Questions de cours.	/2
Soit x un entier non nul et y et z deux entiers.	
1. Rappeler la définition de « x divise y ».	
2. Démontrer que si x divise y et y divise z alors x divise z .	
Exercice 1.	/3
Déterminer l'ensemble des entiers relatifs n tels que $n+5$ divise $3n-2$.	
Exercice 2.	/5
Pour tout entier naturel n, on pose $u_n = 3^{3n+3} - 26n - 27$.	
1. Calculer a_0 , a_1 et a_2 et montrer que ces trois entiers sont tous divisibles par 169.	
2. Démontrer que, pour tout entier naturel n , $a_{n+1} - 27a_n = 676(n+1)$.	
3. Démontrer par récurrence que pour tout entier naturel n , 169 divise a_n .	
Questions de cours	/2
Questions de cours.	/2
Soit x un entier non nul et y et z deux entiers.	/2
	/2
Soit x un entier non nul et y et z deux entiers. 1. Rappeler la définition de « x divise y ».	/2
Soit x un entier non nul et y et z deux entiers. 1. Rappeler la définition de « x divise y ». 2. Démontrer que si x divise y et y divise z alors x divise z .	·
Soit x un entier non nul et y et z deux entiers. 1. Rappeler la définition de « x divise y ». 2. Démontrer que si x divise y et y divise z alors x divise z. Exercice 1.	·
 Soit x un entier non nul et y et z deux entiers. 1. Rappeler la définition de « x divise y ». 2. Démontrer que si x divise y et y divise z alors x divise z. Exercice 1. Déterminer l'ensemble des entiers relatifs n tels que n + 5 divise 3n - 2. 	/3
 Soit x un entier non nul et y et z deux entiers. 1. Rappeler la définition de « x divise y ». 2. Démontrer que si x divise y et y divise z alors x divise z. Exercice 1. Déterminer l'ensemble des entiers relatifs n tels que n + 5 divise 3n − 2. Exercice 2. 	/3
 Soit x un entier non nul et y et z deux entiers. 1. Rappeler la définition de « x divise y ». 2. Démontrer que si x divise y et y divise z alors x divise z. Exercice 1. Déterminer l'ensemble des entiers relatifs n tels que n + 5 divise 3n − 2. Exercice 2. Pour tout entier naturel n, on pose u_n = 3³ⁿ⁺³ - 26n - 27. 	/3