OEAW AI SUMMER SCHOOL

DEEP LEARNING II Neural Networks

Johannes Brandstetter, Michael Widrich Institute for Machine Learning

Lecture II: Neural Networks

Perceptron Multi-Layer Perceptron

Neurophysiological background

- The inside of every neuron (nerve or brain cell) carries a certain electric charge.
- Electric charges of connected neurons may raise or lower this charge:
 - by means of transmission of ions through the synaptic interface.
- As soon as the charge reaches a certain threshold, an electric impulse is transmitted through the cell's axon to the neighboring cells.
- In the synaptic interfaces, chemicals called neurotransmitters control the strength to which an impulse is transmitted from one cell to another.

Perceptrons

A perceptron is a simple linear threshold unit:

$$g(\mathbf{x}_i; \mathbf{W}, \theta) = \begin{cases} 1 & \text{if } \mathbf{W}^T \mathbf{x}_i > \theta \\ 0 & \text{otherwise} \end{cases}$$

- In analogy to the biological model:
 - \square inputs $\mathbf{x}_i \Rightarrow$ charges received from connected cells
 - \square weights $\mathbf{W} \Rightarrow$ properties of the synaptic interface
 - ouput \Rightarrow impulse that is sent through the axon as soon as the charge exceeds the threshold θ
- Though it seems to be a (simplistic) model of a neuron, a perceptron is nothing else but a simple linear classifier.

Perceptrons and linear separability

- In case that the data set Z is linearly separable, the perceptron learning algorithm terminates and finally solves the learning task.
- The final solution is not unique:
 - □ arbitrary solution (depending on initial weights)
- Perceptrons cannot solve classification tasks that are not linearly separable:
 - simple XOR problems
- Solution of introducing intermediate layers:
 - ☐ The outputs of the first layer are used as input of the first intermediate layer.

Multi-layer perceptrons

Some historical remarks

- Minsky and Papert in the late 1960s: a training algorithm for MLPs is computationally infeasible.
 - Study of multi-layer perceptrons is not worthwhile.
 - □ The study of multi-layer perceptrons was almost halted until the mid of the 1980s.
- In 1986, Rumelhart, McClelland, Hinton first published the backpropagation algorithm.
 - ☐ Similarly described by Werbos (1974) and Bryson (1960s).
 - ☐ The key idea is to replace the discontinuous threshold function by a differentiable function. Then the output of the neuron, its so-called activation, is computed as:

$$g(\mathbf{x}; \mathbf{W}, \theta) = \varphi(\mathbf{W}^T \mathbf{x} - \theta)$$

Activation functions

- MLP is fully connected feed-forward neural network (FNN):
 - ☐ Today, "FNN" and "MLP" are often used synonymously.
 - ☐ Convolutional NNs are only partially connected, Recurrent NNs have feedback loops (No MLPs!).
- Without activation functions, neural networks are linear:
 - ☐ Activations allow to learn nonlinear functions.
- Earlier used activation functions: sigmoid, tanh
 - \square Sigmoid function $\sigma(x)$
 - \Box $\tanh(x) = 2\sigma(2x) 1$
 - Rescaled versions of each other

Learning non-linear functions

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

This classification problem:

- ... can't be solved by logistic regression.
- ... is trivial to solve using an MLP.

How powerful are neural networks?

- Useful measure of a machine learning algorithm: what are the most complicated functions it can learn?
- Measured by the VC dimension¹
- VC dimension for a given neural network:

$$d_{VC} \le O(W \log(c \cdot M))$$

(W = number of weights, M = number of units)

- VC dimensions of neural networks are much higher than for e.g. Logistic Regression.
- NNs can learn (much) more complex decision functions.
- Neural Networks are "Universal Function Approximators".

¹Vapnik-Chervonenkis dimension – to learn more, see "Statistical Learning Theory" (Vladimir N. Vapnik)

Universal Approximation Theorem

For any given continuous function $f \in I_m \equiv [0,1]^m$ and $\varepsilon > 0$, there exists a function of the form

$$F(x) = \sum_{i=1}^{N} \alpha_i \varphi\left(w_i^T x + b_i\right)$$

such that

$$|F(x) - f(x)| < \varepsilon$$

for all $x \in I_m$.

For the proof, see [Hornik (1991) "Approximation Capabilities of Multilayer Feedforward Networks"]

Backpropagation

Vanishing Gradient

Remember: Logistic Regression

$$g(\mathbf{x}_i) = \sigma \left(\mathbf{W}^T \mathbf{x}_i + b \right)$$

Logistic regression with learned features:

$$g(\mathbf{x}_i) = \sigma \left(\mathbf{W}_{(2)}^T \mathbf{f}_i + b \right)$$

Gradients for Logistic Regression

- Using: $\frac{\partial \sigma(z)}{\partial z} = \sigma(z) \cdot (1 \sigma(z))$
- Using σ_i instead of $\sigma(\mathbf{W}^T\mathbf{x}_i)$

$$L = -\sum_{i} \left(y_{i} \log \sigma(\mathbf{W}^{T} \mathbf{x}_{i}) + (1 - y_{i}) \log(1 - \sigma(\mathbf{W}^{T} \mathbf{x}_{i})) \right)$$

$$\frac{\partial L}{\partial \mathbf{W}} = -\sum_{i} \left(y_{i} \frac{1}{\sigma_{i}} \cdot \sigma_{i} \cdot (1 - \sigma_{i}) \cdot \mathbf{x}_{i} - \frac{1 - y_{i}}{1 - \sigma_{i}} \cdot \sigma_{i} \cdot (1 - \sigma_{i}) \cdot \mathbf{x}_{i} \right)$$

$$= -\sum_{i} \left(y_{i} (1 - \sigma_{i}) \cdot \mathbf{x}_{i} - (1 - y_{i}) \cdot \sigma_{i} \cdot \mathbf{x}_{i} \right)$$

$$= -\sum_{i} (y_{i} - y_{i} \sigma_{i} - \sigma_{i} + \sigma_{i} y_{i}) \mathbf{x}_{i}$$

$$= \sum_{i} (\sigma_{i} - y_{i}) \mathbf{x}_{i}$$

Neural networks are nested structures

Only fully-connected feed-forward connections:

One word how the matrices look like?

Backpropagation of errors

Loss errors are backpropagated to update the network:

15/32

Backpropagation of errors

- Gradients multiply according to the chain rule.
- Gradient signal gets lost in the noise of the network:
 - Vanishing gradient

$$\begin{split} \mathbf{W}_{6} \leftarrow \mathbf{W}_{6} - \eta \frac{\partial L}{\partial \mathbf{W}_{6}} & \eta \text{ ... learning rate} \\ \mathbf{W}_{5} \leftarrow \mathbf{W}_{5} - \eta \frac{\partial L}{\partial h_{5}} \frac{\partial h_{5}}{\partial \mathbf{W}_{5}} \\ \mathbf{W}_{4} \leftarrow \mathbf{W}_{4} - \eta \frac{\partial L}{\partial h_{5}} \frac{\partial h_{5}}{\partial h_{4}} \frac{\partial h_{4}}{\partial \mathbf{W}_{4}} \\ \mathbf{W}_{3} \leftarrow \mathbf{W}_{3} - \eta \frac{\partial L}{\partial h_{5}} \frac{\partial h_{5}}{\partial h_{4}} \frac{\partial h_{4}}{\partial h_{3}} \frac{\partial h_{3}}{\partial \mathbf{W}_{3}} \\ \mathbf{W}_{2} \leftarrow \mathbf{W}_{2} - \eta \frac{\partial L}{\partial h_{5}} \frac{\partial h_{5}}{\partial h_{4}} \frac{\partial h_{4}}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial \mathbf{W}_{2}} \\ \mathbf{W}_{1} \leftarrow \mathbf{W}_{1} - \eta \frac{\partial L}{\partial h_{5}} \frac{\partial h_{5}}{\partial h_{4}} \frac{\partial h_{4}}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{2}} \frac{\partial h_{1}}{\partial h_{1}} \frac{\partial h_{1}}{\partial \mathbf{W}_{1}} \end{split}$$

Activation functions = the main culprits

- Gradients multiply according to the chain rule.
- In the saturation regions of the activation functions the gradients are close to zero.
- First identified 1991 by Sepp Hochreiter

Vanishing Gradient

Gradient signal gets lost in the noise:

18/32

How to solve the vanishing gradient problem

Currently applied methods:

- ☐ Gating (mostly used in RNNs → see Lecture V)
- Normalization: distorts gradient, increases noise
 - Batch normalization, layer normalization, weight normalization
- Activation functions which avoid vanishing gradient
- ☐ Clever weight initialization
- □ Further regularization techniques
- Clever usage is "Trick of the Trade" in Deep Learning

Example: ReLUs and ELUs

- Rectified linear unit, by Nair and Hinton in 2010:
 - ☐ Idea: *N* sigmoids with shared weights but different biases:

$$\sum_{i}^{N} \sigma(h - i + 0.5) \approx \log(1 + e^{h}) \approx \max(0, h)$$

where $h = \mathbf{w} \cdot x + b$

- ☐ Gradient is either 0 or 1 (helps against vanishing gradients!)
- □ ReLU nets learn a piecewise linear function
- □ Problem: Dying ReLUs
- Exponential linear unit, by Clevert, Unterthiner, Hochreiter in 2015:

One word about loss functions

■ Regression:

- Mean-squared error for Gaussian noise assumption
- ☐ Absolute error for Laplace noise assumption
- If specific information about noise is known the loss function can be adapted.

■ Classification:

- □ Cross-entropy ⇒ maximizing the likelihood of correct classification
- ☐ Hinge loss (Support Vector Machines)

Deep Learning Trick of the Trade

Weight initialization

- 99% of the time, a reasonably sized net will learn even with a cheap initialization.
- However:
 - Good initializations can help against Vanishing Gradients.
 - Good initializations can help to converge quickly (fewer iterations needed).
 - ☐ Good initializations are able to train even 30+ layer nets:
 - Not relevant in practice (way too deep!)
 - Interesting from research POV

Weight initialization – simple schemes

- Simplest: $\mathbf{W}_{ij} \sim \mathcal{N}(0, 0.01)$ (or some other small σ^2)
- LeCun 1998: Make sure layer output has variance of 1:

LeCun et al. Efficient backprop. Neural networks: Tricks of the trade.

- Depends on activation function
- Depends on number of input units k
- \square Heuristic: $\mathbf{W}_{ij} \sim \mathcal{U}(\frac{-1}{k}, \frac{1}{k})$

Weight initialization – newer schemes

■ Glorot and Bengio 2010 ("Xavier initialization")

Glorot, Bengio.	Understanding	the difficulty	of training deep	feedforward neura	I networks.	AISTATS 2010

- ☐ Same variance between all layers in both forward pass (activations) and backward pass (delta errors).
- \square Boils down to $k \cdot \text{Var}(\mathbf{W}) = \frac{1}{3}$
- \square Thus $\mathbf{W}_{ij} \sim \mathcal{U}(\frac{-\sqrt{6}}{\sqrt{k+l}}, \frac{\sqrt{6}}{\sqrt{k+l}})$:
 - l: number of output units in a layer
 - k: number of input units in a layer
 - Note: for ReLU, use $\sqrt{3}$ instead of $\sqrt{6}$

Saxe 2014 ("orthogonal initialization")

Saxe et al. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. ICLR 2014

- ☐ Initialize with random orthogonal matrices
- Reasoning comes from analyzing linear nets
- □ Essential idea: keep determinant of Jacobian close to 1, then you won't lose much information

Regularization in Deep Neural Networks

- Overfitting is an issue in neural networks.
 - Even more so in deep neural networks
- Good regularization schemes needed.
- Deep nets have enough units that each one can focus on one specific thing.
- Need to force units to prevent co-adaptation.

Regularization in Deep Neural Networks

- Overfitting is an issue in neural networks.
 - Even more so in deep neural networks
- Good regularization schemes needed.
- Deep nets have enough units that each one can focus on one specific thing.
- Need to force units to prevent co-adaptation.
- Presented regularization methods:
 - Dropout
 - □ Batch normalization
 - Weight decay

Dropout

- Idea: randomly "drop out" units during training
- Different units for each sample and in each iteration
- No unit can rely on the presence of other units for their work.
- Typical dropout rates: 0.5 for hidden and 0.2 for input units

Implementation note: need to scale weights (or activations) after

training

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Batch normalization

- During learning, the output distribution of a layer will change.
 - ☐ Higher layers have to continuously adapt to this change.
- BN normalizes each minibatch to mean 0 and std 1.
- On test time, use average mean/std of training set.
- BN helps both for regularization and optimization.
- Many variants exist:
 - Weight Norm
 - Layer Norm
 - □ ...
- Best way to do this is still not completely understood!

Batch Normalization

 $\begin{array}{ll} \textbf{Input:} \ \, \text{Values of } x \text{ over a mini-batch: } \mathcal{B} = \{x_{1...m}\}; \\ \text{Parameters to be learned: } \gamma, \, \beta \\ \textbf{Output:} \ \, \{y_i = \text{BN}_{\gamma,\beta}(x_i)\} \\ \\ \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \qquad \text{// mini-batch mean} \\ \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \qquad \text{// mini-batch variance} \\ \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{n^2 \lambda} + \epsilon} \qquad \qquad \text{// normalize} \\ \end{array}$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

 $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$

Input: Network N with trainable parameters Θ ; subset of activations $\{x^{(k)}\}_{k=1}^{K}$,

Output: Batch-normalized network for inference, Ninf

1: $N_{\text{BN}}^{\text{tr}} \leftarrow N$ // Training BN network

2: **for** k = 1 ... K **do**

3: Add transformation $y^{(k)} = BN_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to N_{DN}^{tr} (Alg. 1)

 Modify each layer in N^{tr}_{BN} with input x^(k) to take y^(k) instead

5: end for

6: Train $N_{\text{BN}}^{\text{tr}}$ to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^{K}$

7: $N_{\rm BN}^{\rm inf} \leftarrow N_{\rm BN}^{\rm tr}$ // Inference BN network with frozen // parameters

8: for k = 1...K do

9: // For clarity, $x \equiv x^{(k)}$, $\gamma \equiv \gamma^{(k)}$, $\mu_B \equiv \mu_B^{(k)}$, etc.

Process multiple training mini-batches B
, each of size m, and average over them:
 E[x] ← E_R[µ_R]

$$\begin{aligned} & \text{Var}[x] \leftarrow \frac{m}{m-1} \text{Eg}[\sigma_B^2] \\ 11: & \text{In } N_{\text{BN}}^{\text{inf}}, \text{ replace the transform } y = \text{BN}_{\gamma,\beta}(x) \text{ with } \\ & y = \frac{\gamma}{\text{Var}[x] + \epsilon} \cdot x + \left(\beta - \frac{\gamma \cdot \text{E}[x]}{\sqrt{\text{Var}[x] + \epsilon}}\right) \\ 12: & \text{end for} \end{aligned}$$

Algorithm 2: Training a Batch-Normalized Network

loffe, Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

// scale and shift

Weight decay

- Weights around 0 correspond to low complexity models.
- A higher model complexity necessitates higher weights (in terms of their absolute values).
 - ☐ Therefore, a mechanism that favors weights around 0 can be used to control model complexity.
 - We add $\lambda \cdot \Omega(W)$ to the learning objective:
 - Regularization term $\Omega(\mathcal{W})$ measures the overall size of the weights.
 - W is the set of all weights in the network.
 - Regularization parameter λ controls the influence of the regularization term.

L_2 Weight Decay

- $\lambda = 0 \Rightarrow$ standard regression
- $\lambda = \infty \Rightarrow \mathbf{W} = 0$ (except w_0 , straight line through mean)
- Equivalent: keep norm of W smaller than some given constant:

$$\min_{\mathbf{W}} \sum_{i=1}^{n} (g(\mathbf{x}_i; \mathbf{W}) - y_i)^2$$
 s. t.
$$\sum_{j=1}^{m} w_j^2 \le T$$

- This form of regularization has many names:
 - $oxedsymbol{oxed}$ L_2 ${\sf regularization}$ (because it penalizes the L_2 norm of ${f w}$)
 - □ Gaussian weight prior/decay
 - Ridge regression (only used for Regression, but not in e.g. neural networks)
 - □ Tikhonov regularization

L_1 Weight Decay

- Penalizes L_1 norm of **W**
- Has many names:
 - \square L_1 regularization
 - □ Laplace weight prior/decay
 - LASSO (least absolute shrinkage and selection operator)

(only used for Regression, but not in e.g. neural networks)

- Sparsity penality term
- L_2 Regularization \rightarrow small parameters
 - L_1 Regularization o some parameters should be put exactly to 0
- "sparse" = "contains many zeros"

Summary

- From perceptrons to multi-layer perceptron
 - □ Fully connected feed forward neural networks
- Learning non-linear functions
 - Activation functions
- Backpropagation of errors
 - Vanishing gradient
- Initialization
- Regularization:
 - Dropout
 - Batch normalization
 - Weight decay