## Цифровые методы синтеза аналоговых сигналов

Студент гр. 506: Вебер Д.С. Руководитель: ст.пр. Уланов П.Н.

Алтайский государственный университет

2024

#### Цель и задачи

**Цель работы:** реализовать метод синтеза на микроконтроллере. **Задачи:** 

- Исследовать существующие методы синтеза аналоговых сигналов.
- Выбрать метод и освоить его алгоритм.

### Микроконтроллер



Рис. 1: Отладочная плата STM32F103RCT6.

#### Характеристики:

- Рабочее напряжение: 2 3.6 В.
- Объём памяти: 256 Кб.
- Оперативная память: 48 Кб.
- Количество входов/выходов: 51.
- Цифро-аналоговый преобразователь: 2x12 б

#### Методы программной генерации сигнала

#### Основные методы цифровой генерации сигналов:

- Метод аппроксимации.
  - +: использование небольшой памяти.
  - —: затраты ресурсов на вычисления.
- Табличный метод.
  - +: меньшее время и затрата ресурсов.
  - —: требуется больший объём памяти.

#### Генерация отсчётов



Рис. 2: Таблица отсчётов.

#### ЦАП

#### Настройка ЦАП.

```
rcc_periph_clock_enable(RCC_GPIOA);
   gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_2_MHZ,
2
           GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO5);
3
   rcc_periph_clock_enable(RCC_DAC);
4
   dac_enable(CHANNEL_2);
5
   Загрузить значения в ЦАП
   for (int i = 0; i < 256; i++)
   {
2
           dac_load_data_buffer_single(lut[i], RIGHT12, CHANNEL_2);
3
```



Рис. 3: Синтез синусоиды табличным методом.



Рис. 4: Увеличение частоты сигнала.

Для адресации используется аккумулятор фазы и код частоты. Старшая часть аккумулятора фазы отвечает за адресацию ячейки в таблице отсчётов, а младшая за шаг в этой таблице. Размером же шага является код частоты.

```
Аккумулятор фазы + Код частоты = Адрес отсчёта 0x0000 + 0x0100 = 0x0100 0x0000 + 0x0200 = 0x0200 0x0000 + 0x0080 + 0x0080 = 0x0100
```



Рис. 5: Алгоритм метода DDS.

```
int main() {
      uint16_t p_acc, p_step;
2
      uint8_t addr = 0; // адрес ячейки
3
4
      р_асс = 0; // аккумулятор фазы
5
      p_step = 256; // код частоты
6
      while(1)
9
        addr = p_acc >> 8; // выделение старшей части аккумулятора фазы
10
        p_acc += p_step; // шаг
11
        printf("%d 0x%X\n", addr, sinus[addr]); // вывод отсчёта
12
13
14
      return 0;
15
16
```

Формирование отсчётов при коде частоты 256.

```
1  [kenny@desktop dds] gcc dds.c -o dds && ./dds
2  0 0x7F
3  1 0x82
4  ...
5  254 0x79
6  255 0x7C
```

Формирование отсчётов при коде частоты 512.

```
1  [kenny@desktop dds] gcc dds.c -o dds && ./dds
2  0 0x7F
3  2 0x85
4  ...
5  252 0x73
6  254 0x79
```

Формирование отсчётов при коде частоты 128.

```
1 [kenny@desktop dds] gcc dds.c -o dds && ./dds
2 0 0x7F
3 0 0x7F
4 1 0x82
5 1 0x82
6 ...
7 254 0x79
8 254 0x79
9 255 0x7C
10 255 0x7C
```

## Реализация





Рис. 6: Макет.

#### Заключение

В ходе выполнения работы был реализовал метод синтеза на микроконтроллере.

Были выполнены все поставленные задачи, а именно:

- Исследованы существующие методы синтеза аналоговых сигналов.
- 2 Выбран и освоен метод.

Выбранный в результате исследования метод прямого цифрового синтеза сигнала применён в разработке программы генератора сигналов на микроконтроллере STM32.

#### Спасибо за внимание!

https://github.com/lilbudek/stm32f1\_libopencm3

