

Fall 2020

머신러닝

PA # 4

Instructor name	김태완 교수님
Student name	이용준
Department	조선해양공학과
Student ID	2015-19595
Submission date	2020.11.20

Contents

1. Problem Definition	3
2. Problem Analysis	3
3. Code Explanation	3
4. Result & Conclusion	4
4.1 Result	4
4.2 Conclusion	7

1. Problem Definition

Types	Column	Explanation	
Age		환자의 나이	
	Sex	환자의 성별	
INPUT	BP	환자의 혈압(blood pressure)	
	Cholesterol	환자의 콜레스테롤 수치	
	Na_to_K	혈액 내 나트륨 대 칼륨 비율	
OUTPUT	Drug	처방 약의 종류	

- 1. 주어진 input data와 output의 관련성을 데이터 시각화 및 분석하기
- 2. KNN 모델을 이용하여 주어진 input에 따른 output (처방 약) 결과 출력하기
- 3. SVM 모델을 이용하여 주어진 input에 따른 output (처방 약) 결과 출력하기
- 4. Decision Tree 모델을 이용하여 주어진 input에 따른 output (처방 약) 결과 출력하기

2. Problem Analysis

- 1. 데이터 분석 및 시각화를 위해 pandas 라이브러리를 활용하여 데이터를 선택적으로 정리하고 분류한다. 그리고 이를 각 input 항목 별로 plot한다. Plot의 형태는 막대그래프로 한다. 연속적 데이터인 Age, Na_to_K는 구간을 설정하여 분류해주고 개수를 세는 방식으로 분석한다.
- 2. sklearn 라이브러리를 활용하여 KNN, SVM, Decision Tree 모델을 만들고 학습하여 테스트를 진행한다. 테스트 정확도를 출력한다.

3. Code Explanation

프로젝트에 사용된 함수에 관한 설명이다. 문제 별 사용한 함수는 동일하다.

normalized(x)		
Parameter	Туре	Explanation
X	array	정규화 할 input array
data	dataframe	csv파일의 내용을 담고 있는 dataframe

preprocessing(data)		
Parameter	Туре	Explanation
data	dataframe	csv파일의 내용을 담고 있는 dataframe

4. Result & Conclusion

4.1 Result

1번 문제 : 각 input data별로 데이터를 분석하기 위하여 시각화를 해봤다. 다음과 같다.

분석 결과 Sex 데이터는 남녀의 차이가 없어 처방 약을 결정하는 데에 무의미하다고 볼 수 있었다. Cholesterol 데이터도 거의 비슷했지만 차이가 있는 곳이 있었고, 다른 데이터들도 차이를 보였다.

2번 문제 : KNN 모델을 만들고 학습을 해봤다. Input data로는 차이가 뚜렷했던 BP, Na_to_K, Age 3개로만 주었다. 차이가 거의 없던 Sex와 Choleserol은 제외시켰다. 실제로 정확도 비교 결과 이두 데이터를 제외했을 때 정확도가 가장 높았다. 최적의 k를 찾기 위해 교차검증을 해보았다.

가시화 결과 최적 k는 7로 나타났으나 그 부근의 k를 모두 테스트해보고 결과를 정리했다.

K	Test Accuracy
3	0.825
5	0.9
7	0.85
9	0.825
11	0.825

비교 결과, 테스트 데이터에 대한 정확도가 가장 높은 것은 k=5였다.

3번 문제 : SVM 모델을 만들고 학습시켰다. Input 데이터는 동일하게 3가지 항목(BP, Na_to_K, Age) 만 사용하였다. sklearn의 gridsearch를 활용하여 최적의 파라미터를 찾고 학습한 뒤, 테스트 데이터로 테스트를 해보았다. 테스트 결과 정확도는 0.9였다.

{'C': 100, 's	gamma': 1, 'k	ærnel': 'r	bf'}		30	Drugt DrugY	Drugt DrugY
	precision	recall	f1-score	support	31	drugA	drugA
DrugY	1.00	0.95	0.97	20	32	DrugY	DrugY
drugA	0.83	1.00	0.91	5	33	drugX	drugC
drugB	1.00	1.00	1.00	2	34	DrugY	DrugY
drugC	0.50	0.33	0.40	3	35	drugX	drugC
drugX	0.82	0.90	0.86	10	36	drugC	drugC
				40	37	drugX	drugX
micro avg	0.90	0.90	0.90	40	38	drugX	drugX
macro avg	0.83	0.84	0.83	40	39	drugX	drugX
weighted avg	0.90	0.90	0.90	40	accu		Ü

정확도를 높이기 위하여 input 항목을 4개로 늘렸다. (age, bp, na_to_k, cholesterol) 그리고 다시학습을 시켜보았더니 이번에는 0.95의 정확도를 보였다.

{'C': 10, 'gamı	ma': Ĭ, 'ker precision			support
DrugY	0.91	1.00	0.95	20
drugA	1.00	1.00	1.00	5
drugB	1.00	1.00	1.00	2
drugC	1.00	1.00	1.00	3
drugX	1.00	0.80	0.89	10
micro avg	0.95	0.95	0.95	40
macro avg	0.98	0.96	0.97	40
weighted avg	0.95	0.95	0.95	40

28	DrugY	DrugY
29	DrugY	DrugY
30	DrugY	DrugY
31	drugA	drugA
32	DrugY	DrugY
33	drugC	drugC
34	DrugY	DrugY
35	drugC	drugC
36	drugC	drugC
37	drugX	drugX
38	drugX	drugX
39	drugX	drugX
accura	юу: 0.95	

4번 문제: Decision Tree 모델로 데이터를 학습시켰다. Input 데이터는 동일하게 3가지 항목(BP, Na_to_K, Age) 만 사용하였다. sklearn의 tree 라이브러리를 활용하여 최적의 파라미터를 찾고학습한 뒤, 테스트 데이터로 테스트를 해보았다. 테스트 결과 정확도는 0.925였다.

정확도를 높이기 위하여 input 항목을 4개로 늘렸다. (age, bp, na_to_k, cholesterol) 그리고 다시학습을 시켜보았더니 이번에는 1.0의 정확도를 보였다.

4.2 Conclusion

- 1. 학습 전, 데이터 시각화 분석을 통해 무의미한 데이터인 sex를 제외시킬 수 있었다.
- 2. KNN 모델은 input 데이터로 3개(age, bp, na_to_k)를 사용했을 때가 테스트 정확도(0.9)가 가장 높았다.
- 3. SVM 모델과 Decision Tree 모델은 input 데이터로 4개(age, bp, na_to_k, cholesterol)를 사용했을 때가 테스트 정확도(각각 0.95, 1.0)가 가장 높았다.
- 4. 이번 과제를 통하여 sklearn을 처음 사용해보고, 여러가지 라이브러리를 사용하여 다양한 classification 모델을 만들어보고 검증해볼 수 있었다.