REMARKS

Enclosed herewith is a Substitute Specification in which the specification as filed has been amended in various places to correct typographical and grammatical errors, and to add section headings.

In addition, the specification as filed has been amended in various places to cite U.S. patents corresponding to the cited European patent application. Enclosed herewith is form PTO-1449 citing these U.S. patents, as well as copies thereof.

In support of the above, enclosed herewith is a copy of the specification as filed marked up with the above changes.

The undersigned attorney asserts that no new matter has been incorporated into the Substitute Specification.

The claims have been amended to more clearly define the invention as disclosed in the written description. Applicants assert that these changes are formal in nature only and do not affect the scope of the claims.

The Examiner has rejected claims 1-15 under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent Application Publication No. 2003/0193449 A1 to Wakabayashi et al. in view of U.S. Patent 6,249,265 to Tajima et al.

The Wakabayashi et al. patent reference discloses a display and it's driving method in which a sub-field driven display

device has a sub-field converter for converting video signals into sub-field data.

The Tajima et al. patent discloses intraframe time-division multiplexing type display device and a method of displaying gray-scales in an intraframe time-division multiplexing type display device, in which a display device is driven in subfields wherein the sub-fields are weighted to enable the displaying of a varying gray scale. As shown in Figs. 36, 39 and 40 therein, the sub-fields are weighted in a substantially binary format, i.e.: 1, 2, 4, 6 (Fig. 36), 1, 2, 4, 8, 16, 24 (Fig. 39), and 1, 2, 4, 8, 16, 32, 48, wherein various combinations of these weighted subfields will form desired gray scale level.

The subject invention relates to a device and method for sub-field driving a display device, in which the sub-fields are weighted to enable the displaying of a varying gray scale. However, as opposed to a binary weighting format, the subject invention weights the sub-fields in a ternary distribution of sub-field weights. The ternary distribution (e.g., 1, 3, 9, 27, ...) is described in the Substitute Specification on page 5, lines 5-25 (paragraphs [0014] - [0016]), wherein it is stated that by using a ternary distribution, all integer values of gray level between 0 and the maximum possible gray level can be realized in fewer sub-fields than when using, for example, a binary distribution.

Applicants submit that the prior art neither shows nor suggests a ternary distribution of sub-field weights.

With regard to the invention as claimed in claims 3 and 4, the subject invention claims increasing sub-field weights toward a central value (or values) and that the highest sub-field weight is at the center. Applicants submit that this is not by design choice but rather has particular advantages, as described in the Substitute Specification on page 6, lines 6-17 (paragraph [0018]).

Applicants submit that this is neither shown nor suggested by the prior art. In fact, Tajima et al. describes just the opposite.

In view of the above, Applicants believe that the subject invention, as claimed, is not rendered obvious by the prior art, either individually or collectively, and as such, is patentable thereover.

Applicants believe that this application, containing claims 1-15, is now in condition for allowance and such action is respectfully requested.

Respectfully submitted,

Edward W. Goodman, Reg. 28,613

Attorney

Tel.: 914-333-9611

CERTIFICATE OF MAILING

It is hereby certified that this correspondence is being deposited with the United States Postal Service as First-class mail in an envelope addressed to:

COMMISSIONER OF PATENTS AND TRADEMARKS
P.O. BOX 1450
ALEXANDRIA, VA 22313-1450

on January 27, 2004

By Burnett James

5

10

15

20

SUB-FIELD DRIVEN DISPLAY DEVICE AND METHOD

FEB 0 3 2004

Technology Center 2600

BACKGROUND OF THE INVENTION

Field Of The Invention

[0001] The present invention relates to a sub-field driven display device and method, wherein sub-fields are weighted and duplicated for providing a plurality of grey gray levels by way of a plurality of sub-fields.

Description Of The Related Art

European Patent Application No. EP-A-0 896 317, corresponding to U.S. Patents 6,014,258 and 6,208,467, which discloses a colour image display device wherein colour video signals are supplied to red, green and blue light-emitting cells, for example, the cells of a plasma display device. The device employs the known sub-field method of displaying the required grey gray scale representation by controlling the light-emitting luminous levels of the respective red, green and blue light-emitting cells. In this known sub-field method, one display field is divided into a plurality of sub-fields on a time base—and, light-emitting weights are allotted to the respective sub-fields, and light emission in each of the respective sub-fields is then either—controlled in an on/off manner so as to provide the appropriate grey—gray level gradation. The required

5

10

15

20

gradation is commonly provided by employing a binary ratio weighting for the sub-fields.

SUMMARY OF THE INVENTION

for a sub-field driven display device and method offering improved performance, which can be disadvantageously limited with such known display devices and methods—and the present invention seeks to provide for a sub-field driven display device and method offering improved performance. In particular, the present invention seeks to provide improved performance through the identification of particular limitations, and related problems, as found in the prior art and which are identified in accordance with the present invention, and arise particularly in view of the number of sub-fields employed, which serves to disadvantageously limit the performance of known devices and methods due to motion artefacts and the limited number of grey gray levels available.

[0004] The present invention further seeks to provide for an improved sub-field driven display device and method which readily allows for the adoption of duplicated sub-field addressing.

[0005] According to one aspect of the present invention, there is provided a sub-field driven display device of the type defined above, characterized in that the sub-fields are weighted in accordance with a ternary distribution of sub-field weights.

5

10

15

[0006] As will be illustrated further within the present application, the adoption of a ternary distribution of weights advantageously optimizes the ratio of grey gray levels to subfields adopted such that, when compared with known weighting distributions, and for a given number of sub-fields, the present invention advantageously allows for an increased number of grey gray levels, thereby advantageously enhancing the performance of sub-field driven display devices. Stated in the alternative, the invention, therefore, has the advantage that, with a minimal number of sub-fields, the highest maximum value of grey gray level can be achieved while still retaining the possibility of also producing all intermediate grey gray level values.

[0007] The feature defined in claim 2above-described display device, wherein the sub-field converter is arranged to employ symmetrical duplicated ternary weights, is particularly advantageous in readily allowing for the application of a duplicated sub-field addressing method which, in turn, advantageously reduces motion artefact problems that can be apparent in such devices.

20 [0008] The feature of claim 3above-described display device,
wherein the sub-field converter is arranged to distribute the
ternary weights in a manner of increasing weighted value toward a
central value or values, further facilitates such advantages, and
the feature defined in claim 4above-described display, wherein the
25 sub-field converter is arranged to provide the highest sub-field

weight at the center of the ternary distribution, has the advantage that, with the heaviest weighting value found within the middle of the sub-field weighting distribution, this central sub-field position can advantageously act as a reference time value for motion compensation.

The features defined in claims 5 to 8 relate to corresponding method steps for the present invention and exhibit advantages similar to those discussed above.

In the feature defined in claim 9A method of driving a display device by means of a plurality of weighted and duplicated sub-fields, wherein the weighting of the sub-fields is in accordance with a ternary distribution of weights, and wherein symmetrical duplicated ternary weights are used, specifically introduces the adoption of a duplicated sub-field addressing method which can readily be achieved in accordance with the sub-field distribution arising in the present invention. Such an addressing method allows for motion artefact reduction, even without use of a motion estimator, and even though the method, if required, can be combined with motion compensation based on motion estimation.

20

5

10

15

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The present invention is described further hereinafter by way of example only, with reference to the accompanying drawings in which:

[0011] Fig. 1 represents a block diagram of a display device embodying the present invention; and

[0012] Fig. 2 comprises a tabular representation grey gray level production for two pixels in accordance with an embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0013] It should be appreciated that the present invention can readily employ the techniques for weighting and distributing duplicated <u>sub_sub_fields</u> as disclosed in <u>European Patent</u>

Application Nos. EP-A-0 899 710, EP-A-0 698 874 and EP-A-0 896 317, corresponding to U.S. Patents 6,061,049, 5,619,228 and 6,014,258 (and 6,208,467), respectively.

[0014] As will be appreciated, the present invention relates to the adoption of a ternary weighting distribution for a sub-field driven display device and related method in which, as will be illustrated below, specific advantages leading to an improved performance in display devices can be achieved.

[0015] For example, the ternary distribution:

1,3,9,27,9,3,1

represents a particularly advantageous weighting in accordance with the present invention since the ternary distribution is not only a

20

5

10

15

5

10

15

20

25

symmetrical distribution but also offers its maximum value at the centre-center of the distribution.

[0016] As will be appreciated, through the effective use of seven sub-fields—, i.e., each employing a respective one of the weightings noted above—, all integer values of grey gray level between 0 and the maximum possible grey gray level, 53 in this example, can be realisedrealized. When compared, for example, with a binary distribution as known in the prior art, a greater number of sub-fields will be required in order to arrive at a similar number of grey gray level values. This is particularly true for symmetrical series.

[0017] The ternary distribution has associated advantages in that it readily allows for particularly effective motion artifact reduction through the application of the known duplicated sub-field addressing method which, if required, can be combined with motion compensation based on motion estimation.

[0018] As noted in the above example, it is particularly advantageous to provide for the heaviest weighting value in the centre—center of the sub-field weighting distribution since this sub-field position can then readily act as a reference time t=0, for motion compensation. This can be preferred since the maximum amount of light is generated within the middle of the sub-field distribution and is not liable to be effected by any possible truncation error. The lower weights, i.e., the weighting values of the sub-fields on either side of the central heaviest weight, are

5

10

15

20

then effectively duplicated on either side of the central weight and turned on in accordance with the example of two driven pixels as illustrated in the accompanying drawing.

diagrammatic form, one embodiment of a display device 10 according to the present invention. The device 10 includes analog/digital converters 12, 14, 16 for each of the incoming analog Red, Green and Blue video signals, which these converters subsequently supplying the digital video signals to a sub-field converter 18. The signals output from the sub-field converter 18 are received by a sub-field sequence converter 20 including a frame memory which, in turn, supplies the sub-field divided signal to a display driver 22. The display driver 22 is arranged to provide drive signals to the display, such as, a plasma display panel 24.

[0020] Referring now to the drawing, shown in Fig. 2, each of the possible 18 grey gray levels is identified down the left-hand column whereas the ternary weighting for each of the 5 sub-fields of each of pixels 1 and 2 is illustrated across the top row of the table and confirms that the ternary distribution 1,3,9,3,1 is employed for illustrative purposes within this embodiment of the present invention. The distribution of crosses within the table indicates which of the weighted sub-fields is driven in order to provide the particular grey gray scale level indicated in the left-hand column.

[0021] In further detail, consideration can be given to the distribution of (2n+1) values a_i :

$$a_0, a_1, a_2, a_3, \ldots, a_{n-1}, a_n, a_{n-1}, \ldots, a_3, a_2, a_1, a_0$$
, while $a_0=1$

5

With a number of grey gray levels, G_{2n+1} , equal to (note: consider also the grey gray value 0):

$$G_{2n+1}=1+a_n+2\sum_{i=0}^{n-1}a_i$$

10

The symmetrical distribution is constructed in order to apply the distributed sub-field method. The values a_n are integer values, such that all values from 0 to G_{2n+1} can be realisedrealized.

[0022] The heaviest weights will preferably be in the middle of the distribution, while the smaller values are located further away from the middle; therefore, $a_0=1$.

A distribution for n=4 is advantageously constructed as follows:

a _o	a ₁	a ₂	a ₃	a4	a ₃	a ₂	a ₁	a ₀	Construction comment:
1	•••	•••	•••		•••	•••	•••	1	sum 2, so take 3 as next DSF number
1	3	•••	•••	•••	•••	•••	3	1	sum 8, so take 9 as next DSF number
1	3	9	•••	***	•••	9	3	1	sum 26, so take 27 as next DSF number
1	3	9	27	81	27	9	3	1	sum 80, <u>finalise</u> <u>finalize</u> with 81 in the middle

Thus, all integer values between 0 and a maximum grey gray level of 161 can be produced giving $G_9=162$ grey gray levels.

In general:

 $a_n=3^n$,

 $n=0, 1, 2, 3 \dots$

Giving:

2n+1 sub-fields,

While:

15

 $G_{2n+1}=2.3^n$.

10 This provides for a ternary series.

[0023] For a symmetrical binary series of (2n+1) sub-fields, with the highest weight in the middle, the number of grey gray levels equals $G_{2n+1}=2\cdot 2^n$, which is a factor $(3/2)^n$ less. At (2n+1)=9 sub-fields (thus n=4), this differs a factor 5.0625 (5). This clearly illustrates how, for a given number of sub-fields, the

device and method of the present invention can provide for an optimum number of grey gray scale values.

[0024] At an even number of sub-fields, one additional term is generally to be determined. To keep the distribution fully symmetrical, the heaviest weight can be copied, or repeated, in the middle as follows:

 $a_0, a_1, a_2, a_3, \dots, a_{n-1}, a_n, a_n, a_{n-1}, \dots, a_3, a_2, a_1, a_0$, while a_0 =1 example for n=3: 1,3,9,27,27,9,3,1 , G_8 =81.

10

5

[0025] Alternatively, a series can be developed in which the term a_0 is not duplicated. Using the same values as above, this arrives at:

15

20

1,2,6,18,54,18,6,2

which, for the same number of eight sub-fields, gives 108 grey gray levels.

[0026] As will be appreciated, the maximum possible number of grey gray levels is advantageously achieved in accordance with the present invention while, if required, for the highest of all possible weights, a symmetrical value can also be adopted. When also applying the duplicate sub-field method so as to achieve motion compensation, the pixels identified as A pixel and B pixel

5

10

in the duplicated sub-field method can advantageously be addressed by one of the symmetrical options.

[0027] It should of course be appreciated that the present invention can be used in all displays which employ sub-field distributions and include, but are not limited to, Plasma Display Panels, Digital Mirror Devices and Dynamic Foil Displays.

[0028] Also the invention is not restricted to the details of the foregoing embodiment since, for example, an asymmetrical ternary distribution, and without having the highest weighted value centrally located, could still nevertheless advantageously be employed so as to arrive at advantages offered by the present invention.

ABSTRACT+ OF THE DISCLOSURE

The present invention provides In a method and device for a sub-field driven driving a display device and related method wherein, in which sub-fields are weighted and duplicated for achieving a plurality of grey gray levels by way of a plurality of sub-fields, and in which the sub-fields are weighted as a ternary distribution of sub-field weights.

10 Fig. 1

5

1/2

