Chapitre 2 Géométrie plane

Table 2.1 – Objectifs. À fin de ce chapitre 2...

	Pour m'entraîner <u>é</u>					
Je dois connaître / savoir faire	&	•	Ō			
Trigonométrie de collège et approfondissements de seconde						
résoudre un problème de trigonométrie		1, 5				
utiliser la formule des aires		2				
loi des sinus		4				
loi des cosinus (approfondissement)		6	7			
Classiques de géométrie (faculatif)						
égalité des triangles	8					
triangles semblables	9	10, 11				
théorème de l'angle au centre		12	13			

2 2 Géométrie plane

2.1 Triangles rectangles

Définition 2.1 L'hypoténuse d'un triangle rectangle est le côté opposé à l'angle droit.

Théorème 2.1 — Théorème de Pythagore. Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit.

Conséquence : l'hypoténuse est bien le plus grand côté.

$$AB^2 + BC^2 = AC^2$$
 $AB, BC \text{ et } AC \geqslant 0$
$$AB^2 \leqslant AC^2$$

$$AB \leqslant AC$$

Définition 2.2 Soit une droite (Δ) et un point A du plan. Le **projeté orthogonal** H de A sur (Δ) est le point d'intersection de Δ et de la perpendiculaire à (Δ) passant par A.

Théorème 2.2 Soit une droite (Δ) et A un point n'appartenant pas à (Δ) . H le projeté orthogonal de A sur (Δ) .

La distance ente A et la droite (Δ) est égale à AH. C'est la plus petite distance entre A et un point de la droite (Δ) .

Démonstration. au programme Pour tout point $M \in (\Delta)$, AMHest un triangle rectangle d'hypoténuse AM, et $AM \geqslant AH$.

- $\cos(\alpha)$ la longueur du côté adjacent à α
- $\sin(\alpha)$ la longueur du côté opposé à α

2.2 Triangles égaux 3

Théorème 2.3 Pour tout valeur de l'angle α on a :

$$\cos^2(\alpha) + \sin^2(\alpha) = 1$$

démonstration. (au programme) Conséquence directe du théorème de Pythagore! ■

Définition 2.4 Soit le triangle ABC rectangle en B, et soit α un des angles aigus :

le sinus de l'angle α

$$\sin(\alpha) = \frac{\text{côt\'e oppos\'e à } \alpha}{\text{hypot\'enuse}} = \frac{BC}{AC} \leqslant 1$$

le cosinus de l'angle α :

$$\cos(\alpha) = \frac{\text{côt\'e adjacent \`a} \ \, \alpha}{\text{hypot\'enuse}} = \frac{AB}{AC} \leqslant 1$$

la tangente de l'angle α :

$$\tan(\alpha) = \frac{\text{côt\'e oppos\'e à } \alpha}{\text{côt\'e adjacent à } \alpha} = \frac{BC}{AB}$$

Figure 2.1 – En 2nd, on calcule des rapports trigonométriques d'angles aigus

2.2 Triangles égaux

Définition 2.5 — triangles égaux. Deux triangles sont égaux si leurs trois côtés et leur trois angles sont égaux deux à deux.

Postulat 2.4 — Critère CCC. Si deux triangles ont leurs trois côtés respectivement égaux, alors ils sont égaux.

Postulat 2.5 — Critère CAC. Si deux triangles ont un angle égal compris entre deux côtés respectivement égaux, alors ils sont égaux.

Postulat 2.6 — Critère ACA. Si deux triangles ont un côté égal adjacent à deux angles respectivement égaux, alors ils sont égaux.

Figure 2.2 – Critère CCC

Figure 2.3 – Critère CAC

Figure 2.4 - Critère ACA

4 **2 Géométrie plane**

2.3 Triangles semblables

Définition 2.6 Deux triangles sont **semblables** lorsqu'ils ont leurs angles égaux deux à deux et leurs côtés **proportionnels**.

Figure 2.5 – les trianges ABC et IJK sont semblables.

Les **angles correspondants** sont égaux :

 $\widehat{A} = \widehat{K}$ $\widehat{B} = \widehat{J}$ $\widehat{C} = \widehat{J}$

Les **côtés correspondants** sont proportionnels :

$$\frac{JK}{AB} = \frac{IJ}{BC} = \frac{IK}{AC} = k$$

Postulat 2.7 — Critère de similitude CCC. Si les longueurs des 3 côtés d'un triangle T_1 sont **proportionnelles** aux longueurs respectives des 3 côtés d'un triangle T_2 , alors les deux triangles sont semblables.

Postulat 2.8 — Critère CAC-Semblable. Si deux triangles T_1 et T_2 ont un angle égal compris entre 2 côtés respectivement proportionnels, alors les deux triangles sont semblables.

Postulat 2.9 — Critère de similitude AA. Si 2 angles d'un triangle T_1 sont **respectivement égaux** à 2 angles d'un triangle T_2 . Alors les deux triangles sont semblables.

2.4 Exercices 5

2.4 Exercices

2.4.1 Exercices : trigonométrie, lois des sinus et des cosinus

Exercice 1 — Trigonométrie. Écrire le rapport trigonométrique adapté et calculer les valeurs demandées.

■ Exemple 2.1 — Calcul d'une aire. Calculer l'aire du triangle *ABC* ci-dessous.

Exercice 2 — À vous. Calculer l'aire des triangles suivants :

On peut calculer des rapports trigonométriques d'angles obtus (>90°). Comparer $\sin(130^\circ), \sin(50^\circ)$.

Formule de l'aire

La formule est valable pour des angles aigus, mais aussi des angles obtus!

$$\mathscr{A} = \frac{1}{2}ab\sin(\widehat{C})$$

On a aussi l'égalité : $\sin(\widehat{C}) = \sin(180^{\circ} - \widehat{C})$

■ Exemple 2.2 — je fais : loi des sinus.

$$2\mathscr{A} = ab\sin(\widehat{C}) =$$

Exercice 3 On considère la figure ci-dessous. Cocher les cases pour les formules vraies.

	Vrai	Faux
$1/\frac{\sin(d)}{b} = \frac{\sin(e)}{c}$		
$\mathbf{2/} \ rac{\overset{\circ}{a}}{\sin(f)} = rac{\overset{\circ}{b}}{\sin(c)}$		
3/ $\frac{c}{\sin(e)} = \frac{b}{\sin(d)}$		

Exercice 4 En utilisant la loi des sinus, trouver les valeurs de x, y et z pour chacune des figures suivantes.

2.4.2 Exercices : la loi des cosinus

Exercice 5 — un classique de 3^e.

■ Exemple 2.3 — je fais, loi des cosinus.

Dans la figure ci-contre, H est le pied de la hauteur issue de C.

- a) Calculer les longueurs CH et HB.
- b) En déduire HB, puis une valeur approchée de x au dixième de cm.

$$a^2 = 5^2 + 6^2 - 2 \times 5 \times 6 \times \cos(40^\circ)$$

$$b^{2} =$$

$$b =$$

$$c^2 =$$

$$c =$$

8 **2 Géométrie plane**

$$()^2 = ()^2 + ()^2 - 2 \times \times \times \cos(A)$$

$$=$$

$$\cos(A) =$$

$$A =$$

Exercice 7

Dans le triangle PQR, $\widehat{QPR} = 76^{\circ}$, PQ = 9 cm et PR = 7 cm.

- 1. Calculer QR au millimètre près.
- 2. À l'aide de la loi des sinus, calculer les valeurs approchées à 10^{-1} près des angles \widehat{PQR} et \widehat{PRQ} .

2.4 Exercices 9

2.4.3 Exercices : calculs algébriques et géométrie

Exercice 8 — Triangles égaux : à l'oral. Si possible, démontrer pour chaque cas que les triangles sont égaux. Les figures ne sont pas à l'échelle. Utiliser la même couleur pour indiquer les angles et côtés homologues.

Exercice 9 — Révision triangles semblables.

- 1. Justifier que les triangles ACB et FED sont semblables.
- 2. Écrire les égalités des rapports entre les côtés homologues.
- 3. Calculer les longueurs x et y.

Exercice 10

- 1. Calculer la longueur de la diagonale du rectangle ABCD.
- 2. Justifier que les triangles ABD et DHC sont semblables.
- 3. Écrire les égalités des côtés homologues.
- 4. Déduire les valeurs de a, b et c.

Exercice 11 — Quadrature du rectangle.

Sur la figure ci-dessous, le triangle ABC est rectangle en A, et (AH) est perpendiculaire à (BC).

- 1. Démontrer que les triangles ACH et ABH sont semblables.
- 2. Écrire les rapports égaux.
- 3. En déduire que $x = \sqrt{ab}$.

10 **2 Géométrie plane**

Exercice 12 — théorème de l'angle au centre. Soit un cercle de centre O passant par les points A, B et C. Nous voulons démontrer le théorème suivant :

Dans un cercle, un angle au centre mesure le double d'un angle inscrit interceptant le même arc.

Pour simplifier on suppose que le centre O est intérieur à l'angle aigu \widehat{BAC} . Les angles \widehat{BAC} et \widehat{BOC} (intérieur) interceptent le même arc de cercle BC.

On pose $x = \widehat{BAO}$ et $y = \widehat{OAC}$.

- a) Exprimer les angles du triangle OAB à l'aide de x.
- b) Exprimer les angles du triangle AOC à l'aide de y.
- c) Montrer que la mesure de l'angle au centre recherché est égal à $2\widehat{BAC}$.

Théorème 2.10 — théorème de l'angle inscrit dans un demi-cercle. Si le point A appartient au cercle de diamètre [BC] alors le triangle ABC est rectangle en A.

Théorème 2.11 — Théorème de l'angle inscrit. Les angles inscrits interceptant le même arc de cercle ont la même mesure

Exercice 13

A, B, C et D sont des points d'un cercle de centre O. On suppose que les cordes [AB] et [CD] se coupent en E situé à l'intérieur du cercle.

- 1. À l'aide du théorème de l'angle inscrit, justifier que $\widehat{EDA} = \widehat{EBD}.$
- 2. Montrer que les triangles EAD et EBC sont semblables.
- 3. Écrire les égalités des rapports des côtés homologues.
- 4. En déduire que ab = cd.

2.5 Exercices : solutions et éléments de réponse

solution de l'exercice 1.

A)
$$\cos(x) = \frac{7}{9}$$
.
 $x = \arccos(\frac{7}{9}) \approx 39^{\circ}$.

B)
$$\sin(x) = \frac{4}{5}$$
.
 $x = \arcsin(\frac{4}{5}) \approx 53^{\circ}$

C)
$$x = 5\cos(40^{\circ}) \approx 3.83$$
.

D)
$$x = \frac{5}{\cos(40^{\circ})} \approx 6.53$$
.

E)
$$x = \frac{3}{\sin(40^\circ)} \approx 4.67$$

F)
$$tan(x) = \frac{4}{3}$$
.
 $x = \arctan(\frac{4}{3}) \approx 53.1^{\circ}$.

D)
$$x = \frac{5}{\cos(40^\circ)} \approx 6,53$$
.
E) $x = \frac{3}{\sin(40^\circ)} \approx 4,67$.
G) $\cos(x) = \frac{5}{7}$
 $x = \arccos(\frac{5}{7}) = 44,4^\circ$.
H) $\sin(x) = \frac{5}{10}$, $x = 30^\circ$.

H)
$$\sin(x) = \frac{5}{10}$$
, $x = 30^{\circ}$.

solution de l'exercice 2.

$$A \approx 13.6 \text{ cm}^2$$
; $B \approx 18.5 \text{ cm}^2$; $C \approx 29.1 \text{ cm}^2$; $D \approx 9.58 \text{ cm}^2$; $E \approx 5.14 \text{ cm}^2$;

solution de l'exercice 3.

	Vrai	Faux
1/ $\frac{\sin(d)}{b} = \frac{\sin(e)}{c}$		
$2/\frac{a}{\sin(f)} = \frac{b}{\sin(c)}$		
$3/\frac{c}{\sin(e)} = \frac{b}{\sin(d)}$	\boxtimes	

solution de l'exercice 4.

$$x = 6.3$$
 cm, $y \approx 55.6^{\circ}$ et $z \approx 6.35$ cm