ACTIVITÉ 1

À l'aide d'un capteur, on a relevé la température à Grenoble durant une journée de janvier, à minuit, puis pendant 24 heures afin de connaître les périodes de neige.

- 1. a. Déterminer à quelle(s) heure(s) la température est nulle.
 - **b.** Déterminer les périodes où la température est positive.
 - c. Déterminer les périodes où la température est négative.
- 2. On compile ces informations dans un tableau de signes. Compléter ce tableau.

Temps en heures	0		9	20	24
Température en °C		-	0		

1. Remplir le tableau suivant en suivant l'exemple.

Signe du premier nombre	Opération	Signe du deuxième nombre	Signe du résultat
+	×	+	+
+	×	_	_
_	×	+	
_	×	_	
+	÷	+	
+	÷	_	
_	÷	+	
_	÷	_	

C'est la **règle des signes**.

2. On a tracé ci-dessous deux fonctions f et g.

a. Compléter les tableaux de signes suivants.

Valeur de x	-4	-3	2	4
Signe de $f(x)$				

Valeur de x	-4	-1	3	4
Signe de $g(x)$				

b. En déduire le tableau de signes de la fonction $x \mapsto f(x) \times g(x)$ sur [-4;4].

Valeur de x	
Signe de $f(x) \times g(x)$	

On a tracé dans le repère ci-contre les courbes représentatives des fonctions affines f, g et h définies sur \mathbb{R} par f(x) = 2x + 8, g(x) = -x - 4 et h(x) = -0, 1x + 2.

- 1. Associer à chaque fonction sa courbe représentative.
- **2.** Dresser le tableau de signes de f et de g à l'aide de leurs courbes.
- **3.** a. Résoudre par le calcul f(x) > 0.
 - b. Indiquer comment retrouver le résultat de la question2. pour la fonction *f* .
 - c. Retrouver le signe de g(x) et de h(x) par cette méthode.

ACTIVITÉ 4 📐

L'objectif de cette activité est d'étudier les positions relatives des courbes représentatives des fonctions cube $f: x \mapsto x^3$ et carré $g: x \mapsto x^2$ (ie. dire laquelle est au-dessus de l'autre et sur quel intervalle). Nous allons réaliser cette étude sur $[0; +\infty[$, mais il serait possible de la généraliser.

- 1. À partir de la représentation graphique ci-contre, dire quelle courbe se situe au-dessus de l'autre et sur quel intervalle.
- **2.** Soit *x* ∈ $[0; +\infty[$.
 - **a.** Trouver trois nombres a, b et c tels que $x^3 x^2 = a \times b \times c$.
 - **b.** En déduire le tableau de signes de la fonction $x \mapsto x^3 x^2 \sin [0; +\infty[$.
 - **c.** Retrouver le résultat de la question **1.** à l'aide de l'étude de signe précédente.
- 3. Sans calcul, comparer $(\frac{1}{3})^2$ et $(\frac{1}{3})^3$.

1. Pour chaque ligne du tableau, compléter la dernière case en dressant le tableau de signes demandé.

Numéro	Fonctions f et g	Fonction h	Tableau de signes de $\it h$
1	3 -2 -1 9 Cg 2 3	$h = f \times g$	
2	3 64 -1 0 1 2 6g3	$h = \frac{f}{g}$	
3	-3 -2 -1 1 2 -8	$h = g \times f$	
4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$h = \frac{g}{f}$	
5	3 -2 10 2 Eg3	$h = \frac{f}{g}$	
6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$h = \frac{g}{f}$	
7	-3 -2g 1 1 2 3	$h = \frac{f}{g}$	
8	$f(x) = 3, g(x) = x^2 - 1$	$h = f \times g$	
9	$f(x) = -3, g(x) = x^2 - 1$	$h = f \times g$	
10	$f(x) = x + 1, g(x) = -x^2$	$h = f \times g$	

2. Au verso de la page, en se référant au tableau, colorier la grille de façon à obtenir un pixel art.

8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
																_				
8	8	8	8	8	8	2	2	2	2	2	2	2	8	8	8	8	8	8	8	8
8	8	8	8	8	2	2	4	4	4	4	4	4	2	8	8	8	8	8	8	8
8	8	8	8	2	4	4	4	4	4	4	4	4	4	2	8	8	8	8	8	8
8	8	8	2	2	4	4	4	4	4	2	2	2	2	2	2	2	8	8	8	8
8	8	2	4	4	4	4	4	2	2	2	2	2	2	2	2	2	2	8	8	8
8	2	4	4	4	2	2	2	6	6	6	6	6	6	2	2	8	8	8	8	8
8	2	2	2	2	2	2	6	6	6	6	2	6	2	2	8	8	8	8	8	8
3	3	2	6	6	2	2	6	6	6	6	2	6	2	2	2	2	3	3	3	3
3	3	2	6	2	2	2	2	6	6	6	6	6	6	6	6	6	2	3	3	3
3	3	2	6	2	6	2	2	6	6	2	2	6	6	6	6	6	2	3	3	3
3	3	2	6	6	6	6	6	6	6	2	2	2	2	6	6	2	3	3	3	3
3	3	3	2	2	2	6	6	6	6	6	2	2	2	2	2	3	3	3	3	3
3	3	3	3	3	9	5	5	5	5	5	5	5	5	9	3	3	3	3	3	3
3	3	3	3	3	3	9	9	9	9	9	9	9	9	3	3	3	3	3	3	3
3	3	3	3	3	9	10	10	7	7	10	10	9	9	9	9	3	3	3	3	3
3	3	3	3	9	10	10	9	10	7	7	10	10	9	5	9	9	3	3	3	3
3	3	3	9	10	10	10	9	9	7	7	10	10	9	5	5	9	3	3	3	3
8	8	8	9	9	10	10	5	5	9	7	8	8	9	5	5	9	8	8	8	8
8	8	8	8	9	9	5	5	5	9	7	8	8	7	9	9	8	9	9	8	8
8	8	8	9	1	9	5	5	9	7	7	7	7	7	7	9	9	1	1	9	8
8	8	9	9	1	1	9	9	7	7	7	7	7	7	7	7	1	1	1	9	8
8	9	1	1	1	1	7	7	9	9	9	9	9	7	7	1	1	1	9	9	8
8	9	1	1	9	9	7	7	7	7	9	8	8	9	9	9	1	1	9	8	8
8	9	9	9	8	8	9	9	9	9	8	8	8	8	8	9	9	9	8	8	8
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8

Signe de $h(x)$	- + -	+ - +	+	+	- + - +	+ - + -
Couleur	Noir	Blanc	Beige	Rouge	Bleu	Marron

ACTIVITÉ 6 📐

Résoudre:

$$\frac{1}{x-1} \le \frac{1}{x+1}$$

INFORMATION |

Voici une citation attribuée à Antoine de Saint-Exupéry :

« La perfection est atteinte, non pas lorsqu'il n'y a plus rien à ajouter, mais lorsqu'il n'y a plus rien à retirer. »

