```
Needs["ComputerArithmetic`"]
 In[2]:= (*For extracting the argument of a function*)
     finv[_[x__]] := x
 In[3]:= (*Recursion for generating the solution polynomials*)
     g[-1, a_{-}, b_{-}] = (1/b);
     g[0, a_{}, b_{}] = 1;
     In[6]:= (*Onset or SS*)
     Y[n_{n}, ntot_{n}, AoL_{n}, Yo_{n}] := g[ntot_{n}, AoL_{n}] * Yo / g[ntot_{n}, AoL_{n}]
 In[7]:= (*Make a piecewise function to fit experimental data*)
     YPW[AoL_, mpw_, ntotpw_, Y0pw_] := Piecewise[
       Table[\{Simplify[Y[npw, ntotpw, AoL, Y0pw]], mpw-1 == npw\}, \{npw, 0, ntotpw-1\}]]
 In[8]:= (*Only include wings with stereocilium0
      displacements and at least 5 stereocilia*)
     Data = Import[
         "/Users/dmelody/Dropbox/Stereocilia/AlexData/PaperData/peak_steady_sd_se
           _fullwings.csv"];
     (*Each wing starts at stereocilium 0*)
     wingindex = Flatten[Position[Data[All, 3], 0]];
     (*Number of wings*)
     Length[wingindex]
     (*Total number of stereocilia*)
     Length[Data[All, 2]] - 1
\mathsf{Out}[10] = \ 38
Out[11]= 302
In[12]:= Data[1, All]
     Data[1, 3]
     Data[1, 4]
     Data[1, 9]
Out[12]= {wing_id, wing_id2, norm_position_id, peak_nm_y,
      peak_nm_y_n, peak_nm_y_sd, peak_nm_y_se, peak_nm_y_max,
      steady_nm_y, steady_nm_y_n, steady_nm_y_sd, steady_nm_y_se}
Out[13]= norm_position_id
Out[14]= peak_nm_y
Out[15]= steady_nm_y
```

```
տրել: (*Number of stereocilia with an overshoot excluding stereocilium0*)
     Total[Flatten[
       Table [Table [If [Data [n, 4]] - Data [n, 9]] > 0, 1, 0], {n, wing index [wing index num] + 1,
           If[wingindexnum + 1 > Length[wingindex], Length[Data[All, 2]]],
            wingindex[wingindexnum + 1] - 1]}], {wingindexnum, 1, Length[wingindex]}]]]
     (*Total number of stereocilia excluding stereocilium0*)
     Length[Data[All, 2]] - 1 - Length[wingindex]
     (*Fraction of stereocilia with an overshoot*)
     N[Total[Flatten[
          Table[Table[If[Data[n, 4]] - Data[n, 9]] > 0, 1, 0], {n, wingindex[wingindexnum]] + 1,
             If[wingindexnum + 1 > Length[wingindex], Length[Data[All, 2]],
              wingindex[wingindexnum + 1] - 1] }], {wingindexnum, 1, Length[wingindex] }]]] /
        (Length[Data[All, 2]] - 1 - Length[wingindex])]
Out[16]= 209
Out[17]= 264
Out[18]= 0.791667
In[20]:= (*Exclude wings with a negative onset or steady-
       state because this indicates a damaged wing or a measurement
        artifact. 7 wings have negative onsets or ss. 38-7 = 31*)
     Position[Table[Total[Table[If[Data[n, 4]] < 0 \mid | Data[[n, 9]] < 0, 1, 0],
          {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
            Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}]],
       {wingindexnum, 1, Length[wingindex]}], _?(# > 0 &)]
     Length[Position[Table[Total[Table[If[Data[n, 4] < 0 | | Data[n, 9] < 0, 1, 0],</pre>
           {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
             Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}]],
         {wingindexnum, 1, Length[wingindex]}], _?(# > 0 &)]]
Out[20] = \{ \{2\}, \{4\}, \{5\}, \{12\}, \{19\}, \{23\}, \{38\} \}
Out[21]= 7
ln[22]:= (*7 \text{ wings have negative onsets or ss. } 38-7 = 31*)
     wingindexnum = 2;
     {Table[{Data[n, 3]], Data[n, 4]]},
       {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
          Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}],
      Table[{Data[n, 3], Data[n, 9]},
       {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
          Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}]}
     wingindexnum = 4;
     {Table[{Data[n, 3]], Data[n, 4]]},
```

```
{n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
     Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}],
 Table[{Data[n, 3], Data[n, 9]},
  {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
    Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}]}
wingindexnum = 5;
{Table[{Data[n, 3]], Data[n, 4]]},
  {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
    Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}],
 Table[{Data[n, 3], Data[n, 9]},
  {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
    Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}]}
wingindexnum = 12;
{Table[{Data[n, 3]], Data[n, 4]]},
  {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
     Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}],
 Table[{Data[n, 3], Data[n, 9]}},
  {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
    Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}]}
wingindexnum = 19;
{Table[{Data[n, 3], Data[n, 4]}},
  {n, wingindex[wingindexnum], If[wingindexnum+1 > Length[wingindex],
    Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}],
 Table[{Data[n, 3], Data[n, 9]},
  {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
    Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}]}
wingindexnum = 23;
{Table[{Data[n, 3], Data[n, 4]}},
  {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
     Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}],
 Table[{Data[n, 3], Data[n, 9]},
  {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
    Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}]}
wingindexnum = 38;
{Table[{Data[n, 3]], Data[n, 4]]},
  {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
    Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}],
 Table[{Data[n, 3], Data[n, 9]},
  {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
    Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}]}
```

```
out[23] = \{\{\{0, 369.65\}, \{1, 148.421\}, \{2, 91.1\}, \{3, 58.8714\}, \{4, 50.3857\}, \}\}
                                                     \{5, 38.4714\}, \{6, 19.2714\}, \{7, 11.7214\}, \{8, 9.8\}, \{9, -1.07143\}\},
                                              \{\{0, 598.25\}, \{1, 231.05\}, \{2, 123\}, \{3, 63.1\}, \{4, 43.6\},
                                                    \{5, 31.4\}, \{6, 19.4\}, \{7, 7.25\}, \{8, 7.8\}, \{9, 13.8\}\}\}
Out[25]= \{\{\{0, 54.2929\}, \{1, 37.4714\},
                                                   \{2, 13.0643\}, \{3, 2.4\}, \{4, -2.47143\}, \{5, 3.15\}, \{6, -0.5\}\},\
                                              \{\{0, 53.55\}, \{1, 32.1\}, \{2, 11.05\}, \{3, -0.2\}, \{4, 1.3\}, \{5, 2.45\}, \{6, 2.1\}\}\}
Out[27] = \{\{\{0, 133.779\}, \{1, 61.5357\}, \{2, 50.6\}, \{3, 25.5143\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.78571\}, \{4, 2.785711\}, \{4, 2.785711\}, \{4, 2.785711\}, \{4, 2.785711\}, \{4, 2.785711\}, \{4, 2.785711\}, \{4, 2.785711\}
                                                     \{5, 20.9357\}, \{6, 9.6\}, \{7, 28.1071\}\}, \{\{0, 117.35\}, \{1, 44.7\}, \{1, 44.7\}\}
                                                     \{2, 29.9\}, \{3, 11.4\}, \{4, -1.5\}, \{5, 14.25\}, \{6, 8.75\}, \{7, 11.6\}\}\}
Out[29] = \{\{\{0, 83.3786\}, \{1, 72.3786\}, \{2, 38.9786\}, \{3, 33.4929\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4, 17.8857\}, \{4
                                                     \{5, 10.4857\}, \{6, 8.28571\}, \{7, -2.61429\}\}, \{\{0, 88\}, \{1, 75.45\}, \{1, 75.45\}\}
                                                    \{2, 34.55\}, \{3, 19.05\}, \{4, 12.5\}, \{5, 2.7\}, \{6, 0.15\}, \{7, -2.65\}\}
Out[31] = \{\{\{0, 182.717\}, \{1, 111.667\}, \{2, 75.2667\}, \{3, 48.7667\}, \{4, 22.7167\}, \}\}
                                                    \{5, 18.65\}, \{6, 1.76667\}, \{7, 7.55\}, \{8, 2.55\}, \{9, -8.31667\}\},\
                                              \{\{0, 194.7\}, \{1, 112.95\}, \{2, 85.175\}, \{3, 46.075\}, \{4, 14.075\},
                                                    \{5, 17\}, \{6, -0.15\}, \{7, 5.25\}, \{8, 1.475\}, \{9, -10.6\}\}\}
Out[33] = \{\{\{0, 57.8286\}, \{1, 33.6286\}, \{2, 22.0143\}, \{3, 11.5786\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4, 5.42857\}, \{4
                                                    \{5, 7.62143\}, \{6, 0.0928571\}, \{7, 1.87857\}, \{8, 0.1\}, \{9, 4.72143\}\},\
                                             \{\{0, 61.8\}, \{1, 27.75\}, \{2, 16.15\}, \{3, 7.5\}, \{4, 3.5\},
                                                    \{5, -1.1\}, \{6, 3\}, \{7, 1.9\}, \{8, -2.05\}, \{9, -2\}\}\}
Out[35] = \{\{\{0, 161.15\}, \{1, 102.229\}, \{2, 76.45\}, \{3, 53.9\}, \{4, 34.0571\}, \{5, 20.5857\}, \{6, 161.15\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.229\}, \{1, 102.2
                                                     \{6, 13.5286\}, \{7, 10.1929\}, \{8, 6.77143\}\}, \{\{0, 172.05\}, \{1, 99.55\},
                                                     \{2, 48.75\}, \{3, 37.9\}, \{4, 8.95\}, \{5, 1.7\}, \{6, -0.45\}, \{7, -3.65\}, \{8, -1.05\}\}\}
   In[36]:= (***********************************
```

```
In[37]:= onsetList = Table[NaN, {n, 1, Length[wingindex]}];
    onsetnstereoList = Table[NaN, {n, 1, Length[wingindex]}];
    onsetAoLList = Table[{{n, NaN}, NaN}, {n, 1, Length[wingindex]}];
    onsetAoLPvalList = Table[{n, NaN}, {n, 1, Length[wingindex]}];
    onsetY0List = Table[{{n, NaN}, NaN}, {n, 1, Length[wingindex]}];
    onsetY0PvalList = Table[{n, NaN}, {n, 1, Length[wingindex]}];
    onsetAdjRsqList = Table[{n, NaN}, {n, 1, Length[wingindex]}];
    onsetExportTable = Table[{NaN, NaN, NaN, NaN, NaN}, {n, 1, Length[wingindex]}];
     (*Index of analyzed wings*)
    analwingindex = 0;
    onsetanal = Table[n, {n, 1, 31}];
    ssanal = Table[n, {n, 1, 31}];
     For[wingindexnum = 1, wingindexnum ≤ Length[wingindex], wingindexnum++,
     onset = Table[{Data[n, 3], Data[n, 4]},
        {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
          Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}];
      ss = Table[{Data[n, 3], Data[n, 9]},
        {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
          Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}];
      If[Length[Select[onset[All, 2], # < 0 &]] + Length[Select[ss[All, 2], # < 0 &]] > 0,
       Continue[], analwingindex = analwingindex + 1;
       onsetErr = Table[{Data[n, 3], Data[n, 6] / Sqrt[Data[n, 5]]}},
         {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
           Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}];
       ssErr = Table[{Data[n, 3], Data[n, 11] / Sqrt[Data[n, 10]]}},
         {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
           Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}];
       onsetanal[analwingindex] = Join[{analwingindex}, {Table[
            {onset[n, 1], Around[onset[n, 2], onsetErr[n, 2]]}, {n, 1, Length[onset]}]}];
       ssanal[analwingindex] = Join[{analwingindex},
         {Table[{ss[n, 1], Around[ss[n, 2], ssErr[n, 2]]}, {n, 1, Length[ss]}]}];]]
In[48]:= onsetList = Table[NaN, {n, 1, Length[wingindex]}];
    onsetnstereoList = Table[NaN, {n, 1, Length[wingindex]}];
    onsetAoLList = Table[{{n, NaN}, NaN}, {n, 1, Length[wingindex]}];
    onsetAoLPvalList = Table[{n, NaN}, {n, 1, Length[wingindex]}];
    onsetY0List = Table[{{n, NaN}, NaN}, {n, 1, Length[wingindex]}];
    onsetY0PvalList = Table[{n, NaN}, {n, 1, Length[wingindex]}];
    onsetAdjRsqList = Table[{n, NaN}, {n, 1, Length[wingindex]}];
    onsetExportTable = Table[{NaN, NaN, NaN, NaN, NaN, NaN}, {n, 1, Length[wingindex]}];
In[55]:= (*Fit wings with all positive onsets and ss*)
     (*Index of analyzed wings*)
    analwingindex = 0;
```

```
(*Fit weights are 1/SE^2 and there is a
 different number of points in each measurement window*)
For [wingindexnum = 1, wingindexnum < Length [wingindex], wingindexnum++,
 onset = Table[{Data[n, 3], Data[n, 4]},
   {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
     Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}];
 ss = Table[{Data[n, 3], Data[n, 9]}},
   {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
     Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}];
 If[Length[Select[onset[All, 2], # < 0 &]] + Length[Select[ss[All, 2], # < 0 &]] > 0,
  Continue[], analwingindex = analwingindex + 1;
  Print["analwingindex = ", analwingindex];
  Print["wingindexnum = ", wingindexnum];
  onsetErr = Table[{Data[n, 3], Data[n, 6] / Sqrt[Data[n, 5]]}},
    {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
      Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}];
  onsetList[wingindexnum] = Join[{wingindexnum}, {Table[
      {onset[n, 1], Around[onset[n, 2]], onsetErr[n, 2]]}, {n, 1, Length[onset]}]}];
  nstereo = Last[onset[All, 1]] + 1;
  fit = NonlinearModelFit[Table[onset[n, 2], {n, 1, Length[onset]}],
    {YPW[AoL, m, nstereo, Y0onset]}, {AoL, {Y0onset, onset[1, 2]}},
    m, Weights \rightarrow Table[1 / onsetErr[n, 2] ^2, {n, 1, Length[onset]}],
    VarianceEstimatorFunction → (1 &)];
  onsetnstereoList[wingindexnum] = nstereo;
  onsetAoLList[wingindexnum, 1, 2] =
   Evaluate[AoL /. fit["BestFitParameters"] [[1]]];
  onsetAoLList[wingindexnum, 2] = Evaluate[fit["ParameterErrors"][1]];
  onsetAoLPvalList[wingindexnum, 2] = Evaluate[fit["ParameterTable"][1, 1, 2, 5]];
  onsetY0List[wingindexnum, 1, 2] =
   Evaluate[Y0onset /. fit["BestFitParameters"][2]]];
  onsetY0List[wingindexnum, 2] = Evaluate[fit["ParameterErrors"][2]];
  onsetY0PvalList[wingindexnum, 2] = Evaluate[fit["ParameterTable"][1, 1, 3, 5]];
  onsetAdjRsqList[wingindexnum, 2] = Evaluate[fit["AdjustedRSquared"]];
  onsetExportTable[wingindexnum, 1] = Data[wingindex[wingindexnum], 1];
  onsetExportTable[wingindexnum, 2] = Evaluate[AoL /. fit["BestFitParameters"][1]];
  onsetExportTable[wingindexnum, 3] = Evaluate[fit["ParameterErrors"][1]];
  onsetExportTable[wingindexnum, 4] =
   Evaluate[Y0onset /. fit["BestFitParameters"] [2]]];
  onsetExportTable[wingindexnum, 5] = Evaluate[fit["ParameterErrors"][2]];
  onsetExportTable[wingindexnum, 6] = Evaluate[fit["AdjustedRSquared"]];
  Print[Data[wingindex[wingindexnum], 2]];
  Print[fit["ParameterTable"]];
  Print[
   Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
```

```
Alignment → Left]];
  (*Tick Marks*)
  TickLength = 0.02;
  Xmin = 0;
  Xmax = nstereo - 1;
  Ymin = 0;
  deltaY = 10^(MantissaExponent[onsetList[wingindexnum, 2, 1, 2]["Value"] +
          onsetList[wingindexnum, 2, 1, 2]["Uncertainty"]][2] - 1);
  Ymax = Ceiling[onsetList[wingindexnum, 2, 1, 2]["Value"] +
      onsetList[wingindexnum, 2, 1, 2]["Uncertainty"], deltaY];
  Linewidth = 0.005;
  Fontsize = 12;
  XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
  YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, deltaY}];
  Print[Show[ListPlot[onsetList[wingindexnum, 2]],
      PlotRange \rightarrow {{-0.5, Xmax + 0.5}, {-deltaY / 2, Ymax + deltaY / 2}},
     PlotStyle → Thickness[Linewidth], IntervalMarkersStyle → Thickness[Linewidth],
      Frame → {{True, False}}, {True, False}}, FrameTicks → {XTicks, YTicks},
      FrameLabel → {"Stereocilium position", "Peak displacement (nm)"},
      Joined → False, FrameStyle → {{Black, Thickness[Linewidth],
           FontSize → Fontsize}, {Black, Thickness[Linewidth], FontSize → Fontsize}},
        {{Black, Thickness[Linewidth], FontSize → Fontsize},
         {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
    ListPlot[Table[{onset[n, 1]], YPW[onsetAoLList[wingindexnum, 1, 2]],
         n, nstereo, onsetY0List[wingindexnum, 1, 2]]]},
       {n, 1, Length[onset]}], PlotStyle → Blue, Joined → True]]]]]
analwingindex = 1
wingindexnum = 1
S8731025_left_1
       Estimate Standard Error t-Statistic P-Value
       0.263558 0.028525 9.23953 0.000090762
Y0onset 364.877 35.9341
                       10.1541 0.0000530807
AdjustedRSquared 0.980438
AIC
                64.8256
BIC
                65.064
RSquared
                0.985328
```


wingindexnum = 3

S8731027_right_1

	Estimate	Standard Error t-Statistic P-Value			
AoL	0.184873	0.0151669	12.1892	1.90278	×10 ⁻⁶
Y0onset	403.539	32.1748	12.5421	1.52994	$\times 10^{-6}$

AdjustedRSquared 0.944559

AIC 95.1203 BIC 96.028 RSquared 0.955647

analwingindex = 3

wingindexnum = 6

S8731036_left_1

	Estimate	Standard Error t-Statistic P-Value			
AoL	0.284436	0.00507923	55.9998	3.43469	×10 ⁻⁸
Y0onset	364.917	1.45268	251.202	1.89719	$\times 10^{-11}$

AdjustedRSquared 0.995306

AIC 255.531 BIC 255.369 RSquared 0.996647

wingindexnum = 7

S8731036_right_1

	Estimate	Standard Error t-Statistic P-Value			
AoL	0.279249	0.00767818	36.3691	2.95889	$\times 10^{-7}$
Y0onset	179.263	1.56741	114.368	9.69208	$\times 10^{-10}$

AdjustedRSquared 0.988281

AIC 166.548 BIC 166.386 RSquared 0.991629

analwingindex = 5

wingindexnum = 8

S8731044_right_1

	Estimate Standard Error t-Statistic P-Value				
AoL	0.299858	0.00846557	35.4208	3.37529	×10 ⁻⁸
Y0onset	219.025	1.84711	118.577	2.42556	$\times 10^{-11}$

AdjustedRSquared 0.992645

AIC 142.243 BIC 142.481 RSquared 0.994484

wingindexnum = 9

S8731045_right_1

	Estimate	Standard Error t-Statistic P-Value				
AoL	0.242363	0.00496274	48.8367	4.94269	×10 ⁻⁹	
Y0onset	259.479	1.0454	248.21	2.88587	$\times 10^{-13}$	

AdjustedRSquared 0.997214

AIC	181.284
BIC	181.523
RSquared	0.99791

analwingindex = 7

wingindexnum = 10

S8731047_left_1

	Estimate Standard Error t-Statistic P-Value				
AoL	0.279735	0.00391101	71.5251	1.01182	×10 ⁻⁸
Y0onset	444.78	4.00306	111.11	1.11985	$\times 10^{-9}$

AdjustedRSquared 0.970443

AIC	506.133
BIC	505.97
RSquared	0.978888

wingindexnum = 11

S8731047_right_1

	Estimate	Standard Error t-Statistic P-Value			
AoL	0.233129	0.00195691	119.131	7.90399	×10 ⁻¹⁰
Y0onset	394.266	1.78402	220.999	3.59962	$\times 10^{-11}$

AdjustedRSquared 0.998458

AIC 103.039 BIC 102.877 RSquared 0.998899

analwingindex = 9

wingindexnum = 13

S8802010_right_1

	Estimate Standard Error t-Statistic P-Value				
AoL	0.156145	0.0195441	7.98937	0.000091	926
Y0onset	67.0497	1.70487	39.3283	1.78952	$\times 10^{-9}$

AdjustedRSquared 0.991115

AIC 56.4751 BIC 57.0668 RSquared 0.993089

wingindexnum = 14

S8802010_left_2

	Estimate Standard Error t-Statistic P-Value					
AoL	0.16321	0.0035823	45.56	7.4905	$\times 10^{-9}$	
Y0onset	405.096	3.13007	129.421	1.43507	$\times 10^{-11}$	

AdjustedRSquared 0.968817

AIC 651.945 BIC 652.183 RSquared 0.976612

analwingindex = 11

wingindexnum = 15

S8802010_right_2

	Estimate Standard Error t-Statistic P-Value				
AoL	0.127102	0.0034558	36.7793	2.85479	×10 ⁻⁹
Y0onset	325.11	3.89075	83.5599	9.25629	$\times 10^{-12}$

AdjustedRSquared 0.985262

AIC 214.082 BIC 214.674 RSquared 0.988537

wingindexnum = 16

S8802010_right_3

	Estimate	Estimate Standard Error t-Statistic P-Value				
AoL	0.110505	0.00154834	71.3696	2.78823	$\times 10^{-11}$	
Y0onset	642.04	4.78486	134.181	3.36824	$\times 10^{-13}$	

AdjustedRSquared 0.990418

AIC 347.032 BIC 347.624 RSquared 0.992547

analwingindex = 13

wingindexnum = 17

S8802012_left_1

	Estimate	Standard Error t-Statistic P-Value			
AoL	0.162855	0.00565485	28.7991	1.16094	×10 ⁻⁷
Y0onset	101.526	1.28157	79.2194	2.72412	$\times 10^{-10}$

AdjustedRSquared 0.986658

AIC 121.305 BIC 121.544 RSquared 0.989993

wingindexnum = 18

S8802012_right_1

	Estimate	te Standard Error t-Statistic P-Value			
AoL	0.178796	0.0096899	18.4517	3.40416	$\times 10^{-7}$
Y0onset	74.1314	0.951961	77.8723	1.51543	$\times 10^{-11}$

AdjustedRSquared 0.984915

AIC 116.883 BIC 117.475 RSquared 0.988267

analwingindex = 15

wingindexnum = 20

S8804012_left_1

	Estimate	Standard Error t-Statistic P-Value			
AoL	0.309909	0.00336088	92.2106	8.29252	×10 ⁻⁸
Y0onset	409.	1.17543	347.958	4.0928	$\times 10^{-10}$

AdjustedRSquared 0.996052

AIC 392.652 BIC 392.027 RSquared 0.997368

wingindexnum = 21

S8804014_left_1

	Estimate	Standard Error	t-Statistic I	P-Value	
AoL	0.244084	0.00201593	121.078	1.24214	$\times 10^{-6}$
Y0onset	200.38	0.605936	330.696	6.09778	$\times 10^{-8}$

AdjustedRSquared 0.995102

AIC	495.389
BIC	494.217
RSquared	0.997061

analwingindex = 17

wingindexnum = 22

S8804020_left_1

	Estimate Standard Error t-Statistic P-Value				
AoL	0.310177	0.00486022	63.8196	3.61098	×10 ⁻⁷
Y0onset	566.882	2.41682	234.557	1.982	$\times 10^{-9}$

AdjustedRSquared 0.998039

AIC	152.575
BIC	151.95
RSquared	0.998693

wingindexnum = 24

S8807001_right_2

	Estimate	Standard Error t-Statistic P-Value			
AoL	0.201695	0.00690555	29.2077	2.04475	×10 ⁻⁹
Y0onset	232.251	2.37952	97.6038	1.35572	$\times 10^{-13}$

AdjustedRSquared 0.984613

AIC 197.191 BIC 198.099 RSquared 0.987691

analwingindex = 19

wingindexnum = 25

S8807001_right_3

	Estimate	Standard Error t-Statistic P-Value			
AoL	0.179807	0.00317212	56.6834	1.04156	×10 ⁻¹¹
Y0onset	447.833	5.53093	80.9688	6.03628	$\times 10^{-13}$

AdjustedRSquared 0.973665

AIC 483.505 BIC 484.412 RSquared 0.978932

wingindexnum = 26

S8807003_right_1

	Estimate Standard Error t-Statistic P-Value				
AoL	0.208526	0.00275186	75.7766	1.83393	×10 ⁻¹¹
Y0onset	302.342	1.96713	153.697	1.30232	$\times 10^{-13}$

AdjustedRSquared 0.9952

AIC	274.789
BIC	275.381
RSquared	0.996267

analwingindex = 21

wingindexnum = 27

S8807004_right_1

	Estimate	Standard Error t-Statistic P-Value			
AoL	0.207544	0.00204634	101.422	9.97595	×10 ⁻¹⁴
Y0onset	281.972	0.83393	338.124	6.55393	$\times 10^{-18}$

AdjustedRSquared 0.996726

AIC	895.519
BIC	896.427
RSquared	0.997381

wingindexnum = 28

S8807018_right_1

	Estimate	Standard Er	ror t-Statistic	P-Value	
AoL	0.391498	0.0102408	38.2293	2.18043	×10 ⁻⁹
Y0onset	223 285	2 14747	103 976	2 00615	$\times 10^{-12}$

AdjustedRSquared 0.996254

AIC 84.0283 BIC 84.62 RSquared 0.997086

analwingindex = 23

wingindexnum = 29

S8808003_left_1

	Estimate Standard Error t-Statistic P-Value				
AoL	0.17132	0.00288044	59.4771	1.518	×10 ⁻⁹
Y0onset	290.961	1.95342	148.949	6.17681	$\times 10^{-12}$

AdjustedRSquared 0.997645

AIC 113.717 BIC 113.956 RSquared 0.998234

wingindexnum = 30

S8809001_left_2

	Estimate Standard Error t-Statistic P-Value				
AoL	0.371074	0.0180049	20.6096	0.00003	27405
Y0onset	210.673	2.3045	91.4182	8.5837	$\times 10^{-8}$

AdjustedRSquared 0.975451

AIC 243.785 BIC 243.16 RSquared 0.983634

analwingindex = 25

wingindexnum = 31

S8809001_left_3

	Estimate	Standard Error	t-Statistic	P-Value	
AoL	0.258737	0.00545807	47.4046	0.0000206	688
Y0onset	431.647	3.30858	130.463	9.92924	$\times 10^{-7}$

AdjustedRSquared 0.994222

AIC 105.205 BIC 104.033 RSquared 0.996533

wingindexnum = 32

S8809003_left_1

		Estimate	Standard Error	t-Statistic I	P-Value	
AoL		0.192735	0.00395807	48.6942	6.90171	$\times 10^{-8}$
Y0on	set	200.683	1.49131	134.569	4.29858	$\times 10^{-10}$

AdjustedRSquared 0.967583

AIC 641.286 BIC 641.124 RSquared 0.976845

analwingindex = 27

wingindexnum = 33

S8809009_left_1

	Estimate	Standard Err	ror t-Statistic	P-Value	
AoL	0.174456	0.0140221	12.4415	0.00005	94759
Y0onset	48.8343	1.30129	37.5275	2.5308	$\times 10^{-7}$

AdjustedRSquared 0.987909

42.1609 AIC BIC 41.9986 RSquared 0.991363

wingindexnum = 34

S8809011_left_1

	Estimate Standard Err	ror t-Statistic	P-Value	
AoL	0.231913 0.032071	7.23125	0.000789	093
Y0onset	43 6601 1 98361	22 0105	3 59419	$\times 10^{-6}$

AdjustedRSquared 0.952635

AIC	69.5074
BIC	69.3451
RSquared	0.966168

analwingindex = 29

wingindexnum = 35

S8811007_left_1

	Estimate	Standard Erro	r t-Statistic	P-Value	
AoL	0.221795	0.00227751	97.3849	2.16449	×10 ⁻⁹
Y0onset	209.467	0.133192	1572.67	1.97296	$\times 10^{-15}$

AdjustedRSquared 0.999442

AIC	1012.63
BIC	1012.46
RSquared	0.999601

wingindexnum = 36

S8811009_left_1

	Estimate	Standard Erro	r t-Statistic I	P-Value	
AoL	0.184474	0.00511568	36.0604	3.53024	×10 ⁻⁶
Y0onset	106.466	1.1629	91.5526	8.53341	$\times 10^{-8}$

AdjustedRSquared 0.985373

AIC 148.754 BIC 148.129 RSquared 0.990249

analwingindex = 31

wingindexnum = 37

S8811019_left_1

	Estimate Standard Error t-Statistic P-Value					
AoL	0.113523	0.001125	100.91	6.38322	×10 ⁻¹¹	
Y0onset	144.43	0.632326	228.411	4.75196	$\times 10^{-13}$	

AdjustedRSquared 0.997015

AIC 288.119 BIC 288.357 RSquared 0.997761


```
In[57]:= (*Example wings*)
    wingindexnum1 = 28;
    wingindexnum2 = 37;
    (*Tick Marks*)
    TickLength = 0.02;
    Xmin = 0;
    Xmax =
      Max[Length[onsetList[wingindexnum1, 2]]], Length[onsetList[wingindexnum2, 2]]] - 1;
    Ymin = 0;
    deltaY =
     10^(MantissaExponent[Max[onsetList[wingindexnum1, 2, 1, 2]]["Value"] + onsetList[
                wingindexnum1, 2, 1, 2]["Uncertainty"], onsetList[wingindexnum2, 2, 1, 2][
               "Value"] + onsetList[wingindexnum2, 2, 1, 2]["Uncertainty"]]][2] - 1);
    Ymax = Ceiling[Max[onsetList[wingindexnum1, 2, 1, 2]]["Value"] +
         onsetList[wingindexnum1, 2, 1, 2]["Uncertainty"], onsetList[wingindexnum2, 2, 1,
           2]["Value"] + onsetList[wingindexnum2, 2, 1, 2]["Uncertainty"]], deltaY];
    Linewidth = 0.005;
    Fontsize = 12;
    XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
    YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, deltaY}];
    Print[Show[ListPlot[{onsetList[wingindexnum1, 2], onsetList[wingindexnum2, 2]}},
        PlotRange \rightarrow {{-0.5, Xmax + 0.5}, {-deltaY / 4, Ymax - deltaY / 2}},
        PlotStyle → Thickness[Linewidth], IntervalMarkersStyle → Thickness[Linewidth],
        Frame → {{True, False}, {True, False}}, FrameTicks → {XTicks, YTicks},
        FrameLabel → {"Stereocilium position", "Peak displacement (nm)"}, Joined → False,
        FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False], ListPlot[
        {Table[{onsetList[wingindexnum1, 2, n, 1], YPW[onsetAoLList[wingindexnum1, 1, 2],
             n, Length[onsetList[wingindexnum1, 2]]], onsetY0List[wingindexnum1, 1, 2]]]},
          {n, 1, Length[onsetList[wingindexnum1, 2]]}],
         Table[{onsetList[wingindexnum2, 2, n, 1]], YPW[onsetAoLList[wingindexnum2, 1, 2]],
            n, Length[onsetList[wingindexnum2, 2]]], onsetY0List[wingindexnum2, 1, 2]]],
          {n, 1, Length[onsetList[wingindexnum2, 2]]]}]},
        PlotStyle → Thickness[Linewidth], Joined → True]]]
    onsetAoLList[wingindexnum1, 1, 2]
    onsetAoLList[wingindexnum2, 1, 2]
    onsetY0List[wingindexnum1, 1, 2]
    onsetY0List[wingindexnum2, 1, 2]
```


Out[69] = 0.391498

Out[70]= 0.113523

Out[71]= 223.285

Out[72] = 144.43

```
In[74]:= Data[wingindex[wingindexnum1], 1]
     onset = Table[{Data[n, 3], Data[n, 4]},
         {n, wingindex[wingindexnum1], If[wingindexnum1 + 1 > Length[wingindex],
           Length[Data[All, 2]], wingindex[wingindexnum1 + 1] - 1]}];
     ss = Table[{Data[n, 3], Data[n, 9]},
         {n, wingindex[wingindexnum1], If[wingindexnum1 + 1 > Length[wingindex],
           Length[Data[All, 2]], wingindex[wingindexnum1 + 1] - 1]}];
     onsetErr = Table[{Data[n, 3], Data[n, 6] / Sqrt[Data[n, 5]]]},
         {n, wingindex[wingindexnum1], If[wingindexnum1 + 1 > Length[wingindex],
           Length[Data[All, 2]], wingindex[wingindexnum1 + 1] - 1]}];
     nstereo = Last[onset[All, 1]] + 1;
     fit = NonlinearModelFit[Table[onset[n, 2], {n, 1, Length[onset]}],
         {YPW[AoL, m, nstereo, Y0onset]}, {AoL, {Y0onset, onset[1, 2]}},
         m, Weights → Table[1 / onsetErr[n, 2] ^2, {n, 1, Length[onset]}],
         VarianceEstimatorFunction → (1 &)];
     onsetAoLList[wingindexnum1, 1, 2] = Evaluate[AoL /. fit["BestFitParameters"][1]];
     onsetAoLList[wingindexnum1, 2] = Evaluate[fit["ParameterErrors"][1]];
     onsetY0List[wingindexnum1, 1, 2] = Evaluate[Y0onset /. fit["BestFitParameters"][2]];
     onsetY0List[wingindexnum1, 2] = Evaluate[fit["ParameterErrors"][2]];
     onsetAdjRsqList[wingindexnum1, 2] = Evaluate[fit["AdjustedRSquared"]];
     Print[Data[wingindex[wingindexnum1], 1]];
     Print[fit["ParameterTable"]];
     Print[
       Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
         Alignment → Left]];
Out[74]= $8807018_1_right
     $8807018_1_right
            Estimate Standard Error t-Statistic P-Value
                             38.2293 \quad 2.18043 \quad \times 10^{-9}
            0.391498 0.0102408
                             103.976 2.00615 \times 10^{-12}
     Y0onset 223.285 2.14747
     AdjustedRSquared 0.996254
     AIC
                      84.0283
     BIC
                      84.62
     RSquared
                      0.997086
```

```
In[88]:= Data[wingindex[wingindexnum2], 1]
     onset = Table[{Data[n, 3], Data[n, 4]},
         {n, wingindex[wingindexnum2], If[wingindexnum2 + 1 > Length[wingindex],
           Length[Data[All, 2]], wingindex[wingindexnum2 + 1] - 1]}];
     ss = Table[{Data[n, 3], Data[n, 9]},
         {n, wingindex[wingindexnum2], If[wingindexnum2 + 1 > Length[wingindex],
           Length[Data[All, 2]], wingindex[wingindexnum2 + 1] - 1]}];
     onsetErr = Table[{Data[n, 3], Data[n, 6] / Sqrt[Data[n, 5]]]},
         {n, wingindex[wingindexnum2], If[wingindexnum2 + 1 > Length[wingindex],
           Length[Data[All, 2]], wingindex[wingindexnum2 + 1] - 1]}];
     nstereo = Last[onset[All, 1]] + 1;
     fit = NonlinearModelFit[Table[onset[n, 2], {n, 1, Length[onset]}],
         {YPW[AoL, m, nstereo, Y0onset]}, {AoL, {Y0onset, onset[1, 2]}},
        m, Weights → Table[1 / onsetErr[n, 2] ^2, {n, 1, Length[onset]}],
        VarianceEstimatorFunction → (1 &)];
     onsetAoLList[wingindexnum2, 1, 2] = Evaluate[AoL /. fit["BestFitParameters"][1]];
     onsetAoLList[wingindexnum2, 2] = Evaluate[fit["ParameterErrors"][1]];
     onsetY0List[wingindexnum2, 1, 2] = Evaluate[Y0onset /. fit["BestFitParameters"][2]];
     onsetY0List[wingindexnum2, 2] = Evaluate[fit["ParameterErrors"][2]];
     onsetAdjRsqList[wingindexnum2, 2] = Evaluate[fit["AdjustedRSquared"]];
     Print[Data[wingindex[wingindexnum2], 1]];
     Print[fit["ParameterTable"]];
     Print[
       Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
        Alignment → Left]];
Out[88]= $8811019_1_left
     S8811019_1_left
            Estimate Standard Error t-Statistic P-Value
            0.113523 0.001125
                                    6.38322 \times 10^{-11}
                             100.91
                             228.411 4.75196 \times 10^{-13}
     Y0onset 144.43 0.632326
     AdjustedRSquared 0.997015
     AIC
                      288.119
     BIC
                      288.357
```

RSquared

0.997761

```
In[102]:= (*Remove NaN entries*)
      baddata[entry_] := MatchQ[entry, {{_?NumberQ, NaN}, NaN}];
      onsetnstereoListrenum = DeleteCases[onsetnstereoList, NaN];
      onsetAoLListtemp = DeleteCases[onsetAoLList, _?baddata];
      onset AoL List renum = Table [\{\{n, onset AoL List temp [\![n, 1, 2]\!]\}, onset AoL List temp [\![n, 2]\!]\}, \\
          {n, 1, Length[onsetAoLListtemp]}];
      baddata2[entry_] := MatchQ[entry, {_?NumberQ, NaN}];
      onsetAdjRsqListtemp = DeleteCases[onsetAdjRsqList, _?baddata2];
      onsetAdjRsqListrenum =
        Table[{{n, onsetAdjRsqListtemp[n, 2]}}, {n, 1, Length[onsetAdjRsqListtemp]}];
In[109]:= (*Minimum and maximum ratios*)
      Min[onsetAoLListrenum[All, 1, 2]]
      Max[onsetAoLListrenum[All, 1, 2]]
Out[109]= 0.110505
Out[110]= 0.391498
In[111]:= MedianOnsetAoL = Quantile[onsetAoLListrenum[All, 1, 2], 0.5]
      LowerQuantileOnsetAoL = Quantile[onsetAoLListrenum[All, 1, 2], 0.25]
      UpperQuantileOnsetAoL = Quantile[onsetAoLListrenum[All, 1, 2], 0.75]
Out[111]= 0.208526
Out[112]= 0.174456
Out[113]= 0.279249
```

```
In[114]:= (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 0;
     Xmax = Length[onsetAoLListrenum];
     Ymin = 0; Ymax = 1;
     Linewidth = 0.005;
     Fontsize = 12;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 5}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 0.1}];
     Show[ListPlot[Table[{onsetAoLListrenum[n, 1, 1], Around[onsetAoLListrenum[n, 1, 2],
           onsetAoLListrenum[n, 2]]], {n, 1, Length[onsetAoLListrenum]}],
       PlotRange → All, PlotStyle → {Thickness[Linewidth], Red},
       IntervalMarkersStyle → {Thickness[Linewidth], Red},
       Frame → {{True, False}}, {True, False}}, FrameTicks → {None, YTicks},
       FrameLabel → {"Wing", "Damping Coefficient Ratio"}, Joined → False,
       FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
      Plot[{MedianOnsetAoL, LowerQuantileOnsetAoL, UpperQuantileOnsetAoL},
       {n, 1, Length[onsetAoLListrenum]}, PlotStyle → {{Thickness[Linewidth], Black},
          {Thickness[Linewidth], Black, Dashed}, {Thickness[Linewidth], Black, Dashed}}]]
     (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 0;
     Xmax = Length[onsetAoLListrenum];
     Ymin = 0;
     Ymax = 1;
     Linewidth = 0.005;
     Fontsize = 12;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 5}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 0.01}];
     ListPlot[Table[{onsetAoLListrenum[n, 1, 1], onsetAdjRsqListrenum[n, 1, 2]}},
       {n, 1, Length[onsetAoLListrenum]}],
      PlotRange → All, PlotStyle → {Thickness[Linewidth], Red},
      IntervalMarkersStyle → Thickness[Linewidth], Frame → {{True, False}, {True, False}},
      FrameTicks → {XTicks, YTicks}, FrameLabel → {"Wing", "Adjusted Rsq"},
      Joined → False, FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
          {Black, Thickness[Linewidth], FontSize → Fontsize}},
        {{Black, Thickness[Linewidth], FontSize → Fontsize},
          {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]
```



```
(*Fit weights are 1/SE^2 and there is a
 different number of points in each measurement window*)
For [wingindexnum = 1, wingindexnum < Length [wingindex], wingindexnum++,
 onset = Table[{Data[n, 3], Data[n, 4]},
   {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
     Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}];
 ss = Table[{Data[n, 3], Data[n, 9]}},
   {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
     Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}];
 If[Length[Select[onset[All, 2], # < 0 &]] + Length[Select[ss[All, 2], # < 0 &]] > 0,
  Continue[], analwingindex = analwingindex + 1;
  Print["analwingindex = ", analwingindex];
  Print["wingindexnum = ", wingindexnum];
  ssErr = Table[{Data[n, 3], Data[n, 11] / Sqrt[Data[n, 10]]}},
    {n, wingindex[wingindexnum], If[wingindexnum + 1 > Length[wingindex],
      Length[Data[All, 2]], wingindex[wingindexnum + 1] - 1]}];
  ssList[wingindexnum] = Join[{wingindexnum},
    {Table[{ss[n, 1], Around[ss[n, 2], ssErr[n, 2]]}, {n, 1, Length[ss]}]}];
  nstereo = Last[ss[All, 1]] + 1;
  fit = NonlinearModelFit[Table[ss[n, 2], {n, 1, Length[ss]}],
    {YPW[AoL, m, nstereo, Y0ss]}, {AoL, {Y0ss, ss[1, 2]}}, m,
    Weights \rightarrow Table[1 / ssErr[n, 2] ^2, {n, 1, Length[ss]}],
    VarianceEstimatorFunction → (1 &)];
  ssnstereoList[wingindexnum] = nstereo;
  ssAoLList[wingindexnum, 1, 2] = Evaluate[AoL /. fit["BestFitParameters"][1]];
  ssAoLList[wingindexnum, 2] = Evaluate[fit["ParameterErrors"][1]];
  ssAoLPvalList[wingindexnum, 2] = Evaluate[fit["ParameterTable"][1, 1, 2, 5]];
  ssY0List[wingindexnum, 1, 2] = Evaluate[Y0ss /. fit["BestFitParameters"][2]];
  ssY0List[wingindexnum, 2] = Evaluate[fit["ParameterErrors"][2]];
  ssY0PvalList[wingindexnum, 2] = Evaluate[fit["ParameterTable"][1, 1, 3, 5]];
  ssAdjRsqList[wingindexnum, 2] = Evaluate[fit["AdjustedRSquared"]];
  ssExportTable[wingindexnum, 1] = Data[wingindex[wingindexnum], 1];
  ssExportTable[wingindexnum, 2] = Evaluate[AoL /. fit["BestFitParameters"][1]];
  ssExportTable[wingindexnum, 3] = Evaluate[fit["ParameterErrors"][1]];
  ssExportTable[wingindexnum, 4] = Evaluate[Y0ss /. fit["BestFitParameters"][2]];
  ssExportTable[wingindexnum, 5] = Evaluate[fit["ParameterErrors"][2]];
  ssExportTable[wingindexnum, 6] = Evaluate[fit["AdjustedRSquared"]];
  Print[Data[wingindex[wingindexnum], 2]];
  Print[fit["ParameterTable"]];
  Print[
   Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
    Alignment → Left]];
  (*Tick Marks*)
  TickLength = 0.02;
```

```
Xmin = 0;
  Xmax = nstereo - 1;
  Ymin = 0;
  deltaY = 10^(MantissaExponent[ssList[wingindexnum, 2, 1, 2]]["Value"] +
           ssList[wingindexnum, 2, 1, 2]["Uncertainty"]][2] - 1);
  Ymax = Ceiling[ssList[wingindexnum, 2, 1, 2]["Value"] +
      ssList[wingindexnum, 2, 1, 2]["Uncertainty"], deltaY];
  Linewidth = 0.005;
  Fontsize = 12;
  XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
  YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, deltaY}];
  Print[Show[ListPlot[ssList[wingindexnum, 2]],
      PlotRange \rightarrow {{-0.5, Xmax + 0.5}, {-deltaY / 2, Ymax + deltaY / 2}},
      PlotStyle → Thickness[Linewidth], IntervalMarkersStyle → Thickness[Linewidth],
      Frame → {{True, False}}, {True, False}}, FrameTicks → {XTicks, YTicks},
      FrameLabel → {"Stereocilium position", "Steady-state displacement (nm)"},
      Joined → False, FrameStyle → {{Black, Thickness[Linewidth],
           FontSize → Fontsize}, {Black, Thickness[Linewidth], FontSize → Fontsize}},
        {{Black, Thickness[Linewidth], FontSize → Fontsize},
          {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
     ListPlot[Table[{ss[n, 1], YPW[ssAoLList[wingindexnum, 1, 2],
         n, nstereo, ssY0List[wingindexnum, 1, 2]]]},
       {n, 1, Length[ss]}], PlotStyle → Blue, Joined → True]]]]]
analwingindex = 1
wingindexnum = 1
S8731025_left_1
    Estimate Standard Error t-Statistic P-Value
    0.358482 \ 0.00185639 \ 193.106 \ 1.30119 \ \times 10^{-12}
Y0ss 595.499 0.685954
                      868.133 1.57681 \times 10^{-16}
AdjustedRSquared 0.998791
AIC
                 767.121
BIC
                 767.359
RSquared
                 0.999093
```


wingindexnum = 3

S8731027_right_1

	Estimate	Estimate Standard Error t-Statistic P-Value				
AoL	0.351645	0.00125866	279.379	3.01649	$\times 10^{-17}$	
Y0ss	859.188	1.07141	801.923	6.54843	$\times 10^{-21}$	

AdjustedRSquared 0.990046

AIC 10386.8 BIC 10387.7 ${\sf RSquared}$ 0.992037

analwingindex = 3

wingindexnum = 6

S8731036_left_1

	Estimate	Standard Error t-Statistic P-Value				
AoL	0.427258	0.00337796	126.484	5.85911	×10 ⁻¹⁰	
Y0ss	390.897	0.597545	654.171	1.5843	$\times 10^{-13}$	

AdjustedRSquared 0.99697

AIC 1020.47 BIC 1020.3 RSquared 0.997836

wingindexnum = 7

S8731036_right_1

	Estimate	Standard Err	or t-Statistic F	P-Value			
AoL	0.499242	0.0071189	70.129	1.11653	×10 ⁻⁸		
Y0ss	167.634	0.461368	363.342	2.99704	$\times 10^{-12}$		

AdjustedRSquared 0.979181

AIC 2260.18 BIC 2260.02 RSquared 0.985129

analwingindex = 5

wingindexnum = 8

S8731044_right_1

	Estimate	mate Standard Error t-Statistic P-Value					
AoL	0.389159	0.00630939	61.6793	1.22087	×10 ⁻⁹		
Y0ss	203.51	0.679789	299.373	9.37464	$\times 10^{-14}$		

AdjustedRSquared 0.984683

AIC 1223.94 BIC 1224.18 RSquared 0.988513

wingindexnum = 9

S8731045_right_1

	Estimate	Standard Erro	P-Value		
AoL	0.323449	0.00310621	104.13	5.28715	×10 ⁻¹¹
Y0ss	264.085	0.495478	532.99	2.94419	$\times 10^{-15}$

AdjustedRSquared 0.990781

AIC 2253.27 BIC 2253.51 RSquared 0.993086

analwingindex = 7

wingindexnum = 10

S8731047_left_1

	Estimate Standard Error t-Statistic P-Value					
AoL	0.278512	0.00200512	138.901	3.66894	×10 ⁻¹⁰	
Y0ss	412.646	1.1819	349.137	3.65837	$\times 10^{-12}$	

AdjustedRSquared 0.966551

AIC 3831.02 BIC 3830.86 RSquared 0.976108

wingindexnum = 11

S8731047_right_1

	Estimate Standard Error t-Statistic P-Value				
AoL	0.295559	0.00223258	132.384	4.66501	$\times 10^{-10}$
Y0ss	424.762	1.01824	417.151	1.50249	$\times 10^{-12}$

AdjustedRSquared 0.998967

AIC 253.443 BIC 253.281 RSquared 0.999262

analwingindex = 9

wingindexnum = 13

S8802010_right_1

	Estimate Standard Error t-Statistic P-Value					
AoL	0.212211	0.0132493	16.0168	8.98189	×10 ⁻⁷	
Y0ss	62.0166	1.15096	53.8826	1.98783	$\times 10^{-10}$	

AdjustedRSquared 0.984343

AIC 73.6075 BIC 74.1992 RSquared 0.987822

wingindexnum = 14

S8802010_left_2

	Estimate	Standard Erro	r t-Statistic	P-Value	
AoL	0.191542	0.00165254	115.908	2.78051	×10 ⁻¹¹
Y0ss	407.909	1.13773	358.527	3.17773	$\times 10^{-14}$

AdjustedRSquared 0.96804

AIC 4023.08 BIC 4023.32 RSquared 0.97603

analwingindex = 11

wingindexnum = 15

S8802010_right_2

	Estimate	Standard Er	ror t-Statistic F	P-Value	
AoL	0.159703	0.001926	82.9194	9.76804	×10 ⁻¹²
Y0ss	317.061	1.19436	265.465	2.84178	$\times 10^{-15}$

AdjustedRSquared 0.983266

AIC 1266.05 BIC 1266.64 RSquared 0.986984

wingindexnum = 16

S8802010_right_3

	Estimate	Standard Error	t-Statistic I	P-Value	
AoL	0.154369	0.000951494	162.238	8.91956	×10 ⁻¹⁴
Y0ss	663.534	1.57801	420.488	1.13617	$\times 10^{-16}$

AdjustedRSquared 0.980587

AIC 4653.31 BIC 4653.9 RSquared 0.984901

analwingindex = 13

wingindexnum = 17

S8802012_left_1

	Estimate	Standard Error	t-Statistic	P-Value	
AoL	0.227344	0.00395393	57.4983	1.85912	×10 ⁻⁹
Y0ss	103.944	0.443022	234.625	4.04519	$\times 10^{-13}$

AdjustedRSquared 0.985847

AIC 700.202 BIC 700.44 RSquared 0.989385

wingindexnum = 18

S8802012_right_1

	Estimate	Standard Error	t-Statistic	P-Value	
AoL	0.219477	0.00648348	33.8518	5.08716	×10 ⁻⁹
Y0ss	71.692	0.486209	147.451	1.74103	$\times 10^{-13}$

AdjustedRSquared 0.978881

AIC 476.098 BIC 476.69 RSquared 0.983574

analwingindex = 15

wingindexnum = 20

S8804012_left_1

	Estimate	Standard Erro	or t-Statistic F	P-Value	
AoL	0.356876	0.0013824	258.156	1.35075	×10 ⁻⁹
Y0ss	439.914	0.383159	1148.12	3.453	$\times 10^{-12}$

AdjustedRSquared 0.998388

AIC 1602.41 BIC 1601.79 RSquared 0.998925

wingindexnum = 21

S8804014_left_1

	Estimate	Standard Error	t-Statistic	P-Value	
AoL	0.235891	0.000740855	318.404	6.83155	×10 ⁻⁸
Y0ss	211.727	0.19485	1086.61	1.71887	$\times 10^{-9}$

AdjustedRSquared 0.996992

AIC 2671.03 BIC 2669.85 RSquared 0.998195

analwingindex = 17

wingindexnum = 22

S8804020_left_1

	Estimate	Standard E	ror t-Statistic F	P-Value	
AoL	0.301667	0.0012111	249.084	1.55854	×10 ⁻⁹
Y0ss	617.46	0.986045	626.198	3.90208	$\times 10^{-11}$

AdjustedRSquared 0.990997

AIC 4115.41 BIC 4114.78 RSquared 0.993998

wingindexnum = 24

S8807001_right_2

	Estimate	Standard Error	t-Statistic F	P-Value	
AoL	0.229074	0.00311881	73.449	1.31526	$\times 10^{-12}$
Y0ss	265.051	0.994446	266.531	4.39604	$\times 10^{-17}$

AdjustedRSquared 0.993007

AIC 611.791 BIC 612.699 RSquared 0.994406

analwingindex = 19

wingindexnum = 25

S8807001_right_3

	Estimate	Standard Erro	r t-Statistic	P-Value	
AoL	0.187506	0.00159919	117.25	3.12893	×10 ⁻¹⁴
Y0ss	466.674	1.43236	325.807	8.81895	$\times 10^{-18}$

AdjustedRSquared 0.967909

AIC 5300.42 BIC 5301.33 RSquared 0.974327

wingindexnum = 26

S8807003_right_1

	Estimate	Standard Erro	r t-Statistic	P-Value	
AoL	0.237612	0.00179167	132.62	3.65571	×10 ⁻¹³
Y0ss	310.935	0.79452	391.35	1.87826	$\times 10^{-16}$

AdjustedRSquared 0.996661

AIC	645.08
BIC	645.672
RSquared	0.997403

analwingindex = 21

wingindexnum = 27

S8807004_right_1

	Estimate Standard Error t-Statistic P-Value				
AoL	0.245501	0.00207314	118.42	2.89023	×10 ⁻¹⁴
Y0ss	273.984	0.627564	436.584	8.48423	$\times 10^{-19}$

AdjustedRSquared 0.993181

AIC 1403.23 BIC 1404.14 RSquared 0.994545

wingindexnum = 28

S8807018_right_1

	Estimate	Standard Error t-Statistic P-Value				
AoL	0.531762	0.00465741	114.175	1.04242	×10 ⁻¹²	
Y0ss	243.2	0.652126	372.934	2.63201	$\times 10^{-16}$	

AdjustedRSquared 0.99514

AIC	717.181
BIC	717.773
RSquared	0.99622

analwingindex = 23

wingindexnum = 29

S8808003_left_1

	Estimate	Standard Error t-Statistic P-Value				
AoL	0.272787	0.0023767	114.775	2.94911	×10 ⁻¹¹	
Y0ss	286.142	0.616681	464.003	6.76309	$\times 10^{-15}$	

AdjustedRSquared 0.998576

AIC	290.62
BIC	290.858
RSquared	0.998932

wingindexnum = 30

S8809001_left_2

	Estimate Standard Error t-Statistic P-Value				
AoL	0.319201	0.00714069	44.7017	1.49764	×10 ⁻⁶
Y0ss	203.576	1.33953	151.976	1.12443	$\times 10^{-8}$

AdjustedRSquared 0.970207

AIC 623.738 BIC 623.113 RSquared 0.980138

analwingindex = 25

wingindexnum = 31

S8809001_left_3

	Estimate	Standard Error	t-Statistic F	P-Value	
AoL	0.380194	0.00356776	106.564	1.82182	×10 ⁻⁶
Y0ss	477.065	1.60076	298.024	8.33101	$\times 10^{-8}$

AdjustedRSquared 0.99056

AIC 735.931 BIC 734.76 RSquared 0.994336

wingindexnum = 32

S8809003_left_1

	Estimate	e Standard Error t-Statistic P-Value				
AoL	0.335064	0.00290199	115.46	9.2426	$\times 10^{-10}$	
Y0ss	206.435	0.416942	495.116	6.37897	$\times 10^{-13}$	

AdjustedRSquared 0.97283

AIC 5645.6 BIC 5645.44 RSquared 0.980593

analwingindex = 27

wingindexnum = 33

S8809009_left_1

	Estimate	Standard Error t-Statistic P-Value				
AoL	0.435486	0.0238972	18.2233	9.14659	$\times 10^{-6}$	
Y0ss	45.5727	0.522195	87.2715	3.74395	$\times 10^{-9}$	

AdjustedRSquared 0.997212

AIC 32.1389 BIC 31.9766 RSquared 0.998009

wingindexnum = 34

S8809011_left_1

Estimate Standard Error t-Statistic P-Value					P-Value	
	AoL	0.463083	0.0279725	16.5549	0.0000146	6837
	ΥΛee	48 4728	0.693239	69 9222	113312	×10 ⁻⁸

AdjustedRSquared 0.984236

AIC 87.3517 BIC 87.1894 RSquared 0.98874

analwingindex = 29

wingindexnum = 35

S8811007_left_1

	Estimate	Standard Error t-Statistic P-Value					
AoL	0.221985	0.00177416	125.122	6.18504	×10 ⁻¹⁰		
Y0ss	227.728	0.409797	555.708	3.58143	$\times 10^{-13}$		

AdjustedRSquared 0.995926

AIC 1137.5 BIC 1137.34 RSquared 0.99709

wingindexnum = 36

S8811009_left_1

	Estimate	Standard Error t-Statistic P-Value				
AoL	0.274105	0.00466447	58.7644	5.02177	×10 ⁻⁷	
Y0ss	103.706	0.483702	214.401	2.83909	$\times 10^{-9}$	

AdjustedRSquared 0.993172

AIC 277.472 BIC 276.847 ${\sf RSquared}$ 0.995448

analwingindex = 31

wingindexnum = 37

S8811019_left_1

	Estimate	Standard Error t-Statistic P-Value			
AoL	0.258281	0.00617247	41.844	1.24624	×10 ⁻⁸
Y0ss	122.278	0.627342	194.914	1.23046	$\times 10^{-12}$

AdjustedRSquared 0.99866

AIC 61.6965 BIC 61.9349 RSquared 0.998995


```
In[146]:= (*Example wings*)
     (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 0;
     Xmax =
       Max[Length[ssList[wingindexnum1, 2]]], Length[ssList[wingindexnum2, 2]]] - 1;
     Ymin = 0;
     deltaY = 10^(MantissaExponent[
            Max[ssList[wingindexnum1, 2, 1, 2]["Value"] + ssList[wingindexnum1, 2, 1, 2][
               "Uncertainty"], ssList[wingindexnum2, 2, 1, 2]["Value"]+
              ssList[wingindexnum2, 2, 1, 2]["Uncertainty"]]][2] - 1);
     Ymax = Ceiling[Max[ssList[wingindexnum1, 2, 1, 2]["Value"] +
         ssList[wingindexnum1, 2, 1, 2]["Uncertainty"], ssList[wingindexnum2, 2, 1, 2][
           "Value"] + ssList[wingindexnum2, 2, 1, 2]["Uncertainty"]], deltaY];
     Linewidth = 0.005;
     Fontsize = 12;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, deltaY}];
     Print[Show[ListPlot[{ssList[wingindexnum1, 2], ssList[wingindexnum2, 2]]},
        PlotRange \rightarrow {{-0.5, Xmax + 0.5}, {-deltaY / 4, Ymax - deltaY / 2}},
        PlotStyle → Thickness[Linewidth], IntervalMarkersStyle → Thickness[Linewidth],
        Frame → {{True, False}, {True, False}}, FrameTicks → {XTicks, YTicks},
        FrameLabel → {"Stereocilium position", "Steady-state displacement (nm)"},
        Joined → False, FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
            {Black, Thickness[Linewidth], FontSize → Fontsize}},
           {{Black, Thickness[Linewidth], FontSize → Fontsize},
            {Black, Thickness[Linewidth], FontSize → Fontsize}}},
        Axes → False], ListPlot[{Table[{ssList[wingindexnum1, 2, n, 1]],
            YPW[ssAoLList[wingindexnum1, 1, 2]], n, Length[ssList[wingindexnum1, 2]]],
             ssY0List[wingindexnum1, 1, 2]]], {n, 1, Length[ssList[wingindexnum1, 2]]]]],
         Table[{ssList[wingindexnum2, 2, n, 1]], YPW[ssAoLList[wingindexnum2, 1, 2]],
             n, Length[ssList[wingindexnum2, 2]], ssY0List[wingindexnum2, 1, 2]]},
           {n, 1, Length[ssList[wingindexnum2, 2]]]}]},
        PlotStyle → Thickness[Linewidth], Joined → True]]]
     ssAoLList[wingindexnum1, 1, 2]
     ssAoLList[wingindexnum2, 1, 2]
     ssY0List[wingindexnum1, 1, 2]
     ssY0List[wingindexnum2, 1, 2]
```


Out[156]= 0.531762

Out[157]= 0.258281

 $\mathsf{Out}[\mathsf{158}] = \ \mathbf{243.2}$

Out[159]= 122.278

```
In[161]:= Data[wingindex[wingindexnum1]], 1]
              onset = Table[{Data[n, 3], Data[n, 4]},
                        {n, wingindex[wingindexnum1], If[wingindexnum1 + 1 > Length[wingindex],
                              Length[Data[All, 2]], wingindex[wingindexnum1 + 1] - 1]}];
               ss = Table[{Data[n, 3], Data[n, 9]},
                        {n, wingindex[wingindexnum1], If[wingindexnum1 + 1 > Length[wingindex],
                              Length[Data[All, 2]], wingindex[wingindexnum1 + 1] - 1]}];
              ssErr = Table[{Data[n, 3], Data[n, 11] / Sqrt[Data[n, 10]]}},
                        {n, wingindex[wingindexnum1], If[wingindexnum1 + 1 > Length[wingindex],
                              Length[Data[All, 2]], wingindex[wingindexnum1 + 1] - 1]}];
               nstereo = Last[ss[All, 1]] + 1;
               fit = NonlinearModelFit[Table[ss[n, 2], {n, 1, Length[ss]}],
                        \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, \{AoL, \{Y0
                          Table[1 / ssErr[n, 2] ^2, {n, 1, Length[ss]}], VarianceEstimatorFunction \rightarrow (1 &)];
               ssAoLList[wingindexnum1, 1, 2] = Evaluate[AoL /. fit["BestFitParameters"][1]];
               ssAoLList[wingindexnum1, 2] = Evaluate[fit["ParameterErrors"][1]];
               ssY0List[wingindexnum1, 1, 2] = Evaluate[Y0ss /. fit["BestFitParameters"][2]];
               ssY0List[wingindexnum1, 2] = Evaluate[fit["ParameterErrors"][2]];
               ssAdjRsqList[wingindexnum1, 2] = Evaluate[fit["AdjustedRSquared"]];
               Print[Data[wingindex[wingindexnum1], 1]];
              Print[fit["ParameterTable"]];
               Print[
                    Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
                       Alignment → Left]];
Out[161]= $8807018_1_right
              S8807018_1_right
                          Estimate Standard Error t-Statistic P-Value
                       0.531762 \ 0.00465741 \ 114.175 \ 1.04242 \ \times 10^{-12}
              AoL
              Y0ss 243.2 0.652126 372.934 2.63201 \times 10^{-16}
              AdjustedRSquared 0.99514
              AIC
                                                        717,181
               BIC
                                                        717.773
               RSquared
                                                        0.99622
```

```
In[175]:= Data[wingindex[wingindexnum2], 1]
            onset = Table[{Data[n, 3], Data[n, 4]},
                    {n, wingindex[wingindexnum2], If[wingindexnum2 + 1 > Length[wingindex],
                        Length[Data[All, 2]], wingindex[wingindexnum2 + 1] - 1]}];
            ss = Table[{Data[n, 3], Data[n, 9]},
                    {n, wingindex[wingindexnum2], If[wingindexnum2 + 1 > Length[wingindex],
                        Length[Data[All, 2]], wingindex[wingindexnum2 + 1] - 1]}];
            ssErr = Table[{Data[n, 3], Data[n, 11] / Sqrt[Data[n, 10]]]},
                    {n, wingindex[wingindexnum2], If[wingindexnum2 + 1 > Length[wingindex],
                        Length[Data[All, 2]], wingindex[wingindexnum2 + 1] - 1]}];
            nstereo = Last[ss[All, 1]] + 1;
            fit = NonlinearModelFit[Table[ss[n, 2], {n, 1, Length[ss]}],
                    \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{AoL, \{Y0ss, ss[1, 2]\}\}, m, Weights \rightarrow \{YPW[AoL, m, nstereo, Y0ss]\}, \{YPW[A
                      Table[1 / ssErr[n, 2] ^2, {n, 1, Length[ss]}], VarianceEstimatorFunction \rightarrow (1 &)];
            ssAoLList[wingindexnum2, 1, 2] = Evaluate[AoL /. fit["BestFitParameters"][1]];
            ssAoLList[wingindexnum2, 2] = Evaluate[fit["ParameterErrors"][1]];
            ssY0List[wingindexnum2, 1, 2] = Evaluate[Y0ss /. fit["BestFitParameters"][2]];
            ssY0List[wingindexnum2, 2] = Evaluate[fit["ParameterErrors"][2]];
            ssAdjRsqList[wingindexnum2, 2] = Evaluate[fit["AdjustedRSquared"]];
            Print[Data[wingindex[wingindexnum2], 1]];
            Print[fit["ParameterTable"]];
            Print[
                 Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
                   Alignment → Left]];
Out[175]= $8811019_1_left
            S8811019_1_left
                     Estimate Standard Error t-Statistic P-Value
                    0.258281 \ 0.00617247 \ 41.844 \ 1.24624 \ \times 10^{-8}
            AoL
                                                        194.914 1.23046 \times 10^{-12}
            Y0ss 122.278 0.627342
            AdjustedRSquared 0.99866
            ATC
                                              61,6965
            BTC
                                               61.9349
            RSquared
                                              0.998995
 In[189]:= (*Remove NaN entries*)
            baddata[entry_] := MatchQ[entry, {{_?NumberQ, NaN}, NaN}];
            ssnstereoListrenum = DeleteCases[ssnstereoList, NaN];
            ssAoLListtemp = DeleteCases[ssAoLList, _?baddata];
            ssAoLListrenum = Table[{{n, ssAoLListtemp[n, 1, 2]}}, ssAoLListtemp[n, 2]}},
                    {n, 1, Length[ssAoLListtemp]}];
            baddata2[entry_] := MatchQ[entry, {_?NumberQ, NaN}];
            ssAdjRsqListtemp = DeleteCases[ssAdjRsqList, _?baddata2];
            ssAdjRsqListrenum =
                 Table[{{n, ssAdjRsqListtemp[n, 2]}}, {n, 1, Length[ssAdjRsqListtemp]}];
```

```
In[196]:= (*Minimum and maximum ratios*)
      Min[ssAoLListrenum[All, 1, 2]]
      Max[ssAoLListrenum[All, 1, 2]]
Out[196]= 0.154369
Out[197]= 0.531762
In[198]:= MedianSSAoL = Quantile[ssAoLListrenum[All, 1, 2], 0.5]
      LowerQuantileSSAoL = Quantile[ssAoLListrenum[All, 1, 2], 0.25]
      UpperQuantileSSAoL = Quantile[ssAoLListrenum[All, 1, 2], 0.75]
Out[198]= 0.278512
Out[199]= 0.227344
Out[200]= 0.358482
```

```
In[201]:= (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 0;
     Xmax = Length[ssAoLListrenum];
     Ymin = 0; Ymax = 1;
     Linewidth = 0.005;
     Fontsize = 12;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 5}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 0.1}];
     Show[ListPlot[Table[
        {ssAoLListrenum[n, 1, 1], Around[ssAoLListrenum[n, 1, 2], ssAoLListrenum[n, 2]]}},
        {n, 1, Length[ssAoLListrenum]}],
       PlotRange → All, PlotStyle → {Thickness[Linewidth], Red},
       IntervalMarkersStyle → {Thickness[Linewidth], Red},
       Frame → {{True, False}}, {True, False}}, FrameTicks → {None, YTicks},
       FrameLabel → {"Wing", "Stiffness Ratio"}, Joined → False,
       FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
      Plot[{MedianSSAoL, LowerQuantileSSAoL, UpperQuantileSSAoL},
       {n, 1, Length[ssAoLListrenum]}, PlotStyle → {{Thickness[Linewidth], Black},
          {Thickness[Linewidth], Black, Dashed}, {Thickness[Linewidth], Black, Dashed}}]]
     (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 0;
     Xmax = Length[ssAoLListrenum];
     Ymin = 0;
     Ymax = 1;
     Linewidth = 0.005;
     Fontsize = 12;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 5}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 0.01}];
     ListPlot[Table[{ssAoLListrenum[n, 1, 1], ssAdjRsqListrenum[n, 1, 2]}},
       {n, 1, Length[ssAoLListrenum]}],
      PlotRange → All, PlotStyle → {Thickness[Linewidth], Red},
      IntervalMarkersStyle → Thickness[Linewidth], Frame → {{True, False}, {True, False}},
      FrameTicks → {XTicks, YTicks}, FrameLabel → {"Wing", "Adjusted Rsq"},
      Joined → False, FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
          {Black, Thickness[Linewidth], FontSize → Fontsize}},
        {{Black, Thickness[Linewidth], FontSize → Fontsize},
          {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]
```


In[220]:= (*Minimum adjRsq*) Min[ssAdjRsqList[All, 2]]

Out[220]= Min[0.966551, NaN]

In[221]:= (*Maximum P-value over all fit parameters*) Max[{ssAoLPvalList[All, 2], ssY0PvalList[All, 2]}]

Out[221]= Max [0.0000146837, NaN]

```
In[222]:= SEList = DeleteCases[Table[onsetAoLList[n, 2], {n, 1, Length[wingindex]}], NaN];
      onsetAoLList2 = DeleteCases[onsetAoLList[All, 1, 2], NaN];
      gammaAoLave = Sum[onsetAoLList2[n] / SEList[n] ^2, {n, 1, Length[onsetAoLList2]}] /
        Sum[1 / SEList[n] ^2, {n, 1, Length[onsetAoLList2]}]
      (*SE in the weighted mean*)
      Sqrt[1 / Sum[1 / SEList[n] ^2, {n, 1, Length[onsetAoLList2]}]]
      (*Fraction of wings above the mean => distribution is not symmetric*)
      N[Sum[If[onsetAoLList2[n]] > gammaAoLave, 1, 0], {n, 1, Length[onsetAoLList2]}] /
        Length[onsetAoLList2]]
Out[224] = 0.179818
Out[225]= 0.000559756
Out[226] = 0.677419
In[227]:= (*Average KA/KL with SE. Weighted mean, more weight when SE is smaller*)
      SEList = DeleteCases[Table[ssAoLList[n, 2], {n, 1, Length[wingindex]}], NaN];
      ssAoLList2 = DeleteCases[ssAoLList[All, 1, 2], NaN];
      KAoLave = Sum[ssAoLList2[n] / SEList[n] ^2, {n, 1, Length[ssAoLList2]}] /
        Sum[1 / SEList[n] ^2, {n, 1, Length[ssAoLList2]}]
      (*SE in the weighted mean*)
      Sqrt[1 / Sum[1 / SEList[n] ^2, {n, 1, Length[ssAoLList2]}]]
      (*Fraction of wings above the mean => distribution is not symmetric*)
      N[Sum[If[ssAoLList2[n]] > KAoLave, 1, 0], {n, 1, Length[ssAoLList2]}] /
        Length[ssAoLList2]]
Out[229]= 0.256637
Out[230]= 0.0003463
Out[231]= 0.612903
```

```
In[232]:= (*Predicts which wings overshoot for an ideal step stimulus (Ratio/Ratio > 1),
     but expt step is not ideal and probe drifts after onset.*)
     RatioErr = Table[Abs[(ssAoLListrenum[n, 1, 2]) / onsetAoLListrenum[n, 1, 2]) *
           Sqrt[(onsetAoLListrenum[n, 2] / onsetAoLListrenum[n, 1, 2]) ^2 +
             (ssAoLListrenum[n, 2] / ssAoLListrenum[n, 1, 2]) ^2]],
         {n, 1, Length[ssAoLListrenum]}];
     (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 0;
     Xmax = Length[ssAoLListrenum];
     Ymin = 0;
     Ymax = 5;
     Linewidth = 0.005;
     Fontsize = 12;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 5}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 0.5}];
     Show[ListPlot[Table[
         {n, Around[ssAoLListrenum[n, 1, 2] / onsetAoLListrenum[n, 1, 2], RatioErr[n]]},
         {n, 1, Length[ssAoLListrenum]}],
       PlotRange → All, PlotStyle → {Thickness[Linewidth], Red},
       IntervalMarkersStyle → {Thickness[Linewidth], Red},
       Frame → {{True, False}}, FrameTicks → {XTicks, YTicks},
       FrameLabel → {"Wing", "(Stiffness Ratio)/(Damping Ratio)"}, Joined → False,
       FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}},
       Axes → False], Plot[1, {n, 1, Length[ssAoLListrenum]},
       PlotStyle → {{Thickness[Linewidth], Black, Dashed}}]]
     Stiffness Ratio)/(Damping Ratio)
        2.5
         2.
        1.5 -
         1.
        0.5
                         10
                                      20
                                             25
                               15
                                                   30
                               Wing
```

```
In[243]:= (*4 of 31 have ssAoL < onsetAoL => no overshoot for ideal step*)
              Sum[{ssAoLListrenum[n, 1, 2] / onsetAoLListrenum[n, 1, 2] < 1}},
                  {n, 1, Length[ssAoLListrenum]}]
              Table[{{n, ssAoLListrenum[n, 1, 2] / onsetAoLListrenum[n, 1, 2]}},
                  {n, 1, Length[ssAoLListrenum]}]
Out[243]= { { 27 False + 4 True } }
\text{Out}_{[244]} = \{\{\{1, 1.36016\}\}, \{\{2, 1.90209\}\}, \{\{3, 1.50212\}\}, \{\{4, 1.7878\}\}, \{\{5, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{\{6, 1.29781\}\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\}, \{6, 1.29781\},
                  \{\{6, 1.33456\}\}, \{\{7, 0.995628\}\}, \{\{8, 1.26779\}\}, \{\{9, 1.35907\}\}, \{\{10, 1.1736\}\},
                  \{\{11, 1.25649\}\}, \{\{12, 1.39694\}\}, \{\{13, 1.39599\}\}, \{\{14, 1.22753\}\}, \{\{15, 1.15155\}\},
                  \{\{16, 0.966437\}\}, \{\{17, 0.972563\}\}, \{\{18, 1.13574\}\}, \{\{19, 1.04282\}\},
                  \{\{20, 1.13948\}\}, \{\{21, 1.18289\}\}, \{\{22, 1.35828\}\}, \{\{23, 1.59226\}\},
                  \{24, 0.860208\}\}, \{\{25, 1.46942\}\}, \{\{26, 1.73847\}\}, \{\{27, 2.49625\}\},
                  \{\{28, 1.99679\}\}, \{\{29, 1.00086\}\}, \{\{30, 1.48588\}\}, \{\{31, 2.27514\}\}\}
 In[245]= (*Number of wings with KAoL > gammaAoL => Get overshoot for step stimulus.*)
              Length[Cases[Table[ssAoLList[n, 1, 2]] / onsetAoLList[n, 1, 2]],
                        {n, 1, Length[wingindex]}], x_ /; x > 1]]
\mathsf{Out}[\mathsf{245}] = \ 27
 In[246]:= (*Weighted mean of RatioRatio, more weight when SE is smaller*)
               RatioRatioList = DeleteCases[
                       Table[ssAoLList[n, 1, 2] / onsetAoLList[n, 1, 2], {n, 1, Length[wingindex]}], NaN];
              SERatioRatioList = DeleteCases[Table[(ssAoLList[n, 1, 2] / onsetAoLList[n, 1, 2]) *
                            Sqrt[(ssAoLList[n, 2] / ssAoLList[n, 1, 2]) ^2 +
                                   (onsetAoLList[[n, 2]] / onsetAoLList[[n, 1, 2]]) ^2],
                          {n, 1, Length[wingindex]}], NaN];
              wmean =
                  Sum[RatioRatioList[n]] / SERatioRatioList[n] ^2, {n, 1, Length[RatioRatioList]}] /
                    Sum[1/SERatioRatioList[n]^2, {n, 1, Length[RatioRatioList]}]
               (*SE in the weighted mean*)
               sewmean = Sqrt[1 / Sum[1 / SERatioRatioList[n] ^2, {n, 1, Length[RatioRatioList]}]]
Out[248]= 1.13437
Out[249]= 0.00403623
 In[250]:= Length[RatioRatioList]
Out[250]= 31
```

```
In[251]:= (*Means don't give the full picture, because distributions are not symmetric*)
      (*Ave[KAoL/gammaAoL] < Ave[KAoL]/Ave[gammaAoL]*)
     wmean
      KAoLave / gammaAoLave
      (*Fraction of wings above the mean*)
      N[Sum[If[RatioRatioList[n] > wmean, 1, 0], {n, 1, Length[RatioRatioList]}] /
        Length[RatioRatioList]]
Out[251]= 1.13437
Out[252]= 1.42721
Out[253]= 0.806452
In[254]:= (*Median is better for non-symmetric data*)
      gammaAoLmedian = Median[onsetAoLList2]
      KAoLmedian = Median[ssAoLList2]
      KAoLOgammaAoLmedian = Median[RatioRatioList]
      (*Fraction of wings above the median of ratios*)
      N[Sum[If[RatioRatioList[n]] > KAoLOgammaAoLmedian, 1, 0],
         {n, 1, Length[RatioRatioList]}] / Length[RatioRatioList]]
Out[254] = 0.208526
Out[255]= 0.278512
Out[256]= 1.33456
Out[257] = 0.483871
In[258]:= (*Reversal for ideal step using fit values. Use Y0 from onset*)
      (*Example wings*)
     wingindexnum1 = 28;
     wingindexnum2 = 37;
      (*Reversal = Peak - Steady-state*)
      (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 1;
     Xmax =
        Max[Length[ssList[wingindexnum1, 2]]], Length[ssList[wingindexnum2, 2]]] - 1;
     Ymin = 0;
      deltaY = 5;
     Ymax = 25;
     Linewidth = 0.005;
      Fontsize = 12;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, deltaY}];
     Show[ListPlot[
        {Table[{ssList[wingindexnum1, 2, n, 1], YPW[onsetAoLList[wingindexnum1, 1, 2], n,
```

```
Length[onsetList[wingindexnum1, 2]], onsetY0List[wingindexnum1, 1, 2]] -
      YPW[ssAoLList[wingindexnum1, 1, 2], n, Length[ssList[wingindexnum1, 2]],
        onsetY0List[wingindexnum1, 1, 2]]]},
    {n, 2, Length[ssList[wingindexnum1, 2]]]}], Table[{ssList[wingindexnum2, 2, n, 1]],
     YPW[onsetAoLList[wingindexnum2, 1, 2]], n, Length[onsetList[wingindexnum2, 2]]],
        onsetY0List[wingindexnum2, 1, 2]] - YPW[ssAoLList[wingindexnum2, 1, 2]],
        n, Length[ssList[wingindexnum2, 2]], onsetY0List[wingindexnum2, 1, 2]]],
    {n, 2, Length[ssList[wingindexnum2, 2]]]}]},
  PlotRange → {\{Xmin - 0.5, Xmax + 0.5\}, \{0, Ymax\}\},
  PlotStyle → Thickness[Linewidth],
  IntervalMarkersStyle → Thickness[Linewidth],
  Frame → {{True, False}, {True, False}},
  FrameTicks → {XTicks, YTicks},
  FrameLabel → {"Stereocilium position", "Reverse (nm)"},
  Joined → True,
  FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
    {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
(*Reversal/Peak = 1 - Steady-state/Peak*)
(*Tick Marks*)
TickLength = 0.02;
Xmin = 1;
Xmax =
  Max[Length[ssList[wingindexnum1, 2]], Length[ssList[wingindexnum2, 2]]] - 1;
Ymin = 0;
deltaY = 0.25;
Ymax = 0.75;
Linewidth = 0.005;
Fontsize = 12;
XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, deltaY}];
Show[ListPlot[{Table[{ssList[wingindexnum1, 2, n, 1]],
     1 - YPW[ssAoLList[wingindexnum1, 1, 2], n, Length[ssList[wingindexnum1, 2]]],
         onsetY0List[wingindexnum1, 1, 2]] / YPW[onsetAoLList[wingindexnum1, 1, 2]],
         n, Length[onsetList[wingindexnum1, 2]]], onsetY0List[wingindexnum1, 1, 2]]]},
    {n, 2, Length[ssList[wingindexnum1, 2]]]}], Table[{ssList[wingindexnum2, 2, n, 1]],
     1 - YPW[ssAoLList[wingindexnum2, 1, 2], n, Length[ssList[wingindexnum2, 2]],
         onsetY0List[wingindexnum2, 1, 2]] / YPW[onsetAoLList[wingindexnum2, 1, 2],
         n, Length[onsetList[wingindexnum2, 2]]], onsetYOList[wingindexnum2, 1, 2]]]},
    {n, 2, Length[ssList[wingindexnum2, 2]]}}}, PlotRange →
   \{\{Xmin - 0.5, Xmax + 0.5\}, \{0, Ymax\}\},\
  PlotStyle → Thickness[Linewidth],
  IntervalMarkersStyle →
```

```
Thickness[Linewidth],
         Frame → {{True, False}, {True, False}},
         FrameTicks → {XTicks, YTicks},
         FrameLabel → {"Stereocilium position", "Reverse/Peak"},
         Joined → True,
         FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
            {Black, Thickness[Linewidth], FontSize → Fontsize}},
           {{Black, Thickness[Linewidth], FontSize → Fontsize},
            {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
      ssAoLList[wingindexnum1, 1, 2]
      ssAoLList[wingindexnum2, 1, 2]
      onsetAoLList[wingindexnum1, 1, 2]
      onsetAoLList[wingindexnum2, 1, 2]
      ssY0List[wingindexnum1, 1, 2]
      onsetY0List[wingindexnum1, 1, 2]
      ssY0List[wingindexnum2, 1, 2]
      onsetY0List[wingindexnum2, 1, 2]
         25 -
         20
Out[270]= Cout[270]= Weverse
         15
         10
          5
                           Stereocilium position
         0.75
      Reverse/Peak
          0.5
Out[281]=
         0.25
           0.
                      2
                                      5
                           ż
                                            6
                            Stereocilium position
```

Out[282]= 0.531762

```
Out[283]= 0.258281
Out[284] = 0.391498
Out[285]= 0.113523
Out[286]= 243.2
Out[287]= 223.285
Out[288]= 122.278
Out[289]= 144.43
In[290]:= ntotv = ssnstereoList[wingindexnum1];
      KAoLv = ssAoLList[wingindexnum1, 1, 2];
      gammaAoLv = onsetAoLList[wingindexnum1, 1, 2];
      KAoLv / gammaAoLv
      Y0v = 500; (*nm*)
Out[293]= 1.35828
In[295]:= (*Onset decay can be fit by an exponential. Deviates
       from exponential at stereocilium numbers close to ntot*)
      fit = NonlinearModelFit[Table[{n, Y[n, ntotv, gammaAoLv, Y0v] / Y0v}, {n, 0, ntotv - 1}],
         {Exp[m / ndec]}, {{ndec, -1}}, m];
      Print[fit["ParameterTable"]];
      Print[
        Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
         Alignment → Left]];
      Show[ListLogPlot[
        Table[\{n, Y[n, ntotv, gammaAoLv, Y0v] / Y0v\}, \{n, 0, ntotv - 1\}\}, PlotStyle → Red,
        AxesLabel → {"Stereocilium Number", "Normalized Onset Displacement"},
        AxesStyle → Directive[Black, FontSize → 12]],
       ListLogPlot[Table[{n, Exp[n / (ndec /. fit["BestFitParameters"])]}, {n, 0, ntotv}],
        PlotStyle → Blue, Joined → True]]
      (*Absolute error between exact solution and exponential fit*)
      ListLogPlot[Table[{n, Abs[
           Y[n, ntotv, gammaAoLv, Y0v] / Y0v - Exp[n / (ndec /. fit["BestFitParameters"])]]},
        {n, 0, ntotv - 1}], PlotStyle → Blue, Joined → True,
       AxesLabel → {"Stereocilium Number", "Error"},
       AxesStyle → Directive[Black, FontSize → 12, PlotRange → All]]
```

```
Estimate Standard Error t-Statistic P-Value
                             -394.732 1.89986 \times 10^{-18}
      ndec -1.62611 0.00411952
      AdjustedRSquared 0.999984
                         -87.261
      BIC
                         -86.8665
      RSquared
                        0.999985
      Normalized Onset Displacement
               0.50
Out[298]=
               0.10
               0.05
                                            Stereocilium Number
                         2
           Error
        0.005
        0.001
      5. \times 10^{-4}
Out[299]=
      1. \times 10^{-4}
      5. \times 10^{-5}
      1. \times 10^{-5}
                                            Stereocilium Number
                    2
In[300]:= (*ss decay can be fit by an exponential. Deviates
        from exponential at stereocilium numbers close to ntot*)
      fit = NonlinearModelFit[Table[{n, Y[n, ntotv, KAoLv, Y0v] / Y0v}, {n, 0, ntotv - 1}],
          {Exp[m / ndec]}, {{ndec, -1}}, m];
      Print[fit["ParameterTable"]];
      Print[
         Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
      Show[ListLogPlot[
         Table[{n, Y[n, ntotv, KAoLv, Y0v] / Y0v}, {n, 0, ntotv - 1}], PlotStyle → Red,
         AxesLabel → {"Stereocilium Number", "Normalized Steady-State Displacement (nm)"},
         AxesStyle → Directive[Black, FontSize → 12]],
       ListLogPlot[Table[{n, Exp[n / (ndec /. fit["BestFitParameters"])]}, {n, 0, ntotv}],
         PlotStyle → Blue, Joined → True]]
      (*Absolute error between exact solution and exponential fit*)ListLogPlot[Table[
         {n, Abs[Y[n, ntotv, KAoLv, Y0v] / Y0v - Exp[n / (ndec /. fit["BestFitParameters"])]]},
         \{n, 0, ntotv - 1\}], PlotStyle \rightarrow Blue, Joined \rightarrow True,
       AxesLabel → {"Stereocilium Number", "Error"},
```

AxesStyle → Directive[Black, FontSize → 12]]

	Estimate Standard Error	t-Statistic P-Value	
ndec	-1.40119 0.00155432	-901.483 2.56768	×10 ⁻²¹

AdjustedRSquared 0.999997 AIC -103.511BIC -103.116 RSquared 0.999997

Normalized Steady-State Displacement (nm)


```
In[305]:= (*Note that the onset and ss decays depend on
       the total number of stereocilia even when normalized*)
      Y0v = 500;
      (*Tick Marks*)
      TickLength = 0.02;
      Xmin = 0;
      Xmax = ntotv;
      Ymin = 0;
      Ymax = 1.1;
      XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 2 * 10^0}];
      YTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Ymin, Ymax, 2 * 10 ^ -1}];
      (*Onset*)
      ListPlot[{Table[{n, Y[n, ntotv, gammaAoLv, Y0v] / Y0v}, {n, 0, ntotv - 1}],
        Table[{n, Y[n, 8, gammaAoLv, Y0v] / Y0v}, {n, 0, 8-1}],
        Table[{n, Y[n, 6, gammaAoLv, Y0v] / Y0v}, {n, 0, 6-1}],
        Table[{n, Y[n, 4, gammaAoLv, Y0v] / Y0v}, {n, 0, 4-1}],
        Table[\{n, Y[n, 2, gammaAoLv, Y0v] / Y0v\}, \{n, 0, 2-1\}\}\}, AspectRatio \rightarrow 1,
       PlotRange \rightarrow {{0, ntotv}, {0, 1.1}}, PlotStyle \rightarrow Thickness[0.01],
       AxesLabel → {"Stereocilium Number", "Displacement"},
       AxesStyle → Directive[Black, FontSize → 12], Ticks → {XTicks, YTicks},
       Method \rightarrow \{"AxesInFront" \rightarrow False\}, Joined \rightarrow True]
      ListPlot[{Table[{n, Y[n, ntotv, KAoLv, Y0v] / Y0v}, {n, 0, ntotv - 1}],
        Table[{n, Y[n, 8, KAoLv, Y0v] / Y0v}, {n, 0, 8-1}],
        Table[{n, Y[n, 6, KAoLv, Y0v] / Y0v}, {n, 0, 6-1}],
        Table[{n, Y[n, 4, KAoLv, Y0v] / Y0v}, {n, 0, 4-1}],
        Table[\{n, Y[n, 2, KAoLv, Y0v] / Y0v\}, \{n, 0, 2-1\}\}], AspectRatio \rightarrow 1,
       PlotRange \rightarrow {{0, ntotv}, {0, 1.1}}, PlotStyle \rightarrow Thickness[0.01],
       AxesLabel → {"Stereocilium Number", "Displacement"},
       AxesStyle → Directive[Black, FontSize → 12], Ticks → {XTicks, YTicks},
       Method → {"AxesInFront" → False}, Joined → True]
      Displacement
        1.0
       0.80
       0.60
Out[313]=
       0.40 -
       0.20
         Λ.
                                           Stereocilium Number
           0
                 2.0
                        4.0
                              6.0
                                     8.0
```



```
In[322]:= (*Match slope of stimulus to experimental data*)
      ntotv = ssnstereoList[wingindexnum2]
      Y0v = 250 (*nm*);
      slopefac = 50;
      ts = 5;
      te = 55;
      trange = 60;
      Y0f[t_] :=
        Y0v * Evaluate[(1 + Exp[- (t - ts) * slopefac]) ^-1 - (1 + Exp[- (t - te) * slopefac]) ^-1];
      (*Tick Marks*)
      TickLength = 0.02;
      Xmin = ts - 0.1;
      Xmax = ts + 0.1;
      Ymin = 0;
      Ymax = 5 * 10^3;
      XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 5 * 10^-2}];
      YTicks = Table[{i, N[i, 1], {0, TickLength}}, {i, Ymin, Ymax, 10^3}];
      Show[Plot[\{Y0f'[t]\}, \{t, ts-0.075, ts+0.075\}, PlotRange \rightarrow \{-100, 3.2*10^3\},
        MaxRecursion → 15, PlotStyle → {Black, Thickness[Linewidth]},
        Frame → {{True, False}}, {True, False}}, FrameTicks → {XTicks, YTicks},
        FrameLabel → {"Time (ms)", "Displacement (nm)"},
        FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
            {Black, Thickness[Linewidth], FontSize → Fontsize}},
           {{Black, Thickness[Linewidth], FontSize → Fontsize},
            {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
\mathsf{Out}[322] = \ 8
      Displacement (nm)
             0
                     4.95
                                   5.
                                                5.05
                                Time (ms)
In[337]:= (*Doesn't work unless we use the equation simplification method*)
      (*8 cilia, Y0 clamped, all cilia have rootlets. For 10 kHz low-
        pass filtered experimental stimulus use s =
       10*4 = 40 such that the maximum slope is 5 kHz.*)
      KLv = 5; (*mN/m*)
```

```
KAv = ssAoLList[wingindexnum2, 1, 2] * KLv;
gammaLv = 0.8 * KLv; (*uN.s/m*)
gammaLv / KLv(*ms*)
gammaAv = onsetAoLList[wingindexnum2, 1, 2] * gammaLv;
KAoLv = KAv/KLv;
gammaAoLv = gammaAv/gammaLv;
(*Geometric mean time constant*)
taugmv = (gammaLv / KLv) *
   (g[ntotv - 1, gammaAoLv, 1] / g[ntotv - 1, KAv / KLv, 1]) ^ (1 / (ntotv - 1))
KA1v = KAv; gammaA1v = gammaAv;
KA2v = KAv; gammaA2v = gammaAv;
KA3v = KAv; gammaA3v = gammaAv;
KA4v = KAv; gammaA4v = gammaAv;
KA5v = KAv; gammaA5v = gammaAv;
KA6v = KAv; gammaA6v = gammaAv;
KA7v = KAv; gammaA7v = gammaAv;
K1v = KLv; gamma1v = gammaLv;
K2v = KLv; gamma2v = gammaLv;
K3v = KLv; gamma3v = gammaLv;
K4v = KLv; gamma4v = gammaLv;
K5v = KLv; gamma5v = gammaLv;
K6v = KLv; gamma6v = gammaLv;
K7v = KLv; gamma7v = gammaLv;
Ysln =
 NDSolve[{KA1v * Y1[t] + gammaA1v * Y1'[t] + K1v * (Y1[t] - Y0f[t]) - K2v * (Y2[t] - Y1[t]) +
      gamma1v * (Y1'[t] - Y0f'[t]) - gamma2v * (Y2'[t] - Y1'[t]) == 0, Y1[0] == 0,
   \mathsf{KA2v} * \mathsf{Y2[t]} + \mathsf{gammaA2v} * \mathsf{Y2'[t]} + \mathsf{K2v} * (\mathsf{Y2[t]} - \mathsf{Y1[t]}) - \mathsf{K3v} * (\mathsf{Y3[t]} - \mathsf{Y2[t]}) + \\
      gamma2v * (Y2'[t] - Y1'[t]) - gamma3v * (Y3'[t] - Y2'[t]) == 0, Y2[0] == 0,
   KA3v * Y3[t] + gammaA3v * Y3'[t] + K3v * (Y3[t] - Y2[t]) - K4v * (Y4[t] - Y3[t]) +
      gamma3v * (Y3'[t] - Y2'[t]) - gamma4v * (Y4'[t] - Y3'[t]) == 0, Y3[0] == 0,
    KA4v * Y4[t] + gammaA4v * Y4'[t] + K4v * (Y4[t] - Y3[t]) - K5v * (Y5[t] - Y4[t]) +
      gamma4v * (Y4'[t] - Y3'[t]) - gamma5v * (Y5'[t] - Y4'[t]) == 0, Y4[0] == 0,
   KA5v * Y5[t] + gammaA5v * Y5'[t] + K5v * (Y5[t] - Y4[t]) - K6v * (Y6[t] - Y5[t]) +
      gamma5v * (Y5'[t] - Y4'[t]) - gamma6v * (Y6'[t] - Y5'[t]) == 0, Y5[0] == 0,
   KA6v * Y6[t] + gammaA6v * Y6'[t] + K6v * (Y6[t] - Y5[t]) - K7v * (Y7[t] - Y6[t]) +
      gamma6v * (Y6'[t] - Y5'[t]) - gamma7v * (Y7'[t] - Y6'[t]) == 0, Y6[0] == 0,
   KA7v * Y7[t] + gammaA7v * Y7'[t] + K7v * (Y7[t] - Y6[t]) + gamma7v * (Y7'[t] - Y6'[t]) ==
     0, Y7[0] = 0, \{Y1, Y2, Y3, Y4, Y5, Y6, Y7\},
  {t, 0, trange}, Method → {"EquationSimplification" → "Residual"}]
Y1f[t_] := Evaluate[Y1[t] /. Ysln[1]]
Y2f[t_] := Evaluate[Y2[t] /. Ysln[1]]
Y3f[t_] := Evaluate[Y3[t] /. Ysln[1]]
Y4f[t_] := Evaluate[Y4[t] /. Ysln[1]]
Y5f[t] := Evaluate[Y5[t] /. Ysln[1]]
```

```
Y6f[t_] := Evaluate[Y6[t] /. Ysln[1]]
Y7f[t_] := Evaluate[Y7[t] /. Ysln[1]]
(*Stimulus and responses*)
(*Tick Marks*)
TickLength = 0.02;
Xmin = 0;
Xmax = trange;
Ymin = 0;
Ymax = 250;
XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 1 * 10^1}];
YTicks = Table [{i, i, {0, TickLength}}, {i, Ymin, Ymax, 5 * 10^1}];
Show[Plot[\{Y0f[t]\}, \{t, 0, trange\}, PlotRange \rightarrow \{Ymin - 15, Ymax + 15\},
  MaxRecursion → 15, PlotStyle → {Black, Thickness[Linewidth]},
  Frame → {{True, False}, {True, False}}, FrameTicks → {XTicks, YTicks},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
     {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
 Plot[{Y7f[t], Y6f[t], Y5f[t], Y4f[t], Y3f[t], Y2f[t], Y1f[t]},
  {t, 0, trange}, MaxRecursion → 15, PlotStyle → Thickness[Linewidth],
  Frame → {{True, False}, {True, False}}, FrameTicks → {XTicks, YTicks},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
     {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
(*Decay rates are different.*)
Y1peak = Evaluate[NMaximize[{Y1f[t], t < trange / 2, t > 0}, t][[1]]];
t1peak = Evaluate[t /. NMaximize[{Y1f[t], t < trange / 2, t > 0}, t] [[2]]];
Y2peak = Evaluate[NMaximize[{Y2f[t], t < trange / 2, t > 0}, t][[1]]];
t2peak = Evaluate[t /. NMaximize[{Y2f[t], t < trange / 2, t > 0}, t][2]];
Y3peak = Evaluate[NMaximize[{Y3f[t], t < trange / 2, t > 0}, t][[1]]];
t3peak = Evaluate[t /. NMaximize[{Y3f[t], t < trange / 2, t > 0}, t] [[2]]];
Y4peak = Evaluate[NMaximize[{Y4f[t], t < trange / 2, t > 0}, t][[1]]];
t4peak = Evaluate[t /. NMaximize[{Y4f[t], t < trange / 2, t > 0}, t] [[2]]];
Y5peak = Evaluate[NMaximize[{Y5f[t], t < trange / 2, t > 0}, t][[1]]];
t5peak = Evaluate[t /. NMaximize[{Y5f[t], t < trange / 2, t > 0}, t][2]];
Y6peak = Evaluate[NMaximize[{Y6f[t], t < trange / 2, t > 0}, t][[1]]];
t6peak = Evaluate[t /. NMaximize[{Y6f[t], t < trange / 2, t > 0}, t] [2]];
Y7peak = Evaluate[NMaximize[{Y7f[t], t < trange / 2, t > 0}, t][[1]]];
t7peak = Evaluate[t /. NMaximize[{Y7f[t], t < trange / 2, t > 0}, t][2]];
(*Stereocilium 7 response*)
(*Tick Marks*)
```

```
TickLength = 0.02;
Xmin = 0;
Xmax = trange;
Ymin = -50;
Ymax = 50;
XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 1 * 10^1}];
YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 1 * 10^1}];
stereocilium1symmplot =
 Show[Plot[\{Y7f[t]\}, \{t, 0, trange\}, PlotRange \rightarrow All, MaxRecursion \rightarrow 15,
   PlotStyle → Thickness[Linewidth], Frame → {{True, False}}, {True, False}},
   FrameTicks → {XTicks, YTicks}, FrameLabel → {"Time (ms)", "Displacement (nm)"},
   FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
       {Black, Thickness[Linewidth], FontSize → Fontsize}},
      {{Black, Thickness[Linewidth], FontSize → Fontsize},
       {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
(*Zoom for onset time*)
(*Tick Marks*)
TickLength = 0.02;
Xmin = 0;
Xmax = ts + 3;
Ymin = 0;
Ymax = 300;
XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1 * 10^0}];
YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 1 * 10^2}];
Show[Plot[\{Y0f[t]\}, \{t, ts-1, ts+2\},
  PlotRange → {Ymin - 10, Ymax}, MaxRecursion → 15,
  PlotStyle → {Black, Thickness[Linewidth]}, Frame → {{True, False}}, {True, False}},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
  FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
    {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
 Plot[{Y7f[t], Y6f[t], Y5f[t], Y4f[t], Y3f[t], Y2f[t], Y1f[t]},
  \{t, ts-1, ts+2\}, PlotRange \rightarrow All, MaxRecursion \rightarrow 15,
  PlotStyle → {Thickness[Linewidth]}, Frame → {{True, False}}, {True, False}},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
  FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
     {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
```

Out[344] = 0.670773


```
In[405]:= (*Tick Marks*)
     TickLength = 0.02;
     Xmin = ts - 0.1;
     Xmax = ts + 0.1;
     Ymin = 0;
     Ymax = 5 * 10^3;
     XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 5 * 10^-2}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 10^3}];
     Show[Plot[\{Y0f'[t]\}, \{t, ts-0.075, ts+0.075\}, PlotRange \rightarrow \{-100, 3.2*10^3\},
       MaxRecursion → 15, PlotStyle → {Black, Thickness[Linewidth]},
       Frame → {{True, False}}, {True, False}}, FrameTicks → {XTicks, YTicks},
       FrameLabel → {"Time (ms)", "Displacement (nm)"},
        FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
      Plot[{Y7f'[t], Y6f'[t], Y5f'[t], Y4f'[t], Y3f'[t], Y2f'[t], Y1f'[t]},
        \{t, ts - 0.075, ts + 0.075\}, PlotRange \rightarrow \{-100, 3.2 * 10^3\},
       MaxRecursion → 15, PlotStyle → Thickness[Linewidth],
        Frame → {{True, False}, {True, False}}, FrameTicks → {XTicks, YTicks},
       FrameLabel → {"Time (ms)", "Displacement (nm)"},
        FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
        3000 -
     Displacement (nm)
        2000
        1000
                   4.95
                                  5.
                                               5.05
                               Time (ms)
```

In[413]:= (************)

```
In[414]:= (*Plot maximum slope versus stereocilium position*)
      Y0slopemax = Evaluate[NMaximize[{Y0f'[t], t < ts + 0.1, t > ts - 0.1}, t][[1]];
      t0slopemax = Evaluate[t /. NMaximize[{Y0f'[t], t < ts + 0.1, t > ts - 0.1}, t][2]]
     Y1slopemax = Evaluate[NMaximize[{Y1f'[t], t < ts + 0.1, t > ts - 0.1}, t][1]];
      t1slopemax = Evaluate[t /. NMaximize[{Y1f'[t], t < ts + 0.1, t > ts - 0.1}, t][2]]
     Y2slopemax = Evaluate[NMaximize[{Y2f'[t], t < ts + 0.1, t > ts - 0.1}, t][[1]];
      t2slopemax = Evaluate[t /. NMaximize[{Y2f'[t], t < ts + 0.1, t > ts - 0.1}, t][2]]
     Y3slopemax = Evaluate[NMaximize[{Y3f'[t], t < ts + 0.1, t > ts - 0.1}, t][[1]];
      t3slopemax = Evaluate[t /. NMaximize[{Y3f'[t], t < ts + 0.1, t > ts - 0.1}, t][2]]
     Y4slopemax = Evaluate[NMaximize[{Y4f'[t], t < ts + 0.1, t > ts - 0.1}, t][1]];
      t4slopemax = Evaluate[t /. NMaximize[{Y4f'[t], t < ts + 0.1, t > ts - 0.1}, t][2]]
     Y5slopemax = Evaluate[NMaximize[{Y5f'[t], t < ts + 0.1, t > ts - 0.1}, t][[1]];
      t5slopemax = Evaluate[t /. NMaximize[{Y5f'[t], t < ts + 0.1, t > ts - 0.1}, t][2]]
     Y6slopemax = Evaluate[NMaximize[{Y6f'[t], t < ts + 0.1, t > ts - 0.1}, t][1]];
      t6slopemax = Evaluate[t /. NMaximize[{Y6f'[t], t < ts + 0.1, t > ts - 0.1}, t][2]]
     Y7slopemax = Evaluate[NMaximize[{Y7f'[t], t < ts + 0.1, t > ts - 0.1}, t][1]];
      t7slopemax = Evaluate[t /. NMaximize[{Y7f'[t], t < ts + 0.1, t > ts - 0.1}, t][2]]
      (*Tick Marks*)
     TickLength = 0.02;
      Xmin = 0;
     Xmax = 7;
     Ymin = 0;
     Ymax = 5 * 10^3;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, Ymax * 1 * 10^-1}];
      ListPlot[{{{7, Y7slopemax}}, {{6, Y6slopemax}}, {{4, Y4slopemax}},
        {{3, Y3slopemax}}, {{2, Y2slopemax}}, {{1, Y1slopemax}}, {{0, Y0slopemax}}},
       PlotRange → {{Xmin - 0.5, Xmax + 0.5}, {Ymin, All}},
       PlotStyle → Table[{ColorData[97, "ColorList"][n], PointSize[0.02]}, {n, 1, 10}],
       PlotStyle → {Black, Thickness[Linewidth]},
       Frame → {{True, False}, {True, False}}, FrameTicks → {XTicks, YTicks},
       FrameLabel → {"Stereocilium position", "Slope (nm/ms)"},
       FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
         {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]
Out[415]= 5.
Out[417] = 4.99979
Out[419]= 4.99958
Out[421]= 4.99935
Out[423] = 4.99913
```

Out[425] = 4.9989

Out[427] = 4.99871

Out[429]= **4.99859**


```
In[438]:= (*Zoom for time to fixed displacement*)
     Yth = 50;
     (*Tick Marks*)
     TickLength = 0.02;
     Xmin = ts - 0.1;
     Xmax = ts + 0.1;
     Ymin = 0;
     Ymax = 100;
     XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 5 * 10^-2}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 2.5 * 10^1}];
     Show[Plot[\{Y0f[t]\}, \{t, ts-0.075, ts+0.075\},
       PlotRange → {Ymin - 10, Ymax}, MaxRecursion → 15,
       PlotStyle → {Black, Thickness[Linewidth]}, Frame → {{True, False}}, {True, False}},
       FrameLabel → {"Time (ms)", "Displacement (nm)"},
       FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
       FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
      Plot[{Y7f[t], Y6f[t], Y5f[t], Y4f[t], Y3f[t], Y2f[t], Y1f[t]},
        \{t, ts-0.075, ts+0.075\}, PlotRange \rightarrow All, MaxRecursion \rightarrow 15,
       PlotStyle → {Thickness[Linewidth]}, Frame → {{True, False}}, {True, False}},
       FrameLabel → {"Time (ms)", "Displacement (nm)"},
       FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
       FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
      Plot[Yth, {t, ts - 0.075, ts + 0.075}, PlotStyle → {Black, Thickness[Linewidth]}]]
        100.
         75.
     Displacement (nm)
         50.
         25.
          0.
                   4.95
                                 5.
                                              5.05
                              Time (ms)
```

```
In[447]:= (*Time to absolute displacement lags for noncontacted stereocilia -
       see unnormalized onset zoom. Find time to fixed displacement.*)
      (*NaN if Yth is not achieved*)
      deltat = 10^-5;
      tmin = ts - 0.1;
      tmax = ts + 0.1;
      ttable = Table[t, {t, tmin, tmax, deltat}];
      t0max = If[Total[Table[If[Y0f[t] - Yth > 0, 1, 0], {t, tmin, tmax, deltat}]] > 0,
        ttable[[Flatten[Position[Table[Abs[Y0f[t] - Yth], {t, tmin, tmax, deltat}],
             Min[Table[Abs[Y0f[t] - Yth], {t, tmin, tmax, deltat}]]]]][[1], NaN];
      timax = If[Total[Table[If[Y1f[t] - Yth > 0, 1, 0], {t, tmin, tmax, deltat}]] > 0,
        ttable[[Flatten[Position[Table[Abs[Y1f[t] - Yth], {t, tmin, tmax, deltat}],
             Min[Table[Abs[Y1f[t] - Yth], {t, tmin, tmax, deltat}]]]]][[1], NaN];
      t2max = If[Total[Table[If[Y2f[t] - Yth > 0, 1, 0], {t, tmin, tmax, deltat}]] > 0,
         ttable[Flatten[Position[Table[Abs[Y2f[t] - Yth], {t, tmin, tmax, deltat}],
              Min[Table[Abs[Y2f[t] - Yth], {t, tmin, tmax, deltat}]]]][[1], NaN];
      t3max = If[Total[Table[If[Y3f[t] - Yth > 0, 1, 0], {t, tmin, tmax, deltat}]] > 0,
         ttable[Flatten[Position[Table[Abs[Y3f[t] - Yth], {t, tmin, tmax, deltat}],
              Min[Table[Abs[Y3f[t] - Yth], {t, tmin, tmax, deltat}]]]][[1], NaN];
      t4max = If[Total[Table[If[Y4f[t] - Yth > 0, 1, 0], {t, tmin, tmax, deltat}]] > 0,
         ttable[Flatten[Position[Table[Abs[Y4f[t] - Yth], {t, tmin, tmax, deltat}],
              Min[Table[Abs[Y4f[t] - Yth], {t, tmin, tmax, deltat}]]]]][[1], NaN];
      t5max = If[Total[Table[If[Y5f[t] - Yth > 0, 1, 0], {t, tmin, tmax, deltat}]] > 0,
         ttable[Flatten[Position[Table[Abs[Y5f[t] - Yth], {t, tmin, tmax, deltat}],
              Min[Table[Abs[Y5f[t] - Yth], {t, tmin, tmax, deltat}]]]][[1], NaN];
      t6max = If[Total[Table[If[Y6f[t] - Yth > 0, 1, 0], {t, tmin, tmax, deltat}]] > 0,
         ttable[[Flatten[Position[Table[Abs[Y6f[t] - Yth], {t, tmin, tmax, deltat}],
              Min[Table[Abs[Y6f[t] - Yth], {t, tmin, tmax, deltat}]]]][[1], NaN];
      t7max = If[Total[Table[If[Y7f[t] - Yth > 0, 1, 0], {t, tmin, tmax, deltat}]] > 0,
         ttable[Flatten[Position[Table[Abs[Y7f[t] - Yth], {t, tmin, tmax, deltat}],
              Min[Table[Abs[Y7f[t] - Yth], {t, tmin, tmax, deltat}]]]]][[1], NaN];
      {t0max, t1max, t2max, t3max, t4max, t5max, t6max, t7max}
Out[458] = \{4.97227, 4.98109, 4.99101, 5.00303, 5.02013, NaN, NaN, NaN\}
In[459]:= (*Delay relative to stimulated
       stereocilium increases with stereocilium position*)
      \{\{\{1, t1max - t0max\}\}, \{\{2, t2max - t0max\}\}, \{\{3, t3max - t0max\}\}, \}
       \{4, t4max - t0max\}\}, \{\{5, t5max - t0max\}\}, \{\{6, t6max - t0max\}\}, \{\{7, t7max - t0max\}\}\}
Out[459]= \{\{\{1, 0.00882\}\}, \{\{2, 0.01874\}\}, \{\{3, 0.03076\}\},
       {{4, 0.04786}}, {{5, NaN}}, {{6, NaN}}, {{7, NaN}}}
```

```
In[460]:= (*Responses lag stimulus*)
                    (*Tick Marks*)
                   TickLength = 0.02;
                   Xmin = 0;
                   Xmax = 4;
                   Ymin = 0;
                   Ymax = 0.05;
                   XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
                   YTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Ymin, Ymax, 1 * 10^-2}];
                   ListPlot[{{{0, t0max - t0max}}, {{1, t1max - t0max}},
                            {2, t2max - t0max}, {{3, t3max - t0max}}, {{4, t4max - t0max}}},
                       PlotRange \rightarrow \{\{Xmin - 0.5, Xmax + 0.5\}, \{Ymin - 0.005, Ymax\}\},\
                       PlotStyle \rightarrow Table[\{ColorData[97, "ColorList"][n], PointSize[0.02]\}, \{n, 8, 1, -1\}], And Table[\{ColorData[97, "ColorList"][n], PointSize[0.02]]\}, And Table[[ColorData[97, "ColorList"][n], PointSize[0.02]]\}, And Table[[ColorData[97, "ColorList"][n], PointSize[0.02]]\}, And Table[[ColorData[97, "ColorList"][n], PointSize[0.02]]], And Table[[ColorData[97, "ColorData[97, "ColorList"][n]]], And Table[[ColorData[97, "ColorList"][n]]], And Table[[ColorData[97, "Co
                       Frame → {{True, False}, {True, False}},
                       FrameLabel → {"Stereocilium position", "Time to 50 nm (ms)"},
                       FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
                       FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
                                   {Black, Thickness[Linewidth], FontSize → Fontsize}},
                               {{Black, Thickness[Linewidth], FontSize → Fontsize},
                                   {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]
                            0.050
                            0.040
Out[467]= Out (ms)
                            0.030
                            0.020
                           0.010
                                      0
                                                                                                            2
                                                                                                                                       3
                                                        Ö
                                                                                      Stereocilium position
```

In[468]:= (*There are ntotv-1 time constants. Roots are time constants.*)

```
In[469]:= Plot[g[ntotv-1, -tau * KAv + gammaAv, -tau * KLv + gammaLv],
       \{tau, 0.48, 1\}, PlotRange \rightarrow \{-10^{-17}, 10^{-17}\}\]
       1. \times 10^{-17}
       5. \times 10^{-18}
Out[469]=
             0.5
                      0.6
                               0.7
                                       0.8
                                                0.9
                                                         1.0
      -5. \times 10^{-18}
      -1. × 10<sup>-17</sup>
In[470]:= (*Find effective time constants from fitting. 1 time
       constant is sufficient. 2 time constants doesn't work.*)
In[471]:= taufit = Table[NaN, {n, 1, ntotv - 1}];
In[472]:= (*Time after peak to fit*)
      tfitend = 5;
In[473]:= Yfittable = Table[{t, Y7f[t+t7peak] - Y[7, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}];
      fit = NonlinearModelFit[Yfittable, {A * Exp[-t/tau]}, {tau, A}, t];
      Print[fit["ParameterTable"]];
      Print[
        Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
      taufit[[7]] =
        Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]];
      Show[ListPlot[Yfittable, PlotStyle → Red,
        AxesLabel → {"Time (ms)", "Relatation (nm)"},
        AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[
          {t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]},
          {t, 0, tfitend, 0.1}], PlotStyle → Blue, Joined → True, PlotRange → All]]
      fit2 = NonlinearModelFit[Yfittable,
          {A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t];
      Print[fit2["ParameterTable"]];
      Print[
        Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
```

	Estimate	Standard Error t-Statistic P-Value			
tau	0.352212	0.00448972	78.4486	3.52386	×10 ⁻⁵³
Α	23.4182	0.18434	127.038	2.18774	$\times 10^{-63}$

AdjustedRSquared 0.997987

AIC -3.98866 BIC 1.80681 RSquared 0.998066

Relatation (nm)

	Estimate S	Standard Error t	-Statistic F	P-Value
A1	12.6489	69.9233	0.180896	0.857227
tau1	0.352212 3	3.06055 ×10 ⁸	1.15081 ×10 ⁻	⁹ 1
A2	10.7693	70.0085	0.153829	0.878403
tau2	0.352212 3	3.5947 ×10 ⁸	9.79811 ×10	⁻¹⁰ 1

AdjustedRSquared 0.997901

AIC 0.136645 BIC 9.79577 RSquared 0.998066

```
In[482]:=
      Yfittable = Table[{t, Y6f[t+t6peak] - Y[6, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}];
      fit = NonlinearModelFit[Yfittable, {A * Exp[-t/tau]}, {tau, A}, t];
      Print[fit["ParameterTable"]];
      Print[
        Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
      taufit[6] =
        Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]];
      Show[ListPlot[Yfittable, PlotStyle → Red,
        AxesLabel → {"Time (ms)", "Relatation (nm)"},
        AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[
          {t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]},
          \{t, 0, tfitend, 0.1\}], PlotStyle \rightarrow Blue, Joined \rightarrow True, PlotRange \rightarrow All]]
      fit2 = NonlinearModelFit[Yfittable,
          {A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t];
      Print[fit2["ParameterTable"]];
      Print[
        Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
         Estimate Standard Error t-Statistic P-Value
                           95.4611 2.4946 ×10<sup>-57</sup>
      tau 0.370121 0.00387719
      A 24.6955 0.160756
                           153.621 2.02638 \times 10^{-67}
      AdjustedRSquared 0.998636
      AIC
                       -16.5697
      BIC
                        -10.7742
      RSquared
                        0.99869
      Relatation (nm)
         25
         20
          15
Out[487]=
          10
          5
                                                   Time (ms)
```

2

```
Estimate Standard Error t-Statistic
                                     P-Value
         4.85625 \ 0.0908163 \ 53.4734 \ 9.38463 \ \times 10^{-44}
     A1
     tau1 0.370121 \ 1.45459 \ \times 10^6 \ 2.5445 \ \times 10^{-7} \ 1.
                                    1.70284 ×10<sup>-72</sup>
     A2 19.8393 0.0900762 220.25
     AdjustedRSquared 0.998578
                      -12.4444
     BIC
                       -2.78528
     RSquared
                      0.99869
In[491]:=
     Yfittable = Table[{t, Y5f[t+t5peak] - Y[5, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}];
     fit = NonlinearModelFit[Yfittable, {A * Exp[-t/tau]}, {tau, A}, t];
     Print[fit["ParameterTable"]];
     Print[
        Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
         Alignment → Left]];
     taufit[5] =
        Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]];
     Show[ListPlot[Yfittable, PlotStyle → Red,
        AxesLabel → {"Time (ms)", "Relatation (nm)"},
        AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[
         {t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]},
         {t, 0, tfitend, 0.1}], PlotStyle → Blue, Joined → True, PlotRange → All]]
     fit2 = NonlinearModelFit[Yfittable,
         {A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t];
     Print[fit2["ParameterTable"]];
     Print[
        Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
         Alignment → Left]];
         Estimate Standard Error t-Statistic P-Value
     tau 0.403118 \ 0.00299673 \ 134.519 \ 1.33596 \ \times 10^{-64}
                           214.288 1.71568 ×10<sup>-74</sup>
     A 27.038 0.126176
     AdjustedRSquared 0.99931
     AIC
                      -38.7926
     BIC
                       -32.9971
     RSquared
                      0.999337
```

Relatation (nm) 25 20 15 Out[496]= 10 5 Time (ms) 4 Estimate Standard Error t-Statistic P-Value 257.781 1.05203×10^{-75} Α1 18.4304 0.0714963 tau1 0.403118 516168. $7.80983 \times 10^{-7} 0.999999$ 3.25927×10^{-60} 8.60764 0.0714114 120.536 3.64747×10^{-7} 1. tau2 0.403118 1.1052 ×10⁶ AdjustedRSquared 0.999281 AIC -34.6673BIC -25.0081RSquared 0.999337 In[500]:= Yfittable = Table[{t, Y4f[t+t4peak] - Y[4, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}]; fit = NonlinearModelFit[Yfittable, {A * Exp[-t/tau]}, {tau, A}, t]; Print[fit["ParameterTable"]]; Print[Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]], Alignment → Left]]; taufit[4] = Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]]; Show[ListPlot[Yfittable, PlotStyle → Red, AxesLabel → {"Time (ms)", "Relatation (nm)"}, AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[{t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]}, {t, 0, tfitend, 0.1}], PlotStyle → Blue, Joined → True, PlotRange → All]] fit2 = NonlinearModelFit[Yfittable, ${A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t];$ Print[fit2["ParameterTable"]]; Print[Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]], Alignment → Left]];

Out[505]=

AdjustedRSquared 0.999672

AIC -62.4509 BIC -56.6555 RSquared 0.999685

Relatation (nm)

	Estimate	Standard Error	t-Statistic	P-Value	
A1	11.3514	0.0553191	205.199	4.72603	×10 ⁻⁷¹
tau1	0.446751	438 406.	1.01903	$\times 10^{-6}$ 0.999999)
A2	18.5452	0.0553904	334.809	4.87766	$\times 10^{-81}$
tau2	0.446751	268 346.	1.66483	$\times 10^{-6}$ 0.999999)

AdjustedRSquared 0.999659

AIC -58.3256 BIC -48.6665RSquared 0.999685

```
In[509]:=
      Yfittable = Table[{t, Y3f[t+t3peak] - Y[3, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}];
      fit = NonlinearModelFit[Yfittable, {A * Exp[-t/tau]}, {tau, A}, t];
      Print[fit["ParameterTable"]];
      Print[
        Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
      taufit[3] =
        Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]];
      Show[ListPlot[Yfittable, PlotStyle → Red,
        AxesLabel → {"Time (ms)", "Relatation (nm)"},
        AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[
          {t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]},
          \{t, 0, tfitend, 0.1\}], PlotStyle \rightarrow Blue, Joined \rightarrow True, PlotRange \rightarrow All]]
      fit2 = NonlinearModelFit[Yfittable,
          {A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t];
      Print[fit2["ParameterTable"]];
      Print[
        Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
         Estimate Standard Error t-Statistic P-Value
                            251.478 6.78973 \times 10^{-78}
      tau 0.496798 0.00197551
      A 32.0922 0.0818683
                            391.998 \quad 2.45592 \quad \times 10^{-87}
      AdjustedRSquared 0.999801
      AIC
                        -76.324
      BIC
                        -70.5285
      RSquared
                        0.999809
      Relatation (nm)
         30
         25
         20
Out[514]=
          15
          10
```

Time (ms)

5

```
Estimate Standard Error t-Statistic
          20.0693 0.0466271 430.42 3.65081 ×10<sup>-86</sup>
     A1
     tau1 0.496798 453685. 1.09503 \times 10^{-6} 0.999999
         12.0229 0.0475144 253.038 2.51679 ×10<sup>-75</sup>
     A2
     tau2 0.496798757313. 6.56001 \times 10^{-7} 0.999999
     AdjustedRSquared 0.999793
                       -72.1987
     BIC
                       -62.5396
     RSquared
                       0.999809
In[518]:=
     Yfittable = Table[{t, Y2f[t+t2peak] - Y[2, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}];
     fit = NonlinearModelFit[Yfittable, {A * Exp[-t/tau]}, {tau, A}, t];
     Print[fit["ParameterTable"]];
     Print[
        Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
         Alignment → Left]];
     taufit[2] =
        Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]];
     Show[ListPlot[Yfittable, PlotStyle → Red,
        AxesLabel → {"Time (ms)", "Relatation (nm)"},
        AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[
         {t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]},
         {t, 0, tfitend, 0.1}], PlotStyle → Blue, Joined → True, PlotRange → All]]
     fit2 = NonlinearModelFit[Yfittable,
         {A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t];
     Print[fit2["ParameterTable"]];
     Print[
        Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
         Alignment → Left]];
         Estimate Standard Error t-Statistic P-Value
     tau 0.550522 \ 0.00196992 \ 279.464 \ 3.87159 \ \times 10^{-80}
                          431.627 2.19466 \times 10^{-89}
     A 31.2761 0.0724609
     AdjustedRSquared 0.999839
                       -85.2881
     AIC
     BIC
                       -79.4926
     RSquared
                       0.999845
```

Relatation (nm) 30 25 20 Out[523]= 15 10 5 Time (ms) Estimate Standard Error t-Statistic P-Value A1 31.1103 0.414422 75.0691 1.34328 $\times 10^{-50}$ tau1 $0.544227 0.00718787 75.7146 9.01176 <math>\times 10^{-51}$ 0.213512 0.43598 0.489729 0.626604 A2 tau2 1.98604 2.5007 0.794194 0.431074 AdjustedRSquared 0.999847 AIC -86.1794BIC -76.5202RSquared 0.999859 In[527]:= Yfittable = Table[{t, Y1f[t+t1peak] - Y[1, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}]; fit = NonlinearModelFit[Yfittable, {A * Exp[-t / tau]}, {tau, A}, t]; Print[fit["ParameterTable"]]; Print[Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]], Alignment → Left]]; taufit[1] = Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]]; Show[ListPlot[Yfittable, PlotStyle → Red, AxesLabel → {"Time (ms)", "Relatation (nm)"}, AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[{t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]}, {t, 0, tfitend, 0.1}], PlotStyle → Blue, Joined → True, PlotRange → All]] fit2 = NonlinearModelFit[Yfittable, {A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t]; Print[fit2["ParameterTable"]]; Print[Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]], Alignment → Left]];

	Estimate Standard Error t-Statistic P-Value				
tau	0.60678	0.00203442	298.257	1.59874	×10 ⁻⁸¹
Α	23.0333	0.0504004	457.006	1.33596	$\times 10^{-90}$

AdjustedRSquared 0.999858

AIC -118.878 BIC -113.082RSquared 0.999864

Relatation (nm)

Estimate Standard Error t-Statistic P-Value 0.621374 0.537356 A1 0.424729 0.683532 tau1 1.53201 1.08244 1.41533 0.163564 8.65444×10^{-35} 22.6673 0.665236 34.074 A2 1.3147×10^{-43} tau2 0.593344 0.0111772 53.085

AdjustedRSquared 0.999882 AIC -126.225BIC -116.566RSquared 0.999891

```
In[536]:= (*Stereocilium farthest from probe relaxes with the smallest time constant!*)
      (*Chose gammaL/KL to match experimental time constants*)
      (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 1;
     Xmax = 7;
     Ymin = 0;
     Ymax = 1;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
     YTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Ymin, Ymax, 1 * 10 ^ -1}];
     ListPlot[Reverse[Table[{{n, taufit[n]}}}, {n, 1, ntotv - 1}]],
       PlotRange \rightarrow {{Xmin - 0.5, Xmax + 0.5}, {0.3, 0.7}}, PlotStyle \rightarrow
        Table[{ColorData[97, "ColorList"][m], PointSize[0.02]}, {m, 1, ntotv - 1}],
       IntervalMarkersStyle → Table[{ColorData[97, "ColorList"][m], PointSize[0.02]},
         {m, 1, ntotv - 1}], Frame → {{True, False}}, {True, False}},
       FrameLabel → {"Stereocilium position", "Fast time constant (ms)"},
       FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
       FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
          {Black, Thickness[Linewidth], FontSize → Fontsize}},
         {{Black, Thickness[Linewidth], FontSize → Fontsize},
          {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]
        0.70 -
     -ast time constant (ms)
        0.60
        0.50
Out[543]=
        0.40
        0.30
                          Stereocilium position
```

```
In[545]:= (*Speed up stimulus to approximate ideal step*)
      ntotv = ssnstereoList[wingindexnum2]
      Y0v = 250 (*nm*);
      slopefac = 10^9;
      ts = 5;
      te = 55;
      trange = 60;
      Y0slowf[t_] :=
        Y0v * Evaluate[(1 + Exp[- (t - ts) * slopefac]) ^-1 - (1 + Exp[- (t - te) * slopefac]) ^-1];
\mathsf{Out}[\mathsf{545}] = 8
```

```
In[552]:= (*Stimulus and responses*)
     (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 0;
     Xmax = trange;
     Ymin = -50;
     Ymax = 250;
     XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 1 * 10^1}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 5 * 10^1}];
     FastPlot =
      Show[Plot[\{Y0f[t]\}, \{t, 0, trange\}, PlotRange → \{-50, Ymax + 15\}, MaxRecursion → 15,
         PlotStyle → {Black, Thickness[Linewidth]}, Frame → {{True, False}}, {True, False}},
         FrameTicks → {XTicks, YTicks}, FrameLabel → {"Time (ms)", "Displacement (nm)"},
         FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
            {Black, Thickness[Linewidth], FontSize → Fontsize}},
           {{Black, Thickness[Linewidth], FontSize → Fontsize},
            {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
        Plot[{Y7f[t], Y6f[t], Y5f[t], Y4f[t], Y3f[t], Y2f[t], Y1f[t]},
         {t, 0, trange}, MaxRecursion → 15, PlotStyle → Thickness[Linewidth],
         Frame → {{True, False}, {True, False}}, FrameTicks → {XTicks, YTicks},
         FrameLabel → {"Time (ms)", "Displacement (nm)"},
         FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
            {Black, Thickness[Linewidth], FontSize → Fontsize}},
           {{Black, Thickness[Linewidth], FontSize → Fontsize},
            {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
        250 -
        200
     Displacement (nm)
         150
        100
Out[559]=
         50
          0
         -50
                   10.
                          <u>.</u>
                                эò.
                                       40.
                                              .
50.
                                                    60.
                              Time (ms)
```

```
In[561]:= (*Slow stimulus to remove reverse*)
             ntotv = ssnstereoList[wingindexnum2]
             Y0v = 250 (*nm*);
             slopefac = 1;
             ts = 5;
             te = 55;
             trange = 60;
             Y0slowf[t_] :=
                  Y0v * Evaluate[(1 + Exp[- (t - ts) * slopefac]) ^ - 1 - (1 + Exp[- (t - te) * slopefac]) ^ - 1];
\mathsf{Out}[\mathsf{561}] = 8
IN[568]:= (*Doesn't work unless we use the equation simplification method*)
             (*8 cilia, Y0 clamped, all cilia have rootlets. For 10 kHz low-
                  pass filtered experimental stimulus use s =
                10*4 = 40 such that the maximum slope is 5 kHz.*)
             KLv = 5; (*mN/m*)
             KAv = ssAoLList[wingindexnum2, 1, 2] * KLv;
             gammaLv = 0.8 * KLv; (*uN.s/m*)
             gammaLv / KLv(*ms*)
             gammaAv = onsetAoLList[wingindexnum2, 1, 2] * gammaLv;
             KAoLv = KAv / KLv;
             gammaAoLv = gammaAv/gammaLv;
              (*Geometric mean time constant*)
             taugmv = (gammaLv / KLv) *
                   (g[ntotv - 1, gammaAoLv, 1] / g[ntotv - 1, KAv / KLv, 1]) ^ (1 / (ntotv - 1))
             KA1v = KAv; gammaA1v = gammaAv;
             KA2v = KAv; gammaA2v = gammaAv;
             KA3v = KAv; gammaA3v = gammaAv;
             KA4v = KAv; gammaA4v = gammaAv;
             KA5v = KAv; gammaA5v = gammaAv;
             KA6v = KAv; gammaA6v = gammaAv;
             KA7v = KAv; gammaA7v = gammaAv;
             K1v = KLv; gamma1v = gammaLv;
             K2v = KLv; gamma2v = gammaLv;
             K3v = KLv; gamma3v = gammaLv;
             K4v = KLv; gamma4v = gammaLv;
             K5v = KLv; gamma5v = gammaLv;
             K6v = KLv; gamma6v = gammaLv;
             K7v = KLv; gamma7v = gammaLv;
             Ysln =
                NDSolve[\{KA1v * Y1[t] + gammaA1v * Y1'[t] + K1v * (Y1[t] - Y0f[t]) - K2v * (Y2[t] - Y1[t]) + K1v * (Y1[t] - Y1[t]) + K1v * (
                           gamma1v * (Y1'[t] - Y0f'[t]) - gamma2v * (Y2'[t] - Y1'[t]) == 0, Y1[0] == 0,
                     KA2v * Y2[t] + gammaA2v * Y2'[t] + K2v * (Y2[t] - Y1[t]) - K3v * (Y3[t] - Y2[t]) +
```

```
gamma2v * (Y2'[t] - Y1'[t]) - gamma3v * (Y3'[t] - Y2'[t]) == 0, Y2[0] == 0,
   KA3v * Y3[t] + gammaA3v * Y3'[t] + K3v * (Y3[t] - Y2[t]) - K4v * (Y4[t] - Y3[t]) +
      gamma3v * (Y3'[t] - Y2'[t]) - gamma4v * (Y4'[t] - Y3'[t]) == 0, Y3[0] == 0,
   KA4v * Y4[t] + gammaA4v * Y4'[t] + K4v * (Y4[t] - Y3[t]) - K5v * (Y5[t] - Y4[t]) +
      gamma4v * (Y4'[t] - Y3'[t]) - gamma5v * (Y5'[t] - Y4'[t]) == 0, Y4[0] == 0,
   KA5v * Y5[t] + gammaA5v * Y5'[t] + K5v * (Y5[t] - Y4[t]) - K6v * (Y6[t] - Y5[t]) +
      gamma5v * (Y5'[t] - Y4'[t]) - gamma6v * (Y6'[t] - Y5'[t]) == 0, Y5[0] == 0,
   KA6v * Y6[t] + gammaA6v * Y6'[t] + K6v * (Y6[t] - Y5[t]) - K7v * (Y7[t] - Y6[t]) +
      gamma6v * (Y6'[t] - Y5'[t]) - gamma7v * (Y7'[t] - Y6'[t]) == 0, Y6[0] == 0,
   KA7v * Y7[t] + gammaA7v * Y7'[t] + K7v * (Y7[t] - Y6[t]) + gamma7v * (Y7'[t] - Y6'[t]) ==
     0, Y7[0] = 0, \{Y1, Y2, Y3, Y4, Y5, Y6, Y7\},
  {t, 0, trange}, Method → {"EquationSimplification" → "Residual"}]
Y1slowf[t_] := Evaluate[Y1[t] /. Ysln[1]]
Y2slowf[t_] := Evaluate[Y2[t] /. Ysln[1]]
Y3slowf[t_] := Evaluate[Y3[t] /. Ysln[1]]
Y4slowf[t ] := Evaluate[Y4[t] /. Ysln[1]]
Y5slowf[t_] := Evaluate[Y5[t] /. Ysln[1]]]
Y6slowf[t_] := Evaluate[Y6[t] /. Ysln[1]]]
Y7slowf[t_] := Evaluate[Y7[t] /. Ysln[1]]]
(*Stimulus and responses*)
(*Tick Marks*)
TickLength = 0.02;
Xmin = 0;
Xmax = trange;
Ymin = -50;
Ymax = 250;
XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 1 * 10^1}];
YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 5 * 10^1}];
SlowPlot = Show[
  Plot[\{Y0slowf[t]\}, \{t, 0, trange\}, PlotRange \rightarrow \{-50, Ymax + 15\}, MaxRecursion \rightarrow 15,
   PlotStyle → {Black, Thickness[Linewidth]}, Frame → {{True, False}}, {True, False}},
   FrameTicks → {XTicks, YTicks}, FrameLabel → {"Time (ms)", "Displacement (nm)"},
   FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
       {Black, Thickness[Linewidth], FontSize → Fontsize}},
      {{Black, Thickness[Linewidth], FontSize → Fontsize},
       {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
  Plot[{Y7slowf[t], Y6slowf[t], Y5slowf[t], Y4slowf[t],
    Y3slowf[t], Y2slowf[t], Y1slowf[t]}, {t, 0, trange}, MaxRecursion → 15,
   PlotStyle → Thickness[Linewidth], Frame → {{True, False}}, {True, False}},
   FrameTicks → {XTicks, YTicks}, FrameLabel → {"Time (ms)", "Displacement (nm)"},
   FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
       {Black, Thickness[Linewidth], FontSize → Fontsize}},
      {{Black, Thickness[Linewidth], FontSize → Fontsize},
       {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
```


In[607]:= (*Slow offset speed in comparison to onset speed*)

```
In[608]:= (*Match slope of stimulus to experimental data*)
             ntotv = ssnstereoList[wingindexnum2]
             Y0v = 250 (*nm*);
             slopefaconset = 50;
             slopefacoffset = 10;
             ts = 5;
             te = 55;
             trange = 60;
             Y0f[t_] := Y0v * Evaluate[
                        (1 + Exp[- (t - ts) * slopefaconset]) ^-1 - (1 + Exp[- (t - te) * slopefacoffset]) ^-1];
Out[608]= 8
 In[616]:= (*Doesn't work unless we use the equation simplification method*)
              (*8 cilia, Y0 clamped, all cilia have rootlets. For 10 kHz low-
                  pass filtered experimental stimulus use s =
                10*4 = 40 such that the maximum slope is 5 kHz.*)
             KLv = 5; (*mN/m*)
             KAv = ssAoLList[wingindexnum2, 1, 2] * KLv;
             gammaLv = 0.8 * KLv; (*uN.s/m*)
             gammaLv / KLv(*ms*)
             gammaAv = onsetAoLList[wingindexnum2, 1, 2] * gammaLv;
             KAoLv = KAv / KLv;
              gammaAoLv = gammaAv/gammaLv;
             (*Geometric mean time constant*)
             taugmv = (gammaLv / KLv) *
                   (g[ntotv - 1, gammaAoLv, 1] / g[ntotv - 1, KAv / KLv, 1]) ^ (1 / (ntotv - 1))
             KA1v = KAv; gammaA1v = gammaAv;
             KA2v = KAv; gammaA2v = gammaAv;
             KA3v = KAv; gammaA3v = gammaAv;
             KA4v = KAv; gammaA4v = gammaAv;
             KA5v = KAv; gammaA5v = gammaAv;
             KA6v = KAv; gammaA6v = gammaAv;
             KA7v = KAv; gammaA7v = gammaAv;
             K1v = KLv; gamma1v = gammaLv;
             K2v = KLv; gamma2v = gammaLv;
             K3v = KLv; gamma3v = gammaLv;
             K4v = KLv; gamma4v = gammaLv;
             K5v = KLv; gamma5v = gammaLv;
             K6v = KLv; gamma6v = gammaLv;
             K7v = KLv; gamma7v = gammaLv;
             Ysln =
                NDSolve[\{KA1v * Y1[t] + gammaA1v * Y1'[t] + K1v * (Y1[t] - Y0f[t]) - K2v * (Y2[t] - Y1[t]) + K1v * (Y1[t] - Y1[t]) + K1v * (
                           gamma1v * (Y1'[t] - Y0f'[t]) - gamma2v * (Y2'[t] - Y1'[t]) == 0, Y1[0] == 0,
```

```
KA2v * Y2[t] + gammaA2v * Y2'[t] + K2v * (Y2[t] - Y1[t]) - K3v * (Y3[t] - Y2[t]) +
      gamma2v * (Y2'[t] - Y1'[t]) - gamma3v * (Y3'[t] - Y2'[t]) == 0, Y2[0] == 0,
   KA3v * Y3[t] + gammaA3v * Y3'[t] + K3v * (Y3[t] - Y2[t]) - K4v * (Y4[t] - Y3[t]) +
      gamma3v * (Y3'[t] - Y2'[t]) - gamma4v * (Y4'[t] - Y3'[t]) == 0, Y3[0] == 0,
   KA4v * Y4[t] + gammaA4v * Y4'[t] + K4v * (Y4[t] - Y3[t]) - K5v * (Y5[t] - Y4[t]) +
      gamma4v * (Y4'[t] - Y3'[t]) - gamma5v * (Y5'[t] - Y4'[t]) == 0, Y4[0] == 0,
   KA5v * Y5[t] + gammaA5v * Y5'[t] + K5v * (Y5[t] - Y4[t]) - K6v * (Y6[t] - Y5[t]) +
      gamma5v * (Y5'[t] - Y4'[t]) - gamma6v * (Y6'[t] - Y5'[t]) == 0, Y5[0] == 0,
   KA6v * Y6[t] + gammaA6v * Y6'[t] + K6v * (Y6[t] - Y5[t]) - K7v * (Y7[t] - Y6[t]) +
      gamma6v * (Y6'[t] - Y5'[t]) - gamma7v * (Y7'[t] - Y6'[t]) == 0, Y6[0] == 0,
   KA7v * Y7[t] + gammaA7v * Y7'[t] + K7v * (Y7[t] - Y6[t]) + gamma7v * (Y7'[t] - Y6'[t]) ==
    0, Y7[0] = 0, \{Y1, Y2, Y3, Y4, Y5, Y6, Y7\},
  {t, 0, trange}, Method → {"EquationSimplification" → "Residual"}]
Y1f[t_] := Evaluate[Y1[t] /. Ysln[1]]
Y2f[t_] := Evaluate[Y2[t] /. Ysln[1]]
Y3f[t]:= Evaluate[Y3[t] /. Ysln[1]]
Y4f[t_] := Evaluate[Y4[t] /. Ysln[1]]
Y5f[t_] := Evaluate[Y5[t] /. Ysln[1]]
Y6f[t_] := Evaluate[Y6[t] /. Ysln[[1]]]
Y7f[t_] := Evaluate[Y7[t] /. Ysln[1]]
(*Stimulus and responses*)
(*Tick Marks*)
TickLength = 0.02;
Xmin = 0;
Xmax = trange;
Ymin = 0;
Ymax = 250;
XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 1 * 10^1}];
YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 5 * 10^1}];
Show[Plot[\{Y0f[t]\}, \{t, 0, trange\}, PlotRange \rightarrow \{Ymin - 15, Ymax + 15\},
  MaxRecursion → 15, PlotStyle → {Black, Thickness[Linewidth]},
  Frame → {{True, False}, {True, False}}, FrameTicks → {XTicks, YTicks},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
     {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
 Plot[{Y7f[t], Y6f[t], Y5f[t], Y4f[t], Y3f[t], Y2f[t], Y1f[t]},
  {t, 0, trange}, MaxRecursion → 15, PlotStyle → Thickness[Linewidth],
  Frame → {{True, False}}, {True, False}}, FrameTicks → {XTicks, YTicks},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
     {{Black, Thickness[Linewidth], FontSize → Fontsize},
```

```
{Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
      (*Decay rates are different.*)
     Y1peak = Evaluate[NMaximize[{Y1f[t], t < trange / 2, t > 0}, t][[1]]];
      t1peak = Evaluate[t /. NMaximize[{Y1f[t], t < trange / 2, t > 0}, t][2]];
     Y2peak = Evaluate[NMaximize[{Y2f[t], t < trange / 2, t > 0}, t][[1]];
      t2peak = Evaluate[t /. NMaximize[{Y2f[t], t < trange / 2, t > 0}, t] [[2]]];
     Y3peak = Evaluate[NMaximize[{Y3f[t], t < trange / 2, t > 0}, t][[1]];
      t3peak = Evaluate[t /. NMaximize[{Y3f[t], t < trange / 2, t > 0}, t] [[2]]];
     Y4peak = Evaluate[NMaximize[{Y4f[t], t < trange / 2, t > 0}, t][[1]]];
      t4peak = Evaluate[t /. NMaximize[{Y4f[t], t < trange / 2, t > 0}, t] [[2]]];
      Y5peak = Evaluate[NMaximize[{Y5f[t], t < trange / 2, t > 0}, t][1]];
      t5peak = Evaluate[t /. NMaximize[{Y5f[t], t < trange / 2, t > 0}, t] [[2]]];
     Y6peak = Evaluate[NMaximize[{Y6f[t], t < trange / 2, t > 0}, t][1]];
      t6peak = Evaluate[t /. NMaximize[{Y6f[t], t < trange / 2, t > 0}, t][2]];
     Y7peak = Evaluate[NMaximize[{Y7f[t], t < trange / 2, t > 0}, t][1]];
      t7peak = Evaluate[t /. NMaximize[{Y7f[t], t < trange / 2, t > 0}, t][2]];
      (*Stereocilium 7 response*)
      (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 0;
     Xmax = trange;
     Ymin = -50;
      Ymax = 50;
     XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 1 * 10^1}];
     YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 1 * 10^1}];
      stereocilium1asymmplot =
       Show[Plot[\{Y7f[t]\}, \{t, 0, trange\}, PlotRange \rightarrow All, MaxRecursion \rightarrow 15,
         PlotStyle → {Thickness[Linewidth], Red}, Frame → {{True, False}, {True, False}},
         FrameTicks → {XTicks, YTicks}, FrameLabel → {"Time (ms)", "Displacement (nm)"},
         FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
             {Black, Thickness[Linewidth], FontSize → Fontsize}},
            {{Black, Thickness[Linewidth], FontSize → Fontsize},
             {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
      Show[stereocilium1symmplot, stereocilium1asymmplot]
Out[619]= 0.8
```

Out[623]= 0.670773


```
ln[686] = harmsln = Solve[{KA1v * Y1 + gammaA1v * I * w * Y1 + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y2 - Y1) + K1v * (Y1 - Y0) - K2v * (Y1 - Y0) + K1v * (Y1 - Y0) + K
                             gamma1v * (I * w * Y1 - I * w * Y0) - gamma2v * (I * w * Y2 - I * w * Y1) == 0,
                        KA2v * Y2 + gammaA2v * I * w * Y2 + K2v * (Y2 - Y1) - K3v * (Y3 - Y2) +
                             gamma2v * (I * w * Y2 - I * w * Y1) - gamma3v * (I * w * Y3 - I * w * Y2) == 0,
                        KA3v * Y3 + gammaA3v * I * w * Y3 + K3v * (Y3 - Y2) - K4v * (Y4 - Y3) +
                             gamma3v * (I * w * Y3 - I * w * Y2) - gamma4v * (I * w * Y4 - I * w * Y3) == 0,
                        KA4v * Y4 + gammaA4v * I * w * Y4 + K4v * (Y4 - Y3) - K5v * (Y5 - Y4) +
                             gamma4v * (I * w * Y4 - I * w * Y3) - gamma5v * (I * w * Y5 - I * w * Y4) == 0,
                        KA5v * Y5 + gammaA5v * I * w * Y5 + K5v * (Y5 - Y4) - K6v * (Y6 - Y5) +
                             gamma5v * (I * w * Y5 - I * w * Y4) - gamma6v * (I * w * Y6 - I * w * Y5) == 0,
                        KA6v * Y6 + gammaA6v * I * w * Y6 + K6v * (Y6 - Y5) - K7v * (Y7 - Y6) +
                             gamma6v * (I * w * Y6 - I * w * Y5) - gamma7v * (I * w * Y7 - I * w * Y6) == 0,
                        KA7v * Y7 + gammaA6v * I * w * Y7 + K7v * (Y7 - Y6) + gamma7v * (I * w * Y7 - I * w * Y6) == 0
                      {Y1, Y2, Y3, Y4, Y5, Y6, Y7}];
 In[687]:= Y1harmf[w_, Y0_] := Evaluate[Y1 /. harmsln[[1]]]
             Y2harmf[w_, Y0_] := Evaluate[Y2 /. harmsln[1]]]
             Y3harmf[w , Y0 ] := Evaluate[Y3 /. harmsln[1]]
             Y4harmf[w_, Y0_] := Evaluate[Y4 /. harmsln[1]]]
             Y5harmf[w_, Y0_] := Evaluate[Y5 /. harmsln[1]]]
             Y6harmf[w_, Y0_] := Evaluate[Y6 /. harmsln[1]]]
             Y7harmf[w_, Y0_] := Evaluate[Y7 /. harmsln[1]]]
 In[694]= Plot[{Abs[Y7harmf[2*Pi*f, Y0v]]/Y0v, Abs[Y6harmf[2*Pi*f, Y0v]]/Y0v,
                  Abs[Y5harmf[2 * Pi * f, Y0v]] / Y0v, Abs[Y4harmf[2 * Pi * f, Y0v]] / Y0v,
                  Abs[Y4harmf[2 * Pi * f, Y0v]] / Y0v, Abs[Y2harmf[2 * Pi * f, Y0v]] / Y0v,
                  Abs[Y1harmf[2 * Pi * f, Y0v]] / Y0v}, {f, 0, 1}, PlotRange → {0, All},
                AxesLabel → {"Frequency (kHz)", "Relative Amplitude"},
                AxesStyle → Directive[Black, FontSize → 12]]
             Relative Amplitude
                       0.7
                       0.6
                       0.5
                       0.4
Out[694]=
                       0.3
                       0.2
                      0.1
                                                                                                   Frequency (kHz)
                          0.0
                                       0.2
                                                    0.4
                                                                  0.6
                                                                               8.0
```

```
In[695]:= Plot[{Arg[Y7harmf[2*Pi*f, Y0v]] / Y0v,
         Arg[Y6harmf[2 * Pi * f, Y0v]] / Y0v, Arg[Y5harmf[2 * Pi * f, Y0v]] / Y0v,
         Arg[Y4harmf[2 * Pi * f, Y0v]] / Y0v, Arg[Y3harmf[2 * Pi * f, Y0v]] / Y0v,
         Arg[Y2harmf[2 * Pi * f, Y0v]] / Y0v, Arg[Y1harmf[2 * Pi * f, Y0v]] / Y0v}, {f, 0, 1},
        PlotRange \rightarrow {0, All}, AxesLabel \rightarrow {"Frequency (kHz)", "Phase (cycles)"},
       AxesStyle → Directive[Black, FontSize → 12]]
      Phase (cycles)
      0.0025
      0.0020
      0.0015
Out[695]=
      0.0010
      0.0005
                                               Frequency (kHz)
           0.0
                  0.2
                        0.4
                               0.6
                                      8.0
In[696]:= KAv / KLv
      gammaAv / gammaLv
      (KAv / KLv) / (gammaAv / gammaLv)
Out[696]= 0.258281
Out[697]= 0.113523
Out[698]= 2.27514
In[699]:= (*Low frequency determined by KAv/KLv and
       high frequency determined by gammaAv/gammaLv*)
      (*Ratio of Y7 to input Y0*)
      YPW[KAv / KLv, 8, ntotv, Y0v] / Y0v
      Abs[Y7harmf[2 * Pi * 0, Y0v]] / Y0v
      YPW[gammaAv/gammaLv, 8, ntotv, Y0v] / Y0v
      Abs[Y7harmf[2 * Pi * 1000, Y0v]] / Y0v
Out[699]= 0.047462
Out[700] = 0.047462
Out[701] = 0.162909
Out[702]= 0.162909
In[703]:= (*Maximum 1/AoL across all stereocilia*)
      1 / Min[Table[onsetAoLListrenum[n, 1, 2], {n, 1, Length[ssAoLListrenum]}]]
      1 / Min[Table[ssAoLListrenum[n, 1, 2], {n, 1, Length[ssAoLListrenum]}]]
Out[703]= 9.04939
Out[704] = 6.478
```

```
In[705]:= (*Use wingindexrenum = 31 for wingindexnum2 = 37*)
In[706]:= wingindexrenum2 = 31;
In[707]:= (*Relative displacements within example wing*)
      Table[YPW[onsetAoLListrenum[wingindexrenum2, 1, 2]],
        m, ssnstereoListrenum[wingindexrenum2], 1],
       {m, 2, ssnstereoListrenum[wingindexrenum2]]}]
Out[707] = \{0.71952, 0.520721, 0.381037, 0.284609, 0.220491, 0.181403, 0.162909\}
In[708]:= (*Relative displacements for all wings*)
      relonset =
        Table[Table[YPW[onsetAoLListrenum[n, 1, 2], m, onsetnstereoListrenum[n], 1],
           {m, 2, ssnstereoListrenum[n]]}], {n, 1, Length[ssAoLListrenum]}];
      relss = Table[Table[YPW[ssAoLListrenum[n, 1, 2], m, ssnstereoListrenum[n], 1],
           \{m, 2, ssnstereoListrenum[n]\}\}, \{n, 1, Length[ssAoLListrenum]\}\};
In[710]:= Max[relonset]
      Min[relonset]
      Max[relss]
      Min[relss]
      Mean[Flatten[{Flatten[relonset], Flatten[relss]}]]
Out[710]= 0.72069
Out[711]= 0.0111593
Out[712]= 0.677825
Out[713] = 0.00492661
Out[714]= 0.236265
```

```
In[715]:= (*Stereocilium 5's high-frequency amplitude relative to probe*)
      (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 1;
     Xmax = 31;
     Ymin = 0;
     Ymax = 1;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
     YTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Ymin, Ymax, 1 * 10^-1}];
     ListPlot[
       Table[{{n, YPW[onsetAoLListrenum[n, 1, 2], 5, onsetnstereoListrenum[n], 1]}},
        {n, 1, Length[onsetAoLListrenum]}], PlotRange → {Ymin, 0.3},
       PlotStyle → {{Red, Thickness[Linewidth], PointSize[0.02]}},
       Frame → {{True, False}}, FrameTicks → {None, YTicks},
       FrameLabel → {"Wing", "Amplitude relative to probe"}, Joined → False,
       FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
          {Black, Thickness[Linewidth], FontSize → Fontsize}},
         {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]
         0.30 -
      Amplitude relative to probe
        0.20
Out[722]=
         0.10
           0
                                 Wing
```

```
IN[723]:= (*Stereocilium 5's low-frequency amplitude relative to probe*)
      (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 1;
     Xmax = 31;
     Ymin = 0;
     Ymax = 1;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
     YTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Ymin, Ymax, 1 * 10^-1}];
      ListPlot[Table[{{n, YPW[ssAoLListrenum[n, 1, 2], 5, ssnstereoListrenum[n], 1]}},
        {n, 1, Length[ssAoLListrenum]}], PlotRange → {Ymin, 0.25},
       PlotStyle → {{Blue, Thickness[Linewidth], PointSize[0.02]}},
       Frame → {{True, False}, {True, False}}, FrameTicks → {None, YTicks},
       FrameLabel → {"Wing", "Amplitude relative to probe"}, Joined → False,
       FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
         {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]
      Amplitude relative to probe
         0.20
         0.10
           0
                                 Wing
In[731]:= (*Range of high to low frequency ratios for the example wing*)
      Max[Table[YPW[onsetAoLListrenum[wingindexrenum2, 1, 2]],
          m, ssnstereoListrenum[wingindexrenum2], 1] / YPW[ssAoLListrenum[
           wingindexrenum2, 1, 2], m, ssnstereoListrenum[wingindexrenum2], 1],
        {m, 2, ssnstereoListrenum[wingindexrenum2]]}]]
     Min[Table[YPW[onsetAoLListrenum[wingindexrenum2, 1, 2]],
          m, ssnstereoListrenum[wingindexrenum2], 1] / YPW[ssAoLListrenum[
           wingindexrenum2, 1, 2], m, ssnstereoListrenum[wingindexrenum2], 1],
        {m, 2, ssnstereoListrenum[wingindexrenum2]]}]]
Out[731]= 3.43242
Out[732]= 1.18864
```

```
In[733]:= (*Number and fraction of stereocilia in 31 wings with high_freq > fac*low_freq*)
     fac = 2;
     wingsize = Max[ssnstereoListrenum];
     Sum[Count[Table[If[ssnstereoListrenum[n]] ≥ m,
          YPW[onsetAoLListrenum[n, 1, 2], m, ssnstereoListrenum[n], 1] /
            YPW[ssAoLListrenum[n, 1, 2], m, ssnstereoListrenum[n], 1] > fac, 0],
         {m, 2, wingsize}], True], {n, 1, Length[ssAoLListrenum]}]
     N[Sum[Count[Table[If[ssnstereoListrenum[n]] ≥ m,
            YPW[onsetAoLListrenum[n, 1, 2], m, ssnstereoListrenum[n], 1] /
               YPW[ssAoLListrenum[n, 1, 2], m, ssnstereoListrenum[n], 1] > fac, 0],
            {n, 1, Length[ssAoLListrenum]}], True], {m, 2, wingsize}] /
        Sum[Count[Table[If[ssnstereoListrenum[n]] \ge m, True, 0], \{m, 2, wingsize\}], True],
         {n, 1, Length[ssAoLListrenum]}]]
Out[735]= 26
```

Out[736]= 0.124402

```
In[737]:= (*Stereocilium 5*)
      (*Max and min (high freq)/(low freq) ratio*)
     fac = 2;
     Max[Table[YPW[onsetAolListrenum[n, 1, 2], 5, ssnstereoListrenum[n], 1] /
         YPW[ssAoLListrenum[n, 1, 2], 5, ssnstereoListrenum[n], 1],
        {n, 1, Length[ssAoLListrenum]}]]
     Min[Table[YPW[onsetAoLListrenum[n, 1, 2], 5, ssnstereoListrenum[n], 1] /
         YPW[ssAoLListrenum[n, 1, 2], 5, ssnstereoListrenum[n], 1],
        {n, 1, Length[ssAoLListrenum]}]]
      (*Number of stereocilia with a high/low > fac*)
     Count[Table[YPW[onsetAoLListrenum[n, 1, 2], 5, ssnstereoListrenum[n], 1] /
          YPW[ssAoLListrenum[n, 1, 2], 5, ssnstereoListrenum[n], 1] > fac,
        {n, 1, Length[ssAoLListrenum]}], True]
      (*Stereocilium 5's ratio of high frequency to low frequency amplitudes*)
      (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 1;
     Xmax = 31;
     Ymin = 0;
     Ymax = 3;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
     YTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Ymin, Ymax, 5 * 10^-1}];
     ListPlot[Table[{{n, YPW[onsetAoLListrenum[n, 1, 2], 5, ssnstereoListrenum[n], 1] /
           YPW[ssAoLListrenum[n, 1, 2], 5, ssnstereoListrenum[n], 1]}},
        {n, 1, Length[ssAoLListrenum]}], PlotRange → {Ymin, Ymax},
       PlotStyle → {{Purple, Thickness[Linewidth], PointSize[0.02]}},
       Frame → {{True, False}}, {True, False}}, FrameTicks → {None, YTicks},
       FrameLabel → {"Wing", "High/Low Amplitude Ratio"}, Joined → False,
       FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
          {Black, Thickness[Linewidth], FontSize → Fontsize}},
         {{Black, Thickness[Linewidth], FontSize → Fontsize},
          {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]
Out[738]= 2.74821
Out[739]= 0.828776
Out[740]= 4
```



```
In[749]:= (*Ampl relative to displaced probe*)
     YsinRelYs[ntot_, n_, KL_, KA_, gammaL_, gammaA_, w_] :=
      g[ntot-n-1, (KA+I*w*gammaA) / (KL+I*w*gammaL), 1] /
       g[ntot-1, (KA+I*w*gammaA) / (KL+I*w*gammaL), 1]
```

```
In[750]:= (*Tick Marks*)
      TickLength = 0.02;
      Xmin = 0;
      Xmax = 4;
      Ymin = 0;
      Ymax = 1;
      XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
      YTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Ymin, Ymax, 1 * 10^-1}];
      Plot[{Abs[YsinRelYs[ntotv, 7, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]],
        Abs[YsinRelYs[ntotv, 6, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]],
        Abs[YsinRelYs[ntotv, 5, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]],
        Abs[YsinRelYs[ntotv, 4, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]],
        Abs[YsinRelYs[ntotv, 3, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]],
        Abs[YsinRelYs[ntotv, 2, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]],
        Abs[YsinRelYs[ntotv, 1, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]]}, {f, 0, 4},
       PlotRange → {{0, All}, {0, All}}, PlotStyle → {{Thickness[Linewidth]}},
       Frame → {{True, False}, {True, False}}, FrameTicks → {XTicks, YTicks},
       FrameLabel → {"Frequency (kHz)", "Amplitude relative to probe"},
       FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]
         0.70
      Amplitude relative to probe
         0.60
         0.50
         0.40
Out[757]=
         0.30
         0.20
         0.10
           0
                                   ż
                             Frequency (kHz)
```

```
In[758]:= (*Phase rel to displaced probe*)
      Plot[{Arg[YsinRelYs[ntotv, 7, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]] / (2 * Pi),
         Arg[YsinRelYs[ntotv, 6, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]] / (2 * Pi),
         Arg[YsinRelYs[ntotv, 5, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]] / (2 * Pi),
         Arg[YsinRelYs[ntotv, 4, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]] / (2 * Pi),
         Arg[YsinRelYs[ntotv, 3, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]] / (2 * Pi),
         Arg[YsinRelYs[ntotv, 2, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]] / (2 * Pi),
         Arg[YsinRelYs[ntotv, 1, KLv, KAv, gammaLv, gammaAv, 2 * Pi * f]] / (2 * Pi)}, {f, 0, 1},
       PlotRange \rightarrow {0, All}, AxesLabel \rightarrow {"Frequency (kHz)", "Phase (cycles)"},
       AxesStyle → Directive[Black, FontSize → 12]]
      Phase (cycles)
        0.10 +
        0.08
        0.06
Out[758]=
        0.04
        0.02
                                               Frequency (kHz)
           0.0
                 0.2
                        0.4
                              0.6
                                     8.0
                                           1.0
In[759]:= (*Response of representative wing to 4 kHz displacement of probe*)
      fv = 4; (*kHz*)
      trange = 2 / fv; (*ms*)
      omegav = 2 * Pi * fv;
      Y0f[t_] := Y0v * Evaluate[Sin[omegav * t]]
      Ysln =
       NDSolve[\{KA1v * Y1[t] + gammaA1v * Y1'[t] + K1v * (Y1[t] - Y0f[t]) - K2v * (Y2[t] - Y1[t]) + V1[t]
             gamma1v * (Y1'[t] - Y0f'[t]) - gamma2v * (Y2'[t] - Y1'[t]) == 0, Y1[0] == 0,
          KA2v * Y2[t] + gammaA2v * Y2'[t] + K2v * (Y2[t] - Y1[t]) - K3v * (Y3[t] - Y2[t]) +
             gamma2v * (Y2'[t] - Y1'[t]) - gamma3v * (Y3'[t] - Y2'[t]) == 0, Y2[0] == 0,
          KA3v * Y3[t] + gammaA3v * Y3'[t] + K3v * (Y3[t] - Y2[t]) - K4v * (Y4[t] - Y3[t]) +
             gamma3v * (Y3'[t] - Y2'[t]) - gamma4v * (Y4'[t] - Y3'[t]) == 0, Y3[0] == 0,
          KA4v * Y4[t] + gammaA4v * Y4'[t] + K4v * (Y4[t] - Y3[t]) - K5v * (Y5[t] - Y4[t]) +
             gamma4v * (Y4'[t] - Y3'[t]) - gamma5v * (Y5'[t] - Y4'[t]) == 0, Y4[0] == 0,
          KA5v * Y5[t] + gammaA5v * Y5'[t] + K5v * (Y5[t] - Y4[t]) - K6v * (Y6[t] - Y5[t]) +
             gamma5v * (Y5'[t] - Y4'[t]) - gamma6v * (Y6'[t] - Y5'[t]) == 0, Y5[0] == 0,
          KA6v * Y6[t] + gammaA6v * Y6'[t] + K6v * (Y6[t] - Y5[t]) - K7v * (Y7[t] - Y6[t]) +
             gamma6v * (Y6'[t] - Y5'[t]) - gamma7v * (Y7'[t] - Y6'[t]) == 0, Y6[0] == 0,
          KA7v * Y7[t] + gammaA7v * Y7'[t] + K7v * (Y7[t] - Y6[t]) + gamma7v * (Y7'[t] - Y6'[t]) ==
           0, Y7[0] == 0}, {Y1, Y2, Y3, Y4, Y5, Y6, Y7}, {t, 0, trange}]
      Y1f[t_] := Evaluate[Y1[t] /. Ysln[1]]
      Y2f[t_] := Evaluate[Y2[t] /. Ysln[1]]
      Y3f[t_] := Evaluate[Y3[t] /. Ysln[1]]]
```

```
Y4f[t_] := Evaluate[Y4[t] /. Ysln[1]]
Y5f[t]:= Evaluate[Y5[t] /. Ysln[1]]
Y6f[t_] := Evaluate[Y6[t] /. Ysln[1]]
Y7f[t_] := Evaluate[Y7[t] /. Ysln[1]]
(*Tick Marks*)
TickLength = 0.02;
Xmin = 0;
Xmax = trange;
Ymin = -Y0v;
Ymax = Y0v;
XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 1 * 10^-1}];
YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 5 * 10^1}];
(*Stimulus and responses*)
Show[Plot[{Y0f[t]}, {t, 0, trange},
  PlotStyle → {Thickness[Linewidth], Black}, Frame → {{True, False}}, {True, False}},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
  FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
    {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → True],
 Plot[{Y7f[t], Y6f[t], Y5f[t], Y4f[t], Y3f[t], Y2f[t], Y1f[t]}, {t, 0, trange},
  PlotStyle → Thickness[Linewidth], Frame → {{True, False}}, {True, False}},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
  FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
    {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
Show[Plot[{Y0f[t]}, {t, 0.95 / fv, 1.05 / fv},
  PlotStyle → {Thickness[Linewidth], Black}, Frame → {{True, False}}, {True, False}},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
  FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
    {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
 Plot[{Y7f[t], Y6f[t], Y5f[t], Y4f[t], Y3f[t], Y2f[t], Y1f[t]}, {t, 0, trange},
  PlotStyle → Thickness[Linewidth], Frame → {{True, False}}, {True, False}},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
  FrameStyle → {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
    {{Black, Thickness[Linewidth], FontSize → Fontsize},
```



```
In[778]:= (*Delay in ms*)
         FindRoot[Y0f[t] == 0, {t, 0.1}]
         FindRoot[Y1f[t] == 0, {t, 0.1}]
         FindRoot[Y2f[t] == 0, {t, 0.1}]
         FindRoot[Y3f[t] == 0, {t, 0.1}]
         FindRoot[Y4f[t] == 0, {t, 0.1}]
         FindRoot[Y5f[t] == 0, {t, 0.1}]
         FindRoot[Y6f[t] == 0, {t, 0.1}]
         FindRoot[Y7f[t] == 0, {t, 0.1}]
         (*Maximum phase delay*)
         (t /. FindRoot[Y0f[t] = 0, \{t, 0.1\}]) - (t /. FindRoot[Y7f[t] = 0, \{t, 0.1\}])
\text{Out} \text{[778]= } \left\{ \text{$t \rightarrow 0.125$} \right\}
Out[779]= \{t \rightarrow 0.124202\}
Out[780]= \{\,\text{t}\,\rightarrow\,\text{0.123389}\,\}
\text{Out} [781] = \text{ } \{ \text{t} \rightarrow \text{0.122553} \}
Out[782]= \{t \rightarrow 0.121699\}
Out[783]= \{t \rightarrow 0.120863\}
Out[784]= \{t \rightarrow 0.120146\}
Out[785]= \left\{\,\text{t}\,\rightarrow\,\text{0.119714}\,\right\}
Out[786]= 0.00528617
```

```
In[787]:= (*Frog pivots and connectors (Kozlov11 SI) in IHC bundle*)
      lambdas = 0.5 * 10^{-9}; (*N.s/m, page 37*)
      Lmax = 7.8 * 10^{-6}; (*m*)
      Lmin = 3.25 * 10^{-6}; (*m*)
      lambdathetamin = lambdas * Lmin^2
      lambdathetamax = lambdas * Lmax^2
      LIHC = 5 * 10^{-6}; (*Nam15*)
      lambdasmin = lambdathetamin/LIHC^2
      lambdasmax = lambdathetamax / LIHC^2
       lambdacmin = 10^3 * 10^-9;
       lambdacmax = 10^4 * 10^-9;
       lambdas0lambdacmax = lambdasmax / lambdacmin
       lambdas0lambdacmin = lambdasmin / lambdacmax
Out[790]= 5.28125 \times 10^{-21}
Out[791]= 3.042 \times 10^{-20}
Out[793]= 2.1125 \times 10^{-10}
Out[794]= 1.2168 \times 10^{-9}
Out[797]= 0.0012168
Out[798]= 0.000021125
In[799]:= (*Frog pivots and connectors (Kozlov11 SI) in IHC bundle*)
      Ks = 0.3 * 10^{-6}; (*N.s/m, page 37*)
      Kthetamin = Ks * Lmin^2
      Kthetamax = Ks * Lmax^2
      Ksmin = Kthetamin / LIHC^2
      Ksmax = Kthetamax / LIHC^2
      Kc = 20 * 10^{-3};
      KsOKcmax = Ksmax / Kc
      KsOKcmin = Ksmin / Kc
Out[799]= 3.16875 \times 10^{-18}
Out[800]= 1.8252 \times 10^{-17}
Out[801]= 1.2675 \times 10^{-7}
Out[802]= 7.3008 \times 10^{-7}
Out[804] = 0.000036504
Out[805]= 6.3375 \times 10^{-6}
```

```
In[806]:= (*How much stronger are IHC links vs frog links?*)
      \{ {\tt Max[onsetAoLListrenum[All, 1, 2]]} \ / \ {\tt lambdasOlambdacmin,}
       Min[onsetAoLListrenum[All, 1, 2]] / lambdasOlambdacmax}
      {Max[ssAoLListrenum[All, 1, 2]] / KsOKcmin, Min[ssAoLListrenum[All, 1, 2]] / KsOKcmax}
Out[806]= \{18532.4, 90.8158\}
Out[807]= \{83907.2, 4228.81\}
```

```
In[808]:= (*Yn relative to Y0 as a function of AoL ratio*)
     (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 10^{-6};
     XpowMin = MantissaExponent[Xmin] [2] - 1;
     Xmax = 10^{\circ}0;
     XpowMax = MantissaExponent[Xmax][2] + 1;
     Ymin = 0;
     Ymax = 1;
     BottomTicks =
       Table[{10^i, Superscript[10, i], {0, TickLength}}, {i, XpowMin, XpowMax, 1}];
     XminorTicks = Flatten[Table[{j * 10^i, Null, {0, TickLength / 2}, Thickness[0.005]},
          {i, XpowMin, XpowMax, 1}, {j, 1, 9, 1}], 1];
     XTicks = Table[{i, N[i, 1], {0, TickLength}}, {i, Xmin, Xmax, 1 * 10^-1}];
     YTicks = Table[{i, N[i, 1], {0, TickLength}}, {i, Ymin, Ymax, 2 * 10^-1}];
     Show[LogLinearPlot[{YPW[AoL, 8, ntotv, Y0v] / Y0v, YPW[AoL, 7, ntotv, Y0v] / Y0v,
        YPW[AoL, 6, ntotv, Y0v] / Y0v, YPW[AoL, 5, ntotv, Y0v] / Y0v,
        YPW[AoL, 4, ntotv, Y0v] / Y0v, YPW[AoL, 3, ntotv, Y0v] / Y0v,
        YPW[AoL, 2, ntotv, Y0v] / Y0v}, {AoL, 5 * Xmin, Xmax}, PlotRange → All,
       PlotStyle → Thickness[Linewidth], Frame → {{True, False}, {True, False}},
       FrameLabel → {"Anchor/Link Strength", "Amplitude relative to probe"},
       FrameTicks → {{YTicks, YTicks}, {Join[BottomTicks, XminorTicks], XTicks}},
       FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
      LogLinearPlot[0.9, {AoL, 5 * Xmin, Xmax}, PlotRange → All,
       AxesLabel → {"Ratio", "Relative Amplitude"},
       AxesStyle → Directive[Black, FontSize → 12], PlotStyle → {Black, Dashed}],
      Graphics[{Thickness[Linewidth], Blue, Arrowheads[{-0.04, 0.04}],
        Arrow[{{Log[Min[ssAoLListrenum[All, 1, 2]]], 0.75},
           {Log[Max[ssAoLListrenum[All, 1, 2]]], 0.75}}]}],
      Graphics[{Thickness[Linewidth], Red, Arrowheads[{-0.04, 0.04}],
        Arrow[{{Log[Min[onsetAoLListrenum[All, 1, 2]]], 0.85},
           {Log[Max[onsetAoLListrenum[All, 1, 2]]], 0.85}}]}],
      Graphics[{Thickness[Linewidth], Cyan, Arrowheads[{-0.04, 0.04}],
        Arrow[{{Log[Ks0Kcmin], 0.75}, {Log[Ks0Kcmax], 0.75}}]}],
      Graphics[{Thickness[Linewidth], Magenta, Arrowheads[{-0.04, 0.04}],
        Arrow[{{Log[lambdasOlambdacmin], 0.6}, {Log[lambdasOlambdacmax], 0.6}}]]]]
```

```
Amplitude relative to probe
         8.0
         0.6
         0.4
Out[819]=
         0.2
          0
              10^{-5}
                              10^{-3}
                                      10^{-2}
                      10^{-4}
                                              10^{-1}
                                                      10<sup>0</sup>
                          Anchor/Link Strength
In[821]:= (*Start at begining of step. Use analytical
       peak solutions for stereocilia initial conditions.*)
      ntotv = ssnstereoList[wingindexnum2]
      Y0v = 250 (*nm*);
      trange = 60;
      Y0f[t_] := Y0v;
Out[821]= 8
In[825]:= (*Doesn't work unless we use the equation simplification method*)
      (*8 cilia, Y0 clamped, all cilia have rootlets.*)
      KLv = 5; (*mN/m*)
      KAv = ssAoLList[wingindexnum2, 1, 2] * KLv;
      gammaLv = 0.8 * KLv; (*uN.s/m*)
      gammaLv / KLv(*ms*)
      gammaAv = onsetAoLList[wingindexnum2, 1, 2] * gammaLv;
      KAoLv = KAv/KLv;
      gammaAoLv = gammaAv/gammaLv;
      (*Geometric mean time constant*)
      taugmv = (gammaLv / KLv) *
        (g[ntotv - 1, gammaAoLv, 1] / g[ntotv - 1, KAv / KLv, 1]) ^ (1 / (ntotv - 1))
      KA1v = KAv; gammaA1v = gammaAv;
      KA2v = KAv; gammaA2v = gammaAv;
      KA3v = KAv; gammaA3v = gammaAv;
      KA4v = KAv; gammaA4v = gammaAv;
      KA5v = KAv; gammaA5v = gammaAv;
      KA6v = KAv; gammaA6v = gammaAv;
      KA7v = KAv; gammaA7v = gammaAv;
      K1v = KLv; gamma1v = gammaLv;
      K2v = KLv; gamma2v = gammaLv;
      K3v = KLv; gamma3v = gammaLv;
```

```
K4v = KLv; gamma4v = gammaLv;
K5v = KLv; gamma5v = gammaLv;
K6v = KLv; gamma6v = gammaLv;
K7v = KLv; gamma7v = gammaLv;
Ysln =
 NDSolve[{KA1v * Y1[t] + gammaA1v * Y1 '[t] + K1v * (Y1[t] - Y0f[t]) - K2v * (Y2[t] - Y1[t]) +
      gamma1v * (Y1'[t] - Y0f'[t]) - gamma2v * (Y2'[t] - Y1'[t]) == 0,
   Y1[0] = Y[1, ntotv, gammaAoLv, Y0v], KA2v * Y2[t] + gammaA2v * Y2'[t] +
      K2v * (Y2[t] - Y1[t]) - K3v * (Y3[t] - Y2[t]) + gamma2v * (Y2'[t] - Y1'[t]) -
      gamma3v* (Y3'[t] - Y2'[t]) == 0, Y2[0] == Y[2, ntotv, gammaAoLv, Y0v],
   KA3v * Y3[t] + gammaA3v * Y3'[t] + K3v * (Y3[t] - Y2[t]) - K4v * (Y4[t] - Y3[t]) +
      gamma3v * (Y3'[t] - Y2'[t]) - gamma4v * (Y4'[t] - Y3'[t]) == 0,
   Y3[0] = Y[3, ntotv, gammaAoLv, Y0v], KA4v * Y4[t] + gammaA4v * Y4'[t] +
      K4v * (Y4[t] - Y3[t]) - K5v * (Y5[t] - Y4[t]) + gamma4v * (Y4'[t] - Y3'[t]) -
      gamma5v * (Y5'[t] - Y4'[t]) == 0, Y4[0] == Y[4, ntotv, gammaAoLv, Y0v],
   KA5v * Y5[t] + gammaA5v * Y5'[t] + K5v * (Y5[t] - Y4[t]) - K6v * (Y6[t] - Y5[t]) +
      gamma5v * (Y5'[t] - Y4'[t]) - gamma6v * (Y6'[t] - Y5'[t]) == 0,
   Y5[0] = Y[5, ntotv, gammaAoLv, Y0v], KA6v * Y6[t] + gammaA6v * Y6'[t] +
      K6v * (Y6[t] - Y5[t]) - K7v * (Y7[t] - Y6[t]) + gamma6v * (Y6'[t] - Y5'[t]) -
      gamma7v * (Y7'[t] - Y6'[t]) == 0, Y6[0] == Y[6, ntotv, gammaAoLv, Y0v],
   KA7v * Y7[t] + gammaA7v * Y7'[t] + K7v * (Y7[t] - Y6[t]) + gamma7v * (Y7'[t] - Y6'[t]) ==
    0, Y7[0] == Y[7, ntotv, gammaAoLv, Y0v]}, {Y1, Y2, Y3, Y4, Y5, Y6, Y7},
  {t, 0, trange}, Method → {"EquationSimplification" → "Residual"}]
Y1f[t_] := Evaluate[Y1[t] /. Ysln[[1]]]
Y2f[t_] := Evaluate[Y2[t] /. Ysln[1]]
Y3f[t_] := Evaluate[Y3[t] /. Ysln[1]]
Y4f[t_] := Evaluate[Y4[t] /. Ysln[[1]]]
Y5f[t_] := Evaluate[Y5[t] /. Ysln[1]]
Y6f[t_] := Evaluate[Y6[t] /. Ysln[1]]
Y7f[t_] := Evaluate[Y7[t] /. Ysln[[1]]]
(*Stimulus and responses*)
(*Tick Marks*)
TickLength = 0.02;
Xmin = 0;
Xmax = trange;
Ymin = 0;
Ymax = 250;
XTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Xmin, Xmax, 1 * 10^1}];
YTicks = Table[{i, i, {0, TickLength}}, {i, Ymin, Ymax, 5 * 10^1}];
Show[Plot[\{Y0f[t]\}, \{t, 0, trange\}, PlotRange \rightarrow \{Ymin - 15, Ymax + 15\},
  MaxRecursion → 15, PlotStyle → {Black, Thickness[Linewidth]},
  Frame → {{True, False}, {True, False}}, FrameTicks → {XTicks, YTicks},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
```

```
{Black, Thickness[Linewidth], FontSize → Fontsize}},
     {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
 Plot[{Y7f[t], Y6f[t], Y5f[t], Y4f[t], Y3f[t], Y2f[t], Y1f[t]},
  {t, 0, trange}, MaxRecursion → 15, PlotStyle → Thickness[Linewidth],
  Frame → {{True, False}}, {True, False}}, FrameTicks → {XTicks, YTicks},
  FrameLabel → {"Time (ms)", "Displacement (nm)"},
  FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}},
     {{Black, Thickness[Linewidth], FontSize → Fontsize},
      {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
(*Decay rates are different.*)
Y1peak = Evaluate[NMaximize[{Y1f[t], t < trange / 2, t > 0}, t][[1]]];
t1peak = Evaluate[t /. NMaximize[{Y1f[t], t < trange / 2, t > 0}, t][2]];
Y2peak = Evaluate[NMaximize[{Y2f[t], t < trange / 2, t > 0}, t][1]];
t2peak = Evaluate[t /. NMaximize[{Y2f[t], t < trange / 2, t > 0}, t] [[2]]];
Y3peak = Evaluate[NMaximize[{Y3f[t], t < trange / 2, t > 0}, t][[1]]];
t3peak = Evaluate[t /. NMaximize[{Y3f[t], t < trange / 2, t > 0}, t] [[2]]];
Y4peak = Evaluate[NMaximize[{Y4f[t], t < trange / 2, t > 0}, t][[1]]];
t4peak = Evaluate[t /. NMaximize[{Y4f[t], t < trange / 2, t > 0}, t][2]];
Y5peak = Evaluate[NMaximize[{Y5f[t], t < trange / 2, t > 0}, t][[1]]];
t5peak = Evaluate[t /. NMaximize[{Y5f[t], t < trange / 2, t > 0}, t] [[2]]];
Y6peak = Evaluate[NMaximize[{Y6f[t], t < trange / 2, t > 0}, t][1]];
t6peak = Evaluate[t /. NMaximize[{Y6f[t], t < trange / 2, t > 0}, t] [2]];
Y7peak = Evaluate[NMaximize[{Y7f[t], t < trange / 2, t > 0}, t][[1]]];
t7peak = Evaluate[t /. NMaximize[{Y7f[t], t < trange / 2, t > 0}, t] [[2]]];
```

Out[828]= 0.8

Out[832]= 0.670773


```
In[880]:= Yfittable = Table[{t, Y7f[t] - Y[7, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}];
      fit = NonlinearModelFit[Yfittable, {A * Exp[-t/tau]}, {tau, A}, t];
      Print[fit["ParameterTable"]];
      Print[
         Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
      tauidealfit[[7]] =
         Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]];
      Show[ListPlot[Yfittable, PlotStyle → Red,
         AxesLabel → {"Time (ms)", "Relatation (nm)"},
         AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[
          {t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]},
          {t, 0, tfitend, 0.1}], PlotStyle → Blue, Joined → True, PlotRange → All]]
      fit2 = NonlinearModelFit[Yfittable,
          {A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t];
      Print[fit2["ParameterTable"]];
      Print[
         Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
          Estimate Standard Error t-Statistic P-Value
                                             \times 10^{-64}
      tau 0.344467 0.00258235 133.393 2.01487
                             216.643 1.00474 ×10<sup>-74</sup>
      A 29.1737 0.134663
      AdjustedRSquared 0.999304
                        -36.6222
      BIC
                         -30.8267
      RSquared
                         0.999331
      Relatation (nm)
          30
          25
          20
Out[885]=
          15
          10
           5
                                                     Time (ms)
                                           4
           Estimate Standard Error t-Statistic
                                         P-Value
                                           3.46746 \times 10^{-64}
      Α1
           10.9851 0.0749778
                              146.512
      tau1
          0.344467 \ 1.22529 \times 10^{6} \ 2.81132 \times 10^{-7} \ 1.
                                           2.86271 \times 10^{-74}
           18.1886 0.0757002
      A2
                              240.271
                              4.65483 \times 10^{-7} 1.
      tau2 0.344467 740 022.
      AdjustedRSquared 0.999274
      AIC
                        -32.4969
      BIC
                         -22.8378
                         0.999331
      RSquared
```

```
In[889]:=
      Yfittable = Table[{t, Y6f[t] - Y[6, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}];
      fit = NonlinearModelFit[Yfittable, {A * Exp[-t/tau]}, {tau, A}, t];
      Print[fit["ParameterTable"]];
      Print[
        Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
      tauidealfit[[6]] =
        Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]];
      Show[ListPlot[Yfittable, PlotStyle → Red,
        AxesLabel → {"Time (ms)", "Relatation (nm)"},
        AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[
          {t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]},
          \{t, 0, tfitend, 0.1\}], PlotStyle \rightarrow Blue, Joined \rightarrow True, PlotRange \rightarrow All]]
      fit2 = NonlinearModelFit[Yfittable,
          {A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t];
      Print[fit2["ParameterTable"]];
      Print[
        Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
         Estimate Standard Error t-Statistic P-Value
      tau 0.361273 0.00195237 185.043 2.25489 ×10<sup>-71</sup>
      A 30.6702 0.102685
                            298.684 1.49053 \times 10^{-81}
      AdjustedRSquared 0.999637
      AIC
                        -62.9686
      BIC
                        -57.1731
      RSquared
                        0.999651
      Relatation (nm)
         30
         25
         20
Out[894]=
          15
          10
           5
```

••• NonlinearModelFit : The step size in the search has become less than the tolerance prescribed by the

PrecisionGoal option, but the gradient is larger than the tolerance specified by the AccuracyGoal option.

Time (ms)

There is a possibility that the method has stalled at a point that is not a local minimum.

2

```
Estimate Standard Error t-Statistic
                                      P-Value
         15.3406 0.0576319 266.182 2.33271 ×10<sup>-76</sup>
     A1
     tau1 0.361273 \ 317449. 1.13805 \ \times 10^{-6} \ 0.999999
     A2 15.3296 0.0576922 265.714 2.53351 \times 10^{-76}
     tau2 0.361273 317675. 1.13724 \times 10^{-6} 0.999999
     AdjustedRSquared 0.999622
                      -58.8433
     BIC
                       -49.1841
     RSquared
                       0.999651
In[898]:=
     Yfittable = Table[{t, Y5f[t] - Y[5, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}];
     fit = NonlinearModelFit[Yfittable, {A * Exp[-t/tau]}, {tau, A}, t];
     Print[fit["ParameterTable"]];
     Print[
        Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
         Alignment → Left]];
     tauidealfit[[5]] =
        Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]];
     Show[ListPlot[Yfittable, PlotStyle → Red,
        AxesLabel → {"Time (ms)", "Relatation (nm)"},
        AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[
         {t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]},
         {t, 0, tfitend, 0.1}], PlotStyle → Blue, Joined → True, PlotRange → All]]
     fit2 = NonlinearModelFit[Yfittable,
         {A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t];
     Print[fit2["ParameterTable"]];
     Print[
        Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
         Alignment → Left]];
         Estimate Standard Error t-Statistic P-Value
                                  2.09468 \times 10^{-88}
     tau 0.39244 0.000952062 412.2
                           658.674 2.23041 ×10<sup>-98</sup>
     A 33.4018 0.0507107
     AdjustedRSquared 0.999927
     AIC
                       -132.564
     BIC
                       -126.769
     RSquared
                      0.999929
```


	Estimate	Standard Error t-Statistic P-Value				
tau	0.434099	0.000132032	3287.82	1.36737	×10 ⁻¹³²	
Α	36.7094	0.00706658	5194.8	2.52088	$\times 10^{-142}$	

AdjustedRSquared 0.999999

AIC -330.533 BIC -324.738 RSquared 0.999999

Relatation (nm)

	Estimate	Standard Error t-Statistic P-Value			
A1	36.2889	0.122525	296.176	1.54779	$\times 10^{-78}$
tau1	0.436684	0.00046107	947.109	2.92799	$\times 10^{-102}$
A2	0.449512	0.121815	3.69013	0.0005814	185
tau2	0.221447	0.0246223	8.99379	8.74621	$\times 10^{-12}$

AdjustedRSquared 1.

AIC -434.019 BIC -424.36

RSquared 1.

```
In[916]:=
      Yfittable = Table[{t, Y3f[t] - Y[3, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}];
      fit = NonlinearModelFit[Yfittable, {A * Exp[-t/tau]}, {tau, A}, t];
      Print[fit["ParameterTable"]];
      Print[
        Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
      tauidealfit[3] =
        Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]];
      Show[ListPlot[Yfittable, PlotStyle → Red,
        AxesLabel → {"Time (ms)", "Relatation (nm)"},
        AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[
          {t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]},
          \{t, 0, tfitend, 0.1\}], PlotStyle \rightarrow Blue, Joined \rightarrow True, PlotRange \rightarrow All]]
      fit2 = NonlinearModelFit[Yfittable,
          {A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t];
      Print[fit2["ParameterTable"]];
      Print[
        Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
          Alignment → Left]];
         Estimate Standard Error t-Statistic P-Value
      tau 0.4825 0.00099359 485.613 6.82415 \times 10^{-92}
      A 39.2048 0.0516483
                           759.073 2.13619 \times 10^{-101}
      AdjustedRSquared 0.999947
      AIC
                       -124.274
      BIC
                        -118.478
      RSquared
                        0.999949
      Relatation (nm)
         40
         30
Out[921]=
         20
          10
                                                   Time (ms)
```

```
Estimate Standard Error t-Statistic P-Value
          20.7137 0.16281 127.227 2.59258 ×10<sup>-61</sup>
     A1
     tau1 0.405434 \ 0.000594266 \ 682.242 \ 1.45128 \ \times 10^{-95}
          18.6778 0.163015 114.577 3.50438 ×10<sup>-59</sup>
     A2
     tau2 0.570589 0.000804219 709.494 2.30334 \times 10^{-96}
     AdjustedRSquared 1.
                       -593.299
     BIC
                       -583.639
     RSquared
                       1.
In[925]:=
     Yfittable = Table[{t, Y2f[t] - Y[2, ntotv, KAoLv, Y0v]}, {t, 0, tfitend, 0.1}];
     fit = NonlinearModelFit[Yfittable, {A * Exp[-t/tau]}, {tau, A}, t];
     Print[fit["ParameterTable"]];
     Print[
        Grid[Transpose[{#, fit[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
         Alignment → Left]];
     tauidealfit[2] =
        Around[(tau /. fit["BestFitParameters"]), fit["ParameterTable"][1, 1, 2, 3]];
     Show[ListPlot[Yfittable, PlotStyle → Red,
        AxesLabel → {"Time (ms)", "Relatation (nm)"},
        AxesStyle → Directive[Black, FontSize → 12], PlotRange → All], ListPlot[Table[
         {t, (A /. fit["BestFitParameters"]) * Exp[-t / (tau /. fit["BestFitParameters"])]},
         {t, 0, tfitend, 0.1}], PlotStyle → Blue, Joined → True, PlotRange → All]]
     fit2 = NonlinearModelFit[Yfittable,
         {A1 * Exp[-t / tau1] + A2 * Exp[-t / tau2]}, {A1, tau1, A2, tau2}, t];
     Print[fit2["ParameterTable"]];
     Print[
        Grid[Transpose[{#, fit2[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
         Alignment → Left]];
         Estimate Standard Error t-Statistic P-Value
     tau 0.535071 \ 0.00163443 \ 327.374 \ 1.66919 \ \times 10^{-83}
                           506.87 8.36542 ×10<sup>-93</sup>
     A 38.1395 0.075245
     AdjustedRSquared 0.999882
     AIC
                       -82.4244
     BIC
                       -76.629
     RSquared
                      0.999887
```


Out[939]=

	Estimate	Standard Error t-Statistic P-Value				
tau	0.590515	0.00202265	291.95	4.55286	×10 ⁻⁸¹	
Α	28.2872	0.0630983	448.304	3.4262	$\times 10^{-90}$	

AdjustedRSquared 0.999852

AIC -96.933 BIC -91.1375RSquared 0.999858

Relatation (nm)

Estimate Standard Error t-Statistic P-Value $433.409 \quad 2.63739 \quad \times 10^{-86}$ A1 17.7792 0.0410217 $\times 10^{-117}$ tau1 0.689035 0.000347186 1984.63 2.32721 10.7672 0.0408811 $263.378 \quad 3.83568 \quad \times 10^{-76}$ Α2 tau2 0.431007 0.00043754 985.067 4.61849 $\times 10^{-103}$

AdjustedRSquared 1.

AIC -631.931BIC -622.272

RSquared 1.

```
In[943]= (*Stereocilium farthest from probe relaxes with the shortest time constant!*)
     (*Choose gammaL/KL to match experimental time constants*)
     (*Tick Marks*)
     TickLength = 0.02;
     Xmin = 1;
     Xmax = 7;
     Ymin = 0;
     Ymax = 1;
     XTicks = Table[{i, i, {0, TickLength}}, {i, Xmin, Xmax, 1}];
     YTicks = Table[{i, N[i, 2], {0, TickLength}}, {i, Ymin, Ymax, 1 * 10^-1}];
     Show[ListPlot[Reverse[Table[{{n, taufit[[n]]}}, {n, 1, ntotv - 1}]],
       PlotRange \rightarrow {{Xmin - 0.5, Xmax + 0.5}, {0.3, 0.7}}, PlotStyle \rightarrow
        Table[{ColorData[97, "ColorList"][m], PointSize[0.02]}, {m, 1, ntotv - 1}],
       IntervalMarkersStyle → Table[{ColorData[97, "ColorList"][m], PointSize[0.02]},
          {m, 1, ntotv - 1}], Frame → {{True, False}}, {True, False}},
       FrameLabel → {"Stereocilium position", "Fast time constant (ms)"},
       FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
       FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False],
      ListPlot[Reverse[Table[{{n, tauidealfit[n]}}, {n, 1, ntotv - 1}]],
       PlotRange \rightarrow \{\{Xmin - 0.5, Xmax + 0.5\}, \{0.4, 0.8\}\},\
       PlotStyle → Table[{Lighter[ColorData[97, "ColorList"][m]], PointSize[0.02]},
          {m, 1, ntotv - 1}], IntervalMarkersStyle →
        Table[{Lighter[ColorData[97, "ColorList"][m]], PointSize[0.02]},
          {m, 1, ntotv - 1}], Frame → {{True, False}}, {True, False}},
       FrameLabel → {"Stereocilium position", "Fast time constant (ms)"},
       FrameTicks → {{YTicks, YTicks}, {XTicks, XTicks}},
       FrameStyle → {{{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}},
          {{Black, Thickness[Linewidth], FontSize → Fontsize},
           {Black, Thickness[Linewidth], FontSize → Fontsize}}}, Axes → False]]
```

