Johns Hopkins Engineering

Immunoengineering

Immunoengineering—Pathogens
Diagnostics

Limit/prevent Spread

Limit/prevent Spread

Faster Treatment

Nature Reviews | Microbiology

- Limit/prevent Spread
- Faster Treatment
- Correct Treatment

THE SPREAD OF ANTIBIOTIC RESISTANCE

An increasing proportion of bacteria display resistance to common antibiotics.

- Limit/prevent Spread
- Faster Treatment
- Correct Treatment
- Patient Management

Nature Reviews | Microbiology

Case Study

A 10 year old girl comes to the clinic after 6 days of watery diarrhea. Her parents do not know what to do and are worried because she has lost a lot of energy since getting sick.

What should you do?

First Take a History

- What is the frequency of your stools?
- How long you have been experiencing diarrhea?
- What are the consistency, color, and approximate volume of the stools?
- Is there blood or mucus in the stool?
- What other symptoms are you having: abdominal pain, nausea, fever, headache, fatigue?
- What and where have you eaten recently?
- Have you been camping? Have you traveled outside of the U.S.? Where?
- Are any of your family members, close acquaintances, or co-workers ill?
- Have you been on antibiotics lately?

How Does this Affect Diagnostics?

Potential Diseases and Diagnostic Tests

- White blood cell count
- Microscopy
- Stool Culture
- Antigen tests ELISA
- GI panel PCR detects DNA/RNA
- Blood samples
- Imaging Colonoscopy, CT scan, MRI scan

How Does this Affect Diagnostics?

History: age, duration, food, family history, pattern, timing, travel

Physical examination: general, eye, skin,

abdomen, anorectal

Diarrhea lasting longer than one month

History, physical examination (exclude

with differential diagnosis [Table 1])

Case Study

A 10 year old girl comes to the clinic after 6 days of watery diarrhea. Her parents do not know what to do and are worried because she has lost a lot of energy since getting sick.

You follow up with a quick history and learn she has been on summer break and has been swimming a lot in the local lake.

Based on this you do a microscopy test for parasites

Cryptosporidium

Design Criteria of Diagnostics

What design principles of diagnostics development should be considered?

Design Criteria of Diagnostics

- Accurate
 - Specificity
 - Sensitivity
- Simple
- Affordable
- Timely

- Broadly applicable
 - Diverse population
 - Disease states
- Reproducibility
- Diagnosis impacts therapy and improves outcomes
- Funding

Sensitivity and Specificity

- Sensitivity: Probability that infected person will test positive
- Specificity: Probability that health person will test negative
- Need gold standard

Diagnostic Trial Design

Banoo, Shabir, et al. "Evaluation of diagnostic tests for infectious diseases: general principles." *Nature Reviews Microbiology* 6 (2008): S16-S28.

Diagnostic Examples

- Point-of-care diagnostics Identifying HIV and syphilis
- Treatment Decisions Antibiotic susceptibility
- Disease management HIV patients with tuberculosis

Point-of-Care Diagnostics – HIV + Syphilis

Laksanasopin, Tassaneewan, et al. "A smartphone dongle for diagnosis of infectious diseases at the point of care." *Science translational medicine* 7.273 (2015): 273re1-273re1.

Point-of-Care Diagnostics – HIV + Syphilis

Antibiotic Susceptibility

Schoepp, Nathan G., et al. "Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples." Science translational medicine 9.410 (2017): eaal3693.

Antibiotic Susceptibility

HIV- Patients with Tuberculosis

A

HIV- Patients with Tuberculosis

To Consider...

Research

Original Investigation

Overdiagnosis of *Clostridium difficile* Infection in the Molecular Test Era

Christopher R. Polage, MD, MAS; Clare E. Gyorke, BS; Michael A. Kennedy, BS; Jhansi L. Leslie, BS; David L. Chin, PhD; Susan Wang, BS; Hien H. Nguyen, MD, MAS; Bin Huang, MD, PhD; Yi-Wei Tang, MD, PhD; Lenora W. Lee, MD; Kyoungmi Kim, PhD; Sandra Taylor, PhD; Patrick S. Romano, MD, MPH; Edward A. Panacek, MD, MPH; Parker B. Goodell, BS, MPH; Jay V. Solnick, MD, PhD; Stuart H. Cohen, MD

IMPORTANCE Clostridium difficile is a major cause of health care-associated infection, but disagreement between diagnostic tests is an ongoing barrier to clinical decision making and public health reporting. Molecular tests are increasingly used to diagnose *C* difficile infection (CDI), but many molecular test-positive patients lack toxins that historically defined disease, making it unclear if they need treatment.

OBJECTIVE To determine the natural history and need for treatment of patients who are toxin immunoassay negative and polymerase chain reaction (PCR) positive (Tox-/PCR+) for CDI.

DESIGN SETTING AND PARTICIPANTS Prospective observational cohort study at a single

- Invited Commentary page 1801
- Supplemental content at iamainternal medicine.com
- CME Quiz at jamanetworkcme.com and CME Questions page 1880

