DESIGN AND IMPLEMENTATION OF HETEROGENEOUS SENSOR-BASED EMBEDDED SYSTEM FOR FLOOD MANAGEMENT

- by Subhajit Sahu (110EC0181)
- under the guidance of **Prof. D. P. Acharya**

OBJECTIVE

•To design and implement a modern, internetbased flood management system, that is simple, cost effective, easy to deploy and use.

PROJECT OUTPUT

Heterogeneous Sensor Module

Wireless Sensor Module – (ATmega328, FLY900)

Firmware - (C++, Arduino)

Cloud-based Gateway

Cloud Server Software -(C#, ASP.NET)

Local Host Storage Module

Local Host Software – (C#, SQLite)

FEATURES

- ■Low Power 20mW
- Low unit cost ₹ 3000
- Low usage cost ₹ 20 / month
- Compact and Portable
- Easily Scalable
- •Simple to use

PROJECT DESCRIPTION

- Hardware Architecture
- Software Architecture
- System Data Flow
- System on Single PCB

HARDWARE ARCHITECTURE

HARDWARE: IMPLEMENTATION

Microcontroller Side

Wireless GSM & GPRS Side

SOFTWARE ARCHITECTURE

DATA FLOW: ORIGIN

Block Diagram

Sensor Module Acquisition Sensing SMS Alert Module Numbers Hexadecimal SMS Alert **Data Encoding** Message Module Former Transmission **GSM & GPRS HTTP** Wireless Communication Formatter Module

DATA FLOW: ENCODING AND FORWATTING

Block Diagram

Sensor Module Acquisition Sensing SMS Alert Module Numbers Hexadecimal SMS Alert **Data Encoding** Message Module Former Transmission **GSM & GPRS HTTP** Wireless Communication Formatter Module

DATA FLOW: WIRELESS TRANSMISSION

Block Diagram

Sensor Module Acquisition Sensing SMS Alert Module Numbers Hexadecimal SMS Alert **Data Encoding** Message Module Former Transmission **GSM & GPRS** Wireless **HTTP** Communication Formatter Module

DATA FLOW: INTERMEDIATE GATEWAY

Block Diagram

Cloud-based Gateway Request Store / **HTTP Request** Retrieve Handler Differentiate Retrieve Storage Message Queue Former Response HTML **HTTP Web** Responder Formatter

DATA FLOW: RETRIEVAL FROM GATEWAY

Block Diagram

Local Host Storage Module


```
file:///C:/Home/Develop/WASP/App/Server/UhuruCl
Database Data\Wasp.db initialized.
Data:Sensor Id: 1
Record Time: 1654604
Value: 168.19140625
Data:Sensor Id: 1
Record Time: 1720112
Value: 207.15625
Data:Sensor Id: 1
Record Time: 1785618
Value: 168.24609375
```


DATA FLOW: STORAGE TO DATABASE

Block Diagram

Local Host Storage Module Request **HTTP Request** HTML Page to Gateway Receiver Request HTML Page **Timing Control** Scanner Storage **SQLite** Hexadecimal Database Data Decoder Storage

DATA FLOW: DATA VISUALIZATION

Block Diagram

Local Host Storage Module

Request **HTTP Request** HTML Page to Gateway Receiver Request HTML Page **Timing Control** Scanner Storage **SQLite** Hexadecimal Database Data Decoder Storage

SYSTEM ON SINGLE PCB: DESIGN

Schematic Design

PC Board Layout

SYSTEM ON SINGLE PCB: DESIGN

Component Side - Gerber 3D

Solder Side - Gerber 3D

SOFTWARE / IDES USED

Heterogeneous Sensor Module

Cloud-based Gateway

SOFTWARE / IDES USED

Local Host Storage Module

Data Searching and Usage

CONCLUSION

•An internet-based heterogeneous-sensor flood management system was developed that measures a parameter (air pressure) and delivers it wirelessly, wherever desired (office).

MAJOR REFERENCES

- Xiang Yang Li, K.W. Chau, Chun Tian Cheng, Y.S. Li. A Web-based flood forecasting system for Shuangpai region. Advances in Engineering Software 37 (2006), 146-158.
- Bartosz Balis, Marek Kasztelnik, Marian Bubak, Tomasz Bartynski, Tomasz Gubala, Piotr Nowakowski, Jeroen Broekhuijsen. The UrbanFlood Common Information Space for Early Warning Systems. Internaltional Conference on Computational Science, ICCS 2011.
- Ibrahim Demir, Witold F. Krajewski. Towards an Integrated Flood Information System: Centralized data access, analysis, and visualization. Environmental Modeling & Software 50 (2013), 77-84.
- V.V. Krzhizhanovskaya, G.S. Shirshov, N.B. Melnikova, R.G. Belleman, F.I. Rusadi, B.J. Broekhuijsen, B.P. Gouldby, J. Lhomme, B. Balis, M. Bubak, A.L. Pyayt, I.I. Mokhov, A.V. Ozhigin, B. Lang, R.J. Meijer. Flood early warning system: design, implementation and computational modules. International Conference on Computational Science, ICCS 2011.
- W. Al-Sabhan, M. Mulligan, G.A. Blackburn. A real-time hydrological model for flood prediction using GIS and the WWW. Computers, Environment and Urban Systems 27 (2003), 9-32.

