

OUTLINE

- * Course's Introduction
- Mini-project
- × Package installation
- Exploratory Data Analysis
- x List vs. Pandas vs. NumPy
- * Pandas

COURSE'S INTRODUCTION 3

MICROSOFT TEAMS

- × (1/2567) DADS5001
 - + Official announcement: General channel
 - + Class material (all in English): General channel > Files tab > เอกสารประกอบของคลาส (Class Materials) folder
 - + Syllabus: General channel > Files tab > เอกสารประกอบของ คลาส (Class Materials) folder > COURSE_SYLLABUS.pdf
 - + Latest class schedule: General channel > Files tab > เอกสาร ประกอบของคลาส (Class Materials) folder > CLASS_SCHEDULE.docx

4

Week	Description	
1	Introduction Pandas 1	Data Collection Data Preparation Data Entry Data Processing
2	Pandas 2	
3	Pandas 3	
4	Pandas 4 Mini-project announcement	
5	Matplotlib and Seaborn 1 Mini-project topic submission	
6	Matplotlib and Seaborn 2	
7	Matplotlib and Seaborn 3 NumPy	
8	Mini-project presentation	
	Midterm Exam	
9	Plotly-Dash 1	Data Interpretation
10	Plotly-Dash 2	
11	Plotly-Dash 3	
12	Plotly-Dash 4	
13	Power BI 1	
14	Power BI 2	
15	Case study	Data Storage
	Final Exam	Data Storage

Raw Data

Data
Preprocessing

Clean,
Structured
Data
Analysis (EDA)

Preprocessing

Preprocessin

MINI-PROJECT: HOW TO

- Having a good question is a good start, so as an initial assumption.
- Check data availability/accessibility (realistic and unprocessed data, not the already-prepped neat dataset with abundant tutorials/examples)
- Prove or disprove your assumption with data analytics and data science
 - Programming tools and (static) visualization must be included significantly.
 - The data source may be shared among some students but what comes afterward (questioning, cleaning, processing, EDA, visualizing) must be done individually.
- Submit as a public GitHub link (one link per one group), including codes and development journey

13

MINI-PROJECT: EXAMPLES (1/2)

- 🗙 ส่อง Mega trend "EV Car" https://github.com/ssorawits/Project.git
- 🗴 ผลกระทบจากเศรษฐกิจทำให้อัตราเด็กเกิดใหม่ลดลงหรือไม่ https://github.com/pnithida/6420422004_MiniProject
- × PM2.5 in Thailand(Y2019-Y2021) https://github.com/Porrakij/PM2.5-Data-Analysis
- สำรวจกระเป๋าตังคนไทย รายได้ และ รายจ่าย เฉลี่ยของครัวเรือน https://github.com/koraweep/DADS5001_Mini-Project
- จังหวัดเฝ้าระวัง เพื่อป้องกันและลดจำนวนผู้เสียชีวิตจากอุบัติเหตุทางถนน https://github.com/ploychenya/DADS5001_mini_project
- 🗴 Big Data กับโลกอสังหาริมทรัพย์ https://github.com/Hakulani/miniprojectDADS5001
- ข้อมูลมูลค่าการนำเข้าสินค้าของประเทศไทยจากทั่วโลกในช่วงปี 2002 2022
 https://github.com/nacknatthawit/DADS5001_6420412006
- Thailand_Accident_Jan-Jun2022 https://github.com/waewma/Thailand_Accident_Jan-Jun2022
- ยอดการค้นหา Google trend ด้วย keyword "Bitkub" จะส่งผลดีต่อบริการของตัวบริษัทหรือไม่ https://github.com/kimteespk/DADS5001_Miniproject_bitkub_googletrend_6510412011
- × Vending machine analysis https://github.com/kikkalo/6420412010
- × Thailand Labour Demand Trend Y2015-2020 https://github.com/Sujitra17/Mini-Project

MINI-PROJECT: EXAMPLES (2/2)

- * Are Thai healthcare related stock still captivating? https://github.com/mmaiip/project-5001
- ✗ Global warming https://github.com/Hellper1/DADS_5001_miniproject
- × Video Game Sales https://github.com/MeenWhile/Tools-Mini-Project
- World-Population Analysis https://github.com/o-joe-v/World-Population
- Thailand and World Happiness
 https://github.com/HikariJadeEmpire/TH_WLRD_Happiness_Project
- สถานการณ์อุตสาหกรรมรถยนต์ไทย https://github.com/crispyporkwithholybasil/5001-DADS-miniproject
- "Global Cost Of Living" ถ้าต้องย้ายประเทศเราจะไปใหนดีล่ะ? https://github.com/Bonita1996/Project
- * Hollywood Insight https://github.com/y-lims/DADS5001_Hollywood_Insight
- ค่าไฟแพงมาจากอะไร? สถานการณ์พลังงานไฟฟ้าในประเทศไทย https://github.com/kkengg/Pikachu-Project

15

15

PACKAGE INSTALLATION

REQUIRED LIBRARIES

conda install jupyter

conda install pandas
conda install numpy

conda install matplotlib
conda install seaborn

18

EXPLORATORY DATA ANALYSIS (3/4)

EDA is an iterative process of

- × What for?
 - Provide a better understanding of data set patterns, variables, and the relationships between them
 - + Help identify obvious errors and detect outliers or anomalous events
 - See what data can reveal beyond the formal modeling or hypothesis testing task
 - + Help determine if the statistical techniques we are considering for data analysis are appropriate
 - Ensure the results we produce are valid and applicable to any desired business outcomes and goals
- Once EDA is complete and insights are drawn, its features can then be used for more sophisticated data analysis or modeling, including machine learning and deep learning.

DATA PREPROCESSING (2/2)

- Remove duplicates
 - Repeated entries will lead to the model overfitting.
 - + Be careful when there are too many duplicate entries.
- Fix structural errors
 - Structural errors in a dataset refer to the entries that either have typos or inconsistent spellings.
 - Check all unique values and their corresponding occurrence
- Detect and handle outliers
 - Outlier is any value in a dataset that drastically deviates from the rest of the data points. It can
 mess up our machine-learning model if not taken care of.
 - Use the describe function on columns, visualize outliers with box plots, compute z-score on columns (99.7% of the data points within the range of -3 and +3 scores), etc.
- 4. Type conversion
 - Do type conversion when certain columns are not of valid data type (e.g., the object data type)
- Dealing with missing values
 - Often, data set contains numerous missing values, which can be a problem. For example, it can play a role in the development of a biased estimator, or it can decrease the representativeness of the sample under consideration.
 - Drop rows with missing values, impute the missing values with central tendencies (e.g., mean, median, mode), forward/backward fill
- Feature scaling
- Data encoding

 $Credit\ (21NOV2022): \underline{https://datasciencedojo.com/blog/data-preprocessing-data-science-solution/linear-science-solution-science-solution-science-solution-science-solution-science-solution-science-solution-science-solution-science-solution-science-solution-science-science-solution-science-sc$

25

25

ARRAY VS. PYTHON'S LIST

- In other programming languages, Array refers to the static memory allocation for holding a sequence of homogeneous data. Array is faster.
- Because Python's List stores references to data, a List can (seemingly) hold heterogeneous data. List is slower.

PANDAS (2008) VS. EXCEL (1985)

- * Too much data slows down Excel.
- Excel is limited to 1,048,576 rows by 16,384 columns per worksheet. Exceeding the limit causes data loss.
- Pandas is one of the most popularly used Python modules for data analysis and manipulation. It's said to be a data analyst's best friend.
- No limits to the size of data, powerful data transformation, allow automation and extended file formats
- Pandas is good and intuitive for tabular data (e.g., csv, excel, sql) and it includes time series functionalities.

31

PANDAS (2008) VS. NUMPY (2005)

- Pandas is built on top of two core Python libraries—matplotlib for data visualization and NumPy for mathematical operations.
- Pandas acts as a wrapper over these two libraries, allowing us to access many of matplotlib's and NumPy's methods with less code.
- Pandas for data analysts. NumPy for data scientists
- Pandas is popularly used for data analysis and manipulation.
 NumPy is primarily used for numerical calculations.
- Pandas is more natural for database-like data (e.g., csv, excel, sql).
 NumPy is more natural for numeric processing of data (e.g., signals, images).
- Scikit-learn was originally developed to work well with NumPy array. It's recommended to use NumPy array with Scikit-learn due to mature data handling.

PANDAS 2.0 (3/4) What's new in 2.0.0 (April 3, 2023): https://pandas.pydata.org/d

A new dtype_backend parameter for I/O operators that support creating Arrow-backed DataFrames.

```
pd.options.mode.dtype_backend = 'pyarrow'  # Set it globally
pd.read_csv(my_file, dtype_backend='pyarrow') # Set it on each DataFrame
```

- Represent "missing values" and use better support for data types outside of numerical types
 - + NumPy has poor support for non-numerical data and a lack of missing values.
 - + Before pandas 2.0, there are different types of missing values; np.nan is for floating-point numbers; None and np.nan are for object types, and pd.NaT is for date-related types.
 - + In Pandas 1.0, pd. NA was introduced to avoid type conversion, but it needs to be specified manually by the user.
 - + The new string [pyarrow] column type is around 3.5 times more efficient.

```
pd.Series([1,2,3,4], dtype='int64[pyarrow]')
pd.Series(['foo', 'bar', 'foobar'], dtype='string[pyarrow]')
```

35

35

```
PANDAS 2.0 (4/4) What's new in 2.0.0 (April 3, 2023): https://pandas.pydata.org/d
  In [1]: df2 = pd.DataFrame({'a':[1,2,3, None]}, dtype='int64[pyarrow]')
  In [2]: df2.dtypes
                                                  In [1]: import pandas as pd
  Out[2]:
                                                 In [2]: pd.__version__
Out[2]: '2.0.0'
       int64[pyarrow]
  dtype: object
  Out[3]:
                                                  Out[4]:
                                                          object
                                                 number int64
dtype: object
                                                 In [5]: df.memory_usage(deep=True).sum()
Out[5]: 17898876
                                                  In [6]: df_arrow = pd.read_csv('pd_test.csv', dtype_backend="pyarrow", engine
                                                  Out[7]:
                                                  address
                                                            string[pyarrow]
                                                              int64[pyarrow]
                                                  dtype: object
https://www.reddit.com/r/Pvthon/co
                                                 In [8]: df_arrow.memory_usage(deep=True).sum()
Out[8]: 7298876
eed_to_know_about_pandas_200/
```


SERIES AND DATAFRAME

pandas.Series is a 1D array holding data of any type.

pandas.DataFrame is a 2D array consisting of one or more pandas.Series (= column).

LET'S CONTINUE IN CO

× Pandas1.ipynb

- IPython.display: display(), Markdown(), Latex(), Code(), HTML(), JSON(), clear_output(), ...
- Data types: pandas.Series, pandas.DataFrame
- Load, save, and render: read_csv(), to_csv(), read_excel(), to_excel(), to_html(), to_latex(), to_json(),.
- Inspect, (unconditional) access, change, sort, and save data: loc[], iloc[], at[], iat[],
 sort_index(), sort_values(), ...

Pandas2.ipynb

- Conditionally filter data with boolean indexing, query(), filter(), select_dtypes()
- Handle missing data and duplicated data: isna(), notna(), dropna(), fillna(), duplicated(),

Pandas3.ipynb

- Aggregate data: agg(), sum(), mean(), min(), max(), median(), mode(), std(), unique(), nunique(), count(), value_count(), ...

 Transform data: apply(), transform()
 Group data: groupby(), filter()

Pandas4.ipynb

- Combine data: merge(), join(), compare(), concat()
 Reshape data: pivot(), pivot_table(), melt()
 Table visualization: pandas.DataFrame.style, style.format(), style.applymap(), style.apply(), style.bar(), style.highlight_max(), style.highlight_min(), ...

41

41

END OF THIS CLASS

- News and announcement:
 - + Microsoft Teams > General channel

Class schedule:

Microsoft Teams > General channel > Files tab > เอกสาร ประกอบของคลาส folder > CLASS_SCHEDULE.docx

42