Seminar Nr.6, Numerical Characteristics of Random Variables

Theory Review

Expectation:

- if $X \begin{pmatrix} x_i \\ p_i \end{pmatrix}_{i \in I}$ is discrete, then $E(X) = \sum_{i \in I} x_i p_i$.

- if X is continuous with pdf f, then $E(X) = \int_{\mathbb{R}^2} x f(x) dx$.

Variance: $V(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$.

Standard Deviation: $\sigma(X) = \sqrt{V(X)}$.

Moments:

- moment of order k: $\nu_k = E(X^k)$.
- absolute moment of order k: $\overline{\nu_k} = E(|X|^k)$.
- central moment of order k: $\mu_k = E((X E(X))^k)$.

Properties:

- 1. E(aX + b) = aE(X) + b, $V(aX + b) = a^2V(X)$
- 2. E(X + Y) = E(X) + E(Y)
- 3. if X and Y are independent, then E(XY) = E(X)E(Y) and V(X + Y) = V(X) + V(Y)
- 4. if $h: \mathbb{R} \to \mathbb{R}$ is a measurable function, X a random variable;
- if X is discrete, then $E(h(X)) = \sum_{i \in I} h(x_i)p_i$
- if X is continuous, then $E(h(X)) = \int_{\mathbb{R}} h(x)f(x)dx$

Covariance: cov(X, Y) = E((X - E(X))(Y - E(Y)))

Correlation Coefficient: $\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}$

Properties:

1. cov(X, Y) = E(XY) - E(X)E(Y)

2.
$$V\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i^2 V(X_i) + 2 \sum_{1 \le i < j \le n} a_i a_j \operatorname{cov}(X_i, X_j)$$

3. X, Y independent $=> \operatorname{cov}(X, Y) = \rho(X, Y) = 0$ (X and Y are uncorrelated)

4.
$$-1 \le \rho(X, Y) \le 1$$
; $\rho(X, Y) = \pm 1 <=> \exists a, b \in \mathbb{R}, a \ne 0 \text{ s.t. } Y = aX + b$

Let (X,Y) be a continuous random vector with pdf f(x,y), let $h: \mathbb{R}^2 \to \mathbb{R}^2$ a measurable function, then

$$E(h(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y)f(x,y)dxdy$$

- 1. Find E(X) and V(X) for the following random variables:
- a) $X \in B(n, p)$ (binomial);
- b) $X \in G(p)$ (geometric);
- c) $X \in \mathcal{P}(\lambda)$ (Poisson).

2. Find E(X) and V(X) for the random variables with the following pdf's:

a)
$$f_X(x) = \frac{1}{\pi \sqrt{a^2 - x^2}}$$
, $x \in (-a, a)$;

b)
$$f_X(x) = xe^{-x}, x > 0.$$

3. Find the k^{th} order central moments for a normally distributed random variable $X \in N(m, \sigma)$.

4. (Reduced Variables). Let X be a random variable with mean E(X) and standard deviation

$$\sigma(X) = \sqrt{V(X)}$$
. Find the mean and variance of $Y = \frac{X - E(X)}{\sigma(X)}$.

- **5.** The joint density function of the vector (X,Y) is $f(x,y)=x+y, \ (x,y)\in [0,1]\times [0,1].$ Find
- a) the means and variances of X and Y;
- b) the correlation coefficient $\rho(X,Y)$.
- **6.** Let X be a discrete random variable with pdf $X\begin{pmatrix} -1 & 0 & 1 \\ \sin^2 a & \cos 2a & \sin^2 a \end{pmatrix}$, $a \in \left(0, \frac{\pi}{4}\right)$. For any $k \in \mathbb{N}^*$, find $\rho\left(X^{2k-1}, X^{2k}\right)$. (In particular, X and X^2 are uncorrelated, but not independent).

Bonus Problems

7. Let X and Y be independent random variables with a N(0,1) distribution. Find the expectation of the random variable

$$Z = e^{\frac{X^2 + Y^2}{2}} (1 + X^2 + Y^2)^{-\frac{3}{2}}.$$

8. In an office n different letters are placed randomly into n envelopes with addresses. Let Z_n denote the random variable that shows the number of correct mailings. For each $k \in \{1, \ldots, n\}$, let X_k be the random variable defined by

$$X_k = \begin{cases} 1, & \text{if the } k\text{-th letter is placed correctly} \\ 0, & \text{otherwise} \end{cases}$$

- a) Find $E(X_k)$ and $V(X_k)$ for each $k \in \{1, ..., n\}$.
- b) Find $E(Z_n)$ and $V(Z_n)$.
- c) How many correct mailings are to be expected?