Math 302, Assignment 2

(1) In a small town, there are three bakeries. Each of the bakeries bakes twelve cakes per day. Bakery 1 has two different types of cake, bakery 2 three different types, and bakery 3 four different types. Every bakery bakes equal amounts of cakes of each type.

You randomly walk into one of the bakeries, and then randomly buy two cakes.

- (a) What is the probability that you will buy two cakes of the same type?
- (b) Suppose you have bought two different types of cake. Given this, what is the probability that you went to bakery 2?

Solution: (a) Define the events $F_i = \{\text{choose bakery } i\}$, and $E = \{\text{buy different cakes}\}$. Then $\mathbb{P}(F_i) = \frac{1}{3}$, and we compute the conditional probabilities

$$\mathbb{P}(E|F_1) = \frac{\binom{6}{1}^2}{\binom{12}{2}} = \frac{6}{11}$$

$$\mathbb{P}(E|F_2) = \frac{3 \cdot \binom{4}{1}^2}{\binom{12}{2}} = \frac{8}{11}$$

$$\mathbb{P}(E|F_3) = \frac{6 \cdot \binom{3}{1}^2}{\binom{12}{2}} = \frac{9}{11}$$

By the law of total probability,

$$\mathbb{P}(E) = \frac{1}{3} \left(\frac{6}{11} + \frac{8}{11} + \frac{9}{11} \right) = \frac{23}{33}.$$

Therefore $\mathbb{P}(\text{buy same type}) = \frac{10}{33}$.

(b) By Bayes,

$$\mathbb{P}(F_2|E) = \mathbb{P}(E|F_2) \frac{\mathbb{P}(F_2)}{\mathbb{P}(E)} = \frac{8}{23}$$

- (2) An assembly line produces a large number of products, of which 1% are faulty in average. A quality control test correctly identifies 98% of the faulty products, and 95% of the flawless products. For every product that is identified as faulty, the test is run a second time, independently.
 - (a) Suppose that a product was identified as faulty in both tests. What is the probability that it is, indeed, faulty?
 - (b) What if the quality control test is only performed once?

Solution: Let

F =the event that a product is faulty,

 E_1 = the event that the first test result is "faulty"

 E_2 = the event that the second test result is "faulty"

Then, $\mathbb{P}(F) = 1\%$ and, since the second test is independent of the first,

$$\mathbb{P}(E_1 \cap E_2 | F) = \mathbb{P}(E_1 | F) \mathbb{P}(E_2 | F) = 0.98^2$$

$$\mathbb{P}(E_1 \cap E_2 | F^c) = \mathbb{P}(E_1 | F^c) \mathbb{P}(E_2 | F^c) = 0.05^2$$

By Bayes' theorem,

$$\mathbb{P}(F|E_1 \cap E_2) = \frac{\mathbb{P}(E_1 \cap E_2|F)\mathbb{P}(F)}{\mathbb{P}(E_1 \cap E_2|F)\mathbb{P}(F) + \mathbb{P}(E_1 \cap E_2|F^c)\mathbb{P}(F^c)}$$
$$= \frac{0.98^2 \cdot 0.01}{0.98^2 \cdot 0.01 + 0.05^2 \cdot 0.99} \approx 80\%.$$

If that test had only be run once, we would get

$$\mathbb{P}(F|E_1) = \frac{0.98 \cdot 0.01}{0.98 \cdot 0.01 + 0.05 \cdot 0.99} \approx 17\%,$$

so even a very reliable test cannot identify a rare fault with satisfactory accuracy in a single try.

- (3) Let M be an integer chosen uniformly from $\{1, \ldots, 100\}$. Decide whether the following events are independent:
 - (a) $E = \{M \text{ is even}\}\$ and $F = \{M \text{ is divisible by 5}\}\$
 - (b) $E = \{M \text{ is prime}\}\$ and $F = \{\text{at least one of the digits of } M \text{ is a 2}\}\$
 - (c) Can you replace the number 100 by a different number, in such a way that your answer to (a) changes? (E.g., if your answer was "dependent", try to change the number 100 in such a way your answer becomes "independent").
 - (d) Show that if M is selected uniformly from $\{1, 2, ..., N\}$ for N very large, and p, q are fixed prime numbers, then the events $\{p|M\}$ and $\{q|M\}$ are roughly independent, i.e.

$$\mathbb{P}(pq|M) \approx \mathbb{P}(p|M)\mathbb{P}(q|M),$$

where a|b means a divides b, and \approx means the two sides of the above equation differ by something tending to 0 as $N \to \infty$. Does this still hold if p,q are allowed to be any integers?

Solution: (a) $\mathbb{P}(E)\mathbb{P}(F) = (1/2)(1/5) = 1/10 = \mathbb{P}(E \cap F)$, so E and F are independent.

- (b) $\mathbb{P}(E) = 25/100$, $\mathbb{P}(F) = 19/100$, and $\mathbb{P}(E \cap F) = 3/100$. The events E and F are not independent since $\mathbb{P}(E \cap F) \neq \mathbb{P}(E)\mathbb{P}(F)$.
- (c) Already replacing it by 101 makes the events dependent: $\frac{50}{101} \cdot \frac{20}{101} \neq \frac{10}{101}$. The fact that E and F of (a) were dependent was a pure coincidence, and had nothing to do with number theoretic properties of divisibility by 2 and 5. Whether one could change the 100 in part (b) to make the events

mentioned there independent would be a much harder question! (d) This is a consequence of the fact that there are approximately N/a numbers between 1 and N that are divisible by a. If N itself is divisible by pq, the equality holds exactly. Implicit in the statement is the fact that $\{p|M\} \cap \{q|M\} = \{pq|M\}$, which only holds if p,q are relatively prime.

(4) Let X be a discrete random variable with values in $\mathbb{N} = \{1, 2, \ldots\}$. Prove that X is geometric with parameter $p = \mathbb{P}(X = 1)$, i.e.

$$\mathbb{P}(X=k) = p(1-p)^{k-1} \text{ for } k \in \mathbb{N},$$

if and only if the memoryless property

$$\mathbb{P}(X = n + m \mid X > n) = \mathbb{P}(X = m)$$

holds.

Hint: Use $\mathbb{P}(X = k) = \mathbb{P}(X = k + 1 | X > 1)$ repeatedly.

Solution: We first show that a geometric RV has the memoryless property: We learned that $\mathbb{P}(X=m)=p(1-p)^{m-1}$ and that $\mathbb{P}(X>m)=(1-p)^m$, therefore by the definition of conditional probability we obtain

$$\mathbb{P}(X = n + m \mid X > n) = \frac{\mathbb{P}(X = n + m)}{\mathbb{P}(X > n)} = \frac{p(1 - p)^{n + m - 1}}{(1 - p)^n}$$
$$= p(1 - p)^{m - 1} = \mathbb{P}(X = m)$$

Now we show that the memoryless property implies that $\mathbb{P}(X=k)=p(1-p)^{k-1}$ with $p=\mathbb{P}(X=1)$. Using the law of total probability and the hint, for k>1 we have

$$P(X = k) = P(X = k|X > 1)P(X > 1) + P(X = k|X = 1)P(X = 1)$$

$$= P(X = k|X > 1)(1 - P(X = 1)) + 0$$

$$= P(X = k - 1)(1 - P(X = 1)) = \dots = P(X = 1)(1 - P(X = 1))^{k-1}.$$

Therefore, X is Geom(p) with p = P(X = 1).

(5) Let X take values $\{1, 2, 3, 4, 5\}$, and have p.m.f. given by

Table 1. The p.m.f. of X

k	1	2	3	4	5
$\mathbb{P}(X=k)$	1/7	1/14	3/14	2/7	2/7

- (a) Calculate $\mathbb{P}(X \leq 3)$
- (b) Calculate $\mathbb{P}(X < 3)$
- (c) Calculate $\mathbb{P}(X < 4.12|X > 1.6)$

Solution:

a)
$$\mathbb{P}(X \le 3) = 1/7 + 1/14 + 3/14 = 3/7.$$

b)
$$\mathbb{P}(X < 3) = 1/7 + 1/14 = 3/14$$
.

c)

$$\mathbb{P}(X < 4.12 \,|\, X > 1.6) = \frac{\mathbb{P}(1.6 < X < 4.12)}{\mathbb{P}(X > 1.6)} = \frac{\mathbb{P}(2 \le X \le 4)}{\mathbb{P}(X \ge 2)}$$
$$= \frac{1/14 + 3/14 + 2/7}{1/14 + 3/14 + 2/7 + 2/7} = \frac{2}{3}.$$

- (6) Consider the following lottery: There are a total of 10 tickets, of which 5 are "win" and 5 are "lose". You draw tickets until you draw the first "win". Drawing one ticket costs \$2, 2 tickets \$4, 3 tickets \$8, and so on. A winning ticket pays out \$8.
 - (a) Let X be the number of tickets you draw in the lottery (i.e. the number of tickets until the first win, including the winning ticket). Calculate the p.m.f. of X.
 - (b) Calculate the expectation $\mathbb{E} X$.
 - (c) Calculate the variance $\sigma^2(X)$.
 - (d) What are your expected winnings in this game?

Solution:

a) The values that X can take are $\{1, 2, 3, 4, 5, 6\}$, and

$$\mathbb{P}(X=k) = \frac{5}{10} \frac{4}{9} \frac{3}{8} \cdots \frac{5 - (k-2)}{10 - (k-2)} \frac{5}{N - (k-1)} = \frac{\binom{10-k}{5-1}}{\binom{10}{5}}$$

b) We have

$$\mathbb{E} X = \sum_{k=1}^{6} k \frac{\binom{10-k}{5-1}}{\binom{10}{5}} = \frac{11}{6}$$

c) We have

$$\sigma^{2}(X) = \sum_{k=1}^{6} (k - \frac{11}{6})^{2} \frac{\binom{10-k}{5-1}}{\binom{10}{5}} = \frac{275}{252}$$

d) If the game finishes with k balls, then you gain \$8 and pay 2^k . Therefore, the expected gain is

$$\mathbb{E}(8-2^X) = \sum_{k=1}^{6} (8-2^k) \frac{\binom{10-k}{5-1}}{\binom{10}{5}} = \frac{185}{63}$$

(7) In a town, there are on average 2.3 children in a family and a randomly chosen child has on average 1.6 siblings. Determine the variance of the number of children in a randomly chosen family.

Solution: Let X be the number of children in a randomly chosen family and let Y be the number of siblings of a randomly chosen child. Let n be the maximal number of children in a family, and assume that there are a_i families with exactly i children for each $i=0,1,\ldots,n$. Then the total number of families is $F=\sum_{i=0}^n a_i$ and the total number of children is $C=\sum_{i=0}^n ia_i$. Thus we have

$$P(X=i) = \frac{a_i}{F}$$
 and $\mathbb{P}(Y=i-1) = \frac{ia_i}{C}$

for all i = 0, ..., n. The definition of mean and our condition give

(0.1)
$$\mathbb{E}(X) = \sum_{i=0}^{n} i \mathbb{P}(X = i) = \sum_{i=1}^{n} \frac{i a_i}{F} = \frac{C}{F} = 2.3,$$

and similarly

$$\mathbb{E}(Y) = \sum_{i=0}^{n} (i-1)\mathbb{P}(Y=i-1) = -1 + \sum_{i=0}^{n} i\mathbb{P}(Y=i-1) = -1 + \sum_{i=0}^{n} \frac{i^{2}a_{i}}{C} = 1.6,$$

(0.2)
$$\sum_{i=0}^{n} \frac{i^2 a_i}{C} = 2.6.$$

Using (0.1) and (0.2) the second moment of X is

$$\mathbb{E}(X^2) = \sum_{i=0}^n i^2 \mathbb{P}(X=i) = \sum_{i=0}^n \frac{i^2 a_i}{F} = \frac{C}{F} \sum_{i=0}^n \frac{i^2 a_i}{C} = 2.3 \cdot 2.6.$$

Thus

$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2 = 2.3 \cdot 2.6 - 2.3^2 = 2.3 \cdot 0.3 = 0.69.$$

- (8) Consider a random graph on $n \geq 3$ vertices labeled by $[n] := \{1, \ldots, n\}$ defined as follows: for each i, j draw an edge between i and j w.p. 1/2 so that the events $A_{i,j} = \{i \text{ and } j \text{ are connected by an edge}\}$ are (mutually) independent for all pairs $\{i, j\}$ with $i \neq j \in [n]$. Let X be the number of triangles in the graph. That is, the number of $\{i, j, k\} \subset [n]$ so that $i \neq j$, $j \neq k$ and $i \neq k$ and each of the three pairs $\{i, j\}, \{i, k\}$ and $\{j, k\}$ has an edge between them.
 - (a) Calculate $\mathbb{E} X$
 - (b) Calculate $\sigma^2(X)$

Solution: (a) Let $\xi_{\{i,j,k\}}$ be the indicator of a triangle involving i,j and k (i.e. that all three pairs involving these vertices have an edge between them). That is, it is a random variable that equals 1 on the last event, and otherwise it equals zero. The brackets in the subscript of $\xi_{\{i,j,k\}}$ are used to emphasize that $\xi_{\{1,2,3\}} = \xi_{\{1,3,2\}} = \xi_{\{3,1,2\}} = \xi_{\{3,2,1\}} = \xi_{\{2,1,3\}} = \xi_{\{2,3,1\}}$ (i.e. order doesn't matter here). Then $\mathbb{E}[\xi_{i,j,k}] = \mathbb{P}(\xi_{i,j,k} = 1) \times 1 + \mathbb{P}(\xi_{i,j,k} = 0) \times 0 = p^3$ for all $\{i,j,k\} \in S_3$ where $S_i := \{A \subset [n] : |A| = i\}$. Since the total number of triangles ξ is given by $\sum_{\{i,j,k\} \in S} \xi_{\{i,j,k\}}$,

by linearity of expectation we have that $\mathbb{E}[\xi] = \mathbb{E} \sum_{\{i,j,k\} \in S_3} \xi_{\{i,j,k\}} =$ $\sum_{\{i,j,k\}\in S_3} \mathbb{E}\xi_{\{i,j,k\}} = p^3|S_3| = p^3\binom{n}{3}.$

(b) Since $\sigma^2(\xi) = \mathbb{E}[\xi^2] - (\mathbb{E}[\xi])^2$ and since $\mathbb{E}[\xi]$ was already calculated in part (a), we only need to determine $\mathbb{E}[\xi^2]$. For each $A, B \subset [n]$ write ξ_A for the indicator that every pair $a, b \in A$ have an edge between them and write $\xi_{A,B} := \xi_A \xi_B$. Note that $\xi_{A,B} \neq \xi_{A \cup B}$ unless A = B. Then

(0.3)
$$\xi^2 = \left(\sum_{A \in S_3} \xi_A\right) \left(\sum_{B \in S_3} \xi_B\right) = \left(\sum_{A,B \in S_3} \xi_{A,B}\right)$$

(in the above sum the case (A, B) = (W, U) and the cases (A, B) = (U, W)for $U \neq W \in S_3$ are counted in the sum as two different terms, but as one term when W = U).

If $A, B \in S_3$ then $A \cup B \in \bigcup_{i=3}^6 S_i$. Observe that for $A, B \in S_3$ we have

(0.4)
$$\mathbb{E}[\xi_{A,B}] = \mathbb{P}(\xi_{A,B} = 1) \times 1 + \mathbb{P}(\xi_A = 0) \times 0 = \begin{cases} p^3 & A = B \\ p^5 & |A \cap B| = 2 \\ p^6 & |A \cap B| < 2. \end{cases}$$

- The case A = B has $\binom{n}{3}$ different possibilities.
- The case $|A \cap B| = 2$ has $\binom{n}{3} \binom{n-3}{1} \binom{3}{2}$ possibilities $\binom{n}{3}$ ways to choose A, and then for B we choose one of the n-3elements of $[n] \setminus A$ and two elements from A (there is no double counting because we want to count (A, B) = (W, U) and the cases (A, B) =(U, W) for $U \neq W \in S_3$ as two different cases).
- \bullet The case $|A\cap B|<2$ is the complement of the last two cases and so has $\binom{n}{3}^2 - \binom{n}{3} - \binom{n}{3}\binom{n-3}{1}\binom{3}{2}$ cases. This together with (0.3) and (0.4) yield that

$$\begin{split} \mathbb{E}[\xi^2] &= p^3 \times \binom{n}{3} + p^5 \binom{n}{3} \binom{n-3}{1} \binom{3}{2} + p^6 \left[\binom{n}{3}^2 - \binom{n}{3} - \binom{n}{3} \binom{n-3}{1} \binom{3}{2} \right] \\ &= (p^3 - p^6) \binom{n}{3} + (p^5 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} + p^6 \binom{n}{3}^2 \\ &= (p^3 - p^6) \binom{n}{3} + (p^5 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} + (\mathbb{E}[X])^2. \\ &\text{Hence } \sigma^2(X) = (p^3 - p^6) \binom{n}{3} + (p^5 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} + (p^5 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} + (p^5 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} + (p^5 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} + (p^5 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} + (p^5 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} + (p^5 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} + (p^5 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{n-3}{2} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{3}{2} = (p^3 - p^6) \binom{n}{3} \binom{n-3}{1} \binom{n-3}{2} \binom{n-$$