1. Saniyesi 25 çerçeveden oluşan 5 saniyelik video kaç MB'lık yer kaplar ? Her bir çerçeve 3840 x2160 byte yer kaplamaktadır. (10 PUAN)

2. Bir bilgisayarın veri okuma, yazma ve saklama yapabildiği **temel ve çevre birimleri** listeleyiniz. Farklılıklarını belirtiniz. (10 PUAN)

Temel birimler	Okuma	Yazma	Saklama
Yazmaç	Evet	Evet	Hayır
Cep bellek	Evet	Evet	Hayır
RAM bellek	Evet	Evet	Hayır
Çevre birimler	Okuma	Yazma	Saklama
Girdi cihazları (Klavye, fare, vb.)	Evet	Hayır	Hayır
Çıktı cihazları (Ekran, yazıcı, vb.)	Hayır	Evet	Hayır
İkincil depolama ortamları (sabit disk, CD/DVD, vb.)	Evet	Evet	Evet

Temel birimlerin depolama alanları daha azdır, daha pahalıdır ancak daha hızlıdır. Depolama amaçlı çevre birimlerinin depolama alanları daha geniştir, daha ucuzdur ancak daha yavaştır.

- 3. İkilik sayı sisteminde bir sayının en anlamlı basamağı (MSB) o sayının işaretini belirtir. (2 PUAN)
- 4. Bir işlemcide çıkartma işlemi yapmak için önce çıkartılacak sayının **tümleyeni** alınır. Sonra diğer sayı ile **toplanır. (4 PUAN)**
- 5. 33 adet farklı sembolü saklamak için 6 (2^5 =32 yetmiyor 2^6 =64 yetiyor) bit yeterlidir. (2 PUAN)
- 6. 1 byte'lık bir alanda 256 (28=256) farklı değer saklanabilir. (2 PUAN)
- 7. Bilgisayarlarda hangi sayı sistemi neden kullanılmaktadır. Kısaca açıklayınız. (5 PUAN)

Bilgisayarın temel işlem ve saklama elemanı transistördür. Bir transistörün denetim akımını iletmesi veya iletmemesine göre transistörde 0 veya 1 değeri saklanabilir. Bu nedenle bilgisayarlar için en uygun sayı sistemi ikili sayı sistemidir.

- 8. İlk bilgisayarların sorunları nelerdi? Kısaca açıklayınız. (5 PUAN)
 - Transistörlerin büyük hacimleri nedeni ile bilgisayarların çok yer kaplamaları,
 - Delikli kartlar veya makine dili gibi insanların anlamalarının aşırı zor olduğu şekilde programlanabilmeleri,
 - Depolama kapasitelerinin azlığı,
 - İşlem hızlarının düşüklüğü,
 - Yüksek maliyetleri,
 - Aralarında haberleşme olanakları bulunmamaları,
 - 5 geçerli neden yazana 5 puan veririm.

9. İşaretli sayı sistemi kullanıldığı bilindiğine göre aşağıda verilen sayıların **onluk düzende** değerlerini yazınız. a-c şıkları tamsayı, d-e şıkları kayar-nokta ondalıklı sayıdır. (10 PUAN)

```
a. 01110001(\text{Two's complement Notation}) Pozitif sayı 113
b. 10000000(\text{Two's complement Notation}) Negatif sayı -124
c. 000000100010011(\text{Two's complement Notation}) Pozitif sayı 275
d. 01010110 \text{ (Excess-4 Notation)} Pozitif sayı 0.75
Pozitif sayı. Exponent (101)_2 = (1)_{10} \text{ Mantis } 0110 \rightarrow (0.110)_2 \rightarrow 0 \text{ tam } 1/2 + 1/4 = (0.75)_{10}.
e. 10110101(\text{Excess-4 Notation}) Negatif sayı -0.15625
```

Negatif sayı. Exponent (011)₂ = $(-1)_{10}$ Mantis 0101 \rightarrow (0.00101)₂ \rightarrow -0 tam 5/32 = $(-0.15625)_{10}$.

10. Üç basamaklı sayılar arasında basamakları çarpımı sıfır olan kaç adet sayı olduğunu bulan algoritmanın akış diyagramını çiziniz. (25 PUAN)

Gösterim kolaylığı nedeniyle çözümlerde akış diyagramı yerine kod yazılmıştır:

```
program VizelSoru10v1;
var
     i, j, k, toplam : integer;
begin
     for i:=1 to 9 do begin
         for j:=0 to 9 do begin
             for k:=0 to 9 do begin
                 if (j = 0) OR (k = 0) then begin
                    toplam := toplam + 1;
                 end;
             end;
         end;
     end;
     Write('Üç basamaklı sayılar arasında basamakları çarpımı sıfır olan ');
     Write (toplam, 'adet sayı vardır.');
     readln;
end.
program Vize1Soru10v2;
     sayi, birler, onlar, yuzler, toplam : integer;
begin
     for sayi:=100 to 999 do begin
         birler := sayi mod 10;
         onlar := sayi div 10; onlar := onlar mod 10;
         yuzler := sayi div 100; {gerekmez, mod10 = 0 ise mod100 de 0 olur}
         if (birler = 0) OR (onlar = 0) then {ama mod100 bakılsa da kırmadım}
            toplam := toplam + 1;
     end;
     Write (toplam, 'adet sayı vardır.');
     readln;
end.
program Vize1Soru10v3;
     i, toplam, birler, onlar, yuzler : integer;
begin
     for i:=100 to 999 do begin
         birler := i mod 10;
         yuzler := i div 100;
         onlar := (i mod 100) - birler;
         if (birler = 0) OR (onlar = 0) or (yuzler = 0) then
            toplam := toplam + 1;
     Write('Üç basamaklı sayılar arasında basamakları çarpımı sıfır olan ');
     readln;
end.
```

11. 2-B boyutlu düzlemde hareket eden iki farklı insanın hareketlerinin başlangıç bitiş noktaları (x,y) verilmektedir. Rotadan hiç sapmadan yürüyen bu iki insanın karşılaşma ihtimali olup olmadığını varsa hangi noktada karşılaşabileceklerini bulan algoritmanın **akış diyagramını** çizip verilen örnek için **analizini** yapınız. (30 PUAN)

```
Örn: 1.Kişi Başlangıç (1,1) Bitiş (5,5)
2.Kişi Başlangıç (2,4) Bitiş (2,7)
```

Ek bilgi: $P(x_1,y_1)$ ve $Q(x_2,y_2)$ olarak iki noktası bilinen doğrunun y=ax+b şeklindeki denklemi yandaki gibi elde edilebilir:

$$\frac{y - y_2}{x - x_2} = \frac{y_2 - y_1}{x_2 - x_1}$$

Gösterim kolaylığı nedeniyle çözümlerde akış diyagramı yerine kod yazılmıştır:

```
program VizelSorullv1;
var
     x1, y1, x2, y2, x3, y3, x4, y4: integer;
     a1,b1,a2,b2,kokX,kokY : real;
begin
     Write('x1: '); ReadLn(x1); Write('y1: '); ReadLn(y1);
     Write('x2: '); ReadLn(x2); Write('y2: '); ReadLn(y2);
     Write('x3: '); ReadLn(x3); Write('y3: '); ReadLn(y3);
     Write('x4: '); ReadLn(x4); Write('y4: '); ReadLn(y4);
     if x2 \ll x1 then begin
         a1 := (y2-y1) / (x2-x1);
         b1 := ((x2-x1)*y2 - (y2-y1)*x2) / (x2-x1);
         a2 := (y4-y3) / (x4-x3);
         b2 := ((x4-x3)*y4 - (y4-y3)*x4) / (x4-x3);
         kokX := (b2-b1)/(a1-a2);
         kokY := a1*kokX+b1;
         { (kokX, kokY) noktası doğrulardan birinin üzerinde mi? }
         if (x3 < kokX) AND (kokX < x4) AND (y3 < kokY)
                AND ( kokY < y4 ) then begin
             Write('Doğruların kesişme noktası (',kokX :1:3,',',kokY :1:3,')');
         end
         else begin
             if a1 = a2 then begin
                 { eğimler eşit. Paralellik var. Çakışma da olabilir.
                   değerlendirilmeye 5p olarak katılacak.}
                 Write('Doğrular çakışmıyorlarsa kesişmiyorlar.');
             end
             else begin
                 Write('Doğrular kesişmiyor.');
             end;
         end;
     end
     else begin
     end;
     readln;
end.
```