SEMAINE DU 19/09 AU 23/09

1 Cours

Espaces vectoriels normés

Normes Définition. Rappel sur les normes euclidiennes. Normes usuelles sur \mathbb{K}^n :

$$||x||_1 = \sum_{i=1}^n |x_i| \qquad ||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2} \qquad ||x||_\infty = \max_{1 \le i \le n} |x_i|$$

Norme de la convergence uniforme sur l'espace des applications bornées sur un ensemble X à valeurs dans \mathbb{K} . Normes usuelles sur $\mathcal{C}^0([a,b],\mathbb{K})$:

$$||f||_1 = \int_a^b |f(t)| dt \qquad ||f||_2 = \sqrt{\int_a^b |f(t)|^2 dt} \qquad ||f||_\infty = \max_{[a,b]} |f|$$

Distance associée à une norme. Boules et sphères. Définition de la convexité d'une partie d'un \mathbb{R} -espace vectoriel. Convexité des boules. Equivalence de normes. Toutes les normes d'un espace vectoriel de dimension finie sont équivalentes. Partie bornée, application bornée. Produit d'espaces vectoriels normés : norme produit.

2 Méthodes à maîtriser

- Pour montrer qu'une application est une norme, on peut essayer de l'exprimer à l'aide d'une norme connue.
- Calculer une norme uniforme d'une suite ou d'une fonction par une étude de cette suite ou de cette fonction.
- Pour montrer que deux normes N_1 et N_2 ne sont pas équivalentes, on exhibe une suite u tel que $\frac{N_2(u_n)}{N_1(u_n)}$ tende vers 0 ou $+\infty$.

3 Questions de cours

Normes sur \mathbb{K}^n Montrer que pour tout $x \in \mathbb{K}^n$,

$$\|x\|_{\infty} \le \|x\|_1 \le n\|x\|_{\infty} \qquad \qquad \|x\|_{\infty} \le \|x\|_2 \le \sqrt{n}\|x\|_{\infty} \qquad \qquad \|x\|_2 \le \|x\|_1 \le \sqrt{n}\|x\|_2$$

Normes sur $\mathcal{C}^0([a,b],\mathbb{K})$ Montrer que pour tout $f \in \mathcal{C}^0([a,b],\mathbb{K})$,

$$||f||_1 \le (b-a)||f||_{\infty} \qquad ||f||_2 \le \sqrt{b-a}||f||_{\infty} \qquad ||f||_1 \le \sqrt{b-a}||f||_2$$

Normes sur $\mathcal{C}^0([a,b],\mathbb{K})$ Montrer que les normes $\|\cdot\|_{\infty}, \|\cdot\|_1$ et $\|\cdot\|_2$ ne sont pas équivalentes entre elles.

Distance à une partie Soit A une partie non vide d'un espace vectoriel normé $(E, \|\cdot\|)$. On pose $d(x, A) = \inf_{a \in A} \|x - a\|$ pour $x \in E$. Montrer que

$$\forall (x, y) \in E^2, |d(x, A) - d(y, A)| \le ||x - y||$$