1.7. ФОРМАЛНИ ЕЗИЦИ. ФОРМАЛНИ ГРАМАТИКИ

1. Формални езици - определение.

Формален език над азбуката Σ е всяко подмножество L на Σ^* ($L \subseteq \Sigma^*$). Множеството Σ^* е език над Σ . \varnothing е език над азбуката Σ , който се нарича празен език. Празният език се различава от езика $L = \{\Lambda\}$, който се състои от празната дума Λ .

Сечение (обединение) на езиците L_1 и L_2 над азбуката Σ е език $L=L_1\cap L_2$ ($L=L_1\cup L_2$), където L_1 и L_2 са множество от думи над азбуката Σ . Произведение на езиците L_1 и L_2 е език

$$L = L_1 L_2 = \{ u \in \sum^* | u = vw, v \in L_1, w \in L_2 \},$$

т.е. множество от всички думи, което се представя като конкатенация между думите на L_1 и L_2 .

Свойства:
$$L_1L_2 \neq L_2L_1$$
; $L_1(L_2L_3) = (L_1L_2)L_3$.
 n -та степен на език: $L^n = \underbrace{LL...L}_{n-\Pi \mathbf{b} \mathbf{T} \mathbf{u}}$, като $L^0 = \{ \epsilon \}$.

Итерация на L: $L^* = \bigcup_{n \ge 0} L^n$;

Положителна итерация на L: $L^+ = \bigcup_{n>0} L^n$.

Пример:

Над азбука $\Sigma=\{0,\ 1,\ 2,\ a,\ b\}$ се дефинират езиците $L_1=\{\varepsilon,01,a1\}$ и $L_1=\{\varepsilon,02,1b\}$, тогава

$$L_1 \cap L_2 = \{\varepsilon\};$$

$$L_1 \cup L_2 = \{\varepsilon, 01, a1, 02, 1b\};$$

$$L_1L_2 = \{\varepsilon, 0.1, a.1, 0.2, 1b, 0.102, 0.11b, a.102, a.11b\}.$$

Пример:

Азбука:
$$\Sigma = \{a, b, c\}$$
:

$$L_1 = \left\{ \underbrace{\Lambda, a, ab, aab, bc, abc}_{\text{6 думи}} \right\}$$
 - краен език (броят на елементите е краен);

 $L_2 = \left\{ \!\! a^n \middle| n \geq 0 \right\}$ - безкраен език (броят на елементите е безкраен). Ако $L_1 \subseteq L_2$ то

- L_1 е подезик на L_2 (езикова съвместимост нагоре);
- L_2 е подезик на L_1 (езикова съвместимост надолу);
- ако думите в двата езика съвпадат, т.е. множествата от низове съвпадат: $(L_1 = L_2)$, то съществува езикова съвместимост.

Описание на езиците:

- чрез изреждане (при малка мощност на множеството от думи (езика) |L|);
- чрез правила на образуване (при голяма мощност на множеството от думи (езика) |L| или при безкрайни езици).

За всички езици броят на правилата, по които се извършва описанието на елементите на езика е краен.

Формалните езиците се описват с генерираща формална граматика.

2. Формална пораждаща граматика - определение

Формалната пораждаща граматика е наредена четворка

$$G = \{\Sigma, N, S, P\},\$$

където Σ е крайното множество (азбука) от *терминални* символи ($\Sigma \in L$ -запазени думи или символи над езика L); N – крайното (непразно) множество (азбука) от *нетерминалните символи* ($N \notin L$ - символи, подлежащи на дефиниране чрез синтаксиса на езика), наречени *променливи*; S – началният символ (променлива) на граматиката ($S \in N$); P – крайно множество от *правила* от вида $\alpha \to \beta$ (продукции) за пораждане на елементи (думи от езика) - наредени двойки ($\alpha\beta$), за които $\alpha, \beta \in (\Sigma \cup N)^*$.

Свойства:

- - Σ ∩ N = \emptyset , т.е. Σ и N нямат общи символи;
- $-\Sigma \cup N = D$ обединението от множествата от терминални и нетерминални символи речникът на езика;
- $-\alpha \in (D)^+ = (\Sigma \cup N)^+ = (\Sigma \cup N)^* \setminus \{\Lambda\}$ множеството от всички думи над D без празния низ (α има поне един нетерминален символ);
- $-\beta \in (\Sigma \cup N)^*$ множеството от всички думи (низове), образувани над азбуката. Следователно липсват продукции от вида $\{\Lambda\} \to \beta$ и $\alpha \to \{\Lambda\}$.

За група от правила $\alpha \to \beta$, $\alpha \to \gamma$, $\alpha \to \delta,...\alpha \to k$ се използва означението $\alpha \to \beta \mid \gamma \mid \delta \mid ... \mid k$.

Формалната граматика G генерира дума $w \in \Sigma^*$ над езика L, ако съществува крайна редица от думи:

$$w_0 \to w_1 \to w_2 \to \dots \to w_n | n \ge 1$$
.

Този израз дефинира *изводът* на думата $w_n = w$ от началния символ $w_0 = S$. Ако в P има правило $\alpha \to \beta$, то думата $w_{i+1} = \alpha_1 \beta \alpha_2$ се получава от всяка поддума от вида $w_i = \alpha_1 \alpha \alpha_2$, като α се замени с β . Броят на непосредствени изводи $w_i \to w_{i+1}$ определя дължината на извода на $w_1 \to w_n$.

Множеството от всички думи w над Σ , за които $S \to w$, се нарича формален език L(G) над Σ , породен от граматиката G. Граматиките G_1 и G_2 са еквивалентни, ако $L(G_1) = L(G_2)$.

Пример:

1. Нека $G_1 = \{\Sigma, N, S, P\}$ е пораждаща граматика, където $\Sigma = \{a, b, \}$, $N = \{S, A, B\}$, S — началният символ; P се състои от правилата:

 $S \rightarrow A \mid B$;

 $A \rightarrow aA \mid a$;

 $B \rightarrow bB \mid b$.

 G_1 поражда всички думи от вида $\alpha = a^n, n \ge 1$ или $\beta = b^n, n \ge 1$ от формалния език $L(G_1)$ след прилагане един път на правило $S \to A \mid B$ и n-1 пъти правило $A \to aA \mid a$ или $B \to bB \mid b$, т.е.

$$L(G_1) = \{a^n | n \ge 1\} \cup L(G_1) = \{b^n | n \ge 1\}.$$

2. Нека $G_2 = \{\Sigma, N, S, P\}$ е пораждаща граматика, където $\Sigma = \{a, b, \}$, $N = \{S, A, B\}$, S — началният символ; P се състои от правилото: $S \to aA \mid bB \mid a \mid b$, $A \to aA \mid a$, $B \to bB \mid bI$.

 G_2 поражда всички думи от вида $\alpha = a^n, n \ge 1$ или $\beta = b^n, n \ge 1$, т.е.

$$L(G_2) = \{a^n | n \ge 1\} \cup L(G_2) = \{b^n | n \ge 1\}.$$

Следователно G_1 и G_2 са еквивалентни, т.е $L(G_1) = L(G_2)$.

3. Нека $G_3 = \{\Sigma, N, S, P\}$ е пораждаща граматика, където $\Sigma = \{a, b, \}$, $N = \{S\}$, S — началният символ; P се състои от правилата: $S \to aSb \mid ab$.

 G_3 генерира думата a^3b^3 в съответствие с извода:

$$S \rightarrow aSb \rightarrow aaSbb \rightarrow aaabbb$$
,

където два пъти се прилага правилото $S \to aSb$ и един път правилото $S \to ab$.

В общия случай граматиката G_3 генерира езика

$$L(G_3) = \{a^n b^n | n \ge 1\}.$$

3. Класификация на пораждащите граматики по Чомски

В съответствие със структурата на правилата граматиките се подразделят на:

- Граматика — **общ вид — тип 0**:

Правило: $\alpha A \beta \rightarrow w$, $\alpha, \beta, w \in (\Sigma \cup N)^*$, $A \in N$.

- Граматика – контекстна – тип 1:

Правило: $\alpha A\beta \to \alpha w\beta$, $w \neq \varepsilon$, $\alpha, \beta, w \in (\Sigma \cup N)^*$, $A \in N$: A може да се замести с w само ако съществува контекст α - β , където α е ляв контекст, а β десен контекст на A.

Тъй като $|\alpha w\beta| \ge 1$, то празната дума не се поражда в тази граматика. При необходимост се добавя правилото $S \to \varepsilon$, като получената граматика отново е контекстна. Правилото $S \to \varepsilon$ се прилага еднократно и не влияе върху останалите думи, различни от Λ и породени от граматиката.

Пример:

Граматиката $G_4 = \langle \{a,b,c\}, \{S,A,C\},S,P \rangle$ с множество от правила от вида $P = \{S \to aSAC | abc,S \to abC,CA \to BA,BA \to BC,BC \to AC,bA \to bb,C \to c \}$ е контекстна и поражда език

$$L(G_4) = \left\{ a^n b^n c^n | n \ge 1 \right\}$$

след прилагане n-1 пъти първото правило, един път - второто правило, третото, четвъртото и петото правило в посочената последователност, n-1 пъти правила — шестото правило, n пъти седмото правило.

Същият език се генерира от G_4 и с множеството от правила от вида $P = \{S \to aSAC \mid abc, cA \to Ac, bA \to bb, C \to c\}$

- Граматика – безконтекстна – тип 2:

Правило: $A \to w$, $w \in (\Sigma \cup N)^+$, $A \in N$. Добавя се правилото $S \to \varepsilon$ за пораждане на празната дума Λ . Пример:

Граматиката $G_5 = \langle \{a,b\}, \{S,A,B\}, S,P \rangle$ с множество от правила от вида

$$P = \{S \to AB, \ A \to aA | a, \ B \to bB | b\}$$
 е безконтекстна и поражда език $L(G_5) = \{a^n b^m | n, m \ge 1\}.$

- Граматика – автоматна – тип 3:

Правило: $A \to aB|a$, $a \in \Sigma$, $A,B \in N$. Добавя се правилото $S \to \varepsilon$ за пораждане на празната дума Λ .

Пример:

Граматиката $G_6 = \langle \{a,b\}, \{S,A,B\}, S,P \rangle$ с множество от правила от вида $P = \{S \to aA|bB|a|b, A \to aA|a, B \to bB|b, S \to \varepsilon\}$ е <u>автоматна</u> и поражда език $L(G_6) = \{a^n|n \ge 0\} \cup \{b^n|n \ge 0\}.$

Всяка автоматна граматика е безконтекстна, всяка безконтекстна граматика е контекстна, всяка контекстна граматика е граматика от общ вид, т.е. $\{G - \text{тип } 3\} \subset \{G - \text{тип } 2\} \subset \{G - \text{тип } 1\} \subset \{G - \text{тип } 0\}$. Тези включвания се наричат йерархия на Чомски за пораждащите граматики. Езикът, породен от граматика от тип i (i = 0, 1, 2, 3) се нарича език от тип i, съответно за i = 0, 1, 2, 3 - език от общ вид, контекстен, безконтекстен, автоматен. Породените езици образуват йерархия на Чомски.

4. Видове продукции

В съответствие със структурата на рекурсивната продукция се дефинират следните видове продукции:

- Двойно рекурсивна продукция:

 $x \to \alpha x \beta$ (x се получава от себе си, като $\alpha \beta$ са низове);

- Ляво рекурсивна продукция:

 $x \to x\beta$ (*x* се получава чрез добавяне на низ отдясно).

- Дясно рекурсивна продукция:

 $x \to \alpha x$ (*x* се получава чрез добавяне на низ отляво).

В зависимост от предназначението си продукциите се подразделят на следните видове:

Лексика: правила на множеството P за пораждане на думи;

Синтаксис: правила на множеството P за пораждане на изрази;

Семантика: допълнителни правила, свързани със смисъла на породените думи или изрази.

ФОРМАЛНИ ГРАМАТИКИ

Пример:

Дадена е азбуката $\Sigma = \{a,b,c\}$. Да се съставят граматики, които пораждат езиците

1.
$$L = \{a^{i}b^{i}c^{i}|i \ge 1\};$$

2. $L = \{a^{i}b^{k}c^{k}|i,k \ge 1\};$
3. $L = \{a^{i}b^{k}c^{l}|i,k,l \ge 1\}.$

1. Контекстна граматика

За езика $L = \left\{a^ib^ic^i|i\geq 1\right\}$ се дефинира граматиката G. Въвежда се азбука на терминалните символи $\Sigma = \{a,b,c\}$ и азбука на нетерминални символи N с нетерминалните символи S,B,C, където S е началният символ. Множество от правила P:

$$P_1:S o aSBC o a^{i-1}S(BC)^{i-1}$$
 Например при $i=4:S o aSBC o a^3S(BC)^3$ $P_2:S o abC o a^ibC(BC)^{i-1} = a^ibCBC(BC)^{i-2}$ $P_3:CB o BC o a^ibBCC(BC)^{i-2} = a^ibBCCBC(BC)^{i-3} = a^ibB^{i-1}C^i$ $P_4:bB o bb o a^ib^iC^i = a^ib^iC^i$ $P_5:C o c o a^ib^iC^i$

Следователно контекстната граматика G поражда езика $L = \{a^i b^i c^i | i \ge 1\}$.

2. Безконтекстна граматика

За езика $L = \{a^i b^k c^k | i, k \ge 1\}$ се дефинира граматиката

$$G = \langle \{S, A\}, \{a, b, c, \}, S = \{S\}, P \rangle$$

с множество от правила P:

$$P_1: S \to aS \underset{i-1}{\longrightarrow} a^{i-1}S;$$

$$P_2: S \to aA \underset{1}{\longrightarrow} a^i A;$$

$$P_3: A \to bAc \underset{k-1}{\longrightarrow} a^i b^{k-1} A c^{k-1};$$

$$P_4: A \to bc \xrightarrow{\longrightarrow} a^i b^k c^k$$
.

Следователно граматиката G поражда езика $L = \{a^i b^k c^k | i, k \ge 1\}.$

3. Регулярна автоматна граматика

За езика $L = \{a^i b^k c^l | i, k, l \ge 1\}$ се дефинира граматиката

$$G = \langle \{S, A, B\}, \{a, b, c, \}, S = \{S\}, P \rangle$$

с множество от правила P:

$$P_1: S \to aS \underset{i-1}{\longrightarrow} a^{i-1}S;$$

$$P_2: S \to aA \underset{1}{\longrightarrow} a^i A;$$

$$P_3: A \to bA \underset{k=1}{\longrightarrow} a^{i-1}b^{k-1}A;$$

$$P_4: A \to bB \xrightarrow{} a^i b^k B$$
;

$$P_5: B \to cB \underset{l=1}{\longrightarrow} a^i b^k c^{l-1} B;$$

$$P_6: B \to c \xrightarrow{} a^i b^k c^l$$
.

Следователно автоматната граматика поражда езика $L = \{a^i b^k c^l | i, k, l \ge 1\}.$