Continuous-time periodic square wave 连续时间方波

$$x(t) = \begin{cases} 1 & |t| < T_1 \\ 0 & T_1 < |t| < \frac{T}{2} \end{cases} \qquad a_k = \frac{1}{T} \int_{-T_1}^{T_1} e^{-jk\omega_0 t} dt = \begin{cases} \frac{2T_1}{T} & k = 0 \\ -\frac{e^{-jk\omega_0 T_1} - e^{jk\omega_0 T_1}}{jk\omega_0 T} & k \neq 0 \end{cases} = \begin{cases} \frac{2T_1}{T} & k = 0 \\ \frac{\sin(k\omega_0 T_1)}{k\pi} & k \neq 0 \end{cases}$$

等比数列

通项公式: $a_n=a_1q^{n-1}$ 两项关系: $a_n=a_mq^{n-m}$ 求和公式: $S_n=a_1\frac{a-q^n}{1-q}=\frac{a_1-a_nq}{1-q}$

Discrete-time periodic square wave 离散时间方波 x[n]=1 for $-N_1 \le n \le N_1$ When $k=0,\pm N,\pm 2N,...$, $a_k=\frac{1}{N}\sum_{n=< N>} x[n]e^{-jk\omega_0n}=\frac{1}{N}\sum_{n=-N_1}^{N_1}e^{-jk\frac{2\pi}{N}n}=\frac{1}{N}\sum_{n=-N_1}^{N_1}1=\frac{2N_1+1}{N}$ When $k\neq 0,\pm N,\pm 2N,...$, $a_k=\frac{1}{N}\sum_{n=< N>} x[n]e^{-jk\omega_0n}=\frac{1}{N}\sum_{n=-N_1}^{N_1}e^{-jk\omega_0n}=\frac{1}{N}e^{jk\frac{2\pi}{N}N_1}\frac{1-e^{-jk\frac{2\pi}{N}}(2N_1+1)}{1-e^{-jk\frac{2\pi}{N}}}=\frac{1}{N}\frac{\sin\left(\frac{2k\pi(N_1+\frac{1}{2})}{N}\right)}{\sin\left(\frac{k\pi}{N}\right)}$ 化简技巧 $1-e^{-jk\frac{2\pi}{N}}=e^{-jk\frac{2\pi}{N}}\left(e^{jk\frac{2\pi}{N}}-e^{-jk\frac{2\pi}{N}}\right)$

Even and odd decomposition $\mathcal{E}v\{x[t]\} = \frac{1}{2}\{x(t) + x(-t)\}$ $\mathcal{O}d\{x[t]\} = \frac{1}{2}\{x(t) - x(-t)\}$ 奇分解围绕原点旋转除 2,偶分解围绕 y 轴变换除 2

系统性质的判据	输入输出关系	单位冲激响应
Memoryless	Output at $t = t_0$ depends only on the value of input at $t = t_0$	$h(t) = 0 \text{ for } t \neq 0$
Invertible	There exist an inverse system	$\exists h_1[n] \ s. \ t. \ h[n] * h_1[n] = \delta[n]$
Causality	Output at this time only depends on values of the input at the present time and in the past	h[n] = 0 for n < 0
Stability	BIBO	$\int_{-\infty}^{\infty} h(\tau) d\tau < \infty$
Time-invariance	Let $x_1(t) = x(t - t_0)$ Check $y_1(t) = ?y(t - t_0)$	Must satisfy
Linearity	Let $x_1(t), x_2(t), x_3(t) = x_1(t) + x_2(t)$ Check $y_3(t) = ?ay_1(t) + by_2(t)$	Must satisfy

Convolution 卷积

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$
 $y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau \int_{-\infty}^{+\infty} x(t-\tau)h(\tau)d\tau$ 一个函数的t换成 τ ,另一个函数的t换成 $t-\tau$;如果结果以原点为界,记得写成 $u[n]u(t)$ 的形式; $x(\tau)$ 的图像正常, $h(t-\tau)$ 的图像关于y轴翻转后,原点为 t

Singularity functions $u_k(t)$ 求导; $u_{-k}(t)$ 积分; $u_1(t)$ 是 unit doublet

Impulse train

$$x(t) = \sum_{k \in \mathbb{R}} \delta(t - kT) \stackrel{FS}{\leftrightarrow} a_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \delta(t) e^{-jk\omega_0 0} dt = \frac{1}{T}$$

Properties of convolution 卷积的性质

$$x(t) * \delta(t) = x(t) x(t) * \delta(t - t_0) = x(t - t_0) x(t - t_1) * \delta(t - t_2) = x(t - t_1 - t_2) x(t) * \delta'(t) = x'(t) x(t) * u(t) = x^{-1}(t) = \int_{-\infty}^{t} x(\tau) d\tau x(t) * h(t) = x'(t) * h^{-1}(t)$$

Euler's formula 欧拉公式

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Fourier Series 傅里叶级数

Tourier peries (4 ± 1 × 1 × 1	
$x(t) = e^{st} \xrightarrow{LTI} y(t) = H(s)e^{st}$ $\sum_{k} a_k e^{s_k t} \xrightarrow{LTI} \sum_{k} a_k H(s_k)e^{s_k t}$	$\sum_{k}^{LTI} a_{k} z_{k}^{n} \xrightarrow{LTI} \sum_{k}^{LTI} \sum_{k}^{TI} a_{k} H(z_{k}) z_{k}^{n}$
$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st} dt$ $H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t} dt$	$H(z) = \sum_{k=-\infty}^{\infty} h[k]z^{-k}$ $H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n}$
$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$ $a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$	$x[n] = \sum_{k=< N>}^{\infty} a_k e^{jk\omega_0 n}$ $a_k = \frac{1}{N} \sum_{n=< N>}^{\infty} x[n] e^{-jk\omega_0 n}$

诱导公式

 $\sin(2k\pi + \alpha) = \sin \alpha$ $\cos(2k\pi + \alpha) = \cos \alpha$ $\sin(-\alpha) = -\sin \alpha$ $\cos(-\alpha) = \cos \alpha$ $\sin(\pi - \alpha) = \sin \alpha$ $\cos(\pi - \alpha) = -\cos \alpha$ $\sin(\pi + \alpha) = -\sin \alpha$ $\cos(\pi + \alpha) = -\cos \alpha$ $\sin(\frac{\pi}{2} - \alpha) = \cos \alpha$ $\cos(\frac{\pi}{2} - \alpha) = \sin \alpha$ $\sin(\frac{\pi}{2} + \alpha) = \cos \alpha$ $\cos(\frac{\pi}{2} + \alpha) = -\sin \alpha$ $\tan(\frac{\pi}{2} + \alpha) = -\tan \alpha$ $\tan(\frac{\pi}{2} + \alpha) = -\tan \alpha$ $\tan(\frac{\pi}{2} + \alpha) = -\cot \alpha$ $\tan(\frac{\pi}{2} + \alpha) = -\cot \alpha$ $\tan(\frac{\pi}{2} + \alpha) = -\cot \alpha$

TABLE 17.1 The method of undetermined coefficients for selected equations of the form

$$ay'' + by' + cy = G(x)$$
.

If $G(x)$ has a term that is a constant multiple of	And if	Then include this expression in the trial function for y_p .
e^{rx}	r is not a root of the auxiliary equation	Ae^{rx}
	r is a single root of the auxiliary equation	Axe^{rx}
	r is a double root of the auxiliary equation	Ax^2e^{rx}
$\sin kx$, $\cos kx$	ki is not a root of the auxiliary equation	$B\cos kx + C\sin kx$
$px^2 + qx + m$	0 is not a root of the auxiliary equation	$Dx^2 + Ex + F$
	0 is a single root of the auxiliary equation	$Dx^3 + Ex^2 + Fx$
	0 is a double root of the auxiliary equation	$Dx^4 + Ex^3 + Fx^2$

自变量变换

Real, even, odd properties of a signal If
$$x(t)$$
 is real, then from the synthesis equation:
$$\sum_{k\in\mathbb{R}} a_k e^{jk\omega_0t} = \sum_{k\in\mathbb{R}} a_k^* e^{-jk\omega_0t} = \sum_{-k\in\mathbb{R}} a_{-k}^* e^{jk\omega_0t} \Rightarrow a_k = a_{-k}^*$$
 If $x(t)$ is real and even, then $x(t) = x(-t) \Rightarrow a_k = a_{-k}$; $a_{-k} = a_{-k}^* \Rightarrow a_k = a_k^*$

Hence a_k is real and even. Similarly, if x(t) is real and odd, then $a_k=-a_{-k}$ and $a_k=-a_k^*$, a_k is purely

imaginary and odd.

TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

:		Parseval's Relation for Periodic Signals	Pa	
Real Real Even	a_k real and even a_k purely imaginary and odd $\Re e\{a_k\}$ $j \Im m\{a_k\}$	x(t) real and even x(t) real and odd $\left\{x_c(t) = \mathcal{E}_b\{x(t)\} \mid [x(t) \text{ real}]\right\}$ $\left\{x_o(t) = \mathcal{O}_b\{x(t)\} \mid [x(t) \text{ real}]\right\}$	3.5.6 3.5.6	Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals
Conj Re	$\begin{cases} a_k = a^*_{-k} \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ 4 a_k = -4 a_{-k} \end{cases}$	x(t) real	3.5.6	Conjugate Symmetry for Real Signals
Runr	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$	$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)		Integration
First	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$	$\frac{dx(t)}{dt}$		Differentiation
Perio Mult	$\sum_{l=-\infty}^{+\infty}a_lb_{k-l}$	x(t)y(t)	3.5.5	Multiplication
	Ta_kb_k	$\int_T x(\tau)y(t-\tau)d\tau$		Periodic Convolution
Time Time	a_{-k}^* a_{-k} a_k	$x^*(t)$ x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	3.5.6 3.5.3 3.5.4	Conjugation Time Reversal Time Scaling
Line: Time Frequ	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M}	$Ax(t) + By(t)$ $x(t - t_0)$ $e^{jM\omega_0 t} = e^{jM(2\pi t T)t}x(t)$	3.5.1 3.5.2	Linearity Time Shifting Frequency Shifting
i !	a_k b_k	$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$		
Prop	Fourier Series Coefficients	Periodic Signal	Section	Property

 $\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$

Parseval's Relation for Periodic Signals $\frac{1}{N} \sum_{n = \langle N \rangle} |x[n]|^2 = \sum_{k = \langle N \rangle} |a_k|^2$

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Nth order linear constant-coefficient difference equation Expression: $\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$ Solution: $y[n] = y_p[n] + y_h[n]$, where $y_h[n] = A_1 z_1^n + \dots + A_N z_N^n$

Causal and LTI \Leftrightarrow Initial rest (i.e. if x[n] = 0 for $n < n_0$ then y[n] = 0 for $n < n_0$)

Solution: $y(t) = y_p(t) + y_h(t)$, where $y_h(t) = A_1 e^{s_1 t} + \dots + A_N e^{s_N t}$ Causal and LTI \Leftrightarrow Initial rest (i.e. if x(t) = 0 for $t < t_0$ then y(t) = 0 for $t < t_0$)

Nth order linear constant-coefficient differential equation Expression: $\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$

Coefficients	Property	Periodic Signal	Fourier Series Coefficients
		$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$\begin{bmatrix} a_k \\ b_k \end{bmatrix}$ Periodic with
− jk(2π/T)i ₀	Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^*[n]$ $x[-n]$	$egin{align*} Aa_k + Bb_k \ a_k e^{-jk(2\pi i N)\mu_0} \ a_{k-M} \ a_{-k}^- \ a_{-k} \ a_{-k} \ \end{array}$
	Time Scaling	$x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$\frac{1}{m}a_{k}igg(ext{wiewed as periodic}igg)$ with period mN
	Periodic Convolution	$\sum_{r = L(k)} x[r]y[n-r]$	Na_kb_k
	Multiplication	x[n]y[n]	$\sum_{l=\langle N \rangle} a_l b_{k-l}$
$-a_k$	First Difference	x[n] - x[n-1]	$(1-e^{-jk(2\pi/N)})a_k$
$\frac{1}{k(2\pi/T)}$ a_k	Running Sum	$\sum_{k=-\infty}^{n} x[k] \left\{ \text{finite valued and periodic only} \right\}$	$\left(\frac{1}{(1-e^{-jk(2\pi i/N)})}\right)a_k$
$\{a_{-k}\}$	Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} a_k = a^*_{-k} \\ \mathfrak{R}e\{a_k\} = \mathfrak{R}e\{a_{-k}\} \\ \mathfrak{I}m\{a_k\} = -\mathfrak{I}m\{a_{-k}\} \\ a_k = a_{-k} \\ \mathfrak{I}a_k = -\mathfrak{I}a_{-k} \end{cases}$
ary and odd	Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
	Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \mathcal{E}v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O}d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\Re\{a_k\}$ $j\Im\{a_k\}$
		;	

System Properties (Laplace Transform)			
Causality	ROC is a right-half plane		
Causality	ROC is the right-half plane to the		
(Rational $H(s)$)	right of the rightmost pole		
Anticausality	ROC is a left-half plane (to the left of		
the leftmost pole)			
Stability	ROC includes the entire $j\omega$ -axis		

Causal LTI system with rational H(s): all poles lie in the lefthalf of the s-plane

System Properties (Z-Transform)

Causality	ROC is the exterior of a circle including infinity	
Causality (Rational <i>H</i> (<i>s</i>))	ROC is the exterior of a circle outside the outermost pole + 分子 z 阶数不能比分母大	
Stability	ROC includes the unit circle	

Causal LTI system with rational H(s): all poles lies inside the

Z-Transform Z 变换

$$X(z)\triangleq\sum_{n=-\infty}^{\infty}x[n]z^{-n}$$

$$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz$$

Sinc Function $\operatorname{sinc} \theta = \frac{\sin \pi \theta}{}$

Fourier Series 傅里叶级数

 $H(s) = \int_{-\infty}^{\infty} h(t)e^{-st} dt$

 $a_k = \frac{1}{T} \int x(t) e^{-jk\omega_0 t} dt$

Euler's formula 欧拉公式

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2i}$$

Nyquist Sampling Theorem

Let x(t) be a band-limited signal within $\pm \omega_{M}$, then x(t) is uniquely determined by its samples x(nT) if $\omega_s > 2\omega_M$, where $\omega_s = \frac{2\pi}{r}$. Nyquist rate: $2\omega_M$

Z变换特殊峰的判断

信号为正,零点有峰 信号为负,无穷有峰 诱导公式 $\sin(2k\pi + \alpha) = \sin\alpha$ $\cos(2k\pi + \alpha) = \cos\alpha$ $\sin(-\alpha) = -\sin\alpha$ $\cos(-\alpha) = \cos\alpha$ $\sin(\pi - \alpha) = \sin \alpha$ $\cos(\pi - \alpha) = -\cos\alpha$ $\sin(\pi + \alpha) = -\sin\alpha$ $\cos(\pi + \alpha) = -\cos\alpha$ $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$ $\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$ $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ $tg(k\pi + \alpha) = tg \alpha$ $tg(-\alpha) = -tg \alpha$ $tg(\pi - \alpha) = -tg \alpha$ $tg(\pi - \alpha) = -tg \alpha$ $tg(\pi + \alpha) = tg \alpha$ $tg\left(\frac{\pi}{2} - \alpha\right) = ctg\,\alpha$ $tg\left(\frac{\pi}{2} + \alpha\right) = -ctg\,\alpha$

Fourier Transform 傅里叶变换

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$X(j\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega$$

等比数列

通项公式: $a_n = a_1 q^{n-1}$ 两项关系: $a_n = a_m q^{n-m}$ 求和公式: $S_n = a_1 \frac{a-q^n}{1-q} = \frac{a_1-a_nq}{1-q}$

Even and odd decomposition

$$\mathcal{E}v\{x[t]\} = \frac{1}{2}\{x(t) + x(-t)\}$$
 $\mathcal{O}d\{x[t]\} = \frac{1}{2}\{x(t) - x(-t)\}$
奇分解围绕原点旋转除 2,偶分解围绕 y 轴变换除 2

时域频域卷积相乘关系

$$y(t) = h(t) * x(t) \stackrel{\mathcal{F}}{\leftrightarrow} Y(j\omega) = H(j\omega)X(j\omega)$$
$$r(t) = s(t)p(t) \stackrel{\mathcal{F}}{\leftrightarrow} R(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\theta)P(j(\omega - \theta))d\theta$$

Laplace Transform 拉普拉斯变换

$$X(s) \triangleq \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st}ds$$

Other Transform Pairs

$$\begin{split} u_n(t) &= \frac{d^n}{dt^n} \delta(t) \overset{\mathcal{L}}{\leftrightarrow} s^n, u^{-n}(t) = \frac{1}{s^n} \\ e^{-at} \cos \omega_0 t \, u(t) \overset{\mathcal{L}}{\leftrightarrow} \frac{s+a}{(s+a)^2 + \omega_0^2} \\ e^{-at} \sin \omega_0 t \, u(t) \overset{\mathcal{L}}{\leftrightarrow} \frac{\omega_0}{(s+a)^2 + \omega_0^2} \\ \left(\frac{\sin t}{nt}\right)^2 \overset{\mathcal{T}}{\leftrightarrow} = 角形底 -2到2, \ \ \overline{\hat{n}}_{\pi}^{\frac{1}{\pi}} \end{split}$$

Convolution 卷积

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$
$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau \int_{-\infty}^{+\infty} x(t-\tau)h(\tau)d\tau$$

--个函数的t换成 τ ,另一个函数的t换成 $t-\tau$;如果结果以原 点为界,记得写成u[n]u(t)的形式; $x(\tau)$ 的图像正常, $h(t-\tau)$ 的图像关于y轴翻转后,原点为t

 $a_k = \frac{1}{N} \sum_{n=1}^{N} x[n] e^{-jk\omega_0 n}$

$$\begin{split} \sin\alpha + \sin\beta &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin\alpha - \sin\beta &= 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \cos\alpha + \cos\beta &= 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \sin\alpha\cos\beta &= \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)] \\ \cos\alpha\sin\beta &= \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)] \\ \cos\alpha\cos\beta &= \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)] \\ \sin\alpha\sin\beta &= -\frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)] \end{split}$$

和差化积公式与积化和差公式

Hilbert Transform

 $\frac{1}{\pi t} \overset{\mathcal{F}}{\longleftrightarrow} -j \cdot \operatorname{sign} \omega \, , \cos \omega_0 t \overset{h(t)}{\longrightarrow} \sin \omega_0 t$

采样与恢复的过程

$$\begin{split} p(t) &= \sum_{n=-\infty}^{\infty} \delta(t-nT) \overset{\mathcal{F}}{\leftrightarrow} \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - k \frac{2\pi}{T}\right) = \omega_s \sum_{k=-\infty}^{\infty} \delta(\omega - k \omega_s) \\ p(t) x(t) &\overset{\mathcal{F}}{\leftrightarrow} \frac{1}{2\pi} X(j\omega) * P(j\omega) = \frac{\omega_s}{2\pi} \sum_{k=-\infty}^{\infty} X \big(j(\omega - k \omega_s) \big) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X \big(j(\omega - k \omega_s) \big) \\ \text{采样后信号的频率响应幅值变为1/T倍}, 因此恢复信号时要通过一个增益为T的 BPF, BPF 的截止频率最好为\(\frac{\omega_s}{2} \) \(\text{BPF}, \text{BPF} \) \(\text{opt} \)$$

Quick Reference Checklist 快速检查单 ROC $Re\{s\} > -a$ $e^{-at}u(-t)$ $Re\{s\} < -a$ $e^{at}u(t)$ $Re\{s\} > a$ $e^{at}u(-t)$ $Re\{s\} < a$ $a^nu[n]$ |z| > |a|а $a^nu[-n-1]$ |z| < |a|а -а $(-a)^n u[-n-1]$ |z| < |a|<u>-а</u> te^{-at}u(t) $Re\{s\} > -a$ $-a(\times 2)$ $(s+a)^2$ $na^nu[n]$ |z| > |a| $a(\times 2)$ $(1-az^{-1})^2$

Parseval's Relation (Aperiodic Sig.) $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$

Initial/Final Value Theorem

 $x(0^+) = \lim_{s \to \infty} sX(s), \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$

Initial Value Theorem

If x[n] = 0 for n < 0, $x[0] = \lim_{z \to \infty} X(z)$.

Group Delay $\tau(\omega) = -\frac{d}{d\omega} \{ \not\prec H(j\omega) \}$

Properties of Fourier Transform 傅里叶变换的性质				
Property Aperiodic signal Fourier tra				
	x(t)	X		

Property	Aperiodic signal	Fourier transform	
	x(t)	$X(j\omega)$	
	y(t)	$Y(j\omega)$	
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$	
Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$	
Frequency Shifting	$e^{j\omega_0t}x(t)$	$X(j(\omega-\omega_0))$	
Conjugation	<i>x</i> *(<i>t</i>)	$X^*(-j\omega)$	
Time Reversal	x(-t)	$X(-j\omega)$	
Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$	
Convolution	x(t) * y(t)	W(')W(')	
Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$	
Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$	
Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$	
Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$ $(X(j\omega) = X^*(-j\omega)$	
Conjugate Symmetry for Real Signals		$Re{X(j\omega)} = Re{X(-j\omega)}$ $Im{X(j\omega)} = -Im{X(-j\omega)}$ $ X(j\omega) = X(-j\omega) $ $\propto X(j\omega) = -\propto X(-j\omega)$	
Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even	
Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd	
Even-Odd Decomposition for Real Signals	$x_e(t) = Ev\{x$ $x_o(t) = Od\{x$ $x(t) \text{ real}$		

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\frac{\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}}{e^{j\omega_0 t}}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$ $2\pi \delta(\omega - \omega_0)$	a_k
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_k = 0$, otherwise $a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_k = 0$, otherwise $a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0$, otherwise
x(t) = 1	$2\pi\delta(\omega)$	$a_k = 0$, otherwise $a_0 = 1$, $a_k = 0$, $k \neq 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ And $x(t+T) = x(t)$	$\sum_{k=-\infty}^{\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right)}{\frac{\sin k\omega_0 T_1}{k\pi}} =$
And $x(t+T) = x(t)$ $\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$ $\frac{2\sin \omega T_1}{T}$	$a_k = \frac{1}{T}$ for all k
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	ω	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\frac{\delta(t)}{u(t)}$	$\frac{1}{i\omega} + \pi\delta(\omega)$	
$\delta(t - t_0)$ $e^{-at}u(t), Re\{a\} > 0$	$e^{-j\omega t_0}$	
	$\frac{1}{a+j\omega}$	
$te^{-at}u(t), Re\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), Re\{a\} >$	$\frac{1}{(a+j\omega)^n}$	

Properties of Laplace Transform 拉普拉斯变换的性质

Property	Signal	Laplace Transform	ROC
	x(t)	X(s)	
	$x_1(t)$	$X_1(s)$	
	$x_2(t)$	$X_2(s)$	
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Shifting in the s -	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version
domain			of R
Time scaling	x(at)	$\frac{1}{v}(s)$	Scaled ROC
		$\overline{ a }^{\Lambda} (\overline{a})$	
Conjugation	$x^*(t)$	$X^*(s^*)$	R
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Differentiation in	d(t)	sX(s)	At least R
the Time Domain	$\frac{d}{dt}x(t)$		
Differentiation in	-tx(t)	d _{v(-)}	R
the s-domain		$\frac{\overline{ds}}{ds}^{X(S)}$	
Integration in the	f ^t (-).4-	$\frac{\frac{d}{ds}X(s)}{\frac{1}{s}X(s)}$	At least $R \cap$
Time Domain	$\int_{-\infty} x(\tau)d\tau$	$\frac{-}{s}\Lambda(s)$	$Re\{s\} > 0$

#	Signal	Transform	ROC
1	$\delta(t)$	1	All s
2	u(t)	1/s	$\Re\{s\} > 0$
3	-u(-t)	1/s	$\Re\{s\} < 0$
6	$e^{-at}u(t)$	1	$\Re e\{s\} > -a$
		$\overline{s+a}$	
7	$-e^{-at}u(-t)$	1	$\Re e\{s\} < -a$
		s + a	
8	$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	1	$\Re e\{s\} > -a$
	$\overline{(n-1)!}e^{-m}u(t)$	$\overline{(s+a)^n}$	
9	+n-1	1	$\Re e\{s\} < -a$
	$-\frac{\iota}{(n-1)!}e^{-at}u(-t)$	$\overline{(s+a)^n}$	
10	$\delta(t-T)$	e^{-sT}	All s
11	$[\cos \omega_0 t] u(t)$	<u></u>	$\Re e\{s\} > 0$
		$s^2 + \omega_0^2$	
12	$[\sin \omega_0 t] u(t)$	ω_0	$\Re e\{s\} > 0$
		$s^2 + \omega_0^2$	

Property	Signal	z-Transform	ROC
	x[n]	X(z)	R
	$x_1[n]$	$X_1(z)$	R_1
	$x_2[n]$	$X_2(z)$	R_2
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least $R_1 \cap R_2$
Tiime shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R except for possible origin
Scaling in the z-domain	$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R
	$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	z_0R
	$a^n x[n]$	$X(a^{-1}z)$	Scaled version of R
Time reversal	x[-n]	$X(z^{-1})$	Inverted R
Time expansion	$x_{(k)}[n] = \begin{cases} x[r], n \\ 0, n \neq n \end{cases}$	$= rk$ $X(z^k)$	$R^{\frac{1}{k}}$
Conjugation	x*[n]	$X^*(z^*)$	R
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least $R_1 \cap R_2$
First difference	x[n] - x[n-1]	$(1-z^{-1})X(z)$	At least $R \cap \{ z > 0\}$
Accumuation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least $R \cap \{ z > 1\}$
Differentiation in the z-domain	nx[n]	$-z\frac{dX(z)}{dz}$	R

Signal	Transform	ROC
$\delta[n]$	1	All z
u[n]	1	z > -1
	$\frac{1-z^{-1}}{1}$	
-u[-n-1]	_	z < -1
	$1 - z^{-1}$	
$\delta[n-m]$	Z^{-m}	All z , except
		0 or ∞
$a^nu[n]$	1	z > a
	$\frac{1-az^{-1}}{1}$	
$-a^nu[-n-1]$	1	z < a
	$\frac{1-az^{-1}}{az^{-1}}$	
$na^nu[n]$	az^{-1}	z > a
	$1 az^{-1}$	
$-na^nu[-n-1]$] az^{-1}	z < a
_	$(1-az^{-1})^2$	
$[\cos \omega_0 n] u[n]$		z > 1
. 0,,	$1-[2\cos\omega_0]z^{-1}+z^{-2}$	
$[\sin \omega_0 n]u[n]$	$[\sin \omega_0]z^{-1}$	z > 1
	$1-[2\cos\omega_0]z^{-1}+z^{-2}$	
$[r^n \cos \omega_0 n] u[r$	$\frac{1-[r\cos\omega_0]z^{-1}}{2}$	z > r
	$1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}$	
$[r^n \sin \omega_0 n] u[r$		z > r
	$1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}$	\perp , α

System Properties (Z-Transform)
Causality	ROC is the exterior of a circle
	including infinity
Causality	ROC is the exterior of a circle outside
(Rational $H(s)$)	the outermost pole + 分子 z 阶数不
	能比分母大
Stability	ROC includes the unit circle
Caucal ITI eyetom w	with rational $H(s)$, all poles lies incide the

Causal LTI system with rational H(s): all poles lies inside the unit circle + 分子 z 阶数不能比分母大

和差化积公式与积化和差公式

$$\begin{split} \sin\alpha + \sin\beta &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin\alpha - \sin\beta &= 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \cos\alpha + \cos\beta &= 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \sin\alpha\cos\beta &= \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)] \\ \cos\alpha\sin\beta &= \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)] \\ \cos\alpha\cos\beta &= \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)] \\ \sin\alpha\sin\beta &= -\frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)] \end{split}$$

$$\frac{1}{\pi t} \overset{\mathcal{F}}{\longleftrightarrow} -j \cdot \operatorname{sign} \omega , \cos \omega_0 t \overset{h(t)}{\longrightarrow} \sin \omega_0 t$$

Convolution 卷积

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$
$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau \int_{-\infty}^{+\infty} x(t-\tau)h(\tau)d\tau$$

个函数的t换成 τ ,另一个函数的t换成 $t-\tau$;如果结果以原 点为界, 记得写成u[n]u(t)的形式; $x(\tau)$ 的图像正常, $h(t-\tau)$ 的图像关于y轴翻转后, 原点为t

Sinc Function

$$\operatorname{sinc} \theta = \frac{\sin \pi \theta}{\pi \theta}$$

2N-Point DFT using a single N-Point DFT

 $v[n] \not \in 2N, \ g[n] = v[2n], h[n] = v[2n+1]$ 则 $V[k] = G[\langle k \rangle_N] + W_{2N}^k H[\langle k \rangle_N]$

Nyquist Sampling Theorem

Let x(t) be a band-limited signal within $\pm \omega_{\scriptscriptstyle M}$, then x(t) is uniquely determined by its samples x(nT) if $\omega_s > 2\omega_M$, where $\omega_s = \frac{2\pi}{T}$. Nyquist rate: $2\omega_M$

Euler's formula 欧拉公式

$$e^{j\theta} = \cos\theta + j\sin\theta$$
$$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
$$\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Z变换特殊峰的判断 信号为正, 零点有峰

圆周卷积算线性卷积

信号为负, 无穷有峰

诱导公式

 $\sin(2k\pi + \alpha) = \sin\alpha$ $\cos(2k\pi + \alpha) = \cos\alpha$ $\sin(-\alpha) = -\sin\alpha$ $\cos(-\alpha) = \cos \alpha$ $\sin(\pi - \alpha) = \sin \alpha$ $\cos(\pi - \alpha) = -\cos \alpha$ $\sin(\pi + \alpha) = -\sin \alpha$ $\cos(\pi + \alpha) = -\cos\alpha$ $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$ $\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$ $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ $tg(k\pi + \alpha) = tg\,\alpha$ $tg(-\alpha) = -tg \alpha$ $tg(\pi - \alpha) = -tg \alpha$ $tg(\pi + \alpha) = tg \alpha$ $tg\left(\frac{\pi}{2} - \alpha\right) = ctg \alpha$ $tg\left(\frac{\pi}{2} + \alpha\right) = -ctg \alpha$

Group Delay, Phase Delay
$$\begin{array}{l} \text{Phase Delay}, \text{Phase Delay} \\ \text{Phase delay:} \ \tau_p(\omega_0) = -\frac{\theta(\omega_0)}{\omega_0} \\ \text{Group delay:} \ \tau_g(\omega) = -\frac{d\theta(\omega)}{d\omega} \\ y_a(t) = a\left(t - \tau_g(\Omega_{\mathcal{C}})\right)\cos\Omega_{\mathcal{C}}\left(t - \tau_p(\Omega_{\mathcal{C}})\right) \end{array}$$

补 0 法: 两序列都补到M + N − 1长, 算圆周卷积即可

Overlap-add: 将x[n]切段, 每段与h[n]用补 0 法算圆周

Overlap-save: 相加时不重叠,而是切断时重叠N-1长

Transform

 $1 - az^{-1}$

 $1 + az^{-1}$

 $1 + az^{-1}$

(1-az)

度;最前面补N-1个0,相加时每段舍去前N-1

卷积, 最后相加时要有N-1长度的 overlap

Z-变换对快速检查单

Signal

 $a^nu[-n-1]$

 $(-a)^n u[n]$

 $(-a)^n u [-n-1]$

 $na^nu[n]$

单位冲激响应 系统性质的判据 输入输出关系 Output at $t = t_0$ depends only Memoryless h(t) = 0 for $t \neq 0$ on the value of input at $t = t_0$ $\exists h_1[n] \ s.t.h[n] * h_1[n] = \delta[n]$ Invertible There exist an inverse system Causality Output at this time only depends h[n] = 0 for n < 0on values of the input at the present time and in the past Stability BIBO $h(\tau)|d\tau < \infty$ Let $x_1(t) = x(t - t_0)$ Time-invariance Must satisfy Check $y_1(t) = ?y(t - t_0)$ Let $x_1(t), x_2(t), x_3(t) = x_1(t) +$ Must satisfy Linearity Check $y_3(t) = ?ay_1(t) + by_2(t)$

Time-Domain Sampling 时域采样

$$x_a(t) \overset{CTFT}{\longleftrightarrow} X_a(j\Omega), \ x(t) = x_a(t)p(t) \overset{CTFT}{\longleftrightarrow} X(j\Omega) = \frac{1}{r} \sum_{k=-\infty}^{\infty} X_a \big(j(\Omega - k\Omega_s) \big)$$
 $x[n] = x(t)|_{t=nT} \overset{F}{\longleftrightarrow} X(e^{j\omega}) = X(j\Omega)|_{\Omega = \frac{\omega}{T}} = \frac{1}{r} \sum_{k=-\infty}^{\infty} X_a \left(j \frac{\omega - 2k\pi}{r} \right)$ 采样后信号的频率响应幅值变为1/T倍,因此恢复信号时要通过一个增益为 T 的 BPF,BPF 的截止频率最好为 $\frac{\omega_s}{r}$; Ω 轴上的 Ω_s 对应 ω 轴上的 2π

连续离散公式:时域t=nT,频域 $\omega=\Omega T$,任何地方f=1/T时域采样导致频域周期化: $F_{out}=F_{in}\pm kF_{s}$, $\Omega_{out}=\Omega_{in}\pm k\Omega_{s}$

带通采样

 $\Omega_H = M(\Delta\Omega) \Rightarrow$ $\Omega_T = 2(\Delta\Omega) = \frac{2\Omega_H}{\Omega_T}$ 恢复使用 gain 为T的 $\Omega_L \leq |\Omega| \leq \Omega_H$ 的 BPF

两项关系: $a_n = a_m q^{n-m}$

求和公式: $S_n = a_1 \frac{a-q^n}{1-q} = \frac{a_1-a_nq}{1-q}$

信号的范数、能量、功率

 $||x||_p = \left(\sum_{n=-\infty}^{\infty} |x[n]|^p\right)^{\frac{1}{p}}, ||x||_{\infty} = |x|_{max}$

Fourier-Domain Sampling 频域采样

频域采N个样(不关心x[n]周期是不是 N), 时域信号就以N为周期

ROC

|z| > |a|

|z| < |a|

|z| > |a|

|z| < |a|

|z| > |a|

Pole

а

-a

-a

 $a(\times 2)$

Circular Time-Shift/Reversal

原: 01234

$$y[n] = \sum_{n=-\infty}^{\infty} x[n+mN], 0 \le n \le N-1$$
 多画几个周期找规律!

Geometric Series 等比数列 通项公式: $a_n = a_1 q^{n-1}$ 信号的分解

Geometric symmetry: $x[n] = x[N-1-n], \theta(\omega) = -\frac{N-1}{2}\omega + \beta$ (type1 odd, type2 even) Geometric anti-symmetry: $x[n] = -[N-1-n], \theta(\omega) = -\frac{N-1}{2}\omega + \frac{\pi}{2} + \beta$ (type3 odd, type4 even), 中心系数为 0

ות אר חו	· NT	
奇偶 分解	$x_{ev}(t) = \frac{1}{2} \left(x(t) + x(-t) \right)$	$X_{ev}[k] = \frac{1}{2}(X[k] + X[\langle -k \rangle_N])$
73 NT	$x_{od}(t) = \frac{1}{2} \left(x(t) - x(-t) \right)$	$X_{od}[k] = \frac{1}{2}(X[k] - X[\langle -k \rangle_N])$
实虚 分解	$x_{re}(t) = \frac{1}{2} \big(x(t) + x^*(t) \big)$	$X_{re}[k] = \frac{1}{2}(X[k] + X^*[k])$
カ州	$x_{im}(t) = \frac{1}{2j} \left(x(t) - x^*(t) \right)$	$X_{im}[k] = \frac{1}{2}(X[k] - X^*[k])$
共轭	$x_{cs}(t) = \frac{1}{2}(x(t) + x^*(-t))$	$X_{cs}[k] = \frac{1}{2}(X[k] + X^*[\langle -k \rangle_N])$
对称	$r_{-1}(t) = \frac{1}{2}(r(t) - r^*(-t))$	$X_{cg}[k] = \frac{1}{2}(X[k] - X^*[\langle -k \rangle_N])$

DFT Matrix Relation

$$\boldsymbol{x} = D_N^{-1} \boldsymbol{X}, \ \boldsymbol{X} = D_N \boldsymbol{x}$$

DFT Geometric Symmetry

$$D_N = \begin{bmatrix} W_N^0 & W_N^0 & W_N^0 \\ W_N^0 & W_N^1 & W_N^2 \\ W_N^0 & W_N^2 & W_N^4 \end{bmatrix}, \ D_N^{-1} = \frac{1}{N} \begin{bmatrix} W_N^0 & W_N^0 & W_N^0 \\ W_N^0 & W_N^{-1} & W_N^{-2} \\ W_N^0 & W_N^{-2} & W_N^{-4} \end{bmatrix}, \ D_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$$

离散三角信号的周期性 $\omega N = 2k\pi \Rightarrow N = \frac{2k\pi}{}$

离散三角信号的周期性小结论

1. 周期N必须是整数

原: 0.1234 $\|X\|_p = \left(\frac{1}{2\pi}\int_{-\pi}^{\pi}|X(e^{j\omega})|^p\right)^{\frac{1}{p}}$, $\|X\|_{\infty} = \max|X(e^{j\omega})|$ $MSE = \frac{1}{N}\sum_{i=0}^{N-1}(|y[n] - x[n]|)^2 = \frac{1}{N}(|y[n] - x[n]|_2)^2$ Σ : 0.4321 Total energy: $\epsilon_X = \sum_{n=-\infty}^{\infty}|x[n]|^2$ (Energy signal: finite energy) Average power: $P_X = \lim_{K \to \infty} \frac{1}{2K+1}\sum_{k=-K}^K|x[n]|^2$ (Power signal: finite power) Passive system: $\epsilon_Y \le \epsilon_X < \infty$, lossless system: $\epsilon_Y = \epsilon_X < \infty$

- 角频率相差 $2k\pi$ 的信号完全相同
- 任 何 数 列 的 最 大 频 率 为 π (folding frequency), 且对称频 率 (0.6π 和1.4π) 信号相同

变换			
CTFT	DTFT	DFT	Z-transform
时域连续非周期 频域连续非周期	时域离散非周期 频域连续周期	时域离散周期 频域离散周期	
$X_a(j\Omega) = \int_{-\infty}^{\infty} x_a(t)e^{-j\Omega t}dt$	$X(e^{j\omega}) = \sum_{n=0}^{\infty} x[n]e^{-j\omega n}$	$X[k] = \sum_{N=1}^{N-1} x[n] W_N^{kn}$	$G(z) = \sum_{n=0}^{\infty} g[n]z^{-n}$
$x_a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) e^{j\Omega t} d\Omega$	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$x[n] = \frac{1}{N} \sum_{k=0}^{n=0} X[k] W_N^{-kn}$	$g[n] = \frac{1}{2\pi j} \oint_{C} G(z) z^{n-1} dz$
$\int_{-\infty}^{\infty} x_a(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) ^2 d\Omega$	$\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) d\omega$	$\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{X}[k] ^2$	
	$x[-n] \leftrightarrow X(e^{-j\omega})$	$x[\langle -n\rangle_N] \leftrightarrow X[\langle -k\rangle_N]$	$x[-n] \leftrightarrow X(z^{-1})$ with inverted R
	$x^*[-n] \leftrightarrow X^*(e^{j\omega})$	$x[\langle -n\rangle_N] \leftrightarrow X^*[k]$	
	$x^*[n] \leftrightarrow X^*(e^{-j\omega})$	$x^*[n] \leftrightarrow X^*[\langle -k \rangle_N]$	

Property	Signal	DTFT	DFT	Z-Transform	ROC
Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	aX[k] + bY[k]	$aX_1(z) + bX_2(z)$	At least $R_1 \cap R_2$
Time Shifting	$x[n-n_0], x[\langle n-n_0\rangle_N]$	$e^{-j\omega n_0}X(e^{j\omega})$	$W_N^{kn_0}X[k]$	$z^{-n_0}X(z)$	R except for possible origin
Frequency Shifting (Z-Domain Scaling)	$e^{j\omega_0n}x[n],W_N^{-k_0n}x[n]$	$X(e^{j(\omega-\omega_0)})$	$X[\langle k-k_0\rangle_N]$	$X(e^{-j\omega_0}z)$	R
Time Expansion	$x_{(k)}[n] = x \left[\frac{n}{k} \right] \text{ if } n = mk \text{ else } 0$	$X(e^{jk\omega})$		$X(Z^k)$	$R^{rac{1}{k}}$
Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$	X[k]Y[k]	X(z)Y(z)	At least $R_1 \cap R_2$
Multiplication	$[u]\lambda[u]x$	$\theta p(_{(heta}$	$\left \frac{1}{N}\sum_{m=0}^{N-1}X[m]Y[(k-m)_N]\right \frac{1}{2\pi j}\oint_{\mathcal{C}}X(v)H\left(\frac{z}{v}\right)v^{-1}dv$	$\frac{1}{2\pi j} \oint_C X(v) H\left(\frac{z}{v}\right) v^{-1} dv$	At least R_1R_2
Differencing in Time	x[n]-x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$		$(1-z^{-1})X(z)$	At least $R \cap \{ z > 0\}$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$		$\frac{1}{1-z^{-1}}X(z)$	At least $R \cap \{ z > 1\}$
Differentiation in Frequency	[u]xu	$j \frac{dX(e^{j\omega})}{d\omega}$		$-z \frac{dX(z)}{dz}$	R

DTFT Transform Pairs	-
Signal	Transform
$\delta[n]$	1
$\mu[n]$	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
1	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega - \omega_0 + 2\pi k)$
$\alpha^n \mu[n], (\alpha < 1)$	$\frac{1}{1-\alpha e^{-j\omega}}$
$(n+1)\alpha^n\mu[n], (\alpha <1)$	$\frac{1}{(1-\alpha e^{-j\omega})^2}$
$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}$	$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le \omega \le \omega_c \\ 0, & \omega_c < \omega \le \pi \end{cases}$
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$
$\sin \omega_0 n$	$\frac{\pi}{i} \sum_{l=\infty}^{l=\infty} \left\{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \right\}$

Signal	Transform	ROC
$\delta[n]$	1	All z
u[n]	1	z > -1
	$\frac{1-z^{-1}}{1}$	
-u[-n-1]	-	z < -1
	$\frac{1-z^{-1}}{z^{-m}}$	
$\delta[n-m]$	z^{-m}	All z , except
		0 or ∞
$a^nu[n]$	1	z > a
	$\frac{1-az^{-1}}{1}$	
$-a^nu[-n-1]$		z < a
	$\frac{1-az^{-1}}{az^{-1}}$	
$na^nu[n]$		z > a
	$(1-az^{-1})^2$	
$-na^nu[-n-1]$	az^{-1}	z < a
	$(1-az^{-1})^2$	
$[\cos \omega_0 n] u[n]$	$1 - [\cos \omega_0] z^{-1}$	z > 1
	$1-[2\cos\omega_0]z^{-1}+z^{-2}$	
$[\sin \omega_0 n]u[n]$	$[\sin \omega_0]z^{-1}$	z > 1
[n1[1	$1-[2\cos\omega_0]z^{-1}+z^{-2}$ $1-[r\cos\omega_0]z^{-1}$	1-1 >
$[r^n\cos\omega_0 n]u[n]$	$\frac{1 - [r \cos \omega_0]z}{1 - [2r \cos \omega_0]z^{-1} + r^2z^{-2}}$	z > r
$[r^n \sin \omega_0 n] u[n]$	$[r \sin \omega_0]z^{-1}$	z > r
	$1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}$	121 / /

Initial Value Theorem If $x[n] = 0$ for $n < 0$, $x[0] = \lim_{z \to \infty} X(z)$. For $p \ge 1$	
Initial Valu If $x[n] = 0$	

$\begin{array}{c} \text{If } x[n] = 0 \text{ for} \\ \\ \text{DFT * *(abs - 1)} \\ \\ \text{M} \\ \\ \\ \text{M}_{N} = e^{-J_{N}^{2n}} \\ \\ \\ \text{W}_{N} = e^{-J_{N}^{2n}} \end{array}$	If x DFT
$(n < 0, x[0] = \lim_{z \to \infty} X(z).$ $(k-l)n = \begin{cases} 1, & k = l + rr \\ 0, & k \neq l \end{cases}$ $\cos \left[\frac{2\pi}{r} m \right] = \frac{1}{\pi} (W_N^{rn} + l)$	or $n < 0$, $x[0] = \frac{1}{N}$ $\cos \left(\frac{2\pi}{N} (\kappa - l) n \right) = \frac{1}{N}$ $\cos \left(\frac{2\pi}{N} T m \right) = 0$
$\begin{cases} n < 0, \\ n < 0, \end{cases}$ $cos \left[\frac{2\pi}{n} \right]$)r 1
	$\pmb{ imes}$ 接触公式 $ N = 0 $ $N = 0 $ N

	1	$1 - \alpha e^{j\omega}$
$\frac{1 - \alpha e^{-j\omega}}{1 - \alpha \cos \omega} - \frac{1}{1}$. – αe ^{– jα} – jα sin o	$\frac{1-\alpha e^{j\omega}}{\omega}$
$-\frac{1}{1-2\alpha\cos 1}$		$\alpha \sin \omega$
$=\frac{1}{\sqrt{1-2\alpha\cos\theta}}$	$\omega + \alpha^2$	$\propto \arctan\left(-\frac{1}{1-\alpha\cos\omega}\right)$

Signal	Transform
$\delta[n]$	1
$\delta[n-m]$	W_N^{km}
$\cos\left(\frac{2\pi}{N}rn\right)$	$\left\{\frac{N}{2}, k = r \text{ or } N - r\right\}$
	(0, otherwise

System Properties (Z-Transform)			
Causality	ROC is the exterior of a circle		
	including infinity		
Causality	ROC is the exterior of a circle outside		
(Rational $H(s)$)	the outermost pole + 分子 z 阶数不		
	能比分母大		
Stability	ROC includes the unit circle		
Caucal ITI eyetom w	with rational $H(s)$, all poles lies incide the		

Causal LTI system with rational H(s): all poles lies inside the unit circle + 分子 z 阶数不能比分母大

和差化积公式与积化和差公式

$$\begin{split} \sin\alpha + \sin\beta &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin\alpha - \sin\beta &= 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \cos\alpha + \cos\beta &= 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \sin\alpha\cos\beta &= \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)] \\ \cos\alpha\sin\beta &= \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)] \\ \cos\alpha\cos\beta &= \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)] \\ \sin\alpha\sin\beta &= -\frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)] \end{split}$$

Hilbert Transform

$$\frac{1}{\pi t} \stackrel{\mathcal{F}}{\longleftrightarrow} -j \cdot \operatorname{sign} \omega, \cos \omega_0 t \stackrel{h(t)}{\longrightarrow} \sin \omega_0 t$$

Convolution 卷积

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$
$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau \int_{-\infty}^{+\infty} x(t-\tau)h(\tau)d\tau$$

个函数的t换成 τ ,另一个函数的t换成 $t-\tau$;如果结果以原 点为界, 记得写成u[n]u(t)的形式; $x(\tau)$ 的图像正常, $h(t-\tau)$ 的图像关于y轴翻转后, 原点为t

Sinc Function

$$\operatorname{sinc} \theta = \frac{\sin \pi \theta}{\pi \theta}$$

2N-Point DFT using a single N-Point DFT $v[n] \not \in 2N, \ g[n] = v[2n], h[n] = v[2n+1]$

则 $V[k] = G[\langle k \rangle_N] + W_{2N}^k H[\langle k \rangle_N]$

Nyquist Sampling Theorem

Let x(t) be a band-limited signal within $\pm \omega_{\scriptscriptstyle M}$, then x(t) is uniquely determined by its samples x(nT) if $\omega_s > 2\omega_M$, where $\omega_s = \frac{2\pi}{T}$. Nyquist rate: $2\omega_M$

Euler's formula 欧拉公式

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Z变换特殊峰的判断 信号为正, 零点有峰 信号为负, 无穷有峰

Z-变换对快速检查单

Signal

 $a^nu[-n-1]$

 $(-a)^n u[n]$

 $(-a)^n u [-n-1]$

 $na^nu[n]$

圆周卷积算线性卷积

Group Delay, Phase Delay Phase delay: $au_p(\omega_0) = -rac{ heta(\omega_0)}{\omega_0}$

诱导公式

 $\sin(2k\pi + \alpha) = \sin\alpha$ $\cos(2k\pi + \alpha) = \cos\alpha$ $\sin(-\alpha) = -\sin\alpha$ $\cos(-\alpha) = \cos \alpha$ $\sin(\pi - \alpha) = \sin \alpha$ $\cos(\pi - \alpha) = -\cos \alpha$ $\sin(\pi + \alpha) = -\sin \alpha$ $\cos(\pi + \alpha) = -\cos\alpha$ $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$ $\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$ $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ $tg(k\pi + \alpha) = tg\,\alpha$ $tg(-\alpha) = -tg \alpha$ $tg(\pi - \alpha) = -tg \alpha$ $tg(\pi + \alpha) = tg \alpha$ $tg\left(\frac{\pi}{2} - \alpha\right) = ctg \alpha$ $tg\left(\frac{\pi}{2} + \alpha\right) = -ctg \alpha$

Phase delay:
$$\tau_p(\omega_0) = -\frac{\theta(\omega_0)}{\omega_0}$$

Group delay: $\tau_g(\omega) = -\frac{d\theta(\omega)}{d\omega}$
 $y_a(t) = a\left(t - \tau_g(\Omega_c)\right)\cos\Omega_c\left(t - \tau_p(\Omega_c)\right)$

补 0 法: 两序列都补到M + N - 1长, 算圆周卷积即可 Overlap-add: 将x[n]切段, 每段与h[n]用补 0 法算圆周 卷积,最后相加时要有N-1长度的 overlap

Overlap-save: 相加时不重叠,而是切断时重叠N-1长 度;最前面补N-1个0,相加时每段舍去前N-1

 $1 - az^{-1}$

 $1 + az^{-1}$

 $1 + az^{-1}$

系统性质的判据	输入输出关系	单位冲激响应
Memoryless	Output at $t = t_0$ depends only on the value of input at $t = t_0$	$h(t) = 0 \text{ for } t \neq 0$
Invertible	There exist an inverse system	$\exists h_1[n] \ s. \ t. \ h[n] * h_1[n] = \delta[n]$
Causality	Output at this time only depends on values of the input at the present time and in the past	h[n] = 0 for n < 0
Stability	BIBO	$\int_{-\infty}^{\infty} h(\tau) d\tau < \infty$
Time-invariance	Let $x_1(t) = x(t - t_0)$ Check $y_1(t) = ?y(t - t_0)$	Must satisfy
Linearity	Let $x_1(t), x_2(t), x_3(t) = x_1(t) + x_2(t)$ Check $y_3(t) = ?ay_1(t) + by_2(t)$	Must satisfy

Time-Domain Sampling 时域采样

$$x_a(t) \overset{CTFT}{\longleftrightarrow} X_a(j\Omega), \ x(t) = x_a(t)p(t) \overset{CTFT}{\longleftrightarrow} X(j\Omega) = \frac{1}{r} \sum_{k=-\infty}^{\infty} X_a(j(\Omega-k\Omega_s))$$
 $x[n] = x(t)|_{t=nT} \overset{F}{\longleftrightarrow} X(e^{j\omega}) = X(j\Omega)|_{\Omega=\frac{\omega}{T}} = \frac{1}{r} \sum_{k=-\infty}^{\infty} X_a\left(j\frac{\omega-2k\pi}{T}\right)$ 采样后信号的频率响应幅值变为1/T倍,因此恢复信号时要通过一个增益为 T 的 BPF,BPF 的截止频率最好为 $\frac{\omega_s}{2}$; Ω 轴上的 Ω_s 对应 ω 轴上的 2π

连续离散公式:时域t=nT,频域 $\omega=\Omega T$,任何地方f=1/T时域采样导致频域周期化: $F_{out}=F_{in}\pm kF_{s}$, $\Omega_{out}=\Omega_{in}\pm k\Omega_{s}$

带通采样

Fourier-Domain Sampling 频域采样

频域采N个样(不关心x[n]周期是不是 N), 时域信号就以N为周期

$$y[n] = \sum_{n=-\infty}^{\infty} x[n+mN], 0 \le n \le N-1$$
 多画几个周期找规律!

Geometric Series 等比数列

通项公式:
$$a_n = a_1 q^{n-1}$$

两项关系: $a_n = a_m q^{n-m}$
求和公式: $S_n = a_1 \frac{a-q^n}{1-q} = \frac{a_1-a_nq}{1-q}$

 $||x||_p = (\sum_{n=-\infty}^{\infty} |x[n]|^p)^{\frac{1}{p}}, ||x||_{\infty} = |x|_{max}$

信号的范数、能量、功率

分解	$\lambda_{ev}(\iota) = \frac{1}{2}(\lambda(\iota) + \lambda(-\iota))$	$X_{ev}[k] = \frac{1}{2}(X[k] + X[\langle -k \rangle_N])$ $X_{od}[k] = \frac{1}{2}(X[k] - X[\langle -k \rangle_N])$
实虚 分解	$\lambda_{re}(\iota) = \{(\lambda(\iota) + \lambda(\iota))\}$	$X_{re}[k] = \frac{1}{2}(X[k] + X^*[k])$ $X_{im}[k] = \frac{1}{2}(X[k] - X^*[k])$
共轭 对称 分解	$x_{cs}(t) = \frac{1}{2}(x(t) + x(-t))$	$X_{cs}[k] = \frac{1}{2}(X[k] + X^*[(-k)_N])$ $X_{ca}[k] = \frac{1}{2}(X[k] - X^*[(-k)_N])$

DFT Matrix Relation

信号的分解

$$x = D_N^{-1} X, \ X = D_N x$$

$$D_N = \begin{bmatrix} W_N^0 & W_N^0 & W_N^0 \\ W_N^0 & W_N^1 & W_N^2 \\ W_N^0 & W_N^2 & W_N^4 \end{bmatrix}, \ D_N^{-1} = \frac{1}{N} \begin{bmatrix} W_N^0 & W_N^0 & W_N^0 \\ W_N^0 & W_N^{-1} & W_N^{-2} \\ W_N^0 & W_N^{-2} & W_N^{-4} \end{bmatrix}, \ D_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$$

$$\omega N = 2k\pi \Rightarrow N = \frac{2k\pi}{2}$$

离散三角信号的周期性 $\omega N = 2k\pi \Rightarrow N = \frac{2k\pi}{}$

DFT Geometric Symmetry

Geometric symmetry:
$$x[n] = x[N-1-n], \theta(\omega) = -\frac{N-1}{2}\omega + \beta$$
 (type1 odd, type2 even)
Geometric anti-symmetry: $x[n] = -[N-1-n], \theta(\omega) = -\frac{N-1}{2}\omega + \frac{\pi}{2} + \beta$ (type3 odd, type4 even), 中心系数为 0

原: 01234

ROC

|z| < |a|

|z| > |a|

|z| < |a|

|z| > |a|

Pole

а

-a

-a

 $a(\times 2)$

Circular Time-Shift/Reversal

 $\|X\|_p = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^p \right)^{\frac{1}{p}}, \ \|X\|_{\infty} = \max|X(e^{j\omega})|$ 原: 0 1 2 3 4 移: 3 4 0 1 2 及: 0 4 3 2 1 Total energy: $\epsilon_X = \sum_{n=-\infty}^{\infty} |x[n]|^2$ (Energy signal: finite energy) Average power: $P_X = \lim_{K \to \infty} \frac{1}{2K+1} \sum_{K=-K}^{K} |x[n]|^2$ (Power signal: finite power) Passive system: $\epsilon_Y \le \epsilon_X < \infty$, lossless system: $\epsilon_Y = \epsilon_X < \infty$

离散三角信号的周期性小结论

- 1. 周期N必须是整数
- 角频率相差 $2k\pi$ 的信号完全相同
- 任 何 数 列 的 最 大 频 率 为 π (folding frequency), 且对称频 率 (0.6π和1.4π) 信号相同

CTFT	DTFT	DFT	Z-transform
付域连续非周期 频域连续非周期	时域离散非周期 频域连续周期	时域离散周期 频域离散周期	
$X_a(j\Omega) = \int_{-\infty}^{\infty} x_a(t)e^{-j\Omega t}dt$	$X(e^{j\omega}) = \sum_{n=0}^{\infty} x[n]e^{-j\omega n}$	$X[k] = \sum_{n=1}^{N-1} x[n] W_N^{kn}$	$G(z) = \sum_{n=0}^{\infty} g[n]z^{-n}$
$x_a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) e^{j\Omega t} d\Omega$	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi=-\infty} X(e^{j\omega}) e^{j\omega n} d\omega$	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}$	$g[n] = \frac{1}{2\pi i} \oint_{\mathcal{C}} G(z) z^{n-1} dz$
$\int_{-\infty}^{\infty} x_a(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) ^2 d\Omega$	$\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	$\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{X}[k] ^2$	
	$x[-n] \leftrightarrow X(e^{-j\omega})$	$x[\langle -n \rangle_N] \leftrightarrow X[\langle -k \rangle_N]$	$x[-n] \leftrightarrow X(z^{-1})$ with inverted F
	$x^*[-n] \leftrightarrow X^*(e^{j\omega})$	$x[\langle -n\rangle_N] \leftrightarrow X^*[k]$	Butterworth Filter
	$x^*[n] \leftrightarrow X^*(e^{-j\omega})$	$x^*[n] \leftrightarrow X^*[\langle -k \rangle_N]$	$ H_a(j\Omega) ^2 = \frac{1}{1 + (\Omega/\Omega_c)^{2N}}$

$\frac{ax[n]+by[n]}{x[n-n_0],x[(n-n_0)_N]}$ $e^{j\omega_0n}x[n],W^{-k_0n}_{-k_0n}x[n]$	$\begin{array}{c c} \textbf{DTFT} \\ aX(e^{j\omega}) + bY(e^{j\omega}) \\ e^{-j\omega\eta_0}X(e^{j\omega}) \\ X(e^{j(\omega-\omega_0)}) \end{array}$	DFT $aX[k] + bY[k]$ $W_N^{kn_0}X[k]$ $X[\langle k - k_0 \rangle_N]$	Z-Transform $aX_1(z) + bX_2(z)$ $z^{-n_0}X(z)$ $X(e^{-j\omega_0}z)$	ROC At least $R_1 \cap R_2$ R except for possible origin R
$x_{(k)}[n] = x \left[\frac{n}{k}\right] if n = mk else 0$	$X(e^{jk\omega})$		$X(z^k)$	$R^{\frac{1}{k}}$
x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$	X[k]Y[k]	X(z)Y(z)	At least $R_1 \cap R_2$
x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$		$\left \frac{1}{N}\sum_{m=0}^{N-1}X[m]Y[\langle k-m\rangle_N]\right \left \frac{1}{2\pi j}\oint_{\mathcal{C}}X(v)H\left(\frac{z}{v}\right)v^{-1}dv\right $	Atleast R ₁ R ₂
x[n]-x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$		$(1-z^{-1})X(z)$	At least $R \cap \{ z > 0\}$
$\sum_{k=-\infty}^n x[k]$	$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$		$\frac{1}{1-z^{-1}}X(z)$	At least $R \cap \{ z > 1\}$
[u]xu	$j \frac{dX(e^{j\omega})}{d\omega}$		$-z \frac{dX(z)}{dz}$	R

DTFT Transform Pairs	
Signal	Transform
$\delta[n]$	1
$\mu[n]$	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
1	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
$\alpha^n \mu[n], (\alpha < 1)$	$\frac{1}{1-\alpha e^{-j\omega}}$
$(n+1)\alpha^n\mu[n], (\alpha <1)$	$\frac{1}{(1-\alpha e^{-j\omega})^2}$
$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}$	$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le \omega \le \omega_c \\ 0, & \omega_c < \omega \le \pi \end{cases}$
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{l=\infty} \{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \}$

Signal	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > -2
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < -1
$\delta[n-m]$	z^{-m} All z , exc	ept 0 or ∞
$a^nu[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$ az^{-1}	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$[\cos \omega_0 n] u[n]$	$\frac{1-[\cos \omega_0]z^{-1}}{1-[2\cos \omega_0]z^{-1}+z^{-2}}$	z > 1
$[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1-[2\cos \omega_0]z^{-1}+z^{-2}}$	z > 1
$[r^n\cos\omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-1}}$	z > r
$[r^n \sin \omega_0 n] u[n]$	$\frac{[r \sin \omega_0]z^{-1}}{1 - [2r \cos \omega_0]z^{-1} + r^2z^{-1}}$	z > r

1 _	1	$1 - \alpha e^{j\omega}$	
$\frac{1 - \alpha e^{-j\omega}}{1 - \alpha \cos \omega} = \frac{1}{1 - \alpha \cos \omega}$	– αe ^{–jω} – jα sin a	$\frac{1-\alpha e^{j\omega}}{\omega}$	
$=\frac{1}{1-2\alpha \operatorname{co}}$ $=\frac{1}{1-2\alpha \operatorname{co}}$		arctan (– –	$\alpha \sin \omega$
$\sqrt{1-2\alpha\cos\theta}$	$\omega + \alpha^2$	1	$-\alpha\cos\omega$

DFT Transform Pairs		
Signal	Transform	
$\delta[n]$	1	
$\delta[n-m]$	W_N^{km}	
$\cos\left(\frac{2\pi}{N}rn\right)$	$\begin{cases} \frac{N}{2}, k = r \text{ or } N - r \\ 0, \text{ otherwise} \end{cases}$	
$\sin(\frac{2\pi}{N}rn)$	$\begin{cases} \frac{N}{2j}, k = r \\ -\frac{N}{2j}, k = N - 1 \\ 0, otherwise \end{cases}$	

 $\cos\left[\frac{2\pi}{N}rn\right] = \frac{1}{2}(W_N^{rn} + W_N^{-rn})$

k = l + rn $k \neq l$

 $\frac{1}{N} \sum_{N=0}^{N} e^{j\frac{2\pi}{N}(k-l)n} = \begin{cases} 1, & k \\ 0, & k \end{cases}$ $W_N = e^{-j\frac{2\pi}{N}}, \quad \cos\left[\frac{2\pi}{N}m\right] = \frac{1}{2}$

P-Series Test $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for $p \ge 1$

IIR Filter Design ①对比两个α选窗

② $\Delta\omega$ 算M③N = 2M + 1④ $h[n] = h_{LP}[n - M]w[n - M]$

