# Understanding the cartwheel data set

The notebook aims to undertand the content of the cartwheel data set.

### Acknowledgments

Data from <a href="https://www.coursera.org/">https://www.coursera.org/</a> from the course "Understanding and Visualizing Data with Python" by University of Michigan

### Cartwheel data set

1. A cartwheel



- 2. The dataset description
  - The dataset used here is an extension from the original cartwheel dataset from cursera
  - Total numer of observations: 28
  - Many observations/measurements/recordings of the characteristics/attributes/variables of cartwheel executions
  - Variables: Age, Gender, GenderGroup, Glasses, GlassesGroup, Height, Wingspan,
     CWDistance, ... (X variables)
- Importing and inspecting the data

```
# Define where you are running the code: colab or local
RunInColab
                    = True
                               # (False: no | True: yes)
# If running in colab:
if RunInColab:
    # Mount your google drive in google colab
    from google.colab import drive
    drive.mount('/content/drive')
   # Find location
   #!pwd
   #!ls
   #!ls "/content/drive/My Drive/Colab Notebooks/a01637205/NotebooksProfessor/datas
   # Define path del proyecto
   Ruta
                    = "/content/drive/MyDrive/Colab Notebooks/a01637205/NotebooksPro
else:
    # Define path del proyecto
   Ruta
    Mounted at /content/drive
# Import the packages that we will be using
import matplotlib.pyplot as plt
import pandas as pd
# Dataset url
url = Ruta + "cartwheel/cartwheel.csv"
# Load the dataset
dataset = pd.read_csv(url)
# Print the dataset
dataset
```

|    | ID | Age  | Gender | GenderGroup | Glasses | GlassesGroup | Height | Wingspan | CWDista |
|----|----|------|--------|-------------|---------|--------------|--------|----------|---------|
| 0  | 1  | 56.0 | F      | 1           | Υ       | 1            | 62.00  | 61.0     |         |
| 1  | 2  | 26.0 | F      | 1           | Υ       | 1            | 62.00  | 60.0     |         |
| 2  | 3  | 33.0 | F      | 1           | Υ       | 1            | 66.00  | 64.0     |         |
| 3  | 4  | 39.0 | F      | 1           | N       | 0            | 64.00  | 63.0     |         |
| 4  | 5  | 27.0 | М      | 2           | N       | 0            | 73.00  | 75.0     |         |
| 5  | 6  | 24.0 | М      | 2           | N       | 0            | 75.00  | 71.0     |         |
| 6  | 7  | 28.0 | М      | 2           | N       | 0            | 75.00  | 76.0     |         |
| 7  | 8  | 22.0 | F      | 1           | N       | 0            | 65.00  | 62.0     |         |
| 8  | 9  | 29.0 | М      | 2           | Υ       | 1            | 74.00  | 73.0     |         |
| 9  | 10 | 33.0 | F      | 1           | Υ       | 1            | 63.00  | 60.0     |         |
| 10 | 11 | 30.0 | М      | 2           | Υ       | 1            | 69.50  | 66.0     |         |
| 11 | 12 | 28.0 | F      | 1           | Υ       | 1            | 62.75  | 58.0     |         |
| 12 | 13 | 25.0 | F      | 1           | Υ       | 1            | 65.00  | 64.5     |         |
| 13 | 14 | 23.0 | F      | 1           | N       | 0            | 61.50  | 57.5     |         |
| 14 | 15 | 31.0 | М      | 2           | Υ       | 1            | 73.00  | 74.0     |         |
| 15 | 16 | 26.0 | М      | 2           | Υ       | 1            | 71.00  | 72.0     |         |
| 16 | 17 | 26.0 | F      | 1           | N       | 0            | 61.50  | 59.5     |         |
| 17 | 18 | 27.0 | M      | 2           | N       | 0            | 66.00  | 66.0     |         |
| 18 | 19 | 23.0 | М      | 2           | Υ       | 1            | 70.00  | 69.0     |         |
| 19 | 20 | 24.0 | F      | 1           | Υ       | 1            | 68.00  | 66.0     |         |
| 20 | 21 | 23.0 | М      | 2           | Υ       | 1            | 69.00  | 67.0     |         |
| 21 | 22 | 29.0 | M      | 2           | N       | 0            | 71.00  | 70.0     |         |
| 22 | 23 | 25.0 | М      | 2           | N       | 0            | 70.00  | 68.0     |         |
| 23 | 24 | 26.0 | M      | 2           | N       | 0            | 69.00  | 71.0     |         |
| 24 | 25 | 23.0 | F      | 1           | Υ       | 1            | 65.00  | 63.0     |         |
| 25 | 26 | 28.0 | М      | 2           | N       | 0            | 75.00  | 76.0     |         |
| 26 | 27 | 24.0 | М      | 2           | N       | 0            | 78.40  | 71.0     |         |
| 27 | 28 | 25.0 | М      | 2           | Υ       | 1            | 76.00  | 73.0     |         |
| 28 | 29 | 32.0 | F      | 1           | Υ       | 1            | 63.00  | 60.0     |         |
| 29 | 30 | 38.0 | F      | 1           | Υ       | 1            | 61.50  | 61.0     |         |

| 30 | 31 | 27.0 | F | 1 | Υ | 1 | 62.00 | 60.0 |
|----|----|------|---|---|---|---|-------|------|
| 31 | 32 | 33.0 | F | 1 | Υ | 1 | 65.30 | 64.0 |
| 32 | 33 | 38.0 | F | 1 | N | 0 | 64.00 | 63.0 |
| 33 | 34 | 27.0 | М | 2 | N | 0 | 77.00 | 75.0 |
| 34 | 35 | 24.0 | F | 1 | N | 0 | 67.80 | 62.0 |
| 35 | 36 | 27.0 | М | 2 | N | 0 | 68.00 | 66.0 |
| 36 | 37 | 25.0 | F | 1 | Υ | 1 | 65.00 | 64.5 |
| 37 | 38 | 26.0 | F | 1 | N | 0 | 61.50 | 59.5 |
| 38 | 39 | 31.0 | М | 2 | Υ | 1 | 73.00 | 74.0 |
| 39 | 40 | 30.0 | М | 2 | Υ | 1 | 69.50 | 66.0 |
| 40 | 41 | 23.0 | F | 1 | N | 0 | 70.40 | 71.0 |
| 41 | 42 | 26.0 | М | 2 | Υ | 1 | 73.50 | 72.0 |
| 42 | 43 | 28.0 | F | 1 | Υ | 1 | 72.50 | 72.0 |
| 43 | 44 | 26.0 | F | 1 | Υ | 1 | 72.00 | 72.0 |
| 44 | 45 | 30.0 | F | 1 | Υ | 1 | 66.00 | 64.0 |
| 45 | 46 | 39.0 | F | 1 | N | 0 | 64.00 | 63.0 |
| 46 | 47 | 27.0 | M | 2 | N | 0 | 78.00 | 75.0 |
| 47 | 48 | 24.0 | М | 2 | N | 0 | 79.50 | 75.0 |
| 48 | 49 | 28.0 | M | 2 | N | 0 | 77.80 | 76.0 |
| 49 | 50 | 30.0 | F | 1 | N | 0 | 74.60 | NaN  |
| 50 | 51 | NaN  | М | 2 | N | 0 | 71.00 | 70.0 |
| 51 | 52 | 27.0 | М | 2 | N | 0 | NaN   | 71.5 |

Next steps:



# Print the number of rows
Nrows = dataset.shape[0]
Nrows

52

```
# Print the number of columns
Ncols = dataset.shape[1]
Ncols
```

12

### Data types

types = dataset.dtypes
print (types)

| int64   |
|---------|
| float64 |
| object  |
| int64   |
| object  |
| int64   |
| float64 |
| float64 |
| int64   |
| object  |
| float64 |
| int64   |
|         |
|         |

# Activity: work with the iris dataset

- 1. Load the iris.csv file in your computer and understand the dataset
- 2. How many observations (rows) are in total?
- 3. How many variables (columns) are in total? What do they represent?
- 4. How many observations are for each type of flower?
- 5. What is the type of data for each variable?
- 6. What are the units of each variable?

#### Parte 1

```
# Dataset url
url2 = Ruta + "iris/iris.csv"

# Load the dataset
dataset2 = pd.read_csv(url2, header = None, names = ["sepal_length", "sepal_width",
```

#### dataset2

|       | sepal_length    | sepal_width | petal_length | petal_width | class          |
|-------|-----------------|-------------|--------------|-------------|----------------|
| 0     | 5.1             | 3.5         | 1.4          | 0.2         | Iris-setosa    |
| 1     | 4.9             | 3.0         | 1.4          | 0.2         | Iris-setosa    |
| 2     | 4.7             | 3.2         | 1.3          | 0.2         | Iris-setosa    |
| 3     | 4.6             | 3.1         | 1.5          | 0.2         | Iris-setosa    |
| 4     | 5.0             | 3.6         | 1.4          | 0.2         | Iris-setosa    |
|       |                 |             |              |             |                |
| 145   | 6.7             | 3.0         | 5.2          | 2.3         | Iris-virginica |
| 146   | 6.3             | 2.5         | 5.0          | 1.9         | Iris-virginica |
| 147   | 6.5             | 3.0         | 5.2          | 2.0         | Iris-virginica |
| 148   | 6.2             | 3.4         | 5.4          | 2.3         | Iris-virginica |
| 149   | 5.9             | 3.0         | 5.1          | 1.8         | Iris-virginica |
| 150 r | owe v 5 columne |             |              |             |                |

150 rows × 5 columns

#### Parte 2

```
# Print the number of rows
Nrows2 = dataset2.shape[0]
print("There are", Nrows2, "observations/rows in total")
```

There are 150 observations/rows in total

### Parte 3

```
A1_DataLoad_Cartwheel_EMPTY.ipynb - Colaboratory
# Print the number of columns
Ncols2 = dataset2.shape[1]
print("There are", Ncols2, "variables/columns in total")
print("They represent the different data there is for each flower: ")
for col in dataset2.columns:
    print(col)
    There are 5 variables/columns in total
    They represent the different data there is for each flower:
    senal lenath
Parte 4
    petal_width
n0bservations = dataset2.groupby('class').size()
print("There are 50 observations for each type of flower: ")
nObservations
    There are 50 observations for each type of flower:
    Iris-setosa
                        50
    Iris-versicolor
                        50
    Iris-virginica
                        50
    dtype: int64
Parte 5
typeData = dataset2.dtypes
print("The type of data for each variable is: ")
print (typeData)
```

The type of data for each variable is:

float64

flnat64

sepal\_length

senal width