

#### Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

# ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 ПО ДИСЦИПЛИНЕ: ОСНОВЫ ЭЛЕКТРОНИКИ

# "ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК И ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ"

| Студент: <b>Зернов Георгий Павлович</b> |                     |                 |
|-----------------------------------------|---------------------|-----------------|
| Группа: <b>ИУ7-34Б</b>                  |                     |                 |
| Вариант: <b>86</b>                      |                     |                 |
| Название предприятия: НУК ИУ МГТ        | / им. Н. Э. Баумана |                 |
|                                         |                     |                 |
| Студент                                 |                     | _ Зернов Г.П.   |
| Преподаватель                           |                     | _ Оглоблин Д.И. |

# Оглавление

| ЦЕЛЬ ПРАКТИКУМА                                | 3  |
|------------------------------------------------|----|
| ХОД РАБОТЫ                                     |    |
| Исследуемый диод                               |    |
| Создание схемы в программе Місгосар            |    |
| Получение ВАХ                                  |    |
| Подготовка данных для программы MathCAD        | 7  |
| Расчёт параметров диода по упрощённым формулам |    |
| ЗАКЛЮПЕНИЕ                                     | 11 |

## ЦЕЛЬ ПРАКТИКУМА

Получение в программе схемотехнического анализа Місгосар и исследование статических характеристик кремниевого полупроводникового диода с целью определения по ним параметров модели полупроводниковых диодов. Освоение программы Mathcad для расчёта параметров модели полупроводниковых приборов на основе данных экспериментальных исследований.

### ХОД РАБОТЫ

#### Исследуемый диод

В работе проводится исследование диода D2C139A. Характеристики диода из библиотеки:

```
.model D2C139A D(Is=31.47f Rs=9.494 Ikf=0 N=1 Xti=3 Eg=1.11 Cjo=220p M=.5959
+ Vj=.75 Fc=.5 Isr=2.035n Nr=2 Bv=3.928 Ibv=43.84m
* Nbv=60 Ibvl=3m Nbvl=180
+ Tbv1=-1.0m)
```

#### Создание схемы в программе Місгосар

В программе Місгосар создадим приведённую ниже цепь для прямого включения диода:



Установим значение напряжения у батареи U = 2B. Сопротивления амперметра и вольтметра установим 1Ом и 10000Ом соответственно, так как приборы не являются идеальными, что означает что амперметр имеет сравнительно малое сопротивление, тогда как амперметр — большое.

Модель диода выберем в отдельном окне из библиотеки:



## Получение ВАХ

Для получения BAX в панели "Analysis" выберем постоянный ток (DC). В появившемся окне зададим формулы для напряжения и тока на диоде:

- Ud = DCINPUT1 I(RmA)\*RmA
- Id = I(RmA) I(RmV)



## Затем с помощью кнопки "RUN" построим график:



# Схема и ВАХ обратного включения

Аналогично получим схему и ВАХ для обратного включения диода:



#### Подготовка данных для программы MathCAD

Для конвертации данных в формат, принимаемый программой MathCAD требуется в панели параметров "Numeric Output" убрать вывод всей информации кроме непосредственно данных измерений, а также перевести вывод значений в десятичную запись с необходимым числом знаков после запятой:



После перезапуска симуляции и нажатия "Numeric Output" будет получен файл с таблицей данных:



#### Расчёт параметров диода по упрощённым формулам

Расчёт параметров диода произведём в программе MathCAD. Для использования данных из файла используем команду "READPRN".

VAX := READPRN("C:\Users\zemo\Desktop\Electronics\Lab 1\circuit2.DNO")

Затем по этим данным построим таблицы и график:



На панели инструментов "график" выберем функцию "Трассировка" и получим координаты 3 точек из графика:



С помощью метода трёх ординат по упрощённым формулам найдём параметры диода:

$$Rb := \frac{(Ud1 - 2 \cdot Ud2 + Ud3)}{Id1} \qquad Rb = 21.495$$

$$NFt := \frac{(3 \cdot Ud2 - 2 \cdot Ud1 - Ud3)}{\ln{(2)}} \qquad NFt = 0.03$$

$$10 = Id1 \cdot exp \left[ \frac{-(2 \cdot Ud2 - Ud3)}{NFt} \right] \qquad I0 = 1.666 \times 10^{-12}$$

## Точный расчёт параметров диода

Введём начальное приближение:

$$Rb1 := 1$$
  $Is0 := 0.0000001$   $mE := 2$   $Ft := 0.02$ 

С помощью ключевого слова "Given" введём систему уравнений, а также описанным ранее методом введём четвёртую точку:

Given

$$Ud1 = Id1 \cdot Rb_d + ln \left[ \frac{(Is0 + Id1)}{Is0} \right] \cdot m \cdot Ft$$

$$Ud2 = Id2 \cdot Rb\_d + ln \left[ \frac{(Is0 + Id2)}{Is0} \right] \cdot m \cdot Ft$$

$$Ud3 = Id3 \cdot Rb_d + ln \left[ \frac{(Is0 + Id3)}{Is0} \right] \cdot m \cdot Ft$$

$$Ud4 = Id4 \cdot Rb_d + ln \left[ \frac{(Is0 + Id4)}{Is0} \right] \cdot m \cdot Ft$$

Методом "Given Minerr" получим вектор решений системы:

$$\begin{array}{c} Diod\_P := \ Minerr(Rb\_d\ , Is0\ , m\ , Ft) \\ \\ \underline{Diod\_P} = \begin{pmatrix} 8.97 \\ 1.75 \times 10^{-12} \\ 1.74 \\ 0.018 \end{pmatrix} \blacksquare \end{array}$$

# Сравнение полученных параметров

По полученным параметрам построим ВАХ, на нём же разместим исходную кривую:



Данное представление позволит оценить степень точности модели и получить представление о погрешностях. Оценку можно произвести методом трассировки.

# ЗАКЛЮЧЕНИЕ

Были выполнены все задачи, описанные выше, таким образом были получены и проанализированы характеристики полупроводникового диода.