B6A1 Seien X_1, X_2, \ldots *iid* uniform auf [0,1] verteilt. Weiter sei $f \in L^1([0,1])$. Zeigen Sie, dass die Monte-Carlo Simulation $\hat{I}_n := \frac{1}{n} \sum_{i=1}^n f(X_i)$ fast sicher gegen das Integral $\int_0^1 f(x) \mathrm{d}x$ konvergiert.

Siehe hierzu, was wir in der Letzten Vorlesung dazu hatten. (24.5. Minute 23) Beispiel 5.21 in [Kle20], funktioniert mit starkem Gesetz der großen Zahlen. Es gilt

$$\int f(x)dF(x) = \int f(x)dF_n(x)$$

$$= \int f(x)d\mu(x)$$

$$= \sum d\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i}\right)$$

$$= \frac{1}{n}\sum_{i=1}^n f(X_i)$$

B6A2 Für jedes $n \in \mathbb{N}$ seien $X_1^{(n)}, \dots, X_n^{(n)}$ paarweise unkorrelierte Zufallsvariablen mit endlicher Varianz (also nicht notwendig identisch verteilt) und

$$\lim_{n\to\infty}\frac{1}{n^2}\sum_{i=1}^n \mathrm{Var}\big[X_i^{(n)}\big]=0\,.$$

Zeigen Sie, dass die $\boldsymbol{X}_i^{(n)}$ dem schwachen Gesetz der großen Zahlen genügen, d.h. beweisen Sie

$$\frac{1}{n}\sum_{i=1}^{n} \left(X_i^{(n)} - E\left[X_i^{(n)}\right]\right) \xrightarrow{P} 0, \quad n \to \infty.$$

Es sei $(X_n)_{n\geq 2}$ eine Folge unabhängiger Zufallsvariablen mit

$$P(X_n = n) = \frac{1}{n \log n}$$
 und $P(X_n = 0) = 1 - \frac{1}{n \log n}$.

Zeigen Sie, dass die Folge dem schwachen Gesetz der großen Zahlen genügt, in dem Sinne, dass

$$\frac{1}{n}\sum_{i=2}^{n}(X_i-E[X_i]) \xrightarrow{P} 0.$$

Zeigen Sie weiter, dass die obige Folge nicht fast sicher konvergiert und sie somit nicht dem Gesetz der großen Zahlen genügt. Verwenden Sie dazu das Lemma von Borel-Cantelli.

B6A3 Seien X_1, X_2, \ldots unabhängige Zufallsvariablen mit $E[X_n] = 0$ für jedes $n \in \mathbb{N}$ und $V := \sup\{\operatorname{Var}[X_n] : n \in \mathbb{N}\} < \infty$. Definiere $S_n = X_1 + \cdots + X_n$. Dann gilt für jedes $\varepsilon > 0$

$$\limsup_{n \to \infty} \frac{|S_n|}{n^{1/2}(\log(n))^{1/2+\varepsilon}} = 0 \quad \text{fast sicher.}$$

Hinweis: Definieren Sie $k_n = 2^n$ und $l(n) = n^{1/2}(\log(n))^{1/2+\varepsilon}$ für $n \in \mathbb{N}$ und betrachten Sie $l(k_{n+1})/l(k_n)$. Zeigen Sie, dass für hinreichend großes n und für $k \in \mathbb{N}$ mit $k_{n-1} \le k \le k_n$ gilt $\frac{|S_k|}{l(k)} \le \frac{2|S_k|}{l(k_n)}$. Verwenden Sie nun die Kolmogorov'sche Ungleichung und Borel-Cantelli, um zu zeigen, dass für beliebiges $\delta > 0$ gilt, dass $\limsup_{n \to \infty} l(k_n)^{-1} \max\{|S_k| : k \le k_n\} \le \delta$ fast sicher.

B6A4 Beweisen Sie folgende Aussagen

- 1. Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge mit $a_n\geq 0$ und $\sum_{n=1}^\infty a_n<\infty$, dann folgt $\lim_{k\to\infty}\sum_{n=k}^\infty a_n=0$.
- 2. Sei $(a_n)_{n\in\mathbb{N}}$ eine monotone Folge und es gebe eine Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$, sodass $a_{n_k}\to a$, dann folgt $a_n\to a$.

Hinweis: Diese zwei Aussagen wurden im Beweis von Lemma 43 verwendet. Es ist sinnvoll, diesen nach dem Bearbeiten der Übungsaufgabe zu wiederholen.

Literatur

[Kle20] Klenke, Achim: Wahrscheinlichkeitstheorie. Springer Spektrum, 2020 (Masterclass)