where Φ_f and Φ_w are the <u>24</u> representation of SU(5) group. The breaking component is

$$\Phi_i = Diagonal\left(1, 1, 1, -\frac{3}{2}, -\frac{3}{2}\right) \left(\sigma_i + \varphi_i\right),\tag{12}$$

where the subscript i = f, w. From (11) - (12) we obtain

$$V_{fw} = -A \left(2\sigma_f \sigma_w \varphi_f \varphi_w + \sigma_f \varphi_f \varphi_w^2 + \sigma_w \varphi_w \varphi_f^2 + \frac{1}{2} \varphi_f^2 \varphi_w^2 \right). \tag{13}$$

 $|\sigma_w|=|\sigma_f|$ because of the symmetry of s-matter and f-matter. Both σ_i and $m(\varphi_i)$ are functions of temperature T. When $T \geq T_{cr}$, $\sigma_i = m(\varphi_i) = 0$. Consequently f-particles and w-particles can easily transform from one to another so that $\rho_F = \rho_W$. When $T \sim 0$, both $|\sigma_i|$ and $m(\varphi_i)$ are large enough. Consequently interaction between f-particles and w-particles by the scalar bosons may be ignored. Thus there is only the gravitation between f-matter and w-matter when temperature is low.

There are the couplings of fermions (and gauge particles) and scalar bosons^[7]. Hence there are the interactions of f-fermions and w-fermions shown in figures 1-3 and the interactions of f-gauge bosons and w-gauge bosons via the scalar bosons φ_f and φ_w . In the figures the dotted lines with arrows denote W-fermion field ψ_w , the dotted lines without arrow denote W-scalar field φ_w , the lines with arrows denote F-fermion field ψ_f , the lines without arrow denote F-scalar field φ_f , $M^2=-2A\sigma_f\sigma_w$, $R_f=-A\sigma_f$, $R_w=-A\sigma_w$ and S=-A/2.

It can be seen from figure 1 and (13) that when $-A\sigma_f\sigma_w > 0$ and $k^2 - m^2 < 0$ or $-A\sigma_f\sigma_w < 0$ and $k^2 - m^2 > 0$, f - fermions and w - fermions are repulsive each other; when $-A\sigma_f\sigma_w > 0$ and $k^2 - m^2 > 0$ or $-A\sigma_f\sigma_w < 0$ and $k^2 - m^2 < 0$, f - fermions and w - fermions are attractive each other.

V. FEATURES AND OBSERVATION OF DARK MATTER IN PRESENT MODEL

According to the present model^[3,4], v-UFM and v-UWM cannot form cluster, loosely distribute in space and have positive gravitational masses, hence both should be identified as cold dark matter. From (10) we have

$$\frac{\rho_{vFu} + \rho_{vWu}}{\rho_v} = \frac{0.095 \times 2}{0.27} = \frac{19}{27},$$

$$\frac{\rho_{vFu} + \rho_{vWu}}{\rho_{vD}} = \frac{0.095 \times 2}{0.23} = \frac{19}{23}.$$
(14)