Summary | Vectors

Introduction

Revise Vectors unit from G.C.E (A/L) Combined Mathematics.

Cross Product

$$a imes b = |a||b|sin(heta)n = \detegin{pmatrix} i & j & k \ a_x & a_y & a_z \ b_x & b_y & b_z \end{pmatrix}$$

n is the **unit normal vector** to a and b. Direction is based on the right hand rule.

$$a \times b = 0 \implies |a| = 0 \lor |b| = 0 \lor a \parallel b$$

Cross products between i, j, k are circular.

$$i \times j = k$$

$$j \times i = -k$$

$$j \times k = i$$

$$k \times j = -i$$

$$k \times i = j$$

$$k \times k = -j$$

(i) Note

Area of a parallelogram ABCD = $| \vec{AB} imes \vec{AD} |$.

Scalar Triple Product

 $\left[a,b,c
ight]=0$ iff a, b, c are coplanar.

(i) Note

Volume of a parallelepiped with a, b, c as adjacent edges = [a,b,c]

Volume of a tetrahedron with a, b, c as adjacent edges = $rac{1}{6}[a,b,c]$

Vector Triple Product

$$a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$$

Vector Equation of Straight Lines

Line that passes through the point r_0 and parallel to \underline{v}

Here
$$r_0=(x_0,y_0,z_0)$$
 and $\underline{v}=a\underline{i}+bj+c\underline{k}$

Parametric equation

$$\underline{r}=r_0+t\underline{v};\;t\in\mathbb{R}$$

Symmetric equation

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

Line that passes through the point ${\it A}$ and ${\it B}$

Here $A=(x_1,y_1,z_1)$, $B=(x_2,y_2,z_2)$. r_A and r_B are the position vectors of A and B .

Parametric equation

$$\underline{r}=(1-t)\underline{r_A}+t\underline{r_B};\;t\in\mathbb{R}$$

Symmetric equation

$$rac{x-x_1}{x_2-x_1}=rac{y-y_1}{y_2-y_1}=rac{z-z_1}{z_2-z_1}$$

(i) Note

To show that two straight lines intersect in 3D space, it is **not** enough to show that the cross product of their parallel vectors is non-zero.

Existence of a point which satisfies both lines must be proven.

Angle between two straight lines

Let
$$\alpha: \frac{x-x_1}{a_1}=\frac{y-y_1}{b_1}=\frac{z-z_1}{c_1}$$
, $\beta: \frac{x-x_2}{a_2}=\frac{y-y_2}{b_2}=\frac{z-z_2}{c_2}$ be two lines.

$$cos heta = rac{(a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}) \cdot (a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k})}{|a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}| |a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k}|}$$

Vector Equation of Planes

Plane that contains a point r_0 and is parallel to both \underline{a} and \underline{b}

Here
$$\underline{r_0} = x_0 \underline{i} + y_0 \underline{j} + z_0 \underline{k}$$
.

$$\underline{r}=\underline{r_0}+s\underline{a}+t\underline{b}\ ;\ s,t\in\mathbb{R}$$

Plane that contains a point r_0 and \underline{n} is a normal

Here $\underline{r_0}=x_0\underline{i}+y_0\underline{j}+z_0\underline{k}$.

$$(\underline{r}-r_0)\cdot\underline{n}=0$$

Plane that contains 3 points r_0, r_1, r_2

Here $\underline{r_0},\underline{r_1},\underline{r_2}$ are the position vectors of r_0,r_1,r_2 respectively.

$$(\underline{r} - \underline{r_1}) \cdot \left[(\underline{r_1} - \underline{r_0}) \times (\underline{r_1} - \underline{r_2}) \right] = 0$$

Normal to a plane

Suppose ax + by + cz = d is a plane.

 $\underline{n}=a\underline{i}+b\underline{j}+c\underline{k}$ is a normal to the plane.

Angle between 2 planes

Consider the two planes:

- $A: a_1x + a_2y + a_3z = d$
- $B: b_1x + b_2y + b_3z = d'$

The angle between the planes ϕ is:

$$cos(\phi) = rac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)}}$$

Shortest distance to a point

Considering a plane ax + by + cz = d.

$$ext{distance} = rac{|(\underline{r_1} - \underline{r_0}) \cdot \underline{n}|}{|\underline{n}|}$$

- \underline{n} is a normal to the plane
- ${\it r}_0$ is the position vector of a point on the plane
- \emph{r}_1 is the position vector to the arbitrary point

Skew Lines

Two non-parallel lines in a 3-space that do not intersect.

Normal to 2 skew lines

Let l_1, l_2 be 2 skew lines.

$$l_1:rac{x-x_0}{a_0}=rac{y-y_0}{b_0}=rac{z-z_0}{c_0}\;;\;\; l_2:rac{x-x_1}{a_1}=rac{y-y_1}{b_1}=rac{z-z_1}{c_1}$$

The normal to both lines \underline{n} is:

$$\underline{n} = rac{\langle a_0, b_0, c_0
angle imes \langle a_1, b_1, c_1
angle}{|\langle a_0, b_0, c_0
angle imes \langle a_1, b_1, c_1
angle|}$$

Distance between 2 skew lines

$$\operatorname{distance} = |\overrightarrow{AB} \cdot \underline{n}|$$

Here

- \underline{n} is the normal to both l_1, l_2
- $oldsymbol{A}$ and $oldsymbol{B}$ are points lying on each line

This PDF is saved from https://s1.sahithyan.dev