Rproject3

2024-03-13

Analyzing Invesco QQQ Trust (QQQ) Daily Closing Prices Over Five Years

```
library(xts)
## Warning: package 'xts' was built under R version 4.3.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.3.3
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
# Read the CSV file and convert DATE column to Date format
df <- read.csv("Data.csv")</pre>
df$DATE <- as.Date(df$Date, format = '%Y-%m-%d')</pre>
# Convert "Close" column to numeric
df$Close <- as.numeric(as.character(df$Close))</pre>
## Warning: NAs introduced by coercion
# Check for non-numeric values in the "Close" column
non_numeric <- df$Close[!is.numeric(df$Close)]</pre>
#print(non_numeric)
# Create a time series object
df <- ts(df$Close, start = '2019', end='2024', frequency = 252)
# Decompose the time series
decomposed <- decompose(df)</pre>
# Plot the decomposed components
plot(decomposed)
```

Decomposition of additive time series

Analyzing Invesco QQQ Trust (QQQ) Dataset with a 90-Day Moving Average

```
# task 2
# Load necessary libraries
library(forecast)
## Warning: package 'forecast' was built under R version 4.3.3
## Registered S3 method overwritten by 'quantmod':
##
     method
     as.zoo.data.frame zoo
library(ggplot2)
df <- read.csv('Data.csv')</pre>
# Convert df
ts_df <- ts(df$Close, start = c(2019, 3), end = c(2024, 3), frequency = 365)
# Calculate the 90-day moving average
ma_90 \leftarrow ma(ts_df, order = 90)
# Convert ts_df and ma_90 to data frames for plotting
df_plot <- data.frame(Date = time(ts_df), Close = as.numeric(ts_df))</pre>
ma_90_plot <- data.frame(Date = time(ma_90), MA_90 = as.numeric(ma_90))</pre>
```

Don't know how to automatically pick scale for object of type <ts>. Defaulting ## to continuous.

Warning: Removed 90 rows containing missing values ('geom_line()').

Invesco QQQ Trust (QQQ) Time Series with 90-Day Moving Average

Forecasting Invesco QQQ Trust (QQQ) Closing Prices for the Next 30 Days

```
# Calculate the 30-day moving average
df_ma <- ma(df, order = 30)

# Exclude any NA values
df_ma <- ts(na.exclude(df_ma))

# Forecast the next 30 days
myforecast <- forecast(df_ma, level = c(0), h = 30)</pre>
```

```
# Plot the forecast
autoplot(myforecast)
```


Computing and Plotting Autocorrelation of Invesco QQQ Trust (QQQ) Closing Prices

```
# Compute autocorrelation
acf_obs <- acf(df, lag.max = length(df), plot = FALSE)
# Plot autocorrelation
plot(acf_obs, type = "l", main = "Autocorrelation of QQQ Closing Prices", xlab = "Lag", ylab = "Autocorrelation")</pre>
```


occorrelation of QQQ Closing occorrelation of QQQ Closing occorrelation of QQQ Closing

occorrelation of QQQ Closing occorrelation of QQQ Closing occorrelation of QQQ Closing

ocorrelation of QQQ Closing ocorrelation of QQQ Closing ocorrelation of QQQ Closing

[2,2]

Autoregressive (AR) Forecasting of QQQ Closing Prices

```
library(xts)

# Read the CSV file and convert DATE column to Date format

df <- read.csv("Data.csv")

df$DATE <- as.Date(df$Date, format ='%Y-%m-%d')

# Convert "Close" column to numeric

df$Close <- as.numeric(as.character(df$Close))</pre>
```

Warning: NAs introduced by coercion

```
# Create a time series object
df <- ts(df$Close, start = '2019', end='2021', frequency = 252)
ar_model <- auto.arima(df)

# Forecast one year into the future
forecast_result <- forecast(ar_model, h = 252)

# Plot the original data and the forecast
autoplot(df) +
    autolayer(forecast_result, series = "Forecast") +
    xlab("Date") +
    ylab("Closing Price") +
    ggtitle("AR Forecast of QQQ Closing Prices")</pre>
```

AR Forecast of QQQ Closing Prices

ARIMA Forecast of QQQ Closing Price Changes

```
# Load required libraries
library(forecast)
library(ggplot2)

# Read the CSV file and convert DATE column to Date format

df <- read.csv("Data.csv")

df$DATE <- as.Date(df$Date, format ='%Y-%m-%d')

# Convert "Close" column to numeric

df$Close <- as.numeric(as.character(df$Close))</pre>
```

Warning: NAs introduced by coercion

```
# Create a time series object
df <- ts(df$Close, start = '2019', end='2024', frequency = 252)

# Detrend the time series data using differencing
qqq_detrended <- diff(df)

# Fit an ARIMA model
arima_model <- auto.arima(qqq_detrended)</pre>
```

ARIMA Forecast of QQQ Closing Price Changes

