Ministerul Educație, Cercetării, Tineretului și Sportului Olimpiada Națională de Informatică Iași, 30.03 – 05.04.2012 Proba 1

Sursa: copaci.c, copaci.cpp, copaci.pas

Clasa a-IX-a

Problema 2 - copaci

100 puncte

Se consideră \mathbf{n} copaci de diferite înălțimi, aflați în linie dreaptă la distanțe egale, numerotați de la $\mathbf{1}$ la \mathbf{n} . Pentru fiecare copac se cunoaște înălțimea sa \mathbf{H}_i . Cum și copacii simt nevoia să socializeze, fiecare dintre ei are prieteni printre ceilalți copaci. Prietenii oricărui copac \mathbf{i} se pot afla atât la stânga, cât și la dreapta sa. Relațiile de prietenie sunt definite în felul următor: pentru fiecare copac \mathbf{i} considerăm un șir

 $d_1, d_2, ..., d_x$ reprezentând prietenii copacului \mathbf{i} situați în dreapta sa și un șir $s_1, s_2, ..., s_y$ reprezentând prietenii copacului \mathbf{i} situați în stânga acestuia. Copacii din cele două șiruri corespunzătoare unui copac \mathbf{i} formează împreună lista prietenilor acestuia. Șirurile corespunzătoare copacului \mathbf{i} se definesc astfel:

- $d_1 = i+1$ (dacă i=n, atunci copacul i nu are niciun prieten la dreapta sa, șirul d rămânând vid);
- pentru fiecare $\mathbf{k} \ge \mathbf{2}$, d_k este cel mai mic indice $(\mathbf{1} \le d_k \le \mathbf{n})$ cu proprietatea că $d_k > d_{k-1}$ și $H_{d_k} > H_{d_{k-1}}$. Dacă d_k nu există, atunci lista de prieteni la dreapta ai copacului \mathbf{i} s-a încheiat și construirea șirului se oprește la acest pas.
- $S_1 = i-1$ (daca i=1, atunci copacul i nu are niciun prieten la stânga sa, sirul S rămânând vid);
- pentru fiecare $\mathbf{k} \ge \mathbf{2}$, S_k este cel mai mare indice ($\mathbf{1} \le S_k \le \mathbf{n}$) cu proprietatea că $S_k < S_{k-1}$ și $H_{s_k} > H_{s_{k-1}}$. Dacă S_k nu există, atunci lista de prieteni la stânga ai copacului \mathbf{i} s-a încheiat și construirea șirului se oprește la acest pas.

De exemplu, în figura de mai jos sunt reprezentați 7 copaci, fiecare având precizată sub el valoarea înălțimii sale. Primul copac din stânga are indicele 1, iar ultimul are indicele 7.

Copacul 1 este prieten cu copacul 2 fiind vecini, cu copacul 5 (deoarece copacul 5 este primul din dreapta lui 2 cu înălțimea mai mare strict decât înălțimea lui 2). La dreapta copacului 5 nu exista niciun copac cu înălțimea mai mare strict decât a sa, deci singurii prieteni ai copacului 1 sunt 2 și 5.

Pentru copacul 3, prietenii la stânga sa sunt copacii 2 și 1, iar cei de la dreapta sa sunt copacii 4 și 5. Pentru copacul 6, singurul prieten la stânga este copacul 5, iar la dreapta copacul 7.

Copacul 7 poate avea prieteni doar la stânga, aceștia 6 4 2 3 8 5 sunt 6 și 5 (la stânga copacului 5 nu mai există niciun copac cu înălțimea mai mare strict decât 8).

Grădinarul Marian vrea să aleagă 3 copaci diferiți dintre cei n pentru a-i planta în altă grădină. El dorește ca dintre cei 3 copaci, oricum ar alege A si B, 2 dintre ei, atunci A este prieten cu B și B este prieten cu A (relațiile de prietenie se consideră cele stabilite inițial). Marian are mai multe opțiuni și se întreabă în câte moduri distincte poate alege cei 3 copaci cu proprietatea cerută.

Cerință

Determinați în câte moduri se pot alege 3 copaci diferiți dintre cei n cu proprietatea că, oricum am alege 2 copaci dintre cei 3, fie acestia copacul A si copacul B, atunci A este prieten cu B si B este prieten cu A.

Date de intrare

Fişierul de intrare copaci. in conține pe prima linie un număr natural n, reprezentând numărul de copaci, iar pe a doua linie n numere naturale nenule, separate prin câte un spațiu, reprezentând înălțimile copacilor.

Date de ieşire

Fișierul de ieșire copaci.out va conține pe prima linie un număr natural reprezentând numărul de moduri în care Marian poate alege 3 copaci cu proprietatea din enunț.

Restricții și precizări

- $1 \le n \le 200.000$;
- 1 \leq H_i \leq 200;
- nu vor exista 2 copaci alăturați cu aceeași înălțime;
- două triplete de copaci se consideră distincte dacă există cel puţin un copac din primul triplet care nu se află şi în al doilea triplet;
- pentru 30% din teste, $1 \le n \le 200$.

Exemplu

copaci.in	copaci.out	Explicație
7 6 4 2 3 8 5 8	4	Copacul 1 este prieten cu copacii: 2, 5 Copacul 2 este prieten cu copacii: 1, 3, 4, 5 Copacul 3 este prieten cu copacii: 1, 2, 4, 5 Copacul 4 este prieten cu copacii: 1, 2, 3, 5 Copacul 5 este prieten cu copacii: 1, 2, 4, 6, 7 Copacul 6 este prieten cu copacii: 5, 7 Copacul 7 este prieten cu copacii: 5, 6 Modurile in care Marian poate alege cei 3 copaci sunt: (1, 2, 5), (2, 4, 5), (2, 3, 4), (5, 6, 7).

Timp maxim de executare/test: 0.7 secunde

Total memorie disponibilă: 16 MB din care 4 MB pentru stivă

Dimensiunea maximă a sursei: 10KB