NUMWORKS Manuel d'utilisation

Table des matières

1	App	lication	ı Calculs	7	
	1.1	Savoir	utiliser l'écran de calcul	7	
		1.1.1	Effectuer un calcul	7	
		1.1.2	Récupérer le résultat du calcul immédiatement précédent	7	
		1.1.3	Récupérer un résultat quelconque dans l'historique de calcul	8	
		1.1.4	Récupérer l'expression d'un calcul déjà effectué dans l'historique		
			des calculs	8	
		1.1.5	Effacer une ligne de l'historique ou la totalité de l'historique	8	
	1.2	Affich	er des résultats additionnels sur un calcul	8	
	1.3	Effect	uer des calculs avec des nombres complexes	9	
		1.3.1	Choisir la forme complexe des résultats	9	
		1.3.2	Calcul d'une expression contenant des nombres complexes	9	
		1.3.3	Module, argument, partie réelle, partie imaginaire, conjugué	9	
	1.4	Effect	uer des calculs matriciels	10	
		1.4.1	Entrer une matrice à l'aide du clavier	10	
		1.4.2	Effectuer des calculs avec des matrices	10	
		1.4.3	Inverse, déterminant, transposée, trace, taille	10	
	1.5	Effect	uer des calculs avec des listes	. 11	
		1.5.1	Créer une liste	11	
		1.5.2	Stocker une liste dans une variable	12	
		1.5.3	Appeler un élément	12	
		1.5.4	Réaliser des calculs avec des listes	12	
		1.5.5	Réaliser des calculs statistiques avec des listes	12	
		1.5.6	Réaliser d'autres opérations sur les listes	13	
	1.6	Effect	uer des calculs avec des unités	13	
		1.6.1	Entrer un calcul qui contient des unités	13	
		1.6.2	Effectuer des conversions d'unités	13	
2	App	lication	Fonctions	14	

	2.1	Prise e	en main rapide	14
		2.1.1	Comment tracer le graphe d'une fonction	14
		2.1.2	Afficher le tableau de valeurs	14
	2.2	Savoir	utiliser l'onglet Expressions	15
		2.2.1	Ajouter un élément à la liste d'expressions	15
		2.2.2	Modifier une expression de la liste	15
		2.2.3	Modifier l'intervalle de tracé d'une fonction	15
		2.2.4	Courbes polaires et paramétriques	16
		2.2.5	Activer ou désactiver un élément de la liste	16
		2.2.6	Supprimer un élément de la liste	16
		2.2.7	Renommer un élément de la liste	16
		2.2.8	Modifier la couleur d'une courbe	17
		2.2.9	Obtenir des informations supplémentaires sur une conique ou	
			une droite	17
	2.3	Savoir	utiliser l'onglet Graphique	17
		2.3.1	Déplacer le curseur dans la fenêtre de graphe	17
		2.3.2	Réglage de la fenêtre d'affichage	17
		2.3.3	Placer le curseur sur un point d'abscisse donnée	18
		2.3.4	Afficher la valeur du nombre dérivé	19
		2.3.5	Le menu Calculer	19
	2.4	Savoir	utiliser l'onglet Tableau	20
		2.4.1	Modifier l'intervalle dans le tableau de valeurs	20
		2.4.2	Entrer manuellement des valeurs de x dans le tableau	21
		2.4.3	Supprimer toutes les valeurs du tableau	21
		2.4.4	Afficher la colonne des valeurs de la fonction dérivée	21
3	App	lication	n Python	23
	3.1	Script	S	23
			La liste des scripts	23
		3.1.2	Ajouter et supprimer un script de la liste	23
		3.1.3	Renommer un script	23
		3.1.4	Editer un script	24
		3.1.5	Autocomplétion	24
		3.1.6	Désactiver l'importation automatique dans la console	24
	3.2	Conso	ole d'exécution	25
	3.3	Modu		25
		3.3.1	Le module math	25
		3.3.2	Le module cmath	28

		3.3.3 3.3.4 3.3.5 3.3.6 3.3.7	Le module matplotlib.pyplot	28 30 31 32 32
		3.3.8	Le module time	33
	3.4	La tou	che var et la touche Toolbox	33
		3.4.1	La touche var	33
		3.4.2	La touche Toolbox	33
4	App	lication	Statistiques	35
-	4.1		en main rapide	35
		4.1.1	Comment entrer vos données dans le tableau	35
		4.1.2	Représenter graphiquement vos données	36
		4.1.3	Afficher les calculs statistiques	36
	4.2		utiliser l'onglet Données	36
		4.2.1	Supprimer une ligne du tableau de données	36
		4.2.2	Effacer un tableau de données	36
		4.2.3	Générer une liste à partir d'une formule	37
		4.2.4	Trier une liste par valeurs croissantes	37
		4.2.5	Afficher la colonne des effectifs cumulés croissants	37
		4.2.6	Masquer une série de données	38
	4.3	Savoir	utiliser l'onglet Graphique	38
		4.3.1	Choisir une représentation	38
		4.3.2	Histogramme	38
		4.3.3	Boîte à mousrtaches	39
		4.3.4	Fréquences cumulées	39
		4.3.5	Loi normale (diagramme quantile-quantile)	40
	4.4	Savoir	utiliser l'onglet Stats	40
_		1	D. 1.1957	4.1
5			Probabilités	41
	5.1		n Probabilités	41
		5.1.1	Première étape : choix de la loi de probabilité	41
		5.1.2	Deuxième étape : choix des paramètres de la loi	42
	F 0	5.1.3	Troisième étape : calcul des probabilités	43
	5.2		n Tests	44
	5.3	Section	n Intervalles	44
6	App	Application Solveur 45		

	6.1	Equat	ions	45
		6.1.1	Résoudre une équation	45
		6.1.2	Résoudre un système d'équations	46
	6.2	Finan	ce	46
7	Арр	lication	n Suites	47
	7.1		en main rapide	47
		7.1.1	Comment tracer une suite	47
		7.1.2	Afficher le tableau de valeurs	48
	7.2	Savoir	utiliser l'onglet Suites	48
		7.2.1	Ajouter une suite à la liste de suites	48
		7.2.2	Activer ou désactiver une suite de la liste	48
		7.2.3	Supprimer l'expression d'une suite	49
		7.2.4	Supprimer une suite de la liste de suites	49
		7.2.5	Modifier le type de la suite	49
		7.2.6	Entrer l'expression d'une suite définie par récurrence	49
		7.2.7	Modifier l'indice du premier terme	50
		7.2.8	Modifier la couleur d'une suite	50
	7.3	Savoir	utiliser l'onglet Graphique	50
		7.3.1	Déplacer le curseur dans la fenêtre de graphe	50
		7.3.2	Réglage de la fenêtre d'affichage	5(
		7.3.3	Placer le curseur sur un point particulier	51
		7.3.4	Effectuer le calcul de la somme des termes d'une suite	52
	7.4	Savoir	utiliser l'onglet Tableau	52
		7.4.1	Modifier l'intervalle dans le tableau de valeurs	52
		7.4.2	Entrer manuellement des valeurs de n dans le tableau \ldots	53
		7.4.3	Supprimer toutes les valeurs du tableau	53
8	App	lication	n Régressions	54
			en main rapide	54
		8.1.1	Comment entrer vos données dans le tableau	54
		8.1.2	Afficher le nuage de points correspondant aux données	54
		8.1.3	Afficher un modèle de régression	54
		8.1.4	Afficher les calculs statistiques	55
	8.2		utiliser l'onglet Données	55
		8.2.1	Supprimer une valeur du tableau de données	55
		8.2.2	Effacer une colonne du tableau	55
		8.2.3		55

		8.2.4 Trier une liste par valeurs croissantes	
	8.3	8.2.5 Modifier le modèle de régression	
	0.5	8.3.1 Réglage de la fenêtre d'affichage	
		8.3.2 Menu Régression	
	8.4	Savoir utiliser l'onglet Stats	
9		lication Paramètres 6	
	9.1	Unité d'angle	
	9.2	Format résultat	
	9.3	Format écriture	
	9.4	Forme complexe	1
	9.5	Luminosité	1
	9.6	Police Python	1
	9.7	Langue	1
	9.8	Pays	1
	9.9	Mode examen	2
		9.9.1 Comment activer le mode examen? 6	2
		9.9.2 Que se passe-t-il lorsque vous activez le mode examen? 6	2
		9.9.3 Comment désactiver le mode examen? 6	2
	9.10	A propos	2
	9.11	Restaurer la calcultrice	2
10	Utili	sation des Variables 6	3
	10.1	Les variables numériques	3
		Les fonctions	3
		Les listes	
		Les matrices	
		Les suites	
		La touche var	
11	Топс	che Toolbox 6	5
		Analyse	
		Nombres complexes	
		Probabilités	
	11.0	11.3.1 Dénombrement	
		1	
	11 4	11.3.3 Aléatoire	
	114	Onnes et constantes 6	×

11.5	Matrices et vecteurs	68
	11.5.1 Matrices	68
	11.5.2 Vecteurs	69
11.6	Lists	69
11.7	Arithmétique	70
11.8	Trigonométrie	70
	11.8.1 Hyperbolique	70
	11.8.2 Avancée	71
11.9	Nombres décimaux	71

Chapitre 1

Application Calculs

1.1 Savoir utiliser l'écran de calcul

1.1.1 Effectuer un calcul

- 1. Lorsque vous arrivez dans l'application **Calculs**, le curseur est situé dans la barre d'édition au bas de l'écran. Entrez votre calcul dans cette barre d'édition.
- 2. Appuyez sur la touche (EXE). Le calcul est effectué.

Lorsqu'un calcul est effectué il s'affiche au bas de l'historique de calculs. Dans la ligne de l'historique correspondant à ce calcul, vous observerez en haut à gauche le calcul que vous avez entré et en bas à droite le résultat. Le résultat exact est donné en noir alors que le résultat numérique approché apparait en gris.

Les calculs contenant des nombres décimaux donnent également des résultats exacts. Sélectionnez le résultat décimal pour faire apparaître le résultat exact.

Pour plus de lisibilité, le résultat des calculs faisant intervenir un nombre décimal est toujours donné sous forme décimale : 0.1+0.3 donnera 0.4 tandis que $\frac{1}{10}+\frac{3}{10}$ donnera $\frac{2}{5}$.

1.1.2 Récupérer le résultat du calcul immédiatement précédent

Vous pouvez utiliser le résultat exact du calcul que vous venez d'effectuer dans l'expression d'un nouveau calcul. Pour cela, appuyez sur la touche (Ans). L'expression Ans s'affiche alors dans la ligne d'édition et correspond au résultat du calcul précédent. Vous pouvez effectuer des opérations mathématiques sur ce résultat.

Vous pouvez également réaliser une opération directement sur votre résultat le plus récent en appuyant sur une touche d'opération. Par exemple, vous pouvez ajouter 5 à votre dernier résultat en appuyant sur (+²) puis sur (s²). La barre d'édition affichera Ans+5.

La calculatrice NumWorks ne dispose que d'une seule touche "moins". Appuyer sur la touche — affichera – tandis qu'appuyer deux fois sur la touche

(-) affichera Ans-.

1.1.3 Récupérer un résultat quelconque dans l'historique de calcul

Pour copier un résultat antérieur dans la barre d'édition de calcul, utilisez les flèches directionnelles pour sélectionner le résultat que vous souhaitez récupérer (exact ou approché), puis appuyez sur la touche . Le résultat est alors affiché dans la barre d'édition au bas de l'écran.

1.1.4 Récupérer l'expression d'un calcul déjà effectué dans l'historique des calculs

Vous pouvez copier l'expression d'un calcul déjà effectué dans la barre d'édition de calcul dans le but de le modifier ou de l'effectuer de nouveau. Pour cela, sélectionnez l'expression de ce calcul en utilisant les flèches directionnelles. Appuyez ensuite sur la touche , l'expression du calcul se retrouve ainsi dans la barre d'édition au bas de l'écran.

1.1.5 Effacer une ligne de l'historique ou la totalité de l'historique

Pour effacer une ligne de l'historique, sélectionnez, à l'aide des flèches directionnelles, un élément de cette liste puis appuyez sur la touche (**).

Pour effacer la totalité de l'historique, sélectionnez un élément de cette liste à l'aide des flèches directionnelles puis utilisez la fonctionnalité **clear** (touche (shift) puis (***)).

1.2 Afficher des résultats additionnels sur un calcul

Il est possible de remonter dans l'historique pour faire apparaître des informations supplémentaires sur le résultat de certains calculs. Lorsque vous remontez sur un calcul, si un menu constitué de trois points apparaît sur le côté droit du calcul, c'est que des résultats additionnels sont disponibles. Sélectionnez les trois points et appuyez sur pour faire apparaître les résultats additionnels.

- Lorsque le résultat est un entier, la calculatrice donne les résultats additionnels suivants : forme hexadécimale, forme binaire et décomposition en facteurs premiers lorsque c'est pertinent.
- Lorsque le résultat est une fraction, la calculatrice donne les résultats additionnels suivants : fraction mixte et division euclidienne du numérateur par le dénominateur.
- Lorsque le résultat ou l'entrée est sous la forme sin(x) ou cos(x), la calculatrice donne les résultats additionnels suivants : angle, valeur du cosinus et du sinus ainsi qu'une représentation du cercle trigonométrique.

- Lorsque le résultat est un nombre complexe, la calculatrice donne les résultats additionnels suivants : module, argument, partie réelle, partie imaginaire ainsi qu'une représentation dans le plan complexe.
- Lorsque le résultat est une matrice et si cela est possible, la calculatrice donne les résultats additionnels suivants : le déterminant, l'inverse, la trace, la forme échelonnée et la forme échelonnée réduite de la matrice.
- Lorsque le résultat contient des unités, la calculatrice donne les résultats additionnels suivants : résultat en unités de la vie courante (par exemple, en heures minutes secondes pour les unités de temps), résultat en unités SI.

1.3 Effectuer des calculs avec des nombres complexes

1.3.1 Choisir la forme complexe des résultats

Vos résultats peuvent être affichés sous forme algébrique ou sous forme exponentielle. Effectuez ce réglage dans l'application Paramètres. Si vous souhaitez paramétrer la calculatrice pour que les résultats soient donnés sous forme réelle, choisissez la forme réelle des résultats.

```
Sous forme algébrique, le calcul de \sqrt{-1} mènera au résultat i. Sous forme exponentielle, le calcul de \sqrt{-1} mènera au résultat : e^{1.570796*i}. Sous forme réelle, le calcul de \sqrt{-1} mènera au résultat : unreal.
```

Dans l'affichage des résultats sous forme exponentielle, l'angle dans l'exponentielle est toujours donné en radians, même si la calculatrice est réglée en mode degrés.

1.3.2 Calcul d'une expression contenant des nombres complexes

Vous pouvez effectuer des calculs avec des nombres complexes tout comme avec des nombres réels. Vos nombres complexes peuvent être entrés sous forme algébrique ou exponentielle.

Par exemple : si vous entrez $i+e^{i*\frac{\pi}{2}}$, la calculatrice vous donnera le résultat 2i si vous êtes en mode algébrique et $2e^{i*\frac{\pi}{2}}$ si vous êtes en mode exponentielle.

1.3.3 Module, argument, partie réelle, partie imaginaire, conjugué

Vous pouvez calculer ces grandeurs en utilisant les raccourcis disponibles dans la section **Nombres complexes** du menu **Toolbox** auquel vous avez accès lorque vous appuyez sur la touche (**).

Vous pouvez aussi entrer manuellement les commandes servant à calculer ces grandeurs. Dans la liste suivante se trouvent les syntaxes des commandes correspondantes :

- Module:abs(z)

Argument : arg(z)
Partie réelle : re(z)
Partie imaginaire : im(z)
Conjugué : conj(z)

1.4 Effectuer des calculs matriciels

1.4.1 Entrer une matrice à l'aide du clavier

Pour entrer une matrice dans la barre d'affichage au bas de l'écran, utilisez les crochets [et], accessibles en appuyant sur shift puis (e^A) ou (ln°).

Par exemple, tapez [[1,0][0,1]] pour entrer la matrice identité de taille 2 :

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Lorsque vous appuyez sur , vous pouvez observer votre matrice qui s'affiche avec la bonne mise en forme dans l'historique de calculs.

Il est intéressant de stocker les matrices dans des variables matricielles. Pour cela, entrez votre matrice puis utilisez la fonction $sto \rightarrow (en appuyant sur finite)$ puis sur finite (en appuyant sur finite (en appuyant

Pour faire une majuscule appuyez sur shift puis sur sur sur la touche comportant la lettre voulue.

1.4.2 Effectuer des calculs avec des matrices

Vous pouvez effectuer des calculs entre plusieurs matrices :

- Addition de deux matrices : M1+M2
- Soustraction de deux matrices : M1-M2
- Multiplication de deux matrices (produit matriciel) : M1∗M2
- Division de deux matrices (multiplication par l'inverse) : M1/M2 (correspond à $M1*M2^{-1}$)

Vous pouvez aussi effectuer des calculs entre un nombre et une matrice :

- Multiplication d'une matrice par un scalaire : 4∗M1
- Puissance d'une matrice : M1⁵

1.4.3 Inverse, déterminant, transposée, trace, taille

Vous pouvez calculer ces grandeurs en utilisant les raccourcis disponibles dans la section **Matrices** du menu **Toolbox** auquel vous avez accès lorque vous appuyez sur la

touche (paste ").

Vous pouvez aussi entrer manuellement les commandes servant à calculer ces grandeurs. Dans la liste suivante se trouvent les syntaxes des commandes correspondantes :

Inverse: inverse(M)
Déterminant: det(M)
Transposée: transpose(M)

- Trace: trace(M)
- Taille: dim(M)

1.5 Effectuer des calculs avec des listes

1.5.1 Créer une liste

Il existe trois manières de créer une liste de valeurs :

- Première option : avec le menu Boîte à outils
 - 1. Lorsque vous êtes dans l'application **Calculs**, appuyez sur la touche **(a)** pour ouvrir le menu Boîte à outils.
 - 2. Utilisez les touches extstyle extstyle
 - 3. Choisissez l'option Nouvelle liste.
 - 4. Entrez les valeurs de votre liste avec le clavier numérique de la calculatrice.
 - 5. Appuyez sur pour insérer une virgule entre chaque valeur de la liste.

Vous pouvez également générer une liste à partir d'une fonction.

- 1. Lorsque vous êtes dans la section **Listes** de la Boîte à outils, sélectionnez l'option **{f(k)}**.
- 2. Entrez votre fonction.
- 3. Entrez ensuite la borne supérieure. Par exemple, **k 5** vous permettra de créer une liste de 5 valeurs qui utilise votre fonction.
- Deuxième option : créer une liste à la main
 - 1. Lorsque vous êtes dans l'application **Calculs**, appuyez sur shift puis sur log pour ouvrir une accolade et commencer à entrer votre liste.
 - 2. Entrez ensuite les valeurs de votre liste en utilisant le clavier numérique et la touche pour séparer vos valeurs.
 - 3. Terminez votre liste en appuyant sur (shift) puis sur (1,0) pour fermer l'accolade.
- Troisième option : les séries de données
 Des listes sont automatiquement créées ou modifiées lorsque vous ajoutez des valeurs dans les séries de données des onglets Données des applications Statistiques (listes N1, V1, ...) et Régressions (listes X1, Y1, ...).

1.5.2 Stocker une liste dans une variable

Vous pouvez stocker une liste dans une variable et y accéder ensuite en utilisant le menu de la touche (option).

- 1. Créez votre liste.
- 2. Appuyez sur (shift).
- 3. Appuyez sur (***): une flèche apparaît dans la barre d'édition.
- 4. Entrez le nom de la variable que vous souhaitez créer, par exemple 1 en appuyant sur () puis sur ().
- 5. Validez en appuyant sur EXE

Pour utiliser une majuscule, appuyez sur suit puis sur avant d'appuyer sur la touche correspondant à la lettre que vous souhaitez utiliser.

1.5.3 Appeler un élément

Vous pouvez appeler un élément d'une liste en utilisant des parenthèses. Toutes les listes sont indexées à partir de 1. Pour appeler le quatrième élément de la liste $\bf L$ vous pouvez donc taper $\bf L(4)$.

1.5.4 Réaliser des calculs avec des listes

Vous pouvez réaliser plusieurs types de calculs avec des listes.

Par exemple, si vous avez créé la liste L, vous pouvez :

- Ajouter une valeur à chaque terme de la liste : L+2
- Soustraire une valeur à chaque terme de la liste : L-2
- Multiplier chaque valeur de la liste par une valeur : L*2
- Diviser chaque valeur de la liste par une valeur : L/2

Par exemple, si vous avez créé les listes L et R, vous pouvez :

- Additionner les deux listes terme à terme : L+R
- Soustraire les deux listes terme à terme : L-R
- Multiplier les deux listes terme à terme : L∗R
- Diviser les deux listes terme à terme : L/R

1.5.5 Réaliser des calculs statistiques avec des listes

Les grandeurs statistiques suivantes peuvent être calculées sur une liste :

- Moyenne:mean(L)
- Ecart-type : stddev(L)
- Ecart-type échantillon : samplestddev(L)
- Médiane : med(L)

Variance : var(L)Pour réaliser ces calculs :

- 1. Appuyez sur 🗃 pour ouvrir le menu Boîte à outils.
- 2. Sélectionnez Listes puis Statistiques.
- 3. Choisissez la fonction que vous souhaitez utiliser.

1.5.6 Réaliser d'autres opérations sur les listes

Vous pouvez réaliser les calculs ou opérations suivants sur des listes :

— Longueur de la liste : dim(L)

Minimum: min(L)Maximum: max(L)

Tri de la liste : sort(L)

Somme des éléments : sum(L)Produit des éléments : prod(L)

Pour réaliser ces opérations :

- 1. Appuyez sur 🗃 pour ouvrir le menu Boîte à outils.
- 2. Sélectionnez Listes puis Opérations.
- 3. Choisissez l'opération que vous souhaitez utiliser.

1.6 Effectuer des calculs avec des unités

1.6.1 Entrer un calcul qui contient des unités

Vous pouvez effectuer un calcul sur une expression en utilisant des unités. Toutes les unités sont préfixées par le caractère _ et les symboles utilisés pour les unités sont ceux du Système International.

Par exemple, pour additionner 30 centimètres et 1 mètre, le calcul à taper est 30_cm+1_m. La calculatrice donne alors le résultat avec l'unité la plus adaptée.

La liste des unités utilisables est disponible dans la section Unités du menu Boîte à outils accessible via la touche (🖀).

1.6.2 Effectuer des conversions d'unités

Pour demander une conversion d'unités, utilisez la flèche du clavier accessible via ₅ы́н puis (™). Par exemple, pour convertir 185 minutes en heures, taper : 185_min→_h.

Chapitre 2

Application Fonctions

2.1 Prise en main rapide

2.1.1 Comment tracer le graphe d'une fonction

- 1. Lorsque vous arrivez dans l'application **Fonctions**, entrez l'expression de la fonction que vous souhaitez tracer avec les touches du clavier. La barre d'édition de la fonction s'affiche au bas de l'écran. Pour utiliser la variable x au sein de l'expression de la fonction, appuyez sur la touche $\frac{c}{x}$.
- 2. Validez en appuyant sur la touche 🖜
- 3. Sélectionnez ensuite le bouton **Tracer le graphique** au bas de l'écran ou bien l'onglet **Graphique** en haut de l'écran.
- 4. Validez en appuyant sur la touche .

Vous vous situez maintenant dans l'onglet **Graphique** et votre graphe est tracé. Vous pouvez déplacer le curseur sur la courbe à l'aide des flèches directionnelles et lire les coordonnées des points au bas de l'écran.

Pour ouvrir le menu d'options de la courbe sur laquelle se situe le curseur, appuyez sur la touche \odot .

2.1.2 Afficher le tableau de valeurs

Le tableau de valeurs de la fonction se trouve dans l'onglet **Tableau**. Il y a deux manières d'y accéder.

- Première option : depuis l'onglet **Expressions**
 - 1. Si vous vous situez dans l'onglet **Expressions**, placez la sélection sur le bouton **Afficher les valeurs** au bas de l'écran.
 - 2. Validez en appuyant sur la touche 👁.

Le tableau de valeurs s'affiche alors.

- Deuxième option : depuis n'importe quel onglet
 - 1. Sélectionnez l'onglet **Tableau** en haut de l'écran.
 - 2. Validez en appuyant sur la touche 🗆.

Le tableau de valeurs s'affiche alors.

2.2 Savoir utiliser l'onglet Expressions

2.2.1 Ajouter un élément à la liste d'expressions

Vous pouvez ajouter plusieurs types d'éléments dans la liste d'expressions : fonctions, inéquations, courbes polaires, coniques, ...

- 1. Sélectionnez la case **Ajouter un élément** qui se trouve au bas de la liste des fonctions.
- 2. Validez en appuyant sur la touche (x) et choisissez le type d'expression que vous souhaitez utiliser.

Un nouvel élément apparaît dans la liste. Vous pouvez directement entrer son expression avec le clavier.

Vous pouvez aussi créer une fonction depuis l'application Calculs. Voir le chapitre Variables.

2.2.2 Modifier une expression de la liste

Vous pouvez modifier une expression de la liste en la mettant en surbrillance et en appuyant sur la touche ...

La barre d'édition s'affiche alors au bas de l'écran.

Pour les fonctions composées, utilisez le nom d'une fonction existante dans l'expression de la fonction. Voici un exemple d'expression que vous pouvez écrire : cos(f(x)).

2.2.3 Modifier l'intervalle de tracé d'une fonction

Vous pouvez modifier le domaine de tracé d'une fonction pour réduire son domaine de définition.

- 1. Sélectionnez la case contenant les trois points à droite de la fonction concernée dans la liste de fonctions.
- 2. Validez en appuyant sur la touche @ pour ouvrir le menu d'options de cette fonction.
- 3. Sélectionnez l'option **Domaine de tracé** et appuyez sur la touche (a).
- 4. Entrez les valeurs souhaitées et sélectionnez Valider.

2.2.4 Courbes polaires et paramétriques

L'expression d'une fonction de type polaire doit faire intervenir le symbole θ , il est possible de l'insérer en appuyant sur la touche x,n,t.

L'expression d'une fonction de type paramétrique doit être sous la forme d'une matrice colonne de taille 2, le premier coefficient est l'expression de $\mathbf{x}(\mathbf{t})$ tandis que le deuxième est celle de $\mathbf{y}(\mathbf{t})$.

Des modèles d'expressions sont disponibles dans le pop-up qui apparaît lorsque vous sélectionnez la cellule **Ajouter un élément**.

2.2.5 Activer ou désactiver un élément de la liste

Un élément désactivé apparaît en gris dans la liste des éléments. Vous pouvez modifier son expression mais son graphe et sa colonne de valeurs n'apparaîtront pas dans les onglets **Graphique** et **Tableau**.

- 1. Pour désactiver un élément, sélectionnez la case avec les trois points à droite de l'expression dans la liste.
- 2. Validez en appuyant sur la touche o pour ouvrir le menu d'options de cet élément.
- 3. Sélectionnez l'option **Afficher l'élément** et appuyez sur la touche o pour faire basculer l'état de l'expression.
- 4. Revenez à la liste en appuyant sur la touche 🖘.

Procédez de la même manière si vous souhaitez réactiver l'élément.

2.2.6 Supprimer un élément de la liste

Vous pouvez supprimer définitivement un élément de la liste.

- 1. Sélectionnez l'expression à supprimer.
- 2. Appuyez sur la touche (dear des la conche de la conche

L'élément disparaît de la liste.

2.2.7 Renommer un élément de la liste

Vous pouvez modifier le nom d'une fonction.

- 1. Sélectionnez la case avec les trois points à droite de l'expression à renommer dans la liste des expressions.
- 2. Validez en appuyant sur la touche @ pour ouvrir le menu d'options de cette fonction.

- 3. Sélectionnez l'option **Renommer** et appuyez sur la touche ox.
- 4. Ecrivez le nouveau nom de votre fonction en veillant à ne pas dépasser 7 caractères.

2.2.8 Modifier la couleur d'une courbe

Lorsque vous créez un élément, une couleur lui est automatiquement assignée. Vous pouvez cependant modifier cette couleur.

- 1. Sélectionnez la case avec les trois points à droite de l'expression concernée.
- 2. Validez en appuyant sur la touche 👁 pour ouvrir le menu d'options de cet élément.
- 3. Sélectionnez l'option Couleur et appuyez sur la touche ().
- 4. Choisissez enfin la couleur souhaitée.

2.2.9 Obtenir des informations supplémentaires sur une conique ou une droite

Pour les expressions de type conique ou droite, il est possible de consulter les paramètres (excentricité, ...) associés à une conique ou à l'équation réduite d'une droite.

- 1. Sélectionnez la case avec les trois points à droite de l'expression de la conique ou de la droite.
- 2. Validez en appuyant sur la touche o pour ouvrir le menu d'options.
- 3. Choisissez **Détails** pour accéder aux informations supplémentaires sur la conique ou la droite.

2.3 Savoir utiliser l'onglet Graphique

2.3.1 Déplacer le curseur dans la fenêtre de graphe

Vous pouvez déplacer le curseur à l'aide des quatre flèches directionnelles :

- (◄) / ►): déplacez le curseur sur la courbe vers la droite ou vers la gauche.
- \triangle / \bigcirc : déplacez le curseur sur une courbe au-dessus ou au-dessous de la courbe sur laquelle vous êtes.

2.3.2 Réglage de la fenêtre d'affichage

Pour accéder aux réglages de la fenêtre d'affichage, sélectionnez l'une des options situées sous l'onglet **Graphique** et appuyez sur la touche .

Vous avez le choix entre trois options : Auto, Axes et Naviguer.

Lorsque vous êtes dans la fenêtre d'affichage de graphique, vous pouvez appuyer sur les touches (+') et (--) pour zoomer/dézoomer.

Auto

Choisissez **Auto** pour régler automatiquement la fenêtre d'affichage. La fenêtre s'adapte alors aux différentes fonctions affichées pour essayer de montrer les points remarquables des différentes courbes. Lorsque ce réglage est activé, le cercle à droite du nom du réglage est coché en jaune. Le réglage se désactive automatiquement lorsque vous modifiez la fenêtre, soit en utilisant un autre réglage, soit en translatant la fenêtre en déplaçant le curseur sur une courbe.

Si vous souhaitez désactiver ce réglage, par exemple pour ajouter une nouvelle fonction en conservant la même fenêtre, vous pouvez décocher le cercle jaune en sélectionnant **Auto** et appuyant sur . La fenêtre reste alors la même mais elle ne sera plus automatiquement adaptée lors de l'ajout ou de la suppression d'une fonction.

Axes

Dans **Axes**, vous pouvez entrer les valeurs de **Xmin**, **Xmax**, **Ymin** et **Ymax** qui définissent votre fenêtre d'affichage. Ces grandeurs peuvent aussi être calculées automatiquement si vous choisissez d'activer l'option **Auto** dans les sous-menus **Valeurs de X** et **Valeurs de Y**. Validez en sélectionnant le bouton **Valider** et en appuyant sur la touche .

Si le graphique n'est pas orthonormé, un pictogramme ≠ apparaît à droite du nom du menu **Axes** pour indiquer que le graphique n'est pas orthonormé. Un bouton apparaît alors dans le menu **Axes** pour rendre le graphique orthonormé.

Naviguer

Choisissez **Naviguer** pour avoir accès à un réglage interactif de la fenêtre d'affichage en plein écran :

- ◄/♠/♥: déplacement de la fenêtre d'affichage
 - +²/(-): zoom / dézoom

2.3.3 Placer le curseur sur un point d'abscisse donnée

- 1. Lorsque le curseur est sur la courbe de la fonction dont vous cherchez un point particulier, appuyez sur la touche ou . Vous pouvez aussi aller dans le menu Calcul situé sous la barre d'onglets en haut de l'écran.
- 2. Le menu d'options de la courbe s'ouvre, sélectionnez **Aller à** et validez.
- 3. Entrez l'abscisse du point sur lequel vous souhaitez placer le curseur.
- 4. Sélectionnez le bouton **Valider** et appuyez sur la touche ox.

Le curseur est maintenant sur le point que vous avez demandé.

Vous pouvez aussi taper directement la valeur de l'abscisse au clavier lorsque le curseur est sur la courbe pour amener le curseur sur le point voulu.

2.3.4 Afficher la valeur du nombre dérivé

Vous pouvez afficher la valeur du nombre dérivé dans le bandeau au bas de l'écran.

- 1. Lorsque le curseur est situé sur une courbe quelconque, appuyez sur la touche ou (**). Vous pouvez aussi aller dans le menu **Calcul** situé sous la barre d'onglets en haut de l'écran.
- 3. Appuyer sur la touche 😉 pour revenir à la fenêtre d'affichage du graphique. La valeur du nombre dérivé apparaît dans le bandeau au bas de l'écran.

Procédez de la même manière si vous souhaitez désactiver l'affichage du nombre dérivé.

2.3.5 Le menu Calculer

Le menu Calculer vous permet d'identifier des points d'intersection, des minima et des maxima, des zéros, de calculer des intégrales et de tracer des tangentes avec leur équation.

- 1. Lorsque le curseur est situé sur une courbe donnée, appuyez sur la touche ou ou Sous la barre d'onglets en haut de l'écran.
- 2. Le menu d'options de la courbe s'ouvre. Sélectionnez Calculer puis appuyez 🔍.

Vous accédez ainsi au menu Calculer.

Antécédent

Le curseur se place sur l'antécédent cherché. S'il y a plusieurs antécédents, utilisez les flèches du clavier pour sauter d'antécédent en antécédent. Attention, l'antécédent doit être situé dans la fenêtre pour être trouvé.

Intersection

Le curseur se place automatiquement sur un point d'intersection de la courbe avec une autre courbe. Pour sauter de point d'intersection en point d'intersection à l'intérieur de la fenêtre, utilisez les flèches directionnelles.

Maximum / Minimum

Le curseur se place automatiquement sur un maximum / minimum local de la fonction. Pour sauter de maximum / minimum en maximum / minimum à l'intérieur de la fenêtre, utilisez les flèches directionnelles.

Zéros

Le curseur se place automatiquement sur un point d'annulation de la fonction. Pour sauter de zéro en zéro à l'intérieur de la fenêtre, utilisez les flèches directionnelles.

Tangente

Vous observez la tangente à la courbe en un point. Son équation est donné dans le bandeau au bas de l'écran. Vous pouvez utiliser les flèches directionnelles pour tracer d'autres tangentes ou taper directement au clavier la valeur de l'abscisse à laquelle placer la tangente.

Intégrale

- 1. Au bas de la fenêtre d'affichage, il vous est demandé de sélectionner la première borne. Pour ce faire positionnez le curseur sur le premier terme grâce aux touches \triangleleft et \triangleright . Validez ensuite avec la touche \triangleleft . Vous pouvez aussi directement entrer au clavier la valeur de x.
- 2. Sélectionnez maintenant la deuxième borne de la même manière. Validez en appuyant sur la touche . Vous pouvez revenir à l'étape précédente en appuyant sur la touche . Il vous est alors de nouveau demandé de sélectionner la première borne.
- 3. La valeur de l'intégrale que vous souhaitiez calculer est indiquée dans le bandeau d'affichage au bas de l'écran. Pour calculer une nouvelle intégrale, pressez (). Pour sortir du mode **Intégrale**, pressez ().

2.4 Savoir utiliser l'onglet Tableau

2.4.1 Modifier l'intervalle dans le tableau de valeurs

Vous pouvez remplir automatiquement le tableau de valeurs avec des valeurs de x contenues dans un intervalle de votre choix. Pour cela vous avez deux manières de procéder.

- Première option
 - 1. Sélectionnez **Régler l'intervalle** sous l'onglet **Tableau** et validez en appuyant sur (a).
 - 2. Vous arrivez dans la fenêtre des réglages de l'intervalle des valeurs de x. Entrez les valeurs de x début et x fin avec les touches numériques du clavier puis la valeur du pas entre chaque valeur de x.
 - 3. Sélectionnez le bouton **Valider** et appuyez sur . Le nouveau tableau de valeurs s'affiche alors à l'écran et respecte l'intervalle que vous venez de renseigner.

Deuxième option

- 1. Placez la sélection sur la case x, en haut de la première colonne du tableau, et appuyez sur la touche \bigcirc .
- 2. Le menu d'options de la colonne \mathbf{x} s'ouvre. Sélectionnez **Régler l'intervalle** et appuyez sur la touche \odot .
- 3. Vous arrivez dans la fenêtre des réglages de l'intervalle des valeurs de x. Entrez les valeurs de x début et x fin avec les touches numériques du clavier puis la valeur du pas entre chaque valeur de x.
- 4. Sélectionnez le bouton **Valider** et appuyez sur . Le nouveau tableau de valeurs s'affiche alors à l'écran et respecte l'intervalle que vous venez de renseigner.

2.4.2 Entrer manuellement des valeurs de x dans le tableau

Lorsque vous placez la sélection sur une case de la première colonne du tableau (**Colonne x**), vous pouvez entrer manuellement une valeur de x de votre choix à l'aide des touches numériques du clavier. Une fois votre valeur entrée dans la case, validez en appuyant sur la touche (x).

Vous pouvez effacer une ligne du tableau en vous positionnant dessus et en appuyant sur la touche ().

2.4.3 Supprimer toutes les valeurs du tableau

- 1. Placez la sélection sur la case \mathbf{x} , en haut de la première colonne du tableau, et appuyez sur la touche (\mathbf{x}) .
- 2. Le menu d'options de la colonne x s'ouvre. Sélectionnez **Effacer les valeurs** et appuyez sur la touche ∞ .
- 3. Un tableau de valeurs vide s'affiche à l'écran. Vous pouvez maintenant entrer des valeurs dans la colonne **x** manuellement ou automatiquement.

2.4.4 Afficher la colonne des valeurs de la fonction dérivée

Vous avez la possibilité de faire apparaître la colonne de la fonction dérivée d'une fonction présente dans le tableau.

- 1. Placez la sélection sur le nom de la fonction concernée et appuyez sur (»).
- 2. Sélectionnez Colonne de la fonction dérivée et appuyez sur la touche . Vous venez d'activer l'affichage de la colonne de la fonction dérivée.
- 3. Appuyez sur la touche 😑 pour revenir au tableau. La colonne de la fonction dérivée apparaît à côté de la fonction que vous avez sélectionnée.

Pour masquer la colonne de la fonction dérivée, procédez de la même manière ou bien sélectionnez le nom de la fonction dérivée et appuyez sur ® pour ouvrir les options de cette colonne et ne plus l'afficher.

Chapitre 3

Application Python

La version de Python disponible sur votre calculatrice NumWorks est MicroPython 1.12, compatible Python 3.4.

Une section de notre site est consacrée à la prise en main de Python et à son utilisation (avec des fiches d'activités).

3.1 Scripts

3.1.1 La liste des scripts

Lorsque vous arrivez dans l'application, vous tombez sur la liste des scripts enregistrés. Lorsque vous utilisez l'application pour la première fois, quatre scripts sont définis à titre d'exemple : squares.py, parabola.py, mandelbrot.py et polynomial.py.

3.1.2 Ajouter et supprimer un script de la liste

Vous pouvez ajouter jusqu'à 8 scripts dans la liste des scripts.

- 1. Sélectionnez la case **Ajouter un script** qui se trouve au bas de la liste des fonctions.
- 2. Validez en appuyant sur la touche (x).

Une nouveau script apparaît dans la liste. Vous pouvez à ce moment là entrer un nom pour ce script.

Pour supprimer un script, placez la sélection sur l'icône de réglages à côté du nom de ce script et appuyez sur . Choisissez **Supprimer le script** dans la liste et appuyez sur pour confirmer la suppression.

3.1.3 Renommer un script

Pour modifier le nom d'un script, placez la sélection sur l'icône de réglages à côté du nom de ce script et appuyez sur . Choisissez **Renommer le script** dans la liste et ap-

puyez sur (pour valider. Il ne vous reste plus qu'à changer le nom du script.

3.1.4 Editer un script

Pour écrire dans un script, il vous suffit de placer la sélection sur le nom de ce script et d'appuyer sur (*). L'éditeur s'ouvre et vous pouvez écrire vos algorithmes à l'intérieur.

Pour entrer un caractère alphabétique (marquage orange sur le clavier), appuyez sur la touche (alpha) puis sur la lettre que vous souhaitez afficher. Pour des caractères majuscules, appuyez en plus sur la touche (shift) avant d'ajouter la lettre souhaitée. Pour bloquer le clavier en mode alphabétique, appuyez deux fois sur la touche (alpha) et appuyez sur (shift) pour basculer entre minuscules et majuscules.

Pour vous aider dans l'écriture, appuyez sur la touche . Un menu s'ouvre alors et présente certains raccourcis pour faciliter l'édition. Le menu Boucles et Tests propose des blocs pré-remplis pour les boucles for et while, les tests if et une série de conditions. Le menu Catalogue liste les fonctions présentes dans Python et en donne une courte description. Vous pouvez aussi utiliser la touche pour faire apparaître la liste des fonctions définies dans vos scripts ainsi que les variables globales.

Si vous souhaitez copier-coller une partie d'un texte, sélectionnez les caractères à copier en maintenant la touche (shift) appuyée et en utilisant (d) ou (D). Puis appuyez sur (shift) et ensuite (W) pour copier la sélection. Appuyez sur (shift) puis (E) pour la coller.

3.1.5 Autocomplétion

L'éditeur de script dispose de l'autocomplétion. Lorsque vous commencez à taper un mot, l'application vous propose une suggestion en gris.

- Pour accepter la suggestion, appuyez sur la touche
 ou
 ou
 ou
- Pour refuser la suggestion, appuyez sur 😉 ou continuez simplement à écrire le mot
- Pour obtenir une nouvelle suggestion, appuyez sur la touche △ ou ▽

3.1.6 Désactiver l'importation automatique dans la console

L'importation automatique est automatiquement activée pour vos scripts. C'est à dire que la commande from nom_du_script import * est systématiquement entrée à l'ouverture de la console interactive de façon à ce que vous puissiez utiliser les fonctions que vous avez définies dans les scripts à l'intérieur de la console.

Pour désactiver l'importation automatique d'un script, placez la sélection sur l'icône de réglages à côté du nom de ce script et appuyez sur (*). Choisissez **Importation auto** dans

la liste et appuyez sur 👁 pour basculer l'interrupteur. L'interrupteur devient gris et le script ne sera plus activé automatiquement.

3.2 Console d'exécution

Au bas de la liste des scripts se trouve un bouton **Console d'exécution** qui permet d'accéder à la console interactive de Python.

Le triple chevron >>> vous invite à entrer une commande.

Vous avez la possibilité d'utiliser les raccourcis de la touche prévue pour faciliter la saisie de texte. Le menu de la touche affiche la liste des fonctions et des variables globales contenues dans les scripts importés.

Pour interrompre l'exécution d'un script, appuyez sur la touche 🖨 du clavier. Si le script est coincé dans une boucle infinie, appuyez longuement sur 🖨 et répétez l'opération jusqu'à l'interruption du script.

Pour plus d'informations, consultez la rubrique de notre site dédiée à la prise en main de Python.

3.3 Modules

Les modules présents dans cette version de Python sont les modules math, cmath, matplotlib.pyplot, turtle, random, kandinsky, ion et time.

3.3.1 Le module math

Voici la description exhaustive du module math. Vous pouvez avoir cette liste sur votre calculatrice en appuyant sur (a) et en allant dans Modules puis dans math.

- e Constante e=2.718281828459045
- pi Constante pi=3.141592653589793
- sqrt(x) Fonction racine carrée, taper sqrt(x) pour \sqrt{x} .
- pow(x,y) Fonction puissance, entrer pow(x,y) calcule x^y .
- exp(x) Fonction exponentielle, taper exp(x) pour e^x .
- expm1(x) Fonction exponentielle moins 1, taper expm1(x) pour $e^x 1$.

- $\log(x)$ Fonction logarithme népérien : attention, ici $\log(x)$ calcule donc ln(x).
- log2(x) Fonction logarithme en base 2, entrer log2(x) calcule $\frac{ln(x)}{ln(2)}$.
- log10(x) Fonction logarithme en base 10, entrer log10(x) calcule $\frac{ln(x)}{ln(10)} = log(x)$.
- **cosh(x)** Fonction cosinus hyperbolique.
- sinh(x) Fonction sinus hyperbolique.
- tanh(x) Fonction tangente hyperbolique.
- **acosh(x)** Fonction arc cosinus hyperbolique.
- asinh(x) Fonction arc sinus hyperbolique.
- **atanh(x)** Fonction arc tangente hyperbolique.
- cos(x) Fonction cosinus en radians.
- sin(x) Fonction sinus en radians.
- tan(x) Fonction tangente en radians.
- **acos(x)** Fonction arc cosinus en radians.
- asin(x) Fonction arc sinus en radians.
- atan(x) Fonction arc tangente en radians.
- $\mathtt{atan2(y,x)}$ Entrer $\mathtt{atan2(y,x)}$ calcule $atan(\frac{y}{x})$.
- ceil(x) Plafond, entrer ceil(x).
- copysign(x,y) Copie le signe de y sur x : par exemple copysign(3,-1)=-3.

fabs(x) Fonction valeur absolue, fabs(x) donne |x|.

factorial(n) Fonction factorielle, **factorial(n)** donne n!.

floor(x) Partie entière, entrer floor(x) calcule |x|.

fmod(a,b) Fonction modulo, entrer fmod(a,b) renvoie a modulo b.

frexp(a,b) Mantisse et exposant : par exemple, frexp(10) retourne (0.625,4) car $10 = 0.625 \times 2^4$.

ldexp(x,i) Inverse de frexp(a,b), c'est à dire $x \times 2^i$.

modf(x) Partie fractionnaire et partie entière, par exemple modf(5.1)=(0.1,5.0).

isfinite(x) Test si la valeur passée est finie.

isinf(x) Test si la valeur passée est infinie.

isnan(x) Test si la valeur passée est NaN.

trunc(x) Troncature entière, par exemple trunc(6.7)=6.

radians(x) Conversion de degrés en radians, par exemple radians(180) donne 3.141592653589793.

degrees(x) Conversion de radians en degrés, par exemple degrees(pi) donne 180.

erf(x) Fonction d'erreur, $erf(x) = \frac{2}{\pi} \int_0^x e^{-t^2} dt$.

erfc(x) Fonction d'erreur complémentaire, erfc(x) = 1 - erf(x).

gamma(x) Fonction gamma.

lgamma(x) Logarithme de la fonction gamma, lgamma(x) = ln(gamma(x)).

3.3.2 Le module cmath

Voici la description exhaustive du module cmath. Vous pouvez avoir cette liste sur votre calculatrice en appuyant sur (a) et en allant dans Modules puis dans cmath.

- e Constante e=2.718281828459045.
- pi Constante pi=3.141592653589793.
- phase(z) Argument d'un nombre en radians, par exemple phase(1j)=1.570796326794897.
- polar(z) Conversion d'un nombre complexe en coordonnées polaire : polar(1j) renvoie (1.0, 1.570796326794897).
- rect(z) Conversion d'un nombre complexe en coordonnées algébriques : rect(1,pi/4) renvoie 0.70710+0.70710j.
- exp(x) Fonction exponentielle donnant un résultat avec partie imaginaire, par exemple
 exp(i*pi/4) donne 0.70710+0.70710j.
- log(x) Fonction logarithme népérien donnant un résultat avec partie imaginaire, par exemple log(1j) donne 1.570796326794897j.
- sqrt(x) Fonction racine carrée donnant un résultat avec partie imaginaire.
- cos(x) Fonction cosinus donnant un résultat avec partie imaginaire.
- sin(x) Fonction sinus donnant un résultat avec partie imaginaire.

3.3.3 Le module matplotlib.pyplot

Voici la description exhaustive du module matplotlib.pyplot. Vous pouvez avoir cette liste sur votre calculatrice en appuyant sur (**) et en allant dans Modules puis dans matplotlib.pyplot.

arrow(x,y,dx,dy) Trace une flèche du point (x,y) au point (x+dx,y+dy). Il est possible de placer un argument optionnel pour ajuster la taille de la flèche en écrivant par exemple head_width=0.1. Un autre argument optionnel peut permettre de choisir la couleur du tracé, en écrivant par exemple color="red".

axis((xmin,xmax,ymin,ymax)) Règle la fenêtre d'affichage à (xmin,xmax,ymin,ymax). L'instruction axis() renvoie la liste des valeurs des extrémités des axes. Par ailleurs, axis("off") ou axis(False) masque les axes tandis que axis("on") ou axis(True) les affiche. Pour réinitialiser les axes avec le réglage automatique, il est possible d'utiliser l'instruction axis("auto").

bar(x,height,bin_width,bottom) Trace un diagramme en barres à partir des valeurs contenues dans la liste x et des effectifs contenus dans la liste height. Les deux derniers arguments sont facultatifs. L'argument bin_width permet de régler la largeur des barres dont la valeur est 0.8 par défaut. L'argument bottom est la liste des ordonnées de départ des barres, réglée à 0 par défaut. Il est possible de placer un argument optionnel pour choisir la couleur du tracé en écrivant par exemple color="red".

grid() Affiche le quadrillage s'il était masqué ou masque le quadrillage s'il était affiché. Les instructions **grid(True)** et **grid(False)** permettent respectivement d'afficher ou de masquer le quadrillage.

hist(x,bins) Trace un histogramme à partir des valeurs contenues dans la liste x. Le deuxième argument est facultatif. Si le deuxième argument est un nombre entier, il permet de régler le nombre de rectangles qui constituent l'histogramme. Ce nombre est de 10 par défaut. Si le deuxième argument est une liste, il permet de choisir les classes de l'histogramme. Par exemple si bin est [0,1,3,5], les classes seront : [0,1[, [1,3[et [3,5]. Il est possible de placer un argument optionnel pour choisir la couleur du tracé en écrivant par exemple color="red".

plot(x,y,color) Trace la liste y en fonction de la liste x. Les points (x,y) sont reliés par des segments. Si une seule liste y est fournie, elle est tracée en fonction de [0,1,2,3...]. L'argument color est optionnel. Il permet de choisir la couleur du tracé.

scatter(x,y) Trace le nuage des points de coordonnées (x,y). Les arguments de la fonction peuvent être des nombres ou des listes de même longueur. Il est possible de placer un argument optionnel pour choisir la couleur du tracé en écrivant par exemple color="red".

show() Affiche la figure.

text(x,y,"text") Affiche le texte placé en argument aux coordonnées (x,y).

3.3.4 Le module turtle

Voici la description exhaustive du module **turtle**. Vous pouvez avoir cette liste sur votre calculatrice en appuyant sur (et en allant dans **Modules** puis dans **turtle**.

forward(x) Avance de x pixels.

backward(x) Recule de x pixels.

right (a) Pivote de a degrés vers la droite.

left(a) Pivote de a degrés vers la gauche.

goto(x,y) Va au point de coordonnés (x,y).

setheading(a) Met une orientation de a degrés.

circle(r) Trace un cercle de rayon r pixels.

speed(x) Définit la vitesse du tracé (x est compris entre 0 et 10).

position() Renvoie la position (x,y) actuelle de la tortue.

heading() Renvoie l'orientation a actuelle de la tortue.

pendown() Abaisse le crayon.

penup() Relève le crayon.

pensize(x) Taille du tracé en pixels.

write("text") Ecrit le texte placé en argument à la position de la tortue.

isdown() Renvoie True si le crayon est abaissé.

reset() Réinitialise le dessin.

showturtle() Affiche la tortue.

hideturtle() Masque la tortue.

color('c') ou color(r,g,b) Modifie la couleur du tracé.

colormode(x) colormode(1.0) passe le mode couleur à 1.0 et les couleurs doivent
alors être définies par des tuples de type (0.5,1.0,0.5) tandis que colormode(255)
passe le mode couleur à 255 et les couleurs sont alors définies par des tuples du type
(128,255,128). Par défaut le mode couleur est 255.

blue Couleur bleue.

red Couleur rouge.

green Couleur verte.

yellow Couleur jaune.

brown Couleur marron.

black Couleur noire.

white Couleur blanche.

pink Couleur rose.

orange Couleur orange.

purple Couleur violette.

grey Couleur grise.

3.3.5 Le module random

Voici la description exhaustive du module **random**. Vous pouvez avoir cette liste sur votre calculatrice en appuyant sur (a) et en allant dans **Modules** puis dans **random**.

getrandbits(k) Génère un nombre aléatoire sur k bits.

seed(x) Initialise le générateur aléatoire.

randrange(start, stop) Nombre aléatoire dans la liste range(start, stop).

randint(a,b) Génère un entier aléatoire dans [a,b].

choice(list) Nombre aléatoire dans la liste spécifiée en argument.

random() Génère un nombre aléatoire décimal dans [0,1[.

uniform(a,b) Génère un nombre aléatoire dans [a,b].

3.3.6 Le module kandinsky

Voici la description exhaustive du module kandinsky. Vous pouvez avoir cette liste sur votre calculatrice en appuyant sur (et en allant dans Modules puis dans kandinsky.

color(r,g,b) Génère la valeur de la couleur r,g,b. Vous pouvez aussi simplement utiliser un tuple pour définir une couleur : (r,g,b).

get_pixel(x,y) Renvoie la couleur du pixel aux coordonnées x,y sous forme de tuple
(r,g,b).

set_pixel(x,y,color) Allume le pixel x,y de la couleur color.

draw_string(text,x,y,[color1],[color2]) Affiche le texte text aux coordonnées x,y. Les arguments color1 (couleur du texte) et color2 (couleur de l'arrière plan du texte) sont optionnels.

fill_rect(x,y,width,height,color) Remplit un rectangle de largeur width et de hauteur height avec la couleur color au point de coordonnées x et y.

3.3.7 Le module ion

Voici la description du module ion. Vous pouvez avoir cette liste sur votre calculatrice en appuyant sur (a) et en allant dans **Modules** puis dans ion.

keydown(k) Renvoie **True** si la touche **k** placée en argument est appuyée et **False** sinon.

Les autres éléments de ce menu indiquent la syntaxe utilisée pour désigner les touches du clavier.

3.3.8 Le module time

Voici la description du module time. Vous pouvez avoir cette liste sur votre calculatrice en appuyant sur (a) et en allant dans **Modules** puis dans **time**.

monotonic() Renvoie la valeur de l'horloge au moment où la fonction est appelée.

sleep(t) Suspend l'exécution pendant t secondes.

3.4 La touche var et la touche Toolbox

3.4.1 La touche var

Dans l'éditeur de script, le menu de la touche (vir) liste les suggestions d'autocomplétion disponibles.

Dans la console d'exécution, le menu de la touche (recense l'ensemble des fonctions définies dans vos scripts importés (ne contenant pas d'erreur) ainsi que les variables globales.

3.4.2 La touche Toolbox

Le menu de la touche (a) contient quatre sections permettant une édition plus rapide de vos scripts.

Boucles et tests Contient des instructions à trous pour les boucles for et while ainsi que les tests if.

Modules Contient les fonctions disponibles dans les modules math, cmath, matplotlib.pyplot, turtle, random, kandinsky, ion et time.

Catalogue Contient les fonctions utilisables dans Python, notamment celles des modules mais aussi des fonctions comme print() et input(). Une recherche alphabétique avec les lettres du clavier est possible.

Fonctions Contient les instructions pour définir une fonction : def fonction (argument) : et return.

Chapitre 4

Application Statistiques

4.1 Prise en main rapide

4.1.1 Comment entrer vos données dans le tableau

Lorsque vous arrivez dans l'application **Statistiques**, vous devez entrer vos données dans un tableau à deux colonnes. Vous pouvez ajouter jusqu'à 3 tableaux de données.

- Dans la première colonne (**Valeurs**), renseignez les valeurs de votre série statistique à une variable.
- Dans la seconde colonne (**Effectifs**), renseignez les effectifs associés à chaque valeur de votre série, c'est-à-dire le nombre d'occurrences de chaque valeur.

Lorsque vous renseignez la première colonne, la seconde colonne est automatiquement remplie avec la valeur 1. Cela signifie que chacune des valeurs de votre série statistique apparaît une seule fois dans la série. Modifiez les valeurs des effectifs dans la seconde colonne si les valeurs de votre série statistique apparaissent plus d'une fois.

Par exemple:

Considérons la série statistique suivante : 1, 1, 1, 2, 3, 3, 4, 5, 5.

Pour entrer cette série statistique dans le tableau de l'application **Statistiques**, procédez comme suit.

Valeurs V1	Effectifs N1
1	3
2	1
3	2
4	1
5	2

Vous pouvez aussi entrer des fréquences dans la colonne Effectifs.

4.1.2 Représenter graphiquement vos données

Une fois que vous avez entré vos données dans le tableau de l'onglet **Données**, vous pouvez les représenter graphiquement.

- 1. Sélectionnez l'onglet **Graphique** en haut de l'écran.
- 2. Validez en appuyant sur la touche 🖜
- 3. Choisissez enfin la représentation désirée.

Vous pouvez choisir l'une des représentations suivantes :

- Histogramme
- Boîte à moustaches
- Graphique des fréquences cumulées
- Diagramme quantile quantile pour une loi normale

4.1.3 Afficher les calculs statistiques

Une fois que vous avez entré vos données dans le tableau de l'onglet **Données**, vous pouvez accéder aux calculs statistiques effectués à partir de votre série de valeurs : moyenne, écart-type, médiane, etc.

- 1. Sélectionnez l'onglet Stats en haut de l'écran.
- 2. Validez en appuyant sur la touche 🗆.

Vous visualisez alors le tableau des calculs statistiques.

4.2 Savoir utiliser l'onglet Données

4.2.1 Supprimer une ligne du tableau de données

Vous pouvez supprimer une ligne du tableau de valeurs en plaçant la sélection sur une case de cette ligne puis en appuyant sur la touche 📆.

Vous pouvez changer le contenu d'une cellule en la sélectionnant et en entrant une nouvelle valeur avec les touches numériques du clavier.

4.2.2 Effacer un tableau de données

Vous pouvez supprimer un tableau de valeurs (colonnes Valeurs et Effectifs).

- 1. Sélectionnez le nom de la colonne Valeurs du tableau à supprimer (par exemple V1). Validez en appuyant sur 🖎.
- 2. Le menu d'options de la colonne s'ouvre. Sélectionnez **Effacer le tableau V1/N1** et validez avec la touche (•).

La même manipulation faite sur la colonne Effectifs (par exemple N1) permet de réinitialiser tous les effectifs à 1.

4.2.3 Générer une liste à partir d'une formule

Vous pouvez générer une colonne du tableau de données en utilisant une formule.

- 1. Sélectionnez le nom de la colonne à générer, par exemple **Effectifs N2**. Validez en appuyant sur (**).
- 2. Le menu d'options de la colonne s'ouvre. Sélectionnez **Remplir avec une formule** et validez avec la touche (•×).
- 3. Sélectionner un modèle de formule ou bien choisissez **Vide** pour utiliser un modèle personnalisé.
- 4. Vous pouvez également utiliser une formule faisant intervenir une autre colonne. Par exemple, pour remplir N2 avec les valeurs de N1 divisées par 2, vous pouvez utilisez la formule N1/2.

Pour entrer une majuscule, appuyez sur **shift** puis sur **alpha** puis sur la lettre à faire apparaître.

4.2.4 Trier une liste par valeurs croissantes

Vous pouvez trier une liste du tableau de données par valeurs croissantes. Ce classement affecte la colonne associée à la liste (Valeurs ou Effectifs).

- 1. Sélectionnez le nom de la colonne à trier. Validez en appuyant sur 🙉.
- 2. Le menu d'options de la colonne s'ouvre. Sélectionnez **Trier** et validez avec la touche (x).

4.2.5 Afficher la colonne des effectifs cumulés croissants

Vous pouvez afficher la colonne des effectifs cumulés croissants d'une série de données.

- 1. Sélectionnez le nom d'une des colonnes de la série pour laquelle vous souhaitez afficher la colonnes des effectifs cumulés croissants (ECC) et appuyez sur (**).
- 2. Le menu d'options de la colonne s'ouvre. Sélectionnez **Colonne des ECC** et appuyez sur 👁 pour faire basculer l'interrupteur.
- 3. Appuyez enfin sur 😉 pour revenir au tableau et observer la colonne des ECC.

4.2.6 Masquer une série de données

Vous pouvez masquer une série de données pour qu'elle ne soit pas représentée dans les graphiques disponibles dans l'onglet **Graphique** et qu'elle n'apparaisse pas dans l'onglet **Stats**.

- 1. Sélectionnez le nom d'une des colonnes de la série à masquer et appuyez sur 👁.
- 2. Le menu d'options de la colonne s'ouvre. Sélectionnez **Afficher la série** et appuyez sur () pour faire basculer l'interrupteur.
- 3. Appuyez enfin sur 🔊 pour revenir au tableau. Le tableau désactivé apparaît alors en gris.

Pour réactiver le tableau suivez la même procédure et faites basculer l'interrupteur dans le sens opposé.

4.3 Savoir utiliser l'onglet Graphique

4.3.1 Choisir une représentation

Vous pouvez représenter vos données de plusieurs manières. Pour choisir une représentation :

- 1. Utilisez les flèches directionnelles pour sélectionner l'onglet **Graphique** en haut de l'écran.
- 2. Validez en appuyant sur 👀.
- 3. Choisissez enfin le type de représentation que vous souhaitez utiliser.

Une fois une représentation choisie, vous pouvez changer de représentation via l'option **Type** disponible sous la barre d'onglets.

4.3.2 Histogramme

Déplacer la sélection dans l'histogramme

Lorsque vous choisissez la représentation sous forme d'histogramme, vous pouvez lire les effectifs et les fréquences dans le bandeau au bas de l'écran pour chaque rectangle. Sont aussi affichés les intervalles des classes représentées par les rectangles.

Pour changer de série de données, utilisez les touches △ et ▽.

Régler les paramètres de l'histogramme

Vous pouvez modifier la largeur des rectangles de l'histogramme (amplitude des classes) et la valeur du début de la série de données.

- 1. Appuyez sur la touche (ou sélectionnez l'option **Réglages** sous la barre d'onglets.
- 2. Le menu de réglages de l'histogramme s'ouvre alors. Entrez les valeurs de la largeur de rectangles et de début de la série que vous souhaitez. Validez en sélectionnant le bouton **Valider** et en appuyant sur la touche .

4.3.3 Boîte à mousrtaches

Déplacer la sélection sur une boîte à moustaches

Lorsque vous choisissez la représentation sous forme de boîte à moustaches, vous pouvez lire les valeurs caractéristiques de la boîte à moustaches dans la légende au bas de l'écran :

- Minimum
- Premier quartile
- Médiane
- Troisième quartile
- Maximum

Pour vous déplacer sur la boîte à moustaches, utilisez les touches 🗖 et 🕨.

Pour changer de série de données, utilisez les touches 🛆 et 🔻.

Afficher les valeurs aberrantes

Par défaut, les valeurs aberrantes ne sont pas représentées sur la boîte à moustaches. Pour les activer :

- 1. Sélectionnez l'option **Réglages** sous la barre d'onglets et appuyez sur 👁 pour ouvrir le menu de réglages.
- 2. Le menu de réglages s'ouvre et l'option Valeurs aberrantes est sélectionnée.
- 3. Appuyez alors sur (x) pour activer la représentation des valeurs aberrantes.
- 4. Appuyez enfin sur (5) pour revenir au graphique.

4.3.4 Fréquences cumulées

Lorsque vous choisissez la représentation sous forme de graphique des fréquences cumulées, vous pouvez lire les valeurs des fréquences cumulées dans la légende au bas de l'écran.

Pour vous déplacer suivant les différentes valeurs, utilisez les touches \bigcirc et \triangleright .

Pour changer de série de données, utilisez les touches △ et ▽.

4.3.5 Loi normale (diagramme quantile-quantile)

Lorsque vous choisissez de représenter un diagramme quantile-quantile pour une loi normale, la légende au bas de l'écran affiche la cote Z attendue pour chaque valeur.

Le diagramme représente également la droite $y = \frac{x-\mu}{\sigma}$.

Pour vous déplacer suivant les différentes valeurs, utilisez les touches 🗖 et 🕨.

Pour changer de série de données, utilisez les touches 🛆 et 🔻.

4.4 Savoir utiliser l'onglet Stats

L'onglet **Stats** présente un certain nombre de calculs effectués à partir des données entrées dans l'onglet **Données** :

- Effectif total
- Minimum
- Maximum
- Etendue
- Moyenne
- Ecart-type
- Variance
- Premier quartile
- Troisième quartile
- Médiane
- Ecart interquartile
- Somme
- Somme des carrés
- Ecart-type échantillon
- Variance échantillon
- Mode et effectif du mode

Chapitre 5

Application Probabilités

5.1 Section Probabilités

L'application **Probabilités** vous permet de calculer des probabilités à partir d'une loi de probabilité continue ou discrète. Elle est structurée en 3 étapes :

- 1. Choix de la loi de probabilité : sélectionnez la densité de probabilité à partir de laquelle vous souhaitez réaliser vos calculs de probabilités, la loi normale par exemple.
- 2. Choix des paramètres de la loi : entrez les valeurs des paramètres de la fonction densité de probabilité, écart type et moyenne par exemple.
- 3. Calcul des probabilités : définissez vos bornes et calculez la probabilité correspondante ou effectuez l'opération inverse en entrant une valeur de probabilité pour calculer la valeur de la borne correspondante.

Lorsque vous avez réalisé un choix et que vous êtes passé à l'étape suivante, vous avez la possibilité de revenir à l'étape précédente en appuyant sur la touche (5).

5.1.1 Première étape : choix de la loi de probabilité

Sélectionnez la loi de probabilité que vous désirez grâce aux flèches directionnelles. Puis validez en appuyant sur la touche 💌 pour accéder à l'étape suivante.

Vous avez le choix entre 5 lois continues et 3 lois discrètes.

Lois continues:

- Loi uniforme
- Loi exponentielle
- Loi normale
- Loi du Chi2
- Loi de Student
- Loi de Fisher

Lois discrètes:

- Loi binomiale
- Loi géométrique
- Loi de Poisson

5.1.2 Deuxième étape : choix des paramètres de la loi

Entrez la valeur du ou des paramètres avec les touches numériques du clavier puis sélectionnez le bouton **Valider** et appuyez sur la touche op pour accéder à l'étape suivante.

Au bas de l'écran vous sont indiqués les paramètres que vous devez renseigner.

Les paramètres demandés pour chaque loi vous sont rappelés ci-dessous.

Binomiale (n, p): nombre de répétitions et probabilité de succès (entier naturel, réel dans [0, 1])

Uniforme (a, b): bornes de l'intervalle (réel, réel)

Exponentielle λ : paramètre réel strictement positif

Normale (μ, σ) : moyenne et écart-type (réel, réel strictement positif)

Chi2 *k* : degrés de liberté entier non nul

Student k: degrés de liberté réal strictement positif

Géométrique p: probabilité de succès réel dans [0,1]

Poisson λ : paramètre réel strictement positif

Fisher (d1, d2): degrés de liberté du numérateur et du dénominateur (réel strictement positif, réel strictement positif)

5.1.3 Troisième étape : calcul des probabilités

Calculer une probabilité

- 1. Sélectionnez la borne pour laquelle vous souhaitez entrer votre valeur.
- 2. Utilisez les touches du clavier numérique pour entrer la valeur.
- 3. Validez en appuyant sur la touche .

Vous pouvez maintenant lire le résultat du calcul de probabilité.

Modifier les bornes

Vous pouvez modifier le type de bornes pour vos calculs de probabilités :

La dernière option concerne uniquement les lois discrètes.

Pour cela, suivez les indications suivantes.

- 1. Sélectionnez l'icône **Type de bornes** en haut à gauche de l'écran puis appuyez sur la touche (ox).
- 2. Un menu déroulant s'ouvre. Choisissez le type de bornes que vous désirez puis validez en appuyant sur la touche (*).

Vous avez modifié le type de bornes pour le calcul de vos probabilités.

Calculer l'inverse d'une probabilité

Vous pouvez calculer la valeur de a dans l'expression $P(a \le X) = p$ à partir d'une valeur de probabilité p donnée.

- 1. Sélectionnez le champ dans lequel est contenue la valeur de la probabilité.
- 2. Utilisez les touches du clavier numérique pour entrer votre valeur.
- 3. Validez en appuyant sur la touche 🗆.

La calculatrice vous affiche alors la valeur de a.

5.2 Section Tests

Cette section permet de réaliser des tests d'hypothèse :

- pour une proportion ou la différence de deux proportions
- pour une moyenne ou la différence de deux moyennes
- test d'adéquation du khi-deux ou test d'indépendance du khi-deux
- test sur la pente d'une droite de régression

Pour chacun de ces tests l'interface vous permet dans un premier temps de définir votre hypothèse nulle et votre hypothèse alternative (cette étape est implicite dans les tests du khi-deux). Vous entrez ensuite les données de votre échantillon.

La calculatrice calcule alors la statistique de test et vous donne accès à un graphique ainsi qu'à la conclusion : rejet ou non de l'hypothèse de départ.

5.3 Section Intervalles

Cette section permet de calculer des intervalles de confiance :

- pour une proportion ou la différence de deux proportions
- pour une moyenne ou la différence de deux moyennes
- pour la pente d'une droite de régression

Pour chacun de ces types d'intervalles, vous êtes en premier lieu invités à rentrer les données de l'échantillon. La calculatrice affiche ensuite les caractéristiques de l'intervalle ainsi qu'une représentation graphique. Elle vous donne également l'intervalle sous forme numérique en-dessous de la représentation graphique.

Vous pouvez alors utiliser la fonction copier pour copier l'intervalle ainsi calculé.

Chapitre 6

Application Solveur

L'application **Solveur** vous permet de résoudre des équations et des systèmes d'équations linéaires. Les solutions sont données de manière exacte ou approchée selon la forme de l'équation.

Le premier écran de l'application vous permet de choisir entre **Equations** (pour la résolution d'équations) et **Finance** (pour la résolution des calculs financiers).

6.1 Equations

6.1.1 Résoudre une équation

Entrer une équation

Lorsque vous arrivez dans l'application, appuyez sur ® pour ajouter une équation. Un pop-up s'ouvre pour vous suggérer des modèles d'équations que vous pourrez ensuite modifier. Si vous ne souhaitez pas utiliser de modèle, choisissez **Vide**.

Vous devez entrer votre équation dans le champ de texte au bas de l'écran. Vous pouvez utiliser n'importe quelle lettre minuscule comme inconnue : appuyez sur puis sur une lettre pour la faire apparaître ou bien appuyez simplement sur la touche pour faire apparaître la lettre x.

Validez en appuyant sur 🕟 une fois que vous avez entré votre équation.

Pour faire apparaître le signe =, appuyez sur (shift) puis sur ("n'). Si vous validez sans écrire de signe = dans votre équation, il sera automatiquement ajouté.

Solutions de l'équation

Pour obtenir les solutions de l'équation, sélectionnez le bouton **Résoudre l'équation** au bas de l'écran et appuyez sur (*).

Cas des équations du second et du troisième degré Dans le cas où l'équation entrée est du second ou troisième degré, les solutions sont automatiquement données de manière exacte.

Le tableau des solutions affiche aussi la valeur du discriminant.

Cas général Généralement, les solutions sont calculées de manière numérique et leur valeur est souvent approchée.

Lorsque vous appuyez sur le bouton **Résoudre l'équation**, l'application vous demande alors de définir un intervalle dans lequel chercher la solution.

Fixez les valeurs de **Xmin** et **Xmax** et appuyez sur le bouton **Résoudre l'équation**.

Dans le cas où il y a de trop nombreuses solutions, la calculatrice n'affiche que les dix premières.

6.1.2 Résoudre un système d'équations

Entrer un système d'équations

Pour entrer un système d'équations, il suffit de procéder comme précédemment. Lorsque vous ajoutez une deuxième équation, l'application affiche les deux équations comme étant un système.

Vous pouvez de nouveau utiliser n'importe quelle lettre minuscule comme inconnue. Il est possible d'ajouter jusqu'à 6 équations.

Solutions du système

L'application permet de résoudre les systèmes linéaires à coefficients réels ou complexes.

Pour obtenir les solutions, sélectionnez le bouton **Résoudre le système** au bas de l'écran et appuyez sur .

L'application donne les solutions sous forme exacte. Elle indique aussi s'il y a une infinité de solutions ou s'il n'y a pas de solution.

6.2 Finance

Dans la partie Finance, vous pouvez choisir le paramètre à résoudre dans le cadre d'intérêts simples ou composés puis entrer les données afin que la calculatrice calcule la valeur recherchée.

- Choisissez Intérêts simples ou Intérêts composés
- Choisissez le paramètre que vous souhaitez calculer
- Entrer les valeurs connues pour réaliser le calcul
- Sélectionnez enfin Valider pour résoudre le calcul

Chapitre 7

Application Suites

7.1 Prise en main rapide

7.1.1 Comment tracer une suite

- 1. Lorsque vous arrivez dans l'application **Suites**, placez la sélection sur la case **Ajouter une suite**. Validez en appuyant sur .
- 2. Choisissez le type d'expression que vous voulez entrer : expression explicite de la suite (en fonction de *n*), suite récurrente d'ordre 1 (expression en fonction du terme précédent) ou suite récurrente d'ordre 2 (expression en fonction des deux termes précédents).
- 3. Entrez ensuite l'expression de la suite que vous souhaitez tracer avec les touches du clavier. La barre d'édition de la suite s'affiche au bas de l'écran. Pour utiliser la variable n au sein de l'expression de la fonction, appuyez sur la touche . Pour utiliser une formule de récurrence, utilisez les raccourcis du menu **Toolbox** en appuyant sur la touche . Vous devez indiquer dans ce cas la valeur des premiers termes de la suite.
- 4. Validez en appuyant sur la touche 🔊.
- 5. Sélectionnez ensuite le bouton **Tracer le graphique** au bas de l'écran ou bien l'onglet **Graphique** en haut de l'écran.
- 6. Validez en appuyant sur la touche 🔊.

Vous vous situez maintenant dans l'onglet **Graphique** et votre suite est tracée. Vous pouvez déplacer le curseur sur l'écran à l'aide des flèches directionnelles et lire les coordonnées des points au bas de l'écran.

Pour ouvrir le menu d'options de la suite sur laquelle se situe le curseur, appuyez sur la touche \odot .

7.1.2 Afficher le tableau de valeurs

Le tableau de valeurs de la suite se trouve dans l'onglet **Tableau**. Il y a deux manières d'y accéder.

- Première option : depuis l'onglet **Suites**
 - 1. Si vous vous situez dans l'onglet **Suites**, placez la sélection sur le bouton **Afficher les valeurs** au bas de l'écran.
 - 2. Validez en appuyant sur la touche 🐟.

Le tableau de valeurs s'affiche alors.

- Deuxième option : depuis n'importe quel onglet
 - 1. Sélectionnez l'onglet **Tableau** en haut de l'écran.
 - 2. Validez en appuyant sur la touche .

Le tableau de valeurs s'affiche alors.

7.2 Savoir utiliser l'onglet Suites

7.2.1 Ajouter une suite à la liste de suites

Vous pouvez ajouter jusqu'à 3 suites dans la liste de suites.

- 1. Sélectionnez la case **Ajouter une suite** qui se trouve au bas de la liste des suites.
- 2. Validez en appuyant sur la touche (x).

Choisissez ensuite le type de suite que vous voulez ajouter pour la voir apparaître dans la liste des suites.

7.2.2 Activer ou désactiver une suite de la liste

Une suite désactivée apparaît en gris dans la liste de suites. Vous pouvez modifier son expression mais son graphe et sa colonne de valeurs n'apparaîtront pas dans les onglets **Graphique** et **Tableau**.

- 1. Pour désactiver une suite, sélectionnez le nom de la suite dans la liste de suites.
- 2. Validez en appuyant sur la touche op pour ouvrir le menu d'options de cette suite.
- 3. Sélectionnez l'option **Afficher l'élément** et appuyez sur la touche on pour faire basculer l'état de la suite.
- 4. Revenez à la liste de suites en appuyant sur la touche 🗩.

Procédez de la même manière si vous souhaitez réactiver la suite.

7.2.3 Supprimer l'expression d'une suite

- 1. Sélectionnez l'expression de la suite à supprimer.
- 2. Appuyez sur la touche (dear 🖄).

L'expression de la suite a été supprimée. Vous pouvez entrer une nouvelle expression

7.2.4 Supprimer une suite de la liste de suites

Vous pouvez supprimer définitivement une suite de la liste de suites.

- 1. Sélectionnez le nom de la suite à supprimer dans la liste de suites.
- 2. Validez en appuyant sur la touche op pour ouvrir le menu d'options de cette suite.
- 3. Sélectionnez l'option **Supprimer la suite** et validez.

La suite disparaît de la liste de suites.

Vous pouvez aussi supprimer une suite de la liste en sélectionnant le nom de la suite à supprimer et en appuyant sur la touche ...

7.2.5 Modifier le type de la suite

Vous pouvez modifier le type d'expression que vous voulez donner à la suite : expression explicite de la suite (en fonction de n), suite récurrente d'ordre 1 (expression en fonction du terme précédent) ou suite récurrente d'ordre 2 (expression en fonction des deux termes précédents).

- 1. Sélectionnez le nom de la suite que vous voulez modifier dans la liste de suites.
- 2. Validez en appuyant sur la touche oppour ouvrir le menu d'options de cette suite.
- 3. Sélectionnez l'option **Type de suite** et validez.
- 4. Choisissez le type d'expression que vous voulez donner à la suite puis validez.

Le type de la suite a été modifié. Si vous avez choisi de définir la suite avec une expression de récurrence, vous devrez renseigner le ou les premiers termes.

Lorsque vous modifiez le type d'une suite, l'expression précedemment renseignée pour cette suite est effacée.

7.2.6 Entrer l'expression d'une suite définie par récurrence

Vous pouvez entrer l'expression d'une suite définie par récurrence, par exemple $u_{n+2} = u_{n+1} + u_n$. Il vous est possible d'utiliser les deux termes précédents dans l'expression de la suite $(u_{n+1}$ et $u_n)$.

Pour cela, vous pouvez appuyer sur la touche \bigcirc lors de l'édition de l'expression et sélectionner le terme dont vous avez besoin. Vous pouvez aussi entrer directement le terme que vous désirez : tapez $\mathbf{u}(\mathbf{n+1})$ pour u_{n+1} et $\mathbf{u}(\mathbf{n})$ pour u_n .

Lorsque vous utilisez une suite définie par récurrence vous devez définir les premiers termes de la suite. Renseignez les termes demandés dans la liste de suites au dessous de l'expression de votre suite définie par récurrence.

7.2.7 Modifier l'indice du premier terme

- 1. Sélectionnez le nom de la suite concernée dans la liste de suites.
- 2. Validez en appuyant sur la touche (pour ouvrir le menu d'options de cette suite.
- 3. Sélectionnez la ligne **Indice premier terme** et modifiez la valeur en tapant le nombre souhaité.
- 4. Appuyez sur 👁 puis sur 🖘 pour revenir à l'onglet **Suites**.

7.2.8 Modifier la couleur d'une suite

Lorsque vous créez une suite, une couleur lui est automatiquement attribuée. Vous pouvez cependant modifier cette couleur.

- 1. Sélectionnez le nom de la suite concernée dans la liste de suites.
- 2. Validez en appuyant sur la touche (pour ouvrir le menu d'options de cette suite.
- 3. Sélectionnez la ligne **Couleur** et appuyez sur .
- 4. Choisissez ensuite la couleur que vous désirez attribuer à la suite et appuyez sur 🔊 pour valider.

7.3 Savoir utiliser l'onglet Graphique

7.3.1 Déplacer le curseur dans la fenêtre de graphe

Vous pouvez déplacer le curseur à l'aide des flèches directionnelles :

- $\bigcirc / \triangleright$: déplacez le curseur de point en point vers la droite ou vers la gauche.
- △/♥: déplacez le curseur sur le graphique au dessus ou au dessous de celui sur lequel vous êtes.

7.3.2 Réglage de la fenêtre d'affichage

Pour accéder aux réglages de la fenêtre d'affichage, sélectionnez l'une des options situées sous l'onglet **Graphique** et appuyez sur la touche .

Vous avez le choix entre trois options : Auto, Axes et Naviguer.

Lorsque vous êtes dans la fenêtre d'affichage de graphique, vous pouvez appuyer sur les touches (+) et (-) pour zoomer/dézoomer.

Auto

Choisissez Auto pour régler automatiquement la fenêtre d'affichage. La fenêtre s'adapte alors aux différentes suites affichées. Lorsque ce réglage est activé, le cercle à droite du nom du réglage est coché en jaune. Le réglage se désactive automatiquement lorsque vous modifiez la fenêtre, soit en utilisant un autre réglage, soit en translatant la fenêtre en déplaçant le curseur sur une suite.

Si vous souhaitez désactiver ce réglage, par exemple pour ajouter une nouvelle suite en conservant la même fenêtre, vous pouvez décocher le cercle jaune en sélectionnant Auto et appuyant sur (x). La fenêtre reste alors la même mais elle ne sera plus automatiquement adaptée lors de l'ajout ou de la suppression d'une suite.

Axes

Dans Axes, vous pouvez entrer les valeurs de Xmin, Xmax, Ymin et Ymax qui définissent votre fenêtre d'affichage. Ces grandeurs peuvent aussi être calculées automatiquement si vous choisissez d'activer l'option Auto dans les sous-menus Valeurs de X et Valeurs de Y. Validez en sélectionnant le bouton **Valider** et en appuyant sur la touche 🙉.

Si le graphique n'est pas orthonormé, un pictogramme ≠ apparaît à droite du nom du menu Axes pour indiquer que le graphique n'est pas orthonormé. Un bouton apparaît alors dans le menu Axes pour rendre le graphique orthonormé.

Naviguer

Choisissez **Naviguer** pour avoir accès à un réglage interactif de la fenêtre d'affichage en plein écran :

- (◄/(▲)/(►)/(▼): déplacement de la fenêtre d'affichage
- $-(+^{z})/(-^{z})$: zoom / dézoom

7.3.3 Placer le curseur sur un point particulier

- 1. Lorsque le curseur est sur le graphique de la suite dont vous cherchez un point particulier, appuyez sur la touche (ou ou) Ou vous pouvez aussi ouvrir le menu Calcul situé sous la barre d'onglets.
- 2. Le menu d'options de la suite s'ouvre, sélectionnez Aller à et validez.
- 3. Entrer l'abscisse du point sur lequel vous souhaitez placer le curseur.
- 4. Sélectionnez le bouton **Valider** et appuyez sur la touche •.

Le curseur est maintenant sur le point que vous avez demandé.

Vous pouvez aussi taper directement la valeur de n au clavier lorsque le curseur est sur un point pour amener le curseur sur le point voulu.

7.3.4 Effectuer le calcul de la somme des termes d'une suite

- 1. Lorsque le curseur est sur le graphique de la suite dont vous voulez calculer la somme des termes, appuyez sur la touche o ou . Vous pouvez aussi ouvrir le menu Calcul situé sous la barre d'onglets.
- 2. Le menu d'options de la suite s'ouvre, sélectionnez **Somme des termes** et validez.
- 4. Sélectionnez maintenant le dernier terme de la même manière. Validez en appuyant sur la touche . Vous pouvez revenir à l'étape précédente en appuyant sur la touche . Il vous est alors de nouveau demandé de sélectionner le premier terme
- 5. La valeur de la somme que vous souhaitiez calculer est indiquée dans le bandeau d'affichage au bas de l'écran. Pour calculer une nouvelle somme, pressez (๑). Pour sortir du mode **Somme des termes**, pressez (๑).

7.4 Savoir utiliser l'onglet Tableau

7.4.1 Modifier l'intervalle dans le tableau de valeurs

Vous pouvez remplir automatiquement le tableau de valeurs avec des valeurs de n contenues dans un intervalle de votre choix. Pour cela vous avez deux manières de procéder.

- Première option
 - 1. Sélectionnez **Régler l'intervalle** sous l'onglet **Tableau** et validez en appuyant sur •.
 - 2. Vous arrivez dans la fenêtre des réglages de l'intervalle des valeurs de n. Entrez les valeurs de n_{dbut} et n_{fin} avec les touches numériques du clavier puis la valeur du pas entre chaque valeur de n.
 - 3. Sélectionnez le bouton **Valider** et appuyez sur . Le nouveau tableau de valeurs s'affiche alors à l'écran et respecte l'intervalle que vous venez de renseigner.

Deuxième option

- 1. Placez la sélection sur la case \mathbf{n} , en haut de la première colonne du tableau, et appuyez sur la touche \bigcirc .
- 2. Le menu d'options de la colonne n s'ouvre. Sélectionnez **Régler l'intervalle** et appuyez sur la touche \odot .

- 3. Vous arrivez dans la fenêtre des réglages de l'intervalle des valeurs de n. Entrez les valeurs de n_{dbut} et n_{fin} avec les touches numériques du clavier puis la valeur du pas entre chaque valeur de n.
- 4. Sélectionnez le bouton **Valider** et appuyez sur . Le nouveau tableau de valeurs s'affiche alors à l'écran et respecte l'intervalle que vous venez de renseigner.

7.4.2 Entrer manuellement des valeurs de n dans le tableau

Lorsque vous placez la sélection sur une case de la première colonne du tableau (**Colonne n**), vous pouvez entrer manuellement une valeur de n de votre choix à l'aide des touches numériques du clavier. Une fois votre valeur entrée dans la case, validez en appuyant sur la touche $\widehat{\mathscr{R}}$.

Vous pouvez effacer une ligne du tableau en vous positionnant dessus et en appuyant sur la touche ().

7.4.3 Supprimer toutes les valeurs du tableau

- 1. Placez la sélection sur la case **n**, en haut de la première colonne du tableau, et appuyez sur la touche (*).
- 2. Le menu d'options de la colonne n s'ouvre. Sélectionnez **Effacer les valeurs** et appuyez sur la touche \propto .
- 3. Un tableau de valeurs vide s'affiche à l'écran. Vous pouvez maintenant entrer des valeurs dans la colonne \mathbf{n} manuellement ou automatiquement.

Chapitre 8

Application Régressions

8.1 Prise en main rapide

8.1.1 Comment entrer vos données dans le tableau

Lorsque vous arrivez dans l'application **Régressions**, vous devez entrer vos données dans un tableau à deux colonnes. Vous pouvez ajouter jusqu'à 3 tableaux de données.

- Dans la première colonne (X1), renseignez les valeurs de la première variable de votre série.
- Dans la seconde colonne (Y1), renseignez les valeurs de la seconde variable de votre série.

8.1.2 Afficher le nuage de points correspondant aux données

Une fois que vous avez entré vos données dans le tableau de l'onglet **Données**, vous pouvez afficher le nuage de points correspondant.

- 1. Sélectionnez l'onglet **Graphique** en haut de l'écran.
- 2. Validez en appuyant sur la touche 🔊.

Vous visualisez alors les points qui représentent vos données.

8.1.3 Afficher un modèle de régression

Une fois votre nuage de points affiché, vous pouvez ajouter un modèle de régression.

- 1. Lorsque vous êtes dans l'onglet **Graphique**, appuyez sur 💌 pour afficher la liste des modèles de régression disponibles.
- 2. Sélectionnez ensuite le modèle que vous souhaitez utiliser et appuyez sur 👁 pour valider.

8.1.4 Afficher les calculs statistiques

Une fois que vous avez entré vos données dans le tableau de l'onglet **Données**, vous pouvez accéder aux calculs statistiques effectués à partir de votre série de valeurs : moyenne, écart-type, médiane, covariance, coefficient de corrélation, ...

- 1. Sélectionnez l'onglet **Stats** en haut de l'écran.
- 2. Validez en appuyant sur la touche 🗆.

Vous visualisez alors le tableau des calculs statistiques.

8.2 Savoir utiliser l'onglet Données

8.2.1 Supprimer une valeur du tableau de données

Vous pouvez supprimer une valeur du tableau de valeurs en plaçant la sélection sur une case de cette ligne puis en appuyant sur la touche (**).

Vous pouvez changer le contenu d'une cellule en la sélectionnant et en entrant une nouvelle valeur avec les touches numériques du clavier.

Si vous supprimez les deux valeurs d'une même ligne, alors la ligne disparaît du tableau.

8.2.2 Effacer une colonne du tableau

Vous pouvez supprimer toutes les valeurs d'une des colonnes du tableau.

- 1. Sélectionnez le nom de la colonne à supprimer. Validez en appuyant sur 🖘.
- 2. Le menu d'options de la colonne s'ouvre. Sélectionnez **Effacer la colonne** et validez avec la touche .

Vous pouvez également supprimer une colonne en sélectionnant le nom de cette colonne (par exemple la case X1 au dessus de la colonne) et en appuyant sur . Ou bien en appuyant sur unimporte quelle case de la colonne.

8.2.3 Générer une liste à partir d'une formule

Vous pouvez générer une colonne du tableau de données en utilisant une formule.

- 1. Sélectionnez le nom de la colonne à générer, par exemple **Y1**. Validez en appuyant sur ().
- 2. Le menu d'options de la colonne s'ouvre. Sélectionnez **Remplir avec une formule** et validez avec la touche (•×).

- 3. Choisissez un exemple de formule dans le pop-up qui appraît à l'écran ou utilisez le modèle **Vide** pour créer votre modèle à la main.
- 4. Vous pouvez également entrer une formule qui utilise le nom d'une autre colonne. Par exemple, vous pouvez écrire X1/2 pour remplir la colonne Y1 avec les valeurs de X1 divisées par 2.

Pour entrer une majuscule, appuyez sur shift puis sur appuis sur la lettre à faire apparaître.

8.2.4 Trier une liste par valeurs croissantes

Vous pouvez trier une liste du tableau de données par valeurs croissantes. Ce classement affecte la colonne associée à la liste (X ou Y).

- 1. Sélectionnez le nom de la colonne à trier. Validez en appuyant sur 🙉.
- 2. Le menu d'options de la colonne s'ouvre. Sélectionnez **Trier par valeurs croissantes** et validez avec la touche (a).

8.2.5 Modifier le modèle de régression

Vous pouvez modifier le modèle de régression à utiliser. Les modèles de régression disponibles sont les suivants :

- Linéaire
- Proportionnelle
- Quadratique
- Cubique
- Quartique
- Logarithmique
- Exponentielle (deux formes disponibles)
- Puissance
- Trigonométrique
- Logistique
- Médiane-médiane
- 1. Sélectionnez le nom de la colonne pour laquelle vous souhaitez modifier le modèle. Validez en appuyant sur 🕳.
- 2. Le menu d'options de la colonne s'ouvre. Sélectionnez **Modèle** et validez avec la touche •.
- 3. Choisissez le modèle souhaité dans la liste qui s'affiche et appuyez sur 🕟 pour valider.

8.3 Savoir utiliser l'onglet Graphique

8.3.1 Réglage de la fenêtre d'affichage

Pour accéder aux réglages de la fenêtre d'affichage, sélectionnez l'une des options situées sous l'onglet **Graphique** et appuyez sur la touche .

Vous avez le choix entre trois options : Auto, Axes et Naviguer.

Lorsque vous êtes dans la fenêtre d'affichage de graphique, vous pouvez appuyer sur les touches (+²) et (-¬) pour zoomer/dézoomer.

Auto

Choisissez **Auto** pour régler automatiquement la fenêtre d'affichage. Lorsque ce réglage est activé, le cercle à droite du nom du réglage est coché en jaune. Le réglage se désactive automatiquement lorsque vous modifiez la fenêtre, soit en utilisant un autre réglage, soit en translatant la fenêtre en déplaçant le curseur sur une courbe.

Si vous souhaitez désactiver ce réglage, vous pouvez décocher le cercle jaune en sélectionnant **Auto** et appuyant sur . La fenêtre reste alors la même mais elle ne sera plus automatiquement adaptée lors de l'ajout ou de la suppression de points de données.

Axes

Dans **Axes**, vous pouvez entrer les valeurs de **Xmin**, **Xmax**, **Ymin** et **Ymax** qui définissent votre fenêtre d'affichage. Ces grandeurs peuvent aussi être calculées automatiquement si vous choisissez d'activer l'option **Auto** dans les sous-menus **Valeurs de X** et **Valeurs de Y**. Validez en sélectionnant le bouton **Valider** et en appuyant sur la touche .

Si le graphique n'est pas orthonormé, un pictogramme ≠ apparaît à droite du nom du menu **Axes** pour indiquer que le graphique n'est pas orthonormé. Un bouton apparaît alors dans le menu **Axes** pour rendre le graphique orthonormé.

Naviguer

Choisissez **Naviguer** pour avoir accès à un réglage interactif de la fenêtre d'affichage en plein écran :

- ◄/♠/♥: déplacement de la fenêtre d'affichage
 +²/(-): zoom / dézoom
- + / . 200111 / dc20011

8.3.2 Menu Régression

Le menu Régression disponible sous la barre d'onglets vous permet de régler tout ce qui concerne votre régression ou bien d'effectuer des calculs sur votre régression.

Afficher un modèle de régression

Une fois que vous avez créé un nuage de points, vous pouvez ajouter un modèle de régression.

- 1. Ouvrez le menu Régression.
- 2. Sélectionnez le modèle de régression que vous souhaitez utiliser puis appuyez sur ® pour confirmer.

Informations sur la régression

Une fois qu'un modèle de régression a été ajouté, vous avez accès à son équation et au coefficient de détermination r2 associé.

Ces informations sont disponibles dans le menu Régression.

Prédire une valeur de X ou de Y

Vous pouvez chercher un point précis sur la droite de régression connaissant son abscisse ou son ordonnée : c'est-à-dire que vous pouvez prédire une valeur de X connaissant Y et une valeur de Y connaissant X.

- 1. Ouvrez le menu **Régression** situé sous la barre d'onglets.
- 2. Le menu de la régression s'ouvre alors. Choisissez **Prédiction sachant X** si vous connaissez la veleur de Y et **Prédiction sachant Y** si vous connaissez la valeur de X. Validez en appuyant sur la touche \bigcirc .
- 3. Entrez votre valeur grâce aux touches numériques du clavier puis sélectionnez le bouton **Valider** et appuyez sur la touche ...

Le curseur s'est déplacé jusqu'au point désiré. Vous pouvez lire les coordonnées de ce point au bas de l'écran.

Modifier le modèle de régression

Vous pouvez modifier le modèle de régression à utiliser. Les modèles de régression disponibles sont les suivants :

- Linéaire
- Quadratique
- Cubique
- Quartique
- Logarithmique
- Exponentielle (deux formes disponibles)
- Puissance
- Trigonométrique

- Logistique
- Médiane-médiane
- 1. Ouvrez le menu **Régression** situé sous la barre d'onglets.
- 2. Le menu d'options de la courbe s'ouvre. Sélectionnez **Modèle** et validez avec la touche (•×).
- 3. Choisissez le modèle souhaité dans la liste qui s'affiche et appuyez sur 🐼 pour valider.

Afficher le graphique des résidus

Le menu **Régression** vous permet également d'afficher le graphique des résidus dans le cas d'une régression linéaire.

- 1. Ouvrez le menu **Régression** situé sous la barre d'onglets.
- 2. Le menu d'options de la courbe s'ouvre. Sélectionnez **Graphique des résidus** et validez avec la touche (•).

Supprimer un modèle de régression

Vous pouvez supprimer le modèle de régression pour revenir à un simple nuage de points.

- 1. Ouvrez le menu **Régression** situé sous la barre d'onglets.
- 2. Sélectionnez le bouton **Supprimer le modèle** et validez avec la touche (»).

8.4 Savoir utiliser l'onglet Stats

L'onglet **Stats** présente un certain nombre de calculs effectués à partir des données entrées dans l'onglet **Données** :

- Moyenne des x_i et moyenne des y_i
- Somme des x_i et somme des y_i
- Somme des carrés des x_i et somme des carrés des y_i
- Ecart-type des x_i et écart-type des y_i
- Variance des x_i et variance des y_i
- Nombre de points de données
- Covariance
- Somme des $x_i \times y_i$
- Coefficients *a* et *b* de la droite de régression (ou du modèle choisi)
- Coefficient de corrélation r
- Coefficient de détermination r^2

Chapitre 9

Application Paramètres

L'application **Paramètres** vous permet d'effectuer les réglages nécessaires au bon fonctionnement de la calculatrice.

9.1 Unité d'angle

Si vous choisissez **Degrés**, tous les arguments des fonctions trigonométriques seront considérés comme étant en degrés et les fonctions trigonométriques inverses donneront des résultats exprimés en degrés.

De même si vous choisissez **Radians**, tous les arguments des fonctions trigonométriques seront considérés comme étant en radians et les fonctions trigonométriques inverses donneront des résultats exprimés en radians.

Si vous choisissez **Grades**, tous les arguments des fonctions trigonométriques seront considérés comme étant en grades et les fonctions trigonométriques inverses donneront des résultats exprimés en grades.

L'unité des angles est affichée dans le bandeau en haut de l'écran sous la forme deg, rad ou gon.

9.2 Format résultat

Si vous choisissez **Décimal**, les valeurs numériques seront affichées selon des préréglages de la calculatrice de façon à être les plus adaptées possibles à chaque application.

Si vous choisissez **Scientifique**, les valeurs numériques seront affichées en écriture scientifique. Un indicateur **sci** apparaît alors dans le bandeau en haut de l'écran pour indiquer que vos résultats sont affichés en notation scientifique.

Si vous choisissez **Ingénieur**, les valeurs numériques seront affichées en écriture ingénieur. Un indicateur **ing** apparaît alors dans le bandeau en haut de l'écran pour indiquer

que vos résultats sont affichés en notation ingénieur.

Vous pouvez choisir le nombre de chiffres à afficher pour les résultats en modifiant directement la valeur de la section **Chiffres significatifs**. Le nombre maximal de chiffres pouvant être affichés est de 14.

9.3 Format écriture

Vous pouvez choisir le mode d'édition des expressions mathématiques : en ligne ou en deux dimensions (écriture naturelle).

9.4 Forme complexe

Si vous choisissez Réel, les résultats complexes ne seront pas affichés.

Si vous choisissez a+ib, les résultats complexes seront affichés en notation algébrique. Si vous choisissez $re^{i\theta}$, les résultats complexes seront affichés en notation exponentielle. Dans ce cas, l'argument de l'exponentielle sera toujours donné en radians, même si l'unité d'angles est réglée sur **Degrés**.

9.5 Luminosité

Vous pouvez choisir le niveau de luminosité de l'écran en utilisant les flèches directionnelles.

9.6 Police Python

Pour changer la taille de la police utilisée dans l'application Python (éditeur et console).

9.7 Langue

Pour changer la langue de la calculatrice. Vous avez le choix entre **Anglais**, **Français**, **Néerlandais**, **Portugais**, **Italien**, **Allemand** et **Espagnol**.

9.8 Pays

Pour changer la pays de la calculatrice. Vous avez le choix entre Allemagne, Canada, Espagne, Etats-Unis, France, International, Italie, Pays-Bas, Portugal et Royaume-Uni. Ce réglage permet de définir les conventions mathématiques utilisées. Si vous souhaitez utiliser les définitions et conventions mathématiques françaises, choisissez France.

9.9 Mode examen

9.9.1 Comment activer le mode examen?

Placez la sélection sur **Mode examen** dans l'application **Paramètres** puis appuyez sur (ox).

Un bouton **Activer le mode examen** apparaît. Appuyez sur ® pour activer le mode examen

Un message apparaît pour vous indiquer que l'activation du mode examen conduit à la suppression des données. Choisissez **Valider** et appuyez sur .

Vous êtes désormais en mode examen.

9.9.2 Que se passe-t-il lorsque vous activez le mode examen?

Activer le mode examen supprime toutes les données enregistrées : historique de calcul, variables, liste des fonctions, séries statistiques, scripts Python, ...

Lorsque le mode examen est actif, un symbole apparaît dans le bandeau jaune en haut de l'écran pour vous l'indiquer et la LED sur la tranche avant de la calculatrice clignote en rouge.

9.9.3 Comment désactiver le mode examen?

Vous ne pouvez sortir du mode examen qu'en connectant la machine à un ordinateur par l'intermédiaire d'un câble USB. Dès que vous branchez la machine, un message apparait pour vous demander si vous voulez sortir du mode examen. Choisissez **Valider** et appuyez sur (a).

Vous n'êtes plus en mode examen : le symbole **Mode examen** disparait de l'écran et la LED s'arrête de clignoter en rouge.

9.10 A propos

Cet écran vous donne accès au numéro de version du logiciel qui équipe votre calculatrice ainsi qu'au numéro de série de votre appareil.

9.11 Restaurer la calcultrice

Le bouton Restaurer la calculatrice redémarre la calculatrice comme si vous appuyiez sur le bouton RESET au dos de l'appareil. Vous perdrez toutes les données enregistrées sur l'appareil et la calculatrice sera totalement réinitialisée.

Chapitre 10

Utilisation des Variables

Vous pouvez enregistrer des expressions, des fonctions, des listes, des matrices ou des suites dans des variables pour les réutiliser dans des calculs futurs. L'ensemble des variables est contenu dans le menu qui apparaît lorsque vous appuyez sur la touche de la calculatrice.

Vous pouvez choisir librement le nom que vous désirez pour une variable en utilisant les caractères suivants : a..z, A..Z, 0..9 et _. Les noms de variables ne peuvent pas commencer par un chiffre et contenir plus de 7 caractères.

Pour entrer un caractère alphabétique (marquage orange sur le clavier), appuyez sur la touche puis sur la lettre que vous souhaitez afficher. Pour des caractères majuscules, appuyez en plus sur la touche avant d'ajouter la lettre souhaitée. Pour bloquer le clavier en mode alphabétique, appuyez deux fois sur la touche pour basculer entre minuscules et majuscules.

10.1 Les variables numériques

Les variables numériques disponibles dans la calculatrice sont stockées dans la section **Expressions** du menu de la touche (**).

Pour stocker un nombre dans une variable, tapez le nombre à stocker puis insérez la flèche **sto** (en appuyant sur (shift) puis sur (shift) suivie du nom de variable voulu. Par exemple pour stocker 5 dans a tapez : $5\rightarrow a$. Appuyez ensuite sur (EXE) pour valider.

10.2 Les fonctions

Les fonctions disponibles dans la calculatrice sont stockées dans la section **Fonctions** du menu de la touche (oppri).

Pour stocker une fonction dans une variable, tapez l'expression de la fonction à stocker puis insérez la flèche **sto** (en appuyant sur (shift) puis sur (shift) suivie de la variable voulue.

Par exemple pour stocker f(x)=2x+3 tapez : $2x+3\rightarrow f(x)$. Appuyez ensuite sur EXE pour valider.

10.3 Les listes

Les listes stockées dans des variables sont disponibles dans la section **Listes** du menu de la touche (con la

Pour stocker une liste dans une variable, tapez la liste à stocker puis insérez la flèche sto (en appuyant sur ♣ puis sur ♣) suivie de la variable voulue. Par exemple pour stocker {1,2,3} dans L tapez {1,2,3}→L.

Des listes sont automatiquement créées et modifiées lorsque vous éditez les tableaux de données des applications **Statistiques** et **Régressions**.

10.4 Les matrices

Les variables matricielles disponibles dans la calculatrice sont stockées dans la section **Matrices** du menu de la touche (ver).

Pour stocker une matrice dans une variable, tapez la matrice à stocker puis insérez la flèche **sto** (en appuyant sur (m, m)) suivie du nom de la variable voulu. Par exemple pour stocker $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ dans m1 tapez : [[1,0][0,1]] $\rightarrow m1$. Appuyez ensuite sur pour valider.

10.5 Les suites

Les suites disponibles dans la calculatrice sont stockées dans la section **Suites** du menu de la touche $\binom{\text{copy}}{\text{copy}}$.

Il n'est pas possible de créer une suite depuis une autre application que l'application Suites.

10.6 La touche var

Lorsque vous éditez du texte, vous pouvez à tout moment appuyer sur la touche de la calculatrice pour ouvrir le menu Variables. Ce menu vous permet d'accéder aux différentes variables stockées en mémoire.

Appuyez sur (x) sur la variable voulue pour l'insérer dans votre calcul.

Appuyez sur (pour supprimer la variable sélectionnée.

Chapitre 11

Touche Toolbox

A tout moment lorsque vous éditez un calcul ou une expression, vous pouvez appuyer sur la touche . Un catalogue de fonctions s'ouvre alors pour vous permettre de réaliser des calculs plus particuliers.

Le catalogue **Toolbox** est divisé en plusieurs sous-sections thématiques : Analyse, Nombres complexes, Probabilités, ... Choisissez le calcul que vous souhaitez effectuer et appuyez sur ... Complétez l'espace entre les parenthèses avec les valeurs que vous désirez pour chaque fonction.

Les trois premières commandes du catalogue **Toolbox** sont : **Valeur absolue**, **Racine nième** et **Logarithme base a**.

abs(x) Calcule la valeur absolue de l'argument que vous spécifiez entre les parenthèses. **abs(-4.5)** donne la valeur de |-4.5|, soit 4.5.

 $\mathtt{root}(\mathtt{x},\mathtt{n})$ Calcule la racine n-ième d'un nombre. Vous devez spécifier n et le nombre duquel vous calculez la racine. $\mathtt{root}(\mathtt{x},\mathtt{n})$ donne la valeur de $\sqrt[n]{x}$. Vous pouvez donner une valeur non entière à n.

log(x,a) Calcule le logarithme en base a d'un nombre. Vous devez spécifier a et le nombre duquel vous calculez le logarithme. log(x,a) donne la valeur de $log_a(x)$.

11.1 Analyse

diff(f(x),x,a) Calcule le nombre dérivé d'une fonction en un point. diff(f(x),x,a) donne la valeur de f'(a). Par exemple, pour calculer le nombre dérivé de la fonction carré en 5: $diff(x^2,x,5)$.

int(f(x),x,a,b) Calcule l'intégrale d'une fonction entre deux bornes. int(f(x),x,a,b) donne la valeur de $\int_a^b f(x) dx$. Par exemple, pour calculer l'intégrale de la fonction carré entre 0 et 5: int(x^2,x,0,5).

 $\operatorname{sum}(\mathbf{f(i),i,m,n})$ Calcule les sommes de termes exprimés en fonction de n. $\operatorname{sum}(\mathbf{f(i),i,m,n})$ donne la valeur de $\sum_{i=m}^{n} f(i)$.

product(f(i),i,m,n) Calcule les produits de termes exprimés en fonction de n. product(f(i),i,m,n) donne la valeur de $\prod_{i=m}^{n} f(i)$.

11.2 Nombres complexes

abs(x) Calcule le module d'un nombre complexe. **abs(2+3i)** donne la valeur de $\mid 2+3i\mid$.

arg(z) Calcule l'argument d'un nombre complexe. arg(2+3i) donne la valeur de arg(2+3i) en radians.

re(z) Calcule la partie réelle d'un nombre complexe. Par exemple, re(2+3i) renvoie 2.

im(z) Calcule la partie imaginaire d'un nombre complexe. Par exemple, im(2+3i) renvoie 3.

conj(z) Calcule le conjugué d'un nombre complexe. conj(2+3i) donne la valeur du conjugué de 2+3i, soit 2-3i.

11.3 Probabilités

11.3.1 Dénombrement

binomial(n,k) Calcule le nombre de combinaisons de k éléments choisis parmi n. **binomial(n,k)** donne la valeur de $\binom{n}{k}$, soit $\frac{n!}{k!(n-k)!}$.

permute(n,k) Calcule le nombre d'arrangements de k éléments choisis parmi n. **permute(n,k)** donne la valeur de A_n^k , soit $\frac{n!}{(n-k)!}$.

n! Calcul de factorielle n.

11.3.2 Lois de probabilité

Loi normale

normcdf(a, \mu,) Calcule P(X < a) où X suit une loi normale $N(\mu, \sigma)$.

normcdfrange(a,b, μ ,) Calcule P(a < X < b) où X suit une loi normale $N(\mu, \sigma)$.

invnorm(a, μ ,) Calcule m où P(X < m) = a et X suit une loi normale $N(\mu, \sigma)$.

normpdf (x, μ ,) Fonction densité pour la loi normale $N(\mu, \sigma)$.

Loi de Student

tcdf(a,k) Calcule P(X < a) où X suit une loi de Student t(k).

tcdfrange(a,b,k) Calcule P(a < X < b) où X suit une loi de Student t(k).

invt(a,k) Calcule m où P(X < m) = a et X suit une loi de Student t(k).

tpdf (x,k) Fonction densité pour la loi de Student t(k).

Loi binomiale

binompdf (m,n,p) Calcule P(X = m) où X suit la loi binomiale B(n,p).

binomcdf (m,n,p) Calcule $P(X \le m)$ où X suit la loi binomiale B(n,p).

invbinom(a,n,p) Calcule m où $P(X \le m) = a$ et X suit une loi binomiale B(n,p).

Loi de Poisson

poissonpdf (m,) Calcule P(X = m) où X suit la loi de Poisson $Pois(\lambda)$.

poissoncdf (m,) Calcule $P(X \le m)$ où X suit la loi de Poisson $Pois(\lambda)$.

Loi géométrique

geompdf (m,p) Calcule P(X = m) où X suit la loi géométrique G(p).

geomcdf (m,p) Calcule $P(X \leq m)$ où X suit la loi géométrique G(p).

geomcdfrange(m,n,p) Calcule $P(m \le X \le n)$ où X suit une loi géométrique G(p).

invgeom(a,p) Calcule m où $P(X \le m) = a$ et X suit une loi géométrique G(p).

11.3.3 Aléatoire

random() Génère un nombre aléatoire compris entre 0 et 1.

randint(a,b) Génère un nombre entier aléatoire compris entre a et b.

11.4 Unités et constantes

Cette section établit la liste de toutes les unités et constantes utilisables. Toutes les unités et constantes sont préfixées par le symbole _.

11.5 Matrices et vecteurs

[[1,2][3,4]] Crée une nouvelle matrice vide.

transpose (M) Calcule la transposée de M. Par exemple, transpose ([[1,2][3,4]]) renvoie $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$.

dim(M) Renvoie la taille de la matrice M. Par exemple, dim([[1,2][3,4]]) renvoie
[2,2].

11.5.1 Matrices

det(M) Calcule le déterminant de la matrice M. Par exemple, det([1,2][3,4]]) renvoie -2.

inverse(M) Calcule la matrice inverse de la matrice M si elle existe. Par exemple, inverse([[0.25,0][0,0.25]]) renvoie $\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$.

identity(n) Crée la matrice identité de taille n.

trace(M) Calcule la trace de la matrice M. Par exemple, trace([[1,2][3,4]]) renvoie 5.

ref (M) Renvoie la forme échelonnée de la matrice M.

rref (M) Renvoie la forme échelonnée réduite de la matrice M.

11.5.2 Vecteurs

Les vecteurs peuvent être des vecteurs ligne ou des vecteurs colonne.

dot(u,v) Calcule le produit scalaire de deux vecteurs.

cross(u,v) Calcule le produit vectoriel de deux vecteurs de taille 3.

norm(u) Calcule la norme euclidienne d'un vecteur.

11.6 Lists

Nouvelle liste Permet de créer une nouvelle liste. Cette option permet d'ajouter des accolades ouvrantes et fermantes. Entrez ensuite vous éléments avec le clavier numérique et séparez-les par des virgules.

Liste des f(k) pour k allant de 1 à n Permet de créer une nouvelle liste en utilisant une fonction. Cette option crée un modèle. Ajoutez ensuite votre fonction f(k) et votre borne supérieure.

Statistiques

mean(L) Calcule la moyenne de la liste L.

stddev(L) Calcule l'écart-type de la liste L.

samplestddev(L) Calcule l'écart-type échantillon de la liste L

med(L) Calcule la médiane de la liste L.

var(L) Calcule la variance de la liste L.

Opérations

- dim(L) Calcule le nombre d'éléments de la liste L.
- min(L) Calcule le minimum de la liste L.
- max(L) Calcule le maximum de la liste L.
- **sort(L)** Tri la liste L dans l'ordre croissant.
- **sum(L)** Calcule la somme des éléments de la liste L.
- prod(L) Calcule le produit des éléments de la liste L.

11.7 Arithmétique

- gcd(p,q) Calcule le PGCD de deux nombres entiers. Par exemple, gcd(55,11) renvoie 11. Cette fonction accepte plus de deux entiers en argument.
- lcm(p,q) Calcule le PPCM de deux nombres entiers. Par exemple, lcm(13,2) renvoie26. Cette fonction accepte plus de deux entiers en argument.
- **factor(n)** Calcule la décomposition en facteurs premiers de n. Par exemple, **factor(24)** renvoie $2^3 \times 3$.
- rem(p,q) Calcule le reste de la division euclienne de p par q. Par exemple, rem(50,45) donne le reste de la division de 50 par 45 soit 5.
- quo(p,q) Calcule le quotient de la division euclienne de p par q. Par exemple, quo(80,39) donne le quotient de la division de 80 par 39 soit 2.

11.8 Trigonométrie

11.8.1 Hyperbolique

- sinh(x) Sinus hyperbolique.
- cosh(x) Cosinus hyperbolique.

- tanh(x) Tangente hyperbolique.
- asinh(x) Sinus hyperbolique réciproque.
- acosh(x) Cosinus hyperbolique réciproque.
- atanh(x) Tangente hyperbolique réciproque.

11.8.2 Avancée

- csc(x) Cosécante.
- sec(x) Sécante.
- cot(x) Cotangente.
- acsc(x) Arc cosécante.
- asec(x) Arc sécante.
- acot(x) Arc cotangente.

11.9 Nombres décimaux

- floor(x) Calcule la partie entière d'un nombre. Par exemple, floor(5.8) donne 5.
- frac(x) Calcule la partie fractionnaire d'un nombre. Par exemple, frac(5.8) donne
 0.8.
- ceil(x) Calcule la partie entière par excès d'un nombre. Par exemple, ceil(5.8) donne 6.
- **round(x,n)** Arrondit un nombre à *n* chiffres après la virgule. Par exemple **round(8.6576,2)** donne 8.66.