Računarske mreže 1

Mrežni sloj - rutiranje

Predavač:

Dražen Drašković, <u>drazen.draskovic@etf.bg.ac.rs</u> Stefan Tubić, <u>stefan.tubic@etf.bg.ac.rs</u>

Autori:

Dražen Drašković, Bojan Furlan, Slavko Gajin, Stefan Tubić

april 2015. god.

Zadatak 1. RIP

- Za mrežu na sledećoj slici obezbeđen je skup adresa 10.10.0.0/24 i RIPv2 ruting protokol.
 - a) Koliko ima brodkast domena u mreži?
 - b) Koristeći dati adresni blok, odrediti adrese i subnet maske svih LAN mreža i *point-to-point* segmentima (popuniti tabelu). Adrese dodeljivati redom, od većih ka manjim mrežama.
 - c) Adresirati sve interfejse na ruterima. Na point-to-point vezama postaviti manju adresu na strani rutera sa manjim indeksom. Na LAN mrežama koristi prvu raspoloživu IP adresu. (skicirati mrežu i navesti IP adrese na mestima interfejsa).
 - d) Odrediti celu ruting tabelu na ruteru R3 (popuniti tabelu).
 - e) Kojim putem ili putevima će ići saobraćaj od računara X do računara Y, a kojim u suprotnom smeru?

Napomena: Adresni prostor popunjavati do većih ka manjim mrežama, a linkove prema rastućem redosledu oznaka rutera (npr. R1-R2, R1-R5, R2-R3,...). Za adrese interfejsa manju vrednost dodeliti interfejsu na ruteru sa manjom oznakom.

Topologija uz zadatak 1

Adrese

	LAN/ Link	mreža	dužina maske	maska
1	LAN R6	10.10.0.0	25	255.255.255.128
2	LAN R1	10.10.0.128	27	255.255.255.224
3	LAN R5	10.10.0.160	27	255.255.255.224
4	LAN R2	10.10.0.192	28	255.255.255.240
5	LAN R3	10.10.0.208	29	255.255.255.248
6	R1-R2	10.10.0.216	30	255.255.255.252
7	R1-R5	10.10.0.220	30	255.255.255.252
8	R2-R3	10.10.0.224	30	255.255.255.252
9	R2-R4	10.10.0.228	30	255.255.255.252
10	R3-R4	10.10.0.232	30	255.255.255.252
11	R3-R6	10.10.0.236	30	255.255.255.252
12	R4-R5	10.10.0.240	30	255.255.255.252
13	R4-R6	10.10.0.244	30	255.255.255.252
14	R5-R6	10.10.0.248	30	255.255.255.252

STP path cost value

Protok	Cena		
1 Mbps	1000		
2 Mbps	500		
4 Mbps	250		
10 Mbps	100		
16 Mbps	62		
45 Mbps	39		
100 Mbps	19		
155 Mbps	14		
622 Mbps	6		
1 Gbps	4		
10 Gbps	2		

Distance Vector protokoli rutiranja

- Susedni ruteri razmenjuju informacije routing update, koji sadrži:
 - adresu podmreže koja se oglašava
 - metriku do podmreže
- Na osnovu sadržaja routing update-a i interfejsa na koji se routing update prima, ruteri saznaju:
 - Distancu (metriku) do određene podmreže
 - Vektor (next-hop) koji vodi do određene podmreže

Ruting tabela na ruteru R3

	LAN/ Link	mreža	dužina	maska	next hop /
			maske		connected
1	LAN R6	10.10.0.0	25	255.255.255.128	10.10.0.238
2	LAN R1	10.10.0.128	27	255.255.255.224	10.10.0.225
3	LAN R5	10.10.0.160	27	255.255.255.224	10.10.0.234
					10.10.0.238
4	LAN R2	10.10.0.192	28	255.255.255.240	10.10.0.225
5	LAN R3	10.10.0.208	29	255.255.255.248	connected
6	R1-R2	10.10.0.216	30	255.255.252	10.10.0.225
7	R1-R5	10.10.0.220	30	255.255.255.252	10.10.0.225
					10.10.0.234
					10.10.0.238
8	R2-R3	10.10.0.224	30	255.255.255.252	connected
9	R2-R4	10.10.0.228	30	255.255.252	10.10.0.234
					10.10.0.225
10	R3-R4	10.10.0.232	30	255.255.252	connected
11	R3-R6	10.10.0.236	30	255.255.252	connected
12	R4-R5	10.10.0.240	30	255.255.255.252	10.10.0.234
13	R4-R6	10.10.0.244	30	255.255.255.252	10.10.0.238
					10.10.0.234
14	R5-R6	10.10.0.248	30	255.255.255.252	10.10.0.238

2. OSPF

- Za mrežu datu na sledećoj slici konfigurisan protokol rutiranja je OSPF, sa oblastima naznačenim brojem i vrstom kao na slici.
- a) Za svaki ruter označiti tip (ABR, ASBR, Internal, Backbone)
- b) Za mrežni segment u oblasti 0, prema dodeljenim adresama odrediti DR i BDR rutere, pod pretpostavkom da u mreži nema softverski konfigurisanih adresa i da je svim ruterima prioritet jednak.
- c) Prikazati sadržaje ruting tabela u obliku uređenih parova (adresa_mreže, next_hop) na ruterima R4 i R6. Direktno povezane mreže označiti sa Connected na mestu next_hop parametra.

Topologija

OSPF vrste rutera

Vrste rutera prema mestu i ulozi u oblasti

- ABR *Area Border Router* granični ruter između oblasti (centralne i periferne)
- ASBR Autonomous System Border Router granični ruter između OSPF domena i nekog drugog ruting domena (npr. RIP2, ili eksterni ruting protokol)
- Internal Router interni ruter koji pripada samo jednoj oblasti
- Backbone router interni ruter koji pripada backbone oblasti

11

Izbor DR i BDR u multiaccess mrežama

- "Prioritet" vrednost koja predstavlja prioritet pri izboru DR i BDR
 - broj od 0 do 255
 - dodeljuje se interfejsu rutera
 - veća vrednost označava veći prioritet
 - vrednost 0 označava da ruter ne učestvuje u izboru za DR i BDR
- Pravila izbora DR i BDR
 - ruteri u Hello poruke, pored RID, postavljaju i svoje prioritete
 - ruter sa najvećim prioritetom postaje DR
 - ruter sa sledećim najvećim prioritetom postaje BDR
 - u slučaju da su prioriteti isti, gleda se najveći RID za izbor DR i BDR

Hello poruke

- RID (Ruter ID) jedinstveni identifikator rutera koji će se javljati u LSA i LSDB
 - najveća IP adresa interfejsa, ako nije konfigurisan loopback (logički) interfejs
 - najveća IP adresa loopback interfejsa, u suprotnom
- Hello poruke uspostavljanje susedstva između rutera

OSPF vrste oblasti

Podela prema vrstama LSA koje primaju

- Standrad Area
 - prihvata sve vrste LSA
- Area 0 (Backbone area) centralna oblast kada ima više oblasti
 - prihvata sve vrste LSA (kao standardna oblast)
- Stab Area
 - periferna oblast, ne prima LSA tip 5 (E1 i E2)
 - ABR ruteri automatski generišu i ubacuju u oblast default rutu, da bi saobraćaj mogao da se šalje za rute van OSPF domena koje nedostaju (externa)
 - Stab flag mora biti postavljen na svim ruterima u Stub Area
- Totaly Stubby Area
 - Cisco proprietary
 - ne prima ni externe ni inter-area rute LSA tip 3, 4 i 5 (IA, E1 i E2)
 - samo lokalne rute unutar ove oblasti intra-area rute
 - ABR ruteri automatski generišu i ubacuju u oblast default rutu, da bi saobraćaj mogao da se šalje za rute u drugoj oblasti (summary) i van OSPF domena (external)
 - Stab flag mora biti postavljen na svim ruterima u Totaly Stub Area
 - no-summary komanda se postavlja na ABR ruteru, koja određuje Totaly Stub Area

OSPF vrste LSA

Vrste LSA prema načinu oglašavanja u oblastima:

- Router Link tip 1 (u ruting tabeli označene sa "O")
 - generišu ruteri, daju informacije o svim interfejsima i cenama
 - propagiraju unutar jedne oblasti, ne prenose se između oblasti
- *Network Link* tip 2 (u ruting tabeli označene sa "O")
 - generiše DR ruter oglašava se multiaccess mreža prema drugim ruterima unutar oblasti (ne na segmentu)
 - propagiraju unutar jedne oblasti, ne prenose se između oblasti intra-area
- Summary Link tip 3 i 4 (u ruting tabeli označene sa "O IA")
 - tip 3 informacije o lokalnim linkovima i mrežama, koje ABR iz jedne oblasti prenosi kroz Area 0 i preko drugih ABR unose se u druge oblasti
 - tip 4 informacije o likovima koje se prenose do ASBR rutera
 - Summary LSA nisu sumirane (agregirane), ali se može konfigurisati agregacija ruta
 - Router link (tip 1) i Network link (tip 2) se u ABR pretvaraju u Summary link tip 3
- External Links tip 5 (u ruting tabeli označene sa "O E1" i "O E2")
 - informacije o mrežama van OSPF domena, koje generiše ASBR i ubacuje OSPF
 - dve vrste:
 - O E1 na metriku iz drugog ruting domena dodaje se OSPF metrika (kumulativna cena)
 - O E2 na metriku iz drugog ruting domena NE dodaje se OSPF metrika, nepromenjena u svim oblastima 15

Korisni linkovi

- http://en.wikipedia.org/wiki/Routing_Information_Protocol
- http://en.wikipedia.org/wiki/Open_Shortest_Path_First

