Topos Theory - Solutions

Yoav Eshel Universiteit van Amsterdam yoav.eshel@student.uva.nl

February 27, 2023

Contents

	Exercise 1	2		
	Exercise 2	2		
	Exercise $3 \ldots \ldots \ldots$	3		
	Exercise 4	4		
	Exercise 5	4		
	Exercise 6	5		
	Exercise 7	5		
	Exercise 8	6		
	Exercise 9	7		
	Exercise 10	7		
	Exercise 11	8		
	Exercise 12	8		
	Exercise 13	8		
	Exercise 14	8		
	Exercise 15	9		
	Exercise 16	9		
	Exercise 17	9		
	Exercise 18	9		
1	Elementary Toposes 10	0		
	v 1			
	Todo list			
Ex	rcise 11	8		
Ex	rcise 12	8		
Ex	rcise 13	8		
		9		
Ex	rcise $15 \dots \dots \dots$	9		
	Exercise 16			
Ex	Exercise 17			
	Exercise 18			

If $f, g: X \Rightarrow Y$ are arrows and graph(f) = graph(g), then f = g.

Solution.

Proof. Since $\langle 1_Y, f \rangle$ and $\langle 1_Y, g \rangle$ are monos and represent the same subobject of $Y \times X$, we have that $\langle 1_Y, f \rangle = \langle 1_Y, g \rangle$. Then

$$f = \pi_X \circ \langle 1_Y, f \rangle = \pi_X \circ \langle 1_Y, g \rangle = g.$$

Exercise 2

Show, using Exercise 1, that the singleton map is always monic.

Solution.

1. Proof. Let $f, g: Y \to X$ such that $\{\cdot\} \circ f = \{\cdot\} \circ g: Y \to \Omega^X$. Let $H: X \times Y \to \Omega$ be the transpose of $\{\cdot\} \circ f = \{\cdot\} \circ g$. We argue that H classifies both $\langle f, 1_Y \rangle$ and $\langle g, 1_Y \rangle$. Since transposition is a bijection between maps $Y \to \Omega^X$ and $X \times Y \to \Omega$, we have that

commutes, so in particular $H = \Delta \circ 1_X \times f$. Note that the left and right squares in

$$\begin{array}{c} Y \stackrel{f}{\longrightarrow} X \stackrel{!_X}{\longrightarrow} 1 \\ \langle f, 1_Y \rangle \!\! \downarrow \qquad \qquad \delta_X \!\! \downarrow \qquad \qquad \downarrow_t \\ X \times Y \stackrel{1_X \times f}{\longrightarrow} X \times X \stackrel{}{\longrightarrow} \Omega \end{array}$$

are pullback squares¹, so the outer square is a pullback as well. Hence, H classify $\langle f, 1_Y \rangle$. Arguing analougely, we conclude that H classifies g as well. Hence $\langle f, 1_Y \rangle = \langle g, 1_Y \rangle$ and by Exercise 1 it follows that f = g, so $\{\cdot\}$ is monic.

¹The right square is a pullback by definition of Δ . The left square certainly commutes, and it is a pullback since for any diagram $X \times Y \stackrel{h_2}{\longleftarrow} Z \stackrel{h_1}{\longrightarrow} X$ such that $(h_1, h_1) = (1_X \times f) \circ h_{@}$, we can take $\pi_Y h_2: Z \to Y$.

2. <u>Proof.</u> Let $f: Y \to X$. Then $\{\cdot\} \circ f: Y \to \Omega^X$ and we can take its transpose $\overline{\{\cdot\} \circ f: X \times Y \to \Omega}$. I claim this map classifies $\langle f, 1_Y \rangle: Y \to X \times Y$.

Exercise 3

Let $f: Y \to X$ be a map.

i. Show that the maps

$$X\times Y\xrightarrow{\{\cdot\}\times 1_Y}\Omega^X\times Y\xrightarrow{1_{\Omega}X\times f}\Omega^X\times X\xrightarrow{\operatorname{ev}_X}\Omega$$

and

$$X \times Y \xrightarrow{1_X \times f} X \times X \xrightarrow{\Delta} \Omega$$

are equal.

ii. Let $Pf:\Omega^X \to \Omega^Y$ be the exponential transpose of the map

$$\Omega^X \times Y \xrightarrow{1_{\Omega^X} \times f} \Omega^X \times X \xrightarrow{\operatorname{ev}_X} \Omega.$$

Show that the exponential transpose of the map

$$X \xrightarrow{\{\cdot\}} \Omega^X \xrightarrow{Pf} \Omega^Y$$

is the map

$$Y\times X\xrightarrow{f\times 1_X} X\times X\xrightarrow{\Delta} \Omega$$

Solution.

i. Proof.

$$\begin{split} \operatorname{ev}_X \circ & \left(1_{\Omega_X} \times f \right) \circ \left(\left\{ \cdot \right\} \times 1_Y \right) = \operatorname{ev}_X \circ \left(\left\{ \cdot \right\} \times f \right) \\ &= \operatorname{ev}_X \circ \left(\left\{ \cdot \right\} \times 1_X \right) \circ \left(1_X \times f \right) \\ &= \Delta \circ \left(1_X \times f \right). \end{split}$$

ii. Proof. Since

$$\begin{split} \operatorname{ev}_Y \circ \big(1_Y \times \big(Pf \circ \{ \cdot \} \big) \big) &= \operatorname{ev}_Y \circ \big(1_Y \times Pf \big) \circ \big(1_Y \times \{ \cdot \} \big) \\ &= \operatorname{ev}_X \circ \big(1_{\Omega_X} \times f \big) \circ \big(1_Y \times \{ \cdot \} \big), \end{split}$$

the result follows from part (i).

Show that the map $ev_{X,Y}$, thus defined, is indeed a natural transformation.

Solution.

Proof. Explicitly, we want to show that $\operatorname{ev}_X:(-)^X\times X\Rightarrow \Delta_{(-)}$ is a natural transformation between functors $\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}\to\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$. Indeed, for $C\in\operatorname{ob}\mathcal{C},\ \phi\colon y_C\times X\to Y$ in Y^XC , $x\in XC$ and $f\colon Y\to Y'$ we have that

$$f \operatorname{ev}_{X,Y}(\phi,x) = f\phi_C(1_C,x) = \operatorname{ev}_{X,Y}(f\phi,x) = \operatorname{ev}_{X,Y} \circ (f \times 1_X)(\phi,x).$$

Exercise 5

Prove that $y: \mathcal{C} \to \mathsf{Set}^{\mathcal{C}^{\mathrm{op}}}$ preserves all limits which exist in \mathcal{C} . Prove also, that if \mathcal{C} is cartesian closed, y preserve exponents.

Solution.

Proof. Let $F: I \to \mathcal{C}$ be a diagram with limit $(C, \eta: \Delta_C \Rightarrow F)$ in \mathcal{C} . Functoriality of y implies that $(y_C, y\eta)$ is a cone for yF. Let (X, μ) be any other cone for yF. Since every presheaf is a colimit of representables, there exists a diagram $G: J \to \mathcal{C}$ and a natrual transformation $\nu: yG \Rightarrow \Delta_X$ such that (X, ν) is a colimiting cocone. Then for each $x \in J$, $(y_{Gx}, (\mu_i \nu_x)_{i \in I})$ is a cone for yF, and since y is full and faithful, it is the image of a cone in \mathcal{C} . Thus, for each $x \in J$ we have unique map $Gx \to C$ and these maps assemble into the components of a natural transformation $G \Rightarrow \Delta_C$. Since (X, ν) is colimiting for yG, we get a unique map $X \to yC$, which proves that $(y_C, y\eta)$ is a limiting cone for yF.

Suppose \mathcal{C} is cartesian closed. We want to show that $y_{C^D} \cong (y_C)^{y_D}$ or equivalently, $\mathsf{Set}^{\mathcal{C}^{\mathsf{op}}}(X \times y_D, y_C) \cong \mathsf{Set}^{\mathcal{C}^{\mathsf{op}}}(X, y_{C^D})$ for every presheaf X. If X is representable, then this certainly hold since

$$\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}(y_B \times y_D, y_C) \cong \operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}(y_{B \times D}, y_C) \qquad (y \text{ preserves limits}) \\
\cong \mathcal{C}(B \times D, C) \qquad (y \text{ is full and faithful}) \\
\cong \mathcal{C}(B, C^D) \\
\cong \operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}(y_B, y_{C^D}). \qquad (y \text{ is full and faithful})$$

For an arbitrary presheaf X, we use again that it is a colimit of some diagram $yG: J \to \mathsf{Set}^{\mathcal{C}^{\mathrm{op}}}$. Then arrows $X \to y_{C^D}$ correspond to cocones on yG with vertex y_{C^D} , which, by the isomorphism above, correspond to cocones on the diagram

$$J \xrightarrow{G} \mathcal{C} \xrightarrow{y} \mathsf{Set}^{\mathcal{C}^{\mathrm{op}}} \xrightarrow{(-) \times y_D} \mathsf{Set}^{\mathcal{C}^{\mathrm{op}}}$$

with vertex y_C . Using that $(-) \times y_D$ preserves colimits, these cocones correspond to arrow $X \times y_D \to y_C$, as desired.

Let (P, \leq) be a preorder. For $p \in P$, let $\downarrow p = \{q \in P \mid q \leq p\}$. Show that sieves on p can be identified with downwards closed subsets of $\downarrow p$. If we denote the unique arrow $q \to p$ by qp and U is a downwards closed subset of $\downarrow p$, what is $(qp)^*U$?

Solution.

Proof. Let R be a sieve on p. Since arrows are unique, we can identify an arrow $qp \in R$ with its domain q, and since for any $qp \in R$ and $r \leq q$ we have $rp = (rq)(qp) \in R$, we can identify R with a downwards closed subset of $\downarrow p$.

If U is downwards closed subset of $\downarrow p$, then pulling it back along qp is precisely cutting it at q, i.e. $(qp) * U = U \cap \downarrow q$.

Exercise 7

Show that $\mathcal{P}(X)(C) = \operatorname{Sub}(y_C \times X)$ and that, for $f: C' \to C$, $\mathcal{P}(X)(f)(U) = (y_f \times 1_X)^*(U)$. Prove also, that the element relation, as a subpresheaf \in_X of $\mathcal{P}(X) \times X$, is given by

$$(\mathsf{E}_X)(C) = \{(U, x) \in \mathrm{Sub}(y_C \times X) \times XC \mid (1_C, x) \in UC\}$$

Solution.

Proof. Note that

$$\mathsf{Set}^{\mathcal{C}^{\mathrm{op}}}(Y,\Omega^X) \cong \mathsf{Set}^{\mathcal{C}^{\mathrm{op}}}(Y \times X,\Omega) \cong \mathrm{Sub}(Y \times X)$$

so indeed $\mathcal{P}(X) = \Omega^X$. The isomorphism $\mathcal{P}(X)(C) \cong \operatorname{Sub}(y_C \times X)$ follows from Yoneda

$$\operatorname{Sub}(y_C \times X) \cong \operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}(y_C \times X, \Omega) \cong \operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}(y_C, \Omega^X) \cong \Omega^X(C).$$

Let U be a subpresheaf of $y_C \times X$ and $f: C' \to C$ an arrow in \mathcal{C} . Let $\phi: y_c \times X \to \Omega$ be the map calssifying U. Then

$$\Omega^X f(\phi) = \phi \circ (y_f \times 1_X)$$

so, $\mathcal{P}(X)(f)$ should send U to the subobject of $y_{C'} \times X$ classified by $\phi \circ (y_f \times 1_X)$, or equivalently, to the pullback of U along $(y_f \times 1_X)$.

$$(y_f \times 1_X)^* U \longrightarrow U \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow t$$

$$y'_C \times X \xrightarrow{y_f \times 1_X} y_C \times X \xrightarrow{\phi} \Omega$$

Observe that \in_X is just the subobject of $\Omega^X \times X$ classified by $\operatorname{ev}_X : \Omega^X \times X \to \Omega$. So, if U is a subobject of $y_C \times X$, $\phi : y_C \times X \to \Omega$ classifies U and $x \in XC$ we have that $(U,x) \in \in_X C$ if and only if $\phi_C(1_C,x)$ is the maximal sieve on C if and only if $(1_C,x) \in UC$.

Exercise 8

Let \mathcal{E} be a topos with subobject classifier $1 \xrightarrow{t} \Omega$. Recall that an object C of a category C is called injective if any diagram $N \xleftarrow{m} M \xrightarrow{f} C$ with m mono, admits an extension by an arrow $g: N \to C$ satisfying gm = f.

- i. Prove that Ω is injective.
- ii. Prove that every object of the form Ω^X is injective.
- iii. Conclude that \mathcal{E} has enough injectives.

Solution.

i. Proof. Let $i: A \to M$ be the subobject of M classified by f. Then $mi: A \to N$ is monic, so there's a $\phi: N \to \Omega$ which classifies it. I claim this ϕ does the trick. Consider the diagram

$$\begin{array}{ccc} A & \stackrel{1_A}{\longrightarrow} & A & \longrightarrow & 1 \\ \downarrow^i & & \downarrow_{im} & \downarrow^t \\ M & \stackrel{f}{\longrightarrow} & N & \stackrel{\phi}{\longrightarrow} & \Omega \end{array}$$

and note that the right square is a pullback by definition of ϕ and the left square is a pullback since m is monic. So the composite square is a pullback and in particular, ϕm classifies i so $\phi m = f$.

ii. Proof. Consider the diagram $N \xleftarrow{m} M \xrightarrow{f} \Omega^X$ with m monic. Then we have a diagram $N \times X \xleftarrow{m \times 1_X} M \times X \xrightarrow{\bar{f}} \Omega$ where \bar{f} is the transpose of f, and by the previous part there's a map $\bar{h} \colon N \times X \to \Omega$ such that $\bar{f} = \bar{h} \circ (m \times 1_X)$. Let $h \colon N \to \Omega^X$ be the transpose of \bar{h} . Then the diagram

commutes, since the top and bottom squares commute, and it follows that f = hm.

iii. That depends on the definition of enough.

Exercise 9

Let \mathcal{C} be a regular category, and P an object in \mathcal{C} . Prove that the following are equivalent:

(i) For every regular epi $f: A \to B$, any arrow $P \to B$ factors through f.

(ii) Every regular epi with codomain P has a section.

Solution.

Proof. (i) \Rightarrow (ii) Since the identity $P \rightarrow P$ factors through every regular epi $A \to P$ by assumption, the result follows.

 $(ii) \Rightarrow (i)$ Let $f: A \to B$ be a regular epi, and $g: P \to B$ any morphism. We can take the pullback

$$X \xrightarrow{b} A$$

$$\downarrow a \qquad \qquad \downarrow f$$

$$P \xrightarrow{g} B$$

and note that a is a regular epi since f is (by definition of a regular category). So a admits a section s, and we have that fbs = gas = g.

Exercise 10

Show that if \mathcal{C} has equalizers, \mathcal{C} is Cauchy complete

Solution.

Proof. Let $e: C \to C$ be idempotent and $i: D \to C$ be the equalizer of $1_C, e: C \Rightarrow$

C. Then there exists and $r: C \to D$ such that $r \mapsto C \xrightarrow{e} C \xrightarrow{e} C$ commutes.

Since iri = ei = i it follows that ri
ightharpoonup C
ightharpoonup

 1_D .

For a nonempty set A, let F_A be the following presheaf on the real numbers \mathbb{R} :

$$F_A(U) = \begin{cases} A, & 0 \in U \\ \{*\}, & \text{otherwise} \end{cases}$$

Show that F_A is a sheaf, and give a concrete presentation of the étale space corresponding to F_A .

Solution. Let $(U_i, x_i)_{i \in I}$ be a compatible family and $V = \bigcup U_i$. Suppose $0 \notin V$, so that $F(V) = \{*\}$ and we only have one choice for the amalgamation of the x_i 's. On the other hand, if $0 \in V$, then we can choose any of the x_i such that $0 \in U_i$ (that is because if $0 \in U_i \cap U_j$ then $x_i = x_j$)

To do

Exercise 12

Show that for a presheaf F and the associated local homeomorphism $\pi\colon \coprod_{x\in X} G_x \to X$ that we have constructed, the following holds: every morphism of presheaves $F\to H$, where H is a sheaf, factors uniquely through the sheaf corresponding to $\pi\colon \coprod_{x\in X} G_x \to X$. Conclude that $\pi\colon \coprod_{x\in X} G_x \to X$ is the associated sheaf of F. Conclude that the inclusion of categories $\mathsf{Sh}(X)\to \mathsf{Set}^{\mathcal{O}_X}$ has a left adjoint.

Solution.

Proof. We have the sheaf \mathcal{F} given by

$$\mathcal{F}(U) = \{s: U \to \coprod_{x \in X} G_x \mid s \text{ continuous and } \pi s = 1_U \}.$$

Let H be a sheaf and $\eta: F \to H$ a map of presheaves.

Exercise 13

Show that the category $\mathsf{Sh}(X)$ is closed under finite limits in $\mathsf{Set}^{\mathcal{O}_X^{\mathrm{op}}}$, and that the left adjoint of Exercise 12 preserve finite limits.

Solution.

Proof. \Box To do

Exercise 14

F is separated if and only if each compatible family in F, indexed by a covering sieve, has at most one amalgamation.

Solution.		
Proof.	To do	
Exercise 15		
Suppose G is a subpresheaf of F . If G is a sheaf, then G is closed in $Sub(F)$. Conversely, every closed subpresheaf of a sheaf is a sheaf.		
Solution.		
Proof.	To do	
Exercise 16		
Prove that F is a sheaf if and only if for every presheaf X and every dense subpresheaf A of X , any arrow $A \to F$ has a unique extension to an arrow $X \to F$.		
Solution.		
Proof.	To do	
Exercise 17		
Show that every split fork is a coequalizer diagram, and moreover a coequalizer which is preserved by any functor (this is called an <i>absolute</i> coequalizer).		
Solution.	To do	
Exercise 18		
Suppose D_1 is the diagram $a \xrightarrow{f} b \xrightarrow{h} c$ in a category C , and D_2 is the		
$a' \xrightarrow{f'} b' \xrightarrow{h'} c'$ diagram in \mathcal{C} . Assume that D_2 is a retract of D_1 in the		
category of diagrams in \mathcal{C} of type $\bullet \Longrightarrow \bullet \longrightarrow \bullet$. Prove that if D_1 is a split fork, then so it D_2 .		

Solution.

To do

1 Elementary Toposes