Tony Seguin

Encadrants : Olivier Cailloux Meltem Öztürk Université Paris-Dauphine - LAMSADE

12 octobre 2018

Sommaire

- Sujet de stage
 - Problématique
- 2 Débat
 - Introduction
 - Scénario
- 3 Deux systèmes sélectionnés
 - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- A Résultats et conclusion
 - Résultats
 - Conclusion

- Problématique
- 2 Débat
 - Introduction
 - Scénario
- Deux systèmes sélectionnés
 - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- A Résultats et conclusion
 - Résultats
 - Conclusion

Sujet de stage

Problème d'aide à la décision

Alternatives

x: Bell

v : Pomme

z: PV

Critères

c₁: écran

 c_2 : processeur

c3: batterie

Performances

x = (0.75, 0.59, 0.70)

y = (0.89, 0.60, 0.30)

z = (0.58, 0.55, 0.53)

Fournir une argumentation

Solution proposé

 Débat entre deux systèmes de recommandation [Cailloux and Meinard, 2018]

- Problématique
- 2 Débat
 - Introduction
 - Scénario
- Deux systèmes sélectionnés
 - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- A Résultats et conclusion
 - Résultats
 - Conclusion

Notations

S : ensemble des arguments,

Déhat

- T : ensemble des propositions possibles,
- P : ensemble des perspectives.

Relations

- \sim $\subseteq S \times T : s \sim t$, l'argument s soutient la proposition t,
- $\triangleright_\exists \subseteq S \times S : s_2 \triangleright_\exists s_1$, s_2 attaque s_1 , si s_2 attaque dans au moins une perspective s_1 devient invalide,
- $\not \triangleright_\exists \subseteq S \times S : s_2 \not \triangleright_\exists s_1, s_2$ n'attaque pas l'argument s_1, s_1 reste valide.

Exemple de débat

```
x is better than anyone else (s2)

x is recommended (t)

x has the best performances on x (s1)

x has the worst performances on x (s3)

x has the worst performance on x (s3)
```

not really important. (s4)

- Problématique
- 2 Débat
 - Introduction
 - Scénario
- 3 Deux systèmes sélectionnés
 - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- 4 Résultats et conclusion
 - Résultats
 - Conclusion

Connaissances

Approche [Labreuche, 2011]

- Ensemble d'alternatives : X
- Ensemble de critères : $N = \{1, ..., n\}$
- Préférences :
 - ullet poids des critères $w=(w_0,\ ...\ ,\ w_n)$, tel que $\sum\limits_{\dot{}}w_i=1$

Approche [Nunes and al, 2014]

- Ensemble d'alternatives : X
- Ensemble de critères : $N = \{1, ..., n\}$
- Ensemble de contraintes : C.
- Préférences :
 - fonction d'utilité : $v(o_i[a_k]) \in [-1, 1]$
 - utilité associée aux contraintes
 - ullet poids des critères $w(x,a_i)\in [0,1]$ avec $\sum\limits_{\cdot}w(x,a_i)=1$

Fonction de décision

Approche [Labreuche, 2011]

• Soit $x \in X$, $d(x) \to [0,1]$: $\sum w_i \times x_i$ $i \in N$

Approche [Nunes and al, 2014]

- Soit $x, y \in X$, $d(x,y) \rightarrow [0,1]$:
 - $\sum w_i \times AttCost(x, y, a_i)$
 - $CritCost(x, y, a_i) = y_i x_i$, si $y_i > x_i$, 0 sinon.
 - ExtAversion(x,y):
 - ext(y) ext(x) si ext(x) < ext(y), 0 sinon.
 - TradeoffContrast(x,y):
 - $avg_{TradeOff} TradeOff(x, y)$ si $TradeOff(x, y) \le avg_{TradeOff}$, $TradeOff(y, x) - avg_{TradeOff}$ si $TradeOff(y, x) > avg_{TradeOff}$, 0 sinon.

Choix d'explication

- ψ_{ALL} : All
- ullet $\psi_{\textit{NOA}}$: Not on average
- ψ_{IVT} : Invert
- \bullet ψ_{RMG} : Remaining

Ordre d'application

 $\psi_{ALL} \lhd \psi_{NOA} \lhd \psi_{IVT} \lhd \psi_{RMG}$

Arguments

 ψ_{ALL} : N

 $\psi_{NOA}: C \cap N^+(x,y) \text{ et } C \cap N^-(x,y)$

 ψ_{IVT} : K_{PS} , K_{PRS} , K_{NW} , K_{NRW}

et K_{PN}

 ψ_{RMG} : N, ou N⁺ et N⁻.

Arguments : Nunes

Contenu Explication

• ϕ_{CRIT} : Critical attribute

• ϕ_{CUT} : Cut-off

• ϕ_{DOM} : Domination

 \bullet ϕ_{MIN-} : Minimum

requirements -

• ϕ_{MIN+} : Minimum

requirements +

• ϕ_{DFCI} : Decisive criteria

• ϕ_{TRAD} : Trade-off resolution

Arguments

 ϕ_{CRIT} : critère a^*

 ϕ_{CUT} : critère c

 $\phi_{DOM}: N$

 ϕ_{MIN+} : critère a_{th}

 ϕ_{MIN} : critère a_{th}

 $\phi_{DFCI}: D$

 $\phi_{TRAD}: N^+ \text{ et } N^-$

Ordre d'application

 $\phi_{CRIT} \triangleleft \phi_{CUT}^* \triangleleft \phi_{DOM} \triangleleft$ $\phi_{MIN} \triangleleft \phi_{DFCI} \triangleleft \phi_{TRAD}$

Comparaison

Figure: Comparaison entre l'approche de Labreuche, Klein et Nunes

- Problématique
- 2 Débat
 - Introduction
 - Scénario
- 3 Deux systèmes sélectionnés
 - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- A Résultats et conclusion
 - Résultats
 - Conclusion

Résultats

Figure: Pourcentages de solutions identiques par les deux modèles.

- Proposition d'un débat,
- Désaccord ⇒ débat possible.
- Le language commun reste à être définir
- Protocole de débat à finaliser.
- Suite :
 - récolte des préférences,
 - fonctions de décision diverse,
 - étude utilisateur.

Références

Sujet de stage

Cailloux and Meinard. 2018

A formal framework for deliberated judgment

Labreuche, 2011

A general framework for explaining the results of a multi-attribute preference model

Artificial Intelligence, vol. 175, 2011, pp. 1410–1448

Nunes and al. 2014

Pattern-based EXplanation for Automated Decisions

Frontiers in Artificial Intelligence and Applications, vol. 263, ECAI 2014 pp. 669-674.

Nunes and Jannach, 2017

A Systematic Review and Taxonomy of Explanations in Decision Support and Recommender Systems