Homework 4

April 29, 2021

1. Let $E = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ and $F = {\mathbf{b}_1, \mathbf{b}_2}$, where

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

and

$$\mathbf{b}_1 = (1, -1)^T, \quad \mathbf{b}_2 = (2, -1)^T$$

For each of the following linear transformations L from \mathbb{R}^3 into \mathbb{R}^2 , find the matrix representing L with respect to the ordered bases E and F:

(i)
$$L(\mathbf{x}) = \begin{pmatrix} x_3 \\ x_1 \end{pmatrix}$$

(ii) $L(\mathbf{x}) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_3 \end{pmatrix}$
(iii) $L(\mathbf{x}) = \begin{pmatrix} 2x_2 \\ -x_1 \end{pmatrix}$

- 2. Let D be the differentiation operator on $P_2(R)$. Find the matrix B representing D with respect to $\begin{bmatrix} 1, x, x^2 \end{bmatrix}$, the matrix A representing D with respect to $\begin{bmatrix} 1, 2x, 4x^2 2 \end{bmatrix}$, and the nonsingular matrix S such that $B = S^{-1}AS$.
- 3. Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V,W)$. Prove that $\dim T(V) = 1$ if and only if there exist a basis of V and a basis of W such that with respect to these bases, all entries of the matrix representation $\mathcal{M}(T)$ equal 1.
- 4. Suppose $T \in \mathcal{L}(U,V)$ and $S \in \mathcal{L}(V,W)$ are both invertible linear transformation. Prove that $ST \in \mathcal{L}(U,W)$ is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$.

- 5. (a) Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Prove that the following statements are equivalent:
 - (i) T is invertible;
 - (ii) T is injective;
 - (iii) T is surjective.
 - (b) Suppose V is finite-dimensional, U is a subspace of V, and $S \in \mathcal{L}(U, V)$. Prove there exists an invertible operator $T \in \mathcal{L}(V)$ such that Tu = Su for every $u \in U$ if and only if S is injective.
 - (c) Suppose W is finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that $\ker(T_1) = \ker(T_2)$ if and only if there exists an invertible operator $S \in \mathcal{L}(W)$ such that $T_1 = ST_2$.
 - (d) Suppose V is finite-dimensional and $T_1,T_2\in \mathcal{L}(V,W)$. Prove that $T_1(V)=T_2(V)$ if and only if there exists an invertible operator $S\in \mathcal{L}(V)$ such that $T_1=T_2S$.