Connor Forsythe, Ph.D.

(405) 830-5706 <u>LinkedIn</u> connorforsythe@cmu.edu <u>crforsythe.github.io</u>

Data and research scientist with 5+ years of experience. Expert in discrete-choice modeling, causal inference, and demand estimation. Skilled in integrating economic theories with machine learning. Committed to data-driven insights and innovations in interdisciplinary research and development.

KEY SKILLS

- Research
 - Policy analysis
 - Econometrics
 - Consumer behavior
 - Optimization
 - Machine learning
- Technical
 - Python, R, Stata, MATLAB, Julia, SQL, LaTeX
 - o Keras, sklearn, NumPy, Pandas
- Data Collection
 - Survey design, deployment
 - Data cleaning
- Project Management
 - Proposal writing
 - Project coordination
 - Stakeholder engagement

EDUCATION

Ph.D. Mechanical Engineering August 2023 Carnegie Mellon University QPA: 3.8/4.0

B.S. Systems Engineering May 2018 The George Washington University GPA: 3.97/4.0, Top of Class

REFERENCES

Jeremy J. Michalek, Ph.D.
Professor of Mechanical Engineering,
Engineering & Public Policy
Carnegie Mellon University
jmichalek@cmu.edu
(412) 268-3765

Kate S. Whitefoot, Ph.D.
Associate Professor of Mechanical
Engineering, Engineering & Public
Policy
Carnegie Mellon University
kwhitefoot@cmu.edu
(412) 268-6771

PROFESSIONAL EXPERIENCE

Postdoctoral Researcher (Aug 2023 - Present)

Engineering and Public Policy; Carnegie Mellon University, Pittsburgh, PA

- Project Management: Proposing, designing, and executing research projects with fellow researchers.
- Interdisciplinary Collaboration: Promoting interdisciplinary collaboration across economics, business, and engineering.
- Research Communication: Authoring nine research articles, preparing proposals, and presenting at professional conferences
- **Mentoring:** Advising four students in econometrics, coding, and research design and communication.

RESEARCH PROJECTS AND EXPERIENCE

Develop novel models of consumer demand with machine learning

Method: Developed novel model integrating economic theories with machine learning.

Finding: Outperformed standard models with a Kerasimplemented algorithm.

Takeaway: Model can improve future policy analyses and product design.

Model demand for new technologies - Electric Vehicles (EVs)

Method: Designed experiments and estimated discrete-choice models for mainstream EV demand.

Finding: Several modern and future EVs have and will be competitive with their gasoline counterparts. **Takeaway:** Technology has influenced EV demand more so than changes in consumer preferences.

Model the causal link between vehicle registration and usage

Method: Used state safety inspections to causally identify vehicle registration impact on utilization.

Finding: Demonstrated vehicle use did not increase 1:1 with registrations.

Takeaway: Findings could reduce estimated statewide vehicle safety inspection policy costs by \$90M annually.

Optimization of vehicle parking schedules

Method: Constructed model of city parking system as mixed-integer linear program.

Finding: Realistic reserved parking systems operated less efficiently than status-quo.

Takeaway: Reserved parking technologies should not be leveraged by cities seeking to minimize parking inefficiencies.

