Домашнее задание от 7-ого дня карантина

Задача 13.8. В пространстве l_2 положим $f_n(x) = x_n$. Доказать, что f_n *-слабо сходится к 0Верно ли, что $f_n \stackrel{\|\cdot\|}{\to} 0$?

Решение: *-слабая сходимость вытекает из того, что $\forall x \in l_2 \quad f_n(x) = x_n \to 0$ (так как $\sum_{n=1}^{+\infty} x_n^2 < \infty$). Но, поскольку $|f_n(x)| = |x_n| \leqslant \|x\|$, $|f_n(e_n)| = 1$, норма каждого функционала $\|f_n(\cdot)\| = 1 \nrightarrow 0$, и последовательность не является сильно сходящейся.

Задача 13.9. В пространстве $L_2[-1,1]$ заданы $f_n(x) = \int_{-1}^1 x(t) \cos(\pi nt) dt$.

- (a) Доказать, что f_n является линейным ограниченным функционалом и найти $||f_n||$.
- (b) Доказать, что f_n *-слабо сходится к нулю.
- (c) Верно ли, что $f_n \stackrel{\|\cdot\|}{\to} 0$?

Решение:

(а) По теореме Рисса любой линейный непрерывный функционал в $L_2[-1,1]$ имеет вид $f(x)=\langle \tilde{f},x\rangle,\quad \tilde{f}\in L_2[-1,1].$ Для заданного функционала $\tilde{f_n}=\cos(\pi nt),$ и его норма равна

$$||f_n(\cdot)|| = ||\tilde{f}_n(\cdot)|| = \sqrt{\int_{-1}^{1} \cos^2(\pi nt) dt} = 1.$$

- (b) Поскольку система $\{\cos(\pi nt),\ n\in\mathbb{N}\}$ является ортонормированной, $\langle\cos(\pi nt),x\rangle_{L_2}=f_n(x)\underset{n\to\infty}{\to}0\quad \forall x\in L_2[-1,1]$ в силу неравенства Бесселя, что и является *-слабой сходимостью к нулю по определению.
- (c) Неверно, так как $\forall n \in \mathbb{N} \quad ||f_n(\cdot)|| = 1 \rightarrow 0.$

Задача 13.10. В пространстве $C^1[-1,1]$ заданы функционалы

$$f_{\epsilon}(x) = \frac{1}{2\epsilon} [x(\epsilon) - x(-\epsilon)], \quad f_0(x) = x'(0), \quad |\epsilon| < 1.$$

- (a) Доказать, что $f_{\epsilon},\ f_0$ непрерывные линейные функционалы и найти их нормы.
- (b) Доказать, что f_{ϵ} *-слабо сходится к f_0 при $\epsilon \to 0$.
- (c) Верно ли, что $f_n \stackrel{\|\cdot\|}{\to} 0$ при $\epsilon \to 0$?

Решение:

(а) $|f_0(x)|=|x'(0)|\leqslant \|x(\cdot)\|_{C^1}$, поэтому функционал ограничен, и $\|f_0(\cdot)\|\leqslant 1$. Покажем, что эта величина достигается. Введем вспомогательную функцию

$$SI(t) = \begin{cases} -1, & x < -\frac{\pi}{2}, \\ sin(x), & x \in [-\frac{\pi}{2}, \frac{\pi}{2}], \\ 1, & x > \frac{\pi}{2}. \end{cases}$$

Рассмотрим последовательность

$$x_n(t) = \frac{1}{2n} \operatorname{SI}(2nx), \quad ||x_n(\cdot)||_{C^1} = ||x_n(\cdot)||_0 + ||x_n'(\cdot)||_0 = \frac{1}{n} + 1,$$

Рис. 1: График $x_n(t)$

$$\frac{|f_0(x_n)|}{\|x_n(\cdot)\|} = \frac{n}{n+1} \underset{n \to \infty}{\to} 1 \Rightarrow \|f_0(\cdot)\| = 1.$$

Докажем ограниченность $f_{\epsilon}(\cdot)$:

$$|f_{\epsilon}(x)| = \frac{\epsilon}{2\epsilon(1+\epsilon)}[x(\epsilon) - x(-\epsilon)] + \frac{1}{2\epsilon(1+\epsilon)}[x(\epsilon) - x(-\epsilon)].$$

Оценивая первое слагаемое нормами в C[-1,1], а второе раскладывая по теореме Лагранжа, получим

$$|f_{\epsilon}(x)| = \frac{\|x(\cdot)\|_0}{1+\epsilon} + \frac{x'(\xi)}{1+\epsilon} \leqslant \frac{1}{1+\epsilon} \|x(\cdot)\|_{C^1},$$

откуда следует, что $f_{\epsilon}(\cdot)$ ограничен, и его норма не провосходит $\frac{1}{1+\epsilon}$. Оценка достигается на функции

$$x^*(t) = \begin{cases} -\epsilon, & t < -\epsilon, \\ t, & t \in [-\epsilon, \epsilon] \\ \epsilon, & t > \epsilon, \end{cases}$$

поскольку $||x^*(\cdot)|| = \epsilon + 1$, и $f_{\epsilon}(x^*) = 1$, однако эта функция не является непрерывно дифференцирумой в точках $-\epsilon$ и ϵ . Построим последовательность функций со «скругленными углами», сходящуюся к $x^*(\cdot)$:

$$x_n(t) = x^*(t) + \frac{1}{n} \operatorname{SI}^+(n(t-\epsilon)) + \frac{1}{n} \operatorname{SI}^-(n(t+\epsilon)),$$

где $\mathrm{SI}^+(\cdot)$ и $\mathrm{SI}^-(\cdot)$ — положительная и отрицательная срезки.

Рис. 2: График $x_n(t)$

Функции $x_n(\cdot)\in C^1[-1,1],$ и $\|x_n(\cdot)\|_{C^1}\to \|x^*(\cdot)\|_{C^1}$, $f_\epsilon(x_n)=1,$ что доказывает

$$||f_{\epsilon}(\cdot)|| = \frac{1}{1+\epsilon}.$$

- (b) Следует из определения производной.
- (c) Докажем отсутствие сильной сходимости, ограничив снизу $\|(f_\epsilon-f_0)(\cdot)\|$. Для этого рассмотрим функцию $x(t)=\begin{cases} \mathrm{SI}(\frac{\pi t}{\epsilon}-\frac{\pi}{2})+1, & t\geqslant 0,\\ \mathrm{SI}(\frac{\pi t}{\epsilon}+\frac{\pi}{2})-1, & t<0. \end{cases}$

Рис. 3: График x(t)

Заметим, что

$$x'(0) = 0, \quad f_{\epsilon}(x) = \frac{2}{\epsilon}, \quad ||x(\cdot)||_{C^{1}} = 2 + \frac{\pi}{\epsilon}.$$

Тогда

$$\frac{|f_{\epsilon}(x) - f_0(x)|}{\|x(\cdot)\|} = \frac{2}{\pi + 2\epsilon} > \frac{2}{\pi + 2} \quad \forall \epsilon \in (0, 1),$$

откуда следует, что $\|(f_{\epsilon}-f_0)(\cdot)\| \nrightarrow 0.$