Advanced Level		
Chemistry		
Chemistry Advanced Unit 4: General Principles	s of Chemistry I – R	ates, Equilibria and
Advanced	s of Chemistry I – Ra hemistry	ates, Equilibria and

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 2 9 9 2 A 0 1 2 8

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

1 In aqueous solution, iodine reacts with propanone in the presence of a catalyst of dilute hydrochloric acid.

$$CH_3COCH_3(aq) + I_2(aq) \rightarrow CH_3COCH_2I(aq) + HI(aq)$$

Which of the following methods would be suitable for investigating the rate of this reaction?

- A Measuring the increase in pH with a pH meter.
- **B** Measuring the change in rotation of plane-polarized light with a polarimeter.
- ☑ **C** Quenching with ice cold water, followed by titration with acid.
- Quenching with sodium hydrogencarbonate solution, followed by titration with sodium thiosulfate solution.

(Total for Question 1 = 1 mark)

2 Hydrogen peroxide decomposes in a first order reaction.

The half-life for this reaction is 60 s.

In an experiment, the initial concentration of hydrogen peroxide is 0.100 mol dm⁻³.

The concentration of hydrogen peroxide, in mol dm⁻³, at 120 s is

- **■ B** 0.050
- **C** 0.075

(Total for Question 2 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

3 To determine the activation energy, E_a , for a reaction, a graph was plotted of $\ln k$ against 1/T, where k is the rate constant.

The Arrhenius equation is

In
$$k = -\frac{E_a}{R} \times \frac{1}{T} + \text{constant}$$

The gradient of the graph is equal to

- \boxtimes A E_a
- \boxtimes **B** $-E_a$
- \square c $\frac{E_a}{R}$
- \square **D** $-\frac{E_a}{R}$

(Total for Question 3 = 1 mark)

4 A bromoalkane was hydrolysed by an aqueous alkaline solution. The reaction was found to be first order with respect to the bromoalkane and zero order with respect to hydroxide ions.

A bromoalkane consistent with this information is

- \boxtimes **A** CH₃Br
- B CH₃CH₂Br
- \square **D** (CH₃)₃CBr

(Total for Question 4 = 1 mark)

5 Which of the following is the correct order of increasing molar entropy under standard conditions?

⊠ A

■ B

⊠ C

 \boxtimes D

Lowest entropy	Medium entropy	Highest entropy
oxygen	water	copper
oxygen	copper	water
copper	water	oxygen
copper	oxygen	water

(Total for Question 5 = 1 mark)

6

Enthalpy of solution of sodium chloride	+4 kJ mol ⁻¹
Enthalpy of hydration of Cl⁻(g)	−364 kJ mol ⁻¹
Lattice energy of sodium chloride	−780 kJ mol ⁻¹
Lattice energy of magnesium chloride	−2526 kJ mol ⁻¹

(a) Use the data above to calculate the enthalpy of hydration of sodium ions, $\,\mathrm{Na}^{\scriptscriptstyle +}(g).\,$

The enthalpy of hydration of sodium ions, Na⁺(g) is

(1)

- B +412 kJ mol⁻¹

- (b) Magnesium chloride has a more exothermic lattice energy than sodium chloride because

(1)

- ☑ A a magnesium ion has a higher charge and a larger radius than a sodium ion.
- **B** a magnesium ion has a higher charge and a smaller radius than a sodium ion.
- ☑ C a magnesium ion has the same charge and a larger radius than a sodium ion.
- **D** a magnesium ion has the same charge and a smaller radius than a sodium ion.

(Total for Question 6 = 2 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

7 Nitrogen reacts with hydrogen to form ammonia.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ mol}^{-1}$

(a) The units for the equilibrium constant, K_{cr} for this reaction are

(1)

- B mol² dm⁻6
- \square C dm³ mol⁻¹
- \square **D** dm⁶ mol⁻²
- (b) The highest equilibrium yield of ammonia is produced at

(1)

- A high temperature and high pressure.
- **B** high temperature and low pressure.
- ☐ C low temperature and high pressure.
- **D** low temperature and low pressure.

(Total for Question 7 = 2 marks)

8 Calcium carbonate decomposes when heated.

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

The equilibrium constant, K_{c} , for this reaction, is

$$K_c = [CO_2(g)]$$

The concentrations of calcium carbonate and calcium oxide are omitted from this expression because

- A they are constant.
- B they are equal.
- ☐ C they are very small compared with the concentration of carbon dioxide.
- **D** the concentration of calcium carbonate is much larger than the concentration of calcium oxide.

(Total for Question 8 = 1 mark)

		Lowest boiling temperature	Middle boiling temperature	Highest boiling temperature
X	A	ethanol	ethanal	ethanoic acid
X	В	ethanol	ethanoic acid	ethanal
X	C	ethanal	ethanol	ethanoic acid
×	D	ethanal	ethanoic acid	ethanol
			(Total fo	or Question 9 = 1 mark)
all	kalin	onyl compound with molecula e solution to give a pale yellow arbonyl compound is		
X		CH ₃ CH ₂ CH ₂ CHO		
×	В	CH ₃ CH ₂ CH ₂ COCH ₃		
X	c	CH ₃ CH ₂ CH(CH ₃)CHO		
×	D	CH ₃ CH ₂ COCH ₂ CH ₃		
			(Total for	Question 10 = 1 mark)
۱۸/	hich	of the following can form pro	annic acid in a cingle stop w	anction?
VV	A	of the following can form property of the following can follow can be added to the following can follow can be added to the following can follow can be added to the following c	Danoic acid in a single step re	eactions
X	_	propanenitrile		
X	В	propariement		
×	В	propan-2-ol		
\times	B C D	propan-2-ol propene		
×	C	propan-2-ol propene	(Total for	· Ouestion 11 = 1 mark)
X	C		(Total fo	Question 11 = 1 mark)
×	C D			r Question 11 = 1 mark)
×	C D	propene		^r Question 11 = 1 mark)
×	C D	propene eter, ethyl propanoate, can be r		r Question 11 = 1 mark)
×	C D e es A B	propene eter, ethyl propanoate, can be r CH ₃ CH ₂ OH and CH ₃ CH ₂ CHO		r Question 11 = 1 mark)

13	The repeat unit of the polymer formed from HOCH ₂ CH ₂ OH and HOOCCH ₂ COOH is
	■ A —OCH₂CH₂OOCCH₂CO—
	■ B —OCH₂CH₂COCH₂COO—
	□ C —OCH₂CH₂COOCH₂CO—
	☑ D —OCH₂COOCH₂CH₂CO—

(Total for Question 13 = 1 mark)

14 The compound bromochloroiodomethane, CHClBrl, has a chiral carbon atom and exists as a pair of enantiomers.

The enantiomers will have different

- A boiling temperatures.
- ☑ B effects on plane-polarized light.
- **C** chemical reactions.
- **D** colours.

(Total for Question 14 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

(To	tal for Question 16 = 1 mark)
□ 3	
■ B 1	
What is the pH of the solution formed?	
10 cm ³ of 1.0 mol dm ⁻³ hydrochloric acid is added to 990 cm	n³ of this water.
6 The pH of a sample of water is 7.	
(Tota	al for Question 15 = 2 marks)
D 2 doublets and 2 triplets.	
C 1 singlet, 2 doublets and 1 triplet.	
■ B 1 singlet, 2 doublets and 1 sextuplet (split into six).	
☑ A 1 singlet, 2 triplets and 1 sextuplet (split into six).	
The splitting patterns in these peaks are likely to be	(1)
The high-resolution proton nmr spectrum for compound	d Z shows four peaks.
CH ₃ CH ₂ COCH ₃	
(b) Compound Z is an isomer of Y and has the structure sho	own below
·	
D an aldehyde or a ketone but not an alcohol.	
B a ketone but not an alcohol or aldehyde.C an aldehyde but not an alcohol or ketone.	
A an alcohol, aldehyde or ketone.	
·	(1)
The compound could be	
but has no broad absorbance at 3750–3200 cm ⁻¹ . Refer to pages 5 and 6 of the Data Booklet.	
(a) The infrared spectrum of compound Y includes a strong	g absorbance at 1730 cm ⁻¹
An organic compound, Y , has the molecular formula $C_5H_{10}O$	J.

17 A buffer solution is made by mixing ethanoic acid with sodium ethanoate solution in a 3 to 1 mole ratio.

 K_a for ethanoic acid = 1.7×10^{-5} mol dm⁻³

The pH of the buffer solution is

- **B** 4.3
- **∠ C** 4.8
- **■ D** 5.2

(Total for Question 17 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

18 Citronella oil is obtained from lemongrass.

It is a source of chemicals for the perfume industry.

Three of the aldehydes found in citronella oil are shown below.

citronellal

neral

(a) Give the molecular formula for citronellal.

(1)

(b) Citronellal has one chiral carbon atom.

Draw a circle around the chiral carbon atom on the structure of citronellal below.

(1)

	Explain how this type of isomerism arises.	(2)
		(2)
(ii)	Draw a circle around any part of the geranial structure below that causes its	
	E-Z isomerism.	(1)
		. ,
	H	
	scribe a simple test tube reaction to show that these three carbonyl mpounds are aldehydes and not ketones. State the observation you would	
ma		
		(2)

(e) The skeletal formula of neral is shown below.

Draw the **skeletal** formula for the organic product of the reaction of neral with

(i) excess hydrogen in the presence of a nickel catalyst.

(1)

(ii) lithium tetrahydridoaluminate(III) (lithium aluminium hydride) in dry ether.

(1)

(Total for Question 18 = 9 marks)

BLANK PAGE

19 (a) A student investigated the kinetics of the reaction in which an acidified, aqueous solution of hydrogen peroxide oxidizes iodide ions to iodine.

$$H_2O_2(aq) + 2H^+(aq) + 2I^-(aq) \rightarrow 2H_2O(I) + I_2(aq)$$

(i) The results of three experiments are shown in the table below.

Experiment number	[H2O2(aq)]/ mol dm ⁻³	[H ⁺ (aq)] / mol dm ⁻³	[l ⁻ (aq)] / mol dm ⁻³	Initial rate of reaction / mol dm ⁻³ s ⁻¹
1	0.5	1.0	0.5	7.0 × 10 ⁻⁶
2	1.0	1.0	0.5	1.4 × 10 ⁻⁵
3	0.5	2.0	0.5	7.0 × 10 ⁻⁶

Determine the order with respect to hydrogen peroxide and H⁺(aq) ions.

Explain your reasoning.

Order with respect to H₂O₂(aq)

Order with respect to H⁺(aq)

(ii) The student carried out three more experiments in which the initial concentrations of hydrogen peroxide and H⁺(aq) ions were kept constant and the initial concentration of iodide ions was changed.

A graph of the results is shown below.

State the order with respect to I⁻(aq) and explain your reasoning.

(2)

(iii) Use your answers to (a)(i) and (a)(ii) to write the rate equation for the reaction.

(1)

(iv) Use the data from the table and your answer to (a)(iii) to calculate the value for the rate constant. Include units in your answer.

(2)

(b) Nitrogen dioxide reacts with carbon monoxide.

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

The reaction is second order with respect to nitrogen dioxide, and zero order with respect to carbon monoxide.

(i) Suggest a possible two-step mechanism for this reaction.

Write the rate determining step first.

(2)

Rate determining step

Step 2

(ii) Calculate the standard entropy change of the system, $\Delta S_{\text{system}}^{\ominus}$, for the reaction between nitrogen dioxide and carbon monoxide at 298 K. Include a sign and units in your answer.

You will need to use the standard molar entropies on pages 20 and 27 of the Data Booklet.

(2)

(iii) Given that ΔH^{\ominus}_{298} for the reaction between nitrogen dioxide and carbon monoxide at 298 K is -226 kJ mol $^{-1}$, calculate the standard entropy change of the surroundings, $\Delta S^{\ominus}_{\text{surroundings}}$, for this reaction at 298 K. Include a sign and units in your answer.

(2)

	(Total for Questio	n 19 = 16 marks)
		(2)
State what the sign of $\Delta S^{\ominus}_{ exttt{total}}$ indica	tes about this reaction at 298 k	
(iv) Calculate the total entropy change	$\Delta S_{\text{total}}^{\circ}$, for this reaction at 298	K.

20	ropanal, CH₃CH₂CHO, is used in the chemical industry in the manufacture of plastic	cs,
	nd as a disinfectant and preservative.	

(a) (i) Give the mechanism for the reaction between propanal and hydrogen cyanide in the presence of potassium cyanide.

Include the dipole on the carbonyl group.

(4)

(ii) Classify the type and mechanism of the reaction between propanal and hydrogen cyanide.

(2)

(b) Propanal can be converted into *N*-methyl propanamide, CH₃CH₂CONHCH₃, in three steps.

(i) The reagent used in Step ${\bf 2}$ is phosphorus(V) chloride, PCI $_5$. Identify, by name or formula, compound ${\bf X}$.

(1)

(ii) Identify, by name or formula, the reagent needed for Step 3.

(1)

(iii) State the number of peaks you would expect in the **low** resolution proton nmr spectrum of *N*-methyl propanamide.

(1)

(c)	Write the equation for the reaction between propanoic acid and
	propan-2-ol, in the presence of an acid catalyst, showing the structure of the
	organic product.

State symbols are not required.

(2)

(d) A sample of propanoic acid was reduced to form compound **Q**.

The infrared spectrum of compound **Q** is shown below.

Use the infrared spectrum to identify compound ${\bf Q}$.

Explain your reasoning, quoting suitable data.

(2)

(Total for Question 20 = 13 marks)

21 This question concerns the reaction of hydrogen with iodine to form hydrogen iodide at 700 K.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g) \quad \Delta H = -10 \text{ kJ mol}^{-1}$$

(a) (i) Write the expression for the equilibrium constant, K_{pr} , for this reaction.

(1)

*(ii) 1 mol of hydrogen was mixed with 1 mol of iodine in a sealed container and left to reach equilibrium at 700 K.

The total pressure was 5 atm.

At equilibrium, the amount of iodine remaining was 0.21 mol.

Calculate the partial pressure of each gas at equilibrium.

Use the partial pressures to calculate the value of K_p , stating its units, if any.

(5)

 $K_p =$ units

		(Total for	Question 21 = 11	marks)
*(ii) Use your answer to (c)(i) to explathe the value of K_p and the equilibrium				e on (2)
increases.			·	(2)
:) (i) Explain how increasing the temp reaction. Assume that $\Delta S_{ ext{system}}$ do				
$H_2(g) + I_2(g) =$	≓ 2HI(g)	Δ <i>H</i> = –10 kJ	mol ⁻¹	(1)
 State the effect of increasing the pre your answer by using the equation: 		•	,	

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

22 Lactic acid, 2-hydroxypropanoic acid, is found in sour milk.

The structure of lactic acid, CH₃CH(OH)COOH, is shown below.

(a) (i) State what is meant by a Brønsted-Lowry acid.

(1)

(ii) Write the equation for the reaction of lactic acid with water to form an acidic solution. State symbols are not required.

(1)

(iii) Write the expression for the acid dissociation constant, K_{a} , for lactic acid.

(1)

(iv) Calculate the pH of a solution of lactic acid of concentration	
(iv) Calculate the pH of a solution of lactic acid of concentration $0.15~{\rm mol~dm^{-3}}$ at 298 K.	
The p K_a of lactic acid is 3.86 at 298 K.	
State clearly any assumptions you have made.	(5)
Calculation:	(5)
Assumptions:	

(b) 25 cm³ of a 0.15 mol dm⁻³ solution of lactic acid was titrated with 50 cm³ of sodium hydroxide solution of the same concentration.

Part of the titration curve is shown below.

(i) Calculate the pH of 0.15 mol dm⁻³ sodium hydroxide solution. Give your answer to one decimal place.

$$[K_w = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6} \text{ at } 298 \text{ K}]$$

(2)

(ii) Complete the titration curve on the diagram above to show the change in pH until 50.0 cm³ of the sodium hydroxide solution has been added to the solution of lactic acid.

(1)

Justify your selection.	
	(3)
(iv) The equation for the neutralization in the titration is	
$CH_3CH(OH)COOH(aq) + NaOH(aq) \rightarrow CH_3CH(OH)COONa(aq) + H_2O(I)$	
Use the titration curve to suggest the pH of a 0.075 mol dm ⁻³ solution of sodium lactate. Justify your answer.	
social nactate. Sustify your answer.	(2)

*(v) Explain, using ionic equations, how a solution containing lactic acid and sodium lactate can act as a buffer solution.						
	(4)					
(c) Ethanoic acid, CH_3COOH , has a p K_a of 4.8 at 298 K.						
Complete the equation to show the conjugate acid-base pairs that could be produced when pure samples of lactic acid and ethanoic acid are mixed.	(1)					
	(1)					
$CH_3CH(OH)COOH + CH_3COOH \rightarrow \dots + \dots + \dots$						
(Total for Question 22 = 21	marks)					

TOTAL FOR SECTION C = 21 MARKS TOTAL FOR PAPER = 90 MARKS

	4	3
	Š	=
	A C	2
	ř	=
	Q	ږ
Ī	1	ĺ
,	+	_
	c	72
	מעכ	ر
•	7	<
•	π	ŝ
I	-	-
	יווייויי	J
:	F	=
	⊱	₹
•	Ξ	_
		7
(7	_
	7	,
	4	2
į	_	=

						_			_			_									
0 (8)	4.0 He helium 2	20.2 Ne	10	39.9	Ar argon 18	83.8	조	krypton 36	131.3	Xe	xenon 54	[222]	R	radon 86		ted		_			
7	(17)	19.0 F	fluorine 9	35.5	chlorine 17	6.62	Br	bromine 35	126.9	-	iodine 53	[210]	Αt	astatine 85		oeen repo		77.			
9	(16)	16.0	oxygen 8	32.1	sulfur 16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[509]	Ъ	polonium 84	20 00000000	116 have t	iticated	1,			
2	(15)	14.0 N	nitrogen 7	31.0	P phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83	1 000	nbers 112-	but not fully authenticated	3,7			
4	(14)	12.0 C	carbon 6	28.1	Silicon 14	72.6	ge	germanium 32	118.7	Sn	tin 50	207.2	Ъ	lead 82		atomic nur	but not fi	1,7			
e	(13)	10.8 B	boron 5	27.0	AI aluminium 13	7.69	Ga	gallium 31	114.8	드	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported		2,72			
	,	9			(12)	65.4	Zu	zinc 30	112.4	5	cadmium 48	200.6	Η̈́	mercury 80		Elem		,,,			
					(11)	63.5	J	copper 29	107.9	Ag	silver 47	197.0	Αn	gold 79	[272]	Rg	oentgenium 111	450			
	(9)						ï	nickel 28	106.4	Pq	palladium 46	195.1	₹	platinum 78	_	Os	darmstadtium r	457			
							ပိ	cobalt 27	102.9	묎	rhodium 45	192.2	<u>_</u>	iridium 77	[368]		meitnerium 109	453			
	1.0 hydrogen 1					55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	S	osmium 76	[277]		hassium 108	750			
					(2)	54.9	Wn	nanganese 25	[86]	2		186.2	Re	rhenium 75	[564]	B	bohrium 107	14.471			
		mass ool	ool umber	ımber	relative atomic mass atomic symbol name atomic (proton) number	umber	V	(9)	52.0	ხ	chromium manganese 24 25	62.6	Wo	molybdenum technetium 42 43	183.8	>	tungsten 74	[596]	Sg	seaborgium 106	1
	Key	Key	Key /e atomic mic symk name (proton) ni	Key ve atomic mic sym		(c)		50.9	>	vanadium 23	92.9	å	niobium 41	180.9	Тa	tantalum 73	_		dubnium 105	177	
		relativ	ator	ç	4	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	¥	rutherfordium 104	4,40			
					(3)	45.0	Sc	scandium 21	6.88	>	yttrium 39	138.9	La*	lanthanum 57	[227]		actinium 89				
2	(2)	9.0 Be	beryllium 4	24.3	Mg magnesium 12	40.1	S	calcium 20	97.6	Sr	strontium 38	137.3		barium 56	[526]		radium 88				
-	(1)	6.9 Li	3	23.0	sodium 11	39.1	¥	potassium 19	85.5	&	rubidium 37	132.9	S	caesium 55	[223]	Ŀ,	francium 87				

^{*} Lanthanide series

* Actinide series

^{3] [256] [254] [257]} Md No Lr | 101 | 102 175 **Lu** lutetium 169 173 Yb
Tm Yb
thulium ytterbium lu
69 70 [253] Fm fermium 100 167 **Er** erbium 68 163 165

Dy Ho

Hodmium
66 67

[251] [254]

Cf Es

Catifornium einsteinium
98 99 Tb Tb terbium 65 65 [245] Bk berketium 97 (247) Cm curium 96 144 [147]
Nd Pm
neodymium promethium s 61 uranium C 238 92 Pr Praseodymium 59 protactinium 91 [231] Pa 140 **Ce** cerium 58 232 **Th** thorium 90