Seção 8.1 das Notas Orsay

O Mandelbrot é conexo

Eduardo Sodré

11 de Junho de 2021

Estratégia

- Queremos mostrar que o Mandelbrot \mathcal{M} é conexo.
- Para isso, constrói explicitamente uniformização de seu exterior $\mathbb{C} \setminus \mathcal{M}$.
- Tal uniformização é construída a partir das uniformizações dos exteriores dos K_c , colando elas "ponto a ponto".
- Mas e se $c \notin \mathcal{M}$, ou seja, K_c não é conexo? Não tem uniformização. O que fazemos?
- Ainda podemos extrair informação suficiente dos seus mapas de Böttcher, considerando as funções de Green.
- Essas funções de Green são como potenciais dos exteriores de K_c .

O Potencial de Green

- $f: \mathbb{C} \to \mathbb{C}$ polinômio mônico de grau $d \geq 2$.
- Vimos: se K_f é conexo, existe único isomorfismo $\varphi_f: \mathbb{C} \setminus K_f \to \mathbb{C} \setminus \overline{\mathbb{D}}$ com $\varphi_f(z)/z \to 1$ com $z \to \infty$ e que conjuga f a $f_0: z \mapsto z^d$.
- Permite definir a **função de Green**: $G_f(z) = \log |\varphi_f(z)|$.
- Pensar como função potencial. Satisfaz:
 - \bigcirc G_f é harmônica;
 - ② $G_f(z) = \log |z| + \mathcal{O}(1)$, quando $z \to \infty$;

 - $G_f(f(z)) = d \cdot G_f(z).$
- Essas propriedades completamente caracterizam G_f .

Exemplo de Equipotenciais

Exemplo de Equipotenciais para a Função de Green com $f(z) = z^2 - 1$:

E se não é conexo?

- Mas e se K_f não é conexo?
- Ainda existe mapa de Böttcher em vizinhança do infinito.
- Isomorfismo $\varphi_f: V \to V_0$, vizinhanças do infinito, tais que $f(V) \subset V$, $f_0(V_0) \subset V_0$, e $f_0 \circ \varphi_f = \varphi_f \circ f$.
- Com $f(z) = z^d + \dots a_0$, $f^n(z) = z_n$, mapa de Böttcher dado por:

$$\varphi_f(z) = \lim_{n \to \infty} f^n(z)^{d^{-n}} = z \prod_{n=1}^{\infty} \left(1 + \frac{a_{d-1}}{z_n} + \dots + \frac{a_0}{z_n^d} \right)^{1/d^{n+1}}.$$

• Pode estender φ_f apenas até encontrar ponto crítico de f.

Ainda temos a Função de Green

- Mesmo não podendo estender φ_f , pode-se tomar $G_f(z) = \log |\varphi_f(z)|$.
- pode estender G_f até todo $\mathbb{C} \setminus K_f \to \mathbb{R}_+!$ Toma

$$G_f(z) = \frac{G_f(f^n(z))}{d^n}$$
, para *n* suficientemente grande.

- Ainda satisfaz:
 - \bigcirc G_f é harmônica;
 - ② $G_f(z) = \log |z| + \mathcal{O}(1)$, quando $z \to \infty$;

 - $G_f(f(z)) = d \cdot G_f(z).$
- Estende continuamente a K_f tomando $G_f|_{K_f} \equiv 0$.

Outro exemplo de Equipotenciais

Exemplo de Equipotenciais para K_f (totalmente) desconexo:

Outro exemplo de Equipotenciais

Tomando equipotenciais $G_f \to 0$, percebe-se valor v > 0 onde "quebra" o domínio:

Um Lema Técnico

Seja \mathcal{P}_d conjunto de polinômios mônicos de grau d, identifica com \mathbb{C}^d .

Proposição

- a) O conjunto $\mathcal{K} = \{(f, z) \in \mathcal{P} \times \mathbb{C} \mid z \in K_f\}$ é fechado em $\mathcal{P}_d \times \mathbb{C}$.
- b) O mapa $(f,z) \to G_f(z)$ é função de contínua de $\mathcal{P}_d \times \mathbb{C} \to \mathbb{R}$.

Demonstração: Com $f(z) = z^d + a_{d-1}z^{d-1} + \ldots + a_0$, defina

$$R^*(f) = 1 + |a_{d-1}| + \ldots + |a_0|, \quad R_0^*(f) = R^*(f)^{d/(d-1)},$$

e defina os conjuntos

$$V_1 = \{(f, z) \mid R^*(f) < |z|\}, \quad V_0 = \{(f, z) \mid R_0^*(f) < |z|\}.$$

Um Lema Técnico

Defina também:

- $\Phi: \mathcal{V}_1 \to \mathcal{P}_d \times \mathbb{C}, \ \Phi(f,z) = (f, \varphi_f(z));$
- $F: \mathcal{P}_d \times \mathbb{C} \to \mathcal{P}_d \times \mathbb{C}$, F(f, z) = (f, f(z));
- $F_0: \mathcal{P}_d \times \mathbb{C} \to \mathcal{P}_d \times \mathbb{C}$, $F(f, z) = (f, z^d)$.

Φ induz isomorfismo entre um aberto $\mathcal{V} \subset \mathcal{V}_1$ e \mathcal{V}_0 . E também $(\mathcal{P}_d \times \mathbb{C}) \setminus \mathcal{K} = \bigcup F^{-n}(\mathcal{V}_1)$, então é aberto, de modo que \mathcal{K} é fechado.

 $(f,z)\mapsto G_f(z)$ é contínua em \mathcal{V}_1 , dada por série localmente absolutamente convergente; também em cada $F^{-n}(\mathcal{V}_1)$, e portanto em $(\mathcal{P}_d\times\mathbb{C})\setminus\mathcal{K}$.

Falta mostrar que, $\forall \varepsilon > 0$, $\mathcal{W}_{\varepsilon} = \{(f, z) \mid G_f(z) < \varepsilon\}$ é vizinhança de \mathcal{K} .

Um Lema Técnico

Suficiente mostrar que, para todo aberto Λ relativamente compacto em \mathcal{P}_d , o conjunto $\mathcal{W}_{\varepsilon,\Lambda} = \mathcal{W}_\varepsilon \cap (\Lambda \times \mathbb{C})$ é aberto em $\Lambda \times \mathbb{C}$. Tomando

$$R_0^*(\Lambda) = \sup_{f \in \Lambda} R_0^*(f),$$

e N grande tal que $d^N \varepsilon > \sup_{f \in \Lambda} R_0^*(f)$, tem-se

$$(\Lambda \times \mathbb{C}) \setminus \mathcal{W}_{\varepsilon,\Lambda} = F^{-N}((\Lambda \times \mathbb{C}) \setminus \mathcal{W}_{d^N \varepsilon,\Lambda}) = F^{-N}(\Phi^{-1}(\{(f,z) \mid d^N \varepsilon \leq |z|\}))$$

que é fechado, e portanto $W_{\varepsilon,\Lambda}$ é aberto.

Os Pontos críticos de G_f .

Na figura anterior: para alguns valores de G_f , as equipotenciais se "quebram". São valores críticos de G_f ; quais os pontos críticos?

Proposição

Os pontos críticos de $G_f : \mathbb{C} \setminus K_f \to \mathbb{R}_+$ são as pré-imagens dos pontos críticos de f em $\mathbb{C} \setminus K_f$.

Para $\varphi_f: V \to V_0$ conforme, $G_f(z) = \log |\varphi_f(z)|$ não tem pontos críticos; fora de V, como

$$G_f(z) = \frac{G_f(f(z))}{d},$$

z é ponto crítico de G_f se e só se é ponto crítico de f ou f(z) é ponto crítico de G_f .

Como $z_n \to \infty$, eventualmente $z_n \in V$, então z_n não é ponto crítico de G_f . Portanto z é ponto crítico se e só se um dos z_n é crítico de f.

Pontos críticos de G_f e Equipotenciais

Corolário

Se todos os pontos críticos de f estão em K_f , então $\forall h>0$, a equipotencial $G_f^{-1}(h)$ é homeomorfo a \mathbb{S}^1 , e o conjunto dos pontos $z\in\mathbb{C}$ tais que $G_f(z)\leq h$ é homeomorfo a $\overline{\mathbb{D}}$.

Corolário

Seja h_0 o máximo de $G_f(\alpha)$ para α um ponto crítico de f. Então, para todo $h > h_0$, $G_f^{-1}(h)$ é homeomorfo a \mathbb{S}^1 e $\{z \in \mathbb{C} \mid G_f(z) \leq h\}$ é homeomorfo a $\overline{\mathbb{D}}$.

O conjunto $L_f = \{z \in \mathbb{C} \mid G_f(z) \leq h_0\}$ é compacto conexo, e φ_f estende a um isomorfismo de $\mathbb{C} \setminus L_f$ para $\mathbb{C} \setminus \overline{\mathbb{D}}_R$ com $R = e^{h_0}$.

Exemplos

Exemplos

Comentários sobre Argumento

• Quando $z \notin L_f$, é possível definir

$$arg_{K_f}(z) = arg_{L_f}(z) = arg \varphi_f(z).$$

- Se $z \in L_f$ e z não é ponto crítico, é possível definir o raio externo de z como a trajetória ortogonal às equipotenciais de G_f em sentido crescente.
- O raio ou sai de L_f , permitindo definir $\arg_{K_f}(z)$, ou atinge ponto crítico de G_f .
- Quando atinge ponto crítico de G_f , não permite definir argumento. Há família enumerável de curvas onde não se define argumento.

Comentários sobre Argumento

Uniformizando o Exterior de ${\mathcal M}$

- Considera a família quadrática: $f(z) = P_c(z) = z^2 + c$.
- Para $c \in \mathcal{M}$, K_c é conexo, uniformização $\varphi_c : \mathbb{C} \setminus K_c \to \mathbb{C} \setminus \overline{\mathbb{D}}$ bem definida, assim como $G_c : \mathbb{C} \to \mathbb{R}$.
- Para $c \notin \mathcal{M}$, há único ponto crítico 0; φ_c se estende até $G_c(z) > G_c(0)$.
- Como

$$G_c(c) = G_c(P_c(0)) = 2G_c(0) > G_c(0) > 0,$$

 φ_c é bem definida em c.

Uniformizando o Exterior de \mathcal{M}

• Considera-se então $\Phi: \mathbb{C} \setminus \mathcal{M} \to \mathbb{C}$ dada por:

$$\Phi(c) = \varphi_c(c) = c \prod_{n=1}^{\infty} \left(1 + \frac{c}{(P_c^n(c))^2} \right)^{1/2^{n+1}}$$

• Seu contradomínio é $\mathbb{C}\setminus\overline{\mathbb{D}}$, pois $\varphi_c(z)\in\mathbb{C}\setminus\overline{\mathbb{D}}_R\subseteq\mathbb{C}\setminus\overline{\mathbb{D}}$, para todo zno domínio de φ_c .

Teorema

A função Φ possui extensão $\hat{\Phi}: \hat{\mathbb{C}} \setminus \mathcal{M} \to \hat{\mathbb{C}} \setminus \overline{\mathbb{D}}$ conforme e própria.

A Demonstração: Φ é analítica

 Φ é analítica:

Mostra-se que $(c,z) o arphi_c(z)$ é analítica em seu domínio

$$\{(c,z)\in\mid c\in\mathbb{C}\setminus\mathcal{M},\ G_c(z)>G_c(0)\}.$$

O domínio é aberto; continuidade de $(c,z)\mapsto G_c(z)$. Nele, Φ é determinação de

$$(c,z)\mapsto \lim_{n\to\infty}(P_c^n(z))^{2^{-n}}.$$

É analítica, escolha apropriada de raiz na construção da conjugação de Böttcher, e conjugação holomorfa com respeito a c.

A Demonstração: Φ tem extensão meromorfa

 Φ tem extensão a $\hat{\mathbb{C}}$:

Tem-se que

$$|G_c(c)| = \log |\Phi(c)| = \log |c| + \sum_{n=1}^{\infty} 2^{-(n+1)} \log \left| 1 + \frac{c}{(P_c^n(c))^2} \right|,$$

e para |c| grande,

$$\left|1+\frac{c}{(P_c^n(c))^2}\right|\to 1,\quad n\to\infty.$$

Então $|G_c(c)| - \log |c|$ é limitada em vizinhança de ∞ , portanto $\Phi(c)/c$ também é. Então Φ tem extensão holomorfa a $\hat{\mathbb{C}}$, onde tem polo simples.

A Demonstração: Φ é própria

 Φ é própria: ou seja, $\hat{\varPhi}(c) o \partial \, \mathbb{D}$ quando $c o \mathcal{M}$, ou seja, $\mathcal{G}_c(c) o 0$.

Tem-se:

$$|1 < |\hat{\varPhi}(c)| = \lim_{n \to \infty} |P_c(c)|^{2^{-n}} = \left(\lim_{n \to \infty} |Q_n(c)|^{2^{-n}}\right)^2$$

onde $Q_{n+1}(c) = P_c^{n+1}(0) = P_c^n(c)$. Tome $k \in \mathbb{N}$ tal que $(1+\varepsilon)^{2^{k-1}} > 4$; e

$$E = \{z \in \mathbb{C} \mid |z| < 3, \ |Q_k(z)| < 3\},\$$

vizinhança aberta de M. Seja $T(x) = x^2 + 3$. Indução: $T^n(3) \le (\frac{3}{4})4^{2^n}$.

Suponha $c \in E$; mostra-se que $|\hat{\varPhi}(c)| < 1 + \varepsilon$.

A Demonstração: Φ é própria

Como |c| < 3, $\forall n$ vale que

$$|Q_{n+1}(c)| = |Q_n(c)|^2 + c| < |Q_n(c)|^2 + 3 = T(|Q_n(c)|);$$

Como T é crescente para valores positivos,

$$|Q_{k+n}(c)| < T^n(|Q_k(c)|) < \frac{3}{4}4^{2^n},$$

Então

$$|\hat{\varPhi}(c)| = \left(\lim |Q_n(c)|^{2^{-n}}\right)^2 < 1 + \varepsilon.$$

Demonstração: Φ é conforme

Como $\Phi: \hat{\mathbb{C}} \setminus \mathcal{M} \to \hat{\mathbb{C}} \setminus \overline{\mathbb{D}}$ é própria, é sobrejetora em $\hat{\mathbb{C}} \setminus \overline{\mathbb{D}}$, portanto tem grau bem definido.

Mas como $\hat{\varPhi}^{-1}(\infty)=\{\infty\}$ e tem polo simples, o grau é 1, e $\hat{\varPhi}$ é conforme.

Corolário

 ${\cal M}$ é conexo, de capacidade 1, e simplesmente conexo.

Pode-se definir ainda a função de Green do Mandelbrot, $G_{\mathcal{M}}(c) = \log |\Phi(c)|$.

Corolário

Para $c \notin \mathcal{M}$, $G_{\mathcal{M}}(c) = G_c(c)$, $e \operatorname{arg}_{\mathcal{M}}(c) = \operatorname{arg}_{\mathcal{K}_c}(c)$.

Mandelbrot Uniformizado

Mandelbrot Uniformizado

Obrigado!

