Tutorium 04: λ -Kalkül

Paul Brinkmeier

1. Dezember 2020

Tutorium Programmierparadigmen am KIT

Heutiges Programm

Programm

- Übungsblatt 2
- Lambda-Kalkül
- ... und Implementierung in Haskell

Übungsblatt 2

1 — Listenkombinatoren

```
module Polynom where
type Polynom = [Double]
cmult polynom c = map (* c) polynom
eval polynom x = foldr go 0 polynom
  where go a_n acc = acc * x + a_n
deriv [] = []
deriv polynom = zipWith (*) [1..] $ tail polynom
```

2 — Collatz-Vermutung

```
module Collatz where
collatz = iterate next
  where next aN | even aN = aN 'div' 2
                I otherwise = 3 * aN + 1
num = length . takeWhile (/= 1) . collatz
maxNum \ a \ b = bestNum \ [(m, num m) \mid m <- [a..b]]
  where bestNum = foldl maxSecond (0, 0)
        maxSecond a b
          | snd a >= snd b = a
          lotherwise
```

2 — Collatz-Vermutung

```
module CollatzAlt where
import Collatz (num)
import Data.Function (on)
import Data.List (maximumBy)
maxNum a b =
  maximumBy
    (compare 'on' snd)
    [(m, num m) | m <- [a..b]]
```

- "eleganter"
- In der Klausur aber eher nur Funktionen aus der Prelude verwenden

3 — Stream-Kombinatoren

```
module Merge where
import Primes (primes)
merge (x:xs) (y:ys)
  | x \le y = x : merge xs (y:ys)
  | otherwise = y : merge (x:xs) ys
merge xs ys = xs ++ ys
primepowers n = mergeAll $ map primesExp [1..n]
  where mergeAll = foldl merge []
        primesExp i = map (^i) primes
```

- Für i in 1..n unendliche Liste der Primzahlen hoch i erstellen
- Wegen Laziness: wird nur so weit ausgewertet wie nötig
- Dann: Alle miteinander vereinigen

:sprint

```
*Merge> pp3 = primepowers 3

*Merge> take 10 pp3

[2,3,4,5,7,8,9,11,13,17]

*Merge> :sprint pp3

pp3 = 2 : 3 : 4 : 5 : 7 : 8 : 9 : 11 : 13 : 17 : _
```

- :sprint a gibt aktuelle Speicherrepräsentation für a aus
- _ steht dabei für "noch nicht ausgewertet"
- \rightsquigarrow praktisch für Debugging unendlicher Listen

Wiederholung: Algebraische

Datentypen

Cheatsheet: Algebraische Datentypen in Haskell

- <u>data-Definitionen</u>, <u>Datenkonstruktoren</u>
- Algebraische Datentypen: <u>Produkttypen</u> und <u>Summentypen</u>
 - Produkttypen \approx structs in C
 - ullet Summentypen pprox enums
- Typkonstruktoren, bspw. [] :: * -> *
- Polymorphe Datentypen, bspw. [a], Maybe a
- Beispiel:

```
module Shape where

data Shape

= Circle Double -- radius

| Rectangle Double Double -- sides

| Point -- technically equivalent to Circle 0
```

Cheatsheet: Typklassen 1

- Klasse, Operationen/Methoden, Instanzen
- Beispiele:
 - Eq t, {(==), (/=)}, {Eq Bool, Eq Int, Eq Char, ...}
 - Show t, {show}, {Show Bool, Show Int, Show Char, ...}
- Weitere Typklassen: Ord, Num, Enum
- Deklaration/Implementierung:

```
module Truthy where

class Truthy t where
  toBool :: t -> Bool

instance Truthy Int where
  toBool x = x /= 0
```

Cheatsheet: Typklassen 2

Vererbung: Typklassen mit Voraussetzungen

```
module Truthy2 where
class Truthy t where
  toBool :: t -> Bool
instance Truthy Int where
  toBool x = x /= 0
instance Truthy t => Truthy (Maybe t) where
  toBool Nothing = False
  toBool (Just x) = toBool x
```

Spielkarten

```
module PlayingCard where

data PlayingCard = PlayingCard Suit Rank

data Suit = Hearts | Diamonds | Clubs | Spades
data Rank

= Rank7 | Rank8 | Rank9 | Rank10

| Jack | Queen | King | Ace
```

Monopolykarten

```
module Monopoly where
data MonopolyCard
  = Street String Rent Int Color
  | Station String
  | Utility String
data Rent = Rent Int Int Int Int
data Color
  = Brown | LightBlue | Pink | Orange
  l Red
         | Yellow | Green | Blue
```

Boolesche Logik

```
module BoolExpr where
data BoolExpr
  = Const Bool
  | Var String
  | Neg BoolExpr
  | BinaryOp BoolExpr BinaryOp BoolExpr
data BinaryOp = AND | OR | XOR | NOR
```

Beispiele:

- $a \wedge b$ entspricht BinaryOp (Var "a") AND (Var "b")
- $a \lor (b \land 0)$ entspricht BinaryOp (Var "a") AND (BinaryOp (Var "b") OR (Const False))

λ -Kalkül

λ -Kalkül

- "Funktionales Gegenstück zur Turingmaschine"
- Wurde u.a. genutzt um Unlösbarkeit des Halteproblems zu zeigen
- Gibt saftig Punkte in der Klausur
 - 13P. im 19SS
 - 10P. (+15P.) im 18WS
 - 20P. (+15P.) im 18SS

λ -Terme

Ein Term im λ -Kalkül hat eine der drei folgenden Formen:

Notation	Besteht aus	Bezeichnung
X	x : Variablenname	Variable
$\lambda p.b$	p : Variablenname	Abstraktion
	$b:\lambda$ -Term	
f a	f , a : λ -Terme	Funktionsanwendung

- "λ-Term ": rekursive Datenstruktur
- Semantik definieren wir später

λ -Terme

Ein Term im λ -Kalkül hat eine der drei folgenden Formen:

Notation	Besteht aus	Bezeichnung
X	x : Variablenname	Variable
$\lambda p.b$	p : Variablenname	Abstraktion
	$b:\lambda$ -Term	
f a	f , a : λ -Terme	Funktionsanwendung

- "λ-Term ": rekursive Datenstruktur
- Semantik definieren wir später
- Jetzt: Ergänzt das Modul Lambda um die fehlenden Typen
 - +Fragen zur ÜB-Korrektur

λ -Terme in Haskell

```
module Lambda where

data LambdaTerm
    = Var String -- Variable
    | App () () -- Funktionsanwendung: f a
    | Abs () () -- Abstraktion: \p.b
```

- github.com/pbrinkmeier/pp-tut
- Modul x liegt in demos/x.hs

Begriffe im λ -Kalkül

Begriff	Formel	Bedeutung
lpha-Äquivalenz	$t_1\stackrel{lpha}{=} t_2$	t_1 , t_2 sind gleicher
		Struktur
η -Äquivalenz	$\lambda x.f \ x \stackrel{\eta}{=} f$	"Unterversorgung"
Freie Variablen	$fv(\lambda p.b) = b$	Menge der nicht durch
		λ s gebundenen Varia-
		blen
Substitution	$(\lambda p.b)[b \rightarrow c] = \lambda p.c$	Ersetzung freier Varia-
		blen
Redex	(λp.b) t	"Reducible expression"
β -Reduktion	$(\lambda p.b) \ t \Rightarrow b [p \rightarrow t]$	"Funktionsanwendung"

Freie Variablen

- fv(t) bezeichnet die frei vorkommenden Variablen im Term t
- ullet Frei vorkommend pprox nicht durch ein λ gebunden
 - $fv(x) = \{x\}$, wenn x Variable
 - $fv(f x) = fv(f) \cup fv(x)$
 - $fv(\lambda p.b) = fv(b) \setminus \{p\}$
- Beispiele:
 - $fv(\lambda x.x) = \emptyset$
 - $fv(\lambda x.y) = \{y\}$

Freie Variablen

- fv(t) bezeichnet die frei vorkommenden Variablen im Term t
- Frei vorkommend pprox nicht durch ein λ gebunden
 - $fv(x) = \{x\}$, wenn x Variable
 - $fv(f x) = fv(f) \cup fv(x)$
 - $fv(\lambda p.b) = fv(b) \setminus \{p\}$
- Beispiele:
 - $fv(\lambda x.x) = \emptyset$
 - $fv(\lambda x.y) = \{y\}$
- Implementiert fv :: LambdaTerm -> Set String
 - Benutzt Set, union, delete und fromList aus Data.Set

Substitution

- Substitution ersetzt alle freien Variablen in einem Term
- $t[a \rightarrow b]$ Ersetze a durch b in t
- Beispiele:
 - $a[a \rightarrow b] = b$
 - $a[b \rightarrow c] = a$
 - $(f \times)[f \rightarrow g][x \rightarrow y] = g y$

Substitution

- Substitution ersetzt alle freien Variablen in einem Term
- $t[a \rightarrow b]$ Ersetze a durch b in t
- Beispiele:
 - $a[a \rightarrow b] = b$
 - $a[b \rightarrow c] = a$
 - $(f \times)[f \rightarrow g][x \rightarrow y] = g y$
 - $(\lambda x.f \ x)[x \rightarrow y] = \lambda x.f \ x \ (x \text{ ist nicht frei})$
 - $(\lambda x.f \ x)[f \rightarrow g] = \lambda x.g \ x \ (f \text{ ist frei})$

Substitution

- Substitution ersetzt alle freien Variablen in einem Term
- $t[a \rightarrow b]$ Ersetze a durch b in t
- Beispiele:
 - $a[a \rightarrow b] = b$
 - $a[b \rightarrow c] = a$
 - $(f x)[f \rightarrow g][x \rightarrow y] = g y$
 - $(\lambda x.f \ x)[x \to y] = \lambda x.f \ x \ (x \text{ ist nicht frei})$
 - $(\lambda x.f \ x)[f \rightarrow g] = \lambda x.g \ x \ (f \text{ ist frei})$
- Implementiert

substitute :: (String, Term) -> Term -> Term

- type Term = LambdaTerm
- fv braucht ihr dafür nicht

α -Äquivalenz

- $t_1\stackrel{lpha}{=} t_2$ Strukturelle Äquivalenz der Terme t_1 und t_2
- Umformung von t₁ in t₂ allein durch Substitution der (gebundenen) Variablen möglich

α -Äquivalenz

- $t_1 \stackrel{lpha}{=} t_2$ Strukturelle Äquivalenz der Terme t_1 und t_2
- Umformung von t₁ in t₂ allein durch Substitution der (gebundenen) Variablen möglich
- Bspw.:
 - $x \neq y$, da x und y frei sind
 - $\lambda x.x \stackrel{\alpha}{=} \lambda y.y$, durch Umbenennen von x zu y
 - $f(\lambda x.y) \stackrel{\alpha}{=} f(\lambda p.y)$
 - $\lambda x.y \stackrel{\alpha}{\neq} \lambda x.z$

η -Äquivalenz

- $\lambda x.f \ x \stackrel{\eta}{=} f$, wenn $x \notin fv(f)$
- Wie bei Haskell:

```
all list = foldl (&&) True list \Leftrightarrow all = \list -> foldl (&&) True list \Leftrightarrow all = foldl (&&) True
```

- Also:
 - η-Äquivalenz: eher Umformungsschritt als Gleichheitskriterium
 - Formelle Definition von Unterversorgung

• Bisher: λ -Terme als (seltsame) Datenstruktur Jetzt: Ausführungssemantik

- Bisher: λ-Terme als (seltsame) Datenstruktur
 Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung $(f \ a)$, mit $f = \lambda p.b$
- (λp.b) a

- Bisher: λ -Terme als (seltsame) Datenstruktur Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung $(f \ a)$, mit $f = \lambda p.b$
- $(\lambda p.b) a \implies b[p \rightarrow a]$

- Bisher: λ-Terme als (seltsame) Datenstruktur
 Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung $(f \ a)$, mit $f = \lambda p.b$
- $(\lambda p.b)$ $a \implies b[p \rightarrow a]$
- "Ausführung" (besser: Auswertung) von λ -Termen: Anwenden der β -Reduktion, bis Term "konvergiert"
- ullet Term konvergiert pprox Normalform pprox enthält keinen Redex mehr
 - Notation: t ⇒

- Bisher: λ -Terme als (seltsame) Datenstruktur Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung (f a), mit $f = \lambda p.b$
- $(\lambda p.b)$ $a \implies b[p \rightarrow a]$
- "Ausführung" (besser: Auswertung) von λ -Termen: Anwenden der β -Reduktion, bis Term "konvergiert"
- ullet Term konvergiert pprox Normalform pprox enthält keinen Redex mehr
 - Notation: t ⇒
- id $a = (\lambda x.x)$ $a \implies x[x \rightarrow a] = a \implies$

Beispiel: Church-Booleans

$$c_{\mathsf{true}} = \lambda x. \, \lambda y. \, x$$
 $c_{\mathsf{false}} = \lambda x. \, \lambda y. \, y$
 $\mathsf{AND} = \lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}$
 $= \lambda a. \, \lambda b. \, (a \, b) \, c_{\mathsf{false}}$

Funktioniert AND? → Wahrheitstabelle aufstellen:

AND
$$c_{\text{true}}$$
 $c_{\text{true}} = (\underline{\lambda a. \lambda b. a \ b \ c_{\text{false}}}) \ c_{\text{true}} \ c_{\text{true}}$

$$c_{\mathsf{true}} = \lambda x. \, \lambda y. \, x$$
 $c_{\mathsf{false}} = \lambda x. \, \lambda y. \, y$
 $\mathsf{AND} = \lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}$
 $= \lambda a. \, \lambda b. \, (a \, b) \, c_{\mathsf{false}}$

Funktioniert AND? ~> Wahrheitstabelle aufstellen:

$$\begin{array}{l} \text{AND } c_{\mathsf{true}} \ c_{\mathsf{true}} = \left(\underline{\lambda a. \ \lambda b. \ a \ b \ c_{\mathsf{false}}} \right) \ c_{\mathsf{true}} \ c_{\mathsf{true}} \\ \Rightarrow_{\beta} \left(\lambda b. \ a \ b \ c_{\mathsf{false}} \right) \left[a \rightarrow c_{\mathsf{true}} \right] \ c_{\mathsf{true}} = \left(\underline{\lambda b. \ c_{\mathsf{true}} \ b \ c_{\mathsf{false}}} \right) c_{\mathsf{true}} \end{array}$$

$$c_{\mathsf{true}} = \lambda x. \, \lambda y. \, x$$
 $c_{\mathsf{false}} = \lambda x. \, \lambda y. \, y$
 $\mathsf{AND} = \lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}$
 $= \lambda a. \, \lambda b. \, (a \, b) \, c_{\mathsf{false}}$

Funktioniert AND? → Wahrheitstabelle aufstellen:

AND
$$c_{\mathsf{true}} \ c_{\mathsf{true}} = (\underline{\lambda a}. \ \lambda b. \ a \ b \ c_{\mathsf{false}}) \ c_{\mathsf{true}} \ c_{\mathsf{true}}$$

$$\Rightarrow_{\beta} (\lambda b. \ a \ b \ c_{\mathsf{false}}) [a \to c_{\mathsf{true}}] \ c_{\mathsf{true}} = (\underline{\lambda b}. \ c_{\mathsf{true}} \ b \ c_{\mathsf{false}}) \ c_{\mathsf{true}}$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}} \ b \ c_{\mathsf{false}}) [b \to c_{\mathsf{true}}] = (\underline{\lambda x}. \ \lambda y. \ x) \ c_{\mathsf{true}} \ c_{\mathsf{false}}$$

$$c_{\mathsf{true}} = \lambda x. \, \lambda y. \, x$$
 $c_{\mathsf{false}} = \lambda x. \, \lambda y. \, y$

$$\mathsf{AND} = \lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}$$

$$= \lambda a. \, \lambda b. \, (a \, b) \, c_{\mathsf{false}}$$

Funktioniert AND? → Wahrheitstabelle aufstellen:

AND
$$c_{\mathsf{true}} \ c_{\mathsf{true}} = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \ c_{\mathsf{true}} \ c_{\mathsf{true}}$$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \to c_{\mathsf{true}}] \ c_{\mathsf{true}} = (\underline{\lambda b. \, c_{\mathsf{true}} \, b \, c_{\mathsf{false}}}) \ c_{\mathsf{true}}$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}} \ b \, c_{\mathsf{false}}) [b \to c_{\mathsf{true}}] = (\underline{\lambda x. \, \lambda y. \, x}) \ c_{\mathsf{true}} \ c_{\mathsf{false}}$$

$$\Rightarrow_{\beta} (\underline{\lambda y. \, c_{\mathsf{true}}}) \ c_{\mathsf{true}} \Rightarrow_{\beta} c_{\mathsf{true}} \ \checkmark$$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \, c_{\mathsf{false}} \, t$$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a}.\ \lambda b.\ a\ b\ c_{\mathsf{false}})\ c_{\mathsf{false}}\ t$$

 $\Rightarrow_{\beta} (\lambda b.\ a\ b\ c_{\mathsf{false}}) [a \to c_{\mathsf{false}}]\ t = (\underline{\lambda b}.\ c_{\mathsf{false}}\ b\ c_{\mathsf{false}})\ t$

AND
$$c_{\mathsf{false}}\ t = (\underline{\lambda a.\ \lambda b.\ a\ b\ c_{\mathsf{false}}})\ c_{\mathsf{false}}\ t$$

$$\Rightarrow_{\beta} (\lambda b.\ a\ b\ c_{\mathsf{false}}) [a \to c_{\mathsf{false}}]\ t = (\underline{\lambda b.\ c_{\mathsf{false}}}\ b\ c_{\mathsf{false}})\ t$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}}\ b\ c_{\mathsf{false}}) [b \to t] = (\underline{\lambda x.\ \lambda y.\ y})\ t\ c_{\mathsf{false}}$$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \ c_{\mathsf{false}} \ t$$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \rightarrow c_{\mathsf{false}}] \ t = (\underline{\lambda b. \, c_{\mathsf{false}} \, b \, c_{\mathsf{false}}}) \ t$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}} \ b \, c_{\mathsf{false}}) [b \rightarrow t] = (\underline{\lambda x. \, \lambda y. \, y}) \ t \ c_{\mathsf{false}}$$

$$\Rightarrow^{2} c_{\mathsf{false}}$$

AND
$$t c_{\mathsf{false}} = (\underline{\lambda a. \lambda b. a b c_{\mathsf{false}}}) t c_{\mathsf{false}}$$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \ c_{\mathsf{false}} \ t$$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \rightarrow c_{\mathsf{false}}] \ t = (\underline{\lambda b. \, c_{\mathsf{false}} \, b \, c_{\mathsf{false}}}) \ t$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}} \ b \, c_{\mathsf{false}}) [b \rightarrow t] = (\underline{\lambda x. \, \lambda y. \, y}) \ t \ c_{\mathsf{false}}$$

$$\Rightarrow^{2} c_{\mathsf{false}}$$

AND
$$t$$
 $c_{\mathsf{false}} = (\underline{\lambda a}. \, \lambda b. \, a \, b \, c_{\mathsf{false}}) \, t \, c_{\mathsf{false}}$
 $\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \to t] \, c_{\mathsf{false}} = (\underline{\lambda b. \, t \, b \, c_{\mathsf{false}}}) \, c_{\mathsf{false}}$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \ c_{\mathsf{false}} \ t$$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \rightarrow c_{\mathsf{false}}] \ t = (\underline{\lambda b. \, c_{\mathsf{false}} \, b \, c_{\mathsf{false}}}) \ t$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}} \ b \, c_{\mathsf{false}}) [b \rightarrow t] = (\underline{\lambda x. \, \lambda y. \, y}) \ t \ c_{\mathsf{false}}$$

$$\Rightarrow^{2} c_{\mathsf{false}}$$

AND
$$t$$
 $c_{\mathsf{false}} = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \, t \, c_{\mathsf{false}}$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \to t] \, c_{\mathsf{false}} = (\underline{\lambda b. \, t \, b \, c_{\mathsf{false}}}) \, c_{\mathsf{false}}$$

$$\Rightarrow_{\beta} (t \, b \, c_{\mathsf{false}}) [b \to c_{\mathsf{false}}] = t \, c_{\mathsf{false}} \, c_{\mathsf{false}}$$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a}. \, \lambda b. \, a \, b \, c_{\mathsf{false}}) \ c_{\mathsf{false}} \ t$$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \rightarrow c_{\mathsf{false}}] \ t = (\underline{\lambda b}. \, c_{\mathsf{false}} \, b \, c_{\mathsf{false}}) \ t$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}} \ b \, c_{\mathsf{false}}) [b \rightarrow t] = (\underline{\lambda x}. \, \lambda y. \, y) \ t \ c_{\mathsf{false}}$$

$$\Rightarrow^{2} c_{\mathsf{false}}$$

AND
$$t$$
 $c_{\mathsf{false}} = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \, t \, c_{\mathsf{false}}$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \rightarrow t] \, c_{\mathsf{false}} = (\underline{\lambda b. \, t \, b \, c_{\mathsf{false}}}) \, c_{\mathsf{false}}$$

$$\Rightarrow_{\beta} (t \, b \, c_{\mathsf{false}}) [b \rightarrow c_{\mathsf{false}}] = t \, c_{\mathsf{false}} \, c_{\mathsf{false}}$$

$$\xrightarrow{\sim} c_{\mathsf{false}}$$

Auswertungsstrategien

- Welcher Redex soll zuerst ausgewertet werden?
- $\bullet \ \, \leadsto \ \, \text{verschiedene Auswertungsstrategien}$

Auswertungsstrategien

- Welcher Redex soll zuerst ausgewertet werden?
- \rightsquigarrow verschiedene Auswertungsstrategien

- Volle β -Reduktion Beliebiger Redex
- Normalreihenfolge "Linkester" Redex

Auswertungsstrategien

- Welcher Redex soll zuerst ausgewertet werden?
- \rightsquigarrow verschiedene Auswertungsstrategien

- Volle β-Reduktion Beliebiger Redex
- Normalreihenfolge "Linkester" Redex
- Call-by-Name Nur äußerster "linkester Redex"
- Call-by-Value "Linkester Redex", der eine Normalform als Argument hat

Normalreihenfolge

module LambdaN where

data LambdaTerm

- = Var String
- | App LambdaTerm LambdaTerm
- | Abs String LambdaTerm
- Implementiert

normalBeta :: LambdaTerm -> LambdaTerm

- Führt einen β -Reduktionsschritt in Normalreihenfolge (linkester Redex) aus
- Wenn kein Redex vorkommt, wird derselbe Term zurückgegeben
- Bindet LambdaShow ein für Show LambdaTerm

Church-Zahlen im λ -Kalkül

Peano-Axiome

$$c_0 = ?$$
 $c_1 = s(c_0)$
 $c_2 = s(s(c_0))$
 $c_3 = s(s(s(s(s(s(c_0)))))))$

- 1. Die 0 ist Teil der natürlichen Zahlen
- 2. Wenn n Teil der natürlichen Zahlen ist, ist auch s(n) = n + 1 Teil der natürlichen Zahlen

Church-Zahlen

- ullet "Zahlen" im λ -Kalkül werden durch Funktionen in Normalform dargestellt
- $c_n f x = f n$ -mal angewendet auf x
- Bspw. $(c_3 g y) = g (g (g y)) = g^3 y$ Mit $c_3 = \lambda f . \lambda x . f (f (f x))$
- Schreibt eine λ -Funktion succ, die eine Church-Zahl nimmt und zu deren Nachfolger auswertet

Church-Zahlen

- ullet "Zahlen" im λ -Kalkül werden durch Funktionen in Normalform dargestellt
- $c_n f x = f n$ -mal angewendet auf x
- Bspw. $(c_3 g y) = g (g (g y)) = g^3 y$ Mit $c_3 = \lambda f . \lambda x . f (f (f x))$
- Schreibt eine λ -Funktion succ, die eine Church-Zahl nimmt und zu deren Nachfolger auswertet
- Übertragt die Funktion in euren Haskell-Code und wertet succ
 c₀ durch wiederholtes Anwenden von normalBeta aus
- Vergleicht euer Ergebnis mit dem von Wavelength:
 - pp.ipd.kit.edu/lehre/misc/lambda-ide/Wavelength.html

Cheatsheet: Lambda-Kalkül/Basics

- Terme t: Variable (x), Funktion $(\lambda x.t)$, Anwendung $(t\ t)$
- α -Äquivalenz: Gleiche Struktur
- η -Äquivalenz: Unterversorgung
- Freie Variablen, Substitution, RedEx
- β -Reduktion:

$$(\lambda p.b) t \Rightarrow b[p \rightarrow t]$$

• Church-Booleans, Church-Zahlen, Y-Kombinator