算法设计与分析实验报告

 实验题目:
 循环赛日程表算法的设计与分析

 姓名:
 马天成

 学号:
 2020211376

 日期:
 2022-11-24

目录

—、	实验环境	3
	1.1 设备规格	3
	1.2 操作系统	3
	1.3 编程语言&编译器	3
	1.4 开发工具	4
_,	实验内容	4
	2.1 实验目的	4
	2.2 实验内容及要求	4
	2.3 主函数功能设计	5
	2.4 子函数-记录分治归并路径	5
	2.4 子函数-Combine	6
	2.4.1 准备工作	6
	2.4.2 偶数归并成偶数	6
	2.4.3 奇数归并成偶数	7
	2.4.4 生成奇数结果矩阵	8
	2.4.5 combine 逻辑	8
	2.4.6 输出函数	9
	2.5 正确性检验	9
	2.5.1 白盒测试	9
	2.5.2 黑盒测试	10
三、	出现问题及解决	13
	3.1 子函数逻辑思路理清	13
	3.2 奇数矩阵 combine 成偶数矩阵	13
四、	总结	13
	4.1 时间复杂度	13
	4.2 空间复杂度	14
	4.3 算法效率	14
	4.4 生成序列的规整性	14
	4.5 理解与思考	14

一、实验环境

1.1 设备规格

设备规格

Legion R7000P2020H

设备名称 PC

处理器 AMD Ryzen 7 4800H with Radeon Graphics

2.90 GHz

机带 RAM 16.0 GB (15.9 GB 可用)

设备 ID 370678B7-1FA2-4C35-8BAB-F92D3429406B

产品 ID 00342-35932-44511-AAOEM

系统类型 64 位操作系统, 基于 x64 的处理器 **笔和触控** 为 10 触摸点提供笔和触控支持

1.2 操作系统

Windows 规格

版本 Windows 10 家庭中文版

版本号 21H2

安装日期2022/4/5操作系统内部版本19044.2006序列号PF2660CA

体验 Windows Feature Experience Pack 120.2212.4180.0

1.3 编程语言&编译器

C++11

version: MinGW-W64-builds-4.3.5

user : nixman

date : 05.12.2018-10:29:36 AM

1.4 开发工具

二、实验内容

2.1 实验目的

- 理解分治法的策略,掌握基于递归的分治算法的实现方法;
- 掌握基于数学模型建立算法模型的建模方法;
- 理解并掌握在渐进意义下的算法复杂性的评价方法。

2.2 实验内容及要求

● 算法的设计与实现

问题描述 设有 n 个运动员要进行网球循环赛,设计一个满足下列条件的比 赛日程表: 1) 每个选手必须与其他 n-1 个选手各赛一次; 2) 每个选手一天只能赛一次 3) 当 n 是偶数时,循环赛只能进行 n-1 天 4) 当 n 是奇数时,循环赛只能进行 n 天测试要求

依据数学方法,解决选手人数不等于 2 k 时,在偶数和奇数情况下, 依题目条件建立算法模型。

- ① 数据生成: 不同规模的数据集, 用于测试算法的正确性及效率。
- ② 算法实现:实现能够满足题目要求的循环赛日程表算法及程序。
- 设计测试数据集, 编写测试程序, 用于测试:
- a) 正确性: 所实现算法的正确性;
- b) 算法复杂性: 分析评价各个算法在算法复杂性上的表现; (最差情 况、平均情况)

2.3 主函数功能设计

```
11 int main()
12
          // time clock
13
         LARGE_INTEGER cpuFreq;
14
         LARGE_INTEGER startTime;
15
         LARGE INTEGER endTime:
16
         QueryPerformanceFrequency(&cpuFreq);
         QueryPerformanceCounter(&startTime);
18
19
20
21
         int size:
         while(1) {
22
             cout << "Please input the size of participants.\n";</pre>
23
24
             cin >> size;
25
26
             QueryPerformanceCounter(&startTime);
27
              round robin(size);
              QueryPerformanceCounter(&endTime);
29
             double runTime = ((endTime.QuadPart - startTime.QuadPart)*1.0f / cpuFreq.QuadPart);
              cout << "Calculate in " << runTime << "s.\n" << endl;</pre>
31
32
33
34
         return 0;
```

很简单的,就是进入一个 while (1) 死循环,然后从函数开始记录时间,运行完输出答案后进行时间统计,输出运行时间。

2.4 子函数-记录分治归并路径

根据最简单的算法设计来说,我们合成最后的循环赛表其实就是为了将小的合成大的。但是从上到下的分治需要递归调用。我们并不打算使用递归,要用消除递归的思想俩进行 combine。这一步我们做的就是记录将小的合成大的路径,方便在每一步的 combine 中控制规模,成功合成需要的最终答案。

以下步骤是获得比赛人数并生成分治路径的过程:

- 1. 获得 size (参加比赛的人数)。假如小于等于 2 则直接输出表格, 没有必要进行输出。
- 2. 根据 size 进行分治,用 vector 存储需要合成的循环算赛人数大小。直到最后的 cur (下一个需要存入的路径,即人数 size) 小于等于 2,到达初态,结束存储路径。

ep: size=13, 存储 13-7-4 (combine 从 2->4->7->13)

```
42
         // basic args: row, column
         if(size <= 2) {
         cout << "\t1\t2\n----\n\t2\t1" << endl;
44
45
            return:
47
        int row=size, column=size;
48
        if(size&1)
49
            row = size+1;
50
51
52
        // create devide path
        vector<int> devide; // devide size
53
54
         int cur = size;
55
56
            devide.push_back(cur);
57
            cur = (cur+1)/2;
       } while(cur > 2);
```

2.4 子函数-Combine

这里的归并是该算法最难的地方。对于偶数,这里非常简单。但是对于奇数,我们会显得非常复杂。在这里我也是花了4个小时进行代码编写,然后1个小时修改代码。

2.4.1 准备工作

进行了 size 的输入以及分治路径的生成,接下来就是准备工作。

首先生成最开始的存储规模。这里设定为 size+1 大小的矩阵。因为在奇数最后一步 combine 的时候会进行额外的一列的使用,所使用该空间。

```
// initialize as size 2 ---
59
         int** ans;
60
61
         ans = new int*[size+1];
         for(int i=0; i < size+1; i++) {</pre>
62
              ans[i] = new int[size+1];
63
64
              for(int j=0; j < size+1; j++)
                  ans[i][j] = 0;
65
66
67
         ans[0][0] = 1;
         ans[0][1] = 2;
68
69
         ans[1][0] = 2;
         ans[1][1] = 1;
70
```

然后初始化为:

1 2

2 1

2.4.2 偶数归并成偶数

按此要求,可将比赛日程表设计成一个 n 行n-1列的二维表,其中,第 i 行第 j 列表示和第 i 个选手在第 j 天比赛的选手。

这就是非常简单的归并方式。将现有分区平移到另外四块,加上相应的 size 就可以了。

```
// 2 -- even size to combine as even
else {
    // 2.1 -- generate right, under, right-under (scopy to the three square perhaps with adding tmp_size)
    for(int i=0; i < tmp_size; i++) {
        for(int j = 0; j < tmp_size; j++) {
            ans[i][tmp_size+j] = ans[i][j] + tmp_size; // right
            ans[tmp_size+i][j] = ans[i][j] + tmp_size; // under
            ans[tmp_size+i][tmp_size+j] = ans[i][j]; // right-under
        }
    }
}</pre>
```

这里就是非常简单的生成剩下三个区域。

2.4.3 奇数归并成偶数

首先大体思路也是和奇数一样,归并成一个方块。但是这里面有太多的细节要讲。 生成奇数要先生成偶数

首先强调一些奇数的特征:

- 1. 有 0 存在。这代表轮空。
- 2. 行数是 size+1 (第一行代表选手列举)

所以有以下注意要点:

● 首先填充右边方格。在扩充的时候,我们知道一行中至少会出现两个 0。但是每一天在 最优解中是不可能有轮空出现的,所以这两个空格就是当天需要对打的最后一对。

```
// 1 -- odd size to combine as even
              if(tmp_size&1) {
86
87
                  // 1.1 -- generate right
88
                  for(int i=0; i < tmp_size+1; i++) {</pre>
89
                      for(int j = 0; j < tmp_size; j++) {</pre>
                         // 1.1.1 -- 0 to insert the rest rival( left 0-insert with relative right inser
90
                          if(ans[i][j] == 0) {
91
                             ans[i][j] = j+1+tmp_size;
92
93
                              ans[i][tmp_size+j] = j+1;
94
95
                         // 1.1.2 -- normal add tmp_size moving to relative location
96
                         else
                             ans[i][tmp_size+j] = ans[i][j]+tmp_size;
97
98
99
```

填充完右边方格之后,我们还有下边和右下边没有填充,这时候需要填充的行数是 size-1行。这时候就要用到一个强推论。

```
// 1.2 -- generate under, right-under
101
                   for(int i=tmp_size+1; i < tmp_size*2; i++) {</pre>
102
                       // 1.2.1 -- traverse into line = [tmp_size+2, tmp_size*2] for inserting all units
103
104
                       for(int j=0; j < tmp_size; j++) {</pre>
105
                               1.2.1.1 -- left index is i, calculate right index to swap_insert
106
                               THIS IS THE MOST IMPORTANT SOLUTION
107
108
109
                           int right_index = (i+j)%tmp_size+tmp_size;
110
111
                           ans[i][j] = right_index+1; // left insert
                           ans[i][right index] = j+1; // right insert
112
113
114
```

这个强推论就是图中描述的: n=6时的最后两行的数据的填充即:

```
1 第五行: 1 -> 5, 2 -> 6, 3 -> 4
2 第六行: 1 -> 6, 2 -> 4, 3 -> 5

n = 10时的最后两行的数据的填充即:

1 第七行: 1 -> 7, 2 -> 8, 3 -> 9, 4 -> 10, 5 -> 6
2 第八行: 1 -> 8, 2 -> 9, 3 -> 10, 4 -> 6, 5 -> 7
3 第九行: 1 -> 9, 2 -> 10, 3 -> 6, 4 -> 7, 5 -> 8
4 第十行: 1 -> 10, 2 -> 6, 3 -> 7, 4 -> 8, 5 -> 9
```

结论: 前n / 2列的数据与后n/2列的数据在轮转的对应赋值。

所以我们的赋值语句就是查找相应的右坐标, 使得**左右坐标互换下标值**。

```
int right_index = (i+j)%tmp_size+tmp_size;
ans[i][j] = right_index+1; // left insert
ans[i][right_index] = j+1; // right insert
```

2.4.4 生成奇数结果矩阵

我们知道, combine 之后生成的都是偶数矩阵。但是我们需要的可能是奇数矩阵。所以我们需要一个方式进行相应的转化。

其实这也很简单。把最后一名当成空气人,其他人与他对战设为轮空,赋值为 0, 然后 clear 最后一行空气人的所有对战信息,这样就能生成所谓的奇数矩阵了。

```
dgenerate size is even and delete something to match odd devide size
129
 130 🗸
                 if(devide[target_index]&1) {
 131
                                 traverse into each line=devide[target_index]+1 for deleting
                      for(int i=0; i < devide[target_index]+1; i++) {</pre>
 132 🗸
 133
 134
                          ans[i][devide[target_index]] = 0;
 135
                          // 3.1.2 -- clear number need[target_index]
for(int j=0; j < devide[target_index]+1; j++)</pre>
 136
 137
 138
                            if(ans[i][j] == devide[target_index]+1)
 139
                                  ans[i][j] = 0;
 140
 141
```

2.4.5 combine 逻辑

```
int tmp size = 2;
           for(int target_index=devide.size()-1; target_index >= 0; target_index--) {
               //cout << "devide = " << devide[target_index] << endl;</pre>
 78
                   generate answer is always even, but what we need perhaps be odd
                   so generate odd devide, we should do:
                   1. generate right && O unit inserting the rest couple-rival
2. insert the rest lines with INPORTANT swap_insert
 80
 81
                       clear last column and clear number need[target_index]
 84
                // 1 -- odd size to combine as even
 85
              if(tmp_size&1) { ···
116
117
118 >
128
129
                  3 -- dgenerate size is even and delete something to match odd devide size
130 >
               if(devide[target_index]&1) { ...
142
143
144
               tmp_size = devide[target_index];
145
```

2.4.6 输出函数

```
// output -- first line
for(int i=0; i < column; i++)
cout << "\t" << i+1;
150
               cout << endl;
152
              // output -- "-----"
for(int i=0; i < column+1; i++)
153
154
155
                        cout <<
156
157
               cout << endl;
             // output -- table
for(int i=1; i < row; i++) {
    for(int j=0; j < column; j++)
        cout << "\t" << ans[i][j];
159 ∨
161
                        cout << endl;
163
```

终端运行大概长这样:

2.5 正确性检验

这个测试很简单,主要是进行白盒测试,使得所有逻辑分支都能走正确;以及黑盒测试,使得该程序在大量数据测试下仍能正确运行。

2.5.1 白盒测试

主要逻辑分支就是三个:

- 1. 奇矩阵 combine 成偶矩阵
- 2. 偶矩阵 combine 成偶矩阵
- 3. 偶数矩阵生成奇数矩阵

所以我们采用测试数据集为:

6:3+3,测试第一个逻辑分支

Please 6	input	the size	e of part	icipants	S.		
	1	2	3	4	5	6	
	2	1	6	5	4	3	
	3	5	1	6	2	4	
	4	3	2	1	6	5	
	5	6	4	3	1	2	
	6	4	5	2	3	1	
Calcul	ate in	0.00628	21s.				

7: 4+4-1, 测试第二个和第三个逻辑分支

Please	input	the size	of part	ticipant	s.			
	1	2	3	4	5	6	7	
	2	1	4	3	6	5	0	
	3	4	1	2	7	0	5	
	4	3	2	1	0	7	6	
	5	6	7	0	1	2	3	
	6	5	0	7	2	1	4	
	7	0	5	6	3	4	1	
	0	7	6	5	4	3	2	
Calcul	late in	0.007446	6s.					

8: 4+4, 测试第三个逻辑分支

Please	input t	he size o	of partio	ipants.		_		_
	1	2	3	4	5	6	7	8
	2 3 4 5 6 7	1 4 3 6 5 8	4 1 2 7 8 5	3 2 1 8 7 6	6 7 8 1 2	5 8 7 2 1 4	8 5 6 3 4 1	7 6 5 4 3 2
Calcul	ate in 0	.009871s	•	5	4	5	2	1

显然, 这几个测试都没有问题。

2.5.2 黑盒测试

● 测试了 1-8 的数据集 可以说是走完了所有可能的逻辑分支。都发现没有错误。

Please inpu	t the size	e of par	ticipants	S.
	2			
2 Calculate i	1 n 0.00038	32s.		
Please inpu	t the size	e of par	ticipants	ŝ.
1	2			
2 Calculate i		56s.		
Please inpu	t the size	e of par	ticipants	S.
1	2	3		
2	1	0		
	0			
0	3			
Calculate i	n 0.00344	2/s.		
Please inpu	t the size	e of par	ticipants	6.
1	2	3	4	
2	1	4	3	
	4	1	2	
4	3	2	1	
Calculate i	n 0.00385	175.		

	1	2	3	4	5			
	2	1	0	5	4	-		
	3				2			
	-			0	_			
	4			1	0			
	5			3	1			
	0	4	5	2	3			
Calculat	te in 0.	005137s.						
Please i	input th	e size o	f partic	ipants.				
Б	1	2	3	4	5	6		
	2	1	6	5	4	3	-	
			4	_		4		
		3	2			5		
		6	1	3		2		
	6	4		2	3	1		
coloul-4		4 0060447s		2	3	1		
ratcuta	e m o.	00004475						
Please i	input th	e size o	f partic	ipants.				
	1	2	3	4	5	6	7	
	2		4	3	6	5	0	-
	3	4	1	2	7	0	5	
	4	3	2	1 0	0	7	6	
			7	0	1	2	3	
	6				2	1	4	
	7					4	1	
0-11-4	0	7	6			3	2	
Calculat	0		6					
Please i	0 te in 0.	7	6	5				
Please i	0 te in 0.	7 0082565s	6	5 ipants.	4	3		8
	0 te in 0. input th	7 20082565s e size o	6 f partic 3	5 ipants.	5	3	2	8 7
Please i	te in 0.	7 0082565s e size o 2	6 f partic 3	5 ipants. 4	5	6	7 8	
Please i	o te in O. input th	7 2 2 1 4	f partice	5 ipants. 4	5 6 7	6 5 8	7 8 5	7 6
Please i	te in 0. input th	7 2 2 1 4 3	f partice	5 ipants. 4	5 6 7 8	6 5 8 7	7 8 5 6	7 6 5
Please i	0 te in 0. input th 12 3 4 5	7 20082565s e size o 2 1 4 3 6	6 partic. 3 4 1 2 7	5 ipants. 4 3 2 1 8	5 6 7 8 1	6 5 8 7 2	7 8 5 6 3	7 6 5 4
Please i	0 te in 0. input th 1	7 20082565s e size o 2 	f partic. 3 4 1 2 7 8	5 ipants. 4 3 2 1 8 7	5 6 7 8 1 2	6 5 8 7 2	7 8 5 6 3 4	7 6 5 4
Please i	input th 1 2 3 4 5 6 7	7 20082565s e size o 2 1 4 3 6 5 8	6 f partic 3 4 1 2 7 8 5	5 ipants. 4 3 2 1 8 7 6	5 6 7 8 1 2 3	6 5 8 7 2 1	7 	7 6 5 4 3
Please i	0 te in 0. input th 1 2 3 4 4 5 5 6 6 7 8	7 20082565s e size o 2 	6 f partic 3 4 1 2 7 8 5 6	5 ipants. 4 3 2 1 8 7	5 6 7 8 1 2 3	6 5 8 7 2	7 8 5 6 3 4	7 6 5 4

● 测试 101

1																						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	
	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	
	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	
	89	90	91	92	93	94	95	96	97	98	99	100	101									
	2	1	4	3	6	5	20	9	8	11	10	13	12	15	14	17	16	19	18	7	22	
	24	23	26	25	28	27	30	29	32	31	46	35	34	37	36	39	38	41	40	43	42	
	44	33	48	47	50	49	0	53	52	55	54	57	56	71	60	59	62	61	64	63	66	
	68	67	70	69	58	73	72	75	74	77	76	79	78	81	80	83	82	97	86	85	88	
	90	89	92	91	94	93	96	95	84	99	98	101	100									
	3	4	1	2	7	13	5	10	11	8	9	25	6	16	17	14	15	20	26	18	23	
	21	22	12	19	29	30	27	28	33	39	31	36	37	34	35	51	32	42	43	40	41	
	96	44	49	50	47	48	38	54	55	52	53	58	64	56	61	62	59	60	76	57	67	
	65	66	71	77	69	74	75	72	73	63	70	80	81	78	79	84	90	82	87	88	85	
	0	83	93	94	91	92	97	45	95	100	101	98	99	47		4.5		0.5	0.0	4.0		
	4 22	3 21	2 18	1 13	12 30	7 29	6 28	11 27	10 38	9 33	8 32	5 37	26 36	17 35	16 34	15 31	14 90	25 43	20 42	19 41	24 40	
	46	45	50	49	48	47	44	55	54	53	52	63	58	57	62	61	60	59	56	77	68	
	66	65	76	71	70	75	74	73	72	69	64	81	80	79	78	89	84	83	88	87	86	
	00	03	70	/1	70	73	74	75	12	03	04	01	00	13	70	05	04	0.5	00	07	00	
	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	
	92	93	94	95	96	97	98	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	
	42	43	44	45	46	47	48	49	50	51	1	2	3									
	100	101	0	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	
	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	
	93	94	95	96	97	98	99	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	
	41	42	43	44	45	46	47	48	49	50	51	1	2	752	12.0	122		7000		22		
	101	0	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	
	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	
	94	95	96	97	98	99	100	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	
	40	41	42	43 54	44 55	45 56	46 57	47 58	48 59	49	50	51	1	64	CE	cc	67	60	60	70	74	
		52 74	53	76	77	78	79	80	81	60	61 83	62 84	63 85	86	65 87	66	67 89	68 90	69 91	70	71 93	
	73 95	96	75 97	98	99	100	101	2	3	82 4	5	6	7	80	9	88 10	11	12	13	92 14	15	
		30							25	26	27	28	29	30	31	32	33	34		36		
	17	18	19	20	21	22	23	24											35		37	

但是明显我们的输出一定占了大多数的运行时间。所以我们去掉输出试一试。

Please input the size of participants.

Please input the size of participants.

Please input the size of participants.

发现计算复杂度很小。

● 测试 10000

Please input the size of participants. 10000 Calculate in 0.480561s.

Please input the size of participants. 没有 IO 显得计算时间很小。

● 测试 20000

Please input the size of participants. 20000 Calculate in 2.14507s.

2.6 拓展: 多边形算法 其实这是一个很简单的思路

直接从中轴线开始分割,两边对称就是对战安排。

很简单奥,直接根据中轴线循环,左右遍历一下就是一天的结果。(分奇偶)

● 测试 13

1	2	3	4	5	6	7	8	9	10	11	12	13
2	1	13	12	11	10	9	0	7	6	5	4	3
4	3	2	1	13	12	11	10	0	8	7	6	5
6	5	4	3	2	1	13	12	11	0	9	8	7
8	7	6	5	4	3	2	1	13	12	0	10	9
10	9	8	7	6	5	4	3	2	1	13	0	11
12	11	10	9	8	7	6	5	4	3	2	1	0
0	13	12	11	10	9	8	7	6	5	4	3	2
3	0	1	13	12	11	10	9	8	7	6	5	4
5	4	0	2	1	13	12	11	10	9	8	7	6
7	6	5	0	3	2	1	13	12	11	10	9	8
9	8	7	6	0	4	3	2	1	13	12	11	10
11	10	9	8	7	0	5	4	3	2	1	13	12
13	12	11	10	9	8	0	6	5	4	3	2	1
Calculate in	0.043199	7s.										

差不多可以。

● 测试 10000 (屏蔽输出)

Please input the size of participants. 10000 Calculate in 0.75883s.

多边形运行时间居然比分治长!

● 测试 20000 (屏蔽输出)

Please input the size of participants. 20000 Calculate in 3.07178s. ● 测试 30000 (屏蔽输出)

Please input the size of participants. 30000 Calculate in 6.90664s.

多边形能运行,分治不能运行!

三、出现问题及解决

3.1 子函数逻辑思路理清

分为三个策略:

- 1. 奇矩阵 combine 成偶矩阵
- 2. 偶矩阵 combine 成偶矩阵
- 3. 偶数矩阵生成奇数矩阵

因为对分治的把握和对过程的不理解,导致在编写过程中容易把这三个逻辑写岔(比如写奇矩阵 combine 成偶矩阵时,我们很容易写成了偶数矩阵生成奇数矩阵)

3.2 奇数矩阵 combine 成偶数矩阵

这个是最难的地方。我们处理这个问题的时候,需要考虑右边,下面,右下的数据生成方式。最后还是在细心地编写下得以解决。

四、总结

4.1 时间复杂度

● 分治法:

 $T(n) = T(n/2) + (n/2)^2$

所以 T(n) = (n/2)^2 + (n/4)^2 ··· +1

所以 T(n) = O(n^2)

● 多边形法:

很简单,直接是一个二重循环逐个生成矩阵元素,所以是 O(n^2)

4.2 空间复杂度

● 分治法:

很简单就是一个存储矩阵。所有的操作都是通过左上角拓展。

- 多边形法:
- 很简单就是一个存储矩阵。他直接生成整个矩阵。

4.3 算法效率

这很简单,因为算法效率他就是固定的。他没有最好最坏,输入什么就是什么。 所以不存在讨论因为数据集不同导致的算法效率问题。

4.4 生成序列的规整性

这里我的意思是生成矩阵是否有很好看的规律(一眼看出)。

分治法:我们生成的矩阵并不是有很强的对称性,所以最后也没有很好看。

多边形法:这里就有很强的规律性了。他就如算法描述的一样具有对称发散的性质。每 一行都是上一层的循环位移。就有了很好看的矩阵

4.5 理解与思考

分治法花了我很长的时间,我认为这是有意义的。因为他让我知道了我们如何去应对一个如此复杂的分治问题。在思考过程中我也一直质疑算法的正确性,甚至在生成数组的时候我发现会出现比输入规模大的数字(这显然不对)。这一切的思考都是有意义和有价值的。

此外,多边形法就显得很简单。这就是算法建立在强数学推论上的好处(能用数学解决的就不要靠机器来一步步走哈哈)