PROGRAMMING ASSIGNMENT MS2111 KINEMATICS AND DYNAMICS OF MACHINERY Semester 1, 2020/2021

Figure 1 shows a four-bar mechanism. The lengths of the crankshaft (link 2), coupler (link 3), and rocker (link 4) are L^2 , L^3 , and L^4 , respectively. The crankshaft of the mechanism is assumed to rotate with a constant angular velocity ω^2 . The initial orientation of the crankshaft is assumed to be θ_o^2 . Please conduct the kinematics analysis of the four-bar mechanism below. You must write down all the matrix needed in the kinematics analysis in A4 papers and write the program in the MATLAB or Octave.

Figure 1 Four bar mechanism

The **input** of the program are the geometry or dimension of the mechanism and the angular velocity of link 2, as below:

$$L^2 = 50 + XYZ [mm]$$
 $L^4 = 1.5L^2$ $c = 1.7L^2$

$$\omega^{2} = \begin{cases} 15 \frac{rad}{s} & \text{if XYZ is odd number} \\ 30 \frac{rad}{s} & \text{if XYZ is even number} \end{cases}$$

$$\theta_o^2 = \frac{\pi}{4} rad$$

where:

 L^2 : length of link 2 L^3 : length of link 3 L^4 : length of link 4

: distance between O_2 and O_4 c ω^2 : angular velocity of link 2 θ_o^2 : initial angle of link 2

: last three digits of your NIM, i.e. 13119XYZ

The expected **output** are the plot of:

- 1. Trajectory of joint A $(r_{A,x}^2 r_{A,y}^2)$ 2. Trajectory of joint B $(r_{B,x}^3 r_{B,y}^3)$
- 3. Angular velocity of link 3 vs. time, $(\omega^3 t)$
- 4. Angular velocity of link 4 vs. time, $(\omega^4 t)$
- 5. Angular acceleration of link 3 vs. time, $(\alpha^3 t)$
- 6. Angular acceleration of link 4 vs. time, $(\alpha^4 t)$

You may use the simulation time from 0 s to 2 s, t = 0 - 2 [s]

Submission and due date:

You should submit following documents or files:

- 1. All the matrices required in the kinematics analysis (e.g. constraint matrix, Jacobian matrix, etc.) in pdf file
- 2. The syntax of your program (with extension .m)
- 3. All the expected plots in .jpg or .png file.

Please submit all the documents or files in .rar or .zip extension to e-learning page or MSTeam channel of your each class before **Wednesday**, 13 November 2020.

Note: please study MATLAB or Octave by yourself.