NeuPIMs: NPU-PIM Heterogeneous Acceleration for Batched LLM Inferencing

Guseul Heo

Sangyeop Lee

Jaehong Cho

Hyunmin Choi

Sanghyeon Lee

Hyungkyu Ham[†]

Gwangsun Kim[†]

Divya Mahajan§

Jongse Park

KAIST

POSTECH[†]

Georgia Institute of Technology§

LLM batched inference comprises **GEMM** and **GEMV**

GEMM

matrix-matrix multiplication

GEMV

matrix-vector multiplication

GEMM

- compute-intensive
- well-suited to NPU

GEMV

- bandwidth-intensive
- well-suited to PIM

However, with naïve NPU+PIM integration, system suffers from resource underutilization

Challenge #1

Existing PIM operates in "blocked" mode

Challenge #2

GEMM and GEMV have algorithmic dependency in LLM

PIM with dual row buffers

Sub-batch interleaving

NeuPIMs: NPU-PIM Heterogeneous Acceleration for Batched LLM Inferencing

Session 6B

04/30 (Tue)

14:30

2.4×

throughput improvement over NPU

1.6×

throughput improvement over naïve NPU+PIM

Our simulator code is available https://github.com/casys-kaist/NeuPIMs

