CS641 Modern Cryptology Lecture 8

FIELDS

Informal Definition

A set of numbers on which full arithmetic can be done.

- Set of rational numbers (\mathbb{Q}) , real numbers (\mathbb{R}) , complex numbers (\mathbb{C}) are fields as they admit all four arithmetic operations: +, -, *, and /.
- Set of integers (\mathbb{Z}) is not a field as division is not always possible.

3/20

Non-Standard Fields

- Consider $F_2 = \{0, 1\}$ with addition and multiplication modulo 2.
- Subtraction is same as addition, and division is trivial.
- Is it a field?
- We need to formally define notion of numbers and arithmetic operations to properly identify fields.

GROUPS

DEFINITION

A set of elements G with binary operation \cdot defined on elements such that:

- **1** $a \cdot b \in G$ for any $a, b \in G$ [closure]
- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for any $a, b, c \in G$ [associativity]
- **1** There exists $e \in G$ such that $a \cdot e = e \cdot a = a$ for any $a \in G$ [identity]
- **1** There exists $b \in G$ such that $a \cdot b = e$ for any $a \in G$ [inverse]
 - Groups capture properties of + and * operations in a field.
 - $ightharpoonup (\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$, $(\mathbb{Z},+)$ are groups
 - ▶ $(\mathbb{Q}\setminus\{0\},*)$, $(\mathbb{R}\setminus\{0\},*)$, and $(\mathbb{C}\setminus\{0\},*)$ are groups but $(\mathbb{Z}\setminus\{0\},*)$ is not.

Manindra Agrawal CS641: Lecture 8 5/20

COMMUTATIVE GROUPS

DEFINITION

A group (G, \cdot) with following additional property: $a \cdot b = b \cdot a$ for any $a, b \in G$ [commutativity]

- Example groups of last slide are all commutative.
- Not all groups are commutative though:
 - ▶ $(GL_n(\mathbb{Q}), \cdot)$ is a non-commutative group of all $n \times n$ invertible matrices with rational entries under multiplication.
 - ▶ (S_n, \circ) is a non-commutative group of all permutations of [1, n] under composition.

RINGS

DEFINITION

A set of elements R with two binary operations + and * defined on elements such that:

- (R,+) is a commutative group.
- $(R\setminus\{0\},*)$ satisfies closure, associativity, and identity properties.
- a*(b+c) = a*b + a*c for any $a,b,c \in R$ [distributivity]
 - Rings capture arithmetic without division:
 - \blacktriangleright (Q, +, *), (\mathbb{R} , +, *), (\mathbb{C} , +, *), (\mathbb{Z} , +, *) are rings.
 - (R, +, *) is commutative ring if multiplication operation is also commutative:
 - ▶ $(M_n(\mathbb{Q}), +, \cdot)$ is a non-commutative ring where $M_n(\mathbb{Q})$ is set of $n \times n$ matrices with rational entries.

FIELDS

DEFINITION

A set of elements F with two binary operations + and * defined on elements such that:

- (F, +) is a commutative group.
- $(F\setminus\{0\},*)$ is a commutative group.
- 3 a*(b+c) = a*b+a*c for any $a,b,c \in F$ [distributivity]
 - Fields are commutative rings that admit division:
 - \blacktriangleright ($\mathbb{Q}, +, *$), ($\mathbb{R}, +, *$), and ($\mathbb{C}, +, *$) are fields but ($\mathbb{Z}, +, *$) is not.
 - The set of non-zero elements of F is represented as F*.

PRIME FIELDS

- Let $F_p = \{0, 1, ..., p-1\}$ for a prime p.
- Then, $(F_p, +, *)$ is a field where arithmetic is modulo p:
 - ▶ $(F_p, +)$ is a commutative group with (additive) inverse of $a \in F_p$ being p a for $a \neq 0$.
 - ▶ $(F_p^*,*)$ is a commutative group with (multiplicative) inverse of $a \in F_p^*$ being $b \in F_p$ where ab + rp = 1.

Manindra Agrawal CS641: Lecture 8 9/20

FUNCTION FIELDS

- Let F[x] be the set of all polynomials in x with coefficients from field
 F.
- Then, (F[x], +, *) is a commutative ring where arithmetic is over polynomials.
- Let F(x) be the set of rational functions in x, that is:

$$F(x) = \left\{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in F[x], g(x) \neq 0 \right\}.$$

- Then, (F(x), +, *) is a field:
 - ▶ Multiplicative inverse of f/g, $f \neq 0$, is g/f.
 - ▶ All other properties can be readily verified.

PRIME EXTENSION FIELDS

- Let $f(x) \in F_p[x]$ be an irreducible polynomial over F_p .
 - f(x) cannot be factored as $f_1(x)f_2(x)$ with $f_1, f_2 \in F_p[x]$, both of degree > 0.
- Let degree of f be d.
- Define F_{pd} to be set of all polynomials of degree < d in $F_p[x]$.
- Then, $(F_{p^d}, +, *)$ is a field with arithmetic modulo p and f(x):
 - ▶ All coefficients are reduced modulo p and all powers of x of degree $\geq d$ are reduced modulo f(x).
 - ▶ Multiplicative inverse of $g \in F_{p^d}^*$ is $h \in F_{p^d}$ such that gh + rf = 1modulo p.
 - Remaining properties are straightforward.

FINITE FIELDS

(F, +, *) is a finite field if |F| is finite.

• Fields F_{pd} for $d \ge 1$ and prime p are examples of finite fields.

THEOREM

- **1** A finite field has size p^d where p is a prime and $d \ge 1$.
- ② There is only one field of size p^d , namely, F_{p^d} .

FINITE FIELDS: USEFULNESS

- In cryptography, we often do arithmetic over input plaintext to produce ciphertext.
- Arithmetic operations over natural fields $(\mathbb{Q}, \mathbb{R}, \mathbb{C})$ change the size: addition may add one bit and multiplication may double the bit size.
- This is undesirable as we would prefer to have ciphertext of the similar size as plaintext.
- Therefore, we work over F_{p^d} for suitably chosen prime p and $d \ge 1$.
- All numbers in F_{pd} have the same size—in particular, numbers in F_{2d} require d bits.

ORDER

Let (G, \cdot) be a finite commutative group, and $a \in G$. Order of a is the smallest non-zero number k such that $a^k = e$.

LEMMA

Order is well-defined for every element of a finite commutative group.

- Let $a \in G$.
- Consider the set $A = \{a^i \mid i > 0\} \subseteq G$.
- Since *G* is finite, *A* is finite too.
- Let a^k be the largest power of a in A.
- Then $a^{k+1} = a^i$ for some $i \le k$.
- This gives $a^{k+1-i} = e$ showing that order of a is well-defined.

LEMMA

If order of a equals k, then for every ℓ such that $a^{\ell} = e$: $k \mid \ell$.

- Let $m = \gcd(k, \ell) = uk + v\ell$ for some $u, v \in \mathbb{Z}$.
- Then $a^m = a^{uk+v\ell} = (a^k)^u \cdot (a^\ell)^v = e$.
- By definition of order, $k \leq m$.
- Since $m \mid k$, m = k showing $k \mid \ell$.

THEOREM

Let (G, \cdot) be a finite commutative group. Then for every $a \in G$: $a^{|G|} = e$.

- Let m = |G| and b_1, \ldots, b_m be all elements of G.
- Consider the sequence of elements ab_1 , ab_2 , ..., ab_m .
- Each is in G and distinct:
 - ▶ If $ab_i = ab_j$ then $b_i = b_j$.
- Therefore, $\prod_{i=1}^m b_i = \prod_{i=1}^m ab_i = a^m \prod_{i=1}^m b_i$.
- This shows $a^m = e$.

COROLLARY

For a finite group of size m, order of every element divides m.

CYCLIC GROUPS

Let (G, \cdot) be a commutative group. G is cyclic if there exists $a \in G$ such that $G = \{a^i \mid i \in \mathbb{Z}\}$. Element a is called generator of the group. If G is finite, then order a equals |G|.

- $(\mathbb{Z},+)$ is a cyclic group with generator 1.
- $(F_p, +)$ is a cyclic group with generator 1, and order of 1 is p.
- $(\mathbb{Q}, +)$ is not a cyclic group.
- $(F_{pd}, +)$ is not a cyclic group for d > 1.

KEY PROPERTIES OF FINITE FIELDS

THEOREM

For a finite field F, $(F^*, *)$ is a cyclic group.

- Let $m = |F^*|$ and $m = \prod_{i=1}^t p_i^{r_i}$ where p_i are prime numbers and $r_i \ge 1$.
- Let $S_i = \{a \mid a \in F^* \text{ and order of } a \text{ divides } p_i^{r_i}\}.$
- S_i is also a group.
- S_i is a cyclic group:
 - ▶ Let $a_i \in S_i$ be an element with maximum order $p_i^{s_i}$, for some $s_i \le r_i$.
 - ▶ Order of every element of S_i will divide $p_i^{s_i}$.
 - ▶ Therefore, every element of S_i satisfies the equation $y^{p_i^{s_i}} = 1$.
 - ▶ By field property, $|S_i| \le p_i^{s_i}$.
 - ▶ Since a_i has $p_i^{s_i}$ distinct powers, all in S_i , a_i is generator of S_i .

KEY PROPERTIES OF FINITE FIELDS

- By Structure Theorem of Finite Commutative Groups, any element of
 F* can be uniquely written as a product of one element of S_i for each
 i.
- Therefore, $m = \prod_{i=1}^{t} p_i^{s_i}$.
- This forces $s_i = r_i$ for every i.
- Let $a = \prod_{i=1}^t a_i$.
- a is a generator of F*:
 - ▶ Let $a^{m'} = 1$.
 - ► Then $1 = a^{m'} = \prod_{i=1}^{t} a_i^{m'}$.
 - ▶ Above Structure Theorem forces $a_i^{m'} = 1$ for every i.
 - ▶ Therefore, $p_i^{r_i} \mid m'$ implying $m \mid m'$.

KEY PROPERTIES OF FINITE FIELDS

THEOREM

Let F be any finite field. Then polynomial $q(y) \in F[y]$ of degree d has at most d roots in F.

- Proof is by induction on **d**.
- For d=1, q(y)=ay+b and so has at most one root (=b/a) if $a \neq 0$.
- Assume for d-1, and consider q(y) of degree d.
- Let $a \in F$ be a root of q(y), that is, q(a) = 0.
- Then, $q(y) = q(y) q(a) = (y a) \cdot q'(y)$ where q'(y) has degree d 1.
- Let $b \in F$ be another root of q(y), $b \neq a$.
- Then $0 = q(b) = (b a) \cdot q'(b)$.
- This implies q'(b) = 0.
- By induction hypothesis, there are at most d-1 roots of q'(y) in F.
- So there are at most d roots of q(y) in F.