

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT No. 628

AERODYNAMIC CHARACTERISTICS OF A LARGE NUMBER OF AIRFOILS TESTED IN THE VARIABLE-DENSITY WIND TUNNEL

BY ROBERT M. PINKERTON and HARRY GREENBERG

1938

AERONAUTIC SYMBOLS

I. FUNDAMENTAL AND DERIVED UNITS

Symbol	Metric		English	
	Unit	Abbreviation	Unit	Abbreviation
Length Time Force	meter second newton, kilogram	m s kg	foot (or mile) second (or hour) weight or pound	ft. (or mi.) sec. (or hr.) lb.
Velocity Speed Distance	meter per second kilometers per hour kilometers per second	m/s km/h km/s	feet per second miles per hour feet per second	ft./s. m.p.h. f.p.s.

II. GENERAL SYMBOLS

W	Weight: $= mg$	Kinematic viscosity
g	Standard acceleration of gravity $= 9.8066$ m/s^2 or 32.1740 ft./sec.	Density (mass per unit volume)
m	Mass: $= W/g$	Standard density of dry air, 0.12497 $kg\cdot m^{-3}$ at $15^\circ C$ and 760 mm. or 0.002378 lb. \cdot ft. $^{-3}$ sec. 3
I	Moment of inertia: $= m \cdot I$	Specific weight of "standard" air, 1.2255 kg/m^3 or 0.07631 lb. \cdot ft. $^{-3}$
C	Coefficient of viscosity	

III. AERODYNAMIC SYMBOLS

S	Area	angle of setting of wings (relative to thrust line)
S_w	Area of wing	
G	Gap	angle of stabilizer setting (relative to thrust line)
b	Span	
c	Chord	Resultant moment
A	Aspect ratio	Resultant angular velocity
S_w	True air speed	Reynolds number, where l is a linear dimension $l = c$, for a model airfoil, 3 in. chord, 100 m.p.s. ambient pressure at $15^\circ C$, the cor- responding number is $234,000$; or for a model of 10 cm. chord, 40 m.p.s., the corresponding number is $274,000$
q	Dynamic pressure: $= \frac{1}{2} \rho V^2$	
L	Lift, absolute coefficient: $C_L = \frac{L}{\rho V^2 S_w}$	Center-of-pressure coefficient (ratio of distance of C.P. from leading edge to chord length)
D	Drag, absolute coefficient: $C_D = \frac{D}{\rho V^2 S_w}$	Angle of attack
D_p	Profile drag, absolute coefficient: $C_{D_p} = \frac{D_p}{\rho V^2 S_w}$	Angle of downwash
D_i	Induced drag, absolute coefficient: $C_{D_i} = \frac{D_i}{\rho V^2 S_w}$	Angle of attack, infinite aspect ratio
D_{t_r}	Turbulent drag, absolute coefficient: $C_{D_{t_r}} = \frac{D_{t_r}}{\rho V^2 S_w}$	Angle of attack, induced
C_x	Cross-wind force, absolute coefficient: $C_x = \frac{C_x}{\rho V^2 S_w}$	Angle of attack, absolute (measured from zero- lift position)
R	Resultant force	Flight-path angle

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.

REPORT No. 628

AERODYNAMIC CHARACTERISTICS OF A LARGE NUMBER OF AIRFOILS TESTED IN THE VARIABLE-DENSITY WIND TUNNEL

By ROBERT M. PINKERTON and HARRY GREENBERG

Langley Memorial Aeronautical Laboratory

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

HEADQUARTERS, NAVY BUILDING, WASHINGTON, D. C.
LABORATORIES, Langley Field, Va.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight (U. S. Code, Title 50, Sec. 151). Its membership was increased to 15 by act approved March 2, 1929. The members are appointed by the President, and serve as such without compensation.

JOSEPH S. AMES, Ph. D., *Chairman*,
Baltimore, Md.

DAVID W. TAYLOR, D. Eng., *Vice Chairman*,
Washington, D. C.

WILLIS RAY GREGG, Sc. D., *Chairman, Executive Committee*,
Chief, United States Weather Bureau.

WILLIAM P. MACCRACKEN, J. D., *Vice Chairman, Executive Committee*,
Washington, D. C.

CHARLES G. ABBOT, Sc. D.,
Secretary, Smithsonian Institution.

LYMAN J. BRIGGS, Ph. D.,
Director, National Bureau of Standards.

ARTHUR B. COOK, Rear Admiral, United States Navy,
Chief, Bureau of Aeronautics, Navy Department.

HARRY F. GUGGENHEIM, M. A.,
Port Washington, Long Island, N. Y.

SYDNEY M. KRAUS, Captain, United States Navy,
Bureau of Aeronautics, Navy Department.

CHARLES A. LINDBERGH, LL. D.,
New York City.

DENIS MULLIGAN, J. S. D.,
Director of Air Commerce, Department of Commerce.

AUGUSTINE W. ROBINS, Brigadier General, United States Army,
Chief Matériel Division, Air Corps, Wright Field,
Dayton, Ohio.

EDWARD P. WARNER, Sc. D.,
Greenwich, Conn.

OSCAR WESTOVER, Major General, United States Army,
Chief of Air Corps, War Department.

ORVILLE WRIGHT, Sc. D.,
Dayton, Ohio.

GEORGE W. LEWIS, *Director of Aeronautical Research*

JOHN F. VICTORY, *Secretary*

HENRY J. E. REID, *Engineer-in-Charge, Langley Memorial Aeronautical Laboratory, Langley Field, Va.*

JOHN J. IDE, *Technical Assistant in Europe, Paris, France*

TECHNICAL COMMITTEES

AERODYNAMICS

AIRCRAFT STRUCTURES

POWER PLANTS FOR AIRCRAFT

AIRCRAFT ACCIDENTS

AIRCRAFT MATERIALS

INVENTIONS AND DESIGNS

Coordination of Research Needs of Military and Civil Aviation

Preparation of Research Programs

Allocation of Problems

Prevention of Duplication

Consideration of Inventions

LANGLEY MEMORIAL AERONAUTICAL LABORATORY
LANGLEY FIELD, VA.

Unified conduct, for all agencies, of
scientific research on the fundamental
problems of flight.

OFFICE OF AERONAUTICAL INTELLIGENCE
WASHINGTON, D. C.

Collection, classification, compilation,
and dissemination of scientific and tech-
nical information on aeronautics.

REPORT No. 628

AERODYNAMIC CHARACTERISTICS OF A LARGE NUMBER OF AIRFOILS TESTED IN THE VARIABLE-DENSITY WIND TUNNEL

By ROBERT M. PINKERTON and HARRY GREENBERG

SUMMARY

The aerodynamic characteristics of a large number of miscellaneous airfoils tested in the variable-density tunnel have been reduced to a comparable form and are published in this report for convenient reference. Plots of the standard characteristics are given for each airfoil and, in addition, the important characteristics are given in tabular form. Included also is a tabulation of important characteristics for the related airfoils reported in N. A. C. A. Report No. 460.

This report, in conjunction with N. A. C. A. Report No. 610, makes available in comparable and convenient form the aerodynamic data for airfoils tested in the variable-density tunnel since January 1, 1931.

INTRODUCTION

A large number of miscellaneous airfoils not included in the systematic investigations reported in references 1 and 2 have been tested in the variable-density tunnel. The larger part of these airfoils consists of unrelated sections, tests of which were requested by various agencies; and the results, except those published in reference 3, have not heretofore been available in published form. The rest of the airfoils consist of small groups of related sections tested to study the effects of certain local variations in shape.

One of these local shape variations involved changes of the nose shape, consisting primarily of changes of the leading-edge radius. The effects of these changes were determined by tests of modifications of the Göttingen 398 (reference 4), of the Clark Y (reference 5), and of the N. A. C. A. 2412 (unpublished). References 4 and 5 present data on the effect of sharp leading edges. The modifications to the N. A. C. A. 2412 consisted in varying the leading-edge radius from normal to zero (N. A. C. A. 2412, N. A. C. A. 15, 16, 19, and 20) and in dropping the leading edge from the normal position (N. A. C. A. 17 and 18). A second local shape variation involved the rear portion of the airfoil and consisted in reflexing the mean line. Such modifications were made on the Göttingen 398, the Boeing 106, and the N-60 sections, and the results of the tests were published in reference 6. A series of related forward-

camber airfoils having reflexed mean lines was tested, and the results were published in reference 7. Another series of reflexed airfoils, for which the results have not been published, includes the N. A. C. A. 21, 23, 24, 25, 26, and 27 airfoils.

The results of these tests, including both published and unpublished data, have not heretofore been available in comparable form nor convenient for ready reference by the user. It has therefore been deemed desirable to collect these data into one report.

This report, in conjunction with reference 2, makes available, in convenient form, comparable data for sections tested in the variable-density tunnel since January 1, 1931. The important fully corrected characteristics for the miscellaneous sections described earlier and also for the sections reported in reference 1 are tabulated for easy reference. In addition to the tabulated data, plots of standard aerodynamic characteristics are presented for the miscellaneous airfoils.

TESTS AND APPARATUS

Routine airfoil tests were made in the variable-density tunnel at an effective Reynolds Number of approximately 8,000,000. Tests of some of the models were extended through the range of negative angles of attack. Airfoils for which these results were obtained are designated "inverted" sections. The duralumin models were of rectangular plan form with a 5-inch chord and a 30-inch span. A description of the tunnel, the test procedure, and the method of constructing the models is given in reference 8.

The precision of the tests and of the results is discussed in references 1 and 9.

RESULTS

The method chosen to present these results is intended to be convenient for designers. The important characteristics, fully corrected as described in references 9 and 10, are presented in tables I and II and are comparable with those given in reference 2. These important characteristics are:

$c_{l_{max}}$, the section maximum lift coefficient.
 α_{l_0} , the angle of zero lift.

a_0 , the section lift-curve slope.

$c_{l_{op}}$, the optimum lift coefficient, or the section lift coefficient corresponding to $c_{d_{0m}}$.

$c_{d_{0m}}$, the minimum profile-drag coefficient.

$c_{m_{a.c.}}$, the pitching-moment coefficient about the section aerodynamic center.

$a.c.$, the aerodynamic center, or the point, with respect to the airfoil section, about which the pitching-moment coefficient tends to remain constant over the range of lift coefficients between zero and maximum lift.

$c.p.$, the position of the center of pressure in percentage of the chord behind the leading edge.

m_6 , the lift-curve slope for aspect ratio 6.

A more complete description of these characteristics is presented in references 9 and 10.

Tables I and II contain these data for available sections tested in the variable-density tunnel, except those given in reference 2. Reference is made to the original publication for the airfoil results that have been previously reported.

Plots of the standard characteristics (figs. 1 to 88) are given for the miscellaneous sections (exclusive of those for the N. A. C. A. 22112, 23112, 24112, and 25112 sections, which are published in reference 7) because they are not available elsewhere. Plots for the sections in table I are given in reference 1.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LANGLEY FIELD, VA., October 1, 1937.

REFERENCES

1. Jacobs, Eastman N., Ward, Kenneth E., and Pinkerton, Robert M.: The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel. T. R. No. 460, N. A. C. A., 1933.
2. Jacobs, Eastman N., Pinkerton, Robert M., and Greenberg, Harry: Tests of Related Forward-Camber Airfoils in the Variable-Density Wind Tunnel. T. R. No. 610, N. A. C. A., 1937.
3. Anderson, Raymond F.: The Aerodynamic Characteristics of Airfoils at Negative Angles of Attack. T. N. No. 412, N. A. C. A., 1932.
4. Jacobs, Eastman N.: Characteristics of Two Sharp-Nosed Airfoils Having Reduced Spinning Tendencies. T. N. No. 416, N. A. C. A., 1932.
5. Weick, Fred E., and Scudder, Nathan F.: The Effect on Lift, Drag, and Spinning Characteristics of Sharp Leading Edges on Airplane Wings. T. N. No. 447, N. A. C. A., 1933.
6. DeFoe, George L.: A Comparison of the Aerodynamic Characteristics of Three Normal and Three Reflected Airfoils in the Variable-Density Wind Tunnel. T. N. No. 388, N. A. C. A., 1931.
7. Jacobs, Eastman N., and Pinkerton, Robert M.: Tests in the Variable-Density Wind Tunnel of Related Airfoils Having the Maximum Camber Unusually Far Forward. T. R. No. 537, N. A. C. A., 1935.
8. Jacobs, Eastman N., and Abbott, Ira H.: The N. A. C. A. Variable-Density Wind Tunnel. T. R. No. 416, N. A. C. A., 1932.
9. Jacobs, Eastman N., and Sherman, Albert: Airfoil Section Characteristics as Affected by Variations of the Reynolds Number. T. R. No. 586, N. A. C. A., 1937.
10. Jacobs, Eastman N., and Rhode, R. V.: Airfoil Section Characteristics as Applied to the Prediction of Air Forces and Their Distribution on Wings. T. R. No. 631 N. A. C. A., 1938.

FIGURE 2.—Boeing 103 airfoil (inverted).

FIGURE 1.—Boeing 103 airfoil.

FIGURE 4.—Boeing 103 A airfoil (inverted).

CHARACTERISTICS OF AIRFOILS TESTED IN THE VARIABLE-DENSITY TUNNEL

FIGURE 5.—Boeing 106 airfoil.

FIGURE 6.—Boeing 106 airfoil (inverted).

FIGURE 7.—Boeing 106 R airfoil.

FIGURE 8.—Boeing 111 airfoil.

CHARACTERISTICS OF AIRFOILS TESTED IN THE VARIABLE-DENSITY TUNNEL

7

FIGURE 9.—Boeing 111 airfoil (inverted).

FIGURE 10.—Boeing 112 airfoil.

FIGURE 11.—Boeing 112 airfoil (inverted).

FIGURE 12.—Sikorsky GS-M airfoil.

FIGURE 13.—Sikorsky GS-M airfoil (inverted).

FIGURE 14.—Sikorsky GS-I airfoil.

FIGURE 15.—Sikorsky GS-I airfoil (inverted).

FIGURE 16.—S. T. A6, 27A airfoil.

FIGURE 17.—R. A. F. 34 airfoil.

FIGURE 18.—U. S. A. 27 airfoil.

FIGURE 19.—U. S. A. 27 airfoil (inverted).

FIGURE 20.—U. S. A. 35-A airfoil.

FIGURE 21.—U. S. A. 35-B airfoil.

FIGURE 22.—U. S. A. 35-B airfoil (inverted).

FIGURE 24.—C-72 airfoil.

FIGURE 25.—C-72 airfoil (inverted).

FIGURE 26.—C-80 airfoil.

FIGURE 27.—C-80 airfoil (inverted).

FIGURE 28.—N-22 airfoil.

FIGURE 29.—N-22 airfoil (inverted).

FIGURE 30.—N-60 airfoil.

FIGURE 31.—N-60 R airfoil.

FIGURE 32.—N-68 airfoil.

FIGURE 33.—N-69 airfoil.

FIGURE 34.—N-71 airfoil.

FIGURE 35.—N-71 airfoil (inverted).

FIGURE 36.—N-75 airfoil.

FIGURE 37.—N-75 airfoil (inverted).

FIGURE 38.—N-76 airfoil.

FIGURE 39.—N-76 airfoil (inverted).

FIGURE 40.—N-80 airfoil.

FIGURE 41.—N-80 airfoil (inverted).

FIGURE 42.—N-81 airfoil.

FIGURE 43.—N-81 airfoil (inverted).

FIGURE 44.—Göttingen 387 airfoil.

FIGURE 45.—Göttingen 398 airfoil.

FIGURE 46.—Göttingen 398 airfoil (inverted).

FIGURE 47.—Göttingen 398-A airfoil.

FIGURE 48.—Göttingen 398-B airfoil.

CHARACTERISTICS OF AIRFOILS TESTED IN THE VARIABLE-DENSITY TUNNEL

27

FIGURE 49.—Göttingen 398-R airfoil.

FIGURE 50.—Göttingen 413 airfoil.

FIGURE 51.—Göttingen 420 airfoil.

FIGURE 52.—Göttingen 429-AG airfoil.

FIGURE 53.—Göttingen 429J airfoil.

FIGURE 54.—Göttingen 436 airfoil.

FIGURE 55.—Göttingen 436 airfoil (inverted).

FIGURE 56.—Göttingen 532 airfoil.

FIGURE 57.—Göttingen 532 airfoil (inverted).

FIGURE 58.—Göttingen 532 airfoil (inverted).

FIGURE 59.—Clark Y airfoil.

FIGURE 59.—Clark Y airfoil (inverted).

FIGURE 60.—Clark Y-B airfoil.

FIGURE 61.—Clark Y M-15 airfoil.

FIGURE 62.—Clark Y M-15 airfoil (inverted).

FIGURE 63.—Clark Y M-18 airfoil.

FIGURE 64.—Clark Y M-18 airfoil (inverted).

FIGURE 65.—Clark Y-6 airfoil.

FIGURE 66.—Clark Y-8 airfoil.

FIGURE 68.—Clark Y-14 airfoil.

FIGURE 69.—Clark Y-18 airfoil.

FIGURE 70.—Clark Y-18 airfoil (inverted).

FIGURE 71.—Clark Y-22 airfoil.

FIGURE 72.—N.A.C.A. CYH airfoil.

FIGURE 73.—N. A. C. A. CYH airfoil (inverted).

FIGURE 74.—N. A. C. A. —M6 airfoil.

FIGURE 75.—N. A. C. A.—M6 airfoil (inverted).

FIGURE 76.—N. A. C. A. 15 airfoil.

FIGURE 77.—N. A. C. A. 16 airfoil.

FIGURE 78.—N. A. C. A. 17 airfoil.

FIGURE 80.—N. A. C. A. 19 airfoil.

FIGURE 81.—N. A. C. A. 20 airfoil.

FIGURE 82.—N. A. C. A. 21 airfoil.

FIGURE 84.—N. A. C. A. 23 airfoil.

FIGURE 85.—N. A. C. A. 24 airfoil.

FIGURE 86.—N. A. C. A. 25 airfoil.

FIGURE 87.—N. A. C. A. 26 airfoil.

FIGURE 88.—N. A. C. A. 27 airfoil.

TABLE I.—CHARACTERISTICS OF RELATED N. A. C. A. AIRFOILS REPORTED IN REFERENCE 1

Airfoil	Classification		Fundamental section characteristics										Derived and additional characteristics that may be used for structural design								
			Effective Reynolds number (millions)	$c_{L_{max}}$	$\alpha_{L_{max}}$ (deg.)	$c_{L_{min}}$	$c_{L_{opt}}$ (per deg.)	$c_{d_{min}}$	$c_{m_{a.c.}}$	$c_{m_{a.c.}}$ (percent c from $c(4)$)	a.c. (percent c from $c(4)$)	$c_{L_{max}}$ at $c_{a_{0, min}}$	$c_{p_{at}}$ at $c_{L_{max}}$ (percent c)	$C_{D_{min}}$	m_4 (per radial)	Wing characteristics $A=6$ round tips	Thickness at—	Camber (percent c)	Maximum (percent c)		
N. A. C. A.:	(1)	(2)	(3)	(4)	(5)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)		
0006	A	A10	B10	B0	A	0.91	0	0.088	0	0.0054	0	0.7	2	169	35	4.28	0.0054	5.35	4.13	6	
0009	A	C10	C0	A	8.3	1.39	0	0.088	0	0.0064	0	1.0	5	217	26	4.28	0.0064	8.02	6.20	9	
0012	A	A	1.66	0	0.089	0	0.0069	0	0.0077	0	1.6	3	241	4	4.32	0.0077	10.69	8.27	12		
0015	A	D10	D0	A	8.6	1.65	0	0.087	0	0.0077	0	1.2	4	216	25	4.24	0.0077	13.36	10.33	15	
0018	A	E10	E0	A	7.8	1.53	0	0.086	0	0.0088	0	1.7	4	209	25	4.20	0.0088	16.04	12.40	18	
0021	A	F10	E1	A	8.3	1.48	0	0.088	0	0.0100	0	1.8	5	174	24	4.11	0.0100	18.71	14.46	21	
0025	A	-----	A	-----	-----	8.5	1.28	0	0.085	0	0.0119	0	5	108	25	3.82	0.0119	22.27	17.22	25	
2212	A	C12	C3	B	8.4	1.72	-1.8	0.099	0.12	0.0072	-0.029	0	5	238	27	4.31	0.0073	8.25	8.25	0	
2306	A	A10	A	B10	B2	8.1	1.11	-1.8	0.100	0.14	0.0063	-0.036	0	4	176	29	4.34	0.0064	5.36	4.14	12
2312	A	C10	C2	B	7.8	1.62	-2.0	0.098	0.14	0.0070	-0.037	0.8	5	239	29	4.24	0.0072	8.04	6.21	9	
2315	A	D10	D2	B	8.0	1.65	-1.9	0.097	0.12	0.0074	-0.039	1.2	4	232	27	4.24	0.0075	10.71	8.27	12	
2406	A	A10	A	B2	B	8.2	1.04	-1.7	0.099	0.18	0.0067	-0.038	0	4	173	34	4.31	0.0068	5.34	4.14	6
2409	A	B10	B2	B	8.1	1.62	-2.0	0.098	0.14	0.0071	-0.043	0.5	3	242	28	4.31	0.0069	8.02	6.20	9	
2412	A	C10	C2	B	8.2	1.72	-2.0	0.098	0.16	0.0082	-0.040	1.4	5	201	28	4.28	0.0072	10.71	8.27	12	
2415	A	D10	D2	C	8.0	1.66	-1.9	0.094	0.12	0.0074	-0.039	1.1	2	165	27	4.24	0.0083	13.39	10.34	15	
2418	A	E10	E2	D	8.1	1.53	-2.0	0.095	0.16	0.0093	-0.043	1.1	2	136	28	4.11	0.0106	16.08	12.39	18	
2421	A	F10	E3	D	7.9	1.44	-1.7	0.098	0.06	0.0106	-0.035	1.4	2	136	28	4.11	0.0106	18.75	14.46	21	
2506	A	A10	A	D	8.1	1.08	-2.0	0.090	0.14	0.0062	-0.048	0	0	171	34	4.31	0.0064	5.36	4.13	6	
2509	A	B10	B2	B	8.0	1.48	-2.0	0.088	0.13	0.0088	-0.051	0.3	2	218	29	4.28	0.0068	8.04	6.21	9	
2512	A	C10	C2	B	8.1	1.73	-2.1	0.088	0.18	0.0084	-0.054	1.0	2	234	28	4.28	0.0076	10.70	8.27	12	
2515	A	D10	D2	C	8.0	1.64	-2.0	0.087	0.10	0.0082	-0.050	1.4	5	183	28	4.18	0.0080	8.09	6.21	9	
2518	A	E10	E2	D	8.1	1.58	-2.0	0.086	0.06	0.0086	-0.047	1.9	2	170	28	4.07	0.0083	16.07	12.41	18	
2612	A	C10	C1	B	8.4	1.78	-2.3	0.081	0.02	0.0105	-0.044	2.3	2	141	28	4.04	0.0105	18.72	14.47	21	
2712	A	C10	C0	B	8.0	1.80	-2.6	0.086	0.16	0.0076	-0.075	0	0	127	29	4.20	0.0079	10.69	8.25	12	
4312	A	C10	C5	A	8.5	1.93	-3.4	0.088	0.28	0.0073	-0.060	0.6	2	235	29	4.28	0.0084	10.70	8.27	12	
4315	A	B10	B5	D	8.1	1.28	-3.8	0.089	0.28	0.0071	-0.075	0.5	2	180	31	4.31	0.0079	5.40	4.14	6	
4318	A	C10	C6	B	8.3	1.74	-3.6	0.086	0.24	0.0077	-0.073	0.7	3	222	29	4.21	0.0080	8.09	6.21	9	
4321	A	D10	D4	B	8.2	1.67	-3.6	0.089	0.10	0.0090	-0.076	0.9	2	188	29	4.21	0.0085	13.47	10.34	15	
4324	A	E10	E4	D	8.1	1.38	-3.6	0.095	0.01	0.0113	-0.065	1.8	3	122	31	4.18	0.0103	16.14	12.41	18	
4405	A	A10	A	D	8.1	1.32	-3.9	0.100	0.32	0.0067	-0.087	0.4	0	197	32	4.34	0.0077	5.40	4.16	6	
4409	A	B10	B4	D	8.1	1.77	-3.9	0.098	0.10	0.0085	-0.088	0.6	2	212	31	4.20	0.0077	8.07	6.21	9	
4412	A	C10	C4	D	7.9	1.74	-4.0	0.097	0.22	0.0090	-0.085	0.8	1	191	31	4.24	0.0092	13.46	10.34	15	
4415	A	D10	D4	C	7.9	1.72	-4.0	0.097	0.22	0.0092	-0.078	1.4	1	162	31	4.07	0.0100	16.15	12.40	18	
4418	A	E10	E4	D	8.1	1.41	-3.4	0.089	0.08	0.0091	-0.071	1.9	2	127	32	4.06	0.0112	18.79	14.48	21	
4503	A	A10	A	D	8.0	1.18	-4.3	0.100	0.34	0.0078	-0.110	0.5	-1	151	36	4.34	0.0088	5.38	4.14	6	
4507	A	B10	B3	C	8.2	1.84	-4.2	0.099	0.27	0.0081	-0.106	0.3	0	206	31	4.31	0.0086	8.08	6.21	9	
4512	A	C10	C3	D	8.0	1.64	-4.2	0.093	0.27	0.0081	-0.106	1.1	0	223	31	4.11	0.0085	10.74	8.28	12	
4515	A	D10	D3	E	8.1	1.38	-4.1	0.097	0.17	0.0097	-0.097	1.4	2	128	32	4.04	0.0117	18.0	14.47	21	
4518	A	E10	E3	D	8.1	1.38	-4.1	0.092	0.13	0.0105	-0.093	1.6	0	219	31	4.04	0.0080	10.73	8.27	12	
4521	A	C10	C2	B	8.3	1.88	-4.6	0.084	0.24	0.0086	-0.124	0	0	175	31	4.24	0.0095	13.44	10.35	15	
4712	A	C10	C1	A	8.2	1.95	-5.0	0.083	0.26	0.0091	-0.143	1.2	0	214	33	4.11	0.0095	10.74	8.26	12	
6212	A	A10	A	D	8.0	1.65	-5.2	0.101	0.57	0.0083	-0.108	0.8	0	208	30	4.20	0.0101	4.57	4.15	6	
6306	A	B10	B6	A	8.2	1.78	-5.2	0.100	0.57	0.0083	-0.112	0.6	3	198	32	4.37	0.0102	18.0	14.47	21	
6312	A	C10	C6	B	8.4	1.73	-5.3	0.099	0.55	0.0090	-0.111	0.7	1	193	31	4.24	0.0103	18.0	14.47	21	
6315	A	D10	D6	B	8.4	1.78	-5.4	0.097	0.55	0.0090	-0.111	0.7	1	190	31	4.24	0.0103	18.0	14.47	21	
6318	A	E10	E6	D	8.1	1.66	-5.5	0.097	0.22	0.0104	-0.058	1.3	1	137	32	4.24	0.0113	16.18	12.44	18	
6321	A	F10	E7	D	8.2	1.41	-5.2	0.092	0.10	0.0123	-0.090	1.5	2	115	33	4.07	0.0124	18.92	14.51	21	
6406	A	A10	B0	D	8.1	1.53	-5.6	0.097	0.48	0.0080	-0.129	0	-7	191	34	4.34	0.0119	4.42	4.15	6	
6409	A	B10	B6	C	8.0	1.80	-5.9	0.099	0.48	0.0081	-0.123	0	-7	212	33	4.24	0.0109	8.14	6.21	9	
6412	A	C10	C5	D	8.2	1.92	-5.9	0.098	0.32	0.0081	-0.123	0	-7	199	33	4.24	0.0103	10.84	8.30	12	
6415	A	D10	D6	E	8.0	1.70	-5.7	0.095	0.25	0.0104	-0.147	1.0	-2	160	33	4.24	0.0115	13.53	10.36	15	
6418	A	E10	E6	D	8.1	1.72	-5.7	0.091	0.10	0.0122	-0.125	1.3	0	142	34	4.18	0.0109	13.65	10.36	15	
6419	A	F10	E7	D	8.0	1.51	-5.5	0.094	0.15	0.0112	-0.108	1.3	0	120	34	4.18	0.0116	16.28	12.43	18	
6421	A	A10	B1	C	8.1	1.50	-5.6	0.095	0.25	0.0102	-0.185	1.7	-2	192	34	4.24	0.0113	16.18	12.44	18	
6506	A	A10	B4	D	8.3</																

TABLE II.—CHARACTERISTICS OF MISCELLANEOUS AIRFOILS

[An inverted airfoil is considered as another distinct section]

Airfoil	N. A. C. A. reference, R = report, N = note	Classification		Fundamental section characteristics						Derived and additional characteristics that may be used for structural design													
		Chord	P.D.	SE	$C_{L_{max}}$	$\alpha_{L_{max}}$ (deg.)	a_0 (per deg.)	$c_{t_{op}}$	$c_{d_{0, min}}$	$c_{m_{a,e}}$	a, c (percent c from c4)	$c_{l_{max}}/c_{d_{0, min}}$	c, p at $c_{l_{max}}/c_{d_{0, min}}$ (percent c)	Wing characteristics $A=6$; round tips			Camber (percent c)						
Boeing 103	1 N 412	(1) B	(2) C10	(3) C4	(4) B	(5) B	(6) 0.97	0.15	(6) 0.038	-0.065	0.6	7	200	30	4.24	0.0089	11.21	9.14	12.68	4.2			
Boeing 103 (Inv.)	2 N 412	B	B	C10	C3	B	0.96	0.17	0.075	-0.053	0.9	5	232	16	4.28	0.0077	9.18	7.52	10.38	3.2			
Boeing 103A	3 N 412	B	B	B	A	A	1.76	0.98	0.098	-0.058	0.8	0	20	4.34	0.0082	11.26	9.26	13.06	3.5				
Boeing 103A (Inv.)	4 N 412	B	B	B	D	A	0.84	1.64	-4.4	0.04	0.052	0.8	2	202	20	4.11	0.0077	11.26	9.29	13.06	3.0		
Boeing 106	5 N 412	C	C	C10	B4	D	0.84	1.64	-4.4	0.04	0.081	0.57	1.4	17	4.11	0.0073	9.92	8.14	11.50	3.0			
Boeing 106 (Inv.)	6 N 412	C	C	C10	B4	D	0.84	1.64	-4.4	0.04	0.093	0.0	0.57	1.4	17	4.11	0.0073	9.92	8.14	11.50	3.0		
Boeing 108R	7 N 388	C	C	C11	B3	D	0.83	1.48	-1.1	0.05	0.077	-0.01	3	192	27	4.18	0.0077	11.26	9.29	13.06	2.0		
Boeing 111	8 N 388	A	A	C10	D3	A	0.81	1.88	-2.1	0.06	0.071	0.033	1.3	137	28	4.20	0.0073	9.92	8.14	11.50	3.0		
Boeing 111 (Inv.)	9 N 388	A	A	C10	D2	A	0.81	1.89	-2.0	0.06	0.066	0.033	1.9	137	28	4.20	0.0074	9.92	8.12	11.50	2.8		
Boeing 112	10 N 388	A	A	C10	D2	C	0.82	1.70	0.96	0.06	0.071	0.023	0.7	238	34	4.20	0.0074	9.92	8.12	11.50	2.8		
Boeing 112 (Inv.)	11 N 388	A	A	C10	D2	D	0.82	1.70	0.96	0.06	0.071	0.023	0.7	238	34	4.20	0.0074	9.92	8.12	11.50	2.8		
Sikorsky GS-M	12 N 412	B	D10	D6	D	D	0.81	1.69	-7.9	0.09	0.30	0.096	-1.05	1	176	34	4.31	0.0101	15.29	9.11	16.05	5.5	
Sikorsky GS-M (Inv.)	13 N 412	B	D10	D4	D	A	0.83	1.78	-6.8	0.07	0.25	0.082	-1.05	1	217	32	4.37	0.0086	12.64	6.31	13.98	4.5	
Sikorsky GS-I	14 N 412	B	D10	D4	D	A	0.85	1.46	1.46	0.10	0.096	0.094	1.4	2	217	32	4.34	0.0086	12.64	6.31	13.98	4.5	
Sikorsky GS-I (Inv.)	15 N 412	B	F10	E8	D	A	0.85	1.46	1.46	0.10	0.097	0.095	1.2	2	217	32	4.34	0.0086	12.64	6.31	13.98	4.5	
S.T. A. 34	16 N 412	A	C11	C1	C	C	0.80	1.38	-8	0.08	0.20	0.071	0.127	0	135	36	4.34	0.0137	15.96	8.20	19.80	8.0	
R. A. F. 34	17 N 412	A	C11	C1	C	C	0.80	1.38	-8	0.08	0.20	0.071	0.127	0	135	36	4.34	0.0137	15.96	8.20	19.80	8.0	
U. S. A. 27	18 N 412	B	C10	C6	B	B	0.81	1.71	-4.7	0.04	0.30	0.086	0.078	1.8	199	30	4.14	0.0098	10.40	8.70	11.12	5.6	
U. S. A. 27 (Inv.)	19 N 412	B	C10	C6	B	B	0.81	1.71	-4.7	0.04	0.30	0.086	0.078	1.8	199	30	4.14	0.0098	10.40	8.70	11.12	5.6	
U. S. A. 35-A	20 N 412	B	E10	E6	D	D	0.84	1.52	-8.0	0.05	0.38	0.0116	-1.11	0	131	34	4.18	0.0121	16.60	11.90	18.18	7.3	
U. S. A. 35-B	21 N 412	B	E10	C5	D	D	0.83	1.81	-5.2	0.09	0.35	0.083	-0.76	0.5	218	30	4.31	0.0087	10.66	7.54	11.61	4.6	
U. S. A. 35-B (Inv.)	22 N 412	B	E10	C5	D	D	0.83	1.81	-5.2	0.09	0.35	0.083	-0.76	0.5	218	30	4.31	0.0087	10.66	7.54	11.61	4.6	
C-62	23 N 412	A	D10	A	D	D	0.84	1.06	-1.8	0.05	0.15	0.065	0.081	6	163	34	4.18	0.0067	7.69	5.72	8.04	1.9	
C-72	24 N 412	B	C10	C4	D	D	0.80	1.74	-5.6	0.05	0.23	0.083	1.0	3	210	30	4.18	0.0087	10.53	7.39	11.73	4.0	
C-72 (Inv.)	25 N 412	B	C10	C4	D	D	0.81	1.83	-5.6	0.06	0.23	0.083	1.0	3	210	30	4.18	0.0087	10.53	7.39	11.73	4.0	
C-80	26 N 388	A	B10	A	D	D	0.82	1.24	-1.0	0.08	0.05	0.064	0.015	2	194	19	4.20	0.0084	7.91	5.77	8.58	1.3	
C-80 (Inv.)	27 N 388	A	B10	A	D	D	0.81	1.24	-1.0	0.08	0.05	0.064	0.015	2	194	19	4.20	0.0084	7.91	5.77	8.58	1.3	
N-22	28 N 412	B	C10	C4	D	D	0.81	1.72	-5.4	0.06	0.17	0.087	-0.075	4	198	30	4.20	0.0089	11.25	8.36	12.37	4.3	
N-22 (Inv.)	29 N 412	B	C10	C4	D	D	0.81	1.74	-5.5	0.07	0.17	0.086	-0.084	0	182	30	4.20	0.0089	11.25	8.36	12.37	4.3	
N-60	30 N 388	B	C10	C4	D	D	0.83	1.50	-1.5	0.08	0.09	0.077	-0.001	0	201	31	4.24	0.0090	11.17	7.88	12.37	4.0	
N-60 R	31 N 388	B	C10	C4	D	D	0.81	1.96	0	0.07	0.09	0.060	0	0	195	27	4.28	0.0078	11.17	7.88	12.37	2.8	
N-68	32 N 388	A	B10	A	D	D	0.81	1.96	0	0.07	0.09	0.060	0	0	160	25	4.24	0.0061	6.90	5.76	8.00	0	
N-69	33 N 388	A	B10	A	D	D	0.81	1.00	0	0.03	0.03	0.066	0	0	152	25	4.11	0.0086	8.46	8.22	10.94	0	
N-71	34 N 388	C	C10	C2	A	D	0.83	1.67	-2.0	0.09	0.18	0.066	-0.029	0.7	6	253	23	4.31	0.0086	9.99	7.52	11.54	2.0
N-71 (Inv.)	35 N 388	C	C10	C2	A	D	0.83	1.94	-2.2	0.09	0.19	0.066	-0.030	0	1	224	23	4.24	0.0077	9.99	8.69	11.50	2.0
N-75	36 N 388	C	C10	C2	A	D	0.82	1.09	-2.2	0.07	0.15	0.075	-0.045	0.9	3	224	22	4.20	0.0077	9.99	8.69	11.50	2.0
N-76	37 N 388	C	C10	C3	D	D	0.82	1.63	-2.1	0.06	0.19	0.078	-0.032	0.7	4	209	28	4.20	0.0081	10.00	8.69	11.50	2.7
N-78	38 N 388	C	C10	C2	D	D	0.80	1.74	-2.2	0.08	0.16	0.069	-0.044	0	0	21	22	4.28	0.0071	10.02	7.59	11.54	2.0
N-80	39 N 388	C	C10	C2	D	D	0.81	1.17	-1.0	0.10	0.14	0.072	-0.043	0	0	21	22	4.34	0.0073	10.60	7.18	11.54	2.0
N-81	40 N 388	C	C10	C2	D	D	0.85	1.70	-2.2	0.10	0.14	0.072	-0.044	0.2	5	249	23	4.34	0.0073	10.60	7.18	11.54	2.0
Gött. 387	41 N 412	C	C10	C2	D	D	0.84	1.74	-2.2	0.10	0.14	0.072	-0.043	0.1	0	21	22	4.34	0.0073	10.60	7.18	11.54	2.0
Gött. 398	42 N 412	C	C10	C2	D	D	0.84	1.74	-2.2	0.10	0.14	0.072	-0.043	0.1	0	21	22	4.34	0.0073	10.60	7.18	11.54	2.0
Gött. 398 (Inv.)	43 N 412	C	C10	C2	D	D	0.84	1.74	-2.2	0.10	0.14	0.072	-0.043	0.1	0	21	22	4.34	0.0073	10.60	7.18	11.54	2.0
Gött. 398-A	44 N 428	B	D10	D6	D	D	0.84	1.70	-6.6	0.07	0.30	0.091	-0.083	0.7	4	187	32	4.24	0.0097	13.40	9.69	14.86	5.9
Gött. 398-B	45 N 412	B	D10	D6	D	D	0.84	1.68	-6.0	0.04	0.15	0.091	-0.083	0.4	1	185	31	4.14	0.0094	12.50	9.27	13.75	4.9
Gött. 398-C	46 N 412	B	D10	D6	D	D	0.84	1.82	-6.0	0.04	0.15	0.091	-0.083	0.9	3	185	31	4.14	0.0094	12.50	9.27	13.75	4.9
Gött. 398-A	47 N 416	B	C10	C10	A	D	0.84	1.70	-6.1	0.05	0.15	0.095	-0.085	1.0	2	141	31	4.18	0.0108	12.17	9.25	13.62	4.5
Gött. 398-B	48 N 416	B	C10	C10	A	D	0.84	1.66	-6.4	0.05	0.15	0.095	-0.084	1.0	4	142	31	4.18	0.0108	12.17	9.24	13.62	4.5
Gött. 398-B	49 N 388	B	D10	D5	D	D	0.84	1.66	-6.2	0.05	0.15	0.095	-0.085	1.0	10	178	28	4.24	0.0083	12.50	9.27	13.75	3.5
Gött. 413	50 N 388	B	D10	D5	D	D	0.84	1.61	-6.0	0.05	0.15	0.095	-0.085	0.5	1	101	36	4.37	0.0				

CHARACTERISTICS OF AIRFOILS TESTED IN THE VARIABLE-DENSITY TUNNEL

Gölt. 420	51	B	E10	E4	D	8.2	1.51	-8.3	.095	.18	.0104	- .084	- .4	7	145	34	4.18	.0197	16.50	11.84	18.75	4.5	
Gölt. 420-A.G.	52	A	C10	E4	D	8.1	1.61	0	.100	0	.0066	0	.1	4	244	26	4.34	.0076	10.38	11.20	5.90	0	
Gölt. 420-J.	53	A	C10	C0	A	8.0	1.65	-4.4	.102	0	.0068	0	.5	4	243	27	4.41	.0085	10.98	11.78	0		
Gölt. 436	54	A	C10	C0	D	8.0	1.65	-4.4	.098	.22	.0082	- .061	.5	5	205	30	4.23	.0086	10.16	7.47	11.10	3.9	
Gölt. 436 (inv.)	55	B	C10	C8	C	8.1	1.76	-6.1	.090	.62	.0082	- .062	.8	6	220	31	4.37	.0088	11.60	6.63	13.00	4.8	
Gölt. 532 (inv.)	56	B	C10	C8	A	8.3	1.73	-6.1	.101	.37	.0080	- .095	2.9	14	37	10	4.37	.0088	11.60	6.63	13.00	4.8	
Clark Y	57	B	C10	C8	A	8.3	1.73	-6.1	.101	.37	.0080	- .095	2.9	14	37	10	4.37	.0088	11.60	6.63	13.00	4.8	
Clark Y (inv.)	58	N	A12	B	C10	8.4	1.68	-5.0	.092	.12	.0083	- .069	1.1	4	202	29	4.07	.0085	10.83	8.30	11.70	3.9	
Clark Y-B	59	N	A12	B	C10	8.4	1.62	-5.2	.098	.12	.0083	- .072	1.7	3	228	30	4.28	.0086	10.90	8.26	11.46	3.3	
Clark Y-B	60	N	A12	B	C10	8.2	1.74	-5.4	.089	.35	.0072	- .075	1.3	2	158	30	3.96	.0086	10.90	8.26	11.46	3.3	
Clark Y-M-15	61	N	A12	B	D4	8.4	1.70	-5.2	.094	.10	.0081	- .058	1.1	7	187	30	4.14	.0083	13.51	10.63	15.00	4.0	
Clark Y-M-18	62	N	A12	C	E10	8.0	1.23	-5.1	.097	.10	.0081	- .071	1.3	1	154	30	4.04	.0104	16.21	12.72	18.00	4.0	
Clark Y M-18 (inv.)	63	N	A12	C	E10	8.2	1.60	-5.1	.091	.07	.0084	- .064	1.4	2	154	18	4.14						
Clark Y M-18 (inv.)	64	N	A12	C	E10	8.3	1.39	-5.1	.094	.07	.0084	- .065	2.2	2	154	18	4.14						
Clark Y-6	65	B	A10	A	D	8.1	1.07	-2.9	.098	.15	.0059	- .038	.7	5	181	37	4.28	.0062	5.40	4.24	6.00	1.9	
Clark Y-8	66	B	B10	B	D	8.0	1.37	-3.6	.098	.14	.0060	- .059	.7	4	224	30	4.28	.0076	5.68	8.00	2.6		
Clark Y-10	67	B	B10	C3	B	7.9	1.68	-4.5	.098	.23	.0075	- .059	1.2	6	191	31	4.20	.0091	9.01	7.08	10.00	3.2	
Clark Y-14	68	N	A12	B	D	8.0	1.48	-7.6	.092	.23	.0117	- .098	1.5	6	126	33	4.07	.0121	12.61	14.00	4.6		
Clark Y-18	69	N	A12	B	E10	8.1	1.48	-7.6	.089	.15	.0140	- .101	1.3	10	89	10	3.96	.0141	12.74	18.00	6.3		
Clark Y-22	70	N	A12	B	E10	8.0	1.36	-9.3	.088	.15	.0140	- .107	1.8	13	97	34	3.93	.0141	19.82	15.58	22.00	8.0	
N. A. O. A.:																							
CYH	72	N	A12	B	C11	8.1	1.58	-2.9	.095	.08	.0076	- .027	1.7	6	208	28	4.18	.0077	10.63	8.30	11.70	3.1	
CYH (inv.)	73	N	A12	B	C11	8.1	1.51	-2.9	.095	.08	.0076	- .027	1.6	1	198	26	4.18	.0077	10.29	9.06	12.01	2.4	
-M6	74	N	A12	A	C11	8.0	1.51	-8	.097	.08	.0077	- .027	0		24	24	4.14						
-M6 (inv.)	75	N	A12	A	C11	8.2	1.51	-8	.097	.08	.0077	- .027	0		170	29	4.14	.0071	10.20	8.27	12.00	2.0	
15	76	A	C10	A	D	8.2	1.17	-2.0	.094	.15	.0069	- .043	.3	3	238	28	4.18	.0071	10.45	8.27	12.00	2.6	
16	77	A	C10	B4	D	8.4	1.64	-2.1	.095	.17	.0069	- .045	.4	3	222	29	4.18	.0076	10.26	8.27	12.00	2.6	
17	78	C	C10	C2	A	8.4	1.53	-2.0	.095	.25	.0069	- .047	.4	3	238	29	4.20	.0074	10.45	8.27	12.00	2.0	
18	79	A	B10	A	D	8.2	1.69	-2.0	.098	.25	.0071	- .049	.6	3	155	33	4.11	.0088	9.93	8.27	12.00	2.0	
19	80	A	B10	A	D	8.1	1.01	-1.9	.095	.24	.0065	- .049	0	10	157	31	4.02	.0078	9.70	8.27	12.00	2.0	
20	81	A	B10	A	C11	8.1	1.02	-2.1	.096	.20	.0074	- .038	.4	1	231	28	4.20	.0077	10.29	8.96	12.00	2.4	
21 (inv.)	82	A	B10	A	D	8.1	1.08	-2.1	.097	.087	.0074	- .040	4		22	24	4.24						
23	83	A	B11	B2	A	8.0	1.65	-1.0	.100	.18	.0062	- .007	.5	7	266	27	4.34	.0084	8.40	4.07	9.00	2.0	
24	84	A	C11	C2	A	8.1	1.67	-8	.103	.15	.0068	0	-1	6	205	27	4.51	.0075	13.97	7.79	15.00	2.0	
25	85	A	C11	C2	B	8.1	1.54	-8	.105	0	.0075	.008	-1	8	27	27	4.47	.0082	16.70	9.38	18.00	2.0	
26	86	A	E11	E2	D	8.0	1.46	-8	.104	.10	.0056	- .010	-2	6	274	30	4.41	.0057	5.68	3.10	6.00		
27	87	A	E11	E2	D	7.9	1.14	-1.3	.102	.10	.0056	- .010	-2	6	274	30	4.41	.0057	5.68	3.10	6.00		
2212	R 37	A	C11	D2	B	8.5	1.64	-8	.100	.06	.0072	- .001	1.0	5	228	25	4.34	.0073	10.60	8.27	12.00	1.6	
2312	R 37	A	C11	D2	A	8.2	1.73	-8	.100	.08	.0074	0	-2	8	224	26	4.34	.0075	10.71	8.28	12.00	2.1	
24112	R 37	A	C11	D2	A	8.0	1.67	-9	.100	.10	.0074	- .002	1.4	7	219	25	4.34	.0075	10.73	8.28	12.00	2.7	
25112	R 37	A	C11	C3	B	8.2	1.62	-1.2	.100	.08	.0074	- .002	1.3	7									

¹ Type of chord. See reference 10.
² Type of pressure distribution. See reference 10.
³ Type of scale effect on maximum lift. A signifies practically no scale effect.
⁴ Type of lift-curve peak as shown in the sketches.

⁵ Turbulence factor is 2.64.
⁶ These data have been corrected for tip effect.

Positive directions of axes and angles (forces and moments) are shown by arrows.

Axis		Moment about axis			Angle		Velocities		
Designation	Symbol	Force (parallel to axis) symbol	Designation	Symbol	Positive direction	Designation	Symbol	Linear (component along axis)	Angular
Longitudinal	X	X	Rolling	L	$Y \rightarrow Z$	Roll	ϕ	u	p
Lateral	Y	Y	Pitching	M	$Z \rightarrow X$	Pitch	θ	v	q
Normal	Z	Z	Yawning	N	$X \rightarrow Y$	Yaw	ψ	w	r

Absolute coefficients of moment

$$C_r = \frac{L}{q_b S}$$

(rolling)

$$C_m = \frac{M}{q_b S}$$

(pitching)

$$C_n = \frac{N}{q_b S}$$

(yawing)

Angle of set of control surface (relative to neutral position). δ (Indicate surface by proper subscript.)

4. PROPELLER SYMBOLS

D , Diameter

p , Geometric pitch

p/D , Pitch ratio

V' , Inflow velocity

V_n , Slipstream velocity

T , Thrust, absolute coefficient $C_T = \frac{T}{\rho n^3 D^4}$

Q , Torque, absolute coefficient $C_Q = \frac{Q}{\rho n^2 D^5}$

P , Power, absolute coefficient $C_P = \frac{P}{\rho n^3 D^5}$

C_{n_p} , Speed-power coefficient $= \sqrt[3]{\frac{\rho V^6}{P^2 n^2}}$

η , Efficiency

n , Revolutions per second, r.p.s.

Φ , Effective helix angle $= \tan^{-1} \left(\frac{V}{2\pi r n} \right)$

5. NUMERICAL RELATIONS

1 hp = 78.04 kg-m/sec = 550 ft-lb./sec

1 metric horsepower = 1.0132 hp.

1 m.p.b = 0.4470 m.p.s.

1 m.p.s = 2.2369 m.p.h.

1 lb = 0.4536 kg.

1 kg = 2.2046 lb.

1 mi = 1,609.35 m = 5,280 ft.

1 m = 3.2808 ft.