วิชา Data Communication Laboratory ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

การทดลองที่ 5 Cyclic Redundancy Check

วัตถุประสงค์

- 1. เพื่อศึกษาวิธีการตรวจสอบความผิดพลาดในการรับ-ส่งข้อมูล
- 2. เพื่อสามารถสร้างวงจรในการตรวจสอบความผิดพลาดของข้อมูลแบบ CRC ได้

ทฤษฎี

CRC (Cyclic Redundancy Check) เป็นวิธีการที่ใช้ในสำหรับตรวจสอบความผิดพลาดของข้อมูลวิธีการ หนึ่ง โดยเทคนิคนี้ใช้หลักการหารโพลิโนเมียลของ เริ่มด้วยการแทนบิตข้อมูลด้วย โพลิโนเมียลซึ่งมีค่าสัมประสิทธิ์ 0 และ 1 โดยบิตข้อมูลที่มีความยาว k บิต จะแทนด้วยโพลิโนเมียลยาว k เทอมตั้งแต่ \mathbf{x}^{k-1} ถึง \mathbf{x}^0 เช่น บิตข้อมูลซึ่ง มีค่า 110001 จะแทนด้วยโพลิโนเมียล $1\times\mathbf{x}^5+1\times\mathbf{x}^4+0\times\mathbf{x}^3+0\times\mathbf{x}^2+0\times\mathbf{x}^1+1\times\mathbf{x}^0=1\times\mathbf{x}^5+1\times\mathbf{x}^4+1$ เทคนิค CRC จะใช้โพลิโนเมียลก่อกำเนิด (Generator Polynomial) $\mathbf{G}(\mathbf{x})$ เป็นตัวหารเพื่อสร้างผลหาร $\mathbf{R}(\mathbf{x})$ โดย $\mathbf{G}(\mathbf{x})$ เป็นโพลิโนเมียลที่มีกำลังเป็น \mathbf{g} ซึ่งจะมีกำลังน้อยกว่ากำลังของโพลิโนเมียลของข้อมูล $\mathbf{D}(\mathbf{x})$

หลักการของการส่งข้อมูล ที่มีการการตรวจสอบข้อมูลที่ผิดพลาดโดยใช้ Cyclic Redundancy Check

- 1. คูณข้อมูล D(x) ด้วย x^g (เป็นการเลื่อนบิตข้อมูลไป g บิต)
- 2. จากนั้นหารผลคูณของ $D(x) x^g$ ด้วย G(x) ผลหารที่ได้คือ Q(x) และส่วนที่เหลือที่เหลือจากการ หารคือ R(x) ตามสมการที่ (1)

$$\frac{x^{g}D(x)}{G(x)} = Q(x) \oplus \frac{R(x)}{G(x)}$$
(1)

โดยที่ R(x) จะมีค่าน้อยกว่า G(x) เสมอ

2. R(x) จะถูกบวกเข้ากับข้อมูลที่มีการเลื่อนบิต เพื่อสร้างเฟรมที่ใช้ในการส่งคือ C(x) คังนี้

$$C(x)=x^gD(x)\oplus R(x)$$
 (2)

หลักการตรวจสอบความผิดพลาดขอข้อมูลที่ได้รับมาเป็นดังนี้

เมื่อด้านรับได้รับเฟรมข้อมูล C(x) จะทำการหารด้วย $G\left(x\right)$ ดังสมการที่ (3)

$$\frac{C(x)}{G(x)} = \frac{x^{g}D(x) \oplus R(x)}{G(x)}$$
(3)

แทนเทอม
$$x^{g} imesrac{D\left(x
ight)}{G\left(x
ight)}$$
 ด้วย $Q\!\left(x
ight)\!\oplus\!rac{R\left(x
ight)}{G\left(x
ight)}$ จะได้

$$\frac{C(x)}{G(x)} = Q(x) \oplus \frac{R(x)}{G(x)} \oplus \frac{R(x)}{G(x)}$$
(4)

ถ้าไม่มีข้อมูลผิดพลาดส่วนที่เหลือจากการหาร $\frac{R\left(x\right)}{G\left(x\right)}$ $\oplus \frac{R\left(x\right)}{G\left(x\right)}$ จะเป็น 0

สมมติว่าต้องการส่งข้อมูล 101101001 โดยมีโพลิโนเมียลก่อกำเนิด G(x) คือ 101001 (สามารถเขียนให้ อยู่ในรูปของโพลิโนเมียลได้เป็น x^5+x^3+1) ทำการหาค่า R(x) และ C(x) ได้ตามขั้นตอนที่กล่าวมาดังนี้

1. G(x) มี g=5 ซึ่งหมายความว่า C(x) ถูกเลื่อนไปทางซ้าย s บิต ได้ผลลัพธ์เป็น

$$C(x) x^5 = 10110100100000$$

2. จากขั้นตอนที่ 1 นำผลลัพธ์มาหารด้วย $\mathbf{G}(\mathbf{x})$ ได้ผลดังนี้

- 3. เศษ R(x) ที่ได้จากการหารมีค่าเป็น 11010
- 4. ทำการบวก R(x) เข้ากับข้อมูล C(x) x^g เพื่อให้ได้ข้อมูลที่พร้อมทำการส่งคือ C(x)

$$\frac{1\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 0}{1\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 0} +$$

ดังนั้นข้อมูลที่จะถูกส่งออกไปคือ 101101001 11010

5. ทางด้านรับจะทำการหารข้อมูลที่รับเข้ามาหารด้วย $\mathbf{G}(\mathbf{x})$ ดังนี้

6. จากโพลิโนเมียลก่อกำเนิด $\mathbf{x}^5 + \mathbf{x}^3 + 1$ สามารถต่อวงจรเพื่อหาผลหาร $\mathbf{R}(\mathbf{x})$ นี้ได้ดังรูปที่ 5.1

รูปที่ 5.1 CRC generating circuit (x^5+x^3+1)

การทดลองที่ 5.1 การสร้างค่าที่จะส่งด้วยวิธี Cyclic Redundancy Check

- 1. ใช้ Arduino UNO R3 เป็น Power supply และ Digital Pulse โดยที่
 - 1.1. ใช้ 5V และ GND เป็น Power supply และ Port 13 เป็น Digital Pulse คังรูปที่ 5.2
 - 1.2. เปิดโปรแกรม Arduino แล้วพิมพ์โปรแกรมตามรูปที่ 5.3 แล้วเลือก Verify 💟
 - 1.3. ต่อสาย Upload
 - 1.4. เลือก Com Port ที่เป็น Arduino/Genuino Uno ดังรูปที่ 5.4 แล้วเลือก Upload
 - 1.5. ปิดโปรแกรม Arduino
 - 1.6. เปิดโปรแกรม puty แล้วเลือก Com Port ตามข้อ 1.4
 - 1.7. ใช้ Enter ในการสร้าง Digital Pulse ออกที่ Port 13

รูปที่ 5.3 โปรแกรมสร้าง Digital Pulse ออกที่ Port 13 ของ Arduino UNO R3

รูปที่ 5.4 การเลือก Com Port ของโปรแกรม Arduino และ puty

- 2. สร้างวงจร CRC generating ที่ใช้โพลิโนเมียล G(x) ตามที่อาจารย์กำหนดให้หน้าชั้น
- 3. Clear ค่าในวงจรแล้ว เริ่มทำการป้อนข้อมูล $D(x) \ x^g$ เพื่อหาผลลัพธ์ R(x)
 - 3.1. ให้นำรหัสนักศึกษา 3 ตัวท้าย (มีเงื่อนไขว่า ถ้าน้อยกว่า 400 ต้องบวกด้วยค่า 321 ก่อน นำไปใช้) มาคิด เป็นข้อมูลใช้เป็นข้อมูล D(x) โดยแปลงเป็นเลขฐานสองแบบ BCD
- 4. บันทึกผลลัพธ์ R(x) ที่ได้จากการทดลอง
- 5. แสดงผล C(x) ที่ต้องใช้งาน

6. แสงวิธีการคำนวณหา Remainder R(x) และ ค่า C(x) โดยใช้ค่า G(x) จากข้อ 2 และ D(x) จากข้อ 3 แล้วตรวจสอบว่าผลที่ได้จากการทดลองถูกต้องหรือไม่

การทดลองที่ 5.2 การถอดรหัสกรณีที่ไม่มีความผิดพลาด

- 1. Clear ค่าในวงจรแล้ว
- 2. นำค่า C(x) ที่ได้จากการทดลองตอนที่ 1 ป้อนเข้าวงจร
- บันทึกผลลัพธ์ R(x) ที่ได้

การทดลองที่ 5.3 การถอดรหัสกรณีที่มีความผิดพลาด

- 1. นำค่า C(x) ที่ได้จากการทดลองที่ 5.1 มาเปลี่ยนแปลงเพื่อให้ข้อมูลเกิดความผิดพลาด โดยสลับค่า 0-1 ตั้งแต่ข้อมูลบิตที่ 11-14 ข้อมูลที่เปลี่ยนแล้วเป็น
- 2. แสงวิธีการคำนวณหา Remainder R(x) โดยนำ C(x) ที่เปลี่ยนแปลงเพื่อให้ผิดพลาดจากข้อ 1 หารด้วย G(x) จากข้อ 1 (การทดลองตอนที่ 5.1)

- 3. นำค่า $\mathbf{C}(\mathbf{x})$ ที่ผิดพลาดจากข้อ 1 ป้อนเข้าวงจร
- 4. บันทึกผลลัพธ์ R(x) ที่ได้จากการทดลอง แล้วตรวจสอบว่าตรงกับที่กำนวณหรือไม่
- 5. เชิญอาจารย์ตรวจผลการทดลอง