2° Quiz – 5 - λεπτά

Αρχικά υπάρχουν 8 φορτία αρνητικά φορτία τα οποία συγκρατούνται στην περιφέρεια ενός κύκλου ακτίνας R. Ένα από τα φορτία αφαιρείται και η κατανομή φορτίων είναι όπως στο διπλανό σχήμα:

Το μέτρο του ηλεκτρικού πεδίου στο κέντρο του κύκλου είναι:

$$(B)\frac{k_e q}{8R^2}$$

$$(\Gamma) \frac{7k_eq}{8R^2}$$

(A) 0 (B)
$$\frac{k_e q}{8R^2}$$
 (Γ) $\frac{7k_e q}{8R^2}$ (Δ) $\frac{k_e q}{R^2}$ (E) $\frac{7k_e q}{R^2}$

$$(E)\frac{7k_eq}{R^2}$$

Η διεύθυνση του πεδίου στο κέντρο του κύκλου είναι:

$$(A) \downarrow$$

$$(\Gamma)$$

$$(\Delta)$$

Αν υπήρχε το 8° φορτίο τότε η ένταση του πεδίου θα ήταν $\vec{E} = \vec{0}$ λόγω συμμετρίας.

Εφόσον λείπει, η συνεισφορά του φορτίου το οποίο είναι αντιδιαμετρικό του φορτίου που λείπει δεν εξουδετερώνεται. Η συνεισφορά όλων των υπόλοιπων 6 φορτίων εξουδετερώνεται ανά αντιδιαμετρικό ζεύγος.

Το μέτρο της έντασης του ηλεκτρικού πεδίου εξαιτίας του 7^{ou} φορτίου είναι: $E = \frac{k_e q}{R^2}$

Η κατεύθυνση του διανύσματος της έντασης του ηλεκτρικού πεδίου είναι προς το αρνητικό φορτίο και ακτινική