1. (20 pts) Given F = { $a \rightarrow b$, $b \rightarrow c$, $c \rightarrow \{d, e\}$ }. What is $\{b\}$ + (i.e. the closure of b)? Show your steps to achieve the answer.

$$\{b\}+ = \{b\}$$

= $\{b,c\} = \{b,c,d,e\}$

2. (20 pts) Given F = { $a \rightarrow b$, $c \rightarrow d$, $b \rightarrow \{d, e\}$, $\{a, b\} \rightarrow c$ }. What is $\{a\}$ + (i.e. the closure of a)? Show your steps to achieve the answer.

$${a}+ = {a}$$

= ${a,b}$
= ${a,b,d,e}$
= ${a,b,d,e,c}$

- 3. (30 pts) Given R(a, b, c, d, e) with two keys, (a,b) and c, and given the following set of functional dependencies $F = \{ \{a, b\} \rightarrow \{c, d, e\}, c \rightarrow \{a, b, d\} \}$.
 - 1. Is R in 1NF? Justify your answer.
 - There is not enough information to determine it. There is no semantics given for the the relation. I have no idea if an attribute is a multi-value attribute or not. I assume it is in 1NF.
 - 2. Is R in 2NF? Justify your answer.
 - 1. Non-primary key attribute 'd' is fully functional dependent on {a,b} or {c}. Non-primary key attribute 'e' is fully functional dependent on {a,b} so R is in 2NF. Assuming R is already in 1NF.
 - 3. Is R in 3NF? Justify your answer.
 - Every FD's left side is a superkey so this passes the test for 3NF, so R is in 3NF. Also, no non-prime attribute functionally assuming R is already in 1NF determines a non-prime attribute.

- 4. (30 pts) Given R(a, b, c, d, e) with a key (a,b) and given the following set of functional dependencies $F = \{ a \rightarrow b, \{a, b\} \rightarrow c, b \rightarrow \{d, e\} \}$.
 - 1. Is R in 1NF? Justify your answer.
 - Given no information about the semantics of the columns. I
 will not be able to determine R is in 1NF or not. I will assume
 R is in 1NF.
 - 2. Is R in 2NF? Justify your answer.
 - 1. Non prime attribute d is have a partial functional depedency. It is being determined by part of a prime attribute. This violates the rule for 2NF. Attribute d also have this same problem. So R is not in 2NF.
 - 3. Is R in 3NF? Justify your answer.
 - 1. For the FD a->b a is not a superkey so violates the rule to be 3NF. Also in order to be in 3NF, R must be in 2NF first and R is not in 2NF so is not in 3NF as well.