TPN° 1 - EJERCICIOS ADICIONALES DE COMPLEJOS:

1) Expresar los siguientes complejos en forma exponencial:

i)
$$u = 2 - 2.\sqrt{3}i$$
 ii) $v = -3 - \sqrt{3}i$ *iii*) $w = -2 + 2i$ *iv*) $z = 5i$ *v*) $z = -3$

2) Realizar las siguientes operaciones:

a)
$$(3+2i) \cdot (1-4i) + (2-i)^2 - i^{57}$$

b)
$$\frac{6-2i}{4+3i}$$
. $(4+i^{320}) - \frac{13+6}{5}i$

c)
$$\overline{12-3i} + \frac{4-2i}{1+i} \cdot i^{91}$$

d)
$$2.e^{i.\frac{\pi}{2}} + (1-5i)^2$$

e)
$$\sqrt{8}.e^{i.\frac{3}{4}\pi} - \overline{2-2i} + |1-3i|^8$$

f)
$$4.e^{i.\frac{5}{4}\pi}.(3-3i)^{12}$$

g)
$$\left(\frac{\sqrt{75}.e^{i.\frac{\pi}{3}}}{\sqrt{27}.e^{i.\frac{5\pi}{6}}}\right)^{45}$$

3) Calcular las n raíces de los siguientes complejos:

a)
$$z = \sqrt{4-4i}$$

b)
$$z = \sqrt[4]{16}$$

c)
$$z = \sqrt[3]{-1 - \sqrt{3}i}$$

d)
$$z = \sqrt[4]{-256i}$$

4) Determinar todos los Números Complejos Z que satisfacen las siguientes ecuaciones:

a)
$$(Z^2 + 16).(Z^3 + 3 + 3\sqrt{3}i) = 0$$

b)
$$3.z^4 + 3z = 0$$

5) Graficar la región R y proponer un Complejo W que pertenezca a ella.

a)
$$R = \{z \in \mathbb{C}: |z - 2 + 3i| \le 3 \ y \ Re(z) \ge 2 \ y \ Im(z) > -3\}$$

b)
$$R = \{z \in C : |z + 3 - 4i| < 3 \land \arg(z) \le \frac{3}{4}\pi\}$$

6) Ejercicios de Parciales anteriores:

a) Sean los complejos
$$u = 1 - \sqrt{3}i$$
, $v = 2 - 3i$, $w = 1 + i$

Calcular
$$(v)^2 + \frac{w}{v} + u^{10} - i^{205}$$

b) Determinar todos los Números Complejos Z que satisfacen la siguiente ecuación:

$$(Z - \frac{4-2i}{3+2i}.i^{206}).(Z^4 - 1 + \sqrt{3}i) = 0$$

c) Graficar la región R y proponer un Complejo W que pertenezca a ella.

$$R = \{ z \in C : |z - 1 + i| \le 2 \land -\frac{1}{2} < \text{Re}(z) < 1 \land \frac{\pi}{4} \le \arg(z) < \frac{5}{4}\pi \}$$

d) Dado z=2-2i decidir si es solución de la ecuación $z^{12}-6z.\overline{z}=2$

RESPUESTAS: TPN° 1 - EJERCICIOS ADICIONALES DE COMPLEJOS

1) i)
$$u=4e^{\frac{5}{3}\pi i}$$
 ii) $v=\sqrt{12}e^{\frac{7}{6}\pi i}$ iii) $w=\sqrt{8}e^{\frac{3}{4}\pi i}$ iv) $z=5e^{\frac{\pi}{2}i}$ v) $z=3e^{\pi i}$

2) a)
$$14 - 15i$$
 b) $1 - \frac{32}{5}i$ c) $9 + 2i$ d) $-24 - 8i$ e) $(-4 + 10^4) + 4i$ f) $2^8 \cdot 3^{12}e^{\frac{9\pi}{4}i}$

g)
$$(\frac{5}{3})^{45}e^{\frac{\pi}{2}i}$$

3) a)
$$z_0 = \sqrt[4]{32}e^{\frac{7}{8}\pi i}$$
 $z_1 = \sqrt[4]{32}e^{\frac{15}{8}\pi i}$

b)
$$z_0 = 2$$
 $z_1 = 2i$ $z_2 = -2$ $z_3 = -2i$

c)
$$z_0 = \sqrt[3]{2}e^{\frac{4}{9}\pi i}$$
 $z_1 = \sqrt[3]{2}e^{\frac{10}{9}\pi i}$ $z_2 = \sqrt[3]{2}e^{\frac{16}{9}\pi i}$

d)
$$z_0 = 4e^{\frac{3}{8}\pi i}$$
 $z_1 = 4e^{\frac{7}{8}\pi i}$ $z_2 = 4e^{\frac{11}{8}\pi i}$ $z_3 = 4e^{\frac{15}{8}\pi i}$

4) a)
$$z_0 = \sqrt[3]{6}e^{\frac{4}{9}\pi i}$$
 $z_1 = \sqrt[3]{6}e^{\frac{10}{9}\pi i}$ $z_2 = \sqrt[3]{6}e^{\frac{16}{9}\pi i}$ $z_3 = 2i$ $z_4 = -2i$

b)
$$z_0=0$$
 $z_1=e^{\frac{\pi}{3}i}$ $z_2=-1$ $z_3=e^{\frac{5\pi}{3}i}$

5) a)

b)

6) a)
$$-\frac{8273}{16} + \frac{181}{16}i + 512\sqrt{3}i$$

b)
$$z_0 = \sqrt[4]{2}e^{\frac{5}{12}\pi i}$$
 $z_1 = \sqrt[4]{2}e^{\frac{11}{12}\pi i}$ $z_2 = \sqrt[4]{2}e^{\frac{17}{12}\pi i}$ $z_3 = \sqrt[4]{2}e^{\frac{23}{12}\pi i}$

$$z_4 = \frac{-8}{\sqrt{13}} + \frac{14}{\sqrt{13}}i$$

c)

d) No es solución