Interpolation Interpolationsfejl

Mogens Bladt bladt@math.ku.dk Department of Mathematical Sciences Antag, at vi ønsker at approksimere en funktion f(x) med et polynomium givet

$$y_i = f(x_i), i = 0, ..., n.$$

Antag, at vi ønsker at approksimere en funktion f(x) med et polynomium givet

$$y_i = f(x_i), i = 0, ..., n.$$

Vi antager, at f er n+1 gange kontinuert differentiabel over et interval [a,b] som indeholder x_i 'erne.

Antag, at vi ønsker at approksimere en funktion f(x) med et polynomium givet

$$y_i = f(x_i), i = 0, ..., n.$$

Vi antager, at f er n+1 gange kontinuert differentiabel over et interval [a,b] som indeholder x_i 'erne. Så har vi

Theorem

Der findes et $\xi_n \in [a, b]$ og et polynomium p af orden højst n så at

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_n) \prod_{i=0}^{n} (x - x_i).$$

1) Sætningen holder for $x = x_k$, k = 0, ..., n da begge sider så er nul.

- 1) Sætningen holder for $x = x_k$, k = 0, ..., n da begge sider så er nul.
- (2) Lad nu $x \neq x_k$ for all k = 0, ..., n, og definer

$$\phi_{x}(t) = f(t) - p(t) - \frac{f(x) - p(x)}{w(x)}w(t)$$

hvor

$$w(t) = \prod_{i=0}^{n} (t - x_i).$$

- 1) Sætningen holder for $x = x_k$, k = 0, ..., n da begge sider så er nul.
- (2) Lad nu $x \neq x_k$ for all k = 0, ..., n, og definer

$$\phi_{x}(t) = f(t) - p(t) - \frac{f(x) - p(x)}{w(x)}w(t)$$

hvor

$$w(t) = \prod_{i=0}^{n} (t - x_i).$$

Så gælder, at

- 1) Sætningen holder for $x = x_k$, k = 0, ..., n da begge sider så er nul.
- (2) Lad nu $x \neq x_k$ for all k = 0, ..., n, og definer

$$\phi_{x}(t) = f(t) - p(t) - \frac{f(x) - p(x)}{w(x)}w(t)$$

hvor

$$w(t) = \prod_{i=0}^{n} (t - x_i).$$

Så gælder, at

1 ϕ_x er n+1 gange kontinuert differentiabel (da f er det).

- 1) Sætningen holder for $x = x_k$, k = 0, ..., n da begge sider så er nul.
- (2) Lad nu $x \neq x_k$ for all k = 0, ..., n, og definer

$$\phi_{x}(t) = f(t) - p(t) - \frac{f(x) - p(x)}{w(x)}w(t)$$

hvor

$$w(t) = \prod_{i=0}^{n} (t - x_i).$$

Så gælder, at

- **1** ϕ_{x} er n+1 gange kontinuert differentiabel (da f er det).
- **2** $\phi_X(t)$ er nul i alle x_k og i x (i.e. n+2 nulpunkter).

- 1) Sætningen holder for $x = x_k$, k = 0, ..., n da begge sider så er nul.
- (2) Lad nu $x \neq x_k$ for all k = 0, ..., n, og definer

$$\phi_{x}(t) = f(t) - p(t) - \frac{f(x) - p(x)}{w(x)}w(t)$$

hvor

$$w(t) = \prod_{i=0}^{n} (t - x_i).$$

Så gælder, at

- **1** ϕ_{x} er n+1 gange kontinuert differentiabel (da f er det).
- **2** $\phi_x(t)$ er nul i alle x_k og i x (i.e. n+2 nulpunkter).

Ifølge Rolle's sætning må ϕ'_x altså være nul i n+1 punkter i [a,b], og dermed må ϕ''_x være nul i n punkter i [a,b] etc.

- 1) Sætningen holder for $x = x_k$, k = 0, ..., n da begge sider så er nul.
- (2) Lad nu $x \neq x_k$ for all k = 0, ..., n, og definer

$$\phi_{x}(t) = f(t) - p(t) - \frac{f(x) - p(x)}{w(x)}w(t)$$

hvor

$$w(t) = \prod_{i=0}^{n} (t - x_i).$$

Så gælder, at

- **1** ϕ_{x} er n+1 gange kontinuert differentiabel (da f er det).
- **2** $\phi_x(t)$ er nul i alle x_k og i x (i.e. n+2 nulpunkter).

Ifølge Rolle's sætning må ϕ_x' altså være nul i n+1 punkter i [a,b], og dermed må ϕ_x'' være nul i n punkter i [a,b] etc. Dvs. $\phi_x^{(n+1)}(t)$ har mindst et nulpunkt i [a,b], i.e.

$$\exists \xi_n : \phi_{\mathbf{x}}^{(n+1)}(\xi_n) = 0.$$

Nu er

$$\phi_{x}^{(n+1)}(t) = f^{(n+1)}(t) - p^{(n+1)}(t) - \frac{f(x) - p(x)}{w(x)} w^{(n+1)}(t)$$
$$= f^{(n+1)}(t) - \frac{f(x) - p(x)}{w(x)} (n+1)!$$

pga. formen på w(t) og da p er et n-te ordens polynomium.

Nu er

$$\phi_{x}^{(n+1)}(t) = f^{(n+1)}(t) - p^{(n+1)}(t) - \frac{f(x) - p(x)}{w(x)} w^{(n+1)}(t)$$
$$= f^{(n+1)}(t) - \frac{f(x) - p(x)}{w(x)} (n+1)!$$

pga. formen på w(t) og da p er et n-te ordens polynomium. Indsæt nu ξ_n ,

$$0 = \phi_x^{(n+1)}(\xi_n) = f^{(n+1)}(\xi_n) - \frac{f(x) - p(x)}{w(x)}(n+1)!$$

Nu er

$$\phi_{x}^{(n+1)}(t) = f^{(n+1)}(t) - p^{(n+1)}(t) - \frac{f(x) - p(x)}{w(x)} w^{(n+1)}(t)$$
$$= f^{(n+1)}(t) - \frac{f(x) - p(x)}{w(x)} (n+1)!$$

pga. formen på w(t) og da p er et n-te ordens polynomium. Indsæt nu ξ_n ,

$$0 = \phi_x^{(n+1)}(\xi_n) = f^{(n+1)}(\xi_n) - \frac{f(x) - p(x)}{w(x)}(n+1)!$$

eller

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi_n)}{(n+1)!} w(x) = \frac{f^{(n+1)}(\xi_n)}{(n+1)!} \prod_{i=0}^{n} (x - x_i).$$

Betragt $f(x) = e^x$.

Betragt $f(x) = e^x$. Antag, at vi kender $y_0 = e^{x_0}$ og $y_1 = e^{x_1}$ i punkterne $0 \le x_0 < x_1 \le 1$.

Betragt $f(x) = e^x$. Antag, at vi kender $y_0 = e^{x_0}$ og $y_1 = e^{x_1}$ i punkterne $0 \le x_0 < x_1 \le 1$. Vi ønsker at approksimere e^x for $x \in (x_1, x_2)$.

Betragt $f(x) = e^x$. Antag, at vi kender $y_0 = e^{x_0}$ og $y_1 = e^{x_1}$ i punkterne $0 \le x_0 < x_1 \le 1$. Vi ønsker at approksimere e^x for $x \in (x_1, x_2)$. Vi anvender en lineær interpolation, og Lagrange formen er

$$\ell_0(x) = \frac{x - x_1}{x_0 - x_1},$$

 $\ell_1(x) = \frac{x - x_0}{x_1 - x_0},$

og

$$p_1(x) = y_0 \ell_0(x) + y_1 \ell_1(x)$$

$$= y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

$$= \frac{(x_1 - x)y_0 + (x - x_0)y_1}{x_1 - x_0}$$

Betragt $f(x) = e^x$. Antag, at vi kender $y_0 = e^{x_0}$ og $y_1 = e^{x_1}$ i punkterne $0 \le x_0 < x_1 \le 1$. Vi ønsker at approksimere e^x for $x \in (x_1, x_2)$. Vi anvender en lineær interpolation, og Lagrange formen er

$$\ell_0(x) = \frac{x - x_1}{x_0 - x_1}, \ell_1(x) = \frac{x - x_0}{x_1 - x_0},$$

og

$$p_1(x) = y_0 \ell_0(x) + y_1 \ell_1(x)$$

$$= y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

$$= \frac{(x_1 - x)y_0 + (x - x_0)y_1}{x_1 - x_0}.$$

Fejlen på $p_1(x)$ for $x \in (x_1, x_2)$ er givet ved

$$e^{x} - p_{1}(x) = \frac{(x - x_{0})(x - x_{1})}{2!}e^{z}$$

for et $z \in (x_1, x_2)$.

$$|e^{x}-p_{1}(x)|=\frac{(x-x_{0})(x_{1}-x)}{2!}e^{z}.$$

$$|e^{x}-p_{1}(x)|=\frac{(x-x_{0})(x_{1}-x)}{2!}e^{z}.$$

Da
$$x_1 < z < x_2$$
 er

$$\frac{(x-x_0)(x_1-x)}{2!}e^{x_1} \le |e^x-p_1(x)| \le \frac{(x-x_0)(x_1-x)}{2!}e^{x_2}$$

$$\frac{(x-x_0)(x_1-x)}{2!}y_1 \le |e^x-p_1(x)| \le \frac{(x-x_0)(x_1-x)}{2!}y_2$$

$$|e^{x}-p_{1}(x)|=\frac{(x-x_{0})(x_{1}-x)}{2!}e^{z}.$$

Da $x_1 < z < x_2$ er

$$\frac{(x-x_0)(x_1-x)}{2!}e^{x_1} \le |e^x-p_1(x)| \le \frac{(x-x_0)(x_1-x)}{2!}e^{x_2}$$
$$\frac{(x-x_0)(x_1-x)}{2!}y_1 \le |e^x-p_1(x)| \le \frac{(x-x_0)(x_1-x)}{2!}y_2$$

Vi vurderer nu kun opad på fejlen.

$$|e^{x}-p_{1}(x)|=\frac{(x-x_{0})(x_{1}-x)}{2!}e^{z}.$$

Da $x_1 \le z \le x_2$ er

$$\downarrow \frac{(x-x_0)(x_1-x)}{2!}e^{x_1} \le |e^x-p_1(x)| \le \frac{(x-x_0)(x_1-x)}{2!}e^{x_2} \\
\frac{(x-x_0)(x_1-x)}{2!}y_1 \le |e^x-p_1(x)| \le \frac{(x-x_0)(x_1-x)}{2!}y_2$$

Vi vurderer nu kun opad på fejlen. For den øvre grænse

$$\frac{(x-x_0)(x_1-x)}{2!}y_2$$

har vi, at

$$\max_{x_1 \le x \le x_2} \frac{(x - x_0)(x_1 - x)}{2!} = \frac{(x_1 - x_0)^2}{8}$$

$$|e^{x}-p_{1}(x)|=\frac{(x-x_{0})(x_{1}-x)}{2!}e^{z}.$$

Da $x_1 \le z \le x_2$ er

$$\frac{(x-x_0)(x_1-x)}{2!}e^{x_1} \le |e^x-p_1(x)| \le \frac{(x-x_0)(x_1-x)}{2!}e^{x_2}$$

$$\frac{(x-x_0)(x_1-x)}{2!}y_1 \le |e^x-p_1(x)| \le \frac{(x-x_0)(x_1-x)}{2!}y_2$$

Vi vurderer nu kun opad på fejlen. For den øvre grænse

$$\frac{(x-x_0)(x_1-x)}{2!}y_2$$

har vi, at

$$\max_{x_1 \le x \le x_2} \frac{(x - x_0)(x_1 - x)}{2!} = \frac{(x_1 - x_0)^2}{8}$$

så med $h = x_1 - x_0$ vil

$$|e^x - p_1(x)| \le \frac{h^2}{8} y_1 \le \frac{h^2}{8} e.$$

Betragt igen e^x på [0,1] med værdier kendt i $x_0 < x_1 < x_2$ resp.

Betragt igen e^x på [0,1] med værdier kendt i $x_0 < x_1 < x_2$ resp. Find kvadratisk interplation for et $x \in (x_0, x_2)$ og dens fejl.

Betragt igen e^x på [0,1] med værdier kendt i $x_0 < x_1 < x_2$ resp. Find kvadratisk interplation for et $x \in (x_0, x_2)$ og dens fejl.

Vi ved, at

$$\ell_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}$$

Betragt igen e^x på [0,1] med værdier kendt i $x_0 < x_1 < x_2$ resp. Find kvadratisk interplation for et $x \in (x_0, x_2)$ og dens fejl.

Vi ved, at

$$\ell_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}$$

$$\ell_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$$

Betragt igen e^x på [0,1] med værdier kendt i $x_0 < x_1 < x_2$ resp. Find kvadratisk interplation for et $x \in (x_0, x_2)$ og dens fejl.

Vi ved, at

$$\ell_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$\ell_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$\ell_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Betragt igen e^x på [0,1] med værdier kendt i $x_0 < x_1 < x_2$ resp. Find kvadratisk interplation for et $x \in (x_0, x_2)$ og dens fejl.

Vi ved, at

$$\ell_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$\ell_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$\ell_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

og

$$p_2(x) = y_0\ell_0(x) + y_1\ell_1(x) + \ell_2(x).$$

Betragt igen e^x på [0,1] med værdier kendt i $x_0 < x_1 < x_2$ resp. Find kvadratisk interplation for et $x \in (x_0, x_2)$ og dens fejl.

Vi ved, at

$$\ell_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$\ell_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$\ell_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

og

$$p_2(x) = y_0 \ell_0(x) + y_1 \ell_1(x) + \ell_2(x).$$

Feilen er

$$e^{x} - p_{2}(x) = \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{3!}e^{z}$$

for et $z \in (x_0, x_2)$.

Som tidligere,

$$|e^{x}-p_{2}(x)| \leq \left|\frac{(x-x_{0})(x-x_{1})(x-x_{2})}{6}\right|e$$

Som tidligere,

$$|e^x - p_2(x)| \le \left| \frac{(x - x_0)(x - x_1)(x - x_2)}{6} \right| e$$

Antag, at $h = x_1 - x_0 = x_2 - x_1$. Maple udregninger giver hurtigt, at

$$\max_{x \in [x_0, x_2]} \frac{(x - x_0)(x - x_1)(x - x_2)}{6} = \frac{h^3}{9\sqrt{3}}.$$