

今日の内容 ● NAND / NOR / 含意 / 同値の性質 ● 双対関数 ● 単調関数

NAND, NORの性質

- NAND: $x \mid y = \overline{xy}$
- NOR: $x \downarrow y = \overline{x \lor y}$
 - 1. $\bar{x} = x \mid x = x \downarrow x$
 - 2. $xy = \overline{xy} = \overline{x \mid y} = (x \mid y) \mid (x \mid y)$ = $\overline{x} \lor \overline{y} = \overline{x} \downarrow \overline{y} = (x \downarrow x) \downarrow (y \downarrow y)$
 - 3. $x \lor y = \overline{\overline{x \lor y}} = \overline{\overline{x}\overline{y}} = \overline{x} \mid \overline{y} = (x \mid x) \mid (y \mid y)$ = $x \lor y = (x \lor y) \lor (x \lor y)$

※任意の論理式はNANDもしくはNORのみで表せる

9/2023

う 含意の性質 $1. x \to 0 = \bar{x}, \quad 0 \to x = 1$ $2. x \to 1 = 1, \quad 1 \to x = x$ $3. x \lor y = \bar{x} \to y$ $1 \to x = x$ $2 \to x \to y = \bar{x} \to y$

7

双対関数

■ある関数 φ の 0 と 1, 論理和と論理積を入れ替えて得られる関数 (φ*と表記)

(例)
$$\varphi(x,y,z) = (xy \lor z) \cdot 1$$
 のとき $\varphi^*(x,y,z) = (x \lor y) \cdot z \lor 0$

双対定理: $\varphi^*(x_1, \dots, x_n) = \overline{\varphi(\overline{x_1}, \dots, \overline{x_n})}$

ド・モルガンの法則の拡張

5/9/2023

8

自己双対関数

 $\varphi(x_1,\dots,x_n)=\varphi^*(x_1,\dots,x_n) (=\overline{\varphi(\overline{x_1},\dots,\overline{x_n})})$ を満たす関数を自己双対関数と呼ぶ.

(例)
$$\varphi(x,y,z) = xy \lor yz \lor zx$$
 を考える $\varphi^*(x,y,z) = (x \lor y)(y \lor z)(z \lor x)$ $= (xy \lor y \lor xz \lor yz)(z \lor x)$ $= (y \lor xz)(z \lor x)$ $= yz \lor xz \lor xy \lor xz$ $= xy \lor yz \lor zx$ よって $\varphi(x,y,z)$ は自己双対関数

5/9/2023

9	自己死	以対関数の直観的意味		
	x y z	$\varphi(x,y,z) \qquad \varphi^*(x,y,z) = \overline{\varphi(\overline{x},\overline{y},\overline{z})}$	例	
	0 0 0	$\varphi(0,0,0)$ $\varphi(1,1,1)$	0	
	0 0 1	$\varphi(0,0,1)$ $\qquad \qquad / \overline{\varphi(1,1,0)}$	1	
	0 1 0	$\varphi(0,1,0)$ $\overline{\varphi(1,0,1)}$	0	
	0 1 1	$\varphi(0,1,1)$ $\overline{\varphi(1,0,0)}$	0	
	1 0 0	$\varphi(1,0,0)$ $\overline{\varphi(0,1,1)}$	1	
	1 0 1	$\varphi(1,0,1)$ $\overline{\varphi(0,1,0)}$	1	
	1 1 0	$\varphi(1,1,0)$ $\varphi(0,0,1)$	0	
	1 1 1	$\varphi(1,1,1)$ $\varphi(0,0,0)$	1	
		※ 0と1が同じ数だけ現れる		5/9/2023
*	主積和標準形	$arepsilon$ で表すと $x_1^{arepsilon_1} \cdots x_n^{arepsilon_n}$ かいず $x_1^{\overline{arepsilon}_1} \cdots x_n^{\overline{arepsilon}_n}$ のいず st	こかが現れる	

自己双対関数の代入定理

10

■自己双対関数に自己双対関数を代入して得られる関数も自己双対関数

(証明) 自己双対関数 $\varphi(x_1,\cdots,x_n)$ の x_i に自己双対関数 $\psi(y_1,\cdots,y_m)$ を代入して得られる関数を $\chi=\varphi(x_1,\cdots,x_{i-1},\psi(y_1,\cdots,y_m),x_{i+1},\cdots,x_n)$ とする

$$\begin{split} \chi^* &= \overline{\varphi(\overline{x_1}, \cdots, \overline{x_{i-1}}, \psi(\overline{y_1}, \cdots, \overline{y_m}), \overline{x_{i+1}}, \cdots, \overline{x_n})} \\ &= \varphi(\overline{x_1}, \cdots, \overline{x_{i-1}}, \overline{\psi(y_1, \cdots, y_m)}, \overline{x_{i+1}}, \cdots, \overline{x_n}) \\ &= \overline{\varphi(x_1, \cdots, x_{i-1}, \psi(y_1, \cdots, y_m), x_{i+1}, \cdots, x_n)} \\ &= \varphi(x_1, \cdots, x_{i-1}, \psi(y_1, \cdots, y_m), x_{i+1}, \cdots, x_n) = \chi \end{split}$$

5/9/2023

11

単調関数(1)

■真理値 0 と 1 の順序を 1 > 0 と定める

$$ightharpoonup$$
全ての ε_i について $\varepsilon_i \geq \varepsilon_i'$

単調増大関数: $(\varepsilon_1, \cdots, \varepsilon_n) \geq (\varepsilon_1', \cdots, \varepsilon_n')$ ならば $\varphi(\varepsilon_1, \cdots, \varepsilon_n) \geq \varphi(\varepsilon_1', \cdots, \varepsilon_n')$ であるとき, φ を単調増大関数と呼ぶ.

単調増大関数の例: $\varphi = x$, $\varphi = xy$, $\varphi = x \lor y$, $\varphi = 0$

	x	y	x	xy	$x \lor y$	0	1
	0	0	0	0	0	0	1
	• 0	1	0	0	1	0	1
	1	0) 1	0	1	0	1
	1	1	1	1	1	0	1

5/9/2023

12

単調関数(2)

■真理値 0 と 1 の順序を 1 > 0 と定める

$$lacksymbol{\Gamma}$$
全ての $arepsilon_i$ について $arepsilon_i \geq arepsilon_i'$

単調減少関数: $(\varepsilon_1, \dots, \varepsilon_n) \ge (\varepsilon_1', \dots, \varepsilon_n')$ ならば $\varphi(\varepsilon_1, \dots, \varepsilon_n) \le \varphi(\varepsilon_1', \dots, \varepsilon_n')$ であるとき, φ を単調減少関数と呼ぶ.

単調減少関数の例: $\varphi = \bar{x}$, $\varphi = \bar{x}\bar{y}$, $\varphi = \bar{x} \vee \bar{y}$, $\varphi = 0$

	χ	. y	\overline{x}	$\overline{x}\overline{y}$	$\overline{x} \vee \overline{y}$	0	1
1	- 0	0	1	1	1	0	1
(\	> C	1-	1	0	1	0	1
7	1	0	0	0	1	0	1
	1	. 14	0	0	0	0	1

5/9/2023

単調増大(減少)関数の性質 (定理2.5) 単調増大(減少)関数φは負(正)リテラルが現れない積和標準形,または定数関数で表せる.逆も成り立つ. (定理2.6) 単調増大(減少)関数の変数に単調増大(減少)関数を代入して得られる関数も単調増大(減少)関数

