PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-204406

(43) Date of publication of application: 05.08.1997

(51)Int.CI.

G06F 15/16

(21)Application number : 08-011470

G06F 17/14

(22)Date of filing:

26.01.1996

(71)Applicant: NEC ENG LTD

(72)Inventor: ITO NOBUHIRO

(54) DATA PROCESSION SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To make firmware programming to be efficient and to make debugging to be efficient because the unnecessary division of a program is eliminated by using a processing where algorithm is established as it is. SOLUTION: N-pieces of processors are provided in parallel. Input data 11 is divided into data groups T1-TN at every unit time T. The data group Ti is FFT(fast Fourier transformation)processed in an i-th ((i) is the whole integers of 1-N) processor. The respective processors can execute the same FFT processing for whole data T1-TN by setting the period of $N \times T$ to be more than time when the respective processors can execute FET processing for the repetitive groups T1-TN.

LEGAL STATUS

[Date of request for examination]

22.05.2000

[Date of sending the examiner's decision of

01.04.2003

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-204406

(43)公開日 平成9年(1997)8月5日

(51) Int.Cl.⁶ G06F 15/16 識別記号 370

庁内整理番号

FΙ

技術表示箇所

17/14

G06F 15/16 15/332

370N

審査請求 未請求 請求項の数3 OL (全4頁)

(21)出願番号

特爾平8-11470

(71)出願人 000232047

日本電気エンジニアリング株式会社 東京都港区芝浦三丁目18番21号

(22)出顧日

平成8年(1996)1月26日

(72)発明者 伊藤 信浩

東京都港区芝浦三丁目18番21号 日本電気

エンジニアリング株式会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54) 【発明の名称】 データ処理システム

(57)【要約】

【課題】 プロセッサの処理速度がデータ分析処理時間 に満たない場合、プロセッサを複数設けて一連の処理 (例えばFFT処理)をプロセッサ毎に分割して、各分 割処理を並列に行うが、FFT処理を分割するとプログ ラミングやデバッグが非効率化する。これを防止する。 【解決手段】 プロセッサをN個並列に設け、入力デー タ11を単位時間T毎のデータ群T1~TN に分割し て、第i(iは1~Nの全整数)プロセッサにてTiの データ群をFFT処理する。N×Tの期間を各プロセッ サの各データ群T1~TN に対するFFT処理可能な時 間以上とすることで、全データT1~TN に対して各プ ロセッサで同一のFFT処理を実行することができる。

【特許請求の範囲】

【請求項1】 入力データを予め定められた処理方式で データ処理するデータ処理システムであって、前記入力 データの所定データ群を前記処理方式に従って処理可能 な時間がN×T(Nは2以上の整数、Tは時間を夫々示 す)の第1~第Nのプロセッサを並列に接続し、時間的 に順次供給されてくる前記入力データを前記時間T以内 の所定単位時間毎に区切って得られる前記所定データ群 である第1~第Nのデータ群の各々に対して、前記第1 〜第Nのプロセッサ各々によって前記処理方式に従って 10 夫々同一の処理をなすようにしたことを特徴とするデー タ処理システム。

【請求項2】 前記第iの(iは1~Nまでの全ての整 数)プロセッサは、前記N×T時間の入力データである 第1~第Nのデータ群をため込むため込み手段と、この ため込み手段によりため込まれた第1~第Nのデータ群 のうち第iのデータ群を選択的に取り出して前記処理方 式に従った処理を行う処理手段とを有することを特徴と する請求項1記載のデータ処理システム。

【請求項3】 前記処理方式は高速フーリエ変換処理で 20 あることを特徴とする請求項1または2記載のデータ処 理システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はデータ処理システム に関し、特にディジタル音響信号の分析処理に用いて好 適なデータ処理システムに関するものである。

[0002]

【従来の技術】従来のこの種のデータ分析処理方式で は、図4に示される様な例えば期間T毎に入力されるサ 30 築(汎用プログラムを使用できない)を意味する他、処 ンプルデータ群11を、図3に示すように、第1~第N の直列接続されたプロセッサ21~2Nの第1番目のプ ロセッサ21へ入力する。そして、この第1番目のプロ セッサ21において、入力されたサンブルデータ群 (期 間T内の)11に対して、実行すべき分析処理をN個の 処理に分割したうちの1番目の処理を実行し、その処理 結果データ12を2番目のプロセッサ22へ出力するよ うになっている。同様に、この2番目のプロセッサ22 においては、この入力された処理結果データ12に対し て、実行すべき分析処理をN個の処理に分割したうちの 40 2番目の処理を実行し、その処理結果13を3番目のブ ロセッサへ出力するものである。

【0003】以下同様にして、N番目のプロセッサ2N において、分析処理をN個に分割したうちのN番目の処 理を実行し、分析処理結果データ2Nを出力することに より、期間T内のサンブルデータ群に対して全ての分析 処理を実施し完了する方式となっている。

【0004】プロセッサ21~2Nの各1個の能力で は、期間T内のサンプルデータ群に対して期間T内で分 析処理を完了できないととから、一連の分析処理を時系 50

列的にN個の第1~第Nの処理に分割して、直列接続さ れた第1~第Nのブロセッサ21~2Nにより順次時系 列的に第1~第Nの処理を夫々実施することで、プロセ ッサ1個当りの処理負荷の軽減を図っているのである。 【0005】との場合のサンブルデータ群の期間Tと分 析処理時間との関係を示すと、

T < 分析処理時間 … (1)

であり、またTとN個に分割された各処理時間の関係を 示すと、

T>N個に分割された各処理時間 … (2) となる。

【0006】上記(1)式においては、分析処理時間が サンプルデータ群の時間下より大となっているために、 実現不可能である。ところが、図3のブロックで説明し た如く、分析処理をN個に分割することで、(2)式が 満足されて分析処理が実現可能となるのである。

【0007】また、特開昭59-30168号公報に は、FFT(高速フーリエ変換)処理を高速になすべ く、ブロセッサを2台並列に接続し、FFT処理を図3 の例と同様に例えば、前半と後半の2つに分割し、前半 を1台のプロセッサで、後半を後のプロセッサで分割並 列処理する技術が開示されている。

[0008]

【発明が解決しようとする課題】この種の従来の分析処 理方式では、複数(N個)のプロセッサを直列または並 列に接続し分析処理をN個に分割し、各々のプロセッサ で実施しているため、FFT、ディジタルフィルタ等の アルゴリズムが確立されている処理をわざわざN個に分 割する必要がある。これは処理アルゴリズムの分割再構 理分割による演算量の増加及びデータ入出力の付加によ る演算スピードの低下という問題点がある。

【0009】本発明の目的は、分析処理を分割すること なく既にアルゴリズムの確立されている処理 (汎用プロ グラム)をそのまま使用できる様にしたデータ処理シス テムを提供することである。

[0010]

【課題を解決するための手段】本発明によれば、入力デ ータを予め定められた処理方式でデータ処理するデータ 処理システムであって、前記入力データの所定データ群 を前記処理方式に従って処理可能な時間がN×T(Nは 2以上の整数、Tは時間を夫々示す)の第1~第Nのプ ロセッサを並列に接続し、時間的に順次供給されてくる 前記入力データを前記時間T以内の所定単位時間毎に区 切って得られる前記所定データ群である第1~第Nのデ ータ群の各々に対して、前記第1~第Nのプロセッサ各 々によって前記処理方式に従って夫々同一の処理をなす ようにしたことを特徴とするデータ処理システムが得ち れる。

[0011]

【発明の実施の形態】本発明の作用について述べる。本 発明では、分析処理を複数に分割するのではなく、全て のプロセッサは同一の分析処理を実行するようにしてお き、その代りに入力データを分析処理可能な時間以内の 所定時間に相当するデータ群に夫々分割し、これ等分割 データ群を各プロセッサで並列に分析処理するものであ

【0012】以下に図面を用いて本発明の実施例につい て説明する。

【0013】図1は本発明の実施例のシステムブロック 10 が各プロセッサ21~2Nへ供給されている。 図である。図1において、入力データ11は第1~第N の互いに並列接続されたプロセッサ2 1~2 Nへ夫々共 通に入力される。各プロセッサ21~2Nの処理結果は 共通とされて分析処理結果データ12として導出され

【0014】プロセッサ21~2Nの各々は、同期信号 31に同期して入力データをため込むため込み部 (バッ ファ)101と、このため込み部101からの読出し出 力データに対して一連のFFT処理を行うFFT処理部 102と、このFFT処理データを外部へ出力する出力 20 る。尚、各プロセッサでは、同期信号31によりT時間 部103とからなっている。尚、各プロセッサ21~2 NのFFT処理部102の全ては、同一の一連のFFT 処理を行うための処理プログラムにより動作するものと する。

【0015】図2は図1のシステムブロックの動作を示*

N>プロセッサ処理時間(入力, FFT, 出力)/T … (3)

を満足する整数(切上げにて求める)とする。また、N ×Tの値もとれにより定まることになる。

【0019】尚、ため込み部101においてはT1~T 処理するサンプルデータ群のみを選択的に取り込んでた め込むようにしても良い。

【0020】また、上記実施例では、FFT処理を説明 したが、データの積分処理やディジタルフィルタリング 処理等の種々の処理が適用可能である。

[0021]

【発明の効果】以上説明したように本発明によれば、複 数のプロセッサを並列に接続することで分析処理の分割 をなくし、アルゴリズムの確立されている処理 (汎用プ ログラム)をそのまま使用できるため、従来のようにア 40 102 FFT処理部 ルゴリズムを再構築したり、それに伴う処理能力の低下※

*すタイムチャートである。図2において、入力データ1 1は単位時間T(T1~TN)毎に区切られて、第1~ 第Nのサンプルデータ群として表示されており、従って これ等第1~第Nのサンプルデータ群の期間はN×Tと なる。

【0016】この期間N×Tは、各プロセッサ21~2 Nが期間Tの各サンプルデータ群について一連のFFT 処理を実行可能な期間(以上)であるものとする。これ 等サンプルデータ群の区切りを示すために同期信号31

【0017】Tサンブル時間毎に入力されるN×T時間 分のデータ11を並列に接続されている1番目のプロセ ッサ21~N番目のプロセッサ2Nの各ため込み部10 1で夫々ため込む。1番目のプロセッサ21では、T1 番目のサンプルデータに対するFFTを、N番目のフロ セッサ2NではTN 番目のサンプルデータに対するFF Tを各FFT処理部102にて夫々実施し、分析処理結 果データ12を1番目のプロセッサ21から順次N番目 のプロセッサ2Nまで各出力部103により夫々出力す が経過したかを認識でき、この数をカウントすることで N×Tサンプル時間を計測すると共に、サンプルデータ の番号(順番)に対しFFT処理を実施する。

【0018】この場合、並列接続されるプロセッサの数 NIL.

※を防げるという効果がある。また、アルゴリズムの確立 されている処理をそのまま使用できるため、ファームウ ェアブログラミングの効率化を図れる他、プログラムの N の全てのデータをため込んでいるが、自プロセッサが 30 不必要な分割がなくなることからデバッグの効率化も図 れる。

【図面の簡単な説明】

- 【図1】本発明の実施例のブロック図である。
- 【図2】図1に示すブロックのタイミング図である。
- 【図3】従来のブロック図である。
- 【図4】図3に示すブロックのタイミング図である。 【符号の説明】
- 21~2N プロセッサ
- 101 ため込み部
- 103 出力部

【図4】

【図1】

【図2】

[図3]

