Tarea 5 Álgebra Moderna I

12 de Marzo de 2020

Esta es una tarea de 100 puntos. Cada ejercicio tiene marcado su valor. Si la respuesta es correcta y completa tendrás el total de puntos. En caso de estar incompleto o incorrecto, se asignará los puntos proporcionales a la parte correcta de la respuesta.

Ejercicio 1. (25 puntos) Pruebe que un homomorfismo $f: G \to H$ es inyectivo si y sólo si ker f = 1.

Solución. Supongamos que f es inyectivo. Tenemos que mostrar que $\ker f = \{1\}$, puesto que $\{1\} \subset \ker f$, resta probar que $\ker f \subset \{1\}$. Sea $x \in \ker f$, es decir, f(x) = 1, entonces f(x) = f(1), así por la inyectividad de f obtenemos que x = 1.

Inversamente supangamos que ker f = 1. Si f(x) = f(y) con $x, y \in G$, entonces

$$f(x)f(y)^{-1} = 1$$

$$f(x)f(y^{-1}) = 1$$

$$f(xy^{-1}) = 1$$
(1)

así $xy^{-1} = 1$ porque por hipótesis ker f = 1, se sigue que x = y. Por lo tanto f es invectivo.

Ejercicio 2. (25 puntos)

- 1. Muestre que el 4-grupo de Klein $V = \{1; (12)(34); (13)(24); (14)(23)\}$ es un subgrupo normal de S_4 .
- 2. Si $K = \langle (12)(34) \rangle$, muestre que K es un subgrupo normal de V y que K no es un subgrupo normal de S_4 . Concluya que la normalidad no necesariamente es transitiva, esto es: si K es subgrupo normal de H y H subgrupo normal de G no necesariamente implica que K es subgrupo normal de G.
- 1. Consideremos el conjunto de 3 elementos

$${P_1 = \{\{1,2\},\{3,4\}\}, P_2 = \{\{1,3\},\{2,4\}\}\}, P_3 = \{\{1,4\},\{2,3\}\}\}}$$

construimos una función $\varphi \colon S_4 \to \Gamma$, donde Γ es el grupo de permutaciones de $\{P_1, P_2, P_3\}$ la función esta dada por $\varphi(\sigma)$ es la permutación de $\{P_1, P_2, P_3\}$ dada por

$$P_1 \mapsto \sigma P_1 = \{ \{\sigma(1), \sigma(2)\}, \{\sigma(3), \sigma(4)\} \}, P_2 \mapsto \sigma P_2 = \{ \{\sigma(1), \sigma(3)\}, \{\sigma(2), \sigma(4)\} \}, P_3 \mapsto \sigma P_3 = \{ \{\sigma(1), \sigma(4)\}, \{\sigma(2), \sigma(3)\} \}.$$

Notemos que φ es un homomorfismo de grupos. Por último mostremos que $\ker \varphi = V$. Por inspención notemos que $V \subset \ker \varphi$, así solo resta ver que $\ker \varphi \subset V$. Sea $\sigma \in \ker \varphi$ así:

```
\sigma P_1 = P_1 \leftrightarrow \{\{\sigma(1), \sigma(2)\}, \{\sigma(3), \sigma(4)\}\} = \{\{1, 2\}, \{3, 4\}\} 

\leftrightarrow \sigma \in \{1, (12), (34), (12)(34), (13)(24), (14)(23)\}, 

\sigma P_2 = P_2 \leftrightarrow \{\{\sigma(1), \sigma(3)\}, \{\sigma(2), \sigma(4)\}\} = \{\{1, 3\}, \{2, 4\}\} 

\leftrightarrow \sigma \in \{1, (13), (24), (13)(24), (12)(34), (14)(32)\}.  Intersectando los dos
```

conjuntos resultantes obtenemos que $\sigma \in V$.

Concluimos que V es subgrupo normal de S_4 pues el kernel de cualquier morfismo es normal.

2. Proposición. Si G es un grupo abeliano entonces todo subgrupo H de G es normal.

Demostración. Sea $g \in G$, tenemos que mostrar que $gHg^{-1} = H$. Sea $x \in gHg^{-1}$, entonces $x = ghg^{-1}$, usando que G es abeliano obtenemos que $x = ghg^{-1} = gg^{-1}h = 1.h = h$. Por otro lado si $h \in H$ entonces $h = ghg^{-1}$ pues G es abeliano.

De la proposición anterior obtenemos que $K = \langle (12)(34) \rangle$ es un subgrupo normal de V porque V es abeliano.

K no es normal en S_4 , en efecto sea $(14)(13)(12) \in S_4$ el inverso de esta permutación es (12)(13)(14), luego notemos que

$$[(14)(13)(12)][(12)(34)][(12)(13)(14)] = (14)(13)(34)(12)(13)(14)$$

esta permutación resultante envía 1 al 4 entonces es distinto de (12)(34) así

$$(14)(13)(12)K(12)(13)(14) \neq K$$

Por lo tanto K no es normal en S_4 .

Ejercicio 3. (25 puntos) Sea N un subgrupo normal de G y $f: G \to H$ un homomorfismo tal que su kernel contiene a N. Muestre que f induce un homomorfismo $f_*: G/N \to H$ dado por $f_*(Na) = f(a)$.

Solución. Como N es un subgrupo normal de G, tenemos que el cociente G/N es un grupo con la operación (Na)(Nb)=Nab. Veamos primero que f^* está bien definida, es decir, no depende del representante de la clase. Sea $b\in Na$,

entonces, b esta relacionado con a, así $ab^{-1} \in N$, como N esta contenido en el kernel de f obtenemos que $f(ab^{-1}) = 1$, luego

$$f(a)f(b^{-1}) = 1$$

 $f(a)f(b)^{-1} = 1$
 $f(a) = f(b)$ (2)

así f^* esta bien definida.

Ahora veamos que f^* es un homomorfismo. Sean $Na, Nb \in G/N$,

$$f^*((Na)(Nb)) = f^*(Nab)$$

$$= f(ab)$$

$$= f(a)f(b)$$

$$= f^*(Na)f^*(Nb)$$
(3)

Por lo tanto f^* es un homomorfimo de grupos.

Ejercicio 4. (25 puntos) Pruebe que el grupo del círculo T es isomorfo a \mathbb{R}/\mathbb{Z} .

Solución. En la tarea 3, mostramos que la función $e^{2\pi ix}$ es un homomorfismo de grupos de $\mathbb R$ a T. Notemos que la función $e^{2\pi ix}$ es sobreyectiva, esto es así porque todo número complejo z es de la forma $z=re^{i\theta}$ donde r=|z| y θ es el ángulo de inclinación de z. En particular todo número complejo $w\in S^1$ es de la forma $e^{i\theta}$, así $e^{2\pi ix}$ es sobreyectiva, porque es la composición de las funciones

$$\mathbb{R} \xrightarrow[e^{2\pi ix}]{2\pi} \mathbb{R} \xrightarrow{e^{ix}} T .$$

Ahora calculemos el el kernel de $e^{2\pi x}$, por definición $e^{ix}=\cos(x)+i\sin(x)$ entonces $e^{2\pi ix}=1$ si y sólo si $\cos(2\pi x)=1$ y $\sin(2\pi x)=0$ si y sólo si $x\in\mathbb{Z}$. Entonces el kernel de $e^{2\pi ix}$ es \mathbb{Z} . Por el primer Teorema de isomorfismo tenemos que \mathbb{R}/\mathbb{Z} es isomorfo a T.