Physics 84 | Quantum Information Skills Diagnostic Redo

2015-01-29

0.1 Eigenvalues and Eigenvectors

Find the eigenvalues and eigenvectors of the following matrix:

$$\begin{bmatrix} 2 & i \\ -i & 2 \end{bmatrix}.$$

0.2 Digital Logic Circuits

Design and draw a simple logic circuit that takes two classical bits as input and is described by the following truth table:

A	В	Out
0	0	1
0	1	1
1	0	0
1	1	1

0.3 Qubit States and Measurement

A qubit is prepared in the quantum state $|\psi\rangle=\frac{1}{\sqrt{3}}\,|0\rangle+\mathrm{i}\sqrt{\frac{2}{3}}\,|1\rangle.$

- (a) What is the probability that an ideal projective measurement in the $\{|a\rangle, |a_{\perp}\rangle\}$ basis will find the qubit in the state $|a\rangle$ if $|a\rangle = |0\rangle$?
- (b) What if $|a\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$?

0.4 Matrix Operations

Write down a matrix $\vec{\boldsymbol{U}}_\chi$ such that $\vec{\boldsymbol{U}}_\chi \begin{bmatrix} a \\ b \mathrm{e}^{\mathrm{i}\varphi} \end{bmatrix} = \begin{bmatrix} a \\ b \mathrm{e}^{\mathrm{i}(\varphi + \chi)} \end{bmatrix}$ for any real numbers a,b, and φ . Is $\vec{\boldsymbol{U}}_\chi$ a unitary matrix?