Deep Learning

Episode 8

Generative & Unsupervised models

Autoencoders 101

Main idea:

- Take data in some original (high-dimensional) space;
- Project data into a new space from which it can then be accurately restored;
- Encoder = data to hidden
- Decoder = hidden to data
- Decoder(Encoder(x)) ~ x

Why do we ever need that?

- Compress data
 - |code| << |data|</p>
- Dimensionality reduction
 - Before feeding data to your XGBoost

<to be continued>

Matrix decompositions

Example: SVD/PCA

Minimizing reconstruction error

$$L = ||X - U \cdot S \cdot V^T||$$

Matrix decomposition

A different perspective

(kinda) Deep autoencoder

Stack more layers!

Quiz: What if data is an image?

Image2image: fully-convolutional

Quiz: what is the compression rate here?

Why do we ever need that?

- Compress data
 - |code| << |data|</p>
- Dimensionality reduction
 - Before feeding data to your XGBoost
- Learn some great features!
 - Before feeding data to your XGBoost

Expanding autoencoder

Bigger/richer representation

Expanding autoencoder

Bigger/richer representation

Something's wrong with this guy. Ideas?

Expanding autoencoder

- Naive approach will learn identity function!
- Gotta regularize!

$$L = ||X - Dec(Enc(X))||$$

Sparse autoencoder

- Naive approach will learn identity function!
- Idea 1: L1 on activations, sparse code

$$L = ||X - Dec(Enc(X))|| + \sum_{i} |Enc_{i}(X)|$$

Redundant autoencoder

- Naive approach will learn identity function!
- Idea 2: noize/dropout, redundant code

$$L = ||X - Enc(Noize(Dec(X)))||$$

Denoizing autoencoder

- Naive approach will learn identity function!
- Idea 3: distort input, learn to undo distorsion

$$L = ||X - Enc(Dec(Noize(X)))||$$

Sparse Vs Denoizing

Filter weights, 12x12 patches

Sparse AE

Denoizing AE

Actually meaningless:)

Why do we ever need that?

- Compress data
 - |code| << |data|</p>
- Dimensionality reduction
 - Before feeding data to your XGBoost
- Learn some great features!
- Unsupervised pretraining
 - Large amounts of data
 - Features may be irrelevant

Recurrent autoencoders

- Regular encoder-decoder
- Where is the bottleneck?
- How do we train it?

many to many

Skip-thought

- Word2vec skip-gram:
 - Word → neighboring words
 - Embedding + Dense
 - Word vectors
- Phrase2vec skip-thought:
 - Sentence → prev/next sentence
 - Encoder-decoder
 - Sentence vectors

Why do we ever need that?

- Compress data
 - |code| << |data|</p>
- Dimensionality reduction
 - Before feeding data to your XGBoost
- Learn some great features!
- Unsupervised pretraining
 - Large amounts of data
 - Features may be irrelevant
- Generating new images!

Image morphing with AE

Idea:

- If Enc(image1) = c1Enc(image2) = c2
- Than maybe (c1+c2)/2 is a semantic average of the two images

Image morphing with AE

Idea:

- Look for a common direction vector for "add mustache" or "add age" changes.
- Apply to new images

+ ODD =

- FEMALE =

Mean Squared Error

Pixelwise MSE:

- A "cat on the left" is closer to "dog on the left" than to "cat on the right"
- We may want to avoid that effect
- Can we obtain image representation that is less sensitive to small shifts?

Sketch: using pre-trained nets

$$L = ||f(X) - f(Dec(Enc(X)))||$$

Image generation

Chairs (type, view, orientation)

Classifier

Image generation

Generator

Problem: MSE sucks at this task.

Ideas?

Generate image (should be plausible)

Tell if image is plausible (image) → P(fake)

Generator

Discriminator

Generator

Discriminator

$$L_D = -\log[1 - Disc(real data)] - \log Disc(Gen(seed))$$

• Generator $L_G = -\log[1 - Disc(Gen(seed))]$

Discriminator

$$L_D = -\log[1 - Disc(real data)] - \log Disc(Gen(seed))$$

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

Adversarial domain adaptation

- Two domains
 - e.g. mnist digits Vs actual digits on photos
- First domain is labeled, second is not
- Wanna learn for the second domain

Domain adaptation

 Idea: discriminator should not be able to distinguish features on two domains

Adversarial autoencoders

Brace yourselves

Art style transfer

• Ideas?

