Distributed MAP Inference for Undirected Graphical Models

Sameer Singh¹ Amarnag Subramanya² Fernando Pereira² Andrew McCallum¹

¹University of Massachusetts, Amherst MA

²Google Research, Mountain View CA

Workshop on Learning on Cores, Clusters and Clouds (LCCC)

Neural Information Processing Systems (NIPS) 2010

Motivation

- Graphical models are used in a number of information extraction tasks
- · Recently, models are getting larger and denser
 - Coreference Resolution [CULOTTA ET AL. NAACL 2007]
 - Relation Extraction [Riedel et al. EMNLP 2010, Poon & Domingos EMNLP 2009]
 - Joint Inference [Finkel & Manning. NAACL 2009, Singh et al. ECML 2009]
- Inference is difficult, and approximations have been proposed
 - LP-Relaxations [Martins et al. EMNLP 2010]
 - Dual Decomposition [RUSH ET AL. EMNLP 2010]
 - MCMC-Based [McCallum et al. NIPS 2009, Poon et al. AAAI 2008]

Motivation

- Graphical models are used in a number of information extraction tasks
- Recently, models are getting larger and denser
 - Coreference Resolution [CULOTTA ET AL. NAACL 2007]
 - Relation Extraction [Riedel et al. EMNLP 2010, Poon & Domingos EMNLP 2009]
 - Joint Inference [Finkel & Manning. NAACL 2009, Singh et al. ECML 2009]
- Inference is difficult, and approximations have been proposed
 - LP-Relaxations [Martins et al. EMNLP 2010]
 - Dual Decomposition [Rush et al. EMNLP 2010]
 - MCMC-Based [McCallum et al. NIPS 2009, Poon et al. AAAI 2008]

Without parallelization, these approaches have restricted scalability

Motivation

Contributions:

- 1 Distribute MAP Inference for a large, dense factor graph
 - 1 million variables, 250 machines
- 2 Incorporate sharding as variables in the model

Outline

- Model and Inference
 Graphical Models
 MAP Inference
 Distributed Inference
- 2 Cross-Document Coreference Coreference Problem Pairwise Model Inference and Distribution
- 3 Hierarchical Models Sub-Entities Super-Entities
- 4 Large-Scale Experiments

Factor Graphs

Model and Inference

Represent distribution over variables Y using factors ψ .

$$p(Y = y) \propto \exp \sum_{y_c \subseteq y} \psi_c(y_c)$$

Note: Set of factors is different of every assignment Y = y ($\{\psi\}_{\nu}$)

Factor Graphs

Model and Inference

Represent distribution over variables Y using factors ψ .

$$p(Y = y) \propto \exp \sum_{y_c \subseteq y} \psi_c(y_c)$$

Note: Set of factors is different of every assignment Y = y ($\{\psi\}_{\nu}$)

Factor Graphs

Represent distribution over variables Y using factors ψ .

$$p(Y = y) \propto \exp \sum_{y_c \subseteq y} \psi_c(y_c)$$

Note: Set of factors is different of every assignment Y = y ($\{\psi\}_y$)

MAP¹ Inference

Model and Inference

We want to find the best configuration according to the model,

$$\hat{y} = \underset{y}{\operatorname{arg max}} p(Y = y)$$

$$= \underset{y}{\operatorname{arg max}} \exp \sum_{y_c \subseteq y} \psi_c(y_c)$$

¹MAP = maximum a posteriori

Coreference

Related Work

Model and Inference

We want to find the best configuration according to the model,

$$\hat{y} = \underset{y}{\operatorname{arg max}} p(Y = y)$$

$$= \underset{y}{\operatorname{arg max}} \exp \sum_{y_c \subseteq y} \psi_c(y_c)$$

Computational bottlenecks:

- 1 Space of Y is usually enormous (exponential)
- **2** Even evaluating $\sum \psi_c(y_c)$ for each y may be polynomial

¹MAP = maximum a posteriori

Model and Inference

Initial Configuration $y = y_0$ for (num_samples):

- **1** Propose a change to y to get configuration y'(Usually a *small* change)
- **2** Acceptance probability: $\alpha(y, y') = \min \left(1, \left(\frac{p(y')}{p(y)}\right)^{1/t}\right)$ (Only involve computations local to the change)
- 3 if Toss(α): Accept the change, y = y'return y

MCMC for MAP Inference

Coreference

Model and Inference

Initial Configuration $y = y_0$ for (num_samples):

- ① Propose a change to y to get configuration y' (Usually a small change)
- **2** Acceptance probability: $\alpha(y, y') = \min \left(1, \left(\frac{p(y')}{p(y)}\right)^{1/t}\right)$ (Only involve computations local to the change)
- 3 if Toss(α): Accept the change, y = y' return y

$$\frac{p(y')}{p(y)} = \exp\left\{\sum_{y'_c \subseteq y'} \psi_c(y'_c) - \sum_{y_c \subseteq y} \psi_c(y_c)\right\}$$

Mutually Exclusive Proposals

Coreference

Model and Inference

Let $\{\psi\}_y^{y'}$ be the set of factors used to evaluate a proposal $y \to y'$

i.e.
$$\{\psi\}_y^{y'} = \left(\{\psi\}_y \cup \{\psi\}_{y'}\right) - \left(\{\psi\}_y \cap \{\psi\}_{y'}\right)$$

Consider two proposals $y o y_a$ and $y o y_b$ such that,

$$\{\psi\}_{y}^{y_{\mathrm{a}}}\cap\{\psi\}_{y}^{y_{\mathrm{b}}}=\{\}$$

Completely different set of factors are required to evaluate these proposals.

Mutually Exclusive Proposals

Coreference

Model and Inference

Let $\{\psi\}_y^{y'}$ be the set of factors used to evaluate a proposal $y \to y'$

i.e.
$$\{\psi\}_y^{y'} = \left(\{\psi\}_y \cup \{\psi\}_{y'}\right) - \left(\{\psi\}_y \cap \{\psi\}_{y'}\right)$$

Consider two proposals $y o y_a$ and $y o y_b$ such that,

$$\{\psi\}_{y}^{y_{\mathrm{a}}}\cap\{\psi\}_{y}^{y_{\mathrm{b}}}=\{\}$$

Completely different set of factors are required to evaluate these proposals.

These two proposals can be evaluated (and accepted) in parallel.

Distributed Inference

0000

Distributed Inference

Distributed Inference

Outline

- Model and Inference
 Graphical Models
 MAP Inference
 Distributed Inference
- 2 Cross-Document Coreference Coreference Problem Pairwise Model Inference and Distribution
- 3 Hierarchical Models Sub-Entities Super-Entities
- 4 Large-Scale Experiments

Coreference Problem

... The Physiological Basis of Politics," by Kevin B. Smith, Douglas Oxley, Matthew Hibbing...

...during the late 60's and early 70's, Kevin Smith worked with several local...

...the term hip-hop is attributed to Lovebug Starski. What does it actually mean...

The filmmaker Kevin Smith returns to the role of Silent Bob ...

Nothing could be more irrelevant to Kevin Smith's audacious "Dogma" than ticking off...

Firefighter Kevin Smith spent almost 20 years preparing for Sept. 11. When he...

Like Back in 2008, the Lions drafted Kevin Smith, even though Smith was badly...

...shorthanded backfield in the wake of Kevin Smith's knee injury, and the addition of Haynesworth...

...were coming," said Dallas cornerback Kevin Smith. "We just didn't know when...

BEIJING, Feb. 21- Kevin Smith, who played the god of war in the "Xena"...

Coreference Problem

The Physiological Basis of Politics," by Kevin B. Smith , Douglas Oxley, Matthew Hibbing	-	Set 1	\supset	
during the late 60's and early 70's, Kevin Smith worked with several local		Set 2		
the term hip-hop is attributed to Lovebug Starski . What does it actually mean	_	261.2		
The filmmaker Kevin Smith returns to the role of Silent Bob	$\overline{}$	Set 3		
Nothing could be more irrelevant to Kevin Smith 's audacious "Dogma" than ticking off			_	
Firefighter Kevin Smith spent almost 20 years preparing for Sept. 11. When he	-	Set 4	\supset	
Like Back in 2008, the Lions drafted Kevin Smith , even though Smith was badly	_	Set 5		
shorthanded backfield in the wake of Kevin Smith 's knee injury, and the addition of Haynesworth				
were coming," said Dallas cornerback Kevin Smith . "We just didn't know when	$-\!\!<$	Set 6	\supset	
BELJING, Feb. 21— Kevin Smith, who played the god of war in the "Xena"	_	Set 7		

Input Features

Model and Inference

Define similarity between mentions, $\phi: \mathcal{M}^2 \to \mathcal{R}$

- $\phi(m_i, m_i) > 0$: m_i, m_i are similar
- $\phi(m_i, m_i) < 0$: m_i, m_i are dissimilar

We use cosine similarity of the context bag of words:

$$\phi(m_i, m_i) = cosSim(\{c\}_i, \{c\}_i) - b$$

 Model and Inference
 Coreference
 Hierarchical Models
 Large-Scale Experiments
 Related Work
 Conclusions

 ○○○○○
 ○○○○○
 ○○○○

Graphical Model

The random variables in our model are entities (E) and mentions (M)

Graphical Model

Coreference

Model and Inference

The random variables in our model are entities (E) and mentions (M)For any assignment to these entities (E = e), we define the model score:

$$p(E = e) \propto \exp \left\{ \sum_{m_i \sim m_j} \psi_{\mathsf{a}}(m_i, m_j) + \sum_{m_i \sim m_j} \psi_{\mathsf{r}}(m_i, m_j) \right\}$$
where $\psi_{\mathsf{a}}(m_i, m_j) = w_{\mathsf{a}}\phi(m_i, m_j)$, and
$$\psi_{\mathsf{r}}(m_i, m_j) = -w_{\mathsf{r}}\phi(m_i, m_j)$$

Graphical Model

The random variables in our model are entities (E) and mentions (M) For any assignment to these entities (E=e), we define the model score:

$$p(E = e) \propto \exp \left\{ \sum_{m_i \sim m_j} \psi_a(m_i, m_j) + \sum_{m_i \sim m_j} \psi_r(m_i, m_j) \right\}$$
where $\psi_a(m_i, m_j) = w_a \phi(m_i, m_j)$, and $\psi_r(m_i, m_j) = -w_r \phi(m_i, m_j)$

For the following configuration,

$$p(e_1, e_2) \propto \exp \left\{ \begin{array}{cc} w_a \left(\phi_{12} + \phi_{13} + \phi_{23} + \phi_{45} \right) \\ - w_r \left(\phi_{15} + \phi_{25} + \phi_{35} + \phi_{14} + \phi_{24} + \phi_{34} \right) \right\}$$

Graphical Model

Coreference

Model and Inference

The random variables in our model are entities (E) and mentions (M)For any assignment to these entities (E = e), we define the model score:

$$p(E = e) \propto \exp \left\{ \sum_{m_i \sim m_j} \psi_a(m_i, m_j) + \sum_{m_i \sim m_j} \psi_r(m_i, m_j) \right\}$$
where $\psi_a(m_i, m_j) = w_a \phi(m_i, m_j)$, and
$$\psi_r(m_i, m_j) = -w_r \phi(m_i, m_j)$$

For the following configuration,

$$p(e_1, e_2) \propto \exp \left\{ \begin{array}{cc} w_a \left(\phi_{12} + \phi_{13} + \phi_{23} + \phi_{45} \right) \\ - w_r \left(\phi_{15} + \phi_{25} + \phi_{35} + \phi_{14} + \phi_{24} + \phi_{34} \right) \right\}$$

- ① Space of E is Bell Number(n) in number of mentions
- Evaluating model score for each E = e is $O(n^2)$

MCMC for MAP Inference

$$p(e) \propto \exp\{w_a (\phi_{12} + \phi_{13} + \phi_{23} + \phi_{45})$$

$$-w_r(\phi_{15} + \phi_{25} + \phi_{35} + \phi_{14} + \phi_{24} + \phi_{34})\}$$

$$p(\acute{e}) \propto \exp\{w_a (\phi_{12} + \phi_{34} + \phi_{35} + \phi_{45})$$

$$-w_r(\phi_{15} + \phi_{25} + \phi_{13} + \phi_{14} + \phi_{24} + \phi_{23})$$

$$\log \frac{p(\acute{e})}{p(e)} = w_a (\phi_{34} + \phi_{35} - \phi_{13} - \phi_{23}) - w_r (\phi_{13} + \phi_{23} - \phi_{34} - \phi_{35})$$

000000 Mutually Exclusive Proposals

Mutually Exclusive Proposals

Mutually Exclusive Proposals

Outline

- Model and Inference Graphical Models MAP Inference Distributed Inference
- 2 Cross-Document Coreference Coreference Problem Pairwise Model Inference and Distribution
- 3 Hierarchical Models
 Sub-Entities
 Super-Entities
- 4 Large-Scale Experiments

Sub-Entities

Consider an accepted move for a mention

Sub-Entities

Model and Inference

- Ideally, similar mentions should also move to the same entity
- Default proposal function does not utilize this
- Good proposals become more rare with larger datasets

Sub-Entities

- Include Sub-Entity variables
- Model score is used to sample sub-entity variables
- Propose moves of mentions in a sub-entity simultaneously

Super-Entities

Model and Inference

- Random distribution may not assign similar entities to the same machine
- Probability that similar entities will be assigned to the same machine is small

Super-Entities

- Augment model with Super-Entities variables
- Entities in the same super-entity are assigned the same machine
- Model score is used to sample super-entity variables

Hierarchical Representation

Factors

Model and Inference

mentions

sub-entities Affinity factors between <u>sub-entities</u> in the same entities entities super-entities

Repulsion factors are similarly symmetric across levels

Hierarchical Representation

Factors

Model and Inference

- Affinity factors between
- mentions sub-entities in the same
- entities super-entities Repulsion factors are similarly symmetric across levels
- Sampling: Fix variables of two levels, sample the remaining level

sub-entities

entities

Outline

- Model and Inference Graphical Models MAP Inference Distributed Inference
- 2 Cross-Document Coreference Coreference Problem Pairwise Model Inference and Distribution
- 3 Hierarchical Models Sub-Entities Super-Entities
- 4 Large-Scale Experiments

Large-Scale Experiments

Data

Model and Inference

- New York Times Annotated Corpus [SANDHOUS LDC 2008] 20 years of articles (1987-2007)
- prune rare names (<1000): ~1 million person name mentions

Data

- New York Times Annotated Corpus [Sandhous LDC 2008]
 20 years of articles (1987-2007)
- prune rare names (<1000): \sim 1 million person name mentions

- Automated labels are too noisy for evaluation
- Instead, we estimate the speed of inference
 - trust the model to accept good proposals
 - observe the number of predicted entities

Speed of Inference

Related Work

- GraphLab [Low et al. UAI 2010]
 - how do we represent dynamic graphs
 - how do we represent hierarchical models

Related Work

- GraphLab [Low et al. UAI 2010]
 - how do we represent dynamic graphs
 - how do we represent hierarchical models
- Graph Splashing [GONZALEZ ET AL. UAI 2009]
 - graph structure changes with every configuration
 - BP messages are enormous for exponential-domain variables

Related Work

Model and Inference

- GraphLab [Low et al. UAI 2010]
 - how do we represent dynamic graphs
 - how do we represent hierarchical models
- Graph Splashing [GONZALEZ ET AL. UAI 2009]
 - graph structure changes with every configuration
 - BP messages are enormous for exponential-domain variables
- Topic Models [Smola & Narayanmurthy. VLDB 2010, Asuncion et al. NIPS 2009]
 - restrictions since they are calculating probabilities
 - we allow non-random distribution and customized proposals

Conclusions

- 1 propose distributed inference for graphical models
- 2 enable distributed cross-document coreference
- 3 improve sharding with latent hierarchical variables
- 4 demonstrate utility on large datasets

Conclusions

- propose distributed inference for graphical models
- 2 enable distributed cross-document coreference
- 3 improve sharding with latent hierarchical variables
- 4 demonstrate utility on large datasets

Future Work:

- more scalability experiments
- study mixing and convergence properties
- add more expressive factors
- supervision: labeled data, noisy evidences

Thanks!

Sameer Singh

Fernando Pereira pereira@google.com

Amarnag Subramanya asubram@google.com

Andrew McCallum mccallum@cs.umass.edu

