Devoir maison 4 - Séries

Partie 1

Pour $n \in \mathbb{N}^*$, on note :

$$v_n = \ln(n!) + n - n \ln n - \frac{\ln n}{2}.$$

1. Montrer que la série $\sum (v_{n+1} - v_n)$ converge.

$$\forall n \in \mathbb{N}^*, v_{n+1} - v_n = 1 - \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) = -\frac{1}{12n^2} + o\left(\frac{1}{n^2}\right) \text{ (de signe constant)}.$$

Par comparaison à une série de Riemann convergente, la série $\sum (v_{n+1} - v_n)$ converge.

2. Justifier que $n! \sim_{+\infty} C \frac{n^{n+\frac{1}{2}}}{e^n}$ où C est un réel positif.

D'après la question précédente, la série télescopique $\sum (v_{n+1} - v_n)$ converge, donc la suite (v_n) converge. Notons L sa limite.

On a :
$$\forall n \in \mathbb{N}^*$$
, $e^{v_n} = n! \frac{e^n}{n^{n+\frac{1}{2}}}$ d'où $n! \underset{+\infty}{\sim} e^L \frac{n^{n+\frac{1}{2}}}{e^n}$. On note $C = e^L > 0$.

3. On note:

$$\forall n \in \mathbb{N}, I_n = \int_0^{\frac{\pi}{2}} \sin^n t dt$$
 (appelées $intégrales\ de\ Wallis$)

Montrer que:

a. $I_{n+1} \leq I_n \leq I_{n-1}$, pour $n \geq 1$. $\forall t \in \left[0, \frac{\pi}{2}\right], 0 \leq \sin t \leq 1$ donc $\forall t \in \left[0, \frac{\pi}{2}\right], \forall n \in \mathbb{N}^*, \sin^{n+1} t \leq \sin^n t \leq \sin^{n-1} t$ puis, par positivité de l'intégrale, $I_{n+1} \leq I_n \leq I_{n-1}$

b. $(n+2)I_{n+2} = (n+1)I_n$.

$$\forall n \in \mathbb{N}, I_{n+2} = \int_0^{\frac{\pi}{2}} (1 - \cos^2 t) \sin^n t dt = I_n - \int_0^{\frac{\pi}{2}} \cos t (\cos t \sin^n t) dt.$$

Un intégration par parties, avec $u(t) = \cos t$ et $v(t) = \frac{1}{n+1} \sin^{n+1} t$, u, v de classe \mathcal{C}^1 donne:

$$I_{n+2} = I_n - \left[\cos t \frac{1}{n+1} \sin^{n+1} t\right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \frac{1}{n+1} \sin^{n+2} t dt.$$

D'où : $(n+1)I_{n+2} = (n+1)I_n - I_{n+2}$ puis, $(n+2)I_{n+2} = (n+1)I_n$.

D'où :
$$(n+1)I_{n+2} = (n+1)I_n - I_{n+2}$$
 puis, $(n+2)I_{n+2} = (n+1)I_n$

c.
$$I_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2} \underset{+\infty}{\sim} \frac{\pi}{C\sqrt{2n}}.$$

D'après la question précédente, $\forall n \in \mathbb{N}, I_{2n+2} = \frac{2n+1}{2n+2}I_{2n}$ donc, par télescopage,

$$I_{2n} = \frac{(2n-1)(2n-3)...1}{2n(2n-2)...2}I_0; I_0 = \int_0^{\frac{\pi}{2}} dt = \frac{\pi}{2}, d'où : I_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}.$$

D'après la question **2**, on a donc : $I_{2n} \sim C \frac{(2n)^{2n+\frac{1}{2}}}{e^{2n}} \times \frac{1}{2^{2n}} \times \frac{e^{2n}}{C^{2(n^{n+\frac{1}{2}})2}} \frac{\pi}{2}$ d'où :

$$I_{2n} \sim \frac{1}{C} \frac{\pi}{\sqrt{2}}$$

d.
$$(n+1)I_{n+1}I_n = \frac{\pi}{2}$$
.

D'après la question
$$3\mathbf{b}$$
, $\forall n \in \mathbb{N}$, $(n+1)I_n = (n+2)I_{n+2}$ d'où : $(n+1)I_nI_{n+1} = (n+2)I_{n+1}I_{n+2}$, ainsi, la suite $((n+1)I_nI_{n+1})_n$ est constante et $\forall n \in \mathbb{N}$, $(n+1)I_nI_{n+1} = I_1I_0$; $I_1 = \int_0^{\frac{\pi}{2}} \sin t dt = 1 \text{ donc } (n+1)I_{n+1}I_n = \frac{\pi}{2}$.

4. En exploitant les résultats précédents, montrer la formule de Stirling :

$$n! \underset{+\infty}{\sim} \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

D'après la question 3a, $\forall n \in \mathbb{N}, I_{n+2} \leq I_{n+1} \leq I_n$ donc, d'après la question 3b, $\frac{n+1}{n+2}I_n \leq I_{n+1} \leq I_n$ ce qui équivaut à $I_{n+1} \leq I_n \leq \frac{n+2}{n+1}I_{n+1}$.

En multipliant par $(n+1)I_n > 0$ on obtient : $(n+1)I_nI_{n+1} \le (n+1)I_n^2 \le \frac{n+2}{n+1}(n+1)I_{n+1}I_n$.

D'où, d'après la question $\mathbf{3d}: \frac{\pi}{2} \leq (n+1)I_n^2 \leq \frac{n+2}{n+1} \times \frac{\pi}{2}$

Comme $(n+1) \underset{+\infty}{\sim} n$, et $\frac{n+2}{n+1} \underset{+\infty}{\sim} 1$, on obtient : $I_n^2 \underset{+\infty}{\sim} \frac{\pi}{2n}$, puis, comme $I_n > 0$, $I_n \underset{+\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.

On en déduit que $I_{2n} \sim \frac{1}{2} \sqrt{\frac{\pi}{n}}$.

Avec la question **3c**, on obtient $C = \sqrt{2\pi}$. La question **2** donne finalement : $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$

Partie 2

1. Déterminer le rayon de convergence R de la série entière $\sum \frac{n!}{1 \cdot 3 \dots (2n+1)} x^{2n+1}$.

$$\forall n \in \mathbb{N}, \text{ on note } a_n = \frac{n!}{1.3...(2n+1)}.$$

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}^*, \frac{|a_{n+1}x^{2n+3}|}{|a_nx^{2n+1}|} = \frac{n+1}{2n+3}|x|^2.$$

Il résulte de la règle de d'Alembert pour les séries numériques que $\sum a_n x^{2n+1}$ converge absolument si $|x|^2 < 2$, et ne converge pas absolument si $|x|^2 > 2$. On en déduit que $R = \sqrt{2}$.

Pour tout
$$x \in]R, R[$$
 on note $S(x) = \sum_{n=0}^{+\infty} \frac{n!}{1 \cdot 3 \cdot ... (2n+1)} x^{2n+1}.$

 $\mathbf{2}$. Montrer que S est solution de l'équation différentielle :

$$(E): (x^2 - 2)y' + xy + 2 = 0$$

Le théorème de dérivation des sommes de séries entières donne :

$$\forall x \in]-\sqrt{2}, \sqrt{2}[, S'(x) = \sum_{n=0}^{+\infty} (2n+1)a_n x^{2n}.$$

On a donc (chaque série étant de rayon R) : $\forall x \in]-\sqrt{2},\sqrt{2}[$:

$$(x^{2} - 2)S'(x) + xS(x) = \sum_{n=0}^{+\infty} (2n+1)a_{n}x^{2n+2} - 2\sum_{n=0}^{+\infty} (2n+1)a_{n}x^{2n} + \sum_{n=0}^{+\infty} a_{n}x^{2n+2}$$
$$= \sum_{n=0}^{+\infty} (2n+2)a_{n}x^{2n+2} - 2\sum_{n=0}^{+\infty} (2n+1)a_{n}x^{2n} = \sum_{k=1}^{+\infty} 2ka_{k-1}x^{2k} - 2\sum_{n=0}^{+\infty} (2n+1)a_{n}x^{2n}$$

(en effectuant le changement d'indice k = n + 1 dans la première somme)

$$= \sum_{n=1}^{+\infty} 2(na_{n-1} - (2n+1)a_n)x^{2n} - 2.$$

Comme $\forall n \in \mathbb{N}^*, na_{n-1} - (2n+1)a_n = 0$, on obtient bien $(x^2 - 2)S'(x) + xS(x) + 2 = 0$.

3. Déduire de ce qui précède une expression explicite de S.

L'équation homogène
$$(x^2-2)y'+xy=0$$
 a pour solutions sur $]-\sqrt{2},\sqrt{2}[:x\mapsto \frac{K}{\sqrt{2-x^2}},K\in\mathbb{R}.$

La méthode de variation de la constante donne $x \mapsto \frac{K(x)}{\sqrt{2-x^2}}$ solution de (E) si, et seulement

si
$$K'(x) = \frac{\sqrt{2}}{\sqrt{1 - (x/\sqrt{2})^2}}$$
 d'où $K(x) = 2\operatorname{Arcsin} \frac{x}{\sqrt{2}} + A, A \in \mathbb{R}.$

Enfin, comme
$$S(0) = 0$$
, on obtient : $S(x) = \frac{2}{\sqrt{2 - x^2}} Arcsin \frac{x}{\sqrt{2}}$.

4. S est-elle définie pour $x = \sqrt{2}$?

Indication : utiliser la première partie...

$$\forall n \in \mathbb{N}, a_n = \frac{2^n (n!)^2}{(2n+1)!}.$$

Indication: utiliser la première partie...
$$\forall n \in \mathbb{N}, a_n = \frac{2^n (n!)^2}{(2n+1)!}.$$
 En utilisant la formule de Stirling démontrée dans la partie 1, on obtient:
$$a_n(\sqrt{2})^{2n+1} = \sqrt{2} \frac{2^{2n} (n!)^2}{(2n+1)(2n)!} \sim \frac{\sqrt{2}}{2n} \frac{2^{2n} \left(\frac{n}{e}\right)^{2n} 2n\pi}{\left(\frac{2n}{e}\right)^{2n} 2\sqrt{n\pi}} = \frac{\sqrt{\pi}}{\sqrt{2}} \frac{1}{\sqrt{n}}.$$
 Par comparaison à une série de Pierrann, en en déduit que la série $\sum a_n$

Par comparaison à une série de Riemann, on en déduit que la série $\sum a_n x^{2n+1}$ diverge pour $x = \sqrt{2}$.