Esercizio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$, isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i coefficienti
Esercizio 2	Calcolare il det di una 2×2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le λ in comune alle 3×3 sono quelle che $rk(A)=2$, tutte le altre $rk(A)=3$;
Esercizio 3	 Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che Aⁿ = 0) allora det A = 0 → Nilpotente non invertibile allora det A = 0 Se A è una matrice simmetrica, allora A² è simmetrica → M simmetrica se M = M^T → M^T · M^T = (M·M)^T → M = M^T, sostituisci M con A² Sia A ∈ M_{3,2}(ℝ) di rango 2, allora il sistema lineare AX = B ammette soluzioni comunque si scelga la matrice B dei termini noti. → Se si sceglie B t.c rk(A B) = 3 allora il sistema è impossibile (non ammette soluzioni) per Rouché-Capelli (∞²⁻³) A³ - A = I₂ → A(A² - I) = I ⇒ (A² - I) = A⁻¹ quindi AA⁻¹ = I (A è invertibile) A³ - A = 0 → A(A² - I) = 0 ⇒ A = 0, A² - I = 0 ⇒ A = 0, A² = I quindi A è invertibile se A² = I altrimenti se A = 0 non è invertibile A³ - A = (1/2) → A(A² - I) = (1/2) ⇒ A = (1/2) → A = (1/2) →
	• Se $A \in B$ sono invertibili, $AB \in AB$ invertibile $AB \in AB$ invertibile se $AB \in AB$ e per Binét $AB \in AB$ e det $AB \in AB$ e det $AB \in AB$
	• Se $A^{13} = B$ e B è invertibile, allora A è invertibile \to Vero, $\det(A^{13}) = \det(B) \Rightarrow \det(A)^{13} = \det(B)$ sappiamo che $\det(B) \neq 0$ quindi $\det(A) \neq 0$ e quindi A è invertibile
	• I vettori colonna di $A \in M_n(\mathbb{R})$ generano $\mathbb{R}^n \to A$ è invertibile perchè visto che i vettori sono base di \mathbb{R}^n allora la matrice ha rango $n(\text{massimo})$ e quindi è invertibile

 $\mathbf{Q}\mathbf{u}\mathbf{i}$ ci andranno gli esercizi già fatti

$\sqrt{25} = 5$	$\sqrt{100} = 10$	$\sqrt{225} = 15$	$\sqrt{400} = 20$	$\sqrt{625} = 25$	$\sqrt{900} = 30$
$\sqrt{16} = 4$	$\sqrt{81} = 9$	$\sqrt{196} = 14$	$\sqrt{361} = 19$	$\sqrt{576} = 24$	$\sqrt{841} = 29$
$\sqrt{9} = 3$	$\sqrt{64} = 8$	$\sqrt{169} = 13$	$\sqrt{324} = 18$	$\sqrt{529} = 23$	$\sqrt{784} = 28$
$\sqrt{4} = 2$	$\sqrt{49} = 7$	$\sqrt{144} = 12$	$\sqrt{289} = 17$	$\sqrt{484} = 22$	$\sqrt{729} = 27$
$\sqrt{1} = 1$	$\sqrt{36} = 6$	$\sqrt{121} = 11$	$\sqrt{256} = 16$	$\sqrt{441} = 21$	$\sqrt{676} = 26$