主管 领导 审核 签字

哈尔滨工业大学(深圳)学年 春季学期

大学物理 IA 期中考试试题

题号	l	_	Ξ	四	五	六	总分
得分							
阅卷人							

注意行为规范 遵守考场纪律 得分 一、选择题(每小题 3 分,共 30 分,将正确答案填在【 1中) 1. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设 该人以匀速率 v_0 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 变加速运动. (B) 变减速运动. 姓名 (C) 匀加速运动. (D) 匀减速运动. 1 2. 质点作曲线运动, \bar{r} 表示位置矢量, \bar{v} 表示速度, \bar{a} 表示加速度,S 表示路程, a_r 表示切向加 速度, v 表示速率, 下列表达式中: (1) dv/dt = a, (2) dr/dt = v, (3) dS/dt = v, (4) $\left| d\vec{v} / dt \right| = a_{\tau}$. 李忠 (A) 只有(1)、(4)是对的. (B) 只有(3)是对的. 封 (C) 只有(2)是对的. (D) 只有(2)、(4)是对的. 1 班号 3. 水平地面上放一物体 A,它与地面间的滑动摩擦系数为 μ . 现加一恒力 \bar{F} 如图所示. 欲使物 体 A 有最大加速度,则恒力 \overline{F} 与水平方向夹角 θ 应满足 (A) $\sin \theta = \mu$. (B) $\cos \theta = \mu$. 1

- (C) $tg\theta = \mu$.
- (D) $\operatorname{ctg} \theta = \mu$.

4.

质量为 20 g 的子弹沿 X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍 沿 X 轴正向以 50 m/s 的速率前进,在此过程中木块所受冲量的大小为

- (A) -10 N s.
- (B) -9 N s.
- (C)10 N s.
- (D) 9 N s.

人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的

- (A) 对地心的角动量守恒,动能不守恒.
- (B) 动量守恒, 动能不守恒.
- (C) 对地心的角动量不守恒,动能守恒.
- 1

(D) 动量不守恒,动能守恒.

6.

均匀细棒 OA 可绕通过其一端 O 而与棒垂直的水平固定光滑轴转动,如图所示. 今使棒从水平位置由静 止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?

- (A) 角速度从小到大, 角加速度从小到大.
- (B) 角速度从小到大, 角加速度从大到小,
- (C) 角速度从大到小, 角加速度从大到小.
- (D) 角速度从大到小, 角加速度从小到大.

1

7.

如图所示,在真空中半径分别为 R 和 2R 的两个同心球面,其上分别均匀地 带有电荷+q和-3q. 今将一电荷为+Q的带电粒子从内球面处由静止释放, 则该粒子到达外球面时的动能为:

(A)
$$\frac{Qq}{4\pi\varepsilon_0 R}$$

(A)
$$\frac{Qq}{4\pi\varepsilon_0 R}$$
. (B) $\frac{Qq}{2\pi\varepsilon_0 R}$. (C) $\frac{Qq}{8\pi\varepsilon_0 R}$. (D) $\frac{3Qq}{8\pi\varepsilon_0 R}$.

(C)
$$\frac{Qq}{8\pi\varepsilon_0 R}$$

(D)
$$\frac{3Qq}{8\pi\varepsilon_0 R}$$

8.

在某地发生两件事,静止位于该地的甲测得时间间隔为 4 s, 若相对于甲作匀速直线运动的乙测得时间 间隔为5s,则乙相对于甲的运动速度是(c表示真空中光速)

- (A) (4/5) c.
- (B) (1/5) c.
- (C) (2/5) c. (D) (3/5) c.

1

9.

下列几种说法中正确的是

- (A) 电场中某点电场强度的方向,就是将点电荷放在该点所受电场力的方向。
- (B) 在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同。
- (C) 电场强度方向可由 $\vec{E} = \vec{F}/q$ 定出,其中 q 为试验电荷的电量, q 可正、可负, \vec{F} 为试验电荷所 受的电场力。
 - (D) 以上说法都不正确。

• 1

10.

如图所示,半径为R的均匀带电球面,总电荷为Q,设无穷远处的电势为零,则球内距离球心为r的 P 点处的电场强度的大小和电势为:

(A)
$$E=0$$
, $U = \frac{Q}{4\pi\varepsilon_0 r}$.

(B)
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{Q}{4\pi\varepsilon_0 R}$

(A)
$$E=0$$
, $U=\frac{Q}{4\pi\varepsilon_0 r}$. (B) $E=\frac{Q}{4\pi\varepsilon_0 r^2}$, $U=\frac{Q}{4\pi\varepsilon_0 R}$. (C) $E=\frac{Q}{4\pi\varepsilon_0 r^2}$, $U=\frac{Q}{4\pi\varepsilon_0 R}$.

(D)
$$E=0$$
, $U=\frac{Q}{4\pi\varepsilon_0 R}$.

1

	•					
		二、填空题(每小题 3 分, 共 30 分)	得分			
		1. 一质点沿 X 轴运动,其加速度 a 与位置坐标 x 的关系为 $a=2+6x^2$,				
		如果质点在原点处的速度为零,则其在任意位置处的速度为	•			
姓名		2. 质点沿半径为 R 的圆周运动,其运动学方程为 $\theta=5t+2t^2$ (SI),则 t	时刻质点的法向加速			
		度大小为 a _n =。				
		3. 当一列火车以 10 m/s 的速率向东行驶时,若相对于地面竖直下落的雨	滴在列车的窗子上形			
	密	成的雨迹偏离竖直方向 30°,相对于列车的速率是	m/s。			
	•	4. 两块并排的木块 A 和 B ,质量分别为 $2m$ 和 m ,静止地放置在光滑的水平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间均为 Δt ,木块对子弹的阻力为恒力 F ,则子弹穿出	A B			
		木块 B 后,木块 B 的速度大小为。				
		5. 观察者甲以 $0.8c$ (c 为光在真空中的速度)相对于静止的观察者乙运	动,若甲携带有长度			
本。	. 封	为 L ,截面积为 S ,质量为 m 的棒,这根棒安放在平行于运动方向上,则	J乙测得此棒的密度			
		为。				
Ī		6. 当一个粒子的相对论动能等于其静止能量时,则该粒子的运动速率为	<u> </u>			
班号		7. 空气平行板电容器的两极板面积均为 S ,两板相距很近,电荷在平板	上的分布可以认为			
		是均匀的.设两极板分别带有电荷士 Q ,则两板间相互吸引力为	•			
	线	线 8. 已知某静电场的电势分布为 $U = 8x + 12x^2y - 20y^2$,则场强分布				
		$ec{E} = $ $_{\circ}$				
		9. 一半径为 R 的均匀带电球面,带有电荷 Q . 若规定该球面上电势为零	,则球面外距球			
		心 r 处的 P 点的电势 $U_P =$				
		10. 真空中,在边长为 a 的正方形平面的中垂线上,距正方形中心 O 点 a	2 处有一个点电荷 q			
外院		则通过该平面的电场强度通量为。				

三、计算题(10分)

光滑平面上有一半径为R的 1/4 圆弧形槽(如图),其质量为M,圆弧表面光滑,若另有一质量为m的小球从其顶端A沿圆弧自由滑到底端B。求这一过程中圆弧形槽的支撑力N对小球所做的功?

得分

M N' B

四、**计算题(10 分)**如图所示,一根长为 L ,质量为 M 的均质细杆,可绕过端点 O 的水平光滑轴在竖直面内转动。当杆竖直静止下垂时,有一质量为 m 的小球(视为质点)飞来,垂直击中杆的中点。小球与细杆发生完全弹性碰撞,之后小球以初速度为零自由下落,而细杆碰撞后的最大偏转角为 θ ,求小球击中细杆前的速率 v.

	五、 计算题(10 分)			
	两个质点 A 和 B ,静止质量均为 m_0 . 质点 A 静止,质点 B 的动能为 $6m_0c^2$. 设 A 、 B 两质点相撞并结合成为一个复合质点,求复合	得分		
	质点的静止质量。			
1XI				
左 2	· · ·			
全体	對			
班号	. 线			
麗				
孙 究				
	:			

六、计 算题(10 分) 电荷 Q 均匀分布在半径为 R 的球体内. 设无穷远处为电势零点,试求: 带电球体内、外电势分布。	得分	