Espacios Euclídeos

Mariam Cobalea Vico

Universidad de Málaga Dpto. de Matemática Aplicada

Curso 15/16

Mariam Cobalea Vico (UMA)

EAC, Curso 15/1

Tema 8: Espacios Euclídeos

1 / 50

Producto escalar

Definición (Producto escalar)

Sea $\mathcal V$ un espacio vectorial definido sobre el cuerpo $\mathbb R$. Un **producto escalar** es una función $\varphi \colon \mathcal V \times \mathcal V \to \mathbb R$ que verifica:

- Un **producto escalar** se suele definir, de forma más sucinta, como una forma bilineal $\varphi \colon \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ simétrica y definida positiva.

Producto escalar

Ejemplo

La función (|): $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ definida como

$$(\vec{x} \mid \vec{y}) = x_1 y_1 + \cdots + x_n y_n$$

es el producto escalar euclídeo.

 \checkmark Para denotar el producto escalar de dos vectores \vec{v}, \vec{w} se suelen usar distintas notaciones, tales como

$$\varphi(\vec{v}, \vec{w}), \qquad \langle \vec{v}, \vec{w} \rangle, \qquad (\vec{v} \mid \vec{w}), \qquad \vec{v} \cdot \vec{w}$$

- \checkmark Para distinguir el producto escalar euclídeo definido en \mathbb{R}^n de otros productos escalares usaremos la notación siguiente:
 - representa el producto escalar euclídeo en \mathbb{R}^n $\vec{v} \cdot \vec{w}$
 - representa el producto escalar general en un espacio vectorial ${\cal V}$ $\langle \vec{V}, \vec{W} \rangle$

EAC, Curso 15/16

Tema 8: Espacios Euclídeos 3 / 50

Producto escalar

Ejemplo

La función $\langle \ \rangle \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definida como

$$\langle \vec{x}, \ \vec{y} \rangle = x_1 y_1 + 7 x_2 y_2$$

es otro producto escalar en \mathbb{R}^2 .

Este ejemplo se puede generalizar demostrando que:

$$\langle \vec{v}, \vec{w} \rangle = c_1 v_1 w_1 + c_2 v_2 w_2 + ... + c_n v_n w_n$$
, con $c_i > 0$

es un producto escalar en \mathbb{R}^n , en el que las constantes c_i se llaman **pesos**.

Definición (Espacio vectorial euclídeo)

Se llama **espacio euclídeo** a un espacio vectorial real en el que se ha definido un producto escalar.

Ejemplo

Son espacios euclídeos:

- ① \mathbb{R}^n con el producto escalar euclídeo (|): $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ definido
 - $(\vec{x} \mid \vec{y}) = x_1 y_1 + \cdots + x_n y_n$
- ② \mathbb{R}^2 con el producto escalar (|): $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definido

$$(\vec{x} \mid \vec{y}) = x_1y_1 + 7x_2y_2$$

 $\ \ \ \mathbb{R}^2$ con el producto escalar (|): $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definido

$$(\vec{x} \mid \vec{y}) = 2x_1y_1 + x_2y_1 + x_1y_2 + 2x_2y_2$$

Mariam Cobalea Vico (UMA)

EAC. Curso 15/16

Tema 8: Espacios Euclídeo

5 / 50

Espacio vectorial euclídeo

Ejemplo

Son espacios euclídeos:

 $(\mathbb{R}_2(t),\langle\ \rangle), \text{ donde } \langle\ \rangle \text{ es el producto escalar}$

$$\langle p,q\rangle = \int_0^1 p(t)q(t)dt$$

3 $(C[0,2\pi],\langle \rangle)$, donde $\langle \rangle$ es el producto escalar

$$\langle f,g\rangle = \int_0^{2\pi} f(t)g(t)dt$$

lacktriangledown ($\mathcal{C}[a,b],\langle\;
angle$), donde $\langle\;
angle$ es el producto escalar

$$\langle f,g\rangle = \int_a^b f(t)g(t)dt$$

Norma de un vector. Distancias

Definición (Norma de un vector)

Sea $(V, \langle \ \rangle)$ un espacio vectorial euclídeo. Llamamos **norma** de un vector $\vec{v} \in V$ al número real

$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v}
angle}$$

Ejemplo

La norma del vector $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ del espacio \mathbb{R}^3 con el producto escalar usual es

$$\|\vec{v}\| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

7 / 50

Espacio vectorial euclídeo

Norma de un vector. Distancias

Definición (Vector unitario)

Sea $(V, \langle \ \rangle)$ un espacio vectorial euclídeo. Se dice que $\vec{u} \in V$ es un vector **unitario** si $\|\vec{u}\| = 1$

• Si \vec{v} es un vector no nulo, el vector $\vec{u} = \frac{1}{\|\vec{v}\|} \vec{v}$ es unitario.

Ejemplo

En el espacio \mathbb{R}^3 con el producto escalar usual, el vector

$$\vec{u} = \begin{pmatrix} 2/3 \\ -2/3 \\ 1/3 \end{pmatrix}$$

es unitario.

Norma de un vector. Distancias

Definición (Distancia entre dos vectores)

Sea $(\mathcal{V}, \langle \ \rangle)$ un espacio vectorial euclídeo. Llamamos **distancia** entre dos vectores $\vec{v}, \vec{w} \in \mathcal{V}$ al número real

$$d(\vec{v}, \vec{w}) = \|\vec{v} - \vec{w}\|$$

Ejemplo

La distancia entre los vectores $\vec{v}=\begin{pmatrix}7\\1\end{pmatrix}$ y $\vec{w}=\begin{pmatrix}3\\2\end{pmatrix}$ de \mathbb{R}^2 con el producto escalar euclídeo es

$$d(\vec{v}, \vec{w}) = \|\vec{v} - \vec{w}\| = \sqrt{(7-3)^2 + (1-2)^2} = \sqrt{17}$$

Mariam Cobalea Vico (UMA)

EAC. Curso 15/16

Tema 8: Espacios Euclídeo

9 / 50

Espacio vectorial euclídeo

Norma de un vector. Distancias

Teorema (Propiedades de la norma)

Sea $(\mathcal{V}, \langle \ \rangle)$ un espacio vectorial euclídeo y sean $c \in \mathbb{R}, \ \vec{v}, \vec{w} \in \mathcal{V}$.

- $||c\vec{v}|| = |c| ||\vec{v}||$

Teorema (Propiedades de la distancia)

Sean \vec{v} , \vec{w} vectores de un espacio euclideo $(\mathcal{V}, \langle \ \rangle)$. Entonces

- 2 $d(\vec{v}, \vec{w}) = 0$ si, y sólo si, $\vec{v} = \vec{w}$

Norma de un vector. Distancias

Teorema (Desigualdad de Cauchy-Schwarz)

Sean \vec{v} , \vec{w} vectores de un espacio euclideo $(\mathcal{V}, \langle \ \rangle)$ Entonces

$$|\langle \vec{v}, \vec{w} \rangle| \le ||\vec{v}|| \cdot ||\vec{w}||$$

De la desigualdad de Cauchy-Schwarz se obtiene $-1 \leq \frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \cdot \|\vec{w}\|} \leq 1$ Luego, existe un único ángulo θ tal que $\cos \theta = \frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \cdot \|\vec{w}\|}$

Definición (Ángulo entre dos vectores)

Sean \vec{v} y \vec{w} vectores en un espacio euclídeo $(\mathcal{V}, \langle \ \rangle)$. El **ángulo** entre dos vectores \vec{v} y \vec{w} , no nulos, viene dado por

$$\mathit{ang}(\vec{v}, \vec{w}) = \theta = rc \cos rac{\langle \vec{v}, \vec{w}
angle}{\|\vec{v}\| \cdot \|\vec{w}\|}, \quad heta \in [0, \pi]$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

11 / 50

Espacio vectorial euclídeo

Ángulo entre dos vectores. Ortogonalidad

Ejemplos

lacktriangle En \mathbb{R}^4 con el producto escalar euclídeo, el ángulo entre los vectores

$$\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
 y $\vec{w} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ es $\theta = \arccos \frac{2}{\sqrt{6}\sqrt{2}} = \arccos \frac{1}{\sqrt{3}}$

② En $\mathbb{R}_3(x)$ se considera el producto escalar $(p|q) = \sum_{i=1}^3 p(i)q(i)$

El ángulo determinado por los polinomios $x^2 + 1$ y $x^2 - 3x + 1$ es

$$\theta = \arccos\frac{2}{\sqrt{2} \cdot \sqrt{11}} = \arccos\frac{\sqrt{2}}{\sqrt{11}} = \arccos\sqrt{\frac{2}{11}}$$

Ángulo entre dos vectores. Ortogonalidad

Definición (Vectores ortogonales)

Sea $(\mathcal{V}, \langle \ \rangle)$ un espacio vectorial euclídeo y sean $\vec{v}, \vec{w} \in \mathcal{V}$. Se dice que \vec{v} es ortogonal a \vec{w} si su producto escalar es cero.

Cuando un vector \vec{v} es ortogonal a todos los vectores de un subespacio $\mathcal W$ se dice que $\vec v$ es **ortogonal** a $\mathcal W$

Teorema (Generalización del teorema de Pitágoras)

Sea $(\mathcal{V}, \langle \ \rangle)$ un espacio vectorial euclídeo. Dos vectores $\vec{v}, \vec{w} \in \mathcal{V}$ son ortogonales si y sólo si verifican:

$$\|\vec{v} + \vec{w}\|^2 = \|\vec{v}\|^2 + \|\vec{w}\|^2$$

Mariam Cobalea Vico (UMA)

EAC. Curso 15/16

Tema 8: Espacios Euclídeos

13 / 50

Espacio vectorial euclídeo

Ángulo entre dos vectores. Ortogonalidad

Ejemplo

En el espacio \mathbb{R}^3 con el producto escalar usual, son ortogonales los vectores

$$\vec{v} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, \vec{w} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Ejemplo

En el espacio euclídeo $\mathcal{C}[0,2\pi]$, las funciones sen t y cos t son ortogonales, ya que

$$\langle \operatorname{sen} t, \cos t \rangle = \int_0^{2\pi} \operatorname{sen} t \cdot \cos t dt = \frac{1}{2} \int_0^{2\pi} \operatorname{sen} 2t dt = \left. \frac{-\cos 2t}{4} \right|_0^{2\pi} = 0$$

- ✓ La ortogonalidad depende del producto escalar que se elige.
- ✓ Dos vectores pueden ser ortogonales con respecto a un producto escalar y no serlo con respecto a otro producto.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Ángulo entre dos vectores. Ortogonalidad

Ejemplo

El vector $\vec{v}=egin{pmatrix}0\\0\\-1\end{pmatrix}\in\mathbb{R}^4$ es ortogonal al subespacio vectorial $\ensuremath{\mathcal{W}}$ generado por

el sistema de vectores $\left\{ \vec{v_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ \vec{v_2} = \begin{pmatrix} 1 \\ -2 \\ 1 \\ -2 \end{pmatrix}, \ \vec{v_3} = \begin{pmatrix} 1 \\ 2 \\ 4 \\ 2 \end{pmatrix} \right\}$

Ejercicio

Sea $\mathcal{B} = \{\vec{w}_1, ..., \vec{w}_r\}$ una base de un subespacio vectorial \mathcal{W} . Demuestra que un vector \vec{v} es ortogonal a \mathcal{W} si y solo si \vec{v} es ortogonal a cada vector de \mathcal{B}

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

15 / 50

Espacio vectorial euclídeo

Bases ortogonales y ortonormales

Definición (Sistema ortogonal)

Sea $(\mathcal{V}, \langle \rangle)$ un espacio vectorial euclídeo. Se dice que un sistema de vectores $\{\vec{v}_1, ..., \vec{v}_m\} \subset \mathcal{V}$ es **ortogonal** si cada vector \vec{v}_i es ortogonal a todos los demás.

Ejemplo

En el espacio \mathbb{R}^3 con el producto escalar usual el sistema

$$\left\{ ec{v}_1 = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}, ec{v}_2 = egin{pmatrix} -1 \ 2 \ -1 \end{pmatrix}, ec{v}_3 = egin{pmatrix} -1 \ 0 \ 1 \end{pmatrix}
ight\}$$

es ortogonal,

$$(1,1,1)\cdot \left(egin{array}{c} -1 \ 2 \ -1 \end{array}
ight) = 0 \hspace{0.5cm} (1,1,1)\cdot \left(egin{array}{c} -1 \ 0 \ 1 \end{array}
ight) = 0 \hspace{0.5cm} (-1,2,-1)\cdot \left(egin{array}{c} -1 \ 0 \ 1 \end{array}
ight) = 0$$

Mariam Cobalea Vico (UMA) EAC, Curso 15/16 Tema 8: Espacios Euclídeos 16 / 5

Bases ortogonales y ortonormales

Teorema

Si un sistema de vectores es ortogonal, entonces es linealmente independiente.

Corolario

En un espacio euclídeo $(\mathcal{V}, \langle \rangle)$ de dimensión n cualquier sistema ortogonal de n vectores no nulos es una base de \mathcal{V} .

Ejemplo

En el espacio \mathbb{R}^3 con el producto escalar canónico el sistema

$$\left\{ ec{v_1} = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}, ec{v_2} = egin{pmatrix} -1 \ 2 \ -1 \end{pmatrix}, ec{v_3} = egin{pmatrix} -1 \ 0 \ 1 \end{pmatrix}
ight\}$$

es una base, ya que es ortogonal.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

17 / 50

Espacio vectorial euclídeo

Bases ortogonales y ortonormales

Definición (Sistema ortonormal)

Sea $(\mathcal{V}, \langle \rangle)$ un espacio vectorial euclídeo. Se dice que un sistema de vectores $\{\vec{u_1}, ..., \vec{u_m}\} \subset \mathcal{V}$ es **ortonormal** si es un sistema ortogonal y cada vector $\vec{u_i}$ es unitario.

Ejemplo

En el espacio \mathbb{R}^3 con el producto escalar usual, el sistema

$$\left\{ \vec{u}_1 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ -1/\sqrt{6} \end{pmatrix}, \vec{u}_3 = \begin{pmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix} \right\}$$

es un sistema ortonormal.

Bases ortogonales y ortonormales

Teorema (Coordenadas en una base ortonormal)

Sea $\mathcal{B} = \{\vec{u}_1, \dots, \vec{u}_n\}$ una base ortonormal del espacio euclídeo $(\mathcal{V}, \langle \ \rangle)$. Entonces la representación de cada vector $\vec{v} \in \mathcal{V}$ en la base \mathcal{B} viene dada por

$$\vec{v} = \langle \vec{v}, \vec{u}_1 \rangle \vec{u}_1 + \langle \vec{v}, \vec{u}_2 \rangle \vec{u}_2 + \dots + \langle \vec{v}, \vec{u}_n \rangle \vec{u}_n$$

• Las coordenadas de un vector \vec{v} en la base ortonormal \mathcal{B} se llaman coeficientes de Fourier de \vec{v} respecto a la base \mathcal{B} .

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

19 / 50

Espacio vectorial euclídeo

Bases ortogonales y ortonormales

Ejemplo (Coordenadas en una base ortonormal)

En el espacio \mathbb{R}^3 con el producto escalar canónico, las coordenadas del vector

$$\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
 respecto a la base ortonormal

$$\mathcal{B} = \left\{ \vec{u_1} = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}, \vec{u_2} = \begin{pmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ -1/\sqrt{6} \end{pmatrix}, \vec{u_3} = \begin{pmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix} \right\}$$

son las siguientes

$$<\vec{v}, \vec{u}_1> = (1, 0, 2) \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \frac{3}{\sqrt{3}}, \qquad <\vec{v}, \vec{u}_2> = (1, 0, 2) \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\2\\-1 \end{pmatrix} = \frac{-3}{\sqrt{6}},$$

$$=(1,0,2)rac{1}{\sqrt{2}}egin{pmatrix} -1 \ 0 \ 1 \end{pmatrix}=rac{1}{\sqrt{2}}$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Proyección ortogonal

Definición (Proyección ortogonal)

Sean \vec{v} y \vec{w} vectores de un espacio euclídeo $(\mathcal{V}, \langle \ \rangle)$, con $\vec{w} \neq 0$. La **proyección ortogonal** de \vec{v} sobre \vec{w} se define como

$$extit{proy}_{ec{w}}ec{v}=rac{\langle ec{v},ec{w}
angle}{\langle ec{w},ec{w}
angle}ec{w}$$

• Si \vec{w} es unitario, entonces $\langle \vec{w}, \vec{w} \rangle = \|\vec{w}\|^2 = 1$, y la proyección de \vec{v} sobre \vec{w} queda

$$proy_{\vec{w}}\vec{v} = \langle \vec{v}, \vec{w} \rangle \vec{w}$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

21 / 50

Espacio vectorial euclídeo

Proyección ortogonal

Ejemplo

En \mathbb{R}^3 se consideran los vectores $\vec{v}=\left(\begin{array}{c}6\\2\\4\end{array}\right),\ \ \ \vec{w}=\left(\begin{array}{c}1\\2\\0\end{array}\right)$

Usando el producto escalar canónico en \mathbb{R}^3 , hallar la proyección ortogonal de \vec{v} sobre \vec{w} .

Solución:

$$\langle \vec{v}, \vec{w} \rangle = 10, \ \langle \vec{w}, \vec{w} \rangle = 5$$

Luego la proyección ortogonal de \vec{v} sobre \vec{w} es

$$proy_{ec{w}}ec{v}=rac{\langle ec{v},ec{w}
angle}{\langle ec{w},ec{w}
angle}ec{w}=rac{10}{5}\left(egin{array}{c}1\2\0\end{array}
ight)=\left(egin{array}{c}2\4\0\end{array}
ight)$$

Proyección ortogonal

Teorema (Proyección ortogonal y distancia)

Sean \vec{v} y \vec{w} vectores de un espacio euclídeo $(\mathcal{V}, \langle \rangle)$, con $\vec{w} \neq 0$. Entonces

$$d(ec{v}, extit{proy}_{ec{w}} ec{v}) < d(ec{v}, extit{c} ec{w}), \qquad ext{si } c
eq rac{\langle ec{v}, ec{w}
angle}{\langle ec{w}, ec{w}
angle}$$

• $proy_{\vec{w}}\vec{v}$ es el múltiplo escalar de \vec{w} más cercano a \vec{v} .

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

23 / 50

Espacio vectorial euclídeo

Proyección ortogonal

Definición (Proyección ortogonal sobre un subespacio \mathcal{W})

Sea $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_r\}$ una base ortogonal de un subespacio vectorial W de un espacio euclídeo $(V, \langle \rangle)$. La **proyección ortogonal** de un vector $\vec{v} \in V$ sobre W, denotada por proy $_W \vec{v}$ viene dada por

$$proy_{w}\vec{v} = \frac{\langle \vec{v}, \vec{w}_{1} \rangle}{\langle \vec{w}_{1}, \vec{w}_{1} \rangle} \vec{w}_{1} + \frac{\langle \vec{v}, \vec{w}_{2} \rangle}{\langle \vec{w}_{2}, \vec{w}_{2} \rangle} \vec{w}_{2} + \dots + \frac{\langle \vec{v}, \vec{w}_{r} \rangle}{\langle \vec{w}_{r}, \vec{w}_{r} \rangle} \vec{w}_{r}$$

Si $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r\}$ es una base ortonormal de \mathcal{W} entonces la expresión de la proyección ortogonal de $\vec{v} \in \mathcal{V}$ sobre \mathcal{W} , se expresa como

$$proy_{\mathcal{W}} \vec{v} = \langle \vec{v}, \vec{u_1} \rangle \vec{u_1} + \langle \vec{v}, \vec{u_2} \rangle \vec{u_2} + \cdots + \langle \vec{v}, \vec{u_r} \rangle \vec{u_r}$$

Ejemplo

Sea el vector
$$\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3$$
 y el subespacio $\mathcal{W} = \mathcal{L}\Big(\vec{u}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} -4/5 \\ 0 \\ 3/5 \end{pmatrix}\Big).$

La proyección ortogonal del vector \vec{v} sobre el subespacio $\hat{\mathcal{W}}$ es

$$\textit{proy}_{\mathcal{W}} \vec{v} = \langle \vec{v}, \vec{u_1} \rangle \vec{u_1} + \langle \vec{v}, \vec{u_2} \rangle \vec{u_2} = 1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + (-\frac{1}{5}) \begin{pmatrix} -4/5 \\ 0 \\ 3/5 \end{pmatrix} = \begin{pmatrix} 4/25 \\ 1 \\ -3/25 \end{pmatrix}$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

25 / 50

Espacio vectorial euclídeo

Proyección ortogonal

Teorema (Proyección ortogonal y distancia)

Sea \mathcal{W} un subespecie vectorial de un espacio euclídeo $(\mathcal{V}, \langle \ \rangle)$, y sea $\vec{v} \in \mathcal{V}$. Entonces para todo $\vec{w} \in \mathcal{W}$, $\vec{w} \neq proy_{\mathcal{W}} \vec{v}$

$$d(\vec{v}, proy_{\mathcal{W}}\vec{v}) < d(\vec{v}, \vec{w})$$

• $proy_{\vec{w}}\vec{v}$ es el vector de W que está a menor distancia de \vec{v} .

 \mathcal{W}

Proyección ortogonal

Definición (Complemento ortogonal)

Sea W un subespacio vectorial de un espacio euclídeo $(V, \langle \rangle)$.

El complemento ortogonal de W, denotado W^{\perp} es

$$\mathcal{W}^{\perp} = \left\{ ec{x} \in \mathcal{V} \mid \langle ec{x}, ec{w}
angle = 0, \; extit{para todo} \; ec{w} \in \mathcal{W}
ight\}$$

Teorema

Sea W un subespacio vectorial de un espacio euclídeo $(V, \langle \rangle)$. Entonces

- \mathcal{W}^{\perp} es subespacio vectorial de \mathcal{V} .
- 3 Si dim V = n, entonces dim $W^{\perp} = n \dim W$.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/1

Tema 8: Espacios Euclídeos

27 / 50

Espacio vectorial euclídeo

Proyección ortogonal

Ejercicio

En \mathbb{R}^4 consideramos el subespacio vectorial $\,\mathcal{W}\,$ generado por el sistema de vectores

$$\{\vec{w}_1 = egin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ \vec{w}_2 = egin{pmatrix} 1 \\ -2 \\ 1 \\ -2 \end{pmatrix}, \ \vec{w}_3 = egin{pmatrix} 1 \\ 2 \\ 4 \\ 2 \end{pmatrix}$$

- lacksquare Halla una base de \mathcal{W}^{\perp} .
- 2 Comprueba el teorema anterior.

Proyección ortogonal

Teorema (Descomposición ortogonal)

Sea \mathcal{W} un subespacio vectorial finito de un espacio euclídeo $(\mathcal{V}, \langle \ \rangle)$. Entonces todo vector $\vec{v} \in \mathcal{V}$ tiene una representación única de la forma

$$\vec{v} = \vec{v}_1 + \vec{v}_2$$

donde $\vec{v}_1 \in \mathcal{W}$ y $\vec{v}_2 \in \mathcal{W}^{\perp}$.

Los vectores \vec{v}_1 y \vec{v}_2 se determinan muy fácilmente pues, respectivamente, son la proyección ortogonal de \vec{v} sobre W y la componente de \vec{v} ortogonal a W.

$$\vec{v}_1 = proy_{\mathcal{W}} \vec{v}$$

$$\vec{v}_2 = \vec{v} - \textit{proy}_{\scriptscriptstyle\mathcal{W}} \vec{v}$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

29 / 50

Espacio vectorial euclídeo

Proyección ortogonal

Ejemplo

Sea el vector
$$\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3$$
 y el subespacio $\mathcal{W} = \mathcal{L}\Big(\vec{u}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} -4/5 \\ 0 \\ 3/5 \end{pmatrix}\Big).$

La proyección ortogonal del vector \vec{v} sobre el subespacio $\hat{\mathcal{W}}$ es

$$\textit{proy}_{\mathcal{W}} \vec{v} = \langle \vec{v}, \vec{u_1} \rangle \vec{u_1} + \langle \vec{v}, \vec{u_2} \rangle \vec{u_2} = 1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + (-\frac{1}{5}) \begin{pmatrix} -4/5 \\ 0 \\ 3/5 \end{pmatrix} = \begin{pmatrix} 4/25 \\ 1 \\ -3/25 \end{pmatrix}$$

La componente de $\, \vec{v} \,$ ortogonal a $\, \mathcal{W} \,$ es

$$\vec{v} - proy_{\mathcal{W}}\vec{v} = \begin{pmatrix} 1\\1\\1 \end{pmatrix} - \begin{pmatrix} 4/25\\1\\-3/25 \end{pmatrix} = \begin{pmatrix} 21/25\\0\\28/25 \end{pmatrix}$$

Existencia de bases ortogonales y ortonormales. Método de Gram-Schmidt

Teorema

Todo espacio euclídeo de dimensión finita tiene una base ortonormal.

La demostración desarrolla el Método de Ortonormalización de

Gram-Schmidt

- **1** En primer lugar, partiendo de una base cualquiera $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ se construye una base ortogonal $\mathcal{B}' = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n\}$
- ② A continuación, normalizando los vectores de \mathcal{B}' , se forma la base ortonormal $\mathcal{B}'' = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

31 / 50

Espacio vectorial euclídeo

Método de Gram-Schmidt

Dada una base $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ de un espacio euclídeo $(\mathcal{V}, \langle \rangle)$.

 $oldsymbol{0}$ Se forma la base $\mathcal{B}'=\{ec{w}_1,ec{w}_2,\ldots,ec{w}_n\},$ donde los $ec{w}_j$ son

$$ec{w}_1 = ec{v}_1$$
 $ec{w}_2 = ec{v}_2 - rac{\left\langle ec{v}_2, ec{w}_1
ight
angle}{\left\langle ec{w}_1, ec{w}_1
ight
angle} ec{w}_1$
 $ec{w}_3 = ec{v}_3 - rac{\left\langle ec{v}_3, ec{w}_1
ight
angle}{\left\langle ec{w}_1, ec{w}_1
ight
angle} ec{w}_1 - rac{\left\langle ec{v}_3, ec{w}_2
ight
angle}{\left\langle ec{w}_2, ec{w}_2
ight
angle} ec{w}_2$
 $ec{ec{v}}_3 = ec{v}_3 - rac{\left\langle ec{v}_3, ec{w}_1
ight
angle}{\left\langle ec{v}_3, ec{w}_2
ight
angle} ec{v}_2$

$$\vec{w}_n = \vec{v}_n - \frac{\langle \vec{v}_n, \vec{w}_1 \rangle}{\langle \vec{w}_1, \vec{w}_1 \rangle} \vec{w}_1 - \frac{\langle \vec{v}_n, \vec{w}_2 \rangle}{\langle \vec{w}_2, \vec{w}_2 \rangle} \vec{w}_2 \dots - \frac{\langle \vec{v}_n, \vec{w}_{n-1} \rangle}{\langle \vec{w}_{n-1}, \vec{w}_{n-1} \rangle} \vec{w}_{n-1}$$

 $\mathcal{B}' = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n\} \ \text{ es una base ortogonal de } \ \mathcal{V}.$

2 Normalizando los vectores de \mathcal{B}' obtenemos la siguiente base ortonormal

$$\mathcal{B}'' = \{\frac{\vec{w}_1}{\|\vec{w}_1\|}, \frac{\vec{w}_2}{\|\vec{w}_2\|}, \dots, \frac{\vec{w}_n}{\|\vec{w}_n\|}\}$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Método de Gram-Schmidt

Ejemplo

Aplique el método de Gram-Schmidt a la siguiente base de \mathbb{R}^3

$$\mathcal{B} = \{ ec{v}_1 = egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}, ec{v}_2 = egin{pmatrix} 1 \ 2 \ 0 \end{pmatrix}, ec{v}_3 = egin{pmatrix} 0 \ 1 \ 2 \end{pmatrix} \}$$

Primero formamos la base ortogonal $\mathcal{B}' = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$

$$\vec{w}_{1} = \vec{v}_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\vec{w}_{2} = \vec{v}_{2} - \frac{\vec{v}_{2} \cdot \vec{w}_{1}}{\vec{w}_{1} \cdot \vec{w}_{1}} \vec{w}_{1} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$\vec{w}_{3} = \vec{v}_{3} - \frac{\vec{v}_{3} \cdot \vec{w}_{1}}{\vec{w}_{1} \cdot \vec{w}_{1}} \vec{w}_{1} - \frac{\vec{v}_{3} \cdot \vec{w}_{2}}{\vec{w}_{2} \cdot \vec{w}_{2}} \vec{w}_{2} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{1/2}{1/2} \cdot \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

$$V_{2} = \vec{v}_{3} + \vec{v}_{3} \cdot \vec{v}_{3} \cdot \vec{w}_{1} + \vec{v}_{3} \cdot \vec{w}_{2} \cdot \vec{w}_{2} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

$$V_{3} = \vec{v}_{3} \cdot \vec{v}_{3} \cdot \vec{w}_{1} \cdot \vec{w}_{1} + \vec{v}_{3} \cdot \vec{w}_{2} \cdot \vec{w}_{2} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

$$V_{3} = \vec{v}_{3} \cdot \vec{v}_{3} \cdot \vec{w}_{1} \cdot \vec{w}_{1} + \vec{v}_{3} \cdot \vec{w}_{2} \cdot \vec{w}_{2} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

$$V_{3} = \vec{v}_{3} \cdot \vec{v}_{3} \cdot \vec{w}_{1} \cdot \vec{w}_{1} + \vec{v}_{3} \cdot \vec{w}_{2} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

$$V_{3} = \vec{v}_{3} \cdot \vec{v}_{3} \cdot \vec{w}_{1} \cdot \vec{w}_{1} + \vec{v}_{3} \cdot \vec{w}_{2} \cdot \vec{w}_{2} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

$$V_{3} = \vec{v}_{3} \cdot \vec{v}_{3} \cdot \vec{w}_{1} \cdot \vec{w}_{2} + \vec{v}_{3} \cdot \vec{w}_{2} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

$$V_{3} = \vec{v}_{3} \cdot \vec{v}_{3} \cdot \vec{w}_{1} + \vec{v}_{3} \cdot \vec{w}_{2} + \vec{v}_{3} \cdot \vec{w}_{2} + \vec{v}_{3} \cdot \vec{w}_{3} + \vec{v}_{3}$$

Espacio vectorial euclídeo

Existencia de bases ortogonales y ortonormales. Método de Gram-Schmidt

Luego

$$\mathcal{B}' = \{ ec{w}_1 = egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}, ec{w}_2 = rac{1}{2} egin{pmatrix} -1 \ 1 \ 0 \end{pmatrix}, ec{w}_3 = egin{pmatrix} 0 \ 0 \ 2 \end{pmatrix} \}$$

Normalizando cada vector de la base \mathcal{B}' obtenemos $\mathcal{B}'' = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$

$$\vec{u}_{1} = \frac{1}{\|\vec{w}_{1}\|} \vec{w}_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

$$\vec{u}_{2} = \frac{1}{\|\vec{w}_{2}\|} \vec{w}_{2} = \frac{1}{1/\sqrt{2}} \cdot \frac{1}{2} \begin{pmatrix} -1\\1\\0 \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} -1\\1\\0 \end{pmatrix}$$

$$\vec{u}_{3} = \frac{1}{\|\vec{w}_{3}\|} \vec{w}_{3} = \frac{1}{2} \begin{pmatrix} 0\\0\\2 \end{pmatrix} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Proyección ortogonal

Ejercicio

En el espacio euclídeo \mathbb{R}^4 consideramos el subespacio vectorial $\mathcal L$ generado por el sistema de vectores

$$\{(1,1,1,1),(1,-2,1,-2),(1,0,1,0),(3,-2,3,-2)\}$$

- lacktriangle Define el complemento ortogonal de $\mathcal L$
- $oldsymbol{2}$ Estudia si \mathcal{L}^{\perp} es un subespacio vectorial y, en caso afirmativo, halla una base.
- ① Dado el vector $\vec{v}=(2,0,1,0)$, halla vectores $\vec{v}_1\in\mathcal{L}$ y $\vec{v}_2\in\mathcal{L}^\perp$ tales que $\vec{v}=\vec{v}_1\oplus\vec{v}_2$.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

35 / 50

Espacio vectorial euclídeo

Proyección ortogonal

Ejercicio

En el espacio vectorial euclídeo \mathbb{R}^3 se consideran los subespacios

$$\mathcal{W}_1 = \left\{ \vec{x} \in \mathbb{R}^3 \mid \begin{array}{ccc} x_1 - x_2 & = & 0 \\ 2x_2 - x_3 & = & 0 \end{array} \right\}, \quad \mathcal{W}_2 = \left\{ \vec{x} \in \mathbb{R}^3 \mid x_1 + ax_2 + bx_3 = 0 \end{array} \right\}$$

- Calcula los valores de a y b para que W_1 sea ortogonal a W_2 .
- 4 Halla una base \mathcal{B}_1 de \mathcal{W}_1 y otra base \mathcal{B}_2 de \mathcal{W}_2 tales que $\mathcal{B}_1 \cup \mathcal{B}_2$ sea una base ortonormal de \mathbb{R}^3 .

Definiciones (Aplicación ortogonal, Matriz ortogonal)

- Una aplicación lineal se dice ortogonal si conserva el producto escalar.
- Se dice que una matriz Q es **ortogonal** si $Q^tQ=I$. Es decir, $Q^t=Q^{-1}$.

Teorema

Sea $\mathcal{B} = \{\vec{u}_1, \dots, \vec{u}_n\}$ una base ordenada de \mathbb{R}^n y sea P la matriz del cambio de base de \mathcal{B} a la base canónica \mathcal{C} . Entonces \mathcal{B} es una base ortonormal si y sólo si P es una matriz ortogonal.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

37 / 50

Diagonalización ortogonal

Ejemplo

La matriz ortogonal $Q=\left(\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right)$ es la matriz del cambio de la base

ortonormal $\mathcal{B}=\left\{ ec{u}_1=rac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, ec{u}_2=rac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}
ight\}$ a la base canónica.

Definición (Matriz diagonalizable ortogonalmente)

Se dice que una matriz A es diagonalizable ortogonalmente si existe una matriz ortogonal P tal que $P^tAP = D$.

Ejemplo

Sean las matrices

Trices
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

La matriz A es diagonalizable ortogonalmente, ya que

$$P^{t}AP = D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

39 / 50

Diagonalización ortogonal

Teorema

Una matriz A de orden n es diagonalizable ortogonalmente si y solo si A tiene un sistema de n vectores propios ortonormales.

Teorema

Si una matriz A es diagonalizable ortogonalmente, entonces es simétrica.

Ejemplo (Diagonalización ortogonal)

$$A = \left(\begin{array}{ccc} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array}\right)$$

Valores propios

 $\lambda_1=2,\,\,$ multiplicidad 2 $\lambda_2=5,\,\,$ multiplicidad 1

Sus **subespacios propios** son:

$$\mathcal{U}_2=\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\}=\mathcal{L}\Big[ec{v}_1=egin{pmatrix}1\-1\0\end{pmatrix},\ ec{v}_2=egin{pmatrix}0\-1\1\end{pmatrix}\Big]$$

$$\mathcal{U}_5 = \{(x,y,z) \in \mathbb{R}^3 \mid x-z=0 \land y-z=0\} = \mathcal{L}\Big[\vec{v}_3 = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}\Big]$$

Diagonalización ortogonal

Ejemplo (cont.)

$$A = \left(\begin{array}{ccc} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array}\right)$$

Base de vectores propios de A

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix} \qquad \left\{ \vec{v_1} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \vec{v_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

- Podemos observar que \vec{v}_3 es ortogonal a \vec{v}_1 y a \vec{v}_2 ; pero \vec{v}_1 no es ortogonal a \vec{v}_2 .
- Ortogonalizando la base de \mathcal{U}_2 , obtenemos la base

$$ec{w}_1 = egin{pmatrix} 1 \ -1 \ 0 \end{pmatrix}, \ ec{w}_2 = egin{pmatrix} 1 \ 1 \ -2 \end{pmatrix}$$

• Ahora, la base de vectores propios $\{\vec{w}_1, \vec{w}_2, \vec{v}_3\}$ ya es ortogonal.

Ejemplo (cont.)

Base de vectores propios ortogonales de
$$A$$

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

$$\left\{ \vec{w}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \ \vec{w}_2 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \ \vec{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

Normalizando nos queda una base de vectores propios ortonormal

$$\left\{ \vec{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \vec{u}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \vec{u}_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

43 / 50

Diagonalización ortogonal

Ejemplo (cont.) Así, obtenemos la diagonalización ortogonal de la matriz simétrica A,

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix} = P^{t}AP = P^{t} \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix} P$$

donde P es la matriz ortogonal siguiente

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

- \triangleright En este ejemplo ha sido decisivo que el vector propio \vec{v}_3 correspondiente al valor propio $\lambda_2 = 5$ fuese **ortogonal** a los vectores propios \vec{v}_1 y \vec{v}_2 correspondientes a $\lambda_1 = 2$.
- > El siguiente teorema muestra que esta **ortogonalidad** no es casual, sino que es una consecuencia de la **simetría** de A.

Teorema

Si una matriz A es simétrica, entonces los vectores propios que pertenecen a subespacios propios distintos son ortogonales.

Mariam Cobalea Vico (UMA)

Tema 8: Espacios Euclídeos

Diagonalización ortogonal

Teorema

Sea $A \in \mathcal{M}_n(\mathbb{R})$ una matriz simétrica. Entonces:

- A sólo tiene valores propios reales.
- 2 Si un valor propio λ tiene orden de multiplicidad k, la dimensión del subespacio propio \mathcal{U}_{λ} es k.

Corolario

Toda matriz simétrica $A \in \mathcal{M}_n(\mathbb{R})$ es diagonalizable ortogonalmente.

Procedimiento para diagonalizar ortogonalmente una matriz simétrica A

- Se encuentra una base para cada subespacio propio de A.
- ② Se aplica el proceso de Gram-Schmidt a cada una de estas bases para obtener una base ortonormal de cada subespacio propio.
- 3 Se forma una matriz P cuyas columnas son los vectores de las bases ortonormales obtenidas.

Esta matriz diagonaliza ortogonalmente a la matriz A.

$$P^tAP = D$$

Mariam Cobalea Vico (UMA)

EAC. Curso 15/1

Tema 8: Espacios Euclídeos

47 / 50

Diagonalización ortogonal

Ejemplo

Diagonaliza ortogonalmente la matriz

$$A = \left(\begin{array}{ccc} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array}\right)$$

Solución:

- Se encuentra una base para cada subespacio propio de A.

 - Los subespacios propios son:

$$\mathcal{U}_2 = \mathcal{L}\Big[ec{v_1} = egin{pmatrix} -1 \ 1 \ 0 \end{pmatrix}, \ ec{v_2} = egin{pmatrix} -1 \ 0 \ 1 \end{pmatrix}\Big] \qquad \mathcal{U}_8 = \mathcal{L}\Big[ec{v_1} = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}\Big]$$

Solución (cont.):

② Se aplica el proceso de Gram-Schmidt a cada una de estas bases para obtener una base ortonormal de cada subespacio propio.

$$\mathcal{U}_2=\mathcal{L}\Big[ec{u}_1=rac{1}{\sqrt{2}}egin{pmatrix} -1\ 1\ 0 \end{pmatrix}, \ ec{u}_2=rac{1}{\sqrt{6}}egin{pmatrix} -1\ -1\ 2 \end{pmatrix}\Big] \qquad \mathcal{U}_8=\mathcal{L}\Big[ec{u}_3=rac{1}{\sqrt{3}}egin{pmatrix} 1\ 1\ 1 \end{pmatrix}\Big]$$

Se forma una matriz P cuyas columnas son los vectores de las bases ortonormales obtenidas.

$$P = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

Se puede comprobar que, efectívamente, $P^tAP = D = diag(2, 2, 8)$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 8: Espacios Euclídeos

49 / 50

Bibliografía

Álgebra lineal J. de Burgos (Ed. McGraw Hill)

Álgebra lineal J.B. Fraleigh y R.A. Beauregard (Ed. Addison Wesley)

Álgebra lineal con aplicaciones y Mathlab

B. Kolman y D. Hill (Ed. Prentice Hall)

Algebra lineal y sus aplicaciones David C. Lay (Ed. Pearson)

Álgebra lineal R. Larson, B.H. Edwards y D.C. Falvo (Ed. Pirámide)

Álgebra lineal con aplicaciones G. Nakos y D. Joyner (Ed. Thomson)

Álgebra lineal y sus aplicaciones G. Strang (Ed. Addison Wesley)

Problemas de Álgebra

A. de la Villa (Librería I.C.A.I. Univ. Pontifícia de Comillas)