#### **Generalized Iterative Closest Point**

Mündliche Prüfung in der Vorlesung Autonome Roboter bei Prof. Dr.-Ing. Michael Blaich 15.07.2024

Johannes Brandenburger, Moritz Kaltenstadler, Fabian Klimpel

# Agenda

- 1. Einführung
- 2. Theorie
- 3. Demo: Eigene Implementierung in Python
- 4. Implementierung in ROS
- 5. Experiment
  - 1. Aufbau
  - 2. Durchführung
  - 3. Ergebnisse
  - 4. ...
- 6. Fazit

#### Theorie

- Einzige wirkliche Quelle: "Generalized-ICP" von Segal, Haehnel & Thrun (2010)
  - ▶ Ziel: Iterative-Closest-Point-Algorithmus (ICP) verbessern
  - ▶ Standard-ICP & point-to-plane in **generelles Framework** überführen
  - Probabilistische Betrachtung
  - Nutzung **Oberflächenstruktur** aus beiden Scans (Kovarianzmatrizen) ightarrow **plane-to-plane**

### Theorie - Mathematische Grundlagen

#### Kovarianzmatrix

- beschreibt die Streuung von Zufallsvariablen
- für Punkte in Punktwolken: Verteilung der Punkte in der Umgebung

#### **Maximum Likelihood Estimation (MLE)**

- Schätzverfahren für Parameter von Wahrscheinlichkeitsverteilungen
- der Paramter wird ausgewählt, der die beobachteten Daten am wahrscheinlichsten macht
- oft verwendet um:  $\arg\max_p\dots/\arg\min_p\dots$ zu finden

#### Theorie - Standard-ICP

- Iterative Closest Point (ICP) ist ein Algorithmus, um die Transformation zwischen zwei Punktwolken zu schätzen
- vergleicht korrespondierende Punkte in beiden Wolken
- minimiert die quadratischen Abstände korrespondierender Punkte

```
1 T \leftarrow T_0
 2 while not converged do
        for i \leftarrow 1 to N do
           m_i \leftarrow \texttt{FindClosestPointInA}(T \cdot b_i)
 4
           if ||m_i - b_i|| \le d_{\max} then
 5
          | | w_i \leftarrow 1
           else
 7
            |w_i \leftarrow 0|
 8
           end
 9
        end
10
       \arg\min_{T} \left\{ \sum_{i} w_{i} (\parallel T \cdot b_{i} - m_{i} \parallel)^{2} \right\}
11
12 end
```



Abbildung 1: Standard-ICP (Igor Bogoslavskyi, 2021)

## Theorie - Standard-ICP, point-to-plane, Generalized-ICP

- **point-to-point** (Standard-ICP)
- point-to-plane
  - vergleicht Punkt mit Ebene durch Normalenvektor
- Generalized-ICP
  - quasi "plane-to-plane"
  - vergleicht die Kovarianzmatrizen der nächsten Punkte  $\rightarrow$  probabilistisch
  - ▶ wenn in Ebene → Kovarianzmatrix ist "flach"



Abbildung 2: Kovarianzmatrizen (eigene Darstellung)

# Theorie - GICP-Algorithmus

```
1 T \leftarrow T_0
 2 while not converged do
       for i \leftarrow 1 to N do
         \mid m_i \leftarrow \texttt{FindClosestPointInA}(T \cdot b_i)
       d_i^{(T)} \leftarrow b_i - T \cdot m_i // Residuum / Abstand
      \|\mathbf{if}\| d_i^{(T)}\| \leq d_{\max}  then
       \mid C_i^A \leftarrow \texttt{computeCovarianceMatrix}(T \cdot b_i)
       C_i^B \leftarrow \mathsf{computeCovarianceMatrix}(m_i)
           else
 9
          C_i^A \leftarrow 0; \quad C_i^B \leftarrow 0
10
         end
11
       end
12
       \left| \ T \leftarrow \arg\min_T \left\{ \sum_i d_i^{(T)^T} \left( C_i^B + T C_i^A T^T \right)^{-1} d_i^{(T)} \right\} \right. \quad // \ \text{Maximum Likelihood Estimation} 
14 end
```

# Theorie - GICP-Algorithmus

#### Variationen für Kovarianzmatrizen

$$\begin{aligned} C_i^A \leftarrow \text{computeCovarianceMatrix}(T \cdot b_i) \\ C_i^B \leftarrow \text{computeCovarianceMatrix}(m_i) \end{aligned}$$

- für **Standard-ICP** (point-to-point):
  - $C_i^A \leftarrow 0$
  - $C_i^B \leftarrow 1$   $\longrightarrow$  keine Oberflächenstruktur berücksichtigt (einfache Gewichtung)
- für **point-to-plane**:
  - $C_i^A \leftarrow 0$
  - $C_i^B \leftarrow P_i^{-1} \longrightarrow P_i$  ist die Projektionsmatrix auf die Ebene (beinhaltet Normalenvektor)
- für **plane-to-plane** (im Paper vorgeschlagene Methode):
  - ► computeCovarianceMatrix berechnet Kovarianzmatrix unter Betrachtung der nächsten 20 Punkte
    - verwendet PCA (Principal Component Analysis/Hauptkomponentenanalyse)



Abbildung 3: Plane-to-plane (Segal et al., 2009)

### Theorie - GICP-Algorithmus

#### Paper Ergebnisse (Segal et al., 2009)

- GICP **genauer** bei simulierten und realen Daten
- immer noch relativ schnell und einfach
- Nutzen von Oberflächenstruktur minimiert Einfluss von falschen Korrespondenzen
- Parameter-Wahl für  $d_{\max}$  nicht mehr so kritisch o leichter einsetzbar in **unterschiedlichen** Szenarien



Abbildung 4: Durchschnittsfehler als Funktion von  $d_{\rm max}$  (Segal et al., 2009)

# Demo: Eigene Implementierung in Python

- Paper sehr mathematisch
- zwar Implementierungen auf GitHub, aber nicht wirklich lesbar
- daher eigene Implementierung vor allem für Verständnis
- eigene 2D-GICP-Funktion
  - ▶ Input: Punktwolken A und B, ...
  - Output: Transformationsmatrix  $T, \dots$
- Version 1:
  - Visualisierung mit generierten Input-Wolken
  - iterativ durch die Steps klicken
- Version 2:
  - ► Simulation eines Roboters mit LiDAR-Sensor
  - ► Live-Berechnung der Transformation + Visualisierung
- $\rightarrow$  LIVE DEMO
- $\rightarrow$  CODE OVERVIEW

# (Bild-)Quellen

Igor Bogoslavskyi. (2021). https://nbviewer.org/github/niosus/notebooks/blob/master/icp.ipynb Segal, A. V., Hähnel, D., & Thrun, S. (2009). Generalized-ICP. *Robotics: Science and Systems*. https://api.semanticscholar.org/CorpusID:231748613