

第3章 直流-直流变流电路

- 3.1 概述
- 3.2 单管非隔离变换电路
- 3.3 单管隔离式变换电路
- 3.4 多管变换电路
- 3.5 双向DC-DC变换器
- 3.6 软开关变换器

本章小结

●二极管选型

- ◆ 在低压场合优先选肖特基二极管; 电压较高(>?V)选超 快恢复或快恢复二极管
- ●二极管的平均电流和有效电流

$$I_{\rm D} = I_{\rm o} T_{\rm OF} / T = I_{\rm o} (1 - D)$$
 $I_{\rm Drms} = \sqrt{\frac{1}{T} \int_0^{T_{\rm OF}} I_{\rm o}^2 dt} = I_{\rm o} \sqrt{(1 - D)}$

 \blacksquare 二极管的电压满足(2倍裕量): $U_{DR}>=2U_{max}$

滤波电感设计

- \bullet 为保证电感在给定负载条件下电感电流连续,有 $I_{\text{omin}}=I_{\text{G}}$
- ◆ 将I_{omin}代入I_G表达式,即得到电感L:

$$L = \frac{U_{i}TD(1-D)}{2I_{omin}}$$

- 如果临界连续电流取得过小,则电感过大;电感小、则电流纹波大
- 经验取值: $I_G = (1/5 \sim 1/3)I_{\text{omax}}$
- 轻载时必定工作在断续模式
- $\Delta i_{\rm L}$ (L也可以按照 $\Delta i_{\rm L}$ 的表达式计算) $\Delta i_{\rm L} = 10\% \sim 15\% I_{\rm omax}$

滤波电容设计

- 电容电流近似为电感电流的脉动部分
- ◆ 电容电流在1/2周期内充 电,在1/2周期内放电
- ◆ 所以, 半周期电容电流:

$$\Delta I_{\rm c} = \frac{\Delta i_{\rm c}}{4} = \frac{\Delta i_{\rm L}}{4} = \frac{U_{\rm i}TD(1-D)}{4L}$$

◆ 电容纹波电压

$$\Delta U_{c} = \frac{1}{C} \int_{0}^{T/2} \Delta I_{c} dt = \frac{1}{C} \frac{U_{i}T}{4L} D(1-D) \frac{T}{2}$$
$$= \frac{U_{i}}{8LCf^{2}} D(1-D)$$

●工作原理

(电流连续模式, CCM)

◆ 当Q导通时

$$U_{\rm i} = L \frac{di_{\rm L}}{dt} \qquad U_{\rm i} = L \frac{i_{\rm Lmax} - i_{\rm Lmin}}{T_{\rm ON}}$$

- 电感电流线性增长
- ◆ 电容维持负载电流(电容足够大)

●工作原理

(电流连续模式, CCM)

◆ 当Q截止时

$$U_{\rm i} - U_{\rm o} = L \frac{di_{\rm L}}{dt} \quad U_{\rm i} - U_{\rm o} = L \frac{i_{\rm Lmin} - i_{\rm Lmax}}{T_{\rm OFF}}$$

◆ 电感电流线性减小

+ 联立等式,求解

$$\begin{cases} U_{\rm i} = L \frac{i_{\rm Lmax} - i_{\rm Lmin}}{T_{\rm ON}} \\ U_{\rm i} - U_{\rm o} = L \frac{i_{\rm Lmin} - i_{\rm Lmax}}{T_{\rm OFF}} \end{cases}$$

◆ 根据公式可知,输出电压大 于输入电压,属升压电路

$$U_{\rm o} = \frac{T_{\rm ON} + T_{\rm OFF}}{T_{\rm OFF}} U_{\rm i} = \frac{U_{\rm i}}{1 - D}$$

5.1.2 升压斩波电路

●电感电流断续工作方式

- + T_{ON} ,L储存能量
- ◆ T_{OFF}',L释放能量
- T_{OFF} - T_{OFF} , i_L =0

● 升压式变换器标幺输出特性

- ◆ 图中A部分为电流连续条件
- ◆ 图中B部分为电流临界连续条件
- ◆ 图中C部分为电流断续条件
- + 当 I_o =0时,输出开路, U_i/U_o =0,即 U_o 无穷大,会损坏器件

3.3 单管隔离式变换电路

- 3.3.1 反激电路
- 3.3.2 正激电路

消费电子-- 笔记本电源适配器

单相220V交流变换为20V直流

两级电能变换:

- 1、交流变直流
- 2、直流变直流

消费电子-电动汽车充电

电池电压 250V~500V

两级电能变换:

- 1、交流变直流
- 2、直流变直流

●重点掌握

- ◆ 能正确画出flyback变换器电路构成图;
- ◆ 掌握flyback变换器基本工作原理和特点
- ◆ 掌握分析方法,CCM模式下的公式推导和关键波形, DCM模式下的关键波形
- ◆ CCM和DCM两种方式下外特性
- ◆ 设计临界连续电感,会判断在某给定参数下的工作方式
- ◆ 器件承受的电流电压值

● Boost-Buck升降压变换器

- 电路构成,注意副边电压为负值
- ◆ 当Q导通时,电感储能,二极管截止,输出由滤波电容 供电。
- 当Q截止时,电感产生感应电势维持原电流方向不变, 迫使二极管导通,电感电流向负载供电,同时也向电容 充电,输出负电压。

(a)

● Q ON, 电感电流线性上升

$$L\frac{i_{\rm L\,max} - i_{\rm L\,min}}{DT} = U_{\rm i}$$

● Q OFF, 电感电流线性下降

$$L\frac{i_{\text{Lmin}} - i_{\text{Lmax}}}{(1-D)T} = U_{\text{o}}$$

3.3.1 反激电路

● 整理两式

$$U_{o} = \frac{DU_{i}}{D-1}$$

- D < 0.5时, $U_0 < U_i$,电路为降压型
- D>0.5时, $U_0>U_1$,电路为升压型

●利用电感伏秒平衡关系??

- 单端反激(flyback)变换器
 - ◆ 是隔离的Buck-Boost变换器

- ◆ 磁通Φ=BS
- $u=L \cdot di/dt = N \cdot d\Phi/dt$
- ◆ 磁通连续性:Φ不能突变
- ◆ 磁饱和,磁复位

●电路构成及工作原理

中 由隔离变压器(耦合电感)T,晶体管Q,二极管D和滤波电容C组成。

◆ Q ON时: D截止, 电感储能

◆ Q OFF时: D导通

◆ 能量不能突变:

磁通不能突变 能量不能突变

 $i_1 = i_m + i_{p1}$ T

●连续模式 - 指磁通连续/电感能量连续

• Q ON时:

晶体管导通时,二极管截止

隔离变压器作为电感运行

电感储能,负载由电容提供能量

$$U_{\rm i} = L_{\rm l} \frac{di_{\rm L1}}{dt}$$

$$\Delta i_{\rm l} = (i_{\rm lmax} - i_{\rm lmin}) = \frac{U_{\rm i}}{L_{\rm l}} T_{\rm ON}$$

L₁: 原边等效激磁电感

●连续模式 - 指磁通连续/电感能量连续

◆ Q OFF时:

晶体管截止时 感应电动势决定二极管导通 i_2 维持磁通不能突变 电感储能向电容和负载提供

$$-U_{o} = L_{2} \frac{di_{L2}}{dt}$$

$$\Delta i_2 = (i_{2 \text{max}} - i_{2 \text{min}}) = \frac{U_o}{L_2} T_{OF}$$

L2: 副边等效激磁电感

●连续模式 – 指磁通连续/电感能量连续

在稳态时,转换瞬间磁通连续:

$$i_{1\max}N_1 = i_{2\max}N_2 \pi i_{1\min}N_1 = i_{2\min}N_2$$

- $\bullet \quad \mathbb{P} \quad \Delta i_1 N_1 = \Delta i_2 N_2$
- 此外,电感与匝数的平方成正比

$$L_1 = (\frac{N_1}{N_2})^2 L_2$$

定义
$$n=N_2/N_1$$

$$U_o = \frac{Dn}{1-D} \cdot U_i$$

• 完整的波形分析

电流连续时开关管和二极管的电压应力定量分析

●电流断续模式

- ◆ 反激式变换器中的电感变 压器起着电感和变压器的 双重作用。
- 具有电感电流连续、临界 连续和断续3种工作模式。 (磁通的连续性)
- 电流连续时电压关系

$$U_{o} = \frac{T_{ON}}{T_{OF}} \cdot \frac{N_{2}}{N_{1}} \cdot U_{i}$$

$$U_{o} = \frac{Dn}{1 - D} \cdot U_{i} \qquad n = N_{2}/N_{1}$$

●电流断续模式

◆ 输出平均电流

$$I_{\rm o} = \frac{1}{T} \cdot \frac{\Delta i_2}{2} \cdot T_{\rm R}$$
 式中, $T_{\rm R}(< T_{\rm OF})$ 为次级电流流通时间

◆ 晶体管关断时电路关系式

$$U_{\rm o} = L_2 \frac{\Delta i_2}{T_{\rm R}}$$
 $T_{\rm R} = \frac{L_2}{U_{\rm o}} \Delta i_2$

代入化简

$$I_{o} = \frac{\Delta i_{1}^{2}}{2Tn^{2}} \cdot \frac{L_{2}}{U_{o}} = \frac{\Delta i_{1}^{2} L_{1}}{2TU_{o}}$$

- ●电流断续模式
 - \bullet 在Q导通时,有 Δi_1 的电路方程

$$\Delta i_1 = \frac{U_i}{L_1} T_{\rm ON}$$

◆ 所以输出平均电流

$$I_{o} = \frac{U_{i}}{2L_{1}}TD^{2} \cdot \frac{U_{i}}{U_{o}}$$

如果以输出电压作为变量

$$U_{\rm o} = \frac{U_{\rm i}^2}{2L_{\rm l}I_{\rm o}}TD^2 = \frac{U_{\rm i}^2D^2}{2L_{\rm l}fI_{\rm o}}$$

●电流断续模式

◆ 电流断续时,输出电压

$$U_{o} = \frac{U_{i}^{2}}{2L_{1}I_{o}}TD^{2} = \frac{U_{i}^{2}D^{2}}{2L_{1}fI_{o}}$$

- ◆ 当负载电阻加大,I。减小时,输出电压升高
- 当输出开路时,输出无穷大,将损坏电路
- ◆ 所以,反激电路不能开路输出

●电流断续时的波形分析

●临界连续模式

◆ 电流临界连续时, 其模式是连续和断续的特例

$$I_{\rm G} = I_{\rm o} = \frac{U_{\rm i}}{2L_{\rm l}n}TD^2 \frac{1-D}{D} = \frac{U_{\rm i}}{2L_{\rm l}n}TD(1-D)$$

◆ 当D=0.5时,有最大临界电流

$$I_{\text{Gmax}} = \frac{U_{\text{i}}T}{8L_{\text{l}}n}$$

- ◆ 所以,临界电流也等于
- ◆ 同时,断续电流也等于

$$I_{\rm G} = 4I_{\rm Gmax}D(1-D)$$

$$I_{\rm o} = 4nI_{\rm Gmax}D^2 \cdot \frac{U_{\rm i}}{U_{\rm o}}$$

●电流临界连续时的波形分析

●单端反激电路的标幺外特性

- ◆ 标幺特性,相对概念
- 包含三种工作模态的电路外特性
- + 中间为临界模态, 右边为连续, 左边为断续
- 在电流断续时,当输出电压不变时,负载变化较大时, 占空比也会有较大变化,工 作不稳定。

●参数选择

- ◆ 功率管Q, 二极管D
- ◆ 变压器激磁电感L: 由临界连续负载电流决定
- \bullet 电容: T_{ON} 内,电容放电与Boost类似
- ◆ 电路设计时一般已知输入和输出电压,输出功率
- ◆ 基本反激变换器的效率一般为75%
- + 输入电流平均值为

$$I_{\rm i} = \frac{P_{\rm o}}{\eta U_{\rm i}}$$

●功率管和二极管的电流定额

+ 当电感电流连续时,功率管流过电流峰值为

$$I_{\text{QP}} = I_{\text{ip}} = \frac{I_{\text{i}}}{D} + \frac{\Delta i_{\text{l}}}{2} = \frac{P_{\text{o}}}{\eta D U_{\text{i}}} + \frac{U_{\text{i}} T}{2 L_{\text{l}}} D$$

◆ 二极管电流峰值即次级峰值电流

$$I_{\rm DP} = I_{\rm 2p} = \frac{I_{\rm o}}{1 - D} + \frac{\Delta i_2}{2} = \frac{I_{\rm o}}{1 - D} + \frac{U_{\rm o}T}{2L_2}(1 - D)$$

+ 当电感电流断续时,输入电流峰值/

$$I_{\rm QP} = I_{\rm ip} = \frac{2P_{\rm o}}{\eta DU_{\rm i}}$$

次级峰值电流

$$I_{2p} = \frac{I_{ip}}{n} = \frac{2P_{o}}{nDU_{i}\eta}$$

相同输出功率,连续比断续的电流峰值小很多

大输出功率

• 变压器励磁电感的计算

电流临界连续时,临界电流为

$$I_{G} = \frac{U_{i}T}{2nL_{1}}D(1-D) = \frac{U_{i}^{2}T_{ON}^{2}f}{2L_{1}U_{o}}$$
$$= \frac{(1-D)^{2}}{2n^{2}fL_{1}}U_{o}$$

 \bullet 设计变换器在整个工作范围内电流连续, $I_{G}=I_{omin}$

$$L \ge \frac{U_{i}^{2} T_{\text{ONmin}}^{2} f}{2I_{\text{omin}} U_{\text{o}}} \quad (U_{i} = U_{\text{imax}})$$

 \bullet 设计变换器完全工作于断续状态, $I_{G}=I_{omax}$

$$L \leq \frac{U_{i}T_{ONmax}^{2}f}{2I_{omax}U_{o}} (U_{i}=U_{imin})$$

● 设计在断续模式时

- ◆ 优点: 励磁电感小; 功率管Q和二极管D的开关损耗小
 - 二极管D无反向恢复问题
- 缺点: 电流峰值大,功率管电流定额大;占空比变化范围大
- ◆ 电流断续状态一般用于负载变化很小的场合

● 功率器件的耐压值

功率管上的电压

$$U_{ce} = U_{i} + \frac{U_{o}}{n} = U_{i} + \frac{D}{1 - D}U_{i} = \frac{U_{i}}{1 - D}$$

+ 二极管上的电压

$$U_{\rm DR} = nU_{\rm i} + U_{\rm o} = \frac{U_{\rm o}}{D}$$

● Flyback特点:

- ◆ 简单(**T**兼作**L**),输入电压范围宽,输入输出电流纹波都大,功率管电压应力高
- ◆ 适用于小功率应用
- 单 单端、反激的概念
- ◆ 功率管 ON/OFF 瞬间的能量守恒和磁通连续
- 利用伏秒平衡的分析方法

反激变换器,占空比D=0.3,分别作出CCM和DCM下的波形图,注明关键参数关系。

波形包括: PWM信号、 i_1 、 i_2 、 u_1 、 u_{ce} 、 u_D 、 φ

提示: φ 要考虑剩磁 B_r

●重点掌握

- ◆ 能正确画出forward变换器电路构成图;
- ◆ 掌握forward变换器基本工作原理和特点
- ◆ 掌握分析方法,CCM模式下的公式推导和关键波形, DCM模式下的关键波形
- ◆ CCM和DCM两种方式下外特性
- ◆ 设计临界连续电感,会判断在某给定参数下的工作方式
- ◆ 器件承受的电流电压值

●电路构成及工作原理

- \bullet 变压器T、晶体管Q、整流二极管 D_1
- ϕ 续流二极管 D_3 和滤波电感L和滤波电容C
- ◆ 此外还有磁复位绕组N₃和磁复位二极管D₂

●工作模态分析,当Q导通时:

- ◆ 变压器 "•" 端为正端,副边形成功率通路
- $u_2=n*u_i$ ($n=N_2/N_1$ 为变比)
- ◆ D₂反压截止
- ◆ D₃反压截止

●工作模态分析,当Q导通时:

- 中 在晶体管导通时,输入电流包含负载电流折射分量 i_2 '和磁化电流分量 $i_{\rm m}$ $i_1 = i_2' + i_{\rm m}$
- ◆ 磁化电流将能量储存在变压器磁芯中

●工作模态分析,当Q截止时:

- ◆ N₁绕组电流突降至0
- Φ Q截止时,若没有激磁电流流通回路,会造成过大的电压应力 $L_{m}di_{m}/dt$,功率器件Q过压击穿
- ◆ 解决办法: 变压器额外加上磁复位绕组N₃和二极管D₂

- ●工作模态分析,当Q截止时:
 - ◆ 变压器 "•" 端为负端, D₁截止
 - ◆ D₃导通,为电感电流提供续流通路

N_3 绕组的设计:

◆ 晶体管导通时,磁化铁芯磁通增量

$$\Phi_{\rm m} - \Phi_{\rm 1} = \Delta \Phi_{\rm ON} = \frac{U_{\rm i} T_{\rm ON}}{N_{\rm 1}}$$

◆ 晶体管截止时,磁化铁芯去磁,磁通变化量

$$\Phi_{1}^{'} - \Phi_{m} = -\Delta \Phi_{OF}^{'} = -\frac{U_{i}T_{R}}{N_{3}} \qquad \bigcirc$$

- $\Phi_{1} = \Phi_{1}, \quad \text{R}\Delta\Phi_{OF} = \Delta\Phi_{ON}$
- 联立求解

$$T_{\rm R} = \frac{N_3}{N_1} T_{\rm ON}$$

N_3 绕组的设计:

 \bullet 复位时间 T_R 应小于 T_{OF} ,不然磁芯会饱和

$$T - T_{\text{ON}} = T_{\text{OF}} \ge T_{\text{R}}$$

◆ 将T_R代入

$$T_{\rm R} = \frac{N_3}{N_1} T_{\rm ON}$$
 $T_{\rm ON} = D < \frac{N_1}{N_1 + N_3}$

◆ 晶体管关断时,最大电压为

$$u_{\rm ce} = U_{\rm i} + \frac{N_1}{N_3} U_{\rm i}$$

◆ 同理可求出

 D_1, D_2, D_3 的电压应力

- N_3 绕组的设计:
- 由于:

$$\frac{T_{\rm ON}}{T} = D < \frac{N_1}{N_1 + N_3}$$

- 所以:
 - + 当 N_3 < N_1 时,D可以大于0.5,但晶体管承受耐压也提高
 - + 所以通常 $N_3=N_1$ 时,D<0.5,以保证磁芯复位
 - + 为了使从将导通期间存储于磁场中的能量全部返回电源, N_1 必须与 N_3 紧密耦合,通常采用并绕

● 电流连续时的工作波形和应力分析

输出电流连续

●电流断续时的工作波形和应力分析

输出电流断续

正激变换器如下图所示,电感电流连续。分析Q, D_1 和 D_3 的电压应力(画出 u_{ce} 、 u_{D1} 、 u_{D3} 和 u_b 波形);

占空比**D=0.3**

表 5-1 各种不同的间接直流变流电路的比较

电路	优点	缺点	功率范围	应用领域
正激	电路较简单,成本低, 可靠性高,驱动电路简 单	变压器单向激磁,利用 率低	几百w~几kw	各种中、小功率电 源
反激	电路非常简单,成本很 低,可靠性高,驱动电 路简单	难以达到较大的功率, 变压器单向激磁,利用 率低	Лw~Л+w	小功率电子设备、 计算机设备、消费 电子设备电源。
全桥	变压器双向励磁,容易 达到大功率	结构复杂,成本高,有直通 问题,可靠性低,需要复杂 的多组隔离驱动电路		大功率工业用电源、 焊接电源、电解电 源等
半桥	变压器双向励磁,没有 变压器偏磁问题,开关 较少,成本低	有直通问题,可靠性低, 需要复杂的隔离驱动电 路	几百w~几kw	各种工业用电源,计 算机电源等
推挽	变压器双向励磁,变压器 一次侧电流回路中只有一 个开关,通态损耗较小, 驱动简单	有偏磁问题	几百w~几kw	低输入电压的电源

- ●直接直流变流电路包括6种基本斩波电路、2种复合斩波电路及多相多重斩波电路,其中最基本的是降压斩波电路和升压斩波电路两种。
- 常见的间接直流变换电路可以分为单端和双端电路两大类,单端电路包括正激和反激两类,双端电路包括全桥、半桥和推挽三类,每一类电路都可能有多种不同的拓扑形式或控制方法。