

MA 203: Problem Sheet 7: Statistics Assignment submission deadline 15/11/2018

* Problems to be submitted as Assignment

- 1. Let X be a Gaussian random variable with mean 10 and variance 4. A sample of size 9 is obtained and the sample mean, minimum, and maximum of the sample are calculated.
 - (a) Find the probability that the sample mean is less than 9.
 - (b) Find the probability that the minimum is greater than 8.
 - (c) Find the probability that the maximum is less than 12.
 - (d) Find n so that the sample mean is within 1 of the true mean with probability 0.95.
- *2. The lifetime of a device is an exponential random variable with mean 50 months. A sample of size 25 is obtained and the sample mean, maximum, and minimum of the sample are calculated.
 - (a) Estimate the probability that the sample mean differs from the true mean by more than 1 month.
 - (b) Find the probability that the longest-lived sample is greater than 100 months.
 - (c) Find the probability that the shortest-lived sample is less than 25 months.
 - (d) Find n so that the sample mean is within 5 months of the true mean with probability 0.9.
- 3. Let the signal X be a uniform random variable in the interval [-3,3] and suppose that a sample of size 50 is obtained.
 - (a) Estimate the probability that the sample mean is outside the interval [-0.5, 0.5].
 - (b) Estimate the probability that the maximum of the sample is less than 2.5.
 - (c) Estimate the probability that the sample mean of the squares of the samples is greater than 3.
- 4. Let the sample X_1, X_2, \dots, X_n consist of iid versions of the random variable X. The method of moments involves estimating the moments of X as follows:

$$\hat{m}_k = \frac{1}{n} \sum_{j=1}^n X_j^k.$$

- (a) Suppose that X is a uniform random variable in the interval $[0, \theta]$. Use \hat{m}_1 to find an estimator for θ .
- (b) Find the mean and variance of the estimator in part (a).
- *5. Let $\mathbf{X} = (X, Y)$ be a pair of random variables with known means, m_1 and m_2 . Consider the following estimator for the covariance of X and Y:

$$\hat{C}_{X,Y} = \frac{1}{n} \sum_{j=1}^{n} (X_j - m_1)(Y_j - m_2).$$

- (a) Find the expected value and variance of this estimator.
- (b) Explain the behavior of the estimator as n becomes large.
- 6. Let $\mathbf{X} = (X, Y)$ be a pair of random variables with unknown means and covariances. Consider the following estimator for the covariance of X and Y:

$$\hat{K}_{X,Y} = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \bar{X}_n)(Y_j - \bar{Y}_n),$$

where \bar{X}_n and \bar{Y}_n sample means of X and Y respectively.

- (a) Find the expected value of this estimator.
- (b) Explain why the estimator approaches the estimator in Problem n large.
- 7. Let the sample X_1, X_2, \dots, X_n consist of iid versions of the random variable X. Consider the maximum and minimum statistics for the sample:

$$W = min(X_1, X_2, \dots, X_n), \quad Z = max(X_1, X_2, \dots, X_n).$$

- (a) Show that the pdf of Z is $f_Z(x) = n[F_X(x)]^{n-1} f_X(x)$.
- (b) Show that the pdf of W is $f_W(x) = n[1 F_X(x)]^{n-1} f_X(x)$.
- 8. Let the sample X_1, X_2, X_3, X_4 consist of iid versions of a Poisson random variable X with mean $\alpha = 4$. Find the mean and variance of the following estimators for α and determine whether they are biased or unbiased.
 - *(a) $\hat{\alpha}_1 = (X_1 + X_2)/2$.
 - (b) $\hat{\alpha}_2 = (X_3 + X_4)/2$.
 - *(c) $\hat{\alpha}_3 = (X_1 + 2X_3)/3$.
 - (d) $\hat{\alpha}_4 = (X_1 + X_2 + X_3 + X_4)/4$.
- 9. Let $\hat{\Theta}_1$ and $\hat{\Theta}_2$ be unbiased estimators for the parameter θ .
 - (a) Show that the estimator $\hat{\Theta} = p\hat{\Theta}_1 + (1-p)\hat{\Theta}_2$ is also an unbiased estimator for θ , where 0 .
 - (b) Find the value of p in part (a) that minimizes the mean square error.

- (c) Let $\hat{\Theta}_1$ and $\hat{\Theta}_2$ be unbiased estimators for the first and second moments of X. Find an estimator for the variance of X. Is it biased?
- *10. The output of a communication system is $Y = \theta + N$, where θ is an input signal and N is a noise signal that is uniformly distributed in the interval [0,2]. Suppose the signal is transmitted n times and that the noise terms are iid random variables.
 - (a) Show that the sample mean of the outputs is a biased estimator for θ .
 - (b) Find the mean square error of the estimator.
- 11. Let X be an exponential random variable with mean $1/\lambda$.
 - (a) Find the maximum likelihood estimator $\hat{\Theta}_{ML}$ for $\theta = 1/\lambda$.
 - (b) Find the maximum likelihood estimator $\hat{\Theta}_{ML}$ for $\theta = \lambda$.
 - (c) Find the pdfs of the estimators in part (a).
 - (d) Is the estimator in part (a) unbiased and consistent?
- 12. Let $X = \theta + N$ be the output of a noisy channel where the input is the parameter θ and N is a zero-mean, unit-variance Gaussian random variable. Suppose that the output is measured n times to obtain the random sample $X_i = \theta + N_i$ for $i = 1, 2, \dots, n$.
 - (a) Find the maximum likelihood estimator $\hat{\Theta}_{ML}$ for θ .
 - (b) Find the pdf of $\hat{\Theta}_{ML}$.
 - (c) Determine whether $\hat{\Theta}_{ML}$ is unbiased and consistent.
- 13. Let $\hat{\Theta}_{ML}$ be the maximum likelihood estimator for the mean of an exponential random variable. Suppose we estimate the variance of this exponential random variable using the estimator $\hat{\Theta}_{ML}^2$. What is the probability that $\hat{\Theta}_{ML}^2$ is within 5% of the true value of the variance? Assume that the number of samples is large.