

Techno Speak

- Keys, PKI, Hashes, Encryption
- Blockchain, BitCoin, Ethereum, Permissioned, Non-Permissioned, Wallets, Crypto, Hashes, Keys,...

Distributed computing becomes possible with Web.

Challenges

- 1) Identity
- 2) Trust
- 3) Synchronization
- 4) Messages are asynchronous

Account in Ethereum

Ethereum Paper Wallet

City

AMOUNT / NOTES

Your Address: 0x30dEb6717CB8606AB82D9edaf0a3B9A01aEe3c04

Your Private Key: e5a77f4805d30656805ae4f6f67970d9f24c24b98f74394447f8c4c7bEe3c049

A simple hash?

A hash is like a "finger print" of a document. If anything in the document changes the hash will change. However, given the hash of a document we cannot reconstruct the document ie it only works one way Document \rightarrow Hash(D)

Demo Hash

Guess a Nonce

Avalanche property

Avalanche property -Small one bit change in input leads to radically different hash sum

Designing a good hash function

Merkle Tree as used in BitCoin

Hash(Prev_Hash + Tx_Root + Nonce) → 000000bc9xxx

Public Key Infrastructure Keys

Keys come in pairs.

Never share your private key with anyone

Your Identity is established by your PKI Keys

Your can Lock or Unlock a Message

Bob knows the message must have come from Alice

Bob sends a Message to Alice using her public key!!

Alice doesn't know who the message has come from !!

Alice sends Bob Message

Message tampered with

But is this the whole message or did attacker delete part of it

Send Hash of a Message - Fingerprint

But we haven't protected the hash

Signing a Message – Encrypt the Hash

Merkle Tree -Locking lots of Documents with 1 Hash

We can lock thousands of documents with one hash

Merkle Tree as used in BitCoin

Hash(Prev_Hash + Tx_Root + Nonce) → 000000bc9xxx

