

INTRODUCTION

The z-transform of a sequence x[n] is

REGION OF CONVERGENCE

The region of convergence (ROC) of X(z) is the set of all values of z for which X(z) attains a finite value.

The ROC is the region which: 2 hours from < w

$$\sum_{n=-\infty}^{\infty} |x[n]r^{-n}| < \infty$$
TITLE

$$x(n) \approx \infty$$
Lililian

REGION OF CONVERGENCE

Find the ROC:

1.
$$x[n] = \{1, 2, 5, 7, 0, 1\} = 12^{\circ} + 22^{-1} + 32^{-1} + 72^{\circ} + 2^{-1} = 12^{\circ} + 22^{-1} + 32^{\circ} + 22^{\circ} + 32^{\circ} + 32^$$

2.
$$x[n] = \{2, 4, 5, 7, 0, 1\}$$

3.
$$x[n] = \delta(n)$$

4.
$$x[n] = \delta(n-k), k > 0$$

4.
$$x[n] = \delta(n-k), k > 0$$

5.
$$x[n] = \delta(n+k), k > 0$$

PROPERTIES OF ROC

- The ROC is an annular ring in the z-plane contered 1 about the origin (which is equivalent to a vertical strip in the s-plane).
- The ROC does not contain any poles (similar to the Laplace transform).
- If x[n] is of finite duration, then the ROC is the entire z-plane except possibly z=0 and/or $z=\infty$:

PROPERTIES OF ROC

- If x[n] is a right-sided sequence, and if $|z|=r_0$ is in the ROC, then all finite values of z for which $|z|>r_0$ are also in the ROC.
- If x[n] is a left-sided sequence, and if $|z|=r_0$ is in the ROC, then all finite values of z for which $|z|< r_0$ are also in the ROC.
- If x[n] is a two-sided sequence, and if $|z| = r_0$ is in the ROC, then the ROC consists of a ring in the z-plane including $|z| = r_0$.

EXAMPLE

Determine the z-transform of the signal

$$X[2] = \underset{n \ge 0}{\text{2-transform of the signal}} x(n) = \left(\frac{1}{2}\right)^{\frac{n}{4}} u(n)$$

$$x[n] = \left[\frac{1}{2}, \frac{1}{4}, \frac{1}{4},$$

$$X[Z] = [1, /(2^{-1}, /(2^{-2}, /(2$$

EXAMPLE

Determine the z-transform of

$$x[n] = a^{n}u[n] \begin{cases} a^{n}, n \ge 0 \\ 0, n < 0 \end{cases}$$

$$X[z] = \begin{cases} a^{n}z^{-1} \\ n \ge 0 \end{cases} \qquad |\alpha z^{-1}| < 1$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}, n \ge 0 \\ 0, n < 0 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}, n \ge 0 \\ 0, n < 0 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}, n \ge 0 \\ 0, n < 0 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}, n \ge 0 \\ 0, n < 0 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}, n \ge 0 \\ 0, n < 0 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ a \ge 1 \end{cases} \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$= \begin{cases} a^{n}u[n] \\ |\alpha z^{-1}| < 1 \end{cases}$$

$$A\left(\frac{1+x+x^2+x^3...}{1-x}\right)-(n+1)$$

$$A\left(\frac{1}{1-x}\right)=\frac{A}{1-x}$$

Determine the z-transform of

$$x[n] = -a^{n}u[-n-1] = \begin{cases} 0, n \ge 0 \\ -a^{n}, n \le -1 \end{cases}$$

$$X[z] = \begin{cases} (-a^{n})z^{-n} & \text{PS} \\ (-a^{n})z^{-1} & \text{PS} \\ (-a^{n})z^{-1} & \text{PS} \end{cases}$$

$$= -\begin{cases} (a^{n})z^{-1} & \text{PS} \\ (a^{n})z^{-1} & \text{PS} \\ (a^{n})z^{-1} & \text{PS} \end{cases}$$

$$= -\begin{cases} (a^{n})z^{-1} & \text{PS} \\ (a^{n})z^{-1} & \text{PS} \\ (a^{n})z^{-1} & \text{PS} \end{cases}$$

ROCQ(2:
$$x[z] = \frac{1}{1-az^{-1}} - \frac{1}{1-bz^{-1}}$$

$$|a| < |z| < |b| = \frac{b-a}{a+b-z-abz^{-1}}$$

Determine the z-transform of

$$x(n) = a^n u(n) + b^n u(-n-1)$$

$$= \frac{8}{(92^{-1})^{1}} + \frac{8}{(6^{-1}2)}$$

$$(b^{-1} 2)^{1} \times [e] does$$

Not exis

(ase 2: $|b| > |a|$

EXAMPLE

Activity
Determine the z-transform of

$$x[n] = b^{|n|}, b > 0$$

 $x[n] = b^n u[n] + b^{-n} u[-n]$

20XX 11 PRESENTATION TITLE

CHARACTERISTIC FAMILIES OF SIGNAL WITH THEIR CORRESPONDING ROC

CHARACTERISTIC FAMILIES OF SIGNAL WITH THEIR CORRESPONDING ROC

Linearity

lf

$$x_1[n] \leftrightarrow X_1[z]$$
$$x_2[n] \leftrightarrow X_2[z]$$

Then,

$$x[n] = ax_1[n] + bx_2[n] \leftrightarrow X[z] = aX_1[z] + bX_2[n]$$

Time-shift

lf

$$x[n] \leftrightarrow X[z]$$

Then,

$$x[n-k] \leftrightarrow z^{-k}X[z]$$

Scaling in the Z domain

If

$$x[n] \leftrightarrow X[z]$$

Then,

$$a^n x[n] \leftrightarrow X(a^{-1}z)$$

ROC:
$$r_1 < |z| < r_2$$

ROC:
$$|a|r_1 < |z| < |a|r_2$$

20XX PRESENTATION TITLE

Time Reversal

If

$$x[n] \leftrightarrow X[z]$$

 $x[n] \leftrightarrow X[z]$ ROC: $r_1 < |z| < r_2$

Then,

$$x[-n] \leftrightarrow X(z^{-1})$$

ROC:
$$\frac{1}{r_2} < |z| < \frac{1}{r_1}$$

Differentiation in the Z domain

If

$$x[n] \leftrightarrow X[z]$$

Then,

$$nx[n] \leftrightarrow -z \frac{dX[z]}{dz}$$

Convolution of two sequences

If

$$x_1[n] \leftrightarrow X_1[z]$$
$$x_2[n] \leftrightarrow X_2[z]$$

Then,

$$x[n] = x_1[n] * x_2[n] \leftrightarrow X[z] = X_1[z]X_2[z]$$

20XX

Correlation of two sequences

If

$$x_1[n] \leftrightarrow X_1[z]$$
$$x_2[n] \leftrightarrow X_2[z]$$

Then,

$$r_{x_1x_2}[l] = \sum_{-\infty}^{\infty} x_1[n]x_2[n-l]X[z] \leftrightarrow R_{x_1x_2}[z] = X_1[z]X_2[z^{-l}]$$

20XX

Multiplication of two sequences

If

$$x_1[n] \leftrightarrow X_1[z]$$

$$x_2[n] \leftrightarrow X_2[z]$$

Then

20XX

$$x[n] = x_1[n]x_2[n] \leftrightarrow X[z] = \frac{1}{2\pi i} \oint X_1[v]X_2[\frac{z}{v}] v^{-1} dv$$

$$ROC: r_{1l}r_{2l} < |z| < r_{1u}r_{2u}$$

PRESENTATION TITLE

20

Parseval's Relation

If

 $x_1[n]$ and $x_2[n]$ are complex value sequences

Then,

$$\sum_{n=0}^{\infty} x_1[n] x_2^*[n] = \frac{1}{2\pi i} \oint X_1[v] X_2^*[\frac{1}{v^*}] v^{-1} dv$$

20XX

Initial Value Theorem

If

x[n] is causal [i.e. x[n] = 0 for n < 0].

Then,

$$x(0) = \lim_{z \to \infty} X(z)$$

22

20XX PRESENTATION TITLE

PROPERTIES OF Z TRANSFORM SUMMARY.

Property	Time Domain	z-Domain	ROC
Notation	x(n)	X(z)	ROC: $r_2 < z < r_1$
	$x_1(n)$	$X_1(z)$	ROC ₁
	$x_2(n)$	$X_2(z)$	ROC ₂
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z) + a_2X_2(z)$	At least the intersection of ROC ₁ and ROC ₂
Time shifting	x(n-k)	$z^{-k}X(z)$	That of $X(z)$, except $z = 0$ if $k > 0$ and $z = \infty$ if $k < 0$
Scaling in the z-domain	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Time reversal	x(-n)	$X(z^{-1})$	$\frac{1}{z} < z < \frac{1}{z}$
Conjugation	$x^*(n)$	$X^*(z^*)$	ROC r ₂
Real part	$Re\{x(n)\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Includes ROC
Imaginary part	$Im\{x(n)\}$	$\frac{1}{2}[X(z)-X^{\bullet}(z^{\bullet})]$	Includes ROC
Differentiation in the z-domain	nx(n)	$-z\frac{dX(z)}{dz}$	$r_2 < z < r_1$
Convolution	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	At least, the intersection of ROC ₁ and ROC ₂
Correlation	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$R_{x_1x_2}(z) = X_1(z)X_2(z^{-1})$	At least, the intersection of ROC of $X_1(z)$ and $X_2(z^{-1})$
Initial value theorem	If $x(n)$ causal	$x(0) = \lim_{z \to \infty} X(z)$	
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_C X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$	At least $r_{11}r_{21} < z < r_{1n}r_{2n}$
Parseval's relation	$\sum_{n=0}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi i} \oint_C \frac{1}{2\pi i} \int_C \frac{1}$	$(X_1(v)X_2^*(1/v^*)v^{-1}dv$	

Z TRANSFORM TABLE

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r

ACTIVITY 3

FRIDAY 10:00 AM

Determine the Z transform and ROC of the ff. x[n]:

1.
$$x[n] = \{3, 0, 0, 0, 0, \underbrace{6}_{\uparrow}, 1, -4\}$$

2.
$$x[n] = n^2 u[n]$$

3.
$$x[n] = \begin{cases} (\frac{1}{3})^n, & n \ge 0\\ (\frac{1}{2})^{-n}, & n < 0 \end{cases}$$

4.
$$x[n] = b^{|n|}, b > 0$$

 $x[n] = b^n u[n] + b^{-n} u[-n]$

Friday

Qu#2

20XX PRESENTATION TITLE 26