Notation

Rubem Vasconcelos Pacelli rubem.engenharia@gmail.com

Department of Teleinformatics Engineering, Federal University of Ceará. Fortaleza, Ceará, Brazil.

Version: April 7, 2023

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A}, \mathcal{B}, \mathcal{C}, \dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Signals and functions

2.1 Time indexing

x(t)	Continuous-time t
$x[n], x[k], x[m], x[i], \dots$	Discrete-time n, k, m, i, \dots (parenthe-
$x_n, x_k, x_m, x_i, \dots$	sis should be adopted only if there
$x(n), x(k), x(m), x(i), \dots$	are no continuous-time signals in the
	context to avoid ambiguity)
$x[((n-m))_N], x((n-m))_N$	Circular shift in m samples within a
	N-samples window [9, 13]

2.2 Common functions

$\delta(t)$	Delta function
$\delta[n], \delta_{i,j}$	Kronecker function $(n = i - j)$
h(t), h[n]	Impulse response (continuous and
	discrete time)

$\tilde{x}[n], \tilde{x}(t)$	Periodic discrete- or continuous-time
	signal
$\hat{x}[n], \hat{x}(t)$	Estimate of $x[n]$ or $x(t)$
$\dot{x}[m]$	Interpolation of $x[n]$

2.3 Operations and symbols

$f:A\to B$	A function f whose domain is A and codomain is B
$f^n, x^n(t), x^n[k]$	<i>n</i> th power of the function f , $x[n]$ or $x(t)$
$f^{(n)}, x^{(n)}(t)$	nth derivative of the function f or $x(t)$
$f', f^{(1)}, x'(t)$	1th derivative of the function f or $x(t)$
$f^{\prime\prime}, f^{(2)}, x^{\prime\prime}(t)$	2th derivative of the function f or $x(t)$
$\underset{x \in \mathcal{A}}{\arg\max} \ f(x)$	Value of x that minimizes x
$\underset{x \in \mathcal{A}}{\operatorname{argmin}} f(x)$	Value of x that minimizes x
$f(\mathbf{x}) = \inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	Infimum, i.e., $f(\mathbf{x}) =$
	min $\{g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom } (g)\}$, which is the greatest lower bound of this set [2]
$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	which is the greatest lower bound of this set [2] Supremum, i.e., $f(\mathbf{x}) = \max\{g(\mathbf{x},\mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x},\mathbf{y}) \in \text{dom}(g)\}$, which is the least upper bound of
$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$ $f \circ g$	which is the greatest lower bound of this set [2] Supremum, i.e., $f(\mathbf{x}) = \max \{g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom}(g)\},$
	which is the greatest lower bound of this set [2] Supremum, i.e., $f(\mathbf{x}) = \max\{g(\mathbf{x},\mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x},\mathbf{y}) \in \text{dom } (g)\}$, which is the least upper bound of this set [2]

2.4 Transformations

W_N	Twiddle factor, $e^{-j\frac{2\pi}{N}}$ [9]
$\mathcal{F}\left\{ \cdot ight\}$	Fourier transform
$\mathcal{L}\left\{ \cdot ight\}$	Laplace transform
$\mathcal{Z}\left\{ \cdot ight\}$	z-transform
$\hat{x}(t), \hat{x}[n]$	Hilbert transform of $x(t)$ or $x[n]$
X(s)	Laplace transform of $x(t)$
X(f)	Fourier transform (FT) (in linear fre-
	quency, Hz) of $x(t)$

 $X(j\omega)$ Fourier transform (FT) (in angular frequency, rad/sec) of x(t) $X(e^{j\omega})$ Discrete-time Fourier transform (DTFT) of x[n] $X[k], X(k), X_k$ Discrete Fourier transform (DFT) or fast Fourier transform (FFT) of x[n], or even the Fourier series (FS) of the periodic signal x(t) $\tilde{X}[k], \tilde{X}(k), \tilde{X}_k$ Discrete Fourier series (DFS) of $\tilde{x}[n]$ X(z)*z*-transform of x[n]

3 Probability, statistics, and stochastic processes

3.1 Operators and symbols

$\mathbf{E}\left[\cdot\right], E\left[\cdot\right], \mathbb{E}\left[\cdot\right]$	Statistical expectation operator [dinizAdaptiveFiltering1997, 12]
$\mathbf{E}_{u}\left[\cdot\right],E_{u}\left[\cdot\right],\mathbb{E}_{u}\left[\cdot\right]$	Statistical expectation operator with respect to u
$\operatorname{var}\left[\cdot\right], \operatorname{VAR}\left[\cdot\right]$	Variance operator [1, 8, 11, 15]
$\operatorname{var}_{u}\left[\cdot\right], \operatorname{VAR}_{u}\left[\cdot\right]$	Variance operator with respect to u
μ_{x}	Mean of the random variable x
$\mu_{\mathrm{x}}, \mathrm{m}_{\mathrm{x}}$	Mean vector of the random variable
	x [3]
μ_n	nth-order moment of a random vari-
	able
σ_x^2, κ_2	Variance of the random variable x
\mathcal{K}_x, μ_4	Kurtosis (4th-order moment) of the random variable x
κ_n	nth-order cumulant of a random vari-
	able
$ ho_{x,y}$	Pearson correlation coefficient be-
	tween x and y
$a \sim P$	Random variable a with distribution
	P
$\mathcal R$	Rayleigh's quotient

3.2 Stochastic processes

$r_{x}(\tau), R_{x}(\tau)$	Autocorrelation function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n] [12]$
$S_x(f), S_x(j\omega)$	Power spectral density (PSD) of $x(t)$
	in linear (f) or angular (ω) frequency

$S_{x,y}(f), S_{x,y}(j\omega)$	Cross PSD of $x(t)$ and $y(t)$ in linear
	or angular (ω) frequency
$\mathbf{R}_{\mathbf{x}}$	(Auto)correlation matrix of $\mathbf{x}(n)$
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
	d[n] or $x(t)$ and $d(t)$ [12]
$\mathbf{R}_{\mathbf{x}\mathbf{y}}$	Cross-correlation matrix of $\mathbf{x}(n)$ and
·	$\mathbf{y}(n)$
$\mathbf{p}_{\mathbf{x}d}$	Cross-correlation vector
	between $\mathbf{x}(n)$ and $d(n)$
	$[{ m diniz Adaptive Filtering 1997}]$
$c_x(\tau), C_x(\tau)$	Autocovariance function of the signal
	x(t) or $x[n]$ [12]
$\mathbf{C}_{\mathbf{x}}, \mathbf{K}_{\mathbf{x}}, \mathbf{\Sigma}_{\mathbf{x}}, \operatorname{cov}\left[\mathbf{x}\right]$	(Auto)covariance matrix of x [8, 11,
	15, 18]
$c_{xy}(\tau), C_{xy}(\tau)$	Cross-covariance function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n] [12]$
$\mathrm{C}_{\mathrm{xy}}, \mathrm{K}_{\mathrm{xy}}, \Sigma_{\mathrm{xy}}$	Cross-covariance matrix of \mathbf{x} and \mathbf{y}

3.3 Functions

- 43	and the second second	
$Q(\cdot)$	Q-function, i.e., $P[\mathcal{N}(0,1) > x]$ [15]	
$\operatorname{erf}(\cdot)$	Error function [15]	
$\operatorname{erfc}(\cdot)$	Complementary error function i.e.,	
	$\operatorname{erfc}(x) = 2Q(\sqrt{2}x) - \operatorname{erf}(x)$ [15]	
P[A]	Probability of the event or set A [11]	
$p(\cdot), f(\cdot)$	Probability density function (PDF)	
$P(\cdot), f(\cdot)$		
	or probability mass function (PMF)	
	[11]	
$p(x \mid A)$	Conditional PDF or PMF [11]	
$F(\cdot)$	Cumulative distribution function	
	(CDF)	
$\Phi_{x}(\omega), M_{x}(j\omega), E\left[e^{j\omega x}\right]$	First characteristic	
	function (CF) of x	
	[theodoridisMachineLearningBayesian2020a,	
	15]	
$M_x(t), \Phi_x(-jt), E[e^{tx}]$	Moment-generating func-	
	tion (MGF) of x	
	[theodoridisMachineLearningBayesian2020a,	
	15]	
$\mathbf{W}(\omega) \ln \mathbf{\Phi}(\omega) \ln \mathbf{E}[ai\omega x]$,	
$\Psi_x(\omega), \ln \Phi_x(\omega), \ln E\left[e^{j\omega x}\right]$	Second characteristic function	
$K_x(t), \ln E\left[e^{tx}\right], \ln M_x(t)$	Cumulant-generating function	
	(CGF) of x [8]	

3.4 Distributions

$\mathcal{N}(\mu,\sigma^2)$ $\mathcal{C}\mathcal{N}(\mu,\sigma^2)$	Gaussian distribution of a random variable with mean μ and variance σ^2 . The same notation can be used to denote a real-valued white Gaussian process with mean equal to μ and power spectral density equal to $N_0/2$, e.g., $s(t) \sim \mathcal{N}(\mu, N_0/2)$ Complex Gaussian distribution of a random variable with mean μ and variance σ^2 . The same notation can be used to denote a complex-valued white Gaussian process with mean equal to μ and power spectral density
$\mathcal{N}(\mu,\Sigma)$	equal to N_0 , e.g., $s(t) \sim \mathcal{CN}(\mu, N_0)$ Gaussian distribution of a vector ran- dom variable with mean μ and co- variance matrix Σ
$\mathcal{CN}(\mu,\Sigma)$	Complex Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\mathcal{U}(a,b) \\ \chi^2(n), \chi_n^2$	Uniform distribution from a to b Chi-square distribution with n degree of freedom (assuming that the Gaus- sians are $\mathcal{N}(0,1)$)
$\operatorname{Exp}(\lambda)$	Exponential distribution with rate parameter λ
$\Gamma(lpha,oldsymbol{eta})$	Gamma distribution with shape parameter α and rate parameter β
$\Gamma(lpha, heta)$	Gamma distribution with shape parameter α and scale parameter $\theta = 1/\beta$
$\operatorname{Nakagami}(m,\Omega)$	Nakagami-m distribution with shape parameter m and spread parameter Ω
$\operatorname{Rayleigh}(\sigma)$	Rayleigh distribution with scale parameter σ
$\operatorname{Rayleigh}(\Omega)$	Rayleigh distribution with the second moment $\Omega = E\left[x^2\right] = 2\sigma^2$
$\mathrm{Rice}(s,\sigma)$	Rice distribution with noncentrality parameter (specular component) s and σ
$\mathrm{Rice}(A,K)$	Rice distribution with Rice factor $K = s^2/2\sigma^2$ and scale parameter $A = s^2 + 2\sigma^2$

4 Statistical signal processing

$oldsymbol{ abla} f, \mathbf{g} \ oldsymbol{ abla}_x f, \mathbf{g}_x$	Gradient descent vector Gradient descent vector with respect
$ \begin{array}{l} \mathbf{g} \ (\text{or} \ \hat{\mathbf{g}} \ \text{if the gradient vector is} \ \mathbf{g}) \\ J(\cdot), \mathcal{E}(\cdot) \\ \Lambda(\cdot) \\ \Lambda_l(\cdot) \\ \hat{\lambda}_l(\cdot) \\ \hat{x}(t) \ \text{or} \ \hat{x}[n] \\ \hat{\boldsymbol{\mu}}_x, \hat{\mathbf{m}}_x \end{array} $	x Stochastic gradient descent (SGD) Cost-function or objective function Likelihood function Log-likelihood function Estimate of $x(t)$ or $x[n]$ Sample mean of $x[n]$ or $x(t)$
$\hat{m{\mu}}_{m{x}}, \hat{m{m}}_{m{x}} \\ \hat{r}_{m{x}}(au), \hat{m{R}}_{m{x}}(au)$	Sample mean vector of $\mathbf{x}[n]$ or $\mathbf{x}(t)$ Estimated autocorrelation function
$\hat{S}_{x}(f), \hat{S}_{x}(j\omega)$	of the signal $x(t)$ or $x[n]$ Estimated power spectral density (PSD) of $x(t)$ in linear (f) or angular (ω) frequency
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$\hat{r}_{x,d}(au), \hat{R}_{x,d}(au)$	Estimated cross-correlation between
$\hat{S}_{x,y}(f), \hat{S}_{x,y}(j\omega)$	x[n] and $d[n]$ or $x(t)$ and $d(t)Estimated cross PSD of x(t) and y(t)in linear or angular (\omega) frequency$
$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of
$\hat{ ho}_{x,y}$	$\mathbf{R}_{\mathbf{x}\mathbf{y}}$ Estimated Pearson correlation coefficient between x and y
$\hat{c}_{\scriptscriptstyle X}(au),\hat{C}_{\scriptscriptstyle X}(au)$	Estimated autocovariance function of
$\hat{\mathbf{C}}_{\mathbf{x}}, \hat{\mathbf{K}}_{\mathbf{x}}, \hat{\mathbf{\Sigma}}_{\mathbf{x}}$ $\hat{c}_{xy}(\tau), \hat{C}_{xy}(\tau)$	the signal $x(t)$ or $x[n]$ Sample (auto)covariance matrix Estimated cross-covariance function of the signal $x(t)$ or $x[n]$
$\hat{ extbf{C}}_{ ext{xy}}, \hat{ extbf{K}}_{ ext{xy}}, \hat{ extbf{\Sigma}}_{ ext{xy}}$	Sample cross-covariance matrix
$\mathbf{w}, \mathbf{\theta}$	Parameters, coefficients, or weights
$\mathbf{w}_{o}, \mathbf{w}^{\star}, \mathbf{\theta}_{o}, \mathbf{\theta}^{\star}$	vector Optimum value of the parameters, coefficients, or weights vector
W	Matrix of the weights
J H	Jacobian matrix Hessian matrix
Ĥ	Estimate of the Hessian matrix
	

5 Linear Algebra

5.1 Common matrices and vectors

W, D	Diagonal matrix
P	Projection matrix; Permutation matrix
т	V
J	Jordan matrix
L	Lower matrix
\mathbf{U}	Upper matrix
\mathbf{C}	Cofactor matrix
$\mathbf{C}_{\mathbf{A}},\operatorname{cof}\left(\mathbf{A}\right)$	Cofactor matrix of A
S	Symmetric matrix
Q	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
1_N	N-dimensional ones vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)

5.2 Indexing

$x_{i_1,i_2,,i_N}, [\mathcal{X}]_{i_1,i_2,,i_N}$	Element in the position
2, 2, , 1,	(i_1, i_2, \ldots, i_N) of the tensor $\boldsymbol{\mathcal{X}}$
$\mathcal{X}^{(n)}$	<i>n</i> th tensor of a nontemporal sequence
$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X
\mathbf{x}_{n} :	nth row of the matrix X
$\mathbf{X}_{i_1,,i_{n-1},,i_{n+1},,i_N}$	Mode- n fiber of the tensor \mathcal{X}
$\mathbf{X}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
	order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor \mathcal{X}
$\mathbf{X}_{i_1,\ldots}$	Horizontal slice of the thrid-order
	tensor \mathcal{X}
$\mathbf{X}_{:,i_2,:}$	Lateral slices slice of the thrid-order
·	tensor \mathcal{X}
$\mathbf{X}_{i_3}, \mathbf{X}_{:,:,i_3}$	Frontal slices slice of the thrid-order
	tensor \mathcal{X}

5.3 General operations

$\langle \cdot, \cdot \rangle$	Inner product, e.g., $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^{T} \mathbf{b}$
0	Outer product, e.g., $\mathbf{a} \circ \mathbf{b} = \mathbf{a} \mathbf{b}^{T}$
\otimes	Kronecker product
⊙	Hadamard (or Schur) (elementwise)
	product
.⊙n	nth-order Hadamard power
$\cdot \circ \frac{1}{n}$	nth-order Hadamard root
\oslash	Hadamard (or Schur) (elementwise)
	division
♦	Khatri-Rao product
\otimes	Kronecker Product
\times_n	<i>n</i> -mode product

5.4 Operations with matrices and tensors

▲ −1	T
\mathbf{A}^{-1}	Inverse matrix
${f A}^+,{f A}^\dagger$	Moore-Penrose left pseudoinverse
\mathbf{A}^{\top}	Transpose
$\mathbf{A}^{- op}$	Transpose of the inverse, i.e.,
	$\left(\mathbf{A}^{-1}\right)^{T} = \left(\mathbf{A}^{T}\right)^{-1} [6, 14]$
\mathbf{A}^*	Complex conjugate
\mathbf{A}^H	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
$\ \mathbf{A}\ $	Matrix norm
$ \mathbf{A} , \det{(\mathbf{A})}$	Determinant
$\operatorname{diag}\left(\mathbf{A}\right)$	The elements in the diagonal of $\bf A$
$\text{vec}\left(\mathbf{A}\right)$	Vectorization: stacks the columns of
	the matrix A into a long column vec-
	tor
$\operatorname{vec_d}\left(\mathbf{A}\right)$	Extracts the diagonal elements of a
	square matrix and returns them in a
	column vector
$\operatorname{vec}_{\operatorname{l}}\left(\mathbf{A}\right)$	Extracts the elements strictly below
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\operatorname{vec}_{\mathrm{u}}\left(\mathbf{A}\right)$	Extracts the elements strictly above
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector

5.5 Operations with vectors

 $\begin{array}{lll} \|\mathbf{a}\| & l_1 \text{ norm, 1-norm, or Manhatan norm} \\ \|\mathbf{a}\|, \|\mathbf{a}\|_2 & l_2 \text{ norm, 2-norm, or Euclidean norm} \\ \|\mathbf{a}\|_p & l_p \text{ norm, } p\text{-norm, or Minkowski norm} \\ \|\mathbf{a}\|_{\infty} & l_{\infty} \text{ norm, } \infty\text{-norm, or Chebyshev} \\ & \text{ norm} \\ \\ \text{diag}\left(\mathbf{a}\right) & \text{Diagonalization: a square, diagonal} \\ & \text{matrix with entries given by the vector } \mathbf{a} \end{array}$

5.6 Decompositions

$egin{array}{c} oldsymbol{\Lambda} \ oldsymbol{Q} \end{array}$	Eigenvalue matrix [17] Eigenvectors matrix; Orthogonal matrix of the QR decomposition[17]
R	Upper triangular matrix of the QR decomposition[17]
\mathbf{U}	Left singular vectors[17]
\mathbf{U}_r	Left singular nondegenerated vectors
Σ	Singular value matrix
Σ_r	Singular value matrix with nonzero singular values in the main diagonal
Σ^+	Singular value matrix of the pseudoinverse [17]
Σ_r^+	Singular value matrix of the pseudoinverse with nonzero singular values in the main diagonal
\mathbf{V}	Right singular vectors [17]
\mathbf{V}_r	Right singular nondegenerated vectors
$\operatorname{eig}\left(\mathbf{A}\right)$	Set of the eigenvalues of A [4, 11, 14]
$[\![\![\mathbf{A},\mathbf{B},\mathbf{C},\ldots]\!]\!]$	CANDECOMP/PARAFAC (CP) decomposition of the tensor \mathcal{X} from the outer product of column vectors of \mathbf{A} , \mathbf{B} , \mathbf{C} ,

$[\![\lambda; A, B, C, \ldots]\!]$

Normalized CANDE-COMP/PARAFAC (CP) decomposition of the tensor \mathcal{X} from the outer product of column vectors of $\mathbf{A}, \mathbf{B}, \mathbf{C}, \dots$

5.7 Spaces

span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$

 $C(\mathbf{A})$, columnspace(\mathbf{A}), range(\mathbf{A}), span(\mathbf{A}), image(\mathbf{A})

 $C(A^H)$

N (\mathbf{A}), nullspace(\mathbf{A}), kernel(\mathbf{A}) N (\mathbf{A}^{H})

 $\operatorname{rank}(\mathbf{A})$

 $\operatorname{nullity}\left(\mathbf{A}\right)$

a ⊥ b a **⊥** b Vector space spanned by the argument vectors [6]

Columnspace, range or image, i.e., the space span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where \mathbf{a}_i is the ith column vector of the matrix \mathbf{A} [12, 17]

Row space (also called left columnspace) [12, 17]

Nullspace (or kernel space) [12, 17]

Left nullspace

Rank, that is, $\dim(\text{span}(\mathbf{A})) =$

 $\dim (C(\mathbf{A}))$ [12]

Nullity of \mathbf{A} , i.e., dim $(N(\mathbf{A}))$

 $\begin{array}{l} \boldsymbol{a} \text{ is orthogonal to } \boldsymbol{b} \\ \boldsymbol{a} \text{ is not orthogonal to } \boldsymbol{b} \end{array}$

5.8 Inequalities

 $\mathcal{X} \leq 0$

 $\mathbf{a} \leq_K \mathbf{b}$

 $\mathbf{a} \prec_K \mathbf{b}$

 $\mathbf{a} \leq \mathbf{b}$

a < **b**

 $\mathbf{A} \leq_K \mathbf{B}$

Nonnegative tensor

Generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in the space $\mathbb{R}^n[2]$

Strict generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the interior of the conic subset K in the space $\mathbb{R}^n[2]$ Generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the nonnegative orthant conic subset, \mathbb{R}^n_+ , in the space $\mathbb{R}^n.[2]$

Strict generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the positive orthant conic subset, \mathbb{R}^n_{++} , in the space $\mathbb{R}^n[2]$

Generalized inequality meaning that $\mathbf{B} - \mathbf{A}$ belongs to the conic subset K in the space $\mathbb{S}^n[2]$

6 Communication systems

B	One-sided bandwidth of the trans-
	mitted signal, in Hz
W	One-sided bandwidth of the trans-
	mitted signal, in rad/s
x_i	Real or in-phase part of x
x_q	Imaginary or quadrature part of x
f_c, f_{RF}	Carrier frequency (in Hertz)
f_L	Carrier frequency in L-band (in
	Hertz)
f_{IF}	Intermediate frequency (in Hertz)
f_s	Sampling frequency or sampling rate
	(in Hertz)
T_s	Sampling time inter-
	val/duration/period
R	Bit rate
T	Bit interval/duration/period
T_c	Chip interval/duration/period
T_{sy}, T_{sym}	Symbol/signaling[15] inter-
	val/duration/period
S_{RF}	Transmitted signal in RF
S_{FI}	Transmitted signal in FI
S, S_l	Lowpass (or baseband) equivalent
	signal or envelope complex of trans-
	mitted signal
r_{RF}	Received signal in RF
r_{FI}	Received signal in FI
r, r_l	Lowpass (or baseband) equivalent
	signal or envelope complex of re-
	ceived signal
ϕ	Signal phase

Initial phase ϕ_0 Noise in RF η_{RF}, w_{RF} Noise in FI η_{FI}, w_{FI} Noise in baseband η, w τ Timing delay ${\bf Timing\ error\ (delay\ -\ estimated)}$ Δau Phase offset φ Phase error (offset - estimated) $\Delta \varphi$ Linear Doppler frequency f_d Frequency error (Doppler frequency - Δf_d estimated) ν Angular Doppler frequency $\Delta \nu$ Frequency error (Doppler frequency estimated) γ , A Transmitted signal amplitude Combined effect of the path loss and γ_0, A_0 antenna gain

7 Discrete mathematics

7.1 Set theory

A + B	Set addition (Minkowski sum), i.e., $\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} + \mathbf{y}, \forall \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$ [10]
A - B	Minkowski difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} - \mathbf{y}, \forall \ \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$
$A\ominus B$	Pontryagin difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} + \mathbf{y} \in \mathcal{X}, \forall \ \mathbf{y} \in \mathcal{Y}\} $ [10]
$A \setminus B, A - B$	Set difference or set subtraction, i.e.,
	$A \setminus B = \{x x \in A \land x \notin B\}$ the set con-
	taining the elements of A that are not
	in B [16]
$A \cup B$	Set of union
$A \cap B$	Set of intersection
$A \times B$	Cartesian product
A^n	$A \times A \times \cdots \times A$
A^{\perp}	Orthogonal complement of A , e.g., $N(\mathbf{A}) = C(\mathbf{A}^{T})^{\perp}[2]$

$A \oplus B$	Direct sum, i.e., each $\mathbf{v} \in \{\sum \mathbf{a}_i \mid \mathbf{a}_i \in S_i, i = 1, \dots, k\}$ has a unique representation of $\sum \mathbf{a}_i$ with $\mathbf{a}_i \in S_i$. That is, they expand to a space. Note that $\{S_i\}$ might not be orthogonal each other [6]
$A\stackrel{\perp}{\oplus} B$	Direct sum of two space that are or-
	thogonal and span a <i>n</i> -dimensional
	space, e.g., $C(\mathbf{A}^{\top}) \stackrel{\perp}{\oplus} C(\mathbf{A}^{\top})^{\perp} = \mathbb{R}^{n}$ (this decomposition of \mathbb{R}^{n} is called the orthogonal decomposition induced by \mathbf{A}) [2]
\bar{A}, A^c	Complement set (given U)
#A, A	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
U_{\perp}	Universe
2^A	Power set of A
\mathbb{R}	Set of real numbers
\mathbb{C}	Set of complex numbers
\mathbb{Z}	Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set
Ø	Empty set
N	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$	Real or complex space (field)
$\mathbb{K}^{I_1 imes I_2 imes \cdots imes I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or
	complex) space
\mathbb{K}_{+}	Nonnegative real (or complex) space [2]
\mathbb{K}_{++}	Positive real (or complex) space, i.e.,
	$\mathbb{K}_{++} = \mathbb{K}_+ \setminus \{0\} \ [2]$
$\mathbb{S}^n, \mathcal{S}^n$	Conic set of the symmetric matrices in $\mathbb{R}^{n \times n}$ [2]
$\mathbb{S}^n_+, \mathcal{S}^n_+$	
ω_+, \mathcal{O}_+	Conic set of the symmetric positive semidefinite matrices in $\mathbb{R}^{n \times n}$ [2]
$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive
⊕ ₊₊ , ⊖ ₊₊	definite matrices in $\mathbb{R}^{n \times n}$, i.e., $\mathbb{S}^{n}_{++} =$
	S ₊ ⁿ \ $\{0\}$ [2]
\mathbb{H}^n	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to
[40, 40]	b
(a,b)	Opened interval of a real set from a
(,)	to b

[a]	b),	(a.	b]
Lu,	$\upsilon_{j},$	(u,	$\nu_{\rm J}$

Half-opened intervals of a real set from a to b

7.2 Quantifiers, inferences

A	For all (universal quantifier) [7]
3	There exists (existential quantifier)
	[7]
∄	There does not exist [7]
∃!	There exist an unique [7]
€	Belongs to [7]
∉	Does not belong to [7]
::	Because [7]
] ,:	Such that, sometimes that parantheses is used [7]
$,,(\cdot)$	Used to separate the quantifier with
,,(')	restricted domain from the its scope,
	e.g., $\forall x < 0 \ (x^2 > 0)$ or $\forall x < 0, x^2 > 0$
	0 [7]
$\ddot{\cdot}$	Therefore [7]

7.3 Propositional Logic

$\neg a$	Logical negation of a [16]
$a \wedge b$	Conjunction (logical AND) operator
	between a and $b[16]$
$a \lor b$	Disjunction (logical OR) operator be-
	tween a and $b[16]$
$a \oplus b$	Exclusive OR (logical XOR) operator
	between a and $b[16]$
$a \rightarrow b$	Implication (or conditional) state-
	ment[16]
$a \leftrightarrow b$	Bi-implication (or biconditional)
	statement, i.e., $(a \rightarrow b) \land (b \rightarrow a)$
	[16]
$a \equiv b, a \iff b, a \Leftrightarrow b$	Logical equivalence, i.e., $a \leftrightarrow b$ is a
	tautology[16]

8 Number theory, algorithm theory, and other notations

8.1 Mathematical symbols

 $\begin{array}{cccc} \blacksquare & & & \text{Q.E.D.} \\ \triangleq & & & \text{Equal by definition} \\ :=, \leftarrow & & \text{Assignment [16]} \\ \neq & & & \text{Not equal} \\ \infty & & & & \text{Infinity} \\ j & & & & \sqrt{-1} \\ \end{array}$

8.2 Operations

|a|Absolute value of alog Base-10 logarithm or decimal logarithm lnNatual logarithm $\text{Re}\left\{x\right\}$ Real part of x $\operatorname{Im}\left\{ x\right\}$ Imaginary part of x۷٠ phase (complex argument) Remainder, i.e., $x - y \lfloor x/y \rfloor$, for $y \neq 0$ $x \mod y$ x div yQuotient [16] $x \equiv y \pmod{m}$ Congruent, i.e., $m \setminus (x - y)$ [16] frac(x)Fractional part, i.e., $x \mod 1$ [7] $a \backslash b$, $a \mid b$ b is a positive integer multiple of a, i.e., $\exists n \in \mathbb{Z}_{++} \mid b = na \ [7, 16]$ $a \ \ b, \ a \ \ b$ b is not a positive integer multiple of $a, \text{ i.e., } \nexists n \in \mathbb{Z}_{++} \mid b = na \ [7, 16]$ Ceiling operation [7] $\lceil \cdot \rceil$ $\lfloor \cdot \rfloor$ Floor operation [7]

8.3 Functions

 $\begin{array}{ll} \mathcal{O}(\cdot), O(\cdot) & \text{Big-O notation} \\ \Gamma(\cdot) & \text{Gamma function} \\ Q(\cdot) & \text{Quantization function} \end{array}$

9 Abbreviations

 $\begin{array}{ccc} \text{wrt.} & \text{With respect to} \\ \text{st.} & \text{Subject to} \\ \text{iff.} & \text{If and only if} \\ \text{EVD} & \text{Eigenvalue decomposition, or eigendecomposition} \\ \text{SVD} & \text{Singular value decomposition} \\ \text{CP} & \text{CANDECOMP/PARAFAC} \end{array}$

References

- Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and Machine Learning. Vol. 4. 4. Springer, 2006.
- [2] Stephen Boyd, Stephen P. Boyd, and Lieven Vandenberghe. *Convex Optimization*. Cambridge university press, 2004.
- [3] Robert Grover Brown and Patrick YC Hwang. "Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises and Solutions". In: Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions (1997).
- [4] Rama Chellappa and Sergios Theodoridis. Signal Processing Theory and Machine Learning. Academic Press, 2014. ISBN: 0-12-396502-0.
- [5] Paulo SR Diniz, Eduardo AB Da Silva, and Sergio L Netto. Digital Signal Processing: System Analysis and Design. Cambridge University Press, 2010. ISBN: 1-139-49157-1.
- [6] Gene H Golub and Charles F Van Loan. Matrix Computations. JHU press, 2013. ISBN: 1-4214-0859-7.
- [7] Ronald L Graham et al. "Concrete Mathematics: A Foundation for Computer Science". In: *Computers in Physics* 3.5 (1989), pp. 106–107. ISSN: 0894-1866.
- [8] Simon S Haykin. Adaptive Filter Theory. Pearson Education India, 2002. ISBN: 81-317-0869-1.
- [9] Vinay K Ingle and John G Proakis. *Digital Signal Processing Using MAT-LAB*. Cole Publishing Company, 2000.
- [10] Basil Kouvaritakis and Mark Cannon. "Model Predictive Control". In: Switzerland: Springer International Publishing 38 (2016).
- [11] Alberto Leon-Garcia. Probability, Statistics, and Random Processes for Electrical Engineering. 3rd ed. edição. Upper Saddle River, NJ: Prentice Hall, 2007. ISBN: 978-0-13-147122-1.
- [12] Josef Nossek. Adaptive and Array Signal Processing. 2015.
- [13] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing: International Edition. 3ª edição. Upper Saddle River Munich: Pearson, Nov. 12, 2009. ISBN: 978-0-13-206709-6.
- [14] Kaare Brandt Petersen and Michael Syskind Pedersen. "The Matrix Cookbook". In: *Technical University of Denmark* 7.15 (2008), p. 510.
- [15] John Proakis and Masoud Salehi. *Digital Communications*. 5th ed. edição. Boston: Mc Graw Hill, Jan. 1, 2007. ISBN: 978-0-07-295716-7.
- [16] Kenneth H Rosen. "Discrete Mathematics and Its Applications (7Th Editio)". In: William C Brown Pub (2011).
- [17] Gilbert Strang et al. *Introduction to Linear Algebra*. Vol. 3. Wellesley-Cambridge Press Wellesley, MA, 1993.

[18] Harry L Van Trees. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, 2002. ISBN: 0-471-09390-4.