Logic Gates

Digital Logic Design (DLD)

Introduction

- Digital systems are concerned with digital signals
- Digital signals can take many forms
- Here we will concentrate on binary signals since these are the most common form of digital signals
 - can be used individually
 - perhaps to represent a single binary quantity or the state of a single switch
 - can be used in combination
 - to represent more complex quantities

Boolean Constants and Variables

Boolean 0 and 1 do not represent actual numbers but instead represent the <u>state</u>, or <u>logic level</u>.

Logic 0	Logic 1
False	True
Off	On
Low	High
No	Yes
Open switch	Closed switch

Truth Tables

A truth table is a means for describing how a logic circuit's output depends on the logic levels present at the circuit's inputs.

Inputs		Output
А	В	X
0	0	1_
0	1	0
1	0	1
1	1	0

Binary Quantities and Variables

A binary quantity is one that can take only 2 states

L
OFF
ON
L
0
1

A truth table

A binary arrangement with two switches in series

L = S1 AND S2

A binary arrangement with two switches in parallel

S1	S2	L
0	0	0
0	1	1
1	0	1
1	1	1

(b) Truth table

L = S1 OR S2

Three switches in series

S1	S2	S3	L
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

L = S1 AND S2 AND S3

Three switches in parallel

S1	S2	S3	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

L = S1 OR S2 OR S3

A series/parallel arrangement

S1	S2	S3	L
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

L = S1 AND (S2 OR S3)

Representing an unknown network

Logic Gates

- The building blocks used to create digital circuits are logic gates
- There are three elementary logic gates and a range of other simple gates
- Each gate has its own logic symbol which allows complex functions to be represented by a logic diagram
- The function of each gate can be represented by a truth table or using Boolean notation

The AND gate

(a) Circuit symbol

A	В	C
0	0	0
0	1	0
1	0	0
1	1	1

(b) Truth table

$$C = A \cdot B$$

The OR gate

(a) Circuit symbol

A	В	C
0	0	0
0	1	1
1	0	1
1	1	1

(b) Truth table

$$C = A + B$$

The NOT gate (or inverter)

(a) Circuit symbol

(b) Truth table

$$B = \overline{A}$$

A logic buffer gate

$$B = A$$

- (b) Truth table
- (c) Boolean expression

The NAND gate

(a) Circuit symbol

A	В	С
0	0	1
0	1	1
1	0	1
1	1	0

(b) Truth table

$$C = \overline{A \cdot B}$$

The NOR gate

(a) Circuit symbol

A	В	С
0	0	1
0	1	0
1	0	0
1	1	0

(b) Truth table

$$C = \overline{A + B}$$

The Exclusive OR gate

(a) Circuit symbol

A	В	C
0	0	0
0	1	1
1	0	1
1	1	0

(b) Truth table

$$C = A \oplus B$$

The Exclusive NOR gate

(a) Circuit symbol

A	В	C
0	0	1
0	1	0
1	0	0
1	1	1

(b) Truth table

$$C = \overline{A \oplus B}$$

Boolean Algebra

Boolean Constants

- these are '0' (false) and '1' (true)

Boolean Variables

- variables that can only take the vales '0' or '1'

Boolean Functions

 each of the logic functions (such as AND, OR and NOT) are represented by symbols as described above

Boolean Theorems

a set of identities and laws – see text for details

Boolean identities

AND Function	OR Function	NOT function
0•0=0	0+0=0	0 =1
0•1=0	0+1=1	<u>1</u> =0
1•0=0	1+0=1	$\overline{\overline{A}} = A$
1•1=1	1+1=1	
A•0=0	A+0=A	
0•A=0	0+ <i>A</i> = <i>A</i>	
A•1=A	A+1=1	
1• <i>A</i> = <i>A</i>	1+A=1	
A•A=A	A+A=A	
$A \bullet \overline{A} = 0$	$A + \overline{A} = 1$	

Boolean laws

Commutative law	Absorption law
AB = BA	A + AB = A
A+B=B+A	A(A+B)=A
Distributive law	De Morgan's law
A(B+C) = AB+BC	$\overline{A+B} = \overline{A} \bullet \overline{B}$
A + BC = (A + B)(A + C)	$\overline{A \bullet B} = \overline{A} + \overline{B}$
Associative law	Note also
A(BC) = (AB)C	$A + \overline{AB} = A + B$
A + (B + C) = (A + B) + C	$A(\overline{A}+B)=AB$

Combinational Logic

- Digital systems may be divided into two broad categories:
 - combinational logic
 - where the outputs are determined solely by the current states of the inputs
 - sequential logic
 - where the outputs are determined not only by the current inputs but also by the sequence of inputs that led to the current state
- In this lecture we will look at combination logic

Examples 1,2

Examples 3

Example 4

(b)

Implementing a function from a Boolean expressionExample –

$$X = A + B\overline{C}$$

Implementing a function from a Boolean expressionExample –

Generating a Boolean expression from a logic diagram

Example –

Example (continued)

 work progressively from the inputs to the output adding logic expressions to the output of each gate in turn

Implementing a logic function from a descriptionExample –

The operation of the Exclusive OR gate can be stated as:

"The output should be true if either of its inputs are true, but not if both inputs are true."

This can be rephrased as:

"The output is true if A OR B is true, AND if A AND B are NOT true."

We can write this in Boolean notation as

$$X = (A + B) \bullet \overline{(AB)}$$

Example (continued)

The logic function

$$X = (A + B) \bullet \overline{(AB)}$$

can then be implemented as before

Implementing a logic function from a truth tableExample –

Implement the function of the following truth table

Α	В	С	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- first write down a Boolean expression for the output
- then implement as before
- in this case

$$X = \overline{A} \overline{B}C + A\overline{B}C + AB\overline{C}$$

Example (continued)

The logic function $X = \overline{A} \overline{B}C + A \overline{B}C + AB \overline{C}$ can then be implemented as before

 In some cases it is possible to simplify logic expressions using the rules of Boolean algebra

Example -

 $X = ABC + \overline{A}BC + AC + A\overline{C}$ can be simplified to X = BC + Ahence the following circuits are equivalent

Number Systems and Binary Arithmetic

- Most number systems are order dependent
- Decimal

$$1234_{10} = (1 \times 10^3) + (2 \times 10^2) + (3 \times 10^1) + (4 \times 10^0)$$

Binary

$$1101_2 = (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)$$

Octal

$$123_8 = (1 \times 8^3) + (2 \times 8^2) + (3 \times 8^1)$$

Hexadecimal

$$123_{16} = (1 \times 16^3) + (2 \times 16^2) + (3 \times 16^1)$$

here we need 16 characters – 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Number conversion

- conversion to decimal
 - add up decimal equivalent of individual digits

Example – see **Example 9.8** in the course text

Convert 11010₂ to decimal

$$110102 = (1 \times 2^{4}) + (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0})$$

$$= 16 + 8 + 0 + 2 + 0$$

$$= 2610$$

Number conversion

- conversion from decimal
 - repeatedly divide by the base and remember the remainder

Example – see **Example 9.9** in the course text

Convert 26₁₀ to binary

	Nun	nber Rema	iinde
Starting point	26		
÷ 2	13	0	
÷ 2	6	1	
÷ 2	3	0	
÷ 2	1	1	
÷ 2	0	1	
			re

read number from this

end

=11010

OHT 9.39

Binary arithmetic

- much simpler than decimal arithmetic
- can be performed by simple circuits, e.g. half adder

A	В	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

(b) Truth table (c) Circ

(c) Circuit diagram

More complex circuits can add digital words

- Similar circuits can be constructed to perform subtraction – see text
- More complex arithmetic (such as multiplication and division) can be done by dedicated hardware but is more often performed using a microcomputer or complex logic device

Binary code

- by far the most common way of representing numeric information
- has advantages of simplicity and efficiency of storage

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
etc.	etc.

Binary-coded decimal code

- formed by converting each digit of a decimal number individually into binary
- requires more digits than conventional binary
- has advantage of very easy conversion to/from decimal
- used where input and output are in decimal form

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	10000
11	10001
12	10010
etc.	etc.

ASCII code

- American Standard Code for Information Interchange
- an alphanumeric code
- each character represented by a 7-bit code
 - gives 128 possible characters
 - codes defined for upper and lower-case alphabetic characters, digits 0 – 9, punctuation marks and various non-printing control characters (such as carriage-return and backspace)

- Error detecting and correcting codes
 - adding redundant information into codes allows the detection of transmission errors
 - examples include the use of parity bits and checksums
 - adding additional redundancy allows errors to be not only detected but also corrected
 - such techniques are used in CDs, mobile phones and computer disks

Key Points

- It is common to represent the two states of a binary variable by '0' and '1'
- Logic circuits are usually implemented using logic gates
- Circuits in which the output is determined solely by the current inputs are termed combinational logic circuits
- Logic functions can be described by truth tables or using Boolean algebraic notation
- Binary digits may be combined to form digital words
- Digital words can be processed using binary arithmetic
- Several codes can be used to represent different forms of information