中国农业大学

2023~2024 学年春季学期

数学分析 II 课程第二次期中考试试题

题号	_	 三	四	总分
分数				

(本试卷共4道大题)

考生诚信承诺

本人承诺自觉遵守考试纪律,诚信应考,服从监考人员管理。 本人清楚学校考试考场规则,如有违纪行为,将按照学校违纪处分规定严肃处理。

- 一、选择题: 本题共 5 小题, 每小题 3 分, 共 15 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。
 - 1. 以下说法正确的是 ()
 - A. 无穷乘积 $\prod_{n=1}^{\infty} (1+a_n)$ 收敛当且仅当数项级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} a_n^2$ 都收敛.
 - B. 若数列 a_n 满足 $\lim_{n\to\infty}a_n=0$, 级数 $\sum_{n=1}^\infty b_n$ 收敛, 那么级数 $\sum_{n=1}^\infty a_nb_n$ 必定收敛.
 - C. 若函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 与 $\sum_{n=1}^{\infty} \frac{\mathrm{d}u_n(x)}{\mathrm{d}x}$ 在开区间 (a,b) 上都点态收敛, 但不一致收敛,

那么必有 $\frac{\mathrm{d}}{\mathrm{d}x}\left(\sum_{n=1}^{\infty}u_n(x)\right) \neq \sum_{n=1}^{\infty}\frac{\mathrm{d}u_n(x)}{\mathrm{d}x}$ 对所有 $x\in(a,b)$ 都成立.

- D. 若函数列 $\{S_n(x)\}$ 在开区间 (a,b) 上内闭一致收敛于函数 S(x), 并且每一项 $S_n(x)$ 都是 (a,b) 上的连续函数, 那么 S(x) 也必定是 (a,b) 上的连续函数.
- 2. 反常积分 $\int_0^{+\infty} \frac{|\sin x|}{x} dx = \tag{}$

A. 发散

B. $\frac{\pi}{2}$

C. 0

D. -1

3. 设幂级数 $S(x) = \sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R, 满足 $0 < R < +\infty$. 下列关于函数项级数

A. $\sigma(x)$ 的收敛半径也是 R.

B. $\sigma(x)$ 的收敛域可能真包含于 S(x) 的收敛域.

学院: 班级:	_ 学号:	姓名:
---------	-------	-----

- C. S(x) 的收敛域可能真包含于 $\sigma(x)$ 的收敛域.
- D. S(x) 在区间 (-R,R) 上可导, 且有 $S'(x) = \sigma(x)$.
- 4. 设 f(x) 是闭区间 [0,1] 上恒正的 Riemann 可积函数,则以下定义在 [0,1] 区间上的函数中, 必然也是 Riemann 可积函数的是
 - A. $e^{f(x)}$

B. $\ln f(x)$

C. $\frac{1}{f(x)}$

- D. $F(x) = \begin{cases} f(x), & x 是有理数, \\ f^2(x), & x 是无理数, \end{cases}$
- - A. 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径必小于 1.
 - B. 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域必包含于开区间 (-1,1).
 - C. 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 r > 0, 则左极限 $\lim_{x \to r-} \sum_{n=0}^{\infty} a_n x^n$ 必发散.
 - D. 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 r>0, 则 $\forall x \in (-r,r)$, $\sum_{n=0}^{\infty} a_n x^n$ 必绝对收敛.

二、填空题: 本题共 5 小题, 每小题 3 分, 共 15 分。

- 1. 求极限 $\lim_{n\to\infty} \frac{1}{n} \left(\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \frac{(n-1)\pi}{n} \right) = \underline{\qquad}$
- 2. 求定积分 $\frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \sin(2023x) \cdot \sin(2024x) dx =$ _____.
- 3. 幂级数 $\sum_{n=0}^{\infty} \frac{(3+2\cdot(-1)^n)^n}{n^2+1} (x-2)^n$ 的收敛域为 _____.
- 4. 无穷乘积 $\prod_{n=1}^{\infty} \left(1 \frac{x^2}{n^2}\right)$ 的收敛域为 _____.
- 5. 已知 $\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$,求 Cauchy 主值积分 (cpv) $\int_{-\infty}^{+\infty} \frac{\sin x}{x} dx =$ ______.

三、计算题: 本题共 2 小题, 共 20 分。本题应写出具体演算步骤。

- 1. (10 分) 计算反常积分 $\int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)(1+x^\alpha)}$, 其中 $\alpha \in \mathbb{R}$ 为常数.
- 2. (10 分)设正项级数 $\sum_{n=1}^{\infty} a_n$ 发散, $S_n = \sum_{k=1}^n a_k$, 满足 $\lim_{n \to \infty} \frac{a_n}{S_n} = 0$, 求幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径.

四、解答题: 本题共 5 小题, 共 50 分。解答应写出文字说明或者证明过程。

- 1. (8分) 设函数 f(x) 在闭区间 [a,b] 上 Riemann 可积, $A \leq f(x) \leq B$, 函数 g(u) 在闭区间 [A,B] 上连续, 证明复合函数 g(f(x)) 在 [a,b] 上 Riemann 可积.
- 2. (10 分)设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 与 $\sum_{n=0}^{\infty} b_n x^n$ 的收敛半径分别为 R_1 和 R_2 .
 - (1) 求幂级数 $\sum_{n=0}^{\infty} a_n x^{2n}$ 的收敛半径;
 - (2) 设幂级数 $\sum_{n=0}^{\infty} (a_n + b_n) x^n$ 的收敛半径为 R, 证明 $R \geqslant \min\{R_1, R_2\}$, 并给出一个 $R > \min\{R_1, R_2\}$ 成立的例子.
- 3. (10 分)考虑函数项级数 $\sum_{n=1}^{\infty}u_n(x)=\sum_{n=1}^{\infty}n\left(x+\frac{1}{n}\right)^n$.
 - (1) 求函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域 D.
 - (2) 判断函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在其收敛域 D 上是否一致收敛, 并给出证明.
 - (3) 判断函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在其收敛域 D 上是否内闭一致收敛, 并给出证明.
- 4. (10 分) 设 $f(x) = \sum_{n=1}^{\infty} \frac{1}{2^n + x}$.
 - (1) 证明 f(x) 在 $[0,+\infty)$ 上一致连续;
 - (2) 证明 f(x) 在 $[0,+\infty)$ 上可导;
 - (3) 证明反常积分 $\int_0^{+\infty} f(x) dx$ 发散.

5. (12分)

- (1) 设 f(x) 是闭区间 [a,b] 上的有界函数, 请叙述由达布 (Darboux) 和给出的 f(x) 在 [a,b] 上 Riemann 可积的充要条件. (不需要证明)
- (2) 设函数列 $\{f_n(x)\}$ 的每一项 $f_n(x)$ 都是 [a,b] 上 Riemann 可积的函数, 且在 [a,b] 上一 致收敛于函数 f(x), 求证: f(x) 也是 [a,b] 区间上 Riemann 可积的函数, 并且有

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

学院:_	班级:	学号:	姓名:	
------	-----	-----	-----	--

(3) 在第 (2) 问中,设 $\{f_n(x)\}$ 在 [a,b] 上点态收敛于函数 f(x),但不是一致收敛的,并假设 f(x) 在 [a,b] 上 Riemann 可积,其余条件保持不变,请问积分和极限可交换次序的结论 $\int_a^b f(x) \mathrm{d}x = \lim_{n \to \infty} \int_a^b f_n(x) \mathrm{d}x$ 是否仍然成立?若是,请给出证明;若否,请给出反例,并添加一个你认为可以使原结论仍成立的条件 (除" $\{f_n(x)\}$ 在 [a,b] 上一致收敛于 f(x)"之外的条件),不需要证明.