R at a Glance:

Useful functions and syntax for Psych 252

Getting started

Install library: install.packages('mylibrary')

Load library: library(mylibrary) Useful libraries to start with:

isonlite

Load data	Clean up data	Statistics	Share results
xlsx	plyr	car	ggplot2
R Matlah	dolyr	nlm	rmarkdown

lme4

tidyr Set working directory: setwd('~/path/to/my/data')

Get current working directory: getwd()

Search for a function in the R documentation:

By its exact name: ?functionName

By part of its name: ??fun

Data frames

Reading and writing da	ata
------------------------	-----

Combine elements into a vector c(1,2,3,4)Create number sequence seq(start, end) Combine vectors by rows rbind(vectr1, vectr2) Combine vectors by columns cbind(vectr1, vectr2) Create data frame from vectors data.frame(tag = value) Load an existing data set^[1] read.csv('mydata.csv') read.xlsx('mydata.xls')

Exploring datasets

View topmost rows head(data) View structure of data str(data) View summary of data^[2] summary(data)

Data types

(In the examples below, fill in datatype with the type of data you want, such as factor, character, numeric, or logical.)

Converting to other data types as.dataype(vectr) Check data type of a vector is.datatype(vectr) View/set levels of a factor levels(data\$columnName)

Selecting and extracting data

View all column names names(data) Get column by name data\$columnName Get i-th row data[i,] Get j-th column data[, j] Get element at row i, column j data[i, j] Select rows using logical[3] data[data\$group == 'A',]

[1] Make sure you are in the correct working directory!

[2] summary returns different results depending on the object you want to summarize. Try it out with data frames, models, statistical tests, etc., to see what information it gives you.

[3] Don't forget the comma! This will return all rows that match the condition in the brackets. You can use this syntax to subset your data frame by any criterion, such as subjects that are above a certain age, all measurements taken in a drug trial before treatment, etc.

Basic math & statistics

	Name	Example	
	Variable assignment	x <- 10 x = 10	
Addition Subtraction		x + y	
		x - y	
Arithmetic	Multiplication	x * y	
	Exponent	x ** y x^y	
Modulus		x %% y	
Less than		x < y	
Ē	Less or equal to	x <= y	
Greater than		x > y	
Comparison	Greater or equal to	x >= y	
	Equal to	x == y	
	Not equal to	x != y	
0	NOT x	!x	
ogic	x OR y	x y	
_	X AND y	x & y	
	Exponential	exp(x)	
us	Logarithm	log(x)	
atio	Square root	sqrt(x)	
per	Round	round(x)	
Other operations	Absolute value	abs(x)	
5	Sum	sum(vectr)	
	Scale & center		
	Maximum	Missing ANOVA,	
	Minimum	length	
	Mean	mean(vectr)	
	Median	median(vectr)	
	Std. dev.	sd(vectr)	
	Variance	var(vectr)	
Covariance Covariance		cor(vectr1, vectr2)	
Staf	Covariance	cov(vectr1, vectr2)	
	T-Test	t.test(y ~ x ,data) t.test(vectr1, vectr2)	
	Chi-squared test	chisq.test(table)	
	Linear model	Im(y ~ x, data)	
	Logistic regression	glm(y ~ x, family = "binomial")	
	Mixed-effects model	Imer(y ~ x + (int slope), data)	

Plotting with ggplot2

Making any plot with ggplot follows the same basic steps:

- 1. Choosing a dataset to plot
- 2. Using **geoms** to specify what kinds of marks (such as lines, dots, or bars) will appear on the plot
- 3. Using **aesthetic mappings** to specify how different properties of the dataset will appear on the plot. The most basic of these is choosing which variables will appear on the x and y axis.

Basic syntax

Making a plot with ggplot command provides more control. Use + to add elements, layers, and custom options.

Geoms

[Table with icon, command, available options, notes. Include geom_density, geom_histogram, geom_bar, geom_jitter, geom_point, geom_line, geom_smooth, geom_errorbar]

Other options

Adding a title myplot + ggtitle('My Plot') Changing x- and y-axis labels myplot + xlab('Time') + ylab('Score') Faceting Changing bounds of plot Changing theme

Programming basics

Defining functions if, for, while Other useful commands: Paste, attach, detach, with, by

Sampling from distributions

gnorm, rnorm, etc.

Debugging?

Useful resources