RDSML-Day-21 Basic Probability Theory

- 1. The classic definition of probability
- 2. Relative frequency of occurrence
- Breaking down the probability terminologies: Experiment/trial, Event or Outcome, Sample Space
- 4. Union and intersection
- 5. Mutually exclusive events, independent events, and complementary events

The classic definition of probability

Probability is the measure of the **likelihood** that a particular event will occur. It quantifies uncertainty and is expressed as a number between **0 and 1**, where:

- 0 means the event is impossible
- 1 means the event is certain
- Values between 0 and 1 indicate varying degrees of likelihood

Formal Definition:

If an experiment has n equally likely outcomes, and f of them are favorable to an event A, then the probability of A is given by:

$$P(A) = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}} = \frac{f}{n}$$

Example:

If you toss a fair coin, the probability of getting heads is:

$$P({
m Heads})=rac{1}{2}$$

Key Points:

- Probability is denoted by P(Event)
- The sum of probabilities of all possible outcomes in a sample space is 1
- Used in statistics, science, engineering, finance, and many real-world applications

Relative Frequency of Occurrence

Definition:

The **relative frequency of occurrence** of an event is the **ratio** of the number of times the event occurs to the **total number of trials** or observations.

$$\label{eq:Relative Frequency} \begin{aligned} \text{Relative Frequency} &= \frac{\text{Number of times the event occurred}}{\text{Total number of trials}} \end{aligned}$$

It's a way to estimate **probability based on experimental data**, especially when theoretical probability is difficult to calculate.

Example:

Suppose you roll a die 100 times, and you get the number 4 exactly 18 times.

Relative Frequency of getting a
$$4 = \frac{18}{100} = 0.18$$

This suggests the probability of rolling a 4 is approximately **0.18**, based on actual data.

Visual Explanation:

Let's say we roll a die repeatedly and track how often each number occurs:

Die Face	Count	Relative Frequency
1	16	0.16
2	17	0.17
3	15	0.15
4	18	0.18
5	19	0.19

Total	100	1.00

The relative frequency can be **visualized in a bar chart** to see how close it is to the theoretical probability (which is $1/6 \approx 0.167$ for each face).

Here is the bar chart showing the **relative frequency** of each die face from 100 trials, along with the red dashed line representing the **theoretical probability** ($1/6 \approx 0.167$). This visual helps compare experimental results with theoretical expectations.

Breaking down the probability terminologies

1. Experiment / Trial

Definition:

An **experiment** (or **trial**) is a process or action that produces a set of results or outcomes.

• Examples:

- $\circ\quad \text{Tossing a coin once} \rightarrow \text{one trial}$
- o Rolling a die
- Drawing a card from a deck

2. Outcome

Definition:

An **outcome** is a **single possible result** of an experiment.

• Examples:

- \circ Tossing a coin \rightarrow "Heads" is one outcome, "Tails" is another
- \circ Rolling a die \rightarrow "4" is one outcome

3. Event

• Definition:

An **event** is a **set of one or more outcomes** from an experiment.

- Types of Events:
 - Simple Event: Involves a single outcome (e.g., rolling a 6)
 - Compound Event: Involves multiple outcomes (e.g., rolling an even number → 2, 4, or 6)
- Example:

Event A: Rolling a number less than $4 \rightarrow$ outcomes: $\{1, 2, 3\}$

4. Sample Space (S)

• Definition:

The **sample space** is the **set of all possible outcomes** of an experiment.

- Notation: Usually denoted by S
- Examples:
 - Tossing a coin:

S = {Heads, Tails}

o Rolling a die:

 $S = \{1,2,3,4,5,6\}$

o Drawing a card from a deck:

 $S = \{52 \text{ cards}\}$

Summary Table:

Term	Definition	Example
Experiment/Trial	A process that yields outcomes	Tossing a coin
Outcome	A single result of an experiment	"Tails" when tossing a coin
Event	One or more outcomes	Rolling an even number \rightarrow {2, 4, 6}
Sample Space	All possible outcomes	Die roll $\rightarrow \{1, 2, 3, 4, 5, 6\}$

Union and Intersection in Probability

These are two fundamental concepts used to combine **events** from a sample space.

1. Union (A \cup B)

• Definition:

The union of two events A and B is the event that either A occurs, B occurs, or both occur.

• Symbol: A ∪ B

• Formula:

 $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

• Example:

Let's roll a die:

- Event A: getting an even number \rightarrow {2, 4, 6}
- \circ Event B: getting a number greater than 4 \rightarrow {5, 6}
- \circ A U B = {2, 4, 5, 6}

2. Intersection (A \cap B)

• Definition:

The **intersection** of two events A and B is the event that **both A and B occur at** the same time.

• **Symbol**: A∩B

• Formula:

If A and B are **independent**, $P(A \cap B) = P(A) \times P(B)$

• Example:

Using the same die roll:

$$\circ$$
 A = {2, 4, 6}

$$\circ$$
 B = {5, 6}

○ $A \cap B = \{6\}$ (Only 6 is common in both)

Mutually exclusive events, independent events, and complementary events

1. Mutually Exclusive Events (Disjoint Events)

• Definition:

Two events are mutually exclusive if they cannot occur at the same time.

2. Independent Events

• Definition:

Two events are **independent** if the **occurrence of one does not affect the occurrence** of the other.

3. Complementary Events

• Definition:

The **complement** of an event A is the event that A **does not happen**.