

Z3 API in Python, Verification of Neural Nets in Python

Katya Komendantskaya

WATT UNIVERSITY

Autonomous cars

HERIOI WATT UNIVERSITY

Autonomous cars

Smart Homes

HERIOT WATT UNIVERSITY

Autonomous cars

Smart Homes

Robotics

Autonomous cars

Smart Homes

Robotics

Chat Bots

Autonomous cars

Smart Homes

Robotics

Chat Bots

...and many more ...

Al is in urgent need of verification: safety, security, robustness to changing conditions and adversarial attacks, ...

Neural Nets in Massive use

Used for:

- computer vision
- speech recognition
- ▶ (big) data processing
- **.**..

In:

- autonomous cars
- robots
- airport security
- financial applications
- **.** . . .
- Alexa
- Google bot on mobile phones
- image recognising apps

Research topics in Neural nets

Weaknesses of Neural nets

- not easily conceptualised (lack of explainability)
- prone to error
- prone to adversarial attack

Problems with Neural Net Verification

"gibbon" 99.3% confidence

Problems with Neural Net Verification

- Verification needed: many issues with safety (autonomous devices, cars), security (adversarial attacks)
- Problem: even to state verification conditions!
- Current methods: Neurons to Logic (á la McCulloch and Pitts), Automated Theorem proving, SMT solvers

The literature splits

There are two groups of properties we may want to verify:

General (concerning properties of learning algorithms): e.g. how well does the learning algorithm perform? do trained neural networks generalise well?

A. Bagnall and G. Stewart. Certifying the True Error: Machine Learning in Coq with Verified Generalisation Guarantees. AAAI 2019.

A. Bahrami, E. de Maria and A.Felty. Modelling and Verifying Dynamic Properties of Biological Neural Networks in Coq. 2018.

The literature splits

There are two groups of properties we may want to verify:

General (concerning properties of learning algorithms): e.g. how well does the learning algorithm perform? do trained neural networks generalise well?

A. Bagnall and G. Stewart. Certifying the True Error: Machine Learning in Coq with Verified Generalisation Guarantees. AAAI 2019.

A. Bahrami, E. de Maria and A.Felty. Modelling and Verifying Dynamic Properties of Biological Neural Networks in Coq. 2018.

Specific to applications (concerning neural network deployment): given this trained neural network, is it robust to adversarial attacks?

X. Huang and M. Kwiatkowska and S. Wang and M. Wu. Safety Verification of Deep Neural Networks. CAV (1) 2017: 3-29

G. Singh, T. Gehr, M. Puschel, M. T. Vechev: An abstract domain for certifying neural networks. PACMPL 3(POPL): 41:1-41:30 (2019)

SMT Solvers

Widely used in verification

SMT Solvers

- Widely used in verification
- ► Z3 is one of the most popular

SMT Solvers

- Widely used in verification
- Z3 is one of the most popular
- ► There is Z3 API in Python

SMT Solvers

- ► Widely used in verification
- Z3 is one of the most popular
- ► There is Z3 API in Python
- ▶ It is often used in NN verification

SMT Solvers

- Widely used in verification
- ► Z3 is one of the most popular
- There is Z3 API in Python
- ▶ It is often used in NN verification

Example of Z3 Python API at work:

```
from z3 import *

x = Int('x')
y = Int('y')
solve(x > 2, y < 10, x + 2*y == 7)</pre>
```


SMT Solvers

- Widely used in verification
- ► Z3 is one of the most popular
- There is Z3 API in Python
- ▶ It is often used in NN verification

Example of Z3 Python API at work:

```
from z3 import *

x = Int('x')
y = Int('y')
solve(x > 2, y < 10, x + 2*y == 7)</pre>
```

- will find all solutions or say that no exist.
- ► DEMO of Z3 in Python

Simple example: Perceptron

Neural nets doing logic [McCulloch and Pitts, 1943]:

1	4	В	A and B	A or B	A xor B
t	rue	true	true	true	false
t	rue	false	false	true	true
f	alse	true	false	true	true
f	alse	false	false	false	false

Perceptron for and

Input features and target features:

В	A and B
true	true
false	false
true	false
false	false
	true false true

Perceptron for and

Input features and target features:

e true
e false
e false
e false

Now train the network: will it be able to learn the correct (linear) function $\theta + w_A \times A + w_B \times B$ to simulate and?

Perceptron for and

Input features and target features:

Α	В	A and B
true	true	true
true	false	false
false	true	false
false	false	false

Now train the network: will it be able to learn the correct (linear) function $\theta + w_A \times A + w_B \times B$ to simulate and? e.g. $-0.9 + 0.5 \times A + 0.5 \times B$

General motivation is to make the solver:

solve constraints like:

```
(forall m n. ( (m >=. 0.5R) /\ (n >=. 0.5R)) ==> (nextoutput perceptron [m ; n]) == 1)
```


General motivation is to make the solver:

solve constraints like:

```
(forall m n. ( (m >=. 0.5R) /\ (n >=. 0.5R)) ==> (nextoutput perceptron [m ; n]) == 1)
```

... that is, to guarantee correctness of inputs for certain small range of deviations from the well-classified input

General motivation is to make the solver:

solve constraints like:

```
(forall m n. ( (m >=. 0.5R) /\ (n >=. 0.5R)) ==> (nextoutput perceptron [m ; n]) == 1)
```

- ... that is, to guarantee correctness of inputs for certain small range of deviations from the well-classified input
- ▶ If the new input does not fall within the set constraints, it cannot be guaranteed to be robust to attack

General motivation is to make the solver:

solve constraints like:

```
(forall m n. ( (m >=. 0.5R) /\ (n >=. 0.5R)) ==> (nextoutput perceptron [m ; n]) == 1)
```

- ... that is, to guarantee correctness of inputs for certain small range of deviations from the well-classified input
- ▶ If the new input does not fall within the set constraints, it cannot be guaranteed to be robust to attack
- Imagine an autonomous car passing control to a human if it cannot guarantee robust recognition of some crucial street signs.

► Implement my Perceptron in Python

- ► Implement my Perceptron in Python
- ▶ Prove it is robust for class 1:

- Implement my Perceptron in Python
- Prove it is robust for class 1:
 - Define its robustness region: e.g. when input array contains real values in the region ϵ given (say) by some Eucledian distance from our ideal input [1,1]

- Implement my Perceptron in Python
- Prove it is robust for class 1:
 - Define its robustness region: e.g. when input array contains real values in the region ϵ given (say) by some Eucledian distance from our ideal input [1, 1]
 - define a step function ("the ladder") to generate a finite number of reals in this region (otherwise Z3 will not terminate)

- Implement my Perceptron in Python
- Prove it is robust for class 1:
 - Define its robustness region: e.g. when input array contains real values in the region ϵ given (say) by some Eucledian distance from our ideal input [1, 1]
 - define a step function ("the ladder") to generate a finite number of reals in this region (otherwise Z3 will not terminate)
 - Prove the ladder is "covering" (using pen and paper)

- Implement my Perceptron in Python
- Prove it is robust for class 1:
 - Define its robustness region: e.g. when input array contains real values in the region ϵ given (say) by some Eucledian distance from our ideal input [1, 1]
 - define a step function ("the ladder") to generate a finite number of reals in this region (otherwise Z3 will not terminate)
 - Prove the ladder is "covering" (using pen and paper)
 - ► Take the set of input generated by Z3, run them through the Perceptron

- Implement my Perceptron in Python
- Prove it is robust for class 1:
 - Define its robustness region: e.g. when input array contains real values in the region ϵ given (say) by some Eucledian distance from our ideal input [1,1]
 - define a step function ("the ladder") to generate a finite number of reals in this region (otherwise Z3 will not terminate)
 - Prove the ladder is "covering" (using pen and paper)
 - ► Take the set of input generated by Z3, run them through the Perceptron
 - No mis-classification? I have proven my network robust for output 1, region ϵ and the ladder.

Demo

... of how this methodology is reaslised in Python with Z3.