

Logique TD no1

Exercice1 (ensembles : définitions)

Soient A = $\{1, 2, 3, 4, 5, 6\}$, B = $\{3, 6, 2\}$ et C = $\{1, 3\}$. Calculer A \cup B, B \cup C, A \cap B, B \cap C, C_A(B) et B\C.

Exercice 2

Soient A = $\{3, 5\}$, et B = $\{2, 5, 9\}$. Calculer A \times B et B \times A.

Exercice 3 (ensembles : définitions)

Soit $E = \{a\}$ un ensemble à un élément. Déterminer P(E) et P(P(E)).

Exercice 4

Montrer que les lois de Morgan peuvent être généralisées à une collection quelconque d'ensembles finis

$$\overline{A_1 \cap A_2 \cap ... \cap A_n} = \overline{A_1} \cup \overline{A_2} ... \cup \overline{A_n}
\overline{A_1 \cup A_2 ... \cup A_n} = \overline{A_1} \cap \overline{A_2} ... \cap \overline{A_n}$$

Exercice 5

Soient A et B deux ensembles quelconques.

- 1. Que vaut $P(A) \cap P(B)$? prouver
- 2. A-t-on $P(A \cup B) = P(A) \cup P(B)$? prouver

Exercice 6

Donner une définition inductive de la relation de divisibilité dans ℕ

Exercice 7

Démontrer, en utilisant les principes de récurrences vus en cours, les propositions suivantes :

a)
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
, b) $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, c) $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$

Exercice 8

Soit A un ensemble (d'étiquettes de nœuds). On considère l'ensemble ABS des arbres binaires stricts comme le plus petit ensemble défini inductivement par : (Base) $(\emptyset, a, \emptyset) \in ABS$, pour chaque $a \in A$. (Hérédité) $g, d \in ABS \Rightarrow (g, a, d) \in ABS$, pour chaque $a \in A$.

Montrer que dans un arbre binaire strict, le nombre de sommets n vérifie n = 2f - 1, où f est le nombre de feuilles.