# Junzioni di ripartizione per v.z. resli

Siz X unz v.z. rezle su uno spzzio discreto  $(N_1P)$ , e siz  $R(\cdot)$  le corrispondente densité discrete: R(x) = P(X=x),  $x \in R$ .

Definizione unz funzione  $\bar{f}_X: \mathbb{R} \to [0,1]$ formite  $\bar{f}_X(x) \doteq P(X \leq x), x \in \mathbb{R}$ .

TX si duce funcione di ripertizione di X.

Note: Fx dipende solo delle distribuzione di X, quindi funzione di vipertizione delle distribuzione di X, distribuzione di X.

Propriete di Tx:

1)  $f_X \in crescente$ :  $Par \times_{i} y \in IR \ con \times \leq y$ ,  $f_X = P(X \leq x)$   $f_X = P(X \leq y)$   $f_X = P(X \leq y)$   $f_X = f_X = f_X = y$   $f_X = f_X = f_X = y$   $f_X = f_X = f_X = y$   $f_X = f_X = y$ 



Tx è continuz 2 destra:

YxeR: (im Tx(x+h) = Tx(x).

Verificz: Siz  $X \in \mathbb{R}$ , e siz  $(A_n)_{n \in \mathbb{N}} \subset (0, \omega)$  con  $A_n \to 0$ 

Possizmo supporre (hn) desvescente

 $X_n = X + \beta_n \qquad X \qquad dell'elto$ 

e ({X ≤ xn})<sub>neiN</sub> successione decrescente di eventi

Continuité dell'elto  $P(X \leq X) = \lim_{n \to \infty} P(X \leq X_n)$  $= \overline{T_X(x_n)} = \overline{T_X(x_n)} = \overline{T_X(x_n)}$ 

Proprietà 1) e 2) impliano:

Tx possiède limiti à sinistra:

 $\forall x \in \mathbb{R}$  existe  $a = f_X(x-a) = f_X(x-b)$ 

Note:  $\overline{f}_{X}(x-) \leq \overline{f}_{X}$ .

PRABATION Inoltre:

YxeR:

$$F_{X}(x) - F_{X}(x-) = P(X \le x) - P(X < x)$$

$$= P(X = x) = P_{X}(x)$$

densité discrete in X

Le funzione di ripertizione di une v.z. reste Mande su uno spezio discreto è quindi

costante z tratti:

Tipo:

Ty he limitie one per x -> # 00 oppure x -> -00 [

$$\lim_{x\to\infty} \overline{f}_X(x) = 1, \qquad \lim_{x\to\infty} \overline{f}_X(x) = 0.$$

RA = U {X = Xn} e Ø = A {X = xn} Intettici se & \$ 30-00

se Xn 100 Continuità

an) 1 = P(N) = lim P(X = xn), O = P(0) = lim P(X = xn) dell'elto oppure del hasso se X, y-00, se 8,700

Esempio: distribuzioni uniformi discrete  $SU \left\{ \frac{K}{N} : K \in \{l_{i-1}M\} \right\}$ 

Par Ne IN siz  $P_N$  lz densité discrete delle unitorme discrete su  $\{\frac{K}{N}: Ke\{l_i-jN\}\}:$   $P_N(x) = \{\begin{cases} \frac{1}{N} & \text{se } x \in \{\frac{K}{N}: Ke\{l_i-jN\}\}\}, \\ 0 & \text{eltrimenti} \end{cases}$ 

Siz  $\overline{f}_N$  (z corrispondente funzione di ripertizione:  $\overline{f}_N(x) = \sum_{y \leq x} P_N(y)$ ,  $x \in \mathbb{R}$ .

Intetti, se X ~ MANNA Unif({K; Kell-M)),
ellore & X he densite discrete PN

 $P(X \leq x) = \sum_{y \in R:} P(X = y) = hsence$   $y \leq x = P_N(y)$ 

Notz:  $\frac{g_i}{\pi} P(X=y) = p_N(y) \neq 0$ Solo se  $y \in \{\frac{K}{N} \mid K \in \{l_i - i, N\}\}$ 



## Gratico par N=2 e N=4:



Per N-20,  $f_N$  tende 2 une fonzione Fcon F dete de  $f_N$  de  $f_N$  tende  $f_N$  tende  $f_N$   $f_N$   $f_N$  tende  $f_N$   $f_N$   $f_N$  tende  $f_N$   $f_N$ 

Intetti:  $\lim_{N\to\infty} \overline{f_N(x)} = \overline{f(x)}$  per ogni & e R.  $\lim_{N\to\infty} \overline{f_N(x)} = \overline{f(x)}$  per ogni & e R.  $\lim_{N\to\infty} \overline{f_N(x)} = \overline{f(x)}$   $\lim_{N\to\infty} |\overline{f_N(x)} - \overline{f(x)}| = 0$ .

Le tunzione F gode delle tre proprietà di sopra.

( continua crescente, continua a destra, l'imiti).

A differenze delle Tri Fè continuz!

Domanda: F è la funcione di ripartizione della distribuzione di una v.a.? Def.: Unz tonzione F: R > [0,1]

si dice une funzione di ripertizione se

(i)  $\overline{f}$  è crescente:  $\overline{f}(x) \leq \overline{f}(y)$  per ogni XiyelR con  $x \leq y$ ;

(ii) Fè continuz à destra: (im F(x+h) = F(x)
per ogni x eR;

(in timiti:  $\lim_{x\to\infty} f(x) = 1$ ,  $\lim_{x\to\infty} f(x) = 0$ .

Fetto (serve lz "teoriz delle misure"):

Siz F unz funzione di ripertizione, F:12 >>> [0,1].

Allorz esistono uno spezzio di probebilità (N.F.P)

e unz v.z. rezle X su (N.F.P) tali che

F è le funzione di ripertizione di X

nel senso che, per ogni xelR,

 $\overline{f}(x) = P(X \leq x).$ 



Variabili alestorie resti generali?

Def.: Siz (NifiP) uno spzzio di probzbilità (gonerale).

Una funzione  $X: N \to \mathbb{R}$  si dice

varizbile aleztoria reale se (NifiP) se  $\{X \le G\} \in \mathcal{F}$  per ogni  $G \in \mathbb{R}$ .

Spiegzzione! In generale, and non Marcherpita

con N znche più che numerzbile,

(2 o-zígebrz f szrz più piccolz del sistema

delle parti di N. La misura di probabilità

P è quindi solo definita per sottoinsiemi di N

che appartengono à f.

Le condizione nelle defi di vie reele gerentisce che P è ban detinite per exestivati Mi gli eventi di interesse generati de X.



Siz X unz v.z. rezle su (M.F.P).

Poiché Fè une o-elgebre, si he i Valber! con akb:

{X < b} & 7 (per definizioni),

{X∈ (a,b)}, {X∈ [a,b]}, {X∈ [a,b)} ∈ F

e molti zltri, zd esemplo eventi della torma

con di R->12 unz tonzione continuz.

# Esempio: distribuzione uniforme continuz

Sizno a, b & R con a < b.

Definizmo Branco Funiflato R-> [0,1]

tramite

 $\frac{1}{\text{Uniflate}} (x) = \begin{cases}
0 & \text{se } x < a, \\
\frac{x-a}{b-a} & \text{se } x \in [a,b), \\
1 & \text{se } x \ge b.
\end{cases}$ 

Allors + Unif(ab) è une funcione di riportizione;

è le funzione di ripertizione delle

distribuzione unitorne continuz su (a.b.).

Def. 1 Siz X unz v.z. rezle su (Nifi).

Si dice che X & vaitorna hz distribuzione unitorne continuz su (a.b),

in simboli X ~ Unit (a.b),

Se  $\overline{f_X} = \overline{f_{Unit(a,0)}}$ , Cioè  $\overline{f_{Unit(a,0)}}(x) = P(X \leq x)$ Per Ogni  $x \in \mathbb{R}$ .



#### Esempio: distribuzione esponenzizle

$$\overline{+}_{Exp(1)}(x) = \begin{cases} 0 & \text{se } x < 0, \\ 1 - e^{-\lambda x} & \text{se } x \ge 0. \end{cases}$$

Allorz FEXP(X) è une tunzione di ripertizione; è le funzione di ripertizione delle distribuzione esponenziele di peremetro 1.

Defii Siz X unz v.z. rezle so (difiP)

Si dice che X ha
distribuzione esponenziale di parametro Si
in simboli X ~ Exp(1),

Se 
$$f_X = f_{Exp(A)}$$
, Cioe  $P(X = x) = f_{Exp(A)}(x)$ 

per ogni  $X \in \mathbb{R}$ .

Le Distribuzione unitorme continue e (2

distribuzione esponenziale sono delle

distribuzioni continue (2nche assolutamente continue;

distribuzioni continue (2nche assolutamente continue;

di intra)

nel senso che le loro funzioni di ripartizione

sono continue.

Se X à unz v.z. rezle con distribuzione

uniforme continuz oppure esponenziale,

allorz, per agni XER,

 $P(X=x) = \overline{f}_X(x) - \overline{f}_X(x-)$  | Stepso ergomento come = p.75b

poiché, in questo ceso, Tx continuz.

In particolare, X non possiède une densité discrete.

## Variabili aleatorie assolutamente continue

Une classe importante di variabili eleatorie reali peddi è costituite de v.e. con funzione di ripertizione "essolutemente continue".

Unz condizione equivalente (che useremo qui) è che la funzione di ripartizione si ottiene integrando una funzione non-negativa (e integrabile):

Def: Siz  $\overline{f}: IR \rightarrow [0,1]$  unz fonzione di riprotizione.

Allore  $\overline{f}$  si dice responditure continuz

se esiste unz funzione  $f: IR \rightarrow [0,\infty)$  integrabile

tale che  $\overline{f}(x) = \int_{-\infty}^{\infty} f(y) dy$  per ogni ye IR.

(unz vonzione della)

In questo caso, e f si dice densita (continua)  $\int_{-\infty}^{\infty} f(y) dy = 1$ e di f(x)  $\int_{-\infty}^{\infty} f(y) dy = 1$   $\int_{-\infty}^{\infty} f(y) dy = 1$ 

Def.: Siz X unz v.z. rezle su (N.F.P).

Allore X si dice assolutemente continue se le sue tonzione di ripertizione TX lo è. [Le densità di TX si indice in questo con fx.]

Esemplo: distribuzione unitorne continuz

Siz X~ Unif(aib) con a<b.

Allorz  $\overline{f}(x) = \begin{cases} 0 & \text{se } x < a, \\ \frac{x-a}{b-a} & \text{se } x \in [a,b], \\ 1 & \text{se } x \ge b. \end{cases}$ 

m) Ty è différenziabile con continuità in 12/{0,1}:

 $T_X'(x) = I_{(0,1)}(x)$ ,  $x \in \mathbb{R} \setminus \{0,1\}$ .

Se poniemo fx(x) = Lon(x), x ∈ R, ≥/lorz

F(x) = S fx(y) dy per ogni ggx XE/R.

Esempio: distribuzione esponenziale

Siz X ~ Exp(d) con 200.

Allor2  $\overline{f_X(x)} = \begin{cases} 0 & \text{se } x < 0, \\ 1 - e^{\lambda x} & \text{se } x \ge 0. \end{cases}$ 

~) Ty è differenziabile con continuità in 12/803:

 $\overline{f}_{X}'(x) = \lambda e^{-\lambda x} \cdot \underline{f}_{(0,\infty)}(x), \quad x \in \mathbb{R} \setminus \{0\}.$ 

Se ponizmo fx(x) = 1.e. Lono(x), XER,

Ellorz  $f_{\chi}(x) = \int_{-\infty}^{x} f_{\chi}(y) dy$  per ogni  $x \in \mathbb{R}$ .

Notz: La densité continue di une tunzione di ripatizione, se esiste, è determinete sola univocamente e parte un insieme di misure (di Lebesque) zero.

Par noi i ponté di non-déférenzizbilité délleté
tonzione di vipartizione.

Condizione sufficiente per la continuità assoluta di una funzione di ripartizione:

Siz F: IR -> [0,1] unz funzione di ripertizione.

Se Tè continuz ed esiste un insieme

Trans di punti isolati 7 c 1R

(cioè: 17 n [aib] / co per ogni scelte di aiber conact]

tale che Fè di classe C' in IR/7,

ellore Fè essolutemente continue con

densite dete de

f(x) = F(x). LR17(x). XEIR.

Esempi : distribuzione unitorne, ed (7p.83)



Le densité si possono usere per definire funcioni di ripertizione.

Unz densitz & unz funzione  $f: IR \rightarrow [0,\infty)$ integrabile tale che  $\int_{-\infty}^{\infty} f(x) dx = 1$ .

Data una tale funzione fi si ha che

 $\overline{+}(x) = \int_{-\infty}^{x} f(y)dy, \quad y \times \in \mathbb{R},$ 

définisce une fonzione di ripartizione.

Esempio: distribuzione standard normale (standard)

Le tunzione ficcion dete de

 $f_{N(0,1)}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, x \in \mathbb{R},$ 

è une densité. Le tonzione dincipentizione

 $\widehat{\Phi}(x) = \int_{-\infty}^{\infty} f_{N(0,1)}(y) dy, \quad x \in \mathbb{R}, \quad \widehat{e} \in \mathbb{R}$ 

funzione di ripartizione della distribuzione mormale standard.

852

Note (A Analisi):

 $\int_{-\infty}^{\infty} e^{-\frac{X^2}{2}} dx = \sqrt{2\pi}.$ 

Più in generale i

Siz MER, e siz 0>0.

All Le funcione fulmos) dete de

 $f_{N(\mu_{1}\sigma^{2})}(x) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}, x \in \mathbb{R},$ 

è unz densité, ed è le densité delle

distribuzione normale o gaussiana

di medie ne e verience or (cf. infre)