EE360C: Algorithms

The Basics

Summer 2019

Department of Electrical and Computer Engineering University of Texas at Austin

o-Notation

- Consider $2n^2 = O(n^2)$ and $2n^2 = O(n^3)$.
- Both are asymptotic upper bounds for $f(n) = 2n^2$.
- For $2n^2 = O(n^2)$, we can say $f(n) = 2n^2$ does not grow faster than $g(n) = n^2$. While, for $2n^2 = O(n^3)$, we can say $f(n) = 2n^2$ grows much slower than $t(n) = n^3$.
- We use *o*-notation to refer to upper bounds that are loose.

Definition 5

Given g(n), we denote by o(g(n)) the set of functions:

$$o(g(n)) = \{f(n) : \text{for any positive constant } c > 0, \text{ there}$$

exists a constant $n_0 > 0$ such that $0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$

ω -Notation

• In contrast, we define ω -notation similarly to refer to lower bounds that are loose.

Definition 6

Given g(n), we denote by $\omega(g(n))$ the set of functions:

$$\omega(g(n)) = \{f(n) : \text{for any positive constant } c > 0, \text{ there}$$
exists a constant $n_0 > 0$ such that
 $0 \le cg(n) < f(n) \text{ for all } n \ge n_0\}$

Summary of Asymptotic Bounds

Definition	? c ≥ 0	? $n_0 \ge 0$	$f(n)$? $c \cdot g(n)$
$O(\cdot)$	3	3	\leq
$o(\cdot)$	\forall	Э	<
$\Omega(\cdot)$	3	3	\geq
$\omega(\cdot)$	\forall	3	>

The Limit Theorems

Theorem

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0\implies f(n)=o(g(n))$$

f(n) grows slower than g(n).

Theorem

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty\implies f(n)=\omega(g(n))$$

f(n) grows faster than g(n)

The Limit Theorems (contd.)

Theorem

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c \text{ (where } 0\leq c<\infty) \implies f(n)=O(g(n))$$

Theorem

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \text{ (where } 0 < c \le \infty) \implies f(n) = \Omega(g(n))$$

Theorem

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \text{ (where } 0 < c < \infty) \implies f(n) = \Theta(g(n))$$

f(n) grows at the same rate as g(n)

The Limit Theorems (other direction)

Limit theorems also go in the other direction if the limit exists. E.g.:

Theorem

$$f(n) = O(g(n)) \implies \lim_{n\to\infty} \frac{f(n)}{g(n)} = c,$$

(where $0 < c < \infty$), if the limit exists.

Properties of Asymptotic Growth Rates

Transitivity

$$f(n) = O(g(n)) \land g(n) = O(h(n)) \qquad \Longrightarrow f(n) = O(h(n))$$

$$f(n) = \Omega(g(n)) \land g(n) = \Omega(h(n)) \qquad \Longrightarrow f(n) = \Omega(h(n))$$

$$f(n) = \Theta(g(n)) \land g(n) = \Theta(h(n)) \qquad \Longrightarrow f(n) = \Theta(h(n))$$

Proof

Given, for some constant c>0 and $n_0>0$, we have $f(n)\leq cg(n),\ \forall n\geq n_0$. Also, c'>0 and $n'_0>0$, we have $g(n)\leq c'h(n),\ \forall n\geq n'_0$. So, $\forall n\geq \max(n_0,n'_0)$, we have $f(n)\leq cg(n)\leq cc'h(n)$ $\implies f(n)\leq \tilde{c}h(n)$, where $\tilde{c}=cc'>0$. $\implies f(n)=O(h(n))$.

Properties of Asymptotic Growth Rates (contd.)

Reflexivity

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

$$f(n) = \Theta(f(n))$$

Symmetry

$$f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$$

Transpose Symmetry

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

Properties of Asymptotic Growth Rates (contd.)

Sum of Functions

Suppose that f(n) and g(n) are such that f(n) = O(h(n)) and g(n) = O(h(n)), then f(n) + g(n) = O(h(n))

In general

Let k be a fixed constant, and let f_1, f_2, \ldots, f_k and h be functions such that $f_i = O(h) \ \forall i$ Then $f_1 + f_2 + \cdots + f_k = O(h)$.

Properties of Asymptotic Growth Rates (contd.)

Suppose that f(n) and g(n) (taking non-negative values) are such that g(n) = O(f(n)), then $f(n) + g(n) = \Theta(f(n))$

Proof

 $\forall n \geq 0$, we have $f(n) + g(n) \geq f(n)$.

Therefore,

$$f(n) + g(n) = \Omega(f(n)) \tag{1}$$

Also, g(n) = O(f(n)), and f(n) = O(f(n)) (given, and reflexivity)

Therefore, by sum of functions property,

$$f(n) + g(n) = O(f(n))$$
 (2)

From 1 and 2, we can say that $f(n) + g(n) = \Theta(f(n))$

Analogies to Traditional Comparisons

Analogies between the asymptotic comparison of two functions f and g and the comparison of two real numbers g and g.

$$f(n) = O(g(n)) \approx a \leq b$$

 $f(n) = \Omega(g(n)) \approx a \geq b$
 $f(n) = \theta(g(n)) \approx a = b$
 $f(n) = o(g(n)) \approx a < b$
 $f(n) = \omega(g(n)) \approx a > b$

The analogy does break down in some cases. For two functions f(n) and g(n), it may be the case that neither f(n) = O(g(n)) nor $f(n) = \Omega(g(n))$ holds.

Standard Functions

Standard Notations

Monotonicity

- f(n) is monotonically increasing if $m \le n$ implies $f(m) \le f(n)$
- f(n) is monotonically decreasing if m ≤ n implies f(m) ≥ f(n)
- f(n) is strictly increasing if m < n implies f(m) < f(n)
- f(n) is strictly decreasing if m < n implies f(m) > f(n)

Floors and Ceilings

- For any real number x, we denote the greatest integer less than or equal to x by $\lfloor x \rfloor$.
- For any real number x, we denote the least integer greater than or equal to x by \[x \].

17/24

Standard Notations (cont.)

Modular Arithmetic

For any integer a and positive integer n, the value $a \mod n$ is the **remainder** of the quotient a/n.

$$a \mod n = a - \lfloor a/n \rfloor n$$

Polynomials

Given a nonnegative integer d, a **polynomial in n of degree d** is a function p(n) of the form:

$$p(n) = \sum_{i=0}^{d} a_i n^i$$

where the constants $a_0, a_1, \dots a_d$ are the **coefficients** of the polynomial and $a_d \neq 0$

• For an asymptotically positive polynomial p(n) of degree d, we have $p(n) = \Theta(n^d)$.

Exponentials

For all real a > 0, m, and n, these identities hold:

- $a^0 = 1$
- $a^1 = a$
- $a^{-1} = 1/a$
- $(a^m)^n = a^{mn}$
- $(a^m)^n = (a^n)^m$
- $a^m a^n = a^{m+n}$

Any exponential function with base strictly greater than 1 grows faster than any polynomial function:

$$\lim_{n\to\infty}\frac{n^b}{a^n}=0$$

Logarithm Notations

For all real a > 0, b > 0, c > 0, and n:

$$a = b^{\log_b a}$$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b(1/a) = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

Bounds for Common Functions

Polynomials

If $f = a_0 + a_1 n + ... + a_d n^d$ is a polynomial of degree d, in which $a_d > 0$, then $f = O(n^d)$.

Proof

Note, a_j for j < d may be negative.

But, $a_j n^j \leq |a_j| n^d \ \forall n \geq 1$

Thus, each of the term of f is $O(n^d)$

Since, f is a constant sum of functions, each of which is $O(n^d)$, it follows f is $O(n^d)$

Similarly,
$$f = \Omega(n^d)$$
 and $f = \Theta(n^d)$

Polynomials (contd.)

Polynomial Time Algorithm

An algorithm whose running time T(n) is $O(n^d)$ for some constant d (where d is independent of the input size).

Note:

An algorithm can be polynomial time even if the running time is of the form $O(n^x)$, where x is not an integer.

Logarithms

If $x = \log_b n$, then $b^x = n$.

Logarithms grow slower than polynomials. i.e.

$$\lim_{n\to\infty}\frac{\log n}{n^d}=0$$

For every b > 1 and every x > 0, we have $\log_b n = O(n^x)$

 $O(\log_a n) = O(\log_b n)$ for any constants a, b > 0. (You can ignore the base in logarithms.)

Exponentials

Exponentials

For every r > 1 and every d > 0, $n^d = O(r^n)$. (Every exponential grows faster than every polynomial.)

Questions?