TD 2 — Probabilités (1A)

Correction – Yann Issartel 16 sept. 2025

Exo 2.3 (poly) — Translation d'un borélien

Soit A un borélien de \mathbb{R} et $t \in \mathbb{R}$.

Montrer que $A + t := \{x + t : x \in A\}$ est un borélien.

Exo 2.3 (poly) — Translation d'un borélien

Soit A un borélien de \mathbb{R} et $t \in \mathbb{R}$.

Montrer que $A+t:=\{x+t:x\in A\}$ est un borélien.

Indication : considérer

$$\mathcal{F}:=\{B-t:\ B\in\mathcal{B}(\mathbb{R})\}.$$

1) $\mathcal{F}:=\{B-t:B\in\mathcal{B}(\mathbb{R})\}$ est une tribu contenant les intervalles fermés :

- 1) $\mathcal{F} := \{ B t : B \in \mathcal{B}(\mathbb{R}) \}$ est une tribu contenant les intervalles fermés :
 - $\mathbb{R} = \mathbb{R} t \in \mathcal{F}$.

- 1) $\mathcal{F} := \{ B t : B \in \mathcal{B}(\mathbb{R}) \}$ est une tribu contenant les intervalles fermés :
 - $\mathbb{R} = \mathbb{R} t \in \mathcal{F}$.
 - Si $C = B t \in \mathcal{F}$, alors $(B t)^c = B^c t \in \mathcal{F}$.

- 1) $\mathcal{F} := \{ B t : B \in \mathcal{B}(\mathbb{R}) \}$ est une tribu contenant les intervalles fermés :
 - $\mathbb{R} = \mathbb{R} t \in \mathcal{F}$.
 - Si $C = B t \in \mathcal{F}$, alors $(B t)^c = B^c t \in \mathcal{F}$. (Si $y \in (B t)^c$, alors $y \notin B t$, donc $y + t \notin B$, d'où $y + t \in B^c$, et $y \in B^c t$. Réciproquement, si $y \in B^c t$, alors $y + t \in B^c$, donc $y + t \notin B$, d'où $y \notin B t$, et $y \in (B t)^c$.)

- 1) $\mathcal{F} := \{ B t : B \in \mathcal{B}(\mathbb{R}) \}$ est une tribu contenant les intervalles fermés :
 - $\mathbb{R} = \mathbb{R} t \in \mathcal{F}$.
 - Si $C = B t \in \mathcal{F}$, alors $(B t)^c = B^c t \in \mathcal{F}$. (Si $y \in (B t)^c$, alors $y \notin B t$, donc $y + t \notin B$, d'où $y + t \in B^c$, et $y \in B^c t$. Réciproquement, si $y \in B^c t$, alors $y + t \in B^c$, donc $y + t \notin B$, d'où $y \notin B t$, et $y \in (B t)^c$.)
 - Si $C_n = B_n t \in \mathcal{F}$, alors $\bigcup_n C_n = (\bigcup_n B_n) t \in \mathcal{F}$.

1) $\mathcal{F} := \{ B - t : B \in \mathcal{B}(\mathbb{R}) \}$ est une tribu contenant les intervalles fermés :

•
$$\mathbb{R} = \mathbb{R} - t \in \mathcal{F}$$
.

- Si $C = B t \in \mathcal{F}$, alors $(B t)^c = B^c t \in \mathcal{F}$. (Si $y \in (B t)^c$, alors $y \notin B t$, donc $y + t \notin B$, d'où $y + t \in B^c$, et $y \in B^c t$. Réciproquement, si $y \in B^c t$, alors $y + t \in B^c$, donc $y + t \notin B$, d'où $y \notin B t$, et $y \in (B t)^c$.)
- Si $C_n = B_n t \in \mathcal{F}$, alors $\bigcup_n C_n = (\bigcup_n B_n) t \in \mathcal{F}$.
- Pour tout intervalle fermé [a,b], $[a,b] = [a+t,b+t] t \in \mathcal{F} \Rightarrow$ intervalles fermés $\subset \mathcal{F}$.

1) $\mathcal{F} := \{ B - t : B \in \mathcal{B}(\mathbb{R}) \}$ est une tribu contenant les intervalles fermés :

- $\mathbb{R} = \mathbb{R} t \in \mathcal{F}$.
- Si $C = B t \in \mathcal{F}$, alors $(B t)^c = B^c t \in \mathcal{F}$. (Si $y \in (B t)^c$, alors $y \notin B t$, donc $y + t \notin B$, d'où $y + t \in B^c$, et $y \in B^c t$. Réciproquement, si $y \in B^c t$, alors $y + t \in B^c$, donc $y + t \notin B$, d'où $y \notin B t$, et $y \in (B t)^c$.)
- Si $C_n = B_n t \in \mathcal{F}$, alors $\bigcup_n C_n = (\bigcup_n B_n) t \in \mathcal{F}$.
- Pour tout intervalle fermé [a,b], $[a,b] = [a+t,b+t] t \in \mathcal{F} \Rightarrow$ intervalles fermés $\subset \mathcal{F}$.

Donc $\mathcal{B}(\mathbb{R})\subset\mathcal{F}$ (puisque la tribu borélienne est engendrée par les fermés).

1) $\mathcal{F} := \{ B - t : B \in \mathcal{B}(\mathbb{R}) \}$ est une tribu contenant les intervalles fermés :

- $\mathbb{R} = \mathbb{R} t \in \mathcal{F}$.
- Si $C = B t \in \mathcal{F}$, alors $(B t)^c = B^c t \in \mathcal{F}$. (Si $y \in (B t)^c$, alors $y \notin B t$, donc $y + t \notin B$, d'où $y + t \in B^c$, et $y \in B^c t$. Réciproquement, si $y \in B^c t$, alors $y + t \in B^c$, donc $y + t \notin B$, d'où $y \notin B t$, et $y \in (B t)^c$.)
- Si $C_n = B_n t \in \mathcal{F}$, alors $\bigcup_n C_n = (\bigcup_n B_n) t \in \mathcal{F}$.
- Pour tout intervalle fermé [a,b], $[a,b] = [a+t,b+t] t \in \mathcal{F} \Rightarrow$ intervalles fermés $\subset \mathcal{F}$.

Donc $\mathcal{B}(\mathbb{R})\subset\mathcal{F}$ (puisque la tribu borélienne est engendrée par les fermés).

 \Rightarrow tout borélien A s'écrit B-t, donc A+t=B est un borélien (fin exo).

- 1) $\mathcal{F} := \{ B t : B \in \mathcal{B}(\mathbb{R}) \}$ est une tribu contenant les intervalles fermés :
 - $\mathbb{R} = \mathbb{R} t \in \mathcal{F}$.
 - Si $C = B t \in \mathcal{F}$, alors $(B t)^c = B^c t \in \mathcal{F}$. (Si $y \in (B t)^c$, alors $y \notin B t$, donc $y + t \notin B$, d'où $y + t \in B^c$, et $y \in B^c t$. Réciproquement, si $y \in B^c t$, alors $y + t \in B^c$, donc $y + t \notin B$, d'où $y \notin B t$, et $y \in (B t)^c$.)
 - Si $C_n = B_n t \in \mathcal{F}$, alors $\bigcup_n C_n = (\bigcup_n B_n) t \in \mathcal{F}$.
 - Pour tout intervalle fermé [a,b], $[a,b] = [a+t,b+t] t \in \mathcal{F} \Rightarrow$ intervalles fermés $\subset \mathcal{F}$.
- Donc $\mathcal{B}(\mathbb{R})\subset\mathcal{F}$ (puisque la tribu borélienne est engendrée par les fermés).
- \Rightarrow tout borélien A s'écrit B-t, donc A+t=B est un borélien (fin exo).
- 2) Bonus : Inclusion réciproque $\mathcal{F} \subset \mathcal{B}(\mathbb{R})$.

- 1) $\mathcal{F} := \{ B t : B \in \mathcal{B}(\mathbb{R}) \}$ est une tribu contenant les intervalles fermés :
 - $\mathbb{R} = \mathbb{R} t \in \mathcal{F}$.
 - Si $C = B t \in \mathcal{F}$, alors $(B t)^c = B^c t \in \mathcal{F}$. (Si $y \in (B t)^c$, alors $y \notin B t$, donc $y + t \notin B$, d'où $y + t \in B^c$, et $y \in B^c t$. Réciproquement, si $y \in B^c t$, alors $y + t \in B^c$, donc $y + t \notin B$, d'où $y \notin B t$, et $y \in (B t)^c$.)
 - Si $C_n = B_n t \in \mathcal{F}$, alors $\bigcup_n C_n = (\bigcup_n B_n) t \in \mathcal{F}$.
 - Pour tout intervalle fermé [a,b], $[a,b] = [a+t,b+t] t \in \mathcal{F} \Rightarrow$ intervalles fermés $\subset \mathcal{F}$.

Donc $\mathcal{B}(\mathbb{R})\subset\mathcal{F}$ (puisque la tribu borélienne est engendrée par les fermés).

- \Rightarrow tout borélien A s'écrit B-t, donc A+t=B est un borélien (fin exo).
- 2) Bonus : Inclusion réciproque $\mathcal{F} \subset \mathcal{B}(\mathbb{R})$. La translation $T_t(x) = x + t$ est continue donc mesurable.

- 1) $\mathcal{F} := \{ B t : B \in \mathcal{B}(\mathbb{R}) \}$ est une tribu contenant les intervalles fermés :
 - $\mathbb{R} = \mathbb{R} t \in \mathcal{F}$.
 - Si $C = B t \in \mathcal{F}$, alors $(B t)^c = B^c t \in \mathcal{F}$. (Si $y \in (B t)^c$, alors $y \notin B t$, donc $y + t \notin B$, d'où $y + t \in B^c$, et $y \in B^c t$. Réciproquement, si $y \in B^c t$, alors $y + t \in B^c$, donc $y + t \notin B$, d'où $y \notin B t$, et $y \in (B t)^c$.)
 - Si $C_n = B_n t \in \mathcal{F}$, alors $\bigcup_n C_n = (\bigcup_n B_n) t \in \mathcal{F}$.
 - Pour tout intervalle fermé [a,b], $[a,b] = [a+t,b+t] t \in \mathcal{F} \Rightarrow$ intervalles fermés $\subset \mathcal{F}$.

Donc $\mathcal{B}(\mathbb{R})\subset\mathcal{F}$ (puisque la tribu borélienne est engendrée par les fermés).

- \Rightarrow tout borélien A s'écrit B-t, donc A+t=B est un borélien (fin exo).
- **2)** Bonus : Inclusion réciproque $\mathcal{F} \subset \mathcal{B}(\mathbb{R})$. La translation $T_t(x) = x + t$ est continue donc mesurable. Ainsi, pour tout $B \in \mathcal{B}(\mathbb{R})$:

$$T_t^{-1}(B) = \{x : x + t \in B\} = B - t \in \mathcal{B}(\mathbb{R}).$$

- 1) $\mathcal{F}:=\{B-t:B\in\mathcal{B}(\mathbb{R})\}$ est une tribu contenant les intervalles fermés :
 - $\mathbb{R} = \mathbb{R} t \in \mathcal{F}$.
 - Si $C = B t \in \mathcal{F}$, alors $(B t)^c = B^c t \in \mathcal{F}$. (Si $y \in (B t)^c$, alors $y \notin B t$, donc $y + t \notin B$, d'où $y + t \in B^c$, et $y \in B^c t$. Réciproquement, si $y \in B^c t$, alors $y + t \in B^c$, donc $y + t \notin B$, d'où $y \notin B t$, et $y \in (B t)^c$.)
 - Si $C_n = B_n t \in \mathcal{F}$, alors $\bigcup_n C_n = (\bigcup_n B_n) t \in \mathcal{F}$.
 - Pour tout intervalle fermé [a,b], $[a,b] = [a+t,b+t] t \in \mathcal{F} \Rightarrow$ intervalles fermés $\subset \mathcal{F}$.

Donc $\mathcal{B}(\mathbb{R})\subset\mathcal{F}$ (puisque la tribu borélienne est engendrée par les fermés).

- \Rightarrow tout borélien A s'écrit B-t, donc A+t=B est un borélien (fin exo).
- **2)** Bonus : Inclusion réciproque $\mathcal{F} \subset \mathcal{B}(\mathbb{R})$. La translation $T_t(x) = x + t$ est continue donc mesurable. Ainsi, pour tout $B \in \mathcal{B}(\mathbb{R})$:

$$T_t^{-1}(B) = \{x : x + t \in B\} = B - t \in \mathcal{B}(\mathbb{R}).$$

Donc $\mathcal{F} \subset \mathcal{B}(\mathbb{R})$.

Exercice 16 — Fonctions de répartition

Tracer et donner l'expression des fonctions de répartition des mesures de probabilité

$$\mu_1 = \delta_2, \qquad \qquad \mu_2 = 0.2 \, \delta_{-1} + 0.4 \, \delta_0 + 0.4 \, \delta_2.$$

Exercice 16 — Fonctions de répartition

Tracer et donner l'expression des fonctions de répartition des mesures de probabilité

$$\mu_1 = \delta_2, \qquad \quad \mu_2 = 0.2 \, \delta_{-1} + 0.4 \, \delta_0 + 0.4 \, \delta_2.$$

Rappel. Pour une mesure de probabilité μ sur \mathbb{R} ,

$$F_{\mu}(x) = \mu((-\infty, x])$$
 (fonction de répartition, càd droite-continue).

Pour $\mu_1=\delta_2$:

Pour $\mu_1 = \delta_2$:

$$F_{\mu_1}(x) = \begin{cases} 0, & \text{si } x < 2, \\ 1, & \text{si } x \ge 2. \end{cases}$$

Pour $\mu_1 = \delta_2$:

$$F_{\mu_1}(x) = \begin{cases} 0, & \text{si } x < 2, \\ 1, & \text{si } x \ge 2. \end{cases}$$

Pour $\mu_2 = 0.2\,\delta_{-1} + 0.4\,\delta_0 + 0.4\,\delta_2$:

Pour $\mu_1 = \delta_2$:

$$F_{\mu_{\mathbf{1}}}(x) = \begin{cases} 0, & \text{si } x < 2, \\ 1, & \text{si } x \ge 2. \end{cases}$$

Pour $\mu_2 = 0.2 \, \delta_{-1} + 0.4 \, \delta_0 + 0.4 \, \delta_2$:

$$F_{\mu_2}(x) = \begin{cases} 0, & \text{si } x < -1, \\ 0.2, & \text{si } -1 \le x < 0, \\ 0.6, & \text{si } 0 \le x < 2, \\ 1, & \text{si } x \ge 2. \end{cases}$$

Pour $\mu_1 = \delta_2$:

$$F_{\mu_1}(x) = \begin{cases} 0, & \text{si } x < 2, \\ 1, & \text{si } x \ge 2. \end{cases}$$

Pour $\mu_2 = 0.2 \, \delta_{-1} + 0.4 \, \delta_0 + 0.4 \, \delta_2$:

$$F_{\mu_{2}}(x) = \begin{cases} 0, & \text{si } x < -1, \\ 0.2, & \text{si } -1 \leq x < 0, \\ 0.6, & \text{si } 0 \leq x < 2, \\ 1, & \text{si } x \geq 2. \end{cases}$$

Exercice 17 — Calcul de $\mu(A)$

(1) Sur
$$\mathbb{R}$$
: $\mu = \delta_{-1} + 2 \delta_1$, et $A = [-1, 0], [0, 1], [-\frac{1}{2}, \frac{1}{2}], \mathbb{R}, \{1\}$

(2) Sur
$$\mathbb{R}$$
 : $\mu = \delta_0 + \lambda$, et mêmes ensembles A que ci-dessus

(3) Sur
$$\mathbb{R}^2$$
: $\mu = \delta_{(0,0)} + \lambda_D + \lambda$, et où D disque unité, $A = D, [-1,1]^2, [-1,1] \times \{0\}$

Notation (3) : λ mesure de Lebesgue sur \mathbb{R}^2 , et $\lambda_D(A) = \lambda(A \cap D)$

(1)
$$\mu = \delta_{-1} + 2 \delta_1 \text{ sur } \mathbb{R}.$$

(1)
$$\mu = \delta_{-1} + 2 \delta_1 \text{ sur } \mathbb{R}. \Rightarrow \mu(A) = 1_{\{-1\} \subset A} + 2 \cdot 1_{\{1\} \subset A}.$$

$$\begin{array}{lll} \text{(1)} \ \mu = \delta_{-1} + 2 \, \delta_1 \ \text{sur} \ \mathbb{R}. & \Rightarrow & \mu(A) = \mathbf{1}_{\{-1\} \subset A} \ + \ 2 \cdot \mathbf{1}_{\{1\} \subset A}. \ \ \mathsf{D'où} \\ \\ \mu([-1,0]) = 1, & \mu([0,1]) = 2, & \mu\big([-\frac{1}{2},\frac{1}{2}]\big) = 0, \\ \\ \mu(\mathbb{R}) = 3, & \mu(\{1\}) = 2. \end{array}$$

(1)
$$\mu = \delta_{-1} + 2 \, \delta_1 \, \text{sur} \, \mathbb{R}. \quad \Rightarrow \quad \mu(A) = 1_{\{-1\} \subset A} \, + \, 2 \cdot 1_{\{1\} \subset A}. \quad \text{D'où}$$
 $\mu([-1,0]) = 1, \qquad \qquad \mu([0,1]) = 2, \qquad \qquad \mu\left(\left[-\frac{1}{2},\frac{1}{2}\right]\right) = 0,$ $\mu(\mathbb{R}) = 3, \qquad \qquad \mu(\{1\}) = 2.$

(2)
$$\mu = \delta_0 + \lambda \operatorname{sur} \mathbb{R}$$
.

(1)
$$\mu = \delta_{-1} + 2 \, \delta_1 \, \text{sur} \, \mathbb{R}. \quad \Rightarrow \quad \mu(A) = 1_{\{-1\} \subset A} \, + \, 2 \cdot 1_{\{1\} \subset A}. \quad \text{D'où}$$
 $\mu([-1,0]) = 1, \qquad \qquad \mu([0,1]) = 2, \qquad \qquad \mu\left(\left[-\frac{1}{2},\frac{1}{2}\right]\right) = 0,$ $\mu(\mathbb{R}) = 3, \qquad \qquad \mu(\{1\}) = 2.$

(2)
$$\mu = \delta_0 + \lambda \text{ sur } \mathbb{R}. \Rightarrow \mu(A) = 1_{\{0\} \subset A} + \text{longueur}(A).$$

(1)
$$\mu = \delta_{-1} + 2 \, \delta_1 \, \text{sur} \, \mathbb{R}. \quad \Rightarrow \quad \mu(A) = \mathbf{1}_{\{-1\} \subset A} \, + \, 2 \cdot \mathbf{1}_{\{1\} \subset A}. \quad \mathsf{D'où}$$

$$\mu([-1,0]) = 1, \qquad \qquad \mu([0,1]) = 2, \qquad \qquad \mu\big([-\frac{1}{2},\frac{1}{2}]\big) = 0,$$

$$\mu(\mathbb{R}) = 3, \qquad \qquad \mu(\{1\}) = 2.$$

(2)
$$\mu = \delta_0 + \lambda \text{ sur } \mathbb{R}. \Rightarrow \mu(A) = 1_{\{0\} \subset A} + \text{longueur}(A). D'où$$

$$\mu([-1,0]) = 1 + 1 = 2, \quad \mu([0,1]) = 1 + 1 = 2, \quad \mu([-\frac{1}{2},\frac{1}{2}]) = 1 + 1 = 2,$$

$$\mu(\mathbb{R}) = +\infty, \qquad \mu(\{1\}) = 0.$$

(1)
$$\mu = \delta_{-1} + 2 \, \delta_1 \, \text{sur } \mathbb{R}. \quad \Rightarrow \quad \mu(A) = 1_{\{-1\} \subset A} \, + \, 2 \cdot 1_{\{1\} \subset A}. \quad \text{D'où}$$

$$\mu([-1,0]) = 1, \qquad \qquad \mu([0,1]) = 2, \qquad \qquad \mu\big([-\frac{1}{2},\frac{1}{2}]\big) = 0,$$

$$\mu(\mathbb{R}) = 3, \qquad \qquad \mu(\{1\}) = 2.$$

(2)
$$\mu = \delta_0 + \lambda \text{ sur } \mathbb{R}. \Rightarrow \mu(A) = 1_{\{0\} \subset A} + \text{longueur}(A). \text{ D'où}$$
 $\mu([-1,0]) = 1 + 1 = 2, \quad \mu([0,1]) = 1 + 1 = 2, \quad \mu([-\frac{1}{2},\frac{1}{2}]) = 1 + 1 = 2,$ $\mu(\mathbb{R}) = +\infty, \qquad \mu(\{1\}) = 0.$

(3)
$$\mu = \delta_{(0,0)} + \lambda_D + \lambda \text{ sur } \mathbb{R}^2$$
.

(1)
$$\mu = \delta_{-1} + 2 \, \delta_1 \, \text{sur} \, \mathbb{R}. \quad \Rightarrow \quad \mu(A) = \mathbf{1}_{\{-1\} \subset A} \, + \, 2 \cdot \mathbf{1}_{\{1\} \subset A}. \quad \mathsf{D'où}$$

$$\mu([-1,0]) = 1, \qquad \qquad \mu([0,1]) = 2, \qquad \qquad \mu\big([-\frac{1}{2},\frac{1}{2}]\big) = 0,$$

$$\mu(\mathbb{R}) = 3, \qquad \qquad \mu(\{1\}) = 2.$$

(2)
$$\mu = \delta_0 + \lambda \text{ sur } \mathbb{R}. \Rightarrow \mu(A) = 1_{\{0\} \subset A} + \text{longueur}(A). \text{ D'où}$$

$$\mu([-1,0]) = 1 + 1 = 2, \quad \mu([0,1]) = 1 + 1 = 2, \quad \mu([-\frac{1}{2},\frac{1}{2}]) = 1 + 1 = 2,$$

$$\mu(\mathbb{R}) = +\infty, \qquad \mu(\{1\}) = 0.$$

(3)
$$\mu = \delta_{(0,0)} + \lambda_D + \lambda \text{ sur } \mathbb{R}^2. \Rightarrow \mu(A) = \delta_{(0,0)}(A) + \lambda(A \cap D) + \lambda(A).$$

(1)
$$\mu = \delta_{-1} + 2 \, \delta_1 \, \text{sur} \, \mathbb{R}. \quad \Rightarrow \quad \mu(A) = \mathbbm{1}_{\{-1\} \subset A} \, + \, 2 \cdot \mathbbm{1}_{\{1\} \subset A}. \quad \mathsf{D'où}$$

$$\mu([-1,0]) = \mathbbm{1}, \qquad \qquad \mu([0,1]) = \mathbbm{2}, \qquad \qquad \mu\big([-\frac{1}{2},\frac{1}{2}]\big) = \mathbbm{0},$$

$$\mu(\mathbb{R}) = \mathbbm{3}, \qquad \qquad \mu(\{1\}) = \mathbbm{2}.$$

(2)
$$\mu = \delta_0 + \lambda \text{ sur } \mathbb{R}. \Rightarrow \mu(A) = 1_{\{0\} \subset A} + \text{longueur}(A). D'où$$

$$\mu([-1,0]) = 1 + 1 = 2, \quad \mu([0,1]) = 1 + 1 = 2, \quad \mu([-\frac{1}{2},\frac{1}{2}]) = 1 + 1 = 2,$$

$$\mu(\mathbb{R}) = +\infty, \qquad \mu(\{1\}) = 0.$$

(3)
$$\mu = \delta_{(0,0)} + \lambda_D + \lambda \text{ sur } \mathbb{R}^2$$
. $\Rightarrow \mu(A) = \delta_{(0,0)}(A) + \lambda(A \cap D) + \lambda(A)$.
$$\mu(D) = \underbrace{1}_{(0,0)\in D} + \underbrace{\lambda(D)}_{=\pi} + \underbrace{\lambda(D)}_{=\pi} = 1 + 2\pi,$$

$$\mu([-1,1]^2) = \underbrace{1}_{(0,0)\in [-1,1]^2} + \underbrace{\lambda([-1,1]^2 \cap D)}_{=\pi} + \underbrace{\lambda([-1,1]^2)}_{=\pi} = 1 + \pi + 4,$$

$$\mu([-1,1] \times \{0\}) = \underbrace{1}_{(0,0)\in A} + \underbrace{\lambda(A \cap D)}_{=0} + \underbrace{\lambda(A)}_{=0} = 1.$$

Exercice 18 — Fonctions étagées

Une fonction $g:\Omega\to\mathbb{R}$ est étagée si elle ne prend qu'un nombre fini de valeurs.

Exercice 18 — Fonctions étagées

Une fonction $g:\Omega \to \mathbb{R}$ est *étagée* si elle ne prend qu'un nombre fini de valeurs.

(1) Montrer que toute fonction étagée s'écrit

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x), \quad \text{pour certains } n \in \mathbb{N}, \ \alpha_1, \dots, \alpha_n \in \mathbb{R}, \ A_1, \dots, A_n \subset \Omega.$$

Exercice 18 — Fonctions étagées

Une fonction $g:\Omega\to\mathbb{R}$ est étagée si elle ne prend qu'un nombre fini de valeurs.

(1) Montrer que toute fonction étagée s'écrit

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x), \quad \text{pour certains } n \in \mathbb{N}, \ \alpha_1, \dots, \alpha_n \in \mathbb{R}, \ A_1, \dots, A_n \subset \Omega.$$

(2) Soit $f:\Omega \to [0,\infty)$. Pour tout $n\in \mathbb{N}$, on définit $g_n:\Omega \to \mathbb{R}$ par

Exercice 18 — Fonctions étagées

Une fonction $g:\Omega \to \mathbb{R}$ est *étagée* si elle ne prend qu'un nombre fini de valeurs.

(1) Montrer que toute fonction étagée s'écrit

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x), \quad \text{pour certains } n \in \mathbb{N}, \ \alpha_1, \dots, \alpha_n \in \mathbb{R}, \ A_1, \dots, A_n \subset \Omega.$$

(2) Soit $f:\Omega \to [0,\infty)$. Pour tout $n\in \mathbb{N}$, on définit $g_n:\Omega \to \mathbb{R}$ par

$$g_n(x) = \begin{cases} rac{k}{2^n} & \text{si } rac{k}{2^n} \le f(x) < rac{k+1}{2^n}, & (k = 0, \dots, n2^n - 1) \\ n & \text{si } f(x) \ge n. \end{cases}$$

Exercice 18 — Fonctions étagées

Une fonction $g:\Omega\to\mathbb{R}$ est étagée si elle ne prend qu'un nombre fini de valeurs.

(1) Montrer que toute fonction étagée s'écrit

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x), \quad \text{pour certains } n \in \mathbb{N}, \ \alpha_1, \dots, \alpha_n \in \mathbb{R}, \ A_1, \dots, A_n \subset \Omega.$$

(2) Soit $f:\Omega \to [0,\infty)$. Pour tout $n\in \mathbb{N}$, on définit $g_n:\Omega \to \mathbb{R}$ par

$$g_n(x) = \begin{cases} \frac{k}{2^n} & \text{si } \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n}, \quad (k = 0, \dots, n2^n - 1) \\ n & \text{si } f(x) \ge n. \end{cases}$$

Montrer que $(g_n)_n$ est croissante, chaque g_n est étagée, et $g_n \to f$ simplement.

(1) Décomposition d'une étagée.

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \dots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g.

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \dots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$.

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \ldots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$.

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \ldots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \dots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(2) Approximation dyadique croissante d'une $f \ge 0$.

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \ldots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(2) Approximation dyadique croissante d'une $f \ge 0$. Pour $n \ge 1$, g_n prend un nombre fini de valeurs dans $\{0, \frac{1}{2^n}, \dots, \frac{n2^n-1}{2^n}, n\}$, donc g_n est étagée.

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \dots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(2) Approximation dyadique croissante d'une $f \ge 0$. Pour $n \ge 1$, g_n prend un nombre fini de valeurs dans $\{0, \frac{1}{2^n}, \dots, \frac{n2^n-1}{2^n}, n\}$, donc g_n est étagée. De plus, pour tout x:

$$0 \leq g_n(x) \leq g_{n+1}(x) \leq f(x)$$

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \ldots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(2) Approximation dyadique croissante d'une $f \ge 0$. Pour $n \ge 1$, g_n prend un nombre fini de valeurs dans $\{0, \frac{1}{2^n}, \dots, \frac{n2^n-1}{2^n}, n\}$, donc g_n est étagée. De plus, pour tout x:

 $0 \leq g_n(x) \leq g_{n+1}(x) \leq f(x)$ (monotonie : affinement de la grille dyadique et troncature à n)

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \ldots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(2) Approximation dyadique croissante d'une $f \ge 0$. Pour $n \ge 1$, g_n prend un nombre fini de valeurs dans $\{0, \frac{1}{2^n}, \dots, \frac{n2^n-1}{2^n}, n\}$, donc g_n est étagée. De plus, pour tout x:

 $0 \le g_n(x) \le g_{n+1}(x) \le f(x)$ (monotonie : affinement de la grille dyadique et troncature à n) Convergence simple.

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \ldots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(2) Approximation dyadique croissante d'une $f \ge 0$. Pour $n \ge 1$, g_n prend un nombre fini de valeurs dans $\{0, \frac{1}{2^n}, \dots, \frac{n2^n-1}{2^n}, n\}$, donc g_n est étagée. De plus, pour tout x:

$$0 \leq g_n(x) \leq g_{n+1}(x) \leq f(x)$$
 (monotonie : affinement de la grille dyadique et troncature à n)

Convergence simple. Si $f(x) < \infty$, alors pour n > f(x), la troncature n'agit plus

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \ldots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(2) Approximation dyadique croissante d'une $f \ge 0$. Pour $n \ge 1$, g_n prend un nombre fini de valeurs dans $\{0, \frac{1}{2^n}, \dots, \frac{n2^n-1}{2^n}, n\}$, donc g_n est étagée. De plus, pour tout x:

$$0 \leq g_n(x) \leq g_{n+1}(x) \leq f(x)$$
 (monotonie : affinement de la grille dyadique et troncature à n)

Convergence simple. Si $f(x) < \infty$, alors pour n > f(x), la troncature n'agit plus et

$$f(x)-\frac{1}{2^n} \leq g_n(x) \leq f(x),$$

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \ldots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(2) Approximation dyadique croissante d'une $f \ge 0$. Pour $n \ge 1$, g_n prend un nombre fini de valeurs dans $\{0, \frac{1}{2^n}, \dots, \frac{n2^n-1}{2^n}, n\}$, donc g_n est étagée. De plus, pour tout x:

$$0 \leq g_n(x) \leq g_{n+1}(x) \leq f(x)$$
 (monotonie : affinement de la grille dyadique et troncature à n)

Convergence simple. Si $f(x) < \infty$, alors pour n > f(x), la troncature n'agit plus et

$$f(x)-\frac{1}{2^n} \leq g_n(x) \leq f(x),$$

donc $g_n(x) \to f(x)$.

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \ldots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(2) Approximation dyadique croissante d'une $f \ge 0$. Pour $n \ge 1$, g_n prend un nombre fini de valeurs dans $\{0, \frac{1}{2^n}, \dots, \frac{n2^n-1}{2^n}, n\}$, donc g_n est étagée. De plus, pour tout x:

$$0 \leq g_n(x) \leq g_{n+1}(x) \leq f(x)$$
 (monotonie : affinement de la grille dyadique et troncature à n)

Convergence simple. Si $f(x) < \infty$, alors pour n > f(x), la troncature n'agit plus et

$$f(x)-\frac{1}{2^n} \leq g_n(x) \leq f(x),$$

donc $g_n(x) \to f(x)$. (Si l'on autorise $f(x) = +\infty$, on a $g_n(x) \uparrow +\infty = f(x)$).

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \ldots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(2) Approximation dyadique croissante d'une $f \ge 0$. Pour $n \ge 1$, g_n prend un nombre fini de valeurs dans $\{0, \frac{1}{2^n}, \dots, \frac{n2^n-1}{2^n}, n\}$, donc g_n est étagée. De plus, pour tout x:

$$0 \leq g_n(x) \leq g_{n+1}(x) \leq f(x)$$
 (monotonie : affinement de la grille dyadique et troncature à n)

Convergence simple. Si $f(x) < \infty$, alors pour n > f(x), la troncature n'agit plus et

$$f(x)-\frac{1}{2^n} \leq g_n(x) \leq f(x),$$

donc $g_n(x) \to f(x)$. (Si l'on autorise $f(x) = +\infty$, on a $g_n(x) \uparrow +\infty = f(x)$). Ainsi (g_n) est croissante,

(1) Décomposition d'une étagée. Soit $S = \operatorname{Im}(g) = \{\alpha_1, \ldots, \alpha_n\}$ l'ensemble (fini) des valeurs distinctes de g. Posons $A_k := g^{-1}(\{\alpha_k\})$. Alors $(A_k)_{k=1}^n$ sont deux à deux disjoints et $\Omega = \bigcup_{k=1}^n A_k$. Pour tout $x \in \Omega$,

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x).$$

(2) Approximation dyadique croissante d'une $f \ge 0$. Pour $n \ge 1$, g_n prend un nombre fini de valeurs dans $\{0, \frac{1}{2^n}, \dots, \frac{n2^n-1}{2^n}, n\}$, donc g_n est étagée. De plus, pour tout x:

$$0 \leq g_n(x) \leq g_{n+1}(x) \leq f(x)$$
 (monotonie : affinement de la grille dyadique et troncature à n)

Convergence simple. Si $f(x) < \infty$, alors pour n > f(x), la troncature n'agit plus et

$$f(x)-\frac{1}{2^n} \leq g_n(x) \leq f(x),$$

donc $g_n(x) \to f(x)$. (Si l'on autorise $f(x) = +\infty$, on a $g_n(x) \uparrow +\infty = f(x)$). Ainsi (g_n) est croissante, chaque g_n est étagée, et $g_n \to f$ simplement.

Point de rigueur.

Point de rigueur. Dans le cours, une fct $^\circ$ étagée $g:\Omega \to \mathbb{R}$ est définie comme :

$$g(x) = \sum_{k=1}^{n} \alpha_k 1_{A_k}(x), \quad \alpha_k \in \mathbb{R}, \ A_k \in \mathcal{F}.$$

Point de rigueur. Dans le cours, une fct $^\circ$ étagée $g:\Omega \to \mathbb{R}$ est définie comme :

$$g(x) = \sum_{k=1}^{n} \alpha_k 1_{A_k}(x), \quad \alpha_k \in \mathbb{R}, \ A_k \in \mathcal{F}.$$

Vérification de la mesurabilité.

Point de rigueur. Dans le cours, une fct $^\circ$ étagée $g:\Omega \to \mathbb{R}$ est définie comme :

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x), \quad \alpha_k \in \mathbb{R}, \ A_k \in \mathcal{F}.$$

Vérification de la mesurabilité.

- Chaque indicatrice 1_{A_k} est mesurable (car $A_k \in \mathcal{F}$).
- Les combinaisons linéaires finies de fonctions mesurables sont mesurables.

Point de rigueur. Dans le cours, une fct $^\circ$ étagée $g:\Omega \to \mathbb{R}$ est définie comme :

$$g(x) = \sum_{k=1}^{n} \alpha_k 1_{A_k}(x), \quad \alpha_k \in \mathbb{R}, \ A_k \in \mathcal{F}.$$

Vérification de la mesurabilité.

- Chaque indicatrice 1_{A_k} est mesurable (car $A_k \in \mathcal{F}$).
- Les combinaisons linéaires finies de fonctions mesurables sont mesurables.

Donc g est mesurable.

Point de rigueur. Dans le cours, une fct $^\circ$ étagée $g:\Omega \to \mathbb{R}$ est définie comme :

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x), \quad \alpha_k \in \mathbb{R}, \ A_k \in \mathcal{F}.$$

Vérification de la mesurabilité.

- Chaque indicatrice 1_{A_k} est mesurable (car $A_k \in \mathcal{F}$).
- Les combinaisons linéaires finies de fonctions mesurables sont mesurables.

Donc g est mesurable.

Remarque. La condition « g prend un nombre fini de valeurs » ne suffit pas en soi : il faut aussi que les ensembles $A_k = g^{-1}(\{\alpha_k\})$ soient mesurables. C'est pourquoi la définition inclut la mesurabilité.

Point de rigueur. Dans le cours, une fct $^\circ$ étagée $g:\Omega \to \mathbb{R}$ est définie comme :

$$g(x) = \sum_{k=1}^{n} \alpha_k \, 1_{A_k}(x), \quad \alpha_k \in \mathbb{R}, \ A_k \in \mathcal{F}.$$

Vérification de la mesurabilité.

- Chaque indicatrice 1_{A_k} est mesurable (car $A_k \in \mathcal{F}$).
- Les combinaisons linéaires finies de fonctions mesurables sont mesurables.

Donc g est mesurable.

Remarque. La condition « g prend un nombre fini de valeurs » ne suffit pas en soi : il faut aussi que les ensembles $A_k = g^{-1}(\{\alpha_k\})$ soient mesurables. C'est pourquoi la définition inclut la mesurabilité.

Retour à l'exo. Supposons $f:\Omega\to[0,\infty)$ mesurable.

Point de rigueur. Dans le cours, une fct $^\circ$ étagée $g:\Omega \to \mathbb{R}$ est définie comme :

$$g(x) = \sum_{k=1}^{n} \alpha_k 1_{A_k}(x), \quad \alpha_k \in \mathbb{R}, \ A_k \in \mathcal{F}.$$

Vérification de la mesurabilité.

- Chaque indicatrice 1_{A_k} est mesurable (car $A_k \in \mathcal{F}$).
- Les combinaisons linéaires finies de fonctions mesurables sont mesurables.

Donc g est mesurable.

Remarque. La condition « g prend un nombre fini de valeurs » ne suffit pas en soi : il faut aussi que les ensembles $A_k=g^{-1}(\{\alpha_k\})$ soient mesurables. C'est pourquoi la définition inclut la mesurabilité.

Retour à l'exo. Supposons $f:\Omega\to [0,\infty)$ mesurable. Pour $n\in\mathbb{N}$, définissons pour $k=0,\ldots,n2^n-1$:

$$A_{n,k} := \left\{ x : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n} \right\}, \qquad B_n := \{x : f(x) \ge n\}.$$

Point de rigueur. Dans le cours, une fct $^\circ$ étagée $g:\Omega \to \mathbb{R}$ est définie comme :

$$g(x) = \sum_{k=1}^{n} \alpha_k 1_{A_k}(x), \quad \alpha_k \in \mathbb{R}, \ A_k \in \mathcal{F}.$$

Vérification de la mesurabilité.

- Chaque indicatrice 1_{A_k} est mesurable (car $A_k \in \mathcal{F}$).
- Les combinaisons linéaires finies de fonctions mesurables sont mesurables.

Donc g est mesurable.

Remarque. La condition « g prend un nombre fini de valeurs » ne suffit pas en soi : il faut aussi que les ensembles $A_k=g^{-1}(\{\alpha_k\})$ soient mesurables. C'est pourquoi la définition inclut la mesurabilité.

Retour à l'exo. Supposons $f:\Omega\to [0,\infty)$ mesurable. Pour $n\in\mathbb{N}$, définissons pour $k=0,\ldots,n2^n-1$:

$$A_{n,k} := \left\{ x : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n} \right\}, \qquad B_n := \left\{ x : f(x) \ge n \right\}.$$

Alors les ensembles $A_{n,k}$ et B_n sont **mesurables** comme images réciproques d'intervalles boréliens par f mesurable.

Point de rigueur. Dans le cours, une fct $^\circ$ étagée $g:\Omega \to \mathbb{R}$ est définie comme :

$$g(x) = \sum_{k=1}^{n} \alpha_k 1_{A_k}(x), \quad \alpha_k \in \mathbb{R}, \ A_k \in \mathcal{F}.$$

Vérification de la mesurabilité.

- Chaque indicatrice 1_{A_k} est mesurable (car $A_k \in \mathcal{F}$).
- Les combinaisons linéaires finies de fonctions mesurables sont mesurables.

Donc g est mesurable.

Remarque. La condition « g prend un nombre fini de valeurs » ne suffit pas en soi : il faut aussi que les ensembles $A_k=g^{-1}(\{\alpha_k\})$ soient mesurables. C'est pourquoi la définition inclut la mesurabilité.

Retour à l'exo. Supposons $f:\Omega\to [0,\infty)$ mesurable. Pour $n\in\mathbb{N}$, définissons pour $k=0,\ldots,n2^n-1$:

$$A_{n,k} := \left\{ x : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n} \right\}, \qquad B_n := \left\{ x : f(x) \ge n \right\}.$$

Alors les ensembles $A_{n,k}$ et B_n sont **mesurables** comme images réciproques d'intervalles boréliens par f mesurable. Dans $g_n(x) = \sum_{k=0}^{n2^n-1} \frac{k}{2^n} \, 1_{A_{n,k}}(x) \, + \, n \, 1_{B_n}(x)$,

Point de rigueur. Dans le cours, une fct $^\circ$ étagée $g:\Omega \to \mathbb{R}$ est définie comme :

$$g(x) = \sum_{k=1}^{n} \alpha_k 1_{A_k}(x), \quad \alpha_k \in \mathbb{R}, \ A_k \in \mathcal{F}.$$

Vérification de la mesurabilité.

- Chaque indicatrice 1_{A_k} est mesurable (car $A_k \in \mathcal{F}$).
- Les combinaisons linéaires finies de fonctions mesurables sont mesurables.

Donc g est mesurable.

Remarque. La condition « g prend un nombre fini de valeurs » ne suffit pas en soi : il faut aussi que les ensembles $A_k=g^{-1}(\{\alpha_k\})$ soient mesurables. C'est pourquoi la définition inclut la mesurabilité.

Retour à l'exo. Supposons $f: \Omega \to [0, \infty)$ mesurable. Pour $n \in \mathbb{N}$, définissons pour $k = 0, \dots, n2^n - 1$:

$$A_{n,k} := \left\{ x : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n} \right\}, \qquad B_n := \{ x : f(x) \ge n \}.$$

Alors les ensembles $A_{n,k}$ et B_n sont **mesurables** comme images réciproques d'intervalles boréliens par f mesurable. Dans $g_n(x) = \sum_{k=0}^{n2^n-1} \frac{k}{2^n} \, 1_{A_{n,k}}(x) \, + \, n \, 1_{B_n}(x)$, chaque indicatrice $1_{A_{n,k}}$ et 1_{B_n} est mesurable,

Point de rigueur. Dans le cours, une fct $^\circ$ étagée $g:\Omega \to \mathbb{R}$ est définie comme :

$$g(x) = \sum_{k=1}^{n} \alpha_k 1_{A_k}(x), \quad \alpha_k \in \mathbb{R}, \ A_k \in \mathcal{F}.$$

Vérification de la mesurabilité.

- Chaque indicatrice 1_{A_k} est mesurable (car $A_k \in \mathcal{F}$).
- Les combinaisons linéaires finies de fonctions mesurables sont mesurables.

Donc g est mesurable.

Remarque. La condition « g prend un nombre fini de valeurs » ne suffit pas en soi : il faut aussi que les ensembles $A_k=g^{-1}(\{\alpha_k\})$ soient mesurables. C'est pourquoi la définition inclut la mesurabilité.

Retour à l'exo. Supposons $f: \Omega \to [0, \infty)$ mesurable. Pour $n \in \mathbb{N}$, définissons pour $k = 0, \dots, n2^n - 1$:

$$A_{n,k} := \left\{ x : \ \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n} \right\}, \qquad B_n := \{x : \ f(x) \ge n\}.$$

Alors les ensembles $A_{n,k}$ et B_n sont **mesurables** comme images réciproques d'intervalles boréliens par f mesurable. Dans $g_n(x) = \sum_{k=0}^{n2^n-1} \frac{k}{2^n} \, 1_{A_{n,k}}(x) \, + \, n \, 1_{B_n}(x)$, chaque indicatrice $1_{A_{n,k}}$ et 1_{B_n} est mesurable, donc g_n est **mesurable**.