

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 20.62 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 0.91$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	115 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 20.76$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.05 (Draggura)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.05 (<i>Pressure</i>)	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.12 -1 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.04	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S $0.9D + 1.0W^{M}$ 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

1.2D + 1.6S + 0.5W

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6\mathsf{D} + 0.6\mathsf{W}^{\ M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ $0.362D + 0.875E^{\circ}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	2		
M4	Outer	M15	5		
M8	Inner	M16A	Ą		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	1.5x0.25 6061-T6
$F_{ty} = \Phi =$	35 ksi 0.90
$\varphi = S_y = $	0.90 0.02 in ³
E =	10100 ksi
l _y =	33.25 in ⁴
A =	0.38 in^2
g =	0.45 lbs/ft
$M_y =$	0.007 k-ft
$P_n =$	0.255 k
$M_{y \text{ allowable}} =$	0.046 k-ft
P _{n allowable} =	11.813 k
Utilization =	<u>18%</u>

A cross brace kit is required every 11 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	338.76	<u>1651.36</u>	k
Compressive Load =	<u>1962.83</u>	1523.45	k
Lateral Load =	42.87	764.86	k
Moment (Weak Axis) =	0.07	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 23441.2 in-lbs Resisting Force Required = 781.37 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1302.29 lbs to resist overturning. Minimum Width = 22 in in Weight Provided = 1993.75 lbs Sliding Force = 176.37 lbs Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 440.94 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 176.37 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

 Bearing Pressure

 Ballast Width

 22 in
 23 in
 24 in
 25 in

 P_{ftg} = (145 pcf)(5 ft)(1.5 ft)(1.83 ft) =
 1994 lbs
 2084 lbs
 2175 lbs
 2266 lbs

ASD LC		1.0D	+ 1.0S			1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	740 lbs	740 lbs	740 lbs	740 lbs	555 lbs	555 lbs	555 lbs	555 lbs	916 lbs	916 lbs	916 lbs	916 lbs	-152 lbs	-152 lbs	-152 lbs	-152 lbs
F _B	541 lbs	541 lbs	541 lbs	541 lbs	489 lbs	489 lbs	489 lbs	489 lbs	731 lbs	731 lbs	731 lbs	731 lbs	-759 lbs	-759 lbs	-759 lbs	-759 lbs
F _V	65 lbs	65 lbs	65 lbs	65 lbs	318 lbs	318 lbs	318 lbs	318 lbs	283 lbs	283 lbs	283 lbs	283 lbs	-353 lbs	-353 lbs	-353 lbs	-353 lbs
P _{total}	3275 lbs	3366 lbs	3456 lbs	3547 lbs	3037 lbs	3128 lbs	3219 lbs	3309 lbs	3641 lbs	3732 lbs	3822 lbs	3913 lbs	285 lbs	339 lbs	394 lbs	448 lbs
M	479 lbs-ft	479 lbs-ft	479 lbs-ft	479 lbs-ft	611 lbs-ft	611 lbs-ft	611 lbs-ft	611 lbs-ft	785 lbs-ft	785 lbs-ft	785 lbs-ft	785 lbs-ft	570 lbs-ft	570 lbs-ft	570 lbs-ft	570 lbs-ft
е	0.15 ft	0.14 ft	0.14 ft	0.13 ft	0.20 ft	0.20 ft	0.19 ft	0.18 ft	0.22 ft	0.21 ft	0.21 ft	0.20 ft	2.00 ft	1.68 ft	1.45 ft	1.27 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft					
f _{min}	294.6 psf	291.3 psf	288.2 psf	285.4 psf	251.4 psf	249.9 psf	248.6 psf	247.3 psf	294.5 psf	291.1 psf	288.1 psf	285.3 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	419.9 psf	411.1 psf	403.1 psf	395.6 psf	411.3 psf	402.9 psf	395.2 psf	388.1 psf	499.9 psf	487.6 psf	476.4 psf	466.0 psf	207.8 psf	144.0 psf	124.8 psf	116.8 psf

Maximum Bearing Pressure = 500 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 = 682.3 \text{ ft-lbs}$

Resisting Force Required = 744.31 lbs S.F. = 1.67

Weight Required = 1240.52 lbs Minimum Width = 22 in in Weight Provided = 1993.75 lbs A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E		
Width	22 in			22 in			22 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F _Y	139 lbs	184 lbs	86 lbs	383 lbs	1002 lbs	341 lbs	77 lbs	15 lbs	28 lbs
F _V	23 lbs	185 lbs	23 lbs	15 lbs	140 lbs	18 lbs	23 lbs	185 lbs	23 lbs
P _{total}	2607 lbs	2652 lbs	2554 lbs	2732 lbs	3352 lbs	2691 lbs	799 lbs	736 lbs	749 lbs
M	65 lbs-ft	314 lbs-ft	70 lbs-ft	43 lbs-ft	236 lbs-ft	55 lbs-ft	67 lbs-ft	312 lbs-ft	70 lbs-ft
е	0.02 ft	0.12 ft	0.03 ft	0.02 ft	0.07 ft	0.02 ft	0.08 ft	0.42 ft	0.09 ft
L/6	0.31 ft	1.60 ft	1.78 ft	1.80 ft	1.69 ft	1.79 ft	1.66 ft	0.99 ft	1.65 ft
f _{min}	261.2 sqft	177.4 sqft	253.6 sqft	282.9 sqft	281.3 sqft	273.9 sqft	63.1 sqft	-31.1 sqft	56.8 sqft
f _{max}	307.6 psf	401.3 psf	303.6 psf	313.2 psf	450.0 psf	313.2 psf	111.2 psf	191.8 psf	106.7 psf

Maximum Bearing Pressure = 450 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.510 k	Maximum Axial Load =	1.225 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>27%</u>	Utilization =	<u>22%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.331 k	Maximum Axial Load =	0.255 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
me zen emean eapaen,	0.002 K	Wito Bolt Supusity =	0.05 + K
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
		. ,	

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ll} \text{Mean Height, h}_{\text{sx}} = & 29.57 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 0.591 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.111 \text{ in} \\ \hline 0.111 \leq 0.591, \text{ OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus XT**

Strong Axis:

3.4.14

$$L_{b} = 93.00 \text{ in}$$

$$J = 0.427$$

$$193.965$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 28.8 \text{ ksi}$$

3.4.16

 $\phi F_L =$

$$b/t = 6.6$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

Weak Axis:

3.4.14

4.14
$$L_{b} = 93.00 \text{ in}$$

$$J = 0.427$$

$$210.771$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

$$\phi F_{L} = 28.6$$

3.4.16

b/t = 37.95

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 22.7 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

h/t = 37.95

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 38.1$$

$$m = 0.63$$

$$C_0 = 40.784$$

$$Cc = 39.216$$

$$k_x Bbr$$

$$m = 0.63$$

$$C_0 = 40.784$$

$$Cc = 39.216$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 79.7$$

$$\varphi F_L = 1.3 \varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.8 \text{ ksi}$$

$$\varphi F_L St = 498305 \text{ mm}^4$$

$$1.197 \text{ in}^4$$

$$\varphi = 40.784 \text{ mm}$$

$$Sx = 0.746 \text{ in}^3$$

1.791 k-ft

3.4.18

 $M_{max}Wk =$

h/t = 6.6

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 20.5$$

$$Cc = 20.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 22.7 \text{ ksi}$$

$$\phi F_L Wk = 24.3 \text{ ksi}$$

0.838 k-ft

Compression

 $M_{max}St =$

3.4.9

 $\begin{array}{lll} b/t = & 6.6 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi F_C y \\ \phi F_L = & 33.3 \text{ ksi} \end{array}$

 $\begin{array}{ll} \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 37.95 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \\ \\ \phi F_L = & 21.4 \text{ ksi} \\ \end{array}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.42 \text{ ksi}$$

 $A = 620.02 \text{ mm}^2$ 0.96 in^2 $P_{\text{max}} = 20.59 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.30 \\ & 21.5728 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$
$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

$$S2 = 79.2 \\ \phi F_L = \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))]$$

3.4.15

N/A for Strong Direction

 $\phi F_L = 29.7 \text{ ksi}$

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.30 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))] \end{array}$$

 $\phi F_1 = 29.7 \text{ ksi}$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 \text{ ksi}$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Weak Direction

3.4.16

N/A for Strong Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 29.7 \text{ ksi} \\ Ix = & 364470 \text{ mm}^4 \\ & 0.876 \text{ in}^4 \\ y = & 37.77 \text{ mm} \\ Sx = & 0.589 \text{ in}^3 \\ \\ M_{max} St = & 1.459 \text{ k-ft} \end{array}$$

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$ly = 217168 \text{ mm}^4$$

x =

Sy=

 $M_{max}Wk =$

0.522 in⁴

0.457 in³

0.513 k-ft

29 mm

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{5y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{array}{lll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ & S2 = \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ & \varphi F_L = & \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \varphi F_L = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_1 = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

0.096 in⁴

0.163 in³

15 mm

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$V = 15 \text{ mm}$$

$$V = 0.163 \text{ in}^3$$

 $M_{max}Wk = 0.423 \text{ k-ft}$

7.75

y =

 $M_{max}St = 0.423 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$c_{2^*} = \frac{Cc}{F_{CY}/F}$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis: 3.4.14

$$L_{b} = 46.38 \text{ in}$$
 $J = 0.16$
 121.663
 $(R_{C} - \frac{\theta_{y}}{2} F_{CY})^{-1}$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr}$$

$$S1 = \quad 36.9$$

$$m = \quad 0.65$$

$$C_0 = \quad 15$$

$$Cc = \quad 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = \quad 77.3$$

$$\phi F_L = \quad 1.3\phi y Fcy$$

$$\phi F_L = \quad 43.2 \text{ ksi}$$

$$\phi F_L St = \quad 29.8 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

 $y = 15 \text{ mm}$
 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{c}\right)^{2}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ Iy = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ & x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$\pi \sqrt{1097}$$

S2^{*} = 1.23671

$$62 = 1.23671$$

 $\phi cc = 0.85841$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

$$\begin{array}{ll} \textbf{3.4.14} \\ \textbf{L}_{b} = & 33.07 \text{ in} \\ \textbf{J} = & 0.16 \\ & 86.7548 \end{array}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

S2 = 1/01.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis: 3.4.14

$$L_b = 33.07 \text{ in}$$
 $J = 0.16$
 86.7548

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.4$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_1 = \varphi \forall F c \forall$$

3.4.16.1 Not Used Rb/t = 0.0

 $\phi F_1 = 33.3 \text{ ksi}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.4 \text{ ksi}$$

$$1x = 39958.2 \text{ mm}^4$$

$$y = 0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.411 \text{ k-ft}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ \text{ly} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{x} = & 15 \text{ mm} \\ \text{Sy} = & 0.163 \text{ in}^3 \\ \text{M}_{\text{max}} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.41804$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$
 $\varphi cc = 0.77853$
 $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$
 $\varphi F_L = 13.5508$ ksi
3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 13.55 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 6.80 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	•	-1	•			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL			.8			4		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-57.498	-57.498	0	0
2	M16	Υ	-57.498	-57.498	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	-60.802	-60.802	0	0
2	M16	V	-95.545	-95.545	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	122.761	122.761	0	0
2	M16	V	57 906	57 906	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M16	Ζ	6.693	6.693	0	0
3	M13	Ζ	0	0	0	0
4	M16	Z	0	0	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	138.276	2	322.151	1	003	2	0	14	0	1	0	1
2		min	-184.518	3	-387.256	3	-2.147	5	0	3	0	1	0	1
3	N7	max	0	5	527.602	1	138	12	0	12	0	1	0	1
4		min	184	1	-70.784	3	-32.597	4	053	4	0	1	0	1
5	N15	max	0	15	1509.873	1	.579	1	.001	1	0	1	0	1
6		min	-1.917	1	-260.584	3	-32.974	5	053	4	0	1	0	1
7	N16	max	553.88	2	1171.888	1	183	10	0	1	0	1	0	1
8		min	-588.35	3	-1270.279	3	-243.318	4	0	3	0	1	0	1
9	N23	max	0	15	527.371	1	3.385	1	.006	1	0	1	0	1
10		min	184	1	-70.349	3	-30.59	5	049	5	0	1	0	1
11	N24	max	138.742	2	327.591	1	33.408	3	.002	1	0	1	0	1
12		min	-184.595	3	-384.491	3	-3.517	5	0	3	0	1	0	1
13	Totals:	max	828.844	2	4386.477	1	0	1						
14		min	-957.772	3	-2443.744	3	-343.174	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	373.974	1	.64	6	1.158	4	0	12	0	3	0	1
2			min	-366.873	3	.15	15	046	3	001	1	0	1	0	1
3		2	max	374.08	1	.598	6	1.062	4	0	12	0	4	0	15
4			min	-366.793	3	.14	15	046	3	001	1	0	10	0	6
5		3	max	374.187	1	.557	6	.965	4	0	12	0	4	0	15
6			min	-366.713	3	.13	15	046	3	001	1	0	3	0	6
7		4	max	374.293	1	.516	6	.869	4	0	12	0	4	0	15
8			min	-366.634	3	.12	15	046	3	001	1	0	3	0	6
9		5	max	374.4	1	.475	6	.772	4	0	12	0	4	0	15
10			min	-366.554	3	.111	15	046	3	001	1	0	3	0	6
11		6	max	374.506	1	.433	6	.728	1	0	12	0	4	0	15
12			min	-366.474	3	.101	15	046	3	001	1	0	3	0	6
13		7	max	374.613	1	.392	6	.728	1	0	12	0	4	0	15
14			min	-366.394	3	.091	15	046	3	001	1	0	3	0	6
15		8	max	374.719	1	.351	6	.728	1	0	12	0	4	0	15
16			min	-366.314	3	.082	15	046	3	001	1	0	3	0	6
17		9	max	374.826	1	.309	6	.728	1	0	12	0	4	0	15
18			min	-366.234	3	.072	15	046	3	001	1	0	3	0	6
19		10	max	374.932	1	.268	6	.728	1	0	12	0	4	0	15
20			min	-366.154	3	.062	15	046	3	001	1	0	3	0	6
21		11	max	375.039	1	.227	6	.728	1	0	12	.001	1	0	15
22			min	-366.074	3	.053	15	046	3	001	1	0	3	0	6
23		12	max	375.145	1	.186	6	.728	1	0	12	.001	1	0	15
24			min	-365.994	3	.043	15	083	5	001	1	0	3	0	6
25		13	max	375.252	1	.144	6	.728	1	0	12	.001	1	0	15
26			min	-365.914	3	.033	15	179	5	001	1	0	3	0	6
27		14	max	375.359	1	.105	2	.728	1	0	12	.001	1	0	15
28			min	-365.834	3	.023	15	276	5	001	1	0	3	0	6

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
29		15	max	375.465	1	.073	2	.728	1	0	12	.001	1	0	15
30			min		3	.014	15	372	5	001	1	0	3	0	6
31		16	max		1	.041	2	.728	1	0	12	.002	1	0	15
32			min	-365.675	3	005	3	469	5	001	1	0	3	0	6
33		17	max		1	.009	10	.728	1	0	12	.002	1	0	15
34		1 /	min	-365.595	3	03	1	565	5	001	1	0	3	0	6
35		18	max		1	015	15	.728	1	0	12	.002	1	0	15
		10					1				1				
36		40	min		3	062		662	5	001		0	3	0	6
37		19	max		1	025	15	.728	1	0	12	.002	1	0	15
38			min	-365.435	3	103	4	758	5	001	1_	0	3	0	6
39	<u>M3</u>	1	max		2	1.792	6	033	12	0	5	.002	1	0	6
40			min	-98.261	9	.421	15	-1.485	4	0	1	0	12	0	15
41		2	max	66.33	2	1.615	6	033	12	0	5	.002	1	0	6
42			min	-98.317	9	.379	15	-1.352	4	0	1	0	12	0	15
43		3	max	66.262	2	1.437	6	033	12	0	5	.002	1	0	2
44			min	-98.374	9	.337	15	-1.218	4	0	1	0	12	0	3
45		4	max	66.194	2	1.26	6	033	12	0	5	.002	1	0	15
46			min	-98.43	9	.296	15	-1.085	4	0	1	0	5	0	4
47		5	max	66.127	2	1.082	6	033	12	0	5	.001	1	0	15
48			min	-98.487	9	.254	15	951	4	0	1	0	5	0	4
49		6	max		2	.904	6	033	12	0	5	.001	1	0	15
50		0	min	-98.543	9	.212	15	817	4	0	1	0	5	0	4
51		7		65.991		.727	6	033	12		5	.001	1		15
52		-	max		2					0			_	0	
			min	-98.6	9	.17	15	687	1	0	1	0	5	0	4
53		8	max	65.923	2	.549	6	033	12	0	5	.001	1	0	15
54			min	-98.657	9	.128	15	687	1	0	1	0	5	001	4
55		9	max		2	.371	6	033	12	0	5	0	1	0	15
56			min	-98.713	9	.087	15	687	1	0	1	0	5	001	4
57		10	max	65.787	2	.194	6	033	12	0	5	0	1	0	15
58			min	-98.77	9	.045	15	687	1	0	1	0	5	001	4
59		11	max	65.719	2	.03	2	007	15	0	5	0	1	0	15
60			min	-98.826	9	003	3	687	1	0	1	0	5	001	4
61		12	max	65.652	2	039	15	.122	5	0	5	0	1	0	15
62			min	-98.883	9	162	4	687	1	0	1	0	5	001	4
63		13	max		2	08	15	.255	5	0	5	0	1	0	15
64			min	-98.939	9	339	4	687	1	0	1	0	5	001	4
65		14	max		2	122	15	.389	5	0	5	0	1	0	15
66		1 -	min	-98.996	9	517	4	687	1	0	1	0	5	001	4
67		15	max	65.448	2	164	15	.523	5	0	5	0	1	0	15
68		13	min	-99.052	9	695	4	687	1	0	1	0	5	0	4
69		16			2	206	15		5	0	5	0	12	0	15
		10	max									_		_	
70		4 7	min		9	872	4	687	1	0	1	0	4	0	4
71		17	max		2	247	15	.79	5	0	5	0	12	0	15
72			min	-99.166	9	-1.05	4	687	1	0	1_	0	4	0	4
73		18	max		2	289	15	.923	5	0	5	0	12	0	15
74			min	-99.222	9	-1.228	4	687	1	0	1	0	1	0	4
75		19	max	65.176	2	331	15	1.057	5	0	5	0	5	0	1
76			min	-99.279	9	-1.405	4	687	1	0	1	0	1	0	1
77	M4	1	max		1	0	1	137	12	0	1	0	5	0	1
78			min	-71.658	3	0	1	-32.236	4	0	1	0	1	0	1
79		2		526.502	1	0	1	137	12	0	1	0	12	0	1
80			min		3	0	1	-32.292	4	0	1	003	4	0	1
81		3	max		1	0	1	137	12	0	1	0	12	0	1
82			min	-71.561	3	0	1	-32.348	4	0	1	006	4	0	1
83		1		526.632			1	137	12		1	0	12	0	1
		4			1	0	1			0					_
84		-	min		3	0		-32.404	4	0	1	009	4	0	1
85		5	max	526.696	1	0	1	137	12	0	1	0	12	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

86		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
88				min		3		1	-32.46			1	012	_	0	1
89			6	max			0	1			0	1			0	1
99				min		3	0				0		014		0	1
91			7													
93												_			_	-
93			8									<u> </u>			_	_
95																_
95			9			_										
96			40									-				
98			10													
98			11					-							_	-
99																
100			12													_
101			12			_										
102			13			_	_					_			_	•
103			13												_	
104			14													_
105			17													
106			15													-
107			-10			_										
108			16					1				1				1
109								1				1				
110			17	max		1	0	1			0	1			0	1
111				1		3		1				1	047		0	1
112	111		18			1	0	1	137	12	0	1		12	0	1
114	112					3	0	1	-33.189	4	0	1	05	4	0	1
115 M6	113		19	max	527.602	1	0	1	137	12	0	1	0	12	0	1
116	114			min	-70.784	3	0	1	-33.245	4	0	1	053	4	0	1
117		M6	1	max		_						<u> </u>		_		
118				+		3										
119			2													
120													T			
121			3	1												
122						_									_	
123			4									<u> </u>			_	
124 min -1197.347 3 .105 15 127 3 0 5 0 3 0 6 125 6 max 1223.581 1 .42 6 .597 4 0 1 0 4 0 15 126 min -1197.267 3 .095 15 127 3 0 5 0 3 0 6 127 7 max 1223.688 1 .38 2 .5 4 0 1 0 4 0 15 128 min -1197.187 3 .085 15 127 3 0 5 0 3 0 6 129 8 max 1223.794 1 .348 2 .404 4 0 1 0 4 0 15 130 9 max 1223.901 1 .316 2 <td< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			_													
125 6 max 1223.581 1 .42 6 .597 4 0 1 0 4 0 15 126 min -1197.267 3 .095 15 127 3 0 5 0 3 0 6 127 7 max 1223.688 1 .38 2 .5 4 0 1 0 4 0 15 128 min -1197.187 3 .085 15 127 3 0 5 0 3 0 6 129 8 max 1223.794 1 .348 2 .404 4 0 1 0 4 0 15 130 min -1197.107 3 .076 15 127 3 0 5 0 3 0 6 131 9 max 1223.901 1 .316 2 <td< td=""><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td></td<>			5									_				
126 min -1197.267 3 .095 15 127 3 0 5 0 3 0 6 127 7 max 1223.688 1 .38 2 .5 4 0 1 0 4 0 15 128 min -1197.187 3 .085 15 127 3 0 5 0 3 0 6 129 8 max 1223.794 1 .348 2 .404 4 0 1 0 4 0 15 130 min -1197.107 3 .076 15 127 3 0 5 0 3 0 6 131 9 max 1223.901 1 .316 2 .313 14 0 1 0 4 0 15 132 min -1197.028 3 .066 15 127				1									-			
127 7 max 1223.688 1 .38 2 .5 4 0 1 0 4 0 15 128 min -1197.187 3 .085 15 127 3 0 5 0 3 0 6 129 8 max 1223.794 1 .348 2 .404 4 0 1 0 4 0 15 130 min -1197.107 3 .076 15 127 3 0 5 0 3 0 6 131 9 max 1223.901 1 .316 2 .313 14 0 1 0 4 0 15 132 min -1197.028 3 .066 15 127 3 0 5 0 3 0 6 133 10 max 1224.007 1 .284 2	125		Ь	max	1223.581				.597							
128 min -1197.187 3 .085 15 127 3 0 5 0 3 0 6 129 8 max 1223.794 1 .348 2 .404 4 0 1 0 4 0 15 130 min -1197.107 3 .076 15 127 3 0 5 0 3 0 6 131 9 max 1223.901 1 .316 2 .313 14 0 1 0 4 0 15 132 min -1197.028 3 .066 15 127 3 0 5 0 3 0 6 133 10 max 1224.007 1 .284 2 .264 14 0 1 0 4 0 15 134 min -1196.948 3 .056 15 127 <td></td> <td></td> <td>7</td> <td></td>			7													
129 8 max 1223.794 1 .348 2 .404 4 0 1 0 4 0 15 130 min -1197.107 3 .076 15 127 3 0 5 0 3 0 6 131 9 max 1223.901 1 .316 2 .313 14 0 1 0 4 0 15 132 min -1197.028 3 .066 15 127 3 0 5 0 3 0 6 133 10 max 1224.007 1 .284 2 .264 14 0 1 0 4 0 15 134 min -1196.948 3 .056 15 127 3 0 5 0 3 0 6 135 11 max 1224.114 1 .252 2 .264 1 0 1 0 4																
130 min -1197.107 3 .076 15 127 3 0 5 0 3 0 6 131 9 max 1223.901 1 .316 2 .313 14 0 1 0 4 0 15 132 min -1197.028 3 .066 15 127 3 0 5 0 3 0 6 133 10 max 1224.007 1 .284 2 .264 14 0 1 0 4 0 15 134 min -1196.948 3 .056 15 127 3 0 5 0 3 0 6 135 11 max 1224.114 1 .252 2 .264 1 0 1 0 4 0 15 136 min -1196.868 3 .047 15 127 <td></td> <td></td> <td>0</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>T</td> <td></td> <td></td> <td></td>			0	+									T			
131 9 max 1223.901 1 .316 2 .313 14 0 1 0 4 0 15 132 min -1197.028 3 .066 15 127 3 0 5 0 3 0 6 133 10 max 1224.007 1 .284 2 .264 14 0 1 0 4 0 15 134 min -1196.948 3 .056 15 127 3 0 5 0 3 0 6 135 11 max 1224.114 1 .252 2 .264 1 0 1 0 4 0 15 136 min -1196.868 3 .047 15 127 3 0 5 0 3 0 6 137 12 max 1224.221 1 .219 2 .264 1 0 1 0 4 0 15 138			0									_				
132 min -1197.028 3 .066 15 127 3 0 5 0 3 0 6 133 10 max 1224.007 1 .284 2 .264 14 0 1 0 4 0 15 134 min -1196.948 3 .056 15 127 3 0 5 0 3 0 6 135 11 max 1224.114 1 .252 2 .264 1 0 1 0 4 0 15 136 min -1196.868 3 .047 15 127 3 0 5 0 3 0 6 137 12 max 1224.221 1 .219 2 .264 1 0 1 0 4 0 15 138 min -1196.788 3 .036 12 127 <td></td> <td></td> <td>a</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td>			a			_							_		_	
133 10 max 1224.007 1 .284 2 .264 14 0 1 0 4 0 15 134 min -1196.948 3 .056 15 127 3 0 5 0 3 0 6 135 11 max 1224.114 1 .252 2 .264 1 0 1 0 4 0 15 136 min -1196.868 3 .047 15 127 3 0 5 0 3 0 6 137 12 max 1224.221 1 .219 2 .264 1 0 1 0 4 0 15 138 min -1196.788 3 .036 12 127 3 0 5 0 3 0 6 139 13 max 1224.327 1 .187 2 .264 1 0 1 0 4 0 15 140			3													
134 min -1196.948 3 .056 15 127 3 0 5 0 3 0 6 135 11 max 1224.114 1 .252 2 .264 1 0 1 0 4 0 15 136 min -1196.868 3 .047 15 127 3 0 5 0 3 0 6 137 12 max 1224.221 1 .219 2 .264 1 0 1 0 4 0 15 138 min -1196.788 3 .036 12 127 3 0 5 0 3 0 6 139 13 max 1224.327 1 .187 2 .264 1 0 1 0 4 0 15 140 min -1196.708 3 .02 12 166			-	+												
135 11 max 1224.114 1 .252 2 .264 1 0 1 0 4 0 15 136 min -1196.868 3 .047 15 127 3 0 5 0 3 0 6 137 12 max 1224.221 1 .219 2 .264 1 0 1 0 4 0 15 138 min -1196.788 3 .036 12 127 3 0 5 0 3 0 6 139 13 max 1224.327 1 .187 2 .264 1 0 1 0 4 0 15 140 min -1196.708 3 .02 12 166 5 0 5 0 3 0 2 141 14 max 1224.434 1 .155 2 .264 1 0 1 0 4 0 15			10	mav	1 / / / /		.204			17					U	10
136 min -1196.868 3 .047 15 127 3 0 5 0 3 0 6 137 12 max 1224.221 1 .219 2 .264 1 0 1 0 4 0 15 138 min -1196.788 3 .036 12 127 3 0 5 0 3 0 6 139 13 max 1224.327 1 .187 2 .264 1 0 1 0 4 0 15 140 min -1196.708 3 .02 12 166 5 0 5 0 3 0 2 141 14 max 1224.434 1 .155 2 .264 1 0 1 0 4 0 15			10			_		15	- 127	3	0	5	0	3	l n	6
137 12 max 1224.221 1 .219 2 .264 1 0 1 0 4 0 15 138 min -1196.788 3 .036 12127 3 0 5 0 3 0 6 139 13 max 1224.327 1 .187 2 .264 1 0 1 0 4 0 15 140 min -1196.708 3 .02 12166 5 0 5 0 3 0 2 141 14 max 1224.434 1 .155 2 .264 1 0 1 0 4 0 15	134			min	-1196.948	3	.056									
138 min -1196.788 3 .036 12 127 3 0 5 0 3 0 6 139 13 max 1224.327 1 .187 2 .264 1 0 1 0 4 0 15 140 min -1196.708 3 .02 12 166 5 0 5 0 3 0 2 141 14 max 1224.434 1 .155 2 .264 1 0 1 0 4 0 15	134 135			min max	-1196.948 1224.114	3	.056 .252	2	.264	1	0	1	0	4	0	15
139 13 max 1224.327 1 .187 2 .264 1 0 1 0 4 0 15 140 min -1196.708 3 .02 12 166 5 0 5 0 3 0 2 141 14 max 1224.434 1 .155 2 .264 1 0 1 0 4 0 15	134 135 136		11	min max min	-1196.948 1224.114 -1196.868	3 1 3	.056 .252 .047	2 15	.264 127	1	0	1 5	0	4	0	15 6
140 min -1196.708 3 .02 12 166 5 0 5 0 3 0 2 141 14 max 1224.434 1 .155 2 .264 1 0 1 0 4 0 15	134 135 136 137		11	min max min max	-1196.948 1224.114 -1196.868 1224.221	3 1 3 1	.056 .252 .047 .219	2 15 2	.264 127 .264	1 3 1	0 0	1 5 1	0 0 0	4 3 4	0 0 0	15 6 15
141	134 135 136 137 138		11	min max min max min	-1196.948 1224.114 -1196.868 1224.221 -1196.788	3 1 3 1 3	.056 .252 .047 .219 .036	2 15 2 12	.264 127 .264 127	1 3 1 3	0 0 0 0	1 5 1 5	0 0 0 0	4 3 4 3	0 0 0 0	15 6 15 6
	134 135 136 137 138 139		11	min max min max min max	-1196.948 1224.114 -1196.868 1224.221 -1196.788 1224.327	3 1 3 1 3	.056 .252 .047 .219 .036 .187	2 15 2 12 2	.264 127 .264 127 .264	1 3 1 3	0 0 0 0	1 5 1 5	0 0 0 0	4 3 4 3 4	0 0 0 0	15 6 15 6 15
	134 135 136 137 138 139 140		11 12 13	min max min max min max min	-1196.948 1224.114 -1196.868 1224.221 -1196.788 1224.327 -1196.708	3 1 3 1 3 1 3	.056 .252 .047 .219 .036 .187	2 15 2 12 2 12	.264 127 .264 127 .264 166	1 3 1 3 1 5	0 0 0 0 0	1 5 1 5 1 5	0 0 0 0 0	4 3 4 3 4 3	0 0 0 0 0	15 6 15 6 15 2

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
143		15	max	1224.54	1	.123	2	.264	1	0	1	0	4	0	15
144			min	-1196.548	3	025	3	359	5	0	5	0	3	0	2
145		16	max	1224.647	1	.091	2	.264	1	0	1	0	4	0	15
146			min	-1196.468	3	049	3	455	5	0	5	0	3	0	2
147		17		1224.753	1	.059	2	.264	1	0	1	0	4	0	15
148		<u> </u>	min	-1196.388	3	073	3	552	5	0	5	0	3	0	2
149		18			-	.026	2	.264	1		1	0	14		15
		10	max		1				_	0				0	
150		40	min	-1196.308	3	097	3	648	5	0	5	0	3	0	2
151		19		1224.966	1	006	2	.264	1	0	1	0	14	0	15
152			min	-1196.228	3	121	3	745	5	0	5	0	3	0	2
153	M7	1	max		2	1.801	4	.014	1	0	2	0	4	0	2
154			min	-265.128	3	.428	15	-1.443	5	0	5	0	3	0	12
155		2	max	330.595	2	1.624	4	.014	1	0	2	0	4	0	2
156			min	-265.179	3	.386	15	-1.309	5	0	5	0	3	0	3
157		3	max	330.528	2	1.446	4	.014	1	0	2	0	4	0	2
158			min	-265.229	3	.344	15	-1.175	5	0	5	0	3	0	3
159		4	max		2	1.268	4	.014	1	0	2	0	2	0	2
160			min	-265.28	3	.302	15	-1.042	5	0	5	0	3	0	3
161		5			2	1.091	4	.014	1		2	0	2	0	15
		5	max							0					
162			min	-265.331	3	.261	15	908	5	0	5	0	5	0	6
163		6	max		2	.913	4	.014	1	0	2	0	2	0	15
164			min	-265.382	3	.219	15	775	5	0	5	0	5	0	6
165		7	max		2	.735	4	.014	1	0	2	0	2	0	15
166			min	-265.433	3	.177	15	641	5	0	5	0	5	0	6
167		8	max	330.188	2	.558	4	.014	1	0	2	0	2	0	15
168			min	-265.484	3	.135	15	507	5	0	5	0	5	0	6
169		9	max	330.12	2	.38	4	.014	1	0	2	0	2	0	15
170			min	-265.535	3	.093	15	374	5	0	5	0	5	001	6
171		10	max		2	.217	2	.014	1	0	2	0	2	0	15
172		10	min	-265.586	3	.043	12	24	5	0	5	0	5	001	6
173		11	max		2	.043	2	.014	1	0	2	0	2	0	15
174		40	min		3	045	3	106	5	0	5	0	5	001	6
175		12	max		2	032	15	.03	4	0	2	0	2	0	15
176			min	-265.688	3	153	6	003	10	0	5	0	5	001	6
177		13	max	329.849	2	074	15	.164	4	0	2	0	2	0	15
178			min	-265.738	3	331	6	003	10	0	5	0	5	001	6
179		14	max	329.781	2	115	15	.297	4	0	2	0	2	0	15
180			min	-265.789	3	508	6	003	10	0	5	0	5	001	6
181		15	max	329.713	2	157	15	.431	4	0	2	0	2	0	15
182			min	-265.84	3	686	6	003	10	0	5	0	5	0	6
183		16		329.645	2	199	15		4	0	2	0	2	0	15
184		1.0		-265.891	3	864	6	003	10	0	5	0	5	0	6
185		17	max		2	241	15	.698	4	0	2	0	2	0	15
		17			3						5	0		0	6
186		40	min	-265.942		-1.041	6	003	10	0	_	-	5		
187		18			2	282	15	.832	4	0	2	0	2	0	15
188			min	-265.993	3	-1.219	6	003	10	0	5	0	5	0	6
189		19		329.442	2	324	15	.965	4	0	2	0	2	0	1
190				-266.044	3	-1.397	6	003	10	0	5	0	3	0	1
191	M8	1	max	1508.708	1	0	1	.768	1	0	1	0	4	0	1
192			min	-261.458	3	0	1	-32.467	4	0	1	0	1	0	1
193		2		1508.773	1	0	1	.768	1	0	1	0	1	0	1
194			min		3	0	1	-32.523	4	0	1	003	4	0	1
195		3		1508.838	1	0	1	.768	1	0	1	0	1	0	1
196		J	min	-261.361	3	0	1	-32.579	4	0	1	006	4	0	1
		4				_	•							_	
197		4		1508.902	1	0	1	.768	1	0	1	0	1	0	1
198		_	min		3	0	1	-32.636	4	0	1	009	4	0	1
199		5	max	1508.967	1	0	1	.768	1	0	1	0	1	0	1

: Schletter, Inc. : HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

200		Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	. LC
202	200			min	-261.264	3		1	-32.692	4			012			-
Description			6	max			0	1			_	1			0	
204				min	-261.215	3	0	1		4	0	1	015	4	0	1
205	203		7	max	1509.097	1	0	1	.768	1	0	1	0	1	0	1
206	204			min	-261.166	3	0	1	-32.804	4	0	1	017	4	0	1
Decomposition Decompositio	205		8	max	1509.161	1	0	1	.768	1	0	1	0	1	0	1
Dec Dec	206			min	-261.118	3	0	1	-32.86	4	0	1	02	4	0	1
Dec Dec	207		9	max	1509.226	1	0	1	.768	1	0	1	0	1	0	1
209						3	0	1	-32.916	4	0	1	023	4	0	1
211			10	max		1	0	1	.768	1	0	1	0	1	0	1
11						3	0	1		4		1	026	4	0	1
1			11			1	0	1		1	0	1	0	1	0	1
213						3	0	1		4	0	1	029	4	0	1
214			12					1				1				1
215			_ · _					1								
216			13					1		_		1		_		1
217						3										
218			14													
229																
220			15					•								
16			10											<u> </u>		
222			16											_		-
223			-10													
Description			17					-				<u> </u>				_
225			- ' '													
226			18											_		
19			10													
228			19													
229 M10			-10									<u> </u>				
230		M10	1								_					
231 2 max 385.509 1 .625 4 1.184 5 .001 1 0 4 0 15 232 min .353.385 3 .158 15 152 1 002 5 0 3 0 4 233 min .353.305 3 .148 15 152 1 002 5 0 3 0 4 235 4 max 385.722 1 .542 4 .991 5 .001 1 0 4 0 15 236 min .353.225 3 .138 15 152 1 002 5 0 3 0 4 237 5 max 385.828 1 .501 4 .895 5 .001 1 0 4 0 15 238 min .353.145 3 .128 4 <t< td=""><td></td><td>IVIIO</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td><u> </u></td><td></td><td></td></t<>		IVIIO										<u> </u>		<u> </u>		
232			2													
233 3 max 385.615 1 .583 4 1.088 5 .001 1 0 4 0 15 234 min -353.305 3 .148 15 152 1 002 5 0 3 0 4 235 4 max 385.722 1 .542 4 .991 5 .001 1 0 4 0 15 236 min -353.225 3 .138 15 152 1 002 5 0 3 0 4 237 5 max 385.828 1 .501 4 .895 5 .001 1 0 4 0 15 238 min -353.145 3 .128 15 152 1 002 5 0 3 0 4 240 min -353.066 3 .119 15 <																
234			3													_
235 4 max 385.722 1 .542 4 .991 5 .001 1 0 4 0 15 236 min -353.225 3 .138 15 152 1 002 5 0 3 0 4 237 5 max 385.828 1 .501 4 .895 5 .001 1 0 4 0 15 238 min -353.145 3 .128 15 152 1 002 5 0 3 0 4 239 6 max 385.935 1 .459 4 .799 5 .001 1 0 4 0 15 240 min -353.066 3 .119 15 152 1 002 5 0 3 0 4 241 7 max 386.041 1 .418			Ŭ													
236			4							5			_			
237 5 max 385.828 1 .501 4 .895 5 .001 1 0 4 0 15 238 min -353.145 3 .128 15 152 1 002 5 0 3 0 4 239 6 max 385.935 1 .459 4 .799 5 .001 1 0 4 0 15 240 min -353.066 3 .119 15 152 1 002 5 0 3 0 4 241 7 max 386.041 1 .418 4 .702 5 .001 1 0 4 0 15 242 min -352.986 3 .109 15 152 1 002 5 0 3 0 4 243 8 max 386.296 3 .099																
238 min -353.145 3 .128 15 152 1 002 5 0 3 0 4 239 6 max 385.935 1 .459 4 .799 5 .001 1 0 4 0 15 240 min -353.066 3 .119 15 152 1 002 5 0 3 0 4 241 7 max 386.041 1 .418 4 .702 5 .001 1 0 4 0 15 242 min -352.986 3 .109 15 152 1 002 5 0 3 0 4 243 8 max 386.148 1 .377 4 6.06 5 .001 1 .001 4 0 15 244 min -352.906 3 .099 15			5	+						_						
239 6 max 385.935 1 .459 4 .799 5 .001 1 0 4 0 15 240 min -353.066 3 .119 15 152 1 002 5 0 3 0 4 241 7 max 386.041 1 .418 4 .702 5 .001 1 0 4 0 15 242 min -352.986 3 .109 15 152 1 002 5 0 3 0 4 243 8 max 386.148 1 .377 4 .606 5 .001 1 .001 4 0 15 244 min -352.906 3 .099 15 152 1 002 5 0 3 0 4 245 9 max 386.255 1 .336 <																
240 min -353.066 3 .119 15 152 1 002 5 0 3 0 4 241 7 max 386.041 1 .418 4 .702 5 .001 1 0 4 0 15 242 min -352.986 3 .109 15 152 1 002 5 0 3 0 4 243 8 max 386.148 1 .377 4 .606 5 .001 1 .001 4 0 15 244 min -352.906 3 .099 15 152 1 002 5 0 3 0 4 245 9 max 386.255 1 .336 4 .509 5 .001 1 .001 4 0 15 246 min -352.826 3 .09 15			6			1				5		_	0			_
241 7 max 386.041 1 .418 4 .702 5 .001 1 0 4 0 15 242 min -352.986 3 .109 15 152 1 002 5 0 3 0 4 243 8 max 386.148 1 .377 4 .606 5 .001 1 .001 4 0 15 244 min -352.906 3 .099 15 152 1 002 5 0 3 0 4 245 9 max 386.255 1 .336 4 .509 5 .001 1 .001 4 0 15 246 min -352.826 3 .09 15 152 1 002 5 0 3 0 4 247 10 max 386.361 1 .294								15		1						
242 min -352.986 3 .109 15 152 1 002 5 0 3 0 4 243 8 max 386.148 1 .377 4 .606 5 .001 1 .001 4 0 15 244 min -352.906 3 .099 15 152 1 002 5 0 3 0 4 245 9 max 386.255 1 .336 4 .509 5 .001 1 .001 4 0 15 246 min -352.826 3 .09 15 152 1 002 5 0 3 0 4 247 10 max 386.361 1 .294 4 .413 5 .001 1 .001 4 0 15 248 min -352.746 3 .08 15			7													
243 8 max 386.148 1 .377 4 .606 5 .001 1 .001 4 0 15 244 min -352.906 3 .099 15 152 1 002 5 0 3 0 4 245 9 max 386.255 1 .336 4 .509 5 .001 1 .001 4 0 15 246 min -352.826 3 .09 15 152 1 002 5 0 3 0 4 247 10 max 386.361 1 .294 4 .413 5 .001 1 .001 4 0 15 248 min -352.746 3 .08 15 152 1 002 5 0 3 0 4 249 11 max 386.468 1 .253 4 .316 5 .001 1 .001 4 0 15 250 min -352.666<																
244 min -352.906 3 .099 15 152 1 002 5 0 3 0 4 245 9 max 386.255 1 .336 4 .509 5 .001 1 .001 4 0 15 246 min -352.826 3 .09 15 152 1 002 5 0 3 0 4 247 10 max 386.361 1 .294 4 .413 5 .001 1 .001 4 0 15 248 min -352.746 3 .08 15 152 1 002 5 0 3 0 4 249 11 max 386.468 1 .253 4 .316 5 .001 1 .001 4 0 15 250 min -352.666 3 .07 15			8							5						_
245 9 max 386.255 1 .336 4 .509 5 .001 1 .001 4 0 15 246 min -352.826 3 .09 15 152 1 002 5 0 3 0 4 247 10 max 386.361 1 .294 4 .413 5 .001 1 .001 4 0 15 248 min -352.746 3 .08 15 152 1 002 5 0 3 0 4 249 11 max 386.468 1 .253 4 .316 5 .001 1 .001 4 0 15 250 min -352.666 3 .07 15 152 1 002 5 0 1 0 4 251 12 max 386.574 1 .212 4 .22 5 .001 1 .001 4 0 15 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td>15</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></tr<>						3		15						_		
246 min -352.826 3 .09 15 152 1 002 5 0 3 0 4 247 10 max 386.361 1 .294 4 .413 5 .001 1 .001 4 0 15 248 min -352.746 3 .08 15 152 1 002 5 0 3 0 4 249 11 max 386.468 1 .253 4 .316 5 .001 1 .001 4 0 15 250 min -352.666 3 .07 15 152 1 002 5 0 1 0 4 251 12 max 386.574 1 .212 4 .22 5 .001 1 .001 4 0 15 252 min -352.586 3 .061 15			9							5						
247 10 max 386.361 1 .294 4 .413 5 .001 1 .001 4 0 15 248 min -352.746 3 .08 15 152 1 002 5 0 3 0 4 249 11 max 386.468 1 .253 4 .316 5 .001 1 .001 4 0 15 250 min -352.666 3 .07 15 152 1 002 5 0 1 0 4 251 12 max 386.574 1 .212 4 .22 5 .001 1 .001 4 0 15 252 min -352.586 3 .061 15 152 1 002 5 0 1 0 4 253 13 max 386.681 1 .171 4 .123 5 .001 1 .001 4 0 15 254 min -352.506						3						5		3		
248 min -352.746 3 .08 15 152 1 002 5 0 3 0 4 249 11 max 386.468 1 .253 4 .316 5 .001 1 .001 4 0 15 250 min -352.666 3 .07 15 152 1 002 5 0 1 0 4 251 12 max 386.574 1 .212 4 .22 5 .001 1 .001 4 0 15 252 min -352.586 3 .061 15 152 1 002 5 0 1 0 4 253 13 max 386.681 1 .171 4 .123 5 .001 1 .001 4 0 15 254 min -352.506 3 .051 15			10			1				5	.001		.001		0	15
249 11 max 386.468 1 .253 4 .316 5 .001 1 .001 4 0 15 250 min -352.666 3 .07 15 152 1 002 5 0 1 0 4 251 12 max 386.574 1 .212 4 .22 5 .001 1 .001 4 0 15 252 min -352.586 3 .061 15 152 1 002 5 0 1 0 4 253 13 max 386.681 1 .171 4 .123 5 .001 1 .001 4 0 15 254 min -352.506 3 .051 15 152 1 002 5 0 1 0 4 255 14 max 386.787 1 .129 4 .027 5 .001 1 .001 4 0 15						3		15								
250 min -352.666 3 .07 15 152 1 002 5 0 1 0 4 251 12 max 386.574 1 .212 4 .22 5 .001 1 .001 4 0 15 252 min -352.586 3 .061 15 152 1 002 5 0 1 0 4 253 13 max 386.681 1 .171 4 .123 5 .001 1 .001 4 0 15 254 min -352.506 3 .051 15 152 1 002 5 0 1 0 4 255 14 max 386.787 1 .129 4 .027 5 .001 1 .001 4 0 15			11	max		1		4	.316	5	.001	1	.001	4	0	15
251 12 max 386.574 1 .212 4 .22 5 .001 1 .001 4 0 15 252 min -352.586 3 .061 15 152 1 002 5 0 1 0 4 253 13 max 386.681 1 .171 4 .123 5 .001 1 .001 4 0 15 254 min -352.506 3 .051 15 152 1 002 5 0 1 0 4 255 14 max 386.787 1 .129 4 .027 5 .001 1 .001 4 0 15				min		3				1		5		1		
252 min -352.586 3 .061 15 152 1 002 5 0 1 0 4 253 13 max 386.681 1 .171 4 .123 5 .001 1 .001 4 0 15 254 min -352.506 3 .051 15 152 1 002 5 0 1 0 4 255 14 max 386.787 1 .129 4 .027 5 .001 1 .001 4 0 15			12							5			.001	4	0	15
253 13 max 386.681 1 .171 4 .123 5 .001 1 .001 4 0 15 254 min -352.506 3 .051 15 152 1 002 5 0 1 0 4 255 14 max 386.787 1 .129 4 .027 5 .001 1 .001 4 0 15																
254 min -352.506 3 .051 15152 1002 5 0 1 0 4 255 14 max 386.787 1 .129 4 .027 5 .001 1 .001 4 0 15			13							5				4		
255						3		15								
			4.4											4		
	200		14	max	380.787		.129	_4	.027		UUI		<u>U</u> U1	_4	0	<u></u> 5

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
257		15	max	386.894	1_	.088	4	02	12	.001	1	.001	4	0	15
258			min	-352.346	3	013	1	152	1	002	5	0	1	0	4
259		16	max	387	1	.047	4	02	12	.001	1	.001	4	0	15
260			min	-352.266	3	045	1	173	4	002	5	0	1	0	4
261		17	max	387.107	1	.018	5	02	12	.001	1	.001	4	0	15
262			min	-352.187	3	077	1	269	4	002	5	0	1	0	4
263		18	max	387.213	1	.003	5	02	12	.001	1	.001	4	0	15
264			min	-352.107	3	11	1	366	4	002	5	0	1	0	4
265		19	max	387.32	1	007	15	02	12	.001	1	.001	4	0	15
266		13	min	-352.027	3	142	1	462	4	002	5	0	1	0	4
267	M11	1	max	66.1	2	1.789	6	.805	1	.002	4	.001	5	0	6
268	IVI I		min	-98.158	9	.418	15	-1.167	5	0	10	002	1	0	15
		2				1.611	6	.805			4	.002	5		6
269			max	66.033	2				1	.002			1	0	
270			min	-98.215	9	.377	15	-1.033	5	0	10	002		0	15
271		3	max	65.965	2	1.434	6	.805	1	.002	4	0	5	0	2
272			min	-98.271	9	.335	15	9	5	0	10	002	1_	0	3
273		4	max	65.897	2	1.256	6	.805	1	.002	4	0	5	0	15
274			min	-98.328	9	.293	15	766	5	0	10	002	1	0	4
275		5	max	65.829	2	1.078	6	.805	1	.002	4	0	5	0	15
276			min	-98.384	9	.251	15	632	5	0	10	001	1	0	4
277		6	max	65.761	2	.901	6	.805	1	.002	4	0	5	0	15
278			min	-98.441	9	.21	15	499	5	0	10	001	1	0	4
279		7	max	65.693	2	.723	6	.805	1	.002	4	0	5	0	15
280			min	-98.497	9	.168	15	365	5	0	10	001	1	0	4
281		8	max	65.625	2	.545	6	.805	1	.002	4	0	5	0	15
282			min	-98.554	9	.126	15	232	5	0	10	0	1	001	4
283		9	max	65.558	2	.368	6	.805	1	.002	4	0	5	0	15
284			min	-98.61	9	.084	15	098	5	0	10	0	1	001	4
285		10	max	65.49	2	.19	6	.805	1	.002	4	0	5	0	15
286		'0	min	-98.667	9	.042	15	.016	12	0	10	0	1	001	4
287		11	max	65.422	2	.03	2	.805	1	.002	4	0	5	0	15
288			min	-98.724	9	021	3	.016	12	0	10	0	1	001	4
289		12		65.354	2	041	15	.805	1	.002	4	0	5	0	15
290		12	max min	-98.78	9	165	4	.016	12	0	10	0	1	001	4
291		12						.805		_				0	
292		13	max	65.286	2	083	15		12	.002	10	0	5		15
		4.4	min	-98.837	9	343	4	.016		0		0		001	4
293		14	max	65.218	2	125	15	.805	1	.002	4	0	4	0	15
294		4.5	min	-98.893	9	521	4	.016	12	0	10	0	10	001	4
295		15	max	65.15	2	166	15	.862	4	.002	4	0	4	0	15
296		1.0	min	-98.95	9	698	4	.016	12	0	10	0	10	0	4
297		16	max		2	208	15	.996	4	.002	4	0	4	0	15
298			min	-99.006	9_	876	4	.016	12	0	10	0	10	0	4
299		17	max		2	25	15	1.129	4	.002	4	.001	4	0	15
300			min		9	-1.054	4	.016	12	0	10	0	10	0	4
301		18			2	292	15	1.263	4	.002	4	.001	4	0	15
302			min		9	-1.231	4	.016	12	0	10	0	10	0	4
303		19	max	64.879	2	333	15	1.396	4	.002	4	.002	4	0	1
304			min	-99.176	9	-1.409	4	.016	12	0	10	0	10	0	1
305	M12	1		526.206	1	0	1	3.707	1	0	1	0	4	0	1
306			min	-71.223	3	0	1	-29.65	5	0	1	0	3	0	1
307		2		526.271	1	0	1	3.707	1	0	1	0	1	0	1
308			min	-71.174	3	0	1	-29.706	5	0	1	003	5	0	1
309		3	max		1	0	1	3.707	1	0	1	0	1	0	1
310			min		3	0	1	-29.762	5	0	1	005	5	0	1
311		4	max		<u> </u>	0	1	3.707	1	0	1	.003	1	0	1
312		4	min		3	0	1	-29.819	5	0	1	008	5	0	1
		5			<u> </u>		1		1		1	.001	1		1
313			шах	526.465		0		3.707		0		.001		0	<u> </u>

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
314			min	-71.029	3	0	1	-29.875	5	0	1	011	5	0	1
315		6	max	526.53	1	0	1	3.707	1	0	1	.002	1	0	1
316			min	-70.98	3	0	1	-29.931	5	0	1	013	5	0	1
317		7	max	526.594	1	0	1	3.707	1	0	1	.002	1	0	1
318			min	-70.932	3	0	1	-29.987	5	0	1	016	5	0	1
319		8	max	526.659	1	0	1	3.707	1	0	1	.002	1	0	1
320			min	-70.883	3	0	1	-30.043	5	0	1	019	5	0	1
321		9	max	526.724	1	0	1	3.707	1	0	1	.003	1	0	1
322			min	-70.835	3	0	1	-30.099	5	0	1	021	5	0	1
323		10	max	526.788	1	0	1	3.707	1	0	1	.003	1	0	1
324			min	-70.786	3	0	1	-30.155	5	0	1	024	5	0	1
325		11	max	526.853	1	0	1	3.707	1	0	1	.003	1	0	1
326			min	-70.738	3	0	1	-30.211	5	0	1	027	5	0	1
327		12	max	526.918	1	0	1	3.707	1	0	1	.004	1	0	1
328		12	min	-70.689	3	0	1	-30.267	5	0	1	029	5	0	1
329		13	max	526.982	1	0	1	3.707	1	0	1	.004	1	0	1
330		13	min	-70.64	3	0	1	-30.323	5	0	1	032	5	0	1
331		14		527.047	1	0	1	3.707	1	0	1	.004	1	0	1
332		14	max min	-70.592	3	0	1	-30.379	5	0	1	035	5	0	1
		15		527.112			1				1				
333		15	max		1	0	1	3.707	1	0	1	.005	1	0	1
334		4.0	min	-70.543	3	0	_	-30.435	5	0		038	5	0	
335		16	max	527.177	1	0	1	3.707	1	0	1	.005	1	0	1
336		47	min	-70.495	3	0	1	-30.491	5	0	1	04	5	0	1
337		17	max	527.241	1	0	1	3.707	1	0	1	.005	1	0	1
338		4.0	min	-70.446	3	0	1	-30.548	5	0	1	043	5	0	1
339		18	max	527.306	1	0	1	3.707	1	0	1	.006	1	0	1
340		4.0	min	-70.398	3	0	1	-30.604	5	0	1	046	5	0	1
341		19	max	527.371	1	0	1	3.707	1	0	1	.006	1_	0	1
342			min	-70.349	3	0	1	-30.66	5	0	1	049	5	0	1
343	<u>M1</u>	1	max	130.459	1	345.226	3	-2.917	12	0	1	.143	1	.014	1
344			min	4.818	12	-374.1	1	-72.262	1	0	3	.006	12	011	3
345		2	max	130.555	1	345.029	3	-2.917	12	0	1	.127	1_	.095	1
346			min	4.866	12	-374.363	1	-72.262	1	0	3	.006	12	086	3
347		3	max		1	7.025	9	-2.944	12	0	15	.11	1	.175	1
348			min	5.342	10	-21.474	3	-71.985	1	0	1	.005	12	159	3
349		4	max	110.263	1_	6.806	9	-2.944	12	0	15	.094	1_	.175	1
350			min	5.422	10	-21.67	3	-71.985	1	0	1	.004	12	154	3
351		5	max	110.359	1	6.587	9	-2.944	12	0	15	.079	1	.175	1
352			min	5.501	10	-21.867	3	-71.985	1	0	1	.004	12	15	3
353		6	max	110.454	1	6.369	9	-2.944	12	0	15	.063	1	.175	1
354			min	5.581	10	-22.064	3	-71.985	1	0	1	.003	12	145	3
355		7	max	110.55	1	6.15	9	-2.944	12	0	15	.048	1	.176	1
356			min	5.66	10	-22.261	3	-71.985	1	0	1	.002	12	14	3
357		8		110.645	1	5.931	9	-2.944	12	0	15	.032	1	.176	1
358			min	5.74	10	-22.458	3	-71.985	1	0	1	.002	12	135	3
359		9	max		1	5.713	9	-2.944	12	0	15	.016	1	.177	1
360			min	5.819	10	-22.654	3	-71.985	1	0	1	.001	12	13	3
361		10	max		1	5.494	9	-2.944	12	0	15	.003	4	.177	1
362			min	5.899	10	-22.851	3	-71.985	1	0	1	0	10	125	3
363		11	max		1	5.275	9	-2.944	12	0	15	0	12	.178	1
364			min	5.979	10	-23.048	3	-71.985	1	0	1	015	1	12	3
365		12	max		1	5.057	9	-2.944	12	0	15	0	12	.178	1
366		14	min	6.058	10	-23.245	3	-71.985	1	0	1	03	1	115	3
367		12	max		1	4.838	9	-71.965 -2.944	12	0	15	001	12	.179	1
		13							1		1		1		3
368 369		14	min	6.138	10	<u>-23.442</u> 4.619	9	-71.985 -2.944	12	0	15	046 002	12	11 10	$\overline{}$
		14	max							0				.18	1
370			min	6.217	10	-23.638	3	-71.985	1	0	1	062	_1_	105	3

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
371		15	max	111.314	1	4.401	9	-2.944	12	0	15	003	12	.183	2
372			min	6.297	10	-23.835	3	-71.985	1	0	1	077	1	1	3
373		16	max	82.653	2	29.032	10	-2.978	12	0	1	003	12	.187	2
374			min	-31.322	3	-88.051	3	-72.586	1	0	5	094	1	094	3
375		17	max	82.748	2	28.813	10	-2.978	12	0	1	004	12	.197	1
376			min	-31.25	3	-88.248	3	-72.586	1	0	5	109	1	075	3
377		18	max		12	423.966	1	-3.116	12	0	5	005	12	.107	1
378			min	-130.051	1	-155.852	3	-74.334	1	0	1	126	1	042	3
379		19	max	-4.397	12	423.704	1	-3.116	12	0	5	005	12	.015	1
380		13	min	-129.956	1	-156.048	3	-74.334	1	0	1	142	1	008	3
381	M5	1			1	1139.088	3	067	10	0	1	.047	4	.022	3
	CIVI		max												
382			min	6.485	15	-1234.801	1	-29.812	3	0	5	0	10	028	1
383		2	max	288.051	1	1138.891	3	067	10	0	1	.041	4	.24	1
384			min	6.514	15	-1235.064	1	-29.812	3	0	5	003	3	225	3
385		3	max	220.713	1	8.766	9	3.391	3	0	3	.034	4	.503	1
386			min	5.069	15	-70.687	3	-25.505	4	0	4	009	3	467	3
387		4	max		1	8.547	9	3.391	3	0	3	.029	4	.507	1_
388			min	5.098	15	-70.883	3	-25.263	4	0	4	008	3	452	3
389		5	max	220.904	1	8.328	9	3.391	3	0	3	.023	4	.512	1
390			min	5.127	15	-71.08	3	-25.021	4	0	4	008	3	437	3
391		6	max	221	1	8.11	9	3.391	3	0	3	.018	4	.517	1
392			min	5.156	15	-71.277	3	-24.779	4	0	4	007	3	421	3
393		7	max		1	7.891	9	3.391	3	0	3	.013	4	.521	1
394			min	5.185	15	-71.474	3	-24.537	4	0	4	006	3	406	3
395		8	max	221.191	1	7.672	9	3.391	3	0	3	.007	4	.526	1
396		0	min	5.213	15	-71.671	3	-24.295	4	0	4	005	3	39	3
		0							3		_				
397		9	max		1	7.454	9	3.391		0	3	.002	5	.531	1
398		40	min	5.242	15	-71.867	3	-24.053	4	0	4	005	3	<u>375</u>	3
399		10	max		1	7.235	9	3.391	3	0	3	0	10	.536	1
400			min	5.271	15	-72.064	3	-23.811	4	0	4	004	3	<u>359</u>	3
401		11	max		1	7.016	9	3.391	3	0	3	0	10	.54	1
402			min	5.3	15	-72.261	3	-23.569	4	0	4	008	4	343	3
403		12	max		_1_	6.798	9	3.391	3	0	3	0	10	.545	1
404			min	5.329	15	-72.458	3	-23.327	4	0	4	013	4	328	3
405		13	max	221.668	1	6.579	9	3.391	3	0	3	0	10	.55	1
406			min	5.357	15	-72.655	3	-23.085	4	0	4	018	4	312	3
407		14	max	221.764	1	6.36	9	3.391	3	0	3	0	10	.556	1
408			min	5.386	15	-72.851	3	-22.843	4	0	4	023	4	296	3
409		15	max	221.859	1	6.142	9	3.391	3	0	3	0	10	.561	1
410			min	5.415	15	-73.048	3	-22.601	4	0	4	028	4	28	3
411		16		294.178	2	175.309	2	3.365	3	0	1	0	3	.566	1
412				-102.649		-264.805		-21.406	4	0	4	033	4	263	3
413		17	max		2	175.047	2	3.365	3	0	1	<u>035</u> 0	3	.569	1
414		17	min	-102.577	3	-265.002	3	-21.164	4	0	4	038	4	205	3
415		18			12	1393.921	1	3.093	3	0	4	.002	3	.272	1
416		10		-8.937	1		3	-52.133	5	0	1	049	4	095	3
		10	min			-511.63							-		
417		19	max		12	1393.659	1	3.093	3	0	4	.002	3	.016	3
418	140		min		1_	-511.827	3	-51.891	5	0	1	06	4	03	1
419	M9	1	max	129.854	1	345.21	3	216.348	4	0	3	001	15	.014	1
420			min	2.401	15	-374.084	1_	6.093	10	0	1	142	1	011	3
421		2	max		1	345.013	3	216.59	4	0	3	.042	5	.095	1
422			min	2.43	15	-374.346	1	6.093	10	0	1	122	1	086	3
423		3	max	110.141	1	6.999	9	68.024	1	0	1	.083	5	.175	1
424			min	2.244	15	-21.416	3	-33.191	5	0	12	1	1	159	3
425		4	max		1	6.78	9	68.024	1	0	1	.075	5	.175	1
426			min	2.273	15	-21.613	3	-32.949	5	0	12	085	1	154	3
427		5	max		1	6.561	9	68.024	1	0	1	.068	5	.175	1
											_				

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC_	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
428			min	2.302	15	-21.81	3	-32.707	5	0	12	07	1	15	3
429		6	max	110.427	1	6.343	9	68.024	1	0	1	.061	5	.175	1
430			min	2.331	15	-22.006	3	-32.465	5	0	12	056	1	145	3
431		7	max	110.523	1	6.124	9	68.024	1	0	1	.054	5	.176	1
432			min	2.36	15	-22.203	3	-32.223	5	0	12	041	1	14	3
433		8	max	110.618	1	5.905	9	68.024	1	0	1	.047	5	.176	1
434			min	2.388	15	-22.4	3	-31.981	5	0	12	026	1	135	3
435		9	max	110.714	1	5.687	9	68.024	1	0	1	.04	5	.177	1
436			min	2.417	15	-22.597	3	-31.739	5	0	12	011	1	13	3
437		10	max	110.809	1	5.468	9	68.024	1	0	1	.034	4	.177	1
438			min	2.446	15	-22.794	3	-31.497	5	0	12	0	2	125	3
439		11	max	110.905	1	5.249	9	68.024	1	0	1	.03	4	.178	1
440			min	2.475	15	-22.99	3	-31.255	5	0	12	.001	10	12	3
441		12	max	111	1	5.031	9	68.024	1	0	1	.033	1	.178	1
442			min	2.504	15	-23.187	3	-31.013	5	0	12	.003	10	115	3
443		13	max	111.096	1	4.812	9	68.024	1	0	1	.048	1	.179	1
444			min	2.533	15	-23.384	3	-30.771	5	0	12	.004	12	11	3
445		14	max	111.191	1	4.593	9	68.024	1	0	1	.062	1	.18	1
446			min	2.561	15	-23.581	3	-30.529	5	0	12	.004	12	105	3
447		15	max	111.287	1	4.375	9	68.024	1	0	1	.077	1	.183	2
448			min	2.59	15	-23.778	3	-30.287	5	0	12	0	15	1	3
449		16	max	82.905	2	28.679	10	68.76	1	0	10	.093	1	.187	2
450			min	-31.416	3	-88.458	3	-28.813	5	0	4	004	5	094	3
451		17	max	83	2	28.461	10	68.76	1	0	10	.108	1	.197	1
452			min	-31.344	3	-88.655	3	-28.571	5	0	4	011	5	075	3
453		18	max	2.976	5	423.967	1	72.436	1	0	1	.124	1	.107	1
454			min	-129.769	1	-155.85	3	-57.894	5	0	3	023	5	042	3
455		19	max	3.02	5	423.704	1	72.436	1	0	1	.14	1	.015	1
456				-129.673	1	-156.047	3	-57.652	5	0	3	036	5	008	3
457	M13	1	max	216.357	4	373.509	1	-2.401	15	.014	1	.142	1	0	1
458	WITO		min	6.094	10	-345.199	3	-129.839	1	011	3	.001	15	0	3
459		2	max	207.831	4	263.644	1	-1.386	15	.014	1	.043	1	.253	3
460			min	6.094	10	-243.57	3	-99.38	1	011	3	0	5	274	1
461		3	max	199.304	4	153.779	1	37	15	.014	1	.002	3	.419	3
462			min	6.094	10	-141.94	3	-68.92	1	011	3	029	1	454	1
463		4	max	190.778	4	43.914	1	.887	5	.014	1	0	12	.498	3
464			min	6.094	10	-40.311	3	-38.461	1	011	3	075	1	539	1
465		5	max	182.252	4	61.318	3	2.457	5	.014	1	0	15	.489	3
466			min	6.094	10	-65.951	1	-8.002	1	011	3	095	1	53	1
467		6	max	173.725	4	162.947	3	22.458	1	.014	1	.002	5	.392	3
468						-175.817			12	011	3	089	1	426	1
469		7		165.199	4	264.577	3	52.917	1	.014	1	.006	5	.208	3
470		,	min	6.094	10	-285.682	1	1.242	12	011	3	057	1	227	1
471		8		156.672	4	366.206	3	83.377	1	.014	1	.012	4	.066	1
472			min	6.094	10	-395.547	1	2.232	12	011	3	0	3	063	3
473		9	max	148.146	4	467.835	3	113.836	1	.014	1	.087	1	.454	1
474		J	min	6.094	10	-505.412	1	3.223	12	011	3	.002	12	422	3
474		10	max		4	569.465	3	144.295	1	.012	2	.198	1	.937	1
476		10	min	6.094	10	-615.277	1	4.213	12	014	1	.006	12	869	3
477		11	max	102.113	4	505.412	1	1.658	5	.011	3	.083	1	<u>009</u> .454	1
477		11	min	2.918	12	-467.835	3	-113.227	1	014	1	018	5	422	3
479		12	max		4	395.547	1	3.229	5	.011	3	.001	2	.066	1
480		12	min	2.918	12	-366.206		-82.768	1	014	1	016	4	063	3
481		13				285.682	1	4.799	5	.011	3	003	12		3
481		13	max min	85.06 2.918	12	-264.577	3	-52.308	1	014	1	003 059	1	.208 227	1
									•						_
1 7 0.5		1 1 1	may	フロ エフォー	' /	1 / 6 2 1 / 1	1	E 3E0		()111	2	_ ()() //	1 10 1	202	1 -2
483 484		14	max	76.534 2.918	12	175.817 -162.947	3	6.369 -21.849	<u>5</u>	.011 014	3	004 091	12	.392 426	3

Model Name

Schletter, Inc.HCV

110 V

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
485		15	max	72.49	1	65.951	1	9.801	4	.011	3	0	15	.489	3
486			min	2.918	12	-61.318	3	.419	10	014	1	097	1	53	1
487		16	max	72.49	1	40.311	3	39.07	1	.011	3	.006	5	.498	3
488			min	2.918	12	-43.914	1	1.847	12	014	1	076	1	539	1
489		17	max	72.49	1	141.94	3	69.529	1	.011	3	.015	5	.419	3
490			min	2.918	12	-153.779	1	2.837	12	014	1	03	1	454	1
491		18	max	72.49	1	243.57	3	99.989	1	.011	3	.043	1	.253	3
492			min	2.918	12	-263.644	1	3.828	12	014	1	.003	12	274	1
493		19	max	72.49	1	345.199	3	130.448	1	.011	3	.143	1	0	1
494			min	2.918	12	-373.509	1	4.818	12	014	1	.006	12	0	3
495	M16	1	max	57.643	5	424.316	1	3.02	5	.008	3	.14	1	0	1
496			min	-72.189	1	-156.067	3	-129.685	1	015	1	036	5	0	3
497		2	max	49.117	5	299.492	1	4.591	5	.008	3	.041	1	.115	3
498			min	-72.189	1	-110.285	3	-99.226	1	015	1	032	5	312	1
499		3	max	40.59	5	174.668	1	6.161	5	.008	3	0	12	.19	3
500			min	-72.189	1	-64.503	3	-68.766	1	015	1	034	4	516	1
501		4	max	32.064	5	49.844	1	7.731	5	.008	3	003	12	.226	3
502			min	-72.189	1	-18.721	3	-38.307	1	015	1	077	1	612	1
503		5	max	23.538	5	27.061	3	9.301	5	.008	3	004	12	.222	3
504			min	-72.189	1	-74.98	1	-7.847	1	015	1	097	1	602	1
505		6	max	15.011	5	72.843	3	22.612	1	.008	3	004	15	.179	3
506			min	-72.189	1	-199.804	1	.411	12	015	1	091	1	483	1
507		7	max	6.485	5	118.625	3	53.071	1	.008	3	.004	5	.097	3
508		-	min	-72.189	1	-324.628	1	1.401	12	015	1	058	1	258	1
509		8	max	-1.248	12	164.407	3	83.531	1	.008	3	.016	4	.076	1
510			min	-72.189	1	-449.452	1	2.391	12	015	1	002	3	025	3
511		9	max	-1.248	12	210.189	3	113.99	1	.008	3	.086	1	.517	1
512			min	-72.189	1	-574.276	1	3.382	12	015	1	.001	12	186	3
513		10	max	32.822	5	-15.614	15	144.45	1	.005	14	.197	1	1.065	1
514			min	-74.115	1	-699.1	1	-6.749	3	015	1	.006	12	387	3
515		11	max	24.296	5	574.276	1	1.632	5	.015	1	.086	1	.517	1
516			min	-74.115	1	-210.189	3	-113.707	1	008	3	016	5	186	3
517		12	max	15.769	5	449.452	1	3.202	5	.015	1	.001	2	.076	1
518			min	-74.115	1	-164.407	3	-83.248	1	008	3	014	4	025	3
519		13	max	7.243	5	324.628	1	4.772	5	.015	1	002	12	.097	3
520			min	-74.115	1	-118.625	3	-52.788	1	008	3	058	1	258	1
521		14	max	76	15	199.804	1	6.342	5	.015	1	003	12	.179	3
522			min	-74.115	1	-72.843	3	-22.329	1	008	3	09	1	483	1
523		15	max	-3.115	12	74.98	1	9.746	4	.015	1	0	5	.222	3
524			min	-74.115	1	-27.061	3	.42	10	008	3	096	1	602	1
525		16	max	-3.115		18.721	3	38.59	1	.015	1	.008	5	.226	3
526			min	-74.115	1	-49.844	1	1.425	12	008	3	076	1	612	1
527		17	max	-3.115	12	64.503	3	69.049	1	.015	1	.017	5	.19	3
528			min		1	-174.668	1	2.416	12	008	3	03	1	516	1
529		18	max	-3.115	12	110.285	3	99.509	1	.015	1	.043	1	.115	3
530			min	-74.115	1	-299.492	1	3.406	12	008	3	.002	12	312	1
531		19	max		12	156.067	3	129.968	1	.015	1	.142	1	0	1
532			min	-74.115	1	-424.316	1	4.397	12	008	3	.005	12	0	5
533	M15	1	max	0	2	2.104	1	.029	3	0	1	0	1	0	1
534			min	-34.946	3	0	2	034	1	0	3	0	3	0	1
535		2	max	0	2	1.87	1	.029	3	0	1	0	1	0	2
536			min	-35.006	3	0	2	034	1	0	3	0	3	0	1
537		3	max	0	2	1.636	1	.029	3	0	1	0	1	0	2
538			min	-35.066	3	0	2	034	1	0	3	0	3	002	1
539		4	max	0	2	1.402	1	.029	3	0	1	0	1	- <u>002</u> 0	2
540			min	-35.125	3	0	2	034	1	0	3	0	3	002	1
541		5	max	0	2	1.169	1	.029	3	0	1	0	1	0	2
UTI			шал	U		1.100		.023	J	U		<u> </u>			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome		z-z Mome	LC
542			min	-35.185	3	0	2	034	1	0	3	0	3	003	1
543		6	max	0	2	.935	1	.029	3	0	1	0	1	0	2
544			min	-35.245	3	0	2	034	1	0	3	0	3	003	1
545		7	max	0	2	.701	1	.029	3	0	1	0	3	0	2
546		_	min	-35.304	3	0	2	034	1	0	3	0	1	004	1
547		8	max	0	2	.467	1	.029	3	0	1	0	3	0	2
548			min	-35.364	3	0	2	034	1	0	3	0	1	004	1
549		9	max	0	2	.234	1	.029	3	0	1	0	3	0	2
550		40	min	-35.424	3	0	2	034	1	0	3	0	1	004	1
551		10	max	0	2	0	1	.029	3	0	1	0	3	0	2
552		4.4	min	-35.483	3	0	1	034	1	0	3	0	1	004	1
553		11	max	0	2	0	2	.029	3	0	1	0	3	0	2
554		4.0	min	-35.543	3_	234	1	034	1_	0	3	0	1	004	1
555		12	max	0	2_	0	2	.029	3	0	1	0	3	0	2
556		40	min	-35.603	3	467	1	034	1	0	3	0	1	004	1
557		13	max	0	2	0	2	.029	3	0	1	0	3	0	2
558			min	-35.662	3	701	1	034	1	0	3	0	1	004	1
559		14	max	0	2	0	2	.029	3	0	1	0	3	0	2
560			min	-35.722	3	935	1	034	1	0	3	0	1	003	1
561		15	max	0	2	0	2	.029	3	0	1	0	3	0	2
562		4.0	min	-35.782	3	-1.169	1	034	1	0	3	0	1	003	1
563		16	max	0	2	0	2	.029	3	0	1	0	3	0	2
564			min	-35.841	3	-1.402	1	034	1_	0	3	0	1	002	1
565		17	max	0	2	0	2	.029	3	0	1	0	3	0	2
566			min	-35.901	3_	-1.636	1	034	1	0	3	0	1	002	1
567		18	max	0	2	0	2	.029	3	0	1	0	3	0	2
568			min	-35.961	3	-1.87	1	034	1	0	3	0	1	0	1
569		19	max	0	2	0	2	.029	3	0	1	0	3	0	1
570			min	-36.02	3	-2.104	1	034	1	0	3	0	1	0	1
571	M16A	1_	max	797	10	3.317	4	.228	4	0	3	0	3	0	1
572			min	-253.248	4	1.05	15	012	3	0	1	0	4	0	1
573		2	max	731	10	2.948	4	.206	4	0	3	0	3	0	15
574				-253.348	4	.933	15	012	3	0	1	0	4	001	4
575		3	max	665	10	2.58	4	.184	4	0	3	0	3	0	15
576		4	min	-253.447	4_	.817	15	012	3	0	1	0	4	003	4
577		4	max	598	10	2.211	4	.162	4	0	3	0	3	001	15
578		_	min	-253.546	4	.7	15	012	3	0	1	0	4	004	4
579		5	max	532	10	1.843	4	.14	4	0	3	0	3	001	15
580					4	.583	15	012	3	0	1	0	1	005	4
581		6	max	466	10	1.474	4	.118	4	0	3	0	3	002	15
582		_		-253.745		.467	15		3	0	1	0	1	005	4
583		7	max	4	10_	1.106	4	.096	4	0	3	0	5	002	15
584				-253.845	4	.35	15	012	3	0	1	0	1	006	4
585		8	max	333	10	.737	4	.074	4	0	3	0	5	002	15
586		^	min	-253.944	4	.233	15	012	3	0	1	0	1	006	4
587		9	max	267	10	.369	4	.052	4	0	3	0	5	002	15
588		40	min	-254.043	4	.117	15	012	3	0	1	0	1	007	4
589		10	max	201	10	0	1	.03	4	0	3	0	5	002	15
590		4.4		-254.143	4	0	1	012	3	0	1	0	1	007	4
591		11	max	134	10_	117	15	.022	1	0	3	0	5	002	15
592		40		-254.242	4	369	4	012	3	0	1	0	1	007	4
593		12	max	068	10	233	15	.022	1	0	3	0	5	002	15
594		40		-254.342	4	737	4	018	5	0	1	0	1	006	4
595		13	max	002	10	35	15	.022	1	0	3	0	5	002	15
596		4.4	min	-254.441	4	-1.106	4	04	5	0	1	0	3	006	4
597		14	max	.065	10	467	15	.022	1	0	3	0	4	002	15
598			min	-254.54	4	-1.474	4	062	5	0	1	0	3	005	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
599		15	max	.131	10	583	15	.022	1	0	3	0	4	001	15
600			min	-254.64	4	-1.843	4	084	5	0	1	0	3	005	4
601		16	max	.197	10	7	15	.022	1	0	3	0	4	001	15
602			min	-254.739	4	-2.211	4	106	5	0	1	0	3	004	4
603		17	max	.263	10	817	15	.022	1	0	3	0	1	0	15
604			min	-254.839	4	-2.58	4	128	5	0	1	0	3	003	4
605		18	max	.33	10	933	15	.022	1	0	3	0	1	0	15
606			min	-254.938	4	-2.948	4	15	5	0	1	0	5	001	4
607		19	max	.396	10	-1.05	15	.022	1	0	3	0	1	0	1
608			min	-255.037	4	-3.317	4	172	5	0	1	0	5	0	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.003	1	.008	2	.014	1	1.821e-3	5	NC	3	NC	3
2			min	003	3	007	3	018	5	-1.086e-3	1	4394.829	2	2424.162	1
3		2	max	.003	1	.007	2	.013	1	1.847e-3	5	NC	3	NC	3
4			min	003	3	006	3	017	5	-1.042e-3	1	4763.78	2	2623.705	1
5		3	max	.003	1	.006	2	.012	1	1.873e-3	5	NC	3	NC	3
6			min	003	3	006	3	017	5	-9.976e-4	1	5197.02	2	2858.688	1
7		4	max	.003	1	.006	2	.011	1	1.899e-3	5	NC	3	NC	3
8			min	002	3	006	3	016	5	-9.532e-4	1	5709.119	2	3137.713	1
9		5	max	.002	1	.005	2	.01	1	1.925e-3	5	NC	3	NC	3
10			min	002	3	005	3	015	5	-9.088e-4	1	6319.237	2	3472.264	1
11		6	max	.002	1	.005	2	.009	1	1.952e-3	5	NC	1	NC	3
12			min	002	3	005	3	014	5	-8.645e-4	1	7052.973	2	3877.947	1
13		7	max	.002	1	.004	2	.008	1	1.978e-3	5	NC	1	NC	2
14			min	002	3	005	3	013	5	-8.201e-4	1	7945.163	2	4376.419	1
15		8	max	.002	1	.004	2	.007	1	2.004e-3	5	NC	1	NC	2
16			min	002	3	005	3	012	5	-7.757e-4	1	9044.26	2	4998.461	1
17		9	max	.002	1	.003	2	.006	1	2.03e-3	5	NC	1	NC	2
18			min	002	3	004	3	011	5	-7.313e-4	1	NC	1	5789.062	1
19		10	max	.002	1	.003	2	.005	1	2.056e-3	5	NC	1	NC	2
20			min	001	3	004	3	01	5	-6.87e-4	1	NC	1	6816.191	1
21		11	max	.001	1	.002	2	.004	1	2.083e-3	5	NC	1	NC	2
22			min	001	3	004	3	009	5	-6.426e-4	1	NC	1	8186.671	1
23		12	max	.001	1	.002	2	.003	1	2.109e-3	5	NC	1	NC	1
24			min	001	3	003	3	008	5	-5.982e-4	1	NC	1	NC	1
25		13	max	.001	1	.002	2	.003	1	2.135e-3	5	NC	1	NC	1
26			min	0	3	003	3	007	5	-5.539e-4	1	NC	1	NC	1
27		14	max	0	1	.001	2	.002	1	2.161e-3	5	NC	1	NC	1
28			min	0	3	002	3	006	5	-5.095e-4	1	NC	1	NC	1
29		15	max	0	1	0	2	.001	1	2.187e-3	5	NC	1	NC	1
30			min	0	3	002	3	005	5	-4.651e-4	1	NC	1	NC	1
31		16	max	0	1	0	2	0	1	2.214e-3	5	NC	1	NC	1
32			min	0	3	002	3	004	5	-4.207e-4	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1	2.24e-3	5	NC	1	NC	1
34			min	0	3	001	3	003	5	-3.764e-4	1	NC	1	NC	1
35		18	max	0	1	0	2	0	1	2.266e-3	5	NC	1	NC	1
36			min	0	3	0	3	001	5	-3.32e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	2.292e-3	5	NC	1	NC	1
38			min	0	1	0	1	0	1	-2.876e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.322e-4	1	NC	1	NC	1
40			min	0	1	0	1	0	1	-1.054e-3	5	NC	1	NC	1
41		2	max	0	9	0	2	.006	5	1.663e-4	1	NC	1	NC	1
42			min	0	2	0	3	0	1	-1.061e-3	5	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		LC
43		3	max	0	9	0	2	.011	5	2.003e-4	1_	NC	1	NC	1
44			min	0	2	002	3	0	1	-1.068e-3	5	NC	1	8832.316	14
45		4	max	0	9	0	2	.017	5	2.344e-4	1	NC	1	NC	1
46			min	0	2	002	3	001	1	-1.074e-3	5	NC	1	5769.916	14
47		5	max	0	9	0	2	.022	5	2.685e-4	1	NC	1	NC	1
48			min	0	2	003	3	001	1	-1.081e-3	5	NC	1	4252.029	14
49		6	max	0	9	0	2	.028	4	3.026e-4	1	NC	1	NC	1
50			min	0	2	004	3	001	1	-1.088e-3	5	NC	1	3350.542	
51		7	max	0	9	.001	2	.034	4	3.367e-4	1	NC	1	NC	1
52			min	0	2	004	3	0	1	-1.095e-3	5	NC	1	2756.28	14
53		8	max	0	9	.001	2	.039	4	3.708e-4	1	NC	1	NC	1
		0	min		2	005	3	0	1	-1.102e-3	5	NC	1	2336.871	
54				0							<u> </u>				14
55		9	max	0	9	.002	2	.045	4	4.048e-4	1_	NC	1_	NC 0000 00	1
56			min	0	2	006	3	0	1	-1.109e-3	5	NC	1_	2026.22	14
57		10	max	0	9	.002	2	.05	4	4.389e-4	_1_	NC	_1_	NC	1
58			min	0	2	006	3	0	10		5	NC	1_	1787.669	14
59		11	max	0	9	.003	2	.056	4	4.73e-4	_1_	NC	_1_	NC	1
60			min	0	2	007	3	0	10		5	NC	1_	1599.268	14
61		12	max	0	9	.003	2	.061	4	5.071e-4	1	NC	1	NC	1
62			min	0	2	007	3	0	12	-1.129e-3	5	NC	1	1447.081	14
63		13	max	0	9	.004	2	.066	4	5.412e-4	1	NC	1	NC	1
64			min	0	2	007	3	0	12	-1.136e-3	5	NC	1	1321.839	14
65		14	max	0	9	.005	2	.072	4	5.753e-4	1	NC	1	NC	1
66			min	0	2	007	3	0	12	-1.143e-3	5	9570.672	2	1217.142	14
67		15	max	0	9	.006	2	.077	4	6.093e-4	1	NC	3	NC	1
68		10	min	0	2	008	3	0	12	-1.15e-3	5	8086.666	2	1128.428	
69		16	max	0	9	.007	2	.082	4	6.434e-4	1	NC	3	NC	2
70		10	min	0	2	008	3	0	12			6928.368	2	1052.36	
71		17									5				2
		17	max	0	9	.008	2	.087	4	6.775e-4	1_	NC COAF OAO	3	NC 000,400	
72		40	min	0	2	008	3	0	12	-1.163e-3	5	6015.812	2	986.439	14
73		18	max	.001	9	.009	2	.092	4	7.116e-4	1_	NC	3	NC	2
74			min	0	2	008	3	0	12	-1.17e-3	5	5291.002	2	928.76	14
75		19	max	.001	9	.01	2	.097	4	7.457e-4	_1_	NC	3	NC	2
76			min	0	2	008	3	0	12	-1.177e-3	5	4711.647	2	877.838	14
77	M4	1_	max	.003	1	.009	2	0	12	5.001e-3	5	NC	_1_	NC	2
78			min	0	3	007	3	103	4	-9.085e-4	1	NC	1	187.768	4
79		2	max	.002	1	.008	2	0	12	5.001e-3	5	NC	1	NC	2
80			min	0	3	006	3	094	4	-9.085e-4	1	NC	1	204.695	4
81		3	max	.002	1	.008	2	0	12	5.001e-3	5	NC	1	NC	2
82			min	0	3	006	3	086	4	-9.085e-4	1	NC	1	224.843	4
83		4	max	.002	1	.007	2	0		5.001e-3	5	NC	1	NC	2
84			min	0	3	006	3	078	4	-9.085e-4	1	NC	1	249.059	4
85		5	max	.002	1	.007	2	0	12	5.001e-3	5	NC	1	NC	2
86			min	0	3	005	3	069	4	-9.085e-4	1	NC	1	278.501	4
87		6	max	.002	1	.006	2	0	12	5.001e-3	5	NC	1	NC	2
88			min	0	3	005	3	061	4	-9.085e-4	1	NC	1	314.774	4
		7									•		_		
89		7	max	.002	1	.006	2	0 0F4	12	5.001e-3	5	NC NC	1_1	NC 260.469	2
90			min	0	3	005	3	054	4	-9.085e-4		NC NC	1_	360.168	4
91		8	max	.002	1	.005	2	0	12	5.001e-3	5_	NC	1_	NC 440.004	2
92			min	0	3	<u>004</u>	3	046	4	-9.085e-4	1_	NC	1_	418.034	4
93		9	max	.001	1	.005	2	0	12	5.001e-3	5_	NC	1_	NC	2
94			min	0	3	004	3	039	4	-9.085e-4	1	NC	1_	493.443	4
95		10	max	.001	1	.004	2	0	12	5.001e-3	5	NC	_1_	NC	1
96			min	0	3	003	3	033	4	-9.085e-4	1	NC	1	594.363	4
97		11	max	.001	1	.004	2	0	12	5.001e-3	5	NC	1	NC	1
98			min	0	3	003	3	026	4	-9.085e-4	1	NC	1	733.92	4
99		12	max	0	1	.003	2	0	12		5	NC	1	NC	1
											_				

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
100			min	0	3	003	3	021	4	-9.085e-4	1	NC	1	935.008	4
101		13	max	0	1	.003	2	0	12	5.001e-3	5	NC	1	NC	1
102			min	0	3	002	3	016	4	-9.085e-4	1	NC	1	1240.575	4
103		14	max	0	1	.002	2	0	12	5.001e-3	5	NC	1	NC	1
104			min	0	3	002	3	011	4	-9.085e-4	1	NC	1	1739.203	4
105		15	max	0	1	.002	2	0	12	5.001e-3	5	NC	1	NC	1
106			min	0	3	002	3	007	4	-9.085e-4	1	NC	1	2639.014	4
107		16	max	0	1	.001	2	0	12	5.001e-3	5	NC	1	NC	1
108		10	min	0	3	001	3	004	4	-9.085e-4	1	NC	1	4531.65	4
109		17	max	0	1	0	2	<u>004</u>	12	5.001e-3	5	NC	1	NC	1
110		17	min	0	3	0	3	002	4		1	NC NC	1	9714.944	
		4.0		_						-9.085e-4	•		_		
111		18	max	0	1	0	2	0	12	5.001e-3	5_	NC NC	1	NC NC	1
112		1.0	min	0	3	0	3	0	4	-9.085e-4	_1_	NC	1_	NC	1
113		19	max	0	1	0	1	0	1	5.001e-3	5	NC	_1_	NC	1
114			min	0	1	0	1	0	1	-9.085e-4	_1_	NC	1_	NC	1
115	<u>M6</u>	1	max	.01	1	.024	2	.004	1	2.005e-3	_4_	NC	3	NC	2
116			min	01	3	019	3	018	5	2.554e-6	10	1372.28	2	7794.929	1
117		2	max	.009	1	.023	2	.004	1	2.027e-3	4	NC	3	NC	2
118			min	009	3	018	3	017	5	1.846e-6	10	1465.013	2	8452.291	1
119		3	max	.009	1	.021	2	.004	1	2.049e-3	4	NC	3	NC	2
120			min	009	3	017	3	017	5	1.137e-6	10	1570.853	2	9231.51	1
121		4	max	.008	1	.02	2	.003	1	2.071e-3	4	NC	3	NC	1
122			min	008	3	016	3	016	5	4.291e-7	10	1692.419	2	NC	1
123		5	max	.008	1	.018	2	.003	1	2.093e-3	4	NC	3	NC	1
124			min	008	3	015	3	015	5	-2.792e-7		1833.084	2	NC	1
125		6	max	.007	1	.017	2	.003	1	2.115e-3	4	NC	3	NC	1
126			min	007	3	014	3	014	5	-9.874e-7	10	1997.264	2	NC	1
127		7	max	.007	1	.015	2	.002	1	2.137e-3	4	NC	3	NC	1
128		-		007	3	013	3	013	5		2	2190.85	2	NC	1
		0	min							-3.539e-6					
129		8	max	.006	1	.014	2	.002	1	2.159e-3	4_	NC 0404.00	3	NC NC	1
130		_	min	006	3	012	3	013	5	-7.177e-6	2	2421.88	2	NC NC	1
131		9	max	.006	1	.012	2	.002	1	2.181e-3	4_	NC	3	NC NC	1
132			min	005	3	011	3	012	5	-1.082e-5	2	2701.608	2	NC	1
133		10	max	.005	1	.011	2	.001	1_	2.203e-3	4_	NC	3_	NC	1
134			min	005	3	01	3	011	5	-1.445e-5	2	3046.296	2	NC	1
135		11	max	.004	1	.01	2	.001	1	2.225e-3	4_	NC	3	NC	1
136			min	004	3	009	3	01	5	-1.809e-5	2	3480.333	2	NC	1
137		12	max	.004	1	.008	2	0	1	2.248e-3	4	NC	3	NC	1
138			min	004	3	008	3	009	5	-2.173e-5	2	4042.049	2	NC	1
139		13	max	.003	1	.007	2	0	1	2.27e-3	4	NC	3	NC	1
140			min		3	007	3	007	5	-2.537e-5	2	4795.323	2	NC	1
141		14	max	.003	1	.006	2	0	1	2.292e-3	4	NC	3	NC	1
142			min	003	3	006	3	006	5	-2.901e-5	2	5855.131	2	NC	1
143		15	max	.002	1	.004	2	<u>.000</u>	1	2.314e-3	4	NC	3	NC	1
144		10	min	002	3	005	3	005	5	-3.265e-5	2	7451.412	2	NC	1
145		16	max	.002	1	.003	2	<u>.003</u>	1	2.336e-3	4	NC	1	NC	1
146		10		002	3	003	3	004		-3.629e-5	2	NC	1	NC	1
		47	min						5						
147		17	max	.001	1	.002	2	0	1	2.358e-3	4_	NC	1	NC NC	1
148		40	min	001	3	002	3	003	5	-3.993e-5	2	NC NC	1_	NC NC	1
149		18	max	0	1	.001	2	0	1	2.38e-3	4_	NC	1	NC	1
150			min	0	3	001	3	001	5	-4.356e-5	2	NC	1_	NC	1
151		19	max	0	1	00	1	00	1	2.402e-3	4	NC	_1_	NC	1
152			min	0	1	0	1	0	1	-4.72e-5	2	NC	1_	NC	1
153	M7	1	max	0	1	0	1	0	1	2.146e-5	2	NC	1	NC	1
154			min	0	1	0	1	0	1	-1.104e-3	4	NC	1	NC	1
155		2	max	0	3	.001	2	.006	4	1.933e-5	1	NC	1	NC	1
156			min	0	2	002	3	0	1	-1.093e-3	4	NC	1	NC	1
	_			_		_		_							

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
157		3	max	0	3	.003	2	.012	4	1.836e-5	1	NC	_1_	NC	1_
158			min	0	2	003	3	0	1	-1.082e-3	4	NC	1_	NC	1
159		4	max	00	3	.004	2	.018	4	1.738e-5	1	NC	_1_	NC	1
160			min	0	2	005	3	0	1	-1.071e-3	4_	NC	1_	NC	1
161		5_	max	0	3	.005	2	.023	4	1.64e-5	1	NC	3	NC	1
162		_	min	0	2	006	3	0	1	-1.059e-3	4	8607.816	2	NC NC	1
163		6	max	0	3	.007	2	.029	4	1.542e-5	1	NC	3	NC	1
164		-	min	001	2	008	3	0	1	-1.048e-3	4_	6898.406	2	NC NC	1
165		7	max	.001	3	.008	2	.035	4	2.226e-5	3	NC	3	NC NC	1
166		0	min	001	2	009	2	<u> </u>	4	-1.037e-3	4	5729.571 NC	2	NC NC	1
167 168		8	max	.001	3	.009	3	0	1	3.372e-5	3	4872.834	3	NC NC	1
169		9	min	001 .001	3	<u>011</u> .011	2	.046	4	-1.026e-3 4.519e-5	3	NC	3	NC NC	1
170		9	max	002	2	012	3	<u>.046</u>	1	-1.014e-3	4	4214.353	2	NC NC	1
171		10	max	.002	3	.012	2	.052	4	5.665e-5	3	NC	3	NC	1
172		10	min	002	2	013	3	001	1	-1.003e-3	4	3691.025	2	NC	1
173		11	max	.002	3	.014	2	.057	4	6.812e-5	3	NC	3	NC	1
174			min	002	2	015	3	001	1	-9.92e-4	4	3264.953	2	NC	1
175		12	max	.002	3	.016	2	.063	4	7.958e-5	3	NC	3	NC	1
176		12	min	002	2	016	3	001	1	-9.807e-4	4	2911.88	2	NC	1
177		13	max	.002	3	.018	2	.068	4	9.105e-5	3	NC	3	NC	1
178			min	002	2	017	3	002	1	-9.695e-4	4	2615.442	2	NC	1
179		14	max	.002	3	.019	2	.073	4	1.025e-4	3	NC	3	NC	1
180			min	003	2	018	3	002	1	-9.583e-4	4	2364.1	2	NC	1
181		15	max	.002	3	.021	2	.079	4	1.14e-4	3	NC	3	NC	1
182			min	003	2	019	3	002	1	-9.47e-4	4	2149.415	2	NC	1
183		16	max	.003	3	.023	2	.084	4	1.254e-4	3	NC	3	NC	1
184			min	003	2	019	3	002	1	-9.358e-4	4	1965.021	2	NC	1
185		17	max	.003	3	.025	2	.089	4	1.369e-4	3	NC	3	NC	1
186			min	003	2	02	3	002	1	-9.246e-4	4	1805.997	2	NC	1
187		18	max	.003	3	.028	2	.094	4	1.484e-4	3	NC	3	NC	1
188			min	004	2	021	3	002	1	-9.133e-4	4	1668.466	2	NC	1
189		19	max	.003	3	.03	2	.098	4	1.598e-4	3	NC	3	NC	1
190			min	004	2	022	3	002	1	-9.021e-4	4_	1549.328	2	NC	1
191	<u>M8</u>	1	max	.007	1	.028	2	.002	1	4.762e-3	4_	NC	_1_	NC	2
192			min	001	3	019	3	<u>104</u>	4	-1.256e-4	3	NC	1_	186.466	4
193		2	max	.007	1	.026	2	.002	1	4.762e-3	4_	NC	1	NC 000.075	2
194		_	min	001	3	018	3	095	4	-1.256e-4	3	NC	1_	203.275	4
195		3	max	.006	1	.025	2	.002	1	4.762e-3	4	NC	1_	NC 000,000	2
196		4	min	001	3	017	2	087	1	-1.256e-4	<u>3</u> 4	NC NC	<u>1</u> 1	223.283	1
197		4	max	.006	3	.023	3	.002		4.762e-3		NC NC	1	NC	
198 199		5	min	001	1	016 .022	2	078 .002	1	-1.256e-4 4.762e-3	3	NC NC	1	247.331 NC	1
200		3	max	<u>.006</u>	3	015	3	07	4	-1.256e-4	3	NC NC	1	276.568	4
201		6		.005	1	.02	2	.001	1	4.762e-3	4	NC	1	NC	1
202			max min	0	3	014	3	062	4	-1.256e-4	3	NC	1	312.589	4
203		7	max	.005	1	.018	2	.002	1	4.762e-3	4	NC	1	NC	1
204		+	min	0	3	013	3	054	4	-1.256e-4	3	NC	1	357.667	4
205		8	max	.004	1	.017	2	.001	1	4.762e-3	4	NC	1	NC	1
206			min	0	3	012	3	047	4	-1.256e-4	3	NC	1	415.132	4
207		9	max	.004	1	.015	2	0	1	4.762e-3	4	NC	1	NC	1
208			min	0	3	011	3	039	4	-1.256e-4	3	NC	1	490.016	4
209		10	max	.004	1	.014	2	<u>.000</u>	1	4.762e-3	4	NC	1	NC	1
210		1.0	min	0	3	01	3	033	4	-1.256e-4	3	NC	1	590.235	4
211		11	max	.003	1	.012	2	0	1	4.762e-3	4	NC	1	NC	1
212			min	0	3	009	3	027	4	-1.256e-4	3	NC	1	728.822	4
213		12	max	.003	1	.011	2	0	1	4.762e-3	4	NC	1	NC	1
					-						_		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
214			min	0	3	007	3	021	4	-1.256e-4	3	NC	1_	928.513	4
215		13	max	.002	1	.009	2	00	1	4.762e-3	_4_	NC	_1_	NC	1
216			min	0	3	006	3	016	4	-1.256e-4	3	NC	<u>1</u>	1231.956	4
217		14	max	.002	1	.008	2	0	1	4.762e-3	_4_	NC	1_	NC	1
218			min	0	3	005	3	011	4	-1.256e-4	3	NC	_1_	1727.121	4
219		15	max	.002	1	.006	2	0	1	4.762e-3	4	NC	1_	NC	1
220			min	0	3	004	3	007	4	-1.256e-4	3	NC	1_	2620.679	
221		16	max	.001	1	.005	2	0	1	4.762e-3	_4_	NC	1_	NC	1
222			min	0	3	003	3	004	4	-1.256e-4	3	NC	1_	4500.165	
223		17	max	0	1	.003	2	0	1	4.762e-3	4_	NC	_1_	NC	1
224		10	min	0	3	002	3	002	4	-1.256e-4	3	NC	1_	9647.438	
225		18	max	0	1	.002	2	0	1	4.762e-3	4	NC	1	NC	1
226		1.0	min	0	3	<u>001</u>	3	0	4	-1.256e-4	3	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	4.762e-3	4_	NC	1_	NC NC	1
228	1440		min	0	1	0	1	0	1	-1.256e-4	3	NC NC	1_	NC NC	1
229	M10	1	max	.003	1	.008	2	0	3	9.488e-4	1	NC 4400-40	3	NC NC	1
230			min	003	3	007	3	008	4	-2.053e-4	3	4400.19	2	NC NC	1
231		2	max	.003	1	.007	2	0	3	8.999e-4	1_	NC	3	NC NC	1
232			min	003	3	006	3	007	4	-1.995e-4	3	4769.706	2	NC NC	1
233		3	max	.003	1	.006	2	0	3	8.509e-4	1	NC FOOD CO	3_	NC NC	1
234		1	min	003	3	006	3	007	4	-1.937e-4	3	5203.63	2	NC NC	1
235		4	max	.003	1	.006	2	0	3	8.02e-4	1_	NC F740 F00	3	NC NC	1
236		_	min	002	3	006	3	007	4	-1.879e-4	3	5716.562	2	NC NC	1
237		5	max	.002	1	.005	2	0	3	8.311e-4	4	NC	3	NC	1
238			min	002	3	006	3	007	4	-1.821e-4	3	6327.705	2	NC NC	1
239		6	max	.002	1	.005	2	0	3	8.988e-4	4	NC 7000 740	1	NC NC	1
240		7	min	002	3	005	3	007	4	-1.763e-4	3	7062.713	2	NC NC	1
241		7	max	.002	1	.004	2	0	3	9.664e-4	4	NC 7050 505	1	NC NC	1
242			min	002	3	005	3	007	4	-1.705e-4	3	7956.505	2	NC NC	1
243		8	max	.002 002	3	.004 005	3	0 007	3	1.034e-3 -1.647e-4	<u>4</u> 3	NC 9057.645	<u>1</u> 2	NC NC	1
245		9	min	.002	1	.003	2	007 0	3	1.102e-3	4	NC	1	NC NC	1
246		9	max	002	3	004	3	006	4	-1.59e-4	3	NC NC	1	NC NC	1
247		10	min max	.002	1	.003	2	<u>006</u> 0	3	1.169e-3	4	NC NC	1	NC NC	1
248		10	min	001	3	004	3	006	4	-1.532e-4	3	NC NC	1	NC	1
249		11	max	.001	1	.002	2	<u>000</u> 0	3	1.237e-3	4	NC	1	NC	1
250			min	001	3	004	3	006	4	-1.474e-4	3	NC	1	NC	1
251		12	max	.001	1	.002	2	000	3	1.304e-3	4	NC	1	NC	1
252		12	min	001	3	003	3	005	4	-1.416e-4	3	NC	1	NC	1
253		13	max	.001	1	.002	2	003	3	1.372e-3	4	NC	1	NC	1
254		13	min	0	3	003	3	005	4	-1.358e-4		NC	1	NC	1
255		14	max	0	1	.001	2	0	3	1.44e-3	4	NC	1	NC	1
256			min	0	3	002	3	004	4	-1.3e-4	3	NC	1	NC	1
257		15	max	0	1	0	2	<u>.00+</u>	3	1.507e-3	4	NC	1	NC	1
258		'0	min	0	3	002	3	003	4	-1.242e-4	3	NC	1	NC	1
259		16	max	0	1	0	2	<u>.000</u>	3	1.575e-3	4	NC	1	NC	1
260		10	min	0	3	002	3	003	4	-1.184e-4	3	NC	1	NC	1
261		17	max	0	1	0	2	0	3	1.643e-3	4	NC	1	NC	1
262			min	0	3	001	3	002	4	-1.126e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	1.71e-3	4	NC	1	NC	1
264			min	0	3	0	3	0	4	-1.069e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.778e-3	4	NC	1	NC	1
266			min	0	1	0	1	0	1	-1.011e-4	3	NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	4.65e-5	3	NC	1	NC	1
268			min	0	1	0	1	0	1	-8.186e-4	4	NC	1	NC	1
269		2	max	0	9	0	2	.004	4	3.327e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-9.188e-4	4	NC	1	NC	1

Model Name

Schletter, Inc.HCV

1.01

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
271		3	max	0	9	0	2	.009	4	2.003e-5	3_	NC	<u>1</u>	NC	1
272			min	0	2	002	3	0	3	-1.019e-3	4	NC	1_	5295.59	4
273		4	max	0	9	0	2	.013	4	6.8e-6	3	NC	1_	NC	1
274			min	0	2	002	3	0	3	-1.119e-3	4	NC	1	3503.197	4
275		5	max	0	9	0	2	.018	4	-4.778e-6	12	NC	1	NC	1
276			min	0	2	003	3	0	1	-1.219e-3	4	NC	1	2610.332	4
277		6	max	0	9	0	2	.022	4	-1.292e-5	12	NC	1	NC	1
278			min	0	2	004	3	001	1	-1.32e-3	4	NC	1	2076.841	4
279		7	max	0	9	.001	2	.027	5	-2.107e-5	12	NC	1_	NC	1
280			min	0	2	005	3	002	1	-1.42e-3	4	NC	1	1717.753	5
281		8	max	0	9	.001	2	.031	5	-2.921e-5	12	NC	1	NC	1
282			min	0	2	005	3	003	1	-1.52e-3	4	NC	1	1462.244	5
283		9	max	0	9	.002	2	.036	5	-3.736e-5	12	NC	1_	NC	1
284			min	0	2	006	3	004	1	-1.62e-3	4	NC	1	1271.676	5
285		10	max	0	9	.002	2	.041	5	-4.267e-5	10	NC	1	NC	2
286			min	0	2	006	3	005	1	-1.72e-3	4	NC	1	1124.19	5
287		11	max	0	9	.003	2	.046	5	-4.684e-5	10	NC	1	NC	2
288			min	0	2	007	3	006	1	-1.821e-3	4	NC	1	1006.682	5
289		12	max	0	9	.003	2	.051	5	-5.1e-5	10	NC	1	NC	2
290			min	0	2	007	3	007	1	-1.921e-3	4	NC	1	910.821	5
291		13	max	0	9	.004	2	.055	5	-5.516e-5	10	NC	1	NC	2
292			min	0	2	007	3	008	1	-2.021e-3	4	NC	1	831.058	5
293		14	max	0	9	.005	2	.06	5	-5.933e-5	10	NC	1	NC	2
294			min	0	2	007	3	009	1	-2.121e-3	4	9583.857	2	763.557	5
295		15	max	0	9	.006	2	.065	5		10	NC	3	NC	2
296			min	0	2	008	3	01	1	-2.221e-3	4	8096.695	2	705.581	5
297		16	max	0	9	.007	2	.07	5	-6.766e-5	10	NC	3	NC	2
298			min	0	2	008	3	011	1	-2.322e-3	4	6936.177	2	655.128	5
299		17	max	0	9	.008	2	.075	5	-7.182e-5	10	NC	3	NC	2
300			min	0	2	008	3	012	1	-2.422e-3	4	6022.033	2	610.7	5
301		18	max	.001	9	.009	2	.081	5	-7.599e-5	10	NC	3	NC	3
302		1	min	0	2	008	3	013	1	-2.522e-3	4	5296.071	2	571.157	5
303		19	max	.001	9	.01	2	.086	5	-8.015e-5		NC	3	NC	3
304		10	min	0	2	008	3	014	1	-2.622e-3	4	4715.871	2	535.615	5
305	M12	1	max	.003	1	.009	2	.012	1	6.244e-3	4	NC	1	NC	3
306	14112	•	min	0	3	007	3	095	5	7.348e-5	10	NC	1	203.995	5
307		2	max	.002	1	.008	2	.011	1	6.244e-3	4	NC	1	NC	3
308		_	min	0	3	006	3	087	5	7.348e-5	10	NC	1	222.38	5
309		3	max	.002	1	.008	2	.01	1	6.244e-3	4	NC	1	NC	3
310			min	0	3	006	3	079	5	7.348e-5	10	NC	1	244.264	5
311		4	max	.002	1	.007	2	.009	1	6.244e-3	4	NC	1	NC	3
312		 	min	0	3	006	3	071	5	7.348e-5		NC	1	270.567	5
313		5	max	.002	1	.007	2	.008	1	6.244e-3	4	NC	1	NC	3
314			min	0	3	005	3	064	5	7.348e-5		NC	1	302.545	5
315		6	max	.002	1	.006	2	.007	1	6.244e-3	4	NC	1	NC	3
316		1	min	0	3	005	3	057	5	7.348e-5		NC	1	341.942	5
317		7	max	.002	1	.006	2	.006	1	6.244e-3	4	NC	1	NC	3
318		-	min	0	3	005	3	049	5	7.348e-5		NC	1	391.245	5
319		8		.002	1	.005	2	.005	1	6.244e-3	4	NC NC	1	NC	3
320		0	max min	0	3	005	3	043	5	7.348e-5	10	NC NC	1	454.094	5
321		9	1 1	.001	1	.005	2	.004	1	6.244e-3	4	NC NC	1	NC	2
322		9	max		3	005	3	036		7.348e-5		NC NC		535.995	5
		10	min	0					5				1_1		
323		10	max	001	1	.004	2	.004	1	6.244e-3	4	NC NC	1_	NC 645 602	2
324		4.4	min	0	3	003	3	03	5	7.348e-5		NC NC	1_	645.602	5
325		11	max	001	1	.004	2	.003	1	6.244e-3	4	NC NC	1	NC 707.400	2
326		40	min	0	3	003	3	024	5	7.348e-5		NC NC	1_	797.169	5
327		12	max	0	1	.003	2	.002	1	6.244e-3	4	NC	1_	NC	2

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
328			min	0	3	003	3	019	5	7.348e-5	10	NC	1_	1015.562	5
329		13	max	0	1	.003	2	.002	1	6.244e-3	4	NC	_1_	NC	1
330			min	0	3	002	3	014	5	7.348e-5	10	NC	1	1347.418	5
331		14	max	0	1	.002	2	.001	1	6.244e-3	4	NC	1_	NC	1
332			min	0	3	002	3	01	5	7.348e-5	10	NC	1	1888.94	5
333		15	max	0	1	.002	2	0	1	6.244e-3	4	NC	1	NC	1
334			min	0	3	002	3	007	5	7.348e-5	10	NC	1	2866.142	5
335		16	max	0	1	.001	2	0	1	6.244e-3	4	NC	1	NC	1
336			min	0	3	001	3	004	5	7.348e-5	10	NC	1	4921.53	5
337		17	max	0	1	0	2	0	1	6.244e-3	4	NC	1	NC	1
338			min	0	3	0	3	002	5	7.348e-5	10	NC	1	NC	1
339		18	max	0	1	0	2	0	1	6.244e-3	4	NC	1_	NC	1
340			min	0	3	0	3	0	5	7.348e-5	10	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	6.244e-3	4	NC	1	NC	1
342			min	0	1	0	1	0	1	7.348e-5	10	NC	1	NC	1
343	M1	1	max	.006	3	.023	3	.01	5	1.567e-2	1	NC	1	NC	1
344			min	007	2	028	1	005	1	-1.438e-2	3	NC	1	NC	1
345		2	max	.006	3	.013	3	.014	5	7.446e-3	1	NC	4	NC	2
346			min	007	2	015	1	01	1	-7.115e-3	3	3541.86	1	8396.051	1
347		3	max	.006	3	.003	3	.018	5	5.263e-4	5	NC	4	NC	2
348			min	007	2	003	1	014	1	-6.212e-4	1	1831.876	1	5090.975	1
349		4	max	.006	3	.007	1	.023	5	5.287e-4	5	NC	5	NC	2
350			min	007	2	005	3	016	1	-5.189e-4	1	1295.784	1	3518.587	5
351		5	max	.006	3	.016	1	.028	5	5.311e-4	5	NC	5	NC	2
352			min	007	2	012	3	016	1	-4.166e-4	1	1038.123	1	2521.235	5
353		6	max	.006	3	.023	1	.034	5	5.335e-4	5	NC	5	NC	2
354			min	007	2	017	3	015	1	-3.143e-4	1	892.513	1	1938.749	5
355		7	max	.006	3	.029	1	.04	5	5.359e-4	5	NC	5	NC	2
356			min	007	2	021	3	013	1	-2.12e-4	1	804.383	1	1561.31	5
357		8	max	.006	3	.033	1	.046	5	5.383e-4	5	NC	5	NC	2
358			min	007	2	024	3	011	1	-1.097e-4	1	751.042	1	1299.513	
359		9	max	.006	3	.035	1	.052	5	5.406e-4	5	NC	5	NC	1
360			min	007	2	025	3	008	1	-9.31e-6	2	721.897	1	1103.53	4
361		10	max	.006	3	.036	1	.058	5	5.572e-4	4	NC	5	NC	1
362			min	007	2	025	3	005	1	1.231e-5	10	712.063	1	946.105	4
363		11	max	.006	3	.035	1	.065	4	5.819e-4	4	NC	5	NC	1
364			min	008	2	024	3	001	1	2.062e-5	10	720.059	1	827.368	4
365		12	max	.006	3	.033	1	.072	4	6.065e-4	4	NC	5	NC	2
366			min	008	2	022	3	0	10	2.762e-5	12	747.19	1	735.8	4
367		13	max	.006	3	.029	1	.079	4	6.311e-4	4	NC	5	NC	2
368			min	008	2	019	3	0	12	2.987e-5	12	798.107	1	663.99	4
369		14	max	.006	3	.023	1	.086	4	6.558e-4	4	NC	5	NC	2
370			min	008	2	015	3	0	12	3.211e-5	12	883.006	1	606.998	4
371		15	max	.006	3	.015	1	.092	4	6.804e-4	4	NC	5	NC	2
372			min	008	2	01	3	0	12	3.436e-5		1023.756	1	561.432	4
373		16	max	.006	3	.006	1	.098	4	1.024e-3	4	NC	5	NC	2
374			min	008	2	004	3	0	12	3.582e-5	12	1272.541	1	524.911	4
375		17	max	.006	3	.002	3	.103	4	8.947e-3	4	NC	4	NC	2
376			min	008	2	005	2	0	12	1.345e-5	10	1786.465	1	495.771	4
377		18	max	.006	3	.01	3	.107	4	8.845e-3	1	NC	4	NC	2
378		1.0	min	008	2	017	1	0	10	-3.293e-3	3	3443.067	1	472.748	4
379		19	max	.006	3	.018	3	.111	4	1.778e-2	1	NC	1	NC	1
380		1.0	min	008	2	031	1	003	1	-6.679e-3	3	NC	1	455.49	4
381	M5	1	max	.018	3	.069	3	.009	5	5.46e-6	4	NC	1	NC	1
382	1110		min	024	2	085	1	005	1	5.24e-8	10	NC	1	NC	1
383		2	max	.018	3	.039	3	.013	5	2.578e-4	5	NC	5	NC	1
384			min	024	2	047	1	005	1	-8.444e-5	1	1200.261	1	NC	1
UUT			111111	.047	_	.071		.000		J. 1 770 U		.200.201	_	.,,	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio		(n) L/z Ratio	LC
385		3	max	.018	3	.01	3	.018	5	5.06e-4	5	NC	5	NC	1
386			min	024	2	011	1	004	1	-1.677e-4	1	617.77	1	NC	1
387		4	max	.018	3	.021	1	.024	5	5.26e-4	5	NC	5	NC	1
388			min	024	2	013	3	004	1	-1.574e-4	1	435.844	1	NC	1
389		5	max	.018	3	.047	1	.029	5	5.459e-4	5	NC	15	NC	1
390			min	024	2	033	3	003	1	-1.472e-4	1	348.364	1	NC	1
391		6	max	.018	3	.069	1	.035	5	5.659e-4	5	NC	15	NC	1
392			min	024	2	048	3	003	1	-1.369e-4	1	298.846	1	NC	1
393		7	max	.018	3	.086	1	.042	5	5.859e-4	5	NC	15	NC	1
394			min	024	2	059	3	003	1	-1.267e-4	1	268.778	1	NC	1
395		8		.018	3	.098	1	.048	5	6.059e-4	5	NC	15	NC	1
		-	max												
396			min	024	2	067	3	003	1	-1.164e-4	<u>1</u>	250.459	1_	NC NC	1
397		9	max	.018	3	.106	1	.055	5	6.258e-4	5	NC	<u>15</u>	NC	1
398			min	024	2	071	3	002	1	-1.062e-4	1_	240.289	1_	NC	1
399		10	max	.018	3	.108	1	.062	5	6.458e-4	5_	NC	<u>15</u>	NC	1
400			min	024	2	072	3	002	1	-9.592e-5	1_	236.6	_1_	NC	1
401		11	max	.018	3	.106	1	.068	5	6.658e-4	5_	NC	<u>15</u>	NC	1
402			min	024	2	069	3	002	1	-8.568e-5	1	238.868	1	NC	1
403		12	max	.018	3	.098	1	.075	5	6.857e-4	5	NC	15	NC	1
404			min	024	2	064	3	002	1	-7.543e-5	1	247.507	1	NC	1
405		13	max	.018	3	.086	1	.081	4	7.057e-4	5	NC	15	NC	1
406			min	024	2	055	3	002	1	-6.518e-5	1	264.047	1	NC	1
407		14	max	.018	3	.069	1	.087	4	7.257e-4	5	NC	15	NC	1
408			min	024	2	043	3	002	1	-5.493e-5	1	291.872	1	9572.458	
409		15	max	.018	3	.046	1	.093	4	7.456e-4	5	NC	15	NC	1
410		13	min	024	2	029	3	002	1	-4.468e-5	1	338.273	1	9449.865	
411		16		.018	3	.029 .018	1	.099	4	1.08e-3	5	NC	5	NC	
		10	max												1
412		47	min	024	2	012	3	002	1	-4.168e-5	1_	420.788	1_	NC NC	1
413		17	max	.018	3	.007	3	.104	4	8.959e-3	4_	NC	5	NC NC	1
414		1.0	min	024	2	<u>014</u>	1	002	1	-2.112e-4	1_	593.283	_1_	NC	1
415		18	max	.018	3	.029	3	.108	4	4.596e-3	4	NC	5	NC	1
416			min	024	2	053	1	003	1	-1.082e-4	1_	1149.835	1_	NC	1
417		19	max	.018	3	.051	3	.111	4	1.893e-6	_5_	NC	_1_	NC	1
418			min	024	2	094	1	003	1	-1.308e-7	3	NC	1_	NC	1
419	M9	1	max	.006	3	.023	3	.008	5	1.438e-2	3	NC	1	NC	1
420			min	007	2	029	1	006	1	-1.567e-2	1	NC	1	NC	1
421		2	max	.006	3	.013	3	.007	5	7.128e-3	3	NC	4	NC	2
422			min	007	2	015	1	001	1	-7.703e-3	1	3542.729	1	9713.806	1
423		3	max	.006	3	.003	3	.008	4	1.109e-4	1	NC	4	NC	2
424			min	007	2	003	1	0	3	4.697e-6		1832.337	1	6029.749	
425		4	max	.006	3	.007	1	.01	4		1	NC	5	NC	2
426			min	007	2	005	3	0	3	-1.699e-6		1296.107	1	5106.978	
427		5	max	.006	3	.016	1	.012	4	5.603e-6	5	NC	5	NC	2
428			min	007	2	012	3	001	3	-6.097e-5	1	1038.368	1	5057.824	
		G													
429		6	max	.006	3	.023	1	.016	4		<u>10</u>	NC	5	NC 4656 171	2
430		7	min	007	2	017	3	001	3	-1.469e-4	1_	892.708	1_	4656.171	4
431		7	max	.006	3	.029	1	.02	4		<u>10</u>	NC 004.540	5_	NC OCCA 400	2
432			min	007	2	021	3	002	3	-2.329e-4	1_	804.543	1_	3234.183	
433		8	max	.006	3	.033	1	.026	4		10	NC	5	NC	1
434			min	007	2	024	3	002	3	-3.189e-4	1_	751.175	1_	2389.16	4
435		9	max	.006	3	.035	1	.031	5	-2.542e-5	10	NC	5	NC	1
436			min	007	2	025	3	003	1	-4.048e-4	1	722.01	1	1846.554	4
437		10	max	.006	3	.036	1	.038	5	-3.247e-5	10	NC	5	NC	1
438			min	007	2	025	3	006	1	-4.908e-4	1	712.159	1	1477.343	4
439		11	max	.006	3	.035	1	.046	5	-3.952e-5	10	NC	5	NC	2
440			min	008	2	025	3	009	1	-5.767e-4	1	720.14	1	1214.599	
441		12	max	.006	3	.033	1	.053	5		_	NC	5	NC	2
			man												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		
442			min	008	2	023	3	011	1	-6.627e-4	1_	747.258	1_	1020.846	
443		13	max	.006	3	.029	1	.061	5		12	NC	5	NC	2
444			min	008	2	019	3	013	1	-7.487e-4	_1_	798.164	<u>1</u>	873.633	5
445		14	max	.006	3	.023	1	.07	5	-5.696e-5	12	NC	5	NC	2
446			min	008	2	<u>015</u>	3	01 <u>5</u>	1	-8.346e-4	1_	883.051	<u>1</u>	757.014	5
447		15	max	.006	3	.015	1	.078	5	-6.257e-5	12	NC	5	NC	2
448			min	008	2	01	3	015	1	-9.206e-4	_1_	1023.79	_1_	666.887	5
449		16	max	.006	3	.006	1	.086	5	2.131e-4	_5_	NC	5	NC	2
450			min	008	2	004	3	014	1	-9.847e-4	<u>1</u>	1272.565	1_	595.724	4
451		17	max	.006	3	.003	3	.095	5	8.725e-3	5_	NC 1700 100	4_	NC	2
452		10	min	008	2	005	2	012	1	-5.293e-4	1_	1786.499	1_	535.8	4
453		18	max	.006	3	.01	3	.103	5	4.179e-3	5	NC	4	NC	2
454		1.0	min	008	2	017	1	008	1	-9.071e-3	1_	3443.126	_1_	485.94	4
455		19	max	.006	3	.018	3	.111	4	6.679e-3	3	NC	_1_	NC_	1
456	1440	1	min	008	2	031	1	002	1	-1.778e-2	1_	NC NC	1_	444.452	4
457	M13	1_	max	.006	1	.023	3	.006	3	4.003e-3	3_	NC	1_	NC NC	1
458		<u> </u>	min	008	5	029	1	007	2	-4.991e-3	1_	NC NC	1_	NC NC	1
459		2	max	.006	1	.167	3	.039	1	4.831e-3	3_	NC	5_	NC 407.4.700	2
460			min	008	5	185	1	002	5	-6.053e-3	1_	1190.053	_1_	4274.732	1
461		3	max	.006	1	.284	3	.098	1	5.66e-3	3_	NC CEO OE4	5_	NC	3
462		1	min	008	5	313	1	004	5	-7.114e-3	1_	653.951	1_	1802.279	1
463		4	max	.006	1	.358	3	.148	1	6.489e-3	3	NC 500,040	5	NC	3
464		-	min	008	5	394	1	006	5	-8.176e-3	1_	509.049	<u>1</u>	1213.125	1
465		5	max	.006	1	.38	3	.172	1	7.317e-3	3	NC 470 coo	5_	NC 4040,000	3
466			min	008	5	419	1	01	5	-9.238e-3	1_	476.698	1_	1048.226	1
467		6	max	.006	1	.351	3	.163	1	8.146e-3	3	NC F4C 000	5	NC	3
468		7	min	009	5	388	1	013	5	-1.03e-2	1_	516.928	1_	1104.167	1
469		7	max	.006	1	.281	3	.124	1	8.974e-3	3	NC CE4 OF7	5	NC	3
470			min	009	5	314	1	015	5	-1.136e-2	1	651.957	1_	1446.737	1
471 472		8	max	.006 009	5	<u>.191</u> 216	3	.064 016	5	9.803e-3 -1.242e-2	<u>3</u>	NC 991.36	<u>5</u> 1	NC 2683.504	2
473		9	min	.005	1	.107	3	016 .017	3	1.063e-2	3	NC	4	NC	1
474		9	max	009	5	126	1	013	2	-1.348e-2	1	1901.743	1	NC NC	1
475		10	max	.005	1	.069	3	.018	3	1.146e-2	3	NC	4	NC NC	1
476		10	min	009	5	085	1	024	2	-1.455e-2	1	3271.358	1	NC	1
477		11	max	.005	1	.107	3	.021	3	1.063e-2	3	NC	4	NC	1
478		11	min	009	5	126	1	012	2	-1.348e-2	1	1901.744	1	NC	1
479		12	max	.005	1	.191	3	.07	1	9.804e-3	3	NC	5	NC	3
480		12	min	009	5	216	1	004		-1.242e-2	1	991.36	1	2476.965	
481		13	max	.005	1	.281	3	.13	1	8.976e-3	3	NC	5	NC	5
482		13	min		5	314	1	.002		-1.136e-2	1	651 957		1373.333	
483		14	max	.005	1	.351	3	.17	1	8.147e-3	3	NC	5	NC	5
484		17	min	009	5	388	1	.007	10	-1.03e-2	1	516.928	1	1060.029	
485		15	max	.005	1	.38	3	.179	1	7.319e-3	3	NC	5	NC	3
486		1.0	min	01	5	419	1	.003	15	-9.237e-3	1	476.699	1	1011.773	1
487		16	max	.005	1	.358	3	.154	1	6.491e-3	3	NC	5	NC	3
488		1.0	min	01	5	394	1	003	5	-8.175e-3	1	509.05	1	1173.371	1
489		17	max	.005	1	.284	3	.102	1	5.663e-3	3	NC	5	NC	3
490			min	01	5	313	1	008	5	-7.114e-3	1	653.952	1	1741.441	1
491		18	max	.005	1	.167	3	.04	1	4.834e-3	3	NC	5	NC	2
492		· ·	min	01	5	185	1	008	5	-6.052e-3	1	1190.054	1	4103.852	1
493		19	max	.005	1	.023	3	.006	3	4.006e-3	3	NC NC	1	NC	1
494			min	01	5	028	1	007	2	-4.99e-3	1	NC	1	NC	1
495	M16	1	max	.002	1	.018	3	.006	3	5.234e-3	1	NC	1	NC	1
496			min	111	4	031	1	008	2	-3.048e-3	3	NC	1	NC	1
497		2	max	.002	1	.085	3	.041	1	6.382e-3	1	NC	5	NC	2
498			min	111	4	208	1	0	10	-3.648e-3	3	1048.492	1	4019.433	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

500		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
501	499		3	max	.002	1	.14	3	.102		7.529e-3		NC	5_	NC	3
502												3				
503			4													
505								-						•		
505			5			-										
For For								•								•
507			6													
508			-									_				
509			/			-				_						
Second Color			0					•						•		
ST			<u> </u>													
STOCK STOC			0													
513			9											<u> </u>		1
S14			10											1		1
516			10			-										
STORY STOR			11					•						_		•
517																
S18			12									_		•		-
519			12													
S20			13											•		
521																
S22			14					3						5		3
523						4				15		3		1		1
S24			15			1		3						5		
S26				min		4		1		5		3		1		
527	525		16	max	.003	1	.175	3	.15	1	8.678e-3	1	NC	5	NC	3
528	526			min	111	4	446	1	009	5	-4.846e-3	3	448.605	1	1195.372	1
529			17	max	.003	1		3	.099	1		1_		5		3
S30				min				•						_		1
531			18													
532											-3.645e-3	3		•		
533 M15 1 max 0 1 0 1 3.215e-4 3 NC 1 NC 1 534 min 0 1 0 1 0 1 -5.241e-4 5 NC 1 NC 1 535 2 max 0 3 002 15 .011 4 8.178e-4 3 NC 5 NC 1 536 min 0 5 017 1 0 3 -7.461e-4 1 6009.63 6 8696.984 4 537 3 max 0 3 003 15 .024 4 1.314e-3 3 NC 5 NC 1 538 min 002 5 033 1 003 3 -1.42e-3 1 3058.096 6 4055.457 4 539 4 max 0 3 004 15			19											_1_		1_
534 min 0 1 0 1 -5.241e-4 5 NC 1 NC 1 535 2 max 0 3 002 15 .011 4 8.178e-4 3 NC 5 NC 1 536 min 0 5 017 1 0 3 -7.461e-4 1 6009.63 6 8696.984 4 537 3 max 0 3 003 15 .024 4 1.314e-3 3 NC 5 NC 1 538 min 002 5 033 1 003 3 -1.42e-3 1 3058.096 6 4055.457 4 539 4 max 0 3 004 15 .037 4 1.81e-3 3 NC 5 NC 3 540 min 003 5 048 1 006 3 </td <td></td> <td>_1_</td> <td></td> <td>1</td>														_1_		1
535 2 max 0 3 002 15 .011 4 8.178e-4 3 NC 5 NC 1 536 min 0 5 017 1 0 3 -7.461e-4 1 6009.63 6 8696.984 4 537 3 max 0 3 003 15 .024 4 1.314e-3 3 NC 5 NC 1 538 min 002 5 033 1 003 3 -1.42e-3 1 3058.096 6 4055.457 4 539 4 max 0 3 004 15 .037 4 1.81e-3 3 NC 5 NC 3 540 min 003 5 048 1 006 3 -2.093e-3 1 2098.032 6 2628.758 4 541 5 max 0 3		<u>M15</u>	1_			_										
536 min 0 5 017 1 0 3 -7.461e-4 1 6009.63 6 8696.984 4 537 3 max 0 3 003 15 .024 4 1.314e-3 3 NC 5 NC 1 538 min 002 5 033 1 003 3 -1.42e-3 1 3058.096 6 4055.457 4 539 4 max 0 3 004 15 .037 4 1.81e-3 3 NC 5 NC 3 540 min 003 5 048 1 006 3 -2.093e-3 1 2098.032 6 2628.758 4 541 5 max 0 3 061 1 01 3 -2.767e-3 1 1637.116 6 1982.544 4 543 6 max 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>_</td><td></td><td>•</td></t<>										-				_		•
537 3 max 0 3003 15 .024 4 1.314e-3 3 NC 5 NC 1 538 min 002 5033 1003 3 -1.42e-3 1 3058.096 6 4055.457 4 539 4 max 0 3004 15 .037 4 1.81e-3 3 NC 5 NC 3 540 min 003 5048 1006 3 -2.093e-3 1 2098.032 6 2628.758 4 541 5 max 0 3005 15 .05 4 2.307e-3 3 NC 15 NC 9 542 min 004 5061 101 3 -2.767e-3 1 1637.116 6 1982.544 4 543 6 max 0 3006 15 .06 4 2.803e-3 3 NC 15 9290.468 10 544 min 005 5073 1015 3 -3.44e-3 1 1377.806 6 1642.479 4 545 7 max 0 3007 15 .067 4 3.299e-3 3 NC			2							_						
538 min 002 5 033 1 003 3 -1.42e-3 1 3058.096 6 4055.457 4 539 4 max 0 3 004 15 .037 4 1.81e-3 3 NC 5 NC 3 540 min 003 5 048 1 006 3 -2.093e-3 1 2098.032 6 2628.758 4 541 5 max 0 3 005 15 .05 4 2.307e-3 3 NC 15 NC 9 542 min 004 5 061 1 01 3 -2.767e-3 1 1637.116 6 1982.544 4 543 6 max 0 3 006 15 .06 4 2.803e-3 3 NC 15 9290.468 10 544 min 005 5																
539 4 max 0 3 004 15 .037 4 1.81e-3 3 NC 5 NC 3 540 min 003 5 048 1 006 3 -2.093e-3 1 2098.032 6 2628.758 4 541 5 max 0 3 005 15 .05 4 2.307e-3 3 NC 15 NC 9 542 min 004 5 061 1 01 3 -2.767e-3 1 1637.116 6 1982.544 4 543 6 max 0 3 006 15 .06 4 2.803e-3 3 NC 15 9290.468 10 544 min 005 5 073 1 015 3 -3.44e-3 1 1377.806 6 1642.479 4 545 7 max 0			3													
540 min 003 5 048 1 006 3 -2.093e-3 1 2098.032 6 2628.758 4 541 5 max 0 3 005 15 .05 4 2.307e-3 3 NC 15 NC 9 542 min 004 5 061 1 01 3 -2.767e-3 1 1637.116 6 1982.544 4 543 6 max 0 3 006 15 .06 4 2.803e-3 3 NC 15 9290.468 10 544 min 005 5 073 1 015 3 -3.44e-3 1 1377.806 6 1642.479 4 545 7 max 0 3 007 15 .067 4 3.299e-3 3 NC 15 7319.471 10 546 min 006 5			1													
541 5 max 0 3 005 15 .05 4 2.307e-3 3 NC 15 NC 9 542 min 004 5 061 1 01 3 -2.767e-3 1 1637.116 6 1982.544 4 543 6 max 0 3 006 15 .06 4 2.803e-3 3 NC 15 9290.468 10 544 min 005 5 073 1 015 3 -3.44e-3 1 1377.806 6 1642.479 4 545 7 max 0 3 007 15 .067 4 3.299e-3 3 NC 15 7319.471 10 546 min 006 5 082 1 019 3 -4.114e-3 1 1221.865 6 1457.069 4 547 8 max 0 <td></td> <td></td> <td>4</td> <td></td>			4													
542 min 004 5 061 1 01 3 -2.767e-3 1 1637.116 6 1982.544 4 543 6 max 0 3 006 15 .06 4 2.803e-3 3 NC 15 9290.468 10 544 min 005 5 073 1 015 3 -3.44e-3 1 1377.806 6 1642.479 4 545 7 max 0 3 007 15 .067 4 3.299e-3 3 NC 15 7319.471 10 546 min 006 5 082 1 019 3 -4.114e-3 1 1221.865 6 1457.069 4 547 8 max 0 3 008 15 .072 4 3.796e-3 3 NC 15 6071.263 10 548 min 007			-													
543 6 max 0 3 006 15 .06 4 2.803e-3 3 NC 15 9290.468 10 544 min 005 5 073 1 015 3 -3.44e-3 1 1377.806 6 1642.479 4 545 7 max 0 3 007 15 .067 4 3.299e-3 3 NC 15 7319.471 10 546 min 006 5 082 1 019 3 -4.114e-3 1 1221.865 6 1457.069 4 547 8 max 0 3 008 15 .072 4 3.796e-3 3 NC 15 6071.263 10 548 min 007 5 089 1 024 3 -4.787e-3 1 1128.278 6 1366.583 4 549 9 max			5													_
544 min 005 5 073 1 015 3 -3.44e-3 1 1377.806 6 1642.479 4 545 7 max 0 3 007 15 .067 4 3.299e-3 3 NC 15 7319.471 10 546 min 006 5 082 1 019 3 -4.114e-3 1 1221.865 6 1457.069 4 547 8 max 0 3 008 15 .072 4 3.796e-3 3 NC 15 6071.263 10 548 min 007 5 089 1 024 3 -4.787e-3 1 1128.278 6 1366.583 4 549 9 max 0 3 008 15 .073 4 4.292e-3 3 NC 15 5250.633 10 550 min 008			6					-								
545 7 max 0 3 007 15 .067 4 3.299e-3 3 NC 15 7319.471 10 546 min 006 5 082 1 019 3 -4.114e-3 1 1221.865 6 1457.069 4 547 8 max 0 3 008 15 .072 4 3.796e-3 3 NC 15 6071.263 10 548 min 007 5 089 1 024 3 -4.787e-3 1 1128.278 6 1366.583 4 549 9 max 0 3 008 15 .073 4 4.292e-3 3 NC 15 5250.633 10 550 min 008 5 093 1 028 3 -5.461e-3 1 1077.903 6 1346.936 4 551 10 max																
546 min 006 5 082 1 019 3 -4.114e-3 1 1221.865 6 1457.069 4 547 8 max 0 3 008 15 .072 4 3.796e-3 3 NC 15 6071.263 10 548 min 007 5 089 1 024 3 -4.787e-3 1 1128.278 6 1366.583 4 549 9 max 0 3 008 15 .073 4 4.292e-3 3 NC 15 5250.633 10 550 min 008 5 093 1 028 3 -5.461e-3 1 1077.903 6 1346.936 4 551 10 max 0 3 008 15 .07 4 4.788e-3 3 NC 15 4708.076 10 552 min 009			7					•								
547 8 max 0 3 008 15 .072 4 3.796e-3 3 NC 15 6071.263 10 548 min 007 5 089 1 024 3 -4.787e-3 1 1128.278 6 1366.583 4 549 9 max 0 3 008 15 .073 4 4.292e-3 3 NC 15 5250.633 10 550 min 008 5 093 1 028 3 -5.461e-3 1 1077.903 6 1346.936 4 551 10 max 0 3 008 15 .07 4 4.788e-3 3 NC 15 4708.076 10 552 min 009 5 095 1 031 3 -6.134e-3 1 1061.967 6 1392.913 4 553 11 max																
548 min 007 5 089 1 024 3 -4.787e-3 1 1128.278 6 1366.583 4 549 9 max 0 3 008 15 .073 4 4.292e-3 3 NC 15 5250.633 10 550 min 008 5 093 1 028 3 -5.461e-3 1 1077.903 6 1346.936 4 551 10 max 0 3 008 15 .07 4 4.788e-3 3 NC 15 4708.076 10 552 min 009 5 095 1 031 3 -6.134e-3 1 1061.967 6 1392.913 4 553 11 max 0 3 007 15 .065 4 5.284e-3 3 NC 15 4364.824 10 554 min 01			8					_								
549 9 max 0 3 008 15 .073 4 4.292e-3 3 NC 15 5250.633 10 550 min 008 5 093 1 028 3 -5.461e-3 1 1077.903 6 1346.936 4 551 10 max 0 3 008 15 .07 4 4.788e-3 3 NC 15 4708.076 10 552 min 009 5 095 1 031 3 -6.134e-3 1 1061.967 6 1392.913 4 553 11 max 0 3 007 15 .065 4 5.284e-3 3 NC 15 4364.824 10 554 min 01 5 094 1 034 3 -6.808e-3 1 1077.903 6 1514.796 4																
550 min 008 5 093 1 028 3 -5.461e-3 1 1077.903 6 1346.936 4 551 10 max 0 3 008 15 .07 4 4.788e-3 3 NC 15 4708.076 10 552 min 009 5 095 1 031 3 -6.134e-3 1 1061.967 6 1392.913 4 553 11 max 0 3 007 15 .065 4 5.284e-3 3 NC 15 4364.824 10 554 min 01 5 094 1 034 3 -6.808e-3 1 1077.903 6 1514.796 4			9					•				•				
551 10 max 0 3 008 15 .07 4 4.788e-3 3 NC 15 4708.076 10 552 min 009 5 095 1 031 3 -6.134e-3 1 1061.967 6 1392.913 4 553 11 max 0 3 007 15 .065 4 5.284e-3 3 NC 15 4364.824 10 554 min 01 5 094 1 034 3 -6.808e-3 1 1077.903 6 1514.796 4			Ť													
552 min 009 5 095 1 031 3 -6.134e-3 1 1061.967 6 1392.913 4 553 11 max 0 3 007 15 .065 4 5.284e-3 3 NC 15 4364.824 10 554 min 01 5 094 1 034 3 -6.808e-3 1 1077.903 6 1514.796 4			10													
553 11 max 0 3 007 15 .065 4 5.284e-3 3 NC 15 4364.824 10 554 min 01 5 094 1 034 3 -6.808e-3 1 1077.903 6 1514.796 4																
554 min01 5094 1034 3 -6.808e-3 1 1077.903 6 1514.796 4			11					15				_				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	555		12	max	0	3	007	15	.056	4	5.781e-3	3	NC	15		10

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
556			min	011	5	09	1	035	3	-7.481e-3	1	1128.278	6	1738.77	1
557		13	max	0	3	006	15	.045	4	6.277e-3	3	NC	15	4149.724	10
558			min	011	5	084	1	034	3	-8.155e-3	1	1221.865	6	1721.082	1
559		14	max	0	3	005	15	.039	1	6.773e-3	3	NC	15	5786.957	15
560			min	012	5	075	1	032	3	-8.828e-3	1	1377.806	6	1774.335	1
561		15	max	0	3	003	15	.034	1	7.27e-3	3	NC	15	NC	15
562			min	013	5	063	1	027	3	-9.502e-3	1	1637.116	6	1926.043	1
563		16	max	0	3	002	15	.025	1	7.766e-3	3	NC	5	NC	5
564			min	014	5	05	1	019	3	-1.018e-2	1	2098.032	6	2250.992	1
565		17	max	0	3	0	15	.013	1	8.262e-3	3	NC	5	NC	4
566			min	015	5	036	1	009	3	-1.085e-2	1	3058.096	6	2983.872	1
567		18	max	0	3	.002	5	.004	3	8.759e-3	3	NC	5	NC	4
568			min	016	5	02	1	008	2	-1.152e-2	1	6009.63	6	5311.981	1
569		19	max	0	3	.006	5	.021	3	9.255e-3	3	NC	1	NC	1
570			min	017	5	004	1	025	2	-1.22e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.007	3	3.14e-3	3	NC	1	NC	1
572			min	007	4	003	4	008	2	-3.76e-3	1	NC	1	NC	1
573		2	max	0	10	008	12	.005	1	3.001e-3	3		12	NC	2
574			min	006	4	029	4	003	5	-3.577e-3	1	3815.926	4	9202.613	1
575		3	max	0	10	016	12	.014	1	2.861e-3	3		15	NC	4
576			min	006	4	054	4	011	5	-3.394e-3	1	1941.794	4	5201.746	1
577		4	max	0	10	023	12	.02	1	2.721e-3	3		15	NC	10
578			min	006	4	077	4	022	5	-3.211e-3	1	1332.184	4	3951.916	1
579		5	max	0	10	03	12	.024	1	2.582e-3	3		15	NC	10
580		ľ	min	005	4	098	4	036	5	-3.028e-3	1	1039.517	4	2849.653	5
581		6	max	0	10	036	12	.027	1	2.442e-3	3		15	NC	10
582			min	005	4	115	4	05	5	-2.845e-3	1	874.863	4	2024.795	5
583		7	max	0	10	04	12	.028	1	2.302e-3	3		15	NC	10
584			min	004	4	13	4	063	5	-2.662e-3	1	775.846	4	1589.911	5
585		8	max	0	10	043	12	.027	1	2.163e-3	3		15	NC	10
586			min	004	4	14	4	074	5	-2.479e-3	1	716.421	4	1341.771	5
587		9	max	0	10	046	12	.026	1	2.023e-3	3		15	NC	10
588			min	004	4	146	4	083	5	-2.296e-3	1	684.434	4	1198.671	5
589		10	max	0	10	046	12	.023	1	1.883e-3	3		15	NC	10
590		10	min	003	4	148	4	089	5	-2.113e-3	1	674.316	4	1124.044	5
591		11	max	<u>005</u>	10	046	12	.02	1	1.744e-3	3		15	NC	10
592			min	003	4	146	4	09	5	-1.93e-3	1	684.434	4	1101.889	5
593		12	max	<u>.005</u> 0	10	044	12	.017	1	1.604e-3	3		15	NC	10
594		12	min	003	4	139	4	088	5	-1.747e-3	1	716.421	4	1128.237	5
595		13	max	<u>.005</u>	10	04	12	.013	1	1.464e-3	3		15	NC	3
596		13	min	002	4	128	4	082	5	-1.564e-3		775.846		1209.468	
597		14	max	0	10	036	12	.01	1	1.325e-3	3		15	NC	2
598		17	min	002	4	114	4	073	5	-1.381e-3		874.863	4	1366.078	
599		15	max	002	10	03	12	.006	1	1.185e-3	3		15	NC	1
600		13	min	001	4	096	4	06	5	-1.198e-3			4	1646.405	
601		16	max	<u>001</u> 0	10	096 023	12	.003	1	1.045e-3	3		15	NC	1
602		10	min	001	4	023 075	4	046	5	-1.045e-3	2		4	2170.935	_
603		17		<u>001</u> 0	10	075 016	12	.001	1	9.055e-4	3		4 15	NC	1
604		17	max	0	4	016 051	4	03	5	-8.578e-4	2	1941.794	4	3313.123	
605		18	min	0	10	001 008	12	03	9	8.137e-4	4		12	NC	1
606		10	max min	0	4	006 026	4	014	5	-6.999e-4	2	3815.926	4	6974.595	5
607		10		0	1	026 0	1		1	8.936e-4	4	NC	1	NC	1
		19	max		1	0	1	0	1			NC NC	1	NC NC	1
608			min	0		U		0		-5.421e-4		INC		INC	

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,V}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.