Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Subdirección de Estudios de Posgrado

Procesamiento de imagen del espectro de difracción de electrones

POR

Edson Edgardo Samaniego Pantoja

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE

MAESTRÍA EN CIENCIAS DE LA INGENIERÍA

CON ORIENTACIÓN EN NANOTECNOLOGÍA

Agosto 2022

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Subdirección de Estudios de Posgrado

Procesamiento de imagen del espectro de difracción de electrones

POR

Edson Edgardo Samaniego Pantoja

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE

MAESTRÍA EN CIENCIAS DE LA INGENIERÍA

CON ORIENTACIÓN EN NANOTECNOLOGÍA

Agosto 2022

Universidad Autónoma de Nuevo León

Facultad de Ingeniería Mecánica y Eléctrica Subdirección de Estudios de Posgrado

Los miembros del Comité de Tesis recomendamos que la Tesis "PROCESAMIENTO DE IMAGEN DEL ESPECTRO DE DIFRACCIÓN DE ELECTRONES", realizada por el alumno Edson Edgardo Samaniego Pantoja, con número de matrícula 2081741, sea aceptada para su defensa como requisito parcial para obtener el grado de Maestría en Ciencias de la Ingeniería con Orientación en Nanotecnología.

Dr. Virgilio Ángel González González Dra. Satu Elisa Schaeffer
Co-Asesor Co-Asesora

Dr. Marco Antonio Garza Navarro
Revisora

Vo. Bo.

Dr. Simón Martínez Martínez

San Nicolás de los Garza, Nuevo León, agosto 2022

Subdirector de Estudios de Posgrado

RESUMEN

Edson Edgardo Samaniego Pantoja.

Candidato para obtener el grado de Maestría en Ciencias de la Ingeniería con Orientación en Nanotecnología.

Universidad Autónoma de Nuevo León.

Facultad de Ingeniería Mecánica y Eléctrica.

Título del estudio: Procesamiento de imagen del espectro de difracción de electrones.

Número de páginas: 49.

OBJETIVOS Y MÉTODO DE ESTUDIO: El objetivo de este trabajo es el desarrollar un programa en Python que pueda analizar automáticamente muestras de difracción de electrones ubicando los spots y sus distancias interplanares para determinar los índices de Miller comparándolo con tarjetas obtenidas del difractor de rayos x y evaluar su precisión.

RESUMEN

Firmas de los asesores:	
Resultados:	
Dr. Virgilio Ángel González González	Dra. Satu Elisa Schaeffer
Asesor	Co-asesora

Abstract

Fulano de Tal.	
Candidate for obtaining the degree of Master in Systems Engineering.	n Engineering with Specialization in
Universidad Autónoma de Nuevo León.	
Facultad de Ingeniería Mecánica y Eléctrica.	
Title of the study: Incredible Study.	
Number of pages: 49.	
Objectives and methods:	
Signatures of supervisors:	
Results:	
Dr. Virgilio Ángel González González	Dra. Satu Elisa Schaeffer
Asesor	Co-asesora

ÍNDICE GENERAL

Re	esum	en			V
Αl	ostra	$\operatorname{\mathbf{ct}}$			VII
1.	. Introducción				1
	1.1.	Estruc	etura de la tesis		3
2.	Mai	co teó	rico y Antecedentes		4
	2.1.	Marco	teórico		4
		2.1.1.	Interacción del electrón con materia		5
		2.1.2.	Dispersiones	•	5
		2.1.3.	Interferencias		6
		2.1.4.	Difracción y ley de Bragg		7
		2.1.5.	Ley de Bragg		8
		2.1.6.	Espacio recíproco		9
		2.1.7.	Red recíproca		9

ÍNDICE GENERAL IX

		2.1.8.	Factor de estructura	10
		2.1.9.	Índices de Miller	10
		2.1.10.	Patrones de difracción	11
		2.1.11.	Indexación	11
		2.1.12.	Muestras en TEM	12
		2.1.13.	Transformada de Hough	12
		2.1.14.	Regresión polinomial	14
		2.1.15.	Gradiente	14
		2.1.16.	Herramientas computacionales	15
	2.2.	Antece	edentes	15
		2.2.1.	Determinación del patrón de difracción	16
		2.2.2.	Eliminación ruido por gradiente	17
		2.2.3.	Hough para detección en difracciones	18
		2.2.4.	Extracción de intensidades	18
		2.2.5.	Digital Micrograph	18
3.	Hip	ótesis <u>y</u>	y objetivos	21
	3.1.	Hipóte	sis	21
	3.2.	Objeti	vos	21
		3.2.1.	Objetivos específicos	22

ÍNDICE GENERAL X

4.	Met	todología 23	
	4.1.	Preparación de muestras	24
		4.1.1. Tem condiciones	24
		4.1.2. Obtención de nanoparticulas	24
	4.2.	Código	24
		4.2.1. Detección de centro del haz	24
		4.2.2. Diagrama de caja y anomalías	30
		4.2.3. Ruido por gradiente	35
		4.2.4. Análisis de spots	41
		4.2.5. Reconocimiento de caracteres y escala	41
	4.3.	Tarjetas de difracción de rayos X \dots	41
5.	Res	ultados	42
6.	Con	clusiones	43
	6.1.	Contribuciones	43
	6.2.	Trabajo a futuro	43
Bi	Bibliografía 4		
Α.	A. Información complementaria		

Índice general	XI

B. Otro apéndice complementario

48

ÍNDICE DE FIGURAS

1.1.	Difracción de plata	2
2.1.	Tipos de interferencias	7
2.2.	Fenómeno ley de Bragg	8
2.3.	Círculos de Hough	14
2.4.	Secuencia patrón de difracción	16
2.5.	Obtención de histograma de intensidad en Digital Micrograph	20
4.3.	Ruido gaussiano	27
4.4.	Detección de bordes	28
4.5.	Filtro dilatación aplicado	29
4.6.	Detección de contornos	29
4.7.	Circunferencia analizada	30
4.8.	Variación de intensidades para binarizar y procesar	32
4.9.	Centros encontrados	32

4.10. Coordenadas de centros
4.11. Diagramas de caja
4.12. Gráficos de coordenadas X Y encontradas y eliminando picos 34
4.13. Lectura de ruido de fondo de la difracción
4.14. Ajuste polinomial
4.15. Picos anomalías en la curva de intensidad de fondo
4.16. Picos anomalías en la curva de intensidad de fondo
4.17. Eliminación del pico y como se complementa la curva
4.18. Gradiente creado
4.19. Gradiente creado
4.20. Difracción sin ruido

ÍNDICE DE TABLAS

Capítulo 1

Introducción

En el campo de la nanotecnología y ciencia en materiales es muy común y necesario realizar trabajos con el microscopio electrónico de transmisión (*TEM* por sus siglas en inglés) y uno de sus modos es el de difracción el cual estudia la estructura cristalina de los solidos haciéndolo uno de los métodos más importantes para la obtención de información cristalográfica acerca de los materiales [6].

La difracción de electrones consiste en un haz de electrones que atraviesa una muestra delgada del material a estudiar, los electrones tendrán interacción mediante fuerza eléctrica con los átomos de la muestra produciéndoles una dispersión, en la estructura periódica de un solido cristalino tiene la función como una rejilla de difracción haciendo que los electrones sean dispersados de forma predecible [11]. Los haces difractados son enfocados y forman un patrón de difracción resultante que puede ser observado en una pantalla fluorescente o en forma digital como lo muestra la figura 1.1.

Figura 1.1: Muestra de difracción tomada por Ángel Virgilio en el CIIDIT [1]

Las imágenes de patrones de difracción son interpretadas de manera que se miden los haces difractados a el centro del haz obstruido por un paro de haz, obteniendo un radio que es necesario para determinar a que plano cristalográfico pertenece y así determinar cada plano para poder formar la red cristalina del material.

Para eso Python [12] resulta una herramienta de programación adecuada de manera que facilita el análisis de imágenes en las que se pueden obtener datos importantes, histogramas de intensidad, contornos, etc. Para eso es desarrollado un programa con cualidades como poder leer la imagen de difracción de electrones extraída del microscopio electrónico de transmisión y primeramente ubicar de manera automática el centro donde impacta el haz de electrones ya que este es cubierto por una punta que tiene como objetivo cubrir que la muestra sea irradiada en exceso y no sea posible visualizar los puntos difractados, lo cual dificulta en la actualidad ubicar el centro del haz para centrar los puntos y anillos difractados de manera manual.

Se facilita la manera en que se hacen las mediciones del centro del haz a cada punto difractado debido a que comúnmente al hacerlo manual existe un desfase del centro lo cual a esa escala nanométrica provoca una diferencia de la medida esperada, el software analiza mediante análisis de histogramas, intensidades y búsqueda de contornos que tiene como objetivo el encontrar en instancias imperfectas de objetos, una clase de formas o figuras mediante un procedimiento, con esto resulta fácil detectar lineas, elipses y círculos.

1.1 Estructura de la tesis

Esta tesis se conforma inicialmente por el primer capítulo el cual trata en términos generales de en donde se aplica la difracción de electrones, qué aporta de conocimiento en nanotecnología, funcionamiento e interpretación de las imágenes, así como por parte del software Python, lo que se realizo a grandes rasgos.

En el capítulo dos el marco teórico trata de la explicación del fenómeno, la ley que lo fundamenta y todo concepto teórico, así como el tipo de microscopio utilizado y las nanoparticulas que se emplean para las difracciones tomadas. Por parte del software se explican las funciones mas importantes en detección y métodos que se utilizaron para solucionar criterios de la imagen.

Para el tercer capítulo se hablan de los antecedentes ya reportados o mencionados que son desarrollados en programas similares y se enfoca en el procesamiento que se utilizara mas adelante.

El cuarto capítulo contiene la secuencia de como se realizo el estudio y análisis computacional de este trabajo, desde la obtención de las muestras hasta la explicación de cómo se realizó el código y sus funciones.

Los resultados son mencionados en el capítulo cinco donde se reporta lo obtenido en base al código y la comparativa entre los datos de la información ya reportada por muestras de un difractometro de rayos X.

Y para finalizar el capítulo seis se tratan las conclusiones a las que se llego tanto si el código resulta como herramienta para analizar estas muestras y que contribuciones aporta.

Capítulo 2

MARCO TEÓRICO Y ANTECEDENTES

2.1 Marco teórico

El tema de difracción se fundamenta principalmente en la teoría de la mecánica cuántica respecto a los electrones que pueden considerarse como partículas u ondas. Los electrones se usan en TEM por su longitud de onda que es más corta que la luz visible, debido a esto se alcanza mayor magnificación con este microscopio. La longitud de onda esta dada por la ecuación de Broglie:

$$\lambda = \frac{h}{p},\tag{2.1}$$

donde h refiere a la constante de Plank y para p el momento del electrón, dichos electrones que son emitidos en el TEM se aceleran variando el voltaje y se enfocan mediante lentes a el objetivo (muestra). La muestra en la que son enfocados los electrones suele tener espesores entre cien y trescientos nanómetros para posteriormente ser magnificado por una lente electromagnética. La aceleración del electrón depende del voltaje aplicado que por lo regular son entre 100000eV y 400000eV [6].

2.1.1 Interacción del electrón con materia

Cuando el haz acelerado de electrones es transmitido a través de la muestra, se generan interacciones tales como ionización, emisión secundaria y excitación con pérdida de energía [6], pero una interacción importante para este fenómeno que ocurre en el TEM es la fuerza eléctrica o interacciones electrostáticas por la ley de Coulomb, debido a que un electrón tiene carga negativa al pasar por la muestra estos sufren interacción por la carga positiva del núcleo del átomo por el cual pase cercano y también efecto por la nube de electrones que rodean al átomo. Las interacciones que se dan entre electrón muestra producen una gama de señales secundarias y muchas de estas se utilizan para analizar información química y otros detalles de la muestra [18].

2.1.2 DISPERSIONES

Después de que hay una interacción entre el electrón y la muestra ocurre una dispersión que refiere a electrones que se encuentran dispersos a través de ángulos medibles y los que no sufren desviación angular son llamados haz directo. Estas dispersiones se dividen en elásticos e inelásticos y a su vez coherentes e incoherentes refiriéndose a la naturaleza ondulatoria.

Este fenómeno de dispersión de electrones se agrupa en diferentes formas como ya se menciono anteriormente, el inelástico y elástico los cuales respectivamente describen la dispersión que resulta en ninguna perdida de energía o en perdida de energía medible. Aunado a esto se clasifican en coherentes e incoherentes que como se mencionó refiere a la naturaleza del electrón que mejor explicado estas distinciones están relacionadas ya que los electrones dispersos elásticamente suelen

ser coherentes y los electrones inelásticos suelen ser incoherentes, suponiendo que las ondas de electrones incidentes son coherentes (están en fase) y tienen una longitud de onda fija, por lo tanto los incoherentemente dispersos no tienen relación de fase después de interactuar con la muestra.

La naturaleza de la dispersión resulta en distintas distribuciones angulares ya que estos pueden ser dispersos hacia adelante o retrodispersados (dependiendo el ángulo) y ambos son estudiados para distintos análisis.

- La dispersión elástica se suele producir a niveles bajos entre 1° y 10°.
- Desviaciones mayores a 10° la dispersión elástica se vuelve mas incoherente.
- La dispersión inelástica es casi siempre incoherente menor a 1°.

Y a medida que la muestra se vuelve más gruesa, menos electrones son hacia adelante dispersos y más se dispersan hacia atrás. La noción de que los electrones se pueden dispersar a través de diferentes ángulos está relacionada con el hecho de que un electrón también se puede dispersar más de una vez. Generalmente, cuantos más eventos de dispersión, mayor es el ángulo de dispersión aunque a veces un segundo evento de dispersión puede redirigir el electrón hacia el haz directo, por lo que parece que no ha sufrido dispersión.

2.1.3 Interferencias

Las interferencias son una regla de la teoría de ondas en que estas se refuerzan entre si todo dependiendo si están en fase y en caso contrario se cancelan al estar desfasadas.

La interferencia constructiva: Aplica cuando dos ondas que tienen una frecuencia similar se superponen ocasionando un efecto en el que se suman las crestas y hacen una onda de mayor amplitud tal como se puede ver en la figura 2.1a.

Interferencia destructiva: Caso contrario a las ondas en fase aquí al no estar en fase estas ondas se restan al pico de la otra onda y se anulan véase figura 2.1b.

- (a) Interferencia constructiva.
- (b) Interferencia destructiva.

Figura 2.1: Tipos de interferencias de la teoría de ondas.

2.1.4 DIFRACCIÓN Y LEY DE BRAGG

Para entender este fenómeno, hay una ley que lo describe y explica, la ley de Bragg pero antes se debe hablar de la difracción la cual es importante entender ya que es necesaria que se cumpla para que se de esta ley.

La difracción se atribuye cuando una onda encuentra un obstáculo como una rendija y se define como la desviación de ondas en las esquinas de el obstáculo a lo que esta rendija se convierte en una fuente secundaria de la onda de propagación [16].

De igual manera la difracción se convierte en una dispersión elástica, que se trata con la teoría de ondas y ocurre cuando el obstáculo esta separado por una distancia del mismo orden de magnitud que la longitud de onda del haz incidente [6].

2.1.5 Ley de Bragg

La ley de Bragg es una consecuencia de la interferencia entre las ondas que se reflejan desde diferentes planos de cristal. La condición de interferencia constructiva está dada por la ley de Bragg:

$$n\lambda = 2d\sin\theta,\tag{2.2}$$

donde λ refiere a la longitud de onda del electrón que impacta a la muestra en un análisis de difracción, d representa la distancia entre planos, θ es el ángulo que forma la onda difractada y por ultimo n es un número entero múltiplo de la longitud de onda figura 2.2 y establece que la sumatoria de la diferencia del recorrido de ambas ondas debe ser un numero entero n múltiplo de la longitud de onda.

Figura 2.2: Ley de Bragg descrito geométricamente en espacio real.

Esta ley se observa tanto en rayos X u ondas de materia así como los neutrones y electrones utilizados para la difracción cuya longitud de onda es comparado a el espaciamiento atómico o menor a el. El patrón en el espacio recíproco da informa-

ción de las separaciones de los planos cristalográficos (distancia d) que apartir de esta se deduce la estructura cristalina, utilizado en gran importancia para examinar defectos individuales [14]. Por ultimo en esta ley los electrones chocan con los planos cristalinos. Algunos de ellos se difractan y el resto se transmite a través del espécimen, que no participa en la formación del patrón de difracción [18].

2.1.6 Espacio recíproco

El espacio real proporciona una base geométrica para entender tanto la geometría de los patrones de difracción en rayos X así como en electrones pero en el espacio recíproco es un espacio conceptual tridimensional que contiene el patrón de dispersión 3D completo de una muestra dada. Es la transformada de Fourier 3D de la distribución de densidad de electrones en el espacio real de la muestra y proporciona una forma de visualizar los resultados de la transformada de Fourier de una función espacial [5]. Y nos da una representación pictórica de la difracción que nos ayuda a visualizar cómo variarán los patrones de difracción a medida que varíen la orientación y las características físicas de la muestra. Se utiliza la red recíproca para dar una imagen física de lo que sucede cuando un cristal difracta.

2.1.7 RED RECÍPROCA

En la red recíproca los planos atómicos están representados por un solo punto a una distancia $1/D_{hkl}$ desde el centro origen. En esta red la distancia de centro a un punto se denomina vector de traslación o vector g(hkl), el vector es perpendicular al plano de la red cristalina [6].

2.1.8 Factor de estructura

Existen factores del evento de dispersión que están controladas por factores como energía del electrón incidente y el peso del átomo de dispersión y cuando se considera una muestra o espécimen en lugar de un átomo aplican factores como el espesor de la misma, densidad, cristalinidad y el ángulo en que se posiciona la muestra contra el haz incidente se vuelve importante [6].

El factor de estructura se puede definir como una función matemática que indica la amplitud y la fase del haz de electrones difractado de los planos cristalográficos. En el factor de estructura, se considera que la ubicación de los átomos en el plano de reflexión y las especificaciones atómicas describen el proceso de difracción. Además, el factor de estructura es la suma de las amplitudes dispersas de un solo átomo y la suma de las diferencias de fase [18].

2.1.9 ÍNDICES DE MILLER

Los índices de Miller en cristalografía son tres números agrupados que se utilizan para identificar un sistema de planos cristalográficos y dichos índices se nombran con las letras h, k, l, estos son números enteros tanto positivos como negativos y al ser negativos se representan con una barra sobre el [8].

Los índices se pueden utilizar para expresar la simetría de los cristales, esto se aplica a los cristales en los siete sistemas. Las direcciones positiva y negativa de los ejes de cristal se puede expresar mediante los símbolos de dirección como (100), (-100), (010), (0-10), (001), (00-1) [5].

2.1.10 Patrones de difracción

Los patrones que genera un TEM da información cristalográfica del material estudiado que puede ser tipo monocristalino, policristalino y amorfo, los cuales arrojan un tipo de patrón de difracción cada uno, a su vez el patrón va a depender de diferentes condiciones de la muestra como el grosor, estructura del cristal, etc.

- Patrón de anillo: Estos patrones son visualizados por granos ultrafinos de materiales policristalinos. Básicamente, las fases en varios materiales policristalinos se determinan mediante la interpretación de sus patrones de anillo, se debe utilizar una muestra de referencia para la identificación de fases, así como para especificar el espaciado interplanar y los índices de Miller de los planos cristalinos.
- Patrones de puntos (spots): Hay dos parámetros básicos en los patrones de difracción puntual que se utilizan para interpretar e indexar este tipo de patrones. Estos parámetros incluyen R que es la distancia entre los haces difractado y transmitido (punto central) en la pantalla del patrón de difracción. Además, esta distancia se puede considerar como un vector normal al plano de reflexión. Y los ángulos como θ entre dos vectores dibujados desde el centro a dos puntos adyacentes.

2.1.11 Indexación

Para **indexar** patrones de puntos, deben determinarse los índices de los puntos y el eje de zona de los materiales monocristalinos. En el método experimental, medimos las distancias de diferentes puntos desde el punto central, así como los ángulos

en la micrografía de los patrones y los comparamos con los patrones del Estándar Internacional [18].

2.1.12 Muestras en TEM

- 2.1.12.1 Plata (Ag)
- 2.1.12.2 Oro (Au)
- 2.1.12.3 Oxido de hierro 3

2.1.13 Transformada de Hough

El método creado y patentado por Paul Hough se conoce en la comunidad de procesamiento de imágenes y visión computacional como transformada de Hough utilizada para localizar formas apartir de distribuciones de puntos abstractos en una imagen tal como lineas, círculos o elipses [17]. Las ventajas del método son robustez al ruido, robustez a las distorsiones de forma y a las partes faltantes de un objeto, su principal desventaja es el hecho de que los requisitos computacionales y de almacenamiento del algoritmo aumentan como potencia de la dimensionalidad de la curva [9].

El método como análisis de formas utiliza ecuaciones que relaciona los puntos en el espacio de entidades con los posibles valores de parámetro de la forma buscada, para cada punto de característica de borde se hace el calculo y los resultados son votos que se acumulan para todas las combinaciones de parámetros que satisfacen la ecuación. Los votos se recogen en una matriz de contadores que se denomina matriz acumuladora.

Esta matriz acumuladora abarca todos los valores de parámetros factibles y los resultados de mayor incidencia o como final de proceso de votación o acumulación, los elementos de la matriz que contienen un gran número de votos indican una fuerte evidencia de la presencia de la forma con los parámetros correspondientes.

Para un círculo que está parametrizado por coordenadas centrales (a, b) y su radio r son los datos que se relacionan con los bordes de la forma abstracta (x, y) que formaran el circulo a través de la ecuación:

$$(x-a)^2 + (y-b)^2 = r^2, (2.3)$$

esta indica que cualquier punto del borde dado (x_i, y_i) podría ser un punto en cualquier círculo cuyos parámetros se encuentran en la superficie de un cono circular derecho en el espacio de parámetros (a, b, r) ver figura 2.3, si los conos correspondientes a muchos puntos de borde se cruzan en un solo punto, entonces todos los puntos de la imagen se encuentran en el círculo definido por esos tres parámetros [13].

Figura 2.3: Método en que Hough estima centro y circunferencia [13]

2.1.14 Regresión polinomial

La **regresión polinomial** para la estadística es un modelo en el que la relación entre la variable independiente X y la variable dependiente Y se modela con un polinomio de n grado en X. Estos valores de regresión se ajusta a una relación lineal entre la media de los valores y X.

El objetivo principal de el análisis es modelar el valor que se espera de una variable dependiente en términos del valor de una independiente. Este ajuste es una herramienta que utilizamos cuando buscamos determinar o modelar la relación entre dos conjuntos de datos y se da una curva con el mejor rango ajustado [22].

2.1.15 Gradiente

Gradiente definido como la razón entre la variación del valor de una magnitud en dos puntos próximos y la distancia que los separa [2], es la operación que se trata en este tema aplicado a la difracción en como la intensidad del haz de electrones se degrada con respecto a la distancia de la imagen.

En procesamiento de imagen se define como un cambio direccional en la intensidad o el color de la imagen, también se le conoce como progresión de color y matemáticamente cada punto de la imagen es un vector 2D con las componentes dadas por las derivadas en las direcciones horizontal y vertical. En cada punto de la imagen, el vector de gradiente apunta en la dirección de mayor intensidad posible aumenta, y la longitud del vector de gradiente corresponde a la tasa de cambio en esa dirección [10].

2.1.16 Herramientas computacionales

Aquí definir conceptos como píxel, kernel, filtro (en procesamiento de imagen), filtro morfológico, rgb , escala de grises, histograma, etc.

2.2 Antecedentes

Programas para el análisis de los patrones de difracciones ya existen y se siguen reportando, donde utilizan distintas maneras de abordar el tema el cual es encontrar como indexar cada spot u anillo encontrado solo que sigue siendo de manera no automática ya que se siguen ingresando muchos datos manualmente o dando modelos ya reportados para describir el patrón del material a revisar.

2.2.1 Determinación del patrón de difracción

Tal es el caso reportado por Shenck y Philippsen [4] donde se crea una plataforma con módulos independientes implementados en Python donde la mejora es en velocidad de procesamiento ya que los algoritmos de imágenes de bajo nivel se implementan en C++. Al programa se accede desde una interfaz gráfica de usuario (GUI por sus siglas en inglés), para primeramente de forma manual definir una forma poligonal de contorno del paro de haz utilizado para no irradiar la muestra, la forma se describe seleccionando uno de los patrones que se tiene de plantilla, posteriormente se hace la búsqueda de la red para cada patrón de difracción en función de picos dados por las intensidades de cada punto de la red. En cuanto a mejorar la velocidad del análisis de datos los autores emplean para los algoritmos que consumen más tiempo (revisión de todo el patrón y ajuste) la paralelización obteniendo un mejor rendimiento [4].

Figura 2.4: Secuencia de obtención de patrón de difracción.

Por otro lado un complemento del programa ImageJ llamado EXTRAX se desarrolla como un código de dominio publico basado en Java para procesar y analizar estas imágenes y medición de intensidades de patrones de difracción con una ubicación de pico semiautomática basada en una red bidimensional proporcionada por el usuario lo cual favorece la facilidad del análisis pero a su vez sigue siendo retroalimentada por el usuario. Para la interfaz presentada se le necesitan acceder datos para su funcionamiento tales como el área de selección de cada punto de difracción,

la resta del fondo en caso de mucho ruido en la imagen, la conversión manual de la distancia entre píxeles a ángstroms (Å). La ubicación de los puntos difractados para redes periódicas se hace seleccionando con el cursor dando click sobre tres puntos no alineados que pertenezcan a spots, y en base a ellos en cada sección de la red se analiza y ajusta la posición de estos puntos seleccionados para que coincidan con el máximo ponderado calculado a partir de píxeles dentro del área de selección y teniendo en cuenta el paso. Sobre la base de estas tres reflexiones indexadas, se genera una red bidimensional para toda la imagen con una indexación automática de puntos, obteniendo resultados que permite la indexación semiautomática de los patrones de difracción de electrones así reporta Dorcet [20].

2.2.2 Eliminación ruido por gradiente

Para este trabajo analizan difracciones de electrones retro dispersados, dichas difracciones comprueban que se pueden descomponer en un patrón de difracción y un fondo suave representado como un gradiente, es muy común el método de corrección de fondo para los patrones de electrones retro dispersados de manera que resuelve la relación de señal-ruido haciendo la división y resta entre estos dos. Es propuesto y desarrollado un algoritmo de ajuste polinomial para obtener patrones de difracción mas limpios para aplicaciones en materiales con problemas de recubrimiento [23]. La calidad de los patrones tiene una influencia significativa en el rendimiento del procesamiento de indexación.

2.2.3 Hough para detección en difracciones

Se realiza la localización de los centros del anillo. vía una transformada de Hough, que puede ser intensiva en memoria computacional en modo completamente automático. El mismo autor presenta una herramienta para el análisis de patrones de difracción puntual empleando un promedio circular centrado en uno de los puntos de difracción. Este es un enfoque muy rápido y elegante, que reduce a uno el número de puntos localizados por el usuario. Por otro lado, es muy sensible a la localización del punto central [19].

2.2.4 Extracción de intensidades

Otro trabajo interesante trabaja con patrones de difracción a diferentes tiempos de exposición, el cual extrae valores de intensidades del haz convirtiéndolo primero a escala de grises de 0 a 256 niveles, de este modo realiza un análisis a cada difracción con diferente tiempo de exposición del cual utilizando filtros gaussianos puede determinar entre el haz directo y el ruido que este ocasiona al irradiar los electrones [21]. Beneficia este tipo de tratamiento de imagen para la ubicación del centro del haz ya que al conocer el ruido irradiado por los electrones facilita su eliminación y mejora la precisión en encontrar el centro original del patrón.

2.2.5 Digital Micrograph

El programa Digital Micrograph utilizado comúnmente en el centro de innovación, investigación y desarrollo en ingeniería y tecnología (CIIDIT) [1], es caracterizado por registrar y analizar los datos de los microscopios electrónicos de transmisión (TEM) en la mayoría de los laboratorios.

El análisis sencillo de este programa semiautomático para la ubicación del centro primeramente se hace aproximando el cursor y dando click para dibujar un cuadrado alrededor del área central supuesta y luego el software intenta encontrar las coordenadas del punto calculando el centro de intensidad de difracción (x0,x1), apartir de esa posición se presiona ahora un botón de refinado de centro el cual aplica filtros gaussianos que eliminan cierto ruido en la imagen y aplica un ajuste a la posición central mejorando la ubicación. Para el caso del patrón se debe considerar la longitud de la cámara TEM debido a que la calibración juega un papel importante así que debe calibrarse cuidadosamente mediante un pico de difracción conocido en la muestra [7].

Para un análisis preciso de patrón de difracción se debe de determinar con precisión la ubicación que corresponde al origen del espacio reciproco del patrón y de misma manera los spots difractados individuales o en su caso los anillos de difracción. Por su parte el programa cuenta con diversos paquetes para distintos análisis de patrones, como lo es el de anillos que se basa en la transformada de Hough circular [3], pero cuando se trata de monocristales que muestran spots individuales no está completamente automatizado como lo menciona el software, requiere una intervención manual o un patrón simétrico que sirve de plantilla para mejorar el procesamiento [15].

Un histograma de intensidad es extraído de manera que se traza una linea dando click en cada punto deseado (figura 2.5a) y con el propósito que atraviese spots y centro de electrones obteniendo así un mapeo de picos de intensidad tal como se ve en la figura 2.5b, en el histograma se puede señalar dando click en el punto que se identifique visualmente como centro y repitiendo así en otro punto deseado y el programa marcará la distancia dada en ángstroms que sería la distancia

entre cada spot o de spot a centro según se señale [15].

- (a) Patrón de difracción digital.
- (b) Histograma de intensidad de linea trazada

Figura 2.5: Obtención de histograma de intensidad en Digital Micrograph

Capítulo 3

HIPÓTESIS Y OBJETIVOS

3.1 Hipótesis

Utilizando el software Python, es posible desarrollar un código de procesamiento de imágenes para analizar los difractogramas de electrones obtenidos mediante microscopía electrónica de transmisión, desarrollando código para la identificación de las señales (spots) y el cálculo de las distancias interplanares de forma rápida, exacta y precisa.

3.2 Objetivos

Desarrollar un programa computacional capaz de leer y analizar las imágenes de difracción de electrones obtenidas mediante microscopía electrónica de transmisión, automáticamente utilizando herramientas de análisis de imágenes y el análisis estadístico, para realizar el análisis con mayor rapidez, exactitud y precisión, en el cálculo de las distancias interplanares de señales (spots).

3.2.1 Objetivos específicos

- Conocer las condiciones experimentales en que se obtienen los difractogramas de electrones en el TEM y colectar difractogramas de electrones de muestras conocidas.
- Determinar el histograma de intensidades para validar que el código lo acepte para analizar y así estadísticamente encontrar el centro del haz de electrones (obstruido) en base a las variaciones de intensidad, así como también eliminar el ruido de fondo de las imágenes.
- Detectar y procesar los spots calculando su posición en las imágenes.
- Leer e interpretar la escala en las imágenes automáticamente y calcular las distancias reales que representan los spots.
- Análisis comparativo del error en relación a las tarjetas reportadas del difractor de rayos X.

Capítulo 4

METODOLOGÍA

En este capitulo se explica la metodología utilizada tanto en el proceso y obtención de las nanoparticulas y preparación del microscopio para analizar dichas muestras así como también el código desarrollado para el estudio del difractograma obtenido y su posterior comparacion con tarjetas ya reportadas por el difractor de rayos X.

4.1 Preparación de muestras

4.1.1 Tem condiciones

4.1.2 Obtención de nanoparticulas

- 4.1.2.1 Plata
- 4.1.2.2 Oro

4.1.2.3 Oxido de hierro

4.2 Código

Esta sección menciona paso a paso como se fue analizando la muestra y que funciones son las utilizadas para optimizar el proceso de imagen y obtención de datos. El programa es desarrollado en el software Python version 3.9 en un ordenador con Windows 11 y procesador tipo Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz y 8GB de RAM a 64 bits.

4.2.1 DETECCIÓN DE CENTRO DEL HAZ

La detección del centro de haz se dificulta en el análisis debido a que puede ocasionar un desfase, ya que esta obstruido por un paro de haz que es utilizado para que la imagen no sea irradiada por exceso de luz, y es por eso que esta irradiación ya obstruida es utilizada para crear una circunferencia y encontrar el píxel central y a su vez variar dependiendo la intensidad seleccionada (esto dentro de un ciclo de varias intensidades) esta variación permite obtener un muestreo de muchos centros calculados y tratarlos estadísticamente.

4.2.1.1 RANGO DE INTENSIDAD

El rango de intensidad en cada ciclo se analiza con una de las funciones que cuenta OpenCv la cual se llama Threshold en la que como argumentos se ingresa la imagen original convertida a escala de grises y el segundo valor es un umbral que es tomado de la intensidad a procesar.

(b) Imagen en negativo

4.2.1.2 FILTRO DE MEDIANA

El filtro media consiste en eliminar imperfecciones de la imagen pero que a su vez mantiene la estructura intacta sin afectar los bordes, toma una mediana de todos los píxeles debajo del área del kernel y reemplaza el elemento central con este valor medio. Ideal para eliminación de pequeños ruidos o agrupaciones de píxeles extra en la imagen.

4.2.1.3 Ruido Gaussiano

Un método de tratamiento de imágenes o mejoramiento para ciertos aspectos es el **filtro gaussiano** este es un desenfoque básico que funciona definiendo un kernel de nxn y al aplicarse el kernel a cada píxel lo que hace promedia el resultado de sus píxeles vecinos dentro del kernel lo que da un resultado una imagen borrosa dependiendo el tamaño de la vecindad dada (kernel). Retomando el código una vez que se tiene la imagen binarizada por el umbral dado entonces procede a la aplicación de un ruido gaussiano que tiene como fin el de amortiguar los picos en la silueta circular que se forma con la intensidad binarizada haciéndolos borrosos ligeramente. Lo cual beneficia y facilitara la lectura de la siguiente función.

Figura 4.3: Ruido gaussiano.

4.2.1.4 Detección de bordes

La función Canny en OpenCv ayuda para el procesamiento de la imagen cuando se quieren encontrar bordes de objetos, el filtro se basa en direcciones y resoluciones diferentes, minimiza los bordes falsos, y en precisión entrega un píxel de ancho de borde. En el programa la imagen con el filtro gaussiano la lee la función canny que recibe tanto la imagen como también dos valores que serán el umbral de la histeresis para detectar el borde.

Figura 4.4: Detección de bordes

Al pasar por la función de bordes una cantidad de ellos no están cerrados como para poder obtener un contorno único y para eso la siguiente función aplica.

4.2.1.5 FILTRO DILATACIÓN

Una operación o **filtro morfológico** como lo es la función dilatación tiene como propósito el aumentar los limites de las regiones de cada píxel. En pocas palabras es la adición de píxeles del mismo color alrededor de uno según los parámetros indicados en base a un kernel Open cv tomara dos entradas para esta función el cual es la imagen de entrada y el siguiente sera un elemento estructurante o núcleo el cual va a decidir la naturaleza de la operación.

Los bordes que se encontraban abiertos con la función \mathtt{dilate} , une estas secciones abiertas que simulen una morfología de elipse tal como es indicado en la función del elemento estructurante y dando un kernel de dimensiones 9x9 para que haga la unión de una vecindad mas grande.

Figura 4.5: Filtro dilatación aplicado

4.2.1.6 Detección de contornos

FindContours de OpenCv recibe una imagen previamente procesada mediante filtros que limpian la imagen para poder hacer una detección limpia de contornos de figuras abstractas.

Figura 4.6: Detección de contornos

4.2.1.7 CIRCUNFERENCIAS MEDIANTE HOUGH

Ahora para el final de la detección del centro del haz se aplica a la imagen la transformada de Hough utilizando la función HoughCircles la cual se le dan parámetros como la imagen de entrada desenfocada para reducir círculos falsos, HOUGHGRADIENT el que define el método detección, una distancia mínima en detección de centros de círculos param1, Umbral superior para el detector interno de bordes Canny, param2 Umbral para la detección del centro, y de los mas importantes, el mínimo radio de circunferencia así como el máximo para limitar los círculos que llegan a detectarse. La función arroja una circunferencia apartir de un contorno imperfecto que estima según la transformada explicada en el capitulo 3 el mejor circulo se muestra con todo y el centro único a nivel píxel.

Figura 4.7: Circulo encontrado y centro

4.2.2 Diagrama de Caja y anomalías

Este diagrama muestra una agrupación de datos numéricos representados gráficamente a través de sus cuartiles en una caja y su principal característica es el que permite visualizar la dispersión de un agrupamiento de datos al poder ver la mediana de los datos, extremos, y de lo importante para este trabajo los valores atípicos.

Los cuartiles uno y tres representan los límites de la caja e incluye la mediana dentro de la caja, para el calculo del valor intercuartil se realiza la resta del tercer cuartil y el primero:

$$IQR = Q_3 - Q_1, (4.1)$$

y para los valores admisibles limite inferior y limite superior (LI y LS respectivamente) que serán los finales del diagrama:

$$LI = Q_1 - 1.5 \cdot IQR,\tag{4.2}$$

$$LS = Q_3 + 1.5 \cdot IQR,\tag{4.3}$$

y fuera de estos se contaran como valores atípicos de la muestra, los cuales son valores menores al inferior y mayores al superior y se identifican con puntos.

4.2.2.1 Eliminación de anomalías

El proceso anterior de la identificación del centro del haz (seccion 4.2.1.1) se explica que se varia en intensidad una cantidad n veces para analizar cada contorno que formara una circunferencia tal como lo vemos en la imagen 4.8,

Figura 4.8: Variación de intensidades para binarizar y procesar

el tener gran cantidad de muestras de círculos con centros permite que se pueda hacer una estimación promedio del centro analizado ya que se toman una cantidad considerable de replicas a diferentes intensidades (ver figura 4.9).

Figura 4.9: Centros analizados de cada intensidad.

El problema es que cada píxel (x, y) se grafica tal como se representa en la gráfica 4.10 donde se pueden observar anomalías en los valores tanto de x como de y que si se promedia cada coordenada con su conjunto de datos ocasionará una variación debido a estos picos atípicos.

Figura 4.10: Coordenadas de cada centro agrupadas.

Para eso se aplica el diagrama de caja el cual identifica los valores atípicos y los elimina ya sean inferiores o superiores para volver a realizar este ciclo de diagrama de caja y si vuelve a encontrar valores atípicos los vuelve a eliminar, esto trabaja dentro de un ciclo While para que se realice este proceso hasta que ya no identifique ninguna anomalía tal como se observa en la imagen del gráfico de caja 4.11 y en cuanto a los gráficos de la posición de x y y ya corregidos sin picos se muestran en la figura 4.12b, con estos datos ya limpios se puede aplicar el promedio de centros para cada eje y se comprueba estadísticamente una mejor precisión a que si se promediara sin filtrar estas anomalías.

Figura 4.11: Diagramas de caja eliminando anomalías.

Figura 4.12: Gráficos de coordenadas X Y encontradas y eliminando picos

4.2.3 Ruido por gradiente

El gradiente ya definido en el capitulo (antecedentes) es empleado para la detección y eliminación del ruido indeseado de fondo de la difracción que es ocasionado por el destello del haz de electrones así que para mejor visualización e identificación de los spots se ocupa removerlo tal como lo hacen (,) en su trabajo para el mejoramiento visual en los patrones de kikuchi.

4.2.3.1 Curva de intensidad

Primeramente para la lectura del ruido de la imagen es trazada una diagonal del borde de la imagen al centro encontrado de la difracción con el motivo de leer los valores de intensidad y ver una variación constante de intensidad con respecto a la distancia recorrida y en base a este resultado se grafica la intensidad obtenida por cada píxel en la diagonal (figura 4.13b). Ahora lo que se puede observar es que la curva presenta unos picos no esperados que si se observa bien la imagen 4.13a vemos que la linea trazada atraviesa ciertos spots que ocasionaron este pico de intensidad y después vuelve al comportamiento normal de la curva y tal es el caso para varios spots.

(b) Curva de intensidad leída por diagonal (a) Diagonal trazada para leer intensidad. trazada.

Figura 4.13: Lectura de ruido de fondo de la difracción.

4.2.3.2 Ajuste por regresión polinomial

El ajuste polinomial es aplicado dando los limites de la curva realizando una amortiguación estimada de mínimos cuadrados,

$$p(x) = p[0] * x^6 + \dots + p[6], \tag{4.4}$$

evaluados en la curva de intensidades (x, y) servirá para simular un comportamiento de crecimiento de la curva figura 4.14. Esta amortiguación es útil para el siguiente paso al detectar anomalías o picos en la gráfica.

Figura 4.14: Curva de ajuste polinomial a intensidades.

4.2.3.3 Picos de curva

La función find peaks es empleada para encontrar los picos superiores dando como valor la curva ajustada diciendo que apartir de ahí hacia arriba encuentre picos inesperados a la curva original. Esta función toma una matriz unidimensional y encuentra todos los máximos locales (figura 4.15a) mediante una simple comparación de valores vecinos. Para cada pico se define el ancho y la separación entre cada pico para ubicarlos y reducir el rango de detección de falsos positivos, dando como resultado un máximo aislado de anomalías pequeñas figura 4.15b.

Figura 4.15: Picos anomalías en la curva de intensidad de fondo.

Una vez que se ubican los máximos, se utiliza la misma curva de intensidad y la ajustada pero negativas para analizar y encontrar picos máximos pero al estar invertidos se encontraran como mínimos figura 4.16a utilizados para delimitar el primer pico en imagen 4.16b,

Figura 4.16: Picos anomalías en la curva de intensidad de fondo.

de esta manera al delimitar es mas fácil eliminar el pico (imagen 4.17a) y rellenar proporcionalmente con el numero de píxeles que se eliminaron, ver figura

4.17b, esto proporcionara que en la curva no tome en cuenta la intensidad (anómala) que es en teoría un spot encontrado.

Figura 4.17: Eliminación del pico y como se complementa la curva.

Como resultado se obtiene una curva con la intensidad de la difracción pero que simula un comportamiento en que no hay spots solamente es intensidad de electrones irradiada, ver figura 4.18

Figura 4.18: Curva limpia libre de picos.

4.2.3.4 Creación de gradiente

Para concluir este análisis, ya teniendo una curva limpia sin anomalías o picos en su trayectoria, se puede generar un gradiente tomando cada valor de la curva (intensidad) y trazar un circulo, así hasta completar una imagen nueva 4.19.

Figura 4.19: Gradiente creado por curva ajustada.

Para que se efectúe la eliminación de ruido de la difracción original es necesario restar a esta la nueva imagen gradiente generada y dando como resultado (imagen 4.20) una mejor perspectiva de los spots sin preocuparse de tener una intensidad o estela de luz como ruido.

Figura 4.20: Difracción restando gradiente.

4.2.4 Análisis de spots

4.2.4.1 Centro de cada spot

4.2.5 Reconocimiento de caracteres y escala

4.3 Tarjetas de difracción de rayos X

Las tarjetas ya reportadas que son obtenidas del difractor de rayos X son utilizadas para comparar los resultados de los spots encontrados pero primero son procesadas en python para poder leerlas y extraer la información requerida que son la tabla de picos donde encontramos la distancia interplanar y los índices de Miller hkl.

Capítulo 5

RESULTADOS

Capítulo 6

Conclusiones

- 6.1 Contribuciones
- 6.2 Trabajo a futuro

Bibliografía

- [1] Centro de innovación, investigación y desarrollo en ingeniería y tecnología. http://ciidit.uanl.mx/. Consultado: 2021-10-06.
- [2] Real academia española. https://www.rae.es/. Consultado: 2021-10-06.
- [3] Open cv. https://docs.opencv.org/4.x/dd/d1a/group__imgproc_ _feature.html#ga47849c3be0d0406ad3ca45db65a25d2d. Consultado: 2021-10-06.
- [4] Schenk A., Philippsen A., and Engel A. & Walz T. A pipeline for comprehensive and automated processing of electron diffraction data in iplt. *Journal of structural biology*, 182(2):173–185, 2013. doi: 10.1016/j.jsb.2013.02.017.
- [5] Hammond C. The basics of crystallography and diffraction, volume 21. International Union of Crystal, 2015. ISBN 9780199546459.
- [6] Williams D. & Carter C. Transmission Electron Microscopy A Textbook for Materials Science, volume 5. Springer Science & Business Media, 1999. ISBN 978-0-387-76500-6.
- [7] Wu C. and Reynolds W. & Murayama M. A software tool for automatic analysis of selected area diffraction patterns within digital micrograph™. *Ultramicros*copy, 112(1):10–14, 2012.

Bibliografía 45

[8] Ashcroft N. & Mermin D. Solid state physics. holt, rinehart and winston, 1976.

- [9] Ioannou D. and Huda W. & Laine A. Circle recognition through a 2d hough transform and radius histogramming. *Image and vision computing*, 17(1):15–26, 1999.
- [10] Jacobs D. Image gradients. Class Notes for CMSC, 426, 2005.
- [11] Bendersky A. & Gayle F. Electron diffraction using transmission electron microscopy. *Journal of research of the National Institute of Standards and Technology*, 106(6):997, 2001. doi: 10.6028/jres.106.051.
- [12] Rossum G. Python. https://www.python.org/. Consultado: 2021-10-06.
- [13] Yuen H., Princen J., and Illingworth J. & Kittler J. Comparative study of hough transform methods for circle finding. *Image and vision computing*, 8(1): 71–77, 1990.
- [14] Cowley J. Diffraction physics. Elsevier, 1995.
- [15] Shi H. & Luo M. epdf tools, a processing and analysis package of the atomic pair distribution function for electron diffraction. Computer Physics Communications, 238:295–301, 2019.
- [16] Rappaport T. & others. Wireless communications: principles and practice, volume 2. prentice hall PTR New Jersey, 1996.
- [17] Cuevas E. & Camarena P. Tratamiento de imágenes con MATLAB. Marcombo, 2018.
- [18] Janecek M. & Kral R. Modern electron microscopy in physical and life sciences. BoD–Books on Demand, 2016. ISBN 9789535122524.

Bibliografía 46

[19] Coleman S. and Sichani M. & Spearot D. A computational algorithm to produce virtual x-ray and electron diffraction patterns from atomistic simulations. *Jom*, 66(3):408–416, 2014. doi: 10.1007/s11837-013-0829-3.

- [20] Dorcet V., Larose X., Fermin C., and Bissey M. & Boullay P. Extrax: an imagej plug-in for electron diffraction intensity extraction. *Journal of Applied Crystallography*, 43(1):191–195, 2010. doi: 10.1107/S0021889809049267.
- [21] Zou X. and Sukharev Y. & Hovmöller S. Eld—a computer program system for extracting intensities from electron diffraction patterns. *Ultramicroscopy*, 49 (1-4):147–158, 1993.
- [22] Chang Y., Hsieh C., Chang K., and Ringgaard M. & Lin C. Training and testing low-degree polynomial data mappings via linear svm. *Journal of Machine Learning Research*, 11(4), 2010.
- [23] Tsai Y. and Pan Y. & Kuo J. Polynomial fitting method of background correction for electron backscatter diffraction patterns. *Scientific reports*, 12(1):1–13, 2022. doi: 10.1038/s41598-021-04407-0.

APÉNDICE A

Información complementaria

Apéndice B

OTRO APÉNDICE COMPLEMENTARIO

RESUMEN AUTOBIOGRÁFICO

Edson Edgardo Samaniego Pantoja

Candidato para obtener el grado de Maestría en Ciencias de la Ingeniería con Orientación en Nanotecnología

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica

Tesis:

Procesamiento de imagen del espectro de difracción de electrones

Nací el 22 de octubre de 1997 en la ciudad de Nuevo Laredo, Tamaulipas; mis padres son Enrique Samaniego y Gloria Pantoja. En 2019 egresé como Ingeniero en Mecatrónica en el Instituto Tecnológico de Nuevo Laredo.