

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Science and Technology

The case of Higgs boson production in $H o ZZ^*$ decay Introduction to the Particle Physics Data Analysis

Aleksandra Poreba, Aleksandra Kukielka

That's us!

Figure: That's Aleksandra P. and Aleksandra K.!

Outline

A G F

- Physics motivation
- 2 Background contributions
- 3 Event selection
- 4 Control plots
- **5** Expected number of events
- 6 Cross-section measurement
- Summary
- 8 Bibliography

Physics motivation

The physics motivation for the measurement:

- a good test for the SM,
- a measurement of inclusive and differential fiducial cross sections,
- test of perturbative QCD calculations.

The Feynman diagram

Figure: Feynman diagram for $H \to ZZ^* \to 4\ell$ decay [3].

Background contributions

Processes constituting background of our analysis:

- non-resonant SM ZZ* production,
- $t\bar{t}$ production,
- Z+jets production.

The final event-selection criteria:

- single-electron or single-muon trigger satisfied,
- exactly four leptons (electrons or muons) with $p_T > 25, 15, 10, 7$, GeV respectively,
- Higgs-boson candidates are formed by selecting two SFOS ¹ lepton pairs,
- the leading pair is defined as the SFOS pair with the mass $m_{\ell\ell,1}$ closest to the Z boson mass m_Z , and the subleading pair is defined as the SFOS pair with the mass $m_{\ell\ell,1}$ second closest to m_Z [1].

Cutflow Histogram

Aleksandra Poreba, Aleksandra Kukielka

Analysis selections

The $H \rightarrow ZZ^*$ decay analysis

On the cutflow histogram we can observe number of events after each selection criteria:

- S1 single-electron or single-muon trigger satisfied,
- S2 four leptons with $p_T > 25, 15, 10, 7 GeV$
- S3 two SFOS lepton pairs.

Number of Leptons

This histogram contains the number of leptons after all selection criteria. We can observe four leptons.

Charge of selected leptons

On the histogram we can observe agreement with the selection criteria. The same amount of leptions of opposite charges was selected.

Pseudorapidity and azimuthal angle of selected leptons

Figure: Pseudorapidity (on the left) and azimuthal angle (on the right) of selected leptons.

Distribution of invariant masses of the reconstructed Z-boson candidates

The histograms contains peaks for events with energy close to 90 GeV.

Figure: Distribution of invariant masses of leading and subleading SFOS pair.

Four-lepton mass distribution of selected events

On both histogram we can observe two peaks, one with $m_{4I}=90$ GeV and other, the Higgs boson candidate with $m_{4I}=125$ GeV.

Figure: Distribution of four-lepton mass extreacted from our analysis (on the left) and the ATLAS publication (on the right) [2]. The ATLAS' histogram is corrected for final-state radiation.

Traverse momentum of the four leptons

Figure: Distribution of traverse momentum for selected events extracted from out analysis (left) and the ATLAS publication (right) [2]. The background ZZ contribution in right histogram is much smaller.

14 / 26

Jet multiplicity

Figure: Jet multiplicity in selected events extracted from out analysis (left) and the ATLAS publication (right) [2]. The background ZZ contribution in right histogram is much smaller.

Expected number of events equals:

$$N_{\rm exp}^{H\to ZZ^*\to 4\ell} = \sigma_{\rm incl}^{H\to ZZ^*\to 4\ell} \cdot L_{\rm int},\tag{1}$$

where:

$$\begin{split} \sigma_{incl}^{H\to ZZ^*\to 4\ell} &= 3.62 \text{ fb,} \\ L_{int} &= 10.06 \text{ fb}^{-1}. \end{split}$$

$$N_{exp}^{H \to ZZ^* \to 4\ell} = 3.62 \text{ fb} \cdot 10.06 \text{ fb}^{-1} = 36.42.$$
 (2)

In our analysis, there were four correction factors:

$$C_1 = C_{4\mu} = 0.64 \pm 0.04$$

$$C_2 = C_{2e2\mu} = 0.55 \pm 0.03$$

$$C_3 = C_{2\mu 2e} = 0.48 \pm 0.05$$

$$C_4 = C_{4e} = 0.43 \pm 0.06$$

(3)

We took a "simplified approach" and used $C = \frac{1}{4} \sum_{i=1}^{4} C_i = \mathbf{0.53}$

$$\sigma^{H \to ZZ^* \to 4\ell} = \frac{N_{data} - N_{bkg}}{C \cdot L_{int}} = \frac{N_{obs}}{C \cdot L_{int}},$$
(4)

where:

 N_{data} - number of all events in data; $N_{data} = 321$,

 N_{bkg} - nubmer of background events; $N_{bkg} = 315$,

 N_{obs} - number of observed $H \rightarrow ZZ^* \rightarrow 4\ell$; $N_{obs} = 6$,

C - correction factor; C = 0.53.

 L_{int} - integrated luminosity; $L_{int} = 10.06 \,\mathrm{fb}^{-1}$.

$$\sigma^{H \to ZZ^* \to 4\ell} = \frac{321 - 315}{0.525 \cdot 10.06} = \frac{6}{0.525 \cdot 10.06} = 1.14 \,[\text{fb}] \tag{5}$$

Systematic uncertainties for data

Figure: The histogram shows a size of correction in percentages for the data in the analysis.

Systematic uncertainties for signal

Figure: The histogram shows a size of correction in percentages for the MC data in the analysis. The correction is below 2.5%.

20 / 26

The cross-section measurement was repeated with correction on leptons' traverse momenta.

Case 1: The systematic uncertainties were added to the leptons' traverse momenta. **Four** events were observed.

$$\delta_{syst,1} = \sigma^{H \to ZZ^* \to 4\ell} - \sigma^1 = |1.136 - 0.757| = 0.379 \text{ [fb]}$$
 (6)

Case 2: The systematic uncertainties were subracted from the leptons' traverse momenta. **Eleven** events were observed.

$$\delta_{\text{syst},2} = \sigma^{H \to ZZ^* \to 4\ell} - \sigma^2 = |1.136 - 2.083| = 0.946 \text{ [fb]}$$
 (7)

As the final systematic uncertainty of the cross section measurement maximum value of $\delta_{svst.1}, \delta_{svst.2}$ was taken.

$$\delta_{syst_A} = 0.946 \, \text{fb} \tag{8}$$

Statistical, systematic and luminosity uncertainties of cross-section

Error propagation rule was used in cross-section's uncertainty calculations:

$$\delta_{\sigma} = \sqrt{\sum_{i} \left(\frac{\partial \sigma}{\partial x_{i}} \cdot \delta_{x_{i}}\right)^{2}}$$

$$= \sqrt{\left(\frac{1}{C \cdot L_{int}} \cdot \delta_{N_{data}}\right)^{2} + \left(\frac{-N_{obs}}{C \cdot L_{int}^{2}} \cdot \delta_{L_{int}}\right)^{2} + \left(\frac{-N_{obs}}{C^{2} \cdot L_{int}} \cdot \delta_{C}\right)^{2}},$$
(9)

where:

$$\begin{split} \delta_{N_{data}} &= \sqrt{N_{data}} = 17.92, \\ \delta_{L_{int}} &= 0.37 \; \mathrm{fb}^{-1}, \\ \delta_{C} &= \max(|C_{i} - C|) = 0.12, \; i = 1, 2, 3, 4. \end{split}$$

ww.agh.edu.pl ____

Statistical, systematic and luminosity uncertainties of cross-section

Based on the formula above, all required uncertainties were calculated:

$$\delta_{stat} = 3.40$$
 $\delta_{syst} = \sqrt{\delta_{syst_A}^2 + \delta_{syst_B}^2} = 0.98$ $\delta_{lumi} = 0.05$

Eventually, cross-section value can be expressed as:

$$\sigma^{H \to ZZ^* \to 4\ell, \text{ nom}} = 1.14 \pm 3.4 \text{ (stat)} \pm 0.98 \text{ (syst)} \pm 0.05 \text{ (lumi) fb}$$
 (10)

Due to very high value of uncertainties we cannot claim the Higgs boson discovery \odot .

Cross section measurement comparison

Our analysis:

$$\sigma^{H \to ZZ^* \to 4\ell, \text{ nom}} = 1.14 \pm 3.4 \text{ (stat)} \pm 0.98 \text{ (syst)} \pm 0.05 \text{ (lumi) fb}$$
 (11)

ATLAS publication [2]:

$$\sigma^{H \to ZZ^* \to 4\ell, \text{ nom}} = 3.62 \pm 0.5 \text{ (stat)} \pm 0.25 \text{ (syst) fb}$$
 (12)

Standard Model prediction [2]:

$$\sigma^{H \to ZZ^* \to 4\ell, \text{ nom}} = 2.91 \pm 0.13 \text{ fb}$$
 (13)

24 / 26

Summary

• We cannot claim the Higgs boson discovery due to high uncertainties, especially statistical uncertainty.

- Ideas for possible measurement:
 - define more selection criteria for example for pseudorapidity

25/26

Aaboud, Morad and others Measurement of inclusive and differential cross sections in the $H \to ZZ^* \to 4\ell$ decay channel in pp collisions at $s\sqrt{=13\,TeV}$ with the ATLAS detector http://dx.doi.org/10.1007/JHEP10(2017)132

On the interpretation of Feynman diagrams, or, did the LHC experiments observe the Higgs to gamma gamma decay?

Passon, Oliver