In [1]:	<pre>from pandas import read_csv import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression import warnings from sklearn.metrics import accuracy_score</pre>
In [3]: Out[3]:	<pre>warnings.filterwarnings('ignore') #Loading the dataset df = pd.read_csv('/Users/SAURABH/Saurabh patil/DATA SCIENCE/KNN/glass.csv') df RI Na Mg AI Si K Ca Ba Fe Type 0 1.52101 13.64 4.49 1.10 71.78 0.06 8.75 0.00 0.0 1</pre>
	1 1.51761 13.89 3.60 1.36 72.73 0.48 7.83 0.00 0.0 1 2 1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0.00 0.0 1 3 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0.00 0.0 1 4 1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0.00 0.0 1 200 1.51633 14.14 0.00 3.88 73.61 0.08 0.18 1.06 0.0 7
	209 1.51623 14.14 0.00 2.88 72.61 0.08 9.18 1.06 0.0 7 210 1.51685 14.92 0.00 1.99 73.06 0.00 8.40 1.59 0.0 7 211 1.52065 14.36 0.00 2.02 73.42 0.00 8.44 1.64 0.0 7 212 1.51651 14.38 0.00 1.94 73.61 0.00 8.48 1.57 0.0 7 213 1.51711 14.23 0.00 2.08 73.36 0.00 8.62 1.67 0.0 7
In [4]:	<pre>#Checking for null values & data types df.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 214 entries, 0 to 213 Data columns (total 10 columns): # Column Non-Null Count Dtype</class></pre>
	0 RI 214 non-null float64 1 Na 214 non-null float64 2 Mg 214 non-null float64 3 Al 214 non-null float64 4 Si 214 non-null float64 5 K 214 non-null float64 6 Ca 214 non-null float64 7 Ba 214 non-null float64 8 Fe 214 non-null float64 9 Type 214 non-null int64
In [5]:	<pre>dtypes: float64(9), int64(1) memory usage: 16.8 KB #Scaling the data (leaving out the target variable) df1= df.iloc[:,0:9] from sklearn.preprocessing import StandardScaler sc = StandardScaler()</pre>
Out[5]:	sc.fit(df1) df_norm = sc.transform(df1) df_norm #Normalised dataset array([[0.87286765, 0.28495326, 1.25463857,, -0.14576634,
	[0.75404635, 1.16872135, -1.86551055,, -0.36410319, 2.95320036, -0.5864509], [-0.61239854, 1.19327046, -1.86551055,, -0.33593069, 2.81208731, -0.5864509], [-0.41436305, 1.00915211, -1.86551055,, -0.23732695, 3.01367739, -0.5864509]]) Since number of columns are more, let's use PCA
In [6]:	<pre>from sklearn.decomposition import PCA pca = PCA(n_components = 9) pca_values = pca.fit_transform(df_norm) pca_values array([[1.15113957, -0.52948764, -0.37209565,, -0.39560005,</pre>
	-0.19716008, 0.01634649], [-0.57413717, -0.75978777, -0.55670817,, -0.02415793, -0.28421356, -0.0107898], [-0.94015972, -0.92983597, -0.55490744,, -0.36751757, -0.09594067, 0.02164019],, [-1.68024627, 3.28482346, -0.93034851,, 0.67412231, -0.89170969, 0.04628358], [-2.36974768, 2.7568728, -1.23470076,, 0.67889932, 0.07446015, -0.02730068],
<pre>In [7]: Out[7]:</pre>	[-2.26264885, 3.02859155, -0.89084474,, 0.46246107, 0.0633149, -0.01944978]]) # The amount of variance that each PCA explains is var = pca.explained_variance_ratio_var array([2.79018192e-01, 2.27785798e-01, 1.56093777e-01, 1.28651383e-01, 1.01555805e-01, 5.86261325e-02, 4.09953826e-02, 7.09477197e-03, 1.78757536e-04])
In [8]: Out[8]: In [9]:	# Cumulative variance var1 = np.cumsum(np.round(var,decimals = 4)*100) var1 array([27.9 , 50.68, 66.29, 79.16, 89.32, 95.18, 99.28, 99.99,
	plt.plot(var1, color="red"); 100 90 - 80 - 70 - 60 - 50 - 40 - 30
In [10]:	Selecting first 7 PCAs out of total 9 finalDf = pd.concat([pd.DataFrame(pca_values[:,0:7],columns=['pc1','pc2','pc3','pc4','pc5','pc6','pc7']),
Out[10]:	pc1 pc2 pc3 pc4 pc5 pc6 pc7 Type 0 1.151140 -0.529488 -0.372096 1.728901 -0.251936 0.340210 -0.395600 1 1 -0.574137 -0.759788 -0.556708 0.760232 -0.257071 -0.115960 -0.024158 1 2 -0.940160 -0.929836 -0.554907 0.206254 -0.237506 0.126630 -0.367518 1 3 -0.142083 -0.961677 -0.117125 0.415724 -0.476299 0.285805 -0.052497 1 4 -0.351092 -1.091249 -0.485079 0.069102 -0.432090 0.298032 0.158570 1
In [11]:	214 rows × 8 columns array = finalDf.values X = array[:,0:7] Y = array[:,7]
	Selecting the model validation technique Trial 1: Train Test split approach from sklearn.model_selection import train_test_split import numpy as np test_size = 0.33 seed = 7
Out[12]:	<pre>X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) model2 = LogisticRegression() model2.fit(X_train, Y_train) result2 = model2.score(X_test, Y_test) np.round(result2, 4) 0.6901</pre>
In [13]:	<pre>Trial 2 : Cross Validation approach from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score import numpy as np num_folds = 10 seed = 7 kfold = KFold(n_splits=num_folds, random_state=seed) model3 = LogisticRegression(max_iter=400) results3 = cross_val_score(model3_x, x, y, cv=kfold)</pre>
	results3 = cross_val_score(model3, X, Y, cv=kfold) print('Result:',np.round(results3.mean(),4),'\n','\n','Standard dev:',np.round(results3.std(),4)) Result: 0.4158 Standard dev: 0.2034 Trial 3: Leave One Out Cross Validation approach from sklears model, selection import LeaveOneOut
In [14]:	<pre>from sklearn.model_selection import LeaveOneOut from sklearn.model_selection import cross_val_score loocv = LeaveOneOut() model4 = LogisticRegression(max_iter=400) results4 = cross_val_score(model4, X, Y, cv=loocv) print('Result:',np.round(results4.mean(),4),'\n','\n','standard dev:',np.round(results4.std(),4)) Result: 0.6308 Standard dev: 0.4826</pre>
	Hence, Train Test Split is the best model vaidation technique here, so we'll proceed with that KNN Classification Let's use Grid search CV to find out best value for K
In [15]:	
	<pre>model = KNeighborsClassifier() grid = GridSearchCV(estimator=model, param_grid=param_grid) grid.fit(X, Y) print(grid.best_score_) print(grid.best_params_) 0.6729789590254708 {'n_neighbors': 5}</pre>
In [16]:	<pre>import matplotlib.pyplot as plt %matplotlib inline # choose k between 1 to 40 k_range = range(1, 40) k_scores = [] # use iteration to caclulator different k in models, then return the average accuracy based on the cross validation for k in k_range: knn = KNeighborsClassifier(n_neighbors=k)</pre>
	<pre>scores = cross_val_score(knn, X, Y, cv=5) k_scores.append(scores.mean()) # plot to see clearly plt.figure(figsize=(15,7)) plt.plot(k_range, k_scores) plt.axhline(y=0.6729789590254708, color='r', linestyle='') plt.axvline(x=5, color='r', linestyle='') plt.xlabel('Value of K for KNN') plt.ylabel('Cross-Validated Accuracy') plt.show()</pre>
	0.66
	0.60 - 0.58 - 0.60 - 0.58 - 0.
	0.56 0.5 10 15 20 25 30 35 40 Value of K for KNN
In [17]:	Hence K=5 is the best value, so we'll make the model using that. #KNN Classification model = KNeighborsClassifier(n_neighbors=5) #making the model model.fit(X_train , Y_train) #training the model y_pred = model.predict(X_test) #predicting on the test dataset acc = accuracy_score(Y_test, y_pred) * 100 print("Accuracy =", acc)
In [18]:	SVM Classification # SVM Classification import pandas as pd import numpy as np from sklearn feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn propressessing import StandardScalar
	from sklearn.preprocessing import StandardScaler from sklearn import svm from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score, confusion_matrix from sklearn.metrics import accuracy_score, confusion_matrix
In [19]:	<pre>from sklearn.model_selection import train_test_split, cross_val_score Let's use Grid search CV to find out best value for params clf = SVC() param_grid = [{'kernel':['rbf'], 'gamma':[0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1], 'C':[1,10,100,1000] },</pre>
Out[19]: In [20]:	<pre>gsv.best_params_ , gsv.best_score_ ({'C': 10, 'gamma': 0.5, 'kernel': 'rbf'}, 0.6826839826839827)</pre>
	acc = accuracy_score(Y_test, y_pred) * 100 print("Accuracy = 66.19718309859155 Now, let's try some Ensemble methods to see if we can further increase the accuracy of the model
	Trial-1: Bagging # Bagged Decision Trees for Classification from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier
	<pre>seed = 7 cart = DecisionTreeClassifier() num_trees = 100 model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_state=seed) model.fit(X_train, Y_train) y_pred = model.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc) Accuracy: 66.19718309859155</pre>
In [23]:	Trial-2: Random Forest # Random Forest Classification from sklearn.ensemble import RandomForestClassifier num_trees = 100 max_features = 3
	<pre>model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) model.fit(X_train,Y_train) y_pred = model.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc) Accuracy: 67.6056338028169 Trial-3: Boosting</pre>
In [25]:	<pre># AdaBoost Classification from sklearn.ensemble import AdaBoostClassifier num_trees = 10 seed=7 model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) model.fit(X_train,Y_train) y_pred = model.predict(X_test)</pre>
In [26]:	acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc) Accuracy: 38.028169014084504 Trial-4: Stacking # Stacking Ensemble for Classification from sklearn.tree import DecisionTreeClassifier
In [27]:	<pre>from sklearn.svm import SVC from sklearn.ensemble import VotingClassifier # create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = DecisionTreeClassifier() estimators.append(('cart', model))</pre>
	<pre>model = SVC() estimators.append(('svm', model)) # create the ensemble model ensemble = VotingClassifier(estimators) ensemble.fit(X_train, Y_train) y_pred = ensemble.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc)</pre> Accuracy: 70 4235353113676
In [28]:	<pre># create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = DecisionTreeClassifier() estimators.append(('cart', model)) model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) estimators.append(('Boosting', model))</pre>
	<pre># create the ensemble model ensemble = VotingClassifier(estimators) ensemble.fit(X_train, Y_train) y_pred = ensemble.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc)</pre> Accuracy: 71.83098591549296
In [29]:	<pre># create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) estimators.append(('boosting', model)) model = SVC() estimators.append(('svm', model))</pre>
	<pre># create the ensemble model ensemble = VotingClassifier(estimators) ensemble.fit(X_train,Y_train) y_pred = ensemble.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc) Accuracy: 71.83098591549296</pre>
In [30]:	<pre># create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) estimators.append(('boosting', model)) # create the ensemble model ensemble = VotingClassifier(estimators)</pre>
In [31]:	<pre>ensemble = VotingClassifier(estimators) ensemble.fit(X_train, Y_train) y_pred = ensemble.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc) Accuracy: 57.74647887323944 # create the sub models estimators = []</pre>
	<pre>estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = SVC() estimators.append(('svm', model)) # create the ensemble model ensemble = VotingClassifier(estimators) ensemble.fit(X_train,Y_train) y_pred = ensemble.predict(X_test)</pre>
In []:	