Raumregionen

Eine Teilmenge $A \subseteq \mathbb{R}^3$ heißt **Raumregion**, wenn

- 1. $\emptyset \neq A \in \mathcal{OC}$ und
- 2. A beschränkt¹ ist

Die Menge der Raumregionen bezeichnen wir mit \mathcal{U}^3

Repräsentanten

- 1. (A, B) ist ein **Flächenrepräsentant**, wenn
 - (a) A eine Raumregion und
 - (b) $\varnothing \neq B \in \mathcal{OC}_{\partial_A}$ ist.

Die Menge der Flächenrepräsentanten bezeichnen wir mit \mathbb{R}^2

- 2. (A, B, C) ist ein **Linienrepräsentant**, wenn
 - (a) (A, B) ein Flächenrepräsentant und
 - (b) $\varnothing \neq C \in \mathcal{OC}_{\delta B}$ ist.

Die Menge der Linienrepräsentanten bezeichnen wir mit \mathcal{R}^1

- 3. (A, B, C, D) ist ein **Punktrepräsentant**, wenn
 - (a) (A, B, C) ein Linienrepräsentant und
 - (b) $D \subseteq \delta^2 C$ ist.

Die Menge der Punktrepräsentanten bezeichnen wir mit \mathcal{R}^0

Objektäquivalenz

- 1. Zwei Flächenrepräsentanten (A_1, B_1) und (A_2, B_2) sind objektäquivalent, wenn
 - (a) $B_1 = B_2 \text{ und}$
 - (b) $A_1 =_{B_1} A_2$

gelten

- 2. Zwei Linienrepräsentanten (A_1, B_1, C_1) und (A_2, B_2, C_2) sind objektäquivalent, wenn
 - (a) $C_1 = C_2$,
 - (b) $A_1 =_{C_1} A_2 \text{ und } B_1 =_{C_1} B_2$

gelten.

- 3. Zwei **Punktrepräsentanten** (A_1, B_1, C_1, D_1) und (A_2, B_2, C_2, D_2) sind **objektäquivalent**, wenn
 - (a) $D_1 = D_2$,
 - (b) $A_1 =_{D_1} A_2$, $B_1 =_{D_1} B_2$ und $C_1 =_{D_1} C_2$

gelten.

Wenn zwei Repräsentanten x und y objektäquivalent sind, so schreiben wir $x \sim y$.

¹Eine Teilmenge $A \subseteq \mathbb{R}^n$ ist beschränkt falls $\exists M \in \mathbb{R} : A \subseteq B_M(0)$.

Übersicht 3 \mathcal{R} -Struktur

Niederdimensionale Raumentitäten

1. Für $(A, B) \in \mathbb{R}^2$ bezeichnet

$$[A, B] := \{ (A', B') \in \mathbb{R}^2 \mid (A', B') \sim (A, B) \}$$

die Äquivalenzklasse von (A,B) bezüglich der Objektäquivalenz. Diese Äquivalenzklassen heißen **Flächenregionen**.

2. Für $(A, B, C) \in \mathbb{R}^1$ bezeichnet

$$[A, B, C] := \{ (A', B', C') \in \mathcal{R}^1 \mid (A', B', C') \sim (A, B, C) \}$$

die Äquivalenzklasse von (A,B,C) bezüglich der Objektäquivalenz. Diese Äquivalenzklassen heißen **Linieregionen**.

3. Für $(A, B, C, D) \in \mathbb{R}^0$ bezeichnet

$$[A, B, C, D] := \{ (A', B', C', D') \in \mathbb{R}^0 \mid (A', B', C', D') \sim (A, B, C, D) \}$$

die Äquivalenzklasse von (A,B,C,D) bezüglich der Objektäquivalenz. Diese Äquivalenzklassen heißen **Punktregionen**.

Für $i \in \{0, 1, 2\}$ ist $\mathcal{U}^i := \mathcal{R}^i/_{\sim}$ die Menge der Äquivalenzklassen von \mathcal{R}^i .

Universum

Das Universum der R-Struktur ist definiert als

$$\mathcal{U} = \mathcal{U}^3 \cup \mathcal{U}^2 \cup \mathcal{U}^1 \cup \mathcal{U}^0$$

Dimensionsfunktion

 $\dim: \mathcal{U} \to \mathbb{N}$ ist definiert $\dim(x) = i \quad \Leftrightarrow \quad x \in \mathcal{U}^i$

SReg: Für $x \in \mathcal{U}$ gilt SReg(x) gdw. $x \in \mathcal{U}^3$.

sb

1. Für $(A_1, B_1) \in \mathbb{R}^2$, $A_2 \in \mathcal{U}^3$ gilt

$$sb([A_1, B_1], A_2) \Leftrightarrow (A_1, B_1) \sim (A_2, B_1)$$

2. Für $(A_1, B_1, C_1) \in \mathbb{R}^1$, $(A_2, B_2) \in \mathbb{R}^2$ gilt

$$sb([A_1, B_1, C_1], [A_2, B_2]) \Leftrightarrow (A_1, B_1, C_1) \sim (A_2, B_2, C_1)$$

3. Für $(A_1, B_1, C_1, D_1) \in \mathbb{R}^0$, $(A_2, B_2, C_2) \in \mathbb{R}^1$ gilt

$$sb([A_1,B_1,C_1,D_1],[A_2,B_2,C_2]) \quad \Leftrightarrow \quad (A_1,B_1,C_1,D_1) \sim (A_2,B_2,C_2,D_1)$$

4. Für $\dim(x) + 1 \neq \dim(y)$ gilt $\neg sb(x, y)$

Übersicht 3 \mathcal{R} -Struktur

scoinc

1. Für $A_1, A_2 \in \mathcal{U}^3$ gilt: $\neg scoinc(A_1, A_2)$

2. Für $(A_1, B_1), (A_2, B_2) \in \mathbb{R}^2$ gilt

$$scoinc([A_1, B_1], [A_2, B_2]) \Leftrightarrow B_1 = B_2$$

3. Für $(A_1, B_1, C_1), (A_2, B_2, C_2) \in \mathbb{R}^1$ gilt

$$scoinc([A_1, B_1, C_1], [A_2, B_2, C_2]) \Leftrightarrow C_1 = C_2$$

4. Für $(A_1, B_1, C_1, D_1), (A_2, B_2, C_2, D_2) \in \mathbb{R}^0$ gilt

$$scoinc([A_1, B_1, C_1, D_1], [A_2, B_2, C_2, D_2])$$

 $\Leftrightarrow D_1 = D_2$

5. Für $\dim(x) \neq \dim(y)$ gilt $\neg scoinc(x, y)$.

spart

- 1. Für $A_1, A_2 \in \mathcal{U}^3$ gilt $spart(A_1, A_2)$ gdw. $A_1 \subseteq A_2$
- 2. Für $(A_1, B_1), (A_2, B_2) \in \mathbb{R}^2$ gilt $spart([A_1, B_1], [A_2, B_2])$ gdw.
 - (a) $B_1 \subseteq B_2$
 - (b) $(A_1, B_1) \sim (A_2, B_1)$
- 3. Für $(A_1, B_1, C_1), (A_2, B_2, C_2) \in \mathcal{R}^1$ gilt $spart([A_1, B_1, C_1], [A_2, B_2, C_2])$ gdw.
 - (a) $C_1 \subseteq C_2$
 - (b) $(A_1, B_1, C_1) \sim (A_2, B_2, C_1)$
- 4. Für $(A_1, B_1, C_1, D_1), (A_2, B_2, C_2, D_2) \in \mathbb{R}^0$ gilt $spart([A_1, B_1, C_1, D_1], [A_2, B_2, C_2, D_2])$ gdw.
 - (a) $D_1 = D_2$
 - (b) $(A_1, B_1, C_1, D_1) \sim (A_2, B_2, C_2, D_1)$
- 5. Für $\dim(x) \neq \dim(y)$ gilt $\neg spart(x, y)$.