

University of Oklahoma

Our Team

Paxton Leaf

Industrial and Systems Engineering Major Mathematics Minor

Grady Lynn

Industrial and Systems Engineering Major Computer Science, Mathematics, and Physics Minors

Steven Plaisance II

Journalism Major Data Science Minor

Jack Polk

Mathematics Major Management Information Systems Minor

Presentation Overview

- Our Process
- The Simulation
- Modeling theOptimal Pass Rate
- 2020 Case Studies
- Play-Action CaseStudies

Our Process – Key Questions

Key Questions:

- What is needed to simulate an NFL game?
 - Play-level context is key
- How do we define "situation"?
- How do we isolate these situations?
- What defines optimal?
- How do we model optimal passing rate by zone AND situation?

Our Process – Searching for Context

Our Process – Searching for Context

Passing Rate by Zone

Zones Defined by Competition

Our Process – Issues with Simplicity

- Even defining by zone, down, and distance does not give enough context
- Variables such as win probability can help us refine our situation

Our Process – Defining Situation

OBSERVED NFL PASSING RATES

Win probability groupings give a better understanding of pass rates

Our Process – Defining Situation

- Variables:
 - Down
 - Distance
 - Field Zone (grouped)
 - Time Left (grouped)
 - Win Probability (grouped)

- Our Process
- The Simulation
- Modeling theOptimal Pass Rate
- 2020 Case Studies
- Play-Action CaseStudies

The Simulation - Logic

- Model situation and track game flow
 - Our plays are "informed decisions"
- 3 Big Things This Can Do
 - Gives us insights into NFL plays called in certain situations
 - Models optimal pass rate in context of what has worked
 - Creates drives designed to optimize cumulative
 EPA within structure of an actual game

The Simulation - "Informed Decisions"

- Simulation is aware of situation pre-play call
- Simulation will ask:

$$E[Stat|Play = Pass \& Situation = S]$$

$$E[Stat | Play = Run \& Situation = S]$$

- The higher value informs the situation which play type to call. "Stat" is whatever we find important (e.g., WPA).
- Simulation subsets situational data and a real
 NFL play is randomly picked

The Simulation – Key Metrics

- Average Zone Pass Rate, EPA, WPA
- Cumulative Drive EPA

The Simulation – Key Metrics

If the simulation produces a higher average cumulative drive EPA simply by changing the passing rates, the pass rates from the simulation will be considered optimal.

The Simulation – Bayesian Bootstrapping

- 1. Subset play-by-play data by situation
- Bayesian Bootstrapping of the subset statistics (EPA/WPA) by play type (rush/pass)
- 3. Choose play type (rush vs. pass)
 - 3 simulation models using 3 different methods
- 4. Choose random play within chosen play type
 - No play-call intelligence beyond rush/pass choice

The Simulation – Method 1

Run/Pass based only on average WPA

Shapiro-Wilk Results

 \bigcirc P_{m1} = 1.4e-08

 \bigcirc P_c = 2.1e-10

Welch T-Test Results

 \bigcirc P = 0.00039

Drive ΔcEPA 95% C.I.

([+0.230,+0.799]

The Simulation – Method 2

Run/Pass based only on average EPA

Shapiro-Wilk Results

 \bigcirc P_{m2} = 2.5e-08

 \bigcirc P_c = 2.1e-10

Welch T-Test Results

 \bigcirc P = 0.00782

Drive ΔcEPA 95% C.I.

([+0.101,+0.668]

The Simulation – Method 3

Run/Pass based on probability of EPA_{pass} > EPA_{run}

The Simulation – Key Metrics

Method 3 produces the highest gain in cumulative drive EPA compared against the control group.

The Simulation - A Simulated Drive

The Simulation – Drawbacks

- O Generality:
 - The simulation may attempt a situation that has never happened in an NFL Game before. In that case, the filtering becomes less specific and play calling is negatively affected.
 - There is no public play-by-play context as to defensive adjustments.

- Our Process
- The Simulation
- Modeling the Optimal Pass Rate
- 2020 Case Studies
- Play-Action CaseStudies

Modeling the Optimal Pass Rate

Modeling the Optimal Pass Rate

Modeling the Optimal Pass Rate

SIMULATED NFL PASSING RATES

- Our Process
- The Simulation
- Modeling theOptimal Pass Rate
- 2020 Case Studies
- Play-Action CaseStudies

2020 Case Study - Method

Proposition: filtering for situation and teams with similar PFF grades will allow insight into how often the team should have passed in order to achieve a higher cumulative drive EPA.

2020 Case Study: Cleveland Browns

2020 Offensive Grades

Pro Football Focus

Facet	Grade
Offense	87.8
Pass	85.2
Pass Block	84.4
Receiving	78.6
Run Block	82.6
Rushing	86.2

Motivation:

- Run-Heavy Offense (+1.23 s.d.)4th in NFL
- Average PA Offense (+0.080 s.d.)
- Baker Mayfield

2020 Case Study: Cleveland Browns

Welch T-Test Results

 \bigcirc P = 0.1162

Drive ΔcEPA 95% C.I.

[-0.144,+1.303]

2020 Case Study: Cleveland Browns

Pass Rate by Yardline

Zone	Optimal Pass Rate
1	0.731
2	0.821
3	0.830
4	0.775
5	0.594

2020 Case Study: Arizona Cardinals

2020 Offensive Grades

Pro Football Focus

Facet	Grade
Offense	74.5
Pass	74
Pass Block	73.9
Receiving	75.4
Run Block	60.7
Rushing	75.9

Motivation:

- Average Pass Offense (-0.039 s.d.)
- PA-Heavy Offense (+0.876 s.d.)
 - o 6th in NFL
- Kyler Murray

2020 Case Study: Arizona Cardinals

Welch T-Test Results

 \bigcirc P = 0.402

Drive ΔcEPA 95% C.I.

[-0.432,+1.075]

2020 Case Study: Arizona Cardinals

Pass Rate by Yardline

Zone	Optimal Pass Rate
1	0.785
2	0.858
3	0.821
4	0.780
5	0.641

- Our Process
- The Simulation
- Modeling theOptimal Pass Rate
- 2020 Case Studies
- Play-Action CaseStudies

2020 PA Case Study: Cleveland Browns

Play Action Rate by Zone

2020 PA Case Study: Arizona Cardinals

Thank you!

Founding Members: OU SDA Club