Legenda das Colunas QP:

- **QP01 (Impacto no Desempenho):** Resumo do impacto do Service Mesh (latência, throughput, CPU, RAM).
- **QP02 (Ferramentas de Monitoramento/Tracing):** Lista das ferramentas utilizadas para detecção e análise.
- **QP03 (Práticas Recomendadas c/ VNFs):** Práticas recomendadas para integração do Service Mesh com VNFs.

N. do Artigo	Artigo	Pesquisa Principal	um Service Mesh no desempenho de cluster Kubernetes?	ferramentas utilizadas para detecção, análise de gargalos e falhas em tempo real em	QP03 - Quais são as práticas recomendada s para a integração do Service Mesh com VNFs em cluster Kubernetes?
1		e e Tracing Distribuído	Pouco impacto no desempenho do sistema original.	Jaeger, Zipkin	N/A (Foco em tracing genérico de microsserviços)
2	Trust Evaluation	Confiabilidade	N/A (Foco em avaliação de confiança)	Prometheus	Implementar um Avaliador de Confiança em Tempo de Execução (RTE) no plano de controle do Service Mesh.
3	1		desempenho e	N/A	Utilizar estruturas descentralizad as (Eblocks) para integrar padrões de processamento , permitindo réplicas

					distribuídas.
4	Orchestrator fo	Service Function Chaining (SFC)	orquestração	Prometheus	Automação via orquestrador web para criar SFCs baseadas em CNFs e integrar monitoramento
5	Application-ag nostic Caching	Service Mesh; Resiliência e Tolerância a	Redução de tráfego (40%) e 80% das requisições via cache.	N/A	Implementar caching agnóstico de aplicação para resiliência.
6	Study of	Resiliência e Tolerância a Falhas	Impacto no tempo de resposta (circuit breakers, retries).	N/A	Ajustar finamente políticas de resiliência (circuit breakers em camadas baixas, retries com parcimônia).
7	An Empirical Study on Kubernetes Operator Bugs	Bugs/Problema s em		N/A	N/A (Foco em bugs de operadores)
8	An Evaluation of Service Mesh Frameworks for Edge Systems	Latência do Service Mesh; Comparação de Service Mesh Frameworks	Linkerd: menor latência e menor consumo (20-43% menos memória, 22-25% menos CPU que Istio).		N/A (Foco em avaliação geral de SM para Edge)
9	Analyzing and Monitoring	Observabilidad e e Tracing	N/A (Foco em monitoramento	Zipkin, Envoy (plugin	N/A (Foco em monitoramento

10	Microservices based on Distributed Automated Testing and	Tolerância a Falhas	Impacto no desempenho	KMamiz), Kiali, Grafana Jaeger, Prometheus, Grafana	não intrusivo de microsserviços) Utilizar injeção de falhas para testar resiliência; implementar escalonamento , failover e circuit breakers.
11	An Adaptive Traffic	de Configurações		Kiali, Prometheus, Grafana, Jaeger	Configuração dinâmica e adaptativa de tráfego com base na carga em tempo real.
12	Microservice	Tolerância a Falhas	Melhora estabilidade, respostas rápidas, resiliência a falhas de Pods.	N/A	Usar testes caóticos para avaliar o impacto do Istio na resiliência.
13	ware Traffic	de Configurações	Economiza armazenament o (40-60%), reduz atualizações.	Prometheus	Adotar mecanismo de gerenciamento de tráfego "configure on-demand" para evitar configurações desnecessárias
14	Overheads of	Service Mesh	Aumento de latência (27-269%), CPU (42-163%); degradação de throughput	MeshInsight	Otimização do consumo de recursos (ex: Sockets de Domínio Unix para IPC).

19	Service	Service	N/A (Foco em	N/A	Desacoplamen
	Kubernetes				
	Meshes with		CPU.		
	Service		16% em ciclos		
	Overheads in		instruções,		
	Performance		sobrecarga em		
	n of		57%		sobrecargas)
	Characterizatio		aumento); Istio:		al de
	and		471-891%		microarquitetur
	ural Analysis	Latência do	(1-7ms/salto,		análise
18	Microarchitect			Linux-perf	N/A (Foco em
	Service Mesh				
	Lightweight		backend.		
	Advanced and		latência		Ĭ
	Comparison of		Istio melhor		geral de SM)
	RAM Usage		RAM/frontend.		comparação
17		Desempenho e	Linkerd melhor	Grafana	N/A (Foco em
	Kubernetes				
	Usage on		CPU/RAM.		
	Resource		Ingress >		
	Latency and	Mesh	< 175 RPS. Istio		
		de Service	melhor latência		
	Reduce	Comparação	Nginx Ingress		Lis Gatoriays,
	1		> 175 RPS;	Jan Grana	de Gateways)
-	Gateway	Latência do	melhor latência	,	comparação
16	Istio API	Desempenho e	Istio Ingress	Prometheus,	N/A (Foco em
					forma robusta.
					credenciais de
	Managomone				gerenciar
	Management				(mTLS, JWT);
	and				identidade
		Mesh	, <i>,</i>		baseadas em
		do Service	API)		autorização
13	Service Mesh	, °	segurança de		autenticação e
15	Intelligent	Segurança e	<u> </u>	N/A	Implementar
			TCP).		
			(principal fonte		
			IPC/sockets		
			sobrecarga),		
			(63-77%		
			Parsing		
			(15-70%).		

	Function Chaining Design & Implementatio n Using Network Service Mesh	Function Chaining (SFC)	design/implem entação SFC)		to de serviços; Cluster Kubernetes bem configurado; Injeção automática de
	in Kubernetes				sidecar; Gerenciamento declarativo. Contexto principal: CNFs/SFCs.
20	Service Mesh Based Distributed Tracing System	Distribuído Distribuído	N/A (Foco em sistema de tracing)		N/A (Foco em sistema de tracing não intrusivo)
21	The Utilisation and Implementatio n of the Istio Framework in the Architectonic Progression of Online Learning Platform	Desempenho e Latência do Service Mesh	reduzida (após adaptação); RPS estável (97-120 RPS); supera monolíticos em alta concorrência.	Apache JMeter	Desacoplamen to de serviços; Cluster Kubernetes bem configurado; Injeção automática de sidecar; Gerenciamento declarativo; Centralização da lógica de rede. Contexto principal: plataforma de aprendizado online (microsserviç os, não VNF explícita).
22	Threat Intelligence Sharing Component in	Confiabilidade do Service	N/A (Foco em compartilhame nto de inteligência de		Implementar compartilhame nto de inteligência de

the Service	am	neaças)	ameaças (TIS)
Mesh			no plano de
Architecture			controle.