CMPS 101

Algorithms and Abstract Data Types

Fall 2018

Midterm Exam 1 Solutions

- 1. (20 Points) Determine whether the following statements are true or false. Prove or disprove each statement accordingly.
 - a. (10 Points) If a < b, then $a^n = o(b^n)$. True

Proof:

Since
$$\frac{a}{b} < 1$$
 we have $\lim_{n \to \infty} \left(\frac{a^n}{b^n} \right) = \lim_{n \to \infty} \left(\frac{a}{b} \right)^n = 0$, whence $a^n = o(b^n)$.

b. (10 Points) If a > b, then $a^{\log_b(n)} = \omega(n)$. **True**

Proof:

Since a > b, we have $\log_b(a) > \log_b(b) = 1$, and $\log_b(a) - 1 > 0$. Therefore

$$\lim_{n\to\infty} \left(\frac{a^{\log_b(n)}}{n}\right) = \lim_{n\to\infty} \left(\frac{n^{\log_b(a)}}{n}\right) = \lim_{n\to\infty} \left(n^{\log_b(a)-1}\right) = \infty,$$

and hence $a^{\log_b(n)} = \omega(n)$.

2. (20 Points) Use Stirling's formula to prove that $\log(n!) = \Theta(n \log(n))$.

Proof:

Taking log (any base) of both sides of Stirling's formula, and using the laws of logarithms, we get

$$\log(n!) = \log\left(\sqrt{2\pi n} \cdot (n/e)^n \cdot \left(1 + \Theta(1/n)\right)\right)$$

$$= \log\sqrt{2\pi n} + \log(n/e)^n + \log(1 + \Theta(1/n))$$

$$= \frac{1}{2}\log(2\pi) + \frac{1}{2}\log(n) + n\log(n) - n\log(e) + \log(1 + \Theta(1/n)).$$

Therefore

$$\frac{\log(n!)}{n\log(n)} = \frac{\log(2\pi)}{2n\log(n)} + \frac{1}{2n} + 1 - \frac{\log(e)}{\log(n)} + \frac{\log(1+\Theta(1/n))}{n\log(n)},$$

and hence

$$\lim_{n\to\infty}\left(\frac{\log(n!)}{n\log(n)}\right)=1.$$

Thus $\log(n!) = \Theta(n \log(n))$, as claimed.

3. (20 Points) Consider the following algorithm that wastes time.

WasteTime(n) (pre: $n \ge 1$)

- 1. if n = 1
- 2. waste 2 units of time
- 3. else
- 4. WasteTime([n/2])
- 5. WasteTime($\lfloor n/2 \rfloor$)
- 6. waste 5 units of time
- a. (10 Points) Write a recurrence relation for the number of units of time T(n) wasted by this algorithm.

Solution:

$$T(n) = \begin{cases} 2 & n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 5 & n \ge 2 \end{cases}$$

b. (10 Points) Show that T(n) = 7n - 5 is the solution to this recurrence. (Hint: you may use without proof the fact that $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$.)

Proof:

First observe that if T(n) = 7n - 5, then T(1) = 7 - 5 = 2. Second, if $n \ge 2$ we have

RHS =
$$T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 5$$

= $(7\lceil n/2 \rceil - 5) + (7\lfloor n/2 \rfloor - 5) + 5$
= $7(\lceil n/2 \rceil + \lfloor n/2 \rfloor) - 5$
= $7n - 5 = T(n) = LHS$,

showing that T(n) = 7n - 5 solves the recurrence.

4. (20 Points) Let T(n) be defined by the recurrence formula

$$T(n) = \begin{cases} 1 & n = 1 \\ T(\lfloor n/2 \rfloor) + n^2 & n \ge 2 \end{cases}$$

a. (4 Points) Determine the values T(2), T(3), T(4) and T(5).

Solution:

$$T(2) = T(1) + 2^2 = 1 + 4 = 5$$

$$T(3) = T(1) + 3^3 = 1 + 9 = 10$$

$$T(4) = T(2) + 4^2 = 5 + 16 = 21$$

$$T(5) = T(2) + 5^2 = 5 + 25 = 30$$

b. (16 Points) Prove that $T(n) \le \frac{4}{3}n^2$ for all $n \ge 1$. (Hint: use strong induction.)

Proof:

Base Step

Observe that $T(1) = 1 \le 4/3 = (4/3) \cdot 1^2$, which establishes the base case.

Induction Step (IId)

Let n > 1 be chosen arbitrarily. Assume for all k in the range $1 \le k < n$ that $T(k) \le (4/3)k^2$. We must show as a consequence that $T(n) \le (4/3)n^2$. Observe

$$T(n) = T(\lfloor n/2 \rfloor) + n^2$$
 by the recurrence formula for $T(n)$
 $\leq (4/3)\lfloor n/2 \rfloor^2 + n^2$ by the induction hypothesis with $k = \lfloor n/2 \rfloor$
 $\leq (4/3)(n/2)^2 + n^2$ since $\lfloor x \rfloor \leq x$ for any x
 $= n^2/3 + n^2$
 $= (4/3)n^2$,

as required. It follows from the second principle of mathematical induction that $T(n) \le \frac{4}{3}n^2$ for all $n \ge 1$.

5. (20 Points) Prove that for all $n \ge 1$: if T is a tree on n vertices, then T has n-1 edges. (Hint: you may use the following fact without proof: removing an edge from a tree results in exactly two trees, each with fewer vertices than the original.)

Proof:

- I. There is only one tree with a single vertex and it has no edges. Therefore if T is a tree on 1 vertex, then T has 0 = 1 1 edges. The base case is therefore satisfied.
- II. Let n > 1 be chosen arbitrarily, and assume for all k in the range $1 \le k < n$ that if T' is a tree on k vertices, then T' has k 1 edges. We must show that if T is a tree on n vertices, then T has n 1 edges.

Assume T is a tree on n vertices. Pick any edge $e \in E(T)$ and remove it. By the above hint, this removal results in two trees T_1 and T_2 , each with fewer than n vertices. Say T_1 has $k_1 < n$ vertices and T_2 has $k_2 < n$ vertices. By the induction hypothesis T_1 has $k_1 - 1$ edges and T_2 has $k_2 - 1$ edges. Since no vertices were removed, we also have $k_1 + k_2 = n$. Therefore the number of edges in our original tree T must be

(# of edges in
$$T_1$$
) + (# of edges in T_2) + 1 = $(k_1 - 1) + (k_2 - 1) + 1$
= $(k_1 + k_2) - 1$
= $n - 1$,

as required. The result follows for all $n \ge 1$ by the 2^{nd} Principle of Mathematical Induction.