Calculo I

Ricardo Michel MALLQUI BAÑOS

2020-03-19

Universidad Nacional De San Cristobal De Huamanga

<u>\</u>

Índice general

Re	umen	V
In	roducción	VII
Pr	liminares	IX
1.	Números reales	1
	1.1. Los axiomas de cuerpo	1
	1.2. Los axiomas de orden	1
	1.3. Valores absolutos y desigualdad triangular	1
	1.4. Algebra de los valores absolutos	1
	1.5. Proximidad	1
2.	Números naturales	5
	2.1. Teoremas	5
3.	Limite de una función	11
	3.1. Definición de limite para funciones $\mathbb{R} \to \mathbb{R}$ (es decir, funciones	
	que aplican reales en reales)	11
	3.2. Teorema sobre limite de funciones	11
	3.3. Teorema lím ite de la raíz de una función	11
	3.4. Teorema del límite para funciones com puestas	11
	3.5. Teorema del sandwich	11
	3.6. Limites laterales	11
	3.7. Limites que contienen in finito	11
	3.8. Límites de la forma lím $f(x)^{g(x)} = C \dots \dots \dots$	11

V	Índice	e general

5.	Methods	15
	4.2. Example two	13
	4.1. Example one	13
4.	Applications	13

Resumen

Introducción

Preliminares

-1-

Números reales

- 1.1. Los axiomas de cuerpo
- 1.2. Los axiomas de orden
- 1.3. Valores absolutos y desigualdad triangular
- 1.4. Algebra de los valores absolutos.

1.5. Proximidad

Generar pdf y svg en inskape(ajustar Shift+Ctrl+R) o relativos luego se debe guardar en el mismo directorio general luego se usa el entorno ff fff

$$\prod_{1}^{2} = \sum_{\alpha}^{e}$$

1.5.1. Vector

 \vec{w}

1.5.2. Recta

See Theorem 1.1

Here is my theorem. Here is my theorem.

Figura 1.1: ww

Theorem 1.1. Here is my theorem. Here is my theorem.

sea Here is my theorem. Here is my theorem. Here is my theorem. Here is my theorem. \sum_{1}^{2}

Definition 1.1 (ww). Sea la siguiente formula Here is my theorem. Here is my theorem. Here is my theorem. Here is my theorem.

See Figure 1.3 1.1

Figura 1.2: ww

Here is my theorem. Here is my theorem. Here is my theorem.

plot(cars) # a scatterplot

Lemma 1.1 (Pythagorean theorem). For a right triangle, if c denotes the length of the hypotenuse and a and b denote the lengths of the other two sides, we have

$$a^2 + b^2 = c^2$$

1.5. Proximidad 3

Figura 1.3: A plot caption

See Table 1.1

knitr::kable(mtcars[1:5, 1:5], caption = "A caption", booktabs=TRUE)

$$f(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 (1.1)

Este es un ejemplo book written in **Markdown. La ecuacion (1.1). You can use

Cuadro 1.1: A caption

	mpg	cyl	disp	hp	drat
Mazda RX4	21.0	6	160	110	3.90
Mazda RX4 Wag	21.0	6	160	110	3.90
Datsun 710	22.8	4	108	93	3.85
Hornet 4 Drive	21.4	6	258	110	3.08
Hornet Sportabout	18.7	8	360	175	3.15

anything that Pandoc's Markdown supports, e.g., a math equation $a^2 + b^2 = c^2$.

The **bookdown** package can be installed from CRAN or Github:

```
install.packages("bookdown")
# or the development version
# devtools::install_github("rstudio/bookdown")
```

Remember each Rmd file contains one and only one chapter, and a chapter is defined by the first-level heading #.

To compile this example to PDF, you need XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): https://yihui.org/tinytex/.

Figura 1.4: ww

-2-

Números naturales

2.1. Teoremas

Definition 2.1 (conjunto inductivo). Un conjunto M es inductivo si verifica las siguentes condiciones

- 1. $0 \in M$
- 2. si $x \in M$ entonces $x + 1 \in M$

entonces se debe respetar las demas opciones por lo t por lo tanto

$$\int_{1}^{2}$$

es decir debido a la predisposicion deevacuar es necesario poder contener

Entonces se debe entender que los demas electronicos dependientes a la avocación tenue entre las demas opciones porque es lo mas idoneo porque es loa mismo que poner las demas opciones congruentes es decir porque es lo mismo que poner las demas opciones es decir $\int_1^2 = \sum_1^2$

$$e = ee$$

$$= eer$$

Theorem 2.1. *Todo conjunto indcutivo de numeros reales contiene los numeros 1,* 2, 3, . . .

Es decir que por los menos se puede decir que las demas opciones son menos congruentes es decir por lo tanto se pueruba que los requisitos se verifican s conclye por las razones dadas es decir las demas opciones contienen el obejtivo buscado por lo tanto es decir $\int_1^2 = \rho_1^3$

$$\rho = \epsilon \\
= \zeta$$

export DISPLAY=192.168.0.102:0 export PULSE_SERVER=tcp:192.168.0.102:4713

```
library(polynom)
p1=polynomial(coef=c(-2,-1,2,1))
raices_p1=solve(p1)
```

Por tanto, las raíces de $p_1(x)$ son : -2, -1, 1. Y la factorización será:

$$p_1(x) = (x+2)(x+1)(x-1)$$

2. Comprueba gráficamente que las raíces encontradas, lo son. Solución: Para comprobar gráficamente, dibujamos el polinomio, y donde corte con el eje X, debe de coincidir con el valor de las raíces:

```
plot (p1)
106

## [1] 106

abline(h=0,lty=2,col="red") #Marcar el eje X
```

2.1. Teoremas 7

Vemos como el polinomio corta al eje en los puntos x = -2, x = -1 y x = 1. Por tanto, queda comprobado. 3. Los valores x = 3, x = -1 y x = 12, ¿son raíces del polinomio $p(x) = 3x^4 - 2x^3 + 12x100$?

Solución: Para saber si un valor es raíz de un polinomio, sustituimos dicho valor en el polinomio, y si el resultado es igual 0, es raíz:

```
p=polynomial(coef=c(-100,12,0,-2,3))
predict(p, c(3,-1,12))
```

Ningún valor es 0, por tanto no son raíces del polinomio. ### Ejercicio - Estadística y probabilidad *La profesora de lengua castellana ha contabilizado las faltas de sus alumnos en un examen, y ha obtenido los siguientes resultados:*

3, 4, 5, 1, 0, 2, 4, 3, 6, 3, 4, 5, 2, 6, 4, 3, 5, 4, 5, 2, 1, 0, 1, 1, 5, 6, 4 *1. Represéntalos con el gráfico adecuado* . Solución: Como se trata de una variable cuantitativa discreta, podemos representarla con un diagrama de barras:

```
barplot(table(faltas_ortografia), main="Diagrama de barras")
```


2. ¿Qué porcentaje de alumnos ha hecho 4 faltas de ortografía? Solución: Para saberlo, se necesita la tabla de frecuencias relativas y multiplicarla por 100 para obtener el porcentaje:

```
prop.table(table(faltas_ortografia))
```

```
## faltas_ortografia
## 0 1 2 3 4
## 0.07407407 0.14814815 0.11111111 0.14814815 0.2222222 0.1851851
```

Si miramos la columna que indica que el número de faltas es 4, deducimos que el porcentaje es del 22,2 %. 3. ¿Cuántos alumnos han hecho 5 faltas o más?¿Cuál es el número de faltas más frecuente? Solución: Para saberlo, se necesita la tabla de frecuencias absolutas:

```
table(faltas_ortografia)
```

```
## faltas_ortografia
## 0 1 2 3 4 5 6
## 2 4 3 4 6 5 3
```

107 Por lo tanto, 5 faltas o más son los alumnos que han hecho 5 faltas y 6 faltas.

2.1. Teoremas

En este caso, hay 5 alumnos que han hecho 5 faltas, y 3 alumnos que han hecho 6 faltas, por tanto 8 alumnos han hecho 5 faltas de ortografía o más. Para saber el número de faltas más frecuente, tan solo tenemos que buscar la frecuencia absoluta más grande, es decir, la que se corresponde con 4 faltas. 4. Calcula las medidas de centralización y dispersión, escribiendo sus fórmulas. Solución: Medidas de centralización

-Varianza y desviación típica, cuyas fórmulas son:

$$Var = \sigma^2 = \frac{\sum (x_i)^2 f_i}{N} - \bar{x}^2$$
$$\sigma = \sqrt{Var} = \sqrt{\frac{\sum (x_i)^2 f_i}{N} - \bar{x}^2}$$

Para calcularlas,

```
varianza=var(faltas_ortografia)
desv.tipica=sd(faltas_ortografia)
```

Y obtenemos, que la varianza, $\sigma^2 = 3.3703704$, y que la desviación típica, $\sigma = 1.8358568$. ## Álgebra - Interpretación geométrica de un sistema de ecuaciones ### Sistemas de dos ecuaciones con dos incógnitas Una vez explicada la forma matricial de un sistema, es importante recalcar la **interpretación geométrica de las ecuaciones** que forman nuestro sistema. Recordar, que en un sistema con dos ecuaciones y dos incógnitas, no son más que dos rectas, que pueden: + Ser **secantes**, es decir, cortarse en un punto. En este caso el sistema es Compatible Determinado (S.C.D) + Ser **coincidentes**. En este caso el sistema es Compatible Indeterminado (S.C.I), pues existen infinitas soluciones. + Ser **paralelas**, es decir, no cortarse en ningún punto. En este caso el sistema es Incompatible (S.I). **Ejemplo**. Sea el sistema:

Entonces se peude deducir que las ecuaciones sededucen con las siguentes opciones or lo tanto se deduce que las ecuciones son de a acuerdo a las espetativas de los numeros dados por las demas opciones consistentes de los demas opciones considerese que cada de las opciones de la acción de la cosas abducidas esten consideradas de aucerdo a las considereaciones consistentes por lo tanto se deduce que las acciones son menos apreciables es decir que las respuestas son muy adecuadas de orden y estructura además es menester observar que los actos mostrados son muy acorde a las ventajas incluidas en el presente párrafo esto es que se debe

considerar que las acciones son muy buenas, es decir que las acciones son muy apreciables de acuerdo a las observaciones realizadas de donde se deduce que las acciones pertinentesson apreciables de aucerdo a las opciones consideradas en las emas porquerias de actos despectivos es decir que las acciones de incógnitas son muy apreciables ecuaciones geometría acción entonces configuración es después parís ágil acotó azúcar ámbar dólar dócil domínguez pérez pódium poliéster púber mármol fácil ágil álbum dócil néctar néstor ónix aeróbic las racies de la ecuacion $p(x) = x^2 + 3x - 1 = 0$ son $x_1 = 2$, $x_2 = 3$ y $x_3 = 5$ por lotanto se deduce que las demas ocpicones considerese que las demas raices son de modo consistente en todo caso son muy apreciables de acuerdo a las desventajas es decir que las acciones son uy apreciables esto es considérese esto de acuerdo al una opcion consistente esto es un desqueilirio entonces es no menos consistente por lo tnato se puede entonces soportar una desacuerdo equívoco

es decir que los dmas opciones se restrigen etnre otros a los antecedentes compositivos por lo tanto es meenster enetender que los resultados buscdso son $\int_1^2 = \rho$ cuando los que esperaba consigue el resultado buscado por ende es comptencia de los participantes ρ es la base del vectro en las sitema coordenados ϵ_1 por lo tanto es menster esperar que las indicaciones son mejores que los que se esperaba.

Demostración. En efecto
$$0 \in M$$
, $0 + 1 \in M$

Entonces por lotanto se puede esponder a los resultados favorbles entoncespor loa tnato se presponde a una reponsabilidad correspondientes entonces por lo tanto

Theorem 2.2 (Principio de inducción matemática). *Todo conjunto indcutivo de numeros reales contiene los numeros 1, 2, 3, ...*

Figures and tables with captions will be placed in and environments, respectively.

You can write citations, too. For example, we are using the **bookdown** package (Xie, 2020) in this sample book, which was built on top of R Markdown and **knitr** (Xie, 2015).

-3-

Limite de una función

- 3.1. Definición de limite para funciones $\mathbb{R} \to \mathbb{R}$ (es decir, funciones que aplican reales en reales)
- 3.2. Teorema sobre limite de funciones
- 3.3. Teorema lím ite de la raíz de una función
- 3.4. Teorema del límite para funciones com puestas
- 3.5. Teorema del sandwich
- 3.6. Limites laterales
- 3.7. Limites que contienen in finito
- **3.8.** Límites de la forma lím $f(x)^{g(x)} = C$

4

Applications

Some *significant* applications are demonstrated in this chapter.

4.1. Example one

4.2. Example two

-5-

Methods

We describe our methods in this chapter.

-6-

Final Words

We have finished a nice book.

Bibliografía

Xie, Y. (2015). *Dynamic Documents with R and knitr*. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2020). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.17.

Índice alfabético

chapter, 15