Lecture 2: Tilting

October 5, 2018

Let p be a prime number, which we regard as fixed throughout this lecture. In Lecture 1, we defined the $tilt\ K^{\flat}$ of an algebraically closed completely valued field K of residue characteristic p. In this lecture, we review the tilting construction in more detail, working in the more general setting of perfectoid fields.

Definition 1. A perfectoid field is a field K equipped with a nonarchimedean absolute value $|\cdot|_K : K \to \mathbf{R}_{\geq 0}$ satisfying the following axioms:

- (A1) The residue field $k = \mathcal{O}_K / \mathfrak{m}_K$ has characteristic p. Equivalently, the prime number p belongs to the maximal ideal \mathfrak{m}_K , so that $|p|_K < 1$.
- (A2) The field K is complete with respect to the absolute value $|\cdot|_K$.
- (A3) The Frobenius map $\varphi: \mathfrak{O}_K/p \mathfrak{O}_K \to \mathfrak{O}_K/p \mathfrak{O}_K$ is surjective. That is, for every element $x \in \mathfrak{O}_K$, we can write $x = y^p + pz$ for some $y, z \in \mathfrak{O}_K$.
- (A4) The maximal ideal \mathfrak{m}_K is not generated by p. In other words, there exists some element $x \in K$ satisfying $|p|_K < |x|_K < 1$.

Remark 2. In the situation of Definition 1, choose $x \in K$ satisfying $|p|_K < |x|_K < 1$. Then $x \in \mathcal{O}_K$, so we can write $x = y^p + pz$ for some $y, z \in \mathcal{O}_K$. Since $|pz|_K \le |p|_K < |x|_K$, we must have $|x|_K = |y^p|_K = |y|_K^p$. In particular, we have $|x|_K < |y|_K < 1$, so that $y \in \mathfrak{m}_K \setminus x \mathcal{O}_K$. It follows that the maximal ideal \mathfrak{m}_K is not principal: that is, the valuation ring \mathcal{O}_K is not a discrete valuation ring.

Remark 3. In the situation of Definition 1, suppose that K is characteristic p. In this case, axiom (A1) is automatic, axiom (A3) says that the field K is perfect (that is, every element of K has a pth root), and axiom (A4) says that the absolute value $|\cdot|_K$ is nontrivial. In other words, a perfectoid field of characteristic p is just a completely valued perfect field of characteristic p.

Example 4. Let K be a completely valued field of residue characteristic p. Suppose that every element $x \in K$ has a pth root (this condition is satisfied, for example, if K is algebraically closed). Then axioms (A3) and (A4) are satisfied, so K is a perfectoid field.

Example 5. For each n > 0, let $\mathbf{Z}[\zeta_{p^n}]$ denote ring obtained from \mathbf{Z} by adjoining a primitive p^n th root of unity, given by the quotient $\mathbf{Z}[x]/(1+x^{p^{n-1}}+x^{2p^{n-1}}+\cdots+x^{(p-1)p^{n-1}})$; equivalently $\mathbf{Z}[\zeta_{p^n}]$ can be described as the ring of integers in the number field $\mathbf{Q}(\zeta_{p^n})$.

Let $\mathbf{Z}_p^{\text{cyc}}$ denote the *p*-adic completion of the union $\bigcup_{n>0} \mathbf{Z}[\zeta_{p^n}]$ and set $\mathbf{Q}_p^{\text{cyc}} = \mathbf{Z}_p^{\text{cyc}}[1/p]$. Then $K = \mathbf{Q}_p^{\text{cyc}}$ is a perfectoid field with ring of integers $\mathfrak{O}_K = \mathbf{Z}_p^{\text{cyc}}$. Axiom (A3) follows from the observation that the image of the Frobenius map

$$\varphi: \mathbf{Z}_p^{\operatorname{cyc}}/p\mathbf{Z}_p^{\operatorname{cyc}} \to \mathbf{Z}_p^{\operatorname{cyc}}/p\mathbf{Z}_p^{\operatorname{cyc}}$$

is a subgroup of $\mathbf{Z}_p^{\text{cyc}}/p\mathbf{Z}_p^{\text{cyc}} \simeq \bigcup_{n>0} \mathbf{F}_p[\zeta_{p^n}]$ which contains each of the roots of unity ζ_{p^n} , by virtue of the equation $\zeta_{p^n} = (\zeta_{p^{n+1}})^p$.

Note that the pth power map $\mathbf{Q}_p^{\text{cyc}} \to \mathbf{Q}_p^{\text{cyc}}$ is not surjective: for example, there is no element $x \in \mathbf{Q}_p^{\text{cyc}}$ satisfying $x^p = p$.

As in the previous lecture, we let K^{\flat} denote the inverse limit of the system

$$\cdots \to K \xrightarrow{x \mapsto x^p} K \xrightarrow{x \mapsto x^p} K,$$

whose elements can be identified with sequences $\vec{x} = \{x_0, x_1, \ldots \in K : x_n = x_{n+1}^p\}$. We regard K^{\flat} as a monoid with respect to the obvious multiplication

$$\{x_n\}_{n\geq 0} \cdot \{y_n\}_{n\geq 0} = \{x_n \cdot y_n\}_{n\geq 0}.$$

When K is a perfectoid field, we can equip K^{\flat} with a compatible addition law. To prove this, it is convenient to first work with the subset $\mathcal{O}_K^{\flat} \subseteq K^{\flat}$ consisting of those sequences $\{x_n\}_{n\geq 0}$ where each x_n belongs to \mathcal{O}_K (note that if this condition is satisfied for any integer $n\geq 0$, then it is satisfied for all integers $n\geq 0$).

Proposition 6. Let K be a completely valued field of residue characteristic p. Then canonical map $\mathfrak{O}_K \to \mathfrak{O}_K/p\,\mathfrak{O}_K$ induces a bijection

$$\mathfrak{O}_{K}^{\flat} \to \varprojlim (\cdots \to \mathfrak{O}_{K} / p \, \mathfrak{O}_{K} \xrightarrow{x \mapsto x^{p}} \mathfrak{O}_{K} / p \, \mathfrak{O}_{K})$$

Proof. Let us assume that K has characteristic zero (in characteristic p, there is nothing to prove). Our assumption that K is complete implies that \mathcal{O}_K can be realized as the inverse limit $\varprojlim_n \mathcal{O}_K/p^n \mathcal{O}_K$. For each $n \geq 1$, let Z(n) denote the limit of the inverse system of sets

$$\cdots \to \mathfrak{O}_K/p^n \, \mathfrak{O}_K \xrightarrow{x \mapsto x^p} \mathfrak{O}_K/p^n \, \mathfrak{O}_K \xrightarrow{x \mapsto x^p} \mathfrak{O}_K/p^n \, \mathfrak{O}_K \xrightarrow{x \mapsto x^p} \mathfrak{O}_K/p^n \, \mathfrak{O}_K.$$

Then \mathcal{O}_K^{\flat} is the inverse limit $\varprojlim_n Z(n)$, and we wish to show that the projection map $\mathcal{O}_K^{\flat} \to Z(1)$ is a bijection. For this, it will suffice to show that each of the transition maps $Z(n) \to Z(n-1)$ is a bijection. In other words, it will suffice to show that the vertical maps in the diagram

$$\cdots \longrightarrow \mathfrak{O}_{K}/p^{n} \mathfrak{O}_{K} \xrightarrow{(\bullet)^{p}} \mathfrak{O}_{K}/p^{n} \mathfrak{O}_{K} \xrightarrow{(\bullet)^{p}} \mathfrak{O}_{K}/p^{n} \mathfrak{O}_{K}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

induce an isomorphism after taking the inverse limit in the horizontal direction. For this, we note the existence (and uniqueness) of dotted arrows rendering the diagram commutative: this comes from the elementary observation that for $x, y \in \mathcal{O}_K$, we have

$$(x \equiv y \pmod{p^{n-1}}) \Rightarrow (x^p \equiv y^p \pmod{p^n}).$$

Corollary 7. Let K be a completely valued field of residue characteristic p. Then we can equip \mathfrak{O}_K^{\flat} with the structure of a commutative ring, where the multiplication is defined pointwise and the addition is uniquely determined by the requirement that

$${x_n}_{n\geq 0} + {y_n}_{n\geq 0} = {z_n}_{n\geq 0} \Rightarrow x_n + y_n \equiv z_n \pmod{p}.$$

Remark 8. In the situation of Corollary 7, we can describe the addition law on \mathcal{O}_K^{\flat} more explicitly. Suppose we are given elements $\{x_n\}_{n\geq 0}$ and $\{y_n\}_{n\geq 0}$ in \mathcal{O}_K^{\flat} . Write $\{x_n\}_{n\geq 0}+\{y_n\}_{n\geq 0}=\{z_n\}_{n\geq 0}$, so that we have $x_m+y_m\equiv z_m\pmod p$ for each $n\geq 0$. Writing $z_m=x_m+y_m+pw$ for some $w\in \mathcal{O}_K$, we obtain

$$z_{0} = z_{m}^{p^{m}}$$

$$= (x_{m} + y_{m} + pw)^{p^{m}}$$

$$= \sum_{i=0}^{p^{m}} {p^{m} \choose i} (pw)^{i} (x_{m} + y_{m})^{p^{m} - i}$$

$$\equiv (x_{m} + y_{m})^{p^{m}} \pmod{p^{m}}.$$

It follows that z_0 is given concretely as the limit $\lim_{m\to\infty} (x_m + y_m)^{p^m}$. More generally, each z_n is given concretely as $\lim_{m\to\infty} (x_{n+m} + y_{n+m})^{p^m}$.

Note that, to prove Proposition 6, we do not need to assume that K is a perfectoid field: it is enough to assume axioms (A1) and (A2) of Definition 1. However, at this level of generality, the tilt K^{\flat} might be "too small."

Exercise 9. Let $K = \mathbf{Q}_p$ be the field of p-adic rational numbers, equipped with the usual p-adic absolute value. Show that $K^{\flat} = \mathcal{O}_K^{\flat}$ is isomorphic to \mathbf{F}_p .

Our next goal is to show that, when K is a perfectoid field, the tilt K^{\flat} is very large (Proposition 13).

Notation 10. Let K be a completely valued field of residue characteristic p and let $x = \{x_n\}_{n\geq 0}$ be an element of K^{\flat} . We set $x^{\sharp} = x_0 \in K$. The construction $x \mapsto x^{\sharp}$ then determines a multiplicative map $\sharp : K^{\flat} \to K$. For each $x \in K^{\flat}$, we define $|x|_{K^{\flat}} = |x^{\sharp}|_{K}$.

Example 11. Suppose that K is algebraically closed (or, more generally, that every element of K admits a pth root). Then the map $x \mapsto x^{\sharp}$ determines a surjection $K^{\flat} \to K$,

Example 12. Suppose that K is a perfect field of characteristic p. Then the map $\sharp: K^{\flat} \to K$ is bijective.

Proposition 13. Let K be a perfectoid field. Then:

- (1) For every element $x \in \mathcal{O}_K$, there exists an element $x' \in \mathcal{O}_K^{\flat}$ satisfying $x \equiv x'^{\sharp} \pmod{p}$.
- (2) For every element $y \in K$, there exists an element $y' \in K^{\flat}$ satisfying $|y|_K = |y'|_{K^{\flat}}$.

Proof. Assertion (1) follows from Proposition 6 together with the observation that, if K satisfies axiom (A3), then the transition maps in the diagram

$$\cdots \to \mathfrak{O}_K / p \, \mathfrak{O}_K \xrightarrow{x \mapsto x^p} \mathfrak{O}_K / p \, \mathfrak{O}_K \xrightarrow{x \mapsto x^p} \mathfrak{O}_K / p \, \mathfrak{O}_K$$

are surjective.

To prove (2), we may assume without loss of generality we may assume that $y \neq 0$. Using axiom (A4) of Definition 1, we can choose an element $x \in K$ with $|p|_K < |x|_K < 1$. Replacing x by an element which is congruent modulo p, we can assume that $x = x'^{\sharp}$ for some $x' \in K^{\flat}$ (by virtue of (1)). We are therefore free to modify y by multiplying it by a suitable power of x, and can therefore reduce to the case where $|x|_K \leq |y|_K < 1$. In this case, we have $|p|_K < |y|_K < 1$. Using part (1) again, we can choose $y' \in K^{\flat}$ with $y'^{\sharp} \equiv y \pmod{p}$, so that $|y|_K = |y'|_{K^{\flat}}$.

Exercise 14. Show that the converse of Proposition 13 is also true: if K is a completely valued field of residue characteristic p, then assertion (1) of Proposition 13 implies that K satisfies axiom (A3) of Definition 1, and assertion (2) of Proposition 13 implies that K satisfies axiom (A4) of Definition 1. In other words, the axioms for a perfectoid field are exactly what we need to guarantee that the tilt K^{\flat} is "sufficiently large."

Using Proposition 13, we can choose an element π in K^{\flat} such that $0 < |\pi|_{K^{\flat}} < 1$. For each $n \in \mathbf{Z}$, we have

$$\pi^{-n} \, \mathcal{O}_K^{\flat} = \{ x \in K^{\flat} : |x|_{K^{\flat}} \le |\pi|_{K^{\flat}}^{-n} \}$$

It follows that, as a set, we can identify K^{\flat} with the direct limit

$$\mathcal{O}_K^{\flat} \xrightarrow{\pi} \mathcal{O}_K^{\flat} \xrightarrow{\pi} \mathcal{O}_K^{\flat} \xrightarrow{\cdots},$$

where the transition maps are given by multiplication by π . This proves the following:

Proposition 15. Let K be a perfectoid field. Then the inclusion $\mathcal{O}_K^{\flat} \hookrightarrow K^{\flat}$ extends uniquely to a multiplicative bijection $\mathcal{O}_K^{\flat}[\pi^{-1}] \simeq K^{\flat}$. Consequently, there is a unique ring structure on K^{\flat} which is compatible with its multiplication and which coincides, on \mathcal{O}_K^{\flat} , with the ring structure of Corollary 7.

Exercise 16. Show that the addition law on K^{\flat} is given in general by the formula

$$\{x_n\}_{n\geq 0} + \{y_n\}_{n\geq 0} = \{\lim_{m\to\infty} (x_{m+n} + y_{m+n})^{p^m}\}_{n\geq 0}$$

Theorem 17. Let K be a perfectoid field. Then K^{\flat} , with the ring structure of Proposition 15 and the map $|\cdot|_{K^{\flat}}: K^{\flat} \to \mathbf{R}_{>0}$, is a perfectoid field of characteristic p.

Proof. Note that if $\{x_n\}_{n\geq 0}$ is nonzero element of K^{\flat} , then each x_n is a nonzero element of K; it follows that $\{x_n^{-1}\}_{n\geq 0}$ is also an element of K^{\flat} which is a multiplicative inverse for $\{x_n\}_{n\geq 0}$. This proves that K^{\flat} is a field. Proposition 6 realizes \mathcal{O}_K^{\flat} as an inverse limit of copies of $\mathcal{O}_K/p\mathcal{O}_K$ (with transition maps given by the Frobenius). Since p vanishes in $\mathcal{O}_K/p\mathcal{O}_K$, it vanishes in \mathcal{O}_K^{\flat} and therefore also in K^{\flat} : that is, K^{\flat} is a field of characteristic p. We claim that $|\cdot|_{K^{\flat}}$ is a non-archimedean absolute value on K^{\flat} . The identities

$$|0|_{K^{\flat}} = 0$$
 $|1|_{K^{\flat}} = 1$ $|x \cdot y|_{K^{\flat}} = |x|_{K^{\flat}} \cdot |y|_{K^{\flat}}$

are immediate from the definition. It will therefore suffice to show that for $x = \{x_n\}_{n \ge 0}$ and $y = \{y_n\}_{n \ge 0} \in K^{\flat}$, we have

$$|x+y|_{K^{\flat}} \leq \max(|x|_{K^{\flat}}, |y|_{K^{\flat}}).$$

Using the formula of Exercise 16, we are reduced to proving that

$$|(x_m + y_m)^{p^m}|_K \le \max(|x_m|_K^{p^m}, |y_m|_K^{p^m}),$$

which follows (after extracting p^m th roots) from the analogous fact for the absolute value $|\cdot|_K$.

The field K^{\flat} is perfect by construction: every element $(x_0, x_1, x_2, \ldots) \in K^{\flat}$ has a unique pth root, given by the shifted sequence $(x_1, x_2, x_3, \ldots) \in K^{\flat}$. Moreover, the absolute value on K^{\flat} is nontrivial because it takes the same values as the absolute value on K (Proposition 13). We will complete the proof by showing that K^{\flat} is complete. Let us assume that K has characteristic zero (if K has characteristic p, then the map $\sharp: K^{\flat} \to K$ is an isomorphism of valued fields and there is nothing to prove). Using Proposition 13, we can choose an element $\pi \in K^{\flat}$ satisfying $|\pi|_{K^{\flat}} = |p|_{K}$. We wish to show that the ring \mathcal{O}_{K}^{\flat} is π -adically complete: that is, that it can be realized as the inverse limit of the system

$$\cdots \to \mathfrak{O}_K^{\flat} \mathop{/} (\pi^{p^3}) \to \mathfrak{O}_K^{\flat} \mathop{/} (\pi^{p^2}) \to \mathfrak{O}_K^{\flat} \mathop{/} (\pi^p) \to \mathfrak{O}_K^{\flat} \mathop{/} (\pi).$$

For each $m \geq 0$, the map of sets

$$\mathcal{O}_K^{\flat} \to \mathcal{O}_K \qquad (x = \{x_n\}_{n \ge 0}) \mapsto (x_m = (x^{1/p^m})^{\sharp})$$

induces a ring homomorphism $\mathcal{O}_K^{\flat} \to \mathcal{O}_K/p\,\mathcal{O}_K$ which annihilates π^{p^m} , and therefore factors through a map $u_m: \mathcal{O}_K^{\flat}/(\pi^{p^m}) \to \mathcal{O}_K/p\,\mathcal{O}_K$. These maps fit into a commutative diagram

$$\cdots \longrightarrow \mathcal{O}_{K}^{\flat} / (\pi^{p^{2}}) \longrightarrow \mathcal{O}_{K}^{\flat} / (\pi^{p}) \longrightarrow \mathcal{O}_{K}^{\flat} / (\pi)$$

$$\downarrow^{u_{2}} \qquad \qquad \downarrow^{u_{1}} \qquad \qquad \downarrow^{u_{0}}$$

$$\cdots \longrightarrow \mathcal{O}_{K} / p \mathcal{O}_{K} \xrightarrow{\varphi} \mathcal{O}_{K} / p \mathcal{O}_{K} \xrightarrow{\varphi} \mathcal{O}_{K} / p \mathcal{O}_{K}$$

where the inverse limit of the lower diagram agrees with \mathcal{O}_K^{\flat} by virtue of Proposition 6. It will therefore suffice to show that each of the maps u_m is an isomorphism. This reduces immediately to the case m=0, where it is a special case of Lemma 18 below.

Lemma 18. Let K be a perfectoid field and let $\pi \in K^{\flat}$ be a nonzero element satisfying $|p|_K \leq |\pi|_{K^{\flat}} < 1$. Then the map $\sharp : K^{\flat} \to K$ induces an isomorphism $\mathfrak{O}_K^{\flat}/(\pi) \to \mathfrak{O}_K/(\pi^{\sharp})$.

Proof. Surjectivity follows from Proposition 13. To prove injectivity, we note that if $x \in \mathcal{O}_K^{\flat}$ has the property that $x^{\sharp} \equiv 0 \pmod{\pi^{\sharp}}$, then $|x|_{K^{\flat}} = |x^{\sharp}|_K \leq |\pi^{\sharp}|_K = |\pi|_{K^{\flat}}$ so that x is divisibly by π in \mathcal{O}_K^{\flat} .