'une liste d'adjacence.

```
GREEDYCOLOR(G = (V, E), \sigma)
Entrée : un graphe G, un ordre sur les sommets \sigma
          (\sigma \text{ est une permutation de } V)
Sortie : un tableau de couleurs C indicé par les sommet
      // marquer toutes les couleurs comme disponibles
      for each c \in \{1, ..., |V|\}
          Avail[c] \leftarrow 1
 2
      // initialement les sommets ne sont pas coloriés
      for each x \in V
 3
          C[x] \leftarrow 0
 4
 5
      for each x in \sigma:
          // repérage des couleurs voisines
          for each y \in adj(x):
 6
 7
              Avail[C[y]] \leftarrow 0
          // recherche de la première couleur libre
 8
          i \leftarrow 1
         while Avail[i] = 0
 g
10
             i \leftarrow i + 1
         // affectation de la couleur trouvée
          C[x] \leftarrow i
11
         // remise à disposition des couleurs voisines
         for each y \in adj(x):
12
             Avail[C[y]] \leftarrow 1
13
```

Dans cet algorithme, les couleurs sont désignées par des numéros de 1 à |V|. La valeur C[x] donne la couleur du sommet x, ou 0 s'il n'est pas colorié. Le tableau Avail est utilisé pour repérer les couleurs utilisées par les sommets voisins, afin de pouvoir trouver la première couleur inutilisée (notez que Avail[0] peut changer de valeur aux lignes 7 et 13, mais ne sera jamais lu, la boucle de la ligne 9 commençant à l'indice 1).

	Question 6 Combien de fois la ligne 7 e précisément?	est-elle exécutée
2 7 8		V - E
e	Question 7 Sachant que le nombre tota la ligne 10 ne peut dépasser E , donnez la l'algorithme GREEDYCOLOR? (Attention, ne pas être connexe.)	a complexité de
г		
	3 Divers	Y.
5	Question 8 L'algorithme de Bellman-Frenche de plus court chemin fonctionne uniquement sur des gradérés. fonctionne dans des graphes por ment s'il n'y a pas de cycle de somm fonctionne dans des graphes por ment si les poids sont tous positifs.	aphes non pon- ndérés unique- ne négative. ndérés unique-
	Question 9 & L'algorithme d'Edmond permet : De calculer un couplage maximal. De calculer un couplage parfait. De calculer un couplage maximum.	is vu en cours
l	Question 10	
Ŀ	On considère le graphe non-orienté dont voici la matrice d'adjacence. Combien possède-t-il d'arbres couvrants différents?	1 1 1 0 0
		□8 □9 □8 □9