Ondas

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

28 de Janeiro de 2021

Prof. Flaviano W. Fernandes

Sumário

- **Ondas mecânicas**
- Fenômenos ondulatórios
- Interferência
- **Ondas sonoras**
- **Aplicações**
- **Apêndice**

Prof. Flaviano W. Fernandes

Ondas mecânicas numa mola

Surgimento de um pulso numa mola.

- ✓ As forças nas direções x e y produz um pulso de energia que se propaga na horizontal com velocidade v:
- ✓ O pulso propaga energia mas não propaga matéria;
- ✓ A força na direção y produz um movimento harmônico simples que faz oscilar o fragmento da mola de massa m na vertical.

Ondas mecânicas

•00000

Ondas mecânicas numa corda

Uma onda é formada a partir de uma série de pulsos propagando-se na mesma direção e sentido a cada intervalo de tempo igual ao período de oscilação T.

Pulsos se propagando numa corda.

Corollary

Uma onda mecânica necessita de um meio material para se propagar.

Ondas mecânicas

enômenos ondulatórios Interferência Ondas 200 0000 0000

Tipos de ondas

Ondas mecânicas

Diferença entre onda longitudinal e transversal [3].

- ✓ Numa onda longitudinal, a direção de oscilação é paralela a direção de propagação dessa onda.
- ✓ Numa onda transversal, a direção de oscilação é perpendicular a direção de propagação dessa onda.

Velocidade de uma onda

Ondas mecânicas

Se cada pulso percorrer uma distância ΔS num intervalo de tempo Δt , a velocidade v desse pulso será

$$v=rac{\Delta \mathcal{S}}{\Delta t}.$$

Por exemplo, se $\Delta S = 6,0$ m e $\Delta t = 1,5$ seg, a velocidade dessa onda será 4 m/s.

Corollary

A velocidade de propagação de uma onda numa corda depende da densidade (massa corda e da tensão aplicada sobre ela.

Prof. Flaviano W. Fernandes

Propriedades de uma onda

- ✓ Amplitude da onda: A mesma amplitude da oscilação vertical.
- ✓ Frequência da onda: A mesma frequência da oscilação vertical.
- ✓ Comprimento de onda (λ): Distância que a onda percorre durante um período T.

Corollary

Ondas mecânicas

Sendo v a velocidade de propagação da onda e T o período, o comprimento de onda é dado por

$$\lambda = vT$$

Ondas em duas e três dimensões

- ✓ As frentes de onda de um pulso eletromagnético são esferas com o centro na origem do pulso.
- ✓ As frentes de onda em um lago são circunferências com o centro na origem do pulso.

Pulso eletromagnético.

Ondas bidimensionais.

Ondas planas na água.

Ondas mecânicas 000000

Reflexão

- ✓ Na extremidade móvel, o pulso é refletido e retorna igual ao pulso incidente;
- ✓ Na extremidade fixa, o pulso é refletido e retorna invertido ao pulso incidente;
- ✓ Numa corda, somente pode existir números inteiros de comprimentos de onda.

Extremidade móvel. A onda se propaga livremente na corda, e para manter o seu movimento ela é refletida para a esquerda.

Extremidade fixa. Afim de satisfazer a conservação do momento, a onda refletida deve estar em sentido oposto ao onda incidente.

Refração

- ✓ A velocidade de uma onda diminui quando ela atravessa o meio 1 (mais fino) para o meio 2 (mais grosso) ($v_2 < v_1$);
- ✓ O comprimento de onda também diminui quando ela atravessa um meio mais fino para o mais grosso, λ₂ < λ₁;</p>
- ✓ Parte do pulso é refratado e parte é refletido;
- ✓ A frequência é a mesma da fonte geradora do pulso, portanto ela não se altera no processo.

Passagem de uma onda de um meio para outro.

Interferência Ondas sonoras Aplicações

Difração

Difração de uma onda

Propriedade que uma onda possui de contornar obstáculos.

Fenômenos andulatórios

Difração em uma fenda pequena [4].

Propagação retilínea em uma fenda grande [4].

Corollary

A difração é acentuada se a largura do orifício for muito menor que o comprimento de onda.

Difração da luz e ondas sonoras

Corollary

O comprimento de onda da luz é muito pequeno, tornando difícil observar fenômenos referentes a difração que podem ocorrer naturalmente.

Difração do som numa parede.

Propagação linear dos raios de luz.

Interferência

Prof. Flaviano W. Fernandes

IFPR-Irati

Ondas com mesmo comprimento de onda saindo de dois alto-falantes

Superposição de duas ondas esfericas

Representação do caminho da onda

Interferência construtiva

Teremos interferência construtiva no ponto P se a diferença dos caminhos percorridos pelas duas ondas forem números inteiros de comprimentos de onda, ou seja,

$$r_1 - r_2 = n\lambda, \ n = \pm 0, \pm 1, \pm 2, \dots$$

mas $r_1 - r_2 = dsen\theta$, portanto

$$dsen\theta = n\lambda, \ n = \pm 0, \pm 1, \pm 2, \dots$$

Sabemos também que $tg\theta = \frac{\Delta y}{L}$, se considerarmos $tg\theta \approx sen\theta$ podemos dizer que

$$\Delta y = \frac{nL}{d}\lambda, \ n = \pm 0, \pm 1, \pm 2, \dots$$

Interferência construtiva no ponto P.

Interferência destrutiva e a experiência de Young

Teremos interferência destrutiva se a diferença dos caminhos percorridos pelas duas ondas for um valor semi-inteiro do comprimento de onda, ou seja,

$$r_1 - r_2 = \left(n + \frac{1}{2}\right)\lambda, \ n = \pm 0, \pm 1, \pm 2, \dots$$

Corollary

$$r_1 - r_2 = dsen\theta = \begin{cases} n\lambda, & (Construtiva) \\ \left(n + \frac{1}{2}\right)\lambda, & (Destrutiva) \end{cases}$$
 $n = \pm 0, \pm 1, \pm 2, \pm 3, \pm 4, \dots$

Interferencia de ondas na água.

O que é som

O som é uma onda mecânica longitudinal que se propaga ao longo do meio material (sólido, líquido ou gás), numa frequência entre 20 a 20000 Hz.

Som se propagando da fonte até o ouvido.

Corollary

Cada pulso se propaga através da variação de pressão entre as moléculas que compõem a matéria (as moléculas que estão atrás empurram as que estão justamente a frente, e assim a energia do pulso se propaga no meio).

Propriedades de uma onda sonora

Qualidades usadas para distinguir o som

- ✓ Intensidade: Energia média transmitida por unidade de tempo e área (depende da amplitude da onda sonora).
- ✓ Altura: Sensação que permite distinguir entre sons graves e agudos (diretamente associado com a frequência da onda).
- ✓ Timbre: Capacidade de distinguir sons de mesma altura (frequência) e intensidade em instrumentos diferentes (coloração do som).

Corollary

A velocidade da onda sonora no ar é 340 m/s e aumenta com a temperatura, além do mais, já é conhecido que $v_{s\'olido} > v_{l\'auido} > v_{g\'as}$.

Ondas sonoras

Altura

A característica física de uma onda sonora associada a altura é a frequência.

Notas musicais (Hz).

Nota	Dó	Ré	Mi	Fá	Sol	Lá	Si	Dó
Freq.	264	297	330	352	396	440	495	528

Corollary

- ✓ Um som grave possui baixa frequência (som baixo), enquanto que um som alto possui alta frequência (som alto);
- ✓ Infrassons são ondas sonoras cuja frequência estão abaixo de 20 Hz enquanto que ultrasons estão acima de 20000 Hz.

Intensidade de uma onda sonora

A intensidade de uma onda é definida como

$$I = \frac{1}{A} \left(\frac{\Delta E}{\Delta t} \right).$$

No SI usa-se a unidade $I = \frac{W}{m^2}$ mas na prática usa-se decibéis (dB),

$$\beta = 10 Log_{10}(I/I_0) dB.$$

Intensidades sonoras de alguns obietos.

Corollary

 I_0 é a mínima intensidade perceptível por uma pessoa ($I_0 = 10^{-12} W/m^2$).

Timbre

Embora com perfis diferentes, o ouvido humano pode perceber duas ondas sonoras periódicas de mesma frequência.

Três ondas com a mesma frequência.

Nota Lá tocada por dois instrumentos.

Corollary

A característica que distingue um som musical de um ruído é a periodicidade.

Efeito Doppler

A frequência do som que o observador poderá ouvir muda dependendo das velocidades da fonte e do observador.

Frequência grave ouvida pelo observador [5].

Frequência aguda ouvida pelo observador [5].

Prof. Flaviano W. Fernandes IFPR-Irati

Cordas vibrantes

Ondas na corda do violão.

Modos normais de vibração.

Corollary

À partir da tensão aplicada, densidade e o comprimento da corda, é possível gerar uma onda com frequência bem definida.

Tubo sonoro

Órgão musical [2].

Modos normais no tubo sonoro.

Prof. Flaviano W. Fernandes

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1 \text{ mm} = 1 \times 10^{(-1) \times 2} \text{ dm} \rightarrow 1 \times 10^{-2} \text{ dm}$$

$$2,5 \text{ kg} = 2,5 \times 10^{(1) \times 6} \text{ mg} \rightarrow 2,5 \times 10^{6} \text{ mg}$$

10 ms =
$$10 \times 10^{(-1) \times 3}$$
 s $\to 10 \times 10^{-3}$ s

Apêndice

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5~\text{m}^2 = 2,5 \times 10^{(2) \times 3}~\text{mm}^2 \rightarrow 2,5 \times 10^6~\text{mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times 3} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

$$2.5 \text{ km}^3 = 2.5 \times 10^{(3) \times 6} \text{ mm}^3 \rightarrow 2.5 \times 10^{18} \text{ mm}^3$$

Apêndice

Alfa α В Beta Gama Delta Δ **Epsílon** Ε ϵ, ε Zeta Eta Н Θ Teta lota K Capa ĸ Lambda λ Mi Μ μ

Ni Ν ν Csi ômicron 0 Ρi П π Rô Sigma σ Tau Ípsilon 7) Fi Φ ϕ, φ Qui χ Psi Ψ ψ Ômega Ω ω

Referências e observações¹

- A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.2, 2.ed., São Paulo, Scipione (2016)
- http://www.snpcultura.org/vol_festival_orgao_madeira_2010.html
- http://www.explicatorium.com/cfq-8/caracteristicas-das-ondas.html
- https://brasilescola.uol.com.br/o-que-e/fisica/o-que-e-difracao.htm
- https://www.colegioweb.com.br/acustica/efeito-doppler-fizeau.html

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

Prof. Flaviano W. Fernandes

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.