h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCE **Automotive Electrical Powertrain** Prof. Dr.-Ing. Jens Hoffmann

h_da Driving Resistances

Various forces act against the movement of vehicles. The sum of these forces is called resistance to movement or total resistance F_W In order to ensure propulsion the vehicle's drive must overcome these resistances.

h_da Driving Resistances

The movement resistance F_W is made up of the components rolling resistance F_{WR} , air resistance F_{WL} , gradient resistance F_{WSt} , acceleration resistance F_{WB} . When driving at constant speed on level ground with no wind, the normal driving resistance F_{W0} results from:

h_da Fahrwiderstand und Antriebskraft

Berechnung des Fahrwiderstands

$$F_{w} = c_{w} * A_{proj} * \frac{\rho}{2} * (v_{Fzg} + v_{Wind})^{2} + m * (1 + \lambda) * a + m * g * \sin(\alpha) + f_{R} * m * g$$

Berechnung der Antriebskraft

$$F_A = \frac{M_{Antrieb}}{r_{dyn}} = \frac{M_{Motor} * i * \eta}{r_{dyn}}$$

h_da Zugkraft

Luftwiderstand
$$F_{WL} = \frac{1}{2} \cdot c_w \cdot A \cdot \rho \cdot v^2$$

Rollwiderstand

 $F_{WR} = m \cdot g \cdot f_r$

Steigungswiderstand
$$F_{WSt} = m \cdot g \cdot \sin(\alpha)$$

Beschleunigungs-

vermögen a_x

 F_A

 $\eta_{A,total} \cdot i_{A,total}$

 r_A

 F_{W0}

h_da Zugkraftdiagramm

h_da Power convention

Electric machines are, by their basic physical principle, electromechanical energy converters. They convert electrical energy into mechanical energy (motor operation).

h_da Course Content

E-Motors and Energy Flow

