	R function	Covariate distribution	θ distribution
Uncorr.	uniformW	Uniform $(a, a + r)$	$a \sim U(-10, 0), r \sim U(0.5, 10)$
	bernoulliW	Bernoulli(p)	$p \sim U(0.1, 0.9)$
	binomialW	Binomial (n, p)	$n \sim U(2, 10), p \sim U(0.1, 0.9)$
	normalW	$Normal(\mu, \sigma^2)$	$\mu \sim U(-2, 2), \sigma \sim U(0.25, 2)$
	gammaW	Gamma(a,b)	$a \sim U(0.5, 2.5), b \sim U(0.5, 2.5)$
Corr.	normalWCor	$Normal(w, \sigma^2)$	$\sigma \sim \mathrm{U}(0.25, 2)$
	bernoulliWCor	Bernoulli($\exp it(w/r)$)	$r \sim \mathrm{U}(0.5, 2)$
	uniformWCor	w + Uniform(a, a + r)	$a \sim U(-2,0), r \sim U(0.25,5)$

Table 1: Possible distributions for covariates W

A random data generating distribution is generated as follows. First, choose D_{max} , the maximum dimension of the covariate vector W, and n the number of observations. Next simulate W as follows:

- Randomly sample D, the number of covariates, from a Uniform $(1,D_{max})$ distribution.
- Randomly sample \mathcal{D}_1 , the distribution for first covariate, from the uncorrelated covariate distributions listed in the top half of Table 1.
- Randomly select parameters for \mathcal{D}_1 from the corresponding distributions listed in the third column of Table 1.
- Generate W_1 by sampling n i.i.d. copies from \mathcal{D}_1 with the selected parameter values.
- For $i = 2, \ldots, D$
 - Choose \mathcal{D}_i , the distribution for the *i*-th covariate from the uncorrelated and correlated covariate distributions in Table 1.
 - Randomly select parameters for \mathcal{D}_i from the corresponding distributions listed in the third column Table 1.
 - Generate W_i by sampling n copies from \mathcal{D}_i with the selected parameters and possibly inducing correlation with W_{i-1} for distributions in bottom half of Table 1.

Next, simulate A as follows:

- Draw M_1^g , the number of main terms for the propensity score, from Uniform $(1, D_{max})$.
- For $i = 1, ..., M_1^g$:
 - Randomly sample $f_{1,i}$ from the univariate functions in Table 2.
 - Randomly sample $\theta_{1,i}$, the parameters for $f_{1,i}$, from the distributions listed in the third column of Table 2.
 - Let $h_{1,i}(W) = f_i(W_i; \theta_{1,i})$

R function	$f(w; \theta)$	θ distribution
linUni	cw	$c \sim \mathrm{U}(-2,2)$
polyUni	$\sum_{i=1}^m c_i w^{b_i}$	$m \sim DU(1,3), c_i \sim U(-1,1), b_i \sim DU(1,3)$
sinUni	$a \sin(bw)$	$a \sim U(-1,1), b \sim U(-1,1)$
jumpUni	$\sum_{i=1}^{m} a_i I(w \in (b_i, b_{i+1}])$	$m \sim \mathrm{DU}(1,5), a_i \sim U(-2,2),$
		$b_i = i/m$ -th quantile w
qGammaUni	$c \neq c $ qgamma $(expit(w); a, b)$	$a \sim U(0.5, 5), b \sim U(0.5, 5), c \sim U(-2, 2)$
dNormUni	$\frac{c}{2\pi\sigma} \exp\{-(w-\mu)^2/(2\sigma^2)\}$	$c \sim U(-4, 4), \mu \sim U(-5, 5), \sigma \sim U(0.25, 3)$
pLogisUni	$\frac{c}{1 + \exp\{(aw - \mu)/\sigma\}}$	$c \sim U(-2, 2), a \sim U(-2, 2), \mu \sim U(-2, 2),$
		$\sigma \sim \mathrm{U}(0.25, 2)$
dNormMixUni	$\frac{c_1}{2\pi\sigma} \exp\{-(w-\mu_1)^2/(2\sigma_1^2)\}+$	$c_1 \sim U(-2, 2), \mu_1 \sim U(-5, 5), \sigma_1 \sim U(0.5, 2)$
	$\frac{c_2}{2\pi\sigma} \exp\{-(w-\mu_2)^2/(2\sigma_2^2)\}$	$c_2 \sim U(-2,2), \mu_2 \sim U(-5,5), \sigma_2 \sim U(0.5,2)$

Table 2: Possible univariate functions for main terms

- If D > 1, sample M_2^g , the number of two-way interactions, from Uniform $(1, M_1^g 1)$.
- For $j = 1, \dots, M_2^g$:
 - Randomly sample $f_{2,j}$ from the bivariate functions in Table 3.
 - Randomly sample $\theta_{2,j}$, the parameters for $f_{2,i}$, from the distributions listed in the third column of Table 3.
 - Randomly sample two numbers without replacement from $\{1, \ldots, D\}$. Call these numbers a, b.
 - Let $h_{2,j}(W) = f_{2,i}(W_a, W_b; \theta_{2,j})$
- If D > 2, sample M_3^g , the number of three-way interactions, from Uniform $(1, M_2^g 1)$.
- For $k = 1, ..., M_3^g$:
 - Randomly sample $f_{3,k}$ from the trivariate functions in Table 4.
 - Randomly sample $\theta_{3,k}$, the parameters for $f_{3,k}$, from the distributions listed in the third column of Table 4.
 - Randomly sample three numbers without replacement, say a, b, and c, from $\{1, \ldots, D\}$.
 - Let $h_{3,k}(W) = f_{2,i}(W_a, W_b, W_c; \theta_{3,k})$
- Let logit $\{g_0(1|W)\} = \sum_{i=1}^{M_1^g} h_i(W) + \sum_{j=1}^{M_2^g} h_j(W) + \sum_{k=1}^{M_3^g} h_k(W)$.
- Draw n independent copies of A from a Bernoulli distribution with conditional probability that A = 1 given by $g_0(1|W)$.

Finally, simulate Y as follows:

• Draw M_1^Q , a random number of main terms for outcome regression, from Uniform $(2, D_{max})$

R function	$f(w_1, w_2; \theta)$	θ distribution
linBiv	cw_1w_2	$c \sim \mathrm{U}(-2,2)$
polyBiv	$cw_1^{b_1}w_2^{b_2}$	$c \sim U(-0.25, 0.25), b_1 \sim DU(1, 3),$
		$b_2 \sim \mathrm{DU}(1,3)$
sinBiv	$a \sin(bw_1w_2)$	$a \sim U(-1,1), b \sim U(-1,1)$
jumpBiv	$\sum_{i=1}^{m} \left\{ a_i I(w_1 \in (b_{1,i}, b_{1,i+1}]) \right\}$	$m \sim DU(1,5), a_i \sim U(-2,2),$
	$I(w_2 \in (b_{2,i}, b_{2,i+1}])\}$	$b_{1,i} = i/m$ -th quantile w_1 ,
		$b_{2,i} = i/m$ -th quantile w_2
dNormAddBiv	$\frac{c}{2\pi\sigma} \exp\{-(aw_1 + bw_2 - \mu)^2/(2\sigma^2)\}$	$c \sim U(-5, 5), a \sim U(-1, 1)$
		$b \sim U(-1,1), \mu \sim U(-5,5),$
		$\sigma \sim \mathrm{U}(0.25,3)$
dNormMultBiv	$\frac{c}{2\pi\sigma} \exp\{-(aw_1w_2-\mu)^2/(2\sigma^2)\}$	$c \sim U(-5, 5), a \sim U(-1, 1)$
		$\mu \sim U(-5, 5), \sigma \sim U(0.25, 3)$
pLogisUni	$\frac{c}{1 + \exp\{(aw_1 + bw_2 - \mu)/\sigma\}}$	$c \sim U(-4, 4), a \sim U(-1, 1),$
		$b \sim U(-1,1), \mu \sim U(-2,2),$
		$\sigma \sim \mathrm{U}(0.25, 2)$

Table 3: Possible bivariate functions for two-way interactions

R function	$f(w_1, w_2, w_3; \theta)$	θ distribution
linBiv	$cw_1w_2w_3$	$c \sim \mathrm{U}(-2,2)$
polyBiv	$cw_1^{b_1}w_2^{b_2}w_3^{b_3}$	$c \sim U(-0.25, 0.25), b_1 \sim DU(1, 3),$
	-	$b_2 \sim \mathrm{DU}(1,3), b_3 \sim \mathrm{DU}(1,3)$
sinBiv	$a \sin(bw_1w_2w_3)$	$a \sim \mathrm{U}(-1,1), b \sim \mathrm{U}(-1,1)$
jumpBiv	$\sum_{i=1}^{m} \left\{ a_i I(w_1 \in (b_{1,i}, b_{1,i+1}]) \right\}$	$m \sim \mathrm{DU}(1,5), a_i \sim U(-2,2),$
	$I(w_2 \in (b_{2,i}, b_{2,i+1}])$	$b_{1,i} = i/m$ -th quantile w_1 ,
	$I(w_3 \in (b_{3,m-i}, b_{3,m-i+1}])\}$	$b_{2,i} = i/m$ -th quantile w_2
		$b_{3,i} = i/m$ -th quantile w_3

Table 4: Possible trivariate functions for three-way interactions

- Randomly sample a function f_A from the univariate functions listed in Table 2.
- Randomly sample θ_A , the parameters for f_A , from the distributions listed in the third column of Table 2.
- Let $h_A(A) = f_A(A; \theta_A)$
- For $i = 1, \dots, M_1^Q 1$
 - Randomly sample a function $f_{1,i}$ from the univariate functions listed in Table 2.
 - Randomly sample $\theta_{1,i}$, the parameters for $f_{1,i}$ from the distributions listed in the third column of Table 2.
 - Let $h_{1,i}(W) = f_i(W_i; \theta_{1,i})$
- If D > 1, sample M_2^Q , the number of two-way interactions from Uniform $(1, M_1^Q 1)$.
- For $j = 1, ..., M_2^Q$
 - Randomly sample a function $f_{2,j}$ from the bivariate functions listed in Table 3.
 - Randomly sample $\theta_{2,j}$, the parameters for $f_{2,i}$ from the distributions listed in the third column of Table 3.
 - Randomly sample two numbers without replacement, say a, b, from $\{1, \ldots, D\}$.
 - Let $h_{2,j}(W) = f_{2,i}(W_a, W_b; \theta_{2,j})$
- If D > 2, sample M_3^Q , the number of three-way interactions from Uniform $(1, M_2^Q 1)$.
- For $k = 1, ..., M_3^Q$
 - Randomly sample a function $f_{3,k}$ from the possible trivariate functions listed in Table 4.
 - Randomly sample $\theta_{3,k}$, the parameters for $f_{3,k}$ from the distributions listed in the third column of Table 4.
 - Randomly sample three numbers without replacement, say a, b, and c, from $\{1, \ldots, D\}$.
 - Let $h_{3,k}(W) = f_{2,i}(W_a, W_b, W_c; \theta_{3,k})$
- Let $\bar{Q}_0(A, W) = h_A(A) + \sum_{i=1}^{M_1^g 1} h_i(W) + \sum_{j=1}^{M_2^g} h_j(W) + \sum_{k=1}^{M_3^g} h_k(W)$.
- Randomly sample \mathcal{E} , a distribution for errors, from the possible distributions listed in Table 5.
- Randomly sample $\theta_{\mathcal{E}}$, the parameters for \mathcal{E} from the distributions listed in Table 5.
- Generate ϵ , by drawing n independent errors from $\mathcal{E}(W; \theta_{\mathcal{E}})$, possibly inducing correlation between ϵ and W (as in the distributions in the bottom of Table 5).
- Let $Y_i = \bar{Q}_0(A_i, W_i) + \epsilon_i$ for $i = 1, \dots, n$.

IT.	R function	Error distribution	θ distribution
Unco	normalErr	$Normal(0, \sigma^2)$	$\sigma \sim \mathrm{U}(0.5,7)$
	uniformErr	Uniform $(-r/2, r/2)$	$r \sim \mathrm{U}(1,25)$
	gammaErr	ShiftedGamma (a, b)	$a \sim U(0.5, 7.5)$
Uncorr.			$b \sim U(0.5, 7.5)$
	normalErrW (binary W_1)	Normal $(0, \sigma^2 \{1 + I(w_1 = 1)\})$	$\sigma \sim \mathrm{U}(0.5,7)$
	normalErrW (cont. W_1)	Normal $(0, (\exp it(w_1)\sigma)^2)$	$\sigma \sim \mathrm{U}(0.5,7)$
	uniformErrW (binary W_1)	Uniform $(-r - I(w_1 = 1), r + I(w_1 = 1))$	$r \sim \mathrm{U}(1,25)$
	uniformErrW $(\mathrm{cont.}\ W_1)$	Uniform $(-r \operatorname{expit}(w_1), r \operatorname{expit}(w_1))$	$\sigma \sim \mathrm{U}(0.5,7)$

Table 5: Possible error distributions. ShiftedGamma denotes a Gamma distribution shifted to have mean zero.