P. Maurer

ENS Rennes

Recasages: 259, 239, 245, 265.

Références: Zuily Queffélec, Analyse pour l'agrégation

Prolongement de Γ à $\mathbb{C} \setminus \mathbb{Z}^-$

Théorème 1. La fonction Γ définie par $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ est holomorphe sur le demi-plan de Poincaré $\Omega_0 = \{\text{Re} > 0\}$.

Elle se prolonge en une fonction holomorphe sans zéros sur $\mathbb{C}\setminus\mathbb{Z}^-$, et $\frac{1}{\Gamma}$ est une fonction entière vérifiant la formule d'Euler

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}^- \quad \frac{1}{\Gamma(z)} = \lim_{n \to +\infty} \frac{z(z+1)\cdots(z+n)}{n^z \cdot n!}.$$

Démonstration.

Etape 1: montrons que Γ est holomorphe sur Ω_0 .

Pour cela, on va utiliser le théorème d'holomorphie sous l'intégrale. On se donne a et b deux réels tels que $0 < a < b < +\infty$, et on considère le compact $K_{a,b} := \{z \in \Omega_0 : a \leq \text{Re}(z) \leq b\}$.

On considère la fonction γ définie sur $K_{a,b} \times]0, +\infty[$ par $\gamma(z,t) := t^{z-1}e^{-t}$.

- Pour tout $z \in K_{a,b}$, $t \mapsto \gamma(z,t)$ est intégrable sur $]0, +\infty[$.
- Pour presque tout $t \in]0, +\infty[$, $z \mapsto \gamma(z,t)$ est holomorphe sur $K_{a,b}$.
- Pour $(z,t) \in K_{a,b} \times]0, +\infty[$, on a la domination suivante :

$$\begin{array}{lll} |t^{z-1}e^{-t}| & = & |e^{(z-1)\log(t)}e^{-t}| \\ & \leq & e^{\log(t)\operatorname{Re}(z-1)}e^{-t} \\ & \leq & \begin{cases} e^{\log(t)(b-1)}e^{-t} & \text{si} & t \geq 1 \\ e^{\log(t)(a-1)}e^{-t} & \text{si} & t \leq 1 \end{cases} =: \varphi(t) \end{array}$$

Par ailleurs, lorsque $t\to 0$, on a l'équivalent $e^{\log(t)(a-1)}\,e^{-t} \underset{t\to 0}{\sim} t^{a-1}$ et a-1>-1 donc l'intégrale $\int_0^1 t^{a-1}\,dt$ converge.

Lorsque
$$t \to +\infty$$
, on a $e^{\log(t)(b-1)}e^{-t} = o_{t \to +\infty}(e^{-t/2})$ et l'intégrale $\int_1^{+\infty} e^{-t/2} dt$ converge.

Le théorème de comparaison des intégrales à termes positifs montre que $\varphi \in L^1(]0, +\infty[)$.

Donc Γ est holomorphe sur $K_{a,b}$. Par ailleurs, pour tout $z \in \Omega_0$, il existe $0 < a < b < +\infty$ tels que $z \in K_{a,b}$ (par exemple $a = \frac{\text{Re}(z)}{2}$ et b = 2Re(z)). Donc Γ est holomorphe au point z.

Ceci étant vrai pour tout $z \in \Omega_0$, on en déduit que Γ est holomorphe sur Ω_0 tout entier.

Etape 2 : montrons la formule d'Euler $\Gamma(z) = \lim_{n \to +\infty} \frac{n^z n!}{z (z+1) \cdots (z+n)}$ pour $z \in \Omega_0$.

On fixe $z \in \Omega_0$, et on considère la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ définie par

$$\forall n \in \mathbb{N} \quad \forall t \in \mathbb{R} \quad f_n(t) = \mathbf{1}_{]0,n[}(t) \left(1 - \frac{t}{n}\right)^n t^{z-1}.$$

La suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers $\gamma(z,t)=\mathbf{1}_{]0,+\infty[}(t)\,t^{z-1}\,e^{-t}$. Par ailleurs, on a la domination

$$\forall t \in \mathbb{R} \quad |f_n(t)| \leq \mathbf{1}_{]0,+\infty[}(t) \left(e^{-\frac{t}{n}}\right)^n t^{z-1}$$
$$= \gamma(z,t),$$

grâce à l'inégalité de convexité $e^x \geq x+1$ valable pour tout $x \in \mathbb{R}.$

Le théorème de convergence dominée assure alors que

$$\forall z \in \Omega_0 \quad \lim_{n \to +\infty} \int_{\mathbb{R}} f_n(t) dt = \int_{\mathbb{R}} \gamma(z, t) dt$$

Autrement dit,

$$\forall z \in \Omega_0 \quad \Gamma(z) = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{z-1} dt.$$

On fait le changement de variable t=ns dans cette intégrale, qui est bien un \mathcal{C}^1 -difféomorphisme. Il vient, pour $z\in\Omega_0$:

$$\Gamma(z) = \lim_{n \to +\infty} \int_0^1 (1-s)^n n^{z-1} s^{z-1} n \, ds$$
$$= \lim_{n \to +\infty} n^z \int_0^1 (1-s)^n s^{z-1} \, ds.$$

Notons $I_n(z) := \int_0^1 (1-s)^n s^{z-1} ds$. On va montrer par récurrence sur $n \in \mathbb{N}$ la proposition

$$(\mathcal{P}_n)$$
: " $\forall z \in \Omega_0$ $I_n(z) = \frac{n!}{z(z+1)\cdots(z+n)}$ "

- Initialisation: pour n=0 et $z \in \Omega_0$, on a $I_0(z) = \int_0^1 s^{z-1} ds = \left[\frac{s^z}{z}\right]_0^1 = \frac{1}{z} = \frac{1!}{(z+0)}$. Donc (\mathcal{P}_0) est vérifiée.
- **Hérédité**: on suppose que (\mathcal{P}_n) est vraie pour un certain $n \in \mathbb{N}$. On se donne $z \in \Omega_0$. On intègre par partie, les fonctions en jeu étant toutes de classe \mathcal{C}^1 sur]0,1]:

$$I_{n+1}(z) = \int_0^1 (1-s)^{n+1} s^{z-1} ds$$

$$= \left[(1-s)^{n+1} \frac{s^z}{z} \right]_0^1 + \int_0^1 (n+1)(1-s)^n \frac{s^z}{z} ds$$

$$= \frac{n+1}{z} \int_0^1 (1-s)^n s^z ds$$

$$= \frac{n+1}{z} I_n(z+1).$$

Par hypothèse de récurrence, on a $I_n(z+1) = \frac{n!}{(z+1)(z+2)\cdots(z+n+1)}$. On en déduit

$$\frac{n+1}{z}I_n(z+1) = \frac{(n+1)!}{z(z+1)\cdots(z+n+1)}.$$

Donc (\mathcal{P}_{n+1}) est vraie. Ceci conclut la récurrence.

On a démontré la formule d'Euler :

$$\forall z \in \Omega_0 \quad \Gamma(z) = \lim_{n \to +\infty} \frac{n^z \cdot n!}{z(z+1) \cdots (z+n)}.$$

Et pour tout $z \in \Omega_0$ vérifiant $\Gamma(z) \neq 0$, on a donc

$$\frac{1}{\Gamma(z)} = \lim_{n \to +\infty} \frac{z(z+1)\cdots(z+n)}{n^z \cdot n!}$$

=: $G(z)$.

Etape 3 : montrons que G définit une fonction entière sur $\mathbb C$.

Pour $n \in \mathbb{N}$ et $z \in \mathbb{C}$, on note $G_n(z) = \frac{z(z+1)\cdots(z+n)}{(n+1)^z \cdot n!}$.

On a alors

$$G_n(z) = \frac{z}{(n+1)^z} \cdot \prod_{k=1}^n \frac{z+k}{k}$$

$$= z \cdot \exp(-z\log(n+1)) \cdot \prod_{k=1}^n \left(1 + \frac{z}{k}\right)$$

$$= z \cdot \prod_{k=1}^n \exp\left(-z\log\left(\frac{k+1}{k}\right)\right) \cdot \prod_{k=1}^n \left(1 + \frac{z}{k}\right)$$

$$= z \prod_{k=1}^n \varphi_k(z),$$

où les fonctions φ_k définies par $\varphi_k(z) := \left(1 + \frac{z}{k}\right) \exp\left(-z \log\left(\frac{k+1}{k}\right)\right)$ sont holomorphes sur $\mathbb C$.

Soit R > 0 et |z| < R. Pour $k \ge R$, on a $\frac{|z|}{k} < 1$ donc $1 + \frac{z}{k}$ est non nul. On peut alors écrire

$$\varphi_k(z) \ = \ \exp\biggl[\log\Bigl(1+\frac{z}{k}\Bigr) - z\log\Bigl(1+\frac{1}{k}\Bigr)\biggr].$$

On en déduit que

$$G_n(z) = z \prod_{k=1}^{\lfloor R \rfloor} \varphi_k(z) \times \exp \left[\sum_{k=\lfloor R \rfloor + 1}^n \log \left(1 + \frac{z}{k} \right) - z \log \left(1 + \frac{1}{k} \right) \right].$$

Par ailleurs, on a lorsque $k \to +\infty$:

$$\begin{split} \log \! \left(1 + \frac{z}{k} \right) - z \log \! \left(1 + \frac{1}{k} \right) &= \frac{z}{k} - \frac{z^2}{2k^2} - \frac{z}{k} + \frac{z}{2k^2} + o \! \left(\frac{1}{k^2} \right) \\ &= \frac{z(1-z)}{2k^2} + o \! \left(\frac{1}{k^2} \right) . \end{split}$$

Donc par définition de la notation $o(\cdot)$, pour k assez grand, on a

On en déduit qu'il en est de même de la suite de fonctions $(G_n)_{n\in\mathbb{N}}$.

$$\left| \log \left(1 + \frac{z}{k} \right) - z \log \left(1 + \frac{1}{k} \right) \right| \le \frac{|z(1-z)|}{2k^2}$$

$$\le \frac{R(1+R)}{2k^2}.$$

On en déduit que la série de fonctions $\sum_{k=\lfloor R\rfloor+1}^{+\infty}\log\Bigl(1+\frac{z}{k}\Bigr)-z\log\Bigl(1+\frac{1}{k}\Bigr) \text{ converge normalement}$ sur $\{|z|< R\}$, donc uniformément sur tout compact de $\{|z|< R\}$, vers une fonction holomorphe.

Comme R est arbitraire, pour tout $z \in \mathbb{C}$, il existe R > 0 tel que $|z| \le R$ et le compact $\{|z| \le R\}$ est inclu dans $\{|z| < R+1\}$, par exemple.

Donc $G = \lim_{n \to +\infty} G_n$ est holomorphe en tout point $z \in \mathbb{C}$: c'est une fonction entière.

Etape 4: conclusion

Comme $G(z)=z\prod_{k=1}^{+\infty}\varphi_k(z)$ et que le produit convergent $\prod_{k=1}^{+\infty}\varphi_k$ a pour zéros les zéros des φ_k , c'est-à-dire $-1,-2,\ldots$. On en déduit que $F=\frac{1}{G}$ est holomorphe sur $\mathbb{C}\setminus\mathbb{Z}^-$ et non nulle sur cet ensemble. La formule d'Euler donne alors

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}^- \quad \frac{1}{\Gamma(z)} = \lim_{n \to +\infty} \frac{z(z+1) \cdots (z+n)}{n^z \cdot n!} = F(z).$$

Ceci conclut la preuve.