Project

Supervised Machine Learning: Plant Health

Reading in the dataset

```
health_data <- "data/plant_moniter_health_data.csv"
data <- read.csv(health_data,</pre>
                header = TRUE, sep = ",")
dim(data)
## [1] 1000
               9
head(data)
     Plant_ID Temperature_C Humidity_. Soil_Moisture_. Soil_pH Nutrient_Level
## 1
     Plant_1
                   26.49014
                              73.99355
                                               34.87233 5.546096
                                                                        41.36506
## 2 Plant_2
                   24.58521
                              69.24634
                                               42.83222 6.069807
                                                                        49.68797
## 3 Plant 3
                   26.94307
                              60.59630
                                               33.11370 6.293197
                                                                        50.18017
## 4 Plant_4
                   29.56909
                              53.53063
                                               40.38058 7.443844
                                                                        54.72630
                   24.29754
## 5
     Plant 5
                              66.98223
                                               16.59578 6.778277
                                                                        36.33142
## 6 Plant_6
                   24.29759
                              63.93485
                                               48.19941 5.832259
                                                                        55.92567
    Light_Intensity_lux Health_Score Health_Status
                18728.72
## 1
                             68.85919
                                                   0
## 2
                18639.76
                             73.69069
                                                   1
## 3
                                                   1
                14613.07
                             70.57940
## 4
                19009.73
                             74.52004
                                                   1
## 5
                                                   1
                22198.49
                             77.85850
                16177.30
                             88.37154
                                                   1
```

Exploratory Data Analysis

To check if there are duplicate plant observations recorded, we check if the distinct count of the Plant_ID is the same as the number of rows.

```
data %>% summarise(count = n_distinct(Plant_ID))

## count
## 1 1000
```

Perfect, this field can be dropped. We also renamed the other variables for simplicity.

```
data <- data[,-c(1)]
data <- data %>%
  rename(
   Humidity = Humidity_.,
   Soil_Moisture = Soil_Moisture_.
)
```

Looking at all the variables, we use a pair plot:

pairs(data)

These plots show that the variables are not correlated. If so, very weekly. The Health Score, looks like a continuous variable that is used to create the Health Status values.

All variables look roughly normally distributed - we should confirm this:

```
par(mfrow=c(3,2))
hist(data$Temperature_C, main="Distribution of Temperature")
hist(data$Humidity, main="Distribution of Humidity")
hist(data$Soil_Moisture, main="Distribution of Moisture")
hist(data$Soil_pH, main="Distribution of pH")
hist(data$Nutrient_Level, main="Distribution of Nutrient Level")
hist(data$Light_Intensity_lux, main="Distribution of Intensity_Lux")
```


These do all look pretty close to a normal distribution. We need to also see the distribution of the two response variables. One of which is a categorical with 2 classes (0 and 1).

```
par(mfrow=c(1,2))
hist(data$Health_Score, main = "Distribution of Health Score")
hist(data$Health_Status, main = "Distribution of Health Status")
```

Distribution of Health Score

Distribution of Health Status

Whilst the health score is normally distributed, the health status is very imbalanced - we will have to take this into consideration when we explore modeling plant health.

Modeling the health status

First we can try model the health status using all variables with logistic regression.

```
##
## Call:
  glm(formula = Health_Status ~ Temperature_C + Humidity + Soil_Moisture +
       Soil_pH + Nutrient_Level + Light_Intensity_lux, family = "binomial",
##
##
       data = data)
##
## Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                                                1.387
                                                        0.1653
                        2.200e+00
                                   1.586e+00
                       -5.000e-02 2.847e-02
## Temperature_C
                                               -1.756
                                                        0.0791 .
## Humidity
                        5.100e-03
                                   8.412e-03
                                                0.606
                                                        0.5443
## Soil_Moisture
                       -6.615e-03
                                   5.667e-03
                                               -1.167
                                                        0.2431
## Soil_pH
                        5.156e-02
                                                0.316
                                                        0.7520
                                   1.631e-01
## Nutrient_Level
                        2.253e-03 8.447e-03
                                                0.267
                                                        0.7896
## Light_Intensity_lux 8.306e-06 2.781e-05
                                                0.299
                                                        0.7651
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 924.34 on 999 degrees of freedom
## Residual deviance: 919.08 on 993 degrees of freedom
## AIC: 933.08
##
## Number of Fisher Scoring iterations: 4
```

This model does not find any of the variables to be statistically significant (except temperature). We should run this model with a train test split to see how well it predicts the health score.

```
train_size <- 0.75*nrow(data)</pre>
training_sample <- sample(1:nrow(data), train_size)</pre>
training_dataset <- data[training_sample, ]</pre>
testing_dataset <- data[-training_sample, ]</pre>
model_validate <- glm(</pre>
  Health_Status ~ Temperature_C + Humidity + Soil_Moisture + Soil_pH + Nutrient_Level + Light_Intensity
  data=training_dataset,
  family='binomial'
)
y_pred_probs <- predict(</pre>
  model_validate,
  newdata=testing_dataset,
  type='response'
)
y_pred <- ifelse(y_pred_probs > 0.5, 1, 0)
table(y_pred, testing_dataset$Health_Status)
##
## y_pred
             0
        1 37 213
```

Unsurprisingly its predicting the 1 every time. This could be due to the unbalanced nature of the response variable. The distribution of the predicted values might be interesting:

```
hist(y_pred_probs)
```

Histogram of y_pred_probs

