6. Übungsblatt

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik

Sommersemester 2021

21. Mai 2021

Abgabe bis 4. Juni 2021, 12:00 Uhr

Auf diesem Übungsblatt wird der Vorlesungsstoff bis Seite 43 des Vorlesungsskripts behandelt.

Aufgabe 21 (K):

(i) Die Funktion $f: \mathbb{R}^4 \to \mathbb{R}^2$ sei gegeben durch

$$f(x_1, x_2, y_1, y_2) := (\cos(x_1) + x_2 - y_1^2 - y_2^2, x_1 - \sin(\pi x_2) - y_1^2 + y_2^2).$$

Zeigen Sie: Es existieren Radien $\delta, \eta > 0$, sodass für alle $(x_1, x_2) \in U_{\delta}(0, 1)$ eine eindeutige Lösung $g(x_1, x_2) \in U_{\eta}(1, 1)$ mit

$$f(x_1, x_2, g(x_1, x_2)) = (0, 0)$$

existiert. Berechnen Sie ferner die Ableitung der implizit definierten Funktion im Punkt (0,1), d.h. g'(0,1).

(ii) Zeigen Sie, dass ein $\delta > 0$ existiert, sodass die Gleichung

$$z^5 + xz^3 - 2z^2 + xyz - xy^2 + 3 = 0$$

in der offenen Kreisscheibe $U_{\delta}(0,1)$ um (x,y)=(0,1) durch (x,y,g(x,y)) gelöst werden kann, wobei g auf $U_{\delta}(0,1)$ stetig differenzierbar ist und zusätzlich g(0,1)=-1 gilt. Berechnen Sie zudem die Ableitung der implizit definierten Funktion im Punkt (0,1), d.h. g'(0,1).

Aufgabe 22:

(i) Die Funktion $f: \mathbb{R}^4 \to \mathbb{R}^2$ sei definiert durch

$$f(x_1, x_2, y_1, y_2) := (x_1^2 + x_2^2 - y_1^2 - y_2, x_1^2 + 2x_2^2 + 3y_1^2 + 4y_2^2 - 1).$$

Zeigen Sie, dass Radien $\delta, \eta > 0$ und eine stetig differenzierbare Funktion $g: U_{\delta}\left(\frac{1}{2}, 0\right) \to U_{\eta}\left(\frac{1}{2}, 0\right)$ existieren, sodass die Gleichung $f(x_1, x_2, y_1, y_2) = (0, 0)$ durch $(x_1, x_2, g(x_1, x_2))$ $((x_1, x_2) \in U_{\delta}\left(\frac{1}{2}, 0\right))$ gelöst wird. Berechnen Sie außerdem $g'\left(\frac{1}{2}, 0\right)$.

(ii) Wir betrachten für $(x, y, z, t) \in \mathbb{R}^4$ das Gleichungssystem

$$\begin{cases} x^3 + y^3 + z^3 + t^2 = 0, \\ x^2 + y^2 + z^2 + t = 2, \\ x + y + z + t = 0. \end{cases}$$

Verifizieren Sie, dass (0,-1,1,0) dieses System löst und zeigen Sie, dass es ein offenes Intervall $U:=(-\delta,\delta)$ für ein $\delta>0$ sowie stetig differenzierbare Funktionen $x,y,z\colon U\to\mathbb{R}$ derart gibt, dass (x(t),y(t),z(t),t) das obige Gleichungssystem für jedes $t\in U$ löst.

Aufgabe 23 (K):

- (i) Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}^2$ sei definiert durch $f(x,y) := (e^x + e^{-y}, e^{x+y})$. Zeigen Sie: Es existiert ein $\delta > 0$, sodass die offene Umgebung $U_{\delta}(0,0)$ durch f bijektiv auf $f(U_{\delta}(0,0))$ abgebildet wird. Berechnen Sie außerdem die Ableitung der Umkehrfunktion von f im Punkt (2,1).
- (ii) Wir definieren $f : \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) := ((2+\arctan x)\sin(y), -e^x\cos(y))$. Zeigen Sie, dass es zu jedem Punkt $(x,y) \in \mathbb{R}^2$ ein $\delta > 0$ gibt, sodass $f : U_{\delta}(x,y) \to \mathbb{R}^2$ injektiv ist. Ist $f : \mathbb{R}^2 \to \mathbb{R}^2$ injektiv?

Aufgabe 24:

Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}^2$ sei definiert durch $f(x,y) := (\cosh(x)\cos(y), \sinh(x)\sin(y))$.

- (i) Zeigen Sie: Es existiert ein $\delta > 0$, sodass die offene Umgebung $U := U_{\delta}(\log 2, \frac{\pi}{2})$ des Punktes $(\log 2, \frac{\pi}{2})$ durch f bijektiv auf die Menge f(U) abgebildet wird und die Umkehrfunktion $f^{-1}: f(U) \to U$ stetig differenzierbar ist. Berechnen Sie zudem $(f^{-1})'(0, \frac{3}{4})$.
- (ii) Beweisen Sie, dass f in allen Punkten der Menge $A := \{(x, y) \in \mathbb{R}^2 : x > 0\}$ lokal invertierbar ist und dass f auf der Menge A nicht injektiv ist.

Information

Aufgrund der aktuellen Situation wird dieses Modul teilweise in digitaler Form angeboten. Die gesamte Abwicklung wird über das System ILIAS stattfinden. Melden Sie sich dafür mit Ihrem KIT-Account an und treten Sie dem Kurs Höhere Mathematik II (Analysis) für die Fachrichtung Informatik bei. Sie können diesem Kurs direkt über folgenden Link beitreten:

https://ilias.studium.kit.edu/goto.php?target=crs_1460343_rcodeUyjdjAUg9P&client_id=produktiv

Alle weiteren Informationen bezüglich der Themen Übungsbetrieb, Scheinkriterien, Tutorien, Prüfung, Skript und Literaturhinweise finden Sie auf der ILIAS-Seite der Vorlesung. Dort werden Sie auch über mögliche Änderungen informiert.

Zum Bearbeiten der Übungsblätter sollten Sie pro Woche etwa 7-8 Seiten des Skripts mithilfe der angebotenen Vorlesungsvideos durcharbeiten. Das kommende Übungsblatt wird den Vorlesungsstoff bis einschließlich Seite 50 beinhalten.

Übungsschein

Jede (K)-Aufgabe wird mit maximal 8 Punkten bewertet. Einen Übungsschein erhält, wer auf den Übungsblättern 1-6 und 7-13 **jeweils** mindestens 48 bwz. 56 Punkte (50%) erzielt. Notwendig für den Erhalt des Übungsscheins ist eine Anmeldung im CAS-Portal.

Anmeldung zur Klausur

Die Klausur zur Höheren Mathematik I und II für die Fachrichtung Informatik wird am 14.09.2021 von 8:00 - 13:00 Uhr stattfinden. Die Anmeldung zur Klausur ist ab sofort möglich. Beachten Sie bitte den Anmeldeschluss am 30.08.2021. Eine nachträgliche Anmeldung ist nicht möglich.