EGR 5110: Homework #4

Due on April 20, 2024 at 11:59pm $Professor\ Nissenson$

Francisco Sanudo

Background

A long rectangular fin is attached to a heat source. The fin is much longer (into the page) than its other dimensions, so heat flow is approximately two-dimensional. Its left side is subjected to a constant base temperature of $100~^{\circ}$ C and the other three sides experience convection. The fin's initial temperature is $40~^{\circ}$ C and the free stream air temperature is $25~^{\circ}$ C.

Below is a cross sectional view of the fin:

Figure 1: Long Rectangular Fin Attached to Heat Source

The time-dependent temperature distribution is governed by the 2D heat diffusion equation

$$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \tag{1}$$

where T is temperature and α is the thermal diffusivity coefficient.

Goal: Solve Equation (1) from an initial time t_0 to a final time t_f for the temperature distribution across the 2D rectangular fin in Figure 1 (as a function of time) using a finite-difference method.

Deriving Node Equations

Scenarios

Table 1: Five Scenarios Using an Explicit Finite-Difference Method

Scenario	$k_{ m cond} \ \left({{ m W} \over { m m} { m ^{\circ} C}} ight)$	$\binom{lpha}{\left(rac{\mathrm{m}^2}{\mathrm{s}} ight)}$	$\binom{h}{\left(\frac{W}{m^2 \circ C}\right)}$	t_{ss} (min)	$T_{\text{avg}} \text{ tip}$ 1D eqn* (°C)	$T_{\text{avg}} \text{ tip } \\ \text{sim*} \\ (^{\circ}\text{C})$	\dot{Q} 1D eqn* (W)	$\frac{\dot{Q}}{\mathrm{sim}^*}$ (W)
Pure Al, fan high	240	97×10^{-6}	100	0.93	93.94	94.16	133.31	126.32
Pure Al, fan low	240	97×10^{-6}	10	0.99	99.35	99.37	14.02	13.27
AISI 302	15	4×10^{-6}	100	11.23	52.54	53.57	78.49	74.32
Low k , high α	3	100×10^{-6}	100	0.055	28.77	29.40	37.61	34.43
High k , low α	100	3×10^{-6}	100	27.51	86.72	87.18	124.08	117.68

^{*} The average tip temperature and heat rate are the values at the end of the simulation, which are well past the time when the contour lines stop moving.

Figure 2: Steady-State Temperature Distribution for Scenario 1

Figure 3: Steady-State Temperature Distribution for Scenario 2

Figure 4: Steady-State Temperature Distribution for Scenario 3

Figure 5: Steady-State Temperature Distrubution for Scenario 4

Figure 6: Steady-State Temperature Distrubution for Scenario 5