Đồ thị phẳng

Trần Vĩnh Đức

HUST

Ngày 8 tháng 10 năm 2019

Tài liệu tham khảo

- ► Eric Lehman, F Thomson Leighton & Albert R Meyer, Mathematics for Computer Science, 2013 (Miễn phí)
- K. Rosen, Toán học rời rạc ứng dụng trong tin học (Bản dịch Tiếng Việt)
- Ngô Đắc Tân, Lý thuyết Tổ hợp và Đồ thị, NXB ĐHQG Hà Nội, 2004.

Giới thiệu

Định nghĩa

Một đồ thị được gọi là *phẳng* nếu ta *có thể* vẽ nó trên mặt phẳng mà không có cạnh nào cắt nhau. Hình vẽ như thế gọi là một biểu diễn phẳng của đồ thị.

Ví dụ

Ví dụ

Đồ thị $K_{3,3}$:

không phẳng vì

Euler chứng minh rằng mọi biểu diễn phẳng của một đồ thị đều chia mặt phẳng thành cùng số miền như nhau.

Định lý (Công thức Euler)

Cho G là một đồ thị phẳng liên thông với e cạnh và v đỉnh. Gọi r là số miền trong biểu diễn phẳng của G. Khi đó

$$r = e - v + 2$$
.

Ví dụ

Xét một đồ thị phẳng liên thông có 20 đỉnh, mỗi đỉnh đều có bậc 3. Biểu diễn phẳng của đồ thị này chia mặt phẳng thành bao nhiêu miền?

- ightharpoonup Tổng bậc bằng $3v=3\times20=60$
- ightharpoonup Số canh e=30
- ► Theo công thức Euler

$$r = e - v + 2 = 30 - 20 + 2 = 12$$

Chứng minh công thức Euler

- ightharpoonup Ta chứng minh bằng quy nạp theo số miền r.
- Nếu r=1 thì đồ thị không có chu trình. Tại sao?
- Vậy e = v 1.
- ▶ Giả sử định lý đúng với r > 1.

Chứng minh công thức Euler

- Vì r > 1, nên đồ thị có chu trình.
- ightharpoonup Giả sử $\{u, v\}$ là cạnh của một chu trình nào đó.
- $lackbox{ Vậy }\{u,v\}$ là biên của hai miền S và T. Tại sao?
- Nóa cạnh $\{u,v\}$ làm nhập hai miền S và T làm một, còn các miền khác giữ nguyên.
- lackbox Đồ thị mới thu được có e-1 cạnh và r-1 miền.
- ► Theo giả thiết quy nạp:

$$r-1 = e-1-v+2$$

▶ Ta được r = e - v + 2. ✓

Hệ quả

Nếu G là một đồ thị phẳng liên thông với e cạnh và v đỉnh thỏa mãn $v \geq 3.$ Vậy thì $e \leq 3v-6.$

- Bậc của một miền là số cạnh trên biên của miền đó.
- Bậc của mỗi miền ít nhất phải bằng 3.
- Tổng bậc các miền bằng bao nhiêu cạnh?

Chứng minh.

► Tổng bậc các miền

$$\sum_{R} \deg(R) = 2e \ge 3r$$

Vậy ta có $2e/3 \ge r$.

► Theo công thức Euler

$$r = e - v + 2 \le 2e/3$$
.

 \blacktriangleright Kết luận $e \leq 3v - 6$.

Bài tập

lacktriangle Dùng hệ quả trước, hãy chỉ ra rằng đồ thị K_5 không phẳng.

Hệ quả

Nếu G là một đồ thị phẳng liên thông thì G có một đỉnh bậc không vượt quá 5.

Chứng minh.

Dùng hệ quả trước & Định lý bắt tay.

Hệ quả

Nếu một đồ thị phẳng liên thông có e cạnh, v đỉnh trong đó $v \geq 3$ và không có chu trình độ dài 3 thì $e \leq 2v-4$.

Chứng minh.

- ightharpoonup Nếu không có chu trình độ dài 3 thì bậc của mỗi miền ≥ 4 .
- Bài tập: Chứng minh tiếp hệ quả này.

Bài tập

 \blacktriangleright Dùng hệ quả trước, hãy chứng minh rằng đồ thị $K_{3,3}$ không phẳng?

Định nghĩa

Độ dài của chu trình ngắn nhất trong đồ thị được gọi là *chu vi nhỏ nhất* của đồ thị đó.

Nếu như đồ thị không tồn tại chu trình, thì chu vi nhỏ nhất của G được định nghĩa bằng ∞ .

Định lý (Bất đẳng thức cạnh đỉnh)

Trong đồ thị phẳng liên thông G=(V,E) bất kỳ với chu vi nhỏ nhất g thỏa mãn $3\leq g<\infty$ ta luôn có

$$|E| \le \frac{g}{q-2}(|V|-2).$$

Bài tập

Dùng bất đẳng thức cạnh đỉnh để chứng minh rằng $K_{3,3}$ và K_5 không phải đồ thị phẳng.

Chứng minh bất đẳng thức cạnh đỉnh

- \blacktriangleright Xét $G=(\mathit{V},\mathit{E})$ là đồ thị phẳng liên thông với chu vi nhỏ nhất $3\leq g<\infty.$
- lacksquare Đặt tập cạnh $E = \{e_1, e_2, \dots, e_t\}$.
- lacktriangle Xét một biểu diễn phẳng bất kỳ của G với ℓ miền là

$$\{R_1,R_2,\ldots,R_\ell\}.$$

lacktriangle Xây dựng bảng $X=(x_{ij})$ gồm t hàng và ℓ cột như sau

$$x_{ij} = \begin{cases} 1 & \text{n\'eu } e_i \text{ là m\'ot cạnh trên biên của của miền } R_j \\ 0 & \text{trong trường hợp ngược lại} \end{cases}$$

Ví dụ

	R_1	R_2	R_3
$\overline{e_1}$	1	0	1
e_2	1	0	1
e_3	0	1	1
e_4	1	1	0
e_5	1	0	1
e_6	0	1	1
e_7	0	1	1

- ▶ Mỗi hàng có nhiều nhất 2 số 1. Tại sao?
- ► Mỗi cột có ít nhất g số 1. Tại sao?

Chứng minh (tiếp)

- Mỗi cạnh chỉ nằm trên biên của nhiều nhất hai miền, nên mỗi hàng của X có nhiều nhất hai số 1.
- Các cạnh trên biên của mỗi miền tạo ra một chu trình trong G, nên mỗi cột có ít nhất g số một.
- ► Đặt

$$s := \mathsf{s} \acute{\mathsf{o}} \mathsf{l} \mathsf{u} \mathsf{o} \mathsf{n} \mathsf{g} \mathsf{s} \acute{\mathsf{o}} \mathsf{1} \mathsf{t} \mathsf{r} \mathsf{o} \mathsf{n} \mathsf{g} \mathsf{X}$$

ta được

$$q\ell \le s \le 2t$$
.

với ℓ là số miền và t là số cạnh.

Chứng minh (tiếp)

Kết hợp với công thức Euler

$$\ell = t - |V| + 2$$

ta được

$$g\ell \ = \ gt - g|\,V| + 2g \ \leq \ 2t$$

Vậy thì

$$t(g-2) \le g(|V|-2) \iff |E| \le \frac{g}{g-2}(|V|-2)$$

Ta hoàn thành chứng minh của bất đắng thức cạnh đỉnh.

Hai đồ thị đồng phôi

Định nghĩa

- Phép toán loại bỏ cạnh $\{u,v\}$ và thêm một đỉnh mới w cùng hai cạnh $\{u,w\},\{w,v\}$ gọi là *phép phân chia sơ cấp*.
- Hai đồ thị gọi là đồng phôi nếu chúng có thể nhận được từ cùng một đồ thị bằng một dãy phép phân chia sơ cấp.

Định lý (Kuratowski)

Đồ thị là không phẳng *nếu và chỉ nếu* nó chứa một đồ thị con đồng phôi với $K_{3,3}$ hoặc K_5 .

Ví dụ

Đồ thị Petersen

Ví dụ

Dính hai đỉnh kề nhau

Định nghĩa

Một minor của đồ thị G là một đồ thị thu được từ G bằng một số hữu han lần xóa đỉnh, xóa canh, và dính hai đỉnh kề nhau của G.

Ví dụ

Chu trình C_3 có phải là một minor của đồ thị sau không?

Định lý (Wagner)

Đồ thị là không phẳng *nếu và chỉ nếu* nó chứa một minor là $K_{3,3}$ hoặc K_5 .

Bài tập Chứng minh rằng đồ thị Peterson dưới đây không phẳng.

Tô màu bản đồ

Hình: Hai bản đồ

Tô màu đồ thị

Hình: Các đồ thị của hai bản đồ trước

Định lý (Bốn màu)

Số màu của một đồ thị phẳng không lớn hơn 4.

Hình: từ wikipedia