Programme de khôlles ECG1-B

Semaine 25

Applications linéaires en dimension finie, Représentations matricielles

• Énoncés / notions à connaitre :

Applications linéaires en dimension finie

- Théorème du rang pour une application linéaire $f \in \mathcal{L}(E, F)$.
 - Conséquence sur la non-injectivité/surjectivité lorsque $dim(E) \neq dim(F)$.
- Rang d'une application linéaire : $rg(f) = \dim(Im(f))$. Calcul pratique du rang.
 - Conséquence sur l'injectivité/surjectivité/bijectivité.
- Lorsque $\dim(E) = \dim(F)$, injectivité, surjectivité et bijectivité d'une application linéaire sont équivalentes.
- Matrice colonne des coordonnées d'un vecteur dans une base.
- Matrice de passage $P_{B,B'}$ d'une base à une autre.
- Matrice d'une application linéaire f dans deux bases.

Correspondance bijective entre applications linéaires et matrices.

Lecture de Ker(f) et Im(f) à partir d'une matrice.

Propriétés classiques de calcul : $Mat(f+\lambda g) = Mat(f) + \lambda Mat(g)$, $Mat(g \circ f) = Mat(g)Mat(f)$,

 $Mat(f^k) = Mat(f)^k, Mat(P(f)) = P(Mat(f))$

- Lien entre bijectivité de f et inversibilité de sa matrice. $Mat(f^{-1}) = Mat(f)^{-1}$.
- Rang d'une matrice. Rang de la transposée.

Lien avec le rang de l'application linéaire associée.

Rang d'une matrice carrée et inversibilité.

• Démonstrations à connaitre :

- Si $\dim(E) < \dim(F)$, f n'est pas surjective. Si $\dim(E) > \dim(F)$, f n'est pas injective. (Proposition 1)
- Lien entre rang d'une application et injectivité/surjectivité (Théorème 2)
- "Un seul côté suffit" : si $AB = I_n$ alors A est inversible et $A^{-1} = B$ (Théorème 9)