LECTURER: TAI LE QUY

INTRODUCTION TO COMPUTER SCIENCE

Basic Concepts of Data Processing	1
Information Representation	2
Algorithms and Data Structures	3
Propositional Logic, Boolean Algebra and Circuit Design	4
Hardware and Computer Architectures	5

INTRODUCTION TO COMPUTER SCIENCE TOPIC OUTLINE

Networks and the Internet	6
Software	7
Computer Science as a Discipline	8

UNIT 6

NETWORKS AND THE INTERNET

On completion of this unit, you will have learned ...

- ... about standard network topologies.
- ... about the hardware devices used in a network.
- ... how TCP/IP and the internet work.
- ... about wireless and wired network technologies.
- about the Internet of Things (IoT).

- 1. What is a switching network?
- 2. What is the difference between a switch and a router?
- 3. What is a URL?

NETWORKS AND THE INTERNET

COMPUTER NETWORK TYPES

Criterion	Examples	
Area Type Personal area network (PAN), Local Area Network (LAN), Campus Area Network (CAN), Metropolitan Area Network (MAN), or Wide Area Network (WAN)		
Media	Optical fiber, Ethernet, Wireless LAN, Power line communication	
Connectivity	Client-server, Peer-to-peer	
Topology	Bus, Star, Ring, Mesh, Tree	
Technology	Modem, Wireless, Bluetooth, Parallel, Serial, Integrated Services Digital Network (ISDN), Digital Subscriber Line (DSL)	

Area Types	Abbr.	Typical Distance	Example
Personal Area Network	PAN	1 - 10 m	Home net, Bluetooth
Local Area Network	LAN	1000 m	Company, Campus net
Metropolitan Area Network	MAN	20 km	Cable TV net
Wide Area Network	WAN	1000 km	Country-wide net
Internet	-	40,000 km	World-wide net

DESIGN ASPECTS

Circuit Switching

Sender and receiver are connected by dynamic nodes that are switched on demand.

Packet Switching

Data is dissected into packets and provided with a header including transport information.

Intelligent nodes read the header and decide for the route.

Topology

Layout and connection of components

Switching

Transfer between adjacent nodes or components

Routing

Path from sender to receiver

Flow Control

Handling congestion, loss or other exceptions

CIRCUIT VS. PACKET SWITCHING

Circuit switching: Dedicated communication channel

- + Single overhead for setup and termination
- + No buffer required; full bandwidth
- Deadlock: line blocked even if unused
- No interleave possible

Packet switching: Dynamic communication channel

- + Resource is occupied only when needed
- Alternative routing possible
- Buffer required; partial bandwidth
- Creation of packets required
- Flow control required
- Packet may be lost or delayed
- Depending on number of nodes

TOPOLOGIES

DATA CENTER TOPOLOGY

The main goal in a data center is to connect a large number of endpoints (processors or servers) by using switches that only have a limited number of ports.

Fat-Tree networks consist of a tree in which any switch has the same number of connections in both directions.

- Connections closer to the root switch have a higher bandwidth.
- Higher redundancy: multiple paths are possible to connect between servers.
- Power consumption is lower compared to other topologies.

WIRED VERSUS WIRELESS

Wired network	Wireless network (((p))
Devices physically limited by cable	Devices can move more freely within range
Easier to troubleshoot	Can be difficult to troubleshoot
Fastest data speeds	Medium data speeds
Much more secure	Easy to intercept signal
Must purchase cabling	Only wireless access point must be purchased

NETWORKS AND THE INTERNET

OSI MODEL

CONCEPTUAL OSI MODEL

Application			
Presentation	Application		
Session			
Transport	Transport		
Network	Internet		
Data Link	Link		
Physical	5		

7	Application	Function call			A Data
6	Presentation	Data conversion Compression Encryption	Software Layer-4/7 Switch	Data	P A Data
5	Session	Synchronization Session control			S P A Data
4	Transport	Segmentation Sequencing Flow control, Congestion notification	Gateway Layer-4 Switch	Segment Datagram	T S P A Data
3	Network	Addressing, Routing	Router Layer-3 Switch	Packet	N T S P A Data
2	Data Link	Logical Link Control Media Access Control	Bridge Layer-2 Switch	Frame	D N T S P A Data
1	Physical	Interface specification	Hub NIC	Bits	P D N T S P A Data

INTERNET PROTOCOL SUITE

Presentation Application	Application		
Session			
Transport	Transport		
Network	Internet		
Data Link	Link		
OSI Physical Data Link	ij		
OSI	CP/IP		

TCP/IP Layer	Typical Services	Typical Protocols
Application	Name and Directory Services Transmission Communication Encryption	DHCP, DNS, LDAP FTP, HTTP, HTTPS IRC, POP, IMAP, SMTP SSH TLS/SSL
Transport	Flow control Error control Port addressing	TCP, UDP DCCP, SCTP
Internet	Logical addressing	IPv4, IPv6, ICMP, ICMPv6, IPsec
Link	Physical addressing Interfaces Topology	ARP, NDP, OSPF, Tunnels, L2TP, PTPP, MAC (Ethernet, DSL, ISDN)

ROUTE TRACING

The software tracert.exe (trace route) can be used to identify the nodes that are used to connect to the target computer.

```
<1 ms
          <1 ms
                        fritz.box [192.168.178.1]
                          dtag-dial13.reutlingen [217.0.116.148]
 15 ms
          15 ms
 17 ms
          16 ms
                   16 ms
                          dtag-dial13 217.0.74.58
          16 ms
                          dtag-int1 [217.239.37.146]
                   16 ms
 16 ms
          16 ms
                         dtag-transit13 [62.157.250.130]
 16 ms
                         ae-34-52.ebr2.Dusseldorf1.Level3.net [4.69.139.33]
 27 ms
          25 ms
          20 ms
                   19 ms ae-47-47.ebr1.Amsterdam1.Level3.net [4.69.143.205]
 19 ms
 20 ms
          20 ms
                   19 ms ae-1-100.ebr2.Amsterdam1.Level3.net [4.69.141.170]
                   28 ms ae-48-48.ebr2.London1.Level3.net [4.69.143.82]
 27 ms
          27 ms
                  120 ms ae-42-42.ebr1.NewYork1.Level3.net [4.69_137.70]
116 ms
         119 ms
                  126 ms ae-10-10.ebr2.Washington12.Level3.net [4.69.148.50]
         126 ms
125 ms
                  126 ms ae-1-100.ebr1.Washington12.Level3.net [4.69.143.213]
125 ms
         127 ms
                  144 ms ae-6-6.ebr1_Atlanta2.Level3.net [4.69.148.105]
137 ms
         145 ms
                  138 ms ae-61-61.csw1.Atlanta2.Level3.net [4.69.148.234]
137 ms
         138 ms
139 ms
                  143 ms ae-62-62.ebr2.Atlanta2.Level3.net [4.69.148.237]
         139 ms
154 ms
                  163 ms/ae-2-2.ebr2.Miami1.Level3.net [4.69.140.141]
         164 ms
                  162 ms ae-1-100.ebr1.Miami1.Level3.net [4.69.140.137]
156 ms
         162 ms
                  180 ms ae-3-5.bar1.Tampa1.Level3.net [4.69.148.214]
154 ms
         160 ms
155 ms
         157 ms
                  158 ms ae-5-5.car1.Tampa1.Level3.net [4.69.133.49]
         156 ms
                  157 ms ae-13-13.car3.Tampa1.Level3.net [4.69.133.54]
154 ms
158 ms
                  156 ms e1-11-level3.co2.Denver.as30217.net [4.71.0.10]
         157 ms
155 ms
         156 ms
                  157 ms ge8-1.csw5-pmtpa.wikimedia.org [66.113.197.94]
                  158 ms rr.pmtpa.wikimedia.org [208.80.152.2]
156 ms
         158 ms
```

tracert www.wikipedia.org

VISUAL TRACEROUTE

NETWORKS AND THE INTERNET

INTERNET

- Is defined as an information super-highway to access information.
- Internet is a global system of interconnected computer networks.
- Internet uses the standard Internet Protocol (TCP/IP).
- Every computer is identified by a unique IP address IPv4 or IPv6.
- IP Address is a unique set of numbers (such as 110.22.33.114) which identifies a computer location.
- A special computer DNS (Domain Name Server) is used to give name to the IP Address so that user can locate a computer by a name.
 - For example, a DNS server will resolve a name
 http://www.tutorialspoint.com to a particular IP address to uniquely identify the computer on which this website is hosted.
- Internet is accessible to every user all over the world.

INTERCONTINENTAL INTERNET

The internet's undersea world

INTERNET SERVICES

INTERNET SERVICES

INFORMATION RETRIEVAL SERVICES

File Transfer Protocol (FTP)

Enables users to transfer files.

Archie

Updated
database of public FTP
sites and their content. It
helps to search a file
by its name.

Gopher

Used to search, retrieve, and display documents on remote sites.

Very Easy Rodent Oriented Netwide Index to Computer Achieved (VERONICA)

VERONICA is a gopherbased resource. It allows access to the information resource stored on gopher's servers.

INTERNET SERVICES

Web Services

Web services allow exchange of information between applications on the web.

Using web services, applications can easily interact with each other.

World Wide Web (WWW)

WWW is also known as W3.

It offers a way to access documents spread over the several servers over the internet.

These documents may contain texts, graphics, audio, video, hyperlinks.

The hyperlinks allow users to navigate between the documents.

Video Conferencing

Video conferencing or video teleconferencing is a method of communicating by two-way video and audio transmission with help of telecommunication technologies.

INTERNET COMPOSITION

NETWORKS AND THE INTERNET

INTERNET OF THINGS (IOT)

IoT is a **network of** physical objects or people called "**things**" that are embedded with software, electronics, network, and sensors that allow these objects to collect and exchange data.

The goal of IoT is to extend to internet connectivity **from standard devices** like computer, mobile or tablet **to relatively dumb devices** like a toaster.

ADVANTAGES OF IOT

DISADVANTAGES IOT

SECURITY

IoT technology creates an ecosystem of connected devices. However, during this process, the system may offer little authentication control despite sufficient security measures.

PRIVACY

The use of IoT exposes a substantial amount of personal data in extreme detail without the user's active participation. This creates lots of privacy issues.

FLEXIBILITY

There is a huge concern regarding the flexibility of an IoT system. It is mainly regarding integrating with another system as there are many diverse systems involved in the process.

COMPLEXITY

The design of the IoT system is also quite complicated. Moreover, it's deployment and maintenance are not very easy.

COMPLIANCE

IoT has its own set of rules and regulations. However, because of its complexity, the task of compliance is quite challenging.

CHALLENGES OF INTERNET OF THINGS (IOT)

At present IoT is faced with many challenges, such as:

- insufficient testing and updating
- concerns regarding data security and privacy
- software complexity
- data volumes and interpretation
- integration with AI and automation
- devices require a constant power supply which is difficult
- interaction and short-range communication

You have learned ...

- ... about standard network topologies.
- about the hardware devices used in a network.
- ... how TCP/IP and the internet work.
- ... about wireless and wired network technologies.
- ... about the Internet of Things (IoT).

SESSION 4

TRANSFER TASK

TRANSFER TASK

Dial-In via Internet Service Provider

You are at home and your local IP address is 192.168.178.0. You want to reach Wikipedia from your browser. You have the following network components available:

- Internet
- Homenet
- Home PC
- Your ISP (Internet service provider) (IP 80.45.4.9)
- Routers
- Gateways
- Wikipedia.org Server
- DSL connection Switches
- Hubs

Draw a schema of the network by using the above components to reach Wikipedia form your Home PC.

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

1. Which of these is found at the data link layer of the OSI model?

- a) packets
- b) Ethernet
- c) encoding
- d) routing

2. Which of these devices does not filter network traffic?

- a) switch
- b) router
- c) hub
- d) firewall

- 3. Which layer of the OSI model is responsible for encryption?
 - a) application
 - b) session
 - c) transport
 - d) presentation

-.Ö.-

4. IoT stands for:?

- a) Interweb owner Transfer
- b) Internet of Things
- c) Intelligent on Throughput
- d) Interleaving of Technology

LEARNING CONTROL

- 5. A router is used as part of what network topology?
 - a) hub
 - b) star
 - c) ring
 - d) bus

LIST OF SOURCES

Brookshear, G. & Bylow, D. (2011). Computer Science: An Overview (11th ed.). Pearson.

Dale, N. & Lewis, J. (2020). Computer Science Illuminated (7th ed.). Jones & Bartlett Learning.

Downey, A. B. & Mayfield, C. (2020). Think Java: How to Think Like a Computer Scientist. O'Reilly.

Filho, W. F. (2018). Computer Science Distilled: Learn the Art of Solving Computational Problems. Code Energy LLC.

Petzold, C. (2000). Code: The Hidden Language of Computer Hardware and Software. Microsoft Press.

Weizenbaum, J. (1966). *ELIZA—a computer program for the study of natural language communication between man and machine*. Communications of the ACM, 1966. <u>dl.acm.org</u> Whitington, J. (2016). *A Machine Made this Book: Ten Sketches of Computer Science*. Coherent Press.