

Applied Mathematical Finance I

Lecture 1: Introduction and Mathematical Prerequisites

Vladimir Shangin

Vega Institute Foundation

September 14, 2023

What is this course about?

- In this course, we will focus on theory and practice of interest rate and credit derivatives.
- To give some flavour, here are some questions that we are going to answer during the course
 - What are common types of interest rate and credit derivatives?
 - How are they valued and hedged?
 - What are popular interest rate models and how are they calibrated in practice?
 - What changed with the global financial crisis of 2007-08?
 - In view of LIBOR Transition, what is the new generation of products and models?

Motivation

- Consider a derivative contract with final payoff depending on a future realization of the Key Rate of the Central Bank of Russia. How it can be hedged?
- In case of equity derivative, a trader would hedge market risk by taking an offsetting position in underlying stock (delta-hedging).
- Interest rate, however, does not represent a price of a traded asset so one cannot directly buy or sell interest rate for hedging purposes.
- Our goal is to develop arbitrage-free pricing theory for fixed-income markets and today we briefly discuss some fundamentals of derivatives pricing.

General Setup

- We consider an economy with continuous and frictionless trading activity over a finite time interval [0, T].
- Uncertainty is modelled via a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- Information flow is represented by a filtration $\mathbb{F} + \{\mathcal{F}_t, 0 \leq t \leq T\}$, a family of sub- σ -algebras such that $\mathcal{F}_s \subseteq \mathcal{F}_t$ for $s \leq t$ and $\mathcal{F} = \mathcal{F}_T$. For technical reasons, we require that the filtration satisfies the usual conditions*.
- The state of economy at time t is given by a vector of prices of n dividend-free assets $S_t = (S_t^1, \dots S_t^n)^\mathsf{T}$.
- Process S is assumed to be adapted to \mathbb{F} meaning that S_t is fully observable at t.

Trading Strategies

- A trading strategy is a progressively measurable process $\phi = (\phi^1, \ldots, \phi^n)^{\mathsf{T}}$. Interpretation: ϕ^i_t denotes the number of units of the i-th asset held in the portfolio at time t.
- ullet The value V_t of the trading strategy ϕ at time t is defined as $V_t = \boxed{\phi_t^\intercal \cdot S_t}$.
- Trading gains (or losses) over a small time interval [t, t+dt] are $\phi_t^\intercal \cdot (S_{t+dt} S_t)$.
- When continuously rebalancing the portfolio over time interval (t) T, the total profit and loss (P&L) become

To proceed, let us briefly recall some relevant mathematical concepts.

Driving Process

- We will consider a special case of the abstract setup above where information is generated by standard k-dimensional Wiener process $W_t = \left(W_t^1, \dots W_t^k\right)^{\mathsf{T}}$

 - \circ W^i is independent of W^j for $i \neq j$. \circ Independent Gaussian increments $W^i_t W^i_s \sim \mathcal{N}(0, t-s)$ for $s \leq t$. \circ Each component W^i is a continuous process starting at 0.
- Normally, filtration \mathbb{F} is the one generated by W (possibly augmented)

$$\mathcal{F}_t = \mathcal{F}_t^W = \sigma\{W_s, \ 0 \le s \le t\}.$$

Martingales and Local Martingales

• Let X be a real-valued adapted process with $\mathbb{E}^{\mathbb{P}}|X_t|<\infty$ for all $t\in[0,T]$, where $\mathbb{E}^{\mathbb{P}}$ denotes expectation under measure $\mathbb{P}.$ X is called a \mathbb{P} -martingale on [0,T] if

$$\mathbb{E}^{\mathbb{P}}_{\mathcal{S}}[X_t] = \mathbb{E}^{\mathbb{P}}(\widehat{X_t}) \mathbb{F}_s = X_s \quad \text{a. s.}$$
 for all $0 \le s \le t \le T$.
$$\forall \epsilon \qquad \{ \ \forall c \in \mathcal{F}_c \} \in \mathcal{F}_c \}$$

- Interpretation: "best" prediction of a future state X_t is its current value X_s .
- The notion of a martingale can be generalized in the following way. X is said to be a local martingale (under \mathbb{P}) if there exists a sequence of stopping times $\{\tau_n\}_{n=1}^{\infty}$ with $\tau_n \to T$ a. s. when $n \to \infty$, such that $X_{t \wedge \tau_n} = X_{\min\{t,\tau_n\}}$ is a martingale.
- Note that local martingales are not necessarily integrable.

Quadratic Variation and Covariation

• For a stochastic process $X: \mathbb{R}_+ \times \Omega \to \mathbb{R}$, quadratic variation $\langle X \rangle_t$ over [0,t] is defined as

$$\int \langle X \rangle_t = \lim_{\|P_n\| \to 0} \sum_{i=1}^n (X_{t_i} - X_{t_{i-1}})^2, \quad \longrightarrow$$

where $P_n = \{t_0, t_1, \dots, t_n\}$ is a partition of the interval [0, t] and $\|P_n\|=\max_{1\leq i\leq n}(t_i-t_{i-1})$ is the mesh. It is only required that the limit exists under convergence in probability.

- Recall that for standard one-dimensional Brownian motion B we have $(B)_t = (t)$
- Quadratic covariation $\langle X,Y\rangle_t$ of two processes X and Y can be defined via polarization identity $\angle Y Y = G_{M} + \sum (X_{t_i} X_{t_{i-1}})(Y_{t_i} Y_{t_{i-1}})$

$$\langle X,Y\rangle_t = \frac{1}{2} \left(\langle X+Y\rangle_t - \langle X\rangle_t - \langle Y\rangle_t \right).$$
 $\langle X\rangle = \langle X\rangle_t$

Stochastic Integral

• As we have already seen, P&L of a portfolio over interval [0,t] is given by

and hence stochastic integration plays a central role in quantitative finance.

- How do we define stochastic integral $\int_0^t \sigma_s dB_s$, where B is standard one-dimensional Brownian motion?
- First thing to note, is that it cannot be defined pathwise (for fixed $\omega \in \Omega$) as a Riemann–Stieltjes integral because of infinite-variation of B on [0,t]

Stochastic Integral (continued)

 While stochastic integral cannot be defined as the almost sure limit, we can resort to other notions of convergence of random variables.

• Now consider for the moment $\int_0^t (B_s) dB_s$. Define

Note that

$$L^2 - \lim(\underbrace{R_n - L_n}) = L^2 - \lim\left(\underbrace{\sum_{i=1}^n (B_{t_k} - B_{t_{k-1}})^2}\right) \neq \langle B \rangle_t = t \neq 0.$$

 Therefore, we expect stochastic integral to depend on the choice of points at which the integrand is evaluated. What choice should we make?

Itô Integral

- Recall that P&L of a trading strategy ϕ over [t, t+dt] is ϕ_t^\intercal $(S_{t+dt}-S_t)$
- This suggests using left endpoint of each subinterval as the evaluation point of the integrand which leads to the notion of the Itô Integral.
- Itô integral $\int_0^t \sigma_s \, dB_s$ can be defined for any real-valued progressively measurable process σ such that $\int_0^t |\sigma_s|^2 \, ds < \infty$ a.s. but in general case construction is rather involved.
- For our needs, it is sufficient to assume that σ is $[RCLL^*]$ adapted process in which case Itô integral can be seen as

$$\int_{0}^{t} \sigma_{s} dB_{s} = \lim_{\|P_{n}\| \to 0} \sum_{i=1}^{n} \sigma_{t_{i-1}} (B_{t_{i}} - B_{t_{i-1}}),$$

where the limit is understood in the sense of convergence in probability.

Multidimensional Itô Integral

• Let $\sigma: \mathbb{R}_+ \times \Omega \to \mathbb{R}^{n \times k}$ be an adapted process such that for all $t \in [0,T]$

where $|\sigma_s| = ||\sigma_s||_F = \sqrt{\text{tr}(\sigma_s \cdot \sigma_s^\intercal)}$ is the Frobenius norm. In this case we say that σ is in \mathcal{L}^2_{ad} .

Now define

$$X_t = \int_0^t \sigma_s \, dW_s = \int_0^t \left(\begin{array}{c} \sigma_s^{11} & \cdots & \sigma_s^{1k} \\ \vdots & \ddots & \vdots \\ \sigma_s^{n1} & \cdots & \sigma_s^{nk} \end{array} \right) \left(\begin{array}{c} dW_s^1 \\ \vdots \\ dW_s^k \end{array} \right)$$

as a vector-valued process with $\mathbf{X}_t^i = \sum_{j=1}^k \int_0^t \sigma_s^{ij} dW_s^j$.

Properties of multidimensional Itô Integral

- Define $I_t = \int_0^t \sigma_s \, dW_s$ where $\sigma: \mathbb{R}_+ \times \Omega \to \mathbb{R}^{n \times k}$ is in \mathcal{L}^2 We have
 - \circ I_t is \mathcal{F}_t -measurable.
 - \circ I_t is a continuous (ocal martingale.
- Define a space \mathcal{H}^2_{ad} $\subset \mathcal{L}^2_{ad}$ as a set of processes σ such $\mathbb{E}^{\mathbb{P}}\left(\int_0^T |\sigma_s|^2 \, ds\right) < \infty$. We then have for $\sigma \in \mathcal{H}^2_{ad}$
 - \circ I_t is a true martingale and, in particular, $\mathbb{E}^{\mathbb{P}}I_t=0$ for all $t\in[0,T]$.
 - \circ Itô isometry: $\mathbb{E}^{\mathbb{P}}\left|I_{t}
 ight|^{2}=\mathbb{E}^{\mathbb{P}}\!\!\left(\left(\int_{0}^{t}\left|\sigma_{s}
 ight|^{2}ds\right)\right)$

Itô Process

• An adapted continuous n-dimensional process X is called an Itô process if it admits a representation

$$X_t = X_0 + \int_0^t \mu_s \, ds + \int_0^t \sigma_s \, dW_s, \quad \text{a.s.}, \quad \forall t \in [0, T], \tag{1}$$

where stochastic processes $\mu: \mathbb{R}_+ \times \Omega \to \mathbb{R}^n$ and $\sigma: \mathbb{R}_+ \times \Omega \to \mathbb{R}^{n \times k}$ are assumed to satisfy suitable integrability conditions.

It is customary to represent the <u>above formula using</u> the differential notation as

$$\int dX_t = \mu_t dt + \sigma_t dW_t.$$

Integration with respect to Itô process is defined via

$$\underbrace{\int_0^t Y_s dX_s} = \int_0^t Y_s \mu_s ds + \int_0^t Y_s \sigma_s dW_s,$$

where $Y: \mathbb{R}_+ \times \Omega \to \mathbb{R}^{m \times n}$.

Itô's Lemma: One-dimensional Case

• Given a function $f:[0,T] imes\mathbb{R} o\mathbb{R}$ and a scalar Itô process X

$$dX_t = \mu_t dt + \sigma_t dW_t,$$

the question is whether the process $Y_t = f(t, X_t)$ is an Itô process.

• Suppose that $f \in C^{1,2}$. Then $Y_t = f(t, X_t)$ is an Itô process such that

$$\left(\underbrace{dY_t} \right) = \underbrace{\frac{\partial f}{\partial t} (t, X_t) dt + \frac{\partial f}{\partial x} (t, X_t) dX_t}_{t} + \underbrace{\frac{1}{2} \frac{\partial^2 f}{\partial x^2} (t, X_t) d\langle X \rangle_t}_{t},$$

where quadratic variation of X is given by

$$dX^2 = 6^2 dt \quad | \langle X \rangle_t = \int_0^t \sigma_s^2 ds. \qquad dY = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dx$$

• We usually simply write the above relation as $dX_t^2 = \sigma_t^2 dt$.

Itô's Lemma: Multidimensional Case

• Now consider $f:[0,T]\times\mathbb{R}^n\to\mathbb{R}, f\in C^{1,2}$, and assume that X is given by formula (1). Then $Y_t=f(t,X_t)$ is an Itô process such that

$$dY_{t} = \frac{\partial f}{\partial t}(t, X_{t}) dt + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(t, X_{t}) dX_{t}^{i} + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(t, X_{t}) \underbrace{d\langle X^{i}, X^{j} \rangle_{t}}_{t},$$

where

$$(X^i, X^j)_t = \int_0^t \sum_{l=1}^k \sigma_s^{il} \sigma_s^{jl} ds.$$

• In particular, taking $f(x_1,x_2)=x_1x_2$, we get Itô product rule for scalar processes X and Y

$$d(X_tY_t) = \underbrace{X_t dY_t + Y_t dX_t}_{d\langle X, Y \rangle_t} \cdot \underbrace{d\langle X, Y \rangle_t}_{d\langle X, Y \rangle_t}$$

Stochastic Differential Equations

- Usually, we restrict our attention to the case where both coefficients $\underline{\mu}$ and $\underline{\sigma}$ in (1) are deterministic measurable functions of time and state.
- In other words, we consider stochastic differential equation (SDE) of the form

$$\int dX_t = \underbrace{\mu(t, X_t)} dt + \underbrace{\sigma(t, X_t)} dW_t, \quad X_0 = x \in \mathbb{R}^n.$$

• A strong solution to the SDE is an Itô process X adapted to \mathcal{F}_t^W and satisfying

$$X_t \in \mathcal{F}_t$$

$$\left(X_t = x + \int_0^t \mu(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dW_s.\right)$$

• As is well known, if $\mu(t,x)$ and $\sigma(t,x)$ satisfy the Lipschitz and linear growth condition in x, then there exists a unique solution to the SDE above. Moreover, it is a Markov process.

Self-financing Strategies

- Now that the basics are covered, let us get back to our setup.
- A trading strategy ϕ is said to be self-financing if, for any $t \in [0,T]$, its value $V_t = \phi_t^\intercal \cdot S_t$ satisfy

$$\int V_t - V_0 = \int_0^t \phi_u^\intercal dS_u,$$
 $\int \int dV_t = \phi_t^\intercal dS_t.$

or, in differential notation,

- Interpretation: changes in portfolio value are only due to trading gains or losses, with no funds being added or withdrawn.
- ullet We denote by Φ the class of all self-financing strategies.

Arbitrage

- By arbitrage we generally mean a possibility to create "something for nothing".
- Formally, an arbitrage opportunity is a self-financing strategy $\phi \in \Phi$ for which $V_0=0$ and, for some $t\in [0,T]$,

 In economic equilibrium, arbitrage should not exist and requiring the absence of arbitrage strategies is a starting point of asset pricing.

 ≥ 0 a. s., and $\mathbb{P}(V_t>0)>0$.

Market Model

• We assume the dynamics of the price vector (S, a) regiven by an Itô process

$$dS_t = \int dt + \int dW_t, \quad S_0 = s.$$

- By market model we mean a pair (S, Ψ) , where $\Psi \subseteq \Phi$ is a set of all "allowable" self-financing trading strategies.
- It turns out that arbitrage opportunities are not excluded a priori from Φ and hence (S, Φ) is generally not free of arbitrage even for simple choice of model dynamics.
- This means that we have to impose some additional restrictions on the set of allowed trading strategies to get a meaningful model.

Equivalent Measures and Radon-Nikodym Theorem

- We now turn to the question of characterizing the conditions under which market model is arbitrage-free.
- First, we recall that two probability measures $\mathbb P$ and $\hat{\mathbb P}$ (on the same measurable space) are said to be equivalent ($\mathbb P\sim\hat{\mathbb P}$) if they have the same null-sets

$$\mathbb{P}(B) = 0 \iff \hat{\mathbb{P}}(B) = 0, \quad \forall B \in \mathcal{F}.$$

• Radon-Nikodym Theorem Suppose that $\mathbb{P} \sim \hat{\mathbb{P}}$. There exists a unique (a.s.) random variable ξ , which is called a Radon-Nikodym derivative and is usually denoted as $d\mathbb{P}$, such that

• Of course, we must have $d\hat{\mathbb{P}} \geq 0$ s. and $\mathbb{E}^{\mathbb{P}} \left[\frac{d\hat{\mathbb{P}}}{d\mathbb{P}} \right] = 1$.

 $\int_{B} \xi \, d\mathbb{P}, \forall B \in \mathcal{F}. \quad \mathbf{1} = \widehat{\mathbb{P}}(\mathcal{SL}) = \int \mathcal{F} d\mathbb{P} - \mathcal{F}$

Numéraires and Equivalent Martingale Measures

- A numéraire N is any self-financing strategy such that its value N_t is strictly positive for all $t \in [0, T]$.
- A measure $\mathbb{Q}^N \sim \mathbb{P}$ is called an equivalent martingale measure induced by N if the normalized asset process S is a \mathbb{Q}^N -martingale.
- Note that a normalized price $\frac{V}{N}$ of an arbitrary self-financing portfolio $\phi \in \Phi$ will generally only be a local martingale under \mathbb{Q}^N

First Fundamental Theorem of Asset Pricing

- Let N be a numéraire and \mathbb{Q}^N be a corresponding martingale measure.
- We are now ready to define "allowable" strategies. Self-financing strategy ϕ is called permissible if its normalized price process N s a true \mathbb{Q}^N -martingale. We denote by $\Psi(N)$ the set of all permissible strategies.

Sufficient Condition for No-Arbitrage If there exists a martingale measure \mathbb{Q}^N corresponding to some numéraire N then market model $(S,\Psi(N))$ is free of arbitrage.

Derivative Securities

- A derivative security (contingent claim) with maturity T is an \mathcal{F}_T -measurable random variable \mathcal{X}_T .
- Interpretation: stochastic payoff at T and no payments before T.
- We say that derivative security \mathcal{X}_T is attainable if there exists a permissible trading strategy ϕ such that

• The trading strategy ϕ in the above formula is said to replicate the derivative security.

Derivatives Pricing

- Consider a numérair (N) inducing a martingale measur (N)price of an attainable contingent claim \mathcal{X}_T at time t.
- No-arbitrage principle implies that π_t must be equal to the value of the replicating portfolio V_t . Since the replicating portfolio is not yet know explicitly (we only know it exists), how do we actually compute π_t ? deflated
- By the First Fundamental Theorem of Asset Pricing

and therefore

Complete Markets

• If all contingent claims (\mathcal{X}_T) with finite variance can be replicated, the market model is said to be complete.

- Interpretation: in complete markets derivative securities are redundant in a sense that they can be created synthetically by trading the underlying assets S^1, \ldots, S^n .
- Second Fundamental Theorem of Asset Pricing In the absence of arbitrage, a market model is complete if and only if there exists a numéraire N inducing the unique martingale measure \mathbb{Q}^N .

