Tecnología Digital IV: Redes de Computadoras

Clase 13: Nivel de Red - Parte 1

Lucio Santi & Emmanuel Iarussi

Licenciatura en Tecnología Digital Universidad Torcuato Di Tella

8 de mayo 2025

Nivel de Red: agenda

- Vista general del nivel de red
 - Plano de datos
 - Plano de control
- Routers
 - Puertos de input y output
 - Switching
- El Protocolo de Internet (IP)
 - Datagrama
 - Direccionamiento
 - NAT
 - IPv6
- Software Defined Networking (SDN)

Objetivos

- Entender los conceptos detrás de los servicios de la capa de red, focalizando en el plano de datos:
 - Modelos de servicio del nivel de red
 - Reenvío (forwarding) vs. ruteo (routing)
 - Cómo funciona un router
 - Direccionamiento
 - Arquitectura de Internet

- Instanciación e implementación en Internet
 - El protocolo IP
 - NAT
 - Middleboxes

Servicios del nivel de red

- Transporte de segmentos entre un host emisor y un host receptor
 - emisor: encapsula segmentos dentro de datagramas, luego pasados al nivel de enlace
 - receptor: entrega segmentos al protocolo del nivel de transporte
- Los protocolos del nivel de red están en todos los dispositivos de Internet (hosts y routers)
- Los routers:
 - Inspeccionan el header de todos los datagramas IP en circulación en sus interfaces
 - Trasladan datagramas desde puertos de entrada hacia puertos de salida

Funciones esenciales del nivel de red

Funciones del nivel de red

- Reenvío (forwarding): trasladar paquetes desde un enlace de entrada hacia el enlace de salida adecuado
- Ruteo (*routing*): determinar la ruta que toman los paquetes desde el origen hasta el destino
 - Computada por algoritmos de ruteo

Analogía: viajes en auto

- Forwarding: proceso de atravesar una intersección vial
- Routing: proceso de planificar el viaje desde el origen hasta el destino

Plano de datos y plano de control

Plano de datos

- Función local de cada router
- Determina cómo se redirecciona un datagrama desde un puerto de entrada hacia uno de salida

Plano de control

- Función global de la red
- Determina cómo se encamina un datagrama entre distintos routers a lo largo de la red
- Dos enfoques:
 - Algoritmos de ruteo tradicionales: implementados en los routers
 - Software-defined networking (SDN): implementado en servidores remotos

Plano de control en cada router

Algoritmos de ruteo distribuidos, implementados en todos los routers e interactuando entre sí

Plano de control vía SDN

Un controlador remoto computa e instala las tablas de *forwarding* en los routers

Modelo de servicio del nivel de red

- En Internet, el nivel de red ofrece
 Entonces, ¿por qué un servicio un servicio **best-effort**
- Sin garantías de:
 - Entrega de datagramas
 - Ordenamiento y/o tiempos de entrega
 - Capacidad disponible para flujos punto a punto
- Otras arquitecturas de redes implementan modelos de servicio más sofisticados (e.g. ATM)

- best-effort?
 - Simplicidad; facilidad de adopción e instalación
 - La combinación con las funcionalidades de los protocolos de nivel superior demostró buenos resultados (e.g. performance adecuada para apps de streaming, videoconferencias, etc.)

Arquitectura de routers

Arquitectura de un router: vista general

Vista de alto nivel de la arquitectura de un router

Arquitectura de un router: vista general

En un **router**, la **switching fabric** (estructura de conmutación) es el **subsistema interno que conecta los puertos de entrada con los puertos de salida**, permitiendo que los paquetes/datos fluyan desde el puerto donde ingresaron hasta el puerto por el cual deben salir.

Función principal:

Su función es **transferir un datagrama** desde la memoria del **puerto de entrada** hacia el **puerto de salida apropiado**, en base a las decisiones de reenvío.

Funciones de los puertos de entrada

capa de enlace: e.g. **Ethernet** switching descentralizado:

- Utilizando los valores del header, buscar el puerto de salida en la tabla de forwarding copiada en la memoria del puerto de entrada
- Se produce encolamiento si los datagramas llegan más rápido que la tasa de forwarding hacia la matriz de conmutación

Funciones de los puertos de entrada

capa de enlace: e.g. **Ethernet** switching descentralizado:

- Utilizando los valores del header, buscar el puerto de salida en la tabla de forwarding copiada en la memoria del puerto de entrada
- Destination-based forwarding: tradicional; sólo utiliza la dirección IP destino
- Forwarding generalizado: utiliza otros valores del header

Destination-based forwarding

Rar	Interfaz			
11001000	00010111	00010000	00000000	
А				0
11001000	00010111	00010000	11111111	
11001000	00010111	00011000	00000000	
А				1
11001000	00010111	00011000	11111111	
11001000	00010111	00011010	00000000	
А				2
11001000	00010111	00011110	00000000	
en otro caso				3

104 2025

Coincidencia de prefijo más largo

coincidencia de prefijo más largo

al buscar la entrada en la tabla de *forwarding* para una dirección destino dada, utilizar la del prefijo más largo que coincida con dicha dirección

Rai	Interfaz		
11001000	00010111	00010*** *****	0
11001000	00010111	00011000 ******	1
11001000	00010111	00011*** *****	2
en otro caso)		3

ejemplos:

11001000	00010111	00010110	10100001	0
11001000	00010111	00011000	10101010	2

Coincidencia de prefijo más largo

- La razón detrás del uso de esta estrategia radica en cómo funciona el direccionamiento en Internet (lo veremos más adelante)
- Típicamente, esto se implementa con un hardware especializado-TCAMs (Ternary Content Addressable Memories)
 - Al recibir una dirección IP de 32 bits, la TCAM obtiene la respuesta en un ciclo de clock (independientemente del tamaño de la tabla)
 - Por ejemplo, los routers Catalyst de Cisco pueden alojar alrededor de 1 millón de entradas de la tabla en una TCAM

Coincidencia de prefijo más largo

- La razón detrás del uso de esta estrategia radica en cómo funciona el direccionamiento en Internet (lo veremos más adelante)
- Típicamente, esto se implementa con un hardware especializado-TCAMs (Ternary Content Addressable Memories)
 - Al recibir una dirección IP de 32 bits, la TCAM obtiene la respuesta en un ciclo de clock (independientemente del

Prefijo IP	Máscara	Salida
11000000.10101000.X.X	/16 (192.168.0.0)	eth0
11000000.10101000.00000001.X	/24 (192.168.1.0)	eth1

Matrices de conmutación

- Objetivo: trasladar paquetes desde los enlaces de entrada a los enlaces de salida que les corresponden
- tasa de conmutación: tasa a la cual es posible conmutar paquetes desde las entradas hacia las salidas
 - Se mide como múltiplo de la tasa de transmisión de los enlaces de entrada
 - Con N entradas, es deseable una tasa de conmutación de N veces la tasa de transmisión

Matrices de conmutación

- Objetivo: trasladar paquetes desde los enlaces de entrada a los enlaces de salida que les corresponden
- tasa de conmutación: tasa a la cual es posible conmutar paquetes desde las entradas hacia las salidas
 - Se mide como múltiplo de la tasa de transmisión de los enlaces de entrada
 - Con N entradas, es deseable una tasa de conmutación de N veces la tasa de transmisión
- Tres clases principales:

Conmutación en memoria

Routers de primera generación (1980s - e.g. Cisco):

- Eran computadoras tradicionales; el switching se hacía por CPU
- El paquete se copiaba a la memoria RAM (interrupciones al CPU ante la llegada de paquetes)
- La velocidad queda limitada por el ancho de banda de la memoria

Conmutación a través de un bus

- Los paquetes se transmiten a los puertos de salida sin intervención del procesador
- Etiqueta interna con el puerto de salida para viajar por el bus; todos los puertos reciben el paquete
- Velocidad limitada por el ancho de banda del bus
- Suele operar bien para routers de redes locales

Conmutación a través de red de interconexión

- Crossbar: 2N buses que conectan N puertos de entrada con N puertos de salida (figura: N = 3)
- Los puntos de cruce pueden abrirse o cerrarse por un controlador
- Al llegar paquetes, el controlador cierra el punto de cruce apropiado y coloca el paquete en el bus
- Admiten paralelismo: transmisión de múltiples paquetes en simultáneo

Encolamiento en puertos de entrada

- Se produce encolamiento en los puertos de entrada si la matriz de conmutación es más lenta que los puertos de entrada combinados
 - Esto genera demoras y posibles pérdidas por overflow de buffers
- Head-of-Line (HOL) blocking: el paquete encolado al frente no permite que los demás avancen

contención: sólo puede transferirse un paquete rojo (mismo puerto) el paquete rojo inferior queda **bloqueado**

el paquete verde experimenta *HOL blocking*

Encolamiento en puertos de salida

- Se produce encolamiento cuando los datagramas llegan más rápido que la tasa de transmisión del enlace
- Política de drop: decidir cuáles paquetes descartar si no hay lugar disponible
- Política de scheduling: determinar cuáles paquetes en la cola se van a transmitir primero

