

Universidade de São Paulo - USP Escola Superior de Agricultura Luiz de Queiroz - ESALQ Banco de Dados e Ferramentas Computacionais Aplicados á Genômica

Atividade 3

Wellingson assunção Araújo

- 1 Ler e interpretar o artigo abaixo sobre a caracterização da proteína codificada pelo gene Brevis Radix.
- 2 Utilizando as ferramentas disponíveis no NCBI reavaliar o alinhamento apresentado
- 3 Apresentar de maneira didática a metodologia para chegar aos resultados.
- a) Quanto a conservação,
- b) Número de introns,
- c) Posicionamento no genoma completo de Arabidopsis
- 3 Reescrever o parágrafo com os resultados reavaliados.

Artigo: Characterization of the Plant-Specific BREVIS RADIX Gene Family Reveals Limited Genetic Redundancy Despite High Sequence Conservation1

Autores: Georgette C. Briggs, Ce'line F. Mouchel, and Christian S. Hardtke

3 - Apresentar de maneira didática a metodologia para chegar aos resultados.:

- PASSO 1
- Para o alinhamento múltiplo das sequencias buscando a similaridade foi utilizado a ferramenta COBALT do NCBI
- COBALT = Constraint-based Multiple Alignment Tool
- O COBALT é uma ferramenta de alinhamento de múltiplas seqüências que encontra uma coleção de restrições em pares derivadas do banco de dados de domínio conservado, banco de dados de motivos de proteínas e similaridade de sequência, usando RPS-BLAST, BLASTP e PHI-BLAST. Restrições aos pares são então incorporadas em um alinhamento múltiplo progressivo.
- LINK DE ACESSO: https://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi?CMD=Web

Interface do COBALT

Detalhes Importantes

PASSO 2

Depois de escolher a ferramenta é preciso preparar as entradas. Isso se deu conforme as seguintes etapas:

 Aqui será mostrado como foi feita a busca de uma sequencias e as demais seguiram o mesmo processo

Table I. BRXL genes from different plants

Table of *BRXL* genes identified in Arabidopsis (At), poplar (Pt), and rice (Os), with respective gene identification (ID) numbers and existence of ESTs indicated.

AT2G21030 BREVIS RADIX-like protein [Arabidopsis thaliana (thale cress)]

Descendo mais um pouco a pagina

BREVIS RADIX-like protein [Arabidopsis thaliana]

PASSO 3 – Analisar as sequencias

Após a preparação de todas as entradas preparadas podemos rodar as análises clicando em Align

Obs: Aqui foi usada a sequência fasta devido ela ter sido retirada de outro banco de dados pois as sequencias dos genes Oryza sativa OsBRXL3, Oryza sativa OsBRXL4 e Oryza sativa OsBRXL5 não estavam contidas no NCBI

PASSO 4 – RESULTADOS As saídas obtidas

- É possível fazer o download do arquivo fasta do alinhamento mutiplo
- Mostra o alinhamento das sequencias
- A região conservada das sequencias analisadas
- Mostra as principais informações das sequencias como ID, Nome e links relacionados a estas

# NP_179699_4	13	HITFASLP-TOGNOLXRIRFS R	EMYNOKIA ORRIGENYDKI VELYNVORFNROAL OTFARSO	73
NP_365889_1	137	KEMPAGYEPOWITTYSLP-SCORDLKRERFS R	EVFERNIQAGRIANGENYERIVELYNVORFNROALQTPG#SE	208
XP_821989976.1	135	KENNAGVEPOVLITFRSLP-QCGROLKRIRFS R	ERFRKRIGAGRIBHAENSDKVRELYNVORCHHOOV - JIVPAPPKAE	208
NP_001154422.1	140	KENYAQYEPOVLITFYSLP-QGGADLKRIRPS R	EMPANOGAGIONIVENFEKVHELYWYG-FNOGSY-JLGTPPVSE	212
NP_175829_2	140	KEWNAGYEPOVLITFVSLP-QSGROLKRIRFR[26]R	EMPRIORGADIOMYENFERVHELYNVO-FNOOSV-pLOTFPYSE	238
NP_197554_2	150	KENNACYEPGVLITFVSLP-GGGRDLKRIRFS R	OMPRIEL GAOMMEADNYTH VMEL YNVOK I, SRO-AT pL PTPPRSE	223
XP_015648970.1	150	KEWNAGYEPGYLITFLSLP-EGGROLKRIRFS R	EIFNKKGAGRAMAENYEKVRELYNVORFNOG-T-JLPTTPKSE	222
XP 025078615.1	125	RENTAGYEPOVOITFYSIPyGAGROLKRIRFS R	EMPRIOREAGRAMOEN/DRIVVELYW/GTPSAGGGPSTPTSAV	198
2 XP 015626445.1	161	REWTAGVEPOVOITFVSIPyGAGROLKRIRFS R	ERFRINEAGRAMGENYDRIVELYNVOTFSROOG - PSTFTSSV	234
XP_025070614.1	161	RENTACYEPOVOITFVSIPGGAGAGUKRIRPS R	EMPNINGADRINGENYDRIVVELYNVOTPSROOGPSTPTSSV	234
# Query 10001	86	REWNAGYERGYGTTFVSLAgGGGADLKRIRFS R	EMYDRINGAGIONICE INVESTIGATION LETEPRID	158
€ Query 18082	86	REWVAQVEPOVQTTFVSLAgGGGADLKRIRFS R	EPYOKWGAGOMGERHERSHELYNVRRPSRQVLPSPPRSD	158
# Query_18083	109	REWAEPEPOYLLTLAPRAGGYSARLRRERFR E	EVFEMMAQCMMADMIDRIAELYcl/WP0000	173
NP_179699_4	74	DOS-OROSTYSKYDISARESKONT -PR-HNEWP-GSV	PHILIPSGSSN/SPSSYNGGP	126
NP_303889_1	209	DOS-GROSTYTRIDSANESROWT-GROWNFRPPOGSM	PHOLFT	250
XP_021989976.1	209	DESSKIRSF-ENSPYT-PPLSKEPPPINFYPKQTSKVSTgP		
₩ 601154427.1	213	DOG	gF	243
NP_175829.2	239	DOGSQ1QSV-KDSPVT-PPLERERRRAT-	PGSSgF	271
NP_197554_2	224	DENAKVEYHPEDTPAT-PPLNKERLPRTEH	RPPSLAAYSSSOSLOHNSmqSQ OFYDSqTL	282
XP_015648970.1	223	DESLK EDIPAT - PPLNSERLPHTLHRSLTGGRTTGYGGPGSLGHGHBLGNGN / 9QHH[6]QCYGSVgL		
XP_825878615.1	199	DEAHORDSFYSRIVUSTRESPARRIEPPPPPLPSSGAGREHP1SRTASSKAGLSSSSSVAAARPPTyPSTA[6]HVMAH - H		
XP_015626445.1	235	DEAMORDS FYSIKVS STRESPARMINEPPPPPLPSSCAGE	EHPISHTASSKAGLSSSSSVAAARPPfyPSTA[6]HNWWH	315
XP_025078614.1	235	DEAMORDSFYSRVGSTRESPARM-PPPPPLPSSGAGREHP[SRTASSKAGLSSSSSVAAARPPTyPSTA[6]HVMAH - H		
# Query_10001	159	DGERESPYSQVGSTRGSPAAT-PSPAPLT99RYTSWSAFVRPPSASRQQQQHSFRPLSPPPPSSS[4]HAWQQQ		
# Query 10002	159	DGERESPYSOUSSTRUSPART-PSPARLTPDRYTS	WSAFYRPPSASRSQQQHSFRPLSPPPPSSS[4]RVWQQQ	232

- Mostra o alinhamento das sequencias de forma mais detalhada, deixando evidente os aminoácidos e domínios conservados.
- É possível obter um dendrograma em forma de arvore onde se pode perceber quais genes são mais próximos.

PASSO 5 - Número de introns e a posição no genoma

Para esse passo foi usada a ferramenta Genome Data Wiewer o link para a ferramenta já é fornecido pelo COBALT na tabela de sequencias analisadas.

A ferramenta Genome Data Wiewer indica o cromosso que a sequência pertence e também possivel fazer um estudo do número de introns

In

Introns

Localização - Cromossomo

PASSO 6 – RESULTADOS

Tabela 1 – Resultados obtidos pela ferramenta Genome Data Wiewer

ESPÉCIE / GENE	ID	INTRONS	POSIÇÃO
Arabidopsis thaliana AtBRX	AT1G31880,	4	Cromossomo 1
Arabidopsis thaliana AtBRXL1	AT2G35600	4	Cromossomo 2
Arabidopsis thaliana AtBRXL2	AT3G14000	4	Cromossomo 3
Arabidopsis thaliana AtBRXL3	At1g54190	4	Cromossomo 1
Arabidopsis thalian a AtBRXL4	At5g20540	4	Cromossomo 5
Oryza sativa OsBRX L1	Os08g36020	4	Cromossomo 8
Oryza sativa OsBRXL2	Os02g47230	4	Cromossomo 2

OBS: Como as sequencias dos genes Oryza sativa OsBRXL3, Oryza sativa OsBRXL4 e Oryza sativa OsBRXL5 não estavam contidas no NCBI não foi possível usar a ferramenta Genome Data Wiewer para essas sequencias.

PASSO 7 - Considerações finais

Diante dos resultados é possivel inferir que família de genes BRX em Arabidopsis thaliana e Oryza sativa possuem regiões comuns bem conservadas e tambem se mostram agrupados diante da filogenetica o que pode ser visto no dendrograma. Os diferentes genes são encontrados em diferentes cromossomos das duas especies e tambem possuem número de introns entre 3 e 5. O gene OsBRXL5 (Oryza sativa) demonstrou uma maior dissimilaridade quando compado aos demias o mesmo ficou alocada em um grupo diferente dos demais no dendrograma.