Chemistry in Action: Space Shuttle Fuel Chemistry

Ghanshyam L. Vaghjiani

Space and Missile Propulsion Division
Propellant Branch
Air Force Research Laboratory
AFRL/PRSP
10 E Saturn Blvd
Edwards AFB, CA 93524, USA

Tel: 661 275 5657
Fax: 661 275 6245

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE AUG 2005		2. REPORT TYPE		3. DATES COVE	RED		
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER				
Chemistry in Actio	ing Charts)	5b. GRANT NUMBER					
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) Ghanshyam Vaghjiani					5d. PROJECT NUMBER 2303		
					5e. TASK NUMBER 0423		
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC),AFRL/PRSP,10 E. Saturn Blvd.,Edwards AFB,CA,93524-7680					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited					
13. SUPPLEMENTARY NO	OTES						
14. ABSTRACT N/A							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT	OF PAGES 31	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Student's Perception of Chemistry
- Role In Science and Technology
 - Traditional Areas
 - Recent and Emerging Technologies
- Space Shuttle-Atmospheric Interactions
- New Hypergolic Fuels
- Closing Remarks
 - Acknowledgements
 - Career in the Government
 - Web Resources

Student's Perception of Chemistry

It is too Hard! Too Much Math! I do not Like Cooking!
 It is Only for Academicians!
 What use is it for Getting Good Jobs?
 I Also Thought This! Until I met my Mentor, Ian Worthington

- Definition:
 - Study of MATTER and the Changes That Take Place With That MATTER
- Importance:
 - MATTER is Everywhere! Therefore it Matters a lot!
 - To Understand the Energetics of Breaking and Making Chemical Bonds
 - We Seek Microscopic Explanation of Macroscopic Changes we Experience

Role in Science and Technology

Space Shuttle Propulsion System

- Space Propulsion (PRC, OMS, Veneers):
 - ☐ Hypergolic Liquids
 - □ $CH_3NHNH_2 + N_2O_4 \rightarrow products + \Delta H$
 - NO External Ignition Required!

- Boost Phase (2 x 3.1 Mlb):
 - □ Solids
 - HTPB + $NH_4CIO_4 \rightarrow products + \Delta H$
 - One-time Squib

- l Launch (3 x 0.4 Mlb):
 - □ Cryogenic Liquids
 - - One-time Torch

Space Shuttle-Atmospheric Interactions

AFRL's Motivation:

- > Understand Chemiluminescent Processes at ≥ 200 Km
- Strong Emissions From CO(a):

- Cause of Chemiluminescence:
 - Rocket Plume-Atmospheric Interactions
- UV-Chemistry Questions:
 - Precursors?
 - Its Formation?
 - Its Reactions?

azimuth

Observation Platforms

Space Shuttle
Mir Space Station
MSX

Thrusters

Space Experiment

Space Shuttle Progress-M Soyuz-TM

Distribution A: Approved for public release, distribution is unlimited

Proposed CO(a) Source Chemistry

- Unreacted $CH_3NHNH_2 \rightarrow \rightarrow Precursor(s)$

□ 200 km-Thermosphere
$$\Box$$
 [O] >> $[O_2]$

$$\begin{array}{c} \text{CO} + \text{H}_2 \text{ (Main)} \\ \text{CH}_2 + \text{O} \rightarrow \text{Products} \\ \rightarrow \text{CO}(a_{(v' \leq 8)}, \ a'_{(v' \leq 5)}, \ d_{(v' \leq 1)}) + \text{H}_2 \end{array}$$

$$\begin{array}{c} \text{k} = 9.5 \times 10^{-11} \\ \rightarrow \text{Products} \\ \rightarrow \text{CO(a}_{(v' \leq 8)}, \text{ a'}_{(v' \leq 5)}, \text{ d}_{(v' = 0)}) + \text{H} \end{array} \end{array}$$

Apparatus

CHBr₃ Photolysis To Produce CH Radicals

CO(A) Source Reactions

■ Chemiluminescence Intensity Varied as (Laser Fluence)²

$C(^3P) + O(^3P) \rightarrow CO(A^1\Pi)$	∆H° _{298K} (kcal mol ⁻¹) (-71.8)	
CHBr + O(3 P) \rightarrow HBr(X 1 Σ +) + CO(A 1 Π)	(+1.3)	
CH + O(3 P) \rightarrow H(2 S) + CO($^1\Pi$)	(+9.2)	
CBr + O(3 P) \rightarrow Br(2 P $_{3/2}$) + CO(A 1 П)	(+3.8)	
$CBr_2 + O(^3P) \rightarrow Br_2(^1\Sigma^+_g) + CO(A^1\Pi)$	(+29.1)	

Diatomics or Triatomics Need to be Internally Excited

Comparison of CO & OH-Chemiluminescence

Strong CO(A) Signal in O/O₂

Very Weak CO(A) Signal in O₂ only

k = (2.3-5.9) x 10⁻¹¹ CH + O₂ \rightarrow Products \rightarrow CO(a_(v'≤4), a'_(v'=0)) + OH

Weakened OH(A) Signal in O/O₂

Strong OH(A) Signal in O2 only

Time-Resolved CO(A)-Chemiluminescence

□ Bimolecular Reaction Rate
 Coefficients of Added Substrate
 When CH₄ Present

 \downarrow

$$k_{O_2} = (2.2 \pm 0.3) \times 10^{-11}$$
 $k_{N_2O} < 7 \times 10^{-14}$
 $k_{NO} = (3.4 \pm 0.5) \times 10^{-11}$
 $k_{H_2} < 2 \times 10^{-13}$
 $k_{CH_4} < 6 \times 10^{-14}$

165.7-nm CO chemiluminescence (counts)

☐ (C + O) not the Source

CHBr₃ Versus CBr₄ Photolysis

■ Stronger VUV Signal in CHBr₃ Photolysis

4

(CH# (or CHBr#) + O) Important

☐ Signal in CBr₄ PhotolysisVaries as (Fluence)²

 \downarrow

(CBr₂* + O) not Important, Since Br₂* Signal Varies as (Fluence)¹

CBr₄ Photolysis

- □ CBr₂ Formed inAbsence of Photolysis
- □ CBr₂ Formed in Photolysis
- \square CBr + O \rightarrow CO* + Br

$$CBr_2 + O \rightarrow CO^* + Br_2$$

not Important

CHBr₃ Versus CBr₄ Photolysis

$$\Box$$
 CHBr₃ $k_{O_2} = (2.2 \pm 0.3) \times 10^{-11}$

$$\Box$$
 CBr₄
k_{O2} = (2.4 ± 0.4) x 10⁻¹²

(CBr# + O) Source is not as Important as (CH# + O) in CHBr₃ **Photolysis**

□ CHBr# has Very Short Lifetime ($\sim 5 \mu s$) and $k_{(CHBr + O_2)} < 2 \times 10^{-14}$

(CHBr# + O) Source not Important in CHBr₃ Photolysis

$CH(a^4\Sigma^-) + O$ Reaction Rate Coefficient

Space Shuttle-Atmospheric Interaction: Conclusions

248-nm Photolysis of CHBr₃/O-atom Mixtures

Strong Emissions From:

- CO(A), CO(a)
- OH(A) when O₂ Present
- Br₂(D)

Kinetic & Laser Fluence Trend Analyses of the Chemiluminescence:

- CH($X^2\Pi$, $a^4\Sigma^-$) + O
- \bigcirc CBr₂ + O
- Plume Fragments (CH) + Thermosphere (O-atoms) → UV Emissions

New Hypergolic Fuels

AFRL's Motivation:

- Replace Highly Toxic CH₃NHNH₂ (MMH)
- Design Better Performing Fuels

AFRL's Approach:

- Tune Fuel Structure for;
 - Energy Content: High Heat of Combustion
 - Oxygen Balance: Lower Spacecraft Mass
 - Physical Properties: Higher ρ, Lower mp, **Reduced Sensitivities**
 - Ignition/Combustion Behavior: Short ID Time

Scape Suit

Propellant Performance (I_{sp})

Fuel + Oxidizer → Products + AH

 $\Lambda H = K.E = \frac{1}{2}mv^2$

 $I_{sp} = (1/g) \int F(t) dt / \int M(t) dt = (1/g) (2\Delta H/m)^{1/2}$

Splash Shield

Search For Hypergolic Fuels

□ CEA-Evaluation: Identify Better Fuels

	N ₂ O ₄ /MMH	N ₂ O ₄ /HEHN	N ₂ O ₄ /HEATN
KE(MJ kg ⁻¹)	4.7	3.9	4.0
ρ (kg m -3)	1189	1424	1454
FOM	1.0	1.03	1.05

- □ Definition: A Pair of Compounds, Upon Contact, Chemically React and Release Sufficient Heat to Spontaneously Ignite
- Discovery/Research of Hypergolic Propellants: 1930's, Germany (e.g. BMW)
- No a Priori Method to Predict Hypergolicity: NEW Fuel & Oxidizer Hypergol Pair Must be Experimentally Verified!

Screening Fuels For Hypergolicity

Drop-test Apparatus Employed: O/F = ~ 20

Fuel	IRFNA	N ₂ O ₄	WFNA
CH ₃ NHNH ₂ (L) (MMH)	HGI	HGI	HGI
HOCH ₂ CH ₂ N+H ₂ NH ₂ NO ₃ - (L) (HEHN)	HGI*	VR	HGI*
(1-ethan-2-ol)-4-amino-1,2,4-triazolium nitrate (L) (HEATN)	SR	VR	
1H-1,2,3-triazole (L)	SR	SR	
1-amino-1,2,3-triazole (M)	HGI*		
3-methyl-1-amino-1,2,3-triazolium nitrate (S)	VR	VR	
⊽-≡-H (L)	VR	VR	VR
▽ -≡▽ (L)	HGI*	HGI*	HGI*
∇ -≡-≡-∇ (L)	HGI*	HGI*	HGI*

HGI=hypergolic ignition, VR=vigorous reaction, SR=slow reaction. At room temperature, fuel is solid (S), liquid (L), or heated to its melting point (M) *New hypergols

Fuel Functionality Affects Ignition

Not Hypergolic

Is Hypergolic; ID = 5.0 ms

Distribution A: Approved for public release, distribution is unlimited

Complexity of the **Pre-ignition Chemistry**

 $\nabla = -\nabla / N_2 O_4$ ID = 40.6 ms

Distribution A: Approved for public release, distribution is unlimited

New Hypergolic Fuels: Conclusions

Synthesis of Hypergolic

Fuels

Characterization of Pre-ignition Chemistry is the Key for Designing new **Hypergols Apply Quantum Chemistry Tools Apply Spectroscopic Probing Tools** △H of Intermediates ■ Rapid-Scan FTIR **PES (Reaction Coordinates)** Time-Resolved Raman **Reaction Rates** □ Time-Resolved Emission ☐ High Speed Video **Provide Initial Rationale to Experimental Observations Develop Global Initiatory Mechanism Construct Pre-Ignition Models Kinetic Modeling of Ignition** Focused/Intelligent Approach to new

Distribution A: Approved for public release, distribution is unlimited

Tune Fuel Chemical Functionalities

Closing Remarks

- **Acknowledgements:**
 - AFOSR
 - Drs. M. Berkin & M. Berman (\$\$\$\$)
 - AFRL/PRSP
 - Drs. Alfano (Experimental), Mills & Boats (Theory), Suri & Hawkins (Synthesis)
- **Career in the Government:**
 - DoD
 - AFRL, ONR, ARL, etc
 - DoE
 - LLNL, ANL, ONL, LANL, etc
 - □ DoC
 - NOAA, NIST, etc
 - NASA
 - Dryden, Ames, JPL, etc
 - And Many More
- Web Resources:
 - American Chemical Society
 - Edwards AFB
 - NASA

www.chemistry.org

www.edwards.af.mil

www.nasa.gov

www.sciencesjob.com

Backup Slides

UV/Vis Plumes

Radiance Data

⇔ Plume Data ⇔

Modeling Studies

Laboratory Studies

Spectral Data

Chemiluminescent Processes

Identify Spacecraft Atmospheric Interactions

282.2-nm Signal

282.2-nm chemiluminescence (counts)

■ Absence of O-atoms

X-trace: $(O_2, 8.8 \times 10^{14})$

 Δ -trace: (O₂) + (CH₄, 5.0 x 10¹⁵)

$$\downarrow \\ \mathsf{CH}(\mathsf{X}^2\Pi) + \mathsf{O}_2 \to \mathsf{CO} + \mathsf{OH}(\mathsf{A})$$

$$CH(a^4\Sigma^-) + O_2 \rightarrow CO + OH(A)$$

□ 5.0 x 10¹³ of O-atoms

■-trace: (O₂, 8.8 x 10¹⁴)

 \Box -trace: (O₂) + (CH₄, 5.0 x 10¹⁵)

$$\downarrow \\ CBr_2 + O \rightarrow CO + Br_2(D)$$

(CBr₂ + CH₄) Slow Reaction

Br₂*-Chemiluminescence

Laser off

$$CHBr_3 + O \rightarrow CBr_3 + OH$$

 $CBr_3 + O \rightarrow CBr_2 + BrO$

$$\downarrow$$
 CBr₂ + O \rightarrow Br₂* + CO

Laser on

CHBr₃ + hv
$$\rightarrow$$
 CHBr₂* + Br
CHBr₃ + hv \rightarrow CBr₂ + HBr
CHBr₂* + hv \rightarrow CBr₂ + H
CHBr₂* + O \rightarrow Br₂* + HCO
CHBr₂ + O \rightarrow CBr₂ + OH
CHBr₂* + O \rightarrow CBr₂ + OH(A)
CHBr* + O \rightarrow CBr + OH(A)

Time Resolved Br₂*-Signal

- □ Fast Br₂* Rise
- ☐ Also:

$$k_{O_2} < 9 \times 10^{-14}$$
 $k_{CH_4} < 7 \times 10^{-14}$
 $k_O = (5.4 \pm 1.0) \times 10^{-11}$

$$\downarrow$$
CHBr₃ + hv \rightarrow CBr₂ + HBr

Less Important $CBr_3 + hv \rightarrow CBr_2 + Br$

Since:

$$CBr_{4} + hv \rightarrow CBr_{3}^{*} + Br$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$CBr_4 + hv \rightarrow CBr_2 + Br_2 \{ \phi ?$$

CO* Production Mechanism

$$CH^{\#} + O \rightarrow \{HCO\}^* \rightarrow CO^* + H$$

$$CO^* \xrightarrow{M} CO(X,a,a',d,A)$$

Hypergolic Action

■ No a Priori Method: Hypergolicity Between any Pair of Fuel & Oxidant System Must be Experimentally Verified

Know Your Calories: < 0.05 cc of a Fuel can Lead to a Spectacular Interaction With an Oxidizer

 $2N_2H_4 + N_2O_4 \rightarrow 3N_2 + 4H_2O$ $\Delta H = -279$ kcal/mol (51 mg = 220 calories)