(12) NACH DEM VERTRAG R DIE INTERNATIONALE ZUSAMMENARE AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

1**0/**523**251**

(43) Internationales Veröffentlichungsdatum 26. Februar 2004 (26.02.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/016559 A1

(75) Erfinder/Anmelder (nur für US): SCHLUCKWERDER.

Heike [DE/DE]; Sindbadweg 22, 70567 Stuttgart (DE).

EISELE, Ulrich [DE/DE]; Boecklerstrasse 6B, 70199

(51) Internationale Patentklassifikation7:

(72) Erfinder; und

- (21) Internationales Aktenzeichen:
 - PCT/DE2003/001034

C03C 14/00

(22) Internationales Anmeldedatum:

28. März 2003 (28.03.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 34 364.0

27. Juli 2002 (27.07.2002) DE

Stuttgart (DE).

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Veröffentlicht:

mit internationalem Recherchenbericht

(81) Bestimmungsstaaten (national): JP. US.

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, 70442 Stuttgart (DE).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: GLASS/CERAMIC COMPOSITE MATERIAL, CERAMIC FILM, LAYER COMPOSITE, OR MICROHYBRID COM-PRISING SAID COMPOSITE MATERIAL AND METHOD FOR PRODUCTION THEREOF

(54) Bezeichnung: GLAS-KERAMIK-VERBUNDWERKSTOFF KERAMISCHE FOLIE SCHICHTVERBUND ODER MIKRO-HYBRID MIT DIESEM VERBUNDWERKSTOFF UND VERFAHREN ZU DESSEN HERSTELLUNG

(57) Abstract: A glass/ceramic composite material comprising an at least partly glassy matrix, a ceramic filler, a ceramic film, a ceramic layer composite or microhybrid (5) with said composite material is disclosed, whereby the matrix comprises lithium, silicon, aluminium and oxygen and at least partly a crystalline phase. A method for production thereof is also disclosed, whereby a glass with crystalline regions is fused from a starting material comprising 30 wt.% to 68 wt.% SiO2, 10 wt.% to 25 wt.% Al2O3, 5 wt.% to 20 wt.% LiO₂, 0 wt.% to 35 wt.% B₂O₃, 0 wt.% to 10 wt.% P₂O₅, 0 wt.% to 10 wt.% Sb₂O₃ and 0 wt.% to 3 wt.% ZrO₂ and transformed into a glass powder. A ceramic filler, in particular powdery aluminium nitride, is then mixed with the glass powder and said powder mixture, in particular after addition of further components is then sintered.

⁽⁵⁷⁾ Zusammenfassung: Es wird ein Glas-Keramik-Verbundwerkstoff mit einer zumindest bereichsweise glasartigen Matrix und einem keramischen Füllstoff sowie eine keramische Folie, ein keramischer Schichtverbund oder Mikrohybrid (5) mit diesem Verbundwerkstoff vorgeschlagen, wobei die Matrix Lithium, Silizium, Aluminium und Sauerstoff enthält und zumindest bereichsweise mindestens eine kristalline Phase aufweist. Weiter wird ein Verfahren zu dessen Herstellung vorgeschlagen, wobei ein Glas mit kristallinen Bereichen aus einer Ausgangsmischung mit 30 Gew.% bis 68 Gew.% Si02, 10 Gew.% bis 25 Gew.% Al203, 5 Gew.% bis 20 Gew.% Li02, 0 Gew.% bis 35 Gew.% B203, 0 Gew.% bis 10 Gew.% P205, 0 Gew.% bis 10 Gew.% Sb203 und 0 Gew.% bis 3 Gew.% Zr02 erschmolzen und in ein Glaspulver überführt wird, dem Glaspulver dann ein keramischer Füllstoff, insbesondere pulverförmiges Aluminiumnitrid, zugemischt, und diese Pulvermischung, insbesondere nach Zusatz weiterer Bestandteile, schliesslich gesintert wird.

Glas-Keramik-Verbundwerkstoff, keramische Folie, Schichtverbund oder Mikrohybrid mit diesem Verbundwerkstoff und Verfahren zu dessen Herstellung

Die Erfindung betrifft einen Glas-Keramik-Verbundwerkstoff, eine keramische Folie, einen keramischen Schichtverbund oder ein Mikrohybrid mit diesem Glas-Keramik-Verbundwerkstoff sowie ein Verfahren zur Herstellung des Verbundwerkstoffes bzw. der diesen aufweisenden Bauteile nach der Gattung der unabhängigen Ansprüche.

Stand der Technik

Substratwerkstoffe für LTCC-Anwendungen ("low temperature co-fired ceramics") wurden in den letzten Jahren vor allem mit dem Ziel entwickelt, die Sintertemperatur zu reduzieren, um ein Cofiring, d.h. ein Sintern des gesamten Werkstoffverbundes in einem Schritt, mit niedrig schmelzenden Metallen wie beispielsweise Silber zu ermöglichen. Dabei sollte gleichzeitig die Verträglichkeit mit dem Metall gewährleistet bleiben. Weiter war es Ziel, die dielektrischen Eigenschaften der LTCC-Substrate besonders für Anwendungen im Hochfrequenzbereich zu verbessern, und ihre Wärmeleitfähigkeit hinsichtlich Wärmeableitung von den LTCC-Substraten zu erhöhen.

Aus EP 0 499 865 A1 ist ein Glas-Aluminiumnitrid-Verbundwerkstoff bekannt, der eine vergleichsweise hohe Wärmeleitfähigkeit bei niedriger Sintertemperatur und guten dielektrischen Eigenschaften aufweist. Dieser Verbundwerkstoff geht von einem Glaspulver mit Siliziumdioxid, Aluminiumoxid, Boroxid und einem Erdalkalimetalloxid wie MgO, CaO oder SrO aus, dem Aluminiumnitrid als keramischer Pulverbestandteil zugesetzt ist. Bei dem Sintern der Ausgangsmischung zu dem Verbundwerkstoff gemäß EP 0 499 865 A1 wird im Fall der Verwendung von MgO Cordierit, im Fall der Verwendung von CaO

Anorthit gebildet, während die Glasmatrix an Silizium, Magnesium und Aluminium verarmt.

Aufgabe der vorliegenden Erfindung war die Bereitstellung eines Glas-Keramik-Verbundwerkstoffes, insbesondere eines Substratwerkstoffes für LTCC-Anwendungen, der zu einer keramischen Folie verarbeitbar bzw. in einem keramischen Schichtverbund oder in einem Mikrohybrid einsetzbar ist, und der eine hohe Gesamtwärmeleitfähigkeit, möglichst in dem Bereich von 8 W/mK bis 12 W/mK, aufweist.

Vorteile der Erfindung

Der erfindungsgemäße Glas-Keramik-Verbundwerkstoff hat gegenüber dem Stand der Technik den Vorteil, dass er sich sehr gut als Substratmaterial für LTCC-Substrate und zum Aufbau von Mikrohybriden mit derartigen Substraten eignet, und dass er insbesondere eine gegenüber herkömmlichen LTCC-Substratwerkstoffen, deren Wärmeleitfähigkeit üblicherweise zwischen 2 W/mK bis 3 W/mK liegt, deutlich erhöhte Wärmeleitfähigkeit, insbesondere in dem günstigen Bereich von 8 W/mK bis 12 W/mK, aufweist. Auf diese Weise kann die Anzahl von erforderlichen Wärmeableitungen, die im Fall von Mikrohybriden in der Regel als thermische Durchführungen bzw. sogenannte "thermische Vias", d.h. das Substrat durchquerende, mit einem Metall gefüllte Kanäle, ausgeführt sind, reduziert werden. Dadurch ergibt sich die Möglichkeit, die Baugröße derartiger Mikrohybride deutlich zu verringern bzw. die Layout-Dichte zu erhöhen.

Ein mit dem erfindungsgemäßen Glas-Keramik-Verbundwerkstoff hergestellter keramischer Schichtverbund oder ein Mikrohybrid auf der Grundlage eines LTCC-Substrates mit diesem Glas-Keramik-Verbundwerkstoff bietet somit die Möglichkeit, thermische Vias einzusparen und eine höhere Integrationsdichte zu erzielen. Schließlich wird auch das zum Ausfüllen der thermischen Vias üblicherweise eingesetzte Silber durch Verringerung von deren Zahl teilweise eingespart.

Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.

So ist besonders vorteilhaft, wenn der keramische Füllstoff Aluminiumnitrid ist, das eine mittlere Pulverteilchengröße von 100 nm bis 10 µm, insbesondere von 1 µm bis 10 µm,

aufweist. Der Füllstoff kann dabei unbeschichtetes Aluminiumnitrid sein, das beispielsweise eine mittlere Teilchengröße von 1 µm bis 3 µm aufweist oder, bevorzugt, beschichtetes Aluminiumnitrid mit einer mittleren Teilchengröße von beispielsweise 6 µm bis 7 µm, wobei die Beschichtung bevorzugt eine hydrophobierende Oberflächenmodifikation oder eine sauerstoffhaltige Oberflächenbeschichtung ist. Besonders vorteilhaft ist, wenn das eingesetzte Aluminiumnitridpulver insbesondere aufgrund der sauerstoffhaltigen Oberflächenbeschichtung einen Sauerstoffgehalt von 0,5 Gew.% bis 2,0 Gew.% aufweist, wobei generell gilt, dass ein niedrigerer Sauerstoffgehalt zu einer erhöhten Wärmeleitfähigkeit des eingesetzten Aluminiumnitrid-Keramikpulvers führt.

Vorteilhaft ist daneben, wenn die Matrix als kristalline Phase einen Li-Al-Si₂O₃-Mischkristall und/oder ein Li-Al-Si-Oxinitrid und/oder ein Li-Al-Silikat und/oder ein Lithiumsilikat als kristalline Phase aufweist, sowie weiterhin aus einer Restglasphase besteht, in der zumindest in geringen Anteilen Stickstoff lösbar ist. Besonders vorteilhaft ist, wenn die Matrix möglichst kein oder möglichst wenig Lithiumsilikat enthält.

Weiterhin ist vorteilhaft, wenn in die Ausgangsmischung auch B₂O₃ eingesetzt wird, so dass zumindest bereichsweise ein Li-B-Oxid als kristalline Phase in der Matrix entstehen kann.

Der Anteil des keramischen Füllstoffs in dem Verbundwerkstoff liegt bevorzugt zwischen 25 Vol.% und 70 Vol.%, insbesondere 30 Vol.% bis 50 Vol.%. Über den Füllstoffanteile lässt sich besonders einfach eine Wärmeleitfähigkeit im angestrebten Bereich von 8 W/mK bis 12 W/mK einstellen.

Zeichnungen

Die Erfindung wird anhand der Zeichnung und in der nachfolgenden Beschreibung näher erläutert. Es zeigt Figur 1 eine Draufsicht auf ein Mikrohybrid mit einer LTCC-Folie als Keramiksubstrat.

Ausführungsbeispiele

Die Figur 1 zeigt ein prinzipiell bekanntes Mikrohybrid 5 mit einem keramischen Substrat 10 in Form einer LTCC-Folie oder eines LTCC-Schichtverbundes, wobei das Sub-

strat 10 bereichsweise thermische Durchführungen 14, sogenannte "thermische Vias" aufweist, die das Substrat 10 durchqueren und die mit einem Metall, beispielsweise Silber, gefüllt sind. Weiter sind auch das Substrat 10 durchquerende elektrische Durchführungen 11, sogenannte "elektrische Vias", vorgesehen, mit denen auf der Oberseite des Substrates 10 geführte Leiterbahnen 12 von der Unterseite des Substrates 10 kontaktierbar sind. Schließlich ist auf der Oberseite des Substrates 10 exemplarisch ein aufgedruckter Widerstand 13 dargestellt, der ebenfalls mit den aufgedruckten Leiterbahnen 12 verbunden ist.

Kern der Erfindung ist die Bereitstellung eines Glas-Keramik-Verbundwerkstoffes zur Herstellung des Substrates 10 gemäß Figur 1.

Dazu wird zunächst ein Glas aus einer Ausgangsmischung mit 20 Gew.% bis 68 Gew.% SiO₂, 10 Gew.% bis 25 Gew.% Al₂O₃, 5 Gew.% bis 25 Gew.% Li₂O, 0 Gew.% bis 33 Gew.% B₂O₃, 0 Gew.% bis 10 Gew.% P₂O₅, 0 Gew.% bis 10 Gew.% Sb₂O₃ und 0 Gew.% bis 3 Gew.% ZrO₂ erschmolzen.

Bevorzugt besteht die Ausgangsmischung aus 48 Gew.% bis 66 Gew.% SiO₂, 14 Gew.% bis 22 Gew.% Al₂O₃, 4 Gew.% bis 20 Gew.% Li₂O, 0 Gew.% bis 20 Gew.% B₂O₃, 0 Gew.% bis 5 Gew.% P₂O₅, 0 Gew.% bis 5 Gew.% Sb₂O₃ und 0 Gew.% bis 2 Gew.% ZrO₂.

Besonders bevorzugt werden im Fall der Bestandteile B₂O₃, P₂O₅, Sb₂O₃ und ZrO₂ diese in einem Anteil von 3 Gew.% bis 20 Gew.% B₂O₃ und/oder 2 Gew.% bis 5 Gew.% P₂O₅ und/oder 1 Gew.% bis 5 Gew.% Sb₂O₃ und/oder 1 Gew.% bis 2 Gew.% ZrO₂ zugesetzt.

Im Rahmen eines ersten Ausführungsbeispiels besteht die Ausgangsmischung aus 65 Gew.% SiO₂, 15 Gew.% Al₂O₃ und 20 Gew.% Li₂O.

Im Rahmen eines zweiten Ausführungsbeispiels besteht die Ausgangsmischung aus 65 Gew.% SiO₂, 15 Gew.% Al₂O₃, 12 Gew.% Li₂O und 8 Gew.% B₂O₃.

In einem dritten Ausführungsbeispiel besteht die Ausgangsmischung aus 50 Gew.% SiO₂, 16 Gew.% Al₂O₃, 12 Gew.% Li₂O und 20 Gew.% B₂O₃.

Bei einem vierten Ausführungsbeispiel besteht die Ausgangsmischung aus 65 Gew.% SiO₂, 21 Gew.% Al₂O₃, 4 Gew.% Li₂O, 4 Gew.% B₂O₃, 4 Gew.% P₂O₅ und 2 Gew.% ZrO₂.

Bei der Herstellung des Glases aus dieser Ausgangsmischung entsteht eine Matrix, die Lithium, Silizium, Aluminium und Sauerstoff enthält, und die bereichsweise mindestens eine kristalline Phase aufweist. Diese kristalline Phase ist beispielsweise ein Li-Al-Si₂O₃-Mischkristall, ein Li-Al-Si-Oxinitrid, ein Li-Al-Silikat, ein Lithiumsilikat oder eine Mehrzahl von derartigen kristallinen Phasen. Die nicht kristallinen Bereiche der Matrix bilden weiter eine Restglasphase, in der in geringen Anteilen Stickstoff lösbar ist.

Zur Herstellung der vorgenannten Gläser werden zunächst die in die Ausgangsmischung eingesetzten Pulverbestandteile homogenisiert und bei Temperaturen zwischen 1200°C und 1600°C geschmolzen. Nach einer Homogenisierung der Schmelze wird diese dann beispielsweise in Wasser abgegossen, d.h. gefrittet, und das so erhaltene Glas aufgemahlen bis eine mittlere Korngröße von ca. 1 μm bis 5 μm, beispielsweise 3 μm, vorliegt. Anschließend wird diesem Glaspulver als keramischer Füllstoff pulverförmiges Aluminiumnitrid mit einer mittleren Teilchengröße von 100 nm bis 10 μm, vorzugsweise 1 μm bis 10 μm zugesetzt.

Im Rahmen eines ersten Ausführungsbeispiels zur Herstellung des Glas-Keramik-Verbundwerkstoffes aus dem Glaspulver und dem keramischen Füllstoff wird eines der vorstehend beschriebenen Glaspulver und als keramischer Füllstoff Aluminiumnitrid-Pulver in einem organischen Lösungsmittel wie Isopropanol homogenisiert, die so erhaltene Pulvermischung zunächst getrocknet, und anschließend einer Formgebung, beispielsweise einem uniaxialen Verpressen, unterzogen.

Anschließend wird der erhaltene Presskörper dann an Luft, Stickstoff oder einem Sauerstoff und/oder Stickstoff enthaltenden Gasgemisch bei Temperaturen von maximal 1050°C gesintert, so dass man abschließend einen dicht gesinterten Glas-Keramik-Verbundwerkstoff erhält, in dem in einer glasartigen Matrix, die bereichsweise kristalline Phasen aufweist, die keramischen Aluminiumnitrid-Partikel eingebettet sind.

An diesem Glas-Keramik-Verbundwerkstoff dann wurde mit Hilfe des "Hot-Disc-Verfahrens" die Wärmeleitfähigkeit bestimmt. Dabei zeigte sich, dass diese von dem Anteil des zugesetzten keramischen Füllstoffes abhängig ist.

So wurde bei einem Glas mit 65 Gew.% SiO₂, 15 Gew.% Al₂O₃ und 20 Gew.% Li₂O in der Ausgangsmischung zur Herstellung des Glases und einem Anteil von 70 Vol.% dieses Glases und 30 Vol.% Aluminiumnitrid-Teilchen in dem Glas-Keramik-Verbundwerkstoff eine Wärmeleitfähigkeit von 9,1 W/mK, bei einem Anteil von 65 Vol.% dieses Glases und 35 Vol.% der Aluminiumnitrid-Teilchen eine Wärmeleitfähigkeit von 8,9 W/mK und bei 60 Vol.% dieses Glases und 40 Vol.% der Aluminiumnitrid-Teilchen eine Wärmeleitfähigkeit von 12,5 W/mK ermittelt.

Generell zeigt sich, dass die Wärmeleitfähigkeit in dem Glas-Keramik-Verbundwerkstoff mit zunehmendem Anteil an Aluminiumnitrit steigt.

Der bei einer Zusammensetzung von 65 Vol.% Glas und 35 Vol.% Aluminiumnitrid stagnierende Wert der Wärmeleitfähigkeit wird auf einen hohen Anteil von gebildetem kristallinem Lithiumsilikat zurückgeführt. Daher ist es günstig, wenn der Glas-Keramik-Verbundwerkstoff möglichst wenig oder kein Lithiumsilikat enthält.

Die Prüfung auf kristalline Phasen innerhalb der Matrix des Glas-Keramik-Verbundwerkstoffes und der Nachweis dieser Phasen erfolgten im Übrigen durch Röntgendiffraktometrie und Rasterelektronenmikroskopie.

Zur Herstellung einer keramischen Folie, eines keramischen Schichtverbundes oder des Mikrohybrides 5 mit dem Substrat 10 aus dem vorstehend beschriebenen Glas-Keramik-Verbundwerkstoff wird zunächst eines der beschriebenen Gläser hergestellt, auf die beschriebene Korngröße aufgemahlen und mit dem beschriebenen keramischen Füllstoff Aluminiumnitrid vermischt. Danach werden der Pulvermischung bevorzugt weitere, an sich bekannte Bestandteile wie ein Lösungsmittel, ein organischer Binder sowie vorzugsweise auch ein Dispergator zugesetzt, und es erfolgt eine Formgebung der Mischung, insbesondere zu einer Folie, einer Schicht oder einem Schichtverbund. An die Formgebung schließt sich dann bevorzugt zunächst eine Entbinderung und danach ein Sintem der Folie, Schicht oder des Schichtverbundes bei maximal 1050°C an Luft, Stickstoff oder einem Sauerstoff und/oder Stickstoff enhaltenden Gasgemisch an. Auf diese Weise wird

der zugesetzte Binder bzw. das Lösungsmittel sowie der Dispergator zumindest weitgehend durch Pyrolyse wieder entfernt, so dass ein von diesen temporären Bestandteilen weitgehend freier Glas-Keramik-Verbundwerkstoff in der gewünschten Form entsteht. Auf der so beispielsweise hergestellten Folie, die als Substrat 10 für das Mikrohybrid 5 dient, wird dieses dann in üblicher Weise in Aufbautechnik aufgebaut.

Patentansprüche

- 1. Glas-Keramik-Verbundwerkstoff mit einer zumindest bereichsweise glasartigen Matrix und einem keramischen Füllstoff, dadurch gekennzeichnet, dass die Matrix Lithium, Silizium, Aluminium und Sauerstoff enthält und zumindest bereichsweise mindestens eine kristalline Phase aufweist.
- 2. Glas-Keramik-Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, dass die Matrix 20 Gew.% bis 68 Gew.% SiO₂, 10 Gew.% bis 25 Gew.% Al₂O₃, 5 Gew.% bis 25 Gew.% Li₂O, 0 Gew.% bis 35 Gew.% B₂O₃, 0 Gew.% bis 10 Gew.% P₂O₅, 0 Gew.% bis 10 Gew.% Sb₂O₃ und 0 Gew.% bis 3 Gew.% ZrO₂ enthält oder aus einer diese Stoffe enthaltenden oder daraus bestehenden Ausgangsmischung erschmolzen ist.
- 3. Glas-Keramik-Verbundwerkstoff nach Anspruch 2, dadurch gekennzeichnet, dass die Matrix 48 Gew.% bis 66 Gew.% SiO₂, 14 Gew.% bis 22 Gew.% Al₂O₃, 4 Gew.% bis 20 Gew.% Li₂O, 0 Gew.% bis 20 Gew.% B₂O₃, 0 Gew.% bis 5 Gew.% P₂O₅, 0 Gew.% bis 5 Gew.% Sb₂O₃ und 0 Gew.% bis 2 Gew.% ZrO₂ enthält oder aus einer diese Stoffe enthaltenden oder daraus bestehenden Ausgangsmischung erschmolzen ist.
- 4. Glas-Keramik-Verbundwerkstoff nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Matrix 3 Gew.% bis 33 Gew.% B₂O₃ und/oder 2 Gew.% bis 5 Gew.% P₂O₅ und/oder 1 Gew.% bis 5 Gew.% Sb₂O₃ und/oder 1 Gew.% bis 2 Gew.% ZrO₂ enthält oder aus einer diese Stoffe enthaltenden oder daraus bestehenden Ausgangsmischung erschmolzen ist.

- 5. Glas-Keramik-Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, dass der keramische Füllstoff Aluminiumnitrid oder oberflächlich mit einer Beschichtung oder einer Oberflächenmodifikation versehenes Aluminiumntrid, insbesondere mit einer mittleren Teilchengröße von 100 nm bis 10 μm, ist.
- 6. Glas-Keramik-Verbundwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Matrix als kristalline Phase einen LiAlSi₂O₃-Mischkristall, und/oder ein Li-Al-Si-Oxidnitrid und/oder ein Li-Al-Silikat und/oder ein Li-Silikat und/oder ein Li-B-Oxid aufweist.
- 7. Glas-Keramik-Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, dass die Matrix neben der mindestens einen kristallinen Phase eine Restglasphase, insbesondere eine Restglasphase, in der in geringen Anteilen Stickstoff lösbar ist, aufweist.
- 8. Glas-Keramik-Verbundwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil des keramischen Füllstoffes in dem Verbundwerkstoff zwischen 25 Vol.% und 60 Vol.%, insbesondere 30 Vol.% bis 50 Vol.%, liegt.
- Glas-Keramik-Verbundwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Verbundwerkstoff eine Wärmeleitfähigkeit von 8 W/mK bis 12 W/mK aufweist.
- 10. Keramische Folie, keramischer Schichtverbund oder Mikrohybrid mit einem Glas-Keramik-Verbundwerkstoff nach einem der Ansprüche 1 bis 8.
- 11. Verfahren zur Herstellung eines Glas-Keramik-Verbundwerkstoffes, einer keramischen Folie, eines keramischen Schichtverbundes oder eines Mikrohybrides nach einem der vorangehenden Ansprüche, wobei ein Glas mit kristallinen Bereichen aus einer Ausgangsmischung mit 20 Gew.% bis 68 Gew.% SiO₂, 10 Gew.% bis 25 Gew.% Al₂O₃, 5 Gew.% bis 20 Gew.% Li₂O, 0 Gew.% bis 35 Gew.% B₂O₃, 0 Gew.% bis 10 Gew.% P₂O₅, 0 Gew.% bis 10 Gew.% Sb₂O₃ und 0 Gew.% bis 3 Gew.% ZrO₂ erschmolzen und in ein Glaspulver überführt, dem Glaspulver ein keramischer Füllstoff, insbesondere pul-

verförmiges Aluminiumnitrid, zugemischt, und diese Pulvermischung, insbesondere nach Zusatz weiterer Bestandteile, gesintert wird.

- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Pulvermischung vor dem Sintern verpresst oder insbesondere zu einer Folie, einer Schicht oder einem Schichtverbund geformt wird.
- 13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das Sintern bei Temperaturen von maximal 1050°C an Luft, Stickstoff oder in einem Sauerstoff und/oder Stickstoff enthaltenden Gasgemisch erfolgt.
- 14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass der Pulvermischung vor dem Sintern in einem Lösungsmittel unter Einsatz eines Dispergators aufbereitet wird, und dass insbesondere zu einer Weiterverarbeitung ein organischer Binder zugesetzt wird.

Fig. 1

INTERNATIONAL SEARCH REPORT

onal Application No PCT/DE_03/01034

A. CLASSIFICATION OF SUBJECT MATTE IPC 7 C03C14/00 According to international Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, WPI Data, INSPEC, COMPENDEX C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X HYDE A R ET AL: "COMPARISON OF 1-4,6,7, PARTICULATE AND PLATELET REINFORCEMENT OF 10-14 A LITHIUM DISILICATE GLASS-CERAMIC" BRITISH CERAMIC TRANSACTIONS, INSTITUTE OF MATERIALS, LONDON, GB, vol. 92, no. 2, 1993, pages 55-61, XP000364940 ISSN: 0967-9782 page 55 X "ANNOUNCEMENT" 1,5,10 TECHNISCHE RUNDSCHAU, HALLWAG VERLAG. BERN, CH, vol. 87, no. 14, 7 April 1995 (1995-04-07), page 6 XP000508977 ISSN: 1023-0823 the whole document -/--Χ Further documents are listed in the continuation of box C. Patent family members are listed in annex. ° Special categories of cited documents: 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance Invention *E* earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 14 August 2003 25/08/2003

Form PCT/ISA/210 (second sheet) (July 1992)

Fax: (+31~70) 340-3016

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Authorized officer

Van Bommel, L

INTERNATIONAL SEARCH REPORT

Intermional Application No PCT/DE 03/01034

.(Continu	nation) DOCUMENTS CONSIDERED BE RELEVANT	PC1/15 03/01034		
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	CHEMICAL ABSTRACTS, vol. 127, no. 16, 20 October 1997 (1997-10-20) Columbus, Ohio, US; abstract no. 223993t, ZHANG, ZONGTAO ET AL: "Crystallization of interfacial glass for preparation of dense SiC/crystallized glass nano-composites" page 1033; XP002251322 abstract & GUISUANYAN XUEBAO, vol. 25, no. 1, 1997, pages 96-100,	1,2,6,7, 10,11		
X	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 01, 31 January 2000 (2000-01-31) & JP 11 292616 A (OHARA INC), 26 October 1999 (1999-10-26) abstract	1,2,6-8, 10		
X	PATENT ABSTRACTS OF JAPAN vol. 009, no. 233 (C-304), 19 September 1985 (1985-09-19) & JP 60 090850 A (NIHON DENKI GLASS KK), 22 May 1985 (1985-05-22) abstract	1,2,6-8, 10		
X	PATENT ABSTRACTS OF JAPAN vol. 013, no. 158 (C-586), 17 April 1989 (1989-04-17) & JP 63 315537 A (ASAHI GLASS CO LTD), 23 December 1988 (1988-12-23) abstract	1,10		
X	EP 0 709 347 A (CORNING INC) 1 May 1996 (1996-05-01) claims	1,6,7,10		
x	CHEMICAL ABSTRACTS, vol. 121, no. 14, 3 October 1994 (1994-10-03) Columbus, Ohio, US; abstract no. 162315a, ZHANG, YUFENG ET AL: "Calcium lithium magnesium aluminosilicate glass-cerami composites with yttria-stabilized tetragonal zirconia polycrystals" page 332; XP002251323 abstract & WUJI CAILIAO XUEBAO, vol. 9, no. 2, 1994, pages 156-160,	1,7,10		
X	GB 2 366 563 A (MURATA MANUFACTURING CO) 13 March 2002 (2002-03-13) abstract	1,7,10		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/DE 03/01034

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
JP 11292616	Α	26-10-1999	NONE		
JP 60090850	Α	22-05-1985	NONE		 :
JP 63315537	А	23-12-1988	NONE		
EP 0709347	A	01-05-1996	US EP	5534470 A 0709347 A1	 09-07-1996 01-05-1996
GB 2366563	A	13-03-2002	JP CN US	2002097072 A 1334569 A 2002037804 A1	 02-04-2002 06-02-2002 28-03-2002

INTERNATIONALER RECHERCHENBERICHT

tionales Aktenzeichen 03/01034 PCT/P

A. KLASSIFIZIERUNG DES ANMELDUNGS DIPK 7 C03C14/00

STANDES

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 CO3C

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, WPI Data, INSPEC, COMPENDEX

C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	HYDE A R ET AL: "COMPARISON OF PARTICULATE AND PLATELET REINFORCEMENT OF A LITHIUM DISILICATE GLASS-CERAMIC" BRITISH CERAMIC TRANSACTIONS, INSTITUTE OF MATERIALS, LONDON, GB, Bd. 92, Nr. 2, 1993, Seiten 55-61, XP000364940 ISSN: 0967-9782 Seite 55	1-4,6,7, 10-14
X	"ANNOUNCEMENT" TECHNISCHE RUNDSCHAU, HALLWAG VERLAG. BERN, CH, Bd. 87, Nr. 14, 7. April 1995 (1995-04-07), Seite 6 XP000508977 ISSN: 1023-0823 das ganze Dokument	1,5,10

X	Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen
° Beso	ndere Kategorien von angegebenen Veröffentlichungen

Siehe Anhang Patentfamilie

- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie
- susgeführt)
 Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolitidert, sondem nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

14. August 2003

25/08/2003

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswljk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Van Bommel, L

INTERNATIONALER RECHERCHENBERICHT

Interplonales Aktenzeichen
PCT/DF 03/01034

	C.(Fortsetz	ung) ALS WESENTLICH ANGE	
20. Oktober 1997 (1997-10-20) 10,11	Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	menden Teile Betr. Anspruch Nr.
vol. 2000, no. 01, 31. Januar 2000 (2000-01-31) & JP 11 292616 A (OHARA INC), 26. Oktober 1999 (1999-10-26) Zusammenfassung X PATENT ABSTRACTS OF JAPAN vol. 009, no. 233 (C-304), 19. September 1985 (1985-09-19) & JP 60 090850 A (NIHON DENKI GLASS KK), 22. Mai 1985 (1985-05-22) Zusammenfassung X PATENT ABSTRACTS OF JAPAN vol. 013, no. 158 (C-586), 17. April 1989 (1989-04-17) & JP 63 315537 A (ASAHI GLASS CO LTD), 23. Dezember 1988 (1988-12-23) Zusammenfassung X EP 0 709 347 A (CORNING INC) 1. Mai 1996 (1996-05-01) Ansprüche X CHEMICAL ABSTRACTS, vol. 121, no. 14, 3. Oktober 1994 (1994-10-03) Columbus, Ohio, US; abstract no. 162315a, ZHANG, YUFENG ET AL: "Calcium lithium magnesium aluminosilicate glass-cerami composites with yttria-stabilized tetragonal zirconia polycrystals" Seite 332; XP002251323 Zusammenfassung & WUJI CAILIAO XUEBAO, Bd. 9, Nr. 2, 1994, Seiten 156-160, GB 2 366 563 A (MURATA MANUFACTURING CO) 13. März 2002 (2002-03-13)	X	20. Oktober 1997 (1997-10-20) Columbus, Ohio, US; abstract no. 223993t, ZHANG, ZONGTAO ET AL: "Crystallization of interfacial glass for preparation of dense SiC/crystallized glass nano-composites" Seite 1033; XP002251322 Zusammenfassung & GUISUANYAN XUEBAO,	
vol. 009, no. 233 (C-304), 19. September 1985 (1985-09-19)	X	vol. 2000, no. 01, 31. Januar 2000 (2000-01-31) & JP 11 292616 A (OHARA INC), 26. Oktober 1999 (1999-10-26)	
vol. 013, no. 158 (C-586), 17. April 1989 (1989-04-17) & JP 63 315537 A (ASAHI GLASS CO LTD), 23. Dezember 1988 (1988-12-23) Zusammenfassung X EP 0 709 347 A (CORNING INC) 1. Mai 1996 (1996-05-01) Ansprüche X CHEMICAL ABSTRACTS, vol. 121, no. 14, 3. Oktober 1994 (1994-10-03) Columbus, Ohio, US; abstract no. 162315a, ZHANG, YUFENG ET AL: "Calcium lithium magnesium aluminosilicate glass-cerami composites with yttria-stabilized tetragonal zirconia polycrystals" Seite 332; XP002251323 Zusammenfassung & WUJI CAILIAO XUEBAO, Bd. 9, Nr. 2, 1994, Seiten 156-160, X GB 2 366 563 A (MURATA MANUFACTURING CO) 13. März 2002 (2002-03-13)	X	vol. 009, no. 233 (C-304), 19. September 1985 (1985-09-19) & JP 60 090850 A (NIHON DENKI GLASS KK), 22. Mai 1985 (1985-05-22)	
1. Mai 1996 (1996-05-01) Ansprüche CHEMICAL ABSTRACTS, vol. 121, no. 14, 3. Oktober 1994 (1994-10-03) Columbus, Ohio, US; abstract no. 162315a, ZHANG, YUFENG ET AL: "Calcium lithium magnesium aluminosilicate glass-cerami composites with yttria-stabilized tetragonal zirconia polycrystals" Seite 332; XP002251323 Zusammenfassung & WUJI CAILIAO XUEBAO, Bd. 9, Nr. 2, 1994, Seiten 156-160, MGB 2 366 563 A (MURATA MANUFACTURING CO) 13. März 2002 (2002-03-13)	X	vol. 013, no. 158 (C-586), 17. April 1989 (1989-04-17) & JP 63 315537 A (ASAHI GLASS CO LTD), 23. Dezember 1988 (1988-12-23)	1,10
3. Oktober 1994 (1994-10-03) Columbus, Ohio, US; abstract no. 162315a, ZHANG, YUFENG ET AL: "Calcium lithium magnesium aluminosilicate glass-cerami composites with yttria-stabilized tetragonal zirconia polycrystals" Seite 332; XP002251323 Zusammenfassung & WUJI CAILIAO XUEBAO, Bd. 9, Nr. 2, 1994, Seiten 156-160, X GB 2 366 563 A (MURATA MANUFACTURING CO) 13. März 2002 (2002-03-13)	X	1. Mai 1996 (1996-05-01)	1,6,7,10
13. März 2002 (2002–03–13)	X	3. Oktober 1994 (1994-10-03) Columbus, Ohio, US; abstract no. 162315a, ZHANG, YUFENG ET AL: "Calcium lithium magnesium aluminosilicate glass-cerami composites with yttria-stabilized tetragonal zirconia polycrystals" Seite 332; XP002251323 Zusammenfassung & WUJI CAILIAO XUEBAO,	1,7,10
]	X	13. März 2002 (2002-03-13)	1,7,10

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Intermonates Aktenzeichen
PCT/PF 03/01034

Im Recherchenbericht angeführtes Patentdokument		nt	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
JP	11292616	A	26-10-1999	KEIN	E		
JP	60090850	Α	22-05-1985	KEIN	E		
JP	63315537	Α	23-12-1988	KEINE			
EP	0709347	Α	01-05-1996	US EP	5534470 <i>i</i> 0709347 <i>i</i>		09-07-1996 01-05-1996
GB	2366563	Α .	13-03-2002	JP CN US	2002097072 / 1334569 / 2002037804 /	Ą	02-04-2002 06-02-2002 28-03-2002