1 Introduction

2 Path Induction

3 Functions are Functors

4 Chapter 2.3 Type Families are fibrations

Every proof in the relevant section in the book is proved by path induction.

Let $P:A\to U$ be a type family which we can consider as a fibration.

Consider some x, y: A and a path $p: x =_A y$ this will be our base space. The total space is $\sum_{x:A} P(x)$ which is the dependent pair types. This means that given any x: A there exists a fibre $P(x): \sum_{x:A} P(x)$ of elements that map to x: A via the first projection $\pi(x, u) = x$.

Lemma 4.1. Transport There exists a function transport $P(p_{,}) := p_* : P(x) \to P(y)$.

Proof. Let p be $refl_x$ and use path induction. Note that $(refl_x)_* = id_{P(x)}$.

Homotopy Version: Given any two points, x, y in base space A and fibers P(x) and P(y) above x and y respectively then there exists a function from P(x) to P(y)

Lemma 4.2. Path Lifting Property Fix some u: P(x) then there exists a path

$$lift(u, p) : (x, u) = (y, p_*(u))$$

Proof. Assume that p is $refl_x$. By the proof of lemma 4.1 $(refl_x)_* = id_{P(x)}$, hence;

$$lift(u, refl_x) := ((x, u) = (x, u)) := refl_{(x,u)}$$

Now path inductions give us the existence of lift.

So given a path, p: x = y, in the base space and and any element of the fibre P(x) there exists a path, $p': (x, u) = (y, p_*(u) \text{ such that } (x, u) : P(x) \text{ the fibre over } x \text{ and } (y, p_*(u) : P(y) \text{ the fibre over } y$. I.e. we have lifted the path p.

Given some $f: \Pi_{x:A}P(x)$ we can define a non-dependent function $f': A \to \sum_{x:A}P(x)$ by setting p'(x) := (x, f(x)). In homotopological terms f' is a right continuous inverse to pi_1 i.e. a section.

Lemma 4.3. Fix f be as above, then there exists a dependent map:

$$apd_f\Pi_{p:x=y}p_*(f(x)) =_{P_y} f(y)$$

Proof. So suppose (as usual) that p is $refl_x$. Then

$$(refl_x)_*(f(x)) =_{P(y)} f(x)$$

:= $refl_{f(x)}$

By path induction apd_f exists.

So, given some section, f' := (x, f(x)), there exists a map over the section P(y) from $p_*(f(x))$ to f(y).

Lemma 4.4. Fix some A, B : U and b:B. If the type family $P : A \to U$ is defined to be P(x) := B (not dependant on A). Then there exists a path:

$$transportconst_p^B(b): transport^P(p,b) = b.$$

Proof. We can assume that $p := refl_x$ so that we must consider $transport^P(refl_x.b) = b$. By lemma 4.1 $transport^P(refl_x.b) := b$ so we just need to construct a witness of type $refl_b$ and apply path induction.

Lemma 4.4 highlights the subtle difference between a function and a path: just compare transport which is a function and tells us that a point u goes to point v and transportconst which is a path between u and v. So if P is a type family independent from A and given x, y : A and a path between them $p : x =_A y$, then for any b in the total space B we have $transport^P(p, b)$ is a function from P(x) := B to P(y) := B. In particular, it sends $transport^B(p, b) : B$ to b : B. Furthermore $transportconst^P_p(b)$ is a path between $transport^P(p, b)$ and b. We will see that transportconst makes sense when mapping within a particular fibre P(x).

Now we wish to link the dependent and independent functions $ap_f(p)$ and $apd_f(p)$.

Lemma 4.5. Let $f: A \rightarrow B$, then

$$apd_f(p) = transportconst_p^B(f(x)) \square ap_f(p)$$

Proof. By path induction it is enough to assume that p is $refl_x$. So we wish to construct a witness to type $apd_f(refl_x) = transportconst_{refl_x}^B(f(x))\dot{a}p_f(refl_x)$. By lemma ?? $transportconst_p^B(b) = refl_b$, by lemma ?? $ap_f(refl_x) = refl_{f(x)}$ and by lemma ?? $refl_x \Box refl_x = refl_x$. Putting this together we need to prove $refl_{f(x)} = refl_{f(x)}$: we have $refl_{refl_{f(x)}}$ for this. Path induction gives the required result.

In topological terms, given a fibration $\pi_1: \sum_{x:A} P(x)$ and a function $f: A \to B$ such that f'(x) = (x, f(x)) and a path x = y in space A we know there exists the following three maps in B:

- (i) $apd_f(p)$ is a path in the fibre, P(y) := B over y from $transport^P(p, f(x))$ to f(y)
- (ii) $transportconst_p^B(f(x))$ is a path in B from $transport^P(p, f(x)) : B$ to f(x) : B.
- (iii) $ap_f(p)$ is the path from f_x to f(y) in B.

Drawing these paths in B assures us that Lemma 4.5 is well-typed.