Personal Recommendation Algorithm

Main Flow

- GBDT(Gradient Boosting Tree)背景知识介绍
- GBDT数学原理与构建方法
- XGBoost 数学原理与构建方法

GDBT背景知识介绍

• 什么是决策树

GDBT背景知识介绍

水下生活	有脚蹼	是鱼类	水下。CO
1		1	N Y 脚蹼
1	1	7571	V V Y
1	0	0	0
0	TO C.	0	
0	my	0	0 1

决策树构造原理

• CART生成

• 回归树:平方误差最小化原则

• 分类树:基尼指数

回归树

• 回归树的函数表示

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

$$\sum_{x_i \in R_m} (y_i - f(x_i))^2$$

$$c_m = ave(y_i | x_i \in R_m)$$

最优特征选取

$$\min_{j,s} \left[\min_{c_1} \sum_{x_1 \in R_1} (y_i - c_1)^2 + \min_{c_2} \sum_{x_1 \in R_2} (y_i - c_2)^2 \right]$$

$$R_1 = \{x \mid x^j \le s\}, R_2 = \{x \mid x^j > s\}$$

$$c_1 = ave(y_i | x_i \in R_1), c_2 = ave(y_i | x_i \in R_2)$$

构建树的流程

- 遍历所有特征,特征的最佳划分对应的得分,选取最小得分的特征
- 将数据依据此选取的特征划分分成两部分
- 继续在左右两部分遍历变量找到划分特征直到满足停止条件

分类树

• 基尼指数

$$Gini(D) = 1 - \sum_{k=1}^{K} \left(\frac{|C_k|}{|D|} \right)^2$$

$$D_1 = \{(x, y) \in D | A(x) \ge a\}, D_2 = D - D_1$$

$$Gini(D, A) = \frac{|D_1|}{|D|}Gini(D_1) + \frac{|D_2|}{|D|}Gini(D_2)$$

基尼指数求解

水下生活	有脚蹼	是鱼类	
1	1	1	G(D,水下)=3/5*4/9+2/5*0=12/45
1	1	1	
1	0	0	G(D,脚蹼)=4/5*1/2+1/5*0=4/10
0		0	
0		0	

Class Two

Personal Recommendation Algorithm

boosting

- 什么是boosting
- 如何改变训练数据的权重
- 如何组合多个基础model

Boosting Tree

• 提升树模型函数

$$f_{M}(x) = \sum_{m=1}^{M} T(x; \theta_{m})$$

$$f_m(x) = f_{m-1}(x) + T(x;\theta_m)$$

$$\theta_{m} = \arg\min_{\theta_{m}} \sum_{i=1}^{N} L(y_{i}, f_{m-1}(x_{i}) + T(x_{i}; \theta_{m}))$$

迭代损失函数

$$L(y, f(x)) = (y - f(x))^{2}$$

$$L(y, f_m(x)) = \left[y - f_{m-1}(x) - T(x; \theta_m)\right]^2$$

提升树的算法流程

- 初始化f₀(x)=0
- 对m=1,2..M 计算残差r_m,拟合r_m,得到T_m
- 更新f_m=f_{m-1}+T_m

Example

$$S=1,R_1=\{1\},R_2=\{2,3...10\},c_1=5.56,c_2=7.50,m(s)=0+15.72=15.72$$

			*						
S		2	3	4	5	6	7	8	9
m(s)	15.72	12.07	8.36	5.78	3.91	1.93	8.01	11.73	15.74

Example

$$T_1(x)=6.24 \ x<=6; T_1(x)=8.91 \ x>6$$
 $f_1(x)=T_1(x)$

1 2 3 4 5 6 7 8 9 10

-0.68 -0.54 -0.33 0.16 0.56 0.81 -0.01 -0.21 0.09 0.14

X

$$T_2(x) = -0.52 x < = 3; T_2(x) = 0.22 x > 3 f_2(x) = f_1(x) + T_2(x)$$

梯度提升树

• 残差的数值改变

$$r_{m} = -\left[\frac{\partial L(y, f(x_{i}))}{\partial f(x_{i})}\right]_{f(x)=f_{m-1}(x)}$$

Class Three

Personal Recommendation Algorithm

• XGBoost模型函数

$$f_{M}(x) = \sum_{m=1}^{M} T(x; \theta_{m})$$

$$f_m(x) = f_{m-1}(x) + T(x;\theta_m)$$

$$\arg\min_{\theta_m} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + T(x_i; \theta_m)) + \Omega(T_m)$$

• 优化目标的泰勒展开

$$f(x+\Delta x) \approx f(x) + f'(x) \Delta x + 1/2 f''(x) \Delta x^2$$

$$\min_{\theta_{m}} \sum_{i=1}^{N} \left[g_{i} T_{m} + 0.5 * h_{i} T_{m}^{2} \right] + \Omega(T_{m})$$

$$g_i = \frac{\partial L(y_i, f_{m-1})}{\partial f_{m-1}}, h_i = \frac{\partial^2 L(y_i, f_{m-1})}{\partial f_{m-1}}$$

• 定义模型复杂度

$$f(x) = \sum_{j=1}^{Q} c_j I(x \in R_j)$$

$$\Omega(T_m) = \partial Q + 0.5\beta \sum_{j=1}^{Q} c_j^2$$

• 目标转化

$$\min_{\theta_m} \sum_{i=1}^{N} \left[g_i T_m + 0.5 * h_i T_m^2 \right] + \Omega(T_m)$$

$$\min_{\theta_m} \sum_{i=1}^{N} \left[g_i T_m + 0.5 * h_i T_m^2 \right] + \partial Q + 0.5 \beta \sum_{j=1}^{Q} c_j^2$$

$$\min_{\theta_m} \sum_{j=1}^{Q} \left[\left(\sum_{i \in R_j} g_i \right) c_j + 0.5 \left(\sum_{i \in R_j} h_i + \beta \right) c_j^2 \right] + 2Q$$

• 目标函数最优解

$$G_j = \sum_{i \in R_j} g_i, H_j = \sum_{i \in R_j} h_i$$

$$\min_{\theta_m} \sum_{j=1}^{Q} \left[G_j c_j + 0.5 \left(H_j + \beta \right) c_j^2 \right] + \partial Q$$

$$c_{j} = -\frac{G_{j}}{H_{j} + \beta}, obj = -0.5 \sum_{i=1}^{Q} \frac{G_{j}^{2}}{H_{j} + \beta} + \partial Q$$

• 最佳划分特征选取

$$c_{j} = -\frac{G_{j}}{H_{j} + \beta}, obj = -0.5 \sum_{i=1}^{Q} \frac{G_{j}^{2}}{H_{j} + \beta} + \partial Q$$

$$Gain = \left(\frac{G_L^2}{H_L + \beta} + \frac{G_R^2}{H_R + \beta} - \frac{\left(G_R + G_L\right)^2}{H_R + H_L + \beta}\right) - \partial$$

XGBoost总流程

- 初始化f₀(x)=0
- 对m=1,2..M 应用选择最优划分特征的方法构造树
- 更新f_m=f_{m-1}+learning_rate*T_m

Personal Recommendation Algorithm

背景知识

- Practical Lessons from Predicting Clicks on Ads at Facebook
- 逻辑回归需要繁琐的特征处理
- 树模型的feature transform能力

模型网络

优缺点总结

- 利用树模型做特征转化
- 两个模型单独训练不是联合训练