Aula 6

Professores:

Lúcia M. A. Drummond Simone de Lima Martins

Conteúdo:

Representação de Dados

- Tipos de dados
- Tipo caractere
- Tipo numérico

Representação de dados

- Instruções de máquina realizam operações sobre dados
- Dados e instruções são armazenados internamente como uma seqüência de bits
- As classes de dados abordadas nesta aula:
 - Caracteres
 - Números

Representação de dados

- Existem diversas formas de representação de dados que são utilizadas e compreendidas pelo hardware dos sistemas
- Cada dado é representado internamente por um número de bits
- A quantidade de bits utilizada afeta o tamanho e capacidade de inúmeros componentes do sistema
 - Tamanho do barramento de dados
 - Capacidade dos registradores
 - Capacidade da UAL

Tipos de dados

- O programador deve definir para o sistema como cada dado será manipulado
- Cada dado declarado no programa deve possuir um tipo associado
- Exemplo de declaração de tipo em Pascal:
 - VAR QUANT: INTEGER;
 - VAR QUANT: REAL;
- O tipo associado indica como os bits devem ser organizados para representar o dado e como devem ser realizadas as operações sobre o dado

Tipos de dados

Exemplo

Somar 103 e 258 representados como valores inteiros

Somar 103 e 258 representados em notação científica

$$103 = 0,103 \times 10^{+3}$$
 $258 = 0,258 \times 10^{+3}$ $0,103$ Resultado: $0,361 \times 10^{+3}$ $0,103$

+ 0,258 Somar Voltar
0,361

Tipos de dados

- Tipos primitivos mais utilizados
 - Tipo caractere
 - Tipo numérico
- PASCAL
 - CHAR: caractere
 - INTEGER e REAL: numérico

Tipo caractere

- Como representar todos os caracteres alfabéticos (maiúsculos e minúsculos), algarismos decimais, sinais de pontuação utilizando somente dois símbolos (0 e 1)?
- Cada caractere é representado por uma seqüência distinta de bits
- Caracteres são codificados para o correspondente grupo de bits de acordo com o código utilizado

Tipo caractere

- Códigos
 - BCD (Binary Coded Decimal)
 - Grupo de 6 bits/caractere
 - Permite a codificação de até 64 caracteres
 - EBCDIC (Extended Binary Coded Decimal Interchange Code)
 - Grupo de 8 bits/caractere
 - Permite a codificação de até 256 caracteres
 - ASCII (American Standard Code for Information Exchange)
 - Grupo de 7 bits/caractere mais um bit de paridade
 - Permite a codificação de até 128 caracteres
 - Versões estendidas utilizam 8 bits
 - UNICODE
 - Grupo de 16 bits/caractere
 - Permite a codificação de até 65.536 caracteres

Utilizando a tabela ASCII

Decimal →		48	64	80	96	112
Hex →		30 0	40 @	50 P	60	70 p
3	33	49	65	81	97	113
	21 !	31 1	41 A	51 Q	61 a	71 q
	34 "	50	66	82	98	114
	22 "	32 2	42 B	52 R	62 b	72 r

32 20 (space)	⁴⁸ 0	40 @	50 P	80 80	¹¹² p
33	49	65	81	97	113
21	31 1	41 A	51 Q	61 a	71 Q
34 "	50	66	82	98	114
22 "	32 2	42 B	52 R	62 b	72 f
35	51	67	83	99	115
23 #	33 3	43 C	53 S	63 C	73 S
36	52	68	84	100	116
24 \$	34 4	44 D	54 T	64 d	74 t
37	53	69	85	101	117
25 %	35 5	45 E	55 U	65 e	75 U
38	54	70	86	102	118
26 &	36 6	48 F	56 V	66 f	76 V
39	55	71	87	103	119
27	37 7	47 G	57 W	67 g	77 W
40	56	72	88	104	120
28 (38 8	48 H	58 X	68 h	78 X
41	57	73	89	105	121
29)	39 9	49	59 Y	69 Î	79 Y
42	58	74	90	106	122
2A *	3A :	4A J	5A Z	6A j	7A Z
43	59	75	91	107	123
28 +	3B ;	48 K	58 [68 K	78 {
44	60	76	92	108	124
20 ,	3C ≤	4C L	5C \	6C	70
45	61	77	93	109	125
20 —	3D =	40 M	5D]	6D M	7D }
46	62	78	94 ^	110	126
2E	3E	4E N	5E ^	6E N	7E ~
47	63	79	95	111	127
2F <i>f</i>	3F ?	4F O	5F	6F 0	7F DEL

VAR N: INTEGER;

56 41 52 20 4E 3A 49 4E 54 45 47 45 52 3B

N := 5;

4E 3A 3D 35 3B

Tipo numérico

- Forma mais eficiente de representar números é utilizar representação binária
- Deve-se levar em consideração:
 - A representação do sinal de um número
 - A representação da vírgula (ou ponto) que separa a parte inteira da parte fracionária de um número não-inteiro
 - A quantidade limite de algarismos possível de ser processada pela UAL de um processador

- Consiste na determinação de uma posição fixa para a vírgula (ou ponto)
- Todos os dados representados em ponto fixo possuem a mesma quantidade de algarismos inteiros e fracionários
 - 1101,101 1110,001 0011,110
- As posições mais adotadas para a vírgula são:
 - Na extremidade esquerda do número (número é totalmente fracionário)
 - Na extremidade direita do número (número é inteiro)

- Na maioria dos processadores atuais, esta representação é utilizada para representar números inteiros
- Como representar números inteiros sem sinal ?
 - Converte para a base 2
 - Considere que podemos utilizar 5 bits para representar inteiros sem sinal
 - A representação do número (24)₁₀ será 11000

- Como representar números inteiros com sinal ?
 - Sinal e magnitude
 - Complemento a 2

- Sinal e magnitude
 - A representação em sinal magnitude de um número com n bits é obtida utilizando-se o bit mais à esquerda para indicar o sinal e os n-1 bits para indicar a magnitude do número
 - Bit de sinal 0 indica número positivo e 1, negativo

 O maior número que pode ser representado em sinal e magnitude utilizando-se n bits

 O menor número que pode ser representado em sinal e magnitude utilizando-se n bits

Faixa de valores - (2ⁿ⁻¹- 1) a + (2ⁿ⁻¹- 1)

- Características da representação sinal e magnitude
 - Duas representações para o número 0
 - +0 (00000...000) e -0 (10000...000)
 - Mais complicado de testar se um valor é igual a 0
 - A mesma quantidade de números positivos e negativos é representada

- Aritmética em sinal e magnitude
 - Algoritmo de soma:
 - Verificam-se os sinais dos números e efetua-se uma comparação entre eles
 - Se ambos possuem o mesmo sinal, somam-se as magnitudes e o sinal do resultado é o mesmo das parcelas
 - Se os números possuem sinais diferentes:
 - identifica-se a maior das magnitudes e registra-se o seu sinal
 - subtrai-se a magnitude menor da maior
 - o sinal do resultado é igual ao sinal de maior magnitude

Soma utilizando-se representação sinal e magnitude e 6 bits

- Aritmética em sinal e magnitude
 - Algoritmo de subtração:
 - Troca-se o sinal do subtraendo
 - Executa algoritmo de soma
 - Exemplo: -18 (+12)= -18 + (-12)

$$\begin{array}{r}
0000 \\
-18 \\
+-12 \\
\hline
-30 \\
\end{array}$$

$$\begin{array}{r}
110010 \\
101100 \\
\hline
111110
\end{array}$$

Voltar

- Complemento a 2
 - Números positivos são representados como na representação em sinal e magnitude
 - Números negativos
 - Invertem-se os bits da representação positiva
 - Soma-se 1
 - Números em complemento a 2 com 8 bits

```
+3 = 00000011

+2 = 0000001

+1 = 00000001

0 = 00000000

-1 = inv(00000001) + 1 = 111111110 + 1 = 11111111

-2 = 11111110

-3 = 11111101
```


Inteiro com sinal codificado por um vetor com w bits
 [x_{w-1}, x_{w-2}, ..., x₀] utilizando representação complemento a 2

$$-N = -x_{w-1} 2^{w-1} + \sum_{i=0}^{w-2} x_i \times 2^i$$

$$-0101 = -0 \times 2^3 + 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 = +5$$

$$-1101 = -1 \times 2^3 + 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 = -3$$

Bit mais significativo é o bit de sinal: 1 para negativos, 0 para positivos

- Intervalo de valores a ser representado em complemento a 2:
 - Menor número

Maior número

Faixa de valores: (2ⁿ⁻¹) a +(2ⁿ⁻¹-1)

- Vantagens da utilização de representação complemento a 2:
 - uma única representação para o zero
 - necessita apenas um circuito somador para operações de soma e subtração
 - operações simples para encontrar a representação de números negativos (inverte e soma 1)
- Assimetria na quantidade de números representados

$$- -2^{n-1} a + (2^{n-1}-1)$$

- Extensão de sinal em complemento a 2
 - Dado um inteiro x representado com sinal utilizando-se w bits, deseja-se representá-lo com k+w bits
 - Faça k cópias do bit de sinal

-
$$X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$$

K cópias de BMS

- 0011 → 00000011
- 1100 → 11111100

- Adição em complemento a 2
 - Soma em binário normal
 - Monitora o bit de sinal para saber se houve estouro (overflow)
- Subtração em complemento a 2
 - Obtém a representação em complemento a 2 do subtraendo e soma ao minuendo
 - a b = a + (-b)
 - Somente necessita de circuitos de soma e de inversão
 - Monitora o bit de sinal para saber se houve estouro (overflow)

Adição em complemento a 2

$$+11$$
 001011 $+20$ 010101 01011 01011

• -25 + (-12)

$$\begin{array}{r}
00100 \\
-25 \\
+ -12 \\
\hline
-37
\end{array}$$

$$\begin{array}{r}
100111 \\
110101
\end{array}$$

Somar

Voltar

Subtração em complemento a 2

Somar

Voltar

- Operação de multiplicação por potência de 2
 - $u \ll k$ fornece $u * 2^k$
 - Para números com e sem sinal

- Exemplos
 - u << 3 == u * 8
 - u << 5 u << 3 == u * 24
 - Maioria das máquinas desloca e soma mais rápido que multiplica
 - Compilador gera o código automaticamente

- Quociente da divisão de número sem sinal por potência de 2
 - $u \gg k$ fornece $[u/2^k]$
 - Utiliza deslocamento lógico

	Divisão	Calculada	Hexa	Binário
X	15213	15213	3B 6D	00111011 0110110
x >> 1	7606,5	7606	1D B6	0 0011101 1011011
x >> 4	950,8125	950	03 B6	0000 0011 1011011
X >> 8	59,4257813	59	00 3B	00000000 0011101

- Quociente da divisão de número com sinal por potência de 2
 - $-x >> k \text{ fornece } [x/2^k]$
 - Utiliza deslocamento aritmético
 - Arredonda para direção errada quando u < 0

Quociente da divisão de número com sinal por potência de 2

	Divisão	Calculado	Hexa	Binário
у	-15213	-15213	C4 93	11000100 1001001
y >> 1	-7606,5	-7607	E2 49	1 1100010 0100100
y >> 4	-950,8125	-951	FC 49	1111 1100 0100100
y >> 8-	59,4257813	-60	FF C4	11111111 1100010

- Como representar números fracionários ?
 - Vírgula poderia ficar fixa em algum lugar
 - Limite no número de bits para parte inteira e fracionária
- Notação científica normalizada na base 10
 - 1.000.000.000 = 1,0 × 10⁹
 - $-0,000000000017 = 1.7 \times 10^{-11}$

- Representação IEEE Standard 754
 - Estabelecido em 1985 como padrão uniforme para aritmética em ponto flutuante
 - A maioria das CPUs suporta este padrão
- Foi projetado para criar um padrão com facilidades para operações numéricas

Números binários fracionários

- Representação
 - Bits à direita da "vírgula binária" representam potências fracionárias de 2
 - Representa o número: $\sum_{k=-j}^{l} b_k \cdot 2^k$

- Representação IEEE 754
 - Forma numérica
 - -1^s M 2^E
 - Bit de sinal s determina se o número é negativo ou positivo
 - O significando M é um valor fracionário na faixa [1.0,2.0).
 - O expoente E é um número inteiro com sinal
- Codificação

- MSB é o bit de sinal
- O campo exp codifica E
- O campo frac codifica M

- Representação IEEE 754
 - Tamanhos
 - Precisão simples: 8 bits para exp, 23 bits para frac
 - 32 bits no total
 - Precisão dupla: 11 bits para exp, 52 bits para frac
 - 64 bits no total
- Precisão estendida: 15 bits para exp, 63 bits para frac
 - Somente em máquinas compatíveis com Intel
 - 80 bits no total
 - » 1 bit não utilizado

- Valores numéricos normalizados
 - exp \neq 000...0 e exp \neq 111...1
 - Representação em excesso de n para expoente

$$E = Exp - Bias$$

- Exp: inteiro sem sinal representado por exp
- Bias : Valor de n
 - » Precisão simples: 127 (*Exp*: 1...254, *E*: -126...127)
 - » Precisão dupla: 1023 (*Exp*: 1...2046, *E*: -1022...1023)
 - » Em geral: $Bias = 2^{e-1} 1$, onde e é o número de bits do expoente
- Significando codificado com 1 implícito antes da vírgula

$$M = 1,xxx...x_2$$

- xxx...x: bits do campo frac
- Mínimo quando 000...0 (M = 1,0)
- Máximo quando 111...1 (M = 2,0 ε)

Valor

```
Float F = 15213.0;

15213_{10} = 11101101101101_2 = 1,1101101101101_2 \times 2^{13}
```

Significando

```
M = 1, \underline{110110110110}1_2
frac = \underline{110110110110}10000000000_2
```

Expoente

$$E = 13$$

 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Representação em ponto flutuante

Hexa: 4 6 6 D B 4 0 0

- Valores denormalizados
 - exp = 000...0
 - Valor
 - Valor do expoente *E* = -Bias + 1
 - Valor do significando M = 0, xxx...x₂
 - xxx...x: bits do campo frac
 - Casos
 - exp = 000...0, frac = 000...0
 - Representa o valor 0
 - Existem duas representações: +0 and -0
 - $\exp = 000...0$, frac $\neq 000...0$
 - Números muito perto de 0,0

- Valores especiais
 - exp = 111...1
 - Casos
 - exp = 111...1, frac = 000...0
 - Representa o valor ∞ (infinito)
 - Operações em que ocorrem overflows
 - Positivo e negativo
 - Ex., $1,0/0,0 = -1,0/-0,0 = +\infty$, $1,0/-0,0 = -\infty$
 - exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Representa o caso quando n\u00e3o se pode determinar um valor num\u00e9rico
 - Ex., sqrt(-1), $\infty \infty$

Visualização da codificação de números reais em ponto flutuante

Exemplos de valores

Descrição	exp	frac	Valor numérico		
Zero	0000	0000	0,0		
Menor Pos. Denorm. Simples ≈ 1,4 X 10 ⁻³²⁴ Dupla ≈ 4,9 X 10 ⁻³²⁴		0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$		
Maior Pos. Denorm. Simples ≈ 1,18 X 10 Dupla ≈ 2,2 X 10 ⁻³⁰⁸	0000) ⁻³⁸	1111	$(1,0-\varepsilon)\times 2^{-\{126,1022\}}$		
Menor Pos. Norm. Maior que o maior d	0001 enormalizad	0000	$1,0 \times 2^{-\{126,1022\}}$		
Um	0111	0000	1,0		
Maior Pos. Norm.	1110	1111	$(2,0 - \varepsilon) \times 2^{\{127,1023\}}$		
Simples ≈ 3,4 × 10 ³⁸					
Dupla $\approx 1.8 \times 10^{308}$			Consordo Ceder		

Soma em ponto flutuante

$$(-1)^{s1} M1 2^{E1}$$

 $(-1)^{s2} M2 2^{E2}$

- Assuma *E1* > *E2*
- Resultado exato

$$(-1)^s M 2^E$$

- Sinal s, significando M:
 - Resultado de alinhamento com sinal & soma
- Expoente E: E1
- Ajuste
 - Se M ≥ 2, desloca M para a direita, incrementa E
 - Se M < 1, desloca M para a esquerda k posições, decrementa E de k
 - Overflow se *E* for a da faixa
 - Arredonda *M* para ajuste ao campo frac

Exercícios

- Capítulo 7 do livro texto
 - 4, 5, 9, 12, 13, 15 e 27

