University of Toronto Department of Mathematics

MAT224H1F

Linear Algebra II

Midterm Examination

October 25, 2011

S. Uppal

Duration: 1 hour 50 minutes

Last Name:	
Given Name:	
Student Number:	
Tutorial Group:	

No calculators or other aids are allowed.

FOR MARKER USE ONLY			
Question	Mark		
1	/10		
2	/10		
3	/10		
4	/10		
5	/10		
6	/10		
TOTAL	/60		

[10] 1. Let $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be the linear transformation defined by

$$T(A) = \frac{A + A^T}{2}.$$

Find the matrix of T relative to the basis $\alpha = \{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \}$ for $M_{2\times 2}(\mathbb{R})$.

SOLUTION: Let
$$v_1 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, and $v_4 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$. Then $T(v_1) = \frac{1}{2} \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 0 \end{bmatrix} = \frac{1}{2} (3v_1 + 3v_2 - v_3 - 2v_4)$, $T(v_2) = \frac{1}{2} \left(\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} = \frac{1}{2} (-v_1 - v_2 + v_3 + 2v_4)$, $T(v_3) = \frac{1}{2} \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = v_3$, $T(v_4) = \frac{1}{2} \left(\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = v_4$.

Therefore,

$$[T]_{\alpha\alpha} = \begin{bmatrix} 3/2 & -1/2 & 0 & 0 \\ 3/2 & -1/2 & 0 & 0 \\ -1/2 & 1/2 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{bmatrix}.$$

EXTRA PAGE FOR QUESTION 1 - do not remove.

[10] **2.** Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation defined by

$$T(a + bx + cx^{2}) = (-2b + 11c) + (-2a + c)x + (3a - b + 4c)x^{2}.$$

Find bases for the kernel and image of T.

SOLUTION: Let $\alpha = \{1, x, x^2\}$ be the standard basis of $P_2(\mathbb{R})$. Then

$$[T]_{\alpha\alpha} = \begin{bmatrix} 0 & -2 & 11 \\ -2 & 0 & 1 \\ 3 & -1 & 4 \end{bmatrix}.$$

Perform row operations to obtain:

$$\begin{bmatrix} 0 & -2 & 11 \\ -2 & 0 & 1 \\ 3 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} -6 & 0 & 3 \\ -2 & 0 & 1 \\ 3 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} -6 & 0 & 3 \\ 0 & 0 & 0 \\ 3 & -1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} -6 & 0 & 3 \\ 0 & -2 & 11 \\ 0 & 0 & 0 \end{bmatrix}.$$

So a basis for the null space of $[T]_{\alpha\alpha}$ is given by the vector $\begin{bmatrix} 1\\11\\2 \end{bmatrix}$; translating this back to

 $P_2(\mathbb{R})$ via the basis α , we have that a basis for $\ker(T)$ is given by the polynomial $1+11x+2x^2$. As for the image, note that the leading ones of the r.r.e.f of $[T]_{\alpha\alpha}$ are in columns 1 and 2. Hence the first two columns of $[T]_{\alpha\alpha}$ give a basis for the range of that matrix, which means that a basis for the image of T is

$$\{T(1), T(x)\} = \{-2x + 3x^2, -2 - x^2\}.$$

EXTRA PAGE FOR QUESTION 2 - do not remove.

[10] **3.** Let $V = P_4(\mathbb{R})$ and $W = \{p(x) \in P_5(\mathbb{R}) \mid p(1) = 0\}$. Show that V and W are isomorphic and find an isomorphism $T: V \to W$.

SOLUTION: There are many possible approaches to this problem. This is probably the most straightforward solution; we define a natural map, and show that it is an isomorphism. Let $T: V \to P_5(\mathbb{R})$ be defined by the formula

$$T(p)(x) = (x-1)p(x).$$

Note T(p+q) = T(p) + T(q), and $T(c \cdot p) = c \cdot T(p)$, for any polynomials $p, q \in P_4(\mathbb{R})$ and scalar $c \in \mathbb{R}$; in other words, T is linear. Moreover,

$$T(p)(1) = (1-1)p(1) = 0,$$

so T is in fact a linear map $T: V \to W$.

Next, we note that T is injective, since if T(p) = 0, then (x-1)p(x) is the 0 polynomial, which means p(x) = 0. In particular, dim(ker(T)) = 0.

Now, it's clear that $W \neq P_5(\mathbb{R})$, the latter of which has dimension 6. Therefore $\dim(W) \leq$ 5. On the other hand, $\dim V = 5$. Hence, by the dimension theorem, we know that

$$5 = \dim(V) = \dim(\ker(T)) + \dim(\operatorname{im}(T)) = \dim(\operatorname{im}(T)) \le \dim(W) \le 5.$$

So $5 = \dim(W) = \dim(im(T))$, and hence T is also surjective.

Another possible approach would be to simply find bases for V, and W, and notice that they are the same dimension; then you can define a isomorphism by sending one basis to the other.

[10] 4. Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be the linear transformation whose matrix with respect to the standard basis of \mathbb{C}^2 is

$$\begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}.$$

Find a basis α for \mathbb{C}^2 consisting of eigenvectors of T and find $[T]_{\alpha\alpha}$.

SOLUTION: Let $A = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$. First, we find the characteristic polynomial:

$$\det(A - \lambda \cdot \mathbb{I}) = \det\left(\begin{bmatrix} 1 - \lambda & i \\ -i & 1 - \lambda \end{bmatrix}\right) = (1 - \lambda)^2 - 1 = \lambda(\lambda - 2)$$

Hence the eigenvalues are 0 and 2; note that as they all have multiplicity one, A is in fact diagonalizable.

To find E_0 , i.e. the null space of A - 0 = A: By Gaussian elimination:

$$\begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ 0 & 0 \end{bmatrix},$$

so a basis for E_0 is given by the vector $\begin{bmatrix} i \\ -1 \end{bmatrix}$.

To find E_2 , we compute

$$A - 2\mathbb{I} = \begin{bmatrix} -1 & i \\ -i & -1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & i \\ 0 & 0 \end{bmatrix},$$

so a basis for E_2 is given by the vector $\begin{bmatrix} i \\ 1 \end{bmatrix}$.

Therefore, $\alpha = \{ \begin{bmatrix} i \\ -1 \end{bmatrix}, \begin{bmatrix} i \\ 1 \end{bmatrix} \}$ is a basis of eigenvectors, and

$$[T]_{\alpha\alpha} = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}.$$

EXTRA PAGE FOR QUESTION 4 - do not remove.

[10]5. Let $T: P_2(\mathbb{R}) \to P_1(\mathbb{R})$ be the linear transformation defined by

$$T(a + bx + cx^{2}) = (a - 3b + c) + (2a - 6b + 3c)x.$$

Find bases α' for $P_2(\mathbb{R})$, and β' for $P_1(\mathbb{R})$ such that $[T]_{\beta'\alpha'}$ is the reduced row echelon form of $[T]_{\beta\alpha}$ where α and β are the standard bases for $P_2(\mathbb{R})$ and $P_1(\mathbb{R})$ respectively.

SOLUTION: Let $\alpha = \{1, x, x^2\}$ and $\beta = \{1, x\}$ be the standard bases of $P_2(\mathbb{R})$ and $P_1(\mathbb{R})$ respectively. Then

$$[T]_{\beta\alpha} = \begin{bmatrix} 1 & -3 & 1 \\ 2 & -6 & 3 \end{bmatrix}.$$

Perforing Gaussian elimination:

$$\begin{bmatrix} 1 & -3 & 1 \\ 2 & -6 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

the first step involved adding -2 times the first row to the second, and the second step involved subtracting the second row from the first. In terms of elementary matrices, we get

$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -3 & 1 \\ 2 & -6 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Now we're looking for bases α', β' such that $[T]_{\beta'\alpha'} = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. On the other hand, we know in general that

$$[T]_{\beta'\alpha'} = [\mathbb{I}]_{\beta'\beta}[T]_{\beta\alpha}[\mathbb{I}]_{\alpha\alpha'}.$$

So we can look for bases α' and β' such that $[\mathbb{I}]_{\alpha\alpha'} = Id$, and

$$[\mathbb{I}]_{\beta'\beta} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}.$$

The first is easy: just take $\alpha' = \alpha$.

For the second, note that

$$[\mathbb{I}]_{\beta\beta'} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix},$$

which means we can read off the basis β' by the column of this matrix, (relative to the basis β):

$$\beta' = \{1 + 2x, 1 + 3x\}.$$

EXTRA PAGE FOR QUESTION 5 - do not remove.

- **6.** Let V and W be vector spaces over a field F. Let $\alpha = \{v_1, v_2, \ldots, v_n\}$ be a basis for V, and $\beta = \{w_1, w_2, \ldots, w_m\}$ a basis for W. Let $T: V \to W$ be a linear transformation.
- [5](a) Prove that T is surjective if and only if the columns of $[T]_{\beta\alpha}$ span F^m .
- [5](b) Prove that T is injective if and only if the columns of $[T]_{\beta\alpha}$ are linearly independent in F^m .

SOLUTION: Let $\Phi: W \to F^m$ denote the map defined by $\Phi(w) = [w]_{\beta}$; in your problem sets, you've shown this map is an isomorphism. Essentially by definition, the j'th column of $[T]_{\beta\alpha}$ is equal to $\Phi(T(v_j))$.

Since Φ is an isomorphism, we get

$$span \{ \text{ columns of } [T]_{\beta\alpha} \} = F^m \iff span \{ \Phi(T(v_1)), \Phi(T(v_2)), \dots \Phi(T(v_n)) \} = F^m \\ \iff span \{ T(v_1), T(v_2), \dots T(v_n) \} = W \\ \iff T \text{ is surjective,}$$

which proves part (a).

Similarly,

The columns of
$$[T]_{\beta\alpha}$$
 are lin. indep. $\iff \{\Phi(T(v_1)), \dots, \Phi(T(v_n))\}$ is lin. indep. $\iff T$ is injective,

which proves part (b).

In case you haven't seen it before, the last equivalence can be proved as follows: suppose

$$a_1T(v_1) + \dots a_nT(v_n) = 0,$$

for some scalars $a_1, \ldots a_n \in F$. Then $T(a_1v_1 + \ldots a_nv_n) = 0$, by linearity, and hence

$$a_1v_1 + \dots a_nv_n \in ker(T)$$
.

In other words, if the original linear combination is non-trivial, we get a non-zero vector in ker(T). This proves that $ker(T) \neq 0$ if and only if the set $\{T(v_1), \dots, T(v_n)\}$ is linearly dependent, which then implies the statement we want.