Program Structures and Algorithms Spring 2024

NAME: Neha Devarapalli

NUID: 002883137

GITHUB LINK: https://github.com/nehadevarapalli/INFO6205

Task: To implement the code for the Random Walk experiment and deduce the relationship between the mean distance (d) and the number of steps taken (m).

Relationship Conclusion: $d \approx \sqrt{m}$

1. With each step, the man can move only +1 or -1 in the 'x' or 'y' direction.

- 2. Since there is no bias in the walk, the average value of each individual displacement in ' $\langle x_i \rangle$ ' and ' $\langle y_i \rangle$ ' is equal to 0.
- 3. Also since there is no correlation between the steps (stochastic), the dot product of 'x' and 'y' is 0 i.e.,

$$\sum x_i x_j = 0$$
 and $\sum y_i y_j = 0$

With these assumptions we will calculate the mean displacement of a walk after 'm' steps and then the root mean square displacement.

- 1. The mean displacement can be calculated by calculating the mean / average of the sum of individual displacements ($\sum x$ and $\sum y$ from 1 to m). But we know that $\langle x_i \rangle$ and $\langle y_i \rangle$ are 0 and hence, the mean displacement also is 0.
- 2. Now, to calculate the root mean square displacement, we have to take the sum of the displacements, square them and calculate the average of each $(<(\sum x)^2>$ and $(<(\sum y)^2>$ from 1 to m. When we perform the above calculation there will be terms like: $<\sum x_i^2 + \sum x_i x_j>$ and $<\sum y_i^2 + \sum y_i y_j>$ where $i\neq j$ and i,j=1 to m Since there are no correlations between the steps, $\sum x_i x_j$ and $\sum y_i y_j$ will be 0. And the terms $\sum x_i^2$ and $\sum y_i^2$ will have 'm' such terms of the length equal to 1 each and hence the average will be 'm'. SO, $d^2\approx m$ Hence, the root mean square distance (d) $\approx \sqrt{m}$

Evidence to support that conclusion:

This is the data that I have got after running my own unit test where I calculate the expected distance with the relation proved above and compare it with the observed distances.

	# Expected	# Observed
1	8.3666	7.1237
2	8.0623	7.4504
3	6.5574	6.0919
4	4.8990	4.2999
5	2.0000	1.6841
6	8.1854	7.4518
7	7.3485	6.2625
8	8.1854	7.4129
9	9.4868	8.0047
10	3.1623	3.0155

I have also plotted a graph to observe the relation between the two,

Unit Test Screenshots:

