Model Identification and Data Analysis

Matteo Secco June 24, 2021

Contents

Ι	Prediction	4
1	Probability Recall	4
	1.1 Random Vectors	. 4
	1.2 Random processes	. 4
	1.3 Important process classes	. 4
2	Spectral Analysis	6
	2.1 Foundamentals	
	2.2 Fundamental theorem of Spectral Analysis	
	2.3 Canonical representation of a Stationary Process	. 7
3	Moving Average Processes	8
	3.1 $MA(1)$:	. 8
	3.2 MA(n)	
	3.3 $MA(\infty)$	
	3.4 Well definition of an $MA(\infty)$. 10
4	Auto Regressive Processes	11
	4.1 $AR(1)$	
	4.2 AR(n)	. 12
5	ARMA Processes	14
6	Prediction problem	15
	6.1 Fake problem	. 15
	6.2 True Problem	
	6.3 Prediction with eXogenous variables	
	6.3.1 ARX model	
	6.3.2 ARMAX model	. 16
II	I Identification	17
_		4.0
7	Prediction Error Minimization	18
II	II Black-Box non-parametric I/O systems	19
\mathbf{A}	State-space models	19
	A.1 State-space representation	. 19
	A.2 Transfer function representation	
	A.3 Convolution of the input with the inpulse response	

В	Converting representations one to another	21
	B.1 State space to Transfer function	21
	B.2 Transfer Function to State Space	21
	B.3 Transfer function to Impulse response	21
	B.4 Impulse response to Tranfer function	21
	B.5 State space to Impulse response	22
\mathbf{C}	Controllability and Observability	23
D	Hankel Matrix	24
\mathbf{E}	Subspace-based State Space System Identification	25
	E.1 Obtain F, G, H from a noise-free IR	25
F	Obtain F, G, H from a noisy IR	26
ΙV	V Cheatsheet	27
\mathbf{G}	Probability Recall	27
Н	Spectral analysis	28
Ι	Moving Average MA(n)	29
	I.1 $MA(\infty)$	29
J	Auto Regressive AR(n)	30
K	Known predictors	31

Part I

Prediction

1 Probability Recall

1.1 Random Vectors

Variance $Var[v] = E[(v - E[v])^2]$

Cross-Variance Var[v, u] = E[(v - E[v])(u - E[u])]

 $\begin{array}{ll} \textbf{Covariance coefficient} & \delta[i,j] = \frac{Var[i,j]}{\sqrt{Var[i]}} \\ \delta[i,j] = 0 \implies \text{i, j uncorrelated} \\ |\delta[i,j]| = 1 \implies i = \alpha j \end{array}$

1.2 Random processes

v(t,s) t time instant, s expetiment outcome (generally given)

Mean m(t) = E[v(t,s)]

Variance $\lambda^2(t) = Var[v(t)]$

 $\textbf{Covariance function} \quad \gamma(t_1,t_2) = E[(v(t_1)-m(t_1))(v(t_2)-m(t_2))] = \gamma(t_2,t_1)$

Normalized Covariance Function $\rho(\tau) = \frac{\gamma(\tau)}{\gamma(0)}$ \forall stationary processes: $|\rho(\tau)| \le 1 \quad \forall \tau$

1.3 Important process classes

Stationary process

- m(t) = m constant
- $\lambda^2(t) = \lambda^2 \text{ constant}$
- $\gamma(t_1, t_2) = f(t_2 t_1) = \gamma(\tau)$ covariance depends only on time difference τ $|\gamma(\tau)| \le \gamma(0) \quad \forall \tau$

White noise $\eta(t) \sim WN(m, \lambda^2)$

- Stationary process
- $\gamma(\tau) = 0 \quad \forall \tau \neq 0$

$$v(t) = \alpha \eta(t) + \beta \quad \eta(t) \sim WN(0, \lambda^2) \qquad \implies \qquad v(t) \sim WN(\beta, \alpha^2 \lambda^2)$$

2 Spectral Analysis

2.1 Foundamentals

Spectrum

$$\Gamma(\omega) = \overbrace{F(\gamma(\tau))}^{\text{Fourier transform}} = \sum_{\tau = -\infty}^{+\infty} \gamma(\tau) \cdot e^{-j\omega\tau}$$

Euler formula $\Gamma(\omega) = \gamma(0) + 2cos(\omega)\gamma(1) + 2cos(2\omega)\gamma(2) + ...$

Spectrum properties

- $\Gamma: \mathbb{R} \to \mathbb{R}$
- Γ is periodic with $T=2\pi$
- Γ is even $[\Gamma(-\omega) = \Gamma(\omega)]$
- $\Gamma(\omega) \ge 0 \quad \forall \omega$

$$\eta(t) \sim WN(0, \lambda^2) \implies \Gamma_{\eta}(\omega) = \gamma(0) = Var[\eta(t)] = \lambda^2$$

Anti-Transform

$$\gamma(\tau) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \Gamma(\omega) e^{k\omega\tau} \, dw$$

Complex spectrum

$$\phi(z) = \sum_{\tau = -\infty}^{+\infty} \omega(\tau) z^{-\tau}$$

$$\Gamma(\omega) = \Phi(e^{j\omega})$$

2.2 Fundamental theorem of Spectral Analysis

Fundamental theorem of Spectral Analysis allows to derive the (real and/or complex) spectrum of the output from the input and the transfer function of the system

$$\longrightarrow$$
 $W(z)$ \xrightarrow{y}

$$\Gamma_{yy}(\omega) = |W(e^{j\omega})|^2 \cdot \Gamma_{uu}(\omega)$$

$$\Phi_{yy}(z) = W(z)W(z^{-1}) \cdot \Phi_{uu}(z)$$

2.3 Canonical representation of a Stationary Process

A stationary process can be represented by an infinite number of transfer functions. The canonical representation is the transfer function W(z) such that:

- Numerator and denominator have same degree
- Numerator and denominator are monic (highest grade coefficient is 1)
- Numerator and denominator are coprime (W(z) cannot be simplified)
- numerator and denominator are stable polynomials (all poles and zeros of W(z) are inside the unit disk)

3 Moving Average Processes

Given $\eta(t) \sim WN(0, \lambda^2)$

3.1 MA(1):

 \mathbf{Model}

$$v(t) = c_0 \eta(t) + c_1 \eta(t-1)$$

Mean

$$E[v(t)] = c_0 \cdot E[\eta(t)] + c_1 \cdot E[\eta(t)]$$
$$= c_0 \cdot 0 + c_1 \cdot 0$$
$$E[v(t)] = 0$$

Variance

$$\begin{split} Var[v(t)] &= E[(v(t)\underbrace{-E[v(t)])^2}] \\ &= E[(v(t))^2] \\ &= E[(c_0 \cdot \eta(t)^2 \\ &= c_0^2 \cdot E[\eta(t)^2] \\ &= c_0^2 \lambda^2 \\ \hline Var[v(t)] &= (c_0^2 + c_1^2)\lambda^2 \end{split}$$

Covariance

$$\begin{split} \gamma(t_1,t_2) &= E[(v(t_1)-E[v(t_1)]) & \cdot (v(t_2)-E[v(t_2)])] \\ &= E[(c_0\eta(t_1)+c_1\eta(t_1-1)) \cdot (c_0\eta(t_2)+c_1\eta(t_2-1))] \\ &= c_0^2 E[\eta(t_1)\eta(t_2)] & + c_1^2 E[\eta(t_1-1)\eta(t_2-1) \\ & + c_0 c_1 E[\eta(t_1)\eta(t_2-1)] + c_0 c_1 E[\eta(t_1-1)\eta(t_2)] \end{split}$$

$$\gamma(\tau) = \begin{cases} c_0^2 \lambda^2 + c_1^2 \lambda^2 & \text{if } \tau = 0\\ c_0 c_1 \lambda^2 & \text{if } \tau = \pm 1\\ 0 & \text{otherwise} \end{cases}$$

3.2 MA(n)

Model

$$v(t) = c_0 \eta(t) + c_1 \eta(t-1) + \dots + c_n \eta(t-n)$$

= $(c_0 + c_1 z^{-1} + \dots + c_n z^{-n}) \eta(t)$

Transfer function

$$W(z) = c_0 + c_1 z^{-1} + \dots + c_n z^{-n} = \frac{c_0 z^n + c_1 z^{n-1} + \dots + c_n}{z^n}$$

All poles are in the complex origin

Mean

$$E[v(t)] = (c_0 + c_1 + \dots + c_n) \underbrace{E[\eta(t)]}_{0}$$

$$E[v(t) = 0]$$

Covariance function

$$\gamma(\tau) = \begin{cases} \lambda^2 \cdot \sum_{i=0}^{n-\tau} c_i c_{i-\tau} & |\tau| \le n \\ 0 & \text{otherwise} \end{cases}$$

example

$$\begin{split} \gamma(0) &= (c_0^2 + c_1^2 + \ldots + c_n^2) \lambda^2 \\ \gamma(1) &= (c_0 c_1 + c_1 c_2 + \ldots + c_{n-1} c_n) \lambda^2 \\ \gamma(2) &= (c_0 c_2 + c_1 c_3 + \ldots + c_{n-2} c_n) \lambda^2 \\ &\cdots \\ \lambda(n) &= (c_0 c_n) \lambda^2 \\ \lambda(k) &= 0 \ \forall k > n \end{split}$$

3.3 $MA(\infty)$

Model

$$v(t) = c_0 \eta(t) + c_1 \eta(t-1) + \dots + c_k \eta(t-k) + \dots = \sum_{i=0}^{\infty} c_i \eta(t-i)$$

Variance

$$\gamma(0) = (c_0^2 + c_1^2 + \dots + c_k^2 + \dots)\lambda^2 = \lambda^2 \sum_{i=0}^{\infty} c_i^2$$

3.4 Well definition of an $MA(\infty)$

We need to have $|\gamma(\tau)| \leq \gamma(0)$, so we must require that

$$\gamma(0) = \lambda^2 \sum_{i=0}^{\infty} c_i^2 \text{ is finite}$$

4 Auto Regressive Processes

4.1 AR(1)

Model

$$v(t) = av(t-1) + \eta(t)$$

Mean

$$E[v(t)] = E[av(t-1)] + \overbrace{E[\eta(t)]}^{0}$$

$$= aE[v(t-1)]$$

$$= aE[v(t)]$$

$$(1-a)E[v(t)] = 0$$

$$\boxed{E[v(t)] = 0}$$

Covariance

 $\mathbf{MA}(\infty)$ method Observe as an AR(1) can be axpressed as an MA(∞)

$$\begin{split} v(t) &= av(t-1) &+ \eta(t) \\ &= a[av(t-2) + \eta(t-1)] &+ \eta(t) \\ &= a^2v(t-2) &+ a\eta(t-1) + \eta(t) \\ &= a^2[v(t-3) + \eta(t-2)] &+ a\eta(t-1) + \eta(t) \\ &= \underbrace{a^nv(t-n)}_{\to 0} + \sum_{i=0}^{\infty} a^i\eta(t-i) &+ \underbrace{a^nv(t-n)}_{\to 0} + \underbrace{a^nv(t-$$

In particular, the result depends on an $MA(\infty)$ having $\sum_{i=0}^{\infty} c_i = \sum_{i=0}^{\infty} a^i$. To check if the variance is finite we check $\gamma(0) = \lambda^2 \sum_{i=0}^{\infty} a^{2i} < \infty$. The given is a geometric series, convergent for |a| < 1. Under this hypothesis its value is

$$\gamma(0) = \lambda^2 \sum_{i=0}^{\infty} a^{2i} = \frac{\lambda^2}{1 - a^2}$$

Applying the formula of the variance of MA processes we get

$$\gamma(1) = (c_0c_1 + c_1c_2 + \dots)\lambda^2 = (a + aa^2 + \dots)\lambda^2 = a(1 + a^2 + a^4 + \dots)\lambda^2 = a\lambda^2 \sum_{i=0}^{\infty} a^{2i} = a\frac{\lambda^2}{1 - a^2} = a\gamma(0)$$

$$\gamma(2) = (c_0c_2 + c_1c_3 + \dots)\lambda^2 = (a^2 + aa^3 + \dots)\lambda^2 = a^2(1 + a^2 + a^4 + \dots)\lambda^2 = a^2\lambda^2 \sum_{i=0}^{\infty} a^{2i} = a^2\frac{\lambda^2}{1 - a^2} = a^2\gamma(0)$$

$$\gamma(\tau) = a^{|\tau|} \frac{\lambda^2}{1 - a^2}$$

Yule-Walkler Equations

$$\begin{split} Var[v(t)] &= E[v(t)^2] \\ &= E[(av(t) + \eta(t))^2] \\ &= a^2 \underbrace{E[v(t-1)^2]}_{=Var[v(t-1)]} + \underbrace{E[\eta(t)^2]}_{=\lambda^2} + 2a \underbrace{E[v(t-1)\eta(t)]}_{v(t-1) \text{ depends on } \eta(t-2)} \\ &\stackrel{= Var[v(t)]}{=\gamma(0)} \xrightarrow{= \lambda^2} \underbrace{\eta(t) \text{ independent of } \eta(t-2)}_{E[v(t-1)\eta(t)]=0} \\ \gamma(0) &= a^2 \gamma(0) + \lambda^2 \\ \hline \gamma(0) &= \frac{\lambda^2}{1-a^2} \end{split}$$

To find $\gamma(\tau)$, we start from the model $v(t) = av(t-1) + \eta(t)$.

$$\begin{aligned} v(t) &= av(t-1) &+ \eta(t) \\ v(t)v(t-\tau) &= av(t-1)v(t-\tau) &+ \eta(t)v(t-\tau) \\ \underbrace{E[v(t)v(t-\tau)]}_{\gamma(\tau)} &= a\underbrace{E[v(t-1)v(t-\tau)]}_{\gamma(\tau-1)} + \underbrace{E[\eta(t)v(t-\tau)]}_{0} \\ \boxed{\gamma(\tau) &= a\gamma(\tau-1)} \end{aligned}$$

We can join the two by inductive reasoning, obtaining

$$\gamma(\tau) = a^{|\tau|} \frac{\lambda^2}{1 - a^2}$$

Long Division Leads to same result, but is boring

$4.2 \quad AR(n)$

Model

$$v(t) = a_1 v(t-1) + a_2 v(t-2) + \dots + a_n v(t-n) + \eta(t)$$

Transfer function

$$W(z) = \frac{z^n}{z^n - a_1 z_{n-1} - \dots - a_n}$$

Mean

$$E[v(t)] = a_1 E[v(t-1]) + a_2 E[v(t-2)] + \dots + a_n E[v(t-n)] + \underbrace{E[\eta(t)]}_{0}$$

$$m = a_1 m + a_2 m + \dots + a_n m$$

$$(1 - a_1 - a_2 - \dots - a_n) m = 0$$

$$\boxed{E[v(t)] = 0}$$

ARMA Processes 5

Model

$$v(t) = a_1 v(t-1) + \ldots + a_{n_a} v(t-n_a) + c_0 \eta(t) + \ldots + c_{n_c} v(t-n_c)$$

Can also be espressed as $V(t) = \frac{C(z)}{A(z)} \eta(t)$, where

$$C(z) = c_0 + c_1 z^{-1} + \dots + c_{n_c} z^{-n_c}$$
$$A(z) = 1 - a_1 z^{-1} - \dots - a_{n_a} z^{-n_a}$$

$$A(z) = 1 - a_1 z^{-1} - \dots - a_{n_a} z^{-n_a}$$

Such process is stationary if all the poles of W(z) are inside the unit disk.

6 Prediction problem

We want to predict v(t+r) from v(t), v(t-1), ..., where r is called prediction horizon, of the following stationary process:

$$\xrightarrow{\eta} W(z) \xrightarrow{v}$$

6.1 Fake problem

Having a process with transfer function W(z), we can compute it in polynomial form using the long division algorithm

$$W(z) = w_0 + w_1 z^{-1} + w_2 z^{-2} + \dots$$

We can calculate

$$v(t+r) = W(z)\eta(t+r) = \underbrace{w_0\eta(t+r) + w_1\eta(t+r-1) + \ldots + w_{r-1}\eta(t+1)}_{\alpha(t) \text{ unpredictable: future of } \eta \text{ involved}} + \underbrace{w_r\eta(t) + w_{r+1}\eta(t-1) + \ldots}_{\beta(t) \text{ predictable}}$$

The optimal fake predictor is then

$$v(t+r|t) = w_r \eta(t) + w_{r+1} \eta(t-1) + \dots = \beta(t)$$

And the prediction error is

$$\epsilon(t) = v(t+r) \qquad -\hat{v}(t+r|t)$$

$$= \alpha(t) + \beta(t) \qquad -\beta(t)$$

$$= \alpha(t)$$

$$\boxed{\epsilon(t) = w_0 \eta(t+r) + w_1 \eta(t+r-1) + \dots + w_{r-1} \eta(t+1)}$$
$$\boxed{Var[\epsilon(t)] = (w_0^2 + w_1^2 + \dots + w_{r-1}^2)\lambda^2}$$

6.2 True Problem

We want to estimate v(t+r) form v(t), having transfer function W(z) and $\hat{W}_r(z)$ the solution to the fake problem. We can calculate the transfer function of the real predictor from the process as

$$W_r(z) = W(z)^{-1} \cdot \hat{W}_r(z)$$

For ARMA processes a shortcut exists:

$$\hat{v}_{\text{ARMA}}(t|t-1) = \frac{C(z)A(z)}{C(z)} \qquad \text{having } W(z) = \frac{C(z)}{A(z)}$$

6.3 Prediction with eXogenous variables

An exogenous variable is a <u>deterministic</u> input variable in the system

6.3.1 ARX model

$$v(t) = a_1 v(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + b_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + b_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + b_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + a_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_b} u(t-n_b) + u(t-1) +$$

Transfer functions from u and $\boldsymbol{\eta}$

$$W_u(z) = \frac{B(z)}{A(z)} \qquad W_{\eta}(z) = \frac{1}{A(z)}$$

6.3.2 ARMAX model

$$A(z)v(t) = C(z)\eta(t) + B(z)u(t-1)$$

$$y(t) = W(z)\eta(t) + G(z)u(t)$$

Predictor

$$\hat{y}(t|t-1) = \frac{C(z) - A(z)}{C(z)}y(t) + \frac{B(z)}{C(z)}u(t-1)$$

Part II Identification

Consists of estimating a model from data.

7 Prediction Error Minimization

Aims to minimize $\epsilon(t) = v(t) - \hat{v}(t|t-r)$ Steps:

- 1. Data collection: collect \vec{u} and \vec{y}
- 2. Family selection: choose a family of models $M(\theta)$

MA(1)
$$\theta = [a]$$

MA(n) $\theta = [a_1, ..., a_n]$
ARMA (n_a, n_c) $\theta = [a_1, ..., a_{n_a}, c_1, ..., c_{n_c}]$

3. Select an optimization criterion

Mean Squared error
$$J(\theta) = \frac{1}{N} \sum_{t=1}^{N} \epsilon_{\theta}(t)^2$$

Mean absolute error $J(\theta) = \frac{1}{N} \sum_{t=1}^{N} |\epsilon_{\theta}(t)|$

- 4. Optimization find $\hat{\theta} = argmin J(\theta) \implies \frac{dJ(\theta)}{d\theta} = 0$
- 5. Validation verify if the result satisfies the requirements

Part III

Black-Box non-parametric I/O systems

A State-space models

Known (measured) data

$$\{u(1), \dots, u(N)\}$$
 input
$$\{y(1), \dots, y(N)\}$$
 output

A.1 State-space representation

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) & \text{state equations} \\ y(t) = Hx(t) + Du(t) & \text{output equations} \end{cases}$$

Where $F_{n\times n}$, $G_{n\times 1}$, $H_{1\times n}$ and $D_{1\times 1}$ are matrices.

S.S. representation is not unique Given any invertible matrix T, let $F_1 = TFT^{-1}$, $G_1 = TG$, $H_1 = HT^{-1}$, $D_1 = D$. Then the system $\{F, G, H, D\}$ is equivalent to the system $\{F_1, G_1, H_1, D_1\}$.

A.2 Transfer function representation

$$W(z) = \frac{B(z)}{A(z)}z^{-k} = \frac{b_0 + b_1 z^{-1} + \dots + b_p z^{-p}}{a_0 + a_1 z^{-1} + \dots + a_n z^{-n}}z^{-k}$$

W(z) is a rational function of the z operator \rightarrow is a digital filter

Infinite impulse response $W(z) = \frac{z^{-1}}{1 + \frac{1}{3}z^{-1}}$

Finite impulse response $W(z)=z^{-1}+\frac{1}{2}z^{-2}+\frac{1}{4}z^{-3}$

A.3 Convolution of the input with the inpulse response

Let's call $\omega(1), \omega(2), \ldots$ the values of y(t) when u(t) = impulse(0), and let's measure the values of y at different times: . Then it can be proven that for any u(t)

$$y(t) = \sum_{k=0}^{\infty} \omega(k) u(t-k)$$

B Converting representations one to another

B.1 State space to Transfer function

Consider a strictly propter system:

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t+1) = Hx(t) + \mathcal{D}u(t) \end{cases} \Rightarrow \begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases}$$

Applying the z operator we get

$$zx(t) = Fx(t) + Gu(t)$$

$$x(t)(zI - F) = Gu(t)$$

$$x(t) = (zI - F)^{-1}Gu(t)$$

$$y(t) = H(zI - F)^{-1}Gu(t)$$

And we can extract the transfer function:

$$W(z) = H(zI - F)^{-1}G$$

B.2 Transfer Function to State Space

We have the transfer function

$$W(z) = \frac{b_0 z^{n-1} + b_1 z^{n-2} + \dots + b_{n-1}}{z^n + a_0 z^{n-1} + \dots + a_n}$$

The formulas for the state space matrices is

$$F = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & 1 \\ -a_n & -a_{n-1} & \dots & \dots & -a_1 \end{bmatrix} \quad G = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \quad H = \begin{bmatrix} b_{n-1} & b_{n-2} & \dots & b_0 \end{bmatrix} \quad D = 0$$

B.3 Transfer function to Impulse response

Obtained by computing the ∞ long division of W(z)

B.4 Impulse response to Tranfer function

Z-transform Given a discrete-time signal s(t) such that $\forall t < 0 : s(t) = 0$, it's Z-transform is

$$\mathcal{Z} = \sum_{t=0}^{\infty} s(t)z^{-t}$$

It can be proven that:

$$W(z) = \mathcal{Z}(\omega(t)) = \sum_{t=0}^{\infty} \omega(t) z^{-1}$$

NB: this works only in theory because of the infinite sum

B.5 State space to Impulse response

Consider the state space model:

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases}$$

We have that:

$$x(1) = Ex(0) + Gu(0)$$
 = $Gu(0)$
 $y(1) = Hx(1)$ = $HGu(0)$

$$x(2) = Fx(1) + Gu(1)$$
 = $FGu(0) + Gu(1)$
 $y(2) = Hx(2)$ = $HFGu(0) + HG(u1)$

$$x(3) = Fx(2) + Gu(2) = F^2Gu(0) + FGu(1) + Gu(2)$$

$$y(3) = Hx(3) = HF^2Gu(0) + HFGu(1) + HGu(2)$$
 .

:

$$y(t) = 0u(t) + HGu(t-1) + HFGu(t-2) + HF^2Gu(t-3) + \dots$$

The IR is:

$$\omega(t) = \begin{cases} 0 & \text{if } t = 0 \\ HF^{t-1}G & \text{if } t > 0 \end{cases}$$

C Controllability and Observability

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases}$$

Fully observable system The system is fully observable (from the output) ⇔ the observability matrix is full rank:

$$O = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} \qquad rank(O) = n$$

Fully controllable system The system is fully controllable (from the input)

⇔ the controllability (also called reachability) matrix is full rank:

$$R = \begin{bmatrix} G & FG & \dots & F^{n-1}G \end{bmatrix}$$
 $rank(R) = n$

D Hankel Matrix

Starting from $\omega(1), \omega(2), \ldots, \omega(N)$ where $N \geq 2n - 1$, we can build the Hankel Matrix of order n:

$$H_n = \begin{bmatrix} \omega(1) & \omega(2) & \omega(3) & \dots & \omega(n) \\ \omega(2) & \omega(3) & \omega(4) & \dots & \omega(n+1) \\ \omega(3) & \omega(4) & \omega(5) & \dots & \omega(n+2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \omega(n) & \omega(n+1) & \omega(n+2) & \dots & \omega(2n-1) \end{bmatrix}$$

Knowing that

$$\omega(t) = \begin{cases} 0 & \text{if } t = 0\\ HF^{t-1}G & \text{if } t > 0 \end{cases}$$

We can rewrite

$$H_n = \begin{bmatrix} HG & HFG & HF^2G & \dots & HF^{n-1}G \\ \vdots & \ddots & & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ HF^{n-1}G & \dots & \dots & \dots & HF^{2n-2}G \end{bmatrix} = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} \cdot \begin{bmatrix} G & FG & \dots & F^{n-1}G \end{bmatrix} = O \cdot R$$

E Subspace-based State Space System Identification

Impulse experiment Measure y(t) under the input u(t) = impulse(0)(0) How to derive F, G, H from $\omega(0), \ldots, \omega(n)$?

- Assuming the IR measurement to be noise free \rightarrow easier, not realistic
- Measure $\hat{\omega}(t)$ as a noisy signal and compute $\omega(t) = \eta(t) \hat{\omega}(t)$

E.1 Obtain F, G, H from a noise-free IR

1. Build the Hankel matrix of increasing order, and conpute the rank until $rank(H_n) = rank(H_{n+1})$. Then, n is the order of the IR

$$H_1 = \begin{bmatrix} \omega(1) \end{bmatrix}$$
 $H_2 = \begin{bmatrix} \omega(1) & \omega(2) \\ \omega(2) & \omega(3) \end{bmatrix}$ $H_3 = \dots$ $H_n = \dots$

2. Take H_{n+1} and factorize it in two rectangular matrix of size $(n+1) \times n$ and $n \times (n+1)$: $H_{n+1} = O_{n+1} \cdot R_{n+1}$, where

$$O_{n+1} = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^n \end{bmatrix} \qquad R_{n+1} = \begin{bmatrix} G & FG & \dots & F^nG \end{bmatrix}$$

- 3. Estimate H,F,G:
 - Extract F and G from the first element of O and R
 - Define:

$$O_1 = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} \qquad O_2 = \begin{bmatrix} HF \\ \vdots \\ HF^n \end{bmatrix}$$

• Observe that $O_1F = O_2$, so $F = O_1^{-1}O_2$

F Obtain F, G, H from a noisy IR

The measurement is of $\hat{\omega}(t) = \omega(t) + \eta(t)$. To identify the process:

1. Build the Hankel matrix from data using all the N data available in one shot:

$$\hat{H}_{q \times d} = \begin{bmatrix} \hat{\omega}(1) & \hat{\omega}(2) & \dots & \hat{\omega}(d) \\ \hat{\omega}(2) & \hat{\omega}(3) & \dots & \hat{\omega}(d+1) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\omega}(q) & \hat{\omega}(q+1) & \dots & \hat{\omega}(q+d+1) \end{bmatrix}$$

Where q + d + 1 = N

2. Calculate the Singular Value Decomposition of $\hat{H}_{q\times d}$:

$$\hat{H}_{q \times d} = \hat{U}_{q \times q} \cdot \hat{S}_{q \times d} \cdot \hat{V}_{d \times d}^T$$

 \hat{U} and \hat{V} are unitary matrices: they are invertible and their inverses are equal to their transpose.

$$\hat{S} = egin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & \\ & & & \sigma_d \end{bmatrix}$$

- 3. Plot the singular values (σ_i) and cut-off the three matrices:
 - Ideally, after a certain n (the order of the IR) there would be a jump dividing the signal (before) from the noise (after)
 - In reality no clear distinction exists, but it's possible to identify an interval of possible values of n. A tradeoff between complexity, precision and oferfitting takes place
- 4. Split $\hat{U}, \hat{S}, \hat{V}^T$ obtaining $U_{q \times n}, S_{n \times n}, V_{n \times d}^T$ and then recreate $H_{qd} = USV^T$
- 5. H and G are estimated as for the unnoisy case. To estimate F we can build O_1 and O_2 as before, but then the system $O_1 \cdot F = O_2$ cannot be solved directly as O_1 is not square. We can instead compute the approximate least-square solution of the system:

$$F = (O_1^T O_1)^{-1} O_1^T O_2$$

Part IV

Cheatsheet

G Probability Recall

 $\textbf{Cross-Variance} \quad Var[v,u] = E[(v-E[v])(u-E[u])]$

 $\textbf{Variance Matrix} \begin{array}{|c|c|c|c|c|} \hline Var[v_1] & . & . & Var[v_1,v_k] \\ \hline . & . & . & . \\ \hline . & . & . & . \\ \hline Var[v_k,v_1] & . & . & Var[v_k] \\ \hline \end{array}$

Covariance coefficient $\delta[i,j] = \frac{Var[i,j]}{\sqrt{Var[i]}\sqrt{Var[j]}}$

Stationary process

- m constant
- λ^2 constant
- covariance $\gamma(\tau)$ depends only on time difference
- $|\gamma(\tau)| \le \gamma(0) \quad \forall \tau$

White noise $\eta(t) \sim WN(m, \lambda^2)$

- Stationary process
- $\gamma(\tau) = 0 \quad \forall \tau \neq 0$
- $v(t) = \alpha \eta(t) + \beta \implies v(t) \sim WN(\beta, \alpha^2 \lambda^2)$

Canonical representation

- Monic
- Same degree
- Coprime
- Poles and zeros in unit disk

H Spectral analysis

Spectrum

- $\Gamma(\omega) = \gamma(0) + 2cos(\omega)\gamma(1) + 2cos(2\omega)\gamma(2) + \dots$
- Periodic $T=2\pi$
- \bullet Even
- $\Gamma_{\eta}(\omega) = \gamma_{\eta}(0) = \lambda^2$

Complex spectrum

- $\Phi(z) = \sum_{\tau = -\infty}^{+\infty} \omega(\tau) z^{-\tau}$
- $\Gamma(\omega) = \Phi(e^{j\omega})$

Fundamental theorem of spectral analysis

- $\Gamma_{\rm out}(\omega) = |W(e^{j\omega})|^2 \cdot \Gamma_{\rm in}(\omega)$
- $\Phi_{\mathrm{out}}(z) = W(z)W(z^{-1}) \cdot \Phi_{\mathrm{in}}(z)$

I Moving Average MA(n)

- $W(z) = \frac{c_0 z^n + c_1 z^{n-1} + \dots + c_n}{z_n}$
- m = 0
- $\gamma(\tau) = \begin{cases} (c_0 c_\tau + c_1 c_{1+\tau} + \dots + c_{n-\tau} c_\tau) \lambda^2 & |\tau| \le n \\ 0 & \text{otherwise} \end{cases}$

I.1 $MA(\infty)$

- $\gamma(0) = (c_0^2 + c_1^2 + \dots + c_k^2 + \dots)\lambda^2$
- $\gamma(0)$ must converge to a finite value

J Auto Regressive AR(n)

- m = 0
- $\bullet \ W(z) = \frac{z^n}{z^n a_1 z_{n-1} \dots a_n}$
- \bullet Covariance calculated by its definition

K Known predictors

AR(1)
$$\hat{v}(t|t-r) = a^r v(t-r)$$

MA(1)
$$\hat{v}(t|t-1) = v(t-1) - c\hat{v}(t-1|t-2)$$

$$\mathbf{MA(n)} \ \hat{v}(t|t-\mathbf{k}) = 0 \quad \forall k > n$$

ARMA
$$(n_a, n_b)$$
 $\hat{v}(t|t-1) = \frac{C(z) - A(z)}{C(z)}v(t)$

ARMAX
$$(n_a, n_b)$$
 $\hat{y}(t|t-1) = \frac{C(z) - A(z)}{C(z)} y(t) + \frac{B(z)}{C(z)} u(t-1)$