NCEA Level 3 Calculus (Differentiation)

8. Optimisation

Recall from Level 2 that a *local maximum* of a function f is some point (x, f(x)) such that, for a sufficiently small interval I around x, for all $y \in I$ $f(y) \leq f(x)$; a *local minimum* is defined in a similar way (see exercises).

Example. The function $x \mapsto x^2$ has a local minimum at (0,0).

Example. The function $x \mapsto 2x^3 + 15x^2 + 36x + 2$ has a local maximum at (-3, -25) and a local minimum at (-2, -26).

Example. The function $x \mapsto \sin x$ has a local maximum at $(2n\pi + \frac{\pi}{2}, 1)$ for every $n \in \mathbb{Z}$, and a local minimum at $(2n\pi - \frac{\pi}{2}, 1)$ for every $n \in \mathbb{Z}$.

Local extrema are also sometimes called relative extrema.

It is possible to prove that if f is defined around some value x, if f has a relative extremum at (x, f(x)), and if f' is defined at x, then f'(x) = 0 (Theorem 1.10 in the notes). Because of this, we define a *critical point* of a function f to be some value x such that either f'(x) = 0, or f'(x) is undefined. In the first case, we also call the value a *stationary point*.

All local extrema occur at critical points, but not all critical points occur at extrema.

Example. The function $x \mapsto 2x^3 + 15x^2 + 36x + 2$ above has critical points x = -2 and x = -3. Both of these are local extrema.

Example. The function $x \mapsto x^3$ above has a critical point at x = 0, but does not have a local extrema there. **Example.** The function $x \mapsto \frac{1}{x}$ does not have a critical point at x = 0, because it is not defined there.

We can use the first derivative to classify extrema as either maxima or minima.

The First Derivative Test

- 1. Determine all critical points of f.
- 2. Determine the sign of f'(x) to the left and right of each critical point x_0 :
 - If f'(x) changes from positive to negative as we move from left to right across x_0 , then f(x) has a local maximum at x_0 .
 - If f'(x) changes from negative to positive as we move from left to right across x_0 , then f(x) has a local minimum at x_0 .
 - If f'(x) does not change sign across x_0 , then f(x) does not have a relative extremum at x_0 (e.g. $y = x^3$).

Recall last week's material; using the second derivative, we can come up with a second test:

The Second Derivative Test

- 1. Compute f'(x) and f''(x).
- 2. Find all the stationary points of f by finding all the points x_0 such that $f'(x_0) = 0$.
- 3. Determine the sign of f''(x) for each stationary point x_0 :
 - If $f''(x_0) < 0$, then f(x) has a relative maximum at x_0 .
 - If $f''(x_0) > 0$, then f(x) has a relative minimum at x_0 .
 - If $f''(x_0) = 0$, then f(x) could have a relative maximum, a relative minimum, or neither.

Example. Find and classify the critical points of $y = x^3 - 3x^2 + 6$.

Solution. We have $\frac{dy}{dx} = 3x^2 - 6x$ and $\frac{d^2y}{dx^2} = 6x - 6$. Hence the critical points are x = 0 and x = 2. At the former point, $\frac{d^2y}{dx^2} < 0$, and so the point is a maximum; at the latter point, $\frac{d^2y}{dx^2} > 0$ and so the point is a minimum.

Example. Find two numbers whose difference is 100 and whose product is a minimum.

Solution. Let the two numbers be x and x + 100. We wish to minimise y = x(x + 100); clearly y' = 2x + 100, and so x = 50 is a critical point. To the left of x = 50, the derivative is negative; to the right, the derivative is positive. Hence x = 50 is indeed a minimum. The two required numbers are therefore 50 and 150.

Example. Find and classify the critical points of $y = (x-1)^2 + \ln x$.

Solution. The derivative is $y' = 2x - 2 + \frac{1}{x}$. We therefore have one critical point at x = 0 (where y' is undefined); this is an asymptote. Setting y' = 0, we have $0 = 2x - 2 + \frac{1}{x} = 2x^2 - 2x + 1$ which has no real roots. Hence x = 0 is the only critical point, and the curve has no local extrema.

Example. A rectangular plot of land is to be fenced using two varieties of fence. Two opposite sides will use fences selling for \$3 per metre, while the other two sides will use cheaper fence selling for \$2 per metre. Given that the total budget is \$1200, what is the greatest area of land which can be fenced?

Solution. Let x be the length of one of the expensive sides; then the length of one of the cheaper sides is $\frac{1}{2}(1200-3x)$, and the total area is $A=\frac{1}{2}x(1200-3x)=\frac{1}{2}(1200x-3x^2)$. Hence $\frac{\mathrm{d}A}{\mathrm{d}x}=600-3x$. We wish to find the maximum area, so set $\frac{\mathrm{d}A}{\mathrm{d}x}=0$; hence 3x=600 and x=200. Note that the second derivative is always negative, so this stationary point must be a maximum as required. The length of the other side will be $\frac{1}{2}(1200-600)=300$, and so the maximum area is $300\times200=60000$ square metres.

Questions

- 1. A Write down a definition of a local minimum similar to that given for a maximum.
- 2. A Show that $f(x) = x^4$ has f''(0) = 0 but not a point of inflection at x = 0 (in fact, it has a minimum at that point).
- 3. A Describe the advantages and disadvantages of the first and second derivative tests for local extrema.
- 4. M Describe the local extrema, concavity, and points of inflection of the function $f(x) = x^4 4x^3$.
- 5. A Consider the following graph:

Find the signs of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the three points A, B, and C.

- 6. M Find all the local extrema of the following curves in the given intervals, and classify them as maxima, minima, or neither.
 - (a) $f(x) = \sin x \cos x$ on the interval $0 < x < \pi$
 - (b) $g(x) = x^3 x^2 + x 1$ on the interval $-\infty < x < \infty$
- 7. M The sum of two positive numbers x and y is 16. Find the smallest possible value for $S = x^2 + y^2$.
- 8. M A box with an open top is to be constructed from a square piece of cardboard with a side length of 3 m by cutting out a square from each of the four corners and bending up the sides. Find the dimensions of the resultant box of maximum volume.
- 9. M Find the dimensions of a rectangle with area 1000 m² such that the perimeter is minimised.
- 10. \blacksquare A large orange rectangle is to be drawn with one corner sitting on the origin and the opposite corner lying on the curve $y = 0.2(x 10)^2$. What is the maximum possible area of the rectangle?

- 11. $\boxed{\mathbb{M}}$ A window consisting of a rectangle topped with a semicircle is to have a fixed perimeter p. Find the radius of the semicircle in terms of p if the total area is to be maximised.
- 12. \blacksquare A thin wire of length L is cut in two and the resulting lengths are bent to make a square and an equilateral triangle. Where should the wire be cut to make the total area of the shapes (a) a maximum and (b) a minimum?
- 13. **E** Find the point on the line y = 2x + 3 closest to the origin.
- 14. **E** Find the point on the curve $y = \sqrt{x}$ closest to (3,0).
- 15. M The rate in which photosynthesis takes place for a species of phytoplankton is modeled by the function

$$P = \frac{100I}{I^2 + I + 4}$$

For which light intensity I is P a maximum?

- 16. \blacksquare By finding the x- and y- intercepts, the asymptotes, the critical points, the intervals of increase and decrease, the intervals of concavity, and any other important points, sketch the following functions (199):
 - (a) $f(x) = \frac{x^2}{4-x^2}$
 - (b) $f(x) = \frac{4x}{x^2+1}$ [Hint: consider what happens to f(x) as $x \to \pm \infty$.]
 - (c) $f(x) = \frac{x^2 4x + 5}{x 2} = x 2 + \frac{1}{x 2}$ [Hint: consider what happens to f(x) (x 2) as $x \to \pm \infty$.]
- 17. E A cone with height h is inscribed in a larger cone of height H such that the vertex of the small cone is at the centre of the base of the larger cone. Show that the maximum volume of the smaller cone occurs when $h = \frac{1}{3}H$.
- 18. $\[\]$ Let v_1 be the velocity of light in air and v_2 be the velocity of light in water. A ray of light will travel from a point A in the air to a point B in the water by a path ACB that minimises the time taken. Show that

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2}$$

where θ_1 is the angle of incidence and θ_2 is the angle of refraction.

- 19. E Show that the polynomial $p(x) = 10x^3 + x^2 + x 34$ has exactly one real zero.
- 20. $\[\]$ A rain gutter is to be constructed from a metal sheet of width 30 cm by bending up one third of the sheet on each side by an angle θ . What angle should be chosen in order to obtain the maximum possible volume?
- 21. E A steel pipe is carried around a right-angled corner from a hallway 3 m wide into a hallway 2 m wide. What is the length of the longest pipe that can be carried horizontally around the corner? [Hint: this is actually a minimisation problem, despite the wording.]

- 22. **E** Find and classify the critical points of $h(x) = x^4 + x^3 + cx^2$.
- 23. Show that $\frac{x^2+1}{x} \ge 2$; hence (or otherwise) show that $\frac{(x^2+1)(y^2+1)(z^2+1)}{xyz} \ge 8$.
- 24. Scholarship 2013: Prince Ruperts drops are made by dropping molten glass into cold water. A mathematical model for a drop as a volume of revolution uses $y = \sqrt{\phi(e^{-x} e^{-2x})}$ for $x \ge 0$, where ϕ is the golden ratio $\phi = \frac{1+\sqrt{5}}{2}$.
 - (a) Where is the modelled drop widest, and how wide is it there?
 - (b) The drop changes shape at a point B, where the concavity of the function is zero. Use

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \sqrt{\phi} \frac{e^{2x} - 6e^x + 4}{y^2 e^{4x}}$$

to find the exact x-ordinate of B.