Datenbanken

- 1. Motivation
- 2. Datenorganisation und Datenbankkonzept
- 3. Semantische Datenmodellierung
- 4. Umsetzung in Datenbanken
- 5. Datenbanknutzung mit SQL
- 6. Transaktionsmanagement
- 7. Datenbankentwicklung
- 8. Datenbanken und IT-Sicherheit
- 9. Systemarchitektur
- 10. Verteilte Datenbanken
- 11. NoSQL und Entwicklungstrends

Lernziele

- Sie verstehen die mathematischen Konzepte der Relationenalgebra, welche die Grundlage aller Datenbankoperationen darstellt.
- Sie kennen die SQL-Befehle für folgende Operationen:
 - Tabellen anlegen und verwalten
 - Datensätze anlegen und verwalten
 - Daten auslesen und auswerten

Datenbanksprachen

Datenbanksprachen

Relation

Eine **Relation** R ist eine Teilmenge des kartesischen Produktes der (nicht notwendigerweise disjunkten) Wertebereiche W_i von n Attributen A_i , W_i = dom (A_i) , i = 1, ..., n:

$$R \subseteq W_1 \times W_2 \times ... \times W_n$$

Die Relation R stellt somit eine Menge von n-Tupeln dar:

$$R = \{(w_1, w_2, ..., w_n) \mid w_i \in W_i, i = 1, ..., n\}$$

Relation – Beispiel

Geschlecht: $W_1 = \{m, w, d\}$

Familienstand: $W_2 = \{ledig, verheiratet, geschieden, verwitwet\}$

Mögliche Relation Mitarbeiter

Relationstyp: Mitarbeiter(Geschlecht, Familienstand)

```
W<sub>1</sub> × W<sub>2</sub> = Geschlecht × Familienstand = {(m, ledig), (m, verheiratet), (m, geschieden), (m, verwitwet), (w, ledig), (w, verheiratet), (w, geschieden), (w, verwitwet), (d, ledig), (d, verheiratet), (d, geschieden), (d, verwitwet)}
```

Mitarbeiter = {(m, ledig), (m, verwitwet), (w, verheiratet), (w, verwitwet)}

Mitarbeiter		
Geschlecht	Familienstand	
m	ledig	
m	verwitwet	
W	verheiratet	
W	verwitwet	

Relationenalgebra

Seien R und S zwei Relationen:

Klassische Operationen

1. Vereinigung	1.	Vereinigung	$R \cup S$
----------------	----	-------------	------------

2. Durchschnitt
$$R \cap S$$

3. Differenz
$$R - S$$

5. Kartesisches Produkt R × S

Relationenspezifische Operationen

6.	Projektion	R[a]
•	i rojondon	[∽]

7. Verbund (Join)
$$R[op_1 \Theta op_2]S$$

8. Restriktion
$$R[op_1 \Theta op_2]$$

Hierbei sind op₁ und op₂ Operanden (z.B. Attribute oder Strings) zur Operation Θ .

Relationenalgebra

Eine Datenbanksprache wird **relational vollständig** genannt, wenn sie mindestens den Umfang der relationalen Algebra umfasst.

 Mit Hilfe der relationalen Algebra lassen sich beliebige Teilmengen aus einem gegebenen Satz von Relationen extrahieren.

KFZ-Typ			
<u>TSN</u>	Bezeichnung	kW	Kraftstoff
773	Seat Leon 1,6 16 V	77	Benzin
851	Audi A4 2,5 TDI	120	Diesel
503	BMW 735i	200	Benzin
456	Mercedes Benz 220	110	Diesel
167	Mazda MX-5 1,9 I	107	Benzin

Kunde		
<u>KNr</u>	Name	Vorname
1	Bliemel	Harald
2	Schneider	Gertrud
3	Kawulske	Dieter
4	Heinrich	Klaus

Vertrag					
<u>VNr</u>	TSN	KNr	Kennzeichen	Datum	km/Jahr
1578	503	4	HH PE 156	03.05.14	20.000
2457	456	2	DO S 256	04.08.13	19.000
3549	167	3	HA B 9864	15.03.15	8.500
1756	851	1	EN AA 456	28.01.12	12.500

Vollkasko	
<u>VNr</u>	SB
1578	100
2457	0
3549	600

Teilkasko	
<u>VNr</u>	SB
1756	0
1578	150
2457	0
3549	600

Vereinigungsverträglichkeit

Zwei Relationen gleichen Grades heißen vereinigungsverträglich, wenn jedem Attribut der ersten Relation ein Attribut gleichen Datentyps der zweiten Relation zugeordnet werden kann.

Intuitiv: Zwei Tabellen können vereinigt werden, wenn beide Tabellen den gleichen Aufbau haben.

Relationenalgebra – Vereinigung & Durchschnitt

Es seien R und S zwei vereinigungsverträgliche Relationen. Dann besteht die **Vereinigung R** ∪ **S** in der Menge aller Datensätze, die in R oder in S bzw. in beiden Relationen enthalten sind:

$$R \cup S = \{t \mid t \in R \lor t \in S\}$$

Es seien R und S zwei vereinigungsverträgliche Relationen. Der **Durchschnitt** R \cap S besteht aus der Menge aller Tupel, die sowohl in der Relation R als auch in der Relation S enthalten sind:

$$R \cap S = \{t \mid t \in R \land t \in S\}$$

Relationenalgebra – Vereinigung & Durchschnitt

Vollkasko	
<u>VNr</u>	SB
1578	100
2457	0
3549	600

Teilkasko	
<u>VNr</u>	SB
1756	0
1578	150
2457	0
3549	600

Vollkasko ∪ Teilkasko

VNr	SB
1756	0
1578	150
2457	0
3549	600
1578	100

Vollkasko ∩ Teilkasko

VNr	SB
2457	0
3549	600

Relationenalgebra – Differenz

Es seien R und S zwei vereinigungsverträgliche Relationen. Die **Differenz R – S** besteht aus der Menge aller Tupel, die in R aber nicht zugleich in S enthalten sind:

$$R - S = \{t \mid t \in R \land t \notin S\}$$

Relationenalgebra – Differenz

Vollkasko		
<u>VNr</u>	SB	
1578	100	
2457	0	
3549	600	

Teilkasko		
<u>VNr</u>	SB	
1756	0	
1578	150	
2457	0	
3549	600	

Teilkasko - Vollkasko

VNr	SB
1756	0
1578	150

Relationenalgebra – Symmetrische Differenz

Es seien R und S zwei vereinigungsverträgliche Relationen. Die **symmetrische Differenz R/S** besteht aus der Menge aller Tupel, die in R oder in S aber nicht zugleich in R und in S enthalten sind:

R/S =
$$\{t \mid t \in R \text{ oder } t \in S \land t \notin R \cap S\}$$

bzw. R/S = $(R - S) \cup (S - R)$

Relationenalgebra – Symmetrische Differenz

Vollkasko		
<u>VNr</u>	SB	
1578	100	
2457	0	
3549	600	

Teilkasko		
<u>VNr</u>	SB	
1756	0	
1578	150	
2457	0	
3549	600	

Teilkasko / Vollkasko

VNr	SB
1578	100
1578	150
1756	0

Es seien R und S zwei Relationen beliebigen Grades. Dann besteht das **kartesische Produkt R** × **S** aus der Menge aller möglichen Verkettungen von Datensätzen aus R und aus S:

$$R \times S = \{r \sim s \mid r \in R \land s \in S\}$$

VNr	TSN KNr	Kennzeichen	Datum	km/Jahr	VNr	SB	
-----	---------	-------------	-------	---------	-----	----	--

Vertrag					
<u>VNr</u>	TSN	KNr	Kennzeichen	Datum	km/Jahr
1578	503	4	HH PE 156	03.05.14	20.000
2457	456	2	DO S 256	04.08.13	19.000
3549	167	3	HA B 9864	15.03.15	8.500
1756	851	1	EN AA 456	28.01.12	12.500

Vollkasko		
<u>VNr</u>	SB	
1578	100	
2457	0	
3549	600	

VNr	TSN	KNr	Kennzeichen	Datum	km/Jahr	VNr	SB
-----	-----	-----	-------------	-------	---------	-----	----

Vertra	ag				
<u>VNr</u>	TSN	KNr	Kennzeichen	Datum	km/Jahr
1578	503	4	HH PE 156	03.05.14	20.000
2457	456	2	DO S 256	04.08.13	19.000
3549	167	3	HA B 9864	15.03.15	8.500
1756	851	1	EN AA 456	28.01.12	12.500

Vollkasko			
<u>VNr</u>	SB		
1578	100		
2457	0		
3549	600		

VNr	TSN	KNr	Kennzeichen	Datum	km/Jahr	VNr	SB
1578	503	4	HH PE 157	03.05.14	20.000	1578	100
1578	503	4	HH PE 157	03.05.14	20.000	2457	0
1578	503	4	HH PE 157	03.05.14	20.000	3549	600

Vertrag					
<u>VNr</u>	TSN	KNr	Kennzeichen	Datum	km/Jahr
1578	503	4	HH PE 156	03.05.14	20.000
2457	456	2	DO S 256	04.08.13	19.000
3549	167	3	HA B 9864	15.03.15	8.500
1756	851	1	EN AA 456	28.01.12	12.500

Vollkasko			
<u>VNr</u>	SB		
1578	100		
2457	0		
3549	600		

VNr	TSN	KNr	Kennzeichen	Datum	km/Jahr	VNr	SB
1578	503	4	HH PE 157	03.05.14	20.000	1578	100
1578	503	4	HH PE 157	03.05.14	20.000	2457	0
1578	503	4	HH PE 157	03.05.14	20.000	3549	600

Vertrag					
<u>VNr</u>	TSN	KNr	Kennzeichen	Datum	km/Jahr
1578	503	4	HH PE 156	03.05.14	20.000
2457	456	2	DO S 256	04.08.13	19.000
3549	167	3	HA B 9864	15.03.15	8.500
1756	851	1	EN AA 456	28.01.12	12.500

Vollkasko			
<u>VNr</u>	SB		
1578	100		
2457	0		
3549	600		

VNr	TSN	KNr	Kennzeichen	Datum	km/Jahr	VNr	SB
1578	503	4	HH PE 157	03.05.14	20.000	1578	100
1578	503	4	HH PE 157	03.05.14	20.000	2457	0
1578	503	4	HH PE 157	03.05.14	20.000	3549	600
2457	456	2	DO S 256	04.08.13	19.000	1578	100
2457	456	2	DO S 256	04.08.13	19.000	2457	0
2457	456	2	DO S 256	04.08.13	19.000	3549	600

Vertrag						
<u>VNr</u>	TSN	KNr	Kennzeichen	Datum	km/Jahr	
1578	503	4	HH PE 156	03.05.14	20.000	
2457	456	2	DO S 256	04.08.13	19.000	
3549	167	3	HA B 9864	15.03.15	8.500	
1756	851	1	EN AA 456	28.01.12	12.500	

Vollkasko			
<u>VNr</u>	SB		
1578	100		
2457	0		
3549	600		

VNr	TSN	KNr	Kennzeichen	Datum	km/Jahr	VNr	SB
1578	503	4	HH PE 157	03.05.14	20.000	1578	100
1578	503	4	HH PE 157	03.05.14	20.000	2457	0
1578	503	4	HH PE 157	03.05.14	20.000	3549	600
2457	456	2	DO S 256	04.08.13	19.000	1578	100
2457	456	2	DO S 256	04.08.13	19.000	2457	0
2457	456	2	DO S 256	04.08.13	19.000	3549	600
3549	167	3	HA B 9864	15.03.15	8.500	1578	100
3549	167	3	HA B 9864	15.03.15	8.500	2457	0
3549	167	3	HA B 9864	15.03.15	8.500	3549	600
1756	851	1	EN AA 456	28.01.12	12.500	1578	100
1756	851	1	EN AA 456	28.01.12	12.500	2457	0
1756	851	1	EN AA 456	28.01.12	12.500	3549	600

Relationenalgebra – Projektion

Sei R eine Relation mit den Attributen a₁, a₂, ..., a_M und sei a eine in R vertretene Attributkombination. Dann ist die **Projektion** der Relation R auf die Attributkombination a definiert als:

 $R[a] = \{t[a] \mid t \in R \text{ ein beliebiges Tupel}\}$ Alternative Schreibweise:

$$\pi_a(R) = \{t_a \mid t \in R\}$$

Relationenalgebra – Projektion

Relationenalgebra – Projektion

Kunde					
<u>KNr</u>	Name	Vorname			
1	Bliemel	Harald			
2	Schneider	Gertrud			
3	Kawulske	Dieter			
4	Heinrich	Klaus			

Kunde[KNr, Name]

KNr	Name
1	Bliemel
2	Schneider
3	Kawulske
4	Heinrich

Relationenalgebra – Verbund/Join

Es seien R und S zwei beliebige Relationen, wobei a und c vereinigungsverträgliche Attributkombinationen aus den Relationen R bzw. S sind. Dann ist der **Verbund** der Relation R und S über die Attributkombination a und c definiert als:

R[a Θ c]S = {r ~ s | r \in R, s \in S \land r[a] Θ s[c]} Alternative Schreibweise:

 $R\bowtie_{Ausdruck}S=\{r\cup s|r\in R\land s\in S\land Ausdruck\}$

Bemerkung: ⊕ ist hier ein beliebiger Operator.

Relationenalgebra – Equi-Join / Inner Join

Der **Equi-Join** zweier Relationen R und S über die vereinigungsverträglichen Attributkombinationen a und c ist definiert als:

R[a=c]S = $\{r \sim s - s[c] \mid r \in R, s \in S \land r[a] = s[c]\}$ Alternative Schreibweise:

$$R\bowtie_{a=c}S=\{r\cup s|r\in R\land s\in S\land r[a]=s[c]\}$$

Bemerkung: Hier ist es immer der Operator =.

Die doppelte Spalte s[c] wird im Join weggelassen.

Relationenalgebra – Equi-Join / Inner Join

Relationenalgebra – Equi-Join / Inner Join

Kunde			Vertrag					
<u>KNr</u>	Name	Vorname	<u>VNr</u>	TSN	KNr	Kennzeichen	Datum	km/Jahr
1	Bliemel	Harald	1578	503	4	HH PE 156	03.05.14	20.000
2	Schneider	Gertrud	2457	456	2	DO S 256	04.08.13	19.000
3	Kawulske	Dieter	3549	167	3	HA B 9864	15.03.15	8.500
4	Heinrich	Klaus	1756	851	1	EN AA 456	28.01.12	12.500

P := Kunde [Kunde.KNr = Vertrag.KNr] Vertrag

KNr	Name	Vorname	VNr	TSN	Kennzeichen	Datum	km/Jahr
1	Bliemel	Harald	1756	851	EN AA 456	28.01.12	12.500
2	Schneider	Gertrud	2457	456	DO S 256	04.08.13	19.000
3	Kawulske	Dieter	3549	167	HA B 9864	15.03.15	8.500
4	Heinrich	Klaus	1578	503	HH PE 156	03.05.14	20.000

Relationenalgebra - Natural Join

Der **Natural Join** ist ein Equi-Join, bei dem die vereinigungsverträglichen Attributkombinationen aus den Relationen R und S aus den gleich benannten Attributen in R uns S bestehen.

Sei $R(A_1,...,A_m,B_1,...,B_n)$ und $S(B_1,...,B_n,C_1,...,C_m)$ zwei Relationen. Dann ist

$$R \bowtie S = \{r \cup s[C_1, ..., C_n] \mid r \in R \land s \in S \land r[B_1, ..., B_n] = s[B_1, ..., B_n]\}$$

Gibt es keine gemeinsamen Attribute, so ist das Ergebnis des natürlichen Verbundes das kartesische Produkt.

KFZ-Typ					
<u>TSN</u>	Bezeichnung	kW	Kraftstoff		
773	Seat Leon 1,6 16 V	77	Benzin		
851	Audi A4 2,5 TDI	120	Diesel		
503	BMW 735i	200	Benzin		
456	Mercedes Benz 220	110	Diesel		
167	Mazda MX-5 1,9 I	107	Benzin		

Kunde					
<u>KNr</u>	Name	Vorname			
1	Bliemel	Harald			
2	Schneider	Gertrud			
3	Kawulske	Dieter			
4	Heinrich	Klaus			

Vertrag						
<u>VNr</u>	TSN	KNr	Kennzeichen	Datum	km/Jahr	
1578	503	4	HH PE 156	03.05.14	20.000	
2457	456	2	DO S 256	04.08.13	19.000	
3549	167	3	HA B 9864	15.03.15	8.500	
1756	851	1	EN AA 456	28.01.12	12.500	

Vollkasko			
<u>VNr</u>	SB		
1578	100		
2457	0		
3549	600		

Teilkasko			
<u>VNr</u>	SB		
1756	0		
1578	150		
2457	0		
3549	600		

Relationenalgebra – Left-Outer-Join

Es seien R und S zwei beliebige Relationen, wobei a und c vereinigungsverträgliche Attributkombinationen aus den Relationen R bzw. S sind. Der **Left-Outer-Join** ist ein Spezialfall des Equi-Joins, bei dem die Tupel aus R, die keine Entsprechung in S haben, in die Ergebnismenge aufgenommen und mit leeren Werten (NULL) aufgefüllt werden.

R [a=c]
$$_{LO}$$
S = {r ~ s - s[c] | r \in R, s \in S \wedge r[a] = s[c]} \cup {r ~ NULL |s - s[c]| | r \in R \wedge \nexists s[c]: r[a] = s[c]}

Alternative Schreibweise:

$$R\bowtie_{a=c}S$$

Relationenalgebra – Left-Outer-Join

KFZ-Typ					
<u>TSN</u>	Bezeichnung	kW	Kraftstoff		
773	Seat Leon 1,6 16 V	77	Benzin		
851	Audi A4 2,5 TDI	120	Diesel		
503	BMW 735i	200	Benzin		
456	Mercedes Benz 220	110	Diesel		
167	Mazda MX-5 1,9 l	107	Benzin		

Vertrag							
<u>VNr</u>	TSN	KNr	Kennz.	Datum	km/Jahr		
1578	503	4	HH PE 156	03.05.14	20.000		
2457	456	2	DO S 256	04.08.13	19.000		
3549	167	3	HA B 9864	15.03.15	8.500		
1756	851	1	EN AA 456	28.01.12	12.500		

LOJ:= KFZ-Typ[KFZ-Typ.TSN = Vertrag.TSN]_{LO} Vertrag

TSN	Bezeichnung	kW	Kraftstoff	VNr	KNr	Kennz.	Datum	km/Jahr
773	Seat Leon 1,6 16 V	77	Benzin					
851	Audi A4 2,5 TDI	120	Diesel	1756	1	EN AA 456	28.01.12	12.500
503	BMW 735i	200	Benzin	1578	4	HH PE 156	03.05.14	20.000
456	Mercedes Benz 220	110	Diesel	2457	2	DO S 256	04.08.13	19.000
167	Mazda MX-5 1,9 I	107	Benzin	3549	3	HA B 9864	15.03.15	8.500

Relationenalgebra – Right-Outer-Join

Es seien R und S zwei beliebige Relationen, wobei a und c vereinigungsverträgliche Attributkombinationen aus den Relationen R bzw. S sind. Der **Right-Outer-Join** ist ein Spezialfall des Equi-Joins, bei dem die Tupel aus S, die keine Entsprechung in R haben, in die Ergebnismenge aufgenommen und mit leeren Werten (NULL) aufgefüllt werden.

R[a=c]_{RO}S = {r ~ s - s[c] | r ∈ R, s ∈ S ∧ r[a] = s[c]}

$$\cup$$
 {NULL^{|r - s[c]|} ~ s | s ∈ S∧ \nexists r[a]: r[a] = s[c]}

Alternative Schreibweise:

$$R\bowtie_{a=c}S$$

Relationenalgebra – Right-Outer-Join

Vollkasko				
<u>VNr</u>	SB			
1578	100			
2457	0			
3549	600			

Teilkasko				
<u>VNr</u>	SB			
1756	0			
1578	150			
2457	0			
3549	600			

ROJ:= Vollkasko[Vollkasko.VNr = Teilkasko.VNr]_{RO} Teilkasko

VNr	Vollkasko.SB	Teilkasko.SB
1578	100	150
2457	0	0
3549	600	600
1756		0

Relationenalgebra – Full-Outer-Join

Es seien R und S zwei beliebige Relationen, wobei a und c vereinigungsverträgliche Attributkombinationen aus den Relationen R bzw. S sind. Der **Full-Outer-Join** ist ein Spezialfall des Equi-Joins, bei dem die Tupel, die keine Entsprechung in der jeweils anderen Relation haben, in die Ergebnismenge aufgenommen und mit leeren Werten (NULL) aufgefüllt werden.

$$R[a=c]_{FO}S = \{r \sim s - s[c] \mid r \in R, s \in S \land r[a] = s[c]\}$$

$$\cup \{r \sim \mathsf{NULL}^{|\mathsf{s}-\mathsf{s}[\mathsf{c}]|} \mid r \in \mathsf{R} \land \nexists \mathsf{s}[\mathsf{c}] \colon \mathsf{r}[\mathsf{a}] = \mathsf{s}[\mathsf{c}] \}$$

$$\cup$$
 {NULL|r-s[c]| ~ s | s \in S \land \nexists r[a]: r[a] = s[c]}

Alternative Schreibweise:

$$R\bowtie_{a=c}S$$

5

Relationenalgebra – Join-Arten

Datensatz der linken Tabelle: Query liefert die roten Mengen.

Datensatz der rechten Tabelle:

- Inner Join
 - Nur Datensätze anzeigen, welche direkt miteinander verbunden sind.
 - Datensätze ohne Verknüpfung werden nicht angezeigt

- Outer Join
 - Datensätze mit direkter Verbindung werden angezeigt.
 - Nicht-verknüpfte Datensätze werden ebenfalls angezeigt.
 - → **Left** (linker Verbund)

$$R\bowtie_{a=c}S$$

- → Right (rechter Verbund)
- $R\bowtie_{a=c}S$

- → Full (voller Verbund)
- $R\bowtie_{a=c}S$

Relationenalgebra - Restriktion / Selektion

Es seien a eine Attributkombinationen aus der Relation R und c eine mit a vereinigungsverträgliche Kombination aus konstanten Werten bzw. Attributen von R. Dann ist die **Restriktion / Selection** der Relation R bzgl. der Attributkombinationen a und c definiert als: $R[a \Theta c] = \{t \mid t \in R \land t[a] \Theta t[c]\}$

Es sei R eine Relation und B eine Bedingung, die auf einer Attributkombination a aus R definiert ist. So ist die Restriktion/Selection der Relation R bzgl. B definiert als:

$$R_B = \{t \mid t \in R \land B(t) = wahr\}$$

Alternative Schreibweise:

$$\sigma_B(R) = \{t \mid t \in R \land t \text{ erfullt B}\}\$$

Relationenalgebra – Restriktion

Relationenalgebra – Restriktion

KFZ-Typ						
<u>TSN</u>	Bezeichnung	kW	Kraftstoff			
773	Seat Leon 1,6 16 V	77	Benzin			
851	Audi A4 2,5 TDI	120	Diesel			
503	BMW 735i	200	Benzin			
456	Mercedes Benz 220	110	Diesel			
167	Mazda MX-5 1,9 I	107	Benzin			

R := KFZ-Typ [kW>=110]

TSN	Bezeichnung	kW	Kraftstoff
851	Audi A4 2,5 TDI	120	Diesel
503	BMW 735i	200	Benzin
456	Mercedes Benz 220	110	Diesel

Relationenalgebra – Übersicht

Vereinigung

$$R \cup S = \{t \mid t \in R \text{ oder } t \in S\}$$

Durchschnitt

$$R \cap S = \{t \mid t \in R \text{ und } t \in S\}$$

Differenz

$$R - S = \{t \mid t \in R \text{ und } t \notin S\}$$

Symmetrische Differenz

$$R/S = \{t \mid t \in R \text{ oder } t \in S \text{ und } t \notin R \cap S\}$$

Kartesisches Produkt

$$R \times S = \{r \times s \mid r \in R \text{ und } s \in S\}$$

Relationenalgebra – Übersicht

Projektion

$$\pi_a(R) = \{t_a \mid t \in R\}$$

Verbund-Join

$$\mathbb{R} \bowtie_{\mathsf{Ausdruck}} \mathbf{S} = \{r \sim s \mid r \in R, s \in S \text{ und } r[a] \oplus s[c]\}$$

Equi-Join

$$\mathbf{R} \bowtie_{\mathbf{a}=\mathbf{c}} \mathbf{S} = \{ \mathbf{r}[\mathbf{a}] \sim \mathbf{s}[\mathbf{c}] \mid \mathbf{r} \in \mathbf{R}, \, \mathbf{s} \in \mathbf{S} \text{ und } \mathbf{r}[\mathbf{a}] = \mathbf{s}[\mathbf{c}] \}$$

Restriktion/Selection

$$\sigma_{B}(R) = \{t \mid t \in R \land t \text{ erfullt B}\}\$$

Structured Query Language – SQL

Was ist SQL?

- Datenbanksprache
- Deskriptiv (das gewünschte Ergebnis beschreibend)
- Basis: Relationenalgebra bzw. Mengenlehre
- Aufgaben
 - Definition relationaler Datenbanken
 - Bearbeitung und Auswertung der Daten

Merkmale von SQL

- Plattformunabhängigkeit
- Normung
 - American National Standards Institute (ANSI)
 - International Standards Organisation (ISO)
- Große Verbreitung
- Kleiner, aber mächtiger Sprachumfang

SQL – Teilbereiche

- Data Definition Language (DDL)
 - Definition der Datenbankstruktur
- View Definition Language (VDL)
 - Definition von Sichten auf die Daten
- Data Manipulation Language (DML)
 - Manipulation und Retrieval von Datensätzen
- Data Control Language (DCL)
 - Definition von Zugriffsrechten
- Data Storage Definition Language (DSDL)
 - Definition der physischen Speicherstruktur

SQL Standard

- Trotz Standardisierung Unterschiede in den verschiedenen Implementierungen
- DDL, VDL und DML weitgehend konform
- Unterschiede in DCL und DSDL
 - → Handbücher und Dokumentationen
- Es gibt Erweiterungen zum SQL
 z.B. im Datawarehouse-Kontext (Cube/Rollup-Operator)

Erstellung einer Datenbank

Datenbankmanagementsysteme k\u00f6nnen mehrere
 Datenbanken parallel verwalten

```
CREATE DATABASE <dbname>;

USE <dbname>;
```

Erstellung einer Datenbank – phpMyAdmin

Menü links: Neu → Namen eingeben → Anlegen

• SQL Befehl: CREATE DATABASE buchhandlung;

Data Description Language

- Definition der Datenbankstruktur
 - Erzeugen
 - Ändern
 - Löschen
- von Datenbanktabellen

Erzeugen von Tabellen

```
CREATE TABLE <dbname>.<tabellenname> (
 <spaltenname> DATENTYP [NOT NULL] [{AUTO INCREMENT | DEFAULT WERT}],
 <spaltenname> DATENTYP [NOT NULL] [{AUTO INCREMENT | DEFAULT WERT}],
 [[CONSTRAINT <constraintname>] PRIMARY KEY (<spaltenname> [, ... <sp.>]),]
 [[CONSTRAINT <constraintname>] FOREIGN KEY (<spaltenname> [, ... <sp.>])
     REFERENCES <tabellenname> [(<spaltenname>, ... <spaltenname>)]
         ON
             {DELETE | UPDATE}
           {RESTRICT | CASCADE | SET NULL | SET DEFAULT | NO ACTION]},]
 [[CONSTRAINT <constraintname>] CHECK <bedingung>,]
 [[CONSTRAINT <constraintname>] UNIQUE (<spaltenname>, ... <sp.>)]
 [COMMENT = '']
);
```

Datentypen

Datentyp	Inhalt	Beispiele
INTEGER	ganze Zahl	0 / -5 / 1500
REAL / DOUBLE	Fließkommazahlen	0.0 / 34.23 / -13.4534
NUMERIC(x,y)	Festkommazahlen	0.0 / 34.23 / -13.4534
TEXT	Text unbegrenzter Länge	"Lorem ipsum dolor"
VARCHAR(max)	Zeichenkette variabler Länge	'aA?' / 'Test' / "
CHAR(fix)	Zeichenkette fixer Länge	'aA?' / 'Test' / "
DATE	Datumswert	2021-12-08
TIME	Tageszeit (ohne Datum)	08:47:51
TIMESTAMP	Datum mit Uhrzeit	2038-01-19 03:14:07
WITH TIME ZONE	Zeitdaten mit Zeitzonendaten	08:47:51+01
BOOLEAN	Logischer Wert	TRUE / FALSE

https://www.postgresql.org/docs/current/datatype.html

Erzeugen von Tabellen durch Abfragen

CREATE TABLE <tabellenname> AS <select befehl>;

- "Kopieren" der Struktur
- Automatisches Füllen mit Datensätzen

Ändern von Tabellen

Nur Änderungen ohne Informationsverlust

ALTER TABLE <tabellername> **ADD COLUMN** <spaltendefinition>; **ALTER TABLE** <tabellenname> **DROP** <spaltenname>; **ALTER TABLE** <tabellername> **ADD CONSTRAINT** <constraintdefinition>; **ALTER TABLE** <tabellername> **DROP CONSTRAINT** <constraintname>; **ALTER TABLE** <tabellername> **ALTER** <spaltendefinition>; **ALTER TABLE** <tabellername> **RENAME** <spaltenname> TO <neuer_name>; **ALTER TABLE** <tabellername> **ALTER** <spaltenname> **DROP DEFAULT**; ALTER TABLE <tabellenname> ALTER <spaltenname> SET NOT NULL; ALTER TABLE <tabellername> ALTER <spaltenname> DROP NOT NULL;

https://www.postgresql.org/docs/current/sql-altertable.html

Löschen von Tabellen

DROP TABLE <tabellenname>;

- Berücksichtigung von Abhängigkeiten
- Sicherstellung der referentiellen Integrität

Data Manipulation Language

Einfügen von Datensätzen

```
INSERT INTO <tabellenname> [ (<spaltenname>, ...)]
VALUES (<werteliste>)[, (<werteliste>),..., (<werteliste>)];
```

- Manche DBMS unterstützen nur ein Datensatz gleichzeitig
- Länge der Werteliste muss der Länge der Liste der Spaltennamen entsprechen

```
INSERT INTO <tabellenname> [(<spaltenname>, ...)]
AS <select befehl>;
```

Löschen von Datensätzen

```
DELETE FROM <tabellenname>
    [WHERE <bedingung>];
```

- Berücksichtigung von Abhängigkeiten
- Sicherstellung der referentiellen Integrität
- Potentiell kaskadiertes Löschen
 - ⇒ ON DELETE CASCADE

Referentielle Integrität

- RESTRICT
 - ⇒ Kein Löschen / Ändern
- CASCADE
 - ⇒ Kaskadiertes Löschen / Ändern
- SET NULL
 - ⇒ Referenzen werden auf NULL gesetzt
- SET DEFAULT
 - ⇒ Referenzen werden auf DEFAULT-Wert gesetzt
- NO ACTION
 - ⇒ Keine Aktion (wie RESTRICT)

ON DELETE CASCADE

ON UPDATE CASCADE

ON DELETE SET NULL

ON UPDATE SET NULL

Ändern von Datensätzen

```
UPDATE <tabellenname>
    SET <spaltenname> = <ausdruck> [, <spaltenname> = <ausdruck> ...]
    [WHERE <bedingung>];
```

- Berechnungen in Ausdrücken möglich
- Berücksichtigung von Abhängigkeiten
- Sicherstellung der referentiellen Integrität

Datenretrieval

```
SELECT [DISTINCT] { <tabellenname>.* |
                    <tabellenname>.<attributname> [AS <alias>] |
                     <ausdruck> [AS <alias>] }
                     [, ...]
  FROM <tabellenname> [<alias>]
         [LEFT JOIN | RIGHT JOIN | NATURALJOIN | JOIN] [USING | ON]
         [, ...]
   [WHERE <bedingung>]
   [GROUP BY {<tabellenname>.<attributname> | <alias>} [, ...]]
   [HAVING <bedingung>]
   [UNION <select befehl>]
   [ORDER BY {<tabellenname>.<attributname> | <alias>} [ASC|DESC]
             [, ...]]
```

Bestandteile Select-Befehl

- SELECT (Selection)
 Auswahl der Attribute/Tabellenspalten
- DISCTINCT
 Nur Anzeige unterschiedlicher Datensätze
- *
 Auswahl aller Attribute einer Tabelle
- AS
 Umbenennung eines Attributes / eines Ausdrucks
- **<Ausdruck>**Berechnungsvorschrift / Formel
- FROM ... Kreuzprodukt / Join
 Auswahl der im Select-Befehl verwendeten Tabellen

Bestandteile Select-Befehl

WHERE (Restriktion)
 Definition der Bedingungen zur Auswahl der Datensätze
 Ausdruck kann nur die Werte wahr oder falsch annehmen

GROUP BY

Spalten, nach denen gruppiert werden soll alle Spalten, die nicht in Aggregatfunktionen verwendet werden*

HAVING Überprüfung der Eigenschaften einer Gruppe

UNION Vereinigung der Ergebnisse zweier Select-Befehle

ORDER BY Definition der Sortierung der Ergebnisdatensätze

* Manche DBMS fordern dies nicht. > Vorteile & Probleme

Operatoren in Where/Having-Bedingungen

- >; >= ; =; =<; <; <>
- AND; OR; NOT
- IS (NOT) NULL: Überprüfung auf den Wert (NOT) NULL
- IN: Mengenoperator
- LIKE: Vergleichsoperator für Zeichenketten
 - _: Ein beliebiges Zeichen
 - %: beliebige Zeichenfolge
- BETWEEN ... AND : Intervallangabe

Verbund / Join

- Attributvergleich in WHERE-Bedingung
- Unterabfragen
- UNION
- Spezielle Joins
 - LEFT JOIN
 - RIGHT JOIN
 - NATURAL JOIN
- Join-Bedingung
 - ... JOIN ... USING (Attribut)
 - ... JOIN ... ON (Bedingung)

Aggregatfunktionen

- COUNT
- SUM
- MIN
- MAX
- AVG

Anwendungsbeispiel

SQL-Query im Browser ausführen

SQL-Query im Browser ausführen

SELECT

Alle Hotels mit allen Attributen

```
SELECT *
FROM hotel;
```

Alle Hotels mit Hotelnamen und Orten

```
SELECT hname, ort
FROM hotel;
```

Hotels aus Gießen

```
SELECT hname
FROM hotel
WHERE ort = 'Gießen';
```

Verbund über WHERE-Klausel

Alle Hotels mit ihren Zimmern

```
SELECT hotel.honr, hotel.hname, zimmer.znr
FROM hotel, zimmer
WHERE hotel.honr = zimmer.honr;
```

Alle Hotels mit ihren Zimmern mit Alias-Verwendung

```
SELECT h.honr, h.hname, z.znr
FROM hotel h, zimmer z
WHERE h.honr = z.honr;
```

Alle Ausstattungen, die in Hotels verwendet werden

```
SELECT h.honr, h.hname, n.anr, a.bezeichnung
FROM hotel h, normal n, ausstattung a
WHERE h.honr = n.honr and n.anr = a.anr;
```


Verbund über JOIN

Joins sind effizienter als ein Verbund mit where.

Alle Hotels mit ihren Zimmern

```
SELECT h.honr, h.hname, z.znr
FROM hotel h JOIN zimmer z ON h.honr = z.honr;

SELECT h.honr, h.hname, z.znr
FROM hotel h JOIN zimmer z USING (honr);
```

Alle Ausstattungen, die in Hotels verwendet werden

Verbund über JOIN

Joins sind effizienter als ein Verbund mit where.

 Auflistung aller Gäste mit ihren Reservierungen, auch wenn diese keine Reservierungen haben

```
SELECT g.gnr, g.name, r.rnr
FROM gast g LEFT JOIN reservierung r USING (gnr);
```

Relationenalgebra – Join-Arten

SELECT <select list> FROM TableA A INNER JOIN TableB B ON A.Key = B.Key

SELECT <select list> FROM TableA A RIGHT JOIN TableB B ON A.Key = B.Key

SELECT <select_list> FROM TableA A RIGHT JOIN TableB B ON A.Key = B.KeyWHERE A.Key IS NULL

SELECT <select list> FROM TableA A FULL OUTER JOIN TableB B ON A.Key = B.KeyWHERE A.Key IS NULL OR B.Key IS NULL

SELECT <select_list> FROM TableA A FULL OUTER JOIN TableB B ON A.Key = B.Key

В

 \mathbf{B}

@ C.L. Mofflett, 2008

Unterdrückung gleicher Datensätze

 Alle verschiedenen Ausstattungen, die in Hotels verwendet werden

```
SELECT DISTINCT h.honr, h.hname, n.anr, a.bezeichnung
FROM hotel h JOIN normal n USING (honr)

JOIN ausstattung a USING (anr);
```

Häufiger Anfängerfehler: Es wird DISTINCT an Stellen verwendet, wo GROUP BY verwendet werden sollte.

Sortierung

 Alle verschiedenen Ausstattungen, die in Hotels verwendet werden, aufsteigend sortiert nach honr

```
SELECT DISTINCT h.honr, h.hname, n.anr, a.bezeichnung
FROM hotel h JOIN normal n USING (honr)

JOIN ausstattung a USING (anr)

ORDER by h.honr ASC;
```

- Alle Zimmer mit ihrer Normalausstattung sortiert,
 - erst aufsteigend nach Hotelnummer,
 - dann absteigend nach Zimmernummer

```
SELECT z.znr, z.zname, z.honr, n.anr
FROM zimmer z JOIN normal n USING (znr, honr)
ORDER BY z.honr ASC, z.znr DESC;
```


Verwendung von Wildcards

 Alle Zimmer mit ihrer Normalausstattung mit allen Attributen

```
SELECT *
FROM zimmer z JOIN normal n USING (znr, honr);
```

 Alle Zimmer mit ihrer Normalausstattung nur mit allen Attributen aus Zimmer

```
SELECT zimmer.*
FROM zimmer z JOIN normal n USING (znr, honr);
```

Verwendung von Wildcards

Alle Hotels aus Gießen

```
SELECT hname
FROM hotel
WHERE ort = 'Gießen';
```

Alle Hotels aus Städten mit G am Anfang

```
SELECT hname

FROM hotel

WHERE ort LIKE 'G%';
```

 Alle Hotels mit einem i an zweiter Stelle (Gießen, Dillenburg, ...)

```
SELECT hname

FROM hotel

WHERE ort LIKE '_i%';
```

Unterabfragen

Gäste, die für das Hotel Adlon reserviert haben

Gäste, die noch nie für das Hotel Adlon reserviert haben

SELFJOIN

Welche Hotels liegen im gleichen Ort?

```
SELECT a.hname, b.hname, a.ort
FROM hotel a, hotel b
WHERE a.ort=b.ort;
```

• Welche Hotels liegen im gleichen Ort (ohne gleiche Hotels)?

```
SELECT a.hname, b.hname, a.ort
FROM hotel a, hotel b
WHERE a.ort=b.ort AND a.honr<>b.honr;
```

Mehrfachverwendung einer Tabelle

Welcher Gast hat in welchem Hotel (entgegennehmendes Hotel) für welches Hotel reserviert?

Anwendungsbeispiel – Zur Erinnerung

Berechnungen

 Auflistung der Kosten aller Reservierungspositionen für jeden Kunden

```
SELECT g.gnr, g.name, z.preis*(rp.bis-rp.von)

FROM gast g JOIN reservierung r USING (gnr)

JOIN rposition rp USING (rnr)

JOIN zimmer z ON z.honr = rp.honr AND z.znr = rp.znr;
```

 Auflistung der Kosten aller Reservierungspositionen für jeden Kunden mit Spaltenbenennung

Relationenalgebra – Übung 1

1) Bilden Sie das Kartesisches Produkt folgender Tabellen (Relationen):

Name	Ort
Meier	Künzelsau
Schmidt	Öhringen
Schulz	Heilbronn

Тур	Hersteller	Farbe
Corsa	Opel	grün
Golf	VW	rot

Relationenalgebra – Übung 2

Gegeben sei folgendes Datenbankschema, in dem Informationen über Orte, Filme und das aktuelle Programm gespeichert sind:

```
Kino ( Orte(Kino, Strasse, PLZ),
Filme(Titel, Regie, Schauspieler),
Programm(Kino, Titel, Zeit) )
```

2.) Was ist das Ergebnis der folgenden Ausdrücke:

a.)
$$R_1 = \pi_{\text{Regie}} (\sigma_{\text{Schauspieler="Johnny Depp"}}(\text{Filme}))$$

b.)
$$R_2 = \pi_{\text{Schauspieler}}(\text{Filme} \bowtie \text{Programm})$$

c.)
$$R_3 = \pi_{Titel} (\sigma_{Schauspieler="Johnny Depp"}(Filme))$$

d.)
$$R_4 = R_3 - \pi_{Titel}(Programm)$$

e.)
$$R_5 = \pi_{\text{Kino, PLZ}}(\text{Orte} \bowtie_{\text{Kino=Titel}} R_4)$$

Relationenalgebra – Übung 3

Gegeben sei folgendes Datenbankschema, in dem Informationen über Orte, Filme und das aktuelle Programm gespeichert sind:

```
Kino ( Orte(Kino, Strasse, PLZ),
Regisseure(Titel, Regie),
Filme(Titel, Nr, Schauspieler),
Programm(Kino, Titel, Zeit) )
```

- 3.) Wie sehen die Anfragen in relationaler Algebra aus?
- a.) Welche Regisseure gibt es über alle Filme?
- b.) Welche Filmtitel gibt es mit dem Schauspieler Jürgen Vogel?
- c.) Welche Regisseure haben mit Jürgen Vogel gearbeitet?
- d.) Liste der Kinos (Name + PLZ) mit deren Filmen?
- e.) In welchen Kinos (Name + PLZ) laufen Filme mit Nora Tschirner?
- f.) In welchen Filmen (Titel) spielt N.Tschirner und J.Vogel mit?

