ESERCIZIO 1

Si consideri la rete di Petri riportata in figura.

- 1.1) Scrivere le matrici I, O e C.
- 1.2) Calcolare P-invarianti della rete.
- 1.3) Dire se la rete è conservativa oppure no.
- 1.4) Calcolare la marcatura che si raggiunge con la sequenza T1 T3 T4 T4 T1 T3 a partire dalla marcatura iniziale mostrata in figura. Dire inoltre se tale marcatura è morta oppure no.
- 1.5) Dire, giustificando la risposta, se la rete è reversibile.

ESERCIZIO 2

Si consideri ancora la rete di Petri dell'esercizio precedente.

- 2.1) Dire se $S1 = \{P1, P3, P4, P6\}$ e $S2 = \{P1, P3, P5, P6\}$ sono sifoni o trappole della rete data.
- 2.2) Implementare il vincolo $m_3 \le 1$ con la tecnica del controllo supervisivo basato su P-invarianti.
- 2.3) Disegnare la soluzione dell'esercizio precedente.

SOLUZIONE

1.1)
$$I = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}; O = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}; C = O - I = \begin{bmatrix} -2 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & -1 & 0 \\ 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

- 1.2) P-invarianti: [1 1 0 0 0 0]. Non esistono T-invarianti.
- 1.3) La rete non è coperta da PI non negativi, quindi non è conservativa.
- 1.4) La marcatura M1 che si raggiunge con la sequenza di scatti T1 T3 T4 T4 T1 T3 è $M_1 = [0\ 2\ 0\ 0\ 2\ 0]$ '. Inoltre, $M_1 + C_{\cdot j}$ contiene almeno un elemento negativo per ogni j = 1, 2, ...6, dove $C_{\cdot j}$ indica la j-esima colonna di C. Quindi, nessuna transizione è abilitata in M_1 .
- 1.5) Da una marcatura morta non è possibile raggiungere lo stato iniziale, e quindi la rete non è reversibile.

ESERCIZIO 2

2.1)
$$\bullet$$
S1 = {T1, T2, T4, T5} \subset {T1, T2, T3, T4, T5} = S1 \bullet
 \bullet S2 = {T1, T3, T4, T5} \subset {T1, T2, T3, T4, T5} = S2 \bullet

2.2)
$$L = [0 \ 0 \ 1 \ 0 \ 0], b = 1.$$

2.3)
$$C = \begin{bmatrix} -2 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & -1 & 0 \\ 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\rightarrow C_{C} = -L \cdot C = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \end{bmatrix}, m_{C} = 1$$

