Task 2.1P

Ouestion 1

Review the following algorithms (assume any undeclared variables are declared earlier)

```
double a = 0;
a += rand();
if( a < 0.5 ) a += rand();
if( a < 1.0 ) a += rand();
if( a < 1.5 ) a += rand();
if( a < 2.0 ) a += rand();
if( a < 2.5 ) a += rand();
if( a < 3.0 ) a += rand();</pre>
```

- a) What is the number of operations of the best, worst and average cases?
 - Best Case: In the ideal scenario, 'rand()' yields results so that, following the initial addition, 'a' is either greater than or equal to 3.0 One operation would come from this.
 - Worst Case: When 'rand()' yields results that satisfy every requirement, it is considered the worst case scenario. This would necessitate seven procedures.
 - Average Case: The number of requirements 'a' will meet is about 3-4 times on average, assuming 'rand' produces evenly distributed random numbers. As a result, 4-5 surgeries are performed on average.
- b) Describe the best, worst and average case using Big- Θ notation.
 - Best Case: $\Theta(1)$
 - Worst Case: $\Theta(1)$
 - Average Case: Θ(1)
- c) Describe each algorithm's overall performance using the tightest possible class in Big-O notation.
 - Overall Performance: O(1)
- d) Describe each algorithm's overall performance using the tightest possible class in Big- Ω notation.
 - Overall Performance: $\Omega(1)$
- e) Describe each algorithm's overall performance using Big- Θ notation.
 - Overall Performance: $\Theta(1)$
- f) Selecting from one or more of the above which is the best way to succinctly describe the performance of each algorithm using asymptotic notation.
 - Since this algorithm has constant time complexity, Θ (1) best captures its performance.

```
ii. int count = 0;
  for (int i = 0; i < N; i++)
{
    int num = rand();
    if( num < 0.5 ) {
        count += 1;
    }
}</pre>
```

- a) What is the number of operations of the best, worst and average cases?
 - Best Case: Assuming perfect conditions, 'num < 0.5' never occurs, leading to 'N' operation.
 - Worst Case: In the worst scenario, there are 'N' operations because 'num < 0.5 occurs each time.
 - Average Case: If `rand () ` produces evenly distributed random numbers on average, then `num < 0.5` will be satisfied in half of the `N` repetitions. As a results, there are `N` operation.
- b) Describe the best, worst and average case using Big-Θ notation.
 - Best Case: Θ(N)
 - Worst case: $\Theta(N)$
 - Average Case: Θ(N)
- c) Describe each algorithm's overall performance using the tightest possible class in Big-O notation.
 - Overall Performance: O(N)
- d) Describe each algorithm's overall performance using the tightest possible class in Big- Ω notation
 - Overall Performance: $\Omega(N)$
- e) Describe each algorithm's overall performance using Big- Θ notation.
 - Overall Performance: $\Theta(N)$
- f) Selecting from one or more of the above which is the best way to succinctly describe the performance of each algorithm using asymptotic notation.
 - This algorithm's linear time complexity makes Θ (N) the ideal technique to characterize its running performance.

```
iii. int count = 0;
for (int i = 0; i < N; i++)
{
    if (unlucky)
    {
        for (j = N; j > i; j--)
        {
            count = count + i + j;
        }
    }
}
```

- a) What is the number of operations of the best, worst and average cases?
 - Best Case: The optimal scenario is when `unlucky` is not true. `N` operations follow from this.
 - Worst Case: In the worst scenario, `unlucky is accurate. As a consequence, the inner loop executes `N (N+1)/2` times. Therefore, the number of operations is a function of N²
 - Average Case: The average instance in the scenario where `unlucky` is true occasionally will depend on the likelihood that `unlucky` will be true. `N/2 + N^2/2` would be the average amount of operations if `unlucky` is true 50% of the time.
- b) Describe the best, worst and average case using Big-Θ notation.

Best Case: Θ(N)

• Worst Case: $\Theta(N^2)$

• Average Case: $\Theta(N^2)$

- c) Describe each algorithm's overall performance using the tightest possible class in Big-O notation.
 - Overall Performance: O(N^2)
- d) Describe each algorithm's overall performance using the tightest possible class in Big- Ω notation
 - Overall Performance: $\Omega(N)$
- e) Describe each algorithm's overall performance using Big-Θ notation.
 - Overall Performance: $\Theta(N^2)$
- f) Selecting from one or more of the above which is the best way to succinctly describe the performance of each algorithm using asymptotic notation.
 - Since this method depicts the worst-case situation and dominates other cases, Θ
 (N²) best captures its performance.

- a) What is the number of operations of the best, worst and average cases?
 - Best Case: The loop is never carried out if 'unlucky' is false. [O (1)]
 - Worst Case: The while loop is executed if `unlucky` is true. Logarithmic iterations results from halving `i` in each iteration. [O(log N)]
 - Average Case: Despite the fact that the loop operates logarithmically when 'unlucky' is true, the logarithmic term nevertheless dominates the predicted complexity when 'unlucky' is assumed to be true at random. [O(log N)]
- b) Describe the best, worst and average case using Big- Θ notation.

• Best Case: Θ(1)

• Worst Case: Θ(log N)

• Average Case: Θ(log N)

- c) Describe each algorithm's overall performance using the tightest possible class in Big-O notation.
 - Overall performance: O(log N)
- d) Describe each algorithm's overall performance using the tightest possible class in Big- Ω notation
 - Overall performance: $\Omega(1)$
- e) Describe each algorithm's overall performance using Big-Θ notation.
 - Overall performance: $\Theta(\log N)$
- f) Selecting from one or more of the above which is the best way to succinctly describe the performance of each algorithm using asymptotic notation.
 - Θ(log N)

v.
int count = 0;

for (int i = 0; i < N; i++)
{
 int num = rand();
 if(num < 0.5)
 {
 count += 1;
 }
}
int num = count;
for (int j = 0; j < num; j++)
{
 count = count + j;</pre>

- a) What is the number of operations of the best, worst and average cases?
 - Best Case: 'count' stays at 0 following the initial loop. [O(N)]
 - Worst Case: Since count is roughly N/2 the second loop iterates N/2 times. O(N+N/2) = O(N)
 - Average Case: Since the second loop iterates N/2 times, count is approximately N/2
- b) Describe the best, worst and average case using Big-Θ notation
 - Best Case: Θ(N)
 - Worst Case: Θ(N)
 - Average Case: Θ(N)
- c) Describe each algorithm's overall performance using the tightest possible class in Big-O notation
 - Overall performance: O(N)
- d) Describe each algorithm's overall performance using the tightest possible class in Big- Ω notation
 - Overall performance: Ω (N)
- e) Describe each algorithm's overall performance using Big-Θ notation
 - Overall performance: $\Theta(N)$
- f) Selecting from one or more of the above which is the best way to succinctly describe the performance of each algorithm using asymptotic notation
 - Θ(N)

- a) What is the number of operations of the best, worst and average cases?
 - Best Case: There's already a sort on this array. O (N) in the case of early departure optimization, but O (N 2) in the absence of it.
 - Worst Case: Reverse order sorting is applied to the array. O(N2)
 - Average Case: Array arranged at random O(N2)
- b) Describe the best, worst and average case using Big-Θ notation
 - Best Case: $\Theta(N)$ with optimization, otherwise $\Theta(N^2)$
 - Worst Case: $\Theta(N^2)$
 - Average Case: $\Theta(N^2)$
- c) Describe each algorithm's overall performance using the tightest possible class in Big-O notation
 - Overall performance: O(N²)
- d) Describe each algorithm's overall performance using the tightest possible class in Big- Ω notation
 - Overall performance: $\Omega(N)$ with optimization, otherwise $\Omega(N^2)$
- e) Describe each algorithm's overall performance using Big-Θ notation
 - Overall Performance: Θ (N²)
- f) Selecting from one or more of the above which is the best way to succinctly describe the performance of each algorithm using asymptotic notation
 - $\Theta(N^2)$

Question 2

Arguably, the most commonly used asymptotic notation used is frequently Big-O. Discuss why this is so commonly the case.

Upper Limit of Attention

• An upper constraint on an algorithm's time or space complexity is provided by Big-O notation, which is especially helpful for comprehending the worst-case scenario. For resilient systems that must ensure performance, it is essential to know the maximum resources that an algorithm may consume.

Clarity and Simplicity

• When compared to other notation such as Big- Θ and Big- Ω , Big-O notation is easier to understand and less complex. It enables programmers and analysts to immediately understand the possible rate of increase in the amount of resources used by an algorithm

Generally Recognized Standard

• Comparing algorithms is made simple by Big-O notation. It concentrates on the dominating term abstracting away lower-order terms and constant factors, which makes comparing the scalability of various algorithms easy.

> Extra Careful Estimate

• System are guaranteed to be constructed with a safety margin since Big-O gives an upper bound. In crucial applications where going over resource constraints can have dire repercussions, this cautions strategy is advantageous.

> Flexibility

• Numerous issues and algorithms, from straight forward loops to intricate recursive functions, can be solved using Big-o notation. The tool's versatility in algorithm analysis stems from its universality.

➤ Historical priority

• Big O notation has been the standard tool for complexity analysis for a long time because of its historical use in basic computer science textbooks and courses. Its widespread use even now is influenced use by this heritage.

> Pedagogical Intentions

• Because of its ease of use and simplicity, Big-O notation is frequently the first asymptotic notation taught in computer science courses. Algorithm analysis gains a solid foundation tanks to this early introduction.

> Thorough understanding

- The most crucial component of performance analysis in large-scale systems is frequently understanding how an algorithm will function as the input size increases. By emphasizing the upper bound, Big-O notation provides a clear picture of this behavior.
- Big-O notation is widely used because, to put it briefly, it is straightforward, standardized, easy to compare, conservative, versatile, historically precedented, teaches a lot, and can shed light on scalability. It is a vital tool for algorithm creation and analysis because of these factors.

Ouestion 3

Is it true that θ (n) algorithm always takes longer to run than an θ (logn) algorithm? Explain your answer.

- No,
- Fixed Elements and lower Order Elements
 - Constant factors are ignored in Θ notation. For small n, a Θ (log n) method with a high constant might be slower than a Θ (log n) algorithm with a small constant.
- > The Size of the input
 - Since there is not much of a difference between n and log n log n for tiny input values, the actual runtimes may be near. When n is big, Θ (n) will typically take longer than Θ (log n).
- ➤ Change in Implementation
 - Real runtimes can be impacted by optimizations and particular implementations, which can occasionally make a Θ (n) method faster in practice.
- ➤ Best, Worst, Average case
 - Different algorithms may perform differently in average, worst, and best cases. There any be situations in which an average case Θ (n) method performs faster than a Θ (log n) algorithm.
- Essentially, although while Θ(n) grows faster than Θ(log n) asymptotically, this does not imply that a Θ(n) algorithm will always run longer in practice than a Θ(log n) algorithm, particularly for smaller input quantities or particular implementations.

Question 4

Answer whether the following statements are right or wrong and explain your answers.

$$-2n^2+6^{13}n=O(n^2)$$

- Right
- In Big-O notation, we consider the term with the highest growth rate. Here, $2n^2$ grows faster than 613n as n becomes large. Therefore, $2n^2$ =613n is dominated by the $2n^2$ term, making $2n^2$ +613n=O(n^2)
- nlogn=O(n)
 - Wrong
 - For n log n to be O(n), there would need to be a constant c such that n log n \leq cn all sufficiently large n. However n log n grows faster than n because the log n term increases with n. Thus, n log n is not O(n)

$$-n^3 + n^2 + 10^6 \text{n} = \theta (n^4)$$

- Wrong
- In Big-Theta notation, we consider the term with the highest growth rate to describe an asymptotic tight bound. Here, the highest growth rate term is n^3 , not n^4 . Therefore, $n^3+n^2+10^6n$ is dominated by the n^3 term, making it $\Theta(n^3)$, not $\Theta(n^4)$
- $nlogn = \Omega(n)$
 - Right
 - Big-O mega notation describes an asymptotic lower bound. For n log n to be $\Omega(n)$, there must exist a constant c such that n log n \geq cn for all sufficiently large n. Since log n is positive and increases with n, n log n grows faster than n. therefore, n log n= $\Omega(n)$