Hilfszettel zur Klausur von JD., Seite 1 von 4 1. Quartil = 0.25-Quantil; Median = 0.5-Quantil; 3. Quartil = 0.75-Quartil; BeschreibendeStatistik $x_p \begin{cases} x_{floor(np)+1}, np \in \mathbb{N} \\ \frac{1}{2}(x_{np} + x_{np+1}, np \notin \mathbb{N}) \end{cases}$ 1.1 Beschreibende/Deskriptive Statis-

Da-

tik

Beobachtete Daten werden durch geeignete statistische Kennzahlen charakterisiert und durch geeignete Grafiken anschaulich gemacht.

$$x_p \begin{cases} \frac{1}{2}(x_{np} + x_{np+1}, np \in \mathbb{N}) \end{cases}$$

1.10 Boxplot

Interquartilsabstand $I = x_{0.75} - x_{0.25}$. Interquartilsabstand $I = x_{0.75} - x_{0.25}$. In-

 $\hat{F}(x_n) \approx p$; $\hat{F} = \text{kummul. rel. Häufigkeit;}$

nerhalb der Box 50% aller Stichproben;

1/4 je zu I_{min} &zu I_{max} Whiskers zeigen die Spannweite = max x_i - min x_i Aus beobachtete Daten werden Schlüsse gezogen und diese im Rahmen vorgege-1.11 Chebyshev bener Modelle der Wahrscheinlichkeits- $\frac{N(S_k)}{n} > 1 - \frac{1}{k^2}$, für alle $k \ge 1$; \overline{x} der Durchschnitt, s > 0 die Stichproben-Standardabweichung von Beobachtungs-

werten $x_1,...,x_n$. Sei $S_k = \{i, 1 \le i \le n : |x_i - \overline{x}| < k \cdot s\}$; Für eine beliebige Zahl

 $k \ge 1$ liegen mehr als $100 \cdot (1 - \frac{1}{k^2})$ Pro-

zent der Daten im Intervall von $\bar{x} - ks$ bis

 $\overline{x} + ks$. **Speziell:**Für k = 2 liegen mehr als

75% der Daten im 2s-Bereich um \bar{x} . Für

k=3 liegen mehr als 89% der Daten im

3s-Bereich um \bar{x} . Komplement Formulie-

rung: $\overline{S}_k = \{i | |x_i - \overline{x}| \ge k \cdot s\}; \frac{N(\overline{S}_k)}{n} \le \frac{1}{k^2};$

Die Ungleichheit lifert nur eine sehr gro-

be Abschätzung, ist aber unabhängig

von der Verteilung der Daten. Empiri-

sche Regeln 68% der Daten im Bereich

um $\overline{x} \pm s$. 95% um $\overline{x} \pm 2s$. 99.7% um $\overline{x} \pm 3s$.

Grafische Zusammenhang zwischen mul-

1.12 Korrelation

 $\ddot{S}_{xv} < 0$ fallend;

Ω : Grundgesamtheit ω :Element oder Objekt der Grundgesamtheit diskret(<30 Ausprägungen), stetig(≥30 Ausprägungen), univariat(p=1), mulivariat(p>1); Diskrete Merkmale haben eine abzählbare Anzahl möglicher Ausprägungen. Ste-

Beobachtete Daten werden durch geeig-

nete statistische Kennzahlen charakteri-

1.2 Schließende/Induktive Statistik

tige Merkmale habne eine nicht abzählbare (=überabzählbar) Anzahl möglicher Ausprägungen. **1.4** Modalwerte x_{mod}

Am häufigsten auftretende Ausprägungen (insbesondere bei qualitativen Merk-

schaulich gemacht.

theorie bewertet.

1.3 Grundgesamtheit

1.5 Mittelwert, quantitativ R:mean(x)

Schwerpunkt ten.**Empfindlich**gegenüber Ausreißern.

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 1.6 Median, quantitativ R:median(x)

Liegt in der Mitt der sortierten Daten x_i .

Unempfindlich gegenüber Ausreißern.

$$x_{0.5} = \begin{cases} x_{\frac{n+1}{2}}, \text{ falls n ungerade} \\ \frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1}), \text{ falls n gerade} \end{cases}$$

Streuungsmaße 1.7 Stichprobenvarianz s^2

Verschiebungssatz:

 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}^2) = \frac{1}{n-1} (\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i^2)$

$n\bar{x}^2$) Gemittelte Summe der quadrati-

schen Abweichung vom Mittelwert

1.8 Stichpr.standardabw.

$s = \sqrt{s}$ Streuungsmaß mit gleicher Einheit wie beobachteten Daten $x_i.\overline{x}$ minimiert

die Varianz gibt das Minimum der Fehlerquadrate an. 1.9 p-Quantile

ten x_i ca. im Verhältnis p: (1-p) d.h. ment von Ω

die "quadratische Verlustfunktionöder

1.14 Empir. Korrelk.koeff. r R:cor(x, y); $r = \frac{s_{xy}}{s_x s_y}$; Näherungsweise lin.

suchung des Zusammenhangs:

1.13 Empirische Kovarianz

Zusammenhang zw. x und y, falls $|r| \approx 1$; Bemerkung: -Der Korrelationskoeffizi-

ent kann nur einen statistischen Zusammenhang beschreiben, keinen Kausalen; -Den Korrelationskoeffizient immer im Zusammenhang mit den Streudiagramm sehen (Anscombe-Quartett). 1.15 Regressionsgerade y

$y = mx + t \text{ mit } m = r \cdot \frac{s_y}{s_0} \text{ und } t = \overline{y} - m \cdot \overline{x};$

Für den Bereich $|\pm 0.7|$ bis $\pm 1 \Rightarrow$ linearer Zusammenhang.

2 Wahrscheinlichkeitsrechnung 2.1 Begriffe

Ergebnisraum Ω : Menge aller möglichen Ergebnisse eines Experiments R:quantile(x,p). Teilt die sortierten Da- Elementarereignis $\omega \in \Omega$: einzelnes Ele-

nis F treten ein. $\bigcup_{i=1}^{n} E_i$: mindestens ein Ereignis E_i tritt ein. **Schnitt** $E \cap F$: Ereignis E und Ereignis F $\bigcap_{i=1}^{n} E_i$ alle Ereignisse E_i treten ein. **Gegenereignis** $\overline{E} = \Omega / E$: Ereignis E tritt

Ereignis $E \subseteq \Omega$: beliebige Teilmenge des

Ergebnisraums Ω heißt sicheres Ereignis,

Vereinigung $E \cup F$: Ereignis E oder Ereig-

Ø heißt unmögliches Ereignis

nicht ein (Komplement von E) **Disjunkte Ereignisse**E und F: $E \cap F = \emptyset$ 2.2 De Morgan'schen Regeln $\overline{E_1 \cup E_2} = \overline{E}_1 \cap \overline{E}_2$ $\overline{E_1 \cap E_2} = \overline{E}_1 \cup \overline{E}_2$

 $P(\bigcup_{i=1}^{\infty}) = \sum_{i=1}^{\infty} P(E_i)$, falls $E_i \cap E_j = \emptyset$ Nur Nenner!P(F) aus dem Satz der tota-2.4 Satz 2.1 len Wahrscheinlichkeit. P(E) = 1 - P(E) $P(E \cup F) = P(E) + P(F) - P(E \cap F)$

2.5 Laplace-Experiment Zufallsexperimente mit n gleich wahrscheinlichen Elementarereignissen.

(Übungsaufgabe!!! Ergänzen)

2.3 Wahrscheinlichkeit

 $0 \le P(E) \le 1$; $P(\Omega) = 1$;

Dann berechnet sich die Wahrscheinlichkeit P(E) für $E \subseteq \Omega$ aus: $P(E) = \frac{\text{Anzahl der für E günstigen Ereignisse}}{\text{Anzahl der möglichen Ereignisse}}$ $\frac{\text{Mächtigkeit von E}}{\text{Mächtigkeit von }\Omega} = \frac{|E|}{n}$

tivariaten Daten x und y durch ein 2.6 Bedingte Wahrscheinlichkeit Streudiagramm. Kennzahlen zur Unter- $P(E|F) = P_F(E) = \frac{|E \cap F|}{|F|} = \frac{P(E \cap F)}{P(F)}$

2.7 Satz 2.2 R:cov(x,y); $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$ $P(E \cap F) = P(E|F) \cdot P(F)$ $\frac{1}{n-1}\left(\sum_{i=1}^{n}(x_iy_i)-n\overline{xy}\right); S_{xy}>0 \text{ steigend};$ $P(E \cap F) = P(F|E) \cdot P(E)$

2.9 Vierfeldertafel

P(TAE) P(TAE) P(T)

 $P(F) = P(F \cap E) + P(F \cap \overline{E})$

 $P(\overline{F}) = P(\overline{F} \cap E) + P(\overline{F} \cap E)$

1 - P(F|E)2.10 Formel von Bayes Hilfreich, wenn man man $P(F|E_i)$ kennt,

aber nicht $P(E_k|F)$ Satz 2.4 $P(E_k|F) =$ $P(F|E_k)\cdot P(E_k)$ $\sum P(F|E_i) \cdot P(E_i)$

nicht ändert, d.h. falls

 $\circ \overline{E}, \overline{F}$ unabhängig

2.11 Stochastische Unabhängigkeit Übung Die Ereignisse E und F heißen (stochastisch) unabhängig, wenn die İnformation über das Eintreten des einen Ereignisses die Wahrscheinlichkeit für

$$= \frac{P(E \cap F)}{P(F)}$$
Es gilt Falls die Ereignisse E, F unabhängig sind, dann sind auch: $\circ E, \overline{F}; \overline{\circ E}, F;$

P(E|F) = P(E) or $P(E \cap F) = P(E) \cdot P(F)$

Bemerkung o Stochastische Unabhängigkeit bedeutet nicht notwendigerweise eine kausale Abhängigkeit; o Veranschauli-

2.8 Satz der totalen Wahrscheinlichkeit Sei
$$\Omega = \bigcup_{i=1}^{n} E_i$$
 mit $E_i \cap E_i = \emptyset$ für $i \neq j$

d.h. die Ereignisse bilde eine disjunkte Zerlegung bzw. eine Partition von Ω . So- $P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i)$

Summe der Äste des Wahrscheinlichkeitsbaums zu allen Schnitten $F \cap E_i$

chung mit Venn Diagramm staik. unabhärgig

$$abla$$

it

 $abla$
 => A, B stochastisch abhängig 3 Zufallsvariable Abbildung des **abstrakte** Ergebnisraums Ω auf \mathbb{R} . Eine Abbildung $X:\Omega\to\mathbb{R}$,

 $\emptyset \neq P(A) \cdot P(B)$ da P(A) > 0 und P(B) > 0

z.B. X = "Augensumme beim Würfeln

 $\omega \mapsto X(\omega) = \text{heißt Zufallsvariable (ZV). x}$ ∈ R. heißt Realisation der ZV X.

3.2 Diskrete ZVs Für eine diskrete ZV X mit $X(\Omega)$ = $x_1,...,x_n$ (n endlich oder abzählbar unendlich) ist die Wahrscheinlichkeitsfunktion definiert durch:

ße eines Menschen"

ZV X definiert durch:

o monoton wachsend

 $\circ P(X > x) = 1 - F(x)$

 $F(x) = P(X \le x)$

 $0 \le F(x) \le 1$

3.1 Verteilungsfunktion-allg.

 $\circ \lim_{x \to -\infty} F(X) = 0 \lim_{x \to \infty} F(x) = 1$

 $\circ P(a < X \le b) = F(b) - F(a)$

$$p(x) = \begin{cases} P(X = x_i), \text{falls } x_i \in X(\Omega) \\ 0, sonst \end{cases}$$
 (1)

o Stetige ZV: $X(\Omega) \subseteq \mathbb{R}$; "z.B. Körpergrö-

Die Wahrscheinlichkeit P(B) für ein Er-

eignis B in R wird zurückgeführt auf die

Wahrscheinlichkeit der entsprechenden

Ereignisse in Ω . Für jedes $X \in \mathbb{R}$ ist die

Verteilungsfunktion $F: \mathbb{R} \to [0,1]$ einer

 $\circ F(x) = (P(X \le x) = \sum_{x_i \le x} p(x_i)$ \circ F(x) ist eine rechtseitig stetige **Treppen**das Eintreten des anderen Ereignisses funktion mit Sprüngen bei der Realisation von x_i .

> 3.3 Stetige ZVs Stetige ZV X ist die Wahrscheinlichkeitsdichte f $f: \mathbb{R} \to [0, \infty]$ definiert durch

 $P(a < X < b) = \int_a^b f(x) dx$

 $\circ F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$ und

 \circ F(x) ist stetig & $P(a < X \le b) = P(a \le a)$ $X \le b$) wegen P(X = a) = 0

$\int_{\mathbf{Untergrenze}}^{\Lambda}$ Es wird normal mit - Inte-

3.4 Verteilungsfunktion

3.5 Zusammenfassung

3.6 Diskrete ZV

 \circ Wahrscheinlichkeitsverteilung p(x):

 $\sum_{i=1}^{n} p(x_i) = 1$; x_i ist Realisation der ZV. o Verteilungsfunktion F(x) ist rechtssei-

Treppenfunktion. Sprunghöhen:P(X = $x_i) = F(x_i) - \lim_{x \to x_i -} F(x) \neq 0$

$\circ P(a < X \le b) = F(b) - F(a) \ne P(a \le X \le b)$ 3.7 Stetige ZV

o Dichtefunktion $\int_{-\infty}^{\infty} f(x)dx = 1$

 \circ Verteilungsfunktion F(x) ist stetig mit $F'(x) = f(x); P(X = x_i) = 0$

 $P(a < X \le b) = F(b) - F(a) = P(a \le X \le b)$ ∘ Diskrete ZV: $X(\Omega) = x_1,...,x_2 (n \in \mathbb{N});$ $(b) = F(a \le X < b) = P(a < X < b)$

```
3.8 Erwartungswert
Der Erwartungswert E[X] = \mu einer ZV
X ist der Schwerpunkt ihrer Verteilung
or der durchschnittliche zu erwartende
Wert der ZV.
o diskrete ZV: E[X] = \sum_{i=1}^{n} x_i \cdot p(x_i)
o stetige ZV: E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx
ZV ist konstant. E[X] verhält sich linear.
Eigenschaften von E[X]:
\circ E[b] = b
\circ E[aX + b] = aE[X] + b
\circ E[X_i + ... + X_n] = \sum_{i=1}^n E[X_i]
\circ \sum_{i=1}^n x_i
3.9 Satz 3.1
Sei Y = g(X) eine Funktion der ZV X. \mu;
Dann gilt:
o für diskrete ZV:E[g(X)] = \sum_{i=1}^{n} g(x).
o für stetige ZV: E[g(X)] = \int_{-\infty}^{\infty} g(x).
f(x)dx. Das vertauschen von E und g
nur bei linearen Funktionen möglich. ⇒
g(E[X])
3.10 Varianz
Die Varianz einer ZV X mit u ist ein qua-
dratisches Streungsmaß. \sigma^2 = Var[X] =
E[(X - \mu)^2] falls x stetig \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x)
Die Standardabweichung \sigma = \sqrt{Var[X]}
hat im Gegensatz zur Varianz die gleiche
Dimension von die ZV X.
\circ Var[b] = 0
\circ Var[aX + b] = a^2 Var[X]
3.11 Satz 3.2
Var[X] = E[X^2] - (E[X])^2 Beim Minuend
wird beim Erwartungswert nur das ein-
fach stehende x quadriert nicht f(x)!!!
3.12 Z-Transformation, Standardisie-
Sei X eine ZV mit \mu und \sigma. Dann ist
Z = \frac{X - \mu}{\sigma} = \frac{x}{\sigma} - \frac{\mu(konstant)}{\sigma}
3.13 Kovarianz
Eigenschaften:

\circ Cov[X,Y] = Cov[Y,X] 

\circ Cov[X,X] = Var[X]

\circ Cov[aX,Y] = aCov[X,Y]
Die Kovarianz zweier ZV (X, Y) ist defi-
niert durch Cov[X, Y] = E[(X - E[X])(Y -
E[Y]); Die Kovarianz beschreibt die
Abhängigkeit zweier ZV X und Y. Je
stärker diese Korrelieren, desto (be-
tragsmäßig) größer ist die Kovarianz.
Falls X, Y(stochastisch) unabhängig \Rightarrow
Cov[X,Y] = 0
```

Hilfszettel zur Klausur von JD., Seite 2 von 4

$Var[X_i + ... + X_n]$ $\sum_{i=1}^{n} \sum_{j=1}^{n} Cov[X_i, X_j]; Var[X_1 + X_2] =$ $Var[X_1] + Var[X_2] + 2Cov[X_1, X_2] \circ$ Falls X_i, X_j paarweise unabhängig!!!: $Var[X_1 + ... + X_n] = \sum_{i=1}^n Var[X_i]$ 3.16 Overview $\mu \sigma$ 3.17 E[X] E[aX + b] = aE[X] + b; $E[X_1 + ... + E_n] =$ $\sum_{i=1}^{n} E[X_i]$ Falls X_1, X_2 unabhängig: $E[X_i] = \mu = E[\overline{X}] = E[\frac{1}{n}(X_1 + ... + X_n)] =$ $\frac{1}{n}\sum_{i=1}^{n}E[x_i]=\frac{1}{n}\cdot n\cdot \mu=\mu;$ 3.18 Varianz $Var[aX + b] = a^2 Var[X]$ Falls X_i , X_i paarweise unabhängig: $Var[X_1 + ... + X_n] = \sum_{i=1}^{n} Var[X_i]$ $Var[X_i] = \sigma^2 \Longrightarrow Var[\overline{X}] = Var[\frac{1}{n}(x_1 + ... +$ $|x_n| = \frac{1}{n^2} \sum_{i=1}^n Var[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}$ 3.19 Ouantile Sei X eine ZV mit Verteilungsfunktion F(x) und 0 . Dann ist das p-Quantil definiert als der Wert $x_p \in \mathbb{R}$ für den gilt: $F(x_p) \geq p$. p-Quantil einer stetigen ZV mit streng monoton wachsenden $F(x:)x_p = F^{-1}(p)d$. h. umkehrbar. Zuerst p dann e^{xp} 4 Spezielle Verteilung 4.1 Diskrete Verteilung 4.2 Bernouilliverteilung Indikatorvariable mit den Werten 1 bei Erfolg und 0 bei Misserfolg; Wahrschein**lichkeit:**P(X = 1) = p, P(X = 0) = 1 - p;**Verteilung:** $X \sim B_{1,p}$ p ist Erfolgswahrscheinlichkeit; $E[X] = p = \sum x_i \cdot p(x_i) = 1$ p(1); $Var[X] = p(1-p) = E[X^2] - (E[X])^2 =$ $p - p^2 = p(1 - p);$ 4.3 Binominalverteilung mit Zurücklegen; Wahrschein**lichkeit** $P(x = k) = \binom{n}{k} \cdot p^k \cdot (1 - k)$ $(p)^{n-k}, k \in 0, 1, ..., n;$ Verteilung $X \sim B_{n,p}$; E[X] = np; Var[X] =np(1-p); **R:** dbinom(k,n,p)=P(X=k) ≜Wahrscheinlichkeits-

/Dichtefunktion; pbinom(k,n,p)=F(k)

rbinom(k,n,p)\(\hat{p}\)kbinomialverteilte Zu-

≜Verteilungsfunktion;

fallszahlen;

qbinom(q,n,p)=q-Quantil;

3.14 Satz 3.3

 $Cov[X, Y] = E[XY] - E[X] \cdot E[Y]$

3.15 Varianz einer Summe von ZV

→ 1 falls n klein im Verhältnis zu M+N; **R**: $\frac{d}{d}hyper(k, M, N, n) = P(X = k);$ phyper(k, M, N, n) = F(k); Falls $20n \leq M + N&M + N$ groß, Unterschied zw. SZiehen ohne bzw. mit Zurücklegenünwesentlich, es kann die Binomial verteilung mit $p = \frac{M}{M+N}$ als Approximation für die hypergeom. Vert. verwendet werden. 4.5 Poisson-Verteilung Verteilung der seltenen Ereignisse Häufigkeit punktförmiger Ereignisse in einem Kontinuum. Die durchschnittlich zu erwartende Anzahl der Erfolge λ pro Maßeinheit (i. a. Zeiteinheit) sei bekannt. $k \in \mathbb{N}_0 \rightarrow diskret$ Wahrscheinlich- $\mathbf{keit}P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda} \text{ mit } \sum_{k=0}^{\infty} P(X=k)$ k) = 1, $da \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$; Verteilung $X \sim P_{\lambda}$; $E[X] = \lambda, da \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda} =$ $e^{-\lambda} \sum_{k=1}^{\infty} \lambda \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = \lambda;$ $Var[X] = \lambda \mathbf{R} : dpois(k, \lambda) = P(X = k);$ $ppois(k, \lambda) = F(k); \lambda = np.$ 4.6 Gleichverteilung Alle Werte $\{x_1,...,x_n\}$ einer ZV X sind gleich wahrscheinlich; **Wahrscheinlich**keit $P(X = x_k) = \frac{1}{n}$; Verteilung $X \sim U_{\{x_1,...,x_n\}}; E[X] = \frac{1}{n} \sum_{k=1}^n x_k = \overline{x};$ $Var[X] = \frac{1}{n} \sum_{k=1}^{n} x_k^2 - \overline{x}^2$; **R**: sample(1 : N,n) n Zufallszahlen zwischen 1 und 4.7 Stet.Vert. 4.8 Gleichverteilung/Rechteck Anzahl der Erfolge beim n-maligen Ziehen Zufallszahlen aus einem Intervall [a,b]; **Dichte:** $f(x) = \frac{1}{b-a}$ für $x \in [a,b]$; **Verteilung:** $X \sim U_{[a,b]}$; $E[X] = \frac{a+b}{2}$; $Var[X] = \frac{(b-a)^2}{12} \mathbf{R} : \frac{d}{duni} f(x, a, b) = f(x);$ punif(x, a, b) = F(x); runif(n) = n Zufallszahlen zwischen 0 und 1; runi f(n, a, b) =n Zufallszahlen zwischen a und b; 4.9 Normalverteilung Beschreibt viele reale Situationen, insbesondere Grenzverteilung unabhängiger Summen; Dichte:

4.4 Hypergeometrische Verteilung

Anzahl der Erfolge beim **n-maligen**

Ziehen ohne Zurücklegen aus einer

Menge mit M Elementen, die Erfolg be-

deuten, und N Elementen, die Misserfolg

bedeuten. Gesamtum fang = M + N;

Wahrscheinlichkeit P(X = k) =

 $\frac{\binom{M}{k}\cdot\binom{N}{n-k}}{\binom{M+N}{N}}, k \in \{0,1,...,min\{n,M\}\};$ Ver-

teilung $X \sim H_{M,N,n}$; $E[X] = n \frac{M}{M+N}$;

 $Var[X] = n\frac{M}{M+N}(1 - \frac{M}{M+N})\frac{M+N-n}{M+N-1};$

 $\frac{M}{M+N}$ $\hat{=}$ Tref ferwahrscheinlichkeit;

malstelle von f(x) bei $x = \mu$; Wende**stelle** von f(x) bei $x = \mu \pm \sigma$; E[aX + b] =aE[X] + b; $Var[aX + b] = a^2 Var[X]$; $X \sim N_{\mu,\sigma^2} \Rightarrow aX + b \sim N_{a\mu+b,a^2\sigma^2}$ und <u>Z-Trafo:</u> $\frac{X-\mu}{\sigma} \sim N_{0,1}$; $X_1 \sim N_{\mu_1,\sigma_1^2}$ und $X_2 \sim N_{\mu_2,\sigma_2^2} \Longrightarrow X_1 + X_2$ 4.13 t-Verteilung $Z \sim N_{0.1}$ und $X \sim \chi_n^2 \Rightarrow Y = \frac{Z}{X}$ ist t- $N_{\mu_1+\mu_2,\sigma_1^2+\sigma_2^2}$; X_1, X_2 stochastisch unabhängig verteilt mit n Freiheitsgraden; Anwen-4.10 Standardnormalverteilung dungsmodell: Schätz- und Testverfah-Dichte: $\varphi(x) = \frac{1}{\sqrt{2}}e^{(-\frac{1}{2}x^2)}$; Verteilung ren bei unbekannter Varianz; Verteilung: $Y \sim t_n$; E[Y] = 0 für n > 1; $Var[Y] = \frac{n}{n-2}$ $\phi(x) = \int_{-\infty}^{x} \varphi(t)dt$; Quantile: $\phi(-x) = 1$ für n > 2; **R**: $\frac{d}{dt}(y, n) = f(x)$; pt(y, n) = F(x); $\phi(x) \Rightarrow -x_p = x_{1-p} \text{ z.B. } -x_{0.25} = x_{0.75};$ $qt(y,n) = F^{-1}(x)$; Eigenschaften: Für $n \to \infty$ ∞ : $t_n \rightarrow N_{0.1}$; Achsensymmetrie der Dichtefunktion $\Rightarrow -y_p = x_{1-p}$ ► Schätzwerte: Z = $\frac{x-\mu}{\sigma} \sim N_{0,1}$; $P(\mu-\sigma \leq X \leq \mu+\sigma) = P(-1 \leq$ $Z \le 1$) $\approx 68\%$; $P(\mu - 2\sigma \le X \le \mu + 2\sigma) =$ $P(-2 \le Z \le 2) \approx 95\%$; $P(\mu - 3\sigma \le X \le 1)$ $\mu + 3\sigma$) = $P(-3 \le Z \le 3) \approx 99.7\%$ 4.11 Exponentialverteilung Abbildung Dichtefunktion Modellierung von Lebensdauern, 5 Zentraler Grenzwertsatz Wartezeiten Sei $Y_t \sim P_{\lambda t}$ im Intervall $\mu\sigma^2$ bekannt aber nicht die Verteilung [0, t] von t Zeiteinheiten, dann beschreibt 5.1 ZGWS die Exponentialverteilung die Wartezeit Seien X_i (i = 1,...,n) unabhängige identi-X bis zum Eintreten eines Ereignissche verteilte (i.i.d) ZV mit Erwartungsses; Dichte- und Verteilungsfunktion: wert μ und Varianz σ^2 . Dann gilt für hin $f(x) = \lambda e^{-\lambda x} (x \ge 0)$ und $F(x) = 1 - e^{-\lambda x}$; reichend große n und $\overline{X} = \frac{1}{n} \sum_{i=1}^{n}$ nähe-Verteilung: $X \sim Exp_{\lambda}$; $E[X] = \frac{1}{\lambda} \Rightarrow$ rungsweise: Berechnung mit partieller Integrati- $\sum_{i=1}^{n} X_i \sim N_{n\mu,n\sigma^2} \&$ on; $Var[X] = \frac{1}{12}$; **R**: $dexp(x, \lambda) = f(x)$; $\frac{\sum X_i - n\mu}{\sqrt{n} \cdot \sigma} \sim N_{0,1}$ $pexp(x, \lambda) = F(x)$; Eigenschaft: Eine exponentialverteile ZV X ist gedächtnislos, $\sum X_i$ bezieht sich auf Y; $\sum X_i - n\mu$ bezieht d.h. P(X > s + t)|X > t = P(X > s); gl. Vert. sich auf X_i ; $\overline{X} \sim N_{\mu,\frac{\sigma^2}{n}} \& \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \sim N_{0,1}$; Der Satz gilt sogar allgemeiner, wenn die X_i abhängig und nicht identisch verteilt sind, vorausgesetzt kein X_i ist deutlich dominanter?! als die anderen.Für die Voraussetzung des ZGW ist, dass die X_i nicht normalverteilt sein müssen., damit $\sum_{i=1}^{n} X_i$ oder \overline{X} bei **hinreichend** großem n normalverteilt sind. Faustregel: Je schiefer die Verteilung der X_i

 $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)};$ Verteilung:

 $X \sim N_{\mu,\sigma^2}$; $E[X] = \mu$; $Var[X] = \sigma^2$; **R**:

 $\frac{d}{d}norm(x,\mu,\sigma) = f(x); pnorm(x,\mu,\sigma) =$

F(x); qnorm (q, μ, σ) : q - Quantil; **Maxi**-

teilter ZV; Verteilung: $X \sim \chi_n^2$; E[X] =

n; Var[X] = 2n; \mathbf{R} : $\frac{d}{d}chisq(x,n) = f(x)$;

ppchisq(x, n) = F(x); Eigenschaft: $X_1 \sim$

 $\chi_{n_1}^2$ und $X_2 \sim \chi_2^2 \Rightarrow X_1 + X_2 \sim \chi_{n_1 + n_2}$

desto größer muss n sein: n>30: falls

die unbekannte Verteilung ohne markan-

ten Ausreißer, aber schief ist (Exponenti-

alverteilung); **n>15:** falls die unbekann-

te Verteilung annähernd symmetrisch

4.12 Chiquadrat-Verteilung $Z_1,...,Z_n$ seien unabhängige, standardnormalverteilte ZV \Rightarrow X = $Z_1^2 + + Z_n^2$ hat Chiquadratverteilung mit n Freiheitsgraden; Anwendungsmodell: Sum-

men unabhängiger, standardnormalver-

von JD., Seite 3 von 4 ist(Binomialverteilung); $n \le 15$: falls die unbekannte Verteilung annähernd nor-

Hilfszettel zur Klausur

malverteilt ist;

$$\phi(-a) = 1 - \phi(a); \ \phi(a) = 1 - \phi(a); \ \phi(a) = 1 - \phi(a); \ P(-a < Z < a) = \phi(a) - \phi(-a) = \frac{1}{2} - \phi(-a) = \frac{1}{2} - \frac{1}{2}$$

qnorm(1

Dann sind $Z_1 = \frac{\sum X_i - n\mu}{\sqrt{n}\sigma}$ und $Z_2 = \frac{\overline{X} - \mu}{\sigma}$ näherungsweise standardnormalverteilt. Es lassen sich Wahrscheinlichkeiten für $\sum X_i, X_i, Z_1$ oder Z_2 berechnen. • Es lässt sich n bestimmen, so dass,

zu vorgegebener Schranke k und Wahrscheinlichkeit p gilt: $P(Z_i > k) \ge p$ or $P(-k \le Z_i \le k) \ge p$ 5.4 Stichprobenvert.normalvert.

Grundgesamt. 5.5 Stichprobenmittel

Die Stichprobenfunktion $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ ist eine erwartungstreue Schätzfunktion für Erwartungswert μ , d. h. $E[X] = \mu$

5.6 Stichprobenvarianz

Die Stichprobenfunktion S² $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2 = \frac{1}{n-1}(\sum_{i=1}^{n}X_i^2$ $n\overline{X}^2$)ist eine erwartungstreue Schätzfunktion für die Varianz σ^2 , d. h. $E[S^2] = \sigma^2$; $E[\overline{X}] = E[\frac{1}{n}\sum X_i] =$ $\frac{1}{n}E[\sum X_i] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}n\mu = \mu;$

 $Var[\overline{X}] = Var[\frac{1}{n}\sum X_i] = \frac{1}{n^2}Var[\sum X_i] =$ $\frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$; Seien $X_i(i=1,...,n)$ unabhängige normalverteilte ZV mit Erwarbei bekannter Varianz: $\frac{X-\mu}{\sigma}\sqrt{n} \sim N_{0,1}$;

kannter Varianz: $\frac{X-\mu}{S}\sqrt{n} \sim t_{n-1}$; 6 Konfidenzintervall

gesamtheit näherungsweise normalver-

teilt or Stichpr.umf. ist hinreichend groß

 $(n \ge 30)$, die Sum. or. der Mittelwert

der X_i nach dem ZGWS näherungsweise

Irrtumswahrscheinlichkeit = α ; Konfi-

denzniveau = $1 - \alpha$; Konfidenzintervall

E[X]: Stichprobenmittel: $X = \frac{1}{n} \sum_{i=1}^{n} X_i$;

Varianz: Stichprobenvarianz: s^2 =

 $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2$; Schätzwert für wah-

ren Parameter, aber keine Aussage über

Unsicherheit der Schätzung, Geringe

Intervall für wahren Parameter,

mit vorgegebener Sicherheit; Vor-

gabe (95% or 99%); Dichtefunkti-

Sicherheit für wahren Parameter;

 $\frac{(n-1)S^2 = \sum (x - \overline{x})^2}{\sigma^2 \Rightarrow \text{Standardisierung}}$

norm.vert. ist

6.1 Begriffe

6.2 Punkschätzer

6.3 Intervallschätzer

kl. Stichpr.umf. (n<30) ist die Grund

6.7 Aufgabentypen

Geg: n, 1- α ; **Ges:** I s.o. **Geg:** \overline{X} , σ , 1 – α , L; $L = 2\phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}$; Ges: n; $\sqrt{n} > 2\phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}$ $\frac{\alpha}{2}$) $\frac{\sigma}{L}$ Geg: n, I, L; Ges: 1- α ; 1 - $\frac{\alpha}{2}$ = 7 Hypothesentests

Für $\frac{L}{2} = 2\phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}\frac{1}{2} = 2\phi^{-1}(1$

Basierend auf n unabhängig und iden-

tisch Verteilte (i.i.d) Zufallsvariablen $X_1,...,X_n$ (Messungen) soll eine Entscheidung getroffen werden, ob eine Hypothewert μ gültig ist or nicht.

α = Signifikanzniveau/ Fehlerwahr-

Schlussfolgerung = H_0 verworfen \rightarrow klassischer Parametertest; schwache Schlussfolgerung = H_0 wird nicht verworfen \rightarrow klassischer Parametertest. p-Wert = beobachtetes Signifikanzniveau; $H_0 = \text{ange-} N_{\mu_0, \sigma_0^2/n} \Rightarrow \frac{X - \mu_0}{\sigma_0} \sqrt{n} \sim N_{0,1}; \ P_{\mu 0}(\overline{X} \in \text{Tweifelten Auseana})$ zweifelten Aussage 7.2 Null- und Gegenhypothese

Modell: Verteilung der Grundgesamtheit or Testgröße **TG** (häufig \bar{x}) ist bekannt bis auf einen Parameter, z.B. μ, für den $P(-a \le \overline{x} \le a) > 0.95$; σist unbekanneine Hypothese aufgestellt wird. $TG \sim$

 $P(x_{0.025} < \frac{x - \mu}{\sigma} \sqrt{n} < x_{0.975}) \ge 0.95$

6.4 μ unbekannt, σ^2 bekannt

 $I =]\overline{X} - \phi^{-1}(1 - \frac{\alpha}{2}) \frac{\sigma}{\sqrt{n}}$

 $qnorm(1-\frac{\alpha}{2})$

ter Parameter

 $-1.96; N_{0.1}; 1.96;$

$$\frac{\sqrt{1-\alpha}}{90\%} \left[\begin{array}{ccc} \frac{2}{5} & \phi & (\sqrt{1-2}) \\ \hline 90\% & 5\% & \phi^{-1}(0.95) \approx 1.645 \\ \hline 95\% & 2.5\% & \phi^{-1}(0.975) \approx 1.96 \\ \hline -\frac{\alpha}{2} \left(\frac{\sigma}{\sqrt{n}} \right) \left[\begin{array}{ccc} 99\% & 0.5\% & \phi^{-1}(0.995) \approx 2.576 \\ \hline \end{array} \right]$$

$$\frac{x_{1}-\frac{\pi}{2}}{6.5}$$
 $\frac{x_{2}}{\mu}$ $\frac{x_{1}-\frac{\pi}{2}}{6.5}$ unbekannt

6.6 Zusammenfassung

Wie verändert sich das $(1 - \alpha)$ -Konfidenzintervall, n-größer \Rightarrow I kürzer; tungswert μ und Varianz σ^2 . Dann gilt: $1-\alpha$ größer \Rightarrow I länger;

 $I = \overline{X} - t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}} \sqrt{X} + t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}}$

beweis liefert. $H_0: \mu = \mu_0$; Gegenhypo**these** H_1 : Gegenteil von H_0 z.B. $H_1 \neq \mu_0$; 7.3 Ablehnungsbereich, Fehler 1. & 2. Treffen der Testentscheidung, basierend auf einer konkreten Stichprobe $\{x_1,...,x_n\}$; Berechnung der Realisation **tentscheidung**: H_0 wird abgelehnt

 N_{μ,σ^2} ; **Nullhypothese**: H_0 : Angezweifel-

te Aussage, der widersprochen werden

 $tg = TG(x_1,...,x_n)$ der Prüfgröße TG; **Ab**lehnungsbereich / Kritischer Bereich C: Werte der Testgröße, die für H1, sprechen & bei Gültigkeit von H_0 mit Wahrscheinlichkeit $\leq \alpha$ (meist 0.1, 0.05, or 0.01) auftreten. Fehler 1. Art: α ist die Wahrscheinlichkeit, dass H_0 verworfen wird, obwohl sie richtig ist. **Annahmebereich:** Komplement *C* des Ablehnungsbereichs. H_0 kann nicht abgeleht werden, falls

Die Wahrscheinlichkeit, dass H_0 nicht

abgelehnt wird, obwohl sie falsch ist.

Testentscheidung

H₀ wird nicht abgelehnt) H₀ ist falsch. | falsch (Wsk: Fehler 2. Art)

- 주1(1-분)= 주1(분) | 근 주1(1-분) C $H_1: \mu \neq \mu_0;$ 7.4 Klassischer Parametertest wird abgelehnt, falls tg =

 $TG(x_1,...,x_n) \in C$; H_0 wird angenommen falls $tg = TG(x_1,...,x_n) \in C$; Der kritische Bereich ergibt sich analog zu den Konfidenzintervallen durch die Vorgabe eines kleinen Signifikanzniveau d.h. max. Wahrscheinlichkeit für Fehler 1. Art, mit standardisierter Prüfgröße TG^* gilt: $P(TG \in C) \le \alpha \Leftrightarrow TG^* \in$

 $-\infty; \phi^{-1}(1-\frac{\alpha}{2})[\cup]\phi^{-1}(1-\frac{\alpha}{2}); \infty[; P(TG \in$ se für einen unbekannten Erwartungs- \overline{C}) $\geq 1 - \alpha \Leftrightarrow TG^* \in [\phi^{-1}(\frac{\alpha}{2}), \phi^{-1}(1 - \frac{\alpha}{2})];$ Wird dann H_0 verworfen, spricht man von einer signifikanten Schlussfolgerung. Kann H_0 nicht verworfen werden, dann lässt sich keine Aussage über den Fehler scheinlichkeit TG = Prüfgröße; TG* = 2. Art treffen & man spricht von einer standardisierte Prüfgröße; siginifikante schwachen Schlussfolgerung. 7.5 Zweiseitiger Gauß Test $H_0: \mu = \mu_0$ gegen $H_1: \mu \neq \mu_0$; $\overline{X} \sim$ Falls $5\% \le p - Wert \le 10\%$: Signifikanz

$C) \le \alpha \Leftrightarrow |TG| = \frac{|\overline{X} - \mu_0|}{\sigma_0} \sqrt{n} > \phi^{-1}(1 - \frac{\alpha}{2});$

Testentscheidung: H_0 wird abgelehnt, falls $|TG| > \phi^{-1}(1-\frac{\alpha}{2})$; H_0 wird angenommen, falls $|TG| \le \phi^{-1}(1-\frac{\alpha}{2})$ 7.6 Einseitiger Gauß Test

kann, wenn die Stichprobe einen Gegen- $H_0: \mu \ge \mu_0$ gegen $H_1: \mu < \mu_0$ 7.8 rechtsseitig

 $H_0: \mu \le \mu_0 \text{ gegen } H_1: \mu > \mu_0$

7.7 linksseitig

Hier nur linksseitig!: $P_{u0}(\overline{X} \in C) \leq$ $\alpha \Leftrightarrow TG = \frac{\overline{X} - \mu_0}{\sigma_0} \sqrt{n} < \phi^{-1}(\alpha); \text{ Tes-}$

falls, $TG < \phi^{-1}(\alpha)$; H_0 wird angenommen, falls $TG \geq \phi^{-1}(\alpha)$; linksseitig: 1 verteilung der Testgröße rechtsseitig:

7.9 Varianten Gauß Test, σ^2 bekannt, μ unbekannt

 $tg \in \overline{C}(P(tg \in \overline{C}) \ge 1 - \alpha)$. Fehler 2. Art:

Prüfgröße $tg = \frac{\overline{X} - \mu_0}{\sigma_0} \sqrt{n}$; $\mu \neq \mu_0 \mid |tg| > \Phi^{-1} \left(1 - \frac{\alpha}{2}\right) \mid 2(1 - \Phi(tg))$ $tg > \Phi^{-1} (1 - \alpha)$

Prüfgröße $tg = \frac{X-\mu_0}{c}\sqrt{n}$

7.10 t-Test, μ , σ^2 *unbekannt*

$\mu = \mu_0$	$\mu \neq \mu_0$	$ tg > t_{n-1}^{-1} \left(1 - \frac{\alpha}{2}\right)$	$2(1-t_{n-1}(tg))$	
$\mu \leq \mu_0$	$\mu > \mu_0$	$tg > t_{n-1}^{-1} \left(1 - \alpha\right)$	$1-t_{n-1}(tg)$	
$\mu \ge \mu_0$	$\mu < \mu_0$	$tg < t_{n-1}^{-1}(\alpha)$	$t_{n-1}(tg)$	
7.11 p-Wert				
Wahrscheinlichkeit, bei Zutreffen von H_0				
den beobachteten Wert tg der Prüfgröße				

or einen noch stärker von μ_0 abweichenden Wert zu bekommen. Der p-Wert zu einer Hypothese H_0 ist der kleinste Wert von α , für den H_0 noch abgelehnt werden kann. Je kleiner der Wert, desto kleiner ist der Fehler 1. Art & umso signifikanter ist die Testentscheidung. Nice to know Anhand des p-Werts kann man für beliebige Werte von α eine Testentscheidung treffen; Falls p - Wert < 1%: sehr hohe Signifi-Falls $1\% \le p - Wert < 5\%$: hohe Signifi-

Falls p - Wert > 10%: keine Signifikanz 7.12 Zusammenhang I & Hypothesentests zweiseitig

zum Konfidenzniveau $1 - \alpha$; H_0 wird abgelehnt, falls $\mu_0 \notin I$; H_0 wird angenommen, falls $\mu_0 \in I$; Das Konfidenzniveau

ist der Annahmebereich von H_0 zum Signifikanzniveau α ; 7.13 Zusammenfassung klass. Hy-

Signifikanzniveau α wird vorgegeben;

 α & Verteilung der Testgröße unter H_0 wir der Ablehnungsbereich ermittelt. Je kleiner (größer) α , desto kleiner (größ-

ter) ist der Ablehnungsbereich; $!: \alpha \& C$ hängen **nicht von** der konkreten

Stichprobe ab; H₀ wird abgelehnt, falls der ermittelte Wert der Testgröße (beobachteter Wert)

in C liegt. !: Die tg hängt von der konkreten Stichprobe ab. Sie ist eine ZV.

7.14 Test mittels p-Wert

 α wird vorgegeben. Berechnung des p-Werts anhand der kon-

kreten Stichprobe mit der Verteilung der Tg unter H_0 ;

Stichprobe ab, ist eine ZV. H_0 wird abgelehnt, falls $p - Wert \le \alpha$.; zweiseiliger 8 Fehleranalyse

8.1 Auslöschung

!:Der p-Wert hängt von der konkreten

Fehlern behaftete Zahlen voneinander

rechtsselige wenn ungefähr gleich große, bereits mit

tissenstellen ausgelöscht werden.

Stützstellen ohne großen Aufwand. An-Hilfszettel zur Klausur dere Koeffizienten bleiben unverändert. von JD., Seite 4 von 4 9.4 Dividierende Differenzen 8.2 Addition

9.5 Ouiz

9.6 Effizienz

9.7 klasisch

9.8 Horner Schema

8.3 Horner

x y = 6 -2 -15 = -5-(-15) 3 -5 = 3-(-2) = 2 = 6 -4-2 = -2 = 6 große signifikante Stellen schlucken kleine signifikante Stellen. $\begin{vmatrix} 3 & \frac{3-(-5)}{1-3} = -4 & \frac{1-(-2)}{1-(-2)} & \frac{2}{3} \\ \frac{1-3}{4-3} = -\frac{2}{3} & \frac{-\frac{2}{3}+4}{4-3} = \frac{10}{3} \end{vmatrix}$

Ohne: Runden bei jeder Rechenoperation. Mit: Vermeidung der Rundungsfehler nach jeder Rechenoperation.

8.4 Abc-Formel $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}; \ x_{1,2} = \frac{2a}{-b \mp \sqrt{b^2 - 4ac}}$ b>0, dann (2), für $x_1 & (1)$ für x_2 or b<0, (1) für $x_1 & (2)$ für x_2 ; Falls 4ac klein im

Vergleich zu b^2 , dann evtl. Probleme der

Auslöschung. 9 Interpolation Zu gegebenen Punkten $(x_i, y_i), i = 0, ..., n$

mit $x_i \neq x_j$ für $i \neq j$ eine Funktion G (dies ist nicht eindeutig! Abhängig von der

Funktionsklasse), so dass $G(x_i) = y_i, i =$ 0, ..., n (Interpolations bedingung). Interpolation ist ungeeignet für verauschte Daten. Lösung: Approximation der kleinsten Quadrate.

9.1 Begriffe Extrapolation \(\delta\) Näherungwerte für x-

Werte außerhalb der Stützstellen; Dividierende Differenzen

Koeffizienten ci lassen sich rekursiv durch wiederholte Bildung von "Differenzquotienten"berechnen 9.2 Lagrange, quer **2 Formeln**; $p_n(x) = y_0 L_0(x) + y_1 L_1(x) + ... + y_n L_n(x)$; $L_k(x) \prod_{j=0; j \neq k}^n \frac{x - x_j}{x_k - x_j}$; Jede Basis-

funktion $L_k(x)$ ist ein Polynom vom Grad $\leq n$; **Bemerkung:** Findet Anwendung bei Numerischer Integration; Wenn Stützstellen x_i gleich bleiben & nur y_i ändern \Rightarrow keine Neuberechnung; Rechenaufwand

9.10 Wahl der Stüztstellen $\mathcal{O}((n+1)^2)$; Kommen neue Stützpunkte Mit äquidistante Stützstellen konvergiert hinzu ⇒ Neuberechnung!; Die Interpoladas Interpolationspolynom nicht immer tionspolynome liefern nur sinnvolle Nä**herungswerte** für x-Werte, die zwischen

ßerhalb der Stützstellen) kann zu großen Abweichungen führen. 9.3 Newton

Darstellung des Interpolanten, die auf ein gestaffeltes LGS führt & einfache Hinzunahme weiterer Punkte erlaubt. $p_n(x) = c_0 + c_1(x - x_0) + ... +$ $c_n(x-x_0)(x-x_1)...(x-x_{n-1})$

Polynom vom Grad n

Das Resultierende LGS für die Koeffizienten c_i hat gestaffelte Form. **Interpola**tionsbedingungen?

Vorteile: Rechenaufwand $\mathcal{O}(n^2)$ Gleithoher Differenzierbarkeitsgrad benötigt

Newton & Lagrage ermöglichen ohne

großen Berechnungsaufwand die Ände-

rung der Werte y_i für gleichbleibende

Stützstellen x_i .; Newton ergmöglicht oh-

ne großen zusätzlichen Berechnungsauf-

wand diei Hinzuname weiter Stützstel-

 $p_n(x) = a_n x^n + ... + a_0$; **Aufwand:** 2n-1 Mult.

gilt fürn den Interpolationsfehler:

 $f(x) - p_n(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!} (x - x_0)...(x - x_n)$

Vergleichbar zum Restglied bei der

Taylorreihenentwicklung; Bemerkung:

 θ unbekannt, daher nur Fehlerabschät-

zung; Fehler ist Abhängig von der

Verteilung der Stützstellen; Der Fehler

ist bei großen n an den Intervallrändern

gegen die zugrundeliegende stetige Funk-

tion, wenn die Anzahl der Stützstel-

len & damit der Grad des Polynoms

wächst. Lösung: Nicht-aquidistante Ver-

teilung der Stützstellen, dichter an den

Intervallgrenzen.

9.11 Chebyshev-Punkte

verteiltund Konvergenz erreicht.

9.12 Schwächen der Polynominterpola-

Hoher Rechenaufwand bei meist keiner

deutlich größer, als in der Intervallmitte 10.2 Def

... + a_1) $x + a_0$; Aufwand: n Mult.

9.9 Interpolationsfehler

len, zur Verbesserung der Genauigkeit

groß sein; Bei wachsenden n ist es unmöglich eine Konvergenz gegen die zu

interpolierenden Funktion sicherzustellen; **R:** approx $\hat{=}$ lin Interpolation; Spline ≜ Spline interpolation; Bibliotheken für Polynominterpolation; Jede Funktion S_i ist ein Polynom vom

9.13 Spline Grad $n \le k$; S(x) ist (k-1) - mal stetig dif-

ferenzierbar, d.h. für alle x_i (i = 1, ..., n-1)

gilt: $S_{i-1}(x_i) = S_i(x_i)$;

9.14 Kubisch **Ansatz:** $S_i = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + c_i(x - x_i)^2$ $d_i(x-x_i)^3$; Gleichungssystem: 4n Para-

meter $a_i, b_i, c_i, d_i (i = 0, ..., n - 1)$; 2n Interpolationsbedingungen: am Rand je nur eine. $S_i x_i = y_i$; $S_i(x_{i+1}) = y_{i+1}$ für

 $(i = 0, 1, ..., n - 1) \Rightarrow Stetigkeit; Stetig$ **keit der 1. Abl:** $S_{i}(x_{i+1}) = S_{i+1}(x_{i+1}); \Leftrightarrow$ $S'_{i}(x_{i+1}) - S'_{i+1}(x_{i+1}) = 0$; für i = 0, 1, ..., n $p_3(x) = a_3x^3 + a_2x^2 + a_1 + a_0 = ((a_3 + a_2)x + a_1)x + a_1 + a_2 = ((a_3 + a_2)x + a_1)x + a_1 + a_2 = ((a_3 + a_2)x + a_1)x + a_2 = ((a_3 + a_2)x + a_2)x + a_1 + a_2 = ((a_3 + a_2)x + a_2)x + a_2 = ((a_3 + a_2)x + a_2)x + a_3 = ((a_3 + a_2)x + a_2)x + a_3 = ((a_3 + a_2)x + a_2)x + a_3 = ((a_3 + a_2)x + a_3)x + a_3 = ((a_3 + a_3)x + a_3)x + a_3 = ((a_3 +$ 2; Stetigkeit der 2. Abl.: $S_i''(x_{i+1}) =$

 $a_1)x + a_0$; Allg.: $p_n(x) = (...(a_nx + a_{n-1})x +$ $S_{i+1}^{"}(x_{i+1}); S_{i}^{"}(x_{i+1}) - S_{i+1}^{"}(x_{i}+1) = 0;$ $f\ddot{u}r^{i+1} i = 0, 1, ..., n-2$); natürlicher Rand**bedingungen:** $S_0''(x_0) = 0$; $S_{n-1}''(x_n) = 0$; f hinreichend glatt ist & nach geschickter Umformung der Gleidas eindeutige Interpolationspolynom von Grad *n*, dann nung Newton-Cotes Regeln: mind. Ordchungen hat das LGS Tridiagonalform.

> **Rechenaufwand** $\mathcal{O}(n)$ Gleitpunktoperationen. 10 NumInt Verbesserung der Näherung: Aufteilung in kleine Teilintervalle & Summe von

Rechtecksflächen bilden; Interpolation

mit Polynom höheren Grades durch dis-

krete Punkte. **10.1** Ansatz[a,b] $\int_{a}^{b} f(x)dx \approx (b-a)\sum_{i=0}^{i} \alpha_{i} f(x_{i})$

 $p_k = \text{Interpolationspolynom}; I_n = \text{Quadraturformel}; K = \text{Fehlerkonstante des Ver-}$ fahrens.; Singularität \(\hat{=}\) isolierter Punkt, der ungewöhnliches Verhalten zeigt;

10.3 Newton-Cotes Das Intergral des p_k dient als Appr. für

das Int. von f(x); $\int_0^1 f(t)dt \approx \int_0^1 p_k(t)dt =$ $\sum_{i=0}^{k} \alpha_i f(t_i)$ Das Interpolationspolynom **10.9** GauQua

muss nicht explizit aufgestellt werden, es dient vorab der Bestimmung der Gehaben die Eigenschaft; senkrechte Projektion von gleichverteilten Punkten auf dem Einheitskreis. $t_k = cos \frac{(2k-1)\pi}{2n}, k = 1,...,n, auf] - 1,1[$; Invtervall:]a,b[: $x_k = 1,...,n$] wichte α_j ; $\int_0^1 p_k(t) = \int_0^1 \sum f(t_j) L_j(t) dt =$ $\sum f(t_i) \int_0^1 L_i(t) dt$ $\frac{a+b}{2} + \frac{b-a}{2}t_k$. \Rightarrow Fehler wird gleichmäßiger

10.4 Trapezregel

 $\frac{(b-a)}{1}\frac{1}{2}(f(a)+f(b));$ T_n : Für Teilintervalle mit gleicher Länge: punktoperationen; Hinzufügen weiterer wird; RB kann Interpolationsfehler sehr $h = \frac{b-a}{n}$; $T_n = h(\frac{f(x_0)}{2} + f(x_1) + ... + f(x_{n-1})

10.5 SimpsonRegel $S_1: \int_0^1 f(t)dt \approx \frac{1}{6}(f(0) + 4f(0.5) + f(1));$

 $\int_{a}^{b} f(x)dx \approx \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b));$

Für n = 1: $\frac{(b-a)}{2 \cdot 1} \frac{1}{3} (f(a) + 4f(\frac{a+b}{2}) + f(b));$

Für n allg.: $\frac{(b-a)}{2n}\frac{1}{3}(f(a) + 4(a+h) + ... + 4f(b-h) + f(b))$ S_n : Beachte gerade Anzahl an Teilinvervallen!; Für 2n Teilintervalle, 2n+1 Knoten

mit gleicher Länge $h = \frac{b-a}{2n}$; $S_2 =$ $\frac{h}{3}(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+f(x_4));$

Basierend auf äquidistanten Knoten t_j = 3-Rule Falls α_i positiv. Integrations regeln stabil; $k \le 7 \& k = 9 \Rightarrow$ positive Gewichte;

Eine Integrationsregel hat Ordnung p wenn sie für Polynome vom Grad ≤ p-1 exakte Werte liefert; T₁ Ordnung 2 ⇒ exakt für Polynome Grad ≤ 1; Örd-

10.6 Ordnung Integrationsregel

nung k+1 (k: GRad des Interpolationspolynoms); **Beweis der Ordnung:** 1 = $\int_0^1 x^0 dx \stackrel{!}{=} ; \frac{1}{2} = \int_0^1 x dx \stackrel{!}{=} ; \frac{1}{3} = \int_0^1 x^2 \stackrel{!}{=} ;$ $\frac{1}{4} = \int_0^1 x^3 \stackrel{!}{=};$

10.7 Fehler Quadratur Für (globalen) Fehler $e_{In} = \int_{a}^{b} f(x)dx - I_{n}$

auf [a, b] gilt: $|e_{In}| = (b-a)h^p K|f^{(p)}(\xi)|.\xi \in$ $]a,b[,h] = \frac{b-a}{n} \& |e_{In}| \le (b-a)h^p K.$ $\max_{a \le x \le b} |f^{(p)}(x)|;$ 10.8 Grenzen NeCo

einer Quadraturformel I_n der Ordnung p

negativ → Verfahren instabil; geschlossene NeCoRe → Funktionsauswertung an RB → Problem mit Singularitäten. größtmögliche Ordnung unerreichbar wegen

äquidistanten Knoten; Lösung:

viele äquidistante Knoten → Gewichte

Gauß-Quadraturformeln

Nur positive Gewichte! 11 Allgemein

 $T_1: \int_0^1 f(t)dt \approx \frac{1}{2}(f(0)+f(1)); \int_a^b f(x)dx \approx 11.1$ Symbole

Stichprobenstandardabweichung \(\delta\) s; Standardabweichung $\hat{=}\sigma$

11.2 Abl.

 $6a^2b^2 - 4ab^3 + b^4$ $(a+b)(a-b) = a^2 - b^2$ 3. Binom;

a > 0: $a^b = e^{b \ln a}$; $0^0 = 1$; $x_1^1 = x_1$;

11.7 Wurzel $\sqrt{a^2} = |a|$; $b = a^n \Leftrightarrow a = \sqrt[n]{b}$; $\sqrt[n]{a} = a^{\frac{1}{n}}$; $\sqrt[n]{a \pm b} \neq \sqrt[n]{a} \pm \sqrt[n]{b}$

 $\sqrt[n]{a} \cdot \sqrt[n]{b} = (a^{\frac{1}{n}}) \cdot (b^{\frac{1}{n}}) = (ab)^{\frac{1}{n}} = \sqrt[n]{ab}$

11.8 Bin.Formel

 $6a^2b^2 + 4ab^3 + b^4$ $(a-b)^2 = a^2 - 2ab + b^2$; 2. Binom; $(a-b)^3 =$

 $x^n = nx^{n-1}$

Summenregel $\int_a^b [f_1(x) + ... + f_n(x)]dx =$ $\int_{a}^{b} f_{1}(x)dx + ... + \int_{a}^{b} f_{n}(x)dx$; Vertau-

schungsregel $\int_{a}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$; $\int_a^a f(x)dx = 0; \int_a^b f(x)dx = \int_a^c f(x)dx +$

 $\int_{a}^{b} f(x)dx$ für $(a \le c \le b)$; 11.5 Berechnung best. Integr.

 $\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$

11.6 Potenzen $x^{-n} = \frac{1}{n}$; $a^0 = 1$, $a^{-n} = \frac{1}{a^n}$; $a^m \cdot a^n = a^{m+n}$; $\frac{a^m}{a^n} = a^{m-n}$ für $a \neq 0$; $!(a^m)^n = (a^n)^m =$

 $a^{m \cdot n}$; $a^n \cdot b^n = (a \cdot b)^n$; $\frac{a^n}{b^n} = (\frac{a}{b})^n$ für $b \neq 0$;

 $\sqrt[n]{a^m} = (a^m)^{\frac{1}{n}} = a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m = (\sqrt[n]{a})^m$

 $\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a^{\frac{1}{n}}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[m]{a}$

den gegebenen Stützstellen liegen; Extrapolation (Näherungwerte für x-Werte au-

11.9 Einigungen

o Beim Runden mind. eine Nachkommas-

 $a^3 - 3a^2b + 3ab^2 - b^3$; $(a - b)^4 = a^4 - 4a^3b +$

Quotientenregel $y = \frac{u}{v} \Rightarrow y' = \frac{u' \cdot v - u \cdot v'}{2}$; Kettenregel $f'(x) = F'(u)u'(x) = \hat{F}'(u)$:

sinx = cosx; cosx = -sinx; $tanx = \frac{1}{cos^2x} = 1 + \frac{1}{cos^2x}$

Faktorregel $y = C \cdot f(x) \Rightarrow y' = C \cdot f'(x)$;

Summerregel $y = f_1(x) + f_2(x) + ... +$

 $f_n(x) \Rightarrow y' = f_1'(x) + f_2'(x) + ... + f_n'(x)$; **Pro**-

duktregel $v = u \cdot v \Rightarrow v' = u' \cdot v + v' \cdot u$;

 $y = u \cdot v \cdot x \Rightarrow y' = u' \cdot v \cdot w + u \cdot v' \cdot w + u \cdot v \cdot x';$

 $tan^2x; cotx = -\frac{1}{sin^2x} = -1 - cot^2x;$ $e^x = e^x; a^x = (\ln a) \cdot a^x;$

 $\ln x = \frac{1}{x}$; $\log_a x = \frac{1}{(\ln a) \cdot x}$;

11.3 Abl.Regeln

Ableitung der Äußeren Funktion; u'(x):

Ableitung der Inneren Funktion 11.4 Integralregel, elementar **Faktorregel** $\int_a^b C \cdot f(x) dx = C \cdot \int_a^b f(x) dx$;

 $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = (\frac{a}{b})^{\frac{1}{n}} = \sqrt[n]{\frac{a}{b}} \text{ für } b > 0$ $\Rightarrow m, n \in \mathbb{N}^*; a \ge 0, b \ge 0$

 $(a+b)^2 = a^2 + 2ab + b^2$ 1. Binom: $(a+b)^3 =$ $a^3 + 3a^2b + 3ab^2 + b^3$; $(a+b)^4 = a^4 + 4a^3b + a^3b + a^4 + a^3b

```
Hilfszettel zur Klausur
von JD., Seite 5 von 4
```

11.10 Trigonometrischer Pythagoras

```
\sin^2 x + \cos^2 x = 1
```

11.11 e

```
y = a^x = e^{\lambda x} (\lambda = \ln a); Def.Ber.: \infty < x < \infty; Wert.ber.: 0 < y < \infty; Mon.: \lambda > 0 d.h. a > 1: str. mon. wachs; \lambda < 0 d.h. 0 < a > 1): str. mon. fall.; Asymp.: y = 0 (x-Achse); y(0) = 1 (alle Kurven schneide die y-Achse bei y = 1); y = a^{-1} entsteht durch Spiegelung von y = a^x an der y-Achse.
```

11.12 Logarithm.

```
y = \log_a x mit x>0 ist Umkehrfunktion
von y = a^x; Def.Ber.: x >0; Wert.Ber.:
-\infty < y < \infty; Nullst.: x_1 = 1; Monot.: 0 < a < 1: str.mon. fall; a > 1; str.mon.wachs.;
Asymp.: x = 0(yAchse); log_a 1 = 0, log_a a = 1; y = log_a x ist Spieg. von y = a^x an Wink.halb. d. 1. Quadr.
```