ملته الهاماة دراسة تحولات نووية

γ النشاط الإشعاعي : lpha , eta^- , eta^+ : و الإصدار γ

1. النواة: الاستقرار و عدم الاستقرار

2. معادلات التفكك: انحفاظ الشحنة الكهربائية و انحفاظ

عدد النويات.

3. التناقص في النشاط الإشعاعي:

_ التفسير بالاحتمال.

_ المعادلة التفاضلية للتطور.

. $N=N_0e^{-\lambda t}$ قانون التناقص

au ، ثابت التفكك λ ، ثابت الزمن au

 $t_{1/2} = \tau \ln 2$ زمن نصف العمر

<u>A</u> البيكرال كوحدة قياس النشاط الإشعاعي <u>A</u>

5. تطبيق في مجال التأريخ و الطب.

II/ الانشطار النووي و الاندماج النووي

 $E = mc^2$ العلاقة.

2. النقص الكتلى و طاقة الربط النووى

منحنی أستون

4. معادلة التفاعل النووي

5. الحصيلة الطاقوية

6. مبدأ المفاعل النووي

الله العالم بين منافع و مخاطر النشاط النووى

مالمر الهالمة

دراسة تحولات نووية

 γ و الإصدار lpha , eta^- , eta^+ : و الإصدار /I

2. معادلات التفكك: انحفاظ الشحنة الكهربائية و انحفاظ عدد النويات

$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$: مثال $^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + ^{4}_{2}He$	الإصدار 💢
$^{60}_{27}Co \rightarrow ^{60}_{28}Ni + ^{0}_{-1}e$: مثال $^{A}_{Z}X \rightarrow ^{A}_{Z+1}Y + ^{0}_{-1}e$	الإصدار [
$^{201}_{81}T\ell \rightarrow ^{201}_{80}Hg + ^{0}_{1}e$: مثال $^{A}_{Z}X \rightarrow ^{A}_{Z-1}Y + ^{0}_{1}e$	eta^+ الإصدار
تتشكل النواة البنت عموما في حالة مثارة (متهيّجة) حيث تمتلك طاقة زائدة ناتجة عـن الحركية الحرارية للنوكليونات. تتحرر هذه الطاقة الزائدة عند زوال الإثارة، فتصدر اشعاعا γ .	الإصدار 🌱

ملاحظة: ترمز النجمة (*) إلى الحالة المثارة للنواة.

及多

- $\frac{dN(t)}{dt} = -\lambda N(t)$: التناقص في النشاط الإشعاعي . - المعادلة التفاضلية للتطور
- .($A=A_0e^{-\lambda t}$ ، $m=m_0e^{-\lambda t}$: کنلک) ، $N=N_0e^{-\lambda t}$: قانون انتناقص $A=\lambda N$) يدعى A بالنشاط الإشعاعي A
- $t_{1/2} = \frac{\ln 2}{2} = \tau \ln 2$: زمن نصف العمر $\tau = \frac{1}{2}$: ثابت الزمن λ : ثابت التفكك : λ

4. البيكرال كوحدة قياس النشاط الإشعاعي 4

- (Bq) النشاط A يقاس بالبكريل _
- $[A] = T^{-1}$ النشاط هو إذا متجانس لعكس الزمن الثانية. النشاط الني الثانية الثانية

5. تطبيق في مجال التأريخ و الطب:

 $t = -rac{t_{1/2}}{\ln 2} \ln rac{A(t)}{A_0}$: استعمال العلاقة

العلاقات النظرية و البيانات الموافقة لها

البيان الموافق	العلاقة النظرية
N_0, m_0, A_0 $I_{1/2} \tau \qquad t$	$N = N_0 e^{-\lambda t}$ * $m = m_0 e^{-\lambda t}$: أو * $A = A_0 e^{-\lambda t}$: أو *
	$-\ln\frac{A}{A_0}=\lambda t$ * $\ln\frac{A_0}{A}=\lambda t$: $\frac{1}{2}$ *
$\ln N_0, \ln m_0, \ln A_0$	$\ln N = -\lambda t + \ln N_0$ * $\ln m = -\lambda t + \ln m_0$: δ * $\ln A = -\lambda t + \ln A_0$: δ *
0,5 t	$\frac{N}{N_0} = e^{-\lambda t} \star$

II/ الانشطار النووى و الاندماج النووى

 $E = mc^2$: العلاقة

ي النقص الكتلي و طاقة الربط النووى عنص الكتلي و طاقة الربط النووى عنص الكتلي الكتلي $\Delta m = \left[Z \times m_p + \left(A - Z \right) \times m_n - m_X \right]$

_ طاقة الربط النووى:

$$E_l = \left[Z \times m_p + (A - Z) \times m_n - m_X \right] c^2$$
: طاقة التماسك (الربط)

 $(E_L(joule) \ o \ c(m/s) \ o \ (kg)$ و الكتل تقدر بـ (g) و

$$E_I = \left[Z \times m_p + (A - Z) \times m_n - m_X \right] \times 931.5$$
: أما عند استعمال العلاقة (الكتل تقدر بـ (u) و (u) و (الكتل تقدر بـ (u)

 $\frac{E_{I}}{d}$: (نوية) خطاقة التماسك لكل نوكليون \star

ملاحظة : ـ كلما كان المقدار $\frac{E_{l}}{4}$ كبير كانت النواة أكثر استقرارا.

- النواة الابن أكثر استقرارا من النواة المتفككة.

منحنى أستون
 يشمل الأنوية الطبيعية.

_ بقار ن الاستقر ار فيما بين الأنوية.

TO.E

4. معادلة التفاعل النووى

_ الاندماج النووى: يمكن لنواتين خفيفتين أن تندمجا مكونة نواة واحدة لها طاقة ارتباط لكل نوكليون أكبر مما في النواتين المندمجتين.

$$_{1}^{2}H + _{1}^{3}H \rightarrow _{2}^{4}He + _{0}^{1}n$$

_ الانشطار النووي : تستعمل النيوترونات لقذف أنوية ثقيلة للحصول على أنوية (شظايا) أخف من النواة المنشطر ة.

$$_{92}^{235}U + _{0}^{1}n \rightarrow _{38}^{94}Sr + _{54}^{140}Xe + 2_{0}^{1}n$$

 $E_{lib} = (m_i - m_f)c^2$: الطاقة المحررة في تحول نووى

: كما يمكن التعبير عن E_{lib} بدلالة طاقات التماسك

$$E_{lib} = (E_l)_f - (E_l)_i$$

ملاحظة : لا يمكن تطبيق هذه العلاقة في حالة احتواء التحول على الجسيمات β .

5. الحصيلة الطاقوية

$${}^{A_1}_{Z_1}X_1 + {}^{A_2}_{Z_2}X_2 \rightarrow {}^{A_3}_{Z_3}X_3 + {}^{A_4}_{Z_4}X_4$$

من أجل التحول الطاقوي:

يمكن تمثيل الحصيلة الطاقوية في المخطط التالي:

6. مبدأ المفاعل النووي (بحث)

III/ العالم بين منافع و مخاطر النشاط النووى

(صفحة 90 - الكتاب المقرر -) (أو أي مرجع آخر)