Fisica per LT Informatica Università di Ferrara

Lucia Del Bianco

Dip.to di Fisica e Scienze della

Terra

Moto armonico semplice

$$-A$$
 O A

$$x(t) = Asen(\omega t + \phi)$$

▲ Figura 1.12 Ampiezza dell'oscillazione di un moto armonico semplice.

At=0
$$x(0) = Asen\phi$$

Mazzoldi, Nigro, Voci
Elementi di fisica. Meccanica e Termodinamica. III ed.
EdiSES Edizioni

Consideriamo t e t' con t' = t + T \Rightarrow x(t') = x(t) per definizione di periodo T

$$\omega t' + \phi = \omega t + \phi + 2\pi$$

Le due fasi nei due istanti devono differire di 2π

$$T = t' - t$$
 $T = \frac{2\pi}{\omega}$

$$\omega = \frac{2\pi}{T}$$

$$\nu = \frac{1}{T} = \frac{\omega}{2\pi}$$

Moto armonico semplice

$$T = \frac{2\pi}{\omega}$$

PERIODO

$$\omega = \frac{2\pi}{T}$$

PULSAZIONE

$$v = \frac{1}{T} = \frac{\omega}{2\pi}$$
 FREQUENZA

$$x(t) = Asen(\omega t + \phi)$$

$$v(t) = \frac{dx}{dt} = \omega A \cos(\omega t + \phi)$$

$$a(t) = \frac{dv}{dt} = -\omega^2 Asen(\omega t + \phi) = -\omega^2 x(t)$$

$$\phi = 0$$

▲ Figura 1.13 Diagramma dello spostamento (a), della velocità (b) e dell'accelerazione (c) di un moto armonico semplice.

Grafico della funzione seno

Grafico della funzione coseno

Le due funzioni differiscono per un termine di sfasamento pari a $\pi/2$

Le due funzioni differiscono per un termine di sfasamento pari a $\pi/2$

$$sen(\omega t + \phi) = \cos(\omega t + \psi)$$
$$\psi = \phi - \pi/2$$

$$\psi = \phi + \pi/2$$

$$x(t) = Asen(\omega t + \phi)$$

$$x(t) = A\cos(\omega t + \phi)$$

Le due funzioni rappresentano lo stesso moto solo che, per esempio, il primo è visto partire all'istante t_0 e il secondo all'istante t_0 -T/4 (oppure t_0 +T/4)

$$a(t) = -\omega^2 x(t)$$

$$\frac{d^2x(t)}{dt^2} + \omega^2x(t) = 0$$
 Equazione differenziale del moto armonico semplice

Angoli

Definizione di angolo in radianti

$$\theta = \frac{\ell}{\mathbf{R}}$$

con *l*: lunghezza dell'arco di circonferenza di raggio R, cui è sotteso θ

$$[\theta] = \frac{[L]}{[L]}$$

Se l'è l'intera circonferenza $l = 2\pi R$, θ è l'angolo giro

quindi:

$$\theta = \frac{\ell}{R} = \frac{2\pi R}{R} = 2\pi$$

Da radianti a gradi:

$$\frac{\theta_{\rm rad}}{2\pi} = \frac{\theta_{\rm gradi}}{360}$$

$\theta_{ m gradi}$	$\theta_{\rm rad}$
0 °	0
30°	$\pi/6$
45°	$\pi/4$
90°	$\pi/2$
180°	π

Moto armonico semplice

$$T = \frac{2\pi}{\omega}$$

PERIODO (s)

$$\omega = \frac{2\pi}{T}$$

PULSAZIONE (rad/s)

$$v = \frac{1}{T} = \frac{\omega}{2\pi}$$
 FREQUENZA (s⁻¹, cioe' Hz)

Figura 3.1 Una particella in moto nel piano xy è individuata dal vettore posizione \vec{r} tracciato dall'origine fino alla particella. Lo spostamento della particella quando si muove da a a B nell'intervallo di tempo $\Delta t = t_f - t_i$ è uguale al vettore $\Delta \vec{r} \equiv \vec{r}_f - \vec{r}_i$.

$$\Delta t = t_f - t_i$$
 $\Delta \vec{r} = \vec{r}_f - \vec{r}_i$

$$\vec{v}_{media} = \frac{\Delta \vec{r}}{\Delta t}$$
 $\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$

$$\vec{a}_{media} = \frac{\Delta \vec{v}}{\Delta t}$$
 $\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$

Quando l'estremo del vettore spostamento tende ad A, l'intervallo di tempo Δt tende a zero e la direzione di $\overrightarrow{\Delta r}$ tende alla linea tangente (in verde) alla curva in A.

Figura 3.2 Quando una particella si muove tra due punti, la sua velocità media ha la direzione del vettore spostamento $\Delta \vec{r}$. Per definizione, la velocità istantanea in a è diretta lungo la linea tangente in a alla curva.

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

Figura 3.3 Una particella si muove dalla posizione (a) alla posizione (b). Il suo vettore velocità cambia da $\vec{\mathbf{v}}_i$ all'istante t_i a $\vec{\mathbf{v}}_f$ all'istante t_f . I diagrammi di somme vettoriali in alto a destra in figura mostrano due modi differenti di ottenere il vettore $\Delta \vec{\mathbf{v}}$ dalle velocità iniziale e finale.

I vettori rossi orizzontali, che rappresentano la componente *x* della velocità, hanno lo stesso modulo (cioè la stessa lunghezza) in entrambe le parti della figura, a dimostrazione del fatto che il moto in due dimensioni può essere rappresentato come due moti indipendenti lungo due direzioni perpendicolari.

Figura 3.4 (a) Un disco di hockey da tavolo si muove orizzontalmente sul tavolo con velocità costante nella direzione *x*. (b) Dopo che un soffio d'aria sospinge il disco nella direzione *y*, il disco ha acquistato una componente *y* della velocità, ma il moto lungo la direzione *x* non è influenzato dalla forza applicata nella direzione perpendicolare.

Il moto in due dimensioni può essere rappresentato come due moti indipendenti lungo x e lungo y.

Moto in due dimensioni con accelerazione costante

$$\vec{r} = x\hat{i} + y\hat{j}$$

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} = v_x\hat{i} + v_y\hat{j}$$

$$v_x = v_{x_f} = v_{x_i} + a_x t$$

$$v_y = v_{y_f} = v_{y_i} + a_y t$$

$$\vec{v}_f = (v_{x_i} + a_x t)\hat{i} + (v_{y_i} + a_y t)\hat{j} = (v_{x_i}\hat{i} + v_{y_i}\hat{j}) + (a_x\hat{i} + a_y\hat{j})t = \vec{v}_i + \vec{a}t$$

$$\vec{r}_f = \vec{r}_i + \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$

$$\vec{v}_f = \vec{v}_i + \vec{a}t$$

Moto in due dimensioni con accelerazione costante

Figura 3.5 Rappresentazioni vettoriali e componenti della (a) velocità e della (b) posizione di una particella con accelerazione costante \vec{a} .

$$\vec{v}_f = \vec{v}_i + \vec{a}t$$

$$v_{x_f} = v_{x_i} + a_x t$$

$$v_{y_f} = v_{y_i} + a_y t$$

$$\vec{r}_f = \vec{r}_i + \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$

$$x_{f} = x_{i} + v_{xi}t + \frac{1}{2}a_{x}t^{2}$$

$$y_{f} = y_{i} + v_{yi}t + \frac{1}{2}a_{y}t^{2}$$

