HEP NTUA Weekly Report

9/2/2022

George Bakas

Summary

- ttX analysis:
 - New UL b-tag WPs for 2016preVFP and 2016 postVFP released
 - Switch and implementation
 - $p_T>450$ GeV for leading jet and $p_T>400$ GeV for second leading jet
 - We are writing the AN:
 - 1. Basic outline along with text
 - 2. Input all images that are needed for the analysis
 - 3. Appendices that include
 - Response matrices, efficiencies, acceptance, purity and stability per year
 - Fiducial Measurements per year
 - Systematic uncertainties breakdown per year
 - Closure tests
 - 4. Issues are handled on gitlab
 - Z' analysis:
 - Production for files that were missing
 - Integration of M1400 W14 for 2016_preVFP in analysis chain

Contents

Content	•	t	า	ľ	е	t	n	ı	o	C	(
---------	---	---	---	---	---	---	---	---	---	---	---	--

2	1	Introduction
3	2	Samples
4		2.1 Data
5		2.2 Simulation
6	3	Trigger
7	4	Reconstrunction and Selection
8		4.1 Object Reconstruction
9		4.2 Selection
10		4.3 Multivariate Discriminant
11		4.4 Parton level
12		4.5 Particle level
13	5	Signal Extraction
14		5.1 Inclusive cross section
15		5.2 Differential cross sections
16	6	Data vs Monte Carlo
17	7	Fiducial Measurement
18	8	Systematic Uncertainties
19	9	Combination of different years
20	10	Unfolded Measurement
21		10.1 Parton Level
22		10.2 Particle Level
23	A	appendix/Fiducial

Efficiency Parton Level

Efficiency Particle Level

Acceptance Parton Level

Acceptance Particle Level

Mass Fit Results 2016 (pre and postVFP)

A RooPlot of "mTop"

A RooPlot of "mTop"

Mass Fit Results 2017, 2018

A RooPlot of "mTop"

A RooPlot of "mTop"

Systematics Breakdown Combined Initial Fiducial Result

Systematics Breakdown Combined Initial Fiducial Result

Systematics Breakdown Combined Initial Fiducial Result

Systematics Breakdown Combined Unfolded Result

Systematics Breakdown Combined Unfolded Result

Systematics Breakdown Combined Unfolded Result

BACKUP

Summary

- ttX analysis Pipeline Creation
 - 1. We want to be able to handle all Nominal files and their variations in an automated way
 - This requires deciding consistent naming conventions and a efficient planning
 - 3. Handling of:
 - 1. Nominal
 - 2. Parton Shower Weights
 - PDF Variations
 - 4. JES
 - 5. Scale Variations
 - 6. bTagVariations
 - 7. Top quark mass variations
 - 4. Per year For all these we need to
 - 1. Create template files that have 2btag and 0btag in Extended and Reduced jetMassSoftDrop phase space
 - 2. 9 variables (mJJ, pTJJ, yJJ, jetPt[0,1], jetY[0,1], chi, |cosTheta*|[0,1]
 - 3. Template fit files (bkg qcd, bkg subdominant) and signal templates for all variations
 - 4. Fit on extended signal region for all variations

- 5. Response matrices, Acceptance, Efficiency
- 6. Signal Extraction
- Combine all Fiducial Level results (4 years) into 1 Extracted Signal for all variations
- 6. Unfold the combined result into Parton & Particle levels
- 7. Show systematic variations compared to the Nominal file
- 8. The same procedure must be done using different nominal files
 - 1. Fill in 2btag histograms in our signal region in the parton
 - 2. For each variation and each year
 - 3. Combine all years together
 - 4. Calculate systematics for samples other than the nominal

Brazilian Plots (2016_preVFP, 2017 and 2018) with sliding mJJ Cut

2016_preVFP 2017

2018

Combined Datacard for 2016 preVFP, 2017 and 2018

Mass Cut Mapping

```
{"mZ_1200_12":1000, "mZ_1400_14":1200, "mZ_1600_16":1400, "mZ_1800_18":1600, "mZ_2000_20":1600, "mZ_2500_25":2000, "mZ_3000_30":2000, "mZ_3500_35":2000, "mZ_4000_40":2000, "mZ_4500_45":2000}
```


Brazilian Plots (2016_preVFP, 2017 and 2018) with sliding mJJ Cut wrt 2018

2016_preVFP 2017

Combined Datacard for 2016 preVFP, 2017 and 2018 wrt 2018

Mass Cut Mapping

```
{"mZ_1200_12":1000, "mZ_1400_14":1200, "mZ_1600_16":1400, "mZ_1800_18":1600, "mZ_2000_20":1600, "mZ_2500_25":2000, "mZ_3000_30":2000, "mZ_3500_35":2000, "mZ_4000_40":2000, "mZ_4500_45":2000}
```


