Álgebra lineal

Trabajo práctico N°10 - 2022

Espacios vectoriales con producto interno II

Operadores

1. Consideremos \mathbb{R}^2 con el producto interno dado por

$$\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 - 2x_1 y_2 - 2x_2 y_1 + 8x_2 y_2.$$

Sea $T \in L(\mathbb{R}^2)$ dado por $T(x_1, x_2) = (2x_1 - x_2, x_1 + x_2)$, calcular T^* .

- 2. Sea V un \mathbb{K} -EV de dimensión finita dotado con un producto interno. Probar que para $S, T \in L(V)$ y $\alpha \in \mathbb{K}$ se tiene que:
 - a) $(S+T)^* = S^* + T^*$.
 - b) $(\alpha T)^* = \overline{\alpha} T^*$.
 - c) $(ST)^* = T^*S^*$.
 - $d) (T^*)^* = T.$
 - e) Si T es inversible, entonces $(T^*)^{-1} = (T^{-1})^*$.
- 3. Determinar si los siguientes operadores son autoadjuntos considerando en cada espacio vectorial el producto interno usual.
 - a) La homotecia H_2 y la proyección P_Y sobre el eje y en $L(\mathbb{R}^2)$.
 - b) $T \in L(\mathbb{R}^3)$ dado por T(x, y, z) = (x + y, x, -z).
 - c) $T \in L(\mathbb{C}^{3\times 3})$ dado por $T(A) = A^t$.
- 4. Probar que si $T \in L(V, W)$ entonces

$$N(T^*) = Im(T)^{\perp}$$
 y $Im(T^*) = N(T)^{\perp}$.

5. Sea $T \in L(\mathbb{R}^4)$ dado por

$$T(x_1, x_2, x_3, x_4) = (x_2, x_3, x_4, 0).$$

- a) Hallar T^* . ¿Es T un operador normal?
- b) Hallar el núcleo y la imagen de T^* .
- 6. Sea V un \mathbb{C} -EV dotado con un producto interno y sea $T \in L(V)$. Probar que

- a) Si λ es un autovalor de T, entonces $\overline{\lambda}$ es un autovalor de T^* .
- b) Si T es autoadjunto y λ es un autovalor de T, entonces $\lambda \in \mathbb{R}$.
- c) Si T es normal, v_i es un autovector de T asociado al autovalor λ_i para i = 1, 2 y $\lambda_1 \neq \lambda_2$, entonces $\langle v_1, v_2 \rangle = 0$.
- 7. Sea V un \mathbb{K} -EV dotado con un producto interno y sea W un subespacio de V. Probar que si $U \in L(V)$ es unitario y W es U-invariante, entonces W^{\perp} es U-invariante.
- 8. Probar que si λ es un autovalor de una isometría $S \in L(V)$ entonces $|\lambda| = 1$. ¿Cuáles son los valores posibles para el determinante de S?
- 9. Hallar una matriz que sea normal pero que no sea ni unitaria ni autoadjunta.
- 10. Sea $A = \begin{pmatrix} 5 & -2i & 4 \\ 2i & 8 & -2i \\ 4 & 2i & 5 \end{pmatrix}$. Probar que es autoadjunta y hallar una matriz unitaria U tal que $U^{-1}AU$ sea diagonal.
- 11. Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio vectorial con producto interno y sea W un subespacio de V.
 - a) Si v = w + w' con $w \in W$ y $w' \in W^{\perp}$, probar que $J : V \to V$ dado por J(v) = w w'.

es un operador lineal autoadjunto y unitario.

- b) Consideremos $V = \mathbb{R}^3$ dotado con el producto interno usual y $W = \overline{\{(1,0,1)\}}$.
 - i. Hallar la representación matricial de J en la base canónica de \mathbb{R}^3 .
 - ii. Hallar una base ortonormal de autovectores de J.
- 12. Consideremos a \mathbb{C}^2 como \mathbb{C} -EV, dotado con el producto interno usual $\langle \cdot, \cdot \rangle$ y sea $J \in L(\mathbb{C}^2)$ tal que $[J]_{\mathcal{E}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Definimos

$$[x, y]_J = \langle Jx, y \rangle$$
 para $x, y \in \mathbb{C}^2$.

- a) Probar que $J=J^*=J^{-1}$ y $J^2=I$.
- b) Probar que:
 - $i. \ \left[\alpha\,x+z,y\right]_J=\alpha\,[x,y]_J+[z,y]_J \ \text{para cualesquiera} \ x,y\in\mathbb{C}^2 \ \text{y} \ \alpha\in\mathbb{C}.$
 - ii. $\overline{[x,y]}_J=[y,x]_J$ para cualesquiera $x,y\in\mathbb{C}^2.$
- c) ¿Se puede decir que $[\cdot,\cdot]_J$ es un producto interno sobre \mathbb{C}^2 ?

Sugerencia: considerar el vector (1,1).

- d) Hallar $[\cdot,\cdot]_J$ para los vectores de la base canónica de \mathbb{C}^2 . Comparar con las propiedades del producto interno.
- e)SeaS un subespacio de $\mathbb{C}^2,$ definimos

$$S^{\perp_J} := \{ y \in \mathbb{C}^2 : [x, y]_J = 0, \ \forall x \in S \}.$$

Hallar S^{\perp_J} para $S = \overline{\{(1,1)\}}$. Comparar con S^{\perp} .