

Syntactic Directed Translation

Translation Schemes

Copyright 2009, Pedro C. Diniz, all rights reserved.

Students enrolled in the Compilers class at Instituto Superior Técnico (IST/UTL) have explicit permission to make copies of these materials for their personal use.

Syntax-Directed Translations

- Syntax-Directed Translations
 - Semantic Actions are Embedded in Productions
- Single Pass Translation Schemes
 - Faster!
 - No need to Construct the Parse Tree and then do a Topological Sorting to Find out Feasible Order for Evaluation of
- Issues:
 - Dealing with Embedded Actions
 - May Require Inserting Additional Symbols, Markers
 Dealing with Inherited Attributes
 - - Reach into the Stack for Value of Attribute
 - Position Independence in the Stack
 - Synthesized Attributes are trivially Handled

Translation Schemes

- · L-Attributed Syntax-Directed Definition where:
 - Embed Semantic Actions in { }
 - Positioned Between Symbols of Production
 - Useful for Specifying Translation During Parsing
- Attribute Values Must be Available when Actions Refer to it.
 - Inherited attributes for a symbol on the RHS of a production must be computed in an action before that Symbol.
 - 2. An action must not refer to a synthesized attribute of a symbol to the right of the action.
 - A synthesized attribute for the symbol on the RHS of the production can only be computed after all attributes it references have been computed.
- · Easily Implemented in Bottom-Up Parsers

L-Attributed Definitions

- A Syntax-Directed Definition is L-Attributed if
 - Each inherited Attribute $X_j, 1 \le j \le n$, for $A \to X_1 X_2, ..., X_n$ depends only on:
 - The Attributes of the Symbols $X_1,X_2,...,X_{j-1}$ to the left of X_j .
 The Inherited Attributes of Λ
- Values Flow from Left-to-Right in the Parse Tree.
- Still an S-Attributed Definition
 - Restrictions are for Inherited Attributes Only.
- Can be Evaluated in a Depth-first Traversal
- In Many Cases even in a Single Pass

L-Attributed Def.: Evaluation Order

procedure dfvisit(n:node)

foreach child m of n from left to right do evaluate inherited attributes of m; dfvisit(m);

evaluate synthesized attributes of n

- What to do When?
 - Embedded Actions
 - Inherited Attributes
 - Replacing Inherited Attributes by Synthesized Attributes

Embedded Actions

- · Actions are Executed when Parser Reduces a
 - After reductions for the RHS have occurred
 - Values for the Symbols available on the Stack
- What to do with Embedded Actions?
 - A → X { action } Y Z

Embedded Actions

- · Actions are Executed when Parser Reduces a Production
 - After reductions for the RHS have occurred
 - Values for the Symbols available on the stack
- What to do with Embedded Actions?
 - $-A \rightarrow X \{ action \} Y Z$
 - The action should execute before the actions for Y and Z
- Transform the Grammar adding a Marker Symbol using an empty RHS production for Marker

 - $A \rightarrow X M Y Z$ $M \rightarrow \epsilon \{ \text{ action } \}$

Inherited Attributes

- For the production A → X Y when the parser reduces X's production, it's attributes will be on the top of the stack
 If Y uses synthesized attributes X.s from X just needs to copy value from the top of the stack into computation of Y's attributes
- Observation: Reaching into the Stack works...
 - If you know the position of the symbol's inherited attribute
 By looking at the corresponding grammar's production

Production $S \rightarrow aAC$ $S \rightarrow bABC$ $C \rightarrow c$ C.i = A.sC.s = func(C.i)

• Problem:

There maybe a B symbol between A and C and thus the relative position of the synthesized attribute A.s on the stack is not known to compute C.i.

Inherited Attributes

• Insert a Marker Symbol just before C

Replacing Inherited with Synthesized Attributes

- Inherited Attributes are hard to handle
- Alternative: Modify Grammar (if possible)
- Example:
 - List of Declaration in Pascal.
 - Type as an inherited attribute
 - Change Grammar and Type is Synthesized

Decl → List ':' Type
Type → integer | real
List → List ',' id | id Decl \rightarrow id List List \rightarrow ',' id List | ':' Type Type \rightarrow integer | real

Summary

- Attribute Grammar
 - Augment CFG with Attributes and RulesInherited and Synthesized Attributes

 - Find Dependence Graph and Evaluation OrderUseful for Semantic Analysis
- Important Class: L-attributed Grammar

 - Information moves from left-to-right
 Inherited Attributes and Embedded Actions can be Resolved
 - Semantic Actions Executed upon Production Reduce Operations
 Can be Evaluated Bottom-Up in a Single Pass