CS215: Discrete Math (H) 2023 Fall Semester Written Assignment # 5 Due: Dec. 20, 2023, please submit at the beginning of class

- Q.1 Let S be the set of all strings of English letters. Determine whether these relations are reflexive, irreflexive, symmetric, antisymmetric, and/or transitive.
 - (1) $R_1 = \{(a, b) | a \text{ and } b \text{ have no letters in common}\}$
 - (2) $R_2 = \{(a, b) | a \text{ and } b \text{ are not the same length}\}$
 - (3) $R_3 = \{(a,b)|a \text{ is longer than } b\}$
- Q.2 Define a relation R on \mathbb{R} , the set of real numbers, as follows: For all x and y in \mathbb{R} , $(x,y) \in R$ if and only if x-y is rational. Answer the followings, and explain your answers.
 - (1) Is R reflexive?
 - (2) Is R symmetric?
 - (3) Is R antisymmetric?
 - (4) Is R transitive?
- Q.3 How many relations are there on a set with n elements that are
 - (a) symmetric?
 - (b) antisymmetric?
 - (c) irreflexive?
 - (d) both reflexive and symmetric?
 - (e) neither reflexive nor irreflexive?
 - (f) both reflexive and antisymmetric?
 - (g) symmetric, antisymmetric and transitive?

- Q.4 Suppose that the relation R is irreflexive. Is the relation R^2 necessarily irreflexive?
- Q.5 Suppose that R_1 and R_2 are both reflexive relations on a set A.
 - (1) Show that $R_1 \oplus R_2$ is irreflexive.
 - (2) Is $R_1 \cap R_2$ also reflexive? Explain your answer.
 - (3) Is $R_1 \cup R_2$ also reflexive? Explain your answer.
- Q.6 Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if ad = bc.
 - (a) Show that R is an equivalence relation.
 - (b) What is the equivalence class of (1,2) with respect to the equivalence relation R?
 - (c) Give an interpretation of the equivalence classes for the equivalence relation R.
- Q.7 For the relation R on the set $X = \{(a, b, c) : a, b, c \in \mathbb{R}\}$ with $(a_1, b_1, c_1)R(a_2, b_2, c_2)$ if and only if $(a_1, b_1, c_1) = k(a_2, b_2, c_2)$ for some $k \in \mathbb{R} \setminus \{0\}$.
 - (1) Prove that this is an *equivalence* relation.
 - (2) Write at least three elements of the equivalence classes [(1,1,1)] and [(1,0,3)].
 - (3) Do all the equivalence classes in this relation have the same cardinality?
- Q.8 Let A be a set, let R and S be relations on the set A. Let T be another relation on the set A defined by $(x,y) \in T$ if and only if $(x,y) \in R$ and $(x,y) \in S$. Prove or disprove: If R and S are both equivalence relations, then T is also an equivalence relation.

Q.9 Which of these are posets?

- (a) $({\bf R}, =)$
- (b) $(\mathbf{R}, <)$
- (c) (\mathbf{R}, \leq)
- (d) (\mathbf{R}, \neq)

Q.10 Given functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$, f is **dominated** by g if $f(x) \leq g(x)$ for all $x \in \mathbb{R}$. Write $f \leq g$ if f is dominated by g.

- (a) Prove that \leq is a partial ordering.
- (b) Prove or disprove: \leq is a total ordering.

Q.11 For two positive integers, we write $m \leq n$ if the sum of the (distinct) prime factors of the first is less than or equal to the product of the (distinct) prime factors of the second. For instance $75 \leq 14$, because $3 + 5 \leq 2 \cdot 7$.

- (a) Is this relation reflexive? Explain.
- (b) Is this relation antisymmetric? Explain.
- (c) Is this relation transitive? Explain.

Q.12 The relation R on the set $X = \{(a, b, c) : a, b, c \in \mathbb{N}\}$ with $(a_1, b_1, c_1)R(a_2, b_2, c_2)$ if and only if $2^{a_1}3^{b_1}5^{c_1} < 2^{a_2}3^{b_2}5^{c_2}$.

- (1) Prove that R is a partial ordering.
- (2) Write two comparable and two incomparable elements if they exist.
- (3) Find the least upper bound and the greatest lower bound of the two elements (5,0,1) and (1,1,2).
- (4) List a minimal and a maximal element if they exist.

Q.13 Define the relation \preceq on $\mathbb{Z} \times \mathbb{Z}$ according to

$$(a,b) \leq (c,d) \Leftrightarrow (a,b) = (c,d) \text{ or } a^2 + b^2 < c^2 + d^2.$$

Show that $(\mathbb{Z} \times \mathbb{Z}, \preceq)$ is a poset; Construct the Hasse diagram for the subposet (B, \preceq) , where $B = \{0, 1, 2\} \times \{0, 1, 2\}$.

Q.14 Answer these questions for the partial order represented by this Hasse diagram.

Figure 1: Q.14

- (a) Find the maximal elements.
- (b) Find the minimal elements.
- (c) Is there a greatest element?
- (d) Is there a least element?
- (e) Find all upper bounds of $\{a, b, c\}$.
- (f) Find the least upper bound of $\{a, b, c\}$, if it exists.
- (g) Find all lower bounds of $\{f, g, h\}$.
- (h) Find the greatest lower bound of $\{f,g,h\}$, if it exists.