UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

SEMINARIO DE TEMAS SELECTOS DE COMPUTACIÓN Ejemplo: Reconocimiento de imágenes en 3D

SEMESTRE: Séptimo u octavo

CLAVE: **0810**

HORAS A LA SEMANA/SEMESTRE			
ΓΕÓRICAS	PRÁCTICAS	CRÉDITOS	
5/80	0	10	

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Teoría de la Computación.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Familiarizar al alumno con las técnicas de reconocimiento de patrones que le permiten emular los procesos visuales para identificar formas en imágenes digitales.

NUM. HORAS	UNIDADES TEMÁTICAS
NUM. HURAS	
10	1. Conceptos básicos
	1.1 Clasificación de patrones.
	1.2 Decisiones de contorno. Funciones discriminantes.
	1.3 Densidades de probabilidad.
	1.4 Clasificación, usando el vecino más cercano.
	1.5 Reconocimiento de la forma de los objetos.
15	2. Imágenes binarias
	2.1 Conectividad.
	2.2 Características topológicas de objetos 3D.
	2.3 Medidas de similitud.
	2.4 Operaciones en imágenes binarias.
	2.5 Códigos de cadena.
	2.6 Compacidad.
15	3. Teoría de invariantes
	3.1 Momentos e invariantes algebraicos.
	3.2 Momentos invariantes de escala y ortogonales.
	3.3 Cuerpo rígido y ejes principales.

20	4. Gráficas bipartitas y asignación óptima
	4.1 Gráficas bipartitas.
	4.2 Apareo.
	4.3 Problema de asignación óptima.
	4.4 Algoritmo Húngaro.
20	5. Transformación de un objeto a otro
	5.1 Representación por superficie y volumen.
	5.2 Voxelización.
	5.3 Transformación de figuras en 2 y 3 dimensiones.
	5.4 Medidas de similitud.
	5.5 Aplicación de algoritmos en la transformación de objetos.

BIBLIOGRAFÍA BÁSICA:

- 1. Batchelor, B.G., *Pattern Recognition, Ideas in Practice*, New York: Plenum Press. 1978.
- 2. Ballard, D.H., Brown, C.M., Computer Vision. New Jersey: Prentice Hall, Inc. 1982.
- 3. Bondy, J.A., Murty, U.S.R., *Graph Theory with Applications*. Ontario, Canada: University of Waterloo, 1992.
- 4. Gould, R., *Graph Theory*, New York: The Benjamin Cummings Publishing Company. 1988.
- 5. Jain, A.K., Fundamentals of Digital Processing, New Jersey: Prentice Hall, 1989.
- 6. Kanatani, K., *Group of Theoretical Methods in Image Understanding*, New York: Springer-verlag. 1990.
- 7. Lohmann, G., Volumetric Image Analysis, New York: Wiley & Teubner.
- 8. Meisel, W.S., Computer Oriented Approaches to Pattern Recognition, Boston: Academic Press, 1974.
- 9. Pavel, M., Fundamentals of Pattern Recognition, New York: Marcel Dekker, Inc. 1989.
- 10. Tou, J.T., Pattern Recognition Principles, Reading, Mass.: Addison-Wesley. 1974.
- 11. Tzay, Y.Y., Handbook of Pattern Recognition, San Diego: Academic, 1994.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Haralick, R.L., Shapiro, L.G. "Glosary of Computer Vision Terms", *Pattern Recognition*, Vol. 24, 1991: 69–93.
- 2. König, D. "Graph and Matrices (Hungarian)" Mat. Fig. Lapok, vol. 38, 1931: 26-30.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.