Project Charter Northrop Grumman, Quantum AI at the Edge

Prepared by the CU Boulder Northrop Grumman Capstone Team
October 03, 2021

1.	Introduction	3
	Executive Summary	3
	Business Problems/Opportunities	3
2.	Objectives and Scope	3
	Business Objectives	3
	High Level Requirements	3
	Project Scope	
3.	Project Approach	4
	General Approach – Solution Delivery Process	4
	Assumptions	
	Project Risks and Issues	
	Project Changes	4
4.	Project Plan	5
	Key Deliverables	5
	Timeline	
	Preliminary Cost Estimates	
5.	Key Stakeholder Roles & Responsibilities	6
	Stakeholder Role/Responsibility	6

1. Introduction

Executive Summary

- Northrop Grumman solves the toughest problems in space, aeronautics, defense, and
 cyberspace to meet the ever-evolving needs of their customers worldwide. Northrop Grumman
 defines what is possible every day using science, technology, and engineering to create and
 deliver advanced systems, products, and services.
- Northrop Grumman is a leading provider of full spectrum cyber across land, air, sea, and space.
 From preventing cyber-attacks to securing military communications and giving our customers a decisive advantage, our capabilities are second to none.

Opportunities

- The intersection between machine learning and quantum computing has attracted considerable attention in recent years. This has led to several recently proposed quantum algorithms.
- Current AI solutions require performance improvements in training, and these solutions are being
 deployed to new domains. Simple classifiers are starting to show promise on quantum
 processors, and these classifiers are deployable on edge processors for inference.

2. Objectives and Scope

Objectives

 Apply quantum AI to train a simple classifier network and then use that network for inference on an emulated embedded platform. If the quantum piece does not show improvement over traditional techniques, then traditionally trained models will be used for inference on the emulator.

High Level Requirements

- SVM and MLP classifiers will be trained using OpenCV and/or TensorFlow to establish baselines.
- IBM Qiskit and Google Cirq will be used to implement SVM and MLP and compared with the baselines in terms of accuracy.
- Models should be run first in simulation and then on IBM and Google quantum processors.
- The quantum classifiers should then be used for inference on a XILINX Vitis emulator to demonstrate similar performance to what was seen in training. If the quantum piece fails to show improvement, then traditionally trained models will be used for inference on the emulator.

Project Scope

In Scope:

- Reviewing quantum computing techniques and necessary research papers
- Developing familiarity with the sponsor requested technology stack
- Reviewing appropriate tutorials for developing familiarity with novel quantum technology
- Translating quantum algorithms to utilize qubits in the Qiskit quantum simulator
- Developing familiarity with the constraints of the embedded and edge computing platforms
- Using traditionally trained models to be used for inference on the emulator.

Out of Scope:

- Modifications to existing algorithms or creation of new algorithms
- Fundamental research on new quantum algorithmic techniques
- Building novel quantum AI, embedded, and edge computing toolkits

3. Project Approach

General Approach

- Develop familiarity with existing quantum and baseline technology stack via current research, documentation, and tutorials.
- Develop working code for the respective IBM and Google SDK's and libraries.
- Compare performance on the respective IBM and Google SDK's and libraries.
- After selecting the more performant SDK and library begin to develop working code for the embedded and edge platforms.
- Analyze and determine performance differences on the quantum versus baseline on the embedded and edge platforms.

Assumptions

 Since this is an R&D project that is fully exploratory by nature there is an underlying assumption that the project may not succeed.

Project Risks and Issues

- The sponsor has communicated that there is no guarantee that the project will necessarily work due to the R&D and fully exploratory nature of the project itself.
- During this project, as issues arise that put the success of the project at risk, the issues and risks
 will be documented in the <u>Project Log</u> and tracked through resolution.

Project Changes

 Changes to project scope and requirements will be reviewed by the project sponsor, manager, and engineering team. This group will assess the potential impact of the change on schedule and resources, then provide a decision for approval or disapproval. All scope and requirements changes will be documented in the *Project Log*.

4

10/16/21 8:21 AM

4. Project Plan

Key Deliverables

1. Project Charter

2. Project Plan, containing:

- Detailed task list
- Revised milestones and target dates if needed

3. Requirements Definition, containing:

- Detailed description and documentation of each solution to be developed
- Clear, concise statements of what each solution must accomplish to be considered successful

4. Solution Design, containing

- An accurate description of each solution
- Change Management Plan for implementing each solution

5. Solution Construction and Testing, containing

- · Analysis comparing baseline classifiers with quantum versions and libraries
- · Datasets used for analysis
- Training Code
- Analysis of inference on emulated platform and code
- Use traditionally trained models for inference on the emulator should the quantum piece not show improvements over traditional techniques.

6. Ongoing support and management procedures for each component of the KM Solution

- Support documentation
- Knowledge Management governance guidelines

Timeline

Deliverable	Due Date	
Project Charter	October 03, 2021	
Project Plan	October 15, 2021	
Requirements Definition	November 01, 2021	
High Level Solution Design	November 15, 2021	
Detailed Solution Design	November 20, 2021	
Solution Construction and Testing	February 25, 2021	
Governance Guidelines	March 25, 2021	
Submit Written Report to Sponsor	April 01, 2021	
Present Findings to Sponsor	May 05, 2021	

Preliminary Cost Estimates

Noah Svensson

Labor Costs Estimate

Development Time \$0

Hardware/Software Costs Estimate

Software Engineer

Open-Source Software \$0

5. Key Stakeholder Roles & Responsibilities

Stakeholder Role/Responsibility

Dave Motta Project Sponsor Alec Carlisle Project Sponsor Alan Paradise **Capstone Instructor Kirby Linvill Project Mentor & TA Jarek Reynolds Project Manager Adam Hoerger Software Engineer** Alan Yu **Software Engineer Cade Gorman Software Engineer Giovanni Visco Software Engineer** John Ortiz **Software Engineer** Jorge Ortiz **Software Engineer**

6