Permit Number 9708 and PSDTX861M3

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name	Emiss	ion Rates
		(3)	lbs/hour	TPY (4)
MAINTENANCE EMISSIONS CAPS	S: (7)	voc	4517.54	33.06
		NO _x	116.53	14.83
		СО	677.03	18.89
		SO ₂	1768.80	6.13
		H ₂ S	19.31	0.05
		HCI	4.00	< 0.01
		РМ	2.02	0.44
		PM ₁₀	2.02	0.44
		PM _{2.5}	2.02	0.44
B-10	No. 18 Boiler	NO _X	8.73	38.22
		СО	28.08	57.67
		VOC	1.21	5.28
		SO ₂	5.18	10.15
		PM	1.67	7.30
		PM ₁₀	1.67	7.30
		PM _{2.5}	1.67	7.30
B-11	No. 19 Boiler	NO _X	8.73	38.22
		СО	15.86	69.47
		VOC	1.21	5.28
		SO ₂	5.18	10.15
		PM	1.67	7.30
		PM ₁₀	1.67	7.30
		PM _{2.5}	1.67	7.30

B-12	600# Boiler	NO _X	49.28	155.43
		СО	17.47	61.21
		VOC	1.33	4.66
		SO ₂	5.70	8.94
		PM	1.84	6.43
		PM ₁₀	1.84	6.43
		PM _{2.5}	1.84	6.43
B-4	No. 11 Boiler	NO _X	17.01	59.59
		СО	6.35	18.32
		VOC	0.48	1.69
		SO ₂	2.07	3.25
		PM	0.67	2.34
		PM ₁₀	0.67	2.34
		PM _{2.5}	0.67	2.34
B-6	No. 13 Boiler	NOx	15.60	54.66
		СО	5.82	17.59
		VOC	0.44	1.55
		SO ₂	1.90	2.98
		PM	0.61	2.14
		PM ₁₀	0.61	2.14
		PM _{2.5}	0.61	2.14
B-8	No. 15 Boiler	NO _X	9.40	32.94
		СО	11.10	38.92
		VOC	0.84	2.96
		SO ₂	3.62	5.69
		РМ	1.17	4.09
		PM ₁₀	1.17	4.09
		PM _{2.5}	1.17	4.09

B-9	No. 16 Boiler	NO _X	13.16	32.94
		СО	11.11	38.92
		VOC	0.84	2.96
		SO ₂	3.62	5.69
	РМ	PM	1.17	4.09
		PM ₁₀	1.17	4.09
	PM _{2.5}	PM _{2.5}	1.17	4.09
H-1	No. 1 Crude	NO _X	18.59	46.46
	Charge Heater	СО	21.96	82.34
		VOC	1.67	6.26
		SO ₂	7.16	12.03
		PM	2.31	8.66
		PM ₁₀	2.31	8.66
		PM _{2.5}	2.31	8.66
H-11	No. 2 Crude	NO _X	3.87	14.23
	Charge Heater (Anderson)	СО	6.54	24.01
	(VOC	0.50	1.83
		SO ₂	2.13	3.51
		PM	0.69	2.52
		PM ₁₀	0.69	2.52
		PM _{2.5}	0.69	2.52

H-13	Gas Oil Frac.	NO _X	4.00	17.52
	Heater	СО	2.84	12.42
		VOC	0.22	0.94
		SO ₂	0.93	1.81
		РМ	0.30	1.31
		PM ₁₀	0.30	1.31
		PM _{2.5}	0.30	1.31
H-14	Unifiner Charge	NO _X	2.60	11.38
	Heater	СО	1.88	8.23
		VOC	0.14	0.63
		SO ₂	0.61	1.20
		РМ	0.20	0.87
		PM ₁₀	0.20	0.87
		PM _{2.5}	0.20	0.87
H-15	No. 1 Naphtha	NO _x	1.63	7.12
	Hydrotreater Desulfurizer Boiler	со	2.56	11.22
		VOC	0.19	0.85
		SO ₂	0.84	1.64
		РМ	0.27	1.18
		PM ₁₀	0.27	1.18
		PM _{2.5}	0.27	1.18
H-18	No. 1 Reformer	NO _X	17.96	52.81
	Charge Heater	СО	25.45	33.37
		VOC	1.94	6.47
		SO ₂	8.31	12.43
		PM	2.68	8.94
		PM ₁₀	2.68	8.94
		PM _{2.5}	2.68	8.94

H-2	No. 1 Vacuum	NO _X	3.08	11.52
	Charge Heater	СО	6.24	11.66
		VOC	0.47	1.77
		SO ₂	2.04	3.41
		PM	0.66	2.45
		PM ₁₀	0.66	2.45
		PM _{2.5}	0.66	2.45
H-26	No. 2 Vacuum	NO _X	4.06	15.76
	Charge Heater	СО	6.55	25.39
		VOC	0.50	1.93
		SO ₂	2.14	3.71
		РМ	0.69	2.67
		PM ₁₀	0.69	2.67
		PM _{2.5}	0.69	2.67
H-27	P/P Mole Sieve	NO _X	1.35	0.76
	Regeneration Heater	СО	0.68	0.38
		VOC	0.05	0.03
		SO ₂	0.22	0.06
		РМ	0.07	0.04
		PM ₁₀	0.07	0.04
		PM _{2.5}	0.07	0.04
H-28	Active Butane	NO _X	1.16	5.07
	Oxygenate Heater	СО	0.84	3.67
		VOC	0.06	0.28
		SO ₂	0.27	0.54
		РМ	0.09	0.39
		PM ₁₀	0.09	0.39
		PM _{2.5}	0.09	0.39

Hydrotreater Charge Heater CO	H-34	No. 1 Reformer	NO _X	3.08	13.48
SO ₂ 0.59 1.16 PM		Stabilizer Reboiler	СО	1.82	7.96
PM 0.19 0.84 PM ₁₀ 0.19 0.84 PM ₂₅ 0.19 0.84 PM ₂₅ 0.19 0.84 H-36 H-36 No. 2 Naphtha Hydrotreater Charge Heater No. 2 Naphtha Hydrotreater Charge Heater No. 2 Naphtha PM ₁₀ 0.43 1.88 PM ₁₀ 0.43 1.88 PM ₂₅ 0.43 1.89 PM ₂₅ 0.43 1.99 PM ₂₅ 0.48 1.19 PM ₁₀ 0.48 1.19 PM ₁₀ 0.48 1.19 PM ₂₅ 0.49 1.19 PM ₂			VOC	0.14	0.61
PM10 0.19 0.84 PM25 0.19 0.84 PM26 0.19 0.84 PM27 0.19 0.84 PM28 0.19 0.80 PM28 0.10 0.10 PM29 0.10 0.10 PM29 0.10 0.10 PM29 0.10 0.10 PM29 0.10 0.10 PM25 0.10 0.10 PM30 0.10 0.10			SO ₂	0.59	1.16
H-36 No. 2 Naphtha Hydrotreater Charge Heater No. 2 Naphtha Hydrotreater Charge Heater Hydrotreater Charge Heater No. 2 Naphtha Hydrotreater Desulfurizier Reboiler H-37 H-37 No. 2 Naphtha Hydrotreater Desulfurizier Reboiler No. 3 1.88 No. 4.54 11.32 VOC 0.34 0.86 SO2 1.48 1.65 PM 0.48 1.19 PM ₁₀ 0.48 1.19 PM ₂₅ 0.48 PM ₂₅ PM ₂			PM	0.19	0.84
H-36 No. 2 Naphtha Hydrotreater Charge Heater No. 2 Naphtha Hydrotreater Charge Heater No. 2 Naphtha Hydrotreater Charge Heater No. 2 Naphtha PM ₁₀ No. 2 Naphtha PM ₂₅ No. 3 Na 3 Na 8 No. 2 Naphtha PM ₂₅ No. 2 Naphtha PM ₂₅ No. 2 Naphtha PM ₂₅ No. 3 Na 3 Na 3 Na 4 Na 1.19 PM ₁₀ No. 3 Na 1.358 No. 2 Naphtha PM ₂₅ No. 3 Na 1.358 No. 2 Naphtha PM ₂₅ No. 3 Na 1.358 No. 2 Naphtha PM ₂₅ No. 3 N			PM ₁₀	0.19	0.84
Hydrotreater Charge Heater (CO			PM _{2.5}	0.19	0.84
Charge Heater CO	H-36		NO _X	1.78	7.80
H-37 No. 2 Naphtha Hydrotreater Desulfurizier Reboiler H-38 #2 Reformer Charge Heater #2 Reformer Charge Heater #2 Reformer Charge Heater PM			СО	4.07	8.92
H-37 No. 2 Naphtha Hydrotreater Desulfurizier Reboiler No. 3		onal go i loato.	VOC	0.31	1.36
H-37 No. 2 Naphtha Hydrotreater Desulfurizier Reboiler No. 34			SO ₂	1.33	2.61
H-37 No. 2 Naphtha Hydrotreater Desulfurizier Reboiler No. 2 Naphtha Hox 6.40 CO 4.54 11.32 VOC 0.34 0.86 SO ₂ 1.48 1.65 PM 0.48 1.19 PM ₁₀ PM _{2.5} 0.48 1.19 H-38 H-38 #2 Reformer Charge Heater Charge Heater No. 13.58 42.07 CO 24.67 66.53 VOC 1.88 5.82 SO ₂ 8.05 11.17 PM 2.59 8.04 PM ₁₀ 2.59 8.04			РМ	0.43	1.88
H-37 No. 2 Naphtha Hydrotreater Desulfurizier Reboiler NOx 6.40 15.97			PM ₁₀	0.43	1.88
Hydrotreater Desulfurizier Reboiler CO 4.54 11.32 VOC 0.34 0.86 SO ₂ 1.48 1.65 PM 0.48 1.19 PM ₁₀ 0.48 1.19 PM _{2.5} 0.48 1.19 H-38 #2 Reformer Charge Heater CO 4.54 11.32 VOC 0.34 0.86 SO ₂ 1.48 1.65 PM 0.48 1.19 PM _{2.5} 0.48 1.19 VOC 1.88 5.82 SO ₂ 8.05 11.17 PM 2.59 8.04 PM ₁₀ 2.59 8.04			PM _{2.5}	0.43	1.88
H-38 #2 Reformer Charge Heater #2 Reformer Charge Heater #2 Reformer Charge Heater #2 Reformer Charge Heater #3 PM #4.54 4.54 11.32 0.86 SO2 1.48 1.65 PM 0.48 1.19 PM _{2.5} 0.48 1.19 NOx 13.58 42.07 CO 24.67 66.53 VOC 1.88 5.82 SO2 8.05 11.17 PM 2.59 8.04	H-37	No. 2 Naphtha	NO _X	6.40	15.97
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$			СО	4.54	11.32
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			VOC	0.34	0.86
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			SO ₂	1.48	1.65
H-38 #2 Reformer Charge Heater #2 Reformer Charge Heater #2 Reformer Charge Heater NO _x 13.58 42.07 CO 24.67 66.53 VOC 1.88 5.82 SO ₂ 8.05 11.17 PM 2.59 8.04 PM ₁₀ 2.59 8.04			РМ	0.48	1.19
H-38 #2 Reformer Charge Heater NOx 13.58 42.07			PM ₁₀	0.48	1.19
Charge Heater CO 24.67 66.53 VOC 1.88 5.82 SO2 8.05 11.17 PM 2.59 8.04 PM ₁₀ 2.59 8.04			PM _{2.5}	0.48	1.19
VOC 1.88 5.82 SO2 8.05 11.17 PM 2.59 8.04 PM ₁₀ 2.59 8.04	H-38		NO _X	13.58	42.07
SO2 8.05 11.17 PM 2.59 8.04 PM ₁₀ 2.59 8.04		Charge Heater	СО	24.67	66.53
PM 2.59 8.04 PM ₁₀ 2.59 8.04			VOC	1.88	5.82
PM ₁₀ 2.59 8.04			SO ₂	8.05	11.17
			PM	2.59	8.04
PM _{2.5} 2.59 8.04			PM ₁₀	2.59	8.04
			PM _{2.5}	2.59	8.04

H-39	#2 Reformer	NO _X	3.47	12.78
	Stabilizer Reboiler Heater	СО	2.05	7.55
		VOC	0.16	0.57
		SO ₂	0.67	1.10
		PM	0.22	0.79
		PM ₁₀	0.22	0.79
		PM _{2.5}	0.22	0.79
H-40	No. 1 PDA Asphalt	NO _X	10.21	37.17
	Heater (Asphalt- South)	СО	5.66	10.29
	334,	VOC	0.43	1.57
		SO ₂	1.85	3.01
		PM	0.59	2.16
		PM ₁₀	0.59	2.16
		PM _{2.5}	0.59	2.16
H-41	No. 2 Crude	NO _X	16.40	71.83
	Charge-Born Heater	СО	21.93	36.49
		VOC	1.67	7.31
		SO ₂	7.16	14.03
		PM	2.31	10.10
		PM ₁₀	2.31	10.10
		PM _{2.5}	2.31	10.10
H-42	Hydrocracker	NO _x	4.06	15.28
	Recycle Heater	СО	7.02	13.21
		VOC	0.53	2.01
		SO ₂	2.29	3.86
		PM	0.74	2.78
		PM ₁₀	0.74	2.78
		PM _{2.5}	0.74	2.78

H-43	HCU Debutanizer	NO _X	3.31	14.49
	Reboiler Heater	СО	6.17	13.52
		VOC	0.47	2.06
		SO ₂	2.01	3.95
		PM	0.65	2.84
		PM ₁₀	0.65	2.84
		PM _{2.5}	0.65	2.84
H-45	No. 1 Naphtha	NO _X	2.66	11.67
	Hydrotreater Charge Heater	СО	4.97	10.88
	3	VOC	0.38	1.66
		SO ₂	1.62	3.18
		PM	0.52	2.29
		PM ₁₀	0.52	2.29
		PM _{2.5}	0.52	2.29
H-46	No. 1 Reformer	NO _X	9.53	32.77
	No. 1 Interheater	СО	14.68	50.50
		VOC	1.12	3.84
		SO ₂	4.79	7.38
		PM	1.54	5.31
		PM ₁₀	1.54	5.31
		PM _{2.5}	1.54	5.31
H-48	Diesel	NO _X	3.42	14.98
	Hydrotreater Charge Heater	СО	6.73	14.74
		VOC	0.51	2.24
		SO ₂	2.20	4.31
		PM	0.71	3.10
		PM ₁₀	0.71	3.10
		PM _{2.5}	0.71	3.10

Emission Sources - Maximum Allowable Emission Rates

H-6	Dago Heater	NO _X	3.39	14.87
		СО	2.01	8.78
		VOC	0.15	0.67
		SO ₂	0.65	1.28
		PM	0.21	0.92
		PM ₁₀	0.21	0.92
		PM _{2.5}	0.21	0.92
H-64	No. 4 Hydrotreater	NO _X	1.27	5.54
	Charge Heater	СО	2.36	5.17
		VOC	0.18	0.79
		SO ₂	0.77	1.51
		PM	0.25	1.09
		PM ₁₀	0.25	1.09
		PM _{2.5}	0.25	1.09
H-8	HCU Charge	NO _X	4.69	20.52
	Heater (Petrochem North)	СО	6.27	27.45
		VOC	0.48	2.09
		SO ₂	2.04	4.01
		PM	0.66	2.88
		PM ₁₀	0.66	2.88
		PM _{2.5}	0.66	2.88
H-80	FCC Gas HDS	NO _X	3.05	13.36
	Charge Heater	СО	6.98	30.55
		VOC	0.53	2.32
		SO ₂	2.28	4.46
		PM	0.73	3.21
		PM ₁₀	0.73	3.21
		PM _{2.5}	0.73	3.21
H-88	Acid Plant Startup	NO _X	0.79	3.46
	Heater (Intermittent)	СО	0.40	1.75
	(VOC	0.03	0.13
		SO ₂	0.13	0.26
		PM	0.04	0.18
		PM ₁₀	0.04	0.18
		PM _{2.5}	0.04	0.18
H-89	H2 Unit Reformer	NO _x	5.33	15.58

		СО	27.17	59.50
		VOC	1.92	8.40
		SO ₂	5.41	11.86
		PM	2.65	11.61
		PM ₁₀ PM _{2.5}	2.65	11.61
			2.13	9.35
		HAPs	0.66	2.88
		NH ₃	1.65	7.24
H-9	No. 2 Crude	NO _X	3.02	13.25
	Heater (Petrochem	СО	3.40	7.45
	South)	VOC	0.26	1.13
		SO ₂	1.11	2.18
		PM	0.36	1.57
		PM ₁₀	0.36	1.57
		PM _{2.5}	0.36	1.57
F-20	No. 1 Refinery	VOC (5) (6)	3.52	15.40
	Cooling Tower	Benzene	0.21	0.92
		PM	3.06	13.41
		PM ₁₀	0.51	2.24
		PM _{2.5}	0.01	0.02
F-21	Gasoline Plant	VOC (5) (6)	2.90	12.69
	Cooling Tower	Benzene	0.17	0.76
		PM	2.54	11.13
		PM ₁₀	0.42	1.83
		PM _{2.5}	< 0.01	0.02
F-47	No. 2 Refinery	VOC (5) (6)	2.28	9.97
	Cooling Tower	Benzene	0.14	0.59
		PM	2.16	9.48
		PM ₁₀	0.30	1.29
		PM _{2.5}	< 0.01	0.01

E-7	Unifiner Engine	NO _X	4.56	19.98
	(Clark)	со	0.08	0.36
		VOC	0.17	0.76
		SO ₂	0.01	0.01
		PM	0.07	0.29
		PM ₁₀	0.07	0.29
		PM _{2.5}	0.07	0.29
FL-9	Brine Degas Drum	NO _X	8.21	0.99
		со	16.38	1.98
		VOC	30.15	5.52
FL-6	Wastewater Flare	NOx	2.09	4.59
		СО	10.66	23.38
		VOC	5.00	10.94
		SO ₂	2.03	1.33
		H ₂ S	0.02	0.01
		NH ₃	< 0.01	< 0.01
Combined Compliance Short Term		NO _X	40.46	34.31
for Flares FL-1, FL-3, FL-4, and FL-	-8 (8)	СО	210.06	190.66
		VOC	352.09	179.46
		SO ₂	19.05	15.69
		H ₂ S	6.07	0.27
FGR-SUMP	FGR Oily Water Sump	voc	0.03	0.07
FL-7	Loading Rack	NO _X	6.39	8.83
	Vapor Combustor	СО	15.73	21.89
		VOC (6)	19.23	9.71
		Benzene	6.87	1.38
		SO ₂	0.09	0.02
		РМ	0.26	0.17
		PM ₁₀	0.26	0.17
		PM _{2.5}	0.26	0.17
L-2	Asphalt Truck Loading Rack	voc	7.49	14.13
L-11	Railcar/ Truck	VOC (6)	10.48	10.20
	Loading Rack	Benzene	0.32	0.32
L-7	Asphalt Railcar Rack	voc	6.97	12.82

V-29	Sulfuric Acid Plant	SO ₂	21.67	7.36
	Vent	H ₂ SO ₄	0.63	2.74
V-20	F.C.C.U.	NOx	220.11	163.36
	(Fluidized Catalytic Cracking	СО	37.80	93.07
	Unit)	VOC	10.55	38.19
		SO ₂	459.69	138.69
		PM	80.00	294.02
		PM ₁₀	80.00	294.02
		PM _{2.5}	80.00	294.02
		NH ₃	40.74	146.00
		H ₂ SO ₄	12.40	41.98
		Hydrogen Cyanide	25.20	108.54
V-18	No. 1 Reformer	СО	3.27	14.31
	Cat Regenerator Vent	VOC	0.61	2.68
		HCI	0.15	0.67
		Cl ₂	0.04	0.19
V-21	No. 2 Reformer	СО	70.00	3.36
	Cat Regenerator Vent	VOC	0.03	< 0.01
		HCI	1.06	0.05
		Cl ₂	0.31	0.01
V-13	Soda Ash Silo	РМ	0.09	0.02
		PM ₁₀	0.09	0.02
		PM _{2.5}	0.09	0.02
V-14	Lime Silo Vent	PM	0.09	0.02
		PM ₁₀	0.09	0.02
		PM _{2.5}	0.09	0.02
V-17	FCC Catalyst Silo	PM	0.01	0.01
	Vent	PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01

V-5	SRU No. 1	NOx	0.40	1.75
	Incinerator	СО	1.87	8.20
		VOC	0.19	0.82
		SO ₂	10.69	46.84
		H ₂ S	0.11	0.50
		PM	0.38	1.67
		PM ₁₀	0.38	1.67
		PM _{2.5}	0.38	1.67
V-16	SRU No. 2 Incinerator	NO _X	0.56	2.45
		СО	13.66	59.82
		VOC	0.20	0.87
		SO ₂	10.96	48.01
		H ₂ S	0.12	0.51
		PM	0.84	3.68
		PM ₁₀	0.84	3.68
		PM _{2.5}	0.84	3.68
V-30	FCCU Spent Catalyst Roll Off Boxes	PM	< 0.01	< 0.01
		PM ₁₀	< 0.01	< 0.01
		PM _{2.5}	< 0.01	< 0.01
S-044	Tank 144	Caustic	0.01	0.01
S-142	Tank 232	Caustic	0.01	0.01
CARBON CAN	Carbon Canister System Fugitives (CAS1 – CAS9)	VOC	3.24	5.68
F-1CRUDE, F-1REF_HT,	Cap for Fugitives	VOC (5) (6)	151.27	662.17
F-2CRUDE, F-2REF_HT, F-4HT, F-HCU, F-ALKY_PDA, F-ALKY,		Benzene (5)	0.99	4.31
F-ASPHALT, F-CAVERN, F-FGR, F-DESALT, F-DHDSU, F-ETNKFRM. F-FCCU, F-GASBLD, F-GASPLT, F-GHDS, F-HDS_GOF, F-LPG, F-IOCTENE, F-NBULKLD, F-NTNKFRM, F-ORU, F-PENEX, F-PUMPSTA, F-RAILLOAD, F-RLE, F-SBULKLD, F-SRU1, F-SRU2, F-SWS, F-UNIFINER, F-WTNKFRM, F-MSAT, F-WWTP, F-AMINE2, F-MSATLOAD, F-SUMP		H ₂ S (5)	0.24	1.02
		NH₃ (5)	0.03	0.14

S-168, S-173, S-174, S-175, S-184, S-195, S-196, S-197, S-199, S-227, S-228,	Cap for Storage	VOC (6)	3.08	6.57
	Tanks	Benzene	0.01	0.02
OX-001	Wastewater	NO _X	< 0.01	< 0.01
	Sludge Centrifuge Catalytic Oxidizer	СО	0.34	1.48
		VOC	0.03	0.11
		SO ₂	1.25	5.49
		PM	< 0.01	< 0.01
		PM ₁₀	< 0.01	< 0.01
		PM _{2.5}	< 0.01	< 0.01
ADDITIVETK	Biodiesel Additive Tank	VOC	5.03	1.68
F-85	Painting	VOC	4.25	1.26
F-BRINE	Brine Pond Fugitives	VOC (5)	23.74	2.80
MSS_ABRBLS	Abrasive Blasting	PM	0.54	0.37
	Operation	PM ₁₀	0.07	0.05
		PM _{2.5}	< 0.01	< 0.01
F-HYDROGEN	H2 Unit Fugitives (5)	VOC	0.37	1.47
		со	2.34	10.26
		SO ₂	0.01	0.01
		NH ₃	0.01	0.05
FL-4	H2 Unit MSS Emissions from	NO _x	20.58	3.59
	Flares (9)	со	104.86	17.73
		voc	0.16	0.01
		SO ₂	1.70	0.03
		NH₃	18.25	0.44
H2-MSS	H2 Unit MSS (10)	со	15.34	10.99
		voc	0.72	0.03
		H ₂ S	0.01	0.01
		РМ	0.09	0.01
		PM ₁₀	0.09	0.01

	PM _{2.5}	0.01	0.01
	NH ₃	0.08	0.01

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - NO_x total oxides of nitrogen
 - SO₂ sulfur dioxide
 - PM total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented
 - PM₁₀ total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as
 - represented
 - PM_{2.5} particulate matter equal to or less than 2.5 microns in diameter
 - $\begin{array}{lll} \text{CO} & \text{ carbon monoxide} \\ \text{H}_2\text{S} & \text{ hydrogen sulfide} \\ \text{H}_2\text{SO}_4 & \text{ sulfuric acid} \\ \text{HCI} & \text{ hydrogen chloride} \\ \end{array}$
 - HAPs hazardous air pollutant as listed in § 112(b) of the Federal Clean Air Act or Title 40 Code of
 - Federal Regulations Part 63, Subpart C
 - $\begin{array}{ccc} NH_3 & & \text{ ammonia} \\ CI_2 & & \text{ chlorine} \end{array}$
- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) VOC rate includes Benzene emissions.
- (7) See Attachment D for a list of sources included in the Maintenance Emissions Cap.
- (8) The caps for flares include emissions associated with the flare gas recovery maintenance.
- (9) Includes only maintenance, startup, and shutdown (MSS) emissions from the activities authorized in the special conditions controlled by the No. 3 Hydrocracking Unit (HCU) Flare authorized in Permit Number 9708.
- (10) Includes only MSS emissions from the activities authorized in the special conditions.

Date: June 10, 2022