ⁱ Front page

Eksamensoppgåve i TDT4172 Introduksjon til Maskinlæring

Dato: 07.12.2024 09:00

Fagleg kontakt: Inga Strümke Møter i eksamenslokalet: Nei

Hjelpemiddelkode/Tillatte hjelpemiddel: D: Ingen trykte eller handskrivne hjelpemiddel tillate. Bestemt, enkel kalkulator tillate.

ANNAN INFORMASJON:

Les oppgåvene nøye og gjer dine eigne antakingar. Presiser i svaret kva føresetnader du har lagt til grunn i tolking/avgrensing av oppgåva.

Fagleg kontaktperson skal berre kontaktast dersom det er direkte feil eller manglar i oppgåvesettet. Vend deg til ei eksamensvakt viss du mistenkjer feil og manglar. Noter spørsmål ditt på førehand.

FAGSPESIFIKK INFORMASJON:

Denne eksamenen tillèt ikkje bruk av handteikningar. Har du likevel fått utdelt skanne-ark, er dette ein feil. Arka vil ikkje bli aksepterte for innlevering, og dei vil derfor heller ikkje sendast til sensur.

Varslingar:

Eventuelle beskjedar under eksamen (t.d. ved feil i oppgåvesettet), blir sende ut via varslingar i Inspera. Eit varsel vil dukka opp som ein dialogboks på skjermen. Du kan finna igjen varselet ved å klikka på bjølla øvst til høgre.

Trekk frå/avbroten eksamen:

Dersom du ønskjer å levera blankt/avbryta eksamen, gå til "hamburgarmenyen" i øvre høgre hjørne og vel «Lever blankt». Dette kan ikkje angrast sjølv om prøva framleis er open.

Tilgang til svar:

Etter eksamen finn du svaret ditt under tidlegare prøver i Inspera. Merk at det kan ta éin vyrkedag før eventuelle handteikningar vil vera tilgjengelege under «tidligere prøver».

¹ Linear model

Kva går ein lineær modell på formen $y=w_1x_1+w_2x_2+w_3x_3+b$ ut ifrå om dataa han modellerer?

Vel eitt alternativ

	Modellen	antar a	ıt det ikl	kje er	veksel	verknada	ar ime	llom	features.
--	----------	---------	------------	--------	--------	----------	--------	------	-----------

Modellen antar at han har høg skeivskap.

Modellen antar at han vil undertilpasse treningsdataene.

Modellen antar at effekten av kvar inputvariabel er avhengig av andre inputvariablar.

² Linear gradient descent

Du har ein lineær modell f(x) = wx + b, som skal brukes til å predikere y-verdiar basert på input x. Modellen trenes ved hjelp av gradient descent for å minimere ein tapsfunksjon \mathcal{L} , og oppdateringsregelen for modellparametrane er $\theta \leftarrow \theta - \alpha \frac{\partial \mathcal{L}}{\partial \theta}$. Du brukar tapsfunksjonen MSE $\mathcal{L} = \frac{1}{2}(y - f(x))^2$. Du starter med verdiane w, b = 1, 0.

Beregn gradientane $rac{\partial \mathcal{L}}{\partial w}$ og $rac{\partial \mathcal{L}}{\partial b}$ for datapunktet x=2,y=4.

Vel eitt eller fleire alternativ

- $rac{\partial \mathcal{L}}{\partial b}=2$
- $lacksquare rac{\partial \mathcal{L}}{\partial b} = -3$
- $\frac{\partial \mathcal{L}}{\partial w} = 2$
- $\frac{\partial \mathcal{L}}{\partial w} = -6$
- $\frac{\partial \mathcal{L}}{\partial b} = 3$
- $oxedsymbol{eta} rac{\partial \mathcal{L}}{\partial w} = -4$
- $rac{\partial \mathcal{L}}{\partial b} = -2$
- $\frac{\partial \mathcal{L}}{\partial w} = 4$

Bruk læringsraten lpha=0.1 og beregn dei oppdatert verdiane av modellparametrane.

Vel eitt eller fleire alternativ

- w = 0.6
- b = -0.2
- b = 0.2
- w = 1.4

3 Inductive bias

V 1/0	Or	Indi	11/41/14	hioc'
r	-1	11 16 11	IKIIVI	bias?
1 () (\sim .		41 X CI V C	DIGO.

Vel eitt alternativ

- Ei fellesnemning for over- og undertilpassinga ein gitt modell gjer.
- Eit resultat av vilkårlege prosessar som kan oppstå i treningsfasen og fører til bias i den resulterande modellen.
- Det ein modell går ut frå for å generalisere frå treningsdata til usette data.
- Ein eigenskap ved treningsdataa som gir ein modell me tilpassar til dataa ein spesifikk type bias.

Maks poeng: 1

⁴ Preprocessing

Du har laga ein maskinlæringsmodell, og skal no testa han. Kva for ein av desse funksjonane vil du bruka til å preprosessere testdataa?

Vel eitt alternativ

- Scaler.fit(x_test), slik at Scaler-objektet kan gjenbrukast.
- Scaler().fit_transform(x_test), slik at preprosesseringen blir tilpassa til testdataa før desse blir transformerte.
- Scaler.transform(x_test), der Scaler-objektet først vart tilpassa på treningsdataa.

5 Confusion matrix and ROC curve

Ein maskinlæringsmodell gir følgjande confusion matrix for klassifiseringsterskel 0.3:

	Predikert positiv	Predikert negativ
Label positiv	40	10
Label negativ	30	20

og følgjande confusion matrix for klassifiseringsterskel 0.7:

	Predikert positiv	Predikert negativ
Label positiv	25	25
Label negativ	10	40

Sjå på ROC-kurva under

Kva utsegner er rette?

Vel e	itt eller fleire alternativ
	Punkt 1 svarer til klassifiseringsterskel på 0.3
	Punkt 5 svarer til klassifiseringsterskel på 0.3
	Punkt 3 svarer til klassifiseringsterskel på 0.7
	Punkt 4 svarer til klassifiseringsterskel på 0.3
	Punkt 2 svarer til klassifiseringsterskel på 0.7
	Punkt 5 svarer til klassifiseringsterskel på 0.7
	Punkt 4 svarer til klassifiseringsterskel på 0.7
	jen på ROC-kurva over. Kva svarer punkt 5 til? itt eller fleire alternativ
	Det nest beste valet av klassifiseringsterskel.
	Klassifiseringsterskel på 0.3.
	Den høgaste klassifiseringsterskelen av alle punkta 1-5.
	Ein klassifiseringsterskel som gir høg presisjon.
	Det er ikkje mogleg å seia utan å vita klassifiseringsterskelen.
	Den lågaste klassifiseringsterskelen av alle punkta 1-5.

⁶ ROC AUC

Kva betyr det viss e	ın modell har ein	ROC AUC	på 0.9?
Vel eitt alternativ			

- Modellen har 90% nøyaktigheit ved terskelen 0.5
- Det er ein 90% sannsyn for at modellen rangerer eit tilfeldig valt positivt tilfelle høgare enn eit tilfeldig valt negativt tilfelle.
- Modellen predikerer rett klasse i 90% av tilfella.
- Modellen har ein 90% sannsyn for å korrekt predikera positive tilfelle for alle klassifiseringstersklar.

⁷ Precision, recall, specificity and accuracy

Du skal levera ein avansert maskinlæringsmodell til eit sjukehus som vil finna ut kva pasientar som lid av ein svært sjeldan og dødeleg sjukdom. Det er altså alvorleg om modellen har mange falske negative.

Kva for ein av desse metrikkane er det viktigast at modellen skårar høgt på?

Vel eitt alternativ

- \bigcirc Recall = $\frac{TP}{TP+FN}$
- O Presisjon / precision = $\frac{TP}{TP+FP}$
- Treffsikkerheit / accuracy

Det viser seg at den kompliserte maskinlæringsmodellen du laga har høg treffsikkerheit, men etter testing bestemmer sjukehuset seg likevel for ikkje å kjøpa modellen av deg. Du veit sjølv at du hadde det travelt då du laga modellen, og verken studerte fordelinga i treningsdataa eller brukte eit valideringsdatasett. Kva har sannsynlegvis gått gale under modelleringa?

Vel eitt alternativ

- Fordelinga mellom friske og sjuke pasientar i treningsdataa er ubalansert.
- Modellen har for låg læringsrate, og utan bruk av valideringsdata har du ikkje forsikra deg om at val av hyperparametrar er passande.
- Ou brukte cross entropy som tapsfunksjon, som berre bør brukast til lineær modellering.
- Modellen har overtilpassa på pasientar frå det aktuelle sjukehuset, og utan valideringsdata klarte du ikkje å fanga opp overtilpassinga.

Du gir opp sjukehuset som kunde, og vel å heller laga ein avansert maskinlæringsmodell til politiet, som vil bruka han til å avgjera om Twitter/X-meldingar er verd ei ressurskrevjande og kostbar utrykking. Det er altså viktig å unngå at modellen har mange falske positive. Kva for ein av desse metrikkane er det viktigast at modellen skårar høgt på?

Vel eitt alternativ

- O Presisjon / precision= $\frac{TP}{TP+FP}$
- $\bigcirc \quad \text{Recall} = \frac{TP}{TP + FN}$
- Spesifisitet / Specificity = $\frac{TN}{TN+FP}$

8 Over- and under-sampling

Gitt eit datasett beståande av 2000 datapunkt, der 90% tilhøyrer klasse A, og resten klasse B.

Du ønskjer å gjera undersampling for å få eit balansert datasett. Kor mange datapunkt kan du behalda frå klasse A?

9 Cross entropy loss

Kva for ein av desse representerer ein korrekt implementasjon av binary cross entropy loss? **Vel eitt alternativ**

$$\bigcirc$$
 -y_pred*np.log(y) - (1-y_pred)*np.log(1-y)

Maks poeng: 1

¹⁰ Weighted cross entropy loss

Kva for ein av desse representerer ein korrekt implementasjon av vekta cross entropy loss? Vekta w_0 representerer klassen med target-verdi y=0, og w_1 representerer vekta for klassen med target-verdi y=1.

Vel eitt alternativ

¹¹ Imbalanced classes

I eit klassifiseringsproblem har du to klassar, der klasse A har 9000 datapønkar og klasse B har 1000 datapunkt. Kva kombinasjon av dei følgjande vektene bør du velja til ein vekta versjon av tapsfunksjonen cross entropy loss?

Vel eitt alternativ

- $\bigcirc \quad w_A=1, w_B=0.1$
- $w_A = 0.0001, w_B = 0.009$

Maks poeng: 1

12 Learning rate

Kva type parameter er læringsraten?

Vel eitt alternativ

- Ein modellparameter
- Ein treningsparameter
- Ein testparameter
- Ein hyperparameter

13 Batch size

	Kva angir batch size?
	Vel eitt alternativ
	Talet på eigenskapar (features) som blir brukte i treninga.
	Talet på gonger modellen blir trena på heile datasettet.
	Talet på treningsdatapunkt som blir brukte per iterasjon av treninga.
	Talet på gonger modellen blir oppdatert per epoke.
	Maks poeng: 1
14	Epochs
	Viss du har eit treningsdatasett beståande av 10.000 datapunkt og bruker ein batch size på 500 kor mange iterasjonar vil det vera i éin epoke? Vel eitt alternativ
	ver entranternativ
	O 100
	O 20
	O 5
	O 50

¹⁵ Decision tree splits

Korleis bestemmer eit avgjerdstre kva eigenskap	(feature) det	skal dela på i	eit gitt node?
Vel eitt alternativ			

Det vel eigenskape	en med færrast	moglege verdia	ar for å	minimera	entropi.
Dot vo. o.gono.cop		mograga varan			O

- Det vel tilfeldig ein eigenskap frå dei tilgjengelege eigenskapane.
- Det vel eigenskapen som maksimalt reduserer uvisse i datasettet.
- Det vel alltid den første eigenskapen i datasettet.

Maks poeng: 1

¹⁶ Random forest

Kva er viktig for å laga ein god tilfeldig skog (random forest) modell basert på avgjerdstre? **Vel eitt alternativ**

- Avgjerdstrea er trena på same bootstrap-trekning frå treningsdataa for å oppnå ein modell med lågast mogleg varians.
- Avgjerdstrea er diverse, som betyr at dei bruker ulike delar av data og features, og uavhengige.
- Avgjerdstrea har ulike djupner, som til saman gir ein god balanse mellom over- og undertilpassing.
- Avgjerdstrea har i gjennomsnitt lært dei same mønstera frå dataa, som betyr at dei bruker eit representativt utval av data og features.

¹⁷ Gradient boosting

	Hvilket utsegn er rett i konteksten gradient boosting? Vel eitt alternativ							
	O Kvart etterfølgjande avgjerdstre blir trena til å minimera residualene frå det førre treet.							
	O Verdien av gradienten indikerer kor mange tre som skal leggjast til i modellen.							
	Alle avgjerdstrea blir samtidig trena for å finna den beste kombinasjonen av feature splits.							
	For å unngå å byggja ein for kompleks modell legg gradient boosting til eitt tre av gongen under treningsprosessen.							
		Maks poeng: 1						
18	Cro	oss validation and bootstrap						
	Kva	er hovudforskjellen i korleis data blir delte opp mellom kryssvalidering og bootstrapping?						
	Vel e	itt alternativ						
		Kryssvalidering bruker berre treningsdata, medan bootstrapping bruker berre testdata.						
	0	Kryssvalidering deler datasettet i ikkje-overlappande delsett, medan bootstrapping bruker tilfeldig sampling med tilbakelegging, som kan inkludera overlappande datapunkt.						
		Kryssvalidering blir brukt på store datasett, medan bootstrapping er basert på tilfeldig sampling med tilbakelegging, og derfor blir brukt på små datasett.						
		Kryssvalidering kan brukast for alle typar modellar, medan bootstrapping blir brukt for avgjerdstre og skogar.						

Kryssvalidering deler datasettet i overlappande delsett, medan bootstrapping delar i ikkje-overlappande delsett.

19 Backpropagation

Kva er hovudformålet med backpropagation i eit nevralt nettverk? Vel eitt alternativ
Å finna prediksjonen basert på input data i eit nevralt nettverk, også kjent som ein forward pass.
Å leggja til fleire lag i nettverket for å forbetra nøyaktigheita.
A justera vektene i nettverket for å minimera feilen mellom predikert og faktisk verdi.
Å initialisere vektene i nettverket tilfeldig.
Maks poeng: 1
Stochastic gradient descent
I kva tilfelle veit me at gradient descent vil finna eit globalt minimum?

Vel eitt alternativ

20

Monotone funksjonar

Nevrale nettverk

Lineær regresjon

Konvekse funksjonar

²¹ Anomaly detection

Kva	ı betyr det viss	ein modell 1	for anom	alideteksjon	gir mange	falske p	ositive?
Vel	eitt alternativ	<i>,</i>					

Modellen identifiserer mange normale datapunkter som anomaliar.
Modellen har høg accuracy, men låg recall.
Modellen klarer ikkje å identifisera alle anomaliane.

O Modellen er trena på for få anomaliar.

²² Categorisation of clustering methods

Kva kategori tilhøyrer k-means? Vel eitt alternativ	
 Sentroidebasert 	
 Tettleiksbasert 	
 Hierarkibasert 	
 Fordelingsbasert 	
Kva kategori tilhøyrer DBSCAN? Vel eitt alternativ	
 Fordelingsbasert 	
 Hierarkibasert 	
 Tettleiksbasert 	
 Sentroidebasert 	

²³ Isolation Forest

Kva blir Isolation Forest brukt til i konteksten av anomalideteksjon'	?
Vel eitt alternativ	

	D:	:	. . : 	. : -! +:£:.		
()	Dimens	IONSTEALIK	เรเกท เกเ	· IOPHILI	serina a	v outliers.
	Dilliciis	joriorcaar	cojori ioi	iaciitii	Jennig a	v Gathers.

- Å byggja lineære modellar for å separera normale data frå anomaliar.
- Å isolera datapunkt ved å dela opp dataa gjennom avgjerdstre.
- Klassifisering av data gjennom fleire avgjerdstre.

Maks poeng: 1

²⁴ PCA

Kva er fordelen ved å bruka PCA?

Vel eitt alternativ

- Hovudkomponentane bevarer informasjon om alle originale funksjonar i dataa.
- Hovudkomponentane reduserer variansen til datasettet til eit lågare tal dimensjonar for enklare visualisering.
- Hovudkomponentane er alltid korrelerte og fangar opp maksimal informasjon om variasjonar i dataa.
- Hovudkomponentane er ukorrelerte, og ved å bruka dei reduserer me dimensjonane til datasettet samtidig som mest mogleg varians blir behalden.

²⁵ PCA 2

	Kva er prinsipalkomponentane me finn når me gjer PCA? Vel eitt alternativ	
	O Dei representerer det sentrale punktet til dei opphavlege dataa.	
	O Dei representerer talet på features som blir behalde etter dimensjonsred	uksjon.
	O Dei representerer den lineære delen av kovariansen i datasettet.	
	O Dei er eigenvektorane til kovariansmatrisen til dataa.	
		Maks poeng: 1
26	t-SNE	
	Kva er vanleg bruk av t-SNE i maskinlæring? Vel eitt alternativ	
	t-SNE blir ofte brukt til å redusera dimensjonane i datasett for visualiserir	ng.
	○ t-SNE blir brukt til å klyngja datapunkt, basert på sannsyn for naboskap.	
	t-SNE blir hovudsakleg brukt til klassifisering.	
	t-SNE blir brukt for å finna ut kva høgdimensjonale datapunkt som følgje ein lågare dimensjon.	ein t-fordeling i
		Maks poeng: 1

²⁷ DBSCAN

		or ein av desse eigenskapane gjer DBSCAN særleg robust? itt alternativ		
		Den identifiserer outliers og prøver ikkje å putta desse i klyngjer.		
		Den kan bruka ulike hyperparametrar i ulike klyngjer.		
		Hyperparameteren som angir talet på klyngjer er valfri.		
	Om eit punkt blir identifisert som kjernepunkt er ikkje sensitivt for val av epsilon.			
		Maks poeng: 1		
28	KL-	divergence		
		olle speler Kullback-Leibler-divergens (KL-divergens) i t-SNE-algoritmen? itt alternativ		
	0	KL-divergens blir brukt til å måla forskjellen mellom sannsynsfordelinga i det høgdimensjonale rommet og den projiserte sannsynsfordelinga i det lågdimensjonale rommet.		
		KL-diversensen påverkar kor mange nabopunkt som blir tekne med i tilpassinga av den gaussiske fordelinga i det høgdimensjonale rommet, og t-fordelingen i det lågdimensjonale rommet.		
	\circ	KL-divergens blir brukt til å auka ytinga til t-SNE samanlikna med PCA.		
	0	KL-divergens blir brukt til å måla korrelasjonen mellom datapunkt i det høgdimensjonale rommet, og representasjonen av dataa i det lågdimensjonale rommet.		

²⁹ k-means

Når bør me bruka k-means?

Vel eitt alternati	V
--------------------	---

Når avstanden internt i klyngja er mindre enn avstandane mellom klyngjene.
Når features har ulike storleiksordenar.
Når klyngjene ikkje er lineært separerbart.
Når me ikkje har ein god hypotese om kor mange klyngjer som finst.

30 DBSCAN smiley

Sjå på figuren under. Dette er resultatet av ein DBSCAN-modell med dårleg val av parameter. Kva for eit dårleg parametersval har skjedd her?

Vel eitt alternativ

- For låg verdi av min_points.
- For høg verdi av min_points.
- For høg verdi av epsilon.
- For låg verdi av epsilon.

31 Policy

Kva er ein policy i	reinforcement l	learning?
---------------------	-----------------	-----------

Vel eitt alternativ

- Eit mål som agenten prøver å maksimera over tid.
- Ein funksjon som gir ein verdi for kvar tilstand-handling-par.
- Ein strategi som bestemmer kva handling agenten skal ta i ein gitt tilstand.
- Eit funksjonsestimat som representerer kvaliteten på ein action basert på den omgåande påskjønninga til agenten.

Maks poeng: 1

32 The Bellman equation

Bellman-likninga er

$$Q^{new}(S_t,A_t) \leftarrow (1-lpha) \cdot Q(S_t,A_t) + lpha \cdot (R_{t+1} + \gamma \max_A Q(S_{t+1},A))$$
. Kva medfører ein høg verdi av γ ?

Vel eitt alternativ

- Læringa av Q-verdiar er dominert av dei gamle Q-verdiane.
- Læringa av Q-verdiar er dominert av estimatet av framtidige tilstandar.
- Læringa av Q-verdiane blir svak for såkalla "catastrophic forgetting", der agenten gløymer Q-verdiar lært tidleg i treninga.
- Læringa av Q-verdiar er dominert av den umiddelbare rewarden frå environmentet.

33 Loss and reward

Kva er forholdet	t mellom tapet	(loss) unde	r treninga i	Q-learning	og reward	agenten	får frå
miljøet?							

Vel eitt alternativ

Reward kan ikkje auka utan at loss samtidig minkar.
Det er ikkje nødvendigvis ein samanheng mellom loss i treninga til agenten og reward agenten får frå miljøet.
Loss er det same som reward, med negativt forteikn.
Loss minkar så lenge reward er slik at Q-verdien blir oppdatert under læring.

Maks poeng: 1

34 LIME

Kva utsegn er korrekt om LIME?

Vel eitt alternativ

- LIME kan brukast til å minimera kompleksiteten til ein kva som helst maskinlæringsmodell, slik at denne kan tolkast direkte.
- LIME produserer globale feature importances for ein kva som helst maskinlæringsmodell.
- LIME tilpassar ein tolkbar modell i nabolaget rundt eit enkelt datapunkt.
- LIME blir ofte brukt til å erstatta nevrale nettverk med tolkberre modellar som avgjerdstre.

35 SHAP plot

Sjå på SHAP-plottet i figuren under. Kva feature påverkar modellprediksjonen mest?

Vel eitt alternativ

- Age
- Sex
- Pclass
- Embarked_S

Korleis påverkar det modellprediksjonen om feature Pclass har ein høg verdi? **Vel eitt alternativ**

- Det gjer at modellen predikerer lågt sannsyn for overleving.
- Det trekkjer modellprediksjonen ned samanlikna med gjennomsnittsprediksjonen.
- O Det driv modellprediksjonen opp samanlikna med gjennomsnittsprediksjonen.
- Det fører alltid til ein høg modellprediksjon.
- Det fortel oss at passasjerar med ein høg verdi av Pclass ofte har ein låg verdi av Sex.

36 Shapley values

Formelen for å berekna Shapley-verdien til en spiller i i eit spel med totalt N spelarar er $\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(N-|S|-1)!}{N!} (v(S \cup \{i\}) - v(S))$

Gitt eit spel med N=3 spelarar og dei følgjande verdiane for den karakteristiske funksjonen, kva er Shapley-verdiane til dei tre spelarane?

$$egin{aligned} v(1) &= 2 & v(2) &= 4 & v(3) &= 5 \ v(\{1,2\}) &= 3 & v(\{1,3\}) &= 3 & v(\{2,3\}) &= 2 \ v(\{1,2,3\}) &= 3 \end{aligned}$$

Vel eitt alternativ

$$\phi_1 = \frac{1}{2}, \phi_2 = 1, \phi_3 = \frac{3}{2}$$

$$\phi_1 = \frac{1}{2}, \phi_2 = \frac{3}{2}, \phi_3 = \frac{1}{2}$$

$$\phi_1 = \frac{1}{2}, \phi_2 = \frac{3}{2}, \phi_3 = 1$$

$$\phi_1 = \frac{1}{2}, \phi_2 = 1, \phi_3 = 2$$

37 Al Act

Kva utsegner er sanne om AI Act?

	Vel eitt eller fleire alternativ	
	Al Act vil regulera Al-system basert på samfunnsrisiko.	
	Al Act er verdas første Al-spesifikke regulering.	
	Al-system som medfører høg samfunnsrisiko vil bli forbode av Al Act.	
	Al Act deler Al-system inn i fleire kategoriar, der Al-system til bruk i helses ein eigen kategori.	sektoren har
		Maks poeng: 2
38	Benevolence	
	Kva betyr velgjørenhet som eit etisk prinsipp for AI? Vel eitt alternativ	
	AI-system skal operera utan feil.	
	Al skal ikkje framme kommersielle mål.	
	Al skal vera tilgjengeleg for alle.	
	AI-system skal framme menneskeleg velferd og gjera godt.	
		Maks poeng: 1

³⁹ Autonomy

Korleis kan eit Al-system bryta med det etiske prinsippet autonomi? **Vel eitt eller fleire alternativ**

Ved å alltid krevja menneskeleg godkjenning før det tek ei beslutning.
Ved å tvinga avgjerder på brukaren utan deira samtykke eller kontroll.
Ved å redusera effektiviteten i ein organisasjon.
Ved å manipulera brukarar utan at desse veit at dei blir påverka.
Ved å gi brukaren full kontroll over sine data.