

• 什么是统计学?

统计学是一门收集、整理和分析数据,然后运用概率 知识从特定的数据中得出统计推论的科学。其目的 是探索隐藏在数据里面的规律性,以达到对客观事

物的科学认识

性别(1男2女)	平均值	数字	中位数	最大值(X)	最小值	方差	标准偏差
男性	6.5924	62	5.9600	13.38	4.21	4.232	2.05718
女性	5.9652	93	5.6200	17.94	4.35	3.935	1.98360
总计	6.2161	155	5.6900	17.94	4.21	4.122	2.03025

中大教授 必勝方程式 賭馬贏半億

東網Money18 即秒報價掌握大市走勢

■ 本福特定律(Benford's Law)

1	2	3	4	5	6	7	8	9
30.1%	17.6%	12.5%	9.7%	7.9%	6.7%	5.8%	5.1%	4.6%

对于财务数据,数学家们还发现,在那些假账中,数字5和6居然是最常见的打头数字。

● 什么是数据?

为表述和解释现实问题所收集分析和 汇总的事实依据与图表。

例: 股票数据(数据文件shadow);客户资料;生产记录; 库存记录;市场调查数据等等

• 统计数据的类型

数据的筛选

- 1. 对审核过程中发现的错误应尽可能予以纠正
- 2. 当发现数据中的错误不能予以纠正,或者有些数据不符合调查的要求而又无法弥补时,需要对数据进行筛选
- 3. 数据筛选的内容包括:
 - 将某些不符合要求的数据或有明显错误的数据予以剔除
 - 将符合某种特定条件的数据筛选出来

数理统计学是一门以数据为基础的 学科.

数理统计学的任务就是如何获得样 本和利用样本,从而对事物的某些未知 方面进行分析、推断并作出一定的决策。

- 研究随机现象要先知道其概率分布
 - 然而现实中,随机变量服从的分布并不 总是确定的

- 对被研究的随机变量进行大量的观察或者实验,其概率特征能够得到
 - 利用有限信息做出可靠的推断

- 统计问题中,研究对象的全体所构成的集 合称为<u>总体</u>
 - 西安交大所有学生
 - 某工厂每天生产的所有产品
- ■构成总体的每一个元素称为<u>个体</u>
 - 个体取值的随机性
 - 聚合起来具有一定规律性
- 随机变量X代表总体,研究其分布F(x)

总体分布未知或是其某些参数未知,对总体中每一个个体进行观察,就可以完全了解总体的分布特征

从总体中抽出的部分个体称为<u>样本</u>,样本中包含的个体的个数称为<u>样本容量</u>,按照一定规则取得样本的过程称为<u>抽样</u>,把观察或实验得到的数据称为<u>样本观测值</u>(观察值)

- 抽样的特点:
 - 随机原则:每个元素(或个体)有同等 抽中的机会
 - ■推断总体特征: 样本的属性能推断出总体特征
 - ■推断的精确性:把推断的误差控制在一定的精确度内

抽样设计

类型抽样(分层抽样或分类抽样)

注: 等距抽样; 多阶段抽样; 双相抽样; 穿插抽样(略)

代表性抽样

幸存者偏差

二战时,军方为了提高飞机的防御,想在 之前的机型上加强装甲。问题哪些部位需 要加强装甲才最有效提高飞机的生存率?

Where to add armor?

弹孔稀疏的地方才最有可能是要害处,因 为没怎么被击中才有机会返航

■ 如果总体X的分布函数为F(x),则来自总体 X的样本 $(X_1,X_2,...,X_n)$ 的联合分布函数为

$$P(X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n) = \prod_{i=1}^n P(X_i \le x_i) = \prod_{i=1}^n F(x_i)$$

离散变量用其点概率

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = \prod_{i=1}^n p(X_i = x_i)$$

连续随机变量用其概率密度函数

$$f(x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i)$$

- 刻画样本分布的三种形式: 频数和频率分布、直方图、经验分布函数
- 对于样本值(x,x₂,...,x₂,), <u>样本频数分布</u>是指样本值中不同数值在样本值中出现的次数,<u>样本频率分布</u>是指样本值中不同数值在样本值中出现的频率(频数除以样本容量)
- 对于频数m,,m₂,...,m_l. 有

$$\sum_{i=1}^{/} m_i = n$$

■ 想象一个随机试验,例如投掷两枚硬币并记录正面出现的次数,用X表示,则X就是

随机变量

X	0	1	2	
Pr(X=x)	1/4	1/2	1/4	

■ 上述表格称为随机变量X的概率分布

■ 将两枚硬币试验重复1000次,得到

p(x)	x *	频数(m _i)	频率(m _i /n)
0.25	0	260	0.260
0.5	1	517	0.517
0.25	2	223	0.223

■ 对于离散型随机变量 $P(X = x_{i^*}) = p_i$,由大数定律(Kolmogorov large number law)

当n很大时,事件 $X = x_i^*$ 的频率 m_i/n 趋近于概率 p_i

■ 对于连续型随机变量,事件 $X_i = x_i^*$ 的概率 为0, how?

某轧钢厂生产了一批钢材,为了研究这批 钢材的抗拉强度,从中随机抽取了76个样 本进行试验

	抗拉强度观测值										
41.0	37.0	33.0	44.2	30.5	27.0	45.0	28.5	31.2	33.5	38.5	41.5
43.0	45.5	42.5	39.0	38.8	35.5	32.5	29.6	32.6	34.5	37.5	39.5
42.8	45.1	42.8	45.8	39.8	37.2	33.8	31.2	29.0	35.2	37.8	41.2
43.8	48.0	43.6	41.8	36.6	34.8	31.0	32.0	33.5	37.4	40.8	44.7
40.2	41.3	38.8	34.1	31.8	34.6	38.3	41.3	30.0	35.2	37.5	40.5
38.1	37.3	37.1	41.5	29.5	29.1	27.5	34.8	36.5	44.2	40.0	44.5
40.6	36.2	35.8	31.5								

- 对于观测数据经过以下四步处理:
 - 1. 整理数据**,**把样本值*x*₁,*x*₂,...,*x*_n按从小到 大排列

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$$

2. 分组:把区间 $[x_{(1)},x_{(n)}]$ 分成若干个小区间 $[x_{(1)},t_1],(t_1,t_2],...,(t_{[1,1]},x_{(n)}]$,每个小区间的长度 $d_1=t_1-t_{[1]}$ 称为组距,区间的中点称为组中值,一般采用等距分组,最好使每个区间内至少有一个观测值

3. 列分组频率分布表

分组	组中值	频数 m_i	频率 f_i	$y_i = f_i/\boldsymbol{d_i}$
[27,30]	28.5	8	0.105	0.035
(30,33]	31.5	10	0.132	0.044
(33,36]	34.5	12	0.158	0.053
(36,39]	37.5	17	0.224	0.074
(39,42]	40.5	14	0.184	0.061
(42,45]	43.5	11	0.145	0.048
(45,48]	46.5	4	0.053	0.018

- 4. 作频率直方图: 在x 轴上以各区间(t_{i} , t_{i}]为底,以 y_{i} 为高画一排竖立的矩形,即为频率直方图,根据大数定律,当n很大时, $f_{i} \approx p_{i} = \int_{t_{i-1}}^{t_{i}} f(x)dx = f(\omega_{i})d_{i}$, $\omega_{i} \in (t_{i-1},t_{i}]$,于是 f_{i}/d_{i} 可以近似为密度函数
- 5. 作概率密度曲线: 将各矩形中点联结得 到一条折线,样本容 量越大,分组越细, 得到的概率密度曲线 越准确

■ 对于样本值 $(x_1,x_2,...,x_n)$,将其从小到大排列为 $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$,对于任意的 $x(-\infty < x < +\infty)$,定义函数

$$\begin{cases} 0, & x < x_{(1)} \\ \frac{m_{1+}m_{2} + \dots + m_{i}}{n}, & x_{(i)} \le x < x_{(i+1)}, i = 1, 2, \dots, n-1 \\ 1, & x \ge x_{(n)} \end{cases}$$

- $\pi F_n(x)$ 为总体X的经验分布函数
 - 单调、非降、右连续, $0 \le F_n(x) \le 1$
 - $F_n(-\infty) = 0$, $F_n(+\infty) = 1$

- $F_n(x)$ 表示 $x_1, x_2, ..., x_n$ 落入区间[$-\infty, x$]内的频率;
- 对于不同样本观察值,将得到不同的经验 分布函数,经验分布函数不仅与样本容量 有关,还与样本值有关,因为每次实验中 的样本值是随机的;
- 当n很大时, $F_n(x)$ 可以作为F(x)的估计。

■ 对于来自总体X的样本($X_1, X_2, ..., X_n$), 若 $T = g(X_1, X_2, ..., X_n)$ 不包含未知参数,则 称T为一个统计量

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$
 $B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$

- 定理 对于来自总体X的样本 $(X_1, X_2, ..., X_n)$,且 $E(X) = \mu \pi D(X) = \sigma^2$ 均存在,则
- 1. 样本均值 \(\bar{X}\)的数学期望和方差分别为

$$E(\bar{X}) = \mu$$
 $D(\bar{X}) = \frac{\sigma^2}{n}$ $\bar{X} \stackrel{P}{\to} \mu$

2. 样本方差的数学期望为

$$E(S^2) = \sigma^2 \qquad S^2 \xrightarrow{P} \sigma^2$$

由大数定律得到 $\bar{X} \stackrel{P}{\rightarrow} \mu$

• (2)利用 $\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} X_i^2 - n\bar{X}^2$ 得到

$$E(S^{2}) = \frac{1}{n-1} \left[\sum_{i=1}^{n} E(X_{i}^{2}) - nE(\bar{X}^{2}) \right] = \frac{1}{n-1} \left(n(\sigma^{2} + \mu^{2}) - n\left(\frac{\sigma^{2}}{n} + \mu^{2}\right) \right) = \sigma^{2}$$

■ (3) 由大数定律知

$$\frac{1}{n}\sum_{i=1}^{n}X_i^2 \xrightarrow{p} E(X^2) = (\sigma^2 + \mu^2)$$

由(1)知

$$\bar{X} \xrightarrow{p} \mu$$

于是有

$$S^{2} = \frac{n}{n-1} \left[1/n \sum_{i=1}^{n} X_{i}^{2} - \bar{X}^{2} \right]^{p} \Rightarrow \sigma^{2} + \mu^{2} - \mu^{2}$$

■ 对于来自总体X的样本 $(X_1,...X_n)$ 将其观测值按照从小到大顺序排列,得到

$$X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$$

 $称 X_{(1)}, X_{(2)}, ..., X_{(n)}$ 为样本 $(X_1, ..., X_n)$ 的次序统计量

• 统计量 $X_{(1)} = \min(X_1, ... X_n)$ 和 $X_{(n)} = \max(X_1, ... X_n)$ 称为最小次序统计量和最大次序统计量

• 统计量

$$R = X_{(n)} - X_{(1)}$$

称为样本极差

进一步还可以定义四分位差和样本中位数

抽样分布

■正态分布

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

68%的个案是落在离均值 1 个标准偏差(lo)的范围内

95%的个案是落在离均值2个标准偏差(2σ)的范围内。

99%的个案是落在离均值 3 个标准偏差(3σ)的范围内

抽样分布

Γ函数

定义
$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx.$$

性质

$$\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$$

$$\Gamma(n+1)=n!$$

$$\Gamma(1/2) = \sqrt{\pi}$$

$$\Gamma(1) = 1$$

$$\Gamma(2) = 1$$

$$\Gamma(3) = 2$$

抽样分布

x²分布

定义:设随机变量 X_1, \dots, X_n 相互独立,都服从N(0,1),

则称
$$\chi^2 = \sum_{i=1}^n X_i^2$$

服从自由度为n的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n)$

自由度指(1)式右端包含的独立变量的个数.

 $Z \sim \chi^2(n)$, 卡方(Chi-square)分布的密度

$$\chi^{2}(x;n) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(n/2)} x^{\frac{n}{2}-1}e^{-x/2}, x > 0\\ 0, x \le 0 \end{cases}$$

= 当n=2时, χ^2 变为参数为1/2的指数分布

χ²分布具有:

性质5.4.1
$$Z\sim\chi^2(n)$$
, 则 $E(Z)=n$, $D(Z)=2n$

证明1
$$E(Z) = \int_0^{+\infty} x \chi^2(x; n) dx = \int_0^{+\infty} \frac{1}{2^{\frac{n}{2}} \Gamma(n/2)} x^{\frac{n}{2}} e^{-x/2} dx$$

$$\Leftrightarrow \frac{x}{2} = t$$
, \neq

$$E(Z) = \int_0^{+\infty} \frac{2}{\Gamma(n/2)} t^{\frac{n}{2}} e^{-t} dt = \frac{2\Gamma(\frac{n}{2} + 1)}{\Gamma(n/2)} = 2 * \frac{n}{2} = n$$

性质 5.4.1 $Z \sim \chi^2(n)$, 则 E(Z) = n, D(Z) = 2n

证明2
$$E(Z) = E(\sum_{i=1}^{n} X_i^2) = \sum_{i=1}^{n} E(X_i^2) = \sum_{i=1}^{n} (D(X_i) + E^2(X_i))$$

由
$$D(X_i) = 1$$
, $E(X_i) = 0$, 得

$$E(Z) = n$$

性质5.4.1 $Z\sim\chi^2(n)$, 则 E(Z)=n, D(Z)=2n

证明1
$$E(Z^2) = \int_0^{+\infty} \frac{1}{2^{\frac{n}{2}} \Gamma(n/2)} x^{\frac{n}{2}+1} e^{-x/2} dx$$

$$\Rightarrow \frac{x}{2} = t$$
,有

$$E(Z^{2}) = \int_{0}^{+\infty} \frac{2 * 2}{\Gamma(n/2)} t^{\frac{n}{2}+1} e^{-t} dt$$

$$= \frac{4\Gamma(\frac{n}{2}+2)}{\Gamma(n/2)} = 4 * \left(\frac{n}{2}+1\right) * \frac{n}{2} = n(n+2)$$

$$D(Z) = E(Z^2) - E^2(Z) = 2n$$

证明2
$$D(Z) = D(\sum_{i=1}^{n} X_i^2) = \sum_{i=1}^{n} D(X_i^2) = \sum_{i=1}^{n} (E(X_i^4) - E^2(X_i^2))$$

由上面的结论,知 $E(X_i^2)=1$ 。

接下来计算E(X;4)

$$E(X_i^4) = \int_{-\infty}^{+\infty} x^4 \cdot rac{1}{\sqrt{2\pi}} e^{-rac{x^2}{2}} dx = 2 \int_0^{+\infty} x^4 \cdot rac{1}{\sqrt{2\pi}} e^{-rac{x^2}{2}} dx$$

$$\diamondsuit rac{x}{\sqrt{2}} = t$$
 , $dx = \sqrt{2} dt$

$$E(X_i^4) = 2 \int_0^{+\infty} x^4 \cdot rac{1}{\sqrt{2\pi}} e^{-rac{x^2}{2}} dx = 8 \int_0^{+\infty} t^4 \cdot rac{1}{\sqrt{\pi}} e^{-t^2} dt = rac{4}{\sqrt{\pi}} \Gamma(rac{5}{2})$$

伽马函数具有如下递归性质:

$$E(X_i^4)=rac{4}{\sqrt{\pi}}\Gamma(rac{5}{2})=rac{4}{\sqrt{\pi}}\cdotrac{3}{2}\cdotrac{1}{2}\cdot\sqrt{\pi}=3$$

$$D(X_i^2) = E(X_i^4) - 1 = 3 - 1 = 2$$

于是,
$$D(\chi^2) = D(\sum_{i=1}^n X_i^2) = \sum_{i=1}^n D(X_i^2) = 2n$$

性质5.4.2 设 $Z_1, Z_2, ... Z_m$ 相互独立,且 $Z_i \sim \chi^2(n_i)$,则 $\sum_{i=1}^m Z_i \sim \chi^2(n_1 + \cdots + n_m)$

• 设 $X_1, X_2, ... X_n$ 为来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,问

$$y = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2$$

服从什么分布?

t 分布

定义:设 $X \sim N(0,1), Y \sim \chi^2(n),$ 且X和Y相互独立. 则称随机变量

$$T = \frac{X}{\sqrt{Y/n}}$$

服从自由度为n的t分布. (也称为学生氏分布) 记为 $T \sim t(n)$.

William Gosset (1876-1937) **1908**年提出t-分布

■ 1 分布具有概率密度

$$t(x;n) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{\frac{n+1}{2}}, -\infty < x < +\infty$$

■ 1 分布曲线

$$f(x;1) = \frac{1}{\pi(1+x^2)}, -\infty < x < +\infty$$

$$n \to \infty, f(x,n) \to \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -\infty < x < +\infty$$

■ 设随机变量 $X \sim N(0,1)$, $Y \sim \chi^2(n) \perp X = Y$ 独立,则

$$T = \frac{X}{\sqrt{Y/n}} \sim t(n)$$

$$f(z) = \frac{n^{\frac{n}{2}}z^{n-1}e^{-\frac{nz^2}{2}}}{2^{\frac{n}{2}-1}\Gamma(\frac{n}{2})}, z > 0$$

于是
$$T = \frac{x}{z}$$
的密度为

$$g(t) = \int_{-\infty}^{+\infty} |z| \frac{e^{-\frac{(tz)^2}{2}}}{\sqrt{2\pi}} f(z) dz$$
$$= \frac{n^{\frac{n}{2}}}{\sqrt{\pi} 2^{\frac{n-1}{2}} \Gamma(\frac{n}{2})} \int_{0}^{+\infty} z^n e^{-\frac{(n+t^2)z^2}{2}} dz$$

$$\Rightarrow \frac{(n+t^2)z^2}{2} = s$$
,有

$$g(t) = \frac{1}{\sqrt{n\pi} \Gamma(\frac{n}{2})} (1 + \frac{t^2}{n})^{-(n+1)/2} \int_0^{+\infty} s^{-(n-1)/2} e^{-s} ds$$

$$= \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} (1 + \frac{t^2}{n})^{-(n+1)/2}$$

$$Z=rac{Y}{X}$$
, X Y 相互独立 $f_Z(z)=\int^{+\infty}|x|f_Y(xz)f_X(x)\mathrm{d}x$

• 设 $X_1, ..., X_n, X_{n+1}$ 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,问

$$Y = \frac{\sqrt{n}(X_{n+1} - \mu)}{\sqrt{\sum_{i=1}^{n}(X_i - \mu)^2}}$$

服从什么分布?

F 分布

定义:设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$, 且X, Y独立, 则称随机 变量 $F = \frac{X/n_1}{Y/n_2}$

服从自由度为 (n_1,n_2) 的F分布,记为 $F \sim F(n_1,n_2)$,其中 n_1 称为第一自由度, n_2 称为第二自由度.

■ F 分布具有概率密度

$$f(x; n_1; n_2) = \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right) \left(\frac{n_1}{n_2}x\right)^{\frac{n_1}{2} - 1} \left(1 + \frac{n_1}{n_2}x\right)^{-\frac{n_1 + n_2}{2}}, x > 0$$

$$F \sim F(n_1, n_2)$$
,则 $\frac{1}{F} \sim F(n_2, n_1)$

设 $X_1, ..., X_{2n}$ 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,问

$$Y = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sum_{i=n+1}^{2n} (X_i - \mu)^2}$$

服从什么分布?

分位数

■ 定义 设随机变量X的分布函数为 $F(x) = P(X \le x)$,对于给定的 $\alpha(0 < \alpha \le 1)$,若存在实数 x_{α} 使得

$$P(X > x_{\alpha}) = 1 - F(x_{\alpha}) = \alpha$$

■ 则称 x_{α} 为随机变量X的上侧 α 分位数

$$U_{1-\alpha} = -U_{\alpha}$$

正态总体的抽样分布

- 定理 设 $X_1,...,X_n$ 是来自正态总体 $N(\mu,\sigma^2)$ 的样本, \bar{X} 为样本均值, S^2 为样本方差,则
 - 1. $\bar{X} \sim N(\mu, \sigma^2/n)$
 - $\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i \bar{X})^2 \sim \chi^2(n-1)$
 - \bar{X} 与 S^2 独立

1. 证明:

$$E(\overline{X}) = E(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) = \mu,$$
 $D(\overline{X}) = D(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n^{2}}\sum_{i=1}^{n}D(X_{i}) = \frac{\sigma^{2}}{n},$
 $X_{1}, X_{2}, ... X_{n}$ 独立且都服从正态分布,
而且 \overline{X} 是 $X_{1}, X_{2}, ... X_{n}$ 的线性组合
$$\Rightarrow \overline{X}$$
 服从正态分布,即 $\overline{X} \sim N(\mu, \frac{\sigma^{2}}{n}).$

2. 思考

设总体 $X \sim N(\mu, \sigma^2), X_1, X_2, \dots, X_n$ 是样本,

$$(1)\frac{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}}{\sigma^{2}} \sim$$

$$(2)\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\sigma^{2}} \sim$$

$$(2)\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\sigma^{2}}\sim$$

2. 思考

设总体 $X \sim N(\mu, \sigma^2), X_1, X_2, \dots, X_n$ 是样本,

$$(1)\frac{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}}{\sigma^{2}} \qquad \chi^{2}(n-1)$$

$$\sum_{i=1}^{n}(X_{i}-\mu)^{2}$$

$$(2)\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\sigma^{2}} \sim \chi^{2}(n)$$

$$\sum_{i=1}^{n}(X_{i}-\bar{X})^{2} = \frac{(n-1)S^{2}}{\sigma^{2}}$$

$$\chi_{1}-\bar{X},\dots,\chi_{n}-\bar{X}$$

$$\chi_{1}-\bar{X}$$

■ 定理 设 $X_1,...,X_n$ 是来自正态总体 $N(\mu,\sigma^2)$ 的样本,则

$$T = \frac{\sqrt{n}(\bar{X} - \mu)}{S} \sim t(n-1)$$

证
$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim N(0,1), \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
 且相互独立

于是
$$T = \frac{\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}} = \frac{\sqrt{n}(\bar{X} - \mu)}{S} \sim t(n-1)$$

■ 定理 设($X_1,...,X_{n_1}$)和($Y_1,...,Y_{n_2}$)是 分别来自正态总体 $N(\mu_1,\sigma^2)$ 和 $N(\mu_2,\sigma^2)$ 的 样本,且两组样本独立, $\bar{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$, $\bar{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$, $S_{1n_1}^2 = \frac{1}{n_1-1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2$, $S_{2n_2}^2 = \frac{1}{n_2-1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2$,则有

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中

$$S_W^2 = \frac{(n_1 - 1)S_{1n_1}^2 + (n_2 - 1)S_{2n_2}^2}{n_1 + n_2 - 2}$$

或者

■ 定理 设 $(X_1,...,X_{n_1})$ 和 $(Y_1,...,Y_{n_2})$ 是 分别来自正态总体 $N(\mu_1,\sigma_1^2)$ 和 $N(\mu_2,\sigma_2^2)$ 的 样本,且两组样本独立, 则

$$F = \frac{\sigma_2^2 S_{1n_1}^2}{\sigma_1^2 S_{2n_2}^2} \sim F(n_1 - 1, n_2 - 1)$$

$$F = \frac{S_{1n_1}^2 / \sigma_1^2}{S_{2n_2}^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$$

这是因为 $\frac{(n_1-1)S_{1n_1}^2}{\sigma_1^2}/(n_1-1) \longrightarrow \chi^2(n_1-1)$ $\frac{(n_2-1)S_{2n_1}^2}{\sigma_2^2}/(n_2-1) \longrightarrow \chi^2(n_2-1)$