Examen Parcial de FCO - Temas 1 al 4

16 de Enero 2019

APELLIDOS:	NOMBRE:	
DNI:	FIRMA:	

Normativa:

- La duración del examen es de 2:00h.
- Por favor, escriba su nombre y apellidos en letras MAYÚSCULAS.
- DEBE responder en el espacio asignado.
- No se permiten calculadoras ni apuntes.
- Debe permanecer en silencio durante la realización del examen.
- No se puede abandonar el examen hasta que el profesor lo indique.
- Debe tener una identificación en la mesa a la vista del profesor (DNI, carnet UPV, tarjeta residente, etc.)
- **1. (2 puntos)** Complete la tabla siguiente realizando los cambios de base y de codificación indicados. En la conversión de decimal a binario utilice 4 bits para la parte fraccionaria.

	10001011,0112	167,49 ₁₀
Binario		10100111.0111
Decimal	139.375	
Octal	213.3	247.34
Hexadeci mal	8B,6	A7,7
BCD	000100111001,001101110101	000101100111,01001001

Realice aquí los cálculos oportunos:

La conversión de decimal a binario se obtiene haciendo divisiones sucesivas por 2 para la parte entera, y con multiplicaciones sucesivas por 2 para la parte fraccionarioa. La conversión de binal a decimal se obtiene calculando el polinomio de potencias de 2, donde la potencia a la izquierda de la coma es 0, y a la derecha de la coma es -1. La representación en hexadecimal y octal se puede obtener desde binario agrupando los bits de 4 en 4 para hexadecimal y de 3 en 3 para octal, empezando desde la coma hacia la izquierda y desde la coma hacia la derecha. Si el número de bits no es múltiplo de 4 (hexadecimal) o de 3 (octal), se completa con ceros por la izquierda en la parte entera y con ceros por la derecha en la parte fraccionaria.

Por último, los códigos BCD se obtienen a partir de la representación en base 10, sustituyendo cada dígito decimal por cuatro bits. Se puede comenzar la susitutición desde la izquierda o desde la derecha.

2. (2 puntos) Se dispone (ya diseñado) de un circuito sumador de 2 números A y B, de 4 bits cada uno A= a₃ a₂ a₁ a₀ y B= b₃ b₂ b₁ b₀. Se trata de números con signo, siendo a₃ el bit de signo del número A y b₃ el signo del número B. Un bit de signo a 0 indica que el número es positivo y a 1 negativo. La salida del sumador ofrece el resultado de la suma, también expresada con 4 bits, S= s₃ s₂ s₁ s₀, también con signo, con el mismo convenio usado en A y B. Este sumador además presenta una salida adicional Z que se activa a 1 para indicar que el resultado ha sido cero (en el convenio usado por este circuito el cero se representa de manera única, con todos los bits a cero (s₃ = s₂ = s₁ = s₀ = 0).

Se desea diseñar otro circuito adicional que tome como entrada el indicador Z y los bits de signo de los números A y B, así como el bit de signo del resultado S y ofrezca una salida V activa a nivel alto que indique si ha habido desbordamiento durante la suma. Se determinará que ha habido desbordamiento si al sumar dos números positivos el resultado ha sido negativo o al sumar dos números negativos el resultado ha sido positivo. Considere que es posible que la suma de dos números negativos dé 0 como resultado y que en este caso se produciría desbordamiento.

Además, este circuito ofrecerá una segunda salida E que indicará (a nivel alto) que se cumple la condición A= -B (esta condición se cumplirá cuando el resultado de la suma sea cero y no haya habido desbordamiento).

Complete la tabla de verdad de este segundo circuito.

Tabla de verdad del circuito:

Z	\mathbf{a}_3	b_3	S_3	V	Е
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	0
0	1	1	0	1	0
0	1	1	1	0	0
1	0	0	0	0	1
1	0	0	1	X	X
1	0	1	0	0	1
1	0	1	1	X	X
1	1	0	0	0	1
1	1	0	1	X	X
1	1	1	0	1	0
1	1	1	1	X	X

Examen Parcial de FCO

- 3. (1 punto) Dada la siguiente tabla de verdad:
 - A. Obtenga la forma canónica disyuntiva (sumatorio).

$$S = \sum_{D,C,B,A} (2,3,5,7,13,15) + \sum_{\emptyset} (4,6,10,11,12)$$

D	C	В	Α	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	Χ
0	1	0	1	1
0	1	1	0	Χ
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	X
1	0	1	1	X X X
1	1	0	0	X
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1
		ı		

B. Simplifique la función correspondiente por ceros mediante mapas de Karnaugh. Marque claramente los grupos formados.

BA	;					
ва 🔪		00	01	11	10	
	00	0	X	X	0	00
	01	0	1	1	0	01
	11	1	1	1	X	11
	10	1	X	0	X	10

$$S = (/D+A) * (C+B)$$

4. (2 puntos) Complete el circuito de la figura adjunta para obtener un circuito equivalente a un multiplexor de 16x1.

Dibuje el símbolo lógico del multiplexor creado, y complete su tabla de verdad

Tabla de verdad:

D	С	В	Α	S
0	0	0	0	E_0
0	0	0	1	E ₁
0	0	1	0	E ₂
0	0	1	1	E ₃
0	1	0	0	E ₄
0	1	0	1	E ₅
0	1	1	0	E ₆
0	1	1	1	E ₇
1	0	0	0	E ₈
1	0	0	1	E ₉
1	0	1	0	E ₁₀
1	0	1	1	E ₁₁
1	1	0	0	E ₁₂
1	1	0	1	E ₁₃
1	1	1	0	E ₁₄
1	1	1	1	E ₁₅

Examen Parcial de FCO

16 de Enero 2019

5. (1 punto) Dado el siguiente biestable J K, con entradas activas a nivel bajo /J y /K, y activo por flanco de bajada /C, complete la tabla de funcionamiento reducida del mismo.

1. "ND: No deseada", "S: SET", "R: RESET", "M: Memoria" o "T:Toggle (Invierte)".

/C	/1	/K	Q(t+1)	/Q(t+1)	Operación
\	0	0	/Q(t)	Q(t)	Invierte
\	0	1	1	0	Set
\	1	0	0	1	Reset
\	1	1	Q(t)	/Q(t)	Memoria
1/0/↑	Х	Х	Q(t)	/Q(t)	Memoria

6. (1 punto) Dado el siguiente circuito secuencial:

A. Obtenga la tabla de funcionamiento, indicando en la columna "Operación" la operación lógica realizada seleccionando una entre las siguientes posibles operaciones: Set, Reset, Memoria, Invertir, No deseada

Υ	Х	Q (t+1)	Operación
0	0	Q(t)	Memoria
0	1	Q(t)	Memoria
1	0	0	Reset
1	1	1	Set

- B. Identifique a cuál de los biestables estudiados corresponde este circuito, detallando la función de las entradas X e Y.
 - o Se trata de un biestable de tipo: D
 - O X hace la función de la entrada: D
 - o Y hace la función de la entrada: C (Reloj)

7. (1 punto) Dado el circuito siguiente, escriba las expresiones algebraicas de:

$$D0 = Q2 \oplus N$$

$$D1 = Q0 \oplus N$$

$$D2 = Q1 \oplus N$$

Considerando que el estado inicial es Q0 = 0, Q1 = 1, Q2 = 0, complete el cronograma que se presenta.

