

ThS. Ninh Xuân Hương – Ths Nguyễn Thị Mai Trang

Chương 3

LỚP MAC (LỚP CON ĐIỀU KHIỂN TRUY CẬP MÔI TRƯỜNG)

Nội dung chương 3

- I. Khái niệm lớp MAC
- II. Vấn đề cấp phát kênh truyền
- III. Giao thức CSMA/CD
- IV. Giới thiệu các tiêu chuẩn IEEE 802.x
- V. Giới thiệu về Bridge, Switch

I. Khái niệm lớp MAC

- Lớp Physical và Data link (mô hình OSI): giải quyết vấn đề các máy đồng thời truy cập đường truyền dạng broadcast (quảng bá)
- Dự án IEEE 802: các đặc tả của 2 lớp này trên mạng cục bộ

 tiêu chuẩn mạng cục bộ

Lớp Data Link trong IEEE 802

- Logical Link Control (LLC): thiết lập và kết thúc liên kết, quản lý truyền frame
- Media Access Control (MAC): quản lý truy cập đường truyền, tạo frame, kiểm soát lỗi, xác

định địa chỉ

Các tiêu chuẩn IEEE 802.x

^{*} Formerly IEEE Std 802.1A.

Các tiêu chuẩn IEEE 802.x

- 802.2 Logical Link Control
- 802.3 CSMA/CD Access Method and Physical Layer Specifications
- 802.5 Token Ring Access Method and Physical Layer Specifications
- 802.11 Wireless LAN Medium Access Control (MAC) Sublayer and Specifications
- 802.16 Standard Air Interface for Fixed Broadband Wireless Access Systems

• . . .

II. Vấn đề cấp phát kênh truyền

 Mục đích: cấp phát một kênh truyền dạng quảng bá cho nhiều máy cùng sử dụng

Một số thuật ngữ

- Đường truyền (Transmission line): vật lý
- Kênh truyền (Communication channel): luận lý
- Baseband: một kênh truyền trên đường truyền
- Broadband: nhiều kênh truyền trên đường truyền
- Multiplexing: ghép kênh tại nơi gởi
- Demultiplexing: tách kênh tại nơi nhận

Các kỹ thuật cấp phát kênh truyền

Cấp phát tĩnh: số kênh truyền cố định

Cấp phát động: số kênh truyền thay đổi
 → một máy truy cập đường truyền không làm ảnh hưởng các máy khác

- Hai kỹ thuật thông dụng:
 - -FDM Frequency Division Multiplexing (Ghép kênh phân chia theo tần số)
 - TDM Time Division Multiplexing
 (Ghép kênh phân chia theo thời gian)
 - Ứng dụng: mạng điện thoại cổ điển
 - -Băng thông chia đều cho n cuộc gọi

FDM

- Băng thông được chia thành N phần (kênh truyền)
 có kích thước bằng nhau (ứng với N user)
- –Mỗi phần có tần số khác nhau dành cho một user truyền
- -Phù hợp khi số lượng user ít và cố định
- –Ví dụ: các đài phát thanh

TDM

- -Chia thời gian thành các khung thời gian
- -Mỗi khung thời gian chia thành N khe thời gian.
- –Mỗi khe thời gian được gán cho một nút.
- –Mỗi nút chỉ được truyền trong khoảng thời gian được chỉ định theo cách xoay vòng

- Nhận xét chung
 - -Ít xung đột
 - –Lãng phí:
 - FDM: có các kênh rảnh không sử dụng
 - TDM: có những khe thời gian rảnh

Cấp phát động kênh truyền

- Một nút truyền ở tốc độ đầy đủ của kênh truyền
- Có xung đột → truyền lại
- Cần có các giao thức điều khiển truy cập đường truyền
- Úng dụng trong mạng máy tính, mạng điện thoại
- Có nhiều giao thức: ALOHA, CSMA, WDMA,

. . .

Môi trường cấp phát động kênh truyền

- Mô hình trạm (station model)
 - –Có N trạm (máy tính, điện thoại) mỗi trạm đều có thể truyền frame.
- Kênh truyền đơn (single channel)
 - -Các trạm dùng chung 1 đường truyền
- Có thể có xung đột (collision)
 - -Nếu 2 trạm truyền frame đồng thời
 - -Tất cả trạm đều có thể phát hiện xung đột
 - –Kkhi có xung đột → truyền lại

Môi trường cấp phát động kênh truyền (tt)

- Thời gian liên tục hoặc được phân khe
 - Thời gian liên tục (Continuous time): một trạm có thể truyền frame tại thời điểm bất kỳ
 - -Thời gian được phân khe (Slotted time): thời gian được chia thành các khe (slot), chỉ truyền frame tại thời điểm bắt đầu một khe thời gian.
- Cảm nhận/ Không cảm nhận truyền tải (Carrier sense/ No carrier sense)
 - Các trạm có thể cảm nhận được kênh truyền đang được sử dụng hay rảnh
 - Có trường hợp các trạm không thể cảm nhận được kênh truyền đang được sử dụng

III. Giao thức CSMA/CD

- Carrier Sense Multiple Access with Collision Detect (Đa truy cập cảm nhận truyền tải có phát hiện xung đột)
- Dùng trong tiêu chuấn mạng IEEE 802.3
- Nguyên tắc chung của các giao thức đa truy cập tương tự như nguyên tắc giao tiếp thông dụng:
 - -"Give everyone a chance to speak."
 - -"Don't speak until you are spoken to."
 - -"Don't monopolize the conversation."
 - -"Raise your hand if you have a question."
 - -"Don't interrupt when someone is speaking."
 - -"Don't fall a sleep when someone is talking."

CSMA/CD (tt)

 Ba trạng thái của đường truyền: Transmission (truyền), Contention (tranh chấp), Idle (nghỉ)

CSMA/CD (tt)

- Hoạt động khi cần truyền frame
 - Adapter nhận được một gói tin từ lớp mạng, đóng gói thành frame chuẩn bị truyền.
 - Adapter kiếm tra trạng thái đường truyền, nếu rỗi
 → truyền frame. Ngược lại → đợi.
 - 3. Trong khi truyền, adapter giám sát để phát hiện xung đột (do phần cứng).
 - Nếu không có xung đột → hoàn thành.
 Ngược lại → hủy bỏ (ngừng) truyền frame.
 - 5. Sau khi hủy bỏ, adapter sẽ đợi một khoảng thời gian ngẫu nhiên và sau đó quay về bước 2.

Giao thức CSMA/CD

IV. Giới thiệu các tiêu chuẩn IEEE 802

- Mang Ethernet 802.3
- Mang Fast Ethernet
- Mang Gigabit Ethernet
- Mang 10-Gigabit Ethernet
- Mang Token Ring 802.5
- Mang Wireless Lan 802.11
- IEEE 802.2 Logical Link Control (LLC, Điều khiển liên kết luận lý)

1. Mang Ethernet – 802.3

- Giới thiệu mạng Ethernet
- Nối cáp
- Mã hoá bit
- Giao thức lớp MAC
- Giải quyết xung đột

Mang Ethernet – 802.3

- Giới thiệu mạng Ethernet
 - –Xuất phát từ mạng LAN dạng CSMA/CD 2.94 Mbps của Xerox, mạng Ethernet
 - –1978, DEC, Intel, Xerox thiết lập tiêu chuẩn mạng Ethernet 10 Mbps, chuẩn DIX
 - -1983, chuẩn DIX trở thành IEEE 802.3
 - -Mạng Ethernet tiếp tục phát triển với các tốc độ cao hơn 100 Mbps, 1000 Mbps, ...

 Nối cáp: các loại dây cáp thông dụng: cáp đồng trục dày, cáp đồng trục mỏng, cáp đôi dây xoắn, cáp quang

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings

Một số dạng nối cáp
 10BASE2

10BASE-T

- Các dạng hình học của cáp
 - a. Tuyến tính b. Đường trục c. Cây d. Phân đoạn

Các dạng hình học của cáp (tt)

- Mã hoá bit
 - –Mã hoá nhị phân (binary encoding)
 - –Mã hoá Manchester (Manchester encoding)
 - Mã hoá Manchester vi phân (Differential Manchester encoding)

- Giao thức lớp MAC
 - -CSMA/CD

Bytes

Cấu trúc frame theo IEEE 802.3

6

6

0-1500

0-46

- Các trường trong Ethernet frame
 - -Preamble: 8 bytes
 - 7 bytes đầu: 10101010
 - Byte thứ 8 (SOF Start Of Frame): 10101011 đánh dấu bắt đầu frame
 - Destination address/ Source address: Địa chỉ MAC máy nhận/máy gởi (6 bytes địa chỉ card mạng)
 - -Length/Type: kích thước/loại frame
 - -Data: dữ liệu
 - Pad: đệm thêm vào để frame ≥ 64 bytes, từ yêu cầu phần cứng phát hiện xung đột
 - -Checksum: dùng trong phát hiện lỗi

Cấu trúc địa chỉ MAC

- Giải quyết xung đột
 - -Theo giao thức CSMA/CD
 - –Thời gian chờ ngẫu nhiên theo giải thuật dạng hàm mũ nhị phân (binary exponent backoff)
 - đơn vị tính là slotTime = 512 bit times
 - đối với mạng 10 Mbps, 1 bit time = 100 nanosec

- Giải quyết xung đột (tt)
 - Nếu có xung đột, mỗi máy chờ ngẫu nhiên trong thời gian 0 → 1 slotTime
 - Nếu có xung đột lần 2, mỗi máy chờ ngẫu nhiên trong thời gian 0 → 3 slotTime
 - –Nếu có xung đột lần i, mỗi máy chờ ngẫu nhiên trong thời gian 0 → 2ⁱ - 1 slotTime
 - –Từ xung đột lần 10, mỗi máy chờ ngẫu nhiên trong thời gian 0 → 1023 slotTime
 - -Nếu xung đột đến lần 16 thì báo lỗi

2. Mang Fast Ethernet

- Còn gọi là chuẩn IEEE 802.3u
- Giữ nguyên cấu trúc frame mạng Ethernet, giao thức CSMA/CD, tăng tốc độ 100 Mbps.
- 1 bit time = 10 nanosec
- Không dùng cáp đồng trục

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

3. Mang Gigabit Ethernet

- Còn gọi là chuẩn IEEE 802.3z
- Mở rộng mạng dạng Ethernet lên tốc độ 1000 Mbps
- Giữ cấu trúc frame, giao thức CSMA/CD
- Một số loại cáp mạng Gigabit Ethernet

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

Mang Gigabit Ethernet (tt)

Hai dạng kết nối mạng Gigabit Ethernet

-a. Hai trạm

b. Nhiều trạm

4. 10- Gigabit Ethernet

- Tốc độ cực nhanh, gấp 1000 lần so với Ethernet ban đầu
- Truyền full-duplex
- Không sử dụng CSMA/CD, tốc độ cao phụ thuộc vào chi tiết lớp vật lý

Name	Cable	Max. segment	Advantages
10GBase-SR	Fiber optics	Up to 300 m	Multimode fiber (0.85µ)
10GBase-LR	Fiber optics	10 km	Single-mode fiber (1.3µ)
10GBase-ER	Fiber optics	40 km	Single-mode fiber (1.5µ)
10GBase-CX4	4 Pairs of twinax	15 m	Twinaxial copper
10GBase-T	4 Pairs of UTP	100 m	Category 6a UTP

Nhận xét về các loại mạng Ethernet

- Đơn giản
 - -Giá thành rẻ
 - -Tin cậy
 - -Dễ bảo trì
- Hoạt động tốt với bộ giao thức TCP/IP
- Tiếp tục phát triển

Một số loại cáp mạng Ethernet

Ethernet Type	Bandwidth	Cable Type	Duplex	Maximum Distance
10Base-5	10 Mbps	Thicknet Coaxial	Half	500 m
10Base-2	10 Mbps	Thinnet Coaxial	Half	185 m
10Base-T	10 Mbps	Cat3/Cat5 UTP	Half	100 m
100Base-TX	100 Mbps	Cat5 UTP	Half	100 m
100Base-TX	200 Mbps	Cat5 UTP	Full	100 m
100Base-FX	100 Mbps	Multimode Fiber	Half	400 m
100Base-FX	200 Mbps	Multimode Fiber	Full	2 km
1000Base-T	1 Gbps	Cat5e UTP	Full	100 m
1000Base-TX	1 Gbps	Cat6 UTP	Full	100 m
1000Base-SX	1 Gbps	Multimode Fiber	Full	550 m
1000Base-LX	1 Gbps	Single-Mode Fiber	Full	2 km
10GBase-CX4	10 Gbps	Twin-axial	Full	100 m
10GBase-T	10 Gbps	Cat6a/Cat7 UTP	Full	100 m
10GBase-LX4	10 Gbps	Multimode Fiber	Full	300 m
10GBase-LX4	10 Gbps	Single-Mode Fiber	Full	10 km

5. Mang Token Ring – 802.5

- Giới thiệu mạng Token Ring
- Kết nối
- Sơ lược hoạt động

- Giới thiệu mạng Token Ring
 - -Xuất phát từ mạng Token Ring của IBM
 - → SNA (System Networks Architecture)
 - Bao gồm các dạng máy tính IBM: PC, Midrange,
 Mainframe
 - -Tiêu chuẩn IEEE 802.5

```
Tốc độ 4/16 Mbps 802.5
100 Mbps 802.5t
1000 Mbps 802.5v
```

- Kết nối mạng Token Ring
 - –Dùng Hub, còn gọi là Wire center, MAU
 (Multistation Access Unit) tạo vòng vật lý
 - -Token Ring NIC
 - -UTP, STP với RJ-45

- Sơ lược hoạt động mạng Token Ring:
 - -Có 1 frame đặc biệt (token) truyền trên vòng
 - –Một máy cần gởi frame:
 - · Chờ token, giữ token
 - Truyền data frame
 - Data frame theo vòng đến máy nhận
 - Máy nhận xác nhận trên frame
 - Data frame theo vòng trở về máy gởi
 - Máy gởi hủy frame, gởi lại token

Token xoay trên vòng

6. Mang Wireless Ethernet – 802.11

- Giới thiệu tiêu chuẩn IEEE 802.11
- Kết nối mạng 802.11
- Sơ lược hoạt động mạng 802.11

- Giới thiệu tiêu chuẩn IEEE 802.11
 - Là tiêu chuấn cho mạng cục bộ không dây (Wireless LAN)
 - -Dùng sóng điện từ với nhiều kỹ thuật cho lớp vật lý
 - –Các dạng tốc độ
 - 1 \rightarrow 2 Mbps : 802.11
 - 1 → 11 Mbps : 802.11b (Wi-Fi)
 - 5 Ghz band (~ 54 Mbps): 802.11a
 - 802.11g: tương đương 802.11a
 - 802.11n: 300 Mbps

Một phần các giao thức theo chuẩn 802.11

- Kết nối mạng 802.11
 - –Card mang không dây (Wireless NIC)
 - -Kết nối:
 - Có trạm nền (base station/access point)
 - Ngang hàng (peer nodes / ad hoc)

- Hai dạng kết nối mạng không dây
 - -a. Có dùng base station, còn gọi là access point
 - -b. Các máy gởi nhận trực tiếp, ad học networking

- Sơ lược hoạt động mạng 802.11
 - –Máy trạm phải liên kết (associate) để kết nối vào mạng (access point/peer)
 - –Máy trạm có thể tách (disassociate) khỏi trạm nền, hay thay đổi trạm nền khác (reassociate)
 - –Máy trạm có thể cần đăng nhập (authenticate) trước khi trao đổi dữ liệu

- Sơ lược hoạt động mạng 802.11 (tt)
 - –Sau khi thiết lập kết nối với mạng, mỗi máy có thể gởi frame theo tiêu chuẩn 802.11
 - –Dùng giao thức CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)
 - -Khi máy gởi truyền frame, máy nhận gởi ACK

7. Điều khiển liên kết luận lý (LLC)

- Chuẩn IEEE 802.2
- Giao thức LLC ở trên các giao thức MAC:
 - –Che dấu những khác biệt, tạo khuôn dạng và giao diện chung đối với lớp mạng
 - –Thực hiện kiểm soát lỗi, kiểm soát lưu lượng nếu cần thiết

LLC (tt)

- Quan hệ giữa các lớp
 a. Vị trí lớp con LLC
 - Network layer LLC Data link MAC layer Physical layer (a)

b. Quan hệ về dữ liệu

LLC (tt)

- Các dịch vụ của lớp LLC
 - Unacknowledged connectionless-mode: Gởi nhận không kiểm soát
 - Có các dạng point-to-point, multicast, broadcast
 - –Acknowledged connectionless-mode: Gởi nhận có xác nhận của máy nhận
 - dang point-to-point
 - -Connection-mode: Gởi nhận có thiết lập kết nối

V. Giới thiệu về Bridge, Switch

- Bridge (cầu nối)
- Switch (chuyến mạch)

(a) Which device is in which layer. (b) Frames, packets, and headers.

1. Bridge

- Muc dích:
 - -Kết nối các mạng LAN khác loại
 - -Mở rộng khoảng cách giữa các máy
 - -Chia mạng lớn thành các mạng nhỏ
- Khả năng:
 - –Lưu bảng chứa thông tin về MAC address và port
 - -Đọc, học được địa chỉ MAC lưu vào bảng
- Hoạt động: dạng store-and-forward
 - Nhận frame từ mạng nguồn
 - Thực hiện các xử lý cần thiết:
 - -Chuyển frame đến mạng đích
 - -Hủy

- Hoạt động: dạng store-and-forward, nhận frame từ mạng nguồn, thực hiện các xử lý cần thiết:
 - Nếu địa chỉ nguồn và đích ở cùng một port → hủy frame.
 - Nếu địa chỉ nguồn và địa chỉ đích ở các port khác nhau → chuyển tiếp frame tới port tương ứng địa chỉ đích.
 - 3. Nếu chưa biết địa chỉ đích ở port nào → gởi tràn ngập đến tất cả các port, ngoại trừ port nguồn

(a) Bridge connecting two multidrop LANs. (b) Bridges (and a hub) connecting seven point-to-point stations.

Hoạt động của bridge từ 802.11 sang 802.3

Kết nối các LAN từ xa dùng bridge

2. Switch

- Switch: bridge nhiều port, tốc độ cao, các port có thể có tốc độ khác nhau
- Đặc điểm:
 - Giảm xung đột → chỉ xung đột giữa máy và switch port
 - -Hoạt động ở chế độ full-duplex → không xung đột
 - -Có khả năng:
 - Kiểm tra checksum của fran
 - Học địa chỉ MAC
 - Loc frame (filtering frame)

- Các phương pháp chuyển mạch của switch:
 - –Cut through: nhận frame, kiểm tra đích đến → truyền (không kiểm tra checksum) → nhanh.
 - –Store an forward: kiểm tra frame, nếu không có lỗi thì truyền, ngược lại lọc bỏ.
 - –Fragment-free: kiểm tra frame đủ 64 bytes → truyền (không kiểm tra checksum)

Khả năng full-duplex của switch

Khả năng học địa chỉ MAC của switch:

So sánh Hub, Bridge, Switch

Hub	Bridge	Switch			
Physical	DataLink				
Nhiều port	Ít port	Nhiều port			
hub là một collision domain	Mỗi port là một collision domain				
Tốc độ chậm	Tốc độ chậm	Tốc độ nhanh, bộ đệm lớn			
	Đọc, học địa chỉ MAC				
Half duplex	Full duplex				
Dữ liệu đến truyền ra tất cả các port	store-and-forward, Filter, flood frames				
		Các cổng có tốc độ khác nhau			
Đường truyền bị chia sẻ cho các port	Không bị chia sẻ				