Nodal Analysis

Example 2.8.1. For the circuit below calculate the currents using the nodal analysis.

Solution:

As any of the nodes could be considered as a reference node, we will take node 0 as a reference node (of zero potential). The nodal equation for node 1 is:

$$V_1 \cdot \left(\frac{1}{2} + \frac{1}{8} + \frac{1}{4}\right) = 5 \cdot \frac{1}{2} - 3 \cdot \frac{1}{4}$$

from where $V_1=2V$. Next, from $V_1-V_0=-2\cdot I_1+5$, we get $I_1=1.5A$. In the same way, from $V_1-V_0=-2\cdot I_1+5$, we get $I_1=1.5A$. $4 \cdot I_2 - 3$, $I_2 = 0.25A$. The current I_3 could be calculated using the KCL or from $V_1 - V_0 = 8 \cdot I_3$, $I_3=1.25A$. As a verification, $I_1=I_2+I_3$.

Example 2.8.2. Find the node voltages for the circuit below. Calculate the currents through the circuit.

Solution:

Because the branch between nodes 3 and 0 has no resistance (only voltage source), we have a supernode. We set one of these two nodes as a reference node. We will take node 0 as a reference node, $V_0=0$. Due to restriction between nodes 0 and 3, $V_3-V_0=4V$, we have $V_3=4V$. The nodal equations for the nodes 1 and 2, are:

$$V_1 \cdot \left(\frac{1}{2} + \frac{1}{4}\right) - V_2 \cdot \frac{1}{4} - V_3 \cdot \frac{1}{2} = 2,$$

$$V_2 \cdot \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{1}\right) - V_1 \cdot \frac{1}{4} - V_3 \cdot \frac{1}{1} = -12.$$

Solving the system for V_1 and V_2 , we get $V_1=4V$, $V_2=-4V$. using the value of the node potentials, the currents will be: $I_1=\frac{V_1-V_2}{4}=2A$, $I_2=\frac{V_2-V_0}{2}=-2A$, $I_3=\frac{V_2-V_3}{1}=-8A$, $I_4=\frac{V_1-V_3}{2}=0A$. For the current I_5 we have to use the KCL in node 3: $-I_3-I_4-I_5=0$, and $I_5=8A$.

Example 2.8.3. For the circuit below write the nodal equations for the calculation of the node voltages.

Example 2.8.3.

Solution:

We have two supernodes, one formed by nodes 1 and 0, and another one formed by nodes 2 and 3. Let's consider the reference node the node 0, V_0 =0V. Having the restriction $V_1 - V_0 = E_6$, the potential of the node 1 is V_1 = E_6 . For the second supernode, we have the restriction $V_2 - V_3 = E_5$ and the corresponding nodal equation:

$$V_2 \cdot \left(\frac{1}{R_1} + \frac{1}{R_2}\right) + V_3 \cdot \left(\frac{1}{R_3} + \frac{1}{R_4}\right) - V_1 \cdot \left(\frac{1}{R_1} + \frac{1}{R_3}\right) = 0.$$

The last two equations should be solved for the unknowns V_2 and V_3 .