Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ по расчетному заданию

«Нелинейное программирование» Системный анализ и принятие решений

Работу выполнил студент группа 33501/4 Дьячков В.В. Преподаватель

Сабонис С.С.

Санкт-Петербург 10 ноября 2017 г.

Содержание

1	Tex	ническое задание	3
2	Исх	кодные данные	3
3	Ана	алитическое решение	3
4	Pen	пение методом релаксации	4
	4.1	Описание метода	4
	4.2	Исходный код	5
	4.3	Траектории поиска	
5	Pen	пение методом наискорейшего подъема	7
	5.1	Описание метода	7
	5.2	Исходный код	
	5.3	Траектории поиска	
6	Pen	пение методом Ньютона	9
	6.1	Описание метода	9
	6.2	Исходный код	
	6.3	Траектории поиска	9
7	Pen	пение методом сопряженных градиентов	11
	7.1	Описание метода	11
	7.2	Исходный код	
	7.3	Траектории поиска	
8	Pen	пение методом Бройдена	13
	8.1	Описание метода	13
	8.2	Исходный код	
	8.3	Траектории поиска	
\mathbf{C}	пис	ок иллюстраций	
	4.1	Траектории поиска методом релаксации	6
	5.1	Траектории поиска методом наискорейшего подъема	
	6.1	Траектории поиска методом Ньютона	
	7.1	Траектории поиска методом сопряженных градиентов	
	8.1	Траектории поиска методом Бройдена	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

1. Техническое задание

- 1. Записать необходимые условия оптимальности для задачи и решить задачу аналитически;
- 2. Решить задачу методом релаксации;
- 3. Решить задачу методом наискорейшего подъема;
- 4. Решить задачу методом Ньютона;
- 5. Решить задачу методом сопряженных градиентов;
- 6. Решить задачу методом Бройдена.

2. Исходные данные

Вариант 32 Дана задача нелинейного программирования:

$$\max f(X) = \max \left(-31x_1^2 - 34x_2^2 + 4x_1x_2 + 286x_1 + 388x_2\right)$$

3. Аналитическое решение

Необходимое условие максимума первого порядка. Пусть f(X) дифференцируема в точке $X^* \in \mathbb{R}^n$. Тогда если X^* – локальный экстремум, то $f'(X^*) = 0$.

Достаточное условие максимума второго порядка. Пусть f(X) дважды дифференцируема в точке $X^* \in R^n$. Тогда если $f'(X^*) = 0$, матрица $H(X^*)$ отрицательно определена (полуопределена), то X^* – строгий (нестрогий) локальный экстремум.

Вычислим частные производные 1 и 2 порядка:

$$\frac{\partial f}{\partial x_1}(X) = -62x_1 + 4x_2 + 286 \qquad \qquad \frac{\partial f}{\partial x_2}(X) = -68x_2 + 4x_1 + 388$$

$$\frac{\partial^2 f}{\partial x_1^2}(X) = -62 \qquad \qquad \frac{\partial^2 f}{\partial x_1 \partial x_2}(X) = 4 \qquad \qquad \frac{\partial^2 f}{\partial x_2^2}(X) = -68$$

Следовательно матрица Гессе H(X) равна:

$$H(X) = H = \begin{pmatrix} -62 & 4\\ 4 & -68 \end{pmatrix}$$

Критерий отрицательной определенности квадратичной формы. Для отрицательной определенности квадратичной формы необходимо и достаточно, чтобы угловые миноры четного порядка ее матрицы были положительны, а нечетного порядка — отрицательны.

Найдем главные миноры матрицы H:

$$\Delta_1 = \begin{vmatrix} -62 \end{vmatrix} = -62$$

$$\Delta_2 = \begin{vmatrix} -62 & 4 \\ 4 & -68 \end{vmatrix} = 4200$$

По критерию отрицательной определенности квадратичной формы, матрица H отрицательно определена (выполнено достаточное условие максимума второго порядка).

Найдем точку X^* :

$$\begin{cases}
-68x_2 + 4x_1 + 388 = 0 \\
-62x_1 + 4x_2 + 286 = 0
\end{cases} \Rightarrow \begin{cases}
x_1 = 17x_2 - 97 \\
-62 \cdot (17x_2 - 97) + 4x_2 + 286 = 0
\end{cases} \Rightarrow \begin{cases}
x_1 = 17x_2 - 97 \\
-1050x_2 + 6300 = 0
\end{cases} \Rightarrow \begin{cases}
x_1 = 17x_2 - 97 \\
x_2 = 6
\end{cases} \Rightarrow \begin{cases}
x_1 = 5 \\
x_2 = 6
\end{cases}$$

Следовательно максимум функции f(X) достигается в точке $X^*=(5,6)$: $f(X^*)=1879$.

4. Решение методом релаксации

4.1. Описание метода

Траектория поиска решения:

$$X^{(i+1,j)} = X^{(i,j)} + t^{(i)}K^{(i,j)},$$

где $t^{(i)}$ – длина шага, $K^{(i)}$ – вектор направления.

$$t^{(i)} = -\frac{\nabla^T f\left(X^{(i)}\right) K^{(i)}}{K^{(i)^T} H\left(X^{(i)}\right) K^{(i)}}$$

$$K^{(i,j)} = \begin{bmatrix} K_1^{(i,j)} & \cdots & K_n^{(i,j)} \end{bmatrix}$$

$$K_k^{(i,j)} = \begin{cases} \frac{\partial f}{\partial x_j} \left(X^{(i,j)}\right), & k = j \\ 0, & k \neq j \end{cases}$$

4.2. Исходный код

```
import numpy as np
  from sympy import *
  def relaxation(y, f, symbols, x_init, max_step):
       M = len(symbols)
       derivs = [y.diff(sym) for sym in symbols]
       H = np. array (hessian (y, symbols))
9
       X = [np.array(x init, dtype=float)]
10
       step = 0
        while step < max step:
12
13
            x = X[-1]
             for j in range (M):
14
15
                  x = x.copy()
                  x_curr = \{symbols[j]: X[-1][j] \text{ for } j \text{ in } range(M)\}
16
                  grad = np.array([derivs[i].subs(x_curr) for i in range(M)])
17
                  \mathtt{grad} \ = \ \mathtt{grad} \, . \, \, \mathtt{astype} \, (\, \mathtt{np.float} \, 3 \, 2 \, )
18
19
                 K = np. zeros(M)
20
                 K[j] = derivs[j].subs(x curr)
21
                  t \ = \ -\,grad\,.\,T\,.\,dot\,(K[\,np\,.\,newaxis\,]\,.\,T) \ / \ K.\,dot\,(H)\,.\,dot\,(K)
22
23
                 x[j] += t * K[j]
24
                 X.append(x)
25
26
             if np.allclose (X[-2], X[-1]) or np.allclose (f(X[-2]), f(X[-1])):
27
28
29
             step += 1
30
31
        return X
```

Листинг 1: relaxation.py

4.3. Траектории поиска

Выберем 4 начальные точки разной степени удаленности от оптимальной ($x_1 = 5, x_2 = 6$):

1. $x_1 = 0, x_2 = 0$

3. $x_1 = 6, x_2 = 5$

2. $x_1 = 1, x_2 = 8$

4. $x_1 = 10, x_2 = 10$

x_1	x_2	f(X)
0.000	0.000	0.000
4.613	0.000	659.645
4.613	5.977	1874.372
4.999	5.977	1878.982
4.999	6.000	1879.000

Таблица 4.1: X = (0,0)

x_1	x_2	f(X)
1.000	8.000	1 215.000
5.129	8.000	1743.516
5.129	6.008	1878.486
5.000	6.008	1878.998
5.000	6.000	1879.000

Таблица 4.2: X = (1,8)

x_1	x_2	f(X)
6.000	5.000	1810.000
4.935	5.000	1845.129
4.935	5.996	1878.871
5.000	5.996	1879.000
5.000	6.000	1879.000

Таблица 4.3: X = (6, 5)

x_1	x_2	f(X)
10.000	10.000	640.000
5.258	10.000	1 337.065
5.258	6.015	1876.943
5.001	6.015	1878.992
5.001	6.000	1879.000

Таблица 4.4: X = (10, 10)

На рис. 4.1 изображены траектории поиска точки максимума X=(5,6) методом релаксации при разных начальных точках.

Рис. 4.1: Траектории поиска методом релаксации

5. Решение методом наискорейшего подъема

5.1. Описание метода

Траектория поиска решения:

$$X^{(i+1)} = X^{(i)} + t^{(i)}K^{(i)},$$

где $t^{(i)}$ – длина шага, $K^{(i)}$ – вектор направления.

$$t^{(i)} = -\frac{\nabla^T f\left(X^{(i)}\right) K^{(i)}}{K^{(i)^T} H\left(X^{(i)}\right) K^{(i)}}$$
$$K^{(i)} = \nabla f(X)$$

5.2. Исходный код

```
import numpy as np
  from sympy import *
  def steepest_ascent(y, f, symbols, x_init, max_step):
      M = len(symbols)
       derivs = [y.diff(sym) for sym in symbols]
       H = np.array(hessian(y, symbols))
       X = [np.array(x init, dtype=np.float32)]
       step = 0
       while step < max step:
12
           x_curr = \{symbols[j]: X[-1][j] \text{ for } j \text{ in } range(M)\}
13
14
           grad = np.array([derivs[i].subs(x curr) for i in range(M)])
15
           grad = grad.astype(np.float32)
16
17
           t = -grad.dot(grad[np.newaxis].T) / grad.dot(H).dot(grad)
18
           x \text{ temp} = \text{np.array}(X[-1] + t * \text{grad}, \text{dtype=np.float32})
19
20
           if np.allclose (X[-1], x \text{ temp}) or np.allclose (f(X[-1]), f(x \text{ temp}), rtol=1)
21
      e-6):
                break
22
23
           X. append (x temp)
24
           step += 1
25
26
       return X
```

Листинг 2: steepest ascent.py

5.3. Траектории поиска

Выберем 4 начальные точки разной степени удаленности от оптимальной ($x_1=5, x_2=6$):

-1			\circ			\sim
	x_1	=	()	x_2	=	0
т.	ω		$\mathbf{v}_{\mathbf{i}}$	ω_{Z}		\circ

2.
$$x_1 = 1, x_2 = 8$$

x_1	x_2	f(X)
0.000	0.000	0.000
4.608	6.251	1871.693
4.981	5.977	1878.972
4.998	6.001	1879.000

Таблица 5.1:
$$X = (0,0)$$

x_1	x_2	f(X)
1.000	8.000	1 215.000
4.817	5.734	1875.745
4.980	6.010	1878.984
4.999	5.999	1879.000

3. $x_1 = 6, x_2 = 5$

4. $x_1 = 10, x_2 = 10$

Таблица 5.2: X = (1,8)

x_1	x_2	f(X)
6.000	5.000	1810.000
5.047	6.040	1878.886
5.002	5.998	1879.000

Таблица 5.3: X = (6, 5)

x_1	x_2	f(X)
10.000	10.000	640.000
5.148	5.841	1877.369
5.007	6.005	1878.998
5.000	6.000	1879.000

Таблица 5.4: X = (10, 10)

На рис. 5.1 изображены траектории поиска точки максимума X=(5,6) методом наискорейшего подъема при разных начальных точках.

Рис. 5.1: Траектории поиска методом наискорейшего подъема

6. Решение методом Ньютона

6.1. Описание метода

Траектория поиска решения:

$$X^{(i+1)} = X^{(i)} + t^{(i)}K^{(i)},$$

где $t^{(i)}$ – длина шага, $K^{(i)}$ – вектор направления.

$$t^{(i)} = t \equiv 1$$

$$K^{(i)} = -H^{-1}\left(X^{(i)}\right)\nabla f(X)$$

Для квадратичных функций метод Ньютона сходится за 1 шаг.

6.2. Исходный код

```
import numpy as np
  from sympy import *
   def newton(y, f, symbols, x_init, max_step):
       M = len(symbols)
        derivs = [y.diff(sym) for sym in symbols]
        Hinv = np.array(hessian(y, symbols).inv())
        X = [np.array(x init, dtype=np.float32)]
10
        step = 0
        while step < max step:
12
             x\_curr \, = \, \{\, symbols \, [\, j \, ] \, \colon \, \, X[\, \text{--}\, 1] \, [\, j \, ] \quad for \quad j \quad in \quad range \, (M) \, \}
14
             grad = np.array([derivs[i].subs(x_curr) for i in range(M)])
15
             grad = grad.astype(np.float32)
16
17
             x \text{ temp} = \text{np.array}(X[-1] - \text{Hinv.dot}(\text{grad}))
18
19
             x \text{ temp} = x \text{ temp. astype} (np.float 32)
20
             if np. allclose (X[-1], x \text{ temp}) or np. allclose (f(X[-1]), f(x \text{ temp})):
                   break
22
23
             X. append (x temp)
24
             step += 1
25
26
        return X
```

Листинг 3: newton.py

6.3. Траектории поиска

Выберем 4 начальные точки разной степени удаленности от оптимальной $(x_1=5,x_2=6)$:

- 1. $x_1 = 0, x_2 = 0$
- 2. $x_1 = 1, x_2 = 8$

3.	x_1	=	6.	x_2	=	5
υ.	ω	_	\mathbf{v}	ω_{j}		\circ

4.
$$x_1 = 10, x_2 = 10$$

x_1	x_2	f(X)
0.000	0.000	0.000
5.000	6.000	1879.000

Таблица 6.1: X = (0,0)

x_1	x_2	f(X)
1.000	8.000	1 215.000
5.000	6.000	1879.000

Таблица 6.2: X = (1,8)

x_1	x_2	f(X)
6.000	5.000	1810.000
5.000	6.000	1879.000

Таблица 6.3: X = (6, 5)

x_1	x_2	f(X)
10.000	10.000	640.000
5.000	6.000	1879.000

Таблица 6.4: X = (10, 10)

На рис. 6.1 изображены траектории поиска точки максимума X=(5,6) методом Ньютона при разных начальных точках.

Рис. 6.1: Траектории поиска методом Ньютона

7. Решение методом сопряженных градиентов

7.1. Описание метода

Траектория поиска решения:

$$X^{(i+1)} = X^{(i)} + t^{(i)}K^{(i)}.$$

где $t^{(i)}$ – длина шага, $K^{(i)}$ – вектор направления.

$$t^{(i)} = -\frac{\nabla^{I} f(X^{(i)}) K^{(i)}}{K^{(i)^{T}} H(X^{(i)}) K^{(i)}}$$

$$K^{(i)} = \begin{cases} \nabla f(X^{(i)}), & i = 0\\ \nabla f(X^{(i)}) + \frac{\|\nabla f(X^{(i)})\|^{2}}{\|\nabla f(X^{(i-1)})\|^{2}} \nabla f(X^{(i-1)}), & i \neq 0 \end{cases}$$

Для квадратичных функций число шагов равно числу переменных.

7.2. Исходный код

```
import numpy as np
  from numpy.linalg import norm
  from sympy import *
  def conjugate_gradients(y, f, symbols, x_init, max_step):
      M = len(symbols)
      derivs = [y.diff(sym) for sym in symbols]
      H = np. array(hessian(y, symbols))
      X = [np.array(x init, dtype=np.float32)]
      step = 0
      while step < max step:
12
           x_{curr} = \{symbols[j]: X[-1][j] \text{ for } j \text{ in } range(M)\}
13
           grad = np.array([derivs[i].subs(x curr) for i in range(M)])
14
           grad = grad.astype(np.float32)
15
           K = grad
16
           if step > 0:
17
               x \text{ prev} = \{symbols[j]: X[-2][j] \text{ for } j \text{ in } range(M)\}
18
               grad prev = np.array([derivs[i].subs(x prev) for i in range(M)])
               grad prev = grad prev.astype(np.float32)
20
               K += norm(grad) ** 2 / norm(grad prev) ** 2 * grad prev
21
22
           t = -grad.dot(grad[np.newaxis].T) / grad.dot(H).dot(grad)
23
           x_{temp} = np. array(X[-1] + t * K, dtype=np.float32)
24
           if np.allclose(X[-1], x_temp) or np.allclose(f(X[-1]), f(x_temp)):
25
               break
26
           X. append (x temp)
27
           step += 1
28
      return X
```

Листинг 4: conjugate_gradients.py

7.3. Траектории поиска

Выберем 4 начальные точки разной степени удаленности от оптимальной $(x_1=5,x_2=6)$:

1.
$$x_1 = 0, x_2 = 0$$

2.
$$x_1 = 1, x_2 = 8$$

x_1	x_2	f(X)
0.000	0.000	0.000
4.608	6.251	1871.693
5.002	5.999	1879.000

Таблица 7.1:
$$X = (0, 0)$$

3. $x_1 = 6, x_2 = 5$)
-----------------------	---

4.
$$x_1 = 10, x_2 = 10$$

x_1	x_2	f(X)
1.000	8.000	1215.000
4.817	5.734	1875.745
5.001	6.001	1879.000

Таблица 7.2: X = (1, 8)

x_1	x_2	f(X)
6.000	5.000	1810.000
5.047	6.040	1878.886
5.000	6.000	1879.000

Таблица 7.3: X = (6, 5)

x_1	x_2	f(X)
10.000	10.000	640.000
5.148	5.841	1877.369
5.000	6.000	1879.000

Таблица 7.4: X = (10, 10)

На рис. 7.1 изображены траектории поиска точки максимума X=(5,6) методом сопряженных градиентов при разных начальных точках.

Рис. 7.1: Траектории поиска методом сопряженных градиентов

8. Решение методом Бройдена

8.1. Описание метода

Траектория поиска решения:

$$X^{(i+1)} = X^{(i)} + t^{(i)}K^{(i)}.$$

где $t^{(i)}$ – длина шага, $K^{(i)}$ – вектор направления.

$$\begin{split} t^{(i)} &= -\frac{\nabla^T f\left(X^{(i)}\right) K^{(i)}}{K^{(i)^T} H\left(X^{(i)}\right) K^{(i)}} \\ K^{(i)} &= -\eta^{(i)} \nabla f\left(X^{(i)}\right) \\ \eta^{(i)} &= \begin{cases} -E, & i = 0 \\ \eta^{(i-1)} + \Delta \eta^{(i-1)}, & i \neq 0 \end{cases} \\ \Delta \eta^{(i-1)} &= \frac{z^{(i-1)} \left(z^{(i-1)}\right)^T}{\left(z^{(i-1)}\right)^T \Delta g^{(i-1)}} \\ z^{(i-1)} &= X^{(i)} - X^{(i-1)} - \eta^{(i-1)} \Delta g^{(i-1)} \\ \Delta g^{(i-1)} &= \nabla f\left(X^{(i)}\right) - \nabla f\left(X^{(i-1)}\right) \end{split}$$

8.2. Исходный код

```
import numpy as np
  from sympy import *
  def broyden(y, f, symbols, x_init, max_step):
      M = len(symbols)
      derivs = [y.diff(sym) for sym in symbols]
      H = np.array(hessian(y, symbols))
      X = [np.array(x init, dtype=np.float32)]
      G = []
10
      N = []
      Z = []
12
13
       step = 0
       while step < max_step:
14
           x \text{ curr} = \{symbols[j]: X[-1][j] \text{ for } j \text{ in } range(M)\}
16
           grad = np.array([derivs[i].subs(x curr) for i in range(M)])
17
           grad = grad.astype(np.float32)
18
19
           if step == 0:
20
               n = -np. eye(M)
21
               N. append (n)
```

```
else:
23
                  x_prev = \{symbols[j]: X[-2][j] \text{ for } j \text{ in } range(M)\}
24
                  grad_prev = np.array([derivs[i].subs(x_prev) for i in range(M)])
25
                  grad_prev = grad_prev.astype(np.float32)
26
27
                  delta_g = grad - grad_prev
28
                  delta_X = X[-1] - X[-\overline{2}]
                  z = \overline{delta}X - N[-1].dot(delta\_g)
30
                  Z.append(z)
31
32
                  zm = z [np. newaxis] # 1x2
                  delta nu = zm.T.dot(zm) / zm.dot(delta g[np.newaxis].T)
34
                  n \, = \, N \left[ \, \hbox{--} 1 \, \right] \, + \, d \, e l \, t \, a \, \underline{\hspace{0.2cm}} \, n \, u
35
                  N.append(n)
36
37
            K = -n.dot(grad[np.newaxis].T).flatten()
38
             t = -grad.dot(grad[np.newaxis].T) / grad.dot(H).dot(grad[np.newaxis].T)
39
            x \text{ temp} = \text{np.array}(X[-1] + t * K, dtype=np.float32)
40
41
             if np.allclose(X[-1], x_temp) or np.allclose(f(X[-1]), f(x_temp)):
42
                  break
43
44
            X. append (x temp)
45
             step += 1
46
47
        return X
```

Листинг 5: broyden.py

8.3. Траектории поиска

Выберем 4 начальные точки разной степени удаленности от оптимальной $(x_1 = 5, x_2 = 6)$:

1.
$$x_1 = 0, x_2 = 0$$

2.
$$x_1 = 1, x_2 = 8$$

3.
$$x_1 = 6, x_2 = 5$$

4.
$$x_1 = 10, x_2 = 10$$

x_1	x_2	f(X)
0.000	0.000	0.000
4.608	6.251	1871.693
4.997	6.002	1879.000

Таблица 8.1: X = (0,0)

x_1	x_2	f(X)
1.000	8.000	1215.000
4.817	5.734	1875.745
4.998	5.997	1879.000

Таблица 8.2: X = (1, 8)

x_1	$x_2 \qquad f(X)$			
6.000	5.000	1810.000		
5.047	6.040	1878.886		
5.000	6.000	1879.000		

Таблица	8.3:	X	= ((6, 5)	(
тасында	\circ . \circ .	~ 1	,	$, \circ, \circ$,,

x_1	x_2	f(X)
10.000	10.000	640.000
5.148	5.841	1877.369
5.000	6.000	1879.000

Таблица 8.4: X = (10, 10)

На рис. 8.1 изображены траектории поиска точки максимума X=(5,6) методом Бройдена при разных начальных точках.

Рис. 8.1: Траектории поиска методом Бройдена