

Übung 10 zur Vorlesung Analysis für Informatiker, WS 2018/2019

Abgabe bis Mittwoch, 19.12.2018, 12 Uhr

Hausaufgaben

Die Aufgaben werden in der Woche vom 07.01.2019 in den Tutorien besprochen.

Hausaufgabe 1

(a) Es sei r > 0. Wir betrachten die Funktionen

$$f:(0,r)\to\mathbb{R}$$
 , $F:(1/r,\infty)\to\mathbb{R}$, $F(x):=f(1/x)$.

Beweisen Sie:

Der Grenzwert $\lim_{x\downarrow 0} f(x)$ existiert genau dann in \mathbb{R} , wenn der Grenzwert $\lim_{x\to\infty} F(x)$ in \mathbb{R} existiert. In diesem Fall sind beide Grenzwerte gleich.

(b) Zeigen Sie:

Für alle $m, n \in \mathbb{N}$ existiert

$$\lim_{x\downarrow 0}x^m(\ln x)^n=0.$$

((4+5) Punkte)

Lösung

(a) Wir nehmen an, dass $C=\lim_{x\downarrow 0}f(x)\in\mathbb{R}$ existiert. Es sei $\varepsilon>0$. Dann gibt es ein $\delta>0$, mit der Eigenschaft

$$\forall x \in \mathbb{R} \text{ mit } 0 < x < \delta : |f(x) - C| < \varepsilon$$

Wir setzen $M := 1/\delta$ (**1 Punkt**). Dann gilt für alle x > M die Beziehung $0 < \frac{1}{x} < \delta$ und damit folgt

$$|F(x) - C| = |f(1/x) - C| < \varepsilon.$$

(**1 Punkt**). Daher existiert auch $\lim_{x\to\infty} F(x) = C$.

Nun existiere umgekehrt $\lim_{x\to\infty}F(x)=C$. Es sei $\varepsilon>0$. Dann gibt es ein M>0 mit der Eigenschaft

$$\forall x \in \mathbb{R} \text{ mit } x > M : |F(x) - C| < \varepsilon.$$

Wir setzen $\delta := 1/M > 0$ (1 Punkt). Dann gilt für alle $0 < x < \delta$ die Beziehung $\frac{1}{x} > M$ und damit folgt

$$|f(x) - C| = |F(1/x) - C| < \varepsilon$$

(**1 Punkt**). Daher existiert auch $C = \lim_{x \downarrow 0} f(x)$.

(b) Wir defineren $f: \mathbb{R} \to \mathbb{R}$, $f(x) := \frac{x^n}{\exp(mx)}$. Wegen der Funktionalgleichung der Exponentialfunktion gilt zunächst $\exp(mx) = \exp(x)^m$. Wir definieren weiter die Funktion $g = f \circ \ln : (0, \infty) \to \mathbb{R}$. Wir behaupten, dass $\lim_{x \to \infty} (g(x))$ existiert und gleich 0 ist. Es sei $\varepsilon > 0$. Es existiert ein M' > 0 mit der Eigenschaft $f(x) < \varepsilon$ für alle x > M' (1 **Punkt**). Wir setzen $M := \exp(M')$. Dann gilt für alle x > M zunächst $\ln(x) > M'$ und weiter

$$|g(x) - 0| = |f(\ln(x)) - 0| < \varepsilon$$

(1 Punkt). Daher gilt $\lim_{x\downarrow 0}(g(x))=0$ (1 Punkt). Damit folgt dann, dass auch $\lim_{x\to\infty}(G(x))$ existiert und gleich Null ist für $G:(0,\infty)\to\mathbb{R}$, G(x):=g(1/x) (1 Punkt). Es gilt weiter für alle x>0

$$G(x) = g(1/x) = \frac{\ln(1/x)^n}{\exp(\ln(1/x))^m} = x^m(-\ln(x))^n$$

(1 Punkt). Indem man diesen Ausdruck mit $(-1)^n$ multipliziert, erhält man die Behauptung aus den Grenzwertsätzen.