UC Berkeley · CSW182 | [Deep Learning]

Designing, Visualizing and Understanding Deep Neural Networks (2021)

CSW182 (2021)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

半记 官方筆记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1Ff4v1n7ar

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkelev-csw182

Berkeley

Q-Learning 计算机视觉 循环神经网络

风格迁移 梢

机器学习基础

可视化

模仿学习 生成模型 元学习 卷积网络

梯度策略

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复「添砖加瓦]

Learning-Based Control & Imitation

Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine UC Berkeley

So far: learning to *predict*

What about learning to control?

From prediction to control: challenges

i.i.d.:
$$p(\mathcal{D}) = \prod_i p(y_i|x_i)p(x_i)$$

output y_1 does not change x_2

this is **very** important, because it allows us to just focus on getting the highest **average** accuracy over the whole dataset

making the wrong choice here is a disaster

making the wrong choice here is perhaps OK

From prediction to control: challenges

Ground truth labels:

"puppy"

Abstract goals: "drive to the grocery store"

> what steering command is that?

From prediction to control: challenges

- i.i.d. distributed data (each datapoint is independent)
- ground truth supervision
- objective is to predict the right label

These are not **just** issues for control: in many cases, real-world deployment of ML has these same **feedback** issues

Example: decisions made by a traffic prediction system might affect the route that people take, which changes traffic

- each decision can change future inputs (not independent)
- supervision may be high-level (e.g., a goal)
- objective is to accomplish the task

We will **build up** toward a **reinforcement learning** system that addresses all of these issues, but we'll do so one piece at a time...

Terminology

This distinction will very important later, but is not so important today

 \mathbf{a}_t – action

 \mathbf{o}_t – observation

$$\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$$
 - policy $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ - policy (fully observed)

 \mathbf{s}_t – state

Terminology

Aside: notation

 \mathbf{s}_t – state

 \mathbf{a}_t – action

Richard Bellman

 \mathbf{x}_t – state

 $\mathbf{u}_t - \mathrm{action}$ управление

Lev Pontryagin

Imitation Learning

behavioral cloning

Does it work?

No!

Where have we seen this before?

Does it work?

Yes!

Video: Bojarski et al. '16, NVIDIA

Getting behavioral cloning to work

What is the problem?

the problem: $p_{\text{data}}(\mathbf{o}_t) \neq p_{\pi_{\theta}}(\mathbf{o}_t)$

What is the problem?

the problem: $p_{\text{data}}(\mathbf{o}_t) \neq p_{\pi_{\theta}}(\mathbf{o}_t)$

complete nonsense, because the network never saw inputs remotely like this

This is the same problem!

the network always saw **true** sequences as inputs, but at test-time it gets as input its own (potentially incorrect) predictions

The problem: this is a training/test discrepancy:

we got unlucky, but now the model is completely confused

it never saw "I drive" before

This is called **distributional shift**, because the input distribution **shifts** from true strings (at training) to synthetic strings (at test time)

Why not use the same solution?

the problem: $p_{\text{data}}(\mathbf{o}_t) \neq p_{\pi_{\theta}}(\mathbf{o}_t)$

Before: scheduled sampling

Now: control

we could take the predicted action $\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ and observe the resulting \mathbf{o}_{t+1}

but this requires interacting with the world! why?

we don't know $p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)!$

Can we **mitigate** the problem?

the problem: $p_{\text{data}}(\mathbf{o}_t) \neq p_{\pi_{\theta}}(\mathbf{o}_t)$

if $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ is very accurate maybe $p_{\text{data}}(\mathbf{o}_t) \approx p_{\theta}(\mathbf{o}_t)$

Why might we fail to fit the expert?

- 1. Non-Markovian behavior
 - 2. Multimodal behavior

If we see the same thing twice, we do the same thing twice, regardless of what happened before

Often very unnatural for human demonstrators

How can we use the whole history?

variable number of frames, too many weights

How can we use the whole history?

Typically, LSTM cells work better here

1. Non-Markovian behavior

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

- Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

1. Output mixture of Gaussians

- 2. Latent variable models
- 3. Autoregressive discretization

Look up some of these:

- Conditional variational autoencoder
- Normalizing flow/realNVP
- Stein variational gradient descent

- 1. Output mixture of Gaussians
- Latent variable models (discretized) distribution over dimension 1 only
- Autoregressive discretization

We'll learn more about better ways to model multi-modal distributions when we cover generative models later

dim 2

value

dim 1

value

Does it work?

Yes!

Video: Bojarski et al. '16, NVIDIA

Why did that work?

Summary

- In principle it should not work
 - Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Models with memory (i.e., RNNs)
 - Better distribution modeling
 - Generally taking care to get high accuracy

A (perhaps) better approach

Can we make it work more often?

Can we make it work more often?

```
can we make p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)?
idea: instead of being clever about p_{\pi_{\theta}}(\mathbf{o}_t), be clever about p_{\text{data}}(\mathbf{o}_t)!
```

DAgger: **D**ataset **A**ggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ but need labels \mathbf{a}_t !

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
 - 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
 - 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

What's the problem?

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = {\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t

 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Summary and takeaways

- In principle it should not work
 - Distribution mismatch problem
 - DAgger can address this, but requires costly data collection and labeling
- Sometimes works well
 - Requires a bit of (heuristic) hacks, and very good (high-accuracy) models

My recommendation: try behavioral cloning first, but prepare to be disappointed

Next time

- i.i.d. distributed data (each datapoint is independent)
- ground truth supervision
- objective is to predict the right label

- each decision can change future inputs (not independent)
- supervision may be high-level (e.g., a goal)
- objective is to accomplish the task

We'll tackle these issues with reinforcement learning

UC Berkeley · CSW182 | [Deep Learning]

Designing, Visualizing and Understanding Deep Neural Networks (2021)

CSW182 (2021)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方筆记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1Ff4y1n7ar

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkelev-csw182

Berkeley

Q-Learning 计算机视觉 循环神经网络

风格迁移

机器学习基础

可视化

模仿学习

生成模型

梯度策略

元学习 ^{卷积网络} Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**何页面, 一键下载课程全部资料!

机	.器学习	深度学习	自然语言处理	计算机视觉
Stanf	ord · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复「添砖加瓦]