Hip98 database

Basil Mathai, Research scholar, IIT Kharagpur

Contents

- Introduction
- Activities
- Measurement of forces
- Calculation of muscle and joint forces
- Download
- Further reading

Loading of the Hip Joint

Version 5 for Windows 7, September 2011

Contact Forces

G. Bergmann et al.

Julius Wolff Institute Charité – Universitätsmedizin Berlin

Muscle Forces

G.N. Duda, M.O. Heller

Julius Wolff Institute Charité – Universitätsmedizin Berlin

Gait Analysis

G. Deuretzbacher

Clinical Biomechanics
University of Hamburg

Patient Activities

M. Morlock et al.

Biomechanics Section

Techn. Univ. Hamburg-Harburg

What database contains?

- Forces acting in the hip joint during the most common activities
- Database provides
 - · Gait analysis data
 - Calculated muscle forces
 - EMG signals
 - Number of frequencies of different activities

Activities

Hip replacement

Total Hip Replacement

Image Source: http://dreamstime.com

Measured hip contact force

Measurement of forces

Instrumented implant

Hip implant II

Image Source: http://www.wiki.orthoload.com

Hip implant I

Instrumented implant

Estimation of muscle forces

Musculoskeletal model

 Musculoskeletal computer models apply mechanical principles to a system composed of bones, muscles and ligaments in order to estimate internal loading conditions.

Image Source: Heller et al., (2001).

Musculoskeletal model

Experimental markers on subject during gait

Markers on lower limb model Musculoskeletal load

Estimation of muscle forces

Inverse dynamics

Fig. Schematic overview of inverse kinematics and inverse dynamics problem

Download HIP98'

Download 'HIP98'

Loading of Orthopaedic Implants

Home Data

Database

Infos ▼

Publications ▼

Data Sets ▼

Team ▼

OrthoLoad Club

Contact

Data collection 'HIP98'

Data collection 'HIP98'

The data collection CD-ROM **HIP98** contains the forces acting in the hip joint during the most common activities of daily living. Measurements were taken 1998 in 4 subjects. In addition to the implant loads and the synchronous videos of the subjects (as in OrthoLoad), this database provides gait analysis data, calculated muscle forces, EMG signals and numbers for the frequencies of the different activities (show abstract of Bergmann et al., 2001).

The forces acting at the acetabulum, i. e. the pelvic side of the hip joint, were additionally determined, using the forces acting relative to the femur plus the belonging gait analysis data. From the results of the individuals, the loads acting in a 'typical' or representative subject are also provided.

download HIP98

for MS Windows 7 (175MB)

There is NO VIRUS in the hip98.zip file. You can check the MD5 checksum to make sure the downloaded hip98.zip file is secure. MD5 Checksum: 1969d60a24aec25df2cafec1fe74de97 or [md5 check file]

Folder structure 'HIP98'

Computer ► Windo	ows (C:) ▶ Hip98 ▶				
▼ Include in library ▼	Share with ▼ New fold	der			
tes	Name	Date modified	Туре	Size	
	ル Data	22-Jun-16 12:13 PM	File folder	-	
ies	Excel	22-Jun-16 12:13 PM	File folder		
	Install	22-Jun-16 12:13 PM	File folder		
uter	Pictures	22-Jun-16 12:13 PM	File folder	W	neasured gait and GRF data
	PowerPoint	24-Jan-18 9:07 AM	File folder		GRF data
ork	PowerPointViewer	22-Jun-16 12:13 PM	File folder		
	Videos	22-Jun-16 12:13 PM	File folder		
	₩ord	23-Jan-18 5:16 PM	File folder		
	₩ HIP98.exe	02-Jan-12 4:23 PM	Application	3,560 KB	
	Hip98_Introduction.exe	31-Jan-12 11:53 AM	Application	20 KB	orun GUI of th
	ST6UNST.LOG	22-Jun-16 12:18 PM	LOG File	3 KB	program

GUI 'HIP98'

Data 'HIP98'

C:> Hip98 > Data > GaitAndForce > HSRWN1.TXT

HSRWN1															
	TIME	ON-CAL-L	ON-CAL-R	ON-K-L	ON-K-R	GLUMA-L	TENFA-L	QUAFE-L	BICFE-L	TIBAN-L	GLUMA-R	TENFA-R	QUAFE-R	BICFE-R	TRISU-L
	0	1	-1	. 1	-1	719.1001	388.2	161.05	86.6001	1522.6001	185.6001	147.75	115.25	441.3501	362.1001
	0.0052	1	-1	. 1	-1	732.191	382.571	163.5851	86.4441	1536.926	178.203	143.239	121.958	438.2561	369.3801
	0.0104	1	-1	1	-1	745.282	376.942	166.1201	86.288	1551.2521	170.806	138.728	128.666	435.162	376.6601
	0.0156	1	-1	1	-1	758.373	371.313	168.655	86.132	1565.578	163.409	134.2169	135.374	432.068	383.9401
	0.0208	1	-1	. 1	-1	771.6	365.884	170.994	86.062	1581.828	155.8859	130.1739	141.5621	427.642	391.4401
	0.026	1	-1	. 1	-1	785.575	361.555	172.255	86.465	1608.6599	147.67	128.7049	144.8901	415.89	400.1501
	0.0312	1	-1	. 1	-1	799.5499	357.226	173.516	86.868	1635.492	139.454	127.236	148.2181	404.138	408.8601
	0.0364	1	-1		-1	813.525	352.8969	174.7769	87.271	1662.3239	131.238	125.767	151.5461	392.386	417.5701
	0.0416	1	-1	W 1	-1	831.8959	348.5039	176.4099	87.638	1675.804	124.762	124.662	155.5621	380.474	424.8921
	0.0468	1	-1	. 1	-1	860.1579	343.9669	178.8799	87.924	1659.242	122.201	124.376	161.1261	368.202	429.0911
	0.052		-1	. 1	-1	888.4199	339.4299	181.3499	88.21	1642.6799	119.64	124.0899		355.93	433.29
	0.0572	1	-1	. 1	-1	916.6819	334.8929		88.4959	1626.1179	117.079	123.8039		343.6581	437.489
	0.0624	1	-1	. 1	-1	939.7779	327.74	186.4579	88.4699	1597.286	115.682	123.8059	177.164	327.3961	441.418
	0.0676	1	-1	. 1	-1	956.8469	317.5349	189.292	88.0799	1554.1391	115.643	124.1439	181.311	306.4791	445.032
	0.0728		-1	. 1	-1	973.916	307.33	192.126		1510.9921	115.604	124.4819	185.458	285.5621	448.6459
	0.078		-1	. 1	-1		297.125	194.96		1467.845	115.565	124.8199		264.6451	452.2599
	0.0832	1	-1	. 1	-1	1005.326	288.352	197.362	86.4939	1415.6021	115.23	124.758	192.6719	250.8081	452.8019
	0.0884		_			1017.962	280.4739	199.494	85.428	1357.674			195.0639	241.396	451.424
	0.0936		_				272.5959	201.626	84.362	1299.746	114.19		197.4559	231.984	450.0461
	0.0988		_				264.7179	203.758	83.296		113.6701		199.8479	222.5719	448.6681
	0.104						257.6699	206.51	82.73		113.2001	123.62		213.9199	448.0501
	0.1092		_			1039.089	250.8709	209.448	82.314	1130.5391	112.745	123.451		205.4959	447.6601
	0.1144		_		_	1035.098	244.072	212.386	81.898	1075.1981	112.29	123.2821		197.072	
	0.1196		_		_		237.273		81.482	1019.8571	111.8351	123.1131		188.648	446.8801
	0.1248				_		227.594		81.714	978.6281	110.528	122.8841		176.168	459.4501
	0.13		_		_	965.7001	217.675		82	938.5751	109.15	122.65		163.35	473.1001
	0.1352					931.8481	207.7561		82.286	898.5221	107.772	122.416		150.532	486.7501
	0.1404		_			899.7601	196.9821	216.6021	82.455	858.238	106.457	122.1789		137.9949	499.2691
	0.1456				_	888.8401	175.9481	213.3781	81.22	815.1821	105.898	121.9059		128.83	498.2161
	0.1508					877.9201	154.914	210.154	79.985	772.126		121.6329		119.665	497.1631
	0.156		_		_		133.88	206.93	78.7501	729.07	104.7801	121.3599		110.5	496.11
	0.1612		-1		_	851.8771	116.131	203.229	77.6531	690.286		120.9399			494.829
	0.1664		-1		_	822.7441	109.332	197.938	77.0161	665.742		120.0299			492.788
	0.1716					793.6111	102.533	192.647	76.3791	641.198		119.1199			490.747
	0 1768	1	-1	1	-1	764 478	95 734	187 3561	75 7421	616 6541	100 9481	118 2099	240 46	107 6079	488 706

Notations of Gait data Files 'HIP98'

C:> Hip98 > Data > GaitAndForce > HSRWN1.TXT

INFOS

Measured and Calculated Variables

Number

Number of variable

"Var.# Right → Left"

Var# New variable# after right instrumented joint is transformed to left joint.
-Var# Sign of variable changed after transformation from right to left.

Num	Variable Name	Description	Body	Coordinate	Axis	Units	Var.#
			Side	System			Right →
							Left
1	TIME	Time				S	1
2	ON-CAL-L	Calcaneus on Ground	Left			1	3
3	ON-CAL-R	Calcaneus on Ground	Right			1	2
4	ON-K-L	Foot on Kistler Plate	Left			1	5
5	ON-K-R	Foot on Kistler Plate	Right			1	4
6	GLUMA-L	m.glutaeus max. (EMG)	Left			Rel.U.	11
7	TENFA-L	m.tens.fasc.lat. (EMG)	Left			Rel.U.	12
8	QUAFE-L	m.quadric.fem.(EMG)	Left			Rel.U.	13
9	BICFE-L	m.biceps fem.(EMG)	Left			Rel.U.	14
10	TIBAN-L	m.tibialis ant. (EMG)	Left			Rel.U.	10
11	GLUMA-R	m.glutaeus max. (EMG)	Right			Rel.U.	6
12	TENFA-R	m.tens.fasc.lat. (EMG)	Right			Rel.U.	7
13	QUAFE-R	m.quadric.fem.(EMG)	Right			Rel.U.	8
14	BICFE-R	m.biceps fem.(EMG)	Right			Rel.U.	9
15	TRISU-L	m.triceps surae (EMG)	Left			Rel.U.	15
16	F-KL-LAB-X	Ground Reaction Force	Left	Lab.	X	%BW	23
17	F-KL-LAB-Y	Ground Reaction Force	Left	Lab.	у	%BW	- 24
18	F-KL-LAB-Z	Ground Reaction Force	Left	Lab.	Z	%BW	25
19	M-KL-LAB-Z	Moment of Gr.R.Force	Left	Lab.	Z	%BW*m	- 26
20	P-KL-LAB-X	Point Gr.R.Force	Left	Lab.	X	m	27
21	P-KL-LAB-Y	Point Gr.R.Force	Left	Lab.	у	m	- 28
22	P-KL-LAB-Z	Point Gr.R.Force	Left	Lab.	Z	m	29

Τ

Useful online resources

www.orthoload.com

Loading of Orthopaedic Implants

Home

Database

Infos ▼

Publications ▼

a Sets 🕶

am ▼

OrthoLoad Club

Contact

in vivo Joint Loads

Ground Reaction Forces

Whole Body Kinematics

Comprehensive Sample Datasets of Hip and Kne

OrthoLoad is a free public data base. Access the loads acting in human joints!

The loads acting in human joints were measured in the Julius Wolff Institute of the Charité in Berlin directly in patients by using instrumented implants. Measurements during many routine and sportive activities were taken in hip, knee, shoulder and spinal implants. OrthoLoad supplies numerical load data and videos, which contain load-time diagrams and synchronous images of the subject's activities.

www.wiki.orthoload.com

www.youtube.com/user/OrthoLoad

www.simtk-confluence.stanford.edu

+ Expand all - Collapse all > Getting Started > Examples and Tutorials > Troubleshooting > Documentation > Models, Data, & Utilities

How to Contribute

Troubleshooting

- Forum 🗗
- Best Practices
- FAQ

Models, Data, & Utilities

- Musculoskeletal Models
- Motion and Simulation Data
- Utilities and Extensions @

Teaching Hub

- Videos
- Courses
- Workshops
- Teaching Materials

Literatures

Journal of Biomechanics 34 (2001) 859-871

JOURNAL OF BIOMECHANICS

www.elsevier.com/locate/jbiomech www.JBiomech.com

Hip contact forces and gait patterns from routine activities

G. Bergmann^{a,*,1}, G. Deuretzbacher^b, M. Heller^c, F. Graichen^a, A. Rohlmann^a, J. Strauss^b, G.N. Duda^c

^a Biomechanics Laboratory, Benjamin Franklin School of Medicine, Free University of Berlin, Hindenburgdamm 30, 12203 Berlin, Germany

^b Gait Laboratory, Orthopaedic Hospital, University of Hamburg, Germany

^c Research Laboratory, Trauma and Reconstructive Surgery, Charité, Humboldt University of Berlin, Germany

Accepted 22 February 2001

Abstract

In vivo loads acting at the hip joint have so far only been measured in few patients and without detailed documentation of gait data. Such information is required to test and improve wear, strength and fixation stability of hip implants. Measurements of hip contact forces with instrumented implants and synchronous analyses of gait patterns and ground reaction forces were performed in four patients during the most frequent activities of daily living. From the individual data sets an average was calculated. The paper

Literatures

Journal of Biomechanics 34 (2001) 883-893

JOURNAL OF BIOMECHANICS

www.elsevier.com/locate/jbiomech www.JBiomech.com

Musculo-skeletal loading conditions at the hip during walking and stair climbing

M.O. Heller^{a,b}, G. Bergmann^c, G. Deuretzbacher^d, L. Dürselen^b, M. Pohl^b, L. Claes^b, N.P. Haas^a, G.N. Duda^{a,*}

^a Trauma and Reconstructive Surgery, Research Laboratory, Humboldt - University of Berlin, Augustenburger Platz 1, Charite, Campus Virchow-Klinikum, 13353 Berlin, Germany

^b Institute for Orthopaedic Research and Biomechanics, University of Ulm, Germany

^c Biomechanics Laboratory, Oskar-Helene-Heim, Free University of Berlin, Germany

^d Clinical Biomechanics, University Hospital Hamburg-Eppendorf, Germany

Accepted 22 February 2001

Abstract

Musculo-skeletal loading plays an important role in the primary stability of joint replacements and in the biological processes involved in fracture healing. However, current knowledge of musculo-skeletal loading is still limited. In the past, a number of musculo-skeletal models have been developed to estimate loading conditions at the hip. So far, a cycle-to-cycle validation of

End

Thank you