#### Overview

## Outline:

- ► Two-sided Confidence Interval
- ► One-sided Confidence Interval

#### Two-sided Confidence Interval

▶ Based on Z-statistic:  $(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$ 

Size of Interval



▶ Based on T-statistic:  $(\bar{X} - t_{n-1,\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}, \ \bar{X} + t_{n-1,\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}})$ 

### One-sided Confidence Interval

- Based on Z-statistic
  - Lower interval:  $(-\infty, \ \bar{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}})$

Upper bound

• Upper interval:  $(\underline{\bar{X}} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty)$ 

Lower bound

Upper Interval





Lower Interval

- Based on T-statistic:
  - Lower interval:  $(-\infty, \ \underline{\bar{X}} + t_{n-1,\alpha} \frac{\hat{\sigma}}{\sqrt{n}})$
  - ▶ Upper interval:  $(\bar{X} t_{n-1,\alpha} \frac{\hat{\sigma}}{\sqrt{n}}, \infty)$

Lower bound

# Example

Problem: Suppose the mean of an i.i.d. sample of n=100 is  $\bar{x}=50$  with sample standard deviation 10. Set up an upper 95%-CI estimate for the population mean  $\mu$ .

Answer: Assume the observation  $X_i \sim_{\text{i.i.d.}} N(\mu, \sigma^2)$  for all  $i=1,\ldots,100$ . Since  $\sigma$  is unknown, we consider the T-statistic. Note that  $t_{99,0.05}=1.66$  and  $\hat{\sigma}=10$ . So the 95%-Cl for  $\mu$  is

$$(\bar{x}-t_{99,0.05}*\frac{\hat{\sigma}}{\sqrt{n}},\infty)=(50-1.66*\frac{10}{\sqrt{100}},\ \infty)=(48.34,\ \infty).$$