Sample Exam Question 1

December 14, 2017

1 Part 1

Prove semantically that: if an agent believes ϕ then she strongly believes that this belief is safe.

$$B_a \phi \Rightarrow Sb_a \square_a \phi$$

Proof: Let $\mathbf{S} = (S, \leq_a, \sim_a, ||\cdot||)$ be an arbitrary plausibility model and $s \in S$ and arbitrary world. Assume $s \models B_a \phi$. We need to show that $s \models Sb_a \square_a \phi$. By the semantics of belief, $best_a s(a) \subseteq ||\phi||$. We can assume that s(a) is non-empty since at least $s \in s(a)$. We prove:

- a) that there exist some $\Box_a \phi$ -worlds, and,
- b) that every $\Box_a \phi$ -worlds are strictly more plausible than every $\neg \Box_a \phi$ -world.

For (a) we know that $s(a) \neq \emptyset$. Therefore, $best_as(a) \neq \emptyset$ by converse well-foundedness. Take $w \in best_as(a)$. Then for every t such that $w \leq_a t$, $t \in best_as(a) \subseteq ||\phi||$. Hence $t \models \phi$ and so by the semantics of safe belief, $w \models \Box_a$. This shows (a) that there exist some $\Box_a \phi$ -worlds.

For (b), take any $v \in s(a)$ such that

$$v \models \Box_a \phi \tag{1}$$

and suppose that $u \models \neg \Box_a \phi$ is such that $v \leq_a u$. By the semantics of negation and safe belief, there exists a $u' \geq_a u$ such that:

$$u' \models \neg \phi \tag{2}$$

But $v \leq_a u \leq_a u'$ and so $v \leq_a u'$ by transitivity. Hence, by the semantics of \square_a and (1), we obtain that $u' \models \phi$. But this contradicts (2). Therefore $u <_a v$, and since u and v were arbitrary worlds in s(a), every $\square_a \phi$ -world is strictly more plausible than every $\neg \square_a \phi$ -world. This shows (b).

Putting (a) and (b) together, we have shown that $s \models Sb_a \square_a \phi$, as required.

2 Part 2

To prove

$$B_a \phi \not\Rightarrow \Box_a S b_a \phi$$

We need to give a model **M** and a world w in that model in which w satisfies $B_a\phi$ and $\neg\Box_a Sb_a\phi$. Using the hint given in the question, we need that w satisfies $B_a\phi$ and $\neg Sb_a\phi$.

In the following model, we set $\phi = p$. Either of worlds s or w satisfy $B_a p$ (since $best_a s(a) = best_a w(a) = \{w\} \subseteq ||p||$. However, this is not a strong belief, since there are non-p worlds above p-worlds

(4) (a) We apply Is to the model in part (2), obtaining (b) Helen believes food is bad (B7F)

(b) We apply ! (7f) to the model in part (4), obtaining $(7f,7s) \longrightarrow (7f,s)$ No : she believes the real world!

