回顾: Linux简单编程

- ❖ vim编辑器
 - → 配置文件~/.vimrc, 参考amix/vimrc
- * Linux程序编译指令: g++ -o {可执行文件} {源程序}
 - ➡ ○ 选项: 指定产生的可执行文件名称
- ❖ Makefile用法
 - → 规则:目标,依赖,指令
 - **→ make**: 编译makefile的第一条规则
 - → make {target}: 编译makefile中以target为目标的规则

<target>: ctarget>:

[tab] <commands>

提示: bitsToInteger

- bitStr[0..i] = 2*bin_str[0..i-1] + bin_str[i] (i >= 1)
 - ⇒ binStr[0..i]表示**binStr**中前i+1个二进制字符对应的十进制数

```
. . .
 1 int bitsToInteger(unsigned char *bitStr, int length) {
 2 value = 0;
 3 for i from 0 to length-1
  if bitStr[i] = 1
   value++;
   endif
   value = value << 1;
 8 end for
    value = value >> 1;
    return value;
11 }
```

提示: integerToBits

```
• • •
 1 unsigned char *integerToBits(int value, int *pLength) {
    binStr = "";
    while value > 0
    if value % 2 = 1
      insertFromFront(binStr, '1');
   else
      insertFromFront(binStr, '0');
   end if
 9 value = value >> 1;
10 end while
    *pLength = strlen(binStr);
    return binStr;
13 }
```

数论基础实验-模指数运算

模指数运算

- ❖ 模指数运算: 已知a, e, m, 计算ae mod m
 - ➡ a: 底数, e: 指数, m: 模数
- ❖ 应用: 公钥密码体制
- ❖ 示例: 计算2⁹⁰ mod 13
 - → 指数函数: pow(a, e)
 - * 依赖math.h
 - ➡ 模运算: %

如何有效计算模指数

当e很大时, ae溢出: 运算结果超出 固定分配空间能够存储的最大值

模指数运算:分治原理

- ❖ 分治法: 分, 治, 归并
 - a^e mod $m = a^{e1+e2}$ mod $m = (a^{e1} \text{ mod } m) * (a^{e2} \text{ mod } m)$ mod m
 - ➡分别计算ael mod m和ael mod m (不会发生溢出)
 - ➡由ae1 mod m和ae2 mod m归并出ae mod m
- ❖ 示例: 计算2⁹⁰ mod 13
 - \rightarrow 290 = 250 * 240

问题

能否在计算2⁵⁰ mod 13时重用2⁴⁰ mod 13的部分结果

- → 治: 2⁴⁰ mod 13 = 3, 2⁵⁰ mod 13 = 4
 - * 240和250在unsigned long类型下不会溢出
- → 归并: 2⁹⁰ mod 13 = 4 * 3 mod 13 = 12

模指数运算: 二进制算法

❖ 以二进制方式分拆指数

如果e可以表示为二进制数 $\underline{d_{n-1}d_{n-2}...d_1d_0}$, 这里 $d_i = 0$ 或1 $e = d_{n-1} * 2^{n-1} + ... + d_1 * 2 + d_0 = D_{n-1} + ... + D_1 + D_0$ ($D_i = d_i * 2^i$) 因此, $a^e = a^{Dn-1} * a^{Dn-2} * ... * a^{D1} * a^{D0}$

- ❖ 分治计算: A_i = a^{Di} mod m, i = 0, 1,..., n-1
 - ⇒ $a^{2^{i+1}} \mod m = (a^{2^i} \mod m) * (a^{2^i} \mod m) \mod m$
 - → 计算O(log₂e)次
- ❖ 归并: (A_{n-1} *...* A₀) **mod** m ੁ

模指数运算示例I

计算7256 mod 13

❖ 分拆指数: 256 = 28

* 分治计算

- → 7^1 mod 13 = 7
- \rightarrow 7² mod 13 = [(7¹ mod 13) * (7¹ mod 13)] mod 13 = 10
- → $7^4 \mod 13 = 9$, $7^8 \mod 13 = 3$,.....
- \rightarrow 7²⁵⁶ mod 13 = [(7¹²⁸ mod 13) * (7¹²⁸ mod 13)] mod 13 = 9
- * 归并: 7²⁵⁶ mod 13 = 9

模指数运算示例 II

计算5¹¹⁷ mod 19

- ❖ 分拆指数: 117 = 1 + 4 + 16 + 32 + 64
- * 分治计算
 - \rightarrow 5¹ mod 19 = 5
 - \rightarrow 5² mod 19 = [(5¹ mod 19) * (5¹ mod 19)] mod 19 = 6
 - → 5^4 mod 19 = 17; 5^{16} mod 19 = 16; 5^{32} mod 19 = 9
 - \rightarrow 5⁶⁴ mod 19 = [(5³² mod 19) * (5³² mod 19)] mod 19 = 5
- * 归并: 5¹¹⁷ mod 19 = 5¹⁺⁴⁺¹⁶⁺³²⁺⁶⁴ mod 19 = 1

数论基础实验-素性检测

基于Eratosthenes筛选法的素性测试方法

Miller-Rabin素性测试方法

素数

- ❖ 如果n (n > 1) 是素数, 当且仅当n只有因子1和它本身
 - → 注:1不是素数
- ❖ 数学应用: 自然数可由全体素数基底表达
 - → 算术基本定理: 任意整数a > 1都可以唯一地分解为: a = n₁^{k1} X n₂^{k2} X..., 这里n_i均为素数, ki为正整数
- ❖ 密码学应用: 构建基于RSA的公钥密码学内核
- ❖ 素性测试: 判定一个数n是否为素数

素性判定

- ❖ 第一种方法: 判断n是否被i整除 (i = 2,..., n-1)
 - → 素数n只有1和n两个因子
 - → n-2个判断条件

问题

如何减少判断次数

- ❖ 第二种方法: 判断n是否被i整除 (i = 2, 3,..., n¹/²)
 - → 如果j > n¹/²是n的因子, 总能找到i < n¹/², 满足n = i * j
 - → 判断条件减少为n1/2 -1次, 判断复杂度由O(n)降低为O(n1/2)

问题

如何进一步减少判断次数

一种确定性素性测试思想

- ❖ 确定性: 判断n一定是/不是素数
- ❖ 思想: 在{2,3,..., n¹/²}集合基础上,找出其中的素数,判断n是否含有这些素因子
 - → {2,3,..., n¹/2}可能存在合数,合数含有素因子导致重复判断
- * 步骤: (1)确定待筛选集合{2,3,..., n^{1/2}}; (2)基于{2,3,..., n^{1/2}}的Eratosthenes筛选; (3)筛选后元素与n整除判定

Eratosthenes筛选法

目标:产生最小的N个素数

- ➡ 不适用于计算某个范围内的全部素数
- ❖ 取第一个素数2, 划去{2,..., N}中除2以外所有2的倍数
- ❖ 大于2的第一个正整数(即3)被认定为素数,在余下的整数中划去除3以外所有3的倍数
- ❖ 循环此过程直到找到{2,3,..., N}中的所有素数

Eratosthenes筛选法示例

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

Eratosthenes 更多示例

基于筛选法的素性测试

判断2543是否为素数

- * 求平方根: 2543^{1/2}~= 50, 确定待筛选集合{2, 3, 4,..., 50}
- ❖ 使用Eratosthenes筛选法在集合{2, 3, 4,..., 50}中筛选出 所有素数: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
- ❖ 整除判定: 2543除以这15个素数, 结果都不是整数, 因此 2543一定是素数

课堂实验

- ❖ 模指数运算实验
 - ⇒ a, e, m均为正整数; 否则返回-1

```
1 int modExp(int a, int e, int m)
2 // a: 输入底数
3 // e: 输入指数
4 // m: 输入模数
5 // 返回a^e mod m
```

❖ 基于Eratosthenes筛选法的素性测试实验

```
● ● ● ● ● 1 bool Eratosthenes(int a) 2 // a: 输入测试数 3 // 如果a是素数,返回1;否则返回0
```