Studying Annihilation Distributions

Adriano Del Vincio

November 4, 2023

1/16

I tried to fit the distributions of the event annihilation with analytic models. This should improve the results, avoiding statistical fluctuations: The models are listed below:

- Pdf Mixing: the Normal distribution.
- Pdf Uwlosses: Rayleigh distribution $\frac{r}{\sigma^2}e^{-\frac{r^2}{2\sigma^2}}$.
- Pdf Cosmic: $\frac{1}{8}x$.

The factor $\frac{1}{8}$ for the cosmic is due to normalization. The Mixing, UW losses and cosmic data are fitted and the result are shown in the following slides

MIXING

UWlosses

UW losses PDF

Cosmic

Cosmic PDF

Pdfs normalized plotted together

The histogram in r variable doesn't account for the different area of the bin which is $2\pi r \cdot dr$. So it is useful to normalize dividing per $2\pi r$.

Figure: Pdf normalized for Mixing dataset

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Figure: Pdf normalized for Cosmic dataset

fit with all template

 $\label{eq:pdf} \mbox{Pdf} = \mbox{Template Mixing} + \mbox{Template Uwlosses} + \mbox{Template cosmic}$ $\mbox{Fit, Cosmic Fixed}$

fit with analytic models

Pdf = Gaussian (Mixing) + Rayleigh (Uwlosses) + linear model (cosmic)

Analitic Fit

Montecarlo simulation

To study the accuracy of the algorithm to reconstruct the various parameter, a "toy" algorithm is done. The model to generate the data is:

$$Pdf_{total} = a \cdot Template_{mix} + b \cdot Rayleigh + c \cdot linearModel_{cosmic}$$
 (1)

a,b,c represent the "weight", or degree or percentage of the various contributions to the Pdf used to generate the data. For simplicity the c is setted to zero. We generate N data. Once the data are generated, they are fitted with the model:

$$Pdf_{fit} = N_{mix} \cdot Template_{mix} + N_{uw} \cdot Rayleigh$$
 (2)

The parameters of the fit are N_{mix} , N_{uw} . The difference between the data from the fit and the "real values" is plotted. The "true value" are defined as:

- Nmix true = $a \cdot N$
- Nuw true = $b \cdot N$
- Nbk true = $c \cdot N$

N = 165, a = 100, b = 0, c = 0

Nmix - Nmix_fit

Nuw - Nuw fit

N = 165, a = 75, b = 25, c = 0

Nuw - Nuw fit

N = 165, a = 50, b = 50, c = 0

Nmix - Nmix fit

Nuw - Nuw fit

