МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №5

по дисциплине 'ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА'

Вариант №19

Выполнил: Студент группы Р3213 Свиридов Дмитрий Витальевич Преподаватель: Малышева Татьяна Алексеевна

Санкт-Петербург, 2021

Цель работы

Изучить методы интерполяции функции и реализовать два из них средствами программирования. Понять их сходства и различия.

Ход работы

X	y			
1,10	0,2234			
1,25	1,2438			
1,40	2,2644			
1,55	3,2984			
1,70	4,3222			
1,85	5,3516			
2,00	6,3867			

\mathbf{X}_{1}	X_2		
1,189	1,881		

Xi	y i	$\Delta \mathbf{y_i}$	$\Delta^2 \mathbf{y_i}$	Δ^3 yi	$\Delta^4 \mathbf{y_i}$	$\Delta^5 \mathbf{y_i}$	$\Delta^6 \mathbf{y_i}$
1,10	0,2234	1,0204	0,0002	0,0132	-0,0368	0,0762	-0,1313
1,25	1,2438	1,0206	0,0134	-0,0236	0,0394	-0,0551	
1,40	2,2644	1,0340	-0,0102	0,0158	-0,0157		
1,55	3,2984	1,0238	0,0056	9,99*10 ⁻⁵			
1,70	4,3222	1,0294	0,0057				
1,85	5,3516	1,0351					
2,00	6,3867						

Вычисление Х_{1.} Первая интерполяционная формула Ньютона.

$$t = (x - x_0)/h$$

$$y(0,189) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!}\Delta^3 y_0 +$$

$$+ \frac{t(t-1)(t-2)(t-3)}{4!} \Delta^4 y_0 + \frac{t(t-1)(t-2)(t-3)(t-4)}{5!} \Delta^5 y_0 +$$

$$+\frac{t(t-1)(t-2)(t-3)(t-4)(t-5)}{6!}\Delta^{6}y_{0} = 0,8348$$

Вычисление X_2 . Вторая интерполяционная формула Ньютона.

$$t = (x - x_n)/h$$

$$y(0.881) = y_6 + t\Delta y_5 + \frac{t(t+1)}{2!}\Delta^2 y_4 + \frac{t(t+1)(t+2)}{3!}\Delta^3 y_3 + \frac{t(t+1$$

$$+\frac{t(t+1)(t+2)(t+3)}{4!}\Delta^4y_2+\frac{t(t+1)(t+2)(t+3)(t+4)}{5!}\Delta^5y_1+$$

$$+\frac{t(t+1)(t+2)(t+3)(t+4)(t+5)}{6!}\Delta^{6}y_{0} = 5,5671$$

Блок-схемы используемых методов

Рисунок 1 - Блок-схема многочлена Лагранжа

Рисунок 2 - Блок-схема многочлена Ньютона

Листинг программы

github.com/slamach/math-lab5

Результаты выполнения программы


```
Дабораторная работа #4 (19)
Интерполяция функций

Выберите метод интерполяции.

1 — Многочлен Лагранжа
2 — Многочлен Ньютона с конечными разностями
Метод решения: 1

Выберите способ ввода исходных данных.

1 — Набор точек
2 — Функция
Способ: 1

Вводите координаты через пробел, каждая точка с новой строки.
Чтобы закончить, введите 'END'.
0.1 1.25

0.2 2.38
0.3 3.79
0.4 5.44
0.5 7.14
END

Введите значение аргумента для интерполирования.
Значение аргумента: 0.15

Результаты вычисления.
Приближенное значение функции: 1.7833593749999992
```

Вывод

В результате выполнения данной лабораторной работой я познакомился с методами интерполяции функции и реализовал метод с использованием многочлена Лагранжа и метод с использованием многочлена Ньютона с конечными разностями на языке программирования Python, закрепив знания.

Сравним методы между собой. Использование многочлена Лагранжа резонно лишь, когда необходимо интерполировать несколько точек на одном и том же отрезке. В остальном это более медленный и нестабильным метод интерполяции, который, в основном, используется для теоретических нужд. Использование многочлена Ньютона позволяет быстрее и с меньшей погрешностью проводить вычисления, а также эффективно добавлять новые точки в отрезок интерполяции.