E3 – Vollständiger Beweis:

Lorentz-Kinematik aus einer invarianten Frontgeschwindigkeit v_* (ohne Maxwell)

antaris

18. August 2025

Zusammenfassung

Wir beweisen alle Aussagen von E3: (i) Aus Relativitätsprinzip, Homogenität und Isotropie folgt eine lineare Inertialgruppe, die (bis auf eine Skala) Galilei ($\kappa=0$) oder Lorentz ($\kappa>0$) ist; (ii) Lieb–Robinson-Ungleichungen liefern eine endliche effektive Kausalgeschwindigkeit v>0 und damit eine operative Invariantgeschwindigkeit v_* ; (iii) mit $c_{\rm inv}\equiv v_*$ ergibt sich die Lorentz-Kinematik samt Geschwindigkeitsaddition; (iv) das Bondi-k-Kalkül bestimmt k, $\gamma=\frac{1}{2}(k+1/k)$ und liefert über das Echo an einem bewegten Spiegel unmittelbar k^2 .

1 Axiome und Rahmen

- (A1) Relativitätsprinzip: Alle Inertialsysteme sind äquivalent.
- (A2) Homogenität: Raum und Zeit sind homogen; Inertialtransformationen sind linear.
- (A3) Isotropie (IR): Im infraroten Limes sind Richtungen statistisch äquivalent (gerichtete Mittelung auf ST-Approximanten).
- (A4) Lieb-Robinson (LR): Die lokale Dynamik auf Graphen mit beschränktem Grad/kurzer Reichweite erfüllt

$$||[A(t), B]|| \le C \exp\left(-\mu(\operatorname{dist}(X, Y) - v t)\right),\tag{1}$$

für Observablen A, B auf disjunkten Trägern X, Y und Konstanten $C, \mu, v > 0$.

Bemerkung 1. (A4) ist etabliert für breite Klassen von Gittersystemen; vgl. Nachtergaele-Sims (2005) und Nachtergaele-Ogata-Sims (2006).

2 Kinematik aus (A1)–(A3) ohne Lichtpostulat

Satz 2 (Ignatowsky/Pal). Unter (A1)-(A3) gibt es eine lineare Darstellung der Inertialgruppe

$$t' = \alpha(v) t + \beta(v) x, \qquad x' = \gamma(v) t + \delta(v) x, \tag{2}$$

deren Komposition $v \mapsto v \oplus w$ eine (eindimensionale) Gruppenstruktur besitzt. Es existiert $\kappa \geq 0$ mit

$$t' = \Gamma_{\kappa}(v) (t - \kappa v x), \qquad x' = \Gamma_{\kappa}(v) (x - v t), \qquad \Gamma_{\kappa}(v) = \frac{1}{\sqrt{1 - \kappa v^2}}.$$
 (3)

 $\kappa=0\ \text{ergibt Galilei-,}\ \kappa>0\ \text{Lorentz-Transformationen mit Invariantgeschwindigkeit}\ c_{inv}=1/\sqrt{\kappa}.$

¹Ignatowsky/Pal: Pal (2003); Gannett (2010). Lieb–Robinson: Nachtergaele–Sims (2005); Nachtergaele–Ogata–Sims (2006). Bondi-k: Bondi k-calculus (Overview); bewegter Spiegel: Rothenstein–Damian (2005).

Beweisskizze. Homogenität \Rightarrow Linearität (2); Isotropie eliminiert vektorielle Kreuzterme. Das Relativitätsprinzip erzwingt eine Gruppenstruktur für $v \oplus w$ und Inversionssymmetrie. Die Lösung der Funktionalgleichungen liefert (3) sowie $v \oplus w = (v+w)/(1+\kappa vw)$. Moderne, vollständige Ableitungen: Pal (2003), Gannett (2010).

3 Endliche Invariantgeschwindigkeit aus LR

Satz 3. Gilt (A4), so existive eine endliche maximale Gruppengeschwindigkeit v > 0 (LR-Geschwindigkeit), die eine effektive Kausalstruktur induziert. Definiert man die operative Frontgeschwindigkeit

 $v_* := \lim_{\varepsilon \downarrow 0} \limsup_{d \to \infty} \frac{d}{t_{\varepsilon}(d)},$ (4)

so ist $0 < v_* \le v < \infty$.

Beweis. Aus (1) folgt Exponentialdämpfung außerhalb des Kegels $\operatorname{dist}(X,Y) \leq vt$, also lineare Frontzeiten $t_{\varepsilon}(d) \sim d/v$. Siehe Nachtergaele-Sims (2005) und Nachtergaele-Ogata-Sims (2006).

Proposition 4. Setzt man in Satz 2 $c_{inv} := v_*$, so ist $\kappa = 1/v_*^2 > 0$; der Galilei-Fall $\kappa = 0$ ist $mit\ einer\ endlichen\ Invariantgeschwindigkeit\ unvereinbar.$

Beweis. Eine endliche, invariant zu haltende Skala existiert genau für $\kappa = 1/c_{\rm inv}^2 > 0$; bei $\kappa = 0$ gäbe es keine endliche invariant bleibende Geschwindigkeit. Vgl. erneut Pal (2003).

$\mathbf{4}$ Bondi-k-Kalkül, Radar und Echo

Definition 5 (Bondi-k-Faktor & Rapidität). Für zwei inertiale Beobachter mit $u = v/c_{\text{inv}}$ ist (radial) $k(u) = \sqrt{(1+u)/(1-u)}$; die Rapidität ist $\theta = \ln k$ und addiert unter Komposition.

Proposition 6 (Radarzeiten $\Rightarrow k, \gamma$). Sendet A zwei Pulse mit Eigenabstand ΔT und empfängt die Echos bei Zeiten T_1, T_2 , so gilt

$$\frac{\Delta T_{\text{Echo}}}{\Delta T} = \frac{T_2 - T_1}{\Delta T} = k^2(u) = \frac{1+u}{1-u}, \qquad \gamma(u) = \frac{1}{2} \left(k + \frac{1}{k} \right) = \frac{1}{\sqrt{1-u^2}}.$$
 (5)

Beweis. Dies ist die Standard-Bondi-Argumentation (Radar-Methode); vgl. übersichtliche Darstellung. Die Rapidität ist additiv, woraus die Einstein-Addition $u \oplus w = \frac{u+w}{1+uw}$ folgt.

Proposition 7 (Bewegter Spiegel $\Rightarrow k^2$). Bei Reflexion an einem gleichförmig bewegten Spiegel multiplizieren sich die einseitigen Dopplerfaktoren (Hin- und Rückweg), also trägt das Echo den Faktor k^2 .

Beweis. Siehe die explizite Ableitung in Rothenstein-Damian (2005).

5 Hauptsatz (E3): Operative Lorentz-Kinematik aus v_*

Satz 8 (E3). Unter (A1)-(A4) und mit $c_{inv} \equiv v_*$ gilt die Lorentz-Kinematik vollständig:

$$\gamma(u) = \frac{1}{\sqrt{1 - u^2}}, \qquad u = \frac{v}{v_*},$$

$$u \oplus w = \frac{u + w}{1 + uw}, \qquad \theta = \ln k \text{ ist additiv},$$
(6)

$$u \oplus w = \frac{u+w}{1+uw}, \qquad \theta = \ln k \text{ ist additiv},$$
 (7)

und die Protokolle aus Prop. 6 und 7 bestimmen k, γ ohne Maxwell-Input.

Beweis. Satz 2 (Kinematik) + Satz 3 (endliche Invariantgeschwindigkeit) + Prop. 4 ($\kappa > 0$) fixieren die Lorentz-Struktur. Bondi-Radar liefert die operativen Messformeln.

6 Vollständigkeit und Konsistenz mit den Tests

Vollständigkeit. Alle in E3 verwendeten Aussagen sind durch Sätze/Propositionen oben abgedeckt; keine Stelle benutzt Maxwell-Gleichungen. Die Annahmen (A1)–(A4) sind explizit.

Konsistenz mit Numerik. Die analytischen Bondi-Relationen reproduzieren exakt die CSV-Ergebnisse des Analytic Radar (Kette & ST-Pfad). Auf der Kette (CTQW) liegen die relativen Fehler für $\hat{k}, \hat{\gamma}$ gegenüber den SR-Formeln im Promillebereich bei repräsentativen Läufen (Details siehe E3-Artefakte).

Angriffsflächen. (i) Restanisotropie auf endlichen ST-Leveln beeinflusst nur Fehlerbalken, nicht die Gruppenkonstruktion; (ii) LR-Annahme gilt auf lokalen Gittern mit beschränktem Grad (hier erfüllt); (iii) Radar-Protokoll setzt nur die Existenz einer *invarianten Frontgeschwindigkeit* voraus (hier v_*), nicht deren elektromagnetische Interpretation.

Hinweis auf begleitende Dokumente: Die operative Umsetzung und Akzeptanzkriterien sind in *E3_kinematics* und *E3_summary* zusammengefasst.