TD 7

Exercice 1 [Zéros de la fonction ζ sur $\operatorname{Re} s = 1$]

Soit $s \in \mathbb{C}$ tel que Re s > 1. Vérifier que $\log \zeta(s)$ est bien défini, et vaut $\sum_{p \text{ premier}} \sum_{k \ge 1} 1/(kp^{ks}).$

Vérifier que pour tout réel x, on a $\cos 2x + 4\cos x + 3 \ge 0$

En déduire que pour tout $s = \sigma + i\tau$ avec $\sigma > 1$, on a $|\zeta(\sigma)^3 \zeta(\sigma + i\tau)^4 \zeta(\sigma + 2i\tau)| >$ 1.

En déduire que ζ ne s'annule pas sur Re s=1.

Exercice 2 [Une application de la fonction ζ]

Montrer que $\log \zeta(s)/\log(s-1)$ tend vers 1 quand $s\to 1$, Re s>1.

Soit \mathcal{P} l'ensemble des nombres premiers. Si $A \subset \mathcal{P}$, on dit que A est de densité λ si $\lim_{s\to 1, \text{Re } s>1} (\sum_{p\in A} 1/p^s)/\log(s-1)$ existe et vaut λ . Vérifier que \mathcal{P} est de densité 1.

Soit χ l'application de \mathbb{N} dans \mathbb{C} telle que $\chi(n) = 0$ si n est pair, $\chi(n) = 1$ si n = 1(mod 4), et $\chi(n) = -1$ si $n = 3 \pmod{4}$. On pose $L(s) = \sum_{n \ge 1} \chi(n)/n^s$. Montrer que cette formule définit une fonction holomorphe sur le demi-plan $\operatorname{Re} s>0$, et que $L(1) \neq 0$. Vérifier que si Re s > 1, alors $L(s) = \prod_{p \in \mathcal{P}} (1 - \chi(p)p^{-s})^{-1}$.

Exprimer $\zeta(s)L(s)$ et $\zeta(s)/L(s)$ sous forme d'un produit pour s>1. En déduire que l'ensemble des nombres premiers égaux à 1 modulo 4 et l'ensemble des nombres premiers égaux à 3 modulo 4 sont tous les deux de densité 1/2.

Exercice 3 Soit $f(z) = \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$, et $g(z) = 1/z + 2z \sum_{n \in \mathbb{Z}} \frac{1}{z^2-n^2}$. Montrer que ces deux fonctions sont définies et holomorphes sur $\mathbb{C} \setminus \mathbb{Z}$.

Posons $F(z)=f(z)-\left(\frac{\pi}{\sin\pi z}\right)^2$. Montrer que F s'étend en une fonction entière et 1-périodique. Montrer que F est bornée sur la bande $\{0\leq \operatorname{Re} z\leq 1\}$ (on raisonnera séparément sur $|\mathrm{Im}z| \leq 1$ et $|\mathrm{Im}z| \geq 1$). En déduire que F est constante, puis que F est nulle.

Montrer que q'(z) = f(z). En déduire que $q(z) = \pi \cot n\pi z$.

Exercice 4 Soit F = P/Q une fraction rationnelle sans pôle entier, et telle que $\deg Q \ge \deg P + 2$. Soit R_n le carré de sommets $(\pm (n+1/2), \pm (n+1/2))$. Montrer que $\lim_{n\to+\infty} \int_{\partial R_n} \frac{F(z)}{\tan \pi z} dz = \lim_{n\to+\infty} \int_{\partial R_n} \frac{F(z)}{\sin \pi z} dz = 0.$ Notons $\mathcal P$ l'ensemble des pôles de F. Montrer que :

$$\sum_{n=-\infty}^{+\infty} F(n) = -\sum_{p \in \mathcal{P}} \operatorname{Res}(\frac{F(z)}{\tan \pi z}, p)$$

et

$$\sum_{n=-\infty}^{+\infty} (-1)^n F(n) = -\sum_{p \in \mathcal{P}} \operatorname{Res}(\frac{F(z)}{\sin \pi z}, p)$$

Calculer $\sum_{n \in \mathbb{Z}} 1/(n^2 + a^2)$, $\sum_{n \in \mathbb{Z}} (-1)^n/(n^2 + a^2)$ (0 < a < 1), $\sum_{n \in \mathbb{Z}} 1/(n^2 - a)$, $a \in \mathbb{C} \setminus \mathbb{Z}$, $\sum_{n \ge 1} 1/n^{2k}$, $k \in \mathbb{N}$.

Exercice 5 Soit A < B deux réels, et \mathcal{B} la bande $\{A < \operatorname{Re} z < B\}$. Soit f une fonction holomorphe sur \mathcal{B} . Pour tout $x \in]A, B[$, on pose $M(x) = \sup_{\operatorname{Re} z = x} |f(z)|$. Soit a, b tels que A < a < b < B. On suppose que f est bornée sur $\{a \leq \operatorname{Re} z \leq b\}$, et M(a) = M(b). Montrer qu'alors $M(x) \leq M(a)$ pour tout $x \in [a, b]$.

Exercice 6 Soit r et r' deux réels > 1. On note C et C' les deux couronnes $\{1 < |z| < r\}$ et $\{1 < |z| < r'\}$. On cherche à savoir à quelle condition il existe un biholomorphisme entre C et C'.

Soit donc f un biholomorphisme entre C et C'.

Montrer que $|f(z)| \to 1$ quand $|z| \to 1$, ou $|f(z)| \to r'$ quand $|z| \to 1$. Montrer qu'on peut supposer qu'on est dans le premier cas.

Posons $a = (\log r'/\log r)$, et posons $g(z) = \log |f(z)| - a \log |z|$. Montrer que g est harmonique sur C et se prolonge par continuité à \bar{C} . Montrer que g = 0.

Montrer que f'/f = a/z, puis que a = 1.