Sequence-to-Sequence Models

Tianxiang (Adam) Gao

October 28, 2024

Outline

Word Embedding

Sequence-to-Sequence Models

Recap: Recurrent Neural Networks

- ullet Audio Waveform: A 1D array represents the amplitude of the sound over time, $\emph{e.g.}$, $16 \mathrm{kHz}$
- One-Hot Encoding: Each word in a vocabulary is a binary one-hot vector.
- Challenges in Text Data: Curse of dimensionality and long-run dependencies.
- Language Models: Assigns probabilities to a given sequence of words
- Neural Language Model: Model the probability distribution of the next word given the history:

$$\mathbb{P}(\boldsymbol{x}_{t+1} \mid \boldsymbol{x}_1, \cdots, \boldsymbol{x}_t) = f_{\boldsymbol{\theta}}(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_t).$$

ullet RNNs: Encode the history into a hidden state $m{h}_t$ updated by combing with the current word $m{x}_t$:

$$h_t = \tanh(W_h h_{t-1} + W_x x_t + b_h), \quad \text{and} \quad \hat{y}_t = \text{softmax}(W_y h_t + b_y)$$

- Training RNNs: backpropagation through time
 - Forward (simplified): $\boldsymbol{h}_t = \phi(\boldsymbol{W}_h \boldsymbol{h}_{t-1} + \boldsymbol{W}_x \boldsymbol{x}_t)$
 - $\bullet \ \, \mathsf{Backward} \ \, (\mathsf{simplified}) \colon d \boldsymbol{h}_t = \boldsymbol{W}_h^\top \left(\boldsymbol{\phi}_{t+1}' \odot d \boldsymbol{h}_{t+1} \right) + \boldsymbol{W}_y^\top \left(\boldsymbol{\sigma}_t' \odot d \boldsymbol{y}_t \right)$
- Generation: Sample the next word from the predicted probability distribution produced by RNNs.
- RNN Types: One-to-many, many-to-one, or many-to-many structures for different tasks.
- Vanishing/Exploding Gradients: $h_t = \mathcal{O}\left(a^t\right)$ and $dh_t = \mathcal{O}\left(b^{T-t}\right)$.

Recap: Recurrent Neural Networks

• Gated Recurrent Unit (GRU): Gates helps maintain long-term dependencies:

$$ilde{m{h}}_t = anh(m{W}_h(m{r}_t\odotm{h}_{t-1}) + m{W}_xm{x}_t), \quad ext{and} \quad m{h}_t = m{z}_tm{h}_{t-1} + (1-m{z}_t)\odot ilde{m{h}}_t$$

• Long Short-Term Memory (LSTM): Use a cell state c_t to maintain long-term dependencies.

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}$$
, and $h_t = o_t \odot \tanh(c_t)$

- ullet Bidirecitonal RNNs: The concatenated hidden state: $m{h}_t = [\overrightarrow{m{h}}_t, \overleftarrow{m{h}}_t]$
- ullet Deeper RNNs: Each layer ℓ computes its hidden state using the hidden state from the layer $\ell-1$:

$$\boldsymbol{h}_{t}^{\ell} = anh(\boldsymbol{W}_{h}^{(\ell)}\boldsymbol{h}_{t-1}^{(\ell)} + \boldsymbol{W}_{x}^{(\ell)}\boldsymbol{h}_{t}^{(\ell-1)})$$

- Drawbacks of One-Hot Representation: orthogonality and high dimensionality
- Word Embedding: Words are represented as dense vectors in a lower-dimensional space.

$$e = Ex$$

- Continuous Bag of Words (CBOW): Predicts the target word given the context
- Skip-Gram: Predicts the context words given a target word.
- Negative Sampling: Reformulates the context-target predictions as a binary classification:

$$\mathcal{L}(E) = -\sum_{(oldsymbol{e}_c, oldsymbol{e}_t)} \log \sigma(oldsymbol{e}_t^ op oldsymbol{e}_c) - \sum_{(oldsymbol{e}_c, ilde{oldsymbol{e}}_t)} \log \sigma(-oldsymbol{e}_t^ op ilde{oldsymbol{e}}_c),$$

where \tilde{e}_t is **negative** target samples outside the context window.

Outline

Word Embedding

Sequence-to-Sequence Models

Word Analogy Task

- Objective: Assess the quality of word embeddings by testing how well they capture semantic and syntactic relationships between words.
- **Goal**: Given an analogy of the form: "a is to b as c is to ????", find the word d that completes the analogy correctly.
- Examples:
 - Semantic analogy: "Paris is to France as Washington, D.C. is to the United States."
 - Syntactic analogy: "Run is to Running as Swim is to Swimming."
- ullet Vector Arithmetic: $e_dpprox e_b-e_a+e_c$, i.e., linear space
- The word d is chosen as the vector e_d closest to $e_b e_a + e_c$ based on *cosine similarity*:

$$d = \arg \max_{x \in V} S_C(\boldsymbol{e}_x, \boldsymbol{e}_b - \boldsymbol{e}_a + \boldsymbol{e}_c)$$

where V is the vocabulary, and

$$S_C(\boldsymbol{u}, \boldsymbol{v}) = \cos(\theta) = \frac{\boldsymbol{u}^{\top} \boldsymbol{v}}{\|\boldsymbol{u}\| \cdot \|\boldsymbol{v}\|}$$

where θ is the angle between vectors \boldsymbol{u} and \boldsymbol{v} .

• **Evaluation**: The predicted word d is evaluated by comparing it to the correct answer from the analogy dataset.

GloVe: Global Vectors for Word Representation

- **Objective**: Create a word embedding model that captures both local context and **global** statistical information from a text corpus.
- Co-occurrence Matrix:
 - X_{ij} : Number of times word j appears in the context of word i.
 - $X_i = \sum_j X_{ij}$: Total occurrences of any word in the context of word i.
 - $\mathbb{P}(w_j \mid w_i) = X_{ij}/X_i$: Probability of word j occurs in the context of word i.
- Word Comparison in Context:
 - ullet Compare words $oldsymbol{e}_i$ and $oldsymbol{e}_j$ in the context $ilde{oldsymbol{e}}_k$ using a **probability ratio**:

$$\exp\left\{(\boldsymbol{e}_i - \boldsymbol{e}_j)^{\top} \tilde{\boldsymbol{e}}_k\right\} = \frac{\mathbb{P}(\boldsymbol{w}_i \mid \boldsymbol{w}_k)}{\mathbb{P}(\boldsymbol{w}_j \mid \boldsymbol{w}_k)} = \frac{X_{ki}}{X_{kj}}$$

Taking the log yields:

$$\mathbf{e}_i^{\top} \tilde{\mathbf{e}}_k - \mathbf{e}_j^{\top} \tilde{\mathbf{e}}_k = \log X_{ki} - \log X_{kj} \quad \Rightarrow \quad \mathbf{e}_i^{\top} \tilde{\mathbf{e}}_k \sim \log X_{ki}$$

- Cost Function:
 - ullet The GloVe model learns word vectors $oldsymbol{e}_i$ and context vectors $ilde{e}_k$ by minimizing:

$$J = \sum_{i,k} f(X_{ik}) \left(\mathbf{e}_i^{\top} \tilde{\mathbf{e}}_k + b_i + \tilde{b}_k - \log(X_{ik}) \right)^2$$

ullet $f(X_{ik})$ is a weighting function for co-occurrences, while b_i and $ar{b}_k$ are bias to maintain symmetry.

Bias in Word Embeddings

 Problem: Word embeddings trained on large datasets often encode societal biases, like gender stereotypes:

"Man is to Computer Programmer as Woman is to Homemaker?"

• Identifying Bias Direction: Compute the average difference between definitional pairs:

$$\begin{cases} \vec{e}_{\text{man}} - \vec{e}_{\text{woman}} \\ \vec{e}_{\text{he}} - \vec{e}_{\text{she}} \\ \dots \end{cases} \Rightarrow \quad \vec{e}_{\text{bias}} = \frac{1}{N} \sum_{i=1}^{N} \left(\vec{e}_{x_i} - \vec{e}_{y_i} \right)$$

This average can be replaced by advanced techniques like PCA.

 Neutralization: Project non-definitional words onto the space orthogonal to the bias direction to remove bias:

$$\vec{e} \leftarrow \vec{e} - \frac{\vec{e}^{\, ||} \vec{e}_{\mathsf{bias}}}{\|\vec{e}_{\mathsf{bias}}\|^2} \cdot \vec{e}_{\mathsf{bias}}$$

- **Equalizing Pairs**: Adjust equalize pairs (like "brother" and "sister") to have equal and opposite projections along the gender direction, making them **equidistant** from the gender-neutral axis.
- **Identifying Gendered Words**: Train a classifier to distinguish between gender-specific and neutral words using a set of definitional pairs.

Outline

Word Embedding

Sequence-to-Sequence Models

Seq2Seq: Sequence-to-Sequence Models

- **Define**: Sequence-to-Sequence (Seq2Seq) models are designed to handle tasks where both input and output are sequences of variable length, *e.g.*, machine translation or summarization.
- ullet Example: "Jane visite l'Afrique en septembre." \Longrightarrow "Jane visits Africa in September."
- Encoder-Decoder Architecture
 - Encoder: Processes and compresses the input sequence into a fixed-length context vector.
 - Decoder: Uses the context vector to generate the output sequence sequentially

Here c is the context vector summarizing the *entire* input sequence.

Conditional Language Model

• Language Model: Assigns probabilities to a sequence of words $\{x_t\} = \{x_1, \dots, x_T\}$:

$$\mathbb{P}(\{oldsymbol{x}_t\}) = \mathbb{P}(oldsymbol{x}_1, \dots, oldsymbol{x}_T) = \prod_{t=1}^T \mathbb{P}(oldsymbol{x}_t \mid oldsymbol{x}_1, \dots, oldsymbol{x}_{t-1})$$

where each conditional probability is modeled as:

$$\mathbb{P}(\boldsymbol{x}_t \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_{t-1}) = f_{\boldsymbol{\theta}}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_{t-1})$$

ullet Conditional Language Model: Assigns probabilities to a target sequence $\{y_t\}$ given an input sequence $\{x_t\}$:

$$\mathbb{P}(\{oldsymbol{y}_t\} \mid \{oldsymbol{x}_t\}) = \prod_{t=1}^{T^r} \mathbb{P}(oldsymbol{y}_t \mid oldsymbol{y}_1, \dots, oldsymbol{y}_{t-1}, oldsymbol{x}_1, \dots, oldsymbol{x}_T)$$

where the conditional probability for each word in the target sequence is:

$$\mathbb{P}(y_t \mid y_1, \dots, y_{t-1}, x_1, \dots, x_T) = g_{\phi}(y_{t-1}, s_t, c)$$

with the entire input sequence stored in the **context vector** c.

Beam Search

Greedy Search: Selects the most probable word at each step, which may lead to suboptimal sequences. Beam Search: Tracks multiple high-probability sequences simultaneously to improve overall accuracy.

- Initialization: Start with the seed token and choose the top k words based on the probability distribution.
- Expansion: Predict the next word for each candidate, generating new sequences.
- **Pruning**: Keep the top k sequences with the highest log-probability scores, discarding the rest.

$$\mathbb{P}(\boldsymbol{y}_2,\boldsymbol{y}_1\mid\boldsymbol{c}) = \mathbb{P}(\boldsymbol{y}_2\mid\boldsymbol{c},\boldsymbol{y}_1)\cdot\mathbb{P}(\boldsymbol{y}_1\mid\boldsymbol{c})$$

• Repeat: Continue expanding and pruning until an end-of-sequence token is generated or max length is reached.

Remark

- Beam Width (k): Requires k identical decoders to update candidate sequences simultaneously.
- Advantages: Balances between accuracy and computation; larger k increases accuracy but demands more computational resources.

Numerical Stability and Error Analysis

Log-Probabilities for Stability:

- Since $\mathbb{P}(\cdot) \in [0,1]$, the product of probabilities can approach zero, causing numerical instability.
- To address this, log-probabilities are used:

$$\begin{aligned} \boldsymbol{y}^* &= \operatorname*{argmax}_{\boldsymbol{y}} \mathbb{P}(\boldsymbol{y}_1, \dots, \boldsymbol{y}_{T'} \mid \boldsymbol{c}) \\ &= \operatorname*{argmax}_{\boldsymbol{y}} \frac{1}{T'} \sum_{t=1}^{T'} \log \mathbb{P}(\boldsymbol{y}_t \mid \boldsymbol{c}, \boldsymbol{y}_1, \dots, \boldsymbol{y}_{t-1}) \end{aligned}$$

This transformation helps prevent underflow and enables stable computation of probabilities.

Error Analysis in Beam Search:

- Let y^* be the optimal sequence and \hat{y} the model's predicted sequence.
- If $\mathbb{P}(y^* \mid c) > \mathbb{P}(\hat{y} \mid c)$: Increasing beam width can improve accuracy by exploring more potential sequences.
- If $\mathbb{P}(y^* \mid c) \leq \mathbb{P}(\hat{y} \mid c)$: Increasing beam width won't help, as errors stem from model limitations.

Image Captioning

"A small orange kitten sits attentively on green grass, surrounded by natural, dried foliage in the background, giving a calm and serene outdoor setting."

BLEU Score: Bilingual Evaluation Understudy

BLEU Score: Bilingual Evaluation Understudy (BLEU) evaluates a machine-generated **candidate translation** \hat{y} by comparing it to a *list* of reference translations $\{y_1, \cdots, y_M\}$.

- Candidate Translation: "the cat the cat sat"
- Reference Translation 1: "the cat sat on the mat"
- Reference Translation 2: "the cat sat by the mat"

Precision: Measures how many n-grams in the candidate match the reference translations.

- Candidate Bigrams: {"the cat", "cat the", "the cat", "cat sat"}
- Reference 1 Bigrams: {"the cat", "cat sat", "sat on", "on the", "the mat"}
- Reference 2 Bigrams: {"the cat", "cat sat", "sat by", "by the", "the mat"}

$$\mbox{Precision} = \frac{\mbox{Number of matching n-grams}}{\mbox{Total n-grams in candidate}} = \frac{3}{4} \implies \mbox{Inflate the score!}$$

Modified Precision

Modified Precision: Limits the count of an n-gram to the maximum it appears in any reference.

- Count in Candidate:
 - "the cat" appears 2 times in the candidate.
 - "cat the" appears 1 time in the candidate.
 - "cat sat" appears 1 time in the candidate.
- Clipped Count:
 - "the cat" appears at most 1 time in any reference.
 - "cat sat" appears at most 1 time in any reference.

$$\mbox{Modified Precision} = \frac{\mbox{Clipped number of matching n-grams}}{\mbox{Total n-grams in candidate}} = \frac{2}{4}$$

BLEU Score Formula: Uses modified precision p_n for n-grams:

$$\mathsf{BLEU} = BP \cdot \exp\left(\frac{1}{N} \sum_{n=1}^{N} \log p_n\right)$$

- N: Maximum n-gram length considered (typically N=4).
- Brevity Penalty (BP):

$$BP = \begin{cases} \exp\left(1 - \frac{r}{c}\right), & \text{if } c < r \\ 1, & \text{if } c \ge r \end{cases}$$

where c is the length of the candidate translation and r is the length of the reference translation.

Limitations of RNN Encoder-Decoder Framework

ullet Encoder: Process and compress the input sequence $\{oldsymbol{x}_1,\cdots,oldsymbol{x}_T\}$ into a context vector $oldsymbol{c}$.

$$\boldsymbol{h}_t = f_{\boldsymbol{\theta}}(\boldsymbol{h}_{t-1}, \boldsymbol{x}_t), \qquad \boldsymbol{c} = \boldsymbol{h}_T.$$

• **Decoder**: Uses the context vector c to generate the output sequence sequentially

$$\mathbb{P}(y_t \mid x, y_1, \cdots, y_{t-1}) = \mathbb{P}(y_t \mid s_t), \quad \text{where} \quad s_t = g_{\phi}(s_{t-1}, y_{t-1}, \frac{c}{c})$$

Note: Encoding all information into a single vector c may cause information loss for longer sequences.

Distinct Context Vector in Attention Mechanism

• Distinct Context Vector for Each Target Word: Each target word y_t has a unique context vector c_t , allowing the model to focus on relevant input parts.

$$\mathbb{P}(\boldsymbol{y}_t \mid \boldsymbol{x}, \boldsymbol{y}_1, \dots, \boldsymbol{y}_{t-1}) = \mathbb{P}(\boldsymbol{y}_t \mid \boldsymbol{s}_t), \quad \text{where} \quad \boldsymbol{s}_t = g_{\boldsymbol{\phi}}(\boldsymbol{s}_{t-1}, \boldsymbol{y}_{t-1}, \boldsymbol{c_t})$$

• Context Vector Computation: The context vector c_t is computed as a weighted sum of encoder hidden states h_i , tailored to the current decoding step.

$$oldsymbol{c}_t = \sum_{i=1}^T lpha_{t,i} oldsymbol{h}_i$$

where attention weights $lpha_{t,i}$ indicate the relevance of each hidden state h_i for generating y_t .

Attention Mechanism in Seq2Seq

• Attention Weights: Computed from an alignment score $e_{t,i}$ between the decoder's previous hidden state s_{t-1} and each encoder hidden state h_i .

$$\alpha_{t,i} = \operatorname{softmax}(\boldsymbol{e}_{t,i}), \quad \text{where} \quad \boldsymbol{e}_{t,i} = a(\boldsymbol{s}_{t-1}, \boldsymbol{h}_i)$$

- Alignment Model: The alignment function a is a feed-forward neural network, trained jointly with Seq2Seq to optimize attention.
- Bidirectional Encoder: The encoder uses a bidirectional RNN to capture both past and future context, enhancing comprehension of each input word's meaning.