DISTRIBUIRANI ALGORITMI I SISTEMI

Nemogućnost asinhronog konsenzusa (1/2)

- □ Pokazati nemogućnost za read/write deljenu memoriju sa n procesora i n 1 otkaza
 - dokazati direktno: lako jer ima mnogo otkaza
 - implicira da ne postoji alg. za 2-proc i 1 otkaz
- Pokazati nemogućnost za r/w deljenu memoriju sa n proc. i 1 otkazom. Dva pristupa:
 - Redukcija: koristiti hipotetički alg. za n-proc i 1
 otkaz kao podprogram za projektovanje alg. za
 2-proc i 1 otkaz
 - Direktno: Slične ideje kao za slučaj n-1 otkaza

Nemogućnost asinhronog konsenzusa (2/2)

- Pokazati nemogućnost za sis. sa slanjem poruka sa n procesora i 1 otkazom. Dva pristupa:
 - Redukcija: Koristiti hipotetički alg. sa slanjem poruka za n proc. i 1 otkazom kao podprog. za projektovanje alg. sa deljenom memorijom za n proc. i 1 otkazom. To vodi do kontradikcije sa predhodnim rezultatom.
 - Direktno: Koristiti slične ideja kao za sl. deljene memorije, pojačane rukovanjem porukama. (Istorijski, ova verzija je prva dokazana.)

Model asinhronog sistema sa otkazima tipa ispada

- □ Neka je f maks. broj procesora u otkazu.
- Za SM i MP: Svi osim f procesora moraju izvesti beskonačan br. koraka u prihvatljivom izvršenju.
- □ Za MP: Takođe zahteva da sve poruke poslate ka ispravnom procesoru moraju biti nekada konačno isporučene, osim onih poslatih od proc. u otkazu, u njegovom zadnjem koraku, koje mogu a ne moraju biti isporučene.

Algoritmi oslobođeni čekanja (Wait-Free, WF)

- □ Alg. za n procesora je WF alg. ako toleriše n − 1
 otkaza.
- Intuicija je da ispravan procesor ne čeka na druge procesore da nešto urade: on to ne može, jer on može biti jedini procesor koji je ostao aktivan.
- Prvi rezultat je da ne postoji WF alg. konsenzusa za asinhron model sa r/w deljenom memorijom.

Nemogućnost WF konsenzusa

- □ Pred. radi kontradikcije da postoji algoritam za n procesora i n − 1 otkaza u asinhronom modelu sa read/write deljenom memorijom.
- Dokaz je sličan onom da je potrebno f + 1 rundi u sinhronom modelu sa slanjem poruka.

bivalent bivalent bivalent bivalent početna konfig konfig konfig

Izmenjene definicije valenci

- U dokazu donje granice za broj rundi, valenca se odnosila na odluke koje su dostupne u prihvatljivim izvršenjima sa retkim otkazima.
- □ U ovom dokazu nas interesuju odluke koje su dostupne u bilo kom prihvatljivom izvršenju (za asinhron model sa deljenom memorijom, prihvatljivo je do n − 1 otkaza).

Lema (10.15): Ako su C_1 i C_2 univalentne i *slične za* p_i (stanje deljene memorije je isto, i lokalno stanje od p_i je isto), onda one imaju istu valencu.

Lema (10.15): Ako su C_1 i C_2 univalentne i *slične za* p_i (stanje deljene memorije je isto, i lokalno stanje od p_i je isto), onda one imaju istu valencu.

Lema (10.15): Ako su C_1 i C_2 univalentne i *slične za* p_i (stanje deljene memorije je isto, i lokalno stanje od p_i je isto), onda one imaju istu valencu.

Lema (10.15): Ako su C_1 i C_2 univalentne i *slične za* p_i (stanje deljene memorije je isto, i lokalno stanje od p_i je isto), onda one imaju istu valencu.

Bivalentna početna konfiguracija

Lema (10.16): Postoji bivalentna početna konfiguracija.

Dokaz je sličan dokazu za f + 1 donju granicu za broj rundi u sinhronom modelu.

Def: Ako je C bivalentna i i(C) (rezultat kad p_i izvodi jedan korak) je univalentna, onda je p_i **kritičan** u C.

Lema (10.17): Ako je C bivalentna, onda bar jedan procesor nije kritičan u C, tj., postoji bivalentno proširenje.

Dokaz: Pred. radi kontradikcije da su svi procesori kritični.

Def: Ako je C bivalentna i i(C) (rezultat kad p_i izvodi jedan korak) je univalentna, onda je p_i **kritičan** u C.

Lema (10.17): Ako je C bivalentna, onda bar jedan procesor nije kritičan u C, tj., postoji bivalentno proširenje.

Dokaz: Pred. radi kontradikcije da su svi procesori

Dalje sledi analiza slučajeva za varijacije dva koraka p_i i p_j

Slučaj 2: p_i i p_j čitaju isti registar. Isti dokaz.

Slučaj 3: p_i piše u registar R a p_i čita iz R.

Slučaj 3: p_i piše u registar R a p_i čita iz R.

Slučaj 3: p_i piše u registar R a p_j čita iz R.

Slučaj 3: p_i piše u registar R a p_j čita iz R.

Slučaj 3: p_i piše u registar R a p_j čita iz R.

- Slučaj 4: Šta ako i p_i i p_j pišu u istu deljenu promenljivu?
- Možemo "uprostiti" problem sa pred. da postoje samo deljene prom. u koje piše samo jedan proc.
- □ Ili, možemo izvesti dokaz sličan dokazu za slučaj 3.

Završetak dokaza nemogućnosti...

- □ Napravimo prihvatljivo izvr. C_0 , i_1 , C_1 , i_2 , C_2 ,... u kom su sve konfiguracije bivalentne.
 - dovodi do kontradikcije sa zahtevom za završetak
- Počnimo sa bivalentnom početnom konfig.
- \square Pred. da postoji bivalentna C_k .
 - Da bi dobili bivalentnu C_{k+1} :
 - \square Neka je p_i procesor koji nije kritičan u C_k .
 - Neka C_{k+1} bude $i_{k+1}(C_k)$.

Nemogućnost 1-elastičnog konsenzusa: Ideja redukcije

- Čak i ako broj ispravnih proc. postane dominantan, konsenzus se i dalje ne može rešiti u asinhronom SM (sa read/write registrima).
- Pred. da postoji algoritam A za n procesora i 1 otkaz.
- Uzmimo A kao podprogram u projektovanju algoritma A'za 2 procesora i 1 otkaz.
- 3. Ali, upravo smo dokazali da takav A' ne postoji.
- 4. Zato ni A ne postoji.

Nemogućnost 1-elastičnog konsenzusa: Ideja direktnog dokaza

- Pred. radi kontradik. da postoji takav algoritam.
- Strategija: Konstruisati prihvatljivo izvršenje (sa najviše 1 otkazom) koje se nikad ne završava:
 - Pokazati da postoji bivalentna početna konfiguracija
 - Pokazati kako ići od jedne bivalentne konfig do druge, zauvek (tako da se nikad ne završava)
- Tehnički teži dokaz, jer pri konstruisanju ovog izvršenja, ne može otkazati više od jednog procesora.

Nemogućnost konsenzusa u modelu sa slanjem poruka: Redukcija

Strategija:

- Pred. da postoji 1-elastičan alg. konsenzusa A za n-proc u asinhronom modelu sa slanjem por.
- Uzmimo A kao podprogram u projektovanju 1elastičnog algoritma konsenzusa A'za n-proc. u asinhronom modelu sa deljenom memorijom (sa read/write prom.).
- 3. Ali, već smo dokazali da A'ne postoji.
- Zato ni A ne postoji.

Nemogućnost konsenzusa u modelu sa slanjem poruka

Ideja za A':

- Simulirati kanale poruka sa read/write registrima.
- Onda postaviti alg. A na vrh ovih simuliranih kanala.
- Za simulaciju kanala od p_i do p_i:
- Uzmimo jedan registar za sekvencu poruka poslatih preko ovog kanala
- □ p_i "šalje" poruku m upisom stare vrednosti registra na koju se doda m
- p_i "prima" poruku čitanjem registra i proverom novih poruka na kraju pročitane vrednosti