Nome, cognome, matricola

Calcolatori Elettronici (12AGA) – esame del 6.9.2024

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Non è possibile consultare alcun tipo di materiale. Tempo: 15 minuti.

1	Si consideri una memoria RA Assumendo che la memoria sia i bit, quanti moduli sono necessari	mplementata ut							
	on, quanti modun sono necessari	<u>:</u>							
2	Si consideri un full-adder. Qua	ale Un full-add	ler possiede :	3 ingressi	e 2 uscite			Α	
_	delle affermazioni seguenti è vera		ler possiede					В	
			ler possiede 2					С	
					o variabile di ing	ressi e uscit	e	D	
		l							
3	Si consideri una cache composta	da 512 linee da	16 byte che	e usa set a	ssociative mappi	ng a 4 vie	16	A	
	e write-through. Quanti insiemi s				11		64	В	
		-					128	С	
							512	D	
4	Quanti periodi di clock sono		l'esecuzione					A	
	microistruzione da parte di un pro	ocessore?			Dipende dalla m			В	
					Dipende dal tipo			C	
			Dipende dall'istruzione in				orso di esecuzione	D	
5	Quali vantaggi presenta il				o in termini di ha			A	
	arbitraggio noto come daisy chair	n?			erare un numero			В	
					ividuare il nuovo			С	
				bile, ossia	permette facilme	ente di mod	ificare la priorità dei	D	
			moduli						
-		1 .:1 0			T ₃	2016			
6	Quale delle seguenti memorie è v	volatile'!				ROM		A	
						PROM		В	
						Flash		С	
	<u>L</u>					SRAM		D	
7	Quale vantaggio presenta u	ına mamaria	Maggiore a	ffidabilit	<u> </u>			Α	
/	Quale vantaggio presenta u interlacciata?	una memoria	Maggiore a	imuaomia	1			A	
	interfacciata:		Maggiore f	acilità di	progetto			В	
			Maggiore c	capacità a	parità di costo			С	
			Minore tem	npo di acc	esso (numero di l	bit acceduti	per unità di tempo)	D	
8	In un processore superscalare, qu			Sempre	solo una			A	
	essere completate nel generico pe	eriodo di clock?		Anche p	iù di una			В	
				Sempre	meno di una			C	
				Sempre	più di una			D	
9	Che cosa si intende per <i>Latenza</i>	Il tempo mass	imo che nu	à interco	rere tra l'attivaz	ione di un	a richiesta di interrupt e	Δ	
,	dell'interrupt?				procedura di ser		a fremesia di interrupi e	^	
							certa periferica devono	В	
		venir gestite	1101		F- F10.5111		1	-	
	Il tempo massimo per eseguire la procedura di servizio dell'interrupt associata a una certa					С			
		periferica		· ·		1	.:	P	
					l cui una periferi le con il segnale o		richiesta di interrupt e il edge	ען	
			_	_					
10	Si scriva una pezzo di codice in								
	memorizzati all'indirizzo 6 e	7 scrivendone	il valore	nella pai	rte meno				
	significativa del registro \$s0.								

Risposte corrette

1	2	3	4	5	6	7	8	9	10
16	A	С	A	A	D	D	В	A	

Domanda 10 – possibile soluzione

lw \$s0, 4(\$0) srl \$s0, \$s0, 16

Non	Nome, cognome, matricola							
	Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 45 minuti.							
11	Si considerino le varie soluzioni per la realizzazione di un contatore. In particolare 1. Si descriva l'architettura di un contatore asincrono, specificando il tipo di moduli elementari utilizzati e la loro connessione 2. Si descriva l'architettura di un contatore sincrono, specificando il tipo di moduli elementari utilizzati e la loro connessione 3. Si elenchino i vantaggi /svantaggi delle due soluzioni.							

12	Si consideri un'unità di controllo microprogrammata e si risponda ai seguenti punti				
	1. (Quali sono i moduli che la compongono? Si descrivano i collegamenti tra i vari moduli e l'esterno.			
		Quali sono le operazioni svolte dall'unità di controllo microprogrammata durante l'esecuzione di ciascuna istruzione?			
	3. (Quali sono i vantaggi e svantaggi della soluzione microprogrammata rispetto a quella cablata?			

Si consideri un processore connesso ad una memoria da 64KB e dotato di una cache direct mapped da 16 linee, ciascuna da 32 byte. Assumendo che inizialmente le 16 linee contengano i primi 16 blocchi di memoria (quindi la linea 0 contiene il blocco 0, la linea 1 il blocco 1, e così via), si determini quali dei seguenti 12 accessi in memoria da parte del processore provocano un hit, e quali un miss, scrivendo H o M nella colonna di destra della corrispondente riga nella tabella.

Indirizzo	Blocco	Linea acceduta	H/M
0100 0000 0011 0011			
0100 0001 0001 1000			
0000 0100 1000 1110			
0010 0000 1011 1110			
0100 0000 1001 1111			
0100 0000 0011 0011			
0000 1010 0001 0011			
0000 1010 0101 0100			
0000 0011 0011 0100			
0000 0011 0011 0110			
0000 1000 1001 1000			
0000 0000 0001 1001			

1.4						
14	Si consideri la funzione Booleana di 4 variabili $f = ab + acd' + a'b'c$. Si richiede di					
	• Scrivere la tabella di verità per f, utilizzando la prima tabella riportata sotto					
	Disegnare la mappa di Karnaugh, utilizzando la seconda tabella riportata sotto					
	 Identificare l'espressione booleana minima che implementa la funzione f 					
	• Descrivere il circuito minimo che implementa f, specificando in particolare da quante e quali porte è composto.					

Nome, Cognome, Matricola:

Esercizio di programmazione

sino a 12 punti – è possibile consultare solamente il foglio con l'instruction set MIPS - tempo: 60 minuti

Una tremenda tempesta si muove da ovest verso est: c'è necessità di un programma in assembly MIPS per prevederne l'evoluzione. La posizione iniziale della tempesta è salvata in una matrice di byte. Ogni cella della matrice corrisponde ad un'area di 1 km² e contiene un valore positivo intero indicante l'intensità della tempesta in quell'area. Il valore 0 indica che l'area corrispondente non è interessata dalla tempesta. La tempesta si sposta progressivamente a destra e avanzando diminuisce la propria intensità. Si stima che dopo un'ora la tempesta sia avanzata di 1 km (ossia, spostandosi di una colonna verso destra) e che la sua intensità si sia dimezzata.

Esempio

12	15	10	0	0	0	0
0	19	15	13	12	10	4
8	14	16	13	10	8	6
0	0	8	4	3	0	0
0	0	7	3	0	0	0

Situazione iniziale

0	6	8	5	0	0	0
0	0	10	8	7	6	5
0	4	7	8	7	5	4
0	0	0	4	2	2	0
0	0	0	4	2	0	0

Situazione dopo un'ora

Nella previsione della tempesta, si noti che:

- il dimezzamento dell'intensità è approssimato per eccesso
- i valori che nella matrice iniziale si trovano nella colonna più a destra, scompaiono nella matrice finale
- la colonna più a sinistra della matrice finale è sempre 0.

Si scriva una procedura **previsione** che riceve in input:

- indirizzo della matrice tempesta
- numero di righe della matrice num righe
- numero di colonne della matrice **num colonne**.

La procedura deve aggiornare la matrice **tempesta** con i valori di intensità prevista dopo un'ora. Inoltre, deve restituire il numero di celle interessate dalla tempesta (ossia, con un valore strettamente positivo nella matrice finale). Nell'esempio, la procedura restituisce 19. **Non è consentito allocare e usare variabili in memoria: tutti i calcoli devono avvenire nella matrice il cui indirizzo è passato in input alla procedura.**

Di seguito un esempio di programma chiamante:

```
num righe = 5
num colonne = 7
.data
                   12, 15, 10, 0, 0, 0, 0
tempesta:
            .byte
                   0, 19, 15, 13, 12, 10, 4
            .byte
                   8, 14, 16, 13, 10, 8, 6
            .byte
                   0, 0, 8, 4, 3, 0, 0
            .byte
            .byte 0, 0, 7, 3, 0, 0, 0
      .text
      .globl main
      .ent main
main: subu $sp, $sp, 4
      sw $ra, ($sp)
      la $a0, tempesta
      li $a1, num righe
      li $a2, num colonne
      jal previsione
      [...]
      lw $ra, ($sp)
      addiu $sp, $sp, 4
      jr $ra
      .end main
```