Seminar 7

PRIMA PARTE: Lucrare de control!

- 1. Evaluati integralele

 - Evaluati integralere
 a) $\int_0^3 \frac{1}{\sqrt{x^2 + 16}} dx$ b) $\int_0^2 \max\{x, x^2\} dx$ c) $\int_1^{\sqrt{3}} \frac{\arctan x}{x^2} dx$ d) $\int_{-1}^1 \sqrt{1 x^2} dx$ e) $\int_2^4 \frac{\sqrt{x^2 4}}{x} dx$

Substitutii trigonometrice pentru integrale algebrice. Fie R(u,v) o functie rationala si a > 0. In functie de tipul integralei, se pot face urmatoarele substitutii

- i) $\int R(x, \sqrt{a^2 x^2}) dx$, $x = a \sin t$, $x = a \cos t$
- ii) $\int R(x, \sqrt{a^2 + x^2}) dx$, $x = a \operatorname{tg} t$, $x = a \operatorname{ctg} t$ iii) $\int R(x, \sqrt{x^2 a^2}) dx$, $x = \frac{a}{\sin t}$, $x = \frac{a}{\cos t}$

Substitutiile lui Euler pentru integrale algebrice. Fie R(u, v) o functie rationala si $a, b, c \in \mathbb{R}$. Pentru integrala $\int R(x, \sqrt{ax^2 + bx + c}) dx$ se pot face urmatoarele substitutii

- i) $\sqrt{ax^2 + bx + c} = t(x r)$, daca $r \in \mathbb{R}$ este radacina pentru $ax^2 + bx + c = 0$
- ii) $\sqrt{ax^2 + bx + c} = x\sqrt{a} + t$, daca a > 0
- iii) $\sqrt{ax^2 + bx + c} = \sqrt{c} + tx$, daca c > 0

Substitutiile lui Cebasev pentru integrale binome. Fie $m, n, p \in \mathbb{Q}$ si $a, b \in \mathbb{R}$. Pentru integrala $\int x^m (ax^n + b)^p dx$ se pot face urmatoarele substitutii

- i) $x = t^r$, daca $p \in \mathbb{Z}$ si r este multiplu comun al numitorilor lui m si n
- ii) $ax^n + b = t^r$, daca $\frac{m+1}{n} \in \mathbb{Z}$ si r este numitorul lui p iii) $a + bx^{-n} = t^r$, daca $\frac{m+1}{n} + p \in \mathbb{Z}$ si r este numitorul lui p