Q1: For each of the following, complete the diagram so it has a shaded region and a probability statement, like in the example below.

P(Z < 0.6) = 0.7257

a: Shade the region and evaluate the probability P(Z < -1.4).

P(Z < -1.4) =

b: Shade the region and evaluate the probability P(Z < 2).

P(Z < 2) =

c: From the shaded region, evaluate the probability.

The area under $\varphi(z)$ from $-\infty$ to ∞ is 1. Also, the function $\varphi(z)$ is symmetric. This leads to a useful property:

$$\Phi(-z) = 1 - \Phi(z)$$

There are five common areas we are asked to find: left, right, sectional, central (symmetric), and two-tailed (symmetric).

Left area =
$$P(Z < z)$$

= $\Phi(z)$

Right area =
$$P(Z > z)$$

= $1 - \Phi(z)$
= $\Phi(-z)$

Sectional area =
$$P(z_1 < Z < z_2)$$

= $\Phi(z_2) - \Phi(z_1)$

Central area =
$$P(|Z| < z)$$

= $\Phi(z) - \Phi(-z)$
= $1 - 2\Phi(-z)$
= $2\Phi(z) - 1$

Two-tailed area =
$$P(|Z| > z)$$

= $1 - \Phi(z) + \Phi(-z)$
= $2 - 2\Phi(z)$
= $2\Phi(-z)$

- **Q2:** For each of the following, complete the diagram so it has a shaded region and a probability statement. Also, notice that you can estimate the probability by counting the number of shaded squares; each unit square is worth 1%.
 - **a:** Shade the region of and evaluate the probability that *Z* is more than 1.6.

b: Shade the region of and evaluate the probability that Z is between 0.4 and 0.6.

c: Shade the region of and evaluate the probability that Z is between 1 and 2.

d: Shade the region of and evaluate the probability that Z is between -0.4 and 0.4.

e: Shade the region of and evaluate the probability that Z is less than -0.4 or more than 0.4.

This diagram might be useful. Some of the areas seem to add imperfectly because these numbers are all rounded. Also, it should be noted that $\Phi(-3) = 0.00135 \neq 0$.

https://en.wikipedia.org/wiki/68-95-99.7_rule

Q3: By using the standard normal table (or the 68-95-99.7 rule), you should be able to determine the following probabilities. For each question, determine the probability (area) of the shaded region or regions. In cases where the bound could be -3 or 3, use $-\infty$ or ∞ instead. Write the answer using the "P(condition) = number" format.

a:

f:

b:

g:

c:

h:

d:

i:

e:

j:

We have practiced finding areas from *z*-scores. We might also want to find *z*-scores from areas. You'll need to use your standard normal table backwards.

- **Q4:** a: Determine z_0 such that $\Phi(z_0) = 0.0505$.
 - **b:** Determine z_1 such that $\Phi(z_1) \approx 0.99$.
 - c: Determine z_2 such that $P(Z < z_2) = 55.57\%$
 - **d:** Determine z_3 such that $P(Z > z_3) = 15.87\%$
 - **e:** Determine z_4 such that $P(-z_4 < Z < z_4) = 68.2\%$
 - **f:** Determine z_5 such that $P(|Z| < z_5) = 95\%$
 - **g:** Determine z_6 such that $P(|Z| < z_6) = 90\%$
 - **h:** Determine z_7 such that $P(|Z| > z_7) = 10\%$

Q5:	If the scores on a test are normally distributed with a mean of 80 and a standard deviation of 10, what score is the 84.1th percentile? (Hint: check out the 68-95-99.7 rule.)
Q6:	If the scores on a test are normally distributed with a mean of 80 and a standard deviation of 10, what score is the 97.7th percentile?
Q7:	If the scores on a test are normally distributed with a mean of 80 and a standard deviation of 10, what score is the 90th percentile?
Q8:	What is the z-score such that 68.2% of the area lies between $-z$ and z ? (Hint: check out the $68-95-99.7$ rule.)
Q9:	What is the z-score such that 95.4% of the area lies between $-z$ and z ?
Q10:	What is the z-score such that 80% of the area lies between $-z$ and z ?

A1: a: P(Z < -1.4) = 0.0808

b:
$$P(Z < 2) = 0.9772$$

c:
$$P(Z < -0.2) = 0.4207$$

A2: a: P(Z > 1.6) = 0.0548

b: P(0.4 < Z < 0.6) = 0.0703

c: P(1 < Z < 2) = 0.1359

d: P(|Z| < 0.4) = 0.3108

e: P(|Z| > 0.4) = 0.6892

A3: a:
$$P(Z < -1) = 0.159$$

b:
$$P(Z < 0) = 0.5$$

c:
$$P(Z < 1) = 0.841$$

d:
$$P(-1 < Z) = 0.841$$

e:
$$P(0 < Z < 1) = 0.341$$

f:
$$P(0 < Z < 2) = 0.477$$

g:
$$P(|Z| < 1) = 0.682$$

h:
$$P(|Z| < 2) = 0.954$$

i:
$$P(|Z| > 2) = 0.046$$

j:
$$P(|Z| > 1) = 0.318$$

A4: a:
$$z_0 = -1.64$$

b:
$$z_1 = 2.33$$

c:
$$z_2 = 0.14$$

d:
$$z_3 = 1$$

e:
$$z_4 = 1$$

f:
$$z_5 = 1.96$$

g:
$$z_6 = 1.64$$

h:
$$z_7 = 1.64$$

A7:
$$z = 1.28$$
 $(1.28)(10) + 80 \approx 92.8$

A8:
$$z = 1$$

A9:
$$z = 2$$

A10:
$$z = 1.28$$