Contents

1	曲面片	2
2	接平面	3

曲面片 1

 $D \subset \mathbb{R}^2$ は閉集合

$$\sigma: D \to \mathbb{R}^{3}$$

$$\begin{pmatrix} u \\ v \end{pmatrix} \mapsto \sigma(u, v) = \begin{pmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{pmatrix}$$

Def 1. σ が次の条件を満たすとき $S=\sigma(D)$ を σ でパラメーター表示された曲面片とよぶ

$$(2)$$
 $\forall \begin{pmatrix} a \\ b \end{pmatrix} \in D$ に対し、 $\sigma_u(a,b) = \frac{\partial \sigma}{\partial u}(a,b), \sigma_v \in \mathbb{R}^3$ は線形独立 (3) σ は単射

$$\left(\begin{array}{c} a \\ b \end{array} \right) \in D$$
 を固定し、曲線 $\left\{ egin{aligned} C_u : x = \sigma \left(a + t , b
ight) \\ C_v : x = \sigma \left(a , b + t
ight) \end{aligned} \right.$ を考える.

$$\dot{\mathbf{x}}\left(0\right) = \begin{cases} \lim_{t \to 0} \frac{\sigma\left(a + t, b\right) - \sigma\left(a, b\right)}{t} = \sigma_u\left(a, b\right) & C_u \\ \sigma_v\left(a, b\right) & C_v \end{cases}$$

e.g. 1. $\mathbf{p}, \mathbf{a}, \mathbf{b} \in \mathbb{R}^3, D = \mathbb{R}^2, \sigma : \mathbb{R}^2 \to \mathbb{R}^3, \left(\begin{array}{c} u \\ v \end{array} \right) \mapsto \mathbf{p} + u\mathbf{a} + v\mathbf{b}$ とする. \mathbf{a}, \mathbf{b} が線形独立なら、 $\sigma(\mathbb{R}^2)$ は σ でパラメーター表示された曲面片(\mathbf{p} を通り、 \mathbf{a}, \mathbf{b} に平行な 平面)

Proof. (1) $\sigma(u,v)$ の各成分はu,v の一次関数、故に C^{∞} (2) $\sigma_u(u,v) = \mathbf{a}, \sigma_v(u,v) = \mathbf{b}$ 、仮定より線形独立

a,**b** が線形独立であるから、c-c'=d-d'=0

だから
$$\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} c' \\ d' \end{pmatrix}$$

Rem 1. $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$ に対し、 \mathbf{a}, \mathbf{b} 線形独立 $\iff \mathbf{a} \times \mathbf{b} \neq 0$

Proof.

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
$$= \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

線形独立でない場合では、 $\mathbf{a}_i = k\mathbf{b}_i$ から、すべての成分は 0 である

e.g. 2. グラフ型曲面片

 $D \subset \mathbb{R}^2$ は閉集合. $f: D \to \mathbb{R}: C^{\infty}$ とする.

$$\sigma(u,v) = \begin{pmatrix} u \\ v \\ f(u,v) \end{pmatrix} \left(\begin{pmatrix} u \\ v \end{pmatrix} \in D \right) とおくと$$

$$\sigma(D) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \middle| \begin{pmatrix} x \\ y \end{pmatrix} \in D, z = (x,y) \right\} \ (z \ \text{は} \ f(x,y) \ \text{のグラフ}) \ \text{は} \ \sigma \text{ でパラメーター 表示された曲面片}$$

Proof. (1) f は $D \perp C^{\infty}$ から、 σ も C^{∞}

e.g. 3. 球面

$$r > 0, D = (0, \pi) \times (0, \pi) = \left\{ \begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{R}^2 \middle| 0 < u < \pi, 0 < v < 2\pi \right\}$$

$$\sigma: D \to \mathbb{R}^3$$

$$\begin{pmatrix} u \\ v \end{pmatrix} \mapsto \begin{pmatrix} r \sin u \cos v \\ r \sin u \sin v \\ r \cos u \end{pmatrix}$$

$$\sigma(D)$$
 は球面 $S^2(r)=\left\{\begin{pmatrix}x\\y\\z\end{pmatrix}\in\mathbb{R}^3\middle|x^2+y^2+z^2=r^2\right\}$ から $x\geq 0,y=0$ の部分を除いた図形

Proof (1) $\cos \sin t \stackrel{\cdot}{c} C^{\infty} \stackrel{\cdot}{D} \stackrel{\cdot}{b} \stackrel{\cdot}{c} \sigma \stackrel{\cdot}{b} \stackrel{\cdot}{D} \stackrel{\cdot}{c} C^{\infty}$

(2)
$$\sigma_u = \begin{pmatrix} r \cos u \cos v \\ r \cos u \sin v \\ -r \sin u \end{pmatrix}, \sigma_v = \begin{pmatrix} -r \sin u \sin v \\ r \sin u \cos v \\ 0 \end{pmatrix}$$

$$\sigma_u \times \sigma_v = r^2 \sin u \begin{pmatrix} \sin u \cos v \\ \sin u \sin v \\ \cos u \end{pmatrix}$$
$$= r \sin u \sigma (u, v)$$

σ の中ではもう一つのrがあるから

 $\|\sigma(u,v)\| = r > 0 \ \ \ \ \ \ \ \ \ \ (\sigma_u \times \sigma_v)(u,v) \neq 0$

$$(3) \begin{pmatrix} c \\ d \end{pmatrix}, \begin{pmatrix} c' \\ d' \end{pmatrix} \in D, \sigma(c,d) = \sigma(c',d') とする$$

第三成分では $r\cos c = r\cos c'.0 < c,c' < \pi$ で \cos は $[0,\pi]$ で全単射だから、c=c' 次は第 1.2 成分

$$\begin{cases} r \sin c \cos d = r \sin c' \cos d' \\ r \sin c \sin d = r \sin c' \sin d' \end{cases} \implies \begin{cases} \cos d = \cos d' \\ \sin d = \sin d' \end{cases} \implies d = d'$$

2 接平面

参考文献