Q1. Proof by Induction Base Case

$$n = 2$$

$$A^{2} = AA = \begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix} \begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix}$$

$$= \begin{bmatrix} a^{2} & 2a & 1 \\ 0 & a^{2} & 2a \\ 0 & 0 & a^{2} \end{bmatrix}$$

$$= \begin{bmatrix} a^{2} & 2a^{2-1} & \frac{2(2-1)}{2}a^{2-2} \\ 0 & a^{2} & 2a^{2-1} \\ 0 & 0 & a^{2} \end{bmatrix}$$

Base case holds.

$$\begin{split} A^{k+1} &= A^k A \\ &= \begin{bmatrix} a^k & ka^{k-1} & \frac{k(k-1)}{2}a^{k-2} \\ 0 & a^k & ka^{k-1} \\ 0 & 0 & a^k \end{bmatrix} \cdot \begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix} \\ &= \begin{bmatrix} a^{k+1} & a^k + ka^k & ka^{k-1} + \frac{k(k-1)}{2}a^{k-1} \\ 0 & a^{k+1} & a^k + ka^k \\ 0 & 0 & a^{k+1} \end{bmatrix} \\ &= \begin{bmatrix} a^{k+1} & (k+1)a^k & \frac{(k+1)k}{2}a^{k-1} \\ 0 & a^{k+1} & (k+1)a^k \\ 0 & 0 & a^{k+1} \end{bmatrix} \end{split}$$

Hence, by principle of mathematical induction, the statement is true. QED

- **Q2.** (a) Assume $L_1: \mathbb{F}^m \to \mathbb{F}^n$ and $L_2: \mathbb{F}^n \to \mathbb{F}^m$ are inverses of T $T(L_1(\vec{v})) = \vec{v}, \text{ for all } \vec{v} \in \mathbb{F}^m \text{ (Definition of inverse)}$ $L_2(T(L_1(\vec{v}))) = L_2(\vec{v}) \text{ (Apply } L_2 \text{ to both sides of the equation)}$ $L_1\vec{v} = L_2\vec{v} \text{ (Definition of inverse)}$ QED
 - (b) Assume $T:\mathbb{F}^n\to\mathbb{F}^m$ is an invertible linear transformation and $L:\mathbb{F}^m\to\mathbb{F}^n$ is its inverse

$$L(T(\vec{x} + \vec{y}))$$

= $L(T(\vec{x}) + T(\vec{y}))$ (Definition of Linear Transformation)
= $\vec{x} + \vec{y}$ (Definition of Inverse)
= $L(T(\vec{x})) + L(T(\vec{y}))$ (Definition of Linear Transformation)

Since we know T is linear transformation, it is also onto.

$$\Rightarrow \{T(\vec{x}) + T(\vec{y})\} = \mathbb{F}^m$$

$$L(T(c\vec{x}))$$

$$= L(CT(\vec{x})) \text{ (Definition of Linear Transformation)}$$

$$= c\vec{x} \text{ (Definition of Inverse)}$$

$$= cL(T(\vec{x})) \text{ (Definition of Inverse)}$$
Similarly, since T is onto
$$\Rightarrow \{T(c\vec{x})\} = \mathbb{F}^m$$

since L satisfies the elefinition of a linear transformation, L is a linear transformation. OED

(c) Assume $T_A: \mathbb{F}^n \to \mathbb{F}^m$ is a linear trans formation determined by $A \in M_{u \times n}(\mathbb{F})$ \Rightarrow

Assume T_A is invertible,

$$T_A = A\vec{x}, \vec{x} \in \mathbb{F}^n$$

Let L also be determined by a matrix B

$$L_B = B\vec{x}, \vec{x} \in \mathbb{F}^m$$

 $L_B(T_A(\vec{x})) = \vec{x}$ (Definition of Inverse)
 $L_B(A\vec{x}) = \vec{x}$
 $BA\vec{x} = \vec{x}$
 $BA = I_n$

 $\Rightarrow A$ is invertible when L is determined by B, inverse of A

Assume A is invertable

$$AA^{-1} = I_n$$
 (Definition of Invert table)
 $AA^{-1}\vec{x} = \vec{x}$
 $T_A(A^{-1}\vec{x}) = \vec{x}$

Also,

$$A^{-1}A\vec{x} = \vec{x}$$
$$A^{-1}T_A(\vec{x}) = \vec{x}$$

Hence, we can create a matrix function $L: \mathbb{F}^n \to \mathbb{F}^m$ determined by matrix A^{-1} where when A^{-1} subbed into above equations

$$T_A(L_{A^{-1}}(\vec{x})) = \vec{x}$$

 $L_{A^{-1}}(T_A(\vec{x})) = \vec{x}$

which satisfies the definition of invertability for T_A . QED

Q3. Direct Proof

Let \vec{u} be an aubitvary vector $\in \mathbb{F}^n$, since $\mathbb{F}^h = \operatorname{span} \{\vec{v}_1 \dots v_k\}$

$$\begin{split} \vec{u} &= a\vec{v}_1 + \dots + k\vec{v}_k \\ T(\vec{u}) &= T\left(a\vec{v}_1 + \dots + k\vec{v}_k\right) \\ &= aT\left(\vec{v}_1\right) + \dots + kT\left(\vec{v}_k\right) \quad \text{(Definition of Linear Transformation)} \\ &= aS\left(\overrightarrow{v_1}\right) + \dots + ks\left(\vec{v}_k\right) \quad \text{(Sub with } T\left(\vec{v}_j\right) = s\left(\vec{v}_i\right) \\ &= s\left(a\vec{v}_1\right) + \dots + s\left(k\vec{v}_k\right) \quad \text{(Definition of Linear Transformation)} \\ &= s\left(a\vec{v}_1 + \dots + k\vec{v}_k\right) \quad \text{(Definition of Linear Transformation)} \\ &= s(\vec{u}) \end{split}$$

since \vec{u} is arbitrary,

$$T(\vec{v}) = S(\vec{v})$$
 for all $\vec{v} \in \mathbb{F}^h$

QED

Q4. (a) False, disproof by counterexample

Let $\vec{v} \in \mathbb{R}^n$, pick $\vec{v} = -\vec{u}$ for $\vec{u} \in \mathbb{R}^n \Rightarrow T(\vec{v}) = T(-\vec{u}) = ||\vec{u}||$ However,

$$-T(\vec{u}) = -\|\vec{u}\| \neq \|\vec{u}\|$$

Hence, the statement is false

(b) Direct Proof

Let $\vec{u}, \vec{v} \in \mathbb{R}^n$

$$\Rightarrow T(\vec{u} + \vec{v}) = \vec{x}(\vec{u} + \vec{v})$$

$$= \vec{u}\vec{x} + \vec{v}\vec{x}$$

$$= T(\vec{u}) + T(\vec{v})$$

$$\Rightarrow T(c\vec{v}) = c\vec{v} \cdot \vec{x}$$

$$= cT(\vec{v})$$

Therefore, T satisfies definition of linear transformation. QED

(c) From Q2.c, we know A is invertible

By invertibility criteria, T_A is one to one which implies that whenever

$$T_A(\vec{x}) = T_A(\vec{y})$$

 $\Rightarrow \vec{x} = \vec{y}$

which shows uniqueness.

By invertibility criteria, T_A is also onto,

 \Rightarrow Range $(T) = \mathbb{F}^n$ and $\ddot{y} \in \mathbb{F}^n$ which shows existence.

QED

(d) Let $A^{-1} \in M_{u \times n}$ be inverse of A

$$AB = A^{\top}$$

$$A^{-1}AB = A^{-1}A^{\top}$$

$$I_nB = A^{-1}A^{\top}$$

$$B = A^{-1}A^{\top}$$

$$\Rightarrow B^{-1} = \left(A^{\top}\right)^{-1}A$$

We know $(A^{\top})^{-1}$ exists since it is just $(A^{-1})^{\top}$

$$B^{-1}B = \left(A^{\top}\right)^{-1} A A^{-1} A^{\top}$$
$$= I_n$$
$$BB^{-1} = A^{-1} A^{\top} \left(A^{\top}\right)^{-1} A$$
$$= I_n$$

so B is invertable.

QED