Задача 1. Нека ξ, η са независими случайни величини с разпределение $P(\xi = k) = P(\eta = k) = q^k p, k = 0, 1, \dots, p > 0, p + q = 1$. Нека $\zeta = \max(\xi, \eta)$.

- 1. Да се намери разпределението на ζ .
- 2. Да се намери разпределението на $\tau = (\zeta, \xi)$.

Задача 2. В урна има 3 бели и 2 черни топки. От урната теглим последователно без връщане топки. Нека ξ е номерът на тегленето на първата бяла топка. След това продължаваме да теглим, докато се появи черна топка. Нека η е номерът на опита на тегленето на първата черна топка след първата бяла. Дефинираме $\eta=6$, ако няма такава. Да се определи

- съвместното разпределение на η и ξ ;
- $\mathbb{P}(\eta > 2|\xi = 1)$ и $\mathbb{P}(\eta = 3|\xi < 3)$.

Задача 3. Хвърляме два червени и един син зар. Нека ξ е броят на шестиците върху червените зарове, а η е броя на двойките върху трите зара. Да се определи

- съвместното разпределение на η и ξ ;
- $\mathbb{P}(\xi > 0 | \eta = 1)$.

Задача 4. Нека случайната величина $\zeta = (\xi, \eta)$ има разпределение

$$\mathbb{P}(\zeta = (j,k)) = \mathbb{P}(\xi = j, \eta = k) = c \frac{\lambda^j \mu^k \nu^{jk}}{i!k!},$$

за $\lambda > 0, \mu > 0, \nu \in (0,1], j, k = 0,1,\dots$ и c - подходяща константа. Да се определи c и да се намерят разпределенията на ξ и η . Да се докаже, че ξ и η са независими, тогава и само тогава, когато $\nu = 1$. Да се намери $\mathbb{P}(\xi = j | \eta = k)$.

Задача 5. От числата 1,2,3,4 и 5 се избират по случаен начин три. Нека случайната величина X= "средното по големина от избраните три", а Y= "най-малкото от избраните числа". Да се намери

- 1. съвместното разпределение на X и Y;
- 2. маргиналните разпределения на X и Y;
- 3. да се провери дали X и Y са независими;
- 4. ковариацията и коефициента на корелация на X и Y;
- 5. разпределението, очакването и дисперсията на случайната величина Z = X 2Y .

Задача 6. Четири пъти последователно се хвърля монета. Нека X е броят езита, паднали се при първите три хвърляния, а Y - броят езита от последните две. Да се намери

- 1. съвместното разпределение на X и Y;
- 2. условните разпределения на X и Y, т.е. $\mathbb{P}(X=k|Y=l)$ и $\mathbb{P}(Y=k|X=l)$ за подходящи k и l;
- 3. $\mathbb{P}(X=Y), \mathbb{P}(X>1|Y=1)$ и P(X+Y>2|X=2);
- 4. разпределенията на E(X|Y) и E(Y|X).

Задача 7. Четири топки са разпределени случайно в девет кутии, от които две са бели, три са зелени и четири са червени. Да се пресметнат вероятностите на събитията

- 1. в белите кутии има една топка, а в зелените две;
- 2. в белите кутии има две топки;
- 3. в белите кутии попадат повече топки отколкото в останалите взети заедно.

Задача 8. Двама стрелци правят по три изстрела в мишена. На всеки изстрел първият може да спечели 7,8,9 или 10 точки с вероятност съответно по 1/4. Вторият уцелва 7 или 10 с вероятност 1/8, а 8 или 9 с вероятност по 3/8.

- 1. За всеки стрелец да се определи вероятността да изкара общо 25 точки.
- 2. Каква е вероятността двамата да имат равен брой точки?
- 3. Каква е вероятността първият да има с три точки повече от втория?

Задача 9. Билетите в лотария имат номера от 0 до 999999. Да се определи вероятността случайно избран билет

- 1. да има сума от цифрите, равна на 21;
- 2. да има равна сума от първите три и последните три цифри;
- 3. сумата от първите три цифри да е с 2 по-голяма от сумата на последните три.