Register Allocation

15-411/15-611 Compiler Design

Seth Copen Goldstein

September 3, 2019

Cartoon Compiler

Unusual Order

- Standard is to start at the start and proceed down the passes: lexing, parsing, ...
- We start with Register Allocation, then do Instruction Selection!

Today

- Intro to language of L1
- briefly: AST, Abstract assembly, Temps
- Register Allocation Overview
- Interference Graph
- Iterated Register Allocation
 - Simplify/Select
 - Coalescing
 - Spilling
- Special Registers
- Start Chordal Graphs, SSA-coloring

Simple Source Language

- A language of assignments, expressions, and a return statement.
- Straight-line code
- Basically lab1 subset of C0

Simple Source Language

program :=
$$s_1$$
; s_2 ; ... s_n ; sequence of statements
s := $v = e$ assignment
| return e return
e := c constant
| v variable
| $e_1 \oplus e_2$ binary operation

Ambiguity? Semantics?

:= + | - | * | / | %

Abstract Syntax Tree

Example

```
z = x + 3 * y - 5;
return z;
```

Possible parse tree

Abstract Assembly as IR

- Lowering of AST
- Facilitate
 - Analysis & optimizations
 - Translation to actual assembly

In today's world aka registers

• Features:

- Unlimited number of "temporaries" -
- May not restrict how memory is used
- Simple operations
- May not restrict how constants are used
- May specify certain "special registers"

Abstract Assembly as IR

• Features:

- Unlimited number of "registers" (aka "temps")
- May (or may not) restrict how memory is used
- Simple operations
- May not restrict how constants are used
- May specify certain "special registers"

• Form:

 $dest \leftarrow src_1 operator src_2$

dest ← operator src₁
operator

src can be:

- constant
- temp
- special register
- memory

Abstract Assembly Language

seq of instructions program := $i_1 i_2 ... i_n$ $:= d \leftarrow s$ move $d \leftarrow s_1 \oplus s_2$ binop return S₁ return intermediate temporary values register locations

What is right "level"?

Closer to the machine

program :=
$$i_1 i_2 ... i_n$$

seq of instructions

$$| d \leftarrow s_1 \oplus s_2$$

return

d := t

move

binop

return what is in rax

intermediate

temporary

register

Register Allocation

 Until register allocation we assume an infinite set of registers (aka "temps" or "pseudo-registers").

 But real machines have a fixed set of registers.

 The register allocator must assign each temp to a machine register.

Register Allocation

- Map the variables & temps in the abstract assembly to actual locations in the machine
- The locations are either
 - physical registers
 - slots in the activation frame
- Essential for modern architectures
 - registers are much faster, consume less power, etc.
 - Some operations require registers
 - Goal: Try and allocate as many of the important variables/temps to registers.
- However, there are only a few registers

Sub-tasks of Register Allocation

- Assignment: map temps to particular registers
- **Spilling:** If we can't assign to a register, assign to a slot in the stack frame and add code to save and restore temp.
- Coalescing: If possible eliminate moves, a←b,
 and map both a & b to the same location.
- Ensure special cases are handled properly.
 - instructions, e.g., imul, ret, ...
 - ABI, e.g., callee/caller save registers, function arguments.

Interference

- Consider two temps, t0 and t1.
- If the live ranges for t0 and t1 overlap, we say that they *interfere*.

- First rule of register allocation:
 - Temps with interfering live ranges may not be assigned to the same machine register.

Running Example

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + v$$

$$\leftarrow w + x$$

$$\leftarrow t$$

$$\leftarrow u$$

 Two variables, e.g., x & v, need to be in different registers if at some point in the program they hold different values.

Running Example

u

Two variables, e.g., x & v, need to be in different
 registers if at some point in
 the program they hold different values.

Running Example

- Two variables, e.g., x & v, need to be in different
 registers if at some point in
 the program they hold different values.
- Use **liveness** information
- A variable is live at a given point in the program if it can be used at some later point in the program.

Liveness in straight line code

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + v$$

$$\leftarrow w + x$$

$$\leftarrow t$$

$$\leftarrow u$$

- Work backwards and at each instruction:
- If variable is used on right hand side, it is live-in
- if variable was live before it is still live-in (unless defined on left-hand side)

Liveness in straight line code

```
v \leftarrow 1
w \leftarrow v + 3
x \leftarrow w + v
u \leftarrow v
t \leftarrow u + v
\leftarrow w + x
\leftarrow t
```

- Work backwards and at each instruction:
- If variable is used on right hand side, it is live-in
- if variable was live before it is still live-in (unless defined on left-hand side)

Liveness in straight line code

```
{ v }
                      live-in sets
{ w, v }
{ w, x, v }
{ w, u, x, v }
{ w, t, u, x }
{ u, t }
{ u }
```

- Work backwards and at each instruction:
- If variable is used on right hand side, it is live-in
- if variable was live before it is still live-in (unless defined on left-hand side)

Live-out more useful

```
u
```

```
{ v }
{ w, v }
{ w, x, v }
{ w, u, x, v }
{ w, t, u, x }
{ u, t }
{ u }
```

Interference and Liveness

```
{ v }
\{ w, v \}
{ w, x, v }
{ w, u, x, v }
{ w, t, u, x }
{ u, t }
{ u }
```

• Two variables that are live at the same point in the program interfere with each other and need to be assigned to different registers.

General Plan

- Construct an interference graph
- Map temps to registers
- Deal with spills
- Generate code to save & restore
- Respect special registers
 - avoid reserved registers
 - Use registers properly
 - respect distinction between callee/caller save registers

Optimistic Graph Coloring

Construct Interference Graph

- Use liveness information
- Each node in the interference graph is a temp
- (u,v) ∈ G iff u & v can't be in the same hard register,
 i.e., they interfere

Color Graph

Assign to each node a color from a set of k colors,k = | register set |

Spill

 If can't color graph with k colors then spill some temps into memory. Regenerate asm code and start over.

An Example, k=4

Compute live ranges

An Example, k=4

Construct the interference graph

In Practice


```
{ v }
\{ w, v \}
\{ w, x, v \}
{ w, u, x }
{ w, t, u }
{ u, t }
{ u }
```

 At point of definition of t, add edges between t and all u ∈ live-out, t≠u

In Practice

```
{ v }
{ w, v }
{ w, x, v }
{ w, u, x }
{ w, t, u }
{ u, t }
{ u }
```


 At point of definition of t, add edges between t and all u ∈ live-out, t≠u

An Example, k=4

$$v \leftarrow 1$$

$$\mathbf{w} \leftarrow \mathbf{v} + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + v$$

$$\leftarrow$$
 w + x

Voila, registers are assigned!

A greedy Coloring

An Example, k=4

u & v are special. They interfere, but only through a move!

Interference and Coalescing

```
{ v }
                    { w, v }
                    { w, x, v }
                    { w, u, x, v }
                    { w, t, u, x }
\leftarrow w + x
                    { u, t }
                    { u }
```

 We would like to eliminate the move u ← v by having u and v share a register (i.e, coalescing) An Example, k=4

Rewrite the code to coalesce u & v

Is Coalescing always good?

Was 2-colorable, now it needs 3 colors

So, we treat moves specially.

Interference from moves become "move edges."

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + v$$

$$\leftarrow w + x$$

$$\leftarrow t$$

$$\leftarrow u$$

Compute live ranges

Construct the interference graph

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + v$$

$$\leftarrow w + x$$

$$\leftarrow t$$

$$\leftarrow u$$

So, we need to spill

What to spill? Why?

Choose w and Rewrite program

```
M[] \leftarrow w
w' \leftarrow M[]
    \leftarrow u + v
\mathbf{w}'' \leftarrow \mathbf{M}[]
          \mathbf{w''} + \mathbf{x}
```


Spilling reduces live ranges, which decreases register pressure.

Recalculate interference graph

Recalculate interference graph

Recolor

Graph coloring

- Once we have an interference graph, we can attempt register allocation by searching for a K-coloring
- This is an NP-complete problem (for K>2)
- But a linear-time simplification algorithm (by Kempe, 1879) tends to work well in practice

Kempe's observation

- Given a graph G that contains a node n with degree less than K, the graph is Kcolorable iff G with n removed is Kcolorable
 - This is called the "degree<K" rule
- So, let's try iteratively removing nodes with degree<K
- If all nodes are removed, then G is definitely K-colorable

Kempe's algorithm

- First, iteratively remove degree<K nodes, pushing each onto a stack
- If all get removed, then pop each node and rebuild the graph, coloring as we go
- If we get stuck (i.e., no degree<K nodes),
 then remove any node and continue

Example: K=3

Example: K=3

Example: K=3

Alg not perfect

What should we do when there is no node of degree < k?

Optimisitic Coloring

Chaitin's allocator

- Build: construct the interference graph
- Simplify: node removal, a la Kempe
- Spill: if necessary, remove a degree≥K node, marking it as a potential spill
- Select: rebuild the graph, coloring as we go
 - if a potential spill can't be colored, mark it as an actual spill and continue
- Start over: if there are actual spills, generate spill code and then start over

Choosing potential spills

- When choosing a node to be a potential spill, we want to minimize its performance impact
- Can attempt to compute a spill cost for each temp
 - by estimating performance cost
 - or by using actual profile information
- More on this later...

Where We Are

Coalescing

$$v \leftarrow 1$$
 $w \leftarrow v + 3$
 $M[] \leftarrow w$
 $w' \leftarrow M[]$
 $x \leftarrow w' + v$
 $u \leftarrow v$
 $t \leftarrow u + v$
 $w'' \leftarrow M[]$
 $\leftarrow w'' + x$
 $\leftarrow t$
 $\leftarrow u$

Can u & v be coalesced? Should u & v be coalesced?

Briggs

 Can coalesce a and b if (# of neighbors of ab with degree < k) < k

- Why?
 - Simplify removes all nodes with degree < k
 - # of remaining nodes < k</p>
 - Thus, ab can be simplified

Preston

Can coalesce a and b if

foreach neighbor t of a

- -t interferes with b, or,
- degree of t < k

Why?

- let S be set of neighbors of a with degree < k
- If no coalescing, simplify removes all nodes in S, call that graph G¹
- If we coalesce we can still remove all nodes in S, call that graph G²
- G² is a subgraph of G¹

Preston

Why Two Methods?

- With Briggs one needs to look at all neighbors of a & b
- With Preston, only need to look at neighbors of a.
- We need to insert hard registers in graph and they will have LARGE adjacency lists.
- So
 - Precolored nodes have infinite degree
 - No other precolored nodes in adj list
 - Use Preston if one of a & b is precolored
 - Use Briggs if both are temps ...

Where We Are

Build

15-411 © Seth Copen Goldstein 2001

Simplify Coalesce step: Freeze Potential Spill Select Actual Spill

Actually, one more

Spilling

What should we spill?

Spilling

- What should we spill?
 - Something that will eliminate a lot of interference edges
 - Something that is used infrequently
 - Something that is NOT used in loops
 - Maybe something that is live across a lot of calls?

Setting Up For Better Spills

- We want vars not-live across procedures to be allocated to caller-save registers. Why?
- We want vars live across many procs to be in callee-save registers
- We want live ranges of precolored nodes to be short!
- We prefer to use callee-save registers last.

Instructions with register requirements

$$d \leftarrow a * b$$

ret x

- Callee-save registers
 - x86-64: **RDI**, **RSI**, **RDX**, **RCX**, **R8**, **R9** must not be saved by callee if callee wants to use them.

Instructions with register requirements

Instructions with register requirements

Instructions with register requirements

```
d ← a * b

movl a, rax
imul b ; rdx,rax
movl rax, d
```

Preserving Callee-registers

- Move callee-reg to temp at start of proc
- Move it back at end of proc.
- What happens if there is no register pressure?
- What happens if there is a lot of register pressure?

```
prologue: define r
t1 ← r
...
```

epilogue: $r \leftarrow t1$

use r

Iterated Register Coloring

SSA-based Register Allocation

- SSA-based register allocation is a technique to perform register allocation on SSA-form.
 - Simpler algorithm.
 - Decoupling of spilling and register assignment
 - Less spilling.
 - Smaller live ranges
 - Polynomial time minimum register assignment

Traditional Register Allocation

Simplify/Select: A particular order

- $\Delta(G)$: the number of colors used to color G
- N(v): the neighbors of v

- Greedy Coloring:
 - input: G=(V,E) an ordered sequence v₁,..., v_n
 - output:Assignment col:V \rightarrow {0, ..., Δ (G)}

for $i \leftarrow 1$ to n do

let c be lowest color not used in N(v_i)

 $set col(v_i) \leftarrow c$

Chordal Graphs

 An undirected graph is chordal if every cycle of 4 or more nodes has a chord.

Non-chordal example

$$a \leftarrow 0$$

$$b \leftarrow 1$$

$$c \leftarrow a + b$$

$$d \leftarrow b + c$$

$$a \leftarrow c + d$$

$$b' \leftarrow 7$$

$$d \leftarrow a + b'$$

$$x \leftarrow b' + d$$

$$ret x$$

Break up the live ranges

$$a \leftarrow 0$$

$$b \leftarrow 1$$

$$c \leftarrow a + b$$

$$d \leftarrow b + c$$

$$a' \leftarrow c + d$$

$$b' \leftarrow 7$$

$$d' \leftarrow a' + b'$$

$$x \leftarrow b' + d'$$

$$ret x$$

Adding more temps \rightarrow fewer registers!

BTW: now in SSA-form!

- If G = (V, E) is a graph, then a vertex v ∈ V is called simplicial if, and only if, its neighborhood in G is a clique.
- b & d are simplical

- If G = (V, E) is a graph, then a vertex v ∈ V is called simplicial if, and only if, its neighborhood in G is a clique.
- b & d are simplical

- If G = (V, E) is a graph, then a vertex v ∈ V is called simplicial if, and only if, its neighborhood in G is a clique.
- b & d are simplical
- a & c are not

- If G = (V, E) is a graph, then a vertex v ∈ V is called simplicial if, and only if, its neighborhood in G is a clique.
- A Simplicial Elimination Ordering of G is a bijection σ : V(G) \rightarrow {1, ..., |V|}, such that every vertex v_i is a simplicial vertex in the subgraph induced by { v_1 , ..., v_i }.

b, a, c, d

Next Time

- Optimality of SEO
- Creating an SEO
- Chordal Coloring and
 - Spilling
 - Coalescing
- Liveness Analysis
- SSA
- Phi-nodes
- Finish Chordal Register Allocation

Greedy Coloring using SEO is optimal

- If G = (V, E) is a graph, then a vertex v ∈ V is called simplicial if, and only if, its neighborhood in G is a clique.
- A Simplicial Elimination Ordering of G is a bijection σ : V(G) \rightarrow {1, ..., |V|}, such that every vertex v_i is a simplicial vertex in the subgraph induced by { v_1 , ..., v_i }.

b, a, c, d

Maximal Cardinality Search

```
Maximum Cardinality Search
input: G = (V, E) with |V| = n
output: a simplicial elimination ordering \sigma = v_1, ..., v_n
for all v \in V do \lambda(v) \leftarrow 0
for i \leftarrow 1 to n do
let v \in V be a node such that \forall u \in V, \lambda(v) \ge \lambda(u) in \sigma(i) \leftarrow v
for all u \in V \cap N(v) do \lambda(u) \leftarrow \lambda(u) + 1
V = V \setminus \{v\}
```

Running Time: O(|V|+|E|)

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + x$$

$$\leftarrow w$$

$$\leftarrow t$$

$$\leftarrow u$$

SEO: t, x

SEO: t, x, u

SEO: t, x, u, w

SEO: t, x, u, w, v

SEO: t, x, u, w, v

Using the SEO is optimal

Greedy coloring in the simplicial elimination ordering yields an optimal coloring.

- If we greedily color the nodes in the order given by the SEO, then, when we color the ith node this ordering, all the neighbors of v_i that have been already colored form a clique.
- All the nodes in a clique must receive different colors.
- Thus, if v_i has M neighbors already colored, we will have to give it color M+1.

I.e., The chromatic number of a chordal graph is the size of largest clique © 2019 Goldstein

Best Effort Coalescing

```
input: list L of copy instructions, G = (V, E), K
output: G', the coalesced graph G
  G' = G
  for all x = y \in L do
     let S_x be the set of colors in N(x)
     let S<sub>v</sub> be the set of colors in N(y)
     if \exists c, c < K, c \notin S_x \cup S_v then
       let xy, xy ∉ V be a new node in
          add xy to G' with color c
          make xy adjacent to every v, v \in N(x) \cup N(y)
          replace occurrences of x or y in L by xy
          remove x from G'
          remove y from G'
```

Can we Coalesce?

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + x$$

$$\leftarrow w$$

$$\leftarrow t$$

$$\leftarrow u$$

Can we Coalesce?

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$-u \leftarrow v$$

$$t \leftarrow v + x$$

$$\leftarrow w$$

$$\leftarrow t$$

$$\leftarrow v$$

Next Time

- Liveness Analysis
- SSA
- Phi-nodes
- Finish Chordal Register Allocation

Decoupling Coloring and Spilling

- In iterated register coloring we iterate for both coalescing and spilling.
- With chordal register coloring we can use a decoupled approach.
 - find maximum clique, C, in IG
 - Spill until |C| <= K</p>
 - Use MCS to find the SEO
 - Color graph greedily
 - Preform BestEffortCoalescing

Next Time

- Liveness Analysis
- SSA
- Phi-nodes
- Finish Chordal Register Allocation