User Manual of orbit following code TASK/OB

Contents

Outline of TASK/OB

Purpose of TASK/OB 1.1

The purpose of TASK/OB is to describe charged particle orbits in a given magnetic configuration. At present, gyro orbits in the Boozer coordinates are described based on the textbook by R. White. More general coordinates including vacuum regions and full orbit description will be included in future.

Modules included 1.2

obcomm_parm	Deficuition of input parameters
obcomm	Definition of common variables
obinit	Initialization of input parameters
obparm	Procedures of input parameters (read, check, broadcast)
obview	Print out input parameters
obmenu	Command menu
obprep	Preparation for calculation (equilibrium, interpolation)
obcalc	Calculation of coefficients
obexec	Solving equation of motion
obgout	Visualization of orbits
obfile	File output of orbits

Common subroutines using obcomm obsub

oblib Common subroutines independent of obcomm

Parameters

Adjustable parameters, but fixed at compilation time

nobt_m 100 maximum number of orbits

Input parameters and their default values

modelg	3	geometry model (parameter of plparm)
$nobt_max$	1	number of orbits
$nstp_max$	10000	maximum number of orbit step
ns_ob	2	id of particle species
$lmax_nw$	20	maximum number of iteration (initial condition)

mdlobp	0	model id of equation of motion 0: Eq of Motion with Boozer coordinates
mdlobi	0	1: Eq of Motion with Cylindrical coord. model id of input scheme of initial parameters 0: penergy,pcangle,zeta,psipn,theta 1: penergy,pcangle,zeta,rr,zz (TBI) 100: line input with psipn,theta
mdlobq	0	101: line input with rr,zz (TBI) model id of ODE solver 0: 4th-order Runge-Kutta-Gill 1: universal ODE solver (TBI)
mdlobt	1	2: symplectic solver (TBI)model id of time normalization0: real time1: normalized by approximate bounce time
mdlobc	0	model id of one cycle calculation 0: independent of cycle, until tmax_ob 1: one cycle for trapped and untrapped
mdlobw	3	model id of output interval 0: no output 1: every step 2: every 10 step 3: every 100 step 4: every 1000 step 5: every 10000 step
mdlobg	0	model id of graphics 0: default
mdlobx	1	model id of wall 0: calculate only inside the wall (psip_ob;=psipa) 1: continue Runge-Kutta (psip_ob;psipa)
tmax_ob	10.D0	maximum of orbit following time in omega_bounce
delt_ob	0.1D0	time step size in omega_bounce t_bounce = 2 Pi/ omega_bounce omega bounce = (v_perp/qR) SQRT(r/2R) omega_bounce ² = (mu B /m)*(r/q ² R ³)
eps_ob	1.D-6	convergence criterion of orbit solution
del_ob	1.D-4	step size of iteration (initial condition)
eps_nw	1.D-6	convergence criterion of iteration (initial c.)
penergy_ob_in(1)	1.D0	initial particle energy (mdlobi=0,1) [keV]: conserved
$pcangle_ob_in(1)$	0.5D0	initial cosine of pitch angle (mdlobi=0,1)
$zeta_ob_in(1)$	0.D0	initial toroidal angle (mdlobi=0,1) [degree]
$psipn_ob_in(1)$	0.5D0	initial normalized poloidal flux (mdlobi=0)
$theta_ob_in(1)$	0.D0	initial poloidal angle (mdlobi=0) [deg]
$rr_ob_in(1)$	4.D0	initial major radius (mdlobi=1) [m]
$zz_ob_in(1)$	0.D0	initial vertical position (mdlobi=1) [m]
nrmax_ob	100	number of equilibrium radial meshes
$nthmax_ob$	64	number of equilibrium poloidal meshes
$nsumax_ob$	100	number of equilibrium plasma boundary meshes

2.3 Initial orbit parameters and results

• Initial orbit parameters: (nobt)

penergy_ob_in(1) initial particle energy (mdlobi=0,1) [keV]
pcangle_ob_in(1) initial cosine of pitch angle (mdlobi=0,1)
zeta_ob_in(1) initial toroidal angle (mdlobi=0,1) [degree]
psipn_ob_in(1) initial normalized poloidal flux (mdlobi=0)
theta_ob_in(1) initial poloidal angle (mdlobi=0) [deg]
nthmax_ob_in(1) number of equilibrium poloidal meshes
nsumax_ob_in(1) number of equilibrium plasma boundary meshes

• Initial variables: (nobt)

zetab_pos toroidal boozer angle zeta translated from obts

thetab_pos poloidal boozer angle theta psip_pos poloidal magnetic flux

rhopara_pos parallel velocity devidede by cyclotron freq.

• Orbit results: (nstp,nobt)

time_ob time

zetab_ob toroidal boozer angle zeta translated from obts

thetab_ob poloidal boozer angle theta psip_ob poloidal magnetic flux

rhopara_ob parallel velocity devidede by cyclotron freq.

pzeta_ob toroidal momentum pzeta ptheta_ob poloidal momentum ptheta babs_ob absolute value of magnetic field

phi_ob electrostatic potential

vpara_ob parallel velocity

vperp_ob perpendicular velocity psit_ob toroidal magnetic flux

zeta_ob toroidal angle
rr_ob major radius
zz_ob vertical positon
rs_ob minor radius
theta_ob poloidal angle