# Wednesday, Feb 21

## **Iteratively Weighted Least Squares**

Iteratively weighted least squares can be used when we assume that the variance is proportional to a function of the mean so that

$$Var(Y_i) \propto h[E(Y_i)],$$

where h is some specified function, implying that our weights should be

$$w_i = \frac{1}{h[E(Y_i)]}.$$

Because  $E(Y_i)$  is unknown we can use the estimate  $\hat{y}_i$  to obtain weights

$$w_i = \frac{1}{h(\hat{y}_i)}.$$

Because  $\hat{y}_i$  depends on the weights used in the weighted least squares algorithm, and  $w_i$  depends on  $\hat{y}_i$ , we can use the following algorithm known as iteratively weighted least squares.

- 1. Estimate the model using ordinary least squares where all  $w_i = 1$ .
- 2. Compute weights as  $w_i = 1/h(\hat{y}_i)$ .
- 3. Estimate the model using weighted least squares with the weights  $w_i = 1/h(\hat{y}_i)$ .

The second and third steps can be repeated until the estimates and thus the weights stop changing. Typically only a few iterations are necessary.

**Example:** Consider again following data from a study on the effects of fuel reduction on biomass.

```
library(trtools) # for biomass data
m.ols <- lm(suitable ~ -1 + treatment:total, data = biomass)</pre>
summary(m.ols)$coefficients
                 Estimate Std. Error t value Pr(>|t|)
                              0.04183
                                         2.524 1.31e-02
treatmentn:total
                    0.1056
treatmenty:total
                    0.1319
                              0.01121 11.773 7.61e-21
d \leftarrow expand.grid(treatment = c("n", "y"), total = seq(0, 2767, length = 10))
d$yhat <- predict(m.ols, newdata = d)</pre>
p <- ggplot(biomass, aes(x = total, y = suitable, color = treatment)) +</pre>
  geom_point() + geom_line(aes(y = yhat), data = d) + theme_minimal() +
  labs(x = "Total Biomass (kg/ha)", y = "Suitable Biomass (kg/ha)",
    color = "Treatment")
plot(p)
```



```
biomass$yhat <- predict(m.ols)
biomass$rest <- rstudent(m.ols)

p <- ggplot(biomass, aes(x = yhat, y = rest, color = treatment)) +
    geom_point() + theme_minimal() +
    labs(x = "Predicted Value", y = "Studentized Residual",
        color = "Treatment")
plot(p)</pre>
```



Assume that  $Var(Y_i) \propto E(Y_i)$ , which means the weights should be  $w_i = 1/E(Y_i)$ . We can program the iteratively weighted least squares algorithm as follows.

```
biomass$w <- 1 # initial weights are all equal to one
for (i in 1:5) {
   m.wls <- lm(suitable ~ -1 + treatment:total, weights = w, data = biomass)
   print(coef(m.wls)) # optional
   biomass$w <- 1 / predict(m.wls)
}</pre>
```

```
treatmentn:total treatmenty:total 0.1056 0.1319
treatmentn:total treatmenty:total 0.1155 0.1578
treatmentn:total treatmenty:total 0.1155 0.1578
treatmentn:total treatmenty:total 0.1155 0.1578
treatmentn:total treatmenty:total 0.1155 0.1578
```

Now let's take a look at the residuals.

```
biomass$yhat <- predict(m.wls)
biomass$rest <- rstudent(m.wls)

p <- ggplot(biomass, aes(x = yhat, y = rest, color = treatment)) +
    geom_point() + theme_minimal() +
    labs(x = "Predicted Value", y = "Studentized Residual",
        color = "Treatment")
plot(p)</pre>
```



That may not be quite enough. Suppose we assume that  $Var(Y_i) \propto E(Y_i)^p$  where p = 2.

```
biomass$w <- 1 # initial weights are all equal to one
for (i in 1:5) {
  m.wls <- lm(suitable ~ -1 + treatment:total, weights = w, data = biomass)
  biomass$w <- 1 / predict(m.wls)^2
}</pre>
```

Now let's take a look at the residuals.

```
biomass$yhat <- predict(m.wls)
biomass$rest <- rstudent(m.wls)

p <- ggplot(biomass, aes(x = yhat, y = rest, color = treatment)) +
    geom_point() + theme_minimal() +
    labs(x = "Predicted Value", y = "Studentized Residual",
        color = "Treatment")
plot(p)</pre>
```



Better. Maybe too much? We could try p = 1.5 or something like that. The residuals do get a little strange for higher predicted values, but we'll leave it here.

The model is  $E(S_i) = \beta_1 n_i t_i + \beta_2 y_i t_i$ , where  $n_i$  and  $y_i$  are indicator variables for if the *i*-th plot was treated or not by fuel reduction. We can also write the model as

$$E(S_i) = \begin{cases} \beta_1 t_i, & \text{if the } i\text{-th plot was not treated by fuel reduction,} \\ \beta_2 t_i, & \text{if the } i\text{-th plot was treated by fuel reduction.} \end{cases}$$

We can use  $\beta_2 - \beta_1$  for inferences about the treatment effect.

```
estimate se lower upper tvalue df pvalue (-1,1),0 0.06386 0.02359 0.01708 0.1106 2.707 104 0.007937
```

The contrast function from the **trtools** package can also do this. It can make inferences for a difference of differences.

```
trtools::contrast(m.wls,
  a = list(treatment = "y", total = 1),
  b = list(treatment = "y", total = 0),
  u = list(treatment = "n", total = 1),
  v = list(treatment = "n", total = 0))
```

```
estimate se lower upper tvalue df pvalue 0.06386 0.02359 0.01708 0.1106 2.707 104 0.007937
```

This estimates  $E(Y_a) - E(Y_b) - [E(Y_u) - E(Y_v)]$ . This can also be done using the emtrends function from the emmeans package.

```
library(emmeans)
emtrends(m.wls, ~treatment, var = "total") # estimate slopes
```

```
treatment total.trend SE df lower.CL upper.CL n 0.125 0.0183 104 0.0888 0.161 y 0.189 0.0149 104 0.1593 0.219
```

Confidence level used: 0.95

```
pairs(emtrends(m.wls, ~ treatment, var = "total")) # estimate difference between slopes
```

```
contrast estimate SE df t.ratio p.value n-y -0.0639 0.0236 104 -2.707 0.0079
```

Yet another approach to compare the slopes is to change the parameterization. Consider the following model.

```
m.wls <- lm(suitable ~ -1 + total + total:treatment, weights = w, data = biomass)
summary(m.wls)$coefficients</pre>
```

```
Estimate Std. Error t value Pr(>|t|) total 0.18892 0.01493 12.656 8.836e-23 total:treatmentn -0.06386 0.02359 -2.707 7.937e-03
```

From summary we can see that this model can be written as

$$E(S_i) = \beta_1 t_i + \beta_2 t_i n_i,$$

where  $n_i$  is an indicator variable where  $n_i = 1$  if the treatment was not applied to the *i*-th plot, add  $n_i = 0$  otherwise, so we can also write the model as

$$E(S_i) = \begin{cases} (\beta_1 + \beta_2)t_i, & \text{if the } i\text{-th plot was not treated by fuel reduction,} \\ \beta_1 t_i, & \text{if the } i\text{-th plot was treated by fuel reduction.} \end{cases}$$

Note that the meaning of  $\beta_1$  and  $\beta_2$  have changed here. The slopes of the lines with and without treatment are  $\beta_1$  and  $\beta_1 + \beta_2$ , respectively, and the difference between the slopes is  $\beta_1 - (\beta_1 + \beta_2) = -\beta_2$ . So inferences for  $\beta_2$  are for the difference in the slopes (after we reverse the sign). Although not necessary, we can change the reference category to avoid having to reverse the sign.

```
biomass$treatment <- relevel(biomass$treatment, ref = "y")
m.wls <- lm(suitable ~ -1 + total + total:treatment, weights = w, data = biomass)
summary(m.wls)$coefficients</pre>
```

```
Estimate Std. Error t value Pr(>|t|) total 0.12506 0.01827 6.847 5.428e-10 total:treatmenty 0.06386 0.02359 2.707 7.937e-03
```

Now the model can be written as

$$E(S_i) = \beta_1 t_i + \beta_2 t_i n_i,$$

or

$$E(S_i) = \begin{cases} \beta_1 t_i, & \text{if the } i\text{-th plot was not treated by fuel reduction,} \\ (\beta_1 + \beta_2)t_i, & \text{if the } i\text{-th plot was treated by fuel reduction.} \end{cases}$$

Note: For some reason the reference category (y) is getting an indicator variable here, where normally it does not. I am not sure if this is a bug or intentional, but it appears to be due to the somewhat unusual parameterization I am using.

# Parametric Models for Heteroscedasticity

**Example:** Consider the following data where variability appears to vary by treatment.

```
library(trtools) # for pulse data
p <- ggplot(pulse, aes(x = pulse1, y = pulse2, color = treatment)) +
   geom_point() + theme_minimal() +
   labs(x = "Pulse Before", y = "Pulse After", color = "Treatment") +
   theme(legend.position = c(0.85,0.2))
plot(p)</pre>
```



There is one case with missing values on pulse1 and pulse2.

```
subset(pulse, !complete.cases(pulse)) # show observations with missing data
```

```
height weight age gender smokes alcohol exercise treatment pulse1 pulse2
76 173 64 20 female no yes moderate sat NA NA year
76 97
```

This will cause problems so we are going to remove it.

```
pulse <- subset(pulse, complete.cases(pulse)) # overwrite pulse with only complete cases</pre>
```

Let's consider a simple linear model.

```
m <- lm(pulse2 ~ treatment + pulse1 + treatment:pulse1, data = pulse)
summary(m)$coefficients</pre>
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.41757 10.4467 5.68767 1.171e-07
treatmentsat -51.25896 15.7451 -3.25554 1.524e-03
pulse1 0.89363 0.1357 6.58544 1.841e-09
treatmentsat:pulse1 -0.01437 0.2049 -0.07011 9.442e-01
```

```
pulse$rest <- rstudent(m)
pulse$rest <- rstudent(m)
p <- ggplot(pulse, aes(x = yhat, y = rest, color = treatment)) +
    geom_point() + theme_minimal() +
    labs(x = "Predicted Value", y = "Studentized Residual",
        color = "Treatment") +
    theme(legend.position = c(0.8,0.2))
plot(p)</pre>
```



Consider that the model assumed by 1m is

$$E(Y_i) = \beta_0 + \beta_1 t_i + \beta_2 x_i + \beta_3 t_i x_i, \tag{1}$$

$$Var(Y_i) = \sigma^2, \tag{2}$$

where  $Y_i$  is the second pulse measurement,  $t_i$  is an indicator variable for the treatment (i.e.,  $t_i = 1$  if the *i*-th observation was from the sitting treatment condition, and  $t_i = 0$  otherwise), and  $x_i$  is the first pulse measurement. Maybe it would make sense to have something like

 $\mathrm{Var}(Y_i) = \begin{cases} \sigma_s^2, & \text{if the $i$-th observation is from the sitting treatment,} \\ \sigma_r^2, & \text{if the $i$-th observation is from the running treatment.} \end{cases}$ 

We can estimate such a model using the gls function from the nlme package.

```
library(nlme) # should come with R
m <- gls(pulse2 ~ treatment + pulse1 + treatment:pulse1, data = pulse,
  method = "ML", weights = varIdent(form = ~ 1 | treatment))
summary(m)</pre>
```

Generalized least squares fit by maximum likelihood
 Model: pulse2 ~ treatment + pulse1 + treatment:pulse1
 Data: pulse

```
AIC BIC logLik
  763.1 779.3 -375.6
Variance function:
 Structure: Different standard deviations per stratum
Formula: ~1 | treatment
Parameter estimates:
  sat
      ran
1.000 5.723
Coefficients:
                     Value Std.Error t-value p-value
(Intercept)
                     59.42 15.755 3.771 0.0003
                              16.058 -3.192 0.0019
treatmentsat
                    -51.26
pulse1
                      0.89
                               0.205 4.367 0.0000
                               0.209 -0.069 0.9452
treatmentsat:pulse1 -0.01
Correlation:
                    (Intr) trtmnt pulse1
treatmentsat
                    -0.981
pulse1
                    -0.980 0.962
treatmentsat:pulse1 0.962 -0.980 -0.981
Standardized residuals:
    Min
             Q1
                  Med
                             QЗ
                                    Max
-2.0920 -0.7688 0.1026 0.5886 2.1968
Residual standard error: 3.634
Degrees of freedom: 109 total; 105 residual
Note the different syntax for extracting standardized residuals.
pulse$yhat <- predict(m)</pre>
pulse$resz <- residuals(m, type = "p") # note different syntax</pre>
p <- ggplot(pulse, aes(x = yhat, y = resz, color = treatment)) +</pre>
  geom_point() + theme_minimal() +
  labs(x = "Predicted Value", y = "Standardized Residual",
    color = "Treatment")
```

plot(p)



Here is an example with the  ${\tt CancerSurvival}$  data.

```
library(Stat2Data)
data(CancerSurvival)
m <- gls(Survival ~ Organ, data = CancerSurvival,
  method = "ML", weights = varIdent(form = ~ 1|Organ))
summary(m)</pre>
```

 ${\tt Generalized\ least\ squares\ fit\ by\ maximum\ likelihood}$ 

Model: Survival ~ Organ Data: CancerSurvival AIC BIC logLik 976.8 998.4 -478.4

# Variance function:

 ${\tt Structure:\ Different\ standard\ deviations\ per\ stratum}$ 

Formula: ~1 | Organ Parameter estimates:

Stomach Bronchus Colon Ovary Breast 1.0000 0.6119 1.2455 3.0141 3.5504

#### Coefficients:

Value Std.Error t-value p-value (Intercept) 1395.9 371.0 3.763 0.0004 OrganBronchus -1184.3 374.5 -3.162 0.0025 OrganColon -938.5 385.5 -2.435 0.0179 OrganOvary -511.6 565.2 -0.905 0.3691 OrganStomach -1109.9 383.2 -2.896 0.0053

#### Correlation:

(Intr) OrgnBr OrgnCl OrgnOv

```
OrganBronchus -0.991
OrganColon
               -0.962 0.953
               -0.656 0.650
                               0.632
OrganOvary
OrganStomach -0.968 0.959
                               0.932 0.635
Standardized residuals:
             01
    Min
                     Med
                               Q3
                                      Max
-1.1613 -0.6824 -0.2878 0.1748 3.3435
Residual standard error: 332.7
Degrees of freedom: 64 total; 59 residual
CancerSurvival$yhat <- predict(m)</pre>
CancerSurvival$resz <- residuals(m, type = "p")</pre>
p <- ggplot(CancerSurvival, aes(x = yhat, y = resz, color = Organ)) +</pre>
  geom_point() + theme_minimal() +
  labs(x = "Predicted Value", y = "Standardized Residual", color = "Organ")
plot(p)
     3
 Standardized Residual
                                                                                  Organ
                                                                                       Breast
                                                                                       Bronchus
                                                                                       Colon
                                                                                       Ovary
                                                                                       Stomach
```

Comments about parametric models for heteroscedasticity.

500

Advantages: Potentially very effective if we can specify an accurate model for the variance.

**Predicted Value** 

**Disadvantages**: If we do not specify an accurate model for the variance, it may bias estimation of parameters concerning the expected response.

1000

# Heteroscedastic Consistent Standard Errors

The idea is to estimate the model parameters using ordinary least squares, but estimate the standard errors in such a way that we do not assume homoscedasticity This is sometimes called *heteroscedastic consistent standard errors*, robust standard errors, or sandwich estimators.

Example: Consider again the cancer survival data.

```
m <- lm(Survival ~ Organ, data = CancerSurvival)
```

The **sandwich** package provides resources for using heteroscedastic-consistent standard errors. Technically, what is being estimated is the *covariance matrix* of the parameter estimators.

```
library(sandwich) # for vcovHC used below
vcov(m) # bad estimate if there is heteroscedasticity
```

|               | (Intercept) | OrganBronchus | OrganColon | OrganOvary | OrganStomach |
|---------------|-------------|---------------|------------|------------|--------------|
| (Intercept)   | 40752       | -40752        | -40752     | -40752     | -40752       |
| OrganBronchus | -40752      | 67121         | 40752      | 40752      | 40752        |
| OrganColon    | -40752      | 40752         | 67121      | 40752      | 40752        |
| OrganOvary    | -40752      | 40752         | 40752      | 115464     | 40752        |
| OrganStomach  | -40752      | 40752         | 40752      | 40752      | 75235        |

vcovHC(m) # better estimate if there is heteroscedasticity

```
(Intercept) OrganBronchus OrganColon OrganOvary OrganStomach
(Intercept)
                    153504
                                 -153504
                                             -153504
                                                        -153504
                                                                      -153504
OrganBronchus
                   -153504
                                  156256
                                              153504
                                                          153504
                                                                       153504
OrganColon
                   -153504
                                  153504
                                              164908
                                                          153504
                                                                       153504
OrganOvary
                   -153504
                                  153504
                                              153504
                                                          394879
                                                                       153504
OrganStomach
                   -153504
                                  153504
                                              153504
                                                          153504
                                                                       163498
```

The square root of the diagonal elements are the standard errors.

```
sqrt(diag(vcov(m))) # bad estimates of the standard errors
```

```
(Intercept) OrganBronchus OrganColon OrganOvary OrganStomach
201.9 259.1 259.1 339.8 274.3

sqrt(diag(vcovHC(m))) # better estimates of the standard errors
```

```
(Intercept) OrganBronchus OrganColon OrganOvary OrganStomach 391.8 395.3 406.1 628.4 404.3
```

But the usual way to interface with the functions in the sandwich package is through other functions.

```
Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
                1395.9
                                   6.915 3.770e-09
(Intercept)
                            201.9
                                                     992 1799.9
              -1184.3
                            259.1 -4.571 2.530e-05 -1703 -665.9
OrganBronchus
OrganColon
                -938.5
                           259.1 -3.622 6.083e-04 -1457 -420.1
OrganOvary
                -511.6
                           339.8 -1.506 1.375e-01 -1192 168.4
OrganStomach
              -1109.9
                           274.3 -4.046 1.533e-04 -1659 -561.1
```

confint(m) # bad confidence intervals due to bad standard error estimates

```
2.5 % 97.5 %

(Intercept) 992 1799.9

OrganBronchus -1703 -665.9

OrganColon -1457 -420.1

OrganOvary -1192 168.4

OrganStomach -1659 -561.1

library(lmtest) # for coeftest and coefci used below
```

```
library(lmtest) # for coeftest and coefci used below
coeftest(m, vcov = vcovHC) # better standard error estimates
```

t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  1396
                              392
                                     3.56 0.00073 ***
                                    -3.00 0.00400 **
                 -1184
                              395
OrganBronchus
OrganColon
                  -938
                              406
                                    -2.31 0.02434 *
OrganOvary
                  -512
                              628
                                    -0.81 0.41886
OrganStomach
                              404
                                    -2.74 0.00801 **
                 -1110
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coefci(m, vcov = vcovHC)
                           # better confidence intervals
                2.5 % 97.5 %
(Intercept)
                611.9 2179.9
OrganBronchus -1975.3 -393.3
OrganColon
              -1751.1 -125.9
              -1769.0 745.8
OrganOvary
OrganStomach -1919.0 -300.8
Both lincon and contrast will accept a fcov argument to provide a function to estimate standard errors.
lincon(m, fcov = vcovHC)
                                                          pvalue
              estimate
                          se
                               lower upper tvalue df
(Intercept)
                1395.9 391.8
                               611.9 2179.9 3.5628 59 0.0007337
OrganBronchus -1184.3 395.3 -1975.3 -393.3 -2.9961 59 0.0039950
                -938.5 406.1 -1751.1 -125.9 -2.3111 59 0.0243421
OrganColon
                -511.6 628.4 -1769.0 745.8 -0.8141 59 0.4188611
OrganOvary
               -1109.9 404.3 -1919.0 -300.8 -2.7449 59 0.0080080
OrganStomach
organs <- sort(unique(CancerSurvival$Organ)) # sorted organ names
trtools::contrast(m, a = list(Organ = organs),
  cnames = organs, fcov = vcovHC)
         estimate
                      se lower upper tvalue df
           1395.9 391.80 611.93 2179.9 3.563 59 7.337e-04
Breast.
Bronchus
            211.6 52.46 106.61 316.6 4.033 59 1.604e-04
Colon
            457.4 106.79 243.72 671.1 4.283 59 6.884e-05
Ovary
           884.3 491.30 -98.75 1867.4 1.800 59 7.698e-02
           286.0 99.97 85.96 486.0 2.861 59 5.836e-03
Stomach
lincon(m, a = c(1,0,0,0,1), fcov = vcovHC)
              estimate
                          se lower upper tvalue df
                                                     pvalue
                                     486 2.861 59 0.005836
(1,0,0,0,1),0
                   286 99.97 85.96
You can use a similar approach with the emmeans function from the emmeans package, but there the
argument is vcov.
library(emmeans)
emmeans(m, ~Organ, vcov = vcovHC)
Organ
          emmean
                    SE df lower.CL upper.CL
Breast
            1396 391.8 59
                             611.9
                                       2180
             212 52.5 59
                             106.6
                                        317
 Bronchus
```

Confidence level used: 0.95

457 106.8 59

884 491.3 59

286 100.0 59

243.7

-98.8

86.0

Colon

Ovary

Stomach

671

1867

486

## pairs(emmeans(m, ~Organ, vcov = vcovHC), adjust = "none", infer = TRUE)

```
contrast
                   estimate SE df lower.CL upper.CL t.ratio p.value
                                             1975.3
                                                      2.996 0.0040
Breast - Bronchus
                    1184.3 395 59
                                       393
Breast - Colon
                      938.5 406 59
                                       126
                                             1751.1
                                                       2.311 0.0243
Breast - Ovary
                     511.6 628 59
                                       -746
                                             1769.0
                                                      0.814 0.4189
Breast - Stomach
                    1109.9 404 59
                                       301
                                             1919.0
                                                      2.745 0.0080
                                               -7.7 -2.066 0.0432
Bronchus - Colon
                    -245.8 119 59
                                       -484
Bronchus - Ovary
                     -672.7 494 59
                                                     -1.362 0.1785
                                     -1661
                                              315.9
Bronchus - Stomach
                      -74.4 113 59
                                      -300
                                               151.5
                                                     -0.659 0.5124
Colon - Ovary
                     -426.9 503 59
                                     -1433
                                              579.1
                                                     -0.849 0.3992
Colon - Stomach
                      171.4 146 59
                                       -121
                                              464.1
                                                       1.172 0.2460
Ovary - Stomach
                     598.3 501 59
                                       -405
                                              1601.6
                                                       1.193 0.2375
```

Confidence level used: 0.95

Use the function waldtest in place of anova when using heteroscedastic-consistent standard errors.

```
m.full <- lm(Survival ~ Organ, data = CancerSurvival)
m.null <- lm(Survival ~ 1, data = CancerSurvival)
waldtest(m.null, m.full, vcov = vcovHC)</pre>
```

#### Wald test

```
Model 1: Survival ~ 1

Model 2: Survival ~ Organ

Res.Df Df F Pr(>F)

1 63

2 59 4 3.52 0.012 *

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Comments about heteroscedastic-consistent standard errors:

**Advantages**: Does not require us to specify a variance structure/function. We let the data inform the estimator.

**Disadvantages**: Highly dependent on the data to help produce better estimates of the standard errors, and tends to work well only if n is relatively large.

Note: There are a variety of variations of the "sandwich" estimator. Different estimators can be specified through the type argument to vcovHC so instead of writing vcov = vcovHC or fcov = vcovHC we write vcov = function(m) vcovHC(m, type = "HCO") or vcov = function(m) vcovHC(m, type = "HCO") if we wanted to use that particular type of estimator (sometimes called "White's estimator").