Дополнительные главы квантовой механики

Листок 2. Символы дифференциальных операторов.

Обязательные задачи: 1а, 1б, 3, 4.

1. Пусть f(p,q) — полином от коммутирующих переменных p,q. Определим полиномы $\hat{f}_{qp}(\hat{p},\hat{q}),\,\hat{f}_{pq}(\hat{p},\hat{q})$ и $\hat{f}_w(\hat{p},\hat{q})$ от некоммутирующих переменных $\hat{p},\,\hat{q}$ следующим образом. Если $f(p,q)=p^kq^l$ — моном, то положим

$$\hat{f}_{qp}(\hat{p},\hat{q}) := \hat{q}^l \hat{p}^k, \quad \hat{f}_{pq}(\hat{p},\hat{q}) := \hat{p}^k \hat{q}^l,$$

$$\hat{f}_w(\hat{p}, \hat{q}) := \frac{1}{n!} \sum_{\sigma \in S_n} \hat{c}_{\sigma(1)} \dots \hat{c}_{\sigma(n)},$$

где n=k+l и $\hat{c}_{\sigma(i)}=\hat{p}$, если $1\leqslant i\leqslant k$, $\hat{c}_{\sigma(i)}=\hat{q}$, если $k+1\leqslant i\leqslant k+l$. На линейных комбинациях мономов доопределим по линейности. Будем говорить, что два полинома $\hat{f}_1(\hat{p},\hat{q})$ и $\hat{f}_2(\hat{p},\hat{q})$ задают один и тот же дифференциальный оператор \hat{f} , если один получается из другого применением коммутационного соотношения $[\hat{p},\hat{q}]=-ih$. Полином f(p,q) называется (нормальным, антинормальным и вейлевским соответственно) символом оператора \hat{f} .

- а) Докажите, что каждое из построенных соответствий между символами и операторами взаимнооднозначно.
- б) Найдите нормальный, антинормальный и символ Вейля оператора $\hat{H}=\hat{p}\hat{q}.$
- 2. Докажите, что нормальный и антинормальный символы оператора \hat{f} связаны соотношениями

$$f_{qp}(p,q) = e^{-ih\frac{\partial^2}{\partial p\partial q}} f_{pq}(p,q),$$

$$f_{qp}(p,q) = \frac{1}{2\pi h} \int_{\mathbb{R}^2} f_{pq}(p+p',q+q') e^{-\frac{i}{h}p'q'} dp' dq'.$$

3. Пусть $\hat{f}=\hat{f}_1\hat{f}_2$. Докажите, что нормальные символы $f(p,q),\ f_1(p,q),\ f_2(p,q)$ операторов $\hat{f},\ \hat{f}_1,\ \hat{f}_2$ связаны соотношениями

$$f(p,q) = f_1(p,q) \exp(-i\hbar \overleftarrow{\partial}_p \overrightarrow{\partial}_q) f_2(p,q) := \left(\exp(-i\hbar \partial_{p'} \partial_{q'}) f_1(p',q) f_2(p,q') \right) |_{p'=p,q'=q},$$

$$f(p,q) = \frac{1}{2\pi\hbar} \int_{\mathbb{R}^d} f_1(p+p',q) f_2(p,q+q') e^{-\frac{i}{\hbar}p'q'} dp' dq'.$$

Как эти соотношения обобщаются на случай полиномов от 2m переменных $\hat{p}_1, \ldots, \hat{p}_m, \hat{q}_1, \ldots, \hat{q}_m, [\hat{p}_i, \hat{q}_j] = -ih\delta_{ij}$?

4. Пусть $\hat{f}(\hat{a},\hat{b})$ — некоторый моном от некоммутирующих переменных $\hat{a},\hat{b},[\hat{a},\hat{b}]=1$. Нормальным упорядочением $\mathcal{N}(\hat{f})$ называется полином $f(\hat{a},\hat{b})$, где f(a,b) — нормальный символ оператора \hat{f} . Наивным упорядочением : \hat{f} : называется моном от \hat{a} и \hat{b} , полученный из $\hat{f}(\hat{a},\hat{b})$ простым перебрасыванием всех \hat{a} направо без учета коммутационных соотношений. Докажите теорему Вика:

$$\mathcal{N}(\hat{f}) = \sum_{c \in C(\hat{f})} : c(\hat{f}) : .$$

Здесь суммирование производится по множеству $C(\hat{f}) = C_0(\hat{f}) \sqcup C_1(\hat{f}) \sqcup \ldots$ т.н. сжатий монома $\hat{f}(\hat{a},\hat{b})$: если $c \in C_m(\hat{f})$, то $c(\hat{f})$ — результат вычеркивания из $\hat{f}(\hat{a},\hat{b})$ m пар сомножителей (\hat{a},\hat{b}) , таких что \hat{a} стоит в мономе до \hat{b} (не обязательно непосредственно перед \hat{b}).

5. Найдите нормальный символ оператора $e^{t\hat{p}\hat{q}}$ (экспоненту здесь можно понимать как формальный степенной ряд). $\Pi o \partial c \kappa a s \kappa a$: Перепишите дифференциальное уравнение $\frac{\partial}{\partial t} e^{t\hat{p}\hat{q}} = \hat{p}\hat{q}e^{t\hat{p}\hat{q}}$ на языке нормальных символов и решите его.