# Morning.



#### Formal Definition of $\varepsilon$ -NFA

An NFA with  $\varepsilon$  transition is a five-tuple, such as  $M = (Q, \Sigma, \delta, q_0, F)$ Where Q is a finite set of states,  $\Sigma$  is a finite set of input symbols s,  $q_0$  is start state, F is a set of final state,  $\delta$  is transition function, which is a mapping from  $\mathbb{Q} \times (\Sigma \cup \{\varepsilon\})$  to  $2^{\mathbb{Q}}$ .

# Example 4. 1

#### Describe the language accepted by this NFA:



What about the NFA just accept decimal numbers?

#### An $\epsilon$ - NFA for decimal numbers



#### Example 4.2 Design an $\varepsilon$ -NFA for following language

The set of strings of 0's and 1's such that at least one of the last ten positions is a 1.



#### How about this NFA



#### How about this $\varepsilon$ - NFA



#### ε- transition



$$\delta(r, a) = ?$$
  $\delta(q, b) = ?$ 

#### ε- closure

BASIS: State q is in ECLOSE(q)

INDUCTION: If state p is in ECLOSE(q), and there is a transition from state p to state r labeled  $\epsilon$ , then r is in ECLOSE(q).



# Extending transition to strings

BASIS: 
$$\hat{\delta}(q,\varepsilon) = ECLOSE(q)$$
.

#### INDUCTION:

Surpose 
$$w = xa$$
,  $\hat{\delta}(q, x) = \{p_1, p_2, \dots, p_k\}$ 

Let 
$$\bigcup_{i=1}^{k} \delta(p_i, a) = \{r_1, r_2, \dots, r_m\}$$

Then 
$$\hat{\delta}(q, w) = \bigcup_{i=1}^{m} Eclose(r_i)$$

## The language of $\varepsilon$ -NFA

Definition The language of an  $\varepsilon$ -NFA A is denoted L(A), and defined by

$$L(A) = \{ w \mid \hat{\mathcal{S}}(q_0, w) \cap F \neq \emptyset \}$$



There is at least a path, labeled with w, from start state to final state.

## Example 4.3

Compute :  $\hat{\delta}(q_0,5.6)$ 



## Equivalence of states

equivalent states

$$\forall w \in \Sigma^*, \hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$$

notice

We never mentioned  $\hat{\delta}(p, w) = \hat{\delta}(q, w)$ 

distinguishable states

$$\exists w \in \Sigma^*, \hat{\delta}(p, w) \in F \Leftrightarrow \neg \hat{\delta}(q, w) \in F$$

# Example 6.5 Determine the equivalent states



# Table-filling algorithm

- Basis If p is accepting and q is not accepting, then p and q are distinguishable.
- Induction Let  $r = \delta(p, a)$ ,  $s = \delta(q, a)$ , r and s are distinguishable. Then p and q are distinguishable.
- Example



#### Minimization of DFA's

- what is minimization of DFA
- algorithm for minimization
- > partition remaining states into equivalent blocks
- > take blocks as states
- minimum-state DFA for a regular language is unique

# Example 6.6 Minimization of DFA's



# Summary

#### We have talked about three kinds of FA's

> formal definition  $\Rightarrow M = (Q, \Sigma, \delta, q_0, F)$ 

DFA: 
$$Q \times \Sigma \Rightarrow Q$$
,  $\delta(q, a) = p$ 

NFA: 
$$Q \times \Sigma \Rightarrow 2^Q$$
,  $\delta(q, a) = S$ 

$$\varepsilon$$
-NFA: Q × ( $\Sigma \cup \{ \varepsilon \}$ )  $\Rightarrow$  2Q,  $\delta(q, a) = S$ 

- > notation ⇒ formal + diagram + table
- > construction  $\Rightarrow$  partitions of strings $\leftrightarrow$ states<sup>18</sup>

# Summary

> language

DFA: 
$$L(A) = \{ w | \hat{\delta}(q_0, w) \in F \}$$

NFA: 
$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

- > equivalence of DFA, NFA and  $\varepsilon$ -NFA
  - subset construction :  $(\varepsilon -)$  NFA  $\Rightarrow$  DFA
- > regular language  $\Rightarrow$  { L | L=L(A) and A is an FA }

# Good good Study day Up