What is claimed is:

A method of inhibiting both angiotensin converting enzyme and neutral
 endopeptidase for treatment of a disease which comprises administering to a patient in need of said treatment a therapeutically effective amount of a compound of formula
 (I)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

wherein

10 A is H, C_1 - C_8 -alkyl, - $CH_2OCH_2CH_2OCH_3$, or -(C_1 - C_4 -alkyl)-aryl;

R₁ is hydrogen, -CH₂OC(O)C(CH₃)₃, or an acyl group;

 R_2 is hydrogen, -CH₂O-C(O)C(CH₃)₃, C₁-C₄-alkyl, aryl, -(C₁-C₄-alkyl)-aryl, or diphenylmethyl;

X is $-(CH_2)_n$ wherein n is an integer 0 or 1, -S-, -O-,

15

wherein R_3 is hydrogen, C_1 - C_4 -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl; and R_4 is CF_3 , C_1 - C_{10} -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl;

20

 B_1 and B_2 are each independently hydrogen, hydroxy, or -OR₅, wherein R₅ is C₁-C₄-alkyl, aryl, or -(C₁-C₄-alkyl)-aryl or, where B₁ and B₂ are attached to adjacent carbon atoms, B₁ and B₂ can be taken together with said adjacent carbon atoms to form a benzene ring or methylenedioxy,

5

10

25

30

or a pharmaceutically acceptable salt or stereoisomer thereof.

- 2. The method according to claim 1 wherein the disease is selected from the group consisting of non-diabetic nephropathy, diabetic nephropathy, insulin resistance, diabetic neuropathy, diabetic retinopathy, myocardial infarction, cataracts, diabetic cardiomyopathy, atherosclerosis and endothelial dysfunction.
- 3. The method according to claim 2 wherein the disease is non-diabetic nephropathy.
- 4. The method according to claim 2 wherein the disease is diabetic nephropathy.
- 5. The method according to claim 2 wherein the disease is insulin resistance.
 - 6. The method according to claim 2 wherein the disease is diabetic neuropathy.
- 7. The method according to claim 2 wherein the disease is diabetic retinopathy.
 - 8. The method according to claim 2 wherein the disease is myocardial infarction.
 - 9. The method according to claim 2 wherein the disease is cataracts.
 - 10. The method according to claim 2 wherein the disease is diabetic cardiomyopathy.
 - 11. The method according to claim 2 wherein the disease is atherosclerosis.

- 12. The method according to claim 2 wherein the disease is endothelial dysfunction.
- 13. The method according to claim 1, wherein the compound is the compound of formula (II)

$$CH_3$$
 O O OR_2 (II).

wherein R₁ is acetyl or hydrogen.

10

15

20

- 14. The method according to claim 13, wherein R_1 is acetyl.
- 15. The method according to claim 13, wherein R₁ is hydrogen.
- 16. The method according to claim 13, wherein B_1 and B_2 are hydrogen.
- 17. The method according to claim 13, wherein X is -CH₂.
- 18. The method according to claim 1, wherein the compound is the compound of formula (II-A)

wherein R₁ is acetyl or hydrogen.

19. The method according to claim 18, wherein the compound has the formula (II-B)

$$\begin{array}{c|c} CH_3 & O \\ CH_3 & O \\ O & S \\ CH_3 & O \\ \end{array}$$

5

20. The method according to claim 18, wherein the compound has the formula (II-C)

10

15

21. The method according to claim 1, wherein the compound is the compound of formula (III)

$$B_1$$
 B_2
 X
 SR_1
 O
 OR_2
(III),

wherein R₁ is acetyl or hydrogen.

- 22. The method according to claim 21, wherein R_1 is acetyl.
- 23. The method according to claim 21, wherein R₁ is hydrogen.
- 24. The method according to claim 21, wherein B_1 and B_2 are hydrogen.
- 25. The method according to claim 21, wherein X is -CH₂.
- 10 26. The method according to claim 1, wherein the compound is the compound of formula (III-A)

wherein R₁ is acetyl or hydrogen.

27. The method according to claim 26, wherein the compound has the formula (III-B)

20

15

5

28. The method according to claim 26, wherein the compound has the formula (III-C)

29. A method for inhibition of both angiotensin converting enzyme and neutral endopeptidase which comprises administering to a patient in need of said inhibition an effective inhibitory amount of a compound of formula (I)

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

wherein

A is H, C_1 - C_8 -alkyl, - $CH_2OCH_2CH_2OCH_3$, or -(C_1 - C_4 -alkyl)-aryl;

R₁ is hydrogen, -CH₂OC(O)C(CH₃)₃, or an acyl group;
R₂ is hydrogen, -CH₂O-C(O)C(CH₃)₃, C₁-C₄-alkyl, aryl, -(C₁-C₄-alkyl)-aryl, or diphenylmethyl;

X is $-(CH_2)_n$ wherein n is an integer 0 or 1, -S-, -O-,

15

wherein R_3 is hydrogen, C_1 - C_4 -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl; and R_4 is CF_3 , C_1 - C_{10} -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl;

 B_1 and B_2 are each independently hydrogen, hydroxy, or -OR₅, wherein R₅ is C₁-C₄-alkyl, aryl, or -(C₁-C₄-alkyl)-aryl or, where B₁ and B₂ are attached to adjacent carbon atoms, B₁ and B₂ can be taken together with said adjacent carbon atoms to form a benzene ring or methylenedioxy,

or a pharmaceutically acceptable salt or stereoisomer thereof.

30. A method for the preparation of a pharmaceutical composition having both angiotensin converting enzyme and neutral endopeptidase inhibitory activity for treatment of a disease comprising mixing a pharmaceutically acceptable carrier, optionally one or more pharmaceutically acceptable excipients, and a therapeutically effective amount of a compound of formula (I)

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

15 wherein

25

10

A is H, C_1 - C_8 -alkyl, - $CH_2OCH_2CH_2OCH_3$, or -(C_1 - C_4 -alkyl)-aryl;

R₁ is hydrogen, -CH₂OC(O)C(CH₃)₃, or an acyl group;

 R_2 is hydrogen, $-CH_2O-C(O)C(CH_3)_3$, C_1-C_4 -alkyl, aryl, $-(C_1-C_4$ -alkyl)-aryl, or diphenylmethyl;

 $X = (CH_2)_n$ wherein n is an integer 0 or 1, -S-, -O-,

wherein R_3 is hydrogen, C_1 - C_4 -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl; and R_4 is CF_3 , C_1 - C_{10} -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl;

5

 B_1 and B_2 are each independently hydrogen, hydroxy, or -OR₅, wherein R₅ is C₁-C₄-alkyl, aryl, or -(C₁-C₄-alkyl)-aryl or, where B₁ and B₂ are attached to adjacent carbon atoms, B₁ and B₂ can be taken together with said adjacent carbon atoms to form a benzene ring or methylenedioxy,

or a pharmaceutically acceptable salt or stereoisomer thereof.