Algoritmos e Complexidade

Exame de Recurso — 2. Parte — 29 de Junho de 2009

1- Seja dado um "array" com $n\ (n\geq 2)$ elementos, em que cada elemento é uma letra minúscula.

Pretende-se manipular os elementos do "array" de maneira a separar as vogais das consoantes, usando de modo eficiente a estratégia do algoritmo "Bubblesort".

Note que:

- 1. as vogais deverão ficar na primeira partição, e as consoantes na segunda;
- 2. o algoritmo deverá terminar, logo que seja verificado que as vogais e as consoantes á se encontram separadas.
- a) Desenvolva a função que permite, dado um "array" de letras minúsculas, separar as vogais das consoantes.
- b) Efectue a análise da complexidade do algoritmo da função anterior para o Melhor Caso, em termos das <u>comparações</u> e das <u>trocas</u> de caracteres efectuadas. Identifique <u>instâncias</u> do "array" que conduzam a esse caso.
- c) Efectue a análise da complexidade do algoritmo da fenção anterior para o Pior Caso, em termos das comparações e das trocas de caracteres efectuadas. Identifique instâncias do "array" que conduzam a esse caso.
- 2 Considere o tipo abstracto de dados Árvore Binária de Inteiros, em cujos nós é possível armazenar um número inteiro.
- Considere também que os números inteiros se encontram registados "em-ordem" crescente.

Elabore uma função <u>recursiva e eficiente</u> que permita:

- Listar, em ordem crescente, todos os elementos armazenados numa dada árvore e que per-tençam ao intervalo [a,b].
- 3 Considere o tipo abstracto de dados **Grafo**, definido usando a <u>matriz de adjacências</u> que representa um dado grafo G(V, E), com n vértices e m arestas.

Note que, assim, os n vértices de um grafo se encontram identificados pela sequência de números inteiros $0, 1, \ldots, (n-1)$.

Dado um vértice $v_i \in V$, pretende-se listar todos os vértices v_i alcançáveis a partir de v_i .

Essa listagem deverá ser iniciada pelo vértice v_i e corresponder a uma travessia em profundidade do grafo em que é indicado uma vez, para cada vértice alcançado v_j , o número de arestas que definem o primeiro caminho determinado de v_i para v_j , usando a travessia efectuada.

Assim, cada vértice alcançado só deverá ocorrer uma vez na listagem.

Por exemplo, para um dado grafo e para o caso dos vértices alcançáveis a partir do vértice 1, obter-se-ia:

No	1	_	Distancia	0
No	2	-	Distancia	1
No	4	-	Distancia	2
No	6	-	Distancia	3
No	3	-	Distancia	1
No	5	-	Distancia	2

Dado um grafo e um seu vértice v_i :

- a) Desenvolva uma função que, usando uma estratégia **iterativa**, efectue a listagem desejada.
- b) Desenvolva agora uma outra função que, usando uma estratégia recursiva, efectue a listagem desejada.

Atenção:

- Não se esqueça de que o grafo pode conter ciclos.
- Assuma que está definida uma função que devolve o elemente da linha i e da coluna j de uma matriz de adjacências m:

- Assuma que estão definidos os tipos abstractos Pilha e Fila; não é necessário implementá-los, caso os queira utilizar.
- \blacksquare Desenvolva outras eventuais funções auxiliares de que possa necessitar.