Práctica No. 3 Diodo Zener y Reguladores de voltaje

Objetivo

- Analizar el voltaje de ruptura de un diodo zener.
- Analizar los principales circuitos con diodos zener
- > Implementar y analizar los diferentes circuitos integrados que se emplean como fuentes de voltaje reguladas.
- Implementar y analizar los tipos de fuentes: fijas y variables.

Material

1	Tablilla de experimentación. (Proto Board)	2	Resistencia de 100Ω a $10 W$
2	Diodos zener a 3.3 V 1/2 W	4	Capacitor de 0.1 µF a 50 V
2	Diodos zener a 5.1 V 1/2 W	2	Capacitor electrolítico de 10 µF a 50 V
2	Diodos zener a 9.0 V 1/2 W	1	Regulador LM7805
2	Resistencias de 82 Ω a 2 W	1	Regulador LM7812
2	Resistencias de 33 Ω a 1 W	1	Regulador LM7905
2	Resistencias de 49 Ω a 1 W	1	Regulador LM7912
4	Resistencia de 120 Ω a ¼ W	1	Regulador LM317
2	Resistencia de 240 Ω a ¼ W	1	Regulador LM337
2	Potenciómetro de 10 kΩ		-

Equipo:

Multímetros digitales
Fuente de alimentación
Puntas banana-caimán
Puntas caimán-caimán

Desarrollo

Circuitos de operación del zener

Armar el siguiente circuito para cada uno de los diodos.

Para el diodo zener de 3.3 V emplear una resistencia de 82 Ω en Rs y una resistencia de 33 Ω en Ro, varíe el voltaje de la fuente como se muestra en la tabla y mida el voltaje en la resistencia R1 y anótelo en la tabla.

Para el diodo zener de 5.1 V emplear una resistencia de 56 Ω en Rs y una resistencia de 49 Ω en Ro, varíe el voltaje de la fuente como se muestra en la tabla y mida el voltaje en la resistencia R1 y anótelo en la tabla.

Para el diodo zener de 9.0 V emplear una resistencia de 27 Ω en Rs y una resistencia de 82 Ω en Ro, varíe el voltaje de la fuente como se muestra en la tabla y mida el voltaje en la resistencia R1 y anótelo en la tabla.

Voltaje de la Fuente	Voltaje en la resistencia Ro			
V (V)	3.3 V	5.1 V	9.0 V	
3.0				
4.0				
5.0				
6.0				
7.0				
8.0				
9.0				
10.0				
11.0				
12.0				
13.0				
14.0				
15.0				

Regulador de voltaje fijo positivo

Arma el siguiente circuito y varía el voltaje de la fuente de alimentación con cada uno de los reguladores de voltaje (LM7805 y LM7812).

Voltaje de la Fuente	Voltaje en la resistencia Ro			
V1 (V)	LM7805	LM7812		
3.0				
4.0				
5.0				
6.0				
7.0				
8.0				
9.0				
10.0				
11.0				
12.0				
13.0				
14.0				
15.0				
16.0				

Regulador de voltaje fijo negativo

Arma el siguiente circuito y varía el voltaje de la fuente de alimentación con cada uno de los reguladores de voltaje (LM7905 y LM7912).

Voltaje de la Fuente	Voltaje en la resistencia Ro			
V1 (V)	LM7905	LM7912		
3.0				
4.0				
5.0				
6.0				
7.0				
8.0				
9.0				
10.0				
11.0				
12.0				
13.0				
14.0				
15.0				
16.0				

Regulador de voltaje variable positivo

Armar el siguiente circuito

Variar el potenciometro R_3 para obtener el voltaje de salida positivo mínimo y máximo de la fuente.

$$V_{0max} =$$
_____y $V_{0min} =$ _____

Regulador de voltaje variable negativo

Armar el siguiente circuito

Ahora variar el potenciometro R₆ para obtener el voltaje de salida negativa mínimo y máximo de la fuente.

$$V_{0max} =$$
_____y $V_{0min} =$ _____

Cuestionario

- 1. Menciona cual es el principio de funcionamiento de un diodo zener.
- 2. ¿Que sucede con un zener si el voltaje de la fuente es menor a su voltaje?
- 3. ¿Cuál es la finalidad de un regulador de Voltaje?
- 4. ¿Qué voltaje de salida se tiene en un regulador de voltaje fijo de 5 volts si el voltaje de entrada es de 5.75V?
- 5. ¿Por qué en los reguladores de voltaje variables el voltaje mínimo es de 1.2 V?

Conclusiones

Dar las conclusiones al realizar los experimentos y el análisis teórico de los circuitos anteriores (conclusiones individuales).