Discrete Mathematics (ITPC-309)

Algebraic Structures - Part II

Dr. Sanga Chaki

Department of Information Technology

Dr. B. R. Ambedkar National Institute of Technology, Jalandhar

Recap

AL ANDHAN

- 1. Algebraic Structures
- 2. Binary Operation on a Set
- 3. Important properties of an algebraic system are:
 - Closure
 - Associativity
 - Commutativity
 - Existence of identity
 - Existence of inverse
 - Cancellation Laws
- 4. Semigroup
- 5. Monoid
- 6. Group
- 7. Abelian group or commutative group
- 8. Finite group and infinite group
- 9. The order of a group

Algebraic Structures - Definition

- 1. In mathematics, an algebraic structure consists of
 - a) a nonempty set A,
 - b) a collection of binary operations on A
 - c) and a finite set of identities, known as axioms, that these operations must satisfy.
- 2. The combination of the set and the operations that are applied to the elements of the set is called an algebraic structure.
- 3. The properties are as follows:

Closure

- 1. Consider a non empty set G and a binary operation (●)
- 2. Closure:
 - If a and b are elements of G, then c = a b is also an element of G.
- 3. All algebraic structures must follow closure property.

Associativity

- 1. Consider a non empty set G and a binary operation (●)
- 2. Associativity:
 - If a, b, and c are elements of G, then (a b) c = a (b c)
- 3. (G, •) is called a **semigroup** if it follows both closure and associativity.
- 4. A semi-group is always an algebraic structure.

Existence of identity element

- 1. Consider a non empty set G and a binary operation (●)
- 2. Identity element:
 - For all a in G, there exists an element e, called the identity element, such that $e \cdot a = a \cdot e = a$.
- 3. (G, •) is called a **monoid** if it follows closure, associativity, and identity element.
- 4. A monoid is always a semi-group and algebraic structure. .

Existence of Inverse element

- 1. Consider a non empty set G and a binary operation (●)
- 2. Identity element:
 - For each a in G, there exists an element a', called the inverse of a, such that $a \bullet a' = a' \bullet a = e$.
- 3. (G, •) is called a **group** if it follows closure, associativity, identity element and inverse element.
- 4. A group is always a monoid, semigroup, and algebraic structure.

Commutativity

- 1. Consider a non empty set G and a binary operation (•)
- 2. Commutativity:
 - For all a and b in G, we have a b = b a.
- 3. (G, •) is called an **abelian** group (after the mathematical Abel) or **commutative** group if it follows closure, associativity, identity element, inverse element and commutativity.
- 4. Every abelian group is a group, monoid, semigroup, and algebraic structure.

Contents

STONAL MISTILLE OF STONAL OF STONAL

- Groups
- Modulo operator
- Integers Modulo n
- Subgroups

Group: Theorem 1

- 1. For every group G,
 - a) The identity of G is unique
 - b) The inverse of each element in G is unique
 - c) If a, b, $c \in G$, and ab = ac, then b = c (left cancellation property)
 - d) If a, b, $c \in G$, and ba = ca, then b = c (right cancellation property)
- 2. Proof of a: if e_1 and e_2 are both identities in G, then $e_1 = e_1e_2 = e_2$.
- 3. Proof of b: let $a \in G$ and suppose b and c are both inverses of a. Then b = be = b(ac) = (ba)c [This step uses associativity] = ec = c
- 4. Exercise: Can you prove c and d?

The Modulo (%) Operator

- 1. Modulus or remainder operator
- 2. $5 \mod 2 = 1$
- $3. 2 \mod 5 = 2$
- 4. $1 \mod 1 = 0$
- 5. $9 \mod 3 = 0$

The Integers Modulo n

- 1. Let n be a positive integer.
- 2. For a, $b \in Z$,
 - 1. we say that a is congruent to b modulo n,
 - 2. if n | (a-b) or n divides (a-b)
 - 3. or a = b + kn where $k \in Z$.
- 3. This is written as: $a \equiv b \pmod{n}$
- 4. Example: is $17 \equiv 2 \pmod{5}$? yes, as 17 2 = 15, which is divisible by 5. k=3.
- 5. Is $-7 \equiv -49 \pmod{6}$?
- 6. Is $11 \equiv -5 \pmod{6}$?
- 7. Is $11 \equiv -5 \pmod{8}$?

The Integers Modulo n – Some Observations

Let a, b, $n \in Z$, and n > 1

- 1. If $a \equiv b \pmod{n}$ then, a and b have same remainder when divided by n.
- 2. $a = b \Rightarrow a \equiv b \pmod{n}$ but $a \equiv b \pmod{n}$ does not $\Rightarrow a = b$
- 3. If $a \equiv b \pmod{n}$ and $a, b \in \{0, 1, 2, ..., n-1\}$ then a = b.

The Integers Modulo n – Examples

- 1. What do we mean by the following notations? Z_5 or Z_6 or Z_n ?
- 2. This denotes integers modulo n
- 3. Z_5 means the set of integers $\{0, 1, 2, 3, 4\}$
- 4. When we define binary operations in Z_5 they are defined wrt modulo 5
- 5. Eg: the operation of addition/multiplication defined modulo 5. This means that, for any two integers in Z_{5} , their sum/product will also be in Z_{5}

Z 5	+	0	1	2	3	4
	0	0	1	2	3	4
	1	1	2	3	4	0
	2	2	3	4	0	1
	3	3	4	0	1	2
	4	4	0	1	2	3

0	1	2	3	4
0	0	0	0	0
0	1	2	3	4
0	2	4	1	3
0	3	1	4	2
0	4	3	2	1
	0 0 0	0 0 0 1 0 2 0 3	0 0 0 0 1 2 0 2 4 0 3 1	0 0 0 0 0 1 2 3 0 2 4 1 0 3 1 4

Subgroup

- 1. A special subset of a group
- 2. If (G, \bullet) is a group and H is a non-null proper subset of G, then H is said to be a subgroup of (G, \bullet) if H is a group under the binary operation \bullet
- 3. Example: let $(G, \bullet) = (Z_6, +)$: what is $Z_6? = \{0, 1, 2, 3, 4, 5\}$ with + defined in modulo 6. Can you create the table for this?
- 4. If $H = \{0, 2, 4\}$, then H is a nonempty subset of Z_6
- 5. Can we show that (H, +) is a subgroup of $(Z_6, +)$? Given, the table for (H, +), check for closure, associativity, identity and inverse.

+	0	2	4
_	0	2	4
2	2	4	0
4	4	0	2