Examen 2

Alec Zabel-Mena 801-16-9720 alec.zabel@upr.edu

 $April\ 13,\ 2021$

(5.1)

Problem. Prove by induction on n that, for all positive integers n, $3|n^3-n$.

Solution. For n = 1, $1^3 - 1 = 1 - 1 = 0 = 3 \cdot 0$, so 3|0. Now suppose for all $n \in \mathbb{Z}^+$ that $3|n^3 = -n$. Then $(n+1)^3 - (n+1) = (n+1)(n+1)(n+1) - (n+1) = (n^2 + 2n + 1)(n+1) - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1 = (n^3 - n) + 3n^2 + 3n$. Now by hypothesis, we have $n^3 - n = 3m$ for some $m \in \mathbb{Z}$. Then $(n^3 - n) + 3n^2 + 3n = 3m + 3n^2 + 3n = 3(m + n^2 + n)$. Therefore $3|(n+1)^3 - (n+1)$

(5.2)

Problem. Prove by induction on m that $m^3 \leq 2^m$.

Solution. For m=10, we have $10^3=1000$ and 2;10=1024, and $1000\geq 1024$. Now suppose for $m\geq 10$, that $m^3\geq 2^m$. Then $(m+1)^3=(m+1)(m+1)(m+1)(m+1)(m^2+2m+1)(m+1)=m^3+(3m^2+3m+1)\geq m^3+m^3\geq 2^m+2^m=2\cdot 2^m=2^{m+1}$.

(5.3)

Problem. Prove by induction on n, for all positive integers n, $n \geq 1$.

Solution. For n = 1, $1 \ge 1$ is true. Now suppose that for all $n \in \mathbb{Z}^+$ that $n \ge 1$. By the axioms of Peano, we have that the successor of n is $s(n) = n + 1 > n \ge 1$, hence $n + 1 \ge 1$.

(8.2)

Problem. Define functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$ and g(x) = 1 - x. Find the functions:

- (1) $f \circ f$.
- (2) $f \circ g$.
- (3) $g \circ f$.
- (4) $q \circ q$.

List the elements of the set $\{x \in \mathbb{R} : f \circ g(x) = g \circ f(x)\}.$

Solution. Let $f,g:\mathbb{R}\to\mathbb{R}$ be defined by $f:x\to x^3$ and $g:x\to 1-x$. Then $f\circ f=f^2:\mathbb{R}\to\mathbb{R}$ is defined by $f^2:x\to x^2\to (x^3)^3=x^9$. $f\circ g:\mathbb{R}\to\mathbb{R}$ is defined by $f\circ g:x\to 1-x\to (1-x)^3=(1-x)(1-x)(1-x)=(1-2x+x^2)(1-x)=x^3-x^2$. $g\circ f:\mathbb{R}\to\mathbb{R}$ is defined by $g\circ f:x\to x^3\to 1-x^3$, and finally $g\circ g=g^2:\mathbb{R}\to\mathbb{R}$ is defined by $g^2:x\to 1-x\to 1-(1-x)=x$.

Now consider $f \circ g$ and $g \circ f$, when is $f \circ g = g \circ f$? Consider $x^3 - x^2 = 1 - x^3$. Then $x^2 + 1 = 0$, which has no solutions in \mathbb{R} . So $f \circ g \neq g \circ f$ for all $x \in \mathbb{R}$.

Remark. The second part of this problem may be misconstrued, as in my copy of the book it says to list all the elements of the set $\{x \in \mathbb{R} : fg(x) = gf(x)\}$; which may mean something different than function composition for some authors. However, it is most likely that composition is implied by that notation since in general $g \circ f \neq f \circ g$, moreover it is a popular algebraic notation to express composition by fg instead of $f \circ g$.

(8.3)

Problem. Find the functions $f_i: \mathbb{R} \to \mathbb{R}$ with the images as follows:

- (1) $f_1(\mathbb{R}) = \mathbb{R}$.
- (2) $f_2(\mathbb{R}) = \mathbb{R}^+$.
- (3) $f_3(\mathbb{R}) = \mathbb{R} \setminus \mathbb{Z}$.
- (4) $f_4(\mathbb{R}) = \mathbb{Z}$.

Solution. (1) Take $f_1: \mathbb{R} \to \mathbb{R}$ by $f_1: x \to x^3$. Then $f_1(\mathbb{R}) = \mathbb{R}$.

- (2) Take $f_2 : \mathbb{R} \to \mathbb{R}$ by $f_2 : x \to \begin{cases} x, & 0 < x < 1 \\ 1, & x \ge 1 \end{cases}$. Then $f_2(\mathbb{R}) = \mathbb{R}^+$.
- (3) Take $f_3 : \mathbb{R} \to \mathbb{R}$ by $f(x) = x \lfloor x \rfloor$; where $\lfloor x \rfloor$ is the greatest interger less or equal to x. Then $f_3(\mathbb{R}) = \mathbb{R} \setminus \mathbb{Z}$.
- (4) Take $f_4: \mathbb{R} \to \mathbb{R}$ by $f_4: x \to \lfloor x \rfloor$. Then $f_4(\mathbb{R}) = \mathbb{Z}$.