Portas lógicas. Introdução a circuitos.

Eduardo Furlan Miranda 2024-08-01

Baseado em: Tangon, LG; Santos, RC. Arquitetura e organização de computadores. EDE. 2016. ISBN 978-85-8482-382-6.

Portas lógicas

- Elementos e/ou componentes básicos da eletrônica digital
 - Ex.: microcontroladores, processadores, circuitos integrados
- Sistema binário, níveis lógicos, tensão

Simbologia

- Representação da entrada, saída, etc.
- Bloco lógico: simbologia da junção entre as entradas e saídas lógicas

Entradas assumem valores 0 ou 1

Tabela-verdade pode ser usada

AND e OR

7407*7417

7410/7412*

7408/7409*

Portas Lógicas E e OU na prática

Subscribe

ARDUÍNO #28: Lógica OU no Arduíno

Subscribe

C/C++

Operador
unário

Operador binário

Operador ternário

Operador	Tipo
++,	Incremento/Decremento
+, -, *, /, %	Aritméticos
<, <=, >, >=, ==, !=	Relacionais
&&, , !	Lógicos
&, , <<, >>, ~, ^	Bitwise
=, +=, -=, *=, /=, %=	Atribuição
?:	Condicional

Portas Lógicas E e OU na prática

Subscribe

Inversor (negação)

Símbolo

Expressão da Função

Tabela-verdade NOT

Α	S
0	1
1	0

Porta OR

Α		S
А	В	S
0	0	0
0	1	1
1	0	1
1	1	1

Porta AND

Símbolo

Expressão da Função

$$\stackrel{\mathsf{A}}{=}$$
 $\stackrel{\mathsf{B}}{=}$

Α	В	S
0	0	0
0	1	0
1	0	0
1	1	1

Porta NAND

Símbolo

Expressão da Função

Α	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Port NOR

Símbolo

Α	В	S
0	0	1
0	1	0
1	0	0
1	1	0

Porta XOR

Símbolo

Expressão da Função

$$S = A \oplus B$$

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Porta XNOR

Expressão da Função

$$S = \overline{A \oplus B}$$

Α	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Portas Lógicas

Representação

Analógica = contínua

Digital = discreta (etapa por etapa)

Sistema Digital

- Vantagem
 - Facilidade de projeto, integração e armazenamento
 - Operação programada
 - Pouca sensibilidade à variação da fonte de tensão, ao envelhecimento e à temperatura

- Desvantagem
 - Conversões de analógico para digital (A/D) e de digital para analógico (D/A)

Lógica combinacional

 Todas as saídas dependem única e exclusivamente das variáveis de entrada

- Circuitos combinacionais básicos:
 - Habilitação / Desabilitação, Codificador, Multiplexador,
 Decodificador, Demultiplexador, Gerador de Paridade,
 Verificador de Paridade, Comparador, Circuitos Aritméticos:
 Somador, Shifter (deslocador), Subtrator

Tabela 4.20 – Tabela-verdade habilita/ desabilita circuito.

ENTRA	ADAS	SAÍDA
em	Α	Υ
0	0	0
0	1	0
1	0	0
1	1	1

Figura 4.17 – Diagrama de habilita/ desabilita circuitos.

- Circuito Habilitado → En = 1 → Permite o sinal de entrada para a saída
- Circuito Desabilitado → En = 0 → Não se permite a passagem do sinal de entrada para a saída

Figura
$$4.18 - En = 1$$
.

Figura 4.19 - En = 0.

Tabela 4.21 – Tabela-verdade habilita/desabilita circuito.

ENTRADAS	SAÍDA
em	Υ
0	0
1	Α

Figura 4.20 – Diagrama de habilita/desabilita circuitos.

Tabela 4.22 – Tabela-verdade habilita/desabilita circuito.

ENTR	ENTRADAS	
En1	En2	Υ
0	0	0
0	1	0
1	0	0
1	1	Α

Lógica sequencial

 Valores de sinais de saída dependem dos valores do sinal de entrada e dos valores de sinal armazenados, ao contrário do combinacional, e são geralmente pulsados

LATCHES SR

S	R	Q	Q'
0	0	Latch	Latch
0	1	0	1
1	0 //	1	0
1	1	0	0

"Latch" = mantém o estado anterior

- Implementa um circuito básico de memória
- 2 estados estáveis; usa AND, OR, NOT, NAND, e NOR

Flip-Flop D (D = Dados)

- 2 latches ligados em série
- Normalmente inclui um sinal zero, um ou dois sinais de valores de entrada, um sinal de clock e um sinal de valor de saída

D

Q

 O que interessa é a transição negativa. Quando ocorre, o resultado da saída é atualizado. A cada sinal de clock, as saídas invertem-se (devido a isso que recebe o nome de flip-flop)

