INSTRUCTIONS: Books, notes, and electronic devices are <u>not</u> permitted. Write (1) **your name**, (2) **1350/EXAM 2**, (3) <u>lecture number/instructor name</u> and (4) **FALL 2013** on the front of your bluebook. Also make a <u>grading table</u> with room for 5 problems and a total score. **Start each problem on a new page.** Box your answers. A correct answer with incorrect or no supporting work may receive no credit, while an incorrect answer with relevant work may receive partial credit. **SHOW ALL WORK**

1. The following parts are **not related**:

(a) (12 pts) Find y' given:

(i)
$$y = \frac{x}{\sqrt{1-x}}$$
 (ii) $y = \sec(x^2 - 1) - x\tan(x)$ (iii) $(x^2 + y^2)^2 = 2x^2 - 2y^2$

(b) (8 pts) Let f(x) be a function such that f(2x+1) - xf(2x) = 0 and f'(1) = f''(1) = 4. Find f''(2).

2. The following parts are **not related**:

- (a) (10 pts) When a certain polyatomic gas undergoes adiabatic expansion, its pressure, P, and volume, V, satisfy the equation $PV^{1.3} = k$, where k is a constant. Find the relationship between the related rates dP/dt and dV/dt. (In other words find dP/dt in terms of dV/dt, P, and V.)
- (b) (10 pts) A particle is moving to the left along the line y = 3. When x = -4, the x-coordinate of the particle's position is decreasing at the rate of 0.5 cm/sec. At what rate is the distance of the particle from the origin changing at this moment?

3. The following parts are **not related**:

- (a) (10 pts) One leg of a right triangle is known to have length 4 cm. The other leg is measured to be 3 cm with a maximum error of +0.1 cm. Use differentials to estimate the maximum error in the calculation of the angle θ between the measured leg and the hypotenuse.
- (b) (10 pts) If possible, find all numbers c in the interval [0.5, 2] that satisfy the conclusion of the Mean Value Theorem for the function $f(x) = \frac{x+1}{x}$, justify your answer.

- 4. The following parts are **not related**:
 - (a) (10 pts) Find all local extrema of $y = x\sqrt{1-x^4}$ on the interval (-1,1), justify your answer without graphing the function. (Just give the x-value of the extrema, if any.)
 - (b) (10 pts) In your blue book clearly sketch the graph of a function f(x) that satisfies the following properties (label any extrema, inflection points or asymptotes):
 - f'(x) > 0 if |x| < 2
 - f'(x) < 0 if |x| > 2
 - f'(-2) = 0
 - $\bullet \lim_{x \to 2} |f'(x)| = +\infty$
 - f''(x) > 0 if $x \neq 2$
- 5. (20 pts, 4 ea.) Answer either <u>Always True</u> or <u>False</u>. Do \underline{NOT} justify your answer. Do \underline{NOT} abbreviate your answer.
 - (a) Using a linearization of \sqrt{x} at a=4, we can estimate $\sqrt{3.6}\approx 1.06$.
 - (b) If f(x) is continuous on (a,b), then f(x) attains an absolute maximum value f(c) and an absolute minimum value f(d) at some points c and d in (a,b).
 - (c) If m(x) is differentiable for all x then m'(x) is continuous.
 - (d) If $k(x) = \lim_{t \to x} \frac{\sec(t) \sec(x)}{t x}$, then $k(\pi/4) = \sqrt{2}$
 - (e) If b(x) is differentiable and b(-1) = b(1), then there is a number c such that |c| < 1 and b'(c) = 0.

The list of APPM 1350 Lecture Numbers/Instructor Names for the front of your blue book:

Lecture #	Time	Location	Instructor
100	8-8:50	BESC 180	Sujeet Bhat
200	9-9:50	ECCR 200	Ryan Croke
300	12-12:50	ECCR 200	Chris Ketelsen
400	1-1:50	ECCR 1B40	Murray Cox
500	2-2:50	ECCR 265	Chris Ketelsen
600	1-1:50	ANDS N103	Sujeet Bhat
700	3-3:50	FLMG 154	Ryan Croke