Московский Физико-Технический Институт

Лабораторная работа по радиотехническим сигналам и цепям

Применение операционных усилителей.

Автор:

Глеб Уваркин 615 группа

15 октября 2017 г.

<u>MIPT</u>

Задание №1.Измерение коэффициента усиления ОУ.

Рис. 1: Схема измерения коэффициента усиления.

Соберём схему, показанную на рис. 1. Сопротивления резисторов возьмём: $R_1=R_2=R_3=200$ кОм, $R_4=2$ кОм, $R_3/R_4=100$.

Подадим на вход колебание с амплитудой $U_{in}=2.5~\mathrm{B}$ и частотой $f=15~\mathrm{\Gamma}$ ц. Измерим величину напряжений U_a и U_{out} : $U_a=4.4~\mathrm{mB},~U_{out}=2.46~\mathrm{B}.$

Рассчитаем коэффициент усиления операционного усилителя по формуле $A_0=(1+R_3/R_4)\cdot (U_{out}/U_a)$:

$$A_0 = (1+100)\frac{2.46}{4.4 \cdot 10^{-3}} = 56468 \simeq 6 \cdot 10^4$$

$4.4 \cdot 10^{-3}$

Задание №2. Амплитудно-частотная характеристика ОУ.

Для схемы на рис. 1 снимем зависимость коэффициента усиления от частоты (AЧX), используя формулу:

$$A(f) = \frac{U_{out}}{U_d} = \frac{U_{out}}{U_a} \cdot \frac{U_a}{U_d} = \left(1 + \frac{R_3}{R_4}\right) \cdot \frac{U_{out}}{U_a}.$$

Занесём полученные данные в таблицу 1.

Таблица 1: Зависимость коэффициента усиления от частоты.

<u></u>	50	100	200	500	1000	2000	5000	10000	20000	50000
U_{out}, B	2.48	2.48	2.48	2.48	2.47	2.43	2.21	1.73	1.06	0.76
U_a , м $\mathsf B$	5.55	8.67	16	39	77	152	343	543	131	119
A	45000	29000	16000	6000	3000	1600	651	324	82	65
	1.7	2	2.3	2.7	3	3.3	3.7	4	4.3	4.7
20lgA, дБ	93	89	84	76	69	64	56	50	38	36

Построим снятую зависимость в двойном логарифмическом масштабе, откладывая частоту в герцах, а коэффициент усиления в децибелах.

Рис. 2: АЧХ ОУ.

Из рис. 2 получаем следующие величины:

$$f_T \simeq 3\,$$
 МГц, $f_{p_0} \simeq 45\,$ кГц

. На частотах $f>f_{p_0}$ усиление падает обратно пропорционально частоте - с крутизной спада -20 дб/декада.

Задание №3. Неинвертирующий усилитель.

Рис. 3: Схема неинвертирующего усилителя.

Соберём схему, возьмём $R_1 = 2$ кОм, $R_2 = 200$ кОм, $R_2/R_1 = 100$.

Измерим постоянное напряжение на выходе $U_{out(dc)} \simeq 68$ мВ. Определим входное напряжение сдвига ОУ: $U_{OS}=U_{out(dc)}/(1+R_2/R_1)$. Получим $U_{OS}\simeq 68/(1+100)\simeq 673$ мкВ.

Снимем зависимость от частоты коэффициента усиления K(f) при $U_{\mbox{\tiny BX}}=10$ мВ. Полученные данные занесём в таблицу 2.

<u>MIPT</u>.

Таблица 2: Зависимость коэффициента усиления K(f).

f, Гц	50	100	200	500	1k	2k	5k	10k	20k	50k	100k	150k	300k	500k	1 <i>M</i>
$U_{\text{вых}}, \; \mathbf{B}$	1.04	1.04	1.04	1.04	1.04	1.03	1.02	0.97	0.9	0.55	0.31	0.21	0.11	0.07	0.03
K	104	104	104	104	104	103	102	97	90	55	31	21	11	7	3

Рис. 4: Зависимость коэффициента усиления K(f).

Из рис. 4 определим граничную частоту F_p по уровню 0.7 относительно коэффициента усиления на низких частотах. Получим $F_p \simeq 31.6~{\rm k}\Gamma{\rm d}$.

Проверим, что коэффициент усиления на низких частотах ($f < F_p$) и граничная частота усилителя удовлетворяет соотношениям: $K_0 = 1/\beta = 1 + R_2/R_1$; $F_p = \beta f_T$, $\beta = R_1/(R_1+R_2)$ - коэффициент отрицательной обратной связи.

$$\beta = 2/(2 + 200) \simeq 0.01$$

$$K_0 = 1/0.01 = 100 \simeq 101 = 1 + 200/2$$

$$31.6 \cdot 10^3 \simeq 0.01 \cdot 3 \cdot 10^6$$

Все соотношения выполняются.

Определим максимальную амплитуду неискажённого выходного напряжения на низкой частоте $f=1.5~{\rm k}$ Гц. Получим $U_{\rm вых}\simeq 3.2~{\rm B}.$

Включим ОУ по схеме повторителя ($R_1=\infty,\ R_2=0$). Измерим коэффициент передачи и граничную частоту усилителя. Определим на частоте f=0.8 МГц максимальную амплитуду неискажённого сигнала и характер искажений, возникающих при дальнейшем увеличении амплитуды входного сигнала. Получим $U_{m_out}\simeq 3.0$ В. ("скошенная синусоида").

Таблица 3: Зависимость коэффициента передачи повторителя.

														3.4M		
$U_{\text{вых}}, \; \mathbf{B}$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.05	1.00	1.00	0.99	0.60	0.31
K	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.05	1.00	1.00	0.99	0.60	0.31

Рис. 5: Зависимость коэффициента усиления K(f) повторителя.

Из рис. (5) получаем, что граничная частота равна $f\simeq 3$ МГц.

Сравним результат измерения максимальной амплитуды неискажённого сигнала с расчётом по формуле $U_{m_out} = V_{max}/2\pi f$.

$$U_{m_out} = \frac{13 \cdot 10^6}{2\pi \cdot 0.8 \cdot 10^6} \simeq 2.6 \text{ B} \approx 3.0 \text{ B}$$

Задание №4. Инвертирующий усилитель.