物理化学实验

B.H.Zhang

2021年10月24日

1 实验一:燃烧焓的测定

图 1.1: 蔗糖的雷诺校正曲线。纵坐标 θ 为温度 (去单位为摄氏度 °C),横坐标 t 为时间(去单位为 秒 s),C 点与 A 点纵坐标差值为升高温度为 1.020°C

图 1.2: 苯甲酸的雷诺校正曲线。纵坐标 θ 为温度 (去单位为摄氏度 °C),横坐标 t 为时间(去单位 为秒 s),C 点与 A 点纵坐标差值为升高温度为 1.629°C

薜	· 法糖	苯甲酸						
时间 t/s	温差 $\Delta\theta/^{\circ}$ C	时间 t/s	温差 $\Delta\theta/^{\circ}$ C					
0	0.000	0	0.000					
60	0.009	60	0.002					
120	0.016	120	0.004					
180	0.019	180	0.006					
240	0.023	240	0.007					
300	0.027	300	0.008					
330	0.029	330	0.009					
360	0.129	360	0.055					
390	0.477	390	0.364					
420	0.693	420	0.762					
450	0.821	450	1.068					
480	0.902	480	1.270					
510	0.960	510	1.385					
540	1.002	540	1.469					
570	1.027	570	1.533					
600	1.053	600	1.575					
630	1.075	630	1.609					
660	1.094	660	1.638					
690	1.110	690	1.660					
720	1.122	720	1.681					
750	1.134	750	1.697					
780	1.146	780	1.711					
810	1.550	810	1.723					
840	1.163	840	1.725					
870	1.172	870	1.733					
900	1.178	900	1.740					
930	1.185	930	1.746					
960	1.191	960	1.751					
		990	1.756					

表 1: 实验数据(标有粉色,是点火;标有蓝色,是结束反应)

2 实验二: 蔗糖水解

图 2.1: $\ln(\alpha_t - \alpha_\infty)$ 对时间 t (去除单位为 min) 作图,得到直线的表达式为 $\ln(\alpha_t - \alpha_\infty) = -0.01621t + 2.91$,应满足形式 $\ln(\alpha_t - \alpha_\infty) = -kt + \ln(\alpha_0 - \alpha_\infty)$ 。拟合曲线对应的斜率为-0.01621,其相反数即为反应速率常数k = 0.01621。

时间t/min	3	5	7	9	11	13	15	17	19	25	35	50	70	90
a'_t (原始数据)	12.15	11.70	11.35	10.95	10.65	10.25	9.85	9.60	9.25	8.00	6.40	4.15	1.25	-0.60
a_t (修正数据)	12.35	11.90	11.55	11.15	10.85	10.45	10.05	9.80	9.45	8.20	6.60	4.35	1.45	-0.40
$a_t - a_{\infty}$	16.95	16.50	16.15	15.75	15.45	15.05	14.65	14.40	14.05	12.80	11.20	8.95	6.05	4.20
$\ln\left(a_t - a_\infty\right)$	2.83	2.80	2.78	2.76	2.74	2.71	2.68	2.67	2.64	2.55	2.42	2.19	1.80	1.44
$a_{\infty} = -4.60$														

表 2: 实验数据计算整理

3

4

5

6 实验六:原电池电动势的测定

图 6.1: 利用四次多项式拟合得到的 E-T 曲线,其中横坐标为热力学温度 T(单位:开尔文 K),纵坐标为原电池 $\operatorname{Zn}_{(s)}|\operatorname{ZnSO}_4(0.1\operatorname{mol/L})||\operatorname{CuSO}_4(0.1\operatorname{mol/L})||\operatorname{Cu}_{(s)}|$ 的电池电动势 E(单位:伏特 V)。多项式拟合结果为: $E(T)=1.18\times 10^{-7}T^4-0.0001455T^3+0.06726T^2-13.82T+1066$,公式中的 E(T) 与 T 视作无量纲数,即: $E(T)=\frac{E(T)}{V}$, $T=\frac{T}{K}$,上式两边对温度 T 求一阶导数,E(T) 恒 压下为温度 T 的函数,得: $\left(\frac{\partial E}{\partial T}\right)_p=\frac{\operatorname{d} E(T)}{\operatorname{d} T}=4.72\times 10^{-7}T^3-0.0004364T^2+0.1345T-13.82$ 。

7 实验七:溶液表面张力的测定

图 7.1: 利用函数 $\sigma = a + b \ln{(c+d)}$ 拟合得到的 $\sigma - c$ 曲线。其中 a,b,d 均为参数,c 为乙醇溶液的浓度(去除单位为: $mol\cdot m^{-1}$), σ 为溶液表面张力(去除单位为: $N\cdot m^{-2}$)得到的拟合拟合结果为: $\sigma = 0.13308212 + 0.0507109 \ln{(c+3.66669084)}$,回归系数 $R^2 = 0.993$ 。

8 实验八: 弱电解质电离平衡常数的测定

图 7.2: 利用 $\sigma-c$ 的拟合结果求出 $\Gamma-c$ 曲线。其中 Γ 是溶质在表面层的吸附量(去除单位为 mol m^{-2} ,纵坐标为 $1\times 10^{-5}\mathrm{mol}$ m^{-2}),计算公式为 $\Gamma=\frac{c}{RT}\left(\frac{\mathrm{d}\sigma}{\mathrm{d}c}\right)_T$,其中 T 取实验温度 $T=293.15\mathrm{K}$ 。

图 7.3: $\frac{c}{\Gamma}-c$ 关系图,纵坐标为 $\frac{c}{\Gamma}$ (去单位为 m $^{-1}$),横坐标为 c (去单位为 mol·m $^{-3}$)。利用一次 拟合,得到一直线,关系式为 $\frac{c}{\Gamma}=4.806\times 10^4c+1.762\times 10^8$,应符合关系式 $\frac{c}{\Gamma}=\frac{c}{\Gamma_\infty}+\frac{1}{K\Gamma_\infty}$,故 其斜率之倒数为 $\Gamma_\infty=2.081\times 10^{-5}$ mol· m $^{-2}$

图 8.1: $\frac{c\Lambda_m}{c^{\ominus}}$ (去单位为 S·m²·mol⁻¹) 对 $\frac{1}{\Lambda_m}$ (去单位为 mol·S⁻¹·m⁻²) 作图,得到的方程 为 $\frac{c\Lambda_m}{c^{\ominus}} = 2.657 \times 10^{-8} \frac{1}{\Lambda_m} - 1.867 \times 10^{-6}$,用斜率除以 $\Lambda_{m,\infty}^2$,就得到 $K_c^{\ominus} = 1.741 \times 10^{-5}$ 。