Основы теории графов

осень 2013

Александр Дайняк

www.dainiak.com

Разложение графов

Объединение графов
$$(V',E')$$
 и (V'',E'') — это граф $(V'\cup V'',E'\cup E'')$

Похожие, но разные задачи:

- Представить граф G в виде объединения графов из класса G
- Представить граф G в виде объединения графов из класса G, не пересекающихся по рёбрам
- ullet Покрыть G графами из G
- ullet Упаковать в G графы из G

• k-регулярный граф — это такой граф, все степени вершин в котором равны k

• 1-регулярный граф — это паросочетание

- k-фактор графа это его остовный k-регулярный подграф
- 1-фактор называют также совершенным паросочетанием
- Граф является k-факторизуемым, если его можно разложить на непересекающиеся k-факторы

Двудольные графы

- Двудольный граф это граф, вершины которого можно разбить на два независимых множества
- Двудольный граф это модель соответствия между двумя множествами объектов. Например, между работниками и работодателями (ребро проводится, если работник подходит работодателю):

Паросочетания в двудольных графах

- Двудольный граф это модель соответствия между двумя множествами объектов. Например, между работниками и работодателями.
- Совершенное паросочетание в двудольном графе это фактически однозначное сопоставление пар вершин из разных долей

Паросочетания в двудольных графах

- Когда в двудольном графе существует 1-фактор?
- Необходимое условие: для любого множества вершин A из первой доли число их соседей |N(A)| во второй доле должно быть не меньше размера самого множества A:

$$|N(A)| \ge |A|$$

Теорема Холла. Условие

$$\forall A \subseteq V_1 \mid N(A) \mid \geq |A|$$

является необходимым и достаточным для существования 1-фактора в двудольном графе с равномощными долями V_1, V_2 .

Требуется доказать, что если $\forall A \subseteq V_1$ $|N(A)| \geq |A|$,

то в графе найдётся 1-фактор.

Применим теорему Форда—Фалкерсона о максимальном потоке и минимальном разрезе. По исходному графу строим сеть:

- Ориентируем все рёбра от V_1 к V_2
- Добавляем новые вершины s и t
- Проводим дуги из s во все вершины V_1 и из всех вершин V_2 в t
- Пропускные способности всех дуг равны 1

• Ориентируем все рёбра от V_1 к V_2

• Добавляем новые вершины s и t и проводим дуги из s во все

вершины V_1 и из всех вершин V_2 в t

• В полученной сети есть поток величины $|V_1|$ т. и т.т., когда в исходном графе есть 1-фактор

- Остаётся доказать, что если $\forall A \subseteq V_1$ $|N(A)| \geq |A|$, то в построенной по графу сети пропускная способность любого разреза не меньше $|V_1|$.
- Пусть $S \sqcup T$ произвольный разрез. Введём обозначения: $S_i = S \cap V_i$ и $T_i = T \cap V_i$.
- При этом

$$S = \{s\} \cup S_1 \cup S_2, \qquad T = \{t\} \cup T_1 \cup T_2$$

- $S = \{s\} \cup S_1 \cup S_2$, $T = \{t\} \cup T_1 \cup T_2$
- Пропускная способность разреза $S \sqcup T$ равна количеству дуг, ведущих из S в T, а оно равно $|T_1| + |S_2| + (\#дуг$ из S_1 в T_2)
- Осталось показать, что эта величина не меньше $|V_1|$, т.е. доказать неравенство $|T_1| + |S_2| + (\#дуг$ из S_1 в $T_2) \geq |V_1|$

• Неравенство $|T_1| + |S_2| + (\#дуг \, \text{из} \, S_1 \, \text{в} \, T_2) \geq |V_1|$ эквивалентно неравенству $|S_2| + (\#дуг \, \text{из} \, S_1 \, \text{в} \, T_2) \geq |S_1|$

• Из условия теоремы следует:

$$|S_1| \le |N(S_1)| = |N(S_1) \cap S_2| + |N(S_1) \cap T_2| \le$$
 $\le |S_2| + (\#дуг из S_1 в T_2)$, что и требовалось

1-факторизация двудольных графов

Итак, мы доказали, что если выполнено

$$\forall A \subseteq V_1 \mid N(A) \mid \geq |A|$$

то в соответствующем двудольном графе существует 1-фактор.

1-факторизация двудольных графов

Теорема (D. Kőnig). Двудольный граф является 1-факторизуемым т. и т.т., когда он регулярен.

Док-во факторизуемости регулярного графа:

- Из регулярности графа следует равенство $|V_1| = |V_2|$
- В k-регулярном графе для любого $A \subseteq V_1$ (#рёбер из A в N(A)) = $|A| \cdot k$
- При этом т.к. в одну вершину из N(A) входит не более чем k рёбер из A, то

$$|N(A)| \ge \frac{1}{k} \cdot \left(\text{#рёбер из } A \text{ в } N(A) \right) = |A|$$

1-факторизация двудольных графов

Теорема (D. Kőnig). Двудольный граф является 1-факторизуемым т. и т.т., когда он регулярен.

Док-во факторизуемости регулярного графа:

- Итак, условия существования 1-фактора выполнены. Удалив из графа произвольный 1-фактор, получаем (k — 1)-регулярный граф, и для этого графа повторяем рассуждения...
- В итоге получим 1-регулярный граф, который является своим собственным 1-фактором
- Объединение всех полученных 1-факторов и будет 1-факторизацией первоначального графа

Теорема (J. Petersen). Граф является 2-факторизуемым т. и т.т., когда он 2k-регулярен для некоторого k.

Доказательство:

- Будем доказывать теорему только для связных графов
- В связном графе, все вершины которого имеют чётные степени, есть Эйлеров цикл
- Сориентируем все рёбра графа в том направлении, в котором они проходятся в этом цикле получим орграф, в котором $\forall v \in V \quad d^-(v) = d^+(v) = k$

Продолжение доказательства:

• Теперь каждую вершину v «расщепляем» на пару вершин $v^-, v^+,$ так, что v^- «наследует» все входящие в v дуги, а v^+ «наследует» все исходящие из v дуги:

Завершение доказательства:

- Если в новом «расщеплённом» орграфе «забыть» про ориентацию дуг, получим двудольный k-регулярный граф
- Этот граф допускает 1-факторизацию. При этом каждый 1-фактор в нём соответствует 2-фактору в первоначальном графе.

Пример (эйлеров цикл abfeadbecdfca)

Теорема Татта об 1-факторе

- Когда в недвудольном графе существует 1-фактор?
- Пусть $S \subseteq V$ произвольное подмножество, и G_1, \dots, G_l компоненты связности графа (G-S)

• Фактора точно **не будет**, если среди G_1, \dots, G_l более чем |S| компонент с нечётным числом вершин.

Теорема Татта об 1-факторе

Пусть q(G-S) — количество компонент связности в (G-S) с нечётным числом вершин.

Теорема (W. T. Tutte '1947).

В графе G есть 1-фактор т. и т.т., когда $\forall S \in V(G) \quad g(G-S) \leq |S|$

Доказательство:

Необходимость тривиальна. Докажем достаточность.

Пусть в G нет 1-фактора.

Покажем, что для некоторого *плохого* S условия Татта нарушены.

Будем считать, что |G| чётно (иначе тривиально: $S=\emptyset$).

Компоненты с нечётным числом вершин назовём нечётными.

Доказательство теоремы Татта: переходим к максимальному графу

- Будем, пока можем, добавлять в G рёбра, так, чтобы попрежнему не находился 1-фактор. Получится граф G'.
- В G' нет 1-фактора, но $\forall e \notin E(G')$ в (G' + e) есть 1-фактор.
- Если какое-то S плохое для G', то оно плохое и для G, т.к. каждая нечётная компонента (G'-S) суть объединение нескольких компонент (G-S), хотя бы одна из которых нечётна.

Доказательство теоремы Татта: переходим к максимальному графу

Если S — плохое множество для G', то выполнены свойства:

- Каждая из компонент в (G'-S) клика.
- Каждая вершина $v \in S$ соединена со всеми вершинами в $V \setminus \{v\}$.

Доказательство теоремы Татта: переходим к максимальному графу

Верно и обратное: если в G' нет 1-фактора, и $S \subseteq V$ таково, что

- каждая из компонент в (G'-S) клика,
- каждая вершина $v \in S$ соединена со всеми вершинами в $V \setminus \{v\}$, то S плохое для G'.

Доказательство теоремы Татта

Итак, достаточно доказать, что если $G^{\,\prime}$ таков, что

- В G' нет 1-фактора,
- для любого $e \notin E(G')$ в (G e) есть 1-фактор, то в G' есть S, такое, что
- каждая из компонент в (G'-S) клика,
- каждая вершина $v \in S$ соединена со всеми вершинами в $V \setminus \{v\}$.

Доказательство теоремы Татта

Положим $S \coloneqq \{v \in V \mid \deg v = |G'| - 1\}.$

Предположим, что хотя бы одна из компонент (G'-S) не клика, и придём к противоречию.

Пусть a, a' — пара несмежных вершин из одной и той же компоненты (G' - S).

Пусть abc ... — последовательность вершин на кратчайшем пути из a в a' (быть может, c=a').

Т.к. $b \notin S$, то $\exists d \in V \setminus \{a,b,c\}$, такая, что $bd \notin E(G')$.

Доказательство теоремы Татта: максимальная чередующаяся цепь

По построению G',

- в графе (G'+ac) есть паросочетание M_{ac} ,
- в графе (G'+bd) есть паросочетание M_{bd} .

Пусть P=d ... — максимальная цепь в G' содержащая попеременно рёбра из M_{ac} и M_{bd} (начиная с M_{ac}).

Доказательство теоремы Татта: максимальная чередующаяся цепь

В (G'+ac) есть паросочетание M_{ac} , в (G'+bd) есть M_{bd} . Пусть P=d ... — максимальная цепь в G' содержащая попеременно рёбра из M_{ac} и M_{bd} .

- Если последнее ребро в P из M_{ac} , то P заканчивается на b.
- Если последнее ребро в P из M_{bd} , то P заканчивается на a или c. (Иначе P можно было бы продолжить.)

Доказательство теоремы Татта: локальная замена рёбер в M_{bd}

- Если последнее ребро в P из M_{ac} , то P заканчивается на b. Тогда рассмотрим цикл $C \coloneqq P \cup \{bd\}$ в графе (G' + bd)
- Если последнее ребро в P из M_{bd} , то P заканчивается б.о.о. на c. Тогда положим $C \coloneqq P \cup \{cb, bd\}$.

В любом случае, в C — каждое второе ребро из M_{bd} .

Заменим в M_{bd} рёбра, лежащие на C, на остальные рёбра C. Получится паросочетание в G^\prime — противоречие.

Теоремы Анселя и Грэхема — Поллака

Теорема. (G. Hansel '1964).

Если
$$G_1 \cup \cdots \cup G_m = K_n$$
, где графы G_1, \ldots, G_m двудольные, то
$$\sum_{k=1}^m \frac{|G_k|}{n} \geq \log_2 n \,.$$

В частности, $m \ge \log_2 n$.

Теорема. (R. L. Graham, H. O. Pollack '1971)

Пусть $G_1 \cup \cdots \cup G_m = K_n$, где G_1, \ldots, G_m — полные двудольные, не пересекающиеся по рёбрам. Тогда $m \geq n-1$.

Доказательство теоремы Анселя

Пусть $G_1 \cup \cdots \cup G_m = K_n$, где графы G_1, \ldots, G_m — двудольные без изолированных вершин.

Пусть
$$V(K_n)=\{v_1,\ldots,v_n\}$$
. Пусть $m_i\coloneqq \#\{k\mid v_i\in V(G_k)\}$

Пусть в каждом из G_1, \dots, G_m выбрана случайно одна из долей, и все вершины доли помечены.

Для каждого i имеем

$$\Pr\{v_i \text{ осталась непомеченной}\} = \left(\frac{1}{2}\right)^{m_i}$$

Доказательство теоремы Анселя

Для каждого i имеем

$$\Pr\{v_i \text{ осталась непомеченной}\} = \left(\frac{1}{2}\right)^{m_i}$$

По линейности матожидания,

$$\mathbb{E}$$
 #непомеченных вершин = $\sum_{i=1}^{n} 2^{-m_i}$

Непомеченной может остаться максимум одна вершина (т.к. для любой пары вершин есть G_k , у которого они в разных долях), отсюда

Е #непомеченных вершин ≤ 1

Доказательство теоремы Анселя

Имеем

$$1 \ge \sum_{i=1}^{n} 2^{-m_i} \ge n \left(\prod_{i=1}^{n} 2^{-m_i} \right)^{1/n} = n \cdot 2^{-\frac{1}{n} \sum_{i=1}^{n} m_i}$$

Отсюда

$$\frac{1}{n} \cdot \sum_{i=1}^{n} m_i \ge \log_2 n$$

Осталось заметить, что

$$\sum_{i=1}^{n} m_i = \sum_{k=1}^{m} |G_k|$$

Доказательство теоремы Грэхема — Поллака

Пусть $G_1 \sqcup \cdots \sqcup G_m = K_n$, где G_1, \ldots, G_m — полные двудольные, не пересекающиеся по рёбрам.

Пусть
$$V(K_n) = \{x_1, ..., x_n\}.$$

Сопоставим каждому ребру K_n формальное произведение x_ix_j .

Пусть L_k и R_k — доли графа G_k . Имеем

$$\sum_{k=1}^{n} \left(\sum_{x_i \in L_k} x_i \right) \left(\sum_{x_i \in R_k} x_i \right) = \sum_{1 \le i < j \le n} x_i x_j$$

Предположим, что $m \le n-2$ и придём к противоречию.

Доказательство теоремы Грэхема — Поллака

Рассмотрим систему:

$$\begin{cases} \sum_{x_i \in L_1} x_i = 0 \\ \vdots \\ \sum_{x_i \in L_m} x_i = 0 \end{cases}$$

Т.к. $m \leq n-2$, то у неё есть нетривиальное решение c_1, \dots, c_n , где $c_1^2 + \dots + c_n^2 > 0$

Доказательство теоремы Грэхема — Поллака

Для $c_1, ..., c_n$ имеем

$$0 = \left(\sum_{i=1}^{n} c_i\right)^2 = \sum_{i=1}^{n} c_i^2 + 2 \cdot \sum_{1 \le i < j \le n} c_i c_j = \sum_{i=1}^{n} c_i^2 + 2 \cdot \sum_{k=1}^{m} \left(\sum_{x_i \in L_k} c_i\right) \left(\sum_{x_i \in R_k} c_i\right) > 0$$

— противоречие!