Ampliación de la Teoría de la Probabilidad

Basado en las clases y apuntes de Antonio Jesús Barrera García

Autor: Jorge Rodríguez Domínguez

Índice general

1.	Función de distribución	1
	1.1. Propiedades	1
	1.2. Convolución de funciones de distribución	5
	1.3. Convergencia en distribución	6
	Función característica 2.1. Función característica	
3.	. Convergencia	21

Capítulo 1

Función de distribución

1.1. Propiedades

Definición 1.1. Sea X una variable aleatoria en (Ω, \mathcal{A}, P) , P_X medida de probabilidad inducida por X en $(\mathbb{R}, \mathcal{B})$. La función de distribución asociada a X es $F : \mathbb{R} \longrightarrow [0, 1]$ dada por

$$F(a) = P_X((-\infty, a]) \equiv P(X \le a)$$

Las propiedades de F son

- 1. F es monótona no decreciente.
- 2. $\lim_{x\to-\infty} F(x) = 0$ y $\lim_{x\to\infty} F(x) = 1$.
- 3. F es continua por la derecha, es decir, $\lim_{h\to 0^+} F(x+h) = F(x)$ para todo $x\in\mathbb{R}$.
- 4. Existe el límite por la izquierda, es decir, $\lim_{h\to 0^-} F(x+h) = F(x^-) = F(x) P_X(\{x\})$ para todo $x\in\mathbb{R}$.

Teorema 1.2 (de correspondencia). Si $F : \mathbb{R} \longrightarrow [0,1]$ es una función

- Monótona no decreciente.
- $F(-\infty) = 0 \ y \ F(\infty) = 1.$
- Continua por la derecha

Entonces existe (y es única) una medida de probabilidad P_F que (\mathbb{R},\mathcal{B}) tal que F es su función de distribución.

Definición 1.3. Sea F una función de distribución. Definimos

 \blacksquare El conjunto de continuidad de F como

$$C(F) = \{x \in \mathbb{R} : F(x) = F(x^{-})\}\$$

■ El conjunto de discontinuidad de F como

$$D(F) = \{x \in \mathbb{R} : F(x) - F(x^{-}) > 0\}$$

Observación 1.4. Es fácil ver que $D(F) = \overline{C(F)}$.

Proposición 1.5. D(F) es a lo sumo numerable.

Demostración. Definimos la sucesión de conjuntos

$$D_n(F) = \left\{ x \in \mathbb{R} : F(x) - F(x^-) \ge \frac{1}{n} \right\}$$

Es claro que $\{D_n\}$ es una sucesión creciente. Veamos que $\#D_n(F)$ es finito. Por el teorema de correspondencia, existe una única P_F medida de probabilidad asociada a F, es decir, $P_F(\{x\}) = F(x) - F(x^-)$ para todo $x \in \mathbb{R}$. Podemos usar que P_F para "medir" $D_n(F)$ de la siguiente manera:

$$P_F(D_n(F)) = \sum_{x \in D_n(F)} P_F(\{x\}) \ge \sum_{x \in D_n(F)} \frac{1}{n} = \frac{1}{n} \# D_n(F)$$

de donde deducimos que $\#D_n(F) \leq n$. Como $\{D_n\}$ es una sucesión creciente, entonces

$$D(F) = \lim_{n \to \infty} D_n(F) = \bigcup_{n=1}^{\infty} D_n(F)$$

lo que demuestra que D(F) es a lo sumo numerable.

Corolario 1.6. C(F) es denso en \mathbb{R} .

Demostración. Como $D(F) = \overline{C(F)}$ y D(F) es a lo sumo numerable, tenemos que si $x \in \mathbb{R}$, o bien $x \in C(F)$, o bien $x \in D(F)$, por lo que cualquier bola $B(x, \varepsilon)$ contiene puntos de C(F).

Proposición 1.7. Sean F y G funciones de distribución tales que F(x) = G(x) para todo $x \in E \subset \mathbb{R}$ con E denso en \mathbb{R} . Entonces F(x) = G(x) para todo $x \in \mathbb{R}$.

Demostración. Sea $x \in \mathbb{R}$. Como E es denso en \mathbb{R} , existe una sucesión $\{x_n\} \subset E$ tal que $x_n \to x$ de forma decreciente $(x_n \downarrow x)$ cuando $n \to \infty$. Entonces $F(x_n) = G(x_n)$ para todo $x_n \in E$ (por hipótesis). Como F y G son funciones de distribución, tenemos que

$$\lim_{n \to \infty} F(x_n) = F(x)$$

$$\lim_{n \to \infty} G(x_n) = G(x)$$

Por la unicidad del límite, F(x) = G(x).

Definición 1.8. La función de masa de probabilidad es $p: \mathbb{R} \longrightarrow [0,1]$ dada por

$$p(x) = P_F(\{x\}).$$

Definición 1.9. Sea X una variable aleatoria con función de distribución F y función de masa p. Diremos que

 \blacksquare X es una variable aleatoria discreta cuando

$$\sum_{x \in D(F)} p(x) = 1$$

- X es una variable aleatoria continua cuando p(x) = 0 para todo $x \in \mathbb{R}$.
- X es una variable aleatoria singular si existe $B \in \mathcal{B}$ tal que m(B) = 0 (medida de Lebesgue) y $P_X(B) = 1$.
- X es una variable aleatoria absolutamente continua si para cualquier $B \in \mathcal{B}$ con m(B) = 0 se tiene que $P_X(B) = 0$.

П

Teorema 1.10 (Radon-Nikodyn). Sea F función de distribución. Entonces F es absolutamente continua si y solo si existe una función medible f no negativa y finita tal que para cualquier a < b, $a, b \in \mathbb{R}$ se tiene que

$$F(b) - F(a) = \int_a^b f(x) \ dx.$$

Teorema 1.11 (Primera descomposición). Toda función de distribución F se puede descomponer de la forma

$$F = \alpha F_d + (1 - \alpha) F_c,$$

donde $0 \le \alpha \le 1$, F_d es la función de distribución de una variable aleatoria discreta y F_c es la función de distribución de una variable aleatoria continua.

Demostración. Sea D(F) el conjunto de discontinuidad de F. Definimos $\alpha = \sum_{x \in D(F)} p(x)$, donde p es la función de masa.

- Si $\alpha = 0$, entonces $F = F_c$ y es continua.
- Si $\alpha = 1$, entonces $F = F_d$ y es discreta.
- Si $0 < \alpha < 1$, definimos

$$F_d(x) = \frac{1}{\alpha} \sum_{D(F)\ni y \le x} p(y)$$
$$F_c(x) = \frac{1}{1-\alpha} (F(x) - \alpha F_d(x))$$

Por definición, F_d es discreta. Veamos que F_c es continua, para ello hay que ver que $F_c(x) - F_c(x^-) = 0$ para todo $x \in \mathbb{R}$. Sea $x \in \mathbb{R}$, entonces

$$F_c(x) - F_c(x^-) = \frac{1}{1 - \alpha} (F(x) - \alpha F_d(x) - F(x^-) + \alpha F_d(x^-))$$

$$= \frac{1}{1 - \alpha} (F(x) - F(x^-) - \alpha (F_d(x) - F_d(x^-)))$$

$$= \frac{1}{1 - \alpha} \left(p(x) - \alpha \frac{1}{\alpha} p(x) \right) = 0$$

Lema 1.12. Sea F una función de distribución. Entonces

- a) Existe F' en casi todo punto, es no negativa y finita.
- b) $\int_a^b F'(x) dx \le F(b) F(a)$ para todo $a < b, a, b \in \mathbb{R}$.
- c) Siendo $F_{ac} = \int_{-\infty}^{x} F'(t) dt \ y \ F_s(x) = F(x) F_{ac}(x)$, entonces $F'_{ac}(x) = F'(x)$ en casi todo punto $y \ F'_s(x) = 0$.

Teorema 1.13 (Segunda descomposición). *Toda función de distribución F se puede descomponer de la forma*

$$F = \beta F_{ac} + (1 - \beta) F_{s},$$

donde $0 \le \beta \le 1$, F_{ac} es la función de distribución de una variable aleatoria absolutamente continua y F_s es la función de distribución de una variable aleatoria singular.

Demostración. Sea $f \equiv F'$ donde exista. Definimos $\beta = \int_{-\infty}^{\infty} f(x) \ dx$.

- Si $\beta = 1$, entonces $F = F_{ac}$ y es absolutamente continua.
- Si $\beta = 0$, enntonces $F = F_s$ y es singular.
- Si $0 < \beta < 1$, definimos

$$F_{ac}(x) = \frac{1}{\beta} \int_{-\infty}^{x} f(t) dt$$
$$F_{s}(x) = \frac{1}{1-\beta} (F(x) - \beta F_{ac}(x))$$

Por definición, F_{ac} es absolutamente continua. Veamos que F_s es singular, para ello hemos de probar que $F_s'=0$.

$$F's(x) = \frac{1}{1-\beta} \left(f(x) - \beta \frac{1}{\beta} f(x) \right) = 0$$

Observación 1.14. Aplicando la primera descomposición a F_s , tenemos que

$$F = \beta F_{ac} + (1 - \beta)[\alpha F_d + (1 - \alpha)F_{cs}]$$

= \beta F_{ac} + (1 - \beta)\alpha F_d + (1 - \beta)(1 - \alpha)F_{cs}
= \beta F_{ac} + \gamma F_d + (1 - \beta - \gamma)F_{cs}

siendo $\gamma = (1 - \beta)\alpha$ y $\beta + \gamma \leq 1$.

Recordemos ahora el concepto de esperanza matemática.

Definición 1.15. Sea X una variable aleatoria en (Ω, \mathcal{A}, P) . Definimos la esperanza de X como $E(X) = \int_{\Omega} X \ dP$.

Usando el siguiente Teorema de Teoria de la Medida e Integración

Teorema 1.16. Sean (X, \mathcal{M}, μ) e (Y, \mathcal{N}, ν) dos espacios de medida y sea $T: X \longrightarrow Y$ una aplicación $(\mathcal{M}, \mathcal{N})$ -medible que conserva las medidas. Si $g: Y \longrightarrow [0, +\infty]$ es medible entonces

$$\int_Y g \ d\nu = \int_X g \circ T \ d\mu.$$

es fácil ver que

• Si F es la función de distribución de una variable aleatoria absolutamente continua, entonces

$$E(X) = \int_{\mathbb{D}} x \cdot f(x) \ dx.$$

• Si F es la función de distribución de una variable aleatoria discreta, entonces

$$E(X) = \sum_{x \in D(F)} x \cdot p(x).$$

1.2. Convolución de funciones de distribución

Definición 1.17. Sean F y G funciones de distribución. Definimos la convolución de F y G como la función

$$(F * G)(z) = \int_{\mathbb{R}} F(z - y) \ dG(y), \ z \in \mathbb{R}.$$

Proposición 1.18. F * G es una función de distribución.

Demostración. 1. F * G es monótona no decreciente. Sean $a < b, a, b \in \mathbb{R}$, entonces

$$(F * G)(a) = \int_{\mathbb{R}} F(a - y) \ dG(y) \le \int_{\mathbb{R}} F(b - y) \ dG(y) = (F * G)(b),$$

donde usamos que F es función de distribución.

2. $\lim_{x \to -\infty} (F * G)(x) = 0$ y $\lim_{x \to \infty} (F * G)(x) = 1$.

$$\lim_{x \to -\infty} (F * G)(x) = \lim_{x \to -\infty} \int_{\mathbb{R}} F(x - y) \ dG(y) = \int_{\mathbb{R}} \lim_{x \to -\infty} F(x - y) \ dG(y) = \int_{\mathbb{R}} 0 \ dG(y) = 0$$
$$\lim_{x \to \infty} (F * G)(x) = \lim_{x \to \infty} \int_{\mathbb{R}} F(x - y) \ dG(y) = \int_{\mathbb{R}} \lim_{x \to \infty} F(x - y) \ dG(y) = \int_{\mathbb{R}} 1 \ dG(y) = 1$$

donde usamos que F y G son funciones de distribución.

3. F*G es continua por la derecha, es decir, $\lim_{h\to 0^+} (F*G)(x+h) = (F*G)(x)$ para todo $x\in\mathbb{R}$.

$$\lim_{h \to 0^{+}} (F * G)(x + h) = \lim_{h \to 0^{+}} \int_{\mathbb{R}} F(x + h - y) \ dG(y)$$

$$= \int_{\mathbb{R}} \lim_{h \to 0^{+}} F(x + h - y) \ dG(y)$$

$$= \int_{\mathbb{R}} F(x - y) \ dG(y) = (F * G)(x)$$

donde usamos el Teorema de la Convergencia Dominada y que F es función de distribución.

4. Existe el límite por la izquierda, es decir, $\lim_{h\to 0^-} (F*G)(x+h) = (F*G)(x^-)$ para todo $x\in\mathbb{R}$.

$$\lim_{h \to 0^{-}} (F * G)(x + h) = \lim_{h \to 0^{-}} \int_{\mathbb{R}} F(x + h - y) \ dG(y)$$
$$= \int_{\mathbb{R}} \lim_{h \to 0^{-}} F(x + h - y) \ dG(y)$$
$$= \int_{\mathbb{R}} F(x^{-} - y) \ dG(y) = (F * G)(x^{-})$$

donde usamos el Teorema de la Convergencia Dominada y que F es función de distribución.

Teorema 1.19. Sean X e Y variables aleatorias independientes con funciones de distribución F_X y F_Y respectivamente. Entonces $F_X * F_Y$ es la función de distribución de X + Y.

Demostración. Definimos la variable aleatoria Z = X + Y. Si llamamos $F_{(X,Y)}$ a la función de distribución conjunta del par (X,Y), entonces la función de distribución de Z es

$$F_Z(z) = P(Z \le z) = P(X + Y \le z) = \int_{\{(x,y) \in \mathbb{R}^2 : x + y \le z\}} dF_{(X,Y)}(x,y)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-y} dF_X(x) dF_Y(y) = \int_{\mathbb{R}} F_X(z-y) dF_Y(y) = (F_X * F_Y)(z)$$

♥ @jorgeroddom

Teorema 1.20. Si F es una función de distribución absolutamente continua con densidad f, entonces F*G es una función de distribución absolutamente continua con densidad

$$(f * G)(s) = \int_{-\infty}^{\infty} f(s - y) \ dG(y).$$

Demostración.

$$(F * G)(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f(s) \ ds \ dG(y) = \int_{-\infty}^{\infty} \int_{-\infty}^{z} f(s-y) \ ds \ dG(y)$$
$$= \int_{-\infty}^{z} \int_{-\infty}^{\infty} f(s-y) \ dG(y) \ ds$$

Teorema 1.21. Si F y G son funciones de distribución absolutamente continuas con densidades f y g respectivamente, entonces F*G es una función de distribución absolutamente continua con densidad f*g.

Demostración.

$$(F * G)(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f(s) \ ds \ dG(y) = \int_{-\infty}^{\infty} \int_{-\infty}^{z} f(s-y) \ ds \ dG(y)$$
$$= \int_{-\infty}^{z} \int_{-\infty}^{\infty} f(s-y) \ dG(y) \ ds = \int_{-\infty}^{z} \int_{-\infty}^{\infty} f(s-y)g(y) \ dy \ ds$$

1.3. Convergencia en distribución

Para cada $n \in \mathbb{N}$, tenemos una variable aleatoria X_n en $(\Omega, \mathcal{A}_n, P_n)$. De esta forma $\{X_n\}$ tiene una succesión asociada $\{F_n\}$ de funciones de distribución.

Definición 1.22. Sea F y F_n , $n \in \mathbb{N}$, funciones de distribución. Decimos que la sucesión $\{F_n\}$ converge a F débilmente (o en distribución), y se denota como $F_n \xrightarrow{d} F$, cuando

$$\lim_{n \to \infty} F_n(x) = F(x)$$

para todo $x \in C(F)$.

Teorema 1.23. El límite débil es único.

Demostración. Sea $\{F_n\}$ una sucesión de funciones de distribución tal que $F_n \xrightarrow{d} F$ y $F_n \xrightarrow{d} G$, con F y G funciones de distribución. Entonces

$$\lim_{n \to \infty} F_n(x) = F(x) \ \forall x \in C(F)$$
$$\lim_{n \to \infty} F_n(x) = G(x) \ \forall x \in C(G)$$

De aquí

$$F(x) = G(x) \ \forall x \in C(F) \cap C(G)$$

Como C(F) y C(G) son densos en \mathbb{R} , entonces $C(F) \cap C(G)$ es denso en \mathbb{R} y por tanto, $F \equiv G$ para todo $x \in \mathbb{R}$.

Definición 1.24. La sucesión de variables aleatorias $\{X_n\}$ converge en distribución a otra variable aleatoria X cuando $F_n \stackrel{d}{\to} F$, siendo F_n y F las funciones de distribución asociadas a X_n y X respectivamente.

Definición 1.25. Sean P y P_n , $n \in \mathbb{N}$, medidas de probabilidad en $(\mathbb{R}, \mathcal{B})$. Decimos que la sucesión de medidas $\{P_n\}$ converge debilmente a P cuando

$$\lim_{n \to \infty} P_n((a, b]) = P((a, b])$$

para todo a < b con P(a) = P(b) = 0.

Lema 1.26. $F_n \xrightarrow{d} F$ si y solo si para todo $x \in \mathbb{R}$ se tiene que

$$\limsup_{n \to \infty} F_n(x) \le F(x) \quad y \quad \liminf_{n \to \infty} F_n(x^-) \ge F(x).$$

Demostración. \vdash Tenemos que para todo $x \in \mathbb{R}$

$$F(x^{-}) \le \liminf_{n \to \infty} F_n(x) \le \limsup_{n \to \infty} F_n(x) \le F(x).$$

Si $x \in C(F)$, entonces $F(x) = F(x^{-})$, y en consecuencia

$$\liminf_{n \to \infty} F_n(x) = \limsup_{n \to \infty} F_n(x) = F(x),$$

es decir, $F_n \xrightarrow{d} F$.

 \Longrightarrow Sea $x \in \mathbb{R}$ e $y \in C(F)$, y > x. Entocnes

$$F_n(x) \le F_(y) \Longrightarrow \limsup_{n \to \infty} F_n(x) \le \limsup_{n \to \infty} F_n(y) = \lim_{n \to \infty} F_n(y) = F(y).$$

Como C(F) es denso en \mathbb{R} , podemos tomar una sucesión de puntos de C(F) que tienda a x (en nuestro caso, de manera decreciente), y así

$$\limsup_{n \to \infty} F_n(x) \le \lim_{y \downarrow x} F(y) = F(x),$$

donde la última igualdad es cierta por ser F función de distribución. Usando un argumento análogo, sea $z < x, z \in C(F)$, entonces

$$\liminf_{n \to \infty} F_n(x) \ge \liminf_{n \to \infty} F_n(z) = F(z).$$

Al igual que antes, podemos tomar una sucesión de puntos de C(F) que tienda a x (en nuestro caso, de manera creciente), y así

$$\liminf_{n \to \infty} F_n(x) \ge \lim_{z \uparrow x} F(z) = F(x^-).$$

Teorema 1.27 (Helly-Bray). Sean F_n , F funciones de distribución (n > 0). Entonces $F_n \xrightarrow{d} F$ si y solo si para toda función g real, continua y acotada se tiene que

$$\lim_{n \to \infty} \int_{\mathbb{R}} g(x) \ dF_n(x) = \int_{\mathbb{R}} g(x) \ dF(x).$$

Definición 1.28. Una función F se dice función de distribución impropia si verifica:

(i) Es monótona no decreciente.

- (ii) Es continua por la derecha.
- (iii) Para cada $x \in \mathbb{R}$ existe

$$\lim_{h \to 0^{-}} F(x+h) = F(x^{-}).$$

(iv)

$$\lim_{x \to \infty} F(x) > 0 \quad \text{ò} \quad \lim_{x \to \infty} F(x) < 1.$$

Definición 1.29. Sea $\{F_n\}$ sucesión de funciones de distribución y F función de distribución (propia o impropia). Decimos que $\{F_n\}$ converge de forma vaga a F si

$$\lim_{n \to \infty} F_n(x) = F(x)$$

para todo $x \in C(F)$. Se denota como $F_n \xrightarrow{v} F$.

Observación 1.30. Es claro que $F_n \xrightarrow{d} F \Longrightarrow F_n \xrightarrow{v} F$.

$$\lim_{n \to \infty} \int_a^b g(x) \ dF_n(x) = \int_a^b g(x) \ dF(x)$$

Teorema 1.32. Supongamos que $F_n \xrightarrow{v} F$, siendo F una función de distribución impropia. Sea g una función real g continua en \mathbb{R} g tal que $g(+\infty) = g(-\infty) = 0$. Entonces

$$\lim_{n \to \infty} \int_{\mathbb{R}} g(x) \ dF_n(x) = \int_{\mathbb{R}} g(x) \ dF(x)$$

Lema 1.33. $\{F_n\}$ converge vagamente si y solo si converge puntualmente en algún conjunto denso $D \subset \mathbb{R}$.

Demostración. \Longrightarrow Es directo, pues basta tomar D = C(F).

 \iff Sea $r \in D$, definitions

$$F_D(r) = \lim_{n \to \infty} F_n(r).$$

Sabemos que $0 \le F_D(r) \le 1$ para cada $r \in D$. Si $s \in D$ es tal que r < s, entonces

$$F_D(r) = \lim_{n \to \infty} F_n(r) \le \lim_{n \to \infty} F_n(s) = F_D(s),$$

pues F_n es función de distribución, lo que nos dice que F_D es monótona no decreciente. Ahora, sea $x \in \mathbb{R}$, definimos

$$F(x) = \lim_{r \downarrow x, \ r \in D} F_D(x) = \inf \Pi_x,$$

donde

$$\Pi_x = \{ F_D(r) : r > x, r \in D \}.$$

Es claro que $0 \le F(x) \le 1$ para cada $x \in \mathbb{R}$. Veamos que F es continua por la derecha, para ello hemos de probar que $F(x) = F(x^+)$ para cada $x \in \mathbb{R}$. Sean $x, y \in \mathbb{R}$, $r \in D$ tales que x < y < r, entonces

$$F(y) = \inf \Pi_y \le F_D(r),$$

pues $F_D(r) \in \Pi_y$. Entonces

$$F(x^+) = \lim_{y \downarrow x} F(y) \le F_D(r).$$

Además $F(x^+) \le \inf \Pi_x = F(x)$ (pues $x^+ > x$) y como F es monótona no decreciente, tenemos que $F(x) \le F(x^+)$, por tanto, $F(x) = F(x^+)$.

Con todo esto, hemos probado que F es función de distribución imp'ropia. Veamos que $F_n \xrightarrow{v} F$ en C(F). Sean $x \in C(F)$, $r', s \in D$ tales que r' < x < s, entonces

$$\inf \Pi_r = F(r) \le F_D(r) \le \lim_{n \to \infty} F_n(r) = \liminf_{n \to \infty} F_n(r) \le \liminf_{n \to \infty} F_n(x)$$

$$\le \limsup_{n \to \infty} F_n(s) = F_D(s) \le F(s) = \inf \Pi_s.$$

Tomando $r < r', r \in D$, tenemos que

$$\inf \Pi_r = F(r) \leq F_D(r').$$

Si tomamos límite $r \uparrow x$, $s \downarrow x$, tenemos que

$$F(x) \le \liminf_{n \to \infty} F_n(x) \le \limsup_{n \to \infty} F_n(x) \le F(x),$$

de donde concluimos que

$$\lim_{n \to \infty} F_n(x) = F(x)$$

para cada $x \in C(F)$, es decir, $F_n \xrightarrow{v} F$.

Teorema 1.34 (Principio de selección de Helly). Dada $\{F_n\}$, $n \in \mathbb{N}$, sucesión de funciones de distribución, existe alguna subsucesión que converge vagamente.

Definición 1.35. Sea \mathcal{H} familia de funciones de distribución. Diremos que \mathcal{H} es ajustada si para cada $\varepsilon > 0$, existe a > 0 tal que

$$P_F((-a,a]) > 1 - \varepsilon,$$

para cada $F \in \mathcal{H}$.

Definición 1.36. Sea \mathcal{H} una familia de funciones de distribución. Diremos que \mathcal{H} es relativamente compacta (respecto de la convergencia debil) si cada sucesión $\{F_n\}$, $F_n \in \mathcal{H}$, tiene un subsucesión convergente (de forma debil, a un límite no esté necesariamente en \mathcal{H}).

Teorema 1.37 (Prokhorov). Sea \mathcal{H} una familia de funciones de distribución. \mathcal{H} es relativamente compacta si y solo si es ajustada.

Capítulo 2

Función característica

2.1. Función característica

Definición 2.1. Sea X una variable aleatoria en (Ω, \mathcal{A}, P) . La función característica asociada a X es $\varphi_X : \mathbb{R} \longrightarrow \mathbb{C}$ dada por

$$\varphi_X(t) = E\left[e^{itX}\right] = \int_{\mathbb{D}} e^{itx} dF(x).$$

Si $Y:\Omega\longrightarrow\mathbb{R}^d,\,d\geq 1$, es un vector de variables aleatorias, entonces $\varphi_Y:\mathbb{R}^d\longrightarrow\mathbb{C}$ viene dada por

$$\varphi_Y(t) = \int_{\mathbb{R}^d} e^{i\langle t, x \rangle} dF(x),$$

siendo \langle , \rangle un producto escalar en \mathbb{R}^d .

Observación 2.2. Como $e^{itx} = \cos(tx) + i\sin(tx)$, entonces

$$\varphi_X(t) = \int_{\mathbb{R}} \cos(tx) \ dF(x) + i \int_{\mathbb{R}} \sin(tx) \ dF(x).$$

Algunas propiedades de la función característica son

- 1. $\varphi(0) = 1$.
- 2. $|\varphi(t)| \leq 1$ para todo $t \in \mathbb{R}$.

Demostración.

$$|\varphi(t)| = |E[e^{itX}]| \le E[|e^{itX}|] = 1.$$

3. $\varphi(-t) = \overline{\varphi(t)}$ para todo $t \in \mathbb{R}$.

Demostración.

$$\varphi(-t) = E\left[e^{-itX}\right] = E[\cos(-tx) + i\sin(-tx)] = E[\cos(tx) - i\sin(tx)]$$
$$= \overline{E[\cos(tx)] + iE[\sin(tx)]} = \overline{E[\cos(tx) + i\sin(tx)]} = \overline{\varphi(t)}.$$

4. φ es una función definida positiva, es decir, para cada $n \in \mathbb{N}$ y para cada $z \in \mathbb{C}^n$, $z = (z_1, ..., z_n)$ se tiene que

$$\sum_{k,j=1}^{n} z_k \varphi(t_j - t_k) \overline{z_j} \ge 0.$$

Demostración.

$$\begin{split} \sum_{k,j=1}^n z_k \varphi(t_j - t_k) \overline{z_j} &= \sum_{k,j=1}^n z_k E\left[e^{i(t_j - t_k)X}\right] \overline{z_j} = \sum_{k,j=1}^n z_k E\left[e^{it_jX} e^{-it_kX}\right] \overline{z_j} \\ &= E\left[\sum_{k,j=1}^n z_k e^{it_jX} e^{-it_kX} \overline{z_j}\right] = E\left[\sum_{k=1}^n z_k e^{-t_kX} \left(\sum_{j=1}^n \overline{z_j} e^{it_jX}\right)\right] \\ &= E\left[\sum_{k=1}^n z_k e^{-t_kX} \overline{\left(\sum_{j=1}^n z_j e^{-it_jX}\right)}\right] = E\left[\left|\sum_{k=1}^n z_k e^{-it_kX}\right|^2\right] \geq 0. \end{split}$$

Teorema 2.3. φ es uniformemente continua.

Demostración. Sean $t, h \in \mathbb{R}$, entonces

$$\begin{split} |\varphi(t+h)-\varphi(t)| &= \left| E\left[e^{i(t+h)X}\right] - E\left[e^{itX}\right] \right| = \left| E\left[e^{i(t+h)X} - e^{itX}\right] \right| \\ &= \left| E\left[e^{itX}\left(e^{ihX} - 1\right)\right] \right| \leq E\left[\left|e^{itX}\left(e^{ihX} - 1\right)\right|\right] \\ &= E\left[\left|e^{itX}\right|\left|e^{ihX} - 1\right|\right] = E\left[\left|e^{itX} - 1\right|\right] \end{split}$$

Como

$$|e^{ihX} - 1| \le |e^{ihX}| + 1 = 2.$$

$$\bullet |e^{ihX} - 1| \xrightarrow[h \to 0]{} 0.$$

Por el Teorema de la Convergencia Dominada, $E\left[e^{ihX}-1\right] \xrightarrow[h \to 0]{} 0$, de donde, $|\varphi(t+h)-\varphi(t)| \xrightarrow[h \to 0]{} 0$ para cada $t \in \mathbb{R}$, lo que nos dice que φ es uniformemente continua.

Teorema 2.4 (de inversión). Sea X una variable aleatoria en (Ω, \mathcal{A}, P) con función de distribución F y función característica φ . Dados $a, b \in \mathbb{R}$, a < b, se tiene que

$$\frac{F(b)+F(b^-)}{2}-\frac{F(a)+F(a^-)}{2}=\lim_{T\to\infty}\int_{-T}^T\frac{e^{-itb}-e^{-ita}}{-it}\varphi(t)\ dt.$$

Demostración. Observamos que

$$\left|\frac{e^{-itb}-e^{-ita}}{-it}\right| = \left|\int_a^b e^{-itx} \ dx\right| \le \int_a^b \left|e^{itx}\right| = b-a < \infty.$$

Usando el Teorema de Fubini

$$\begin{split} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-itb} - e^{-ita}}{-it} \varphi(t) dt &= \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-itb} - e^{-ita}}{-it} \left(\int_{-\infty}^{\infty} e^{itx} \ dF(x) \right) dt \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-T}^{T} \frac{e^{-it(x-a) - i^{it(x-b)}}}{2it} \ dt \ dF(x). \end{split}$$

Llamemos

$$I(t) := \int_{-T}^{T} \frac{e^{-it(x-a)-i^{it(x-b)}}}{2it} dt,$$

así

$$I(T) = \int_{-T}^{T} \frac{\cos(t(x-a)) + i \sec(t(x-a)) - \cos(t(x-b)) - i \sec(t(x-b))}{2it} dt$$

$$= \int_{0}^{T} \frac{i2 \sec(t(x-a)) - i2 \sec(t(x-b))}{2it} dt = \int_{0}^{T} \left(\frac{\sec(t(x-a))}{t} - \frac{\sec(t(x-b))}{t}\right) dt.$$

Definimos ahora la función

$$H(y) = \int_0^y \frac{\sin(t)}{t},$$

que sabemos que verifica que H(-y) = H(y) y $\lim_{y\to\infty} H(y) = \pi/2$. Consideremos ahora el cambio de variables u = t(x-a), de esta forma

$$\int_0^T \frac{\sin(t(x-a))}{t} dt = \int_0^{T(x-a)} \frac{\sin(u)}{u} du = H(T(x-a)) \xrightarrow[T \to \infty]{} \begin{cases} -\pi/2 & x < a \\ 0 & x = a \\ \pi/2 & x > a \end{cases}.$$

Actuando de igual forma para el cambio u = t(x - b), llegamos a que

$$\lim_{T \to \infty} \int_0^T \left(\frac{\sin(t(x-a))}{t} - \frac{\sin(t(x-b))}{t} \right) dt = \begin{cases} 0 & x < a \\ \pi/2 & x = a \\ \pi & a < x < b \\ \pi/2 & x < b \\ 0 & x > b \end{cases}.$$

Entonces

$$\begin{split} \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-itb} - e^{-ita}}{-it} \varphi(b) \ dt &= \lim_{T \to \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} I(t) \ dF(x) = \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{1}{\pi} I(t) \ dF(x) \\ &= \frac{1}{\pi} \left(\frac{\pi}{2} P(X = a) + \pi P(a < X < b) + \frac{\pi}{2} P(X = b) \right) \\ &= \frac{1}{\pi} \left(\frac{\pi}{2} (F(a) - F(a^{-})) + \pi (F(b^{-}) - F(a)) + \frac{\pi}{2} (F(b) - F(b^{-})) \right) \\ &= \frac{F(b) + F(b^{-})}{2} - \frac{F(a) + F(a^{-})}{2}. \end{split}$$

Corolario 2.5. Sea X una varaible aleatoria en (Ω, \mathcal{A}, P) con función de distribución F y función característica φ . Dados $a, b \in C(F)$, a < b, se tiene que

$$F(b) - F(a) = \lim_{T \to \infty} \int_{-T}^{T} \frac{e^{-itb} - e^{-ita}}{-it} \varphi(t) dt.$$

Teorema 2.6. Sean X_1 y X_2 variables aleatorias con funciones de distribución F_1 y F_2 y funciones características φ_1 y φ_2 respectivamente. Entonces $F_1 = F_2$ si y solo si $\varphi_1 = \varphi_2$.

Demostración. \Longrightarrow Supongamos que $F_1 = F_2$, entonces

$$\varphi_1(t) = E\left[e^{itX_1}\right] = \int_{\mathbb{R}} e^{itx} \ dF_1(x) = \int_{\mathbb{R}} e^{itx} \ dF_2(x) = E\left[e^{itX_2}\right] = \varphi_2(t).$$

 \sqsubseteq Supongamos que $\varphi_1 = \varphi_2 \equiv \varphi$. Sean $a < b, a, b \in C(F_1) \cap C(F_2)$. Por el Teorema de Inversión

$$F_1(b) - F_1(a) = F_2(b) - F_2(a),$$

tomando límite $a \to \infty$, tenemos que

$$F_1(b) - 1 = F_2(b) - 1 \iff F_1(b) = F_1(b),$$

de donde deducimos que F_1 y F_2 coinciden en un denso de \mathbb{R} y por tanto, $F_1 = F_2$ en todo \mathbb{R} .

Teorema 2.7. Existe $k \in (0, \infty)$ tal que para todo a > 0 y toda medida de probabilidad P_F (puede ser cualquier medida de probabilidad arbitraria) tal que

$$P_F\left(\left[-\frac{1}{a}, \frac{1}{a}\right]^c\right) \le \frac{k}{a} \int_0^a (1 - \operatorname{Re} \varphi_F(t)) \ dt.$$

Demostración. Nótese que

$$\operatorname{Re}(\varphi_F(t)) = \operatorname{Re}E\left[e^{itX}\right] = \operatorname{Re}E[\cos(tx) + i\sin(tx)] = E[\cos(tx)],$$

de donde

$$1 - \operatorname{Re}(\varphi_F(t)) = E[1 - \cos(tx)].$$

Así,

$$\begin{split} \frac{1}{a} \int_0^a (1 - \text{Re}(\varphi_F(t))) \ dt &= \frac{1}{a} \int_0^a \int_{\mathbb{R}} (1 - \cos(tx)) \ dF(x) \ dt = \int_{\mathbb{R}} \frac{1}{a} \int_0^a (1 - \cos(tx)) \ dt \ dF(x) \\ &= \int_{\mathbb{R}} \frac{1}{a} \left(\int_0^a 1 \ dt - \int_0^a \cos(tx) \ dt \right) \ dF(x) = \int_{\mathbb{R}} \left(1 - \frac{\sin(ax)}{ax} \right) \ dF(x) \\ &\geq \int_{|ax| > 1} \left(1 - \frac{\sin(ax)}{ax} \right) \ dF(x) \geq \inf_{|t| > 1} \left(1 - \frac{\sin(t)}{t} \right) \cdot P_F\left(\left[-\frac{1}{a}, \frac{1}{a} \right]^c \right) \end{split}$$

Basta tomar

$$k = \frac{1}{\inf_{|t| > 1} \left(1 - \frac{\operatorname{sen}(t)}{t}\right)}$$

para obtener el resultado.

Corolario 2.8. Sea $\{X_n\}$ una sucesión de variables aleatorias, con F_n , P_n y φ_n asociada a X_n . Supongamos que

- 1. Existe $\delta > 0$ tal que $\varphi_n \xrightarrow[n \to \infty]{} \varphi(t)$ para todo $t \in [-\delta, \delta]$.
- 2. φ es continua en 0.

Entonces $\{X_n\}$ es ajustada, es decir, $\{F_n\}$ forma una familia ajustada.

Teorema 2.9. Sea $\{F_n\}$ una familia ajustada de funciones de distribución. Si todas las subsucesiones convergentes tienen el mismo límite F, entonces $F_n \stackrel{d}{\to} F$.

Demostración. Supongamos por reducción al absurdo que $F_n \not\stackrel{d}{\to} F$, entonces existe $x \in C(F)$ tal que $F_n(x) \not\to F(x)$, es decir, existe una subsucesión $\{F_{n_k}\}$ tal que $F_{n_k}(x) \to \alpha \neq F(x)$. Por hipótesis, $\{F_{n_k}\}$ es ajustada, por el Teorema de Prokhorov, existe $\{F_{n_k'}\} \subset \{F_{n_k}\}$ tal que $F_{n_k'} \to F$ (por hipótesis). Como $x \in C(F)$, entonces $F_{n_k'} \to F(x) \neq \alpha$, lo que es una cotradicción.

Teorema 2.10 (Continuidad de Levy). Sea $\{X_n\}$ una sucesión de variables aleatorias con φ_n función característica asociada a X_n . Si existe φ función tal que

- 1. $\varphi_n(t) \longrightarrow \varphi(t)$ para todo $t \in \mathbb{R}$.
- 2. φ es continua en 0.

Entonces $X_n \xrightarrow{d} X$, donde X es la variable aleatoria con función característica φ .

Demostración. Por el Corolario 2.8 tenemos que $\{X_n\}$ es una familia ajustada. Veamos que el límite de las subssucesioes de $\{F_n\}$ es único, con lo que bastaría usar el Teorema 2.9 para llegar al resultado.

Sean $\{F_{n_k}\}$ y $\{F_{n_j}\}$ subsucesiones tales que

$$F_{n_k} \xrightarrow{d} G_1, \quad F_{n_i} \xrightarrow{d} G_2.$$

Consideremos las sucesiones asociadas de funciones características

$$\varphi_{n_k}(t) \longrightarrow \varphi_{G_1}(t), \quad \varphi_{n_i}(t) \longrightarrow \varphi_{G_2}(t)$$

para todo $t \in \mathbb{R}$. Como $\{\varphi_{n_k}\}$ y $\{\varphi_{n_j}\}$ son subsucesiones de $\{\varphi_n\}$, entonces, por hipótesis, $\varphi_{G_1}(t) = \varphi_{G_2}(t) = \varphi(t)$ para todo $t \in \mathbb{R}$. De aquí, deducimos que

$$\int_{\mathbb{R}} e^{itx} \ dG_1(x) = \int_{\mathbb{R}} e^{itx} \ dG_2(x).$$

Como la función $t \mapsto e^{itx}$, $x \in \mathbb{R}$, es continua y acotada, entonces esta igualdad implica que $P_{G_1} = P_{G_2}$. Por el Teorema de Correspondencia, tenemos que $G_1 = G_2$. Por el Teorema 2.9 $F_n \stackrel{d}{\to} F$, es decir, $X_n \stackrel{d}{\to} X$.

Teorema 2.11. $\{F_n\}$ es ajustada si y solo si

$$\lim_{t\to 0} \left[\limsup_{n\to \infty} Re(1-\varphi_n(t)) \right] = 0.$$

Observación 2.12 (Teorema Central del Límite de De Moivre). Sea $\{X_n\}$ una sucesión de variables aleatorias tales que $X_n \sim Bi(n,p)$. Tenemos entonces que $E[X_n] = p$ y $Var[X_n] = npq$, siendo q = 1 - p. Si definimos las variables aleatorias

$$Z_n = \frac{X_n - np}{\sqrt{npq}},$$

tenemos que $Z_n \xrightarrow{d} Z$, siendo $Z \sim N(0,1)$.

Demostración.

$$\varphi_{Z_n}(t) = E\left[e^{itZ_n}\right] = E\left[e^{it\frac{X_n - np}{\sqrt{npq}}}\right] = E\left[e^{it\frac{X_n}{\sqrt{npq}}}e^{-it\frac{np}{\sqrt{npq}}}\right] = e^{-it\frac{np}{\sqrt{npq}}}E\left[e^{it\frac{X_n}{\sqrt{npq}}}\right]$$
$$= e^{-it\frac{np}{\sqrt{npq}}}\varphi_{X_n}\left(\frac{t}{\sqrt{npq}}\right).$$

Como $X_n \sim Bi(n, p)$, entonces $\varphi_{X_n}(t) = (pe^{-it} + q)^n$. Por tanto,

$$\varphi_{Z_n}(t) = e^{-it\frac{np}{\sqrt{npq}}} \left(pe^{-i\frac{t}{\sqrt{npq}}} + q \right)^n = \left(pe^{i\frac{tq}{\sqrt{npq}}} + qe^{-i\frac{tp}{\sqrt{npq}}} \right)^n$$

Tomando límite cuando $n \to \infty$,

$$\lim_{n\to\infty}\varphi_{Z_n}(t)=\lim_{n\to\infty}\left(pe^{i\frac{-tq}{\sqrt{npq}}}+qe^{-i\frac{-tp}{\sqrt{npq}}}\right)^n\Longrightarrow \text{Indeterminación tipo "}1^\infty "$$

Recordemos que si

$$\lim_{x \to \infty} f(x) = 1, \quad \lim_{n \to \infty} g(x) = \infty,$$

entonces.

$$\lim_{x \to \infty} f(x)^{g(x)} = e^{\lim_{x \to \infty} g(x)(f(x) - 1)}.$$

Usando esto, tenemos que

$$\lim_{n\to\infty}\varphi_{Z_n}(t)=\exp\left[\lim_{n\to\infty}n\left(pe^{i\frac{tq}{\sqrt{npq}}}+qe^{-i\frac{tp}{\sqrt{npq}}}-1\right)\right].$$

Desarrollando la serie de Taylor de $e^{i\frac{\tau q}{\sqrt{npq}}}$:

$$e^{i\frac{tq}{\sqrt{npq}}} = \sum_{k=0}^{\infty} \frac{\left(i\frac{tq}{\sqrt{npq}}\right)^k}{k!} = 1 + i\frac{tq}{\sqrt{npq}} + \frac{\left(i\frac{tq}{\sqrt{npq}}\right)^2}{2!} + o\left(\frac{t^2}{npq}\right),$$

de donde,

$$\begin{split} pe^{i\frac{tq}{\sqrt{npq}}} + qe^{-i\frac{tp}{\sqrt{npq}}} - 1 \\ &= p\left[1 + i\frac{tq}{\sqrt{npq}} + \frac{\left(i\frac{tq}{\sqrt{npq}}\right)^2}{2!}\right)\right] + q\left[1 - i\frac{tp}{\sqrt{npq}} + \frac{\left(-i\frac{tp}{\sqrt{npq}}\right)^2}{2!}\right] - 1 + o\left(\frac{t^2}{npq}\right) \\ &= p(iq)^2\frac{t^2}{2npq} + q(ip)^2\frac{t^2}{2npq} + o\left(\frac{t^2}{npq}\right) = -pq^2\frac{t^2}{2npq} - qp^2\frac{t^2}{2npq} + o\left(\frac{t^2}{npq}\right) \\ &= -\frac{t^2}{2npq}\left(pq^2 + qp^2\right) + o\left(\frac{t^2}{npq}\right) = -\frac{t^2}{2npq}pq + o\left(\frac{t^2}{npq}\right) \\ &= -\frac{t^2}{2n} + o\left(\frac{t^2}{npq}\right) = -\frac{t^2}{2n} + o\left(\frac{t^2}{npq}\right). \end{split}$$

Finalmente,

$$\lim_{n \to \infty} \varphi_{Z_n}(t) = \exp\left[\lim_{n \to \infty} n \left(p e^{i\frac{tq}{\sqrt{npq}}} + q e^{-i\frac{tp}{\sqrt{npq}}} - 1 \right) \right] = \exp\left[\lim_{n \to \infty} n \left(-\frac{t^2}{2n} + o\left(\frac{t^2}{n}\right) \right) \right]$$
$$= e^{-t^2/2} = \varphi_Z(t),$$

siendo $Z \sim N(0,1).$ Por el Teorema de Levy, $Z_n \xrightarrow{d} Z, \ Z \sim N(0,1).$

Proposición 2.13. Si $E[|X|^n] < \infty$ para cierto $n \ge 1$, entonces existen y son finitos $E[X^r]$ para cada $1 \le r \le n$.

Definición 2.14. El espacio L^r es el conjunto de las variables aleatorias X tales que $E[|X|^r] < \infty$, es decir,

$$L^r = \left\{ X \text{ variable aleatoria} : \int_{\mathbb{R}} |x|^r dF(x) < \infty \right\}.$$

Teorema 2.15. Sea $X \in L^n$, para cierto $n \ge 1$, con función característica φ . Entonces existen las derivadas $\varphi^{(k)}$ para k = 1, ..., n, son uniformemente continuas y

$$\varphi^{(k)}(t) = i^k \int_{\mathbb{R}} x^k e^{itx} dF(x).$$

Además,

$$\varphi^{(k)}(0) = i^k E[X^k],$$

y

$$\varphi(t) = 1 + \sum_{k=1}^{n} \frac{(it)^k}{k!} E[X^k] + o(t^n).$$

Proposición 2.16. Sean X e Y variables aleatorias independientes con fuciones características φ_X y φ_Y respectivamente. Entonces la función característica de la variable aleatoria S = X + Y es $\varphi_S(t) = \varphi_X(t) \cdot \varphi_Y(t)$.

Observación 2.17. En general, si X_1, \ldots, X_n son variables aleatorias independientes y $S = X_1 + \ldots + X_n$, entonces

$$\varphi_S(t) = \prod_{i=1}^n \varphi_{X_i}(t).$$

Lema 2.18.

$$\left| e^{it} - \sum_{k=0}^{n} \frac{(iy)^k}{k!} \right| \le \min\left\{ \frac{2|y|^n}{n!}, \frac{|y|^{n+1}}{(n+1)!} \right\}.$$

Teorema 2.19. Si φ es absolutamente integrable, entonces F es absolutamente continua y su función de densidad es

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{itx} \varphi(t) dt.$$

Lema 2.20 (Riemann-Lebesgue). Si F es absolutamente continua entonces

$$\lim_{t\to\infty}|\varphi(t)|=0,\quad \lim_{t\to-\infty}|\varphi(t)|=0.$$

Lema 2.21.

$$P(X=a) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \varphi(t) \ dt.$$

2.2. Función generatriz de momentos y Función generatriz de cumulantes

Definición 2.22. Sea X una variable aleatoria con función característica φ , es define la función generatriz de cumulantes de X como $\kappa : \mathbb{R} \longrightarrow \mathbb{C}$ dada por

$$\kappa(t) = \log \varphi(t)$$
.

Proposición 2.23. Sean X_1, \ldots, X_n variables aleatorias independientes con funciones características $\varphi_1, \ldots, \varphi_n$ respectivamente. Sea $S = X_1 + \ldots + X_n$, entonces

$$\kappa_S(t) = \sum_{i=1}^n \kappa_{X_i}(t).$$

Teorema 2.24. Si $E[|X|^n] < \infty$ para cierto $n \ge 1$. Entonces

$$\kappa(t) = \sum_{j=0}^{n} \frac{(it)^j}{j!} C_j + o(t^n),$$

siendo

$$C_j = \frac{\kappa^{(j)}(0)}{i^j}.$$

 C_j se conoce como el cumulante de orden j.

Observación 2.25. $C_1 = E[X] \text{ y } C_2 = Var[X].$

Observación 2.26. Si $X \sim N(\mu, \sigma^2)$, entonces $C_1 = \mu$, $C_2 = \sigma^2$ y $C_n = 0$ para todo $n \ge 3$.

Definición 2.27. Sea X una variable aleatoria con $\sigma = \sqrt{Var[X]}$. Se definen

- Sesgo: C_3/σ^3 .
- Curtosis: C_4/σ^4 .

Definición 2.28. Sea X una variable aleatoria con función característica φ , es define la función generatriz de momentos de X como

$$\psi(t) = E\left[e^{tX}\right] = \int_{\mathbb{R}} e^{tx} dF(x),$$

siempre que exista h > 0 tal que ψ esté definida para todo |t| < h.

Observación 2.29. Si existe ψ , entonces $E[|X|^n] < \infty$ para todo $n \in \mathbb{N}$.

Definición 2.30. Sea X una variable aleatoria que toma valores en $\mathbb{Z}_+ = \{0, 1, 2, \ldots\}$. La función generatrz de probabilidad de X es

$$G_X(t) = E[t^X] = \sum_{n=0}^{\infty} t^n P(X=n), \quad |t| < 1.$$

Observación 2.31.

$$G_X^{(k)}(t) = \sum_{n=k}^{\infty} n(n-1)\dots(n-k+1)t^{n-k}P(X=n)$$

$$G_X^{(k)}(0) = k! P(X = k) \Longrightarrow P(X = K) = \frac{G_X^{(K)}(0)}{k!}.$$

Observación 2.32. Sea $X = Y_1 + \ldots + Y_N$, siendo Y_i variables aleatorias independientes e igualmente distribuidas y N una variable aleatoria en Z_+ . Entonces X sigue una distribución compuesta y su función característiva es

$$\varphi_X(t) = E\left[e^{itX}\right] = E\left[E\left[e^{itX}|N\right]\right] = \sum_{n=0}^{\infty} E\left[e^{itX}|N=n\right]P(N=n)$$
$$= \sum_{n=0}^{\infty} E\left[e^{it\sum_{i=1}^{n} Y_i}|N=n\right]P(N=n) = \sum_{n=0}^{\infty} (\varphi_Y(t))^n P(N=n)$$
$$= G_N(\varphi_Y(t))$$

Lema 2.33. Sean μ_1, \ldots, μ_n medidas de probabilidad con funciones características $\varphi_1, \ldots, \varphi_n$ respectivamente. Sean $\alpha_1, \ldots, \alpha_n \in [0, 1]$ tales que $\sum_{i=1}^n \alpha_i = 1$. Entonces, la función característica asociada a la medida de probabilidad $\sum_{i=1}^n \alpha_i \mu_i$ es $\sum_{i=1}^n \alpha_i \varphi_i$.

Demostración.

$$\varphi(t) = \int_{\mathbb{R}} e^{itx} d(\alpha_1 \mu_1 + \ldots + \alpha_n \mu_n) = \alpha_1 \int_{\mathbb{R}} e^{itx} d\mu_1 + \ldots + \alpha_n \int_{\mathbb{R}} e^{itx} d\mu_n$$

Definición 2.34. Una función $g: \mathbb{R} \longrightarrow \mathbb{C}$ es definida positiva si

$$\sum_{i=1}^{n} \sum_{j=1}^{n} g(t_j - t_i) z_j \overline{z_k} \ge 0,$$

para cualesquiera $t_1, \ldots, t_n \in \mathbb{R}$ y cualesquiera $z_1, \ldots, z_n \in \mathbb{C}$.

Observación 2.35. La función característica es definida positiva (se probó al inicio de este mismo capítulo).

Teorema 2.36. Si g es definida postiva y continua en θ , entonces g es uniformemente continua en \mathbb{R} .

Lema 2.37 (Herglotz). $Si \ \phi : \mathbb{Z} \longrightarrow \mathbb{C}$ es definida postiva $y \ \phi(0) = 1$, entonces existe μ distribución de probabilidad en $[-\pi, \pi]$ tal que ϕ es su función característica ascociada, es decir,

$$\phi(t) = \int_{-\pi}^{\pi} e^{itx} \ d\mu,$$

para todo $t \in \mathbb{Z}$.

Teorema 2.38 (Bochner). Sea $\varphi : \mathbb{R} \longrightarrow \mathbb{C}$ verificando:

- (i) es definida positiva,
- (ii) continua en 0,
- (*iii*) $\varphi(0) = 1$.

Entonces, φ es fución característica.

Corolario 2.39. Toda combinación lineal convexa de funciones características es función característica.

Proposición 2.40. La función φ_T dada por

$$\varphi_T(t) = \max\left\{1 - \frac{|t|}{T}, 0\right\} \equiv \begin{cases} 1 - \frac{|t|}{T}, & |t| \le T \\ 0, & |t| > T \end{cases}, \quad T \in \mathbb{R},$$

es función característica.

Lema 2.41. Sea $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ tal que $\varphi(0) = 1$, no negativa, par y φ es una poligonal convexa no creciete en \mathbb{R}^+ . Entonces φ es función característica.

Teorema 2.42 (Criterio de Pólya). Sea $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ tal que:

- (i) $\varphi(0) = 1$,
- (ii) φ no negativa, par y contiuna.
- (iii) φ convexa y no creciente en \mathbb{R}^+ .

Entonces φ es función característica.

Capítulo 3

Convergencia

Consideremos un espacio de probabilidad $(\Omega, \mathcal{A}, P), P : \mathcal{A} \longrightarrow [0, 1]$. Sean $A_1, \dots, A_n \in \mathbb{A}$ una sucesión de sucesos. Definimos el límite inferior y superior como sigue

$$\liminf_n A_n = \bigcup_{n \ge 1} \bigcap_{m \ge n} A_m \in \mathcal{A}, \quad \limsup_n A_n = \bigcap_{n \ge 1} \bigcup_{m \ge n} A_m \in \mathcal{A}.$$

Decimos que la sucesión $\{A_n\}$ converge si lím $\inf_n A_n = \lim\sup_n A_n$. Algunos resultados que ya conocemos son los siguientes:

- Toda sucesión monótona es convergente.
- Si $\{A_n\}$ es monótona creciente, entonces $\lim_n A_n = \bigcup_{i>1} A_i$.
- Si $\{A_n\}$ es monótona decreciente, entonces $\lim_n A_n = \bigcap_{i \geq 1} A_i$.

Teorema 3.1. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y consideremos $\{A_n\} \subset \mathcal{A}$ una sucesión monótona creciente. Entonces

$$P\left(\lim_{n} A_{n}\right) = \lim_{n} P(A_{n}).$$

Demostración. Como $\{A_n\}$ es creciente, entonces $\lim_n A_n = \bigcup_{i \geq 1} A_i$, de donde:

$$P\left(\lim_{n} A_{n}\right) = P\left(\bigcup_{i \ge 1} A_{i}\right).$$

Como los A_n no son disjuntos, definimos $F_n = A_n \backslash A_{n-1}$ para cada $n \geq 2$. Es claro que los F_n son disjuntos y que

$$\bigcup_{i>1} A_i = A_1 \dot{\bigcup} F_2 \dot{\bigcup} \dots \dot{\bigcup} F_n \dot{\bigcup} \dots$$

De aquí,

$$P\left(\bigcup_{i\geq 1} A_i\right) = P(A_1) + P(F_2) + \dots + P(F_n) + \dots = P(A_1) + \lim_{n\to\infty} \sum_{i=2}^n P(F_i)$$
$$= P(A_1) + \lim_{n\to\infty} (P(A_n) - P(A_1)) = \lim_{n\to\infty} A_n.$$

Teorema 3.2. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y consideremos $\{A_n\} \subset \mathcal{A}$ una sucesión monótona decreciente. Entonces

$$P\left(\lim_{n} A_{n}\right) = \lim_{n} P(A_{n}).$$

Demostración. Consideramos $\{A_n^c\}$, que es una sucesión monótoa decreciente. Por el Teorema anterior

$$P\left(\bigcup_{i\geq 1}A_i^c\right) = P\left(\lim_n A_n^c\right) = \lim_n P(A_n^c).$$

Por las leyes de De Morgan:

$$P\left(\bigcup_{i\geq 1}A_i^c\right) = P\left(\left(\bigcap_{i\geq 1}A_i\right)^c\right) = 1 - P\left(\bigcap_{i\geq 1}A_i\right)$$

Así,

$$\lim_{n\to\infty}P(A_n^c)=\lim_{n\to\infty}\left(1-P(A_n)\right)=1-P\left(\bigcap_{i\geq 1}A_i\right)\Longrightarrow\lim_{n\to\infty}P(A_n)=P\left(\bigcap_{n\geq 1}A_n\right)$$

Teorema 3.3. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y consideremos $\{A_n\} \subset \mathcal{A}$ una sucesión. Entonces

$$P\left(\limsup_{n} A_{n}\right) = \lim_{n} P\left(\bigcup_{m \ge n} A_{m}\right).$$

Demostración. Como lím sup_n $A_n = \bigcap_{n\geq 1} \bigcup_{m\geq n} A_m$, tenemos que $\{\bigcup_{m\geq n} A_m\}$ es una sucesión decreciente y

$$\bigcap_{n\geq 1} \bigcup_{m\geq n} A_m = \lim_{n\to\infty} \left(\bigcup_{m\geq n} A_m \right),$$

de donde concluimos que

$$P\left(\limsup_n A_n\right) = P\left(\bigcap_{n \geq 1} \bigcup_{m \geq n} A_m\right) = P\left(\lim_{n \to \infty} \left(\bigcup_{m \geq n} A_m\right)\right) = \lim_{n \to \infty} P\left(\bigcup_{m \geq n} A_m\right).$$

Teorema 3.4. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y consideremos $\{A_n\} \subset \mathcal{A}$ una sucesión. Entonces

$$P\left(\liminf_{n} A_{n}\right) = \lim_{n} P\left(\bigcap_{m \geq n} A_{m}\right).$$

Teorema 3.5. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y consideremos $\{A_n\} \subset \mathcal{A}$ una sucesión. Sea $\omega \in \Omega$, entonces $\omega \in \limsup_n A_n$ si y solo si existe una sucesión de índices $n_1 < n_2 < \ldots < n_k < \ldots$ tal que $\omega \in A_{n_k}$ para todo $k \in \mathbb{N}$.

Demostración. \Longrightarrow Supongamos que $\omega \in \limsup A_n$, es decir,

$$\omega \in \bigcap_{n \ge 1} \bigcup_{m \ge n} A_m.$$

En particular, $\omega \in \bigcup_{m \geq 1} A_m$, es decir, existe $\xi \in \mathbb{N}$, tal que $\omega \in A_{\xi}$. Tomamos $n_1 = \xi$. Por inducción sobre k, suponemos que $w \in A_{n_i}$, i = 1, ..., k. Actuando de igual forma, $\omega \in \bigcup_{m \geq n_{k+1}} A_m$, es decir, existe $\xi' \in \mathbb{N}$ tal que $\omega \in A_{\xi'}$ y tomamos $n_{k+1} = \xi'$.

For reducción al absurdo, supongamos que existe una sucesión de índices $n_1 < n_2 < \ldots < n_k < \ldots$ tal que $\omega \in A_{n_k}$ para todo $k \in \mathbb{N}$ y que $\omega \notin \limsup A_n$. De esto últimos, tenemos que

$$\omega \not\in \bigcap_{n \ge 1} \bigcup_{m \ge n} A_m \Longrightarrow \omega \in \left(\bigcap_{n \ge 1} \bigcup_{m \ge n} A_m\right)^c \Longrightarrow \omega \in \bigcup_{n \ge 1} \bigcap_{m \ge n} A_m^c,$$

es decir, existe $n_0 \in \mathbb{N}$ (fijo) tal que $\omega \in A_m^c$ para todo $m \geq n_0$, es decir, $\omega \in A_m$ para todo $m \geq n_0$, lo que nos dice que ω está en un número finito de A_n , los que es una contradicción.

Teorema 3.6. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y consideremos $\{A_n\} \subset \mathcal{A}$ una sucesión. Sea $\omega \in \Omega$, entonces $\omega \in \liminf_n A_n$ si y solo si existe $n_0 \in \mathbb{N}$ tal que $\omega \in A_m$ para todo $m \geq n_0$.

Teorema 3.7 (Primer Lema de Borel-Cantelli). Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y consideremos $\{A_n\} \subset \mathcal{A}$ una sucesión tal que $\sum_{n\geq 1} P(A_n) < \infty$. Entonces

$$P\left(\limsup_{n} A_{n}\right) = 0.$$

Demostración.

$$P\left(\limsup_{n} A_{n}\right) = P\left(\bigcap_{n\geq 1} \bigcup_{m\geq n} A_{m}\right) \stackrel{=}{\underset{(*)}{=}} P\left(\lim_{n\to\infty} \bigcup_{m\geq n} A_{m}\right)$$
$$= \lim_{n\to\infty} P\left(\bigcup_{m\geq n} A_{m}\right) \leq \lim_{n\to\infty} \sum_{m\geq n} P(A_{n}) = 0.$$

En (*) estamos usando que la sucesión $\{\cup_{m>n}A_m\}$ es decreciente.

Teorema 3.8 (Segundo Lema de Borel-Cantelli). Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y consideremos $\{A_n\} \subset \mathcal{A}$ una sucesión tal que $\sum_{n\geq 1} P(A_n) = \infty$. Entonces

$$P\left(\limsup_{n} A_{n}\right) = 1.$$

Demostración.

$$P\left(\limsup_{n} A_{n}\right) = P\left(\bigcap_{n\geq 1} \bigcup_{m\geq n} A_{m}\right) = 1 - P\left[\left(\bigcap_{n\geq 1} \bigcup_{m\geq n} A_{m}\right)^{c}\right]$$

$$= 1 - P\left(\bigcup_{n\geq 1} \bigcap_{m\geq n} A_{m}^{c}\right) = 1 - P\left(\lim_{n\to\infty} \bigcap_{m\geq n} A_{m}^{c}\right)$$

$$= 1 - \lim_{n\to\infty} P\left(\bigcap_{m\geq n} A_{m}^{c}\right) = 1 - \lim_{n\to\infty} \prod_{m\geq n} P(A_{m}^{c})$$

$$= 1 - \lim_{n\to\infty} \prod_{m>0} (1 - P(A_{m})).$$

Observamos que

$$\prod_{m>} (1 - P(A_m)) = \prod_{m>n} e^{-P(A_m)} = e^{-\sum_{m \ge n} P(A_m)} = 0.$$

En (*) usamos que si $x \ge 0$, entonces $1 - x \le e^{-x}$. Finalmente, gracias a lo anterior

$$P\left(\limsup_{n} A_n\right) = 1.$$

Corolario 3.9 (Ley 0-1 de Borel-Cantelli). Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y consideremos $\{A_n\} \subset \mathcal{A}$ una sucesión de sucesos independientes, entonces $P(\limsup_n A_n)$ o bien es 0, o bien es 1.

Sean X_n variables aleatorias en (Ω, \mathcal{A}, P) . Definimos

$$\Omega_1 = \{ \omega \in \Omega : \liminf_n X_n(\omega) = \limsup_n X_n(\omega) \},$$

que es el conjunto de $\omega \in \Omega$ para los cuales existe $\lim_n X_n$.

Teorema 3.10. Sean X_i variables aleatorias en (Ω, \mathcal{A}, P) . Entonces $\inf_n X_n$, $\sup_n X_n$, $\liminf_n X_n$ y $\limsup_n X_n$ son variables aleatorias.

Demostración. Sea $Y = \inf_n X_n$ y fijemos $b \in \mathbb{R}$. Entonces

$$Y^{-1}((-\infty, b)) = \left\{ \omega \in \Omega : \inf_{n} X_{n}(\omega) < b \right\} = \bigcup_{n \ge 1} \left\{ \omega \in \Omega : X_{n}(\omega) < b \right\}$$
$$\bigcup_{n \ge 1} X_{n}^{-1}((-\infty, b)) \in \mathcal{A},$$

es decir, Y es variable aleatoria. Observamos que $\sup_n X_n = -\inf_n (-X_n)$,

lím $\inf_n X_n = \sup_n \inf_{m \geq n} A_m$ y lím $\sup_n X_n = \inf_n \sup_{m \geq n} X_m$. Aplicar una función medible a una variable aleatoria, nos sigue dando una variable aleatoria, por tanto, todo lo anterior eran variables aleatorias.

Corolario 3.11. Ω_1 es medible.

Definición 3.12. Sea $\{X_n\}$ una sucesión de variables aleatorias en (Ω, \mathcal{A}, P) . Decimos que X_n converge casi seguro si $P(\Omega_1) = 1$. En tal caso, $X := \lim_n X_n \ y \ X_n \xrightarrow{c.s} X$.

Teorema 3.13. $X_n \xrightarrow{c.s} X$ si y solo si $P(\liminf_n y_{n.k}) = 1$ para todo k, siendo

$$y_{n,k} = \left\{ \omega \in \Omega : |X_n(\omega) - X(\omega)| < \frac{1}{k} \right\}.$$

Teorema 3.14. $X_n \xrightarrow{c.s} X$ si y solo si $P(\limsup_n y_{n,k}^c) = 0$ para todo k.

Definición 3.15. Diremos que X_n converge en probabilidad a X si para todo $\varepsilon > 0$

$$P(y_{n,\varepsilon}) \xrightarrow[n \to \infty]{p} 1,$$

siendo

$$y_{n,\varepsilon} = \{ \omega \in \Omega : |X_n(\omega) - X(\omega)| < \varepsilon \}.$$

Teorema 3.16. El límite en probabilidad es único casi seguro (c.s).

Teorema 3.17. Si $X_n \xrightarrow{c.s} X$, entonces $X_n \xrightarrow{p} X$.

Teorema 3.18. Si $X_n \xrightarrow{p} X$, entonces existe alguna subsucesión X_{n_k} de X tal que $X_{n_k} \xrightarrow{c.s} X$.

Teorema 3.19. $X_n \xrightarrow{p} X$ si y solo si toda subsucesión contiene una subsucesión convergente casi seguro.

Teorema 3.20. La convergencia en probabilidad implica la convergencia en distribución.

Teorema 3.21. Sean X_n , X variables aleatorias en (Ω, \mathcal{A}, P) con $X \sim \delta(c)$, c constante. Entonces $X_n \xrightarrow{p} X$ si y solo si $X_n \xrightarrow{d} X$.

Consideremos el espacio

$$L^p(\Omega, \mathcal{A}, P) = \{X \text{ v.a} : E[|X|^p] < \infty\}.$$

Se puede probar que $(L^p, \|.\|_p)$ es un espacio métrico, siendo

$$||X||_p = \left(\int_{\Omega} |X|^p \ dP\right)^{1/p}$$

Definición 3.22. Diremos que X_n converge a X en L^p , $X_n \xrightarrow{L^p} X$, cuando $||X_n - X||_p \xrightarrow[n \to \infty]{} 0$.

Diremos que

- Converge en media si p = 1.
- Converge en media cuadrática si p=2.

Desigualdad de Markov: Sea X variable no negativa y a > 0, entonces

$$P(X \ge a) \le \frac{E[X]}{a}$$
.

Si además $X \in L^p$

$$P(X \ge a) \le \frac{E[X^p]}{a^p}.$$

Teorema 3.23. $X_n, X \in L^p$. Si $X_n \xrightarrow{L^p} X$, entonces $X_n \xrightarrow{p} X$.

Teorema 3.24. El límite en L^p es único.

Teorema 3.25. Sean $X_n, X \in L^p$ tales que $X_n \xrightarrow{p} X$. Si existe $Y \in L^p$ tal que $|X_n| \leq Y$ para todo n, entonces $X_n \xrightarrow{L^p} X$.

Ley débil de los grandes números (LDGN)

Sean X_1, X_2, \ldots variables aleatorias en (Ω, \mathcal{A}, P) . Definimos

$$S_n = X_1 + \ldots + X_n, \quad n \ge 1.$$

La sucesión $\{X_n\}$ verifica la ley débil de los grandes números si existen sucesiones numéricas $\{a_n\}$ y $\{b_n\}$ con $b_n \uparrow \infty$ tales que

$$\frac{S_n - a_n}{b_n} \stackrel{p}{\longrightarrow} 0.$$

Teorema 3.26 (Bernoulli, 1713). Sean X_1, X_2, \ldots variables aleatorias independientes en (Ω, \mathcal{A}, P) con $X_i \sim Ber(p)$, 0 . Entonces

$$\frac{S_n}{n} \xrightarrow{p} p,$$

es decir, verfica LDGN para $a_n = np \ y \ b_n = n$.

Teorema 3.27 (Chebyshev). Sea $\{X_n\}$ una sucesión de variables aleatorias independientes con media μ y varianza σ^2 constantes. Entonces

$$\frac{S_n}{n} \xrightarrow{p} \mu$$

Teorema 3.28 (Chebyshev). Sea $\{X_n\}$ una sucesión de variables aleatorias independientes con varianza acotada por una constante. Entonces

$$\frac{S_n - E[S_n]}{n} \xrightarrow{p} 0$$

Teorema 3.29 (Markov). Sea $\{X_n\}$ una sucesión de variables aleatorias independientes tal que $Var[S_n/n] \xrightarrow[n \to \infty]{} 0$. Entonces

$$\frac{S_n - E[S_n]}{n} \xrightarrow{p} 0$$

Teorema 3.30 (Khinchin). Sea $\{X_n\}$ una sucesión de variables aleatorias independientes e identicamente distribuidas con media μ finita. Entonces

$$\frac{S_n}{n} \xrightarrow{p} \mu$$

Ley fuerte de los grandes números (LFGN)

Sean X_1, X_2, \ldots variables aleatorias en (Ω, \mathcal{A}, P) . La sucesión $\{X_n\}$ verifica la ley fuerte de los grandes números si existen sucesiones numéricas $\{a_n\}$ y $\{b_n\}$ con $b_n \uparrow \infty$ tales que

$$\frac{S_n - a_n}{b_n} \xrightarrow{c.s} 0.$$

Lema 3.31. Sea $\{X_n\}$ sucesión de variables aleatorias. Entonces $\sum_{n=1}^{\infty} X_n$ converge casi seguro si y solo si

$$\lim_{n \to \infty} \lim_{m \to \infty} P\left(\max_{1 \le j \le m} |S_j - S_m| \ge \varepsilon \right) = 0$$

para todo $\varepsilon > 0$.

Teorema 3.32 (Criterio de convergencia de Kolmogórov). Sea $\{X_n\}$ una sucesión de variables aleatorias independientes con $\sum_{n=1}^{\infty} Var[X_n] < \infty$. Entonces $\sum_{n=1}^{\infty} (X_n - E[X_n]) < \infty$ c.s.

Teorema 3.33 (Recíproco de Kolmogórov). Sea $\{X_n\}$ una sucesión de variables aleatorias independientes. Si existe una constante c > 0 tal que $|X_n| < c$ c.s para todo n. Entonces

$$\sum_{n=1}^{\infty} (X_n - E[X_n]) < \infty \ c.s \Longleftrightarrow \sum_{n=1}^{\infty} Var[X_n] < \infty.$$

Corolario 3.34. Sea $\{X_n\}$ una sucesión de variables aleatorias tales que $|X_n| < c$ c.s para algún c > 0 constante. Si $\sum_{n=1}^{\infty} X_n < \infty$ c.s, entonces también convergen las series $\sum_{n=1}^{\infty} (X_n - E[X_n])$ c.s, $\sum_{n=1}^{\infty} E[X_n]$ y $\sum_{n=1}^{\infty} Var[X_n]$.

Teorema 3.35 (Condición suficiente de Kolmogórov). Sea $\{X_n\}$ una suceción de variables aleatorias independienes con varianza finita. Si $\sum_{n=1}^{\infty} \frac{Var[X_n]}{n^2} < \infty$, entonces $\{X_n\}$ verifica la ley fuerte de los grandes números, es decir,

$$\frac{S_n}{n} \xrightarrow{c.s} 0$$

Lema 3.36 (Kronecker). Sea $\{X_n\}$ una sucesión de variables aleatorias y $\{a_n\}$ una sucesión de números reales tal que $a_n \uparrow \infty$. Si $\sum_{n=1}^{\infty} \frac{X_n}{a_n} < \infty$ c.s, entonces $\frac{1}{a_n} \sum_{k=1}^{n} X_k \xrightarrow[n \to \infty]{c.s} 0$.

Definición 3.37. Sean $\{X_n\}$ una sucesión de variables aleatorias y $\{c_n\}$ una sucesión de números reales no negativos. Se define la sucesión de variables aleatorias truncadas como $\{Y_n\}$ donde

$$Y_n = X_n \mathbb{1}_{\{|X_n| < c_n\}}.$$

Definición 3.38. Dos sucesiones de variables aleatorias $\{X_n\}$ e $\{Y_n\}$ son equivalentes en convergencia cuando $\sum_{n=1}^{\infty} P(X_n \neq Y_n) = 0$.

Teorema 3.39. Si $\{X_n\}$ e $\{Y_n\}$ son equivalentes en convergencia, entonces

- 1. $P(\limsup_{n} \{X_n \neq Y_n\}) = 0$
- 2. $\sum_{n=1}^{\infty} X_n < \infty$ c.s si y solo si $\sum_{n=1}^{\infty} Y_n < \infty$ c.s.
- 3. $\frac{1}{n}\sum_{k=1}^{n}(X_k-Y_k)<\infty\xrightarrow[n\to\infty]{c.s}0.$

Teorema 3.40 (3 series de Kolmogórov). Sean $\{X_n\}$ una sucesión de variables aleatorias independientes y $\{X_n^c\}$ una sucesión de variables aleatorias X_n truncadas, para alguna constante c>0. Si existe c>0 tal que las series $\sum_{n=1}^{\infty} P(X_n \neq X_n^c)$, $\sum_{n=1}^{\infty} E[X_n^c]$ y $\sum_{n=1}^{\infty} Var[X_n^c]$ convergen, entonces $\sum_{n=1}^{\infty} X_n$ converge c.s.

Recíprocamete, si $\sum_{n=1}^{\infty} X_n$ converge c.s, entonces las tres series convergen para todo c > 0.

Lema 3.41. Sea X una variable aleatoria. Se tiene que $E[|X|] < \infty$ si y solo si $\sum_{n=1}^{\infty} P(|X| \ge n) < \infty$.

Teorema 3.42 (Ley fuerte de los grandes números). Sean X_1, X_2, \ldots variables aleatorias independientes e igualmente distribuidas con $E[X_1] = \mu < \infty$, entonces

$$\frac{S_n}{n} \xrightarrow{c.s} \mu.$$

Recíprocamente, si $\frac{S_n}{n} \xrightarrow{c.s} c$ (constante), entonces $E[X_1] = c$.

Teorema 3.43 (Teorema central del límite). Sean X_1, X_2, \ldots variables aleatorias, independientes e idénticamete distribuidas con $E[X_1] = \mu < \infty$ y $Var[X_1] = \sigma^2 < \infty$. Entonces

$$\frac{\sqrt{n}}{\sigma} \left(\frac{S_n}{n} - \mu \right) \xrightarrow{d} Z \sim N(0, 1).$$

Teorema 3.44 (TCL de Lindeberg-Feller). Sean X_1, X_2, \ldots variables aleatorias, independientes con $E[X_n] = \mu_n < \infty$ y $Var[X_n] = \sigma_n^2 < \infty$. Definition $s_n^2 := Var[S_n] = \sum_{j=1}^n \sigma_j^2$. Entonces

1.
$$\frac{1}{s} \sum_{i=1}^{n} (X_i - \mu_i) \xrightarrow{d} Z \sim N(0,1),$$

2.
$$\max_{1 \leq j \leq n} \frac{\sigma_j^2}{s_n^2} \xrightarrow[n \to \infty]{} 0$$

es equivalente a

$$L_n(\varepsilon) = \frac{1}{s_n^2} \sum_{j=1}^n \int_{|x-\mu_j| > \varepsilon s_n} (x-\mu_j)^2 dF_j(x) \xrightarrow[n \to \infty]{} 0.$$