uniqueness proofs

Uniqueness Proofs

Claiming something is "unique" means there is only one thing of that type.

Proposition: There is a unique real number a such that a > 0 and $a^2 = 1$.

There are two claims here:

- ▶ There exists a real number a such that $a^2 = 1$ and a > 0.
- ▶ There is *only one* real number with these properties.

Uniqueness proofs

Proofs typically go like this.

Theorem: There exists a unique x such that P(x) is true.

Proof: First, we show that there is an x such that P(x) is true. Now suppose that u and v are two things such that P(u) and P(v) are true. Then we show that u = v.

Prop. The exists a unique a such that are and a2=1. Proof: First observe that a=1 is great than 300 and $a^2 = 1 = 1^2$ satisfies $a^2 = 1$. So at least one a with desired properly exists. & We show uniqueness. Suppose 2=1. Men $a^2-1=0$ or (a+i)(a-i)=0. Therefore a=+1 or q=-1. If a>0, Hen a=+1 is the only

More Euclid's Algorithm

Proposition: Suppose a and b are natural numbers. Then there exists a unique $d \in \mathbb{N}$ so that \underline{m} is a multiple of \underline{d} if and only if $\underline{m} = ax + by$ for some $x, y \in \mathbb{Z}$.

Notice the logical structure here. We must show:

- there is (at least one) d that makes the if and only if statement "m is a multiple of d if and only if m = ax + by for some $x, y \in \mathbb{Z}$ " true.
- then show that there is at most one d that has this property.

Proposition: Suppose a and b are natural numbers. Then there exists a unique $d \in \mathbb{N}$ so that m is a multiple of d if and only if m = ax + by for some $x, y \in \mathbb{Z}$.

O Show Here is a cl so that

m 15a mult ple of m = axt by

Hen

m=ax+bn m is a mult ple gd

(2) there is only one such.

Step 1A: Let $d = \gcd(a, b)$.

The goal is to show that

$$d|m \Leftrightarrow m = ax + by \text{ for some } x, y \in \mathbb{Z}$$

- \triangleright We will show that d makes the if and only if statement true.
- First we show that $d|m \implies m = ax + by$ for some x and y.
- Suppose that m is a multiple of d, so m = dg.
- We know that d = ak + bl, so $\underline{m} = d\underline{g} = a(\underline{g}\underline{k}) + \underline{b}(\underline{g}\underline{l})$.
- ► Choosing x = gk and y = gl we see that there exist x, y in \mathbb{Z} so that m = ax + by

Step 1B:

Remember:

$$d = g \circ d (a, b)$$

$$d | m \Leftrightarrow m = ax + by \text{ for some } x, y \in \mathbb{Z}$$

- Now we show that m = ax + by for some $x, y \in \mathbb{Z}$ implies that d|m.
- ightharpoonup We know that a=ud and b=vd for some u and v in \mathbb{N} .
- ▶ Therefore m = udx + vdy = d(ux + vy) so m is a multiple of d.

Step 2A:

Now we must show that $d = \gcd(a, b)$ is the *only* integer g that makes the if and only if statement

$$g|m \Leftrightarrow m = ax + by \text{ for some } x, y \in \mathbb{Z}$$

of the theorem true. Our strategy is to suppose we have another integer d' that has this property, and then prove $d \geq d'$ and $d \leq d'$. So suppose that d' makes the if and only if statement true.

Now we show $d' \leq d$.

- a=a.1+6.0 => d'/d
- The if and only if statement tells us that d'|a since b = a. a = a(1) + b(0) and d'|b since b = a(0) + b(1).
- Therefore d' is a common divisor of a and b, and so $d' \leq d$. $sin e d = gc \lambda(e,b)$

Step 2B:

- Next we show d < d'.
- ▶ Since d'|d', we can find x and y so that $d' = \underline{ax + by}$.
- Since a = ud and b = vd for some integers u and v, we get d' = d(ux + by) so d|d' so $d' \ge d$.
- ightharpoonup Combining Steps 2A and 2B we see that $\underline{d'} = \underline{d}$.