

CLAIMS

What is claimed is:

1 1. A method of switching on an inductive load, a current of which is intended

2 2 to repeatedly reach an end current value at desired time, comprising the steps of:

3 3 a. measuring a time interval between a switching on time of the inductive load

4 4 and a time that at least one intermediate current value of the current through the inductive load is

5 5 reached;

6 6 b. using the time interval measured in said step a. and the at least one

7 7 intermediate current value to calculate an end current time interval from the switching-on time

8 8 until the end current value is reached; and

9 9 c. performing a switching-on of the inductive load at the end current time

10 10 interval before the desired time.

1 11 2. The method of claim 1, wherein said step b. comprises using a function

2 12 representing the rate of current rise in the inductive load when a constant voltage is applied for

3 13 calculating the end current time interval.

1 14 3. The method of claim 2, wherein said step b. includes querying a memory

2 15 for determining the function representing the rate of current rise.

1 16 4. The method of claim 2 wherein said step b. includes calculating the

2 17 function representing the rate of current rise from at least one intermediate current value and the

3 time interval between a switching-on time and the time at which at least one intermediate current
4 valve is reached.

1 5. The method of claim 1, where said step b. comprises using the time
2 interval measured in said step a. to calculate at least one parameter of a function and using the
3 function, the at least one parameter and the end current value to calculate the end current time
4 interval.

1 6. The method of claim 5, wherein the function used in step b. comprises:
2 $i = \hat{i} (1 - e^{-t \cdot R/L})$

3 wherein:

4 i is the current at a time t ;
5 \hat{i} is the current reached at infinity;
6 R is the resistance; and
7 L is the inductance.

1 7. The method of claim 2, wherein the function used in said step b. is stored
2 as a table including a plurality of intermediate current values assigned to corresponding values of
3 end current time intervals.

1 8. The method of claim 3, wherein the function used in said step b. is stored
2 as a table including a plurality of intermediate current values assigned to corresponding values of
3 end current time intervals.

1 9. The method of claim 4, wherein the function used in said step b. is stored
2 as a table including a plurality of intermediate current values assigned to corresponding values of
3 end current time intervals.

1 10. The method of claim 2, where step b. further includes determining a
2 correction value representing a curvature of the function and calculating the end current time
3 interval in accordance with the rule of three using the correction value.

1 11. The method of claim 1, wherein said step b. comprises calculating the end
2 current time interval in accordance with the rule of three.

SEARCHED INDEXED
SERIALIZED FILED