Lexical Analysis (Part 2)

CSE 415: Compiler Construction

Phases of a Compiler

- Recognition of tokens finite automata and transition diagrams
- Specification of tokens regular expressions and regular definitions

FSA Example

Non-deterministic FSA

- NFAs are FSA which allow 0, 1, or more transitions from a state on a given input symbol
- An NFA is a 5-tuple as before, but the transition function δ is different
- δ(q, a) = the set of all states p, such that there is a transition labelled a from q to p
- δ : Q × Σ → 2^Q
- A string is accepted by an NFA if there exists a sequence of transitions corresponding to the string, that leads from the start state to some final state
 - Everv NFA can be converted to an equivalent DFA that accepts the same language

Non-deterministic FSA

Equivalence of NFA and DFA

Example of NFA to DFA Conversion

- The start state of the DFA would correspond to the set {q₀} and will be represented by [q₀]
- Starting from δ([q₀], a), the new states of the DFA are constructed on demand
- Each subset of NFA states is a possible DFA state
- All the states of the DFA containing some final state as a member would be final states of the DFA
- For the NFA presented before (whose equivalent DFA was also presented)
 - $\delta[q_0], a) = [q_0, q_1], \ \delta([q_0], b) = \phi$
 - $\delta([q_0, q_1], a) = [q_0, q_1], \ \delta([q_0, q_1], b) = [q_1, q_2]$
 - $\delta(\phi, \mathbf{a}) = \phi$, $\delta(\phi, \mathbf{b}) = \phi$
 - $\delta([q_1, q_2], a) = \phi$, $\delta([q_1, q_2], b) = [q_1, q_2]$
 - [q₁, q₂] is the final state
- In the worst case, the converted DFA may have 2ⁿ states, where n is the no. of states of the NFA

NFA with ε-Move

Regular Expressions

Let Σ be an alphabet. The REs over Σ and the languages they denote (or generate) are defined as below

- \bullet ϕ is an RE. $L(\phi) = \phi$
- \bullet is an RE. $L(\epsilon) = \{\epsilon\}$
- **o** For each $a \in \Sigma$, a is an RE. $L(a) = \{a\}$
- If r and s are REs denoting the languages R and S, respectively
 - (rs) is an RE, $L(rs) = R.S = \{xy \mid x \in R \land y \in S\}$

 - (r+s) is an RE, $L(r+s) = R \cup S$ (r^*) is an RE, $L(r^*) = R^* = \bigcup_{\infty} R^i$

(L* is called the Kleene closure or closure of L)

Example of Regular Expressions

- L = {w | w ∈ {a, b}* ∧ w ends with a}
 r = (a + b)*a
- L = {if, then, else, while, do, begin, end}
 r = if + then + else + while + do + begin + end

Example of Regular Definitions

A regular definition is a sequence of "equations" of the form $d_1 = r_1$; $d_2 = r_2$; ...; $d_n = r_n$, where each d_i is a distinct name, and each r_i is a regular expression over the symbols $\Sigma \cup \{d_1, d_2, ..., d_{i-1}\}$

- identifiers and integers letter = a + b + c + d + e; digit = 0 + 1 + 2 + 3 + 4; identifier = letter(letter + digit)*; number = digit digit*
- unsigned numbers digit = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9; $digits = digit \ digit^*;$ $optional_fraction = \ digits + \epsilon;$ $optional_exponent = (E(+|-|\epsilon)digits) + \epsilon$ $unsigned_number$ =

digits optional fraction optional exponent

Equivalence of Regular Expressions and FSA

- Let r be an RE. Then there exists an NFA with ∈-transitions that accepts L(r). The proof is by construction.
- If L is accepted by a DFA, then L is generated by an RE.
 The proof is tedious.

Construction of FSA from RE

Construction of FSA from RE

Construction of FSA from RE

FSA for RE r = r1 r2

f1 is no more a final state q2 is no more a start state

Example of Regular Expressions

f1 is no more a final state

Example of Regular Expressions

Transition Diagrams

- Transition diagrams are generalized DFAs with the following differences
 - Edges may be labelled by a symbol, a set of symbols, or a regular definition
 - Some accepting states may be indicated as retracting states, indicating that the lexeme does not include the symbol that brought us to the accepting state
 - Each accepting state has an action attached to it, which is executed when that state is reached. Typically, such an action returns a token and its attribute value
- Transition diagrams are not meant for machine translation but only for manual translation

Transition Diagram for Identifiers and Reserve Words

- "" indicates retraction state
- get_token_code() searches a table to check if the name is a reserved word and returns its integer code, if so
- Otherwise, it returns the integer code of IDENTIFIER token, with name containing the string of characters forming the token (name is not relevant for reserved words)

Transition Diagram for Hex and Oct Constants

Transition Diagram for Integer Constants

int_const = digit * (qualifier | ε)
qualifier = u | U | I | L
digit = [0-9]

Transition Diagram for Foat Constants

Transition Diagrams for few Operators

