CS/ECE/ME 532 Matrix Methods in Machine Learning

Welcome!

Activity 17

Gradient Descent

Main idea: use the gradient to head downhill

$$ext{goal: } \min_{oldsymbol{w}} f(oldsymbol{w}) \qquad ext{step size} \ ext{for } k=1\dots \ oldsymbol{w}^{(k+1)} = oldsymbol{w}^{(k)} - au
abla f(oldsymbol{w})$$

Gradient descent for least-squares:

goal:
$$\min_{\boldsymbol{w}} ||\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}||_2^2$$

for $k = 1 \dots$
 $\boldsymbol{w}^{(k+1)} = \boldsymbol{w}^{(k)} - \tau(\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} - \boldsymbol{X}^T \boldsymbol{y})$

Proximal Gradient Descent

Key idea: alternate gradient descent for LS with regularization

goal:
$$\min_{\boldsymbol{w}} ||\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}||_2^2 + \lambda r(\boldsymbol{w})$$
 set \boldsymbol{w}_0 Gradient for $k = 1 \dots$ Descent Regularization $\boldsymbol{z}^{(k)} = \boldsymbol{w}^{(k)} - \tau \boldsymbol{X}^T (\boldsymbol{X}\boldsymbol{w}^{(k)} - \boldsymbol{y})$ Step $\boldsymbol{w}^{(k+1)} = \arg\min_{\boldsymbol{w}} ||\boldsymbol{z}^{(k)} - \boldsymbol{w}||_2^2 + \lambda \tau \ r(\boldsymbol{w})$ stay close to \boldsymbol{z} , but regularize

For ridge regression:

$$r(oldsymbol{w}) = ||w||_2^2$$

$$\longrightarrow oldsymbol{w}^{(k+1)} = rac{oldsymbol{z}^{(k)}}{1+\lambda au}$$
 stay close to z, but L2-shrink

