[Supplementary Materials]

The transcriptional landscape and mutational profile of lung adenocarcinoma

Authors

Jeong-Sun Seo, Young Seok Ju, Won-Chul Lee, Jong-Yeon Shin, June Koo Lee, Thomas Bleazard, Junho Lee, Yoo Jin Jung, Jung-Oh Kim, Jung-Young Shin, Saet-Byeol Yu, Jihye Kim, Eung-Ryoung Lee, Chang-Hyun Kang, In-Kyu Park, Hwanseok Rhee, Se-Hoon Lee, Jong-Il Kim, Jin-Hyoung Kang and Young Tae Kim

Table of Contents

Supplementary Information
I. Cancer samples analyzed in this study 4
II. Gene expression analyses 5
III. Statistical power of this study for fusion gene detection ····· 6
Supplementary Figures
Supp. Figure 1: Schematic flow chart summarizing this study
Supp. Figure 2: Number of somatic point mutations for each lung cancer specimen · · · · · 8
Supp. Figure 3: Specific gene expression patterns which support the existence of <i>ALK</i> , <i>RET</i> , <i>ROS1</i> and <i>PDGFRA</i> fusion genes in a cancer tissue
Supp. Figure 4: Examples of fusion gene validation by cDNA PCR and Sanger sequencing · · · · 10
Supp. Figure 5: Recurrent skipping of exon 9 in the FBLN2 tumor suppressor gene in lung adenocarcinoma 11
Supp. Figure 6: The amount of smoking and number of somatic point mutations In lung cancer
Supp. Figure 7: Expression profiles of 87 lung adenocarcinomas compared to averaged gene expression levels of 77 adjacent paired normal tissues
Supp. Figure 8: Relative expression of genes (Z-score) for 87 lung adenocarcinomas 14
Supp. Figure 9: Distribution of read-allele frequency of somatic SNVs identified from 87 lung adenocarcinomas for estimating tumor purity
Supp. Figure 10: Difference of global gene expression levels between primary lung adenocarcinomas and adjacent paired-normal tissues
Supp. Figure 11: Selected cancer outlier genes (COGs) by outlier score among protein kinases and genes deposited in COSMIC database
Supplementary Tables
Supp. Table 1: The clinical and mutational information of 200 lung adenocarcinoma patients enrolled in this study

	statistics of massively parallel sequencing experiments performed in	19
	matic non-synonymous and coding short-indel mutations identified from the sequencing of 87 lung adenocarcinomas	
Supp. Table 4: The accu	racy of somatic point mutation detection ·····	21
Supp. Table 5: Mutual ex	cclusivity and concurrence of cancer specific alterations	22
	fusion genes identified from transcriptome sequencing of 87 lung cinomas.	23
	s pairs of primers used for PCR and Sanger sequencing validation of nes	24
• • • • • • • • • • • • • • • • • • • •	exclusivity of protein tyrosine kinase fusion genes and 14 skipping with known driver mutations of lung adenocarcinomas ··· 2	25
	recurrent exon-skipping events identified from transcriptome g of 87 lung adenocarcinomas ····································	26
	sion map of 87 cancer and 77 adjacent paired-normal tissues ed in RPKM values on all reference genes······	27
sequencin	5,719 cancer outlier genes (COGs) identified from transcriptome g of 87 lung adenocarcinomas and 77 adjacent paired-normal tissues	28
	tion between lymph node metastasis and somatic mutations in g cancer tissues ··································	29
	specific aberrations of note for 25 cancer tissues which do not harbor I driver mutations	30
Supp. Table 14: Three s	ubgroups of genes in differentially expressed gene analysis	31
References		
		32

Supplementary Information

I. Cancer samples analyzed in this study

See also Supplementary Figure 1.

We collected 200 fresh surgical specimens of primary lung adenocarcinoma from patients who underwent lobectomy at Seoul National University Hospital (n=164; from 2010 to September 2011) and Seoul St. Mary's Hospital (n=36; samples deposited in tissue bank from 2009). Twenty patients from our previous report were included in this cohort¹. For each patient, we recorded diagnosis, gender, cancer stage and smoking status (Supplementary Table 1).

We performed screening genetic tests for three well-known driver mutations (exon 18-21 of EGFR (n=164), exon 2 of KRAS (n=37); and EML4-ALK fusion genes (n=163) (see Methods). Of the 200 cancer tissues, 110 tissues were positive for somatic mutations in one of EGFR (n=99), KRAS (n=6) and EML4-ALK (n=7), with two double-positive samples (1 $EGFR^{+}KRAS^{+}$ and 1 $EGFR^{+}EML4$ - ALK^{+}). Driver mutations in the remaining 90 samples were unknown.

We targeted these 90 samples for RNA sequencing. Excluding 3 samples which did not pass the RNA quality control, we obtained mRNA sequences from 87 lung adenocarcinomas. When available, we performed transcriptome (n=77) and whole-exome (n=76) sequencing of adjacent normal lung tissues for comparison between cancer and normal tissues (Supplementary Table 1 and 2).

II. Gene expression analyses

Using the RNA short-read data, we calculated expression levels for all currently known RefSeq genes (n=36,742; n=22,427 with redundant genes collapsed) in RPKM units² (Supplementary Table 10). The gene expression profiles are also available at our cancer-expression browser (http://gene.gmi.ac.kr/index.html). Of these 22,427 genes, we found evidence for active transcription (average expression level > 1 RPKM) of 14,740 and 14,076 genes in the cancer and paired-normal tissues, respectively.

Hierarchical clustering analysis of 3,051 genes for which expression levels showed significant variance among the 164 samples categorized the genes into three subgroups: a group with generally increased abundance in cancer (Subgroup 1; n=1,031), generally decreased abundance in cancer (Subgroup 2; n=1,232) and mixed expression patterns (Subgroup 3; n=614) (Supplementary Figure 10; Supplementary Table 14). These genes clearly differentiate cancer from normal tissues. As expected, group 2 included many genes related to normal lung function, such as surfactant genes (e.g. *SFTPA1*).

To identify a subset of genes, which are extremely highly expressed not generally but exclusively in a small number of cancer tissues only (which could be undetected by the hierarchical clustering), we performed outlier analyses. We detected a total of 6,719 cancer outlier genes (COGs) from 87 cancer tissues (Supplementary Table 11). We narrowed this list down to more functionally relevant genes (Supplementary Figure 11), such as *GUCY2C*, *CDX2*, *HMGA2*, *ERN2* and *PAX7*, by comparing them with 934 putative cancer related genes (union of 462 genes deposited in COSMIC³ v57 and 515 protein kinase genes⁴). Of these, *RET* protein tyrosine kinase (3rd strongest COG among protein kinases) was especially interesting, since fusion of this gene with *KIF5B* was recently identified as a transforming driver mutation in lung adenocarcinoma¹. Of 87 cancer tissues, nine (10.3%) showed clear *RET* expression as expected¹. Of these, five cancers expressed *RET* tyrosine kinase without evident fusion events.

III. Statistical power of this study for fusion gene detection

To calculate statistical power, we applied a simple binomial model. For example, when the

frequency of any specific transforming fusion gene in lung adenocarcinoma is 0.015

(p=0.015), the probability that the fusion gene is not included in our cohort (n=200) can be

calculated as follows:

Probability (# of specimens with the fusion gene (r) = 0)

 $= nCr x p^{r} x (1-p)^{(n-r)}$

 $= {}_{200}C_0 \times (0.015)^0 \times (0.985)^{200}$

= 0.0487

Therefore, we expect the probability that the fusion gene is included in our cohort is

approximately 95.1%.

Power = 1 - P

= 1 - 0.0487

= 0.9513

6

Supplementary Figures

Supplementary Figure 1. Schematic flow chart summarizing this study.

Supplementary Figure 2. Number of somatic point mutations for each lung cancer specimen.

Supplementary Figure 3. Specific gene expression patterns which support the existence of *ALK*, *RET*, *ROS1* and *PDGFRA* fusion genes in a cancer tissue.

(a) EML4-ALK

(b) KIF5B-RET

(c) ROS1 fusions

(d) SCAF11-PDGFRA

Supplementary Figure 4. Examples of fusion gene validation by cDNA PCR and Sanger sequencing.

(a) AXL-MBIP

(b) FGFR2-CIT

(c) SCAF11-PDGFRA

Supplementary Figure 5. Recurrent skipping of exon 9 in the *FBLN2* tumor suppressor gene in lung adenocarcinoma.

Supplementary Figure 6. The amount of smoking and number of somatic point mutations in lung cancer.

We split smokers into two-groups (heavy- and light-smokers) using a cutoff of 40 pack-years. Heavy-smokers harbored significantly more somatic point mutations than light-smokers and never-smokers (on average, 102.5, 31.3 and 20.6 somatic point mutations were detected from the cancer genomes of heavy-smokers, light-smokers and never-smokers, respectively). Of the 40 smokers studied, the information on the amount of smoking (pack year) was available for 23 cancer patients.

Supplementary Figure 7. Expression profiles of 87 lung adenocarcinomas compared to averaged gene expression levels of 77 adjacent paired normal tissues.

Seo_SuppFig7A.pdf Seo_SuppFig7B.pdf Seo_SuppFig7C.pdf Seo_SuppFig7D.pdf Seo_SuppFig7E.pdf

Supplementary Figure 8. Relative expression of genes (Z-score) for 87 lung adenocarcinomas.

Seo_SuppFig8A.pdf Seo_SuppFig8B.pdf Seo_SuppFig8C.pdf Seo_SuppFig8D.pdf Seo_SuppFig8E.pdf Seo_SuppFig8F.pdf Seo_SuppFig8G.pdf Seo_SuppFig8H.pdf Seo_SuppFig8I.pdf

Supplementary Figure 9. Distribution of read-allele frequency of somatic SNVs identified from 87 lung adenocarcinomas for estimating tumor purity.

We calculated read-allele frequency (RAF) of cancer RNA sequencing for somatic SNVs. Of the 4,607 somatic SNVs identified, we assessed 4,283 SNVs with sufficient read-depth (>=10) to calculate RAFs with accuracy. The median RAF is 0.40, which suggests that the approximate purity of the major cancer clone is ~ 80%. For detailed calculations, please see Supplemental Methods #2, Ju YS *et al.*, *Genome Research* (2012) 22(3): 436-45 (Ref. 1).

Supplementary Figure 10. Difference of global gene expression levels between primary lung adenocarcinomas (n=87) and adjacent paired-normal tissues (n=77). Vertical bar: Increased abundance in cancer (red; Cancer-up); decreased abundance in cancer (green; Cancer-down); and mixed patterns (orange). Horizontal bar: lung adenocarcinomas (red); paired-normal tissues (blue).

Supplementary Figure 11. Selected cancer outlier genes (COGs) by outlier score among protein kinases and genes deposited in COSMIC database. The number in the brackets shows the number of cancer specimens (out of 87 specimens), which carry the gene as an expression outlier.

Supplementary Tables

Supplementary Table 1. The clinical and mutational information of 200 lung adenocarcinoma patients enrolled in this study.

									Genetic test at hospital							
Publication_	Age_at	Gender (1=mal e,2=fe male	Smoking_st atus (0=neverS moker;1=s moker;2=	Stage -	Cancer_RNA _Quality (0=poor;1=go od;NE=NotEx tracted)		_RNAs	ExomeS ea	(NE=notExa	(NE=notE	KRAS (NE=notExam ined,wt=wildty pe,description.	EML4-ALK (NE=notExam ined,0=no,1= yes)	FUSION (1=No, 2=YES)	LN Mets (0=No, 1=Yes)	Potential Drive	r Mutations
LC_C1	54	1	1	1A	1	1	1	1	NE	NE	NE	NE	1	0	EGFR exon	19 microdeletion
LC_C2	51	1	2	2B	1	1	1	1	NE	NE	NE	NE	1	0		
LC_C3	65	2	0	1A	1	1	1	1	NE	NE	NE	NE	1	0	EGFR L858F	R
LC_C4	52	1	0	3B	1	1	0	0	NE	NE	NE	NE	1	1	KRAS G13D	
LC_C5	68	1	3	3A	1	1	1	1	NE	NE	NE	NE	1	1	KRAS G12C	
LC_C6	38	1	2	2B	1	1	0	0	NE	NE	NE	NE	1	0		
LC_C7	81	1	1	1A	1	1	1	1	NE	NE	NE	NE	1	0		
LC_C8	85	1	1	1B	1	1	0	0	NE	NE	NE	NE	1	0		
LC_C9	71	1	1	1B	1	1	1	1	NE	NE	NE	NE	1	0		
LC_C10	58	2	0	2A	1	1	1	1	NE	NE	NE	NE	1	1	EGFR exon	19 microdeletion
LC_C11	63	2	0	1A	1	1	1	1	NE	NE	NE	NE	2	0	EGFR exon	19 microdeletion
LC_C12	66	1	3	1B	1	1	1	1	NE	NE	NE	NE	2	0	EGFR L858F	2
LC_C13	72	1	2	2B	1	1	0	0	NE	NE	NE	NE	1	0	KRAS G12V	
LC_C14	50	2	2	3A	1	1	1	1	NE	NE	NE	NE	1	1	EGFR exon	19 microdeletion
LC_C15	60	1	2	1B	1	1	0	0	NE	NE	NE	NE	2	0	MET exon 14	skipping
LC_C16	54	2	0	1A	1	1	1	1	NE	NE	NE	NE	2	0	EGFR L858F	R
LC_C17	64	2	0	1A	1	1	1	1	NE	NE	NE	NE	2	0	MET exon 14	skipping
LC_C18	68	2	1	1B	1	1	1	1	NE	NE	NE	NE	1	0		
LC_C19	40	2	0	4	1	1	1	1	NE	NE	NE	NE	1	0	NRAS Q61K	
LC_C20	65	1	1	1A	1	1	1	1	NE	NE	NE	NE	1	0	EGFR exon	19 microdeletion

Supplementary Table 2. Summary statistics of massively parallel sequencing experiments performed in this study.

Seo_SuppTable2.xls

		Cancer RNA-S	Seq		Normal RNA-	Seq	Normal whole-exome sequencing						
Sample	# of all reads	# of aligned reads	# of aligned reads (bp)	# of all reads	# of aligned reads	# of aligned reads (bp)	# of exon-aligned reads (bp) (on-target)	Total coverage (X) (on-target)	% of exons captured (on-target)				
LC_C1	77,494,486	47,470,889	4,794,559,789	45,688,760	30,723,033	3,103,026,333	2,178,031,360	47.33	98.48				
LC_C2	107,215,548	63,982,363	6,462,218,663	84,044,300	56,980,300	5,755,010,300	1,401,862,209	30.46	97.76				
LC_C3	83,152,108	52,466,930	5,299,159,930	73,116,392	49,425,295	4,991,954,795	1,685,976,503	36.64	97.77				
LC C4	92,656,104	53,906,608	5,444,567,408	-	-	-	-	-	-				
LC_C5	78,018,264	50,172,918	5,067,464,718	64,131,160	42,834,089	4,326,242,989	2,385,520,838	51.84	98.7				
LC_C6	92,725,904	56,470,698	5,703,540,498	-	-	-	-	-	-				
LC_C7	91,073,182	55,521,230	5,607,644,230	71,647,042	50,101,529	5,060,254,429	2,537,090,617	55.13	98.78				
LC_C8	94,479,946	59,514,604	6,010,975,004	-	-	-	-	-					
LC_C9	74,519,406	46,621,418	4,708,763,218	85,984,544	60,050,324	6,065,082,724	1,747,785,171	37.98	97.93				
LC_C10	90,885,746	53,008,298	5,353,838,098	57,904,006	38,302,163	3,868,518,463	1,379,192,060	29.97	97.45				
LC_C11	72,691,004	38,326,688	3,870,995,488	60,069,120	39,730,037	4,012,733,737	1,390,026,595	30.2	97.22				
LC C12	67,503,666	35,156,178	3,550,773,978	54,398,896	37,732,658	3,810,998,458	1,218,193,317	26.47	97.1				
LC_C13	63,150,052	34,157,339	3,449,891,239	-	-	-	-	-	-				
LC_C14	79,154,436	43,445,511	4,387,996,611	66,595,976	45,186,779	4,563,864,679	2,019,292,321	43.88	98.31				
LC_C15	120,345,132	65,067,364	6,571,803,764	-	-	-	-	-	-				
LC_C16	77,198,774	39,908,939	4,030,802,839	60,758,862	40,073,167	4,047,389,867	1,405,362,092	30.54	97.68				
LC_C17	75,140,824	40,726,871	4,113,413,971	66,540,006	44,966,927	4,541,659,627	2,405,400,933	52.27	98.49				
LC_C18	87,207,996	46,837,953	4,730,633,253	72,409,094	51,842,913	5,236,134,213	1,572,378,178	34.17	97.98				
LC_C19	79,215,512	43,241,275	4,367,368,775	75,620,208	51,101,497	5,161,251,197	2,602,075,094	56.54	98.75				
LC_C20	73,241,042	41,503,737	4,191,877,437	69,621,988	47,893,928	4,837,286,728	1,334,532,896	29	96.54				
LC C21	66,062,856	35,515,426	3,587,058,026	77,754,752	51,871,683	5,239,039,983	1,602,111,576	34.81	97.13				

Supplementary Table 3. List of somatic non-synonymous and coding short-indel mutations identified from transcriptome sequencing of 87 lung adenocarcinomas.

Seo_SuppTable3.xls

There are three spreadsheets inside, for somatic non-synonymous mutations, CDS short-indel mutations and gene-based dataset.

Supplementary Table 4. The accuracy of somatic point mutation detection.

The cancer whole-exomes of patient LC_C5 and LC_C21 were sequenced to estimate the accuracy of RNA-seq in the detection of somatic point mutations. We concluded that somatic mutations were validated when >=1 read supporting the corresponding mutant allele was detected in the exome sequences. Somatic mutations include somatic SNVs and indels. The numbers in parenthesis are for somatic indels.

Specimens	# Somatic mutations	# somatic mutations covered >= 1 x in cancer exome seq	Validated	Rate
LC_C5	29	28	24	85.7%
_	(3)	(3)	(2)	(66.6%)
LC_C21	258	252	226	89.6%
_	(5)	(5)	(4)	(80%)
Total	287	280	250	89.2%
	(8)	(8)	(6)	(75.0%)

Supplementary Table 5. Mutual exclusivity and concurrence of cancer specific alterations.

Every cancer alteration (somatic point mutations, fusion genes (fusions) and MET ES (exon skipping) in Figure 1 was considered in this testing

Seo_SuppTable5_new.xls

Gene1	Gene2	wt_wt	mut_wt	wt_mut	mut_mut	Fisher's p-value	Pearson's correlation
SETD2	BRAF	Pai	2	0	2	0.00160385	0.69873836
AKAP9	JAK2	83	1	1	2	0.00238691	0.6547619
SMARCA4	MYST4	83	1	1	2	0.00238691	0.6547619
EGFR	KRAS	47	22	18	0	0.00457092	-0.2971436
ALPK3	RNF213	82	1	2	2	0.00473607	0.56007437
SETD2	BAP1	82	2	1	2	0.00473607	0.56007437
CIC	MYH9	82	2	1	2	0.00473607	0.56007437
NOTCH2	CDC42BPB	81	3	1	2	0.00783056	0.49465787
NOTCH2	BAP1	81	3	1	2	0.00783056	0.49465787
TP53	NRAS	65	19	0	3	0.01452899	0.32483762
TP53	JAK2	65	19	0	3	0.01452899	0.32483762
NOTCH2	RNF213	80	3	2	2	0.01529048	0.41740702
KRAS	SETD2	68	15	1	3	0.02666972	0.29432826
CDKN2A	STK11	84	1	1	1	0.0457097	0.48823529
TP53	CIC	64	19	1	3	0.04825699	0.25107822
EGFR	fusions	55	22	10	0	0.05940816	-0.209657
MLL2	BRAF	83	2	1	1	0.06816359	0.39134545
CDKN2A	ARID1A	83	1	2	1	0.06816359	0.39134545
MET	SMARCA4	83	1	2	1	0.06816359	0.39134545
MET	LMTK2	83	1	2	1	0.06816359	0.39134545
MET	MYST4	83	1	2	1	0.06816359	0.39134545
MET	CDC42BPB	83	1	2	1	0.06816359	0.39134545
MET	MAP3K4	83	1	2	1	0.06816359	0.39134545
NACA	LMTK2	82	2	2	1	0.10105194	0.30952381

Supplementary Table 6. List of 45 fusion genes identified from transcriptome sequencing of 87 lung adenocarcinomas.

Index	Donor Gene	Acceptor Gene	Chromosome (Donor;Acceptor)	# samples observed	Distance (Mb)	Sample observed	Donor Breakpoint (RNA)	Donor protein sequence near breakpoint	Acceptor Breakpoint (RNA)	Acceptor protein sequence near breakpoint	Co-occurrence of other driver mutation
1	EML4	ALK	chr2;chr2	1	12.252	LC_S26	chr2:42522656]	TPGKGPK+1nt	chr2:29446394]	2nt+YRRKHQE	-
2	KIF5B	RET	chr10;chr10	4	11.227	LC_S2	chr10:[32317356	NNDVK	chr10:[43612032	EDPKWEF	-
2	KIF5B	RET	chr10;chr10	4	11.227	LC_S6	chr10:[32306980	KVHKQ	chr10:[43612032	EDPKWEF	-
2	KIF5B	RET	chr10;chr10	4	11.227	LC_S42	chr10:[32317356	NNDVK	chr10:[43612032	EDPKWEF	-
3	CD74	ROS1	chr5;chr6	1	Interchromosomal	LC_S39	chr5:[149784243	DAPPK+1nt	chr6:117645578]	2nt+DFWIP	-
4	SLC34A2	ROS1	chr4;chr6	1	Interchromosomal	LC_S48	chr4:25678324]	SREAQ+1nt	chr6:117650609]	2nt+GVPNK	-
5	CCDC6	ROS1	chr10;chr6	1	Interchromosomal	LC_S9	chr10:[61572393	AAQLQ+1nt	chr6:117642557]	2nt+WHRRL	-
6	SCAF11	PDGFRA	chr12;chr4	1	Interchromosomal	LC_S38	chr12:[46384136	SUTR	chr4:[55124924	5UTR, in-frame	-
7	FGFR2	CIT	chr10;chr12	1	Interchromosomal	LC_S13	chr10:[123243212	LTLTTNE	chr12:120180269]	AHRDEIQ	-
8	AXL	MBIP	chr19;chr14	1	Interchromosomal	LC_S23	chr19:41765701]	LTAAE	chr14:36783814]	IDRRI	-
9	APLP2	TNFSF11	chr11;chr13	1	Interchromosomal	LC_C15	chr11:130000061]	AAQMKSQ	chr13:[43174888	ELQHIVG	-
10	MAP4K3	PRKCE	chr2;chr2	1	6.215	LC_S26	chr2:[39664033	TYGDVYK	chr2:[46070139	IDLEPEGR	EML4-ALK
11	BCAS3	МАРЗКЗ	chr17;chr17	1	2.23	LC_S20	chr17:59161925]	TVIDAAS+1nt	chr17:61710041]	2nt+EQEALNS	
12	KRAS	CDH13	chr12;chr16	1	Interchromosomal	LC_C12	chr12:[25378548	TSAKTRQ	chr16:[83158990	DIFKFAR	EGFR L858R
13	ZFYVE9	CGA	chr1;chr6	1	Interchromosomal	LC_C25	chr1:52803606]	DKNVSK+2nt	chr6:87797925]	SUTR, in-frame	-
14	ERBB2IP	MAST4	chr5;chr5	1	0.515	LC_S19	chr5:65372777]	QPGDKIIQ	chr5:[66400194	ATAQMEER	
15	TPD52L1	TRMT11	chr6;chr6	1	0.723	LC_\$42	chr6:125569529]	SKKFGDM+2nt	chr6:[126342306	1nt+YTEEMVP	KIF5B-RET
16	TXNRD1	GPR133	chr12;chr12	1	26.694	LC_C17	chr12:104733051]	IHPVCAE	chr12:[131561346	TRKQHS	MET exon 14 skipping
17	SRSF4	SNRNP40	chr1;chr1	1	2.224	LC_S29	chr1:[29485886	SRCSWQDLK	chr1:31744346]	VWDLRQN	-
18	EDA	MID1	chrX;chrX	1	57.984	LC_S51	chrX:68836548]	DSQDGHQ	chrX:10463731]	VNASRQE	-
19	HYOU1	C11orf93	chr11;chr11	1	7.736	LC_S11	chr11:[118921747	SGVLSLDR	chr11:[111175653	5 UTR	-
20	SLC16A7	MUCL1	chr12;chr12	1	4.831	LC C36	chr12:60098799]	LAVMYAG+1nt	chr12:[55248900	2nt+NPTTAAPAD	EGFR microdeletion

Supplementary Table 7. List of 43 pairs of primers used for PCR and Sanger sequencing validation of fusion genes.

Seo_SuppTable7_r.xls

index	Donor Gene	Acceptor Gene	Forward Primer Name	Forward Primer Sequence	Reverse Primer Name	Reverse Primer Sequence	Remark
1	KIF5B	RET	GF1_KIF5B:RET_F	TAAGGAAATGACCAACCACCAG	GF1_KIF5B:RET_R	CCTTGACCACTTTTCCAAATTC	Validated
2	KRAS	CDH13	GF2_KRAS:CDH13_F	GGAAATAAATGTGATTTGCCTTC	GF2_KRAS:CDH13_R	AAGGCTGTCTCTGATTCTCTGG	Validated
3	APLP2	TNFSF11	GF3_APLP2:TNFSF11_F	TGCTGAGAACAAAGATCGCTTA	GF3_APLP2:TNFSF11_R	TGTCGGTGGCATTAATAGTGAG	Validated
4	ZFYVE9	CGA	GF4_ZFYVE9:CGA_F	ACTGCAGAGAACATGGATTCCT	GF4_ZFYVE9:CGA_R	GAATGGAGAACATGCAGAAACA	Validated
5	CCDC6	ROS1	GF5_CCDC6:ROS1_F	CCTGCAGGAAAAATTAGACCAG	GF5_CCDC6:ROS1_R	AGCTCAGCCAACTCTTTGTCTT	Validated
6	FGFR2	CIT	GF6_FGFR2:CIT_F	ACATGATGATGAGGGACTGTTG	GF6_FGFR2:CIT_R	ACAGCTGTTACGAAGAGCATCA	Validated
7	AXL	MBIP	GF7_AXL:MBIP_F	GCCTGACGAAATCCTCTATGTC	GF7_AXL:MBIP_R	CAAAATTCCCTGACGTTGTTTT	Validated
8	SCAF11	PDGFRA	GF8_SCAF11:PDGFRA_F	CAGCGGAGTCAGTGTCCTAGAG	GF8_SCAF11:PDGFRA_R	TGAGAAGACAGCCTAAGACCAG	Validated
9	CD74	ROS1	GF9_CD74:ROS1_F	GTCTTTGAGAGCTGGATGCAC	GF9_CD74:ROS1_R	AGCTCAGCCAACTCTTTGTCTT	Validated
10	SLC34A2	ROS1	GF10_SLC34A2:ROS1_F	ATGCCGTCGTCTCCAAGTTC	GF10_SLC34A2:ROS1_R	ATCTTCAGCTTTCTCCCACTGT	Validated
11	TXNRD1	GPR133	GF11_TXNRD1:GPR133_F	TCCAAATGCTGGAGAAGTTACA	GF11_TXNRD1:GPR133_R	AGTACACGAAGACTCGGTTGCT	Validated
12	EML4	ALK	GF12_EML4:ALK_F	GCCAAAATTTGTGCAGTGTTTA	GF12_EML4:ALK_R	GGAGCTTGCTCAGCTTGTACTC	Validated
13	HYOU1	C11orf93	GF13_HYOU1:C11orf93_F	CCAGAATCTGACCACAGTGAAG	GF13_HYOU1:C11orf93_R	AGAAGATGGTGCAACTGGGTCT	Validated
14	MAP4K3	PRKCE	GF14_MAP4K3:PRKCE_F	AGGAGGACTTCGAGCTGATTC	GF14_MAP4K3:PRKCE_R	ACGACCCTGAGAGATCGATGA	Validated
15	RBM14	FGF3	GF15_RBM14:FGF3_F	CCAAGGCCTCTTAATACTTGGA	GF15_RBM14:FGF3_R	CATAGAGTCGTCCCCTCTTGTT	Validated
16	BCAS3	MAP3K3	GF16_BCAS3:MAP3K3_F	CATCCCGTCCAGTCTCTGAT	GF16_BCAS3:MAP3K3_R	CTGCCTATTTGAGTGACCTGTG	Validated
17	SRSF4	SNRNP40	GF17_SRSF4:SNRNP40_F	GAAGTGGCCGAGATAAATATGG	GF17_SRSF4:SNRNP40_R	TAAACTCAGGCCAGTCACTGAA	Validated
18	UBR4	ATP13A2	GF18_UBR4:ATP13A2_F	ACCCTTTCTCTACCTGTGTTGG	GF18_UBR4:ATP13A2_R	AGCTGAGGGGATCTATTGATGT	Validated
19	TTC19	ATPAF2	GF19_TTC19:ATPAF2_F	CGCTTTGATGAGGCCTATATTT	GF19_TTC19:ATPAF2_R	CTGTGTGATGCTGACATTCTGA	Validated
20 21	TPD52L1 IGSF3	TRMT11 MAN1A2	GF20_TPD52L1:TRMT11_F GF21_IGSF3:MAN1A2_F	GAAAACACATGAAACCCTGAGTC CTGACCAGGGCGAATTCTACT	GF20_TPD52L1:TRMT11_R GF21_IGSF3:MAN1A2_R	ATGTGTGACTGGAAAGCTTCTG TCTTGCCTCATGGTCTGTTTTA	Validated Validated
22	ERBB2IP	MAST4	GF22_ERBB2IP:MAST4_F	AACAAGGGTACAACCTGAAGGA	GF22_ERBB2IP:MAST4_R	TCAAGGAAGTATCGTGAGGTGA	Validated
23	XAF1	FAM64A	GF23_XAF1:FAM64A_F	GGAGCTCCACGAGTCCTACTGT	GF23_XAF1:FAM64A_R	AGAGGTCTCCTGATGGCTGAC	Validated
24	MIER2	ITGB1BP3	GF24_MIER2:ITGB1BP3_F	AGATCATGGTGGGACCTCAGT	GF24_MIER2:ITGB1BP3_R	AGCAGCGAGTTCTGAATGTCTT	Validated
25	SLC16A7	MUCL1	GF25_SLC16A7:MUCL1_F	GTGGTTGGAGCAGCTTTTATCT	GF25_SLC16A7:MUCL1_R	TCATCATCAGCAGGACCAGTAG	Validated
26	ITGB1BP3	DNM2	GF26_ITGB1BP3:DNM2_F	CCTGGAAGACATTCAGAACTCG	GF26_ITGB1BP3:DNM2_R	TTTGAGAAGATGAGCTGCAGAA	Validated
27	ARHGEF16	TCTEX1D4	GF27_ARHGEF16:TCTEX1D4	GCATGGAGCAGATGTACACG	GF27_ARHGEF16:TCTEX1D4_R	TGTGTTTTAGAACAAGTGGATCAGA	Validated
28	CMBL	C8orf38	GF29_CMBL:C8orf38_F	CTCTCCCAGGAGGCTACGACT	GF29_CMBL:C8orf38_R	TGAGCCAGTTCCACATTAAAGG	Validated
29	EDA	MID1	GF30_EDA:MID1_F	TGACGTTGTGCTGCTACCTAGA	GF30_EDA:MID1_R	ATCTGTCGTCTTTGCTGAATGA	Validated
30	H19	CALR	GF28_H19:CALR_F	CACCGCAATTCATTTAGTAGCA	GF28_H19:CALR_R	GCCTCTCTACAGCTCGTCCTT	Failed

Supplementary Table 8. Mutually exclusivity of protein tyrosine kinase fusion genes and MET exon 14 skipping with known driver mutations of lung adenocarcinomas.

Gene1	Gene2	wt_wt	mut_wt	wt_mut	mut_mut	Fisher's p-value	Pearson's correlation
canonical point driver mutations *	all PTK fusions (EML4-ALK, KIF5B-RET, ROS1 fusions, FGFR2-CIT, AXL-MBIP, and SCAF11-PDGFRA)	30	47	10	0	2.12E-04	-0.391
canonical driver mutations **	novel 4 fusions (CCDC6-ROS1, FGFR2-CIT, AXL-MBIP and SCAF11-PDGFRA)	30	53	4	0	2.08E-02	-0.274
canonical driver mutations **	MET exon 14 skipping	31	53	3	0	0.0565	-0.236

--- Note ---

PTK; protein tyrosine kinase

* Canonical point driver mutations

Total 47 specimens.

EGFR (22), KRAS (18), NRAS (3), BRAF (1), MET (1), CTNNB1 (1), PIK3CA alone (1)

** Canonical driver mutations

Total 53 specimens

Canonical point driver mutations (47), EML4-ALK (1), KIF5B-RET (3), CD74-ROS1 (1) and SLC34A2-ROS1 (1)

Supplementary Table 9. List of 17 recurrent exon-skipping events identified from transcriptome sequencing of 87 lung adenocarcinomas.

Seo_SuppTable9.xls

index	gene	ne index Upstream Downstream #samples Length of Skipped Exon Exon observed Exon (bp)		Samples observed			
1	LMO7	NM_005358	9	11	23	30	LC_C4,LC_C6,LC_C11,LC_C18,LC_C19, LC_C21,LC_C22,LC_C25,LC_C28, LC_C33,LC_S12,LC_S17,LC_S23,LC_S31 LC_S32,LC_S35,LC_S36,LC_S38,LC_S43 LC_S45,LC_S2,LC_S3,LC_S51,
2	H2AFY	NM_138609	5	7	5	91	LC_C4,LC_C7,LC_S20,LC_S21,LC_S25,
3	MET	NM_000245	13	15	3	141	LC_C15,LC_C17,LC_S4,
4	FBLN2	NM_001165035	8	10	3	141	LC_C32,LC_S10,LC_S11,
5	RIPK2	NM_003821	1	3	3	154	LC_S8,LC_S14,LC_S3,
6	CASK	NM_001126055	17	19	3	36	LC_S38,LC_S45,LC_S51,
7	CELF2	NM_001025076	5	7	3	80	LC_C18,LC_S6,LC_S10,
8	WDFY3	NM_014991	44	46	3	51	LC_C21,LC_S27,LC_S43,
9	SLIT2	NM_004787	14	16	3	24	LC_C22,LC_S42,LC_S3,
10	OPN3	NM_014322	1	3	3	320	LC_S6,LC_S8,LC_S45,
11	SLC33A1	NM_001190992	1	3	3	188	LC_S6,LC_S9,LC_S9,
12	EPB41L2	NM_001431	12	14	2	63	LC_C4,LC_C21,
13	ORC4	NM_181741	4	10	2	537	LC_S8,LC_S10,
14	PKD2	NM_000297	5	7	2	229	LC_S9,LC_S27,
15	SETDB2	NM_031915	1	3	2	16	LC_S9,LC_S12,
16	YME1L1	NM_014263	3	5	2	99	LC_S10,LC_S14,
17	SLC23A2	NM 005116	6	8	2	89	LC S45,LC S49,

Supplementary Table 10. Expression map of 87 cancer and 77 adjacent paired-normal tissues represented in RPKM values on all reference genes.

Seo_SuppTable10.xls

There are two spreadsheets inside, for gene expression levels of cancers and normal tissues..

Gene	index	chr	start	stop	strand	conding length (bp)	LC_C1	LC_C2	LC_C3	LC_C4	LC_C5	LC_C6	LC_C7	LC_C8	LC_C91
WASH7P	NR_024540	1	14,361	29,370	-	1,769	1.83	2.13	4.26	3.26	1.43	2.67	2.82	3.13	3.39
FAM138A	NR_026818	1	34,610	36,081	-	1,130	0	0	0	0	0	0	0	0	0
FAM138F	NR_026820	1	34,610	36,081	-	1,130	0	0	0	0	0	0	0	0	0
OR4F5	NM_001005484	1	69,090	70,008	+	918	0	0	0	0	0	0	0	0	0
LOC100132287	NR_028322	1	323,891	328,581	+	4,370	0.05	0.02	0.04	0	0.02	0.12	0.07	0.01	0.14
LOC100132062	NR_028325	1	323,891	328,581	+	4,370	0.05	0.02	0.04	0	0.02	0.12	0.07	0.01	0.14
LOC100133331	NR_028327	1	323,891	328,581	+	4,273	0.05	0.02	0.04	0	0.02	0.12	0.05	0	0.13
OR4F29	NM_001005221	1	367,658	368,597	+	939	0	0	0	0	0	0	0	0	0
OR4F3	NM_001005224	1	367,658	368,597	+	939	0	0	0	0	0	0	0	0	0
OR4F16	NM_001005277	1	367,658	368,597	+	939	0	0	0	0	0	0	0	0	0
OR4F29	NM_001005221	1	621,095	622,034	-	939	0	0	0	0	0	0	0	0	0
OR4F3	NM_001005224	1	621,095	622,034	-	939	0	0	0	0	0	0	0	0	0
OR4F16	NM_001005277	1	621,095	622,034	-	939	0	0	0	0	0	0	0	0	0
LOC100133331	NR_028327	1	661,138	665,731	-	4,273	2.35	2.65	1.12	2.22	1.39	1.93	3.48	1.97	1.23
LOC100288069	NR_033908	1	700,244	714,068	-	1,371	2.91	2.33	0.18	2.26	1.28	1.64	3.25	1.74	1.39
NCRNA00115	NR_024321	1	761,585	762,902	-	1,317	1.93	2.75	1.47	3.41	2.18	2.59	2.39	3.24	3.11
LOC643837	NR_015368	1	763,063	789,740	+	1,543	4.57	2.71	2.82	2.71	7.7	3.08	3.46	6.62	9.08
FAM41C	NR_027055	1	803,450	812,182	-	1,706	0.54	0.87	0.41	0.28	0.37	0.75	0.84	0.76	0.37
FLJ39609	NR_026874	1	852,952	854,817	-	496	0.21	0	0.05	0	0.07	0	0	0.05	0.1
SAMD11	NM_152486	1	861,120	879,961	+	2,554	4.03	1.85	3.82	3.26	3.63	2.76	3.14	4.04	2.95
NOC2L	NM_015658	1	879,582	894,679	-	2,800	23.14	15.26	18.26	43.48	19.96	19.59	36.53	28.35	26.97
KLHL17	NM_198317	1	895,966	901,099	+	2,564	2.81	1.81	2.69	2.68	2.38	2.32	4.08	1.56	1.22
PLEKHN1	NM_001160184	1	901,876	910,484	+	2,295	2.42	0.98	0.61	1.17	1.04	0.9	0.12	0.57	1.65
PLEKHN1	NM_032129	1	901,876	910,484	+	2,400	2.48	0.96	0.64	1.2	1.09	0.91	0.13	0.61	1.71
C1orf170	NR_027693	1	910,578	917,473	-	3,040	0.54	0.2	0.35	0.23	0.23	0.14	0.02	0.12	0.26

Supplementary Table 11. List of 6,719 cancer outlier genes (COGs) identified from transcriptome sequencing of 87 lung adenocarcinomas and 77 adjacent paired-normal tissues.

Seo_SuppTable11.xls

Gene	# Samples involved	Outlier score	Average Score (per sample)	is_in_COSMIC (v57)	is_kinase	is_CancerUp (Heatmap)	LC_C1	LC_C2	LC_C3	LC_C4	LC_C5	LC_C6	LC_C7	LC_C8	LC_C9	LC_C10	LC_C11	LC_C12
APOA2	5	114801.2	22960.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S100A7	12	25327.5	2110.6	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
F2	4	4033.0	1008.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CRABP1	20	16110.7	805.5	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
CALML3	8	5521.3	690.2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
SERPINC1	1	531.1	531.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASCL1	8	4014.2	501.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KRT6B	15	6409.8	427.3	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
ASGR1	1	412.4	412.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DHRS2	10	4044.5	404.5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
DSG3	7	2735.0	390.7	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
GSTM1	1	378.7	378.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PRAC	2	736.7	368.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SERPINA10	1	353.9	353.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GUCY2C	4	1377.7	344.4	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
VIL1	27	9238.4	342.2	0	0	0	0	0	0	1	1	1	0	0	0	0	1	0
CDX2	12	3811.3	317.6	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
SPRR1B	26	7838.0	301.5	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
SERPINA4	11	3150.9	286.4	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GPX2	30	8307.1	276.9	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0
ANGPTL3	3	785.0	261.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PRAP1	16	4183.1	261.4	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
SPRR2D	20	4715.3	235.8	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0
COL11A1	18	4183.4	232.4	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0

Supplementary Table 12. Correlation between the lymph node metastasis and somatic mutations in primary lung cancer tissues.

(a) Between cancer tissues with and without canonical driver mutations

	with LN mets	No LN mets	Subtotals
Driver known cancers (proportion)	15 (0.250)	45 (0.750)	60
Driver unknown cancers (proportion)	3 (0.111)	24 (0.889)	27
Subtotals	18	69	87

Chi-square p-value = 0.2327

LN Mets and TP53 mutation, Driver mutation, Age, Gender, Smoking, Cancer Stage

Factors	Estimate	Std. Error	z-value	P-value
TP53 mutation	1.85618	1.05337	1.762	0.07847
Driver mutation	1.49805	1.05577	1.419	0.155925
Age	0.05830	0.05720	1.019	0.308099
Gender	0.05053	1.17829	0.043	0.965797
Smoking	1.26906	1.22444	1.036	0.300000
Cancer stage	2.69636	0.73290	3.679	0.000234
(intercept)	-13.13204	5.47495	-2.399	0.016459

(b) Between cancer tissues with a combination of canonical driver and *TP53* mutations and other groups

	with LN mets	No LN mets	Subtotals
Cancers with driver and TP53 mutations (proportion)	7 (0.438)	9 (0.563)	16
Others (proportion)	11 (0.155)	60 (0.845)	71
Subtotals	18	69	87

Chi-square *p*-value = 0.012

LN Mets and (TP53 mutation x Driver mutation), Age, Gender, Smoking, Cancer Stage

Factors	Estimate	Std. Error	z-value	P-value
Driver x TP53 mut.	2.82963	1.18588	2.386	<mark>0.017028</mark>
Age	0.05838	0.05910	0.988	0.323172
Gender	-0.17579	1.16010	-0.152	0.879560
Smoking	1.52051	1.26227	1.205	0.228363
Cancer stage	2.61576	0.69802	3.747	<mark>0.000179</mark>
(intercept)	-12.04942	5.12642	-2.350	0.0118751

^{*} Driver mutations: canonical point mutations (n=47; EGFR, KRAS, NRAS, PIK3CA, BRAF, MET, CTNNB1), protein tyrosine kinase fusion genes (n=10; EML4-ALK, KIF5B-RET, ROS1 fusions, FGFR2-CIT, AXL-MBIP, SCAF11-PDGFRA) and MET exon 14 skipping (n=3)

<Logistic regression>

<Logistic regression>

Supplementary Table 13. List of specific aberrations of note for 25 cancer tissues which do not harbor canonical driver mutations.

Seo_SuppTable13_r.xls

Index	Age	Gender	3-	Smoking_status (0=neverSmoker; 1=smoker;2=curre nt_smoker;3=unk nown)		(Mb)	Remarkab le gene	type	Mutation position	Protein ID	AminoAcid Change	Prediction (SIFT)	KEGG pathway
LC_C2	▼ 51		2B	2		11.823		overexpress		T	Ľ	₹	
LC_C6	38		2B	2			EPHA2		hr1:16456865.C>T	ENSP00000	C842Y	NA	Axon guidance
20_00	00		20		100	20.041	JAK2		thr9:5080672.T>G	ENSP00000		N/A	Measles;Adipocytokine signaling pathwa
							CDK9	•	thr9:130548447,C>T	ENSP00000		N/A	Transcriptional misregulation in cancer
							MEN1		:hr11:64572131.C>T	ENSP00000		N/A	Transcriptional misregulation in cancer
							TP53	point mutato	:hr17:7577141.C>A	ENSP00000	G266V	N/A	Measles; Hepatitis C; MAPK signaling pati
							GNAS	point mutat	hr20:57484420,C>T	ENSP00000	R186C	DAMAGING	
							NEK2	overexpress	ion				
LC_C7	81	М	1A	1	740	681.076	MYCN	overexpress	ion				Transcriptional misregulation in cancer
							FGFR1	overexpress	ion				Adherens junction; MAPK signaling pathw
LC_C8	85	М	1B	1	463	162.305	EPHA2	point mutat o	hr1:16460020,T>G	ENSP00000	E607A	N/A	Axon guidance
							JAK1	point mutat o	hr1:65307187,T>C	ENSP00000	Q834R	N/A	Measles;Influenza A;Hepatitis C;Leishma
							NOTCH2	point mutate	hr1:120502080,C>T	ENSP00000	C654Y	DAMAGING	Dorso-ventral axis formation; Notch signa
							TP53	point mutate	:hr17:7577536,T>C	ENSP00000	R249G	N/A	Measles; Hepatitis C; MAPK signaling pati
LC_C9	71	М	1B	1	389	384.84		point mutat o	:hr1:205585730,C>A	ENSP00000		DAMAGING	MAPK signaling pathway; Transcriptional
							APC	point mutat o	hr5:112179479,G>T	uc011cvt.2		Not scored	Wnt signaling pathway;HTLV-I infection;F
							JAK2		:hr9:5054638,G>T	ENSP00000			Measles; Adipocytokine signaling pathway
							TP53		chr17:7577538,C>A	ENSP00000			Measles;Hepatitis C;MAPK signaling pati
							NF1		:hr17:29665096,G>A	ENSP00000			MAPK signaling pathway
									hr19:11134270,G>T	ENSP00000		DAMAGING	0 " 1 50 1 " " 1 157111
							CHEK1	point mutal o	:hr11:125499190,T>G	ENSP00000	V118G	DAMAGING	Cell cycle;p53 signaling pathway;HTLV-I

Supplementary Table 14. Three subgroups of genes in differentially expressed gene analysis.

Seo_SuppTable14.xls

There are three spreadsheets inside, for increased abundance in cancers (Cancer-UP), decreased abundance in cancers (Cancer-DOWN) and mixed patterns.

Gene symbol	Protein description			
ABCA7	ATP-binding cassette sub-family A member 7			
ABCB6	ATP-binding cassette sub-family B member 6, mitochondrial			
ABCB9	ATP-binding cassette sub-family B member 9 isoform 5			
ABCC3	ATP-binding cassette, sub-family C (CFTR/MRP)			
ABCC4	multidrug resistance-associated protein 4			
ABHD11	abhydrolase domain-containing protein 11			
ABL2	Abelson tyrosine-protein kinase 2 isoform i			
ABTB2	ankyrin repeat and BTB (POZ) domain containing			
ACAD8	acyl-CoA dehydrogenase family, member 8			
ACHE	uncharacterized protein LOC606473 precursor			
ACOT11	acyl-coenzyme A thioesterase 11			
ADAM28	ADAM metallopeptidase domain 28 precursor			
ADAM8	a disintegrin and metalloproteinase domain 8 precursor			
ADAMDEC1	ADAM DEC1 precursor			
ADCK4	aarF domain containing kinase 4			
Cancer-UP Cancer-DOWN MIXED &				

References

- 1. Ju, Y.S. et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. *Genome Res* **22**, 436-45 (2012).
- 2. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat Methods* **5**, 621-8 (2008).
- 3. Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. *Nucleic Acids Res* **39**, D945-50 (2011).
- 4. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. *Science* **298**, 1912-34 (2002).
- 5. Altshuler, D.M. et al. Integrating common and rare genetic variation in diverse human populations. *Nature* **467**, 52-8 (2010).
- 6. Ju, Y.S. et al. Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals. *Nat Genet* **43**, 745-52 (2011).