SRM Institute of Science and Technology

College of Engineering and Technology Kattankulathur-603 203

Department of Mathematics

21MAB102T-Advanced Calculus and Complex Analysis Tutorial Sheet-3

Sl.No.	Part-B (8 Marks)	Answers
Q1.	Evaluate $\iiint_{\vec{k}} \nabla \cdot \vec{F} dV$ if $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ and V is the volume of	3
	the region enclosed by the cube $x = 0$, $x = 1$, $y = 0$, $y = 1$, $z = 0$, $z = 1$.	
Q2.	Evaluate $\int_C x dy - y dx$, where C is the circle $x^2 + y^2 = 4$.	8π
Q3.	Using divergence theorem, evaluate (a) $\iint_S \nabla r^2 \cdot \hat{n} dS$. (b)	$6V, 3V = 108\pi$
	$\iint_{S} \vec{F} \cdot \vec{n} dS \text{ where } \vec{F} = (2x + 3z)\vec{i} + (xz + y)\vec{j} + (y^2 + 2z)\vec{k} \text{ and } S \text{ is the}$	
	surface of the sphere having centre (3, -1, 2) and radius 3.	C
Q4.	Determine $f(r)$ so that the vector $f(r)\vec{r}$ is solenoidal	$f(r) = \frac{c}{r^3}$
Q5.	Determine $f(r)$ so that the vector $f(r)\vec{r}$ is irrotational	f(r) any function
Sl.No.	Part-C (15 Marks)	Answers
Q6.	Verify Green's theorem for $\int_C ((x^2 - y^2) dx + 2xy dy)$ in the region bounded by the curves $x = y^2$ and $y = x^2$.	$2ab^2$