

ENG 346 Data Structures and Algorithms for Artificial Intelligence Runtime Complexity of the Algorithms

Dr. Mehmet PEKMEZCİ

mpekmezci@gtu.edu.tr

https://github.com/mehmetpekmezci/GTU-ENG-346

ENG-346-FALL-2025 Teams code is Ouv7jlm

Complexity

- Time complexity measures the amount of time (CPU Cycles) an algorithm takes to complete as a function of the input size. It's a way to estimate the running time of an algorithm.
 - Big O Notation (O-notation): This is used to describe the upper bound of an algorithm's running time. It tells you how the runtime scales with the size of the input.
- Space complexity measures the amount of memory (RAM) an algorithm uses as a function of the input size.
 - Big O Notation (O-notation): Just like time complexity, space complexity can be expressed in Big O notation.

Definitions: Big O

- Worst Case Scenario
- Upper-bound of a function f(n)
- Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is O(g(n)) if
 - there is a real constant c > 0 and
 - an integer constant $n0 \ge 1$ such that $f(n) \le c g(n)$, for $n \ge n0$.

• f(n) is O(g(n))

Big O Rules

• Simplifications:

- If is f(n) a polynomial of degree d, then f(n) is O(n^d), i.e.,
 - Drop lower-order terms
 - Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is O(n^2)"
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Time Complexity Calculation n²


```
1 N = 100
2 sum = 0
3 for outer_loop_index in range(N):
4          for inner_loop_index in range(N):
5          sum += 1
6 print(sum)
```

$$O(N^2) = (100)^2 = 10000$$

Time Complexity Calculation n


```
1 sorted_array=[1,3,5,8,12,14,18,20,22,25,26,27,30,35,36,38,39,40]
2 N=len(sorted_array)
3 print(f*N={N}*)
4 searched_value=25
5 index_of_value=-1
6 for loop_index_in_range(N):
7     if sorted_array[loop_index]==searched_value:
8         index_of_value=loop_index
9         break
10 print(index_of_value)
```

$$O(N) = (100) = 100$$

Time Complexity Calculation log(n) GEBZE


```
1 sorted array=[1,3,5,8,12,14,18,20,22,25,26,27,30,35,36,38,39,40]
2 N=len(sorted array)
3 searched value=25
5 def binarySearch(arr, targetVal):
    left = 0
    right = len(arr) - 1
    while left <= right:
      mid = (left + right) // 2
      if arr[mid] == targetVal:
        return mid
      if arr[mid] < targetVal:</pre>
        left = mid + 1
        right = mid - 1
    return -1
22 print(binarySearch(sorted array,searched value))
```

Binary Search Algorithm

$$O(\log_2(N)) = \log_2(100)$$

MASTER THEOREM:

(Complexity for Recursive Algos.)

$$T(N) = T(N/2) + O(1)$$

→ Apply the rule in theorem.

Basics

Name	Function	Relation	Example
Constant Time	f(n) = c	Does not depend on input size.	Accessing array elements.
Logarithmic Time	f(n) = log n	Running time increases logarithmically with the input size.	Binary search.
Linear Time	f(n) = n	Running time increases linearly with the input size.	Iterating through an array or list.
Linearithmic Time	f(n) = n log n	The running time grows slower than O(n^2) but faster than O(n).	Efficient sorting algorithms like quicksort and mergesort.
Quadratic Time	f(n) = n^2	Running time grows proportionally to the square of the input size.	Algorithms with nested loops, such as selection sor tor bubble sort.
Polynomial Time	f(n) = n^k	Running time is a polynomial function of the input size.	Algorithms with "k" nested loops.
Exponential Time	f(n) = 2^n	Running times that grow very rapidly with the input size.	N-P complete problems, such as traveling salesman.

Growth Rates

ENG 346 - Data Structures and Algorithms for Artificial Intelligence

Examples:

•
$$3n^3 + 20n^2 + 5$$
 is $O(n^3)$

• $3 \log n + 5 \text{ is } O(\log n)$

Time-Space Complexity Trade-off

<u>Time Complexity</u>: Recalculate the values in each step of computation.

<u>Space Complexity:</u> Cache the calculated values and use pre-calculated values if possible.

- Compressed or Uncompressed data
- Re Rendering or Stored images
- Smaller code or loop unrolling
- Lookup tables or Recalculation

Access Times

• CPU Speed = 1 cycle (1 cycle = 0.3 ns for a 3GHz CPU)

• CPU Register = 1 cycle

• L1 Cache = 3 cycles

• L2 Cache = 10 cycles

• L3 Cache = 40 cycles

• RAM = 100 cycles

• SSD = 10K cycles

• HDD = 10M cycles

Exercises

• Book: R-3.1

