Sprawozdanie Algorytmy ewolucyjne

Mateusz Olsztyński

Zakres

W swoich obliczeniach do selekcji wykorzystałem selekcję turniejową o wielkości tour = 5. Do tworzenia nowych osobników użyłem operator krzyżowania OX (Ordered Crossover). Natomiast do mutacji wykorzystałem operator inwersji (działający na całym osobniku), który okazał się skuteczniejszy niż mutacja typu swap.

W swoich testach uwzględniłem następujące instancje: berlin11, berlin52, kroA100, kroA150, kroA200, fl417.

Największą różnicą pomiędzy testami na różnych instancjach były rozmiar populacji oraz liczba generacji. Wraz ze wzrostem liczby miast, musiały także wzrosnąć te dwa parametry. W większości przypadków najskuteczniejsze okazały się następujące wartości prawdopodobieństw: Px = 0.7, Pm = 0.3.

Testy algorytmu genetycznego

Osie wykresów:

-oś pionowa: przystosowanie

-oś pozioma: numer generacji

Parametry:

pop_size – wielkość populacji, gen – liczba generacji,

Pm – prawdopodobieństwo mutacji, Px – prawdopodobieństwo krzyżowania

Instancja berlin11

Instancja berlin52

Instancja kroA100

Instancja kroA150

pop_size = 1300, gen = 600, Pm = 0.3, Px = 0.7

Instancja kroA200

pop_size = 2000, gen = 800, Pm = 0.3, Px = 0.7

Instancja fl417

pop_size = 1500, gen = 1500

Pm = 0.3, Px = 0.7

Porównanie algorytmu ewolucyjnego z innymi nieewolucyjnymi algorytmami

Instancja	Optimum	Zachłanny	Losowy				Ewolucyjny			
			best	avg	worst	std	best	avg	worst	std
berlin11	4038	4543	4874	7110	8448	927	4038	4192	4529	219
berlin52	7542	8980	26826	29574	31653	1375	7542	8079	8321	580
kroA100	21282	26856	160328	174520	186123	7912	21316	22521	23538	733
kroA150	26524	33609	236325	251690	269849	8672	28759	29364	30116	480
kroA200	29368	35798	322112	335688	350069	8533	31687	32393	33063	488
fl417	11861	15191	466271	490201	519944	14566	12823	13490	14251	474

Wnioski

Przy odpowiednim doborze parametrów algorytmu genetycznego, jest on skuteczniejszy od algorytmu zachłannego. Działanie samego algorytmu wymaga jednak większej mocy obliczeniowej oraz dłuższego czasu oczekiwania na wynik (co utrudnia dobór optymalnych parametrów). Odpowiedni dobór operatorów, czy wielkości użytych parametrów takich jak rozmiar populacji, liczba generacji, prawdopodobieństwo krzyżowania oraz mutacji, jest uzależniona od typu oraz wielkości rozpatrywanego problemu.