实验二 组合电路设计实验报告

姓名: 丘绎楦 **学号**: 1820221050

注:黑色字体内容不能改动,蓝色字体内容(为示例或说明)需删除和修改。

1. 实验题目

设计一个组合电路,输入一个3位的数字,输出一个六位的二进制数字,且输出数字的值等于输入数字值的平方。

2. 实验约束

- 电路设计时只能使用或非门和非门进行实现。
- 采用 Verilog 实现时使用结构化描述方式。

3. 电路设计

a) 规范化

输入: 三个二进制变量 S[2]、S[1]、S[0]

输出: 六个二进制变量 Y[5]、Y[4]、Y[3]、Y[2]、Y[1]、Y[0]

电路中通过或非门和非门来对输入进行处理,通过对每一位二进制变量的运算,得

到每一个二进制变量输出 Y[i]

b) 形式化

真值表:

输入			输出							
S[2]	S[1]	S[0]	值	Y[5]	Y[4]	Y[3]	Y[2]	Y[1]	Y[0]	值
0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	1	1
0	1	0	2	0	0	0	1	0	0	4
0	1	1	3	0	0	1	0	0	1	9
1	0	0	4	0	1	0	0	0	0	16
1	0	1	5	0	1	1	0	0	1	25
1	1	0	6	1	0	0	1	0	0	36
1	1	1	7	1	1	0	0	0	1	49

c) 优化

以下是每一个输出对应的卡诺图。

Y[5] = S[2]S[1]

Y[4]		S[1]		
S[2]	1	1	1	
		S[[0]	

$$Y[4] = S[2]S[0] + S[2]\overline{S[1]} = S[2](\overline{S[1]} + S[0])$$

Y[3]				S[1]		
				1		
•	S[2]		1			
	,		S[[0]		

 $\mathsf{Y}[3] = S[2]\overline{S[1]}S[0] + \overline{S[2]}S[1]S[0] = S[0]\left(S[2]\overline{S[1]} + \overline{S[2]}S[1]\right)$

$$Y[2] = S[1]\overline{S[0]}$$

Y[0]		S[1]		
		1	1	
S[2]		1	1	
		S[[0]	

Y[0] = S[0]

综上,每一个变量化成**或非门**和**非门**的组合:

下表中令 A=S[2], B=S[1], C=S[0], 用来便于表示:

d) 工艺映射

工业映射前:

工业映射后:

4. 电路实现

```
    itimescale 1ns/1ps
    module ex2(S,Y);
    input [2:0] S;
    output [5:0] Y;
```

```
6. wire temp_41, temp_42; // 中间变量
7. wire temp_31, temp_32; // 中间变量
8. wire not3, not4; // 中间变量,~Y[3],~Y[4]
9.
10.nor // 或非门运算
11. nor5(Y[5], ~S[2], ~S[1]), // Y[5]
12. nor2(Y[2], \sim S[1], S[0]), // Y[2]
13.
14. nor41(temp 41, ~S[2], S[1]),
15. nor42(temp_42, ~S[2], ~S[0]),
16. nor4(not4, temp_41, temp_42),
17.
18. nor31(temp_31, ~S[2], S[1], ~S[0]),
19. nor32(temp_32, S[2], ~S[1], ~S[0]),
20. nor3(not3, temp_31, temp_32);
21.
22.not // 非门运算
23. no3(Y[3], not3), // Y[3]
24. no4(Y[4], not4); // Y[4]
25.
26.assign Y[1]=0; // Y[1]
27.assign Y[0]=S[0]; // Y[0]
28.
29.endmodule
```

5. 电路验证

a) TestBench

```
1
        `timescale 1ns / 1ps
2
       module testbench(
3
        );
        reg [2:0] S; //对应 ex2 模块的输入
5
        wire [5:0] Y; //对应 ex2 模块的输出
6
       initial begin
        S[2]=1'b0; //初始化
7
       #20 S[2]=1'b1; //之后每 20ns S[2]变化一次,第一位变化一次
8
9
       end
10
       initial begin
11
        S[1]=1'b0;
12
       #10 S[1]=1'b1;
       #10 S[1]=1'b0;
13
```

```
#10 S[1]=1'b1;//每 10ns S[1]变化一次,第二位变化一次
14
15
       end
       initial begin
16
17
        S[0]=1'b0;
18
        #5 S[0]=1'b1;
19
        #5 S[0]=1'b0;
20
        #5 S[0]=1'b1;
21
        #5 S[0]=1'b0;
        #5 S[0]=1'b1;
22
23
        #5 S[0]=1'b0;
        #5 S[0]=1'b1;//每 5ns S[0]变化一次,第三位变化一次
24
25
       end
26
       ex2 ex2 (
27
           .S(S),
28
           .Y(Y)
29
       );
30
       endmodule
```

a) 仿真结果

该部分通过 Vivado 仿真。需要给出仿真得到的 Wave,并进行验证解释。

从仿真得出的波形可以看出, 当输入为 0, 1, 2, 3, 4, 5, 6, 7 时, 输出为 0, 1, 4, 9, 16, 25, 36, 49, 输出值恰好为输入值的平方, 对应的六位二进制波形也和真值表相对应。

仿真结果正确。

6. 实验心得

在这次数字逻辑课程的实验中,我深入探索了组合逻辑电路的设计原理和实现方法。通过使用或非门和非门,我不仅掌握了如何构建基本的逻辑门,还学习了如何将它们组合成复杂的逻辑电路。

实验的第一步是理解给定逻辑的真值表,这是分析任何逻辑电路的基础。通过真值表,我能够清晰地看到不同输入组合下输出的状态,这对于后续的电路设计至关重要。接着,我利用卡诺图来简化逻辑表达式,这是一种非常有效的工具,可以帮助我减少电路中的门数量,从而降低复杂性和成本

在设计过程中,我特别关注了如何使用或非门和非门来替代传统的与门、或门和非门。这不仅是一种技术上的挑战,也是对现有知识的一种扩展。通过这个过程,我学会了如何灵活运用不同的逻辑门来实现相同的功能,这增强了我的问题解决能力。

最终,我成功地将设计转化为实际的逻辑图,并进行了功能测试。这个过程不仅加深了我对数字逻辑的理解,也提高了我的实践技能。通过这次实验,我更加确信,理论知识与实践操作的结合是掌握任何技术的关键。