MIT OpenCourseWare <a href="http://ocw.mit.edu">http://ocw.mit.edu</a>

18.175 Theory of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: <a href="http://ocw.mit.edu/terms">http://ocw.mit.edu/terms</a>.

## Section 24

## Empirical process and Kolmogorov's chaining.

Empirical process and the Kolmogorov-Smirnov test. In this sections we show how the Brownian bridge  $B_t$  arises in another central limit theorem on the space of continuous functions on [0,1]. Let us start with a motivating example from statistics. Suppose that  $x_1, \ldots, x_n$  are i.i.d. uniform random variables on [0,1]. By the law of large numbers, for any  $t \in [0,1]$ , the empirical c.d.f.  $n^{-1} \sum_{i=1}^{n} I(x_i \leq t)$  converges to the true c.d.f.  $\mathbb{P}(x_1 \leq t) = t$  almost surely and, moreover, by the CLT,

$$X_t^n = \sqrt{n} \left( \frac{1}{n} \sum_{i=1}^n \mathbf{I}(x_i \le t) - t \right) \to \mathcal{N}(0, t(1-t)).$$

The stochastic process  $X_t^n$  is called the *empirical process*. The covariance of this process,

$$\mathbb{E}X_t^n X_s^n = \mathbb{E}(I(x_1 < t) - t)(I(x_1 < s) - s) = s - ts - ts + ts = s(1 - t),$$

is the same as the covariance of the Brownian bridge and, by the multivariate CLT, finite dimensional distributions of the empirical process converge to f.d. distributions of the Brownian bridge,

$$\mathcal{L}((X_t^n)_{t\in F}) \to \mathcal{L}((B_t)_{t\in F}).$$
 (24.0.1)

However, we would like to show the convergence of  $X_t^n$  to  $B_t$  in some stronger sense that would imply weak convergence of continuous functions of the process on the space  $(C[0,1], \|\cdot\|_{\infty})$ .

The Kolmogorov-Smirnov test in statistics provides one possible motivation. Suppose that i.i.d.  $(X_i)_{i\geq 1}$  have continuous distribution with c.d.f.  $F(t) = \mathbb{P}(X_1 \leq t)$ . Let  $F_n(t) = n^{-1} \sum_{i=1}^n \mathrm{I}(X_i \leq t)$  be the empirical c.d.f. It is easy to see the equality in distribution

$$\sup_{t \in \mathbb{R}} \sqrt{n} |F_n(t) - F(t)| \stackrel{d}{=} \sup_{t \in [0,1]} |X_t^n|$$

because  $F(X_i)$  have uniform distribution on [0, 1]. In order to test whether  $(X_i)_{i\geq 1}$  come from the distribution with c.d.f. F, the statisticians need to know the distribution of the above supremum or, as approximation, the distribution of its limit. Equation (24.0.1) suggests that

$$\mathcal{L}(\sup_{t} |X_{t}^{n}|) \to \mathcal{L}(\sup_{t} |B_{t}|). \tag{24.0.2}$$

Since  $B_t$  is sample continuous, its distribution is the law on the metric space  $(C[0,1], \|\cdot\|_{\infty})$ . Even though  $X_t^n$  is not continuous, its jumps are of order  $n^{-1/2}$  so it has a "close" continuous version  $Y_t^n$ . Since  $\|\cdot\|_{\infty}$  is a continuous functional on C[0,1], (24.0.2) would hold if we can prove weak convergence  $\mathcal{L}(Y_t^n) \to \mathcal{L}(B_t)$  on the space  $(C[0,1], \|\cdot\|_{\infty})$ . Lemma 36 in Section 18 shows that we only need to prove uniform tightness of  $\mathcal{L}(Y_t^n)$ 

because, by Lemma 45, (24.0.1) already identifies the law of the Brownian motion as the unique possible limit. Thus, we need to address the question of uniform tightness of  $(\mathcal{L}(X_t^n))$  on the complete separable space  $(C[0,1],||\cdot||_{\infty})$  or equivalently, by the result of the previous section, the equicontinuity of  $X_t^n$ ,

$$\lim_{\delta \to 0} \limsup_{n \to \infty} \mathbb{P}\Big(m(X^n, \delta) > \varepsilon\Big) = 0.$$

By Chebyshev's inequality,

$$\mathbb{P}\Big(m(X^n,\delta) > \varepsilon\Big) \leq \frac{1}{\varepsilon} \mathbb{E} m(X^n,\delta)$$

and we need to learn how to control  $\mathbb{E}m(X^n,\delta)$ . The modulus of continuity of  $X^n$  can be written as

$$m(X^{n}, \delta) = \sup_{|t-s| \le \delta} |X_{t}^{n} - X_{s}^{n}| = \sqrt{n} \sup_{|t-s| \le \delta} \left| \frac{1}{n} \sum_{i=1}^{n} I(s < x_{i} \le t) - (t-s) \right|$$

$$= \sqrt{n} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(x_{i}) - \mathbb{E}f \right|, \qquad (24.0.3)$$

where we introduced the class of functions

$$\mathcal{F} = \left\{ f(x) = I(s < x \le t) : |t - s| < \delta \right\}. \tag{24.0.4}$$

We will develop one approach to control the expectation of (24.0.3) for general classes of functions  $\mathcal{F}$  and we will only use the specific definition (24.0.4) at the very end. This will be done in several steps.

**Symmetrization.** At the first step, we will replace the empirical process (24.0.3) by a symmetrized version, called Rademacher process, that will be easier to control. Let  $x'_1, \ldots, x'_n$  be independent copies of  $x_1, \ldots, x_n$  and let  $\varepsilon_1, \ldots, \varepsilon_n$  be i.i.d. Rademacher random variables, such that  $\mathbb{P}(\varepsilon_i = 1) = \mathbb{P}(\varepsilon_i = -1) = 1/2$ . Let us define

$$\mathbb{P}_n f = \frac{1}{n} \sum_{i=1}^n f(x_i)$$
 and  $\mathbb{P}'_n f = \frac{1}{n} \sum_{i=1}^n f(x'_i)$ .

Notice that  $\mathbb{EP}'_n f = \mathbb{E}f$ . Consider the random variables

$$Z = \sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{E}f|$$
 and  $R = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(x_i) \right|$ .

Then, using Jensen's inequality and then triangle inequality, we can write

$$\mathbb{E}Z = \mathbb{E}\sup_{f\in\mathcal{F}} \left| \mathbb{P}_n f - \mathbb{E}f \right| = \mathbb{E}\sup_{f\in\mathcal{F}} \left| \mathbb{P}_n f - \mathbb{E}\mathbb{P}'_n f \right|$$

$$\leq \mathbb{E}\sup_{f\in\mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n (f(x_i) - f(x'_i)) \right| = \mathbb{E}\sup_{f\in\mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i (f(x_i) - f(x'_i)) \right|$$

$$\leq \mathbb{E}\sup_{f\in\mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(x_i) \right| + \mathbb{E}\sup_{f\in\mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(x'_i) \right| = 2\mathbb{E}R.$$

Equality in the second line holds because switching  $x_i \leftrightarrow x_i'$  arbitrarily does not change the expectation, so the equality holds for any fixed  $(\varepsilon_i)$  and, therefore, for any random  $(\varepsilon_i)$ .

**Hoeffding's inequality.** The first step to control the supremum in R is to control the sum  $\sum_{i=1}^{n} \varepsilon_i f(x_i)$  for a fixed function f. Consider an arbitrary sequence  $a_1, \ldots, a_n \in \mathbb{R}$ . Then the following holds.

**Theorem 57** (Hoeffding) For  $t \geq 0$ ,

$$\mathbb{P}\Big(\sum_{i=1}^{n} \varepsilon_{i} a_{i} \ge t\Big) \le \exp\Big(-\frac{t^{2}}{2\sum_{i=1}^{n} a_{i}^{2}}\Big).$$

104

**Proof.** Given  $\lambda > 0$ , by Chebyshev's inequality,

$$\mathbb{P}\Big(\sum_{i=1}^{n} \varepsilon_{i} a_{i} \geq t\Big) \leq e^{-\lambda t} \mathbb{E} \exp\Big(\lambda \sum_{i=1}^{n} \varepsilon_{i} a_{i}\Big) = e^{-\lambda t} \prod_{i=1}^{n} \mathbb{E} \exp\Big(\lambda \varepsilon_{i} a_{i}\Big).$$

Using the inequality  $(e^x + e^{-x})/2 \le e^{x^2/2}$ , we get

$$\mathbb{E}\exp(\lambda\varepsilon_i a_i) = \frac{e^{\lambda a_i} + e^{-\lambda a_i}}{2} \le \exp\left(\frac{\lambda^2 a_i^2}{2}\right).$$

Hence,

$$\mathbb{P}\left(\sum_{i=1}^{n} \varepsilon_{i} a_{i} \geq t\right) \leq \exp\left(-\lambda t + \frac{\lambda^{2}}{2} \sum_{i=1}^{n} a_{i}^{2}\right)$$

and minimizing over  $\lambda > 0$  gives the result.

Covering numbers, Kolmogorov's chaining and Dudley's entropy integral. To control  $\mathbb{E}R$  for general classes of functions  $\mathcal{F}$ , we will need to use some measures of complexity of  $\mathcal{F}$ . First, we will show how to control the Rademacher process R conditionally on  $x_1, \ldots, x_n$ .

**Definition.** Suppose that (F, d) is a totally bounded metric space. For any u > 0, a u-packing number of F with respect to d is defined by

$$D(F, u, d) = \max \operatorname{card} \left\{ F_u \subseteq F : d(f, g) > u \text{ for all } f, g \in F_u \right\}$$

and a u-covering number is defined by

$$N(D,u,d) = \min \operatorname{card} \Big\{ F_u \subseteq F : \forall f \in F \, \exists \, g \in F_u \text{ such that } d(f,g) \leq u \Big\}.$$

Both packing and covering numbers measure how many points are needed to approximate any element in the set F within distance u. It is a simple exercise to show that

$$N(F, u, d) < D(F, u, d) < N(F, u/2, d)$$

and, in this sense, packing and covering numbers are closely related. Let F be a subset of the cube  $[-1,1]^n$  equipped with a scaled Euclidean metric

$$d(f,g) = \left(\frac{1}{n} \sum_{i=1}^{n} (f_i - g_i)^2\right)^{1/2}.$$

Consider the following Rademacher process on F,

$$\mathcal{R}(f) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i f_i.$$

Then we have the following version of the classical Kolmogorov's chaining lemma.

**Theorem 58** (Kolmogorov's chaining) For any u > 0,

$$\mathbb{P}\Big(\forall f \in F, \ \mathcal{R}(f) \le 2^{9/2} \int_0^{d(0,f)} \log^{1/2} D(F,\varepsilon,d) d\varepsilon + 2^{7/2} d(0,f) \sqrt{u} \Big) \ge 1 - e^{-u}.$$

**Proof.** Without loss of generality, assume that  $0 \in F$ . Define a sequence of subsets

$$\{0\} = F_0 \subseteq F_1 \ldots \subseteq F_j \subseteq \ldots \subseteq F$$

such that  $F_j$  satisfies

- 1.  $\forall f, g \in F_i, \ d(f, g) > 2^{-j},$
- 2.  $\forall f \in F$  we can find  $g \in F_j$  such that  $d(f,g) \leq 2^{-j}$ .

 $F_0$  obviously satisfies these properties for j=0. To construct  $F_{j+1}$  given  $F_j$ :

- Start with  $F_{j+1} := F_j$ .
- If possible, find  $f \in F$  such that  $d(f,g) > 2^{-(j+1)}$  for all  $g \in F_{j+1}$ .
- Let  $F_{j+1} := F_{j+1} \cup \{f\}$  and repeat until you cannot find such f.

Define projection  $\pi_j: F \to F_j$  as follows:

for 
$$f \in F$$
 find  $g \in F_i$  with  $d(f,g) \leq 2^{-j}$  and set  $\pi_i(f) = g$ .

Any  $f \in F$  can be decomposed into the telescopic series

$$f = \pi_0(f) + (\pi_1(f) - \pi_0(f)) + (\pi_2(f) - \pi_1(f)) + \dots$$
$$= \sum_{j=1}^{\infty} (\pi_j(f) - \pi_{j-1}(f)).$$

Moreover,

$$d(\pi_{j-1}(f), \pi_j(f)) \leq d(\pi_{j-1}(f), f) + d(f, \pi_j(f))$$
  
$$\leq 2^{-(j-1)} + 2^{-j} = 3 \cdot 2^{-j} \leq 2^{-j+2}.$$

As a result, the jth term in the telescopic series for any  $f \in F$  belongs to a finite set of possible links

$$L_{j-1,j} = \left\{ f - g : f \in F_j, g \in F_{j-1}, d(f,g) \le 2^{-j+2} \right\}.$$

Since  $\mathcal{R}(f)$  is linear,

$$\mathcal{R}(f) = \sum_{j=1}^{\infty} \mathcal{R}(\pi_j(f) - \pi_{j-1}(f)).$$

We first show how to control  $\mathcal{R}$  on the set of all links. Assume that  $\ell \in L_{j-1,j}$ . By Hoeffding's inequality,

$$\mathbb{P}\Big(\mathcal{R}(\ell) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i \ell_i \ge t\Big) \le \exp\Big(-\frac{t^2}{2n^{-1} \sum_{i=1}^{n} \ell_i^2}\Big) \le \exp\Big(-\frac{t^2}{2 \cdot 2^{-2j+4}}\Big).$$

If |F| denotes the cardinality of the set F then

$$|L_{j-1,j}| \le |F_{j-1}| \cdot |F_j| \le |F_j|^2$$

and, therefore,

$$\mathbb{P}\Big(\forall \ell \in L_{j-1,j}, \ \mathcal{R}(\ell) \le t\Big) \ge 1 - |F_j|^2 \exp\Big(-\frac{t^2}{2^{-2j+5}}\Big) = 1 - \frac{1}{|F_j|^2} e^{-ut}$$

after making a change of variables

$$t = \left(2^{-2j+5} (4\log|F_j| + u)\right)^{1/2} \le 2^{7/2} 2^{-j} \log^{1/2} |F_j| + 2^{5/2} 2^{-j} \sqrt{u}.$$

Hence,

$$\mathbb{P}\Big(\forall \ell \in L_{j-1,j}, \ \mathcal{R}(\ell) \le 2^{7/2} 2^{-j} \log^{1/2} |F_j| + 2^{5/2} 2^{-j} \sqrt{u} \Big) \ge 1 - \frac{1}{|F_j|^2} e^{-u}.$$

If  $F_{j-1} = F_j$  then we can define  $\pi_{j-1}(f) = \pi_j(f)$  and, since in this case  $L_{j-1,j} = \{0\}$ , there is no need to control these links. Therefore, we can assume that  $|F_{j-1}| < |F_j|$  and taking a union bound for all steps,

$$\mathbb{P}\Big(\forall j \ge 1 \ \forall \ell \in L_{j-1,j}, \ \mathcal{R}(\ell) \le 2^{7/2} 2^{-j} \log^{1/2} |F_j| + 2^{5/2} 2^{-j} \sqrt{u} \Big)$$

$$\ge 1 - \sum_{j=1}^{\infty} \frac{1}{|F_j|^2} e^{-u} \ge 1 - \sum_{j=1}^{\infty} \frac{1}{(j+1)^2} e^{-u} = 1 - (\pi^2/6 - 1)e^{-u} \ge 1 - e^{-u}.$$

Given  $f \in F$ , let integer k be such that  $2^{-(k+1)} < d(0,f) \le 2^{-k}$ . Then in the above construction we can assume that  $\pi_0(f) = \ldots = \pi_k(f) = 0$ , i.e. we will project f on 0 if possible. Then with probability at least  $1 - e^{-u}$ ,

$$\mathcal{R}(f) = \sum_{j=k+1}^{\infty} \mathcal{R}(\pi_j(f) - \pi_{j-1}(f))$$

$$\leq \sum_{j=k+1}^{\infty} \left(2^{7/2} 2^{-j} \log^{1/2} |F_j| + 2^{5/2} 2^{-j} \sqrt{u}\right)$$

$$\leq 2^{7/2} \sum_{j=k+1}^{\infty} 2^{-j} \log^{1/2} D(F, 2^{-j}, d) + 2^{5/2} 2^{-k} \sqrt{u}.$$

Note that  $2^{-k} < 2d(f,0)$  and  $2^{5/2}2^{-k} < 2^{7/2}d(f,0)$ . Finally, since packing numbers  $D(F,\varepsilon,d)$  are decreasing in  $\varepsilon$ , we can write (see figure 24)

$$2^{9/2} \sum_{j=k+1}^{\infty} 2^{-(j+1)} \log^{1/2} D(F, 2^{-j}, d) \leq 2^{9/2} \int_{0}^{2^{-(k+1)}} \log^{1/2} D(F, \varepsilon, d) d\varepsilon$$

$$\leq 2^{9/2} \int_{0}^{d(0,f)} \log^{1/2} D(F, \varepsilon, d) d\varepsilon \qquad (24.0.5)$$

since  $2^{-(k+1)} < d(0, f)$ . This finishes the proof.



The integral in (24.0.5) is called *Dudley's entropy integral*. We would like to apply the bound of the above theorem to

$$\sqrt{n}R = \sup_{f \in \mathcal{F}} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i f(x_i) \right|$$

for a class of functions  $\mathcal{F}$  in (24.0.4). Suppose that  $x_1, \ldots, x_n \in [0, 1]$  are fixed and let

$$F = \left\{ \left( f_i \right)_{1 \leq i \leq n} = \left( \mathbf{I} \left( s < x_i \leq t \right) \right)_{1 \leq i \leq n} : \ |t - s| \leq \delta \text{ and } t, s \in [0, 1] \right\} \subseteq \{0, 1\}^n.$$

Then the following holds.

**Lemma 47**  $N(F, u, d) \le Ku^{-4}$  for some absolute K > 0 independent of the points  $x_1, \ldots, x_n$ .

**Proof.** We can assume that  $x_1 \leq \ldots \leq x_n$ . Then the class F consists of all vectors of the type

$$(0\ldots 1\ldots 1\ldots 0),$$

i.e. the coordinates equal to 1 come in blocks. Given u, let  $F_u$  be a subset of such vectors with blocks of 1's starting and ending at the coordinates  $k \lfloor nu \rfloor$ . Given any vector  $f \in F$ , let us approximate it by a vector in  $f' \in F_u$  by choosing the closest starting and ending coordinates for the blocks of 1's. The number of different coordinates will be bounded by  $2 \lfloor nu \rfloor$  and, therefore, the distance between f and f' will be bounded by

$$d(f, f') \le \sqrt{2n^{-1}|nu|} \le \sqrt{2u}.$$

The cardinality of  $F_u$  is, obviously, of order  $u^{-2}$ . This proves that  $N(F, \sqrt{2u}, d) \leq Ku^{-2}$ . Making the change of variables  $\sqrt{2u} \to u$  proves the result.

To apply the Kolmogorov chaining bound to this class F let us make a simple observation that if a random variable  $X \ge 0$  satisfies  $\mathbb{P}(X \ge a + bt) \le Ke^{-t^2}$  for all  $t \ge 0$  then

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X \ge t)dt \le a + \int_0^\infty \mathbb{P}(X \ge a + t)dt \le a + K \int_0^\infty e^{-\frac{t^2}{b^2}}dt \le a + Kb \le K(a + b).$$

Theorem 58 then implies that

$$\mathbb{E}_{\varepsilon} \sup_{F} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_{i} f_{i} \right| \leq K \left( \int_{0}^{D_{n}} \sqrt{\log \frac{K}{u}} du + D_{n} \right)$$
 (24.0.6)

where  $\mathbb{E}_{\varepsilon}$  is the expectation with respect to  $(\varepsilon_i)$  only and

$$D_n^2 = \sup_{F} d(0, f)^2 = \sup_{\mathcal{F}} \frac{1}{n} \sum_{i=1}^n f(x_i)^2 = \sup_{|t-s| \le \delta} \frac{1}{n} \sum_{i=1}^n I(s < x_i \le t)$$
$$= \sup_{|t-s| \le \delta} \left| \frac{1}{n} \sum_{i=1}^n I(x_i \le t) - \frac{1}{n} \sum_{i=1}^n I(x_i \le s) \right|.$$

Since the integral on the right hand side of (24.0.6) is concave in  $D_n$ , by Jensen's inequality,

$$\mathbb{E}\sup_{\mathcal{F}} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_{i} f(x_{i}) \right| \leq K \left( \int_{0}^{\mathbb{E}D_{n}} \sqrt{\log \frac{K}{u}} du + \mathbb{E}D_{n} \right).$$

By the symmetrization inequality, this finally proves that

$$\mathbb{E}m(X^n, \delta) \le K\left(\int_0^{\mathbb{E}D_n} \sqrt{\log \frac{K}{u}} du + \mathbb{E}D_n\right).$$

The strong law of large numbers easily implies that

$$\sup_{t \in [0,1]} \left| \frac{1}{n} \sum_{i=1}^{n} I(x_i \le t) - t \right| \to 0 \quad \text{a.s.}$$

and, therefore,  $D_n^2 \to \delta$  a.s. and  $\mathbb{E}D_n \to \sqrt{\delta}$ . This implies that

$$\limsup_{n \to \infty} \mathbb{E}m(X_t^n, \delta) \le K \left( \int_0^{\sqrt{\delta}} \sqrt{\log \frac{K}{u}} du + \sqrt{\delta} \right).$$

The right-hand side goes to zero as  $\delta \to 0$  and this finishes the proof of equicontinuity of  $X^n$ . As a result, for any continuous function  $\Phi$  on  $(C[0,1], \|\cdot\|_{\infty})$  the distribution of  $\Phi(X_t^n)$  converges to the distribution of  $\Phi(B_t)$ . For example,

$$\sqrt{n} \sup_{0 \le t \le 1} \left| \frac{1}{n} \sum I(x_i \le t) - t \right| \to \sup_{0 \le t \le 1} |B_t|$$

in distribution. We will find the distribution of the right hand side in the next section.