Post-Lab Review, Etc

Josh Granek

RNA Quality?

• RIN: RNA Integrity Number

Ratio of 28S to 18S ribosomal RNA

Electropherogram

RNA Library Size Distribution

Assessment of RNA/DNA Quantity and Quality

- Advanced Analytical: Fragment Analyzer
- PerkinElmer: LabChip GX Touch
- Agilent: Bioanalyzer
- Agilent: TapeStation

Barcode Combinations

- Excitation Frequency
 - Red: A and C
 - Green: G and T
- Need both frequencies in each cycle for image registration

Barcode Combinations

GOOD																	
PRIMER	INDEX SEQUENCE								PRIMER INDEX SEQUENCE						E		
P1-A1	Т	Т	A	C	C	G	A	C	P41-D5	G	A	C	G	Т	C	A	т
P2-A2	A	G	T	G	A	C	C	Т	P42-D6	C	T	T	A	C	A	G	C
P3-A3	Т	C	G	G	A	Т	Т	C	P43-D7	Т	C	C	A	Т	Т	G	C
P4-A4	C	A	A	G	G	Т	A	C	P44-D8	A	G	C	G	A	G	A	Т
	/	✓	/	/	/	/	/	✓		✓	/	✓	/	/	/	/	/

BAD																	
PRIMER	R INDEX SEQUENCE PRIMER INDEX SEQUENCE																
P9-A9	C	G	C	A	A	C	Т	A	P56-E8	Т	A	Т	G	G	C	A	C
P10-A10	C	G	Т	A	Т	C	Т	C	P57-E9	C	Т	C	G	A	A	C	A
P11-A11	G	Т	A	C	A	C	C	Т	P58-E10	C	A	A	C	Т	C	C	A
P12-A12	C	G	G	C	A	Т	Т	A	P59-E11	G	Т	C	A	Т	C	G	T
	/	×	/	×	/	/	/	/		/	/	/	/	/	×	/	/

MiSeq, NextSeq, and More Seqs

	MiSeq	NextSeq	HiSeq 4000	NovaSeq 6000
Maximum Output	15 Gb	120 Gb	750 Gb	3000 Gb
Maximum Reads per Run	25 million	400 million	2.5 billion	10 billion
Maximum Read Length	2 × 300 bp	2 x 150 bp	2 × 150 bp	2 × 150 bp
Run Time	4-56 hours	15-29 hours	< 1–3.5 days	13-45 hours
Cost*	\$1,787	\$4,695	\$19,206	\$35,538
Cost/Mbp*	\$0.119	\$0.039	\$0.026	\$0.012

^{*} Duke Sequencing and Genomic Technologies Shared Resource, July 2018

Patterned Flow Cells

- ExAmp
- Machines
 - HiSeq X
 - HiSeq 3000/4000
 - NovaSeq 6000

4-Channel Chemistry

2-Channel Chemistry

Uracil DNA glycosylase and DNA lyase

Uracil DNA glycosylase: What

Remove Uracil base from DNA

Uracil DNA glycosylase: What

```
5'-CTGATCUGACTGATG-3'
```

3'-GACTAGACTGACTAC-5'


```
5'-CTGATC-GACTGATG-3'
```

3'-GACTAGACTGACTAC-5'

Uracil DNA glycosylase: What

DNA Lyase: What

Cleave DNA backbone at abasic site

DNA Lyase: What

```
5'-CTGATC-GACTGATG-3'
3'-GACTAGACTGACTAC-5'
```



```
5'-CTGATC GACTGATG-3'
3'-GACTAGACTGACTAC-5'
```

Comparing Technologies

	Method	Read length	Accu Reads per racy run		Max Output	Cost (\$/Mb)	Pros	Cons		
S	Sanger	400-900 bp	99.9%	I	900 bp	\$2400	Longer reads.	Expensive. Low Output		
ı	llumina	600 bp (300bp PE)	99.9%	20×10 ⁹	6000 Gb	\$0.01	High yield per base cost	Equipment expense. Short reads		
L	PacBio	>10kb ave. >40kb max	99%	5×10 ⁵	I0 Gb	\$0.08	Very long reads	Homopolymer errors. Moderate Output. Equipment expense.		
	Nanopore	>100 kb N50 >1Mb Max	92%	1×10 ⁶	5 Gb	\$0.10	Very long reads Portable Cheap Equipment	Homopolymer errors. Moderate Output.		

Why Long Reads?

- Structural Variation
 - Large Insertions or Deletions
 - Duplications
 - Translocations
- De Novo Genome Assembly
- Phasing

Short Reads

e of the U stablish J Union, est nited Stat to form a rder to fo e perfect ion, estab eople of t the Peopl

"Genome" Reference

Reference Based Mapping

We the People of the United States, in Order to form a more perfect Union, establish Justice, insur

e of the U stablish J Union, est nited Stat to form a rder to fo e perfect ion, estab eople of t the Peopl

Reference Based Mapping

We the People of the United States, in Order to form a more perfect Union, establish Justice, insur

```
the Peopl
eople of t
e of the U
nited Stat

rder to fo
to form a
e perfect
Union, est
ion, estab
stablish J
```

De Novo Assembly

Overlapping Random Fragments

```
rious disg
Age. "You
rinking Ag
uises of A
the portra
ugh the po
of every D
nking Age.
r various
, under va
```

Assemble Contigs

Age. "You rinking Ag nking Age.

rious disg r various , under va

the portra

uises of A

of every D

Assemble Contigs

rinking Age. "You

, under various disg

ugh the portra

uises of A

of every D

Assemble Contigs

rinking Age. "You

, under various disg

ugh the portra

uises of A

of every D

ed, under various disguises of Art, through the portraits of every Drinking Age. "You are a little

rious disg Age."You rinking Ag uises of A the portra ugh the po of every D nking Age. r various , under va Age."Yo rough the rinking Ag ed, under ugh the po ry Drinkin sguises of u are a li "You are , under va

```
rough the
ugh the po
ugh the po
the portra
```

```
ed, under
, under va
, under va
r various
rious disg
sguises of
uises of A
```

```
of every D
ry Drinkin
rinking Ag
rinking Ag
nking Age.
Age. "You
Age. "Yo
"You are
u are a li
```

rough the portra

ed, under various disguises of A

of every Drinking Age. "You are a li

rough the portra

ed, under various disguises of A

of every Drinking Age. "You are a li

ed, under various disguises of Art, through the portraits of every Drinking Age. "You are a little

Longer Reads

various disguises of Drinking Age. "You every Drinking Age. sguises of Art, thro ough the portraits o through the portrai raits of every Drink ery Drinking Age." er various disguises, under various disg

Longer Reads

```
, under various disg
er various disguises
various disguises of
sguises of Art, thro
through the portrai
ough the portraits o
raits of every Drink
every Drinking Age.
ery Drinking Age.
Drinking Age. "
```

Longer Reads

, under various disguises of Art, through the portraits of every Drinking Age. "You

ed, under various disguises of Art, through the portraits of every Drinking Age. "You are a little

Fragmentation

```
"You
Age.
Art,
Drinking
а
are
disguises
ed,
every
little
of
of
portraits
the
through
under
various
```

Problem Sequences

- Repeats
 - Transposons
 - Centromeres
- Homologs
- Duplications

De novo "Reference"

ed, under various disguises of Art, through the portraits of every Drinking Age. "You are a little

— A Tale of Two Cities

Single Molecule Technologies

DNA Sequencing Technologies (Abridged)

1st Generation	2nd Generation	3rd Generation
Chemical (Maxim-Gilbert)	Pyrosequencing (454)	Single molecule real time (PacBio)
Chain Termination (Sanger)	Chain Termination (Illumina)	Nanopore sequencing (Oxford Nanopore)
Pyrosequencing	Sequencing by ligation (SOLiD sequencing)	
	Ion semiconductor (Ion Torrent)	

Sequencing by Synthesis

1st Generation	2nd Generation	3rd Generation
Chemical (Maxim-Gilbert)	Pyrosequencing (454)	Single molecule real time (PacBio)
Chain Termination (Sanger)	Chain Termination (Illumina)	Nanopore sequencing (Oxford Nanopore)
Pyrosequencing	Sequencing by ligation (SOLiD sequencing)	
	Ion semiconductor (Ion Torrent)	

1st Generation	2nd Generation	3rd Generation
Chemical (Maxim-Gilbert)	Pyrosequencing (454)	Single molecule real time (PacBio)
Chain Termination (Sanger)	Chain Termination (Illumina)	Nanopore sequencing (Oxford Nanopore)
Pyrosequencing	Sequencing by ligation (SOLiD sequencing)	
	Ion semiconductor (Ion Torrent)	

Pacific Biosciences

1st Generation	2nd Generation	3rd Generation
Chemical (Maxim-Gilbert)	Pyrosequencing (454)	Single molecule real time (PacBio)
Chain Termination (Sanger)	Chain Termination (Illumina)	Nanopore sequencing (Oxford Nanopore)
Pyrosequencing	Sequencing by ligation (SOLiD sequencing)	
	Ion semiconductor (Ion Torrent)	

Oxford Nanopore

Sequencers

DNA-Seq

RNA-Seq

- I. Purify DNA
- 2. Fragment
- 3. Size Select
- 4. Adapter Ligation

- I. Purify RNA
- 2. Fragment
- 3. Size Select
- 4. Make DNA From RNA
- 5. Adapter Ligation