Missing Value Imputation using Low-Rank and Low-Norm Models

Knowledge Lab Team Presentation

Nandana Sengupta (co-authored with James Evans and Madeleine Udell)

November 30, 2015

Introduction

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Ad-hoc methods
 - Complete case analysis.
 - Available case analysis.
 - Mean Imputation.
- Concerns about validity of inferences.
- Types of Missing Data
 - Missing Completely at Random.
 - Missing at Random.
 - Missingness depends on unobservables.

Multiple Imputation

- Rubin (1976), Schafer (1998), Van Buuren et al (1999), King et al (2000, 2015)
- ▶ Idea: Analysis should reflect uncertainty inherent in imputation.
- Assumption: MAR
- 3 stage scheme
 - ► Imputation
 - Analysis
 - Combining Results
- ► Imputation Step:
 - Parametric Assumptions (like multivariate normality).
 - Iterative procedures used.

Multiple Imputation

- ► Two Standard Imputation Approaches:
 - ▶ MCMC mechanism: $(Y_{miss}^{(1)}, \theta^{(1)}), (Y_{miss}^{(2)}, \theta^{(2)}), \dots$
 - Chained Equations: iteratively fit univariate regression models.
- Analysis: perform as if full data is observed.
- ► Combining Results:
 - ▶ Point Estimate: $\overline{Q} = \frac{1}{m} \sum_{i=1}^{m} \widehat{Q}_i$; $\widehat{Q}_i = \text{point estimate from imputation } i$.
 - ▶ Variance: $T = \overline{U} + (1 + \frac{1}{m})B$; U = within imputation variance; B = between imputation variance.
- 'R' Packages: Amelia, MICE, MI.

Low Norm and Low Rank Models

- Matrix Factorization approaches.
- Srebro (2004), Udell et al (2014).
- ▶ Approximate matrix A (dimension $m \times n$) by X'Y.
- ▶ minimize $\sum_{i,j} L_{i,j}(x_i y_j, a_{ij}) + \sum_{i=1}^m r_i(x_i) + \sum_{j=1}^n r_j(y_j)$.
 - L: Loss function (over columns).
 - ightharpoonup r(.): regularization functions.
 - X, Y initialization: SVD good starting point.
 - ▶ Low Norm Models: $r(x) = \gamma ||X^2||$.
 - ▶ Low Rank Models: $Rank(X'Y) \le k$.
 - ► Low Rank, Low Norm Models: Both
 - k, γ chosen via crossvalidation.
- Julia Implementation: LowRankModels

Dataset with missing values

MICE Single Imputation

M columns N rows

Low Norm Models

M columns N rows

Low Rank Models

Application 1: General Social Survey Data (GSS)

- Sociological survey: adults in randomly selected US households.
- Data on attitudes and demographic characteristics of adults.
- Subset of GSS 2014 data used for analysis
 - columns corresponding to identifying variables
 - columns with non-varying entries
 - \geq 33% missing entries
 - highly correlated columns ($\rho > 0.70$).
- Evaluation Strategy
 - ▶ 10% of observed data are randomly assumed missing $(N_{miss,ind})$
 - Imputations using
 - ► Low Rank (Scaled), Low Rank (Unscaled), Trace Norm (Full Rank), Trace Norm (Low Rank), MICE.
 - ▶ Loss calculated over $N_{miss,ind}$ observations:
 - scale columns, quadratic loss over non-categorical columns, zero-one loss over categorical columns.

Results

- Overall Trace (Full Rank) had lowest loss, all Low Rank and Low Norm models outperformed MICE
- ightharpoonup Column-wise: pprox 80% columns had lower loss compared to MICE

Summary Table

	LowRank (S)	LowRank (NS)	Trace (FR)	Trace (LR)	MICE
Scaled Loss/(10 ³)	18.50	15.80	14.40	15.80	20.60
%age reduction over MICE	10.10 %	23.40 %	30.10 %	23.00 %	-
%age cols w/ lower loss	73.50 %	84.60 %	87.20 %	84.60 %	-

Columnwise percentage reduction in Loss over MICE

Results

Method with lowest loss across columns

Categorical columns misclassification by method

Next Steps

- Replicating missingness patterns before applying imputation techniques.
- Extending and applying to longitudnal survey data (e.g. National Longitudnal Survey of Youth).
- Applying to larger subsets of GSS data.
- Working with more advanced options of MICE and LowRankModels.
- Extending to Max and Frobenius norms.
- Extending Low Rank and Low Norm methods to Multiple Imputation setting.

Thank you! (Comments and Suggestions Welcome)