Multi-Agent Reinforcement Learning

Games: Models of Multi-Agent Interaction

Stefano V. Albrecht, Filippos Christianos, Lukas Schäfer Slides by: Leonard Hinckeldey

MARL Book

Multi-Agent Reinforcement Learning: Foundations and Modern Approaches

Stefano V. Albrecht, Filippos Christianos, Lukas Schäfer

Published by MIT Press (print version will be released on 17 December 2024)

This lecture is based on Multi-Agent Reinforcement Learning: Foundations and Modern Approaches by Stefano V. Albrecht, Filippos Christianos and Lukas Schäfer

The book can be downloaded for free at www.marl-book.com.

Lecture Outline

Part 1: Game Models

- Normal-form games
- Stochastic games
- Partially observable stochastic games

Part 2: Modeling Communication

- Communication as an action
- Communication with observation functions

Part 3: Assumptions

• Game theory vs MARL assumptions

Game Models

Hierarchy of Games

Normal-Form Games

Normal-form games define a **single** interaction between two or more agents, providing a simple kernel for more general games to build upon.

Normal-form games are defined as a 3 tuple $(I, \{A_i\}_{i \in I}, \{\mathcal{R}_i\}_{i \in I})$:

- *I* is a finite set of agents $I = \{1, ..., n\}$
- For each agent $i \in I$:
 - A_i is a finite set of actions
 - \mathcal{R}_i is the reward function $\mathcal{R}_i: A \to \mathbb{R}$ where $A = A_1 \times ... \times A_n$ (set of **joint** actions).

In a normal-form game, there are **no time steps or states**. Agents choose an action and observe a reward.

In a normal-form game, there are **no time steps or states**. Agents choose an action and observe a reward.

The game proceeds as follows:

In a normal-form game, there are **no time steps or states**. Agents choose an action and observe a reward.

The game proceeds as follows:

1. Each agent samples an action $a_i \in A_i$ with probability $\pi_i(a_i)$

In a normal-form game, there are **no time steps or states**. Agents choose an action and observe a reward.

The game proceeds as follows:

- 1. Each agent samples an action $a_i \in A_i$ with probability $\pi_i(a_i)$
- 2. The resulting actions from all agents form a **joint action**, $a = (a_1, ..., a_n)$

In a normal-form game, there are **no time steps or states**. Agents choose an action and observe a reward.

The game proceeds as follows:

- 1. Each agent samples an action $a_i \in A_i$ with probability $\pi_i(a_i)$
- 2. The resulting actions from all agents form a joint action, $a = (a_1, ..., a_n)$
- 3. Each agent receives a reward based on their **individual** reward function and the **joint action**, $r_i = \mathcal{R}_i(a)$

Classes of Games

Games can be classified based on the relationship between the agents' reward functions.

- In **zero-sum games**, the sum of the agents' reward is always 0 i.e. $\sum_{i \in I} \mathcal{R}_i(a) = 0, \forall a \in A$
- In common-reward games, all agents receive the same reward $(R_i = R_j; \forall i, j \in I)$
- In **general-sum** games, there are no restrictions on the relationship between reward functions.

Normal-from games with 2 agents are also called **matrix games** because they can be represented using reward matrices.

	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

Figure: 1. Rock-Paper-Scissors

	А	В
Α	10	0
В	0	10

	С	D
С	-1,-1	-5,0
D	0,-5	-3,-3

Figure: 2. Coordination Game

Figure: 3. Prisoner's Dilemma

Normal-from games with 2 agents are also called matrix games because they can be represented using reward matrices.

	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

Figure: 1.
Rock-Paper-Scissors

	А	В
Α	10	0
В	0	10

А	В		С	D
10	0	С	-1,-1	-5,0
0	10	D	0,-5	-3,-3

Figure: 2. Coordination Game

Figure: 3. Prisoner's Dilemma

zero-sum

Normal-from games with 2 agents are also called matrix games because they can be represented using reward matrices.

	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

Figure: 1.
Rock-Paper-Scissors

zero-sum

	Α	В
Α	10	0
В	0	10

Figure: 2. Coordination Game

Figure: 3. Prisoner's Dilemma

common-reward

Normal-from games with 2 agents are also called **matrix games** because they can be represented using reward matrices.

	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

Figure: 1. Rock-Paper-Scissors

zero-sum

	А	В
Α	10	0
В	0	10

Figure: 2. Coordination Game

common-reward

	С	D
С	-1,-1	-5,0
D	0,-5	-3,-3

Figure: 3. Prisoner's Dilemma

general-sum

Normal-from games with 2 agents are also called **matrix games** because they can be represented using reward matrices.

	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

	Α	В
Α	10	0
В	0	10

	С	D
С	-1,-1	-5,0
D	0,-5	-3,-3

Figure: 1. Rock-Paper-Scissors

Figure: 2. Coordination Game

Figure: 3. Prisoner's Dilemma

zero-sum

common-reward

general-sum

Note general sum is a **superset** class for all games

Repeated Normal-Form Games

Repeated Normal-Form Games

To extend normal-form games to **sequential** multi-agent interaction, we can repeat the same game over *T* timesteps.

- At each time step t an agent i samples an action a_i^t
- The policy is now conditioned on a **joint-action** history $\pi_i(a_i^t|h^t)$ where $h^t=(a^o,...,a^{t-1})$
- In special cases h^t contains n last joint actions.
 E.g. in a tit-for-tat strategy (Axelrod and Hamilton 1981), the policy is conditioned only on a^{t-1}

Stochastic Games

Stochastic Games

Stochastic games introduce the notion of **states** and are defined as a 6 tuple $(I, S, \{A_i\}_{i \in I}, \{\mathcal{R}_i\}_{i \in I}, \mathcal{T}, \mu)$

- *I* is a finite set of agents
- S is a finite set of states with subset of terminal states $\bar{S} \subset S$
- For each agent $i \in I$:
 - *A_i* is a set finite set of actions
 - \mathcal{R}_i is the reward function $\mathcal{R}_i: S \times A \times S \to \mathbb{R}$ where A is the set of **joint** actions $A = A_1 \times ... \times A_n$
- μ is the initial state distribution $\mu: S \to [0,1]$
- \mathcal{T} is the state transition function $\mathcal{T}: S \times A \times S \rightarrow [0,1]$

Stochastic Games - Continued

- Each state can be viewed as a non-repeated normal-form game
- Stochastic games can also be classified into: zero-sum, common-reward or general-sum
- The figure on the left shows a general-sum case

1. Initial state $s_0 \in S$ is samples from μ .

- 1. Initial state $s_0 \in S$ is samples from μ .
- 2. At time t each agent $i \in I$ observes the current state $s^t \in S$ and chooses an action $a_i^t \in A_i$ with probability $\pi(a_i^t|h^t)$

- 1. Initial state $s_0 \in S$ is samples from μ .
- 2. At time t each agent $i \in I$ observes the current state $s^t \in S$ and chooses an action $a_i^t \in A_i$ with probability $\pi(a_i^t|h^t)$
 - $h^t = (s^0, a^0, s^1, a^1,, s^t)$ is the **state-action history** containing the current state s^t and past **joint** actions and states

- 1. Initial state $s_0 \in S$ is samples from μ .
- 2. At time t each agent $i \in I$ observes the current state $s^t \in S$ and chooses an action $a_i^t \in A_i$ with probability $\pi(a_i^t|h^t)$
 - $h^t = (s^0, a^0, s^1, a^1,, s^t)$ is the **state-action history** containing the current state s^t and past **joint** actions and states
- 3. Given s^t and a^t , the game transitions into the next state $s^{t+1} \in S$ with probability $\mathcal{T}(s^{t+1}|s^t,a^t)$

- 1. Initial state $s_0 \in S$ is samples from μ .
- 2. At time t each agent $i \in I$ observes the current state $s^t \in S$ and chooses an action $a_i^t \in A_i$ with probability $\pi(a_i^t|h^t)$
 - $h^t = (s^0, a^0, s^1, a^1, \dots, s^t)$ is the **state-action history** containing the current state s^t and past **joint** actions and states
- 3. Given s^t and a^t , the game transitions into the next state $s^{t+1} \in S$ with probability $\mathcal{T}(s^{t+1}|s^t,a^t)$
- 4. Each agent receives a reward according to their reward function $r_i^t = \mathcal{R}_i(s^t, a^t, s^{t+1})$

- 1. Initial state $s_0 \in S$ is samples from μ .
- 2. At time t each agent $i \in I$ observes the current state $s^t \in S$ and chooses an action $a_i^t \in A_i$ with probability $\pi(a_i^t|h^t)$
 - $h^t = (s^0, a^0, s^1, a^1,, s^t)$ is the **state-action history** containing the current state s^t and past **joint** actions and states
- 3. Given s^t and a^t , the game transitions into the next state $s^{t+1} \in S$ with probability $\mathcal{T}(s^{t+1}|s^t,a^t)$
- 4. Each agent receives a reward according to their reward function $r_i^t = \mathcal{R}_i(s^t, a^t, s^{t+1})$
- 5. These steps are repeated until a terminal state $s^t \in \bar{S}$ is reached or a maximum number of T time steps is completed

Stochastic Game Level-Based Foraging Example

- s ∈ S: vector of x-y positions for agents/items, binary collection flags, levels for agents/items
- a_i ∈ A_i: move in four directions, collect item, or no operation (noop)
- T: joint actions update state, e.g., two agents collecting an item switch its flag
- R:
 - common-reward: +1 reward for any item collected by any agent
 - general-sum: +1 reward only for agents directly involved in item collection

Partially Observable Stochastic Games (POSG)

- At the top of the game model hierarchy, the most **general** model is the POSG
- POSGs represent complex decision processes with **incomplete information**
- Unlike in stochastic games, agents receive **observations** providing **incomplete information** about the state and agents' actions
- POSGs apply to scenarios where agents have limited sensing capabilities.
 - Autonomous driving
 - Strategic games (e.g. card games) with private, hidden information

POSG Definition

POSG is defined in the same way stochastic games are, with two additions. Thus it is defined as a 8 tuple $(I, S, \{A_i\}_{i \in I}, \{\mathcal{R}_i\}_{i \in I}, \mathcal{T}, \mu, \{O_i\}_{i \in I}, \{\mathcal{O}_i\}_{i \in I})$

For each agent *i* we additionally define:

- a finite set of observation O_i
- an observation function $\{\mathcal{O}_i\}_{i\in I}$ such that $\mathcal{O}_i: A\times S\times O_i\to [0,1]$ and $\forall a\in A, s\in S: \sum_{o_i\in O_i}\mathcal{O}_i(a,s,o_i)=1$

1. Initial state s^0 sampled from $\mu(s)$

- 1. Initial state s^0 sampled from $\mu(s)$
- 2. At each t every agent i receives an **observation** $o_i^t \in O_i$, with probability given by the observation function $\mathcal{O}_i(o^t|s^t,a^{t-1})$

- 1. Initial state s^0 sampled from $\mu(s)$
- 2. At each t every agent i receives an **observation** $o_i^t \in O_i$, with probability given by the observation function $\mathcal{O}_i(o^t|s^t,a^{t-1})$
- 3. Each agent then chooses an action a_i^t based on its policy π_i , which is conditioned on the agent's observation history, $h_i = (o_i^0, ..., o_i^t)$. All agents' actions give the joint action $a^t = (a_1^t, ..., a_n^t)$

- 1. Initial state s^0 sampled from $\mu(s)$
- 2. At each t every agent i receives an **observation** $o_i^t \in O_i$, with probability given by the observation function $\mathcal{O}_i(o^t|s^t,a^{t-1})$
- 3. Each agent then chooses an action a_i^t based on its policy π_i , which is conditioned on the agent's observation history, $h_i = (o_i^0, ..., o_i^t)$. All agents' actions give the joint action $a^t = (a_1^t, ..., a_n^t)$
- 4. Given the joint action, the environment transitions into the next state s^{t+1} with probability $\mathcal{T}(s^{t+1}|s^t,a^t)$ and each agent receives a reward based on its reward function $r_i^t = \mathcal{R}_i(s^t,a^t,s^{t+1})$

POSG Process

- 1. Initial state s^0 sampled from $\mu(s)$
- 2. At each t every agent i receives an **observation** $o_i^t \in O_i$, with probability given by the observation function $\mathcal{O}_i(o^t|s^t,a^{t-1})$
- 3. Each agent then chooses an action a_i^t based on its policy π_i , which is conditioned on the agent's observation history, $h_i = (o_i^0, ..., o_i^t)$. All agents' actions give the joint action $a^t = (a_1^t, ..., a_n^t)$
- 4. Given the joint action, the environment transitions into the next state s^{t+1} with probability $\mathcal{T}(s^{t+1}|s^t, a^t)$ and each agent receives a reward based on its reward function $r_i^t = \mathcal{R}_i(s^t, a^t, s^{t+1})$
- 5. This is done until a terminating state $s^t \in \overline{S}$ is reached or a maximum number of time steps is completed

The Observation Function

The observation function in POSG can represent diverse observability conditions. For example:

- modeling noise by adding uncertainty in the possible observation
- to limit the visual region of agents (see LBF example)

- Here, the agent has access to a subset of joint action and states
- $o_i^t = (\bar{s}^t, \bar{a}^t)$ where $\bar{s}^t \subset s^t, \bar{a}^t \subset a^t$

Belief States

In partially observable settings, it becomes more challenging to infer optimal actions. For example:

- Optimal action for agent 1 is to move left towards level 1 apple
- But level 1 apple is not directly observable
- Agent 1 can hold a belief states b^t_i, providing a probability distribution over possible state s ∈ S
- Agent 1 might have seen the level-1 apple previously and can thus 'remember' its location

Single Agent Belief Update

To simplify, let's consider the single-agent perspective:

- The initial belief state is given by $b_i^0 = \mu$
- After taking action a_i^t and observing o_i^{t+1} , the belief state b_i^t is updated to b_i^{t+1} using a Bayesian update:

$$b_i^{t+1}(s') \propto \sum_{s \in S} b_i^t(s) \mathcal{T}(s'|s, a_i^t) \mathcal{O}_i(o_i^{t+1}|a_i^t, s')$$

Single Agent Belief Update

To simplify, let's consider the single-agent perspective:

- The initial belief state is given by $b_i^0 = \mu$
- After taking action a_i^t and observing o_i^{t+1} , the belief state b_i^t is updated to b_i^{t+1} using a Bayesian update:

$$b_i^{t+1}(s') \propto \sum_{s \in S} b_i^t(s) \mathcal{T}(s'|s, a_i^t) \mathcal{O}_i(o_i^{t+1}|a_i^t, s')$$

In MARL this type of update is typically unfeasible:

- High-dimensional state spaces make storage and updates of beliefs intractable
- In MARL for POSG, agents assumed not to know $(S, \mathcal{T}, \mathcal{O}_i)$
- Deep learning can be used to approximate state information (see later lectures)

Modeling Communication

Modeling Communication

- Using games, we can model more complex agent interactions, such as communication
- We can view communication as a type of action that other agents can observe without affecting the state of the environment
- Agents learn communication meanings through trials and observations, identical to environment actions
- This can lead to the evolution of a shared language or protocol

Communication Actions

To model communication, we can extend the action set of agents:

$$A_i = X_i \times M_i$$

- Where M_i is a set of possible messages $\{m1, m2, m3, ...\}$ and X_i is the set of environment actions
- The action a_i can thus be expressed as $(x_i, m_i) \in A_i$

Communication in Stochastic Games

- Agents observe the current state s_t and previous joint action a_{t-1}
- Communication action m_{t-1}^i by agent i is part of a_{t-1} and observed by all agents
- State transitions are independent of the joint communication actions $M = \times_{i \in I} M_i$

$$\forall s, s' \in S \forall a \in A, m \in M : T(s'|s, a) = T(s'|s, \langle (a_1, m_1), \dots, (a_n, m_n) \rangle)$$

Communication in POSG

- In POSG we can use the observation function \mathcal{O}_i to model noisy or unreliable communication
- We can define the observation as $o_i^t = [\bar{s}^t, w_1^{t-1}, ..., w_n^{t-1}]$
 - \bar{s}^t is some partial information about the state
 - w_j^{t-1} is a message from the agent j at time step t-1 which has been augmented by \mathcal{O}_i
 - E.g. $w_j^{t-1} = f(m_j^{t-1})$ where $f(m_j^{t-1}) = m_j^{t-1} + \eta$, and η is some random noise component.
- You could also model \mathcal{O}_i to hide messages such that $w_1^{t-j}=\emptyset$ if agent i is too far from agent j

Assumptions of Games

Game Theory Assumption

- In game theory, we typically assume that all agents know all components of the game (complete knowledge games)
- Agents know all agents' action spaces and reward functions
- Knowledge of other agents' reward functions may be used for informing the agent's best response action (we will cover this in more depth in the next lecture)
- Knowledge of the transition function (*T*) allows for predicting state changes and planning actions multiple steps ahead

MARL Assumptions

- \bullet In MARL, we assume limited knowledge, i.e. no knowledge of the ${\cal T}$ and no knowledge of other agents ${\cal R}$
- Additional assumption can be added and specific knowledge of the game can be held mutually or asymmetrically
- We usually assume the number of agents to be fixed, although recent research
 has looked at open multi-agent systems, this will not be covered in these lectures

Dictionary: Reinforcement Learning \leftrightarrow Game Theory

RL		GT
environment	\leftrightarrow	game
agent	\leftrightarrow	player
reward	\leftrightarrow	payoff, utility
policy	\leftrightarrow	strategy
deterministic X	\leftrightarrow	pure X
probabilistic X	\leftrightarrow	mixed X
joint X	\leftrightarrow	X profile

- Environment/Game: Model with actions, observations, rewards, state dynamics.
- Agent/Player: Decision-maker, possibly with specific roles.

- Reward/Payoff, Utility: Scalar value received after an action
- Policy/Strategy: Assigns probabilities to actions; 'pure strategy' may refer to actions
- Deterministic X/Pure X: Assigns probability 1 to X e.g. X = equilibrium or policy
- Probabilistic X/Mixed X: Assigns probabilities ≤ 1 to X
- Joint X/X Profile: Tuple representing collective aspects, e.g., rewards or policies

Summary

We covered:

- Game models
- Modelling agent communication
- Assumptions of game models

Next we'll cover:

• Solution concepts for games