Rational Diophantine tuples and elliptic curves

Andrej Dujella

Department of Mathematics Faculty of Science University of Zagreb, Croatia e-mail: duje@math.hr

URL: https://web.math.pmf.unizg.hr/~duje/

Supported by the QuantiXLie Center of Excellence and COGITO project "Approximation diophantienne et courbes elliptiques".

Diophantus: Find four (positive rational) numbers such that the product of any two of them, increased by 1, is a perfect square:

$$\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$$

Fermat: {1, 3, 8, 120}

$$1 \cdot 3 + 1 = 2^2$$
, $3 \cdot 8 + 1 = 5^2$, $1 \cdot 8 + 1 = 3^2$, $3 \cdot 120 + 1 = 19^2$, $1 \cdot 120 + 1 = 11^2$, $8 \cdot 120 + 1 = 31^2$.

Definition: A set $\{a_1, a_2, \ldots, a_m\}$ of m non-zero integers (rationals) is called a *(rational)* Diophantine m-tuple if $a_i \cdot a_j + 1$ is a perfect square for all $1 \le i < j \le m$.

Question: How large such sets can be?

Euler: There are infinitely many Diophantine quadruples in integers. E.g. $\{k-1,k+1,4k,16k^3-4k\}$ for $k \ge 2$.

Baker & Davenport (1969): $\{1, 3, 8, d\} \Rightarrow d = 120$ (problem raised by Gardner (1967), van Lint (1968))

D. (2004): There does not exist a Diophantine sextuple. There are only finitely many quintuples.

He, Togbé & Ziegler (2019): There does not exist a Diophantine quintuple.

Arkin, Hoggatt & Strauss (1978): Let

$$ab + 1 = r^2$$
, $ac + 1 = s^2$, $bc + 1 = t^2$

and define

$$d_{+,-} = a + b + c + 2abc \pm 2rst.$$

Then $\{a, b, c, d_{+,-}\}$ is a Diophantine quadruple (if $d_{-} \neq 0$).

Conjecture: If $\{a,b,c,d\}$ is a Diophantine quadruple, then $d=d_+$ or $d=d_-$, i.e. all Diophantine quadruples satisfy

$$(a-b-c+d)^2 = 4(ad+1)(bc+1).$$

Such quadruples are called regular.

D. & Pethő (1998): All quadruples containing $\{1,3\}$ are regular.

Fujita (2008), Bugeaud, D. & Mignotte (2007): All quadruples containing $\{k-1,k+1\}$ are regular.

Cipu, Fujita & Miyazaki (2018): Any fixed Diophantine triple can be extended to a Diophantine quadruple in at most 8 ways by joining a fourth element exceeding the maximal element in the triple.

Extending the Diophantine triple $\{a,b,c\}$, a < b < c, to a Diophantine quadruple $\{a,b,c,d\}$:

$$ad + 1 = x^2$$
, $bd + 1 = y^2$, $cd + 1 = z^2$.

System of simultaneous Pellian equations:

$$cx^2 - az^2 = c - a$$
, $cy^2 - bz^2 = c - b$.

Binary recursive sequences:

finitely many equations of the form $v_m = w_n$.

Linear forms in three logarithms:

 $v_m \approx \alpha \beta^m$, $w_n \approx \gamma \delta^n \Rightarrow m \log \beta - n \log \delta + \log \frac{\alpha}{\gamma} \approx 0$ Baker's theory gives upper bounds for m, n (logarithmic functions in c).

Simultaneous Diophantine approximations:

 $\frac{x}{z}$ and $\frac{y}{z}$ are good rational approximations to $\sqrt{\frac{a}{c}}$ and $\sqrt{\frac{b}{c}}$, resp. $\frac{bsx}{abz}$ and $\frac{aty}{abz}$ are good rational approximations to $\frac{s}{a}\sqrt{\frac{a}{c}}=\sqrt{1+\frac{b}{abc}}$ and $\frac{t}{b}\sqrt{\frac{b}{c}}=\sqrt{1+\frac{a}{abc}}$, resp.

If c is large compared to b ($c > b^5$), then hypergeometric method gives (very good) upper bounds for x, y, z.

Congruence method (D. & Pethő): $v_m \equiv w_n \pmod{c^2}$ If m, n are small (compared with c), then \equiv can be replaced by =, and this (hopefully) leads to a contradiction (if m, n > 2). We obtain lower bounds for m, n (small powers of c).

Conclusion: Contradiction for large c. For small a, b, c: Baker-Davenport reduction There is no known upper bound for the size of rational Diophantine tuples.

Euler: There are infinitely many rational Diophantine quintuples. E.g. $\{1,3,8,120,\frac{777480}{8288641}\}$. Any pair $\{a,b\}$ such that $ab+1=r^2$ can be extended to a quintuple.

Arkin, Hoggatt & Strauss (1979): Any rational Diophantine triple $\{a, b, c\}$ can be extended to a quintuple.

D. (1997): Any rational Diophantine quadruple $\{a, b, c, d\}$, such that $abcd \neq 1$, can be extended to a quintuple (in two different ways, unless the quadruple is "regular" (such as in the Euler and AHS construction), in which case one of the extensions is trivial extension by 0).

Question: If $\{a, b, c, d, e\}$ and $\{a, b, c, d, f\}$ are two extensions from D. (1997) and $ef \neq 0$, is it possible that ef + 1 is a perfect square?

$$e, f = \frac{(a+b+c+d)(abcd+1) + 2abc + 2abd + 2acd + 2bcd \pm 2\sqrt{D}}{(abcd-1)^2},$$

where

$$D = (ab+1)(ac+1)(ad+1)(bc+1)(bd+1)(cd+1).$$

Gibbs (1999):
$$\left\{\frac{5}{36}, \frac{5}{4}, \frac{32}{9}, \frac{189}{4}, \frac{665}{1521}, \frac{3213}{676}\right\}$$

D., Kazalicki, Mikić & Szikszai (2015): There are infinitely many rational Diophantine sextuples.

Moreover, there are infinitely many rational Diophantine sextuples with positive elements, and also with any combination of signs. **Open question:** Is there any rational Diophantine septuple?

Herrmann, Pethő & Zimmer (1999): A rational Diophantine quadruple has only finitely many extensions to a rational Diophantine quintuple. They showed that the conditions on the fifth element of the quintuple lead to a curve of genus 4, and then they applied Faltings' theorem.

Lang's conjecture on varieties of general type implies that there is no rational Diophantine m-tuple if m is large enough.

Stoll (2019): If $\{1,3,8,120,e\}$ is a rational Diophantine quintuple, then $e = \frac{777480}{8288641}$. Fermat's set cannot be extended to a rational Diophantine sextuple.

By DKMS (2015), there exist infinitely many triples, each of which can be extended to sextuples in infinitely many ways.

D., Kazalicki & Petričević (2019): Infinitely many rational Diophantine sextuples such that denominators of all the elements (in the lowest terms) are perfect squares.

Gibbs (2016), D., Kazalicki & Petričević (2018): Examples of "almost" septuples – rational Diophantine quintuples which can be extended to rational Diophantine sextuples in two different ways, so that only one condition is missing for these seven numbers to form a rational Diophantine septuple, e.g.

{243/560, 1147/5040, 1100/63, 7820/567, 95/112} can be extended with 38269/6480 or 196/45.

Gibbs (2016): Rational Diophantine quadruples which can be extended to quintuples in six different ways, e.g.

{81/1400, 5696/4725, 2875/168, 4928/3} can be extended to a quintuple using any one of these: 98/27, 104/525, 96849/350, 1549429/1376646, 3714303488/6103383075, 7694337252154322/1857424629984075.

D., Kazalicki & Petričević (2018): Rational Diophantine quadruple which can be extended to rational Diophantine sextuples in three different ways:

 $\{11825/2016, 51200/693, 9163/92160, 497/990\}$ can be extended with $\{10989/280, 551/3080\}$, $\{10989/280, 19035/9856\}$ or $\{551/3080, 17577/1760\}$.

Induced elliptic curves

Let $\{a, b, c\}$ be a rational Diophantine triple. To extend this triple to a quadruple, we consider the system

$$ax + 1 = \square,$$
 $bx + 1 = \square,$ $cx + 1 = \square.$ (1)

It is natural to assign the elliptic curve

$$\mathcal{E}: \qquad y^2 = (ax+1)(bx+1)(cx+1)$$
 (2)

to the system (1). We say \mathcal{E} is induced by the triple $\{a,b,c\}$.

Three rational points on the \mathcal{E} of order 2:

$$A = [-1/a, 0], \quad B = [-1/b, 0], \quad C = [-1/c, 0]$$

and also other obvious rational points

$$P = [0, 1], \quad S = [1/abc, \sqrt{(ab+1)(ac+1)(bc+1)}/abc].$$

The x-coordinate of a point $T \in \mathcal{E}(\mathbb{Q})$ satisfies (1) if and only if $T - P \in 2\mathcal{E}(\mathbb{Q})$.

It holds that $S \in 2\mathcal{E}(\mathbb{Q})$. Indeed, if $ab+1=r^2$, $ac+1=s^2$, $bc+1=t^2$, then S=[2]V, where

$$V = \left\lceil \frac{rs + rt + st + 1}{abc}, \frac{(r+s)(r+t)(s+t)}{abc} \right\rceil.$$

This implies that if x(T) satisfies system (1), then also the numbers $x(T \pm S)$ satisfy the system.

D. (1997,2001): $x(T)x(T \pm S) + 1$ is always a perfect square. With x(T) = d, the numbers $x(T \pm S)$ are exactly e and f.

Proposition 1: Let Q, T and $[0,\alpha]$ be three rational points on an elliptic curve \mathcal{E} over \mathbb{Q} given by the equation $y^2 = f(x)$, where f is a monic polynomial of degree 3. Assume that $\mathcal{O} \notin \{Q, T, Q + T\}$. Then

$$x(Q)x(T)x(Q+T) + \alpha^2$$

is a perfect square.

Proof: Consider the curve

$$y^{2} = f(x) - (x - x(Q))(x - x(T))(x - x(Q + T)).$$

It is a conic which contains three collinear points: Q, T, -(Q+T). Thus, it is the union of two rational lines, e.g. we have

$$y^2 = (\beta x + \gamma)^2.$$

Inserting here x = 0, we get

$$x(Q)x(T)x(Q+T) + \alpha^2 = \gamma^2.$$

The transformation $x\mapsto x/abc$, $y\mapsto y/abc$, applied to $\mathcal E$ leads to

E':
$$y^2 = (x + ab)(x + ac)(x + bc)$$

The points P and S become P' = [0, abc] and S' = [1, rst], respectively.

If we apply Proposition 1 with $Q=\pm S'$, since x(S')=1, we get a simple proof of the fact that $x(T)x(T\pm S)+1$ is a perfect square (after dividing $x(T')x(T'\pm S')+a^2b^2c^2=1$ by $a^2b^2c^2$).

Now we have a general construction which produces two rational Diophantine quintuples with four joint elements. So, the union of these two quintuples,

$${a,b,c,x(T-S),x(T),x(T+S)},$$

is "almost" a rational Diophantine sextuple.

Assuming that $T, T \pm S \not\in \{\mathcal{O}, \pm P\}$, the only missing condition is

$$x(T-S) \cdot x(T+S) + 1 = \square.$$

To construct examples satisfying this last condition, we will use Proposition 1 with Q = [2]S'. To get the desired conclusion, we need the condition x([2]S') = 1 to be satisfied. This leads to [2]S' = -S', i.e. $[3]S' = \mathcal{O}$.

Lemma 1: For the point S' = [1, rst] on E' it holds $[3]S' = \mathcal{O}$ if and only if

$$-a^{4}b^{2}c^{2} + 2a^{3}b^{3}c^{2} + 2a^{3}b^{2}c^{3} - a^{2}b^{4}c^{2} + 2a^{2}b^{3}c^{3}$$
$$-a^{2}b^{2}c^{4} + 12a^{2}b^{2}c^{2} + 6a^{2}bc + 6ab^{2}c + 6abc^{2}$$
$$+4ab + 4ac + 4bc + 3 = 0.$$
 (3)

The polynomial in a,b,c on the left hand side of (3) is symmetric. Thus, by taking $\sigma_1=a+b+c$, $\sigma_2=ab+ac+bc$, $\sigma_3=abc$, we get from (3) that

$$\sigma_2 = (\sigma_1^2 \sigma_3^2 - 12\sigma_3^2 - 6\sigma_1 \sigma_3 - 3)/(4 + 4\sigma_3^2). \tag{4}$$

Inserting (4) in $(ab+1)(ac+1)(bc+1) = (rst)^2$, we get $(2\sigma_3^2 + \sigma_1\sigma_3 - 1)^2/(4 + 4\sigma_3^2) = (rst)^2$, i.e. $1 + \sigma_3^2 = \square$.

The polynomial

$$X^3 - \sigma_1 X^2 + \sigma_2 X - \sigma_3$$

should have rational roots, so its discriminant has to be a perfect square. Inserting (4) in the expression for the discriminant, we get

$$(\sigma_1^3\sigma_3 - 9\sigma_1^2 - 27\sigma_1\sigma_3 - 54\sigma_3^2 - 27)(1 + \sigma_3^2)(\sigma_1\sigma_3 + 2\sigma_3^2 - 1) = \square. (5)$$

For a fixed σ_3 , we may consider (5) as a quartic in σ_1 . Since $1+\sigma_3^2$ has to be a perfect square, from (5) we get a quartic with a rational point (point at infinity), which therefore can be transformed into an elliptic curve.

Let us take $\sigma_3 = \frac{t^2-1}{2t}$. Then we get the quartic over $\mathbb{Q}(t)$ which is birationally equivalent to the following elliptic curve over $\mathbb{Q}(t)$

$$E: \quad y^2 = x^3 + (3t^4 - 21t^2 + 3)x^2 + (3t^8 + 12t^6 + 18t^4 + 12t^2 + 3)x + (t^2 + 1)^6.$$
 (6)

This elliptic curve has positive rank, since the point $R = [0, (t^2 + 1)^3]$ is of infinite order.

By taking multiples [m]R of the point R, transforming these coordinates back to the quartic and computing corresponding triples $\{a,b,c\}$, we may expect to get infinitely many parametric families of rational triples for which the corresponding point S' on E' satisfies $[3]S' = \mathcal{O}$.

Since the condition $1+\sigma_3^2=\square$ implies $rst\in\mathbb{Q}$, and $S'=-[2]S'\in 2E'(\mathbb{Q})$, an explicit 2-descent on E' implies that ab+1, ac+1, bc+1 are all perfect squares, thus the triple $\{a,b,c\}$ obtained with this construction is indeed a Diophantine triple.

In particular, if we take the point [2]R, we get the following family of rational Diophantine triples

$$a = \frac{18t(t-1)(t+1)}{(t^2-6t+1)(t^2+6t+1)},$$

$$b = \frac{(t-1)(t^2+6t+1)^2}{6t(t+1)(t^2-6t+1)},$$

$$c = \frac{(t+1)(t^2-6t+1)^2}{6t(t-1)(t^2+6t+1)}.$$

Consider now the elliptic curve over $\mathbb{Q}(t)$ induced by the triple $\{a,b,c\}$. It has positive rank since the point P=[0,1] is of infinite order. Thus, the above described construction produces infinitely many rational Diophantine sextuples containing the triple $\{a,b,c\}$. One such sextuple $\{a,b,c,d,e,f\}$ is obtained by taking x-coordinates of points [3]P, [3]P+S, [3]P-S.

```
We get d = d_1/d_2, e = e_1/e_2, f = f_1/f_2, where
d_1 = 6(t+1)(t-1)(t^2+6t+1)(t^2-6t+1)
      \times (8t^6 + 27t^5 + 24t^4 - 54t^3 + 24t^2 + 27t + 8)
      \times (8t^6 - 27t^5 + 24t^4 + 54t^3 + 24t^2 - 27t + 8)
      \times (t^8 + 22t^6 - 174t^4 + 22t^2 + 1)
d_2 = t(37t^{12} - 885t^{10} + 9735t^8 - 13678t^6 + 9735t^4 - 885t^2 + 37)^2
e_1 = -2t(4t^6 - 111t^4 + 18t^2 + 25)
      \times (3t^7 + 14t^6 - 42t^5 + 30t^4 + 51t^3 + 18t^2 - 12t + 2)
      \times (3t^7 - 14t^6 - 42t^5 - 30t^4 + 51t^3 - 18t^2 - 12t - 2)
      \times (t^2 + 3t - 2)(t^2 - 3t - 2)(2t^2 + 3t - 1)
      \times (2t^2 - 3t - 1)(t^2 + 7)(7t^2 + 1).
e_2 = 3(t+1)(t^2-6t+1)(t-1)(t^2+6t+1)
      \times (16t^{14} + 141t^{12} - 1500t^{10} + 7586t^8 - 2724t^6 + 165t^4 + 424t^2 - 12)^2
f_1 = 2t(25t^6 + 18t^4 - 111t^2 + 4)
      \times (2t^7 - 12t^6 + 18t^5 + 51t^4 + 30t^3 - 42t^2 + 14t + 3)
      \times (2t^7 + 12t^6 + 18t^5 - 51t^4 + 30t^3 + 42t^2 + 14t - 3)
      \times (2t^2 + 3t - 1)(2t^2 - 3t - 1)(t^2 - 3t - 2)
      \times (t^2 + 3t - 2)(t^2 + 7)(7t^2 + 1).
f_2 = 3(t+1)(t^2-6t+1)(t-1)(t^2+6t+1)
      \times (12t^{14} - 424t^{12} - 165t^{10} + 2724t^8 - 7586t^6 + 1500t^4 - 141t^2 - 16)^2
```

These formulas produce infinitely many rational Diophantine sextuples. Moreover, by choosing the rational parameter t from the appropriate interval, we get infinitely many sextuples for each combination of signs. E.g., for 5.83 < t < 6.86 all elements are positive. As a specific example, let us take t = 6, for which we get a sextuple with all positive elements:

$$\left\{ \frac{3780}{73}, \frac{26645}{252}, \frac{7}{13140}, \frac{791361752602550684660}{1827893092234556692801}, \\ \frac{95104852709815809228981184}{351041911654651335633266955}, \\ \frac{3210891270762333567521084544}{21712719223923581005355} \right\}.$$

The construction of the above parametric family of rational Diophantine sextuples relies on the fact that the cubic polynomial corresponding to the point [2]R has rational roots.

Is the same true for all multiples [m]R of R? YES!

Is the same true for all other points on the curve (6) (in the case when the rank is > 1)? NO!

For example for t=31 (when the rank of (6) is 2) and point [x,y]=[-150072,682327360] (which is not a multiple of R) the polynomial $X^3-\sigma_1X^2+\sigma_2X-\sigma_3$ has no rational roots.

Alternative construction

Piezas (2016), D. & Kazalicki (2017), D., Kazalicki, Petričević (2019)

If $\{a,b,c,d\}$ is a rational Diophantine quadruple such that

$$(abcd - 3)^2 = 4(ab + cd + 3),$$

and e and f are extensions from D. (1997), then

$$ef + 1 = \left(\frac{a+b-c-d}{abcd-1}\right)^2,$$

so (assuming that $ef \neq 0$) $\{a,b,c,d,e,f\}$ is a rational Diophantine sextuple.

Edwards curve:

$$(x^2-1)(y^2-1)=m$$
, where $m=abcd=\frac{2t^2+t-1}{t-1}$.

Birationally equivalent to the elliptic curve

$$S^{2} = T^{3} - 2 \cdot \frac{2t^{2} - t + 1}{t - 1}T^{2} + \frac{(2t - 1)^{2}(t + 1)^{2}}{(t - 1)^{2}}T.$$

$$P = \left[\frac{(2t-1)^2(t+1)}{t-1}, \frac{2t(2t-1)^2(t+1)}{t-1} \right]$$

is a point of infinite order,

$$R = \left[\frac{(t+1)(2t-1)}{t-1}, \frac{2(t+1)(2t-1)}{t-1} \right]$$

is a point of order 4.

Additional point if t-1 is a square.

"Simplest" known family of rational Diophantine sextuples:

$$a = \frac{(t^2 - 2t - 1) \cdot (t^2 + 2t + 3) \cdot (3t^2 - 2t + 1)}{4t \cdot (t^2 - 1) \cdot (t^2 + 2t - 1)},$$

$$b = \frac{4t \cdot (t^2 - 1) \cdot (t^2 - 2t - 1)}{(t^2 + 2t - 1)^3},$$

$$c = \frac{4t \cdot (t^2 - 1) \cdot (t^2 + 2t - 1)}{(t^2 - 2t - 1)^3},$$

$$d = \frac{(t^2 + 2t - 1) \cdot (t^2 - 2t + 3) \cdot (3t^2 + 2t + 1)}{4t \cdot (t^2 - 1) \cdot (t^2 - 2t - 1)},$$

$$e = \frac{-t \cdot (t^2 + 4t + 1) \cdot (t^2 - 4t + 1)}{(t - 1) \cdot (t + 1) \cdot (t^2 + 2t - 1) \cdot (t^2 - 2t - 1)},$$

$$f = \frac{(t - 1) \cdot (t + 1) \cdot (3t^2 - 1) \cdot (t^2 - 3)}{4t \cdot (t^2 + 2t - 1) \cdot (t^2 - 2t - 1)}.$$

High rank curves with given torsion group

By the Mordell-Weil theorem, the group $E(\mathbb{Q})$ of rational points on an elliptic curve E is a finitely generated abelian group. Hence, it is the product of the torsion group and $r \geq 0$ (r is called the rank) copies of the infinite cyclic group:

$$E(\mathbb{Q}) \cong E(\mathbb{Q})_{\mathsf{tors}} \times \mathbb{Z}^r$$
.

Let $\{a, b, c\}$ be a (rational) Diophantine triple and E the elliptic curve $y^2 = (ax + 1)(bx + 1)(cx + 1)$ induced by this triple.

By Mazur's theorem: $E(\mathbb{Q})_{tors} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2m\mathbb{Z}$ with m = 1, 2, 3, 4.

D. & Mikić (2014): If a, b, c are positive integers, then the cases m = 2 and m = 4 are not possible.

Parametric formulas for the rational Diophantine sextuples $\{a,b,c,d,e,f\}$ can be used to obtain an elliptic curve over $\mathbb{Q}(t)$ with reasonably high rank. Consider the curve

E:
$$y^2 = (dx + 1)(ex + 1)(fx + 1)$$
.

It has three obvious points of order two, but also points with x-coordinates

$$0, \frac{1}{def}, a, b, c.$$

It can be checked (by suitable specialization) that these five points are independent points of infinite order on the curve E over $\mathbb{Q}(t)$. Therefore, we get that the rank of E over $\mathbb{Q}(t)$ is ≥ 5 (torsion group is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$).

Aguirre, D. & Peral (2012), D. & Peral (2019): Curves with torsion $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and rank 6 over $\mathbb{Q}(t)$ and rank 11 over \mathbb{Q} .

For rational Diophantine triples $\{a,b,c\}$ satisfying condition (3), the induced elliptic curve has torsion group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$, since it contains the point S of order 3. Our parametric family for triples $\{a,b,c\}$ gives a curve over $\mathbb{Q}(t)$ with generic rank 1.

Within this family of curves, it is possible to find subfamilies of generic rank 2 and particular examples with rank 6, which both tie the current records of ranks of curve with torsion $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ (D. & Peral (2019)).

$$\left\{\frac{7567037280}{7833785281}, \frac{4161669360289}{569762123040}, \frac{1359453258559}{948852707040}\right\}$$

Elliptic curves with the torsion subgroup $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ have an equation of the form

$$y^2 = x(x + x_1^2)(x + x_2^2), \quad x_1, x_2 \in \mathbb{Q}.$$

The point $[x_1x_2, x_1x_2(x_1+x_2)]$ is a rational point on the curve of order 4.

An elliptic curve induced by triple $\{a,b,c\}$ can we written in the form

$$y^2 = x(x + ac - ab)(x + bc - ab).$$

By comparing these two equations, we get conditions that ac-ab and bc-ab are perfect squares. We may expect that this curve will have positive rank, since it also contains the point [ab,abc].

A convenient way to fulfill these two conditions is to choose a and b such that ab=-1. Then $ac-ab=ac+1=s^2$ and $bc-ab=bc+1=t^2$. It remains to find a and c such that $\{a,-1/a,c\}$ is a Diophantine triple. A parametric solution is

$$a = \frac{\alpha \tau + 1}{\tau - \alpha}, \quad c = \frac{4\alpha \tau}{(\alpha \tau + 1)(\tau - \alpha)}.$$

Additional points of infinite order if

$$\tau^2 + \alpha^2 + 2$$
 or $\alpha^2 \tau^2 + 2\alpha^2 + 1$

are perfect squares.

D. & Peral (2014, 2019): Curves with torsion $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ and rank 4 over $\mathbb{Q}(t)$ and rank 9 over \mathbb{Q} (both results are current records for ranks with this torsion).

Every elliptic curve over \mathbb{Q} with torsion group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$ is induced by a rational Diophantine triple (D. (2007), Campbell & Goins (2007)).

D. (2007): For each $0 \le r \le 3$, there exists a rational Diophantine triple $\{a,b,c\}$ such that the elliptic curve $y^2 = (ax+1)(bx+1)(cx+1)$ has the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$ and the rank equal to r.

Connell (2000), D. (2000):
$$r = 3$$

$$\left\{ \frac{408}{145}, -\frac{145}{408}, -\frac{145439}{59160} \right\}.$$

$B(T) = \sup\{\operatorname{rank}(E(\mathbb{Q})) : E(\mathbb{Q})_{\operatorname{tors}} \cong T\}$

T	$B(T) \ge$	Author(s)
0	28	Elkies (2006)
$\mathbb{Z}/2\mathbb{Z}$	19	Elkies (2009)
$\mathbb{Z}/3\mathbb{Z}$	14	Elkies (2018)
$\mathbb{Z}/4\mathbb{Z}$	12	Elkies (2006), Dujella & Peral (2014)
$\mathbb{Z}/5\mathbb{Z}$	8	Dujella & Lecacheux (2009), Eroshkin (2009)
$\mathbb{Z}/6\mathbb{Z}$	8	Eroshkin (2008), Dujella & Eroshkin (2008), Elkies (2008), Dujella (2008), Dujella & Peral (2012), Dujella, Peral & Tadić (2014,2015,2019), Gandhikumar & Voznyy (2019)
$\mathbb{Z}/7\mathbb{Z}$	5	Dujella & Kulesz (2001), Elkies (2006), Eroshkin (2009), Dujella & Lecacheux (2009), Dujella & Eroshkin (2009)
$\mathbb{Z}/8\mathbb{Z}$	6	Elkies (2006), Dujella, MacLeod & Peral (2013)
$\mathbb{Z}/9\mathbb{Z}$	4	Fisher (2009), van Beek (2015)
$\mathbb{Z}/10\mathbb{Z}$	4	Dujella (2005,2008), Elkies (2006), Fisher (2016)
$\mathbb{Z}/12\mathbb{Z}$	4	Fisher (2008)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	15	Elkies (2009)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/4\mathbb{Z}$	9	Dujella & Peral (2012,2019)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/6\mathbb{Z}$	6	Elkies (2006), Dujella, Peral & Tadić (2015)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/8\mathbb{Z}$	3	Connell (2000), Dujella (2000,2001,2006,2008), Campbell & Goins (2003), Rathbun (2003,2006,2013), Flores, Jones, Rollick & Weigandt (2007), Fisher (2009)

Construction of high-rank curves

- 1. Find a parametric family of elliptic curves over \mathbb{Q} that contains curves with relatively high rank (i.e. an elliptic curve over $\mathbb{Q}(t)$ with large generic rank); e.g. by Mestre's polynomial method or by using elliptic curves induced by Diophantine triples.
- 2. Choose in given family best candidates for higher rank.

General idea: a curve is more likely to have large rank if $|E(\mathbb{F}_p)|$ is relatively large for many primes p.

Precise statement: Birch and Swinnerton-Dyer conjecture.

More suitable for computation: Mestre's conditional upper bound (assuming BSD and GRH), Mestre-Nagao sums, e.g. the sum:

$$s(N) = \sum_{p \leq N, \ p \ \text{prime}} \frac{|E(\mathbb{F}_p)| + 1 - p}{|E(\mathbb{F}_p)|} \ \log(p)$$

3. Try to compute the rank (Cremona's program mwrank - very good for curves with rational points of order 2), or at least good lower and upper bounds for the rank.

$$G(T) = \sup\{\operatorname{rank} E(\mathbb{Q}(t)) : E(\mathbb{Q}(t))_{\operatorname{tors}} \cong T\}.$$

T	$G(T) \ge$	Author(s)
0	18	Elkies (2006)
$\mathbb{Z}/2\mathbb{Z}$	11	Elkies (2009)
$\mathbb{Z}/3\mathbb{Z}$	7	Elkies (2007)
$\mathbb{Z}/4\mathbb{Z}$	5	Kihara (2004), Elkies (2007), Dujella, Peral & Tadić (2014), Khoshnam & Moody (2016)
$\mathbb{Z}/5\mathbb{Z}$	3	Lecacheux (2001), Eroshkin (2009), MacLeod (2014)
$\mathbb{Z}/6\mathbb{Z}$	3	Lecacheux (2001), Kihara (2006), Eroshkin (2008), Woo (2008), Dujella & Peral (2012), MacLeod (2014,2015)
$\mathbb{Z}/7\mathbb{Z}$	1	Kulesz (1998), Lecacheux (2003), Rabarison (2008), Harrache (2009), MacLeod (2014)
$\mathbb{Z}/8\mathbb{Z}$	2	Dujella & Peral (2012), MacLeod (2013)
$\mathbb{Z}/9\mathbb{Z}$	0	Kubert (1976)
$\mathbb{Z}/10\mathbb{Z}$	0	Kubert (1976)
$\mathbb{Z}/12\mathbb{Z}$	0	Kubert (1976)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	7	Elkies (2007)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/4\mathbb{Z}$	4	Dujella & Peral (2012)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/6\mathbb{Z}$	2	Dujella & Peral (2012,2015,2017), MacLeod (2013)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/8\mathbb{Z}$	0	Kubert (1976)

induced by Diophantine triples

$C(T) = \limsup \{ \operatorname{rank} E(\mathbb{Q}) : E(\mathbb{Q})_{\operatorname{tors}} \cong T \}.$

T	$G(T) \ge$	Author(s)
0	19	Elkies (2006)
$\mathbb{Z}/2\mathbb{Z}$	11	Elkies (2007)
$\mathbb{Z}/3\mathbb{Z}$	7	Elkies (2007)
$\mathbb{Z}/4\mathbb{Z}$	6	Elkies (2007)
$\mathbb{Z}/5\mathbb{Z}$	4	Eroshkin (2009)
$\mathbb{Z}/6\mathbb{Z}$	5	Eroshkin (2009)
$\mathbb{Z}/7\mathbb{Z}$	2	Lecacheux (2003), Elkies (2006), Rabarison (2008), Harrache (2009)
$\mathbb{Z}/8\mathbb{Z}$	3	Dujella & Peral (2012)
$\mathbb{Z}/9\mathbb{Z}$	1	Atkin & Morain (1993), Kulesz (1998), Rabarison (2008), Gasull, Manosa & Xarles (2010)
$\mathbb{Z}/10\mathbb{Z}$	1	Atkin & Morain (1993), Kulesz (1998), Rabarison (2008)
$\mathbb{Z}/12\mathbb{Z}$	1	Suyama (1985), Kulesz (1998), Rabarison (2008)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	8	Elkies (2007)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/4\mathbb{Z}$	5	Eroshkin (2009)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/6\mathbb{Z}$	3	Dujella & Peral (2013)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/8\mathbb{Z}$	1	Atkin & Morain (1993), Kulesz (1998), Lecacheux (2002), Campbell & Goins (2003), Rabarison (2008)

best possible according to heuristic by Park, Poonen, Voight & Wood (2019)

Thank you very much for your attention!