Project Development Phase Model Performance Test

Date	24 Nov 2022	
Team ID	PNT2022TMID46300	
Project Name Exploratory Analysis of Rainfall Data in India for Ag		
Maximum Marks 10 Marks		

Model Performance Testing:

S.N	Parameter	Values	Screenshot
1.	Metrics	Classification Model: Random Forest	Random forest Confusion matrix
		Confusion Matrix — [[31372 1448] [4726 4691]] Accuracy Score- 0 8538248455145963	<pre>conf_matrix = metrics.confusion_matrix(y_test,t1) fig,ax = plt.subplots(figsize=(7.5,7.5)) ax.matshow(conf_matrix,alpha=0.3) for i in range(conf_matrix.shape[0]): for j in range(conf_matrix.shape[1]): ax.text(x=j, y=i, s=conf_matrix[i,j], va ='center', ha='center',size='xx-larg' plt.xlabel('Predictions',fontsize=18) plt.ylabel('Actuals',fontsize=18) plt.title('Confusion Matrix',fontsize=18) plt.title('Confusion Matrix',fontsize=18)</pre>
			Confusion Matrix
			Actuals
			<pre>t1 = Rand_forest.predict(X_test_scaled)</pre>
			<pre>print("Rand_forest:",metrics.accuracy_score(y_test,t1)) Rand_forest: 0.8538248455145963</pre>

```
print("*"*10, "Classification Report", "*"*10)
                                                print("-"*30)
                                                print(classification_report(y_test, t1))
                                                print("-"*30)
                                                ******* Classification Report *******
                                                           precision recall f1-score support
                                                               0.87 0.96 0.91
0.76 0.50 0.60
                                                         0
                                                                                          32820
                                                                                          9417
                                                                                0.85
                                                                                       42237
                                                   accuracy
                                                  macro avg 0.82 0.73
ighted avg 0.85 0.85
                                                                                  0.76
                                                                                          42237
                                                weighted avg
                                                                                  0.84
                                                                                          42237
                                                -----
2. Tune the
                Hyperparameter Tuning &
                                                 Hyperparameter Tuning
   Model
                Validation Method -
                RandomizedSearchCV
                                               : from sklearn.ensemble import RandomForestRegressor
                                                 rf = RandomForestRegressor(random_state = 42)
                                                 from pprint import pprint
                                                 # Look at parameters used by our current forest
                                                 print('Parameters currently in use:\n')
                                                 pprint(rf.get_params())
                                                 Parameters currently in use:
                                                 {'bootstrap': True,
                                                  'ccp_alpha': 0.0,
                                                  'criterion': 'mse',
                                                  'max_depth': None,
                                                  'max features': 'auto',
                                                  'max leaf nodes': None,
                                                  'max_samples': None,
                                                  'min_impurity_decrease': 0.0,
                                                  'min_impurity_split': None,
                                                  'min_samples_leaf': 1,
                                                  'min_samples_split': 2,
                                                  'min_weight_fraction_leaf': 0.0,
                                                  'n estimators': 100,
                                                  'n_jobs': None,
                                                  'oob_score': False,
                                                  'random_state': 42,
                                                  'verbose': 0,
                                                  'warm_start': False}
```

```
n_estimators = [10,20,30,50]
max_features = ['autor', 'sqrt']
max_features = ['autor', 'autor', 'autor',
```