LOWESS for outlier detection

Outliers

Contents

FIT TIME SERIES USING LOWESS

USE RESIDUALS TO IDENTIFY OUTLIERS

LOWESS recap

- Locally Weighted Scatterplot
 Smoothing
- Non-parametric smooth curve fitting
- The LOWESS curve at point (x,y) is obtained from a weighted linear regression built from a subset of data close to (x,y)
- Gives less weight to data further away from (x,y)

LOWESS recap

- Locally Weighted Scatterplot
 Smoothing
- Non-parametric smooth curve fitting
- The LOWESS curve at point (x,y) is obtained from a weighted linear regression built from a subset of data close to (x,y)
- Gives less weight to data further away from (x,y)

Consider residuals from fitting a LOWESS curve

$$e_t = y_t - \hat{y}_t$$
$$\hat{y}_t = LOWESS(\mathbf{y}, t)$$

ds

- The residuals look stationary
- Determine outliers using IQR:

$$e_t > \delta_{upper} = Q3 + \alpha \times IQR$$

 $e_t < \delta_{lower} = Q1 - \alpha \times IQR$

• We set $\alpha = 3$ so that only more extreme outliers are detected

- The residuals look stationary
- Determine outliers using IQR:

$$e_t > \delta_{upper} = Q3 + \alpha \times IQR$$

 $e_t < \delta_{lower} = Q1 - \alpha \times IQR$

• We set $\alpha = 3$ so that only more extreme outliers are detected

Seasonality can still be an issue

- LOWESS captures the trend but not seasonality here
- So seasonal spikes are picked up as outliers
- Solution: De-seasonalize first or use STL decomposition

LOWESS- summary

- Parameters:
 - LOWESS parameters (fraction of data for window size)
 - Threshold parameter α
- Pros:
 - Robust to outliers
 - Can handle missing data or non-uniform sampling
 - No missing data at edges
 - Captures rapid changes in the trend
- Cons:
 - Computationally more intensive
 - Need to remove seasonality

Summary

LOWESS can extract trends and be used to compute an expected value for a time series

The residuals can be used to identify outliers

Seasonal spikes need to be handled beforehand