

CSE5014 CRYPTOGRAPHY AND NETWORK SECURITY

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

Public-key encryption

Public-key encryption

- **Theorem 12.2** A *public-key encryption* scheme is composed of three PPT algorithms:
 - Gen: key-generation algorithm that on input 1^n outputs pk, sk
 - Enc: encryption algorithm that on input pk and a message m outputs a ciphertext c
 - Dec: decryption algorithm that on input sk and a ciphertext c outputs a message m or an error \bot

Public-key encryption

- **Theorem 12.2** A *public-key encryption* scheme is composed of three PPT algorithms:
 - Gen: key-generation algorithm that on input 1^n outputs pk, sk
 - Enc: encryption algorithm that on input pk and a message m outputs a ciphertext c
 - Dec: decryption algorithm that on input sk and a ciphertext c outputs a message m or an error \bot

For all m and pk, sk output by Gen,

$$Dec_{sk}(Enc_{pk}(m)) = m$$

CPA-security

- \blacksquare Fix a public-key encryption scheme Π and an adversary A
- Define experiment $PubK-CPA_{A,\Pi}(n)$:
 - Run $Gen(1^n)$ to get keys pk, sk
 - Give pk to A, who outputs m_0, m_1 of same length
 - Choose uniform $b \in \{0,1\}$ and compute the ciphertext $c \leftarrow Enc_{pk}(m_b)$; give c to A
 - A outputs a guess b', and the experiment evaluates to 1 if b'=b

CPA-security

- \blacksquare Fix a public-key encryption scheme Π and an adversary A
- Define experiment $PubK-CPA_{A,\Pi}(n)$:
 - Run $Gen(1^n)$ to get keys pk, sk
 - Give pk to A, who outputs m_0, m_1 of same length
 - Choose uniform $b \in \{0,1\}$ and compute the ciphertext $c \leftarrow Enc_{pk}(m_b)$; give c to A
 - A outputs a guess b', and the experiment evaluates to 1 if b'=b
- **Theorem 12.3** Public-key encryption scheme Π is *CPA-secure* if for all PPT adversaries *A*:

$$\Pr[PubK-CPA_{A,\Pi}(n)=1] \leq 1/2 + negl(n)$$

Notes on the definition

- No encryption oracle?!
 - Encryption oracle redundant in public-key setting

Notes on the definition

- No encryption oracle?!
 - Encryption oracle redundant in public-key setting

- ⇒ No perfectly secret public-key encryption
- ⇒ No deterministic public-key encryption can be CPA-secure
- ⇒ CPA-security implies security for encryption multiple messages as in the private-key case

Perfectly secret public-key encryption

■ **Definition 12.4** A public-key encryption scheme is *perfectly* secret if for all public keys pk, all messages m_0, m_1 , all ciphertexts c, and all algorithms A, we have:

```
\Pr[A(pk,c) = 0 | c \leftarrow Enc_{pk}(m_0)] = \Pr[A(pk,c) = 0 | c \leftarrow Enc_{pk}(m_1)]
```


Perfectly secret public-key encryption

■ **Definition 12.4** A public-key encryption scheme is *perfectly* secret if for all public keys pk, all messages m_0, m_1 , all ciphertexts c, and all algorithms A, we have:

$$\Pr[A(pk,c) = 0 | c \leftarrow Enc_{pk}(m_0)] = \Pr[A(pk,c) = 0 | c \leftarrow Enc_{pk}(m_1)]$$

Theorem 12.5 No public-key encryption scheme is *prefectly secret*.

Proof.

Recall: plain RSA

- \blacksquare Choose random, equal-length primes p, q
- Compute modulus N = pq
- Choose e, d such that $e \cdot d = 1 \mod \phi(N)$

Recall: plain RSA

- Choose random, equal-length primes p, q
- Compute modulus N = pq
- Choose e, d such that $e \cdot d = 1 \mod \phi(N)$
- The e^{th} root of x modulo N is x^d mod N $(x^d)^e = x^{de} = x \mod N$

Recall: plain RSA

- \blacksquare Choose random, equal-length primes p, q
- Compute modulus N = pq
- Choose e, d such that $e \cdot d = 1 \mod \phi(N)$
- The e^{th} root of x modulo N is x^d mod N $(x^d)^e = x^{de} = x \mod N$
- **RSA** assumption: given N, e only, it is hard to compute the e^{th} root of a uniform $c \in \mathbb{Z}_N^*$

- The scheme is *deterministic*
 - Cannot be CPA-secure!

- The scheme is *deterministic*
 - Cannot be CPA-secure!
- RSA assumption only refers to hardness of computing the eth roots of uniform c
 - c is not uniform unless m is
 - Easy to recover "small" m from c

- The scheme is *deterministic*
 - Cannot be CPA-secure!
- RSA assumption only refers to hardness of computing the eth roots of uniform c
 - c is not uniform unless m is
 - Easy to recover "small" m from c
- RSA assumption only refers to hardness of computing the eth roots in its entirety
 - Partial information about the e^{th} root may be leaked

- The scheme is *deterministic*
 - Cannot be CPA-secure!
- RSA assumption only refers to hardness of computing the eth roots of uniform c
 - c is not uniform unless m is
 - Easy to recover "small" m from c
- RSA assumption only refers to hardness of computing the eth roots in its entirety
 - Partial information about the e^{th} root may be leaked
- Plain RSA should never be used!

PKCS #1 v1.5

- Standard issued by RSA labs in 1993
- Idea: add random padding
 - To encrypt m, choose random r
 - $-c = [(r|m)^e \mod N]$

PKCS #1 v1.5

- Standard issued by RSA labs in 1993
- Idea: add random padding
 - To encrypt m, choose random r
 - $-c = [(r|m)^e \mod N]$
- Issues:
 - No proof of CPA-security (unless m is very short)
 - Chosen-plaintext attacks known if r is too short
 - Chosen-ciphertext attacks possible

PKCS #1 v2.0

- Optimal Asymmetric Encryption Padding
 - (OAEP) applied to message first
- This padding introduces redundancy, so that not every $c \in \mathbb{Z}_N^*$ is a valid ciphertext
 - Need to check for proper format upon decryption
 - Return error if not properly formatted

OAEP

OAEP

■ RSA-OAEP can be proven *CCA-secure* under the *RSA* assumption, if *G* and *H* are modeled as random oracles

Chosen-ciphertext attacks

Chosen-ciphertext attacks

- Chosen-ciphertext attacks are arguably even a greater concern in the public-key setting
 - Attacker might be a legitimate sender
 - Easier for attacker to obtain full decryptions of ciphertexts of its choice

Chosen-ciphertext attacks

- Chosen-ciphertext attacks are arguably even a greater concern in the public-key setting
 - Attacker might be a legitimate sender
 - Easier for attacker to obtain full decryptions of ciphertexts of its choice
- Related concern: malleability
 - I.e., given a ciphertext c that is the encryption of an unknown message m, might be possible to produce ciphertext c' that decrypts to a related message m'
 - This is also undesirable in the public-key setting

Diffie-Hellman key exchange

$$(G, q, g) \leftarrow \mathcal{G}(1^n)$$

$$x \leftarrow \mathbb{Z}_q$$

$$h_1 = g^x$$

$$y \leftarrow \mathbb{Z}_q$$

 $h_2 = g^y$

$$k = (h_1)^y$$

$$(G, q, g) \leftarrow \mathcal{G}(1^n)$$

$$x \leftarrow \mathbb{Z}_q$$

$$h_1 = g^x$$

$$k = (h_2)^x$$
$$m = c_2/k$$

$$c_2 = k \cdot m$$

$$y \leftarrow \mathbb{Z}_q$$

 $h_2 = g^y$

$$k = (h_1)^y$$

$$(G, q, g) \leftarrow \mathcal{G}(1^n)$$

$$x \leftarrow \mathbb{Z}_q$$

$$h_1 = g^x$$

$$k = (h_2)^x$$
$$m = c_2/k$$

$$h_2, h_1^y \cdot m$$

$$y \leftarrow \mathbb{Z}_q$$

 $h_2 = g^y$

$$k = (h_1)^y$$

- $Gen(1^n)$
 - Run $\mathcal{G}(1^n)$ to obtain G, q, g. Choose uniform $x \in \mathbb{Z}_q$. The *public key* is (G, q, g, g^x) and the *private key* is x

- $Gen(1^n)$
 - Run $\mathcal{G}(1^n)$ to obtain G, q, g. Choose uniform $x \in \mathbb{Z}_q$. The *public key* is (G, q, g, g^x) and the *private key* is x
- $Enc_{pk}(m)$, where pk = (G, q, g, h) and $m \in G$
 - Choose uniform $y \in \mathbb{Z}_q$. The ciphertext is g^y , $h^y \cdot m$

- $Gen(1^n)$
 - Run $\mathcal{G}(1^n)$ to obtain G, q, g. Choose uniform $x \in \mathbb{Z}_q$. The *public key* is (G, q, g, g^x) and the *private key* is x
- $Enc_{pk}(m)$, where pk = (G, q, g, h) and $m \in G$
 - Choose uniform $y \in \mathbb{Z}_q$. The ciphertext is g^y , $h^y \cdot m$
- \blacksquare $Dec_{sk}(c_1, c_2)$
 - Output c_2/c_1^{\times}

- If the *DDH assumption* is hard for \mathcal{G} , then the El Gamal encryption scheme is *CPA-secure*
 - Follows from security of Diffie-Hellman key exchange, or can be proved directly

- If the *DDH assumption* is hard for \mathcal{G} , then the El Gamal encryption scheme is *CPA-secure*
 - Follows from security of Diffie-Hellman key exchange, or can be proved directly
- Dlog assumption alone is not enough here

In practice

lacktriangle Parameters G, q, g are standardized and shared

In practice

- \blacksquare Parameters G, q, g are standardized and shared
- Inconvenient to treat message as group element
 - Use key derivation to derive a key k instead, and use k to encrypt the message
 - I.e., ciphertext is g^y , $Enc'_k(m)$, where $k = H(h^y)$

In practice

- \blacksquare Parameters G, q, g are standardized and shared
- Inconvenient to treat message as group element
 - Use key derivation to derive a key k instead, and use k to encrypt the message
 - I.e., ciphertext is g^y , $Enc'_k(m)$, where $k = H(h^y)$
- El Gamal encryption is not secure against chosen-ciphertext attacks
 - Follows from the fact that it is *malleable*

Chosen-ciphertext attacks

- El Gamal encryption is not secure against chosen-ciphertest attacks
 - Follows from the fact that it is malleable

Chosen-ciphertext attacks

- El Gamal encryption is not secure against chosen-ciphertest attacks
 - Follows from the fact that it is malleable
- Given ciphertext c_1, c_2 , transform it to obtain the ciphertext $c_1, c_2' = c_1, \alpha \cdot c_2$ for arbitrary α
 - Since $c_1, c_2 = g^y, h^y \cdot m$, we have $c_1, c_2' = g^y, h^y \cdot (\alpha m)$

Chosen-ciphertext attacks

- El Gamal encryption is not secure against chosen-ciphertest attacks
 - Follows from the fact that it is malleable
- Given ciphertext c_1, c_2 , transform it to obtain the ciphertext $c_1, c_2' = c_1, \alpha \cdot c_2$ for arbitrary α
 - Since $c_1, c_2 = g^y, h^y \cdot m$, we have $c_1, c_2' = g^y, h^y \cdot (\alpha m)$
 - I.e., encryption of m becomes an encryption of $\alpha m!$

Chosen-ciphertext attacks security

- Use key derivation coupled with CCA-secure private-key encryption scheme
 - I.e., ciphertext is $g^{y}, Enc'_{k}(m),$ where $k = H(h^{y})$ and Enc' is a CCA-secure scheme

Can be proved CCA-secure under appropriate assumptions,

if H is modeled as a random oracle.

Constructing CCA-secure public key encryption is more challenging than the private key case.

- Constructing CCA-secure public key encryption is more challenging than the private key case.
- Construction 13.1: Construct an encryption scheme as follows:
 - Let $H: \{0,1\}^* \to \{0,1\}^n$ be a random oracle and $\{(f,f^{-1})\}$ be a collection of *trapdoor permutations*. The public key of the scheme will be $f(\cdot)$ while the private key is $f^{-1}(\cdot)$.
 - To encrypt $x \in \{0,1\}^n$, choose $r \leftarrow_R \{0,1\}^n$ and compute $f(r), H(r) \oplus x$.
 - To decrypt y, z, compute $r = f^{-1}(y)$ and let $x = H(r) \oplus z$.

- Constructing CCA-secure public key encryption is more challenging than the private key case.
- Construction 13.1: Construct an encryption scheme as follows:
 - Let $H: \{0,1\}^* \to \{0,1\}^n$ be a random oracle and $\{(f,f^{-1})\}$ be a collection of *trapdoor permutations*. The public key of the scheme will be $f(\cdot)$ while the private key is $f^{-1}(\cdot)$.
 - To encrypt $x \in \{0,1\}^n$, choose $r \leftarrow_R \{0,1\}^n$ and compute $f(r), H(r) \oplus x$.
 - To decrypt y, z, compute $r = f^{-1}(y)$ and let $x = H(r) \oplus z$.
- **Theorem 13.2** The above scheme is *CPA-secure* in the random oracle model.

Recall

- Construction 13.1: Construct an encryption scheme as follows:
 - Let $H: \{0,1\}^* \to \{0,1\}^n$ be a random oracle and $\{(f,f^{-1})\}$ be a collection of *trapdoor permutations*. The public key of the scheme will be $f(\cdot)$ while the private key is $f^{-1}(\cdot)$.
 - To encrypt $x \in \{0,1\}^n$, choose $r \leftarrow_R \{0,1\}^n$ and compute $f(r), H(r) \oplus x$.
 - To decrypt y, z, compute $r = f^{-1}(y)$ and let $x = H(r) \oplus z$.

Recall

- Construction 13.1: Construct an encryption scheme as follows:
 - Let $H: \{0,1\}^* \to \{0,1\}^n$ be a random oracle and $\{(f,f^{-1})\}$ be a collection of *trapdoor permutations*. The public key of the scheme will be $f(\cdot)$ while the private key is $f^{-1}(\cdot)$.
 - To encrypt $x \in \{0,1\}^n$, choose $r \leftarrow_R \{0,1\}^n$ and compute $f(r), H(r) \oplus x$.
 - To decrypt y, z, compute $r = f^{-1}(y)$ and let $x = H(r) \oplus z$.
- **Theorem 5.1** (CPA security from PRFs)
 Suppose that *F* is a length-preserving, keyed PRF, then the following is a *CPA-secure encryption scheme*:

$$Enc_k(m) = \langle r, F_k(r) \oplus m \rangle$$

 $Dec_k(c_1, c_2) = c_2 \oplus F_k(c_1)$

■ **Theorem 13.2** The above scheme is *CPA-secure* in the random oracle model.

Proof. For public key encryption, CPA security means that an adversary A that gets as input the encryption key $f(\cdot)$ cannot distinguish $Enc(x_1)$ and $Enc(x_2)$ for every x_1, x_2 , since encryption is public. In the random oracle model, A has access to the random oracle $H(\cdot)$.

■ **Theorem 13.2** The above scheme is *CPA-secure* in the random oracle model.

Proof. For public key encryption, CPA security means that an adversary A that gets as input the encryption key $f(\cdot)$ cannot distinguish $Enc(x_1)$ and $Enc(x_2)$ for every x_1, x_2 , since encryption is public. In the random oracle model, A has access to the random oracle $H(\cdot)$.

Denote the ciphertext A gets as y^*, z^* , where $y^* = f(r^*)$ and $z^* = H(r^*) \oplus x^*$.

■ **Theorem 13.2** The above scheme is *CPA-secure* in the random oracle model.

Proof. For public key encryption, CPA security means that an adversary A that gets as input the encryption key $f(\cdot)$ cannot distinguish $Enc(x_1)$ and $Enc(x_2)$ for every x_1, x_2 , since encryption is public. In the random oracle model, A has access to the random oracle $H(\cdot)$.

Denote the ciphertext A gets as y^*, z^* , where $y^* = f(r^*)$ and $z^* = H(r^*) \oplus x^*$.

Claim 13.2.1 The probability that A queries r^* of its oracle $H(\cdot)$ is *negl.*.

■ Claim 13.2.1 The probability that A queries r^* of its oracle $H(\cdot)$ is *negl.*.

Proof. Consider the following experiment: Instead of giving $z^* = H(r^*) \oplus x^*$, we give A the string $z^* = u \oplus x^*$ where u is a uniform element.

■ Claim 13.2.1 The probability that A queries r^* of its oracle $H(\cdot)$ is *negl*..

Proof. Consider the following experiment: Instead of giving $z^* = H(r^*) \oplus x^*$, we give A the string $z^* = u \oplus x^*$ where u is a uniform element.

The only way A could tell apart the two cases is if he queries r^* to H and sees a different answer from u. But then we already "lost". The probability that A queries r^* in the experiment is the same as the probability that it queries r^* in the actual attack.

■ Claim 13.2.1 The probability that A queries r^* of its oracle $H(\cdot)$ is *negl.*.

Proof. Consider the following experiment: Instead of giving $z^* = H(r^*) \oplus x^*$, we give A the string $z^* = u \oplus x^*$ where u is a uniform element.

The only way A could tell apart the two cases is if he queries r^* to H and sees a different answer from u. But then we already "lost". The probability that A queries r^* in the experiment is the same as the probability that it queries r^* in the actual attack.

However, in this experiment, the only information A gets about r^* is $f(r^*)$. Thus, if it queries $H(\cdot)$ the value r^* , then it inverted the trapdoor permutation, which is almost impossible!

■ **Theorem 13.2** The above scheme is *CPA-secure* in the random oracle model.

Claim 13.2.1 The probability that A queries r^* of its oracle $H(\cdot)$ is *negl*..

■ **Theorem 13.2** The above scheme is *CPA-secure* in the random oracle model.

Claim 13.2.1 The probability that A queries r^* of its oracle $H(\cdot)$ is *negl*..

Proof cont'. Claim 13.2.1 means that we can ignore the probability that A queried r^* and hence we can assume that $z^* = u \oplus x^*$, where u is chosen independently at random.

■ **Theorem 13.2** The above scheme is *CPA-secure* in the random oracle model.

Claim 13.2.1 The probability that A queries r^* of its oracle $H(\cdot)$ is *negl*..

Proof cont'. Claim 13.2.1 means that we can ignore the probability that A queried r^* and hence we can assume that $z^* = u \oplus x^*$, where u is chosen independently at random.

However, A gets no information about x^* and will not be able to guess if it is equal to x_1 or x_2 with probability greater than 1/2.

- Construction 13.3: Construct an encryption scheme (using two independent random oracles) as follows:
 - Let $H, H': \{0,1\}^* \to \{0,1\}^n$ be two independent random oracles and $\{(f,f^{-1})\}$ be a collection of *trapdoor permutations*. The public key of the scheme will be $f(\cdot)$ while the private key is $f^{-1}(\cdot)$.
 - To encrypt $x \in \{0,1\}^n$, choose $r \leftarrow_R \{0,1\}^n$ and compute $f(r), H(r) \oplus x, H'(x,r)$.
 - To decrypt y, z, w, compute $r = f^{-1}(y)$ and let $x = H(r) \oplus z$. Then, check that w = H'(x, r): if so then return x, otherwise return \bot .

- Construction 13.3: Construct an encryption scheme (using two independent random oracles) as follows:
 - Let $H, H': \{0,1\}^* \to \{0,1\}^n$ be two independent random oracles and $\{(f,f^{-1})\}$ be a collection of *trapdoor permutations*. The public key of the scheme will be $f(\cdot)$ while the private key is $f^{-1}(\cdot)$.
 - To encrypt $x \in \{0,1\}^n$, choose $r \leftarrow_R \{0,1\}^n$ and compute $f(r), H(r) \oplus x, H'(x,r)$.
 - To decrypt y, z, w, compute $r = f^{-1}(y)$ and let $x = H(r) \oplus z$. Then, check that w = H'(x, r): if so then return x, otherwise return \perp .

Theorem 13.4 The above scheme is *CCA-secure* in the random oracle model.

■ **Theorem 13.4** The above scheme is *CCA-secure* in the random oracle model.

Proof. Let A be the algorithm in a CCA attack against the scheme. Denote by y^*, z^*, w^* the challenge ciphertext A gets, where $y^* = f(r^*), z^* = H(r^*) \oplus x^*$ and $w^* = H'(x^*, r^*)$.

■ **Theorem 13.4** The above scheme is *CCA-secure* in the random oracle model.

Proof. Let A be the algorithm in a CCA attack against the scheme. Denote by y^*, z^*, w^* the challenge ciphertext A gets, where $y^* = f(r^*), z^* = H(r^*) \oplus x^*$ and $w^* = H'(x^*, r^*)$.

Since H is a random oracle, we can always assume that no one (the sender, receiver, or A) can find two pairs x, r and x', r' such that $x||r \neq x'||r'$, but H'(x, r) = H'(x', r').

■ **Theorem 13.4** The above scheme is *CCA-secure* in the random oracle model.

Proof. Let A be the algorithm in a CCA attack against the scheme. Denote by y^*, z^*, w^* the challenge ciphertext A gets, where $y^* = f(r^*), z^* = H(r^*) \oplus x^*$ and $w^* = H'(x^*, r^*)$.

Since H is a random oracle, we can always assume that no one (the sender, receiver, or A) can find two pairs x, r and x', r' such that $x||r \neq x'||r'$, but H'(x, r) = H'(x', r').

At each step i of the attack, for every string $w \in \{0,1\}^n$, we define $H'_i^{-1}(w)$ as: if the oracle H was queried before with x, r and returned w, then $H'_i^{-1}(w) = (x, r)$; otherwise, $H'_i^{-1}(w) = \bot$.

■ **Theorem 13.4** The above scheme is *CCA-secure* in the random oracle model.

Proof. Let A be the algorithm in a CCA attack against the scheme. Denote by y^*, z^*, w^* the challenge ciphertext A gets, where $y^* = f(r^*), z^* = H(r^*) \oplus x^*$ and $w^* = H'(x^*, r^*)$.

Since H is a random oracle, we can always assume that no one (the sender, receiver, or A) can find two pairs x, r and x', r' such that $x||r \neq x'||r'$, but H'(x, r) = H'(x', r').

At each step i of the attack, for every string $w \in \{0,1\}^n$, we define $H'_i^{-1}(w)$ as: if the oracle H was queried before with x, r and returned w, then $H'_i^{-1}(w) = (x, r)$; otherwise, $H'_i^{-1}(w) = \bot$.

Observation: a pair x, r completely determines a ciphertext y, z, w, and y, z completely determine x, r.

■ **Theorem 13.4** The above scheme is *CCA-secure* in the random oracle model.

Proof cont'. Consider the experiment: at step i, we answer a query y, z, w of A in the following way: if $H'^{-1}(w)$ is equal to some x, r that determine y, z, w, then return x; otherwise, return \bot .

■ **Theorem 13.4** The above scheme is *CCA-secure* in the random oracle model.

Proof cont'. Consider the experiment: at step i, we answer a query y, z, w of A in the following way: if $H'^{-1}(w)$ is equal to some x, r that determine y, z, w, then return x; otherwise, return \bot . The difference between this oracle and the real decryption oracle is that we may answer \bot when the real one would give an actural answer. However, we claim that A will not be able to tell apart the difference with non-negl. probability.

■ **Theorem 13.4** The above scheme is *CCA-secure* in the random oracle model.

Proof cont'. Consider the experiment: at step i, we answer a query y, z, w of A in the following way: if $H'^{-1}(w)$ is equal to some x, r that determine y, z, w, then return x; otherwise, return \bot .

The difference between this oracle and the real decryption oracle is that we may answer \bot when the real one would give an actural answer. However, we claim that A will not be able to tell apart the difference with non-negl. probability.

The only difference happens if A managed to ask the oracle a query y, z, w satisfying the following:

- $w \neq w^*$.
- w was not returned as the answer of any previous query x, r to $H'(\cdot)$ by A.
- If we let x, r be the values determined by y, z, then H'(x, r) = w. However, since (x, r) was not asked before, the probability that
- 29 \mathfrak{g} his happens is only 2^{-n} .

■ **Theorem 13.4** The above scheme is *CCA-secure* in the random oracle model.

Proof cont'. Consider the experiment: at step i, we answer a query y, z, w of A in the following way: if $H'^{-1}(w)$ is equal to some x, r that determine y, z, w, then return x; otherwise, return \bot .

The difference between this oracle and the real decryption oracle is that we may answer \bot when the real one would give an actural answer. However, we claim that A will not be able to tell apart the difference with non-negl. probability.

Basically A has no use for the decryption box and hence it would be sufficient to prove that the scheme is just *CPA-secure*.

What you've leaned:

- Foundations and principles of the science
- Basic primitives and components
- Definitions and proofs of security
- ♦ High-level applications

- What you've leaned:
 - Foundations and principles of the science
 - Basic primitives and components
 - Definitions and proofs of security
 - High-level applications

```
Perfect secrecy (one-time pad) (Def. 1.5 - Thm. 1.9) \epsilon-statistical security (Def. 2.2) computational security (Def. 3.1)
```


- What you've leaned:
 - Foundations and principles of the science
 - Basic primitives and components
 - Definitions and proofs of security
 - High-level applications

```
Perfect secrecy (one-time pad) (Def. 1.5 - Thm. 1.9) 

ε-statistical security (Def. 2.2) 

computational security (Def. 3.1) 

PRG, pseudorandomness (Def. 3.2) 

pseudo one-time pad (Thm. 3.3)
```


- What you've leaned:
 - Foundations and principles of the science
 - Basic primitives and components
 - Definitions and proofs of security
 - High-level applications

```
Perfect secrecy (one-time pad) (Def. 1.5 - Thm. 1.9)

e-statistical security (Def. 2.2)

computational security (Def. 3.1)

PRG, pseudorandomness (Def. 3.2)

pseudo one-time pad (Thm. 3.3)

multiple-message indistinguishable (Def. 3.4)
```


PRG → PRF → PRP (block cipher) (Def. 4.2, 4.3)

■ PRG \rightarrow PRF \rightarrow PRP (block cipher) (Def. 4.2, 4.3) PRF \rightarrow CPA security (Def. 4.1, Thm. 5.1, 5.2) PRF \rightarrow CMA-secure MAC (Def. 6.2, Thm. 6.3)

■ PRG \rightarrow PRF \rightarrow PRP (block cipher) (Def. 4.2, 4.3) PRF \rightarrow CPA security (Def. 4.1, Thm. 5.1, 5.2) PRF \rightarrow CMA-secure MAC (Def. 6.2, Thm. 6.3) EtA \rightarrow CCA security (Def. 6.1, lec08)

■ PRG \rightarrow PRF \rightarrow PRP (block cipher) (Def. 4.2, 4.3) PRF \rightarrow CPA security (Def. 4.1, Thm. 5.1, 5.2) PRF \rightarrow CMA-secure MAC (Def. 6.2, Thm. 6.3) EtA \rightarrow CCA security (Def. 6.1, lec08) Hash function (Def. 7.1, Thm.8.1, 8.2, 14.2)

PRG → PRF → PRP (block cipher) (Def. 4.2, 4.3)
PRF → CPA security (Def. 4.1, Thm. 5.1, 5.2)
PRF → CMA-secure MAC (Def. 6.2, Thm. 6.3)
EtA → CCA security (Def. 6.1, lec08)
Hash function (Def. 7.1, Thm.8.1, 8.2, 14.2)
Stream/Block ciphers (lec09, lec10)

■ PRG \rightarrow PRF \rightarrow PRP (block cipher) (Def. 4.2, 4.3) $\mathsf{PRF} \to \mathit{CPA}\ \mathit{security}\ (\mathsf{Def.}\ 4.1,\ \mathsf{Thm.}\ 5.1,\ 5.2)$ $PRF \rightarrow CMA$ -secure MAC (Def. 6.2, Thm. 6.3) EtA \rightarrow *CCA security* (Def. 6.1, lec08) Hash function (Def. 7.1, Thm.8.1, 8.2, 14.2) Stream/Block ciphers (lec09, lec10) Math fundamentals (hard/trapdoor functions, lec11, lec12)

■ PRG \rightarrow PRF \rightarrow PRP (block cipher) (Def. 4.2, 4.3) $\mathsf{PRF} \to \mathit{CPA}\ \mathit{security}\ (\mathsf{Def.}\ 4.1,\ \mathsf{Thm.}\ 5.1,\ 5.2)$ $PRF \rightarrow CMA$ -secure MAC (Def. 6.2, Thm. 6.3) EtA \rightarrow *CCA security* (Def. 6.1, lec08) Hash function (Def. 7.1, Thm.8.1, 8.2, 14.2) Stream/Block ciphers (lec09, lec10) Math fundamentals (hard/trapdoor functions, lec11, lec12) Public key encryption (Def. 12.1 - Thm 12.5)


```
■ PRG \rightarrow PRF \rightarrow PRP (block cipher) (Def. 4.2, 4.3)
  \mathsf{PRF} \to \mathit{CPA}\ \mathit{security}\ (\mathsf{Def.}\ 4.1,\ \mathsf{Thm.}\ 5.1,\ 5.2)
  PRF \rightarrow CMA-secure MAC (Def. 6.2, Thm. 6.3)
  EtA \rightarrow CCA security (Def. 6.1, lec08)
  Hash function (Def. 7.1, Thm.8.1, 8.2, 14.2)
  Stream/Block ciphers (lec09, lec10)
  Math fundamentals (hard/trapdoor functions, lec11, lec12)
  Public key encryption (Def. 12.1 - Thm 12.5)
  CPA security (Def. 13.1, Thm. 13.2)
  CCA security (Def. 13.3, Thm. 13.4)
31 - 8
```


Rabin's trapdoor function, signature
 RSA trapdoor function, signature

Next Lecture

digital signature ...

