Fast Dimension Reduction

Nir Ailon¹ Edo Liberty²

¹Google Research

²Yale University

Introduction

Lemma (Johnson, Lindenstrauss (1984))

A random projection Ψ preserves all $\binom{n}{2}$ distances up to distortion ε with constant probability if:

$$k = \Omega\left(\frac{\log(n)}{\varepsilon^2}\right)$$

Applications

This idea is extremely useful in

- Approximate nearest neighbors searches
- Linear Embedding / Dimensionality reduction
- Matrix rank-k approximation
- \triangleright ℓ_p regression
- Compressed sensing

and the list continues...

JL Property definition

 $\Pr[distortion] \le 1/n^2 \rightarrow \text{embedding an } n \text{ point metric.}$

Definition

A distribution $\mathcal D$ over $k \times d$ matrices exhibits the JL Property if for $\|x\|_2 = 1$ and $0 < \varepsilon < 1/2$

$$\Pr_{\Psi \sim \mathcal{D}}[|\|\Psi x\|_2 - 1| > \varepsilon] \le c_1 e^{-c_2 k \varepsilon^2}$$

$$k = c \log(n)/\varepsilon^2 \longrightarrow \Pr[distortion] \le 1/n^2.$$

Unstructured constructions

Other JL distributions for $\Psi(i,j)$ being i.i.d random variables:

Frankl and Maehara Indyk and Motwani DasGupta and Gupta	1987 1998 1999	$\Psi(i,j) \sim N(0,1)$
Achlioptas	2003	$\Psi(i,j)\in\{0,-1,1\}$
Matousek	2006	$\Psi(i,j)$ Symmetrically subgaussian distributed.

However, these matrices are

• Slow to apply: O(kd) • Heavy to store: O(kd)

Fast Johnson Lindenstrauss Transform

The first JL distribution for efficiently applicable matrices.

Lemma (Ailon, Chazelle (2006))

The distribution $\Psi = PHD$ exhibits the JL property

- $O(d \log(d) + k^3)$ to apply. $O(d + k^3 \log(d))$ to store.

Our motivation

FJLT algorithm running time is $O(d \log(d) + k^3)$.

1. When the target dimension is very small

$$k = O(\log(d))$$

The running time is $\Omega(kd)$.

2. When the target dimension is large

$$k = \Omega((d\log(d))^{1/3})$$

The running time is dominated by k^3 .

This work, Faster Johnson Lindenstrauss Transform

Lemma (Ailon, Liberty (2008))

The distribution $\Psi = BD\Phi$ exhibits the JL property

for
$$k = O(d^{1/2-\delta})$$
 and $\delta > 0$

- $O(d \log(k))$ to apply O(d) to store.

Performance summary

	Slow -		\rightarrow Fast	
k in o(log d)	FJLT	JL	This work	
k in $\omega(\log d)$ and $o(\operatorname{poly}(d))$	JL	FJLT	This work	
k in $\Omega(\text{poly}(d))$ and $o((d \log(d)^{1/3})$	JL		This work, FJLT	
k in $\omega((d \log d)^{1/3})$ and $O(d^{1/2-\delta})$	JL	FJLT	This work	

Measure concentration

The randomness is only in D.

How does $||Ms||_2$ concentrate around 1 ? ($||x||_2 = 1$)

Sufficient conditions

Lemma (Talagrand)

Denote:

- μ the median of $\|Ms\|_2$,
- $\sigma = ||M||_{2\rightarrow 2}$ the spectral norm of M.

$$\Pr[|\|Ms\|_2 - \mu| > t] \le 4e^{-t^2/8\sigma^2}$$

By substitution we get the JL property for BD:

$$\Pr(|\|BDx\|_2 - 1| > \varepsilon) \le c_1 e^{-c_2 k \varepsilon^2}$$

If:

- The columns of B are normalized to 1.
- $\sigma = ||M||_{2\to 2} = O(k^{-1/2})$

Breaking down $||M||_{2\rightarrow 2}$

Using the definition of the spectral norm and Cauchy-Schwartz:

$$||M||_{2\to 2} \le ||B^T||_{2\to 4} ||x||_4$$

The $\ell_2 \to \ell_4$ operator norm is defined as such:

$$\|B^T\|_{2\to 4} \equiv \max_{\|z\|_2=1} \|B^T z\|_4$$

We seek a matrix B

- ▶ with a low $\ell_2 \to \ell_4$ operator norm, $\|B^T\|_{2\to 4}$.
- which is fast to apply.

Our choice for B

Lemma

B is obtained from k rows of a $\Theta(k^2) \times \Theta(k^2)$ Hadamard matrix. \longrightarrow B can be applied in $O(d \log(k))$ operations.

Lemma

Let \widetilde{B} be a 4-wise independent matrix. (The columns of \widetilde{B} are the sample space) $\longrightarrow \|B^T\|_{2\to 4} = O(d^{1/4}k^{-1/2}).$

Controlling $||x||_4$

Since $||B^T||_{2\to 4} = O(d^{1/4}k^{-1/2})$ our goal:

$$||B^T||_{2\to 4}||x||_4 = O(k^{-1/2})$$

is achieved if

$$||x||_4 = O(d^{-1/4})$$

Problem: $||x||_4$ might be as high as 1!

Solution: Preprocess x using a random Isometry Φ such that:

- $\| \Phi x \|_4 = O(d^{-1/4}) \text{ w.h.p}$
- ▶ Φ can be applied in $O(d \log(k))$ operations
- ▶ Φ requires *O*(*d*) bits to store

Lemma

Such matrix distributions exist for $k = O(d^{1/2-\delta})$.

Recap and summary

Any matrix distribution BDΦ exhibits the JL property if

- ▶ The columns of *B* are normalized to 1.
- Φ is an isometry.
- $\|B^T\|_{2\to 4} \|\Phi x\|_4 \le O(k^{-1/2}) \text{ w.h.p.}$

Our result: For $k = O(d^{1/2-\delta})$ there exist B and Φ such that

- ▶ $BD\Phi$ requires $O(d \log(k))$ operations to apply
- ▶ BDΦ requires O(d) bits to store

Future work and open questions

	Slow -		→ Fast	<i>O</i> (<i>d</i>)
k in o(log d)	FJLT	JL	This work	
$k \text{ in } \omega(\log d)$ and $o(\text{poly}(d))$	JL	FJLT	This work	
k in $\Omega(\text{poly}(d))$ and $o((d \log(d)^{1/3})$	JL		This work, FJLT	
k in $\omega((d \log d)^{1/3})$ and $O(d^{1/2-\delta})$	JL	FJLT	This work	
k in $\omega(d^{1/2-\delta})$ and $\leq d$	JL, FJLT			

Thank you

4-wise independence

Definition

B is 4-wise independent if:

There are d/16 columns j for which

$$(\widetilde{B}_{i_1}^{(j)}, \widetilde{B}_{i_2}^{(j)}, \widetilde{B}_{i_3}^{(j)}, \widetilde{B}_{i_4}^{(j)}) = (b_1, b_2, b_3, b_4)$$
 for any choice of $1 \leq i_1 < i_2 < i_3 < i_4 \leq k$ and $(b_1, b_2, b_3, b_4) \in \{+1, -1\}^4$.

Bounding $||B^T||_{2\to 4}$

Lemma

Given a $k \times d$ 4-wise independent code matrix B,

$$||B^T||_{2\to 4} = O(d^{1/4}k^{-1/2})$$
 (1)

Proof.

For
$$y \in \ell_2^k, ||y|| = 1$$
,

$$||y^{T}B||_{4}^{4} = dE_{j \in [d]}[(y^{T}B(j))^{4}]$$

$$= dk^{-2} \sum_{i_{1}, i_{2}, i_{3}, i_{4} = 1}^{k} E_{b_{1}, b_{2}, b_{3}, b_{4}}[y_{i_{1}}y_{i_{2}}y_{i_{3}}y_{i_{4}}b_{1}b_{2}b_{3}b_{4}]$$

$$= dk^{-2}(3||y||_{2}^{4} - 2||y||_{4}^{4}) < 3dk^{-2}$$
(2)

Trimming the Hadamard transform

Applying k rows from a Hadamard matrix, H, is like applying PH where P contains only k entrees which are 1 and the rest are zero.

$$PH_{d}Z = (P_{1} P_{2}) \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix}$$
$$= P_{1}H_{d/2}(z_{1} + z_{2}) + P_{2}H_{d/2}(z_{1} - z_{2})$$

Which gives the relation $T(d, k) = T(d/2, k_1) + T(d/2, k_2) + d$.

Since T(d, 1) = d, by induction

$$T(d,k) \le 2d\log(k+1) = O(d\log(k)) \tag{3}$$