







YUGOSIAVIA/Chemical Technology. Chemical Products and Their H Application. Ceramics. Glass. Dinding Materials. Concrete. Abs Jour: Ref Zhur-Khim., No 10, 1959, 35664. Author : Bokszczanin, S., Ferlan, M., Kotnik, S., Lindtner, M., Ozim, V., Sonnenvald, S. : Slovene Chemical Society Inst : Yugoslav Corundum Production. ritte Orig Pub: Vestnik Solv Kem Drustva, 4, No 1-2, 55-58 (1957) (in Slovene with an English summary) Abstract: Geological and chemical prospecting has led to the discovery of a deposit of bauxites suitable for the production of corundum. A plant constructed at the site is now furnishing all of Yugoslavia's abrasives demand. - Frum a summary by the authors. : 1/1 Card



"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R000412920001-2



























5(3)

PHASE I BOOK EXPLOITATION

Ferles, Miloslav, Engineer, Doctor, Polytechnic of Chemical Technology in Frague, Chair of Organic Chemistry; and Josef Jizba, Engineer, Doctor, Czechoslovak Academy of Sciences, Laboratory of Hetero-

Chemie pyridinu (Chemistry of Pyridine) Praha, Nakladatelstvi Ceskoslovenska Akademie Véd, 1957. 617 p. (Series: Československa Akademie Véd. Sekoe chemická, sv. 21) Errata slip inserted.

Scientific Ed.: Rudolf Lukeš; Resp. Ed.: Věra Pošová; Oldřich Dunka; Dedicated to Rudolf Lukeš, Academician. Tech. Ed.;

PURPOSE: This book is intended for organic chemists specializing

COVERAGE: This comprehensive work on pyridine is based on the literature of pyridine and its derivatives included in review periodicals from 1930 to 1953. The monograph was planned as a Card 1/12

# Chemistry (Cont.)

# CZECH/2479

supplement to Beilstein's handbook of organic chemistry, but in order to cover all possible pyridine derivatives, compounds with partly reduced pyridine nuclei and natural substances containing a pyridine ring or a partly saturated pyridine ring were included. Extensive bibliographies are given for each chapter and indicate wide coverage of Soviet and foreign literature including patent quotations. Maria Jizbová and Božená Ferlesová assisted in the preparation of the manuscript. Engineer Doctor Karl Bláh and Doctor of Madicine Vilmá Bláhová wrote the chapters on the effects and Docent Engineer, Doctor Jiři Plimi reviewed the manuscript and Docent Engineer Doctor Miloš Hudlický was technical consultant. Candidates of Cheminal Sciences Engineer Jiři Jarý and Engineer Miroslav Pergál assisted in correcting the manuscript.

# TABLE OF CONTENTS:

#### Pyridine

Isolation and preparation Physical properties

Card 2/12

13

14

FERLES, Milaslaw

CZECHOSLOVAKIA/Organic Chemistry. Synthetic Organic Chemistry. G-2

Abs Jour: Referat Zhur-Khimiya, No l, 1958, 11326.

: Ferles, M. Author

The Reduction of Quaternary Salts of Pyridine by Sodium Inst

Title Borobydride

Orig Pub: Chem Listy, 51, No 3, 474-478 (1957) (in Czech)

Abstract: The reduction of N-methylpyridinium halides (I); -2, -3, and -4-picolinium halides (II, III, and IV); and of -2,6lutidinium halides (V) gives a mixture of tetrahydroand hexahydro-derivatives whose composition is in agreement with the hypothesis that the reduction begins by the addition of a hydroxide anion at the 1,2-positions (formation of the tetrahydro derivative) or 1,4-positions (fromation of the hexahydro derivative and cleavage of

: 1/4 Card

Jech Univ, Prague

CIA-RDP86-00513R000412920001-2

CZECHOSLOVAKIA Organic Chemistry. Synthetic Organic Chemistry. G-2 Abs Jour: Referat Zhur-Khimiya, No 4, 1958, 11326.

the ring). The ratio of 1,2- to 1,4-addition is lower in 2-substituted pyridines and is increased in the case of 4-substituted pyridines. The substance and the ratio of 1,2- to 1,4-hydroxide ion addition are given below; I io-dide, 4.3; I bromide, 4.1; II iodide, 2.8; II bromide, 6.9; III iodide, 4.1; IV iodide, 12.5; V iodide, 0.6. The above ratios were established on one hand by hydrogenation and on the other by the preparation of dibrogenation and on the other by the preparation of dibrogenation of disrogenation of Hodos according to Lukesh et al (SZhKhim, 1957, 51256). Preparation: II iodide (for example) is dissolved in water, the solution is made alkaline with NaOH, and reduced by NaPH, during steam distillation. The total yield (82.8%) is determined by the titration of the distillate; the primary and secondary bases are removed

Card : 2/4

21

CZECHOSLOVAKIA/Organic Chemistry. Synthetic Organic Chemistry. G-2 Abs Jour: Referat Zhur-Khimiya, No 4, 1958, 11326.

from the product by extraction with benzenesulfonyl chloride and the purified mixture of bases (a fraction) is hydrogenated over PtO<sub>2</sub>; the picrate, mp 236°, is precipitated from the product. Another fraction is treated with Br<sub>2</sub> in HBr (acid) to form the 4,5-dibromodihydrobromide, mp 196°, from which the 1,2,5,6-tetrahydrobase is precipitated with Zn; picrate mp 227°. A similar synthesis procedure is used in preparing the picrates of the 1,2,5,6-tetrahydro derivatives of I (mp 201°), III (mp 105°), and IV (mp 146°). The picrates of the hexahydro derivatives of the following compounds have also been prepared: I, mp 221°; III, mp 166-167°; IV, 181-182°. The following 3,4,-dibromo hydrobromides have been prepared: I, mp 191°: III, mp 178°; and IV, mp 176°. For comparison purposes 1-methylpiperidine was

Card : 3/4

CZECHOSLOVAKIA/Organic Chemistry. Synthetic Organic Chemistry. G-2
Abs Jour: Referat Zhur-Khimiya, No 4, 1958, 11326.

synthesized by the reduction of N-methylglutarimide by Lifele, by reflexing 18 hrs in ether, bp 103-1050/744 mm, yield 52%; picrate, mp 221°. 1,4-dimethylpiperidine was prepared by heating (2000, 2 hrs) 4-pipecoline hydrochloride with paraformaldehyde (picrate, mp 180°).

Card : 4/4

22

FERLES, N

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R000412920001-2" CZECHOSLOVAKIA/Organic Chemistry: Synthetic Creamic Chemistry:

Abs Jour: Ref. Zhur.-Khimiya, No II, 1958, 36216.

Author : Lukes R., Strouf O., Ferles, M.

Inst : Not given.

Title : On the Hofman's Decomposition of the Bycyclic Nuclei Containing Nitrogen in the Peripheral Positions. II. Breakdown of the Oxymethylate 7-Methyl-I-Azobycyclo (1,22)-Heptane.

Orig Pub: Chem. listy, 1957, 51, No 5, 923-926.

Abstract: Thermal decomposition of 7-methyl-I-azobycyclo-(1,2,2)heptane (I) results in the exclusive formation of I-methyl4-vinilpiperidine (II). The interaction between 4-acetylpiperdine and CH<sub>3</sub>Br in alcohol at approximately 20
forms methylate-bromide of 4-acetylpiperdine (III) with
183-184° melting point (alc). The yield depends on the

Card : 1/4

//

CZECHOSLOVAKIA/Organic Chemistry. Synthetic Organic Chemistry.

G-2

Abs Jour: Reft Zhur.-Khimiya, No II, 1958, 36216.

ing off a portion of C<sub>6</sub>H<sub>6</sub>. The remaining solution is then boiled for 1 hour. The yield of methylatebromide I (Ia) thus obtained is 70.5%, melting point 304-305°; the melting point of picrate is 333-335° (water). The water solution of Ia is mixed with the freshly prepared suspension of Ag<sub>2</sub>O. A small quantity of Ba(OH)<sub>2</sub> water solution is added to the filtrate, followed by heating on a hot bath at 340° until dry. Water is added to the residue and the material is heated again until dry. Such an operation is repeated until the removed liquid is no longer alkaline. The distillate is then neutralized with dilute HCl, part of the solution is hydrated over Pt (as PtO<sub>2</sub>), and I-methyl-4-ethylpiperidine (V) is removed in the form of picrate with melting point of 185.5-186° (alc.), and also II, whose yield amounts to 50% and it has 146-146.5°/

Card : 3/4

12

CZECHOSLOVAKIA/Organic Chemistry. Synthetic Organic Chemistry.

G-2

Abs Jour: Ref. Zhur-Khimiya, No II, 1958, 36216.

743mm boiling point, n<sup>20</sup>D of I.4548, and d 4of 0.8365. The infra-red spectrum (1640 and 910 cm<sup>-1</sup>) reveals presecence of a vinil group. Picrate II with 145.5 - 146° melting point (from water) is identical with one described previously (Ref. Zhur.-Khimiya, 1956, 58059). For comparison, picrate V is obtained from chlorhydrine 4-ethylpiperidine and paraformaldehyde (180-200°, 7 hours with the subsequent purification of the raw n-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>CL), by hydration of 4 - ethylpiperidine CH<sub>3</sub>OH over a lattice type Ni (140-185°, 6 hours, 145 atmospheres) with the subsequent purification of n - CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>CI. Refer to section I in the Ref. Zhur.-Khimiya, 1957, 47964.

Card : 4/4

CZECHOSLOVAKIA/Organic Chemistry Synthetic Organic Chemistry. G-2

Abs Jour: Ref Zhur-Khim., No 24, 1958, 81674

Author : Lukes R , Strouf O , Ferles M.

Inst Title

: The Hoffman's Cleavage of Bicyclic Bases Containing Nitrogen in the Side Radicals. II. The Splitting of the Oxymethylate of 7-methyl-l-azabicyclo (1,2,2)

heptane.

Orig Pub: Collect. czechosl chem. commun , 1958, 23, No 2, 326-330.

Abstract: See R. Zh Khim , 1958, 36216.

Card : 1/1

CZECHOSLOVAKIA / Organic Chemistry. Organic Synthesis. G-2

Abs Jour: Ref Zhur-Khimiya, No 10, 1959, 34888.

Forles, M. Not given. Author

: Investigation of Pyridine Series. II. Reduction Inst in Accordance with Ladenburg's Method and Elec-Title

trolytic Reduction of Pyridine Bases.

Orig Pub: Chem. listy, 1958, 52, No 4, 668-673.

Abstract: Reduction of pyridines, picolins, and 2,6-lucidine either with sodium or electrolytically, in all the cases, results in a mixture of tetrahydrobases (I) and hexahydrobases (II). Since under the reduction conditions it is impossible to convert I into II, both products must be formed by different mechanisms. The reduction may start as a process of H2 addition into 1, 2 or 1, 4

Card 1/5

6-28

# APPROVED FOR RELEASE: 08/23/29009stryCIA RPP86-00913R0004f2920001-2"

Abs Jour: Ref Zhur-Khimiya, No 10, 1959, 34888.

Abstract: positions. The formation of (2) and (2-bonds leads to further reduction, 3 bond does not reduce, therefore, the substitution in the 4 or 2 position results predominantly in the reduction of pyridins into II. In the former case I is formed, in the latter II. The reaction products are homogeneous even if isomerization of the position is possible: from 2-picoline is thus formed 2-methyl-1,2,3,6-tetrahydropyridine, from 3-picoline is formed 3-methyl-1,2,5,6-tetrahydropyridine. The reduction products of 2,6-lutidine have a cis-configuration. Reduction with sodium: a base in 20 times the quantity of  $\mathrm{C_4H_9OH}$  is reduced with double the quantity of Na upon boiling for 2 hours followed by steam distillation. The distilled mixture of bases is treated (cold)

CZECHOSLOVAKIA / Organic Chemistry. Organic Synthesis. G-2

Abs Jour: Ref Zhur-Khimiya, No 10, 1959, 34888.

Abstract: with bromine in HBr (acid) and from the obvained dibromide -- bromchydrate I is separated with the use of Zn. A sample is subjected to hydration in HBr over Pt followed by the determination of I quantity and from the product of hydration, II is separated. From 31 gr of 3-picoline are obtained 25.3 gr of distilled mixture that has 110-1530/749 mm beiling point and contains 28.4% I together with bromhydrate of 3,4-dibrome-3-methyl-piperidine (IV) of 170-1710 melting point (from alc.), picrate of 3-methyl-1,2,5,5-tetrohydropyridine (V) of 1610 melting point (from water), bromhydrate of 3-pipecoline (VI) of 162-1630 melting point (from iso-C3H7OH). From 20 gr. of 4-picoline are also obtained 15.25 gr. of a 114-138°C/740 mm beiling point fraction that contains

Card 3/5

G-29

CZECHOSLOVAKIA / Organic Chemistry. Organic Synthosis. G-2

Abs Jour: Rof Zhur-Khimiya, No 10, 1959, 34888.

Abstract: 45% I, bromhydrate of 3,4-dibromo-4-mothylpiper-idino (VII) of 173-174° molting point (from

CH3OH), 4-mothyl-1,2,3,6-totrahydropyridine (VIII)

of 135-1360/740 mm boiling point, and bromhydrate of 4-mothylpiporidine (IX) of 1730 molting point. Electrolytic reduction was conducted in 35%

Haso4 omploying Pb electrodes and couble-triple the quantity of current at 30 amp. lovel. Presonted are; charge quantities, yields of mixed bases in %, contents of I in %, derived substances and their constants: pyridine, 58, 17, bromhydrato of 3,4-dibrompiporidino, molting point 200-2010, picrato of 1,2,3,6-totrohydropyridine, molting point 160-1620; 2-picolino, 66, 24.4, bromhydrate of 4.5-dibromo-2-pipecoline, melting

Card 4/5

CZECHOSLOVAKIA / Organic Chomistry. Organic Synthesis. G-2

Abs Jour: Ref Zhur-Khimiya, No 10, 1959, 34888.

Abstract: point 202-2030, picrate of 2-mothyl-1,2,3,6-totro-

point 202-203, pierate of z-methyl-1,z,3,6-tetro-hydropiporidine (X base), melting point 1600;
3-picoline, 67, 22.4, IV, V, VI; 4-picoline, 58,
39, VII, VIII, IX; 2,6-lutidine, 76, 6, 20, brom-hydrate of 3,4-dibrome-2,6-lupotidine, melting point 2120, /sie/-2,6-lupotidine chlorhydrate, melting point 280-2820. 1,2,3,6-tetrahydropyridine under identical conditions (9 times the quanino undor identical conditions (9 times the quantity of current) remains unchanged. X is heated for 5 hours up to 180-200° yielding 1,2-dimethyl-1,2,3,6 tetrahydropyridine pierate of 226° melting point. Analogically 1,4-dimethyl-1,2,3,6totrahydropyridine picrate of 146 molting point is obtained. The preceding Part can be found in Ref Zhur-Khimiya, 1958, 11326. -- Jan Kovar.

Card 5/5

6-30

CZECHOSLOVAKIA / Organic Chamistry. Organic Synthesis. G-2

Abs Jour: Ref Zhur-Khimiya, No 10, 1959, 34889.

Author : Forles, M.

: Invostigation of Pyridine Series. III. Reduction : Not givon. Inst

of the Quaternary Pyridine Salts Electrolytic-Title

ally and by Moans of Lithium-Aluminum Hydrido.

Orig Pub: Chom. listy, 1958, 52, No 4, 674-681.

Abstract: Results of the quaternary salts (QS) of pyridino bases with LiAlH4 loads to the formation of corresponding N-alkyl substitutes of 2-totrahydropyridinos (I). In the electrolytic re-

duction of the same QS are formed mixtures of I with substituted piperidines (II). The COOR groups are reduced in the electrolysis up to CH3

but under the action of LiATHA, up to CHZOH

Card 1/6

Organic Synthosis, G-2

APPROVED FOR RELEASE: 08/23/2000 CIA Abs Jour: Rof Zhur-Khimiya, No 10, 1959, 34889.

Abstract: groups. From QS of micotinic acid wthyl ester (III) and (CH3) 2SO4 (III)-QS) the electrolytic reduction yields 1,3-dimethyl-1,2,3,6-tetrahydropyridino (V), which evidently is formed also in the reduction of 3-picoline iodomothylene with the aid of KBH4. 40 gr of pyridine and 63 gr.

(CH3) 2SO4 are allowed to stand for 2 days followod by the addition of 35% H2SO<sub>4</sub> up to the total volume of 250 ml. To 50 ml of the above solution are added 200 ml of 35% H2SO4 followed by the reduction with Pb cathode (200% of current). After the alkalization and steam distillation non-tortiary bases are separated with C6H5SO2Cl and 88.5% mixture of I and II (82% II) is derived; 1-meth-ylpiporidine picrate of 2210 molting point; 1CZECHOSLOVAKIA / Organic Chomistry. Organic Synthosis. G-2

Abs Jour: Rof Zhur-Khimiya, No 10, 1959, 34889.

Abstract: mothyl-3,4-dibromopiperidine bromhydrate of 1910 melting point. Analogically are reduced QS of picelines. From the QS of 2-piceline and (GH3)2 picelines. From the QS of 2-piceline and (GH3)2 picelines. From the QS of 2-piceline and GH3)2 picelines. From the QS of 2-piceline and corive 1,2-dimethyl-4,5-dibromopiperidine bromhydrate of 1940 melting point and 1,2-dimethyl-jperidine picerate of 2560 melting point; from 3-piceline-indementation of 17,5 melting point, and 1,3-dimethyl-piperidine-picerate of 1560 melting point are obtained; from 4-miceline idemethyl-ylate are derived 40% II, 18.9% I, 1,4-dimethyl-ylate are derived 40% II, 18.9% I, 1,4-dimethyl-ylate are derived 40% II, 18.9% I, 1,4-dimethyl-ing point, and 1,4-dimethyl piperidine picerate.

After the electrolytic reduction of QS esters of piperidine carbonic acids mixtures are alkalized

CZECHOSLOVAKIA / Organic Chemistry. Organic Synthesis. G-2

Abs Jour: Rof Zhur-Khimiya, No 10, 1959, 34689.

Abstract: with BaCOH) and after the distillation of bases,
Ba is precipitated with equivalent quantities of
HaSO4, followed by filtration, steaming, esterification by boiling with CH3OH and HCl (gas), and
separation of oils of the hydrated acids. III
yields 25.7% of tertiary bases containing 89% I.
1,3-dimethylpiperidine-pierate, 1,3-dimethyl-4,
5-dibromopiperidine bromhydrate of 167° melting point, 1,3-dimethyl-4,5-dibromopiperiline
ing point, 1,3-dimethyl-4,5-dibromopiperiline
pierate of 177° melting point, IV, of 125/740 mm
beiling point, pierate of 155° melting point, iedomethylate of 205° melting point are formed.
From the methylsulfate of 1-methyl-4-carbethoxypiperidinium (500% of current) are obtained 48.5%
of tertiary bases, containing 48.6% I. Derived
from the above are 1,4-domethyl-1,2,5,6-tetrahy-

Card 4/6

6-32

CZECHOSLOVAKIA / Organic Chemistry. Organic Synthesis. G-2

Abs Jour: Ref Zhur-Khimiya, No 10, 1959, 34889.

Abstract: dropyridino-picrato of 146-1470 molting point, picrato of 1,4-dimothyl piporidino of 181-1820 melting point, and picrate of N-methylsonipocotinic acid of 1600 melting point. From 1-methyl-4-carbomethoxypyridinium methylsulfate are derived (168% current) 31% of bases containing 75% I. Obtained are: methyl ester of 1-methyliso-nipocotinic acid of 90-930/17 mm beiling point, 95-95.50/22 mm, and picrate of 146-1470 melting point. A solution of QS in CHOi3 is added to LiAlH4 in other and the mixture is beiled. 3-methylpyridineiodomethylate yields 70% of tertiary bases containing 81% I. 5 gr. of iedemethylate of 4-methylpyridine in 20 ml CHCl3 are reduced with 2 gr. LiAlH4 for 3 hours, the yield of tertiary bases is 72%, containing 72% I; 3.8

Card 5/6

CZECHOSLOVAKIA / Organic Chomistry. Organic Synthesis. G-2

Abs Jour: Rof Zhur-Khimiya, No 10, 1959, 34889.

Abstract: gr of iodomethylate ester of iso-nicotinic acid (V ester) /obtained from 20 gr V in 40 ml C<sub>6</sub>H<sub>6</sub> and 50 gr CH<sub>3</sub>I (20°, 24 hours), yielding 33 gr of 121° molting point7 is reduced with 1.2 gr LiAlH<sub>4</sub> for 6 hours, yielding 23% of 1-methyl-1-exymethyl-1,2,3,6-tetrohydropyridine of 95-100°//15 mm boiling point; iodomethylate of 176.5° melting point. The reduction of iodomethylate with NaBH<sub>4</sub> in C<sub>2</sub>H<sub>5</sub>OH gave 50% yield of 1-methyl-4-carboethexy-1,2,3,6-tetrahydropyridine of 108-109.5°/15 mm boiling point. -- Jan Kevar.

Card 6/6

C-33

heart and and hearth and accomplishment and

CZECH/8-52-11-24/30

AUTHOR:

Ferles, M.

TTTLE:

Reduction of Some Nitrogen-containing Compounds with Sodium Aluminium Hydride (Redukce některých dusikatých látek

hydridem sodnohlinitým)

PERIODICAL:

Chemické Listy, 1958, Vol 52, Nr 11, pp 2184 - 2185

(Czechoslovakia)

ABSTRACT: Selective reductions by sodium aluminium hydride were carried out on further nitrogenous derivative.
As an example of a Schiff's base benzalaniline (I) was

reduced with sodium aluminium hydride; the awaited bencylaniline was produced. Reduction of cyclo hexanoneoxime (II) yielded cyclo-hexylamine. NaAl H4 reduces cyclic imides

1-methyl-2-pyrrolidone III and lactams to cyclic amines: to 1-methyl-pyrrolidine; the methylimide of glutaric acid (IVa) gives 1 methyl-piperidine (Va) and the imide of

à methyl-β-ethylglutaric acid (IVb) reduces to

4 methyl-4-ethylpieridine (Vb). Sodium aluminium hydride behaves in the same way as lithium aluminium hydride; the advantage could be in its cheaper production costs.

M.Pts are uncorrected, crystalline materials Experimental:

Cardl/5

CZECH/8-52-11-24/30

Reduction of Some Nitrogen-containing Compounds with Sodium Aluminium Hydride

were dried at 100 °C/1 mm for eight hours before analysis. Reduction of benzalaniline (I). A suspension of NaAlH (1.1 g) in dry tetrahydrofuran (150 ml.) was boiled for 3 hours, with mixing, with a solution of benzalaniline (3.8 g) in tetrahydrofuran (10 ml.). The reaction mixture, decomposed by dilute HCl, was steam distilled. The residual solution was made alkaline, shaken with ether; the ether solution dried (MgSO<sub>4</sub>) - the ether evaporated.

The only residue solidified in a crystalline mass (1.8 g)
M.Pts - found: 36, literature: 37-38 for benzylaniline. Reduction of cyclohexanone oxime (II) A cyclohexanone oxime solution in tetra hydrofuran (3 g in 50 ml.) was added to a suspension of NaAlH,

in tetrahydrofuran (3 g in 150 ml.) and the reaction mixture boiled, with stirring, for 3 hours. coloured contents of the flask were decomposed by 10% H2SOn, the solution steam distilled, then made alkaline

Card2/5

CZECH/8-52-11-24/30

Reduction of Some Nitrogen-containing Compounds with Sodium Aluminium Hydride

and steam distilled once more. The distillate was neutralised by 1.04 N.HCl (16.4 ml. = 62% base). The solution of the hydrochloride was mixed with benzoylchloride (3.5 g); a sufficient quantity of caustic soda and the reaction mixture was shaken. The crystals produced were filtered by suction M.Pt. 145 (benzene). Literature gives M.Pt 147 for benzoylamino cyclohexane. For C<sub>13</sub>H<sub>17</sub>ON(203.3) - Calculated: 76.81% C, 8.43% H, 6.89% N Found: 77.06% C, 8.26% H, 6.78% N

Reduction of 1-methyl-2 pyrrolidone (III) A mixture of NeAlH, (1 g), terahydrofuran (100 ml.) and a

solution of 1-methyl-2 pyrrolidone in tetrahydrofuran (2 g in 20 ml.) were boiled, with stirring, for 8 hours. The flask contents were worked up as in the preceding section, with the exception that after neutralisation of the distillate (18.2 ml., 1,04 N-HC1, 94% base) the solution of the hydrochloride was mixed with benzene sulphochloride (5 g) and caustic soda and the mixture The reaction mixture was steam shaken for two hours.

Card3/5

....

CZEOH/8-52-11-24/30

Reduction of Some Nitrogen-containing Compounds with Sodium Aluminium

Hydride

distilled, the distillate neutralised (16.9 ml., 1.04 N-HO1, 87% tertiary base). The picrate was prepared from the hydrochloric solution M.pt. 218-219 (water) as in the The substance gives no depression of M.Pt with literature. authentic 1-methyl-pyrrolidine picrate. Calculated: 42.04% C, 4.49% H, 17.83% N Found: 41.80% C, 4.51% H, 18.01% N.

Reduction of the methylimide of glutaric acid (IVa) A mixture of NaAlH4 (2 g) tetrahydrofuran (150 ml.) and

methylglutarimide (2.5 g) was boiled, with stirring, for Beven hours. After working up the reaction mixture as in the preceding section: yield of picrate 4 g (62%) M.Pt 220 C (water) which agrees with the information given for

1-methyl-piperidine picrate:
1-methyl-piperidine picrate:
12H<sub>16</sub>O<sub>7</sub>N<sub>4</sub>(328.3) Calculated: 43.90% C, 4.91% H, 17.07% N
Found: 43.77% C, 5.19% H, 16.90% N
Reduction of the Imide of β-methyl-ethylglutaric Acid (IVb)

The imide of  $\beta$ -methyl- $\beta$  ethyl glutaric acid (3.1 g) was reduced by boiling with NaAlH, in tetrahydrofuran

Card4/5

CZECH/8-52-11-24/30

Reduction of Some Nitrogen-containing Compounds with Sodium Aluminium

Hydride

(2.2 g in 200 ml.). The hydrochloride was prepared from the reaction mixture distillate after making it alkaline the reaction mixture distillate after making it alkaline (6 ml., 1.18 N-HCl, 28% base) and from this hydrochloride the picrate was prepared M.Pt 165 °C (water) which melted, without depression, with 4-methyl-4-ethylpiperidine picrate. C14H20O7N4(356.3) Calculated: 47.18% C, 5.66% H, 15.72% N Found: 47.05% C, 5.88% H, 15.51% N. There are 8 references, 4 of which are Czech, 1 German

and 3 English.

ASSOCIATION:

Katedra organické chemie, Vysoká škola chemickotechnologicka, Praha (Department of Organic Chemistry, Chemico-technological Technical University, Prague)

SUBMITTED:

February 21, 1958

This is a complete translation, except for acknowledgments, structural formulae and references.

Card 5/5

no a little distribution of the harder of ring

"Hofmann degradation of bicyclic bases with nitrogen on the border of rings" III. Degradation of methohydroxide of 7-methyl-l-aza-bicyclo-(1,2,2)-heptane. In German. p. 212.

COLLECTION OF GZECHOSLOVAK CHEMICAL COMMUNICATIONS, Praha, Czech., Vol. 24, No. 1, Jan. 1959

FERLES, M.; STROUF, O.; LUKES, R.

Monthly List of East European Accessions (EEAI), LC, Vol. 8, No. 6, Sept. 59 Unclassified





### "APPROVED FOR RELEASE: 08/23/2000 CIA-RD

### CIA-RDP86-00513R000412920001-2



Z/008/61/000/001/001/005 E112/E253

AUTHORS:

Blaha, K. and Ferles, M.

TITIE:

Academician Rudolf Lukes. (Obituary)

PERIODICAL:

Chemické listy, 1961, No. 1, pp. 1-15 + 2 plates

Academician Rudolf Lukes, D.Sc. who died on October 17, 1960 was Professor of Organic Chemistry at the University of Chemical Technology, Prague, President of the Czechoslovak Chemical Society at the Czechoslovak Academy of Sciences and Director of the Laboratory for Heterocyclic Compounds at the same institution. The present paper is an appraisal of his scientific and pedagogic achievements. Starting his career as a theoretical sugar chemist with E. Votoček, he concentrated later on the chemistry of heterocyclic compounds, this work being initiated by his discovery of the reaction of N-succinimide and N-methylglutarimide with the Grignard reagent. This method permits the lengthening of aliphatic acid chains by 4 or 5 carbons and makes readily avialable a number of new heterocycles, e.g. pyrrolones. It was shown by Lukes that the two carbonyl groups in the cyclic imides display different functionality, and that only

Card 1/3

## Z/008/61/000/001/001/005 E112/E253

Academician Rudolf Lukes. (Obituary)

one of them was capable of reacting with the Grignard reagent. During the German occupation of the country and the closure of the Czech universities, Lukes worked for the Society for Chemical and Metallurgical Production, Prague, where he was concerned with the chemistry of furane and discovered an electrolytic method for the reduction of keto-di-carboxylic acids (reduction of chelidonic-to pimelic acid). A new reaction was also discovered during the electrolytic reduction of dilevulinic acid: In addition to the expected sebacic acid, valeric acid also formed by fission of -C-C:chain between both carbonyl groups. In the field of furane chemistry, the 2,5-dicarboxylic acid was reacted with ethylene glycol to produce fibre forming monomers, similar to the polyethylene terephthalates. Work in the field of heterocycles, carried out at the above firm produced interesting results by the reduction of quaternary pyridinium compounds with formic acids, leading to piperidine and A-piperidines. The latter products, which, so far, were not easily accessible, opened the way for an easy synthesis of a number of pyrrole derivatives. New methods

Card 2/3

Z/008/61/000/001/001/005 E112/E253

Academician Rudolf Lukes. (Obituary)

were evolved to isolate and characterize the new bases and Luke's found that β-alkyl-substituted derivatives could be isolated as quaternary salts with dinitro-chlorobenzene. The last period of Luke's activities were occupied with the study of alkaloids and particularly with problems of their stereochemical relationship and biological syntheses. Preparatory work consisted in establishing the relative configuration of some aminoalcohol, followed by determining the absolute configuration of a number of alkaloids (sedamine, hygrine, anabasine, etc.) The stereochemical course of many reactions, which could be taken as model substances for the understanding of biological alkaloid syntheses, was investigated. The work has not been completed. Luke's and collaborators were the authors of text-books on Organic Chemistry (2 volumes) and Fundamentals of Preparative Organic Chemistry (1 volume). A list of original papers (189), patents (2), preliminary communications (35), lectures in print (7), books and manuscripts (12) and others (7) is appended.

Card 3/3

是那些學習的類似的問題,其他是國際的語彙的影響,與其他是那是那些是是那些學習的學習的學習的不可能可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以 第一章

CZECHOSLOVAKIA

FERLES, M; CAPLOVIC, J.

Institute of Organic Chemistry of the Technical High School of Chemistry, Prague (for both)

Prague, Collection of Czechoslovak Chemical Communications, No 6, 1963, pp 1434-1439

"Studies in the Pyridin Series VIII. On the High Pressure Hydration of Nictinic Acidic and Isonicctinic Acidic Ethylester."









CZECHOSLOVAKA

FERLES, M

JAHAR, J. HOLLE, E. PERLES, E.

1. Enstitute for Inorganic Chemistry, Technical Higher School for Chemistry (Institut für organische Chemie, Rechnische Hochschule für Chemie), Prague (for Jeneki); 2. Enstitute for Instrumental Chemical Analysis, Czscho-ulowak Academy of Sciences (Institut für instrumentale unalytische Chemie, Tachechoalewakische Akademie der Hissenschaften), Brno (for 1)

Prepue. Collection of Czechoslevok (hemical Communications. No. 3, March 1966, pp 1275-1250

"Investigation of the piridine series. Part 10:Gas chromatographic separation of some position isomerisms of the paparidine series."

### CZECHOSLOVAKIA

PERLES, M; KOVARIK, M; VONDRACKOVA, Z

计设计 医阿克特氏试验检检查检验检验 医皮肤 医克勒氏管

Institute of Organic Chemistry, Technical College of Chemistry (Institut fur organische Chemie, Technische Hochschule fur Chemie), Prague - (for all)

Prague, Collection of Czechoslovak Chemical Communications, No 3, March 1966, pp 1346-1354

"Investigation of the pyridine series. Part Its Reduction of quaternary salts of some pyridine homologues with sodium borhydride."

#### CZECHOSLOVAKIA

## FERLES, M; JANKOVSKY, M

1. Department of Organic Chemistry, Institute of Chemical Technology, Prague - (for ?). 2: Department of Chemistry, Institute of Agriculture, Prague-Suchdol - (for ?)

Prague, Collection of Czechoslovak Chemical Communications, No 7, July 1966, pp 3008-3001

"Studies in the pyridine series. Part 14: Novel procedures of preparing 3-butylisonicotinic acid."

CZECHOSŁ OVAKIA

# KSANDR, Z; SAMEK, Z; SPIRKO, V; FERLES, M

1. Department of Analytical Chemistry - (for ?). 2: Department of Organic Chemistry - (for ?), Institute of Chemical Technology. 3: Institute of Organic Chemistry and Bio - chemistry, - (for ?). Czechoslovak Academy of Sciences, Prague

Prague, Collection of Czechoslevak Chemical Communications, No 7, July 1966, pp 3003-3007

"Studies in the pyridine series. Part 13: NMR-shift ranges for some isomeric alkylsubstituted tetrahydropyridines."

CZECHOSLOVAKIA

FERLES, M; HOLIK, M

Institute of Organic Chemistry, College of Chemical Engineering, Prague - (for both)

Prague, <u>Collection of Czechoslovak Chemical Communications</u>, No 1, January 1967, pp 457-460

"Investigation of the pyridine series. Part 16: Wittig's reaction with some i-methyl piperidones."





| ACC NR: AF6029579                                                                     | SOURCE (                                                                                                                    | CODE: YU/0015/65/000/08                                                                               | -/0185/0188           |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------|
| AUTHOR: <u>Mihaljevic</u><br>Schonwald, Slavko (                                      | Fran (Professor; Doctor); Fer                                                                                               | luga, Cvijeta (Doctor);                                                                               | ng.                   |
| ORG: <u>Infectious Di</u><br>Zagreb (Bolnica za                                       | eases Hospital/directed by Proparation are bolesti)                                                                         | fessor, Doctor F. Mihalj                                                                              | evic/,                |
| TITLE: Hemorrhagic                                                                    | fever with renal syndrome                                                                                                   |                                                                                                       |                       |
| SOURCE: Medicinski                                                                    | glasnik, no. 8-9, 1965, 185-18                                                                                              | 8                                                                                                     |                       |
| TOPIC TAGS: diagno                                                                    | tic medicine, gland, biologic                                                                                               | metabolism, physiologic                                                                               | parameter             |
|                                                                                       |                                                                                                                             |                                                                                                       |                       |
| ABSTRACT: Data on<br>the "most typical"<br>patients; tabulatio                        | patients treated since 1952, among many: case histories, grant of 18 symptoms or signs or fine. [Based on authors' Eng. abs | and selected because con<br>aphs showing course in i<br>ndings in the 5. Differ                       | sidered<br>ndividual. |
| ABSTRACT: Data on<br>the "most typical"<br>patients; tabulatio<br>diagnosis discussio | patients treated since 1952, mong many: case histories, grant of 18 symptoms or signs or fin                                | and selected because con<br>aphs showing course in i<br>ndings in the 5. Differ<br>t.] [JPRS: 36,599] | sidered<br>ndividual. |
| ABSTRACT: Data on<br>the "most typical"<br>patients; tabulatio<br>diagnosis discussio | patients treated since 1952, mong many: case histories, grant of 18 symptoms or signs or fine. [Based on authors Eng. abs   | and selected because con<br>aphs showing course in i<br>ndings in the 5. Differ<br>t.] [JPRS: 36,599] | sidered<br>ndividual. |
| ABSTRACT: Data on<br>the "most typical"<br>patients; tabulatio<br>diagnosis discussio | patients treated since 1952, mong many: case histories, grant of 18 symptoms or signs or fine. [Based on authors Eng. abs   | and selected because con<br>aphs showing course in i<br>ndings in the 5. Differ<br>t.] [JPRS: 36,599] | sidered<br>ndividual. |
| ABSTRACT: Data on<br>the "most typical"<br>patients; tabulatio<br>diagnosis discussio | patients treated since 1952, mong many: case histories, grant of 18 symptoms or signs or fine. [Based on authors Eng. abs   | and selected because con<br>aphs showing course in i<br>ndings in the 5. Differ<br>t.] [JPRS: 36,599] | sidered<br>ndividual. |

KOSUTA, S.; KRZIC, M.; FERLUGA, D....

Fat embolism in liver stestosis. Zdrav. vestn. 34 no.5/6:100-104
'65.

1. Interna klinika medicinske fakultete v Ljubljani (predstojnik:
prof. dr. S. Mahkota) i Patolosko-anatomski institut medicinske
fakultete v Ljubljani (predstojnik: prof. dr. F. Hribar).











FERMANDZHIEV, I.

"Relief influences on the earth's magnetic field."

IZVESTIIA. SERIIA FIZICHESKA, Sofiia, Bulgaria, Vol. 6, Jan./Dec. 1956 (published 1957).

Monthly List of East European Accessions Index (EEAI), The Library of Congress, Volume 8, No. 8, August 1959.

Unclassified

## PERMANDZHIEV, I.

Electric field of vertical polarized column in anisotropic surrounding, p. 199.

GODISHNIK. MATERMATIKA I FIZIKA. Sofiia, Bulgaria, Vol. 50, no. 1 pt. 2

Monthly List of East Accession (EEAI) LC, Vol. 9, No. 1 January 1960 Uncl.

CZECHOSLOVAKIA/Human and Amiral Morphology - The Skeleton:

Abs Jour : Ref Zhur Biol., No 5, 1959, 21555

Author : Formanek, G., Fernar, H.
Inst : Bone Changes in Hemophilia
Orig Fub : Ceskosl. rentgenol., 1957, 11, No 2, 120-126

Abstract : No abstract.

























SOV/138 -58-4-2/13

AUTHORS:

Peyzner, A. B; Fermor, N. A; Lebedev, A. V.

TITLE:

On the Influence of Plasticity of Rubber on the Technological Properties of Synthetic Latexes. (O vliyanii plastichnosti kauchuka na tekhnologicheskiye svoystva

sinteticheskikh lateksov)

PERIODICAL:

Kauchuk i Rezina, 1958, Nr. 4. pp. 4 - 5. (USSR).

ABSTRACT:

S. V. Lebedev (Ref.1) showed that the plasticity is an important property of sodium 1,3-butadiene rubber, and, therefore, the plasticity was taken as a basis for classifying different types of this rubber (Ref.2). The plasticity indicates the basic molecular characteristics of the rubber (average molecular weight, fractional composition, branching etc.). It is, therefore, necessary to regulate the plasticity of emulsion rubbers during their synthesis. There are some publications on the synthesis of latexes containing rubbers of various plasticity (Ref.3), but no systematic investigations have been carried out on their use for the manufacture of various goods. The plasticity of the rubbers was proved to be one of the essential factors during investigations carried out by the All-Union Research Institute for Synthetic Rubber (VNIISK) (Vsesoyuznyy

Card 1/3

SOV/138:-58-4-2/13

On the Influence of Plasticity of Rubber on the Technological

Properties of Synthetic Latexes.

nauchno-issledovatel'skiy institut sinteticheskogo kauchuka (VNITSK) on the conditions for the manufacture of industrial latexes. VNITSK, NIIR (Research Institute for Rubber and Latex Goods) (Nauchno-issledovatel'skiy institut rezinovykh i lateksnykh izdeliy) and the institut rezinovykh i lateksnykh izdeliy) and the Leningrad Factory RTI elaborated methods and conditions for the preparation of special latexes SKS-50 PG (temperature of polymerisation = 50°C) and SKS-50 PKH (temperature of polymerisation = 10°C) by using fatty (temperature of the latex mixtures for manufacturing foam rubber (car seats) etc. It was found that facturing foam rubber (car seats) etc. It was found that the plasticity of the latex plays an important part durthe plasticity of the foam itself. Methods and conditions the properties of the foam itself. Methods and conditions the properties of the foam itself. Methods and conditions the properties of the foam itself. Methods and conditions for manufacturing the special latex SKS-50 were investified by the Leningrad Branch of the Research Institute gated by the Leningrad Branch of the Research Institute gated by the Industry (NIIKP) (Nauchnoissledovatel'skiy institut kabel'noy promyshlemnosti (NIIKP)) and the institut kabel'noy promyshlemnosti (NIIKP)) and the cables with a thin layer of insulation. The authors explained the influence of the plasticity of the polymer explained in the latex on the quality of the rubber goods,

Card 2/3

SOV/138-58-4-2/13

On the Influence of Plasticity of Rubber on the Technological Properties of Synthetic Latexes.

and modified the methods of production by taking their hypothesis into account. Imrestigations are carried out at present, in conjunction with the NII Tyre Industry, on the influence of the plasticity of the polymer on its adhesive properties. The plasticity of a polymer also in-fluences the process of manufacture of rubber goods by ion - precipitation. In particular, in chloroprene latex the molecular characteristics of a polymer influence. considerably the rate of ageing of these latexes and the quality of the rubber articles. The influence of the plasticity of the rubber contained in the latex on the use and properties of manufactured goods requires further investigation. Laboratories should evolve more standards and more universal methods of defining the plasticity of the polymer in the latex. There are 5 References: 1 English and 4 Soviet.

ASSOCIATION: All-Union Research Institute for Synthetic Rubber im.
Academician S. V. Lebedev (Vsesoyuznyy nauchno-issledovatel'skiy institut sinteticheskogo kauchuka im. akad. S. V. Lebedeva).

Card 3/3

2. Rubber -- Plasticity 1. Synthetic rubber -- Properties

SOV/138-58-5-2/9

AUTHORS:

Lebedev, A.V.,

Fermor, N.A., Mints, S.M.,

Mints, S.M., Zakharchenko, P.I.,

TITLE:

The Vulcanisation of Synthetic Latexes (Vulkanizatsiya

sinteticheskikh lateksov)

PEHIODICAL: Kauchuk i Rezina, 1958, Nr 5, pp 3-9 (USSR)

ABSTRACT:

The method and conditions for the sulphur-vulcanisation of some synthetic latexes were investigated, as well as the characteristics of laminae prepared from the same. The latexes were vulcanised by intensive gamma radiation without using chemical vulcanisation agents. It was found that the strength of laminae made from these latexes depends on the polarity of the rubber. The latexes tested included 1,3-butadiene-styrene rubbers SKS-30A, SKS-50PG And also the 1,3-butadiene-nitrile rubber SKN-40; the composition and conditions of polymerisation are given in Table 1. Experiments on radiation vulcanisation were carried out in the Physico-Chemical Institute im. L.Ya.Karpov by using COO as a source of radiation with an activity of

Card 1/4

SOV/138/58-5-2/9

The Vulcanisation of Synthetic Latexes

The samples were placed 600, 1400 and 20,000 Curie. in 15 - 35 ml glass ampuls and subjected to radiation (intensity = 0.14 - 1.3 mil.roentgen units/hour). No coagulation of the latex could be observed. Laminae were prepared from the vulcanised latex by using aqueous fixing agents. Comparative tests were carried out under identical conditions with laminae prepared from latexes containing vulcanisation agents. The physical and mechanical characteristics of these laminae were determined. The degree of vulcanisation was evaluated as well as their solubility. Benzene was used as solvent and swelling agent for 1,3-butadiene-styrene rubbers and for "Revul'teks" (Revultex obtained from Revertex Limited) and acetone for 1,3-butadiene-nitrile rubber. The laminae were treated with methyl alcohol, saturated with phenyl-B-naphthylamine to extract the admixtures. The physical and mechanical properties of the laminue are listed in Table 2 and for comparative properties

Card 2/4

SOV/138-58-5-2/9 The Vulcanisation of Synthetic Latexes data is included on vulcanised laminae made of nonvulcanised latexes and also of a sample of "Revul'teks". The mechanism of formation of laminae from vulcanised latexes was investigated: the strength of dry laminae from latexes vulcanised with sulphur appears to be the result of the cumulative action of Van der Waals forces and of chemical bonds between the globules.
Table 4: data on the strength of the laminae (in%)
at varying degrees of humidity. Changes in the physical and mechanical properties and the solubility of the laminae from vulcanised latexes after 8 - 10 months of storing were investigated; results of these investigations (Tables 5 and 6) show that the ageing of polymers in latexes proceeds with greater intensity than in the laminae when Vulkatsit-R-extra-N is used. The properties of the laminae made from latexes vulcanised when applying varying amounts of gamma Card 3/4

SOV/138-58-5-2/9

The Vulcanisation of Synthetic Latexes

radiation (Tables 7 and 8) are discussed. There are 8 tables, 1 figure and 23 references of which 15 are English, 1 French, 1 German, 1 Japanese, 1 Dutch and 4 Soviet.

ASSOCIATION: Vsesoyuznyy nauchno-issledovatel'skiy institut sinteti cheskogo kauchuka im.S.V.Lebedeva (The All-Union Scientific-Research Institute for Synthetic Rubber imeni. S.V. Lebedev)

Card 4/4

SOV/138-58-7-1/19

AUTHORS: Lebedev, A.V., Mermor, N.A., Selivanovskiy, S.A., and

Beresnev, V.N.~

TITIE: Some Technical Properties of Chloroprene Latexes

Depending on the Size of Particles and the Saturation of the Adsorption Coatings (Nekotoryye tekhnologicheskiye svoystva khloroprenovykh lateksov v zavisimosti ot vel-

ichiny chastits i nasyshchennosti adsorbtsionnykh obolochek)

PERIODICAL: Kauchuk i rezina, 1958, Nr 7, pp 1 - 5 (USSR)

ABSTRACT: The rate of ionic deposition, the rate of syneresis in water, the rate of drying and setting of coatings and

water, the rate of drying and setting of coatings and physico-mechanical properties of the gel of chloroprene latexes having particles of various sizes, were investigated. To some latex samples soap was added in order to compare the properties of latexes: a) at an equal degree of saturation of the globules of the coating and b) at an identical weight ratio of the emulsifier to the polymer. Polymerisation was carried out in a 50-litre apparatus at 25 - 30 °C (Table 1). Initiators and emulsifiers usually used during the synthesis of chloroprene latexes were used (Pafa 14 and 15). The circustical contents and since the

latexes were used (Refs 14 and 15). The size of the particles and the degree of saturation was determined by

Card1/4

SOV/138-58-7-1/19 Some Technical Properties of Chloroprene Latexes Depending on the Size of Particles and the Saturation of the Adsorption Coatings

> adsorption titration of the latexes with solutions of sodium oleate and resin soap (Refs 9 and 10). The physicomechanical properties of the raw gel were defined with a Kublanov dynamometer (Ref 12) and the physico-mechanical properties of dry vulcanised coatings with a Shopper dynamometer according to the VNIISK methods (Ref 11). Heat ageing of the latexes was effected in an air thermostat for 36 hours at 70°C. An analysis of data given in Table 2 and Figures 1-3 shows that the rate of ionic deposition in the initial period (within the limits of experimental error) is equal for all tested samples; in the following period it is higher for latexes with large particles. The weight ratio of the raw and dry gel for all samples and in all stages of ionic deposition remains approximately constant (about 2.2). The average rate of ionic deposition increases with increasing degree of saturation of the globules with emulsifiers. If the latex contains very small particles and the globules are less saturated with emulsifiers, syneresis of the gel proceeds more quickly and more completely in the aqueous

Card2/4

SOV/138-58-7-1/19 Some Technical Properties of Chloroprene Latexes Depending on the Size of Particles and the Saturation of the Adsorption Coatings

medium (Table 3). From simple calculations, it can be established that within the limits of investigated sizes of particles and of degree of saturation, the rate of syneresis and its extent are approximately proportional to the specific exposed surface of the polymer particles; the proportional coefficient is considerably higher for latexes stabilised with rosin soaps. When infra-red irradiation is applied the rate of drying of latex coatings is higher if large-particle latexes are used. However, the rate of separation of moisture decreases with increasing degree of saturation of the adsorption layers with emulsifiers. The amount of deposits and the reduction coefficient increase slightly during drying when the sizes of the particles and the degree of saturation of the adsorption layers increase. The specific elongation of gels from large-particle latexes is in all cases lower than the corresponding values for highly dispersed It decreases with increasing degree of saturation of the adsorption layers with the polymer globules. Card3/4 The physico-mechanical values of vulcanised layers decrease

SOV/138-58-7-1/19

Some Technical Properties of Chloroprene Latexes Depending on the Size of Particles and the Saturation of the Adsorption Coatings

> with increasing soap content in the polymers; at equal soap coment they do not (within the limits of experimental error) depend on the sizes of the particles in the latex. "he raw gel, as well as the vulcanised layers from latexes, stabilised with sodium resinate, have better physiconechanical properties than the corresponding gels and coatings stabilised with sodium oleate. This is due to the different solubilities of calcium salts of rosin and oleic acids in chloroprene. There are 3 figures, 3 tables and 15 references, 5 of which are Soviet, 7 English and 3 German.

ASSOCIATION:

Vsesoyuznyy nauchno-issledovatel'skiy institut sinteticheskogo kauchuka im. S.V. Lebedeva

(All-Union Research Institute for Synthetic Rubber

im. S.v. Lebedev)

Card4/4

1. Chloroprenes--Polymerization 2. Chloroprenes--Physical properties 3. Chloroprenes-Mechanical properties 4. Chloroprenes

--Test results 5. Synthetic rubber--Preparation





s/138/59/000/012/003/006

AUTHORS:

Peyzner, A. B., Uzina, R. V., Fermor, N. A., Khazanovich, I. G.

TITLE:

The Basic Factors Determining the Type of Divinyl-Styrene

Latex in Tire Cord Impregnation

PERIODICAL: Kauchuk i Rezina, 1959, No. 12, pp. 10-14

TEXT: The effect of the emulsifier, the polymerization depth, the polymerization temperature, the plasticity of the polymer, the ratio of divinyl and styrene in the polymerizing mixture on the strength of the bond of the rubber-cord system in the polymerization of divinyl-styrene latexes was studied. 1) The emulsifier: It was found that by replacing Nekal with soaps of paraffinic acids and hydrated colophony the strength of the bond system is increased significantly. This is explained by an increase in the physico-mechanical properties of the adhesive film and by the intensity of the intermolecular interaction at the adhesive-rubber interface (Ref. 7) (Table 2). In switching over to low-temperature polymerization latexes the stated advantages are retained. 2) The polymerization depth: The bond strength of the impregnated cord decreases in the case of divinyl-styrene latexes of low-temperature polymerization at a conversion depth of 60%.

Card 1/4

s/138/59/000/012/003/006

The Basic Factors Determining the Type of Divinyl-Styrene Latex in Tire Cord Impregnation

3) The polymerization temperature: It was found that the highest bond stability was obtained at a temperature of 20°C (Fig. 3). This is explained by the combination of good elastic properties of the polymer at low-temperature polymerization and a certain branching of the chains observed in a switch-over from 5 to 20°C. At 20°C the polymerization takes place more rapidly, the 60% conversion depth is reached after 9 hours instead of 24 hours (Fig. 4). 4) The polymer plasticity: With an increase in the polymer plasticity the bond stability of the system and the physico-mechanical properties of the adhesive film pass through their optimum value at a plasticity of 0.15-0.25 according to Karrer (1,500-2,800 g hardness according to Defoe) (Fig. 6). This is explained by the fact that the high plasticity of the polymer ensures favorable conditions for molecule diffusion from the adhesive into the rubber lining, but does not ensure the necessary mechanical properties of the adhesive (Refs. 4, 9). A decrease in the plasticity of the polymer raises the mechanical properties of the adhesive and thus limits the mobility of moleculars and lowers their diffusibility which leads to a decrease in the bond strength. A polymer with an average plasticity (0.15-0.25 according to Karrer) ensures the best adhesion.

Card 2/4

The Basic Factors Determining the Type of Divinyl-Styrene Latex in Tire Cord Impregnation

5) The styrene ring content: The presence of styrene in the divinyl-styrene latex (over 30 weight parts) does not increase the strength of the adhesiverubber system. Fig. 7 shows that an increase in the styrene content in the polymerizing hydrocarbon mixture increases the physico-mechanical properties of the film adhesive; the stability of the bond between the impregnated cord and the rubbers reaches its optimum value at 30 weight parts of styrene. At a styrene content of more than 30 weight parts the adhesive hardness increases. This brings about unfavorable conditions for the diffusion of the adhesive polymer rings and for the polymer compatibility. 8) Selection of the divinyl-styrene latex type for the impregnation of the tire cord: As a result of the investigations conducted a specific latex is recommended for this purpose. The CKC-30WXH (SKS-30ShKhP) divinyl-styrene later was obtained according to given specifications and was found to surpass the CKC-30M (SKS-30Sh) latex both in the bond strength between the impregnated cord and the rubbers and by the physico-mechanical properties of the adhesive film (Table 3). The authors point out that by using the recommended latex the strength of the bond between the individual parts of the tire, the durability of the tires in stationary tests and the roadability of the

Card 3/4

