DRAFT 2025-01-09 PHYS3009-E1

School of Physics and Astronomy

A Level 3 Module, Spring 2024-2025

Force and Function at the Nanoscale

Instructions:

Time allowed: TWO Hours

Answer all THREE questions

Candidates may complete the front cover of their answer book and sign their desk card. **DO NOT turn the examination paper over until instructed to do so.**

Only a calculator from approved list A may be used in this examination.

Basic Models	Scientific Calculators	
Aurora HC133	Aurora AX-582	Casio FX82 family
Casio HS-5D	Casio FX83 family	Casio FX85 family
Deli – DL1654	Casio FX350 family	Casio FX570 family
Sharp EL-233	Casio FX991 family	Sharp EL-531 family
	Texas Instruments TI-30 family	Texas BA II+ family

Permitted resources:

Those whose first language is not English may use a standard translation dictionary to translate between that language and English provided that neither language is the subject of this examination.

Prohibited resources:

All other dictionaries, including subject specific translation dictionaries and electronic dictionaries. Electronic devices capable of storing and retrieving text.

Appended material: None

Additional material: None

Information for invigilators: None

Exam papers must not be removed from the examination venue.

PHYS3009-E1 Turn over

Standard Table of Physical Constants

c	$3.00 \times 10^8 \mathrm{m \ s^{-1}}$
G	$6.67 \times 10^{-11} \mathrm{N m^2 kg^{-2}}$
h	$6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$
ħ	$1.055 \times 10^{-34} \mathrm{J}\mathrm{s}$
e	$1.60 \times 10^{-19} \mathrm{C}$
m_e	$9.11 \times 10^{-31} \mathrm{kg}$
m_p	$1.6726 \times 10^{-27} \mathrm{kg}$
m_n	$1.6749 \times 10^{-27} \mathrm{kg}$
$k_{ m B}$	$1.38 \times 10^{-23} \mathrm{JK^{-1}}$
R	$8.31\mathrm{JK^{-1}mol^{-1}}$
ε_0	$8.85 \times 10^{-12} \mathrm{F m^{-1}}$
μ_0	$4\pi \times 10^{-7} \mathrm{H \ m^{-1}}$
$\mu_{ m B}$	$9.27 \times 10^{-24} \mathrm{J}\mathrm{T}^{-1}$
σ	$5.67 \times 10^{-8} \mathrm{W} \;\mathrm{m}^{-2} \mathrm{K}^{-4}$
$N_{\rm A}$	$6.02 \times 10^{23} \mathrm{mol}^{-1}$
	G h h e m_e m_p m_n k_B R ϵ_0 μ_0 μ_B

Information you may find useful

$< x^2 > \approx 6Dt$ where $D = \frac{k_B T}{6\pi\mu a}$	$h = \frac{2\gamma \cos(\theta)}{\rho gR}$
$P \propto \exp(-\Delta U/k_BT)$	$k = \frac{k_B T}{\langle z^2 \rangle} = \frac{3EI}{L^3}$
$F(x) = -\frac{dU}{dx}$	$\langle I \rangle = \frac{c\epsilon\epsilon_0 n}{2} \langle E^2 \rangle$
$U_{dipole} = -\mathbf{p}.\mathbf{E}$ where $\mathbf{p} = qd\hat{\mathbf{r}}$	$\Pi = (n_+ + n 2n_0) k_B T$
$\mathbf{p} = \alpha \mathbf{E_{ext}}$ where $\alpha = 4\pi\epsilon\epsilon_r d^3$	$\frac{-d^2V}{dx^2} = \frac{\rho}{\epsilon\epsilon_0}$
$U(x) = -\frac{\pi n_1 C}{6x^3}$	$P_{tot} = 4n_0 \frac{z^2 e^2 V_0^2}{k_B T} \exp(-\kappa D) - \frac{A}{6\pi D^3}$
$A_{12} = n_1 n_2 \pi^2 C$	$s = k_B \ln W$
$W_{adhesion} = \gamma_{13} + \gamma_{23} - \gamma_{12}$	$\Delta U = \Delta H - T \Delta S$
$\Delta P = \gamma \left[\frac{1}{R_1} + \frac{1}{R_2} \right]$	$\Delta U = P_{osm} \Delta V_{excl}$

$$\mu = \frac{dU}{dN}$$

$$P_{tot} = \left[\frac{(k_B T)^2}{\kappa \pi^2} - \frac{A}{6\pi}\right] \frac{1}{D^3}$$

$$H = \frac{\nu}{l_c a_0}$$

where the symbols take their usual meanings as used throughout this course.

PHYS3009-E1 Turn Over