Chapitre

Oscillateurs

6. Notion d'oscillateur

6.1. Définition

Tout système physique manifestant la variation d'une grandeur physique autour d'une position d'équilibre.

On les rencontre dans tous les domaines de la physique :Circuits électriques, pendule, ressort, corde de guitare, ondes acoustiques, mécanique quantique...

6.1.7ypes

Oscillation périodiques

Quand les variations se reproduisent à l'identique au cours du temps.

On défini la période T, la fréquence $\nu=\frac{1}{T}$ et la pulsation $\omega=\frac{2\pi}{T}=2\pi\nu$

Oscillateurs amortis

Quand l'amplitudes des oscillations diminue au cours du temps, du fait, principalement de la dissipation de l'énergie.

Types d'oscillation

Elles sont *libres* quand l'oscillateur oscille en fonction des ses propres caractéristiques : Ressort lâché

Elles sont *forcées* : un autre système tente d'imposer une certaine fréquence d'oscillation au système.

6.1. Ressort

Un ressort est caractérisé par

- sa longueur à vide l_0
- \cdot une constante de raideur K

La force de rappel $\overrightarrow{F_r}$ exercée par le ressort à une intensité proportionnelle à l'allongement du ressort. La constante de proportionnalité correspond à K :

$$-\overrightarrow{F_r} = k(x - l_0)\overrightarrow{e_x}$$

Pour connaître le signe, il faut représenter le cas d'un allongement positif et regarder dans quel sens est la force $\overrightarrow{F_r}$.

Souvent, on prend pour origine du repère la longueur à vide du ressort. Dans ce cas, l'allongement du ressort vaut x.

Mise en équation : Masse m au bout d'un ressort de constante K

Forces appliquées $(\overrightarrow{F_r},\overrightarrow{P},\overrightarrow{R}:$ On néglige les frottements : $\overrightarrow{R}\perp$ au déplacement.

$$\begin{split} m\overrightarrow{d}&=\overrightarrow{F_r}+\overrightarrow{P}+\overrightarrow{R}\\ \begin{cases} m\ddot{x}&=-kx\iff m\ddot{x}+kx=0 \text{ : Oscillateur harmonique}\\ m\ddot{y}&=-mg+R\iff R=mg \end{split}$$

6. Oscillateur harmonique (OH)

On appelle ocillateur harmonique un système qui répond à l'EQD suivante :

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega_0^2 x(t) = 0$$

Elle est du second ordre linéaire à coefficient constant sans terme du premier ordre. ⁱ

Exemple : $\ddot{x} + 4x = 0$ est un OH mais pas $\ddot{x} - x = 0$

i Info

Conditions nécéssaires : Si le coefficient du terme du second ordre est égal à 1, le coefficient du terme d'ordre o est positif

Formulation équivalente de l'OH

$$\ddot{x} + \omega_0^2 x = 0$$

$$\ddot{x}\dot{x} + \omega_0^2 x \dot{x} = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} (\frac{\dot{x}^2}{2}) + \omega_0^2 \frac{\mathrm{d}}{\mathrm{d}t} (\frac{x^2}{2}) = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} (\frac{\dot{x}^2}{2} + \omega_0^2 \frac{x^2}{2}) = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} (\frac{\dot{x}^2}{2} m + \omega_0^2 \frac{x^2}{2} m) = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} (Ec + Epp) = 0$$

$$Ec + Epp = Cst$$

6.2 Résolution

On cherche des solutions de la forme

$$x = Ce^{rt}$$

$$\dot{x} = Cre^{rt}$$

$$\ddot{x} = Cr^2e^{rt}$$
 (6.1)

On injecte (6.1) dans l'EQD pour obtenir l'équation caractéristique

$$r^{2} + \omega_{0}^{2} = 0$$

$$\iff r^{2} = -\omega_{0}^{2}$$

$$\iff r = \pm i\omega_{0}$$

La solution s'écrit donc

$$x(t) = C_1 e^{-i\omega_0 t} + C_2 e^{+i\omega_0 t}$$
(6.2)

Dans la pratique, l'expression (6.2) n'est pas très utilisée car généralement x(t) est une grandeur réelle. En fait, on peut aussi l'écrire sous la forme

 $A\cos(\omega_0 t) + B\sin(\omega_0 t)$

 $\hat{\pi}$

Preuve 2.1 : Démonstration de la deuxième forme

$$x(t) = Re((a+ib)e^{-i\omega_0 t} + (c+id)e^{i\omega_0 t})$$

$$= Re((a+ib)(\cos(\omega_0 t) - i\sin(\omega_0 t) + (c+id)(\cos(\omega_0 t) + i\sin(\omega_0 t)))$$

$$= Re(a\cos(\omega_0 t) - ia\sin(\omega_0 t) + ib\cos(\omega_0 t) + b\sin(\omega_0 t) + c\cos(\omega_0 t) + ic\sin(\omega_0 t) + id\cos(\omega_0 t) - d\sin(\omega_0 t))$$

$$= a\cos(\omega_0 t) + b\sin(\omega_0 t) + c\cos(\omega_0 t) - d\sin(\omega_0 t)$$

$$= (a+c)\cos(\omega_0 t) + (b-d)\sin(\omega_0 t)$$

$$= A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

On peut aussi l'écrire sous la forme

$$x(t) = C\cos(\omega_0 t + \varphi)$$
ou $x(t) = D\sin(\omega_0 t + \eta)$

Preuve 2.2: Démonstration de la 3e forme

$$C\cos(\omega_0 t + \varphi) = C\cos(\omega_0 t)\cos(\varphi) - C\sin(\omega_0 t)\sin(\varphi)$$
$$= A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

Chacune des solutions fait intervenir 2 constantes d'intégration : A et B, C et φ , D et η , que l'on détermine en appliquant les conditions initiales sur x(t) et $\dot{x}(t)$.

Exemple du ressort

La solution de l'EQD est $x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$

Si à t=0, on allonge le ressort sur uns distance $x(0)=x_m$ et on étudie le mouvement sans vitesse initiale $(\dot{x}(0)=0)$.

$$x(0) = x_m = A \times 1.$$

Il faut calculer $\dot{x}(t) = -A\omega_0\sin(\omega_0t) + B\omega_0\sin(\omega_0t)$, donc $\dot{x}(0) = B\omega_0 = 0$ car pas de vitesse initiale, donc B=0

On obtient alors $x(t) = x_m \cos(\omega_0 t)$ et $\dot{x} = -x_m \omega_0 \sin(\omega_0 t)$.

Période T des oscillations

Il faut trouver T vérifiant :

$$x(t+T) = x(t)$$

$$x_m \cos(\omega_0(t+T)) = x_m \cos(\omega_0 t)$$

$$x_m \cos(\omega_0 t + \omega_0 T) = x_m \cos(\omega_0 t)$$

$$\omega_0 T = 2\pi \Rightarrow \omega_0 \frac{2\pi}{T}$$

Ici,
$$T=rac{2\pi}{\omega_0}=2\pi\sqrt{rac{m}{k}}$$

Représentation graphique

Quand l'amplitude des oscillations est maximale, la vitesse est nulle et quand x est nul, la vitesse est maximale. i

i Info Vitesse et position sont dits en quadrature de phase.

6. Oscillateurs amortis

La solution d'un OH correspond à un mouvement perpétuel. Il s'agit d'un cas idéal sans dissipation d'énergie. Dans la pratique, il y a toujours une perte d'énergie. On parle alors d'amortissement de l'OH.

6.3. Mise en équation

On revient au cas du ressort étiré et on considère en plus une force de frottement fluide $\overrightarrow{F_f}=-\alpha\overrightarrow{v}$. On a toujours, à t=0, $x(0)=x_m$ et $\dot{x}(0)=0$

Bilan des forces : \overrightarrow{P} , \overrightarrow{R} , $\overrightarrow{F_r}$, $\overrightarrow{F_f}$.

On applique le PFD : $m\overrightarrow{a}=\overrightarrow{P}+\overrightarrow{R}+\overrightarrow{F_r}+\overrightarrow{F_f}$

$$\begin{cases} m\ddot{x} &= 0 + 0 - kx - \alpha \dot{x} \\ m\ddot{y} &= -mg + R + 0 - \alpha \dot{y} \end{cases}$$

Pas de mouvement selon y, donc $y = \dot{y} = \ddot{y} = 0$

$$\begin{cases} m\ddot{x} & = -kx - \alpha \dot{x} \\ 0 & = -mg + R + 0 \Rightarrow R = mg \end{cases}$$
 (6.3)

On remarque que les forces de frottement ajoutent un terme du premier ordre. On obtient de (6.3) l'EQD

$$\ddot{x} + \frac{\alpha}{m}\dot{x} + \frac{k}{m}x = 0 \tag{6.4}$$

On peut écrire (6.4) sous forme canonique, avec $au=rac{m}{lpha}$ et $\omega_0=\sqrt{rac{k}{m}}$:

$$\ddot{x} + \frac{1}{\tau}\dot{x} + \omega_0^2 x = 0 \tag{6.5}$$

6.3. Résolution

(6.5) est homogène, on cherche des solutions sous la forme Ce^{rt}

L'équation caractéristique de (6.5) est :

$$r^2 + \frac{1}{\tau}r + \omega_0^2 = 0 \tag{6.6}$$

(6.6) est du second degré dont on calcule le discriminant!

$$\Delta = \frac{1}{\tau^2} - 4\omega_0^2 = \frac{1}{\tau^2} (1 - 4\omega_0^2 \tau^2) \tag{6.7}$$

Cela fait intervenir la grandeur $Q=\omega_0\tau$ appelé facteur de qualité, sans dimensions.

Temps

 $\omega_0 = rac{2\pi}{T}$ avec T la période de l'OH, en l'absence de frottement

au est le temps caractéristique sur lequel les frottements opèrent.

$$Q = \omega_0 \tau = 2\pi \frac{\tau}{T}$$

Si Q>>1, les frottements n'ont pas le temps d'agir pendant une période d'oscillation : on se rapproche de l'OH, car $\tau>>T$

Si $Q << 1 \iff \tau << T$, on s'attend à ce que les frottements empêchent les oscillations.

6.3. Régimes

On distingue trois cas suivants selon la valeur de Δ (6.7).

Régime pseudo-périodique

$$\delta < 0 \text{ si } 1 - 4Q^2 < 0 \iff 4Q^2 > 1 \text{ ou } Q > 0.5.$$

MÉCANIQUE & Oscillateurs, Régimes

Les racines de l'équation caractéristique (6.6) sont

$$\begin{split} r &= \frac{-\frac{1}{\tau} \pm i \sqrt{4\omega_0^2 - \frac{1}{\tau^2}}}{2} \\ &= -\frac{1}{2\tau} \pm \frac{i}{2} \sqrt{4\omega_0^2 (1 - \frac{1}{4\omega_0^2 \tau^2})} \\ &= -\frac{1}{2\tau} \pm \frac{i}{2} \times 2\omega_0 \sqrt{1 - \frac{1}{4Q^2}} \\ &= -\frac{1}{2\tau} \pm i \times \omega_0 \sqrt{1 - \frac{1}{4Q^2}} \\ &= -\frac{1}{2\tau} \pm i \times \omega_a \end{split}$$

On a donc 2 racines : $r_1 = -rac{1}{2 au} - i\omega_a$ et $r_2 = -rac{1}{2 au} + i\omega_a$

La solution s'écrit alors

$$\begin{split} x(t) &= C_1 e^{r_1 t} + C_2 e^{r_2 t} \\ &= C_1 e^{\left(-\frac{1}{2\tau} - i\omega_a\right)t} + C_2 e^{\left(-\frac{1}{2\tau} + i\omega_a\right)t} \\ &= C_1 e^{-\frac{t}{2\tau}} e^{-i\omega_a t} + C_2 e^{-\frac{t}{2\tau}} e^{+i\omega_a t} \\ &= e^{-\frac{t}{2\tau}} \left(C_1 e^{-i\omega_a t} + C_2 e^{+i\omega_a t} \right) \\ &= e^{-\frac{t}{2\tau}} \left(A \cos(\omega_a t) + B \sin(\omega_a t) \right) \end{split}$$

On détermine A et B avec les conditions initiales

$$\begin{split} x(0) &= x_m = A \\ \dot{x}(t) &= -\frac{1}{2\tau} e^{-t/2\tau} (A\cos(\omega_a t) + B\sin(\omega_a t)) + e^{-t/2\tau} (-A\omega_a \sin(\omega_a t) + B\omega_a \cos(\omega_a t)) \\ &= -\frac{1}{2\tau} x(t) + e^{-t/2\tau} (-A\omega_a \sin(\omega_a t) + B\omega_a \cos(\omega_a t)) \\ \dot{x}(0) &= -\frac{1}{2\tau} x(0) + B\omega_a \end{split}$$

Par énoncé, $\dot{x}(0)=0$, donc $\frac{-x_m}{2 au}+B\omega_a=0\iff B=\frac{x_m}{2 au\omega_a}$

Tracé de la solution :

On parle de pseudo-oscillations dont la période est $T_a = \frac{2\pi}{\omega_a}$

Dans le cas où Q>>1, $\omega_a=\omega_0\sqrt{1-\frac{1}{4Q^2}}\simeq\omega_0$ et $\omega_a\to\omega_0$, donc vers la pulsation de l'OH associée. Voir Graphe 6.4

Régime apériodique

$$\Delta>0 \text{ si } 1-4Q^2>0 \iff 4Q^2<1 \text{ou } Q<0.5.$$

Les racines de l'équation caractéristique (6.6) sont

$$r = \frac{-\frac{1}{\tau} \pm \sqrt{-4\omega_0^2 + \frac{1}{\tau^2}}}{2}$$

$$= -\frac{1}{2\tau} \pm \frac{1}{2} \sqrt{4\omega_0^2 (-1 + \frac{1}{4\omega_0^2 \tau^2})}$$

$$= -\frac{1}{2\tau} \pm \frac{1}{2} \times 2\omega_0 \sqrt{4\omega_0^2 (-1 + \frac{1}{4Q^2})}$$

$$= -\frac{1}{2\tau} \pm \omega_0 \sqrt{-1 + \frac{1}{4Q^2}}$$

$$= -\frac{1}{2\tau} \pm \beta$$

La solution s'écrit alors

$$x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

$$= C_1 e^{\left(-\frac{1}{2\tau} - \beta\right)t} + C_2 e^{\left(-\frac{1}{2\tau} + \beta\right)t}$$

$$= e^{-\frac{t}{2\tau}} (C_1 e^{-\beta t} + C_2 e^{+\beta t})$$

Avec les conditions initiales, $x(0)=x_m$ et $\dot x(0)=0$. De plus, $\dot x(t)=-\frac{1}{2\tau}x(t)+e^{-t/2\tau}(-C_1\beta e^{-\beta t}+C_2\beta^{\beta t})$

$$\begin{cases} x(0) &= C_1 + C_2 = x_m \\ \dot{x}(0) &= -\frac{x_m}{2\tau} + (C_2 - C_1)\beta = 0 \end{cases}$$
(6.8)

On peut retrouver les C en résolvant le système (6.8)

Tracé des solutions

Régime critique

$$\Delta = 0 \text{ si } 1 - 4Q^2 = 0 \iff 4Q^2 = 1 \text{ ou } Q = 0.5.$$

La racine double de l'équation caractéristique (6.6) est

$$r = \frac{-\frac{1}{\tau}}{2}$$
$$= -\frac{1}{2\tau}$$

La solution s'écrit alors : ×

$$x(t) = (C_1 + C_2 t)e^{-\frac{1}{2\tau}t}$$
$$= C_1 e^{-\frac{1}{2\tau}t} + C_2 t e^{-\frac{1}{2\tau}t}$$

Avec les conditions initiales, $x(0)=x_m, \dot{x}=0$, donc $C_1=x_m$

$$\dot{x}(t) = -\frac{C_1}{2\tau}e^{-\frac{1}{2\tau}t} + C_2e^{-\frac{1}{2\tau}t} - \frac{C_2}{2\tau}te^{-\frac{1}{2\tau}t}$$

$$\dot{x}(0) = -\frac{C_1}{2\tau} + C_2 \Rightarrow C_2 = \frac{C_1}{2\tau} = \frac{x_m}{2\tau}$$

Donc
$$x(t) = x_m e^{-\frac{1}{2\tau}t} (1 + \frac{t}{2\tau}).$$

Tracé de la solution

Comparaison des solutions

Dans le régime critique, le retour à l'équilibre est le plus rapide. Il est donc intéressant pour étudier des amortisseurs

× Difficulté

Les constantes n'ont pas la même dimension. C_1 est une longueur et C_2 est une vitesse