# **ALU-VERIFICATION**

BHUVANESH

27bhuvanesh5@gmail.com

**PROJECT OVERVIEW** 

The project focuses on the verification of a parameterized Arithmetic Logic Unit (ALU) which supports a wide range of arithmetic and logical operations. ALU are an integral part of any SOC that performs Arithmetic and logical operations. The ALU supports variety of functions including arithmetic operations such as addition, subtraction, increment, decrement, and multiplication, as well as logical operations such as AND, OR, XOR, NOT, NAND, NOR, and XNOR. In addition, it supports shift and rotate operations. The design also has comparator functions and error checking for invalid command conditions.

### **VERIFICATION OBJECTIVE**

The objective of the project is to:

- Verify functional correctness of all ALU operations including arithmetic, logical, comparison, and shift/rotate — as determined by CMD and MODE.
- Ensure input protocol compliance by checking that INP\_VALID reflects operand availability (2'b01, 2'b10, or 2'b11) and operations proceed only when valid.
- Verify that when only one operand is valid (INP\_VALID = 2'b01 or 2'b10), the ALU waits up to 16 clock cycles for the second operand, and asserts ERR if it doesn't arrive.
- Confirm timing behaviour, ensuring results are available after 1 or 2 clock cycles, depending on the operation.
- Apply constrained-random testing and functional coverage to explore all valid/invalid input combinations, including edge cases like overflow, underflow, and invalid rotate commands.

# **DUT INTERFACES**

Block diagram of parameterized ALU is shown in Figure 1.



Figure 1. ALU under test

Below is the table which describes about the pins in the ALU which is design under test.

|         | PIN NAME              | PIN DESCRIPTION                                                                                       |  |  |
|---------|-----------------------|-------------------------------------------------------------------------------------------------------|--|--|
|         | CLK (Clock)           | Synchronous clock                                                                                     |  |  |
|         | RST (Reset)           | Asynchronous reset                                                                                    |  |  |
|         | CE (Clock Enable)     | Enables the ALU to perform operations on the clock edge                                               |  |  |
|         | CDM                   | A 4-bit command input that specifies the operation to be performed                                    |  |  |
| NPUTS   | MODE                  | Determines the type of operation i.e. if MODE = 1 then Arithmetic operation else Logical operation    |  |  |
| N N     | CIN (Carry In)        | Used for addition/subtraction with carry/borrow                                                       |  |  |
|         | OPA / OPB [Width-1:0] | Parameterized inputs for operand A and operand B                                                      |  |  |
|         | INP_VALID             | It is a 2-bit input which indicates validity of input operands i.e.                                   |  |  |
|         |                       | 00: No operand is valid                                                                               |  |  |
|         |                       | 01: Operand A is valid                                                                                |  |  |
|         |                       | 10: Operand B is valid                                                                                |  |  |
|         | ERR                   | 11: Both operands are valid  Error signal for invalid operations                                      |  |  |
|         |                       |                                                                                                       |  |  |
| JTS     | RES [Width-1:0]       | Result from the logical or arithmetic operation                                                       |  |  |
| OUTPUTS | G, L, E               | Comparator outputs indicating relationship between operands i.e. greater-than, less-than and equal-to |  |  |
| 0       | COUT                  | Carry out for arithmetic operation                                                                    |  |  |
|         | OFLOW                 | Overflow flag for arithmetic operation                                                                |  |  |

Below is the table for the ALU showing specific arithmetic operation cases for given inputs, where the resulting outputs must be carefully considered as follows:

| Command number | Command<br>Operation | Description                              | ALU Behaviour / Operation                 | Flags Affected       |
|----------------|----------------------|------------------------------------------|-------------------------------------------|----------------------|
| 0              | ADD                  | Unsigned Addition                        | RES = OPA + OPB                           | COUT, OFLOW          |
| 1              | SUB                  | Unsigned Subtraction                     | RES = OPA - OPB                           | COUT, OFLOW          |
| 2              | ADD_CIN              | Addition with Carry-In                   | RES = OPA + OPB + CIN                     | COUT, OFLOW          |
| 3              | SUB_CIN              | Subtraction with<br>Borrow (Carry-In)    | RES = OPA - OPB - CIN                     | COUT, OFLOW          |
| 4              | INC_A                | Increment A                              | RES = OPA + 1                             | OFLOW                |
| 5              | DEC_A                | Decrement A                              | RES = OPA - 1                             | OFLOW                |
| 6              | INC_B                | Increment B                              | RES = OPB + 1                             | OFLOW                |
| 7              | DEC_B                | Decrement B                              | RES = OPB - 1                             | OFLOW                |
| 8              | CMP                  | Compare A and B                          | Sets G, L, E based on comparison          | G, L, E              |
| 9              | INC_A_B_MUL          | Increment A and B,<br>then multiply      | RES = (OPA + 1) * (OPB + 1)               | -                    |
| 10             | SHL_A_MUL_B          | Left shift A by 1, then multiply with B  | RES = (OPA << 1) * OPB                    | -                    |
| 11             | ADD_SIGNED           | Signed Add, sets all relevant flags      | RES = OPA + OPB with signed consideration | COUT, OFLOW, G, L, E |
| 12             | SUB_SIGNED           | Signed Subtract, sets all relevant flags | RES = OPA - OPB with signed consideration | COUT, OFLOW, G, L, E |

The designed ALU supports various logical operations when the signal MODE is deasserted which includes AND, OR, NAND, NOR, XOR, XNOR, NOT\_A, NOT\_B, SHR1\_A, SHL1\_A, SHR1\_B, SHL1\_B, ROL\_A\_B (Rotate Left A by bits specified in B), ROR\_A\_B (Rotate Right A by bits specified in B)

Below is the table for the ALU showing specific logical operation cases for given inputs, where the resulting outputs must be carefully considered as follows:

| Command | Command   | Description                     | ALU Behaviour                | Flags    |
|---------|-----------|---------------------------------|------------------------------|----------|
| number  | Operation |                                 | / Operation                  | Affected |
| 0       | AND       | Bitwise AND between A and B     | RES = OPA & OPB              | -        |
| 1       | NAND      | Bitwise NAND between A and B    | RES = ~ (OPA & OPB)          | -        |
| 2       | OR        | Bitwise OR between A and B      | RES = OPA   OPB              | -        |
| 3       | NOR       | Bitwise NOR between A and B     | RES = ~ (OPA   OPB)          | -        |
| 4       | XOR       | Bitwise XOR between A and B     | RES = OPA ^ OPB              | -        |
| 5       | XNOR      | Bitwise XNOR between A and B    | RES = ~ (OPA ^ OPB)          | -        |
| 6       | NOT_A     | Bitwise NOT of A                | RES = ~OPA                   | -        |
| 7       | NOT_B     | Bitwise NOT of B                | RES = ~OPB                   | -        |
| 8       | SHR1_A    | Shift Right A by 1              | RES = OPA >> 1               | -        |
| 9       | SHL1_A    | Shift Left A by 1               | RES = OPA << 1               | -        |
| 10      | SHR1_B    | Shift Right B by 1              | RES = OPB >> 1               | -        |
| 11      | SHL1_B    | Shift Left B by 1               | RES = OPB << 1               | -        |
| 12      | ROL_A_B   | Rotate Left A by bits specified | Rotate A left by the lowest  | ERR      |
|         |           | in B                            | bits of B needed to cover    |          |
|         |           |                                 | the operand width; set ERR   |          |
|         |           |                                 | if any higher bits of B, are |          |
|         |           |                                 | nonzero.                     |          |

| 13 | ROR_A_B | Rotate Right A by bits specified in B | Rotate A right by the lowest<br>bits of B needed to cover<br>the operand width; set ERR<br>if any higher bits of B, are | ERR |
|----|---------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----|
|    |         |                                       | nonzero.                                                                                                                |     |

### **TESTBENCH ARCHITECTURE**



Figure 1. ALU Testbench Architecture

The ALU testbench architecture consist as follows:

#### Top:

- The top module is the entry point of the simulation.
- It generates clock and reset signal, instantiates the interface, ALU design (DUT), and the test class.
- The test is started from here using an initial block, making this the launch point of the simulation.

#### Interface:

- The interface connects between the testbench and the ALU design (DUT).
- It groups all the input and output signals of the ALU into a single unit so that they can be easily accessed and controlled by the driver and monitor.
- It includes inputs like OPA, OPB, CIN, CMD, MODE, INP\_VALID, CE, and outputs like RES, COUT, OFLOW, ERR, G, L, E.
- Clock and reset signals are also included in the interface for synchronization.

- The interface is instantiated in the top module and is passed into the testbench components using a virtual interface handle.
- This virtual interface is used by the driver to drive signals to the DUT and by the monitor to observe outputs from the DUT.
- The interface also provides tasks and functions (optional) to encapsulate common behaviour, such as applying inputs or capturing outputs.

#### **Transaction:**

- All the inputs and outputs used by the ALU (like OPA, OPB, CIN, CE, CMD, MODE, and INP VALID) are included in the transaction class.
- Clock and reset signals are excluded since they are generated in the Top module.
- The transaction class can also contain constraints on the input values to generate meaningful scenarios (e.g., valid operand ranges, operation types).

#### **Generator:**

- This component creates random input combinations for the ALU, respecting the constraints defined in the transaction class.
- It generates transactions and sends them to the driver using a mailbox.
- The generator helps cover different kinds of operations and edge cases.



Figure 2. Flowchart of ALU\_Generator

#### **Driver:**

- The driver receives transactions from the generator and applies them to the ALU inputs using a virtual interface.
- It translates the high-level transaction data into signal activity on the ALU pins.
- It also forwards the same transactions to the reference model, which is used for checking expected behaviour.



Figure 3. Flowchart of task in the ALU\_Driver

#### **Monitor:**

- The monitor observes the outputs of the ALU (like RES, COUT, OFLOW, ERR, G, L, and E) using a virtual interface.
- It converts these low-level signals into a high-level transaction and sends them to the scoreboard through a mailbox.

#### **Reference Model:**

- This is the ideal or "golden" model of the ALU, implemented at a high level.
- It performs the same operation as the real ALU using the input transaction and produces the expected output.
- The input to the reference model comes from the driver, and its output is passed to the scoreboard for comparison.

#### **Scoreboard:**

- The scoreboard compares the expected output from the reference model with the actual output from the monitor.
- If the values match, the test passes; otherwise, it logs a mismatch and raises an error.
- The scoreboard is central to identifying bugs or mismatches in ALU functionality.

#### **Environment:**

- The environment contains all the above components: generator, driver, monitor, reference model, and scoreboard.
- It handles their construction, configuration, and connection using mailboxes and virtual interfaces.
- The environment acts as a container for building the full testbench.

#### Test:

- This is where different test cases are defined (e.g., testing addition, subtraction, overflow, rotate, etc.).
- The test instantiates the environment and runs specific scenarios.
- It is written inside a class and helps run both directed and randomized tests.

## **TEST PLAN**

Below is the test plan for the general signal.

| Feature Name | Feature Description                                                                                | TestCase           | Expected Output                                                                                                                                         |
|--------------|----------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLK Toggle   | Check if the clock is toggling                                                                     |                    | clk = ~clk                                                                                                                                              |
| RST          | When reset is set the output signals set to zero                                                   | RST = 1            | RES= 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0 ,                                                                                                     |
| CE           | n CE(Clock_Enable) is set to 1 the ALU operates the specific operation at positive edge of the CLK | CE = 1             | J operates the specific operation at positive edge of the CLK                                                                                           |
|              | if the INP_VALID is set to Zero the output signals are set to zero                                 | INP_VALID == 2'b00 | RES= 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0 ,                                                                                                     |
|              | if the INP_VALID is set to One ,ALU performs operation that requires single operand on OPA         | INP_VALID == 2'b01 |                                                                                                                                                         |
|              | if the INP_VALID is set to Two ,ALU performs operation that requires single operand on OPB         | INP_VALID == 2'b10 | ration that require single operand are executed after One CLK cycles                                                                                    |
| INP_VALID    | k if the INP_VALID is set to Three ,ALU performs operation that requires both OPA and OPB          | INP_VALID == 2'b11 | form all the operations on both the operand whose output is yed by One CLK cycle - {except multiplication whose output is obtained after two CLK cycle} |
|              | heck when MODE is set to One Arithmetic operation is implimented on the operand                    | MODE == 1          | Arithmetic Operation                                                                                                                                    |
| MODE         | heck when MODE is set to Zero Arithmetic operation is implimented on the operand                   | MODE == 0          | Logical Operation                                                                                                                                       |

Below is the test plan for arithmetic operation.

| DD UNSIGNED | if when input valid is 2'b11 ,addition of randomized<br>OPA and OPB must take place      | VALID=2'b11 , CMD=0000 | on of two unsigned numbers whose result(RES) is obtained after One Clock cycle<br>COUT = 0/1   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0      |
|-------------|------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                          |                        |                                                                                                                                      |
| JB UNSIGNED | neck if when input valid is 2'b11 ,subtraction of randomized OPA and OPB must take place | VALID=2'b11 , CMD=0001 | action of two unsigned numbers whose result(RES) is obtained after One Clock<br>cycle   OFLOW =0/1   COUT= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0 |

| _CIN UNSIGNED | if when input valid is 2'b11 ,addition of randomized<br>OPA and OPB must take place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VALID=2'b11 , CMD=0010                                       | n of two unsigned numbers whose result(RES) is obtained after One Clock cycle<br>  COUT = 0/1   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|               | ne operand is valid then it will wait for the other<br>nd to be valid with in 16 clock cycles then addition<br>opeartion will take place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALID=2'b10within 16 clk<br>VALID=2'b01/2'b11 , CMD =<br>0000 | on of two unsigned numbers whose result(RES) is obtained after One Clock cycle   COUT = 0/1   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0    |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                                                   |
| _CIN UNSIGNED | heck if when input valid is 2'b11 ,subtraction of randomized OPA and OPB must take place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VALID=2'b11 , CMD=0011                                       | action of two unsigned numbers whose result(RES) is obtained after One Clock cycle   OFLOW =0/1   COUT= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0 |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                                                   |
| INC_A         | heck if when input valid is 2'b11, increment the randomized value of OPA by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /ALID = 2'b11 , CMD = 0100                                   | hented value of OPA must be present in the RES after one clock cycle   COUT=1/<br>0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                       |
|               | neck if when input valid is 2'b01, increment the randomized value of OPA by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /ALID = 2'b01 , CMD = 0100                                   | mented value of OPA must be present in the RES after one clock cycle   COUT= 1/0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                          |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                                                   |
| DEC_A.        | leck if when input valid is 2'b11, decrement the randomized value of OPA by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /ALID = 2'b11 , CMD = 0101                                   | hented value of OPA must be present in the RES after one clock cycle   OFLOW=<br>1/0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                      |
|               | eck if when input valid is 2'b01, decrement the randomized value of OPA by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /ALID = 2'b01 , CMD = 0101                                   | nented value of OPA must be present in the RES after one clock cycle   OFLOW= 1/0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                                                   |
| INC_B         | leck if when input valid is 2'b11, decrement the randomized value of OPB by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VALID = 2'b11 , CMD = 0110                                   | mented value of OPB must be present in the RES after one clock cycle   COUT= 1/0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                          |
|               | eck if when input valid is 2'b10, decrement the randomized value of OPB by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /ALID = 2'b10 , CMD = 0110                                   | mented value of OPB must be present in the RES after one clock cycle   COUT= 1/0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                          |
|               | adition beginning to the control of |                                                              | and the food with a second in the DEC of the second in the LOTION                                                                 |
| DEC_B         | leck if when input valid is 2'b11, decrement the randomized value of OPB by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /ALID = 2'b11 , CMD = 0111                                   | hented value of OPB must be present in the RES after one clock cycle   OFLOW=<br>1/0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                      |
|               | eck if when input valid is 2'b10, decrement the randomized value of OPB by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /ALID = 2'b10 , CMD = 0111                                   | nented value of OPB must be present in the RES after one clock cycle   OFLOW= 1/0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                         |
|               | hook if whom input valid is 31h11, compare the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | parising output is obtained offer and shall such DEC- 0. COUT- 0. OF OW- 0.                                                       |
| СМР           | heck if when input valid is 2'b11, compare the randomized value of OPA and OPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALID = 2'b11 , CMD = 1000                                    | parision output is obtained after one clock cycle RES= 0 , COUT= 0 ,OFLOW= 0 ,G=1/0 ,E=1/0 ,L=1/0 ,ERR= 0 ,                       |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                                                   |
| IC_A * INC_B  | eck if when input valid is 2'b11 , increment the mized value of OPA and OPB and then multiply the incremented value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /ALID = 2'b11 , CMD = 1001                                   | result of the product is obtained after two clock cycles COUT= 0 ,OFLOW= 1/0<br>,G=0 ,E=0 ,L= 0 ,ERR= 0                           |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                                                   |
| SHL1_A * B    | ck if when the input valid is 2'b11 ,increment the<br>indomized value of OPA by 1 and multiply with<br>randomized value of OPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /ALID = 2'b11 , CMD = 1010                                   | result of the product is obtained after two clock cycles COUT= 0 ,OFLOW= 1/0 ,G=0 ,E=0 ,L= 0 ,ERR= 0                              |

Below is the test plan for logical operation

|        | Nearly if when in our walled in 21h44, AND                                                           |                             |                                                                                                                    |
|--------|------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|
| AND    | heck if when input valid is 2'b11 ,AND ration for the randomized OPA and OPB must take place         | P_VALID=2'b11 , CMD=0000    | result(RES) is obtained after One Clock cycle   COUT = 0<br>OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                       |
| NAND   | neck if when input valid is 2'b11 ,NAND<br>eration for the randomized OPA and OPB<br>must take place | P_VALID=2'b11 , CMD=0001    | result(RES) is obtained after One Clock cycle   COUT = 0<br>OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                       |
| OR     | c if when input valid is 2'b11 ,OR operation<br>the randomized OPA and OPB must take<br>place        | P_VALID=2'b11 , CMD=0010    | esult(RES) is obtained after One Clock cycle   COUT = 0  <br>OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                      |
| NOR    | heck if when input valid is 2'b11 ,NOR eration for the randomized OPA and OPB must take place        | P_VALID=2'b11 , CMD=0011    | result(RES) is obtained after One Clock cycle   COUT = 0<br>OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                       |
| XOR    | Check if when input valid is 2'b11 ,XOR eration for the randomized OPA and OPB must take place       | P_VALID=2'b11 , CMD=0100    | result(RES) is obtained after One Clock cycle   COUT = 0<br>OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                       |
| XNOR   | neck if when input valid is 2'b11 ,XNOR<br>eration for the randomized OPA and OPB<br>must take place | P_VALID=2'b11 , CMD=0101    | result(RES) is obtained after One Clock cycle   COUT = C<br>OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                       |
| NOT_A  | eck if when input valid is 2'b11, take the apliment of the randomized value of OPA                   | _VALID = 2'b11 , CMD = 0110 | A result(RES) is obtained after One Clock cycle   COUT =<br>  OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                     |
|        | eck if when input valid is 2'b01,take the apliment of the randomized value of OPA                    | _VALID = 2'b01 , CMD = 0110 | A result(RES) is obtained after One Clock cycle   COUT =<br>  OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                     |
| NOT_B  | eck if when input valid is 2'b11, take the opliment of the randomized value of OPB                   | _VALID = 2'b11 , CMD = 0111 | B result(RES) is obtained after One Clock cycle   COUT =<br>  OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                     |
|        | eck if when input valid is 2'b01,take the apliment of the randomized value of OPB                    | _VALID = 2'b01 , CMD = 0111 | B result(RES) is obtained after One Clock cycle   COUT =<br>  OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                     |
| SHR1_A | if when input valid is 2'b11, then shift the lomized value of OPA to the right by 1 bit              | _VALID = 2'b11 , CMD = 1000 | right shift of OPA result(RES) is obtained after One Clock cycle   COUT = 0   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0     |
|        | if when input valid is 2'b01, then shift the domized value of OPA to the right by 1 bit              | _VALID = 2'b01 , CMD = 1000 | right shift of OPA result(RES) is obtained after One Clocl cycle   COUT = 0   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0     |
| SHL1_A | if when input valid is 2'b11, then shift the domized value of OPA to the left by 1 bit               | _VALID = 2'b11 , CMD = 1001 | e left shift of OPA result(RES) is obtained after One Clock cycle   COUT = 0   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0    |
|        | t if when input valid is 2'b01, then shift the domized value of OPA to the left by 1 bit             | _VALID = 2'b01 , CMD = 1001 | e left shift of OPA result(RES) is obtained after One Clock<br>cycle   COUT = 0   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0 |
|        |                                                                                                      |                             |                                                                                                                    |

| SHR1_B  | if when input valid is 2'b11, then shift the lomized value of OPB to the right by 1 bit   | _VALID = 2'b11 , CMD = 1010 | right shift of OPB result(RES) is obtained after One Clock cycle   COUT = 0   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0 |
|---------|-------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------|
|         | s if when input valid is 2'b10, then shift the lomized value of OPB to the right by 1 bit | _VALID = 2'b10 , CMD = 1010 | right shift of OPB result(RES) is obtained after One Clock cycle   COUT = 0   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0 |
|         |                                                                                           |                             |                                                                                                                |
| SHL1_B  | if when input valid is 2'b11, then shift the domized value of OPB to the left by 1 bit    | _VALID = 2'b11 , CMD = 1011 | left shift of OPB result(RES) is obtained after One Clock cycle   COUT = 0   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0  |
|         | if when input valid is 2'b10, then shift the domized value of OPB to the left by 1 bit    | _VALID = 2'b10 , CMD = 1011 | left shift of OPB result(RES) is obtained after One Clock cycle   COUT = 0   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0  |
| ROL A B | k if when input valid is 2'b11 ,roll left OPA<br>by OPB times                             | P VALID=2'b11, CMD=1100     | result(RES) is obtained after One Clock cycle   COUT = 0   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                    |
|         | ,                                                                                         |                             |                                                                                                                |
| ROR_A_B | k if when input valid is 2'b11 ,roll right OPA<br>by OPB times                            | P_VALID=2'b11 , CMD=1101    | result(RES) is obtained after One Clock cycle   COUT = 0   OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=0                    |

# Corner conditions for the test plan are as below:

| INP_VALID        | if the INP_VALID is set to Zero the output signals are set to zero | INP_VALID == 2'b00                    | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=1 |  |  |  |  |
|------------------|--------------------------------------------------------------------|---------------------------------------|----------------------------------------------|--|--|--|--|
|                  | Arithmetic Opera                                                   | tion for : MODE = 1   RST=0   CE=1    |                                              |  |  |  |  |
| ADD UNSIGNED     |                                                                    | _VALID == 2'b01 / 2'b10 , CMD = 0000  | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=1 |  |  |  |  |
|                  |                                                                    |                                       |                                              |  |  |  |  |
| SUB UNSIGNED     |                                                                    | _VALID == 2'b01 / 2'b10 , CMD = 0001  | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=1 |  |  |  |  |
|                  |                                                                    |                                       |                                              |  |  |  |  |
| ADD_CIN UNSIGNED |                                                                    | _VALID == 2'b01 / 2'b10 , CMD = 0010  | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=1 |  |  |  |  |
|                  |                                                                    |                                       |                                              |  |  |  |  |
| SUB_CIN UNSIGNED |                                                                    | _VALID == 2'b01 / 2'b10 , CMD = 0011  | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=1 |  |  |  |  |
|                  |                                                                    |                                       |                                              |  |  |  |  |
| СМР              |                                                                    | _VALID == 2'b01 / 2'b10 , CMD = 1000  | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=1 |  |  |  |  |
|                  |                                                                    |                                       |                                              |  |  |  |  |
| INC_A * INC_B    |                                                                    | P_VALID == 2'b01 / 2'b10 , CMD = 1001 | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=1 |  |  |  |  |
|                  | ut valid is 2'b01 / 2'b10 then error                               |                                       |                                              |  |  |  |  |
| SHL1_A * B       | •                                                                  | _VALID == 2'b01 / 2'b10 , CMD = 1010  | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=1 |  |  |  |  |
|                  |                                                                    |                                       |                                              |  |  |  |  |
|                  | Logical Operation for : MODE = 0   RST=0   CE=1                    |                                       |                                              |  |  |  |  |
| AND              | ut valid is 2'b01 / 2'b10 then error<br>flag is raised             | P_VALID == 2'b01 / 2'b10 , CMD = 0000 | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ERR=1 |  |  |  |  |

| NAND    | ut valid is 2'b01 / 2'b10 then error<br>flag is raised | P_VALID == 2'b01 / 2'b10 , CMD = 0001 | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ER |
|---------|--------------------------------------------------------|---------------------------------------|-------------------------------------------|
| OR      | ut valid is 2'b01 / 2'b10 then error<br>flag is raised | P_VALID == 2'b01 / 2'b10 , CMD = 0010 | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ER |
| NOR     | ut valid is 2'b01 / 2'b10 then error<br>flag is raised | P_VALID == 2'b01 / 2'b10 , CMD = 0011 | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ER |
| VOD     | ut valid is 2'b01 / 2'b10 then error                   | 21L04 / 21L04 OMD - 0400              |                                           |
| XOR     | flag is raised                                         | P_VALID == 2'b01 / 2'b10 , CMD = 0100 | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ER |
| XNOR    | ut valid is 2'b01 / 2'b10 then error<br>flag is raised | P_VALID == 2'b01 / 2'b10 , CMD = 0101 | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ER |
| NOT_A   | out valid is 2'b10 then error flag is raised           | INP_VALID == 2'b10 , CMD = 0110       | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ER |
| NOT_B   | out valid is 2'b01 then error flag is raised           | INP_VALID == 2'b01 , CMD = 0111       | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,ER |
| SHR1_A  | out valid is 2'b10 then error flag is<br>raised        | INP_VALID == 2'b10 , CMD = 1000       | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,EF |
| SHL1_A  | out valid is 2'b10 then error flag is raised           | INP_VALID == 2'b10 , CMD = 1001       | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,EF |
| SHR1_B  | out valid is 2'b01 then error flag is raised           | INP_VALID == 2'b01 , CMD = 1010       | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,EF |
| SHL1_B  | out valid is 2'b01 then error flag is raised           | INP_VALID == 2'b01 , CMD = 1011       | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,EF |
| ROL_A_B | ut valid is 2'b01 / 2'b10 then error<br>flag is raised | P_VALID == 2'b01 / 2'b10 , CMD = 1100 | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,EI |
| ROR_A_B | ut valid is 2'b01 / 2'b10 then error flag is raised    | P_VALID == 2'b01 / 2'b10 , CMD = 1101 | 0 , COUT=0 ,OFLOW= 0 ,G= 0 ,E=0 ,L= 0 ,EI |

# **FUNCTIONAL COVERAGE PLAN**

Below is the coverage that has been implemented for the verification of ALU

| SI. No. | Coverpoints     | Pin Name      | Description                |  |  |  |
|---------|-----------------|---------------|----------------------------|--|--|--|
|         | Simple Coverage |               |                            |  |  |  |
|         |                 |               | Check if CE has taken both |  |  |  |
| 1.1     | CE_cp           | CE            | values 1 and 0             |  |  |  |
|         |                 |               | Check if both arithmetic   |  |  |  |
|         |                 |               | (MODE == 1) and logical    |  |  |  |
| 1.2     | MODE_cp         | MODE          | (MODE == 0) are covered    |  |  |  |
|         |                 |               | Check if INP_VALID signals |  |  |  |
| 4.2     |                 |               | has covered all 3 cases    |  |  |  |
| 1.3     | INP_VALID_cp    | INP_VALID     | {0,1,2,3}                  |  |  |  |
| 1.4     | CNAD 4          | CNAD          | if MODE==1 ,CMD has to     |  |  |  |
| 1.4     | CMD_1           | CMD           | cover 11 values (0 to 10)  |  |  |  |
| 1.5     | CNAD O          | CNAD          | if MODE==0 ,CMD has to     |  |  |  |
|         | CMD_0           | CMD           | cover 14 values (0 to 13)  |  |  |  |
| 1.6     | A_cp            | OPA           | Check all bits are toggled |  |  |  |
| 1.7     | B_cp            | OPB           | Check all bits are toggled |  |  |  |
| 1.8     | CIN_cp          | CIN           | Check all bits are toggled |  |  |  |
|         |                 |               | Check if CE has taken both |  |  |  |
| 1.1     | CE_cp           | CE            | values 1 and 0             |  |  |  |
|         |                 |               | Check if both arithmetic   |  |  |  |
|         |                 |               | (MODE == 1) and logical    |  |  |  |
| 1.2     | MODE_cp         | MODE          | (MODE == 0) are covered    |  |  |  |
|         |                 |               | Check if INP_VALID signals |  |  |  |
|         |                 |               | has covered all 3 cases    |  |  |  |
| 1.3     | INP_VALID_cp    | INP_VALID     | {0,1,2,3}                  |  |  |  |
|         | Cros            | s Coverage    |                            |  |  |  |
|         |                 |               | Cross coverage between     |  |  |  |
|         |                 |               | MODE and CMD (for          |  |  |  |
| 1.1     | MODE_cp_x_CMD_1 | MODE_cp,CMD_1 | Arithmetic operation )     |  |  |  |
|         |                 |               | Cross coverage between     |  |  |  |
|         |                 |               | MODE and CMD (for Logical  |  |  |  |
| 1.2     | MODE_cp_x_CMD_0 | MODE_cp,CMD_0 | operation )                |  |  |  |

# **ASSERTIONS**

#### Randomized

| SI. No.     | Features    | Signals   | Scenarios         | Description        |  |  |  |  |
|-------------|-------------|-----------|-------------------|--------------------|--|--|--|--|
| Valid_Check |             |           |                   |                    |  |  |  |  |
| 1.1         | Check input | INP_VALID | Check if signals  | All the signals to |  |  |  |  |
| 1.2         | signals     | MODE      | are valid (except | be valid (except   |  |  |  |  |
| 1.3         |             | CMD       | 'x' or 'z')       | 'x' or 'z')        |  |  |  |  |
| 1.4         |             | CE        |                   |                    |  |  |  |  |
| 1.5         |             | OPA       |                   |                    |  |  |  |  |
| 1.6         |             | ОРВ       |                   |                    |  |  |  |  |
| 1.7         |             | CIN       |                   |                    |  |  |  |  |
| Reset_Check |             |           |                   |                    |  |  |  |  |
|             |             |           | Check on          | when reset is      |  |  |  |  |
| 1.1         |             | RST       | asserting reset   | asserted, the      |  |  |  |  |

|              | T                   | I                               | I                  |                    |  |  |
|--------------|---------------------|---------------------------------|--------------------|--------------------|--|--|
|              |                     |                                 |                    | output is set to   |  |  |
|              |                     |                                 |                    | zero at posedge    |  |  |
|              |                     |                                 |                    | clk                |  |  |
|              | Check reset         |                                 |                    | when reset is de-  |  |  |
|              | signal              |                                 |                    | asserted, the      |  |  |
|              |                     |                                 | Check on de-       | output obtained    |  |  |
|              |                     |                                 | asserting reset    | is based on the    |  |  |
|              |                     |                                 |                    | particular         |  |  |
| 1.2          |                     | RST                             |                    | operation          |  |  |
| Timing_Check |                     |                                 |                    |                    |  |  |
|              | Check for           |                                 |                    | CE must be high    |  |  |
|              | stability.          |                                 | Check clock        | during the ALU     |  |  |
| 1.1          |                     | CE                              | enable stability   | operation          |  |  |
|              | Check for           |                                 | -                  | MODE and CMD       |  |  |
|              | stability.          |                                 | Check mode and     | should be stable   |  |  |
|              |                     |                                 | command are        | for respective of  |  |  |
| 1.2          |                     | MODE,CMD                        | stable             | ALU operation      |  |  |
|              |                     |                                 |                    | Wait for 16 clock  |  |  |
|              |                     |                                 |                    | cycles for         |  |  |
|              |                     |                                 | INP_VALID is       | INP_VALID to       |  |  |
| 1.3          | Waiting Period      | INP_VALID                       | 2'b01 or 2'b10     | become 2'b11       |  |  |
|              |                     | _                               |                    | When clock         |  |  |
|              |                     |                                 |                    | enable is de-      |  |  |
|              |                     |                                 |                    | asserted the       |  |  |
|              |                     |                                 | Clock enable de-   | output of the      |  |  |
| 1.4          | Latch Check         | CE                              | assertion          | ALU is latched     |  |  |
|              |                     |                                 |                    | The result for the |  |  |
|              |                     |                                 |                    | particular         |  |  |
|              |                     |                                 |                    | operation is       |  |  |
|              |                     |                                 | Except             | executed after     |  |  |
|              |                     |                                 | multiplication     | one clock cycle    |  |  |
| 1.5          | One-Cycle Delay     | ERR,RES,G,L,E,COUT              | operation          | delay              |  |  |
|              | , ,                 | , , , , , , , , , , , , , , , , |                    | The result for the |  |  |
|              |                     |                                 |                    | multiplication     |  |  |
|              |                     |                                 |                    | operation is       |  |  |
|              |                     |                                 |                    | executed after     |  |  |
|              |                     |                                 | For multiplication | two clock cycle    |  |  |
| 1.6          | Two-Cycle Delay     | ERR,RES,G,L,E,COUT              | operation          | delay              |  |  |
|              | 1 . 110 Cycle Delay |                                 | Peration           | acidy              |  |  |