18.100B Definitions

1 Real Numbers

- 1. A field is a set F equipped with operations + and \times such that
 - (F, +) and $(F \setminus \{0\}, \times)$ are Abelian groups
 - x(y+z) = xy + xz for all $x, y, z \in F$. (Distributivity)
- 2. A field F is ordered if there exists a relation < on F (with x > y meaning $y < x, x \le y$ meaning x < y or x = y, etc) such that for all $x, y, z \in F$,
 - Exactly one of x = y, x < y, x > y holds. (Trichotomy)
 - x < y and y < z implies x < z. (Transitivity)
 - x < y implies x + z < y + z. (Additivity)
 - x < y and z > 0 implies xz < yz. (Multiplicativity)

We define $P = \{x \in F : x > 0\}.$

- 3. Let F be an ordered field.
 - $u \in F$ is an upper bound for a subset $S \subseteq F$ if $x \le u$ for all $x \in S$. If an upper bound for S exists, we say S is bounded above.
 - $\ell \in F$ is a lower bound for a subset $S \subseteq F$ if $x \ge \ell$ for all $x \in S$. If an upper bound for S exists, we say S is bounded below.
 - If $S \subseteq F$ is bounded above and below, we say that it is bounded.
 - $u \in F$ is the maximum of S, denoted max S, if u is an upper bound and $u \in S$.
 - $\ell \in F$ is the *minimum* of S, denoted min S, if ℓ is a lower bound and $\ell \in S$.
 - $u \in F$ is the *supremum* of S, denoted $\sup S$, if it is the least upper bound for S. More precisely, we say that S has supremum

$$\sup S = \min \{x \in F : x \text{ is an upper bound for } S\} \qquad \text{if it exists.}$$

• $\ell \in F$ is the *infimum* of S, denoted inf S, if it is the greatest lower bound for S. More precisely, we say that S has infimum

$$\sup S = \max\{x \in F : x \text{ is an lower bound for } S\} \qquad \text{if it exists.}$$

- By convention, inf $\emptyset = \infty$ and $\sup \emptyset = -\infty$. If S is unbounded above (below) we say $\sup S = \infty$ (inf $S = -\infty$).
- We say that F is *complete* if it satisfies the *completeness axiom:* Every nonempty subset of F that is bounded above has a supremum.

2 Sequences

1. The absolute value function is defined by

$$|x| = \begin{cases} x, & \text{if } x \ge 0\\ -x, & \text{if } x < 0 \end{cases}$$

- 2. A sequence $\{x_n\}_{n\in\mathbb{N}}=\{x_0,x_1,\cdots\}$ is an ordered list of real numbers. Explicitly, we have a function $x:\mathbb{N}\to\mathbb{R}$ and we denoted $x_n=x(n)$.
- 3. Let $\{x_n\}_{n\in\mathbb{N}}$ is said to converge to $\ell\in\mathbb{R}$ if

$$(\forall \varepsilon > 0) (\exists N \in \mathbb{N}) (\forall n \ge N) (|x_n - \ell| < \varepsilon)$$

If this is true, we write $\lim_{n\to\infty} x_n = \ell$.

- 4. $\{x_n\}_{n\in\mathbb{N}}$ is bounded if $\exists M\in\mathbb{R}$ such that $|x_n|< M$ for all $n\in\mathbb{N}$.
- 5. $\{x_n\}_{n\in\mathbb{N}}$ is said to diverge to ∞ , written as $x_n \to \infty$, if for all $M \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that $x_n \geq M$ for all $n \geq N$. The case $x_n \to -\infty$ is analogous.
- 6. $\{x_n\}_{n\in\mathbb{N}}$ is monotone if it is either nonincreasing $(x_n \geq x_{n+1} \text{ for all } n \in \mathbb{N})$ or nondecreasing $(x_n \leq x_{n+1} \text{ for all } n \in \mathbb{N})$
- 7. A subsequence of $\{x_n\}_{n\in\mathbb{N}}$ is any ordered infinite subset. Precisely, it is some $\{x_{n_j}\}_{j\in\mathbb{N}}$ where $n_0 < n_1 < n_2 < \cdots$ are natural numbers.
- 8. A sequence $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy if

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall m, n \ge N)(|x_n - x_m| < \varepsilon)$$

9. The limit superior and limit inferior of $\{x_n\}_{n\in\mathbb{N}}$ are defined by

$$\limsup x_n = \lim_{n \to \infty} \left(\sup_{k \ge n} x_k \right), \qquad \liminf x_n = \lim_{n \to \infty} \left(\inf_{k \ge n} x_k \right)$$

3 Series

1. Given a sequence $\{x_n\}_{n\in\mathbb{N}}$, we define the series

$$\sum_{k=0}^{n} x_k = x_0 + x_1 + \dots + x_n \quad \text{and} \quad \sum_{k=0}^{\infty} x_k = \lim_{n \to \infty} \sum_{k=0}^{n} x_k \text{ if it converges.}$$

- 2. The series $\sum_{k=0}^{\infty} a_k$ converges absolutely if $\sum_{k=0}^{\infty} |a_k|$ converges.
- 3. The exponential function is defined as

$$\exp(x) = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

4. A series $\sum_{k=0}^{\infty} x_k$ is unconditionally convergent if any reordering of the x_k gives a series converging to the same number.

4 Topology of \mathbb{R}

- 1. An open interval of \mathbb{R} is $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ for some $a,b \in \mathbb{R} \cup \{\pm \infty\}$.
 - A closed interval of \mathbb{R} is $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ for some $a,b \in \mathbb{R} \cup \{\pm \infty\}$.

For a given set $E \subseteq \mathbb{R}$, we say that $p \in E$ is

- an interior point of E if there exists $a such that <math>(a, b) \subseteq E$.
- an isolated point of E if there exists $a such that <math>(a, b) \subseteq E = \{p\}$.
- a boundary point if for all a , <math>(a, b) intersects both E and E^c .
- a limit point (or accumulation point) if for all $a , <math>(a, b) \cap E$ is infinite.

and we say E is

- open if every $p \in E$ is an interior point of E.
- closed if E contains all limit points of E.
- 2. The interior of E, denoted \check{E} or $\mathrm{int}(E)$, is the set of its interior points.
 - The *closure* of E, denoted \overline{E} , is the union of E and its limit points.
- 3. The *interior* of E, denoted $\stackrel{\circ}{E}$ or int(E), is the set of its interior points.
 - The closure of E, denoted \overline{E} , is the union of E and its limit points.
- 4. A set S is *countable* if there exists a surjection $f: \mathbb{N} \to S$.
- 5. An open cover U of $E \subseteq \mathbb{R}$ is a collection of open sets $\{O_{\alpha}\}_{{\alpha}\in I}$ such that such that $E \subseteq \bigcup_{{\alpha}\in I} O_{\alpha}$.
 - $K \subseteq \mathbb{R}$ is (covering) *compact* if every open cover of K admits a finite subcover.
 - $K \subseteq \mathbb{R}$ is sequentially compact if every sequence in K admits a converging subsequence in K.

5 Metric Spaces

1. A metric space (X, d) is a set X equipped with a metric d, which is a function d: $X \times X \to \mathbb{R}_{>0}$ such that for all $x, y, z \in X$,

- $d(x,y) = 0 \Leftrightarrow x = y$
- d(x,y) = d(y,x) (Symmetry)
- $d(x, z) \le d(x, y) + d(y, z)$ (Triangle Inequality)
- 2. Convergence: $(\forall \varepsilon > 0) (\exists N \in \mathbb{N}) (\forall n \geq N) (d(x_n, \ell) < \varepsilon)$.
 - Cauchy sequence: $(\forall \varepsilon > 0) (\exists N \in \mathbb{N}) (\forall m, n \geq N) (d(x_n, x_m) < \varepsilon)$.
 - Open/Closed balls: $\mathcal{B}(x,r) = \{y : d(x,y) < r\}, \overline{\mathcal{B}}(x,r) = \{y : d(x,y) \le r\}.$
 - Open set: $(\forall x \in E) (\exists r > 0) (\mathcal{B}(x, r) \subseteq E)$. Closed set: E^c is open.
 - Neighborhood of $x \in X$: Any open set containing x.
 - Diameter of E: diam $(E) = \sup \{d(x,y) : x,y \in E\}$. Bounded set: diam $(E) < \infty$.
 - Limit point of E: Any neighborhood of it intersects E infinitely much.
 - Isolated point of E: Exists some neighbourhood that intersects E at only itself.
 - Closure of E: $\overline{E} = E \cup \{\text{limit points of } E\}.$
 - Interior of E: $\mathring{E} = \{x \in E : \text{exists neighborhood of } x \text{ contained in } E\}.$
 - E is dense in F if $F \subseteq \overline{E}$. (Equivalently, all neighborhoods of all points in F must intersect E.)
 - $K \subseteq X$ is *compact* if every open cover of K admits a finite subcover.
 - $K \subseteq X$ is totally bounded if $(\forall \varepsilon > 0) (\exists x_1, \dots, x_n) (K \subseteq \mathcal{B}(x_1, \varepsilon) \cup \dots \cup \mathcal{B}(x_n, \varepsilon))$.
 - $K \subseteq X$ is *complete* if every Cauchy sequence converges.
 - $K \subseteq X$ is *separable* if it has a countable dense subset.

6 Continuous Functions

1. • Let $(X, d_X), (Y, d_Y)$ be metric spaces. We say $f: X \to Y$ is continuous at $x \in X$ if for every $x_n \to x$ we have $f(x_n) \to f(x)$.

- $f: X \to Y$ is *continuous* if it is continuous at every $x \in X$.
- 2. $f: X \to Y$ is uniformly continuous if

$$(\forall \varepsilon > 0) (\exists \delta > 0) (\forall d_X(x, y) < \delta) (d_Y(f(x), f(y)) < \varepsilon).$$

Remark: Here δ does not depend on x!

3. If X is compact, we define the uniform metric on $C(X) = \{f : X \to \mathbb{R} \text{ continuous}\}$:

$$d(f,g) = \sup \{ |f(x) - g(x)| : x \in X \}$$

- 4. Let $\{f_n: X \to \mathbb{R}\}_{n \in \mathbb{N}}$ be a sequence of continuous functions.
 - We say f_n converges pointwise to f if $f_n(x) \to f(x)$ for all $x \in X$.
 - We say f_n converges uniformly to f if $\sup_{x \in X} |f_n(x) f(x)| \to 0$ as $n \to \infty$. This is equivalent to f_n converging in $(\mathcal{C}(X), d)$, so we can write $f_n \xrightarrow{d} f$.
- 5. A set $K \subseteq \mathcal{C}(X)$ is uniformly bounded if there exists an $M \in \mathbb{R}$ such that $f(x) \leq M$ for all $f \in K$ and $x \in X$.
 - A set $K \subseteq \mathcal{C}(X)$ is (uniformly) equicontinuous if

$$(\forall \varepsilon > 0) (\exists \delta > 0) (\forall f \in K, d_X(x, y) < \delta) (d_Y(f(x), f(y)) < \varepsilon).$$

7 Derivatives

1. • Let $f: I \to \mathbb{R}$ where $I \subseteq R$. Then we say $\lim_{x \to x_0} f(x) = \ell$ if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - \ell| < \varepsilon$ for all $x \in I$ with $0 < |x - x_0| < \delta$.

• Let I be an open interval. We say that $f: I \to \mathbb{R}$ is differentiable at x_0 if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\delta \to 0} \frac{f(x_0 + \delta) - f(x_0)}{\delta} \in \mathbb{R}$$

exists, in which case we denote the limit by $f'(x_0)$, called the *derivative* at x_0 . We say f is differentiable if f is differentiable at all points in I.

- $\frac{f(x) f(x_0)}{x x_0}$ is called the difference quotient and represents the slope.
- 2. $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is said to have directional derivative at $x_0 \in \Omega$ in direction $v \in \mathbb{R}^n$ if

$$Df(x_0)[v] := \lim_{\delta \to 0} \frac{f(x_0 + \delta v) - f(x_0)}{\delta}$$

exists. We say f is differentiable at x_0 if $Df(x_0): \mathbb{R}^n \to \mathbb{R}^n$ is a linear map.

3. • A function $f: I \to \mathbb{R}$ is *convex* if for all $x_1 < x_2$ in I and any $0 < \alpha < 1$,

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2).$$

We say that f is *strictly convex* if the inequality is always strict.

• A function $f: I \to \mathbb{R}$ is *concave* if for all $x_1 < x_2$ in I and any $0 < \alpha < 1$,

$$f(\alpha x_1 + (1 - \alpha)x_2) > \alpha f(x_1) + (1 - \alpha)f(x_2).$$

We say that f is *strictly concave* if the inequality is always strict.

• Define the right and left derivative

$$f'_{+}(x_0) = \lim_{\delta \to 0^{+}} \frac{f(x_0 + \delta) - f(x_0)}{\delta}, \qquad f'_{-}(x_0) = \lim_{\delta \to 0^{-}} \frac{f(x_0 + \delta) - f(x_0)}{\delta}$$

- 4. A function $f: I \to \mathbb{R}$ is in \mathcal{C}^1 if it is differentiable and f' is continuous.
 - If $f'(x_0) = 0$, we say x_0 is a critical point and $f(x_0)$ is a critical value.
 - We say $y \in \mathbb{R}$ is a regular value if it is not a critical value.
 - A set $S \subseteq \mathbb{R}$ has measure zero if for all $\varepsilon > 0$ there exists countably many intervals that (i) covers S and (ii) have total combined length $< \varepsilon$.

8 Riemann Integral

1. • A partition of [a, b] is a finite set of points $\sigma = \{a = x_0 < \dots < x_N = b\}$.

- The size $|\sigma|$ of σ is $\max_{1 \le i \le N} |x_i x_{i-1}|$.
- A partition σ' is a refinement of σ if $\sigma' \supseteq \sigma$.
- Given a bounded $f:[a,b] \to \mathbb{R}$ and a partition σ of [a,b],
 - The upper (Riemann) sum is $S(f, \sigma) = \sum_{i=1}^{N} (x_i x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} f(x)$.
 - The lower (Riemann) sum is $s(f, \sigma) = \sum_{i=1}^{N} (x_i x_{i-1}) \inf_{x \in [x_{i-1}, x_i]} f(x)$.
- Given a bounded $f:[a,b]\to\mathbb{R}$,
 - The upper (Riemann) integral is $\mathcal{I}^+(f) = \inf_{\forall \sigma} S(f, \sigma)$.
 - The lower (Riemann) integral is $\mathcal{I}^-(f) = \sup_{\forall \sigma} s(f, \sigma)$.
- A bounded $f:[a,b] \to \mathbb{R}$ is Riemann integrable if $\mathcal{I}^-(f) = \mathcal{I}^+(f) := \int_a^b f(x) \, dx$. Denote by $\mathcal{R}(a,b)$ the set of all Riemann integrable functions on [a,b].
- Given $f:[a,b]\in\mathbb{R}$ and $I\subseteq[a,b]$ an interval, define $\underset{I}{\operatorname{osc}}f=\sup_{I}f-\inf_{I}f.$
- 2. The oscillation of f at point x is $\operatorname{osc}(f,x) = \lim_{\delta \to 0^+} \operatorname{osc}_{[x-\delta,x+\delta]} f \geq 0$
- 3. An ordinary differential equation (ODE) is a problem in the form

$$y'(x) = f(x, y(x)),$$
 $y(x_0) = y_0$

where y(x) is a differentiable function from $\mathbb{R} \to \mathbb{R}^n$ to be solved.

4. • Let $\{a_k\}_{k\in\mathbb{N}}$ be a sequence and $c\in\mathbb{R}$. A power series is a series in x of the form

$$\sum_{k=0}^{\infty} a_k (x-c)^k.$$

For each $x \in \mathbb{R}$ for which the series converges we get a function f(x).

• The radius of convergence of a power series $\sum_{k=0}^{\infty} a_k(x-c)^k$ is

$$R = \frac{1}{\limsup_{k \to \infty} |a_k|^{1/k}} \in \mathbb{R}_{\geq 0} \cup \{\infty\}.$$

5. • A function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is infinitely differentiable $(f \in \mathcal{C}^{\infty}(I))$ if the n-th derivative $f^{(n)}$ exists for all $n \in \mathbb{N}$.

- A function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is analytic if there exists a power series that is equal to f(x) for all $x \in I$.
- Given a function $f \in \mathcal{C}^{\infty}$, the associated Taylor series of f at $c \in \mathbb{R}$ is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x - c)^k$$