EEE104 – Digital Electronics (I) Lecture 7

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Boolean Algebra and Logic Simplification
 - Boolean Operations
 - Laws and Rules
 - DeMorgan's Theorems
 - Logic Simplification

Boolean Operations

Concepts

- Boolean algebra is the mathematics of logic functions.
- A variable is a symbol used to represent a logical quantity. It can have a 1 or 0 value.
- The **complement** is the inverse of a variable and is indicated by an overbar, e.g. \overline{A}
- A literal is a variable or its complement.

Boolean Operations

Boolean Addition

Equivalent to the OR operation with the basic rules:

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 1$

• A **sum term** is a sum of literals, and is equal to 0 only if each of the literals is 0, e.g. A+B+C+D

Boolean Operations

Boolean Multiplication

Equivalent to the AND operation with the basic rules:

$$0 \cdot 0 = 0$$

 $0 \cdot 1 = 0$
 $1 \cdot 0 = 0$
 $1 \cdot 1 = 1$

• A **product term** is the product of literals. It is equal to 1 only if each of the literals is 1, e.g. ABCD

Laws of Boolean Algebra

Commutative Laws

$$A + B = B + A$$

$$AB = BA$$

Associate Laws

$$A + (B + C) = (A + B) + C$$

$$A(BC) = (AB)C$$

Distributive Laws (or Factoring)

$$A(B+C)=AB+AC$$

Rules of Boolean Algebra

1.
$$A + 0 = A$$

2.
$$A+1=1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{A} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{A}B = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

- A, B, C can represent a single variable or a combination of variables.
- Rules 10-12 can be derived using simpler rules and the laws.

Rules of Boolean Algebra

Rule 10:
$$A + AB = A$$

 $A + AB = A(1+B)$ Rule 2
 $= A$

Rule 11:
$$A + \overline{A}B = A + B$$

 $A + \overline{A}B = A + AB + \overline{A}B$ Rule 10 or Rule 2
 $= A + (A + \overline{A})B$
 $= A + B$ Rule 6

Rules of Boolean Algebra

Rule 12:

$$(A+B)(A+C) = A+BC$$

$$(A+B)(A+C) = AA+AC+AB+BC$$

$$= A+AC+AB+BC$$
 Rule 7
$$= A+AB+BC$$
 Rule 10 or Rule 2
$$= A+BC$$
 Rule 10 or Rule 2

DeMorgan's Theorems (1st)

 The complement of a product of variables is equal to the sum of the complements of variables.

$$\overline{XY} = \overline{X} + \overline{Y}$$

Inputs		Output	
X	Y	XY	$\overline{X} + \overline{Y}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

$$\frac{X}{Y} = \sum_{Y} - \overline{X} + \overline{Y}$$
NAND Negative-OR

DeMorgan's Theorems (2nd)

 The complement of a sum of variables is equal to the product of the complements of variables.

$$\overline{X+Y} = \overline{X}\overline{Y}$$

$$\frac{X}{Y} \longrightarrow \overline{X+Y} \equiv \frac{X}{Y} \longrightarrow \overline{X}\overline{Y}$$
NOR Negative-AND

DeMorgan's Theorems

Break the bar, change the sign.

$$\overline{XY} = \overline{X} + \overline{Y}$$

$$\longrightarrow \longrightarrow \longrightarrow$$
NAND Negative-OR

DeMorgan's Theorems

Application Example

 Each variable can also represent a combination of other variables.

$$\overline{(AB + C)(A + BC)} = (\overline{AB + C}) + (\overline{A + BC})$$

$$= (\overline{AB})\overline{C} + \overline{A}(\overline{BC})$$

$$= (\overline{A} + \overline{B})\overline{C} + \overline{A}(\overline{B} + \overline{C})$$

$$\overline{[A + B\overline{C}]} + [D(\overline{E} + \overline{F})] = [\overline{A + B\overline{C}}][D(\overline{E} + \overline{F})]$$

$$= (A + B\overline{C})(\overline{D} + (\overline{E} + \overline{F}))$$

$$= (A + B\overline{C})(\overline{D} + E + \overline{F})$$

Simplification Using Boolean Algebra

 To use the fewest gates possible to implement a given expression.

$$AB + A(B+C) + B(B+C)$$

$$= AB + AB + AC + BB + BC$$

$$= AB + AC + B + BC$$

$$= AB + AC + B = B + AC$$

