## Derivations and *I*-smoothness

Swayam Chube

Last Updated: June 17, 2025

# §1 Derivations

**DEFINITION 1.1.** Let A be a ring and M an A-module. A *derivation* from A to M is a map  $D: A \to M$  satisfying

- (i) D(a+b) = Da + Db, and
- (ii) D(ab) = aDb + bDa for all  $a, b \in A$ .

The set of all such derivations is denoted by Der(A, M) and is naturally an A-module through

$$(D+D')a = Da + D'a$$
 and  $(aD)b = a(Db)$ .

Further, if *A* is a *k*-algebra via a ring homomorphism  $f: k \to A$ , we say that  $D \in \text{Der}(A, M)$  is a *k*-derivation if  $D \circ f = 0$ . The set of all *k*-derivations is denoted by  $\text{Der}_k(A, M)$ .

For  $D, D' \in Der(A, M)$ , define

$$[D,D'] = D \circ D' - D' \circ D \in Der(A,M).$$

It is then easy to check that under the above bracket operation  $\operatorname{Der}_k(A,M)$  forms a Lie algebra over k when k is a field.

Inductively, it is easy to show that derivations satisfy a "Leibnitz formula":

$$D^{n}(ab) = \sum_{i=0}^{n} \binom{n}{i} D^{i} a \cdot D^{n-i} b.$$

If A has characteristic p > 0, then we obtain

$$D^p(ab) = D^p a \cdot b + a \cdot D^p b$$

so that  $D^p \in \text{Der}(A, M)$ .

Note that the functor  $\operatorname{Der}_k(A,-)\colon \mathfrak{Mod}_A \to \mathfrak{Mod}_A$  is covariant. We shall eventually show that it is "representable".

**REMARK 1.2.** We remark that the *k*-derivations are precisely the *k*-linear derivations. Indeed, if  $D \in \text{Der}_k(A, M)$ , then for  $x \in k$  and  $a \in A$ , we have

$$D(xa) = xDa + aDx = xDa.$$

On the other hand, if  $D \in \text{Der}(A, M)$  is k-linear, then for  $x \in k$ , we have

$$Dx = D(x \cdot 1) = xD1 + Dx = Dx,$$

since

$$D1 = D(1 \cdot 1) = D1 + D1 \Longrightarrow D1 = 0.$$

 $<sup>^{1}</sup>k$  is any ring.

**DEFINITION 1.3.** Let A be a ring and N an A-module. We define the *idealization* of N in A to be

$$A \rtimes N := \left\{ \begin{pmatrix} a & x \\ & a \end{pmatrix} : a \in A, x \in N \right\}.$$

This clearly forms a ring under matrix multiplication. There is a natural map  $A \to A \rtimes N$  embedding A as diagonal matrices and  $N \hookrightarrow A \rtimes N$  sits as an ideal with  $N^2 = 0$ .

Let k be a ring and  $k \to A$  a k-algebra. Let  $\mu: A \otimes_k A \to A$  be given by  $\mu(x \otimes y) = xy$ , set  $B := A \otimes_k A/I^2$  and  $\Omega_{A/k} := I/I^2$ . Since the annihilator of  $\Omega_{A/k}$  as a B-module contains the ideal I, it is naturally an A-module. The action is explicitly given by

$$a \cdot (x \otimes y + I^2) = ax \otimes y + I^2 = x \otimes ay + I^2$$

which is precisely the *B*-action through either  $a \otimes 1 + I^2$  or  $1 \otimes a + I^2$ . Further, there is a natural map  $d: A \to \Omega_{A/k}$  given by

$$da = 1 \otimes a - a \otimes 1$$
.

It is easy to check that d is a k-derivation.

**THEOREM 1.4.** The pair  $(\Omega_{A/k}, d)$  has the following universal property: If M is an A-module and  $D \in \operatorname{Der}_k(A, M)$ , then there is a unique A-linear map  $f : \Omega_{A/k} \to M$  such that  $f \circ d = D$ .

In particular, there is a natural isomorphism of functors  $\operatorname{Der}_k(A,-) \cong \operatorname{Hom}_A(\Omega_{A/k},-)$ .

*Proof.* Let  $D \in \operatorname{Der}_k(A, M)$  and let  $\varphi : A \otimes_k A \to A \rtimes M$  be given by

$$\varphi(x\otimes y)=\begin{pmatrix} xy & xDy\\ & xy\end{pmatrix}.$$

It is easy to check that  $\varphi$  is a homomorphism of k-algebras and  $\varphi$  maps I into M. Further, since  $M^2=0$ , it follows that  $I^2\subseteq \ker \varphi$ , so that  $\varphi$  descends to a map  $f:\Omega_{A/k}\to M$ . This map is A-linear; indeed, if  $\xi=\sum_i x_i\otimes y_i+I^2\in\Omega_{A/k}$ , then for  $a\in A$ ,

$$f(a\xi) = \sum_{i} = ax_{i}y_{i} = af(\xi).$$

Moreover, for  $a \in A$ ,

$$f(da) = f(1 \otimes a - a \otimes 1 + I^2) = Da,$$

so that  $f: \Omega_{A/k} \to M$  is the desired map. To see that f is unique, it suffices to prove:

**CLAIM.**  $\Omega_{A/k}$  is generated by  $\{da: a \in A\}$  as an A-module.

Indeed, let  $\xi = \sum_i x_i \otimes y_i + I^2 \in \Omega_{A/k}$ . Then  $\mu(\xi) = \sum_i x_i y_i = 0$ , so that

$$\xi = \sum_i x_i (1 \otimes y_i - y_i \otimes 1) + \sum_i x_i y_i \otimes 1 = \sum_i x_i dy_i.$$

This completes the proof.

**PROPOSITION 1.5.** Let *A* and *k* be *k*-algebras and set  $A' = A \otimes_k k'$ . Then

$$\Omega_{A'/k'} \cong \Omega_{A/k} \otimes_k k' \cong \Omega_{A/k} \otimes_A A'.$$

*Proof.* Let  $d: A \to \Omega_{A/k}$  be the universal derivation. This induces a map  $d' := d \otimes 1: A \otimes_k k' \to \Omega_{A/k} \otimes_k k'$ . We claim that the tuple  $(A', d', \Omega_{A/k} \otimes_k k')$  has the desired universal property. First, we must argue that d' is a k'-derivation. Indeed,

$$d'((a \otimes x) \cdot (a' \otimes x')) = d(aa') \otimes xx' = (ada' + a'da) \otimes xx' = (a \otimes x)d'(a' \otimes x') + (a' \otimes x')d'(a \otimes x),$$

and  $d'(1 \otimes x) = d1 \otimes x = 0$  for all  $x, x' \in k'$  and  $a, a' \in A$ . This shows that d' is a k'-derivation.

It remains to verify the universal property. Let  $D': A' \to M'$  be a k'-derivation. The composition  $D: A \to A' \to M'$  is clearly a k-derivation, and hence there is an A-linear map  $f: \Omega_{A/k} \to M'$  making

$$A \xrightarrow{D} M'$$

$$\downarrow d \qquad \qquad \downarrow f$$

$$\Omega_{A/k}$$

commute. The map f induces  $f \otimes \mathbb{1} : \Omega_{A/k} \otimes_k k' \to M' \otimes_k k'$ . There is a natural "multiplication" map  $M' \otimes_k k' \to M'$  given by  $m' \otimes x \mapsto x \cdot m'$ . Denote g by the composition

$$g: \Omega_{A/k} \otimes_k k' \xrightarrow{f \otimes \mathbb{I}} M' \otimes_k k' \to M'.$$

We contend that g is A'-linear. Any element of A' is of the form  $\sum_i a_i \otimes x_i$ , so it suffices to check linearity for elements of the form  $a \otimes x$  with  $a \in A$  and  $x \in k'$ . Indeed, for  $\omega \in \Omega_{A/k}$  and  $x' \in k'$ , we have

$$g\left((a\otimes x)\cdot(\omega\otimes x')\right)=f(a\omega)\otimes xx'=xx'\cdot f(a\omega)=(a\otimes x)\cdot (x'\cdot f(\omega))=(a\otimes x)\cdot g(\omega\otimes x').$$

Finally, note that the diagram



commutes because for  $a \in A$  and  $x \in k'$ , we have

$$(g \circ d')(a \otimes x) = g(da \otimes x) = x \cdot f(da) = x \cdot Da = x \cdot D'(a \otimes 1) = D'(a \otimes x),$$

as desired. The uniqueness of g follows from the fact that d'(A') generates  $\Omega_{A/k} \otimes_k k'$  as an A'-module, and the commutativity of the diagram determines the value of g on the set d'(A'). This completes the proof.

Let A be a k-algebra, and  $S \subseteq A$  be a multiplicative subset. If  $D: A \to M$  is a k-derivation, then it induces a k-derivation  $D_S: S^{-1}A \to S^{-1}M$  by

$$D\left(\frac{a}{s}\right) = \frac{s \cdot D(a) - a \cdot D(s)}{s^2} \in S^{-1}M.$$

It is an easy exercise to check that this is indeed a *k*-derivation.

**PROPOSITION 1.6.** Let A be a k-algebra, and  $S \subseteq A$  a multiplicative subset. Then

$$\Omega_{S^{-1}A/k} \cong \Omega_{A/k} \otimes_A S^{-1}A = S^{-1}\Omega_{A/k}.$$

*Proof.* Let  $d: A \to \Omega_{A/k}$  be the "universal derivation". We contend that the derivation  $d_S: S^{-1}A \to S^{-1}\Omega_{A/k}$  has the desired universal property of Kähler differentials. Let M be an  $S^{-1}A$ -module and let  $\partial: S^{-1}A \to M$  be a k-derivation. The composition  $D: A \to S^{-1}A \to M$  is clearly a k-derivation, and hence induces an A-linear map  $f: \Omega_{A/k} \to M$  making

$$A \xrightarrow{D} M$$

$$\downarrow d \qquad \qquad f$$

$$\Omega_{A/k}$$

commute. The map f further induces an  $S^{-1}A$ -linear map  $S^{-1}f:S^{-1}\Omega_{A/k}\to M$ . We contend that the diagram

$$S^{-1}A \xrightarrow{\partial} M$$

$$d_{S} \downarrow \qquad S^{-1}f$$

$$S^{-1}\Omega_{A/k}$$

commutes. Indeed,

$$S^{-1}f\circ d_S\left(\frac{a}{s}\right)=S^{-1}f\left(\frac{s\cdot da-a\cdot ds}{s^2}\right)=\frac{s\cdot f(da)-a\cdot f(ds)}{s^2}=\frac{s\cdot \partial a-a\cdot \partial s}{s^2}=\partial\left(\frac{a}{s}\right),$$

as desired. Again, the uniqueness follows from the fact that the image of  $d_S(S^{-1}A)$  generates  $S^{-1}\Omega_{A/k}$  as an  $S^{-1}A$ -module, thereby completing the proof.

**DEFINITION 1.7.** Let k be a ring. We say that a k-algebra A is 0-*smooth* if for any k-algebra C, any ideal  $N \leq C$  with  $N^2 = 0$ , and any k-algebra homomorphism  $u: A \to C/N$ , there exists a lift  $v: A \to C$  making

$$k \xrightarrow{\exists v} C$$

$$\downarrow \exists v \qquad \downarrow$$

$$A \xrightarrow{u} C/N$$

commute. Moreover, we say that A is 0-unramified over k if there exists at most one such v. When A is both 0-smooth and 0-unramified, we say that A is 0-étale.

**LEMMA 1.8.** Let  $k \to A$  be a homomorphism of rings. Then A is 0-unramified over k if and only if  $\Omega_{A/k} = 0$ .

*Proof.* Indeed, suppose  $\Omega_{A/k} = 0$ , and there are two lifts

$$\begin{array}{c|c}
k \longrightarrow C \\
\downarrow & \lambda_1 & \pi \\
A \longrightarrow C/N.
\end{array}$$

Let  $D = \lambda_1 - \lambda_2$ :  $A \to N$ . We note that N is naturally an A-module, through the action  $a \cdot n = \pi^{-1}u(a) \cdot n$ , which is well-defined since  $N^2 = 0$ . We claim that  $D \in \operatorname{Der}_k(A, N)$ . Let  $a, b \in A$ , then

$$aDb + bDa = a \cdot (\lambda_1(b) - \lambda_2(b)) + b \cdot (\lambda_1(a) - \lambda_2(a))$$

$$= \lambda_1(a)(\lambda_1(b) - \lambda_2(b)) + \lambda_2(b)(\lambda_1(a) - \lambda_2(b))$$

$$= \lambda_1(ab) - \lambda_2(ab)$$

$$= D(ab).$$

But since  $\Omega_{A/k} = 0$ , we have  $\operatorname{Der}_k(A, N) \cong \operatorname{Hom}_A(\Omega_{A/k}, N) = 0$ , whence D = 0, and thus  $\lambda_1 = \lambda_2$ . Conversely, suppose A is 0-unramified over k. Consider the commutative diagram

$$k \longrightarrow A \otimes_k A/I^2$$
 $\downarrow \qquad \qquad \downarrow$ 
 $A \longrightarrow A \otimes_k A/I$ 

where  $I = \ker(\mu: A \otimes_k A \to A)$  and the bottom map is  $a \mapsto a \otimes 1$ . Let  $\lambda_1: A \to A \otimes_k A/I^2$  and  $\lambda_2: A \to A \otimes_k A/I^2$  be given by

$$\lambda_1(a) = 1 \otimes a + I^2$$
 and  $\lambda_2(a) = a \otimes 1 + I^2$ .

These are both lifts of the bottom map and hence must be equal. That is,  $da = 1 \otimes a - a \otimes 1 \in I^2$ . Since the da's generate  $\Omega_{A/k}$  as an A-module, we must have that  $\Omega_{A/k} = 0$ , as desired.

THEOREM 1.9 (FIRST FUNDAMENTAL EXACT SEQUENCE). Let  $k \xrightarrow{f} A \xrightarrow{g} B$  be ring homomorphisms. This gives rise to an exact sequence

$$\Omega_{A/k} \otimes_A B \xrightarrow{\alpha} \Omega_{B/k} \xrightarrow{\beta} \Omega_{B/A} \to 0,$$
 (1)

where the maps are given by

$$\alpha(d_{A/k}a \otimes b) = bd_{B/k}g(a)$$
 and  $\beta(d_{B/k}b) = d_{B/A}b$ .

If moreover B is 0-smooth over A, then the sequence

$$0 \to \Omega_{A/k} \otimes_A B \xrightarrow{\alpha} \Omega_{R/k} \xrightarrow{\beta} \Omega_{R/A} \to 0, \tag{2}$$

is split exact.

*Proof.* Let T be a B-module. To show that (1) is exact, it suffices to show that

$$0 \to \operatorname{Hom}_{B}(\Omega_{B/A}, T) \xrightarrow{\beta^{*}} \operatorname{Hom}_{B}(\Omega_{B/k}, T) \xrightarrow{\alpha^{*}} \operatorname{Hom}_{B}(\Omega_{A/k} \otimes_{A} B, T).$$

Using the Hom-Tensor adjunction, we have

$$\operatorname{Hom}_B(\Omega_{A/k}\otimes_A B,T)\cong\operatorname{Hom}_B(B,\operatorname{Hom}_A(\Omega_{A/k},T))\cong\operatorname{Hom}_A(\Omega_{A/k},T)\cong\operatorname{Der}_k(A,T).$$

Thus, it suffices to show that

$$0 \to \operatorname{Der}_A(B,T) \xrightarrow{\operatorname{inclusion}} \operatorname{Der}_k(B,T) \xrightarrow{-\circ g} \operatorname{Der}_k(A,T)$$

is exact. Indeed, if  $D \in \operatorname{Der}_k(B,T)$  is such that  $D \circ g = 0$ , then D is an A-derivation, i.e., it lies in  $\operatorname{Der}_A(B,T)$ . Suppose now that B is 0-smooth over A and let  $D \in \operatorname{Der}_k(A,T)$ . Consider the commutative diagram

$$\begin{array}{ccc}
A & \xrightarrow{\varphi} B \rtimes T \\
\downarrow g & \downarrow \\
B & \xrightarrow{} B
\end{array}$$

where

$$\varphi(a) = \begin{pmatrix} g(a) & Da \\ & g(a) \end{pmatrix}.$$

Due to smoothness, there is a lift  $\psi: B \to B \rtimes T$  which can be written as

$$\psi(b) = \begin{pmatrix} b & D'b \\ b \end{pmatrix}.$$

It is clear that  $D' \in \operatorname{Der}_k(B,T)$ . Further,  $D' \circ g = D$  since  $\psi \circ g = \varphi$ . This shows that  $-\circ g$  is a surjective map. Now note that D' corresponds to a B-linear  $\alpha' \colon \Omega_{B/k} \to T$ . Take  $T \coloneqq \Omega_{A/k} \otimes B$  and define D by  $D\alpha = d_{A/k}\alpha \otimes 1$ , so that  $D = D' \circ g$  implies  $\alpha' \circ \alpha = \operatorname{id}_{\Omega_{A/k} \otimes A}B$ , as desired.

**THEOREM 1.10 (SECOND FUMDAMENTAL EXACT SEQUENCE).** Let  $k \xrightarrow{f} A \xrightarrow{g} B$  be ring homomorphisms with g surjective<sup>2</sup> and set  $\mathfrak{a} := \ker g$ . There is an exact sequence

$$\alpha/\alpha^2 \xrightarrow{\delta} \Omega_{A/k} \otimes_A B \xrightarrow{\alpha} \Omega_{B/k} \to 0, \tag{3}$$

where  $\delta(x + \mathfrak{m}^2) = d_{A/k}x \otimes 1$ . If moreover *B* is 0-smooth over *k*, then

$$0 \to \mathfrak{a}/\mathfrak{a}^2 \xrightarrow{\delta} \Omega_{A/k} \otimes_A B \xrightarrow{\alpha} \Omega_{B/k} \to 0 \tag{4}$$

is a split exact sequence.

<sup>&</sup>lt;sup>2</sup>Clearly, this implies that  $\Omega_{B/A}=0$ , for if  $D\in \operatorname{Der}_A(B,M)$ , then  $D\circ g=0$ , i.e., D=0 due to the surjectivity of g. The point of Theorem 1.10 is to characterize the kernel of the map  $\Omega_{A/k}\otimes_A B\to \Omega_{B/k}$ .

*Proof.* The surjectivity of  $\alpha$  has been argued in the footnote. We shall show exactness at  $\Omega_{A/k} \otimes_A B$ . Again, let T be a B-module. It suffices to show that the sequence

$$\operatorname{Hom}_{B}(\Omega_{B/k}, T) \xrightarrow{\alpha^{*}} \operatorname{Hom}_{B}(\Omega_{A/k} \otimes_{A} B, T) \xrightarrow{\delta^{*}} \operatorname{Hom}_{B}(\mathfrak{a}/\mathfrak{a}^{2}, T)$$

is exact. Using the Hom-Tensor adjunction and Theorem 1.4, the above is isomorphic to the sequence

$$\operatorname{Der}_k(B,T) \xrightarrow{-\circ g} \operatorname{Der}_k(A,T) \xrightarrow{\delta^*} \operatorname{Hom}_B(\mathfrak{a}/\mathfrak{a}^2,T).$$

Note that for  $a, b \in \mathfrak{a}$ , D(ab) = aD(b) + bD(a) = 0 since  $\mathfrak{a}$  acts trivially on T as the latter is a  $B = A/\mathfrak{a}$ -module. This shows that every  $D \in \operatorname{Der}_k(A, T)$  descends to a map  $\delta^*D : \mathfrak{a}/\mathfrak{a}^2 \to T$  given by

$$\delta^* D(a + \mathfrak{a}^2) = Da.$$

To see that this map is *B*-linear, let  $b + a \in B$  and  $a + a^2 \in a/a^2$ . Then

$$\delta^* D (ab + \mathfrak{a}^2) = aDb + bDa = bDa,$$

thereby proving that  $\delta^*D$  is *B*-linear.

Now,  $\delta^*D = 0$  if and only if  $D(\mathfrak{m}) = 0$ , so that D can be lifted to a k-derivation  $B \to T$ , whence (3) is exact. Suppose now that B is 0-smooth over k. Then there is a lift

$$k \longrightarrow A/\mathfrak{m}^2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow g$$

$$B = B$$

so that the short exact sequence

$$0 \to \mathfrak{m}/\mathfrak{m}^2 \to A/\mathfrak{m}^2 \xrightarrow{g} B \to 0$$

splits, i.e., there exists a homomorphism of k-algebras  $s: B \to A/\mathfrak{m}^2$  such that  $g \circ s = \mathbf{id}_B$ . Now,  $sg: A/\mathfrak{m}^2 \to A/\mathfrak{m}^2$  is a homomorphism vanishing on  $\mathfrak{m}/\mathfrak{m}^2$ , and  $g = \mathbf{id}_B \circ g = gsg$ , i.e., g(1-sg) = 0. Set D = 1-sg, then  $D: A/\mathfrak{m}^2 \to \ker g = \mathfrak{m}/\mathfrak{m}^2$  is a derivation. Indeed, if  $a, b \in A$ , then

$$D(ab + \mathfrak{m}^2) = (ab + \mathfrak{m}^2) -$$

**THEOREM 1.11.** Suppose L/K is a separable algebraic extension of fields. Then L is 0-étale over K. Moreover, for any subfield  $k \subseteq K$ , we have

$$\Omega_{L/k} = \Omega_{K/k} \otimes_K L$$
.

*Proof.* Let C be a K-algebra with an ideal  $N \leq C$  such that  $N^2 = 0$ , and let  $u: L \to C/N$  be a K-algebra homomorphism.

$$\begin{array}{c}
K \longrightarrow C \\
\downarrow \\
L \longrightarrow C/N
\end{array}$$

Let L' be an intermediate field  $K \subseteq L' \subseteq L$  with L' finite over K. Using the Primitive Element Theorem, we can write  $L' = K(\alpha)$  for some  $\alpha \in L'$ . Let  $f(X) \in K[X]$  be the minimal polynomial of  $\alpha$  over K, so that  $L' \cong K[X]/(f(X))$  and  $f'(\alpha) \neq 0$ . We shall first lift  $u|_{L'}: L' \to C/N$  to a map  $L' \to C$ . This is equivalent to finding an element  $y \in C$  satisfying f(y) = 0, and  $\pi(y) = u(\alpha)$ .

Choose any inverse image  $y \in C$  of  $u(\alpha)$ . Then  $\pi(f(y)) = u(f(\alpha)) = 0$ , so that  $f(y) \in N$ . Moreover,  $N^2 = 0$ , so for any  $\eta \in N$ , using Taylor's expansion, we get

$$f(y + \eta) = f(y) + f'(y)\eta.$$

Recall that  $f'(\alpha)$  is a unit in L, so that  $u(f'(\alpha)) = \pi(f'(y))$  is a unit in C/N, whence f'(y) is a unit in  $C^3$ . Set  $\eta = -f(y)/f'(y) \in N$ , and  $f(y+\eta) = 0$ . Let  $v: L' \to C$  be obtained by sending  $\alpha \mapsto y + \eta$ . Clearly this is a lifting of  $u|_{L'}: L' \to C/N$ .

$$\begin{array}{c}
K \longrightarrow C \\
\downarrow \\
L' \longrightarrow C/N
\end{array}$$

We claim that this lift is unique. Indeed, suppose there are two lifts  $v: \alpha \mapsto y$  and  $\widetilde{v}: \alpha \mapsto \widetilde{y} + \eta$ . Then, using the formula  $f(y+\eta) = f(y) + f'(y)\eta$ , and the facts that  $f(y+\eta) = f(y) = 0$ , we note that  $f'(y)\eta = 0$ . But as we have argued previously, f'(y) is a unit in C, whence  $\eta = 0$ , as desired.

Thus for every  $\alpha \in L$ , there is a uniquely determined lifting  $v_\alpha \colon K(\alpha) \to C$  of  $u|_{K(\alpha)} \colon K(\alpha) \to C$ . Now define  $v \colon L \to C$  by  $v(\alpha) = v_\alpha(\alpha)$  for all  $\alpha \in L$ . To see that v is a K-algebra homomorphism, note that for  $\alpha, \beta \in L$ , there is a  $\gamma \in L$  such that  $K(\alpha, \beta) = K(\gamma)$ . Further, due to the uniqueness of intermediate lifts as argued in the preceding paragraph, we must have that  $v_\gamma|_{K(\alpha)} = v_\alpha$  and  $v_\gamma|_{K(\beta)} = v_\beta$ , whence it follows that v is a K-algebra homomorphism. That v is a lift is clear since it is a lift when restricted to finite intermediate extensions.

The last assertion follows from Theorem 1.9 since we have a short exact sequence

$$0 \to \Omega_{K/k} \otimes_K L \to \Omega_{L/k} \to \Omega_{L/K} \to 0$$
,

and  $\Omega_{L/K} = 0$  due to Lemma 1.8.

**REMARK 1.12.** It is important to know what the above isomorphism exactly is. Recall the map  $\alpha: \Omega_{K/k} \otimes_K L \to \Omega_{L/k}$  from Theorem 1.9;  $\alpha(d_{K/k}a \otimes b) = bd_{L/k}a$ . Identify  $\Omega_{K/k}$  with the K-subspace generated by the image of  $\{dx \otimes 1: x \in K\}$  under  $\alpha$ . According to our isomorphism, a K-basis of this subspace constitutes an L-basis of  $\Omega_{L/k}$ .

We claim that any  $D \in \operatorname{Der}_k(K)$  can be extended to a k-linear derivation of L. Indeed, corresponding to this derivation there is a unique K-linear map  $f: \Omega_{K/k} \to K$  such that  $D = f \circ d_{K/k}$ . Under the identification made above, the map f extends to a unique L-linear map  $F: \Omega_{L/k} \to L$ . Then it is clear that  $\widetilde{D} = F \circ d_{L/k} \in \operatorname{Der}_k(L)$  is a derivation extending D.

# §2 Separability

**DEFINITION 2.1.** Let k be a field and A a k-algebra. We say that A is *separable* over k if for every field extension  $k \subseteq k'$ , the ring  $A' = A \otimes_k k'$  is reduced.

From the definition, the following properties are evident:

- (i) A subalgebra of a separable k-algebra is separable.
- (ii) A is separable over k if and only if every finitely generated k-subalgebra of A is separable over k.
- (iii) For A to be separable over k, it is sufficient that  $A \otimes_k k'$  is reduced for every finitely generated extension field k' of k.
- (iv) If A is separable over k, and k' is an extension field of k, then  $A \otimes_k k'$  is separable over k'.

Property (i) is trivial since for any subalgebra  $B \subseteq A$ , the map  $B \otimes_k k' \to A \otimes_k k'$  is an injective ring homomorphism. To see (ii) and (iii), suppose  $\xi = \sum_{i=1}^n a_i \otimes b_i$  is nilpotent in  $A \otimes_k k'$ , then it is nilpotent in  $B \otimes_k \ell$ , where  $B = k[a_1, \ldots, a_n]$ , and  $\ell = k(b_1, \ldots, b_n)$ . Finally, to see (iv), note that for any field extension  $k' \subseteq \ell$ ,

$$(A \otimes_k k') \otimes_{k'} \ell = A \otimes_k (k' \otimes_{k'} \ell) = A \otimes_k \ell,$$

which is reduced since A is separable over k.

 $<sup>^{3}</sup>$ In general, if R is a ring and I a nilpotent ideal, then any element congruent to a unit modulo I is a unit in R. This follows from the fact that the nilradical is the intersection of all prime ideals, and that every non-unit in R is contained in a (prime) maximal ideal.

**REMARK 2.2.** We note that the above definition of separability is an extension of the usual definition encountered in field theory. Indeed, let  $K \supseteq k$  be a separable algebraic extension. To verify that K is a separable k-algebra, using property (ii) above, we may assume that K is finitely generated over k. Using the Primitive Element Theorem, there is an isomorphism  $K \cong k[X]/(f(X))$  for some irreducible separable polynomial  $f(X) \in k[X]$ .

If  $k' \supseteq k$  is a field extension, then due to the Chinese Remainder Theorem,

$$K \otimes_k k' \cong k'[X]/(f(X)) \cong \prod_{i=1}^n k[X]/(f_i(X)),$$

where  $f(X) = f_1(X) \cdots f_n(X)$  is the decomposition of f(X) into irreducibles in k[X]. Note that  $f_i \neq f_j$  for  $1 \leq i < j \leq n$  since f(X) has no multiple roots in any algebraically closed field containing k, in particular,  $\overline{k'}$ . This shows that  $K \otimes_k k'$  is reduced, as desired.

**DEFINITION 2.3.** A field extension  $k \subseteq K$  is said to be *separably generated* if there is a transcendence basis  $\Gamma$  of the extension such that  $K/k(\Gamma)$  is a separable algebraic extension.

**THEOREM 2.4.** If  $k \subseteq K$  is a separably generated field extension, then K is a separable algebra over k.

*Proof.* Let  $\Gamma \subseteq K$  be a separating transcendence basis over k, that is,  $K/k(\Gamma)$  is a separable algebraic extension. If  $k' \supseteq k$  is an extension of fields, then  $k(\Gamma) \otimes_k k'$  is a localization of  $k[\Gamma] \otimes_k k' \cong k'[\Gamma]$ , whence the former is an integral domain with field of fractions isomorphic to  $k'(\Gamma)$  as a k-algebra. Therefore,

$$K \otimes_k k' \cong (K \otimes_{k(\Gamma)} k(\Gamma)) \otimes_k k' \cong K \otimes_{k(\Gamma)} (k(\Gamma) \otimes_k k') \hookrightarrow K \otimes_{k(\Gamma)} k'(\Gamma).$$

Due to Remark 2.2,  $K \otimes_{k(\Gamma)} k'(\Gamma)$  is reduced, and hence so is  $K \otimes_k k'$ , as desired.

**THEOREM 2.5.** Let k be a field of characteristic p > 0, and K a finitely generated extension field of k. The following are equivalent:

- (1) K is a separable algebra over k.
- (2)  $K \otimes_k k^{1/p}$  is reduced.
- (3) K is separably generated over k.

*Proof.* The implication  $(1) \implies (2)$  is clear and  $(3) \implies (1)$  is the content of Theorem 2.4. We shall prove  $(2) \implies (3)$ . Let  $K = k(x_1, ..., x_n)$ , we can further arrange that  $x_1, ..., x_r$  is a transcendence basis for K over k. Suppose further that  $x_{r+1}, ..., x_q$  are separably algebraic over  $k(x_1, ..., x_r)$ , and that  $x_{q+1}$  is not. Set  $y = x_{q+1}$  so that the minimal polynomial of y over  $k(x_1, ..., x_r)$  is of the form  $f(Y^p)$  for some  $f(Y) \in k(x_1, ..., x_r)[Y]$ . Clearing denominators and using the fact that  $x_1, ..., x_r$  are algebraically independent, we obtain an irreducible polynomial  $F(X_1, ..., X_r, Y^p) \in k[X_1, ..., X_r, Y]$  with  $F(x_1, ..., x_r, Y^p) = 0$ .

Now if all partial derivatives  $\partial F/\partial X_i$  are identically zero, then  $F(X_1,...,X_r,Y^p)$  is the p-th power of a polynomial  $G(X_1,...,X_r,Y) \in k^{1/p}[X_1,...,X_r,Y]$ . But then we would have

$$k[x_1,...,x_r,y] \otimes_k k^{1/p} = \left(\frac{k[X_1,...,X_r,Y]}{F(X,Y^p)}\right) \otimes_k k^{1/p} = \frac{k^{1/p}[X_1,...,X_r,Y]}{G(X,Y)^p},$$

which is a non-reduced subring of  $K \otimes_k k^{1/p}$ , a contradiction. Thus, we may suppose without loss of generality that  $\partial F/\partial X_1 \neq 0$ . Then  $x_1$  is separably algebraic over  $k(x_2,\ldots,x_r,y)$ . Due to transitivity of (algebraic) separability, it follows that  $x_{r+1},\ldots,x_q$  are separable over  $k(x_2,\ldots,x_r,y)$ . Now set  $\widetilde{x}_1=y$  and  $\widetilde{x}_{q+1}=x_1$ . Then  $\widetilde{x}_1,x_2,\ldots,x_r$  forms a transcendence basis of K/k and  $x_{r+1},\ldots,\widetilde{x}_{q+1}$  are separably algebraic over  $k(\widetilde{x}_1,x_2,\ldots,x_r)$ . Iterating this process, it is clear that we obtain a separating transcendence basis of K/k.

**PORISM 2.6.** It follows from the proof that if  $K = k(x_1,...,x_n)$  is separable over k, then we can choose a separating transcendence basis contained in  $\{x_1,...,x_n\}$ .

INTERLUDE 2.7 (AN ALTERNATE CHARACTERIZATION OF SEPARABILITY FOR FIELDS). The following definition can be found in [Sta18, Tag 030I]:

An extension of fields  $k \subseteq K$  is said to be *separable* if for every subextension  $k \subseteq K' \subseteq K$  with K' a finitely generated field extension of k, the extension  $k \subseteq K'$  is separably generated, that is, there is a transcendence basis  $\Gamma \subseteq K'$  such that  $k(\Gamma) \subseteq K'$  is a separable algebraic extension.

We remark here that the above definition is equivalent to ours. Indeed, suppose  $k \subseteq K$  is an extension of fields which is separable in the sense of Definition 2.1. Suppose first that  $\operatorname{char} k = p > 0$ . As we remarked earlier, K is a separable k-algebra if and only if every finitely generated subextension  $k \subseteq K' \subseteq K$  is a separable k-algebra, which in view of Theorem 2.5 happens if and only if it is separably generated over k, if and only if  $k \subseteq K$  is a separable extension of fields in the sense of [Sta18, Tag 030I].

Next, if char k = 0, then every  $k \subseteq K$  is clearly a separable extension in the sense of [Sta18, Tag 030I]. On the other hand, K is a separable k-algebra if and only if every finitely generated subextension  $k \subseteq K' \subseteq K$  is a separable k-algebra, which is true in view of Theorem 2.4. This establishes the equivalence of the two definitions in the case of field extensions.

#### **THEOREM 2.8.** Let k be a perfect field.

- (1) Every field extension of k is separable.
- (2) A *k*-algebra is separable if and only if it is reduced.
- *Proof.* (1) Let K/k be an extension of fields. Note that in characteristic 0 every extension is separably generated, and therefore, every extension is separable. Suppose now that char k = p > 0. In this case, k being perfect is equivalent to  $k = k^{1/p}$ . In view of Theorem 2.5, it follows that every finitely generated subextension of K/k is a separable k-algebra, whence K is a separable k-algebra.
  - (2) Clearly every separable k-algebra must be reduced. Conversely, suppose A is a reduced k-algebra. We may suppose without loss of generality that A is finitely generated, and hence, Noetherian. Let  $\mathfrak A$  denote the total ring of fractions of A. The map  $A \to \mathfrak A$  is an inclusion of k-algebras, therefore it suffices to show that  $\mathfrak A$  is reduced. Recall that the total ring of fractions of a Noetherian reduced ring is Artinian, whence is a (finite) product of Artinian local rings. Since a reduced Artinian ring is a field, it follows that  $\mathfrak A$  is a finite product of fields, say  $\mathfrak A = K_1 \times \ldots K_n$ . Since k is perfect, each  $K_i$  is a separable k-algebra, so that  $\mathfrak A$  is a separable k-algebra, whence so is k0, being isomorphic to a subalgebra of k0. This completes the proof.

**LEMMA 2.9.** Let K and K' be two subfields of a larger field L and let k be a common subfield contained in  $K \cap K'$ . The following conditions are equivalent:

- (1) if  $\alpha_1, \ldots, \alpha_n \in K$  are linearly independent over k, then they are also linearly independent over K'.
- (2) if  $\alpha_1, \ldots, \alpha_n \in K'$  are linearly independent over k, then they are also linearly independent over K.
- (3) The natural multiplication map  $K \otimes_k K' \to K[K'] = K'[K]$  is an isomorphism of k-algebras.

In this case K and K' are said to be *linearly disjoint* over k.

*Proof.* (1)  $\Longrightarrow$  (3) Let  $\xi = \sum_i x_i \otimes y_i$  be an element in the kernel of the multiplication map. We may suppose that the  $x_i$ 's are linearly independent over k. Then  $\sum_i y_i x_i = 0$ , but according to (1), the  $x_i$ 's are linearly independent over K', so that  $y_i = 0$  for all i, i.e.,  $\xi = 0$ . Thus the multiplication map is injective. Its surjectivity is clear, and hence it is an isomorphism.

(3)  $\Longrightarrow$  (1) Suppose  $\lambda_1 \alpha_1 + \cdots + \lambda_n \alpha_n = 0$  for some  $\lambda_1, \dots, \lambda_n \in K'$ . Then  $\sum_{i=1}^n \alpha_i \otimes \lambda_i$  lies in the kernel of the multiplication map, which is zero, whence  $\lambda_i = 0$  for each  $1 \leq i \leq n$ .

Since the assertion (3) is symmetric in K and K', the equivalence of the three statements follows.

**THEOREM 2.10** (MACLANE). Let k be a field of characteristic p > 0, and let K be a field extension of k. Fix an algebraic closure  $\overline{K}$  containing K, and set

$$k^{p^{-n}} = \left\{ \alpha \in \overline{K} \colon \alpha^{p^n} \in k \right\} \quad \text{ and } k^{p^{-\infty}} = \bigcup_{n \geqslant 1} k^{p^{-n}}.$$

- (1) If *K* is a separable *k*-algebra, then *K* and  $k^{p^{-\infty}}$  are linearly disjoint over *k*.
- (2) If *K* and  $k^{p^{-n}}$  are linearly disjoint over *k* for some  $n \ge 1$ , then *K* is a separable *k*-algebra.
- *Proof.* (1) Let  $\alpha_1, \ldots, \alpha_n \in K$  be linearly independent over k. Suppose  $\lambda_1, \ldots, \lambda_n \in k^{p^{-\infty}}$  are such that  $\lambda_1 \alpha_1 + \cdots + \lambda_n \alpha_n = 0$ . There is a positive integer m > 0 such that  $\lambda_i^{p^m} \in k$  for each  $1 \le i \le n$ . Set  $k_1 = k(\lambda_1, \ldots, \lambda_n)$  and  $A = K \otimes_k k_1$ . Since A is a finite-dimensional K-vector space, it must be Artinian. Further, for each  $a \in A$ ,  $a^{p^m} \in K$ , consequently, A must be a local ring. Since A is reduced, it has to be a field. Thus the multiplication map  $A \to K[k_1]$  must be injective, so an isomorphism. The conclusion follows.
  - (2) If K and  $k^{p^{-n}}$  are linearly disjoint over k, then since  $k^{p^{-1}} \subseteq k^{p^{-n}}$ , it follows that K and  $k^{p^{-1}}$  are linearly disjoint over k. Let K' be a finitely generated subfield of K over k. Note that  $K' \otimes_k k^{p^{-1}}$  is a subring of  $K \otimes k^{p^{-1}} = K[k^{p^{-1}}]$ , so that the former is reduced. In view of Theorem 2.5, K' is a separable k-algebra, whence so is K.

#### §§ Differential Bases

Let  $k \subseteq K$  be an extension of fields. Then  $\Omega_{K/k}$  is a K-vector space spanned by the set  $\{dx : x \in K\}$ .

**DEFINITION 2.11.** A subset  $B \subseteq K$  such that  $\{dx : x \in B\}$  forms a K-basis of  $\Omega_{K/k}$  is called a *differential basis* for the field extension  $k \subseteq K$ .

**THEOREM 2.12.** If char k = 0, then the notion of a differential basis for  $k \subseteq K$  coincides with the notion of a transcendence basis.

*Proof.* We first show that the linear independence of  $dx_1, \ldots, dx_n \in \Omega_{K/k}$  is equivalent to the K-linear independence of  $x_1, \ldots, x_n \in K$ . Indeed, suppose first that  $dx_1, \ldots, dx_n$  are K-linearly independent. If  $0 \neq f(X_1, \ldots, X_n) \in k[X_1, \ldots, X_n]$  is such that  $f(x_1, \ldots, x_n) = 0$ , then choosing f of the smallest possible degree, we have

$$0 = df(x_1, ..., x_n) = \sum_{i=1}^n f_i(x_1, ..., x_n) dx_i,$$

where  $f_i(X_1,...,X_n) = \frac{\partial}{\partial X_i} f(X_1,...,X_n)$ . The minimality of the degree of f forces at least one of the coefficients  $f_i(x_1,...,x_n) \neq 0$ , which is a contradiction to linear independence.

Conversely, suppose  $B = \{x_1, \dots, x_n\}$  are algebraically independent over k. There are k-linear derivations  $D_i = \frac{\partial}{\partial x_i}$  of k(B). Note that K/k(B) is separable, and hence, in view of Remark 1.12, these derivations can be extended to k-linear derivations of K with the property that  $D_i(x_j) = \delta_{i,j}$ . Each derivation corresponds to a K-linear map  $f_i : \Omega_{K/k} \to K$  such that  $f_i \circ d = D_i$ . It is now immediate that the differentials  $dx_1, \dots, dx_n \in \Omega_{K/k}$  must be K-linearly independent.

**DEFINITION 2.13.** Let char k = p > 0. We say that  $x_1, \ldots, x_n \in K$  are *p-independent* over k if

$$[K^p(k, x_1, ..., x_n) : K^p(k)] = p^n.$$

A subset  $B \subseteq K$  is said to be *p*-independent if every finite subset of *B* is *p*-independent.

Suppose  $x_1, \ldots, x_n \in K$  are *p*-independent. Then there is a tower of field extensions

$$K^p(k) \subseteq K^p(k,x_1) \subseteq \cdots \subseteq K^p(k,x_1,\ldots,x_n).$$

Further, since  $x_i^p \in K^p$  for all  $1 \le i \le n$ , we have

$$[K^p(k,x_1,...,x_i):K^p(k,x_1,...,x_{i-1})] \leq p,$$

hence, we have that  $[K^p(k,x_1,...,x_i):K^p(k,x_1,...,x_{i-1})]=p$  for  $1 \le i \le n$ . The converse statement is clearly true. It follows that  $B \subseteq K$  is p-independent if and only if

$$\Gamma_B := \{x_1^{\alpha_1} \cdots x_n^{\alpha_n} : x_1, \dots, x_n \in B \text{ are distinct and } 0 \le \alpha_i < p\}$$

is linearly independent over  $K^p(k)$ .

**DEFINITION 2.14.** A subset  $B \subseteq K$  is said to be a *p-basis* if it is *p*-independent and  $K = K^p(k, B)$ .

It clear from the characterization of p-independence as in (2.1) and a standard application of Zorn's lemma that every p-independent subset of K is contained in a p-basis of K over k. Further,  $B \subseteq K$  is a p-basis over k if and only if  $\Gamma_B$  is a  $K^p(k)$ -basis of K.

**THEOREM 2.15.** If char k = p > 0, then the notion of a differential basis for  $k \subseteq K$  coincides with the notion of a p-basis.

*Proof.* Suppose first that  $B \subseteq K$  is a p-basis over k. Then any map  $D: B \to K$  can be extended to a derivation in  $Der_k(K)$  by defining it on monomials in  $\Gamma_B$  as

$$D(x_1^{\alpha_1}\cdots x_n^{\alpha_n})=\sum_{i=1}^n\alpha_ix_1^{\alpha_1}\cdots x_i^{\alpha_i-1}\cdots x_n^{\alpha_n}D(x_i),$$

and extending  $K^p(k)$ -linearly. This is clearly a derivation since every element in K can be uniquely written as a  $K^p(k)$ -linear combination of elements from  $\Gamma_B$ . The uniqueness of such a derivation follows from the fact that any  $D \in \operatorname{Der}_k(K)$  must vanish on  $K^p(k)$ , whence it must be  $K^p(k)$ -linear.

Conversely, suppose B is a differential basis of  $k \subseteq K$ . We claim that B is p-independent over k, suppose not, then there exist  $x_1, \ldots, x_n \in B$  such that  $x_1 \in K^p(k, x_2, \ldots, x_n)$ . Hence, we can choose a polynomial  $f(X_2, \ldots, X_n) \in K^p(k)[X_2, \ldots, X_n]$  such that  $x_1 = f(x_2, \ldots, x_n)$ . Passing to  $\Omega_{K/k}$ , we see that

$$dx_1 = \sum_{i=2}^n \frac{\partial f}{\partial X_i}(x_2, \dots, x_n) dx_i,$$

a contradiction to the fact that B is a differential basis. Hence B must be p-independent, and as such, is contained in a p-basis  $\widetilde{B}$  of K over k. As we have shown in the first paragraph,  $\widetilde{B}$  must form a differential basis, therefore,  $B = \widetilde{B}$ , whence B forms a p-basis of K over k. This completes the proof.

### References

[Sta18] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.