Roteiro - Unidade I

- Introdução às redes de computadores
 - Modelos de camadas OSI e TCP/IP
- Interligação de redes
 - Comutação de circuitos e de pacotes
 - Meios físicos de transmissão
 - Equipamentos e topologias de rede
- Comunicação de dados
 - Modelos de comunicação
 - Controle de acesso ao meio de comunicação
 - Técnicas de correção e detecção de erros

- Os modelos de comunicação definem a maneira como os dispositivos da rede se comunicam
- Tradicionalmente, nas redes de computadores utilizamos dois modelos:
 - Cliente/Servidor
 - Ponto-a-Ponto (Peer-to-Peer)
- Mas também existem outros modelos, mais utilizados em redes para automação industrial:
 - Mestre/Escravo
 - Produtor/Consumidor (Publisher/Subcriber)

- Modelo Cliente/Servidor
 - Os clientes realizem pedidos aos servidores
 - Servidores respondem aos pedidos dos clientes
 - As mensagens são endereçadas com base em endereços de origem e destino
 - Exemplos: acesso a uma página web, envio de um e-mail, consulta a um banco de dados

- Modelo Ponto-a-Ponto
 - Também conhecido como peer-to-peer (p2p)
 - Vários hosts conectam-se entre si e compartilham informações
 - Uso mínimo (ou praticamente nenhum) de servidores
 - Exemplo: Skype, BitTorrent

- Modelo Mestre/Escravo
 - O mestre controla a comunicação de seus escravos
 - Cada escravo aguarda um comando do mestre para se comunicar
 - Geralmente utilizado em plantas de automação industrial
 - Um controlador lógico programável como mestre e os atuadores e sensores como escravos
 - Controle da comunicação: passagem de permissão (token), polling

- Modelo Produtor/Consumidor
 - Também conhecido como Publisher/Subscriber
 - Consiste de um conjunto de produtores que publicam eventos (mensagens de um determinado tipo), os quais são encaminhados para consumidores que registraram interesse em recebê-los
 - As mensagens são endereçadas com base em um identificador de dados
 - Controle da comunicação: *polling*, cíclico e mudança de estado

Roteiro - Unidade I

- Introdução às redes de computadores
 - Modelos de camadas OSI e TCP/IP
- Interligação de redes
 - Comutação de circuitos e de pacotes
 - Meios físicos de transmissão
 - Equipamentos e topologias de rede
- Comunicação de dados
 - Modelos de comunicação
 - Controle de acesso ao meio de comunicação
 - Técnicas de correção e detecção de erros

Controle de acesso ao meio

- Geralmente o canal de comunicação é compartilhado entre vários dispositivos
- Problema da alocação de canais!
 - Como alocar o canal de forma a permitir que usuários concorrentes se comuniquem sem que ocorram colisões?
 - Característica geral para a alocação do meio: todos os usuários devem ter direito ao acesso ao meio
 - Duas abordagens:
 - Alocação estática
 - Alocação dinâmica

Controle de acesso ao meio

- Problema da alocação de canais
 - Alocação estática
 - Tradicionalmente utiliza-se multiplexação (Ex: FDM e TDM)
 - Para 'n' usuários, divide-se a banda do canal em 'n' partes iguais
 - Cada usuário tem um sub-canal privado para transmissão
 - Problemas:
 - Número de usuários grande e variável
 - Tráfego em rajadas
 - Quando um usuário não utiliza seu sub-canal, a banda alocada para ele é perdida
 - Alocação dinâmica
 - Nenhum usuário possui sub-canais privados
 - Há uma concorrência pelo meio de transmissão
 - A melhor solução depende da aplicação e da topologia da rede
 - São algoritmos distribuídos que determinam como os nós compartilham o canal, isto é, quando um nó pode transmitir

Controle de acesso ao meio

- Existem diversos algoritmos para alocação dinâmica de canais
- Algoritmos de acesso tradicionais:
 - Protocolos de acesso aleatório (baseados em contenção):
 - Um nó disputa o acesso ao canal com outros nós
 - Ao detectar o canal livre, o nó pode iniciar a transmissão
 - Não existe uma ordem de acesso e nada impede que dois ou mais nós transmitam simultaneamente provocando uma colisão
 - Colisão acarreta na perda das mensagens
 - Exemplos:
 - Aloha
 - CSMA (detecção de portadora)
 - Protocolos de acesso controlado (sem contenção)
 - Neste tipo de acesso ao meio não existem ocorrência de colisões, pois o acesso é controlado
 - Exemplos:
 - Polling
 - Passagem de permissão (token)

- CSMA (Carrier Sense Multiple Access)
 - "Escuta" o meio de transmissão antes de transmitir algo
 - Verifica se existe alguma transmissão em progresso
 - Se o meio estiver livre, a estação transmite
 - Tenta ao máximo evitar colisão
 - Colisão ocorre apenas quando estações tentam transmitir praticamente ao mesmo tempo
 - Se o meio estiver ocupado, a estação espera por um intervalo de tempo e tenta novamente

- CSMA (Carrier Sense Multiple Access)
 - Tempo de vulnerabilidade

- CSMA (Carrier Sense Multiple Access)
 - Tipos de CSMA:
 - CSMA 1-persistente
 - CSMA não-persistente
 - CSMA n-persistente

- CSMA (Carrier Sense Multiple Access)
 - Tipos de CSMA:
 - CSMA 1-persistente
 - CSMA não-persistente
 - CSMA n-persistente

• CSMA (Carrier Sense Multiple Access)

• Tipos de CSMA:

- CSMA 1-persistente
- CSMA não-persistente
- CSMA n-persistente

• CSMA (Carrier Sense Multiple Access) Início • Tipos de CSMA: Retardo Aleatório • CSMA 1-persistente Meio • CSMA não-persistente Livre? • CSMA n-persistente Gere x entre [0, 1] x < p? Retardo Fixo **Transmite** Ν Fim Colisão?

Comparativo CSMA

a. 1-persistent

b. Nonpersistent

c. p-persistent

- CSMA with Collision Detection (CSMA/CD)
 - Utilizado em redes cabeadas
 - Detecta a colisão durante a transmissão
 - Fica escutando o meio após a transmissão
 - Ao perceber a colisão, aborta imediatamente a transmissão dos dados
 - Reforça o canal com um jam signal para que todas as estações detectem a colisão
 - Reduz ao máximo o tempo de colisão
 - Aumenta e eficiência na utilização do canal
 - Após a colisão, a estação espera por um tempo para tentar retransmitir (tempo de backoff)
 - Comumente, esse tempo é aleatório entre zero e um limite superior, dobrando este limite a cada colisão sucessiva (backoff exponencial)
 - Duplicação do limite é interrompido após um determinado número de colisões sucessivas, podendo a transmissão ser abortada no caso das colisões persistirem
 - Normalmente baseado no CSMA 1-persistente

• CSMA with Collision Detection (CSMA/CD) Início Calcula e aguarda o tempo de backoff Ν Meio Livre? Limite de Aborta a tentativas transmissão atingido? **Transmite** Transmite sequência de jam (jam signal) e Colisão? incrementa o contador de tentativas Fim

- Nas redes sem fio é impraticável aplicar a detecção de colisão
 - Não existem meios de detectar colisões "no ar"
- CSMA with Collision Avoidance (CSMA/CA)
 - CSMA com prevenção de colisão
 - Usado em redes sem fio 802.11
 - Conceitualmente semelhante ao CSMA/CD
 - Detecção de portadora
 - Algoritmo de backoff
 - Mas não detecta colisão!

- CSMA with Collision Avoidance (CSMA/CA)
 - No caso das WLANs, o mecanismo de detecção de colisão não funciona
 - Problema dos terminais ocultos

Problema dos terminais expostos

Controle de acesso ao meio - acesso controlado

Polling

- Uma estação central controla o acesso
- As demais estações só transmitem quando são "interrogadas" pela controladora da rede
- Caso uma estação interrogada não tenha nenhum quadro para transmitir, envia um quadro de controle avisando à estação central

Controle de acesso ao meio - acesso controlado

- Passagem de permissão
 - O token (padrão especial de bits) é passado sequencialmente de uma estação para outra
 - Informa se o meio está livre ou ocupado
 - Só quem tem o *token* pode transmitir
 - Topologias: anel (token ring) ou em barramento (token bus)

