Diskrete Wahrscheinlichkeitstheorie – Hausaufgabe 7

Abgabe bis zum 13.6. bis 8:30.

Alle Antworten sind unter Angabe des Rechenwegs zu begründen, soweit nicht anders gefordert! Fragen gerne im infler-Forum posten :).

Aufgabe 7.1 Abzugeben.

2P

Sei X die ZV, welche die Anzahl der Würfe in Aufgabe A4.4 (a) zählt.

Leiten Sie zunächst mit demselben Ansatz wie A4.4 ein lineares Gleichungssystem für $G_X(z) = \mathbb{E}[z^X]$ her, indem Sie nach den Ergebnissen der ersten Münzwürfe bedingen. (Z.B. $\mathbb{E}[z^X|0] = \mathbb{E}[z^X+1] = z\mathbb{E}[z^X]$.)

Bestimmen Sie dann $G_X(z)$ durch Lösen des Gleichungssystems.

Hinweis: Überprüfen Sie Ihr Ergebnis, indem Sie sich $\mathbb{E}[X]$ und Var[X] mittels eines CAS aus $G_X(z)$ bestimmen lassen.

Aufgabe 7.2 Abzugeben.

3P+3P

Es seien $X \sim \text{Geo}(1/4)$ und $Y \sim \text{Geo}(1/2)$ unabhängige ZVen.

In dieser Aufgabe werden verschiedene Wege diskutiert, um die Dichte von X + Y zu berechnen.

(a) Bestimmen Sie Pr[X + Y = k] direkt mit Hilfe von Satz 27:

$$\Pr[X + Y = k] = \sum_{i+j=k} \Pr[X = i] \cdot \Pr[Y = j].$$

Zeigen Sie hierfür zunächst, dass für alle $a,b\in\mathbb{R}$ und $n\in\mathbb{N}$:

$$(a-b)\sum_{i=0}^{n} a^{i}b^{n-i} = a^{n+1} - b^{n+1}.$$

(b) Verwenden Sie A6.1(a), um die w'keitserzeugende Funktion $G_{X+Y}(z)$ aus $G_X(z)$ und $G_Y(z)$ herzuleiten.

Bestimmen Sie dann geeigente Konstanten $\alpha, \beta, \gamma \in \mathbb{R}$, so dass:

$$G_{X+Y}(z) = \alpha + \frac{\beta}{1 - \frac{1}{2}z} + \frac{\gamma}{1 - \frac{3}{4}z}.$$

Überprüfen Sie nun Ihr Ergebnis aus (a), indem Sie $G_{X+Y}(z)$ mit Hilfe der geometrischen Reihe direkt als eine Reihe darstellen.

Aufgabe 7.3 Abzugeben: (a), (c), (e)

2P + 2P + 2P

Bestimmen sie die Werte folgender Integrale (per Hand).

- (a) $\int_1^5 (3x+2)^{1/2} dx$.
- (b) $\int_{-1/4}^{3/4} x \arcsin(x^2) (1-x^4)^{-1/2} dx$.
- (c) $\int_2^{5/4} (1 + (1+x)^{1/2})^{-1} dx$.
- (d) $\int_{0 \le x, y \le 1} (x^2 + y^2) dx dy$.
- (e) $\int_{x^2+y^2\leq 1} (x^2+y^2)dxdy$.
- (f) $\int_{|x|+|y|\leq 1} (x^2+y^2)dxdy$.

Hinweis: Siehe Übungsblätter 9 und 10 aus Analysis für Informatiker WS2011.

Der erste Teil der Aufgabe beschäftigt sich damit, dass es zu jeder Familie von "für uns interessanten" Ereignissen genau eine kleinste σ -Algebra gibt, welche diese Familie enthält:

(a) Es seien \mathcal{A} und \mathcal{B} σ -Algebren über Ω .

Zeigen Sie, dass dann auch $\mathcal{C} := \mathcal{A} \cap \mathcal{B} = \{A \mid A \in \mathcal{A} \land A \in \mathcal{B}\}$ eine σ -Algebra über Ω ist.

(b) Es sei $\Omega = \{a, b, c, d\}$ und $A_1 = \{a, b\}$, $A_2 = \{a, c, d\}$ und $A_3 = \{b, d\}$.

Geben Sie die kleinste σ -Algebra \mathcal{A} über Ω an, welche A_1, A_2, A_3 enthält.

Das heißt: Für jede andere σ -Algebra \mathcal{A}' über Ω , welche ebenfalls A_1, A_2, A_3 enthählt, soll $\mathcal{A} \subseteq \mathcal{A}'$ gelten.

- (c) Für jede Menge Ω und *nicht-leere* Menge $\mathcal{F} \subseteq 2^{\Omega}$ von Ereignissen über Ω definieren wir die σ -Algebra $\sigma(\mathcal{F})$ induktiv:
 - Für alle $A \in \mathcal{F}$: $A \in \sigma(\mathcal{F})$.
 - Falls $A \in \sigma(\mathcal{F})$: $\Omega \setminus A \in \mathcal{F}$.
 - Falls $A_1, A_2, \ldots \in \sigma(\mathcal{F})$: $\bigcup_{i \in \mathbb{N}} A_i \in \sigma(\mathcal{F})$.

Zeigen Sie, dass $\sigma(\mathcal{F})$ die kleinste σ -Algebra über Ω ist, welche \mathcal{F} beinhaltet.

Der zweite Teil beschäftigt sich speziell mit den Borel'schen Mengen $\mathcal{B}(I)$ über einem Intervall $I \subseteq \mathbb{R}$. Mittels (c) lässt sich $\mathcal{B}(I)$ kurz als die kleinste σ -Algebra über I beschreiben, welche alle geschlossenen Intervalle $[a,b] \subseteq I$ enthält.

Wir betrachten speziell $\mathcal{B} := \mathcal{B}((-\infty, \infty)).$

- (d) Zeigen Sie, dass die folgenden Mengen in \mathcal{B} enthalten sind:
 - Die Menge der irrationalen Zahlen.
 - Die Menge der reellen Zahlen in [0, 1], deren Binärdarstellung unendlich viele 1en enthält.
- (e) Zeigen Sie, dass \mathcal{B} auch die kleinste σ -Algebra ist, welche alle halb-offenen Intervalle $(a,b] \subseteq \mathbb{R}$ enthält.

Aufgabe 7.5

Diese Aufgabe behandelt nochmals das Problem, dass wir keine Gleichverteilung $Pr[\cdot]$ über der Potenzmenge des Einheitsintervalls [0,1] definieren können. Wir formulieren zunächst, welche Eigenschaften eine solche Gleichverteilung besitzen sollte.

Intuitiv sollte bzgl. einer Gleichverteilung $\Pr[\cdot]$ über $\Omega = [0,1]$ jedes $x \in [0,1]$ "gleich wahrscheinlich" sein. Da [0,1] jedoch überabzählbar ist, macht es keinen Sinn, von Elementarw'keiten zu sprechen. Hilfreicher ist die Intuition, dass die Gleichverteilung das "Volumen" eines Ereignisses $A \subseteq [0,1]$ angeben sollte. Spezielle für Intervalle sollte daher gelten:

(I) Für alle
$$0 \le a \le b < 1$$
: $\Pr[(a,b)] = \Pr[[a,b]] = \Pr[(a,b)] = \Pr[[a,b]] = b - a$.

Bzgl. dieser Intuition sollte auch die W'keit eines Ereignisses A unter "Verschiebungen" erhalten bleiben. Für $r \in [0,1]$ sei $A \oplus r$ die Menge, die sich aus A ergibt, indem wir zu jedem Element von A zunächst r addieren und danach den erhalten Wert zurück in das Intervall [0,1] abbilden, indem wir nur den Nachkommateil behalten. (Man kann sich das auch so vorstellen, dass [0,1] an beiden Enden zu einem Kreis zusammengeklebt wird.) Formal:

$$A \oplus r := \{(a+r) \bmod 1 \mid a \in A\}.$$

Es sollte dann gelten:

(II) Für alle
$$r \in [0,1]$$
 und $A \subseteq [0,1]$: $\Pr[A] = \Pr[A \oplus r]$.

Schließlich sollte auch die übliche Additivität disjunkter Ereignisse gelten:

(III) Für alle disjunkten Ereignisse
$$A_1, A_2, \ldots$$
 in $[0, 1]$: $\Pr\left[\bigcup_{i \in \mathbb{N}} A_i\right] = \sum_{i=1}^{\infty} \Pr[A_i]$.

Wir definieren nun auf [0,1] eine mit \equiv bezeichnete Äquivalenzrelation: Es gelte $x \equiv y$ genau dann, wenn $x-y \in \mathbb{Q}$.

Dann partitioniert \equiv die Menge [0,1] in Äquivalenzklassen.

Es sei nun R eine Menge, die aus jeder dieser Äquivalenzklassen genau ein Element (einen Repräsentanten) enthält.

Zeigen Sie, dass es keinen W'keitsraum ([0,1], \mathcal{A} , Pr) mit $R \in \mathcal{A}$ geben kann, welcher die obigen drei Eigenschaften (I–III) erfüllt.

Bemerkung: Bezüglich der Existenz von R siehe Auswahlaxiom.