CLAIMS

What is claimed is:

1	1.	A method for correcting signals received from an earth formation using a			
2		Nuclear Magnetic Resonance (NMR) tool into a borehole in said earth formation,			
3		the method comprising:			
4		(a) exciting said earth formation with a first pulse sequence having a first			
5		recovery time;			
6		(b) exciting said earth formation with a plurality of additional pulse sequences			
7		having a second recovery time less than said first recovery time;			
8		(c) determining from spin echo signals resulting from said additional pulse			
9		sequences an estimate of a non-formation signal; and			
10		(d) correcting spin echo signals resulting from said first pulse sequence using			
11		said estimate and obtaining corrected spin echo signals.			
12					
1	2.	The method of claim 1 wherein at least one of said additional pulse sequences has			
2		a duration less than a duration of said first pulse sequence.			
3					
. 1	3.	The method of claim 1 wherein said second recovery time corresponds to partial			
2		recovery of nuclear spins in said earth formation.			
3					
1	4.	The method of claim 1 wherein said additional pulse sequences comprise clay			
2		bound water (CBW) sequences.			
3					

- 1 5. The method of claim 1 wherein said additional pulse sequences have durations
- less than 40 ms.

3

1 6. The method of claim 1 wherein said first pulse sequence and said additional pulse sequences comprise CPMG sequences.

3

- 1 7. The method of claim 1 wherein said first pulse sequence and said additional pulse
- 2 sequences comprise modified CPMG sequence having a tip angle of a refocusing
- pulse that is less than 180°.

4

- 1 8. The method of claim 1 wherein said additional pulse sequences comprise pulse
- 2 sequences having a plurality of pairs of phase alternated pairs (PAP) of pulse
- 3 sequences.

4

- 1 9. The method of claim 6 wherein said plurality of pairs of PAP sequences have a
- 2 specified phase relationship to each other.

3

- 1 10. The method of claim 8 wherein the number of said pairs of PAP sequences nf,
- 2 frequency shift between said pairs of PAP sequences δf are related according to:

$$3 nf \cdot \delta f = \frac{m}{t}$$

4 where m is any integer that is not a multiple of nf.

5

1	11.	The n	nethod of claim 8 wherein said non-formation signal comprises a ringing	
2		from	a refocusing pulse.	
3				
1	12.	The n	nethod of claim 8 wherein said non-formation signal comprises a ringing	
2		from	an excitation pulse.	
3 ·				
1	13.	The n	nethod of claim 11 wherein estimating said ringing from said refocusing	
2		pulse further comprises:		
3		(i)	separately estimating a ringing from each one of said plurality of phase	
4			alternated pairs;	
5		(ii)	forming a vector sum of said separate estimates.	
6				
1	14.	The n	nethod of claim 12 wherein estimating said ringing from said excitation	
2		pulse further comprises:		
3		(i)	separately estimating an echo signal from each one of said plurality of	
4			phase alternated pairs; and	
5		(ii)	forming a vector sum of said separate estimates of said echo signal.	
6				
1	15.	The method of claim 1 further comprising processing said corrected sp		
2		signals for determining at least one of (i) a T ₂ distribution, (ii) total porosity,		
3		bound volume irreducible, (iv) a T ₁ distribution, (v) clay bound water, and, (vi)		
4		bound	d water moveable.	
5				

1	16.	The method of claim 1 further comprising conveying said NMR tool into said				
2		earth formation on one of (i) a wireline, (ii) a drilling tubular, and, (iii) a				
3		slickline.				
4						
1	17.	The m	nethod of claim 1 further comprising:			
2		(i)	exciting said earth formation with a second pulse sequence having a			
3			recovery time substantially equal to said first recovery time, said second			
4			pulse sequence forming a phase alternated pair with said first pulse			
5			sequence; and			
6		(ii)	determining from spin echo signals resulting from said first and second			
7			pulse sequences an additional estimate of said non-formation signal.			
8						
1	18.	The m	nethod of claim 17 further comprising:			
2		(A)	comparing said estimate and said additional estimate of said non-			
3			formation signal; and			
4		(B)	using a result of said comparison as an indication of a change in said earth			
5			formation between positions of said NMR tool at excitation with said first			
6			and second pulse sequences.			
7						
1	19.	An ap	paratus for conducting logging operations in a borehole in an earth			
2		formation, the apparatus comprising:				
3		(a)	a magnet on a Nuclear Magnetic Resonance (NMR) tool for polarizing			
4			nuclear spins in a region of interest in the earth formation;			

5		(b)	an ant	tenna on the NMR tool for:
6			(A)	exciting said earth formation with a first pulse sequence
7				having a first recovery time;
8			(B)	exciting said earth formation with a plurality of additional
9				pulse sequences having a recovery time less than said first
10				recovery time; .
11		(c)	a proc	eessor for
12			(C)	determining from spin echo signals resulting from said
13			additi	onal pulse sequences an estimate of a non-formation signal, and
14			(D)	correcting spin echo signals resulting from said first pulse
15				sequence using said estimate and obtaining corrected spin echo
16				signals.
17				
1	20.	The ap	pparatu	s of claim 19 wherein said additional pulse sequences comprise
2		clay b	ound w	ater (CBW) sequences.
3				
1	21.	The a	pparatu	s of claim 19 wherein said additional pulse sequences have
2		durati	ons less	s than 40 ms.
3				
1	22.	The a	pparatu	s of claim 19 wherein said first pulse sequence and said additional
2		pulse	sequenc	ces comprise CPMG sequences.
3				

- 1 23. The apparatus of claim 19 wherein said first pulse sequence and said
- 2 additional pulse sequences comprise modified CPMG sequence having a tip angle
- of a refocusing pulse that is less than 180°.

4

- 1 24. The apparatus of claim 19 wherein said additional pulse sequences comprise
- 2 pulse sequences having a plurality of pairs of phase alternated pairs (PAP) of
- 3 pulse sequences.

4

- 1 25 The apparatus of claim 24 wherein said plurality of pairs of PAP sequences
- 2 have a specified phase relationship to each other.

3

- 1 26 The apparatus of claim 24 wherein the number of said pairs of PAP sequences
- 2 nf, frequency shift between said pairs of PAP sequences δf are related
- 3 according to:

$$4 nf \cdot \delta f = \frac{m}{t}$$

5 where m is any integer that is not a multiple of nf.

6

- 1 27 The apparatus of claim 24 wherein said non-formation signal comprises a ringing
- 2 caused by a refocusing pulse.

3

- 1 28 The apparatus of claim 24 wherein said non-formation signal comprises a ringing
- 2 caused by an excitation pulse.

3

1	29	The apparatus of claim 24 wherein said processor estimates said ringing caused		
2		by said refocusing pulse by:		
3		(i)	separately estimating a ringing from each one of said plurality of phase	
4			alternated pairs;	
5		(ii)	forming a vector sum of said separate estimates.	
6				
1	30	The ap	paratus of claim 25 wherein said processor estimates said ringing caused	
2		by said	d excitation pulse by:	
3		(i)	separately estimating an echo signal from each one of said plurality of	
4			phase alternated pairs; and	
5		(ii)	forming a vector sum of said separate estimates of said echo signal.	
6				
1	31	The ap	paratus of claim 21wherein said processor further determines from said	
2		correct	ted spin echo signals at least one of (i) a T ₂ distribution, (ii) total porosity,	
3		(iii) bo	ound volume irreducible, (iv) bound water movable, (v) clay bound water,	
4		and, (v	vi) a T ₁ distribution.	
5				
1	32.	The ap	paratus of claim 19 further comprising a conveyance device for	
2		convey	ying said NMR tool into said borehole, said conveyance device selected	
3		from (i	i) a wireline, (ii) a drilling tubular, and, (iii) a slicline	
4				
1	33.	The ap	oparatus of claim 15 wherein said transmitter further excites said earth	
2		format	tion with a second pulse sequence having arecovery time substantially equal	

3		to said	d first recovery time, said second pulse sequence forming a phase alternated	
4		pair w	vith said first pulse sequence; and wherein said processor further	
5		determines from spin echo signals resulting from said first and second pulse		
6		sequences an additional estimate of said non-formation signal.		
7				
1	34.	The apparatus of claim 33 wherein said processor further:		
2		(i)	compares said estimate and said additional estimate of said non-	
3			formation signal; and	
4		(ii)	provides an indication of a change in said earth formation between	
5			positions of said NMR tool at excitation with said first and second pulse	
6			sequences.	
7				