OPTIMISATION NUMÉRIQUE

Département de Mathématiques Master Mathématiques

Optimisation Numérique

Base Réalisable de Départ

PROGRAMMATION LINÉAIRE I

BASE RÉALISABLE DE DÉPART

Supposons que les contraintes du problème sont données par

$$A_1x+s = b_1 \qquad (1)$$

$$A_2x-t = b_2 \qquad (2)$$

$$A_3x = b_3 \qquad (3)$$

$$x, s, t \geq 0$$

où $x \in \mathbb{R}^n$, $c \in \mathbb{R}^n$; A_1 , A_2 et A_3 sont respectivement des matrices d'ordre $m_1 \times n$, $m_2 \times n$, $m_3 \times n$; $b_1 \in \mathbb{R}^{m_1}$, $b_2 \in \mathbb{R}^{m_2}$ et $b_3 \in \mathbb{R}^{m_3}$ avec $b_1 \ge 0, b_2 \ge 0 \text{ et } b_3 \ge 0.$

Les vecteurs $s \in \mathbb{R}^{m_1}$ et $t \in \mathbb{R}^{m_2}$ sont des variables d'écart.

SOMMAIRE

- BASE RÉALISABLE DE DÉPART
- **2** TABLEAUX SIMPLEXE

Base Réalisable de Départ

PROGRAMMATION LINÉAIRE II

BASE RÉALISABLE DE DÉPART

On veut modifier ces contraintes pour avoir la matrice $I_{m,m}$ comme base initiale réalisable. Pour cela on introduit des variables artificielles $u \in \mathbb{R}^{m_2}$ et $v \in \mathbb{R}^{m_3}$ dans les contraintes (2) et (3) de la façon suivante :

Optimisation Numérique

$$A_2x - t + u = b_2$$
 (2')
 $A_3x + v = b_3$ (3')

$$x, s, t, u, v \geq 0.$$

Dans le système d'équations (1), (2') et (3'), on dispose d'une base initiale (réalisable puisque $b_1, b_2, b_3 > 0$).

Une solution $(x, s, t, u, v) \in \mathbb{R}^n \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_3}$ du système d'équations (1), (2') et (3') ne fournit une solution du système d'équations (1), (2) et (3) que si u = 0 et v = 0.

PROGRAMMATION LINÉAIRE III

BASE RÉALISABLE DE DÉPART

Pour avoir une solution du système d'équations (1), (2') et (3'), on va résoudre le programme linéaire suivant

$$\left\{ \begin{array}{l} \min w = \sum_{i=1}^{m_2} u_i + \sum_{j=1}^{m_3} v_j \\ A_1 x + s = b_1 \\ A_2 x - t + u = b_2 \\ A_3 x + v = b_3 \\ x, s, t, u, v \ge 0 \end{array} \right.$$

Si l'ensemble des contraintes X formé du système d'équations (1), (2) et (3) est non vide, alors l'optimum de w est nul.

<□ > <**□** > < **□** > < **□** > < **□** > < **□** > < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** < **□** <

Base Réalisable de Départ

PROGRAMMATION LINÉAIRE V

BASE RÉALISABLE DE DÉPART

- La dernière base ne contient aucun vecteur artificiel. Elle est donc réalisable pour (\mathcal{L}) .
- La dernière base contient encore des vecteurs artificiels. Dans ce cas le rang de A est strictement inférieur à m.

PROGRAMMATION LINÉAIRE IV

BASE RÉALISABLE DE DÉPART

On applique l'algorithme du simplexe à (\mathcal{L}') . Soit B la base optimale associé à ce dernier problème. Il y a trois cas à distinguer :

- Les composantes des vecteurs u et v sont toutes hors-base. Alors B est réalisable pour (\mathcal{L}) .
- ② Une composante de u ou de v est une variable de base strictement positive. Dans ce cas w > 0 et $X = \emptyset$.
- ③ Il y a des variables artificielles dans la base et sont nulles. Soit a_s une colonne de A hors-base et a_r une colonne de base artificielle ; c'est à dire une colonne de B associée à une variable artificielle. Pour pouvoir remplacer la colonne a_r par la colonne a_s tout en gardant B réalisable, il faut et il suffit que $\bar{a}_{rs} \neq 0$ ($\bar{a}_{rs} = B^{-1}a_s$ et \bar{a}_{rs} la rème composante de \bar{a}_s). Dans ce cas on va chercher toutes les colonnes a_s de A non artificielles et hors-base et les remplacer par des colonnes a_r de base, artificielles quand ceci est possible ; c'est à dire quand $\bar{a}_{rs} \neq 0$. On a alors deux situations :

Optimisation Numério

6/23

Tableaux Simplexe

PROGRAMMATION LINÉAIRE I

TABLEAUX SIMPLEXE

On considère toujours le programme (\mathcal{L})

$$(\mathcal{L}) \qquad \left\{ \begin{array}{l} \min c^{\top} x \\ Ax = b \\ x \ge 0 \end{array} \right.$$

Ce programme est équivalent au programme suivant

$$(\mathcal{L}) \qquad \begin{cases} \min z \\ c^{\top}x - z = 0 \\ Ax = b \\ x \ge 0 \end{cases}$$

Tableaux Simplexe

PROGRAMMATION LINÉAIRE II

TABLEAUX SIMPLEXE

DÉFINITION

On dit que (\mathcal{L}) est mis sous forme canonique s'il est mis sous la forme standard et que dans cette forme on a une base B dont les colonnes sont les vecteurs canoniques de \mathbb{R}^m et que $c_B = 0$.

 ✓ □ ▷ ✓ ⓓ ▷ ✓ Ễ ▷ ✓ Ễ ▷ ☒

 Optimisation Numérique
 9 / 23

Tableaux Simplexe

PROGRAMMATION LINÉAIRE II

TABLEAUX SIMPLEXE

ILLUSTRATION

Supposons que B est formée des m premières colonnes de A de sorte que $A = {B \choose N}$. Le premier tableau à la forme suivante

$c_B^ op$	$c_{N}^{ op}$	-1	0
		0	<i>b</i> ₁
В	Ν	:	:
		0	b_m

PROGRAMMATION LINÉAIRE I

TABLEAUX SIMPLEXE

On peut représenter la dernière forme de (\mathcal{L}) par le tableau suivant

$c^{ op}$	-1	0
	0	<i>b</i> ₁
Α	:	:
	0	<i>b_m</i>

Soit B est une base initiale réalisable quelconque de A. On obtient la forme canonique de (\mathcal{L}) en prémultipliant le tableau qui lui est associé par le tableau suivant

Tableaux Simplexe

PROGRAMMATION LINÉAIRE III

TABLEAUX SIMPLEXE

ILLUSTRATION

La forme canonique est alors représentée par le tableau suivant

00	\bar{c}_N	-1	$-c_B^{\top}B^{-1}b$
		0	
I _{m,m}	$B^{-1}N$: 0	$\bar{b} = B^{-1}b$

Pour exécuter l'étape suivante de l'algorithme du simplexe on cherche la colonne a_s de A qui va rentrer en base et la colonne a_r de B qui va quitter la base et on prémultiplie le tableau précédent par le tableau suivant

PROGRAMMATION LINÉAIRE IV

TABLEAUX SIMPLEXE

1	0	 0	0	$\frac{-\bar{c}_s}{\bar{a}_{rs}}$	0	 0
0	1	 0	0	<u>ā_{rs}</u> - <u>a_{1s}</u> ā _{rs}	0	 0
:	:	÷	:	•	:	÷
0	0	 0	1	$rac{-ar{a}_{r-1s}}{ar{a}_{rs}}$	0	 0
0	0	 0	0	1	0	 0
0	0	 0	0	$\frac{\overline{\underline{a}_{rs}}}{-\overline{a}_{r+1s}}$ \overline{a}_{rs}	1	 0
:	:	:	:	:	i	:
0	0	 0	0	<u>−ā_{ms}</u> ā _{rs}	0	 1

Optimisation Numérique

Tableaux Simplexe

PROGRAMMATION LINÉAIRE VI

TABLEAUX SIMPLEXE

Le premier tableau simplexe est

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	Z	
-1	-2	0	0	0	-1	0
-3	2	1	0	0	0	2
-1	2	0	1	0	0	4
1	1	0	0	1	0	5

On prend comme variables de base x_3 , x_4 et x_5 . On a déjà la forme canonique.

PROGRAMMATION LINÉAIRE V

TABLEAUX SIMPLEXE

EXEMPLE

Soit à résoudre le problème

$$(\mathcal{L}) \begin{cases} \min z = -x_1 - 2x_2 \\ -3x_1 + 2x_2 + x_3 = 2 \\ -x_1 + 2x_2 + x_4 = 4 \\ x_1 + x_2 + x_5 = 5 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Optimisation Numérique

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

Tableaux Simplexe

PROGRAMMATION LINÉAIRE VII

TABLEAUX SIMPLEXE

La variable x_2 va rentrer en base (coût réduit le plus négatif).

$$\hat{x}_2 = \min \Big\{ \frac{\bar{b}_i}{\bar{a}_{i2}} \mid \bar{a}_{i2} > 0 \Big\} = \min \Big\{ \frac{2}{2}, \frac{4}{2}, \frac{5}{1} \Big\} = 1 = \frac{\bar{b}_1}{\bar{a}_{12}}.$$

La variable x_3 quitte la base.

On prémultiplie le tableau précédent par

1	1	0	0
0	1/2	0	0
0	-1	1	0
0	-1/2	0	1

PROGRAMMATION LINÉAIRE VIII

TABLEAUX SIMPLEXE

On obtient le second tableau

-4	0	1	0	0	-1	2
-3/2	2 1	1/2	0	0	0	1
2	0	-1	1	0	0	2
5/2	0	-1/2	0	1	0	4

La variable x_1 va rentrer en base.

$$\hat{x}_1 = \min\left\{\frac{\bar{b}_i}{\bar{a}_{i1}} \mid \bar{a}_{i1} > 0\right\} = \min\left\{\frac{2}{2}, \frac{4}{5/2}\right\} = 1 = \frac{\bar{b}_2}{\bar{a}_{21}}.$$

La variable x_4 quitte la base.

Optimisation Numérique

Tableaux Simplexe

PROGRAMMATION LINÉAIRE X

TABLEAUX SIMPLEXE

On obtient le tableau

0		-1	2	0	-1	6
	1	-1/4	3/4	0	0	5/2
1	0	-1/2	1/2	0		
0	0	3/4	-5/4	1	0	3/2

La variable x_3 va rentrer en base.

$$\hat{x}_3 = \min\left\{\frac{\bar{b}_i}{\bar{a}_{i3}} \mid \bar{a}_{i3} > 0\right\} = \min\left\{\frac{3/2}{4/3}\right\} = 2 = \frac{\bar{b}_3}{\bar{a}_{33}}.$$

La variable x_5 quitte la base.

PROGRAMMATION LINÉAIRE IX

TABLEAUX SIMPLEXE

On prémultiplie le tableau précédent par

1	0	2	0
0	1	3/4	0
0	0	1/2	0
0	0	-5/4	1

Optimisation Numérique

Tableaux Simplexe

PROGRAMMATION LINÉAIRE XI

TABLEAUX SIMPLEXE

On prémultiplie le tableau précédent par

1	0	0	4/3
0	1	0	1/3
0	0	1	2/3
0	0	0	4/3

Tableaux Simplexe

PROGRAMMATION LINÉAIRE XII

TABLEAUX SIMPLEXE

On obtient le tableau

0	0	0	1/3	4/3	-1	8
0	1	0	1/3	1/3	0	3
1	0	0	-1/3	2/3	0	2
0	0	1	-5/3	4/3	0	2

On a $\bar{c}_N \ge 0$ et le tableau est optimal. On obtient la solution $x_1^*=2$, $x_2^*=3$, $x_3^*=2$, $x_4^*=x_5^*=0$ et $z^*=-8$.

4□ > 4□ > 4 = > 4 = > = 90

U___

Optimisation Numérique

21 / 23

Tableaux Simplexe

PROGRAMMATION LINÉAIRE XIV

TABLEAUX SIMPLEXE

0	0	-1	2	0	-1	6	L0←L0+2 <mark>L2</mark>
0	1	-1/4	3/4	0	0	5/2	L1←L1+3/4L2
1	0	-1/2	1/2	0	0	1	L2←1/2 <mark>L2</mark>
0	0	3/4	-5/4	1	0	3/2	L3←L3-5/4 <mark>L3</mark>

0	0	0	1/3	4/3	-1	8 = -z	L0←L0+4/3 <mark>L3</mark>
0	1	0	1/3	1/3	0	$3 = x_2$	L1←L1+1/3L3
1	0	0	-1/3	2/3	0	$2 = x_1$	L2←L2+2/3 <mark>L3</mark>
0	0	1	-5/3	4/3	0	$2 = x_3$	L3←4/3 <mark>L3</mark>

Les variables hors-base sont nulles.

Optimisation Numérique

23 / 23

Tableaux Simplexe

PROGRAMMATION LINÉAIRE XIII

TABLEAUX SIMPLEXE

-1	-2	0	0	0	-1	0	L0
-3	2	1	0	0	0	2	L1
-1	2	0	1	0	0	4	L2
1	1	0	0	1	0 0 0	5	L3

-4	0	1	0	0	-1	2	L0←L0+L1
-3/2	1	1/2	0	0	0	1	L1←1/2 L1
2	0	-1	1	0	0	2	L2←L2- <mark>L1</mark>
5/2	0	-1/2	0	1	0	4	L3←L3-1/2 L1

