Definition 1 (filtration). $(\mathcal{F}_t)_T$, for T a segment in \mathbb{Z} , is a *filtration*, if $\mathcal{F}_t \subset \mathcal{F}$ is a σ -body and $\forall_{t \leq s} \mathcal{F}_t \subset \mathcal{F}_s$.

Definition 2 (stopping time). $\tau: \Omega \to T \cup \{\infty\}$ is a *stopping time*, if $\forall_{t \in T} \{\tau \leq t\} \in \mathcal{F}_t$ ($\iff \forall_{t \in T} \{\tau = t\} \in \mathcal{F}_t\}$).

Definition 3. Let (\mathcal{F}_t) be a filtration, τ be a stopping time, then define

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \leqslant t \} \in \mathcal{F}_t \}.$$

Proposition 4. $\mathcal{F}_{\tau} = \{A \in \mathcal{F} : A \cap \{\tau = t\} \in \mathcal{F}_t\}.$

Proposition 5. τ_1, τ_2 stopping times, then $\tau_1 \wedge \tau_2 = \min(\tau_1, \tau_2)$ and $\tau_1 \vee \tau_2 = \max(\tau_1, \tau_2)$ are too.

 $\tau = t$ is a stopping time.

 $\tau_1 \leqslant \tau_2 \ stopping \ times \implies \mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2}$

 τ jest \mathcal{F}_{τ} -mierzalne.

Definition 6 (adapted process). $(X_t)_{t\in T}$ is adapted to the filtration $(\mathcal{F}_t)_{t\in T}$ or just (\mathcal{F}_t) -adapted, if $\forall_t X_t$ is \mathcal{F}_t -measurable.

Proposition 7. (\mathcal{F}_t) filtration, (X_t) is (\mathcal{F}_t) -adapted, τ a stopping time, then $\tau < \infty \implies X_{\tau}$ is \mathcal{F}_{τ} -measurable.

More generally, X_{τ} is \mathcal{F}_{τ} -measurable on the set $\{\tau < \infty\}$, i.e. $\forall_{B \in \mathcal{B}(\mathbb{R})} \{X_{\tau} \in B\} \cap \{t < \infty\} \in \mathcal{F}_{\tau}$.

Definition 8 (martingale). (X_t) is a martingale (resp. submartingale, supermartingale) with respect to a foltration (\mathcal{F}_t) , if

- $\forall_{t \in T} X_t$ is \mathcal{F}_t -measurable,
- $\forall_{t \in T} \mathbb{E} |X_t| < \infty$,
- $\forall_{s \leq t.s.t \in T} \mathbb{E}(X_t | \mathcal{F}_s) = X_s \text{ a.s. (resp.} \geq , \leq).$

Remark 9. X_t is a martingale iff it is both a submartingale and a supermartingale.

Remark 10. (X_t) is a (\mathcal{F}_t) -martingale if X_t is \mathcal{F}_t -measurable, integrable and $\forall_{s < t, A \in \mathcal{F}_s} \mathbb{E}(X_s \mathbb{1}_A) = \mathbb{E}(X_t \mathbb{1}_A)$ (resp. \leq for submartingale, \geq for supermartingale).

Remark 11. For T a segment in \mathbb{Z} , (X_t) is (\mathcal{F}_t) -martingale iff X_t is \mathcal{F}_t -measurable, $\mathbb{E}|X_t| < \infty$, $\mathbb{E}(X_{s+1}|\mathcal{F}_s) = X_s$ a.s. (resp. \geqslant for submartingale, \leqslant for supermartingale).

Remark 12. X_t submartingale iff $-X_t$ supermartingale.

Remark 13. X_t, Y_t are \mathcal{F}_t -martingales, then $aX_t + bY_t$ also (for submartingale take $a, b \ge 0$).

Definition 14. $(\mathcal{F}_n)_{n\geqslant 0}$ filtration generated by $(X_1,X_2,\ldots), \mathcal{F}_0=\{\varnothing,\Omega\}, \mathcal{F}_n=\sigma(X_1,\ldots,X_n).$

Fact 15. $X_1, X_2, ...$ independent random variables, $S_0 = 0, S_n = X_1 + ... + X_n, (\mathcal{F}_n)$ filtration generated by (X_n) .

Then S_n is a martingale iff X_n are integrable and $\mathbb{E}X_n = 0$ (\geqslant for submartingale, \leqslant for supermartingale).

Fact 16. X integrable random variable, (\mathcal{F}_t) filtration, $X_t = \mathbb{E}(X|\mathcal{F}_t)$ is a (\mathcal{F}_t) -martingale.

Fact 17. (X_t) is a (\mathcal{F}_t) -martingale, $\varphi : \mathbb{R} \to \mathbb{R}$ convex, $\mathbb{E}|\varphi(X_t)| < \infty$, then $(\varphi(X_t), \mathcal{F}_t)$ is a submartingale.

Corollary 18. (X_t, \mathcal{F}_t) a martingale, $p \ge 1$, $\mathbb{E}|X_t|^p < \infty$, then $(|X_t|^p, \mathcal{F}_t)$ is a submartingale.

Corollary 19. (X_t, \mathcal{F}_t) submartingale, then $(X_t \vee a, \mathcal{F}_t)$ submartingale.

Corollary 20. (X_t, \mathcal{F}_t) martingale, then (X_t^+, \mathcal{F}_t) and (X_t^-, \mathcal{F}_t) submartingales (where $Y^+ = Y \wedge 0, Y^- = (-Y) \wedge 0$).

Fact 21 (martingale transformation). (X_n, \mathcal{F}_n) martingale, let $Y_n = X_0 + V_1(X_1 - X_0) + V_2(X_2 - X_1) + \ldots + V_n(X_n - X_{n-1})$ for V_n being (\mathcal{F}_{n-1}) -measurable and bounded, then (Y_n, \mathcal{F}_n) is a martingale.