Matemática Discreta - Año 2025 Facultad de Ciencias Exactas UNRC Práctico 1

- § **Ejercicios complejos.** Los ejercicios marcados con ^(*) son para resolver como práctica para el parcial y ser consultados.
 - (1) Demostrar las siguientes afirmaciones, donde *a*, *b* son siempre números enteros. Justificar cada uno de los pasos en cada demostración indicando el axioma o resultado que utiliza.
 - a) a + a = a implica que a = 0.
 - b) $(a + b) \cdot c = a \cdot c + b \cdot c$.
 - c) $-a = (-1) \cdot a$.
 - d) Como siempre x^2 denota $x \cdot x$. Demostrar que dados dos enteros a y b tal que $a+b \neq 0$, entonces existe un único c tal que $(a+b)c = a^2 b^2$.
 - (2) Idem (1), donde *a*, *b*, *c* son siempre números enteros.
 - a) c < 0 implica que 0 < -c.
 - b) a + c < b + c implica que a < b.
 - c) $a < b \ y \ c < 0$ implican $b \cdot c < a \cdot c$
 - (3) Probar las siguientes afirmaciones, justificando los pasos que realiza.
 - a) Si 0 < a y 0 < b entonces a < b si y sólo si $a^2 < b^2$.
 - b) Si $a \neq 0$ entonces $a^2 > 0$.
 - c) Si $a \neq b$ entonces $a^2 + b^2 > 0$.
 - (4) $^{(*)}$ Deducir de la proposición 1.2.3 que n+1 es el menor entero mayor que n para todo n en \mathbb{Z} .
 - (5) Demostrar que si un conjunto X tiene mínimo, este es único. Dicho más formalmente: demostrar que si existen $c, c' \in X$ tal que $c \le x$ y $c' \le x$ para todo $x \in X$, entonces c = c'.

1

- (6) Calcular, evaluando, las siguientes expresiones:
 - $a) \qquad \sum_{r=0}^{4} r$

 $b) \qquad \prod_{i=1}^{5} i$

c) $\sum_{k=-3}^{-1} \frac{1}{k(k+4)}$

 $d) \qquad \prod_{n=2}^{7} \frac{n}{n-1}$

(7) Usando las propiedades de las potencias, calcular:

a)
$$3^22^5 - 3^52^2$$

b)
$$(2^{2^n}+1)(2^{2^n}-1)$$

(8) Analizar la validez de las siguientes afirmaciones:

a)
$$(2^{2^n})^{2^k} = 2^{2^{n+k}}, n, k \in \mathbb{N}.$$

b)
$$(2^n)^2 = 4^n, n \in \mathbb{N}$$
.

c)
$$(2n + 2)! = 2(n + 1)!$$
.

(9) Demostrar por inducción las siguientes igualdades:

a)
$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$
, $n \in \mathbb{N}_{0}$.

b)
$$\sum_{k=0}^{n} (2k+1) = (n+1)^2, n \in \mathbb{N}_0.$$

c)
$$^{(*)}\sum_{i=1}^{n}i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}, n \in \mathbb{N}.$$

d)
$$\sum_{k=0}^{n} a^{k} = \frac{a^{n+1}-1}{a-1}$$
, donde $a \in \mathbb{R}$, $a \neq 0$, $a \neq 1$, $n \in \mathbb{N}_{0}$.

e)
$$\sum_{i=1}^{n} (i^2 + 1)i! = n(n+1)!, n \in \mathbb{N}.$$

- (10) Hallar $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se cumpla que $n^2 \geq 11n + 3$, y usar el principio de inducción para probar dicha desigualdad.
- (11) Sea $\{u_n\}_{n\in\mathbb{N}_0}$ la sucesión definida por recurrencia como sigue: $u_0=2, u_1=4$ y $u_n = 4u_{n-1} - 3u_{n-2}$ con $n \in \mathbb{N}$, $n \ge 2$. Probar que $u_n = 3^n + 1$, para todo $n \in \mathbb{N}_0$.
- (12) Sea $\{a_n\}_{n\in\mathbb{N}_0}$ la sucesión definida recursivamente por

$$\begin{cases} a_0 = 1, \\ a_1 = 1, \\ a_n = 3a_{n-1} + (n-1)(n-3)a_{n-2}, \text{ para } n \geq 2. \end{cases}$$
 is $a_n = n!$ para todo $n \in \mathbb{N}_0$.

Probar que $a_n = n!$ para todo $n \in \mathbb{N}_0$.

- (13) Sea q un número real distinto de 0, 1 y u_n definida recursivamente por: $u_0 = 1$, $u_1 = q$, $u_n = (q - 1)u_{n-1} + qu_{n-2} \ \forall \ n \ge 2$.
 - a) Calcule u_2 , u_3 y u_4
 - b) Proponga una fórmula para el término general u_n y pruébela por inducción.

- (14) Las siguientes proposiciones no son válidas para todo $n \in \mathbb{N}$. Indicar en qué paso del principio de inducción falla la demostración:
 - a) $n = n^2$,
- b) $3^n = 3^{n+2}$,
- c) $3^{3n} = 3^{n+2}$.
- (15) Probar las siguientes afirmaciones usando el principio de inducción completa.
 - a) $2n + 1 < 2^n$ para todo $n \in \mathbb{N}$, n > 2.
 - b) $n^2 \le 2^n$ para todo $n \in \mathbb{N}$, n > 3.
 - *c)* El producto de tres números enteros positivos consecutivos es divisible por 6.