Tentamen i Digital o Datorteknik för E, GU, IT, Z. 2006-10-23

Kortform av lösningar till tentan. För full poäng krävs fullständiga lösningar enligt typtentan

1a) R=X-Y utförs som R=X+Y_{1k}+1; $Y_{1komp} = 00110$.

- **1b)** N=1; Z=0; V=1; $C_5=0 \Rightarrow C=1$
- **1c)** X=13 Y=25; R=20 (Kontroll: 13-25=20 ???); verkar rimligt ty C=1) C=1 anger att resultatet är fel vid tal utan tecken
- **1d)** X= 13; Y= -7; R= -12 (Kontroll: 13-(-7) = -12 ???); verkar rimligt ty V=1) V anger fel vid tal med tecken.
- **1e)** 1) Nej-Ja; 2) Ja Nej; 3) Ja Ja; 4) Ja Ja; 5) Nej Ja; 6) Ja Ja
- **1f)** 2^6 =64 vilket ger talområdet [-32₁₀,31₁₀] för tvåkomplementstal. Vi kan därför *inte* representera 32₁₀ som ett 6-bitars tvåkomplementstal.

Upg 2

2a) Vi vet att en OR-grind är samma sak som en NAND-grind med med inverterare på ingångarna (MORGAN)

2b) Se blåa boken del 1 exempel 5.14

2c)

xyz	F
000	1
001	0
010	0
011	0
100	1
101	1
110	1
111	0
	0

Konjunktiv normal form: f = (x+y+z')(x+y'+z)(x+y'+z')(x'+y'+z')

Konjunktiv minimal form: f=(x+z')(x+y')(y'+z')

2d) Se blåa boken del 1 sidan 4-3.

Upg 3 a)
Minimerat blir f=(x'y)+(xy'z')+(x'zw)

Rita nätet med NAND/NAND-logik

		ZW			
		00	01	14	10
	00	0	0	41	_0
xy	01 <	1	1	$\sqrt{1}$	1
	11	0	H	0	0
	10	(1	1)	0	0

xyzw	F
0000	0
0001	0
0010	0
0011	1
0100	1
0101	1
0110	1
0111	1
1000	1
1001	1
1010	0
1011	0
1100	0
1101	0
1110	0
1111	0
•	

Upg 3b)

Detta Tillst	Nästa tillst				
$\mathbf{q}_{2}^{\dagger}\mathbf{q}_{1}\mathbf{q}_{0}$	$\mathbf{q}_{2}^{}\mathbf{q}_{1}^{}\mathbf{q}_{0}^{}$		\mathbf{T}_{2}	$\mathbf{T}_{_{1}}$	\mathbf{T}_{o}
000	110		1	1	0
001			_	-	_
010	100		1	1	0
011	000		0	1	1
100	011		1	1	1
101			_	-	_
110	010		1	0	0
111			_	_	_

Rita figur med följande insignaler till vipporna

$$T_{2_1} = Q_{0_1}$$
 $T_{2_0} = Q_{2_1} + Q_{1_2}$ $T_{2} = Q_{0_1} + Q_{2_1}$

Upg 4

4a) Se sid 189; JSR ADR

4b)

- 0) Förbered för läsning av adressoperand i minnet, Öka PC med ett, Minska stackpekaren
- 1) Läs adressoperanden från minnet till register T
- 2) Förbered för skrivning till stack
- 3) Spara återhoppsadress på stacken och flytta adressoperanden till R
- 4) Ge PC det nya värdet (Adressoperanden)

Instruktionen är JSR Adr

4c)

State nr	RTN-beskrivning	Styrsignaler (=1)
0	2B→R	OE_B , f_3 , f_1 , f_0 , LD_R ,
1	$R \rightarrow T$	OE_R , LD_T
2	A-T→R	OE_A , f_3 , f_2 , LD_R , Cin ,
3	2R→R,	OE_R , f_3 , f_1 , f_0 , LD_R ,
4	$R \rightarrow A$	OE_R , LD_A ,

Upg 5 5a)

INC	\$A7	Öka lägsta o Kolla Carry
BCC	SLUT	Hoppa om noll
INC	\$A6	annars öka mellersta
BCC	SLUT	Hoppa om noll
INC	\$A5	Annars Öka högsta
NOP		_

5b) Hopp sker för Q [0,134]

SLUT

5c) Hopp sker för Q [128,134]

Upg 6b

Start LDX #SegCode Pekare till tabell

LDAB Inport Läs inporten
ANDB #\$0F Maskera b7-b4

TSTB Någon fördröjning???

BEQ SLUT Hoppa om NEJ

LDAA B,X Hämta kod STAA Utport . och visa

Loop JSR DELAY1s .. och vänta

* (Förutsätter att DELAY inte ändrar Register A)

DECB Mera delay?
BNE Loop Hoppa om JA

SLUT STAB Utport Slut och SLÄCK

NOP - eller JMP Start