LINFO1115 Midterm March 26, 2021

First and last name						
NOMA						

Signature	

			Signature	
Q1 Weak structur	al balance property.	. [2pts]		
Define weak struct	ural balance as a local	property of a graph.		
Д П	^ \			
				1
			1.1	5W.
Q2 Weak structur State the weak stru	ral balance theorem. actural balance theore	[2pts] em that connects a local an	d a global graph property	7.
		1, 1, 1, 1	15	S 1
Give the proof of th	structural balance t ne weak structural bal not known in advance	lance theorem. How does	your proof handle the div	rision into n
Λ.				
1				
4				
l				

	NOMA
Proof continued	
•	
· ·	

First and last name

Q4 Prisoner's Dilemma. [4pts] Given the Prisoner's Dilemma game, which has the following payoff matrix:

	Suspect 2			
	Not-Confess		Confess	
Suspect 1	Not-Confess	-1,-1	-10,0	
	Confess	0, -10	-4, -4	

First, explain why each suspect has a strictly dominant strategy and give the strategy. Second, determine the (one or more) Nash equilibria for this game. Explain how this relates to the suspects' strategies.

5	0 5 11 11	Monata	Hamale I ,
I_{i}			
Į.			
1			
	Λ'		

First and last name	
NOMA -	

Q5 Nash equilibrium. [4pts] Given a game with the following payoff matrix:

		Player B	
		L	R
Player	U	1, 2	3,2
A	D	2,4	0, 2

Find all pure Nash equilibria in this game. Explain why each is a Nash equilibrium.

	1 1			
1 4				
4				
10.11			1000	
Q6 Auctions. [3pts] in the course we saw fo auction and the second naving simultaneous b	d-price sealed-bid	l auction, despite one be	uestion, explain why the ring a real-time activity a	ascending-bid nd the other