"Images et géométrie discrète" Final Exam (3h)

All exercises are independent. All material (lecture notes, slides) are allowed. Questions with \star symbols may be more difficult and thus may give you extra points.

1 Image Processing

Let us consider a one-dimensional image $I: \mathbb{R} \to \mathbb{R}$. We apply the following filter:

$$I^*(x) = \frac{1}{W} \sum_{y \in \Omega_x} I(y) f(|I(y) - I(x)|) g(|y - x|), \tag{1}$$

with

- $W = \sum_{y \in \Omega_x} f(|I(y) I(x)|)g(|y x|);$
- Ω_x is a window around x;
- f and g are decreasing functions $[0, +\infty] \to \mathbb{R}^+$.

Question 1 Why do we need the factor $\frac{1}{W}$ in Eq. (1)?

Question 2 If $f(u) = e^{\frac{-u^2}{2\sigma}}$ and g(u) = 1, what kind of filter are we considering? And what about $g(u) = e^{\frac{-u^2}{2\sigma}}$ and f(u) = 1?

Question 3 If both f and g are Gaussian functions, discuss pros and cons of such filter in image processing. (You can use figures with various profiles for I to illustrate the different cases.)

In the Image Processing literature, Eq. (1) is called a bilateral filter.

2 Randomized Digital Plane Recognition.

In the sequel, let us consider the following definition: a digital set $Z \subset \mathbb{Z}^3$ is a naive digital plane if and only if there exists a normal vector $N(a, b, c) \in \mathbb{Z}^3$ and a bound $\mu \in \mathbb{Z}$ such that:

$$\forall z \in Z, \ \mu \le N \cdot z < \mu + \max(|a|, |b|, |c|) \tag{2}$$

(where \cdot denote the scalar product).

We assume now that $0 \le a \le b < c$.

Question 4 Show that in such case, any naive digital plane P is functional, i.e. for each pair $(z_1, z_2) \in \mathbb{Z}^2$, there is one and only one point z of coordinates (z_1, z_2, z_3) that belongs to P.

Question 5 Show that (2) implies that:

$$\forall z \in Z, \begin{cases} N \cdot z \le \mu \\ N \cdot (z + (0, 0, 1)) \ge \mu \end{cases}$$
 (3)

Even if the converse is not true due to the large inequalities, we say that a digital set Z is a digital plane if the inequality set (3) is verified.

Question 6 There exists a unique (Euclidean) plane passing through three digital points. Show that we can test whether another digital point lies BELOW, ON or ABOVE such a plane with integer-only computations.

Question 7 Detail a naive algorithm to decide if two digital set of points can be separated by an Euclidean plane.

Let us now consider Algorithm 1 (which uses Algorithm 2). It is a randomized and recursive algorithm that checks whether two point sets are separable by a plane in expected linear-time.

We denote by $S = S^+ \cup S^-$ with S^- being the original point set and S^+ being the point set shifted by $(0,0,1)^T$. All the points of S are indexed from 1 to |S|. The idea consists in maintaining a separating plane while iterating over the points $s_i \in S$ for i from 1 to |S|. For each point s_i , three cases may occur:

- if it belongs to S^- (resp. S^+) and it is located BELOW (resp. ABOVE) or ON the current separating plane, there is nothing to do.
- Otherwise (lines 6-9 of algorithm 2):
 - 1. Either the two input sets are not separable by a plane at all,
 - 2. or there exists a separating plane passing through s_i .

In the aim of deciding between these last two alternatives, the set of possible separating planes is restricted to planes passing through s_i and the same algorithm is recursively called from 1 to i (line 9 of algorithm 2). At each recursive call, the set of possible separating planes is restricted so that the base case involves a unique plane passing by three given points and consists in checking whether it separates S^- from S^+ or not (lines 11-17 of algorithm 2).

```
Algorithm 1: isDigitalPlane(Z, p_1, p_2, p_3)
```

```
Input: Z \subset \mathbb{Z}^3, the digital set
```

 $p_1, p_2, p_3 \in \mathbb{Z}^3$, three points characterizing a plane

Result: "true" if Z is a digital plane, "false" otherwise

Output: p_1, p_2, p_3 , three points characterizing a separating plane if "true"

// initialisation step

- 1 Construct the set $S^- = Z$ and the set S^+ a copy of Z translated by (0,0,1);
- **2** Construct the set of $S = S^- \cup S^+$;
- **3** Randomly permute the points of S;
- 4 Initialize points $p_1 = p_2 = p_3 = (0,0)$ (these points will be overwritten by areLinearlySeparable);
- **5 return** are Linearly Separable $(S^-, S^+, S, |S|, p_1, p_2, p_3, 3)$;

Hint: to understand the behavior of Algorithm 1 and 2, you can consider a 2D example (separability test of two 2D point sets by an Euclidean line).

Question 8 If Algorithm 1 terminates with a TRUE output, how to I recover the separating plane normal vector?

```
Algorithm 2: are Linearly Separable (S^-, S^+, S, n, p_1, p_2, p_3, k)
   Input: S^-, S^+ \subset \mathbb{Z}^2, the bottom and top point sets, S = S^- \cup S^+
   n, number of points of S to process (1 \le n \le |S|)
   p_1, p_2, p_3 \in \mathbb{Z}^3, three points characterizing a plane
   k, number of variable points among \{p_1, p_2, p_3\} \{0 \le k \le 3\}
   Result: "true" if S^- and S^+ are separable by a plane, "false" otherwise
   Output: p_1, p_2, p_3, three points characterizing a separating plane
 1 are Separable \leftarrow TRUE;
 2 if k > 0 then
       // we update points in \{p_1, p_2, p_3\} which are "free"
       for l from 1 to k do
 3
         Initialize p_l with a point of S \setminus \{p_j\} for j > k;
 4
       i \leftarrow 1;
 5
       while are Separable and i < n do
 6
            if (s_i \in S^- \text{ and } s_i \text{ is strictly ABOVE the plane passing by } p_1, p_2, p_3)
 7
            or (s_i \in S^+ \text{ and } s_i \text{ is strictly BELOW the plane passing by } p_1, p_2, p_3) then
 8
 9
               are Separable \leftarrow are Linearly Separable (S^-, S^+, S, i, p_1, p_2, p_3, k-1);
10
           i \leftarrow i + 1;
11
12 else
       i \leftarrow 1;
13
       while are Separable and i < n do
14
            if (s_i \in S^- \text{ and } s_i \text{ is strictly ABOVE the plane passing by } p_1, p_2, p_3)
15
            or (s_i \in S^+ \text{ and } s_i \text{ is strictly BELOW the plane passing by } p_1, p_2, p_3) then
16
             areSeparable \leftarrow FALSE;
           i \leftarrow i + 1;
18
19 return areSeparable;
```

Question 9 Prove that Algorithm 1 terminates with a correct answer.

Question * 10 Using similar construction, how to change Algorithm 1 and 2 in order to decide if two digital sets in dimension 2 can be separated by an Euclidean circle?

This exercise has been inspired by:

- R. Seidel, "Small-dimensional linear programming and convex hulls made easy", Discrete & Computational Geometry, 6(1):423-434, 1991
- de Berg, Mark and Cheong, Otfried and van Kreveld, Marc and Overmars, Mark, "Computational Geometry: algorithms and applications,", Springer, 2000

The proof of the (expected) linear computational cost of Algorithm 1 is described in these articles.

3 Let's shoot some rays

Let us consider a digital set $Z \subset \mathbb{Z}^2$ which corresponds to the digitization of a convex object \mathcal{X} (*i.e.*, $Z = \mathcal{X} \cap \mathbb{Z}^2$). We suppose that \mathcal{X} has compact support and is thus included in a $[0, N]^2$ window. Objects Z and \mathcal{X} are only given implicitly: given a point $p \in \mathbb{Z}^2$ (resp. a point $x \in \mathbb{R}^2$), we have an oracle to decide if p (resp. x) is inside Z (resp. \mathcal{X}) or not.

We consider a digital ray, denoted $dray(p, \vec{d})$ (with $p, \vec{d} \in \mathbb{Z}^2$), such that:

$$dray(p, \vec{d}) = ray(d, \vec{d}) \cap \mathbb{Z}^2$$

A digital ray is thus a 1-D lattice of points $\{q \mid \vec{Oq} = \vec{Op} + k \cdot \vec{d}, k \in \mathbb{Z}^+\}.$

Question 11 If \vec{d} had irrational components, how many digital points would have been in $dray(p, \vec{d})$?

Question 12 If p = (0,0) and $\vec{d} = (a,b)^T$ $(a,b \in \mathbb{Z}^+)$, how many digital points belongs to the digital ray $dray(p,\vec{d})$ in the $[0,N]^2$ domain?

We assume that $\vec{d} \in \mathbb{Z}^2$ and that the oracle on Z is O(1).

Question 13 Let p be a point inside Z, using only the oracle and arithmetical operators (no rounding operator allowed), propose an algorithm that returns the farthest point (from p) in $dray(p, \vec{d})$ which belongs to Z. Thanks to the convexity of X, can you prove its correctness? What is its complexity?

Let us consider Algorithm 3 which performs a sequence of digital shooting in a specific case where the object \mathcal{X} is an half-plane.

Algorithm 3: Geometrical Shooting (r)

```
Input: A rational number r
   Result: A sequence of points S
 1 Set p_{-2} = (1,0), p_{-1} = (0,1), i = 0;
 2 Let S = \emptyset;
 3 Let l be the line y = rx;
 4 while true do
       Let \vec{d} = O\vec{p_{i-1}}:
 5
       if dray(p_{i-2}, \vec{d}) \cap l \neq \emptyset then
 6
            Let p_i be the intersection point;
 7
            S = S \cup p_i;
 8
            return S;
 9
        else
10
            Let p_i be the farthest point from p_{i-2} such that p_i and p_{i-1} lie on different side of
11
            S = S \cup \{p_i\};
12
            i = i + 1;
13
```

Question 14 What is the output of GeometricalShooting(r) for $r = \frac{5}{8}$? Draw the points S in grids of Figure 1.

Question 15 If $r = \frac{a}{b}$, what is the arithmetical interpretation of p_0 and the integer k from which p_0 has been obtained in $dray(p_{-2}, O\vec{p}_{-1})$?

Question 16 What are the arithmetical interpretations of points p_i ? What is the computational cost of GeometricalShooting(r)?

4 Digital Convex Hulls

We want to prove now the following statement:

Theorem 1 Let C be a convex polygon (with vertices in \mathbb{Z}^2) and let D be its diameter. Then, C has at most $O(D^{2/3})$ vertices.

Question 17 If C has diameter D, what is the upper bound for its perimeter P(C)?

Let $\{p_i\}$ be the sequence of vertices of C (counterclockwise for instance). We denote by $\vec{v_i}$ the vector $p_i \vec{p_{i+1}}$ (and let $V = \{v_i\}$). Clearly, if C has N vertices, we have

$$P(C) = \sum_{i=1}^{N} ||v_i||$$

Let us consider a given edge length l. We define by W the subset of vectors of V having edge length greater or equal to l. I.e.:

$$W = \{v_i \mid v_i \in V \text{ and } ||v_i|| \ge l\}.$$

Question 18 As a function of l and D, how many vectors are in W? (Hint: you can upper/lower bound $\sum_{v_i \in W} \|v_i\|$.)

Question 19 How many times a given vector v_i appears in V?

Question 20 Give an upper bound on the number of digital vectors having a length smaller than l.

Question 21 Ad a function of l and D, give an upper bound on the number of vertices of C.

Question 22 Finally, find the parameter l maximizing the upper bound given in the previous question and conclude with a proof of Theorem 1.

Geometrical ray shooting described in Section 3 and Theorem 1 have been used by Sariel Har-Peled to construct an output sensitive digital convex hull computation algorithm.

Har-Peled, S. "An Output Sensitive Algorithm for Discrete Convex Hulls." Computational Geometry, vol.10,p.125–138, 1998.

