BIOS 635: Cross-Validation

Kevin Donovan

2/25/2021

Review

- Homework 4 due on 2/26 at 11PM through GitHub Classroom
- Article Evaluation I assigned, due on 3/2 through GitHub Classroom
- Last lecture: nonlinear modeling using splines

Prediction Error

- Recall prediction error can be calculated a variety of subsets of your data
 - I. **training error**: average error when predicting outcome on data used to create algorithm
 - 2. **testing error**: average error when predicting outcome on data from that used in training
- Training error poor measure of algorithm's performance on general sample from population
 - Biased downward
 - Need separate and independent datasets for testing and training

Training and Testing

I. Training and Tuning

2. Training, Tuning, and Testing

Testing error

- Various ways have been developed to estimate this testing error:
 - I. "Correct" training set error to be more generalizable
- Idea: $Error = f(MSE) + \lambda * ModelComplexity$ where $\lambda > 0$
- Ex. Mallow's Cp, AIC, BIC
 - 2. Use large, independent and separate test set
- Often not available, though best option
 - 3. Generate test set using hold out
- Randomly split available data into 2 partitions
- Use one partition for training, other for testing
- Testing = predict outcome on test set, compute prediction error (ex.
 MSE or misclassification rate)

Hold out

A random splitting into two halves: left part is training set, right part is validation set

```
wage_data <- Wage # contained in ISLR package
# Holdout 40% for tesing
tt_indicies <- createDataPartition(y=wage_data$wage, p=0.6, list = FALSE)
wage_data_train <- wage_data[tt_indicies,]
wage_data_test <- wage_data[-tt_indicies,]
# Look at datasets
paged_table(wage_data_train)</pre>
```

2/28/2021	BIOS 635: Cross-Validation (1)

Training and testing

- Consider fitting nonlinear polynomial to wage data
- Using training error vs. testing error to choose spline order

RMSE (Root Mean Squared Error) by degree without data splitting

RMSE (Root Mean Squared Error) by degree on test set By split number

Drawbacks of holdout

- Test set error can be highly dependent on split
 - Thus **highly variable**
 - Especially for small dataset or **small group sizes**
- Only subset of data used to train algorithm
 - May result in poorer algorithm
 - → may overestimate test error
- Can we aggregate results over multiple test sets?

K-fold cross validation

- Widely used approach for estimating test error
- Idea: Still use entire data for training but evaluate average performance by aggregating over multiple test sets
 - Test sets still must be independent
 - Example: 5-fold CV

- 1) Training: 1-4, Testing: 5
- 2) Training: 1-3+4, Testing: 4
- 3) Training: 1-2+4-5, Testing: 3
- 4) Training: 1+3-5, Testing: 2
- 5) Training: 2-5, Testing: 1

K-fold cross validation

- lacktriangle Denote K folds by C_1,C_2,\ldots,C_K , each with n_k observations
- For a given fold l:
 - I. Train algorithm on data in other folds: $\{C_k\}$ s.t. $k \neq l$
 - 2. Test by computing predicted values for data in C_l only
 - 3. Repeat for each fold $l=1,\ldots,K$, average error (ex. MSE_l)
- K fold CV error rate

$$CV_{(K)} = \sum_{k=1}^K rac{n_k}{n} MSE_k$$

where $MSE_k=\sum_{i\in C_k}(y_i-\hat{y_i})^2/n_k$ where y_i is outcome and $\hat{y_i}$ is predicted outcome from training on C_k only

lacktriangledown K = n yields n - fold or leave-one out cross-validation

 $lackbox{ } CV_{(K)}$ is accurate measure of generalized error rate for algorithm trained on whole sample

K-fold CV in R

```
# 5 fold CV partitions
cv_folds <- createFolds(y=wage_data_subset$wage, k=5)
# Can see whose in fold 1
cv_folds$Fold1</pre>
```

```
## [1] 1 13 20 25 27 28 34 39 46 48 56 62 68 69 72 76 79 86 87

## [20] 88 97 101 102 104 109 111 112 116 125 129 130 148 150 155 161 163 164 167

## [39] 169 179 185 188 193 215 217 229 233 234 235 246 251 264 272 277 279 282 293

## [58] 298 300 304 309 311 324 325 326 337 344 348 352 356 357 362 373 374 377 378

## [77] 380 383 384 386 398
```

```
# Look at dataset for fold 1
wage_data_fold_1 <- wage_data_subset[cv_folds$Fold1,]
paged_table(wage_data_fold_1)</pre>
```

2/28/2021	BIOS 635: Cross-Validation (1)	

K-fold CV analysis

 Let's look back at the nonlinear fitting example from before. Instead of using a holdout testing method, we use 5-fold CV

```
# Fit model for each degree considered, compute RMSE (on training in this ex.)
poly reg fit <- list()</pre>
predict wages <- list()</pre>
residuals wages <- list()</pre>
rmse poly reg <- list()</pre>
mae poly reg <- list()</pre>
error_rates_degrees <- list()</pre>
counter <- 1
trials <- 10 # Look at 10 different 60:40 splits
for(j in 1:trials){
  set.seed(j) # Set seed to get different splits
  tt indicies <- createFolds(y=wage data subset$wage, k=5)
    for(i in 1:length(degrees)){
      for(f in 1:length(tt indicies)){
        wage data train <- wage data subset[-tt indicies[[f]],]</pre>
        wage data test <- wage data subset[tt indicies[[f]],]</pre>
        poly reg fit[[f]] <- lm(wage~poly(age, degrees[i]),</pre>
                           data=wage data train)
```

```
predict_wages[[f]] <- predict(poly_reg_fit[[f]], newdata = wage_data_test)</pre>
        residuals wages[[f]] <- wage data test$wage-predict wages[[f]]</pre>
        rmse_poly_reg[[f]] <- sqrt(mean(residuals_wages[[f]]^2))</pre>
        mae_poly_reg[[f]] <- mean(abs(residuals_wages[[f]]))</pre>
        # Save in data frame
        error rates degrees[[counter]] <-</pre>
          data.frame("RMSE"=mean(unlist(rmse poly reg)),
                      "MAE"=mean(unlist(mae poly reg)),
                      "degree"=degrees[i],
                      "split trial"=j)
        counter <- counter+1</pre>
    }
}
 # Bind all degree-specific results together into single data frame/table
 error_rates_degrees_df <- do.call("rbind", error_rates_degrees)</pre>
 # Plot results as function of degree
 ggplot(data=error_rates_degrees_df,
         mapping=aes(x=degree, y=log(RMSE), color=factor(split trial)))+
    geom point()+
    geom line()+
    labs(title="RMSE (Root Mean Squared Error) by degree using 5-fold CV\nBy split number")+
    theme_bw()
```

RMSE (Root Mean Squared Error) by degree using 5-fold CV By split number

Choosing K: bias-variance tradeoff

- Recall: Holdout method uses only portion of data for training
 - → test/validation performance overestimate
 - ullet o more folds o more data in training folds o better algorithm o lower mean error
 - → LOOCV least biased estimate of test error
- Compared to hold out, each training set in K-fold contains $\frac{(k-1)n}{k}$ obs
 - ullet Generally more then in holdout o less biased estimate

Choosing K: bias-variance tradeoff

- Recall: Test set performance from holdout method can vary a lot depending on split
 - ullet o not a **precise** measure of test set error
- Can decrease variance using aggregate method like K-fold CV
 - ullet With LOOCV, averaging performance of n trained algorithms
 - Testing folds differ, but training sets have almost identical set of observations
 - ullet o test fold performances **highly correlated**
 - ullet Using K-fold CV with K < n decrease training set overlap o less correlated
 - \rightarrow variance of K-fold CV < LOOCV
- This creates a bias-variance tradeoff when choosing K
 - K=5 or 10 generally chosen (based on simulation studies)

CV for classification

- lacksquare Same process as before, divide data into K partitions C_1,\ldots,C_K
- Choose error/accuracy rate of interest
 - E.g. sensitivity, specificity, classification error, etc.
- For classification error
 - Compute CV error

$$CV_K = \sum_{k=1}^K rac{n_k}{n} \mathrm{Error}_k = rac{1}{K} \sum_{k=1}^K \mathrm{Error}_k$$

where
$$\mathrm{Error}_k = \sum_{i \in C_k} I(y_i
eq \hat{y_i})/n_k$$

- Can we estimate the variability of this estimate?
 - Commonly used estimate of standard error:

$$\hat{\mathrm{SE}}(\mathrm{CV}_K) = \sqrt{\sum_{k=1}^K (\mathrm{Error}_k - \overline{\mathrm{Error}_k})^2/(K-1)}$$

- While useful, not accurate (Why?)
- Also can be used in continuous prediction CV (using MSE for example)

CV for classification

In R: heart disease prediction with LDA (see lecture 6)

```
heart data <- read csv(file="../data/heart disease/Correct Dataset.csv") %>%
  mutate(heart_disease =
           relevel(factor(ifelse(Target>0, "Yes", "No")),
                    ref = "No"))
# Create lists to hold results
lda fit <- list()</pre>
estimted probs <- list()</pre>
accuracy rates <- list()</pre>
# Create 5 folds
tt indicies <- createFolds(y=heart data$heart disease, k=5)
# Run LDA for each fold, store results
for(f in 1:length(tt indicies)){
  heart data train <- heart data[-tt indicies[[f]],]</pre>
  heart data test <- heart data[tt indicies[[f]],]
  lda_fit[[f]] <- train(heart_disease~Age+Sex+Chest_Pain+Resting_Blood_Pressure+</pre>
                                Colestrol+MAX Heart Rate+Exercised Induced Angina,
                              data = heart data train, method = "lda")
  estimted probs[[f]] <- predict(lda fit[[f]], newdata=heart data test, type = "prob")$Yes
  pred heart disease <-</pre>
    relevel(factor(ifelse(estimted_probs[[f]]>0.5,
                           "Yes", "No")), ref = "No")
```

```
# Get accuracy rates from output
 accuracy rates[[f]] <-</pre>
    c(confusionMatrix(pred heart disease,
                reference = heart_data_test$heart_disease,
                positive = "Yes")$byClass,
      confusionMatrix(pred heart disease,
                reference = heart_data_test$heart_disease,
                positive = "Yes")$overall,
      "fold"=f)
}
accuracy df <- data.frame(do.call("rbind", accuracy rates))</pre>
# Compute mean and SE for each measure to get CV mean/SE
CV mean <- accuracy df %>%
  select(Sensitivity, Specificity, `Pos.Pred.Value`, `Neg.Pred.Value`, Accuracy) %>%
 apply(MARGIN = 2, FUN=mean)
CV se <- accuracy df %>%
  select(Sensitivity, Specificity, `Pos.Pred.Value`, `Neg.Pred.Value`, Accuracy) %>%
 apply(MARGIN = 2, FUN=sd)
CV mean
```

```
## Sensitivity Specificity Pos.Pred.Value Neg.Pred.Value Accuracy ## 0.7116402 0.8482955 0.8022736 0.7766796 0.7855738
```

```
CV_se
```

```
## Sensitivity Specificity Pos.Pred.Value Neg.Pred.Value Accuracy ## 0.05530303 0.07066323 0.08905437 0.03575939 0.05204986
```

CV with tuning

- Recall: Often when training a prediction algorithm, need to select tuning parameters
 - Ex. # of neighbors with KNN, number of features with regression, degree in splines, etc.
 - Where is tuning implemented in CV?
- Example: Consider set of 5000 predictors and 50 samples of data
 - I. Starting with the 5000 predictors and full data, first find 100 predictors with largest correlation with outcome
 - 2. Then train and test an algorithm with only these 100 predictors, using logistic regression as an example
- How do we estimate the algorithm's test set performance without bias?
- Can we only apply CV in step 2, after the predictors have been chosen using the full data?

NO

Why?

- This selection of parameters greatly impacts the algorithm's performance and thus is a form of tuning
- Tuning needs to be done within the training framework, otherwise you are training and testing on the same dataset
- Thus, need to do step I within your CV scheme

Wrong way: visual

Only doing step 2 inside CV process

Right way: visual

Doing both steps I and 2 within CV process

Song of the session

Green Eggs and Ham by Princess Nokia

Everything is Beautiful by Princess Nokia

