

Array of Things: Characterizing low-cost air quality sensors for a city-wide instrument

Mark J Potosnak¹, Pinaki Banerjee², Rajesh Sankaran³, Veerabhadra Rao Kotamarthi³, Robert L Jacob³, Peter H Beckman³ and Charlie Catlett³ ¹DePaul University, Chicago, IL, US; ²Cook County, Department of Environment and Sustainability, Chicago, IL, US, ³Argonne National Laboratory, Argonne, IL, US mark.potosnak@depaul.edu

Abstract

The Array of Things (AoT) is a collaborative effort among leading scientists, universities, local government and communities in Chicago to collect real-time data on the city's environment, infrastructure, and activity for research and public use. The AoT is composed of nodes that will measure and sense the urban environment of Chicago and provide openly accessible data in near real time. One component of each node is the ChemSense board, which uses chemical sensors to measure five gas-phase species: ozone, nitrogen dioxide, carbon monoxide, sulfur dioxide and hydrogen sulfide. In addition, the ChemSense board provides information on total reducing gases and total oxidizing gases. The nodes also include meteorological information and cameras that will provide pedestrian and traffic counts using computer vision algorithms. Because the ChemSense boards rely on low-cost sensors, characterizing the sensor responses is critical to understanding the applicability of the AoT for urban air quality issues. As a first step, a node with the ChemSense board was installed at an EPA air quality monitoring site within the City of Chicago, which is run by the Cook County Department of Environment and Sustainability. The EPA site has Federal Reference Method monitors for ozone, nitrogen dioxide and sulfur dioxide. After collecting collocation data for seven months, the results are promising for ozone, but much less so for sulfur dioxide. For nitrogen dioxide, unexplained spikes not observed in the EPA data drive a poor fit. Results from the collocation project will be used to consider larger issues for characterizing the air quality component of the AoT.

Cutaway view of current AoT node configuration showing sensors. Sensor pod is expandable to accommodate new experiments; deployment in groups of 100 supports rapid evolution of sensor complement and edge computing hardware.

Initial 105 AoT node locations, showing that locations are selected in groups as part of specific science investigations.

Current (red) and 60 of 100 additional planned (blue) AoT nodes. Both 1km and 2km buffers are shown, illustrating that even with 200 nodes over 95% of Chicago's residents will live within 2km of a node and over 75% will live within 1km. (GIS map created by A. Laha, Center for Spatial Data Science, University of Chicago)

Long-term goal

librate the entire AoT instrument

- Focus on the spatial aspect of the data
- Key: how to separate real events from noisy sensors
- One person's noise is another person's data!

Methodology

Short-term goal

- Characterize the individual boards • Assume response is linear:
- Zero (temperature dependent) Span
- Cross sensitivities
- NO2 and ozone, for example

Linear model

Chemsense board installed on AoT nodes

- Nitrogen dioxide
- Ozone Carbon monoxide
- Sulfur dioxide
- Hydrogen sulfide
- Respiratory irritants
- Indoor Air Quality

Need to consider and characterize different types of error

Accept will be larger than

reference instruments

Systematic error Zero and span Trends

Residual NO2 [ppb] Mar 01 - May 10

Spikes Attribution?

Collocation site

Random error

EPA air quality site run by Cook County

- About 2 miles SW of Midway airport
- Most complete suite of measurements within

Mostly residential the city

EPA Federal Reference Method (FRM) site

- Gas-phase species
- Ozone, NO2, SO2 Also particulate matter
- Data available from EPA
- https://aqs.epa.gov/api

Collocation approach

- Close (< 4 m) to EPA inlet
- Begin with calibration from manufacturer
- Background current (zero)
- Span value (slope)
- Zero depends on temperature (manufacturer's algorithm)

NO₂ Results

- Consider first, because of cross sensitivity to ozone
- $O3_{current} = f(O3, NO2)$ • $NO2_{current} = f(NO2)$
- Essentially • $[O3] = O3_{current} - NO2_{current}$

Gaps in EPA NO2 data

- Instrument issue during June and July
- Currently, data only available until end of September

Residuals: NO2 (AoT – EPA FRM)

NO2 overall fit

Spikes are killing r²

Temperature

Residual NO2 [ppb] Mar 01 - Oct 01

Humidity (absolute, relative)

Residuals and spikes have no obvious correlation

Spikes do occur mostly during the day

NO2 [ppb] Mar 01 - Oct 01

Residual NO2 [ppb] Mar 01 - Oct 01

Hour of day [GMT]

O₃ Results

- Consider second, because of cross sensitivity to NO2
- Recall that Ozone depends on NO2

O3 overall fit

 Spikes are still lowering r², but can be removed • During shorter comparison without NO2 spikes, r² approaches 0.80

Number of Days 8-hr Ozone Daily Max > 0.070 ppr

in Chicago-Naperville-Elgin, IL-IN-WI

Ozone [ppb] Mar 01 - Jul 01

 Fit over entire record, using a filter to remove negative spikes, approaches $r^2 = 0.6$

Residual NO2 [ppb] May 01 - May 07

NO2 spikes Occur on warm days, but other warm days do not

Residual NO2 [ppb] Mar 01 - Oct 01

have spikes Spikes do occur mostly during the day

Conclusions

- Results for ozone are very promising For periods without NO2 spikes, very good fit
- Good enough to evaluate spatial issues
- Lake effect breeze

compensate

Back to the big picture

- Understand that sensors won't be perfect
- Our goal is to characterize the individual sensors
- Use the spatial power of AoT to do unique science
- If we know the error of individual sensors, can use spatial data analysis techniques to
- Key is evaluating if data spikes are real or spurious

Acknowledgements

Array of Things (AoT) is funded through a Major Research Instrumentation grant from the U.S. National Science Foundation (NSF #1532133; supported by NSF CISE, ENG, and OIA). AoT costsharing partners include the City of Chicago, the University of Chicago, AT&T, Cisco, Intel, Microsoft, Motorola Solutions, and Schneider Electric. AoT technology partners include JCDecaux, Sidewalk Labs, Astronics, and Surya Electronics. The AoT project would not be possible without the extensive support from Argonne's Director, Office of the Director, and Associate Director for Computing, Environment, and Life Sciences; the City of Chicago Department of Innovation and Technology, Department of Transportation, and City of Chicago Mayor and Office of the Mayor.

Manufacturer information

SPEC Sensors/KWJ Engineering, engineering contact David Peaslee https://www.spec-sensors.com/