Package 'aniSNA'

March 25, 2024

Type Package

Title Statistical Network Analysis of Animal Social Networks

Version 1.1.1

Date 2024-03-22

Description Obtain network structures from animal GPS telemetry observations and statistically analyse them to assess their adequacy for social network analysis. Methods include pre-network data permutations, bootstrapping techniques to obtain confidence intervals for global and node-

level network metrics, and correlation and regression analysis of the local network metrics.

License MIT + file LICENSE

Imports dplyr, ggplot2, graphics, igraph, lubridate, magrittr, parallel, plotrix, Rcpp, reshape, rlang, stats, stringr, utils

LinkingTo Rcpp

RoxygenNote 7.2.1

Encoding UTF-8

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 2.10)

LazyData true

LazyDataCompression xz

NeedsCompilation yes

Author Prabhleen Kaur [aut, cre], Michael Salter-Townshend [ctb]

Maintainer Prabhleen Kaur <prabhleen.kaur.ucd@gmail.com>

Repository CRAN

Date/Publication 2024-03-25 11:20:02 UTC

2 aniSNA

R topics documented:

		2
	11 – –	3
	_ *	4
		5
	elk_2010_permutations	6
	elk_all_interactions_2010	6
	elk_data_2010	7
	elk_interactions_2010	7
	elk_network_2010	8
	get_coordinates_in_radian	8
	get_interactions	9
	get_network_summary	9
	get_spatial_threshold	0
	global_CI	1
	global_width_CI	2
	interacting_pairs	13
	network_from_interactions	4
	node_level_CI	4
	obtain_bootstrapped_samples	6
	obtain_network_subsamples	17
		1
	plot.bootstrapped_pvalue_matrix	8
	plot.list_correlation_matrices	9
		20
		20
	plot.list_regression_matrices	21
		22
		23
	plot.Width_CI_matrix	24
		25
	regression_slope_analyze	26
	subsampled_network_metrics	27
		28
Index	3	30
aniS	NA aniSNA	

Description

Obtain network structures from animal GPS telemetry observations and statistically analyse them to assess their adequacy for social network analysis. Methods include pre-network data permutations, bootstrapping techniques to obtain confidence intervals for global network metrics, and correlation and regression analysis of the local network metrics.

Author(s)

Prabhleen Kaur

bootstrapped_difference_pvalues

To obtain two non-overlapping bootstrapped versions and obtain p-values for the significance of difference between them

Description

To obtain two non-overlapping bootstrapped versions and obtain p-values for the significance of difference between them

Usage

```
bootstrapped_difference_pvalues(
  network,
  n_versions = 1000,
  seed = 12345,
  n.iter = 10,
  network_metrics_functions_list = c(edge_density = function(x) igraph::edge_density(x),
    diameter = function(x) igraph::diameter(x, weights = NA), transitivity = function(x)
    igraph::transitivity(x))
)
```

Arguments

network An igraph object

n_versions Number of bootstrapped versions to be used (default = 1000)

seed seed number

n.iter Number of iterations at each level

network_metrics_functions_list

A list consisting of function definitions of the network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Default = $c("edge_density" = function(x) igraph::edge_density(x), "diameter" = function(x) igraph::diameter(x, weights = NA), "transitivity" = function(x) igraph::transitivity(x))$

Value

A matrix of p-values whose rows correspond to the sub-sample size and columns correspond to the chosen network metric. The sub-sample size values (corresponding to rows) occur in multiples of 5 and range from 5 to a maximum of half the number of nodes in the network

4 correlation_analyze

Examples

```
data(elk_network_2010)
mean_pvalue_matrix <- bootstrapped_difference_pvalues(elk_network_2010, n_versions = 100)
plot(mean_pvalue_matrix)</pre>
```

correlation_analyze

To perform correlation analysis for node-level network metrics

Description

To perform correlation analysis for node-level network metrics

Usage

```
correlation_analyze(
  network,
  n_simulations = 10,
  subsampling_proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
  network_metrics_functions_list = c(degree = function(net, sub_net) igraph::degree(net,
    v = igraph::V(sub_net)$name), strength = function(net, sub_net) igraph::strength(net,
    v = igraph::V(sub_net)$name), betweenness = function(net, sub_net)
    igraph::betweenness(net, v = igraph::V(sub_net)$name), clustering_coefficient =
    function(net, sub_net) igraph::transitivity(net, type = "local", vids =
    igraph::V(sub_net)$name), eigenvector_centrality = function(net, sub_net)
    igraph::eigen_centrality(net)$vector[igraph::V(sub_net)$name])
)
```

Arguments

network An igraph graph object consisting of observed network

n_simulations Number of sub-samples to be obtained at each level

subsampling_proportion

A vector depicting proportions of sub-sampled nodes

network_metrics_functions_list

A list consisting of function definitions of the network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Each function definition should include two parameters, one for the main network and another one for the subnetwork. See default example. Default = c("degree" = function(net, sub_net) igraph::degree(net, v = igraph::V(sub_net)\$name), "strength" = function(net, sub_net) igraph::strength(net, v = igraph::V(sub_net)\$name), "betweenness" = function(net, sub_net) igraph::betweenness(net, v = igraph::V(sub_net)\$name), "clustering_coefficient" = function(net, sub_net) igraph::transitivity(net, type = "local", vids = igraph::V(sub_net)\$name), "eigenvector_centrality" = function(net, sub_net) igraph::eigen_centrality(net)\$vector[igraph::V(sub_net)\$name])

Value

A list of network metrics of class list_correlation_matrices. Each element of list is a matrix whose columns correspond to subsampling_proportion and rows correspond to n_simulations. The entries of the matrix provide value of correlation between the nodes in full network and the sub-sampled network for the corresponding metric.

Examples

```
data(elk_network_2010)
elk_correlation_analysis <- correlation_analyze(elk_network_2010)
plot(elk_correlation_analysis)</pre>
```

distance_radian_coordinates

Calculate distance between two pairs of radian coordinates

Description

Calculate distance between two pairs of radian coordinates

Usage

```
distance_radian_coordinates(latf, lonf, latt, lont)
```

Arguments

latf latitude from longitude from latt latitude to longitude to

Value

distance value in meters

elk_2010_permutations A list of 100 igraph objects obtained by permuting the raw elk_data_2010 and obtaining network from those

Description

A list of 100 igraph objects obtained by permuting the raw elk_data_2010 and obtaining network from those

Usage

elk_2010_permutations

Format

A list of 100 igraph objects

Examples

data(elk_2010_permutations)

elk_all_interactions_2010

Dataset of all possible interactions from elk_data_2010

Description

Dataset of all possible interactions from elk_data_2010

Usage

```
elk_all_interactions_2010
```

Format

A dataframe with 7615 rows and 5 variables

Animal_A First animal ID

Animal_B Second animal ID

Timestamp_A Observation timestamp of first animal

Timestamp_B Observation timestamp of second animal

distance Distance in metres between the two animals

```
data(elk_all_interactions_2010)
```

elk_data_2010 7

elk_data_2010

Data to showcase functions in our package

Description

Contains GPS telemetry observations of the species elk in year 2010

Usage

```
elk_data_2010
```

Format

A dataframe with 123568 rows and 4 variables:

animal_id Unique ID of individuals in the observed sample

datetime Date and timestamp of the observation

latitude_rad Latitude of individual observation in radians

longitude_rad Longitude of individual observation in radians

Examples

```
data(elk_data_2010)
```

elk_interactions_2010 Dataset of interactions from elk_data_2010 using first mode as the spatial threshold

Description

Dataset of interactions from elk_data_2010 using first mode as the spatial threshold

Usage

```
elk_interactions_2010
```

Format

A dataframe with 2393 rows and 5 variables

Animal_A First animal ID

Animal_B Second animal ID

Timestamp_A Observation timestamp of first animal

Timestamp_B Observation timestamp of second animal

distance Distance in metres between the two animals

```
data(elk_interactions_2010)
```

Description

An igraph object depicting the network obtained from elk_interactions_2010

Usage

```
elk_network_2010
```

Format

An igraph object with 57 nodes and 114 edges

Examples

```
igraph::E(elk_network_2010)
```

```
get_coordinates_in_radian
```

To convert latitude and longitude values from degrees to radians

Description

To convert latitude and longitude values from degrees to radians

Usage

```
get_coordinates_in_radian(species_raw)
```

Arguments

species_raw

A DataFrame consisting of GPS observations. The DataFrame must have a "latitude" column and a "longitude" column whose values are specified in degrees.

Value

The same DataFrame that has been passed as the argument with two additional columns namely "latitude_rad" and "longitude_rad"

9 get_interactions

get_interactions

To obtain interactions from raw GPS observations

Description

To obtain interactions from raw GPS observations

Usage

```
get_interactions(species_raw, temporal_thresh = 7, spatial_thresh, n_cores = 1)
```

Arguments

species_raw

A DataFrame consisting of GPS observations. It should have at least four columns namely "animal_id", "datetime", "latitudel_rad", and "longitude_rad". "latitudel_rad", and "longitude_rad" are latitude and longitude values in radians respectively. See function "get_coordinates_in_radian" to get these values.

temporal_thresh

Temporal threshold in minutes with default 7 minutes

spatial_thresh The maximum distance in meters within which two animals are considered in-

teracting

n_cores

Number of cores for parallel processing with default 1

Value

A dataframe consisting of five columns. The first two columns contain animal ids, third and fourth column contain timestamp of their observations and the final column contains the distance between the two individuals.

Examples

```
data(elk_data_2010)
get_interactions(elk_data_2010, temporal_thresh = 7, spatial_thresh = 15)
```

get_network_summary

Calculates and prints network summary statistics

Description

Calculates and prints network summary statistics

Usage

```
get_network_summary(network)
```

Arguments

network

An undirected network with nodes representing animal IDs and edges representing associations between them.

Value

No return value, called for side effects. The function prints values of network metrics to the console.

Examples

```
data(elk_network_2010)
get_network_summary(elk_network_2010)
```

get_spatial_threshold To obtain spatial threshold for calculating interactions from raw GPS observations. The threshold is obtained as the distance interval that captures maximum number of inter-individual interactions.

Description

To obtain spatial threshold for calculating interactions from raw GPS observations. The threshold is obtained as the distance interval that captures maximum number of inter-individual interactions.

Usage

```
get_spatial_threshold(species_interactions, interval_size)
```

Arguments

species_interactions

A dataframe consisting of individual interactions within maximum possible dis-

interval_size Minimum interval size within which the number of interactions should be calculated

Value

Spatial threshold in meters

```
data(elk_all_interactions_2010)
get_spatial_threshold(elk_all_interactions_2010, interval_size = 2)
```

global_CI 11

global_CI To obtain confidence intervals around the observed global network statistics	global_CI	To obtain confidence intervals around the observed global network statistics
--	-----------	--

Description

To obtain confidence intervals around the observed global network statistics

Usage

```
global_CI(
  network,
  n_versions = 100,
  network_metrics_functions_list = c(edge_density = function(x) igraph::edge_density(x),
   diameter = function(x) igraph::diameter(x, weights = NA), transitivity = function(x)
   igraph::transitivity(x)),
  CI_size = 0.95
)
```

Arguments

network An igraph object consisting of observed network.

n_versions Number of bootstrapped versions to be used. (default = 100)

network_metrics_functions_list

A list consisting of function definitions of the network metrics that the user wants to evaluate. Each element in the list should have an assigned name.

Default = c("edge_density" = function(x) igraph::edge_density(x), "diameter" = function(x) igraph::diameter(x, weights = NA), "transitivity" = function(x) igraph::transitivity(x))

CI_size Size of confidence interval. Default is 0.95 that generates a 95% confidence

Value

interval.

A DataFrame consisting of three columns. The first column contains the value of observed network metric, the second and third column represent the lower and upper limit of 95

```
data(elk_network_2010)
global_CI(elk_network_2010, n_versions = 100,
network_metrics_functions_list = c("edge_density" = function(x) igraph::edge_density(x),
"diameter" = function(x) igraph::diameter(x, weights = NA),
"transitivity" = function(x) igraph::transitivity(x)))
```

12 global_width_CI

global_width_CI	To obtain width of confidence intervals for global network metrics using bootstrapped versions at each level of sub-sampling

Description

To obtain width of confidence intervals for global network metrics using bootstrapped versions at each level of sub-sampling

Usage

```
global_width_CI(
  network,
  n_versions = 100,
  seed = 12345,
  n.iter = 10,
  network_metrics_functions_list = c(edge_density = function(x) igraph::edge_density(x),
    diameter = function(x) igraph::diameter(x, weights = NA), transitivity = function(x)
    igraph::transitivity(x)),
  scaled_metrics = NULL,
  CI_size = 0.95
)
```

Arguments

network An igraph object consisting of observed network.

n_versions Number of bootstrapped versions to be used. (default = 100)

seed number

n.iter Number of iterations at each level. (default = 10)

network_metrics_functions_list

A list consisting of function definitions of the global network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Default = $c("edge_density" = function(x) igraph::edge_density(x), "diameter" = function(x) igraph::diameter(x, weights = NA), "transitivity" = function(x)$

igraph::transitivity(x))

 $\verb|scaled_metrics| Optional. A vector subset of the names of functions in network_metrics_functions_list$

with the metrics that should be scaled. For example scaled_metrics = c("diameter")

CI_size Size of confidence interval. Default is 0.95 that generates a 95% confidence

interval.

Value

A matrix of class Width_CI_matrix containing width of Confidence Intervals where each row corresponds to the sub-sample size and columns correspond to the chosen network metric. Sub-sample size values occur in multiples of 10 and range from 10 to maximum multiple of 10 less than or equal to the number of nodes in the network.

interacting_pairs 13

Examples

```
data(elk_network_2010)
width_CI_elk <- global_width_CI(elk_network_2010, n_versions = 100)
plot(width_CI_elk)</pre>
```

interacting_pairs

Function to obtain pairs of interacting animals

Description

Function to obtain pairs of interacting animals

Usage

```
interacting_pairs(
   i,
   datetime,
   latitude,
   longitude,
   temporal_thresh,
   spatial_thresh)
```

Arguments

```
i Index of the animal
datetime DateTime vector
latitude latitude vector
longitude longitude vector
temporal_thresh
time threshold in minutes
spatial_thresh spatial threshold in meters
```

Value

A matrix consisting of two row. The first row corresponds to the interacting indices and the second row to the respective distances.

node_level_CI

```
network_from_interactions
```

Function to obtain a network structure from interactions dataframe

Description

Function to obtain a network structure from interactions dataframe

Usage

```
network_from_interactions(species_raw, interactions, n_cores = 1)
```

Arguments

species_raw A dataframe consisting of raw GPS observations. It should have at least four

columns namely "animal_id", "datetime", "latitudel_rad", and "longitude_rad". "latitudel_rad", and "longitude_rad" are latitude and longitude values in radians respectively. See function "get_coordinates_in_radian" to get these values.

interactions A dataframe of interactions obtained from raw GPS observations using the func-

tion "get_interactions"

n_cores Number of cores for parallel processing, default is 1

Value

An object of class igraph

Examples

```
data(elk_data_2010, elk_interactions_2010)
network_from_interactions(elk_data_2010, elk_interactions_2010)
```

node_level_CI

To obtain confidence intervals for node-level network metrics

Description

To obtain confidence intervals for node-level network metrics

node_level_CI 15

Usage

```
node_level_CI(
  network,
  n_versions = 100,
  network_metrics_functions_list = c(degree = igraph::degree, strength =
    igraph::strength, betweenness = igraph::betweenness, clustering_coefficient =
    function(x) {
      trans <- igraph::transitivity(x, type = "local", vids =
      igraph::V(x), isolates = "zero")
      names(trans) <- igraph::V(x)$name

    return(trans)
}, eigenvector_centrality = function(x)
      igraph::eigen_centrality(x)$vector),
      n_cores = 1,
      CI_size = 0.95
)</pre>
```

Arguments

network An igraph object consisting of observed network.

n_versions Number of bootstrapped versions to be used. (default = 100)

network_metrics_functions_list

A list consisting of function definitions of the network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Each function definition should include two parameters, one for the main network and another one for the subnetwork. See default example. network_metrics_functions_list = $c("degree" = igraph::degree, "strength" = igraph::strength , "betweenness" = igraph::betweenness, "clustering_coefficient" = function(x) { trans <- igraph::transitivity(x, type = "local", isolates = "zero") names(trans) <- igraph::<math>V(x)$ name;return(trans) }, "eigenvector_centrality" = function(x) igraph::eigen_centrality(x)\$vector)

n_cores Number of cores for parallel processing with default 1.

CI_size Size of confidence interval. Default is 0.95 that generates a 95% confidence interval.

Value

A list of dataframes of class list_node_level_CI. Each element of list is a dataframe having five columns and having number of rows equal to number of nodes in the network. The five columns correspond to node_number, node_name, metric_value, lower_CI, upper_CI. correspond to subsampling_proportion and rows correspond to n_simulations. The entries of the matrix provide value of correlation between the nodes in full network and the sub-sampled network for the corresponding metric.

```
data(elk_network_2010)
```

```
elk_node_level_CI <- node_level_CI(elk_network_2010)
plot(elk_node_level_CI)</pre>
```

obtain_bootstrapped_samples

To obtain bootstrapped versions of a network's adjacency matrix

Description

To obtain bootstrapped versions of a network's adjacency matrix

Usage

```
obtain_bootstrapped_samples(
  network,
  n_nodes = igraph::gorder(network),
  n_versions = 1000,
  seed = 12345
)
```

Arguments

network An igraph object

n_nodes Number of nodes to be selected in bootstrapped versions (default : All nodes)

n_versions Number of bootstrapped versions required

seed seed number

Value

A list of class bootstrapped_pvalue_matrix consisting of two elements. The first element contains the adjacency matrix of the original network and the second element contains bootstrapped versions of the adjacency matrices.

```
data(elk_network_2010)
obtain_bootstrapped_samples(elk_network_2010, n_versions = 100)
```

```
obtain_network_subsamples
```

To obtain sub-networks of the observed network

Description

To obtain sub-networks of the observed network

Usage

```
obtain_network_subsamples(
  network,
  n_subsamples = 1,
  subsampling_proportion = 0.5
)
```

Arguments

```
network An igraph object  \mbox{n\_subsamples} \quad \mbox{Number of sub-networks to be obtained. (default = 1)} \\ \mbox{subsampling\_proportion}
```

A value depicting the level (in proportion) at which sub-samples to be taken. (default = 0.5). This value should lie between 0 and 1 depicting the proportion of observed nodes to be included in the sub-network.

Value

A list of size n_subsamples, where each element of the list is an igraph object representing a subnetwork of the observed network.

Examples

```
data(elk_network_2010)
obtain_network_subsamples(elk_network_2010, 1, 0.5)
```

```
obtain_permuted_network_versions
```

Function to obtain permuted networks from raw datastream

Description

Function to obtain permuted networks from raw datastream

Usage

```
obtain_permuted_network_versions(
  species_raw,
  temporal_thresh,
  spatial_thresh,
  n_permutations,
  n_cores = 1
)
```

Arguments

Value

An object of class "list_permuted_networks" of size n_permutations where each element is a network of class igraph obtained by permuting raw datastream

Examples

```
data(elk_data_2010)
permuted_versions <- obtain_permuted_network_versions(elk_data_2010,
temporal_thresh = 7, spatial_thresh = 15, n_permutations = 10, n_cores = 2)</pre>
```

Description

To plot the results obtained from bootstrapped_difference_pvalues function

Usage

```
## S3 method for class 'bootstrapped_pvalue_matrix' plot(x, ...)
```

Arguments

x A matrix of p-values obtained from bootstrapped_difference_pvalues function

... Further arguments are ignored.

Value

No return value, called for side effects. The plot shows p-values between 0 and 1 corresponding to each sample size.

Examples

```
data(elk_network_2010)
mean_pvalue_matrix <- bootstrapped_difference_pvalues(elk_network_2010, n_versions = 100)
plot(mean_pvalue_matrix)</pre>
```

```
plot.list_correlation_matrices
```

To plot correlation analysis results

Description

To plot correlation analysis results

Usage

```
## S3 method for class 'list_correlation_matrices'
plot(x, ...)
```

Arguments

- x A list of matrices obtained from correlation_analyze function.
- ... Further arguments are ignored.

Value

No return value, called for side effects. The plots show mean and standard deviation of correlation coefficients obtained over multiple iterations.

```
data(elk_network_2010)
elk_correlation_analysis <- correlation_analyze(elk_network_2010)
plot(elk_correlation_analysis)</pre>
```

```
plot.list_node_level_CI
```

To plot the results for node-level confidence intervals

Description

To plot the results for node-level confidence intervals

Usage

```
## S3 method for class 'list_node_level_CI'
plot(x, ...)
```

Arguments

x A list of dataframes obtained from node_level_CI function.

... Further arguments are ignored.

Value

No return value, called for side effects. The plots show confidence intervals along with the observed metric value for each of the nodes in the network.

Examples

```
data(elk_network_2010)
elk_node_level_CI <- node_level_CI(elk_network_2010)
plot(elk_node_level_CI)</pre>
```

```
plot.list_permuted_networks
```

Function to plot the network metrics distribution of permuted networks

Description

Function to plot the network metrics distribution of permuted networks

Usage

```
## S3 method for class 'list_permuted_networks'
plot(
    x,
    species_original_network,
    network_metrics_functions_list = c(edge_density = function(x) igraph::edge_density(x),
    diameter = function(x) igraph::diameter(x, weights = NA), transitivity = function(x)
    igraph::transitivity(x)),
    ...
)
```

Arguments

x A list of igraph objects obtained obtained using the function obtain_permuted_network_versions species_original_network

An igraph object which is the original network

network_metrics_functions_list

A list consisting of function definitions of the network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Default = $c("edge_density" = function(x) igraph::edge_density(x), "diameter" = function(x) igraph::diameter(x, weights = NA), "transitivity" = function(x) igraph::transitivity(x))$

... Further arguments are ignored.

Value

No return value, called for side effects.

Examples

```
data(elk_data_2010, elk_network_2010)
permuted_versions <- obtain_permuted_network_versions(elk_data_2010,
temporal_thresh = 7, spatial_thresh = 15, n_permutations = 10, n_cores = 2)
plot(permuted_versions, elk_network_2010)</pre>
```

```
plot.list_regression_matrices
```

To plot regression analysis results

Description

To plot regression analysis results

Usage

```
## S3 method for class 'list_regression_matrices' plot(x, ...)
```

Arguments

- x A list of matrices obtained from regression_slope_analyze function
- ... Further arguments are ignored

Value

No return value, called for side effects. The plots show regression slope values corresponding to proportion of individuals in the sample.

Examples

```
data(elk_network_2010)
elk_regression_analysis <- regression_slope_analyze(elk_network_2010)
plot(elk_regression_analysis)</pre>
```

Description

To plot sub-sampling results

Usage

```
## S3 method for class 'Subsampled_Network_Metrics'
plot(
    x,
    network,
network,
network_metrics_functions_list = c(edge_density = function(x) igraph::edge_density(x),
    diameter = function(x) igraph::diameter(x, weights = NA), transitivity = function(x)
    igraph::transitivity(x)),
    ...
)
```

Arguments

x A list of matrices belonging to class "Subsampled_Network_Metrics" and is obtained from subsampled_network_metrics function

network An igraph graph object consisting of the observed network

network_metrics_functions_list

This is the same argument that is passed for obtaining the results from the function subsampled_network_metrics. A list consisting of function definitions of the network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Default = $c("edge_density" = function(x) igraph::edge_density(x), "diameter" = function(x) igraph::diameter(x, weights = NA), "transitivity" = function(x) igraph::transitivity(x))$

... Further arguments are ignored

Value

No return value, called for side effects. The boxplots depict range of values, network metrics take when multiple subsamples are chosen from the observed sample.

Examples

```
data(elk_network_2010)
elk_subsamples <- subsampled_network_metrics(elk_network_2010)
plot(elk_subsamples, elk_network_2010,
network_metrics_functions_list = c("edge_density" = function(x) igraph::edge_density(x),
"diameter" = function(x) igraph::diameter(x, weights = NA),
"transitivity" = function(x) igraph::transitivity(x)))</pre>
```

plot.Subsampled_Permuted_Network_Metrics

To plot sub-sampling results of the original network and permuted networks

Description

To plot sub-sampling results of the original network and permuted networks

Usage

```
## S3 method for class 'Subsampled_Permuted_Network_Metrics'
plot(
    x,
    network,
    n_simulations = 100,
    subsampling_proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
    network_metrics_functions_list = c(edge_density = function(x) igraph::edge_density(x),
```

```
diameter = function(x) igraph::diameter(x, weights = NA), transitivity = function(x)
    igraph::transitivity(x)),
    ...
)
```

Arguments

x A list of matrices obtained from subsampled_permuted_network_metrics func-

tion of class "Subsampled_Permuted_Network_Metrics"

network An igraph graph object consisting of observed network

n_simulations For subsampling results of original network, this determines the number of sub-

samples to be obtained at each level

subsampling_proportion

A vector depicting the levels (in proportion) at which subsamples to be taken. This parameter should be the same as the subsampling_proportion parameter passed for the function subsampled_permuted_network_metrics to obtain x.

network_metrics_functions_list

This is the same argument that is passed for obtaining the results from the function subsampled_permuted_network_metrics. A list consisting of function definitions of the network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Default = c("edge_density" = function(x) igraph::edge_density(x), "diameter" = function(x) igraph::diameter(x, weights NA) "transitivity" = function(x) igraph::diameter(x, weights name transitivity)

= NA), "transitivity" = function(x) igraph::transitivity(x))

... Further arguments are ignored

Value

No return value, called for side effects. The boxplots show side-by-side comparison of network metrics distribution from subsamples of observed network and subsamples from permuted networks.

Examples

```
data(elk_2010_permutations, elk_network_2010)
elk_subsamples_permuted_networks <- subsampled_permuted_network_metrics(elk_2010_permutations)
plot(elk_subsamples_permuted_networks, elk_network_2010)</pre>
```

plot.Width_CI_matrix To plot the results obtained from width_CI function

Description

To plot the results obtained from width_CI function

plot_network 25

Usage

```
## S3 method for class 'Width_CI_matrix'
plot(x, ...)
```

Arguments

x A matrix of width of Confidence Intervals obtained from global_width_CI function

... Further arguments are ignored.

Value

No return value, called for side effects. Plots show width of confidence intervals corresponding to number of individuals in the sub-sample.

Examples

```
data(elk_network_2010)
width_CI_elk <- global_width_CI(elk_network_2010, n_versions = 100)
plot(width_CI_elk)</pre>
```

plot_network

Visualize Animal Network

Description

Visualize Animal Network

Usage

```
plot_network(species_network, seed = 1)
```

Arguments

species_network

An igraph graph object consisting of observed network.

seed

Seed to be set for layout.

Value

No return value, called for side effects. The plots depict a visualisation of network structure.

```
data(elk_network_2010)
plot_network(elk_network_2010)
```

```
regression_slope_analyze
```

To perform regression analysis for local network metrics

Description

To perform regression analysis for local network metrics

Usage

```
regression_slope_analyze(
  network,
  n_simulations = 10,
  subsampling_proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
  network_metrics_functions_list = c(degree = function(net, sub_net) igraph::degree(net,
    v = igraph::V(sub_net)$name), strength = function(net, sub_net) igraph::strength(net,
    v = igraph::V(sub_net)$name), betweenness = function(net, sub_net)
    igraph::betweenness(net, v = igraph::V(sub_net)$name), clustering_coefficient =
    function(net, sub_net) igraph::transitivity(net, type = "local", vids =
    igraph::V(sub_net)$name), eigenvector_centrality = function(net, sub_net)
    igraph::eigen_centrality(net)$vector[igraph::V(sub_net)$name])
)
```

Arguments

network An igraph graph object consisting of observed network

n_simulations Number of sub-samples to be obtained at each level
subsampling_proportion

A vector depicting proportions of sub-sampled nodes
network_metrics_functions_list

A list consisting of function definitions of the network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Each function definition should include two parameters, one for the main network and another one for the subnetwork. See default example. Default = c("degree" = function(net, sub_net) igraph::degree(net, v = igraph::V(sub_net)\$name), "strength" = function(net, sub_net) igraph::strength(net, v = igraph::V(sub_net)\$name), "betweenness" = function(net, sub_net) igraph::betweenness(net, v = igraph::V(sub_net)\$name), "clustering_coefficient" = function(net, sub_net) igraph::transitivity(net, type = "local", vids = igraph::V(sub_net)\$name), "eigenvector_centrality" = function(net, sub_net) igraph::eigen_centrality(net)\$vector[igraph::V(sub_net)\$name])

Value

A list of network metrics of class list_regression_matrices. Each element of list is a matrix whose columns correspond to subsampling_proportion and rows correspond to n_simulations. The entries of the matrix provide value of the slope of regression when the nodal values in sub-sampled network are regressed upon the values of the same nodes in the full network for the corresponding metric.

```
data(elk_network_2010)
elk_regression_analysis <- regression_slope_analyze(elk_network_2010)
plot(elk_regression_analysis)</pre>
```

subsampled_network_metrics

To generate subsamples and obtain network metrics of the subsamples

Description

To generate subsamples and obtain network metrics of the subsamples

Usage

```
subsampled_network_metrics(
  network,
  n_simulations = 100,
  subsampling_proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
  network_metrics_functions_list = c(edge_density = function(x) igraph::edge_density(x),
    diameter = function(x) igraph::diameter(x, weights = NA), transitivity = function(x)
    igraph::transitivity(x))
)
```

Arguments

 $\begin{tabular}{ll} network & An igraph graph object consisting of observed network \\ n_simulations & Number of sub-samples to be obtained at each level \\ subsampling_proportion \\ \end{tabular}$

A vector depicting the levels (in proportion) at which subsamples to be taken network_metrics_functions_list

A list consisting of function definitions of the network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Default = $c("edge_density" = function(x) igraph::edge_density(x), "diameter" = function(x) igraph::diameter(x, weights = NA), "transitivity" = function(x) igraph::transitivity(x))$

Value

A list of network metrics of class "Subsampled_Network_Metrics". Each element of list is a matrix whose columns correspond to subsampling_proportion and rows correspond to n_simulations. The entries of the matrix provide values of the corresponding metric.

```
data(elk_network_2010)
elk_subsamples <- subsampled_network_metrics(elk_network_2010)
plot(elk_subsamples, elk_network_2010,
network_metrics_functions_list = c("edge_density" = function(x) igraph::edge_density(x),
"diameter" = function(x) igraph::diameter(x, weights = NA),
"transitivity" = function(x) igraph::transitivity(x)))</pre>
```

subsampled_permuted_network_metrics

To generate subsamples of the permuted networks and obtain network metrics of those subsamples

Description

To generate subsamples of the permuted networks and obtain network metrics of those subsamples

Usage

```
subsampled_permuted_network_metrics(
  networks_list,
  subsampling_proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
  network_metrics_functions_list = c(edge_density = function(x) igraph::edge_density(x),
    diameter = function(x) igraph::diameter(x, weights = NA), transitivity = function(x)
    igraph::transitivity(x))
)
```

Arguments

networks_list A list of igraph objects obtained by permuting the observed network subsampling_proportion

 $\label{lem:approx} A \ vector \ depicting \ the \ levels \ (in \ proportion) \ at \ which \ subsamples \ to \ be \ taken \ network_metrics_functions_list$

A list consisting of function definitions of the network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Default = $c("edge_density" = function(x) igraph::edge_density(x), "diameter" = function(x) igraph::diameter(x, weights = NA), "transitivity" = function(x) igraph::transitivity(x))$

Value

A list of network metrics of class "Subsampled_Permuted_Network_Metrics". Each element of list is a matrix whose columns correspond to subsampling_proportion and rows correspond to the number of networks in networks_list. The entries of the matrix provide values of the corresponding metric.

data(elk_2010_permutations)
elk_subsamples_permuted_networks <- subsampled_permuted_network_metrics(elk_2010_permutations)
plot(elk_subsamples_permuted_networks, elk_network_2010)</pre>

Index

```
* datasets
    elk_2010_permutations, 6
    elk_all_interactions_2010,6
    elk_data_2010, 7
    elk_interactions_2010,7
    elk_network_2010,8
aniSNA, 2
bootstrapped_difference_pvalues, 3
correlation_analyze, 4
distance_radian_coordinates, 5
elk_2010_permutations, 6
elk_all_interactions_2010,6
elk_data_2010, 7
elk_interactions_2010,7
elk_network_2010, 8
get_coordinates_in_radian, 8
get_interactions, 9
get_network_summary, 9
get_spatial_threshold, 10
global_CI, 11
global_width_CI, 12
interacting_pairs, 13
network_from_interactions, 14
node_level_CI, 14
obtain_bootstrapped_samples, 16
obtain_network_subsamples, 17
obtain_permuted_network_versions, 17
plot.bootstrapped_pvalue_matrix, 18
plot.list_correlation_matrices, 19
plot.list_node_level_CI, 20
plot.list_permuted_networks, 20
```

```
plot.list_regression_matrices, 21
plot.Subsampled_Network_Metrics, 22
plot.Subsampled_Permuted_Network_Metrics, 23
plot.Width_CI_matrix, 24
plot_network, 25
regression_slope_analyze, 26
subsampled_network_metrics, 27
subsampled_permuted_network_metrics, 28
```