

Langage Python

ISUP, Sorbonne Université

Etienne Guével Ingénieur de Recherche - SCAI etienne.guevel@sorbonne-universite.fr Septembre-Novembre 2025

Objectifs du cours

Thématiques abordées

- Fondamentaux du langage et outils associés
- Programmation orientée objet
- Pratique des librairies scientifiques

Chaque semaine se déroulera en 2 parties :

- CM
- TP sur machine

Evaluation finale sur projet

Contenu du cours

Partie 1 - Fondamentaux

- Revue des outils, installation et prise en main
- Syntaxe, structures de contrôle
- Types, structures de données

Partie 2 – Programmation orientée objet

- Classe, objets
- Attributs, méthodes
- Héritage

Partie 3 – Librairies scientifiques : NumPy, Pandas, Matplotlib

Partie 4 – Packaging, tests unitaires et bonnes pratiques

Quelques références

- The Python Language Reference docs.python.org/3/reference/index.html
- Luciano Ramalho (2019) Fluent Python: Clear, concise and effective programming, O'Reilly.
- www.w3schools.com/python
- realpython.com

Introduction

Introduction

Historique

Le langage Python a été créé par Guido van Rossum en 1989 et rendu public en 1991. Le nom fait référence aux *Monty Python*.

G. van Rossum a été jusqu'à 2018 "Benevolent Dictator for Life".

www.python.org

Un langage facile à interpréter

 Simplificité d'écriture et flexibilité

```
duck.py •
part 1 > example code > 👶 duck.py > ...
       class Duck:
           def __init__(self):
               self.name = 'duck'
   5
           def quack(self):
               print('Duck says quack!')
   6
           def fly(self):
  9
               print('Duck flies away!')
       duck = Duck()
       duck.quack()
  12
       duck.fly()
  13
  14
```

Un langage facile à interpréter

- Simplificité d'écriture et flexibilité
- Exécution par un interpréteur ligne par ligne

```
part_! > example_code > & duck.py > ...

1     class Duck:
2     def __init__(seef):
3         seef.name = 'duck'
4
5     def quack(seef):
6         print('Duck says quack!')
7
8     def fey(seef):
9         print('Duck flies away!')
10
11     duck = Duck()
12     duck.guack()
13     duck.fey()
```

Très adaptable

 Exécution intéractive ou par script

Très adaptable

- Exécution intéractive ou par script
- Multiplateforme et open source

Très adaptable

- Exécution intéractive ou par script
- Multiplateforme et open source
- Correction de bugs relativement simple

• Interprétation vs compilation

- Interprétation vs compilation
- Gestion de données et bibliothèques de haut niveau

- Interprétation vs compilation
- Gestion de données et bibliothèques de haut niveau
- Typage dynamique

- Interprétation vs compilation
- Gestion de données et bibliothèques de haut niveau
- Typage dynamique
- Gestion automatique de mémoire

Une histoire de versions

Installation et revue des outils

• Un terminal

- Un terminal
 - Linux / MacOS : le terminal par défaut

- Un terminal
 - Linux / MacOS : le terminal par défaut
 - Windows : Powershell, intégré à Anaconda

- Un terminal
 - Linux / MacOS : le terminal par défaut
 - Windows : Powershell, intégré à Anaconda
 - Windows 10 ou 11 (conseil) : Windows Subsystem for Linux (wsl)

- Un terminal
 - Linux / MacOS : le terminal par défaut
 - Windows : Powershell, intégré à Anaconda
 - Windows 10 ou 11 (conseil) : Windows Subsystem for Linux (wsl)
- Python, Anaconda, Miniconda version ≥ 3.10

- Un terminal
 - Linux / MacOS : le terminal par défaut
 - Windows : Powershell, intégré à Anaconda
 - ullet Windows 10 ou 11 (conseil) : Windows Subsystem for Linux ($\underline{\text{wsl}}$)
- Python, Anaconda, Miniconda version ≥ 3.10
- jupyter-lab ou jupyter-notebook

- Un terminal
 - Linux / MacOS : le terminal par défaut
 - Windows : Powershell, intégré à Anaconda
 - Windows 10 ou 11 (conseil) : Windows Subsystem for Linux (wsl)
- ullet Python, Anaconda, Miniconda version ≥ 3.10
- jupyter-lab ou jupyter-notebook
- Un IDE (ex. VSCode, PyCharm)

Commandes Linux à connaître

Linux command	Description	Linux command example
cd	Change directory with a specified path	cd /path/directory1
clear	Clear the screen	clear
ср	Copy file(s)	cp /path1/file1 /path2/file1
diff	Compare the contents of files	diff file1 file2
exit	Log out of Linux	exit
grep	Find a string of text in a file	grep "word or phrase" file 1
head	Display beginning of a file	head file1
less	View a file	less file1
ls	List contents of a directory	ls /path/directory1
mv	Move file(s) or rename file(s)	mv /path1/file1 /path2/file2
mkdir	Create a directory	mkdir <i>directory</i>
rm	Delete file(s)	rm file1
rmdir	Remove a directory	rmdir directory
tail	Display end of a file	tail file1
tar	Store, list or extract files in an archive	tar <i>file1</i>
vi	Edit file(s) with simple text editor	vi file1

Python3 est en général déjà installé, sous Linux **Python2 est systématiquement installé**.

Il existe plusieurs façons d'installer python (et ses outils) :

1/ Paquets Python

Pour Linux (ou wsl):

\$ sudo apt-get install python3 python3-pip

Pour MacOS:

\$ brew install python

Python3 est en général déjà installé, sous Linux **Python2 est systématiquement installé**.

Il existe plusieurs façons d'installer python (et ses outils) :

2/ Anaconda

- Installation complète de l'environnement
- Un très grand nombre de librairies pré-installées
- anaconda navigator installé
- Multiplateforme : Windows, Linux, MacOS

Voir: https://docs.anaconda.com/anaconda/install

Python3 est en général déjà installé, sous Linux **Python2 est systématiquement installé**.

Il existe plusieurs façons d'installer python (et ses outils) :

3/ Miniconda

- Installation minimale de l'environnement (480 MB contre 4.4GB)
- Aucune librairie installée
- anaconda navigator non installé
- Multiplateforme: Windows, Linux, MacOS

Voir: https://docs.anaconda.com/miniconda/miniconda-install/

Que Choisir?

- Python officiel : pour avoir un environnement avec plus de contrôle sur les outils installés
- Anaconda : pour avoir un environnement clé en main
- Miniconda : pour avoir un environnement minimal avec la possibilité de créer des environnements virtuels avec conda

Une fois Python installé, ouvrir un terminal et taper

```
$ python --version
```

\$ python3 --version

Installation de Python via Anaconda

Installation de Python via Anaconda

Environnements virtuels

Pour gérer des environnements virtuels, avec une installation spécifique

```
$ python -m venv myenv
$ source myenv/bin/activate
$ pip install numpy
$ deactivate
```

Voir ce lien pour les venvs.

Certaines installations de python viennent sans venv (plutôt pour linux), pour l'installer :

```
$ sudo apt install python3-venv # pour linux
```

Environnements conda

Pour gérer des environnements virtuels, avec une installation spécifique

```
$ conda create --name myenv python=3.12
$ conda activate myenv
$ conda install pip
$ pip install numpy
$ conda deactivate
```

Voir ce lien pour les envs conda.

Pour installer jupyter dans un environnement python via pip :

```
$ source my_env/bin/activate
$ pip install jupyter # ou notebook ou jupyterlab
$ pip install ipython # package minimal pour vscode notebook
```

```
$ jupyter lab # ou jupyter notebook
```

Cela va ensuite ouvrir jupyter dans un navigateur. Si ce n'est pas le cas, un lien apparaitra dans le terminal : CTRL + click dessus.

Exécution d'un programme python

Cas 1: via un shell python ou ipython

Exécution à la volée d'instructions python. Ouvrir un shell

```
$ python
```

Ecrire des instructions

```
>>> text = "my name is Etienne Guevel"
>>> print(text)
```

```
Python 3.13.3 (main, Aug 14 2025, 11:53:40) [GCC 14.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> text = "my name is Etienne Guevel"
>>> print(text)
my name is Etienne Guevel
>>>
```

Exécution d'un programme python

Cas 2: via un terminal

Dans un éditeur de texte, créer un fichier program.py et écrire

```
text = "my name is Etienne Guevel"
print(text)
```

Exécuter la ligne de commande

```
$ python program.py
```

```
      ② etienneguevel __/cours_2025/part_1/example_code
      ◆ v3.13.3(#env)
      ③ 13:06
      ⊗ in 12m2s569ms → python3 program.py

      my name is Etienne Guevel
      Getienneguevel __/cours_2025/part_1/example_code
      ◆ v3.13.3(#env)
      ④ 13:06
      → | xit ____
```

Exécution d'un programme python

Cas 3: via Jupyter

Lancer Jupyter depuis un terminal

```
$ jupyter notebook // ou jupyter lab
```

Dans un Jupyter notebook, écrire

```
print("Je suis dans Jupyter")
```

et exécuter la cellule correspondante

Revue des outils

Outils de base :

• python : exécuter du code à la volée

• pip : installer des packages

• pytest : tests unitaires

• pylint : vérification de la qualité du code source

Revue des outils

Outils de base :

• python : exécuter du code à la volée

• pip : installer des packages

pytest : tests unitaires

• pylint : vérification de la qualité du code source

Intégré au projet Anaconda :

- ipython : version interactive du shell python
- conda : installer des packages, gérer des environnements d'exécutions (voir ici), etc.
- Jupyter : environnement de développement intéractif et fléxible

Installer des IDEs

Les IDEs sont des environnements de développement intégrés (Integrated Development Environment) qui permettent de faciliter la création de programmes.

Installer des IDEs

Les IDEs sont des environnements de développement intégrés (Integrated Development Environment) qui permettent de faciliter la création de programmes.

