代数与几何讨论课(四)(向量组的线性相(无)关性)

一、选择和填空

1	已知向量组 α . α .	α α 线性无关.	则下列命题正确的是()
1.		$(U_2, U_1 \rightarrow V_1 \perp J \perp $		/

$$(A)$$
 $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_4$, $\alpha_4 + \alpha_1$ 线性无关

(B)
$$\alpha_1 - \alpha_2$$
, $\alpha_2 - \alpha_3$, $\alpha_3 - \alpha_4$, $\alpha_4 - \alpha_1$ 线性无关

$$(C)$$
 $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 - \alpha_1$, $\alpha_4 - \alpha_1$ 线性无关

(D)
$$\alpha_1 + \alpha_2$$
, $\alpha_2 - \alpha_3$, $\alpha_3 + \alpha_4$, $\alpha_4 - 2\alpha_1$ 线性无关

2. 已知
$$A \in M_{34}$$
,则下列结论正确的是()

$$(A)$$
 AA^T 一定可逆 (B) AA^T 一定不可逆,

$$(C)$$
 A^TA 一定可逆 (D) A^TA 一定不可逆。

3.
$$m \times n$$
矩阵 A 的秩为 r 的充分必要条件是 (

$$(A)$$
 A中存在 $r+1$ 阶子式不为零

(
$$B$$
) A 中存在 $r-1$ 阶子式不为零

(
$$C$$
) A 的列向量组中存在 r 个线性无关的向量

$$(D)$$
 A 的行向量组的极大线性无关组所含向量的个数是 r

4. 设
$$A = \begin{pmatrix} 2 & b & b & b & b \\ b & 2 & b & b & b \\ b & b & 2 & b & b \\ b & b & b & 2 & b \\ b & b & b & b & 2 \end{pmatrix}$$
, 已知 $r(A) = 4$,则 $b =$ ______.

- 5. 下列各陈述中,()是对的
 - (A) 若两组向量的秩相等,则两组向量可互相线性表出

- 6. 设A为n阶可逆矩阵,则分块矩阵 $\begin{pmatrix} I_n & A \\ A & 0 \end{pmatrix}$ 的秩为_____.
- 7. 设A,B均为n阶方阵,其中r(A)=r,r(B)=s为可逆矩阵.则 $r\begin{pmatrix}A&A\\-B&B\end{pmatrix}=$ ____.
- 8. 设 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关.则 $\alpha_1,\alpha_1+\alpha_2,\cdots,\alpha_1+\alpha_2+\cdots+\alpha_s$ 的秩为_____.
- 9. 矩阵 $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 5 \\ 1 & 3 & 4 \end{pmatrix}$ 的伴随矩阵的秩为_____。
- 10. 矩阵 $\begin{pmatrix} 1 & a & 0 \\ 2 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix}$ 的秩为 2,则 a =______。
- 11. 设A为n阶方阵, A的伴随矩阵的秩为 1. 则A的秩为
- 12. 设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s\in R^n$ 线性无关. A为n阶可逆矩阵。则向量组 $A\alpha_1,A\alpha_2,\cdots,A\alpha_s$ 的秩为
- 13. 向量组 $(a, 1, b, 0, 0)^T$, $(c, 0, d, -2, 1)^T$, $(e, 4, f, 5, -1)^T$ 的秩为_____。
- 14. 设A为n阶方阵满足 $A^2-2I-3I=0$,则r(A-3I)+r(A+I)=_____。
- 15. 设A是 $s \times n$ 阶矩阵,B是 $n \times m$ 矩阵,满足AB = 0,且r(B) = m,则A =_______。

二、判断正误,并说明道理。

1. 已知: $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1$ 线性无关, 求证: $\alpha_1,\alpha_2,\alpha_3$ 线性无关。 试判断下面的证法是否正确? 为什么?

证明: 因 $\alpha_1+\alpha_2$, $\alpha_2+\alpha_3$, $\alpha_3+\alpha_1$ 线性无关,故 $k_1(\alpha_1+\alpha_2)+k_2(\alpha_2+\alpha_3)+k_3(\alpha_3+\alpha_1)=0$ 当且仅当 $k_1=k_2=k_3=0$,因而 $(k_1+k_3)\alpha_1+(k_2+k_1)\alpha_2+(k_3+k_2)\alpha_3=0$ 。由于 $k_1+k_3=k_2+k_1=k_3+k_2=0$,故 $\alpha_1,\alpha_2,\alpha_3$ 线性无关。

- 2. 设向量组 $lpha,eta,\gamma$ 线性无关, $lpha,eta,\delta$ 线性相关,下列说法是否正确?为什么?
- (1) α 必可被 β, γ, δ 线性表出 .
- (2) eta 必不可由 $lpha,\gamma,\delta$ 线性表出 .
- (3) δ 必可由 α, β, γ 线性表出 .
- (4) δ 必不可由 α, β, γ 线性表出。
- 3. 设向量 eta可由向量组 $lpha_1,lpha_2,\cdots,lpha_m$ 线性表出,但不能由向量组(I) $lpha_1,lpha_2,\cdots,lpha_{m-1}$ 线

性表出,记向量组(Π)为 $lpha_1,lpha_2,\cdots,lpha_{m-1},eta$,则下列说法正确的是:

- (1) $lpha_m$ 不能由 (I) 线性表出,也不能由 (II) 线性表出。
- (2) α_m 不能由 (I) 线性表出,但可由 (II) 线性表出。
- (3) α_m 可由 (I) 线性表出,也可由 (II) 线性表出。
- (4) α_m 可由 (I) 线性表出,但不可由 (II) 线性表出。
- 4. 若 n 维 列 向 量 组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 与 n 维 列 向 量 组 $\beta_1,\beta_2,\cdots,\beta_m$ 等 价 ,则 矩 阵 $A=(\alpha_1,\alpha_2,\cdots,\alpha_m)$ 与 矩阵 $B=(\beta_1,\beta_2,\cdots,\beta_m)$ 等价(相抵).
- 5. 若矩阵 A,B,C满足 A=BC,则 A的列向量组可由 B的列向量组线性表示.
- 6. 若 |A|=0,则 A必有一列向量是其余列向量的线性组合.
- 7. 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 R^n 中n个线性无关的列向量,A是 $n \times s$ 矩阵, $(\beta_1, \beta_2, \dots, \beta_s)$ $= (\alpha_1, \alpha_2, \dots, \alpha_n)A$,则向量组 $r(\beta_1, \beta_2, \dots, \beta_s)$ 等于r(A)。

三、证明和计算

- 1. 己知: $A \in M_{n \times m}$, $B \in M_{m \times n}$ 且 n < m , AB = I , 求证: B 的列向量组线性无关。
- 2. 设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 n 个线性无关的 n 维向量, $\alpha_{n+1}=k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n$,且 k_i ($i=1,2,\cdots,n$)全不为零。求证: $\alpha_1,\alpha_2,\cdots,\alpha_n,\alpha_{n+1}$ 中任意 n 个 n 维向量均线性无关。
- 3. 设 A 是 n 阶方阵, (1). 求证: $|A^*| = |A|^{n-1}$; (2) 求 $r(A^*)$; (3) 求 $(A^*)^*$ 。