```
from google.colab import files
uploaded = files.upload()
```


• **big_data.csv**(application/vnd.ms-excel) - 139769656 bytes, last modified: 2020/4/28 - 100% done Saving big_data.csv to big_data.csv

```
import pandas as pd
data = pd.read_csv('big_data.csv')
pd.DataFrame.from records(data)
```

₽		arr_delay	distance	presidents_day	easter	memorial_day	independence_day	labor_d
	0	-7	270	0	0	0	0	
	1	5	1995	0	0	0	0	
	2	7	621	0	0	0	0	
	3	-33	2065	0	0	0	0	
	4	-19	1771	0	0	0	0	
	•••							
	177507	8	337	0	0	0	0	
	177508	10	1024	0	1	0	0	
	177509	44	1585	0	1	0	0	
	177510	-15	337	0	0	0	0	
	177511	-10	624	0	0	0	0	

177512 rows × 382 columns

```
import pandas as pd
from sklearn.model_selection import train_test_split
import xgboost as xgb
from sklearn.metrics import mean_squared_error
import numpy as np

data.dropna(axis=0, subset=['arr_delay'], inplace=True)

y = data.arr_delay
X = data.drop(['arr_delay'], axis=1).select_dtypes(exclude=['object'])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
```

Mean Absolute Error results here

```
preds = xg_reg.predict(X_test)

☐→ [18:01:39] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor

rmse = np. sqrt(mean_squared_error(y_test, preds))

print("RMSE: %f" % (rmse))

☐→ RMSE: 31.686198
```

changes for model tuning

₽		train-rmse-mean	train-rmse-std	test-rmse-mean	test-rmse-std
	0	41.508718	0.103943	41.521145	0.207252
	1	39.282958	1.427370	39.298312	1.723997
	2	38.255065	2.349752	38.284343	2.695878
	3	38.171123	2.361523	38.239312	2.694978
	4	37.278604	3.411559	37.357897	3.752378

```
print((cv_results["test-rmse-mean"]).tail(1))
```

```
→ 49 19.407878

Name: test-rmse-mean, dtype: float64
```

```
xg_reg = xgb.train(params=params, dtrain=data_dmatrix, num_boost_round=10)
```

[18:04:26] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor

<matplotlib.axes._subplots.AxesSubplot at 0x7f0c30acaeb8>


```
xgb.plot_importance(xg_reg)
plt.rcParams["figure.figsize"] = 20,20
plt.show()
```

₽


```
import pandas as pd
data = pd. read csv('big data.csv')
pd. DataFrame. from records (data)
import pandas as pd
from sklearn.model_selection import train_test_split
import xgboost as xgb
from sklearn.metrics import mean_squared_error
import numpy as np
data.dropna(axis=0, subset=['total_dep_delay'], inplace=True)
y = data.total_dep_delay
X = data.drop(['total dep delay'], axis=1).select dtypes(exclude=['object'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
data_dmatrix = xgb.DMatrix(data=X, label=y)
xg reg = xgb. XGBRegressor(objective = reg:linear, colsample bytree = 0.3, learning rate = 0.1,
                              \max depth = 5, alpha = 10, n estimators = 10)
xg reg. fit (X train, y train)
preds = xg_reg.predict(X_test)
     [17:50:08] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now deprecated in favor
rmse = np.sqrt(mean_squared_error(y_test, preds))
print("RMSE: %f" % (rmse))
     RMSE: 32.142434
```

changes for model tuning

```
train-rmse-mean train-rmse-std test-rmse-mean test-rmse-std
                38 656838
                                  ∩ ∩<u>4</u>17∩7
                                                   38 663035
                                                                    N N85181
print((cv_results["test-rmse-mean"]).tail(1))
    49
           11.025499
     Name: test-rmse-mean, dtype: float64
                JJ.JJ00U I
                                                                    U.U10001
                                  U.U34103
                                                  201026
xg_reg = xgb.train(params=params, dtrain=data_dmatrix, num_boost_round=10)
     [17:53:26] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor
from numpy import loadtxt
from xgboost import XGBClassifier
from xgboost import plot_tree
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = 20,20
plot_tree(xg_reg, num_trees=0, rankdir='LR')
# xgb.plot_tree(xg_reg, num_trees=0)
# xgb.plot_tree(xg_reg, num_trees=0, rankdir='LR')
# plt.show()
 С⇒
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f0c30a44978>


```
xgb.plot_importance(xg_reg)
plt.rcParams['figure.figsize'] = [5, 5]
plt.show()
```

₽

