Package 'GR2MSemiDistr'

December 6, 2022
Type Package
Title A package for hydrological modeling with a semi-distribute GR2M model adaptation in large-sample studies.
Version 4.1
Author Harold Llauca <hllauca@senamhi.gob.pe></hllauca@senamhi.gob.pe>
Maintainer Harold Llauca <hllauca@senamhi.gob.pe></hllauca@senamhi.gob.pe>
Description This package run a semi-distributed GR2M model adaptation using the Weighted Flow Accumulation algorithm in TauDEM_537 (required)
License GPL (>= 2)
Encoding UTF-8
Depends R (>= 4.0),
Imports airGR, foreach, hydroGOF, raster, rgdal, rgeos, rtop, tictoc, lubridate, sf, exactextractr, parallel,
LazyData true
RoxygenNote 7.2.2
RemoteType github
RemoteHost api.github.com
RemoteRepo GR2MSemiDistr
RemoteUsername hllauca
RemoteRef HEAD
RemoteSha 8d2a242ff90055e7af1d053b6c891206830eba9e
GithubRepo GR2MSemiDistr
GithubUsername hllauca
GithubRef HEAD
GithubSHA1 8d2a242ff90055e7af1d053b6c891206830eba9e
NeedsCompilation no
R topics documented:
Create_Forcing_Inputs2Optim_GR2MSemiDistr3Routing_GR2MSemiDistr5Run_GR2MSemiDistr6
Index 8

 $\begin{tabular}{ll} Create_Forcing_Inputs & \textit{Extract and prepare model's inputs data in the airGR format (DatesR, P and E) from gridded P and E monthly data. \\ \end{tabular}$

Description

Extract and prepare model's inputs data in the airGR format (DatesR, P and E) from gridded P and E monthly data.

Usage

```
Create_Forcing_Inputs(
   Subbasins,
   Precip,
   PotEvap,
   Qobs = NULL,
   DateIni,
   DateEnd,
   IniGrids,
   Save = FALSE,
   Update = FALSE,
   Resolution = 0.01,
   Buffer = 1.1,
   Members = NULL
)
```

Arguments

Subbasins	Subbasins' shapefile. Must contain the following attributes: 'Area' (in km2), 'Region' (in letters), and 'COMID' (identifier number).			
Precip	Raster brick of the precipitation data in [mm/month].			
PotEvap	Raster brick of the evapotranspiration data in [mm/month].			
Qobs	Observed streamflow data in [m3/s] at the basin outlet. Must have the dates of the output dataset.			
DateIni	Initial date of the output database in 'mm/yyyy' format.			
DateEnd	Ending date of the output database in 'mm/yyyy' format.			
IniGrids	Initial date of the gridded data (P and PE) in 'mm/yyy' format.			
Save	Boolean to save results as a text file in the 'Outputs' location. FALSE as default.			
Update	Boolean for the updating mode where only the last month's values will be returned. FALSE as default.			
Resolution	Resampling resolution for improving subbasins' data extraction. 0.01degrees as default.			
Buffer	Factor for increase subbasins' limits extents. 1.1 as default.			
Members	Número de miembros del conjunto modelo. Only for streamflow forecasting purposes. NULL por defecto.			

Value

Return a dataframe of model's inputs data in the airGR format (DatesR, P, E, Q).

References

Cesar Aybar, Carlos Fernández, Adrian Huerta, Waldo Lavado, Fiorella Vega & Oscar Felipe-Obando (2020) Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day, Hydrological Sciences Journal, 65:5, 770-785, DOI: 10.1080/02626667.2019.1649411

Llauca H, Lavado-Casimiro W, Montesinos C, Santini W, Rau P. PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020). Water. 2021; 13(8):1048. https://doi.org/10.3390/w13081048

Examples

Optim_GR2MSemiDistr

Model parameter optimization with the SCE-UA algorithm.

Description

Model parameter optimization with the SCE-UA algorithm.

Usage

```
Optim_GR2MSemiDistr(
  Data,
  Subbasins,
  RunIni,
  RunEnd,
  WarmUp = NULL,
  Parameters,
  Parameters.Min,
  Parameters.Max,
  Max.Functions = 5000,
  Optimization = "NSE",
  No.Optim = NULL
)
```

Arguments

Data Dataframe with model input's data in airGR format from Create_Forcing_Inputs.

(DatesR, P_1, P_2,..,P_n, E_1, E_2, ...E_n, Q). If Q is not available please pro-

vide only DatesR, P, and E.

Subbasins Subbasins' shapefile. Must contain the following attributes: 'Area' (in km2),

'Region' (in letters), and 'COMID' (identifier number).

RunIni Initial date of the model simulation in 'mm/yyyy' format.

RunEnd Ending date of the model simulation in 'mm/yyyy' format.

WarmUp Number of months for the warm-up period. NULL as default.

Parameters Vector of initial model parameters (X1 and X2) and correction factors of P (fp)

and E (fpe) in the following order: c(X1, X2, fp, fpe). In the case of existing more than one 'Region' (e.g. regions A and B) please provide model parameters in the following order: c(X1_A, X1_B, X2_A, X2_B, Fp_a, Fp_B, Fpe_A,

Fpe_B).

Parameters. Min Vector of minimum values of GR2M model parameters and correction factors in

the following order: c(X1_min, X2_min, fp_min, fpe_min).

Parameters.Max Vector of maximum values of GR2M model parameters and correction factors

in the following order: c(X1_max, X2_max, fp_max, fpe_max).

Max. Functions Maximum number of function evaluation for optimization. 5000 as default.

Optimization Objective function for optimization (NSE, KGE, or RMSE).

No.Optim Regions not to be optimized. NULL as default.

Value

List of optimal GR2M model parameters for each 'Region'.

Param: Best set of GR2M model parameters (sorted by 'Region').

Value: Final value of the objective function.

best_param <- optim\$Param</pre>

References

Llauca H, Lavado-Casimiro W, Montesinos C, Santini W, Rau P. PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020). Water. 2021; 13(8):1048. https://doi.org/10.3390/w13081048

Examples

Routing_GR2MSemiDistr Routing discharges for each subbasin.

Description

Routing discharges for each subbasin.

Usage

```
Routing_GR2MSemiDistr(
  Model,
  Subbasins,
  Dem,
  AcumIni = NULL,
  AcumEnd = NULL,
  Save = FALSE,
  Update = FALSE
)
```

Arguments

Model List of model results from Run_GR2MSemiDistr.

Subbasins' shapefile. Must contain the following attributes: 'Area' (in km2),

'Region' (in letters), and 'COMID' (identifier number).

Dem Digital elevation model raster for the extent of the basin.

AcumIni Initial date of the model routing in 'mm/yyyy' format. NULL as default

AcumEnd Ending date of the model routing in 'mm/yyyy' format. NULL as default

Save Boolean to save results as a text file in the 'Outputs' location. FALSE as default.

Update Boolean for the updating mode where only the last month's values will be re-

turned. FALSE as default.

Value

List of model routing outputs.

QR: Routed discharge timeseries for all subbasins in [m3/s].

Dates: Vector of dates of the simulation period.

COMID: Vector of identifier numbers for each subbasin.

Author(s)

Llauca H, Lavado-Casimiro W, Montesinos C, Santini W, Rau P. PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020). Water. 2021; 13(8):1048. https://doi.org/10.3390/w13081048

Examples

Run_GR2MSemiDistr

Run the GR2M model for 'n' subbasins.

Description

Run the GR2M model for 'n' subbasins.

Usage

```
Run_GR2MSemiDistr(
  Data,
  Subbasins,
  RunIni,
  RunEnd,
  WarmUp = NULL,
  Parameters,
  IniState = NULL,
  Save = FALSE,
  Update = FALSE
)
```

Arguments

Data	Dataframe with model in	nut's data in airGR forma	at from Create Fo	orcing Innuts
Data	Datarrame with model in	put s uata ili ali OK ibilila	u u u u u u u u u u	n cing_inputs.

(DatesR, P_1, P_2,..,P_n, E_1, E_2, ...E_n, Q). If Q is not available please pro-

vide only DatesR, P, and E.

Subbasins' shapefile. Must contain the following attributes: 'Area' (in km2),

'Region' (in letters), and 'COMID' (identifier number).

RunIni Initial date of the model simulation in 'mm/yyyy' format.

RunEnd Ending date of the model simulation in 'mm/yyyy' format.

WarmUp Number of months for warm-up. NULL as default.

Parameters Vector of model parameters (X1 and X2) and correction factors of P (fp) and

E (fpe) in the following order: c(X1, X2, fp, fpe). In the case of existing more than one 'Region' (e.g. regions A and B) please provide model parameters in the following order: c(X1_A, X1_B, X2_A, X2_B, Fp_a, Fp_B, Fpe_A, Fpe_B).

IniState Initial states variables. NULL as default.

Run_GR2MSemiDistr 7

Save Boolean to save results as a text file in the 'Outputs' location. FALSE as default.

Update Boolean for the updating mode where only the last month's values will be re-

turned. FALSE as default.

Value

List of GR2M model outputs.

PR: Precipitation timeseries for all subbasins in [mm/month].

AE: Actual evapotranspiration timeseries for all subbasins in [mm/month].

SM: Soil Moisture timeseries for all subbasins in [mm/month].

RU: Runoff timeseries for all subbasins in [mm/month].

QS: Discharge timeseries for all subbasins in [m3/s] (not routed).

Dates: Vector of dates of the simulation period.

COMID: Vector of identifier numbers for each subbasin.

EndState: List of end model states of each subbasin.

SINK: Basin outlet which contains qsim and qobs data time series in [m3/s].

References

Llauca H, Lavado-Casimiro W, Montesinos C, Santini W, Rau P. PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020). Water. 2021; 13(8):1048. https://doi.org/10.3390/w13081048

Examples

Index

```
Create_Forcing_Inputs, 2
Optim_GR2MSemiDistr, 3
Routing_GR2MSemiDistr, 5
Run_GR2MSemiDistr, 6
```