|            | Dernière mise à jour | Informatique              | Denis DEFAUCHY     |
|------------|----------------------|---------------------------|--------------------|
| 29/03/2021 |                      | Bases de la programmation | 11 – Numpy – Array |

## Informatique

## 11 Numpy - Array

Résumé



| Dernière mise à jour | Informatique              | Denis DEFAUCHY     |  |
|----------------------|---------------------------|--------------------|--|
| 29/03/2021           | Bases de la programmation | 11 – Numpy – Array |  |

|                                                                                                                                                                                                                                                                                                  | numpy <b>as</b> np                                                                                                                                                                                                                                           |                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Création d'un<br>vecteur                                                                                                                                                                                                                                                                         | $F = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} ; H = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $G = \begin{bmatrix} 0 \\ \vdots \\ 10 \end{bmatrix}, 100 \text{ termes}$                                                                                    | <pre>F = np.array([1,2,3]) F = np.empty([1,3]) ; V[0,:] = [1,2,3] F = np.empty([3,1]) ; V[:,0] = [1,2,3]</pre> |  |
|                                                                                                                                                                                                                                                                                                  | $K = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                      | <pre>K = np.zeros([3,3])</pre>                                                                                 |  |
| Création d'une                                                                                                                                                                                                                                                                                   | $K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                      | K = np.eye(3)                                                                                                  |  |
| matrice                                                                                                                                                                                                                                                                                          | $K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$                                                                                                                                                                                      | <pre>K = np.ones([3,3])</pre>                                                                                  |  |
|                                                                                                                                                                                                                                                                                                  | $K = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$ $\begin{bmatrix} 1 & 4 & 7 \end{bmatrix}$                                                                                                                                            | K = np.array([[1,4,7],[2,5,8],[3,6,9]])                                                                        |  |
| Accès à un terme                                                                                                                                                                                                                                                                                 | $K = \begin{bmatrix} 2 & 5 & 8 \end{bmatrix}$                                                                                                                                                                                                                | K[2,1]                                                                                                         |  |
| d'une matrice ou<br>d'un vecteur                                                                                                                                                                                                                                                                 | $F = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} ; G = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$                                                                                                                                                              | $F = np.zeros([3]) \rightarrow F[1]$ $G = np.zeros([3,1]) \rightarrow G[1,0] \text{ ou } G[1,:]$               |  |
| Copie d'une ma                                                                                                                                                                                                                                                                                   | trice ou d'un vecteur                                                                                                                                                                                                                                        | B = np.copy(A)                                                                                                 |  |
| Transposition d'une                                                                                                                                                                                                                                                                              | matrice (2 dimensions !)                                                                                                                                                                                                                                     | K.T <b>ou</b> np.transpose (K)                                                                                 |  |
| Produit matriciel<br>Produit scalaire                                                                                                                                                                                                                                                            | $\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 30 \\ 36 \\ 42 \end{bmatrix}$ $UV = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 14$ | <pre>np.dot(K,F)≠ np.dot(F,K) np.dot(U,V) = np.dot(V,U)</pre>                                                  |  |
| Récupération d'une                                                                                                                                                                                                                                                                               | $K = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$                                                                                                                                                                                      | Ligne: K[1,:] ou K[1] Et un exemple qui sert à rien: K[1][:]                                                   |  |
| portion d'array  ATTENTION: [,] OUI - [][] NON                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                              | Colonne : Attention ! $L[:,1]$ OUI - $\frac{L[:][1]}{L[:]}$ NON (ligne 2)                                      |  |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              | K[0:2,0:2]                                                                                                     |  |
| Nb lignes colonnes d'un array de 2 dimensions  Dim d'un array à 3 dimensions (par exemple)  Nombre de termes d'un array  Produit termes à $U*V = \begin{bmatrix} a \\ b \\ c \end{bmatrix} * \begin{bmatrix} d \\ e \\ f \end{bmatrix} \Rightarrow \begin{bmatrix} ad \\ be \\ cf \end{bmatrix}$ |                                                                                                                                                                                                                                                              | <pre>l,c = np.shape(K)  l,c,n = np.shape(K)</pre>                                                              |  |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              | 1,c = np.shape (K) ne fonctionne pas                                                                           |  |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              | np.size(K)                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              | U*V                                                                                                            |  |
| Inversion d'une matrice                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                              | np.linalg.inv(K)                                                                                               |  |
| Résolution d'un système                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                              | [x,y,z] = np.linalg.solve(K,F)                                                                                 |  |
| Calcul d'un déterminant                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                              | np.linalg.det(K)                                                                                               |  |



| Dernière mise à jour | Informatique              | Denis DEFAUCHY     |  |
|----------------------|---------------------------|--------------------|--|
| 29/03/2021           | Bases de la programmation | 11 – Numpy – Array |  |

| Une résolution                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                 |                         |                                                      |                                                                                      |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------|
| $\begin{cases} x + 2z = 1 \\ 3y + 4z = 2 \\ 5y = 3 \end{cases} ;  KU = F  ;  K = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 4 \\ 0 & 5 & 0 \end{bmatrix}  ;  U = \begin{bmatrix} x \\ y \\ z \end{bmatrix}  ;  F = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$                                                                      |                                                                                                                                                                                 |                         |                                                      |                                                                                      |                        |
|                                                                                                                                                                                                                                                                                                                              | lm                                                                                                                                                                              | port de N               | umpy                                                 | import numpy as np                                                                   |                        |
| Création de la matrice K                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |                         |                                                      | <pre>K = np.zeros([3,3] K[0,0] = 1 K[0,2] = 2 K[1,1] = 3 K[1,2] = 4 K[2,1] = 5</pre> |                        |
|                                                                                                                                                                                                                                                                                                                              | Créa                                                                                                                                                                            | tion du ve              |                                                      | F = np.array([1,2,                                                                   |                        |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 | Résoluti                |                                                      | x,y,z = np.linalg.                                                                   | solve(K,F)             |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                         |                                                      | slices                                                                               | 7. [ ]                 |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                         | Ligne i                                              |                                                                                      | A[i,:]                 |
| Principe                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |                         | Colonne i                                            |                                                                                      | A[:,i]                 |
| ·                                                                                                                                                                                                                                                                                                                            | Por                                                                                                                                                                             |                         |                                                      | lonnes i et j-1 incluses                                                             | A[i:j,i:j]             |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                         | lification d'une ou plus                             |                                                                                      | $A[\ldots,\ldots] = 1$ |
| Avantage                                                                                                                                                                                                                                                                                                                     | L'utilisation de slices au lieu de doubles boucles for sur une matrice par exemple, change drastiquement le temps d'exécution (ordre de grandeur de 100 à 250 fois plus rapide) |                         |                                                      |                                                                                      |                        |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                         | Rema                                                 | rques                                                                                |                        |
| Création d'une matrice de l lignes, c colonnes, et contenant des nuplets  Mat = np.zeros((1,c,n))                                                                                                                                                                                                                            |                                                                                                                                                                                 |                         |                                                      |                                                                                      |                        |
| Test d'égalité  Test d'égalité  Selon l'égalité d terme un par un  Pour que la tran à 2 dimensions.  A = np.zeros A[:,0] = [1,                                                                                                                                                                                               |                                                                                                                                                                                 | selon l'égalité de cha  | égalité renvoie un array<br>aque composante. Il faud | -                                                                                    |                        |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                         |                                                      | ssaire de créer des array                                                            |                        |
| А                                                                                                                                                                                                                                                                                                                            | ppend                                                                                                                                                                           |                         |                                                      | N'existe pas sur les array                                                           |                        |
|                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                         |                                                      | tages                                                                                |                        |
| Complex                                                                                                                                                                                                                                                                                                                      | xité                                                                                                                                                                            | Gain en                 | temps et en espace                                   |                                                                                      |                        |
| Avec les array, on peut réaliser une somme, une multiplication ou division par réel, voire même réaliser des opérations, par exemple np.exp(M), np.cos 1/M etc                                                                                                                                                               |                                                                                                                                                                                 | e np.exp(M), np.cos(M), |                                                      |                                                                                      |                        |
| On peut récupérer une colonne (ou une portion quelconque de liste) simplé en passant par un array.  L = [[1,2,3],[4,5,6],[7,8,9]]  Méthode liste: Col1 = [L[i][0] for i in range (len(L))]  Méthode array: La = np.array(L) puis Col1 = La[:,0]  Pour recréer une liste à partir d'un array: L = [A[i] for i range (len(A))] |                                                                                                                                                                                 |                         | (len(L))]<br>[:,0]                                   |                                                                                      |                        |
| Types des nombres                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 |                         |                                                      |                                                                                      |                        |
| Attention à l'overflow. L'array choisi automatiquement les types des nombres qui le composent. Ainsi, un entier est codé en int32 par exemple.                                                                                                                                                                               |                                                                                                                                                                                 |                         |                                                      |                                                                                      |                        |
| On peut pr                                                                                                                                                                                                                                                                                                                   | On peut prédéfinir les types : D = np.array([400000000],dtype='float64')                                                                                                        |                         |                                                      |                                                                                      |                        |

