FLH CASE STUDY

Business Context

"Feel Like Home" (aka FLH) is a home rental company like Oyo. For the past few months, because of covid, FLH has seen a major decline in revenue. Now that the restrictions have started lifting and people have started to travel more, the organization wants to make sure that it is fully prepared.

Problem Statement

The different leaders at FLH want to understand some important insights based on various attributes in the dataset to maximize revenue during this period of increasing travel:

- What are the neighbourhoods that FLH needs to target?
- What are the pricing ranges preferred by FLH customers?
- What are the types of properties that are most successful and least successful for FLH?
- What are customers looking for most in their stays with FLH?
- What attributes do the hosts have that FLH should target to add to their service to increase revenue?
- How to get unpopular properties more traction?

Data Availability

- This dataset has around 49,000 observations in it with 16 columns and it is a mix between categorical and numeric values.
- Categorical variable(Nominal): Neighbourhood group, Neighbourhood and Room type
- Numerical Variable(Continous): Price
- Numerical Variable(Descrete): Minimum Nights, Number of reviews, Last review, Reviews per month, Calculated host listings count, Availability 365
- Location variable: Latitude, Longitude
- It all needed information to find out more about hosts, geographical availability, necessary metrics to make predictions and draw conclusions.

Data Preprocessing

Data Preparation.ipynb

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48895 entries, 0 to 48894
Data columns (total 16 columns):
    Column
                                    Non-Null Count Dtype
     id
                                    48895 non-null int64
     name
                                    48879 non-null object
     host_id
                                    48895 non-null int64
     host_name
                                    48874 non-null object
    neighbourhood group
                                    48895 non-null object
     neighbourhood
                                    48895 non-null
                                                   object
    latitude
                                    48895 non-null float64
     longitude
                                    48895 non-null float64
     room_type
                                    48895 non-null object
    price
                                    48895 non-null int64
    minimum nights
                                    48895 non-null int64
    number_of_reviews
                                    48895 non-null int64
 12 last review
                                    38843 non-null object
 13 reviews_per_month
                                    38843 non-null float64
 14 calculated host listings count 48895 non-null int64
 15 availability_365
                                    48895 non-null int64
dtypes: float64(3), int64(7), object(6)
memory usage: 6.0+ MB
```

Missing Values

	n_rows	n_cols	null_vals	dupl_vals
0	48895	16	20141	0

Missing Value treatment

```
: #replacing all NaN values in 'reviews per month' with 0
  data.fillna({'reviews_per_month':0}, inplace=True)
  #examing changes
  data.reviews_per_month.isnull().sum()
  0
: #dropping columns that are not significant for our data exploration and analysis
  data.drop(['last_review', 'name'], axis=1, inplace=True)
  #examing the changes
  data.head(3)
                   name host id host name neighbourhood group neighbourhood
                                                                             latitude longitude room type price minimum nights
        id
             Clean & quiet
                                                                                                 Private
                           2787
                                                                                                         149
  0 2539
           apt home by the
                                     John
                                                      Brooklyn
                                                                  Kensington 40.64749 -73.97237
                                                                                                  room
```

Outliers

Outliers for continuous numerical variable are checked and eliminated

After Treatment

Assumption

- Assumption:
 - Number of Reviews = Number of Customer to That particular host
 - Price is for sing night stay
- Here target variable is not explicitly given, so to measure the performance of host I have added new attribute called by Revenue by multiplying Price and Number of customer and their minimum night stays

```
data2["revenue"]=data2["price"]*data2["number_of_reviews"]*data2["minimum_nights"]
data2
```

Data Analysis

Complete Data Analysis

 $Low - (0\$-100\$); \ Budget - (100\$-200\$); \ Medium - (200\$-300\$); \ High - (>300\$)$

Observation

- 1) People prefer mostly budget-type rooms whose price range from 100\$ -200\$
- 2) People rarely go for the high price range
- 3) Need to increase more budget and medium price range rooms

Favorite Room type by Neighbourhood Group

Observation:
Most Successful Type: Entire Home\Apt
Least Successful Type: Shared Room

Favorite Room type by Neighbourhood

Observation

Have to increase Entire Home\ Apt Type to generate more Revenue in low performing neighbourhood

Customers looking for most in their stays with FLH

Observation:

- 1) Most crucial thing in real estate is location. Here we can witness that the Neighbourhood group plays a crucial role.
- 2) About 98% of customers prefer to have a minimum night stay of fewer than 30 days.
- 3) Availability doesn't have that much impact on the customer preference

FLH should target to add to their service to increase revenue

Observations:

- 1) The Properties listed in Manhattan (44%) and Brooklyn (40%) contributes around 85% of total New York Listings, while Queens, Bronx, and Staten Islands Contribute comparatively less, So FLH needs to target these areas and acquire more properties.
- 2) Staten Island and Bronx have scattered and less dense properties compared with other groups
- 3) About 98% of Customers opt for a minimum stay to be less than a month, so FLH needs to reduce the Minimum night stays.
- 4) Occasionally, listing the location on Airbnb might not be a good idea to maximize profits.

To get unpopular properties more traction

Observations:

- 1) "Too much of anything is good for nothing" more concentration of properties in certain neighborhood groups causes less entry into those areas
- 2) One of the best ways to ensure a steady stream of bookings is to make sure the FLH listing is up-to-date with proper descriptions.
- 3) FLH Rate changes: Even in the busiest neighborhood the price need to be adjusted with many factors like minimum night stays and availability etc...

Conclusion

- The host listed from Brooklyn and Manhattan neighbourhood group contributes 85% of the total listing, FLH needs to acquire more properties from Bronx, Queens, and Staten Island to increase the revenue. Need to increase more budget and medium price range rooms
- The Properties listed in Manhattan(44%) and Brooklyn(40%) contributes around 85% of total New York Listings, while Queens, Bronx, and Staten Islands Contribute comparatively less, So FLH needs to target these areas and acquire more properties.
- Staten Island and Bronx have scattered and less dense properties compared with other groups
- About 98% of Customers opt for a minimum stay to be less than a month, so FLH needs to reduce the Minimum night stays.