IZVODI - ZADACI

1. Odrediti jednačinu tangente na grafik funkcie f(x) u tački (x_0, y_0) ako je

a)
$$f(x) = 2x^3 - 5x$$
, $x_0 = -1$, b) $f(x) = \sqrt{x}$, $x_0 = 0$

c)
$$f(x) = \frac{x-1}{x-2}$$
, $x_0 = 1$, d $f(x) = \frac{2x}{(x+1)^2}$, $x_0 = 0$.

2. Naći prvi izvod sledećih funkcija:

(a) 1)
$$f(x) = x^2 + 2x - 4$$
, 2) $f(x) = x^5 + 3x^8 + x^{-9} + \frac{4}{x^8}$, 3) $f(x) = \sqrt[3]{x} + \sqrt[3]{3}$,

4)
$$f(x) = (x-1)(x+1)$$
, 5) $f(x) = \frac{1}{x} + \frac{1}{\sqrt{x}} + \frac{1}{\sqrt[3]{x}}$

(b) 1)
$$f(x) = x^2(2x+3)$$
, 2) $f(x) = \sqrt{x}(x^3-4)$, 3) $f(x) = (x+1)(\sqrt{x}+2)$,

4)
$$f(x) = (x^2 + 1)(x^2 + 2)$$
, 5) $f(x) = \frac{\sqrt{x} + 1}{\sqrt{x} - 1}$, 6) $f(x) = \frac{1 + x\sqrt{x}}{1 - x\sqrt{x}}$

(c) 1)
$$f(x) = \sin x + \cos x$$
, 2) $f(x) = \tan x - \cot x$, 3) $f(x) = \sqrt{x} \sin x$, 4) $f(x) = \frac{1}{\sin x}$

5)
$$f(x) = (\cos x)(1 - \sin x)$$
, 6) $f(x) = \frac{x \sin x}{1 + \log x}$, 7) $f(x) = \frac{1 - \cos x}{1 + \cos x}$

(d) 1)
$$f(x) = 3 + \ln x$$
, 2) $f(x) = e^x \ln x$, 3) $f(x) = \sin x \ln x$, 4) $f(x) = x^2 \ln x$

5)
$$f(x) = \frac{x^2 + 1}{\ln x}$$
, 6) $f(x) = \frac{a}{\ln x}$, 7) $f(x) = \frac{1 - \ln x}{1 + \ln x}$

(e) 1)
$$f(x) = 2^x + 3^x + 4^x$$
, 2) $f(x) = \frac{1}{5x} + \frac{1}{7x}$, 3) $f(x) = (x^2 - x + 1)e^x$, 4) $f(x) = e^x \sin x$

5)
$$f(x) = \frac{e^x}{\cos x}$$
, 6) $f(x) = \frac{a^x}{\ln x}$, 7) $f(x) = \frac{e^x - e^{-x}}{2}$,

(f) 1)
$$f(x) = x \arcsin x$$
, 2) $f(x) = \frac{1}{\arcsin x}$, 3) $f(x) = \frac{\arcsin x}{\arccos x}$, 4) $f(x) = \sqrt{x} \arctan x$.

3. Naći prvi izvod sledećih funkcija:

(a) 1)
$$f(x) = e^{3x}$$
, 2) $f(x) = \arctan x^2$, 3) $f(x) = \arctan x$, 4) $f(x) = \ln(3x^2 - 4)$

5)
$$f(x) = 2^{\frac{x}{\ln x}}$$
, 6) $f(x) = x \sin(\ln x)$, 7) $f(x) = \arcsin \frac{2}{x}$

(b) 1)
$$f(x) = \left(x^2 - \frac{1}{x^3} + 2\right)^4$$
, 2) $f(x) = \left(1 + \sqrt[3]{x}\right)^3$, 3) $f(x) = \sqrt[3]{\frac{1}{1 - x^3}}$,

4)
$$f(x) = x\sqrt{\frac{1-x}{x^2+1}}$$
, 5) $f(x) = \frac{1+x}{\sqrt{1-x}}$,

(c) 1)
$$f(x) = \frac{1}{\sin x}$$
, 2) $f(x) = \frac{\sin x - x \cos x}{\cos x + x \sin x}$, 3) $f(x) = \sin^2(\cos 3x)$, 4) $f(x) = \sin^2 x \sin x^2$,

4)
$$f(x) = \frac{1}{4} \ln \frac{x^2 - 1}{x^2 + 1}$$
, 5) $f(x) = \cos^2 \frac{1 - \sqrt{x}}{1 + \sqrt{x}}$, 6) $f(x) = \ln(x + \sqrt{x^2 + 1}) - \frac{1}{\sqrt{x^2 + 1}}$

1

4. Izračunati:

(a)
$$f'(x) + f(x) + f\left(\frac{1}{x}\right)$$
 ako je $f(x) = \ln x$,

(b)
$$f'(1) - f'(-1) + 4f(0)$$
 ako je $f(x) = x^5 + x^3 - 2x - 3$,

(c)
$$f'(2) - f'(-2)$$
 ako je $f(x) = x^2 - \frac{1}{2x^2}$.

5. Naći prvi izvod sledećih funkcija:

a)
$$x = \frac{1+t^3}{t^2-1}$$
, $y = \frac{t}{t^2-1}$ b) $x = 2 \operatorname{tg} t$, $y = 2 \sin^2 t + \sin 2t$

c)
$$y = (\sin x)^x$$
 d) $x = \left(\frac{x}{1+x}\right)^x + \ln x$
d) $x y = e^{x+y}$ e) $\operatorname{arctg} \frac{y}{x} = \ln \sqrt{x^2 + y^2}$

$$x y = e^{x+y}$$
 $e) \quad \operatorname{arctg} \frac{y}{x} = \ln \sqrt{x^2 + y^2}$

6. Naći drugi izvod funkcije y = f(x):

(a) 1)
$$y = xe^{x^2}$$
, 2) $y = e^{\sqrt{x}}$, 3) $y = (1+x^2) \arctan x$, 4) $y = \cos^2 x$,

(b) 1)
$$x = \cos t$$
, $y = \sin t$, 2) $x = t^2 e^t$, $y = \frac{\ln t}{t}$, 3) $x = \sqrt{t} \cos t$, $y = \sqrt{t} \sin t$,

(c) 1)
$$\sin(x+y) = \cos xy$$
, 2) $\frac{xy}{x+y} = (1+\frac{y}{x})$, 3) $e^{xy} = \ln(x^2+y^2)$,

(d) 1)
$$y = x^x$$
, 2) $y = x^{\ln x}$, 3) $y = (\ln x)^x$, 4) $y = x^{\sin x}$.

- 7. Neka je p(x) polinom četvrtog stepena. Ako je p(2) = -1, p'(2) = 0, p''(2) = 2, p'''(2) = -1 i $p^{IV}(2) = 24$ izračunati p(-1), p'(0) i p''(1).
- 8. Dokazati da
 - (a) funkcija $y = e^x \sin x$ zadovoljava jednačinu y'' 2y' + 2y = 0;
 - (b) funkcija $y = \sqrt{2x x^2}$ zadovoljava jednačinu $y^3y'' + 1 = 0$;
 - (c) funkcija $y = \sin(x^2 + 1)$ zadovoljava jednačinu $xy'' y' + 4x^3y = 0$
- 9. (Lopitalovo pravilo) Odrediti sledeće granične vrednosti

(a) 1)
$$\lim_{x \to 0} \frac{\sin x - x}{e^x - 1}$$
, 2) $\lim_{x \to 2} \frac{2^{x-2} - 3^{x-2}}{\arctan(x^2 - 4)}$, 3) $\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$

(b) 1)
$$\lim_{x \to \infty} \frac{\ln x}{x^{10}}$$
, 2) $\lim_{x \to 0^+} \frac{\operatorname{ctg} x - x}{\sin x + \ln x}$, 3) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{1 - x}$,

(c) 1)
$$\lim_{x \to \infty} \frac{1}{x^2} e^{x^2}$$
, 2) $\lim_{x \to 0^+} \ln(x+1) \operatorname{ctg} x$, 3) $\lim_{x \to +\infty} x \left(\frac{\pi}{2} - \operatorname{arctg} x\right)$,

$$\text{(d) 1)} \quad \lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right) \qquad 2) \quad \lim_{x \to \infty} (\sqrt{x + 3} - \sqrt{x}), \qquad 3) \quad \lim_{x \to 0} \left(\operatorname{ctg}^2 x - \frac{1}{x^2} \right),$$

(e) 1)
$$\lim_{x \to \infty} \left(\frac{1}{x}\right)^{\frac{1}{x}}$$
, 2) $\lim_{x \to \infty} \left(\frac{\pi}{2} - \operatorname{arctg} x\right)^{\frac{1}{\ln x}}$,

(f) 1)
$$\lim_{x \to 0^+} (e^{2x} + x)^{\frac{1}{x}},$$
 2) $\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{1 - \cos x}},$

(g) 1)
$$\lim_{x \to 0^+} \left(\frac{1}{x}\right)^x$$
 2) $\lim_{x \to 0} (\ln x)^{\frac{1}{x}}$.

10. Izračunati sledeće granične vrednosti:

a)
$$\lim_{x \to a} \frac{\cos x \ln (x - a)}{\ln (e^x - e^a)}$$
, b) $\lim_{x \to \infty} \left(\sqrt{1 + x^2 \ln \frac{ex}{x + 1}} - x \right)$, c) $\lim_{x \to 0} \left(\frac{(1 + x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{x}}$

d)
$$\lim_{x \to 0^+} (\operatorname{ctg} x)^{\frac{1}{\ln x}}, \quad e) \quad \lim_{x \to \infty} \left(x - x^2 \ln(1 + \frac{1}{x}) \right).$$

11. Napisati jednačine tangente i normale na grafike funkcija y = f(x) u tački $A(x_0, y_0)$.

(a)
$$y = x^3 + \frac{1}{x} - \ln x$$
, $A(1, y_0)$

(b)
$$x = \frac{2}{1+t}$$
, $y = 1-t$, $t_0 = (2, y_0)$

- (c) $y = \sqrt{x}$, $A(4, y_0)$
- (d) $y = e^{x^2 1}$, $A(1, y_0)$
- (e) $y = \arctan x^2$, $A(0, y_0)$
- (f) $y = 3^x + 3^{-2x}$, $A(1, y_0)$
- (g) $y = \frac{2x+1}{x+1}$ u tački preseka sa y-osom.
- 12. Odrediti ugao pod kojim uglom se seku krive
 - (a) $y = x^2 i y^2 = x$,
 - (b) $y = \sqrt{x} \, i \, y = \frac{1}{x}$.
- 13. Detaljno ispitati i nacrtati grafik funkcija:

a)
$$y = \frac{x^3 + 1}{x^2}$$
, b) $y = x e^{\frac{1}{x-2}}$

14. Za sledeće funkcije odrediti domen, ispitati parnost i ispitati postojanje asimptota:

a)
$$y = \frac{x^2 + 3}{x}$$
, b) $y = \sqrt{\frac{(x-2)^3}{x}}$, c) $y = \frac{x^2}{x-1} e^{\frac{1}{x}}$

$$b) \quad y = \sqrt{\frac{(x-2)^3}{x}},$$

c)
$$y = \frac{x^2}{x-1} e^{\frac{1}{x}}$$

$$d) \quad y = \ln \frac{x+3}{1-x},$$

$$e) \quad y = \frac{1 - \ln x}{1 + \ln x},$$

d)
$$y = \ln \frac{x+3}{1-x}$$
, $e)$ $y = \frac{1-\ln x}{1+\ln x}$, $f)$ $y = \arctan \frac{2x}{x^2-1}$

15. Za sledeće funkcije odrediti domen, ispitati parnost i odrediti intervale monotonosti i ispitati postojanje ekstremnih vrednosti:

a)
$$y = \sqrt[3]{\frac{x^2}{x+1}}$$
, b) $y = \ln \frac{x^3}{x^2 - 3}$, c) $y = \frac{1 - \ln x^2}{1 + \ln x^2}$

16. Aproksimirati sledeće funkcije Maklorenovim polinomom četvrtog stepena

$$a) \quad f(x) = e^x$$

$$b) \quad f(x) = \sin x,$$

$$c) \quad f(x) = \cos x,$$

a)
$$f(x) = e^x$$
, b) $f(x) = \sin x$, c) $f(x) = \cos x$, d) $f(x) = \ln (1+x)$,

$$e) \quad f(x) = e^{5x+1}$$

$$f) \quad f(x) = \ln (x + e),$$

$$g) \quad f(x) = \sin^2 x.$$

e)
$$f(x) = e^{5x+1}$$
, $f(x) = \ln(x+e)$, $g(x) = \sin^2 x$, $h(x) = (x^2+5)e^{3x}$.

17. Napisati Maklorenov polinom drugog stepena za sledeće funkcije i izračunati (oceniti gresku?!)

(a)
$$f(x) = \ln(x^2 + x + 1)$$
, $P_2(\frac{1}{2}) = ?$

(b)
$$f(x) = \sin^3 x + x^2 + x + 1$$
, $P_2(\frac{1}{3}) = ?$

Dodati bar jednu primenu, npr $\sqrt[3]{15}$, sin 1 ili nesto slično.... :-)