## (Лекция№1 от 09.02)

Темы:

- Математическая Логика
- -исчисление высказываний
- -исчесление предикатов
- Теория формальных языков
- -конечные автоматы(регулярные выражения)
- -Контекстно свободные грамматики
- -машины Тьюринга

## 1 Исчесление Высказываний

Логические функции

Определение

$$\beta = \{0,1\}$$
 0-ложь/false 1-истина/true

-множество логических значений

Определение

Длштчнская функция(от n переменных)

f: 
$$\beta^n \to \beta$$

Замечание: Часто логические функции вводят перечислением возможных аргументов и значений для них

Примечание

f(x,y)

| X | У | f(x,y) |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 1      |
| 1 | 0 | 1      |
| 1 | 1 | 1      |
|   |   |        |

Ту же функцию можно задать формулой

f(x,y)=max(x,y)

Утверждение

Функций от n переменных может быть  $2^{2^n}$ 

 $\mathbf{f}(x_1...x_n)$ может принимать значения 0 или 1. Следовательно,  $2^{2^n}$ 

Следствие

$$n=1: 2^{2^1}=4$$
 функций  $f(x)$   
 $n=2: 2^{2^2}=16$  функций  $f(x,y)$   
 $n=1: 2^{2^3}=256$  функций  $f(x,y,z)$ 

 $f_3$ -отрицание,  $\overline{x}(\neg x, !x)$ 

Прмимер

| $\overline{0}=1$ | $\overline{1}=0$ | $\overline{00}$ | $\bar{0} = 0$ |       |    |   |       |          |          |          |
|------------------|------------------|-----------------|---------------|-------|----|---|-------|----------|----------|----------|
| ху               | $f_1$            | $f_2$           | $f_3$         | $f_4$ | f  | 5 | $f_6$ | $f_7$    | $ f_8 $  |          |
| 0.0              | 0                | 0               | 0             | 0     | 0  |   | 0     | 0        | 0        |          |
| 0 1              | 0                | 0               | 0             | 0     | 1  |   | 1     | 1        | 1        |          |
| 1 0              | 0                | 0               | 1             | 1     | 0  |   | 0     | 1        | 1        |          |
| 1 1              | 0                | 1               | 0             | 1     | 0  |   | 1     | 0        | 1        |          |
| ху               | $f_9$            | $f_{10}$        | $f_{11}$      |       | 12 | j | 13    | $f_{14}$ | $f_{15}$ | $f_{16}$ |
| 0.0              | 1                | 1               | 1             | 1     |    | 1 | .     | 1        | 1        | 1        |
| 0.1              | 0                | 0               | 0             | 0     |    | 1 | .     | 1        | 1        | 1        |
| 1 0              | 0                | 0               | 1             | 1     |    | 0 | )     | 0        | 1        | 1        |
| 1 1              | 0                | 1               | 0             | 1     |    | ( | )     | 1        | 0        | 1        |

 $f_1(\mathbf{x},\mathbf{y})$ = нулевая  $\emptyset$ 

 $f_2(x,y)$ = логическое 'и'(коньюнкция) f(x,y)= $x \bullet y x \bullet y x \delta y x \wedge y$ 

 $f_3(x,y)=x>y$  запрет по  $y=\overline{x\Rightarrow y}$ 

 $f_4(x,y)=x$ 

 $f_5(x,y)=x< y$  запрет по  $x=\overline{x \leftarrow y}$ 

 $f_6(x,y)=y$ 

 $f_7(x,y)$ =исключающее или x+y=x xor y=(x+y) mod2

 $f_8({\bf x},{\bf y}) =$ логическое 'или'  ${\bf f}({\bf x},{\bf y}) = {\bf max}({\bf x},{\bf y})$  х $\lor$ у если истина зотя бы одна

 $f_9(\mathbf{x},\mathbf{y})=\mathbf{x}\downarrow\mathbf{y}=\overline{x\vee y}$  стрелка Пирса

 $f_{10}(x,y)$ =эквивалентность  $x \Leftrightarrow y x \equiv y$ 

 $f_{11}(\mathbf{x},\mathbf{y})=\overline{y}$ 

 $f_{12}(x,y) = x \Leftarrow y = y \Rightarrow x$  обратная импликация

 $f_{13}(X,y)=\overline{x}$ 

 $f_{14}(x,y)=x \Rightarrow y=x \rightarrow y$ 

 $f_{15}(\mathbf{x},\!\mathbf{y}){=}\mathbf{x}|\mathbf{y}{=}\overline{xy}$ штрих Шеффера

 $f_{16}(x,y)$ =единичная 1

## Определение

Логическое выражение- способ задания логических функций с помощью переменных и операций

$$\bullet \quad \lor \quad \Rightarrow \quad \Leftarrow \quad + \quad \equiv \quad | \quad \downarrow \quad < \quad >$$

Пример

 $(x \vee y)z$ 

 $(x\Rightarrow yz)\lor(y\equiv z)$ 

 $(0 \rightarrow x) \lor (1 \rightarrow y)$ - всегда истина

#### Определение

Значения логического выражения можно записать таблицей истинности  $f(x,y,z)=(x\vee y)z$ 

| хух         | $(x \setminus$ | (y)z               |
|-------------|----------------|--------------------|
| 0 0 0       | 0              | $0 = 0 (0 \lor 0)$ |
| $0\ 0\ 1$   | 0              | $(0 \lor 0)1 = 0$  |
| $0\ 1\ 0$   | 0              | $(0 \lor 1)0 = 0$  |
| $0\ 1\ 1$   | 1              | $(0 \lor 1)1 = 1$  |
| $1 \ 0 \ 0$ | 0              | $(1 \lor 0)0 = 0$  |
| $1 \ 0 \ 1$ | 1              | $(1 \lor 0)1 = 1$  |
| $1 \ 1 \ 0$ | 0              | $(1 \lor 1)0 = 0$  |
| 1 1 1       | 1              | $(1 \lor 1)1 = 1$  |
| <b>n</b>    |                |                    |

#### Замечания

порядок строчек в таблице истинности(ТИ)

могут быть любими, но мы возьмем 000 001 010 011 100 101 110 111

Таблицу истинности часто считают постепенно

| x y z     | $x \lor y$ | $(x \vee y)z$ |
|-----------|------------|---------------|
| 0 0 0     | 0          | 0             |
| $0\ 0\ 1$ | 0          | 0             |
| $0\ 1\ 0$ | 1          | 0             |
| $0\ 1\ 1$ | 1          | 1             |

## Приоритет операций

\* \_

. .

v + ≡

 $\Leftarrow \Rightarrow$ 

 $|\downarrow <>$ 

Пример

 $\neg x \lor y = (\overline{x} \lor y)$ 

 $x \lor yz = x \lor (yz)$ 

$$\overline{x \vee y} = \neg(x \vee y)$$

Аонебраические преобразования логический выражений- изменяем выражения обычно в сторону упрощения

$$(0 \rightarrow x) \lor (1 \rightarrow y) = 1 \lor (1 \rightarrow y) = 1$$

Утверждение

 $\overline{\overline{\overline{x}}} = x$ 

 $X = \overline{x}$   $X = \overline{x} = \overline{x}$  Докозательство:  $\begin{array}{c|cccc} x & \overline{x} & \overline{\overline{x}} \\ \hline 0 & 1 & 0 \\ 1 & 0 & 1 \end{array}$ 

про ∨

 $1 \lor x=1$ 

 $0 \lor x = x$ 

х∨у=у∨х-симметричность

## (Лекция№2 от 16.02)

Напоминание

- -логические функции
- -все 16 f(x,y)
- -таблицы истинности

| x | у      | f(x,y) |   |   | у                    |     | v | $\sin(x)$ |
|---|--------|--------|---|---|----------------------|-----|---|-----------|
| 0 | 0<br>1 | 0      | - | 0 | 0                    | 0   |   |           |
| 0 | 1      | 1      |   | 0 | 1                    | 0   | 1 | 0         |
| 1 | 0      | 1      |   | 0 | 0.5                  | 0   |   |           |
| 1 | 0      | 1      |   | 1 | 0<br>1<br>0.5<br>0.2 | 0.2 | 0 | 1         |

-порядок строк фиксирован

Таблица эквивалентности логических выражений

$$\overline{\overline{x}}=x$$
 Докозательство:  $egin{array}{c|c} x & \overline{x} & \overline{\overline{x}} \\ \hline 0 & 1 & 0 \\ 1 & 0 & 1 \\ \hline \end{array}$ 

 $x \lor y = y \lor x$ -симметричность

 $1 \lor x = 1$ 

 $0 \lor x = x$ 

 $x \lor x = x$ 

$$\begin{array}{c|cccc} x \sqrt{x} = 1 & & \\ x & \overline{x} & x \vee \overline{x} \\ \hline 0 & 1 & 1 \\ 1 & 0 & 1 \\ xy = yx & & \\ \end{array}$$

x\*0=0

x\*1=x

x\*x=x

$$x^*\overline{x} = 0$$

$$\begin{array}{c|ccccc} x^* \overline{x} = 0 & & \\ x & \overline{x} & x \ \overline{x} \\ \hline 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{array}$$

x+y=y+x

x+0=x

$$\left. \begin{array}{l} x+1=\overline{x} \\ x+x=0 \\ x+\overline{x}=1 \end{array} \right\} x+\overline{x}=x+1+x=1+0=1$$

Ассоциацивность

$$\mathbf{x} \lor (y \lor z) = (x \lor y) \lor z$$

$$x(yz)=(xy)z$$

$$x+(y+z)=(x+y)+z$$

 $x \Rightarrow v \neg v \Rightarrow x$ 

| $x \rightarrow y$ | $j \rightarrow x$ |     |
|-------------------|-------------------|-----|
| ху                | $x \Rightarrow y$ | y⇒x |
| 0.0               | 1                 | 1   |
| 0.1               | 1                 | 0   |
| 1 0               | 0                 | 1   |
| 1 1               | 1                 | 1   |

 $x\Rightarrow 0=\overline{x}$ 

 $0 \Rightarrow x=1$ 

 $x\Rightarrow 1=x$ 

 $1 \Rightarrow x = x$ 

 $x\Rightarrow x=1$ 

 $x \Rightarrow \overline{x} = \overline{x}$ 

#### $\overline{x} \Rightarrow x = x$

 $x{\Rightarrow}y{\Rightarrow}z{=}$  договоримся =, что это  $x{\Rightarrow}(y{\Rightarrow}z){\neg}(x{\Rightarrow}y){\Rightarrow}z$ 

| хуг                       | x⇒y | y⇒z | $  x \Rightarrow (y \Rightarrow z)$ | $(x\Rightarrow)y\Rightarrow z$ |
|---------------------------|-----|-----|-------------------------------------|--------------------------------|
| 0 0 0                     | 1   | 1   | 1                                   | 0                              |
| $0\ 0\ 1$                 | 1   | 0   | 1                                   | 1                              |
| $0\ 1\ 0$                 | 1   | 1   | 1                                   | 0                              |
| $0\ 1\ 1$                 | 1   | 1   | 1                                   | 1                              |
| $1 \ 0 \ 0$               | 0   | 1   | 1                                   | 1                              |
| $1\ 0\ 1$                 | 0   | 1   | 1                                   | 1                              |
| $1 \ 1 \ 0$               | 1   | 0   | 0                                   | 0                              |
| 111                       | 1   | 1   | 1                                   | 1                              |
| $x \Leftrightarrow y = y$ | ⇔x  | l   | •                                   | !                              |

 $x \Leftrightarrow 0 = \overline{x}$ 

 $x\Leftrightarrow 1=x$ 

 $x\Leftrightarrow x=1$ 

 $x \Leftrightarrow \overline{x} = 0$ 

 $x\Leftrightarrow (y\Leftrightarrow z)=(x\Leftrightarrow)y\Leftrightarrow z$  -ассоциативно

## Дистрибутивность

 $\overline{(x \lor y) \lor z = xz \lor yz}$ 

| хух         | (xvy)z | $xz \lor yz$ |
|-------------|--------|--------------|
| 0 0 0       | 0      | 0            |
| $0\ 0\ 1$   | 0      | 0            |
| $0\ 1\ 0$   | 0      | 0            |
| $0\ 1\ 1$   | 1      | 1            |
| $1 \ 0 \ 0$ | 0      | 0            |
| $1 \ 0 \ 1$ | 1      | 1            |
| $1 \ 1 \ 0$ | 0      | 0            |
| 111         | 1      | 1            |

(x+y)z=xz+yz так как обычные  $+_2$  •

 $(x\&y)\lorz=xy\lorz=(x\lorz)(y\lorz)$ 

## Замечание

 $(x_1 \lor x_2 \lor x_3)(y_1 \lor y_2) = (x_1 \lor x_2 \lor x_3)y_1 \lor (x_1 \lor x_2 \lor x_3)y_2 =$ 

 $=x_1y_1 \lor x_2y_1 \lor x_3y_1 \lor x_1y_2 \lor x_2y_2 \lor x_3y_2$ 

 $(xy \lor z) = (x \lor z)(y \lor z) = xy \lor xz \lor zy \lor zz = xy \lor xz \lor zy \lor zz = xy \lor xz \lor zy \lor z^*1 =$ 

=xy $\lor$ z $(x\lor$ y $\lor$ 1)=xy $\lor$ z $(x\lor$ y $\lor$ 1)=xy $\lor$ z\*1=xy $\lor$ z- сошлось

 $x+y=\overline{x \Leftrightarrow y}$ 

$$\begin{array}{c|cccc}
x & y & (x \lor y)z \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
(x \Rightarrow y)(y \Rightarrow x) = \overline{x} \Leftrightarrow \overline{y}$$

 $(x \Rightarrow y)(y \Rightarrow x) = \overline{x \Leftrightarrow y}$ 

## 2 Многочлены Жегалкина

```
Замечание
одну и ту же функцию можно записать по разному
B алгебре f(x)=1+x=x+1=x+5-4=\cos(x-x)+x=...
g(x)=x^2-1=(x-1)(x+1)=\dots
В логике f(x,y)=x\vee y=x\vee y\vee 0=(x\vee y)(\overline{y}\vee y)=x\overline{y}\vee y- дистрибутивно
Определение
Многочлен Жегалкина для логическиой функции
f(x_1, x_2, \dots x_n)- это многочлен с переменными x_i, константами 0,1 и со сте-
пенями перменных ≤1
или
это многочлен от x_i над \mathbb{Z}_2
Пример
\overline{f(x,y,z)} = 1 + x + yz + xyz
1+x
1+xy
x+xyz
Не многочлены:
1+x+(y \lor z)
1 + x + z^2
Замечание
В общем случае многочлен:
от 1 переменной (a_i=0 или 1) a_0 + a_1 x
от 2 переменных a_0 + a_1x + a_2y + a_3z + a_4xy + a_5zx + a_6yz + a_7xyz
от 3 переменных a_0 + a_1x_1 + \cdots + a_nx_n + ax_1x_2 + ax_1x_3 + \cdots + ax_1x_2x_3 + \cdots
ax_1x_2x_4 + \cdots + ax_1x_2x_3 \ldots x_n
Утверждение
\overline{\forall \ \mathrm{f}(x_1\ldots x_n)}-логическая функция \exists ! многочлен Жегалкина
g(x_1 \dots x_n) : f = g
Примеры
f(x)=0=0=0+0x
f(x)=1=1=1+0x
f(x)=x=x=0+1x
f(x) = \overline{x} = 1 + X = 1 + 1x
Докозательство
разные многочлены- это разные логические функции, то есть f(x_1 \dots x_n) =
a_0 + \cdots + a_n x_1 \dots x_n
g(x_1 \dots x_n) = b_0 + \dots + b_n x_1 \dots x_n
\exists i: a_i \neg b_i
Возьмем различающийся индекс с самым min количеством переменных
Пример
f(x,y,z)=1+x+xy+xyz=...+1x+0y+0z+1xy
g(x,y,z)=1+y+z+xyz=...+0x+1y+1z+0xy
```

Для переменных этого слогаемого подставим 1

```
Для остальных переменных:0
(В примере x=1 y=0 z=0: f(1,0,0) и g(1,0,0))
И в f и в g все другие слогаемые равны 0 или совпадают
Теперь f(...) и g(...) \Rightarrow f(x_1...x_n) \neg g(y_1...y_n)
a_i x x x \neg b_i x x x, так как a_i \neg b_i
Проверим, что многочленов столько же, сколько функций от п переменных
посчитает
a_0 + a_1x_1 + \cdots + a_nx_1x_2 \ldots x_n
сколько слагаемых
1) 1 слагаемое без переменных и слагаемой с 1ой переменной
a_1x_1 + \cdots + a_nx_n
C_n^2слагаемых с 2 переменными
C_n^3слагаемых с 3 переменными
C_n^nслагаемых с <br/> <br/> п переменными
Become C_n^0 + C_n^1 + C_n^2 \cdots + C_n^n = 2^n
a_0 + a_1 x- 2 слагаемых=2
a_0 + a_1 x + a_2 y + a_3 x y - 2^2 = 4 слагаемых
2) все слогаемые имеют вид: x_1, x_2, x_3 \dots x_n - 2^n
Итого многочлен Жегалкина от n переменных имеет 2^n слагаемых
теперь сколько разных многочленов?
Каждое a_i=0 или 1
Ответ: 2^{2^n} столько же, сколько логических функций
Итог:
Логические функции от <br/> n переменных(2^{2^n} штук)\equiv многочленов Жегалки-
на от <br/>п перменных (2^{2^n} штук)
Следствие: любая логическая функция может быть представлена в виде
многочлена Жегалкина
Примеры
f(x,y)=x\v не многочлен Жегалкина
f(x,y)=x*y- многочлен Жегалкина
подберем x \lor y = a_0 + a_1x + a_2y + a_3xy
f(0,0) = 1 \lor 0 = 1
a_0 + a_1 = 1 a_1 = 1 f(0,1) аналогично
f(x,y)=x+y+a_3xy
f(1,1)=1 \lor 1=1
1+1+a_3=0+a_3=a_3 \Rightarrow a_3=1
Ответ: x \lor y = x + y + xy
(Лекция№3 от 02.03)
```

Все многочлены функции можно представить в виде многочлена

| f(x)           |   | многочлены  | f(x,y)     |   | многочлены |
|----------------|---|-------------|------------|---|------------|
| 1(X)           |   | MUOLOAMEURI | 0          | = | 0          |
| 0              | = | 0           | 1          |   | 1          |
| 1              | = | 1           | 1          | = | 1          |
| -              |   | -           | xy         | = | xy         |
| X              | = | X           | x+y        | = | x+y        |
| $\overline{x}$ | = | 1+x         |            |   |            |
|                |   |             | $x \lor y$ | = | x+y+xy     |

х∨у=х+у+ху- Многочлен Жегалкина для ∨(Другой способ получить многочлен из х∨у)

Добавим формулы в список

$$\overline{xy} = \neg(x,y) = \overline{x} \lor \overline{y}$$

$$\overline{x \vee y} = \overline{xy} = \overline{yx}$$

Замечание  $\overline{xy} \neg \overline{yx}$ 

Докозательство в таблице истинности

| ху                                      | $\overline{x \vee y}$ | $\overline{x}$ | $\overline{y}$ | $\overline{x} \bullet \overline{y}$ |  |
|-----------------------------------------|-----------------------|----------------|----------------|-------------------------------------|--|
| 0.0                                     | 0                     | 1              | 1              | 1                                   |  |
| 0 1                                     | 1                     | 1              | 0              | 0                                   |  |
| 1 0                                     | 1                     | 0              | 1              | 0                                   |  |
| 1 1                                     | 1                     | 0              | 0              | 0                                   |  |
| V/V = = = = = = = = = = = = = = = = = = |                       |                |                |                                     |  |

$$x \lor y = \overline{x} \bullet \overline{y}$$

$$\frac{x \vee y = \overline{x} \bullet \overline{y}}{(1+x)(1+y)} = 1 + (1+x)(1+y) = \underbrace{1+1}_{=0} + x + y + xy = x + y + xy$$
Многочиен Жегалкина для  $\Leftrightarrow$ ?

Многочлен Жегалкина для ⇔?

$$x \Leftrightarrow y = \overline{x + y} = 1 + x + y$$

Многочлен Жегалкина для х⇒у

$$x \Rightarrow y = \overline{x} \vee \overline{y}$$

Если есть логическая функция, её можно привести к форме многочлена Жегалкина

- -Метод неопределенных коэффициентов (смотри учебник Рыбина)  $a_0 + a_1 x +$  $a_2y + \cdots + axyz$
- -Метод алгебраических преобразований

#### Пример

$$x \lor y = \overline{\overline{x} \lor \overline{y}} = \dots = x + y + xy$$

$$x\Rightarrow y=\overline{x}\lor y=\cdots=1+x+xy$$
 х $\Rightarrow$   $(y\lor\overline{z})=x\Rightarrow (y+\overline{z}+y\overline{z})=x\Rightarrow (y+(1+z)+y(1+z))=x\Rightarrow (y+1+z+y+yz)=x\Rightarrow (1+z+yz)=1+x+x(1+z+yz)=1+xy+yz$ -Ответ

$$(x \Leftrightarrow y) \Leftrightarrow z = x \Leftrightarrow (y \Leftrightarrow z)$$

$$x \Leftrightarrow y \Leftrightarrow = (1+x+y) \Leftrightarrow z = 1+(1+x+y)+z = 1+1+x+y+z = x+y+z$$

Вывод: Заранее не ясно, сложно ли привести функцию к многочлену Жегалкина

## Дизъюнктивно нормальная форма (ДНФ)

#### Определение

Литерал- это переменная или отрицание переменной

Например:  $x, \overline{x}, y, \overline{y}, z, \overline{z}$ 

## Определение

Конъюнкт- конъюнкция литералов

 $x\overline{y}, xyz, \overline{xyz}, \overline{x}z, \overline{z}, \emptyset, \overline{x\overline{y}}, x \vee y$ 

Определение

Логическое выражение, уравнение, имеет дизъюнктивно нормальную форму, если она является дизъюнкцией конъюнктов

Примеры

$$\overline{x\overline{y} \vee \overline{x}\overline{z}T} \vee z \vee \overline{xy}$$

$$xy \vee \overline{xy}$$

$$x \vee y$$

xy

НЕ ДНФ  $\overline{xy}$  но  $\overline{x} \lor \overline{y}$  ДНФ

$$x \Rightarrow yz = \overline{x} \lor yz$$

Построение ДНФ по таблице истинности

Алгоритм на примере 3х цифр

| 1           |                             |                  | .1               | . 1 1 1                                                                 |  |
|-------------|-----------------------------|------------------|------------------|-------------------------------------------------------------------------|--|
| хуг         | $\overline{x}y\overline{z}$ | $\overline{x}yz$ | $xy\overline{z}$ | $  \overline{x}y\overline{z} \vee \overline{x}yz \vee xy\overline{z}  $ |  |
| 0 0 0       | 0                           | 0                | 0                | 0                                                                       |  |
| $0\ 0\ 1$   | 0                           | 0                | 0                | 0                                                                       |  |
| $0\ 1\ 0$   | 1                           | 0                | 0                | 1                                                                       |  |
| 0 1 1       | 0                           | 1                | 0                | 1                                                                       |  |
| $1 \ 0 \ 0$ | 0                           | 0                | 0                | 0                                                                       |  |
| 101         | 0                           | 0                | 0                | 0                                                                       |  |
| 1 1 0       | 0                           | 0                | 1                | 1                                                                       |  |
| 1 1 1       | 0                           | 0                | 0                | 0                                                                       |  |
|             |                             |                  |                  |                                                                         |  |

## Замечание

 $\overline{\mathrm{y}}$  одной функции могут быть разные ДНФ

$$\overline{xy}\overline{z} \vee \overline{x}yz \vee xy\overline{z} = \overline{x}y(\overline{z} \vee z) \vee xy\overline{z} = \overline{x}y \vee xy\overline{z}$$

$$\stackrel{1}{=} \overline{x}y(\overline{z} \vee z) \vee xy\overline{z} = \overline{x}y \vee xy\overline{z}$$

$$\stackrel{2}{=} (\overline{x} \vee x)y\overline{z} \vee \overline{x}yz - y\overline{z} \vee \overline{x}yz = y\overline{z} \vee \overline{x}yz \vee x\overline{x} \vee y\overline{y} \vee = \infty$$

Как получить ДНФ для формулы/функции

- -по таблице истинности
- -алгебраические преобразованиями

## Примеры

$$\overline{x} = \overline{x}$$

$$x \lor y = y \lor x \ 2$$
 кон.

$$x \Rightarrow \overline{x} \lor y$$
 2кон.

$$x \Leftrightarrow y = (x \Rightarrow y)(y \Rightarrow x) = (\overline{x} \lor y)(\overline{y} \lor x)$$
 =раскроем скобки

$$=\overline{xy}\vee \overline{x}x\vee y\overline{y}\vee yx=\overline{xy}\vee xy$$

По Таблице Истинности

$$\begin{array}{c|cccc} x & y & x \Leftrightarrow y \\ \hline 0 & 0 & 1 & (\overline{xy}) \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 & (xy) \\ \end{array}$$

Пример, построить ДНФ

 $x \Rightarrow (y+z)$ 

- 1) Таблица Истинности
- 2)<br/>преобразования  $\overline{x} \lor (y+z) = \overline{xy}z \lor y\overline{z}$ -Ответ

Залача

Дана логическая формула в ДНФ, проверить, бывает ли она равна 0  $\overline{xy} \vee x \vee y = 0$ 

$$x=0,y=0 \Rightarrow \overline{xy}=1$$

эта задача

- Если знать значения перемнных (ответ) для 0, то их можно быстро проверить
- Подобрать значения переменных для 0- трудно, не известно алгоритма, который быстрее полного перебора

Задача в информатики P ?= NP

то, к чему сводится задача выполнимости- тоже слодна

- -упростит логическое выражение
- -поиск минимального ДНФ(следующий раз)

## 4 Запись таблицы истинности в виде графика







(Лекция№1 от 09.03)

## 5 Задача минимизации ДНФ

Дана: логическая функция(в виде ДНФ), найти самую короткую эквивалентную ДНФ(min количество литералов и дизъюнкция  $\vee$ )

 $\overline{xy} \lor \overline{z}$  короче $xy \lor yz$  короче $x\overline{y}\overline{z}TU$ 

Напоминание про куб

Замечание

Далее рассматриваем только f(x,y,z)- 3 переменных

Замечание

Какова таблица истинности  $\overset{abc}{xyz}$ , где а=0/1 b=0/1 c=0/1

0- отрицание 1-без отрицния

Пример:  $\overline{x}y\overline{z}$ 



Если 
$$\overline{x}y\overline{z}=1$$
, то  $\overline{x}=1$  x=0 eсли  $\overline{x}y\overline{z}=1$ , то  $\overline{x}=1$  y=1 z=1 eсли xyz=1, то x=a y=b z=c

Какова таблица истинности из двух  $\overset{ab}{xy}$ ?

$$xy=1 \Leftrightarrow \begin{array}{cc} x=1 & y=1 \\ x=a & y=b \end{array}$$



 $\overline{x}y$ -единцы, на ребре x=0 y=1 z=?

# аналогично $\overline{yz}$ рисуем ТИ ребро y=0 z=0



Последнее, конъюнкт из 1 литерала х,у,z, $\overline{x},\overline{z},\overline{y}$ Например,  $\overline{y}$ , какая ТИ?



y=0или конъюнкт х:грань x=1



Итого ТИ:

```
xyz- это вершина x=a y=b z=c xyz- это ребро x=a y=b xzz- это грани x=a Попробуем минимизировать ДНФ Пример xyzzzzzz xyzzzzzzz Найти самый короткий ДНФ для неё
```

•Шаг 1. Рисуем ТИ



 $\overline{xyz}$ -вершина 0,0,0  $x\overline{yz}$ -вершина 1,0,0  $xy\overline{z}$ -вершина 1,1,0 Другие ДНФ  $\overline{yz} \lor x\overline{z}$  или



то есть  $\overline{xyz} \lor x\overline{yz} = \overline{yz} \lor x\overline{z} = \overline{x}y\overline{z} \lor x\overline{z} = \overline{yz} \lor xy\overline{z}$   $\overline{yz} \lor x\overline{z}$ - самый короткий ответ

Пример 2

 $\overline{xyz}\vee x\overline{y}\vee xy$ 



 $x=1 \Rightarrow x \lor \overline{xyz} = x \lor \overline{yz}$ 



Замечание:

этот метод позволяет нагдядно перебрать все ДНФ и выбрать min Преобразования не позволяют проверить оптимальность

## Пример преобразований

 $\overline{xyz} \lor x\overline{yz} \lor xy\overline{z} = (\overline{x} \lor x)\overline{y}z \lor x\overline{yz} \lor xy\overline{z} = \overline{y}z \lor x\overline{z}(\overline{y} \lor y) = x\overline{z} \lor \overline{y}z =$ возможно короче

## 6 Двойственная функция

```
Пусть есть f: B^n \to B = 0, 1
Двойственная f^*:B^n\to B: f^*(x_1,\ldots,x_n)=\overline{f(\overline{x_1},\ldots,x_n)}
Замечание: мир замены лжи на истину
f(x,y)=x \vee y
                             x y | f(x,y)
        0 0
  0
         1 1
  1
         0
               1
         1 \mid 1
  1
проверим, что (x \lor y)^* = xy
по определению: (x\vee y)^*=(\overline{(\overline{x}\vee \overline{y}}=\overline{\overline{x}}\ \overline{\overline{y}}=xy
Пример 2
(x+y)^* = \overline{x} + \overline{y} = 1 + (1+x) + (1+y) = 1 + x + y = x \Leftrightarrow y
Замечание
f^{**}(x_1,\ldots,x_n) = \overline{f^*(\overline{x_1},\ldots,\overline{x_n})} = \overline{\overline{f^*(\overline{x_1},\ldots\overline{x_n})}} = \overline{f(x_1,\ldots,x_n)}
то есть f^{**} = f
Следствие
(x \cdot y)^* = x \vee y
(x \Leftrightarrow y)^* = x + y
Теорема о конъюнкции
f_0(f_1(x_1,\ldots,\overline{x_n}),(f_2(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)))
f_i:B^n\to B
i=1...m
f_0: B^m \to B
тогда
f^*(x_1,\ldots,x_n) = f_0^*(f_1^*(x_1,\ldots,x_n)(f_2^*(x_1,\ldots,x_n)\ldots f_m^*(x_1,\ldots,x_n))
\frac{\underline{\underline{\Pi}}_{\text{ОКОЗАТЕЛЬСТВО}}}{f^* = \underline{f(\overline{x_1} \dots \overline{x_n})}} \stackrel{\text{определению}}{=} \frac{\overline{f_0(f_1(\overline{x_1}, \dots \overline{x_n}) f_2(\overline{x_1}, \dots \overline{x_n}) \dots f_m(\overline{x_1}, \dots \overline{x_n})}}{\underline{f_0(f_1(\overline{x_1}, \dots \overline{x_n}) f_2(\overline{x_1}, \dots \overline{x_n}) \dots f_m(\overline{x_1}, \dots \overline{x_n})}}
=f_0^*(f_1(\overline{x_1},\ldots\overline{x_n}),\overline{f_2(\overline{x_1},\ldots\overline{x_n})}\ldots\overline{f_m(\overline{x_1},\ldots\overline{x_n})})=
f_0^*(f_1^*(x_1,\ldots x_n),f_2^*(x_1,\ldots x_n),\ldots,f_m^*(x_1,\ldots x_n))
Следствие
Если есть f(x_1, ... x_n)или логическое выражение с \vee, \cdot, \neg, +, \equiv, то f^* такое
же выражение, но связки заменены на двойственные
\lor \leftrightarrow \cdot
+\leftrightarrow \Leftrightarrow
\neg \leftrightarrow \neg
Пример
f(x, y, z) = \overline{x \vee \overline{y}z} \Leftrightarrow (x + y + z)
```

$$f^*(x,y,z) = \overline{x \cdot (\overline{y} \vee z} + (x \Leftrightarrow y \Leftrightarrow z \\ 1^* = 0 \\ 0^* = 1$$

Конъ<br/>октивно- нормальная форма- еще одна нормальная форма, похожа на<br/>  $\Pi H \Phi$ 

#### Определение

Литерал- как раньше, переменная или отрицательная переменная:  $x,y,z,\overline{x}$  Дизъюнкт- дизъюнкция литералов  $x\vee y$ 

КНФ- это конъюнкция нескольких дизъюнктов $(x \lor y)(y \lor z)$ 

(Лекция за 17.03)

Утвеждение

у $\forall$  логической функции есть КНФ, можно построить по таблице истинности Докозательство

Заметим, что если вычислить (КН $\Phi$ )\* (двойственную КН $\Phi$ ), то получится ДН $\Phi$ 

Пример

$$((x \vee y \vee z)(x \vee \overline{y})(\overline{y} \vee \overline{z})^* = (xyz) \vee (x\overline{y}) \vee (\overline{y}\overline{z})$$

и наоборот (ДНФ)\*=КНФ

итого, чтобы получить КНФ для функции f, надо построить ДНФ для  $f^*$ , ДНФ для  $f^*$ - существует

Пример

 $f^*$ отрицание перевертнутого f

Вспомним определение

$$\begin{array}{l} f^*(x,y,z) = \overline{f(\overline{xyz}} \\ f^*(0,0,0) = \overline{f(1,1,1)} \\ f^*(0,0,1) = \overline{f(1,1,0)} \\ f^*(0,1,0) = \overline{f(1,0,1)} \\ ДНФ для f^* \end{array}$$

 $\overline{xy}z$ 

 $\overline{x}y\overline{z}$ 

 $x\overline{y}\overline{z}$ 

 $xy\overline{z}$ 

 $f^* = \overline{xy}z \vee \overline{x}y\overline{z} \vee x\overline{yz} \vee xy\overline{z}$ 

по теореме о композиции

$$f = (\overline{x} \vee \overline{y} \vee z)(\overline{x} \vee y \vee \overline{z})(x \vee \overline{y} \vee \overline{z})(x \vee y \vee \overline{z})$$

Получение КНФ по таблице истинности без двойственной функции

Otbet:  $\dot{f} = (x \lor y \lor \overline{z})(x \lor \overline{y} \lor \overline{z})(\overline{x} \lor y \lor \overline{z})(\overline{x} \lor \overline{y} \lor z)$ 

Итого, чтобы построить ДНФ- строки с 1  $\begin{array}{ccc} 0 \leftrightarrow \overline{x} & \overline{y} & \overline{z} \\ 1 \leftrightarrow x & y & z \end{array}$ 

Чтобы получить КНФ строки с 0,  $\begin{array}{ccc} 0 \leftrightarrow x & y & z \\ 1 \leftrightarrow \overline{x} & \overline{y} & \overline{z} \end{array}$ 

#### Пример 2

| -   | _     |                                  |
|-----|-------|----------------------------------|
| ху  | x + y |                                  |
| 0.0 | 0     | $x \vee y$                       |
| 0 1 | 1     |                                  |
| 1 0 | 1     |                                  |
| 1 1 | 0     | $\overline{x} \vee \overline{y}$ |
| _   |       | ,                                |

Otbet: $(x \lor y)(\overline{x} \lor \overline{y})$ 

Замечание

Для функции записанной в форме КНФ, можно поставить задачу "выполнимости"

Вопрос: может ли значение быть=1?

-не известно решений, принципиально эффективней полного перебора значений переменных

Пример

$$(x\vee y\vee z)(x\vee \overline{y})(y\vee \overline{z})(\overline{x}\vee \overline{z})=1$$

$$x=1 y=1 z=0$$

Многие задачи головоломки сводятся к задаче выполнимости

Пример

## Принцип Дирихле

Если есть n клеток и в них n+1 заяц, то  $\exists$  клетка, где зайцев  $\ge 2$ 

при n=2  $x_{ij}$ -в клетке i=1 или 2, j=1 или 2 или 3 заяц

Попробуем записать, что в каждой клетке≤ 1 заяц

1. каждый заяц ровно в одной клетке

 $x_{11} + x_{21}$ -заяц 1

 $x_{12} + x_{22}$ -заяц 2

 $x_{13} + x_{23}...$ 

Если клеток  $x_{1j}\overline{x_{2j}}\dots\overline{x_{kj}}\vee\overline{x_{1j}}x_{2j}x_{3j}\dots\overline{x_{ki}}\vee\overline{x_{1j}}\dots x_{kj}$ 

2. в каждой клетке не больше 1 зайца

$$\begin{array}{c|cccc} \kappa_{\rm J} \backslash 3 & 1 & 2 & 3 \\ \hline 0 & x_{11} & x_{12} & x_{13} \\ 1 & x_{21} & x_{22} & x_{23} \\ \end{array}$$

```
Если есть 2 зайца, то один из конъюнктов
```

$$\overline{x_{11}x_{12} \lor x_{11}x_{13} \lor x_{12}x_{13}} = 1$$
 в клетке  $1 \le 1$  зайца

$$\overline{x_{11}x_{22} \lor x_{21}x_{23} \lor x_{22}x_{23}}$$
 в клетке  $2 \le 1$  зайца

соединяем все утверждения

$$(x_{11} + x_{21})(x_{12} + x_{22})(x_{13} + x_{23})(\overline{x_{11}x_{12} \lor x_{11}x_{13} \lor x_{12}x_{13}}) *$$

$$*(\overline{x_{11}x_{22} \lor x_{21}x_{23} \lor x_{22}x_{23}}) = 0$$
всегда

$$(x_{11} \lor x_{21})(\overline{x_{11}} \lor \overline{x_{21}})(x_{12} \lor x_{22})(\overline{x_{12}} \lor \overline{x_{22}})*$$

$$(x_{13} \lor x_{23})(\overline{x_{13}} \lor \overline{x_{23}})(\overline{x_{11}} \lor \overline{x_{12}})(\overline{x_{11}} \lor \overline{x_{13}}) *$$

$$(\overline{x_{12}} \vee \overline{x_{13}})(\overline{x_{21}} \vee \overline{x_{22}})(\overline{x_{21}} \vee \overline{x_{23}})(\overline{x_{22}} \vee \overline{x_{23}}) *- KH\Phi$$

Берем программу, которая решает задачу выполнимости: она скажет- невыполнима

## 7 Классы замкнутости

#### Определение

Класс- это множество логических функций

Пример:  $K_2$ - класс функций от двух переменных: f(x,y) = f(y,x)

$$f(x,y) = x \lor y \in K_1 \in K_2$$

$$g(x,y) = x \Rightarrow y \in K_1 \not\in K_2$$

 $K_3$ - класс функций  $f(x_1,\dots)-f(0,\dots)$  функции, которые не зависят от первой переменной

$$f(x, y, z) = y \Rightarrow z \in K_3$$

$$f(x, y, z) = \overline{x} \lor x \lor y \lor z \in K_3$$

$$K_4: \{f(x,y) = x \lor y \quad g(x,y) = x \Rightarrow y\}$$

## Определение

#### • Замыкание класса

$$K = \{f_1, f_2, \dots\}$$

 $K^*$ -замыкание класса- это класс, состоящий из всех композиций функций из К



$$g(x,y,z) =$$

 $f_1(f_2(f_1(x,y),y,z),z)$ -композиция функций

Пример

$$1)k = \{0, \overline{x}\}$$

$$k^* = \{f(0), g(f(0)), g(g(f(0))), \dots\}$$

$$k^* = \{\overline{x}, 0, 1, x\}$$

```
2)k = \{\overline{x}\} k^* = \{\overline{x}, x\} k^* = \{g(x), g(g(x)), g(g(g(x))), \dots\} 3)k = \{\overline{x}, x \lor y, xy\} k^* = \{x, \dots \forall \text{функция}\} Определение Если К-класс K^* = \alpha (все логические функции), то К-полный Вывод: K = \{\overline{x}, x \lor y, xy\}-полный Пример 4 K = \{\overline{x}, x \lor y\} x \cdot y = \overline{x \cdot y} = \overline{x} \lor \overline{y} = f(g(f(x), f(y))) Значит K^*- тоже полный
```