

Deep Learning

Generative Adversarial Network (GAN)

Dr. Mehran Safayani safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/deep_learning_course

GANs

Generative

• Learn a generative model

Adversarial

Trained in an adversarial setting

Networks

Use Deep Neural Networks

Why Generative Models?

- We've only seen discriminative models so far
 - Given an image X, predict a label Y
 - Estimates P(Y|X)

- Discriminative models have several key limitations
 - Can't model P(X), i.e. the probability of seeing a certain image
 - Thus, can't sample from **P(X)**, i.e. can't generate new images

- Generative models (in general) cope with all of above
 - Can model P(X)
 - Can generate new images

Magic of GANs...

Ground Truth

Adversarial

Lotter, William, Gabriel Kreiman, and David Cox. "Unsupervised learning of visual structure using predictive generative networks." arXiv preprint arXiv:1511.06380 (2015).

Magic of GANs...

Which one is Computer generated?

Magic of GANs...

Adversarial Training

- Generator: generate fake samples, tries to fool the Discriminator
- Discriminator: tries to distinguish between real and fake samples
- Train them against each other
- Repeat this and we get better Generator and Discriminator

GAN's Architecture

- **Z** is some random noise (Gaussian/Uniform).
- **Z** can be thought as the latent representation of the image.

Training Discriminator

Training Generator

Generator in action

GAN's formulation

$$\min_{G} \max_{D} V(D,G)$$

- It is formulated as a minimax game, where:
 - The Discriminator is trying to maximize its reward V(D,G)
 - The Generator is trying to minimize Discriminator's reward (or maximize its loss)

$$V(D,G) = \mathbb{E}_{x \sim p(x)}[\log D(x)] + \mathbb{E}_{z \sim q(z)}[\log(1 - D(G(z)))]$$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Discriminator updates

Generator updates

Vanishing gradient strikes back again...

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p(x)} [\log D(x)] + \mathbb{E}_{z \sim q(z)} [\log (1 - D(G(z)))]$$

$$\nabla_{\theta_G} V(D, G) = \nabla_{\theta_G} \mathbb{E}_{z \sim q(z)} \left[\log \left(1 - D(G(z)) \right) \right]$$

•
$$\nabla_a \log(1 - \sigma(a)) = \frac{-\nabla_a \sigma(a)}{1 - \sigma(a)} = \frac{-\sigma(a)(1 - \sigma(a))}{1 - \sigma(a)} = -\sigma(a) = -D(G(z))$$

- Gradient goes to 0 if D is confident, i.e. $D(G(z)) \rightarrow 0$
- Minimize $-\mathbb{E}_{z\sim q(z)}[\log D(G(z))]$ for **Generator** instead (keep Discriminator as it is)

Training GANs: Two-player game

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, optimizing this generator objective does not work well!

Gradient signal dominated by region where sample is already good

Vanishing gradient

Training GANs: Two-player game

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Instead: Gradient ascent on generator, different objective

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.

Training GANs: Two-player game

Putting it together: GAN training algorithm

for number of training iterations do for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

Faces

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

CIFAR

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

DCGAN: Bedroom images

Deep Convolutional GANs (DCGANs)

Generator Architecture

Key ideas:

- Replace FC hidden layers with Convolutions
 - Generator: Fractional-Strided convolutions
- Use Batch Normalization after each layer
- Inside Generator
 - Use ReLU for hidden layers
 - Use Tanh for the output layer

Latent vectors capture interesting patterns...

Advantages of GANs

Plenty of existing work on Deep Generative Models

- Boltzmann Machine
- Deep Belief Nets
- Variational AutoEncoders (VAE)

Why GANs?

- Sampling (or generation) is straightforward.
- Training doesn't involve Maximum Likelihood estimation.
- Robust to Overfitting since Generator never sees the training data.
- Empirically, GANs are good at capturing the modes of the distribution.

Conditional GANs

MNIST digits generated conditioned on their class label.

Figure 2 in the original paper.

Conditional GANs

• Simple modification to the original GAN framework that conditions the model on additional information for better multi-modal learning.

• Lends to many practical applications of GANs when we have explicit *supervision* available.

Conditional GAN (Mirza & Osindero, 2014)

Image Credit: Figure 2 in Odena, A., Olah, C. and Shlens, J., 2016. Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585.

Image-to-Image Translation

Figure 1 in the original paper.

Link to an interactive demo of this paper

Image-to-Image Translation

Architecture: DCGAN-based architecture

• Training is conditioned on the images from the source domain.

 Conditional GANs provide an effective way to handle many complex domains without worrying about designing structured loss functions explicitly.

Figure 2 in the original paper.

Text-to-Image Synthesis

Motivation

Given a text description, generate images closely associated.

Uses a conditional GAN with the generator and discriminator being condition on "dense" text embedding.

this small bird has a pink breast and crown, and black primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

this magnificent fellow is almost all black with a red crest, and white cheek patch.

this white and yellow flower have thin white petals and a round yellow stamen

Figure 1 in the original paper.

Text-to-Image Synthesis

Figure 2 in the original paper.

Positive Example:

Real Image, Right Text

Negative Examples:

Real Image, Wrong Text Fake Image, Right Text

Problems with GANs

- Probability Distribution is Implicit
 - Not straightforward to compute P(X).
 - Thus Vanilla GANs are only good for Sampling/Generation.
- Training is Hard
 - Mode-Collapse

Mode-Collapse

Generator fails to output diverse samples

Some real examples

Reed, S., et al. *Generating interpretable images with controllable structure*. Technical report, 2016. 2, 2016.

Basic (Heuristic) Solutions

Mini-Batch GANs

How to reward sample diversity?

At Mode Collapse,

- Generator produces good samples, but a very few of them.
- Thus, Discriminator can't tag them as fake.

To address this problem,

Let the Discriminator know about this edge-case.

More formally,

- Let the Discriminator look at the entire batch instead of single examples
- If there is lack of diversity, it will mark the examples as fake

Thus,

Generator will be forced to produce diverse samples.

Mini-Batch GANs

- Extract features that capture diversity in the mini-batch
 - For e.g. L2 norm of the difference between all pairs from the batch
- Feed those features to the discriminator along with the image
- Feature values will differ b/w diverse and non-diverse batches
 - Thus, Discriminator will rely on those features for classification

- This in turn,
 - Will force the Generator to match those feature values with the real data
 - Will generate diverse batches

Summary

- GANs are generative models that are implemented using two stochastic neural network modules: Generator and Discriminator.
- Generator tries to generate samples from random noise as input
- **Discriminator** tries to distinguish the samples from Generator and samples from the real data distribution.
- Both networks are trained adversarially (in tandem) to fool the other component. In this process, both models become better at their respective tasks.

Why use GANs for Generation?

- Can be trained using back-propagation for Neural Network based Generator/Discriminator functions.
- Sharper images can be generated.
- Faster to sample from the model distribution: *single* forward pass generates a *single* sample.

Reading List

- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. Generative adversarial nets, NIPS (2014).
- Goodfellow, Ian NIPS 2016 Tutorial: Generative Adversarial Networks, NIPS (2016).
- Radford, A., Metz, L. and Chintala, S., <u>Unsupervised representation learning with deep convolutional generative adversarial networks.</u> arXiv preprint arXiv:1511.06434. (2015).
- Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. <u>Improved techniques for training gans.</u> NIPS (2016).
- Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. <u>InfoGAN: Interpretable Representation Learning by Information Maximization</u> Generative Adversarial Nets, NIPS (2016).
- Zhao, Junbo, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 (2016).
- Mirza, Mehdi, and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).
- Liu, Ming-Yu, and Oncel Tuzel. Coupled generative adversarial networks. NIPS (2016).
- Denton, E.L., Chintala, S. and Fergus, R., 2015. <u>Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks.</u> NIPS (2015)
- Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O., & Courville, A. <u>Adversarially learned inference.</u> arXiv preprint arXiv:1606.00704 (2016).

Applications:

- Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. <u>Image-to-image translation with conditional adversarial networks.</u> arXiv preprint arXiv:1611.07004. (2016).
- Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. Generative adversarial text to image synthesis. JMLR (2016).
- Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). Face Aging With Conditional Generative Adversarial Networks. arXiv preprint arXiv:1702.01983.