实验六 用窗函数设计 FIR 滤波器

1. 实验目的

- (1) 熟悉 FIR 滤波器设计的方法和原理
- (2) 掌握用窗函数法设计 FIR 滤波器的方法和原理,熟悉滤波器的特性
- (3) 了解各种窗函数滤波器特性的影响

2. 实验原理

(1) 用窗函数设计 FIR 滤波器的基本方法

在时域用一个窗函数截取理想的 $h_d(n)$ 得到h(n),以有限长序列h(n)近似逼近理想的 $h_d(n)$;在频域用理想的 $H_d(e^{j\omega})$ 在单位圆上等角度取样得到h(k),根据h(k)得到H(z)将逼近理想的Hd(z)。

设理想滤波器 $H_d(e^{j\omega})$ 的单位脉冲响应为 $h_d(n)$ 。以低通线性相位 FIR 数字滤波器为例。

$$\begin{split} H_d(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} h_d(n) e^{-jn\omega} \\ h_d(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{jn\omega} d\omega \end{split}$$

 $h_d(n)$ 一般是无限长的、非因果的,不能直接作为 FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器 h(n),最直接的方法是截断 $h(n) = h_d(n)w(n)$,即截取为有限长因果序列,并用合适的窗函数进行加权作为 FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即

$$\begin{cases} h(n) = h_d(n)w(n) \\ a = (N-1)/2 \end{cases}$$

用矩形窗设计的 FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的 9%,(现象称为吉布斯(Gibbs)效应)。

(2) 典型的窗函数

(a) 矩形窗(Rectangle Window)

$$w(n) = R_N(n)$$

其频率响应和幅度响应分别为:

$$W(e^{j\omega}) = \frac{\sin(N\omega/2)}{\sin(\omega/2)} e^{-j\omega\frac{N-1}{2}}, \quad W_R(\omega) = \frac{\sin(N\omega/2)}{\sin(\omega/2)}$$

在 matlab 中调用 w=boxcar(N)函数, N 为窗函数的长度(b) 三角形窗(Bartlett Window)

$$w(n) = \begin{cases} \frac{2n}{N-1}, & 0 \le n \le \frac{N-1}{2} \\ 2 - \frac{2n}{N-1}, & \frac{N-1}{2} < n \le N-1 \end{cases}$$

其频率响应为:
$$W(e^{j\omega}) = \frac{2}{N} \left[\frac{\sin(N\omega/4)}{\sin(\omega/2)} \right]^2 e^{-j\omega\frac{N-1}{2}}$$

在 matlab 中调用 w=triang(N)函数, N 为窗函数的长度

(c) 汉宁(Hanning)窗, 又称升余弦窗

$$w(n) = \frac{1}{2} [1 - \cos(\frac{2n\pi}{N - 1})] R_N(n)$$

其频率响应和幅度响应分别为:

$$W(e^{j\omega}) = \{0.5W_R(\omega) + 0.25[W_R(\omega - \frac{2\pi}{N-1}) + W_R(\omega + \frac{2\pi}{N-1})]\}e^{-j(\frac{N-1}{2})\omega}$$

$$= W(\omega)e^{-j\omega a}$$

$$W(c) = 0.5W_R(\omega) + 0.25[W_R(\omega - \frac{2\pi}{N-1}) + W_R(\omega + \frac{2\pi}{N-1})]\}e^{-j(\frac{N-1}{2})\omega}$$

$$W(\omega) = 0.5W_R(\omega) + 0.25[W_R(\omega - \frac{2\pi}{N-1}) + W_R(\omega + \frac{2\pi}{N-1})]$$

在 matlab 中调用 w=hanning(N)函数, N 为窗函数的长度

(d) 汉明(Hamming)窗,又称改进的升余弦窗

$$w(n) = [0.54 - 0.46\cos(\frac{2n\pi}{N-1})]R_N(n)$$

其幅度响应为:
$$W(\omega) = 0.54W_R(\omega) + 0.23[W_R(\omega - \frac{2\pi}{N-1}) + W_R(\omega + \frac{2\pi}{N-1})]$$

在 matlab 中调用 w=hamming(N)函数, N 为窗函数的长度

(e) 布莱克曼(Blankman)窗,又称二阶升余弦窗

$$\begin{split} w(n) = & [0.42 - 0.5\cos(\frac{2n\pi}{N-1}) + 0.08\cos(\frac{4n\pi}{N-1})]R_N(n) \\ W(\omega) = & 0.42W_R(\omega) + 0.25[W_R(\omega - \frac{2\pi}{N-1}) + W_R(\omega + \frac{2\pi}{N-1})] \\ + & 0.04[W_R(\omega - \frac{4\pi}{N-1}) + W_R(\omega + \frac{4\pi}{N-1})] \end{split}$$

在 matlab 中调用 w=blackman(N)函数, N 为窗函数的长度

(f) 凯泽(Kaiser)窗

$$w(n) = \frac{I_0(\beta\sqrt{1 - [1 - 2n/(N - 1)]^2})}{I_0(\beta)}, 0 \le n \le N - 1$$

其中: β是一个可选参数,用来选择主瓣宽度和旁瓣衰减之间的交换关系,一般说来,β越大,过渡带越宽,阻带越小衰减也越大。 $I_0(\cdot)$ 是第一类修正零阶贝塞尔函数。

在 matlab 中调用 w=kaiser(N.beta), 函数 N 为窗函数的长度, beta 为窗函数的参数。

- (3) 利用窗函数设计 FIR 滤波器的具体步骤如下:
- (a) 根据具体的性能要求通过对过渡带宽度 $\triangle \omega$ 及阻带衰减 A_S ,等参数的分析选择合适的窗函数,并估计滤波器的长度 N。
 - (b) 由给定的滤波器的幅频响应参数求出理想的单位脉冲响应 $h_d(n)$ 。
 - (c) 确定延时值, 计算滤波器的单位取样响应 h(n), $h(n) = h_d(n)w(n)$.
 - (d) 验证技术指标是否满足要求。分析所设计的滤波器的幅频特性。

3. 实验内容及其步骤

- (1) 实验前认真复习有关 FIR 滤波器设计的有关知识,尤其是窗函数的有关内容,熟悉窗函数及 FIR 滤波器的特性,掌握窗函数设计滤波器的具体步骤。
- (2)编制窗函数设计 FIR 滤波器的主程序及相应子程序。绘制幅频和相位曲线,观察幅频和相位特性曲线的变换情况,注意长度 N 对曲线的影响。
 - (3) 用窗函数法设计滤波器,并满足一定的性能指标。

例一:利用 fir1 设计标准频率响应的 FIR 滤波器,包括低通、带通、高通、带阻等类型的滤波器。

b=fir1(n, Wn, 'ftype')

通带边界频率 $\omega_p=0.5\pi$,阻带边界频率 $\omega_s=0.66\pi$,阻带衰减不小于 40dB,通带波纹不大于 3dB。

参考:根据对滤波器的指标要求,阻带衰减不小于40dB,选择汉宁窗。

%基于窗函数设计FIR滤波器

 wp=0.5*pi;ws=0.66*pi;
 %性能指标

 wdelta=ws-wp;
 %过渡带宽度

 N=ceil(3.11*pi/wdelta)
 %滤波器长度

 Nw=2*N+1;
 %窗口长度

 wc=(ws+wp)/2;
 %截止频率

win=hanning(Nw); %汉宁窗的时域响应

b=fir1(Nw -1,wc/pi,win) %fir1 是基于加窗的线性相位 FIR 数字滤波器设计函数。N-1 为滤波器的阶数。Win 为窗函数,是长度为 N 的列向量,默认是函数自动取 hamming。freqz(b,1,512) %为求取频率响应。分子为b,分母为1

实验结果图如图所示:

例二: fir2 设计任意响应的数字滤波器

滤波器的幅度频率响应在不同的频段范围有不同的幅度值。

fir2 函数用法:

b=fir2(n,f,m,npt,lap,window)

n 是所设计滤波器的阶数; f 是 0 到 1 的正数向量,对应滤波器的频率,其中 0 对应于 频率 0,1 对应于信号采样频率的一半; m 是一个所有元素都是正实数向量,对应于 m 向量 中频率点的幅度; window 是窗函数,fir2 默认为海明窗; npt 默认值为 512; lap 默认值为 25; b 是设计出来的滤波器的系数组成的一个长度为 n+1 的向量。

要求设计一个多带滤波器: 其在 0 到 pi/8 的幅度响应为 1,在 pi/8 到 2pi/8 幅度响应为 1/2,在 2pi/8 到 4pi/8 幅度响应为 1/4,在 4pi/8 到 6pi/8 幅度响应为 1/6,在 6pi/8 到 pi 幅度响应为 1/8,并且滤波器的阶数为 60。画出理想滤波器和设计得到的滤波器的幅度频率响应进行比较。

参考: %多带滤波器的设计

 $f{=}[0 \quad 0.125 \quad 0.125 \quad 0.250 \quad 0.250 \quad 0.500 \quad 0.500 \quad 0.750 \quad 0.750 \quad 1.00];$

 $m{=}[1 \quad 1 \quad 0.5 \quad 0.5 \quad 0.25 \quad 0.25 \quad 1/6 \quad 1/6 \quad 0.125 \quad 0.125];$

b = fir2(60,f,m);

[h,w]=freqz(b);

plot(f,m,w/pi,abs(h))

grid on;

legend(''理想滤波器','设计滤波器');

另外,还有一个比较直观的设计滤波器的方法,利用 MATLAB 里的 Filter Design & Analysis Tools 设计滤波器比较直观。

Fliter Type 选择低通,高通,带通或者带阻滤波器。

Design Method 选择 IIR 还是 FIR 滤波器,后面下拉菜单选择类型,程序里采用的是加窗类型。

Fliter Order 选择滤波器的阶数。

Windows Specifications 是选择窗函数类型。

然后设置抽样频率和截至频率,然后点击 Design Fliter 就设计完成。

4. 实验用 MATLAB 函数介绍

在实验过程中,MATLAB 函数命令 FIR 滤波器设计函数: fir1, fir2, kaiserord,remez, remezord, kaiser, hanning, hamming, blackman,freqz 等在不同的情况下具体表述也有所不同,应该在实验中仔细体会其不同的含义。

5. 思考题

- (1) 在实验中窗长和形状对滤波器性能有何影响。
- (2)利用窗函数法设计一个线性相位 FIR 低通滤波器,性能指标为:通带截止频率为 0.2pi, 带阻截止频率为 0.3pi,阻带衰减不小于 40dB,通带衰减不大于 3dB。编写程序实现,并绘制图形。
- (3)设计一个带阻滤波器,带阻为 0.4 到 0.65,阶数为 34,并且使用一个切比雪夫窗,并与默认的窗函数进行比较。

6. 实验报告要求

- (1) 明确实验目的以及实验的原理。
- (2) 通过实验内容进一步了解滤波器的设计方法。
- (3) 完成思考题的内容,对实验结果及其波形图进行分析对比,总结主要结论。