Серии К559, КИ559, КМ559, КР559, КФ559

В состав серий К559, КИ559, КМ559, КР559, КФ559, предназначенных для обмена информацией между устройствами и блоками систем и для передачи данных на периферийные устройства, устройства отображения и индикации, для интерфейсов, изготовленных по биполярной технологии (ТТЛШ), входят типы:

КИ559ВА1 — передатчик кольцевой локальной сети (стандарт IEEE-802.5);

КМ559BB1 — схема прямого доступа к памяти (стандарт DEC); КМ559BB2 — счетчик адреса и слов (стандарт DEC);

КИ559ВГ1 — контроллер интерфейса кольцевой локальной сети (стандарт IEEE 802.5);

КМ559ВН1, КР559ВН1 — схема управления прерыванием (стандарт DEC);

K559BH2, KM559BH2, KP559BH2 — схема управления прерыванием (стандарт DEC);

КМ559BT1, КР559BT1 — схема адресного селектора (стандарт DEC);

К559ИП1, КМ559ИП1, КР559ИП1 — четыре магистральных передатчика (стандарт Unibus фирмы DEC);

К559ИП2, КМ559ИП2, КР559ИП2— четыре магистральных приемника;

К559ИПЗ, КМ559ИПЗ, КР559ИПЗ — четырехразрядный магистральный приемопередатчик (стандарт Unibus фирмы DEC);

К559ИП4, КМ559ИП4, КР559ИП4 — два магистральных передатчика (стандарт 360/370 фирмы IBM);

К559ИП5 — три магистральных приемника;

К559ИП6, КР559ИП6 — четырехразрядный магистральный приемопередатчик (стандарт IEEE-488);

КР559ИП7 — три магистральных приемника;

КМ559ИП8, КР559ИП8 — четырехразрядный приемопередатчик (стандарт DEC);

КР559ИП9 — магистральный приемопередатчик;

КР559ИП10 — четыре магистральных приемника;

КР559ИП11 — четырехразрядный магистральный приемник; КР559ИП12 — четырехразрядный дифференциальный мастральный передатчик (стандарт RS422/423);

КР559ИП13 — восьмиразрядный магистральный приемопедатчик с инверсией (стандарт RS422/423);

КР559ИП14 — восьмиразрядный магистральный приемопездатчик без инверсии (стандарт RS422/423);

 КР559ИП15 — восьмиканальный приемопередатчик со схеой управления (стандарт RS422/423);

КР559ИП16 — схема контроля и коррекции циклического эда генерации ECC/CRC кодов и контроля информации при заиси на магнитные диски (стандарт DEC);

КР559ИП19, КФ559ИП19— четырехканальный передатчик оследовательного интерфейса (стандарт RS232C, RS232D);

КР559ИП20, КФ559ИП20 — четырехканальный приемник юследовательного интерфейса;

КФ559ИП21 — двухразрядный дифференциальный приемовредатчик (стандарт RS422/423);

КМ559ИП22 — приемопередатчик локальной сети (стандарт 3S232C, RS232D);

КМ559СК1, КР559СК1 — восьмиразрядная схема сравнения стандарт DEC);

КР559СК2 — схема сравнения двух 6-разрядных двоичных чисел (стандарт DEC).

KM559BB1

Микросхема представляет собой схему прямого доступа к памяти (схему управления магистралью) и предназначена для организации периферийного интерфейса в мини-ЭВМ. Содержит 1066 интегральных элементов. Корпус типа 2108.22-1, масса не более 2,8 г.

Назначение выводов: 1, 22— свободные; 2— вход требования предоставления канала RQ; 3— вход ввода-вывода данных RC; 5— выход разрашения выдачи адреса A; 6— выход вывода данных RC; 8— выход синхронизации начала декодирования адреса пассивным устройством SYN; 9— выход предоставления прямого доступа \overline{BAR} ; 10— выход индикации активного состояния \overline{SAK} ; 11— общий; 12— выход требования прямого доступа \overline{BRQ} ; 13— вход синхронизации от предыдущего активного устройства SYN; 14— вход предоставления прямого доступа \overline{BRQ} ; 15— вход/выход формирования временного интервала \overline{SAK} ; 16— вход синхронизации от пассивного устройство AN;

Условное графическое обозначение RM55**4**BB1

17 — вход ограничения приоритета MO4; 18 — вход синхронизации (8 МГц) C; 19 — выход разрешения выдачи данных \bar{D} ; 20 — вход сброс SR; 21 — напряжение питания.

Электрические параметры

Номинальное напряжение питания	5 B ± 5%
Выходное напряжение низкого уровня на выводе 9	
при I _{вых} = 70 мА	<0,8 B
Выходное напряжение высокого уровня	≥2,7 B
Входной ток низкого уровня по выводам 3, 17	≤ -2 MA
Входной ток высокого уровня	≤0,3 MA
Выходной ток высокого уровня	≤25, mkA
Выходной ток низкого уровня:	
по выводам 9, 12, 15	<70 MA
по выводам 5, 6, 7, 8, 10, 19	<8 MA
Ток потребления	≤160 MA
Время задержки распространения сигнала	
при включении:	
от вывода 14 до вывода 15	€230 нс
от вывода 18 до выводов 7, 8	≼60 нс

KM559BH1, KP559BH1

Микросхемы представляют собой схему управления прерыванием и предназначены для организации периферийного интерфейса в мини-ЭВМ (осуществляет запись состояния при прерывании в вычислительной системе; прерывание осуществляется по каналам A и B с приоритетом по каналу A). В состав

входят логические элементы различных типов; магистральвые передатчики и приемники; DR-триггеры, выполняющие вункции синхронного D-триггера с статическим управлением; **вя**S-триггеры, совмещающие функции синхронного D-триггера Единамическим управляющим входом и асинхронного RS-тригера. Особенности ИС: магистральные входы и выходы приемиков и передатчиков согласованы по логическим уровням и ходным токам со схемами ТТЛ, входы и выходы сопрягаются с модулями устройств информационной вычислительной систеы; на выходах, связанных с магистральными линиями связи, вредены магистральные передатчики — ТТЛ-элементы с открытым коллекторным выходом с током нагрузки до 70 мА (выводы 6, 8); на входах (выводы 3, 5, 7, 12, 14, 15, 16, 17, 19), евязанных с магистральными линиями связи, введены магистральные приемники информации с высоким входным сопрогивлением; диоды Шоттки на входах подавляют помехи отрицательной полярности. Содержат 613 интегральных элементов. Корпус типа 2140.20-4 масса не более 2 г и 2140.20-1, масса не более 1,8 г.

Функциональная схема КМ559ВН1, КР559ВН1

Назначение выводов: 1 — выход «управление вектором прерывания»; 2 — выход «запрос»; 3 — вход «ввод данных»; 4 выход «предустановка устройства»; 5 — вход «предустановка шины»; 6 — выход «подтверждение прерывания»; 7 — вход «подтверждение прерывания»; 8 — выход «запрос прерывания»; 9 — общий; 10, 11— свободные; 12— вход «запрос прерывания канала В»; 13— выход «разрешение прерывания канала В»; 14 вход «разрешение прерывания канала В»; 15, 16— входы синхронизации 1 и 2; 17— вход «разрешение прерывания канала А»; 18— выход «разрешение прерывания канала А»; 19— вход «запрос прерывания канала А»; 20— напряжение питания.

Номинальное напряжение питания	.5B±5%
Выходное напряжение низкого уровня:	
по выводам <i>6</i> , <i>8</i> при <i>I</i> _н ≈ 70 мА	. ≤0,75 B
по выводам 1, 2, 4, 13, 18 при I _н =20 мА	-
Выходное напряжение высокого уровня	•
при I _R =-1 мА	. ≽2,85 B
Ток потребления	
Входной ток низкого уровня:	
по выводам 3, 5, 7, 12, 19	. ≤1-0,003 MA
по выводам 14, 17	
по выводам 15, 16	
Входной ток высокого уровня:	•
при U_{BX}^{1} = 3,8 B; U_{B} = 5 B по выводам 3, 5, 7,	
12, 19	. ≤25 м кА
при U_{ex}^{1} =3,8 B; U_{n} =0 B по выводам 3, 5, 7,	
12, 19	. ≼3 мкА
при $U_{\rm BX}^1 = 2.7$ В; $U_{\rm R} = 5$ В по выводам 14, 17	. ≤15 MKA
по выводам 15, 16	. ≼ 8 мкA
Выходной ток высокого уровня	. ≼ 5 мкА
Время задержки распространения при вклю-	
чении:	
по выводам от 5 до 4	
по выводам от 15, 16 до 13, 18	. ≼30 нс
по выводам от 12, 19 до 8	
по выводам от 3 до 1	. ≼80 нс
по выводам от 3 до 6	. ≼90 нс
по выводам от 3 до 2	. ≤ 100 нс
Время задержки распространения при выклю-	
чении:	
по выводам от 5 до 4	. ≼35 нс
по выводам от 15, 16 до 13, 18	. ≼30 нс
по выводам от <i>12</i> , <i>19</i> до <i>8</i>	. ≼ 125 нс
по выводам от 3 до 1	. ≼80 нс
по выводам от 3 до 6	. ≼90 нс
по выводам от 3 до 2	. ≤100 HC

K559BH2, KM559BH2, KP559BH2

Микросхемы представляют собой схемы управления прерыванием и предназначены для использования в устройствах ввова-вывода микро-ЭВМ с межмодульным интерфейсом. Содермат 780 интегральных элементов. Корпус типа 2108.22-1, масса на более 2,8 г.

Условное графическое обозначение К559ВН2, КМ559ВН2, КР559ВН2

Назначение выводов: 1, 2, 3, 12, 13, 22— свободные; 4— вход \overrightarrow{RI} «запрос прерывания»; 5— вход \overrightarrow{S} «установка в состоянии «1»; 6, 7— вход \overrightarrow{RQ} (\overrightarrow{RQ}) «запрос непосредственно доступа»; 8— вход $\overrightarrow{B0}$ «предоставление канала»; 9— выход $\overrightarrow{B0}$ «предоставление канала»; 10— выход \overrightarrow{BS} «канальный» «подтверждение выбора»; 11— общий; 14— выход «запрос канала»; 15— входвыход «канал занят»; 16— выход \overrightarrow{MS} «получение канала»; 17— выход \overrightarrow{SK} «подтверждение выбора»; 18— вход «установка в исходное состояние»; 19— вход \overrightarrow{ID} «прерывание завершено»; 20— вход \overrightarrow{RS} «сброс подтверждения выбора»; 21— напряжение питания.

Номинальное напряжение питания 5 В ± 5%	
Выходное напряжение низкого уровня:	
по выводу <i>15</i> при <i>I</i> _{вых} =16 мА ≤0,48 В	
по выводу 17 при I _{вых} =4 мА	
по выводам <i>9, 10, 14,</i> 15 при <i>І</i> _{вых} = 70 мА ≤ 0,75 В	
Выходное напряжение высокого уровня ≥ 2,65 В	
Гок потребления	
Входной ток низкого уровня:	
по выводам 5—8	ΑN

по выводам 4, 18, 19
по выводу 20
Выходной ток высокого уровня:
по выводам 9, 10, 14
по выводу 15
Время задержки распространения при вклю-
YEHUN:
ло выводам от 8 до 9 ≤55 нс по выводам от 8 до 10 ≤190 нс
по выводам от 8 до 16
по выводам от 4 до 14
по выводам от 5 до 15
по выводам от 8 до 17; от 5 до 17 ≤210 нс
по выводам от 20 до 17 ≤ 150 нс
Время задержки распространения при выклю-
чении:
ло выводам от 8 до 9 ≤ 125 нс
ло выводам от 8 до 10
по выводам от 4 до 14 ≤25 нс
по выводам от 5 до 14 ≤80 нс
по выводам от 18 до 10 ≤55 нс
по выводам от 18 до 15
по выводам от <i>5</i> до <i>15</i>
по выводам от 5 до 10 ≤210 нс
tie beinepham et e ple 15 tott transcription ten en e
Предельно допустимые режимы эксплуатации
i pedentino don sermine permina enemana
Максимальное напряжение питания 6 В
Максимальное входное напряжение (положитель-
ное) по выводам <i>4</i> , <i>18</i> , <i>19,</i> 20 5,5 В
Выходной ток (вытекающий)
Максимальный выходной ток (втекающий)
по выводам <i>9</i> , <i>10</i> , <i>14</i> , <i>15</i> 100 мА
по выводу <i>15</i> 30 мА
по выводу 17 8 мА
Максимальный входной ток (вытекающий) 18 мА
Температура окружающей среды10+70 °C

Рекомендации по применению

Не рекомендуется подведение каких-либо электрических сигналов к выводам микросхемы, не используемым согласно принципиальной электрической схеме.

Работоспособность микросхемы обеспечивается: в диапазоне изменения напряжения питания от 4,75 В до 5,25 В; входного напряжения низкого уровня от 0 до 0,8 В на выводах 4, 18, 19, 20, от 0 до 1,3 В, при U_n = 4,75 В и от 0 до 1,47 В при U_n = 5,25 В на выводах 5, 6, 7, 8, 15; входного напряжения высокого уровня от 2 В до 4,5 В на выводах 4, 18, 19, 20; от 1,53 до 4;5 В при U_n = 4,75 В и от 1,7 В до 4,5 В при U_n = 5,25 В на выводах 5, 6, 7, 8, 15 при выходном токе для состояния низкого уровня от 0 до 16 мА на выводе 16, от 0 до 4 мА на выводе 17, от 0 до 70 мА на выводах 9, 10, 14, 15 и выходном токе для состояния высокого уровня от 0 до минус 1 мА на выводах 16, 17.

Свободные входы микросхемы рекомендуется подключать: выводы 4, 18, 19, 20 к источнику постоянного напряжения от 2,7 В до 5 В с отклонением $\pm 5\%$ или к источнику входного напряжения высокого уровня; выводы 5, 6, 7, 8 к общему выводу.

KM559BT1, KP559BT1

Микросхемы представляют собой схему адресного селектора. Предназначены для организации периферийного интерфейса в мини-ЭВМ; устанавливают строго определенную процедуру управления передачей данных для коммутируемого в данный момент устройства; осуществляют распознавание сообщений, преобразование форматов, определение дальнейшего маршрута сообщений; работают как селектор регистров, обеспечивая подачу управляющих сигналов и передачу данных в 4 регистра слова (8 байтов). Содержат 367 интегральных элементов. Корпус типа 2140.20-4, масса не более 2 г и 2140.20-1, масса не более 1,8 г.

19 6 2 3 9 5 7 9	W Cp A122 X1 X2 X3 V	87	9 92 93 94 95 95 97 98 99	14 15 16 17 12 13 11 18 8
_	V		99	-

Условное графическое обозначение КМ559ВТ1, КР559ВТ1

Назначение выводов: 1 — вход «управления вектором прерывания»; 2; 3, 4 — входы адресные; 5 — вход «слово/байт»; 6 — вход синхронизации; 7 — вход «ввод данных»; 8 — выход «ответ»; 9 — вход «выход данных»; 10 — общий; 11 — выход «ввод слова»; 12 — выход «вывод нижнего байта»; 13 — выход «вывод верхнего байта»; 14, 15, 16, 17 — выход «выборка регистра»; 18 — резистивно-емкостной вывод; 19 — вход разрешения прерывания; 20 — напряжение питания.

Номинальное напряжение питания
по выводам <i>1117</i> при <i>I</i> _{вых} =20 мА ≤0,48 В
по выводу <i>18</i> при <i>I</i> _{вых} = 15 мА
по выводу 8 при I _{вых} = 16 мА
по выводу 8 при / _{вых} =70 мА
Выходное напряжение высокого уровня ≥ 2,85 В
Ток потребления
Входной ток низкого уровня:
по выводам 27, 9
по выводу 1
по выводу 19
Входной ток высокого уровня:
при U_{ex}^1 = 3,8 B; $U_{\text{п}}$ = 5 В по выводам 2—7, 9 ≤0,025 мА
при $U_{BX}^{(i)} = 3.8 \text{ B}$; $U_{II} = 0 \text{ B}$ по выводам 2—7, $9 \le 0.003 \text{ мA}$
при $U_{BX}^{1} = 2.7 \text{ B}$; $U_{0} = 5 \text{ B}$:
по выводу 7
по выводу 194,152,15 мА
Выходной ток высокого уровня:
по выводу 8
. по выводу 18
Время задержки распространения при вклю-
чении (при $R_{\rm H}$ =60 Ом, $C_{\rm H}$ =200 пФ):
по выводам от 1 до 8
по выводам от 7, 9 до 8 ≤ 90 нс
по выводам от 7 до 11; от 9 до 12;
от 9 до 13 ≤30 нс
по выводам от 6 до 14, 15, 16, 17 ≤ 40 нс
по выводам от 1 до 18
Время задержки распространения при выклю-
чении:
по выводам от 1 до 8
по выводам от 7, 9 до 8 ≤75 нс
The warmen of the office of the state of the

по выводам от 7 до 11; от 9 до 12;		
от 9 до 13; от 6 до 14, 15, 16, 17	€30	HG
по выводам от 1 до 18	<50	HC

Предельно допустимые режимы эксплуатации

Напряжение питания	≼6B
Входное напряжение (положительное) для	
выводов 1, 19	≼5,5 B
Выходной ток (вытекающий)	≼ -100 MA
Входной ток (втекающий)	≼ -18¦ мA
Температура окружающей среды	10+70 °C

КР559ИП1

Микросхема представляет собой четыре магистральных передатчика. Содержит 28 интегральных элементов. Корпус типа 238.16-2, масса не более 1,2 г.

Условное графическое обозначение КР559ИП1

Назначение выводов: 1, 2, 4, 5, 10, 11, 13, 14 — входы; 3, 6, 9, 12 — выходы; 7, 15 — свободные; 8 — общий; 16 — напряжение питания

Таблица истинности

Эходы		Выходы
1, 4, 10, 13	2,5,11,14	3, 6, 9, 12
0	Х	1
X	0] 1
1	1	0

Электрические параметры

Номинальное напряжение питания	5B±5%
Выходное напряжение низкого уровня	≼0,7 B
Ток потребления при низком уровне выходного	
напряжения	≼60 MA
Ток потребления при высоком уровне выходного	
напряжения	≤15 MA
Входной ток низкого уровня	≤1,8 MA
Входной ток высокого уровня	≤0,01 MA
Выходной ток низкого уровня	≤70 MA
Выходной ток высокого уровня	€10 MKA
Время задержки распространения при включении	≤30 нс
Время задержки распространения при выключении	€25 нс

КР559ИП2

Микросхема представляет собой четыре магистральных приемника. Содержит 68 интегральных элементов. Корпус типа 238.16-2, масса не более 1,2 г.

Условное графическое обозначение КР559ИП2

Назначение выводов: 1, 2— входы 1, 2; 3, 6— выходы 1, 2; 4, 5— входы 3, 4; 7, 15— свободные; 8— общий; 9— выход 3; 10, 11— входы 5, 6; 12— выход 4; 13, 14— входы 7, 8; 16— напряжение питания

Таблица истинности

Входы		Выходы
1,5,9,13	2, 6, 10, 14	3,4,11,12
0	0	1
1	×	0
X	1	0

Электрические параметры

Номинальное напряжение питания	5B±5%
Выходное напряжение низкого уровня	≤0,5 B
Выходное напряжение высокого уровня	≽2,6 B
Ток потребления при низком уровне выходного	
напряжения	≤54 mA
Ток потребления при высоком уровне выходного	
напряжения	≼26 мА
Входной ток низкого уровня	<0,005 MA
Входной ток высокого уровня	≤0,12 MA
Выходной ток низкого уровня	≼8 MA
Выходной ток высокого уровня	<1 MA
Время задержки распространения при включении .	≼ 15 нс
Время задержки распространения при выключении	≼30 нс

КР559ИП3

Микросхема представляет собой четырехразрядный магистральный приемопередатчик. Содержит 141 интегральный элемент. Корпус 238.16-2, масса не более 1,2 г.

Условное графическое обозначение КР559ИПЗ

Назначение выводов: 1 - вход/выход B4; 2 - вход X6; $3 - \text{выход } \overline{Y4}$; 4 - вход/выход B3; 5 - вход X5; $6 - \text{выход } \overline{Y3}$; 7 - вход X1; 8 - общий; 9 - вход X2; $10 - \text{выход } \overline{Y2}$; 11 - вход X4; 12 - вход/выход B2; $13 - \text{выход } \overline{Y1}$; 14 - вход X3; 15 - вход/выход B1; 16 - напряжение питания.

Таблица истинности

Входы .			Входы-выходы	Выходы
X1	X2	X3X6	B1 — B4	Y1-Y4
×	×	0	1	0
X	X	0	0*	1
0	0	1	0	1
l x] 1	Х	1 1	0
X	1	×	0*	1
1 1	X	1 x	1 1	0
1	X	×	0*	1

П р и м е ч а н и е . 0^* — при наличии внешнего входного сигнала низкого уровня,

Электрические параметры

Номинальное напряжение питания	$5 B \pm 5\%$
Выходное напряжение низкого уровня:	
по выводам <i>3</i> , <i>6</i> , <i>10</i> , 13 при $I_{\text{вых}}$ = 16 мА	≤0,4 B
по выводам 1, 4, 12, 15 при $U_{\text{BX MAX}}^0 = 0$.	
/ _{Bbix} = 70 MA	<0,7 B
Выходное напряжение высокого уровня	≽2,6 B
Ток потребления	≤70 MA
Входной ток низкого уровня	≤1,8 MA
Входной ток высокого уровня:	-
по выводам 7, 9	<45 MKA
по остальным выводам	€10 MKA
Выходной ток низкого уровня:	,
по выводам 1, 4, 12, 15	≤16 MA
по выводам 3, 6, 10, 13,	≼70 мА
Выходной ток высокого уровня	<70 MKA
Время задержки распространения при включении:	
по выводам от 2, 11, 14 до 1, 12, 15	≤25 HC
по выводам от 4 до 6	≤40 н¢
по выводам от 7,9 до 1,12	≼39 нс
Время задержки распространения при выключении:	
по выводам от 2, 11, 14 до 1, 12, 15	≼35 нс
по выводам от 4 до 6	≤ 40 HC
по выводам от 7, 9 до 1, 12	≼49 нс

КР559ИП4

Микросхема представляет собой два магистральных передатчика. Содержит 70 интегральных элементов. Корпус типа 238.16-2, масса не более 1,2 г.

Условное графическое обозначение КР559ИП4

Назначение выводов: *1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15*— входы *I*; *7*, 9, — выходы; *8* — общий; *16* — напряжение питания.

Таблица истинности

	Входы					Выходы	
1, 10	1, 10 2, 11 3, 12 4, 13 5, 14 6, 15						
0	Х	Х	Х	0	х	0	
0	i ×	l x	×) x	0	0	
i.	0	l x	×	0	Х	0	
1	0	x	lх	x	0	0	
1111	Х	0	×	0	Х	0	
1	l x	1 0	×	×	G.	0	
1	х	×	0	0	Х	0	
1	l x	x	0	×	0	0	
1	1 1	1	1	l x	X] 1	
X	l x	X	X .		1	1	

Номинальное напряжение питания	5 B ± 5%
Выходное напряжение высокого уровня	≥2,7 B
Ток потребления при низком уровне выходного	
напряжения	≼60 м А
Ток потребления при высоком уровне выходного	
напряжения	≼28 мА
Входной ток низкого уровня	≤1,4 MA
Входной ток высокого уровня	≤10 MKA
Выходной ток низкого уровня	≼20 мкA
Выходной ток высокого уровня	80200 MA

Ток утечки на входе	≤100 MKA
Ток утечки на выходе	<10 MKA
Время задержки распространения при включении	
по выводам от 1, 5 до 7; от 10, 14 до 9	≤25 HC
Время задержки распространения при выключении	
по выводам от 1, 5 до 7; от 10, 14 до 9	≼35 нс

КР559ИП5

Микросхема представляет собой три магистральных прием-, ника. Содержит 131 интегральный элемент. Корпус типа 238.16-2, масса не более 1.2 г.

Условное графическое обозначение КР559ИП5

Назначение выводов: 1, 2, 5, 6, 12— логические входы; 3— вход магистральный $\overline{R2}$; 4— вход стробирующий C2; 7— выход 2; 8— общий; 9— выход 3; 10— вход магистральный $\overline{R2}$; 11— вход стробирующий C3; 13— выход 1; 14— вход магистральный $\overline{R1}$; 15— вход стробирующий C1; 16— напряжение питания.

Tokewije	истинности
4 SOMMUS	MCIMMMOCIM

	Вкоды			
14, 3, 10	15, 4, 11	1, 5, 12	2,6	13, 7, 9
0	1	x	X	0
x	X	1 1	1	1 0
1	X	0	X.	1.
1	X	X	0	1
X	0	0 1	×	1
X	0	x	O	1 1

Электрические параметры

Ном инальное напряжение питания	5 B ± 5% ≤0.4 B
Выходное напряжение высокого уровня	₹0,₹B
The state of the s	•
Напряжение на антизвонном диоде	< -0,4 B
Ток потребления при низком уровне выходного на-	~ OO 4
пряжения	≼90 мА
Ток потребления при высоком уровне выходного	
напряжения	≼60 мА
Входной ток низкого уровня	≤1,4 MA
по выводам 1, 2, 4, 5, 6, 11, 12, 15	≤1,6 mA
по выводам 3, 10, 14	≤0,1 MA
Входной ток высокого уровня по выводам 1, 2, 4, 5,	
6, 11, 12, 15	<0,17 MA
Выходной ток	50 MA
Ток утечки на входе	≤100 MKA
Время задержки распространения при включении	
(выключении):	
по выводам 3, 10, 14	≤20 нс
по выводам 1, 2, 4, 5, 6, 11, 12, 15	≤12 HC

К559ИП6, КР559ИП6

Микросхемы представляют собой магистральный приемопередатчик. Предназначены для организации каналов передачи данных в цифровых вычислительных комплексах. Содержат 175 интегральных элементов. Корпус типа 238.16-2, масса не более 1,2 г.

Условное графическое обозначение К559ИП6, КР559ИП6

12	V	ип	Bi	2
4	X1		82 83	9
5	X2		84	15 2
11	X3		91 92	6
<u>13</u>	X4		93¢ 94¢	14

Назначение выводов: 1 — общий 1; 2, 7, 9, 15 — входы/выходы B1...B4; 4, 5, 11, 13 — входы X1...X4; 3, 6, 10, 14 — выходы $\overline{V1}...\overline{V4}$; 8 — общий 2; 12 — управляющий вход \overline{V} ; 16 — напряжение питания.

Электрические параметры

Номинальное напряжение питания	5 B ± 5% ≤0,47 B
Выходное напряжение высокого уровня	≥2,6 B
Ток потребления	≼70 мА
Входной ток низкого уровня	<1,5 MA
Входной ток высокого уровня	
Выходной ток низкого уровня:	
по выводам 3, 6	≤16 MA
по выводам 2, 7, 9, 15	≤48 MA
Выходной ток высокого уровня	
Время задержки распространения при включении	
(выключении):	
по выводам от 4, 5 до 2, 7	≼30 нс
по выводам от 12 до 2	€50 нс
по выводам от 9, 15 до 10, 14	≼35 нс

КР559ИП7

Микросхема представляет собой три магистральных приемника. Содержит 131 интегральный элемент. Корпус типа 238.16-2, масса не более 1,2 г.

Условное графическое обозначение КР559ИП7

Назначение выводов: 1, 2, 5, 6, 12— логические входы; 3— вход магистральный $\overline{R2}$; 4— вход стробирующий C2; 7— выход 2; 8— общий; 9— выход 3; 10— вход магистральный $\overline{R3}$; 11— вход стробирующий C3; 13— выход 1; 14— вход магистральный $\overline{R1}$; 15— вход стробирующий C1; 16— напряжение питания.

Таблица истинности

1	Входы			
14, 3, 10	15, 4, 11	1, 5, 12	2,6	13, 7, 9
0	1	X	Х	0
X	X	1	1	0
1	X	0	X	1
1	X	X	0] 1
X	0	0	X	1
X	0	X	0	1

Электрические параметры

Номинальное напряжение питания	5B±5%
Выходное напряжение низкого уровня	≤0,37 B
Выходное напряжение высокого уровня ,	≥2,8 B
Ток потребления при низком уровня выходного на-	
пряжения	≼86 MA
Ток потребления при высоком уровня выходного	
напряжения	≤58 мА
Входной ток низкого уровня	≤1,4 mA
Входной ток высокого уровня:	
по выводам 1, 2, 4, 5, 6, 11, 12, 15	≤10 MKA
по выводам 3, 10, 14	≤120 MKA
Ток утечки на входе	€100 MKA
Время задержки распространения при включении	
(выключении) по выводам от 3, 5 до 7; от 10, 12 до 9;	
от 1, 14 до 13	€30 нс

КМ559ИП8, КР559ИП8

Микросхемы представляют собой четырехразрядный приемопередатчик. Применяются для организации периферийного интерфейса, позволяют организовать двунаправленный обмен информацией между магистральными шинами процессора и погическими шинами внешнего устройства. Особенности ИС: передатчики информации на информационные шины — ТТЛ-элементы с открытым коллектором на выходе с током нагрузки до 70 мА; передатчики информации во внешнее устройство — ТТЛ-инверторы с повышенным уровнем лог. 1 и тремя устойчивыми состояниями на выходе, что позволяет реализовать функцию «проворное ИЛИ» и использовать выводы одновременно для приема и передачи информации; приемники информации со сто-

роны магистральных информационных шин процессора обладают высоком входным сопротивлением; магистральные входы передатчиков и выходы приемников согласованы по логическим уровням и входным токам со схемами ТТЛ; входы и выходы сопрягаются с модулями устройств информационной вычислительной системы; диоды Шоттки на входах подавляют помехи отрицательной полярности. Содержат 318 интегральных элементов. Корпус типа 2140ю.20-2, масса не более 2 г и 2140.20-1, масса не более 1,8 г.

1 2 19 4 5	A1 A2 A3 W1	ип	D0 D1 D2 D3	18 17 7 5
13	W2 X		80 81	12 11
14 15	V1 V2		82 83	11 9 8
<u>16</u>	V3		Ч	3

Условное графическое обозначение КМ559ИП8, КР559ИП8

Назначение выводов: 1, 2, 19— входы «передача адреса»; 3— выход «сравнение адреса»; 4, 5— входы управления; 6, 7, 8, 9, 11, 12, 17, 18— входы/выходы; 10— общий; 13— вход «разрешение сравнения»; 14, 15, 16— входы «передача вектора»; 20— напряжение питания.

Номинальное напряжение питания 5 B ± 5%
Выходное напряжение низкого уровня:
по выводам <i>8, 9, 11, 12</i> при <i>І</i> вын=70 мА < 0,75 В
по выводам <i>8, 9, 11, 12</i> при / _{еых} = 16 мА;
по выводу <i>3</i> при / _{вых} =8 м A ;
по выводам <i>6</i> , <i>7</i> , <i>17</i> , <i>18</i> при <i>I</i> _{вых} = 20 мА ≤ 0,48 В
Выходное напряжение высокого уровня ≥3,72 В
Входное напряжение
Ток потребления
Входной ток низкого уровня:
по выводу 4

яо выводу 5 € -1 МА
по выводам 8, 9, 11, 12, 13
по выводам <i>14, 15, 16</i> 0,060,19
модной ток высокого уровня:
то выводу <i>4</i> ≤ 15 мкА
лю выводу <i>5</i> ≤8 мкА
по выводу 13
по выводам 14, 15, 16
выходной ток высокого уровня:
по выводу 3
по выводам 8, 9, 11, 12 ≤ 30 мкА
выходной ток низкого уровня в состоянии
«выключено»
Выходной ток высокого уровня в состоянии
«выключено»
Время задержки распространения при включении
(выключении):
по выводам от 6, 7, 17, 18 до 8, 9, 11, 12 ≤ 25 нс
по выводам от <i>5</i> до <i>8</i> , <i>9</i> , <i>11</i> , <i>12</i> ;
от 8, 9, 11, 12 до 6, 7, 17, 18
по выводам от 14, 15, 16 до 8, 9, 11 ≤ 20 нс
по выводам от 8, 9, 11 до 3; от 13 до 3 ≤ 40 нс
Время задержки от 4 до 6, 7, 17, 18 ≤ 30 нс
Spenis endobysta, or i Mo O'LL (1)
Предельно допустимые режимы эксплуатации
Напряжение питания
Входное напряжение (положительное):
по выводам 4, 5, 6, 7, 17, 18 05,5 В
по выводам 14, 15, 16
Выходной ток (вытекающий) – 1000 мА
Выходной ток (втекающий):
по выводам 6, 7, 17, 8 030 мА
по выводу 3 015 мА
по выводам 8, 9, 11, 12 0100 мА
Входной ток (вытекающий)
Температура окружающей среды10+70 °C
cannalantha and languages abolds creatives and and and a

КР559ИП11

Микросхема представляет собой четырехразрядный магистральный приемник для однопроводных и двухпроводных линий связи. Обеспечивается разрешение и запрет передачи информации одновременно для всех четырех приемников. Содержит 353 интегральных элемента. Корпус типа 238.16-2, масса не более 1,2 г.

Функциональная схема КР559ИП11

Назначение выводов: $1 - \text{вход } \overline{A2}$; 2 - вход A1; 3 - выход A; 4 - вход EZ; 5 - выход C; 6 - вход C1; $7 - \text{вход } \overline{C2}$; $8 - \text{общий; } 9 - \text{вход } \overline{D2}$; 10 - вход D1; 11 - выход D; $12 - \text{вход } \overline{EZ}$; 13 - выход B; 14 - вход B1; $15 - \text{вход } \overline{B2}$; 16 - напряжение питания.

Номинальное напряжение питания
Выходное напряжение низкого уровня:
при / _{вых} = 4 мА
при / _{вых} = 8 мА ≤ 0,42 В
Выходное напряжение высокого уровня ≥2,85 В
Ток потребления
Входной ток низкого уровня:
по выводам 1, 2, 6, 7, 9, 10, 14, 15
по выводам 4, 12
Входной ток высокого уровня:
по выводам <i>1, 2, 6, 7, 9, 10, 14, 15</i>
по выводам 4, 12
Выходной ток высокого уровня в состоянии
«выключено»:
при U_{nop}^0 =0,9 B; U_{nop}^1 =1,85 В≤3 мкА
при $U_{\text{пор}}^0$ =0,8 B; $U_{\text{пор}}^1$ =2 В ≤20 мкА
Выходной ток низкого уровня в состоянии
«выключено»:

при $U_{\text{пор}}^0 = 0.9 \text{ B}$; $U_{\text{пор}}^1 = 1.85 \text{ B}$
при U _{пор} =0,8 В; U _{пор} =2 В
Время задержки распространения при включении
рыключении) по выводам от 1, 2, 15, 14, 6, 7, 9, 10
to 3, 13, 5. 11≤35 HC
Время задержки при выключении низкого уровня . ≤ 45 нс
Время задержки при включении высокого уровня . ≤ 32 нс
Время задержки при включении низкого уровня ≤ 25 нс
Время задержки при выключении высокого уровня . ≤25 нс

КР559ИП12

Микросхема представляет собой четырехразрядный дифференциальный магистральный передатчик для двухпроводных линий связи. Особенности ИС: обеспечивается разрешение и запрет передачи информации одновременно для всех четырех передатчиков; обеспечивается совместимость со схемами ТТЛ, ДТЛ; парафазные выходы. Применяется в мини-ЭВМ для организации линий связи. Корпус типа 238.16-2, масса не более 1,2 г.

Функциональная схема КР559ИП12

Назначение выводов: 1 - вход A; 2 - выход A1; $3 - \text{выход } \overline{A2}$; $4 - \text{вход } \overline{EZ}$; $5 - \text{выход } \overline{B2}$; 6 - выход B1; 7 - вход B; 8 - общий; 9 - вход C; 10 - выход C1; $11 - \text{выход } \overline{C2}$; 12 - вход EZ; $13 - \text{выход } \overline{D2}$; 14 - выход D1; 15 - вход D; 16 - напряжение питания.

Таблица истинности

. Входы			Выхо́ды		
EZ	ĒΖ	A, B, C, D	A1, B1, C1, D1	A2, B2, C2, D2	
0	1	х	Z	Z	
X	0	0) 0	1	
1 1	l x	6		1	
1	X	i	i	0	

Номинальное напряжение питания
Входной ток высокого уровня по выводам 1, 7, 9,
15, 4, 12
Выходной ток высокого уровня в состоянии
«выключено»
Выходной ток низкого уровня в состоянии «выключено»
Время задержки распространения при включении
(выключении) по выводам от 1, 7, 9, 15
(C _H =30 πΦ)≤20 нс
Время задержки при выключении низкого уровня
по выводам 4, 12
Время задержки при включении высокого уровня
по выводам 4, 12
Время задержки при включении низкого уровня
по выводам 4, 12
Время задержки при выключении высокого уровня
по выводам 4, 12
_
Предельно допустимые режимы эксплуатации
Напряжение питания

Выходной ток (вытекающий)	.≤ -150¦ мA
Выходной ток (втекающий)	.≼30 мА ,
Температура окружающей среды	10+70°C

КР559ИП13

Микросхема представляет собой восьмиразрядный магистральный приемопередатчик с инверсией. Предназначена для применения в двунаправленном однопроводном интерфейсе в вычислительных устройствах с магистральной организацией. Корпус типа 2140.20-1, масса не более 1,8 г.

Условное графическое обозначение КР559ИП13

Назначение выводов: $1 - \text{вход/выход } \overline{A0}$; $2 - \text{вход/выход } \overline{A4}$; $3 - \text{вход/выход } \overline{A2}$; $4 - \text{вход/выход } \overline{A3}$; $5 - \text{вход/выход } \overline{A4}$; $6 - \text{вход/выход } \overline{A5}$; $7 - \text{вход/выход } \overline{A6}$; $8 - \text{вход/выход } \overline{A7}$; $9 - \text{выход } \overline{EZB}$; 10 - общий; $11 - \text{вход } \overline{EZA}$; $12 - \text{вход/выход } \overline{B7}$; $13 - \text{вход/выход } \overline{B6}$; $14 - \text{вход/выход } \overline{B5}$; $15 - \text{вход/выход } \overline{B4}$; $16 - \text{вход/выход } \overline{B3}$; $17 - \text{вход/выход } \overline{B2}$; $18 - \text{вход/выход } \overline{B1}$; $19 - \text{вход/выход } \overline{B0}$; 20 - напряжение питания.

Таблица истинности

Входы			Выходы		
EZ8	ĒŽĀ	A,	B _i	Ai	B _I
0 0 0	0 1 1	_ 0 1		_ Z Z 1	— 1 0 Z
1	0	<u>_</u>	1 X	0 Z	Z Z

Лримечание. 0* — запрещенное состояние входов.

Номинальное напряжение литания
Выходное напряжение низкого уровня:
по выводам 1—8 при I _{вых} =8 мА;
<i>†2—19</i> при <i>I</i> _{вых} = 20 мА
по выводам 1—8 при І _{вых} =16 мА;
1219 при I _{вых} =48 мА
Выходное напряжение высокого уровня:
по выводам 1—8; 12—19 при І _{вых} =−0,4 мА≥3,67 В
ло выводам 1—8 при I _{вых} =-3 мА;
12—19 при I _{вых} = ~5 мА
по выводам 12—19 при І _{вых} = −10 мА ≥ 2,47 В
Ток потребления
Ток потребления в состоянии «выключено» ≤96 мА
Входной ток высокого уровня:
по выводам 1—8, 12—19
ло выводам <i>9, 11</i> ≤3 мкА
Входной ток низкого уровня:
по выводам 1—8, 12—19
по выводу 9
по выводу 11
Выходной ток высокого уровня в состоянии
«выключено»:
по выводам 1—8
по выводам 12—19
Выходной ток низкого уровня в состоянии
«выключено»
Время задержки распространения при включении
(выключении)
Время задержки при включении высокого уровня
по выводам вход/выход А0 — А7; В0 — В7≤15 нс
Время задержки при выключении высокого уровня:
по выводам вход/выход АО — А7≤35 нс
по выводам вход/выход ВО — В7≤25 нс
Время задержки при выключении низкого уровня:
по выводам вход/выход <i>A0 — A7</i>
по выводам вход/выход <i>В0 — В7</i>
Время задержки при включении низкого уровня:
по выводам вход/выход <i>A0</i> — <i>A7</i>
по выводам вход/выход <i>В0 — В7</i>
Предельно допустимые режимы эксплуатации
Напряжение питания
Напряжение на выходе закрытой микросхемы по
Transportation and polytotic samplitum withhortycally in

выводам 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17,
<i>18, 19</i> ≤5,25 B
Выходное напряжение (положительное) по выво-
дам 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17,
18, 19≤5,25 ₿
Входной ток (вытекающий)
Выходной ток (вытекающий):
по выводам 1, 2, 3, 4, 5, 6, 7, 8
по выводам 12, 13, 14, 15, 16, 17, 18, 19 ≤ -150 мА
Выходной ток (втекающий):
по выводам 1, 2, 3, 4, 5, 6, 7, 8
по выводам 12, 13, 14, 15, 16, 17, 18, 19 ≤ 100 мА
Температура окружающей среды10+70 °C

КР559ИП14

Микросхема представляет собой восьмираэрядный магистральный приемопередатчик без инверсии. Предназначена для применения в двунаправленном однопроводном интерфейсе в вычислительных устройствах с магистральной организацией. Корпус типа 2140.20-1, масса не более 1,8 г.

1 A0 A1 A2 A3 4 A3 A4 A5 A6 A7 11 FZA	1	80 81 82 83 84 85 86 87 EZ8	19 18 17 16 15 14 13 12
--	---	---	--

Условное графическое обозначение КР559ИП14

Назначение выводов: 1 - вход/выход A0; 2 - вход/выход A1; 3 - вход/выход A2; 4 - вход/выход A3; 5 - вход/выход A4; 6 - вход/выход A5; 7 - вход/выход A6; 8 - вход/выход A7; 9 - вход EZB; 10 - общий; 11 - вход EZA; 12 - вход/выход B7; 13 - вход/выход B6; 14 - вход/выход B5; 15 - вход/выход B4; 16 - вход/выход B3; 17 - вход/выход B2; 18 - вход/выход B1; 19 - вход/выход B0; 20 - напряжение питания.

Таблица истинности

Входы			Вых	оды	
EZB	EZA	A _I .	B _l	A _L	B _t
0	0	_		ļ	·
0] 1	0	·	Z	6∙
0	1	1	_	Z	1
1	0		0	0	Z
1.	0		1	1	Z
1] 1	Х	×	Z	Z

Примечание. 0* — запрещенное состояние входов#

Номинальное напряжение питания
Выходное напряжение низкого уровня:
по выводам <i>1—8</i> при / _{вых} =8 мА;
<i>12—19</i> при <i>I</i> _{вых} = 20 мА
по выводам <i>1—8</i> при / _{вых} ≂16 мА;
<i>12—19</i> при <i>I</i> _{вых} = 48 мА
Выходное напряжение высокого уровня:
по выводам 1—8; 12—19 при I _{вых} =-0,4 мА≥3,67 В
по выводам 1—8 при I _{вых} =-3 мА;
<i>12—19</i> при <i>I</i> _{вых} =−5 мА ≥ 2,77 В
по выводам <i>12—19</i> при <i>I</i> _{вых} =−10 мА ≥ 2,47 В
Ток потребления
Ток потребления в состоянии «выключено» ≤96 мА
Входной ток высокого уровня:
по выводам 1—8, 12—19 ≤ 12 мкА
по выводам 9, 11
Входной ток низкого уровня:
по выводам 1—8, 12—19
по выводу 9
по выводу 11
Выходной ток высокого уровня в состоянии
«выключено»:
по выводам <i>1—8</i>
по выводам <i>12—19</i> ≤25 мкА
Выходной ток низкого уровня в состоянии
«выключено»
Время задержки распространения при включении
(выключении)
•

Время задержки при включении высокого уровня
no выводам вход/выход <i>A0 — A7</i> ; <i>B0 — B7</i> ≤ 15 нс
Время задержки при выключении высокого уровня:
no выводам вход/выход <i>A0 — A7 .</i>
по выводам вход/выход <i>В0 — В7</i>
Время задержки при выключении низкого уровня:
ло выводам вход/выход <i>A0 — A7</i>
ло выводам вход/выход <i>В0 — В7</i> ≤ 18 нс
Время задержки при включении низкого уровня:
по выводам вход/выход <i>А0 — А7</i> ≤ 35 нс
по выводам вход/выход <i>В0 — В7</i>
Предельно допустимые режимы эксплуатации
Напряжение питания
Напряжение на выходе закрытой микросхемы
по выводам 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16,
<i>17</i> , <i>18</i> , <i>19</i>
Выходное напряжение (положительное) по выво-
дам 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17,
дам <i>1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17,</i> 18, 19
_
18, 19 ≤ 5,25 В Входной ток (вытекающий) ≤ 12 мА Выходной ток (вытекающий);
18, 19
18, 19
18, 19

КР559ИП15

по выводам *12, 13, 14, 15, 16, 17, 18, 19* ≤ 100 мА Температура окружающей среды – 10...+70 °C

Микросхема представляет собой восьмиканальный приемопередатчик со схемой управления (магистральный усилитель расширенного адреса). Предназначена для использования в двунаправленном однопроводном интерфейсе в вычислительных устройствах с магистральной организацией. Корпус типа 2140.20-1, масса не более 1,8 г.

Условное графическое обозначение КР559ИП15

Назначение выводов: 1 - вход EZ2; $2 - \text{вход/выход } \overline{B0}$; $3 - \text{вход/выход } \overline{B1}$; $4 - \text{вход/выход } \overline{B2}$; $5 - \text{вход/выход } \overline{B3}$; $6 - \text{вход/выход } \overline{B4}$; $7 - \text{вход/выход } \overline{B5}$; $8 - \text{вход/выход } \overline{B6}$; $9 - \text{вход/выход } \overline{B7}$; 10 - общий; 11 - вход/выход A7; 12 - вход/выход A6; 13 - вход/выход A5; 14 - вход/выход A4; 15 - вход/выход A3; 16 - вход/выход A2; 17 - вход/выход A1; 18 - вход/выход A0; 19 - вход EZ1; 20 - напряжение питания.

Таблица истинности

Входы			Выходы		
EZ8.	. EZA	Ai	Bi	Ai	Bi
0 0 0 0	0 0 1 1	0 1	- 0 1	Z Z 1 0 Z	1 0 2 2 2

Номинальное напряжение питания	$.5B \pm 5\%$
Выходное напряжение низкого уровня:	
по выводам 1118 при / _{вых} = 16 мА	.≼0,5 B
по выводам 29 при / вых = 70 мА	
Выходное напряжение высокого уровня	•
по выводам 11—18 при / вых = — 1 мА	.≽2,7 B
Ток потребления при высоком уровне выходного	,
напряжения	.≤200 MA

Ток потребления при низком уровне выходного
напряжения
Ток потребления в состоянии «выключено» ≤ 200 мА
Входной ток высокого уровня:
по выводам 11—18 при U _{вх} = 2,7 В ≤ 120 мкА
по выводам 1, 19 при U _{вх} =2,7 В
по выводам 2—9 при U _{вх} = 3,8 В ≤ 105 мкА
Входной ток низкого уровня при $U_{\rm Bx}^0 = 0.4$ В:
по выводам 11—18
по выводам 1, 19
по выводам 2—9
Выходной ток высокого уровня
Выходной ток низкого уровня в состоянии
«выключено»
Выходной ток высокого уровня в состоянии
«выключено», € 180 мкА
Время задержки распространения при включении
(выключении)
Время задержки
рремя задержкичо не
Предельно допустимые режимы эксплуатации
Напряжение на выходе закрытой микросхемы
(выводы <i>2—9</i>)
Выходной (вытекающий) ток (выводы 11—18)10 мА
Выходной (втекающий) ток:
минимальный МА
максимальный:
по выводам <i>2—9</i> 70 мА
по выводам 11—18
Температура окружающей среды10+70 °С

КР559ИП16

Микросхема представляет собой схему контроля и коррекции циклического кода (схему генерации ЕСС/СРС кодов и контроля информации при записи на магнитные диски). Применяется в контроллерах накопителей на магнитных дисках. Позволяет контролировать и исправлять ошибки, возникающие при записи информации на диск. Предназначена для формирования 16-разрядного кода СРС из обычного 32-разрядного двоичного кода и обнаружения в нем ошибки при записи на диск, а также для формирования 32-разрядного кода ЕСС из 4096-разрядного двоичного кода, обнаружения и исправления в нем ошибок при записи

на диск. В состав ИС входят регистр ECC/CRC, счетчик лоиска ошибок, формирователь выходных данных, узел управления, контроля и диагностики. Ориентирована на работу с блоками информации длиной 4096 бит при записи/чтении с диска. Содержит 1733 интегральных элемента. Корпус типа 2121.28-5, масса не более 5 г.

17 18 20 21 22 23 24 25	PAT POS CRC CLR WCLK RD RCLK DFLD	COWR	CTO STI D 0 1 2 3 4 5 6	16 19 13 14 11 10 6 7 8 9 5 3 4 12
24 25 27 28			5 6 7 8 9 10 11 12 2 5 D10	8 9 5 3 4 1 72

Условное графическое обозначение КР559ИП16

Назначение выводов: 1 — выход 11; 2 — общий; 3 — выход 9; 4 — выход 10; 5 — выход 8; 6 — выход 4; 7 — выход 5; 8 — выход 6; 9 — выход 7; 10 — выход 3; 11 — выход 2; 12 — выход 12; 13 — выход 0; 14 — выход 1; 15 — напряжение питания; 16 — выход СТО; 17 — вход РАТ; 18 — вход РОЅ; 19 — выход ST1; 20 — вход СРС; 21 — вход ССРС; 22 — вход счетный WCLK; 23 — вход чтения RD; 24 — вход счетный RCLK; 25 — вход записи DFLD; 26 — выход SD10; 27 — вход записи CFLD; 28 — вход 18 ВІІ.

Номинальное напряжение питания	.5B±5%
Выходное напряжение низкого уровня	.≼0,5 B
Выходное напряжение высокого уровня	.≽2,4 B
Входной ток низкого уровня	.≼ -1,6 MA

Вороной ток высокого уровня
кодной ток третьего состояния≤100 мкА
Гок потребления
Тек короткого замыкания
Время задержки при переходе в состояние
«включено»:
по выводам <i>24—13, 22—26, 24—11, 14</i> . ≤ 65 нс
ло выводам <i>22—3, 22—4, 28—3</i> . ≤ 75 нс
по выводам <i>21—4, 21—10, 21—16, 21—5</i> ≤70 нс
Время задержки при переходе в состояние
«выключено»:
по выводам <i>24—10</i> ≤ 65 нс
по выводам <i>21—13, 21—11, 14</i> ≼70 нс
по выводам <i>22—5, 24—16, 25—4, 28—3</i> . ≤ 75 нс

КР559ИП19

Микросхема представляет собой четырехканальный передатчик и предназначена для связи ПЭВМ с периферийными устройствами. Удовлетворяет требованиям стандарта EIA-RS-232C. Корпус типа 201.14-1, масса не более 1 г.

Условное графическое обозначение КР559ИП19

Назначение выводов: 1 — напряжение питания ($-U_0$); 2 — вход A1; 3 — выход $\overline{Y1}$; 4 — вход A2; 5 — вход B2; 6 — выход $\overline{Y2}$; 7 — общий; 8 — выход $\overline{Y3}$; 9 — вход A3; 10 — вход B3; 11 — выход $\overline{Y4}$; 12 — вход A4; 13 — вход B4; 14 — напряжение питания ($+U_0$).

13-950

Таблица истинности

Входы		Выход	
A	В	Y	
1	1	0	
{ o	X	1	
X	0	1	

Электрические параметры

Номинальное напряжение питания	±5B±10%
Выходное напряжение низкого уровня	-6−9 B
Выходное напряжение высокого уровня	69 B
Входной ток низкого уровня	< -1,6 MKA
Входной ток высокого уровня	<-10 MKA
Ток потребления:	
от мсточника питания U_{n}	€3,4 mA
от источника питания <i>~U_n</i>	<1-3,41 MA
Время задержки распространения при	
включении	€175 HC
Время задержки распространения при	
выключении	≤350 HC

Предельно допустимые режимы эксплуатации

Напряжение питания U_n	<15 B
Напряжение питания – Un	≤ -15 B
Входное напряжение	-15+7 B
Выходное напряжение	~15+15 B
Выходной ток	<10 MA
Температура окружающей среды	-10+70 °C

КР559ИП20

Микросхема представляет собой четырехканальный приемник. Предназначена для связи ПЭВМ с периферийными устройствами. Удовлетворяет требованиям стандарта EIA-RS-232C. Особенностью схемы является встроенный входной гистерезис, амплитуда входного сигнала ±30 В. Корпус типа 201,14-1, масса не более 1 г.

Условное графическое обозначение КР559ИП20

Назначение выводов: $1 - \text{вход } A1; 2 - \text{вход } CR1; 3 - \text{выход } \overline{Y1}; 4 - \text{вкод } A2; 5 - \text{вход } CR2; 6 - \text{выход } \overline{Y2}; 7 - \text{общий; } 8 - \text{выход } \overline{Y3}; 9 - \text{вход } CR3; 10 - \text{вход } A3; 11 - \text{выход } \overline{Y4}; 12 - \text{вход } CR4; 13 - \text{вход } A4; 14 - \text{напряжение питания.}$

Таблица истинности

Входы	Выходы
Α	Y
1	0
0	1

Номинальное напряжение питания	5B±10%
Выходное напряжение высокого уровня	≽2,5 B
Выходное напряжение низкого уровня	≤0,45 B
Входной тек высокого уровня	3,68,3 мА
Входной ток низкого уровня	-8,33,6 мА
Ток потребления	≼26 мА
Время задержки распространения при	
включении	≤50 нс
Время задержки распространения при	
выключении	≼85 нс
Входное сопротивление	37 кОм

Предельно допустимые режимы эксплуатации

Напряжение питания	4,55,5 B
Входное пороговое напряжение при включении .	1,752,25 B
Виодное пороговое напряжение при выключении	0,751,25 B
Амплитуда входного сигнала	-30+ 30 B
Выходной ток	≥10 MA
Темлература окружающей среды	-10+70°C

КФ559ИП21

Микросхема представляет собой двухразрядный дифференциальный приемопередатчик. Предназначена для организации линий связи в цифровых вычислительных системах. Полное собответствие требованиям стандарта EIA-RS-422. К особенностям микросхемы относятся: наличие гистерезиса на входах приемника; специальная цепь на входах приемника, обеспечивающая установку выхода в состояние логической «1» при отсутствии сигналов на входах; комплементарность выходов передатчика; возможность установки выходов приемников и передатчиков в состояние высокого импеданса (третье состояние), независимые функции управления приемниками и передатчиками. Корпустипа 4314.16-1, масса не более 1 г.

Фнукциональная схема КФ559ИГІ21

Назначение выводов: 1 — выход RO1; 2 — вход D1; 3 — напряжение питания; 4 — вход EZD; 5 — вход EZR; 6 — общий; 7 —
вход D2; 8 — выход RO2; 9 — вход RO2; 10 — вход RO2; 11 —
выход DO2; 12 — выход DO2; 13 — выход DO1; 14 — выход DO1; 15 — вход RO1; 16 — вход RO1.

Таблица истинности работы передатчиков

Входы		Выходы	
DEN O O	Ð1 D2 O 1	DO1 DO2 O _L 1 _H Z	DO1 DO2 1 O Z

- Таблица истинности работы приемников

Входы		Выхс	Эды
REN	R1	R1	RO1
	R2	R2	RO2
0	L H	F F	L H
0	Z1	Z1	H
1	X	X	Z

Примечание. Z1 — вход свободный; $L' = U_{\rm CN} - U_{\rm dif}/2$; $H' = U_{\rm CN} + U_{\rm dH}/2$; 0,2 В $\leq U_{\rm dif} \leq$ 0,7 В; = 0.7 В $\leq U_{\rm CN} \leq$ 7 В.

Электрические параметры

1. Приемник

Номинальное напряжение питания	$5B \pm 5\%$
Выходное напряжение низкого уровня	≤0,5 B
Выходное напряжение высокого уровня	≥2,5 B
Чувствительность (при $U_P = -7+7$ В)	≤200 мВ
Входной ток	-3,253,25 м A
Выходной ток в состоянии выключено	-50+50 MKA
Ток короткого замыкания	-10015 MA
Время задержки распространения сигнала при	
включении (выключении) .,	≤22,5 HC

2. Передатчик	
Выходное напряжение низкого уровня	€0,5 B
Выходное напряжение высокого уровня	
Выходной ток	≤100 MKA
Выходной ток в состоянии выключено	
Ток короткого замыкания	-10030 MA
Входной ток низкого уровня	
Входной ток высокого уровня <	
Время задержки распространения сигнала при	
включении (выключении) «	€15 нс
3. Приемник и передатчик	
Ток потребления	≼76 мА
Ток потребления в состоянии «выключено» «	678 MA
Предельно допустимые режимы эксплу	атации
	-
Напряжение питания 4	-
Напряжение питания	1,755,25 B
Напряжение питания	1,755,25 B
Напряжение питания	1,755,25 B -7+7 B
Напряжение питания	1,755,25 B -7+7 B
Напряжение питания	1,755,25 B -7+7 B -7+7 B
Напряжение питания Дифференциальное напряжение на входах приемника Напряжение синфазного сигнала на входах приемника Выходной (вытекающий) ток¹:	1,755,25 B -7+7 B -7+7 B -0,40 MA
Напряжение питания Дифференциальное напряжение на входах приемника Напряжение синфазного сигнала на входах приемника Выходной (вытекающий) ток 1: приемник	1,755,25 B -7+7 B -7+7 B -0,40 MA
Напряжение питания Дифференциальное напряжение на входах приемника Напряжение синфазного сигнала на входах приемника Выходной (вытекающий) ток 1: приемник	1,755,25 B -7+7 B -7+7 B -0,40 mA -200 mA
Напряжение питания Дифференциальное напряжение на входах приемника Напряжение синфазного сигнала на входах приемника Выходной (вытекающий) ток¹: приемник передатчик Выходной (вытекающий) ток²:	1,755,25 B -7+7 B -7+7 B -0,40 MA -200 MA
Напряжение питания Дифференциальное напряжение на входах приемника Напряжение синфазного сигнала на входах приемника Выходной (вытекающий) ток 1: приемник передатчик Выходной (вытекающий) ток 2: приемник	1,755,25 B -7+7 B -7+7 B -0,40 MA -200 MA

KM559CK1, KP559CK1

Микросхемы представляют собой 8-разрядный компаратор для сравнения двух восьмиразрядных чисел. Входы и выходы совмещаются со схемами ТТЛ. Возможно сравнение двоичных чисел произвольной разрядности за счет объединения выходов микросхем. Корпус типа 2140.20-2, масса не более 2 г.

Назначение выводов: 1— вход A0; 2— вход B0; 3— вход A1; 4— вход B1; 5— вход A2; 6— вход B2; 7— вход A3; 8— вход B3; 9— выход 9; 10— общий; 11— свободный; 12— вход A4; 13— вход B4; 14— вход A5; 15— вход B5; 16— вход A6; 17— вход B6; 18— вход A7; 19— вход B7; 20— напряжение питания.

^{*} Для состояния высокого уровня на выходе.

² Для состояния низкого уровня на выходе.

Фнукциональная схема КР559СКТ

Таблица истиности

Сравниваемые входы				Выход						
A787	A6B6	A5B 5	A4B4	A383	A2B2	A1B1	AOBO	9		
a,≠b,	X	×	×	×	Х	×	X	٥		
X	a _e ≠b _e	×	X	X	X	X	Х	0		
X	X	a _s ≠b _s !	Х	X	x	Х	X	0		
X	X/	X	B4=P4	X	Х	X	X	0		
X	X	X	X	a₃≠b₃	Х	X	X	0		
X	X	X.	X	X	a₂≠b₂	X	X	0		
X	Х	, X	Х	X	X	a₁≠b₁	*	0		
X	X	X	- X	X	X	X	a₀≠b₀	0		
a,=b,	a _s =b _s	a _s =b _s	$a_4 = b_4$	a ₃ =b ₃	a _z =b ₂	$a_1 = b_1$	$a_0 = b_0$	1		

Номинальное напряжение питания	$.5B \pm 5\%$
Выходное напряжение низкого уровня при $U_n = 5$ В	7
$I_{\text{BbIX}} = 70 \text{ MA}, U_{\text{nop}}^0 = 0.9 \text{ B}, U_{\text{nop}}^1 = 1.85 \text{ B} \dots$.≤0,75 B
Входной ток низкого уровня при $U_n = 5$ В,	
$U_{\rm BXA}^0 = 0.4 \rm B$.≤ -150 MKA

Входной ток высокого уровня при $U_n = 5.8$,	
$U_{\text{BXB}}^{1} = 2,4 \text{ B} \dots \leq 1$	5 MKA
Выходной ток высокого уровня при U_0 =5 B,	
$U_{\text{nor}}^0 = 0.9 \text{ B}, \ U_{\text{BX}}^1 = 1.85 \text{ B} \dots \leq 5$	і мкА
Ток потребления при U_0 =5 В	125 MA
Время задержки распространения при включении	
(выключении) при $U_0 = 5$ В, $C_{H} = 15$ пФ,	
R _H =200 Om≤2	25 нс

Предельно допустимые режимы эксплуатации

Напряжение питания	. , ≤7 B
Напряжение на входе при I _{вх} ≤ 1 мА	. ≴≼ 5,25 B
Входной ток при <i>U</i> _{вх} ≥ 1,2 В	≼}−18ј мА
Температура окружающей среды	10+70 °C

Рекомендации по применению

Работоспособность микросхем обеспечивается в диапазоне изменения напряжения питания от 4,75 В до 5,25 В, входного напряжения низкого уровня от 0 до 0,8 В, входного напряжения высокого уровня от 2 до 4,5 В, при выходном токе для состояния низкого уровня на входе от 0 до 70 мА.

KP559CK2

Микросхема представляет собой схему сравнения двух 6разрядных двоичных чисел с открытым коллекторным выходом. Выполняет операции сравнения двух двоичных чисел. Входы для одного числа совмещаются со входами схемы ТТЛ. Входы другого числа приходят с шины данных на высокоимпедансные приемники. Возможно сравнение двоичных чисел произвольной разрядности за счет объединения выходов микросхем. Имеет низкий входной ток магистральных входов, сохраняет состояние выхода. Предназначена для применения в качестве компаратора адреса в мини-ЭВМ, имеющих единую организацию линии данных. Корпус типа 238.16-2, масса не более 1,2 г.

Назначение выводов: 1 - вход B1; 2 - вход T1; 3 - вход B2; 4 - вход T2; 5 - вход B3; 6 - вход T3; 7 - вход S; 8 - общий; 9 - выход Y; 10 - вход T4; 11 - вход B4; 12 - вход T5; 13 - вход B5; 14 - вход T6; 15 - вход B6; 16 - напряжениепитания.

Условное графическое обозначение КР559СК2

Функциональная схема КР559СК2

Номинальное напряжение питания	5B±5%
Выходное напряжение низкого уровня	€0,38 B
Ток потребления	≤70 MA

Входной ток низкого уровня:	
по выводам 2, 4, 6, 10, 12, 14	< -15 MA
по выводу 7	< -2,2 MA
Входной ток высокого уровня:	
по выводам 1, 3, 5, 11, 13, 15	≤35 мкA
по выводам 2, 4, 6, 10, 12, 14	≼8 мк А
по выводу 7	≤15 MKA
Выходной ток высокого уровня	≤25 мкА
Время задержки распространения при включении	
(выключении):	
по выводам от 1, 3, 5, 11, 13, 15 до 9	€45 нс
по выводам от 2, 4, 6, 7, 10, 12, 14 до 9	≼30 нс

Таблица истиности

Сравнивземые входы						Вход	Выход
T6B6	T5B5	T4B4	T3B3	T2B2	T1B1	\$	Υ
t _e ≠b _e	х	X	×	Х	Х	0	0
X	t₅≠b₅	X	Х	X	X	0	0
X	X	t₄≠b₄	Х	Х	X	0	0
X	X	X	t₃≠b₃	X	X	0	0
X	X	X	Х	t₂≠b₂	X 1	0	0
X	Х) x	' x	X	t₁≠b,	0	0
Х	Х	}	X	X	X	· ·	0
t _e =b _e	t _s = b _s	t4=04	$t_3 = b_3$	$t_2 = b_2$	t,=b,	0	1
X	X	X	X	X	Х	1	Y _{n-1}

Примечание. X — состояние входов безразлично; t_i , b_i — состояние входов T_i , B_i (0 или 1), $i=1\div 6$; Y_{n-1} — предыдущее состояние выхода (состояние выхода для предыдущего состояния входов при S=0).

Предельно допустимые режимы эксплуатации

Напряжение питания
Напряжение на входах 2, 4, 10, 12, 14 (при I _{вх} ≤ 1 мА)
и 7 (при I _{вх} ≤2 мА)≤5,25 В
Температура окружающей среды10+70 °C

Рекомендации по применению

Работоспособность микросхемы обеспечивается в диапазоне изменения напряжения питания от 4,75 В до 5,25 В, входных напряжений низкого уровня от 0 до 0,8 В на выводах 2, 4, 6, 10, 12, 14 от 0 до 1,25 В при $U_{\rm fl}$ = 5,25 В на

выводах 1, 3, 5, 11, 13, 15, напряжений высокого уровня от 2 до 4,5 В; на выводах 2, 4, 6, 10, 12, 14 от 1,61 до 4,5 В при U_n = 4,75 В и от 1,79 до 4,5 В при U_n = 5,25 В на выводах 1, 3, 5, 11, 13, 15 при выходном токе для состояния низкого уровня от 0 до 16 мА.

Общие рекомендации по применению

Допустимое значение статического потенциала 30 В. При применении ИС в условиях повышенной влажности, среды, зараженной плесневыми грибками, при выпадении на них инея и росы, при воздействии соляного тумана их следует покрывать тремя слоями лака ЭП-730 или УР-231. При автоматизированной сборке рекомендуется температура припоя не выше 265 °С, продолжительность пайки не более 4 с, число допускаемых перепаек выводов при приведении монтажных операций — 3.