Университет ИТМО Кафедра вычислительной техники

Лабораторная работа № 2 по дисциплине: «Теория принятия решений»

> Студент: Куклина М.Д., Р3401 Преподаватель: Богатырев В.А.

Исходные данные

На основании прошлой работы была выбрана структура 14. Без резервирования имеем систему:

Параметры при известных входных данных:

P	u	Λ	C
94.9%	50.87	0.1304	37

Поэлементное резервирование

Анализ

Требуется обнаружить такую комбинацию (n_K, n_P, n_M) , что, пусть мы остаёмся в рамках бюджета, достигается $\min u$, $\min C$, $\max P$, $\max \Lambda$.

Чтобы определить надёжность требуемой системы, требуется в формуле надёжности и сходной системы каждое вхождение P_a заменить на $(1-(1-P_a)^{n_a})$: элемент заменяется на n_a идентичных ему, и этой формулой задаётся вероятность того, что работает хотя бы один из элементов.

Рассмотрим, что происходит со среднем временем ожидания при поэлементном резервировании. Итак, каждый элемент в сумме $u=\sum_i \frac{1}{\mu_i-\lambda_i}$ заменяется, если ему соответствует прибор типа a, на n_a идентичных ему элементов. При этом поток в каждый из этих элементов будет в n_a раз меньше, чем у исходного, как и вероятность попадания в этот конкретный элемент: $\frac{1}{\mu_i-\lambda_i} \to \sum^{n_a} \frac{1}{n_a} \frac{1}{\mu_i-\frac{\lambda_i}{n_a}} = \frac{1}{\mu_i-\frac{\lambda_i}{n_a}}.$ Таким образом, в каждом слагаемом в выражении для среднего времени ожидания необходимо лишь заменить λ на $\frac{\lambda}{a}$.

Это позволяет быстро определить, как переход к поэлементному резервированию влияет на допускаемый поток входящих заявок: раз входной поток в каждый узел типа a становится в n_a раз меньше, значит, он может быть в n_a раз больше, чем раньше. Соответственно, в каждом аргументе к min мы увеличиваем дозволенный поток в n_a раз.

Со стоимостью ещё проще: достаточно в формуле для её вычисления C_a домножить на n_a .

Результирующие формулы таковы:

$$P = (1 - (1 - P_K)^{n_K}) \cdot \left(1 - (1 - (1 - (1 - P_M)^{n_M}) \cdot (1 - (1 - P_P)^{n_P}))^3\right)$$

$$u = \frac{1}{\mu_K - \frac{\lambda}{n_K}} + \frac{1}{\mu_P - \frac{\lambda}{2n_P}} + \frac{1}{\mu_M - \frac{\lambda}{2n_M}} + \frac{2}{\mu_P - \frac{\lambda}{4}n_P} + \frac{1}{\mu_K - \frac{\lambda}{2}n_K} + \frac{3}{\mu_K - \frac{\lambda}{6}n_K}$$

$$\Lambda = \lambda < \min(n_K \mu_K, 3n_P \mu_P, 3n_M \mu_M)$$

$$C = 3 \cdot n_P C_P + 3 \cdot n_M C_M + n_K C_K$$

Подставляя вместо всех n единицы, получаем отсутствие поэлементного резервирования и, как и следует ожидать, исходные формулы.

Получение значений

Экспериментально установим некоторые близкие к идеальным значения и зададим такие ограничения, чтобы лишь небольшой набор комбинаций n под них подходил. Это будут: $P \ge 1 - 1e - 9$, $C \le 250$, $u \le 43.4$.

Получаем такие комбинации:

n_K	n_M	n_P	$1 - P, 10^{-9}$	u	Λ	C
8	3	4	2.17	43.120	0.52	250
8	5	3	2.09	43.389	0.39	241
9	5	3	0.51	43.378	0.39	243
10	5	3	0.42	43.369	0.39	245
11	5	3	0.4098	43.362	0.39	247
12	5	3	0.4095	43.356	0.39	249

Легко заметить, что все решения, кроме первого, — это поставить пять блоков памяти, три блока обработки и некоторое количество коммутаторов.

Нормализуем согласно таким соображениям:

- Худшие случаи выбираем такие, какие использовали при фильтрации;
- Лучший случай для времени пребывания отсутствие очередей, то есть проход по одному разу по коммутатору, обработчику и устройству памяти: 41;
- Лучший случай для надёжности 100%;
- Граничные случаи для интенсивности входных заявок -0.350.6;
- Лучший случай для стоимости 240.

Тогда нормализованные значения таковы:

n_K	n_M	n_P	P	u	Λ	C
8	3	4	0.7826	0.110	0.69	0.00
8	5	3	0.7910	0.005	0.17	0.90
9	5	3	0.9490	0.009	0.17	0.70
10	5	3	0.9584	0.012	0.17	0.50
11	5	3	0.9590	0.016	0.17	0.30
12	5	3	0.9591	0.018	0.17	0.10

Поиск наилучшего решения

Главный критерий Считая, что надёжность в $1.00-10^{-9}$ достаточно хороша, не ставим своей целью её дальнейшее увеличение. Вместо этого обеспокаиваемся величиной входного потока и средним временем пребывания. В таких условиях побеждает вариант (8,3,4).

Мультипликативный критерий Посчитаем значения произведений частных показателей:

n_K	n_M	n_P	
8	3	4	0.000000
8	5	3	0.000605
9	5	3	0.001010
10	5	3	0.000978
11	5	3	0.000783
12	5	3	0.000293

Побеждает вариант $(9,5,\bar{3})$ как наиболее сбалансированный по цене и остальным показателям. Аддитивный критерий Значения сумм частных показателей:

n_K	n_M	n_P	
8	3	4	1.5826
8	5	3	1.8660
9	5	3	1.8280
10	5	3	1.6404
11	5	3	1.4450
12	5	3	1.2471

Обнаруживаем, что побеждает вариант (8,5,3), низкая стоимость которого даёт существенный прирост общему значению.

Метод отклонения от идеала В силу способа нормализации по идеалу мы обнаруживаем, что результат вычисления по аддитивному критерию совпадает с методом отклонения от идеала. Таким образом, мы уже нашли ответ: (8, 5, 3).

Метод последовательной уступки Определяем значение главного критерия и осуществляем уступку по нему. Так как значение уступки по выбранным нами главным критериям требуется слишком большое и требуется выбрать только одно значение, выберем другой главный критерий: стоимость. По ней оптимальный вариант (8,5,3). Зададим уступку в 4 у. е. и произведём оптимизацию по времени пребывания. Тогда имеем три варианта: (8,5,3), (9,5,3) и (10,5,3). Побеждает вариант (10,5,3) со значением 43.369. Произведём уступку в 0.01 и произведём оптимизацию по надёжности. Имеем (9,5,3) и (10,5,3), и (10,5,3) снова выигрывает. Критериев, по которым можно произвести дальнейшую оптимизацию, не осталось, — побеждает (10,5,3).

Metog STEM TODO: дописать.

Общее резервирование

Анализ

Рассмотрим формулы для системы, полученной из исходной путём полного резервирования.

Пусть надёжность исходной системы равна P_a . Тогда вероятность её отказа $-1-P_a$. Вероятность того, что не работает n таких систем разом, $-(1-P_a)^n$. Соответственно, вероятность того, что хотя бы одна работает, $-1-(1-P_a)^n$.

Далее, пусть среднее время пребывания в системе равно $u_a(\lambda)$. Тогда вероятность попадания заявки в конкретную из n систем равна $\frac{1}{n}$. Соответственно, если при полном резервировании мы имеем в n раз меньший поток в каждую из копий. Так как $u = \sum_i \alpha_i u_i$, имеем $u = \sum_i \frac{1}{n} u_a \left(\frac{\lambda}{n}\right) = u_a \left(\frac{\lambda}{n}\right)$.

Теперь, пусть ранее максимальный допустимый входной поток был равен λ_a , который мы вычисляли как $\min M$. При резервировании же имеем $\lambda = \min nM$: в силу того, что все потоки в каждой копии уменьшились пропорционально в n раз по сравнению с имеющимися в исходной системе, каждая копия способна обрабатывать в n раз больший входной поток. Так как $\min nA = n \min A$, имеем $\Lambda = n \min M = n\lambda_a$.

Стоимость системы, состоящей из n копий, равна стоимости одной копии n раз: $C=nC_a$.

Итоговые формулы:

$$P = 1 - (1 - P_a)^n$$

$$u = \frac{1}{\mu_K - \frac{\lambda}{n}} + \frac{1}{\mu_P - \frac{\lambda}{3n}} + \frac{1}{\mu_M - \frac{\lambda}{3n}}$$

$$\Lambda = n\lambda_a$$

$$C = nC_a$$

Мы пользуемся значениями $P_a,\,\lambda_a$ и $C_a,\,$ поскольку они уже расчитаны.

Получение значений

В силу того, что стоимость выбранной системы равна 65 у. е., а бюджет составляет 250 у. е., мы можем себе позволить только трёхкратное резервирование: $65 \cdot 3 = 210 = 250 - 40$.

Таким образом, мы можем рассмотреть лишь три различных варианта:

n	P	u	Λ	C
1	93.77%	50.87	0.1304	65
2	99.61%	45.37	0.2608	130
3	99.98%	43.80	0.3912	195

Нормализуем по таким правилам:

Показатель	Худший случай	Лучший случай
Надёжность	93.00%	100%
Время пребывания	60	41
Интенсивность	0.1	0.6
Стоимость	250	50

Получаем:

n	P	u	Λ	C
1	0.11000	0.481	0.0608	0.925
2	0.94429	0.770	0.3216	0.600
3	0.99714	0.853	0.5824	0.275

Поиск наилучшего решения

Мультипликативный критерий Строим таблицу произведений нормализованных частных показателей:

n	
1	0.0030
2	0.1403
3	0.1362

С небольшим отрывом выигрывает резервирование, при котором у нас есть два экземпляра системы. Сильно проигрывает отсутствие резервирования.

Аддитивный критерий Значения сумм:

n	
1	1.5768
2	2.6359
3	2.7075

По аддитивному критерию лучше резервирование с тремя экземплярами. Снова отсутствие резервирования значительно хуже любой формы его наличия.

Сравнение методов резервирования

Обнаруживается, что поэлементное резервирование куда более гибкое и позволяет в рамках заданных ограничений добиться значительно больших результатов. Однако необ-

ходимо учитывать, что полное резервирование существенно проще реализуемо на практике: достаточно, не изменяя внутренней структуры прибора, добавить схожих с ним и добиться прироста по нужным параметрам, в то время как поэлементное резервирование требует наличия контроля над реализацией прибора.