Informe 4. Urano App

Ronald Cardona Anderson Grajales Sebastian Valencia Julian Sanchez

28 de octubre de 2018

1. Funciones de apoyo

Esta seccion muestra algunas funciones que son necesarias para lograr una correcta implementacion de los metodos para la solucion numerica de sistemas de ecuaciones lineales.

1.1. Determinantes

Definición 1.1. Sea $A = [a_{ij}]$ una matriz de tamaño $n \times n$. El cofactor C_{ij} de a_{ij} se define como $(-1)^{i+j}$ det M_{ij} , donde M_{ij} es la matriz de tamaño $(n-1) \times (n-1)$, que se obtiene al eliminar la fila i y la columna j de la matriz.[1]

Teorema 1.1. Sea $A = [a_{ij}]$ una matriz de tamaño $n \times n$. [1]

- Para cada $1 \le i \le n$ se cumple que: $\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + ... + a_{in}C_{in}$
- Para cada $1 \le j \le n$ se cumple que: $\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + ... + a_{nj}C_{nj}$

De acuerdo al teorema 1.1 se puede definir una ecuación de recurrencia para encontrar el determinante de una matriz $A = [a_{ij}]$ de la siguiente manera:

$$det(A, n)_{1 \le i \le n} = \begin{cases} a_{11}, & \text{if } n = 1. \\ (-1)^{i+1} \times a_{1i} \times det(A', n - 1), & \text{if } n > 1. \end{cases}$$
 (1)

Donde A' es la matriz que se obtiene al eliminar la columna i y la fila n de A. De esta manera, para una matriz B de $n \times n$, la solución se entrega de la forma: det(B, n).

1.2. Multiplicación de matrices

Definición 1.2. Dadas las matrices $A \in M_{m \times n}$ y $B \in M_{n \times p}$, entonces el producto de A con B, denotado AB, es una matriz $C \in M_{m \times p}$, dada por: [1]

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

$$con i = 1, ..., m \ y \ j = 1, ..., p$$

1.3. Escalonamiento de matrices

Definición 1.3. Sea $A = [a_{ij}]$ una matriz de $n \times n$. Decimos que A está escalonada si $\forall i, j, 1 \leq i \leq j \leq n$, $a_{ij} = 0$.

```
Leer A, b
si A \notin \Re^{n \times n} ó b \notin \Re^n entonces
 \mid A debe ser cuadrada y b debe ser un arreglo de n posiciones
si no, si \det A = 0 entonces
 A debe ser invertible
en otro caso
    para k = 1 a n - 1 hacer
         si A_{kk} = 0 entonces
              j \leftarrow k + 1
              mientras j < n \ \boldsymbol{y} \ A_{jk} = 0 \ \mathbf{hacer}
              j \leftarrow j+1
              fin
              \mathbf{si} \ j < n \ \mathbf{entonces}
                  para l = k a n hacer
                   A_{kl} \leftarrow A_{kl} + A_{jl}
                  b_k \leftarrow b_k + b_j
              _{
m fin}
         fin
         para i = k + 1 a n hacer
              si A_{ki} \neq 0 entonces
                  m \leftarrow \frac{A_{ik}}{A_{kk}}
                  para l = k a n hacer
                  A_{il} \leftarrow A_{il} - m \times A_{kl}
                  _{
m fin}
               b_i \leftarrow b_i - m \times b_k
              fin
         fin
    fin
fin
La solución (A, b)
```

Algoritmo 1: Algoritmo para escalonar matrices

1.4. Sustitución Regresiva

```
Leer A, b
marks \leftarrow NULL
n \leftarrow Len(A) - 1
x \leftarrow 0
x_n \leftarrow \frac{b_n}{A_{nn}}
para i \leftarrow n-1 a -1 hacer
    sumatoria \leftarrow 0
    para p \leftarrow i + 1 a n + 1 hacer
    sumatoria \leftarrow sumatoria + A_{ip} * x_p
  x_i \leftarrow b_i
_{\rm fin}
si marks \neq NULL entonces
    marcas[Len(A)] \leftarrow 0
    _{
m fin}
    Retornar marcas
Retornar x
Algoritmo 2: Algoritmo de Sustitución Regresiva
```

1.5. Sustitución Progresiva

```
Leer A, b
n \leftarrow Len(A) - 1
x \leftarrow 0
x_0 \leftarrow \frac{b_0}{A_00}
para i \leftarrow 1 a n+1 hacer
\begin{array}{c|c} sumatoria \leftarrow 0 \\ para p \leftarrow 0 \text{ a } i \text{ hacer} \\ sumatoria \leftarrow sumatoria + A_{ip} * x_p \\ \text{fin} \\ x_i \leftarrow \frac{b_i - sumatoria}{A_{ii}} \\ \text{fin} \\ \text{Retornar } x \\ \textbf{Algoritmo 3:} \text{ Algoritmo de Sustitución Progresiva} \end{array}
```

2. Solucion Numerica de Sistemas de Ecuaciones Lineales

Muchos problemas del mundo real se formulan como sistemas de ecuaciones de n variables y m incógnitas que bajo condiciones ideales(n y m no son valores muy grandes), se pueden resolver de manera analítica. Sin embargo, cuando n y m tienden a ser valores muy grandes la solución analítica a estos problemas es muy difícil de calcular ya que requiere de mucho tiempo y claramente no es la forma más eficiente hacerlo. Debido a esto, desde el campo del $Análisis\ Numérico$ se plantean diversas formas computacionales, ya sean algoritmos u otras técnicas que nos permitan resolver estos sistemas rápidamente, teniendo en cuenta que hay una $propagación\ de\ error$ en cada cálculo dependiendo de la capacidad de la computadora donde se ejecuten estos. En esta seccion se presentan algunos algoritmos numéricos que son de gran ayuda a la hora de resolver sistemas de ecuaciones lineales.

2.1. Eliminacion Gaussiana con Pivoteo Parcial

```
Leer A, b, n, k
mayor \leftarrow |A_{kk}|
filaMayor \leftarrow k
para s \leftarrow k+1 a n hacer
    si |A_{sk}| > mayor entonces
         mayor \leftarrow |A_{sk}|
         filaMayor \leftarrow s
fin
si mayor = 0 entonces
 | El sistema no tiene solucion unica
si no, si filaMayor \neq k entonces
    temp \leftarrow A_{filaMayor}
    A_{filaMayor} \leftarrow temp
    A_k \leftarrow A_{filaMayor}
temp \leftarrow b_{filaMayor}
b_{filaMayor} \leftarrow b_k
    b_k \leftarrow b_{filaMayor}
Retornar(A, b)
              Algoritmo 4: Algoritmo de Pivoteo Parcial
```

2.2. Eliminacion Gaussiana con Pivoteo Total

```
Leer A, b, n, k
mayor \leftarrow |A_{kk}|
filaMayor \leftarrow k
columnaMayor \leftarrow k
para r \leftarrow k a n hacer
    para s \leftarrow k a n hacer
         |A_{rs}| > mayor entonces
             mayor \leftarrow |A_{rs}|
              filaMayor \leftarrow r
              columnaMayor \leftarrow s
    fin
fin
si mayor = 0 entonces
 El sistema no tiene solucion unica
en otro caso
    si filaMayor \neq k entonces
         temp \leftarrow A_k
         A_k \leftarrow A_{filaMayor}
         A_{filaMayor} \leftarrow temp
         temp \leftarrow b_k
         b_k \leftarrow b_{filaMayor}
         b_{filaMayor} \leftarrow temp
    si columnaMayor \neq k entonces
         temp \leftarrow A_{0columnaMayor}
         A_{0columnaMayor} \leftarrow A_{0k}
         A_{0k} \leftarrow temp
         temp \leftarrow b_{0columnaMayor}
         b_{0columnaMayor} \leftarrow b_{0k}
         b_{0k} \leftarrow temp
         temp \leftarrow marcas_k
         marcas_k \leftarrow marcas_{columnaMayor}
         marcas_{columnaMayor \leftarrow temp}
    Retornar(A, b)
```

Algoritmo 5: Algoritmo de Pivoteo Total

3. Metodos de Factorizacion LU

Dada una martiz cuadrada A de orden nxn, se halla una matriz L triangular inferior y una matriz U triangular superior tal que A = LU Este tipo de sistemas se resuelven de manera trivial haciendo uso de los ya conocidos metodos de sustitucion regresiva y sustitucion progresiva, ya que las matrices son triangulares.

3.1. Factorizacion LU con Gaussiana Simple

En este caso la matriz U corresponde a la matriz A en su forma escalonada. Y la matriz L se forma ubicando 1's en la diagonal y los multiplicadores M_{ij} en las entradas correspondientes.

```
Leer A, b

(L, U) \leftarrow Escalonar(A, b)

z \leftarrow SustitucionProgresiva(L, b)

x \leftarrow SustitucionRegresiva(U, z)

Retornar x

Algoritmo 6: Algoritmo de Factorizacion LU con Gaussiana Simple
```

3.2. Factorizacion LU con Gaussiana y Pivoteo Parcial

La matriz L se construye con base en los multiplicadores ubicados segun sus respectivos indices y con 1's en la diagonal, y la matriz U es la matriz resultante del oproceso de eliminación

```
Leer A, b
(L, U) \leftarrow Escalonar Parcial(A, b)
z \leftarrow Sustitucion Progresiva(L, b)
x \leftarrow Sustitucion Regresiva(U, z)
Retornar x
Algoritmo 7: Algoritmo de Factorizacion LU con Gaussiana y Pivoteo Parcial
```

3.3. Factorizacion de Doolittle

```
Leer A, b
si A no es cuadrada entonces
 Retornar Matriz no cuadrada
n = longitud(A_0)
L \leftarrow MatrizIdentidad(n)
U \leftarrow MatrizIdentidad(n)
para i \leftarrow 0 a n hacer
    para k \leftarrow i a n hacer
        u \leftarrow A_{ik}
        para numero \leftarrow 0 a i hacer
        u \leftarrow u - L_{i,numero} * U_{numero,k}
        fin
        L_{ik} \leftarrow u/L_{ii}
    para j \leftarrow i+1 a n hacer
        suma \leftarrow A_{ji}
        para numero \leftarrow 0 a j hacer
        suma \leftarrow suma - \tilde{L}_{j,numero} * U_{numero,i}
        L_{ji} \leftarrow \frac{suma}{U_{ii}}
    fin
fin
z \leftarrow SustitucionProgresiva(L, b)
x \leftarrow SustitucionRegresiva(U, z)
Retornar x
      Algoritmo 8: Algoritmo de Factorizacion de Doolittle
```

3.4. Factorizacion de Choletsky A = LDL

```
Leer A
n \leftarrow longitud(A)
L[n][n] \leftarrow 0
U[n][n] \leftarrow 0
para k \leftarrow 0 a n hacer
     suma_p \leftarrow 0.0
    para p \leftarrow 0 a k hacer
     suma1 \leftarrow L_{kp} * U_{pk}
     fin
    L_{kk} \leftarrow (A_{kk} - suma1)^{0,5}
    U_{kk} \leftarrow L_{kk}
    para i \leftarrow k a n hacer
         suma2 \leftarrow 0.0
         para p \leftarrow 0 a k hacer
          suma2 \leftarrow suma2 + L_{ip} * U_{pk}
         fin
       L_{ik} \leftarrow \frac{A_{ik} - suma2}{U_{kk}}
     _{
m fin}
     para j \leftarrow k+1 a n hacer
         suma3 \leftarrow 0
          para p \leftarrow 0 a k hacer
          | suma3 \leftarrow suma3 + L_{kp} * U_{pj})
     fin
fin
Retornar L, U
```

Algoritmo 9: Algoritmo de Factorizacion de Choletsky

Factorizacion de Crout A = LDU3.5.

```
Leer A, b
si A no es cuadrada entonces
Retornar Matriz no cuadrada
n = longitud(A_0)
L \leftarrow 0
U \leftarrow MatrizIdentidad(n)
para i \leftarrow 0 a n hacer
    para j \leftarrow i a n hacer
        suma \leftarrow A_{ii}
        para numero \leftarrow 0 a j hacer
         suma \leftarrow suma - L_{j,numero} * U_{numero,i}
        L_{ii} \leftarrow suma
    para k \leftarrow i + 1 a n hacer
        u \leftarrow A_{ik}
        para numero \leftarrow 0 a i hacer
        u \leftarrow u - L_{i,numero} * U_{numero,k}
        L_{ik} \leftarrow \frac{u}{L_{ii}}
    fin
_{\rm fin}
z \leftarrow SustitucionProgresiva(L, b)
x \leftarrow SustitucionRegresiva(U, z)
Retornar x
```

Algoritmo 10: Algoritmo de Factorizacion de Crout

Metodos Indirectos 4.

Para encontrar soluciones a un sistema de la forma Ax = b, encontraremos vectores $x^{(i)}$, aproximaciones a la solucion, a partir de un vector inicial $x^{(0)}$, hasta que se cumpla cierta tolerancia respecto a una norma establecida. Cada $x^{(i)}$ se genera a partir de una funcion analoga a la funcion de punto fijo G(x) = x.

4.1. Metodo de Jacobi

```
Leer A, b, tol, x0, niter
cont \leftarrow 1
dispersion \leftarrow tol + 1
solucion.add((0, x0))
mientras dispersion > tolANDcont < niter hacer
   x1 \leftarrow calcularNuevoJacobi(A, b, x0)
   dispersion \leftarrow normaCuadrada(x1, x0)
   ss.add((cont, x1, dispersion))
   x0 \leftarrow x1
   solucion.add(ss)
   cont \leftarrow cont + 1
fin
calcularNuevoJacobi(A, b, x0)
Leer A, b, x0
n \leftarrow longitud(x0)
para i \leftarrow 0 a n hacer
   suma \leftarrow 0.0
   para j \leftarrow 0 a n hacer
       si j \neq i entonces
       suma \leftarrow suma + A_{ij} * x0_j
       fin
fin
```

Retornar x Algoritmo para calcular el nuevo Jacobi

```
normaCuadrada(x1, x0)
Leer x1, x0
suma1 \leftarrow 0.0
suma2 \leftarrow 0.0
para i \leftarrow 0 a longitud(x1) hacer
    suma1 \leftarrow suma1 + (x1_i - x0_i)^2
    suma2 \leftarrow suma2 + x1_i^2
fin
Retornar \sqrt{\frac{sum1}{sum2}}
            Algoritmo 13: Algoritmo Norma Cuadrada
```

4.2. Metodo de Gauss-Seidel

```
Leer A, b, tol, x0, niter
cont \leftarrow 1
dispersion \leftarrow tol + 1
solucion.add((0,x0))
mientras dispersion > tolANDcont < niter hacer
   x1 \leftarrow calcularNuevoGaussSeidel(A, b, x0)
   dispersion \leftarrow normaCuadrada(x1, x0)
   ss.add((cont, x1, dispersion))
   x0 \leftarrow x1
   solucion.add(ss)
   cont \leftarrow cont + 1
fin
```

Retornar solucion Algoritmo 14: Algoritmo del metodo de Gauss-Seidel

```
 \begin{array}{l} \operatorname{CalcularNuevoGaussSeidel}(A,\,b,\,x0) \\ \operatorname{Leer}\ A,\,b,\,x0 \\ n \leftarrow longitud(x0) \\ x \leftarrow x0 \\ \mathbf{para}\ i \leftarrow 0\ \mathbf{a}\ n\ \mathbf{hacer} \\ |\ suma \leftarrow 0,0 \\ \mathbf{para}\ j \leftarrow 0\ \mathbf{a}\ n\ \mathbf{hacer} \\ |\ \mathbf{si}\ j \neq i\ \mathbf{entonces} \\ |\ suma \leftarrow suma + A_{ij} * x_j \\ |\ \mathbf{fin} \\ \mathbf{fin} \\ x_i \leftarrow \frac{b_i - suma}{A_{ii}} \\ \mathbf{fin} \\ \operatorname{Retornar}\ x \\ \mathbf{Algoritmo}\ \mathbf{15:}\ \operatorname{Algoritmo}\ \mathbf{para}\ \mathrm{calcular}\ \mathbf{el}\ \mathbf{nuevo}\ \mathrm{GaussSeidel} \\ \end{array}
```

5. Metodos Iterativos de Forma Matricial

5.1. Gauss-Seidel con relajacion

```
Leer A, b, tol, x0, w, niter
cont \leftarrow 1
solucion.add((0))
mientras dispersion > tolANDcont < niter hacer
| x1 \leftarrow calcularNuevoGaussSeidelSOR(A, b, x0, w)
dispersion \leftarrow normaMaximo(x1, x0)
x0 \leftarrow x1
solucion.add((cont, x1, dispersion))
cont \leftarrow cont + 1
fin
Retornar solucion
Algoritmo 16: Algoritmo del metodo SOR Gauss-Seidel
```

```
calcularNuevoGaussSeidelSOR(A, b, x0, w)
Leer A, b, x0, w
n \leftarrow longitud(x0)
x \leftarrow x0
para i \leftarrow 0 a n hacer
    suma \leftarrow 0.0
    para j \leftarrow 0 a n hacer
         \mathbf{si} \ j \neq i \ \mathbf{entonces} \\ \mid \ suma \leftarrow suma + A_{ij} * x_j
    x_i \leftarrow \frac{(1-w)*(x_i+w)*(b_i-suma)}{A_{ii}}
Retornar x
  Algoritmo 17: Algoritmo para calcular el nuevo Gauss-Seidel
normaMaximo(x1, x0)
Leer x1, x0
max1 \leftarrow 0.0
max2 \leftarrow 0.0
para i \leftarrow 0 a longitud(x1) hacer
    max1 \leftarrow max(|x1_i - x0_i|, mx1)
    max2 \leftarrow max(|x1_i|, max2)
fin
Retornar \frac{max1}{max2} Algoritmo 18: Algoritmo Norma Maximo
```

6. Metodos de Interpolacion

6.1. Metodos basados en sistemas de ecuaciones

Teorema 6.1. Dados n+1 puntos con la condicion de que $x_i \neq x_j$ para todo i, j tal que 0 <= i, j <= n, entonces existe un polinomio p(x) de grado a lo sumo n tal que para todo i, 0 <= i <= n, se cumple que $p(x_i) = y_i$

Dado un conjunto con n+1 puntos conocidos, entonces por el teorema anterior, existe un unico polinomio interpolante p(x) de grado a lo sumo n. Luego, se puede considerar que el polinomio tiene la forma

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$

Para obtener el polinomio basta determinar el valor de todos los coeficientes

$$a_n, a_{n-1}, a_{n-2}, ..., a_2, a_1, a_0$$

Esto genera un sistema de ecuaciones lineales que siempre es soluble.

```
Leer puntos
definir A, b, auxA
n \leftarrow longitud(puntos)

para punto \leftarrow puntos hacer
\begin{vmatrix} b.add(punto_1) \\ para i \leftarrow 1 \text{ a } n+1 \text{ hacer} \\ auxA.add((punto_0)^{n-i}) \\ fin
A.add(auxA) \end{vmatrix}

fin
Ab \leftarrow Escalonar Matriz(A, b)
x \leftarrow Sustitucion Regresiva(A, b)
Retornar (A, b)
```

Algoritmo 19: Algoritmo para obtener el polinomio interpolante por medio de la matriz de Vandermonde

6.2. Polinomio Interpolante de Newton con Diferencias Divididas

Dados n+1 puntos $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$ el polinomio del teorema de Interpolación se puede escribir asi:

$$p(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Asi para hallar el polinomio $p_n(x)$ basta con allar los b_n . Supongamos que se conoce el siguiente conjunto de puntos $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$

■ Diferencia dividida de orden 0 $f[x_k] = f(x_k)$ $b_0 = f[x_0]$ Primera diferencia dividida $f[x_k, x_{k+1}] = \frac{f[x_{k+1}] - f[x_k]}{x_{k+1} - x_k}$ $b_1 = f[x_0, x_1]$

 \bullet n-esima diferencia dividida $f[x_k,...,x_{k+n}] = \frac{f[x_{k+1},x_{k+2},...,x_{k+n}] - f[x_k,x_{k+1},...,x_{k+n}]}{x_{k+n}-x_k}$ $b_n = f[x_0,x_1,...,x_n]$

Leer nPuntos, valor, x, y tabla[nPuntos][nPuntos]para $i \leftarrow 0$ a nPuntos hacer $\begin{array}{c|c} tabla_i 0 \leftarrow y_i \\ para j \leftarrow 1 \text{ a } i+1 \text{ hacer} \\ tabla_{ij} \leftarrow \frac{tabla_{i,j-1}-tabla_{i-1,j-1}}{x_i-x_{i-j}} \\ \text{fin} \end{array}$ fin

Retornar tabla

Algoritmo 20: Algoritmo para obtener la tabla de diferencias divididas

n	x_i	$f[x_i]$	1ra	2da	3ra	4ta	5ta
0	1	0.6747					
1	1.2	0.8491	0.8723				
2	1.4	1.1214	1.3610	1.2218			
3	1.6	1.4921	1.8536	1.2314	0.0160		
4	1.8	1.9607	2.3429	1.2233	-0.0134	-0.0368	
5	2.0	2.5258	2.8258	1.2070	-0.0272	-0.0172	0.0195

A partir de esta tabla el polinomio se obtiene facilmente p(x)=0.6747+0.8723(x-1)+1.2218(x-1)(x-1.2)+0.0160(x-1)(x-1.2)(x-1.4)-0.0368(x-1)(x-1.2)(x-1.4)(x-1.6)+0.0195(x-1)(x-1.2)(x-1.4)(x-1.6)(x-1.8)(x-2)

Referencias

[1] Orlando García Jaimes, Jairo A. Villegas Gutiérrez, Jorge Iván. Álgebra Lineal. Editorial EAFIT, Medellín 2012.