MOGA MODELLING

Objective Functions

Increased Payload Mass = J1
Minimize Cost = J2

Modelling Design

Figure 1. One-stage and two-stage rocket diagrams.

Three More Output Constraints other than Objective fn.

- 1) Altitude
- 2) Bending Frequencies
 - 3) Axial Frequencies

(Refer Table 1 of Material Shared)

Note:

- 1) Thrust Parameters (T1...T5)
 - → Spline [L.Interp] (Details)
- 2) Turning Angles (Alpha1, Alpha2) [Thrust Angle Parameters]
 - → Alpha1 : Altitude starting turn
 - → Alpha2 :Additional Altitude bending ends (complete turn)

[Condn]:

Angle < alpha1 : Angle =0

Angle > alpha1+alpha2 Angle =90

Intermediate angles: angle = [1-cos(π *(A- α 1)/ α 2))]* π /4

Graph Visualisation (refer Material)

alpha 1= 100 km alpha 2 =200 km

Table 2: N² diagram of design variables

(refer)

Understanding How to Read?

*Mach No.: Relative Measure of Velocity by division of local velocity with velocity at that medium.

TRAJECTORY SUBSYSTEM

- → Shooting Method to solve for ODEs (Details)
- \rightarrow State Vector : [r, longitude, V_r , omega, m]
- *Air Density and Temperature reference from 1962 US std. Atmospheric model.
- → [Radial Velocity, Omega, Radial Acceleration, angular acceleration, Changing mass] : Control Variable

MASS ENGINE SCALING

Can be of changing Definition.

TRAJECTORY SUBSYSTEM

- → Shooting Method to solve for ODEs (Details)
- \rightarrow State Vector : [r, longitude, V_r , omega, m]
- *Air Density and Temperature reference from 1962 US std. Atmospheric model.
- → [Radial Velocity, Omega, Radial Acceleration, angular acceleration, Changing mass] : Control Variable

MASS ENGINE SCALING

Can be of changing Definition.

https://studylib.net/doc/108345 98/integration--of-system-level--optimization-with--concurrent

MAX - Q

- rho.u.(du/dx) = -d(P)/dx
- \Rightarrow d(rho.u²/2) = -d(P)/dx
- \Rightarrow d(rho. u²/2 +P)/dx = 0
- ⇒ dynamic pressure + static pressure = constant