POL	SKO-JAPOŃSKA WYŻSZA SZKO TECHNIK KOMPUTEROWYCH	LABORATORIUM PODSTAW ELEKTRONIKI		
Ćw. 3	WZMACNIANIE NA ZA POMOCĄ TR	ZMIENNYCH STORÓW	Rok akad.	
	lmię i Nazwisko	Ocena	Data wykonania	ćwiczenia
			Prowadzący z	zajęcia

3.3.1. Pomiary charakterystyk statycznych tranzystorów

3.3.1.1. Pomiar charakterystyk wejściowej i przejściowej tranzystora bipolarnego

U	cc =		$R_B =$		$R_C =$				Tab.1.
Lp.	U _{BB}	U _{BE}	Uc	U _{RB}	I _{RB}	I _{V2}	Ι _Β	U _{RC}	Ic
гр.	٧	V	٧	٧	μΑ	μΑ	μΑ	٧	mA
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									

 $\underline{Uwaga:}$ Jako U_{CC} przyjąć wartość U_C zmierzoną przy najmniejszej zadanej wartości U_{BB}

Wzory	$\mathbf{U}_{\mathrm{RB}} = \mathbf{U}_{\mathrm{BB}} - \mathbf{U}_{\mathrm{BE}}$	$I_{RB} = \frac{U_{RB}}{R_B}$	$I_{V2} = \frac{U_{BE}}{10^7 \Omega}$	$I_{\rm B} = I_{\rm RB} - I_{\rm V2}$	$\mathbf{U}_{\mathrm{RC}} = \mathbf{U}_{\mathrm{CC}} - \mathbf{U}_{\mathrm{C}}$	$I_{\rm C} = \frac{U_{\rm RC}}{R_{\rm C}}$	
-------	--	-------------------------------	---------------------------------------	---------------------------------------	---	--	--

Charakterystyka wejściowa tranzystora I_B = $f(U_{BE})$

Charakterystyka przejściowa tranzystora $I_C=f(I_B)$

Charakterystyka przejściowa tranzystora $I_C=f(U_{BE})$

3.3.1.2. Pomiar charakterystyk wyjściowej tranzystora bipolarnego

$$I_B = \frac{U_{BB} - U_{BE}}{R_B} =$$
 Tab.2.

Ln	U _{CE}	Ic
Lp.	V	mA
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Charakterystyka wyjściowa tranzystora I_C=f(U_{CE})

3.3.1.3. Pomiar charakterystyki przejściowej złączowego tranzystora polowego

Tab.3. \textbf{U}_{GS} I_D Lp. V mA 1 2 3 4 5 6 7 8 9 10

Charakterystyka przejściowa tranzystora polowego I_D=f(U_{GS})

Wzory i obliczenia

Wartość nachylenia charakterystyki prądu drenu dla U_{GS} = - 0.5V: $g_{\rm m} = \frac{\Delta I_{\rm D}}{\Delta U_{\rm GS}} = \frac{\Delta I_{\rm D}}{\Delta U_{\rm GS}}$

3.3.1.4. Pomiar charakterystyk wyjściowej złączowego tranzystora polowego

		Tab.4.
Lp.	U _{DS}	I _D
Lp.	V	mA
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Charakterystyka wyjściowa tranzystora I_D=f(U_{DS})

3.3.2. Badanie wzmacniacza z tranzystorem bipolarnym

3.3.2.1. Obserwacja charakterystyki przejściowej wzmacniacza rezystorowego z tranzystorem bipolarnym

Szkic obrazu z ekranu oscyloskopu

3.3.2.2. Pomiar częstotliwościowej charakterystyki amplitudowej wzmacniacza rezystorowego

 $U_{we} =$ Tab.5.

l n	f	а	Cy	U _{wy}	k ₁	k
Lp.	Hz	dz	V/dz	V	V/V	dB
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

Wzory i obliczenia

Napięcie wyjściowe:	Wzmocnienie:	Wzmocnienie w dB:
$U_{wy} = a \cdot C_{y2}$	$k_1 = \frac{U_{wy}}{U_{we}}$	$k = 20 \cdot \log k_1$

Charakterystyka amplitudowa wzmacniacza tranzystorowego