CASE STUDY

Sentiment Analysis

<u>Sentiment analysis</u> uses natural language processing, **text analysis**, and **statistics** to analyze customer sentiment.

Sentiment analysis studies the subjective information in an expression: opinions, appraisals, emotions, or attitudes towards a topic, person or entity.

Expressions can be classified as positive, negative, or neutral.

Data:

Amazon Product Review

Extract reviews using Amazon Reviews Exporter,

Product: Ikigai (book).

Output:

Sentiment scores based on reviews.

Dataframe:

Attributes	Туре		
id	character		
profile name	character		
text	character		
date	character		

title	character
rating	integer
images	character
helpful	integer

Packages:

1. Syuzhet -

The package comes with four sentiment dictionaries and provides a method for accessing the robust, but computationally expensive, sentiment extraction tool developed in the NLP group at Stanford.

> get_nrc_sentiment : Calls the NRC sentiment dictionary to calculate the presence of eight different emotions and their corresponding valence in a text file.

2. Wordcloud -

Functionality to create pretty word clouds, visualize differences and similarity between documents, and avoid overplotting in scatter plots with text.

3. tm -

A framework for text mining applications within R.

- > corpus: The main structure for managing documents in tm is a so-called Corpus, representing a collection of text documents. A corpus is an abstract concept, and there can exist several implementations in parallel.
- > tm_map: Interface to apply transformation functions (also denoted as mappings) to corpora.

THE TEN EMOTIONS ARE:

- 1. anger
- 2. anticipation
- 3. disgust
- 4. fear
- 5. joy
- 6. sadness
- 7. surprise
- 8. trust
- 9. negative
- 10. positive

print(review_score)							
anger ant	icipation	disgust	fear	joy	sadness		
117	821	108	135	837	159		
surprise	trust	negative	positive	score			
367	1011	322	1787	1465			

IMG: SENTIMENT SCORE

IMG: WORD CLOUD

IMG: RESULT

CONCLUSION:

The above graph shows that the overall product review is POSITIVE.

Similarly we can calculate sentiment scores for other products too and build a NLP model.

CODE

#For data set of reviews, use Amazon Reviews Exporter to extract reviews

```
#product used : Ikigai (book)
#load packages into R
library(wordcloud)
                             #create word cloud
library(tm)
                             #text mining (text analytics)
library(syuzhet)
                             # Syuzhet is concerned with the manner in which
                             #the elements of the story (fabula)
                             #are organized (syuzhet).
install.packages("syuzhet")
install.packages("wordcloud")
install.packages("tm")
#import data into R
reviews1 <- read.csv(file.choose(), header=T)</pre>
#to check the structure of file
str(reviews1)
#use corpus
#this function translates value labels into a specific encoding
corpus <- iconv(reviews1$text)</pre>
corpus <- Corpus(VectorSource(corpus))</pre>
                             #only 1st 5 observations, 1st doc is first review..
inspect(corpus[1:5])
#cleaning corpus
corpus <-tm map(corpus,tolower)</pre>
                                                   #convert to lower case
```

```
corpus <-tm_map(corpus,removePunctuation)</pre>
corpus <-tm map(corpus,removeNumbers)</pre>
corpus <-tm map(corpus,removeWords,stopwords("english"))</pre>
corpus <-tm map(corpus,removeWords,c("book","money","read"))</pre>
corpus <-tm map(corpus, stripWhitespace) #remove spaces
inspect(corpus[1:5])
                                           #creating final object
reviews final <- corpus
#create a TERM DOCUMENT
#a way of representing the words in the text,
#as a table (or matrix) of numbers.
# rows-text responses to be analysed, columns- text that are to be used in
the analysis.
tdm <-TermDocumentMatrix(reviews final)</pre>
tdm <-as.matrix(tdm)
tdm[1:10,1:5]
                               #1st 10 rows, 1st 5 columns
#
          Docs
# Terms 1 2 3 4 5
# aside 1 0 0 0 0
```

```
# book 4 2 0 10 3
# brilliant 10000
# change 1 0 0 0 0
# define 10000
# deliver 10000
# differently 10000
# even
       10000
# everyone
            21000
# expectations 2 0 0 0 0
#Bar plot of words
w <- rowSums(tdm)</pre>
w <- subset(w,w>25)
                         #only words whose occurrence is greater than 25
barplot(w, las=2, col="blue")
#Create a word cloud
w <-sort(rowSums(tdm),decreasing = T) #T-true
wordcloud(words = names(w),
     freq = w,
     max.words = 40,
     random.order = T,
     min.freq=5,
     colors = brewer.pal(25,"Dark2"),
     scale = c(3,0.3)
#obtain sentiment scores
sentiment data <- iconv(reviews1$text)</pre>
#take text variable pass that into fn get nrc sentiment
```

```
s <- get nrc sentiment(sentiment data)</pre>
#which gives us the score on emotions
s[1:10,]
#calculate review wise score
s$score <- s$positive - s$negative
s[1:10,]
#write scores into a csv file
write.csv(x=s, file = "C:/Users/sejal/Desktop/Final_score2.csv")
#check product(book) sentiment
review_score <- colSums(s[,]) #summing columns
print(review score)
#bar plot
barplot(colSums(s),
    las=2,
    col = rainbow(10),
    ylab = 'Count',
    main = 'Sentiment')
```

#Since positive > negative, overall product review is positive