Dạng 4. Bài toán liên quan đến vệt sáng trên màn

1. Lý thuyết

+ Chùm ló song song với trục chính (vật ở tiêu điểm chính vật)

+ Chùm ló hội tụ trước màn và sau màn.

+ Chùm ló phân kì

2. Phương pháp

- Phần giao của màn và chùm tia ló khỏi bề mặt thấu kính tạo thành diện tích vùng sáng trên màn.
- + Chùm tia ló song song tạo diện tích vùng sáng luôn không đổi.
- + Chùm tia ló hội tụ tạo hai diện tích vùng sáng bằng nhau khi đặt màn ở hai vị trí đối xứng qua điểm ảnh.
- Tính toán chủ yếu dựa trên kiến thức hình học là các tam giác đồng dạng.

3. Ví dụ minh họa

Ví dụ 1: Điểm sáng S trên trục chính của thấu kính hội tụ và cách thấu kính 15 cm. Đặt một màn chắn M vuông góc với trục chính và ở bên kia thấu kính một đoạn 15 cm thì trên màn thu được vệt sáng có đường kính bằng $\frac{1}{2}$ đường kính của chu vi thấu kính. Xác định tiêu cự của thấu kính.

Hướng dẫn

+ Hình vẽ

+ Xét hai tam giác đồng dạng S'CD và S'AB ta có: $\frac{S'I}{S'O} = \frac{CD}{AB} = \frac{1}{2}$ (1)

+ Lại có:
$$S'I = S'O - IO = d' - 15$$
 (2)

+ Từ (1) và (2) ta có:
$$\frac{d'-15}{d'} = \frac{1}{2} \Rightarrow d' = 30 \text{cm}$$

+ Theo \hat{d} ra d = SO = 15cm

+ Mặt khác:
$$\frac{1}{f} = \frac{1}{d} + \frac{1}{d'} \Rightarrow f = \frac{d.d'}{d+d'} = \frac{15.30}{15+30} = 10 \text{cm}.$$

Ví dụ 2: Thấu kính hội tụ có tiêu cự f có đường rìa hình tròn và màn đặt sau thấu kính cách thấu kính đoạn 60 cm, vuông góc với trục chính thấu kính. Di chuyển điểm sáng S trên trục chính thấu kính (bên kia màn so với thấu kính) ta lần lượt tìm được hai vị trí S lần lượt cho trên màn hai vòng tròn sáng có đường kính bằng đường kính rìa của thấu kính. Hai vị trí này cách nhau 8 cm.

- a) Tìm tiêu cự thấu kính.
- b) Từ vị trí điểm sáng gần thấu kính hơn, ta dịch điểm sáng đi 6 cm về phía gần thấu kính. So sánh đường kính vòng tròn sáng trên màn với đường kính rìa thấu kính.

Hướng dẫn

a) Để có vòng tròn sáng trên màn có đường kính bằng đường kính AB của thấu kính thì:

- + Hoặc điểm sáng nằm tại S_1 cũng là tiêu điểm F của thấu kính, lúc này chùm tia ló song song với trục chính nên bất kì vị trí nào của màn cũng thỏa mãn. Do đó: $d_1 = f_1$
- + Hoặc điểm sáng nằm tại S_2 ngoài khoảng OF của thấu kính sao cho chùm tia ló hội tụ tại S' (S' là trung điểm của OI). Do đó: $d_2' = OS' = \frac{1}{2}OI = 30$ cm

+ Theo đề ra ta có: $S_1S_2 = 8 = d_2 - d_1$ (*)

$$+ M\grave{a} \ \frac{1}{f} = \frac{1}{d} + \frac{1}{d'} \Longrightarrow d = \frac{d'.f}{d'-f} \Longrightarrow d_2 = \frac{d'_2.f}{d'_2-f} = \frac{30f}{30-f} \ \left(2\right)$$

Thay (1) và (2) vào (*) ta có:
$$\Rightarrow 8 = \frac{30f}{30-f} - f \Rightarrow f = 12cm$$

b) Trường hợp vật ở gần là trường hợp $d_1 = 12 \text{ cm}$.

+ Khi dịch lại gần 6 cm suy ra $d_3 = OS_3 = 6cm \Rightarrow d' = \frac{d_3.f}{d_3 - f} = \frac{6.12}{6 - 12} = -12cm$

 \Rightarrow ảnh S' là ảnh ảo.

+ Xét hai tam giác đồng dạng FAB và FMN ta có:

$$\frac{OF}{FI} = \frac{AB}{MN} \Longleftrightarrow \frac{OF}{FO + OI} = \frac{AB}{MN} \Longrightarrow \frac{f}{\left|d'\right| + 60} = \frac{AB}{MN} \Longrightarrow \frac{AB}{MN} = \frac{1}{6} \, .$$