

جامعـــة University الأميــرة سميّــة for Technology للتكنولوجيا

PHYSICS LAB

(20147)

Experiment No. 7

Simple Harmonic Motion II Combination of Two Springs

Name:	. Reg. No. ()
Partner Name:	. Class ()
Date / / 20	Mark ()

a • •	TT .	TA /F / •	α .	4 •	•	•
Simple	Harmonic	MATION	('Amhin	ofion	of tv	ON CHPINGS
MILLIPIC	TIAL HIVIIIC	141()(1()11)	COMBOIL	lauvii	UI LY	70 9DI 11129
						· · · · · · · · · · · · · · · · · · ·

1. Objectives:			
2. Apparatus:			
3. Data:			
a . Complete the following tables			

Original Length of the spring $L_o = \underline{\hspace{1cm}}$ cm

1. Single spring 1

No.	Mass M (gm)	Length of the spring L (cm)	Elongation of the spring $X = L-L_o$ (cm)
1			
2			
3			
4			
5			
6			
7			
8			
9			

1. Single spring 2

Original Length of the spring $L_o = \underline{\hspace{1cm}}$ cm

No.	Mass M (gm)	Length of the spring L (cm)	Elongation of the spring $X = L-L_0$ (cm)
1			
2			
3			
4			
5			
6			
7			
8			
9			

b) Plot a graph of M against x on a graph paper for spring 1. From the graph, find the spring constant k						
	_					
	_					

c) Plot a graph of M against x on a graph paper for spring 2. From the graph, find the spring constant k2

d) Complete the following table for the two springs in **series**:

	1		
No.	Mass M (gm)	Length of the spring L (cm)	Elongation of the spring $X = L-L_0$ (cm)
1			
2			
3			
4			
5			
6			
7			
8			
9			

e) Complete the following table for the two springs in **parallel**:

No.	Mass M (gm)	Length of the spring L (cm)	Elongation of the spring $X = L-L_o$ (cm)
1			
2			
3			
4			
5			
6			
7			
8			
9			

f) Plot a graph of F against x on a graph j	paper for two	springs in serie	es. From the	graph,	find the
equivalent spring constant ke.					

g) P	Plot a graph of F agains	st x on a graph paper fo	or two springs in paralle	l. From the graph	, find the
equi	ivalent spring constant	ke.			

e) Calculate t	he theoretical values of k _e :
1. In case	of series connection.
2. In case	of parallel connection.
f) Calculate the	he percentage error in the value of k _e in each case.

Questions:

1. A spring of force constant 10000 dyne/cm is cutting into 5 identical pieces and rearranged as shown in the figure below. A mass of 5 kg is hanged at the lower end and set to vibrate about its equilibrium position.

a) Find the equivalent force constant (keq) of the combination.

b) Find the period	d of vibration.			