

Evolutionary Computation

Part of COMP4660/8420: Neural Networks, Deep Learning and Bio-inspired Computing

3. Genetic Programming

Prof. Tom Gedeon and Mr. Zhenyue Qin (秦震岳) tom@cs.anu.edu.au; zhenyue.qin@anu.edu.au

Human Centered Computing (HCC) Laboratory 2021 Semester 1

GP Quick Overview

- Developed: USA in the 1990's
- Early names: John Koza, Stanford University
- Typically applied to:
 - machine learning tasks (prediction, classification...)
- Attributed features:
 - competes with neural nets and alike
 - needs huge populations (thousands)
 - slow
- Special:
 - non-linear chromosomes: trees, graphs
 - mutation possible but not necessary (disputed!)

GP Technical Summary Tableau

Representation	Tree structures	
Recombination	Exchange of subtrees	
Mutation	Random change in trees	
Parent selection	Fitness proportional	

Introductory example: credit scoring

- Bank wants to distinguish good from bad loan applicants
- Model needed that matches historical data

ID	No of children	Salary	Marital status	OK?
ID-1	2	45000	Married	0
ID-2	0	30000	Single	1
ID-3	1	40000	Divorced	1

Introductory Example: Credit Scoring

A possible model:

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

In general:

IF formula THEN good ELSE bad

- Only unknown is the right formula, hence
- Our search space (phenotypes) is the set of formulas
- Natural fitness of a formula: percentage of well classified cases of the model it stands for
- Natural representation of formulas (genotypes) is: parse trees

Introductory Example: Credit Scoring

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad can be represented by the following tree

- Trees are a universal form, e.g., consider
- Arithmetic formula

- Logical formula
- Program

$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$

```
(x \land true) \rightarrow ((x \lor y) \lor (z \longleftrightarrow (x \land y)))
i = 1;
while (i < 20)
                i = i + 1
```


$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$


```
i = 1; while (i < 20) { i = i + 1 }
```


- In GA, chromosomes are linear structures (bit strings, integer string, real-valued vectors, permutations)
- Tree shaped chromosomes are non-linear structures
- In GA, the size of the chromosomes is fixed
- Trees in GP may vary in depth and width

- Symbolic expressions can be defined by
 - Terminal set T
 - Function set F (with the arities of function symbols)
- Adopting the following general recursive definition:
 - 1. Every $t \in T$ is a correct expression
 - 2. $f(e_1, ..., e_n)$ is a correct expression if $f \in F$, arity(f)=n and $e_1, ..., e_n$ are correct expressions
 - 3. There are no other forms of correct expressions
- In general, expressions in GP are not typed (closure property: any $f \in F$ can take any $g \in F$ as argument)

Mutation

 Most common mutation: replace randomly chosen subtree by randomly generated tree

Mutation (cont.)

- We need:
 - Probability to chose an internal point as the root of the subtree to be replaced
- The size of the child can exceed the size of the parent

Recombination

- Most common recombination: exchange two randomly chosen subtrees among the parents
- We need:
 - Probability to chose an internal point within each parent as crossover point
- The size of offspring can exceed that of the parents

Selection

- Parent selection typically fitness proportionate
- Over-selection in very large populations
 - rank population by fitness and divide it into two groups:
 - group 1: best x% of population, group 2 other (100-x)%
 - 80% of selection operations chooses from group 1, 20% from group 2
 - for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
 - motivation: to increase efficiency, %'s come from rule of thumb

Initialization

- Maximum initial depth of trees D_{max} is set
- Full method (each branch has depth = D_{max}):
 - nodes at depth d < D_{max} randomly chosen from function set F
 - nodes at depth $d = D_{max}$ randomly chosen from terminal set T
- Grow method (each branch has depth $\leq D_{max}$):
 - nodes at depth d < D_{max} randomly chosen from $F \cup T$
 - nodes at depth $d = D_{max}$ randomly chosen from T
- Common GP initialization: ramped half-and-half, where grow & full method each deliver half of initial population

Example Application: Symbolic Regression

- Given some points in \mathbb{R}^2 , (x_1, y_1) , ..., (x_n, y_n)
- Find function f(x) s.t. $\forall i = 1, ..., n : f(x_i) = y_i$
- Possible GP solution:
 - Representation by $F = \{+, -, /, \sin, \cos\}, T = \mathbb{R} \cup \{x\}$
 - Fitness is the error:

$$err(f) = \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

- All operators standard
- pop.size = 1000, ramped half-half initialisation
- Termination: n "hits" or 50000 fitness evaluations reached
 - (where "hit" is if for any $i | f(x_i) y_i | < 0.0001$)

Discussion

Is GP:

The art of evolving computer programs?

Means to automated programming of computers?

GA with another representation?

References

- A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computation, <u>https://www.cs.vu.nl/~gusz/ecbook/ecbook-course.html</u>.
- https://towardsdatascience.com/genetic-programming-for-ai-heuristicoptimization-9d7fdb115ee1

