Sommabilité

Table des matières

1	Le problème des séries semi-convergentes.	2
2	Familles sommables de réels positifs	2
3	Familles sommables de complexes	7
	Propriétés des familles sommables 4.1 Linéarité	10 10
	4.2 Commutativité	12

1 Le problème des séries semi-convergentes.

Dans le cours sur les séries de vecteurs, page 18, on a vu que, lorsque $\sum a_n$ est une série semi-convergente de réels et σ est une bijection de \mathbb{N} dans \mathbb{N} telle que $\sum a_{\sigma(n)}$

converge, en général, $\sum_{n=0}^{+\infty} a_n \neq \sum_{n\in\mathbb{N}} a_{\sigma(n)}$. Ainsi l'addition entre réels n'est plus com-

mutative lorsqu'on l'étend au cas d'une infinité de termes à l'aide de la théorie des séries.

Nous allons voir une seconde manière de définir la somme d'une infinité de termes pour laquelle la propriété de commutativité sera vraie, presque par construction, car cette nouvelle façon de sommer les termes d'une suite ne tient pas compte de l'ordre dans lequel sont donnés les éléments de la suite. Il s'agit de la théorie de la sommabilité.

Cette théorie présente l'avantage d'être généralisable au cas de la sommation des éléments d'une famille $(u_i)_{i\in I}$ indexée par un ensemble dénombrable.

Cependant, lorsque $I = \mathbb{N}$, il y aura moins de suites sommables que de séries convergentes. Plus précisément, on verra qu'une suite est sommable si et seulement si la série associée est absolument convergente.

2 Familles sommables de réels positifs

Notation. Pour tout ce paragraphe, on fixe un ensemble I. On fixe également une famille $u = (u_i)_{i \in I} \in \mathbb{R}^I_+$ de réels positifs indexée par I.

Lorsque J est une partie finie de I, $\sum_{i \in J} u_i$ est une somme finie de réels : c'est bien

défini. De plus l'ensemble $\Big\{\sum_{i\in J}u_i\ /\ J\in\mathcal{P}(I) \text{ avec } J \text{ finie}\Big\}$ est une partie non vide

de réels positifs, car il contient au moins 0, en tant que somme vide. Ceci justifie la définition suivante :

Définition. On pose
$$\left[\sum_{i\in I}u_i=\sup_{J\in\mathcal{P}(I)\atop J\text{ finie}}\sum_{i\in J}u_i\ \in\mathbb{R}_+\cup\{+\infty\}\right].$$

Remarque. Ainsi, pour une famille $(u_i)_{i\in I}$ de réels positifs, $\sum_{i\in I} u_i$ est toujours définie.

Définition. La famille u est sommable si et seulement si $\sum_{i \in I} u_i < +\infty$,

c'est-à-dire si et seulement si il existe $M \ge 0$ tel que, pour toute partie finie J de I, $\sum_{i \in I} u_i \le M$.

Propriété. Si $(u_i)_{i\in I}$ est sommable, alors $\{i\in I/u_i\neq 0\}$ est au plus dénombrable.

©Éric Merle 2 MPSI2, LLG

Démonstration.

On suppose qu'il existe $M \in \mathbb{R}_+$ tel que, pour toute partie finie J de I, $\sum_{i \in I} u_i \leq M$.

$$\{i \in I/u_i \neq 0\} = \bigcup_{n \in \mathbb{N}^*} \{i \in I/u_i \ge \frac{1}{n}\}. \text{ Posons } J_n = \{i \in I/u_i \ge \frac{1}{n}\}.$$

Soit $n \in \mathbb{N}^*$. Si J est une partie finie de J_n , $M \geq \sum_{i \in J} u_i \geq \sum_{i \in J} \frac{1}{n} = \frac{card(J)}{n}$, donc

 $card(J) \leq Mn$. Ceci prouve que J_n est de cardinal fini, donc $\{i \in I/u_i \neq 0\} = \bigcup_{n \in \mathbb{N}^*} J_n$ est dénombrable. \square

Remarque. La contraposée de cette propriété affirme que lorsque $\{i \in I/u_i \neq 0\}$ n'est pas dénombrable, $\sum_{i \in I} u_i = +\infty$. Il est donc naturel de se limiter au cas où I est au plus dénombrable, ce que nous supposerons pour toute la suite.

Propriété. Soient $v = (v_i)_{i \in I}$ et $w = (w_i)_{i \in I}$ deux familles de réels positifs telles que, pour tout $i \in I$, $v_i \le w_i$.

Si w est sommable, alors v est également sommable et $\sum_{i \in I} v_i \leq \sum_{i \in I} w_i$

$D\'{e}monstration.$

Pour toute partie finie J de I, $\sum_{j\in J}v_j\leq \sum_{j\in J}w_j\leq \sum_{i\in I}w_i$, donc v est sommable et

$$\sum_{i \in I} v_i \le \sum_{i \in I} w_i \ \Box$$

Propriété. Lorsque $v = (v_i)_{i \in I}$ et $w = (w_i)_{i \in I}$ sont deux familles de réels positifs telles que, pour tout $i \in I$ $v_i \leq w_i$, on peut toujours écrire que,

$$\left[\text{dans } [0, +\infty]\right], \sum_{i \in I} v_i \le \sum_{i \in I} w_i.$$

$D\'{e}monstration.$

C'est évident lorsque $\sum_{i \in I} w_i = +\infty$ et lorsque $\sum_{i \in I} w_i < +\infty$, c'est la propriété précédente.

Propriété. Soit $(J_n)_{n\in\mathbb{N}}$ une suite adaptée à I, c'est-à-dire une suite croissante de parties finies de I dont la réunion est égale à I. Alors les propriétés suivantes sont équivalentes :

- $(u_i)_{i \in I}$ est sommable.
- La suite $\left(\sum_{i\in I_n} u_i\right)_{n\in\mathbb{N}}$ est majorée.
- La suite $\left(\sum_{i\in J_n} u_i\right)_{n\in\mathbb{N}}$ est convergente dans \mathbb{R}_+ .

De plus, dans ce cas,
$$\sum_{i \in I} u_i = \sup_{n \in \mathbb{N}} \sum_{i \in J_n} u_i = \lim_{n \to +\infty} \sum_{i \in J_n} u_i$$
.

Démonstration.

On remarque que la suite $\left(\sum_{i\in J_n}u_i\right)_{n\in\mathbb{N}}$ est croissante, donc elle converge dans \mathbb{R} si et seulement si elle est majorée et dans ce cas, $\sup_{n\in\mathbb{N}}\sum_{i\in J_n}u_i=\lim_{n\to+\infty}\sum_{i\in J_n}u_i$. Ainsi, il suffit d'établir l'équivalence entre les deux premières assertions et de montrer qu'en cas de sommabilité, $\sum_{i\in I}u_i=\sup_{n\in\mathbb{N}}\sum_{i\in J_n}u_i$.

• Supposons que la suite $\left(\sum_{i\in I_n}u_i\right)_{n\in\mathbb{N}}$ est majorée.

Soit J une partie finie de I. Pour tout $j \in J$ il existe $n_j \in \mathbb{N}$ tel que $j \in J_{n_j}$. En posant $N = \max_{j \in J} n_j$, $J \subset J_N$, donc $\sum_{i \in J} u_i \leq \sum_{i \in J_N} u_i \leq \sup_{n \in \mathbb{N}} \sum_{i \in J_n} u_i$.

Ceci prouve que la famille (u_i) est sommable et que, dans ce cas, $\sum_{i \in I} u_i \leq \sup_{n \in \mathbb{N}} \sum_{i \in I} u_i$.

• Réciproquement, supposons que la famille (u_i) est sommable Soit $n \in \mathbb{N}$. J_n est une partie finie de I, donc $\sum_{i \in I_n} u_i \leq \sum_{i \in I} u_i$.

Ceci prouve que la suite $\left(\sum_{i\in J_n}u_i\right)_{n\in\mathbb{N}}$ est majorée et que, dans ce cas,

$$\sup_{n \in \mathbb{N}} \sum_{i \in J_n} u_i \le \sum_{i \in I} u_i. \ \Box$$

Remarque. Ainsi, les sommes $\sum_{i \in J_n} u_i$ jouent un rôle analogue aux sommes partielles utilisées en théorie des séries.

Exercice. Soit A une partie de \mathbb{N}^* de densité $\alpha \in]0,1]$, c'est-à-dire telle que si l'on pose, pour tout $n \in \mathbb{N}^*$, $a(n) = |A \cap \{1,\ldots,n\}|$, $\frac{a(n)}{n} \underset{n \to +\infty}{\longrightarrow} \alpha$.

Montrer que la famille $\left(\frac{1}{a}\right)_{a\in A}$ n'est pas sommable.

Propriété. Lorsque $I = \mathbb{N}$,

une suite $(u_n) \in \mathbb{R}_+^{\mathbb{N}}$ est sommable si et seulement si la série $\sum u_n$ est convergente

et dans ce cas,
$$\sum_{n \in \mathbb{N}} u_n = \sum_{n=0}^{+\infty} u_n$$
.

Démonstration.

Pour tout $n \in \mathbb{N}$, posons $J_n = [0, n]$. Ainsi, $(J_n)_{n \in \mathbb{N}}$ est une suite croissante de parties finies de \mathbb{N} dont la réunion est égale à \mathbb{N} . D'après la propriété précédente, (u_n) est sommable si et seulement si la suite $\left(\sum_{i \in J_n} u_i\right)_{n \in \mathbb{N}} = \left(\sum_{i=0}^n u_i\right)_{n \in \mathbb{N}}$ est majorée, c'est-àdire, dans le cadre des séries à termes positifs, si et seulement si $\sum u_n$ est convergente.

©Éric Merle 4 MPSI2, LLG

De plus, dans ce cas,
$$\sum_{i \in \mathbb{N}} u_i = \lim_{n \to +\infty} \sum_{i \in J_n} u_i = \lim_{n \to +\infty} \sum_{i=0}^n u_i = \sum_{i=0}^{+\infty} u_i$$
. \square

Théorème. Supposons que I est dénombrable et soit φ une bijection de \mathbb{N} dans I. La famille de réels positifs $(u_i)_{i\in I}$ est sommable si et seulement si la série $\sum u_{\varphi(n)}$ est

convergente et dans ce cas,
$$\sum_{i \in I} u_i = \sum_{n=0}^{+\infty} u_{\varphi(n)}$$
.

$D\'{e}monstration.$

Pour tout $n \in \mathbb{N}$, posons $J_n = \{\varphi(0), \dots, \varphi(n)\}$. Ainsi, $(J_n)_{n \in \mathbb{N}}$ est une suite croissante de parties finies de I dont la réunion est égale à I. Alors $(u_i)_{i\in I}$ est sommable si et

seulement si la suite
$$\left(\sum_{i\in J_n}u_i\right)_{n\in\mathbb{N}}=\left(\sum_{k=0}^nu_{\varphi(k)}\right)_{n\in\mathbb{N}}$$
 est majorée, c'est-à-dire, dans le

cadre des séries à termes positifs, si et seulement si $\sum u_{\varphi(n)}$ est convergente.

De plus, dans ce cas,
$$\sum_{i \in I} u_i = \lim_{n \to +\infty} \sum_{i \in J_n} u_i = \lim_{n \to +\infty} \sum_{k=0}^n u_{\varphi(k)} = \sum_{n=0}^{+\infty} u_{\varphi(n)}. \square$$

Propriété de linéarité : Si $(v_i)_{i\in I}$ et $(w_i)_{i\in I}$ sont deux familles sommables de réels positifs, alors pour tout $\alpha \in \mathbb{R}_+$, $(\alpha v_i + w_i)_{i \in I}$ est sommable.

Dans ce cas,
$$\sum_{i \in I} (\alpha v_i + w_i) = \alpha \sum_{i \in I} v_i + \sum_{i \in I} w_i.$$

$D\'{e}monstration.$

Soit
$$(J_n)_{n\in\mathbb{N}}$$
 une suite adaptée à I . Par linéarité des sommes finies, pour tout $n\in\mathbb{N},$ $\sum_{i\in J_n}(\alpha v_i+w_i)=\alpha\sum_{i\in J_n}v_i+\sum_{i\in J_n}w_i$, donc par linéarité du passage à

la limite,
$$\sum_{i \in J_n} (\alpha v_i + w_i) \underset{n \to +\infty}{\longrightarrow} \alpha \sum_{i \in I} v_i + \sum_{i \in I} w_i$$
. Ainsi, $(\alpha v_i + w_i)_{i \in I}$ est sommable et

$$\sum_{i \in I} (\alpha v_i + w_i) = \alpha \sum_{i \in I} v_i + \sum_{i \in I} w_i. \square$$

Convention: Soit $(u_i)_{i\in I}$ une famille d'éléments de $\mathbb{R}_+ \cup \{+\infty\}$.

S'il existe
$$i_0 \in I$$
 tel que $u_{i_0} = +\infty$, on convient que $\sum_{i \in I} u_i = +\infty$.

Propriété. Soit $(v_i)_{i\in I}$ et $(w_i)_{i\in I}$ deux familles d'éléments de $\mathbb{R}_+ \cup \{+\infty\}$.

Alors, dans tous les cas,
$$\sum_{i \in I} (v_i + w_i) = \sum_{i \in I} v_i + \sum_{i \in I} w_i$$
.

Démonstration.

S'il existe
$$i_0 \in I$$
 tel que $v_{i_0} = +\infty$ ou $w_{i_0} = +\infty$, alors $\sum_{i \in I} (v_i + w_i) = +\infty = \sum_{i \in I} v_i + \sum_{i \in I} w_i$.

Sinon, $(v_i)_{i \in I}$ et $(w_i)_{i \in I}$ sont deux familles de réels positifs.

Si $(v_i)_{i \in I}$ n'est pas sommable, comme $v_i + w_i \ge v_i$,

on obtient que
$$\sum_{i \in I} (v_i + w_i) = +\infty = \sum_{i \in I} v_i + \sum_{i \in I} w_i$$
.

On raisonne de même lorsque $(w_i)_{i\in I}$ n'est pas sommable.

Il reste le cas où $(v_i)_{i\in I}$ et $(w_i)_{i\in I}$ sont deux familles sommables de réels positifs. Il correspond à la propriété précédente.

Convention: lorsqu'on travaille dans $\mathbb{R}_+ \cup \{+\infty\}$, on utilise la convention suivante :

$$0 \times (+\infty) = 0$$

On convient aussi, mais c'est plus universel, que pour tout $x \in \mathbb{R}_+^*$, $x \times (+\infty) = +\infty$.

Propriété. Pour tout $\alpha \in \mathbb{R}_+ \cup \{+\infty\}$, pour toute famille $(a_i)_{i \in I}$ d'éléments de $\mathbb{R}_+ \cup \{+\infty\}$, $\alpha \cdot \sum_{i \in I} a_i = \sum_{i \in I} \alpha \cdot a_i$.

$D\'{e}monstration$

Lorsque $\alpha = 0$, avec la convention précédente, $\alpha \cdot \sum_{i \in I} a_i = 0 = \sum_{i \in I} \alpha \cdot a_i$.

Lorsque $\alpha = +\infty$, on vérifie que la propriété est vraie en distinguant le cas où $\forall i \in I, \ a_i = 0 \text{ et le cas où il existe } i_0 \in I \text{ tel que } a_{i_0} > 0.$

On suppose maintenant que $\alpha \in \mathbb{R}_+^*$.

S'il existe
$$i_0 \in I$$
 tel que $a_{i_0} = +\infty$, alors $\alpha \cdot \sum_{i \in I} a_i = +\infty = \sum_{i \in I} \alpha \cdot a_i$.

On suppose maintenant que $(a_i)_{i\in I}$ est une famille de réels positifs.

Si cette famille n'est pas sommable, alors la famille $(\alpha a_i)_{i\in I}$ également n'est pas sommable, donc $\alpha \cdot \sum_{i \in I} a_i = +\infty = \sum_{i \in I} \alpha \cdot a_i$.

Si cette famille est sommable, la propriété a déjà été démontrée.

Propriété. Soit $(v_i)_{i\in I}$ et $(w_i)_{i\in I}$ deux familles d'éléments de $\mathbb{R}_+ \cup \{+\infty\}$ et soit $\alpha \in \mathbb{R}_+ \cup \{+\infty\}$. Alors, dans tous les cas, $\sum_{i=1}^{\infty} (\alpha v_i + w_i) = \alpha \sum_{i=1}^{\infty} v_i + \sum_{i=1}^{\infty} w_i$.

Exercice. Soit $\alpha \in \mathbb{R}$. Etudier la sommabilité de la famille $\left(\frac{1}{(n+a+1)^{\alpha}}\right)_{(n,a)\in\mathbb{N}^2}$. R'esolution.

 \diamond Pour tout $n \in \mathbb{N}$, posons $J_n = \{(p,q) \in \mathbb{N}^2 / p + q \le n\}$.

 $(J_n)_{n\in\mathbb{N}}$ est une suite croissante de parties finies de \mathbb{N}^2 dont la réunion est égale à \mathbb{N}^2 , donc la famille $\left(\frac{1}{(p+q+1)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^2}$ est sommable si et seulement si la suite

$$\left(\sum_{(p,q)\in I_{-}} \frac{1}{(p+q+1)^{\alpha}}\right)$$
 est majorée.

$$\sum_{(p,q)\in J_n} \frac{1}{(p+q+1)^{\alpha}} = \sum_{k=0}^n \sum_{p+q=k} \frac{1}{(p+q+1)^{\alpha}} = \sum_{k=0}^n \sum_{p+q=k} \frac{1}{(k+1)^{\alpha}} = \sum_{k=0}^n \frac{k+1}{(k+1)^{\alpha}},$$

donc la famille $\left(\frac{1}{(p+q+1)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^2}$ est sommable si et seulement si la série $\sum \frac{1}{(k+1)^{\alpha-1}} \text{ converge, or } \frac{1}{(k+1)^{\alpha-1}} \sim \frac{1}{k^{\alpha-1}}, \text{ donc}$

$$\sum \frac{1}{(k+1)^{\alpha-1}}$$
 converge, or $\frac{1}{(k+1)^{\alpha-1}} \sim \frac{1}{k^{\alpha-1}}$, dono

la famille $\left(\frac{1}{(p+q+1)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^2}$ est sommable si et seulement si $\alpha>2.$

3 Familles sommables de complexes

Notation.

I désigne un ensemble au plus dénombrable et $(J_n)_{n\in\mathbb{N}}$ est une suite adaptée à I. On fixe une famille $u=(u_i)_{i\in I}$ de complexes.

Définition. On dit que

la famille $(u_i)_{i\in I}$ est sommable si et seulement si la famille $(|u_i|)_{i\in I}$ est sommable.

Ainsi,
$$(u_i)_{i \in I}$$
 est sommable si et seulement si $\sum_{i \in I} |u_i| < +\infty$.

Propriété. Si $(u_i)_{i\in I}$ est sommable,

alors pour tout $I' \subset I$, la sous-famille $(u_i)_{i \in I'}$ est encore sommable.

Démonstration.

Si J est une partie finie incluse dans I', alors c'est une partie finie de I, donc $\sum_{i \in I} |u_i| \le \sum_{i \in I} |u_i| < +\infty, \text{ donc } (u_i)_{i \in I'} \text{ est sommable. } \square$

Remarque. Pour le moment, lorsque $(u_i)_{i\in I}$ est une famille "sommable" de complexes, sa somme n'est pas définie. Heureusement, cet inconfort n'est que passager :

Propriété. Supposons que tous les u_i sont réels.

Pour tout $i \in I$, on pose $u_i^+ = \max(u_i, 0)$ et $u_i^- = \max(-u_i, 0)$.

 $u^+ = (u_i^+)_{i \in I}$ et $u^- = (u_i^-)_{i \in I}$ sont deux familles de réels positifs.

On vérifie que, pour tout $i \in I$, $u_i = u_i^+ - u_i^-$ et $|u_i| = u_i^+ + u_i^-$.

 $(u_i)_{i\in I}$ est sommable si et seulement si $(u_i^+)_{i\in I}$ et $(u_i^-)_{i\in I}$ sont sommables (selon la définition du paragraphe précédent) et dans ce cas,

on pose (1) :
$$\sum_{i \in I} u_i = \sum_{i \in I} u_i^+ - \sum_{i \in I} u_i^-$$
.

$D\'{e}monstration.$

En discutant selon le signe de u_i , on montre que $u_i = u_i^+ - u_i^-$ et $|u_i| = u_i^+ + u_i^-$. Si u est sommable, comme $0 \le u_i^+ \le |u_i|$ et $0 \le u_i^- \le |u_i|$, $u^+ = (u_i^+)$ et $u^- = (u_i^-)$ sont sommables.

Réciproquement, si u^+ et u^- sont sommables sur I, comme $|u_i| = u_i^+ + u_i^-$, u est sommable. \square

Propriété. Supposons maintenant que u est à valeurs complexes. Alors les familles $\operatorname{Re}(u) = (\operatorname{Re}(u_k))_{k \in I}$ et $\operatorname{Im}(u) = (\operatorname{Im}(u_k))_{k \in I}$ sont à valeurs dans \mathbb{R} . u est sommable si et seulement si $\operatorname{Re}(u)$ et $\operatorname{Im}(u)$ sont sommables et dans ce cas,

On pose (2) :
$$\sum_{k \in I} u_k = \sum_{k \in I} \text{Re}(u_k) + i \sum_{k \in I} \text{Im}(u_k),$$

où les sommes du membre droit de l'égalité sont définies dans la propriété précédente.

Démonstration.

Si u est sommable, comme, pour tout $i \in I$, $0 \le |\text{Re}(u_i)| \le |u_i|$ et $0 \leq |\text{Im}(u_i)| \leq |u_i|$, Re(u) et Im(u) sont sommables. Réciproquement, si Re(u) et Im(u) sont sommables sur I, comme $|u_i| \leq |\text{Re}(u_i)| + |\text{Im}(u_i)|$, u est sommable. \Box

Propriété. Lorsque $(u_i)_{i\in I}$ est une famille sommable de complexes,

$$\sum_{i \in I} u_i = \lim_{n \to +\infty} \sum_{j \in J_n} u_j.$$

Cependant la réciproque est fausse : la suite $\left(\sum_{j\in I_-} u_j\right)_{n\in\mathbb{N}}$ peut converger sans que $(u_i)_{i\in I}$ ne soit sommable.

Démonstration.

 \diamond Premier cas : Supposons que $u=(u_i)_{i\in I}$ est à valeurs dans \mathbb{R} . Pour tout $n\in\mathbb{N},$ $\sum_{j\in J_n}u_j=\sum_{j\in J_n}u_j^+-\sum_{j\in J_n}u_j^-$, donc d'après une propriété du para-

graphe sur les réels positifs, $\sum_{j \in J_n} u_j \underset{n \to +\infty}{\longrightarrow} \sum_{i \in I} u_i^+ - \sum_{i \in I} u_i^-$, donc d'après la relation (1),

$$\sum_{j \in J_n} u_j \underset{n \to +\infty}{\longrightarrow} \sum_{i \in I} u_i .$$

 \diamond Second cas: Supposons que u est à valeurs dans \mathbb{C} . Pour tout $n \in \mathbb{N}$, $\sum_{j \in J_n} u_j = \sum_{j \in J_n} \operatorname{Re}(u_j) + i \sum_{j \in J_n} \operatorname{Im}(u_j)$, donc par application du premier

cas,
$$\sum_{j \in J_n} u_j \underset{n \to +\infty}{\longrightarrow} \sum_{k \in I} \operatorname{Re}(u_k) + i \sum_{k \in I} \operatorname{Im}(u_k)$$
.

Ainsi, d'après la relation (2), $\sum_{i \in J_n} u_i \xrightarrow[n \to +\infty]{} \sum_{i \in I} u_i$.

 \diamond Pour montrer que la réciproque est fausse, il suffit de prendre $I=\mathbb{Z}$ avec, pour tout $n \in \mathbb{N}$, $J_n = [-n, n] \cap \mathbb{Z}$, et pour tout $k \in \mathbb{Z}$, $u_k = k$.

Pour tout $n \in \mathbb{N}$, $\sum_{k \in I_n} |u_k| = 2 \sum_{k=1}^n k = n(n+1) \xrightarrow[n \to +\infty]{} +\infty$, donc u n'est pas sommable.

Pourtant, pour tout
$$n \in \mathbb{N}$$
, $\sum_{j=-n}^{n} u_j = 0 \xrightarrow[n \to +\infty]{} 0. \square$

Exercice. Soit $\theta \in \mathbb{R}$. Calculer la somme de la suite double $\left(\frac{\cos(p+q)\theta}{p!q!}\right)_{(p,q)\in\mathbb{N}^2}$.

Solution : \diamond *Existence de la somme :* Pour tout $(p,q) \in \mathbb{N}^2$, $\left|\frac{\cos(p+q)\theta}{p!q!}\right| \leq \frac{1}{p!}\frac{1}{q!}$, donc pour montrer la sommabilité de la famille $\left(\frac{\cos(p+q)\theta}{p!q!}\right)_{(p,q)\in\mathbb{N}^2}$, il suffit

d'établir la sommabilité de la famille de réels positifs $\left(\frac{1}{p!}\frac{1}{q!}\right)_{(p,q)\in\mathbb{N}^2}$.

Posons $J_n = \{0, \dots, n\}^2$: la suite (J_n) est adaptée à \mathbb{N}^2 .

Or
$$\sum_{(p,q)\in J_n} \frac{1}{p!} \frac{1}{q!} = \left(\sum_{k=0}^n \frac{1}{k!}\right)^2 \xrightarrow[n\to+\infty]{} e^2$$
, donc $\left(\frac{1}{p!} \frac{1}{q!}\right)_{(p,q)\in\mathbb{N}^2}$ est bien sommable.

$$S = \lim_{n \to +\infty} \sum_{\substack{0 \le p \le n \\ 0 \le q \le n}} \frac{\cos(p+q)\theta}{p!q!} = \lim_{n \to +\infty} \sum_{\substack{0 \le p \le n \\ 0 \le q \le n}} \frac{\operatorname{Re}(e^{i(p+q)\theta})}{p!q!}$$
$$= \operatorname{Re}\left(\lim_{n \to +\infty} \sum_{\substack{0 \le p \le n \\ 0 \le q \le n}} \frac{e^{i(p+q)\theta}}{p!q!}\right),$$

car Re est une application continue. Ainsi, $S = \text{Re}\left(\lim_{n \to +\infty} \left(\sum_{r=0}^{n} \frac{(e^{i\theta})^p}{p!}\right)^2\right)$,

or
$$\sum_{p=0}^{n} \frac{(e^{i\theta})^p}{p!} \xrightarrow[n \to +\infty]{} \sum_{p=0}^{+\infty} \frac{(e^{i\theta})^p}{p!} = e^{(e^{i\theta})}$$
, donc $\left(\sum_{p=0}^{n} \frac{(e^{i\theta})^p}{p!}\right)^2 \xrightarrow[n \to +\infty]{} e^{2e^{i\theta}}$.

Ainsi,
$$S = \operatorname{Re}\left(e^{2(e^{i\theta})}\right) = \operatorname{Re}(e^{2\cos\theta + 2i\sin\theta}).$$

En conclusion,
$$\sum_{(p,q)\in\mathbb{N}^2} \frac{\cos(p+q)\theta}{p!q!} = e^{2\cos\theta}\cos(2\sin\theta).$$

Inégalité triangulaire : si u est sommable, alors $|\sum u_i| \leq \sum |u_i|$.

Démonstration. Pour tout $n \in \mathbb{N}$, $|\sum_{i \in J_n} u_i| \le \sum_{i \in J_n} |u_i|$ et on fait tendre n vers $+\infty$. \square

Propriété. Lorsque $I = \mathbb{N}$, une suite $(u_n)_{n \in \mathbb{N}}$ est sommable si et seulement si la série

$$\sum u_n$$
 est absolument convergente. Dans ce cas, $\sum_{n\in\mathbb{N}} u_n = \sum_{n=0}^{+\infty} u_n$.

Propriété. Lorsque $I = \mathbb{Z}$, $(u_n)_{n \in \mathbb{Z}}$ est sommable si et seulement si les séries $\sum_{n \in \mathbb{Z}} u_n$

et $\sum_{n > 0} u_{-n}$ sont absolument convergentes et dans ce cas

$$\sum_{n\in\mathbb{Z}} u_n = \sum_{n=1}^{+\infty} u_{-n} + \sum_{n=0}^{+\infty} u_n.$$

$D\'{e}monstration.$

• Supposons que la famille $(u_n)_{n\in\mathbb{Z}}$ est sommable. Soit $N\in\mathbb{N}^*$. $\sum_{n=0}^N |u_n| \leq \sum_{n\in\mathbb{Z}} |u_n|$,

donc la série $\sum |u_n|$ est convergente. De même, $\sum_{n=0}^N |u_{-n}| = \sum_{n \in [-N,0] \cap \mathbb{Z}} |u_n| \le \sum_{n \in \mathbb{Z}} |u_n|$,

donc la série $\sum |u_{-n}|$ est convergente.

• Réciproquement, supposons que les séries $\sum u_n$ et $\sum u_{-n}$ sont absolument convergentes. Soit J une partie finie de \mathbb{Z} .

$$\sum_{i \in J} |u_i| = \sum_{i \in J \cap \mathbb{N}} |u_i| + \sum_{i \in J \cap \mathbb{Z}_-^*} |u_i| \le \sum_{n=1}^{+\infty} |u_{-n}| + \sum_{n=0}^{+\infty} |u_n|, \text{ donc la famille } (u_n) \text{ est sommable.}$$

Dans ce cas.

$$\sum_{n=1}^{+\infty} u_{-n} + \sum_{n=0}^{+\infty} u_n = \lim_{N \to +\infty} \left(\sum_{n=1}^{N} u_{-n} + \sum_{n=0}^{N} u_n \right) = \lim_{N \to +\infty} \sum_{n \in [-N,N] \cap \mathbb{Z}} u_n = \sum_{n \in \mathbb{Z}} u_n, \text{ car} \left([-N,N] \cap \mathbb{Z} \right)_{N \in \mathbb{N}} \text{ est adaptée à } \mathbb{Z}. \ \Box$$

Exemple.
$$\sum_{n \in \mathbb{Z}^*} \frac{1}{n^3} = 0$$
, et $\sum_{n \in \mathbb{Z}^*} \frac{1}{n}$ n'est pas définie.

4 Propriétés des familles sommables

Notation.

I désigne un ensemble au plus dénombrable et $(J_n)_{n\in\mathbb{N}}$ est une suite adaptée à I.

4.1 Linéarité

Propriété de linéarité : soit $a = (a_i)_{i \in I}$ et $b = (b_i)_{i \in I}$ deux familles sommables de complexes et soit $\alpha \in \mathbb{C}$. Alors la famille $\alpha a + b = (\alpha a_i + b_i)_{i \in I}$ est sommable et $\sum_{i \in I} (\alpha a_i + b_i) = \alpha \sum_{i \in I} a_i + \sum_{i \in I} b_i.$

Démonstration.

Pour tout $i \in I$, $|\alpha a_i + b_i| \le |\alpha||a_i| + |b_i|$, or d'après le paragraphe 2, la famille de réels positifs $(|\alpha||a_i| + |b_i|)_{i \in I}$ est sommable, donc la famille $(|\alpha a_i + b_i|)_{i \in I}$ est également sommable.

Ainsi la famille de complexes $(\alpha a_i + b_i)_{i \in I}$ est aussi sommable.

Pour tout $n \in \mathbb{N}$, $\sum_{i \in J_n} (\alpha a_i + b_i) = \alpha \sum_{i \in J_n} a_i + \sum_{i \in J_n} b_i$ et il suffit de faire tendre n vers $+\infty$ pour conclure. \square

Propriété. Soit $(u_i)_{i\in I}$ une famille de réels positifs et $(v_i)_{i\in I}$ une famille de complexes. On suppose que, pour tout $i\in I$, $|v_i|\leq u_i$.

Si (u_i) est sommable, alors (v_i) est sommable et $|\sum_{i\in I} v_i| \leq \sum_{i\in I} u_i$.

Démonstration.

On suppose que (u_i) est sommable.

 \diamond pour tout $i \in I$, $|v_i| \le u_i$, donc d'après le paragraphe 2, la famille $(|v_i|)$ est sommable. Ainsi, la famille (v_i) est sommable.

$$\diamond$$
 Pour tout $n \in \mathbb{N}$, $|\sum_{i \in J_n} v_i| \le \sum_{i \in J_n} |v_i| \le \sum_{i \in J_n} u_i$.

On conclut en faisant tendre n vers $+\infty$. \square

Notation. \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Notons $l^{\infty}(I, \mathbb{K})$ l'ensemble des familles bornées $(u_i)_{i \in I} \in \mathbb{K}^I$.

et pour
$$p \in [1, +\infty[$$
, posons $l^p(I, \mathbb{K}) = \left\{ (u_i)_{i \in I} / \sum_{i \in I} |u_i|^p < +\infty \right\}$.

Propriété. $l^1(I, \mathbb{K}), l^2(I, \mathbb{K})$ et $l^{\infty}(I, \mathbb{K})$ sont des sous-espaces vectoriels de \mathbb{K}^I . De plus si (a_i) et (b_i) sont dans $l^2(I, \mathbb{K})$, alors (a_ib_i) est un élément de $l^1(I, \mathbb{K})$.

Démonstration.

- \diamond On vient de montrer que $l^1(I, \mathbb{K})$ est stable par combinaison linéaire. De plus il est non vide, donc c'est bien un sous-espace vectoriel de \mathbb{K}^I .
- \diamond Soit $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ deux éléments de $l^2(I,\mathbb{K})$.

Soit $i \in I$. $(|a_i| - |b_i|)^2 \ge 0$, donc $|a_i b_i| \le \frac{1}{2} (|a_i|^2 + |b_i|^2)$, ce qui prouve que $(a_i b_i)_{i \in I}$ est dans $l^1(I, \mathbb{K})$.

De plus, $(a_i + b_i)^2 = a_i^2 + b_i^2 + 2a_ib_i$, donc $(a_i + b_i) \in l^2(I, \mathbb{K})$. On en déduit facilement que $l^2(I, \mathbb{K})$ est un sous-espace vectoriel de \mathbb{R}^I .

 \diamond Soit $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ deux familles bornées de réels indexées par I et soit $\alpha\in\mathbb{R}$.

Pour tout
$$i \in I$$
, $|\alpha a_i + b_i| \le |\alpha| |a_i| + |b_i| \le |\alpha| \sup_{j \in I} |a_j| + \sup_{j \in I} |b_j|$,

ainsi $\alpha(a_i)_{i\in I}+(b_i)_{i\in I}\in l^\infty(I)$. De plus, $l^\infty(I,\mathbb{K})$ est non vide, donc c'est un sous-espace vectoriel de \mathbb{R}^I . \square

Propriété. Pour tout
$$(u_i), (v_i) \in l^2(I, \mathbb{R})$$
, on pose $((u_i)|(v_i)) = \sum_{i \in I} u_i v_i$.

 $l^2(I,\mathbb{R})$ muni de (.|.) est un espace préhilbertien.

Démonstration.

Ce qui précède montre que (.|.) est correctement défini. De plus, il est clairement bilinéaire, symétrique et positif.

Si
$$((u_i)|(u_i)) = 0$$
. Pour tout $j \in I$, $0 \le u_j^2 \le ((u_i)|(u_i)) = 0$, donc $(u_i) = 0$.

Propriété.

- En posant $\|(u_i)_{i\in I}\|_{\infty} = \sup_{i\in I} |u_i|, (l^{\infty}(I), \mathbb{K})$ est un espace vectoriel normé;
- En posant $||(u_i)_{i\in I}||_1 = \sum_{i\in I}^{i\in I} |u_i|, (l^1(I), \mathbb{K})$ est un espace vectoriel normé;
- En posant $||(u_i)_{i\in I}||_2 = \sqrt{\sum_{i\in I} |u_i|^2}$, $(l^2(I), \mathbb{K})$ est un espace vectoriel normé.

$D\'{e}monstration.$

Exercice. \Box

4.2 Commutativité

Propriété. Commutativité de la somme d'une famille sommable.

Soit φ une bijection de I dans I et $(u_i)_{i\in I}$ une famille de complexes.

Alors $(u_i)_{i\in I}$ est sommable si et seulement si $(u_{\varphi(i)})_{i\in I}$ est aussi sommable et dans ce cas, $\sum_{i \in I} u_{\varphi(i)} = \sum_{i \in I} u_i$.

$D\'{e}monstration.$

 \diamond Montrons d'abord que $(\varphi(J_n))_{n\in\mathbb{N}}$ est adaptée à I.

Soit $n \in \mathbb{N}$: J_n est de cardinal fini, donc $\varphi(J_n)$ est aussi finie.

De plus $J_n \subset J_{n+1}$, donc $\varphi(J_n) \subset \varphi(J_{n+1})$.

Enfin,
$$I = \varphi(I) = \varphi(\bigcup J_n) = \bigcup \varphi(J_n)$$
.

Enfin,
$$I = \varphi(I) = \varphi(\bigcup_{n \in \mathbb{N}} J_n) = \bigcup_{n \in \mathbb{N}} \varphi(J_n).$$

$$\Leftrightarrow \text{ Pour tout } n \in \mathbb{N}, \sum_{i \in J_n} |u_{\varphi(i)}| = \sum_{j \in \varphi(J_n)} |u_j|.$$

 $(\varphi(J_n))_{n\in\mathbb{N}}$ est adaptée à I, donc $(u_i)_{i\in I}$ est sommable si et seulement si $\sum |u_j|$

converge lorsque n tend vers l'infini, donc si et seulement si $\sum_{i=1}^{n} |u_{\varphi(i)}|$ converge lorsque

n tend vers l'infini, c'est-à-dire si et seulement si $(u_{\varphi(i)})_{i\in I}$ est sommable.

De plus dans ce cas,
$$\sum_{i \in I} u_{\varphi(i)} = \lim_{n \to +\infty} \sum_{i \in J_n} u_{\varphi(i)} = \lim_{n \to +\infty} \sum_{j \in \varphi(J_n)} u_j = \sum_{i \in I} u_i$$
. \square

Remarque. Ainsi le symbole " $\sum_{n=0}^{+\infty}$ " n'est pas commutatif dans le cas des séries

semi-convergentes de complexes, mais il le devient dans le cas des séries absolument convergentes. Plus généralement, on voit que la définition d'une somme infinie provenant de la sommabilité est plus sûre et plus robuste que celle provenant des séries.

Propriété. Hors programme:

Soient $(u_i)_{i\in I}$ une famille sommable de complexes et φ une bijection de K dans I. Alors $(u_{\varphi(k)})_{k\in K}$ est aussi sommable et $\sum_{k\in K} u_{\varphi(k)} = \sum_{i\in I} u_i$.

$D\'{e}monstration.$

On adapte la démonstration précédente. K est au plus dénombrable et il faut supposer ici que $(J_n)_{n\in\mathbb{N}}$ est une suite adaptée à K.

 \diamond Montrons d'abord que $(\varphi(J_n))_{n\in\mathbb{N}}$ est adaptée à I.

Soit $n \in \mathbb{N}$: J_n est de cardinal fini, donc $\varphi(J_n)$ est aussi finie.

De plus $J_n \subset J_{n+1}$, donc $\varphi(J_n) \subset \varphi(J_{n+1})$.

Enfin,
$$I = \varphi(K) = \varphi(\bigcup_{n \in \mathbb{N}} J_n) = \bigcup_{n \in \mathbb{N}} \varphi(J_n).$$

 $\diamond \ \ \text{Ainsi, pour tout } n \in \mathbb{N}, \ \sum_{k \in I_{-}} |n \in \mathbb{N} \\ |u_{\varphi(k)}| = \sum_{j \in \wp(I_{-})} |u_{j}| \underset{n \to +\infty}{\longrightarrow} \sum_{j \in I} |u_{j}|, \ \text{ce qui montre que la}$

famille $(u_{\varphi(k)})_{k\in K}$ est sommable.

Alors,
$$\sum_{k \in K} u_{\varphi(k)} = \lim_{n \to +\infty} \sum_{k \in J_n} u_{\varphi(k)} = \lim_{n \to +\infty} \sum_{j \in \varphi(J_n)} u_j = \sum_{i \in I} u_i$$
. \square

Remarque. Lorsque $(u_i)_{i\in I}$ est une famille de réels positifs, pour toute bijection d'un ensemble K dans I, $\sum_{k \in K} u_{\varphi(k)} = \sum_{i \in I} u_i$.

Théorème. Sommation par paquets pour des familles de réels positifs.

Soit $(I_q)_{q\in\mathbb{N}}$ une partition de I (on accepte que certains I_q soient vides).

On suppose que $u=(u_i)_{i\in I}\in\mathbb{R}_+^I$. Alors u est sommable si et seulement si

- \diamond pour tout $q \in \mathbb{N}$, la famille $(u_i)_{i \in I_q}$ est sommable et
- \diamond la suite $\left(\sum_{i\in I} u_i\right)_{q\in\mathbb{N}}$ est sommable.

Dans ce cas,
$$\sum_{i \in I} u_i = \sum_{q \in \mathbb{N}} \sum_{i \in I_q} u_i$$
.

Remarque. En cas de non sommabilité, on a encore : $\sum_{i \in I} u_i = \sum_{j \in I} \sum_{i \in I} u_i = +\infty$.

Ainsi, on peut énoncer le théorème sous une forme plus concise si $(I_q)_{q\in\mathbb{N}}$ est une partition de I et si $(u_i)_{i\in I}\in\mathbb{R}_+^I$, alors $\sum_{i\in I}u_i=\sum_{q\in\mathbb{N}}\sum_{i\in I}u_i$.

Démonstration.

- Supposons que $(u_i)_{i\in I}$ est sommable.
- ♦ Soit $q \in \mathbb{N}$. $I_q \subset I$, donc d'après une propriété précédente, $(u_i)_{i \in I_q}$ est sommable. ♦ Soit $q \in \mathbb{N}$. $I_q \subset I$ et I est au plus dénombrable, donc I_q est au plus dénombrable. Notons $(J_{q,N})_{N\in\mathbb{N}}$ une suite adaptée à I_q .

Soit
$$n \in \mathbb{N}$$
.
$$\sum_{q=0}^{n} \left(\sum_{i \in I_q} u_i \right) = \sum_{q=0}^{n} \lim_{N \to +\infty} \sum_{i \in J_{q,N}} u_i = \lim_{N \to +\infty} \sum_{q=0}^{n} \sum_{i \in J_{q,N}} u_i.$$

Pour tout
$$N \in \mathbb{N}$$
, $\sum_{q=0}^{N} \sum_{i \in J_{q,N}} u_i = \sum_{\substack{i \in \bigcup_{0 \le q \le n} J_{q,N}}} u_i \le \sum_{i \in I} u_i$, car $\bigcup_{0 \le q \le n} J_{q,N}$ est une partie

finie de I. On en déduit, en faisant tendre N vers $+\infty$, que $\sum_{i\in I}^n \left(\sum_{i\in I} u_i\right) \leq \sum_{i\in I} u_i$.

Ceci prouve que
$$\left(\sum_{i\in I_q} u_i\right)_{q\in\mathbb{N}}$$
 est sommable et que $\sum_{i\in I} u_i \geq \sum_{q\in\mathbb{N}} \sum_{i\in I_q} u_i$.

Supposons que pour tout $q \in \mathbb{N}$, $(u_i)_{i \in I_q}$ est sommable et que $\left(\sum_{i \in I_r} u_i\right)$ sommable.

Pour tout $n \in \mathbb{N}$, posons $J_n = \bigcup J_{q,n}$. On vérifie que la suite (J_n) est adaptée à I.

De plus,
$$\sum_{i \in J_n} u_i = \sum_{q=0}^n \sum_{i \in J_{q,n}} u_i \le \sum_{q=0}^n \sum_{i \in I_q} u_i \le \sum_{q=0}^{+\infty} \sum_{j \in I_q} u_j$$
.
Ceci prouve que $(u_i)_{i \in I}$ est sommable et que $\sum_{i \in I} u_i \le \sum_{q \in \mathbb{N}} \sum_{i \in I_q} u_i$. \square

Exemple. Pour tout $\alpha \in \mathbb{R}$,

$$\sum_{p,q\in\mathbb{N}} \frac{1}{(p+q+1)^{\alpha}} = \sum_{n=0}^{+\infty} \sum_{p+q=n} \frac{1}{(p+q+1)^{\alpha}} = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^{\alpha-1}}, \text{ car}$$

en posant $I_n = \{(p,q) \in \mathbb{N}^2/p + q = n\}$, la famille $(I_n)_{n \in \mathbb{N}}$ est une partition de \mathbb{N}^2 .

Corollaire. Interversion de sommations pour des suites doubles de réels positifs (Fubini).

Soit $(u_{p,q})_{(p,q)\in\mathbb{N}^2}$ une famille de réels positifs indexée par \mathbb{N}^2 .

Les propriétés suivantes sont équivalentes.

- \diamond La famille $(u_{p,q})_{(p,q)\in\mathbb{N}^2}$ est sommable.
- \diamond Pour tout $q \in \mathbb{N}$, $(u_{p,q})_{p \in \mathbb{N}}$ est sommable et la suite $\left(\sum_{p \in \mathbb{N}} u_{p,q}\right)_{q \in \mathbb{N}}$ est sommable.
- Pour tout $p \in \mathbb{N}$, $(u_{p,q})_{q \in \mathbb{N}}$ est sommable et la suite $\left(\sum_{q \in \mathbb{N}} u_{p,q}\right)$

Lorque l'une de ces propriétés est vérifiée, on dit que $(u_{p,q})_{(p,q)\in\mathbb{N}^2}$ est une suite double sommable et on dispose des égalités suivantes.

$$\sum_{(p,q)\in\mathbb{N}^2}u_{p,q}=\sum_{q=0}^{+\infty}\left(\sum_{p=0}^{+\infty}u_{p,q}\right)=\sum_{p=0}^{+\infty}\left(\sum_{q=0}^{+\infty}u_{p,q}\right).$$

Démonstration.

Il suffit d'appliquer le théorème de sommation par paquets pour des familles de réels positifs en posant, pour tout $q \in \mathbb{N}$, $I_q = \mathbb{N} \times \{q\}$, ce qui constitue bien une partition $de \mathbb{N}^2$.

Plus précisément, d'après le théorème de sommation par paquets,
$$\sum_{(p,q)\in\mathbb{N}^2}u_{p,q}=\sum_{p_0\in\mathbb{N}}\sum_{(p,q)\in\{p_0\}\times\mathbb{N}}u_{p,q}.$$

Soit $p_0 \in \mathbb{N}$. L'application $q \longmapsto (p_0,q)$ est une bijection de \mathbb{N} dans $\{p_0\} \times \mathbb{N}$ donc $\sum_{(p,q)\in \{p_0\}\times \mathbb{N}} u_{p,q} = \sum_{q\in \mathbb{N}} u_{\varphi(q)} = \sum_{q\in \mathbb{N}} u_{p_0,q}.$

Ainsi,
$$\sum_{(p,q)\in\mathbb{N}^2} u_{p,q} = \sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{p,q}\right). \square$$

Remarque. Comme précédemment, si l'on accepte de travailler dans $\mathbb{R}_+ \cup \{+\infty\}$, on peut énoncer ce théorème sous la forme suivante :

Pour tout
$$(u_{p,q})_{(p,q)\in\mathbb{N}^2} \in \mathbb{R}_+^{\mathbb{N}^2}$$
, $\sum_{(p,q)\in\mathbb{N}^2} u_{p,q} = \sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q}\right) = \sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{p,q}\right)$.

Exemple. Calculons $\sum_{(i,j)\in\mathbb{N}^2} i^{-j}$.

Solution: Soit $i \ge 2$. $\sum_{j\ge 2}^{i\ge 2} i^{-j}$ est une série géométrique de raison $i^{-1} \in [0,1[$, donc

cette série est convergente et
$$S_i = \sum_{j=2}^{+\infty} i^{-j} = \frac{i^{-2}}{1 - i^{-1}} = \frac{1}{i^2 - i}$$
.

 $S_i \sim \frac{1}{i^2}$, donc la série $\sum_{i \geq 2} S_i$ converge. Ainsi, d'après le théorème précédent, la suite

double
$$(i^{-j})_{\substack{i \ge 2 \ j \ge 2}}$$
 est sommable et $\sum_{\substack{(i,j) \in \mathbb{N}^2 \ i \ge 2}} i^{-j} = \sum_{i=2}^{+\infty} S_i = \sum_{i=2}^{+\infty} (\frac{1}{i-1} - \frac{1}{i}) = 1.$

Théorème. Sommation par paquets pour des familles de complexes.

Soit $(I_q)_{q\in\mathbb{N}}$ une partition de I.

On suppose ici que $(u_i)_{i\in I}$ est une famille sommable de complexes.

Alors, pour tout $q \in \mathbb{N}$, $(u_i)_{i \in I_q}$ est sommable, et la suite $\left(\sum_{i \in I_q} u_i\right)_{q \in \mathbb{N}}$ est sommable.

De plus,
$$\sum_{i \in I} u_i = \sum_{q \in \mathbb{N}} \sum_{i \in I_q} u_i$$
.

Remarque. Pour appliquer ce théorème, il faut d'abord vérifier que $(u_i)_{i\in I}$ est une famille sommable de complexes, c'est-à-dire que $(|u_i|)_{i\in I}$ est une famille sommable de réels positifs. Souvent, on vérifie ce dernier point à l'aide du "théorème de sommation par paquets pour des familles de réels positifs".

Démonstration.

• Appliquons le théorème de sommation par paquets pour des réels positifs : $(|u_i|)_{i \in I}$ est sommable, donc pour tout $q \in \mathbb{N}$, $(|u_i|)_{i \in I_q}$ est sommable et la suite $\left(\sum_{i \in I_q} |u_i|\right)_{q \in \mathbb{N}}$ est sommable. Or pour tout $q \in \mathbb{N}$, $\left|\sum_{i \in I_q} u_i\right| \leq \sum_{i \in I_q} |u_i|$, donc pour tout $q \in \mathbb{N}$, $(u_i)_{i \in I_q}$

est sommable et $\left(\sum_{i\in I_q} u_i\right)_{q\in\mathbb{N}}$ est sommable.

Pour tout $q \in \mathbb{N}$, il existe une suite $(J_{q,N})_{N \in \mathbb{N}}$ adaptée à I_q .

Pour tout $n \in \mathbb{N}$, posons $J_n = \bigcup J_{q,n}$. La suite (J_n) est constituée de parties finies, elle est croissante et la réunion vaut I,

donc
$$\sum_{i \in I} u_i = \lim_{n \to +\infty} \sum_{i \in J_n} u_i$$
. Ainsi $\sum_{q=0}^n \sum_{i \in I_q} u_i - \sum_{i \in J_n} u_i \xrightarrow[n \to +\infty]{} \sum_{q \in \mathbb{N}} \sum_{i \in I_q} u_i - \sum_{i \in I} u_i$.

$$\Leftrightarrow \text{ Soit } q \in \mathbb{N}. \text{ Montrons que } \sum_{i \in I_q} u_i = \sum_{i \in J_{q,n}} u_i + \sum_{i \in I_q \setminus J_{q,n}} u_i :$$

$$\sum_{i \in I_q} u_i = \lim_{\substack{N \to +\infty \\ N \ge n}} \sum_{i \in J_q, N} u_i = \lim_{\substack{N \to +\infty \\ N \ge n}} \left(\sum_{i \in J_q, n} u_i + \sum_{i \in J_q, N \setminus J_q, n} u_i \right),$$

$$\sum_{i \in I_q} u_i = \lim_{\substack{N \to +\infty \\ N \geq n}} \sum_{i \in J_q, N} u_i = \lim_{\substack{N \to +\infty \\ N \geq n}} \left(\sum_{i \in J_q, n} u_i + \sum_{i \in J_q, N \setminus J_q, n} u_i \right),$$

$$\operatorname{donc} \sum_{i \in I_q} u_i = \sum_{i \in J_q, n} u_i + \lim_{\substack{N \to +\infty \\ N \geq n}} \sum_{i \in J_q, N \setminus J_q, n} u_i = \sum_{i \in J_q, n} u_i + \sum_{i \in I_q \setminus J_q, n} u_i, \text{ car on v\'erifie que la}$$
suite $(J_{q,N} \setminus J_{q,n})_{N \geq n}$ est adaptée à $I_q \setminus J_{q,n}$, et $\operatorname{car} (u_i)_{i \in I_q \setminus J_q, n}$ est sommable.

$$\begin{vmatrix} \sum_{q=0}^{n} \sum_{i \in I_q} u_i - \sum_{i \in J_n} u_i \end{vmatrix} = \begin{vmatrix} \sum_{q=0}^{n} \sum_{i \in I_q \setminus J_{q,n}} u_i \end{vmatrix}$$

$$\leq \sum_{q=0}^{n} \sum_{i \in I_q \setminus J_{q,n}} |u_i|$$

$$= \sum_{q=0}^{n} \sum_{i \in I_q} |u_i| - \sum_{i \in J_n} |u_i| \xrightarrow[n \to +\infty]{} 0,$$

d'après le théorème de sommation par paquets pour des réels positifs. L'unicité de la limite permet alors de conclure.

Théorème de Fubini.

Interversion de sommations pour des suites doubles de complexes.

Soit $(u_{p,q})_{(p,q)\in\mathbb{N}^2}\in\mathbb{C}^{\mathbb{N}^2}$ une suite double de complexes que l'on suppose sommable. Alors pour tout $q_0 \in \mathbb{N}$, la suite (u_{p,q_0}) est sommable, pour tout $p_0 \in \mathbb{N}$, la suite $(u_{p_0,q})$

est sommable, et les suites
$$\left(\sum_{p\in\mathbb{N}}u_{p,q}\right)_{q\in\mathbb{N}}$$
 et $\left(\sum_{q\in\mathbb{N}}u_{p,q}\right)_{p\in\mathbb{N}}$ sont sommables.

De plus

$$\sum_{(p,q)\in\mathbb{N}^2} u_{p,q} = \sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q}\right) = \sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{p,q}\right).$$

Remarque. Pour appliquer ce théorème, il faut d'abord vérifier que $(u_{p,q})_{(p,q)\in\mathbb{N}^2}$ est une famille sommable de complexes, c'est-à-dire que $(|u_{p,q}|)_{(p,q)\in\mathbb{N}^2}$ est une famille sommable de réels positifs. Souvent, on vérifie ce dernier point à l'aide du "théorème d'interversion de sommations pour des suites doubles de réels positifs".

Exemple. Soient $\sum a_n$ et $\sum b_n$ deux séries absolument convergentes de complexes. Alors la famille $(a_pb_q)_{(p,q)\in\mathbb{N}^2}$ est une suite double sommable et

$$\sum_{(p,q)\in\mathbb{N}^2} a_p b_q = \left(\sum_{p\in\mathbb{N}} a_p\right) \left(\sum_{q\in\mathbb{N}} b_q\right).$$

$D\'{e}monstration.$

En travaillant dans $\mathbb{R}_+ \cup \{+\infty\}$, d'après le théorème de Fubini,

$$\sum_{p,q\in\mathbb{N}}|a_pb_q|=\sum_{p=0}^{+\infty}\Big(|a_p|\sum_{q=0}^{+\infty}|b_q|\Big)=\Big(\sum_{p=0}^{+\infty}|a_p|\Big).\Big(\sum_{q=0}^{+\infty}|b_q|\Big)<+\infty, \text{ donc la famille }(a_pb_q)_{p,q\in\mathbb{N}}$$
 est sommable. Alors, d'après le second théorème de Fubini,

$$\sum_{(p,q)\in\mathbb{N}^2} a_p b_q = \sum_{q\in\mathbb{N}} \left(\sum_{p\in\mathbb{N}} a_p b_q \right) = \sum_{q\in\mathbb{N}} (Tb_q), \text{ où } T = \sum_{p=0}^{+\infty} a_p.$$
Ainsi
$$\sum_{(p,q)\in\mathbb{N}^2} a_p b_q = T \sum_{q=0}^{+\infty} b_q = \left(\sum_{p\in\mathbb{N}} a_p \right) \left(\sum_{q\in\mathbb{N}} b_q \right). \square$$

Exemple. On sait que $\sum \frac{1}{p!}$ converge et a pour somme e. Ainsi, $\left(\frac{2^{-q}}{p!}\right)_{(p,q)\in\mathbb{N}^2}$ est sommable et $\sum_{(p,q)\in\mathbb{N}^2} \frac{2^{-q}}{p!} = e \times \frac{1}{1-\frac{1}{2}} = 2e$.

Définition. Produit de Cauchy de deux séries.

Soient $\sum u_n$ et $\sum v_n$ deux séries de complexes.

Pour tout
$$n \in \mathbb{N}$$
, on pose $w_n = \sum_{p+q=n} u_p v_q = \sum_{p=0}^n u_p v_{n-p}$.
La série $\sum w_n$ est appelée le produit de Cauchy des deux séries $\sum u_n$ et $\sum v_n$.

Propriété. Le produit de Cauchy de deux séries **absolument** convergentes est absolument convergent. De plus, avec les notations de la définition précédente, si $\sum u_n$ et $\sum v_n$ sont absolument convergentes, alors

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right).$$

$D\'{e}monstration.$

D'après l'exemple précédent, la suite double $(u_p v_q)$ est sommable

et
$$\sum_{(p,q)\in\mathbb{N}^2} u_p v_q = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right).$$

Pour tout $n \in \mathbb{N}$, posons $I_n = \{(p,q) \in \mathbb{N}^2 / p + q = n\}$. La suite $(I_n)_{n \in \mathbb{N}}$ est une partition de \mathbb{N}^2 , donc par sommation par paquets dans \mathbb{C} ,

 $w_n = \sum_{p+q=n} u_q v_q = \sum_{(p,q) \in I_n} u_p v_q$ est le terme général d'une suite sommable, ce qui signifie

que $\sum w_n$ est absolument convergente. Toujours par sommation par paquets dans \mathbb{C} ,

on peut affirmer que
$$\sum_{n\in\mathbb{N}} w_n = \sum_{(p,q)\in\mathbb{N}^2} u_p v_q = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$
. \square

Exemple. Pour tout $z \in \mathbb{C}$, $e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$ et cette série est absolument convergente

(par le critère de d'Alembert), donc d'après le théorème précédent, pour tout $x,y\in\mathbb{C},$

$$e^x \times e^y = \sum_{n=0}^{+\infty} w_n$$
, où $w_n = \sum_{p+q=n} \frac{x^p}{p!} \frac{y^q}{q!}$.

Mais $w_n = \frac{1}{n!} \sum_{p+q=n} {n \choose p} x^p y^q = \frac{1}{n!} (x+y)^n$, donc on retrouve le fait que $e^x \times e^y = e^{x+y}$.