# Accelerated Life Testing Modeling

Xiaohan Shi 22301413 Guang Hu 21332263 Yuze Wang 22304749 Liangyu Chen 22300643 Yuhan Hao22307053 Bingqi Xia 22300549 Sheng Xian 22301126 Fei Qin 22327479 Xinhe Chen 22300064 Jiaming Deng 22302794 Zuyao Guo 22303901

Abstract—Numerous papers and texts have been written in the reliability literature regarding the determination of the optimum test duration for a production stress or a burn-in test. Testing time is often the only factor affecting this decision. A model that brings together the impact of production test failures and field performance, including their respective costs, achieves the goal of determining the duration of production tests that minimizes the total cost. This model is composed of two Weibull models combined into a single model that helps companies find the best test duration for testing. This paper further optimizes the above model, because some products that are damaged in the extreme environment of the test, will not be damaged in the real application, and we will consider the impact of this part of the product on the optimal test duration. The advantage of the proposed improvement is that the optimal test duration is reduced, reducing the necessary cost and helping the company to build a realistic EST model with changes.

Keywords—life testing model, environmental stress testing, Weibull model, test optimization, model improvement

### I. INTRODUCTION

Early field failures of products may reduce customer satisfaction and increase warranty and total costs. Therefore, in order to reduce total costs and improve customer satisfaction, products need to undergo environmental stress testing (EST) before being put on the market. This is a costly and energy-intensive process, and in order to control the cost, it is necessary to shorten the time and optimize the test scheme. In the paper by Bahman [1], a method is proposed to integrate production testing and field reliability models. This method determines the optimal test time by establishing the relationship between production testing and field reliability. However, this method has drawbacks during the experiment. Stress testing is often a way to assess how well a product can withstand extreme conditions. When performing a pressure test, various adverse conditions that a product may encounter during use, such as high temperature, high humidity, high pressure, etc., are simulated to determine whether the product can work properly under these conditions. However, this situation almost never arises in the context of actual use. Therefore, in the experiment, we should consider the maintenance cost of products damaged by the extreme environment of the laboratory during the test process, which may have an impact on the total cost and has the value of analysis. This experiment can help companies analyze and simulate the cost of warranty or compensation that is more in line with the actual situation and reduce the budget.

In this paper, we aim to investigate how to accelerate the life test modeling. Section 2 provides an overview of previous research in the field, as well as some theoretical background behind our approach. Section 3 then elaborates on our experimental methodology and the formulation concepts involved. The contents of Section 4 show the various data obtained in the experiment and analysis of

results. In Sections 5, we give some conclusions according to the results of experiments. Finally, Section 6 contains some ideas about future improvements and additions that can be made to the simulation.

### II. RELATED WORK

Environmental stress testing plays a vital role in the development and manufacturing of various products, materials, and systems. It is a crucial step to ensure that these products can withstand the range of environmental conditions they will encounter during their lifecycle. This essay will explore the purpose of environmental stress testing, common types of tests, and the benefits it provides in improving product quality, safety, and reliability.

The primary objective of environmental stress testing is to identify any potential weaknesses or failure points in a product, material, or system before it reaches the end-user. By simulating real-world conditions and subjecting the product to various stresses, manufacturers can evaluate its performance, durability, and reliability. This allows them to address any design or manufacturing issues early in the development process, reducing the risk of costly recalls, product failures, or damage to the company's reputation.

Temperature testing is one of the most common environmental life testing. Products are exposed to a range of temperature extremes, such as high heat, freezing conditions, or rapid temperature fluctuations, to evaluate their performance and stability under various conditions.

In the context of EST experiments, this thesis will discuss the problem of bias in experimental results caused by EST experiments themselves. Environmental stress testing (EST) improves product quality and reliability by detecting potential or marginal defects in products. Typically, products with hard defects will be tested as part of production testing. However, products with latent or marginal defects may not be detected and may be delivered to customers. The result is that those weak products may fail in the field environment and under certain stress conditions. Early product failures in the field not only increase the cost of product warranties and field repairs, but also affect the customer's perception of product quality. Results such as "Environmental Stress Testing with Boundary-Scan" [2] are clearly not what the company requesting the EST wants to see, and at the same time, those products that are damaged or fail due to the nature of the EST experiment itself can increase the total cost of the EST experiment and affect the final outcome of the experiment.

In the paper "Environmental Stress Testing Experiment Using the Taguchi Method" [3], which also uses EST, additional stress models and measurement criteria are added to the experimental results in order to determine whether the damage caused by the EST experiment is significant in revealing potential failures, which also greatly increases the complexity of the experiment and the cost of calculating the experimental data.

From an industrial point of view, cost is an important factor, and "Environmental Stress Screening for electronic equipment by random vibration: a critical approach to reliability estimation and planning" [4] deals with the cost analysis of the experiment. In particular, the change in cost ratio between the cost of screening undetected weak (or "bad") equipment and the cost of good equipment at its expense is the most sensitive factor affecting the final experimental cost results, and needs to be estimated by the producer.

### III. METHODOLOGY

The first step in developing an integration test and field cost model is to derive a statistical model to explain the performance of the product during EST. We use the Weibull model as a statistical model with a cumulative probability of failure at time tp of response 32. Thus we have

$$ln(t_p) = \alpha + \frac{1}{\beta} ln[-ln(1-p)]$$
 (1)

where  $t_p$  is the p-quintile of the failure time distribution. Alpha and beta denote the scale and shape parameters, respectively, and can be estimated using the maximum likelihood method or other methods described in McCullagh and Nelder [5] and Prabhakar Murthy et al [6] Methods for estimation.

The Weibull model in Equation (1) can be extended to a Weibull regression model when any regression variables are available, such as other production tests or the state of the production conditions (2).

$$ln(t_p) = \alpha_0 + \sum_i \alpha_i X_i + \frac{1}{\beta} ln[-ln(1-p)]$$
 (2)

where  $X_i$  denotes the model regression variable. Rearranging equation (1) will give the expression (3) for the reliability of the unit at time  $t_n$ .

$$r(t_p) = 1 - p = exp\left[-\left(\frac{t_p}{\eta}\right)^{\beta}\right], \, \eta = e^{\alpha}$$
 (3)

To calculate the reliability function for each segment using Equation (3), the following general equation (4) applicable to each segment needs to be used:

$$R(t) = \begin{cases} r(t), & t \in segment \ 1\\ R(t_{j-1} \cdot r(t - t_{j-1}) & t \in segment \ j, \ j > 1 \end{cases}$$
(4)

Up to this step, the analytical methods and formulas used for the experiments were no different from those used in the original paper [1]. However, for the next analysis, we need to consider completely new data composition and variables.



This figure shows the different components of the overall experimental data in the original paper. The SS in the original paper represents the detected corrupted samples. The total cost graph obtained in the original paper is as follows:



In our paper, since it is necessary to consider objects that would not have been damaged in the real application environment due to the EST experimental environment, the overall experimental data structure should be represented as follows:



 $SS_1$ : Equivalent to the original SS (Units that fail the EST.) i.e., the bad ones are detected

 $SS_2$ : The good ones were damaged during testing, which means that this product would not be damaged within the warranty period in actual use but was damaged due to the extreme environment of EST.

$$SS = SS_1 + SS_2$$

With the  $SS_1$  and  $SS_2$  we got:

$$E[Total\ Cost] = E[Test\ Cost\ SS_1] + E[Test\ Cost\ SS_2] + E[Warranty\ Cost] \tag{5}$$

In this equation, part  $E[Test\ Cost\ SS_2]$  of it is the resources that are wasted in the experiment

$$\begin{split} E[Test\ Cost] &= C_f + C_V(\frac{\tau}{T}) + C_R P(SS_1 + SS_2|\theta) \\ C_R P(SS_1 + SS_2|\theta) &= C_R P(SS_1|\theta) + C_R P(SS_2|\theta) \end{split} \tag{6}$$

 $\theta$ :  $\theta$  denote the vector of parameters, such as temperatures, ramp rates, number of cycles, etc., that define a particular EST.

 $C_f$ : represent the fixed cost of conducting the test

 $C_{v}$ : represent the variable cost for conducting the test for the current duration of 8 h

 $C_p$ : represent the repair cost of each unit that fails during the EST

 $C_R P(SS_1 + SS_2 | \theta)$ : same as the original  $C_R P(SS | \theta)$ , since  $SS = SS_1 + SS_2$ , And the damage time is constant (damage time is fixed in FIGURE 3, TABLE VII [1]: P-value is related to damage time), so the P-value is constant.

In (6)  $C_f$  denotes the fixed cost of performing the test and  $C_V$  denotes the variable cost of performing the test within the current time during the 8 hour. Finally,  $C_R$  denotes the repair cost for each unit that fails during EST.  $P(SS|\theta)$  in Equation (6) can be determined directly from Equation (4). In addition, the expected cost of warranty is expressed as (7).

$$E[Warranty Cost] = C_{W}P(LD - SS_{1}|\Omega - SS_{1};\theta,\phi)$$
 (7)

For the field conditions involved in the experiments calculate

$$C_{W}P(LD - SS_{1}|\Omega - SS_{1};\theta,\phi) = \frac{P(LD - SS_{1}\Omega - SS_{1}|\theta,\phi)}{P(\Omega - SS_{1}|\theta,\phi)} = \frac{P(LD - SS_{1}|\theta,\phi)}{1 - P(SS_{1}|\theta)}$$
(8)

φ: represent the conditions in the field, such as geographical location, humidity, etc.

 $LD - SS_1$ : represent the potential fail in the field during the warranty period.

 $\Omega - SS_1$ : represent units are tested and only those that pass the EST are released into the field.

 $P(LD - SS_1 | \theta, \phi)$ : represents the probability that a product has a fault but is not detected under fixed conditions.

 $1 - P(SS_1|\theta)$ : The probability that the device does not have a fault plus the probability that the device has a fault but is not detected is the probability that it passes the test.

P is a function that varies according to time, and all values are time-dependent

$$1 - P(SS_1 | \theta) = R(\tau)$$
 (9)

τ: represent the reduced duration of the EST

 $R(\tau)$ : applied to the EST data in Table III, it was possible to estimate (estimated by applying Equation (3) to the EST data in Table III).

These probabilities will be replaced by the denominator of (8), and the final calculation of:

$$P(LD - SS_1|\Omega - SS_1; \theta, \varphi)$$

If the EST experiment terminated on time, Then for all the damaged units in the test after the time will be added to the total field failure probability using equation (10).

$$P_{EST \to F} = P(SS_1 | \tau_0; \theta) - P(SS_1 | \tau; \theta), \quad \tau < \tau_0$$
 (10)

 $P_{EST \to F}$ : presents the portion of failures that move from the EST to the field for an EST of duration  $\tau < \tau_0$ .

 $\tau_0 = 480$ : Represent the initial EST duration for the particular product under evaluation.

Fitting the field failure time with the Weibull model for an EST of duration  $\tau_0 = 480$  min yields the updated Eq:

 $P(LD - SS_1 | \tau_0, \theta, \phi) = P(Failure \ time \ in \ the \ field \leq Warranty \ Period | \tau_0, \theta, \phi)$ 

$$= 1 - exp(-\left(\frac{Warranty\ Period}{e^{\beta}}\right)^{\beta})$$
 (11)

 $P(LD - SS_1 | \tau_0, \theta, \phi)$  has a value of 0.016, because the number of faulty but undetected products is constant and the damage time in actual use does not change.

the portion of the units explained by Equation (10) has to be added to the value obtained in Equation (11), when the EST duration time  $\tau_0$  reduce to  $\tau$ , which will get the formula (12) after the update.

$$P(LD - SS_1 | \tau, \theta, \phi) = P(LD - SS_1 | \tau_0, \theta, \phi) + P_{EST \to F}, \tau < \tau_0$$
 (12)

In the following section will analysis different simulation result with multiple  $SS_2$  part estimation.

## IV. IMPLEMENTATION AND RESULT

The temperature cycling profile that was actually used on the units examined in the paper is shown in the figure 1 below [1]. The Environmental Stress Test that is used most frequently involves temperature cycling. The temperature in an environmental chamber, where the units are placed, is gradually and periodically varied between low and high temperatures. While the rate at which the temperature varies is referred to as ramps, the high and low temperature extremes are referred to as dwells. A cycle is the name for each successive section of the test that consists of a reducing ramp, a cold dwell, an increasing ramp, and a hot dwell. These cycles are included in the EST test in the publication [1], which lasts for 6 hours.



Fig. 1. Environmental Stress Test profile. [1]

The original dataset is from the paper [1].

The organization of the EST database for the real product used to illustrate the suggested technique is shown in Table I. Each EST segment, such as the ramp or dwell, is treated separately for analytical reasons. These segments are displayed in Table I's first column. The start time of the segment in which the breakdown occurred is shown in the second column. The unit's failure time relative to the

test's start is shown in the third column. [1] For a segment, a unit's lifetime that is unaffected by failure is taken into account as censored.

| Table I. | The EST failu          | ıre databas     | e structure |                        |                 |         |                        |                    |
|----------|------------------------|-----------------|-------------|------------------------|-----------------|---------|------------------------|--------------------|
| Segment  | Segment<br>start point | Time in the EST | Segment     | Segment<br>start point | Time in the EST | Segment | Segment<br>start point | Time in<br>the EST |
| 1        | 0                      | 2               | 4           | 95                     | 111             | 7       | 240                    | 255                |
| 1        | 0                      | 2               | 4           | 95                     | 114             | 8       | 260                    | 273                |
| 1        | 0                      | 5               | 4           | 95                     | 127             | 8       | 260                    | 279                |
| 1        | 0                      | 7               | 4           | 95                     | 136             | 8       | 260                    | 283                |
| 1        | 0                      | 12              | 4           | 95                     | 139             | 8       | 260                    | 283                |
| 2        | 15                     | 25              | 4           | 95                     | 142             | 8       | 260                    | 288                |
| 2        | 15                     | 29              | 5           | 155                    | 160             | 8       | 260                    | 293                |
| 2        | 15                     | 32              | 5           | 155                    | 178             | 8       | 260                    | 300                |
| 2        | 15                     | 59              | 6           | 180                    | 218             | 8       | 260                    | 302                |
| 2        | 15                     | 63              | 6           | 180                    | 223             | 9       | 320                    | 324                |
| 2        | 15                     | 73              | 6           | 180                    | 224             | 9       | 320                    | 329                |
| 2        | 15                     | 74              | 6           | 180                    | 224             | 10      | 345                    | 351                |
| 3        | 75                     | 77              | 6           | 180                    | 224             | 10      | 345                    | 352                |
| 3        | 75                     | 77              | 6           | 180                    | 228             | 10      | 345                    | 354                |
| 3        | 75                     | 87              | 6           | 180                    | 231             | 10      | 345                    | 356                |
| 3        | 75                     | 92              | 6           | 180                    | 233             | 10      | 345                    | 358                |
| 4        | 95                     | 99              | 7           | 240                    | 242             | 10      | 345                    | 366                |
| 4        | 95                     | 99              | 7           | 240                    | 244             | 10      | 345                    | 372                |
| 4        | 95                     | 104             | 7           | 240                    | 247             | 12      | 420                    | 439                |
| 4        | 95                     | 105             | 7           | 240                    | 249             | 12      | 420                    | 455                |
| 4        | 95                     | 107             | 7           | 240                    | 249             | 12      | 420                    | 462                |
| 4        | 95                     | 108             | 7           | 240                    | 250             | 12      |                        |                    |
| 4        | 95                     | 110             | 7           | 240                    | 252             | 12      |                        |                    |

Figure 2[1], which shows the distribution of failures during the EST segments, can be connected to Table I. The dots denote the temperature and time at which each failure was noticed. Only a few problems were noticed during the ramps, while the majority of failures happened during the dwells.



Fig. 2. Distribution of failures during the EST cycles. [1]

Table II contains the appropriate figures for genuine and censored failure times during the EST. The EST started at 1912 units. Only 1907 units will enter segment 2 because 5 units in segment 1 failed. The failure time for each segment is shown in Table II which could connect with Table I. For instance, in segment 1, the unit that Table I indicates failed after 25 minutes is taken as censored. Segment 2, which begins at 15 and ends at 75 minutes, will have a failure time of 25 - 15 = 10 minutes. Additionally, for segment 2, failures after 75 minutes are treated as censored at 60 minutes.

| Table II | . The EST | failure and | the censo | red data ap | oplied to th | ne Weibull | model   |         |         |         |         |
|----------|-----------|-------------|-----------|-------------|--------------|------------|---------|---------|---------|---------|---------|
| Segment  | Segment   | Segment     | Segment   | Segment     | Segment      | Segment    | Segment | Segment | Segment | Segment | Segment |
| 1        | 2         | 3           | 4         | 5           | 6            | 7          | 8       | 9       | 10      | 11      | 12      |
| 2        | 10        | 2           | 4         | 5           | 38           | 2          | 13      | 4       | 6       | 15      | 19      |
| 2        | 14        | 2           | 4         | 23          | 43           | 4          | 19      | 9       | 7       | 15      | 35      |
| 5        | 17        | 12          | 9         | 25          | 44           | 7          | 23      | 25      | 9       | 15      | 42      |
| 7        | 44        | 17          | 10        | 25          | 44           | 9          | 23      | 25      | 11      | 15      | 60      |
| 12       | 48        | 20          | 12        | 25          | 44           | 9          | 28      | 25      | 13      | 15      | 60      |
| 15       | 58        | 20          | 13        | 25          | 48           | 10         | 33      | 25      | 21      | 15      | 60      |
| 15       | 59        | 20          | 15        | 25          | 51           | 12         | 40      | 25      | 27      | 15      | 60      |
| 15       | 60        | 20          | 16        | 25          | 53           | 15         | 42      | 25      | 60      | 15      | 60      |
| 15       | 60        | 20          | 19        | 25          | 60           | 20         | 60      | 25      | 60      | 15      | 60      |
| 15       | 60        | 20          | 32        | 25          | 60           | 20         | 60      | 25      | 60      | 15      | 60      |
| 15       | 60        | 20          | 41        | 25          | 60           | 20         | 60      | 25      | 60      | 15      | 60      |
| 15       | 60        | 20          | 44        | 25          | 60           | 20         | 60      | 25      | 60      | 15      | 60      |
| 15       | 60        | 20          | 47        | 25          | 60           | 20         | 60      | 25      | 60      | 15      | 60      |
| 15       | 60        | 20          | 60        | 25          | 60           | 20         | 60      | 25      | 60      | 15      | 60      |
| 15       | 60        | 20          | 60        | 25          | 60           | 20         | 60      | 25      | 60      | 15      | 60      |
| :        | ÷         | ÷           | ÷         | ÷           | ÷            | ÷          | :       | ÷       | ÷       | :       | :       |
| 15       | 60        | 20          | 60        | 25          | 60           | 20         | 60      | 25      | 60      | 15      | 60      |
| 1912     | 1907      | 1900        | 1896      | 1883        | 1881         | 1873       | 1865    | 1857    | 1855    | 1848    | 1848    |
| units    | units     | units       | units     | units       | units        | units      | units   | units   | units   | units   | units   |

The failure distribution times for the various EST segments are displayed in Figure 3. The dots on the horizontal axis for each segment depicted in the vertical axis represent the failure times for that segment. Additionally, each EST segment's censoring time is indicated by a cross [1].



Fig. 3. Distribution of failures during the EST segments. Dots represent the failures and the crosses show the censoring time for each cycle segment. [1]

The experiment aims to combine the performance model of the unit during the EST and the lifetime model of the unit in the field to form an integrated cost model. During the EST testing process, it is difficult to determine whether a failed device is due to a defect in the device itself or the extreme environment of the EST. In addition, we are unable to do further experiments to find out the true effect of the EST testing environment due to the lack of devices and products. Therefore, in this EST testing, we are unsure how many of the 67 failed devices are good devices that were damaged by the testing. In order to simulate the actual situation with the greatest probability, we assume that the number of good devices that are damaged by the testing ranges from 10 to 25. This range is already quite wide, and we believe it is sufficient to cover most possible situations. Finally, we selected 10/15/20/25 good devices that were tested to be damaged, accounting for 15%/22%/30%/37% of the total damaged devices. We will assume that in all products that were originally broken in the real test , 10/15/20/25 products are corrupted because of the experimental environment, that is, they would not be corrupted in real use, we will randomly pick 10/15/20/25 data and assume that these data are not corrupted. We will discuss the effect of different quantities on the total cost separately. At the same time, in order to eliminate the influence of randomness on the experiment, we will run the experiment for 1000 times. All the data in the following are the average values after 1000 experiments.

Let us assume that the total cost of testing a unit has both fixed and variable cost elements. We assume a fixed cost of  $C_f = \$6$  per unit for performing EST regardless of test duration, and a variable cost of  $C_V = \$2$  per unit for a 480-minute test. Assume that the maintenance cost of each faulty unit is  $C_R = \$6$  during testing. We also assume that the warranty and total costs  $C_W = \$90$  for each device that fails in the field during the warranty period. Equipment that fails after the warranty period will have no cost imposed on the manufacturer. Next, we will analyze and discuss the impact of the number of failed products on the total cost in detail.

In the following experiments, **PF** will represent the number of units that fail in EST, but work properly in the real environment, that is, the SS2 part.

# A. 10 Points

When it is assumed that 10 of the units that fail in the original test are damaged due to testing (PF=10), but do not fail in actual use, its impact on the comprehensive cost is calculated as follows. First estimate the probability of passing the test when the EST test lasts for different times, we will use equations (6)-(9) to calculate the probability of passing the EST.

| Table V. | Estimated p | robabilit | y of passing t | he EST o | f duration τ | < τ0 |         |     |         |     |         |     |         |
|----------|-------------|-----------|----------------|----------|--------------|------|---------|-----|---------|-----|---------|-----|---------|
| τ        | 1-P(SS)     | τ         | 1-P(SS)        | τ        | 1-P(SS)      | τ    | 1-P(SS) | τ   | 1-P(SS) | τ   | 1-P(SS) | τ   | 1-P(SS) |
| 0        | 1.0000      | 70        | 0.9955         | 140      | 0.9875       | 210  | 0.9862  | 280 | 0.9782  | 350 | 0.9746  | 420 | 0.9715  |
| 10       | 0.9982      | 80        | 0.9938         | 150      | 0.9871       | 220  | 0.9858  | 290 | 0.9768  | 360 | 0.9724  | 430 | 0.9715  |
| 10       | 0.9978      | 90        | 0.9933         | 160      | 0.9866       | 230  | 0.9835  | 300 | 0.9759  | 370 | 0.9720  | 440 | 0.9710  |
| 10       | 0.9969      | 100       | 0.9920         | 170      | 0.9866       | 240  | 0.9826  | 310 | 0.9755  | 380 | 0.9715  | 450 | 0.9710  |
| 10       | 0.9964      | 110       | 0.9897         | 180      | 0.9862       | 250  | 0.9800  | 320 | 0.9755  | 390 | 0.9715  | 460 | 0.9706  |
| 10       | 0.9964      | 120       | 0.9889         | 190      | 0.9862       | 260  | 0.9791  | 330 | 0.9746  | 400 | 0.9715  | 470 | 0.9702  |
| 10       | 0.9960      | 130       | 0.9884         | 200      | 0.9862       | 270  | 0.9791  | 340 | 0.9746  | 410 | 0.9715  | 480 | 0.9702  |

We will use Equation (10) to calculate the partial faults transferred from the test to the field during the test.

| Table VI. | Portion of fa | ailures th | nat move from | the EST | to the field f | or EST d | uration of τ< | τ0  |         |     |         |     |         |
|-----------|---------------|------------|---------------|---------|----------------|----------|---------------|-----|---------|-----|---------|-----|---------|
| τ         | PEST->F       | τ          | PEST->F       | τ       | PEST->F        | τ        | PEST->F       | τ   | PEST->F | τ   | PEST->F | τ   | PEST->F |
| 0         | 0.0298        | 70         | 0.0254        | 140     | 0.0174         | 210      | 0.0160        | 280 | 0.0080  | 350 | 0.0044  | 420 | 0.0013  |
| 10        | 0.0280        | 80         | 0.0236        | 150     | 0.0169         | 220      | 0.0156        | 290 | 0.0067  | 360 | 0.0022  | 430 | 0.0013  |
| 20        | 0.0276        | 90         | 0.0231        | 160     | 0.0165         | 230      | 0.0133        | 300 | 0.0058  | 370 | 0.0018  | 440 | 0.0008  |
| 30        | 0.0267        | 100        | 0.0218        | 170     | 0.0165         | 240      | 0.0125        | 310 | 0.0053  | 380 | 0.0013  | 450 | 0.0008  |
| 40        | 0.0263        | 110        | 0.0196        | 180     | 0.0160         | 250      | 0.0098        | 320 | 0.0053  | 390 | 0.0013  | 460 | 0.0004  |
| 50        | 0.0263        | 120        | 0.0187        | 190     | 0.0160         | 260      | 0.0089        | 330 | 0.0044  | 400 | 0.0013  | 470 | 0.0000  |
| 60        | 0.0258        | 130        | 0.0183        | 200     | 0.0160         | 270      | 0.0089        | 340 | 0.0044  | 410 | 0.0013  | 480 | 0.0000  |

Having obtained the probability of passing and the probability of stopping the experiment before 480 minutes and not being detected as a failure, we can calculate the probability of a failure occurring within the warranty period.

| Table VII. | Probability | of failure | during the v | warranty p | period for an | EST with | duration of | τ< τ0 |        |     |        |     |        |
|------------|-------------|------------|--------------|------------|---------------|----------|-------------|-------|--------|-----|--------|-----|--------|
| τ          | р           | τ          | р            | τ          | р             | τ        | р           | τ     | р      | τ   | р      | τ   | р      |
| 0          | 0.0458      | 70         | 0.0414       | 140        | 0.0334        | 210      | 0.0320      | 280   | 0.0240 | 350 | 0.0204 | 420 | 0.0173 |
| 10         | 0.0440      | 80         | 0.0396       | 150        | 0.0329        | 220      | 0.0316      | 290   | 0.0227 | 360 | 0.0182 | 430 | 0.0173 |
| 20         | 0.0436      | 90         | 0.0391       | 160        | 0.0325        | 230      | 0.0293      | 300   | 0.0218 | 370 | 0.0178 | 440 | 0.0168 |
| 30         | 0.0427      | 100        | 0.0378       | 170        | 0.0325        | 240      | 0.0285      | 310   | 0.0213 | 380 | 0.0173 | 450 | 0.0168 |
| 40         | 0.0423      | 110        | 0.0356       | 180        | 0.0320        | 250      | 0.0258      | 320   | 0.0213 | 390 | 0.0173 | 460 | 0.0164 |
| 50         | 0.0423      | 120        | 0.0347       | 190        | 0.0320        | 260      | 0.0249      | 330   | 0.0204 | 400 | 0.0173 | 470 | 0.0160 |
| 60         | 0.0418      | 130        | 0.0343       | 200        | 0.0320        | 270      | 0.0249      | 340   | 0.0204 | 410 | 0.0173 | 480 | 0.0160 |

Finally, we can get the estimated test warranty total cost.

| Table VIII. | Expected to | otal test-w | arranty cos | ts for the v | varranty pe | riod of 1 y | ear and the | EST durat | ion τ< τ0 |     |       |     |       |
|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-----------|-----------|-----|-------|-----|-------|
| τ           | E[TC]       | τ           | E[TC]       | τ            | E[TC]       | τ           | E[TC]       | τ         | E[TC]     | τ   | E[TC] | τ   | E[TC] |
| 0           | 10.12       | 70          | 10.06       | 140          | 9.71        | 210         | 9.89        | 280       | 9.53      | 350 | 9.52  | 420 | 9.56  |
| 10          | 10.02       | 80          | 9.96        | 150          | 9.72        | 220         | 9.90        | 290       | 9.46      | 360 | 9.38  | 430 | 9.60  |
| 20          | 10.03       | 90          | 9.97        | 160          | 9.72        | 230         | 9.76        | 300       | 9.43      | 370 | 9.38  | 440 | 9.60  |
| 30          | 10.00       | 100         | 9.90        | 170          | 9.76        | 240         | 9.73        | 310       | 9.43      | 380 | 9.39  | 450 | 9.64  |
| 40          | 10.01       | 110         | 9.76        | 180          | 9.77        | 250         | 9.55        | 320       | 9.47      | 390 | 9.43  | 460 | 9.65  |
| 50          | 10.05       | 120         | 9.74        | 190          | 9.81        | 260         | 9.52        | 330       | 9.44      | 400 | 9.47  | 470 | 9.65  |
| 60          | 10.06       | 130         | 9.74        | 200          | 9.85        | 270         | 9.56        | 340       | 9.48      | 410 | 9.51  | 480 | 9.69  |



Compared with the results of the original experiment, it can be found that the trend and peak value of the total cost have changed. The original data generally shows a downward trend, and the lowest cost value occurs around 390 minutes. However, in our experiment, the trend of total cost is not monotone, but fluctuates. At the same time, it is obvious that the lowest value of total cost of our experiment (9.39) is less than the lowest value of the original experiment (9.44), and the lowest value has already appeared in about 360 minutes, which greatly reduces the experimental time.

The total cost of testing is the sum of the test cost and the warranty cost. The test cost increases as the testing time increases, while the warranty cost decreases as the testing time increases since from the testing time could estimate the actual warrant time range. In our hypothetical scenario, the test cost remains unchanged compared to the original paper, while the maintenance cost decreases compared to the original paper. Therefore, the result displayed in this graph shows a further reduction in the total cost, and the time at which the minimum cost occurs is earlier.

## B. 15 Points

When it is assumed that 15 of the products that fail in the original test are damaged due to testing (*PF=15*), but do not fail in actual use, its impact on the total cost is calculated as follows. First estimate the probability of passing the test for different EST durations:

| Table V. | Estimated p | robabilit | y of passing t | he EST o | f duration τ | < τ0 |         |     |         |     |         |     |         |
|----------|-------------|-----------|----------------|----------|--------------|------|---------|-----|---------|-----|---------|-----|---------|
| τ        | 1-P(SS)     | τ         | 1-P(SS)        | τ        | 1-P(SS)      | τ    | 1-P(SS) | τ   | 1-P(SS) | τ   | 1-P(SS) | τ   | 1-P(SS) |
| 0        | 1.0000      | 70        | 0.9959         | 140      | 0.9886       | 210  | 0.9874  | 280 | 0.9801  | 350 | 0.9768  | 420 | 0.9740  |
| 10       | 0.9983      | 80        | 0.9943         | 150      | 0.9882       | 220  | 0.9869  | 290 | 0.9789  | 360 | 0.9748  | 430 | 0.9740  |
| 20       | 0.9979      | 90        | 0.9939         | 160      | 0.9878       | 230  | 0.9849  | 300 | 0.9780  | 370 | 0.9744  | 440 | 0.9736  |
| 30       | 0.9972      | 100       | 0.9927         | 170      | 0.9878       | 240  | 0.9841  | 310 | 0.9776  | 380 | 0.9740  | 450 | 0.9736  |
| 40       | 0.9967      | 110       | 0.9906         | 180      | 0.9874       | 250  | 0.9817  | 320 | 0.9776  | 390 | 0.9740  | 460 | 0.9732  |
| 50       | 0.9967      | 120       | 0.9898         | 190      | 0.9874       | 260  | 0.9809  | 330 | 0.9768  | 400 | 0.9740  | 470 | 0.9728  |
| 60       | 0.9963      | 130       | 0.9894         | 200      | 0.9874       | 270  | 0.9809  | 340 | 0.9768  | 410 | 0.9740  | 480 | 0.9728  |

When moving from EST test to field, the portion of failures under different test durations:

| Table VI. | Portion of fa | ailures th | nat move from | n the EST | to the field f | for EST d | luration of τ< | τ0  |         |     |         |     |         |
|-----------|---------------|------------|---------------|-----------|----------------|-----------|----------------|-----|---------|-----|---------|-----|---------|
| τ         | PEST->F       | τ          | PEST->F       | т         | PEST->F        | τ         | PEST->F        | τ   | PEST->F | τ   | PEST->F | τ   | PEST->F |
| 0         | 0.0272        | 70         | 0.0231        | 140       | 0.0158         | 210       | 0.0146         | 280 | 0.0073  | 350 | 0.0040  | 420 | 0.0012  |
| 10        | 0.0255        | 80         | 0.0215        | 150       | 0.0154         | 220       | 0.0141         | 290 | 0.0061  | 360 | 0.0020  | 430 | 0.0012  |
| 20        | 0.0251        | 90         | 0.0211        | 160       | 0.0150         | 230       | 0.0121         | 300 | 0.0052  | 370 | 0.0016  | 440 | 0.0008  |
| 30        | 0.0244        | 100        | 0.0199        | 170       | 0.0150         | 240       | 0.0113         | 310 | 0.0048  | 380 | 0.0012  | 450 | 0.0008  |
| 40        | 0.0239        | 110        | 0.0178        | 180       | 0.0146         | 250       | 0.0089         | 320 | 0.0048  | 390 | 0.0012  | 460 | 0.0004  |
| 50        | 0.0239        | 120        | 0.0170        | 190       | 0.0146         | 260       | 0.0081         | 330 | 0.0040  | 400 | 0.0012  | 470 | 0.0000  |
| 60        | 0.0235        | 130        | 0.0166        | 200       | 0.0146         | 270       | 0.0081         | 340 | 0.0040  | 410 | 0.0012  | 480 | 0.0000  |

Next, calculate the probability that the test units will break during the warranty period after they pass the tests of different durations:

| Table VII. | Probability | of failure | during the | warranty p | period for an | EST with | duration of | τ< τ0 |        |     |        |     |        |
|------------|-------------|------------|------------|------------|---------------|----------|-------------|-------|--------|-----|--------|-----|--------|
| τ          | р           | τ          | р          | τ          | р             | τ        | р           | τ     | р      | τ   | р      | τ   | р      |
| 0          | 0.0432      | 70         | 0.0391     | 140        | 0.0318        | 210      | 0.0306      | 280   | 0.0233 | 350 | 0.0200 | 420 | 0.0172 |
| 10         | 0.0415      | 80         | 0.0375     | 150        | 0.0314        | 220      | 0.0301      | 290   | 0.0221 | 360 | 0.0180 | 430 | 0.0172 |
| 20         | 0.0411      | 90         | 0.0371     | 160        | 0.0310        | 230      | 0.0281      | 300   | 0.0212 | 370 | 0.0176 | 440 | 0.0168 |
| 30         | 0.0404      | 100        | 0.0359     | 170        | 0.0310        | 240      | 0.0273      | 310   | 0.0208 | 380 | 0.0172 | 450 | 0.0168 |
| 40         | 0.0399      | 110        | 0.0338     | 180        | 0.0306        | 250      | 0.0249      | 320   | 0.0208 | 390 | 0.0172 | 460 | 0.0164 |
| 50         | 0.0399      | 120        | 0.0330     | 190        | 0.0306        | 260      | 0.0241      | 330   | 0.0200 | 400 | 0.0172 | 470 | 0.0160 |
| 60         | 0.0395      | 130        | 0.0326     | 200        | 0.0306        | 270      | 0.0241      | 340   | 0.0200 | 410 | 0.0172 | 480 | 0.0160 |

Finally, the total cost of testing and warranty period of 1 year with different duration is calculated:

| Table VIII. | Expected to | otal test-w | varranty cos | ts for the v | warranty pe | riod of 1 y | ear and the | EST durat | ion τ< τ0 |     |       |     |       |
|-------------|-------------|-------------|--------------|--------------|-------------|-------------|-------------|-----------|-----------|-----|-------|-----|-------|
| τ           | E[TC]       | τ           | E[TC]        | τ            | E[TC]       | τ           | E[TC]       | τ         | E[TC]     | τ   | E[TC] | τ   | E[TC] |
| 0           | 9.89        | 70          | 9.86         | 140          | 9.56        | 210         | 9.76        | 280       | 9.46      | 350 | 9.48  | 420 | 9.54  |
| 10          | 9.80        | 80          | 9.77         | 150          | 9.57        | 220         | 9.77        | 290       | 9.40      | 360 | 9.36  | 430 | 9.58  |
| 20          | 9.81        | 90          | 9.78         | 160          | 9.58        | 230         | 9.65        | 300       | 9.37      | 370 | 9.37  | 440 | 9.59  |
| 30          | 9.79        | 100         | 9.73         | 170          | 9.62        | 240         | 9.62        | 310       | 9.38      | 380 | 9.38  | 450 | 9.63  |
| 40          | 9.80        | 110         | 9.60         | 180          | 9.63        | 250         | 9.47        | 320       | 9.42      | 390 | 9.42  | 460 | 9.64  |
| 50          | 9.84        | 120         | 9.58         | 190          | 9.67        | 260         | 9.44        | 330       | 9.40      | 400 | 9.46  | 470 | 9.65  |
| 60          | 9.85        | 130         | 9.59         | 200          | 9.72        | 270         | 9.48        | 340       | 9.44      | 410 | 9.50  | 480 | 9.69  |

The above total cost and EST test termination time were plotted as the following figure for analysis. It can be observed that the trend when PF=15 is roughly similar to that at PF=10, with larger fluctuations relative to the original data. But on the whole, the total cost of PF=15 is slightly less than the cost of PF=10. At 360 minutes of the test, the lowest total cost was 9.36. In the following section, we will further explore the impact of 20/25 on the total cost to further verify it.



# C. 20 Points

We assumed that 20 of the products with a test result of Fail were damaged due to the experimental environment and were normal in actual use. We randomly selected 20 samples with a Fail test result, and assuming they were not damaged, the impact on the total cost was calculated as follows:

First estimate the likelihood of passing the test when the EST test lasts for different times. The results are shown in the table below:

| Table V. | Estimated p | robabilit | y of passing | the EST o | f duration τ | < τ0 |         |     |         |     |         |     |         |
|----------|-------------|-----------|--------------|-----------|--------------|------|---------|-----|---------|-----|---------|-----|---------|
| τ        | 1-P(SS)     | τ         | 1-P(SS)      | τ         | 1-P(SS)      | τ    | 1-P(SS) | τ   | 1-P(SS) | τ   | 1-P(SS) | τ   | 1-P(SS) |
| 0        | 1.0000      | 70        | 0.9963       | 140       | 0.9897       | 210  | 0.9886  | 280 | 0.9791  | 350 | 0.9791  | 420 | 0.9765  |
| 10       | 0.9985      | 80        | 0.9948       | 150       | 0.9893       | 220  | 0.9882  | 290 | 0.9772  | 360 | 0.9772  | 430 | 0.9765  |
| 10       | 0.9981      | 90        | 0.9944       | 160       | 0.9889       | 230  | 0.9864  | 300 | 0.9768  | 370 | 0.9768  | 440 | 0.9761  |
| 10       | 0.9974      | 100       | 0.9933       | 170       | 0.9889       | 240  | 0.9857  | 310 | 0.9765  | 380 | 0.9765  | 450 | 0.9761  |
| 10       | 0.9970      | 110       | 0.9915       | 180       | 0.9886       | 250  | 0.9835  | 320 | 0.9765  | 390 | 0.9765  | 460 | 0.9757  |
| 10       | 0.9970      | 120       | 0.9908       | 190       | 0.9886       | 260  | 0.9827  | 330 | 0.9765  | 400 | 0.9765  | 470 | 0.9754  |
| 10       | 0.9967      | 130       | 0.9884       | 200       | 0.9886       | 270  | 0.9827  | 340 | 0.9765  | 410 | 0.9765  | 480 | 0.9754  |

When moving from EST testing to the field, the proportion of failures for different test durations is as follows:

| Table VI. | Portion of fa | ailures th | nat move from | n the EST | to the field f | or EST d | uration of $\tau$ < | τ0  |         |     |         |     |         |
|-----------|---------------|------------|---------------|-----------|----------------|----------|---------------------|-----|---------|-----|---------|-----|---------|
| τ         | PEST->F       | τ          | PEST->F       | τ         | PEST->F        | τ        | PEST->F             | τ   | PEST->F | τ   | PEST->F | τ   | PEST->F |
| 0         | 0.0246        | 70         | 0.0209        | 140       | 0.0150         | 210      | 0.0132              | 280 | 0.0073  | 350 | 0.0036  | 420 | 0.0011  |
| 10        | 0.0231        | 80         | 0.0195        | 150       | 0.0143         | 220      | 0.0132              | 290 | 0.0066  | 360 | 0.0036  | 430 | 0.0011  |
| 20        | 0.0227        | 90         | 0.0191        | 160       | 0.0139         | 230      | 0.0128              | 300 | 0.0055  | 370 | 0.0018  | 440 | 0.0011  |
| 30        | 0.0220        | 100        | 0.0190        | 170       | 0.0135         | 240      | 0.0110              | 310 | 0.0048  | 380 | 0.0014  | 450 | 0.0007  |
| 40        | 0.0216        | 110        | 0.0179        | 180       | 0.0135         | 250      | 0.0103              | 320 | 0.0044  | 390 | 0.0011  | 460 | 0.0007  |
| 50        | 0.0216        | 120        | 0.0161        | 190       | 0.0132         | 260      | 0.0081              | 330 | 0.0044  | 400 | 0.0011  | 470 | 0.0003  |
| 60        | 0.0213        | 130        | 0.0154        | 200       | 0.0132         | 270      | 0.0073              | 340 | 0.0037  | 410 | 0.0011  | 480 | 0.0000  |

Next, the probability that the test units will become damaged during the warranty period when they have been tested for different durations is calculated as follows:

| Probability of failure during the warranty period for an EST with duration of $\tau$ < $\tau$ 0 |                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| р                                                                                               | τ                                              | р                                                                                                                                                                                | τ                                                                                                                                                                                                                                                                                    | р                                                                                                                                                                                                                                                                                                                                                                      | τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0405                                                                                          | 70                                             | 0.0369                                                                                                                                                                           | 140                                                                                                                                                                                                                                                                                  | 0.0303                                                                                                                                                                                                                                                                                                                                                                 | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0391                                                                                          | 80                                             | 0.0354                                                                                                                                                                           | 150                                                                                                                                                                                                                                                                                  | 0.0299                                                                                                                                                                                                                                                                                                                                                                 | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0387                                                                                          | 90                                             | 0.0351                                                                                                                                                                           | 160                                                                                                                                                                                                                                                                                  | 0.0295                                                                                                                                                                                                                                                                                                                                                                 | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0380                                                                                          | 100                                            | 0.0339                                                                                                                                                                           | 170                                                                                                                                                                                                                                                                                  | 0.0295                                                                                                                                                                                                                                                                                                                                                                 | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0376                                                                                          | 110                                            | 0.0321                                                                                                                                                                           | 180                                                                                                                                                                                                                                                                                  | 0.0292                                                                                                                                                                                                                                                                                                                                                                 | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0376                                                                                          | 120                                            | 0.0314                                                                                                                                                                           | 190                                                                                                                                                                                                                                                                                  | 0.0292                                                                                                                                                                                                                                                                                                                                                                 | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0373                                                                                          | 130                                            | 0.0310                                                                                                                                                                           | 200                                                                                                                                                                                                                                                                                  | 0.0292                                                                                                                                                                                                                                                                                                                                                                 | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0000                                                                                            | p<br>.0405<br>.0391<br>.0387<br>.0380<br>.0376 | p         τ           .0405         70           .0391         80           .0387         90           .0380         100           .0376         110           .0376         120 | p         τ         p           .0405         70         0.0369           .0391         80         0.0354           .0387         90         0.0351           .0380         100         0.0339           .0376         110         0.0321           .0376         120         0.0314 | p         T         p         T           .0405         70         0.0369         140           .0391         80         0.0354         150           .0387         90         0.0351         160           .0380         100         0.0339         170           .0376         110         0.0321         180           .0376         120         0.0314         190 | p         T         p         T         p           .0405         70         0.0369         140         0.0303           .0391         80         0.0354         150         0.0299           .0387         90         0.0351         160         0.0295           .0380         100         0.0339         170         0.0295           .0376         110         0.0321         180         0.0292           .0376         120         0.0314         190         0.0292 | p         T         p         T         p         T           .0405         70         0.0369         140         0.0303         210           .0391         80         0.0354         150         0.0299         220           .0387         90         0.0351         160         0.0295         230           .0380         100         0.0339         170         0.0295         240           .0376         110         0.0321         180         0.0292         250           .0376         120         0.0314         190         0.0292         260 | p         τ         p         τ         p         τ         p           .0405         70         0.0369         140         0.0303         210         0.0292           .0391         80         0.0354         150         0.0299         220         0.0288           .0387         90         0.0351         160         0.0295         230         0.0270           .0380         100         0.0339         170         0.0295         240         0.0263           .0376         110         0.0321         180         0.0292         250         0.0241           .0376         120         0.0314         190         0.0292         260         0.0233 | p         T         p         T         p         T         p         T           .0405         70         0.0369         140         0.0303         210         0.0292         280           .0391         80         0.0354         150         0.0299         220         0.0288         290           .0387         90         0.0351         160         0.0295         230         0.0270         300           .0380         100         0.0339         170         0.0295         240         0.0263         310           .0376         110         0.0321         180         0.0292         250         0.0241         320           .0376         120         0.0314         190         0.0292         260         0.0233         330 | p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p | p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p | p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p | p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p         T         p |

Finally, we can calculate the total cost for 1 year of testing and warranty for different durations, with the results is as follows:

| Table VIII. | III. Expected total test–warranty costs for the warranty period of 1 year and the EST duration τ< τ0 |     |       |     |       |     |       |     |       |     |       |     |       |
|-------------|------------------------------------------------------------------------------------------------------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|
| τ           | E[TC]                                                                                                | τ   | E[TC] | τ   | E[TC] | τ   | E[TC] | τ   | E[TC] | τ   | E[TC] | τ   | E[TC] |
| 0           | 9.65                                                                                                 | 70  | 9.65  | 140 | 9.42  | 210 | 9.63  | 280 | 9.39  | 350 | 9.44  | 420 | 9.52  |
| 10          | 9.67                                                                                                 | 80  | 9.58  | 150 | 9.44  | 220 | 9.64  | 290 | 9.34  | 360 | 9.34  | 430 | 9.56  |
| 20          | 9.59                                                                                                 | 90  | 9.59  | 160 | 9.45  | 230 | 9.54  | 300 | 9.33  | 370 | 9.34  | 440 | 9.57  |
| 30          | 9.57                                                                                                 | 100 | 9.55  | 170 | 9.49  | 240 | 9.52  | 310 | 9.34  | 380 | 9.36  | 450 | 9.62  |
| 40          | 9.59                                                                                                 | 110 | 9.44  | 180 | 9.50  | 250 | 9.38  | 320 | 9.38  | 390 | 9.40  | 460 | 9.63  |
| 50          | 9.63                                                                                                 | 120 | 9.43  | 190 | 9.54  | 260 | 9.37  | 330 | 9.36  | 400 | 9.44  | 470 | 9.64  |
| 60          | 9.64                                                                                                 | 130 | 9.44  | 200 | 9.59  | 270 | 9.41  | 340 | 9.41  | 410 | 9.48  | 480 | 9.68  |



As shown in the figure above, there is a noticeable difference in trend between PF=20 and PF=15. However, overall, the total cost for PF=20 is slightly lower than that for PF=15. In the 300-minute test, the lowest total cost is 9.33. In the next section, we will further explore the impact of 25 on the total cost to further verify.

## D. 25 Points

Subsequently, we hypothesize that among all the products initially damaged during the experiments, 25 of them were damaged as a result of the experimental environment, but would remain undamaged under actual usage conditions. We randomly selected 25 samples and assumed that these data points were not damaged, in order to investigate the implications for the total costs.

Firstly, we compute the estimated probability of passing the EST at varying duration. It is obvious that as the temperature increases, the probability of passing the EST decreases.

| Table V. | Estimated p | Estimated probability of passing the EST of duration τ< τ0 |         |     |         |     |         |     |         |     |         |     |         |  |  |
|----------|-------------|------------------------------------------------------------|---------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|--|--|
| τ        | 1-P(SS)     | τ                                                          | 1-P(SS) | τ   | 1-P(SS) | τ   | 1-P(SS) | τ   | 1-P(SS) | τ   | 1-P(SS) | τ   | 1-P(SS) |  |  |
| 0        | 1.0000      | 70                                                         | 0.9967  | 140 | 0.9907  | 210 | 0.9898  | 280 | 0.9845  | 350 | 0.9813  | 420 | 0.9790  |  |  |
| 10       | 0.9986      | 80                                                         | 0.9953  | 150 | 0.9904  | 220 | 0.9882  | 290 | 0.9839  | 360 | 0.9813  | 430 | 0.9790  |  |  |
| 20       | 0.9983      | 90                                                         | 0.9951  | 160 | 0.9901  | 230 | 0.9894  | 300 | 0.9829  | 370 | 0.9796  | 440 | 0.9790  |  |  |
| 30       | 0.9976      | 100                                                        | 0.9940  | 170 | 0.9901  | 240 | 0.9878  | 310 | 0.9822  | 380 | 0.9793  | 450 | 0.9787  |  |  |
| 40       | 0.9973      | 110                                                        | 0.9924  | 180 | 0.9898  | 250 | 0.9871  | 320 | 0.9819  | 390 | 0.9790  | 460 | 0.9787  |  |  |
| 50       | 0.9973      | 120                                                        | 0.9917  | 190 | 0.9898  | 260 | 0.9852  | 330 | 0.9819  | 400 | 0.9790  | 470 | 0.9783  |  |  |
| 60       | 0.9970      | 130                                                        | 0.9914  | 200 | 0.9898  | 270 | 0.9845  | 340 | 0.9813  | 410 | 0.9790  | 480 | 0.9779  |  |  |

And calculate the portion of failures that move from the EST to the field over time.

| Table VI. | Portion of fa | ailures th | nat move from | the ES7 | to the field f | or EST d | uration of τ< | τ0  |         |     |         |     |         |
|-----------|---------------|------------|---------------|---------|----------------|----------|---------------|-----|---------|-----|---------|-----|---------|
| τ         | PEST->F       | τ          | PEST->F       | τ       | PEST->F        | τ        | PEST->F       | τ   | PEST->F | τ   | PEST->F | τ   | PEST->F |
| 0         | 0.0219        | 70         | 0.0186        | 140     | 0.0127         | 210      | 0.0117        | 280 | 0.0058  | 350 | 0.0032  | 420 | 0.0009  |
| 10        | 0.0206        | 80         | 0.0173        | 150     | 0.0124         | 220      | 0.0114        | 290 | 0.0049  | 360 | 0.0016  | 430 | 0.0009  |
| 20        | 0.0203        | 90         | 0.0170        | 160     | 0.0121         | 230      | 0.0097        | 300 | 0.0042  | 370 | 0.0013  | 440 | 0.0006  |
| 30        | 0.0196        | 100        | 0.0160        | 170     | 0.0121         | 240      | 0.0091        | 310 | 0.0039  | 380 | 0.0009  | 450 | 0.0006  |
| 40        | 0.0193        | 110        | 0.0143        | 180     | 0.0117         | 250      | 0.0071        | 320 | 0.0039  | 390 | 0.0009  | 460 | 0.0003  |
| 50        | 0.0193        | 120        | 0.0137        | 190     | 0.0117         | 260      | 0.0065        | 330 | 0.0032  | 400 | 0.0009  | 470 | 0.0000  |
| 60        | 0.0189        | 130        | 0.0134        | 200     | 0.0117         | 270      | 0.0065        | 340 | 0.0032  | 410 | 0.0009  | 480 | 0.0000  |

Then we can calculate the probability of failure during the warranty period and the results are in the following Table VII.

| Table VII. | Probability of failure during the warranty period for an EST with duration of $\tau$ < $\tau$ 0 |     |        |     |        |     |        |     |        |     |        |     |        |
|------------|-------------------------------------------------------------------------------------------------|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| τ          | р                                                                                               | τ   | р      | τ   | р      | τ   | р      | τ   | р      | τ   | р      | τ   | р      |
| 0          | 0.0379                                                                                          | 70  | 0.0346 | 140 | 0.0287 | 210 | 0.0277 | 280 | 0.0218 | 350 | 0.0192 | 420 | 0.0169 |
| 10         | 0.0366                                                                                          | 80  | 0.0333 | 150 | 0.0284 | 220 | 0.0274 | 290 | 0.0208 | 360 | 0.0176 | 430 | 0.0169 |
| 20         | 0.0363                                                                                          | 90  | 0.0330 | 160 | 0.0281 | 230 | 0.0257 | 300 | 0.0202 | 370 | 0.0172 | 440 | 0.0166 |
| 30         | 0.0356                                                                                          | 100 | 0.0320 | 170 | 0.0281 | 240 | 0.0251 | 310 | 0.0199 | 380 | 0.0169 | 450 | 0.0166 |
| 40         | 0.0353                                                                                          | 110 | 0.0303 | 180 | 0.0277 | 250 | 0.0231 | 320 | 0.0199 | 390 | 0.0169 | 460 | 0.0166 |
| 50         | 0.0353                                                                                          | 120 | 0.0297 | 190 | 0.0277 | 260 | 0.0225 | 330 | 0.0192 | 400 | 0.0169 | 470 | 0.0160 |
| 60         | 0.0349                                                                                          | 130 | 0.0293 | 200 | 0.0277 | 270 | 0.0225 | 340 | 0.0192 | 410 | 0.0169 | 480 | 0.0160 |

Finally we can get the expected total test-warranty costs per unit for the warranty period of 1 year and plot the outcome.

| Table VIII. | Expected total test-warranty costs for the warranty period of 1 year and the EST duration $\tau < \tau 0$ |     |       |     |       |     |       |     |       |     |       |     |       |
|-------------|-----------------------------------------------------------------------------------------------------------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|
| τ           | E[TC]                                                                                                     | τ   | E[TC] | τ   | E[TC] | τ   | E[TC] | τ   | E[TC] | τ   | E[TC] | τ   | E[TC] |
| 0           | 9.42                                                                                                      | 70  | 9.45  | 140 | 9.28  | 210 | 9.49  | 280 | 9.32  | 350 | 9.36  | 420 | 9.51  |
| 10          | 9.35                                                                                                      | 80  | 9.39  | 150 | 9.29  | 220 | 9.51  | 290 | 9.28  | 360 | 9.31  | 430 | 9.55  |
| 20          | 9.37                                                                                                      | 90  | 9.41  | 160 | 9.31  | 230 | 9.42  | 300 | 9.27  | 370 | 9.33  | 440 | 9.56  |
| 30          | 9.36                                                                                                      | 100 | 9.37  | 170 | 9.35  | 240 | 9.41  | 310 | 9.29  | 380 | 9.34  | 450 | 9.60  |
| 40          | 9.38                                                                                                      | 110 | 9.28  | 180 | 9.37  | 250 | 9.29  | 320 | 9.33  | 390 | 9.38  | 460 | 9.62  |
| 50          | 9.42                                                                                                      | 120 | 9.27  | 190 | 9.41  | 260 | 9.28  | 330 | 9.32  | 400 | 9.42  | 470 | 9.64  |
| 60          | 9.43                                                                                                      | 130 | 9.29  | 200 | 9.45  | 270 | 9.33  | 340 | 9.36  | 410 | 9.47  | 480 | 9.68  |



As shown in the above figure, the unit expected total cost generally increases with the increase of testing time. The trend of total cost is quite different from the first three sets of data (10, 15, and 20) in this study. When the test termination time is at 120, the lowest unit expected total cost is 9.27. According to the formula, the total cost of testing is the sum of the test cost and warranty cost. The test cost increases with the increase of testing time, while the warranty cost decreases with the increase of testing time. In our assumed scenario with PF points, according to our formula (6), the test cost is unchanged compared to the original paper. According to formula (8)  $\frac{P(LD-SS_1|\theta,\phi)}{1-P(SS_1|\theta)}$ , with the increase of PF points, the  $SS_1$  decreases, the  $1-P(SS_1|\theta)$  will increase. As  $P(LD-SS_1)=0.016+P_{EST\to F}$  and  $P_{EST\to F}=P(SS_1|\tau_0;\theta)-P(SS_1|\tau;\theta)$ , so when the  $SS_1$  decreases, the  $P_{EST\to F}$  decreases, and thereby  $\frac{P(LD-SS_1|\theta,\phi)}{1-P(SS_1|\theta)}$  decreases. So the warranty cost gradually decreases, as the PF points increase.

Through the above experiments, it can be seen that with the increase of PF points, the volatility of the total cost continues to increase. When there are only 10 PF points, the total cost result is almost consistent with the original experimental result, showing a V-shaped structure with a similar trend. However, when the number of PF points transitions to 25, the fluctuation of the total cost is very large, and it is very different from the original experiment. With the increase of PF points, the time of the lowest cost appearance is gradually decreasing, and the minimum cost is also gradually decreasing. This is consistent with the theoretical analysis above, so we can draw the conclusion that the larger the number of PF points, the smaller the total cost, and the shorter the time for the lowest cost to appear.

# V. CONCLUSION

In this paper, we propose an improved environmental stress testing model based on the Weibull model. This model means that a part of the units that fail in the test because of the experimental environment can work normally in the real environment, and this part will affect the total cost of the experiment. We use the same method as in the original paper to construct the model and calculate the total cost, and change the number of  $SS_2$  parts in the test. At the same time, in order to reduce the influence of random rows on the experiment, we repeat the experiment 1000 times and take the results after flattening the experimental results.

According to our stress testing model, we have come to the conclusion that the larger the number of PF points, the lower the overall cost and the shorter the time to achieve the minimum cost. Companies can estimate the proportion of PF devices in failed equipment based on their actual situation. By selecting suitable PF data, companies can spend less money and time on EST testing, obtain more realistic simulation results, and make better testing and maintenance plans. Our model also addresses the limitations of the original experiment, making the results more realistic, more practical, and more accurate in estimating the overall cost.

### VI. FUTHER WORK

In our current experiment, we improved the data of the failed EST test based on the original paper, taking into account the units that were damaged due to the test but were normal in practice, and the units that failed the test in the first place. After the above experiments, we found that it is very meaningful to explore this part. Because the overall cost of the test and warranty does change under different assumptions, and the optimal time to stop testing also changes. Therefore, the next urgent task is to determine the number of PFs and the distribution of them based on time is possible, as it is crucial for the impact of the test. Meanwhile, our definition of the warranty part of the total cost is 1 year, and there is undoubtedly some room for improvement in this part. For example, you could try to figure out how to minimize the total cost for different warranty years, rather than just one year. At the same time, the data and results mentioned in this paper are from simulation experiments, not real experiments. Therefore, in order to make the experimental data more realistic, an experiment should be carried out according to the method mentioned in this paper and real data should be obtained. The project can be further expanded from the above three aspects.

#### REFERENCES

- [1] B. Honari, J. Donovan, T. Joyce, S. Wilson, and E. Murphy, "Stress test optimization using an integrated production test and field reliability model," Quality and Reliability Engineering International, vol. 26, no. 6, pp. 579-592, Sep. 2010.
- [2] D. Le, I. Karolilk, R. Smith, A. J. Mcgovern, C. Curette, J. Ulbin, M. Zarubaiko, C. Henry, and L. Stevens, "Environmental Stress Testing with Boundary-Scan," in Proceedings of the International Test Conference 1994, Princeton, NJ, North Andover, MA, 1994, doi: 10.1109/TEST.1994.527870
- [3] D. E. Pachucki, "Environmental Stress Testing Experiment Using the Taguchi Method," in IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, vol. IX, no. I, March 1YY5. doi: 10.1109/TCAPT.1995.107&9886
- [4] M. Catelani, V. Scarano, and J. Trotta, "Environmental Stress Screening for electronic equipment by random vibration: a critical approach to reliability estimation and planning," in Proceedings of the IEEE Instrumentation and Measurement Technology Conference IMTC 2007, Warsaw, Poland, May 1-3, 2007. doi: 10.1109/IMTC.2007.1-4244-0589-0
- [5] McCullagh P, Nelder JA. Generalized Linear Models. Chapman & Hall: London, 1999.
- [6] Prabhakar Murthy DN, Xie M, Jiang R. Weibull Models. Wiley Interscience: New York, 2004.