Lineární algebrou za energetické úspory V: lineární zobrazení, jeho vlastnosti a matice

Lineární zobrazení Připomeňte si, že zobrazení \mathbf{f} z prostoru L_1 do prostoru L_2 (nad stejným tělesem T) je takové zobrazení, pro které platí

- $\mathbf{f}(\alpha \vec{v}) = \alpha \mathbf{f}(\vec{v})$ pro každý vektor $\vec{v} \in L_1$ a pro každý skalár $\alpha \in T$
- $\mathbf{f}(\vec{v_1} + \vec{v_2}) = \mathbf{f}(\vec{v_1}) + \mathbf{f}(\vec{v_2})$ pro každou dvojici vektorů $\vec{v_1}, \vec{v_2} \in L_1$.
- 1. Ukažte, že pro každé lineární zobrazení \mathbf{f} platí $\mathbf{f}(\vec{o_1}) = \vec{o_2}$, kde $\vec{o_i}$ značí nulový vektor příslušného lineárního prostoru.
- 2. Určete, která z následujících zobrazení mohou být lineární (prostory jsou nad odpovídajícími vhodnými tělesy):

(a) Bud'
$$a \in \mathbb{Z}_5$$
.
(b) $\mathbf{f_3} : \mathbb{Z}_7^2 \to \mathbb{Z}_7^2$
 $\mathbf{f_3} : \mathbb{Z}_7^2 \to \mathbb{Z}_7^2$

(b)
$$\mathbf{f_1}: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x+1$

$$(\mathbf{d}) \quad \mathbf{f_4}: \mathbb{Q}^2 \to \mathbb{Q}[x]^{\leq 2}$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \mapsto x^2 + 3; \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mapsto 2x - 1; \begin{pmatrix} 3 \\ 4 \end{pmatrix} \mapsto x^2 + 4x + 1$$

 $[jen \mathbf{f_2} \ a \mathbf{f_4}]$

3. U zobrazení z příkladu 2d určete obraz vektoru $\binom{3}{5}$ a vzor prvků (tj. vektory(y), které se zobrazí na) x^2-2x+4 , resp. x^2+2 . $[\mathbf{f_4}(\binom{3}{5})=2x^2+2x+5,\ \mathbf{f_4}^{-1}(x^2-2x+4)=\binom{0}{1},\ \mathbf{f_4}^{-1}(x^2+2)=\emptyset\]$

Připomenutí výsledků z minula: (Pokud jste měli v minulém úkolu problém s úlohami 1 – 4, doporučuji si je znovu promyslet.)

Využijme výsledky z posledního úkolu, tj. buďte

$$\vec{v_1} = \begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \vec{v_3} = \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$$

vektory v lineárním prostoru \mathbb{R}^4 nad \mathbb{R} . Zjistili jsme, že je seznam B_1 lineárně nezávislý, a tedy tvoří uspořádanou bázi podprostoru $\mathcal{L} = \mathrm{span}\,(B_1) \subseteq \mathbb{R}^4$. Také máme další uspořádanou bázi prostoru \mathcal{L} , totiž $B_2 = (\vec{w_1}, \vec{w_2}, \vec{w_3})$, kde

$$\vec{w_1} = \begin{pmatrix} 5 \\ 0 \\ 2 \\ 7 \end{pmatrix}, \vec{w_2} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}, \vec{w_3} = \begin{pmatrix} -2 \\ 2 \\ 1 \\ 1 \end{pmatrix},$$

pro kterou platí: $\mathbf{coord}_{B_1}(\vec{w_1}) = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$, $\mathbf{coord}_{B_1}(\vec{w_2}) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{coord}_{B_1}(\vec{w_3}) = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$. A nakonec jsme minule zjistili, že vektory $\vec{t_i} = \mathbf{coord}_{B_2}(\vec{w_i})$ pro i = 1, 2, 3 mají tvar

$$t_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, t_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, t_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Matice lineárního zobrazení Máme-li dva (ne nutně různé) lineární prostory L_1 , L_2 (ale nad stejným tělesem) s bázemi M_1 , M_2 , pak lineárnímu zobrazení $f: L_1 \to L_2$ odpovídá matice \mathbf{f} (vzhledem k bázím M_1 a M_2). Jak tuto matici vytvořit?

- (a) vezmu první vektor báze M_1
- (b) ten zobrazím pomocí zobrazení f
- (c) zjistím souřadnice výsledku vzhledem bázi M_2 (nyní mám sloupcový vektor)
- (d) sloupcový vektor z předchozího bodu je první sloupec matice f

A tento proces zopakuji se všemi vektory báze M_1 ; nutně tedy dostanu tolik sloupců, kolik je prvků báze M_1 (což je nutně $\dim(L_1)$).

4. Definujme lineární zobrazení $g: \mathcal{L} \to \mathcal{L}$ zadáním jeho hodnot na bázi B_1 :

$$v_1 \mapsto w_1$$

$$v_2 \mapsto w_2$$

$$v_3 \mapsto w_3$$
.

Určete matici zobrazení gvzhledem k

(a) bázím B_1 a B_2

(b) bázi B_1 (tj. "vzhledem k bázím B_1 a B_1 ") $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 3 & 1 & -1 \end{bmatrix}$

(c) bázím B_1 a K_4 (tady bereme $g: \mathcal{L} \to \mathbb{R}^4$; co to změní a co to nezmění?). $\begin{bmatrix} \begin{pmatrix} 3 & 1 & -2 \\ 0 & 1 & 2 \\ 2 & 1 & 1 \\ 7 & 3 & 1 \end{bmatrix} \end{bmatrix}$

Obraz libovolného vektoru $\vec{v} \in L_1$ díky matici zobrazení nemusíme složitě počítat, ale stačí vynásobit $\mathbf{f} \cdot \operatorname{coord}_{M_1}(\vec{v})$ a tím dostaneme obraz vektoru vyjádřený v bázi M_2 . (Můj oblíbený pohled: místo pouhého \mathbf{f} psát matici zobrazení jako $[\mathbf{f}]_{M_1}^{M_2}$ a představovat si to jako následující "krabičku":)

5. Vezmeme vektor, který má v kanonické bázi souřadnice $\begin{pmatrix} 2\\0\\2\\4 \end{pmatrix}$. Určete souřadnice jeho obrazu při zobrazení g, a to vůči bázi

(a) B_1 $\begin{bmatrix} \begin{pmatrix} 4 \\ 0 \\ 6 \end{pmatrix} \end{bmatrix}$

(b) B_2 $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$

(c) K_4 . $\begin{bmatrix} 0 \\ 4 \\ 14 \end{bmatrix}$

- 6. Vezmeme vektor, který má v bázi B_1 souřadnice $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Určete souřadnice jeho obrazu při zobrazení g, a to vůči bázi
 - (a) B_1 $\begin{bmatrix} 7\\8\\2 \end{bmatrix}$
 - (b) B_2 $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
 - (c) K_4 . $\begin{bmatrix} \begin{pmatrix} 1 \\ 8 \\ 7 \\ 16 \end{pmatrix}$

Důležité prostory související s lin. zobrazením Jádro zobrazení f jsou všechny vektory, které se zobrazí na nulový vektor, tedy takové, že $[\mathbf{f}]_{M_1}^{M_2} \cdot \operatorname{coord}(\vec{v}) = \vec{o}$. Prakticky to tedy znamená, že hledáme takové vektory $\vec{v} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$,

pro které platí $[\mathbf{f}]_{M_1}^{M_2} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$, což je soustava lineárních rovnic, kde nalevo je matice \mathbf{f} a napravo samé nuly:

 $\begin{pmatrix} \mathbf{f} & 0 \\ \vdots & 0 \end{pmatrix}$. Jádro $ker(\mathbf{f})$ je pak řešením této soustavy a defekt $def(\mathbf{f})$ je dimenze tohoto jádra, tj. $\dim(ker(\mathbf{f}))$. Pozor na to, že takto získáme vektory v jádru popsané v bázi M_1 !

7. Pokud existují, najděte dva různé vektory, které leží v ker(g) a oba zapište v souřadnicích vůči B_1 i vůči K_4 .

[Jen
$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, resp. $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.]

8. Určete $\ker(g)$ a $\operatorname{def}(g)$.

 $[\ker(g) = {\vec{o}}, \, \det(g) = 0]$

Podobně pro lineární zobrazení \mathbf{f} definujeme jeho obraz im (\mathbf{f}) . V maticovém vyjádření jde o prostor generovaný sloupci matice \mathbf{f} . Opět pozor, že takto získám vektory v obrazu popsané v bázi M_2 ! Hodnost zobrazení, kterou značíme rank (\mathbf{f}) , je pak dimenze tohoto obrazu.

9. Pokud existují, najděte dva různé vektory, které leží v im (g) a zapište je v souřadnicích vůči B_1 i vůči K_4 . [např.

$$\begin{bmatrix} \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} \end{bmatrix}_{B_1} = \begin{bmatrix} \begin{pmatrix} 5 \\ 0 \\ 2 \\ 7 \end{pmatrix} \end{bmatrix}_{K_4} \text{ nebo } \begin{bmatrix} \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \end{bmatrix}_{B_1} = \begin{bmatrix} \begin{pmatrix} 6 \\ 1 \\ 3 \\ 10 \end{pmatrix} \end{bmatrix}_{K_4} \end{bmatrix}$$

10. Určete rank (g). [rank (g) = 3 (netřeba počítat - přednáška 5A: "Věta o dimensi jádra a obrazu")]

A jeden důkazeček na konec:

11. Buď L čtyřdimenzionální prostor nad tělesem T. Dokažte, že je-li množina $M \subseteq L$ čtyřprvková, pak je lineárně závislá právě tehdy, když není generující. Nepoužívejte tvrzení z přednášky, které tvrdí "je-li dimenze prostoru stejná jako počet prvků množiny, pak ta je LNZ, právě když je generující". (Doporučuji dokazovat po částech, tj. nejprve "pokud LZ, pak negeneruje" a poté naopak.)