M	EDI-CAPS L	UNIVERSITY, INC	ORE
Department of Electronics &	Communication	Lab Session No.	Page No.
Digital Electronics	Enrol. No		Batch No.

Performance Evaluation:

Name				C IC besieve
Perfo	rming on	First Submissi	on	Second Submission
Extra	regular			
Grade a	nd Remar	ks by the Tut	or	
1.	Clarity ab	out the objec	tive of the experiment	
2.	Clarity ab	out the probl	em statement	
3.	Submitted	the work in	desired format	
4.	Shown capability to solve the problem			
5.	Contribution to the team work.			
Others:				
Grade	AB	ICIDI	F	Signature

Experiment No. 3

- 1. TITLE: Implementation of half adder and full adder circuits.
- 2. AIM:
 - a. To understand Binary addition using adder.
 - b. Implementation of Adder using logic gates.
 - c. To learn about the combinational circuits.
- 3. OBJECTIVE: After performing this experiment students will be able to understand:
 - a. The concept of binary addition and its utility.
 - b. The utility of logic gates to implement half adder, full adder.
- 4. PROBLEM STATEMENT:
 - a. To design the circuit of adder using IC7408, 7404, 7432, 7486.
 - b. Perform the addition operation using these circuits.
- 5. Apparatus required:
 - a. Prototyping board (Bread board).
 - **b.** DC power supply 5V battery.
 - c. Light Emitting Diodes (LED's).
 - d. Digital IC's: 7408 Quad 2 input AND gate, 7432 Quad 2 input OR gate, 7486 Quad 2 input XOR gate.
 - e. Connecting wires.
- 6. THEORY:
 - a. Half Adder: A half adder is a logical circuit that performs an additional operation on two binary digits. The half adder produces a sum and a carry value which are both binary digits. The drawback of this circuit is that in case of a multi-bit addition, it cannot cater to carry.

Block Diagram

Truth Table of Half Adder

Inp	outs	Ou	tputs
A	В	Sum(S)	Carry(C)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Boolean expression for sum and carry of half adder

$$SumS = \overline{AB} + A\overline{B}$$

$$CarryC = A.B$$

b. Full adder: A full adder is a logical circuit that performs an additional operation on three binary digits. The full adder produces a sum and a carry value, which are

Block Diagram

both binary digits. It can be combined with other full adders (see below) or work on it's own.

Truth Table of Full Adder:

X	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Expression:

Sum S=A'B'C_{in}'+A'B'C_{in}+ A'BC_{in}'+AB'C_{in}'+ABC_{in} Carry C_{out}=AB+AC_{in}+BC_{in}

Circuit Diagram:

- 7. Result: (students have to write the result by their own what result occurs)
- 8. Self assessment:
 - a. Define combinational logic?
 - b. Define full adder and half adder?
 - c. Implement full adder using half adders.
 - d. How can we implement SOP & POS in full adder?
 - e. How can we implement the full adder with two half adder & an OR gate?
 - f. Make the half adder using AND, OR and NOT gate?
 - g. Make the half adder by NAND gate?

Prepared by	Date	Modified on
Nayan Bhale	21/8/17	