## **Reliability of Systems**

In this section, we discuss the system reliability in which the components are connected in different fashions.

## Series (nonredundant) System

Consider a system having a total of *n* components which are connected in series.



Let  $E_i$  denotes the event that the component i is functioning properly.

Let  $R_i(t)$  be the reliability of the i th component in the series, that is,

$$R_i(t) = P(E_i)$$
 = probability that  $E_i$  functions

Then the reliability of the system is the probability that components  $E_1, E_2, ..., E_n$  function properly is given by

$$\begin{split} R_s &= P(E_1 \cap E_2 \cap ... \cap E_n) \\ &= P(E_1)P(E_2)...P(E_n) \\ &= R_1(t)R_2(t)...R_n(t) \\ &\qquad \qquad \text{(Assuming that the components function independently)} \end{split}$$

#### Parallel (Redundant) System

Parallel configuration is one in which the components of the system are connected in parallel..

In parallel system, if all components fail, then the system fails.



## Consider two components

$$R_{p} = P(E_{1} \cup E_{2}) = P(E_{1}) + P(E_{2}) - P(E_{1} \cap E_{2})$$

$$= P(E_{1}) + P(E_{2}) - P(E_{1}) \cdot P(E_{2})$$

$$\text{(E1 and E2 are independent)}$$

$$= R_{1} + R_{2} - R_{1}R_{2}$$

$$= 1 - (1 - R_{1})(1 - R_{2})$$

Now, extending to n components, we have

$$R_p = 1 - (1 - R_1)(1 - R_2)...(1 - R_n)$$

#### **Parallel -Series Configuration**

A system in which m subsystems are connected in series where each subsystem has n components connected in parallel is said to be in parallel series configuration

Take m=3 and n=2



Now,

Reliability of first subsystem =  $1 - (1 - R_1)(1 - R_2)$ 

Reliability of second subsystem =  $1 - (1 - R_3)(1 - R_4)$ 

Reliability of third subsystem =  $1 - (1 - R_5)(1 - R_6)$ 

The system reliability

, 
$$R_S = (1 - (1 - R_1)(1 - R_2))(1 - (1 - R_3)(1 - R_4))(1 - (1 - R_5)(1 - R_6))$$

#### **Series-Parallel Configuration**

A system, in which m subsystems are connected in parallel where each subsystem has n components connected in series is said to be in series—parallel configuration.

Take m=3 and n=2



Now, the reliability of first subsystem =  $R_1R_2$ . the reliability of second subsystem =  $R_3R_4$ . the reliability of third subsystem =  $R_5R_6$ .

The reliability of the system
$$R_S = 1 - (1 - R_1 R_2)(1 - R_3 R_4)(1 - R_5 R_6)$$

**P1:** A system has 100 units in series, each one has reliability 0.98. What is the reliability of the system?

# **Solution:**

Since the each unit of the system has reliability 0,98,

$$R_i = 0.98, i = 1, ..., 100.$$

The reliability of the system

$$R_s(t) = \prod_{i=1}^{100} R_i = (0.98)^{100} = 0.1326$$

**P2:** Three lamps are connected in parallel to produce light in a hall. The reliabilities of the lamps are 0.92, 0.95 and 0.96. Find the reliability of the system. If the lamps are connected in series, calculate the reliability of the system.

**Solution:** Let  $R_s(t)$  be the reliability of the system.

For parallel system:

$$R_s(t) = 1 - \prod_{i=1}^{3} (1 - R_i)$$

$$= 1 - \left[ (1 - 0.92)(1 - 0.95)(1 - 0.96) \right]$$

$$= 0.9998$$

For series system:

$$R_s(t) = \prod_{i=1}^{3} R_i = (0.92)(0.95)(0.96) = 0.8390.$$

**P3:** Compute the reliability of the system for the connection given in the following figures (fig-i and fig-ii), if the reliability of A, B, C and D are 0.95, 0.99, 0.90 and 0.96 respectively.



Fig(i)



### **Solution:**

**(i)** 

$$R_1 = R$$
(first sub system)  
= 0.95×0.99×0.90×0.96  
= 0.81  
 $R_2 = R$ (second sub system)  
= 0.95×0.99×0.90×0.96  
= 0.81

Therefore,

$$R_{s}(t) = 1 - \prod_{i=1}^{2} (1 - R_{i})$$

$$= 1 - \left[ (1 - 0.81)(1 - 0.81) \right]$$

$$= 0.9639$$

$$R_1 = R(\text{first sub system})$$
  
 $= 1 - (1 - 0.95)^2 = 0.9975.$   
 $R_2 = R(\text{second sub system})$   
 $= 1 - (1 - 0.99)^2 = 0.9999.$   
 $R_3 = R(\text{third sub system})$   
 $= 1 - (1 - 0.90)^2 = 0.99.$   
 $R_4 = R(\text{fourth sub system})$   
 $= 1 - (1 - 0.96)^2 = 0.9984$ 

Therefore,

$$R_s(t) = R_1 R_2 R_3 R_4 = 0.9859$$

**Example 1** An electronic circuit consists of 5 silicon transistors, 3 silicon diodes, 10 composition resistors and 2 ceramic capacitors connected in series configuration. The hourly failure rate of each component is given below:

Silicon transistor :  $\lambda t = 4 \times 10^{-5}$ Silicon diode :  $\lambda_d = 3 \times 10^{-5}$ Composition resistor :  $\lambda_r = 2 \times 10^{-4}$ Ceramic capacitor :  $\lambda_c = 2 \times 10^{-4}$ 

Calculate the reliability of the circuit for 10 hours, when the components follow exponential distribution.

#### Solution

Since the components are connected in series, the system (circuit) reliability is given by

$$R_{s}(t) = R_{1}(t) \cdot R_{2}(t) \cdot R_{3}(t) \cdot R_{4}(t)$$

$$= e^{-\lambda_{1}t} \cdot e^{-\lambda_{2}t} \cdot e^{-\lambda_{3}t} \cdot e^{-\lambda_{4}t}$$

$$= e^{-(5\lambda_{t} + 3\lambda_{d} + 10\lambda_{r} + 2\lambda_{c})t}$$

$$R_s(10) = e^{-(20 \times 10^{-5} + 9 \times 10^{-5} + 20 \times 10^{-4} + 4 \times 10^{-4}) \times 10}$$

$$= e^{-(20 + 9 + 200 + 40) \times 10^{-4}}$$

$$= e^{-0.0269} = 0.9735.$$