

Tesi di Laurea Magistrale in Ingegneria Informatica

Virtualized FPGA-acceleration of Distributed File Systems with SR-IOV and Containerization

Anno Accademico 2023/24

relatore

Ch.mo Prof Alessandro Cilardo

correlatore

Ing. Vincenzo Maisto

candidato

Biagio Spena

Matr. M63001373

What are Hadoop and HDFS?

- Framework for distributed processing of datasets
- Hadoop Distributed File System (HDFS)
 - Stores user data
 - Master-Slave Architecture

Other Applications

- NameNode (master daemon)
 - Stores metadata
- DataNode (slave daemon)
 - Stores the actual data

Virtualizing an Hadoop Cluster

Container Virtualization

- Lightweight virtualization
- A container is an isolated computing environment

Single Root I/O Virtualization (SR-IOV)

- Share a single PCIe device across multiple VMs
- Physical Functions (PF)
- Virtual Functions (VF)
 - One or more VFs are directly assigned to a VM

Physical '

Host

Physical

Host

Starting Architecture: FPGA-Acceleration for HDFS

- FPGA-accelerated Hadoop Daemons
- For Erasure Coding
- Thread Isolation
 - Interconnect HDFS with the VF
- Intel Open FPGA Stack
 - Stack hardware/software
 - Intel PCIe-attached FPGA cards
- Accelerator Functional Unit (AFU)
 - FPGA accelerator core
 - Exposed through VF
 - One VF is one AFU

Physical '

Host

Virtualized FPGA-acceleration of Distributed File Systems with SR-IOV and Containerizartion

Thesis Objective

FPGA Acceleration from Physical Cluster to Virtual Cluster

Virtual Accelerated Cluster Architecture

- Docker Container
 - FPGA-accelerated Hadoop Daemons
 - Thread Isolation
- Intel OFS
- VFIO Driver
 - Exposes direct device access to userspace
- Intel VT-d
- IOMMU-mapping
 - Direct access to the host memory space from the device

Experimental Validation

- Validate the virtual cluster functionality and performance
 - **DFSIO** benchmark —— Read/write on DFS
- Experimental Setup
 - FPGA Acceleration → RS[3:2]
 - FPGA device : Max 13 VF
 - 6 Containers: 1 Master + 5 Slaves
 - 6 GB of RAM for each container

Indipendent Factors	Levels
Number of Files	4 8 16
Size of file	10 MB 100 MB 200 MB 400 MB
Number of VF per container	1 2

Response Variables for read/write	Description
Throughput (MB/s)	MB transmitted per second
Runtime (s)	Total operation execution time
Average I/O Rate (MB/s)	Average DFS read/write speed

DFS Read Performance

- Read operations do not trigger erasure coding
 - No interaction with VFs

Runtime

Throughput

DFS Write Performance

Runtime

- No significant variations up to 8 files
- Slight degradation for 16 files
- 2 VFs show higher overhead

DFS Write Performance

- Throughput / IO rate
 - Comparable performance
 - 2 VFs better load handling for larger files
 - Large file sizes (>400 MB) difficult to handle

Conclusions

FPGA-acceleration of Virtual HDFS Cluster

Physical Cluster

- One FPGA card per node
- More complex development
- Longer deploy time
- Lower portability
- Higher costs

- More components
- More maintenance
- Higher energy demand

Virtual Cluster

- One FPGA card per virtual cluster
- Easier and faster development
- Performance bottle-neck:
 - Host physical resources
- Functionally equivalent!

- Reduced costs
 - Less components
 - Eaiser maintenance
 - More energy-efficient

