Versuchsbericht zu

O5 - Spektrometer

Gruppe 14Mo

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 04.07.2018 betreut von Johann Preuß

Inhaltsverzeichnis

1	Kurzfassung Methoden			3
2				3
3	3.1 3.2 3.3 3.4	Unsich Natriu 3.2.1 3.2.2 Helium 3.3.1 3.3.2 Energi 3.4.1	und Diskussion nerheiten Imdampflampe Beobachtung und Datenanalyse Diskussion Illampe Beobachtung und Datenanalyse Diskussion Beobachtung und Datenanalyse Diskussion Besparlampe Beobachtung und Datenanalyse	3 3 4 4 5 6 6 7 7
	3.5	3.4.2 Leucht 3.5.1 3.5.2	Diskussion	8 9 9 10
4	Schl	lussfolg	erung	10

1 Kurzfassung

Es werden mit einem Spektrometer verschiedene Methoden der räumlichen Trennung von Wellenlängen und spektren verschiedener lichterzeugender Systeme untersucht.

2 Methoden

Zunächst wird das Spektrometer gemäß dessen Anleitung justiert. Dabei wird der Prismentisch so ausgerichtet, dass bei Veränderung des Winkels, unter dem das Licht einfällt, die vertikale Position des Spalts im Beobachtungsfernrohr sich nicht verändert. Der Spalt wird so schmal gestellt, dass gerade genug Licht durchdringt, als dass er noch gut zu sehen ist. Eine Natriumdampflampe wird vor den Spalt gebracht und das Prisma in den Strahlengang gebracht. Durch das Fernrohr wird das Linienspektrum beobachtet und jeweils Farbe und ungefähre relative Position notiert.

Dann wird das Prisma durch ein Transmissionsgitter mit $g=1/300\,\mathrm{mm}$ ersetzt. Die Winkelplatte wird so justiert, dass bei Ausrichtung des Fadenkreuzes im Fernrohr auf das Maximum nullter Ordnung ein Winkel von 0° gemessen wird. Dann werden für eine Drehrichtung für alle erkennbaren Spektrallinien der Winkel abgelesen und, wenn sie erkennbar ist, die Farbe der Linie notiert. Dasselbe wird für die erste Ordnung bei einem Gitter mit $g=1/600\,\mathrm{mm}$ durchgeführt.

Nun wird die Natriumdampflampe durch eine Heliumlampe ersetzt. Für diese wird das Winkelspektrum der ersten Ordnung aufgenommen, um später anhand einer Kalibriertabelle die Abhängigkeit von Wellenlänge zu gemessenem Winkel bestimmen zu können.

Das Spektrum einer Energiesparlampe wird bei der ersten Ordnung aufgenommen, wobei markiert wird, ob es sich um diskrete Linien oder um ausgeschmierte Bereiche handelt. Zuletzt werden die Maxima des Spektrums von verschiedenfarbigen Leuchtdioden aufgenommen und jeweils gemessen, ab welcher Diodenspannung sie sichtbar zu leuchten beginnen.

3 Ergebnisse und Diskussion

3.1 Unsicherheiten

Die Unsicherheiten werden gemäß GUM ermittelt. Außerdem wird für Unsicherheitsrechnungen die Python-Bibliothek "uncertainties" verwendet.

Winkelmessung: Die Winkel am Spektrometer ließen sich bis auf zwei Nachkommastellen genau analog ablesen. Für das Gitter mit $g=1/300\,\mathrm{mm}$ und das Prisma, ergibt sich also eine Unsicherheit von $0,002^\circ$ (dreiecke WDF). Beim Gitter mit $g=1/600\,\mathrm{mm}$ waren die Maxima nur noch mit einer Unsicherheit von $0,02^\circ$ einem Winkel zuordnen.

Spannungsmessung: Die Spannung wurde am Multimeter mit zwei Nachkommastellen genau angezeigt, woraus eine Unsicherheit von 0,003 V folgt (rechteckige WDF). Da die Spannung lediglich zum Messen, wann die LED zu leuchten beginnt und dies mit dem Auge nur grob abgeschätzt werden konnte, verwendet wurde, wurde die Unsicherheit mit 0,03 V abgeschätzt.

3.2 Natriumdampflampe

3.2.1 Beobachtung und Datenanalyse

Prisma

Die hinter dem Prisma erkennbaren Spektrallinien sind in Abb. 1 skizziert. Die Spektrallinien wurden von links nach rechts stärker gebrochen. Auftretende Restlichteffekte ließen sich durch Abschirmung mit beispielweise den Händen entfernen.

Abbildung 1: Qualitative Skizze der sichtbaren Spektrallinien der Natriumdampflampe nach Brechung an einem Prisma.

Gitter

Die Winkel der Spektrallinien lassen sich mit der Formel aus der Einführung in Wellenlängen umrechnen:

$$\lambda = \frac{g \cdot \sin \vartheta_m}{m} \tag{1}$$

$$\lambda = \frac{g \cdot \sin \vartheta_m}{m}$$

$$u(\lambda) = \left| \frac{g \cdot \cos \vartheta_m \cdot u(\vartheta_m)}{m} \right|$$
(2)

Dabei ist g die Gitterkonstante und ϑ_m der Beugungswinkel des m-ten Beugungsmaximums. In Abb. 2 sind für die Gitter $g = 1/300 \,\mathrm{mm}$ und $g = 1/600 \,\mathrm{mm}$ die aus den Winkeln resultierenden Wellenlängen verschiedener Ordnungen dargestellt.

Abbildung 2: Die aus dem Beugungswinkel der Maxima resultierenden Wellenlängen einer Natriumdampflampe sind abgebildet. In Schwarz sind die Messwerte beim Gitter mit 300 Spalten pro Millimeter dargestellt und die Rot die vom Gitter mit 600 Spalten pro Millimeter. Die Unsicherheit der roten Messpunkte ist kleiner als die Symbolgröße.

3.2.2 Diskussion

[3] gibt an, dass Natrium eine sehr starke Spektrallinie, die Natrium-Doppellinie, bei 589,0 nm und 589,6 nm hat. Diese kann durch das Gitter beobachtet werden und auch durch das Prisma lässt sich eine sehr helle Spektrallinie der entsprechenden Färbung erkennen, wie in Abb. 2 zu erkennen ist. Sie kann jedoch in beiden Fällen und auch bei höheren Ordnungen des Gitters nicht in die beiden Teillinien aufgelöst werden. Dies ist nicht überraschend, da die Unsicherheit der Wellenlänge bereits größer als die Differenz der Wellenlänge der beiden Linien ist. Beim Vergleich der Spektrallinien in den ersten drei Ordnungen fällt zunächst auf, dass in der dritten Beugungsordnung nur noch die Natrium-Doppellinie beobachtet werden kann, was daran liegt, dass die Linien hier nur noch eine so geringe Intensität haben, dass sie mit dem bloßen Auge nicht mehr beobachtet werden können. Nur die intensitätsstärkste Linie wird noch gesehen. Der Vergleich der beiden Gittern untereinander erlaubt die Feststellung, dass die Linien teilweise beieinander liegen, aber teilweise auch Abweichungen vorhanden sind. Die Spektrallinie bei ca. 608 nm konnte beim ersten Gitter nur in zweiter Ordnung gemessen werden, beim zweiten Gitter allerdings auch in erster. Dies ist auf sich leicht ändernde Lichtverhältnisse

und deshalb nicht immer gleich gute Sichtbarkeit der Spektrallinien durch das Fernrohr zurückzuführen. Wenn man das Spektrum insgesamt zwischen Gittern und Prisma vergleicht, stellt man fest, dass die qualitative Darstellung gemäß des Prismas sich auf die Messwerte beim Gitter im Wesentlichen übertragen lässt.

3.3 Heliumlampe

3.3.1 Beobachtung und Datenanalyse

In der Einführung ist eine Tabelle zur Kalibrierung des Spektrometers gegeben. Die Wellenlängen mit einer relativen Intensität von mindestens 100 wurden als die sichtbaren eingestuft, da dies sechs Spektrallinien ergibt und sechs Spektrallinien beobachtet wurden. Die Kalibriertabelle beinhaltet zwei rote Spektrallinien, jedoch wurde im Experiment nur eine gemessen. Außerdem ließ sich die Spektrallinie geringster Intensität farblich keiner passenden Wellenlänge eindeutig zuordnen, deshalb ergibt sich Abb. 3 aus fünf Messpunkten. Nach Gleichung (1) würde man eine Sinus-Abhängigkeit erwarten. Ein linearer Fit liegt jedoch deutlich genauer an den Messpunkten, weshalb dieser dienlicher als Kalibrierkurve ist und somit der Sinus für Winkel im Bereich der Kalibrierkurve als linear angenommen. Es ist auffällig, dass der Vorfaktor a des Sinus-Fits den erwarteten Wert von 1/600 mm innerhalb seiner Unsicherheiten beinhaltet. Aus a würde durch Umrechnung in 1/mm eine Gitterkonstante innerhalb des Bereichs von 1/577 mm bis 1/613 mm folgen.

Abbildung 3: Die Wellenlängen der Kalibriertabelle sind gegen die gemessenen Winkel der zugehörigen Spektrallinien aufgetragen. Die blaue Funktion ist ein linearer Fit. Die rote Funktion ist ein Sinus-Fit. Die sich den Fits ergebenden Werte a bzw. A sind dabei in der Einheit Nanometer bzw. Nanometer pro Grad zu verstehen.

3.3.2 Diskussion

Die Zuordnung zur Kalibriertabelle wurde dadurch erschwert, dass das menschliche Auge bei geringen Intensitäten keine Farben mehr wahrnimmt, war aber insgesamt möglich. Dass einer der Messwerte sich nicht eindeutig einer Kalibrierlinie zuordnen lässt, kann denselben Grund haben.

3.4 Energiesparlampe

3.4.1 Beobachtung und Datenanalyse

Mithilfe der in Abschnitt 3.3 bestimmten Kalibrierkurve lassen sich die Wellenlängen der Spektrallinien der Energiesparlampe ermitteln. Diese sind in Abb. 4 dargestellt.

Abbildung 4: Spektrallinien der Energiesparlampe. Es wurden lediglich Maxima der ersten Beugungsordnung beobachtet.

3.4.2 Diskussion

Abbildung 5: Literaturangabe nach [1] zum Spektrum von Quecksilber.

Der Wert bei 215,4 nm liegt nicht im ultravioletten Bereich des elektromagnetischen Spektrums und damit außerhalb des für den Menschen sichtbaren Bereichs, weshalb er eigentlich nicht beobachtet werden können sollte. Dass er dennoch gemessen wird, hängt vermutlich mit dem Versagen der Näherung des Sinus als linear, da dies nur für Winkel bzw. Wellenlängen gilt, die nah an der Kalibrierkurve liegen. Dieser Wellenlänge liegt ein Winkel von 10,4° zugrunde, während die Messwerte für die Kalibrierkurve erst bei etwa 15° beginnen. Als Farbe wurde hier ein dunkles violett wahrgenommen, was dafür spricht, dass der wahre Wert der Wellenlänge am unteren Ende des sichtbaren Spektrums liegt, aber nicht im Ultravioletten.

In Abb. 5 ist das Spektrum, das [1] angibt, dargestellt. Ein Vergleich mit den Messwerten

3.5 Leuchtdioden

3.5.1 Beobachtung und Datenanalyse

In Abb. 6 wurde ein linearer Fit berechnet. Dessen Steigung sollte hc betragen.

Durch Division von A durch c lässt sich das Plancksche Wirkungsquantum als $(5,39 \pm 0,92) \cdot 10^{-15}$ eVs bestimmen.

Abbildung 6: Die Spannung, ab der die Diode zu leichten beginnt, ist gegen den Kehrwert des Maximums der Emissionswellenlänge aufgetragen.

3.5.2 Diskussion

[2] gibt für h nach Umrechnung einen Wert von $(4,135\,667\,662\pm0,000\,000\,025)\,\mathrm{eV}\,\mathrm{s}$ an. Dies liegt innerhalb der 1,5-fachen Unsicherheit des Messwerts. Da dieser jedoch bereits eine sehr große Unsicherheit hat, kann festgehalten werden, dass dies keine zielführende Methode zur Bestimmung des Planckschen Wirkungsquantums ist, aber immerhin die Bestimmung der Größenordnung erlaubt. Die hohe Ungenauigkeit liegt darin begründet, dass es mit dem Auge sehr schwierig ist das Emissionsmaximum präzise zu bestimmen

4 Schlussfolgerung

Literatur

- [1] Michael W. Davidson. Fundamentals of Mercury Arc Lamps. URL: http://zeiss-campus.magnet.fsu.edu/articles/lightsources/mercuryarc.html (besucht am 08.07.2018).
- [2] NIST. Fundamental Physical Constants. URL: https://physics.nist.gov/cgi-bin/cuu/Value?h (besucht am 08.07.2018).
- [3] Mira Prior. Die Natrium-Doppellinie. URL: https://lp.uni-goettingen.de/get/text/1629 (besucht am 08.07.2018).