MATH 225 – Fall 2023– Section B1

Review questions (not to be turned in) Week 1-2 to be discussed by TA on Sep. 7 & 14, 2023

Please note that the following questions do not need to be turned in. They are for your own practice, so please attempt them. They represent a review of what you need from a first course in linear algebra. Solutions will be posted on eClass, and also the material will be reviewed by the TA on Sep. 7 and Sep. 14 during his office hours.

uring his office hours.	
1. Which statement is true?	
O Every vector space has at most one basis	
\bigcirc If $\mathcal{B} = \{w_1, w_2, w_3\}$ is a basis of \mathbb{R}^3 , then every vector $v \in \mathbb{R}^2$ can be linear combination of w_1, w_2 and w_3	written uniquely as a
\bigcirc A basis for every subspace of \mathbb{R}^n must have <i>n</i> -vectors	
\bigcirc If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and w_1, w_2 form a basis of \mathbb{R}^2 , form a basis of \mathbb{R}^2 as well.	then $\{T(w_1), T(w_2)\}\$
2. Let A be an 3×3 matrix whose whose characteristic polynomial is $p(\lambda) = -(\lambda - 1)$ the following statements can now be deduced?	$1)(\lambda-2)^2$. Which of
\bigcirc A can be diagonalized	
\bigcirc A is invertible	
\bigcirc The nullity of A is at least 1	
\bigcirc The diagonal entries of A are either 1 or 2	
3. Let A is a 2×3 matrix.	
\bigcirc The dimension of $\text{row}(A)$ must be less than the dimension of $\text{col}(A)$	
\bigcirc The dimension of row(A) could be greater than the dimension of col(A)	
\bigcirc A must have a null space	
○ None of the above statements are true.	
4. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation. Which of the following is true?	
\bigcirc T could be an invertible linear transformation	
\bigcirc There is a vector $v \in \mathbb{R}^3$ other than the zero vector such that $T(v) = \Big($	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
\bigcirc Every vector in \mathbb{R}^2 must be in the image of T	
O We don't have enough information to decide if any of the above choices	is always true.
5. Suppose A is a square matrix such that $A^2 = A$. Then which of the following is tr	rue
\bigcirc A is symmetric	
\bigcirc A has eigenvalues $0, -1$ and 1	
\bigcirc A is invertible	
\bigcirc The linear system $Av = v$ has an infinite number of solutions	

6. Suppose A is a 3×3 matrix that has the following vectors as eigenvectors

$$\left(\begin{array}{c}1\\0\\a\end{array}\right), \left(\begin{array}{c}2\\4a\\0\end{array}\right), \left(\begin{array}{c}a\\2\\1\end{array}\right)$$

Find a value of a for which the matrix A is **diagonalizable**. Try to justify your answer.

7. Suppose A is a 2×3 matrix which has null space consisting of all vectors of the form

$$\left(\begin{array}{c} -3t \\ -2t \\ t \end{array}\right)$$

What does the RREF of A look like?

8. Let $\vec{n} := (1,2,3) \in \mathbb{R}^3$ and consider the set of all vectors perpendicular to \vec{n} , i.e.

$$W = {\vec{v} = (x, y, z) \in \mathbb{R}^3 \mid \vec{n} \cdot \vec{v} = 0}.$$

Is W a subspace of \mathbb{R}^3 ? If so, verify the definition of a subspace is satisfied. If not, produce a counterexample.

9. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation which is the composition $T = U \circ V$ where U is reflection about the yz-plane, and V is reflection about the xy-plane. Write down the standard matrix [T] of this transformation.

(Hint: draw a picture first)

10. Assume that the following determinant,

$$\left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = 7.$$

Compute the determinant

$$\begin{vmatrix} 0 & d & e & f \\ 1 & d-3 & e-4 & f-5 \\ 0 & 2a & 2b & 2c \\ 0 & g+d & h+e & i+f \end{vmatrix}$$

11. Let A be the matrix

$$\left(\begin{array}{cccc}
2 & -4 & 4 & 8 \\
1 & -2 & 2 & 3 \\
4 & -8 & 3 & 2
\end{array}\right)$$

- (a) Compute the RREF of A and use this to find a basis for row(A)
- (b) Does the vector (5, -10, 3, 7) lie in row(A)? If so, write it explicitly as a linear combination of the basis you found in the previous part.
- (c) Write down a basis for col(A)
- (d) Write down a basis for null(A).
- 12. This question is concerned with the matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

- (a) Compute the characteristic polynomial of A and write down all eigenvalues of A with their algebraic multiplicities. For each eigenvalue, find the geometric multiplicity and write down a **basis** of the eigenspace.
- (b) Compute A^8 using the previous parts. (If you try to compute this directly by multiplying out the matrix by itself 8 times, you will get no credit for this part of the problem. Also you may want to use the fact that $2^8 = 256$.)