Lecture 8: The Tangent Plane

Prof. Weiqing Gu

Math 143: Topics in Geometry

In this lecture, we will show that condition 3 in the definition of a regular surface S guarantees that for every $p \in S$, the set of tangent vectors to the parametrized curves of S, passing through p, constitutes a plane.

In this lecture, we will show that condition 3 in the definition of a regular surface S guarantees that for every $p \in S$, the set of tangent vectors to the parametrized curves of S, passing through p, constitutes a plane.

By a tangent vector to S, at a point $p \in S$, we mean the tangent vector $\alpha'(0)$ of a differentiable parametrized curve $\alpha: (-\epsilon, \epsilon) \to S$ with $\alpha(0) = p$.

In this lecture, we will show that condition 3 in the definition of a regular surface S guarantees that for every $p \in S$, the set of tangent vectors to the parametrized curves of S, passing through p, constitutes a plane.

By a tangent vector to S, at a point $p \in S$, we mean the tangent vector $\alpha'(0)$ of a differentiable parametrized curve $\alpha: (-\epsilon, \epsilon) \to S$ with $\alpha(0) = p$.

Proposition

Let $\mathbf{x}: U \subset \mathbb{R}^2 \to S$ be a parametrization of a regular surface S and let $q \in U$. The vector subspace of dimension S,

$$d\mathbf{x}_q(\mathbb{R}^2) \subset \mathbb{R}^3$$
,

coincides with the set of tangent vectors to S and $\mathbf{x}(q)$.

The Tangent Plane and How to extend it to a manifold (work out the details with students on the board)

The Tangent Plane and How to extend it to a manifold (work out the details with students on the board)

By the above proposition, the plane $d\mathbf{x}_q(\mathbb{R}^2)$, which passes through $\mathbf{x}(q)=p$, does not depend on the parametrization \mathbf{x} . This plane will be called the *tangent plane* to S at p and will be denoted $T_p(S)$.

1. Basis of $T_p(S)$:

1. Basis of $T_p(S)$:

2. The coordinate of $w \in T_p(S)$ with respect to $\mathbf{x}_u, \mathbf{x}_v$:

1. Basis of $T_p(S)$:

2. The coordinate of $w \in T_p(S)$ with respect to $\mathbf{x}_u, \mathbf{x}_v$:

3. Normal Vector N(p) of $T_p(S)$:

By fixing a parametrization $\mathbf{x}:U\subset\mathbb{R}^2\to S$ at $p\in S$, we can make a definite choice of a unit normal vector at each point $q\in\mathbf{x}(U)$ by the rule

$$N(q) = \frac{\mathbf{x}_u \wedge \mathbf{x}_p}{\|\mathbf{x}_u \wedge \mathbf{x}_p\|}(q).$$

Thus, we obtain a differentiable map $N : \mathbf{x}(U) \to \mathbb{R}^3$.

The Differential of a Map

Moving Between Surfaces

With the notion of a tangent plane, we can talk about the differential of a (differentiable) map between surfaces. Let S_1 and S_2 be two regular surfaces and let $\varphi: V \subset S_1 \to S_2$ be a differentiable mapping of an open set V of S_1 into S_2 . If $p \in V$, we know that every tangent vector $w \in T_p(S_1)$ is the velocity vector $\alpha'(0)$ of a differentiable parametrized curve $\alpha: (-\epsilon, \epsilon) \to V$ with $\alpha(0) = p$. The curve $\beta = \varphi \circ \alpha$ is such that $\beta(0) = \varphi(p)$, and therefore $\beta'(0)$ is a vector of $T_{\varphi(p)}(S_2)$.

The Differential of a Map

Moving Between Surfaces

With the notion of a tangent plane, we can talk about the differential of a (differentiable) map between surfaces. Let S_1 and S_2 be two regular surfaces and let $\varphi: V \subset S_1 \to S_2$ be a differentiable mapping of an open set V of S_1 into S_2 . If $p \in V$, we know that every tangent vector $w \in T_p(S_1)$ is the velocity vector $\alpha'(0)$ of a differentiable parametrized curve $\alpha: (-\epsilon, \epsilon) \to V$ with $\alpha(0) = p$. The curve $\beta = \varphi \circ \alpha$ is such that $\beta(0) = \varphi(p)$, and therefore $\beta'(0)$ is a vector of $T_{\varphi(p)}(S_2)$.

Proposition

In the discussion above, given w, the vector $\beta'(0)$ does not depend on the choice of α . The map $d\varphi_p: T_p(S_1) \to T_{\varphi(p)}(S_2)$ defined by $d\varphi_p(w) = \beta'(0)$ is linear.

The Differential of a Map

Moving Between Surfaces

With the notion of a tangent plane, we can talk about the differential of a (differentiable) map between surfaces. Let S_1 and S_2 be two regular surfaces and let $\varphi: V \subset S_1 \to S_2$ be a differentiable mapping of an open set V of S_1 into S_2 . If $p \in V$, we know that every tangent vector $w \in T_p(S_1)$ is the velocity vector $\alpha'(0)$ of a differentiable parametrized curve $\alpha: (-\epsilon, \epsilon) \to V$ with $\alpha(0) = p$. The curve $\beta = \varphi \circ \alpha$ is such that $\beta(0) = \varphi(p)$, and therefore $\beta'(0)$ is a vector of $T_{\varphi(p)}(S_2)$.

Proposition

In the discussion above, given w, the vector $\beta'(0)$ does not depend on the choice of α . The map $d\varphi_p: T_p(S_1) \to T_{\varphi(p)}(S_2)$ defined by $d\varphi_p(w) = \beta'(0)$ is linear.

Definition

The linear map $d\varphi_p$ is called the *differential* of φ at $p \in S_1$. In a similar way we define the differential of a (differentiable) function $f: U \subset S \to \mathbb{R}$ at $p \in U$ as a linear map $df_p: T_p(S) \to \mathbb{R}$.

Let $v \in \mathbb{R}^3$ be a unit vector and let $h: S \to \mathbb{R}$, $h(p) = v \cdot p$, $p \in S$, be the height function. To compute $dh_p(w)$, $w \in T_p(S)$,

Key Techniques on Using

- Differentiation
- ► Tangent Plane
- ► Inverse Function Theorem

Key Techniques on Using

- Differentiation
- ► Tangent Plane
- Inverse Function Theorem

First,

Try your best to make connections that set up some equations that you can differentiate

Key Techniques on Using

- Differentiation
- ► Tangent Plane
- Inverse Function Theorem

First,

- Try your best to make connections that set up some equations that you can differentiate
- ► Try to set your coordinates smartly to use the tangent plane

Key Techniques on Using

- Differentiation
- ► Tangent Plane
- Inverse Function Theorem

First,

- Try your best to make connections that set up some equations that you can differentiate
- ▶ Try to set your coordinates smartly to use the tangent plane
- Try to set up certain functional relationships so that you can use the Inverse Function Theorem

Proposition

If S_1 and S_2 are regular surfaces and $\varphi: U \subset S_1 \to S_2$ is a differentiable mapping of an open set $U \subset S_1$ such that the differential $d\varphi_p$ of φ at $p \in U$ is an isomorphism, then φ is a local diffeomorphism at p.

Do Carmo, p. 90, #15

Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Solution

Do Carmo, p. 90, #15

Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Solution

Without loss of generality, assume that all normals pass through the origin.

Do Carmo, p. 90, #15

Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Solution

Without loss of generality, assume that all normals pass through the origin. Let $\mathbf{x}(u,v)$ be a parametrization of S at p. Say $\mathbf{x}(u,v)=(x(u,v),y(u,v),z(u,v))$. To show that the image of \mathbf{x} is contained in a sphere, we will show that $\|x(u,v)\|^2$ is constant.

Do Carmo, p. 90, #15

Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Solution

Without loss of generality, assume that all normals pass through the origin. Let $\mathbf{x}(u,v)$ be a parametrization of S at p. Say $\mathbf{x}(u,v)=(x(u,v),y(u,v),z(u,v))$. To show that the image of \mathbf{x} is contained in a sphere, we will show that $\|x(u,v)\|^2$ is constant.

Since all the normals to the surface pass through the origin, we may write $k(u,v)N(u,v)=\mathbf{x}(u,v)$, where N(u,v) is the normal to the surface at the point $\mathbf{x}(u,v)$.

Do Carmo, p. 90, #15

Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Solution

Without loss of generality, assume that all normals pass through the origin. Let $\mathbf{x}(u,v)$ be a parametrization of S at p. Say $\mathbf{x}(u,v)=(x(u,v),y(u,v),z(u,v))$. To show that the image of \mathbf{x} is contained in a sphere, we will show that $\|x(u,v)\|^2$ is constant.

Since all the normals to the surface pass through the origin, we may write $k(u,v)N(u,v)=\mathbf{x}(u,v)$, where N(u,v) is the normal to the surface at the point $\mathbf{x}(u,v)$. Then we compute

$$\frac{\partial}{\partial u} \|\mathbf{x}(u, v)\|^2 = \frac{\partial}{\partial u} (x^2(u, v) + y^2(u, v) + z^2(u, v))$$

$$= 2x(u, v) \frac{\partial x}{\partial u} + 2y(u, v) \frac{\partial y}{\partial u} + 2z(u, v) \frac{\partial z}{\partial u}$$

$$= 2kN \cdot \mathbf{x}_u = 0.$$

Solution (cont'd)

Similarly, $\frac{\partial}{\partial v} \|x(u,v)\|^2 = 2kN \cdot \mathbf{x}_v = 0$. Thus, $\|\mathbf{x}(u,v)\|^2$ is constant, so $\mathbf{x}(u,v)$ is contained in a sphere. By the connectedness of S, S must lie on the same sphere.

Solution (cont'd)

Similarly, $\frac{\partial}{\partial v} \|x(u,v)\|^2 = 2kN \cdot \mathbf{x}_v = 0$. Thus, $\|\mathbf{x}(u,v)\|^2$ is constant, so $\mathbf{x}(u,v)$ is contained in a sphere. By the connectedness of S, S must lie on the same sphere.

Remark

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(u, v) = \|\mathbf{x}(u, v)\|^2$. Then $df_p = \left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right) = (0, 0)$ by Proposition 9, so f is constant on U.

Solution (cont'd)

Similarly, $\frac{\partial}{\partial v} \|x(u,v)\|^2 = 2kN \cdot \mathbf{x}_v = 0$. Thus, $\|\mathbf{x}(u,v)\|^2$ is constant, so $\mathbf{x}(u,v)$ is contained in a sphere. By the connectedness of S, S must lie on the same sphere.

Remark

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(u, v) = \|\mathbf{x}(u, v)\|^2$. Then $df_p = \left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right) = (0, 0)$ by Proposition 9, so f is constant on U.

Remark

We cannot use a similar method to show #4, p. 23, because if we show that ||x(t)|| is constant, then $\mathbf{x}(t)$ lies on a sphere, but this does not imply that $\mathbf{x}(t)$ is contained in a circle.

Do Carmo, p. 90, #18

Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

Do Carmo, p. 90, #18

Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

Hints/Solution

Let us set up a coordinate system with the origin at p and with P coinciding with the xy plane. Since S meets P only at p, p must be a critical point of z when we view a neighborhood of p as a graph of z = f(x, y).

Do Carmo, p. 90, #18

Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

Hints/Solution

Let us set up a coordinate system with the origin at p and with P coinciding with the xy plane. Since S meets P only at p, p must be a critical point of z when we view a neighborhood of p as a graph of z = f(x, y).

To show that $T_p(S) = P$, it suffices to show that $T_p(S) \subset P$, since dim $T_p(S) = \dim P = 2$.

Do Carmo, p. 90, #18

Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

Hints/Solution

Let us set up a coordinate system with the origin at p and with P coinciding with the xy plane. Since S meets P only at p, p must be a critical point of z when we view a neighborhood of p as a graph of z = f(x, y).

To show that $T_p(S) = P$, it suffices to show that $T_p(S) \subset P$, since dim $T_p(S) = \dim P = 2$.

Let $v \in T_p(S)$. Then there is some $\alpha: (-\epsilon, \epsilon) \to S$ with $\alpha(0) = p$ such that $v = \alpha'(0) = (x'(0), y'(0), z'(0))$. Since z(0) is a critical point of 0, it follows that z'(0) = 0. Then $v = (x'(0), y'(0), 0) \in P$. Thus, $T_p(S) \subset P$.

Something Useful Later On

Say z=f(x,y) and $p=(x_0,y_0)$ is the critical point of the function z=f(x,y) (i.e., $\frac{\partial f}{\partial x}(\mathbf{p})=\frac{\partial f}{\partial y}(\mathbf{p})=0$). Now, using Taylor expansion, we have

$$f(x + x_0, y + y_0) = f(x_0, y_0) + \underbrace{\left(\frac{\partial f}{\partial x}(p) - \frac{\partial f}{\partial y}(p)\right)}_{Q} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} + (x - x_0 \quad y - y_0) \underbrace{\left(\frac{\partial^2 f}{\partial x^2}(p) - \frac{\partial^2 f}{\partial xy}(p)\right)}_{M} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} + \cdots,$$

or

$$f(x+x_0,y+y_0)-f(x_0,y_0)=(x-x_0 \ y-y_0) M\begin{pmatrix} x-x_0 \ y-y_0 \end{pmatrix}.$$

If M is positive definite, then $p(x_0, y_0)$ is a minimum point since $f(x + x_0, y + y_0) > f(x_0, y_0)$ and if M is negative definite, then $p(x_0, y_0)$ is a maximum point.

