Function Approximation

Given a problem domain with continuous states $s \in S = R^n$, we wish to find a way to represent the value function $v_{\pi}(s)$ (for prediction) or $q_{\pi}(s, a)$ (for control).

We can do this by choosing a parameterized function that *approximates* the true value function:

$$\psi(s, \mathbf{w}) \approx v_{\pi}(s)$$

$$\phi(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$$

Our goal then reduces to finding a set of parameters \mathbf{w} that yield an optimal value function. We can use the general reinforcement learning framework, with a Monte-Carlo or Temporal-Difference approach, and modify the update mechanism according to the chosen function.

Feature Vectors

A common intermediate step is to compute a feature vector that is representative of the state: $\mathbf{x}(s)$