Lec16: Heat Exchangers: Design Considerations

Chapter 11

Sections 11.1 through 11.3

- Exam02 coming on 6 Dec
 - Lec 9 17
 - External Flow
 - Internal Flow
 - Heat Exchanger
 - Natural Convection

Content

- 1. What are the common forms of HXs?
- 2. What are the common flow configurations in HXs?
- 3. What are the three different but equivalent heat rates in a HX?
- 4. How do fins and fouling affect HXs?
- 5. What is the LMTD?
- 6. What is the LMTD method for analysing HXs performance?

Heat Exchangers Market Outlook-2026

The global heat exchangers market was valued at \$16,624.0 million in 2018, and is expected to reach \$29,316.0 million

by 2026, registering a CAGR of 7.2% from 2019 to 2026. I

11.1 Heat Exchanger Types

Heat exchangers

- Common in energy conversion and utilization
- Heat exchange between two fluids (one hot, one cold) separated by a solid
- Classified by
 - Flow arrangement
 - ➤ Parallel flow
 - > Counterflow
 - > Crossflow
 - Type of construction
 - > Concentric
 - > Finned / unfnned tubular => unmixed or mixed
 - > Shell-tube
 - Compact heat exchangers

Concentric-Tube Heat Exchangers (simplest, superior performance with counter flow)

Cross-flow Heat Exchangers (performance influenced by fluid mixing)

Unmixed

the Other Unmixed

11.1 Heat Exchanger Types

ZJUI ZJUI

Shell-and-Tube Heat Exchangers

One Shell Pass and One Tube Pass

➤ Baffles are used to establish a cross-flow and to induce turbulent mixing of the shell-side fluid, both of which enhance convection.

One Shell Pass, Two Tube Passes

Two Shell Passes, Four Tube Passes

Compact Heat Exchangers

- ➤ Widely used to achieve large heat rates per unit volume, particularly when one or both fluids is a gas.
- ➤ Characterized by large heat transfer surface areas per unit volume, small flow passages, and laminar flow.

- (a) Fin-tube (flat tubes, continuous plate fins)
- (b) Fin-tube (circular tubes, continuous plate fins)
- (c) Fin-tube (circular tubes, circular fins)
- (d) Plate-fin (single pass)
- (e) Plate-fin (multipass)

Overall HT coefficient

Section 11.2

Convection heat transfer, $\mathbf{q} = hA(T_1 - T_2)$

- Need *h*!
- But which fluid's h?
- Use *U* instead to include effects from convection or/and conduction of
 - > Two fluids
 - ➤ The solid wall
 - > Fins on both sides
 - ➤ Time-dependent surface fouling.

11.2 Overall HT Coefficient

• Subscripts *c* and *h* for the *cold* and *hot* fluids (does not matter which fluid is which), and *w* the wall.

The simplest expression for the overall coefficient across a wall is (case 1):

$$\frac{1}{UA} = \frac{1}{(hA)_c} + R_w + \frac{1}{(hA)_h}$$
 (11.1a)
Cold
Clean and unfinned surfaces

• Case 2. With *fouling*:

$$\frac{1}{UA} = \frac{1}{(hA)_c} + \frac{R''_{f,c}}{(A)_c} + R_w + \frac{R''_{f,h}}{(A)_h} + \frac{1}{(hA)_h}$$

• Case 3. With *fins* and *fouling* (no fouling on fins) for the overall coefficient is:

11.2 Overall HT Coefficient

- > R''_f > Fouling factor for a unit surface area (m² · K/W) → Table 11.1
- $ightharpoonup R_w o ext{Wall conduction resistance (K/W)}$
- $\eta_o \rightarrow 0$ overall surface efficiency of fin array (textbook section 3.6.5/ Lec 8 amd 9) $\eta_0 = 1 \frac{A_{fin}}{A} (1 \eta_{fin})$, hot and cold side normally has different values

 $A = A_t \rightarrow \text{total surface area (fins and exposed base)}$ $A_{fin} \rightarrow \text{surface area of fins only}$ Case 4. With *fins* and *fouling* (on fins and all surfaces) for the overall coefficient is:

$$\frac{1}{UA} = \frac{1}{\left(\eta_o U_p A\right)_c} + R_w + \frac{1}{\left(\eta_o U_p A\right)_h}$$

$$U_p = \left(\frac{h}{1 + hR_f''}\right) \rightarrow \text{partial overall coefficient can be}$$
different for c and h side

Example 1: Overall *U*

Problem 11.5: Determination of initial heat transfer per unit length from the hot flue gases flowing outside to the pressurized water flowing in the center.

KNOWN: Geometry of finned, annular heat exchanger. Gas-side temperature and convection coefficient. Water-side flowrate and temperature. Insulated outside.

FIND: Heat rate per unit length.

Example 1:

FIND: Heat rate per unit length.

SCHEMATIC:

- Which h to use? h of water or gas? How to get them?
- What equation to use to calculate heat rate?
- Is there a fin?

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) One-dimensional conduction in strut, (4) Adiabatic outer surface conditions, (5) Negligible gas-side radiation, (6) Fully-developed internal flow, (7) Negligible fouling.

PROPERTIES: *Table A-6*, Water (300 K): k = 0.613 W/m·K, Pr = 5.83, $\mu = 855 \times 10^{-6}$ N·s/m².

ANALYSIS: The heat rate is
$$q = (UA)_C (T_{m,h} - T_{m,c})$$

where

Tube

$$1/(UA)_{c} = 1/(hA)_{c} + R_{w} + 1/(\eta_{o}hA)_{h}$$
Internal flow
Fin

• Tube: the center tube is a cylinder, so

$$R_W = \frac{\ln(D_{i,2}/D_{i,1})}{2\pi kL} = \frac{\ln(30/24)}{2\pi(50 \text{ W/m} \cdot \text{K}) \text{ 1 m}} = 7.10 \times 10^{-4} \text{ K/W}.$$

• Internal flow in the tube,

$$Re_D = \frac{4\dot{m}}{\pi D_{i,1}\mu} = \frac{4 \times 0.161 \text{ kg/s}}{\pi (0.024m)855 \times 10^{-6} \text{ N} \cdot \text{s/m}^2} = 9990$$

Hence, the internal flow is turbulent and the Dittus-Boelter correlation from Chapter 8 gives

$$h_c = \left(k / D_{i,1}\right) 0.023 Re_D^{4/5} Pr^{0.4} = \left(\frac{0.613 \text{ W/m} \cdot \text{K}}{0.024 \text{ m}}\right) 0.023 (9990)^{4/5} (5.83)^{0.4} = 1883 \text{ W/m}^2 \cdot \text{K}$$

$$(hA)_c^{-1} = (1883 \text{ W/m}^2 \cdot \text{K} \times \pi \times 0.024 \text{m} \times 1\text{m})^{-1} = 7.043 \times 10^{-3} \text{ K/W}.$$

• Since the outside is insulated, it is a find with adiabatic tip. The Fin efficiency is

$$\eta_o = 1 - (A_f / A)(1 - \eta_f)$$

$$A_f = 8 \times 2(L \cdot w) = 8 \times 2(0.015 \text{m} \times 1\text{m}) = 0.24 \text{m}^2$$

$$A = A_f + (\pi D_{i,2} - 8t)w = 0.24 \text{m}^2 + (\pi \times 0.03 \text{m} - 8 \times 0.003 \text{m}) = 0.31 \text{m}^2.$$

From Eq. 11.4,

$$\eta_f = \frac{\tanh(mL)}{mL}$$

where

$$m = \left[\frac{2h}{kt} \right]^{1/2} = \left[2 \times 100 \text{ W/m}^2 \cdot \text{K} / 50 \text{ W/m} \cdot \text{K} \left(0.003 \text{m} \right) \right]^{1/2} = 36.5 \text{ m}^{-1}$$

$$mL = \left(\frac{2h}{kt} \right)^{1/2} L = 36.5 \text{ m}^{-1} \times 0.015 \text{m} = 0.55$$

$$\tanh \left[\left(\frac{2h}{kt} \right)^{1/2} L \right] = 0.499.$$

Hence

$$\eta_f = 0.499 / 0.55 = 0.911$$

$$\eta_o = 1 - (A_f / A)(1 - \eta_f) = 1 - (0.24 / 0.31)(1 - 0.911) = 0.931$$

$$(\eta_o h A)_h^{-1} = (0.931 \times 100 \text{ W/m}^2 \cdot \text{K} \times 0.31\text{m}^2)^{-1} = 0.0347 \text{ K/W}.$$

It follows that

$$(UA)_c^{-1} = (7.043 \times 10^{-3} + 7.1 \times 10^{-4} + 0.0347) \text{ K/W}$$
$$(UA)_c = 23.6 \text{ W/K}$$

and

$$q = 23.6 \text{ W/K} (800 - 300) \text{ K} = 11,800 \text{ W}$$

for a 1m long section.

LMTD Method for Heat Exchanger

Section 11.3

11.3 Design and Analysis

Design and analyse Heat Exchangers using two methods:

- Log Mean Temperature Difference
- NTU-E

- Heat is exchanged between the *hot* and *cold* fluids
- Apply to the hot (h) and cold (c) fluids regardless of what kind of flow configuration:

Assume negligible heat transfer between the exchanger and its surroundings and negligible potential and kinetic energy changes for each fluid =>

q loss at hot = q gain at cold

$$q = \dot{m}_h (i_{h,i} - i_{h,o})$$
 $q = \dot{m}_c (i_{c,o} - i_{c,i})$ (11.6a, 11.7a)

 $i \rightarrow$ fluid enthalpy

11.3 LMTD Method – energy balance

• Assuming no liquid-vapor phase change and constant properties like specific heats etc,

$$q = \dot{m}_{h} c_{p,h} (T_{h,i} - T_{h,o}) = C_{h} (T_{h,i} - T_{h,o})$$

$$q = \dot{m}_{c} c_{p,c} (T_{c,o} - T_{c,i}) = C_{c} (T_{c,o} - T_{c,i})$$
(11.6b)

$$C_h, C_c \rightarrow$$
 Heat capacity rates

Note *T* are the mean temperature of specific locations

But where does this *q* come from?

11.3 LMTD Method – energy balance

- How does the heat move from the hot to cold fluid?
- So, there must be a heat transfer between the hot and cold sides which is of q,

Define
$$\Delta T = T_h - T_c$$

$$\Rightarrow$$
 d $q = h\Delta T dA$

- And $d(\Delta T) = dT_h dT_c$
- But what is h?
- Which T_h and T_c along the tube?

Solution:

We can use =>

$$q = U \ A \ \Delta T_{\ell m}$$
 where \emph{UA} is from the section 11.2

Derivation in Textbook Pg 661.

The Log Mean Temperature Difference (LMTD) Method

may be applied to find heat exchangers by using a log-mean temperature difference between the two fluids:

$$q = U A \Delta T_{\ell m}$$

$$\Delta T_{\ell m} = \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1 / \Delta T_2)}$$
(11.14)
$$(11.15)$$

- What are ΔT_1 and ΔT_2 ?
- Depends on the heat exchanger type!

11.3 LMTD Method for CF Hex

Case 1: Counter-Flow (CF) Heat Exchanger:

$$\begin{split} \Delta T_1 &\equiv T_{h,1} - T_{c,1} \\ &= T_{h,i} - T_{c,o} \end{split}$$

$$\begin{split} \Delta T_2 &\equiv T_{h,2} - T_{c,2} \\ &= T_{h,o} - T_{c,i} \end{split}$$

11.3 LMTD Method for PF Hex

Case 2: Parallel-Flow (PF) Heat Exchanger:

$$\begin{split} \Delta T_1 &\equiv T_{h,1} - T_{c,1} \\ &= T_{h,i} - T_{c,i} \end{split}$$

$$\begin{split} \Delta T_2 &\equiv T_{h,2} - T_{c,2} \\ &= T_{h,o} - T_{c,o} \end{split}$$

- Note that $T_{c,o}$ cannot exceed $T_{h,o}$ for a PF HX, but can do so for a CF HX. Why?
- ➤ For equivalent values of *UA* and inlet temperatures,

$$\Delta T_{\ell m, CF} > \Delta T_{\ell m, PF}$$

Case 3: Shell-and-Tube and Cross-Flow Heat Exchangers:

$$\Delta T_{\ell m} = F \ \Delta T_{\ell m, CF}$$

 $F \rightarrow \text{Figures } 11\text{S.1} - 11\text{S.4}$

Special Conditions

Why condensing vapor is C_h , and very big in value?

liq is C_c , and very big in value?

$$C_{c} = C_{h}$$

$$\uparrow$$

$$T$$

$$\Delta T_{1} = \Delta T_{2}$$

$$1 \qquad x \rightarrow \qquad 2$$

$$(c)$$

- ightharpoonup Case (a): $C_h >> C_c$ or h is a condensing vapor $(C_h \to \infty)$.
 - Negligible or no change in $T_h(T_{h,o} = T_{h,i})$.
- ightharpoonup Case (b): $C_c >> C_h$ or c is an evaporating liquid $(C_c \to \infty)$.
 - Negligible or no change in $T_c (T_{c,o} = T_{c,i})$.
- \triangleright Case (c): $C_h = C_c$. (Counter-flow)
 - $-\Delta T_1 = \Delta T_2 = \Delta T_{\ell m}$

Example 2: HX using LMTD

Text Example 11.1: For the HX with a thin wall separating the hot and cold flow (shown below), what is the length needed for outlet temperature of oil to be 60 °C?

KNOWN: Fluid flow rates, inlet temperatures

FIND: Length needed for outlet temperature of oil to be 60 °C?

Example 2:

FIND: Length needed for outlet temperature of oil to be 60 °C?

- What HX type? What flow type?
- What is the *q* to be exchanged?
- Any missing temperatures?
- Which LMTD formula to use?
- What is *UA*? What is the configuration for the water part? What is the configuration for the oil part? Both are circular tubes?

$$q = U A \Delta T_{\ell m}$$
$$\Delta T_{\ell m} = \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1 / \Delta T_2)}$$

Analysis: The required heat transfer rate may be obtained from the overall energy balance for the hot fluid, Equation 11.6b.

• What is the q to be $q = \dot{m}_h c_{p,h} (T_{h,i} - T_{h,o})$ exchanged? $q = \dot{m}_h c_{p,h} (T_{h,i} - T_{h,o})$ $q = 0.1 \text{ kg/s} \times 2131 \text{ J/kg} \cdot \text{K} (100 - 60)^{\circ}\text{C} = 8524 \text{ W}$

Applying Equation 11.7b, the water outlet temperature is

$$T_{c,o} = \frac{q}{\dot{m}_c c_{p,c}} + T_{c,i}$$

$$T_{c,o} = \frac{8524 \text{ W}}{0.2 \text{ kg/s} \times 4178 \text{ J/kg} \cdot \text{K}} + 30^{\circ}\text{C} = 40.2^{\circ}\text{C}$$

Any missing temperatures?

Accordingly, use of $\overline{T}_c = 35^{\circ}\text{C}$ to evaluate the water properties was a good choice. The required heat exchanger length may now be obtained from Equation 11.14,

$$q = UA \Delta T_{lm}$$

where $A = \pi D_i L$ and from Equations 11.15 and 11.17

• Which LMTD formula to use? $\Delta T_{lm} = \frac{(T_{h,i} - T_{c,o}) - (T_{h,o} - T_{c,i})}{\ln[(T_{h,i} - T_{c,o})/(T_{h,o} - T_{c,i})]} = \frac{59.8 - 30}{\ln(59.8/30)} = 43.2^{\circ}\text{C}$

From Equation 11.5 the overall heat transfer coefficient is

• What is
$$UA$$
?
$$U = \frac{1}{(1/h_i) + (1/h_o)}$$

For water flow through the tube,

$$Re_D = \frac{4\dot{m}_c}{\pi D_i \mu} = \frac{4 \times 0.2 \text{ kg/s}}{\pi (0.025 \text{ m})725 \times 10^{-6} \text{ N} \cdot \text{s/m}^2} = 14,050$$

Accordingly, the flow is turbulent and the convection coefficient may be computed from Equation 8.60

$$Nu_D = 0.023 Re_D^{4/5} Pr^{0.4}$$

 $Nu_D = 0.023 (14,050)^{4/5} (4.85)^{0.4} = 90$

Hence

$$h_i = Nu_D \frac{k}{D_i} = \frac{90 \times 0.625 \text{ W/m} \cdot \text{K}}{0.025 \text{ m}} = 2250 \text{ W/m}^2 \cdot \text{K}$$

For the flow of oil through the annulus, the hydraulic diameter is, from Equation 8.71, $D_h = D_o - D_i = 0.02$ m, and the Reynolds number is

$$Re_{D} = \frac{\rho u_{m} D_{h}}{\mu} = \frac{\rho (D_{o} - D_{i})}{\mu} \times \frac{\dot{m}_{h}}{\rho \pi (D_{o}^{2} - D_{i}^{2})/4}$$

$$Re_{D} = \frac{4 \dot{m}_{h}}{\pi (D_{o} + D_{i}) \mu} = \frac{4 \times 0.1 \text{ kg/s}}{\pi (0.045 + 0.025) \text{ m} \times 3.25 \times 10^{-2} \text{ kg/s} \cdot \text{m}} = 56.0$$

The annular flow is therefore laminar. Assuming uniform temperature along the inner surface of the annulus and a perfectly insulated outer surface, the convection coefficient at the inner surface may be obtained from Table 8.2. With $(D_i/D_o) = 0.56$, linear interpolation provides

$$Nu_i = \frac{h_o D_h}{k} = 5.63$$

and

$$h_o = 5.63 \frac{0.138 \text{ W/m} \cdot \text{K}}{0.020 \text{ m}} = 38.8 \text{ W/m}^2 \cdot \text{K}$$

The overall convection coefficient is then

$$U = \frac{1}{(1/2250 \text{ W/m}^2 \cdot \text{K}) + (1/38.8 \text{ W/m}^2 \cdot \text{K})} = 38.1 \text{ W/m}^2 \cdot \text{K}$$

and from the rate equation it follows that

$$L = \frac{q}{U\pi D_i \Delta T_{lm}} = \frac{8524 \text{ W}}{38.1 \text{ W/m}^2 \cdot \text{K} \pi (0.025 \text{ m}) (43.2^{\circ}\text{C})} = 65.9 \text{ m}$$

Heat Exchangers: The Effectiveness – NTU Method

Chapter 11

Sections 11.4

Content

- 1. What two methods are used to analyze the performance of a HX?
- 2. Which of the two fluids in a HX will experience the largest temperature change?
- 3. Why is the maximum possible heat rate for a heat exchanger not equal to $C_{max}(T_{h,i} T_{c,i})$? Can the outlet temperature of the cold fluid ever exceed the inlet temperature of the hot fluid?
- 4. What is the effectiveness of a heat exchanger? What is its range of possible values?
- 5. What is the number of transfer units (NTU)?
- 6. Generally, how does the effectiveness change if the size (surface area) of a heat exchanger is increased? If the overall heat transfer coefficient is increased? If the ratio of heat capacity rates is decreased? Any penalty is associated with increasing the size of a heat exchanger?

- What is the maximum possible temperature change through this HX in the ideal case?
 - $T_{h,i}$ $T_{c,l}$
- Which fluid will reach this temperature difference first?
 - Whichever has a smaller heat capacity, C
- What is the maximum possible heat transfer rate through this HX in the ideal case?
 - $C_{\min}(T_{h,i} T_{c,i})$ where C_{\min} is the smaller of C_h and C_c . Why?
- How to achieve this maximum possible heat transfer rate?
 - Counter-flow

• Maximum possible heat rate:

$$q_{\text{max}} = C_{\text{min}} \left(T_{h,i} - T_{c,i} \right)$$
 (11.18)
$$C_{\text{min}} = \begin{cases} C_h & \text{if } C_h < C_c \\ \text{or } \\ C_c & \text{if } C_c < C_h \end{cases}$$

E in NTU-E = = effectiveness, ε

• Heat exchanger effectiveness, *€* :

$$\varepsilon = \frac{q}{q_{\text{max}}} \qquad 0 \le \varepsilon \le 1 \quad (11.19)$$

$$\Rightarrow q = \varepsilon C_{min} (T_{h,i} - T_{c,i})$$

- Why is C_{\min} and not C_{\max} used in the definition of q_{\max} ?
 - > Answered in front

Definitions (cont.)

Number of Transfer Units, NTU

$$NTU \equiv \frac{UA}{C_{\min}}$$
 (11.24)

➤ A dimensionless parameter whose magnitude influences HX performance:

$$q \uparrow$$
 with \uparrow NTU

• Performance Calculations for different HX configurations:

$$\varepsilon = f\left(\text{NTU}, C_{\min} / C_{\max}\right) \quad \text{Relations} \rightarrow \text{Table 11.3 or Figs. 11.10 - 11.15}$$

$$\text{Or}$$

$$\text{NTU} = f\left(\varepsilon, C_{\min} / C_{\max}\right) \quad \text{Relations} \rightarrow \text{Table 11.4 or Figs. 11.10 - 11.15}$$

TABLE 11.3 Heat Exchanger Effectiveness Relations [5]

Flow Arrangement

Relation

Concentric tube

Parallel flow
$$\varepsilon = \frac{1 - \exp\left[-NTU(1 + C_r)\right]}{1 + C_r}$$

$$\varepsilon = \frac{1 - \exp\left[-NTU(1 - C_r)\right]}{1 - C_r \exp\left[-NTU(1 - C_r)\right]}$$

$$\varepsilon = \frac{NTU}{1 + NTU}$$

$$(11.28a)$$

$$(C_r < 1)$$

$$(C_r < 1)$$

$$(11.29a)$$

Shell-and-tube

One shell pass (2, 4, . . . tube passes)
$$\varepsilon_{1} = 2 \left\{ 1 + C_{r} + (1 + C_{r}^{2})^{1/2} \times \frac{1 + \exp\left[-(NTU)_{1}(1 + C_{r}^{2})^{1/2}\right]}{1 - \exp\left[-(NTU)_{1}(1 + C_{r}^{2})^{1/2}\right]} \right\}^{-1}$$

$$\varepsilon_{1} = 2 \left\{ 1 + C_{r} + (1 + C_{r}^{2})^{1/2} \times \frac{1 + \exp\left[-(NTU)_{1}(1 + C_{r}^{2})^{1/2}\right]}{1 - \exp\left[-(NTU)_{1}(1 + C_{r}^{2})^{1/2}\right]} \right\}^{-1}$$

$$\varepsilon_{2} = \left[\left(\frac{1 - \varepsilon_{1}C_{r}}{1 - \varepsilon_{r}} \right)^{n} - 1 \right] \left[\left(\frac{1 - \varepsilon_{1}C_{r}}{1 - \varepsilon_{r}} \right)^{n} - C_{r} \right]^{-1}$$
(11.31a)

Cross-flow (single pass)

Both fluids unmixed
$$\varepsilon = 1 - \exp\left[\left(\frac{1}{C_r}\right) (\text{NTU})^{0.22} \left\{ \exp\left[-C_r(\text{NTU})^{0.78}\right] - 1 \right\} \right]$$
(11.32)
$$C_{\text{max}} \text{ (mixed)},$$

$$C_{\text{min}} \text{ (unmixed)},$$

$$\varepsilon = \left(\frac{1}{C_r}\right) (1 - \exp\left\{-C_r[1 - \exp\left(-\text{NTU}\right)]\right\})$$
(11.33a)
$$C_{\text{min}} \text{ (mixed)},$$

$$C_{\text{max}} \text{ (unmixed)},$$

$$\varepsilon = 1 - \exp\left(-C_r^{-1} \left\{1 - \exp\left[-C_r(\text{NTU})\right]\right\}\right)$$
(11.34a)

All exchangers
$$(C_r = 0)$$

$$\varepsilon = 1 - \exp(-NTU)$$

TABLE 11.4 Heat Exchanger NTU Relations

Flow Arrangement

Relation

Concentric tube

Parallel flow
$$NTU = -\frac{\ln\left[1 - \varepsilon(1 + C_r)\right]}{1 + C_r}$$
 (11.28b)

Counterflow
$$NTU = \frac{1}{C_r - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right) \quad (C_r < 1)$$

$$NTU = \frac{\varepsilon}{1 - \varepsilon} \qquad (C_r = 1) \qquad (11.29b)$$

Shell-and-tube

One shell pass
$$(NTU)_1 = -(1 + C_r^2)^{-1/2} \ln\left(\frac{E-1}{E+1}\right)$$
 (11.30b)

$$E = \frac{2/\varepsilon_1 - (1 + C_r)}{(1 + C_r^2)^{1/2}}$$
 (11.30c)

n Shell passes Use Equations 11.30b and 11.30c with $(2n, 4n, \dots$ tube passes)

$$\varepsilon_1 = \frac{F-1}{F-C_r}$$
 $F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1}\right)^{1/n}$ NTU = $n(\text{NTU})_1$ (11.31b, c, d)

Cross-flow (single pass)

$$C_{\text{max}}$$
 (mixed), C_{min} (unmixed)
$$NTU = -\ln\left[1 + \left(\frac{1}{C_r}\right)\ln(1 - \varepsilon C_r)\right]$$
 (11.33b)

$$C_{\min}$$
 (mixed), C_{\max} (unmixed)
$$NTU = -\left(\frac{1}{C_r}\right) \ln[C_r \ln(1-\varepsilon) + 1]$$
 (11.34b)

All exchangers
$$(C_r = 0)$$
 $NTU = -\ln(1 - \varepsilon)$ (11.35b)

Summary

Heat Exchanger

- Flow configuration
- Construction type
- Determine *U* to find the heat transfer
 - Fouling
 - Fins
 - Resistances
- Log Mean Temperature Method

Summary

Heat Exchanger

- Log Mean Temperature Method
- NTU-E method
 - First calculating E and (Cmin /Cmax)
 - Use appropriate equation (or chart) to obtain the NTU value
 - Can be used to determine Area

OR

- NTU and (Cmin /Cmax) values may be first computed
- E may then be determined from the appropriate equation (or chart) for a particular exchanger type.
- Actual heat transfer rate, $q = \varepsilon q_{\text{max}}$
- Fluid temperatures from $q = \dot{m}c(T_0 T_i)$

Example 1: Blood Cooling

In open heart surgery under hypothermic conditions, the patient's blood is cooled before the surgery and rewarmed afterward. Use of a cross-flow heat exchanger for this as shown below.

KNOWN: Cross-flow heat exchanger (both fluids unmixed) cools blood to induce body hypothermia using ice-water as the coolant.

PROPERTIES: Table A-6, Water $(\overline{T}_c = 280 \,\mathrm{K})$, $\rho = 1000 \,\mathrm{kg/m}^3$, $c = 4198 \,\mathrm{J/kg} \cdot \mathrm{K}$. Blood (given): $\rho = 1050 \,\mathrm{kg/m}^3$, $c = 3740 \,\mathrm{J/kg} \cdot \mathrm{K}$.

FIND:

- (a) Heat transfer rate from the blood
- (b) Water flow rate, \forall_c (liter/min)
- (c) Surface area of the exchanger

Example 1: Blood Cooling

FIND:

- (a) Heat transfer rate from the blood
- (b) Water flow rate, \forall_c (liter/min), (c) Surface area of the exchanger
- What is the HT from blood to water? What is this magnitude equal to?
- Is the change in thermal energy in blood = the thermal change in energy in water?
- What kind of HX? Do we know its efficiency?

Example 1: Solution

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible losses to the surroundings, (3) Overall heat transfer coefficient remains constant with water flow rate changes, and (4) Constant properties.

ANALYSIS: (a) The heat transfer rate from the blood is calculated from an energy balance on the hot fluid,

$$\dot{m}_h = \rho_h \dot{\forall}_h = 1050 \text{ kg/m}^3 \times (5 \text{ liter/min} \times 1 \text{ min/60 s}) \times 10^{-3} \text{ m}^3 / \text{liter} = 0.0875 \text{ kg/s}$$
 $q = \dot{m}_h c_h (T_{h,i} - T_{h,o}) = 0.0875 \text{ kg/s} \times 3740 \text{ J/kg} \cdot \text{K} (37 - 25) \text{K} = 3927 \text{ W}$ < (1)

(b) From an energy balance on the cold fluid, find the coolant water flow rate,

$$q = \dot{m}_c c_c (T_{c,o} - T_{c,i})$$

$$3927 W = \dot{m}_c \times 4198 \text{ J/kg} \cdot \text{K} (15 - 0) \text{K} \qquad \dot{m}_c = 0.0624 \text{ kg/s}$$
(2)

$$\dot{\forall}_c = \dot{m}_c / \rho_c = 0.0624 \text{ kg/s/}1000 \text{ kg/m}^3 \times 10^3 \text{liter/m}^3 \times 60 \text{ s/min} = 3.74 \text{ liter/min}$$

(c) The surface area can be determined using the effectiveness - NTU method. The capacity rates for the exchanger are

$$C_h = \dot{m}_h c_h = 327 \text{ W/K}$$
 $C_c = \dot{m}_c c_c = 262 \text{ W/K}$ $C_{\min} = C_c$ (3, 4, 5)

From Eqs. 11.18 and 11.19, the maximum heat rate and effectiveness are

$$q_{\text{max}} = C_{\text{min}} (T_{h,i} - T_{c,i}) = 262 \text{ W/K } (37 - 0) \text{ K} = 9694 \text{ W}$$
 (6)

$$\varepsilon = q / q_{\text{max}} = 3927 / 9694 = 0.405$$
 (7)

For the cross flow exchanger, with both fluids unmixed, substitute numerical values into Eq. 11.32 to find the number of transfer units, NTU, where $C_r = C_{\min} / C_{\max}$.

$$\varepsilon = 1 - \exp\left[\left(1/C_r\right) \text{NTU}^{0.22} \left\{ \exp\left[-C_r \text{NTU}^{0.78}\right] - 1 \right\} \right]$$
 (8,9)

$$NTU = 0.691$$

From Eq. 11.24, find the surface area, A.

$$NTU = UA / C_{min}$$

$$A = 0.691 \times 262 \text{ W/K/750 W/m}^2 \cdot \text{K} = 0.241 \text{ m}^2$$