Probabilistic Robotics

FastSLAM

The SLAM Problem

- SLAM stands for simultaneous localization and mapping
- The task of building a map while estimating the pose of the robot relative to this map
- Why is SLAM hard?
 Chicken and egg problem:
 a map is needed to localize the robot and a pose estimate is needed to build a map

The SLAM Problem

A robot moving though an unknown, static environment

Given:

- The robot's controls
- Observations of nearby features

Estimate:

- Map of features
- Path of the robot

Why is SLAM a hard problem?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map

Why is SLAM a hard problem?

- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations

Data Association Problem

- A data association is an assignment of observations to landmarks
- In general there are more than $\binom{n}{m}$ (n observations, m landmarks) possible associations
- Also called "assignment problem"

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Sampling Importance Resampling (SIR) principle
 - Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resampling
- Typical application scenarios are tracking, localization, ...

Localization vs. SLAM

- A particle filter can be used to solve both problems
- Localization: state space $\langle x, y, \theta \rangle$
- SLAM: state space <x, y, θ, map>
 - for landmark maps = $\langle I_1, I_2, ..., I_m \rangle$
 - for grid maps = $\langle c_{11}, c_{12}, ..., c_{1n}, c_{21}, ..., c_{nm} \rangle$
- Problem: The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!

Dependencies

- Is there a dependency between the dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?

Dependencies

- Is there a dependency between the dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?
- In the SLAM context
 - The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.

Factored Posterior (Landmarks)

landmark positions

Does this help to solve the problem?

Factored Posterior (Landmarks)

Mapping using Landmarks

Knowledge of the robot's true path renders landmark positions conditionally independent

Factored Posterior

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

Robot path posterior (localization problem)

Conditionally independent landmark positions

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) =$$

$$p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

- This factorization is also called Rao-Blackwellization
- Given that the second term can be computed efficiently, particle filtering becomes possible!

FastSLAM

- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2
 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs

FastSLAM - Action Update

FastSLAM - Sensor Update

FastSLAM - Sensor Update

FastSLAM - Video

FastSLAM Complexity

 Update robot particles based on control u_{t-1} O(N)
Constant time per particle

Incorporate observation z_t into Kalman filters

O(N•log(M))
Log time per particle

Resample particle set

O(N•log(M))
Log time per particle

N = Number of particlesM = Number of map features

O(N•log(M))
Log time per particle

Data Association Problem

Which observation belongs to which landmark?

- A robust SLAM must consider possible data associations
- Potential data associations depend also on the pose of the robot

Multi-Hypothesis Data Association

 Data association is done on a per-particle basis

Per-Particle Data Association

Was the observation generated by the red or the blue landmark?

P(observation|red) = 0.3

P(observation|blue) = 0.7

- Two options for per-particle data association
 - Pick the most probable match
 - Pick an random association weighted by the observation likelihoods
- If the probability is too low, generate a new landmark

Results – Victoria Park

- 4 km traverse
- < 5 m RMS position error
- 100 particles

Blue = GPS Yellow = FastSLAM

Results – Victoria Park

Results - Data Association

Results – Accuracy

Grid-based SLAM

- Can we solve the SLAM problem if no pre-defined landmarks are available?
- Can we use the ideas of FastSLAM to build grid maps?
- As with landmarks, the map depends on the poses of the robot during data acquisition
- If the poses are known, grid-based mapping is easy ("mapping with known poses")

Mapping using Raw Odometry

Mapping with Known Poses

Mapping with known poses using laser range data

$$p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) =$$

$$p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t})$$

This is localization, use MCL

Use the pose estimate from the MCL part and apply mapping with known poses

A Graphical Model of Rao-Blackwellized Mapping

Rao-Blackwellized Mapping

- Each particle represents a possible trajectory of the robot
- Each particle
 - maintains its own map and
 - updates it upon "mapping with known poses"
- Each particle survives with a probability proportional to the likelihood of the observations relative to its own map

Particle Filter Example

map of particle 2

Problem

- Each map is quite big in case of grid maps
- Since each particle maintains its own map
- Therefore, one needs to keep the number of particles small

Solution:

Compute better proposal distributions!

• Idea:

Improve the pose estimate **before** applying the particle filter

Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose and map relative to the (i-1)-th pose and map

$$\hat{x}_t = \arg\max_{x_t} \ \left\{ p(z_t \mid x_t, \hat{m}_{t-1}) \cdot p(x_t \mid u_{t-1}, \hat{x}_{t-1}) \right\}$$
 current measurement robot motion map constructed so far

Motion Model for Scan Matching

Mapping using Scan Matching

FastSLAM with Improved Odometry

- Scan-matching provides a locally consistent pose correction
- Pre-correct short odometry sequences using scan-matching and use them as input to FastSLAM
- Fewer particles are needed, since the error in the input in smaller

Graphical Model for Mapping with Improved Odometry

FastSLAM with Scan-Matching

FastSLAM with Scan-Matching

FastSLAM with Scan-Matching

Comparison to Standard FastSLAM

- Same model for observations
- Odometry instead of scan matching as input
- Number of particles varying from 500 to 2.000
- Typical result:

Further Improvements

- Improved proposals will lead to more accurate maps
- They can be achieved by adapting the proposal distribution according to the most recent observations
- Flexible re-sampling steps can further improve the accuracy.

Improved Proposal

 The proposal adapts to the structure of the environment

Selective Re-sampling

 Re-sampling is dangerous, since important samples might get lost (particle depletion problem)

 In case of suboptimal proposal distributions re-sampling is necessary to achieve convergence.

Key question: When should we resample?

Number of Effective Particles

$$n_{eff} = \frac{1}{\sum_{i} \left(w_t^{(i)}\right)^2}$$

- Empirical measure of how well the goal distribution is approximated by samples drawn from the proposal
- $lacktriangleq n_{e\!f\!f}$ describes "the variance of the particle weights"
- $lack n_{\it eff}$ is maximal for equal weights. In this case, the distribution is close to the proposal

Resampling with Neff

• Only re-sample when n_{eff} drops below a given threshold (n/2)

See [Doucet, '98; Arulampalam, '01]

Typical Evolution of n_{eff}

Intel Lab

15 particles

- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

Intel Lab

15 particles

 Compared to FastSLAM with Scan-Matching, the particles are propagated closer to the true distribution

Outdoor Campus Map

- 30 particles
- 250x250m²
- 1.088 miles (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map

Outdoor Campus Map - Video

MIT Killian Court

The "infinite-corridor-dataset" at MIT

MIT Killian Court

MIT Killian Court - Video

Conclusion

- The ideas of FastSLAM can also be applied in the context of grid maps
- Utilizing accurate sensor observation leads to good proposals and highly efficient filters
- It is similar to scan-matching on a per-particle base
- The number of necessary particles and re-sampling steps can seriously be reduced
- Improved versions of grid-based FastSLAM can handle larger environments than naïve implementations in "real time" since they need one order of magnitude fewer samples

More Details on FastSLAM

- M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to simultaneous localization and mapping, AAAI02
- D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements, IROS03
- M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit. FastSLAM 2.0: An Improved particle filtering algorithm for simultaneous localization and mapping that provably converges. IJCAI-2003
- G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling, ICRA05
- A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultanous localization and mapping without predetermined landmarks, IJCAI03