ECEn 671: Mathematics of Signals and Systems Moon: Chapter 3.

Randal W. Beard

Brigham Young University

November 17, 2020

Table of Contents

Approximation Theory

Dual Approximation

Underdetermined Problems

Generalized Fourier Series

Section 1

Approximation Theory

Projection and Inner Product

- How does inner product represent a projection?
- ▶ Recall that

$$\langle x, y \rangle = ||x|| \, ||y|| \cos \theta$$

$$x$$

$$y$$

$$||y|| = 1$$

▶ In 2-D $\langle x, y \rangle$ represents the length of the projection of x in the direction of y.

 $||x||\cos\theta$

▶ In general, inner products represent (non-orthogonal) projection of one vector onto another.

Approximation Problem

- ▶ Let S be a Hilbert space, and let $x \in S$.
- ▶ Let $\{p_1, \ldots, p_n\}$ be a set of vectors, all in \mathbb{S} .
- ▶ Find $\hat{x} \in \text{span}\{p_1, \dots p_n\}$ that minimizes $||x \hat{x}||$.

Approximation Problem, cont

- ► Let $\hat{x} = c_1 p_1 + \ldots + c_n p_n \in \text{span}\{p_1, \ldots, p_n\}.$
- By the projection theorem, the error

$$e = x - \hat{x}$$

= $x - c_1 p_1 - \ldots - c_n p_n$

is minimized if

$$e \perp \operatorname{span}\{p_1,\ldots,p_n\}.$$

Approximation Problem, cont

$$e \perp \operatorname{span}\{p_1,\ldots,p_n\}.$$

iff

$$\langle e, p_1 \rangle = 0$$

 $\langle e, p_2 \rangle = 0$
 \vdots
 $\langle e, p_n \rangle = 0$

iff

$$\langle x - c_1 p_1 - \dots c_n p_n, p_1 \rangle = 0$$

$$\vdots$$

$$\langle x - c_1 p_1 - \dots c_n p_n, p_n \rangle = 0$$

Approximation Problem, cont

By properties of the inner product we can write this as

$$\langle x, p_1 \rangle - c_1 \langle p_1, p_1 \rangle - \dots - c_n \langle p_n, p_1 \rangle = 0$$

$$\vdots$$

$$\langle x, p_n \rangle - c_1 \langle p_1, p_n \rangle - \dots - c_n \langle p_n, p_n \rangle = 0$$

or in matrix notation,

$$\underbrace{\left(\begin{array}{ccc} \langle p_{1}, p_{1} \rangle & \cdots & \langle p_{n}, p_{1} \rangle \\ \vdots & & \vdots \\ \langle p_{1}, p_{n} \rangle & \cdots & \langle p_{n}, p_{n} \rangle \end{array}\right)}_{R} \underbrace{\left(\begin{array}{c} c_{1} \\ \vdots \\ c_{n} \end{array}\right)}_{\mathbf{c}} = \underbrace{\left(\begin{array}{c} \langle x, p_{1} \rangle \\ \vdots \\ \langle x, p_{n} \rangle \end{array}\right)}_{\mathbf{p}}$$

R is called the Grammian of the set $\{p_1, \ldots, p_n\}$.

The Grammian of a set

Definition (Grammian)

Given a set $\{p_1, \ldots, p_n\}$ of vectors in \mathbb{S} , the <u>Grammian</u> of the set is the matrix

$$R = \begin{pmatrix} \langle p_1, p_1 \rangle & \cdots & \langle p_n, p_1 \rangle \\ \vdots & & \vdots \\ \langle p_1, p_n \rangle & \cdots & \langle p_n, p_n \rangle \end{pmatrix}$$

Note that $R^H = R$ We also have the following theorem:

Theorem (Moon, Theorem 3.1)

The Grammian R is positive definite iff the set of vectors $\{p_1, \ldots p_n\}$ are linearly independent.

Proof

Let $y \in \mathbb{S}$ then

$$y^{H}Ry = (\bar{y}_{1} \cdots \bar{y}_{n}) \begin{pmatrix} \langle p_{1}, p_{1} \rangle & \dots & \langle p_{n}, p_{1} \rangle \\ \vdots & & \vdots \\ \langle p_{1}, p_{n} \rangle & \dots & \langle p_{n}, p_{n} \rangle \end{pmatrix} \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$= \left(\sum_{i=1}^{n} \bar{y}_{i} \langle p_{1}, p_{i} \rangle \dots \bar{y}_{i} \sum_{i=1}^{n} \langle p_{n}, p_{i} \rangle \right) \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \bar{y}_{i} y_{j} \langle p_{j}, p_{i} \rangle$$

$$= \left\langle \sum y_{j} p_{j}, \sum y_{i}, p_{i} \right\rangle = \| \sum y_{i} p_{i} \|^{2} \geq 0$$

Therefore R is always positive semi-definite.

Proof, cont.

 (\Rightarrow) : Suppose that R is pd then

$$y^{H}Ry = \left\|\sum y_{i}p_{i}\right\|^{2} > 0$$

 $\Rightarrow \sum y_{i}p_{i} \neq 0$ for all nonzero $y \in \mathbb{S}$
 $\Rightarrow \{p_{1}, \dots p_{n}\}$ is linearly independent

(\Leftarrow): Conversely suppose $\{p_1, \cdots p_n\}$ is linearly independent, but R is only psd. R is psd implies that $\exists y \neq 0$ such that

$$y^{H}Ry = \left\| \sum_{i} y_{i} p_{i} \right\|^{2} = 0$$

$$\Rightarrow \sum_{i} y_{i} p_{i} = 0$$

$$\Rightarrow \{p_{1}, \dots, p_{n}\} \text{ is linearly dependent.}$$

Which contradicts the assumption that R is psd.

Orthogonality Theorem

Theorem (Moon, Theorem 3.2)

Let $p_1, p_2, \dots p_n$ be data vectors (or basis vectors) in a Hilbert space \mathbb{S} . Let $x \in \mathbb{S}$. Let e be defined as

$$e \stackrel{\triangle}{=} x - \hat{x} = x - \sum_{j=1}^{n} c_j p_j,$$

then e is minimized when it is orthogonal to each of the data vectors, i.e.

$$\langle e, p_j \rangle = 0$$
 $j = 1, \dots, n$

Equivalently

$$R\mathbf{c} = \mathbf{p}$$
.

Proof.

Follows directly from projection theorem.

Calculus-Based Approach (Alternative proof)

Rather than using the projection theorem, we can derive the same result using calculus.

Problem Statement: Let
$$\mathbf{e} = x - \sum_{i=1}^{n} c_i p_i$$
. Find $\mathbf{c} = (c_1, \dots, c_n)^{\top}$ that minimizes $\|\mathbf{e}\|$.

Solution: First note that minimizing $\|\mathbf{e}\|^2$ is equivalent to minimizing $\|e\|$. Also note that

$$||e||^{2} = \left\langle x - \sum c_{j} p_{j}, x - \sum c_{j} p_{j} \right\rangle$$

$$= ||x||^{2} - 2Re\left\{ \sum_{i=1}^{n} \bar{c}_{i} \left\langle x, p_{i} \right\rangle \right\} + \sum \sum c_{j} \bar{c}_{i} \left\langle p_{j}, p_{i} \right\rangle$$

$$= ||x||^{2} - 2Re\left\{ \mathbf{c}^{H} \mathbf{p} \right\} + \mathbf{c}^{H} R \mathbf{c}.$$

Calculus-Based Approach, cont.

To minimize

$$\|\mathbf{e}\|^2 = \|\mathbf{x}\|^2 - 2R\mathbf{e}\{\mathbf{c}^H\mathbf{p}\} + \mathbf{c}^H R\mathbf{c}$$

differentiate with respect to ${\bf c}$ and set to zero. This will be a local minima if the second derivative is psd.

Calculus-Based Approach, cont.

From Moon Appendix we have

$$\frac{\partial}{\partial \bar{\mathbf{c}}} Re\{\mathbf{c}^H \mathbf{p}\} = \frac{1}{2} \mathbf{p}$$
$$\frac{\partial}{\partial \bar{\mathbf{c}}} \mathbf{c}^H R \mathbf{c} = R \mathbf{c}$$

Therefore

$$\frac{\partial \|\mathbf{e}\|^2}{\partial \mathbf{\bar{c}}} = -\mathbf{p} + R\mathbf{c} = \mathbf{0} \qquad \Rightarrow \qquad R\mathbf{c} = \mathbf{p}$$

In addition, we have that

$$\frac{\partial^2 \|\mathbf{e}\|^2}{\partial \bar{\mathbf{c}}} = R \ge 0.$$

Therefore the solution of $R\mathbf{c} = \mathbf{p}$ minimize ||e||. $R\mathbf{c} = \mathbf{p}$ is the same equation we obtained using the projection theorem.

Matrix Representation

▶ Stack the vectors $\{p_1, \dots p_n\}$ in a matrix

$$A = \begin{pmatrix} p_1 & p_2 & \dots & p_n \end{pmatrix}$$

 $\mathbf{c} = \begin{pmatrix} c_1 & c_2 & \dots & c_n \end{pmatrix}^{\top}$

- ▶ Then $\hat{x} = \sum c_j p_j = A\mathbf{c}$.
- ► Therefore $\mathbf{e} = x \hat{x} = x A\mathbf{c}$.

Matrix Representation, cont.

▶ Project **e** onto $\{p_1 \dots p_n\}$:

$$\langle x - A\mathbf{c}, p_1 \rangle = p_1^H(x - A\mathbf{c}) = 0$$

$$\vdots$$

$$\langle x - A\mathbf{c}, p_n \rangle = p_n^H(x - A\mathbf{c}) = 0$$

- Note that $A^H = \begin{bmatrix} p_1^H \\ \vdots \\ p_n^H \end{bmatrix}$.
- Rewrite as

$$A^{H}(x - A\mathbf{c}) = 0$$

$$\Rightarrow \underbrace{A^{H}A}_{R}\mathbf{c} = \underbrace{A^{H}x}_{\mathbf{p}}$$

Matrix Representation, cont.

▶ If $\{p_1, \dots p_n\}$ are linearly independent then R > 0 which implies that R^{-1} exists, so

$$\mathbf{c} = (A^H A)^{-1} A^H x$$

► Since $\hat{x} = A\mathbf{c}$ we have that

$$\hat{x} = A(A^H A)^{-1} A^H x$$

is the best approximation to x in span $\{p_1, \ldots, p_n\}$.

▶ **Fact:** $P_A = A(A^H A)^{-1} A^H$ is a projection operator from S to $span\{p_1, \ldots, p_n\}$

Application:Polynomial Approximation

- Suppose you are given a real continuous function f(t) and you would like to approximate it by an m^{th} order polynomial on the interval [a, b].
- Let the basis vectors be $\{1, t, \dots, t^m\}$.
- ► Then $\hat{f}(t) = c_1 + c_2 t + \cdots + c_{m+1} t^m$
- ▶ Define the inner product as $\langle f,g\rangle = \int_a^b f(t)g(t)dt$

Application: Polynomial Approximation, cont.

Then the orthogonality theorem implies that the "best" approximation is given by

$$\langle f - \hat{f}, 1 \rangle = 0$$

$$\vdots$$

$$\langle f - \hat{f}, t^m \rangle = 0$$

or

$$\underbrace{\begin{pmatrix} \langle 1,1 \rangle & \cdots & \langle t^m,1 \rangle \\ \vdots & & \vdots \\ \langle 1,t^m \rangle & \cdots & \langle t^m,t^m \rangle \end{pmatrix}}_{\text{Grammian Matrix}} \begin{pmatrix} c_1 \\ \vdots \\ c_{m+1} \end{pmatrix} = \begin{pmatrix} \langle f,1 \rangle \\ \vdots \\ \langle f,t^m \rangle \end{pmatrix}$$

or

$$R\mathbf{c} = \mathbf{p}$$
.

Application: Linear Regression

Suppose you have a number of data points that you are trying to fit to a line.

- ▶ The equation for a line is y = ax + b
- ▶ **Problem:** Find a and b that minimizes the mean squared error $\sum_{i=1}^{N} |y_i ax_i b|^2$

Application: Linear Regression, cont.

For each data point we have

$$e_i = y_i - ax_i - b$$

where e_i is the error for the i^{th} data point.

▶ Let

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}, \quad \mathbf{e} = \begin{pmatrix} e_1 \\ \vdots \\ e_N \end{pmatrix}, \quad A = \begin{pmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_N & 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} a \\ b \end{pmatrix}$$

▶ Then $\mathbf{e} = \mathbf{y} - A\mathbf{c}$.

Application: Linear Regression, cont.

Project the error e on the data vector (columns of A) and set to zero:

$$A^H \mathbf{e} = A^H (\mathbf{y} - A\mathbf{c}) = 0$$

▶ Therefore

$$A^H A \mathbf{c} = A^H \mathbf{y}$$

▶ Giving the minimum least squares solution

$$\mathbf{c} = (A^H A)^{-1} A^H \mathbf{y}.$$

Section 2

Dual Approximation

Dual Approximation

This section develops an approach that allows approximation in infinite dimensional spaces with finite constraints.

For matrices, we will solve the problem

$$\min \|x\|$$

s.t.
$$Ax = b$$

Definition (Affine Space)

Let \mathbb{Y} be a subspace of \mathbb{S} and let $x_o \in \mathbb{S}$. The set $\mathbb{V} = x_0 + \mathbb{Y}$ is called a <u>linear variety</u> or an <u>affine</u> space.

The projection theorem says that there exists a $v_0 \in \mathbb{V}$ such that $v_0 = \arg\min_{v \in \mathbb{V}} \|v\|$ such that $v_0 \perp \mathbb{Y}$.

Let $M = span\{y_1, \dots, y_m\}$ then $dim(M) < \infty$.

If $\dim(\mathbb{S})=\infty$ then $\dim(M^\perp)=\infty$ where M^\perp is the set of all $x\in\mathbb{S}$ such that

$$\langle x, y_1 \rangle = 0$$

$$\vdots$$

$$\langle x, y_m \rangle = 0$$

Now suppose that there are m inner product constraints:

$$\langle x, y_1 \rangle = a_1$$

 \vdots
 $\langle x, y_m \rangle = a_n$

If $\exists x_0$ that satisfies the constraints then so does $x_0 + v$ where $v \in M^{\perp}$ since

$$\langle x_0 + v, y_j \rangle = \langle x_0, y_j \rangle + \langle v, y_j \rangle$$

= $\langle x_0, y_j \rangle$
= a_i

Therefore all solutions are in the (infinite dimensional) affine space

$$v = x_0 + M^{\perp}$$

Theorem (Moon Theorem 3.4)

Let $\{y_1, \dots, y_m\}$ be linearly independent in a Hilbert space \mathbb{S} , and let $M = span\{y_1, \dots, y_m\}$. The solution of the problem

$$\min_{\mathbf{x} \in \mathbb{S}} \|\mathbf{x}\|^{2}$$
s.t. $\langle \mathbf{x}, \mathbf{y}_{1} \rangle = \alpha_{1}$,
$$\vdots,$$

$$\langle \mathbf{x}, \mathbf{y}_{m} \rangle = \alpha_{m}$$

is an element of M, i.e., $\hat{x} = \arg\min_{x \in \mathbb{S}} \|x\|^2 = \sum_{i=1}^m c_i y_i$, where \mathbf{c} satisfies $R\mathbf{c} = \alpha$, where R is the Grammian and

$$\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_m)^\top.$$

Proof:

From the previous discussion, the solution lies in the affine space $\mathbb{V} = x_0 + M^{\perp}$ for some $x_0 \in \mathbb{S}$.

The minimum norm solution is orthogonal to M^{\perp} i.e.

$$\hat{x} \perp M^{\perp} \Rightarrow \hat{x} \in M^{\perp \perp} = M$$

So
$$\hat{x}$$
 is of the form $\hat{x} = \sum_{i=1}^{m} c_j y_j$

Proof, cont.

Now projecting x onto M gives

$$\langle \hat{x}, y_1 \rangle = \left\langle \sum c_j y_j, y_1 \right\rangle = \sum c_j \langle y_j, y_1 \rangle = \alpha_1$$

$$\vdots = \vdots = \vdots$$

$$\langle \hat{x}, y_m \rangle = \left\langle \sum c_j y_j, y_m \right\rangle = \sum c_j \langle y_j, y_m \rangle = \alpha_m$$

rewriting in matrix notation gives

$$R\mathbf{c} = \boldsymbol{\alpha}$$

Dual Approximation, Example

Given the differential equation

$$\ddot{y} + 6\dot{y} + 8y = 4\dot{u} + 10u, \qquad y(0) = \dot{y}(0) = 0$$

Solve the following optimal control problem:

$$\begin{aligned} \min_{u \in L_2} & \|u\|^2 \\ \text{s.t.} & y(1) = 1, \\ & \int_0^1 y(t) dt = 0 \end{aligned}$$

The corresponding transfer function is

$$H(s) = \frac{4s+10}{s^2+6s+8} = \frac{1}{s+2} + \frac{3}{s+4}$$

$$\Rightarrow h(t) = e^{-2t} + 3e^{-4t}$$

$$\Rightarrow y(t) = \int_0^t \left[e^{-2(t-\tau)} + 3e^{-4(t-\tau)} \right] u(\tau) d\tau$$

Define the following inner product

$$\langle f(t), g(t) \rangle = \int_0^1 f(\tau)g(\tau)d\tau$$

then y(1) = 1 can be written as

$$\int_{0}^{1} \left[e^{-2(1-\tau)} + 3e^{-4(1-\tau)} \right] u(\tau) d\tau = \langle u, y_{1} \rangle = 1$$

where
$$y_1(t) = e^{-1(1-t)} + 3e^{-4(1-t)}$$

The second constraint is of the form

$$\int_{0}^{1} y(t)dt = \int_{t=0}^{t=1} \int_{\tau=0}^{\tau=t} h(t-\tau)u(\tau)d\tau dt = 0$$

Changing order of integration gives

$$= \int_{\tau=0}^{1} \left[\int_{t=\tau}^{1} h(t-\tau) dt \right] u(\tau) d\tau.$$

Letting $\sigma = t - \tau \Rightarrow t = \sigma + \tau \Rightarrow dt = d\sigma$ gives

$$= \int_{\tau=0}^{1} \left[\int_{\sigma=0}^{\sigma=1-\tau} h(\sigma) d\sigma \right] u(\tau) d\tau$$
$$= \int_{\tau=0}^{1} \left(\frac{5}{4} - \frac{3}{4} e^{-4(1-\tau)} - \frac{1}{2} e^{-2(1-\tau)} \right) u(\tau) d\tau$$
$$= \langle u, y_2 \rangle = 0$$

where

$$y_2(t) = \frac{5}{4} - \frac{3}{4}e^{-4(1-\tau)} - \frac{1}{2}e^{-2(1-\tau)}$$

so we have that

$$\langle u, y_1 \rangle = 1$$

 $\langle u, y_2 \rangle = 0$

and we want to minimize $||u||_{L_2[0,1]}^2$

Let $M = span\{y_1, y_2\}$. By Theorem 3.4

$$u \in M \Rightarrow u(t) = c_1 y_1(t) + c_2 y_2(t)$$

where

$$\left(\begin{array}{cc} \langle y_1,y_1\rangle & \langle y_2,y_1\rangle \\ \langle y_1,y_2\rangle & \langle y_2,y_2\rangle \end{array}\right) \left(\begin{array}{c} c_1 \\ c_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 1 \end{array}\right)$$

Section 3

Underdetermined Problems

Section 3.15: Underdetermined Problems

Given Ax = b where A is fat, i.e. fewer equations than unknowns, solve the following problem:

$$\min \quad \|x\|_2$$

s.t.
$$Ax = b$$

where
$$A = \begin{pmatrix} y_1^H \\ \vdots \\ y_m^H \end{pmatrix}$$
, $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, and $y \in \mathbb{C}^n$ and $h \in \mathbb{C}^m$

Section 3.15: Underdetermined Problems, cont.

Ax = b is a set of inner product constraints

$$y_1^H x = b_1$$

$$\vdots$$

$$y_m^H x = b_m$$

Let $M = span\{y_1, \cdots, y_m\}$.

Theorem 3.4 implies that $x_0 = \arg \min ||x|| \in M$

$$\Rightarrow x_0 = \sum c_j y_j = A^H c$$

and that c satisfies

$$R\mathbf{c} = \mathbf{b}$$
 where $R = AA^H$

if $\{y_1, \cdots, y_m\}$ are linearly independent then

$$\mathbf{c} = (AA^H)^{-1}\mathbf{b}$$
 \Rightarrow $x_0 = \underbrace{A^H(AA^H)^{-1}}_{\text{pseudo-inverse}}\mathbf{b}$

Section 4

Generalized Fourier Series

Section 3.17: Generalized Fourier Series

Topic of interest: L_2 function approximation

Definition (Complete Basis)

An orthonormal set $\{p_i, i=1,\ldots,\infty\}$ in a Hilbert space $\mathbb S$ is a complete basis or <u>total basis</u> if $\forall x \in \mathbb S$

$$x = \sum_{i=1}^{\infty} \langle x, p_i \rangle p_i$$

Note that if $x=\sum_{i=1}^{\infty}c_{i}p_{i}$ and $\langle p_{i},p_{j}\rangle=\delta_{ij}$ then

$$\langle x, p_j \rangle = \sum_{i=1}^{\infty} c_i \langle p_i, p_j \rangle = c_j$$

 $\Rightarrow c_i = \langle x, p_i \rangle$

Therefore we can write

$$x = \sum_{i=1}^{\infty} \langle x, p_i \rangle p_i.$$

Most common example: standard Fourier basis

$$P_n(t) = \frac{1}{\sqrt{T}} e^{j\left(\frac{2\pi}{T}\right)nt}$$

Any function $f \in L_2[0, T]$ can be written as

$$f(t) = \sum_{n=-\infty}^{\infty} c_n \frac{1}{T} e^{j\left(\frac{2\pi}{T}\right)nt}$$

where the coefficients are given as

$$c_n = \left\langle f, \frac{1}{\sqrt{T}} e^{j\left(\frac{2\pi}{T}\right)nt} \right\rangle \stackrel{\triangle}{=} \frac{1}{\sqrt{T}} \int_0^T f(t) e^{j\left(\frac{2\pi}{T}\right)nt} dt$$

Actually it is common to place the $\frac{1}{\sqrt{T}}$'s together letting $f(t) = \sum_{n=-\infty}^{\infty} b_n e^{j\left(\frac{2\pi}{T}\right)nt}$ where

$$b_n = \left\langle f(t), \frac{1}{T} e^{j\left(\frac{2\pi}{T}\right)nt} \right\rangle = \frac{1}{T} \int_0^T f(t) e^{-j\left(\frac{2\pi}{T}\right)nt} dt$$

Generalized Fourier series hold for any complete basis, i.e.

$$x = \sum_{j=1}^{\infty} \langle x, p_j \rangle p_j$$

There are two important relationship between a function and its Fourier transform.

Theorem (Bessel's Inequality)

Suppose $\{p_1, p_2, \ldots\}$ is orthonormal but not necessarily complete and let

$$c = \{\langle x, p_1 \rangle, \langle x, p_2 \rangle, \ldots\} = \{c_1, c_2, \ldots\}$$

then

$$||c||_{\ell_2} \leq ||x||_{L_2}$$

Proof:

$$0 \le \left\| x - \sum_{j} c_{j} p_{j} \right\|_{L_{2}}^{2} = \left\langle x - \sum_{j} c_{j} p_{j}, x - \sum_{j} c_{j} p_{j} \right\rangle_{L_{2}}$$

$$= \left\langle x, x \right\rangle_{L_{2}} - \sum_{j} \bar{c}_{j} \left\langle x, p_{j} \right\rangle_{L_{2}}$$

$$- \sum_{j} c_{j} \left\langle x, p_{j} \right\rangle_{L_{2}} + \sum_{j} \sum_{j} c_{j} \bar{c}_{k} \left\langle p_{j}, p_{k} \right\rangle_{L_{2}}$$

$$= \left\| x \right\|_{L_{2}}^{2} - \sum_{j} \bar{c}_{j} c_{j} - \sum_{j} c_{j} \bar{c}_{j} + \sum_{j} c_{j} \bar{c}_{j}$$

$$= \left\| x \right\|_{L_{2}}^{2} - \sum_{j=1}^{\infty} |c_{j}|^{2}$$

$$= \left\| x \right\|_{L_{2}}^{2} - \left\| c \right\|_{\ell_{2}}^{2}$$

$$\Rightarrow \left\| c \right\|_{\ell_{2}}^{2} \le \left\| x \right\|_{L_{2}}^{2}$$

Theorem (Parseval's Equality)

If $T = \{p_1, p_2, \ldots\}$ is complete then

$$||x||_{L_2}^2 = ||c||_{\ell_2}^2$$

Proof.

If T is complete then

$$\left\|x-\sum c_j p_j\right\|^2=0$$

and the result follows from the proof of Bessel's inequality .

Significance of Parseval's Equality

 $\|x\|_{L_2}^2 = \|c\|_{\ell_2}^2$ says that the energy in a signal (i.e. $\|x\|_{L_2}$) is equal to the energy in the Fourier coefficients (i.e. $\|c\|_{\ell_2}^2$).

This relationship between x and its transform c is written as

$$x \stackrel{\mathcal{F}}{\longleftrightarrow} c$$
.

Significance of Parseval's Equality, cont.

Lemma (Moon Lemma 3.1)

If $x \stackrel{\mathcal{F}}{\longleftrightarrow} c$ and $y \stackrel{\mathcal{F}}{\longleftrightarrow} b$ for the same complete basis $\{p_1, p_2, \ldots\}$ then

$$\langle x,y\rangle_{L_2}=\langle c,b\rangle_{\ell_2}$$
.

Proof.

Let
$$x = \sum_{i=1}^{\infty} c_i p_i$$
, and $y = \sum_{i=1}^{\infty} b_i p_i$ then

$$\langle x, y \rangle_{L_2} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_i \bar{b}_j \langle p_i, p_j \rangle$$

 $= \sum_{i=1}^{\infty} c_i \bar{b}_i$
 $= \langle c, b \rangle_{\rho_2}$