SUITES ALÉATOIRES

Exercice 1 (Convergences). Soit $(X_n)_{n\geq 1}$ une suite de variables de Bernoulli indépendantes, de paramètres respectifs $(p_n)_{n\geq 1}$. Donner une condition nécessaire et suffisante pour que

- a) $X_n \to 0$ presque-sûrement lorsque $n \to \infty$;
- b) $X_n \to 0$ en probabilité lorsque $n \to \infty$;
- c) $X_n \to 0$ dans L^p lorsque $n \to \infty$, où $p \ge 1$ est un nombre donné;
- d) $nX_n \to 0$ presque sûrement lorsque $n \to \infty$;
- e) $nX_n \to 0$ en probabilité lorsque $n \to \infty$;
- f) $nX_n \to 0$ dans L^p lorsque $n \to \infty$, où $p \ge 1$ est un nombre donné.

Exercice 2 (Concentration). Soit $(X_n)_{n\geq 1}$ une suite de variables dans L^2 , d'espérances $(\mu_n)_{n\geq 1}$ et de variances $(\sigma_n^2)_{n\geq 1}$. On suppose que $\mu_n\neq 0$ et que $\sigma_n/\mu_n\to 0$ lorsque $n\to\infty$. Montrer que

$$\frac{X_n}{\mu_n} \xrightarrow[n\to\infty]{\mathbb{P}} 1.$$

Exercice 3 (Problème du collectionneur). Chaque œuf en chocolat contient une surprise choisie au hasard et uniformément parmi n surprises possibles, indépendamment des autres œufs. Un enfant décide de manger les œufs un à un, jusqu'à ce qu'il ait récolté un exemplaire de chacune des n surprises possibles. On cherche à estimer le nombre T_n d'œufs qu'il lui faudra manger.

- a) Montrer que T_n est la somme de n variables géométriques indépendantes.
- b) En déduire l'espérance et la variance de T_n .
- c) Conclure que $\frac{T_n}{n \ln n} \to 1$ lorsque $n \to \infty,$ en un sens que l'on précisera.

Exercice 4 (Records). Soit $(X_n)_{n\geq 1}$ une suite de variables i.i.d. de fonction de répartition F, et

$$\alpha := \inf \{ t \in \mathbb{R} \colon F(t) > 0 \} \in [-\infty, +\infty) \quad \text{ et } \quad \beta := \sup \{ t \in \mathbb{R} \colon F(t) < 1 \} \in (-\infty, +\infty].$$

Montrer que presque-sûrement, $\liminf_{n\to\infty} X_n = \alpha$ et $\limsup_{n\to\infty} X_n = \beta$.

Exercice 5 (Maximum d'exponentielles). Soit $(X_n)_{n\geq 1}$ i.i.d. de loi $\mathscr{E}(1)$. On cherche à établir que

$$Z_n := \frac{\max\{X_1, \dots, X_n\}}{\ln n} \quad \xrightarrow[n \to \infty]{\text{p.s.}} \quad 1.$$

- a) Vérifier que la convergence a lieu en probabilité lorsque $n \to \infty$.
- b) Montrer que presque-sûrement, $\liminf_{n\to\infty} Z_n \geq 1$.
- c) Montrer que presque-sûrement $Z_{2^k} \to 1$ lorsque $k \to \infty$, puis conclure.

Exercice 6 (Maximum de gaussiennes). Soit $(X_n)_{n\geq 1}$ i.i.d. de loi $\mathcal{N}(0,1)$. On veut montrer que

$$\frac{\max\{X_1,\dots,X_n\}}{\sqrt{2\ln n}} \quad \xrightarrow[n\to\infty]{\text{p.s.}} \quad 1.$$

- a) Montrer que pour tout x > 0, $\mathbb{P}(X_1 > x) \le \frac{e^{-x^2/2}}{x}$.
- b) Montrer qu'il existe une constante c > 0 telle que pour tout t suffisamment grand, $\mathbb{P}(X > x) \ge c \frac{e^{-x^2/2}}{x}$.
- c) Conclure à l'aide d'une approche similaire à celle de l'exercice précédent.

Exercice 7 (Pas de loi des grands nombres sans moment). Soit $(X_n)_{n\geq 1}$ des variables i.i.d.

- a) Montrer que $\mathbb{P}(\limsup_{n\to\infty}\{|X_n|\geq n\})$ vaut 0 ou 1 selon que X_1 est intégrable ou non.
- b) Soit $(u_n)_{n\geq 1}$ une suite de nombre réels telle que la suite $\left(\frac{1}{n}\sum_{k=1}^n u_k\right)_{n\geq 1}$ soit convergente dans \mathbb{R} . Montrer que nécessairement, $\frac{u_n}{n}\to 0$ lorsque $n\to\infty$.
- c) Déduire des deux questions précédentes que si X_1 n'est pas intégrable, alors la probabilité pour que la suite $\left(\frac{1}{n}\sum_{k=1}^{n}X_k\right)_{n\geq 1}$ soit convergente dans $\mathbb R$ est nulle.

Exercice 8 (Processus de Poisson). Soient $(X_n)_{n\geq 1}$ des variables indépendantes de loi $\mathscr{E}(1)$. On pose $T_0:=0$ et $T_n:=X_1+\cdots+X_n$ pour $n\geq 1$. Enfin, on fixe $\lambda>0$ et on pose

$$N := \max \{ n \ge 0 \colon T_n \le \lambda \} .$$

- a) Justifier que $N < \infty$ presque-sûrement.
- b) Montrer que pour $n \ge 1$, le vecteur (T_1, \ldots, T_n) admet une densité que l'on déterminera.
- c) Déterminer la loi de la variable aléatoire N.
- d) Pour $n \geq 1$, déterminer la loi conditionnelle de (T_1, \ldots, T_n) sachant $\{N = n\}$.

Exercice 9 Soit $p \in [0,1], \lambda > 0$. Soit $(X_n)_{n \geq 1}$ des variables indépendantes de loi $\mathcal{B}(p)$, et soit N une variable aléatoire de loi $\mathcal{P}(\lambda)$, indépendante de $(X_n)_{n \geq 1}$. On pose

$$X := \sum_{k=1}^{N} X_k$$
 et $Y := \sum_{k=1}^{N} (1 - X_k)$.

Montrer que les variables X et Y sont indépendantes et déterminer leurs lois.

Exercice 10 (Récurrence/transience). Soit $p \in [0,1]$, et $(X_n)_{n\geq 1}$ une suite de variables i.i.d. avec $\mathbb{P}(X_1=1)=p$ et $\mathbb{P}(X_1=-1)=1-p$. On pose $S_0:=0$ et pour tout $n\geq 1$,

$$S_n := X_1 + \dots + X_n.$$

On s'intéresse à $Z := \sum_{n=0}^{\infty} \mathbf{1}_{(S_n=0)}$, le nombre de visites en zéro du processus $(S_n)_{n \geq 0}$.

- a) Donner la loi de S_n pour $n \geq 0$, et trouver le comportement de $\mathbb{P}(S_n = 0)$ lorsque $n \to \infty$.
- b) En déduire que si $p \neq \frac{1}{2}$, alors $\mathbb{P}(Z < \infty) = 1$. Pouvait-on le prévoir sans faire de calcul?
- c) On pose $A_n := \{S_n = 0\} \cap \bigcap_{k \ge n+1} \{S_k \ne 0\}$. Montrer que

$$\mathbb{P}(Z < \infty) = \sum_{n=0}^{\infty} \mathbb{P}(A_n)$$
 et $\mathbb{P}(A_n) = \mathbb{P}(S_n = 0)\mathbb{P}(A_0)$.

d) En déduire que si $p = \frac{1}{2}$, $\mathbb{P}(Z < \infty) = 0$.

Exercice 11 Soit (A_n) une suite de variables aléatoires iid strictement positives, au sens où $\mathbb{P}(A_n \leq) = 0$. On suppose que $\mathbb{E}[\ln A_n] < 0$.

- a) Étudier la convergence de la suite de variables aléatoires définie par $X_n = A_1 \dots A_n$.
- b) Étudier la convergence de la série de terme général X_n .

Exercice 12 (théorème de Carleman) Soit (X_n) une suite de variables aléatoires. On suppose qu'il existe deux constantes C, c telles que pour tout n, $\mathbb{P}(|X_n| > x) \leq Ce^{-cx^2}$ (on dit que ces variables sont sous-gaussiennes).

- a) On suppose que X_n converge en loi vers une variable aléatoire X. Montrer que pour tout entier k, $\mathbb{E}[X_n^k]$ converge vers $\mathbb{E}[X^k]$.
- b) Réciproquement, on suppose que pour tout entier k, $\mathbb{E}[X_n^k]$ converge vers $\mathbb{E}[X^k]$.
 - i) Montrer qu'il existe une constante a telle que pour tout n et pour tout k, $\mathbb{E}[|X_n|^{k+1}] \leq (ak)^{k/2}$.
 - ii) En déduire que $\varphi_{X_n}(t) = \sum_{j=0}^k \frac{(\mathrm{i} t)^j}{j} \mathbb{E}[X_n^j] + O((ak)^{-k/2}|t|^{k+1})$, où les constantes du $O(\cdot)$ ne dépendent ni de t, ni de n.
 - iii) En déduire que X_n converge en loi vers X.