Формула замены переменных

Утв. 1. Пусть \mathcal{U} - открытое множество в \mathbb{R}^n , тогда \mathcal{U} - это объединение не более, чем счётного набора замкнутых кубов, которые пересекаются лишь по границе:

$$\mathcal{U} = \bigcup_m K_m, \ K_m$$
 - замкнутый куб, $\forall i,j, \ K_i \cap K_j \subset \partial K_i \cup \partial K_j$

Утв. 2. В определении множества меры нуль по Лебегу произвольные бруски можно заменить кубами.

Утв. 3. Пусть \mathcal{U} - открытое множество $\subset \mathbb{R}^n$, $f: \mathcal{U} \to \mathbb{R}^k$, $k \geq n$ - локально Липшицева, то есть

$$\forall$$
 I - замкнутый брус $\subset \mathcal{U}$, $\exists L > 0 : \forall x, y \in I$, $||f(x) - f(y)|| \leq L \cdot ||x - y||$

Тогда для всякого множества $E \subset \mathcal{U}$ меры нуль множество f(E) является множеством меры нуль.

Возьмем множество $E \subset \mathcal{U}$ - множество меры нуль по Лебегу. Мы знаем, что $\mathcal{U} = \cup_m K_m$ - счетное объединение кубов. Тогда множество E можно представить, как: $E = \cup_m E_m$, где $\forall m, E_m = K_m \cap E$ (эти множества вполне могут быть пустыми). Тогда: $f(E) = \cup_m f(E_m)$ (образ E это объединение образов) \Rightarrow достаточно доказать, что $\forall m, f(E_m)$ - множество меры нуль по Лебегу. Будем работать с каждым таким E_m . Теперь считаем, что $K = K_m$ - замкнутый куб в \mathcal{U} , а $E = E_m \subset K$. Пусть:

$$L > 0: \forall x, y \in K, ||f(x) - f(y)|| \le L \cdot ||x - y||$$

$$\forall \varepsilon > 0, \ \exists \ \mathrm{J}_m$$
 - кубы $\subset K \colon E \subset \bigcup_m \mathrm{J}_m \wedge \sum_m |\mathrm{J}_m| < \varepsilon$

Мы знаем почему можно считать кубы в качестве покрытия: например, можно расширить множество до открытого и покрыть счетным количеством замкнутых кубов. Далее можно все кубы пересечь с K и считать, что мы рассматриваем только покрытие брусками, лежащими в K, а каждый из таких брусков мы умеем представлять в виде объединения кубов. Тогда:

$$f(E) \subset \bigcup_m f(J_m)$$

У всякого куба J_m можно взять точку внутри a_m и измерить его ребро l_m , пусть $l_m \le 1$, если это не так, то доразбиваем кубы, чтобы это было верно. Тогда:

$$|\mathbf{J}_m| = l_m^n \le 1$$

Рассмотрим образ этого куба, можно сказать: $a_m \mapsto f(a_m)$. По условию локальной Липшецевости:

$$\forall x, y \in \mathcal{J}_m, \|f(x) - f(y)\| \le L \cdot \|x - y\| \le L \cdot l_m \cdot \sqrt{n} \Rightarrow \forall x \in \mathcal{J}_m, \|f(x) - f(a_m)\| \le L \cdot l_m \cdot \sqrt{n}$$

Следовательно, мы можем взять куб \widetilde{J}_m с ребром $2Ll_m\sqrt{n}$, тогда $f(J_m)\subset \widetilde{J}_m$. Заметим, что:

$$|\widetilde{\mathbf{J}}_m| = \left(2L\sqrt{n}\right)^k \cdot l_m^k = \left(2L\sqrt{n}\right)^n \cdot |\mathbf{J}_m|^{\frac{k}{n}} = C \cdot |\mathbf{J}_m|^{\frac{k}{n}} \le C \cdot |\mathbf{J}_m| \Rightarrow$$

$$\Rightarrow f(E) \subset \bigcup_{m} \widetilde{\mathbf{J}}_{m} \wedge \sum_{m} |\widetilde{\mathbf{J}}_{m}| = C \cdot \sum_{m} |\mathbf{J}_{m}| < C \cdot \varepsilon$$

Поскольку ε - произвольная, то мы получили требуемое.

Rm: 1. Почему отображение также должно быть в \mathbb{R}^k , $k \ge n$. Пусть $f : \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x$. Возьмем в \mathbb{R}^2 отрезок: $x \in [0,1]$, y = 0, его образом будет отрезок [0,1] - уже не мера нуль по Лебегу, тогда как его прообраз - множество меры нуль в \mathbb{R}^2 .

Утв. 4. Пусть $\mathcal{U} \subset \mathbb{R}^n$, $\mathcal{V} \subset \mathbb{R}^n$ - открытые множества, $\varphi \colon \mathcal{U} \to \mathcal{V}$ - диффеоморфизм (биективное и в обе стороны непрерывно дифференцируемое отображение). Пусть $\overline{E} \subset \mathcal{U}$, тогда:

- 1) Если a внутренняя точка E, то $\varphi(a)$ внутренняя точка $\varphi(E)$;
- 2) Если a внешняя точка E, то $\varphi(a)$ внешняя точка $\varphi(E)$;
- 3) Если a граничная точка E, то $\varphi(a)$ граничная точка $\varphi(E)$;

- 1) Возьмем точку $a \in E$ вместе с некоторой окрестностью $\mathcal{B}(a,r) \subset E$. Отображаение: $a \mapsto \varphi(a)$. Возьмём обратную функцию φ^{-1} она непрерывна \Rightarrow прообраз этой окрестности: $(\varphi^{-1})^{-1}(\mathcal{B}(a,r))$ это открытое множество, но: $(\varphi^{-1})^{-1}(\mathcal{B}(a,r)) = \varphi(\mathcal{B}(a,r))$ в силу взаимной однозначности \Rightarrow будет верно $\varphi(\mathcal{B}(a,r)) \subset \varphi(E)$ и $\varphi(a) \in \varphi(\mathcal{B}(a,r)) \Rightarrow$ это внутренняя точка;
- 2) Аналогично предыдущему пункту;
- 3) Если точка граничная ⇒ она не может перейти во внутреннюю точку, иначе возьмем обратное отображение и получим, что это внутренняя точка. Аналогично граничная точка не может перейти во внешнюю. Тогда граничная точка переходит в граничную точку;

Следствие 1. Пусть φ - диффеоморфизм $\mathcal{U} \to \mathcal{V}$, где $\mathcal{U}, \mathcal{V} \subset \mathbb{R}^n$. $\overline{E} \subset \mathcal{U}$. Если E - допустимое множество, то $\varphi(E)$ - тоже допустимое множество.

- 1) <u>Ограниченность $\varphi(E)$ </u>: $\varphi(E) \subset \varphi(\overline{E})$, E допустимое, то оно ограниченно и его замыкание тоже ограниченно \Rightarrow это компакт, а образ компакта это компакт $\Rightarrow \varphi(E)$ ограниченное множество;
- 2) $\underline{\partial \varphi(E)}$ меры нуль: по утверждению выше $\partial \varphi(E) = \varphi(\partial E)$, E допустимое, то ∂E это множество меры нуль. Поскольку φ это диффеоморфизм $\Rightarrow \varphi$ локально Липшицева в \mathcal{U} (смотри лекцию 15 семестра 2):

$$\forall x, y \in E, \|\varphi(x) - \varphi(y)\| \le \max \|J_{\varphi}\| \cdot \|x - y\|$$

Матрица якоби J_{φ} это непрерывное отображение \Rightarrow если рассматривать замкнутый брусок (компакт) $I \subset \mathcal{U}$, то элементы матрицы якоби J_{φ} будут ограниченны на $I \Rightarrow \|J_{\varphi}\|$ - ограниченна. Тогда φ переводит множество меры нуль в множество меры нуль;

Rm: 2. Заметим, что при диффеоморфизме φ его обратное отображение φ^{-1} также переводит множество меры нуль в множество меры нуль.

Формула замены переменных

Теорема 1. (Формула замены переменных) Пусть $\Omega_x, \Omega_y \subset \mathbb{R}^n$ - открытые и ограниченные множества. $\varphi \colon \Omega_x \to \Omega_y$ - диффеоморфизм, $\overline{E} \subset \Omega_x$ и E - допустимое множество. Пусть $f \colon \varphi(E) \to \mathbb{R}$, тогда функция f интегрируема по Риману на $\varphi(E) \Leftrightarrow f(\varphi(x)) \cdot |\det J_{\varphi}(x)|$ интегрируема на E и в случае интегрируемости верно равенство:

$$\int_{\varphi(E)} f(y)dy = \int_{E} f(\varphi(x)) \cdot |\det J_{\varphi}(x)| dx$$

Rm: 3. В одномерном случае возьмем E = [a, b] и возьмем отображение φ , тогда:

$$\varphi([a,b]) = [\varphi(a), \varphi(b)] \vee [\varphi(b), \varphi(a)]$$

В записи Φ ЗП выше у нас не интеграл от a до b, а интеграл по отрезку [a,b]. Поэтому в формуле используется модуль.

Rm: 4. Договоримся, что для краткости мы будем писать: $|\det J_{\varphi}(x)| = |\det \varphi'(x)| = |\varphi'(x)|$. Тогда:

$$\int_{\varphi(E)} f(y)dy = \int_{E} f(\varphi(x)) \cdot |\varphi'(x)| dx$$

Полное доказательство этой теоремы будет потом, но мы докажем равносильность интегрируемости и рассмотрим несколько частных случаев.

<u>Доказательство равносильности интегрируемости</u>: Заметим, что $(\varphi'(\varphi^{-1}(y)))^{-1} = (\varphi^{-1})'(y)$, (смотри лекцию 15 семестра 2), тогда будет верно:

$$f(y) = f(\varphi(x)) \cdot |\varphi'(x)| \Big|_{x = \varphi^{-1}(y)} \cdot |(\varphi^{-1})'(y)| = f(y) \cdot |\varphi'(\varphi^{-1}(y))| \cdot |(\varphi^{-1})'(y)| = f(y) \cdot 1 = f(y)$$

Благодаря этому равенству достаточно доказать, импликацию " \Rightarrow " поскольку наоборот она будет звучать как $f(\varphi(x))\cdot|\varphi'(x)|$ интегрируема на $\varphi^{-1}(\varphi(E))$ (заменяем: $f\to f(\varphi(x))\cdot|\varphi'(x)|$ и $\varphi\to \varphi^{-1}$), следовательно f интегрируема на $\varphi(E)$.

 (\Rightarrow) Мы знаем, что по критерию Лебега f ограниченна на $\varphi(E)\Rightarrow f(\varphi(x))\cdot|\varphi'(x)|$ - ограниченна на E, поскольку $\overline{E}\subset\Omega_x,\,\varphi'$ - матрица, составленная из непрерывных функций \Rightarrow определитель непрерывных функций на компакте $\overline{E}\Rightarrow|\varphi'(x)|$ - ограничен, а $f(\varphi(x))$ - ограниченна на $E\Rightarrow$ произведение двух ограниченных - ограниченная.

Пусть $D \subset \varphi(E)$ - множество точек разрыва f, по условию D - множество меры нуль $\Rightarrow \varphi^{-1}(D)$ это множество меры нуль, поскольку φ - диффеоморфизм $\Rightarrow f(\varphi(x))$ непрерывна на $E \setminus \varphi^{-1}(D)$, поскольку $\forall x \in E \setminus \varphi^{-1}(D)$ это точка непрерывности f, где $\forall x \in E \setminus \varphi^{-1}(D)$, $\varphi(x) \notin D$, а вне множества D функция f - непрерывна, а композиция непрерывных функций - непрерывна.

Проверка формулы в частном случае 1):

$$\varphi \colon \Omega_x = \mathbb{R}^n \to \Omega_y = \mathbb{R}^n, \ \varphi(x_1, \dots, x_n) = (x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

где σ - это перестановка: $\{1, 2, ..., n\}$. Например, для случая n=2 это будет просто: $\varphi(x_1, x_2) = (x_2, x_1)$. Заметим, что $|\det \varphi'(x)| = 1$, поскольку матрица якоби в данном случае будет просто перестановкой строк в единичной матрице.

Рис. 1: Частный случай функции перестановок для n=2.

Тогда ФЗП будет иметь следующий вид:

$$\int\limits_{\varphi(E)} f(y)dy = \int\limits_{E} f(\varphi(x))dx$$

Разместим \overline{E} внутрь некоторого замкнутого бруска I: $\overline{E} \subset \mathring{\mathbf{I}}$, $\varphi(\mathbf{I}) = \mathbf{J}$ - замкнутый брус, поскольку мы просто меняем отрезки местами, как для примера с n=2. Функция f определена на $\varphi(E)$, доопределим f на \mathbb{R}^n , тогда по определению:

$$\int\limits_{\varphi(E)} f(y) dy = \int\limits_{\mathbf{J} = \varphi(\mathbf{I})} f(y) \chi_{\varphi(E)}(y) dy, \quad \int\limits_{E} f(\varphi(x)) dx = \int\limits_{\mathbf{I}} f(\varphi(x)) \chi_{E}(x) dx$$

Заметим, что: $\chi_{\varphi(E)}(\varphi(x))=\chi_E(x)$, обозначим $g(y)=f(y)\chi_{\varphi(E)}(y)$ тогда:

$$f(\varphi(x))\chi_E(x)=f(\varphi(x))\chi_{\varphi(E)}(\varphi(x))=g(\varphi(x))$$

Следовательно, достаточно проверить равенство для бруса I:

$$\int_{\mathbf{J}=\varphi(\mathbf{I})} f(y)dy = \int_{\mathbf{I}} f(\varphi(x))dx$$

Возьмём $\mathbb{T}=\{\mathrm{I}_m\}$ - разбиение бруса I, тогда $\mathbb{T}_{\varphi}=\{\varphi(\mathrm{I}_m)\}$ - разбиение $\varphi(\mathrm{I})$ и $\lambda(\mathbb{T})=\lambda(\mathbb{T}_{\varphi})$.

Рис. 2: Частный случай отображения разбиения для n=2.

Выберем точку $\xi_m \in I_m \Rightarrow \varphi(\xi_m) \in \varphi(I_m)$, запишем Риманову сумму:

$$\sum_{m} f(\varphi(\xi_m)) \cdot |\varphi(\mathbf{I}_m)| = \sum_{m} f(\varphi(\xi_m)) \cdot |\mathbf{I}_m|$$

где равенство верно в силу того, что объем не меняется от перестановки мест множителей.

$$\sum_{m} f(\varphi(\xi_{m})) \cdot |\mathbf{I}_{m}| \to \int_{\mathbf{I}} f(\varphi(x)) dx, \sum_{m} f(\varphi(\xi_{m})) \cdot |\varphi(\mathbf{I}_{m})| \to \int_{\varphi(\mathbf{I})} f(y) dy \Rightarrow \int_{\mathbf{I}} f(\varphi(x)) dx = \int_{\varphi(\mathbf{I})} f(y) dy$$

Проверка формулы в частном случае 2):

$$\varphi \colon \Omega_x = \mathbb{R}^n \to \Omega_y = \mathbb{R}^n, \ \varphi(x) = Ax + b, \ \det(A) \neq 0$$

Множество E это брус или получено из бруса аффинным невырожденным преобразованием (как φ). Это делаем для того, чтобы всегда знать, что сечения устроены хорошо (что это допустимые множества) и затем применить теорему Фубини. При таком определении сечения каждый раз будут выпуклым множеством и его одномерные сечения всегда будут промежутками. Пусть f будет непрерывна на \mathbb{R}^n . Проверим равенство:

$$\int_{\varphi(E)} f(y)dy = \int_{E} f(\varphi(x)) \cdot |\det(A)| dx$$

Для случая n=2 и нулевом b, мы получим:

$$\varphi(x_1, x_2) = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Рис. 3: Частный случай преобразования для n=2 и нулевом b.

Если взять f = 1, то равенство означает: $|\varphi(E)| = |\det(A)| \cdot |E|$. Объем параллелограмма это определитель соответствующей матрицы (ориентированный, а неориентированный - с модулем). Далее, любая сложная фигура составляется из кубиков. И если теперь возьмем их образ, то получится, что образ этой фигуры составляется из параллелограммов. Площадь образа это площадь кубика, умноженного на константу \Rightarrow вся площадь фигуры должна умножаться на эту константу.

Рис. 4: Общий подход к ФЗП.

Переход к общей формуле замены объясняется так: мы знаем, что любой интеграл можно свести к сумме интегралов по маленьким кубикам \Rightarrow для малого кубика, любое гладкое отображение мало отличается от своей аффинной части:

$$\varphi(x) \approx \varphi(x_0) + \varphi'(x_0)(x - x_0)$$

Для таких мы поняли, что формула верна \Rightarrow для маленьких кубов надо умножать на модуль определителя $|\varphi'|$ в точке x_0 , а после того, как мы перейдем на всё множество E окажутся в разных точках разные $\varphi'(x_0) \Rightarrow$ под интегралом возник модуль определителя матрицы якоби.

Лемма 1. Всякое отображение: $\varphi(x) = Ax + b$ является композицией конечного набора отображений следующего вида:

- (1) Переставление координат (смотри случай 1));
- (2) $y_1 = x_1, \ldots, y_{n-1} = x_{n-1}, y_n = x_n + c$, где c какое-то число;
- $(3) \ y_1 = x_1, \dots, y_{n-1} = x_{n-1}, y_n = c \cdot x_n,$ где c какое-то число;
- (4) $y_1 = x_1, \dots, y_{n-1} = x_{n-1}, y_n = x_n + x_{n-1};$

То есть $\varphi = \varphi_1 \circ \varphi_2 \circ \ldots \circ \varphi_m$, где каждое отображение является одного из этих видов.

 \square Это элементарные преобразования из метода Гаусса \Rightarrow доказательство в алгебре.

Как меняется объем при таких преобразованиях? При перестановке - не меняется. При (2) мы сдвигаем проекцию \Rightarrow по принципу Кавальери объем не меняется. При (3) мы каждое сечение растягиваем в c раз \Rightarrow объем умножится в |c| раз. При (4) ничего не отличается от (2), сдвигаем каждый раз на разные значения, сечение длин не меняется \Rightarrow работает принцип Кавальери. Следовательно, мы знаем как меняется объем в каждом из этих случаев. Остальное докажем в следующий раз.