Chapter 4 Mobile Radio Propagation (Large-scale Path Loss)

Wireless Communication

Objectives

- To refresh understanding of basic concepts and tools
- To discuss the basic philosophy of propagation prediction applicable to cellular systems
- To identify and explore key propagation modes and their signal decay characteristics
- To discuss the multi-path propagation environment, its effects, and a method of avoiding deep fades
- To survey key available statistical propagation models and become familiar with their basic inputs, processes, and outputs
- To understand application of statistical confidence levels to system propagation prediction
- To review and gain familiarity with general measurement and propagation prediction tools available commercially

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Wave Propagation Basics: Frequency and Wavelength

Wavelength is an important variable in RF propagation.

- Wavelength determines the approximate required size of antenna elements.
- Objects bigger than roughly a wavelength can reflect or block RF energy.
- RF can penetrate into an enclosure if it has holes roughly a wavelength in size, or larger.

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Wave Propagation: Frequency and Wavelength

Examples:

AMPS cell site f = 870 MHz. $\lambda = 0.345$ m = 13.6 inches

PCS-1900 site f = 1960 MHz. $\lambda = 0.153 \text{ m} = 6.0 \text{ inches}$

- Radio signals travel through empty space at the speed of light (C)
 - **C** = 186,000 miles/second (300,000,000 meters/second)
- Frequency (F) is the number of waves per second (unit: Hertz)
- Wavelength (λ) (length of one wave) is calculated:
 - (distance traveled in one second) /(waves in one second)

$$\lambda = C/F$$

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Statistical Propagation Models

■ Prediction of Signal Strength as a function of distance without regard to obstructions or features of a specific propagation path

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Radio Propagation

■ Mobile radio channel

- · fundamental limitation on the performance of wireless communications.s
- · severely obstructed by building, mountain and foliage.
- · speed of motion
- · a statistical fashion

■ Radio wave propagation characteristics

- · reflection, diffraction and scattering
- · no direct line -of-sight path in urban areas
- · multipath fading

■ Basic propagation types

- · Propagation model: predict the average received signal strength
- Large-scale fading: Shadowing fading
- · Small-scale fading: Multipath fading

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Propagation Model

- To focus on predicting the average received signal strength at a given distance from the transmitter
 - · variability of the signal strength
 - is useful in estimating the radio coverage.

■ Large-scale propagation

computed by averaging over 5λ ~ 40λ, 1m ~ 10m, for1GHz ~ 2GHz.

■ Small-scale fading

- received signal strength fluctuate rapidly, as a mobile moves over very small distance.
- Received signal is a sum of multi-path signals.
- · Rayleigh fading distribution
- may vary by 30 ~ 40 dB
- due to movement of propagation related elements in the vicinity of the receiver.

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Deterministic Techniques Basic Propagation Modes

- There are several very commonlyoccurring modes of propagation, depending on the environment through which the RF propagates. Three are shown at right:
 - these are simplified, practicallycalculable cases
 - real-world paths are often dominated by one or a few such modes
 - these may be a good starting point for analyzing a real path
 - you can add appropriate corrections for specific additional factors you identify
 - we're going to look at the math of each one of these

Knife-edge Diffraction

Dr. Sheng-Chou Lin

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Free-Space Propagation

 $|S| = \frac{P_t}{4\pi d^2} G_t$: power density

 $P_r = |S| A_{eff}$: Received power

$$A_{eff} = \frac{\lambda^2}{4\pi} \cdot G_r \quad \Rightarrow \quad G = \frac{4\pi A_{eff}}{\lambda^2}$$

$$P_{r} = \frac{P_{t}}{4\pi d^{2}} \cdot G_{t} \cdot G_{r} \cdot \frac{\lambda^{2}}{4\pi}$$

(Effective isotropic radiated power) EIRP = P,G,

- Effective area (Aperture) $A_{eff} = \eta A$ ratio of power delivered to the antenna terminals to the incident power density
 - η : Antenna efficiency
 - · A: Physical area
- Transmitter antenna gain = G,
- Receiver antenna gain
- Propagation distance =
- Wave length = λ

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Free-Space Propagation

- A clear, unobstructed Line-of-sight path between them
 - Satellite communication, Microwave Line-of-sight (Point-to-point)

EIRP= P_tG_t = effective isotropic radiated power (compared to an isotropic radiator) : dB_t ERP = EIRP-2.15dB = effective radiated power (compared to an half-wave dipole antenna) : dB_d

Path Gain gain = $\frac{P}{P_{\star}} = G_1 G_2 \left(\frac{\lambda}{4\pi d}\right)^2 = G_1 G_2 \left(\frac{c}{4\pi df}\right)^2 = G_1 G_2 \left(\frac{3 \times 10^8}{4\pi d \cdot 1 \times 10^3 \cdot f \cdot 1 \times 10^6}\right)^2$

Path Loss = 1 / (P_r/P_t) when antenna gains are included

$$loss(dB) = 32.44 + 20 \ log \ d + 20 \ log \ f - G_1(dB) - G_2(dB)$$
 Chapter 4 – Mobile radio propagation(Large-scale path loss) 9 Dr. Sho

Free Space "Spreading" Loss energy intercepted by the red square is proportional to 1/r²

1st Fresnel Zone

Free-Space Propagation

- The simplest propagation mode
 - Imagine a transmitting antenna at the center of an empty sphere. Each little square of surface intercepts its share of the radiated energy
 - Path Loss, db (between two <u>isotropic</u> antennas)
 = 36.58 +20*Log₁₀(F_{MHZ})+20Log₁₀(Dist_{MILES})
 - Path Loss, db (between two <u>dipole</u> antennas)
 = 32.26 +20*Log₁₀(F_{MHZ})+20Log₁₀(Dist_{MILES})
 - Notice the rate of signal decay:
 - 6 db per octave of distance change, which is 20 db per decade of distance change
- When does free-space propagation apply?
 - there is only one signal path (no reflections)
 - the path is unobstructed (first Fresnel zone is not penetrated by obstacles)

First Fresnel Zone = {Points P where AP + PB - AB $< \lambda/2$ } Fresnel Zone radius $d = 1/2 (\lambda D)^{(1/2)}$

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

=

Wireless Communication

Near and Far fields

- These distances are rough approximations!
- Reactive near field has substantial reactive components which die out
- Radiated near field angular dependence is a function of distance from the antenna (i.e., things are still changing rapidly)
- Radiated far field angular dependence is independent of distance
- Moral: Stay in the far field!

Chapter 4 - Mobile radio propagation(Large-scale path loss)

An Example

- An antenna with maximum dimension (D) of 1m, operating frequency (f) = 900 MHz.
 - $\lambda = c/f = 3 \times 10^8/900 \times 10^6 = 0.33$
 - Far-field distance = $d_f = 2D^2/\lambda = 2 \times (1)^2/0.33 = 6m$
- TX power, $P_t = 50W$, $f_c = 900MHz$, $G_t = 1 = G_r$
 - P, (dBm) = 10log(50 ×10³ mW) = 47 dBm = 10lon(50) = 17 dBW
 - G, = 1 = G, = 0dB
 - Loss (100m)= $32.44 + 20\log(d_{km}) + 20\log(f_{MHz}) = 32.44 + 20\log(f_{MHz})$ $(0.1)+20\log(900) = 71.525 \text{ dB}$
 - $-P_{r}(100m)=47+0-71.525+0=-24.5 dBm$
 - Loss (10km)= $32.44 + 20\log(d_{km}) + 20\log(f_{MHz}) = 32.44 + 20\log(10) + 20\log(900)$ =71.525 dB + 40 = 111.525 dB
 - $-P_r(100m)=47+0-111.525+0=-64.5 dBm$

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Let's track the power flow from

transmitter to receiver in the

radio link we saw back in lesson

A Tedious Tale of One Radio Link

- 20 Watts TX output x 0.50 line efficiency
- = 10 watts to antenna
- x 20 antenna gain
- = 200 watts ERP
- 2. We're going to use real values that commonly occur in typical
- x 0.000,000,000,000,000,1585 patts attenuation = 0.000,000,000,000,031,7 watts if intercepted by dipole antenna
- x 20 antenna gain
- = 0.000,000,000,000,634 watts into line
- x 0.50 line efficiency
- = 0.000,000,000,000,317 watts to receiver

Did you enjoy that arithmetic? Let's go back and do it again, a better and less painful way.

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Decibels - A Helpful Convention

- dB are comfortable-size numbers
- rather than multiply and divide RF power ratios, in dB we can just add & subtract
- Given a number, convert to dB:
 db = 10 x Log₁₀ (N)
- Given dB, convert to a number:
 N = 10^{A(db/10)}

- Decibels normally refer to power ratios -- in other words, the numbers we represent in dB usually are a ratio of two powers. Examples:
 - A certain amplifier amplifies its input by a factor of 1,000. (P_{out}/P_{in} = 1,000,000). That amplifier has 30 dB gain.
 - A certain transmission line has an efficiency of only 10 percent. (P_{out}/P_{in} = 0.1) The transmission line has a loss of -10 dB.
- Often decibels are used to express an absolute number of watts, milliwatts, kilowatts, etc. When used this way, we always append a letter (W, m, or K) after "db" to show the unit we're using. For example,
 - 20 dBK = 50 dBW = 80 dBm= 100,000 watts
 - 0 dBm = 1 milliwatt

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

A Much Less Tedious Tale of that same Radio Link

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Introduction The Function of an Antenna

An antenna is a passive device (an arrangement of electrical conductors) which converts RF power into electromagnetic fields, or intercepts electromagnetic fields and converts them into RF power.

- RF power causes current to flow in the antenna.
- The current causes an electromagnetic field to radiate through space.
- The electromagnetic field induces small currents in any other conductors it passes. These currents are small, exact replicas of the original current in the original antenna.

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Antenna Polarization

- The electromagnetic field is oriented by the direction of current flow in the radiating antenna.
- To intercept significant energy, a receiving antenna should be oriented parallel to the transmitting antenna.
- A receiving antenna oriented at right angles to the transmitting antenna will have very little current induced in it. This is referred to as cross-polarization. Typical cross-polarization loss is 20 dB.
- Vertical polarization is the norm in mobile telephony.

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Reference Antennas and Effective Radiated Power

Effective Radiated Power is always expressed in relation to the radiation produced by a reference antenna.

- The flashlight example used a plain light bulb as a reference producing the same light in all directions.
- The radio equivalent of a plain light bulb is called an isotropic radiator. It radiates the same in all directions. Unfortunately, it virtually impossible to build such an antenna.
 - Radiation compared to an isotropic radiator is called EIRP, Effective Isotropic Radiated Power.
- The simplest, most common, physically constructible reference antenna is a dipole.
 - Radiation compared to a dipole is called ERP, Effective Radiated Power.

Dipole Antenna

Dr. Sheng-Chou Lin

Chapter 4 - Mobile radio propagation(Large-scale path loss)

18

Wireless Communication

Reference Antennas, ERP and EIRP

- ERP is by comparison to a Dipole
 - This is the tradition in cellular, land mobile, communications, and FM/TV broadcasting
- EIRP is by comparison to an Isotropic Radiator
 - This is the tradition in PCS at 1900 MHz., microwave, communications, and radar

• For a given amount of power input, a dipole produces 2.16 db more radiation than an isotropic radiator, due to the dipole ≅ slight directionality. A third antenna compared against both dipole and isotropic will have a bigger EIRP (vs. isotropic) than ERP (vs dipole). The difference is 2.16 db, a power ratio of 1.64. Therefore,

ERP = EIRP - 2.16 dB and ERP = EIRP / 1.64 EIRP = ERP + 2.16 dB and EIRP = ERP x 1.64

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Radiation Patterns Key Features and Terminology

Radiation patterns of antennas are usually plotted in polar form

- The Horizontal Plane Pattern shows the radiation as a function of azimuth (i.e.,direction N-E-S-W)
- The Vertical Plane Pattern shows the radiation as a function of elevation (i.e., up, down, horizontal)
- Antennas are often compared by noting specific features on their patterns:
 - -3 db ("HPBW"), -6 db, -10 db points
 - · front-to-back ratio
 - · angles of nulls, minor lobes, etc.

Typical Example Horizontal Plane Pattern

Chapter 4 - Mobile radio propagation(Large-scale path loss)

20

Dr. Sheng-Chou Lin

Wireless Communication

Two Basic Methods of Obtaining Gain

Quasi-Optical Techniques (reflection, focusing)

- · Reflectors can be used to concentrate radiation
 - technique works best at microwave frequencies, where reflectors are small
- · examples:
 - corner reflector used at cellular or higher frequencies
 - parabolic reflector used at microwave frequencies
 - grid or single pipe reflector for cellular

Array Techniques (discrete elements)

- power is fed or coupled to multiple antenna elements; each element radiates
- elements?radiations in phase in some directions
- in other directions, different distances to distant observer introduce different phase delay for each element, and create pattern lobes and nulls

Dr. Sheng-Chou Lin

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Real-World Path Loss

Free space is, in general, NOT the real world. We must deal with:

- · reflections over flat or curved Earth
- reflections from smooth
- · scattering from rough surfaces
- diffraction around/over obstacles
- absorption by vegetation and other lossy media, including buildings and walls
- multipath fading
- approximately fourth power propagation loss

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Reflection

- A propagating wave impinges upon an object with very large dimensions ($>> \lambda$)
- Reflections occur from surface of the earth and from building and wells → Flat surface

Path Loss (dB) = $40Log(d) - [10Log(G_t) + 10Log(G_t) + 20Log(h_b) + 20Log(h_m)]$

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Reflection with Partial Cancellation

Direct ray Reflected Ray Point of reflection

This reflection is at "grazing incidence". The reflection is virtually 100% efficient, and the phase of the reflected signal flips 180 degrees.

■ Assumptions:

- the cell is a mile away or more
- the cell is not over a few hundred feet higher than the car
- · there are no other obstructions

If these assumptions are true, then:

- The point of reflection will be very close to the car -- at most, a few hundred feet away.
- the difference in path lengths is influenced most strongly by the car antenna height above ground or by slight ground height variations
- The reflected ray tends to cancel the direct ray, dramatically reducing the received signal level

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Reflection with Partial Cancellation

TX ERP_{DBM} $\mathbf{D}_{\mathsf{MILES}}$

- Analysis:
 - physics of the reflection cancellation predicts signal decay approx. 40 db per decade of distance
 - twice as rapid as in free-space!
 - observed values in real systems range from 30 to 40 db/decade

Received Signal Level, dBm =

- TX ERP_{DBM} 172 34 x Log₁₀ (D_{MILES})
- + 20 x Log₁₀ (Base Ant. Ht_{FEET})
- + 10 x Log₁₀ (Mobile Ant. Ht_{FEET})

Comparison of Free-Space and Reflection Propagation Modes

Assumptions: Flat earth, TX ERP = 50 dBm, @ 870 MHz. Base Ht = 200 ft, Mobile Ht = 5 ft.

Distance _{MILES}	1	2	4	6	8	10	15	20
FS usingFree-Space _{DBM}	-45.3	-51.4	-45.3	-57.4	-63.4	-65.4	-68.9	-71.4
FS using Reflection _{DBM}	-69.0	-79.2	-89.5	-95.4	-99.7	-103.0	-109.0	-113.2

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Observation on Signal Decay Rates

We've seen how the signal decays with distance in two simplified modes of propagation:

- Free-Space
 - · 20 dB per decade of distance
 - 6 db per octave of distance
- Reflection Cancellation
 - · 40 dB per decade of distance
 - 12 db per octave of distance
- Real-life cellular propagation decay rates are typically somewhere between 30 and 40 dB per decade of distance

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Diffraction

- Diffraction allows radio signals to propagate around the curved surface of the earth, beyond the horizon, and to propagate behind obstructions.
 - The diffraction field still exists and often has sufficient strength to produce a useful signal, as a receiver moves deeper into the obstructed (shadowed) region.
 - Caused by the propagation of secondary wavelets into a shadowed region.
 - Sum of the electric field components of all the secondary wavelets in the space around the obstacle.
- Excess path length (⇒): the difference between the direct path and the diffracted path.
 - A function of height and position of the obstruction, as well as the transmitter and receiver location.
- Fresnel zones: successive receiver where $\leftrightarrows = n\lambda/2$
 - provide *constructive* and *destructive* interference to the total received signal.
 - · Obstruction does not block the volume within the first Fresnel zone.

Diffraction parameter

■ Excess path length (difference between direct path and diffracted path)

$$\Delta = \frac{h^2 (d_1 + d_2)}{2 d_1 d_2}$$

· The corresponding phase difference

$$\phi = \frac{2\pi \Delta}{\lambda} = \frac{2\pi}{\lambda} \frac{h^2(d_1 + d_2)}{2 d_1 d_2}$$

- $\alpha = \beta + \gamma \implies \alpha \approx h \left(\frac{d_1 + d_2}{d_1 d_2} \right)$
- · Fresnel-Kirchoff diffraction Parameter

$$\phi = \frac{\pi}{2} v^2$$

Phase difference bet. LOS and diff. Path is a function of height and position of the obstruction, as well as TX and RX

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Fresnel Zones

- Fresnel zones are the family of ellipsoids certain values of phase of the rays which which are the loci of circles that indicate pass through them
- Generally want antenna heights high enough so all obstacles are below first Fresnel zone (n = 1)
- If tip of obstacle is at center of Fresnel zone (LOS ray), then loss is 6 dB greater than free-space path loss

R is 1st Fresnel Zone radius, d_1, d_2 in km, and f in GHz R = 17.3

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Knife-Edge Diffraction

$$v = H \sqrt{\frac{2}{\lambda} \left(\frac{1}{R_1} + \frac{1}{R_2}\right)}$$

- Radio signals to propagate between Transmitter and Receiver is obstructed by a surface that has sharp irregularities (edges) such as hill or mountain.
- Sometimes a single well-defined obstruction blocks the path. This case is fairly easy to analyze and can be used as a manual tool to estimate the effects of individual obstructions.
- First calculate the parameter v from the geometry of the path
- Next consult the table to obtain the obstruction loss in db
- Add this loss to the otherwise-determined path loss to obtain the total path loss.
- Other losses such as reflection cancellation still apply, but computed independently for the path sections before and after the obstruction.

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

An Example of Diffraction

 $\lambda = 1/3 \text{ m}$, $d_1 = 1 \text{km}$, $d_2 = 1 \text{km}$, and (a) h = 25 m (b) h = 0 (c) h = -25 m.

$$v = \alpha \sqrt{\frac{2 d_1 d_2}{\lambda (d_1 + d_2)}}$$

$$\Delta = \frac{h^2 (d_1 + d_2)}{2 d_1 d_2}$$

 $\phi = n \pi \text{ or } \Delta = n \lambda / 2 \text{ for Fresnel}$ Zones

- (a) h = 25m: v = 2.74, Loss = 22 dB from Figure 4.14. Approximation = 21.7 dB, Δ = 0.625m, λ = 1/3, n = 3.75 \Rightarrow the tip of the obstruction completely blocks the first three Fresnel zones.
- (b) h = 0m: v = 0, Loss = 6 dB from Figure 4.14. Approximation = 6 dB, $\Delta = 0m \Rightarrow$ the tip of the obstruction lies in the middle of the first Fresnel zone.
 - h = -25m: v = -2.74, Loss = 1dB from Figure 4.14. Approximation = 0dB, Δ = 0.625m, λ = 1/3, n = 3.75 \Rightarrow the tip of the obstruction completely blocks the first three Fresnel zones. However, the diffraction losses are negligible, since the obstruction is below the LOS.

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Scattering

■ Why consider scattering

- Actual received signal > what predicted by reflection and diffraction
- Rough surface → reflected energy is spread out (diffused)
- Flat surface with dimensions $> \lambda$.
- · number of obstacles per unit volume is large.
- Rough surfaces, small objects → irregularities
- ex. Foliage, trees, , street signs, lamp post.

- Rough surface: h > h_c, h_c = λ / 8sinθ_I
- reflection coefficient = flat coefficient $\times \rho_s$

$$-\Gamma_{\text{rough}} = \rho_{\text{s}} \times \Gamma$$

- ρ_s: scattering loss

Dr. Sheng-Chou Lin

Wireless Communication

Chapter 4 - Mobile radio propagation(Large-scale path loss)

32

■ General types

- Outdoor
- Indoor: conditions are much more variable.
- Most of these models are based on a systematic interpretation of measurement data obtained in the service area.
- Parameters used in propagation model
 - Frequency
 - · Antenna heights
 - Environments: Large city, medium city, suburban, Rural (Open) Area.

■ Common models

- Hata Model: 20km > Range >1km
- Walfisch and Bertoni Model :Range < 5km
- Indoor propagation models : include scattering, reflection, diffraction
 - conditions are much more variable

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Statistical Propagation Models

- Based on statistical analysis of large amounts of measurement data
- Predict signal strength as a function of distance and various parameters
- Useful for early network dimensioning, number of cells, etc.
- "Blind" to specific physics of any particular path -- based on statistics only
- Easy to implement as a spreadsheet on PC or even on handheld programmable calculator
- Very low confidence level if applied as spot prediction method, but very good confidence level for system-wide generalizations

Chapter 4 - Mobile radio propagation(Large-scale path loss)

34

Dr. Sheng-Chou Lin

Wireless Communication

Statistical Propagation Models

■ Prediction of Signal Strength as a function of distance without regard to obstructions or features of a specific propagation path

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Statistical Propagation Models: Commonly-required Inputs

- **■** Frequency
- Distance from transmitter to receiver
- **■** Effective Base Station Height
- Average Terrain Elevation
- Arbitrary loss allowances based on rules-of-thumb for type of area (Urban, Suburban, Rural, etc.)
- Arbitrary loss allowance for penetration of buildings/vehicles
- Assumptions of statistical distribution of variation of field strength values

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Okumura Model

$$L_{50}$$
 (dB) = $L_F + A_{mu}$ (f,d) - $G(h_t) - G(h_r) - G_{AREA}$

- Widely used model for signal prediction in urban areas
- is based on measured data and does not provide any analytical explanation

Where:

 L_{50} = The 50% (median) value of propagation path loss

L_F = The free space propagation loss

 A_{mu} (f,d) = median attenuation relative to free space (see Fig. 3.23)

 $G(h_t)$ = Base station antenna height gain factor (30m ~1000m)

 $G(h_r)$ = mobile antenna height gain factor

 G_{AREA} = Gain due to the type of environment (see Fig. 3. 24)

f: 150MHz ~ 1920MHz (up to 3000MHz), d: 1km ~ 100km

 $\begin{aligned} G(h_t) &= 20log \; (\; h_t/200 \;), & G(h_r) &= 10log \; (\; h_r/3 \;), \; \; \frac{h_r}{h_r} \leq \frac{3m}{G(h_r)} \\ &= 20log \; (\; h_r/3 \;), \; \frac{10m}{h_r} \geq \frac{3m}{M_r} \end{aligned}$

Chapter 4 - Mobile radio propagation(Large-scale path loss)

An Example using Okumura Model

■ D= 50 km, h_t = 100m, h_r = 10m, in an urban environment. EIRP = 1kW, f = 900 MHz, unit gain receiving antenna.

- A_{mu}(900MHz, 50 km)) = 43 dB
- $G_{AREA} = 9dB$
- $G(h_t) = -6dB$
- $G(h_r) = 10.46 dB$
- $L_{50} = 155.04 \text{ dB}$
- $P_r(d) = 60-155.04 + 0 = -95.04 dBm$

Chapter 4 - Mobile radio propagation(Large-scale path loss)

38

Dr. Sheng-Chou Lin

Wireless Communication

Hata Model

 L_{50} (*Urban*) (dB) = 69.55 + 26.16 log (F) - 13.82 log(H_b) + (44.9 - 6.55 log(H_b))*log (D) - a

Where:

A = Path loss

F = Frequency in mHz (150M-1500 MHz)

D = Distance between base station and terminal in km (1km ~20km)

H = Effective height of base station antenna in m (30m ~200m)

a = Environment correction factor for mobile antenna height (1m~10m)

 $a = (1.1 \log (F) - 0.7) H_m - (1.56 \log (F) - 0.8) dB$

= Small~medium sized

city (urban)

8.29 (log (1.54 H_m)) ² - 1.1 dB for $F \le 300$ MHz = Large city (Dense 3.2 log (F) (log (11.75 H_m)) ² - 4.97 dB for $F \ge 300$ MHz

L₅₀ (Urban) - 2(log(F/28))² - 5.4

= Suburban

L₅₀ (Urban) - 4.78(log(F))²- 18.33 (log(F)) - 40.98

= Rural (open)

• $L_{90} = L_{50} + 10.32 \text{ dB} : 90\% \text{ QOS}$, L_{50} is the median value of propagation loss

Chapter 4 - Mobile radio propagation(Large-scale path loss)

COST-231 Hata Model

A (dB) = $46.3 + 33.9\log (F) - 13.82 \log(H_b) + (44.9 - 6.55 \log(H_b)) \log (D) - a + c$

Where: A = Path loss

F = Frequency in MHz (1500M-2000 MHz)

D = Distance between base station and terminal in km (1km ~20km)
 H = Effective height of base station antenna in m (30m ~200m)
 a = Environment correction factor for mobile antenna height

c = Environment correction factor

C = 0 dB = Small~medium sized city (urban), Suburban

3 dB = Dense Urban (metropolitan center)

A is defined in the Hata Model

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Statistical Propagation Models Okumura-Hata Model

A (dB) = $69.55 + 26.16 \log (F) - 13.82 \log(H) + (44.9 - 6.55 \log(H)) \log (D) + C$

Where: A = Path loss

F = Frequency in MHz (800-900 MHz)

D = Distance between base station and terminal in km H = Effective height of base station antenna in m

C = Environment correction factor

C = 0 dB = Dense Urban

- 5 dB = Urban - 10 dB = Suburban - 17 dB = Rural

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Statistical Propagation Models COST-231 HATA Model

 $A (dB) = 46.3 + 33.9 \log F - 13.82 \log H + (44.9 - 6.55 \log H) \log D + C$

Where:

A = Path loss

F = Frequency in mHz (between 1700 and 2000 mHz)
D = Distance between base station and terminal in km
H = Effective height of base station antenna in m

C = Environment correction factor

C = -2 dB = for dense urban environment: high buildings, medium and wide streets

- 5 dB = for medium urban environment: modern cities with small parks

- 8 dB = for dense suburban environment, high residential buildings. wide streets

- 10 dB = for medium suburban environment, industrial area and small homes

- 26 dB = for rural with dense forests and quasi no hills

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Statistical Propagation Models Walfisch-Ikegami Model

- Useful only in dense urban environments, but often superior to other methods in this environment
- Based on "urban canyon" assumption
 - a "carpet" of buildings divided into blocks by street canyons
 - Uses diffraction and reflection mechanics and statistics for prediction
 - Input variables relate mainly to the geometry of the buildings and streets
- Useful for two distinct situations:
 - · macro-cell antennas above building rooftops
 - · micro-cell antennas lower than most buildings
- Available in both 2-dimensional and 3-dimensional versions

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Statistical Techniques Practical Application of Distribution Statistics

■ Technique:

- · use a model to predict RSSI
- · compare measurements with model
 - obtain median signal strength
 - obtain standard deviation
 - now apply correction factor to obtain field strength required for desired probability of service

■ Applications: Given

- · a desired signal level
- the standard deviation of signal strength measurements
- a desired percentage of locations which must receive that signal level
- We can compute a "cushion" in dB which will give us that % coverage

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Percentage of Locations where Observed

Distance

Dr. Sheng-Chou Lin

44

Wireless Communication

第章大変 ・ 1 日前 デ ・ 1 日前 デ

Propagation Loss

■ Comparison among models

- Free space
- Hata Model (Okumura + COST 231)
- Walfisch: considered by ITU-R in IMT-2000 standard.

Cellular system, f = 850MHz

PCS system, f =1900 MHz

Chapter 4 - Mobile radio propagation(Large-scale path loss)

45

Statistical Techniques Example of Application of Distribution Statistics

- Suppose you want to design a cell site to deliver at least -95 dBm to at least 90% of the locations in an area
- Measurements you've made have a 10 dB. standard deviation above and below the average signal strength
- On the chart:
 - to serve 90% of possible locations, we must deliver an average signal strength 1.29 standard deviations stronger than -95 dBm, σ = 10
 - -95 + (1.29 x 10) = -82 dbm
 - Design for an average signal strength of - 82 dbm!

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Statistical Techniques Normal Distribution Graph & Table for Convenient Reference

Standard	Cumulative		
Deviation	Probability		
-3.09	0.1%		
-2.32	1%		
-1.65	5%		
-1.28	10%		
-0.84	20%		
-0.52	30%		
2.35	99%		
0	50%		
0.52	70%		
0.84	80%		
1.28	90%		
1.65	95%		
2.35	99%		
3.09	99.9%		

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Log-normal Shadowing Fading

- Long-term variation are due to propagation through obstructions, ets. And if the number of obstructions is large
- The loss in dB is respected as a Gaussian distribution with a m_R(dB) and variance σ (dB)
 - m_R is the median loss of the path
- We choose a specific coverage criteria such as 95%, 90%, 85%. To find 90% Loss
 - Pr [Loss m_R + Loss (σ)] = 90%
- In all these cases, σ itself is a function of the environment
 - Large, medium city, suburban : $\sigma \approx 8dB$
 - Rural area $\sigma \approx 4dB$
 - for σ = 9 dB.and 90% coverage, Loss (σ)= 10.32 dB

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Shadowing Fading statistics

■ Long-term variation is modeled by a log-normal distribution

$$\mathsf{E}_\mathsf{p} = \mathsf{E}_\mathsf{o} \; \mathsf{e}^{\; \mathsf{-} \; (\alpha + \mathit{f} \beta \;) \; \Delta \mathit{d}} \quad \Longrightarrow \quad |\; \mathsf{E}_\mathsf{p} \; | \; = \; |\; \mathsf{E}_\mathsf{o} \; | \; \mathsf{e}^{\; \mathsf{-} \; \alpha \; \Delta \mathit{d}}$$

• at the receiver, the input signal will be given by

 y = e^{x:}, y is lognormally distributed if x is Gaussianly distributed.

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Percentage of Coverage

■ The percentage of area with a received signal $\geq \gamma$, I.e.

 $Pr[Pr(R) \ge \gamma]$

- γ : desired received signal threshold
- radial distance from the transmitter
 - received signal at D = R
 exceeds the threshold γ
 - see Fig. 3.18 for different n and σ
- Ex: shadowing deviation σ = 8dB, 75% boundary coverage (QOS)
 - Loss exponent factor n = 4 → area coverage 94%
 - Loss exponent factor n = 2 → area coverage 91%

Chapter 4 - Mobile radio propagation(Large-scale path loss)

50

Dr. Sheng-Chou Lin

Wireless Communication

Statistical Propagation Models Typical Results

Example of Model Results: Typical Cell Range Predictions for Various Environments

	Tower Height	EIRP	Range	
F = 1900 mHz	(meters)	(watts)	(km)	
Dense Urban	30	200	1.05	
Urban	30	200	2.35	
Suburban	30	200	4.03	
Rural	50	200	10.3	

Building Penetration Losses

- Usual technique for path loss into a building: get median signal level in streets by some "normal" method add building penetration losses
- Loss α 1/h in general
- Small scale variation is Rayleigh
- Large scale variation is log-normal
- Loss α 1/f
- Each additional floor is about 2 dB difference in loss
- For primarily scattering paths, standard deviation is about 4 dB
- For paths with at least partial LOS, standard deviation is about 6 to 9 dB
- Windows of many new buildings have a thin layer of metal sputtered on the window glass; this increases attenuation

D. Molkdar, "Review on radio propagation into and within buildings," IEE Proc-H, Vol. 138, No. 1, Feb 1991, pp 61-73.

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Dr. Sheng-Chou Lin

Wireless Communication

Propagation Inside Buildings

- Indoor environment differs from mobile environment in
 - · interference environment (usually higher, due to equipment)
 - fading rate (usually slower, due to reduced speeds)
- Limitations due to bandwidth
 - · narrowband (e.g. TDMA) systems coverage limited by multipath and shadow fading
 - · wideband systems experience ISI due to delay spread (less frequency diversity gain)
- Power as a function of distance varies over a range:
 - P α 1/d² in a near-free-space environment (hallway)
 - P α 1/d⁶ in a high-clutter environment (room full of cubes)
- Loss: floors with structural metal > brick wall > plaster wall
- Office fading is usually more continuous /smaller dynamic range than mobile fading
- Stairwells and elevator shafts can act as waveguides and aid floor-to-floor propagation
- Presence of an LOS path reduces RMS delay spread

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Propagation Inside Buildings - Prediction

- Combination of ray-tracing and diffraction can be very accurate at predicting inside propagation
- Direct rays (through floors): each floor increases loss
- Diffraction (windows and outside): large loss initially, but more floors do not add much loss
- 900 MHz band losses
- 10 dB/floor for reinforced concrete
- 13 dB/floor for precast slab floor
- 26 dB isolation for corrugated steel (diffraction path dominates)

Chapter 4 - Mobile radio propagation(Large-scale path loss)

54

Dr. Sheng-Chou Lin

Wireless Communication

Acceptable Cellular Voice Quality

- AMPS VOICE QUALITY IS ACCEPTABLE IF OVER 90% OF THE COVERAGE:
 - 1) VOICE S/N RATIO > 38 dB IN FADING ENVIRONMENT
 - 2) RF CARRIER-TO-INTERFERENCE RATIO (CIR) > 18 dB
- GIVEN 1) AND 2), 75% OF USERS GRADE THE SYSTEM AS "GOOD" OR "EXCELLENT"
- MATHEMATICALLY:

$$\frac{S}{N} = 10 \log_{10} \left[\frac{3\beta^2}{4} \frac{C}{I} \right] + 15 \text{ dB}, \quad \text{where} \quad \frac{C}{I} > 13 \text{ dB}, \quad \text{and } \beta > 0.6$$

$$\frac{S}{N} = \text{BASEBAND SIGNAL-TO-NOISE RATIO}$$

- C = RF CARRIER-TO-INTERFERENCE RATIO
- IN DIGITAL SYSTEMS WITH VOICE COMPRESSION, VOICE QUALITY IS USUALLY QUANTIFIED PSYCHOACOUSTICALLY VIA Mean Opinion Score (MOS) RATINGS ON A SCALE OF 1 TO 5.
- AN MOS SCORE OF 3 IS CONSIDERED MINIMALLY ACCEPTABLE

Bernardin, C.P. et al ,"Voice Quality Prediction in AMPS Cellular Systems using SAT," Wireless 94 Symposium, Calgary, July 12, 1994, pp 238-241.

Chapter 4 - Mobile radio propagation(Large-scale path loss)

Lesson 4 Complete