Лабораторная работа 2

Ковариационная функция, семивариограмма и спектральная плотность стационарного в широком смысле случайного процесса

Для стационарных в широком смысле случайных процессов с известными ковариационными функциями найти аналитический вид их семивариограмм и спектральных плотностей. Сделать вывод о свойствах процессов.

№ варианта	Порядковый номер ковариационной функции $R(t)$ из таблицы 1
1	1, 5
2	2, 9
3	8, 3
4	14, 4
5	6, 19
6	7, 11
7	10, 12
8	16, 15
9	17, 13
10	18, 20
11	1, 20
12	2, 11

Таблица 2. Варианты лабораторной работы 2

Необходимо:

- 1. Рассмотреть требуемые модели ковариационных функций R(t) стационарных случайных процессов с непрерывным временем $t \in \mathbb{R}$. Указать, к какому классу относятся исследуемые модели: колебательному, монотонно убывающему, ...
 - Модель ковариационной функции представить в общем виде с указанием всех параметров.
 - Найти аналитический вид семивариограммы $\gamma(t) = R(0) R(t)$.
 - Найти аналитический вид спектральной плотности

$$f(\lambda) = \frac{1}{2\pi} \int_{\mathbf{R}} R(t) e^{-i\lambda t} dt$$
, $\lambda \in \mathbf{R}$.

- Построить графики функций R(t), $\gamma(t)$ и $f(\lambda)$ при различных сочетаниях параметров (минимум 3 значения для каждого параметра). Сделать сравнительный анализ.
- Вычислить время корреляции по представленным ниже формулам [1]:

a)
$$t_0^{(1)} = \frac{1}{R(0)} \int_0^{+\infty} R(t)dt$$
; **6)** $t_0^{(2)} = \frac{1}{R(0)} \int_0^{+\infty} |R(t)|dt$; **B)** $t_0^{(3)} = \frac{1}{R^2(0)} \int_0^{+\infty} R^2(t)dt$.

Сделать сравнительный анализ длин интервалов корреляции.

• Вычислить эффективную ширину спектра L по формуле [1]:

$$L = \frac{1}{f(0)} \int_{0}^{+\infty} f(\lambda) d\lambda = \frac{R(0)}{2f(0)},$$

если основная мощность процесса сосредоточена в точке $\lambda=0$, т.е. $f(0)=f_{max}$. Проверить выполнение неравенства неопределенности: $t_0^{(2)}L\geq \frac{\pi}{2}$.

Если основная мощность процесса сосредоточена вблизи экстремальной частоты λ_9 спектральной плотности, т.е. $f(\lambda_9) = f_{max}$, то ширину спектра вычислить по формуле

$$L' = \lambda_9 + \frac{R(0)}{4f(\lambda_9)}.$$

* Более точно эквивалентную ширину спектра мощности исследуемого сигнала для колебательных моделей ковариационных функций можно определить в соответствии с выражением:

$$L' = \lambda_3 + \frac{1}{f(\lambda_3)} \int_{\lambda_3}^{+\infty} f(\lambda) d\lambda.$$

- 2*. Для реальных временных рядов с периодической компонентой и без нее выполнить вариограммный (ковариационный) анализ. В качестве реальных временных рядов рассмотреть температурные ряды (архив погоды в Минске) с сайта http://rp5.by.
 - Выбрать ряды из таблицы согласно варианту. Объем ряда без периодической компоненты равен количеству дней в рассматриваемом месяце. Объем ряда с периодической компонентой равен 48.

Таблица 3. Исходные данные

Harran	Dnorrows = 600	Размочной пад
Номер	Временной ряд без	Временной ряд
варианта	периодической компоненты:	с периодической компонентой:
	Среднесуточная температура за	температура воздуха
	указанный месяц прошлого года	за указанный период
1	январь	Среднемесячная температура воздуха за 2009-2012 годы
2	февраль	Среднеквартальная температура воздуха за 2006-2017 годы
3	март	Температура воздуха (в срок 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00) за первые 6 дней майя прошлого года
4	апрель	Среднемесячная температура воздуха за 2010-2013 годы
5	май	Среднеквартальная температура воздуха за 2007-2018 годы
6	июнь	Температура воздуха (в срок 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00) за первые 6 дней июня прошлого года
7	июль	Среднемесячная температура воздуха за 2009-2012 годы
8	август	Среднеквартальная температура воздуха за 2010-2021 годы
9	сентябрь	Температура воздуха (в срок 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00) за первые 6 дней сентября прошлого года
10	октябрь	Среднемесячная температура воздуха за 2010-2013 годы
11	ноябрь	Температура воздуха (в срок 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00) за первые 6 дней октября прошлого года

12	декабрь	Среднеквартальная температура воздуха
		за 2010-2021 годы

- Временные ряды представить графически.
- Выполнить предварительный статистический анализ временных рядов (описательные статистики, гистограмма, тренд-анализ). Сделать вывод.
- Вычислить оценки семивариограммы и ковариационной функции.

Предположим, что X(1), ..., X(n) — n последовательных, полученных через равные промежутки времени наблюдений за случайным процессом. В качестве оценки семивариограммы рассмотрим статистику вида

$$\widetilde{\gamma}(h) = \frac{1}{2(n-h)} \sum_{s=1}^{n-h} (X(s+h) - X(s))^2,$$

 $h=\overline{0,n-1}$. Положим $\widetilde{\gamma}(-h)=\widetilde{\gamma}(h),\ h=\overline{0,n-1},\$ и $\widetilde{\gamma}(h)=0$ для $|h|\geq n.$

В качестве оценки ковариационной функции рассмотрим статистику

$$\overline{R}(h) = \frac{1}{n-h} \sum_{s=1}^{n-h} (X(s+h) - \overline{\mu})(X(s) - \overline{\mu}),$$

$$h=\overline{0,n-1}\,,\,\,\overline{\mu}=rac{1}{n}\sum_{j=1}^n X\left(j
ight).$$
 Положим $\overline{R}\left(-h
ight)=\overline{R}\left(h
ight),\,\,\,h=\overline{0,n-1}\,,\,\,$ и $\overline{R}\left(h
ight)=0$ для $|h|\geq n.$

- Построить графики оценок семивариограммы и ковариационной функции для лага $h=0,\,...,\,rac{2n}{3}\,.$
- Визуальным методом подобрать модель семивариограммы [6]. Модель представить в общем виде с указанием всех параметров. Объяснить выбор параметров.
- Найти аналитический вид ковариационной функции.
- Сделать вывод о свойствах процесса. Указать, к какому классу относится процесс: широкополосный или узкополосный.

Вспомогательная литература:

- 1. Прохоров С.А. Аппроксимативный анализ случайных процессов. 2-е изд., перераб. и доп. / Самар.гос. аэрокосм. Ун-т, 2001. (стр. 264)
- 2. Шапорев С.Д., Родин Б.П. Случайные процессы: учебник. Балт. гос. техн. ун-т. СПб. 2010. 237 с.
- 3. Бендат Дж., Пирсол А. Применения корреляционного и спектрального анализа. М.: Мир, 1983.
- 4. Бендат Дж., Пирсол А. Измерение и анализ случайных процессов. М.: Мир, 1971. (стр. 101)
- 5. Вентцель Е.С., Овчаров Л.А. Теория случайных процессов и ее инженерные приложения. М.: Издательский центр «Академия», 2003. (стр. 419)
- 6. Оливье Дюбрул. Использование геостатистики для включения в геологическую модель сейсмических данных, 2002. (стр. 72)
- 7. Демьянов В.В., Савельева Е.А. Геостатистика: теория и практика. М.: Наука, 2010.