TABELA DE DISPERSIE

- continuare -

C. Rezolvare coliziuni prin adresare deschisă - OPEN ADDRESSING

- > Toate elementele sunt memorate în interiorul tabelei, nu există liste memorate înafara tabelei.
- ➤ Fiecare intrare în tabelă conține fie un element al containerului, fie un marcaj pentru locație liberă (ex. NIL).
- Nu se folosesc pointeri pentru înlănțuiri.
- Factorul de încărcare este subunitar α < 1, altfel tabela este plină
- \triangleright Dezavantaj: tabela se poate umple ($\alpha = 1$). Soluție: se crește m, ceea ce presupune redispersarea elementelor.
- Avantaj: spațiul de memorie suplimentar (nu se memorează pointeri) oferă tabelei un număr mai mare de locații pentru același spațiu de memorie, putând rezulta coliziuni mai puține și acces rapid.
- > Secvența de locații care se examinează nu se determină folosind *pointeri*, ci se *calculează*
- La adăugare în tabelă, se examinează succesiv locațiile, până se găsește o locație liberă în care să punem cheia (elementul). În loc să fie fixată ordinea de verificare a tabelei (ex: 0,1,2...,m-1) care ar necesita timp $\theta(m)$, secvența de poziții examinate depinde de cheia (elementul) care se inserează.
- Se extinde funcția de dispersie $d: U \times \{0,...m-1\} \rightarrow \{0,...,m-1\}$ al doilea argument al funcției se numește număr de verificare
- Pentru o cheie $c \in U$ secventa $\langle d(c,0), d(c,1), ..., d(c,m-1) \rangle$ se numeste secventa de verificare a cheii c

Cerință

o secvența de verificare a oricărei chei $c \in U$ < d(c,0), d(c,1), ..., d(c,m-1) >să fie o permutare a < 0.1, ..., m-1 >

Ipoteza dispersiei uniforme simple (SUH)

O Pentru orice cheie $c \in U$, permutarea < d(c,0), d(c,1),..., d(c,m-1) > poate să apară sub forma oricărei permutări a < 0,1,...,m-1 >

C.1. Verificare liniară – LINEAR PROBING

$$d(c,i) = (d'(c) + i) \mod m$$
 $\forall i = 0,1,...,m-1$

 $d': U \to \{0,...,m-1\}$ este o funcție de dispersie uzuală (ex: $d'(c) = c \mod m$)

- Fiind dată o cheie c secvența ei de verificare este < d'(c), d'(c) + 1, d'(c) + 2, ..., m 1, 0, 1, ... d'(c) 1 >
- Problema: grupare primară se formează șiruri lungi de locații ocupate, crescând timpul mediu de căutare

C.2. Verificare pătratică - QUADRATIC PROBING

$$d(c,i) = (d'(c) + c_1 \cdot i + c_2 \cdot i^2) \mod m$$
 $\forall i = 0,1,...,m-1$

 $d': U \to \{0,...,m-1\}$ este o funcție de dispersie uzuală (ex: $d'(c) = c \mod m$), $c_1 \neq 0$ și $c_2 \neq 0$ sunt constante auxiliare fixate la inițializarea funcției de dispersie.

- ightharpoonup Constantele $c_1 \neq 0$ și $c_2 \neq 0$ se pot determina euristic
- Fiind dată o cheie c, prima poziție examinată este d'(c), după care următoarele poziții examinate sunt decalate cu cantităti ce depind într-o manieră pătratică de locatia anterior examinată.
- Problema: grupare secundară dacă 2 chei au aceeași poziție de start a verificării, atunci secvența lor de verificare coincide (dacă $d(c',0) = d(c'',0) \Rightarrow d(c',i) = d(c'',i) \quad \forall i = 0,1,...,m-1$)
- Experimental: funcționează mai bine decât verificarea liniară

C.3. Dispersia dublă – DOUBLE HASHING

$$d(c,i) = (d_1(c) + i \cdot d_2(c)) \mod m$$
 $\forall i = 0,1,...,m-1$

 d_1 și d_2 sunt funcții de dispersie aleatoare.

- Este considerată una dintre cele mai bune metode disponibile pentru adresarea deschisă
- Fiind dată o cheie c, prima poziție examinată este $d_1(c)$, după care următoarele poziții examinate sunt decalate față de poziția anterioară cu $d_2(c) \mod m$.
- \rightarrow $d_2(c)$ și m să fie prime între ele pentru a fi parcursă întreaga tabelă

Exemplu

- o *m* prim
- $0 d_1(c) = c \mod m d_2(c) = (1 + c \mod m')$
- o m' se alege de obicei m-1 sau m-2

Performanța dispersiei duble apare ca fiind foarte apropiată de performanța schemei ideale a dispersiei uniforme ($\theta(m^2)$) secvențe de verificare posibile pentru o cheie)

Implementarea operațiilor

Presupuneri și notații:

- > Pp. că în container memorăm doar chei
- > O locatie din tabelă va contine:
 - o NIL (constantă simbolică) dacă locația e liberă (nu conține o cheie)
 - O cheie din container
- ➤ Reprezentarea containerului folosind o TD cu adresare deschisă

Container

```
m: Intreg {nr.de locații din tabelă}ch: TCheie[0..m-1] {cheile din container}d: TFunctie {funcția de dispersie asociată}
```

```
Subalgoritmul ADAUGĂ (c, ch) este
{c:Container, ch:TCheie}
    i\leftarrow 0 {numărul de verificare}
    gasit←fals {nu am găsit poziția de adăugare}
    repetă
            i \leftarrow c.d(ch,i) {locatia de verificat}
            dacă c.\text{ch}[j]=NIL atunci
                    c.\text{ch}[j] \leftarrow ch \{\text{memorez cheia}\}\
                    gasit←adev {am găsit poziția unde putem adăuga}
             altfel
                    i \leftarrow i+1 {căutăm mai departe pe secventa de verificare}
            sfdacă
    până_când (i=c.m) sau (gasit)
    dacă i=c.m atunci {tabela e plină}
            @ depășire tabelă
    Sfdacă
sfADAUGĂ
```

```
Funcția CAUTĂ (c, ch) este \{c:Container, ch:TCheie\} i\leftarrow 0 {numărul de verificare\} gasit\leftarrowfals {nu am găsit cheia\} repetă j\leftarrow c.d(ch,i) {locația de verificat\} dacă c.ch[j]=ch atunci {am găsit cheia\} gasit\leftarrowadev altfel i\leftarrow i+1 {căutăm mai departe pe secvența de verificare\}
```

Analiza dispersiei cu adresare deschisă

Teorema. Într-o TD cu adresare deschisă, în *ipoteza dispersiei uniforme simple* (SUH), cu factor de încărcare

$$\alpha = \frac{n}{m} < 1$$
 numărul *mediu* de verificări este CEL MULT

- $ightharpoonup \frac{1}{1-\alpha}$ pentru adăugare și căutare fără succes
- $\Rightarrow \frac{1}{\alpha} \cdot \ln \frac{1}{1-\alpha}$ pentru **căutare cu succes**

CONCLUZII

- Dacă α e constant $\Rightarrow \theta(1)$ în **medie** pentru operații

PROBLEME

- 1. Considerând o tabelă de dispersie cu adresare deschisă, scrieți un algoritm pentru operația de **ștergere** și modificați operația **adaugă** și **caută** pentru a încorpora valoarea specială **ȘTERS.**
- Se consideră o tabelă de dispersie cu adresare deschisă, cu dispersie uniformă şi factor de încărcare 0.5.
 Dați margini superioare pentru numărul mediu de verificări într-o căutare cu succes şi o căutare fără succes.