The Euler ϕ - function

Learning Objectives. By the end of class, students will be able to:

• Prove that $\phi(m)\phi(n) = \phi(mn)$ when (m,n) = 1.

Reading None

Turn In Paper 2

We will use ?? as an outline to prove

Theorem 1 (Theorem 3.2). Let m and n be positive integers where (m, n) = 1. Then $\phi(mn) = \phi(m)\phi(n)$. maybe works?

Proof First, we note that an integer a is relatively prime to mn if and only if it is relatively prime to m and n, since m and n (together) have the same prime divisors as mn.

We can partition the positive integers less that mn into

```
0 \equiv m \equiv 2m \equiv \cdots \equiv (n-1)m \pmod{m}
1 \equiv m+1 \equiv 2m+1 \equiv \cdots \equiv (n-1)m+1 \pmod{m}
2 \equiv m+2 \equiv 2m+2 \equiv \cdots \equiv (n-1)m+2 \pmod{m}
\vdots \qquad \vdots \qquad \vdots \qquad \vdots
m-1 \equiv 2m-1 \equiv 3m-1 \equiv \cdots \equiv nm-1 \pmod{m}
```

For any b in the range 0, 1, 2, ..., m-1, define s_b to be the number of integers a in the range 0, 1, 2, ..., mn-1 such that $a \equiv b \pmod{m}$ and $\gcd(a, mn) = 1$. For each equivalence class b, $\gcd(b, m) \mid km + b$ by linear combination. Thus, $s_b = 0$ if (b, m) > 1. If $\gcd(b, m) = 1$, the arithmetic progression, $\{b, m + b, 2m + b, ..., (n-1)m + b\}$ contains n elements. By 1, the arithmetic progression is a ?? modulo n, so $\phi(n)$ elements are relatively prime to n and thus mn.

Thus, can see that when (b, m) = 1, $s_b = \phi(n)$ and when (b, m) > 1, $s_b = 0$.

Since all of the positive integers less than or equal to mn is in exactly one of the congruence classes above and t he s_i count how many integers in each congruence class are relatively prime to mn, $phi(mn) = s_0 + s_1 + \cdots + s_{m-1}$.

Since $\phi(m)$ of the $s_i = \phi(n)$ and the rest are 0, $\phi(mn) = s_0 + s_1 + \cdots + s_{m-1} = \phi(m)\phi(n)$.

In-class Problem 1 Complete the proof of Theorem 3.2 by proving that, if m, n, and i are positive integers with (m, n) = (m, i) = 1, then the integers i, m + i, 2m + i, ..., (n - 1)m + i form a complete system of residues modulo n.

Learning outcomes:

Author(s): Claire Merriman