MATH 350 (Fall 2024): Midterm Review Session with Luc:)

Throughout these problems, let G be a group with identity element 1, let \mathbb{F} be a field, and let \mathbb{F}^{\times} be the multiplicative group of nonzero elements of \mathbb{F} .

Problem 1. Let $G = \mathbb{Z}/4 \times \mathbb{Z}/4$, and let H be the subgroup generated by (2,1). That is, H is the (2,1)-orbit of (2,1).

- (a) Write down all the cosets of H in G, each with a full list of its elements.
- (b) Is G/H a group? If so, what more familiar group is it isomorphic to?

Problem 2. Let $C \subset \mathbb{R}^3$ be a cube, and let G be the group of *rotational* symmetries of C (with composition as the group action), so that G acts on C by rotation.

- (a) Let F be a face of C. Describe the orbit of F and the stabilizer of F. Use this to compute the order of G.
- (b) Let e be an edge of C, and redo part (a) with e playing the role of F. Use this as an alternate way to compute the order of G.
- (c) Let v be a vertex of C, and redo part (a) with v playing the role of F. Use this as yet another way to compute the order of G. (Hint: Let v' be the vertex diametrically opposite from v, and consider the axis containing both v and v'...)
- (d) Insightful challenge: Prove that $G \cong S_4$. (Hint: Consider the 4 pairs of diametrically opposite vertices of C...)

Problem 3. Let G act on a set X. Let K be a group, and let $\psi: K \to G$ be a group homomorphism.

- (a) Fix $g \in G$. Show that the map $x \mapsto g \cdot x$ defines a bijection $X \xrightarrow{\sim} X$.
- (b) Let H be a subgroup of G, and let Y be any subset of X. Verify that the action of G on X induces an action of H on Y. Deduce that G induces an action of $K/\ker\psi$ on X.
- (c) Prove that the *pullback* $h \cdot x := \psi(h) \cdot x$ defines an action of K on X.
- (d) If ψ is injective, find a necessary and sufficient condition for the pullback action to be faithful.
- (e) If ψ is surjective, find a necessary and sufficient condition for the pullback action to be transitive.

Problem 4. Let V and W be vector spaces over \mathbb{F} , and let \mathbb{F}^{\times} act on V and W by scalar multiplication.

- (a) Observe that V and W are abelian additive groups. Then, argue that a map $\psi:V\to W$ is a linear transformation if and only if it is both a morphism of \mathbb{F}^{\times} -sets and a group homomorphism.
- (b) Find a necessary and sufficient condition for the action of \mathbb{F}^{\times} on V to be faithful.
- (c) Find a necessary and sufficient condition for the action of \mathbb{F}^{\times} on V to be transitive. Then, find a necessary and sufficient condition for the action of \mathbb{F}^{\times} on $V \setminus \{0\}$ to be transitive.

Problem 5.

- (a) Suppose p is a prime number such that $p \mid |G|$, but $p^2 \nmid |G|$. Prove that the number of elements of order p in G is exactly $N_p(p-1)$. (You probably used this or a similar result on HW7.)
- (b) Let G be a group of order $495 = 3^2 \cdot 5 \cdot 11$. Show that G is not simple.
- (c) Let G be a group of order $132 = 2^2 \cdot 3 \cdot 11$. Show that G is not simple.

Problem 6. Define the quaternion group as the subgroup $Q_8 := \{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{h}\}$ of $GL_2(\mathbb{C})$, where

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \ \mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \mathbf{h} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

(In physics, these can be obtained from the *Pauli matrices* by multiplying by i.) Note that

$$i^2 = j^2 = k^2 = -1$$
, $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$.

- (a) Show that every subgroup of Q_8 is normal. (Hint: There's a very quick way to do this.)
- (b) Deduce the following two sentences: If G is abelian, then all of its subgroups are normal. However, the converse is not necessarily true.
- (c) Give two different short proofs that $D_8 = \langle r, s \mid r^4 = s^2 = 1, rs = sr^{-1} \rangle$, the dihedral group of the square, is not isomorphic to Q_8 .
- (d) Find a group G and a normal subgroup H where G/H isn't isomorphic to any subgroup of G.
- (e) Prove that Q_8 cannot be written as a nontrivial semidirect product.

Problem 7. True or false? If the statement is true, prove it (or write its name, if it's a named theorem or previous problem like "Sun Ze's theorem" or "HW5 #3(d)"). If not, give a counterexample.

- (a) If |G| = n, then G is isomorphic to some subgroup of S_n . (Try proving this one!)
- (b) If $g \in G$ is the only element of G having order 2, then $g \in Z(G)$.
- (c) Let p be the smallest prime number dividing the order of G. If H is a subgroup of G such that [G:H]=p, then H is normal in G.
- (d) If p is a prime number dividing |G|, then G contains at least p-1 distinct elements of order p.
- (e) If $|G| < \infty$ and $H \le G$, then |H| divides |G|.
- (f) If $|G| < \infty$ and $g \in G$, then |g| divides |G|.
- (g) Challenge: If $H \cong K$ are isomorphic normal subgroups of G, then $G/H \cong G/K$.

Problem 8. Let p be a prime number, and fix $n, d \in \mathbb{Z}^+$. Let V be a d-dimensional vector space over \mathbb{Z}/p . (You can take for granted in this problem that \mathbb{Z}/p is a field iff p is prime.) Let G be a subgroup of $\mathrm{GL}_d(\mathbb{Z}/p)$ such that $|G| = p^n$. Prove that there exists a nonzero vector $\mathbf{v} \in V$ such that $M\mathbf{v} = \mathbf{v}$ for all $M \in G$. (Hint: This problem should remind you of a certain lemma from class.)

Problem 9. This problem (along with Problems 3(b) and 12(a,c)) gives us an opportunity to practice using the the result in problem 2(a) in HW6. (This is actually a major result in group theory called the *first isomorphism theorem*.)

- (a) Fix $n \geq 3$, and let $k \in \mathbb{Z}^+$ be a divisor of n. Let $D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle$ be the dihedral group of the regular n-gon. If $k \geq 3$, show that $\langle r^k \rangle = \{r^k, r^{2k}, r^{3k}, \dots, r^{n-k}, r^n = 1\}$ is a normal subgroup of D_{2n} , and show that $D_{2n}/\langle r^k \rangle \cong D_{2k}$. What if $k \leq 2$?
- (b) For all $g \in G$, define the *conjugation* map $\varphi_g : G \to G$ by $x \mapsto gxg^{-1}$, and define the *inner* automorphism group of G as the set

$$\operatorname{Inn}(G) := \{ \varphi_q \mid g \in G \}.$$

Argue that Inn(G) is a subgroup of Aut(G), the automorphism group of G. Then, find a subgroup $H \leq G$ such that $G/H \cong Inn(G)$. (Hint: Hopefully, this problem reminds you of HW2.)

- (c) Fix $n \in \mathbb{Z}^+$. Show that $\operatorname{SL}_n(\mathbb{F})$ is a normal subgroup of $\operatorname{GL}_n(\mathbb{F})$. What group is $\operatorname{GL}_n(\mathbb{F})/\operatorname{SL}_n(\mathbb{F})$ isomorphic to? (Hint: How is $\operatorname{SL}_n(\mathbb{F})$ defined?) From this, deduce the following sentence: If M and N are invertible $n \times n$ matrices, then they have the same determinant if and only if there exists a matrix S such that M = SN and $\det(S) = 1$. (In fact, $S = MN^{-1}$.) Also, deduce that if \mathbb{F} is a finite field of order q, then $[\operatorname{GL}_n(\mathbb{F}):\operatorname{SL}_n(\mathbb{F})] = q 1$.
- (d) Let V be a finite-dimensional vector space over \mathbb{F} . Recall the following linear algebra construction: If W is a linear subspace of V, then we have a *quotient space* V/W whose dimension is $\dim(V/W) = \dim V \dim W$. Using this fact, give a basis-free proof of the rank-nullity theorem. That is, let T be a linear transformation from V to some other vector space over \mathbb{F} , and show that $\dim(\operatorname{Im} T) + \dim(\ker T) = \dim V$ without ever writing the word "basis."
- (e) Write $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$. What is \mathbb{C}/\mathbb{R} isomorphic to? (There's a nice geometric way of understanding this isomorphism—if you're curious, ask me at office hours, and I'll draw it!)

Problem 10. Let $D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle$ be the dihedral group of the regular *n*-gon.

- (a) Deduce from Problem 9(a) that every subgroup of $\langle r \rangle = \{r, r^2, r^3, \dots, r^{n-1}, r^n = 1\}$ is normal in D_{2n} .
- (b) Let p be an odd prime number such that $p \mid n$. Deduce the following (not necessarily in order): (i) D_{2n} has a unique Sylow p-subgroup P, (ii), P is cyclic, and (iii) P is normal. (Hint: Recall from class that $N_p = 1$ if and only if there exists a normal Sylow p-subgroup.)
- (c) Write an explicit list of all Sylow p-subgroups of D_{12} . Justify that your list is complete.

Problem 11. Let P be a Sylow p-subgroup of G, and let H be a subgroup of G that contains P. For all $g \in G$, show that gPg^{-1} is a Sylow p-subgroup of gHg^{-1} . (Hint: If you're stuck, then one of the results in Problem 9(b) might help.)

Problem 12. Let S^1 denote the *unit circle*, considered as a closed curve in the complex plane:

$$S^1=\{e^{i\theta}:\theta\in\mathbb{R}\}=\{e^{i\theta}:\theta\in[0,2\pi)\}=\{z\in\mathbb{C}:|z|=1\}\subset\mathbb{C}^\times.$$

(You may have seen in other courses that for all $\theta \in \mathbb{R}$, the complex number $e^{i\theta} = \cos \theta + i \sin \theta$ is the point on S^1 obtained by starting at $1 = e^{i0}$ and rotating by θ radians about the origin. If you like, you can play around with the slider at this link to get a feel for how this works! Note that adding or subtracting 2π radians to an angle doesn't alter the angle, hence the second equality.)

- (a) Argue that S^1 is a subgroup of \mathbb{C}^{\times} . Then, find a normal subgroup H of \mathbb{R} such that $\mathbb{R}/H \cong S^1$.
- (b) Define a nontrivial action of \mathbb{R} on S^1 . Is this action transitive? Is it faithful? If not, what is its kernel?
- (c) On an unrelated note, let G_1 and G_2 be groups with normal subgroups N_1 and N_2 , respectively. Consider the group homomorphisms $\phi: G_1 \times G_2 \to G_1/N_1$ defined by $(g_1,g_2) \mapsto g_1N_1$ and $\psi: G_1 \times G_2 \to G_2/N_2$ defined by $(g_1,g_2) \mapsto g_2N_2$. Use HW2 #4(a) and the first isomorphism theorem to show that $(G_1 \times G_2)/(N_1 \times N_2) \cong G_1/N_1 \times G_2/N_2$.
- (d) Deduce that the quotient group $\mathbb{R}^2/\mathbb{Z}^2$ is isomorphic to the *torus* $S^1 \times S^1$. (There's a nice geometric interpretation of these isomorphisms—if you're curious, ask me about it at office hours, and I'll draw it!)

You're doing great! Good luck on the midterm—I believe in you! :)