Attention

HE Jiayou

July 7, 2022

HE Jiayou July 7, 2022 1 / 29

Table of Contents

- RNN
- 2 Attention Prompt
- Transformer
- 4 VIT
- Medical-Related
- 6 Conclusion

- RNN
- 2 Attention Prompt
- Transformer
- 4 VIT
- Medical-Related
- 6 Conclusion

RNN

$$H_t = \phi \left(X_t W_{xh} + H_{t-1} W_{hh} + b_h \right)$$
$$O_t = H_t W_{ha} + b_a$$

$$X_t \in \mathbb{R}^{n \times d}$$
 $H_t \in \mathbb{R}^{n \times h}$
 $O_t \in \mathbb{R}^{n \times q}$ $b_h \in \mathbb{R}^{1 \times h}$

1

HE Jiayou July 7, 2022 4 / 29

¹Aston Zhang et al. "Dive into Deep Learning". In: CoRR abs/2106.11342 (2021). arXiv: 2106.11342. URL: https://arxiv.org/abs/2106.11342.

GRU Gated Recurrent Unit

HE Jiayou July 7, 2022

GRU Gated Recurrent Unit

GRU supports gating of the hidden state.

- Reset gates help capture short-term dependencies in sequences.
- Update gates help capture long-term dependencies in sequences.

$$R_t = \sigma \left(X_t W_{xr} + H_{t-1} W_{hr} + b_r \right)$$

$$Z_t = \sigma \left(X_t W_{xz} + H_{t-1} W_{hz} + b_z \right)$$

$$\tilde{H}_t = \tanh \left(X_t W_{xh} + \left(R_t \odot H_{t-1} \right) W_{hh} + b_h \right)$$

$$H_t = Z_t \odot H_{t-1} + \left(1 - Z_t \right) \odot \tilde{H}_t$$

HE Jiayou July 7, 2022 6/29

LSTM

σ

FC layer with activation function

LSTM

The idea is similar to GRU.

$$I_{t} = \sigma \left(X_{t} W_{xi} + H_{t-1} W_{hi} + b_{i} \right)$$

$$F_{t} = \sigma \left(X_{t} W_{xf} + H_{t-1} W_{hf} + b_{f} \right)$$

$$O_{t} = \sigma \left(X_{t} W_{xo} + H_{t-1} W_{ho} + b_{o} \right)$$

$$\tilde{C}_{t} = \tanh \left(X_{t} W_{xc} + H_{t-1} W_{hc} + b_{c} \right)$$

$$C_{t} = F_{t} \odot C_{t-1} + I_{t} \odot \tilde{C}_{t}$$

$$H_{t} = O_{t} \odot \tanh(C_{t})$$

HE Jiayou July 7, 2022 8 / 29

Encoder-Decoder

HE Jiayou July 7, 2022

Encoder-Decoder

- Encoder: $H_t = f(X_t, H_{t-1})$, $C = g(H_1, \dots, H_t)$
- Decoder: to get $P(Y_t|Y_1,\ldots,Y_{t-1},C)$, $H_t=g(Y_{t-1},C,H_{t-1})$.

◆□▶ ◆御▶ ◆差▶ ◆差▶ ○差 ○夕@@

HE Jiayou July 7, 2022 10 / 29

- RNN
- 2 Attention Prompt
- Transformer
- 4 VIT
- Medical-Related
- 6 Conclusion

Attention Prompt

A simple regression Problem: $f \in \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}.$

Average Pooling:

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Attention Pooling:

$$f(x) = \sum_{i=1}^{n} \alpha(x, x_i) y_i$$

We call x a query and (x_i, y_i) a key-value pair. α is the attention weight, which is the target.²

HE Jiayou July 7, 2022 12 / 29

²Aston Zhang et al. "Dive into Deep Learning". In: CoRR abs/2106.11342 (2021). arXiv: 2106.11342. URL: https://arxiv.org/abs/2106.11342.

Attention Prompt

• Nonparametric:

$$\alpha(x, x_i) = \frac{K(x - x_i)}{\sum_j K(x - x_j)}$$
$$K(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$$

• parametric: learnable Attention Scoring Function

HE Jiayou July 7, 2022 13/29

- RNN
- 2 Attention Prompt
- 3 Transformer
- 4 VIT
- Medical-Related
- Conclusion

Transformer

- Relys entirely on multi-head self-attention
- Encoder-Decoder architecture
- Positional encoding

3

HE Jiayou July 7, 2022

15 / 29

³Ashish Vaswani et al. "Attention Is All You Need". In: *CoRR* abs/1706.03762 (2017). arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.03762.

Architecture

Encoder:

N=6 layers Multi-head self-attention + feed forward

Decoder:

Masked Multi-head self-attention Multi-head attention

Others:

Positional Encoding Layer-normalization

Scoring Function

Scaled Dot-Product Attention

$$Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

$$Q \in \mathbb{R}^{n \times d_k} \quad K \in \mathbb{R}^{m \times d_k} \quad V \in \mathbb{R}^{m \times d_v}$$

HE Jiayou July 7, 2022 17 / 29

Multi-Head Attention

It is beneficial to linearly project Q, K, V to d_k, d_k, d_v dimensions h times.

$$Multihead(Q, K, V) = Concat(head_1, ..., head_n) W^O$$

where $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

HE Jiavou July 7, 2022 18 / 29

Self-Attention

Self-attention:

$$\{f(x_i), 1 \leq i \leq n\}$$

where $f \in \{(x_i, x_i)\}$

19/29

HE Jiayou July 7, 2022

Positional Encoding

For $P \in \mathbb{R}^{n \times d}$:

$$p_{pos,2i} = \sin\left(\frac{i}{10000^{2i/d}}\right)$$
$$p_{pos,2i+1} = \cos\left(\frac{i}{10000^{2i/d}}\right)$$

n length of sequence; d length of encoding. Give each position-embedding pair a unique value.

HE Jiayou July 7, 2022 20 / 29

Recap

- RNN
- 2 Attention Prompt
- Transformer
- 4 VIT
- Medical-Related
- 6 Conclusion

VIT

VIT Vision Transformer

Split images into fixed-size patches

HE Jiayou July 7, 2022 23 / 29

- RNN
- 2 Attention Prompt
- Transformer
- 4 VIT
- Medical-Related
- 6 Conclusion

Attention UNet

Concat(Attention, upsample)

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ 900

25 / 29

HE Jiayou July 7, 2022

Attention Unet

Using query g from a coarser scale. Resampler Trilinear interpolation is applied.⁵

HE Jiayou July 7, 2022

26 / 29

⁵Ozan Oktay et al. "Attention U-Net: Learning Where to Look for the Pancreas". In: CoRR abs/1804.03999 (2018). arXiv: 1804.03999. URL: http://arxiv.org/abs/1804.03999.

- RNN
- 2 Attention Prompt
- Transformer
- 4 VIT
- Medical-Related
- **6** Conclusion

Inductive Bias

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	-
Convolutional	Grid elements	Local	Locality	Spatial translation
Recurrent	Timesteps	Sequential	Sequentiality	Time translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations

Peter W. Battaglia et al. "Relational inductive biases, deep learning, and graph networks". In: *CoRR* abs/1806.01261 (2018). arXiv: 1806.01261. URL: http://arxiv.org/abs/1806.01261

HE Jiayou July 7, 2022 28 / 29

- [1] Peter W. Battaglia et al. "Relational inductive biases, deep learning, and graph networks". In: CoRR abs/1806.01261 (2018). arXiv: 1806.01261. URL: http://arxiv.org/abs/1806.01261.
- [2] Alexey Dosovitskiy et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale". In: CoRR abs/2010.11929 (2020). arXiv: 2010.11929. URL: https://arxiv.org/abs/2010.11929.
- [3] Ozan Oktay et al. "Attention U-Net: Learning Where to Look for the Pancreas". In: CoRR abs/1804.03999 (2018). arXiv: 1804.03999. URL: http://arxiv.org/abs/1804.03999.
- [4] Ashish Vaswani et al. "Attention Is All You Need". In: CoRR abs/1706.03762 (2017). arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.03762.
- [5] Aston Zhang et al. "Dive into Deep Learning". In: CoRR abs/2106.11342 (2021). arXiv: 2106.11342. URL: https://arxiv.org/abs/2106.11342.

HE Jiayou July 7, 2022 29 / 29