## 和平区 **2019-2020** 学年度第二学期九年级线上学习阶段性 评估检测数学学科试卷参考答案

| 一、  | 、选择题(本大题共12小题,每小题3分,共36分)                                                                         |  |  |
|-----|---------------------------------------------------------------------------------------------------|--|--|
|     | 1. D 2. D 3. B 4. D 5. C 6. C                                                                     |  |  |
|     | 7. C 8. A 9. B 10. C 11. B 12. A                                                                  |  |  |
| 二、  | 填空题(本大题共6小题,每小题3分,共18分)                                                                           |  |  |
|     | 13. 3 14. $\frac{2}{9}$ 15. < 16. $60^{\circ}$ 17. $\frac{5}{2}$ 18. ( ] ) 1 ( II ) $\sqrt{7}$ -1 |  |  |
| 三、  | 解答题(本大题共7小题,共66分)                                                                                 |  |  |
| 19. | (本小题8分)                                                                                           |  |  |
|     | (I)解:因式分解,得 $(x+1)(3x-1)=0$                                                                       |  |  |
|     | 于是得 $x+1=0$ ,或 $3x-1=0$                                                                           |  |  |
|     | $x_1 = -1$ , $x_2 = \frac{1}{3}$ ;                                                                |  |  |
|     | (Ⅱ)解:整理,得(x+1) <sup>2</sup> =1.21                                                                 |  |  |
|     | 由此可得 $x+1=\pm 1.1$                                                                                |  |  |
|     | $x_1 = 0.1$ , $x_2 = -2.1$                                                                        |  |  |
| 20. | (本小题8分)                                                                                           |  |  |
|     | 解: :二次函数 $y = x^2 + bx - 3$ 的图象经过点 $A(-1,0)$ ,                                                    |  |  |
|     | ∴ 0=1-b-3, 解得 b=-2.                                                                               |  |  |
|     | : 二次函数的解析式为 $y = x^2 - 2x - 3$                                                                    |  |  |
|     | $y = x^2 - 2x - 3 = (x - 1)^2 - 4$ ,                                                              |  |  |
|     | <b>:</b> 二次函数的最小值为 -4                                                                             |  |  |

## 21. (本小题 10 分)

:: EF 与⊙ O 相切于点 D,

 $\therefore BF \perp EF$ ,

$$\therefore \angle EFB = 90^{\circ}$$
.

$$\therefore \angle ODE = \angle EFB$$
.

$$\therefore$$
 OD // BF.

$$\therefore \angle ODB = \angle DBC$$
.

$$\therefore OD = OB$$
,

$$\therefore \angle OBD = \angle DBC$$
.

$$\therefore \angle ABC = 50^{\circ}$$
,



$$\therefore \sin \angle CAB = \frac{BC}{AB} = \frac{2}{4} = \frac{1}{2}.$$

$$\therefore \angle ACB = \angle EFB = 90^{\circ}$$
,

$$\therefore$$
 EF // AC.

由(I)知 $\angle ODE = 90^{\circ}$ ,

在 Rt $\triangle$  *ODE* 中, *OE* = 2*OD* = 4.

: 
$$DE = \sqrt{OE^2 - OD^2} = \sqrt{4^2 - 2^2} = 2\sqrt{3}$$
.



## 22. (本小题 10 分) ∵在 Rt $\triangle ADC$ 中, tan $\angle ADC = \frac{AC}{DC}$ , ......3 分 $AC = DC \cdot \tan \angle ADC = 40 \times \tan 60^\circ = 40\sqrt{3}$ . .....5 分 在 Rt $\triangle$ BDC 中, $:: \angle$ BDC = 45°, ∴ $\angle DBC = 90^{\circ} - 45^{\circ} = 45^{\circ}$ , .....6 分 ......7 分 $\therefore \angle BDC = \angle DBC$ . $\therefore BC = DC = 40$ . .....8 分 $AB = AC - BC = 40\sqrt{3} - 40$ $=40(\sqrt{3}-1)\approx 40(1.73-1)=29.2$ . 答:标志物 AB 的高度约为 29.2 m. .....10 分 23. (本小题 10 分) 解: ( I ) 500, 1500; 3500, 2500; ......4 分 (II) y = 4000 - 5x. 由 $4000-5x \ge 0$ ,得 $x \le 800$ . $\nabla x \ge 100$ , ......8 分 ∴自变量 x 的取值范围是 $100 \le x \le 800$ . (Ⅲ) 660. .....10 分 24. (本小题 10 分) 解: (I) ①: 等腰直角三角形 OEF 的直角顶点 O 在原点, OE = 2, $\angle EOF = 90^{\circ}$ , OF = OE = 2. .....1 分 在Rt $\triangle$ OEF中,由勾股定理,得 $EF = \sqrt{OE^2 + OF^2} = \sqrt{2^2 + 2^2} = 2\sqrt{2}$ . ..........2分 $: \triangle OE_1F_1$ 是由 $\triangle OEF$ 绕点O逆时针旋转得到的, $\therefore E_1 F_1 = EF = 2\sqrt{2} .$ ......3 分 ②:四边形 OABC 为正方形, $\therefore OA = OC$ . ......4 分 :将 $\triangle$ OEF 绕点 O 逆时针旋转,得 $\triangle$ OE, F, $\therefore \angle AOE_1 = \angle COF_1$ , ......6 分 又△OEF 是等腰直角三角形, $\therefore \triangle OE_1F_1$ 是等腰直角三角形,

|     | $\therefore OE_1 = OF_1.$                                                                                                                                 | 7 分            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|     | $\therefore \triangle OAE_1 \cong \triangle OCF_1.$                                                                                                       | 8 分            |
|     | (II) 点 $E_1$ 的坐标为 $\left(1,\sqrt{3}\right)$ 或 $\left(1,-\sqrt{3}\right)$ .                                                                                | 10 分           |
| 25. | (本小题 10 分)                                                                                                                                                |                |
|     | <b>解:</b> (Ⅰ) <b>∵</b> 点 <i>A</i> (−4,8)在抛物线 $y = ax^2$ 上,                                                                                                |                |
|     | 得 $8 = 16a$ ,解得 $a = \frac{1}{2}$ .                                                                                                                       |                |
|     | ∴该抛物线的解析式为 $y = \frac{1}{2}x^2$ .                                                                                                                         | 1 分            |
|     | $\therefore$ 点 $B$ (2, $n$ ) 在抛物线 $y = \frac{1}{2}x^2$ 上,                                                                                                 |                |
|     | 得 $n = \frac{1}{2} \times 2^2 = 2$ .                                                                                                                      | 2 分            |
|     | 抛物线 $y = \frac{1}{2}x^2$ 的顶点坐标为 (0, 0).                                                                                                                   | 3 分            |
|     | (II) 由点 $B$ 的坐标 $(2, 2)$ ,<br>得点 $B$ 关于 $x$ 轴的对称点 $P$ 的坐标为 $(2, -2)$ .<br>设直线 $AP$ 的解析式为 $y = kx + b$ ,                                                   | 4 分            |
|     | 有 $\left\{ \begin{array}{l} -4k+b=8, \\ 2k+b=-2, \end{array} \right.$ 解得 $\left\{ \begin{array}{l} k=-\frac{5}{3}, \\ b=\frac{4}{3}. \end{array} \right.$ |                |
|     | 直线 $AP$ 的解析式是 $y = -\frac{5}{3}x + \frac{4}{3}$ .                                                                                                         | 5 分            |
|     | 令 $y = 0$ , 得 $x = \frac{4}{5}$ . 点 $Q$ 的坐标是 $(\frac{4}{5}, 0)$ .                                                                                         |                |
|     | 根据"两点之间,线段最短",此时点 $Q$ 满足题意.                                                                                                                               | 6分             |
|     | (III) ① $CQ = \frac{4}{5} - (-2) = \frac{14}{5}$ ,                                                                                                        |                |
|     | 故将抛物线 $y = \frac{1}{2}x^2$ 向左平移 $\frac{14}{5}$ 个单位长度时, $A$                                                                                                | 'C + CB' 最短7 分 |
|     | 此时抛物线的解析式为 $y = \frac{1}{2}(x + \frac{14}{5})^2$ .                                                                                                        | 8分             |
|     | $ (2) y = \frac{1}{2} (x + \frac{16}{5})^2 $                                                                                                              | 10 分           |
|     |                                                                                                                                                           |                |