True or False: The reduced echelon form of a matrix is unique.

True or False: If every column of an augmented matrix contains a pivot, then the corresponding system is consistent.

True or False: The pivot positions in a matrix depend on whether interchanges are used in the row reduction process.

True or False: A general solution of a system is an explicit description of all solutions of the system.

True or False: Whenever a system has free variables, the solution set contains more than one solution.

Vector Equations

True or False: Asking whether the linear system corresponding to an augmented matrix $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}]$ has a solution amounts to asking whether \mathbf{b} is in $\mathrm{Span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.

Vector Equations

True or False: Any ordered list of five real numbers is a vector in \mathbb{R}^5 .

True or False: If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then \mathbf{b} is in the set spanned by the columns of A.

True or False: Any linear combination of vectors can always be written in the form $A\mathbf{x}$ for a suitable matrix A and vector \mathbf{x} .

True or False: If the coefficient matrix A has a pivot position in every row, then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent.

True or False: If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^n , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^n .

True or False: A homogenous system of equations can be inconsistent.

True or False: If x is a nontrivial solution of $A\mathbf{x} = \mathbf{0}$, then every entry of x is nonzero.

True or False: A equation $A\mathbf{x} = \mathbf{b}$ is homogenous if the zero vector is a solution.

True or False: If $A\mathbf{x} = \mathbf{b}$ is consistent, then the solution set of $A\mathbf{x} = \mathbf{b}$ is obtained by translating the solution set of $A\mathbf{x} = \mathbf{0}$.

Linear Independence

True or False: If u and v are linearly independent and w is in $\mathrm{Span}\{u,v\}$, then $\{u,v,w\}$ is linearly dependent.

Linear Independence

True or False: If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.

Linear Independence

True or False: If a set in \mathbb{R}^n is linearly dependent, then the set contains more than n vectors.

True or False: The range of the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is the set of all linear combinations of the rows of A.

True or False: Every matrix transformation is a linear transformation.

True or False: A linear transformation preserves the operations of vector addition and scalar multiplication.

True or False: A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ always maps the zero vector in \mathbb{R}^n to the zero vector in \mathbb{R}^m .

Matrix of a Linear Transformation

True or False: If A is a 4×3 matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^3 onto \mathbb{R}^4 .

Matrix of a Linear Transformation

True or False: The columns of the standard matrix for a linear transformation T from \mathbb{R}^n to \mathbb{R}^m are the images of the columns of the $n \times n$ identity matrix under T.

Matrix of a Linear Transformation

True or False: A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps to a unique vector in \mathbb{R}^m .

True or False: The first row of AB is the first row of A multiplied on the right by B.

True or False: If A and B are 3×3 matrices and $B = [\mathbf{b}_1 \quad \mathbf{b}_2 \quad \mathbf{b}_3 \quad]$, then

$$AB = [A\mathbf{b}_1 + A\mathbf{b}_2 + A\mathbf{b}_3]$$

True or False: For any square matrix A, $(A^2)^T = (A^T)^2$.

True or False: The transpose of the sum of two matrices equals the sum of their transposes.

True or False: If A is invertible, then any sequence of elementary row operations that transforms A to the identity matrix I also transforms A^{-1} to I.

True or False: Any product of $n \times n$ invertible matrices is itself invertible, and its inverse is the product of its factors' inverses in the same order.

True or False: If A is an $n \times n$ matrix and $A\mathbf{x} = \mathbf{e_j}$ is consistent for every $j \in \{1, 2, ..., n\}$, then A is invertible. (Here e_j denotes the standard basis vector, i.e., the jth column of the identity matrix.)

True or False: If *A* can be row-reduced to the identity matrix, then *A* must be invertible.

Characterizing Matrix Inverses

True or False: Let A be an $n \times n$ matrix. If there is an $n \times n$ matrix D such that AD = I, then DA = I.

Characterizing Matrix Inverses

True or False: Let A be an $n \times n$ matrix. If the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n into \mathbb{R}^n , then the row-reduced echelon form of A is I.

Characterizing Matrix Inverses

True or False: Let A be an $n \times n$ matrix. If the columns of A are linearly independent, then the columns of A span \mathbb{R}^n .

Characterizing Matrix Inverses

True or False: Let A be an $n \times n$ matrix. If the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for every $b \in \mathbb{R}^n$, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is not one-to-one.

Characterizing Matrix Inverses

True or False: Let A be an $n \times n$ matrix. If there is a $b \in \mathbb{R}^n$ such that the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then the solution is unique.

Partitioned (Block) Matrices

True or False: Let A be an $k \times \ell$ matrix, and as usual let I_n denote the $n \times n$ identity matrix. Then the matrix

$$\begin{bmatrix} I_k & A \\ 0 & I_\ell \end{bmatrix}$$

is invertible.

Partitioned (Block) Matrices

True or False: The columns of the following matrix span \mathbb{R}^5

$$\begin{bmatrix}
1 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 3 & 4 \\
0 & 0 & 1 & 1 & 2 \\
\hline
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

True or False: If A is an invertible matrix, then $\det A$ is the product of its diagonal entries.

True or False: The cofactor expansion of $\det A$ down a column is the negative of the cofactor expansion along the corresponding row.

True or False: For any $n \times n$ matrix A

$$\det A^T = (-1) \det A.$$

True or False: If two successive column interchanges are made to an $n \times n$ matrix A, then the determinant remains unchanged.

True or False: If $\det A = 0$, then either a row or column is all zeroes, or there are two rows (or two columns) which are the same.

True or False: If A is a 2×2 matrix with zero determinant, then one column of A is a multiple of the other.

True or False: For any $n \times n$ matrix A

$$(\det A)(\det A^{-1})=1$$

True or False: A vector space is also a subspace.

True or False: \mathbb{R}^2 is a subspace of \mathbb{R}^3 .

True or False: A subset H of a vector space V is a subsapce of V if the following conditions are satisfied:

- the zero vector of V is in H;
- \mathbf{Q} \mathbf{u} , \mathbf{v} , and $\mathbf{u}+\mathbf{v}$ are in H; and
- \circ c is a scalar, and $c\mathbf{u}$ is in H.

True or False: The range of a linear transformation is a vector space.

True or False: Nul A is the kernal of the mapping $\mathbf{x} \mapsto A\mathbf{x}$. space.

True or False: A linearly independent set in a subspace H is a basis for H.

True or False: If a finite set S of nonzero vectors spans a vector space V, then some subset of S is a basis for V.

True or False: A basis is a linearly independent set that is as large as possible.

True or False: If B is an echelon form of a matrix A, then the pivot columns of B form a basis for Col A.

True or False: If \mathcal{B} is the standard basis for \mathbb{R}^n , then the \mathcal{B} -coordinate vector of some $\mathbf{x} \in \mathbb{R}^n$ is \mathbf{x} itself.

True or False: The correspondence $[x]_{\mathcal{B}} \mapsto x$ is called the *coordinate mapping*.

True or False: A plane in \mathbb{R}^3 is always isomorphic to \mathbb{R}^2 .

True or False: If $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ , then \mathbf{x} is an eigenvector of A.

True or False: If \mathbf{v}_1 and \mathbf{v}_2 are linearly independent eigenvectors, then they correspond to distinct eigenvalues.

True or False: A steady-state vector for a stochastic matrix is actually an eigenvector.

True or False: An eigenspace of *A* is a null space of a certain matrix.

True or False: A row replacement operation on *A* does not change the eigenvalues.