	Model Question Paper-II					with effect from 2022					
USN											

Fourth Semester B.E Degree Examination Complex Analysis, Probability & Statistical Methods All branches Except CS & ME Engg. Allied branches-21MAT41

TIME: 03 Hours

Note: Answer any FIVE full questions, choosing at least ONE question from each module

N	ote:	Answer any FIVE full questions, choosing at least ONE question from each module.			
Q.I	No.	M	L	CO	
		Module -1			
01	a	06	L2	CO1	
	b	Show that $w = f(z) = z + e^z$ is analytic and hence find its derivative.	07	L3	CO1
	С	Evaluate $\int_{(0,3)}^{(2,4)} (2y+x^2) dx + (3y-x) dy$ along with the parabola $x = 2t$, $y = t^2 + 3$.	07	L2	CO1
		OR Find analytic function $f(z) = u + iv$ where $u - v = (x - y)(x^2 + 4xy + y^2)$ by the			
02	a	06	L3	CO1	
	b	State and prove Cauchy's integral formula.	07	L3	CO1
	С	Evaluate $\int_C \frac{e^{2z}}{(z+1)(z+2)} dz$, where C is a circle $ z = 3$.	07	L2	CO1
	ı	Module-2	1	· I	L
03	a	Show that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$	06	L2	CO2
	b	If α and β are two distinct roots of $J_n(x) = 0$, then prove that	07	L2	CO2
		$\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = 0.$			
	С	Show that $P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$	07	L2	CO2
	I	OR	l.	1	I
4	a	Show that $J_{-\frac{1}{2}}(x) = J_{\frac{1}{2}}(x) \cot x$	06	L2	CO2
	b	Find the series solution of the Legendre's equation $(1 - x^2) \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + n(n+1)y = 0$,	07	L2	CO2
		leading to Legendre polynomial of order <i>n</i> .			
	С	Express $4x^3 + 6x^2 + 7x + 2$ in terms of Legendre polynomials	07	L2	CO2
		Module-3			•

5	a	The following table gives the heights of father(x) and sons(y). Calculate the Karl Pearson's coefficient of correlation.									06	L2	CO3							
		<i>x</i> :	65			67		68 68			69		70		72					
		<i>y</i> :	67	68		65	68	8	72		72		69		71					
	b	Fit a	straig	tht line	y = a	ax + b	for the	e data	ì									07	L2	CO3
				x:	1	2	15		21		25									
				<i>y</i> :	5	50	70		100		120)								
	С	Using	g the	method	of le	ast sqı	ıare, f	fit a c	urve	y =	$=ax^{b}$	for th	he f	ollow	ing da	ata		07	L2	CO3
		<i>x</i> :		1		2		3			4		5	5	6					
		y:		2.98		4.26		5.21		(6.1		6.	.8	7.5					
			•				•			0		•			•					
6	a	The s	scores	s for 9 s	tuden	its in F	Physic	es (x)	and	Mat	hema	tics	(y)	are as	follow	/S		06	L2	CO3
		x	x: 35		23	23 47		17		10		43	9		6	28				
		У	:	30	33	4	45	23		8		49		12	4	31				
	1.			he Ran							cc		C	.1				07	L2	CO3
	b			ne mean $5y + 33$					ation	coe	riicie	nt r	iro	m the	given	regres	ssion	07	LZ	COS
	С			ıd-degre					$a^2 + b$.	x + c	for t	he da	ata.					07	L2	CO3
		l —	<i>:</i>	20	1	60		10			140			180	2	20				
)):	0.18		0.37	1	0.3	35		0.78		().56	0.	.75				
7		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	J	vou! -1 1	V 1	ا -1، م	C. 11 .	.:			ule-4	at:						00	12	CO4
7	a	A rand	$\frac{\text{dom v}}{X}$	variable 0	X ha	as the following 2		$\frac{\sqrt{10g p}}{3}$	1	4	ty fun	Ct101		6		7	7	06	L2	CO4
			$\frac{A}{P(X)}$		k	2		$\frac{3}{2k}$	-	4 8k	$\frac{3}{k^2}$			$\frac{6}{k^2}$	$7k^2$		1			
				Also fi		`				` _		6).								
	b			nean an														07	L2	CO4
	С	The number of telephonic lines busy at an instant line is a binomial variate with a probability 0.1. If 10 lines are chosen at random, what is the probability that (i) No line is busy (ii) All lines are busy (iii) At least one line is busy								07	L3	CO4								

						OR						
8	a	The diameter of a electric cable is assumed to be a continuous random variable with p.d.f $f(x) = \begin{cases} kx(1-x), & 0 \le x < 1 \\ 0, & else \ where \end{cases}$ Find the value of k and also obtain the mean and variance of the variable								06	L2	CO4
	b	The number of accidents in a year to taxi drivers in a city follows a Poisson distribution with mean 3. Out of 1000 taxi drivers find approximately the number of drivers with i) No accident in a year ii) More than three accidents in a year.									L2	CO4
	С	If the life time of a certain types electric bulbs of a particular brand was distributed normally with an average life of 2000 hours and S.D.60 hours. If a firm purchase 2500 bulbs, find the number of bulbs that are likely to last for (i) More than 2100 hours (ii) Less than 1950 hours (iii) Between 1900 and 2100 hours.								07	L2	CO4
					Modu	le-5						
9	a	The joint dis	stribution	of two rand	lom varia	bles X a	nd Y is	as follows.		06	L2	CO5
				T		Γ						
			X	1	3	6						
			1	$\frac{1}{9}$	$\frac{1}{6}$	$\frac{1}{18}$						
			3	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{12}$						
			6	1 18	1 12	1 36						
	Compute the following.											
		i) Marginal distributions of X and Yii) Are X and Y stochastically independent?										
		,			<u> </u>							
	b	A set of five sin		s is tossed ?		and the	_			07	L2	CO5
		No. of heads	0	l	2		3	4	5			
		Frequency	6	27	72		12	71	32			
		Test the hypothesis that the data follows a binomial distribution at 5% significance level										
	С	A certain stimulus administered to each of the 12 patients resulted in the following change in the blood pressure 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4. Can it be concluded that the stimulus will increase the blood pressure? (<i>Note</i> : $t_{0.05}$ for 11 d.f. is 2.201).								L3	CO5	

				OR						
10 a Determine (i) Marginal distributions (ii) Correlation coefficient between the variables <i>X</i> and <i>Y</i> , from the joint probability distribution given by:									L2	CO5
		Y	-2	-1	4	5				
		1	0.1	0.2	0	0.3				
		2	0.2	0.1	0.1	0				
	b The 9 item of a sample have the following values 45, 47, 50, 52, 48, 47, 49, 53, 51. Does the mean of these differ significantly from the assumed mean of 47.5? $(t_{0.05} = 2.306 \text{ for } 8 \text{ d.f.})$									CO5
	The theory predicts the proportion of beans in the four groups A, B, C and D should be 9:3:3:1. In an experiment among 1600 beans, the number in the Four groups were 882, 313, 287 and 118. The goodness of fit χ^2 value of above data is approximately equal to?								L3	CO5

	Low	ver-order thinking skills						
Bloom's Taxonom y Levels	Remembering (knowledge): L_1	Understanding (Comprehension): L_2	Applying (Application): L_3					
y Levels	Higher-order thinking skills							
	Analyzing (Analysis):L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆					