Supplementary Appendix

Myungkou Shin

December 1, 2023

1 Additional empirical results

1.1 Choice of K

To find a stable type assignment over units, we considered $K=2,\cdots,10$ for the number of types in the classification steps. Table 1 contains the classification result. The last row is the number of units who are assigned to an 'accidental' type where only a few number of outliers are assigned and a structural break is suspected in the sense that

$$\frac{1}{T_0} \sum_{t=-T_0}^{-1} \left(\hat{\delta}_t(k) - \bar{\delta}(k) \right)^2$$

is high. For $K \geq 3$, the maximum estimated variance of $\hat{\delta}_t(k)$ for a stable type k is 1.062 while the minimum estimated variance of $\hat{\delta}_t(k)$ for an accidental type is 8.587. Also, all of the accidental types are singletons.

K	2	3	4	5	6	7	8	9	10
type 1	28	40	39	38	28	16	7	6	6
type 2	14	-	-	-	10	21	29	29	28
outliers	0	2	3	4	4	5	6	7	8

Table 1: summary of classification result across K

Figure 1 and Figure 2 contain the estimated time fixed-effects $\hat{\delta}_t(k)$ for the two stable types given K = 5, ..., 10. See that the estimates are stable for K = 6, ..., 9, give us an anecdotal evidence that the two types capture the heterogeneity in dataset in a stable way. For a more formal discussion, we also considered an information criterion for the classification step. Figure 3 plots the Bayesian information criterion as suggested in Bonhomme and Manresa (2015); Janys and Siflinger (2024):

$$\frac{1}{nT_0} \sum_{i,t} \left(Y_{it} - Y_{it-1} - \hat{\delta}_t(\hat{k}_i) - X_{it}^{\mathsf{T}} \hat{\theta} \right)^2 + \hat{\sigma}^2 \frac{KT_0 + p}{nT_0} \log nT_0$$

where $\hat{\sigma}^2$ is estimated with the largest K=10. The information criterion is minimized at K=9. Based on this, we presented the estimation results based on the two stable types estimated with K=9.

Figure 1: $\sum_{s \leq t} \hat{\delta}_s(1)$ across K

Figure 2: $\sum_{s \leq t} \hat{\delta}_t(2)$ across K

Figure 3: Information criterion for K

1.2 Heterogeneity across types

In the main text, it has been discussed that the two stable types are different in terms of their control covariates X_{it} . Here, we present additional balancedness test for the two types. Figure 4 contains the histogram for the treatment timing for type 1 and type 2. An eyeball test suggests that type 1 is slightly earlier-treated compared to type 2. Table 2 contains formal balancedness test for treatment timing E_i across type 1 and type 2. Any of the mean

comparison test that uses indicator for being never-treated, treatment timing, and squared demeaned treatment timing, does not reject the null hypothesis that the two types share the same mean at 0.05 significance level; the joint p-value is 0.537. The two types are similar in terms of their treatment timing distribution, i.e., the treatment timing is well balanced across types.

Figure 4: Frequency of E_i across K

	type 1	type 2	Diff
$1\{E_i = \infty\}$	0.55	0.66	-0.11
	(0.52)	(0.48)	(0.17)
E_{i}	17.45	18.5	-1.05
	(3.21)	(2.44)	(1.03)
$(E_i - \mathbf{E}[E_i k_i])^2$	9.34	10.43	-1.09
	(6.04)	(11.75)	(2.54)
N	11	44	-
joint p -value			0.537

Table 2: Balancedness test on E_i

Lastly, we present the full classification result when K = 9. Below the number of school districts in each states for type 1, type 2 and accidental types. The number of treated school

districts are denoted with red while the number of never-treated school districts are denoted with black. Table 3 further summarizes the list and presents the number of school districts for each census region. Type 1 school districts are more concentrated in the South census region compared to Type 2 school districts; 9 out 11 compared to 28 out of 44.

Type 1 Alabama (2/1), Arkansas (1/1), Florida (1/1), North Carolina (1/1), Ohio (1),
Wisconsin (1)

Type 2 Alabama (3/1), Arizona (1), Arkansas (1), California (2/1), Connecticut (2), Florida (2/7), Illinois (1), Indiana (2), Kentucky (1), Maryland (1), Michigan (2/1), Mississippi (3), New York (2), North Carolina (2), Pennsylvania (2), Texas (4/3)

Outliers Arkansas (1), Illinois (1), Massachusetts (1), Michigan (1), Mississippi (3/1), North Carolina (1)

	Northeast	Midwest	South	West
Type 1	-	1/1	5/ <mark>4</mark>	-
Type 2	6	5/ <mark>1</mark>	16/ <mark>12</mark>	2/ <mark>2</mark>
Outliers	1	2	5/1	-

Table 3: Distribution of types across census regions

1.3 Robustness check

The qualitative result that we find the treatment effect to be statistically significant for type 1 while not for type 2 stays the same across perturbations in the classification result across K. Dynamic CATT $\beta_r(k)$ for $r \geq 2$ for type 1 are estimated to be significantly away from zero at 0.05 significance level and we find no significant treatment effect for type

2. Also, we find no pretreatment for both type 1 and type 2 robust to perturbations in the classification, suggesting that the type-specific parallel trend assumption and the no anticipation assumption are not violated for pretreatment outcomes.

Figure 5: $\hat{\beta}_r$ across K

We also considered an outcome approach and ran a post-treatment linear regression model: for $t=1989,\cdots,2007$

$$Y_{it} - Y_{it-1} = \delta_t(k_i) + X_{it}^{\mathsf{T}}\theta + \sum_{-4 \le r \le 5; r \ne -1} \beta_r(k_i) \mathbf{1}\{t = E_i + r\} + \beta_6(k_i) \mathbf{1}\{t \ge E_i + 6\} + U_{it}.$$

Note that $\beta_r(k)$ is treatment effect on the first-differenced outcome. Thus, to retrieve the treatment effect on level, we need to sum $\beta_r(k)$ over r. Figure 6 contains the type-specific treatment effect estimates and their 95% confidence intervals. We find no pretreatment

across type 1 and type 2. The estimates are close to the unweighted type-specific diff-in-diff estimates from Figure 5. Lastly, in Figure 7 contains estimates from the pooled regression specification:

$$Y_{it} - Y_{it-1} = \delta_t(k_i) + X_{it}^{\mathsf{T}}\theta + \sum_{-4 \le r \le 5; r \ne -1} \beta_r \mathbf{1}\{t = E_i + r\} + \beta_6 \mathbf{1}\{t \ge E_i + 6\} + U_{it}.$$

Again, the estimates are close to the averaged estimates of the unweighted type-specific diff-in-diff estimates from Figure 5.

Figure 6: $\sum_{0 \le r' \le r} \hat{\beta}_{r'}(k)$ for $k = -4, \dots, 5$

Figure 7: $\sum_{0 \le r' \le r} \hat{\beta}_{r'}$ for $k = -4, \dots, 5$

2 Proof for Theorem 2

In the proof sections, we will use the dot notation to denote the first difference: $\dot{Y}_{it} = Y_{it} - Y_{it-1}$, $\dot{X}_{it} = X_{it} - X_{it-1}$ and $\dot{U}_{it} = U_{it} - U_{it-1}$. Also, we will use the superscript naught to denote the true values of the parameters and the latent type variable: e.g. k_i^0 is the true type of unit i.

We prove Theorem 2 in the context of a linear model for outcome in level (see *Remark 5* of the main text). This subsumes the case of a linear model for first-differenced outcomes, by replacing \dot{X}_{it} and \dot{U}_{it} with X_{it} and U_{it} . For Theorem 1, replace $\delta_t^0(k)$ and \dot{U}_{it} with $\mathbf{E}[\dot{Y}_{it}(\infty)|k]$ and $\dot{Y}_{it}(E_i) - \mathbf{E}[\dot{Y}_{it}(\infty)|k_i^0]$.

Step 1

The first step is to obtain an approximation of the objective function. Note that

$$\begin{split} \widehat{Q}(\theta, \delta, \gamma) &= \frac{1}{nT_0} \sum_{i=1}^{n} \sum_{t=-T_0}^{-1} \left(\dot{Y}_{it} - \delta_t(k_i) - \dot{X}_{it}^{\mathsf{T}} \theta \right)^2 \\ &= \frac{1}{nT_0} \sum_{i,t} \left(\delta_t^0(k_i^0) - \delta_t(k_i) + \dot{X}_{it}^{\mathsf{T}} (\theta^0 - \theta) + \dot{U}_{it} \right)^2 \\ &= \frac{1}{nT_0} \sum_{i,t} \left\{ \left(\delta_t^0(k_i^0) - \delta_t(k_i) + \dot{X}_{it}^{\mathsf{T}} (\theta^0 - \theta) \right)^2 + \dot{U}_{it}^2 \right\} \\ &+ \frac{2}{nT_0} \sum_{i,t} \left(\delta_t^0(k_i^0) - \delta_t(k_i) + \dot{X}_{it}^{\mathsf{T}} (\theta^0 - \theta) \right) \dot{U}_{it}. \end{split}$$

Let

$$\tilde{Q}(\theta, \delta, \gamma) = \frac{1}{nT_0} \sum_{i,t} \left\{ \left(\delta_t^0(k_i^0) - \delta_t(k_i) + \dot{X}_{it}^{\mathsf{T}}(\theta^0 - \theta) \right)^2 + \dot{U}_{it}^2 \right\}.$$

Then,

$$\left| \widehat{Q}(\theta, \delta, \gamma) - \widetilde{Q}(\theta, \delta, \gamma) \right| = \left| \frac{2}{nT_0} \sum_{i,t} \left(\delta_t^0(k_i^0) - \delta_t(k_i) + \dot{X}_{it}^{\mathsf{T}}(\theta^0 - \theta) \right) \dot{U}_{it} \right|$$

$$\leq \left| \frac{2}{nT_0} \sum_{i,t} \left(\delta_t^0(k_i^0) - \delta_t(k_i) \right) \dot{U}_{it} \right| + \left| \frac{2}{nT_0} \sum_{i,t} \dot{X}_{it}^{\mathsf{T}}(\theta^0 - \theta) \dot{U}_{it} \right|. \tag{1}$$

Firstly, find that

$$\left| \frac{1}{nT_0} \sum_{i,t} \delta_t^0(k_i^0) \dot{U}_{it} \right| \leq \sum_{k=1}^K \left| \frac{1}{nT_0} \sum_{i,t} \delta_t^0(k) \dot{U}_{it} \mathbf{1} \{ k_i^0 = k \} \right|$$

$$\leq \sum_{k=1}^K \left(\frac{1}{T_0} \sum_{t} \delta_t^0(k)^2 \right)^{\frac{1}{2}} \left(\frac{1}{T_0} \sum_{t} \left(\frac{1}{n} \sum_{i} \dot{U}_{it} \mathbf{1} \{ k_i^0 = k \} \right)^2 \right)^{\frac{1}{2}}$$

$$\leq M \sum_{k=1}^K \left(\frac{1}{n^2 T_0} \sum_{i,j,t} \dot{U}_{it} \dot{U}_{jt} \mathbf{1} \{ k_i^0 = k_j^0 = k \} \right)^{\frac{1}{2}} \xrightarrow{p} 0.$$

The first two inequalities are from separating the summation into types and applying Cauchy-Schwartz's inequality to over t. The third is from Assumption 7-b. It remains to prove the convergence in probability; for that we use Assumption 7-a,d. With some constant C > 0 that only depends on M > 0 from Assumption 7,

$$\mathbf{E}\left[\dot{U}_{it}\dot{U}_{jt}\mathbf{1}\left\{k_{i}^{0}=k_{j}^{0}=k\right\}\right]=\begin{cases}\mathbf{E}\left[\dot{U}_{it}^{2}\mathbf{1}\left\{k_{i}^{0}=k\right\}\right]\leq C & \text{if } i=j\\ \mathbf{E}\left[\dot{U}_{it}\mathbf{1}\left\{k_{i}^{0}=k\right\}\right]\mathbf{E}\left[\dot{U}_{jt}\mathbf{1}\left\{k_{j}^{0}=k\right\}\right]=0 & \text{if } i\neq j\end{cases}$$

since $\mathbf{E}[\dot{U}_{it}\mathbf{1}\{k_i^0=k\}] = \mathbf{E}[\dot{U}_{it}|k_i^0=k] \Pr\{k_i^0=k\} = 0.1$ Then,

$$\mathbf{E}\left[\frac{1}{nT_0}\sum_{i,j,t}\dot{U}_{it}\dot{U}_{jt}\mathbf{1}\{k_i^0 = k_j^0 = k\}\right] \le C.$$

$$\mathbf{E}[\dot{Y}_{it}(E_i) - \mathbf{E}[\dot{Y}_{it}(\infty)|k_i^0]|k_i^0 = k] = \mathbf{E}[\mathbf{E}[\dot{Y}_{it}(E_i) - \dot{Y}_{it}(\infty)|k_i^0, E_i]|k_i^0 = k] = 0$$

from Assumption 2.

¹In the case of Theorem 1,

and $\frac{1}{n^2T_0}\sum_{i,j,t}\dot{U}_{it}\dot{U}_{jt}\mathbf{1}\{k_i^0=k_j^0=k\}=o_p(1)$. We can repeat this for the other quantity in the first term of (1).

Secondly, again from applying Cauchy-Schwartz's inequality and Jensen's inequality,

$$\left| \frac{1}{nT_0} \sum_{i,t} \dot{X}_{it}^{\mathsf{T}} \left(\theta^0 - \theta \right) \dot{U}_{it} \right| \leq \frac{1}{T_0} \sum_{t} \left\| \frac{1}{n} \sum_{i} \dot{U}_{it} \dot{X}_{it} \right\|_{2} \cdot \left\| \theta^0 - \theta \right\|_{2}$$

$$\leq \frac{2M}{\sqrt{n}} \cdot \frac{1}{T_0} \sum_{t} \left(\frac{1}{n} \sum_{i,j} \dot{U}_{it} \dot{U}_{jt} \dot{X}_{it}^{\mathsf{T}} \dot{X}_{jt} \right)^{\frac{1}{2}} = \frac{2M}{\sqrt{n}} \cdot O_p(1) \xrightarrow{p} 0$$

The convergence in probability is from Assumption 7-a,d. Find that

$$\mathbf{E}\left[\dot{U}_{it}\dot{X}_{it}\right] = \mathbf{0}, \qquad \qquad \mathbf{E}\left[\dot{U}_{it}^2\dot{X}_{it}^{\mathsf{T}}\dot{X}_{it}\right] \leq C$$

with some constant C > 0 that only depends on M > 0 from Assumption 7. Thus,

$$\frac{1}{T_0} \sum_t \mathbf{E} \left[\left(\frac{1}{n} \sum_{i,j} \dot{U}_{it} \dot{U}_{jt} \dot{X}_{it}^\intercal \dot{X}_{jt} \right)^\frac{1}{2} \right] \leq \frac{1}{T_0} \sum_t \left(\mathbf{E} \left[\frac{1}{n} \sum_{i,j} \dot{U}_{it} \dot{U}_{jt} \dot{X}_{it}^\intercal \dot{X}_{jt} \right] \right)^\frac{1}{2} \leq \sqrt{C}.$$

Then
$$\frac{1}{T_0} \sum_t \left(\frac{1}{n} \sum_{i,j} \dot{U}_{it} \dot{U}_{jt} \dot{X}_{it}^{\dagger} \dot{X}_{jt} \right)^{\frac{1}{2}} = O_p(1)$$
 and $\widehat{Q}(\theta, \delta, \gamma) - \widetilde{Q}(\theta, \delta, \gamma) = o_p(1)$.

Step 2

By plugging in the true parameters, $\tilde{Q}(\theta^0, \delta^0, \gamma^0) = \frac{1}{nT_0} \sum_{i,t} \dot{U}_{it}^2$ and

$$\begin{split} \tilde{Q}(\theta, \delta, \gamma) - \tilde{Q}(\theta^0, \delta^0, \gamma^0) &= \frac{1}{nT_0} \sum_{i,t} \left(\delta_t^0(k_i^0) - \delta_t(k_i) + \dot{X}_{it}^\intercal (\theta^0 - \theta) \right)^2 \\ &\geq \frac{1}{nT_0} \sum_{i,t} \left(\dot{X}_{it}^\intercal (\theta^0 - \theta) - \bar{X}_{k_i^0 \wedge k_i,t}^\intercal (\theta^0 - \theta) \right)^2 \\ &= \frac{1}{nT_0} \sum_{i,t} (\theta^0 - \theta)^\intercal \left(\dot{X}_{it} - \bar{X}_{k_i^0 \wedge k_i,t} \right) \left(\dot{X}_{it} - \bar{X}_{k_i^0 \wedge k_i,t} \right)^\intercal (\theta^0 - \theta) \\ &\geq \min_{\gamma \in \Gamma} \rho_n(\gamma) \cdot \|\theta^0 - \theta\|_2^2. \end{split}$$

Note that the unknowns in $\tilde{Q}(\theta, \delta, \gamma) - \tilde{Q}(\theta^0, \delta^0, \gamma^0)$ other than $(\theta^0 - \theta)$ are functions of (t, k_i^0, k_i) . Thus, subtracting the group mean defined with (t, k_i^0, k_i) from $\dot{X}_{it}^{\mathsf{T}}(\theta^0 - \theta)$ is the lower bound for the sum of squares, giving us the first inequality.

Since the estimator minimizes the objective function,

$$\widetilde{Q}(\widehat{\theta}, \widehat{\delta}, \widehat{\gamma}) = \widehat{Q}(\widehat{\theta}, \widehat{\delta}, \widehat{\gamma}) + o_p(1)$$

$$\leq \widehat{Q}(\theta^0, \delta^0, \gamma^0) + o_p(1)$$

$$= \widetilde{Q}(\theta^0, \delta^0, \gamma^0) + o_p(1).$$

Therefore from Assumption 7-h,

$$\min_{\gamma \in \Gamma} \rho_n(\gamma) \cdot \left\| \theta^0 - \hat{\theta} \right\|_2^2 \le \tilde{Q}(\hat{\theta}, \hat{\delta}, \hat{\gamma}) - \tilde{Q}(\theta^0, \delta^0, \gamma^0) = o_p(1)
\left\| \theta^0 - \hat{\theta} \right\|_2^2 = \frac{1}{\min_{\gamma \in \Gamma} \rho_n(\gamma)} \cdot \min_{\gamma \in \Gamma} \rho_n(\gamma) \left\| \theta^0 - \hat{\theta} \right\|_2^2 \xrightarrow{p} \frac{1}{\rho} \cdot 0 = 0.$$

We have consistency of $\hat{\theta}$.

Step 3

In this step, we show that $\{\hat{\delta}_t(\hat{k}_i)\}_{i,t}$ is close to $\{\delta_t^0(k_i^0)\}_{i,t}$ in terms of the l_2 norm.

$$\begin{split} & \left| \tilde{Q}(\hat{\theta}, \hat{\delta}, \hat{\gamma}) - \tilde{Q}(\theta^{0}, \hat{\delta}, \hat{\gamma}) \right| \\ & = \left| \frac{1}{nT_{0}} \sum_{i,t} \left(\delta_{t}^{0}(k_{i}^{0}) - \hat{\delta}_{t}(\hat{k}_{i}) + \dot{X}_{it}^{\mathsf{T}}(\theta^{0} - \hat{\theta}) \right)^{2} - \frac{1}{nT_{0}} \sum_{i,t} \left(\delta_{t}^{0}(k_{i}^{0}) - \hat{\delta}_{t}(\hat{k}_{i}) \right)^{2} \right| \\ & \leq \left| \frac{2}{nT_{0}} \sum_{i,t} \left(\delta_{t}^{0}(k_{i}^{0}) - \hat{\delta}_{t}(\hat{k}_{i}) \right) \dot{X}_{it}^{\mathsf{T}}(\theta^{0} - \hat{\theta}) + \frac{1}{nT_{0}} \sum_{i,t} \left(\dot{X}_{it}^{\mathsf{T}}(\theta^{0} - \hat{\theta}) \right)^{2} \right| \\ & \leq \frac{4M}{nT_{0}} \sum_{i,t} \left\| \dot{X}_{it} \right\|_{2} \cdot \left\| \theta^{0} - \hat{\theta} \right\|_{2} + \frac{1}{nT_{0}} \sum_{i,t} \left\| \dot{X}_{it} \right\|_{2}^{2} \cdot \left\| \theta^{0} - \hat{\theta} \right\|_{2}^{2} = o_{p}(1). \end{split}$$

The second inequality is from Assumption 7-b and Cauchy-Schwartz inequality on $|\dot{X}_{it}^{\dagger}(\theta^0 - \hat{\theta})|$. Note that for any n, $\frac{1}{nT_0} \sum_{i,t} ||\dot{X}_{it}||_2^2$ is bounded in expectation by 4M from Assumption 7.d and thus $O_p(1)$. Likewise, $\frac{1}{nT_0} \sum_{i,t} ||\dot{X}_{it}||_2$ is bounded in expectation by $2\sqrt{M}$. Since we have shown $\hat{\theta} \xrightarrow{p} \theta^0$, we have the last equality. Then,

$$\frac{1}{nT_0} \sum_{i,t} \left(\delta_t^0(k_i^0) - \hat{\delta}_t(\hat{k}_i) \right)^2 + \frac{1}{nT_0} \sum_{i,t} \dot{U}_{it}^2
= \tilde{Q}(\theta^0, \hat{\delta}, \hat{\gamma}) = \tilde{Q}(\hat{\theta}, \hat{\delta}, \hat{\gamma}) + o_p(1) = \hat{Q}(\hat{\theta}, \hat{\delta}, \hat{\gamma}) + o_p(1)
\leq \hat{Q}(\theta^0, \delta^0, \gamma^0) + o_p(1) = \frac{1}{nT_0} \sum_{i,t} \dot{U}_{it}^2 + o_p(1).$$

 $\frac{1}{nT_0}\sum_{i,t}\left(\delta_t^0(k_i^0)-\hat{\delta}_t(\hat{k}_i)\right)^2=o_p(1)$. For Theorem 1, the result holds directly from Step 1.

Step 4

In this step, we find some permutation on $\left\{\hat{\delta}_t(k)\right\}_{t,k}$ so that $\frac{1}{nT_0}\sum_{i,t}\left(\delta_t^0(k_i^0)-\hat{\delta}_t(k_i^0)\right)^2$ is close to zero. Note that $\widehat{Q}(\theta,\delta,\gamma)$ does not vary for any $(\theta,\tilde{\delta},\tilde{\gamma})$ defined with a permutation on $(1,\cdots,K)$: with σ , a permutation on $\{1,\cdots,K\}$, letting $\widetilde{k}_i=\sigma(k_i)$ and $\widetilde{\delta}_t(\sigma(k))=\delta_t(k)$ gives us $\widehat{Q}(\theta,\delta,\gamma)=\widehat{Q}(\theta,\tilde{\delta},\tilde{\gamma})$. Thus, we want to define a bijection on $\{1,\cdots,K\}$ to match \widehat{k} with true k^0 , to have classification result. Define a function σ by letting

$$\sigma(k) = \arg\min_{\tilde{k}} \frac{1}{T_0} \sum_{t=-T_0}^{-1} \left(\delta_t^0(k) - \hat{\delta}_t(\sigma(k)) \right)^2$$

for each k. First, let us show that σ actually lets the objective go to zero for each k: fix k,

$$\min_{\tilde{k}} \frac{1}{T_0} \sum_{t=-T_0}^{-1} \left(\delta_t^0(k) - \hat{\delta}_t(\sigma(k)) \right)^2 \\
\leq \frac{n}{\sum_{i} \mathbf{1} \{ k_i^0 = k \}} \cdot \min_{\tilde{k}} \frac{1}{nT_0} \sum_{i,t} \left(\delta_t^0(k) - \hat{\delta}_t(\sigma(k)) \right)^2 \mathbf{1} \{ k_i^0 = k \} \\
\leq \frac{n}{\sum_{i} \mathbf{1} \{ k_i^0 = k \}} \cdot \frac{1}{nT_0} \sum_{i,t} \left(\delta_t^0(k_i^0) - \hat{\delta}_t(\hat{k}_i) \right)^2 \xrightarrow{p} 0$$

as $n \to \infty$. From Assumption 7-f, we have the convergence.

For some k, \tilde{k} such that $k \neq \tilde{k}$,

$$\left(\frac{1}{T_0} \sum_{t} \left(\hat{\delta}_t(\sigma(k)) - \hat{\delta}_t(\sigma(\tilde{k}))\right)^2\right)^{\frac{1}{2}}$$

$$\geq \left(\frac{1}{T_0} \sum_{t} \left(\delta_t^0(k) - \delta_t^0(\tilde{k})\right)^2\right)^{\frac{1}{2}}$$

$$- \left(\frac{1}{T_0} \sum_{t} \left(\delta_t^0(k) - \hat{\delta}_t(\sigma(k))\right)^2\right)^{\frac{1}{2}} - \left(\frac{1}{T_0} \sum_{t} \left(\delta_t^0(\tilde{k}) - \hat{\delta}_t(\sigma(\tilde{k}))\right)^2\right)^{\frac{1}{2}}$$

$$\stackrel{p}{\to} c(k, \tilde{k}) > 0$$

from Assumption 7.c. Thus, $\Pr \{ \sigma \text{ is not bijective} \} \leq \sum_{k \neq \tilde{k}} \Pr \{ \sigma(k) = \sigma(\tilde{k}) \} \to 0 \text{ as } n \to \infty.$ Note that σ depends on the dataset.

Before proceeding to the next step, let us drop the σ notation. Based on σ , we can construct a bijection $\tilde{\sigma}: \{1, \dots, K\} \to \{1, \dots, K\}$ such that

$$\frac{1}{T} \sum_{t} \left(\delta_t^0(k) - \hat{\delta}_t(\tilde{\sigma}(k)) \right)^2 \xrightarrow{p} 0 \tag{2}$$

as $n \to \infty$ for all k, by letting $\tilde{\sigma} = \sigma$ whenever σ is bijective. From now on, I will drop $\tilde{\sigma}$ by always rearranging $(\hat{\theta}, \hat{\delta}, \hat{\gamma})$ so that $\tilde{\sigma}(k) = k$.

Step 5

Here, we study the probability of the K-means algorithm assigning a wrong type to an arbitrary unit i.

$$\Pr\left\{\hat{k}_{i} \neq k_{i}^{0}\right\} \leq \sum_{\tilde{k} \neq k_{i}^{0}} \Pr\left\{\frac{1}{T_{0}} \sum_{t} \left(\dot{Y}_{it} - \hat{\delta}_{t}(\tilde{k}) - \dot{X}_{it}^{\mathsf{T}} \hat{\theta}\right)^{2} \leq \frac{1}{T_{0}} \sum_{t} \left(\dot{Y}_{it} - \hat{\delta}_{t}(k_{i}^{0}) - \dot{X}_{it}^{\mathsf{T}} \hat{\theta}\right)^{2}\right\}$$

$$= \sum_{\tilde{k} \neq k_{i}^{0}} \Pr\left\{\frac{2}{T_{0}} \sum_{t} \left(\hat{\delta}_{t}(k_{i}^{0}) - \hat{\delta}_{t}(\tilde{k})\right) \cdot \left(\dot{Y}_{it} - \frac{\hat{\delta}_{t}(k_{i}^{0}) + \hat{\delta}_{t}(\tilde{k})}{2} - \dot{X}_{it}^{\mathsf{T}} \hat{\theta}\right) \leq 0\right\}.$$

The inequality is from the second stage of the K-means algorithm. Then,

$$\Pr\left\{\hat{k}_{i} \neq k_{i}^{0}\right\}$$

$$= \sum_{\tilde{k} \neq k_{i}^{0}} \Pr\left\{\frac{2}{T_{0}} \sum_{t} \left(\hat{\delta}_{t}(k_{i}^{0}) - \hat{\delta}_{t}(\tilde{k})\right) \cdot \left(\delta_{t}^{0}(k_{i}^{0}) - \frac{\hat{\delta}_{t}(k_{i}^{0}) + \hat{\delta}_{t}(\tilde{k})}{2} + \dot{X}_{it}^{\mathsf{T}}(\theta^{0} - \hat{\theta}) + \dot{U}_{it}\right) \leq 0\right\}$$

$$\leq \sum_{k} \sum_{\tilde{k} \neq k} \Pr\left\{\frac{2}{T} \sum_{t} \left(\hat{\delta}_{t}(k) - \hat{\delta}_{t}(\tilde{k})\right) \cdot \left(\delta_{t}^{0}(k) - \frac{\hat{\delta}_{t}(k) + \hat{\delta}_{t}(\tilde{k})}{2} + \dot{X}_{it}^{\mathsf{T}}(\theta^{0} - \hat{\theta}) + \dot{U}_{it}\right) \leq 0\right\}.$$

Let

$$\begin{split} A_{ik\tilde{k}} &= \frac{1}{T_0} \sum_t \left(\hat{\delta}_t(k) - \hat{\delta}_t(\tilde{k}) \right) \dot{U}_{it} + \frac{1}{T_0} \sum_t \left(\hat{\delta}_t(k) - \hat{\delta}_t(\tilde{k}) \right) \dot{X}_{it}^\intercal (\theta^0 - \hat{\theta}) \\ &+ \frac{1}{T_0} \sum_t \left(\hat{\delta}_t(k) - \hat{\delta}_t(\tilde{k}) \right) \cdot \left(\dot{\delta}_t^0(k) - \frac{\hat{\delta}_t(k) + \hat{\delta}_t(\tilde{k})}{2} \right) \\ B_{ik\tilde{k}} &= \frac{1}{T_0} \sum_t \left(\delta_t^0(k) - \delta_t^0(\tilde{k}) \right) \dot{U}_{it} + \frac{1}{2T_0} \sum_t \left(\delta_t^0(k) - \delta_t^0(\tilde{k}) \right)^2. \end{split}$$

Note that $A_{ik\tilde{k}}$ depends on the estimator $(\hat{\theta}, \hat{\delta}, \hat{\gamma})$ while $B_{ik\tilde{k}}$ does not. Then,

$$\Pr\left\{\hat{k}_i \neq k_i^0\right\} \leq \sum_k \sum_{\tilde{k} \neq k} \Pr\left\{A_{ik\tilde{k}} \leq 0\right\} \leq \sum_k \sum_{\tilde{k} \neq k} \Pr\left\{B_{ik\tilde{k}} \leq |B_{ik\tilde{k}} - A_{ik\tilde{k}}|\right\} \tag{3}$$

We will show that $A_{ik\tilde{k}}$ and $B_{ik\tilde{k}}$ are sufficiently close to each other and that $\Pr\{B_{ik\tilde{k}} \leq 0\}$ converges to zero sufficiently fast.

$$\begin{split} |B_{ik\tilde{k}} - A_{ik\tilde{k}}| &\leq \left|\frac{1}{T_0} \sum_t \left(\delta_t^0(k) - \hat{\delta}_t(k)\right) \dot{U}_{it}\right| + \left|\frac{1}{T_0} \sum_t \left(\delta_t^0(\tilde{k}) - \hat{\delta}_t(\tilde{k})\right) \dot{U}_{it}\right| \\ &+ \left|\frac{1}{T_0} \sum_t \left(\hat{\delta}_t(k) - \hat{\delta}_t(\tilde{k})\right) \dot{X}_{it}^\intercal(\theta^0 - \hat{\theta})\right| \\ &+ \left|\frac{1}{2T_0} \sum_t \left(\delta_t^0(k) - \hat{\delta}_t(k)\right) \cdot \left(-\delta_t^0(k) + \delta_t^0(\tilde{k}) + \hat{\delta}_t(k) - \hat{\delta}_t(\tilde{k})\right)\right| \\ &+ \left|\frac{1}{2T_0} \sum_t \left(\delta_t^0(\tilde{k}) - \hat{\delta}_t(\tilde{k})\right) \cdot \left(\delta_t^0(k) - \delta_t^0(\tilde{k}) + + \hat{\delta}_t(k) - \hat{\delta}_t(\tilde{k})\right)\right|. \end{split}$$

We apply Cauchy-Schwartz's inequality to each of the five terms so that we can use the consistency result in (2). For the first term,

$$\left| \frac{1}{T_0} \sum_{t} \left(\delta_t^0(k) - \hat{\delta}_t(k) \right) \dot{U}_{it} \right| \le \left(\frac{1}{T_0} \sum_{t} \left(\delta_t^0(k) - \hat{\delta}_t(k) \right)^2 \right)^{\frac{1}{2}} \left(\frac{1}{T_0} \sum_{t} \dot{U}_{it}^2 \right)^{\frac{1}{2}}$$

and similarly for the second term. As for the third term, from Assumption 7-b,

$$\left| \frac{1}{T_0} \sum_{t} \left(\hat{\delta}_t(k) - \hat{\delta}_t(\tilde{k}) \right) \dot{X}_{it}^{\mathsf{T}}(\theta^0 - \hat{\theta}) \right| \leq \frac{1}{T_0} \sum_{t} \left| \hat{\delta}_t(k) - \hat{\delta}_t(\tilde{k}) \right| \cdot \|\dot{X}_{it}\|_2 \cdot \left\| \theta^0 - \hat{\theta} \right\|_2$$

$$\leq 2M \left(\frac{1}{T_0} \sum_{t} \|\dot{X}_{it}\|_2 \right) \cdot \left\| \theta^0 - \hat{\theta} \right\|_2$$

Last, for the fourth term, from Assumption 7-b,

$$\left| \frac{1}{2T_0} \sum_{t} \left(\delta_t^0(k) - \hat{\delta}_t(k) \right) \cdot \left(-\delta_t^0(k) + \delta_t^0(\tilde{k}) + \hat{\delta}_t(k) - \hat{\delta}_t(\tilde{k}) \right) \right|$$

$$\leq M \left(\frac{1}{T_0} \sum_{t} \left(\delta_t^0(k) - \hat{\delta}_t(k) \right)^2 \right)^{\frac{1}{2}}$$

and similarly for the fifth term. From Assumption 7-d, both $\frac{1}{T_0} \sum_t \dot{U}_{it}^2$ and $\frac{1}{T_0} \sum_t ||\dot{X}_{it}||_2$ are bounded in expectation by the same bound for every n and thus $O_p(1)$. To use (2), choose an arbitrary $\eta > 0$ and focus only on the event of

$$\left\|\theta^0 - \hat{\theta}\right\|_2, \left(\frac{1}{T_0} \sum_t \left(\delta_t^0(k) - \hat{\delta}_t(k)\right)\right)^{\frac{1}{2}} < \eta \tag{4}$$

for all k. When (4) is true, with some constant C > 0,

$$|B_{ik\tilde{k}} - A_{ik\tilde{k}}| \le \eta C \left(\left(\frac{1}{T_0} \sum_t \dot{U}_{it}^2 \right)^{\frac{1}{2}} + \frac{1}{T_0} \sum_t ||\dot{X}_{it}||_2 + 1 \right).$$

Note that C only depend on M from Assumption 7 and does not depend on η . Let $D(\eta)$ be

a binary random variable which equals one if (4) holds true for all k. Then,

$$\Pr \left\{ B_{ik\tilde{k}} \leq |B_{ik\tilde{k}} - A_{ik\tilde{k}}|, D(\eta) = 1 \right\}
\leq \Pr \left\{ B_{ik\tilde{k}} \leq \eta C \left(\left(\frac{1}{T_0} \sum_{t} \dot{U}_{it}^2 \right)^{\frac{1}{2}} + \frac{1}{T_0} \sum_{t} ||\dot{X}_{it}||_2 + 1 \right) \right\}
\leq \Pr \left\{ \frac{1}{T_0} \sum_{t} \dot{U}_{it}^2 \geq M^* \right\} + \Pr \left\{ \frac{1}{T_0} \sum_{t} ||\dot{X}_{it}||_2 \geq M^* \right\}
+ \Pr \left\{ B_{ik\tilde{k}} \leq \eta C (M^* + \sqrt{M^*} + 1) \right\}$$
(5)

for any arbitrary $M^* > 0$. Let $M^* = \max\{4\sqrt{M} + 1, 4\tilde{M}\}$ since $\mathbf{E}[\dot{U}_{it}^2]$ is uniformly bounded by $4\sqrt{M}$ from Assumption 7-d.²

Now, we show that all three probabilities in (5) go to zero. For that, we use Lemma B5 of Bonhomme and Manresa (2015). For the first quantity, find that

$$\Pr\left\{\frac{1}{T_0} \sum_{t} \dot{U}_{it}^2 \ge M^*\right\} \le \Pr\left\{\frac{1}{T_0} \sum_{t} \dot{U}_{it}^2 \ge 4\sqrt{M} + 1\right\}$$
$$\le \Pr\left\{\frac{1}{T_0} \sum_{t} \left(\dot{U}_{it}^2 - \mathbf{E}\left[\dot{U}_{it}^2\right]\right) \ge 1\right\}.$$

Let $Z_t = \dot{U}_{it}^2 - \mathbf{E}[\dot{U}_{it}^2]$. WTS $\{Z_t\}_{t=1}^{T_0}$ satisfies the condition given in Assumption 7-g.

$$\Pr\left\{|Z_{t}| \geq z\right\} = \Pr\left\{|U_{it} - U_{it-1}| \geq \sqrt{\mathbf{E}[\dot{U}_{it}^{2}] + z}\right\} + \Pr\left\{|U_{it} - U_{it-1}| \leq \sqrt{\mathbf{E}[\dot{U}_{it}^{2}] - z}\right\}$$

$$\leq \Pr\left\{|U_{it}| \geq \frac{\sqrt{\mathbf{E}[\dot{U}_{it}^{2}] + z}}{2}\right\} + \Pr\left\{|U_{it-1}| \geq \frac{\sqrt{\mathbf{E}[\dot{U}_{it}^{2}] + z}}{2}\right\} + \mathbf{1}\{z \leq \mathbf{E}[\dot{U}_{it}^{2}]\}$$

$$\leq 2 \exp\left(1 - \left(\frac{\sqrt{\mathbf{E}[\dot{U}_{it}^{2}] + z}}{2b}\right)^{d_{2}}\right) + \mathbf{1}\{z \leq \mathbf{E}[\dot{U}_{it}^{2}]\}$$

$$\leq 2 \exp\left(1 - \left(\frac{z}{2b}\right)^{d_{2}}\right) + \mathbf{1}\{z \leq \mathbf{E}[\dot{U}_{it}^{2}]\}.$$

²In cases of the linear model for first-differenced outcomes and Theorem 1, a similar uniform bound on $\mathbf{E}[U_{it}^2]$ and $\mathbf{E}[(\dot{Y}_{it}(E_i) - \mathbf{E}[\dot{Y}_{it}(\infty)|k_i^0])^2]$ can be found.

We want to find some \tilde{b} and \tilde{d}_2 such that

$$\Pr\{|Z_t| \ge z\} \le \exp\left(1 - \left(\frac{z}{\tilde{b}}\right)^{\tilde{d}_2}\right).$$

Note that the RHS crosses one when $z = \tilde{b}$. It suffices to show

$$2\exp\left(1-\left(\frac{z}{2b}\right)^{d_2}\right)+\mathbf{1}\left\{z\leq \mathbf{E}[\dot{U}_{it}^2]\right\}\leq \exp\left(1-\left(\frac{z}{\tilde{b}}\right)^{\tilde{d}_2}\right) \tag{6}$$

for $z \geq \tilde{b}$. Fix some $\tilde{d}_2 \in (0, d_2)$ and let

$$\tilde{b} = \max \left\{ 4\sqrt{M} + 1, 2b \left(1 + \log 2\right)^{\frac{1}{d_2}}, 2b \left(\frac{\tilde{d}_2}{d_2}\right)^{\frac{1}{d_2}} \right\}.$$

Since $\tilde{b} > \sqrt{M} \ge \mathbf{E}[\dot{U}_{it}^2]$, (6) for $z \ge \tilde{b}$ is equivalent with

$$\exp\left(\left(\frac{z}{2b}\right)^{d_2} - \left(\frac{z}{\tilde{b}}\right)^{\tilde{d}_2}\right) \ge 2 \qquad \Leftrightarrow \qquad \left(\frac{z}{2b}\right)^{d_2} - \left(\frac{z}{\tilde{b}}\right)^{\tilde{d}_2} \ge \log 2.$$

The inequality holds at $z=\tilde{b}$ and the LHS in the last inequality strictly increases in z since

$$\frac{d_2 z^{d_2 - 1}}{(2b)^{d_2}} - \frac{\tilde{d}_2 z^{\tilde{d}_2 - 1}}{\tilde{b}^{\tilde{d}_2}} = z^{\tilde{d}_2 - 1} \left(\frac{d_2}{(2b)^{d_2}} z^{d_2 - \tilde{d}_2} - \frac{\tilde{d}_2}{\tilde{b}^{\tilde{d}_2}} \right) \ge 0$$

for all $z \geq \tilde{b}$. Z_t is strongly mixing since \dot{U}_{it}^2 is a measurable function of (U_{it}, U_{it-1}) . By adjusting a and d_1 , we can satisfy Assumption 7-g for Z_t . Thus, from Lemma B5 of Bonhomme and Manresa (2015), for any $\nu > 0$,

$$T_0^{\nu} \Pr \left\{ \frac{1}{T_0} \sum_t \dot{U}_{it}^2 \ge M^* \right\} = o(1).$$

For Theorem 1, find that a similar result holds with $\Pr\left\{\frac{1}{T_0}\sum_t (\dot{Y}_{it}(e) - \mathbf{E}[\dot{Y}_{it}(\infty)|k_i^0])^2 \geq M^*\right\}$. Since E_i has finite support, $T_0^{\nu} \Pr\left\{\frac{1}{T_0}\sum_t (\dot{Y}_{it}(E_i) - \mathbf{E}[\dot{Y}_{it}(\infty)|k_i^0])^2 \geq M^*\right\} = o(1)$. For the second quantity, find that

$$\Pr\left\{\frac{1}{T_0} \sum_{t} \|\dot{X}_{it}\|_2 \ge M^*\right\} \le \Pr\left\{\frac{2}{T_0} \sum_{t=-T_0-1}^{-1} \|X_{it}\|_2 \ge 4\tilde{M}\right\}$$
$$\le \Pr\left\{\frac{1}{T_0+1} \sum_{t=-T_0-1}^{-1} \|X_{it}\|_2 \ge \tilde{M}\right\}$$

From Assumption 7-d, for any $\nu > 0$,

$$T_0^{\nu} \Pr \left\{ \frac{1}{T_0} \sum_t ||\dot{X}_{it}||_2 \ge M^* \right\} = o(1).$$

For the last quantity, let $\eta^* = \frac{c^*}{4C(M^* + \sqrt{M^*} + 1)}$ with $c^* = \frac{\min_{k,k'} c(k,k')}{2} > 0$. Then,

$$\begin{split} & \Pr \left\{ B_{ik\tilde{k}} \leq \eta^* C(M^* + \sqrt{M^*} + 1) \right\} \\ & \leq \Pr \left\{ \frac{1}{T_0} \sum_t \left(\delta_t^0(k) - \delta_t^0(\tilde{k}) \right) \dot{U}_{it} \leq \eta^* C(M^* + \sqrt{M^*} + 1) - \frac{c^*}{2} \right\} \\ & \qquad + \mathbf{1} \left\{ \frac{1}{T_0} \sum_t \left(\delta_t^0(k) - \delta_t^0(\tilde{k}) \right)^2 \leq c^* \right\} \\ & \leq \Pr \left\{ \frac{1}{T_0} \sum_t \left(\delta_t^0(k) - \delta_t^0(\tilde{k}) \right) \dot{U}_{it} \leq -\frac{c^*}{4} \right\} + \mathbf{1} \left\{ \frac{1}{T_0} \sum_t \left(\delta_t^0(k) - \delta_t^0(\tilde{k}) \right)^2 \leq c^* \right\}. \end{split}$$

For the first term, use Lemma B5 of Bonhomme and Manresa (2015) again. From Assumption 7-b, we have

$$\Pr\left\{ \left| \left(\delta_t^0(k) - \delta_t^0(\tilde{k}) \right) \dot{U}_{it} \right| \ge z \right\} \le \Pr\left\{ |\dot{U}_{it}| \ge \frac{z}{2M} \right\}.$$

By applying similar argument from before, we can prove the tail property given in Assumption 7-g for $\left(\delta_t^0(k) - \delta_t^0(\tilde{k})\right)\dot{U}_{it}$ with any k and \tilde{k} . Also, the first part of Assumption 7-g is

satisfied since $\left(\delta_t^0(k) - \delta_t^0(\tilde{k})\right)\dot{U}_{it}$ is a measurable function of $(U_{it}, U_{it-1})^3$. For any $\nu > 0$,

$$T_0^{\nu} \Pr \left\{ \frac{1}{T_0} \sum_t \left(\delta_t^0(k) - \delta_t^0(\tilde{k}) \right) \dot{U}_{it} \le -\frac{c^*}{4} \right\} = o(1).$$

Again, in the case of Theorem 1, note that E_i has finite support and repeat

$$T_0^{\nu} \operatorname{Pr} \left\{ \frac{1}{T_0} \sum_{t} \left(\mathbf{E}[\dot{Y}_{it}(\infty) | k_i^0 = k] - \mathbf{E}[\dot{Y}_{it}(\infty) | k_i^0 = \tilde{k}] \right) \left(\dot{Y}_{it}(e) - \mathbf{E}[\dot{Y}_{it}(\infty) | k_i^0] \right) \right\} = o(1)$$

for every e. For the second term, Assumption 7-c assumes that $\mathbf{1}\left\{\frac{1}{T_0}\sum_t \left(\delta_t^0(k) - \delta_t^0(\tilde{k})\right)^2 \le c^*\right\} = 0$ when n is large and therefore $o(T^{-\nu})$ for any $\nu > 0$.

Finally, going back to (3) and (5), thanks to K being fixed,

$$\Pr\left\{\hat{k}_i \neq k_i^0, D(\eta^*) = 1\right\} = o(T^{-\nu}). \tag{7}$$

Step 6

In this step let us discuss the probability of assigning a wrong type at least to one unit. As $n \to \infty$, for any $\nu > 0$

$$\Pr\left\{\sup_{i} \mathbf{1}_{\{\hat{k}_{i} \neq k_{i}^{0}\}} > 0\right\}$$

$$\leq \Pr\left\{\sum_{i} \mathbf{1}_{\{\hat{k}_{i} \neq k_{i}^{0}\}} > 0, D(\eta^{*}) = 1\right\} + \Pr\{D(\eta^{*}) = 0\}$$

$$\leq n \cdot \Pr\left\{\hat{k}_{i} \neq k_{i}^{0}, D(\eta^{*}) = 1\right\} + \Pr\{D(\eta^{*}) = 0\}$$

$$= o(nT_{0}^{-\nu}) + o(1).$$

The last equality holds from (7).

³Here, I am treating $\{\delta_t^0(k)\}_{t,k}$ as if uniformly fixed across n. This can be relaxed by assuming $\{\delta_t^0(k)\}_{t,k}$ is also a strongly mixing random process as in Bonhomme and Manresa (2015).

3 Proof for Corollary 3

The first part of the proof is the same with Corollary 2. The second part follows the proof of Theorem 2 of Callaway and Sant'Anna (2021). Fix some t, k and e such that $0 \le e \le t \le T_1 - 1$ and $\mu(k, e) > 0$. Then, it satisfies that $t - e \le \bar{r}_k$ from Assumption 6.

Step 1

Firstly, let us show that $\widehat{CATT}_t(k,e)$ is close to the infeasible estimator using the true types $\{k_i^0\}_{i=1}^n$:

$$\begin{split} \widetilde{CATT}_t(k,e) &= \frac{\sum_{i=1}^n \left(Y_{it} - Y_{i,e-1}\right) \mathbf{1}\{k_i^0 = k, E_i = e\}}{\sum_{i=1}^n \mathbf{1}\{k_i^0 = k, E_i = e\}} \\ &- \frac{\sum_{i=1}^n \left(Y_{it} - Y_{i,e-1}\right) \mathbf{1}\{k_i^0 = k, E_i = \infty\} \pi_e(X_i, k, \hat{\xi}) / \pi_\infty(X_i, k, \hat{\xi})}{\sum_{i=1}^n \mathbf{1}\{k_i^0 = k, E_i = \infty\} \pi_e(X_i, k, \hat{\xi}) / \pi_\infty(X_i, k, \hat{\xi})}. \end{split}$$

Find that

$$\left| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(Y_{it} - Y_{i,e-1} \right) \left(\mathbf{1} \{ \hat{k}_i = k, E_i = e \} - \mathbf{1} \{ k_i^0 = k, E_i = e \} \right) \frac{\pi_e(X_i, k, \hat{\xi})}{\pi_\infty(X_i, k, \hat{\xi})} \right|$$

$$\leq \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} \left(Y_{i,e+r} - Y_{i,e-1} \right)^2 \right)^{\frac{1}{2}} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ \hat{k}_i \neq k_i^0 \} \right)^{\frac{1}{2}} \sup_{i} \left| \frac{\pi_e(X_i, k, \hat{\xi})}{\pi_\infty(X_i, k, \hat{\xi})} \right|.$$

 $\sup_i \pi_e/\pi_\infty$ is bounded by $1/\varepsilon^\pi$ from Assumption 9-c. $\frac{1}{n}\sum_{i=1}^n (Y_{i,e+r} - Y_{i,e-1})^2$ is bounded in expectation uniformly over e and r from Assumption 9-a and therefore $O_p(1)$. From Theorem 2,

$$\Pr\left\{\sum_{i=1}^{n} \mathbf{1}\{\hat{k}_i \neq k_i\} > \varepsilon^2\right\} \leq \Pr\left\{\sup_{i} \mathbf{1}\{\hat{k}_i \neq k_i\} > 0\right\} = o(nT_0^{-\nu}) + o(1)$$

for any $\nu, \epsilon > 0$. Since $nT_0^{-\nu^*} \to 0$ as $n \to \infty$, $\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n \mathbf{1} \{ \hat{k}_i \neq k_i^0 \} \right)^{\frac{1}{2}} = o_p(1)$.

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (Y_{it} - Y_{i,e-1}) \mathbf{1} \{ \hat{k}_i = k, E_i = e \} \frac{\pi_e(X_i, k, \hat{\xi})}{\pi_\infty(X_i, k, \hat{\xi})}
= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (Y_{it} - Y_{i,e-1}) \mathbf{1} \{ k_i^0 = k, E_i = e \} \frac{\pi_e(X_i, k, \hat{\xi})}{\pi_\infty(X_i, k, \hat{\xi})} + o_p(1)$$

By the same argument,

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\{\hat{k}_{i}=k,E_{i}=e\}\frac{\pi_{e}(X_{i},k,\hat{\xi})}{\pi_{\infty}(X_{i},k,\hat{\xi})}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\{k_{i}^{0}=k,E_{i}=e\}\frac{\pi_{e}(X_{i},k,\hat{\xi})}{\pi_{\infty}(X_{i},k,\hat{\xi})}+o_{p}(1).$$

The same applies to the other term without π_e/π_∞ . Note that $\frac{1}{n}\sum_{i=1}^n \mathbf{1}\{k_i^0=k, E_i=e\}$ and $\frac{1}{n}\sum_{i=1}^n \mathbf{1}\{k_i^0=k, E_i=\infty\}\frac{\pi_e}{\pi_\infty}$ both have nonzero probabilistic limits; for the latter, apply Assumption 9-c and find that it is bounded from below by $\frac{1}{n}\sum_{i=1}^n \mathbf{1}\{k_i^0=k, E_i=\infty\}\varepsilon^{\pi}$. Thus,

$$\sqrt{n}\left(\widehat{CATT}_t(k,e) - \widehat{CATT}_t(k,e)\right) = o_p(1).$$

Step 2

In this step, we rewrite $CATT_t(k, e)$ in a way that it connects to $\widetilde{CATT}_t(k, e)$:

$$CATT_{t}(k, e) = \mathbf{E} \left[Y_{it}(e) - Y_{i, e-1}(e) | k_{i}^{0} = k, E_{i} = e \right] - \mathbf{E} \left[Y_{it}(\infty) - Y_{i, e-1}(\infty) | k_{i}^{0} = k, E_{i} = e \right].$$

Find that

$$\mathbf{E} [Y_{it}(\infty) - Y_{i,e-1}(\infty) | k_i^0 = k, E_i = e]$$

$$= \mathbf{E} [\mathbf{E} [Y_{it}(\infty) - Y_{i,e-1}(\infty) | X_i, k_i^0 = k] | k_i^0 = k, E_i = e]$$

$$= \mathbf{E} [\mathbf{E} [Y_{it} - Y_{i,e-1} | X_i, k_i^0 = k, E_i = \infty] | k_i^0 = k, E_i = e]$$

$$= \frac{\mathbf{E} [\mathbf{E} [Y_{it} - Y_{i,e-1} | X_i, k_i^0 = k, E_i = \infty] \mathbf{1} \{k_i^0 = k, E_i = e\}]}{\Pr \{k_i^0 = k, E_i = e\}}$$

and

$$\mathbf{E} \left[\mathbf{E} \left[Y_{it} - Y_{i,e-1} | X_i, k_i^0 = k, E_i = \infty \right] \mathbf{1} \{ k_i^0 = k, E_i = e \} \right]$$

$$= \mathbf{E} \left[\frac{\mathbf{E} \left[(Y_{it} - Y_{i,e-1}) \mathbf{1} \{ k_i^0 = k, E_i = \infty \} | X_i \right] \Pr \left\{ k_i^0 = k, E_i = e | X_i \right\}}{\Pr \left\{ k_i^0 = k, E_i = \infty | X_i \right\}} \right]$$

$$= \mathbf{E} \left[(Y_{it} - Y_{i,e-1}) \mathbf{1} \{ k_i^0 = k, E_i = \infty \} \cdot \frac{\Pr \left\{ k_i^0 = k, E_i = e | X_i \right\}}{\Pr \left\{ k_i^0 = k, E_i = \infty | X_i \right\}} \right]$$

and

$$\Pr \left\{ k_i^0 = k, E_i = e \right\} = \mathbf{E} \left[\mathbf{1} \{ k_i^0 = k, E_i = e \} \cdot \frac{\Pr \left\{ k_i^0 = k, E_i = \infty | X_i \right\}}{\Pr \left\{ k_i^0 = k, E_i = \infty | X_i \right\}} \right]$$
$$= \mathbf{E} \left[\mathbf{1} \{ k_i^0 = k, E_i = \infty \} \cdot \frac{\Pr \left\{ k_i^0 = k, E_i = e | X_i \right\}}{\Pr \left\{ k_i^0 = k, E_i = \infty | X_i \right\}} \right].$$

The second to the last equality holds since $\Pr\{E_i = \infty | k_i^0, X_i\} \ge \varepsilon^{\pi} > 0$ from Assumption 9-c and $\mu(k, \infty) > 0$ for every k from Assumption 6.

For notational brevity, let

$$W_{i} = \mathbf{1}\{k_{i}^{0} = k, E_{i} = \infty\}\pi_{e}(X_{i}, k, \xi^{0})/\pi_{\infty}(X_{i}, k, \xi^{0}),$$
$$\widehat{W}_{i} = \mathbf{1}\{k_{i}^{0} = k, E_{i} = \infty\}\pi_{e}(X_{i}, k, \hat{\xi})/\pi_{\infty}(X_{i}, k, \hat{\xi}).$$

Then,

$$CATT_{t}(k, e) = \frac{\mathbf{E}\left[(Y_{it} - Y_{i,e-1})\mathbf{1}\{k_{i}^{0} = k, E_{i} = e\}\right]}{\mathbf{E}\left[\mathbf{1}\{k_{i}^{0} = k, E_{i} = e\}\right]} - \frac{\mathbf{E}\left[(Y_{it} - Y_{i,e-1})W_{i}\right]}{\mathbf{E}\left[W_{i}\right]}$$

$$\widetilde{CATT}_{t}(k, e) = \frac{\frac{1}{n}\sum_{i}(Y_{it} - Y_{i,e-1})\mathbf{1}\{k_{i}^{0} = k, E_{i} = e\}}{\frac{1}{n}\sum_{i}(Y_{it} - Y_{i,e-1})\widehat{W}_{i}} - \frac{\frac{1}{n}\sum_{i}(Y_{it} - Y_{i,e-1})\widehat{W}_{i}}{\frac{1}{n}\sum_{i}\widehat{W}_{i}}$$

Step 3

Now, let us derive an asymptotic linear approximation of $\widetilde{CATT}_t(k,e)$. Find that

$$\sqrt{n}\left(\widetilde{CATT}_t(k,e) - CATT_t(k,e)\right) = A_n - B_n$$

where

$$A_{n} = \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (Y_{it} - Y_{i,e-1}) \mathbf{1} \{k_{i}^{0} = k, E_{i} = e\}}{\hat{\mu}(k, e)} - \sqrt{n} \frac{\mathbf{E} \left[(Y_{it} - Y_{i,e-1}) \mathbf{1} \{k_{i}^{0} = k, E_{i} = e\} \right]}{\mu(k, e)}$$

$$B_{n} = \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (Y_{it} - Y_{i,e-1}) \widehat{W}_{i}}{\overline{\widehat{W}}_{n}} - \sqrt{n} \frac{\mathbf{E} \left[(Y_{it} - Y_{i,e-1}) W_{i} \right]}{\mathbf{E} \left[W_{i} \right]}$$

where
$$\overline{\widehat{W}}_n = \frac{1}{n} \sum_{i=1}^n \widehat{W}_i$$
.

Before deriving the asymptotic approximation, let us provide some useful expansions and probabilistic convergences. Firstly, apply the first-order Taylor's expansion to \widehat{W}_i with regard to $\widehat{\xi}$ around ξ^0 :

$$\widehat{W}_i = W_i + \mathbf{1}\{k_i^0 = k, E_i = \infty\} \frac{\partial}{\partial \xi} \left(\frac{\pi_e(X_i, k, \xi)}{\pi_\infty(X_i, k, \xi)} \right)^{\mathsf{T}} \bigg|_{\xi \in (\xi^0, \hat{\xi})} \left(\hat{\xi} - \xi^0 \right).$$
 (8)

The first-order remainder term is $O_p(1/\sqrt{n})$ since $\|\hat{\xi} - \xi^0\|_2 = O_p(1/\sqrt{n})$ from asymptotic normality of $\hat{\xi}$ and $\frac{\partial}{\partial \xi} \frac{\pi_e}{\pi_{\infty}} = O_p(1)$ from Assumption 9-d and the convergence of $\hat{\xi}$ to ξ^0 :

$$\left| \frac{\partial}{\partial \xi} \left(\frac{\pi_e(X_i, k, \xi)}{\pi_\infty(X_i, k, \xi)} \right)^{\mathsf{T}} \right|_{\xi \in (\xi^0, \hat{\xi})} \left(\hat{\xi} - \xi^0 \right) \right| \leq \left\| \frac{\partial}{\partial \xi} \left(\frac{\pi_e(X_i, k, \xi)}{\pi_\infty(X_i, k, \xi)} \right) \right|_{\xi \in (\xi^0, \hat{\xi})} \left\|_2 \| \hat{\xi} - \xi^0 \right\|_2$$

$$= O_p(1) O_p \left(\frac{1}{\sqrt{n}} \right).$$

Now, apply the second-order Taylor's expansion to \widehat{W}_i :

$$\widehat{W}_{i} = W_{i} + \mathbf{1}\{k_{i}^{0} = k, E_{i} = \infty\} \frac{\partial}{\partial \xi} \left(\frac{\pi_{e}(X_{i}, k, \xi)}{\pi_{\infty}(X_{i}, k, \xi)} \right)^{\mathsf{T}} \Big|_{\xi = \xi^{0}} \left(\hat{\xi} - \xi^{0} \right)$$

$$+ \mathbf{1}\{k_{i}^{0} = k, E_{i} = \infty\} \left(\hat{\xi} - \xi^{0} \right)^{\mathsf{T}} \frac{\partial^{2}}{\partial \xi \partial \xi^{\mathsf{T}}} \left(\frac{\pi_{e}(X_{i}, k, \xi)}{\pi_{\infty}(X_{i}, k, \xi)} \right) \Big|_{\xi \in (\xi^{0}, \hat{\xi})} \left(\hat{\xi} - \xi^{0} \right). \tag{9}$$

Note that the second-order remainder term is $o_p(1/\sqrt{n})$ from Assumption 9-d and the asymptotic normality of $\hat{\xi}$. An abuse of notation is used when we write $\xi \in (\xi^0, \hat{\xi})$ to say ξ lies between ξ^0 and $\hat{\xi}$. Lastly, find that from (8) and $\frac{1}{n} \sum_i (Y_{it} - Y_{i,e-1})^2$ being bounded in expectation,

$$\left| \frac{1}{n} \sum_{i=1}^{n} (Y_{it} - Y_{i,e-1}) \left(\widehat{W}_i - W_i \right) \right| = O_p \left(\frac{1}{\sqrt{n}} \right),$$

$$\frac{1}{n} \sum_{i=1}^{n} (Y_{it} - Y_{i,e-1}) \widehat{W}_i = \mathbf{E} \left[(Y_{it} - Y_{i,e-1}) W_i \right] + O_p \left(\frac{1}{\sqrt{n}} \right). \tag{10}$$

The $O_p(1/\sqrt{n})$ term in the second equality comes from applying the CLT to $(Y_{it} - Y_{i,e-1}) W_i$ and the $O_p(1/\sqrt{n})$ term from the first equality. Likewise, we have

$$\overline{\widehat{W}}_n = \mathbf{E}[W_i] + O_p(1/\sqrt{n}). \tag{11}$$

As argued in the Step 1, $\mathbf{E}[W_i] > 0$ from Assumption 9-c.

To drive the asymptotic approximation of B_n , apply the second-order Taylor's expansion to B_n with regard to $\overline{\widehat{W}}_n$ around $\mathbf{E}[W_i]$:

$$\frac{\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(Y_{it}-Y_{i,e-1})\widehat{W}_{i}}{\overline{\widehat{W}}_{n}}$$

$$=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(Y_{it}-Y_{i,e-1})\widehat{W}_{i}\left(\frac{1}{\mathbf{E}[W_{i}]}-\frac{1}{\mathbf{E}[W_{i}]^{2}}\left(\overline{\widehat{W}}_{n}-\mathbf{E}[W_{i}]\right)+\frac{2}{\widetilde{W}_{n}^{3}}\left(\overline{\widehat{W}}_{n}-\mathbf{E}[W_{i}]\right)^{2}\right)$$

$$=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\frac{(Y_{it}-Y_{i,e-1})\widehat{W}_{i}}{\mathbf{E}[W_{i}]}-\frac{\mathbf{E}[(Y_{it}-Y_{i,e-1})W_{i}]}{\mathbf{E}[W_{i}]^{2}}\sqrt{n}\left(\overline{\widehat{W}}_{n}-\mathbf{E}[W_{i}]\right)+o_{p}(1).$$

with some \widetilde{W}_n between $\overline{\widehat{W}}_n$ and $\mathbf{E}[W_i]$. The second equality holds from $\mathbf{E}[W_i] > 0$, (11) and (10). Then, from (9) and $\frac{1}{n} \sum_i (Y_{it} - Y_{i,e-1})^2$ being bounded in expectation,

$$\begin{split} &\frac{\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(Y_{it}-Y_{i,e-1})\widehat{W}_{i}}{\widehat{\overline{W}}_{n}} \\ &= \frac{1}{\mathbf{E}[W_{i}]} \cdot \frac{1}{\sqrt{n}}\sum_{i=1}^{n}(Y_{it}-Y_{i,e-1})W_{i} + o_{p}(1) \\ &+ \frac{1}{n}\sum_{i=1}^{n}\frac{(Y_{it}-Y_{i,e-1})\mathbf{1}\{k_{i}^{0}=k,E_{i}=\infty\}}{\mathbf{E}[W_{i}]}\frac{\partial}{\partial \xi}\left(\frac{\pi_{e}(X_{i},k,\xi)}{\pi_{\infty}(X_{i},k,\xi)}\right)^{\mathsf{T}}\bigg|_{\xi=\xi^{0}} \cdot \sqrt{n}\left(\hat{\xi}-\xi^{0}\right) \\ &- \frac{\mathbf{E}[(Y_{it}-Y_{i,e-1})W_{i}]}{\mathbf{E}[W_{i}]^{2}} \cdot \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(W_{i}-\mathbf{E}[W_{i}]\right) \\ &- \frac{\mathbf{E}[(Y_{it}-Y_{i,e-1})W_{i}]}{\mathbf{E}[W_{i}]}\frac{1}{n}\sum_{i=1}^{n}\frac{\mathbf{1}\{k_{i}^{0}=k,E_{i}=\infty\}}{\mathbf{E}[W_{i}]}\frac{\partial}{\partial \xi}\left(\frac{\pi_{e}(X_{i},k,\xi)}{\pi_{\infty}(X_{i},k,\xi)}\right)^{\mathsf{T}}\bigg|_{\xi=\xi^{0}} \cdot \sqrt{n}\left(\hat{\xi}-\xi^{0}\right). \end{split}$$

Let

$$\bar{B}_{1} = \frac{1}{\mathbf{E}[W_{i}]} \cdot \mathbf{E} \left[(Y_{it} - Y_{i,e-1}) \mathbf{1} \{ k_{i}^{0} = k, E_{i} = \infty \} \frac{\partial}{\partial \xi} \left(\frac{\pi_{e}(X_{i}, k, \xi)}{\pi_{\infty}(X_{i}, k, \xi)} \right) \Big|_{\xi = \xi^{0}} \right]$$

$$\bar{B}_{2} = \frac{1}{\mathbf{E}[W_{i}]} \cdot \mathbf{E} \left[\mathbf{1} \{ k_{i}^{0} = k, E_{i} = \infty \} \frac{\partial}{\partial \xi} \left(\frac{\pi_{e}(X_{i}, k, \xi)}{\pi_{\infty}(X_{i}, k, \xi)} \right) \Big|_{\xi = \xi^{0}} \right].$$

Note that the sample analogues for \bar{B}_1 and \bar{B}_2 with ξ^0 replaced with $\hat{\xi}$ are consistent for \bar{B}_1 and \bar{B}_2 from Assumption 9-d. Consequently,

$$B_{n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{W_{i}}{\mathbf{E}[W_{i}]} \left(Y_{it} - Y_{i,e-1} - \frac{\mathbf{E}[(Y_{it} - Y_{i,e-1})W_{i}]}{\mathbf{E}[W_{i}]} \right) + \left(\bar{B}_{1} - \frac{\mathbf{E}[(Y_{it} - Y_{i,e-1})W_{i}]}{\mathbf{E}[W_{i}]} \bar{B}_{2} \right)^{\mathsf{T}} \cdot \sqrt{n} \left(\hat{\xi} - \xi^{0} \right) + o_{p}(1).$$

By repeating the same argument for A_n ,

$$A_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{\mathbf{1}\{k_i^0 = k, E_i = e\}}{\mu(k, e)} \left(Y_{it} - Y_{i, e-1} - \frac{\mathbf{E}[(Y_{it} - Y_{i, e-1})\mathbf{1}\{k_i^0 = k, E_i = e\}]}{\mu(k, e)} \right) + o_p(1).$$

Note the asymptotic linear approximation given in Corollary 3 holds for $\hat{\xi}$ as well from the proof for Corollary 2. We can construct score functions l^1 and l^0 as follows:

$$A_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n l_{tke}^1 \left(\{Y_{it}\}_{t \ge -1}, k_i^0, E_i \right) + o_p(1),$$

$$B_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n l_{tke}^0 \left(\{Y_{it}\}_{t \ge -1}, X_i, k_i^0, E_i \right) + o_p(1).$$

Note that l^{π} appears in l^{0} . Now we have

$$\begin{split} & \sqrt{n} \left(\widehat{CATT}_t(k, e) - CATT_t(k, e) \right) \\ & = \left(1, -1 \right) \left(\frac{\frac{1}{\sqrt{n}} \sum_{i=1}^n l_{tke}^1 \left(\{Y_{it}\}_{t \ge -1}, k_i^0, E_i \right)}{\frac{1}{\sqrt{n}} \sum_{i=1}^n l_{tke}^0 \left(\{Y_{it}\}_{t \ge -1}, X_i, k_i^0, E_i \right)} \right) + o_p(1). \end{split}$$

The asymptotic linear approximation is derived for $\widehat{CATT}_t(k,e)$.

Step 4

To derive asymptotic distribution of $\hat{\beta}_r(k)$, consider

$$\begin{split} &\frac{\hat{\mu}(k,e)}{\sum_{e' \leq T_1 - 1 - r} \hat{\mu}(k,e')} \cdot \sqrt{n} \widehat{CATT}_t(k,e) - \frac{\mu(k,e)}{\sum_{e' \leq T_1 - 1 - r} \mu(k,e')} \cdot \sqrt{n} CATT_t(k,e) \\ &= \frac{\hat{\mu}(k,e)}{\sum_{e' \leq T_1 - 1 - r} \hat{\mu}(k,e')} \cdot \sqrt{n} \left(\widehat{CATT}_t(k,e) - CATT_t(k,e) \right) \\ &+ \sqrt{n} \left(\frac{\hat{\mu}(k,e)}{\sum_{e' \leq T_1 - 1 - r} \hat{\mu}(k,e')} - \frac{\mu(k,e)}{\sum_{e' \leq T_1 - 1 - r} \mu(k,e')} \right) \cdot CATT_t(k,e). \end{split}$$

By taking the second-order Taylor's expansion of $\sum_{e'} \hat{\mu}(k, e')$ around $\sum_{e'} \mu(k, e')$,

$$\begin{split} \sqrt{n} \left(\frac{\hat{\mu}(k,e)}{\sum_{e'} \hat{\mu}(k,e')} - \frac{\mu(k,e)}{\sum_{e'} \mu(k,e')} \right) &= \sqrt{n} \left(\frac{\hat{\mu}(k,e)}{\sum_{e'} \mu(k,e')} - \frac{\mu(k,e)}{\sum_{e'} \mu(k,e')} \right) \\ &- \frac{\hat{\mu}(k,e)}{\left(\sum_{e'} \mu(k,e')\right)^2} \sqrt{n} \left(\sum_{e'} \left(\hat{\mu}(k,e') - \mu(k,e') \right) \right) \\ &+ \frac{2\hat{\mu}(k,e)}{\tilde{\mu}^3} \sqrt{n} \left(\sum_{e'} \left(\hat{\mu}(k,e') - \mu(k,e') \right) \right)^2 \end{split}$$

with some $\tilde{\mu}$ between $\sum_{e'} \mu(k, e')$ and $\sum_{e'} \hat{\mu}(k, e')$. The second-order remainder term is $o_p(1)$ since $\sqrt{n} \left(\sum_{e'} \left(\hat{\mu}(k, e') - \mu(k, e') \right) \right) = O_p(1)$ and $\sum_{e'} \mu(k, e')$ is nonzero by taking $r \leq \bar{r}_k$ from Assumption 6. Thus,

$$\sqrt{n} \left(\frac{\hat{\mu}(k,e)}{\sum_{e'} \hat{\mu}(k,e')} - \frac{\mu(k,e)}{\sum_{e'} \mu(k,e')} \right) \\
= \sqrt{n} \left(\frac{\hat{\mu}(k,e) - \mu(k,e)}{\sum_{e'} \mu(k,e')} \right) - \frac{\mu(k,e)}{\left(\sum_{e'} \mu(k,e')\right)^{2}} \sqrt{n} \left(\sum_{e'} \left(\hat{\mu}(k,e') - \mu(k,e') \right) \right) + o_{p}(1) \\
= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\mathbf{1}\{k_{i}^{0} = k, E_{i} = e\} - \mu(k,e)}{\sum_{e'} \mu(k,e')} \\
- \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\mu(k,e) \left(\mathbf{1}\{k_{i}^{0} = k, E_{i} \leq T_{1} - 1 - r\} - \sum_{e'} \mu(k,e') \right)}{\left(\sum_{e'} \mu(k,e')\right)^{2}} + o_{p}(1).$$

Let l^{μ} denote the score function in the asymptotic linear approximation:

$$\sqrt{n} \left(\frac{\hat{\mu}(k,e)}{\sum_{e'} \hat{\mu}(k,e')} - \frac{\mu(k,e)}{\sum_{e'} \mu(k,e')} \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} l_{ke}^{\mu}(k_{i}^{0}, E_{i}) + o_{p}(1).$$

Combining all of the results so far, we get

$$\sqrt{n} \left(\hat{\beta}_{r}(k) - \beta_{r}(k) \right)
= \sum_{e \leq T_{1} - 1 - r} \left(\frac{\hat{\mu}(k, e)}{\sum_{e'} \hat{\mu}(k, e')} \cdot \sqrt{n} \widehat{CATT}_{t}(k, e) - \frac{\mu(k, e)}{\sum_{e'} \mu(k, e')} \cdot \sqrt{n} CATT_{t}(k, e) \right)
= \sum_{e \leq T_{1} - 1 - r} \frac{\mu(k, e)}{\sum_{e'} \mu(k, e')} \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(l_{e+r,k,e}^{1} \left(\{Y_{it}\}_{t \geq 0}, k_{i}^{0}, E_{i} \right) - l_{e+r,k,e}^{0} \left(\{Y_{it}\}_{t \geq 0}, X_{i}, k_{i}^{0}, E_{i} \right) \right)
+ \sum_{e \leq T_{1} - 1 - r} CATT_{t}(k, e) \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^{n} l_{ke}^{\mu}(k_{i}^{0}, E_{i}) + o_{p}(1).$$

References

Bonhomme, Stéphane and Elena Manresa, "Grouped patterns of heterogeneity in panel data," *Econometrica*, 2015, 83 (3), 1147–1184.

Callaway, Brantly and Pedro HC Sant'Anna, "Difference-in-differences with multiple time periods," *Journal of Econometrics*, 2021, 225 (2), 200–230.

Janys, Lena and Bettina Siflinger, "Mental health and abortions among young women: Time-varying unobserved heterogeneity, health behaviors, and risky decisions," *Journal of Econometrics*, 2024, 238 (1), 105580.