PHY 211 Recitation 12

February 21, 2020

A	person ι	uses a	rope to s	spin a b	oucket in	a verti	ical circ	m le~at~a $ m e$	consta	nt spee	ed; the	radius	of the	circle	is $80\mathrm{cm}$
Th	ie bucke	et goes	around	the cir	cle once	every s	second.	Inside	the b	ucket is	a frog	g of mas	ss 500	g.	

The 1	bucket goes around the circle once every second. Inside the bucket is a frog of mass 500 g.
	Draw a force diagram for the frog when the bucket is at the top of the circle, and when it is at th bottom.
(b)	What is the acceleration of the bucket?
(a)	Your "apparent weight" is simply the magnitude of the normal force that an object under you exert
(0)	on you. What is the frog's apparent weight at the bottom and at the top of the circle?
(d)	Explain why the frog doesn't fall out of the bucket at the top of the swing, despite the fact that th only forces acting on it point downward.

` /	Now, imagine that the person swinging the bucket slows down gradually. At some point, the frog will fall out of the bucket. (It's a frog, so it'll land on its feet and not be hurt!) How low can the angular velocity ω become before the frog falls out of the bucket?
2	
_	shway curve on flat ground has a radius of curvature of $250\mathrm{m}$; that is, it is a segment of a circle whose is $250\mathrm{m}$. A car with mass M is going around the curve.
	Draw a free-body diagram for the car; you should treat the perspective as if you were standing behind the car and looking at the rear of the car. Add a coordinate axis.
(b)	What force causes the centripetal acceleration of the car? What is the magnitude of the centripetal acceleration?
(c)	Sum up the components of the forces in the x and y directions.
	If the coefficient of static friction between the car's tires and the road is 0.9, how fast can the car take the turn?

3

Now	imagine	that t	the same	curve is	banked	so	that	traffic	moving	at	$30\mathrm{m/s}$	can	travel	around	the	curve
with	out needi	ng any	y help fro	om fricti	on.											

(a) Draw a free body diagram for a car traveling around this curve at a constant speed. Draw the diagram so that you are looking at the rear of the car.

- (b) You should set up the coordinate axes so that +x points towards the center of the curve. That is, do not tilt your coordinate axes for this problem. Why do you think that might be helpful?
- (c) What is the acceleration of the car in the x-direction? What about the y-direction?
- (d) Sum up the components of the forces in the x and y directions.
- (e) Use Newton's second law to solve for the angle of the road.
- (f) If a car goes through the turn slower than $30\,\mathrm{m/s}$, would friction act on the car? Which direction would it point?