Project 1

is a khammer

2020

Contents

1	Problem 1: Modelling the outbreak of measles															 2									
	1.1	Answer	a .																						2
	1.2	Answer	b .																						2
2	Refe	erences																							3

1 Problem 1: Modelling the outbreak of measles

1.1 Answer a

Definition 1.1. Consider a stochastic process $\{X_n\}_{n\in\mathbb{N}_0}$, where n is a random variable. Then is the process said to be a **discrete-time markov** chain if, and only if

$$Pr\{X_{n+1} = i_{n+1} \mid X_n = i_n, \dots, X_0 = i_0\} = Pr\{X_{n+1} \mid X_0\}$$

for all states $i_0, \ldots, i_n, i_{n+1}$.

Using the fact that $\{X_n: n=0,1,\ldots\}$ has well defined probabilities which does not depend on time, and makes it possible to determine the state X_n at any time n makes this problem equivalent to the definition of a discrete markov chain 1.1. Using this fact, can we conclude that it exists a common transition matrix such that

$$\mathbf{P} = \begin{bmatrix} p_{00} & p_{01} & p_{12} \\ p_{10} & p_{11} & p_{10} \\ p_{20} & p_{21} & p_{22} \end{bmatrix}$$

where p_{ij} is the stationary transition probability from state i to state j in one trial for all n states. Note that that the sum of rows has to be $\sum_{j} p_{ij} = 1$. However, given the transition information in the problem description, 1), 2) and 3), can this be simplified to

$$\mathbf{P} = \begin{bmatrix} 1 - \beta & \beta & 0 \\ 0 & 1 - \gamma & \gamma \\ \alpha & 0 & 1 - \alpha \end{bmatrix}.$$

Where β,α and γ are real constants which satisfies the conditions mentioned above.

1.2 Answer b

• Is this a reducible or irreducable Markov chain?

Answer. If all state

- Determine the euivalent classes and determine wherher they are recurrent of transient.
- What is the period of each state?

2 References