- Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - A. Data type of columns in a table

```
select column_name, data_type from `sqlbusinesscase-
384615.SQLAssignement.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'customers'
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETA	AILS EXECUTION GRAPH PREVIEW
Row /	column_name	le	data_type	h	
1	customer_id		STRING		
2	customer_unique	_id	STRING		
3	customer_zip_co	de_prefix	INT64		
4	customer_city		STRING		
5	customer_state		STRING		

```
select column_name, data_type from `sqlbusinesscase-
384615.SQLAssignement.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'geolocation'
```

Quer	y results					
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETA	ILS EXECUTION G	GRAPH PREVIEW
Row /	column_name	le	data_type	li		
1	geolocation_zip_	code_prefix	INT64			
2	geolocation_lat		FLOAT64			
3	geolocation_lng		FLOAT64			
4	geolocation_city		STRING			
5	geolocation_state	е	STRING			

```
select column_name, data_type from `sqlbusinesscase-
384615.SQLAssignement.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'order_items'
```

Query results

Δ SAVE RESULTS ▼

JOB IN	FORMATION RESULTS	JSON	EXECUTION DET	AILS E	EXECUTION GRAPH PREVIEW
Row /	column_name	data_type	1.		
1	order_id	STRING			
2	order_item_id	INT64			
3	product_id	STRING			
4	seller_id	STRING			
5	shipping_limit_date	TIMESTAMP			
6	price	FLOAT64			
7	freight_value	FLOAT64			

select column_name, data_type from `sqlbusinesscase-384615.SQLAssignement.INFORMATION_SCHEMA.COLUMNS`

where table_name = 'order_reviews'

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETA	ILS EXECUTION GRAPH PREVI
Row /	column_name	le	data_type	le.	
1	review_id		STRING		
2	order_id		STRING		
3	review_score		INT64		
4	review_comment_	title	STRING		
5	review_creation_d	ate	TIMESTAMP		
6	review_answer_tir	nestamp	TIMESTAMP		

select column_name, data_type from `sqlbusinesscase384615.SQLAssignement.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'orders'

Query results

♣ SAVE RESULTS ▼

EXECUTION GRAPH PREVIEW

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	column_name	11	data_type	1
1	order_id		STRING	
2	customer_id		STRING	
3	order_status		STRING	
4	order_purchase_t	imestamp	TIMESTAMP	
5	order_approved_a	at	TIMESTAMP	
6	order_delivered_c	arrier_date	TIMESTAMP	
7	order_delivered_c	sustomer_date	TIMESTAMP	
8	order_estimated_	delivery_date	TIMESTAMP	

```
select column_name, data_type from `sqlbusinesscase-
384615.SQLAssignement.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'payments'
```

Quer	y results					
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DE	TAILS	EXECUTION GRAPH PREVIEW
Row	column_name	//	data_type			
1	order_id		STRING			
2	payment_sequen	tial	INT64			
3	payment_type		STRING			
4	payment_installm	ents	INT64			
5	payment_value		FLOAT64			

```
select column_name, data_type from `sqlbusinesscase-
384615.SQLAssignement.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'products'
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row /	column_name	h	data_type	6	
1	product_id		STRING		
2	product_category		STRING		
3	product_name_ler	igth	INT64		
4	product_description	on_length	INT64		
5	product_photos_q	ty	INT64		
6	product_weight_g		INT64		
7	product_length_cr	n	INT64		
8	product_height_cr	n	INT64		
9	product_width_cm	1	INT64		

```
select column_name, data_type from `sqlbusinesscase-
384615.SQLAssignement.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'sellers'
```

B. Time period for which the data is given

```
select min(order_purchase_timestamp)as start_time, max(order_purchase_ti
mestamp) as end_time
from `sqlbusinesscase-384615.SQLAssignement.orders`
```

Query results JOB INFORMATION RESULTS JSON EXECUTION DETAILS EXECUTION GRAPH PREVIEW PREVIEW

	000 11	ii oitimattoit	KEGOETO	00014	LALCO HON DE	IAILO	EXECUTION GRAFTI	
R	low /	start_time	1	end_time	/	:		
	1	2016-09-04 21:15	i:19 UTC	2018-10-17 17:3	0:18 UTC			

Insights:

The time period is calculated based on the data in 'Orders' table. start_time and end_time gives the total period for which the data is given.

C. Cities and States of customers ordered during the given period

```
select c1.customer_city, c1.customer_state from `sqlbusinesscase-
384615.SQLAssignement.customers` c1
join
`sqlbusinesscase-384615.SQLAssignement.orders` ord
on c1.customer_id = ord.customer_id
where ord.order_purchase_timestamp between
(select min(order_purchase_timestamp) from `sqlbusinesscase-
384615.SQLAssignement.orders`) and
(select max(order_purchase_timestamp) from `sqlbusinesscase-
384615.SQLAssignement.orders`)
```

2. In-depth Exploration:

A. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
select temp.year, temp.month,temp.order_count,rank() over(partition by yea
r order by order_count desc) as order_quantity_rank from (
select count(order_id) order_count , extract(year from order_purchase_times
tamp) as year,
extract(month from order_purchase_timestamp) as month from `sqlbusinesscase
-384615.SQLAssignement.orders` o
group by extract(month from order_purchase_timestamp),extract(year from ord
er_purchase_timestamp)) temp
order by temp.year, temp.month
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
w /	year //	month /	order_count	order_quantity_rank	
1	2016	9	4	2	
2	2016	10	324	1	
3	2016	12	1	3	
4	2017	1	800	12	
5	2017	2	1780	11	
6	2017	3	2682	9	
7	2017	4	2404	10	
8	2017	5	3700	7	
9	2017	6	3245	8	
10	2017	7	4026	6	
11	2017	8	4331	4	
12	2017	9	4285	5	
13	2017	10	4631	3	

Insights:

We can see the trend of orders/purchase frequency above in both columns 'order_count' and 'order_quantity_rank'. The output is based on every month and every year.

B. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
select max(t1), buyTime from
select customer_id,temp.buyTime, count(temp.buyTime) over(partition by temp
.buyTime) t1 from
(select customer_id,case
when (extract(hour from order_purchase_timestamp)) between 0 and 6 then 'Da
wn'
when (extract(hour from order_purchase_timestamp)) between 7 and 12 then 'M
orning'
when (extract(hour from order_purchase_timestamp)) between 13 and 18 then '
Afternoon'
else 'Night'
end as buyTime
from `sqlbusinesscase-384615.SQLAssignement.orders`) temp) temp1
group by temp1.buyTime;
```

Quer	ry results				SAVE RESULTS ▼
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	f0_	buyTime	1.		
1	5242	Dawn			
2	27733	Morning			
3	28331	Night			
4	38135	Afternoon			

Insights: Brazilian customers tend to buy more during 'Afternoon'

- 3. Evolution of E-commerce orders in the Brazil region:
 - A. Get month on month orders by states

```
select * from
(select extract(month from o.order_purchase_timestamp) as month, c.customer
_state, count(o.order_id) order_count from `sqlbusinesscase-
384615.SQLAssignement.orders` o
join
`sqlbusinesscase-384615.SQLAssignement.customers` c
on o.customer_id = c.customer_id
group by c.customer_state,month) temp
order by temp.month, temp.customer_state
```

Query results

Δ SAVE RESULTS ▼

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXECUTION GRAPH PREVIEW
Row	month //	customer_state	1	order_count	
1	1	AC		8	
2	1	AL		39	
3	1	AM		12	
4	1	AP		11	
5	1	BA		264	
6	1	CE		99	
7	1	DF		151	
8	1	ES		159	
9	1	GO		164	
10	1	MA		66	
11	1	MG		971	
12	1	MS		71	

Insights: Month on month orders by states is sorted for month and state in ascending order.

B. Distribution of customers across the states in Brazil

```
select c.customer_state, count(c.customer_id) as customer from `sqlbusiness
case-384615.SQLAssignement.customers` c
group by c.customer_state
order by c.customer_state
```

Quer	y results				♣ SAVE RESULTS ▼
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	customer_state	h	customer		
1	AC		81		
2	AL		413		
3	AM		148		
4	AP		68		
5	BA		3380		
6	CE		1336		
7	DF		2140		
8	ES		2033		
9	GO		2020		
10	MA		747		
11	MG		11635		
12	MS		715		

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - A. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment value" column in payments table

```
select temp1.*,LAG(order sum) over(order by temp1.year,temp1.month)as prev
order_sum,
round(((order sum-
LAG(order_sum) over(order by temp1.year,temp1.month))/LAG(order_sum) over(o
rder by temp1.year,temp1.month))*100,2) as percentage_increase from
(select temp.month,temp.year,round(sum(temp.payment value),0) order sum fro
(select *, extract(month from o.order_purchase_timestamp) as month, extract
(year from o.order_purchase_timestamp) as year from
  sqlbusinesscase-384615.SQLAssignement.orders `o
join
sqlbusinesscase-384615.SQLAssignement.payments` p
on p.order_id = o.order_id
where extract(month from o.order purchase timestamp) between 1 and 8
order by o.order_purchase_timestamp) temp
group by temp.year,temp.month
) temp1
order by temp1.year, temp1.month
```

Ouo	y results					
Quei	y results					₽
JOB II	NFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	ECUTION GRAPH PREVIEW
Row /	month	year //	order_sum	prev_order_sum	percentage_incr	
1	1	2017	138488.0	null	null	
2	2	2017	291908.0	138488.0	110.78	
3	3	2017	449864.0	291908.0	54.11	
4	4	2017	417788.0	449864.0	-7.13	
5	5	2017	592919.0	417788.0	41.92	
6	6	2017	511276.0	592919.0	-13.77	
7	7	2017	592383.0	511276.0	15.86	
8	8	2017	674396.0	592383.0	13.84	
9	1	2018	1115004.0	674396.0	65.33	
10	2	2018	992463.0	1115004.0	-10.99	

B. Mean & Sum of price and freight value by customer state

```
select c.customer_state,round(sum(i.price),2) price_sum, round(sum(i.freigh
t_value),2) freight_sum,
round(avg(i.price),2) price_mean,
```

```
round(avg(i.freight_value),2) freight_mean,
from `sqlbusinesscase-384615.SQLAssignement.customers` c
join
`sqlbusinesscase-384615.SQLAssignement.orders` o
on c.customer_id = o.customer_id
join
`sqlbusinesscase-384615.SQLAssignement.order_items` i
on i.order_id = o.order_id
group by c.customer state
```

						_	
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH P	REVIEW
Row	customer_state	1	price_sum	freight_sum	price_mean	freight_mean //	
1	MT		156453.53	29715.43	148.3	28.17	
2	MA		119648.22	31523.77	145.2	38.26	
3	AL		80314.81	15914.59	180.89	35.84	
4	SP		5202955.05	718723.07	109.65	15.15	
5	MG		1585308.03	270853.46	120.75	20.63	
6	PE		262788.03	59449.66	145.51	32.92	
7	RJ		1824092.67	305589.31	125.12	20.96	
8	DF		302603.94	50625.5	125.77	21.04	
9	RS		750304.02	135522.74	120.34	21.74	
10	SE		58920.85	14111.47	153.04	36.65	
11	PR		683083.76	117851.68	119.0	20.53	
12	PA		178947.81	38699.3	165.69	35.83	

- 5. Analysis on sales, freight and delivery time
 - A. Calculate days between purchasing, delivering and estimated delivery

```
select abs(date_diff(order_estimated_delivery_date,order_purchase_timestamp
,day)) as purchase_estimated_delivery_diff,
abs(date_diff(order_delivered_customer_date,order_purchase_timestamp,day))
as purchase_delivery_diff,
abs(date_diff(order_delivered_customer_date,order_estimated_delivery_date,d
ay)) as actual_estimated_delivery_diff,
from `sqlbusinesscase-384615.SQLAssignement.orders`
order by purchase_estimated_delivery_diff desc;
```

Quer	y results						
JOB IN	NFORMATION	RESULTS	JSON	EXECUTIO	N DETAILS	EXECUTION GRAPH	PREVIEW
Row	purchase_estima	ted_delivery_diff	purchase_deliv	ery_diff	actual_estimate	ed_delivery_diff	
1		155		20		134	
2		149		3		146	
3		146		6		139	
4		144		null		null	
5		144		null		null	
6		142		null		null	
7		140		16		123	
8		116		7		108	
9		109		54		55	
10		106		nuli		null	
11		101		63		37	

Insights: ABS() is used to get the difference(positive) in days. ORDER BY() is included to display values other than NULL as first few rows gave NULL values for 'purchase_delivery_diff' and 'actual_estimated_delivery_diff'

B. Find time_to_delivery & diff_estimated_delivery

select abs(date_diff(order_purchase_timestamp, order_delivered_customer_dat
e, day)) as time_to_delivery,
abs(date_diff(order_estimated_delivery_date, order_delivered_customer_date,
day)) as diff_estimated_delivery,from `sqlbusinesscase384615.SQLAssignement.orders`

Quer	y results			SAVE RESULTS ▼
JOB IN	NFORMATION	RESUL	TS JSON	EXECUTION DETAILS EXECUTION GRAPH PREVIEW
Row	time_to_delivery	le	diff_estimated_delivery	
1		7	45	
2		7	44	
3		10	41	
4		6	29	
5		20	40	
6		10	48	
7		28	29	
8		9	35	
9		10	41	
10		6	41	

......

C. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
(select round(avg(t.freight_value),2) as freight_avg,
round(avg(t.time to delivery),2) as time to delivery avg,
round(avg(t.diff estimated delivery), 2) as diff estimated delivery avg,
t.customer state from
(select abs(date diff(order purchase timestamp, order delivered customer da
te, day)) as time_to_delivery,
abs(date_diff(order_estimated_delivery_date, order_delivered_customer_date,
day)) as diff_estimated_delivery,
o2.freight_value, c1.customer_state
from `sqlbusinesscase-384615.SQLAssignement.orders` o1 join
`sqlbusinesscase-384615.SQLAssignement.order items` o2
on o1.order id = o2.order id
join
sqlbusinesscase-384615.SQLAssignement.customers c1
on o1.customer id = c1.customer id) t
group by t.customer_state)
```

Quer	y results				≛ \$	SAVE RESULTS ▼
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW	
Row	freight_avg	time_to_delivery	diff_estimated_d	customer_state	li.	
1	28.17	17.51	14.89	MT		
2	38.26	21.2	12.66	MA		
3	35.84	23.99	12.06	AL		
4	15.15	8.26	10.99	SP		
5	20.63	11.52	13.13	MG		
6	32.92	17.79	14.69	PE		
7	20.96	14.69	14.23	RJ		
8	21.04	12.5	12.22	DF		
9	21.74	14.71	14.46	RS		
10	36.65	20.98	13.91	SE		
11	20.53	11.48	13.16	PR		

- D. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
 - ==> Highest 5 average freight value

```
select round(avg(t.freight_value),2) as freight_avg,
   t.customer_state as state from
(select abs(date_diff(order_purchase_timestamp, order_delivered_customer_date,
   day)) as time_to_delivery,
```

```
abs(date_diff(order_estimated_delivery_date, order_delivered_customer_date, da
y)) as diff_estimated_delivery,
o2.freight_value, c1.customer_state
from `sqlbusinesscase-384615.SQLAssignement.orders` o1 join
`sqlbusinesscase-384615.SQLAssignement.order_items` o2
on o1.order_id = o2.order_id
join
`sqlbusinesscase-384615.SQLAssignement.customers` c1
on o1.customer_id = c1.customer_id) t
group by t.customer_state
order by freight_avg desc
limit 5;
```

Query results

≛ SAVE RESULTS ▼

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
ow /	freight_avg //	state	li li		
1	42.98	RR			
2	42.72	PB			
3	41.07	RO			
4	40.07	AC			
5	39.15	PI			

==> Lowest 5 average freight value

```
select round(avg(t.freight_value),2) as freight_avg,
t.customer_state as state from
(select abs(date_diff(order_purchase_timestamp, order_delivered_customer_date,
day)) as time to delivery,
abs(date diff(order estimated delivery date, order delivered customer date, da
y)) as diff_estimated_delivery,
o2.freight_value, c1.customer_state
from `sqlbusinesscase-384615.SQLAssignement.orders` o1 join
`sqlbusinesscase-384615.SQLAssignement.order_items` o2
on o1.order_id = o2.order_id
join
`sqlbusinesscase-384615.SQLAssignement.customers` c1
on o1.customer_id = c1.customer_id) t
group by t.customer state
order by freight_avg
limit 5;
```

Quer	y results				♣ SAVE RESULTS ▼
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	freight_avg //	state			
1	15.15	SP			
2	20.53	PR			
3	20.63	MG			
4	20.96	RJ			
5	21.04	DF			

E. Top 5 states with highest/lowest average time to delivery

```
==> Top 5 states with highest average time to delivery
round(avg(t.time_to_delivery),2) as time_to_delivery_avg,
t.customer_state as state from
(select abs(date_diff(order_purchase_timestamp, order_delivered_customer_date,
day)) as time to delivery,
abs(date_diff(order_estimated_delivery_date, order_delivered_customer_date, da
y)) as diff_estimated_delivery,
o2.freight_value, c1.customer_state
from `sqlbusinesscase-384615.SQLAssignement.orders` o1 join
`sqlbusinesscase-384615.SQLAssignement.order_items` o2
on o1.order_id = o2.order_id
join
sqlbusinesscase-384615.SQLAssignement.customers c1
on o1.customer_id = c1.customer_id) t
group by t.customer state
order by time_to_delivery_avg DESC
limit 5;
```

Quer	Query results									
JOB IN	FORMATION	RES	SULTS	JSON	EXECU.	TION DETAILS	EXECUTION GRAPH PREVIEW	1		
Row	time_to_delivery	_avg	state		1					
1		27.83	RR							
2		27.75	AP							
3		25.96	AM							
4		23.99	AL							
5		23.3	PA							

==> Top 5 states with lowest average time to delivery

```
select
round(avg(t.time to delivery), 2) as time to delivery avg,
t.customer state as state from
(select abs(date diff(order purchase timestamp, order delivered customer date,
day)) as time_to_delivery,
abs(date diff(order estimated delivery date, order delivered customer date, da
y)) as diff_estimated_delivery,
o2.freight value, c1.customer state
from `sqlbusinesscase-384615.SQLAssignement.orders` o1 join
`sqlbusinesscase-384615.SQLAssignement.order items` o2
on o1.order id = o2.order id
join
sqlbusinesscase-384615.SQLAssignement.customers c1
on o1.customer_id = c1.customer_id) t
group by t.customer_state
order by time to delivery avg
limit 5;
```

Query results									
JOB IN	IFORMATION	RE	SULTS	JSON	EXECU	JTION DETAILS	EXECUTION GRAPH PREVIEW		
Row	time_to_deliver	y_avg /	state		le				
1		8.26	SP						
2		11.48	PR						
3		11.52	MG						
4		12.5	DF						
5		14.52	SC						

F. Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
==> Top 5 states where delivery is really fast compared to estimated date
select
round(avg(t.diff_estimated_delivery),2) as diff_estimated_delivery_avg,
t.customer state as state from
(select date_diff(order_purchase_timestamp, order_delivered_customer_date, day
) as time to delivery,
date_diff(order_estimated_delivery_date, order_delivered_customer_date, day) a
s diff estimated delivery,
o2.freight value, c1.customer state
from `sqlbusinesscase-384615.SQLAssignement.orders` o1 join
`sqlbusinesscase-384615.SQLAssignement.order items` o2
on o1.order_id = o2.order_id
join
`sqlbusinesscase-384615.SQLAssignement.customers` c1
on o1.customer id = c1.customer id) t
group by t.customer state
ORDER BY diff_estimated_delivery_avg
LIMIT 5;
```

Quoi	yreduite					_ 3,	
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION D	ETAILS	EXECUTION GRAPH PREVIEW	
Row	diff_estimated_de	elivery_avg	state	h			
1		7.98	AL				
2		9.11	MA				
3		9.17	SE				
4		9.77	ES				
5		10.12	BA				

≛ SAVE RESULTS ▼

Ouerv results

```
==> Top 5 states where delivery is really slow compared to estimated date
select
round(avg(t.diff estimated delivery),2) as diff estimated delivery avg,
t.customer state as state from
(select date_diff(order_purchase_timestamp, order_delivered_customer_date, day
) as time_to_delivery,
date_diff(order_estimated_delivery_date, order_delivered_customer_date, day) a
s diff_estimated_delivery,
o2.freight_value, c1.customer_state
from `sqlbusinesscase-384615.SQLAssignement.orders` o1 join
`sqlbusinesscase-384615.SQLAssignement.order items` o2
on o1.order_id = o2.order_id
`sqlbusinesscase-384615.SQLAssignement.customers` c1
on o1.customer_id = c1.customer_id) t
group by t.customer_state
ORDER BY diff estimated delivery avg desc
LIMIT 5;
```

Quer	Query results									
JOB IN	IFORMATION RESULTS	JSON EXECUTION	DETAILS EXECUTION GRAPH PREVIEW							
Row	diff_estimated_delivery_avg	state								
1	20.01	AC								
2	19.08	RO								
3	18.98	AM								
4	17.44	AP								
5	17.43	RR								

- 6. Payment type analysis:
 - A. Month over Month count of orders for different payment types

```
select * from (
select count(o.order_id) as order_count,(extract(month from o.order_purchas
e_timestamp)) as month, p.payment_type from `sqlbusinesscase-
384615.SQLAssignement.orders` o
join
`sqlbusinesscase-384615.SQLAssignement.payments` p
on o.order_id = p.order_id
group by extract(month from o.order_purchase_timestamp),p.payment_type) as
temp
order by temp.month, temp.payment_type
```

Query results

Δ SAVE RESULTS ▼

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXECU	TION GRAPH PREVIEW	
Row	order_count	month //	payment_type	11			
1	1715	1	UPI				
2	6103	1	credit_card				
3	118	1	debit_card				
4	477	1	voucher				
5	1723	2	UPI				
6	6609	2	credit_card				
7	82	2	debit_card				
8	424	2	voucher				
9	1942	3	UPI				
10	7707	3	credit_card				
11	109	3	debit_card				
12	591	3	voucher				

Insights: the result shows the total number of orders for every month for every payment mode. Result is sorted on both month wise and payment_type wise in ascending order

B. Count of orders based on the no. of payment installments

```
select count(o.order_id) as order_count, p.payment_installments from `sqlbu
sinesscase-384615.SQLAssignement.orders` o
join
`sqlbusinesscase-384615.SQLAssignement.payments` p
on o.order_id = p.order_id
group by p.payment_installments
order by p.payment_installments
```

JOB INFORMATION		RESULTS	JSON	EXECUTION DETAILS
Row	order_count	payment_installr		
1	2	0		
2	52546	1		
3	12413	2		
4	10461	3		
5	7098	4		
6	5239	5		
7	3920	6		
8	1626	7		
9	4268	8		
10	644	9		
11	5328	10		

Insights : The query result gives the order count based on no of payment installments in ascending order