Actuators

Actuator based on induction motor drive

Lab2

Dmitry Lukichev lukichev@itmo.ru

HDU-ITMO Joint Institute

2024

Open-loop control of an asynchronous (induction) motor

Two methods of the torque control

can control the motor torque only in the steadystate condition and thus cannot be used to control the dynamic behavior of the motor. for high- performance applications such as robots, elevators, CNC machine tools, and automation line drives. In these applications a precise speed/torque control and a fast dynamic response are required

Energy conversion by electric machines

Average torque control (scalar control method)

The *V/f* ratio may be adjusted according to

Figure Constant volts per Hertz (V/f) control

Speed-torque curves with constant volts per Hertz control

Open-loop speed control by adjusting the slip frequency under constant V/f control

Figure - Speed control (open-loop system) by adjusting the slip frequency with constant *V/f* control

Closed-loop speed control by adjusting the slip frequency under constant V/ f control

Figure - Speed control (closed-loop system) by adjusting the slip frequency with constant *V/f* control

LAB#2 Induction motor drive modelling

- ✓ LAB#2 is performed in MATLAB / Simulink
- ✓ LAB#2 consists three parts:
 - Task 1. Transformation between reference frames (Transformation of abc variables into dq (Clarke

transformation) and inverse transformation, Park's transformation)

- Task 2. Mathematical model of IM in stationary and synchronous reference frames
- Task 3. Scalar control of IM: open-loop

Content

 $Task\ 1$ Transformation between reference frames (Transformation of abc variables into dq and inverse transformation, Park's transformation)

Transformation between reference frames

Task 1.1 Transformation between reference frames: Transformation of abc variables into dq and inverse transformation)

Figure Transformation into the arbitrary rotating reference frame.

• Transformation of abc variables into dqn variables in the stationary reference frame

$$f_{d}^{s} = \frac{2f_{a} - f_{b} - f_{c}}{3}$$

$$f_{q}^{s} = \frac{1}{\sqrt{3}}(f_{b} - f_{c})$$

$$f_{n}^{s} = \frac{2(f_{a} + f_{b} + f_{c})}{3}$$

• Inverse transformation
$$(f_n^s=0)$$

$$f_a=f_d^s$$

$$f_b=-\frac{1}{2}f_d^s+\frac{\sqrt{3}}{2}f_q^s$$

$$f_c=-\frac{1}{2}f_d^s-\frac{\sqrt{3}}{2}f_q^s$$

Task 1.1 Transformation between reference frames: Transformation of abc variables into dq and inverse transformation)

• Transformation of abc variables into dqn variables in the stationary reference frame $f_d^s = \frac{2f_a - f_b - f_c}{3}$ $f_q^s = \frac{1}{\sqrt{3}}(f_b - f_c)$ $f_n^s = \frac{2(f_a + f_b + f_c)}{3}$

2nd way

Simulink->User-Defined Functions->MATLAB Function


```
function [ds,qs] = fcn(a,b,c)
ds = (a*2/3) - (b/3) - (c/3);
qs = (b/(sqrt(3))) - (c/(sqrt(3)));
[ds; qs];
```

Task 1.1 Transformation between reference frames: Transformation of abc variables into dq and inverse transformation)


```
• Inverse transformation (f_n^s = 0)

f_a = f_d^s
f_b = -\frac{1}{2}f_d^s + \frac{\sqrt{3}}{2}f_q^s
f_c = -\frac{1}{2}f_d^s - \frac{\sqrt{3}}{2}f_q^s
```


Task 1.1 Transformation between reference frames: Transformation of abc variables into dq and inverse transformation)

Transformation between reference frames

Task 1.2 Transformation between reference frames: Park's transformation

Figure Transformation between reference frames. (A) Stationary into rotating frame and (B) rotating into stationary frame

Transformation of stationary reference frame into rotating reference frame

$$f_{d}^{s}=f_{d}^{s}\cos\theta+f_{q}^{s}\sin\theta$$

$$f_q^{e} = -f_d^{s} \sin \theta + f_q^{s} \cos \theta$$

• Inverse transformation of stationary reference frame into rotating reference frame

$$f_d^s = f_d^e \cos\theta - f_q^e \sin\theta$$

$$f_q^s = f_d^e \sin \theta + f_q^e \cos \theta$$

Task 1.2 Transformation between reference frames: Park's transformation

• Transformation of stationary reference frame into rotating reference frame $f_d^s = f_d^s \cos \theta + f_q^s \sin \theta$ $f_q^s = -f_d^s \sin \theta + f_q^s \cos \theta$

$$f_{dq}^e = f_{abc}e^{-j\theta_e} = f_{dq}^s e^{-j\theta_e} \quad \left(\theta_e = \int \omega_e(t)dt + \theta(0)\right)$$

2nd way

Simulink->User-Defined Functions->MATLAB Function


```
function [de, qe] = fcn(ds, qs, teta)
de = ds*cos(teta) + qs*sin(teta);
qe = - ds*sin(teta) + qs*cos(teta);
[de; qe];
```

Transformation between reference frames

Task 1.2 Transformation between reference frames: Park's transformation

Transformation between reference frames

Task 1.2 Transformation between reference frames: Park's transformation

• Inverse transformation of stationary reference frame into rotating reference frame

$$f_d^s = f_d^e \cos \theta - f_q^e \sin \theta$$

$$f_q^s = f_d^e \sin \theta + f_q^e \cos \theta$$

$$f_{dq}^{s} = f_{dq}^{e} e^{j\theta_{e}} \quad \left(\theta_{e} = \int \omega_{e}(t)dt + \theta(0)\right)$$

2nd way

Simulink->User-Defined Functions->MATLAB Function

function [ds, qs] = fcn(de, qe, teta)

Task 1.2 Transformation between reference frames: Park's transformation

Task. Transformation between reference frames (*Park's transformation*, Transformation of abc variables into dq and inverse transformation)

Figure Reference frame transformations

You need to include formulas of all transformation in your report before simulation

Task. Transformation between reference frames (*Park's transformation*, Transformation of abc variables into dq and inverse transformation)

Mathematical models of IM

Task 2.1 Model of IM in stationary reference frame

• Induction motor *d-q* equations in the stationary reference frame

$$\begin{cases} i^{s}_{ds} = \frac{1}{R'_{s}(1+sT'_{s})} \left(u^{s}_{ds} + \frac{K_{2}}{T_{r}} \lambda^{s}_{dr} + \omega K_{2} \lambda^{s}_{qr} \right) \\ i^{s}_{qs} = \frac{1}{R'_{s}(1+sT'_{s})} \left(u^{s}_{qs} + \frac{K_{2}}{T_{r}} \lambda^{s}_{qr} - \omega K_{2} \lambda^{s}_{dr} \right) \\ \lambda^{s}_{dr} = \frac{T_{r}}{1+sT_{r}} \left(R_{r} K_{2} i^{s}_{ds} - \omega \lambda^{s}_{qr} \right) \\ \lambda^{s}_{qr} = \frac{T_{r}}{1+sT_{r}} \left(R_{r} K_{2} i^{s}_{qs} + \omega \lambda^{s}_{dr} \right) \\ T = \frac{3}{2} z_{p} K_{2} \left(\lambda^{s}_{dr} i^{s}_{qs} - \lambda^{s}_{qr} i^{s}_{ds} \right) \\ \Omega = \frac{T-T_{l}}{sJ} \qquad \omega = \frac{\Omega}{z_{p}} \end{cases}$$

$$Tr = Lr/Rr$$
 $K1 = Lm/Ls$ $K2 = Lm/Lr$
 $Rss = (K2^2)*Rr+Rs$ $Lss = Ls*(1-K1*K2)$
 $Tss = Lss/Rss$

• Induction motor block diagram (Induction Motor Block) in stationary reference frame

Mathematical models of IM

Task 2.2 Model of IM in synchronous reference frame

• Induction motor *d-q* equations in the synchronous reference frame 1

$$i_{ds}^{e} = \frac{1}{R'_{s}(1+sT'_{s})} (v_{ds}^{e} + \omega_{e}L'_{s}i_{qs}^{e} + \frac{k_{2}}{T_{r}}\lambda_{dr}^{e} + \omega_{r}k_{2}\lambda_{qr}^{e} \rightarrow$$

$$i_{qs}^{e} = \frac{1}{R'_{s}(1+sT'_{s})} (v_{qs}^{e} - \omega_{e}L'_{s}i_{ds}^{e} + \frac{k_{2}}{T_{r}}\lambda_{qr}^{e} - \omega_{r}k_{2}\lambda_{dr}^{e} \rightarrow$$

$$\lambda_{dr}^{e} = \frac{T_{r}}{(1+sT_{r})} (R_{r}k_{2}i_{ds}^{e} + (\omega_{e} - \omega_{r})\lambda_{qr}^{e}) \rightarrow$$

$$\lambda_{qr}^{e} = \frac{T_{r}}{(1+sT_{r})} (R_{r}k_{2}i_{qs}^{e} + (\omega_{e} - \omega_{r})\lambda_{dr}^{e}) \rightarrow$$

$$T = \frac{3}{2} \frac{P}{2} k_2 (\lambda_{dr}^e i_{qs}^e - \lambda_{qr}^e i_{ds}^e) \longrightarrow$$

 Induction motor block diagram (Induction Motor Block) in synchronous reference frame

Task 2.3 Modelling results for different math.models of IM

Task 2.3 Modelling results for different math.models of IM

The same results as in simulation of IM with stationary, synchronous reference frame and with Library Simulink Blocks «Asynchronous Machine SI Units» and « Induction Motor »

Torque-speed characteristic

Task 3. Scalar control: open-loop system

Open-loop drive system with motion profile and

scalar control technique

Task 3 Scalar control: open-loop system with/without motion profile

Open-loop drive system without motion profile profile and scalar control technique

Thank you for your attention