LOAN ELIGIBILITY PREDICTION

By: Rika Sahriana

CONTENT:

BACKGROUND

OBJECTIVE

RESULT SUMMARY

Result Summary

Conclusio

The best model based on the analysis that has been done is logistic regression with a mode accuracy level of 87.80% and a crose validation score of 80.94%. So that in implementing the eligibility loan prediction, we can use this model to get best prediction

BACKGROUND

Loans are the core business of banks. The main profit comes directly from the loan's interest. The loan companies grant a loan after an intensive process of verification and validation. However, they still don't have assurance if the applicant is able to repay the loan with no difficulties.

PROBLEMS

A Company wants to automate the loan eligibility process (real time) based on customer detail provided while filling online application form. To automate this process, we need to identify the customers segments, those are eligible for loan amount so that they can specifically target these customers.

About Loan Eligibility Prediction

Loan eligibility is defined as a set of criteria basis which a financial institution evaluates to decide eligibility of a customer for a particular loan.

Data Introduction

For this problem, I use Loan Eligible Dataset from kaggle.

- Loan_ID
- Married
- > Education
- > ApplicantIncome
- Loan_Amount
- Property_Area
- Loan_Status

- > Gender
- Dependents
- Self_Employed
- > CoapplicantIncome
- Credit_History
- Loan_Amount_Term

Data Introduction

Null value in each column

Key Name	Null.sum
<pre>Loan_ID</pre>	0
Married	3
Education	0
Applicantlncome	0
Loan_Amount	22
Property_Area	0
> Gender	13
Dependents	15
Self_Employed	32
CoapplicantIncome	0
Credit_History	50
Loan_Amount_Term	14

Exploratory Data Analisys

Categorical Data Visualization

Numeric Data Visualization

Exploratory Data Analisys

Coorelation Matrix

Exploratory Data Analisys

ApplicantIncome -	1	-0.12	0.57	-0.045	-0.014	0.89	0.79	-0.25	0.43	-0.024	0.72
CoapplicantIncome -	-0.12	1	0.19	-0.06	-0.0017	0.34	-0.24	0.57	0.2	-0.043	0.38
LoanAmount -	0.57	0.19	1	0.039	-0.0077	0.62	0.55	0.048	0.9	0.045	0.69
Loan_Amount_Term -	-0.045	-0.06	0.039	1	0.0014	-0.07	-0.031	0.014	0.087	0.94	-0.055
Credit_History -	-0.014	-0.0017	-0.0077	0.0014	1	-0.014	0.019	0.0024	-0.025	-0.0079	0.019
Total_Income -	0.89	0.34	0.62	-0.07	-0.014	1	0.64	0.023	0.5	-0.042	0.85
ApplicantIncomeLog -	0.79	-0.24	0.55	-0.031	0.019	0.64	1	-0.37	0.49	-0.015	0.74
CoapplicantIncomeLog -	-0.25	0.57	0.048	0.014	0.0024	0.023	-0.37	1	0.13	0.013	0.15
LoanAmountLog -	0.43	0.2	0.9	0.087	-0.025	0.5	0.49	0.13	1	0.085	0.66
Loan_Amount_TermLog	-0.024	-0.043	0.045	0.94	-0.0079	-0.042	-0.015	0.013	0.085	1	-0.03
Total_IncomeLog -	0.72	0.38	0.69	-0.055	0.019	0.85	0.74	0.15	0.66	-0.03	1
	ApplicantIncome -	CoapplicantIncome -	LoanAmount -	Loan_Amount_Term -	Credit_History -	Total_Income -	ApplicantIncomeLog -	applicantIncomeLog -	LoanAmountLog -	an_Amount_TermLog -	Total_incomeLog -

- 0.2

- 0.0

- -0.2

Train Test Split

I use 20% data as Test data and 80% as Train data

	shape
X	(614, 11)
x_train	(491, 11)
x_test	(123, 11)

Training Model

To get best prediction, I use 5 Method. There are

	Training Accuracy	Testing Accuracy	Cross Validation Score
Logistic Regression	79.42	87.80	80.94
DecisionTree Classifier	100.0	78.04	71.17
RandomForestClass ifier	100.0	83.73	78.17
ExtraTrees Classifier	100.0	80.48	76.22
Support Vector Machine	68.02	71.54	69.70

Hyperparameter Tuning

To improve accuracy model, i try to use 2 method hyperparameter tuning

	Training Accuracy	Testing Accuracy
GridSearchCV	79.42	87.80
RandomizedSearchCV	79.42	87.80

Confusion Matrix Logistic Regression

Confusion Matrix

Result Summary

Conclusion

The best model based on the analysis that has been done is logistic regression with a model accuracy level of 87.80% and a cross validation score of 80.94%. So that in implementing the eligibility loan prediction, we can use this model to get best prediction