```
S->rXd|rZd
X->oa|ea|r
Z–>ai
Quá trình thực hiện phân tích bottom-up của chuỗi w=road là:
  - Đưa r vào stack ( stack: r )
B2: road
  - Đưa o vào stack ( stack: ro )
B3: road
  - Đưa a vào stack ( stack: roa)
B4: X
     ✓ >
 r (o a) d
  - Thay oa bằng X (vì X -> oa) ( stack: rX)
B5: X
     ✓ ¾
 r (o a) d
  - Đưa d vào stack (rXd)
B6: S
   ✓ ↓ √
   r X d
    (o a)
```

Thay rXd bằng S => thuật toán thành công.

III, LR id*id + id*id

STACK	INPUT	ACTION
0	id * id + id * id\$	shift
0id5	*id + id * id\$	reduce by F -> id
0F3	*id + id * id\$	reduce by T -> F
0T2	*id + id * id\$	shift
0T2*7	id + id * id\$	shift
0T2*7id5	+ id*id\$	reduce by F->id
0T2*7F10	+id*id\$	reduce by T -> T*F
0T2	+id*id\$	reduce by E->T
0E1	+id*id\$	shift
0E1+6	id*id\$	shift

0E1+6id5	*id\$	reduce by F-> id
0E1+6F3	*id\$	reduce by T -> F
0E1+6T9	*id\$	shift
0E1+6T9*7	id\$	shift
0E1+6T9*7id5	\$	reduce by F -> id
0E1+6T9*7F10	\$	reduce by T -> T * F
0E1+6T9	\$	reduce by E -> E + T
0E1	\$	accept

CYK

Chuyển văn phạm G sang dạng chuẩn Chomsky

 $S \rightarrow RX \mid RZ$

 $R \rightarrow r$

 $X \rightarrow OA \mid EA$

 $Z \rightarrow AI$

 $0 \rightarrow 0$

 $A \rightarrow a$

 $E \rightarrow e$

 $I \rightarrow i$

Tạo bảng X có kích thước n x n với mỗi ô X[i,j] lưu trữ tập hợp các ký tự nonterminal có thể tạo thành chuỗi con bắt đầu từ vị trí i và kết thúc ở vị trí j.

```
X[1,1] = {}
                    // không có nonterminal nào có thể tạo ra ký tự 'a'
X[1,2] = {}
                    // không có nonterminal nào có thể tạo ra ký tự 'r'
X[1,3] = \{0\}
                     // có nonterminal X tạo ra ký tự 'o' tại vị trí 1
X[1,4] = \{X, R, S\}
                       // có các nonterminal X, R và S tạo ra chuỗi "roar" tại vị trí 1
X[2,1] = {}
                    // không có nonterminal nào có thể tạo ra ký tự 'r'
X[2,2] = \{R\}
                     // có nonterminal R tạo ra ký tự 'r' tại vị trí 2
X[2,3] = {}
                    // không có nonterminal nào có thể tạo ra chuỗi con bắt đầu từ vị
trí 2 và kết thúc ở vị trí 4
X[3,1] = \{0\}
                     // có nonterminal X tạo ra ký tự 'o' tại vị trí 3
```

```
X[3,2] = \{\} // không có nonterminal nào có thể tạo ra chuỗi con bắt đầu từ vị trí 3 và kết thúc ở vị trí 4 

X[4,1] = \{X\} // có nonterminal X tạo ra ký tự 'a' tại vị trí 4 

X[4,2] = \{\} // không có nonterminal nào có thể tạo ra ký tự 'i' 

X[4,3] = \{\} // không có nonterminal nào có thể tạo ra chuỗi con bắt đầu từ vị trí 4 và kết thúc ở vị trí 4
```

```
roar:
a r o r
a {{},{},{},{},{Z}}
r {{},{R},{X, R},{S}}
o {{},{},{O},{X}}
r {{},{},{R},{X}}
```

Như vậy, ta thấy rằng nonterminal S nằm trong ô X[1,4], nghĩa là chuỗi "roar" có thể được phân tích bằng ngữ pháp G. Cụ thể, chuỗi này có thể được phân tích thành: $S \to R \ X \to r \ O \ X \to roar$