Datagram Congestion Control Protocol (DCCP)

Overview

- Motivation
- Connections
- Unreliable datagram transfer
- Modular congestion control
- Miscellaneous issues

DCCP: Which Layer?

Streaming Media

- •What streaming media needs?
 - Timeliness of data
- •What streaming media doesn't need?
 - Retransmissions of lost/expired packets
 - Annoying "rebuffering..." HOL blocking

Streaming Media Over TCP

Streaming Media Over UDP

Streaming Media with SCTP

- Multi-streams over a single association
- Uses TCP-like congestion control
- Retransmission
- Partial Reliability: require at least 1 RTT

Other target applications

Internet Telephony

- Constant-packet-rate sources
- Change data rate by adjusting packet size
- Extremely sensitive to delay
- Demands a slower congestion response
- Interactive games
 - Can quickly make use of available bandwidth
 - Prefers TCP-like sawtooth congestion response

Solution: DCCP

- provides unreliable flow of datagrams
- provides congestion control using
 - Acknowledgment
 - Sequence number
 - Connection oriented
- does not provide
 - Full reliability: no-loss & no-error & in-order & no-duplicate
 - flow control
 - streaming
- DCCP = UDP + congestion control

or

= TCP - bytestream semantics - full reliability

DCCP connections

- Full-duplex bi-directional connection
 - Two logical half connections
 - A-to-B half connection:
 - Application data sent from A to B
 - Corresponding acks from B to A
 - In practice overlapped: DataAck
- Each half connection can have independent features negotiated during connection initiation, e.g., different congestion control mechanism

DCCP Connection Initiation

DCCP Data Transfer Phase

DCCP Connection Termination

