# ROTHY 걸음데이터 분석

사람들은 언제, 얼마나 걸을까

#### 배경

- 사람은 자유의지에 따라 행동하는 것으로 알려져 있다.
- 하지만 다양한 외부요인에 의해 사람의 행동이 영향을 받는다는 주장도 있다.
- 개인의 행동 기록 중 하나인 걸음 데이터를 분석하여 패턴이 존재하는지 확인한다.
- 걸음에 영향을 주는 인자를 도출할 수 있다면, 시간대 별 Rothy 사용자의 걸음 수를 예측할 수 있다.
- 이 예측 결과를 바탕으로 타겟 마케팅, 서비스 고도화에 직/ 간접적으로 활용할 수 있을 것이다.

#### 가 설

- 사람의 걸음 수는 시간대와 관련이 깊다.
- 사람의 걸음 수는 계절, 기후에 영향을 받는다.
- 시간대별 걸음 수(패턴)는 연령 대, 경제활동 유무에 영향을 받는다.
- 시간대별 걸음 패턴은 영업일, 비영업일(주말, 공휴일)에 따라 다르다.

## 데이터 개요

- 분석에 사용한 데이터는 다음과 같다.
- ROTHY 고객정보 : GB\_SVC\_USER
- 일별 걸음 데이터 : GB\_BYDT\_STEP
- 상세 걸음 데이터 : GB\_STEP\_HIST
- 기후 데이터(기상청) : weather.csv

#### 작업 순서



## 개별 데이터 확인 및 정제

- 1) ROTHY 고객정보(GB\_SVC\_USER)
  - 8월 15일 기준 가입 상태가 `정상`인 고객만 추출: 10920명

user = user[user['STATUS']=='정상']

|      | USER_ID | NICK | _NM  | USER_EMAIL   | USER_NM | USER_MOBILE | BIRTHDAY   | GENDER | TALL  | WEIGHT | os         | APP_VER_NO | STATUS |
|------|---------|------|------|--------------|---------|-------------|------------|--------|-------|--------|------------|------------|--------|
| 9168 | 31      |      | Н    | @hanmail.net | 한       | 010         | 19600821.0 | М      | 167.5 | 60.0   | Android    | 1.6.31     | 정상     |
| 9169 | 32      | 돈    | 크    | ?1@naver.com | 백       | 010         | 19850521.0 | М      | 172.0 | 60.0   | Android    | 1.6.31     | 정상     |
| 9170 | 33      |      | b s  | on@gmail.com | 문       | 010         | 19880817.0 | F      | 164.6 | 60.0   | Android    | 1.6.29     | 정상     |
| 9171 | 34      |      | 2    | 13@naver.com | 신       | 010         | 19721220.0 | M      | 176.0 | 60.0   | Android    | 1.6.31     | 정상     |
| 9172 | 35      | 진짜   | 2    | 4@naver.com  | 0       | 010         | 19850102.0 | М      | 174.0 | 60.0   | Android    | 1.6.31     | 정상     |
| 0470 | 20      | ᆈᆏ   | III- | 27@amail.aam | +1      | 040         | 10640705.0 | 8.4    | 470 E | 60.0   | A = d== id | 4.6.00     | Ŧ1.1   |

- 생년월일(BIRTHDAY) 정보를 바탕으로 `나이(AGE)` 속성 추가

user['AGE'] = datetime.datetime.today().year - user['BIRTHDAY'].dt.year

| BIRTHDAY       | GENDER | TALL  | WEIGHT | os      | APP_VER_NO | STATUS | AGE |
|----------------|--------|-------|--------|---------|------------|--------|-----|
| 1960-08-<br>21 | М      | 167.5 | 60.0   | Android | 1.6.31     | 정상     | 62  |
| 1985-05-<br>21 | М      | 172.0 | 60.0   | Android | 1.6.31     | 정상     | 37  |
| 1988-08-<br>17 | F      | 164.6 | 60.0   | Android | 1.6.29     | 정상     | 34  |
| 1972-12-       | M      | 176 N | 60 N   | Android | 1 6 31     | 정산     | 50  |

## 개별 데이터 확인 및 정제

- 1) ROTHY 고객정보(GB\_SVC\_USER)
  - `GROUP` 속성을 추가하여 연령을 카테고리 변수화 한다. (26세 미만: `youth` / 27~57세: `adult` / 58세 이상: `elderly`

user['GROUP'] = user['AGE'].apply(lambda x: 'youth' if x < 26 else ('adult' if x < 58 else 'elderly'))

|          |        |       |        |         |            |        |     |         | _ |
|----------|--------|-------|--------|---------|------------|--------|-----|---------|---|
| BIRTHDAY | GENDER | TALL  | WEIGHT | os      | APP_VER_NO | STATUS | AGE | GROUP   |   |
| 19       | М      | 167.5 | 60.0   | Android | 1.6.31     | 정상     | 62  | elderly |   |
| 19       | М      | 172.0 | 60.0   | Android | 1.6.31     | 정상     | 37  | adult   |   |
| 19       | F      | 164.6 | 60.0   | Android | 1.6.29     | 정상     | 34  | adult   |   |
| 19       | М      | 176.0 | 60.0   | Android | 1.6.31     | 정상     | 50  | adult   |   |
| 1985-01- | М      | 174 0 | 60 N   | Android | 1631       | 전산     | 37  | adult   |   |

경제활동 유무에 따라 걸음 패턴의 차이가 있는지 확인하기 위함

편의를 위해 청년(youth), 성인(adult), 장년(elderly)로 부르자.

#### - 중간정리





#### 개별 데이터 확인 및 정제

- 2) 일별 걸음 데이터(GB\_BYDT\_STEP)
  - 별도의 정제 과정 없이 주요 속성을 살펴보았다. (수집기간: 22-10-26~22-08-02)

|   | MSRE_DTM   | USER_ID | STEP_CNT | MOVE_DIST   | CNPT_CALR  | MOVE_SPEED |
|---|------------|---------|----------|-------------|------------|------------|
| 0 | 2021-10-26 | 4       | 5417.0   | 4104.298828 | 204.639999 | 1.429030   |
| 1 | 2021-10-27 | 3       | 110.0    | 83.983040   | 4.258073   | 1.354610   |
| 2 | 2021-10-27 | 4       | 5455.0   | 4152.960938 | 200.949982 | 1.453837   |
| 3 | 2021-10-27 | 5       | 4918.0   | 3757.562744 | 197.159180 | 1.430885   |
| 4 | 2021-10-27 | 7       | 5980.0   | 4739.403320 | 302.210968 | 1.557562   |

|        | 날짜<br>MSRE_DTM | 사용자 ID<br>USER_ID | 걸음수<br>STEP_CNT | 이동거리(m)<br>MOVE_DIST | 소모 칼로리<br>CNPT_CALR | 이동속도<br>MOVE_SPEED |
|--------|----------------|-------------------|-----------------|----------------------|---------------------|--------------------|
| 188135 | 2022-08-02     | 26                | 150.0           | 97.539999            | 4.440000            | 0.977520           |
| 188136 | 2022-08-02     | 31                | 6704.0          | 5123.590001          | 267.949984          | 1.411110           |
| 188137 | 2022-08-02     | 32                | 27.0            | 19.950000            | 1.390000            | 1.107110           |
| 188138 | 2022-08-02     | 33                | 59.0            | 41.600003            | 2.260000            | 1.104627           |
| 188139 | 2022-08-02     | 36                | 490.0           | 397.819993           | 15.490000           | 2.046290           |

- 일별 걸음 수의 총합 VS 활성 고객 수



22년 7월까지 걸음수가 완만하게 증가하다가 7월 중순(Rothy 오픈)에 급격하게 증가

, 걸음 수가 활성 고객 수와 동반 상승 (고객 유입이 걸음 수 증가에 기여)

일단 일별 걸음은 여기까지 확인함 분석, 모델링에는 `상세 걸음 데이터`를 사용할 예정

## 개별 데이터 확인 및 정제

- 3) 상세 걸음 데이터(GB\_STEP\_HIST)
  - 상세 걸음은 1분 단위로 집계하고 있다. (수집기간: 22-01-31 ~ 22-07-20)
  - 랩탑에서 분석하기 위해 각 속성별 값의 범위에 최적화된 변수 타입 지정 -> 메모리 점유 최소화

step\_hist = reduce\_mem\_usage(step)

- 데이터를 살펴본다.

|   | MSRE_BEGIN_DTM      | USE | R_ID | DVIC_TP | STEP_CNT | MOVE_DIST | CNPT_CALR | MOVE_SPEED |
|---|---------------------|-----|------|---------|----------|-----------|-----------|------------|
| 0 | 2022-01-04 19:44:00 |     | 7    | WATCH   | 6        | 4.00      | 6.00      | 1.111111   |
| 1 | 2022-01-05 20:44:00 |     | 7    | WATCH   | 6        | 4.00      | 6.00      | 1.111111   |
| 2 | 2022-01-31 00:01:00 |     | 0    | 360003  | 11       | 8.47      | 0.39      | 1.500000   |
| 3 | 2022-01-31 00:01:00 |     | 13   | 360003  | 1        | 0.83      | 0.04      | 2.138889   |
| 4 | 2022-01-31 00:01:00 |     | 4    | 360001  | 18       | 13.59     | 0.74      | 1.284435   |

1분 단위,로 측정

|   |          | 측정 날짜, 시간<br>MSRE_BEGIN_DTM | 사용자 ID<br>USER_ID | 측정장비<br>(폰, 워치)<br><b>DVIC_TP</b> |     | 이동거리(m)<br><b>MOVE_DIST</b> |          | 이동속도<br><b>MOVE_SPEED</b> |
|---|----------|-----------------------------|-------------------|-----------------------------------|-----|-----------------------------|----------|---------------------------|
| ٠ | 25813406 | 2022-07-20 09:02:00         | 13                | 360003                            | 13  | 10.027487                   | 0.499278 | 1.461404                  |
|   | 25813407 | 2022-07-20 09:02:00         | 74                | 360001                            | 83  | 64.490005                   | 4.159998 | 1.388299                  |
|   | 25813408 | 2022-07-20 09:02:00         | 19                | 360001                            | 114 | 83.220055                   | 3.419997 | 1.387001                  |
|   | 25813409 | 2022-07-20 09:03:00         | 86                | 360003                            | 99  | 79.705078                   | 3.434418 | 1.328418                  |
|   | 25813410 | 2022-07-20 09:03:00         | 74                | 360001                            | 112 | 77.320000                   | 5.500002 | 1.453039                  |

총 25813411개 샘플, 그러니까 25813411분의 걸음 기록이 저장되어 있음

#### 개별 데이터 확인 및 정제

- 3) 상세 걸음 데이터(GB\_STEP\_HIST)
  - <mark>정제 #1</mark> 걸음 중복 집계 처리 : 14850479개 샘플이 중복 집계됨(스마트폰, 워치)

step hist[['MSRE BEGIN DTM', 'USER ID']].duplicated(keep=False)] 측정장비 (폰, 워치) 측정 날짜, 시간 사용자 ID 같은 시간대에, 같은 MSRE\_BEGIN\_DTM USER\_ID DVIC\_TP STEP\_CNT MOVE\_DIST CNPT\_CALR MOVE\_SPEED 사용자로 부터 서로 다른 9 2022-01-31 00:01:00 464 360001 70.699997 5.060000 1.178333 걸음 수가 집계됨 10 2022-01-31 00:01:00 360003 78 483742 5.369317 1.308062 하나는 워치로부터, 16 2022-01-31 00:01:00 581 360001 68.379997 3.560000 1.361111 하나는 스마트폰으 부터 17 2022-01-31 00:01:00 360003 65.669998 3.290000 1.388889 수집된 것임 21 2022-01-31 00:01:00

5.500001

1.418392

- 정제 #1 걸음 중복 집계 처리 : 큰 걸음 수로 측정된 것만 남기고 나머지는 버림

360001

691

step\_hist = step\_hist.sort\_values(by='STEP\_CNT', ascending=False).\ drop\_duplicates(subset=['MSRE\_BEGIN\_DTM', 'USER\_ID'], keep='first').sort\_index()

74.589989

| /, | \  | MSRE_BEGIN_DTM      | USER_ID | DVIC_TP | STEP_CNT | MOVE_DIST | CNPT_CALR | MOVE_SPEED |
|----|----|---------------------|---------|---------|----------|-----------|-----------|------------|
|    | 9  | 2022-01-31 00:01:00 | 464     | 360001  | 97       | 70.699997 | 5.060000  | 1.178333   |
|    | 17 | 2022-01-31 00:01:00 | 581     | 360003  | 83       | 65.669998 | 3.290000  | 1.388889   |
|    | 21 | 2022-01-31 00:01:00 | 691     | 360001  | 110      | 74.589989 | 5.500001  | 1.418392   |
|    | 27 | 2022-01-31 00:02:00 | 360     | 360001  | 9        | 6.390000  | 0.380000  | 0.989849   |
|    | 34 | 2022-01-31 00:02:00 | 437     | 360001  | 7        | 4.970000  | 0.270000  | 0.916667   |
|    |    |                     |         |         |          |           |           |            |

#### 개별 데이터 확인 및 정제

- 3) 상세 걸음 데이터(GB\_STEP\_HIST)
  - <mark>정제 #2</mark> 데이터 분석 기간 조정 : 2022-02-01 ~ 07-10 기간의 데이터만 추출

```
step_hist = step_hist[(step_hist['MSRE_BEGIN_DTM']>= pd.to_datetime('2022-02-01'))]
step_hist = step_hist[(step_hist['MSRE_BEGIN_DTM']<= pd.to_datetime('2022-07-10 23:55:00'))]</pre>
```



- 정제 #3 데이터 분석 대상자 조정 : 걸음 분석에 의미가 있는 상위 1,500명(active users)의 걸음만 추출



개별 데이터 보합, 확인 및 정제 전처리 >

예측모델

개발

탐색 분석

# 개별 데이터 확인 및 정제

- 3) 상세 걸음 데이터(GB\_STEP\_HIST)
  - 중간 정리 : 시간대별/ 일별 걸음 합계 트렌드 확인



- 중간 정리 : 특정 날짜의 트렌드



데이터 병합, 전처리

탐색 분석

예속모델 개발

## 개별 데이터 확인 및 정제

- 4) 기후 데이터(weather.csv)
  - 기상자료개방포털(https://data.kma.go.kr/cmmn/main.do)에서 기후 데이터 추출



Rothy 고객의 거주, 활동 지역을 확인할 수 없어 `서울` 지역의 데이터를 추출

- 데이터를 살펴본다. (수집 기간: 2022-02-01 ~ 07-10)

|               |    | 측정 날짜, 시간<br>datetime |      |     |     |     | 습도<br>humidity |     |    |
|---------------|----|-----------------------|------|-----|-----|-----|----------------|-----|----|
|               | 0  | /2022-02-01 0:00      | 0.4  | 1.2 | 1.8 | 270 | 92             | 1.8 | 9  |
|               | _1 | 2022-02-01 1:00       | -0.2 | NaN | 2.9 | 250 | 85             | 1.8 | 2  |
| 4 1171 [10]   | 2  | 2022-02-01 2:00       | -0.9 | NaN | 2.8 | 250 | 74             | 1.7 | 7  |
| 1시간 단위로<br>집계 | 3  | 2022-02-01 3:00       | -0.9 | 0.0 | 3.6 | 250 | 72             | 1.7 | 9  |
|               | 4  | 2022-02-01 4:00       | -1.7 | NaN | 3.1 | 270 | 87             | 2.0 | 10 |

|      | <u> </u>         |      |     |     |     |    |     |    |
|------|------------------|------|-----|-----|-----|----|-----|----|
|      |                  |      |     |     |     |    |     |    |
| 3836 | 2022-07-10 20:00 | 30.1 | NaN | 2.6 | 270 | 64 | NaN | 10 |
| 3837 | 2022-07-10 21:00 | 29.2 | NaN | 2.6 | 250 | 64 | NaN | 10 |
| 3838 | 2022-07-10 22:00 | 28.5 | 0.0 | 2.2 | 270 | 59 | NaN | 10 |
| 3839 | 2022-07-10 23:00 | 28.2 | NaN | 2.6 | 250 | 55 | NaN | 10 |
| 3840 | 2022-07-11 0:00  | 27.9 | NaN | 3.5 | 270 | 54 | NaN | 8  |

- 수집 기간 22-02-01

22-07-11

탐색 분석

예측모델 개발

# 개별 데이터 확인 및 정제

- 4) 기후 데이터(weather.csv)
  - 정제 #1 결측치 처리 : 집계가 되지 않은 부분을 0으로 대체

weather = weather.fillna(0)

|      | datetime          | temp | rain | wind | wind_d | humidity | snow | cloud |
|------|-------------------|------|------|------|--------|----------|------|-------|
| 0 20 | 22-02-01 00:00:00 | 0.4  | 1.2  | 1.8  | 270    | 92       | 1.8  | 9     |
| 1 20 | 22-02-01 01:00:00 | -0.2 | NaN  | 2.9  | 250    | 85       | 1.8  | 2     |
| 2 20 | 22-02-01 02:00:00 | -0.9 | NaN  | 2.8  | 250    | 74       | 1.7  | 7     |
| 3 20 | 22-02-01 03:00:00 | -0.9 | 0.0  | 3.6  | 250    | 72       | 1.7  | 9     |
| 4 20 | 22-02-01 04:00:00 | -1.7 | NaN  | 3.1  | 270    | 87       | 2.0  | 10    |

|             |   |           | datetime   | temp | rain | wind | wind_d | humidity | snow | cloud |
|-------------|---|-----------|------------|------|------|------|--------|----------|------|-------|
|             | 0 | 2022-02-0 | 1 00:00:00 | 0.4  | 1.2  | 1.8  | 270    | 92       | 1.8  | 9     |
|             | 1 | 2022-02-0 | 1 01:00:00 | -0.2 | 0.0  | 2.9  | 250    | 85       | 1.8  | 2     |
| <b>&gt;</b> | 2 | 2022-02-0 | 1 02:00:00 | -0.9 | 0.0  | 2.8  | 250    | 74       | 1.7  | 7     |
|             | 3 | 2022-02-0 | 1 03:00:00 | -0.9 | 0.0  | 3.6  | 250    | 72       | 1.7  | 9     |
|             | 4 | 2022-02-0 | 1 04:00:00 | -1.7 | 0.0  | 3.1  | 270    | 87       | 2.0  | 10    |

- 중간 정리 : 트렌드 확인









#### 데이터 병합 및 전처리

- 데이터 병합
  - 병합#1 상세 걸음 데이터(GB\_STEP\_HIST)와 ROTHY 고객정보(GB\_SVC\_USER) 병합

step hist = step hist.merge(user, on='USER ID', how='left')

|        | 고객정보 | 상세 걸음 데이터 |          |
|--------|------|-----------|----------|
| (1분주기) | +    |           | <b>→</b> |

| MSRE_BEGIN_DTM      | USER_ID | DVIC_TP | STEP_CNT | MOVE_DIST | CNPT_CALR | MOVE_SPEED | GENDER | AGE  | GROUP |
|---------------------|---------|---------|----------|-----------|-----------|------------|--------|------|-------|
| 2022-02-01 00:04:00 | 559     | 360003  | 43       | 33.349998 | 1.49      | 1.611111   | F      | 28.0 | adult |
| 2022-02-01 00:04:00 | 658     | 360003  | 12       | 7.660000  | 0.47      | 0.833333   | F      | 35.0 | adult |
| 2022-02-01 00:04:00 | 674     | 360001  | 18       | 13.980000 | 0.76      | 1.388889   | М      | 46.0 | adult |
| 2022 02 04 00-04-00 | 712     | 360003  | 12       | 2 200000  | 0.37      | 0.072222   | F      | 48.0 | adult |

상세 걸음 데이터

- 병합 #2 데이터를 1시간 주기로 리샘플링(Resampling) 후 기후 데이터와 병합한다.

step\_total[['timestamp', 'STEP\_CNT']] = step\_hist.set\_index('MSRE\_BEGIN\_DTM').resample('H').sum()['STEP\_CNT'].reset\_index()
step\_total['users'] = step\_hist.set\_index('MSRE\_BEGIN\_DTM').resample('H').count()['USER\_ID'].values
step\_total = step\_total.merge(weather, left\_on='timestamp', right\_on='datetime', how = 'left').drop('datetime', axis = 1)

`users` 속성을 추가하여 각
시간대에 걸음 수집에 관여한
사용자 (active\_users)수를 입력

|     | 고객정보 | 상세 걸음 데이터 |
|-----|------|-----------|
| (   |      |           |
| KF  |      |           |
| (1년 |      |           |



|     | 고객정보 | 상세 걸음 데이터 |
|-----|------|-----------|
| K-  |      |           |
| 수건  |      |           |
| (17 |      |           |



1시간 동안 수집된 걸음의 총합(sum)

해당 시간대에 수집된 걸음 수

고객정보

| 해당 시간대에 걸음 수집에  |
|-----------------|
| 관여한 사용자         |
| (active_users)수 |

|        | t           | imestamp   | users | STEP_CNT | temp | rain | wind | wind_d | humidity | snow | cloud |
|--------|-------------|------------|-------|----------|------|------|------|--------|----------|------|-------|
|        | / 2022-02-0 | 1 00:00:00 | 528   | 13107    | 0.4  | 1.2  | 1.8  | 270    | 92       | 1.8  | 9     |
| /      | 2022-02-0   | 1 01:00:00 | 322   | 9079     | -0.2 | 0.0  | 2.9  | 250    | 85       | 1.8  | 2     |
| 1시간 주기 | 2022-02-0   | 1 02:00:00 | 170   | 3294     | -0.9 | 0.0  | 2.8  | 250    | 74       | 1.7  | 7     |
| \      | 2022-02-0   | 1 03:00:00 | 128   | 2705     | -0.9 | 0.0  | 3.6  | 250    | 72       | 1.7  | 9     |
|        | 2022 02 0   | 4.04.00.00 | 70    | 44.40    | 4.7  | 0.0  | 2.4  | 270    | 07       | 2.0  | 40    |

#### 데이터 병합 및 전처리

- 속성(feature) 추가하기 : 데이터셋으로부터 피처를 추가 생성한다.
  - 추가 #1 날짜(Calendar) 속성 : 연도, 월, 일, 시간, 요일, 공휴일

- 추가 #2 계절(Season) 속성 : 봄, 여름, 가을, 겨울

```
step_total['season'] = step_total['month'].apply(season)
```

```
def season(month):
    if month in [3, 4, 5]: # 봄 0
        return 0
    elif month in [6, 7, 8]: # 여름 1
        return 1
    elif month in [9, 10, 11]: # 가을 2
        return 2
    elif month in [12, 1, 2]: # 겨울 3
        return 3
```

#### 추가 생성된 피처

| timestamp           | STEP_CNT | users | year | month | day | hour | dayofweek | season | holiday | temp | rain | wind | wind_d | humidity | snow | cloud |
|---------------------|----------|-------|------|-------|-----|------|-----------|--------|---------|------|------|------|--------|----------|------|-------|
| 2022-02-01 00:00:00 | 13107    | 528   | 2022 | 2     | 1   | 0    | 1         | 4      | 1       | 0.4  | 1.2  | 1.8  | 270    | 92       | 1.8  | 9     |
| 2022-02-01 01:00:00 | 9079     | 322   | 2022 | 2     | 1   | 1    | 1         | 4      | 1       | -0.2 | 0.0  | 2.9  | 250    | 85       | 1.8  | 2     |
| 2022-02-01 02:00:00 | 3294     | 170   | 2022 | 2     | 1   | 2    | 1         | 4      | 1       | -0.9 | 0.0  | 2.8  | 250    | 74       | 1.7  | 7     |
| 2022-02-01 03:00:00 | 2705     | 128   | 2022 | 2     | 1   | 3    | 1         | 4      | 1       | -0.9 | 0.0  | 3.6  | 250    | 72       | 1.7  | 9     |
| 2022 02 04 04:00:00 | 11/6     | 78    | 2022 | 2     | - 1 | 4    | 1         | 1      | 1       | 17   | 0.0  | 3.1  | 270    | 27       | 2.0  | 10    |

- 타겟 변수(STEP\_CNT, 걸음수)
  - -#1 트렌드 그려보기: 시간대별 걸음 수, 일별 걸음 수. 그리고 활성 유저 수(users)



- 타겟 변수(STEP\_CNT, 걸음수)
  - #2 분포 확인하기

```
fig, axes = plt.subplots(2, 2, figsize = (8, 8))
step_total['STEP_CNT'].plot(kind ='hist', bins = 50, edgecolor='#E6E6E6', ax = axes[0, 0])
step_youth['STEP_CNT'].plot(kind ='hist', bins = 50, edgecolor='#E6E6E6', ax = axes[0, 1])
step_adult['STEP_CNT'].plot(kind ='hist', bins = 50, edgecolor='#E6E6E6', ax = axes[1, 0])
step_eldery['STEP_CNT'].plot(kind ='hist', bins = 50, edgecolor='#E6E6E6', ax = axes[1, 1])
```





- 긴 꼬리(long tail) 분포와 정규분포(normal)의 혼합된 형태이다.
- 사용자의 걸음 수가 심야(long tail), 주간(normal)에 다른 패턴을 띄기 때문이다.
- 긴꼬리는 로그(log) 변환을 통해 정규화 가능하나 정규 분포가 혼합되어 분리 작업이 필요하다.

일단 여기까지만 알고 넘어간다.



- 상관도 분석 : 카테고리 변수
  - 각 요일별 걸음 수가 어떤 패턴을 보이는지 확인한다.

```
fig, ax = plt.subplots(figsize = (14, 5))
by_weekday_hr = step_total[['hour', 'dayofweek', 'STEP_CNT']].groupby(['hour', 'dayofweek'])
by_weekday_hr.mean()['STEP_CNT'].unstack().plot(ax = ax, marker='o')
df_total[df_total['holiday']==1].groupby('hour').mean()['STEP_CNT'].plot(ax = ax, marker='o', color = colors)
ax.set_xticks([i for i in range(0, 24)])
ax.legend(['Mon(0)', 'Tue(1)', 'Wed(2)', 'Thur(3)', 'Fri(4)', 'Sat(5)', 'Sun(6)', 'holiday'])
```

#### \* insight

- 고객의 걷기 행위는 특정 시간대에 집중되는 경향이 있다.
- 이 시간 대의 걸음을 효율적으로 활용하도록 가이드 하면 어떨까.
- 예를 들자면 AI/ 걸음 가이드 서비스는 걷기가 집중되는 시간 전에 refresh 되어야 많은 사용자가 참고할 것이다.

(ex 오전 5시전)



#### 데이터 병합, 개별 데이터 확인 및 정제 전처리

전체 대상

#### 탐색 분석

■ 상관도 분석 : 카테고리 변수

adult

- 연령대별 걸음 수 패턴의 차이가 있는지 확인한다.

elderly

youth



- 상관도 분석 : 카테고리 변수
  - 계절별 걸음 수 패턴의 차이가 있는지 확인한다.

```
fig, ax = plt.subplots(figsize = (14, 5))
by_weekday_hr = step_total[['hour', 'season','STEP_CNT']].groupby(['hour', 'season'])
by_weekday_hr.mean()['STEP_CNT'].unstack().plot(ax = ax, marker='o')
ax.set_xticks([i for i in range(0, 24)])
ax.legend(['spring(1)', 'summer(2)', 'winter(4)'])
```



- 여름, 봄, 겨울 순서로 걸음 수가 많다.
- 그러나 계절적 특성을 확인하기에는 샘플 수가 부족하다.(최소 2년치 이상 필요)

- 상관도 분석 : 실수형 변수
  - 타겟(걸음 수)과 실수형 변수간의 선형 상관도를 확인한다.

```
fig, axes = plt.subplots(1, 2, figsize = (12, 6), gridspec_kw={'width_ratios': [2, 1]})
corr = step_total.corr()

sns.heatmap(corr, vmax = 0.8, square = True, cmap =cmap, ax = axes[0])

corr = data.corrwith(data['STEP_CNT']).reset_index()
corr.columns = ['Index', 'Correlations']
corr = corr.set_index('Index') .sort_values(by=['Correlations'], ascending = False)
sns.heatmap(corr, annot=True, fmt="g", cmap=cmap, ax = axes[1])
axes[1].set_title("Correlation of Variables with Class", fontsize = 12)
```







- 특정 시간대의 걸음 수는 활성 고객 수(users)와 강한 상관성을 가진다.
- 기온, 풍속 등이 그 다음으로 상관성이 높다.
- 습도는 음의 상관성을 가진다.
- 기후 정보가 예상외로 상관성이 낮다.
- 사용자의 거주지역을 알지 못해 서울지역의 기후 데이터를 사용했기 때문으로 추정된다.
- 왼쪽 표는 타겟과 실수형 피처 간 선형 상관 관계(Pearson Correlation)를 나타낸 것으로 비선형 상관성은 확인할 수 없다.
- 비선형 상관성을 확인하기 위해서는 시각화나 다른 계산법(ex: DTW) 등을 사용해야 한다.

#### 예측모델 개발 1

- 앞에서 유의미한 상관성을 보인 속성들을 사용하여 시간대별 걸음 수를 예측(forecast)하는 머신러닝 모델을 만들어보자.
  - 학습 데이터 : 2022-02-01 ~ 2022-06-30 검증 데이터 : 2022-07-01 ~ 2022-07-10

```
train = df[df['timestamp']<datetime.datetime(2022, 7, 1)]
test = df[df['timestamp']>datetime.datetime(2022, 7, 1)]
```

- 피처 선정 : 활성 사용자수(users), 시간(hour), 요일(dayofweek),계절(season), 공휴일 여부(holiday), 기온(temp), 풍속(wind\_d), 습도(humidity), 적설량(snow), 운량(cloud)

```
X_train = train.drop(['timestamp','year', 'month', 'day', 'STEP_CNT'], axis = 1)
y_train = train['STEP_CNT']

X_test = test.drop(['timestamp','year', 'month', 'day', 'STEP_CNT'], axis = 1)
y_test = test['STEP_CNT']
```

| users | hour | dayofweek | season | holiday | temp | rain | wind | wind_d | humidity | snow | cloud |
|-------|------|-----------|--------|---------|------|------|------|--------|----------|------|-------|
| 528   | 0    | 1         | 4      | 1       | 0.4  | 1.2  | 1.8  | 270    | 92       | 1.8  | 9     |
| 322   | 1    | 1         | 4      | 1       | -0.2 | 0.0  | 2.9  | 250    | 85       | 1.8  | 2     |
| 170   | 2    | 1         | 4      | 1       | -0.9 | 0.0  | 2.8  | 250    | 74       | 1.7  | 7     |
| 128   | 3    | 1         | 4      | 1       | -0.9 | 0.0  | 3.6  | 250    | 72       | 1.7  | 9     |
| 78    | 4    | 1         | 4      | 1       | -1.7 | 0.0  | 3.1  | 270    | 87       | 2.0  | 10    |
|       |      |           |        |         |      |      |      |        |          |      |       |



#### 예측모델 개발 1

- 모델 학습 : 트리기반의 모델인 LightGBM을 사용하며, 기본 파라미터를 사용함 평가지표는 MAPE(Mean Absolute Percentage Error)를 사용

```
model = lgb.LGBMRegressor()
model.fit(X_train, y_train)
pred = model.predict(X_test)
test['STEP_CNT_pred'] = pred

MAPE(y_test, pred)
```

def MAPE(y\_test, y\_pred):
 return np.mean(np.abs((y\_test - y\_pred) / y\_test)) \* 100

| MAPE  | Interpretation              |
|-------|-----------------------------|
| <10   | Highly accurate forecasting |
| 10-20 | Good forecasting            |
| 20-50 | Reasonable forecasting      |
| >50   | Inaccurate forecasting      |
|       |                             |

Source: Lewis (1982, p. 40)

#### 예측모델 개발 1

- 모델 평가: MAPE 6.54%



| MAPE  | Interpretation              |
|-------|-----------------------------|
| <10   | Highly accurate forecasting |
| 10-20 | Good forecasting            |
| 20-50 | Reasonable forecasting      |
| >50   | Inaccurate forecasting      |

Source: Lewis (1982, p. 40)



- 모델의 예측 성능이 매우 우수하다.(오차율↓)
- 모델이 예측할 때 활성 유저 수(users)가 가장 중요도가 높게 작동한다.
- 그런데 이 속성은 실제 모델이 예측할 시점에 사용할 수 없다.
- 예측할 미래 시점에는 활성 유저 수 정보가 없기 때문이다.(Data leakage)
- 따라서 이 모델은 실제에서 사용할 수 없다.
- users 속성을 제외한 데이터 셋으로 모델을 다시 구축해보자.

#### 예측모델 개발 2

활성 사용자 수(users) 제외

- 피처 선정 : 시간(hour), 요일(dayofweek),계절(season), 공휴일여부(holiday), 기온(temp), 풍속(wind\_d), 습도(humidity), 적설량(snow), 운량(cloud)

- 모델 평가 : MAPE 19.55%



나타난다.

- 예측 성능은 낮아졌지만 실제에서 사용할 수 있는 모델이다.
- 하이퍼파라미터 튜닝, 타겟 변환, 추가 속성을 발굴하면 예측 성능을 더 향상시킬 수 있다.

#### 결론

- 간단한 통계 분석을 통해 Rothy 사용자의 걸음 수에 영향을 주는 요소들과 패턴을 확인할 수 있었다.
- 이 요소들을 사용해서 시간대별 Rothy 고객의 걸음 수를 예측하는 모델을 개발하였다.
- 모델 성능 향상을 위해서 속성 발굴, 학습 데이터 추가 수집이 필요하다.
- 예측 모델 활용 예
- Rothy 서비스, AI 걸음 가이드 refresh 시점 결정
- 고객 그룹 별 패턴 분석을 통한 타겟 마케팅, 걸음 가이드
- 고객 이탈 조기 감지/ 예측 등

- 대형 시스템이나 플랫폼에서 머신러닝을 활용할 때 단일 모델이 적용되는 경우는 드물다.
- 다수의 모델이 복합적으로 연계되기도 하고, 엔드 프로덱트(서비스)에 직/간접적으로 기여하기도 한다.
- 머신러닝이나 데이터분석으로 문제 해결하는 것이 유리한 부분을 찾고, 문제를 정의하는 능력을 키우는 것이 중요하다.





info@gi-vita.io 5, 8, 9F, 507, Gangnam-daero, Seocho-gu, Seoul | www.gi-vita.io