FMI, Info, Anul I Logică matematică și computațională

Seminar 2

1 Breviar

Pentru orice e și orice Γ , notăm cu $e \models \Gamma$ (și spunem că e satisface Γ sau e este model pentru Γ) dacă, pentru orice $\varphi \in \Gamma$, $e \models \varphi$. Pentru orice Γ , notăm cu $Mod(\Gamma)$ mulţimea modelelor lui Γ .

Spunem că Γ este satisfiabilă dacă există $e:V\to\{0,1\}$ cu $e\models\Gamma$ și nesatisfiabilă în caz contrar, când nu există $e:V\to\{0,1\}$ cu $e\models\Gamma$, i.e. pentru orice $e:V\to\{0,1\}$ avem că $e\not\models\Gamma$. O mulțime Γ se numește finit satisfiabilă dacă există $\Delta\subseteq\Gamma$ finită satisfiabilă.

Pentru orice mulţime Γ de formule şi orice formulă φ , notăm $\Gamma \vDash \varphi$ (şi spunem că din Γ se deduce semantic φ sau că φ este consecință semantică a lui Γ) dacă pentru orice $e: V \to \{0,1\}$ cu $e \vDash \Gamma$ avem $e \vDash \varphi$. De asemenea, notăm $\Gamma \vDash_{fin} \varphi$ (şi citim din Γ se deduce semantic finit φ) faptul că există o submulţime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

Pentru orice $v \in V$ și $e: V \to \{0, 1\}$, vom defini

$$v^e := \begin{cases} v, & \text{dacă } e(v) = 1, \\ \neg v, & \text{dacă } e(v) = 0, \end{cases}$$

2 Exerciții

(S2.1) Arătați că pentru orice φ , ψ , $\chi \in Form$, avem:

- (i) $\varphi \lor (\varphi \land \psi) \sim \varphi$;
- (ii) $\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi)).$

(S2.2) Să se găsească toate modelele fiecăreia dintre mulțimile de formule:

(i)
$$\Gamma = \{v_n \to v_{n+1} \mid n \in \mathbb{N}\};$$

- (ii) $\Gamma = \{v_0\} \cup \{v_n \to v_{n+1} \mid 0 \le n \le 7\}.$
- (S2.3) Fie $f:V\to\{0,1\}$. Găsiți Γ astfel încât $Mod(\Gamma)=\{f\}$. (S2.4)
 - (i) Să se arate că mulțimea modelelor unei mulțimi satisfiabile și finite de formule este infinită.
 - (ii) Găsiți o mulțime (infinită) de formule cu proprietatea că nu există o mulțime finită de formule care să aibă exact aceleași modele.
- (S2.5) Să se arate că pentru orice mulțime de formule Γ și orice formulă φ avem că $\Gamma \vDash_{fin} \varphi$ dacă și numai dacă $\Gamma \cup \{\neg \varphi\}$ nu este finit satisfiabilă.
- (S2.6) Demonstrați că următoarele afirmații sunt echivalente:
 - (V1) Pentru orice $\Gamma \subseteq Form$, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.
- (V2) Pentru orice $\Gamma \subseteq Form$, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.
- (V3) Pentru orice $\Gamma \subseteq Form$, $\varphi \in Form$, $\Gamma \vDash \varphi$ dacă și numai dacă $\Gamma \vDash_{fin} \varphi$.