Chapter 1

Introduction to Categories

1.1 Categories

Definition 1.1.1 (Category). A category \mathscr{C} consists of a collection of mathematical structures, called the objects, denoted by $Ob(\mathscr{C})$, and a class of morphisms (or arrows), denoted by $Hom(\mathscr{C})$, between the objects. The morphisms must obey the following axioms:

- i. If A, B, C in \mathscr{C} , $f: A \to B$, and $g: B \to C$, then there is a morphism $g \circ f: A \to C$ (composition).
- ii. For each X in \mathscr{C} , there exists an identity function. That is, there exists a function $\mathrm{id}_X: X \to X$ such that for every morphism $f: A \to X$ and every morphism $g: X \to A$, we have $\mathrm{id}_X \circ f = f$ and $g \circ id_X = g$.
- iii. The composition is associative. That is, whenever we have $f:A\to B,\ g:B\to C,$ and $h:C\to D,$ then $(h\circ g)\circ f=h\circ (g\circ f).$

Example 1.1.1.1 (Set). The category of sets, denoted by Set, is a category where the objects are sets and the morphism are functions.

Example 1.1.1.2 (Cat). Cat is a category where the objects are small categories (categories where $Ob(\mathscr{C})$ and $Hom(\mathscr{C})$ are actual sets, not classes) and the morphisms are functors.

Example 1.1.1.3 (The opposite category). Every category \mathscr{C} has an *opposite category* \mathscr{C}^{op} . The objects in this category are the exact same as those in \mathscr{C} , but the morphisms (arrows) point the other direction. In other words, $\operatorname{Hom}_{\mathscr{C}^{op}}(X,Y) = \operatorname{Hom}_{\mathscr{C}}(Y,X)$. Note that in category theory, morphisms do not need to be actual functions.

1.2 Functors

Definition 1.2.1 (Functor). A functor is a mapping between categories. Specifically, if \mathscr{C} and \mathscr{D} are categories, then a functor F from \mathscr{C} to \mathscr{D} does the following:

- i. maps an object X in \mathscr{C} with F(X) in \mathscr{D} (for every X).
- ii. for every morphism f in $\operatorname{Hom}(X,Y)$, the functor maps f to F(f) with F(f) in $\operatorname{Hom}(F(X),F(Y))$, for every X,Y in $\mathscr E$ and F(X),F(Y) in $\mathscr D$.

such that the following axioms hold:

- i. $F(id_X) = id_{F(X)}$ for every X in \mathscr{C} .
- ii. $F(g \circ f) = F(g) \circ F(f)$ for every morphism f, g.

Example 1.2.1.1 (Power set). The power set $P : \mathbf{Set} \to \mathbf{Set}$ is a functor. A functor which maps a category to itself is called an *endofunctor*.

Example 1.2.1.2 (Forgetful functor). The functor $F : \mathbf{Grp} \to \mathbf{Set}$ defined by sending a group to its underlying set and sending a group homomorphism to its underlying set function is functor.

Example 1.2.1.3 (Opposite functor). Just like opposite categories, each functor admits an opposite functor. If $F: \mathcal{C} \to \mathcal{D}$, then $F^{op}: \mathcal{C}^{op} \to \mathcal{D}^{op}$.

Example 1.2.1.4 (Contravariant functor). Let \mathbf{Vect}_{\Bbbk} be the category of vector spaces over a field \Bbbk , where the morphisms are linear transformations. Let $F: \mathbf{Vect}_{\Bbbk} \to \mathbf{Vect}_{\Bbbk}$ be the functor that sends a vector space V to its dual space $V^* = \mathrm{Hom}(V, \Bbbk)$. It is clear what this functor does to objects, but what about morphisms? What is the result of applying F to linear transformations? Suppose we had vector spaces V and V and linear transformations $f: V \to W, \ \psi: V \to \Bbbk$:

How are we supposed to take ψ and f to create a map F(f) from W to \mathbb{R} ? From the diagram, this looks impossible. But it also hints at a solution. If we instead start with a linear transform $\phi:W\to\mathbb{R}$, then we can define $\psi=\phi\circ f$. We can thus define $F(f):=f^*$, called a *pullback*, which takes $\phi:W\to\mathbb{R}$ to $\phi\circ f:V\to\mathbb{R}$. In other words, $f^*(\phi)=\phi\circ f$. Notice that this endofunctor reverses the arrows of the morphisms. If F send V to W, then F sends $Hom(W,\mathbb{R})$ to $Hom(V,\mathbb{R})$. This is called a *contravariant functor*.

Definition 1.2.2. A functor is *full* if it is "surjective", *faithful* if it is "injective", and *fully faithful* if it is "bijective".

Theorem 1.2.3. Let X, Y be objects of a category $\mathscr C$ and $F : \mathscr C \to \mathscr D$ a fully faithful functor. If $F(X) \cong F(Y)$, then $X \cong Y$.

Proof. Let $h: F(X) \to F(Y)$ be an isomorphism with inverse h^{-1} . Since F is fully faithful, we must be able to find a unique morphism $f: X \to Y$ satisfying F(f) = h. Similarly, we can also find a $g: Y \to X$ such that $F(g) = h^{-1}$. Then:

$$id_{F(X)} = h^{-1} \circ h = F(g) \circ F(f) = F(fg).$$

But by defintion of a functor, $id_{F(X)} = F(id_X)$, so we have that

$$F(fg) = F(\mathrm{id}_X).$$

Since F is fully faithful, $fg = \mathrm{id}_X$. A similar argument shows that $gf = \mathrm{id}_Y$, establishing the isomorphism.

1.3 Natural Transformations

Definition 1.3.1 (Natural Transformation). Let F and G both be functors from a category \mathscr{C} to a category \mathscr{D} . A natural transformation $\eta: F \Rightarrow G$ is a family of morphisms that satisfies the following:

- i. For all X in \mathscr{C} , there is a morphism $\eta_X : F(X) \to G(X)$, called the component of η at X.
- ii. For all morphisms $f: X \to Y$ in $\operatorname{Hom}(\mathscr{C})$, $G(f) \circ \eta_X = \eta_Y \circ F(f)$. Equivalently, this condition is satisfied if and only if the following diagram commutes:

$$F(X) \xrightarrow{\eta_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow^{G(f)}$$

$$F(Y) \xrightarrow{\eta_Y} G(Y)$$

A diagram *commutes* if taking any path from point A to point B gives equivalent results.

Example 1.3.1.1. Of course, the identity transformation is a natural transformation.

$$F(X) \xrightarrow{\operatorname{id}_X} F(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow^{F(f)}$$

$$F(Y) \xrightarrow{\operatorname{id}_Y} F(Y)$$

Remark. The word "natural" or "canonical" is used in mathematics to describe relationships that arise natural from construction. Intuitively, we can think of it as if two people were to define a relationship independently, they end up with the same thing. For example, the canonical map from a set S to its power set $\mathcal{P}(S)$ is defined by $a \mapsto \{a\}$, and the Jordan Canonical Form is named that way because there is only one (up to isomorphism) JCF for each similarity class of linear transformations.

Example 1.3.1.2. Let V be a finite dimensional vector space. Then there is a natural transformation from V to V^{**} , the double dual of V. If V and W be finite dimensional vector spaces, and $T:V\to W$ is a linear transformation, we can define the natural transformations like so:

$$\eta_V(v) = \text{eval}_v$$

$$\eta_W(w) = \text{eval}_w$$

where eval_v takes an element $f:V\to \mathbb{k}$ from V^* and applies v to it. Equationally, this translates to $\operatorname{eval}_v=f(v)$. Now consider the following diagram:

$$V \xrightarrow{\text{eval}_v} V^{**}$$

$$T \downarrow \qquad \qquad \downarrow T^{**}$$

$$W \xrightarrow{\text{eval}_w} W^{**}$$

Is it commutative? Yes, it is! However, the reader is encouraged to check it themselves.

Remark. Although there is also an isomorphism $V \cong V^*$, the isomorphism is not "natural" in any way. To even define a map from V to V^* , we have to choose a basis; and you know that when you need to choose a basis your life is already going downhill. For every different basis we pick, we get a different isomorphism. In fact, it can be shown that there is no "natural" isomorphism between V and V^* .

Definition 1.3.2 (Representable functors). Let \mathscr{C} be a locally small category, and for each object A in \mathscr{C} let $\operatorname{Hom}(A,-)$ be the functor that maps X to the set $\operatorname{Hom}(A,X)$. A functor $F:\mathscr{C}\to\operatorname{\mathbf{Set}}$ is said to be representable if there is a natural transformation from F to $\operatorname{Hom}(A,-)$ for some object A in \mathscr{C} . A representation is a pair (A,Φ) such that $\Phi:\operatorname{Hom}(A,-)\to F$ is a natural transformation.

Example 1.3.2.1. Let $F : \mathbf{Grp} \to \mathbf{Set}$ be the functor that sends a group to its underlying set. Then $(\mathbb{Z}, 1)$ is a representation of F.

Proof. We would like to establish the natural transformation $\Phi : \operatorname{Hom}(\mathbb{Z}, -) \to F$. Let G be an object in Grp , then for each g in G, there is a unique homomorphism satisfying $1 \mapsto g$. This sets up a bijection between F(G) and $\operatorname{Hom}(\mathbb{Z}, G)$. Since we can do this for every group, let us define this mapping to Φ_G , the component of Φ at G. Now let us verify Φ is natural. Let G, H be groups and f be a (group) homomorphism.

$$F(G) \xrightarrow{\Phi_G} \operatorname{Hom}(\mathbb{Z}, G)$$

$$F(f) \downarrow \qquad \qquad \downarrow \operatorname{Hom}(\mathbb{Z}, f)$$

$$F(H) \xrightarrow{\Phi_H} \operatorname{Hom}(\mathbb{Z}, H)$$

Recall that if g in $\operatorname{Hom}(A, f)$, then $g \mapsto f \circ g$, so this diagram does indeed commute. \square

We can do similar things to other forgetful functors (try it yourself for **Ring**).

Chapter 2

Yoneda's Lemma

2.1 The Yoneda Embedding

The Yoneda embedding is a special case of the Yoneda lemma, but we'll work through this first before moving on to the general version.

Corollary 2.1.0.1 (The Yoneda Embedding). Let $\mathscr C$ be a locally small category (recall that locally small means that $\operatorname{Hom}(\mathscr C)$ are actual sets). Then there is a natural functor F from $\mathscr C$ to $\operatorname{\mathbf{Set}}$.

Proof. Let X be an object in \mathscr{C} and define $H_A(X) = \operatorname{Hom}(A, X)$, for all A in \mathscr{C} , the set of all morphisms to X. Now for any morphism $f: X \to Y$, we want to map it to some morphism $H_A(f): H_A(X) \to H_A(Y)$. Note that objects of $H_A(X)$ are morphisms themselves, $u: A \to X$ for some object A in \mathscr{C} . Thus we can simply define $H_A(f) = f \circ u$. \square

Theorem 2.1.1 (Yoneda's Lemma). Let $\mathscr C$ be a locally small category, $F:\mathscr C\to \mathbf{Set}$ a functor, and $H^A=\mathrm{Hom}(A,-)$. Then

$$\mathbf{Set}^{\mathscr{C}}(H^A, F) \cong F(A).$$

That is, there is a one-to-one correspondence between the natural tranformations from H^A to F and the elements of F(A).

Proof. Let X be an object in $\mathscr C$ and a in X. Define the natural transformation η by declaring each component $\eta_X : \operatorname{Hom}(A,X) \to F(X)$ to be the map $g \mapsto (F(g))(a)$.

Corollary 2.1.1.1. Let X, Y be objects in a category \mathscr{C} . Then the Yoneda embedding \mathscr{Y} : $\mathscr{C} \to \mathbf{Set}^{\mathscr{C}}$ given by

$$\operatorname{Hom}(X,Y)\mapsto \mathbf{Set}^{\mathscr{C}}(\operatorname{Hom}(X,-),\operatorname{Hom}(Y,-))$$

is full and faithful.

Corollary 2.1.1.2. Let X, Y be objects in a category \mathscr{C} . Then

$$X \cong Y$$
 if and only if $\operatorname{Hom}(X, -) \cong \operatorname{Hom}(Y, -)$.

Corollary 2.1.1.3 (Cayley's Theorem). Let G be a group. Then G is isomorphic to a subgroup of the symmetric group acting on G.

Proof. For every group G, we can view it as a category \mathscr{G} consisting of a single object \bullet where the (iso)morphisms are the group elements. Let $F:\mathscr{G}\to \mathbf{Set}$ be the functor that maps \bullet to the underlying set X and morphisms g to a function $x\mapsto gx$. In particular, $F=\mathrm{Hom}(\bullet,-)$. According to Yoneda, we have:

$$\mathbf{Set}^{\mathscr{G}}(\mathrm{Hom}(\bullet,-),\mathrm{Hom}(\bullet,-))\cong\mathrm{Hom}(\bullet,\bullet).$$

Notice that the right hand side is actually G itself. As for the left hand side, let us consider the components $\eta_g: G \to G$ in $\mathbf{Set}^{\mathscr{G}}(\mathrm{Hom}(\bullet, \bullet), \mathrm{Hom}(\bullet, \bullet))$. These, however, were just the maps $x \mapsto gx$ we defined earlier, which are the automorphisms of G. Thus the left hand side is a subgroup of the symmetric group acting ong G, and the right hand side is G, and we are done.