

Supervised methods k-Nearest Neighbors

Dr. Jakub Kuzilek

Introduction

Small recap: What is Supervised learning?

Introduction

Small recap: What is Supervised learning?

- We know the right answers
- Supervised learning algorithm is inferring decision function from labelled training data

Supervised learning

- We know the right answers
- Supervised learning algorithm is inferring decision function from labelled training data
- Input:

$$T = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_N, y_N)\}$$

Output:

$$\hat{y}_i = f(x_i)$$
 model

Classification

- Model created by selected algorithm assign the data specific categories
- Common methods:
 - Linear classifiers
 - Support Vectors Machines
 - Decision trees
 - Ensemble algorithm
 - k-Nearest Neighbours
 - Neural Networks
 - •

Distance function

Small recap: What is distance function and what properties it has?

Distance function

Small recap: What is distance function and what properties it has?

$$1. \quad d(x,x)=0$$

$$2. \quad d(x,y) \ge 0$$

3.
$$d(x,y) = d(y,x)$$

4.
$$d(x,z) \le d(x,y) + d(y,z)$$

Training set:

$$T = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_N, y_N)\}\$$

- Distance function $d: X \times X \to \mathbb{R}_o^+$
- Overall objective: find k samples $S = \{(x_{r1}, y_{r1}), ... (x_{rk}, y_{rk})\}$ from T, which are closest to input sample x in sense of metric d

- To classify new sample x:
 - 1. Compute $d(x, x_i)$, where $x_i \in T$
 - 2. Make rank r_i of each sample x_i based on $d(x, x_i)$
 - 3. Take first k samples $S = \{(x_{r1}, y_{r1}), ... (x_{rk}, y_{rk})\}$ from the ordered set of samples by the rank r_i
 - 4. Classify x to the class y, in which the most samples in S belong to.

Properties

- trivial implementation
- error is bounded:
 Naïve Bayes classifier error
 - 1-NN

$$\epsilon_B \le \epsilon_{NN} \le 2\epsilon_B - \frac{R}{R-1} \epsilon_B^2$$
 number of classes

• *k*-NN

$$\epsilon_{kNN} \le \epsilon_B + \frac{\epsilon_{NN}}{\sqrt{k * const}}$$

- slow when using naïve implementation
- High memory requirements
- Depends on metric d
- No generalization ability (tends to overfit, high variance)

Speedup

- Remove "unimportant" samples from T, which does not influence the classification result
- Better algorithm for nearest neighbours' search

Voronoi diagram

- Set of regions dividing plane
- each region corresponds to one of the generators (points)
- All points in region are closer to generator of that region then to the any other set
- Can be represented as tree (Kirkpatrick's point location algorithm)
- Nearest neighbours are searched by searching corresponding tree

Condensation

reduction of T

Algorithm:

- 1. Create two lists A and B
- 2. Select randomly sample from T and put it in A, all other samples go to B
- 3. Classify *B* using 1-NN algorithm
- 4. All misclassified samples from B goes to A
- 5. Repeat (go to 2.) until all samples in B are correctly classified

List A contains the condensed training set.

k-D trees

- Construct binary tree
- Each node is k-dimensional point
- Uses median value of points in one dimension
- Algorithm:
 - 1. Find median in one dimension
 - 2. Split the dataset based on that
 - 3. For "halfplanes" find medians in the following dimension
 - 4. Continue from 2.
- Search is then done via tree

- Training set (test1, test2; course_outcome) $T = \{(7,7; passed), (7,4; passed), (3,4; failed)(1,4; failed)\}$
- Number of clusters k = 3
- Euclidean distance
- New sample x = (3,7)

Sample (i)	Class	x_i	$d(x,x_i)$
1	passed	(7; 7)	$(7-3)^2 + (7-7)^2 = 16$
2	passed	(7; 4)	25
3	failed	(3; 4)	9
4	failed	(1; 4)	13

Sample (i)	Class	$d(x,x_i)$	Rank (r_i)
1	passed	16	3
2	passed	25	4
3	failed	9	1
4	failed	13	2

Sample (i)	Class	$d(x,x_i)$	Rank (r_i)
1	passed	16	3
2	passed	25	4
3	failed	9	1
4	failed	13	2

Sample (i)	Class	$d(x,x_i)$	Rank (r_i)
1	passed	16	3
2	passed	25	4
3	failed	9	1
4	failed	13	2

• Final class *y* is majority from:

Class	Count	
passed	1	
failed	2	

Questions?