System oceny zdolności kredytowej Laboratorium Systemów Rozmytych

Patryk Dolata 460930

1 Wstęp

Tak jak wspominałem w planie projektu i raporcie postępu prac, do tworzenia mojego systemu wykorzystałem język Kotlin i framework TornadoFX. Logika rozmyta została zaimplementowana za pomocą biblioteki jFuzzyLogic. Jest to aplikacja desktopowa w stylu "Wizard". Tzn. są oddzielne strony, na których użytkownik po kolei wprowadza swoje informację.

Rysunek 1: Przykładowa strona w formularzu

Na każdej stronie ("Kroki" po lewej stronie na Rysunku 1) znajduje się formularz, który użytkownik musi wypełnić. Na podstawie danych podanych przez użytkownika w formularzu jest obliczany credit score tego użytkownika. Postanowiłem również cały mój problem rozdzielić na podproblemy. Wszystkie zmienne składowe podzieliłem sobie na 3 grupy:

- analiza jakościowa, opisująca kredytobiorce: wiek, wykształcenie, stan cywilny, staż pracy
- analiza ilościowa/finansowa, opisująca kondycję finansową kredytobiorcy: dochody, miesięczne wydatki, forma zatrudnienia, data wygaśnięcia umowy
- credit score, ostateczny wynik wyliczany na podstawie wyników z analizy finansowej i jakościowej oraz informacji o kredycie

Każda z analiz (finansowa, jakościowa) daję w wyniku zmienną lingwistyczną w przedziale [0-100] - mały, średni, wysoki. Następnie wyniki analiz wykorzystujemy do uzyskania końcowego wyniku tzn. *credit score*, który również jest zmienną lingwistyczną w przedziale [0-100] - mały, średni, wysoki.

Takie rozdzielenie całego problemu na mniejsze podproblemy pozwola na uniknięcie ogromnej bazy reguł składającej się ze wszystkich zmiennych naraz i rozłożenie tego na pomniejsze, uporządkowane bazy reguł.

2 Analiza jakościowa

Pierwszym etapem w moim systemie jest wypełnienie przez użytkownika podstawowych informacji o sobie, które będą pozwalały na dokonanie analizy jakościowej klienta. Widok formularza znajduje się na Rysunku 2.

Rysunek 2: Widok formularza "Podstawowe informacje"

Formularz zawiera następujące pola:

- Wiek
- Stan cywilny singiel/ka, zamężny/a, rozwiedzony/a, wdowiec/wdowa
- Wykształcenie podstawowe, zawodowe, średnie, wyższe
- Staż pracy

Analiza jakościowa pozwala na ocenę behawioralną potencjalnego kredytobiorcy np. starszy człowiek z niewielkim lub zerowym stażem pracy nie będzie zbyt wiarygodny dla banku.

2.1 Zmienne wejściowe

Analiza składa się z następujących zmiennych lingwistycznych, które są poddawane fuzyfikacji:

- age (wiek)
 - underaged (młodociany)
 - young (młody)
 - middle_aged (w średnim wieku)
 - old (stary)
- education (wykstałcenie)
 - basic (podstawowe)
 - vocational (zawodowe)
 - medium (średnie)
 - high (wyższe)

- marital_status (stan cywilny)
 - single (single/ka)
 - married (zamężny/a)
 - divorced (rozwiedzony/a)
 - widower (wdowiec/wdowa)
- work_years (staż pracy)
 - short (krótki)
 - medium (średni)
 - long (długi)

Interpretacje termów powyższych zmiennych znajdują się na wykresach poniżej:

Rysunek 3: Interpretacja termów zmiennej age

Rysunek 4: Interpretacja termów zmiennej **marital_status**

Rysunek 5: Interpretacja termów zmiennej **education**

Rysunek 6: Interpretacja termów zmiennej $\mathbf{work_years}$

2.2 Wyjście

Wynikiem defuzyfikacji jest zmienna wyjściowa:

- qualitative_score (wynik jakościowy)
 - low (niski)
 - medium (średni)
 - high (wysoki)
- Metoda obliczania wartości wyjściowej: COG

Interpretacja jej termów prezentuje się następująco:

Rysunek 7: Interpretacja termów zmiennej qualitative_score

2.3 Baza reguł

Bazę reguł udało się ograniczyć do 27 reguł. Przykładowe z nich prezentują się następująco:

RULE 1: IF age IS underage THEN qualitative_score IS low;

RULE 7: IF education IS high AND work_years IS long THEN
qualitative_score IS high;

RULE 20: IF age IS old AND work_years IS short THEN qualitative_score IS low;

3 Analiza finansowa

Drugim etapem w moim systemie jest wypełnienie przez użytkownika podstawowych informacji o swojej kondycji finansowej, które będą pozwalały na dokonanie analizy finansowej klienta. Widok formularza znajduje się na Rysunku 8.

Rysunek 8: Widok formularza "Zatrudnienie i finanse"

Formularz zawiera następujące pola:

- Dochód miesięczny (netto)
- Miesięczne wydatki czynsz, opłaty za media itp.
- Faktyczny przychód pole uzupełniane automatycznie przez system. Jest to różnica dochodów i wydatków.
- Forma zatrudnienia umowa o pracę, b2b, umowa zlecenie
- Umowa do: kalendarz z wyborem daty końca naszej umowy w obecnym miejscu pracy

Analiza finansowa pozwala na ocenę kondycji finansowej potencjalnego kredytobiorcy np. klient, którego faktyczny przychód jest bardzo niski lub niedługo kończy mu sie umowa w pracy będzie mniej wiarygodny dla banku.

3.1 Zmienne wejściowe

Analiza składa się z następujących zmiennych lingwistycznych, które są poddawane fuzyfikacji:

- actual_income (faktyczny przychód)
 - low (niski)
 - medium (średni)
 - high (wysoki)

- employment_type (forma zatrudnienia)
 - permanent (umowa o pracę)
 - b2b
 - contract_of_mandate (umowa zlecenie)
- contract_expiration (ilość msc do wygaśnięcia umowy)
 - soon (wkrótce)
 - later (później)
 - never (nigdy czas nieokreślony)

Interpretacje termów powyższych zmiennych znajdują się na wykresach poniżej:

Rysunek 9: Interpretacja termów zmiennej **actual_income**

Rysunek 10: Interpretacja termów zmiennej **employment_type**

Rysunek 11: Interpretacja termów zmiennej contract_expiration

3.2 Wyjście

Wynikiem defuzyfikacji jest zmienna wyjściowa:

- financial_score (wynik finansowy)
 - low (niski)
 - medium (średni)
 - high (wysoki)
- Metoda obliczania wartości wyjściowej: COG

Interpretacja jej termów prezentuje się następująco:

Rysunek 12: Interpretacja termów zmiennej financial_score

3.3 Baza reguł

Bazę reguł udało się ograniczyć do 15 reguł. Przykładowe z nich prezentują się następująco: RULE 2 : IF actual_income IS low AND contract_expiration IS soon THEN financial_score IS low;

RULE 12: IF actual_income IS high AND employment_type IS permanent AND contract_expiration IS soon THEN financial_score IS medium;

RULE 9 : IF actual_income IS medium AND (employment_type IS permanent OR employment_type IS b2b) AND contract_expiration IS never THEN financial_score IS high;

4 Informacje o kredycie

Ostatnim etapem w moim systemie jest wypełnienie przez użytkownika informacji o kredycie, jaki chciałby wziąć, które będą pozwalały, wraz z analizą jakościową i finansową, na wyliczenie ostatecznego wyniku kredytowego klienta. Widok formularza znajduje się na Rysunku 13.

Rysunek 13: Widok formularza "Informacje o kredycie"

Formularz zawiera następujące pola:

- Kwota kredytu
- Wkład własny
- Kwota do spłaty pole wypełniane automatycznie przez system. Jest to różnica kwoty kredytu oraz wkładu własnego.
- Oprocentowanie
- Liczba rat
- Rata kredytu pole wypełniane automatycznie przez system. Jest to kwota do spłaty powiększona o oprocentowanie i podzielona przez liczbe rat.

Wyliczona rata kredytu będzie nam potrzebna do wyliczenia ostatecznego wyniku kredytowego klienta.

5 Credit score

Po wypełnieniu wszystkich formularzy uaktywnia nam się przycisk "Oblicz". Kliknięcie go powoduje wyświetlenie się okienka, które informuje nas o rozpoczęciu obliczania końcowego wyniku.

5.1 Zmienne wejściowe

Obliczanie końcowego wyniku składa się z następujących zmiennych lingwistycznych, które są poddawane fuzyfikacji:

- qualitative_score (wynik jakościowy)
 - low (niski)
 - medium (średni)
 - high (wysoki)

- financial_score (wynik finansowy)
 - low (niski)
 - medium (średni)
 - high (wysoki)
- income_installment_difference (różnica pomiędzy przychodem a ratą kredytu)
 - low (niska)
 - medium (średnia)
 - high (wysoka)

Interpretacje termów wyniku jakościowego i finansowego została przedstawiona wcześniej na Rysunkach 7 i 12. Natomiast interpretacja termów ostatniej zmiennej wygląda następująco:

Rysunek 14: Interpretacja termów zmiennej income_installment_difference

Jak widać, do obliczenia ostatecznego wyniku wykorzystujemy wcześniej uzyskane wyniki analiz oraz dane formularza z informacjami o kredycie. Początkowo obok analiz jakościowej i finansowej miała się również pojawić analiza kredytu, lecz pomysł ten został zaniechany, ponieważ same informacje o tym jaki kredyt chcemy wziąć nie dają żadnej sensownej informacji do końcowego wyniku nie znając szerszego kontekstu (np. przychodów kredytobiorcy). Tak też ostatnia zmienna sprawdza czy klient jest w ogóle w stanie pozwolić sobie na taki kredyt (jeśli np. rata kredytu będzie większa niż różnica zarobków i wydatków (faktyczny przychód) to credit score prawdopodobnie będzie niski.

5.2 Wyjście

Wynikiem defuzyfikacji jest zmienna wyjściowa:

- **credit_score** (wynik kredytowy)
 - low (niski)
 - medium (średni)
 - high (wysoki)
- Metoda obliczania wartości wyjściowej: COG

Interpretacja jej termów prezentuje się następująco:

Rysunek 15: Interpretacja termów zmiennej **credit_score**

5.3 Baza reguł

Bazę reguł składa się z 27 reguł. Przykładowe z nich prezentują się następująco:

RULE 1 : IF qualitative_score IS low AND financial_score IS low AND income_installment_difference IS low THEN credit_score IS low;

RULE 19 : IF qualitative_score IS high AND financial_score IS low AND income_installment_difference IS low THEN credit_score IS low;

RULE 27 : IF qualitative_score IS high AND financial_score IS high AND income_installment_difference IS high THEN credit_score IS high;

6 Rezultat

Po wykonanych obliczeniach, system wyświetla w okienku nasz wynik, stosowny do wyniku komunikat oraz stopień przynależności uzyskanego wyniku do danych klas: niski, średni, wysoki. Przykłady rezultatów przedstawione są na Rysunkach 16, 17 i 18

Rysunek 16: Uzyskanie wysokiego wyniku

Rysunek 17: Uzyskanie średniego wyniku

Rysunek 18: Uzyskanie niskiego wyniku