ECON-GA 1025 Macroeconomic Theory I Lecture 12

John Stachurski

Fall Semester 2018

Today's Lecture

- Optimal savings models
- Optimal growth
- Envelope conditions
- the Euler equation

Notes: Exam Prep, etc.

Exam = Monday 22nd Oct 9:30–11:30am Room 517

- Closed book
- Material covered by TJS is examinable PS 6 provides practice
- Review lecture slides
- Updated course notes with solved exercises

Office hours: Wed 4pm-5pm

Preliminary: Berge's Theorem of the Maximum

Let A and X be metric spaces

Let Γ be a nonempty compact valued correspondence from X to A

• $\Gamma(x)$ is a nonempty compact subset of A for every $x \in X$

Let q be a real valued function on

$$\mathbb{G} := \{(x, a) \in \mathsf{X} \times \mathsf{A} : a \in \Gamma(x)\}\$$

and set

$$v(x) := \max_{a \in \Gamma(x)} q(x, a) \qquad (x \in X)$$

Theorem. If Γ is continuous on X and q is continuous on \mathbb{G} , then v is well defined and continuous on X

Note: We omitted the definition of continuity of correspondences

A sufficient condition for Γ to be a continuous nonempty compact valued correspondences is that $A \subset \mathbb{R}^k$ and

$$\Gamma(x) = \{ a \in \mathsf{A} : \ell(x) \leqslant a \leqslant m(x) \}$$

where

- ℓ , m are continuous \mathbb{R}^k valued functions on X
- $\ell(x) \leqslant m(x)$ for all x in X

A Generic Optimal Savings Problem

A foundation stone for

- DSGE models
- Bewley / Huggett / Aiyagari heterogeneous agent models

Agent chooses consumption path $\{c_t\}$ to maximize

$$\mathbb{E}\left[\sum_{t=0}^{\infty}\beta^t u(c_t)\right]$$

where

- $u(c_t)$ is utility of current consumption
- ullet eta is a discount factor satisfying 0<eta<1

Consumption affects a **state process** via the **law of motion**

$$x_{t+1} = g(x_t, c_t, \xi_{t+1}) \qquad \{\xi_t\} \stackrel{\text{IID}}{\sim} \varphi$$

where

- ullet consumption c_t values in \mathbb{R}_+
- the state x_t values in metric space X
- x₀ is given
- the innovation process $\{\xi_t\}$ takes values in metric space E

(Arbitrary metric spaces so continuous & discrete both possible)

The state restricts consumption via a feasibility constraint

$$c_t \in \Gamma(x_t) \subset \mathbb{R}_+$$

- for example, $\Gamma(x) = [0, x]$ when x is assets
- Γ is called the **feasible correspondence**

Consumption also required to be adapted to the history

$$\mathcal{H}_t := \{x_j\}_{j \leqslant t}$$

• c_t cannot depend on future realizations of the state

Assumption. The following conditions hold:

- 1. u is continuous, strictly concave and strictly increasing on \mathbb{R}_+
- 2. *g* is everywhere continuous
- 3. Γ is nonempty, compact valued and continuous

Collectively, $(\beta, u, g, \varphi, \Gamma)$ called the **generic optimal savings** model

Interpretations

- Consumption and investment in a DSGE model
- Savings and asset accumulation for a household
- Optimal exploitation of a natural resource

Example. In Brock and Mirman (1972), a representative agent owns capital $k_t \in \mathbb{R}_+$, produces output

$$y_t := f(k_t, z_t)$$

Here f is the production function and $\{z_t\}$ is an exogenous productivity process

Consumption is chosen to maximize $\mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right]$

The resource constraint is

$$0 \leqslant k_{t+1} + c_t \leqslant y_t$$

This combined with the production function leads to the law of motion

$$k_{t+1} = f(k_t, z_t) - c_t$$

The exogenous state process is assumed to follow the Markov law

$$z_{t+1} = G(z_t, \epsilon_{t+1}), \qquad \{\epsilon_t\} \stackrel{\text{\tiny IID}}{\sim} \varphi$$

Maps to the generic optimal savings model $(\beta, u, g, \varphi, \Gamma)$ if we set

- x = (k, z)
- law of motion

$$g((k,z),c,\xi) = \begin{pmatrix} f(k,z) - c \\ G(z,\xi) \end{pmatrix}$$

• $\Gamma(x) = [0, f(k, z)]$

What do we need for g to be continuous?

Example. Consider the model of household wealth dynamics

$$w_{t+1} = (1 + r_{t+1})(w_t - c_t) + y_{t+1}$$

- $w_t = \text{household assets}$
- $c_t = \text{consumption}$
- $y_{t+1} = \text{non-financial income}$
- r_{t+1} = the rate of return on financial assets

Assume $y_t = y(z_t, \eta_t)$ and $r_t = r(z_t, \zeta_t)$ where

- $z_{t+1} = G(z_t, \epsilon_{t+1})$
- $\{\eta_t\}$, $\{\zeta_t\}$ and $\{\epsilon_t\}$ are IID

Consumption is chosen to maximize

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}u(c_{t})$$

Maps to the generic optimal savings model $(\beta, u, g, \varphi, \Gamma)$ when

- x = (w, z)
- $\bullet \ \, \varphi = {\rm distribution} \,\, {\rm of} \,\, \xi := (\epsilon, \eta, \zeta)$
- g is set to

$$g((w,z),c,\xi) = \begin{pmatrix} (1+r(z,\zeta))(w-c) + y(z,\eta) \\ G(z,\epsilon) \end{pmatrix}$$

• $\Gamma((w,z)) = [0,w]$

What do we need for g to be continuous?

Stationary Markov Policies

Recall: Consumption must be adapted to $\mathcal{H}_t := \{x_j\}_{j \leqslant t}$ Means that, at each point in time t, we have

$$c_t = \sigma_t(x_0, x_1, \ldots, x_t)$$

for some suitable function σ_t — called a **policy function** In what follows we focus exclusively on **stationary Markov policies**

- depend only on the current state
- time invariant $(\sigma_t = \sigma)$

(In fact every optimal policy has these properties)

A stationary Markov policy is a function σ mapping X to \mathbb{R}_+

Interpretation:

$$c_t = \sigma(x_t)$$
 for all $t \geqslant 0$

We call σ a feasible consumption policy if

- 1. it is Borel measurable and
- 2. it satisfies

$$\sigma(x) \in \Gamma(x)$$
 for all $x \in X$

Requires that

- functions nice enough to compute all expectations
- resource constraint is respected

Each $\sigma \in \Sigma$ closes the loop for the state process

• determines a first order Markov process $\{x_t\}$ via

$$x_{t+1} = g(x_t, \sigma(x_t), \xi_{t+1})$$

This is important!

Choosing a policy $\sigma \in \Sigma$ chooses a Markov process

Associated value is

$$v_{\sigma}(x) := \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} u(\sigma(x_{t}))$$

- Here $\{x_t\}$ obeys (16) with $x_0 = x$
- Called the σ -value function

The **value function** v^* is defined by

$$v^*(x) := \sup_{\sigma \in \Sigma} v_{\sigma}(x) \qquad (x \in X)$$

A consumption policy σ^* is called **optimal** if it is feasible and

$$v_{\sigma^*}(x) = v^*(x)$$
 for all $x \in X$

In most settings v^* satisfies the Bellman equation

$$v(x) = \max_{c \in \Gamma(x)} \left\{ u(c) + \beta \int v(g(x, c, z)) \varphi(\mathrm{d}z) \right\} \qquad (x \in \mathsf{X})$$

Intuition: maximal value obtained by trading off current vs expected future rewards possible from next state

Proposition. Let $(\beta, u, f, \varphi, \Gamma)$ be a generic optimal savings model If u is bounded, then

- 1. v^* is the unique solution to the Bellman equation in bcX
- 2. A feasible consumption policy σ is optimal if and only if

$$\sigma(x) \in \operatorname*{argmax}_{c \in \Gamma(x)} \left\{ u(c) + \beta \int v^*(g(x,c,z)) \varphi(\mathrm{d}z) \right\}$$

for all $x \in X$

3. At least one such policy exists

Proof: Deferred

Consistent with earlier notation, $\sigma \in \Sigma$ is called $v\text{-}\mathbf{greedy}$ if

$$\sigma(x) \in \operatorname*{argmax}_{c \in \Gamma(x)} \left\{ u(c) + \beta \int v(g(x,c,z)) \varphi(\mathrm{d}z) \right\}$$

for all $x \in X$

The last proposition states that, for $\sigma \in \Sigma$

$$\sigma$$
 is v^* -greedy $\iff \sigma$ is optimal

This is another version of Bellman's principle of optimality

We started with one optimization problem

• choosing an optimal consumption path c_0, c_1, \ldots to maximize expected discounted lifetime utility

and ended up with another one

finding a greedy policy from the value function

But we are much better off — why?

Of course, being better off is contingent on obtaining the value function

ullet needed to compute v^* -greedy policies

Standard method:

- 1. Choose initial guess v
- 2. iterate from v via the Bellman operator

$$Tv(x) = \max_{c \in \Gamma(x)} \left\{ u(c) + \beta \int v(g(x, c, z)) \varphi(dz) \right\}$$

Proposition. If u is bounded, then

- 1. T is a contraction of modulus β on (bcX, d_{∞})
- 2. Its unique fixed point in bcX is the value function v^*

Why is u required to be bounded?

This assumption is not ideal, since it fails in many applications

Unbounded u issues have to be treated case-by-case

For now let's prove part 1 of the proposition

First let's show that T is a self-map on bcX

Is Tv is bounded on X whenever $v \in bcX$?

Fix any such v and any feasible x

We have

$$|Tv(x)| \leq \max_{a \in \Gamma(x)} \left| u(c) + \beta \int v(g(x, c, z)) \varphi(dz) \right|$$

$$\leq ||u||_{\infty} + \beta ||v||_{\infty}$$

RHS does not depend on x, so Tv is bounded

Next we need to show that Tv is continuous when $v \in bcX$

We employ Berge's theorem of the maximum, which tells us that Tv will be continuous whenever

$$q(x,c) := u(c) + \beta \int v(g(x,c,z))\varphi(dz)$$

is continuous on $\mathbb{G} := \{(x,c) \in \mathsf{X} \times \mathbb{R}_+ : c \in \Gamma(x)\}$

The tricky part is to show that

$$\int v(g(x_n,c_n,z))\varphi(dz) \to \int v(g(x,c,z))\varphi(dz)$$

when $(x_n, c_n) \rightarrow (x, c)$

Follows from the DCT (see course notes)

Finally, let v and w be elements of bcX and fix $x \in X$

Recalling our sup inequality

$$|\sup_{a\in E} f(a) - \sup_{a\in E} g(a)| \leqslant \sup_{a\in E} |f(a) - g(a)|$$

we have

$$\begin{split} |Tv(x) - Tw(x)| &\leqslant \max_{c \in \Gamma(x)} \beta \left| \int v(g(\cdot)) \varphi(\mathrm{d}z) - \int w(g(\cdot)) \varphi(\mathrm{d}z) \right| \\ &\leqslant \max_{c \in \Gamma(x)} \beta \int |v(g(x,c,z)) - w(g(x,c,z))| \, \varphi(\mathrm{d}z) \end{split}$$

$$||Tv - Tw||_{\infty} \leqslant \beta ||v - w||_{\infty}$$

Problems with Analytical Solutions

For a small subset of optimal savings problems, both the optimal policy and the value function have known analytical solutions

These models are limited and simplistic!

But helpful for

- building intuition
- testing ideas
- testing numerical algorithms

Let's look at some examples

Cake Eating with Interest

Objective function is $\sum_{t=0}^{\infty} \beta^t u(c_t)$

Utility is

$$u(c) := \frac{c^{1-\gamma}}{1-\gamma} \qquad (\gamma > 0, \ \gamma \neq 1)$$

and

$$w_{t+1} = R\left(w_t - c_t\right)$$

Here

- R = 1 + r is a gross interest rate
- $0 \leqslant c_t \leqslant w_t$ where w_t is wealth
- $\beta R^{1-\gamma} < 1$ is assumed to hold

Maps to generic savings model $(\beta, u, g, \varphi, \Gamma)$ with

- $x_t = w_t$
- $g(x,c,\xi) = R(x-c)$
- $\Gamma(x) = [0, x]$
- $\varphi = \delta_1$

Fact. There exists a constant $\theta \in (0,1)$ such that

$$\sigma^*(w) = \theta w$$

is the optimal consumption policy

Let's verify this claim and seek the value of $\boldsymbol{\theta}$

First, observe that if $c_t = \theta w_t$ for all t, then

$$w_t = R^t (1 - \theta)^t w$$
 when $w_0 = w$

Hence

$$v^*(w) = \sum_{t} \beta^t u(\theta w_t) = \sum_{t} \beta^t u\left(\theta R^t (1 - \theta)^t w\right)$$
$$= \sum_{t} \beta^t \left(\theta R^t (1 - \theta)^t\right)^{1 - \gamma} u(w)$$
$$= \frac{\theta^{1 - \gamma}}{1 - \beta (R(1 - \theta))^{1 - \gamma}} u(w)$$

Under the conjecture $\sigma^*(w) = \theta w$, the Bellman equation takes the form

$$v^{*}(w) = \max_{c} \left\{ \frac{c^{1-\gamma}}{1-\gamma} + \beta \cdot \frac{\theta^{1-\gamma}}{1-\beta \left(R\left(1-\theta\right)\right)^{1-\gamma}} \cdot \frac{\left(R\left(w-c\right)\right)^{1-\gamma}}{1-\gamma} \right\}$$

Taking the derivative w.r.t. c yields the first-order condition

$$c^{-\gamma} + \beta m \left(R \left(w - c \right) \right)^{-\gamma} \left(-R \right) = 0$$

where

$$m := \frac{\theta^{1-\gamma}}{1 - \beta \left(R \left(1 - \theta\right)\right)^{1-\gamma}}$$

Hence
$$c^{-\gamma} = \beta m R^{1-\gamma} (w-c)^{-\gamma}$$

Substituting the optimal policy $\sigma^*(w) = \theta w$ into this equality gives us

$$(\theta w)^{-\gamma} = \frac{\beta R^{1-\gamma} \theta^{1-\gamma}}{1-\beta \left(R \left(1-\theta\right)\right)^{1-\gamma}} (1-\theta)^{-\gamma} w^{-\gamma}$$

Solving the above equality for θ yields

$$\theta = 1 - \left(\beta R^{1-\gamma}\right)^{1/\gamma}$$

The value function becomes

$$v^{*}(w) = \frac{\theta^{1-\gamma}}{1 - \beta (R(1-\theta))^{1-\gamma}} u(w) = \theta^{-\gamma} u(w)$$

Log-CD Example

Set $u(c) = \ln c$ and

$$f(k) = Ak^{\alpha}, \quad 0 < A, \quad 0 < \alpha < 1$$

Let $\{z_t\}$ be a lognormal IID sequence, with $\ln z_t \stackrel{\mathscr{D}}{=} N(\mu, \sigma^2)$ for some $\mu \in \mathbb{R}$ and $\sigma > 0$

The state can be set to

$$y_{t+1} = f(y_t - c_t)z_{t+1} = A(y_t - c_t)^{\alpha}z_{t+1}$$

The agent maximizes

$$\mathbb{E}\sum_{t\geq 0}\beta^t\ln c_t$$

Ex. Conjecture that the optimal policy is linear in income y That is, \exists a positive constant θ such that $\sigma^*(y) = \theta y$ is optimal Following the approach of the CRRA cake eating example

- 1. find the value of θ
- 2. obtain an expression for the value function and
- 3. confirm that the value function satisfies the Bellman equation

CRRA Preferences and Stochastic Financial Returns

Let's look at a recent paper by Alexis Akira Toda (2018, JME)

He studies a heterogeneous agent economy where households optimize

$$\mathbb{E}\sum_{t=0}^{\infty}\beta(z_t)^t u(c_t) = \mathbb{E}\sum_{t=0}^{\infty}\beta(z_t)^t \frac{c_t^{1-\gamma}}{1-\gamma}$$

- u is CRRA as before and $\gamma > 0$
- Note that β is state dependent

Gives conditions for Pareto tails in the wealth distribution

Wealth dynamics are given by

$$w_{t+1} = R(z_t) \left(w_t - c_t \right)$$

The state process $\{z_t\}$ is

- exogenous
- ullet a Markov chain on finite set Z with stochastic kernel Π

We assume that

- 1. $\Pi(z,z')>0$ for all z,z' in Z
- 2. $\beta(z) > 0$ and R(z) > 0 for all $z \in Z$

What does positivity of Π imply?

The Bellman equation is now

$$v(w,z) = \max_{0 \leqslant c \leqslant w} \left\{ u(c) + \beta(z) \sum_{z' \in \mathbf{Z}} v[R(z)(w-c),z'] \Pi(z,z') \right\}$$

for all $(w,z) \in X := \mathbb{R}_+ \times Z$.

Let K be the square matrix defined by

$$K(z,z') = \beta(z)R(z)^{1-\gamma}\Pi(z,z') \qquad ((z,z') \in \mathsf{Z} \times \mathsf{Z})$$

In the slides below,

$$Kg(z) := \sum_{z'} g(z')K(z,z') \qquad (z \in \mathsf{Z})$$

(Think of the matrix product with column vector g)

Toda (2018) shows that if r(K) < 1, then

1. There exists a g^* in \mathbb{R}^Z satisfying

$$g^*(z) = \left\{1 + [Kg^*(z)]^{1/\gamma}\right\}^{\gamma} \qquad (z \in \mathsf{Z})$$

2. The optimal consumption policy is

$$\sigma^*(w, z) = g^*(z)^{-1/\gamma} w$$

3. The value function satisfies

$$v^*(w,z) = g^*(z) \frac{w^{1-\gamma}}{1-\gamma}$$

Let's

- 1. do the proof of part 1
- 2. work out how to compute the solution g^*
- 3. study the impact of parameters

We adopt the standard pointwise partial order \leqslant on \mathbb{R}^Z

Recall that

- self-map T on $\mathbb{R}^{\mathbf{Z}}$ is called isotone if $g \leqslant h$ implies $Tg \leqslant Th$
- $g \ll h$ means g(z) < h(z) for all z

Let ψ be the scalar map defined by

$$\psi(t) := (1 + t^{1/\gamma})^{\gamma} \qquad (t \geqslant 0)$$

Consider the operator S mapping

$$\mathcal{C} = \{ g \in \mathbb{R}^{\mathsf{Z}} : g \geqslant 0 \}$$

to itself via

$$Sg(z) = \psi(Kg(z))$$

Note that, for $g \in \mathcal{C}$,

$$g(z) = \left\{1 + \left[Kg(z)\right]^{1/\gamma}\right\}^{\gamma}, \ \forall z \iff Sg = g$$

Proposition. If r(K) < 1, then (C, S) is globally stable

To prove the proposition we use this result from lecture 4:

(FPT2): Let T be an isotone self-mapping on sublattice L of \mathbb{R}^d such that

- 1. $\forall u \in L$, \exists a point $a \in L$ with $a \leqslant u$ and $Ta \gg a$
- 2. $\forall u \in L$, \exists a point $b \in L$ with $b \geqslant u$ and $Tb \ll b$

Suppose, in addition, that T is either concave or convex

Then (L,T) is globally stable

To apply this result we need to show that

- 1. C is a sublattice of \mathbb{R}^{Z}
- 2. S is an isotone self-map on $\mathcal C$
- 3. For all $g \in \mathcal{C}$,

$$\exists\,\ell\in\mathcal{C} \text{ with } \ell(z)\leqslant g(z) \text{ and } (S\ell)(z)>\ell(z) \text{ for all } z$$

4. For all $g \in \mathcal{C}$,

$$\exists \, m \in \mathcal{C} \text{ with } g(z) \leqslant m(z) \text{ and } (Sm)(z) < m(z) \text{ for all } z$$

5. S is either concave or convex

We already know that ${\mathcal C}$ is a sublattice of ${\mathbb R}^{\mathsf Z}$

Ex. Show that S is a self-mapping on $\mathcal C$

To see that S is isotone on \mathbb{R}^{Z} , observe that

- $S = \psi \circ K$
- the composition of two isotone maps is isotone

The map $g\mapsto Kg$ is isotone on $\mathbb{R}^{\mathbf{Z}}$ because K is nonnegative Indeed, if $f\leqslant g$ on $\mathbb{R}^{\mathbf{Z}}$, then

$$K(g-f)(z) = \sum_{z'} [g(z') - f(z')]K(z,z') \geqslant 0$$

Hence
$$K(g - f) = Kg - Kf \geqslant 0$$

Clearly $\psi(t) = (1 + t^{1/\gamma})^{\gamma}$ is also isotone

Ex. Show that

$$\psi(t) = (1 + t^{1/\gamma})^{\gamma}$$

is

- 1. convex on \mathbb{R}_+ whenever $0 < \gamma \leqslant 1$
- 2. concave on \mathbb{R}_+ whenever $\gamma\geqslant 1$

Ex. Show that $S = \psi \circ K$ is

- 1. convex on C whenever $0 < \gamma \leqslant 1$
- 2. concave on C whenever $\gamma \geqslant 1$

Ex. Show that $S0 \gg 0$

By the Perron–Frobenius theorem and positivity of K,

$$\exists e \gg 0 \text{ s.t. } Ke = r(K)e$$

- e is called the dominant eigenvector of K
- $\lambda := r(K)$ is called the **dominant eigenvalue**

Ex. Let α be a positive constant and let $\mathbb 1$ be a vector of ones

Show that

$$\alpha e \gg \left(\frac{1}{1-\lambda^{1/\gamma}}\right)^{\gamma} \mathbb{1} \implies S(\alpha e) \ll \alpha e$$

To complete the proof we need only show that

$$\forall g \in C, \exists m \geq g \text{ s.t. } Sm \ll m$$

So fix $g \in C$ and choose α such that

$$\alpha e \gg \left(\frac{1}{1 - \lambda^{1/\gamma}}\right)^{\gamma} \mathbb{1} \quad \text{and} \quad \alpha e \geqslant g$$

For $m := \alpha e$, we have $m \geqslant g$ and

$$Sm = S(\alpha e) \ll \alpha e =: m$$

the proof is now done

See toda_crra.ipynb, which solves for

- the unique positive fixed point g^* of S
- the corresponding state contingent savings rate

$$s(z) := 1 - (g^*(z))^{-1/\gamma}$$
 $(z \in \mathsf{Z})$

The simulations suggest that

- 1. $\beta \leqslant \hat{\beta} \implies s \leqslant \hat{s}$
- 2. $R \leqslant \hat{R} \implies s \leqslant \hat{s}$ when $0 < \gamma < 1$
- 3. $R \leqslant \hat{R} \implies \hat{s} \leqslant s$ when $1 < \gamma < \infty$

Ex. Show that this is always true

A Model with Independent Shocks

How can analysis can proceed without analytical solutions?

As a starting point, we consider a model with

- ullet only one source of randomness exogenous process $\{z_t\}$
- this shock process is IID

Simplifies the problem to one with a single state variable

That state variable is $\{y_t\}$ evolving according to

$$y_{t+1} = f(y_t - c_t)z_{t+1}$$

Example. stock of a renewable resource

Assumption.

- f is continuous, concave and strictly increasing with f(0) = 0
- ullet u is continuous, strictly concave and strictly increasing on \mathbb{R}_+

The Bellman equation is now

$$v(y) = \max_{0 \leqslant c \leqslant y} \left\{ u(c) + \beta \int v(f(y-c)z) \varphi(dz) \right\} \qquad (y \in \mathbb{R}_+)$$

The corresponding Bellman operator T is

$$Tv(y) = \max_{0 \le c \le y} \left\{ u(c) + \beta \int v(f(y-c)z) \varphi(dz) \right\}$$

Theorem. T is a contraction of modulus β on $(bc\mathbb{R}_+, d_\infty)$ Moreover,

- 1. v^* is the unique fixed point of T in $bc\mathbb{R}_+$
- 2. $\sigma \in \Sigma$ is optimal if and only if it is v^* -greedy
- 3. Exactly one optimal policy and that policy is continuous

Proof:

Parts 1 and 2 follow from earlier results for the generic optimal savings model

Same for the existence component of part 3

Regarding uniqueness of the optimal policy,

Ex. Let $\mathscr C$ be the set of increasing concave functions in $bc\mathbb R_+$

- Show that T maps $\mathscr C$ into itself
- ullet Show that v^* is concave and increasing

Regarding uniqueness, observe that

$$\underset{0 \leqslant c \leqslant y}{\operatorname{argmax}} \left\{ u(c) + \beta \int v(f(y-c)z) \varphi(dz) \right\}$$

is a singleton

- why?
- why does this imply uniqueness of the optimal policy?

To compute v^* we can use value function iteration

Pick intial v_0 in $bc\mathbb{R}_+$ and iterate with

$$Tv(y) = \max_{0 \le c \le y} \left\{ u(c) + \beta \int v(f(y-c)z) \varphi(dz) \right\}$$

But how to store Tv, T^2v , etc.?

Options:

- 1. Discretize the whole model
- 2. Use interpolation over a grid to store $T^k v$ at each k

The second option

- is less susceptible to the curse of dimensionality
- allows us to track errors

We will focus on piecewise linear interpolation

Advantages

- preserves monontonicity of interpolant
- preserves shape properties like concavity / convexity
- preserves contractivity of the Bellman operator

For details see the course notes

Figure: Approximation by piecewise linear interpolation

```
draw \{z_i\} \stackrel{\text{\tiny IID}}{\sim} \varphi ;
input grid G_n := \{y_i\}_{i=0}^{n-1} \subset \mathbb{R}_+;
input \{v_0(y_i)\}_{i=0}^{n-1}, an initial guess of v^* evaluated on G_n;
input error tolerance \tau and set \epsilon \leftarrow \tau + 1;
k \leftarrow 0:
while \epsilon > \tau do
      v_k \leftarrow I\{y_i, v_k(y_i)\};
                                                                // interpolated function
      for i \in \{0, ..., n-1\} do
      v_{k+1}(y_i) \leftarrow \max_{0 \leqslant c \leqslant y_i} \left\{ u(c) + \beta \frac{1}{m} \sum_{i=1}^m v_k(f(y_i - c)z_i) \right\};
      end
     \epsilon \leftarrow \max_i |v_k(y_i) - v_{k+1}(y_i)|; k \leftarrow k+1;
end
return v_k
```

See opt_growth.ipynb

The Envelope Condition

We can get additional characterizations of optimality if we impose more conditions

Assumption. (INA) Both f and u are strictly increasing, continuously differentiable and strictly concave

In addition,

$$f(0) = 0$$
, $\lim_{k \to 0} f'(k) > 0$

and

$$u(0)=0, \quad \lim_{c\to 0} u'(c)=\infty \quad \text{ and } \ \lim_{c\to \infty} u'(c)=0$$

Remark. We ignore the restriction u(0)=0 in some applications below — I'm aiming to remove it

Proposition. Let

- ullet v be an increasing concave function in $bc\mathbb{R}_+$
- ullet σ be the unique v-greedy policy in Σ

If assumption (INA) holds, then

- 1. σ is strictly increasing and interior, while
- 2. Tv is strictly concave, strictly increasing, continuously differentiable and satisfies

$$(Tv)' = u' \circ \sigma$$

Corollary If σ^* is the optimal consumption policy, then

$$(v^*)' = u' \circ \sigma^*$$

Proof that $(Tv)' = u' \circ \sigma$ when σ is v-greedy:

Evaluating the RHS of the Bellman operator at its maximum gives

$$Tv(y) = u(\sigma(y)) + \beta \int v(f(y - \sigma(y))z)\varphi(dz)$$

By the envelope theorem,

$$(Tv)'(y) = \beta \int (v)'(f(y - \sigma(y))z)f'(y - \sigma(y))z\varphi(dz)$$

The FOC from the Bellman equation yields

$$u'(\sigma(y)) = \beta \int (v)'(f(y - \sigma(y))z)f'(y - \sigma(y))z\varphi(dz)$$

Combining the last two equations gives $(Tv)' = u' \circ \sigma$

Let $\mathscr C$ be all continuous strictly increasing functions on $\mathbb R_+$ satisfying $0<\sigma(y)< y$

We say that $\sigma \in \mathscr{C}$ satisfies the Euler equation if

$$(u' \circ \sigma)(y) = \beta \int (u' \circ \sigma)(f(y - \sigma(y))z)f'(y - \sigma(y))z\varphi(dz)$$

for all y > 0

Let's introduce an operator K corresponding to this functional equation

For each $\sigma \in \mathscr{C}$ and each y>0, the value $K\sigma(y)$ is the c in (0,y) that solves

$$u'(c) = \beta \int (u' \circ \sigma)(f(y - c)z)f'(y - c)z\varphi(dz)$$

We call *K* the **Coleman–Reffett** operator

Proof that *K* well defined:

For any $\sigma \in \mathscr{C}$, the RHS of

$$u'(c) = \beta \int (u' \circ \sigma)(f(y - c)z)f'(y - c)z\varphi(dz)$$

is continuous and strictly increasing in c on (0,y), diverges to $+\infty$ as $c \uparrow y$

The LHS is continuous and strictly decreasing in c on (0,y), diverges to $+\infty$ as $c\downarrow 0$

Hence

$$H(y,c) := u'(c) - \beta \int (u' \circ \sigma)(f(y-c)z)f'(y-c)z\varphi(dz)$$

when regarded as a function of c, has exactly one zero

Figure: Solving for the c that satisfies H(y,c)=0.

Necessity and Sufficiency of the Euler Equation

Ex. Show σ in $\mathscr C$ is a fixed point of K if and only if it satisfies the Euler equation

Proposition. If assumption (INA) holds and σ^* is the unique optimal policy, then

- 1. (\mathscr{C}, K) is globally stable and
- 2. the unique fixed point of K in $\mathscr C$ is σ^*

In particular, $\sigma\in\mathscr{C}$ is optimal if and only it satisfies the Euler equation

Sketch of proof:

Let $\mathscr V$ be all strictly concave, continuously differentiable v mapping $\mathbb R_+$ to itself and satisfying v(0)=0 and v'(y)>u'(y) whenever y>0

As before, let $\mathscr C$ be all a continuous, strictly increasing functions on $\mathbb R_+$ satisfying $0<\sigma(y)< y$

For $v \in \mathscr{V}$ let Mv be defined by

$$(Mv)(y) = \begin{cases} m(v'(y)) & \text{if } y > 0\\ 0 & \text{if } y = 0 \end{cases}$$
 (1)

where $m(y) := (u')^{-1}(y)$

Recall that a **homeomorphism** between metric spaces A and B is a continuous bijection with continuous inverse

The course notes show that

- 1. M is a homeomorphism from $\mathscr V$ to $\mathscr C$
- 2. for every increasing concave function in $bc\mathbb{R}_+$, the function MTv is the unique v-greedy policy
- The Bellman operator and Coleman–Reffett operator are related by

$$T = M^{-1} \circ K \circ M$$
 on \mathscr{V}

Ex. Use 1–3 above to show that (\mathscr{C},K) is globally stable with unique fixed point σ^*

Remark. The Euler equation is often paired with the **transversality condition**

$$\lim_{t\to\infty}\beta^t\mathbb{E}u'(c_t)k_t=0$$

Standard results (see, e.g., Stokey and Lucas) tell us that

Euler + transversality condition \implies optimality

Our last result shows transversality is not needed under our assumptions

Ex. Following the basic CRRA cake eating model, set

$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$
 and $f(k)z = Rk$

Insert the conjecture $\sigma^*(y)=\theta y$ into the Euler equation Recover our earlier result that this policy is optimal when

$$\theta = 1 - \left(\beta R^{1-\gamma}\right)^{1/\gamma}$$

Ex. Repeat for the log / CD model, where $u(c) = \ln c$ and

$$f(k)z = Ak^{\alpha}z, \quad 0 < A, \quad 0 < \alpha < 1$$

Insert the conjecture $\sigma^*(y) = \theta y$ into the Euler equation and recover your earlier result for the optimal policy