

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2200092

IC RF Test Report

(2.4G Wi-Fi)

Applicant: Nebra Ltd

Address of Applicant: Unit 4 Bells Yew Green Business Court Bells Yew Green

Equipment Under Test (EUT)

Product Name: Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor

Helium Hotspot ROCK Pi 4 Version

Model No.: NEBHNT-HHRK4-915, NEBHNT-HHRK4-915-2, NEBHNT-

HHRK4-915-3

Canada IC: 27187-HHRK4

Applicable standards: RSS-Gen Issue 5, RSS-247 Issue 2

Date of sample receipt: 05 Jan., 2022

Date of Test: 06 Jan., to 08 May., 2022

Date of report issued: 18 May, 2022

Test Result: PASS

Tested by: / **Date:** 18 May, 2022

Reviewed by: ______ Date: _____ 18 May, 2022

Approved by: ______ Date: _____ 18 May, 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	09 May, 2022	Original
01	13 May, 2022	Updated page 1, 4, 11

3 Contents

			Page
1	Cov	er Page	1
2	Vers	sion	2
3	Con	tents	3
4	Gen	eral Information	4
4	1.1	Client Information	4
4	1.2	General Description of E.U.T.	
4	1.3	Test Mode and Environment	
4	1.4	Description of Support Units	
	1.5	Measurement Uncertainty	
4	1.6	Additions to, Deviations, or Exclusions from the Method	
4	1.7	Laboratory Facility	
	1.8	Laboratory Location	
4	1.9	Test Instruments list	
5	Mea	surement setup and procedure	
5	5.1	Test channel	8
5	5.2	Test setup	
5	5.3	Test procedure	
6	Test	Results	11
6	6.1	Summary	11
6	5.2	Antenna requirement	
6	5.3	AC Power Line Conducted Emission	
6	6.4	Emissions in Restricted Frequency Bands	
_	3.5	Emissions in Non-restricted Fraguency Bands	

4 General Information

4.1 Client Information

Applicant:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court Bells Yew Green
Manufacturer/Factory:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court Bells Yew Green

4.2 General Description of E.U.T.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version
Model No.:	NEBHNT-HHRK4-915, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-915-3
Operation Frequency:	2412 MHz - 2462 MHz (802.11b, g, n-HT20)
Channel numbers:	11 (802.11b, g, n-HT20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	DSSS-DBPSK, DQPSK, CCK
Modulation technology: (IEEE 802.11g/802.11n)	OFDM-BPSK, QPSK, 16QAM, 64QAM
Antenna Type:	External Antenna
Antenna gain:	1 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
AC adapter:	Model No.:R241-1202500I Input: AC100-240V, 50/60Hz 1.5 A Output: DC 12.0V, 2.5A
Remark:	Model No.: NEBHNT-HHRK4-915, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-915-3 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test model, sample#	NEBHNT-HHRK4-915, WSZR122200092
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

4.3 Test Mode and Environment

Test mode:				
Transmitting mode: Keep the El	JT in continuous transmitting with modulation			
Per-scan all kind of data rate, the	Per-scan all kind of data rate, the follow list were the worst case:			
Mode Data rate				
802.11b 1Mbps				
802.11g 6Mbps				
802.11n-VHT20 6.5Mbps				

Remark: For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan 802.11b, g, n modulation mode, found 802.11b modulation mode was worse case mode. The report only reflects the test data of worst mode.

Operating Environment:			
Temperature:	15℃ ~ 35℃		
Humidity:	20 % ~ 75 % RH		
Atmospheric Pressure:	1010 mbar		

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions from the Method

No

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-157-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

4.9 Test Instruments list

Radiated Emission(3m SAC):							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024		
PiCanil og Antonna	Schwarzbeck	VULB9163	WXJ002	03-07-2021	03-06-2022		
BiConiLog Antenna	Scriwarzbeck	VULD9103	VV AJUU2	02-17-2022	02-16-2023		
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022		
Llaws Automa	Cabusarrhaals	DDLIA 04 00 D	WV 1000 0	03-07-2021	03-06-2022		
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-17-2022	02-16-2023		
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022		
Pre-amplifier	Schwarzbeck	DDV0740D	WVC004 7	03-07-2021	03-06-2022		
(30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXG001-7	02-17-2022	02-16-2023		
Pre-amplifier	OVET	LNPA_0118G-50	WXG001-3	03-07-2021	03-06-2022		
(1GHz ~ 18GHz)	SKET			02-17-2022	02-16-2023		
Pre-amplifier	55.0	TRLA- 180400G45B	WXG001-9	03-07-2021	03-06-2022		
(18GHz ~ 40GHz)	RF System			02-17-2022	02-16-2023		
EMIT (D)	Rohde & Schwarz	ESRP7	WXJ003-1	03-03-2021	03-02-2022		
EMI Test Receiver				02-17-2022	02-16-2023		
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	11-27-2021	11-26-2022		
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	/A		
Coaxial Cable	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	03-07-2021	03-06-2022		
(30MHz ~ 1GHz)	J1132			02-17-2022	02-16-2023		
Coaxial Cable	1\/T07	JYT3M-18G-NN- 8M	WXG001-5	03-07-2021	03-06-2022		
(1GHz ~ 18GHz)	JYTSZ			02-17-2022	02-16-2023		
Coaxial Cable	D/T07	JYT3M-40G-SS- 8M	WXG001-7	03-07-2021	03-06-2022		
(18GHz ~ 40GHz)	JYTSZ			02-17-2022	02-16-2023		
Test Software	Tonscend	TS+		Version: 3.0.0.1			

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-157-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ECCL 2	W/V 1002	03-03-2021	03-02-2022		
EIVII Test Receiver	Ronde & Schwarz	ESCI 3	WXJ003	02-17-2022	02-16-2023		
DE Conitab	F Switch TOP PRECISION RSU0301 WXG003	03-03-2021	03-02-2022				
RF Switch		RS00301	W XG003	02-17-2022	02-16-2023		
LION	0-1	NOU K 0407	00 1004 40	03-18-2021	03-17-2022		
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023		
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022		
LISN Coaxial Cable	kial Cable		03-03-2021	03-02-2022			
(9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-17-2022	02-16-2023		
Test Software	AUDIX	E3	Version: 6.110919b				

5 Measurement setup and procedure

5.1 Test channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

802.11b, 802.11g, 802.11n-HT20							
Lowe	Lowest channel Middle channel Highest channel						
Channel No. Frequency (MHz)		Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
1	2412	6	2437	11	2462		

5.2 Test setup

1) Conducted emission measurement:

Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:

Below 1GHz (3m SAC)

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-157-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

5.3 Test procedure

Test method Test step				
Test step				
 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. 				
For below 1GHz:				
The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.				
2. EUT works in each mode of operation that needs to be tested, and having				
the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.				
For above 1GHz:				
The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.				
2. EUT works in each mode of operation that needs to be tested, and having				
the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform				
the test, save the test results, and export the test data.				
The Wi-Fi antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all				
modulation modes.				
3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.				

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

Test Items	Standard Clause	Test Data	Result
Antenna Requirement	RSS-Gen Section 6.8 RSS-247 Section 5.4(f)	See Section 6.2	Pass
AC Power Line Conducted Emission	RSS-Gen Section 8.8	See Section 6.3	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass
Conducted Peak Output Power	RSS-247 Section 5.4(d)	Appendix A – 2.4G Wi-Fi	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	RSS-247 Section 5.2(a)	Appendix A – 2.4G Wi-Fi	Pass
Power Spectral Density	RSS-247 Section 5.2(b)	Appendix A – 2.4G Wi-Fi	Pass
Band-edge Emission Conduction Spurious Emission	RSS-247 Section 5.5	Appendix A – 2.4G Wi-Fi	Pass
Emissions in Restricted Frequency Bands	RSS-Gen Section 8.10 RSS-247 Section 5.5	See Section 6.4	Pass
Emissions in Non-restricted Frequency Bands	RSS-Gen Section 6.13 RSS-247 Section 5.5	See Section 6.5	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

6.1.2 Test Limit

Items			Lim	nit				
		Frequency		Limit (dB	μ V)			
		(MHz)	Quasi-P	eak	Average			
AC Power Line Conducted		0.15 - 0.5	66 to 56	Note	56 to 46 Note			
Emission		0.5 – 5	56		46			
		5 – 30	60		50			
	Note: The level decreases linearly with the logarithm of the frequency.							
Conducted Peak Output Power	For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).							
6dB Emission Bandwidth	The min	imum 6 dB bandwid	dth shall be a	t least 500	kHz.			
99% Occupied Bandwidth	N/A							
Power Spectral Density	The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).							
Band-edge Emission Conduction Spurious Emission	spectrum produce band that RF cond demonsi transmitt mean-so the atter	00 kHz bandwidth on or digitally modular of shall be at least 2 at contains the high-lucted or a radiated trates compliance with the quare averaging over the complies with the quare averaging over on the complies with the process of the complies with the quare averaging over one of the complies with the process of the complies with the complication required shall be complied to the complication of the complete with the com	ated device is 20 dB below the est level of the measureme with the peak e conducted er a time inte all be 30 dB i	s operating, that in the 1 ne desired p nt, provided conducted power limit rval, as per nstead of 2	the RF power that 00 kHz bandwidth bower, based on eid that the transmitted power limits. If the is based on the use mitted under section dB. Attenuation I	t is within the ther an er e of root- on 5.4(d),		
		Frequency	Limit (d	BuV/m)				
		(MHz)	@ 3m	@ 10m	Detector			
		30 – 88	40.0	30.0	Quasi-peak			
Emissions in Restricted		88 – 216	43.5	33.5	Quasi-peak	_]		
Frequency Bands		216 – 960	46.0	36.0	Quasi-peak			
	960 – 1000 54.0 44.0 Quasi-peak							
Emissions in Non-restricted	N	ote: The more stringent limit	applies at transitio	<u> </u>				
Frequency Bands		Frequency		Limit (dBµV/	m) @ 3m			
, , , , , , , , , , , , , , , , , , ,		,	Avei	rage	Peake			
		Above 1 GHz	54	.0	74.0			
	Note: The measurement bandwidth shall be 1 MHz or greater.							

Report No.: JYTSZ-R12-2200092

6.2 Antenna requirement

Standard requirement: RSS-Gen Section 6.8 and RSS-247 Section 5.4(f)

RSS-Gen Section 6.8 requirement:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

RSS-247 Section 5.4(f) requirement:

Transmitters operating in the band 2400-2483.5 MHz, may employ antenna systems that emit multiple directional beams simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers, provided that the emissions comply with the following:

- i. Different information must be transmitted to each receiver.
- ii. If the transmitter employs an antenna system that emits multiple directional beams, but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device (i.e. the sum of the power supplied to all antennas, antenna elements, staves, etc., and summed across all carriers or frequency channels) shall not exceed the applicable output power limit specified in sections 5.4(b) and 5.4(d). However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
- iii. If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the applicable power limit specified in sections 5.4(b) and 5.4(d). If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the applicable limit specified in sections 5.4(b) and 5.4(d). In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the applicable limit specified in sections 5.4(b) and 5.4(d) by more than 8 dB.
- iv. Transmitters that transmit a single directional beam shall operate under the provisions of sections 5.4(b), 5.4(d) and 5.4(e).

E.U.T Antenna:

The Wi-Fi antenna is an External antenna which cannot replace by end-user, the best case gain of the antenna is 1 dBi. See product internal photos for details.

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-157-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

6.3 AC Power Line Conducted Emission

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test by:	Mike	Test mode:	2.4G Wi-Fi mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu₹	<u>dB</u>		dBu₹	dBu∜	<u>dB</u>	
1	0.166	44.47	0.00	0.01	44.48	65.16	-20.68	QP
1 2 3	0.178	28.38	0.00	0.01	28.39	54.59	-26.20	Average
3	0.182	44.06	0.00	0.01	44.07	64.42	-20.35	QP
4 5	0.230	27.03	0.00	0.02	27.05	52.44	-25.39	Average
5	0.230	40.99	0.00	0.02	41.01	62.44	-21.43	QP
6 7	0.373	37.97	0.00	0.03	38.00	58.43	-20.43	QP
7	0.377	29.80	0.00	0.03	29.83	48.34	-18.51	Average
8 9	2.066	32.62	0.00	0.20	32.82	56.00	-23.18	QP
9	2.155	25.50	0.00	0.18	25.68	46.00	-20.32	Average
10	2.567	25.52	0.00	0.12	25.64	46.00	-20.36	Average
11	10.905	27.08	0.00	0.12	27.20	50.00	-22.80	Average
12	11.438	34.68	0.00	0.11	34.79	60.00	-25.21	QP

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test by:	Mike	Test mode:	2.4G Wi-Fi mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>dB</u>	₫B	dBu₹	dBu∇	<u>dB</u>	
1	0.150	29.68	0.00	0.01	29.69			Average
2	0.158	46.49	0.00	0.01	46.50	65.56	-19.06	QP
3	0.178	28.04	0.00	0.01	28.05	54.59	-26.54	Average
4	0.178	44.10	0.00	0.01	44.11	64.59	-20.48	QP
5	0.211	40.28	0.00	0.03	40.31	63.18	-22.87	QP
6	0.369	32.37	0.00	0.03	32.40	48.52	-16.12	Average
7	0.369	38.33	0.00	0.03	38.36	58.52	-20.16	QP
1 2 3 4 5 6 7 8 9	0.489	23.64	0.00	0.03	23.67	46.19	-22.52	Average
9	2.055	28.45	0.00	0.20	28.65	56.00	-27.35	QP
10	2.099	21.77	0.00	0.19	21.96	46.00	-24.04	Average
11	3.156	22.78	0.00	0.07	22.85			Average
12	3.207	28.79	0.00	0.07	28.86		-27.14	

1. Level = Read level + LISN Factor + Cable Loss.

6.4 Emissions in Restricted Frequency Bands

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

Suspe	cted Data List	t						
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2329.936	13.28	48.69	35.41	54.00	5.31	AV	Vertical
2	2331.728	24.20	59.63	35.43	74.00	14.37	PK	Vertical
3	2368.912	24.29	59.98	35.69	74.00	14.02	PK	Vertical
4	2369.248	13.42	49.11	35.69	54.00	4.89	AV	Vertical
5	2390.080	23.58	59.42	35.84	74.00	14.58	PK	Vertical
6	2390.080	13.91	49.75	35.84	54.00	4.25	AV	Vertical

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspec	cted Data List	t						
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2341.248	13.18	48.67	35.49	54.00	5.33	AV	Horizontal
2	2342.368	23.97	59.47	35.50	74.00	14.53	PK	Horizontal
3	2376.304	13.06	48.80	35.74	54.00	5.20	AV	Horizontal
4	2377.312	24.14	59.89	35.75	74.00	14.11	PK	Horizontal
5	2390.080	22.32	58.16	35.84	74.00	15.84	PK	Horizontal
6	2390.080	12.57	48.41	35.84	54.00	5.59	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

Suspe	cted Data List	t						
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.536	23.63	59.35	35.72	74.00	14.65	PK	Vertical
2	2483.536	14.14	49.86	35.72	54.00	4.14	AV	Vertical
3	2485.312	14.60	50.31	35.71	54.00	3.69	AV	Vertical
4	2485.504	24.87	60.58	35.71	74.00	13.42	PK	Vertical
5	2488.192	25.00	60.71	35.71	74.00	13.29	PK	Vertical
6	2488.432	14.26	49.97	35.71	54.00	4.03	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspe	cted Data List	t						
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.536	22.94	58.66	35.72	74.00	15.34	PK	Horizontal
2	2483.536	12.60	48.32	35.72	54.00	5.68	AV	Horizontal
3	2486.032	23.84	59.55	35.71	74.00	14.45	PK	Horizontal
4	2486.896	12.98	48.69	35.71	54.00	5.31	AV	Horizontal
5	2491.696	12.95	48.65	35.70	54.00	5.35	AV	Horizontal
6	2492.272	23.50	59.20	35.70	74.00	14.80	PK	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2333.856	13.40	48.84	35.44	54.00	5.16	AV	Vertical
2	2335.984	25.25	60.71	35.46	74.00	13.29	PK	Vertical
3	2371.824	28.09	63.80	35.71	74.00	10.20	PK	Vertical
4	2372.608	14.15	49.87	35.72	54.00	4.13	AV	Vertical
5	2390.080	27.04	62.88	35.84	74.00	11.12	PK	Vertical
6	2390.080	16.20	52.04	35.84	54.00	1.96	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspec	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2334.976	13.44	48.89	35.45	54.00	5.11	AV	Horizontal
2	2335.200	24.40	59.85	35.45	74.00	14.15	PK	Horizontal
3	2368.128	24.34	60.02	35.68	74.00	13.98	PK	Horizontal
4	2368.240	13.14	48.82	35.68	54.00	5.18	AV	Horizontal
5	2390.080	23.35	59.19	35.84	74.00	14.81	PK	Horizontal
6	2390.080	12.75	48.59	35.84	54.00	5.41	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.536	30.56	66.28	35.72	74.00	7.72	PK	Vertical
2	2483.536	16.04	51.76	35.72	54.00	2.24	AV	Vertical
3	2485.120	16.29	52.00	35.71	54.00	2.00	AV	Vertical
4	2485.792	34.97	70.68	35.71	74.00	3.32	PK	Vertical
5	2486.800	35.49	71.20	35.71	74.00	2.80	PK	Vertical
6	2487.280	16.15	51.86	35.71	54.00	2.14	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspec	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.536	22.60	58.32	35.72	74.00	15.68	PK	Horizontal
2	2483.536	12.68	48.40	35.72	54.00	5.60	AV	Horizontal
3	2485.936	13.01	48.72	35.71	54.00	5.28	AV	Horizontal
4	2486.464	24.61	60.32	35.71	74.00	13.68	PK	Horizontal
5	2488.144	12.83	48.54	35.71	54.00	5.46	AV	Horizontal
6	2489.008	23.73	59.44	35.71	74.00	14.56	PK	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11n-HT20 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

Suspec	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2330.944	13.44	48.86	35.42	54.00	5.14	AV	Vertical
2	2331.616	25.40	60.82	35.42	74.00	13.18	PK	Vertical
3	2360.960	29.31	64.94	35.63	74.00	9.06	PK	Vertical
4	2361.072	13.50	49.13	35.63	54.00	4.87	AV	Vertical
5	2390.080	30.61	66.45	35.84	74.00	7.55	PK	Vertical
6	2390.080	16.32	52.16	35.84	54.00	1.84	AV	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11n-HT20 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspec	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	2327.248	24.43	59.82	35.39	74.00	14.18	PK	Horizontal		
2	2328.256	13.49	48.89	35.40	54.00	5.11	AV	Horizontal		
3	2367.680	23.67	59.35	35.68	74.00	14.65	PK	Horizontal		
4	2369.920	13.02	48.72	35.70	54.00	5.28	AV	Horizontal		
5	2390.080	22.82	58.66	35.84	74.00	15.34	PK	Horizontal		
6	2390.080	12.63	48.47	35.84	54.00	5.53	AV	Horizontal		

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11n-HT20 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

Suspec	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	2483.536	28.95	64.67	35.72	74.00	9.33	PK	Vertical		
2	2483.536	15.82	51.54	35.72	54.00	2.46	AV	Vertical		
3	2484.688	16.08	51.80	35.72	54.00	2.20	AV	Vertical		
4	2485.072	33.40	69.11	35.71	74.00	4.89	PK	Vertical		
5	2488.624	15.68	51.39	35.71	54.00	2.61	AV	Vertical		
6	2489.488	33.89	69.59	35.70	74.00	4.41	PK	Vertical		

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11n-HT20 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspec	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	2483.536	22.89	58.61	35.72	74.00	15.39	PK	Horizontal		
2	2483.536	12.87	48.59	35.72	54.00	5.41	AV	Horizontal		
3	2487.520	23.60	59.31	35.71	74.00	14.69	PK	Horizontal		
4	2488.288	12.86	48.57	35.71	54.00	5.43	AV	Horizontal		
5	2493.280	12.85	48.55	35.70	54.00	5.45	AV	Horizontal		
6	2493.712	23.78	59.47	35.69	74.00	14.53	PK	Horizontal		

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

6.5 Emissions in Non-restricted Frequency BandsBelow 1GHz:

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	2.4G Wi-Fi mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

Suspec	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	97.034	45.30	28.58	-16.72	43.50	14.92	PK	Vertical		
2	107.316	46.01	30.04	-15.97	43.50	13.46	PK	Vertical		
3	124.972	48.66	31.90	-16.76	43.50	11.60	PK	Vertical		
4	500.012	47.34	40.38	-6.96	46.00	5.62	PK	Vertical		
5	625.057	45.67	40.36	-5.31	46.00	5.64	PK	Vertical		
6	750.103	43.61	39.87	-3.74	46.00	6.13	PK	Vertical		

Remark

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	2.4G Wi-Fi mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspec	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity			
1	74.042	35.48	18.41	-17.07	40.00	21.59	PK	Horizontal			
2	124.972	38.53	21.77	-16.76	43.50	21.73	PK	Horizontal			
3	250.018	41.07	27.28	-13.79	46.00	18.72	PK	Horizontal			
4	375.063	43.11	32.23	-10.88	46.00	13.77	PK	Horizontal			
5	625.057	40.81	35.50	-5.31	46.00	10.50	PK	Horizontal			
6	875.051	42.43	40.96	-1.47	46.00	5.04	PK	Horizontal			

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Above 1GHz

			802.11b			
		Test	channel: Lowest ch	nannel		
			Detector: Peak Valu	ie	T	
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4824.00	42.65	-9.46	33.19	74.00	40.81	Vertical
4824.00	44.80	-9.46	35.34	74.00	38.66	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4824.00	37.29	-9.46	27.83	54.00	26.17	Vertical
4824.00	35.59	-9.46	26.13	54.00	27.87	Horizontal
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	ue Limit (dBµV/m)	Margin (dB)	Polarization
4874.00	(αΒμν) 42.92	-9.11	33.81	74.00	40.19	Vertical
4874.00	45.17	-9.11 -9.11	36.06	74.00	37.94	Horizontal
	15111		tector: Average Va			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4874.00	37.05	-9.11	27.94	54.00	26.06	Vertical
4874.00	35.95	-9.11	26.84	54.00	27.16	Horizontal
Frequency (MHz)	Read Level (dBµV)		channel: Highest clotector: Peak Valu Level (dBµV/m)		Margin (dB)	Polarization
4924.00	42.46	-8.74	33.72	74.00	40.28	Vertical
4924.00	45.06	-8.74	36.32	74.00	37.68	Horizontal
		De	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4924.00	37.08	-8.74	28.34	54.00	25.66	Vertical
	35.63	-8.74	26.89	54.00	27.11	Horizontal

			802.11g			
		Test o	hannel: Lowest ch	nannel		
		D	etector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4824.00	42.38	-9.46	32.92	74.00	41.08	Vertical
4824.00	45.17	-9.46	35.71	74.00	38.29	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4824.00	37.56	-9.46	28.10	54.00	25.90	Vertical
4824.00	36.12	-9.46	26.66	54.00	27.34	Horizontal
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	etector: Peak Valu Level (dBµV/m)	ue Limit (dBµV/m)	Margin (dB)	Polarization
4874.00	42.52	-9.11	33.41	74.00	40.59	Vertical
4874.00	44.87	-9.11	35.76	74.00	38.24	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4874.00	37.65	-9.11	28.54	54.00	25.46	Vertical
4874.00	36.01	-9.11	26.90	54.00	27.10	Horizontal
Frequency (MHz)	Read Level (dBµV)		hannel: Highest cl etector: Peak Valu Level (dBµV/m)		Margin (dB)	Polarization
4924.00	42.49	-8.74	33.75	74.00	40.25	Vertical
4924.00	45.21	-8.74	36.47	74.00	37.53	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4924.00	37.89	-8.74	29.15	54.00	24.85	Vertical
	35.93	-8.74	27.19	54.00	26.81	Horizontal

			802.11n-HT20			
		Test o	hannel: Lowest cl	nannel		
		D	etector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4824.00	42.75	-9.46	33.29	74.00	40.71	Vertical
4824.00	45.56	-9.46	36.10	74.00	37.90	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4824.00	37.91	-9.46	28.45	54.00	25.55	Vertical
4824.00	35.81	-9.46	26.35	54.00	27.65	Horizontal
Frequency	Read Level		channel: Middle chetector: Peak Value		Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization
4874.00	42.40	-9.11	33.29	74.00	40.71	Vertical
4874.00	45.86	-9.11	36.75	74.00	37.25	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4874.00	38.37	-9.11	29.26	54.00	24.74	Vertical
4874.00	35.54	-9.11	26.43	54.00	27.57	Horizontal
Frequency	Read Level	D Factor	hannel: Highest c etector: Peak Vali Level	ue Limit	Margin	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4924.00	42.53	-8.74	33.79	74.00	40.21	Vertical
4924.00	45.46	-8.74	36.72	74.00	37.28	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4924.00	37.87	-8.74	29.13	54.00	24.87	Vertical
4924.00	35.85	-8.74	27.11	54.00	26.89	Horizontal
Remark: 1. Level = Read	l level + Factor.					

-----End of report-----