Lecture 4: Decision Trees and Random Forests

Areeb Gani, Michael Ilie, Vijay Shanmugam

Welcome!

ml.mbhs.edu

Deepnote!

Motivating Example

- Let's say we are trying to classify a fruit as either an apple or orange
- Realistically, instead of creating a complex logistic regression model, we
 make simple decisions about the object
- Some decisions are more effective than others (e.g. asking whether the object is a fruit is not very helpful, whereas it is helpful to ask whether the object is red)
- We can interpret our decisions as a series of decisions, where each decision leads to another, until we eventually figure out the object

Entropy and Information Gain

- The computer must objectively realize which decisions to make, so that it finds the most efficient path to the end classification
- Entropy randomness in data, Information Gain reduction in entropy

Gini Impurity

- Impurity how "impure" a decision is; how imperfectly the decision splits the data
 - We ideally want decisions (leaves) with 0 impurity, since this means that answering the question will 100% tell us the class

$$Gini = 1 - \sum_{i=1}^{C} (p_i)^2$$

 We calculate the gini impurity for all decisions splits, and select the one with the lowest value (least impure)

Gini Impurity (example)

• We find the weighted average of these impurities on each side of the split

Left: $1 - (4/4)^2 = 0$

Right: $1 - (1/6)^2 - (5/6)^2 = 0.278$

Total: (4/10) * 0 + (6/10) * 0.278 = 0.167

Continuous/Multiclass Values

- We must decide what our splits are for continuous values to do so, we order the continuous values in increasing order and take the averages between consecutive values
- We split based on these values and proceed as usual
- For multiclass values (e.g. if car is blue/red/green/black/...), we split on whether (color == blue) or (color == red) or (color == green) or ...

Iris Data

		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2
	145	6.7	3.0	5.2	2.3
	146	6.3	2.5	5.0	1.9
	147	6.5	3.0	5.2	2.0
	148	6.2	3.4	5.4	2.3
	149	5.9	3.0	5.1	1.8
150 rows × 4 columns					

```
0 0
1 0
2 0
3 0
4 0
...
145 2
146 2
147 2
148 2
149 2
Name: target, Length: 150, dtype: int64
```


Random Forest

- Uses multiple decision trees on generated subset of data
- Combines the results of these separate trees to obtain a better prediction
- This alleviates a lot of the issues with decision trees (e.g. overfitting, which we
 will cover in the future) since we are using many different models

Join Our Groups

- Sign up for Discord (<u>https://discord.gg/3Z5YuPqt</u>)
- Join Deepnote (https://deepnote.com/join-team?token=af3af0284bc8497)
- Fill out our form (<u>https://forms.gle/Fr31aFLWx8cHdtTY8</u>)
 - Join mailing list + Github organization