lec8_proofs_with_quantifiers

inductions

for the format of $\forall x, A(x)$

proof $\exists x, A(X)$

1. first solution, find a x that satisfy A(X) but this solution sometimes we cannot find an exact x that satisfy A(X).

for example, when we want to find a solution x that make a cube equation equal 0, we just prove that there exists a x that make the equation equal 0.

2. use indirect ways to prove -- proof by cases

Example

theorem: There are irrationals r,s such that r^s is rational consider the $\sqrt{2}^{\sqrt{2}}$

if
$$\sqrt{2}^{\sqrt{2}}$$
 is rational, take r,s = $\sqrt{2}$ if $\sqrt{2}^{\sqrt{2}}$ is irrational, take r = $\sqrt{2}^{\sqrt{2}}$, s = $\sqrt{2}$, then $r^s=\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}=\sqrt{2}^{\sqrt{2}\cdot\sqrt{2}}=\sqrt{2}^2=2$

prove $\forall x, A(X)$

1. prove for all x, A(x) is correct

to prove $\forall x\exists y,y>x^2$ let n be an arbitrary number, set m = n^2+1 , then $m=n^2+1$ always larger than n^2

2. assume $\neg \forall x, A(x)$, derive a controdictary

Induction

An example for induction

theorem: $1 + 2 + \cdots + n = \frac{1}{2}n(n+1)$ n = 1, n = 2, n = 3

theorem: to prove $\forall x, A(x)$

- 1. A(1) satisfy, initial step 2. $(\forall n)[A(n) \implies A(n+1)]$ (induction step)

Example

theorem: if x > 0, then for any n, $(1+x)^{n+1} > 1 + (n+1)x$ proof: By mathematical induction, let A(n) be the statement $(1+x)^{n+1} > 1 + (1+n)x$

- 1. A(1) is the statement $(1+x)^2 > 1+2x$, obviously, it's true
- 2. to prove $\forall n[A(n) \implies A(n+1)]$, assume that A(n)and deduce A(n+1).

$$(1+x)^{n+2} = (1+x)(1+x)^{n+1} > \cdots > 1 + (n+2)x$$

Example

theorem: every natural number grater than 1 is either prime or a product of prime.

proof: by induction. the induction statement is:

 $\forall \ \mathsf{m,} [2 <= m <= n \implies \mathsf{m} \ \mathsf{is} \ \mathsf{either} \ \mathsf{a} \ \mathsf{prime} \ \mathsf{or} \ \mathsf{a} \ \mathsf{product} \ \mathsf{of} \\ \mathsf{prime}.$

- 1. for n = 2, A(2) is a prime
- 2. assume A(n), let m = n + 1