컴퓨터 네트워크

제 7 장 기기간의 접속규격

목 차

7.1 디지털 데이터 전송

7.2 DTE-DCE 인터페이스

7.3 고속 인터페이스

7.4 기타 인터페이스

하나의 장치에서 선으로 연결된 다른 장치까지 데이터 전송 방법

- ✓ 한 비트가 아닌 그룹으로 n비트 데이터 전송
- ✓ n개의 통신 채널 필요
- ✓ 장점 : 속도(speed)
- ✓ 단점: 고가(expensive)
- ✓ 전송거리(short distance): 최대 25 feets(7.5m)

직렬 전송

- ✓ 한 비트씩 전송
- ✓ 하나의 채널 필요
- ✓ 장점 : 단일 채널, 저가
- ✓ 단점: 인터페이스 변환기 요구

비동기 전송(_____)

✓ 각 바이트의 시작과 끝부분에 하나의 시작 비트(0)와 하나 또는 그 이상의 종료 비트(1) 전송

동기전송(_____)

- ✓ 시작/종료 비트 또는 갭없이 전송
- ✓ 장점 : 속도(speed)

DTE-DCE 인터페이스 (1/6)

DTE (Data Terminal Equipment)

- ✓ 정보 처리 장치 또는 데이터 터미널 장비
- ✓ 2진 디지털 데이터의 발신지 또는 목적지인 장치
 - > Terminal, computer, printer, fax machine, router 등

DCE (Data Circuit-terminating Equipment(EIA)

- ✓ DTE와 전송 매체 사이에 데이터 전송을 담당
- ✓ 망을 통하여 아날로그 또는 디지털 신호 형태로 데이터를 전송/수 신하는 장치
 - ▶ 변복조 장치(Modulator/demodulator), 인터페이스 카드 포함
 - Data Communication Equipment(ITU-T)

DTE-DCE 인터페이스

표준안(Standards)

✓ DTE와 DCE간의 연결 정의

DTE/DCE 접속규격의 4가지 특성

- ✓ 기계적(_____)특성 : 연결기기의 크기, 핀의 개수 등 물리적 연결을 규정한다.
- ✓ 전기적(_____) 특성 : DTE와 DCE 간 커넥터에 흐르는 신호의 전압 레벨, 전압 변동, 잡음 마진 증 전기적 신호법을 규정한다.
- ✓ 기능적(______) 특성 : DTE와 DCE 간의 연결하는 RS-232C 주요 핀 이름처럼 각 회선에 의미를 부여하여 데이터, 제어, 타이밍, 접지 증 수행하는 기능을 규정한다.
- ✓ 절차적(______) 특성 : 데이터를 전송하기 위하여 사건 흐름 순서를 규정한다. 즉, 물리적 연결의 활성화 및 비활성화, 동작종료의 절차 등이다.

25

DTE/DCE 접속규격 표준안

- ✓ ITU-T (International Telecommunication Union-Telecommunication)
 - ▶ V 시리즈 : _____에 접속할 때의 규정을 정의
 - 공중전화 교환망(PSTN)을 통한 DTE/DCE 접속규격
 - X 시리즈 : ______에 접속할 때의 규정을 정의 공중 데이터 교환망(PSDN)을 통한 DTE/DCE 접속규격.
- **✓ EIA (Electronic Industries Association)**
 - ▶ RS-232C : DTE와 DCE 간의 물리적 연결과 신호 수준을 정의
 - ▶ 공중전화 교환망(PSTN)을 통한 DTE/DCE 접속규격
- ✓ ISO (International Standards Organization)
 - ▶ ISO2110 : 공중전화 교환망(PSTN)을 통한 DTE/DCE 접속규격
 - 주로 기계적 조건에 대한 규정

The standard does not define such elements as

- ✓ character encoding (for example, ASCII or EBCDIC)
- ✓ the framing of characters in the data stream (bits per character, start/stop bits, parity)
- protocols for error detection or algorithms for data compression
- ✓ bit rates for transmission
- power supply to external devices

DTE-DCE 인터페이스 (2/6)

표준

✓ DTE와 DCE간에 미리 정의된 접속규격

각 인터페이스의 최고 속도 및 최대 거리

접속규격	지원하는 최고 속도	지원하는 최대 거리
EIA-232	20Kbps	15m
EIA-530	2Mbps	100m 이상
V.35	6Mbps	60m
EIA-449	10Mbps	100m 이상
USB	12Mbps(버전 1.1) 480Mbps(버전 2.0)	4.5m
HSSI	52Mbps	25m
IEEE 1394	400Mbps	5m
HIPPI	800/1,600Mbps	200m

DTE-DCE 인터페이스 (3/6)

RS-232 인터페이스

Recommended Standard 232 is a standard for serial binary data signals connecting between a *DTE* and a *DCE.(1962)*

The Electronic Industries Association(EIA) standard RS-232-C (1969)

TIA/EIA 232(TIA, 1991년)

Telecommunications Industry Association(TIA,1988)

Functional, Mechanical, Electrical, and Procedural Characteristic 현재 6차 개정판 EIA-232-F가 1997년에 발표.

ANSI/TIA-232-F(2012년)

ANSI: American National Standards Institute

DTE-DCE 인터페이스 (4/6)

EIA-232(RS-232) 인터페이스

- ✓ EIA-232의 기계적 특성
 - DTE와 DCE간에 25개의 선으로 연결해야 하나 실제 응용에는 적은 수의 선을 이용
 - ▶ 암/수 DB(Data Bus)-25핀 컨넥터를 가진 25-wire 선으로 인터 페이스 정의
 - ▶ 15m(50 feet)이상 관리할 수 없다
- ✓ EIA-232의 전기적 특성
 - ▶ 전송 속도는 20Kbps 이하, 전송 거리는 15m 이하
 - ▶ 전압 레벨과 신호 유형 정의(예 : NRZ-L)

DTE-DCE 인터페이스

✓ 데이터 송수신

송출시 : 논리값 0 이면, +5 ~ +15 [V]

논리값 1 이면, -5 ~ -15 [V]

수신시 : 논리값 0 이면, +3 ~ +15 [V]

논리값 1 이면, -3 ~ -15 [V]

DTE-DCE 인터페이스

✓ EIA-232 기능적 특성

Transı da Shield	ta Rec						dete al nd non	nal ecto Re		Rese (test		re	ceivenal of	ndary ed line letector condary elear to send
14	2) (3 () (6		5) (1			20 20	(2)	() ()) (1 22)	9 (i 23	1) (24	12)	(13) (3)
Seconda transmitt data Transs	ted r mitte	eceiv data r I	ed 1 Recei	ver	back	re	TE ady	te le	ind	ling icato	or	ansm signa eleme timin TE-D	al ent	
signal signal element & (DTE-DCE) element timing timing Secondary signal (DCE-DTE) (DCE-DTE) request quality Data signal to send detector rate select														

번호	이름	의미	기능	데이터 수신측
2	TxD	Transmit Data	전송 데이터	DTE
3	RxD	Receive Data	수신 데이터	DCE
4	RTS	Request To Send	송신 요청	DCE
5	CTS	Clear To Send	송신을 위한 설정	DTE
6	DSR	Data Set Ready	데이터 준비 완료	DTE
7	SIG	Signal Ground	접지선	
8	CD	Carrier Datect	반송자 감지	DTE
20	DTR	Data Terminal Read y	데이터 단말기 준비	DCE
22	RI	Ring Indication	벨 지시기	DTE

DTE-DCE 인터페이스 (4/5)

✓ 절차적 특성(동기 전이중 방식)

DTE-DCE 인터페이스 (4/5)

절차적 특성(동기 전이중 방식)

8 Received line signal detector

17 Receiver signal element timing 24 Transmitter signal element timing

6 DCE ready

20 DTE ready

5 Clear to send

7 Signal ground

동작 과정

1단계 : 전송을 위한 인터페이스 의 예비 동작

2단계: 4개의 장치에 전송 준비 확보

3단계 : 송수신 모뎀간에 물리적

인 연결

4단계: 데이터 전송 절차

5단계: 전송 완료 처리

❖ 핀수:

✓ 25핀 : DB-25 (RS-232C,EIA/TIA 232)

✓ 9핀: DB-9 (EIA/TIA 574)

RS232

Pin 1	DCD
Pin 2	RXD
Pin 3	TXD
Pin 4	DTR
Pin 5	GND
Pin 6	DSR
Pin 7	RTS
Pin 8	CTS
Pin 9	RI

RS232 Pinout (9 Pin Male)

DTE-DCE 인터페이스 (5/5)

Null 모뎀 ; crossover cable

- ✓ 두 대의 컴퓨터를 모뎀 없이 케이블로 연결
- ✓ 15m 거리 이내에서 20Kbps로 데이터 전송
- ✓ 거리가 가까워지면 전송 속도 증가
- ✓ 데이터 교환을 다룰(준비, 전송, 종료 등) 인터페이스만 필요

Ċ	DB25 RS-232 Signal Names							
	Shield to Frame Ground							
	Transmit Data (Tx)							
	Receive Data (Rx)							
	Request to Send	RTS						
	Clear to Send	CTS						
	Data Set Ready	DSR						
	Signal Ground/Common (SG)	GND						
	Carrier Detector (DCD)	CD						
	Data Terminal Ready	DTR						
	Ring Indicator	RI						

고속 인터페이스 (1/10)

EIA-449

- ✓ EIA-449의 기계적 특성
 - ► EIA-449는 37핀 커넥터(DB-37) 하나와 9핀 커넥터(DB-9)
 의 조합으로 이루어진 46핀 사용
 - ▶ 25핀 커넥터와 37핀 커넥터 사이의 주요 기능적 차이점은 2차 채널과 관련된 모든 기능들이 DB-37에서는 제거
 - ▶ 2차 회로는 드물게 사용되기 때문에, EIA-449은 이러한 기 능들을 분리하여 두번째 9핀 컨넥터(DB-9)에 넣었다.
- ✓ EIA-449 기능적 특성
 - ▶ EIA-232와 호환성을 유지하기 위한 핀
 - ▶ EIA-232에 없거나 재정의 하기 위해 사용되는 핀

EIA-449

- ✓ DB-37 pin
- ✓ DB-9 pin

DB-37 과 DB-9 connections

DB-37 receptacle

DB-9 receptacle

DB-37 plug

DB-9 plug

DB-37 pins

Pin	Functions	Category	Pin	Functions	Category
1	Shield		20	Receive Common	II
2	Signal rate indicator		21	Unassigned	I
3	Unassigned		22	Send data	I
4	Send data	I	23	Send timing	I
5	Send timing	I	24	Receive data	I
6	Receive data	I	25	Request to send	I
7	Request to send	I	26	Receive timing	I
8	Receive timing	I	27	Clear to send	I
9	Clear to send	I	28	Terminal in service	II
10	Local loopback	II	29	Data mode	I
11	Data mode	I	30	Terminal ready	I
12	Terminal ready	I	31	Receive ready	I
13	Receive ready	I	32	Select ready	II
14	Remote loopback	II	33	Signal quality	
15	Incoming call		34	New signal	II
16	Select frequency	II	35	Terminal timing	I
17	Terminal timing	I	36	Standby indicator	II
18	Test mode	II	37	Send common	II
19	Signal ground				

- ✓ Category I : EIA-232와 호환성을 가진 핀
- ✓ Category II: EIA-232에는 없거나 재정의된 새로운 핀

DB-9 pins

Pin	Function	EIA-232 Equivalent
1	Shield	1
2	Secondary receive ready	
3	Secondary send data	14
4	Secondary receive data	16
5	Signal ground	7
6	Receive common	12
7	Secondary request to send	19
8	Secondary clear to send	13
9	Send common	

고속 인터페이스 (3/10)

전자적인 규격 : RS-423 과 RS-422

- ✓ RS-423 (unbalanced circuits)
 - ▶ 불균형방식(RS-423) : 통신속도가 늦고 통신거리가 짧으나 비용이 절감
 - ▶ 최대 데이터 속도는 100K 비트/ 초
 - ▶ 최대 통달 거리 1.2km
- ✓ RS-422 (balanced circuits)
 - ▶ 균형방식(RS-422) : 불균형방식보다 데이터 전송률이 더 높음
 - ▶ 최대 데이터 속도는 10M 비트/ 초
 - ▶ 최대 통달 거리 1.54Km
- ✓ RS 232 : 15m 20K

RS-423: Unbalanced Mode

RS-422: Balanced Mode

균형모드를 이용한 잡음 제거

(a) Original signal (b) Original and complement (c) Noise affecting both signals (d) Signals and noise

고속 인터페이스 (4/10)

EIA-530

- ✓ EIA-449은 EIA-232에 비해 훨씬 좋은 기능을 제공하지만, 이미 DB-25에 들인 많은 투자를 고려하여 EIA는 DB-25 핀을 사용하는 EIA-449의 변형을 개발
- ✓ 기본적으로 EIA-449의 범주 I 핀의 기능(22가지)에 범주 II 의 세 가 지 핀의 기능을 더한 것
- ✓ EIA-530에서 2차 회로는 지원하지 않는다.
- ✓ 25핀 커넥터 사용을 늘리기 위한 EIA-449의 변형
- ✓ RS-422와 RS-423을 참조 하여 전기적 특성 구현
- ✓ 100미터 거리 이상에서 2Mbps이상의 데이터 전송률을 제공

고속 인터페이스 (5/10)

X.21

- ✓ 공중데이터 네트워크에서 패킷형 터미널을 위한 DCE와 DTE사이의 접속규격
- ✓ 데이터의 송수신을 위한 전이중 동기 전송 프로토콜
- ✓ 규정 내용
 - ▶ 접속기의 형상, 전기적 조건, 회로의 기능, 통신망 제어 기능 등
- ✓ ITU-7에 의해 설계된 인터페이스

DB-15 pins

Pin	Function	Pin	Function
1	Shield	9	Transmit data or control
2	Transmit data or control	10	Control
3	Control	11	Receive data or control
4	Receive data or control	12	Indication
5	Indication	13	Signal element timing
6	Signal element timing	14	Byte timing
7	Bye timing	15	Reserved
8	Signal ground		

고속 인터페이스 (6/10)

The ITU-T V-Series Recommendations on Data communication over the telephone network specify the protocols that govern approved modem communication standards and interfaces.

V.35

- ✓ 6Mbps의 높은 전송속도 지원
- ✓ 케이블의 최대 길이는 60미터
- ✓ 34핀 커넥터 사용

고속 인터페이스 (7/ 10)

HSSI (______)

- ✓ 1989년 시스코사 등에서 개발
- ✓ 근거리통신망상의 라우팅 및 스위칭 장비들을 광역통신망의 고속 회선에 연결하는데 사용되는 단거리 통신 인터페이스(근거리통신망 라우터를 T3 회선에 접속하는데 사용)
- ✓ 15미터 내에서 최고 52Mbps의 속도를 지원
- ✓ 호스트와 호스트 연결, 이미지 처리, 재해복구 등의 활용 분야에도 사용
- ✓ OSI 표준 모델 네트워크의 물리계층에서 운영되며 50핀 커넥터를 사용

T-1

- ✓ 24 Ch의 음성을 다중화하는 전송방식
- ✓ 4Khz의 대역폭을 갖는 음성을 8,000개로 표본화하고 각각의 표 본을 8bit로 부호화하는 PCM System
- ✓ 음성 신호의 전송속도 64Kbps (8,000 * 8bit)
- ✓ T1의 전송속도 : 1.544Mbps
- √ T2 = T1 * 4 = 6.32 Mbps
- √ T3 = T2 * 7 = 44.736 Mbps
- ✓ T4 = T3 * 6 = 274.176 Mbps

고속 인터페이스 (9/10)

- ✓ 내부 문제의 진단을 위해 네 개의 루프백 시험 제공
 - 첫 번째 루프백은 그것이 DTE 포트에 도달한 후에 돌아오는 신호를 다시 루핑시킴으로써, 케이블을 시험
 - 두 번째와 세 번째 루프백은 로컬 DCE와 원격지 DCE의 회선 포 트들을 시험
 - ▶ 네 번째는 DTE의 DCE 포트를 시험
- 루프백은 전화시스템에서 네트워크 목적지로 보내어지는 시험 신호 로서, 그 신호는 수신된 신호처럼 원래 신호를 보낸 곳으로 되돌아 온다. 돌아온 신호는 문제를 진단하는데 도움

- 1. Local digital loopback
- 2. Local analog loopback
- 3. Remote analog loopback
- 4. Remote digital loopback

고속 인터페이스 (10/10)

인터페이스 명칭	특 징	전송 방법
EIA-232	DTE 와 DCE간의 입출력을 위한 인터페이스	송신:+12V(0), -12V(1) 수신:+3V(0), -3V(1)
Null 모뎀	모뎀 없이 케이블로 연결	보통 병렬 포트로 전송
EIA-449	접지상의 문제와 노이즈 해결 먼 거리에서도 고속 통신 가능	불균형방식(RS-423) 균형방식(RS-422)
EIA-530	25핀 커넥터 사용을 늘리기 위한 EIA- 449의 변형	RS-423, RS-422 방식
X.21	전이중 동기 전송방식	균형방식으로 전송
V.35	높은 전송속도 제공	제어신호 : 불균형방식 데이터 : 균형방식
HSSI	근거리 통신 인터페이스	차동 ECL 방식

기타 인터페이스(1/13)

USB(______)

✓ 범용 직렬 버스로 주변장치와 컴퓨터를 연결해 주는 장치

USB(범용 직렬 버스, Universal Serial Bus)

- ✓ 컴퓨터와 주변 기기를 연결하는 데 쓰이는 입출력 표준 가운데 하나
- ✓ 대표적인 버전으로는 USB 1.0, 1.1, 2.0, 3.0, 4.0
- ✓ 다양한 기존의 직렬, 병렬 방식의 연결을 대체
- ✓ 키보드, 마우스, 게임패드, 조이스틱, 스캐너, 디지털 카메라, 프린터, PDA, 저장장치 와 같은 다양한 기기를 연결(표준 연결 방식을 이용)
- ✓ USB의 전원 공급 기능을 이용하여 충전 용도로도 많이 사용
- ✓ 하나의 주 컨트롤러에는 트리 모양으로 주변 기기를 많으면 127개 까지 연결

USB의 역사

1990년대 이전

✓ 컴퓨터와 주변기기를 연결할 때 사용하는 인터페이스 (포트나 케이블)의 종류가 매우 다양, 연결해서 사용하는 방법도 각각

✓ 목표

- ▶ 컴퓨터 주변기기들이 같은 표준의 인터페이스를 사용
- ▶ 별다른 조작 없이 꽂는 즉시 사용이 가능
- 연결된 주변기기가 별도의 외부 전원을 꽂지 않고 그대로 작동

USB의 역사

1996년 1월 USB 1.0

- ✓ USB 인터페이스의 첫 규격(1.0) 규격
- ✓ 규격 개발에는 인텔, 마이크로소프트, IBM, HP, NEC와 같은 대형 컴퓨터 관련 업체들이 다수 참가
- ✓ 비교적 쉽게 업계 표준으로 인정
- ✓ 특허 사용료가 무료 ; 규모가 작은 업체에서도 저렴하게 사용
- ✓ MS의 '윈도우 95'는 USB 기능을 지원하지 않음 : 소비자들이 이를 사용하기가 쉽지 않음

1997년에 나온 윈도우 95의 후기 버전

✓ '윈도우 95 OSR2'부터 USB를 정식 지원하기 시작

1998년

- ✓ USB 1.0에서 데이터 전송 및 전원 공급 기능의 안정성을 개선한 USB 1.1이 발표
- ✓ 본격적인 보급이 시작
- ✓ 초당 데이터 전송률이 최대 12Mbps

USB의 역사

2000년 4월

- USB 2.0
- 최대 480Mbps의 향상된 속도로 데이터를 전송
- 윈도우 XP는 큰 인기를 끈 데다가 별도의 소프트웨어 설치 없이 도 상당수의 USB 장치들을 간단히 사용
- 2008년
 - USB 3.0
 - 데이터 전송 속도가 최대 5Gbps
 - 파란색의 포트를 사용할 것을 USB-IF(USB Implementers Forum: USB의 표준을 정하는 협회)에서 제조사들에게 권장

2019년 8월

- USB 4.0
- 최대 40Gbps의 데이터 전송 속도

기타 인터페이스(2/13)

- ✓ USB의 구조
 - ▶ 다중 스타형의 구조

기타 인터페이스(3/13)

- ✓ USB 케이블
 - 4개의 신호선 사용 (2선은 전원용, 2선은 데이터 신호용)

- ▶ 0.7V의 전압차로 데이터를 판단(RS-232의 경우 -12V와 +12V)
- ▶ 저전압에서에서 전기적 신호 변화로 데이터 전송

46

기타 인터페이스(4/13)

✓ USB의 패킷

- ▶ 동기화 필트(SYNC)
- ▶ 패킷 아이디 필드 (PID)
- ▶ 데이터 필드 (DATA)
- CRC 필드

✓ USB의 특성

- ▶ 간편하다
- 주변기기의 설치가 간단하다 : _____(주변기기를 컴퓨터에 꽂는 즉시 사용함)
- ▶ 고속 인터페이스 : 전송속도가 빠르다.
- 주변기기를 여러 대 물릴 수 있다. (_____)
- ▶ 핫 플러깅 (______): 컴퓨터가 켜져 있는 상태에서 주 변기기를 연결하거나 제거가 가능하다.
- ▶ 자체 전원공급

기타 인터페이스

IEEE 1394(1995년)

- ✓ 파이어와이어(FireWire, 애플), 아이링크(i-Link, 소니)
 - ▶ SCSI의 대용으로 개발
 - 미국의 애플 컴퓨터가 제창한 개인용 컴퓨터 및 디지털 오디오, 디지털 비디오용 시리얼 버스 인터페이스 표준 규격
- ✓ IEEE 1394의 규격은 파이어와이어 400과, 800이 있는데 각각 약 100/200/400Mbps, 800Mbps의 전송 속도를 지원
 - > SCSI-2 : 80Mbps, RS-232C : 19.2Kbps
- ✓ 주로 PC와 AV 기기의 접속을 상정한 통신 규격으로서 디지털 동화상 전송 등을 의식해서 만든 것
- ✓ 두 규격은 모두 핫 플러깅을 지원.
- ✓ IEEE 1394의 두 형태는 6Pin(전기공급:2Pin, 데이터전송:4Pin)과 4Pin(데이터전송:4pin)으로 구성.
- ✓ SCSI [small computer system interface]
 - ▶ 컴퓨터에서 주변기기를 접속하기 위한 직렬 표준 인터페이스8

기타 인터페이스(5/13)

IEEE 1394

- ✓ 프로토콜 구조
 - ▶ 물리 계층 : 디바이스와 케이블 사이에 전기적, 기계적으로 연결
 - ▶ 링크 계층 : 두 가지 패킷을 송수신하기 위해
 - 두 개의 송신 FIFO(write 비동기 및 동시 송신)와
 - 한 개의 수신 FIFO(read 수신 전용)
 - ▶ 전송 계층 : 비동기 프로토콜의 read, write, lock 기능
- ✓ IEEE 1394의 특징
 - Plug & Play
 - Hot swapping
 - ▶ 직렬 전송 버스, Thin cable 사용
 - 빠른 전송속도, 뛰어난 쌍방향 통신
 - ▶ 데이터의 고속 전송과 실시간 데이터 서비스
 - > 낮은 단가와, 간단하고 융통성 있는 케이블 시스템
 - > 3.2Gbps 의 속도를 지원(2008년)

기타 인터페이스(6/13)

기타 인터페이스(7/13)

USB와 IEEE 1394의 비교

	USB	IEEE 1394
최대 연결 가능한 디바이 스 수	127	63
디바이스간의 최대 거리	4.5m	5m
데이터 전송율	12Mbps(버젼 1.1) 480Mbps(버전 2.0)	100/200/400 Mbps
기기 제어 방법	호스트 컨트롤러 필요	기기가 기기를 컨트 롤
사용 목적	저속의 주변기기	고속 전송을 위한 규약

기타 인터페이스(8/13)

HIPPI (High Performance Parallel Interface)

- ✓ 고성능 병렬 인터페이스
- ✓ 대량의 데이터를 800M~1.6Gbps의 초고속으로 전송하기 위한 인터페이스.
- ✓ 1991년부터 1993년까지 미국표준협회(ANSI)가 표준화한 것
- ✓ 32비트 폭의 버스를 사용해서 병렬 전송하므로 800Mbps의 한쪽 방향 전송 및 1.6Gbps의 양방향 전송이 가능
- ✓ 고성능 병렬 인터페이스 기술은 고속 LAN에도 응용할 수 있으며, 연선 케이블 사용 시 최대 케이블 길이는 25m이고, 광케이블은 10km 정도까 지 연장
- ✔ 접속 형태는 단방향 1:1 접속
- ✓ 기가비트 속도를 제공하는 슈퍼컴퓨터의 애플리케이션용으로 개발
- ✓ 사용 가능한 대역폭 모두 사용
- ✓ Twisted Pair 케이블을 이용하여 32비트나 64비트 병렬 채널 제공
- ✓ 100핀 커넥터 사용
- ✓ 멀티모드 구리선을 사용한 serial interface는 300m까지 지원하고, 더 짧은 거리에서는 50개 쌍으로 된 STP를 통해 parallel 전송.

기타 인터페이스(9/13)

USB, IEEE 1394, HIPPI의 특징

인터페이스	특 징	케이블
USB	•주변기기의 설치가 간단하다.•전송속도가 빠른다.•핫 플러깅이 가능하다.	4개의 신호선 사용
IEEE 1394	·직렬 전송 버스·전송속도가 빠르다.·쌍방향 통신 기능∙Thin cable 사용	6개의 신호선 사용
HIPPI	·기가비트 속도 구현 ·슈퍼컴퓨터 애플리 케이션 용으로 개발	Twisted Pair 케이블 사용

기타 인터페이스(10/13)

RS 232/442/485

- ✓ RS 232
 - ▶ RS 232는 EIA에 의해 규정됨
 - 대부분 PC의 시리얼 포트는 RS 232 서브세트(9핀)가 표준 장비되어 있다.
 - ▶ RS 232는 비동기식통신 방식을 사용

00

기타 인터페이스(11/13)

- ✓ RS 442
 - ➤ RS 442는 EIA에 의해서 전기적인 사양이 규정되어 있으나 물리적인 코넥터 및 핀에 대한 규정이 되어 있지 않다.
 - ➤ RS 232와 별 차이가 없고 다만 물리적으로 하나의 신호선에서 두 개의 라인이 필요한데 그들의 표현은 신호선명뒤에 + 와 로써 구분 표기 한다.
 - ➤ RS 442는 Point To Point와 Multi-Drop 모드 두 가지가 있다.

기타 인터페이스(12/13)

✓ RS 442

DB-25

- * GND는 연결하지 않아도 됨.
- * + 신호선은 + 신호선과 신호선은

DB-25

- 신호선과 연결됨에 유의.

Point To Point 모드인 경우 RS 232와 신호선당 2개의 라인이 필요한 것만 빼고 사용하는 방법에 있어서 별다를 필요가 없다 Multi-Drop 모드는 마스터가 어떤 슬레이브와 통신을 할 것인지를 결정하고 해당 슬레이브를 호출하면 호출된 슬레이브가 응답을 하는 체제로 구성된다.

기타 인터페이스(13/13)

- ✓ RS 485
 - ▶ RS 485는 DB-9이나 DB-37과 같은 커넥터들을 지원한다
 - RS 485 는 RS 232 와 달리 Differential Line 전송 방식이며, 1개통신 노드가 다수의 다른 통신 노드와 통신할 수 있다
 - 232는 Point to point (1:1)
 - 485는 Multi-point to multi-point(32개까지)
 - ▶ 485방식에서는 TX와 RX를 하나의 선을 같이 씀.(TXRD+, TXRD-)
 - 한 쪽에서 보내면 다른쪽에서는 받을 수 없음(반 이중방식)
 - ▶ RS-232는 동시에 받을 수 있음(전 이중방식)

