

Sean McIntyre

Class 15: Max Flow

Exercise 1

- Problem take-aways
 - A number of batch jobs are to be run on a number of computers
 - Batch jobs take a day
 - No multitasking on the computer
 - Certain computers are set up to run certain batch jobs
 - Two or more of the same batch may be run
 - What is a possible allocation of jobs → computers so that all jobs run in one day?

- Given a "network" graph, what is the maximum flow from the source to the sink?
 - How much water can travel through the pipes without bursting?
- Two methods we'll talk about today to solve this problem
 - Ford-Fulkerson and Edmonds-Karp

Ford-Fulkerson algorithm

```
1)mf ← 0
```

- 2)while (exists an augmenting path *p* from *s* to *t*)
 - 1) Send flow along $p = s \rightarrow ... \rightarrow i \rightarrow j \rightarrow ... \rightarrow t$
 - 2)Find f, the minimum edge weight along p
 - 3)Decrease weight of forward edges $i \rightarrow j$ by f
 - 4)Increase weight of backward edges $j \rightarrow i$ by f
 - 5) $mf \leftarrow mf + f$
- 3)Output *mf*

Back to exercise 1

- How to apply max flow to this problem
 - Treat each application as a vertex
 - Treat each computer as a vertex
 - Draw an edge from each application and computer of capacity 1
 - Create a source node connecting to each application of capacity # batch jobs
 - Create a sink node connecting from all computers of capacity 1

Ford-Fulkerson algorithm degenerate case

- The challenge of max flow
 - These problems come down to identifying the problem type, building the graph, and running Ford-Fulkerson or Edmonds-Karp
 - Algorithm choice depends on the constraints of the problem
 - Reconstructing the solution can be done for a "matching"
- Now try exercises 2, 3, 4

Min Cut

A consequence of computing the maximum flow is computing the **minimum cut**

Min cut: The smallest cost (or cut set) for removing edges so that the graph is split into two disconnected components

Flooding fields

- Problem gist
 - Up to 50 cows scattered on a 100x100 field
 - Field contains square plots that are of different elevation
 - Fields flood every hour to a new level 0-100 over 24 hours
 - Cows can move every hour to an adjacent plots whose elevations are higher than level
 - Only one cow can be on one plot at the same time

Max flow readings Section 4.6