Challenge

know that, we

$$H(x) = - \left\{ (x = 269) \log_2 (8x(x = 269) - (1 - 8x(x = 269))) \log_2 (1 - 8x(x = 269)) \right\}$$

$$H(x) = - \frac{1000}{100} = - \frac{1000}{100}$$

$$=) 109 \left(\frac{1-p}{p} \right) = 0$$

To maximize entropy, buy 5 red SOCKS and

S black socks

$$b'(p) = -109P - \frac{P}{P} - \left(-109(c-P) + \frac{c-P}{c-P}(-1)\right) = 0$$

=)
$$log(\frac{c-P}{P}) = 0$$

=) $c-P = P$ =) $c=2P$ $P=c(2$
:. $P=c(2)$ by oftimum value

$$H(x,y) = -x(109x(-y109y) - (1-x-y)189(1-x(-y))$$

$$\frac{\partial (x,y)}{\partial H(x,y)} = 0 \qquad \frac{\partial (y)}{\partial H(x,y)} = 0 \qquad \frac{\partial (y)}{\partial H(x,y)} = 0 \qquad \frac{\partial (y)}{\partial H(x,y)} = 0$$

$$\frac{\partial H(x,y)}{\partial y} = 0 \quad \text{we get} \quad 2x + y = 1 \quad \bigcirc$$

$$\frac{\partial H(x,y)}{\partial H(x,y)} = 0, \quad \text{we get} \quad 2y + x = 1 - 2$$

we can extend this to n-colous, where $P(i) = \frac{1}{n}$ (i= 1...n)

Post (a) of the question is when n = 2

Hose, n = 100 $P(i) = \frac{1}{100}$

70401 SOCKS = 10,000

: we need to buy 10,000 = 100 SOCKS

Of each colost.

(a)
$$(x_1=1) = P$$
,
 $(x_1=1) = (x_1=1) = (x_1$

$$\frac{\rho}{\rho} = \frac{1}{1 - \rho} = \frac{1}$$

$$\frac{1}{160} \frac{1}{160} \frac{1}{160} = \frac{1}{160} = \frac{1}{160} = \frac{1}{160} \frac{1}{160$$

$$\frac{1}{R_{N}} = \frac{1}{(N-1)^{2}} = \frac{1}{(N-1)^{2}$$

$$= (c+P-cP)(P) + (v-(cP-P+1))(v-P)$$

$$= (c+P-cP)(P) + (P-cP)(1-P)$$

$$= (c+P-cP)(P) + (P-cP)(1-P)$$

(b)
$$(0x)(0,v) = E[v] - E[v] - E[v]$$

$$\sqrt{vax(u)} \quad vax(v)$$

(r; , r)	7;* 7;-1	P(71,7;-1) = P(71/71-1) P (1:-1)
(1, 1)	1	((19- (9) (9)
(1, -1)	- 1	(8- (6) (1-6)
(-1, 1)	-1	(1-c-8 +c6) (b)
(-1, -1)	\	C (8-8+1) (1-B)

$$\mathbb{E}\left[\alpha \sqrt{J} = \sum_{i=1}^{\infty} (q_i v_i) \operatorname{Px}(q_i, v_i)\right]$$

$$E[0] = 1.9 - 1 (1-1) = 29 - 1$$

$$var(a) = E[az] - E(az) = 1 - (56-1)^2 = 46(1-6)$$

$$(0) \times (0, 0) = 0$$

$$\sqrt{98(1-8) * 98(1-8)} = 0$$

$$\therefore \cos(u,v) = C$$

c) For, m=3, majority votes (at least 2 1's) are possible in the following scenario

7,	42	Y3
\	١)
\	\	- <i>1</i>
\	-\	١
-\	1	\

+ (1-P) * (1-P00) * P11

= P* 1811 + P* TII - P * (P)

+ P - PP00 - P* P11 + P * P11 × P60

+ P11 - P00 P11 - P P11 + P P00 P11

= P- PP00 +2(PP00 P11) + P11 - RooP11

- 8 P11

= P+P11 -PP11 - P00P11-PP00 +2 (PP00 P11)