ECE 341

Lecture # 7

Instructor: Zeshan Chishti zeshan@pdx.edu

October 20, 2014

Portland State University

Sequential Multiplication

- Recall the rule for generating partial products:
 - If the ith bit of the multiplier is 1, add the appropriately shifted multiplicand to the current partial product.
 - Multiplicand is shifted left when being added to the partial product

Key Observation:

 Adding a left-shifted multiplicand to an unshifted partial product is equivalent to adding an unshifted multiplicand to a right-shifted partial product

Lecture Topics

- Multiplication of Unsigned Numbers
 - Sequential Circuit Multiplier
- Multiplication of Signed Numbers
 - Booth Algorithm
- Fast Multiplication
 - Bit-pair Recording of Multipliers
- Reference:
 - Chapter 9: Sections 9.3.2, 9.4, 9.5.1

Sequential Circuit Multiplier

Sequential Multiplication Algorithm

- Initialization:
 - Load multiplicand in "M" register, multiplier in "Q" register
 - Initialize "C" and "A" registers to all zeroes
- Repeat the following steps "n" times, where "n" is the number of bits in the multiplier
 - If (LSB of Q register == 1)
 A = A + M (carry-out goes to "C" register)
 - Treat the C, A and Q registers as one contiguous register and shift that register's contents right by one bit position
- After the completion of "n" steps
 - Register "A" contains high-order half of product
 - Register "Q" contains low-order half of product

Sequential Multiplication Example

Sequential Multiplication Example

Sequential Multiplication Example

Sequential Multiplication Example

Signed Multiplication

Sequential Multiplication Example

Signed Multiplication

 Considering 2's-complement signed operands, what will happen to (-13)×(+11) if following the same method of unsigned multiplication?

We must extend sign-bit value of multiplicand to left as far as product will extend

Signed Multiplication (cont.)

- If the multiplier is +ve:
 - The unsigned multiplication hardware works fine as long as it is augmented to provide for sign extension of partial products
- If the multiplier is –ve:
 - Form the 2's-complement of both the multiplier and the multiplicand and proceed as in the case of a +ve multiplier
 - This is possible because complementation of both operands does not change the value or the sign of the product
- A technique that works equally well for both negative and positive multipliers – Booth algorithm

Booth Algorithm (cont.)

• Since 0011110 = 0100000 – 0000010, if we use the expression to the right, what will happen?

Booth Algorithm

- Booth algorithm treats both positive and negative 2's complement operands uniformly
- To understand Booth algorithm:
 - Consider a multiplication scenario, where the multiplier has a single block of 1s, for example, 0011110. How many appropriately shifted versions of the multiplicand are typically added to derive the product?

								0	1	0	1	1	0	1
								0	0 -	+1 -	+1-	+ 1 -	+1	0
								0	0	0	0	0	0	0
We need as many	1						0	1	0	1	1	0	1	
additions as the						0	1	0	1	1	0	1		
number of 1s					0	1	0	1	1	0	1			
				0	1	0	1	1	0	1				
			0	0	0	0	0	0	0					
		0	0	0	0	0	0	0						
•	0	0	0	1	0	1	0	1	0	0	0	1	1	0

Booth Algorithm (cont.)

 In general, in the Booth scheme, -1 times the shifted multiplicand is selected when moving from 0 to 1, and +1 times the shifted multiplicand is selected when moving from 1 to 0, as the multiplier is scanned from right to left

Booth recoding of a multiplier

Booth Algorithm Example for Negative Multiplier

Works fine as long as we do appropriate sign extension for the negative summands (versions of the multiplicand)

Booth Multiplier Recording Table

Mul	tiplier	Version of multiplicand							
Bit i	Bit <i>i-</i> 1	selected by bit							
0	0	0 X M							
0	1	+1 XM							
1	0	-1 XM							
1	1	0 x M							

Booth Algorithm Efficiency

- Worst case: 0's and 1's are alternating => n summands
- <u>Best case</u>: a few long strings of 1's (skipping over 1s) => small no. of summands

Worst-case		1	0	1	0	1	0	1 0	1	0	1	0	1	0	1
multiplier	+1	-1	+1	-1	+1	-1	+1	-1 +1	-1	+1	-1	+1	-1	+1	-1
Ordinary	1	1	0	0	0	1	0	1 1] [0	1	1	1	1	0	0
multiplier	0	-1	0	0	+1	-1	+1	0 -1	+1	0	0	0	-1	0	0
Good	0	0	0	0	1	1	1	1 1	0	0	0	0	1	1	1
multiplier	0	0	0	+1	0	0	0	0 -1	0	0	0	+1	0	0	-1

Fast Multiplication

Bit-Pair Recoding of Multipliers

- For each pair of bits in the multiplier, we require at most one summand to be added to the partial product
- For *n*-bit operands, it is *guaranteed* that the max. number of summands to be added is *n*/2

Example of bit-pair recoding derived from Booth recoding

Bit-Pair Recoding of Multipliers (cont.)

Multiplie	er bit-pair	Multiplier bit on the right	•				
<i>i</i> + 1	i	<i>i</i> −1	selected at position				
0	0	0	0 X M				
0	0	1	+1 X M				
0	1	0	+1 X M				
0	1	1	+2 X M				
1	0	0	-2 X M				
1	0	1	-1 X M				
1	1	0	-1 X M				
1	1	1	0 X M				

Table of multiplicand selection decisions

Example

