AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of the Claims:

1-21. (cancelled)

- 22. (previously presented) A transparent, non-elastomeric, polythiourethane/urea material comprising the reaction product of:
 - (a) at least one (α, ω) -diiso(thio)cyanate polysulfide prepolymer, said prepolymer being free from disulfide (-S-S-) linkage; and
 - (b) at least one aromatic primary diamine, in an equivalent molar ratio amine function/iso(thio)cyanate function (NH₂/NCX, X=O, S) ranging from 0.5 to 2, said aromatic primary diamine being free from disulfide (-S-S-) linkage,
 - wherein the (α, ω) -diiso(thio)cyanate polysulfide prepolymer is the reaction product of at least one cycloaliphatic or aromatic diiso(thio)cyanate and at least one (α, ω) -diol or dithiol prepolymer, said (α, ω) -diol or dithiol prepolymer being a polysulfide or a mixture of polysulfides.
- 23. (previously presented) The transparent, non elastomeric polythiourethane/urea material of claim 22, wherein the equivalent ratio NH₂/NCX ranges from 0.90 to 1.10.
- 24. (previously presented) The material of claim 22, wherein the equivalent ratio NH_2/NCX ranges from 0.93 to 0.95.

25-27. (cancelled)

- 28. (currently amended) The material of claim 22, wherein the polysulfide or mixture of polysulfides is selected from the group consisting of:
 - Prepolymers Polysulfides of formula:

$$HS \xrightarrow{CH(CH_3)CH_2} -S \xrightarrow{1}_{X} CH_2CH_2S \xrightarrow{1}_{Y} H$$
(Ia)

in which x and y are chosen such that the two following conditions are simultaneously satisfied:

-the polysulfide of formula Ia is a prepolymer; and

-the number average molecular weight of the prepolymer ranges from 100 to polysulfide of formula Ia is not more than 3000 gmol⁻¹.; and

-the prepolymer is a polysulfide;

-Prepolymers resulting from the polymerization of diepisulfides of formula:

in which R¹ and R² are, independently from each other, H, alkyl, aryl, alkoxy, alkylthio or arylthio; R³ and R⁴ are, independently from each other.

R_a designates H, alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio and, n is an integer from 0 to 4 and m is an integer from 1 to 6,

and

-Prepolymers of formula:

$$-HS - (CH2) - S - (CH2) - (CH2) - S - (CH2) - (CH2) - S - (CH2) - (CH$$

where n' is such that the number average molecular weight (M_n) of the prepolymer ranges from 500 to 1500g mol⁻¹.

- 29. (previously presented) The material of claim 22, wherein the aromatic diamine contains at least one S atom in its molecule.
- 30. (previously presented) The material of claim 29 wherein the diamine is selected from

$$R'$$
 S
 R'
 S
 R'
 S
 R'
 S
 NH_2
 NH_2
 NH_2

$$\mathsf{H}_2\mathsf{N} - \hspace{-1em} - \hspace{-1em} \mathsf{S} - \hspace{-1em} - \hspace{-1em} \mathsf{N} \mathsf{H}_2$$

in which R is H or an alkyl group and R' is an alkyl group, and mixtures of the above diamines.

55184656.1

- 31. (previously presented) The material of claim 22, wherein the material is the reaction product of:
 - a) said at least one (α, ω) -diiso(thio)cyanate polysulfide prepolymer;
 - b) said at least one aromatic primary diamine; and
 - c) at least one di-, tri-, or tetra alcohol, or at least one di-, tri-, or tetra thiol, or a mixture thereof.
- 32. (previously presented) The material of claim 31, wherein the alcohols and thiols are selected from the groups consisting of:

HS CH₂CH₂ S CH₂CH₂ SH

$$C\left(CH_2O-C-CH_2CH_2SH\right)_4$$

$$\begin{array}{c} \operatorname{CH_2-SH} \\ | \\ \operatorname{CH--S---} \operatorname{CH_2CH_2---} \operatorname{SH} \\ | \\ \operatorname{CH_2--S---} \operatorname{CH_2CH_2---} \operatorname{SH} \end{array}$$

and mixtures thereof.

- 33. (previously presented) The material of claim 22 having a refractive index, n_D^{25} , higher than 1.53.
- 34. (previously presented) The material of claim 22 having a refractive index, n_D^{25} , of at least 1.55.
- 35. (previously presented) The material of claim 22 having a refractive index, n_D^{25} , of at least 1.57.
- 36. (previously presented) The material of claim 22, wherein the polysulfide is an hyperbranched polysulfide resulting from the polymerization of a diepisulfide of formula:

$$CH_2$$
 CH_2 CH_2 CH_2 CH_2

in which R1 and R2 are, independently from each other, H, alkyl, aryl, alkoxy, alkylthio or

arylthio, R³ and R⁴ are independently from each other,

Ra designates H, alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio, with 2-mercaptoethyl sulfide (DMES).

37. (previously presented) The material of claim 36, wherein the diepisulfide has formula:

- 38. (previously presented) An optical article made from a material according to claim 22.
- 39. (currently amended) The material of claim [[28]] $\underline{48}$, wherein n' is such that the number average molecular weight (\overline{M}_n) of the prepolymer ranges from 650 to 1350 g mol⁻¹.
- 40. (previously presented) The material of claim 22, wherein the prepolymer is the reaction product of at least one (α, ω) dithiol prepolymer.
- 41. (cancelled)
- 42. (previously presented) The material of claim 30, wherein R and R' are CH₃.

43. (previously presented) The material of claim 30, wherein the diamine is a mixture of by weight:

Claims 44-46 (cancelled)

- 47. (new) The material of claim 22, wherein the polysulfide or mixture of polysulfides is selected from the group consisting of:
 - -Prepolymers resulting from the polymerization of diepisulfides of formula:

in which R^1 and R^2 are, independently from each other, H, alkyl, aryl, alkoxy, alkylthio or arylthio; R^3 and R^4 are, independently from each other,

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

 R_a designates H, alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio and, n is an integer from 0 to 4 and m is an integer from 1 to 6.

Appl. No. 09/992,054 Response to Final Office Action Mailed October 18, 2007

-Prepolymers of formula:

48. (new) The material of claim 22, wherein the polysulfide or mixture of polysulfides is selected from the group consisting of:

$$HS - - (CH_2) - S - (CH_2) - (CH_2) - S - (CH_2) -$$

where n' is such that the number average molecular weight (\overline{M}_n) of the prepolymer ranges from 500 to 1500g mol⁻¹.

49. (new) The material of claim 22, wherein the at least one at least one (α, ω) -diiso(thio)cyanate polysulfide prepolymer has a number average molecular weight of not more than 3000 g mol⁻¹.