Number Sets & GCD

3.AB PrelB Maths – Real Exam

Unless specified otherwise, you are to **always** (at least briefly) explain your reasoning. Even in closed questions.

Natural Numbers

- a) So far the addition and multiplication of natural numbers were defined. Now [15%] the **exponentiation** is presented in two axioms:
 - 1) $a^{\bullet}0 = 1$ 2) $a^{\bullet}\operatorname{succ}(b) = a^{\bullet}b \cdot b$

Using **only those two axioms** (and all your other knowledge about multiplication) evaluate the following expressions. You can denote exponentiation in the traditional form as a^b .

- 2[^]5
- 5[^]3
- b) **Generalise** your method from part a) to calculate a^b for any $a, b \in \mathbb{N}$. [15 %]

Integers & Rationals

a) Connect the pairs that correspond to the **same equivalence classes** and write [20 %] down the value of **represented integer**.

(2,3) (3,2) (5,3)

 $(8,6) \qquad (9,10) \qquad (122,123)$

(2,0) (5,4) (7,8)

b) You are given two elements: $[(a',b')]_E$ and $[(a,b)]_E$ from the **same equivalence class** (they represent the same integer value). Show that their respective **sum** with some element $[(c,d)]_E$ is always the **same**. In other words show that

$$[(a,b)]_E + [(c,d)]_E = [(a',b')]_E + [(c,d)]_E$$

Hint: Two elements are equivalent under E if they have the **same difference**.

Divisibility & GCI	\mathbf{D})i	vis	sil	bi]	lity	· &	GCI
--------------------	--------------	----	-----	-----	-----	------	-----	-----

a) Find a number that has **exactly 3 prime divisors** or show that such a number [20 %] can not exist.

b) Compute gcd(410, 240). Write down performed calculations in full detail. [20 %]