AUTOMORPHISMS OF HYPERBOLIC SURFACES

Notes made for thesis project

Manvendra Somvanshi

Updated on: January 25, 2024

Contents

1	Torus and it's Automorphisms	3
2	Hyperbolic Plane	5
3	Hyperbolic Structures on Surfaces	16

1 Torus and it's Automorphisms

Definition 1.1. Define the torus, T^2 as the quotient space $\mathbb{R}^2/\mathbb{Z}^2$ where two points are equivalent if their difference is in \mathbb{Z}^2 .

Note that this is homeomorphic to the usual definition $S^1 \times S^1$. The universal covering space of T^2 is \mathbb{R}^2 and it's fundamental group is \mathbb{Z}^2 . We identify the equivalence class of the closed curve $\gamma(t)$ based at [(0,0)] with $\tilde{\gamma}(1) \in \mathbb{Z}^2$, where $\tilde{\gamma}$ is the lift of γ based at (0,0) in \mathbb{R}^2 . This map, from $\pi_1(T^2) \to \mathbb{Z}^2$ is a bijection since \mathbb{R}^2 is simply connected (see theorem 54.4 on pg 345 in [1]).

Automorphisms on the torus correspond to elements in $GL_2(\mathbb{Z})$. Suppose that $\phi: T^2 \to T^2$ is an automorphism then it induces a map $\phi_*: \pi_1(T^2) \to \pi_1(T^2)$ which is an isomorphism. Since isomorphisms of \mathbb{Z}^2 are just invertible integer matrices. These are just $GL_2(\mathbb{Z})$ which is the same as matrices with determinant ± 1 . On the other hand any $A \in GL_2(\mathbb{Z})$ will induce an automorphism ϕ_A on T^2 where the mapping is just $[(x,y)] \mapsto [(x,y)A^t]$. The automorphism is orientation preserving if and only if the corresponding matrix A has positive determinant, i.e. 1.

Proposition 1.2. The correspondence $\operatorname{Aut}(T^2) \to GL_2(\mathbb{Z})$ is a homomorphism. Moreover if A is in $GL_2(\mathbb{Z})$ then $(\phi_A)_* = A$; i.e. the correspondence is surjective.

Proof. Since $(\phi \circ \psi)_*[\gamma] = [\phi \circ \psi \circ \gamma] = \phi_* \circ \psi_*([\gamma])$ it follows that the map $\phi \mapsto \phi_*$ is a homomorphism. Let A be $GL_2(\mathbb{Z})$, then ϕ_A is well defined automorphism of the torus. Now ϕ_{A*} acts on $(m,n) \in \mathbb{Z}^2$ in the following way: (m,n) corresponds to the unique class $[\gamma]$ where $\tilde{\gamma}(1) = (m,n)$, so the action is given by $\phi_{A*}(m,n) = \phi_A \circ \gamma(1)$. Since $\phi_A \circ \gamma(t) = \gamma(t)A^t$, the lifting of this at (0,0) will be just $\tilde{\gamma}(t)A^t$ (since liftings are unique and this is a lift). Thus $\phi_{A*}(m,n) = (m,n)A^t$. Thus ϕ_{A*} just corresponds to the matrix A in $GL_2(\mathbb{Z})$.

Let A be a matrix in $SL_2(\mathbb{Z})$ and ϕ_A be the corresponding orientation preserving automorphism, then we can classify ϕ_A by looking at the properties of the matrix A. The characteristic equation of such a matrix is given by $x^2 - \tau x + 1$, where τ is the trace. We break this into three possibilities:

- 1. $\tau=0,\pm 1$. In this case the characteristic equation is $x^2+1, \ x^2-x+1,$ or x^2+x+1 . Thus the eigenvalue are complex in this case. Using Cayley-Hamilton theorem A solves its characteristic equation. In each case we have $A^4=I, \ A^6=I,$ or $A^3=I$ resp.; hence $A^{12}=I$ in each case. Thus the map ϕ_A is also a finite order map. In this case ϕ_A is said to be periodic.
- 2. $\tau=\pm 2$. In this case the characteristic is $(x\pm 1)^2$. Both eigenvalues are either 1 or both are -1 respectively. Eigenvector of A is integeral and thus correspond to (class of) closed curves on T^2 . The map preserves the (equivalence class of the) curve (reverses the direction when $\tau=-2$) represented by the eigenvector. No other curve is preserved under the map. These are powers of the Dehn Twists in C.

Figure 1: Dehn twist along the class of curves represented by (1,0) (blue). The red curve is in the class represented by (0,1). Source of image is wikipedia.

Definition 1.3. A Dehn Twist along a curve γ is defined in the following way: Let A be a regular neighborhood containing C such that A is homeomorphic to an annulus parametrized as (r, θ) . The the extension of the homeomorphism $\phi(r, \theta) = (r, \theta + 2\pi r)$ to the whole of the torus (via characteristic function on A), is called the Dehn twist.

Matrices corresponding to Dehn twists which preserve the curves corresponding to (1,0) and (0,1) are

$$T = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} & S = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

respectively. These matrices generate $SL_2(\mathbb{Z})$ as a group.

3. $|\tau| > 2$. In this case the eigenvalues are distinct reals. The eigenvalues satisfy the relation $\lambda_1 \lambda_2 = 1$. Let $|\lambda_1| > 1$. Thus the eigenvalues are of the form $\lambda, 1/\lambda$. Let v_1, v_2 be the corresponding eigenvectors. Think of these as elements of $T_p(\mathbb{R}^2/\mathbb{Z}^2)$ (tangent space). Consider the curves $\gamma_i = v_i t$. The action of the map ϕ_A on γ_1 expands it by a factor of λ and on γ_2 it contracts it by λ^{-1} . Such maps are called Anosov Maps.

2 Hyperbolic Plane

Definition 2.1. The upper half plane model of the hyperbolic plane is the set of all points in \mathbb{C} with positive imaginary part, Im(z) > 0 with the metric given by

$$\mathrm{d}s^2 = \frac{(\mathrm{d}x^2 + \mathrm{d}y^2)}{y^2}$$

We denote this by \mathbb{H} .

Definition 2.2. The hyperbolic length of a piecewise differentiable curve $\gamma:[0,1]\to \mathbb{H}$ is given by

$$h(\gamma) = \int_0^1 \frac{|\dot{\gamma}(t)|}{\operatorname{Im}(\gamma(t))} dt$$

The distance between two points z_1, z_2 is given by,

$$\rho(z_1, z_2) = \inf_{\gamma} h(\gamma), \ \gamma(0) = z_1 \quad \text{and} \quad \gamma(1) = z_2$$

this is well defined since $\mathbb C$ is path connected.

Proposition 2.3. ρ is a metric.

Proof. Suppose that $\rho(z_1, z_2) = \ell_1$ and $\rho(z_2, z_1) = \ell_2$. Now let γ be any curve from z_2 to z_1 . Then $\gamma(1-t)$ is a curve from z_1 to z_2 and since $h(\gamma) = h(\gamma(1-t)) \ge \ell_1$ it follows that ℓ_1 is also a lower bound and we must have $\ell_1 \le \ell_2$. Repeating the same in the opposite direction we have $\ell_2 \le \ell_1$. Hence ρ is symmetric.

Let z_1, z_2, z_3 be three points. Represent curves from $z_1 \to z_2$ by γ , $z_2 \to z_3$ by σ and $z_1 \to z_3 by\tau$. Given any γ and σ we can construct a curve from z_1 to z_3 in following way

$$\tau(t) = \gamma * \sigma(t) = \begin{cases} \gamma(2t), & 0 \le t \le 1/2 \\ \sigma(2t-1), & 1/2 \le t \le 1. \end{cases}$$

The length $h(\gamma * \sigma) = h(\gamma) + h(\sigma)$ (linearity and change of variables). It follows

$$\inf_{\tau} h(\tau) \le \inf_{\gamma, \sigma} h(\gamma * \sigma) = \inf_{\gamma} h(\gamma) + \inf_{\sigma} h(\sigma)$$

$$\implies \rho(z_1, z_3) \le \rho(z_1, z_2) + \rho(z_2, z_3).$$

Hence ρ satisfies triangle inequality.

Clearly $\rho(z,z)=0$. Let z_1,z_2 be two points and γ be a curve between them. Then

$$h(\gamma) = \int_0^1 \frac{|\dot{\gamma}|}{\operatorname{Im}(\gamma)} dt \ge \left| \int_0^1 \frac{\dot{\gamma}}{\operatorname{Im}(\gamma)} dt \right|$$
$$> \frac{1}{M} \left| \int_0^1 \dot{\gamma} dt \right| = \frac{1}{M} |z_2 - z_1|$$
(1)

Where $M = \sup_{t \in [0,1]} (Im(\gamma(t)))$ (this is well defined since its a continuous function on a compact interval). This completes the proof. Suppose $\rho(z_1, z_2) = 0$ then $h(\gamma) < 0$ and hence $|z_1 - z_2| < 0$. Hence $z_1 = z_2$.

Proposition 2.4. The set of all Mobius transforms from $\mathbb{C} \to \mathbb{C}$ of the form

$$z \mapsto \frac{az+b}{cz+d}, \ a,b,c,d \in \mathbb{R} \ ad-bc=1$$

form a group, under composition. This group is isomorphic to $PSL_2(\mathbb{R}) = SL_2(\mathbb{R})/\{\pm I\}$.

Proof. The first part is trivial. For the second consider the map from $SL_2(\mathbb{R})$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \left(z \mapsto \frac{az+b}{cz+d} \right)$$

This is clearly surjective. Suppose that

$$\frac{az+b}{cz+d} = z \implies -cz^2 + (a-d)z + b = 0 \implies c = 0, \ a = d, \ b = 0.$$

Since ad - bc = 1 it follows that $a = \pm 1$. Hence ker of the map is just $\pm I$.

Note that any Mobius transformation in $PSL_2(\mathbb{R})$ can be written by composing the functions $z\mapsto az,\ z\mapsto z+b,\ z\mapsto -1/z.$

Proposition 2.5. The metric topology of \mathbb{H} is equivalent to the subspace topology induced from \mathbb{C}^2 .

Proof. Consider the two points $z, w \in \mathbb{H}$. Consider the curve $\gamma(t) = (z - w)t + w$. By definition

$$\rho(z, w) \le \int_0^1 \frac{|\dot{\gamma}|}{\text{Im}(\gamma)} dt = |z - w| \int_0^1 \frac{dt}{(y - v)t + v} \le |z - w| \int_0^1 \frac{dt}{\min\{y, v\}} = \frac{|z - w|}{\min\{y, v\}}$$

Where Im(z) = y and Im(w) = v. Hence $\rho(z, w) \leq K_w |z - w|$ for some $K_w > 0$. From (1) we already know that

$$|z-w| \leq M\rho(z,w)$$

Hence the metrics are equivalent.

This is an important result since we can just check the continuity of functions under the regular metric. This helps reduce calculations.

Theorem 2.6. $PSL_2(\mathbb{R})$ acts on \mathbb{H} by homeomorphisms.

Proof. Suppose $z \in \mathbb{H}$ and

$$w = \frac{az+b}{cz+d}$$

then

$$w - \bar{w} = \frac{az+b}{cz+d} - \frac{a\bar{z}+b}{c\bar{z}+d}$$
$$= \frac{z-\bar{z}}{|cz+d|^2} > 0$$

Thus points on \mathbb{H} are mapped to \mathbb{H} itself. Since mobius transformations are bijective, continuous, and the inverse again is a mobius transformation it follows that it is a homeomorphism on \mathbb{H} .

Theorem 2.7. $PSL_2(\mathbb{R})$ is isomorphic to a subgroup of the isometry group of \mathbb{H} .

Proof. Let $z, w \in \mathbb{H}$ and $T \in PSL_2(\mathbb{R})$ be a mobius transformation (a, b, c, d). Let γ be a curve from z to w then $\sigma(t) = T(\gamma(t))$ is a curve from Tz to Tw. Since

$$\dot{\sigma}(t) = \frac{\dot{\gamma}}{(c\gamma + d)^2},$$

and

$$\operatorname{Im}\{\sigma(t)\} = \frac{\operatorname{Im}\{\gamma\}}{|c\gamma(t) + d|^2}$$

it follows that

$$h(\sigma) = h(\gamma).$$

Since T is bijective there is a bijective correspondence between curves from z to w and curves from Tz to Tw. Thus they have the same infimum, meaning that $\rho(w,z) = \rho(Tw,T,z)$. \square

Definition 2.8. Geodesics are curves with the shortest length between any two points in a metric space.

Theorem 2.9. The geodesics in \mathbb{H} are straight lines and semi circles perpendicular to the real axis. Moreover, between any two points in \mathbb{H} there exists a unique geodesic.

Proof. Consider the two points $z = a_0 + ia$ and $w = a_0 + ib$ in \mathbb{H} . For any curve $\gamma(t) = a_0 + a$

x(t) + iy(t) between these points,

$$h(\gamma) = \int_0^1 \frac{\sqrt{\dot{x}^2 + \dot{y}^2}}{y(t)} dt$$

$$\geq \int_0^1 \frac{|\dot{y}|}{y(t)} dt$$

$$\geq \left| \int_0^1 \frac{\dot{y}}{y} dt \right|$$

$$= \left| \log \left(\frac{b}{a} \right) \right|$$
(2)

But since the curve $\gamma_0(t) = i(b-a)t + ia + a_0$ also has the length $|\log(b/a)|$ it follows that $\rho(z, w) = |\log(b/a)|$. The geodesic, γ_0 , in this case is a straight line perpendicular to \mathbb{R} .

Now consider any two points $z_1, z_2 \in \mathbb{H}$. Then there is a unique circle which passes through z_1, z_2 and is perpendicular to the real line: |z - a| = r where

$$a = \frac{|z_1|^2 - |z_2|^2}{2(\operatorname{Re}(z_1 - z_2))} \& r = |z_1 - a|.$$

There also exists a $T \in PSL_2(\mathbb{R})$ which maps the above semi-circle in \mathbb{H} to the positive imaginary line. Explicitly this is:

$$T = \frac{1}{\sqrt{2r}} \begin{pmatrix} 1 & -a - r \\ 1 & -a + r \end{pmatrix}$$

Suppose that z lies on the semi-circle, then $z - a = re^{i\theta}$. Thus under the transformation

$$T(z) = \frac{e^{i\theta} - 1}{e^{i\theta} + 1} \in i\mathbb{R}^+$$

Hence the semi circle gets mapped to the imaginary axis, which is a geodesic. Since T is an isometry it follows that the semicircle is also a geodesic. The uniqueness follows from the fact that for any curve other than the straight line the inequality in 2 is strict, and hence only the straight line achieves the minimum length. By isometry argument it generalizes to the aribtrary case.

Definition 2.10. The set of points on the unique geodesic connecting w and z is represented by [w, z].

Corollary 2.11. Let $z, w, \xi \in \mathbb{H}$ then,

$$\rho(z, w) = \rho(z, \xi) + \rho(\xi, w)$$

if and only if $\xi \in [z, w]$.

Proof. Suppose that $\xi \in [z, w]$. Then the geodesic γ from z to w on restriction gives a geodesic between z and ξ , because if not then there is some other σ between z, ξ such that

 $h(\sigma) < h(\gamma|_{[z,\xi]})$, and then the curve

$$\tilde{\gamma}(t) = \begin{cases} \sigma(2t), \ 0 \le t \le 1/2 \\ \gamma|_{[\xi, w]}(2t - 1), \ 1/2 \le t \le 1 \end{cases}$$

has smaller length, in contradiction to the fact that γ is the geodesic. Hence

$$\rho(z,w) = h(\gamma) = h(\gamma\big|_{[z,\xi]}) + h(\gamma\big|_{[\xi,w]}) = \rho(z,\xi) + \rho(\xi,w).$$

Conversly, suppose that the equality holds. Let γ_1, γ_2 be the geodesics between z, ξ and ξ, w respectively. The concatenation as above defines a curve between z and w, and

$$\rho(z, w) = \rho(z, \xi) + \rho(\xi, w) = h(\gamma_1) + h(\gamma_2) = h(\gamma_1 * \gamma_2)$$

Hence the concatenation is a geodesic. Thus $\xi \in [z, w]$.

Theorem 2.12. $PSL_2(\mathbb{R})$ maps geodesics to geodesics.

Proof. Since, as seen already in theorem 2.7, $h(T\gamma) = h(\gamma)$ for all $T \in PSL_2(\mathbb{R})$ and curves γ between z, w. Thus it follows trivially that if γ is a geodesic then so is $T\gamma$

Definition 2.13. A cross ratio, denoted $(z_1, z_2; z_3, z_4)$ is defined as

$$(z_1, z_2; z_3, z_4) = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_4)(z_3 - z_2)}$$

Proposition 2.14. Cross ratios are preserved under Mobius transformations.

Proof. The transformation T, given by

$$T(z) = \frac{z - z_2}{z - z_4} \frac{z_3 - z_4}{z_3 - z_2},$$

maps $z_2 \mapsto 0$, $z_4 \mapsto \infty$, $z_3 \mapsto 1$. $T(z_1)$ is exactly the cross ratio. Let S be any mobius transformation then TS^{-1} is the transformation which maps $Sz_2 \mapsto 0$, $Sz_4 \mapsto \infty$, and $Sz_3 \mapsto 1$. Hence $TS^{-1}(z) = (z, Sz_2; Sz_3, Sz_4)$. Hence $(Sz_1, Sz_2; Sz_3, Sz_4) = TS^{-1}(Sz) = T(z) = (z_1, z_2; z_3, z_4)$.

Theorem 2.15. Let $w, z \in \mathbb{H}$ and γ be the geodesic between them. Extend γ in both directions and let $w^*, z^* \in \mathbb{R} \cup \{\infty\}$ be the end points of the extended curve (semi-circle or straight line perpendicular to real axis) such that $z \in [z^*, w]$. Then

$$\rho(w, z) = \log(w, z^*; z, w^*)$$

Proof. As seen before there exists a $T \in PSL_2(\mathbb{R})$ such that T maps the extended γ to the

imaginary axis. Explicitly such a T is

$$T(\xi) = i \frac{\xi - z^*}{\xi - w^*} \cdot \frac{z - w^*}{z - z^*}$$

this maps z^* to 0, w^* to ∞ , and z to i. Note that the coefficient of T are indeed all real, and it can be made determinant 1 by multiplying and dividing by a real constant. And moreover,

$$T(w) = i \underbrace{\frac{w - z^*}{w - w^*} \cdot \frac{z - w^*}{z - z^*}}_{r}.$$

r must be greater than 1 since $|z-w^*|>|w-w^*|$ and $|w-z^*|>|z-z^*|$ (since we choose w to be closer to w^* and z^* is closer to z). The hyperbolic distance between T(z) and T(w) is $\log(r)$. Since $r=(ir,0;i,\infty)=(T(w),T(z^*);T(z),T(w^*))=(w,z^*;z,w^*)$. Hence the statement of the theorem follows.

Now we describe the Poincare Disk model of the Hyperbolic plane. Consider the unit disk \mathbb{D} , and the map $\phi: \mathbb{H} \to \mathbb{D}$

$$\phi(z) = \frac{iz+1}{z+i}$$

Clearly $|\phi(z)| = |z - i|/|z + i| < 1$ if and only if $z \in \mathbb{H}$. Also ϕ maps the real line to the boundary of \mathbb{D} . This map induces a distance ρ^* on \mathbb{D} given by

$$\rho^*(w,z) = \rho(\phi^{-1}(w),\phi^{-1}(z))$$

It follows that,

$$\rho^*(w,z) = \inf_{\gamma} \int_0^1 \frac{\left|\frac{\mathrm{d}\phi^{-1}\circ\gamma}{\mathrm{d}t}\right|}{\mathrm{Im}(\phi^{-1}\circ\gamma)} \mathrm{d}t$$
$$= \inf_{\gamma} \int_0^1 \frac{\left|\frac{\mathrm{d}\phi^{-1}}{\mathrm{d}z}\right|_{\gamma}\dot{\gamma}|}{\mathrm{Im}(\phi^{-1}\circ\gamma)} \mathrm{d}t$$
$$= \inf_{\gamma} \int_0^1 \frac{2|\dot{\gamma}(t)|}{1 - |\gamma(t)|^2} \mathrm{d}t$$

This gives the metric on \mathbb{D} to be

$$\mathrm{d}s = \frac{2|\mathrm{d}z|}{1 - |z|^2}.$$

This model of the hyperbolic plane is called the Poincare Disk. The geodesics here are circles perpendicular to \mathbb{D} and diametric lines in \mathbb{D} .

Definition 2.16. Let the group of all 2×2 matrices in \mathbb{R} with determinant ± 1 be denoted $S^*L_2(\mathbb{R})$. Let $PS^*L_2(\mathbb{R})$ be the group $S^*L_2(\mathbb{R})/\{\pm I\}$.

Proposition 2.17. Let $z, w \in \mathbb{H}$. Then

$$\sinh\!\left(\frac{1}{2}\rho(z,w)\right) = \frac{|z-w|}{2\sqrt{\mathrm{Im}(z)\,\mathrm{Im}(w)}}$$

Proof. Let T be in $PSL_2(\mathbb{R})$ then T leaves the LHS invariant. It is straight forward to check that the RHS is also invariant. Suppose z = ia and w = ib (b > a) then we know that $\rho(ia, ib) = \log(b/a)$ and thus

$$\sinh\left(\frac{1}{2}\rho(ia,ib)\right) = \frac{b-a}{2\sqrt{ab}} = \frac{|ib| - |ia|}{2\sqrt{\text{Im}(ia)\text{Im}(ib)}}$$

Using the fact that there exists a T which maps the geodesic between arbitrary z, w to a geodesic between ia, ib; the result follows.

Theorem 2.18. The isometry group of \mathbb{H} is isomorphic to $PS^*L_2(\mathbb{R})$.

Proof. Let ϕ be any isometry. If $\xi \in [z, w]$ then

$$\rho(\phi(z), \phi(z)) = \rho(z, w) = \rho(z, \xi) + \rho(\xi, w) = \rho(\phi(z), \phi(\xi)) + \rho(\phi(\xi), \phi(w))$$

Thus $\phi(\xi) \in [\phi(z), \phi(w)]$. This means that isometries map geodesics to geodesics. Consider the positive imaginary line I which is a geodesic. Then $\phi(I)$ is also some geodesic. There exists a $g \in PSL_2(\mathbb{R})$ such that g maps $\phi(I)$ to I. Without loss of generality we can assume $g(\phi(i)) = i$ (since $g(\phi(i)) = ai$, and dividing by a we get another element of $PSL_2(\mathbb{R})$) and that it maps (0, i) and (i, ∞) onto themselves (like in the previous theorem). Suppose that $g \circ \phi(yi) = vi$ then

$$|\log(y)| = \rho(yi, i) = \rho(g \circ \phi(yi), i) = |\log(v)|$$

Either v = y or v = 1/y, but since the intervals (0, i) and (i, ∞) are fixed it follows that v = y. Hence $g \circ \phi$ fixes I. Let $\gamma \circ \phi(x + iy) = u + iv$ then using the previous proposition on the points x + iy and it we get

$$\frac{x^2 + (y-t)^2}{2y} = \frac{u^2 + (v-t)^2}{2v}$$

dividing by t^2 and taking $t \to \infty$ we get v = y and $x^2 = u^2$. Thus

$$g \circ \phi(z) = z$$
 or, $-\bar{z}$

In the first case ϕ is in $PSL_2(\mathbb{R})$ and in the second case it is of the form

$$\phi(z) = g^{-1}(-\bar{z}) = \frac{a\bar{z} + b}{c\bar{z} + d}, \ ad - bc = -1$$

Thus ϕ can be naturally mapped to an element of $S^*L_2(\mathbb{R})$. The homomorphism part of the mapping follows easily, and the kernel of the map is $\{\pm I\}$. Thus the isometry group is

isomorphic to $PS^*L_2(\mathbb{R})$.

Note that $PSL_2(\mathbb{R})$ along with the map $h: z \mapsto -\bar{z}$ generates the isomoetry group. This means that the quotient space $PS^*L_2(\mathbb{R})/PSL_2(\mathbb{R})$ is just $\{PSL_2(\mathbb{R}), h \cdot PSL_2(\mathbb{R})\}$ and thus has index 2. This means that $PSL_2(\mathbb{R})$ is normal in the isometry group.

The Riemannian metric of the Hyperbolic plane is induced by the inner product $\langle \cdot, \cdot \rangle$: $T_z \mathbb{H} \times T_z \mathbb{H} \to \mathbb{R}$ given by

$$\langle \zeta_1, \zeta_2 \rangle = \frac{1}{\operatorname{Im}(z)^2} \operatorname{Re}(\zeta_1 \bar{\zeta}_2)$$

This is an inner product on $T_z\mathbb{H}$ over \mathbb{R} . This induces a norm $\|\cdot\|$ on $T_z\mathbb{H}$ defined as

$$\|\zeta\| = \sqrt{\langle \zeta, \zeta \rangle} = \frac{|\zeta|}{\operatorname{Im}(z)}$$

Since all isometries of \mathbb{H} are (real) differentiable, their pushforward gives a the map $d\phi_z: T_z\mathbb{H} \to T_{\phi(z)}\mathbb{H}$

$$d\phi_z(\zeta) = \frac{\pm \zeta}{(cz+d)^2}$$
, where, $\phi(z) = \frac{az+b}{cz+d}$, & $ad-bc = \pm 1$.

The pushforward is norm preserving since

$$\|d\phi_z(\zeta)\| = \frac{|\zeta|}{|cz+d|^2 \operatorname{Im}(\phi(z))} = \frac{|\zeta|}{\operatorname{Im}(z)} = \|\zeta\|$$

Using the polarization identity,

$$\langle \zeta_1, \zeta_2 \rangle = \frac{1}{2} (\|\zeta_1\| + \|\zeta_2\| - \|\zeta_1 - \zeta_2\|)$$

we can conclude that the pushforward of isometries preserve the absolute value of angles between vectors.

Definition 2.19. Angle between geodesics in \mathbb{H} is defined as the angle between the tangent vectors at the point of intersection.

Definition 2.20. A map on \mathbb{H} is said to be confromal if it preserves angles, and anti-conformal if it preserves absolute value of the angle but reverses direction.

Theorem 2.21. Transformations in $PSL_2(\mathbb{R})$ are conformal and the other isometries are anti-conformal.

Proof. We saw already that the pushforward preserves the absolute value of angles. But since the pushforward at each point is of the form

$$\mathrm{d}\phi_z(\zeta) = \frac{\pm \zeta}{(cz+d)^2}$$
, where, $\phi(z) = \frac{az+b}{cz+d}$, & $ad-bc = \pm 1$.

it follows that $PSL_2(\mathbb{R})$ preserves direction while $z \mapsto -\bar{z}$ reverses orientation.

Definition 2.22. Hyberbolic area of a subset A of \mathbb{H} is defined as

$$\mu(A) = \int_A \frac{\mathrm{d}x \mathrm{d}y}{y^2}$$

Theorem 2.23. If $A \subset \mathbb{H}$ and $\mu(A)$ exists then the hyperbolic area is invariant under transformations of $PSL_2(\mathbb{R})$.

Proof. Suppose that z = x + iy and Tz = u + iv. Then using the Cauchy-Riemann equations the determinant of the Jacobian $\partial(u, v)/\partial(x, y)$ is given by

$$\begin{split} \left| \frac{\partial (u, v)}{\partial (x, y)} \right| &= \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} \\ &= \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2 \\ &= \left| \frac{\mathrm{d}T}{\mathrm{d}z} \right|^2 \\ &= \frac{1}{|cz + d|^4} \end{split}$$

Thus by change of variables

$$\mu(T(A)) = \int_{T(A)} \frac{\mathrm{d}u \mathrm{d}v}{v^2} = \int_A \frac{|cz+d|^4}{|cz+d|^4 y^2} \mathrm{d}x \mathrm{d}y = \mu(A)$$

Thus the area is invariant under $PSL_2(\mathbb{R})$.

Definition 2.24. An n-sided polygon in $\mathbb{H} \cup \mathbb{R} \cup \{\infty\}$ is defined by the area enclosed by n distinct geodesics. The vertices can lie on the boundary.

Theorem 2.25 (Gauss-Bonnet Theorem). A hyperbolic triangle Δ with angles α, β, γ has area $\mu(\Delta) = \pi - \alpha - \beta - \gamma$.

Proof. Case 1. Consider a triangle with one point on $\mathbb{R} \cup \{\infty\}$ then there exists a transformation in $PSL_2(\mathbb{R})$ which takes the vertex on $\mathbb{R} \cup \{\infty\}$ to ∞ . Thus w.l.o.g. we consider a triangle with two sides being lines perpendicular to the imaginary axis. Again w.l.o.g. (by a $PSL_2(\mathbb{R})$ transformation) we can translate and scale the triangle such that the center of the semi-circle (the third side) is at 0 with radius 1. All these transformations preserve the area and the angles. The area of this triangle can be calculated

Figure 2: Case 1.

$$\mu(\Delta) = \int_{\Delta} \frac{\mathrm{d}x \mathrm{d}y}{y^2}$$

$$= \int_{a}^{b} \mathrm{d}x \int_{\sqrt{1-x^2}}^{\infty} \frac{\mathrm{d}y}{y^2}$$

$$= \int_{a}^{b} \frac{\mathrm{d}x}{\sqrt{1-x^2}}$$

$$= \int_{\pi-\alpha}^{\beta} \frac{-\sin\theta \mathrm{d}\theta}{\sin\theta}$$

$$= \pi - \alpha - \beta.$$

Case 2. Suppose that none of the vertices are on $\mathbb{R} \cup \{\infty\}$. There exists a transforantion such that no two vertices lies on a vertical geodesic. Extend the side AB, of the triangle ABC, to a point $D \in \mathbb{R}$. Let $\Delta_1 = ACD$ and $\Delta_2 = CBD$. Then

$$\mu(\Delta) = \mu(\Delta_1) - \mu(\Delta_2) = \pi - \alpha - (\gamma + \theta) - \pi + \theta + (\pi - \beta) = \pi - \alpha - \beta - \gamma$$

This proves the theorem.

Figure 3: Case 2.

Corollary 2.26. The area of an n-gon with angles $\alpha_1 \cdots, \alpha_n$ is $(n-2)\pi - \alpha_1 - \cdots - \alpha_n$.

Proof. This follows from induction. It is true for a triangle. Suppose it is true for an n-1-gon. An n-gon can be divided into a triangle and an n-1-gon by drawing an appropriate geodesic curve. Adding the areas of the two we get the result.

Theorem 2.27 (Brouwer's Fixed Point Theorem). Let $f: \mathbb{D} \to \mathbb{D}$ be a continous bijection on the disk. There are is at least one fixed point.

Amazing proof using Functors. Suppose f fixes no point. Define the function $r: \mathbb{D} \to S^1$ in the following way: draw extend the line from f(x) to x to the boundary of \mathbb{D} where it intersects with the circle at r(x). Note that r fixes each point on S^1 . We have the short exact sequence

$$0 \longrightarrow S^1 \stackrel{i}{\longrightarrow} \mathbb{D} \stackrel{r}{\longrightarrow} S^1 \longrightarrow 0$$

Since there is a functor π_1 : Top_{*} \to Grp which maps a based topological space (X, x_0) to it's fundamental group at x_0 . Applying this functor to the above exact sequence at any point, gives the short exact sequence

$$0 \longrightarrow \pi_1(S^1) \xrightarrow{\pi_1(i)} \pi_1(\mathbb{D}) \xrightarrow{\pi_1(r)} \pi_1(S^1) \longrightarrow 0$$

Since $\pi_1(S^1) = \mathbb{Z}$ and $\pi_1(\mathbb{D}) = 0$ we get that $\mathrm{id}_{S^1} = \pi_1(r \circ i) = \pi_1(r) \circ \pi_1(i) = 0$, a contradiction.

Brouwer's theorem tells us that isometries of \mathbb{H} must fix at least one point, since \mathbb{H} is isometric to the disk. The following is a classification of

Theorem 2.28. Let T be an orientation preserving isometry of \mathbb{H} . Then one of the following happens:

- 1. T fixes only one point in \mathbb{H} .
- 2. T fixes only one point on the boundary of \mathbb{H} .
- 3. T fixes two points on the boundary of \mathbb{H} .

Proof. Since $T \in PSL_2(\mathbb{R})$, z is a fixed point if

$$z = \frac{az+b}{cz+d} \implies cz^2 + (d-a)z - b = 0$$

Thus

$$z = \frac{(a-d) \pm \sqrt{(a+d)^2 - 4}}{2c}$$

Thus case 1 corresponds to a+d<2, 2 corresponds to a+d=2, and 3 corresponds to a+d>2.

3 Hyperbolic Structures on Surfaces

For the sake of consistency with the texts, I use the Poincare model of hyperbolic plane here.

Definition 3.1. Let X be a surface. A hyperbolic structure on X is an atlas of charts such that each chart $\phi: U \to \phi(U) \subset \mathbb{H}$ is a homeomorphism (equivalently this can be defined to all of \mathbb{H}) and the transition maps in the atlas are restrictions of orientation preserving isometries of \mathbb{H} .

Let $p \in X$ and (U, ϕ) be a chart around p. We can define an inner product on T_pX as

$$\langle u, v \rangle_{T_p X} = \langle \phi_* u, \phi_* v \rangle$$

This is well defined since if (V, ψ) is another chart containing p then

$$\langle \psi_* u, \psi_* v \rangle = \langle \psi_* \circ \phi_*^{-1} \circ \phi_* u, \psi_* \circ \phi_* \circ \phi_* v \rangle = \langle \phi_* u, \phi_* v \rangle.$$

Since $\langle \cdot, \cdot \rangle_{T_pX}$ is a smooth bilinear map it serves as a Riemann metric on X. From here on I drop the subscript T_pX on the metric. The norm induced by the metric will just be written $\|\cdot\|$. From here on we can think of Hyperbolic surface to be a topological surface with a hyperbolic Atlas and a Riemannian metric which is isometric to the hyperbolic metric locally. The metric induces a distance on X which is given by the infimum of the length of the curves.

Proposition 3.2. Let $\gamma:[0,1] \to U \subset X$ be a curve in X between x_0 and x_1 . If γ is a geodesic then there exist charts (U_α,ϕ_α) such that they cover γ and $\phi_\alpha \circ \gamma\big|_{U_\alpha}$ is a segment of a geodesic in \mathbb{H} .

Proof. Suppose that γ is a geodesic. Let x be a point on γ . There exists a neighborhood U of this point which is isometric to \mathbb{H} by the ϕ . Let σ be some curve between the end-points of the curve $\phi \circ \gamma$ (which always exist since \mathbb{H} is complete). Then,

$$L(\sigma) = L(\phi^{-1} \circ \sigma) \ge L(\gamma) = L(\phi \circ \gamma)$$

since γ is a geodesic. Thus it follows that $\phi \circ \gamma$ is a geodesic.

Theorem 3.3 (Half of Hopf-Rinow theorem). In a complete hyperbolic surface, all geodesics can be extended indefnitely.

Proof. Suppose that $\gamma: (-\epsilon, \epsilon) \to X$ is a bounded geodesic in X. Then consider a sequence of points $\gamma(t_n)$ where $t_n \to \epsilon$. Since X is complete the Cauchy sequence $\gamma(t_n)$ converges to a unique point, say x_1 . Let U, ϕ be some chart centered around x_1 . The image $\phi \circ \gamma$ is a geodesic by previous proposition. Extend this in $\mathbb H$ indefinitely. Then the pull back of this extension extends γ at x_1 till a new end point x_2 . Repeating this process one can indefinitely extend γ .

Theorem 3.4. Any complete, connected, simply-connected hyperbolic surface is isometric to \mathbb{H} .

Proof. Suppose X is a space with the mentioned properties. Consider the maps $E: \mathbb{H} \to X, D: X \to \mathbb{H}$ defined as follows:

- The exponential. Choose a point $a \in X$ and a chart (U, ϕ) such that $\phi(a) = 0$. For $x \in \mathbb{H}$ let γ be the geodesic between 0 and x and then extend the geodesic $\phi^{-1}(\gamma)$. Define E(x) as the point on the extended geodesic such that $\operatorname{dist}(a, E(x)) = \rho(0, x)$.
- The developing. Fix a point $a \in X$ and a chart (U, ϕ) around it. There exists a map $D: X \to \mathbb{H}$ such that D is a local isometry and $D|_U = \phi$. This claim is proven below:

proof of existence of D. Choose a path γ between points $a, b \in X$. The path can be cover by finitely many convex coordinate charts (due to compactness), say (U_i, ϕ_i) with $(U_0, \phi_0) = (U, \phi)$. Refine the covering such that it is minimal (so that U_i only intersects with $U_{i\pm 1}$ and no U_i is contained in U_j). Choose points $x_0 = a, \dots, x_i, \dots, x_n = b$ on γ such that $[x_i, x_{i+1}] \subset U_i$. If the maps ϕ_i and ϕ_{i+1} do not agree on $U_i \cap U_{i+1}$, which contains x_{i+1} , then there exists an isometry g (unique extension of $\phi_{i+1} \circ \phi_i^{-1}$) such that $g \circ \phi_i = \phi_{i+1}$ on their intersection. Thus without loss of generality we can assume that all the charts agree on the intersection (by replacing ϕ_{i+1} with $g \circ \phi_1$). Now define $D(b) = \phi_n(b)$.

(Well defined-ness). Clearly D is not dependent on the choice x_i . Now suppose $(U_i', \phi_i')_{i=0}^m$ is a different set of charts which minimally cover γ with $U_0, \phi_0 = U, \phi$ and such that the coordinate charts agree on the intersection. We show by induction that whenever $U_i \cap U_j' \neq \emptyset$ then $\phi_j' = \phi_i$ in the intersection. By construction $U_0 = U_0'$ and $\phi_0' = \phi_0$. Since $U_0' \cap U_1 = U_0 \cap U_1$ it follows that in this intersection $\phi_0' = \phi_0 = \phi_1$. This is the base case of the induction. Suppose now that for all s < j if $U_s' \cap U_i \neq \emptyset$ then $\phi_s' = \phi_i$ in the intersection for all i. Consider U_j' and suppose that it intersects with some U_i . There are two cases:

- 1. $U'_{j-1} \cap U_i \neq \emptyset$. In this case consider the intersection $U_i \cap U'_j \cap U'_{j-1}$. In this region $\phi'_j = \phi'_{j-1} = \phi_i$. Restricted to $\phi'_j(U_i \cap U'_j)$ the map $g = \phi_i \circ (\phi'_j)^{-1}$ is in $PSL_2(\mathbb{R})$. Since on $\phi'_j(U_i \cap U'_j \cap U_i)$ the map g is identity it follows that g is identity everywhere in $\phi'_j(U_i \cap U'_j)$ (since Mobius maps are fixed by 3 points).
- 2. $U'_{j-1} \cap U_i = \emptyset$. Then U'_{j-1} intersects U_{i-1} (by construction). In the region $U_{i-1} \cap U_j \cap U_{j-1}$ we have $\phi'_j = \phi'_{j-1} = \phi_{i-1}$ and thus $\phi' \circ \phi_{i-1}^{-1}$ is identity on infinitely many points. Thus they are the same on $U'_j \cap U_{i-1}$. In the region $U'_j \cap U_i \cap U_{i-1}$ we have $\phi'_j = \phi_{i-1} = \phi_i$. Using the same argument as before we have that $\phi_i = \phi'_j$ everywhere on $U_i \cap U'_j$.

Hence the induction step is complete. Since $b \in U'_m \cap U_n$ it follows that $\phi'_m(b) = \phi_n(b)$. Hence D is not dependent on the covering of γ . Now we need to show that D does not depend on γ . If γ' is some other curve. Since X is simply connected it follows that there is a Homotopy H between γ and γ' . Using continuity of H there exists an ϵ so that the curves H(s,t) and $H(s,t+\epsilon)$ can be covered by the same charts. Hence $\phi_n(b)$ is the same for both. Thus it follows that D is well defined.

Now that we have these two functions, note that $D \circ E = 1_{\mathbb{H}}$: let $x \in \mathbb{H}$ then E(x) lies on a geodesic γ from a to E(x) such that $\phi \circ \gamma$ is part of the geodesic connecting 0 and x. Let U_i be any minial cover of the geodesic from a to E(x). Then $\phi_n(E(x))$ lies on the extension of the geodesic $\phi \circ \gamma$ and $\rho(0, D(E(x))) = \rho(0, x)$ since D and E are local isometries, but there is only one such point on the geodesic: x. Hence $D \circ E(x) = x$.

Note that on the image of E in X the map $E \circ D$ is identity. $E(\mathbb{H})$ is closed and open (since E is local injection it follows by Invariance of domain theorem). Since X is connected the only non-trivial clopen subset is X itself. Thus $E(\mathbb{H}) = X$. Hence $E \circ D = 1_X$.

As a consequence of the above theorem it follows that the universal cover of any hyperbolic surface X is isometric to \mathbb{H} .

References

- [1] J. Munkres, *Topology*, ser. Featured Titles for Topology. Prentice Hall, Incorporated, 2000. [Online]. Available: https://books.google.co.in/books?id=XjoZAQAAIAAJ
- B. Farb and D. Margalit, A Primer on Mapping Class Groups (PMS-49), ser.
 Princeton Mathematical Series. Princeton University Press, 2011. [Online]. Available: https://books.google.co.in/books?id=TmMrru65-XsC
- [3] S. Katok, Fuchsian Groups, ser. Chicago Lectures in Mathematics. University of Chicago Press, 1992. [Online]. Available: https://books.google.co.in/books?id=R7uMkmXh1AYC
- [4] A. J. Casson and S. A. Bleiler, Automorphisms of Surfaces after Nielsen and Thurston, ser. London Mathematical Society Student Texts. Cambridge University Press, 1988.