Univers	idad de Buenos Aires	Facultad de Ingeniería			
2º Cuatrimestre 2010	75.12 - Análisis Numérico I. Curso 008	Parcial. Primera Oportunidad.	Nota		
Padrón	Apellido y Nombres				

Ejercicio 1. A partir de los datos de la tabla se han tomado algunos puntos en orden para construir la matriz de un ajuste polinómico por Cuadrados Mínimos y el vector B de una interpolación SPLINE; y calcular f'(x1) = N4(h). Asimismo, con los puntos indicados en cada caso, se ha calculado un Polinomio de Newton y un coeficiente de Lagrange Baricéntrico.

i	0	1	2	3	4	5	6		4	7,65	nd		0	
Xi	1,50	?	?	?	?	?	?	A =	7,65	nd	nd	B =	1,650	
Yi	?	6,0	?	6,510	?	8,160	?		nd	nd	nd		0,30	
													0	
W0 (0,1,6) =	1,00		N1(h) =	5,40		PN (x) =	y6 +	6,90	. (x-x6) +	1,00	. (x-x6) . (x-	x5)		

- a) Aprovechando la información de la extrapolación de Richardson, hallar el paso h utilizado
- b) Incorporando la información de Cuadrados Mínimos y Lagrange Baricéntrico, hallar los xi faltantes
- c) Con los coeficientes del Polinomio de Newton, hallar y4 e y6
- d) Con la información de SPLINE, hallar y0 e y2
- e) Indique en cada método de ajuste o interpolación involucrado, la cantidad de puntos utilizados así como el grado y la cantidad de los polinomios que resultan. ¿Cómo es el término de error de N4(h)?

Ejercicio 2. Sean la función f(t) y la matriz Tj de Jacobi correspondiente a un SEL de la forma A.x = B:

$$Tj1:= \begin{bmatrix} 0 & \frac{1}{5} & 0 & 0 \\ \frac{1}{f(t)} & 0 & \frac{2}{f(t)} & 0 \\ 0 & \frac{3}{5} & 0 & \frac{1}{5} \\ 0 & 0 & \frac{2}{3} & 0 \end{bmatrix} \qquad f(t):=e^{-t} \cdot t^{3} + t$$

- a) Indicar bajo qué condiciones converge este método, en término de A y de Tj
- b) Proponga un vector B, un vector solución inicial no nulo y realice una iteración del método.
- c) Obtener un valor de t en [1,3] que represente un límite para una rápida convergencia, aplicando para ello un método de refinamiento.
- d) Estimar Cp por perturbaciones experimentales para f(t) en t=5 con una perturbación del 2%
- e) Estimar Te por perturbaciones experimentales para f(t) en t=5 adoptando aritméticas de 6 y 8 dígitos

Ejercicio 3. El Método de los Gradientes Conjugados requiere que la matriz A de coeficientes de un sistema de ecuaciones lineales sea simétrica definida positiva. Suponga que para un sistema dado A . x = B conoce los autovaloresde A y que $A = A^T$. ¿Qué condición deben cumplir esos autovalores para que la matriz sea simétrica definida positiva? Justifique su respuesta.

Firma	

Univers	idad de Buenos Aires	Facultad de Ingeniería			
2º Cuatrimestre 2010	75.12 - Análisis Numérico I. Curso 008	Parcial. Primera Oportunidad.	Nota		
Padrón	Apellido y Nombres				

Ejercicio 1. A partir de los datos de la tabla se han tomado algunos puntos en orden para construir la matriz de un ajuste polinómico por Cuadrados Mínimos y el vector B de una interpolación SPLINE; y calcular f'(x1) = N4(h). Asimismo, con los puntos indicados en cada caso, se ha calculado un Polinomio de Newton y un coeficiente de Lagrange Baricéntrico.

i	0	1	2	3	4	5	6		5	14,85	nd		0
Xi	2,50	?	?	?	?	?		A =	14,85	nd	nd	B =	1,650
Yi	?	12,0	?	12,710	?	14,960	?		nd	nd	nd		0,30
											·		0
W0 (0.1.6) =	1.00		N1(h) =	7.40		PN (x) =	v6 +	8.90	. (x-x6) +	1.00	. (x-x6) . (x-	-x5)	

- a) Aprovechando la información de la extrapolación de Richardson, hallar el paso h utilizado
- b) Incorporando la información de Cuadrados Mínimos y Lagrange Baricéntrico, hallar los xi faltantes
- c) Con los coeficientes del Polinomio de Newton, hallar y4 e y6
- d) Con la información de SPLINE, hallar y0 e y2
- e) Indique en cada método de ajuste o interpolación involucrado, la cantidad de puntos utilizados así como el grado y la cantidad de los polinomios que resultan. ¿Cómo es el término de error de N4(h)?

Ejercicio 2. Sean la función f(t) y la matriz Tj de Jacobi correspondiente a un SEL de la forma A.x = B:

$$f(t) := e^{-t} \cdot t^{3} + t \qquad Tj2 := \begin{bmatrix} 0 & \frac{2}{7} & 0 & 0 \\ \frac{2}{f(t)} & 0 & \frac{1}{f(t)} & 0 \\ 0 & \frac{1}{4} & 0 & \frac{2}{4} \\ 0 & 0 & \frac{2}{5} & 0 \end{bmatrix}$$

- a) Indicar bajo qué condiciones converge este método, en término de A y de Tj
- b) Proponga un vector B, un vector solución inicial no nulo y realice una iteración del método.
- c) Obtener un valor de t en [1,3] que represente un límite para una rápida convergencia, aplicando para ello un método de refinamiento.
- d) Estimar Cp por perturbaciones experimentales para f(t) en t=4 con una perturbación del 1%
- e) Estimar Te por perturbaciones experimentales para f(t) en t=4 adoptando aritméticas de 5 y 7 dígitos

Ejercicio 3. El Método de los Gradientes Conjugados requiere que la matriz de coeficientes de un sistema A.x=B, es decir, la matriz A, sea simétrica definida positiva. Explique y justifique por qué una forma de «precondicionar» el sistema para poder aplicar dicho método es el siguiente: $A^{T}.A.x=A^{T}.B$

Firma	