# Can we "see" more from cardiovascular medical images with modeling?

presenter Sijie Li instructor Ju Liu

#### Clinical need



#### Clinical need



#### Clinical need







Just stablize it!

#### **Anatomical VS functional**

stenosis



**CTA** (computed tomography angiography)



(Tonino et al., 2010)

**FFR** (fractional flow reserve)



#### **Anatomical VS functional**

stenosis



**CTA** (computed tomography angiography)



(Tonino et al., 2010)

**FFR** (fractional flow reserve)







Stenosis classification by angiography

(Tonino et al., 2010)

### ICA<sub>FFR</sub> VS CTA<sub>FFR</sub>

**ICA**<sub>FFR</sub> (invasive coronary angiography)



- Hyperemia require
- Pressure

- Adenosine administration
- Catheter invasion

# ICA<sub>FFR</sub> VS CTA<sub>FFR</sub>

 $ICA_{FFR}$  (invasive coronary angiography)



Can we "see" more from cardiovascular medical images?

 $CTA_{FFR}$ 



**Modeling!** 

### Modeling?



HOW?



- Anatomical
- static

- Functional
- complicated

#### Modeling?



- Anatomical
- static





- Functional
- complicated



CTA



**SimVascular** 



CTA

#### path





path



CTA

#### segmentations





CTA

#### path





#### Model





path

segmentations

Model







Form-function relationships

$$Q = \frac{\pi}{32\mu} \tau_w d^3$$

$$p = QR$$

$$R \propto d^{-3}$$





segmentations

Model







Form-function relationships

$$Q=rac{\pi}{32\mu} au_w d^3$$
  $p=QR$   $R\propto d^{-3}$ 

$$Q_{total} \propto M_{myo}^{eta} \propto V^{lpha} \hspace{0.5cm} P_{aortic} \propto P_{brachial}$$

$$P_{aortic} \propto P_{brachial}$$

$$R_{hyperemia}pprox 0.24 imes R_{total} = 0.24 imes rac{P_{aortic}}{Q_{total}}$$





segmentations

Model







Form-function relationships

$$Q = \frac{\pi}{32\mu} \tau_w d^3 \quad p = QR$$

$$Q_{total} \propto M_{myo}^{eta} \propto V^{lpha} \hspace{0.2cm} P_{aortic} \propto P_{brachial} \hspace{0.2cm} \longrightarrow \hspace{0.2cm} \hspace{0.2cm} \hspace{0.2cm} \hspace{0.2cm} \hspace{0.2cm} P_{inlet}$$

$$R \propto d^{-3}$$

$$R \propto d^{-3} \ R_{hyperemia} pprox 0.24 imes R_{total} = 0.24 imes rac{P_{aortic}}{Q_{total}}$$





segmentations

Model





Form-function relationships





(Taylor et al., 2013)

#### $R_{outlet}$

- Dynamic
- Detail









segmentations





Model

Form-function relationships

**Pysical** laws

 $P_{inlet}$ 

 $R_{outlet}$ 

**Boundary Conditions** 

No-slip condition



path

segmentations

Model







Form-function relationships

 $P_{inlet}$   $R_{outlet}$ 

No-slip condition

**Pysical** laws

#### **Blood** ≈ **Newtonian fluid** rigid vessel wall

$$au = \mu rac{dv}{dy}$$
 Constitutive relationship



segmentations

Model







Form-function relationships

 $P_{inlet}$   $R_{outlet}$ 

#### **Pysical** laws

No-slip condition

**Constitutive relationship + mass and momentum conservation:** 

$$hoigg(rac{\partial ec{u}}{\partial t} + (ec{u}\cdot
abla)ec{u}igg) = -
abla p + \mu
abla^2ec{u} + ec{f} \qquad 
abla \cdot ec{u} = 0$$

Navier-Stokes equation – local behavior!





segmentations







# meshing





**CTA** 

path

segmentations



meshing





Form-function relationships

 $P_{inlet}$   $R_{outlet}$ 

#### No-slip condition

$$hoigg(rac{\partial ec{u}}{\partial t} + (ec{u}\cdot
abla)ec{u}igg) = -
abla p + \mu
abla^2ec{u} + ec{f}$$

$$abla \cdot \vec{u} = 0$$

#### simulation



$$FFR = rac{P_{simulate}}{P_{inlet}}$$

#### meshing



 $P_{inlet}$ 

 $R_{outlet}$ 

No-slip condition

$$\nabla \cdot \vec{u} = 0$$

$$hoigg(rac{\partial ec{u}}{\partial t} + (ec{u}\cdot
abla)ec{u}igg) = -
abla p + \mu
abla^2ec{u} + ec{f}$$

#### FEM

(finite element method)



(Taylor et al., 2013)

# Modeling!!!









(Douglas et al., 2015)

#### More can be done...

#### **FSI**

(fluid structure interaction)

Blood pprox Newtonian fluid elastic wall  $\sigma = E \cdot \epsilon$ 



Mechanism of plaque



Influence of stent

# More can be done... FSI

#### **Blood** ≈ generalized Newtonian fluid

$$au = \mu(rac{dv}{dy})rac{dv}{dy}$$

Hyperelastic wall (fibrous tissue)

$$\sigma = rac{W_{
m iso} + W_{
m aniso}}{\partial \epsilon}$$

W: strain energy density function



(Schussnig et al., 2024)

# More can be done... FSI

"All models are wrong,
but some are useful..."

—George E. P. Box

Dissection

W: strain energy density function

(Schussnig et al., 2024)



Pay attention to technique details Keep an eye on the real world's need



#### Reference list

Schussnig, R., Rolf-Pissarczyk, M., Bäumler, K., Fries, T., Holzapfel, G. A., & Kronbichler, M. (2024). On the role of tissue mechanics in fluid–structure interaction simulations of patient-specific aortic dissection. *International Journal for Numerical Methods in Engineering*, 125(14), e7478. <a href="https://doi.org/10.1002/nme.7478">https://doi.org/10.1002/nme.7478</a>

Taylor, C. A., Fonte, T. A., & Min, J. K. (2013). Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve. Journal of the American College of Cardiology, 61(22), 2233–2241. <a href="https://doi.org/10.1016/j.jacc.2012.11.083">https://doi.org/10.1016/j.jacc.2012.11.083</a>

Tonino, P. A. L., Fearon, W. F., De Bruyne, B., Oldroyd, K. G., Leesar, M. A., Ver Lee, P. N., MacCarthy, P. A., Van'T Veer, M., & Pijls, N. H. J. (2010). Angiographic Versus Functional Severity of Coronary Artery Stenoses in the FAME Study. *Journal of the American College of Cardiology*, *55*(25), 2816–2821. <a href="https://doi.org/10.1016/j.jacc.2009.11.096">https://doi.org/10.1016/j.jacc.2009.11.096</a>