Introduction to Statistical Inference

Felipe José Bravo Márquez

April 16, 2021

Populations and Samples

- The main goal of statistical inference is investigate properties about a target population.
- Example: What is the average height of the Chilean people?
- In order to draw conclusions about a population, it is generally not feasible to gather all the data about it.
- We must make reasonable conclusions about a population based on the evidence provided by sample data.
- A sample staticic or simply statistic is a quantitative measure calculated from the data. Examples: the mean, the standard deviation, the minimum, the maximum.
- Our goal in sampling is to determine the value of a statistic for an entire population of interest, using just a small subset of the population.
- We do this primarily to save time and effort.
- Idea: Why go to the trouble of measuring every individual in the population when just a small sample is sufficient to accurately estimate the statistic of interest?
 [Poldrack, 2019]

Samples and Surveys

- Random samples
- Stratified samples
- Biases

Statistical Inference

- The process of drawing conclusions about a population from sample data is known as statistical inference.
- From a general point of view, the goal of inference is to infer the distribution that generates the observed data.
- Example: Given a sample $X_1, \ldots, X_n \sim F$, how do we infer F?
- However, in most cases we are only interested in inferring some property of F (e.g., its mean value).
- Statistical models that assume that the distribution can be modeled with a finite set of parameters $\theta = (\theta_1, \theta_2, \dots, \theta_k)$ are called **parametric models**.
- Example: if we assume that the data comes from a normal distribution $N(\mu, \sigma^2)$, μ and σ would be the parameters of the model.

Frequentist Aproaches

The satistical methods to be presented is this class are known as **frequentist** (or **classical**) methods. They are based on the following postulates [Wasserman, 2013]:

- Probability refers to limiting relative frequencies. Probabilities are objective properties of the real world.
- Parameters are fixed, unknown constants. Because they are not fluctuating, no useful probability statements can be made about parameters.
- Statistical procedures should be designed to have well-defined long run frequency properties. For example, a 95 percent confidence interval should trap the true value of the parameter with limiting frequency at least 95 percent.

There is another approach to inference called **Bayesian inference**, which is based on different posulates, to be discussed later in the course.

Point Estimation

- Point estimation is the process of finding the best guess for some quantity of interest from a statistical sample.
- In a general sence, this quantity of interest could be a parameter in a parametric model, a CDF F, a probability density function f, a regression function r, or a prediction for a future value Y of some random variable.
- In this class we will consider this quantity of interest as a **population parameter** θ .
- By convention, we denote a point estimate of θ by $\hat{\theta}$ or $\hat{\theta}_n$.
- It is important to remark that while θ is an unknown fixed value, $\hat{\theta}$ depends on the data and is therefore a random variable.
- We need to bear in mind that the process of sampling is by definition a random experiment.

Point Estimation

Formal Definition

- Let X_1, \ldots, X_n be n IID data points from some distribution F.
- A point estimator $\hat{\theta}_n$ of a parameter θ is some function of X_1, \ldots, X_n :

$$\hat{\theta}_n = g(X_1, \dots, X_n)$$

The bias of an estimator is defined as:

$$\operatorname{bias}(\hat{\theta}_n) = \mathbb{E}(\hat{\theta}_n) - \theta$$

• An estimator is unbiased if $\mathbb{E}(\hat{\theta}_n) = \theta$ or $\operatorname{bias}(\hat{\theta}_n) = 0$

Sampling Distribution

- If we take multiple samples, the value of our statistical estimate $\hat{\theta}_n$ will also vary from sample to sample.
- We refer to this distribution of our estimator across samples as the sampling distribution [Poldrack, 2019].
- The sampling distribution may be considered as the distribution of $\hat{\theta}_n$ for all possible samples from the same population of size n^1 .
- The sampling distribution describes the variability of the point estimate around the true population parameter from sample to sample.
- We need to bear in mind this is an imaginary concept, since we can't obtain all possible samples.

¹https://courses.lumenlearning.com/
boundless-statistics/chapter/sampling-distributions/

Standard Error

• The standard deviation of $\hat{\theta}_n$ is called the **standard error** se:

$$se(\hat{ heta}_n) = \sqrt{\mathbb{V}(\hat{ heta}_n)}$$

- The standard error tells us about the variability of the estimator (and the sampling distribution) between all possible samples of the same size.
- It is a measure of the uncertainty of the point estimate.

The Sample Mean

- Let X₁, X₂,..., X_n be a random sample of a population of mean μ and variance σ².
- Let's suppose that we are interested in estimating μ .
- A sample statistic we can derive from the data is the **sample mean** $\overline{X_n}$

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$$

- The sample mean is an estimator of the mean $\overline{X_n} = \hat{\mu}$.
- We can show that the sample mean is an unbiased estimator of μ :

$$\mathbb{E}(\overline{X_n}) = \mathbb{E}(\frac{1}{n}\sum_{i=1}^n X_i) = \frac{1}{n} \times \mathbb{E}(\sum_{i=1}^n X_i) = \frac{1}{n}(n \times \mu) = \mu$$

The Standard Error of the Sample Mean

• The standard error of the sample mean $se(\overline{X_n}) = \sqrt{\mathbb{V}(\overline{X_n})}$ can be calulated as:

$$\mathbb{V}(\overline{X_n}) = \mathbb{V}(\frac{1}{n}\sum_{i=1}^n X_i) = \frac{1}{n^2}\mathbb{V}(\sum_{i=1}^n X_i) = \frac{n}{n^2}\mathbb{V}(X_i) = \frac{\sigma^2}{n}$$

• Then, $se(\overline{X_n}) = \frac{\sigma}{\sqrt{n}}$

Sample and Population Variance

- We usually do not know σ of the population.
- When we want to estimate the variance of a population from a sample we are talking about the sample variance:
- The sample variance is defined as follows:

$$s^2 = \frac{1}{n-1} \sum_{i}^{n} (X_i - \overline{X_n})^2$$

- This is an unbiased estimator of the variance.
- There is also the population variance (which is biased), defines as follows:

$$s_n^2 = \frac{1}{n} \sum_{i}^{n} (X_i - \overline{X_n})^2$$

- The population variance should only be calculated from population data (all the individuals), if is used as an estimator it would be biased.
- The standard error of the sample mean when the population variance is unknown is estimated as follows:

$$\hat{se}(\overline{X_n}) = \frac{s}{\sqrt{n}}$$

The Sampling Distribution of the Sample Mean

- Let us digress on the sampling distribution, which is a fundamental concept for understanding frequentist inference.
- Imagine drawing (with replacement) all possible samples of size n from a population.
- Then for each sample, calculating a statistic—e.g., the sample mean.
- The frequency distribution of those sample means would be the sampling distribution of the mean (for samples of size n drawn from that particular population).
- Suppose, for example, that our population consisted of the following 5 scores: 2, 3, 4, 5, and 6.
- The population mean = 4, and the population standard deviation (dividing by N) = 1.414.

```
library(gtools)
library(tidyverse)
sd.p=function(x) {sd(x) *sqrt((length(x)-1)/length(x))}
pop <-c(2,3,4,5,6)
samp_size <- 2
mean(pop)
sd.p(pop)</pre>
```

Point Estimation of a Proportion

- Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ and let $\hat{p}_n = \frac{1}{n} \sum_i X_i$
- Then $\mathbb{E}(\hat{p}_n) = \frac{1}{n} \sum_i \mathbb{E}(X_i) = p$, and \hat{p}_n is unbiased.
- The standard error se would be

$$se = \sqrt{\mathbb{V}(\hat{p}_n)} = \sqrt{p(1-p)/n}$$

The estimated standard error se:

$$\hat{se} = \sqrt{\hat{p}(1-\hat{p})/n}$$

Consistency

- A good estimator is expected to be unbiased and of minimum variance.
- Unbiasedness used to receive much attention but these days is considered less important
- Many of the estimators we will use are biased.
- A reasonable requirement for an estimator is that it should converge to the true parameter value as we collect more and more data.
- A point estimator $\hat{\theta}_n$ of a parameter θ is **consistent** if it converges to the true value when the number of data in the sample tends to infinity.
- The quality of an estimator can be measured using the mean squared error (MSE)

$$\textit{MSE} = \mathbb{E}_{\theta}(\hat{ heta}_n - heta)^2$$

Consistency

- If for an estimator $\hat{\theta}_n$, its $bias \to 0$ and its $se \to 0$ when $n \to \infty$, $\hat{\theta}_n$, it is a consistent estimator of θ .
- For example, for the sample mean $\mathbb{E}(\overline{X_n}) = \mu$ hich implies that the *bias* = 0 and $se(\overline{X_n}) = \frac{\sigma}{\sqrt{n}}$ tends to zero when $n \to \infty$. Then $\overline{X_n}$ is a consistent estimator of the mean.
- For the case of the Bernoulli experiment one has that $\mathbb{E}(\hat{p}) = p \Rightarrow bias = 0$ y $se = \sqrt{p(1-p)/n} \to 0$ when $n \to \infty$. Then \hat{p} is a consistent estimator of p.

Maximum Likelihood Estimation

- We know that the value of a point estimator **varies** from sample to sample.
- It is more reasonable to find an interval that is likely to trap the real value of the parameter with a certain probability.
- The general form of a confidence interval in the following:

Confidence Interval = Sample Statistic \pm Margin Error

 The wider the interval the more uncertainty there is about the value of the parameter.

Definition

• A confidence interval for an unknown population parameter θ with a confidence level $1-\alpha$, is an interval $C_n=(a,b)$ where:

$$\mathbb{P}(\theta \in C_n) = 1 - \alpha$$

- In addition $a = a(X_1, \dots, X_n)$ and $b = b(X_1, \dots, X_n)$ are functions of the data.
- The α value is known as the **significance** level, generally taken as 0.05, which is equivalent to working with a confidence level of 95%.
- Significance can be interpreted as the probability of being wrong.

- There is a lot of confusion about how to interpret a confidence interval.
- A confidence interval is not a probability statement about θ since θ is a fixed quantity in Frequentist inference setting, not a random variable
- One way to interpret them is to say that if we repeat the **same experiment** many times, the interval will contain the value of the parameter (1α) % of the times.
- This interpretation is correct, but we rarely repeat the same experiment several times.
- A better interpretation: one day I collect data I create a 95% confidence interval for a parameter θ_1 . Then on day 2, I do the same for a parameter θ_2 and so repeatedly n times. The 95% of my intervals will contain the actual values of the parameters.

- Later in the course, we will discuss Bayesian methods in which we treat θ as if it were a random variable and we do make probability statements about θ .
- In particular, we will make statements like "the probability that θ is in C_n , given the data, is 95 percent."
- However, these Bayesian intervals refer to degree-of-belief probabilities.
- These Bayesian intervals will not, in general, trap the parameter 95 percent of the time.

Confidence Interval of the Mean

- We have *n* independent observations X_1, \ldots, X_n (IID) of distribution $N(\mu, \sigma^2)$.
- Suppose μ is **unknown** but σ^2 is **known**.
- We know that $\overline{X_n}$ is an unbiased estimator of μ .
- By the law of large numbers we know that the distribution of $\overline{X_n}$ is concentrated around μ when n is large.
- By the CLT we know that

$$Z = \frac{\overline{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

when n is large.

• We want to find an interval $C_n = (\mu_1, \mu_2)$ with confidence level $1 - \alpha$:

$$\mathbb{P}(\mu_1 \le \mu \le \mu_2) = 1 - \alpha$$

- Let $z_a = \Phi^{-1}(1-a)$, with $a \in [0,1]$ where Φ^{-1} is the quantile function of a standardized normal.
- This is equivalent to saying that z_a is the value such that $1 \Phi(z_a) = \mathbb{P}(Z \ge z_a) = a$.
- By symmetry of the normal distribution: $z_{\alpha/2} = -z_{(1-\alpha/2)}$.

The confidence interval for μ is:

$$C_n = (\overline{X_n} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X_n} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$$

- Then z_{\alpha/2} tells us how many times we have to multiply the standard error to build the interval.
- The smaller the value of α the larger the value of $z_{\alpha/2}$ and hence the wider the interval.
- Proof:

$$\begin{split} \mathbb{P}(\mu \in C_n) &= \mathbb{P}(\overline{X_n} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X_n} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) \\ &= \mathbb{P}(-z_{\alpha/2} < \frac{\overline{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}} < z_{\alpha/2}) \\ &= \mathbb{P}(-z_{\alpha/2} < Z < z_{\alpha/2}) \\ &= 1 - \alpha \end{split}$$

• Since $z_{\alpha/2} = \Phi^{-1}(1 - \alpha/2)$ we can use the quantile function of the normal to calculate confidence intervals in R.

```
> alpha <- 0.05
> xbar <- 5
> sigma <- 2
> n <- 20
> se <-sigma/sqrt(n)
> error <- qnorm(1-alpha/2)*se
> left <- xbar-error
> right <- xbar+error
> left
[1] 4.123477
> right
[1] 5.876523
>
```

T Distribution

- In practice, if we do not know μ we are unlikely to know σ .
- If we estimate σ using s, confidence intervals are better build using the distribution T-student, especially when the sample size is small.

T Distribution

 An R.V. has distribution t with k degrees of freedom when it has the following PDF:

$$f(t) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(\frac{k}{2})(1 + \frac{t^2}{k})^{(k+1)/2}}$$

- When k = 1 it is called **Cauchy** distribution.
- When $k \to \infty$ it converges to a standardized normal distribution.
- The t-distribution has wider tails than the normal distribution when it has few degrees of freedom.

T Distribution

```
x<-seq(-8,8,length=400)
y1<-dnorm(x)
y2<-dt(x=x,df=1)
y3<-dt(x=x,df=10)
y4<-dt(x=x,df=350)
plot(y1~x,type="l",col="green")
lines(y2~x,type="l",col="blue")
lines(y3~x,type="l",col="black")
lines(y4~x,type="l",col="red")</pre>
```


T-Distribution Confidence Interval

• Let $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X_n})^2$ we have:

$$T = \frac{\overline{X_n} - \mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$$

- Let $t_{n-1,a} = \mathbb{P}(T > a)$, equivalent to the quantile function qt evaluated at (1 a).
- The resulting confidence interval is:

$$C_n = (\overline{X_n} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}, \overline{X_n} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}})$$

 Since the tails of the t distribution are wider when n is small, the resulting confidence intervals are wider.

T-Distribution Confidence Interval

Let's calculate a confidence interval for the mean of Petal.Length of the Iris
data with 95% confidence.

```
>data(iris)
>alpha<-0.05
>n<-length(iris$Petal.Length)
>xbar<-mean(iris$Petal.Length)
>xbar
[11 3.758
>s<-sd(iris$Petal.Length)
>se<-s/sqrt(n)
>error<-gt(p=1-alpha/2,df=n-1)*se
>left<-xbar-error
>left.
[1] 3.473185
>right<-xbar+error
>right
[1] 4.042815
```

Another way:

```
>test<-t.test(iris$Petal.Length,conf.level=0.95)
>test$conf.int
[1] 3.473185 4.042815
```

The Boostrap

References I

Poldrack, R. A. (2019).

Statistical Thinking for the 21st Century.

Wasserman, L. (2013).

All of statistics: a concise course in statistical inference.

Springer Science & Business Media.