

SIS8300-L 10 channel 125 MSPS 16-bit MTCA.4 Digitizer

User Manual

SIS GmbH Harksheider Str. 102A 22399 Hamburg Germany

Phone: ++49 (0) 40 60 87 305 0 Fax: ++49 (0) 40 60 87 305 20

email: info@struck.de http://www.struck.de

Version: SIS8300L-M-x009-1-V115.doc as of 27.01.2016

Revision Table:

	Date	Modification	
0.01	11.02.2013	Based on SIS8300-M-1402-1-V104	
		Firmware: V1402	
0.02	11.03.2013	TH: register update	
		- Firmware: V1402	
		- RTM LVDS Test Input/Output Control register	
		- DAC Control register	
0.03	01.07.2013	AG: DAC clock scheme and MGT clock scheme added	
0.04	20.08.2013	AG: Clock distribution scheme update	
0.05	21.11.2013	CT: Added Firmware upgrade description	
		AG: SIS8300-L picture update	
		AG: AVR and Xilinx JTAG Connector Picture added	
1.00	13.02.2014	First official release, bug fixes and DDR3 memory diagram	
1.10	09.10.2014	Firmware: V 8301 1008	
		- update DDR3 memory diagram	
		- update ADC Sample Logic diagram	
		- update Memory Buffer diagram	
		- expanded the width of the Sample Start Block	
		Address registers from 24 bits to 26 bits (support 2	
		GByte DDR3 Memory)	
		- expanded the width of the Sample Block Length	
		register from 24 bits to 26 bits (support 2 GByte	
		DDR3 Memory)	
1.11	25.11.2014	Clock diagram update	
		RTM CLK table	
		TCLK table	
		Interlock	
1.12	02.12.2014	Firmware: V 8301 2008	
		- Added RTM-I ² C interface register	
		- Added Linux Hot-Plug workaround description	
		- Update firmware version	
		Firmware version nomenclature:	
		→ V1xxx: standard version	
		→ V2xxx: version with RTM-I ² C support	
1.13	15.09.2015	Added I ² C Register for ADC TempSensor	
		MLVDS Input/Output Register to AMC Port Assignment	
1.14	26.11.2015	Added DAC DMA logic description	
		Minor touch up	
1.15	27.01.2016	0x215 DMA PC2CARD MAX NOF OUTSTANDING REQUEST	
		Test Register added	

- Table of contents

-		contents	
1		ion	
_		ted documents	
2	-		
		ctionality	
		ek Diagram	
		form Management	
		Overal Clock Distribution	
		DAC Clock	
		RTM Clock Overview	
		TCLK Clock Overview	
		MGT Clock	
3		Connector Pin Assignments	
_		V100 JTAG	
		Watchdog Reset	
		AVR JTAG	
4			
		C LEDs	
		nt Panel LEDs	
		O LEDs	
5	Front pan	el	13
	5.1 Harl	ink LVDS In-/Outputs	14
	5.2 SMA	A Clock Input	14
		Card Cage	
6		yout	
7		e Description	
		C Sample Logic	
		nory Interface	
		Memory Write Interface	
		nory buffer	
		ress Map	
		ister description	
		Module Id. and Firmware Revision register	
	7.5.2	Serial Number register	
		User Control/Status register	
	7.5.4	ADC Temperature Sensor interface register	
	7.5.6	ADC Acquisition Control/Status register	
		ADC Sample Control register	20
		MLVDS Input/Output Control register	
		Harlink Connector Input/Output Control register	
		Link1 Data FIFO	
		Link1 Control Register	
		Link2 Data FIFO	
		Link2 Control Register	
		DAC Trigger Control register	
		Clock Distribution Multiplexer control register	
		Clock Distribution AD9510 Serial Interface (SPI) interface register	
		Clock Multiplier IC SI5326 SPI interface register	
		Clock Synthesizer IC Si5338A I2C interface register	
		FPGA Boot SPI Flash interface	
		DAC Control register	
		DAC Data register	
		RTM I2C interface register	45
	7.5.23	ADC Serial Interface (SPI) interface register	46

7.5.24 ADC Input Tap delay registers	47
7.5.25 Trigger and DAC_CLK prescaler setup register	48
7.5.26 DAC RAM endpoint register	
7.5.27 Trigger registers	50
7.5.28 Memory Sample Start Block Address / Actual Sample Block Address registers	53
7.5.29 Sample Block Length register	54
7.5.30 Ringbuffer Delay register	
7.5.31 SIS8900 RTM LVDS Test Input/Output Control register	55
7.5.32 Read DMA System Destination address (lower 32bits)	56
7.5.33 Read DMA System Destination address (upper 32bits)	
7.5.34 Read DMA Card Memory Source address	56
7.5.35 Read DMA Transfer length	57
7.5.36 Read DMA Control	57
7.5.37 Readout DMA Sample byte swap	58
7.5.38 Write DMA System Source address (lower 32bits)	59
7.5.39 Write DMA System Source address (upper 32bits)	59
7.5.40 Write DMA Card Memory Destination address	59
7.5.41 Write DMA Transfer length	60
7.5.42 Write DMA Control	60
7.5.43 Write DMA maximal number of Outstanding Requests	60
7.5.44 DAQ Done DMA Chain Control	61
7.5.45 IRQ Enable	61
7.5.46 IRQ Status	62
7.5.47 IRQ Clear	62
7.5.48 IRQ Refresh	
7.5.49 Memory test mode register	63
7.5.50 RAM FIFO debug register	63
7.6 External register interface	
7.7 User Blockram DMA Interface	67
7.8 User Interrupt Interface	
8 RTM management	
9 FPGA Firmware upgrade	
9.1 Create Bit/Bin files	
9.2 iMPACT	70
9.3 Linux tool 'flashupdater'	
9.4 Linux workaround for PCIe-Hot-Plug	72
10 Appendix	
10.1 Power Consumption	
10.2 Ordering options	
10.3 RTM/Zone 3 connectors J30 and J31	
10.3.1 J31 connector pin assignments	
10.3.2 J30 connector pin assignments	
10.3.3 Note on AC/DC input stage selection	
10.3.4 Interlock	
10.4 RTM connector schematics	78
11 Index	79

1 Introduction

The SIS8300-L is a 10 channel 125 MS/s digitizer with 16-bit resolution according to the MTCA.4 standard.

SIS8300-L

Note: While the SIS8300-L is Virtex 6 based you will find many Virtex 5 references in the firm- and software for historical reasons (i.e. remnants from the SIS8300 and SIS8300 V2 designs).

As we are aware, that no manual is perfect, we appreciate your feedback and will incorporate proposed changes and corrections as quickly as possible. The most recent version of this manual can be obtained by email from info@struck.de, the revision dates are online under http://www.struck.de/manuals.html.

Related documents

A list of available firmware designs can be retrieved from http://www.struck.de/SIS8300firm.html

2 Design

The central building block of the SIS8300-L card is a Xilinx Virtex 6 FPGA. It holds the 4 lane PCI Express interface and is in control of all active components.

2.1 Functionality

The key properties of the SIS8300-L card are listed below.

- AMC .4 µTCA for Physics Board
- 4 Lane PCI Express Interface
- Dual SFP Card Cage for optional Multi Gigabit Link
- Xilinx Virtex 6 FPGA
- DDR3 Memory Interface
- 4 x 4Gbit default DDR3 memory
- Atmega128 IPMI
- External Clock and Trigger Inputs
- Frontpanel digital I/O (4in/4 out) on Harlink Connectors
- RTM ADC Analog Inputs, I2C-Bus, DAC Analog Outputs
- 10 ADC Channels 125MS/s, 16-Bit
- 2 DAC Channels 250MS/s, 16-Bit
- Clock distribution with phase shifting
- 4 M-LVDS μTCA Ports
- 2 μTCA Clocks

2.2 Block Diagram

A simplified block diagram of the SIS8300-L is shown below.

Struck Documentation

SIS8300-L MTCA.4 Digitizer

2.3 Platform Management

The management code of the SIS8300-L is implemented in an Atmel Atmega1281-16MU microcontroller and can be upgrade in field over connector J32 (see section 3.3).

2.4 Clock Distribution

2.4.1 Overal Clock Distribution

The clock distribution scheme of the SIS8300-L is illustrated below.

2.4.2 DAC Clock

The DAC clock scheme of the SIS8300-L is illustrated below.

2.4.3 RTM Clock Overview

The RTM clock overview table is shown below.

Clock	Usage
RTM_CLK0	Ultra low jitter clock 1 ADC group 1
RTM_CLK1	Ultra low jitter clock 2 ADC group 2
RTM_CLK2	Clock switch yard
RTM_CLK3	Not used
RTM_CLK4	DAC Clock
RTM_CLK5	Connected to FPGA via clock buffer

2.4.4 TCLK Clock Overview

An overview on the TCLK clocks is shown in the table below.

Clock	Usage
TCLKA	MUX switch yard and Zone 3 AMC TCLK
TCLKB	MUX switch yard
TCLKC	Not used on SIS8300-L, can be 100Ω terminated on SIS8300-L2
TCLKD	Not used on SIS8300-L, can be 100 Ω terminated on SIS8300-L2

2.4.5 MGT Clock

The MGT clock scheme of the SIS8300-L is illustrated below.

3 Jumper/Connector Pin Assignments

The following subsections describe the pin assignments of jumpers and connectors.

3.1 CON100 JTAG

The SIS8300-L's on board logic can load its firmware from a serial PROM, via the JTAG port on connector CON100, PCI Express or via the MMC.

Hardware like the XILINX HW-USB-JTAG in connection with the appropriate software will be required for in field JTAG firmware upgrades.

CON100 is a 2mm (i.e. metric) 14 pin header that allows you to reprogram the firmware of the SIS8300-L board with a JTAG programmer. The pin out is shown in the schematic below. It is compatible with the cable that comes with the XILINX HW-USB-II-G-JTAG platform cable. CON100 can be found at the right bottom side of the board.

Note: The board has to be powered for reprogramming over JTAG

3.2 J604 Watchdog Reset

J604 can be found next to the left upper edge of U500 (largest chip on the card). With J604 closed the boards watchdog reset is connected to the reset logic. J604 should be opened for JTAG firmware programming.

3.3 J32 AVR JTAG

This 10-pin header is used to connect to the JTAG of the Atmel Atmega128 microcontroller providing the IPMI/MCH functionality of the SIS8300-L.

4 LEDs

4.1 AMC LEDs

The AMC LEDs are implemented according to the standard.

4.2 Front Panel LEDs

The SIS8300-L in Gigalink stuffing option has 4 green front panel LEDs.

LED name	Function in Gigalink design
A	PCI Express Access
U	User LED
L1	PCIe Link up
L2	ADC Sampling active
R (L1)	SFP Link 1 receiver loss of signal
T (L1)	SFP Link 1 transmitter fault
R (L2)	SFP Link 2 receiver loss of signal
T (L2)	SFP Link 2 transmitter fault

4.3 SMD LEDs

A number of surface mount red LEDs are on the SIS8300-L to visualize part of the board status.

LED designator	LED comment	Function
D20A	S1	Firmware dependent
		(Optical Link 1 up)
D20B	S2	Firmware dependent
		(Optical Link 2 up)
D20C	S3	Firmware dependent
D20D	S4	Firmware dependent
D20E	S5	Firmware dependent
D20F	S6	Firmware dependent
D20G	S7	Firmware dependent
D20H	S8	Firmware dependent
D21D	READY	FPGA ready

5 Front panel

The SIS8300-L is a μTCA for Physics board. A sketch of the front panel is shown below.

5.1 Harlink LVDS In-/Outputs

The Harlink LVDS Output and Input connectors have 5 signals each. The Clock signal to the left hand side is marked with C and the other 4 signals are labelled with 1-4.

	Clock	1	2	3	4
Top	P	P	P	P	P
Bottom	N	N	N	N	N

5.2 SMA Clock Input

The front panel SMA clock input is designed to accept a maximum peak to peak signal level of 3V into 50 Ohms. The clock input signal is coupled to the internal logic via a capacitor. The schematic of the input stage is shown below.

5.3 SFP Card Cage

The dual card cage can host two SFP link media.

They can be enabled or disabled in the SIS8300top.vhd VHDL code as shown below (and are active in the 0x1008 firmware design e.g.):

```
DUAL_OPTICAL_INTERFACE_EN : integer := 1 ; --
```

Communication is handled through registers 0x14 to 0x17 (refer to the VHDL code)

6 Board Layout

A print of the silk screen of the component side is shown below.

Connector types

The used connectors are listed in the table below.

Designator	Function	Manufacturer	Part Number
CON100	JTAG	Molex	87831-1420
CON200	Clock In	JYEBAO	SMA8400A1-9000
CON301	DAC 1 Out	JYEBAO	SMA8400A1-9000
CON302	DAC 2 Out	JYEBAO	SMA8400A1-9000
CAGE105	SFP Cage, 2 Ports	TYCO	1761014-1
J10	AdvancedMC	HARTING	16211701303000
J32	JTAG Atmega	SAMTEC	HTSW-105-26-G-D
J30	RTM	ERNI	ERmetZD-10x3P-FEM
J31	RTM	ERNI	ERmetZD-10x3P-FEM
J77	RTM Keying	TYCO	(*)
J209	Trigger & Clock Out	HARTING	27 21 121 8000
J205	Trigger & Clock In	HARTING	27 21 121 8000
J604	Watchdog	SAMTEC	HTSW-102-26-G-S

Note (*): The used Key may depend on the hardware configuration of the SIS8300-L

7 Firmware Description

7.1 ADC Sample Logic

The block diagram shows the ADC data handling. Each ADC channel has its own Memory Address Control Logic.

7.2 Memory Interface

A block diagram of the DDR3 memory controller is shown below.

User Interface block diagram for Memory read, write and histogram operations.

7.2.1 Memory Write Interface

The Write Interface consists of the following signals:

```
write_fifo_wr_clk : in std_logic;
-- data: write fifo
write_data_fifo_wr_en : in std_logic;
write_data_fifo_din : in std_logic_vector(255 downto 0);
write_data_fifo_wr_count : out std_logic_vector(9 downto 0);
-- address: write fifo
write_addr_fifo_wr_en : in std_logic;
write_addr_fifo_din : in std_logic_vector(31 downto 0);
write_addr_fifo_wr_count : out std_logic_vector(9 downto 0);
```

A write cycle to the memory consists of one write command to the Address Fifo and one write commands to the Data Fifo.

```
One write command to the Address FIFO:
```

```
a valid "sis_write_addr_fifo_wr_en" signal over one clock period (sis_write_fifo_wr_clk) along with "sis_write_64bit_addr_fifo_din".
```

One write commands to the Data FIFO:

```
a valid "sis_write_data_fifo_wr_en" signal over one clock periods (sis_write_fifo_wr_clk) along with "sis_write_data_fifo_din".
```

When issuing a write command to the Address Fifo, the write command to the Data Fifo must be issued no more than zero clock cycle later.

It is only allowed to write to the Address-FIFO, if "sis_write_addr_fifo_wr_count" is lower than X"1FF" (not full).

It is only allowed to write to the Data-FIFO, if "sis_write_data_fifo_wr_count" is lower than X"1FE" (not full).

The Memory Controller writes with one "write cycle" 256 bits (4 x 64 bits) to the Memory. Therefore the lower 2 address bits of the written 64-bit address must be 0 and the "next address" will be incremented by 4.

7.3 Memory buffer

The structure of the memory buffer with **2 GByte** (i.e. 4 x 4 GBit memory chips) is illustrated below.

2 GByte: 4 x 256M x 16bit = 1024M x 16bit = 512M x 32bit = 256M x 64bit = 128M x 128bit = 64M x 256bit

Address Map

Following 32-bit addresses are implemented

Offset	Access	Function	
0x00	R	Module Identifier/Firmware Version register	
0x01	R	Serial number register	
0x02	R/W	reserved	
0x03	R/W	reserved	
0x04	R/W	User Control/Status register (JK)	
0x05	R	Firmware Options register	
0x06	R/W	ADC Temperature Sensor interface register	
0x10	R/W	ADC Acquisition Control/Status register	
0x11	R/W	ADC Sample Control register	
0x12	R/W	MLVDS Input/Output Control register	
0x13	R/W	Harlink Connector Input/Output Control register	
0x14	R/W	Link 1 data FIFO (refer to VHDL code)	
0x15	R/W	Link 1 set control (refer to VHDL code)	
0x16	R/W	Link 2 data FIFO (refer to VHDL code)	
0x17	R/W	Link 2 set control (refer to VHDL code)	
0x20	R/W	DAC Trigger control register	
0x40	R/W	Clock Distribution Multiplexer control register	
0x41	R/W	Clock Distribution IC AD9510 SPI interface register	
0x42	R/W	Clock Multiplier IC SI5326 SPI interface register	
0x43	R/W	Clock Synthesizer Si5338A for MGT clocks	
0x44	R/W	FPGA Boot SPI Flash interface	
0x45	R/W	DAC Control register	
0x46	R/W	DAC Data register	
0x47	R/W	RTM I2C interface register	
0x48	R/W	ADC SPI Interface register	
0x49	R/W	ADC Input Tap delay register	
0x4E	R/W	DAC Trigger and DAC CLK Prescaler setup register	
0x4F	R/W	DAC RAM endpoint register	
0xFF	W	Bit 0 = 1: Master Reset (reset all registers)	

Offset	Access	Function	
0x100	R/W	ADC ch1 Trigger Setup register	
0x101	R/W	ADC ch2 Trigger Setup register	
0x109	R/W	ADC ch10 Trigger Setup register	
0x110	R/W	ADC ch1 Trigger Threshold register	
0x111	R/W	ADC ch2 Trigger Threshold register	
	10, 11		
0x119	R/W	ADC ch10 Trigger Threshold register	
011227	10 11	The circ ringger rineshold register	
0x120	R/W	ADC ch1 Memory Sample Start Block Address / Actual Block Address register	
0x121	R/W	ADC ch2 Memory Sample Start Block Address / Actual Block Address register	
	IX/ VV	ADC CIIZ Wichioty Sample Start Block Address / Actual Block Address register	
0x129	R/W	ADC ch10 Memory Sample Start Block Address / Actual Block Address register	
UXIZJ	IX/ VV	ADC CITO Memory Sample Start Block Address / Actual Block Address register	
0x12A	R/W	ADC chx Sample Block Length register	
0x12B	R/W	ADC chx Sample Block Length register ADC chx Ringbuffer Delay register (0 to 2046)	
UXIZB	IX/ VV	ADC CIIX Kiligouitei Delay fegistei (0 to 2040)	
0x12F	R/W	SIS8900 RTM LVDS Test Input/Output Control register	
UXIZF	IX/ VV	5136900 KTM L VD3 Test Input/Output Control register	
0000	D/M/	DMA BEAD DOT ADD LO22	
0x200	R/W	DMA READ DST ADR LU32	
0x201	R/W	DMA_READ_DST_ADR_HI32	
0x202	R/W	DMA_READ_SRC_ADR_LO32	
0x203	R/W	DMA READ LEN	
0x204	R/W	DMA_READ_CTRL	
0x205	R/W	DMA Readout Sample byte swap control	
0x210	R/W	DMA_WRITE_SRC_ADR_LO32	
0x211	R/W	DMA_WRITE_SRC_ADR_HI32	
0x212	R/W	DMA_WRITE_DST_ADR_LO32	
0x213	R/W	DMA_WRITE_LEN	
0x214	R/W	DMA_WRITE_CTRL	
0x215	R/W	DMA_PC2CARD_MAX_NOF_OUTSTANDING_REQUESTS	
0x216	R/W	DAQ Auto DMA Chain Control	
0x220	R/W	IRQ Enable	
0x221	R	IRQ Status	
0x222	W	IRQ Clear	
0x223	KA	IRQ Refresh	
	İ		
0x230	R/W	MEMORY test Mode register	
0x231	R/W	RAM FIFO debug register	
,	10/11	Table 1 and the control of the con	
0x400	R/W	Mapped out of register bank to top level. May be used for user defined register	
UVIUU	IX/ VV	implementation. See Section 7.6.	
		implementation. See Section 7.0.	
• • •			
0x4FF	D /W/		
TIPAU	R/W		

7.5 Register description

7.5.1 Module Id. and Firmware Revision register

#define SIS8300-L_IDENTIFIER_VERSION_REG

0x00

This register holds the module identifier (SIS8301) and the firmware version and revision.

BIT	access	Name	Function
31-16 FFFF0000	RO	Module Identifier	0x8301
15-8 0000FF00	RO	Firmware Version	1255
7-0	RO	Firmware Revision	1255

Example: The initial version of the SIS8300-L reads 0x83011002

Meaning of the several firmware versions:

• V1xxx: standard version

• V2xxx: version with RTM-I²C support

7.5.2 Serial Number register

 ${\tt \#define~SIS8300-L_SERIAL_NUMBER_REG}$

0x01

This register holds the Serial Number of the module.

BIT	access	Name	Function
31-16 FFFF0000	RO	reserved	
15-0 0000FFFF	RO	Serial Number	165535

7.5.3 User Control/Status register

#define SIS8300-L USER CONTROL STATUS REG

0x04

The control register is implemented as a selective J/K register, a specific function is enabled by writing a 1 into the set/enable bit, the function is disabled by writing a 1 into the clear/disable bit (which location is 16-bit higher in the register). An undefined toggle status will result from setting both the enable and disable bits for a specific function at the same time. The only function at this point in time is user LED on/off.

On read access the same register represents the status register.

Bit	write Function	read Function
31	Clear reserved 15 (*)	0
30	Clear reserved 14 (*)	0
29	Clear reserved 13 (*)	0
28	Clear reserved 12 (*)	0
27	Clear reserved 11 (*)	0
26	Clear reserved 10 (*)	0
25	Clear reserved 9 (*)	0
24	Clear reserved 8 (*)	0
23	Clear reserved 7 (*)	0
22	Clear reserved 6 (*)	0
21	Clear reserved 5 (*)	0
20	Clear reserved 4 (*)	0
19	Clear reserved 3 (*)	0
18	Clear reserved 2 (*)	0
17	Switch off LED test	0
16	Switch off user LED (*)	0
15	Set reserved 15	Status reserved 15
14	Set reserved 14	Status reserved 14
13	Set reserved 13	Status reserved 13
12	Set reserved 12	Status reserved 12
11	Set reserved 11	Status reserved 11
10	Set reserved 10	Status reserved 10
9	Set reserved 9	Status reserved 9
8	Set reserved 8	Status reserved 8
7	Set reserved 7	Status reserved 7
6	Set reserved 6	Status reserved 6
5	Set reserved 5	Status reserved 5
4	Set reserved 4	Status reserved 4
3	Set reserved 3	Status reserved 3
2	Set reserved 2	Status reserved 2
1	Switch on LED test	Status LED test
0	Switch on user LED	Status User LED (1=LED on, 0=LED off)

(*) denotes power up default setting

7.5.4 Firmware Options register

#define SIS8300-L FIRMWARE OPTIONS REG

0x05

This register holds the information of the Xilinx firmware option features.

Bit	read Function
31	reserved
30	
16	reserved
15	reserved
14	reserved
13	reserved
12	reserved
11	reserved
10	reserved
9	reserved
8	reserved
7	reserved
6	DUAL_OPTICAL_INTERFACE_EN
5	none
4	QUAD_PORT12_13_14_15_INTERFACE_EN
3	none
2	none
1	RINGBUFFER_DELAY_EN
0	TRIGGER_BLOCK_EN

7.5.5 ADC Temperature Sensor interface register

#define SIS8300-L_ADC_TEMP_I2C_REG

0x06

Since the hardware revision V2 the PCB temperature of the ADC area is monitored by an additional temperature sensor. This register furnishes the interface for I2C read and write access. For additional informations please refer to the ADC manual.

A software example can be found on the Struck product DVD under: sisdvd xxxxxx\sis8xxx and DWC\sis8300L\software\tests\adc temp

Bit	Write	read
31	unused	Write/Read Logic BUSY Flag
30	unused	0
29	unused	0
28	unused	0
27	unused	0
16	unused	0
15	unused	0
14	unused	0
13	Byte Read cycle	0
12	Byte Write cycle	0
11	Issue STOP condition	0
10	Issue REPEATSTART condition	0
9	Issue START condition	0
8	Master I2C ACK bit, written during reads	Device I2C ACK bit, read during writes
7	Write Data Bit 7 (MSB)	Read Data Bit 7 (MSB)
1	Write Data Bit 1	Read Data Bit 1
0	Write Data Bit 0 (LSB)	Read Data Bit 0 (LSB)

7.5.6 ADC Acquisition Control/Status register

#define SIS8300-L_ACQUISITION_CONTROL_STATUS_REG 0x10

Bit	write	read
31		0
		0
		0
8		0
7		Status: DDR3 Memory Init OK
6		0
5		Status: internal Sample Logic Buffer FIFO
		Not Empty
4		Status: internal Sample Logic Busy
3		0
2	'1': Disable Sampling	0
	(Reset Sample Logic)	
1	'1': Arm Sampling	Status: Arm for trigger
	(Start with next trigger)	(Wait for trigger)
0	'1': Start Sampling immediately	Status: Sampling Busy
	(Arm and Start/Trigger)	

7.5.7 ADC Sample Control register

#define SIS8300-L_SAMPLE_CONTROL_REG 0x11

ADC channels can be disabled from storing data to memory by setting the corresponding disable bit in this register.

Bit	write
31	
12	
11	Enable external Trigger
10	Enable internal Trigger
9	Disable Sampling Ch10
8	Disable Sampling Ch9
7	
6	
5	
4	
3	
2	Disable Sampling Ch3
1	Disable Sampling Ch2
0	Disable Sampling Ch1

7.5.8 MLVDS Input/Output Control register

#define SIS8300-L_MLVDS_IO_CONTROL_REG 0x12

Bit	Write	Read
31	Enable LVDS Output Bit 7	Enable LVDS Output Bit 7
30	Enable LVDS Output Bit 6	Enable LVDS Output Bit 6
25	Enable LVDS Output Bit 1	Enable LVDS Output Bit 1
24	Enable LVDS Output Bit 0	Enable LVDS Output Bit 0
23	LVDS Output Bit 7	LVDS Output Bit 7
22	LVDS Output Bit 6	LVDS Output Bit 6
17	LVDS Output Bit 1	LVDS Output Bit 1
16	LVDS Output Bit 0	LVDS Output Bit 0
15	LVDS Input 7 External Trigger Enable	LVDS Input 7 External Trigger Enable
14	LVDS Input 6 External Trigger Enable	LVDS Input 6 External Trigger Enable
9	LVDS Input 1 External Trigger Enable	LVDS Input 1 External Trigger Enable
8	LVDS Input 0 External Trigger Enable	LVDS Input 0 External Trigger Enable
7	LVDS Input 7 External Trigger falling edge	LVDS Input Bit 7
6	LVDS Input 6 External Trigger falling edge	LVDS Input Bit 6
1	LVDS Input 1 External Trigger falling edge	LVDS Input Bit 1
0	LVDS Input 0 External Trigger falling edge	LVDS Input Bit 0

Note: external trigger in signals are synchronized with the FPGA CLK05

The register related FPGA pins are connected via MLVDS transceivers to the RX/TX ports of AMC multi-point bus. Assignment of register bits to AMC ports is shown in the table below.

AMC Port	LVDS Bit
TX20	7
RX20	6
TX19	5
RX19	4
TX18	3
RX18	2
TX17	1
RX17	0

7.5.9 Harlink Connector Input/Output Control register

#define SIS8300-L_HARLINK_IO_CONTROL_REG 0x13

Bit	Write	Read
31	No function	0
30	No function	0
21	No function	0
20	Harlink Test Output Enable	Harlink Test Output Enable
19	Harlink Test Output 4 (*)	Harlink Test Output 4
18	Harlink Test Output 3 (*)	Harlink Test Output 3
17	Harlink Test Output 2 (*)	Harlink Test Output 2
16	Harlink Test Output 1 (*)	Harlink Test Output 1
15	Harlink Input 4 External Trigger falling edge	Harlink Input 4 External Trigger falling edge
14	Harlink Input 3 External Trigger falling edge	Harlink Input 3 External Trigger falling edge
13	Harlink Input 2 External Trigger falling edge	Harlink Input 2 External Trigger falling edge
12	Harlink Input 1 External Trigger falling edge	Harlink Input 1 External Trigger falling edge
11	Harlink Input 4 External Trigger Enable	Harlink Input 4 External Trigger Enable
10	Harlink Input 3 External Trigger Enable	Harlink Input 3 External Trigger Enable
9	Harlink Input 2 External Trigger Enable	Harlink Input 2 External Trigger Enable
8	Harlink Input 1 External Trigger Enable	Harlink Input 1 External Trigger Enable
7	No function	0
6	No function	0
5	No function	0
4	No function	0
3	No function	Harlink Input 4
2	No function	Harlink Input 3
1	No function	Harlink Input 2
0	No function	Harlink Input 1

(*): only if "Harlink Test Output Enable" = 1 (**): only if "Harlink Test Output Enable" = 0

Harlink Connector Input(1): external trigger In

Harlink Connector Output(1): adc chx (or) trigger out (**)

Note: external trigger in signals are synchronized with the FPGA CLK05

7.5.10 Link1 Data FIFO

#define SIS8300-L_LINK1_FIFO_DATA_REG 0x14

Bit	Write	Read
31	Transmit Data D31	Received Data D31
	D30	D30
	D1	D1
0	Transmit Data D0	Received Data D0

7.5.11 Link1 Control Register

#define SIS8300-L_LINK1_FIFO_CONTROL_REG 0x15

Bit	Write	Read
31	Fifo reset	0
30	Receive-fifo enable	0
29	0	0
28		0
27		Port 14 linkup
26		Port 12 linkup
25	0	Opt 1 linkup
24	Set to send a protocol word	Indicates an protocol word into receive-fifo
23	0	0
22		0
21		0
20		Out_fifo_write count D8
19		D7
18		
17		
16		
15		
14		
13		D1
12		Out_fifo_write count D0
11		0
10		0
9		0
8		In_fifo_read count D8
7		D7
6		
5		
4		
3	GTX reset (depending on 'Link select')	
2	Opt1 and Opt2 reset	
1	Link select D1(0: Opt1 2: Port12 3: Port14)	D1
0	Link select D0	In_fifo_read count D0

Note: The connection between the links must be initialized:

7.5.12 Link2 Data FIFO

Bit	Write	Read
31	Transmit Data D31	Received Data D31
	D30	D30
	D1	D1
0	Transmit Data D0	Received Data D0

0x17

7.5.13 Link2 Control Register

#define SIS8300-L_LINK2_FIFO_CONTROL_REG

Bit	Write	Read
31	Fifo reset	0
30	Receive-fifo enable	0
29	0	0
28		0
27		Port 15 linkup
26		Port 13 linkup
25	0	Opt 2 linkup
24	Set to send a protocol word	Indicates an protocol word into receive-fifo
23	0	0
22		0
21		0
20		Out_fifo_write count D8
19		D7
18		
17		
16		
15		
14		
13		D1
12		Out_fifo_write count D0
11		0
10		0
9		0
8		In_fifo_read count D8
7		D7
6		
5		
4		
3	GTX reset (depending on 'Link select')	
2	Opt1 and Opt 2 reset	
1	Link select D1(0: Opt2 2: Port13 3: Port 15)	D1
0	Link select D0	In_fifo_read count D0

Note: The connection between the links must be initialized:

7.5.14 DAC Trigger Control register

#define SIS8300_DAC_TRIGGER_CONTROL_REG 0x20

Bit	Write	Read
31		
5	DAC 2 - Stop converting	1: DAC 2 stopped
4	DAC 1 - Stop converting	1: DAC 1 stopped
3	DAC 2 - Arm converting (Start with next trigger)	Status: DAC 2 Arm for trigger (Wait for trigger)
2	DAC 2 - Start converting immediately (Arm and Start)	Status: DAC 2 Busy
1	DAC 1 - Arm converting (Start with next trigger)	Status: DAC 1 Arm for trigger (Wait for trigger)
0	DAC 1 - Start converting immediately (Arm and Start)	Status: DAC 1 Busy

7.5.15 Clock Distribution Multiplexer control register

#define SIS8300-L_CLOCK_DISTRIBUTION_MUX_REG 0x40

The SIS8300-L has 5 IDT ICS853S057 clock multiplexer chips, which are labelled A to E in the clock distribution schematic in section 2.4. The multiplexer control register holds the two select bits for the 5 multiplexer chips as shown in the table below.

The assignment of the inputs to the resources (i.e. clock inputs) is listed in subsection 7.5.15.1.

BIT	access	Name	Function
31-12 FFFFF000	R/W	reserved	no
11-10	R/W	MUXE_SEL	Multiplexer E select bits
9-8	R/W	MUXD_SEL	Multiplexer D select bits
7-6	R/W	reserved	no
5-4	R/W	MUXC_SEL	Multiplexer C select bits
3-2	R/W	MUXB_SEL	Multiplexer B select bits
1-0	R/W	MUXA_SEL	Multiplexer A select bits

7.5.15.1 Multiplexer A Input Signals:

U222 - Sel0 and Sel1 (MUX1A SEL) = Multiplexer A select lines

Sel1	Sel0	Selected Input - Net Name	Clock source Description
0	0	RTMCLK_0	Clock 2 from µRTM card
0	1	TCLKB_0	Clock 2 (Telecom Clock B) from AMC Connector (Backplane)
1	0	TCLKA_0	Clock 1 (Telecom Clock A) from AMC Connector (Backplane)
1	1	OSC CLK0	Onboard Clock chip (250MHz)

7.5.15.2 Multiplexer B Input Signals:

U223 - Sel0 and Sel1 (MUX1B_SEL) = Multiplexer B select lines

Sel1	Sel0	Selected Input - Net Name	Clock source Description
0	0	RTMCLK_1	Clock 2 from µRTM card
0	1	TCLKB_1	Clock 2 (Telecom Clock B) from AMC Connector (Backplane)
1	0	TCLKA_1	Clock 1 (Telecom Clock A) from AMC Connector (Backplane)
1	1	OSC_CLK1	Onboard Clock chip (250MHz)

7.5.15.3 Multiplexer C Input Signals:

U240 - Sel0 and Sel1 (MUXAB_SEL) = Multiplexer C select lines

Sel1	Sel0	Selected Input - Net Name	Clock source Description
0	0	EXT_CLKB0	Clock from Harlink Connector "CI1-4 IN" (frontpanel)
0	1	EXT_CLKA0	Clock from SMA Connector "CLK IN" (frontpanel)
1	0	MUXA_CLK1	Multiplexer A Output Signal
1	1	MUXB_CLK1	Multiplexer B Output Signal

7.5.15.4 Multiplexer D Input Signals:

U250 - Sel0 and Sel1 (MUX2A_SEL) = Multiplexer D select lines

Sel1	Sel0	Selected Input - Net Name	Clock source Description
0	0	MUXA_CLK0	Multiplexer A Output Signal
0	1	MUL_CLK1	Clock Multiplier (U242) Output 2 Signal
1	0	EXT_CLKB1	Clock from Harlink Connector "CI1-4 IN" (frontpanel)
1	1	EXT_CLKA1	Clock from SMA Connector "CLK IN" (frontpanel)

7.5.15.5 Multiplexer E Input Signals:

U251 - Sel0 and Sel1 (MUX2B_SEL) = Multiplexer E select lines

Sel1	Sel0	Selected Input - Net Name	Clock source Description
0	0	MUXB_CLK0	Multiplexer B Output Signal
0	1	MUL_CLK0	Clock Multiplier (U242) Output 1 Signal
1	0	EXT_CLKB2	Clock from Harlink Connector "CI1-4 IN" (frontpanel)
1	1	EXT_CLKA2	Clock from SMA Connector "CLK IN" (frontpanel)

7.5.16 Clock Distribution AD9510 Serial Interface (SPI) interface register

#define SIS8300-L_AD9510_SPI_REG

0x41

The parameters of the Clock Distribution IC AD9510 chips can be configured with the SPI (serial Peripheral Interface).

Bit	Write	read	
31	Cmd Bit 1	Write/Read Logic BUSY Flag	
30	Cmd Bit 0		
29	Set "Function" Output Level	Status of Set "Function" Output Level	
28	Select "Function"	Status of Select "Function"	
	synchronisation CLK	synchronisation CLK	
			1
25		Status AD9510 #2	1
24	AD9510 #2 Select Bit	Status AD9510 #1	
23	Read Cycle Bit		
22			
21			
20	Address Bit 12		
19	Address Bit 11		
•••			
12	Address Bit 4		
11	Address Bit 3		
10	Address Bit 2		RW CMD
9	Address Bit 1		\ \ \
8	Address Bit 0		RV
7	Write Data Bit 7 (MSB)	Read Data Bit 7 (MSB)	
6	Write Data Bit 6	Read Data Bit 6	
1	Write Data Bit 1	Read Data Bit 1	
0	Write Data Bit 0 (LSB)	Read Data Bit 0 (LSB)	

The power up default value is 0x20000000

Command Bit (31:30) Explanation:

Cmd Bit 1	Cmd Bit 0	Command
0	0	No Function
0	1	R/W CMD
1	0	Function CMD
		Generates a pulse at the Function Input pin of the AD9510 which is synchronous to the selected clock. The clock selection is done via Bit 28 (Function Syn CLK). The actual function depends on the programming of the selected AD9510
1	1	Reserved

Select "Function" synchronisation CLK Bit (28) Explanation:

Bit 28	Clock Source
0	PCI Clock
1	FPGA CLK 69

Note:

- 1. enable READ by writing 0x90 to addr 0x0
- 2. and set Read Cycle Bit

Note:

Please refer to the SIS8300-L_AD9510_SPI_Setup routine as illustration and to the AD9510 documentation for details.

7.5.17 Clock Multiplier IC SI5326 SPI interface register

Several parameters of the Clock Multiplier SI5326 chip can be configured with the SPI (serial Peripheral Interface).

Please refer to the documentation of the SI5326 chip for details.

Bit	Write	read
31	Cmd Bit 1	Write/Read Logic BUSY Flag
30	Cmd Bit 0	Reset, Decrement or Increment Cmd BUSY Flag
29		
17		Si53xx LOL Status
16		Si53xx INT_C1B Status
15	Instruction Byte Bit 7	
8	Instruction Byte Bit 0	
7	Address/Data Byte Bit 7	Read Data Bit 7 (MSB)
		Read Data Bit 1
0	Address/Data Byte Bit 0	Read Data Bit 0 (LSB)

The power up default value is 0x0

Cmd Bit 1	Cmd Bit 0	Command
0	0	Execute SPI Write/Read Cmd
0	1	Reset Cmd
1	0	Decrement Cmd
1	1	Increment Cmd

Reset Cmd: generates an 1us reset pulse

Decrement Cmd: generates an 1us Skew Decrement pulse Increment Cmd: generates an 1us Skew Increment pulse

Note: INC/DEC Time between consecutive pulses must be greater than 16ms!

7.5.18 Clock Synthesizer IC Si5338A I2C interface register

#define SIS8300-L_MGTCLK_SYNTH_I2C_REG 0x43

Several parameters of the Clock Synthesizer Si5338A chip can be configured with the I2C Interface.

Please refer to the documentation of the Si5338A chip for details.

Bit	Write	read
31	unused	Write/Read Logic BUSY Flag
30	unused	0
29	unused	0
28	unused	0
27	unused	0
16	unused	0
15	unused	0
14	unused	0
13	Byte Read cycle	0
12	Byte Write cycle	0
11	Issue STOP condition	0
10	Issue REPEATSTART condition	0
9	Issue START condition	0
8	Master I2C ACK bit, written during reads	Device I2C ACK bit, read during writes
7	Write Data Bit 7 (MSB)	Read Data Bit 7 (MSB)
1	Write Data Bit 1	Read Data Bit 1
0	Write Data Bit 0 (LSB)	Read Data Bit 0 (LSB)

The power up default value is 0x0

7.5.19 FPGA Boot SPI Flash interface

#define SIS8300-L_SPI_FLASH_REG 0x44

Bit	Write	read
31	unused	SPI logic busy
30	unused	0
35	Release Flash interface	0
24	Clear Flash chipselect	0
23	unused	0
11	unused	0
10	Start Byte exchange	0
9	Claim Flash interface	Flash interface status
8	Set Flash chipselect	Flash chipselect status
7	Write Data Bit 7 (MSB)	Read Data Bit 7 (MSB)
1	Write Data Bit 1	Read Data Bit 1
0	Write Data Bit 0 (LSB)	Read Data Bit 0 (LSB)

The SPI Flash control lines are internally multiplexed between this register and the onboard MMC controller pins. In order to gain access to the flash via this register, the multiplexer has to be set via bit 10 and cleared via bit 25 after all transfers are done.

7.5.20 DAC Control register

#define SIS8300-L_DAC_CONTROL_REG 0x45

Bit	write	read
31	Tap Delay Write Pulse	
30		
29		
28	Tap Delay value bit 4	
27	Tap Delay value bit 3	
26	Tap Delay value bit 2	
25	Tap Delay value bit 1	
24	Tap Delay value bit 0	
23		
21	DAC 2 Wrap select	
20	DAC 1 Wrap select	
19		
18	FPGA CLK select	FPGA CLK: DAC Output Update Rate
		0: 125MHz; 1: 250MHz
17	DAC Clock Multiplexer select bit 1	DAC Clock Multiplexer select bit 1
16	DAC Clock Multiplexer select bit 0	DAC Clock Multiplexer select bit 0
15		
•••		
12		
11		
10		
9		
8	DAC DCM Reset pulse	
7		
6		
5	Power Down	0: power down, 1: power up
4	TORB	0: binary, 1: Two's complement
	Two's-Complement/Binary Select	
1	Test Mode Bit 1	
0	Test Mode Bit 0	

The power up default value is 0x0

DAC Clock Multiplexer table

select bit 1	select bit 0	DAC clock source
0	0	FPGA clock
0	1	Clock Divider AD9510 #2 Out 0
1	0	Clock Divider AD9510 #1 Out 0
1	1	RTM CLK4

Test Mode Bit 1	Test Mode Bit 0	DAC Test Mode
0	0	Data from DAC Data register
0	1	Ramp Test Mode
1	0	ADC1/ADC2 -> DAC1/DAC2
1	1	Data from DAC RAM

Note 1: ADC 1 Clock is used as DAC clock (refer chapter: 7.5.25)

Note 2: The RAM store up to **65536** values per DAC.

The 'DMA write enabled' Bit must set to enable the direct memory write access to the DAC RAM (refer chapter 7.5.38 and onwards for future information's). The 'DMA Data' format corresponds to the 'DAC Data register' format (refer chapter 7.5.21).

Note 3: It can be necessary to setup the 'tap delay' to composite a device dependent asynchronicity between the clock path and the data path of the DAC. A indicator for a excessive shift is an disturbed DAC output signal.

With the 'tap delay' value it is possible to shift the data path up to **1.6ns** relative to the clock signal to resynchronize the two paths.

7.5.21 DAC Data register

#define SIS8300-L_DAC_DATA_REG 0x4

Bit	write
31	DAC2 Data 15
•••	
•••	
16	DAC2 Data 0
15	DAC1 Data 15
0	DAC1 Data 0

The power up default value is 0x0, data= $0 \rightarrow +1 \text{ V}$, data= $0xFFFF \rightarrow -1 \text{ V}$ output (with TORB=1, i.e. in Two's complement mode)

Note: The default DAC range at DAC Out SMA Connector is -1V, ..., +1V into a 50 Ω load

7.5.22 RTM I2C interface register

#define SIS8300-L_RTM_I2C_BUS_REG

0x47

Rear Transition Modules (RTMs) like the DWC8VM1 or DWC8300 have components that are configured and/or read out by an I2C interface over the Zone 3 connector.

This register furnishes the interface for I2C read and write access.

It is implemented in firmware versions V2xxx.

A software example can be found on the Struck product DVD under: $sisdvd_xxxxxx \\ sis8xxx \ and \ DWC \\ sis8300L \\ software \\ tests \\ rtm_i2c_test$

Please refer to the documentation of the respective RTM for details.

Bit	Write	read
31	unused	Write/Read Logic BUSY Flag
30	unused	0
29	unused	0
28	unused	0
27	unused	0
16	unused	0
15	unused	0
14	unused	0
13	Byte Read cycle	0
12	Byte Write cycle	0
11	Issue STOP condition	0
10	Issue REPEATSTART condition	0
9	Issue START condition	0
8	Master I2C ACK bit, written during reads	Device I2C ACK bit, read during writes
7	Write Data Bit 7 (MSB)	Read Data Bit 7 (MSB)
1	Write Data Bit 1	Read Data Bit 1
0	Write Data Bit 0 (LSB)	Read Data Bit 0 (LSB)

The power up default value is 0x0

7.5.23 ADC Serial Interface (SPI) interface register

#define SIS8300-L_ADC_SERIAL_INTERFACE_REG 0x48

Several parameters of the ADC AD9268 chip can be configured with the SPI (serial Peripheral Interface).

Please refer to the documentation of the ADC AD9268 chip for details.

Bit	write	read
31	ADC Synch cmd	Write/Read Logic BUSY Flag
•••		
•••		
26	ADC Select Mux Bit 2	
25	ADC Select Mux Bit 1	
24	ADC Select Mux Bit 0	
23	Read Cmd	
22		
21		
20	Address Bit 12	
19	Address Bit 11	
12	Address Bit 4	
11	Address Bit 3	
10	Address Bit 2	
9	Address Bit 1	
8	Address Bit 0	
7	Write Data Bit 7 (MSB)	Read Data Bit 7 (MSB)
6	Write Data Bit 6	Read Data Bit 6
1	Write Data Bit 1	Read Data Bit 1
0	Write Data Bit 0 (LSB)	Read Data Bit 0 (LSB)

The power up default value is 0x0

ADC Synch Cmd: generates an synch pulse with AD9510 #1 FPGA clock

7.5.24 ADC Input Tap delay registers

#define SIS8300-L_ADC_INPUT_TAP_DELAY

0x49

The input tap delay registers are used to adjust the FPGA data strobe timing.

Bit	31-13	12	11	10	9	8	7-6	5-0
Function	None	ADC 9/10	ADC 7/8	ADC 5/6	ADC 3/4	ADC 1/2	None	Tap delay value
		Select	Select	Select	Select	Select		(x 78ps)

Bit	write	read
31		Tap Delay Logic BUSY Flag
12	ADC 9/10 Select Bit	
11	ADC 7/8 Select Bit	
10	ADC 5/6 Select Bit	
9	ADC 3/4 Select Bit	
8	ADC 1/2 Select Bit	
7	Tap delay value Bit 7	Tap delay value Bit 7
6	Tap delay value Bit 6	Tap delay value Bit 6
1	Tap delay value Bit 1	Tap delay value Bit 1
0	Tap delay value Bit 0	Tap delay value Bit 0

7.5.25 Trigger and DAC_CLK prescaler setup register

#define SIS8300 DAC TRIGGER PRECLK REG

The DAC uses the same clock source like the ADC 1. With the DAC CLK prescaler it is possible to define a different clock period based on the ADC clock. The prescaler are set up by the divider Bits:

0x4E

$$DAC_CLK = \frac{SOURCE_CLK}{divider + 1}$$

(A divider value of one generates a twice period time of the source)

The 'ADC trigger select Bits' defines the internal trigger source: $0h = ADC \ 1, ..., 9h = ADC \ 10$

Bit	write	read
31	DAC 2 CLK divider Bit 7	DAC 2 CLK divider Bit 7
24	DAC 2 CLK divider Bit 0	DAC 2 CLK divider Bit 0
23	DAC 1 CLK divider Bit 7	DAC 1 CLK divider Bit 7
16	DAC 1 CLK divider Bit 0	DAC 1 CLK divider Bit 0
15	-	0
14	-	0
13	DAC 2 Enable external Trigger	DAC 2 external Trigger enabled
12	DAC 2 Enable internal Trigger	DAC 2 internal Trigger enabled
11	DAC 2 ADC trigger select Bit 3	DAC 2 ADC trigger select Bit 3
10	DAC 2 ADC trigger select Bit 2	DAC 2 ADC trigger select Bit 2
9	DAC 2 ADC trigger select Bit 1	DAC 2 ADC trigger select Bit 1
8	DAC 2 ADC trigger select Bit 0	DAC 2 ADC trigger select Bit 0
7	-	0
6	-	0
5	DAC 1 Enable external Trigger	DAC 1 external Trigger enabled
4	DAC 1 Enable internal Trigger	DAC 1 internal Trigger enabled
3	DAC 1 ADC trigger select Bit 3	DAC 1 ADC trigger select Bit 3
2	DAC 1 ADC trigger select Bit 2	DAC 1 ADC trigger select Bit 2
1	DAC 1 ADC trigger select Bit 1	DAC 1 ADC trigger select Bit 1
0	DAC 1 ADC trigger select Bit 0	DAC 1 ADC trigger select Bit 0

The power up default value is 0x0

7.5.26 DAC RAM endpoint register

#define SIS8300_DAC_DATA_ENDP_REG

0x4F

This register defines the last element in the DAC RAM and mark the value at the RAM read logic 'wrap around' to the first RAM element (if the 'Wrap select' Bit set at the DAC control register).

If N DAC values are written into the DAC RAM, the last value is placed on address N-1.

Bit	write	read
31	DAC 2 RAM endpoint Bit 15	DAC 2 RAM endpoint Bit 15
30	DAC 2 RAM endpoint Bit 14	DAC 2 RAM endpoint Bit 14
17	DAC 2 RAM endpoint Bit 1	DAC 2 RAM endpoint Bit 1
16	DAC 2 RAM endpoint Bit 0	DAC 2 RAM endpoint Bit 0
15	DAC 1 RAM endpoint Bit 15	DAC 1 RAM endpoint Bit 15
14	DAC 1 RAM endpoint Bit 14	DAC 1 RAM endpoint Bit 14
1	DAC 1 RAM endpoint Bit 1	DAC 1 RAM endpoint Bit 1
0	DAC 1 RAM endpoint Bit 0	DAC 1 RAM endpoint Bit 0

The power up default value is 0x0

7.5.27 Trigger registers

The Trigger Block contains Logic to generate internal triggers (only implemented if the Firmware Option register bit TRIGGER BLOCK EN = 1).

Two types are implemented: A "threshold trigger" and a "FIR trigger".

7.5.27.1 Trigger setup registers

These read/write registers hold the 8-bit wide trigger pulse length (in sample clocks), the Peaking and Gap Time of the trapezoidal FIR filter.

(Gap Time = SumG Time – Peaking Time)

Bit	Function	
31	Reserved	
26	Enable Trigger	
25	GT trigger condition	
24	FIR Trigger Mode (0: Threshold	Trigger; 1: FIR Trigger)
23	Puls Length bit 7	
22	Puls Length bit 6	
21	Puls Length bit 5	
20	Puls Length bit 4	Trigger Pulse Length
19	Puls Length bit 3	
18	Puls Length bit 2	
17	Puls Length bit 1	
16	Puls Length bit 0	
15	reserved	
14	reserved	
13	reserved	SumG time (only FIR trigger)
12	SumG bit 4	(time between both sums)
11	SumG bit 3	(time between both sums)
10	SumG bit 2	
9	SumG bit 1	
8	SumG bit 0	
7	reserved	
6	reserved	Peaking time P (only FIR trigger)
5	reserved	
4	P bit 4	x+P
3	P bit 3	Σ Si
2	P bit 2	i = x
1	P bit 1	
0	P bit 0	

The power up default value reads 0x 00000000

Si: Sum of ADC input sample stream from x to x+P

P: Peaking time (number of values to sum)

SumG: SumGap time (distance in clock ticks of the two running sums)

The maximum SumG time: 16 (clocks)
The minimun SumG time: 1 (clocks)

Values > 16 will be set to 16 Value = 0 will be set to 1

The maximum Peaking time: 16 (clocks)
The minimun Peaking time: 1 (clocks)

Values > 16 will be set to 16 Value = 0 will be set to 1

7.5.27.2 Trigger Threshold registers

These read/write registers hold the threshold values for the 10 ADC channels.

7.5.27.2.1 Trigger Threshold

FIR Trigger Mode = 0

Bit	31-16	15-0
Function	Threshold value OFF	Threshold value ON

default after Reset: 0x0

A trigger output pulse is generated on two conditions:

- GT is set (GT) in trigger setup register: the trigger Out pulse will be issued if the actual sampled ADC value **goes** above the threshold value ON **and** OFF. A new Trigger Out Pulse will be suppressed until the ADC value **goes** below the threshold value OFF.
- GT is cleared (LT) in trigger setup register: the trigger Out pulse will be issued if the actual sampled ADC value **goes** below the threshold value ON **and** OFF. A new trigger Out pulse will be suppressed until the ADC value **goes** above the threshold value OFF.

the trigger Out pulse will be issued if the actual sampled ADC value **goes** below the threshold value.

GT: greater than LT: lower than

7.5.27.2.2 FIR Trigger Threshold

FIR Trigger Mode = 1

Bit	31-20	19-0
Function	None	Trapezoidal threshold value

default after Reset: 0x0

The value of the Sum (trapezoidal value) depends on the peaking time P. Therefore the selection of the value of the Trapezoidal threshold depends on P also.

Trapezoidal value calculation:

Trapezoidal value = (SUM2 - SUM1)

Where

$$SUM1 = \sum_{i=x}^{x+P} Si$$

$$i = x$$

$$x+P+sumG$$

$$SUM2 = \sum_{j=x+sumG} Sj$$

The FIR filter logic generates the Trapezoidal by subtraction of the two running sums. This implies, that the internal value of the trapezoid is on average 0.

A trigger output pulse is generated:

- GT is set (GT): the Trigger Out Pulse will be issued if the actual trapezoidal value **goes** above the programmable trapezoidal threshold value
- GT is cleared (LT): the Trigger Out Pulse will be issued if the actual trapezoidal value **goes** below the **negated** programmable trapezoidal threshold value

7.5.28 Memory Sample Start Block Address / Actual Sample Block Address registers

The **write function** to these registers defines the memory start block address. The value is given in 256-bit blocks.

Write Function: ADC chx Memory Sample Start Block Address

Bit	31-26	25-0
	reserved	Memory Sample Start Block Address (256-bit blocks)
		(16-bit word address x 16)

default after Reset: 0x0

Explanation (memory sample start block address)

The contents of the **sample memory start block address** register is assigned as memory data storage address with the arm command (key address arm sampling) or with the enable command (key address enable sampling).

The **read function** from these registers give the information of the actual sampling block address for the given ADC channel.

(at the moment: only valid if the logic is not busy!)

Read Function: ADC chx Actual Sample Block Address

Bit	31-26	25-0
	reserved	Actual Sample Block Address (in 256-bit Blocks)
		(16-bit word address x 16)

The value is given in 256-bit Blocks (16bit word address x 16)

7.5.29 Sample Block Length register

#define SIS8300-L_SAMPLE_LENGTH_REG

0x12A

This register defines the number of sample blocks of each ADC channel.

The size of one sample block for each ADC channel is 256-bit (16 x 16-bit word).

Bit	31-26	25-0
Function	reserved	Sample Block Length

default after Reset: 0x0

Sample Block Length value	Number of samples of each channel (waveform length)
0x0	16
0x1	32
0x2	48
0x3	64
0x 3FF FFFF(*)	0x 4000 0000 (1.073.741.824)

^{*} maximum block length of one channel only!

7.5.30 Ringbuffer Delay register

#define SIS8300-L_PRETRIGGER_DELAY_REG

0x12B

This register defines the number of pre trigger delay samples for all channels. The maximum pre trigger delay value is 2046.

Bit	31-12	11-0
Function	reserved	Delay value

7.5.31 SIS8900 RTM LVDS Test Input/Output Control register

#define SIS8300-L_RTM_LVDS_IO_CONTROL_REG 0x12F

Bit	Write	Read
31	-	0
30	-	0
29	-	0
28	-	0
27	-	0
26	Enable RTM LVDS Output Bit 8	Enable RTM LVDS Output Bit D 8
25	Enable RTM LVDS Output Bit 7	Enable RTM LVDS Output Bit D 7
24	Enable RTM LVDS Output Bit 6	Enable RTM LVDS Output Bit D 6
23	-	0
22	-	0
21	-	0
20	-	0
19	-	0
18	RTM LVDS Output Bit D 8	RTM LVDS Output Bit D 8
17	RTM LVDS Output Bit D 7	RTM LVDS Output Bit D 7
16	RTM LVDS Output Bit D 6	RTM LVDS Output Bit D 6
15	-	0
14	-	0
13	-	0
12	-	0
11	RTM Z3-TCLK enable	RTM Z3-TCLK enable
10	RTM Z3-ILOCK enable	RTM Z3-ILOCK enable
9	RTM Z3-ILOCK1	RTM Z3-ILOCK1
8	RTM Z3-ILOCK0	RTM Z3-ILOCK0
7	-	0
6	-	0
5	-	RTM LVDS Input Bit D5
4	-	RTM LVDS Input Bit D4
3	-	RTM LVDS Input Bit D3*
2	-	0
1	-	0
0	-	0

^{*)}Note: Was flashed the special firmware branch 2xxx can't read out the register correctly!!! The 3. LVDS cannel is occupied by RTM_I2C-Bus!!

7.5.32 Read DMA System Destination address (lower 32bits)

#define DMA_READ_DST_ADR_LO32

0x200

This register holds the lower 32bits of the destination address (byte address!) in system memory into which the card will transfer data.

Bit	31-0
Function	System memory address (lower 32bits)

7.5.33 Read DMA System Destination address (upper 32bits)

#define DMA_READ_DST_ADR_HI32

0x201

This register holds the upper 32bits of the destination address (byte address!) in system memory into which the card will transfer data.

Bit	31-0
Function	System memory address (upper 32bits)

7.5.34 Read DMA Card Memory Source address

#define DMA_READ_SRC_ADR_LO32

0x202

This register holds the 32bit source (byte) address in the cards address space which is used to select the data source which is read from.

Bit	31-0
Function	Card address space

The address layout is:

DDR3 Memory:

Address 0x0 - 0x7FFFFFFF: DDR3 selected Memory

User DMA space:

Address 0x80000000 - 0xAFFFFFFF: Repeated User DMA space

Note: The Card address must be start on a 64-Byte boundary.

 $0x0, 0x40, 0x80 \dots$

7.5.35 Read DMA Transfer length

#define DMA_READ_LEN

0x203

This register holds the amount of data (bytes!) which is going to be transferred.

Bit	31-0
Function	DMA Transfer length

Note: The DMA Transfer length must be a multiple of 64 Bytes. 0x40, 0x80, 0xC0

7.5.36 Read DMA Control

#define DMA_READ_CTRL

0x204

This register starts the Read DMA process and allows to poll the transfer status.

Bit	write	read
31	unused	0
		0
1	unused	0
0	Start DMA	DMA running

7.5.37 Readout DMA Sample byte swap

#define DMA_READ_BYTESWAP

0x205

This register allows swapping each byte in a sample for optimizing data handling on big/little endian machines.

Example for disabled swapping:

Byte address offset: Sample value

00 Sample 0 lo byte (LSB)
01 Sample 0 hi byte (MSB)
02 Sample 1 lo byte (LSB)
03 Sample 1 hi byte (MSB)

Example for enabled swapping:

Byte address offset: Sample value

00 Sample 0 hi byte (MSB)
01 Sample 0 lo byte (LSB)
02 Sample 1 hi byte (MSB)
03 Sample 1 lo byte (LSB)

Bit	write	read
31	unused	0
		0
1	unused	0
0	Byteswap enable	Byteswap enable status

7.5.38 Write DMA System Source address (lower 32bits)

#define DMA_WRITE_DST_ADR_LO32

0x210

This register holds the lower 32bits of the destination address (byte address!) in system memory from which the card will transfer data.

Bit	31-0
Function	System memory address (lower 32bits)

7.5.39 Write DMA System Source address (upper 32bits)

#define DMA_WRITE_DST_ADR_HI32

0x211

This register holds the upper 32bits of the destination address (byte address!) in system memory from which the card will transfer data.

Bit	31-0
Function	System memory address (upper 32bits)

7.5.40 Write DMA Card Memory Destination address

#define DMA_WRITE_DST_ADR_LO32

0x212

This register holds the 32bit destination (byte) address in the cards address space which is used to select the data source which is written to.

Bit	31-0
Function	Card address space

The address layout is:

DDR3 Memory:

Address 0x0 - 0x7FFFFFFF: DDR3 selected Memory

Internal the DAC RAM is mapped into the RAM address space. To write into the DAC RAM, the 'DMA write enable' bit must set (refer chapter 7.5.20).

DAC RAM Space:

Address 0xB0000000 - 0xB000FFFF

Note: The Card address must be start on a 64-Byte boundary.

 $0x0, 0x40, 0x80 \dots$

7.5.41 Write DMA Transfer length

#define DMA_WRITE_LEN

0x213

This register holds the amount of data (bytes) which is going to be transferred.

Bit	31-0
Function	DMA Transfer length

Note: The DMA Transfer length must be a power of two (min. 64 Byte). 0x40, 0x80, 0x100...

7.5.42 Write DMA Control

#define DMA_WRITE_CTRL

0x214

This register starts the Write DMA process and allows to poll the transfer status.

Bit	write	read
31	unused	0
		0
1	unused	0
0	Start DMA	DMA running

7.5.43 Write DMA maximal number of Outstanding Requests

#define DMA_PC2CARD_MAX_NOF_OUTSTANDING_REQUESTS

0x215

This register defines the maximal number of outstanding requests during a Write DMA process. The default value is 16 (0x10).

Implemented as test feature, not needed in standard operation.

Bit	function	
31	unused	
6	unused	
5	Max Nof Outstanding Req bit 5	
	unused	
0	Max Nof Outstanding Req bit 0	

7.5.44 DAQ Done DMA Chain Control

#define DAQ_DMA_CHAIN

0x216

This register allows the chaining of the DAQ Done Signal into the DMA Start Signal.

Bit	write	read
31	unused	0
		0
1	unused	0
0	DAQ Done DMA Start Chain enable	Chain enabled

7.5.45 IRQ Enable

#define IRQ_ENABLE

0x220

This register enables each interrupt source for interrupt generation. The register is implemented as a J-K register.

Bit	write	read
31	Disable User IRQ	0
30	Disable DAQ Done IRQ	0
29	unused	0
18	unused	0
17	Disable Write DMA Done IRQ	0
16	Disable Read DMA Done IRQ	0
15	Enable User IRQ	User IRQ enabled status
14	Enable DAQ Done IRQ	DAQ Done IRQ enabled status
13	unused	0
2	unused	0
1	Enable Write DMA Done IRQ	Write DMA Done IRQ enabled status
0	Enable Read DMA Done IRQ	Read DMA Done IRQ enabled status

7.5.46 IRQ Status

#define IRQ_STATUS

0x221

This register lists the latched interrupt bits for which an interrupt has been generated.

Bit	write	read
31	unused	0
		0
16	unused	0
15	unused	User IRQ happened
14	unused	DAQ Done IRQ happened
13	unused	0
2	unused	0
1	unused	Write DMA Done IRQ happened
0	unused	Read DMA Done IRQ happened

7.5.47 IRQ Clear

#define IRQ_CLEAR

0x222

This register clears any handled interrupts and allows the logic to generate new interrupts.

Bit	write	read
31	unused	0
		0
16	unused	0
15	User IRQ clear	0
14	DAQ Done IRQ clear	0
13	unused	0
2	unused	0
1	Write DMA Done IRQ clear	0
0	Read DMA Done IRQ clear	0

7.5.48 IRQ Refresh

#define IRQ_REFRESH

0x223

This register refreshes the interrupt logic. This might be needed in the case an interrupt happens while the software interrupt service routine was still handling the previous interrupt.

Bit	write	read
anv	Refresh IRQ logic	0

7.5.49 Memory test mode register

#define MEMORY TEST MODE REGISTER

0x230

Test functionality only, not relevant for standard use.

7.5.50 RAM FIFO debug register

#define RAM_FIFO_DEBUG

0x231

This register provides FIFO information of internal read and write FIFO pipes in the DDR3 memory controller. It also allows to selectively reset each data path.

Bit	write	read
31	Reset read address/data fifos	Reset status
30	Reset write address/data fifos	Reset status
29	FIFO count select bit 1	FIFO count select bit 1 status
28	FIFO count select bit 0	FIFO count select bit 0 status
27	unused	Selected fifo status bit 27
0	unused	Selected fifo status bit 0

Fifo 0 status bits:

Bit	write	read
27	unused	0
12	unused	0
11	unused	Read data fifo almost empty
10	unused	Read data fifo empty
9	unused	Read data fifo fill count bit 9
0	unused	Read data fifo fill count bit 0

Fifo 1 status bits:

Bit	write	read
27	unused	0
•••		
10	unused	0
9	unused	Read address fifo fill count bit 9
•••		
0	unused	Read address fifo fill count bit 0

Fifo 2 status bits:

Bit	write	read
27	unused	0
10	unused	0
9	unused	Write data fifo fill count bit 9
0	unused	Write data fifo fill count bit 0

Fifo 3 status bits:

Bit	write	read
27	unused	0
10	unused	0
9	unused	Write address fifo fill count bit 9
0	unused	Write address fifo fill count bit 0

7.6 External register interface

The external register interface provides the user with the possibility to implement up to 256 32bit registers on the top level of the HDL design. The registers are embedded into the devices regular register space from address 0x400 to 0x4FF.

The External register interface consists of the following signals:

```
reg_0x400_0x4FF_adr : out std_logic_vector(7 downto 0);
reg_0x400_0x4FF_wr_data : out std_logic_vector(31 downto 0);
reg_0x400_0x4FF_rd_data : in std_logic_vector(31 downto 0);
reg_0x400_0x4FF_wr_en : out std_logic;
reg_0x400_0x4FF_rd_en : out std_logic;
```

reg 0x400 0x4FF adr:

8bit wide addressbus which selects the next register to be read from or written to.

reg 0x400 0x4FF wr data:

32bit wide databus which holds the data to be written to the addressed register.

reg 0x400 0x4FF rd data:

32bit wide databus to which the user logic must provide the read data from the addressed register.

reg 0x400 0x4FF wr en:

Write enable pulse to indicate that a write request has been issued from the PCIe interface.

reg 0x400 0x4FF rd en:

Read enable pulse to indicate to that a read request has been issued from the PCIe interface.

The interface is synchronous to the User Blockram DMA interface clock. See 7.7.

See the following graphs on how the device expects user logic to interact with the interface.

7.7 User Blockram DMA Interface

The User Blockram DMA interface consists of the following signals:

```
bram_dma_clk : out std_logic;
bram_dma_adr : out std_logic_vector(31 downto 0);
bram_dma_rd_en : out std_logic;
bram_dma_rd_data : in std_logic_vector(63 downto 0);
```

bram dma clk:

Free running 125MHz clock to which the data and control signals are synchronous to bram dma adr:

32bit wide addressbus which is mapped over the 512MB of onboard sample RAM.

The addresses ranges from 0x00000000 to 0x1FFFFFFF (512MB)

bram dma rd en:

(Optional) Read enable pulse for connected logic. The read enable pulse is valid 1 clockperiod before the data is expected to be valid on the databus.

bram dma rd data:

64bit wide (due to PCIe endpoint design) databus which holds the data to be transmitted over PCIe. The data needs to be valid 1 clockperiod after ram_dma_rd_en is valid.

Note:

This interface was built to be directly able to connect to a Xilinx CoreGen generated blockram module with a 64bit wide read bus. Due to PCIe endpoint design constraints the user has to read the blockram via DMA in 8byte steps.

7.8 User Interrupt Interface

The User Interrupt interface consists of the following signals.

```
user_irq : in std_logic;
user_irq_clear : out std_logic;
```

user irq:

User interrupt pulse input to the PCIe endpoint. The connected logic has to supply a pulse of at least 1 clockperiod in length to trigger the interrupt logic. If the driver/user software has enabled the corresponding interrupt line, an interrupt is generated on the PCIe interface.

```
user irq clear:
```

A 1 clock period wide pulse which is triggered, when the driver software has serviced the issued interrupt in the interrupt service routine. This pulse may be used to reset any logic that depends on user feedback through the software interface.

The interface is synchronous to the User Blockram DMA interface clock. See 7.7.

8 RTM management

Connected RTMs shall be compliant to the PICMG MTCA.4 specification in a way that they must have an on board I^2C EEProm (on address 0x50) and a NXP PCF8574-compatible port expander (on address 0x7C).

Required port expander connection map for normal operation:

Port pin	Function
P0	HotSwap Switch (low active)
P1	LED Blue (low active)
P2	LED Red (low active)
P3	LED Green (low active)
P4	PowerGood (low active)
P5	Reset (low active)
P6	PowerEnable (low active)
P7	EEprom Write Protect

The EEprom shall contain any relevant device information (FRU records) about the RTM (refer to PICMG AMC.0). Additionally the EEprom shall contain the new record types defined in PICMG MTCA.4.

In order to be able to decide whether a connected RTM is compatible to the SIS8300-L the RTM record shall contain one of the Zone 3 Identifier records listed in the table below.

Supported Zone 3 Identifier Records (Interface Identifier OEM):

IANA PEN (Private	Zone 3 OEM record	Descripton
enterprise number)		
0x0092BD (37565)	0x83000001	SIS8300-L Zone3 - v1
		compatibility
0x00053F (1343)	0x08020000	DESY DWC Zone3
		compatibility
0x0092BD (37565)	0x89000001	SIS8900 Zone3 - v1
		compatibility

9 FPGA Firmware upgrade

Two methods can be used to update the FPGA firmware on cards with intact firmware. The first one uses the Xilinx iMPACT software to program the FPGA. The second uses a LINUX tool (which can be found on the product DVD) to update the SPI memory via the PCI Express interface of the card. The latter method can not be used on cards with flawed firmware.

9.1 Create Bit/Bin files

In case of generating the bit/bin files by the user, it is important to know that the Configuration Rate has to be set to the value 40 (40Mbit/sec) in "Generate Programming File / Properties / Configuration Options".

9.2 iMPACT

Double click with the left mouse button on the SPI/BPI icon and select the *.mcs file to be programmed (e.g. SIS8300L_prom_v83011003.mcs) after a Boundary Scan and the initialization of the chain.

The screen shot below shows the parameters for the popup menu (SPI PROM, W25Q648V/CV, Data Width: 1):

Finally the new firmware can be programmed into the select component (**Note:** watchdog settings 3.2 (i.e. jumper J604 open).

9.3 Linux tool 'flashupdater'

The driver has to be loaded for the use of the flashupdater tool and the devices be mounted properly. Use the commands below for verification:

```
# lsmod | grep sis Result (if driver loaded): sis8300drv

# ls /dev/ | grep sis Result: for each installed device one entry (sis8300-0 e.g.)
```

The update is invoked with the command:

./flashupdate <path/to/file>.bin

9.4 Linux workaround for PCle-Hot-Plug

During the firmware development phase it may be of interest to re-establish PCIe connectivity to the SIS8300-L without a power cycle of the crate. A workaround is given in the command sequence below.

1. Open a terminal and deactivate the Struck device driver:

```
sudo rmmod sis8300drv
```

2. Change into the root space:

sudo su

3. Disable the PCIe link of the target device slot (e.g. slot number 5):

```
echo 0 > /sys/bus/pci/slots/5/power
```

The link LED (L1) goes off.

4. 5. Reactivate the PCIe slot:

```
echo 1 > /sys/bus/pci/slots/5/power
```

The link LED (L1) goes back on.

10 Appendix

10.1 Power Consumption

The currents drawn by the SIS8300-L are listed in the table below.

Voltage	Current
3,3 V	100 mA
12 V	4 A

These currents are typical values during normal operation. They can vary depending on the loaded firmware design.

10.2 Ordering options

The available part numbers are listed in the table below.

Struck part number	FPGA
04506	SIS8300-L with XC6VLX130T-2FFG1156C
05178	As above w/o FP SMAs and Harlink

Configuration options are:

AC coupling
DC with AD8138 preamplifiers
DC with AD8139 preamplifiers (lower noise)

Note: The DACs are routed to the front panel for part number 04506 and to the Zone 3 connector for part number 05178.

10.3 RTM/Zone 3 connectors J30 and J31

J30 and J31 are 90 pin right angle female connectors providing 30 contact pairs each (60 signal contacts and 30 ground contacts). Every contact pair is surrounded by a "L" shaped male shield blade. The shielding contact is designated with the names of the corresponding signal pair (signal pin a and b is affiliated with shielding contact ab e.g.). The picture below shows the connector contact layout as seen from the rear side of the board.

10.3.1 J31 connector pin assignments

The J31 connector routes the differential analog input signals of the ADC channels and ground to the RTM. The characters "TF" in signal names stand for signals to the AC coupled transformer input stages. In same fashion "PA" stands for DC coupled preamplifier input stage.

Col →	ef	f	e	cd	d	c	ab	b	a
Row↓									
10	GND	CH0_PA-	CH0_PA+	GND	GND	GND	GND	CH0_TF-	CH0_TF+
9	GND	CH1_TF-	CH1_TF+	GND	GND	GND	GND	CH1_PA-	CH1_PA+
8	GND	CH2_PA-	CH2_PA+	GND	GND	GND	GND	CH2_TF-	CH2_TF+
7	GND	CH3_TF-	CH3_TF+	GND	GND	GND	GND	CH3_PA-	CH3_PA+
6	GND	CH4_PA-	CH4_PA+	GND	GND	GND	GND	CH4_TF-	CH4_TF+
5	GND	CH5_TF-	CH5_TF+	GND	GND	GND	GND	CH5_PA-	CH5_PA+
4	GND	CH6_PA-	CH6_PA+	GND	GND	GND	GND	CH6_TF-	CH6_TF+
3	GND	CH7_TF-	CH7_TF+	GND	DAC1-	DAC1+	GND	CH7_PA-	CH7_PA+
2	GND	CH8_PA-	CH8_PA+	GND	GND	GND	GND	CH8_TF-	CH8_TF+
1	GND	CH9_TF-	CH9_TF+	GND	DAC2-	DAC2+	GND	CH9_PA-	CH9_PA+

10.3.2 J30 connector pin assignments

The J30 connector is used to route power, data and system management pins to the RTM board.

Col →	ef	f	e	Cd	d	c	ab	b	a
Row↓									
10	GND	GND	GND	GND	GND	GND	GND	GND	GND
9	GND	CLK1-	CLK1+	GND	nc	nc	GND	CLK0-	CLK0+
8	GND	CLK5-	CLK5+	GND	CLK2-	CLK2+	GND	CLK4-	CLK4+
7	GND	GND	GND	GND	GND	GND	GND	GND	GND
6	GND	OUT1-	OUT1+	GND	OUT0-	OUT0+	GND	AMC_TCLK-	AMC_TCLK+
5	GND	D8-	D8+	GND	D7-	D7+	GND	D6-	D6+
4	GND	D5-	D5+	GND	D4-	D4+	GND	D3-	D3+
3	GND	SFP-TX-	SFP-TX+	GND	SFP-RX-	SFP-RX+	GND	SFP-CLK-	SFP-CLK+
2	GND	SCL_I	SCL_E	GND	SCL	MP+3.3V	GND	PWR+12V	PWR+12V
1	GND	SDA_I	SDA_E	GND	SDA	PS#	GND	PWR+12V	PWR+12V

Please refer to the DESY document "Zone 3 Connector Pin Assignment Recommendation for Analog Applications for AMC/ μ RTM Boards on the MTCA.4 standard" also.

10.3.3 Note on AC/DC input stage selection

The AC (transformer) or DC (operational amplifier OpAmp) input path is selected on the SIS8300-L card via 0603 solder bridges as illustrated for channels 0 and 1 on the screenshot below. The designators for all channels can be found in the table below.

ADC Channel	Designator	Input for ADC
0	SW63A	ADC CH0+
0	SW63B	ADC_CH0-
1	SW61A	ADC_CH1+
1	SW61B	ADC_CH1-
2	SW58A	ADC_CH2+
2	SW58B	ADC_CH2-
3	SW56A	ADC_CH3+
3	SW56B	ADC_CH3-
4	SW53A	ADC_CH4+
4	SW53B	ADC_CH4-
5	SW51A	ADC_CH5+
5	SW51B	ADC_CH5-
6	SW48A	ADC_CH6+
6	SW48B	ADC_CH6-
7	SW46A	ADC_CH7+
7	SW46B	ADC_CH7-
8	SW43A	ADC_CH8+
8	SW43B	ADC_CH8-
9	SW41A	ADC_CH9+
9	SW41B	ADC_CH9-

10.3.4 Interlock

An interlock mechanism is implemented on the SIS8300-L for operation with Vectormodulator cards like the DWC8VM1 and DS8VM1. The OUT0 and OUT1 Zone 3 signals are generated from the logical combination of the TX_19 (RF permit), RX_20 (RF gate) and the FPGA signals.

The interlock scheme is shown in the diagram (courtesy of DESY) below.

The corresponding two driver chips are U805 and U807. The NAND type is Fairchild Semiconductor NC7SZ10P6X with chip marking Z10. In fact the NOR type NC7SZ27P6X with marking Z27 was used on most SIS8300-L cards (what allows RF output in the absence of the AMC backplane signals).

SAFETY NOTE: make sure, that you have the proper interlock scheme for your application. Struck Innovative Systeme GmbH does not assume any liability for improper configuration.

10.4 RTM connector schematics

11 Index

II IIIUGA	
12 V 72	Link 2 20
3,3 V 72	firmware
8-bit 11	version 22
A 12	Firmware 16
AC 74	Firmware Options
AD9268 45	register 24
AD9510 37, 42	flashupdater 71
ADC area 25	FPGA 6
ADC Sample Logic 16	FPGA Firmware upgrade 69
ADC Temperature Sensor 25	front panel 13
Address Map 20	FRU 67
AdvancedMC 6	functionality 6
AMC 6	Harlink 14, 72
AMC.0 67	HARTING 15
Appendix 72	I2C 22
arm 52	ICS853S057 35
Atmega 15	IDT 35
Atmega128 11	iMPACT 11, 68
Atmel 7, 11	Interlock 76
AVR JTAG 11	introduction 5
binary 42	IPMI 7, 11
Block diagram 6	IRQ 60
	enable 60
board layout 15	J32 7, 11
clock	
DAC 9	J604 11, 70
input 14	J75 73, 74
MGT 10	JTAG 11, 15, 20
RTM 9	AVR 11
TCLK 9	jumper 11
clock distribution 8, 9	JYEBAO 15
CON600 11	L1 12, 14
connector types 15	L2 12, 14
DAC 15, 42, 72	LED 12
Arm Trigger 34	20A 12
CLK prescaler 47	A 12
Clock 9	D105A 12
Clock Multiplexer 42	D105B 12
External trigger enable 47	D110A 12
Impedance 43	D110B 12
Internal trigger enable 47	D20B 12
MUX 42	D20C 12
Output Update Rate 42	D20D 12
RAM DMA write 43	D20E 12
Range 43	D20F 12
Repetition (Wrap select) 42, 48	D20G 12
Software Trigger 34	D20H 12
Tap delay 43	D21D 12
Trigger Control register 20	L1 12
Trigger source 47	L2 12
DC 74	test 23
DDR3 17	U 12
design 6	user 23
DESY 67, 74, 76	LEDs
DMA Read 55	AMC 12
DS8VM1 76	Front Panel 12
DVD 25, 44	SMD 12
DWC8300 44	Link 1 20
DWC8VM1 44, 76	Link 2 20
ERNI 15	LINUX 71
external register interface 64	LVDS 14
Fairchild Semiconductor 76	M 49
FIFO	MCH 11
Link 1 20	memory interface 17
	•

memory write interface 18	MLVDS Input/Output Control 28
MGT	module Id. 22
clock 10	ringbuffer delay 53
MGT clock 10	RTM I2C interface 44
microcontroller 7, 11	Sample Length 53
MOLEX 15	serial number 22
MTCA.4 67	SIS8900 RTM LVDS Test Input/Output Control
multiplexer A 36	register 54
multiplexer B 36	trigger setup 49, 50
multiplexer C 36	trigger threshold 50
multiplexer D 36	User Control/Status 23
multiplexer E 36	RTM 22, 67
MUX	clock 9
DAC 42	I2C interface register 44
NAND 76	RTM connector schematics 77
NC7SZ10P6X 76	RTM connectors 73
NC7SZ27P6X 76	RTM management 67
NOR 76	RTM_CLK4 42
NXP 67	SAMTEC 15
ordering options 72	SFP 6, 14, 15
P 49	SI5326 39, 40
parallel load 11	SMA 14, 72
PCF8574 67	TCLK
PCI Express 6	clock 9
PCIe-HotPlug 71	temperature sensor 25
platform management 7	TORB 42
Power Consumption 72	trigger threshold 50
Read DMA	Two's complement 42
destination address 55	TYCO 15
register	U 12
ADC Acquisition Control/Status 26	U222 36
ADC IOB delay 46	U223 36
ADC Sample Control 27	U240 36
ADC serial interface 45	U250 36
clock distribution AD9510 SPI interface 37	U251 36
clock distribution multiplexer control 35	U500 11
Clock Multiplier IC SI5326 SPI interface 39	U805 76
control 22	U807 76
DAC control 42	user
DAC Data 43	LED 23
DAC RAM endpoint register 48	user blockram dma interface 66
DAC Trigger select and prescaler control register 47	user interrupt interface 66
Firmware Options 24	Virtex 6 6
firmware revision 22	watchdog reset 11
Harlink Connector Input/Output Control 29	Xilinx 6, 68
Memory Sample Start Address 52	Zone 3 72, 73
memory test mode 62	