Chapter 1: Pre-Calculus

- (i) Solve the inequality $|3x 2| \ge 2$.
- (ii) Prove that $||a| |b|| \le |a + b|$ for all $a, b \in \mathbb{R}$.
- (iii) If $f(x) = x^2 + 6$ and g(x) = 2x 1, determine $(f \circ g)(x)$ and $(g \circ f)(x)$.
- (iv) Show that $f(x) = \frac{x+4}{2x-5}$ is one-to-one, and hence, find the inverse function $f^{-1}(x)$ stating it's domain and range.

Chapter 2: Limits

- (i) Using an ϵ - δ argument, show that $g(x) = \begin{cases} x^2, & x < 1, \\ 2 x, & x \ge 1, \end{cases}$ is continuous at x = 1.
- (ii) Use the Pinching Theorem to show that $\lim_{x\to 0} x^2 \cos\left(\frac{1}{x}\right) = 0$.
- (iii) Consider two continuous functions

$$f, g : [a, b] \to \mathbb{R}$$
 such that $f(a) < g(a)$ and $g(b) < f(b)$.

Show that there exists $c \in (a, b)$ with f(c) = g(c).

Chapter 3: Differentiation

- (i) From first principles and using Induction, if $n \in \mathbb{N}$ show that $\frac{d(x^n)}{dx} = nx^{n-1}$. You may assume the Product Rule.
- (ii) Determine $\frac{d}{dx} \tan^{-1}(x)$ and hence calculate $\lim_{x\to 0} \frac{x}{\tan^{-1}(x)}$.
- (iii) Using Newton's method, approximate $\sqrt{5}$ using $x_0 = 2$ until $|x_n^2 5| < 10^{-2}$.
- (iv) Find the Taylor polynomial at x = 1 of degree 3 of the function $\tan^{-1}(x)$, also stating it's Lagrangian Remainder.

Chapter 4: Sequences

- (i) If $a_n = (7n+1)/n$, calculate a_{10} , a_{100} and a_{1000} and make a guess for the limit L as $n \to \infty$. Prove that a_n tends to this limit.
- (ii) Determine if $\lim_{n\to\infty} \left(\frac{n+10^6}{n^2} + \frac{\cos^2(3n^2-4)}{n}\right)$ exists and if so, find it's limit.
- (iii) Consider the sequence $(a_n)_{n\geq 1}=(-1)^n$. Show that there exists a convergent subsequence b_k and give an example of such a subsequence.

1

(iv) Prove that if $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ are Cauchy sequences, then $(a_nb_n)_{n\geq 1}$ is also Cauchy.

Chapter 5: Integration

- (i) Using n partitions of equal width, determine $U_f(n)$ and $L_f(n)$ of the integral $4\int_0^x t^2 dt$. What are the corresponding errors? Why is $y = (2t)^2$ integrable?
- (ii) Show that the function $g(x) = \int_0^{1/x} \frac{dt}{1+t^2} + \int_0^x \frac{dt}{1+t^2}$ is constant for x > 0.
- (iii) Determine $\int \frac{dx}{\sqrt{1-x^2}}$.
- (iv) Show that $\int \sqrt{a^2 x^2} dx = \frac{x}{2} \sqrt{a^2 x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$. Hence calculate $\int e^t \sqrt{1 e^{2t}} dt$.

Chapter 6: Differential Equations

- (i) Solve $\frac{dy}{dx} = \frac{1+y^2}{9+6x}$ such that y(1) = 0.
- (ii) Find the general solution to $\frac{dy}{dx} \tan(x)y = x^4$.
- (iii) Solve y'' + 6y' + 9y = 0 such that y(0) = 0 and y(1) = 1.

Chapter 7: Infinite Series

- (i) Let $s_n = \sum_{k=1}^n \frac{1}{k}$. Show that $s_{2n} s_n \ge \frac{1}{2}$. Does $s_n = \sum_{k=1}^n \frac{1}{k}$ converge? Explain your answer.
- (ii) Write down a formula for the partial sums s_k of the series

$$\sum_{n=1}^{\infty} \frac{1}{(-7)^{n-1}}.$$

Hence determine if the series converges, and if so determine its sum.

- (iii) Which values of $c \in \mathbb{R} \setminus \{0\}$ make the series $\sum_{n=1}^{\infty} \frac{n}{(5c)^n}$ absolutely convergent?
- (iv) Does $\sum_{n=1}^{\infty} \frac{e^n}{n^2}$ converge? Justify your answer.

Chapter 8: Multivariate Differentiation

- (i) Show that the function $g(x,y) = \begin{cases} \frac{xy^2}{x^4+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ is continuous at the origin.
- (ii) Let $f(x,y) = 3xy^2 + 2x^2y^2$. Find the tangent plane to the surface f at $\mathbf{P} = (-2,1)$.
- (iii) Let $f(x,y) = 3x^3y + xy^3$. Calculate $\frac{\partial f}{\partial \boldsymbol{n}} = \hat{\boldsymbol{n}} \cdot \nabla f$ at $\boldsymbol{P} = (2,-3)$ where $\boldsymbol{n} = (3,-2)$.

2

(iv) Find and classify the stationary points of $f(x,y) = \frac{x^3}{3} + 5x^2y + 24y^2x + 63y$.