Noregs teknisk-naturvitskaplege universitet Institutt for matematiske fag

Side 1 av 4 Inklusive Laplacetabell

Fagleg kontakt under eksamen:

Lisa Lorentzen tlf. 73 59 35 48 Espen R. Jakobsen tlf. 73 59 35 12

EKSAMEN I TMA4120 MATEMATIKK 4K

Nynorsk Dag 13. desember 2006 kl. 9–13

Hjelpemiddel (kode C): Enkel kalkulator (HP 30S)

Rottmann: Matematisk formelsamling

Sensurdato: 10.01.2007

Grungje alle svar. Det skal vere med så mykje mellomrekning at framgangsmåten framgår tydeleg av besvarelsen.

Oppgåve 1 Rekn ut integrala

$$\int_{C_1} e^z dz \quad \text{og} \quad \oint_{C_2} \frac{e^z}{z^7} dz$$

der C_1 er kurva parametrisert ved

$$C_1: z(t) = \tan^{-1} t + it^2 \pi \text{ for } 0 \le t \le 1$$

og C_2 er einingssirkelen |z| = 1 i positiv omløpsretning (orientert mot klokka).

Oppgåve 2 La y(t) vere løysinga av differensiallikninga

$$y''(t) + y'(t) - 2y(t) = r(t)$$

med y(0) = y'(0) = 1 der funksjonen r er gitt ved grafen

Finn Laplacetransformen til y(t).

Oppgåve 3 Finn den Fouriertransformerte til funksjonen $h(x) = (e^{-x^2} * e^{-x^2})$.

Bruk resultatet til å finne eit uttrykk for h(x) utan integralteikn og *.

Du kan få bruk for formelen $\mathcal{F}(e^{-ax^2}) = \frac{1}{\sqrt{2a}} e^{-w^2/4a}$.

Oppgåve 4 Finn alle Laurentrekkene om punktet z = 1 for funksjonen

$$f(z) = \frac{1}{z} + \frac{e^z}{z - 1}$$
.

Oppgåve 5 For gitt parameter $w \in \mathbb{R}$, la f(z) vere funksjonen gitt ved

$$f(z) = \frac{1}{h(z)} e^{-iwz}$$
, der $h(z) = z^2 - 2z + 2$.

- a) Finn singularitetane til f(z) og bestem residyane til f(z) i desse. (Sjå bort frå punktet $z = \infty$.)
- **b**) La S_R vere halvsirkelen parametrisert ved

$$S_R: z(\theta) = Re^{i\theta} \text{ for } 0 \le \theta \le \pi.$$

Vis at

$$\lim_{R \to \infty} \int_{S_R} f(z) dz = 0 \quad \text{når } w \le 0.$$

c) Finn Fouriertransformen $\hat{g}(w)$ til $g(x) = \frac{1}{h(x)}$ for alle $w \in \mathbb{R}$.

Oppgåve 6 La a og b vere to reelle konstantar, og la (*) og (**) vere dei to randverdiproblema

(*)
$$\begin{cases} \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0 & \text{for } t > 0 \text{ og } x \in (0, 1), \\ u(0, t) = a & \text{for } t > 0, \\ u(1, t) = b & \text{for } t > 0, \end{cases}$$

og

(**)
$$\begin{cases} \frac{\partial v}{\partial t} - \frac{\partial^2 v}{\partial x^2} = 0 & \text{for } t > 0 \text{ og } x \in (0, 1), \\ v(0, t) = 0 & \text{for } t > 0, \\ v(1, t) = 0 & \text{for } t > 0. \end{cases}$$

- a) Dersom u_1 og u_2 begge løyser randverdiproblemet (*) (det vil seie, dersom både u_1 og u_2 er løysingar av (*)), kva for randverdiproblem løyser då høvesvis $u_1 + u_2$ og $u_1 u_2$? Held superposisjonsprinsippet for *randverdiproblema* (*) og (**)?
- **b)** La u(x, t) vere ei løysing av randverdiproblemet (*) og la v(x, t) vere definert ved

$$v(x, t) = u(x, t) - [a + (b - a)x]$$
 for $t \ge 0$ og $x \in [0, 1]$.

Vis at v(x, t) er ei løysing av randverdiproblemet (**).

Bestem alle løysingar av (**) på forma

$$v(x,t) = F(x)G(t).$$

c) La a = -1 og b = 1 i (*). Finn løysinga u(x, t) av initial/randverdiproblemet gitt ved (*) og initialkravet

$$(***)$$
 $u(x, 0) = \sin(\pi x)$ for $0 < x < 1$.

Table of Laplace transforms

f(t)	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n (n=0,1,2,\ldots)$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
cos ωt	$\frac{s}{s^2 + \omega^2}$
sin ωt	$\frac{\omega}{s^2 + \omega^2}$
cosh at	$\frac{s}{s^2 - a^2}$
sinh at	$\frac{a}{s^2 - a^2}$
$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2}$