Halogen-Free Product

Advanced Power Electronics Corp.

P-CHANNEL ENHANCEMENT MODE
POWER MOSFET

- **▼** Capable of 1.5V Gate Drive
- **▼** Small Package Outline
- **▼** Surface Mount Device
- **▼** RoHS Compliant & Halogen-Free

BV _{DSS}	-20V		
$R_{DS(ON)}$	$\mathbf{38m}\Omega$		
I_D	-5A		

Description

AP2323A series are from Advanced Power innovated design and silicon process technology to achieve the lowest possible on-resistance and fast switching performance. It provides the designer with an extreme efficient device for use in a wide range of power applications.

The special design SOT-23 package with good thermal performance is widely preferred for all commercial-industrial surface mount applications using infrared reflow technique and suited for voltage conversion or switch applications.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	-20	V
V_{GS}	Gate-Source Voltage	<u>+</u> 8	V
I _D @T _A =25°C	Drain Current ³ , V _{GS} @ 4.5V	-5	Α
I _D @T _A =70°C	Drain Current ³ , V _{GS} @ 4.5V	-4	Α
I _{DM}	Pulsed Drain Current ¹	-20	Α
P _D @T _A =25°C	Total Power Dissipation	1.38	W
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
T _J	Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$

Thermal Data

Symbol	Parameter	Value	Unit
Rthj-amb	Maximum Thermal Resistance, Junction-ambient ³	90	°C/W

AP2323AGN-HF

Electrical Characteristics@T_i=25°C(unless otherwise specified)

	1	<u> </u>		ľ		
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V, I_D =-250uA	-20	_	-	V
$R_{DS(ON)}$	Static Drain-Source On-Resistance ²	V _{GS} =-4.5V, I _D =-4A	-	31	38	$\mathbf{m}\Omega$
		V_{GS} =-2.5V, I_{D} =-3A	-	37	50	$\mathbf{m}\Omega$
		V _{GS} =-1.8V, I _D =-1A	-	40	64	$\mathbf{m}\Omega$
		V _{GS} =-1.5V, I _D =-0.8A	-	50	90	$\mathbf{m}\Omega$
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=-250uA$	-0.3	-0.5	-1	V
g _{fs}	Forward Transconductance	V_{DS} =-5V, I_{D} =-4A	-	17	-	S
I _{DSS}	Drain-Source Leakage Current	V _{DS} =-16V, V _{GS} =0V	-	-	-10	uA
I_{GSS}	Gate-Source Leakage	$V_{GS}=+8V$, $V_{DS}=0V$	-	-	<u>+</u> 100	nA
Q_g	Total Gate Charge	I _D =-4A	-	19	30.4	nC
Q_{gs}	Gate-Source Charge	V _{DS} =-10V	_	2	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =-4.5V	-	4	-	nC
t _{d(on)}	Turn-on Delay Time	V _{DS} =-10V	-	9	-	ns
t _r	Rise Time	I _D =-1A	_	14	-	ns
$t_{\text{d(off)}}$	Turn-off Delay Time	R_G =3.3 Ω	_	60	-	ns
t _f	Fall Time	V _{GS} =-5V	-	30	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	_	1650	2640	pF
C _{oss}	Output Capacitance	V _{DS} =-10V	_	170	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	145		pF
R _g	Gate Resistance	f=1.0MHz	_	10	20	Ω

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =-1.2A, V _{GS} =0V	-	-	-1.2	V
t _{rr}	Reverse Recovery Time	I _S =-4A, V _{GS} =0V,	-	23	-	ns
Q_{rr}	Reverse Recovery Charge	dl/dt=100A/µs	-	5	-	nC

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse test
- 3.Surface mounted on 1 in² copper pad of FR4 board, t \leq 10sec ; 270 $^{\circ}$ C/W when mounted on min. copper pad.

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 5. Forward Characteristic of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s. Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 8. Typical Capacitance Characteristics

Fig 9. Maximum Safe Operating Area

Fig 10. Effective Transient Thermal Impedance

Fig 11. Transfer Characteristics

Fig 12. Drain Current v.s. Ambient Temperature