Krobset #2 2.(c)Effect of including L2 regularization in the logistic regression objective has on model Calibration Cost function of logistic regression with L2 regularization

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{m} ||\theta||_{2}$$

$$\mathcal{J}(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{m} ||\theta||_{2}$$
\left\(\text{Update Rule} \right\)

 $\theta_{j} := \theta_{j} - \alpha \left[\left(\frac{1}{m} \sum_{i=1}^{m} \left(h_{\beta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \right) + \frac{\lambda}{m} \theta_{ij} \right]$

 $\frac{\partial}{\partial \theta}$ J(0) = $\frac{1}{m}$ $\left\{ \sum_{i=1}^{\infty} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \right\} - \sum_{i=1}^{\infty} ||\theta||_{2} = 0$

 $\sum_{i=1}^{m} ||h_{\theta}(x^{(i)}) - \sum_{i=1}^{m} y^{(i)} - ||h_{\theta}||_{2} = 0$

when j=0