Machine Learning I: Supervised Methods

B. Keith Jenkins

Announcements

slido.com -> Slido event code: 3629199 Join as participant

Homework 2 is due Friday.

Reading

- Bishop 3.0, 3.1 (MSE regression)
- Bishop 4.1.3 (MSE classification)

Today's lecture

- Vector and feature-space representations (part 2)
 - Finish weight space
 - Reflected data points

- The learning problem
 - Problem statement and approach
 - Criterion functions
 - · Optimization approaches
 - Gradient descent
- Perceptron learning algorithm
 - Perceptron criterion function
 - Perceptron learning (batch GD)
 - Perceptron learning (sequential GD)

classify In Iz, Iz, Iz, I4-

classifies

Reflected data points (only for C=2)

-) augmented notation

Slido: WAT means w $\chi^{\Lambda}(2)$ means $\chi^{(2)}$

- linear discriminant fors. g(x) (can be generalized to nonlinear - later)

$$g(x) = w^T x \geq 0$$

$$F_2$$

 $g(x) = w \times \xi U$ $For any labelled data pts. x^{(1)} \in S_1, x^{(2)} \in S_2:$

slido, com 3629199

[o (i) $\left\{ \frac{w^{T}\chi^{(1)} > 0}{w^{T}\chi^{(2)} < 0} \right\} \frac{\chi^{(1)}}{\chi^{(2)}}$ correctly classified (<0 \Rightarrow incorrect)

Let
$$z_n^{(k)} = z_n \stackrel{\triangle}{=} \left\{ \begin{array}{l} +1, & k=1 \\ -1, & k=2 \end{array} \right\} = \text{class indicator}$$

then consider wtznxn > 0 when? < 0 when?

(2) $\begin{cases} w^{T} z_{n} x_{n} > 0 \Rightarrow x_{n} \text{ is correctly classified} \\ (<0 \Rightarrow \text{incorrect}) \end{cases}$

Zn In is the reflected data point. (In is the unreflected data pt.)

More Notation

Reflected data points (2-class problems, augmented space, n^{th} data point):

$$z_n^{(k)} = z_n = \text{class indicator} = \begin{cases} +1, & S_1 \\ -1, & S_2 \end{cases}$$

$$z_n^{(k)} \underline{x}_n^{(k)} = z_n \underline{x}_n = \text{reflected data point}$$
(Bishop $t_n \underline{x}_n$)

Matrix of reflected data points (2-class, augmented):

$$\underline{X} = \begin{bmatrix} z_1 \underline{x}_1 \\ z_2 \underline{x}_2 \\ \vdots \\ z_N \underline{x}_N \end{bmatrix}$$
 (Bishop $\widetilde{\mathbf{X}}$)

Machine Learning I

Learning Algorithms: Problem Statement and Approach

The Learning Problem

Given a (training) set of labeled data points $\underline{x}_n^{(k)}$, find \underline{w} (or $\underline{w}^{(k)} \forall k$) that yields optimal (in some (or optimal output values y for regression problems)

→ Find the best value(s) of w or w sense) decision boundaries and regions.

Learning Algorithms – Approach

- 1. Construct a criterion function $J(\underline{w})$
 - So that a minimum of J occurs at a "good" or "optimal" value of w.
- (Optionally) set up constraints, for example:
 - To state additional preferences among possible choices of w.
 - To include prior knowledge.
- Use an optimization procedure to find $\underline{\hat{w}} = \arg \min J(\underline{w})$.
 - Taking any constraints (from step 2) into account
- 4. Results in an "optimal" choice of $w = \hat{w}$.
 - "Optimal" decision boundaries and regions. (or values \hat{y})

Criterion Functions J (w)

Desirable properties of J (w)

1. One minimum

- -> Strictly convex J(m) will ensure this -> Convex J(m) is O.K.
- a. Differentiable
 - -) Allows derivative-based optimization techniques

Jy (w) is piecewise constant and has discontinuities - better for discrete search.

3. Optimization problems can include constraints:

- -> Unconstrained optimization is simpler
- -> Sometimes constrained optimization is better

Optimization Procedures for Convex, Differentiable J(w); Unconstrained Case

Possible approaches:

(i)
$$\nabla_{\underline{w}} J(\underline{w}) = \frac{\partial J(\underline{w})}{\partial \underline{w}} = 0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
, then solve for \hat{w} algebraically $\hat{w} = \hat{w} = (\dots)$

(ii) Gradient descent (many versions/variants) -Iteratively update (move) w in direction of steepest descent (decrease) of J.

also, e.g.;

Scalar case: df(u) = = f(u0)

f(u)=const, = fo

Let u be a dummy variable

(e.g., $u = \chi$, or u = w).

direction of steerest

 $\nabla_{\underline{u}} f(\underline{u}) \Big|_{\underline{u} = \underline{u}_0} = \nabla_{\underline{u}} f(\underline{u}_0)$ points in what direction?

=> direction of steepest ascent (fastest positive change) of f(u).

=) also, at u= uo, $\nabla_u f(u) \perp f(u) = const. curve.$

$$w(i+1) = w(i) - N(i) \nabla_w J(w) \Big|_{w(i)} ; N(i) \ge 0$$
Gradient
$$descent$$

$$\eta(i) = (earning rate parameter)$$

How about:
$$J_{d}(w) = \sum_{n=1}^{N} \left[g(z_{n}x_{n}) \leq \tilde{O} \right] d(z_{n}x_{n}, H_{w})$$

+1 iff z_{n} is distance $z_{n}x_{n}$

misclass. or on

dec. boundary

(unsigned)

W (W-)

$$=) J_{d}(w) = -\sum_{n=1}^{N} \left[g(z_{n}x_{n}) \leq 0\right] \frac{g(z_{n}x_{n})}{\|w\|}$$

Perceptron Criterion Function (x=x(+), w=w(+))

$$J(\underline{w}) = -\sum_{n=1}^{N} \left[g(z_n \underline{x}_n) \leq 0 \right] \underline{w}^{\mathsf{T}} z_n \underline{x}_n$$

Is J(w) convex? -> Yes.

Is J(w) differentiable? -> Almost everywhere

 $d_{S}(H_{M}, X_{n})$ $= \frac{g(X_{n})}{\|W\|}$ $d_{S}(H_{M}, Z_{n}X_{n})$ $= \frac{g(Z_{n}X_{n})}{\|W\|}$ < 0 for mis- $= classified X_{n}$

Minimize Jw.r.t. w by gradient descent (GD):

$$\nabla_{\underline{w}} J(\underline{w}) = -\sum_{n=1}^{N} \left[g(z_n \underline{x}_n) \leq 0 \right] z_n \underline{x}_n$$

=) GD, from (X)

$$\frac{\mathcal{W}(i+1) = \mathcal{W}(i) + \eta(i)}{\sum_{n=1}^{N} \left[g(z_n \underline{x}_n) \leq 0 \right] z_n \underline{x}_n} , \quad \eta(i) \geq 0 \quad \forall i$$

$$Stop when \quad \sum_{n=1}^{N} \left[g(z_n \underline{x}_n) \leq 0 \right] z_n \underline{x}_n = 0$$

(i.e., when there are no misclassified data points)

2 Perceptron Learning Algorithm using true (batch) &D

Note that
$$g(z_n \chi_n) = w^T(i) z_n \chi_n$$

Perceptron Learning Algorithm - Basic sequential GD version

(zt), w (+))

Update w (i) after each data point:

$$w(i+1) = w(i) + \eta(i) \left[g(z_n \chi_n) \leq 0 \right] z_n \chi_n, \quad \eta(i) \geq 0 \quad \forall i$$

$$Stop when \quad \sum_{n=1}^{N} \left[g(z_n \chi_n) \leq 0 \right] z_n \chi_n = 0$$

$$(Stop when \left[g(z_n \chi_n) \leq 0 \right] = 0 \text{ for all of }$$

$$the last N iterations.)$$

Tip: best to randomly shuffle training data (over all classes) before iterating.