

Resumen de la notación de Dirac Mecánica Cuántica I (FIS 321)

Licenciatura en Física - 2018IPGG

Contenido : \widehat{O} peradores y \overrightarrow{V} ectores : kets, bras, ketbras, brackets y notación matricial

1 Espacio vectorial (kets) sobre el cuerpo complejo $\mathbb C$

1.1 Propiedades de kets : $|\cdot\rangle$

• Conmutatividad respecto a la suma:

$$|oldsymbol{\psi}
angle + |oldsymbol{\phi}
angle = |oldsymbol{\phi}
angle + |oldsymbol{\psi}
angle$$

• Asociatividad respecto a la suma:

$$(\ket{\psi} + \ket{\phi}) + \ket{oldsymbol{ heta}} = \ket{\phi} + (\ket{\psi} + \ket{oldsymbol{ heta}})$$

• Vector nulo $|\mathbf{Nulo}\rangle \equiv |\mathbf{0}\rangle$, tal que:

$$|oldsymbol{\psi}
angle + |oldsymbol{0}
angle = |oldsymbol{\psi}
angle$$

• El vector opuesto de $|\psi\rangle$ se define como $|\overline{\psi}\rangle = -|\psi\rangle$ tal que:

$$|oldsymbol{\psi}
angle + \left| \overline{oldsymbol{\psi}}
ight
angle = \left| oldsymbol{0}
ight
angle$$

• Ponderación y distributividad:

$$(\alpha + \beta)(|\psi\rangle + |\phi\rangle) = \alpha |\psi\rangle + \alpha |\phi\rangle + \beta |\psi\rangle + \beta |\phi\rangle$$

• Equivalencia en la ponderación:

$$\alpha | \boldsymbol{\psi} \rangle = | \alpha \boldsymbol{\psi} \rangle$$

1.2 Espacio vectorial dual (bras) : $\langle \cdot |$

1.2.1 Correspondencia

- $|\phi\rangle \iff \langle\phi|$
- $\alpha |\psi\rangle + \beta |\phi\rangle \iff \alpha^* \langle \psi| + \beta^* \langle \phi|$
- $|\alpha \psi\rangle \iff \langle \alpha \psi| = \alpha^* \langle \psi|$

1.2.2 Relación operacional : Adjuntar

•
$$(|\cdot\rangle)^{\dagger} = \langle\cdot|$$

$$\bullet \ (\langle\cdot|)^\dagger = |\cdot\rangle$$

1.3 Producto interno o escalar

• Producto interno entre $|\phi\rangle$ y $|\psi\rangle$: $\langle\phi|\psi\rangle$.

• $\langle \psi | \psi \rangle \ge 0$ (Módulo de $| \psi \rangle$) \Longrightarrow Es cero solo si $| \psi \rangle = | \mathbf{0} \rangle$.

 $\bullet \ \left| \widetilde{\psi} \right\rangle = \left(\frac{1}{\sqrt{\left\langle \psi \left| \psi \right. \right\rangle}} \right) \left| \psi \right\rangle \ (\text{Normalización del ket} \implies \text{Vector unitario}) \implies \left\langle \widetilde{\psi} \left| \widetilde{\psi} \right. \right\rangle = 1.$

• $\langle \boldsymbol{\phi} | \boldsymbol{\psi} \rangle = 0 \Longrightarrow$ Vectores ortogonales.

• $\langle \alpha \boldsymbol{\phi} | \beta \boldsymbol{\psi} \rangle = \alpha^* \beta \langle \boldsymbol{\phi} | \boldsymbol{\psi} \rangle$

 $ullet \left\langle \phi \left| \psi
ight
angle ^{st} = \left\langle \psi \left| \phi
ight
angle$

 $\bullet \ \left\langle \phi \left| \alpha_1 \psi_1 + \alpha_2 \psi_2 \right. \right\rangle = \alpha_1 \left\langle \phi \left| \psi_1 \right. \right\rangle + \alpha_2 \left\langle \phi \left| \psi_2 \right. \right\rangle$

 $\bullet \ \left\langle \alpha_1 \boldsymbol{\phi}_1 + \alpha_2 \boldsymbol{\phi}_2 \left| \boldsymbol{\psi} \right. \right\rangle = \alpha_1^* \left\langle \boldsymbol{\phi}_1 \left| \boldsymbol{\psi} \right. \right\rangle + \alpha_2^* \left\langle \boldsymbol{\phi}_2 \left| \boldsymbol{\psi} \right. \right\rangle$

2 Operadores

2.1 Operadores lineales

Cierto operador $\widehat{\mathbf{A}}$ es lineal si cumple lo siguiente:

$$\widehat{\mathbf{A}}(\alpha | \boldsymbol{\psi} \rangle + \beta | \boldsymbol{\phi} \rangle) = \alpha \widehat{\mathbf{A}} | \boldsymbol{\psi} \rangle + \beta \widehat{\mathbf{A}} | \boldsymbol{\phi} \rangle$$

2

2.2 Producto de operadores

ullet $\left[\widehat{\mathbf{A}},\widehat{\mathbf{B}}\right] = \widehat{\mathbf{A}}\widehat{\mathbf{B}} - \widehat{\mathbf{B}}\widehat{\mathbf{A}}$ Conmutador

ullet $\left\{ \widehat{\mathbf{A}},\widehat{\mathbf{B}}\right\} =\widehat{\mathbf{A}}\widehat{\mathbf{B}}+\widehat{\mathbf{B}}\widehat{\mathbf{A}}$ Anticonmutador

• Propiedades

a).- $\left[\widehat{\mathbf{A}}, \widehat{\mathbf{B}}\right] = -\left[\widehat{\mathbf{B}}, \widehat{\mathbf{A}}\right]$

b).- $\left[\widehat{\mathbf{A}}, b\widehat{\mathbf{B}} + c\widehat{\mathbf{C}}\right] = b\left[\widehat{\mathbf{A}}, \widehat{B}\right] + c\left[\widehat{\mathbf{A}}, \widehat{\mathbf{C}}\right]$

c).- $\left[a\widehat{\mathbf{A}} + b\widehat{\mathbf{B}}, \widehat{\mathbf{C}}\right] = a\left[\widehat{\mathbf{A}}, \widehat{\mathbf{C}}\right] + b\left[\widehat{\mathbf{B}}, \widehat{\mathbf{C}}\right]$

d).- $\left[\widehat{\mathbf{A}},\widehat{\mathbf{B}}\widehat{\mathbf{C}}\right] = \widehat{\mathbf{B}}\left[\widehat{\mathbf{A}},\widehat{\mathbf{C}}\right] + \left[\widehat{\mathbf{A}},\widehat{\mathbf{B}}\right]\widehat{\mathbf{C}}$

e).- $\left[\widehat{\mathbf{A}}\widehat{\mathbf{B}},\widehat{\mathbf{C}}\right] = \widehat{\mathbf{A}}\left[\widehat{\mathbf{B}},\widehat{\mathbf{C}}\right] + \left[\widehat{\mathbf{A}},\widehat{\mathbf{C}}\right]\widehat{\mathbf{B}}$

f).- Identidad de $Jacobi: \left[\widehat{\mathbf{A}}, \left[\widehat{\mathbf{B}}, \widehat{\mathbf{C}}\right]\right] + \left[\widehat{\mathbf{C}}, \left[\widehat{\mathbf{A}}, \widehat{\mathbf{B}}\right]\right] + \left[\widehat{\mathbf{B}}, \left[\widehat{\mathbf{C}}, \widehat{\mathbf{A}}\right]\right] = 0 \cdot \widehat{\mathbf{1}}$

3 Adjunto de un operador

Se define $\widehat{\mathbf{A}}^{\dagger}$ como el adjunto del operador $\widehat{\mathbf{A}}.$

3.1 Propiedades

- $(\alpha)^{\dagger} = \alpha^*$ (Si α es una cantidad escalar)
- $ullet \left(\widehat{\mathbf{A}}^\dagger
 ight)^\dagger = \widehat{\mathbf{A}}$
- $ullet \left(\widehat{\mathbf{A}}\widehat{\mathbf{B}}
 ight)^{\dagger} = \widehat{\mathbf{B}}^{\dagger}\widehat{\mathbf{A}}^{\dagger}$
- $\bullet \left(\alpha \widehat{\mathbf{B}} \right)^{\dagger} = \widehat{\mathbf{B}}^{\dagger} \alpha^* = \alpha^* \widehat{\mathbf{B}}^{\dagger}$
- $\bullet \ \left(\widehat{\mathbf{A}} + \widehat{\mathbf{B}}\right)^\dagger = \widehat{\mathbf{A}}^\dagger + \widehat{\mathbf{B}}^\dagger$
- $ullet \left\langle \phi \left| \widehat{\mathbf{A}} \right| \psi
 ight
 angle = \left\langle \phi \left| \widehat{\mathbf{A}} \psi
 ight
 angle = \left\langle \widehat{\mathbf{A}}^\dagger \phi \right| \psi
 ight
 angle$
- $ullet \left\langle \phi \left| \widehat{\mathbf{A}} \right| \psi
 ight
 angle^* = \left\langle \psi \left| \widehat{\mathbf{A}}^\dagger \right| \phi
 ight
 angle$
- $|\alpha \widehat{\mathbf{B}} \boldsymbol{\phi}\rangle = \alpha \widehat{\mathbf{B}} |\boldsymbol{\phi}\rangle$
- $\langle \alpha \widehat{\mathbf{B}} \boldsymbol{\phi} | = \langle \boldsymbol{\phi} | \alpha^* \widehat{\mathbf{B}}^\dagger = \alpha^* \langle \boldsymbol{\phi} | \widehat{\mathbf{B}}^\dagger$

3.2 Hermiticidad

- $\widehat{\mathbf{A}}^{\dagger} = \widehat{\mathbf{A}}$ (Operador hermítico)
- ullet $\hat{\mathbf{A}}^{\dagger} = -\hat{\mathbf{A}}$ (Operador antihermítico)
- Si $\widehat{\mathbf{A}}^\dagger$ es hermítico y $|\phi\rangle$ es un vector arbitrario, entonces:

a).-
$$\left\langle \boldsymbol{\phi} \left| \widehat{\mathbf{A}}^2 \right| \boldsymbol{\phi} \right\rangle \ge 0$$

b).-
$$\left\langle \phi \left| \widehat{\mathbf{A}} \right| \phi \right\rangle = \left\langle \phi \left| \widehat{\mathbf{A}} \right| \phi \right\rangle^*$$

3.3 Casos especiales

- $\widehat{\mathbf{U}}^{\dagger}\widehat{\mathbf{U}} = \widehat{\mathbf{U}}\widehat{\mathbf{U}}^{\dagger}$ (Operador **normal**)
- $\widehat{\mathbf{U}}\widehat{\mathbf{U}}^{\dagger} = \widehat{\mathbf{U}}^{\dagger}\widehat{\mathbf{U}} = \widehat{\mathbf{1}}$ (Operador unitario).
 - si $U_{ij} = U_{ij}^*$, entonces se cumple que $\hat{\mathbf{U}}^T \hat{\mathbf{U}} = \hat{\mathbf{U}} \hat{\mathbf{U}}^T = \hat{\mathbf{1}}$, este operador es entonces **ortogonal**.
 - $\hat{\mathbf{U}}$ invertible $\implies \hat{\mathbf{U}}^{\dagger} = \hat{\mathbf{U}}^{-1}$
 - $-~\widehat{\mathbf{U}}\widehat{\mathbf{U}}^{\dagger}=\widehat{\mathbf{1}}$
 - $\widehat{\mathbf{U}}^{\dagger}$ es unitario
 - Las columnas de $\widehat{\mathbf{U}}$ forman un conjunto ortonormal de vectores
 - Las filas de $\widehat{\mathbf{U}}$ forman un conjunto ortonormal de vectores

• $\hat{\mathbf{P}}_{\psi} = \frac{1}{\langle \psi | \psi \rangle} | \psi \rangle \langle \psi |$ (Operador **proyección**) \rightarrow Dado un vector arbitrario, el operador proyección extrae la componente de este en la dirección unitaria $\frac{1}{\sqrt{\langle \psi | \psi \rangle}} | \psi \rangle$.

4 Kets, Bras y Operadores en términos de una base ortonormal

4.1 Vectores y operadores

Sea una base vectorial discreta (recordar que también puede ser continua) $\{|n\rangle\}$ ortonormal, entonces:

$$\langle n | l \rangle = \delta_{nl}$$

Los vectores arbitrarios $|\psi\rangle$ y $|\phi\rangle$ pueden ser descritos cada uno de ellos como una combinación lineal de los elementos de la base $\{|n\rangle\}$:

$$|oldsymbol{\psi}
angle = \sum_n a_n \,\, |n
angle \ |oldsymbol{\phi}
angle = \sum_n b_n \,\, |n
angle$$

siendo $a_n = \langle n | \psi \rangle$ las componentes del vector $| \psi \rangle$ en cada una de las direcciones $| n \rangle$, de igual manera para b_n .

$$ullet \left\langle oldsymbol{\psi}
ightert = \leftert oldsymbol{\psi}
ight
angle^\dagger = \sum_n a_n^* \left\langle n
ightert$$

$$ullet \left\langle \psi \left| \phi \right
ight
angle = \sum_{n} a_{n}^{st} b_{n}$$

•
$$\langle \psi | \psi \rangle = \sum_{n} a_n^* a_n = \sum_{n} |a_n|^2$$

Un operador arbitrario $\hat{\mathbf{A}}$ está descrito en términos de esta base como:

$$\widehat{\mathbf{A}} = \sum_{n} \sum_{m} a_{nm} |n\rangle \langle m|$$

siendo $a_{nm} = \langle n | \widehat{\mathbf{A}} | m \rangle$.

4.2 Operador unidad $\hat{1}$ y Completitud

Existe un operador tal que $\widehat{\mathbf{1}}|\psi\rangle=|\psi\rangle$, etc. Dicho operador es definido de la siguiente forma en términos de la base $\{|n\rangle\}$:

$$\hat{\mathbf{1}} = \sum_{n} |n\rangle \langle n|$$
 (Relación de completitud)

5 Notación matricial de operadores, bras y kets

$5.1 \quad \widehat{O}peradores = Matrices$

Un operador $\hat{\mathbf{A}}$ arbitrario descrito en términos de un set completo ortonormal $\{|n\rangle\}$ tiene la siguiente representación matricial :

$$\widehat{\mathbf{A}} = \left(egin{array}{cccc} a_{11} & \cdots & a_{1j} & \cdots \ drawnothing & \ddots & drawnothing \ a_{i1} & \cdots & a_{ij} \ drawnothing & \ddots & \end{array}
ight)$$

siendo:

$$a_{ij} = \left\langle i \left| \widehat{\mathbf{A}} \right| j \right\rangle$$

5.2 Ket = Vector columna \iff Bra = Vector fila

La notación matricial de bras y kets es la siguiente:

$$\ket{\psi} = \left(egin{array}{c} b_1 \ b_2 \ b_3 \ dots \end{array}
ight) \qquad \qquad \operatorname{con}\, b_i = \left\langle i \middle| \, \psi \right
angle$$

$$\langle oldsymbol{\phi} | = \left(egin{array}{c} a_1^* \ a_2^* \ a_3^* \ dots \end{array}
ight)^T & ext{con } a_i^* = \langle i | oldsymbol{\phi}
angle^* \ \end{array}$$

5.3 Producto interno

$$\left\langle \phi \left| \psi \right. \right\rangle = egin{array}{ccc} \left(a_1^* & a_2^* & a_3^* & \ldots
ight) & \left(egin{array}{c} b_1 \\ b_2 \\ b_3 \\ \vdots \end{array}
ight) = \sum_i a_i^* b_i$$

5.4 Producto externo

$$|\psi\rangle\,\langle\phi| = \left(egin{array}{c} b_1 \\ b_2 \\ b_3 \\ dots \end{array}
ight) \, \left(egin{array}{cccc} a_1^* & a_2^* & a_3^* & \ldots
ight) \\ & & & & = \left(egin{array}{cccc} b_1 a_1^* & b_1 a_2^* & \ldots \\ b_2 a_1^* & b_2 a_2^* & & & \\ dots & & & \ddots & \\ & & & & \ddots & \\ \end{array}
ight)$$

5

5.5 Propiedades matriciales (usando convención de suma de Einstein)

•
$$\left(\widehat{\mathbf{A}}\widehat{\mathbf{B}}\right)_{ij} = \left\langle i \left| \widehat{\mathbf{A}}\widehat{\mathbf{B}} \right| j \right\rangle = A_{ik}B_{kj}$$

•
$$\left(\widehat{\mathbf{A}}\widehat{\mathbf{B}}\widehat{\mathbf{C}}\right)_{ij} = \left\langle i \left| \widehat{\mathbf{A}}\widehat{\mathbf{B}}\widehat{\mathbf{C}} \right| j \right\rangle = A_{ik}B_{kl}C_{lj}$$

•
$$tr\left(\widehat{\mathbf{A}}\right) = \left\langle i \left| \widehat{\mathbf{A}} \right| i \right\rangle = \sum_{i} A_{ii}$$

$$\bullet \ \left(\widehat{\mathbf{A}}^{\dagger} \right)_{ij} = \left\langle i \left| \widehat{\mathbf{A}}^{\dagger} \right| j \right\rangle = \left\langle j \left| \widehat{\mathbf{A}} \right| i \right\rangle^* = A_{ji}^*$$

•
$$\left(\widehat{\mathbf{1}}\right)_{ij} = \left\langle i \left| \widehat{\mathbf{1}} \right| j \right\rangle = \delta_{ij}$$

5.6 Otras propiedades de matrices

$$\bullet \ \left(\widehat{\mathbf{A}}\widehat{\mathbf{B}}\right)^{-1} = \widehat{\mathbf{B}}^{-1}\widehat{\mathbf{A}}^{-1}$$

• Si
$$\hat{\mathbf{A}} = \hat{\mathbf{A}}^{\dagger} \implies \hat{\mathbf{A}}^{-1} = \left(\hat{\mathbf{A}}^{-1}\right)^{\dagger}$$
, si $\hat{\mathbf{A}}^{-1}$ existe.

$$\bullet \ {\rm si} \ \widehat{\bf U}$$
es unitaria y $\widehat{\bf B} = \widehat{\bf U}^\dagger \widehat{\bf A} \widehat{\bf U} \implies \widehat{\bf A} = \widehat{\bf U} \widehat{\bf B} \widehat{\bf U}^\dagger$