CLAIM AMENDMENTS

1-18. (Canceled)

19. (New) An internal combustion engine comprising:

an exhaust gas line in which an NO_X reduction catalytic converter is arranged, and

a reducing agent-generating unit for generation of H_2 -containing and NH_3 containing reducing gas which can be added upstream of the NO_X reduction
catalytic converter in the exhaust gas line,

wherein the reducing agent-generating unit can be supplied with at least one of an HC-containing fuel, air, and exhaust gas, and

wherein the reducing agent-generating unit has an NO_X generation step and an H_2 generation step in serial arrangement.

- 20. (New) The internal combustion engine according to claim 19, wherein the NO_X generation step is arranged downstream from the H₂ generation step.
- 21. (New) The internal combustion engine according to claim 19, wherein the NO_X generation step is arranged upstream from the H_2 generation step.

- 22. (New) The internal combustion engine according to claim 19, further comprising an NH_3 generation step arranged downstream from the NO_X generation step.
- 23. (New) The internal combustion engine according to claim 20, further comprising an NH₃ generation step arranged downstream from the NO_X generation step.
- 24. (New) The internal combustion engine according to claim 21, further comprising an NH_3 generation step arranged downstream from the NO_X generation step.
- 25. (New) The internal combustion engine according to claim 19, wherein the reducing agent-generating unit can be operated alternately in first and second operating modes in such a way that, during the first operating mode, an NO_X-containing gas can be produced and, during the second operating mode, an H₂-containing and NH₃-containing reducing gas can be produced.
- 26. (New) The internal combustion engine according to claim 22, wherein a reducing agent-generating unit can be operated alternately in first and second operating modes in such a way that, in the first operating mode, an NO_X containing gas can be produced and, in the second operating mode, an H₂-containing and NH₃-containing reducing gas can be produced.

- 27. (New) The internal combustion engine according to claim 23, wherein a reducing agent-generating unit can be operated alternately in first and second operating modes in such a way that, in the first operating mode, an NO_X -containing gas can be produced and, in the second operating mode, an H_2 -containing and NH_3 -containing reducing gas can be produced.
- 28. (New) The internal combustion engine according to claim 24, wherein a reducing agent-generating unit can be operated alternately in first and second operating modes in such a way that in the first operating mode of the NO_X generation step, an NO_X-containing gas can be produced and, in the second operating mode, an H₂-containing and NH₃-containing reducing gas can be produced.
- 29. (New) The internal combustion engine according to claim 25, further comprising an NO_X intermediate storage unit arranged downstream from the NO_X generation step.
- 30. (New) The internal combustion engine according to claim 26, further comprising an NO_X intermediate storage unit arranged downstream from the NO_X generation step.

- 31. (New) The internal combustion engine according to claim 27, further comprising an NO_X intermediate storage unit arranged downstream from the NO_X generation step.
- 32. (New) The internal combustion engine according to claim 28, further comprising an NO_X intermediate storage unit arranged downstream from the NO_X generation step.
- 33. (New) The internal combustion engine according to claim 29, wherein the NO_X intermediate storage unit is designed for reaction of stored NO_X with H₂ to NH₃.
- 34. (New) The internal combustion engine according to claim 30, wherein the NO_X intermediate storage unit is designed for reaction of stored NO_X with H_2 to NH_3 .
- 35. (New) The internal combustion engine according to claim 31, wherein the NO_X intermediate storage unit is designed for reaction of stored NO_X with H_2 to NH_3 .
- 36. (New) The internal combustion engine according to claim 32, wherein the NO_X intermediate storage unit is designed for reaction of stored NO_X with H_2 to NH_3 .

- 37. (New) The internal combustion engine according to claim 21, wherein the H₂ generation step is designed for reaction of supplied NO_X into NH₃.
- 38. (New) The internal combustion engine according to claim 24, wherein the H₂ generation step is designed for reaction of supplied NO_X into NH₃.
- 39. (New) The internal combustion engine according to claim 28, wherein the H₂ generation step is designed for reaction of supplied NO_X into NH₃.
- 40. (New) The internal combustion engine according claim 32, wherein the H₂ generation step is designed for reaction of supplied NO_X into NH₃.
- 41. (New) The internal combustion engine according claim 36, wherein the H_2 generation step is designed for reaction of supplied NO_X into NH_3 .
- 42. (New) The internal combustion engine according to claim 19, wherein the engine is a Diesel engine.
- 43. (New) A process for operation of an internal combustion engine having a reducing agent-generating unit and an exhaust gas line in which an NO_X reduction catalytic converter is arranged, whereby a reducing gas produced by the reducing agent-generating unit is added upstream of the NO_X reducing

catalytic converter to the exhaust gas, wherein generation of the reducing gas comprises:

generating an NO_X -containing gas from an NO_X generation stage allocated to the reducing agent-generating unit from at least one of air and exhaust gas supplied to the NO_X generation stage; and

intermediately storing NO_X when conducting the NO_X -containing gas produced through an NO_X intermediate storage unit which is arranged downstream from the NO_X generation stage and allocated to the reducing agent-generating unit; or

generating an H_2 -containing gas by an H_2 generation stage allocated to the reducing agent-generating unit and arranged upstream from an NO_X intermediate storage unit from fuel and air or exhaust gas supplied to the H_2 generation stage; and

reacting NO_X stored in the NO_X intermediate storage unit with the gas produced into NH_3 so that a reducing gas containing H_2 and NH_3 is produced.

44. (New) The process according to claim 43, wherein reaction of NO_X into NH₃ takes place in the catalytic NH₃ generation stage, which is allocated to the reducing agent generation unit and arranged downstream from the NO_X intermediate storage unit.

- 45. (New) The process according to claim 43, wherein intermediate storage of NO_X and reaction of NO_X into NH_3 is performed with a catalytic NO_X intermediate storage unit.
- 46. (New) The process according to claim 43, wherein the NO_X reducing catalytic converter is divided into a denox catalytic converter stage for reaction of NO_X with H₂ and an SCR catalytic converter stage for reaction of NO_X with NH₃, and wherein the reducing gas is supplied to the exhaust gas as a function of its composition at an input side to the SCR catalytic converter stage or on an input side to the denox catalytic converter stage.
- 47. (New) The process according to claim 44, wherein the NO_X reducing catalytic converter is divided into a denox catalytic converter stage for reaction of NO_X with H₂ and an SCR catalytic converter stage for reaction of NO_X with NH₃, and wherein the reducing gas is supplied to the exhaust gas as a function of its composition at an input side to the SCR catalytic converter stage or on an input side to the denox catalytic converter stage.
- 48. (New) The process according to claim 45, wherein the NO_X reducing catalytic converter is divided into a denox catalytic converter stage for reaction of NO_X with H₂ and an SCR catalytic converter stage for reaction of NO_X with NH₃, and wherein the reducing gas is supplied to the exhaust gas as a function of its

composition at an input side to the SCR catalytic converter stage or on an input side to the denox catalytic converter stage.

49. (New) A process for operation of an internal combustion engine having a reducing agent-generating unit and an exhaust gas line in which an NO_X reduction catalytic converter is arranged, whereby a reducing gas produced by the reducing agent-generating unit is added upstream from the NO_X reducing catalytic converter to the exhaust gas, wherein generation of the reducing gas comprises:

generating an NO_X -containing gas from an NO_X generation stage allocated to the reducing agent-generating unit from at least one of air and exhaust gas supplied to the NO_X generation stage; and

generating an H₂-containing gas and an NH₃-containing reducing gas from an H₂ generation stage allocated to the reducing agent-generating unit and arranged downstream from the NO_X generation stage based on fuel fed to the H₂ generation stage, NO_X-containing gas produced, fuel supplied, and at least one of air and exhaust gas.

50. (New) The process according to claim 49, wherein the NO_X reducing catalytic converter is divided into a denox catalytic converter stage for reaction of NO_X with H₂ and an SCR catalytic converter stage for reaction of NO_X with NH₃, and wherein the reducing gas is supplied to the exhaust gas as a function of its

composition at an input side to the SCR catalytic converter stage or on an input side to the denox catalytic converter stage.