Project CONCEPT

CONneCting District Energy and Power Systems in Future Singaporean New Towns

Sebastian Troitzsch, Sreepathi Bhargava Krishna - 13 March 2019

- CONCEPT stands for:
 - Connecting District Energy and Power Systems in Future Singaporean New Towns

- CONCEPT stands for:
 - Connecting District Energy and Power Systems in Future Singaporean New Towns
- Goals:
 - 1. Integrate planning and operation of electric and thermal systems on a district scale

Status Quo: No Framework or Tools for Interaction **Electric Grid Thermal System** Planning goal: Planning goal: Peak load Demand satisfaction satisfaction **Operation goal: Operation goal:** Stay within safe Max. comfort, operation limits Min. cost

- CONCEPT stands for:
 - Connecting District Energy and Power Systems in Future Singaporean New Towns
- Goals:
 - Integrate planning and operation of electric and thermal systems on a district scale

Proposal:

- CONCEPT stands for:
 - Connecting District Energy and Power Systems in Future Singaporean New Towns
- Goals:
 - Integrate planning and operation of electric and thermal systems on a district scale
 - Consider flexible resources in the planning phase of New Town districts

- CONCEPT stands for:
 - Connecting District Energy and Power Systems in Future Singaporean New Towns
- · Goals:
 - Integrate planning and operation of electric and thermal systems on a district scale
 - Consider flexible resources in the planning phase of New Town districts

- CONCEPT stands for:
 - Connecting District Energy and Power Systems in Future Singaporean New Towns
- Goals:
 - Integrate planning and operation of electric and thermal systems on a district scale
 - Consider flexible resources in the planning phase of New Town districts
 - 3. Creating a **computational framework** integrated in City Energy Analyst (CEA)

CONCEPT is set up as **13-month pilot project** between the Singapore-ETH Centre (SEC) and TUMCREATE under the "**Intra-CREATE Seed Collaboration Grant**" of the National Research Foundation (NRF)

Sebastian Troitzsch Researcher (TUMCREATE)

Sreepathi B. Krishna Researcher (SEC)

Jimeno A. Fonseca Pl (SEC)

Sarmad Hanif Co-PI (TUMCREATE)

Tobias MassierAdviser
(TUMCREATE)

Arno Schlueter Adviser (SEC)

Methodology

Methodology

Methodology: Electric Grid Planning

Electric grid planning considering flexible resource operation **Numerical optimization** (linear program) Minimize: Constraints: Investment costs Capacity limit for the electric lines, of the electric grid substation & Comfort constraints + Operation costs for flexible resources for flexible resources

Methodology: Electric Grid Planning

Methodology: Electric Grid Planning

Methodology

Methodology: Thermal Grid and Supply System Planning

Methodology: Thermal Grid and Supply System Planning

Methodology: Thermal Grid and Supply System Planning

Case Study: New Town – Tanjong Pagar Water Front

Case Study: New Town – Tanjong Pagar Water Front

MIXed-use

GFA = 374, 237 sqm

FAR = 4.62

People = 34,513

Buildings = 10

Case Study: Scenarios

Results

- 1. Cost distribution for fixed building loads
- 2. Cost implications of integrated planning and operation (Fixed vs. Flexible building loads)
- 3. Energy implications of integrated planning and operation (Fixed vs. Flexible building loads)
- 4. Occupancy type dependency of costs (Mixed, Office, Residential & Retail)

Results: Cost Distribution (Fixed Building Loads)

Annualized costs [SGD]*

- Electricity costs
- Investment (electric lines)
- Investment (substation & transformers)
- Investment (compression chiller)
- Investment (cooling tower & pumps)

Results: Cost implications (Fixed vs. Flexible building loads)

Results: Energy Implications (Fixed vs . Flexible Building Loads)

Annualized electricity consumption [MWh]*

Results: Occupancy Type Dependency

	Mixed occupancy	Office occupancy	Residential occupancy	Retail occupancy
Annualized Total Costs	- 2.7 %	- 3.8 %	- 2.6 %	- 2.1 %
Investment Costs	- 28 %	- 31 %	- 21 %	- 19 %

Results: Occupancy Type Dependency

Conclusions

- 1. The **impact of flexible resources on the district energy system planning** is tested by using flexible building models at a pilot scale.
- 2. A detailed **computational framework** for generating **district energy systems** for neighbourhoods **with flexible buildings** has been developed and presented
- 3. Flexible building loads could decrease the investment cost (- 28 %)* of the energy systems by decreasing the peak load. This comes at the cost of increased electricity consumption (+ 0.2 %)*.
- 4. Of all occupancy types, offices allow for the biggest decrease in investment costs (- 31 %)*.

What about Implementation & Operation?

- Electric grid operation:
 - Distribution grid market, with a bid and clearing structure similar to the transmission level
- Building operation:
 - Model predictive control (MPC) for air-condition system control
 - Allows for consideration of dynamic electricity prices
 - MPC is actively being distributed by start-ups (e.g. Meteoviva) & trialed by BMS providers (e.g. Siemens)

What is the Future of CONCEPT?

Radin Mas

Size

Extension

Feedback

Project CONCEPT

Integrated

planning

Electric Grid

Planning goal:

Peak load satisfaction

Operation goal:

Stay within safe operation limits

Thermal System

Planning goal:

Demand satisfaction

Price-based dispatch

Operation goal:

Max. comfort, Min. cost