

Testbed for Validating Second-Generation TDI and Clock Noise Correction for LISA

Karin Kruuse

The LISA Satellites

Three satellites surrounding six test masses in free fall

Each satellite houses two lasers, two optical benches and a phasemeter.

Each optical bench houses three interferometers.

The test mass to test mass distances are measured in three parts – this is the so-called split interferometry used in LISA.

LISA Interferometric Metrology System

Laser Noise Reduction via TDI

Time Delay Interferometry (TDI) is a cluster of methods to construct virtual equal arms in post-processing.

Clock Noise Reduction

Lisa metrology system-final report, 2014

Previous Experiment

Mitryk, 2012: Laser Noise Mitigation through Time Delay Interferometry for Space-based Gravitational Wave Interferometers Using the UF Laser Interferometer

Laser noise, No Clock Jitter, Realistic Delay

MiniLISA

MiniLISA is a hardware testbed that aims to simulate LISA's signal chain and test whether we can recover a gravitational wave signal from a realistic, noisy system.

To start with, we want to test the combination of second generation TDI and the clock noise removal post-processing methods on experimental data.

MiniLISA could also offer a substitute to modelled noise sources included in current data analysis.

Current Status

A fully electronic implementation of the interferometry system together with a delay and gravitational wave injection has already been developed and is being tested.

- Time varying delays
- Doppler shifts for both the carrier and sidebands
- Gravitational wave injection

The Delay Line

The center of the experiment is the delay line.

The added varying delays, gravitational wave signals and Doppler shifts are controllable via a Python-based interface.

Signal Processing on the Delay Line

The evaluation board includes enough to take in two photodetector readings and output the corresponding LISA-like beat note as an electrical signal.

Figure 3: Block diagram of Doppler- and GW-derived phase modulation of the carrier after the delay.

Credit: Reid Ferguson

One-arm Phase Measurement

Set up for generating one LISA-like science interferometer readout.

One-arm Phase Measurement

Set up for generating one LISA-like arm link.

Two-arm Testbed

Reference Oscillator

Two-arm Testbed

