Controllers and Peripherals

Instructor: Deepak Gangadharan

Microcontroller

- A compact integrated circuit designed to govern a specific operation in an embedded system.
- Typically includes a processor, memory and input/output (I/O) peripherals on a single chip
- Most IoT applications have more than just a sensor added to a physical object and invariably comes with an internet connected microcontroller making it smart

Source: https://electrobes.com/product/7782/

Comparison with conventional microprocessors

- Less expensive and use less power
- Have built in RAM, ROM or other peripherals on chip, while microprocessors have to interface with them through their pins
- Less computation power than a microprocessor
- Dedicated specifically to executing a task or a small set of tasks

Source: https://iiot-world.com/connected-industry/a-guide-for-selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project/selecting-the-right-microcontroller-for-your-iot-project-selecting-the-right-microcontroller-for-your

Elements of a Microcontroller

Processor (CPU)

- Processes and responds to various instructions that direct the microcontroller's function
- ➤ Includes basic arithmetic, logic and I/O operations
- Also performs transfer operations, which communicate commands to other components

Memory

- ▶ Program Memory Stores the instructions that the CPU carries out and is non volatile
- ➤ Data Memory Temporary data storage, while instructions are executed. It is volatile

Elements of a Microcontroller

I/O Peripherals

- Interface for the processor to the outside world, for e.g., GPIOs, I2C, SPI, UART, timers, etc
- The input ports receive information and send it to processor in binary format
- The processor receives the data and sends necessary instructions to output devices

Processor Architecture

Von Neumann Architecure

- Single shared memory for program and data
- ➤ Single bus for memory access
- >An arithmetic unit
- >Program control unit
- Operates fetching and execution cycles serially

Source: https://www.computerscience.gcse.guru/theory/von-neumann-architecture

Processor Architecture

Source: https://www.thecrazyprogrammer.com/2019/02/difference-between-von-neumann-and-harvard-architecture.html

Harvard Architecture

- Two separate memory spaces for program code and data
- Two corresponding address buses
- ➤ Two data buses
- ➤ Offers fetching and execution in parallel

Supporting Elements

Analog to Digital Converter (ADC)

- Analog signals can be continuous and provide infinite number of different voltage values, while digital circuits work with binary values, i.e., a logic HIGH or a logic LOW
- A circuit that converts analog signals to digital signals
- Samples the analog voltage at an instant and produces the digital output code that represents the analog voltage
- > Sampling rate and bit resolution are important parameters
- ➤ Works using the Sample, Hold, Quantize and Encoding stages
- > Allows processor to interface with external analog devices, such as sensors

Digital to Analog Converter (DAC)

> Performs the inverse function of ADC, i.e., converts outgoing signals from the processor to external analog components

System Bus

A connecting wire/set of wires that links all the components of a microcontroller together

Microcontroller Features

Bits

- ➤ Microcontroller processor varies from simple 4-bit, 8-bit or 16-bit processors to more complex 32-bit or 64-bit processors
- → 4-8 bits used in remote controls and other constrained applications not fit for IoT applications
- > 8-bit: Used in cost constrained applications. Can be used in IoT applications with an RTOS running a simple control loop
- > 16-bit: Not very common in IoT
- > 32-bit: Normally used in IoT applications unless cost constraints required 8-bit architecture
- ➤ 64-bit: Reserved for high end systems
- Impacts the speed at which they are able to perform non-trivial computations

Architecture

➤ Majority use ARM, MIPS or x86

Microcontroller Features

RAM

- ➤ Volatile fast-access memory
- > The more the better, but it comes with its cost
- > Can vary from 16 bytes on 8-bit MCUs to about 4.5 MB on 32 and 64-bit MCUs

Flash

➤ Non volatile memory, essential for offline storage

GPIO

- ➤ General purpose i/o pins used to connect sensors and actuators to the MCU
- > Number of pins may be a parameter for choosing a certain MCU for your IoT application

Connectivity

- > Options how the microcontroller can connect to the internet, i.e., Wi-Fi, Ethernet or some other means.
- > Any IoT application requiring connected sensors will need this feature

Power Consumption

- > Critical when the device has to rely on battery or other energy source like solar power
- > Gives an indication regarding how power hungry the microcontroller is

How to choose the microcontroller?

- Compatibility
 - Does it support the sensors/actuators that you want to use
 - Does it have enough input/output ports based on the sensors/actuators you use
- Architecture
 - Is the architecture sophisticated to handle the complexity of your program
- Memory
 - ➤ Does MCU come with enough RAM and Flash memory
 - In case there is possibility of future updates, it is better to have extra memory
- Availability, Power and Cost
- Internet and other Communication Protocols
- Development Support

Particle.io

- ➤ Most comprehensive all in one IoT hardware platform that offers connectivity, device cloud and apps
- ➤ All Particle's microcontroller boards are enabled to communicate over either Wi-Fi, cellular (2G/3G/LTE) or BLE
- Their microcontrollers are controlled by a special OS, which enables easy integration of devices with particle's device cloud and apps
- >Open source boards with lot of support
- ➤OTA updates possible

 $\underline{Source: https://circuitdigest.com/article/top-hardware-platforms-for-internet-of-things-ioted and the state of the sta$

- Espressif ESP8266 Boards
 - Low cost, low power and easy to use
 - Initially used as a bridge to connect microcontrollers to wifi networks
 - Can be used as either a WiFi module connected to other microcontrollers or used in standalone mode
 - ➤ Small form factor

Source: https://circuitdigest.com/article/top-hardware-platforms-for-internet-of-things-iot

- ESP32 Main features
 - Tensilica LX6 dual core processor at 240 MHz
 - ≥520 Kb of SRAM memory
 - ➤ WiFi 802.11 b/g/n connectivity with support for WEP, WPA/WPA2
 - ➤ Bluetooth connectivity (classic and LE)
 - ≥32 I/O pins with built in peripherals
 - ➤ Hardware acceleration for security algorithms

Source: http://www.lucadentella.it/en/2016/12/03/esp32-1-introduzione/

- Single board based computer and runs on Linux
- Different boards with extremely powerful processors (I.4 GHz 64-bit quad core processor in Pi 3 Model B+)

Raspberry Pi

ESP32 functional block diagram

Espressif ESP32 Wi-Fi & Bluetooth Microcontroller — Function Block Diagram

- Intel IoT development boards
 - ➤ Huge processing capabilities
 - ➤ Most popular is Intel Edison
 - >Dual core, Dual threaded Intel Atom CPU at 500 MHz and a 32-bit Intel Quark microcontroller which runs at 100 Mhz

Source: https://circuitdigest.com/article/top-hardware-platforms-for-internet-of-things-iot

Adafruit Range of boards

Arduino IoT Product Line

Thank You