

CAD Project II: Deep Learning

Kaouther Mouheb Rachika Elhassna Hamadache

MAIA Fall 2022-2023

Table of Contents

01

Proposal Analysis

Brief description of the proposed pipeline

02

Implementation

- Data preparation
- Training
- Challenge 1
- Challenge 2

03

Results

- Model validation
- Improvements
- Final pipelines

04

Conclusion

O1 Proposal Analysis

Proposed Project Pipeline

02

Implementation

2.1 Data Preparation

1. Data Pre-processing

Resize Center Crop Convert to Tensor Normalize

- Images are resized to the same size.
- 260x260 pixels.
- Images are centercropped to the same size.
- 256x256 pixels.
- Images are converted from PILImage to PyTorch's *Tensors*.
- Mean and standard deviation are computed from the train set.
- Z-score standardization is applied.

Preprocessing Example

Preprocess

2. Data Augmentation

Following the results presented in [1] the following pipeline was used for data augmentation:

Random Crop Random Flip Color Jitter

- [0.4 1.0] of the original area.
- [3/4 4/3] of the original aspect ratio.
- \bullet P = 0.7.
- 256x256 pixels.

- [0° 90°] of *rotation*.
- [0° 20°] of shearing.
- Scaling with [0.8 1.2] of the original area.
- P = 0.8.

- Flip vertically and/or horizontally.
- P = 0.9.

- [0.7 1.3] of the original *brightness*.
- [0.7 1.3] of the original *contrast*.
- [0.9 1.1] of the original saturation.
- [-0.05 0.05] of the original *hue*.
- P = 0.6.

Augmentation Examples

2.2 Training

Implementation details

Training Implementation Details

Framework

 PyTorch was used as a framework, with focus on TorchVision.

Metrics

- Train and validation losses, accuracies and/or kappa scores were monitored.
- Weights providing the best validation metric were saved.

Optimizer

 Adam optimizer was used with weight decay (10⁻⁸ ~10⁻⁶).

Learning Rate

 Small learning rate (10⁻⁴) with ReduceOnPlateau scheduling based on validation loss.

Transfer Learning

ImageNet weights used as initialization, without freezing any layers.

Early Stopping

 Training was set to stop after a certain number of epochs if the validation loss does not improve.

2.3 Challenge I

Binary Classification: Nevus Vs Others

Training Models

Model	Variant
ResNet	ResNet34ResNet50
ResNeXt	ResNeXt50
SwinTransformer	SwinTransformerT (Tiny)SwinTransformerB (Base)
EfficientNet	 EfficientNetB2 EfficientNetB3 EfficientNetB4 EfficientNetB5 EfficientNetB6

Training Details

Network Architectures	ResNet34ResNet50ResNeXt50SwinTransformerTEfficientNet B2, B3	SwinTransformerBEfficientNet B4 - B6		
Training batch size	32	4~16		
Validation batch size	64			
Learning rate scheduling patience	7			
Early stopping patience	15			
Criterion	Binary Cross-Entropy loss			

2.4 Challenge II

Multi-Class Classification: Melanoma Vs BCC Vs SCC

Training Strategies

1. Multi-Class Focal Loss

• We used the *multi-class focal loss* as an *objective function* to optimize the models as introduced in [2] which is given below:

$$\mathfrak{L}f(p_t) = -\alpha (1 - p_t)^{\gamma} \log(p_t)$$

- Where:
 - o p_t is the model's estimated *probabilities* vector.
 - o γ is the focusing parameter (set to 2).
 - o α is the *class weight* given by:

$$\alpha_c = \frac{N}{C \times n_c}$$
 \Rightarrow α_{mel} = 0.6244, α_{BCC} = 0.8500, α_{SCC} = 4.5053

Training Strategies

2. Multi-Class Cross Entropy Loss

We used the multi-class cross entropy loss in three different settings:

 $\mathcal{L}_{CE} = -log(p_t) \qquad \qquad \text{Original Data Split}$ Weighting $\mathcal{L}_{WCE} = -\alpha_t log(p_t) \quad \overset{\alpha_{\text{mel}} = 0.6244}{\alpha_{\text{BCC}} = 0.8500} \quad \qquad \text{Original Data Split}$ Sampling $\mathcal{L}_{CE} = -log(p_t) \quad \qquad \overset{\text{Balanced Data Split}}{\text{1694 samples/class}}$ (Sampling with replacement)

Training Details

Network Architectures	ResNet50DenseNet161EfficientNetB2SwinTransformer (Tiny)
Training batch size	16
Validation batch size	64
Learning rate scheduling patience	7~10
Early stopping patience	10~15

03 Results

3.1 Challenge I

Binary Classification: Nevus Vs Others

Single Models

Model	Variant	Loss	Accuracy	Kappa
DocNot	ResNet34	0.3161	0.9023	0.8044
ResNet	ResNet50	0.3476	0.9093	0.8186
ResNeXt	ResNeXt50	0.3037	0.9131	0.8260
SwinTransformer	Swin Transformer T	0.3034	0.9056	0.8113
	Swin Transformer B	0.3026	0.9188	0.8377

Single Models

Model	Variant	Loss	Accuracy	Kappa
	EfficientNet B2	0.3039	0.9120	0.8239
	EfficientNet B3	0.2841	0.9106	0.8213
EfficientNet	EfficientNet B3 (scratch)	0.3137	0.8722	0.7442
	EfficientNet B4	0.2998	0.9141	0.8281
	EfficientNet B5	0.3619	0.9051	0.8102
	EfficientNet B6	0.3032	0.8914	0.7828

Best Single Model: Swin Base

Training

False Positive Rate

Predicted label

Best Single Model: Swin Base

Example Predictions

Improvements: Ensembles (Soft)

Ensemble	Accuracy	Kappa
SwinB + EffiNetB4	0.9189	0.8377
SwinB + ResNeXt50	0.9262	0.8524
SwinB + EffiNetB4 + ResNeXt50	0.9231	0.8461
SwinB + ResNeXt50 + EffiNetB3	0.9273	0.8545
SwinB + ResNeXt50 + EffiNetB2	0.9257	0.8513
SwinB + ResNeXt50 + EffiNetB3 + EffiNetB2	0.9268	0.8534
SwinB + SwinT + ResNeXt50 + EffiNetB4 + EffiNetB3 + EffiNetB2	0.9265	0.8529
SwinB + ResNeXt50 + EffiNetB3 + ResNet50	0.9252	0.8503

Final Pipeline

Ensemble of Swin_B + ResNeXt50 + EfficientNet_B3 with soft voting (Average probability)

Validation

Final Pipeline

Example Predictions

3.2 Challenge II

Multi-Class Classification: Melanoma Vs BCC Vs SCC

Single Models

Model	Train Strategy	Loss	Accuracy	Kappa
	Focal Loss	0.1246	0.9244	0.8657
DocNeto	CE	0.1706	0.9567	0.9219
ResNet50	Weighted CE	0.1966	0.9472	0.9059
	CE + Sampling	0.2067	0.9543	0.9177
	Focal Loss	0.0982	0.9394	0.8926
DenseNet161	CE	0.1760	0.9543	0.9175
	Weighted CE	0.2027	0.9480	0.9065
	CE + Sampling	0.1813	0.9520	0.9135

Single Models

Model	Train Strategy	Loss	Accuracy	Kappa
	Focal Loss	0.0907	0.9323	0.8799
SwinTransformer /Tiny	CE	0.1458	0.9669	0.9406
SwinTransformer (Tiny)	Weighted CE	0.1907	0.9528	0.9153
	CE + Sampling	0.1579	0.9622	0.9320
EfficientNet (B2)	Focal Loss	0.0969	0.9504	0.9112
	CE	0.1706	0.9496	0.9097
	Weighted CE	0.2033	0.9512	0.9131
	CE + Sampling	0.1706	0.9496	0.9097

Improvements: SwinTransformer

Modification	Loss	Accuracy	Kappa
Baseline (Previous best model)	0.1458	0.9669	0.9406
Swin_S	0.1704	0.9685	0.9431
Swin_S_V2	0.1313	0.9709	0.9476
Swin_B_V2	0.1281	0.9740	0.9533
Swin_B_V2 + weight decay 10 ⁻⁶	0.1700	0.9598	0.9279
Swin_B_V2 + weight decay 10 ⁻⁹	0.1556	0.9661	0.9390
Swin_B_V2, 5 LR 15 ES patience	0.1583	0.9606	0.9290
Test Time Augmentation	-	0.9732	0.9518

Best Single Model: Swin Base V2

Training

False Positive Rate

Best Single Model: Swin Base V2

Example Predictions

Improvements: Ensembles (Soft)

Models	Accuracy	Kappa
Swin_S + Swin_S_V2 + Swin_B_V2 + Swin_T	0.9764	0.9575
Swin_S + Swin_S_V2 + Swin_B_V2	0.9780	0.9603
Swin_S_V2 + Swin_B_V2	0.9756	0.9561
Swin_S_V2 + Swin_B_V2 + EfficientNet_B2	0.9787	0.9618
Swin_S + Swin_S_V2 + Swin_B_V2 + EfficientNet_B2	0.9772	0.9589
Swin_S_V2 + Swin_B_V2 + ResNet50	0.9764	0.9575
win_S + Swin_S_V2 + Swin_B_V2 + ResNet50	0.9780	0.9603

Final Pipeline

Ensemble of Swin_S_V2 + Swin_B_V2 + EfficientNet_B2 with soft voting (Average probability)

Validation

Final Pipeline

Example Predictions

04

Conclusion

Conclusion

- Deep learning outperformed classical approaches in both challenges.
- Fine-tuning the hyperparameters of training models is important and challenging.
- Transfer learning is very useful in improving the results of Deep Learning models even if the dataset is different.
- Deep Learning is robust against class-imbalance but more improvement could be applied.
- Transformers perform very well in Computer Vision and give comparable results to Convolutional Networks.

Resources

[1] F. Perez, C. Vasconcelos, S. Avila, and E. Valle, "Data augmentation for skin lesion analysis", in Or 2.0 context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis (Springer, 2018), pp. 303–311.

[2] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P.Doll ár, "Focal loss for dense object detection", in Proceedings of the ieee international conference on computer vision (2017), pp. 2980–2988.

Thank You!