Multilevel Modeling: A Primer

Steven T. Tseng

Ph.D. Candidate

Industrial/Organizational Psychology

The University of Akron

18 November 2019

Question

Does frequency of feedback from managers predict employee engagement?

FF & Engagement

Does frequency of feedback from managers predict employee engagement?

N = 100 employees in org unit

Employee	Number of Weekly FB Ints	Engagement
1	4	4.67
2	1	3.54
3	9	6.12
4	6	3.31
5	3	3.27

FF & Engagement

FF & Engagement: OLS Line

- Org unit is <u>hierarchically</u> structured
 - Employees *nested* under managers

Employee	<mark>Manager</mark>	# Weekly FB	Engagement
1	<mark>Mo</mark>	4	5.18
2	<mark>Yuki</mark>	1	3.04
3	<mark>Gretchen</mark>	9	6.12
4	<mark>Thomas</mark>	6	3.31
5	<mark>Yuki</mark>	3	3.27
6	Mo	2	4.89
7	<mark>Thomas</mark>	5	3.42

- Org unit is <u>hierarchically</u> structured
 - Employees *nested* under managers

OLS

OLS

Does frequency of feedback from managers predict employee engagement?

$$y = engagement$$

 $x = \# of weekly feedback interactions$

OLS Regression

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$

$$engagement_i = \beta_0 + \beta_1 feedback_i$$

OLS

MLM Basics: What is MLM?

Generalization of linear model

Parameters allowed to vary by group

Regression coefficients

MLM Basics: What is MLM?

OLS Regression model

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$

- Multilevel model
 - Introduce grouping indicator jj = group(e.g., manager)

$$\hat{y}_{j[i]} = \beta_{0j} + \beta_{1j} x_{[i]}$$
Intercept Slope for group j for group j

Back to our example: $engagement_i = \beta_0 + \beta_1 feedback_i$

Random intercept:

$$engagement_{j[i]} = \beta_{0j} + \beta_1 feedback_i$$

Random slope:

$$engagement_{j[i]} = \beta_0 + \beta_{1j}feedback_i$$

Random intercept and slope:

$$engagement_{j[i]} = \beta_{0j} + \beta_{1j}feedback_i$$

<u>OLS</u>

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

MLM Mechanics

MLM

Level 1
$$y_{j[i]} = \beta_{0j} + \beta_{1j} x_{j[i]} + \epsilon_{[i]}$$

Level 2

$$\beta_{0j} = \gamma_{00} + \mu_{0j} + \beta_{1j} = \gamma_{10} + \mu_{1j}$$

Group-level error in intercept

Group-level error in slope

Average intercept and slope *across* all groups

Random intercept and slope:

$$engagement_{j[i]} = \beta_{0j} + \beta_{1j}feedback_i$$

<u>OLS</u>

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

MLM Mechanics

MLM

Level 1
$$y_{j[i]} = \beta_{0j} + \beta_{1j} x_{j[i]} + \epsilon_{[i]}$$

Level 2

$$\beta_{0j} = \gamma_{00} + \mu_{0j} + \beta_{1j} = \gamma_{10} + \mu_{1j}$$

Group-level error in intercept

Group-level error in slope

Average intercept and slope *across* all groups

MLM Mechanics

- Add predictors at different levels
 - Individual-level
 - Group-level

Level 1

$$engagement_{j[i]} = \beta_{0j} + \beta_{1j} feedback_i + \epsilon_i$$

Group-level predictor

Level 2

$$\beta_{0j} = \gamma_{00} + \gamma_{01} leadership_j + \mu_{0j}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} leadership_j + \mu_{1j}$$
Group-level predictor of slopes

$engagement_{j[i]} = \beta_{0j} + \beta_{1j} feedback_i + \epsilon_i$

MLM Mechanics

$$\beta_{0j} = \gamma_{00} + \gamma_{01} leadership_j + \mu_{0j}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} leadership_j + \mu_{1j}$$

fin