Blatt 21: Topologie des \mathbb{R}^n

1 Eigenschaften des Skalarprodukts. Zeige, dass das (Standard-)Skalarprodukt auf \mathbb{R}^2

$$\langle x|y\rangle := x_1y_1 + x_2y_2 = \sum_{i=1}^{2} x_iy_i$$

die drei Grundeigenschaften (SP1)–(SP2) (siehe Vo. $\boxed{6}$ 1.3(iii)) erfüllt. Bleibt derselbe Beweis für \mathbb{R}^n gültig? Was muss geändert werden?

- 2 Skalarprodukt und Euklidische Norm.
 - (a) Es seien x, y Vektoren in \mathbb{R}^n und $||x|| = \sqrt{\langle x|x\rangle}$ die Euklidische Norm. Zeige

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\langle x|y\rangle.$$

Wieso kann diese Formel als Verallgemeinerung des Satzes von Pythagoras verstanden werden?

(b) Zeige, dass die Euklidische Norm die drei Grundeigenschaften (N1)–(N3) (siehe Vo. $\boxed{6}$ 1.3(ii)) erfüllt.

 $\it Tipp:$ Für die Dreiecks-Ungleichung verwende (a) und die Cauchy-Schwarz Ungleichung.

3 Euklidische Metrik.

Es sei d(x,y) = ||x-y|| die Euklidische Metrik auf \mathbb{R}^n .

- (a) Zeige, dass d die drei Grundeigenschaften (M1)–(M3) (siehe Vo. $\boxed{6}$ 1.3(i)) erfüllt.
- (b) Diskutiere, warum (M1)–(M3) genau die Eigenschaften sind, die man sich von einem "anständigen Abstandsbegriff" erwarten kann.
- $\boxed{4} \ \textit{Freiwillig aber lustig:} \parallel \parallel_1, \parallel \parallel_2 \textit{und} \parallel \parallel_{\infty} \textit{auf} \, \mathbb{R}^2.$
 - (a) Wiederhole die Definition der 1-Norm und der ∞ -Norm auf \mathbb{R}^2 und zeige, dass sie jeweils die 3 Grundeigenschaften (N1)–(N3) (siehe Vo. $\boxed{6}$ 1.3(ii)) erfüllen.
 - (b) Für folgende Vektoren im \mathbb{R}^2 berechne jeweils die 1-, 2- und ∞ -Normen

$$x = (1,0), y = (1,1), z = (1/\sqrt{2}, 1/\sqrt{2}), v = (1/2, 1/2), w = (-1, -1).$$

(c) Eine Konsequenz aus (b) ist, dass für y = (1,1) gilt $||y||_{\infty} \le ||y||_{2} \le ||y||_{1}$. Gibt es auch Vektoren $x \in \mathbb{R}^{2}$ mit $||x||_{\infty} \ge ||x||_{2} \ge ||y||_{1}$? Warum bzw. warum nicht? *Tipp:* Beachte die "Schachtelung" der Einheits-"Kreise" der jeweiligen Normen aus $6 \mid 1.7(ii)$.

| 5 | Offene, **ab**geschlossene und beschränkte Mengen. Untersuche an Hand einer Skizze folgende Teilmengen des \mathbb{R}^2 auf die Eigenschaften offen, abgeschlossen und beschränkt.

(a)
$$K_r(a) = \{x \in \mathbb{R}^2 : ||x - a|| \le r\} \ (a \in \mathbb{R}^2, r > 0)$$
 (b) $Q = [0, 1) \times [0, 1)$

(c)
$$S = \{(x,y) : 1 < x^2 + y^2\}$$
 (d) $R = \{(x,y) : 1 \le x^2 + y^2 < 3\}$ (e) $S \cap K_3(0)$

6 Verkehrte Dreiecksungleichung.

Beweise für $x, y \in \mathbb{R}^n$

$$||x + y|| \ge ||x|| - ||y||.$$

Tipp. Gehe wie im Falle des Betrags auf \mathbb{R} vor.

7 Folgen in \mathbb{R}^n explizit. Skizziere¹ die gegebenen Folgen in \mathbb{R}^2 bzw. \mathbb{R}^3 . Sind sie beschränkt, konvergent, besitzen sie konvergente Teilfolgen?

(a)
$$x^{(n)} = \left(\frac{n-1}{n}, \frac{1}{n}\right)$$

(a)
$$x^{(n)} = \left(\frac{n-1}{n}, \frac{1}{n}\right)$$
 (b) $y^{(n)} = \left(\left(-\frac{n+1}{n}\right)^n, (-1)^n\right)$

(c)
$$v^{(n)} = \left(\left(1 + \frac{1}{n}\right)^n, \frac{n}{\log(1+n)}\right)$$

(c)
$$v^{(n)} = \left(\left(1 + \frac{1}{n}\right)^n, \frac{n}{\log(1+n)}\right)$$
 (d) $w^{(k)} = \left(\cos\left(\frac{n\pi}{2}\right), \sin\left(\frac{n\pi}{2}\right), n\right)$

8 Folgerung aus dem Prinzip der koordinatenweisen Konvergenz 1. Beweise folgende in 6 Bem. 1.24 thematisierte Behauptung: Für Folgen $(x^{(k)})$ und $(y^{(k)})$ in \mathbb{R}^n gilt

$$x^{(k)} \to a, \ y^{(k)} \to b \quad \Rightarrow \quad x^{(k)} + y^{(k)} \to a + b \qquad (k \to \infty).$$

9 Folgerung aus dem Prinzip der koordinatenweisen Konvergenz 2. Beweise das Cauchyprinzip für \mathbb{R}^n , d.h. die Aussage | 6 | Kor. 1.26(i)

$$x^{(k)}$$
 konvergiert $\Leftrightarrow x^{(k)}$ is Cauchy-Folge

durch Rückgriff auf den eindimensionalen Fall.

- 10 Abschluss und kompakte Mengen.
 - (a) Welche der Mengen $K_r(a)$, Q, S, R bzw. $S \cap K_3(0)$ aus Aufgabe 5 sind kompakt?
 - (b) Für die nicht abgeschlossenen Mengen aus Aufgabe 5 bestimme jeweils den Abschluss. Sind diese kompakt?

¹Computerunterstützung erwünscht: Der einschlägige Mathematica-Befehl zum Plotten von Folgen in (einer und) zwei Dimensionen lautet ListPlot. Er erwartet sich als Argumente eine Liste von Vektoren; um so etwa einen Plot der ersten 20 Glieder der Folge $x^{(n)} = (1/n, 1/n)$ zu generieren verwende ListPlot[Table[$\{1/n, 1/n\}, \{n, 1, 20\}$]]. Zum Plotten von Folgen in \mathbb{R}^3 verwende Graphics3D und Point, wieder in Kombination mit Table.