CSC 112: Computer Operating Systems Lecture 12

Scheduling 3: Starvation (Finished), Deadlock

Department of Computer Science, Hofstra University

Recall: Real-Time Scheduling

- Goal: Predictability of Performance!
 - We need to predict with confidence worst case response times for systems!
 - In RTS, performance guarantees are:
 - » Task- and/or class centric and often ensured a priori
 - In conventional systems, performance is:
 - » System/throughput oriented with post-processing (... wait and see ...)
 - Real-time is about enforcing predictability, and does not equal fast computing!!!
- Hard real-time: for time-critical safety-oriented systems
 - Meet all deadlines (if at all possible)
 - Ideally: determine in advance if this is possible
 - Earliest Deadline First (EDF), Least Laxity First (LLF),
 Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)
- Soft real-time: for multimedia
 - Attempt to meet deadlines with high probability
 - Constant Bandwidth Server (CBS)

Are SRTF and MLFQ Prone to Starvation?

- In SRTF, long jobs are starved in favor of short ones
 - Same fundamental problem as priority scheduling
- MLFQ is an approximation of SRTF, so it suffers from the same problem

Cause for Starvation: Priorities?

- The policies we've studied so far:
 - Always prefer to give the CPU to a prioritized job
 - Non-prioritized jobs may never get to run
- But priorities were a means, not an end
- Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive jobs effectively on common hardware
 - Give the I/O bound ones enough CPU to issue their next file operation and wait (on those slow discs)
 - Give the interactive ones enough CPU to respond to an input and wait (on those slow humans)
 - Let the CPU bound ones grind away without too much disturbance

Recall: Changing Landscape...

Changing Landscape of Scheduling

- Priority-based scheduling rooted in "time-sharing"
 - Allocating precious, limited resources across a diverse workload
 - » CPU bound, vs interactive, vs I/O bound
- 80's brought about personal computers, workstations, and servers on networks
 - Different machines of different types for different purposes
 - Shift to fairness and avoiding extremes (starvation)
- 90's emergence of the web, rise of internet-based services, the data-center-is-the-computer
 - Server consolidation, massive clustered services, huge flashcrowds
 - It's about predictability, 95th percentile performance guarantees

DOES PRIORITIZING SOME JOBS NECESSARILY STARVE THOSE THAT AREN'T PRIORITIZED?

Key Idea: Proportional-Share Scheduling

- The policies we've studied so far:
 - Always prefer to give the CPU to a prioritized job
 - Non-prioritized jobs may never get to run
- Instead, we can share the CPU proportionally
 - Give each job a share of the CPU according to its priority
 - Low-priority jobs get to run less often
 - But all jobs can at least make progress (no starvation)

Recall: Lottery Scheduling

- Given a set of jobs (the mix), provide each with a share of a resource
 - e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for Job C
- · Idea: Give out tickets according to the proportion each should receive,
- Every quantum (tick): draw one at random, schedule that job (thread) to run

Lottery Scheduling: Simple Mechanism

- $N_{ticket} = \sum N_i$
- Pick a number d in $1\ldots N_{ticket}$ as the random "dart"
- Jobs record their N_i of allocated tickets
- Order them by N_i
- Select the first j such that $\sum N_i$ up to j exceeds d.

Unfairness

- E.g., Given two jobs A and B of same run time (# Qs) that are each supposed to receive 50%,
 - U = finish time of first / finish time of last
- As a function of run time

Stride Scheduling

- Achieve proportional share scheduling without resorting to randomness, and overcome the "law of small numbers" problem.
- "Stride" of each job is $\frac{big\#W}{N_i}$
 - The larger your share of tickets, the smaller your stride
 - Ex: W = 10,000, A=100 tickets, B=50, C=250
 - A stride: 100, B: 200, C: 40
- Each job has a "pass" counter
- Scheduler: pick job with lowest pass, runs it, add its stride to its pass
- Low-stride jobs (lots of tickets) run more often
 - Job with twice the tickets gets to run twice as often
- Some messiness of counter wrap-around, new jobs, ...

Linux Completely Fair Scheduler (CFS)

- Goal: Each process gets an equal share of CPU
 - N threads "simultaneously" execute on $\frac{1}{N}$ of CPU
 - The *model* is somewhat like simultaneous multithreading each thread gets $\frac{1}{N}$ of the cycles
- In general, can't do this with real hardware
 - OS needs to give out full CPU in time slices
 - Thus, we must use something to keep the threads roughly in sync with one another

Model: "Perfectly" subdivided CPU:

Linux Completely Fair Scheduler (CFS)

- Basic Idea: track CPU time per thread and schedule threads to match up average rate of execution
- Scheduling Decision:
 - "Repair" illusion of complete fairness
 - Choose thread with minimum CPU time
 - Closely related to Fair Queueing
- Use a heap-like scheduling queue for this...
 - O(log N) to add/remove threads, where N is number of threads
- Sleeping threads don't advance their CPU time, so they get a boost when they wake up again...
 - Get interactivity automatically!

Linux CFS: Responsiveness/Starvation Freedom

- In addition to fairness, we want low response time and starvation freedom
 - Make sure that everyone gets to run at least a bit!
- Constraint 1: Target Latency
 - Period of time over which every process gets service
 - Quanta = Target_Latency / n
- Target Latency: 20 ms, 4 Processes
 - Each process gets 5ms time slice
- Target Latency: 20 ms, 200 Processes
 - Each process gets 0.1ms time slice (!!!)
 - Recall Round-Robin: large context switching overhead if slice gets to small

Linux CFS: Throughput

- Goal: Throughput
 - Avoid excessive overhead
- Constraint 2: Minimum Granularity
 - Minimum length of any time slice
- Target Latency 20 ms, Minimum Granularity 1 ms, 200 processes
 - Each process gets 1 ms time slice

Aside: Priority in Unix – Being Nice

- The industrial operating systems of the 60s and 70's provided priority to enforced desired usage policies.
 - When it was being developed at Berkeley, instead it provided ways to "be nice".
- **nice** values range from -20 to 19
 - Negative values are "not nice"
 - If you wanted to let your friends get more time, you would nice up your job
- Scheduler puts higher nice-value tasks (lower priority) to sleep more ...
 - In O(1) scheduler, this translated fairly directly to priority (and time slice)
- How does this idea translate to CFS?
 - Change the rate of CPU cycles given to threads to change relative priority

Linux CFS: Proportional Shares

- What if we want to give more CPU to some and less to others in CFS (proportional share)?
 - Allow different threads to have different rates of execution (cycles/time)
- Use weights! Key Idea: Assign a weight w_i to each process I to compute the switching quanta $oldsymbol{Q}_i$
 - Basic equal share: $Q_i = \text{Target Latency} \cdot \frac{1}{N}$
 - Weighted Share: $Q_i = \binom{w_i}{\sum_p w_p} \cdot \text{Target Latency}$
- Reuse **nice** value to reflect share, rather than priority,
 - Remember that lower nice value ⇒ higher priority
 - CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)^{nice}
 - » Two CPU tasks separated by nice value of 5 \Rightarrow Task with lower nice value has 3 times the weight, since $(1.25)^5 \approx 3$
- So, we use "Virtual Runtime" instead of CPU time

Example: Linux CFS: Proportional Shares

- Target Latency = 20ms
- Minimum Granularity = 1ms
- Example: Two CPU-Bound Threads
 - Thread A has weight 1
 - Thread B has weight 4
- Time slice for A? 4 ms
- Time slice for B? 16 ms

Linux CFS: Proportional Shares

- Track a thread's virtual runtime rather than its true physical runtime
 - Higher weight: Virtual runtime increases more slowly
 - Lower weight: Virtual runtime increases more quickly
- Scheduler's Decisions are based on Virtual CPU Time
- Use of Red-Black tree to hold all runnable processes as sorted on vruntime variable
 - O(1) time to find next thread to run (top of heap!)
 - O(log N) time to perform insertions/deletions
 - » Cache the item at far left (item with earliest vruntime)
 - When ready to schedule, grab version with smallest vruntime (which will be item at the far left).

Choosing the Right Scheduler

I Care About:	Then Choose:
CPU Throughput	FCFS
Avg. Response Time	SRTF Approximation
I/O Throughput	SRTF Approximation
Fairness (CPU Time)	Linux CFS
Fairness – Wait Time to Get CPU	Round Robin
Meeting Deadlines	EDF
Favoring Important Tasks	Priority

A Final Word On Scheduling

- When do the details of the scheduling policy and fairness really matter?
 - When there aren't enough resources to go around
- When should you simply buy a faster computer?
 - (Or network link, or expanded highway, or ...)
 - One approach: Buy it when it will pay for itself in improved response time
 - » Perhaps you're paying for worse response time in reduced productivity, customer angst, etc...
 - » Might think that you should buy a faster X when X is utilized 100%, but usually, response time goes to infinity as utilization⇒100%
- An interesting implication of this curve:
 - Most scheduling algorithms work fine in the "linear" portion of the load curve, fail otherwise
 - Argues for buying a faster X when hit "knee" of curve

Deadlock: A Deadly type of Starvation

- Starvation: thread waits indefinitely
 - Example, low-priority thread waiting for resources constantly in use by high-priority threads
- Deadlock: circular waiting for resources
 - Thread A owns Res 1 and is waiting for Res 2
 Thread B owns Res 2 and is waiting for Res 1

- Deadlock ⇒ Starvation but not vice versa
 - Starvation can end (but doesn't have to)
 - Deadlock can't end without external intervention

Bridge Crossing Example

- Each segment of road can be viewed as a resource
 - Car must own the segment under them
 - Must acquire segment that they are moving into
- For bridge: must acquire both halves
 - Traffic only in one direction at a time

- Deadlock: Shown above when two cars in opposite directions meet in middle
 - Each acquires one segment and needs next
 - Deadlock resolved if one car backs up (preempt resources and rollback)
 - » Several cars may have to be backed up
- Starvation (not Deadlock):
 - East-going traffic really fast \Rightarrow no one gets to go west

Deadlock with Locks

- This lock pattern exhibits non-deterministic deadlock
 - Sometimes it happens, sometimes it doesn't!
- This is really hard to debug!

Deadlock with Locks: "Unlucky" Case

```
Thread A:
                            Thread B:
x.Acquire();
                            y.Acquire();
y.Acquire(); <stalled>
<unreachable>
                            x.Acquire(); <stalled>
                            <unreachable>
y.Release();
                                                                 Wait
                                            Owned
x.Release();
                            x.Release();
                                                                 _For
                            y.Release();
                                                Lock x
                                                              Lock y
                                                                 Owned
                                              Wait
                                                      Thread
                                                                  By
                                              For
```

Neither thread will get to run ⇒ Deadlock

Deadlock with Locks: "Lucky" Case

```
Thread A:
                          Thread B:
x.Acquire();
y.Acquire();
                         y.Acquire();
y.Release();
x.Release();
                         x.Acquire();
                         x.Release();
                         y.Release();
```

Sometimes, schedule won't trigger deadlock!

Train Example (Wormhole-Routed Network)

- Circular dependency (Deadlock!)
 - Each train wants to turn right, but is blocked by other trains
- Similar problem to multiprocessor networks
 - Wormhole-Routed Network: Messages trail through network like a "worm"
- Fix? Imagine grid extends in all four directions
 - Force ordering of channels (tracks)
 - » Protocol: Always go east-west first, then north-south
 - Called "dimension ordering" (X then Y)

Other Types of Deadlock

- Threads often block waiting for resources
 - Locks
 - Terminals
 - Printers
 - CD drives
 - Memory
- Threads often block waiting for other threads
 - Pipes
 - Sockets
- You can deadlock on any of these!

Deadlock with Space

```
Thread A:

AllocateOrWait(1 MB) AllocateOrWait(1 MB)

AllocateOrWait(1 MB) AllocateOrWait(1 MB)

Free(1 MB) Free(1 MB)

Free(1 MB) Free(1 MB)
```

If only 2 MB of space, we get same deadlock situation

Dining Lawyers Problem

- Five chopsticks/Five lawyers (really cheap restaurant)
 - Free-for all: Lawyer will grab any one they can
 - Need two chopsticks to eat
- What if all grab at same time?
 - Deadlock!
- How to fix deadlock?
 - Make one of them give up a chopstick (Hah!)
 - Eventually everyone will get chance to eat
- How to prevent deadlock?
 - Never let lawyer take last chopstick if no hungry lawyer has two chopsticks afterwards
 - Can we formalize this requirement somehow?

Four requirements for occurrence of Deadlock

Mutual exclusion

- Only one thread at a time can use a resource.

Hold and wait

 Thread holding at least one resource is waiting to acquire additional resources held by other threads

No preemption

 Resources are released only voluntarily by the thread holding the resource, after thread is finished with it

Circular wait

- There exists a set $\{T_1, ..., T_n\}$ of waiting threads
 - » T_1 is waiting for a resource that is held by T_2
 - » T_2 is waiting for a resource that is held by T_3
 - » ...
 - » T_n is waiting for a resource that is held by T_1

Detecting Deadlock: Resource-Allocation Graph

System Model

- A set of Threads T_1, T_2, \ldots, T_n
- Resource types R_1, R_2, \ldots, R_m CPU cycles, memory space, I/O devices
- Each resource type R_i has W_i instances
- Each thread utilizes a resource as follows:
 - » Request() / Use() / Release()

- V is partitioned into two types:
 - » $T = \{T_1, T_2, ..., T_n\}$, the set threads in the system.
 - » $R = \{R_1, R_2, ..., R_m\}$, the set of resource types in system
- request edge directed edge $T_1 \rightarrow R_i$
- assignment edge directed edge $R_j \rightarrow T_i$

Resource-Allocation Graph Examples

- Model:
 - request edge directed edge $T_1 \rightarrow R_i$
 - assignment edge directed edge $R_i \rightarrow T_i$

Simple Resource Allocation Graph

Allocation Graph With Deadlock

Allocation Graph With Cycle, but No Deadlock

Deadlock Detection Algorithm

• Let [X] represent an m-ary vector of non-negative integers (quantities of resources of each type):

```
[FreeResources]: Current free resources each type [Request<sub>X</sub>]: Current requests from thread X [Alloc<sub>X</sub>]: Current resources held by thread X
```

• See if tasks can eventually terminate on their own

```
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
    done = true
    Foreach node in UNFINISHED {
        if ([Request<sub>node</sub>] <= [Avail]) {
            remove node from UNFINISHED
            [Avail] = [Avail] + [Alloc<sub>node</sub>]
            done = false
        }
    }
} until(done)
```

Nodes left in UNFINISHED ⇒ deadlocked

How should a system deal with deadlock?

- Four different approaches:
- 1. <u>Deadlock prevention</u>: write your code in a way that it isn't prone to deadlock
- Deadlock recovery: let deadlock happen, and then figure out how to recover from it
- 3. <u>Deadlock avoidance</u>: dynamically delay resource requests so deadlock doesn't happen
- 4. Deadlock denial: ignore the possibility of deadlock
- Modern operating systems:
 - Make sure the system isn't involved in any deadlock
 - Ignore deadlock in applications
 - » "Ostrich Algorithm"

Techniques for Preventing Deadlock

- Infinite resources
 - Include enough resources so that no one ever runs out of resources.
 Doesn't have to be infinite, just large
 - Give illusion of infinite resources (e.g. virtual memory)
 - Examples:
 - » Bay bridge with 12,000 lanes. Never wait!
 - » Infinite disk space (not realistic yet?)
- No Sharing of resources (totally independent threads)
 - Not very realistic
- Don't allow waiting
 - How the phone company avoids deadlock
 - » Call Mom in Toledo, works way through phone network, but if blocked get busy signal.
 - Technique used in Ethernet/some multiprocessor nets
 - » Everyone speaks at once. On collision, back off and retry
 - Inefficient, since have to keep retrying
 - » Consider: driving to San Francisco; when hit traffic jam, suddenly you're transported back home and told to retry!

(Virtually) Infinite Resources

```
Thread A
AllocateOrWait(1 MB) AllocateOrWait(1 MB)
AllocateOrWait(1 MB) AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)
Free(1 MB)
Free(1 MB)
```

- With virtual memory we have "infinite" space so everything will just succeed, thus above example won't deadlock
 - Of course, it isn't actually infinite, but certainly larger than 2MB!

Techniques for Preventing Deadlock

- Make all threads request everything they'll need at the beginning.
 - Problem: Predicting future is hard, tend to over-estimate resources
 - Example:
 - » If need 2 chopsticks, request both at same time
 - » Don't leave home until we know no one is using any intersection between here and where you want to go; only one car on the Bay Bridge at a time
- Force all threads to request resources in a particular order preventing any cyclic use of resources
 - Thus, preventing deadlock
 - Example (x.Acquire(), y.Acquire(), z.Acquire(),...)
 - » Make tasks request disk, then memory, then...
 - » Keep from deadlock on freeways around SF by requiring everyone to go clockwise

Summary

- Four conditions for deadlocks
 - Mutual exclusion
 - Hold and wait
 - No preemption
 - Circular wait
- Techniques for addressing Deadlock
 - Deadlock prevention:
 - » write your code in a way that it isn't prone to deadlock
 - Deadlock recovery:
 - » let deadlock happen, and then figure out how to recover from it
 - Deadlock avoidance:
 - » dynamically delay resource requests so deadlock doesn't happen
 - » Banker's Algorithm provides on algorithmic way to do this
 - Deadlock denial:
 - » ignore the possibility of deadlock