## Cory Zimmerman

## (4.1)

The first transformation considers left to right. So,  $\vec{f}^t$  is rotated, and that rotated frame is translated around its new x-axis.



The second transformation considers right to left. Here,  $\vec{f}^t$  is translated along its original x-axis. But then it's rotated around the original frame's origin. This produces the same result.



## (4.2)

The origin is now  $2\ \vec{f}^t$  units from where it started. Once S is applied uniformly to  $\vec{f}^t$ , one unit of  $\vec{f}^tS$  is now two units of  $\vec{f}^t$ . Thus, translating  $\vec{f}^tS$  by one unit translates by two units of  $\vec{f}^t$ . Because there is no rotation, this is the only movement of the origin. The picture below represents this. A right to left perspective yields the same result. An initial translation makes  $\vec{f}^tT$  one unit away from the origin of  $\vec{f}^t$ . Scaling that by 2 makes  $\vec{f}^tST$  now 2 units away from the origin of  $\vec{f}^t$ .



$$(4.3) 
\vec{b}^t = \vec{a}^t T R:$$

Because  $\vec{a}^t$  is a frame, it's possible to apply an affine translation. From  $\vec{a}^t$ , the transformation moves by  $d_1$  in a positive x direction and by  $d_2$  in a positive y direction. Encoding this into a 2d affine matrix T yields the following:

$$T = \begin{bmatrix} 1 & 0 & d_1 \\ 0 & 1 & d_2 \\ 0 & 0 & 1 \end{bmatrix}$$

Assert from the appearance of the drawing that  $d_3$  is parallel to the x-axis of  $\vec{b}^t$ . Thus,  $\theta$  is the degree of rotation in  $\vec{b}^t$ . This yields an affine rotation matrix R defined like this:

$$R = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

 $\vec{b}^t = \vec{a}^t RT$ :

Again,  $\vec{b}^t$  is rotated by  $\theta$  degrees, so the rotation matrix R is the same:

$$R = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Now, the line marked  $d_3$  is along the x axis, and the line marked  $d_4$  is along the y axis. So, T is the affine matrix with those x and y transformations:

$$T = \begin{bmatrix} 1 & 0 & d_3 \\ 0 & 1 & d_4 \\ 0 & 0 & 1 \end{bmatrix}$$

(4.4)

Let  $R_{\theta}$  be a matrix expressing a clockwise rotation by  $\theta$  degrees. From  $\vec{a}^t$ , the transformation to  $\vec{b}^t$  involves a counterclockwise rotation by  $\phi$ , an x translation by d, and a clockwise rotation by some  $\kappa$ . After rotating  $\vec{b}^t$  by  $\theta$ , it also becomes apparent due to the angle  $\phi$  and distance d that  $\vec{c}^t$  is at the  $N^{-1}$  transformation of this rotated  $\vec{b}^t$ . This yields the relation  $\vec{c}^t = \vec{b}^t R_{\theta} N^{-1}$ . From this relation, derive the following:

$$ec{a}^t M = ec{c}^t$$
 Initial 
$$ec{a}^t M = ec{b}^t R_{\theta} N^{-1}$$
 Defined above 
$$ec{a}^t M = ec{a}^t N R_{\theta} N^{-1}$$
 Definition of  $ec{b}^t$   $M = N R_{\theta} N^{-1}$  Multiply by inverse of  $ec{a}^t$ 

Thus,  $M = NR_{\theta}N^{-1}$ .