Devoir surveillé n°04

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

A l'attention des 3/2

Les 3/2 pourront admettre le résultat des questions 8 et 31. Par ailleurs, toutes les variables aléatoires de l'énoncé pourront être considérées comme des «variables aléatoires de MPSI», c'est-à-dire des variables aléatoires définies sur un univers *fini*.

Problème 1

1 Pour tout $t \in [0,1]$, $1 + t^2 \le 2$ donc $\frac{1}{(1+t^2)^n} \ge \frac{1}{2^n}$. Ainsi $I_n \ge \int_0^1 \frac{1}{2^n} dt = \frac{1}{2^n}$

3 Supposons $n \ge 2$. Pour tout $t \in [1, +\infty[$, $0 < 1 + t \le 1 + t^2$ de sorte que $0 \le \frac{1}{(1+t^2)^n} \le \frac{1}{(1+t)^n}$. Par croissabce de l'intégrale,

$$0 \le \int_{1}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^n} \le \int_{1}^{+\infty} \frac{\mathrm{d}t}{(1+t)^n} = \frac{1}{(n-1)2^{n-1}} = \frac{2}{2^n(n-1)}$$

Or $\frac{1}{2^n(n-1)} \underset{n \to +\infty}{\sim} \frac{1}{2^n n}$ donc

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^n} \underset{n \to +\infty}{=} \mathcal{O}\left(\frac{1}{2^n n}\right)$$

4 D'après la question précédente, $K_n - I_n = \mathcal{O}\left(\frac{1}{2^n n}\right)$. A fortiori, $K - n - I_n = o\left(\frac{1}{2^n}\right)$. Mais d'après la question $1, \frac{1}{2^n} = \mathcal{O}(I_n)$ donc $K_n - I_n = o(I_n)$ i.e. $K_n \sim I_n$.

5 Par intégration par parties,

$$K_n = \int_0^{+\infty} 1 \cdot (1 + t^2)^{-n} dt = \left[t(1 + t^2)^{-n} \right]_0^{+\infty} + 2n \int_0^{+\infty} t^2 (1 + t^2)^{-n-1} dt$$

Cette intégration par parties est légitime car

$$\lim_{t \to +\infty} t(1+t^2)^{-n} = 0$$

Ainsi

$$\begin{split} \mathbf{K}_n &= 2n \int_0^{+\infty} t^2 (1+t^2)^{-n-1} \, \mathrm{d}t \\ &= 2n \int_0^{+\infty} (1+t^2-1)(1+t^2)^{-n-1} \, \mathrm{d}t \\ &= 2n \int_0^{+\infty} (1+t^2)^{-n} \, \mathrm{d}t - 2n \int_0^{+\infty} (1+t^2)^{-n-1} \, \mathrm{d}t \\ &= 2n \mathbf{K}_n - 2n \mathbf{K}_{n+1} \end{split}$$

1

On en déduit immédiatement que

$$\mathbf{K}_n = \mathbf{K}_{n+1} + \frac{1}{2n} \mathbf{K}_n$$

 $\boxed{\mathbf{6}} \text{ D'après la question précédnte, } \mathbf{K}_{n+1} = \frac{2n-1}{2n} \mathbf{K}_n. \text{ On montre par récurrence que } \mathbf{K}_n = \frac{(2n-2)!\pi}{2^{2n-1}(n-1)!^2} \text{ pour tout } n \in \mathbb{N}^*. \text{ A l'aide de la formule de Stirling, on montre que } \mathbf{I}_n \underset{n \to +\infty}{\sim} \mathbf{K}_n \underset{n \to +\infty}{\sim} \frac{\sqrt{\pi}}{2\sqrt{n}}.$

7 Il suffit d'effectuer le changement de variable linéaire $u = \sqrt{nt}$.

8 On pose
$$f_n: u \in \mathbb{R}_+ \mapsto \begin{cases} \frac{1}{(1+u^2/n)^n} & \text{si } u \leq \sqrt{n} \\ 0 & \text{sinon} \end{cases}$$
. Pour $u \leq \sqrt{n}$, $f_n(u) = \exp(-n\ln(1+u^2/n))$ donc (f_n) converge

simplement sur \mathbb{R}_+ vers $u\mapsto e^{-u^2}$. De plus, par concavité de ln, $f_n(u)\leq \exp(-u^2)$ pour $u\in\mathbb{R}_+$. La fonction $u\mapsto e^{-u^2}$ est intégrable sur \mathbb{R}_+ donc, d'après le théorème de convergence dominée,

$$\sqrt{n}\mathrm{I}_n = \int_0^{\sqrt{n}} \frac{\mathrm{d}u}{(1+u^2/n)^n} = \int_0^{+\infty} f_n(u) \, \mathrm{d}u \xrightarrow[n \to +\infty]{} \int_0^{+\infty} e^{-u^2} \, \mathrm{d}u$$

9 Avec les questions précédentes,

$$\int_0^{+\infty} e^{-u^2} du = \lim_{n \to +\infty} \sqrt{n} I_n = \frac{\sqrt{\pi}}{2}$$

Via le changement de variable, $t = u/\sqrt{2}$,

$$\int_0^{+\infty} e^{-u^2/2} \, \mathrm{d}u = \sqrt{2} \int_0^{+\infty} e^{-t^2} \, \mathrm{d}t = \frac{\sqrt{\pi}}{\sqrt{2}}$$

Par parité de $u \mapsto e^{-u^2/2}$,

$$\int_{-\infty}^{+\infty} e^{-u^2/2} \, du = 2 \int_{0}^{+\infty} e^{-u^2/2} \, du = \sqrt{2\pi}$$

10 Comme $\varphi(t) \le \frac{t}{x}$ pour tout $t \ge x$,

$$\int_{x}^{+\infty} \varphi(t) \ \mathrm{d}t \leq \frac{1}{x} \int_{x}^{+\infty} t \varphi(t) \ \mathrm{d}t$$

De plus, $-\varphi$ est une primitive de $t \mapsto t\varphi(t)$ donc

$$\int_{x}^{+\infty} t\varphi(t) dt = -[\varphi(t)]_{x}^{+\infty} = \varphi(x)$$

 $\operatorname{car} \lim_{+\infty} \varphi = 0.$

Remarque. Ceci prouve en sus la convergence de l'intégrale $\int_x^{+\infty} t \varphi(t) dt$.

On a donc bien

$$\int_{x}^{+\infty} \varphi(t) \, \mathrm{d}t \le \frac{\varphi(x)}{x}$$

11 On considère la fonction

$$\Psi: x \in \mathbb{R}_+^* \mapsto (x^2 + 1) \int_x^{+\infty} \varphi(t) \, dt - x \varphi(x)$$

La fonction Ψ est dérivable sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, \ \Psi'(x) = 2x \int_x^{+\infty} \varphi(t) \ \mathrm{d}t - (x^2 + 1)\varphi(x) - \varphi(x) - x\varphi'(x)$$

© Laurent Garcin MP Dumont d'Urville

Or pour tout $x \in \mathbb{R}_+^*$, $\varphi'(x) = -x\varphi(x)$ donc

$$\forall x \in \mathbb{R}_+^*, \ \Psi'(x) = 2x \int_x^{+\infty} \varphi(t) \ dt - 2\varphi(x) \le 0$$

en utilisant l'inégalité de la question précédente. La fonction Ψ est donc décroissante sur \mathbb{R}_+^* : elle admmet donc une limite $\ell \in \mathbb{R} \cup \{-\infty\}$ en $+\infty$. Or, comme φ est positive, $\Psi(x) \geq -x\varphi(x)$ pour tout $x \in \mathbb{R}_+^*$. De plus, $\lim_{x \to +\infty} x\varphi(x) = 0$ donc $\ell \geq 0$ par passage à la limite. Par décroissance de Ψ sur \mathbb{R}_+^* , $\Psi(x) \geq \ell \geq 0$ pour tout $x \in \mathbb{R}_+^*$.

12 Comme $\int_{-\infty}^{+\infty} \varphi(t) dt = 1, 1 - \Phi(x) = \int_{x}^{+\infty} \varphi(t) dt$ pour tout $x \in \mathbb{R}$. D'après les deux questions précédentes,

$$\forall x \in \mathbb{R}_+^*, \ \frac{x\varphi(x)}{x^2+1} \le 1 - \Phi(x) \le \frac{\varphi(x)}{x}$$

Par encadrement, $1 - \Phi(x) \underset{x \to +\infty}{\sim} \frac{\varphi(x)}{x}$.

13 Notons $B_0 = \emptyset$ et $B_p = \bigcup_{1 \le k \le p} \{|R_k| \ge 3x\}$ pour $p \in [[1, n]]$. Alors $B_{p-1} \subset B_p$ pour tout $p \in [[1, n]]$ de sorte que

$$A = \bigcup_{p=1}^{n} \{ |R_p| \ge 3x \} = B_n = \bigcup_{p=1}^{n} B_p \setminus B_{p-1} = \bigcup_{p=1}^{n} A_p$$

14 Remarquons que

$$A = (\{|R_n| \ge x\} \cap A) \sqcup (\{|R_n| < x\} \cap A) \subset \{|R_n| \ge x\} \sqcup \left(\bigcup_{p=1}^n \left(\{|R_n| < x\} \cap A_p\right)\right)$$

Ainsi

$$\mathbb{P}(\mathbf{A}) \leq \mathbb{P}\left(\{|\mathbf{R}_n| \geq x\}\right) + \mathbb{P}\left(\bigcup_{p=1}^n \left(\{|\mathbf{R}_n| < x\} \cap \mathbf{A}_p\right)\right) \leq \mathbb{P}\left(\{|\mathbf{R}_n| \geq x\}\right) + \sum_{p=1}^n \mathbb{P}\left(\{|\mathbf{R}_n| < x\} \cap \mathbf{A}_p\right)\right)$$