Pontifícia Universidade Católica de Minas Gerais (PUC Minas) Rua Walter Ianni, 255 - São Gabriel, Belo Horizonte - MG

Modelos Neurais para a Representação de Variáveis Climáticas

Leandro M. Ferreira, Luís E. Zárate leandromferreira.eng@gmail.com

30 de outubro de 2019

Conteúdo

- 1 Introdução
- 2 Proposta de Trabalho
 - Objetivo
 - Objetivos Específicos
- 3 Referencial Teórico
 - Redes Neurais
 - Meteorologia
 - Trabalhos Relacionados
- 4 Metodologia
 - Pré-Processamento da Base de dados
 - Modelo Proposto
 - Validação
 - Ferramenta
- 5 Resultados
 - Modelos Neurais
 - ANTs
- 6 Conclusão
- 7 Referencias

Introdução

Figura: Tipos de climas do Brasil e sua previsibilidade climática sazonal

Fonte: Elaborado pelo autor

Introdução

- Dificuldade no planejamento de atividades;
- 552 Estações Climáticas Automáticas e 255 Estações Climáticas Convencionais;
- Ohio tem 295 e Florida tem 596 EM, com 116 mil km² e 170 mil Km² respectivamente [3];
- Redes neurais tem a capacidade de aprender o comportamento climático por localização.

Modelar as regiões climáticas de todo o Brasil para a estimar as principais variáveis climáticas.

- a) Temperatura Mínima e Máxima;
- b) Umidade Relativa Mínima e Máxima;
- c) Precipitação Acumulada Mensal.

- ▶ Coleta e Pré-Processamento de Dados;
- Determinar as médias mensais para as variáveis utilizadas;
- Construção de modelos neurais, um para cada mês do ano;
- Desenvolvimento de uma ferramenta.

- Modelos computacionais inspirados na estrutura neural de organismos racionais;
- ▶ Não lineares;
- Processamento paralelo e distribuído
- Capacidade de generalização;
- Baixo custo computacional após serem treinados;
- Obtém conhecimento através de aprendizado;

Modelos Numéricos

- Simula o estado da atmosfera, utilizando modelos físicos-matemáticos[6];
- O prazo da previsão está diretamente relacionado resolução temporal e espacial;

Previsão Climáticas Meteorologia

Previsão Determinística

São previsões que obedecem as funções do tipo $f:C\to P$, onde f é a função de predição, C as variáveis necessárias para realização da previsão e P o estado da variável prevista [6]

Previsão Probabilística:

A previsão realizada é uma distribuição de probabilidade sobre os de valores de uma variável. As predições podem ser visualizadas com variáveis continuas ou discretas.

Trabalhos Relacionados

Referencial Teórico

- ► Chaar, Lamont e Karkoub (2009)[4],
- ► Clarete; Meireles e Zárate (2015) [5]
- ► Santos, Zárate e Pereira (2013) [9]
- ► Anochi e Velho (2016) [2]
- ► Anochi e Velho (2015) [1]

Metodologia

Figura: Metodologia utilizada

- Base de dados fornecida pelo INMET com os seguintes dados coletados pelas EMA;
 - a) Temperatura do Ar;
 - b) Umidade Relativa do Ar;
 - c) Pressão Atmosférica do Ar;
 - d) Valores Eólicos:
 - e) Radiação Solar;
 - f) Precipitação Acumulada;
 - g) Temperatura do Ponto de Orvalho.
- Foram unidos todos os arquivos referente a cada estação e separados em meses.

Primeiramente foi identificado possíveis inconsistências.

1.
$$Temp_{min} > Temp_{max}$$

2.
$$Temp < 0$$
 ou $Temp > 45$

3.
$$Temp_{po\ min} > Temp_{po\ max}$$

4.
$$UR < 0$$
 ou $UR > 100$

5.
$$UR_{min} > UR_{max}$$

Figura: Mapa da Temperatura Mínima no Mês de Junho.

Fonte: Elaborado pelo Autor

Figura: Mapa de calor da correlação entre as variáveis.

Fonte: Elaborado pelo Autor

Tabela: Tamanho da Base de dados

	Original	Após a Limpeza	Qto Retirados
Janeiro	3.240.144	2.642.977	597.167
Fevereiro	2.975.448	2.364.897	610.551
Março	3.289.008	2.643.226	645.782
Abril	3.209.232	2.580.326	628.906
Maio	3.344.568	2.708.611	635.957
Junho	3.279.264	2.665.045	614.219
Julho	3.426.504	2.819.525	606.979
Agosto	3.457.894	2.860.449	597.445
Setembro	3.383.952	2.856.281	527.671
Outubro	3.147.984	2.651.813	496.171
Novembro	3.079.104	2.576.991	502.113
Dezembro	3.219.504	2.694.807	524.697

Modelo Proposto Metodologia

- ► Função de ativação: Sigmoide;
- ▶ Normalização dos dados entre [0.1,0.9];
- Aprendizado: Backpropagation
- Função de Otimização: Limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) [10, 11];
- ► Camada escondida: 2n + 1 [8];
- ► Taxa de aprendizado: 0,09.
- ► Tolerância: 0.0001

Modelo Proposto Metodologia


```
f(lat, long, alt, Temp_{min}, Temp_{max}) \overrightarrow{RNA} (UR_{min} \vee UR_{max}) (1)
f(lat, long, alt, UR_{min}, UR_{max}) \overrightarrow{RNA} (Temp_{min} \vee Temp_{max}) (2)
f(lat, long, alt, UR_{min}, UR_{max}, Temp_{min}, Temp_{max}) \overrightarrow{RNA} Prep (3)
```


Erro Médio Absoluto

$$WMAE = \sum_{i=1}^{n} |y_i - y_i'|$$
 (4)

Variancia Explicativa

Variância explicativa =
$$1 - \frac{Var\{y - y'\}}{Var\{y\}}$$
 (5)

Desenvolvimento da Ferramenta Metodologia

Figura: Diagrama do Funcionamento da Ferramenta

Fonte: Elaborado pelo Autor

Tabela: Resultados do Treinamento para Temperatura Máxima

Mês	Nº Estações	E. Médio	E. Mínimo	E. Máximo	Std. erro	Var.
Janeiro	458	0,240	0,001	0,942	0,202	0,969
Fevereiro	458	0,288	0,005	0,904	0,197	0,960
Março	458	0,263	0,000	1,091	0,224	0,972
Abril	461	0,354	0,001	1,263	0,277	0,972
Maio	461	0,369	0,000	1,921	0,324	0,982
Junho	467	0,362	0,002	1,885	0,328	0,990
Julho	467	0,381	0,004	1,877	0,322	0,987
Agosto	468	0,371	0,008	1,573	0,291	0,988
Setembro	470	0,421	0,013	2,156	0,365	0,983
Outubro	458	0,370	0,000	2,562	0,342	0,981
Novembro	459	0,355	0,005	1,556	0,293	0,971
Dezembro	459	0,271	0,002	1,474	0,247	0,969

Figura: Regressão da Temperatura Máxima no Mês de Outubro

Tabela: Resultados do Treinamento para Temperatura Mínima

Mês	Nº Estações	E. Médio	E. Mínimo	E. Máximo	Std. erro	Var.
Janeiro	458	0,285	0,006	1,112	0,226	0,957
Fevereiro	458	0,318	0,003	1,012	0,210	0,945
Março	458	0,320	0,004	1,133	0,244	0,971
Abril	461	0,318	0,018	1,231	0,251	0,975
Maio	461	0,418	0,005	1,648	0,338	0,979
Junho	467	0,375	0,004	1,994	0,340	0,987
Julho	467	0,442	0,003	2,264	0,426	0,977
Agosto	468	0,460	0,004	2,097	0,391	0,977
Setembro	470	0,399	0,000	1,794	0,355	0,979
Outubro	458	0,383	0,007	1,158	0,282	0,977
Novembro	459	0,346	0,001	1,178	0,271	0,971
Dezembro	459	0,341	0,007	1,091	0,220	0,963

Figura: Regressão da Temperatura Mínima no Mês de Julho

Modelos Neurais Umidade Relativa

Resultados

Tabela: Resultados do Treinamento para Umidade Relativa Máxima

Mês	Nº Estações	E. Médio	E. Mínimo	E. Máximo	Std. erro	Var.
Janeiro	458	1,716	0,041	6,716	1,366	0,919
Fevereiro	458	1,500	0,005	5,764	1,192	0,907
Março	458	1,376	0,011	7,820	1,186	0,914
Abril	461	1,679	0,013	9,530	1,532	0,857
Maio	461	1,794	0,014	5,103	1,202	0,912
Junho	467	1,881	0,008	7,536	1,525	0,935
Julho	467	1,954	0,015	7,901	1,461	0,958
Agosto	468	2,070	0,009	8,626	1,656	0,966
Setembro	470	1,904	0,028	6,518	1,561	0,966
Outubro	458	1,591	0,029	6,806	1,311	0,965
Novembro	459	1,756	0,003	8,059	1,560	0,935
Dezembro	459	1,700	0,021	5,494	1,319	0,927

Modelos Neurais Umidade Relativa Resultados

Figura: Regressão da Umidade Relativa Máxima no Mês de Novembro

Modelos Neurais Umidade Relativa

Resultados

Tabela: Resultados do Treinamento para Umidade Relativa Mínima

Mês	Nº Estações	E. Médio	E. Mínimo	E. Máximo	Std. erro	Var.
Janeiro	458	1,628	0,028	5,692	1,334	0,924
Fevereiro	458	1,689	0,032	7,299	1,475	0,911
Março	458	1,516	0,001	11,387	1,641	0,911
Abril	461	1,603	0,025	9,455	1,485	0,883
Maio	461	1,540	0,013	5,540	1,202	0,932
Junho	467	2,050	0,001	7,058	1,622	0,924
Julho	467	1,948	0,025	7,699	1,490	0,955
Agosto	468	2,139	0,004	10,171	1,829	0,962
Setembro	470	1,990	0,056	8,732	1,731	0,963
Outubro	458	1,556	0,003	7,354	1,265	0,970
Novembro	459	2,095	0,007	6,507	1,544	0,930
Dezembro	459	1,780	0,001	8,667	1,445	0,944

Modelos Neurais Umidade Relativa Resultados

Figura: Regressão da Umidade Relativa Mínima no Mês de Março

Modelos Neurais Precipitação Resultados

Tabela: Resultados do Treinamento para Precipitação

Mês	Nº Estações	E. Médio	E. Mínimo	E. Máximo	Std. erro	Var.
Janeiro	458	37,511	1,205	183,696	34,583	0,642
Fevereiro	458	33,159	0,192	119,654	27,096	0,666
Março	458	42,744	0,280	126,412	30,180	0,536
Abril	461	31,565	0,184	161,286	25,598	0,707
Maio	461	28,325	0,308	330,531	38,727	0,720
Junho	467	26,170	0,153	205,118	34,517	0,662
Julho	467	16,585	0,209	116,593	19,703	0,816
Agosto	468	11,339	0,128	67,843	12,974	0,847
Setembro	470	19,964	0,171	85,037	17,669	0,745
Outubro	458	22,551	0,986	85,615	17,163	0,724
Novembro	459	35,647	0,319	245,898	38,822	0,648
Dezembro	459	36,594	0,290	194,005	27,867	0,663

Modelos Neurais Precipitação Resultados

Figura: Regressão da Precipitação no Mês de Maio

Figura: Desvio Padrão das Variáveis Objetivo

ANTs - Home

Figura: Tela Home

WCE: Inicio Estimar Geocode Estimar Search

Walking Climate Estimator

Weather conditions affect our daily lives, from routine activities such as going to the bakery, to planned long-term activities such as construction sites. These activities may be delayed due to rainy days, or even have been restanted due to the damage caused by the conditions under which the work was exposed. In Brazult the climate forecast is a difficult task, large institutions distribute climatic stations throughout the country, seeking to understand their climatic conditions by obtaining climate data. Today, the National Meteorological Institute has only \$25 automatic warders stations, one of the largest networks in South America. Even with this number it is not post accurately. This dependence on climate factors and the lack of accuracy in the estimates motivated this work whose objective is to estimate the values of climatic variables using artificial neural networks based on geographic data (datatude, longitude and a hitsude) using the information drive by the meteorological stations of the National Institute of Meteorology.

Author: Leandro Ferreira

Oriendador: Luis E. Zarate

ANTs - Entrada de Dados

Figura: Tela de Entrada de Dados da Aplicação

Esti	mar		
Latitude			
Longitud	e		

(a) Entrada de dados por Geolocalização

(b) Entrada de dados por Busca no Google *Maps*

ANTs -Tela de Resultados Ferramenta

Figura: Tela Apresentação dos Resultados

WCE: Inicio Estimar Geocode Estimar Search

Estimativa para Latitude: -20.3855743 Longitude: -43.5035777

	Temperatura Maxima (C)	Temperatura Minima (C)	Umidade Relativa Maxima do Ar (%)	Umidade Relativa Minima do Ar (%)	Precipitação Acum.(mm)
Mes					
Janeiro	23.9738	22.697	74.19	68.2154	176.445
Fevereiro	24.6091	23.2486	69.6806	63.3763	146.362
Março	23.8487	22.5357	74.6708	68.4989	162.956
Abril	22.87	21.5464	73.3568	67.1301	121.515
Maio	20.7901	19.4657	70.7065	64.8764	85.8611
Junho	19.9698	18.633	69.7905	64.0987	62.0076
Julho	20.19	18.8157	64.2149	58.6825	53.3031
Agosto	21.2191	19.8003	57.5965	52.4035	39.8293
Setembro	23.0571	21.6779	56.5958	51.7674	55.9483
Outubro	23.7047	22.3653	63.7078	58.3297	93.033
Novembro	23.2433	22.0132	73.4346	67.6311	126.141
Dezembro	23.6556	22.3904	77.0014	70.8277	152.027

ANTs -Tela de Resultados Ferramenta

Tabela: Temperaturas Médias Mensais da cidade de Ouro Preto

Mês	Temperatura Máxima (C)	Temperatura Mínima (C)	Precipitação Acum. (mm
Janeiro	24	18	296
Fevereiro	25	18	166
Março	24	18	168
Abril	23	16	68
Maio	22	14	33
Junho	22	12	13
Julho	22	12	10
Agosto	24	13	18
Setembro	25	15	57
Outubro	26	17	103
Novembro	24	18	215
Dezembro	24	18	325

Fonte: [12]

Conclusão

- Os modelos neurais apresentaram resultado satisfatórios para as variáveis de temperatura e umidade relativa do ar;
- Para a precipitação acumulada os resultados demonstraram erros maiores, impossibilitando a confiança nos valores preditos;
- A ferramenta desenvolvida demonstra que podemos utilizar a estrategia implementada para estimar valores em locais não atendidos por estações climáticas.

Trabalhos Futuros Conclusão

- Modelos preditivos para as demais variáveis climáticas;
- Adicionadas novas entradas para o melhoramento da predição da precipitação acumulada;
- Utilizar e avaliar outras arquiteturas de rede neurais;
- ▶ Desenvolvimento do front-end da aplicação.

Referencias I

Juliana Aparecida Anochi and Haroldo Fraga de Campos Velho.

Climate precipitation prediction by neural network.

Journal of Mathematics and System Science, 5:207-213, 2015.

Juliana Aparecida Anochi and Haroldo Fraga de Campos Velho.

Previsão climática de precipitação para a região sul por rede neural autoconfigurada. Ciência e Natura 38 2016

High Plains Regional Climate Center.

Historical climate data summaries.

http://www.hprcc.unl.edu, 2017. Accessed: 2010-10-30.

L. E. Chaar, L. A. Lamont, and M. Karkoub. [4]

Modeling climate parameters for renewable energy applications in the use using neural networks.

In 2009 CIGRE/IEEE PES Joint Symposium Integration of Wide-Scale Renewable Resources Into the Power Delivery System, pages 1-10. July 2009.

Wanderley Clarete, Lanza Meirelles, and Luis E Zárate.

Data mining in the reduction of the number of places of experiments for plant cultivates.

Computers and Electronics in Agriculture, 113:136-147, 2015.

Jose Manuel Gutiérrez.

Redes probabilísticas y neuronales en las ciencias atmosféricas. Ministerio de Medio Ambiente, Secretaría General Técnica, 2004.

Simon Haykin.

Neural networks principles and practices.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1998.

[8] Věra Kůrková

Kolmogorov's theorem and multilayer neural networks.

Neural Networks, 5(3):501-506, 1992,

Enock T. Santos, Luis E. Zárate, and Elizabeth M D Pereira.

Hybrid thermal model for swimming pools based on artificial neural networks for southeast region of Brazil. Expert Systems with Applications, 40(8):3106-3120, 2013.

Referencias II

[10] Dewi Retno Sari Saputro and Purnami Widvaningsih.

Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR).

AIP Conference Proceedings, 1868(1):40009, 2017.

[11] R. Setiono and L. C. K. Hui.

Use of a quasi-newton method in a feedforward neural network construction algorithm. *IEEE Transactions on Neural Networks*, 6(1):273–277, Jan 1995.

[12] Clima Tempo.

Climatologia de ouro preto - mg, 2018.

