Exercise 3.2 Riemann tensor from commutation of ∇

```
{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u\#}::Indices(position=independent).
     \nabla{#}::Derivative.
     \partial{#}::PartialDerivative.
     \Gamma^{a}_{b c}::TableauSymmetry(shape={2}, indices={1,2});
     # rules for the first two covariant derivs of V^a
9
     deriv1 := \nabla_{a}{V^{b}} \rightarrow \partial_{a}{V^{b}}
10
                                   + \Gamma^{b}_{d a} V^{d}.
                                                                        # cdb (ex-0302.101,deriv1)
11
12
     deriv2 := \\ a}{\nabla_{b}{V^{c}}} \rightarrow \\ partial_{a}{\nabla_{b}{V^{c}}}
13
                                                + \Gamma^{c}_{d a} \nabla_{b}{V^{d}}
14
                                                - \Gamma^{d}_{b a} \nabla_{d}{V^{c}}.
15
                                                                        # cdb (ex-0302.102,deriv2)
16
17
     Vabc := \\  \nabla_{c}{\nabla_{b}{V^{a}}}
             - \nabla_{b}{\nabla_{c}_{V^{a}}}.
                                                                        # cdb (ex-0302.103, Vabc)
19
20
     substitute (Vabc,deriv2)
                                                                        # cdb (ex-0302.104, Vabc)
21
                                                                        # cdb (ex-0302.105, Vabc)
     substitute (Vabc,deriv1)
22
23
     distribute
                     (Vabc)
                                                                        # cdb (ex-0302.106, Vabc)
     product_rule
                                                                        # cdb (ex-0302.107, Vabc)
                     (Vabc)
26
                                                                        # cdb (ex-0302.108, Vabc)
     sort_product
                     (Vabc)
27
     rename_dummies (Vabc)
                                                                        # cdb (ex-0302.109, Vabc)
28
                                                                        # cdb (ex-0302.110, Vabc)
                     (Vabc)
     canonicalise
29
                     (Vabc, $V^{a?}$)
                                                                        # cdb (ex-0302.111, Vabc)
     factor_out
```

$$\begin{split} \nabla_{c}\left(\nabla_{b}V^{a}\right) - \nabla_{b}\left(\nabla_{c}V^{a}\right) &= \partial_{c}\left(\nabla_{b}V^{a}\right) + \Gamma^{a}_{dc}\nabla_{b}V^{d} - \Gamma^{b}_{bc}\nabla_{d}V^{a} - \partial_{b}\left(\nabla_{c}V^{a}\right) - \Gamma^{a}_{db}\nabla_{c}V^{d} + \Gamma^{d}_{cb}\nabla_{d}V^{a} \\ &= \partial_{c}\left(\partial_{b}V^{a} + \Gamma^{a}_{db}V^{d}\right) + \Gamma^{a}_{dc}\left(\partial_{b}V^{d} + \Gamma^{d}_{eb}V^{e}\right) - \Gamma^{d}_{bc}\left(\partial_{d}V^{a} + \Gamma^{a}_{ed}V^{e}\right) - \partial_{b}\left(\partial_{c}V^{a} + \Gamma^{a}_{dc}V^{d}\right) - \Gamma^{a}_{db}\left(\partial_{c}V^{d} + \Gamma^{d}_{ec}V^{e}\right) \\ &+ \Gamma^{d}_{cb}\left(\partial_{d}V^{a} + \Gamma^{a}_{ed}V^{e}\right) + \Gamma^{a}_{dc}\partial_{b}V^{d} + \Gamma^{a}_{dc}\Gamma^{d}_{eb}V^{e} - \Gamma^{d}_{bc}\partial_{d}V^{a} - \Gamma^{d}_{bc}\Gamma^{a}_{ed}V^{e} - \partial_{bc}V^{a} - \partial_{b}\left(\Gamma^{a}_{dc}V^{d}\right) - \Gamma^{a}_{db}\left(\partial_{c}V^{d}\right) - \Gamma^{a}_{db}\partial_{c}V^{d} \\ &- \Gamma^{a}_{db}\Gamma^{d}_{ec}V^{e} + \Gamma^{d}_{cb}\partial_{d}V^{a} + \Gamma^{a}_{dc}\Gamma^{d}_{eb}V^{e} - \Gamma^{d}_{bc}\partial_{d}V^{a} - \Gamma^{d}_{bc}\Gamma^{a}_{ed}V^{e} - \partial_{bc}V^{a} - \partial_{b}\left(\Gamma^{a}_{dc}V^{d}\right) - \Gamma^{a}_{db}\partial_{c}V^{d} \\ &= \partial_{cb}V^{a} + \partial_{c}\Gamma^{a}_{db}V^{d} + \Gamma^{a}_{dc}\Gamma^{d}_{eb}V^{e} - \Gamma^{d}_{bc}\partial_{d}V^{a} - \Gamma^{d}_{bc}\Gamma^{a}_{ed}V^{e} - \partial_{bc}V^{a} - \partial_{b}\left(\Gamma^{a}_{dc}V^{d}\right) - \Gamma^{a}_{db}\partial_{c}V^{d} \\ &+ \Gamma^{d}_{cb}\Gamma^{a}_{dc}V^{d} + \Gamma^{a}_{dc}\Gamma^{d}_{eb}V^{e} - \Gamma^{d}_{bc}\partial_{d}V^{a} - \Gamma^{d}_{bc}\partial_{d}V^{a} - \Gamma^{d}_{bc}\nabla^{a}_{ed}V^{e} - \partial_{bc}V^{a} - \partial_{b}\Gamma^{a}_{dc}V^{d} - \Gamma^{a}_{db}\Gamma^{d}_{ec}V^{e} + \Gamma^{d}_{cb}\partial_{d}V^{a} \\ &+ \Gamma^{d}_{cb}\Gamma^{a}_{ed}V^{e} + \Gamma^{d}_{cb}\partial_{d}V^{a} - \Gamma^{d}_{bc}\partial_{d}V^{a} - \Gamma^{d}_{bc}\nabla^{a}_{ed}V^{e} - \partial_{bc}V^{a} - \partial_{b}\Gamma^{a}_{dc}V^{d} - \Gamma^{a}_{db}\Gamma^{d}_{ec}V^{e} + \Gamma^{d}_{cb}\partial_{d}V^{a} \\ &+ \Gamma^{d}_{cb}\Gamma^{a}_{ed}V^{e} - \Gamma^{d}_{dc}\nabla^{d}\nabla^{a}_{eb} - \Gamma^{d}_{bc}\partial_{d}V^{a} - \Gamma^{a}_{ed}\Gamma^{d}_{bc} - \partial_{bc}V^{a} - V^{d}\partial_{b}\Gamma^{a}_{dc} - V^{e}\Gamma^{a}_{db}\Gamma^{d}_{ec}V^{e} + \Gamma^{d}_{cb}\partial_{d}V^{a} \\ &+ V^{e}\Gamma^{a}_{ed}\Gamma^{d}_{b} - V^{d}\Gamma^{a}_{ec}\Gamma^{e}_{db} - \Gamma^{d}_{bc}\partial_{d}V^{a} - V^{e}\Gamma^{a}_{ed}\Gamma^{e}_{bc} - \partial_{bc}V^{a} - V^{d}\partial_{b}\Gamma^{a}_{ac} - V^{d}\Gamma^{a}_{eb}\Gamma^{e}_{cb} + \Gamma^{d}_{cb}\partial_{d}V^{a} \\ &+ V^{d}\Gamma^{a}_{ed}\Gamma^{e}_{cb} - V^{d}\partial_{b}\Gamma^{a}_{ec}\Gamma^{e}_{bc} - \Gamma^{d}_{bc}\partial_{d}V^{a} - V^{d}\Gamma^{a}_{eb}\Gamma^{e}_{cc} - \partial_{bc}V^{a} - V^{d}\partial_{b}\Gamma^{a}_{cc} - V^{d}\nabla^{d}\Gamma^{a}_{eb}\Gamma^{e}_{cb} - V^{d}\partial_{b}\Gamma^{a}_{ec}\Gamma^{e}_{c$$

This result agrees with Misner, Thorne and Wheeler. pg. 266.