Ashish Mani Acharya

STAT6307

Project 4 3/30/2022

Q1 The data has 97 rows and 8 columns. we got rid ot patient ID column as it was unnnecseay . And we treated vesinv as a factor as it was qualitative(categorical variable) We used Leave One Out Cross Validation or LOOCV method to calculate test MSE for this data.

Ridge Regression

Lasso

(1a)linear regression test MSE= 1218.358

(1b) 1084.374

(1c) 1084.374

(1d) 1084.374

(1e) 1142.836

(1f) 1167.067

(1g)

	MODEL (A)	MODEL (B)	MODEL (C)	MODEL (D)	MODEL (E)	MODEL (F)
(Intercept)	-15.242640	-44.184900	-44.184900	-44.184900	-24.007134	-25.337922
cancervol	2.032250	2.249600	2.249600	2.249600	1.251679	1.916864
weight	0.011320				0.013582	0.000000
age	-0.537210				-0.233510	0.000000
benpros	1.298310				0.461475	0.000000
vesinv1	19.609570	21.880800	21.880800	21.880800	15.461505	15.237621
capspen	1.098770				1.562614	0.938860
gleason	7.059220	6.898200	6.898200	6.898200	6.580142	4.398533
test MSE	1218.358	1084.374	1084.374	1084.374	1142.836	1167.067

As we can clearly see from the data that Model B , C and D performed better than other model. Hence I would prefer subset selection and backward and forward selection to other models that we tried like linear regression (Model A) and Ridge Regression and LASSO which are model E and F respectively.

Q2) The data has 1000 rows and 21 columns . for simplicity datas even some quantitative ones have been used as a factor. We already have done exploratory analysis of this data in our previous project of project 3.

Q2g)

	MODEL (B)	MODEL (C)	MODEL (D)		MODEL (A)	MODEL (E)	MODEL (F)
(Intercept)	1.750000	1.750000	1.750000	(Intercept)	0.400500	1.440543	1.313688
checkingstatus1A12	0.390000	0.390000	0.390000	checkingstatus1A12	0.374900	0.046045	0.000000
checkingstatus1A13	1.024000	1.024000	1.024000	checkingstatus1A13	0.965700	0.150145	0.000000
checkingstatus1A14	1.718000	1.718000	1.718000	checkingstatus1A14	1.712000	0.233259	0.182462
duration	0.025680	0.025680	0.025680	duration	0.027860	0.004513	0.003124
historyA31	0.118800	0.118800	0.118800	historyA31	0.143400	0.109649	0.000000
historyA32	0.830300	0.830300	0.830300	historyA32	0.586100	0.032774	0.000000
historyA33	0.909700	0.909700	0.909700	historyA33	0.853200	0.073370	0.000000
historyA34	1.492000	1.492000	1.492000	historyA34	1.436000	0.136059	0.024208
purposeA41	1.607000	1.607000	1.607000	purposeA41	1.666000	0.183499	0.000000
purposeA410	1.435000	1.435000	1.435000	purposeA410	1.489000	0.177925	0.000000
purposeA42	0.740500	0.740500	0.740500	purposeA42	0.791600	0.078741	0.000000
purposeA43	0.919500	0.919500	0.919500	purposeA43	0.891600	0.100315	0.000000
purposeA44	0.525100	0.525100	0.525100	purposeA44	0.522800	0.039195	0.000000
purposeA45	0.142400	0.142400	0.142400	purposeA45	- 0.216400	0.001133	0.000000
purposeA46	0.143600	0.143600	0.143600	purposeA46	0.036280	0.042436	0.000000
purposeA48	2.164000	2.164000	2.164000	purposeA48	2.059000	- 0.187927	0.000000
purposeA49	0.782700	0.782700	0.782700	purposeA49	0.740100	0.062162	0.000000
amount	0.000129	0.000129	0.000129	amount	0.000128	0.000016	0.000000
savingsA62	0.328200	0.328200	0.328200	savingsA62	0.357700	0.039544	0.000000

Ashish Mani Acharya		STAT6307		Project 4 3/30/2022		•	
savingsA63	0.430400	0.430400	0.430400	savingsA63	0.376100	0.079461	0.000000
savingsA64	1.289000	1.289000	1.289000	savingsA64	1.339000	0.139715	0.000000
savingsA65	0.962800	0.962800	0.962800	savingsA65	0.946700	- 0.116745	0.000000
installment	0.329900	0.329900	0.329900	employA72	0.066910	0.035283	0.000000
statusA92	0.287200	0.287200	0.287200	employA73	0.182800	0.006761	0.000000
statusA93	0.822800	0.822800	0.822800	employA74	0.831000	0.077383	0.000000
statusA94	0.416900	0.416900	0.416900	employA75	0.276600	0.017210	0.000000
othersA102	0.487400	0.487400	0.487400	installment	0.330100	0.038147	0.000000
othersA103	1.040000	1.040000	1.040000	statusA92	0.275500	0.001100	0.000000
age	0.013090	0.013090	0.013090	statusA93	0.816100	0.070329	0.000000
otherplansA142	0.078640	0.078640	0.078640	statusA94	0.367100	0.032860	0.000000
otherplansA143	0.699500	0.699500	0.699500	othersA102	0.436000	0.071643	0.000000
housingA152	0.441500	0.441500	0.441500	othersA103	0.978600	0.145853	0.000000
housingA153	0.149700	0.149700	0.149700	residence	0.004776	0.001032	0.000000
teleA192	0.279400	0.279400	0.279400	propertyA122	0.281400	0.035969	0.000000
foreignA202	1.382000	1.382000	1.382000	propertyA123	0.194500	0.026868	0.000000
				propertyA124	0.730400	0.085303	0.000000
Misclassification Error	0.240000	0.240000	0.240000	age	0.014540	0.001591	0.000000
				otherplansA142	0.123200	0.004791	0.000000
				otherplansA143	0.646300	0.074857	0.000000
				housingA152	0.443600	0.061099	0.000000
				housingA153	0.683900	0.062714	0.000000
				cards	0.272100	0.030593	0.000000
				jobA172	0.536100	0.004268	0.000000
				jobA173	0.554700	0.017107	0.000000
				jobA174	0.479500	0.012689	0.000000
				liable	0.264700	0.028450	0.000000
				teleA192	0.300000	0.041228	0.000000
				foreignA202	1.392000	0.123863	0.000000
				Misclassification			
				Error	0.249000	0.166466	0.166169

Since it had the least misclassification error rate I would chose model E and F i.e. Ridge regression and LOOCV respectively. In other words models using Elastic Net methods seem better than other models. Regarding the comparison with the problem I did in project 3; various other factors than simple misclassification rate came into play while making recommendations like AUC, sensitivity and specificity and of course misclassification rate. However since

Ashish Mani Acharya STAT6: this question was not asking for an 3.	Project 4 3/30/2022 ything else, here my decision is mainly based on misclassification rate unlike project	t
***************************************	#####section 2####################################	
######################################		
#####for Q1#####		
#####installing required libraries	for this question #	
install.packages("bestglm")		
library(caret)		
library(ggplot2)		
library(lattice)		
library(boot)		
library(leaps)		
library(car)		
library(glmnet)		
library(bestglm)		
pc <- read.csv("C:/Users/alexk/One	Drive/Desktop/stat 6340/mini project 4/prostate_cancer.csv",header = TRUE)	
View(pc)		
#using abbrevaetion for prostate c	ancer as pc#	
###exploratory analysis of the data	###	
dim(pc)		
head(pc)		
sum(is.na(pc))		
pc = pc[,-1] #removing unncessary	patientID variable#	

```
Ashish Mani Acharya
                           STAT6307
                                              Project 4 3/30/2022
str(pc)
pc$vesinv = as.factor(pc$vesinv) # vesinv is categorical variable#
summary(pc)
#####1a######
control = trainControl(method = "LOOCV") #using leave one out cross validation method#
a1_fit = train(psa~., data = pc, trControl = control, method = "glm", family = gaussian())
summary(a1_fit)
a1_fit
#####1b#####
b1_fit_output = regsubsets(psa ~ ., data = pc, nbest = 1, nvmax = NULL, method = "exhaustive")
output_summary = summary(b1_fit_output)
c1 = as.data.frame(output_summary$which)
c2 = as.data.frame(output_summary$adjr2)
c = cbind(c1, c2)
# the best model is the model that contains i.e. pcvol, vesinv and gleason, as per above models #
pc2 = pc[,c(1,2,6,8)] # as psa,pcvol,vesinv and gleason are significant variables#
control = trainControl(method = "LOOCV") #using LOOCV method#
bcd fit = train(psa ~ ., data = pc2, trControl = control, method = "glm", family = gaussian())
summary(bcd_fit)
bcd_fit
```

```
Ashish Mani Acharya
                        STAT6307
                                         Project 4 3/30/2022
c1_fit_output = regsubsets(psa ~ ., data = pc, nbest = 1, nvmax = NULL, method = "forward")
output_summary = summary(c1_fit_output)
c1 = as.data.frame(output_summary$which)
c2 = as.data.frame(output_summary$adjr2)
c = cbind(c1, c2)
fit.1d.out = regsubsets(psa ~ ., data = pc, nbest = 1, nvmax = NULL, method = "backward")
output summary = summary(fit.1d.out)
c1 = as.data.frame(output summary$which)
c2 = as.data.frame(output summary$adjr2)
c = cbind(c1, c2)
# the best model is the model that contains i.e. pcvol, vesinv and gleason, as per above calculations #
y = pc$psa
#creating model matrix#
x = model.matrix(psa \sim ., pc)[, -1]
### as we know by dim(pc) command we have 97 rows #####
#RidgeRegression#
CrossValidation_RidgeRegression = cv.glmnet(x, y, alpha = 0, type.measure = "mse", nfolds = 97)
```

plot(CrossValidation_RidgeRegression)

CrossValidation_RidgeRegression\$lambda.min

STAT6307

RidgeRegression_fit = glmnet(x, y, alpha = 0, lambda = CrossValidation_RidgeRegression\$lambda.min, thresh = 1e-8)

coef(RidgeRegression_fit) # getting the model coefficient for the ridgeregression#


```
#LASSO#
```

CrossValidation LASSO = cv.glmnet(x, y, alpha = 1, type.measure = "mse", nfolds = 97)

plot(CrossValidation LASSO)

CrossValidation_LASSO\$lambda.min

LASSO_fit = glmnet(x, y, alpha = 1, lambda = CrossValidation_RidgeRegression\$lambda.min, thresh = 1e-8)

coef(LASSO fit)

 $grid.pr = 10^seq(2, 0, length = 3)$

 $grid = 10^seq(2, 0, length = 20)$

finding s values for the grid

#97 as we got 97 rows through dim(pc)command#

RidgeRegression_MSE = matrix(NA, nrow = 20, ncol = 97)

LASSO_MSE = matrix(NA, nrow = 20, ncol = 97)

#using glmnet to make predictions#

```
Ashish Mani Acharya
                            STAT6307
                                               Project 4 3/30/2022
for (j in 1:20)
 for (i in 1:97)
 {
  train_y = pc$psa[-i]
  train_x = model.matrix(psa \sim ., pc[-i,])[, -1]
  test_y = pc$psa[i]
  test_x = model.matrix(psa \sim ., pc[i,])[, -1]
  Ridge.Reg = glmnet(train_x, train_y, alpha = 0, lambda = grid.pr, thresh = 1e-8)
  LASSO.Reg = glmnet(train x, train y, alpha = 1, lambda = grid.pr, thresh = 1e-8)
  RidgeRegression_prediction = predict(Ridge.Reg, s = grid[j], newx = test_x)
  LASSO_prediction = predict(LASSO.Reg, s = grid[j], newx = test_x)
  RidgeRegression_MSE[j,i] = (RidgeRegression_prediction - test_y)^2
  LASSO_MSE[j,i] = (LASSO_prediction - test_y)^2
 }
}
for (j in 1:20)
{
 mean(RidgeRegression_MSE.s[j, ])
 mean(LASSO_MSE.s[j, ])
}
RidgeRegression_MSE.s = rowMeans(RidgeRegression_MSE, na.rm = TRUE)
LASSO_MSE.s = rowMeans(LASSO_MSE, na.rm = TRUE)
which.min(RidgeRegression_MSE.s)
```

```
Ashish Mani Acharya
                       STAT6307
                                        Project 4 3/30/2022
min(RidgeRegression_MSE.s)
s.Ridge = grid[7]
which.min(LASSO_MSE.s)
min(LASSO_MSE.s)
s.LASSO = grid[16]
RidgeRegression_fit = glmnet(x, y, alpha = 0, lambda = s.Ridge, thresh = 1e-8)
fit.LASSO = glmnet(x, y, alpha = 1, lambda = s.LASSO, thresh = 1e-8)
#finding coefficient of Ridge Regression and LASSO #
coef(RidgeRegression_fit)
coef(fit.LASSO)
gc<- read.csv("C:/Users/alexk/OneDrive/Desktop/stat 6340/mini project 4/germancredit.csv", header=TRUE)
View(gc)
#for ease of typing german gc has been shortened to gc#
#libraries needed for the solutions #
library(caret)
library(glmnet)
library(MASS)
```

library(bestglm)

```
Ashish Mani Acharya
                       STAT6307
                                       Project 4 3/30/2022
#exploratory analysis of the data#
View(gc)
dim(gc)
head(gc)
# factoring Categorical Variables #
gc$Default = as.factor(gc$Default)
gc$checkingstatus1 = as.factor(gc$checkingstatus1)
gc$history = as.factor(gc$history)
gc$purpose = as.factor(gc$purpose)
gc$savings = as.factor(gc$savings)
gc$employ = as.factor(gc$employ)
gc$status = as.factor(gc$status)
gc$others = as.factor(gc$others)
gc$property = as.factor(gc$property)
gc$otherplans = as.factor(gc$otherplans)
gc$housing = as.factor(gc$housing)
gc$job = as.factor(gc$job)
gc$tele = as.factor(gc$tele)
gc$foreign = as.factor(gc$foreign)
gc$liable = as.factor(gc$liable)
control = trainControl(method = "LOOCV") #using LOOCV method#
b1 fit = train(Default ~ ., data = gc, trControl = control, method = "glm", family = binomial())
summary(b1_fit)
b1_fit
```

#forward progression #

```
null_fit = glm(Default ~ 1, family = binomial, data = gc)
full fit = glm(Default ~ ., family = binomial, data = gc)
forward_model = stepAIC(null_fit, scope = list(upper = full_fit, lower = null_fit),
         direction = "forward", trace = FALSE)
summary(forward_model)
forward_model$anova
#backward progression #
backward model = stepAIC(full fit, scope = list(upper = full fit, lower = null fit), direction = "backward", trace = FALSE)
backward model$anova
summary(backward model)
gc2 = gc[,-c(8,12,13,17,18,19)]
#only significant variables are included#
control = trainControl(method = "LOOCV")
fit = train(Default ~ ., data = gc2, trControl = control, method = "glm", family = binomial())
summary(fit)
fit
y = as.numeric(gc$Default)
x = model.matrix(Default \sim ., gc)[, -1]
#using Cross Validation with Ridge Regression#
#using 1000 as we got 1000 rows from dim(gc) command #
```

CrossValidarion_RidgeRegression = cv.glmnet(x, y, alpha = 0, type.measure = "deviance", nfolds = 1000)

```
Ashish Mani Acharya
                         STAT6307
                                            Project 4 3/30/2022
plot(CrossValidarion_RidgeRegression)
CrossValidarion_RidgeRegression$lambda.min # 0.05435123
RidgeRegression_fit = glmnet(x, y, alpha = 0, lambda = CrossValidarion_RidgeRegression$lambda.min, thresh = 1e-8)
#gettng coefficients for Ridge Regression #
coef(RidgeRegression_fit)
CrossValidation_LASSO = cv.glmnet(x, y, alpha = 1, type.measure = "mse", nfolds = 1000)
plot(CrossValidation LASSO)
CrossValidation LASSO$lambda.min
LASSO fit = glmnet(x, y, alpha = 1, lambda = CrossValidation RidgeRegression$lambda.min, thresh = 1e-8)
#gettng coefficients for LASSO #
coef(LASSO fit)
#using glmnet to make predictions #
RidgeRegression_MSE = numeric(1000);
LASSO_MSE = numeric(1000)
grid = 10^seq(1, -4, length = 5)
for (i in 1:1000)
{
 train y = as.numeric(gc$Default)[-i]
 train x = model.matrix(Default ~., gc[-i,])[, -1]
 test y = as.numeric(gc$Default)[i]
 test_x = model.matrix(Default \sim ., gc[i,])[, -1]
 Ridge.Reg = glmnet(train_x, train_y, alpha = 0, lambda = grid, thresh = 1e-8)
 LASSO.Reg = glmnet(train_x, train_y, alpha = 1, lambda = grid, thresh = 1e-8)
```

RidgeRegression_prediction = predict(Ridge.Reg, s = cv.RR\$|ambda.min, newx = test_x)

```
Ashish Mani Acharya STAT6307 Project 4 3/30/2022

LASSO_prediction = predict(LASSO.Reg, s = cv.LASSO$lambda.min, newx = test_x)

RidgeRegression_MSE[i] = (RidgeRegression_prediction - test_y)^2

LASSO_MSE[i] = (LASSO_prediction - test_y)^2

mean(RidgeRegression_MSE)

mean(LASSO_MSE)
```