BUNDESREPUBLIK DEUTSCHLAND

A 61 k

62

(3)

Deutsche Kl.:

12 p, 10/01

30 h, 2/36

(1) (1)	Offenlegungsschrift	1919 307
------------	---------------------	----------

•

Aktenzeichen:

P 19 19 307.8

Anmeldetag:

11. April 1969

Offenlegungstag: 14. Januar 1971

Ausstellungspriorität:

Unionspriorität

Datum:

Land:

Aktenzeichen:

Bezeichnung: Verfahren zur Herstellung von Nucleosiden

① Zusatz zu:

Ausscheidung aus:

Anmelder: Schering Aktiengesellschaft, 1000 Berlin und 4619 Bergkamen

Vertreter:

Als Erfinder benannt: Niedballa, Dr. U.; Vorbrüggen, Dr. H.; 1000 Berlin

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960): Prüfungsantrag gemäß § 28 b PatG ist gestellt

SCHERING AG

Patentabteilung

1919307

lo. April 1969

Verfahren zur Herstellung von Nucleosiden

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Verbindungen der allgemeinen Formel

worin R ein Wasserstoffatom, eine Alkylgruppe mit 1-4 C-Atomen, ein Halogenatom, eine Nitro- oder Nitrilgruppe, W ein Sauerstoff- oder Schwefelatom, X ein Sauerstoffatom oder die Gruppe N-B (mit B in der Bedeutung eines Wasserstoffatoms oder eine Alkylgruppe mit 1-4 C-Atomen), Y ein Stickstoffatom oder die Gruppe CH und Z einen geschützten Zuckerrest bedeuten, dadurch gekennzeichner daß man das 1-Acyl- bzw. 1-O-Alkylderivat des geschützten Zuckers mit Verbindungen der allgemeinen Formel

II,

worin R und Y die oben genannte Bedeutung besitzen, D einen silylierten O- oder N-B-Rest, worin B dasselbe wie oben bedeutet, oder eine niedere Alkoxygruppe und E einen silylierten O- oder S-Rest oder eine niedere Alkoxygruppe bedeuten, in Gegenwart eines Friedel-Crafts-Katalysators umsetzt.

Als Zuckerreste sind insbesonders die von Ribose, Deschyribose, Arabinose und Glucose zu nennen.

Zweckmässigerweise werden alle freien Hydroxygruppen der Zucker Ogeschützt. Als Zuckerschutzgruppen für die 1-Acyl- bzw. 1-0-Alkylderivate der Zucker kommen vorzugsweise die Benzoyl-, p-Chlorbenzoyl-,
Acetyl-, p-Nitrobenzoyl-, p-Toluyl- und Benzylgruppe in Frage.
Unter den Silylresten, die für die Reaktion geeignet sind, sind die

Unter den Silylresten, die für die Reaktion geeignet sind, sind die Trialkylsilylreste - vor allem der Trimethylsilylrest - hervorzu- heben.

Als Friedel-Crafts-Katalysatoren eignen sich alle bekannten Lewis-Säuren, besonders Zinntetrachlorid und Zinkchlorid sowie Gemische derselben.

Die Reaktion kann in den meisten gängigen Lösungsmitteln durchge-

führt werden, z.B. in Kohlenwasserstoffen, halogenierten Kohlenwasserstoffen (wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol), Schwefelkohlenstoff oder Dimethylformamid.

Ganz besonders geeignet sind Dichloräthan und Acetonitril. Die Umsetzung kann bei Raumtemperatur oder höheren Temperaturen, vorzugsweise bei 0 - 150°C, durchgeführt werden. Die Reaktionsteilnehmer werden im allgemeinen in annähernd äquimolekularer Menge ind die Reaktion eingesetzt, die Silylverbindung wird jedoch häufig in geringem Überschuss angewendet. Die Reaktion ist im allgemeinen bei Temperaturen von 20°C nach 12 Stunden beendet.

Es ist bekannt (Y.Furukawa, M.Honjo, Chem. Pharm. Bull. 16, 1076 (1968)), dass man Purine mit den oben genannten Zuckerderivaten mit Hilfe von Friedel-Crafts-Katalysatoren zu den entsprechenden N-Glykosiden umsetzen kann. Hingegen versagt diese Reaktion bei Uracilen und Cytosinen und den genannten Zuckerderivaten völlig.

009883/2196

1919307

Es ist daher überraschend, dass sich die Verbindungen der allgemeinen Formel II mit den oben genannten Zuckerderivaten in glatter
Reaktion und in sehr guten Ausbeuten in Gegenwart von Friedel-CraftsKatalysatoren, wie SnCl₄ oder ZnCl₂, zu den entsprechenden Kl-Glykosiden umsetzen lassen.

Es ist weiter sehr bemerkenswert, dass die gebildeten Glykoside fast ausschliesslich die β-Konfiguration besitzen. Das ist deshalb sehr verteilhaft, weil nur die β-Glykoside eine biologische Wirkung besitzen. Die nach dem erfindungsgemässen Verfahren erhaltenen Glykoside brauchen also nicht in komplizierter Weise in die Anomeren getrennt zu werden.

Die Ausbeuten, die man bei der Durchführung des neuen Verfahrens erhält, liegen im allgemeinen höher als bei den bisher bekannten Verfahren. Im Durchschnitt sind die Ausbeuten doppelt so hoch. Hinzu kommt, dass die Verbindungen der allgemeinen Formel I nach dem neuen Verfahren wesentlich einfacher herstellbar sind, da bei diesem Syntheseweg die stabilen geschützten Zucker nicht in ihre empfindlichen Halogenderivate überführt werden müssen.

Die nach dem neuen Verfahren hergestellten Verbindungen besitzen cytotoxische, antivirale und enzymhemmende Eigenschaften.

Beispiel 1

2',3',5'-Tri-O-benzoyl-6-aza-uridin

2,5 g (5mNol) 2,3,5-Tri-O-benzoyl-l-Acetylribose wurden in 100 ml absolutem Dichloräthan gelöst und mit 6,25 mNol der Bissilylverbindung des 6-Azauracils in 5,54 ml absolutem Benzol versetzt.

Nach Zugabe von 0,4 ml SnCl₄ (3,6mNol) wurde 4 Stunden bei Raumtemperatur gerührt. Dann wurde in 50 ml gesättigte NaHCO₃-Lösung Gegossen, mit 50 ml Dichloräthan verdünnt und durch Kieselgur gesaugt. An Stelle des Dichloräthans kann auch CH₂Cl₂, CHCl₃ oder Essigsäureäthylester verwendet werden. Die klare organische Phase wurde abgetrennt über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum abgezogen. Es blieben 2,7 g eines fast weissen kristallinen Rückstandes. Nach Umkristallisieren aus Äthanol wurden 2,6 g weisse Nadeln erhalten (92 % der Theorie) vom Schmelzpunkt 192-194° C.

Beispiel 2

2!,3',5'-Tri-O-benzoyl-5-äthyl-uridin

4,27 g 1-Acetyl-tribenz/lribose (8,4miol) 3,0 g Bissilylverbindung des 5-Äthyluracils (10,5 miol) 0,71 ml SnCl₄ (6mNol) in Dichloräthan (150 ml) wurden 2 Tage bei Raumtemperatur gerührt und wie in Beispiel 1 angegeben aufgearbeitet. Nach Umkristallisieren aus Äthanol erhält man 4,7 g (95 % der Theorie) weisse Prismen vom Schmelzpunkt 159 - 160° C.

Beispiel 3

2 LDesoxy-3!,5'-di-0-toluyl-6-aza-uridin

1,91 g (5 mMol) 1-0-Methyl-2-desoxy-3,5-di-toluyl-ribose wurde in 40 ml absolutem Dichloräthan gelöst und mit 6,25 mMol der bissilyl-verbindung des 6-Azauracils in 5,54 ml absolutem Benzol versetzt.

Nach Zugabe von 0,42 ml SnCl, in 30 ml absolutem Dichloräthan wurde 5 Stunden bei 50° C gerührt. Nach dem Erkalten wurde wie in Beispiel 1 beschrieben aufgearbeitet.

Der Rückstand (2,5 g Öl) wurde in wenig Chloroform gelöst und das Nucleosid mit Pentan gefällt. Die Behandlung wurde mit dem Nucleosid wiederholt. Das Nucleosid wurde in Äthanol gelöst, mit Aktivkohle geklärt und zur Kristallisation angesetzt. Es kristallisierten 0,5 g weisse Nadeln (20,5 % der Theorie) vom Schmelzpunkt 178 - 179° C.

Beispiel 4

2-Thio-2',3',5'-tri-0-benzoyl-uridin

2,6 g (5,16 mNol) 1-Acetyl-2,3,4-tri-O-benzoyl-ribose in
70 ml absolutem Dichloräthan 6,25 mNol Bissilylverbindung des
2-Thiouracils wurden in 5,3 ml absolutem Benzol gelöst und mit
0,42 ml SnCl₄ (6,25 mNol) in 20 ml absolutem Dichloräthan
24 Stunden bei Raumtemperatur (oder 5 Stunden bei 50°C) gerührt.
Die Aufarbeitung erfolgte analog Beispiel 1. Nach Kristallisation
des Rohproduktes aus Äthanol wurden 1,21 g weisse Nadeln (41 % der
Theorie) vom Schmelzpunkt 104 - 106°C erhalten.

Beispiel 5

2-Thio-5-cyano-2',3',5'-tri-0-benzoyl-cytidin

2,6 g l-Acetyl-2,3,5-tri-0-benzoyl-ribose (5,16 mMol) wurden in 60 ml absolutem Dichloräthan gelöst und mit 6,25 mMol Bissilylverbin-dung des 2-Thio-5-cyano-cytosins in 10,8 ml absolutem Benzol versetzt. Nach Zugabe von 0,84 ml SnCl₄ (7,2 mMol) wurde 24 Stunden bei Raumtemperatur gerührt.

Die Aufarbeitung erfolgte gemäss. Beispiel 1.

Der Rückstand wurde in CHCl₃ gelöst und das Nucleosid mit Pentan gefällt. Nach erneutem Umfällen wurde es in Aceton gelöst, mit Aktivkohle geklärt und nach Zusatz von Cyclohexan kristallisiert. Nach Umkristallisieren aus Benzol wurden 1,1 g feinkristallines Material (36,4 % der Theorie) vom Schmelzpunkt 130 - 135° C erhalten.

Beispiel 6

1-(-'-Desoxy-3',5'-di-O-p-nitrobenzoyl-ribofuranosyl)-5-.cd.-uracil 6,1 g Bissilylverbindung des 5-Joduracils (16 mHol) wurden in 50 ml absolutem Dichloräthan gelöst und mit 7,12 g 1-O-Methyl-2-desoxy-3,5-di-p-nitrobenzoylribose (16 mHol) in 100 ml absolutem Dichloräthan versetzt. Nach Zugabe von 1,87 ml SnCl₄ (16 mHol) in 15 ml absolutem Dichloräthan wurde über Nacht gerührt. Nach erneutem Versetzen mit 0,94 ml SnCl₄ (8 mHol) in 10 ml absolutem Äthylenchlorid wurde weitere 6 Stunden gerührt. Dann wurde mit 0,5 l CH₂Cl₂ verdünnt, mit 200 ml NaHCO₃-Lösung geschüttelt und über Kieselgur abgesaugt. Das Kieselgur wurde gut ausgewaschen. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und im Vakuum eingeengt, wobei das Reaktionsprodukt auszukristallisieren begann. Nach Abdampfen des Lösungsmittels wurde der Zucker mit Toluol herausgekocht. Das Nucleosid wurde aus Dioxan/Alkohol umkristallisiert.

Ausbeute 4,73 g (45,3 % der Theorie) vom Schmelzpunkt 247-249° C.

- 7 -

relapiel 7

-Unic-b-cycno-cytidin-2'-desoxy-3',5'-ditoluylat

1.9 & 1-0-Nethyl-2-desoxy-3,5-di-toluylribose (5 mMol) wurden in 70 ml absolutem Dichloräthan gelöst und mit 6,25 mMol der Bissilylverbindung des 2-Thio-5-cyano-cytosins in 5,8 ml absolutem Benzol versetzt. Nach Zugabe von 0,42 ml SnCl₄ (3,6 mMol) wurde 3 Stunden bei Raumtemperatur gerührt. Dann wurde wie in Beispiel 1 beschrieben aufgearbeitet.

Der Rückstand wurde in Essigester gelöst und mit Aktivkohle geklärt. Das Nuclecsid wurde durch Umfällen mit Essigester/Pentan
vom Zucker befreit und aus Benzol/Cyclohexan umkristallisiert.
Ausbeute: 505 mg weisse Nadeln (21 % der Theorie) vom Schmelzpunkt
lie-140° C.

Beispiel 8

5-Mitro-uridin-tribenzoat

2.5 g 1-Acetyl-tribenzoylribofuranose (5 mMol) wurden in 100 ml absolutem Dichloräthan gelöst und mit 6,25 mMol der Bissilylverbindung des 5-Nitrouracils in 3,16 ml absolutem Benzol versetzt.

Nach Zugabe von 0,42 ml SnCl₄ (5,6 mMol) wurde 2 Stunden bei Raumtemperatur gerührt. Es wurde wie in Beispiel 1 aufgearbeitet. Nach Acciehen des Lösungsmittels blieben 2,85 g eines weissen Schaumes zurück.

Kristallisation aus Methylenchlorid/Hexan lieferte 1,85 g weisse Madeln (61,5 % der Theorie) vom Schmelzpunkt 140° C.

Beispiel 9

2-Thio-1--aza-thymidin-tribenzoat

verbinding des 2-Thio-6-aza-thymins in 7,9 ml absolutem Benzol und C,41 ml SnCl₄ (3,6 mMol) wurden in 100 ml absolutem Dichloräthan 5 Stunden gerührt. Es wurde wie in Beispiel 1 beschrieben aufgearbeitet. Das Rohprodukt wurde aus Äthanol kristallisiert. Man erhielt 2,41 g farblose Plättchen (82,6 % der Theorie) vom Schmelzpunkt 15c - 157° C.

Baispiel 10

1-(C'-Desoxy-3',5'-di-0-p-taluyl-ribofurancsyl)-5-jodo-urecil

5,64 g 1-0-Methyl-2-desoxy-3,5-di-toluylribose (10 mMol), 3,7 g Bissi-liverbindung des 5-Joduracils sowie 1,18 ml SnCl₄ (10 mMol) wurden in 75 ml absolutem CH₂Cl₂ gelöst. Es wurde 1,5 Stunden am Rückfluss gekicht. Dann wurde abgekühlt und wie in Beispiel 1 beschrieben aufgearbeitet.

Der Zucker wurde mit Pentan extrahiert und das Nucleosid aus Methanol kristallisiert.

Ausbeute: 1,6 g (27,4 % der Theorie) vom Schmelzpunkt 193 - 194° C.

Beispiel 11

o-Azauricintriacetat

1,9 g Tetraacetylribose (5 mMol), 6,25 mMol Bissilylverbindung des c-Azauracils in 5,54 ml absolutem Benzol sowie 0,42 ml SnCl₄
(3,c mMol) wurden in 100 ml absolutem Dichloräthan über Nacht bei Raumtemperatur gerührt. Es wurde wie in Beispiel 1 beschrieben aufgescheitet.

009883/2196

Das Rohprodukt - 1,4 g eines fast farblosen Öles - wurde aus Äthanol nach Zusatz eines Impfkristalles kristallisiert.

Ausbeute: 968 mg farblose Nadeln (52,2 % der Theorie) vom Schmelz-punkt 102 - 103° C.

Beispiel 12

6-Asa-thymidin-tribenzoat

2,5 g 1-Acetyl-2,3,5-tribenzoylribose (4,96 mMol), 6,25 mMol Bissi-lylverbindung des 6-Azathymins in 3,36 ml absolutem Benzol und 0,42 ml SnCl₄ (3,6 mMol) wurden in 100 ml absolutem Dichloräthan gelöst und 24 Stunden bei Raumtemperatur gerührt. Dann wurde wie in Beispiel 1 beschrieben aufgearbeitet. Nach Abdampfen des Lösungsmittels blieben 2,4 g einer weissen viskosen Masse zurück, die nach Umkristallisieren aus Äther/Äthanol einen Schmelzpunkt von 132 - 153° C besass. Ausbeute: 2,2 g (77 % der Theorie).

Beispiel 13

1-(2',3',4',5'-Tetra-acetyl-glucopyranosyl)-6-aza-uracil

1,95 g Pentaacetylglucose (5 mMol), 6,25 mMol Bissilylverbindung des 6-Azauracils in 3,95 ml absolutem Benzol sowie 0,42 ml SnCl₄ (3,6 mMol) wurden in 100 ml absolutem Dichloräthan 5 Stunden bei 60° C gerührt. Nach dem Abkühlen wurde wie in Beispiel 1 beschrieben aufgearbeitet.

Es blieben nach Abziehen des Lösungsmittels 1,59 g eines gelblichen Öles zurück. Aus dem Öl wurden durch Kristallisation aus Äthanol 1,26 g (56,8 % der Theorie) farblose Nadeln vom Schmelzpunkt 206 - 207°C erhalten.

- lo -

Beispiel 14

1-(1',5',5'-Tri-penzyl-arabinofuranosyl)-6-aza-uracil

2,51 g 1-Acetyl-2,3,5-tri-benzyl-arabinofuranose (5 mMol), 6,25 mMol Bissilylverbindung des 6-Azauracils in 3,95 ml absolutem Benzol sowie 0,42 ml SnCl₄ (3,6 mMol) wurden in 100 ml absolutem Dichloräthan gelüst und 5 Stunden bei Raumtemperatur gerührt. Es wurde wie in Beispiel 1 beschrieben aufgearbeitet.

Der ölige Rückstand (2,43 g) wurde aus Methylenchlorid/Pentan kristallisiert. Man erhielt 0,7 g seidenglänzende lange Nadeln (27,2 % der Theorie) vom Schmelzpunkt 123 - 124° C.

Beispiel 15

4-C-Kethyl-5-jod/uridin-tribenzoat

2,5 g l-Acetyl-tribenzoylribose (5 mMol) und 1,66 g 2,4-Dimethoxy-5-jod-pyrimidin (6,25 mMol) sowie 0,84 ml SnCl₄ (7,2 mMol) wurden in 100 ml absolutem Dichloräthan 4 Stunden gerührt. Es wurde wie in Beispiel 1 beschrieben aufgearbeitet.

Nach Abziehen des Lösungsmittels blieben 3,3 g eines gelbgefärbten Üles zurück.

Kristallisation aus Äthanol lieferte 2,31 g (66,5 % der Theorie) weisse Nadeln vom Schmelzpunkt 183 - 184° C.

Beispiel 16

Die Reaktion gemäss Beispiel 1 wurde in verschiedenen Lösungsmitteln und mit mehreren Katalysatoren durchgeführt. Die nachfolgende Tabelle gibt eine Übersicht über die Reaktionsausbeuten unter verschiedenen Reaktionsbedingungen.

•	-		4 K	anobediugungen Tamperatur	Anoboute in %	, u.
Lögungsmilbegl	Katal yeat	10.1r	(12,1,1,1,1,1)	(0)	ron	utl'isi
01-0112-011,-01	SnC1.4	5,6 rE01	†/	20	75	2.5
CH 5 CIN	$\mathrm{nncl}_{t_{\mathrm{p}}}$	5,0 mfol	†)	Ç.	1.6	5,55
Dioxen	5nc1,	റ്,റ സ്പി	47	101	77	57
Tetra h ydrofuran	snc1,	S,C mMol	6	દ્રંગ	85	75
Dimethyl formamid	SnC1,	5,6 mMc1	†/	153	77.5	68,5
Benzol	Suc1,	5,6 mHol	9	80	। ૬'୦ନ	
Toluol	SnC14	j,c nMol	g,	111	। 9੨	99
cs ₂	SnC1,4	3,6 mMol	4	46	48	67
	SnCl4	5,6 mmol	†	7.7	£6 [']	73
01-cH2-CH2-01	Sucl	98 0 mg	5	4/8	100	83
cl-ch2-ch2,-cl	Ticla	o,4 ml	90	. 0∂	4 59	0+7
Chlorbenzol	Alcl	9ம் வ	9	132	69	0+7
Te trachlorä than	FeC1,	1,13 8	5	146	1 1/1/	25
cs ₂	BF 5-18120	. 0,83 ml	9	46	20	60

Patentanspruch

Verfahren zur Herstellung von Verbindungen der allgemeinen Formel

worin R ein Wasserstoffatom, eine Alkylgruppe mit 1-4 C-Atomen, ein Halogenatom, eine Nitro- oder Nitrilgruppe, W ein Sauerstoff- oder Schwefelatom, X ein Sauerstoffatom oder die Gruppe N-B (mit B in der Bedeutung eines Wasserstoffatoms oder einer Alkylgruppe mit 1-4 C-Atomen), Y ein Stickstoffatom oder die Gruppe CH und Z einen geschützten Zuckerrest bedeuten, dadurch gekennzeichnet, daß man das 1-Acyl- bzw. 1-O-Alkylderivat des geschützten Zuckers mit Verbindungen der allgemeinen Formel

worin R und Y die oben genannte Bedeutung besitzen, D einen silylierten O- oder N-B-Rest, worin B dasselbe wie oben bedeutet, oder eine niedere Alkoxygruppe und E einen silylierten O- oder S-Rest oder eine niedere Alkoxygruppe bedeuten, in Gegenwart eines Friedel-Crafts-Katalysators umsetzt.