LECTURE 4: CLUSTERING - KMEANS

1) What is clustering?

- a) Clustering: grouping/assignment of objects(data points) such that objects in same group cluster are:
 - i) Similar to one another
 - ii) Dissimilar to objects in other groups

2) Applications

- a) Outlier detection/anomaly detection
 - i) Data cleaning/processing
- b) Filling gaps in data
 - i) Using same marketing strategy for similar people

3) Clustering Problem

- a) Given collection of data points, find clustering such that
 - i) Similar data points are in same cluster
 - ii) Dissimilar data points in different clusters
- b) Clusters can be ambiguous

4) Types of Clusterings

- a) Partitional: Each object belongs to exactly one cluster
- b) Hierarchical: A set of nested clusters organized in a tree
- c) Density-Based: Defined based on the local density of points
- d) Soft Clustering: Each point is assigned to every cluster with a certain probability

5) Partitional Clustering

a) Given $\bf n$ data points and a number of $\bf k$ clusters: partition $\bf n$ data points into $\bf k$ clusters

i) Clustering on left has smaller intra-cluster distances than right

)
$$\sum_k \sum_{x_i, x_j \in C_k} d(x_i, x_j)$$
 is smaller for the one the left

b) Given distance function **d**, we can find centroids(center of mass) for each cluster, not necessarily part of dataset that are at center of each cluster

i) When d is Euclidean, centroid of m points $\{x_1,...,x_2\}$ is mean/average of points

$$\sum_{k}^{K} \sum_{x_i, x_j \in C_k} d(x_i, x_j)^2 = \sum_{k}^{K} |C_k| \sum_{x_i \in C_k} d(x_i, \mu_k)^2$$

6) K-means

Given X = $\{x_1, ..., x_n\}$ (dataset) and k, find k points $\{\mu_1, ..., \mu_k\}$ that minimizes cost function

$$\sum_{i}^{k} \sum_{x \in C_i} \, \operatorname{d}(\mathbf{x}, \, \mu_{\mathbf{i}})$$

- When k = 1 and k = n this is easy
- When x_i lives in more than 2D, this is very difficult(NP-hard) problem
 - a) Lloyd's Algorithm
 - i) Randomly pick k centers $\{\mu_1, ..., \mu_k\}$
 - ii) Assign each point in dataset to closest center
 - iii) Compute new centers as means of each cluster
 - iv) Repeat 2 and 3 until convergence

- Algorithm will always converge
- Choice of initial points has a large influence on resulting clustering
- One solution: Run Lloyd's algorithm multiple times and choose result with lowest cost
 - o Can still lead to bad results because of randomness.
- b) Initialization: try different initialization methods as a solution to above
 - i) Random

iii) FFT and outliers

c) K-means++

- i) Initialize with combination of 2 methods:
 - 1) Start with random center
 - 2) Let D(x) be distance between x and centers selected so far. Choose next center with probability proportion to $D(x)^a$
 - When:
 - a = 0: random initialization(all points have equal probability)
 - a = ∞: farthest first travel
 - a = 2: K-means++

ii) Suppose we are given a black box that will generate a uniform random number between 0 and any N. How can we use black box to select points with probability proportional to $D(x)^2$?

• Using black box, we can generate a number between 0 and N to determine which point to pick next. It will be chosen with probability proportional to $D(x)^2$

d) Limitations

e) How to choose the right k?

- i) Iterate through different values of k (elbow method)
- ii) Use empirical/domain-specific knowledge
 - Example: Is there a known approximate distribution of the data? (K-means is good for spherical gaussians)
- iii) Silhouette scores

f) Variations

- i) K-medians: uses L1 norm/manhattan distance
- ii) K-medoids: any distance function + the centers must be in the dataset
- iii) Weighted K-means: each point has a different weight when computing the mean