CMPE 322/327 - Theory of Computation Week 9: Chomsky Normal Form & Pumping Lemma – CKY Algorithm

Burak Ekici

April 18-22, 2022

Outline

A Ouick Recap

•0000000000

- 1 A Quick Recap
- 2 Chomsky Normal Form
- 4 CKY Algorithm

A Quick Recap

• bisimulation up to congruence

A Ouick Recap

• bisimulation up to congruence

A Ouick Recap

0000000000

• developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

A Ouick Recap

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

A Ouick Recap

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

A Ouick Recap

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

A Ouick Recap

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

A Ouick Recap

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

A Ouick Recap

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

A Ouick Recap

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

A Ouick Recap

- bisimulation up to congruence
- developed by F. Bonchi and D. Pous (POPL 2013, CACM 2015)
- first: DFAs (by example)

A Ouick Recap

Pumping Lemma

Remark

A Ouick Recap

0000000000

bisimulation relates states with same observable behaviour

00000000000

bisimulation relates states with same observable behaviour

Definition

• bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

Pumping Lemma

A Ouick Recap

00000000000

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$

A Ouick Recap

0000000000

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

0000000000

bisimulation relates states with same observable behaviour

Definition

• bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq

Pumping Lemma

- $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

Example

• = (identity relation)

A Ouick Recap

0000000000

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all pRq
 - $\bigcirc p \in F \iff q \in F$
 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

- (identity relation)
- (indistinguishability relation of lecture 5)

A Ouick Recap

0000000000

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all PRQ
 - \bigcirc $p \in F \iff q \in F$
 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

Remarks

bisimilarity is equivalence relation

A Ouick Recap

0000000000

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all PRQ
 - $\bigcirc p \in F \iff q \in F$
 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

Remarks

- · bisimilarity is equivalence relation
- $L(M, p) := \{x \in \Sigma^* \mid \widehat{\delta}(p, x) \in F\}$

A Ouick Recap

0000000000

bisimulation relates states with same observable behaviour

Definition

- bisimulation is binary relation R on states Q of DFA $M = (Q, \Sigma, \delta, s, F)$ such that for all PRQ
 - $\bigcirc p \in F \iff q \in F$
 - $\bigcirc \delta(p,a) R \delta(q,a)$ for all $a \in \Sigma$
- states p and q are bisimilar $(p \sim q)$ if p R q for some bisimulation R

Remarks

- · bisimilarity is equivalence relation
- $L(M, p) := \{x \in \Sigma^* \mid \widehat{\delta}(p, x) \in F\}$
- $p \sim q \iff L(M, p) \sim L(M, q)$

00000000000

Example а а а а а start а а а start – а $a \sim f$

Example

A Quick Recap

00000000000

 $a \sim f$

 $b \sim g$

00000000000

 $a \sim f$ c ~ i

 $b \sim h$

00000000000

 $a \sim f$ $c \sim i$ $d \sim j$ $e \sim g$

a ~ h

b ~ i

 $e \sim h$

a∼i

 $b \sim j$

c ~ j

 $d \sim q$

for NFAs on-the-fly determinization is incorporated

A Quick Recap

00000000000

00000000000

00000000000

00000000000

00000000000

00000000000

00000000000

00000000000

for NFAs on-the-fly determinization is incorporated

A Ouick Recap

Definitions

A Ouick Recap

00000000000

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

Pumping Lemma

A Ouick Recap

- context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with
 - finite set of nonterminals **1** N:

000000000000

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

1 N: finite set of nonterminals

 Σ : finite set of terminals, disjoint from N

A Ouick Recap

000000000000

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

① *N* : finite set of nonterminals

6 P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

Pumping Lemma

Definitions

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

① N: finite set of nonterminals

§ P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $\textcircled{4} S \in \mathbb{N}$: start symbol

A Ouick Recap

000000000000

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

① *N* : finite set of nonterminals

€ P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $4 S \in N$: start symbol

• one step derivation relation $\frac{1}{G}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

A Ouick Recap

0000000000000

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

■ N : finite set of nonterminals

6 P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $\triangle S \in N$: start symbol

• one step derivation relation $\frac{1}{C}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\xrightarrow{n} = (\frac{1}{6})^n \quad \forall n \ge 0$

A Ouick Recap

0000000000000

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

■ N : finite set of nonterminals

6 P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $\triangle S \in N$: start symbol

• one step derivation relation $\frac{1}{C}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\frac{*}{G} = \bigcup_{n \ge 0} \frac{n}{G}$

A Ouick Recap

0000000000000

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

■ N : finite set of nonterminals

⑤ P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $\triangle S \in N$: start symbol

• one step derivation relation $\frac{1}{6}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\frac{*}{G} = \bigcup_{n \ge 0} \frac{n}{G}$

members of the set (N ∪ Σ)* are called strings

A Ouick Recap

0000000000000

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

finite set of nonterminals

⑤ P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $\triangle S \in \mathbb{N}$: start symbol

• one step derivation relation $\frac{1}{C}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\stackrel{*}{\longrightarrow} = \bigcup_{n \ge 0} \frac{n}{G}$

• members of the set $(N \cup \Sigma)^*$ are called strings

• string s is called a sentential form if $S \stackrel{*}{\longrightarrow} s$ (derivable from the start symbol S)

A Ouick Recap

0000000000000

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

finite set of nonterminals

 \bigcirc Σ : finite set of terminals, disjoint from N

6) P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $\triangle S \in \mathbb{N}$: start symbol

• one step derivation relation $\frac{1}{C}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\stackrel{*}{\underset{G}{\longrightarrow}} = \bigcup_{n \ge 0} \frac{n}{G}$

• members of the set $(N \cup \Sigma)^*$ are called strings

• string s is called a sentential form if $S \stackrel{*}{\longrightarrow} s$ (derivable from the start symbol S)

• sentential form x is called a sentence if $x \in \Sigma^*$ (consisting terminal symbols only)

A Ouick Recap

0000000000000

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

finite set of nonterminals

 \bigcirc Σ : finite set of terminals, disjoint from N

6) P: finite set of productions of the form $A \to \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 \triangle S \in N \cdot start symbol

• one step derivation relation $\frac{1}{C}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\stackrel{*}{\longrightarrow} = \bigcup_{n \ge 0} \frac{n}{G}$

• members of the set $(N \cup \Sigma)^*$ are called strings

• string s is called a sentential form if $S \stackrel{*}{\longrightarrow} s$ (derivable from the start symbol S)

• sentential form x is called a sentence if $x \in \Sigma^*$ (consisting terminal symbols only)

• language generated by G: $L(G) = \{x \in \Sigma^* \mid S \xrightarrow{*} x\}$

A Ouick Recap

0000000000000

• context-free grammar (CFG) is quadruple $G = (N, \Sigma, P, S)$ with

finite set of nonterminals

 \bigcirc Σ : finite set of terminals, disjoint from N

⑤ P: finite set of productions of the form $A \rightarrow \alpha$ with $A \in N$ and $\alpha \in (N \cup \Sigma)^*$

 $\triangle S \in \mathbb{N}$: start symbol

• one step derivation relation $\frac{1}{C}$ on $(N \cup \Sigma)^*$: $\beta A \gamma \xrightarrow{1} \beta \alpha \gamma$ if $A \to \alpha \in P$ and $\beta, \gamma \in (N \cup \Sigma)^*$

• $\frac{n}{G} = (\frac{1}{G})^n \quad \forall n \ge 0$ $\stackrel{*}{\longrightarrow} = \bigcup_{n \ge 0} \frac{n}{G}$

• members of the set $(N \cup \Sigma)^*$ are called strings

• string s is called a sentential form if $S \stackrel{*}{\longrightarrow} s$ (derivable from the start symbol S)

• sentential form x is called a sentence if $x \in \Sigma^*$ (consisting terminal symbols only)

• language generated by G: $L(G) = \{x \in \Sigma^* \mid S \xrightarrow{*} x\}$

• set $B \subseteq \Sigma^*$ is context-free if B = L(G) for some CFG G

DFA M

A Quick Recap

DFA M

A Ouick Recap

000000000000

CFG G_M

$$1 \rightarrow a2 \mid b1$$
 $3 \rightarrow a4 \mid b1$
 $2 \rightarrow a2 \mid b3$ $4 \rightarrow a4 \mid b4 \mid \epsilon$

DFA $\begin{bmatrix} b & a & b & a & a \\ 1 & 1 & 2 & 3 & 4 & 4 \end{bmatrix} \in L(M)$

CFG $1 \rightarrow b1 \rightarrow ba2 \rightarrow bab3 \rightarrow baba4 \rightarrow babaa4 \rightarrow babaa \in L(G_M)$

 $3 \rightarrow a4 \mid b1$

 $4 \rightarrow a4 \mid b4 \mid \varepsilon$

Example

DFA M

A Ouick Recap

000000000000

strongly right-linear CFG G_M

$$1 \rightarrow a2 \mid b1$$

$$2 \rightarrow a2 \mid b3$$

DFA $\begin{bmatrix} b & a & b & a & a \\ 1 & 1 & 2 & 3 & 4 & 4 \end{bmatrix} \in L(M)$

CFG $1 \rightarrow b1 \rightarrow ba2 \rightarrow bab3 \rightarrow baba4 \rightarrow babaa4 \rightarrow babaa \in L(G_M)$

A Ouick Recap

000000000000

CFG
$$G = (N, \Sigma, P, S)$$
 is strongly right-linear if

$$\alpha = aB \in \Sigma N$$
 or $\alpha = \varepsilon$

for all $A \rightarrow \alpha$ in P

0000000000000

CFG $G = (N, \Sigma, P, S)$ is strongly right-linear if

$$\alpha = aB \in \Sigma N$$
 or $\alpha = \varepsilon$

Pumping Lemma

for all $A \rightarrow \alpha$ in P

L is regular \iff L is generated by strongly right-linear CFG

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$ is strongly right-linear if

$$\alpha = aB \in \Sigma N$$
 or $\alpha = \varepsilon$

for all $A \rightarrow \alpha$ in P

L is regular \iff L is generated by strongly right-linear CFG

Proof. (\Longrightarrow)

- DFA $M = (Q, \Sigma, \delta, s, F)$
- $L(M) = L(G_M)$ for strongly right-linear CFG $G_M = \{Q, \Sigma, P, s\}$ with

$$P = \{p \to aq \mid \delta(p, a) = q\} \cup \{q \to \varepsilon \mid q \in F\}$$

A Ouick Recap

000000000000

CFG $G = (N, \Sigma, P, S)$ is strongly right-linear if

$$\alpha = aB \in \Sigma N$$
 or $\alpha = \varepsilon$

for all $A \rightarrow \alpha$ in P

L is regular \iff L is generated by strongly right-linear CFG

Proof. (⇐=)

- strongly right-linear CFG $G = (N, \Sigma, P, S)$
- $L(G) = L(M_G)$ for NFA $M_G = (N, \Delta, \{S\}, F)$ with

$$\Delta(A, a) = \{B \mid A \to aB \in P\} \text{ and } F = \{A \mid A \to \varepsilon \in P\}$$

A Ouick Recap

0000000000000

CFG $G = (N, \Sigma, P, S)$ is strongly right-linear if

$$\alpha = aB \in \Sigma N$$
 or $\alpha = \varepsilon$

for all $A \rightarrow \alpha$ in P

L is regular \iff L is generated by strongly right-linear CFG

every regular set is context-free

CFG $G: S \rightarrow [S] |SS| \varepsilon$

parse tree

CFG $G: S \to [S] |SS| \varepsilon$

parse tree

CFG $G: S \rightarrow [S] |SS| \varepsilon$

parse tree

CFG $G: S \rightarrow [S] |SS| \varepsilon$

parse trees

CFG $G: S \rightarrow [S] |SS| \varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

CFG G: $S \rightarrow [S] |SS| \varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

CFG G: $S \rightarrow [S] |SS| \varepsilon$

CFG G: $S \rightarrow [S]|SS|\varepsilon$

CFG $G: S \rightarrow [S] |SS| \varepsilon$

CFG G: $S \rightarrow [S] |SS| \varepsilon$

parse trees

Definition

• CFG is ambiguous if some string has different parse trees

A Quick Recap

00000000000

• CFG $G: S \rightarrow S \times S \mid S + S \mid int$

• *G* is ambiguous

with G 7 + 5 × 2 could be parsed as 7 + (5 × 2) and (7 + 5) × 2

$$7 + (5 \times 2)$$
 and $(7 + 5) \times$

A Ouick Recap

000000000000

• CFG $G: S \rightarrow S \times S \mid S + S \mid int$

• CFG G': $S \rightarrow S + T \mid T$

 $T \rightarrow T \times U \mid U$ $U \rightarrow int \mid (S)$

• *G* is ambiguous

with G 7 + 5 × 2 could be parsed as 7 + (5 × 2) and (7 + 5) × 2

$$7 + (5 \times 2)$$
 and $(7 + 5) \times$

A Ouick Recap

000000000000

• CFG $G: S \rightarrow S \times S \mid S + S \mid int$

• CFG G': $S \rightarrow S + T \mid T$ $T \rightarrow T \times U \mid U$

 $U \rightarrow int \mid (S)$

• *G* is ambiguous G' is unambiguous L(G) = L(G')

with G 7 + 5 × 2 could be parsed as 7 + (5 × 2) and (7 + 5) × 2

with G' 7 + 5 × 2 could only be parsed as 7 + (5 × 2)

A Ouick Recap

000000000000

• CFG $G: S \rightarrow S \times S \mid S + S \mid int$

• CFG G': $S \rightarrow S + T \mid T$ $T \rightarrow T \times U \mid U$

 $U \rightarrow int \mid (S)$

• *G* is ambiguous G' is unambiguous L(G) = L(G')

> with G 7 + 5 × 2 could be parsed as 7 + (5 × 2) and (7 + 5) × 2 with G' 7 + 5 × 2 could only be parsed as 7 + (5 × 2)

• (if applicable) one way to remove ambiguity is to benefit from precedence of operators

there exist context-free sets without unambiguous grammars

there exist context-free sets without unambiguous grammars (inherently ambiguous)

A Ouick Recap

000000000000

there exist context-free sets without unambiguous grammars (inherently ambiguous)

 $A = \{a^ib^jc^k \mid i = j \text{ or } j = k\}$ is context-free and inherently ambiguous

A Ouick Recap

00000000000

there exist context-free sets without unambiguous grammars (inherently ambiguous)

 $A = \{a^ib^jc^k \mid i = j \text{ or } j = k\}$ is context-free and inherently ambiguous

$$A = \{\mathbf{a}^i \mathbf{b}^i \mathbf{c}^k\} \cup \{\mathbf{a}^i \mathbf{b}^j \mathbf{c}^j\}$$

A Ouick Recap

00000000000

there exist context-free sets without unambiguous grammars (inherently ambiguous)

 $A = \{a^ib^jc^k \mid i = j \text{ or } j = k\}$ is context-free and inherently ambiguous

$$A = \{\mathbf{a}^i \mathbf{b}^i \mathbf{c}^k\} \cup \{\mathbf{a}^i \mathbf{b}^j \mathbf{c}^j\}$$

let A = L(G) such that G:

A Ouick Recap

00000000000

there exist context-free sets without unambiguous grammars (inherently ambiguous)

$$A = \{a^ib^jc^k \mid i = j \text{ or } j = k\}$$
 is context-free and inherently ambiguous

$$A = \{a^ib^ic^k\} \cup \{a^ib^jc^j\}$$

let
$$A = L(G)$$
 such that G :

$$S \rightarrow T \mid W$$

$$T \rightarrow UV$$
 $W \rightarrow XY$
 $U \rightarrow aUb \mid \varepsilon$ $X \rightarrow aX \mid \varepsilon$
 $V \rightarrow cV \mid \varepsilon$ $Y \rightarrow bYc \mid \varepsilon$

A Ouick Recap

00000000000

there exist context-free sets without unambiguous grammars (inherently ambiguous)

 $A = \{a^i b^j c^k \mid i = i \text{ or } i = k\}$ is context-free and inherently ambiguous

 $A = \{a^ib^ic^k\} \cup \{a^ib^jc^j\}$

let A = L(G) such that G:

 $S \rightarrow T \mid W$

 $T \rightarrow UV$ $W \rightarrow XY$ $U \rightarrow aUb \mid \varepsilon$ $X \rightarrow aX \mid \varepsilon$

 $V \rightarrow cV \mid \varepsilon$ $Y \rightarrow bYc \mid \varepsilon$

the union we used has a non-empty intersection, where letters a, b and c all are in equal number

A Ouick Recap

00000000000

there exist context-free sets without unambiguous grammars (inherently ambiguous)

 $A = \{a^i b^j c^k \mid i = i \text{ or } i = k\}$ is context-free and inherently ambiguous

 $A = \{a^ib^ic^k\} \cup \{a^ib^jc^j\}$

let A = L(G) such that G:

 $S \rightarrow T \mid W$

 $T \rightarrow UV$ $W \rightarrow XY$ $U \rightarrow aUb \mid \varepsilon$ $X \rightarrow aX \mid \varepsilon$

 $V \rightarrow cV \mid \varepsilon$ $Y \rightarrow bYc \mid \varepsilon$

the union we used has a non-empty intersection, where letters a, b and c all are in equal number

there is no CFG G' such that L(G') is unambiguous with L(G') = A

A Ouick Recap

00000000000

there exist context-free sets without unambiguous grammars (inherently ambiguous)

 $A = \{a^i b^j c^k \mid i = i \text{ or } i = k\}$ is context-free and inherently ambiguous

 $A = \{a^ib^ic^k\} \cup \{a^ib^jc^j\}$

let A = L(G) such that G:

$$S \rightarrow T \mid W$$

$$T \rightarrow UV$$
 $W \rightarrow XY$
 $U \rightarrow aUb \mid \varepsilon$ $X \rightarrow aX \mid \varepsilon$
 $V \rightarrow cV \mid \varepsilon$ $Y \rightarrow bYc \mid \varepsilon$

the union we used has a non-empty intersection, where letters a, b and c all are in equal number

there is no CFG G' such that L(G') is unambiguous with L(G') = A

Remark

1 given an ambiguous CFG G, the language L(G) may or may not be ambiguous

A Ouick Recap

00000000000

there exist context-free sets without unambiguous grammars (inherently ambiguous)

$$A = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$$
 is context-free and inherently ambiguous

$$A = \{a^ib^ic^k\} \cup \{a^ib^jc^j\}$$

let A = L(G) such that G:

$$S \rightarrow T \mid W$$

$$T \rightarrow UV \qquad W \rightarrow XY$$

$$U \rightarrow aUb \mid \varepsilon \qquad X \rightarrow aX \mid \varepsilon$$

$$V \rightarrow cV \mid \varepsilon \qquad Y \rightarrow bYc \mid \varepsilon$$

the union we used has a non-empty intersection, where letters a, b and c all are in equal number

there is no CFG G' such that L(G') is unambiguous with L(G') = A

Remark

- 1 given an ambiguous CFG G, the language L(G) may or may not be ambiguous
- 2 there is no algorithm to convert ambiguous CFG to unambiguous CFG

A Ouick Recap

00000000000

there exist context-free sets without unambiguous grammars (inherently ambiguous)

Example

 $A = \{a^i b^j c^k \mid i = i \text{ or } i = k\}$ is context-free and inherently ambiguous

$$A = \{a^ib^ic^k\} \cup \{a^ib^jc^j\}$$

let A = L(G) such that G:

$$S \rightarrow T \mid W$$

$$T \rightarrow UV \qquad W \rightarrow XY$$

$$U \rightarrow aUb \mid \varepsilon \qquad X \rightarrow aX \mid \varepsilon$$

 $V \rightarrow cV \mid \varepsilon$ $Y \rightarrow bYc \mid \varepsilon$

the union we used has a non-empty intersection, where letters a, b and c all are in equal number

there is no CFG G' such that L(G') is unambiguous with L(G') = A

Remark

- 1 given an ambiguous CFG G, the language L(G) may or may not be ambiguous
- there is no algorithm to convert ambiguous CFG to unambiguous CFG
- unambiguous context free languages can be parsed by deterministic push down automata

Outline

A Ouick Recap

- 1 A Quick Recap
- 2 Chomsky Normal Form
- 4 CKY Algorithm

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$ is in

- Chomsky normal form if for all $A \rightarrow \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$
- Greibach normal form if for all $A \rightarrow \alpha$ in P $\alpha = aB_1 \cdots B_n \in \Sigma N^*$

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$ is in

- Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$
- Greibach normal form if for all $A \rightarrow \alpha$ in P $\alpha = aB_1 \cdots B_n \in \Sigma N^*$

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$ is in

- Chomsky normal form if for all $A \rightarrow \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$
- Greibach normal form if for all $A \to \alpha$ in P $\alpha = aB_1 \cdots B_n \in \Sigma N^*$

every context-free set not containing ε is generated by CFG in

- Greibach normal form
- Chomsky normal form

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$ is in

- Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$
- Greibach normal form if for all $A \to \alpha$ in P $\alpha = aB_1 \cdots B_n \in \Sigma N^*$

every context-free set not containing ε is generated by CFG in

- Greibach normal form
- Chomsky normal form

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$ is in

- Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$
- Greibach normal form if for all $A \to \alpha$ in $P = \alpha = aB_1 \cdots B_n \in \Sigma N^*$

every context-free set not containing ε is generated by CFG in

- Greibach normal form
- Chomsky normal form

Application

membership $x \in L(G)$ is easily decidable for CFG G in Greibach normal form

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$ is in

- Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$
- Greibach normal form if for all $A \to \alpha$ in $P = \alpha = aB_1 \cdots B_n \in \Sigma N^*$

every context-free set not containing ε is generated by CFG in

- Greibach normal form
- Chomsky normal form

Application

membership $x \in L(G)$ is easily decidable for CFG G in Greibach normal form: generate all derivations of length |x| and test whether one of them ends in x

A Ouick Recap

CFG $G = (N, \Sigma, P, S)$ is in

- Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$
- Greibach normal form if for all $A \to \alpha$ in $P = \alpha = aB_1 \cdots B_n \in \Sigma N^*$

every context-free set not containing ε is generated by CFG in

- Greibach normal form
- Chomsky normal form

Application

membership $x \in L(G)$ is easily decidable for CFG G in Chomsky normal form: generate all derivations of length 2|x|-1 and test whether one of them ends in x

A Quick Recap

• ε -production: $A \rightarrow \varepsilon$

A Quick Recap

- ε -production: $A \rightarrow \varepsilon$
- unit production: $A \rightarrow B$

A Ouick Recap

- ε -production: $A \rightarrow \varepsilon$
- unit production: $A \rightarrow B$

every context-free set is generated by CFG without unit productions

A Ouick Recap

- ε -production: $A \rightarrow \varepsilon$
- unit production: $A \rightarrow B$

every context-free set is generated by CFG without unit productions

Proof.

• \widehat{P} is smallest set containing P such that

$$A \to B \in \widehat{P} \quad \land \quad B \to \alpha \in \widehat{P} \implies A \to \alpha \in \widehat{P}$$

A Quick Recap

- ε -production: $A \rightarrow \varepsilon$
- unit production: $A \rightarrow B$

every context-free set is generated by CFG without unit productions

Proof.

• \widehat{P} is smallest set containing P such that

$$A \to B \in \widehat{P} \quad \land \quad B \to \alpha \in \widehat{P} \implies A \to \alpha \in \widehat{P}$$

remove all unit productions from \widehat{P}

A Ouick Recap

- ε -production: $A \rightarrow \varepsilon$
- unit production: $A \rightarrow B$

every context-free set not containing ε is generated by CFG without ε -productions

Proof.

• \widehat{P} is smallest set containing P such that

$$A \to \alpha B \beta \in \widehat{P} \quad \wedge \quad B \to \varepsilon \in \widehat{P} \implies A \to \alpha \beta \in \widehat{P}$$

remove all ε -productions from \widehat{P}

A Ouick Recap

- ε -production: $A \rightarrow \varepsilon$
- unit production: $A \rightarrow B$

every context-free set not containing ε is generated by CFG without ε and unit productions

Proof.

• \widehat{P} is smallest set containing P such that

$$A \to B \in \widehat{P} \quad \land \quad B \to \alpha \in \widehat{P} \implies A \to \alpha \in \widehat{P}$$

$$A \to \alpha B \beta \in \widehat{P} \quad \wedge \quad B \to \varepsilon \in \widehat{P} \implies A \to \alpha \beta \in \widehat{P}$$

remove all ε and unit productions from \widehat{P}

Theoren

A Ouick Recap

every context-free set not containing $\boldsymbol{\varepsilon}$ is generated by CFG in Chomsky normal form

every context-free set not containing arepsilon is generated by CFG in Chomsky normal form

Proof.

remove ε and unit productions

every context-free set not containing ε is generated by CFG in Chomsky normal form

Proof.

- remove ε and unit productions
- introduce $A_a \rightarrow a$ for every $a \in \Sigma$

$$S \rightarrow SS$$

$$S \rightarrow [S]$$

$$S \rightarrow []$$

Theoren

every context-free set not containing ε is generated by CFG in Chomsky normal form

Proof.

- remove ε and unit productions
- introduce $A_a \rightarrow a$ for every $a \in \Sigma$

Example

$$S \rightarrow SS$$

$$A \rightarrow [$$

$$S \rightarrow ASB$$

$$B \rightarrow]$$

$$S \rightarrow AB$$

Theorem

every context-free set not containing ε is generated by CFG in Chomsky normal form

Proof.

- remove ε and unit productions
- introduce $A_a \rightarrow a$ for every $a \in \Sigma$
- split long right-hand sides of productions

Example

$$S \rightarrow SS$$

$$SS$$
 $S \rightarrow ASB$

$$A \rightarrow [$$

$$S \rightarrow A$$
 $B \rightarrow [$

$$S \rightarrow AB$$

every context-free set not containing ε is generated by CFG in Chomsky normal form

Proof.

- remove ε and unit productions
- introduce $A_a \rightarrow a$ for every $a \in \Sigma$
- split long right-hand sides of productions

$$S \rightarrow SS$$

$$A \rightarrow [$$

$$S \rightarrow AC$$

$$B \rightarrow 1$$

$$S \rightarrow AB$$
 $C \rightarrow SB$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$

$$X \to Z \mid \varepsilon$$

$$X \to Z \mid \varepsilon$$
 $Y \to bXY \mid \varepsilon$ $Z \to a$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$

$$X \rightarrow Z \mid \xi$$

$$X \to Z \mid \varepsilon$$
 $Y \to bXY \mid \varepsilon$ $Z \to a$

A Ouick Recap

CFG G: $S \rightarrow XbS \mid XYb \mid YXZ$ $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$ remove ε and unit productions

$$S \rightarrow XbS \mid XYb \mid YXZ$$

 $S \rightarrow bS$

$$X \rightarrow Z \mid \xi$$

$$X \to Z \mid \varepsilon$$
 $Y \to bXY \mid \varepsilon$ $Z \to a$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$

 $S \rightarrow bS \mid Yb$

$$X \rightarrow Z \mid z$$

$$X \to Z \mid \varepsilon$$
 $Y \to bXY \mid \varepsilon$ $Z \to a$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$

 $S \rightarrow bS \mid Yb \mid YZ$

$$X \rightarrow Z \mid \mathcal{E}$$

$$X \to Z \mid \varepsilon$$
 $Y \to bXY \mid \varepsilon$ $Z \to a$

 $Y \rightarrow bXY \mid \varepsilon \qquad Z \rightarrow a$

Example

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$
 $S \rightarrow bS \mid Yb \mid YZ$ $Y \rightarrow bY$

 $Y \rightarrow bXY \mid \varepsilon \qquad Z \rightarrow a$

Example

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$
 $S \rightarrow bS \mid Yb \mid YZ$ $Y \rightarrow bY$

 $Y \rightarrow bXY \mid \varepsilon \qquad Z \rightarrow a$

Example

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb$ $Y \rightarrow bY$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ$ $Y \rightarrow bY$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ$ $Y \rightarrow bY \mid bX$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b$ $Y \rightarrow bY \mid bX$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX \mid b$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX \mid b$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$

A Ouick Recap

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$ $S \rightarrow a$

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $Y \rightarrow bXY$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$ $S \rightarrow a$

$$Y \rightarrow b \lambda$$

$$Y \rightarrow bXY$$
 $Z \rightarrow a$

$$Y \rightarrow bY \mid bX \mid b$$
 $X \rightarrow$

CFG G: $S \rightarrow XbS \mid XYb \mid YXZ$ $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$ remove ε and unit productions

$$S \rightarrow XbS \mid XYb \mid YXZ$$

$$Y \rightarrow bXY$$
 $Z \rightarrow a$

$$Z \rightarrow a$$

$$S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b$$
 $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$ $S \rightarrow a$

$$X \rightarrow a$$

$$S \rightarrow a$$

introduce new non-terminals

$$B \rightarrow b$$

A Ouick Recap

CFG $G: S \to XbS \mid XYb \mid YXZ \qquad X \to Z \mid \varepsilon \qquad Y \to bXY \mid \varepsilon \qquad Z \to a$ remove ε and unit productions

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $Y \rightarrow bXY$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$ $S \rightarrow a$

introduce new non-terminals

$$B \rightarrow b$$
 $S \rightarrow XBS \mid XYB \mid YXZ \mid BS \mid YB \mid YZ \mid XB \mid XZ \mid b \mid a$ $X \rightarrow a$ $Y \rightarrow BXY \mid BY \mid BX \mid b$ $Z \rightarrow a$

```
Example
```

CFG
$$G: S \to XbS \mid XYb \mid YXZ \qquad X \to Z \mid \varepsilon \qquad Y \to bXY \mid \varepsilon \qquad Z \to a$$
 remove ε and unit productions

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $Y \rightarrow bXY$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$ $S \rightarrow a$

introduce new non-terminals

$$B \rightarrow b$$
 $S \rightarrow XBS \mid XYB \mid YXZ \mid BS \mid YB \mid YZ \mid XB \mid XZ \mid b \mid a$
 $X \rightarrow a$ $Y \rightarrow BXY \mid BY \mid BX \mid b$ $Z \rightarrow a$

split long right-hand sides

$$B \rightarrow b$$
 $S \rightarrow TS \mid UB \mid VZ \mid BS \mid YB \mid YZ \mid XB \mid XZ \mid b \mid a$ $X \rightarrow a$ $Y \rightarrow BU \mid BY \mid BX \mid b$ $Z \rightarrow a$

 $T \rightarrow XB$ $IJ \rightarrow XY \qquad V \rightarrow YX$

Outline

A Ouick Recap

- 1 A Quick Recap
- 2 Chomsky Normal Form
- 3 Pumping Lemma
- 4 CKY Algorithm

Proof. (Idea)

A Ouick Recap

take $k = 2^{n+1}$ where n is number of nonterminals of any CFG in Chomsky normal form that accepts $A - \{\varepsilon\}$

A Ouick Recap

 $L = \{a^i b^i \mid i > 0\}$ Chomsky normal form $G: S \to AC \mid AB \quad C \to SB \quad A \to a \quad B \to b$

 $L = \{a^i b^i \mid i > 0\}$ Chomsky normal form $G: S \to AC \mid AB \quad C \to SB \quad A \to a \quad B \to b$

parse tree for aaaabbbb

 $L = \{a^i b^i \mid i > 0\}$ Chomsky normal form $G: S \to AC \mid AB \quad C \to SB \quad A \to a \quad B \to b$

parse tree for aaaabbbb

⇒ long path in parse tree long string

A Ouick Recap

 $L = \{a^i b^i \mid i > 0\}$ Chomsky normal form G: $S \to AC \mid AB \mid C \to SB \mid A \to a \mid B \to b$

parse tree for aaaabbbb

long string \implies long path in parse tree

(at depth m at most 2^m symbols)

 $L = \{a^i b^i | i > 0\}$ Chomsky normal form G: $S \rightarrow AC \mid AB \mid C \rightarrow SB \mid A \rightarrow a \mid B \rightarrow b$

parse tree for aaaabbbb

⇒ long path in parse tree long string

(at depth m at most 2^m symbols)

consider longest path

 $L = \{a^i b^i \mid i > 0\}$ Chomsky normal form G: $S \rightarrow AC \mid AB \mid C \rightarrow SB \mid A \rightarrow a \mid B \rightarrow b$

parse tree for aaaabbbb

long string ⇒ long path in parse tree

(at depth m at most 2^m symbols)

consider longest path

look for repetition of nonterminals near bottom

 $L = \{a^i b^i | i > 0\}$ Chomsky normal form G: $S \rightarrow AC \mid AB \mid C \rightarrow SB \mid A \rightarrow a \mid B \rightarrow b$

parse tree for aaaabbbb

long string \implies long path in parse tree

(at depth m at most 2^m symbols)

consider longest path

look for repetition of nonterminals near bottom

 $L = \{a^ib^i | i > 0\}$ Chomsky normal form G: $S \rightarrow AC \mid AB \mid C \rightarrow SB \mid A \rightarrow a \mid B \rightarrow b$

parse tree for aaaabbbb

long string \implies long path in parse tree

(at depth m at most 2^m symbols)

consider longest path

look for repetition of nonterminals near bottom

$$u = aa$$
 $v = a$ $w = ab$ $x = b$ $y = bb$

 $L = \{a^ib^i | i > 0\}$ Chomsky normal form G: $S \rightarrow AC \mid AB \mid C \rightarrow SB \mid A \rightarrow a \mid B \rightarrow b$

parse tree for aaaabbbb

long string \implies long path in parse tree

(at depth m at most 2^m symbols)

consider longest path

look for repetition of nonterminals near bottom

$$u = aa$$
 $v = a$ $w = ab$ $x = b$ $y = bb$

 $L = \{a^ib^i | i > 0\}$ Chomsky normal form G: $S \rightarrow AC \mid AB \mid C \rightarrow SB \mid A \rightarrow a \mid B \rightarrow b$

parse tree for aaaabbbb

long string \implies long path in parse tree

(at depth m at most 2^m symbols)

consider longest path

look for repetition of nonterminals near bottom

$$u = aa$$
 $v = a$ $w = ab$ $x = b$ $y = bb$

 $L = \{a^ib^i | i > 0\}$ Chomsky normal form G: $S \rightarrow AC \mid AB \mid C \rightarrow SB \mid A \rightarrow a \mid B \rightarrow b$

parse tree for aaaabbbb

long string \implies long path in parse tree

(at depth m at most 2^m symbols)

consider longest path

look for repetition of nonterminals near bottom

$$u = aa$$
 $v = a$ $w = ab$ $x = b$ $y = bb$

 $L = \{a^ib^i | i > 0\}$ Chomsky normal form G: $S \rightarrow AC \mid AB \mid C \rightarrow SB \mid A \rightarrow a \mid B \rightarrow b$

parse tree for aaaabbbb

long string \implies long path in parse tree

(at depth m at most 2^m symbols)

consider longest path

look for repetition of nonterminals near bottom

$$u = aa$$
 $v = a$ $w = ab$ $x = b$ $y = bb$

A Quick Recap

• choose
$$z = a^k b^k c^k$$

• choose
$$z = a^k b^k c^k$$
 check: $z \in A$ $|z| = 3k \ge k$

 $A = \{a^i b^i c^i \mid i \ge 0\}$ is not context-free

• choose $z = a^k b^k c^k$ check: $z \in A$ $|z| = 3k \ge k$

• split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$

- choose $z = a^k b^k c^k$ check: $z \in A$ $|z| = 3k \ge k$
- split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$
- choose i = 0

- choose $z = a^k b^k c^k$ check: $z \in A$ $|z| = 3k \ge k$
- split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$
- choose i = 0
- vwx cannot contain both a's and c's

- choose $z = a^k b^k c^k$ check: $z \in A$ $|z| = 3k \ge k$
- split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$
- choose i = 0
- vwx cannot contain both a's and c's
 - 1 vwx has no a's: uviwxiy has more a's than b's or c's

- choose $z = a^k b^k c^k$ check: $z \in A$ $|z| = 3k \ge k$
- split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$
- choose i = 0
- vwx cannot contain both a's and c's
 - vwx has no a's: uviwxiy has more a's than b's or c's
 - vwx has no c's: uviwxiy has more c's than b's or a's

A Quick Recap

 $B = \{a^i b^j c^k \mid i < j < k\}$ is not context-free

A Ouick Recap

 $B = \{a^i b^j c^k \mid i < j < k\}$ is not context-free

• choose
$$z = a^k b^{k+1} c^{k+2}$$

A Ouick Recap

 $B = \{a^i b^j c^k \mid i < j < k\}$ is not context-free

• choose
$$z = a^k b^{k+1} c^{k+2}$$

check: $z \in B$ $|z| = 3k + 3 \ge k$

A Ouick Recap

 $B = \{a^i b^j c^k \mid i < j < k\}$ is not context-free

• choose $z = a^k b^{k+1} c^{k+2}$ check: $z \in B$ $|z| = 3k + 3 \ge k$

• split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$

 $B = \{a^i b^j c^k \mid i < j < k\}$ is not context-free

- choose $z = a^k b^{k+1} c^{k+2}$ check: $z \in B$ $|z| = 3k + 3 \ge k$
- split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$
- vwx cannot contain both a's and c's

A Ouick Recap

 $B = \{a^i b^j c^k \mid i < j < k\}$ is not context-free

- choose $z = a^k b^{k+1} c^{k+2}$ check: $z \in B$ $|z| = 3k + 3 \ge k$
- split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$
- vwx cannot contain both a's and c's
- vwx has no a's

choose |i=0| check: $uv^iwx^iy \notin B$

 $B = \{a^i b^j c^k \mid i < j < k\}$ is not context-free

- choose $z = a^k b^{k+1} c^{k+2}$ check: $z \in B$ $|z| = 3k + 3 \ge k$
- split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$
- vwx cannot contain both a's and c's
- vwx has no a's choose i = 0check: $uv^iwx^iv \notin B$
- vwx has no c's choose i = 2check: $uv^iwx^iy \notin B$

A Quick Recap

 $C = \{a^p \mid p \text{ is prime}\}\$ is not context-free

Pumping Lemma

0000000

Exampl

A Ouick Recap

 $C = \{a^p \mid p \text{ is prime}\}\$ is not context-free

choose

 $z = a^p$ where p is any prime larger than k

 $C = \{a^p \mid p \text{ is prime}\}\$ is not context-free

• choose $z = a^p$

where p is any prime larger than k check: $z \in C$ $|z| = p \ge k$

 $C = \{a^p \mid p \text{ is prime}\}\$ is not context-free

• choose $|z=a^p|$ where p is any prime larger than k check: $z \in C$ $|z|=p \ge k$

• split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$

 $C = \{a^p \mid p \text{ is prime}\}\$ is not context-free

• choose $|z=a^p|$ where p is any prime larger than k check: $z \in C$ $|z|=p \ge k$

• split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$

choose check: $uv^iwx^iy \notin C$

 $C = \{a^p \mid p \text{ is prime}\}\$ is not context-free

• choose $|z=a^p|$ where p is any prime larger than k check: $z \in C$ $|z|=p \ge k$

• split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$

• choose i = p + 1 check: $uv^i wx^i y \notin C$ $|uv^iwx^iy| = p + p|vx|$

 $C = \{a^p \mid p \text{ is prime}\}\$ is not context-free

• choose $|z=a^p|$ where p is any prime larger than k check: $z \in C$ $|z|=p \ge k$

• split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$

• choose i = p + 1 check: $uv^i wx^i y \notin C$ $|uv^iwx^iy| = p + p|vx| = p(1 + |vx|)$ is not prime

Outline

A Ouick Recap

- 1 A Quick Recap
- 2 Chomsky Normal Form
- 4 CKY Algorithm

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

Proof.

efficient and elegant algorithm: Cocke Kasami Younger (CKY)

convert G into Chomsky normal form

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

Proof.

efficient and elegant algorithm: Cocke Kasami Younger (CKY)

- convert G into Chomsky normal form
- for all $0 \le i < j \le |x|$
 - x_{ij} is substring of x of length j-i starting at position i

Theorer

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

Proof.

efficient and elegant algorithm: Cocke Kasami Younger (CKY)

- convert G into Chomsky normal form
- for all $0 \le i < j \le |x|$
 - x_{ij} is substring of x of length j-i starting at position i
 - $T_{ij} = \{A \in N \mid A \xrightarrow{*}_G x_{ij}\}$

Theorer

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

Proof.

efficient and elegant algorithm: Cocke Kasami Younger (CKY)

- convert G into Chomsky normal form
- for all $0 \le i < j \le |x|$
 - x_{ii} is substring of x of length j-i starting at position i
 - $T_{ij} = \{A \in N \mid A \xrightarrow{*}_{G} x_{ij}\}$

compute T_{ii} by induction on j-i

Theorer

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

Proof.

efficient and elegant algorithm: Cocke Kasami Younger (CKY)

- convert G into Chomsky normal form
- for all $0 \le i < j \le |x|$
 - x_{ii} is substring of x of length j-i starting at position i
 - $T_{ij} = \{A \in N \mid A \xrightarrow{*}_{G} x_{ij}\}$

compute T_{ii} by induction on j-i

• $x \in L(G) \iff S \in T_{0|x|}$

$$X = baaba$$

 $T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} X_{ij}\}$

 $S \rightarrow AB \mid BC \quad A \rightarrow BA \mid a \quad B \rightarrow CC \mid b \quad C \rightarrow AB \mid a$ CFG G in Chomsky normal form:

$$X = baaba$$

 $T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$

$$T_{01} = \{X \in N \mid X \xrightarrow{*}_{G} \mathbf{b}\}$$

$$X = baaba$$

 $T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$

$$T_{01} = \{X \in N \mid X \xrightarrow{*}_{G} \mathbf{b}\}$$
$$= \{X \in N \mid X \to \mathbf{b}\}$$

A Ouick Recap

$$X = baaba$$

 $T_{ij} = \{X \in N \mid X \xrightarrow{*} X_{ij}\}$

$$T_{34} = T_{01} = \{X \in N \mid X \xrightarrow{*} b\}$$
$$= \{X \in N \mid X \to b\}$$
$$= \{B\}$$

A Ouick Recap

$$X = baaba$$

 $T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$

$$T_{12} = T_{23} = T_{45} = \{X \in N \mid X \xrightarrow{*}_{G} a\}$$

= $\{X \in N \mid X \to a\}$

A Ouick Recap

0					
{ <i>B</i> }	1				
	{A, C}	2			
		{ <i>A</i> , <i>C</i> }	3		
			{ <i>B</i> }	4	
				{ <i>A</i> , <i>C</i> }	

$$X = baaba$$

 $T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$

$$T_{12} = T_{23} = T_{45} = \{X \in N \mid X \xrightarrow{*}_{G} a\}$$

= $\{X \in N \mid X \to a\}$
= $\{A, C\}$

CFG G in Chomsky normal form: $S \rightarrow AB \mid BC \mid A \rightarrow BA \mid a \mid B \rightarrow CC \mid b \mid C \rightarrow AB \mid a$

U					
{B}	1				
?	{A, C}	2			
		{A, C}	3		
			{ <i>B</i> }	4	
				{ <i>A</i> , <i>C</i> }	5

$$X = baaba$$

 $T_{ij} = \{X \in N \mid X \xrightarrow{*} x_{ij}\}$

$$T_{02} = \{X \in N \mid X \rightarrow YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{12}\}$$

CKY Algorithm

Λ

A Ouick Recap

U					
{B}	1				
?	{A, C}	2			
		{ <i>A</i> , <i>C</i> }	3		
			{ <i>B</i> }	4	
				{ <i>A</i> , <i>C</i> }	5

$$X = baaba$$

 $T_{ij} = \{X \in N \mid X \xrightarrow{*} x_{ij}\}$

$$T_{02} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{12}\}$$

= $\{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{A, C\}\}$

Λ

A Ouick Recap

U					
{B}	1				
?	{A, C}	2			
		{A, C}	3		
			{ <i>B</i> }	4	
				{ <i>A</i> , <i>C</i> }	5

$$X = baaba$$

$$T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$$

$$T_{02} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{12}\}$$

= $\{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{A, C\}\}$
= $\{X \in N \mid X \to BA \in P \text{ or } X \to BC \in P\}$

A Ouick Recap

CFG G in Chomsky normal form: $S \rightarrow AB \mid BC \mid A \rightarrow BA \mid a \mid B \rightarrow CC \mid b \mid C \rightarrow AB \mid a$

$$X = baaba$$

 $T_{ij} = \{X \in N \mid X \xrightarrow{*} x_{ij}\}$

$$T_{02} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{12}\}$$

$$= \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{A, C\}\}$$

$$= \{X \in N \mid X \to BA \in P \text{ or } X \to BC \in P\}$$

$$= \{S, A\}$$

Pumping Lemma

x = baaba

A Ouick Recap

$$T_{ij} = \{X \in N \mid X \xrightarrow{*}_G x_{ij}\}$$

$$T_{13} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{12} \text{ and } Z \in T_{23}\}$$

$$= \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{A, C\} \text{ and } Z \in \{A, C\}\}$$

x = baaba

A Ouick Recap

$$T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$$

$$T_{13} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{12} \text{ and } Z \in T_{23}\}$$

$$= \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{A, C\} \text{ and } Z \in \{A, C\}\}$$

$$= \{B\}$$

x = baaba

A Ouick Recap

U				
{B}	1			
{ <i>S</i> , <i>A</i> }	{A,C}	2		
	{B}	{A, C}	3	
		?	{ <i>B</i> }	4
				{ <i>A</i> , <i>C</i> }

$$T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$$

$$T_{24} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{23} \text{ and } Z \in T_{34}\}$$

$$= \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{A, C\} \text{ and } Z \in \{B\}\}$$

x = baaba

A Ouick Recap

U				
{B}	1			
{ <i>S</i> , <i>A</i> }	{A,C}	2		
	{B}	{ <i>A</i> , <i>C</i> }	3	
		{S,C}	{ <i>B</i> }	4
				{ <i>A</i> , <i>C</i> }

$$T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$$

$$T_{24} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{23} \text{ and } Z \in T_{34}\}$$

$$= \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{A, C\} \text{ and } Z \in \{B\}\}$$

$$= \{S, C\}$$

x = baaba

A Ouick Recap

U				
{B}	1			
{ <i>S</i> , <i>A</i> }	{A,C}	2		
	{B}	{ <i>A</i> , <i>C</i> }	3	
		{S,C}	{ <i>B</i> }	4
			?	{A,C}

$$T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$$

$$T_{35} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{34} \text{ and } Z \in T_{45}\}$$

$$= \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{A, C\}\}$$

x = baaba

A Ouick Recap

U				
{B}	1			
{ <i>S</i> , <i>A</i> }	{A,C}	2		
	{B}	{A, C}	3	
		{ <i>S</i> , <i>C</i> }	{B}	4
			{ <i>S,A</i> }	{ <i>A</i> , <i>C</i> }

$$T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$$

$$T_{35} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{34} \text{ and } Z \in T_{45}\}$$

$$= \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{A, C\}\}$$

$$= \{S, A\}$$

A Ouick Recap

	Ü					
Γ	{B}	1				
	{ <i>S</i> , <i>A</i> }	{ <i>A</i> , <i>C</i> }	2			
Γ	?	{B}	{A,C}	3		
			{S, C}	{B}	4	
				{ <i>S</i> , <i>A</i> }	{ <i>A</i> , <i>C</i> }	5

$$X = \frac{baaba}{T_{ij}} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$$

A Ouick Recap

0				
{B}	1			
{ <i>S</i> , <i>A</i> }	{ <i>A</i> , <i>C</i> }	2		
?	{B}	{A,C}	3	
		{S, C}	{B}	4
			{ <i>S,A</i> }	{ <i>A,C</i> } 5

$$\begin{aligned} x &= baaba \\ T_{ij} &= \{X \in \mathbb{N} \mid X \xrightarrow{*} x_{ij}\} \end{aligned}$$

$$T_{03} &= \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{13}\}$$

$$\cup \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in T_{02} \text{ and } Z \in T_{23}\}$$

$$&= \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{B\}\}$$

$$\cup \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{A, C\}\}$$

A Ouick Recap

0				
{B}	1			
{ <i>S</i> , <i>A</i> }	{ <i>A</i> , <i>C</i> }	2		
Ø	{B}	{A,C}	3	
		{S, C}	{B}	4
			{ <i>S,A</i> }	{ <i>A,C</i> } 5

$$\begin{aligned} x &= baaba \\ T_{ij} &= \{X \in \mathbb{N} \mid X \xrightarrow{*} x_{ij} \} \end{aligned}$$

$$T_{03} &= \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{13} \}$$

$$\cup \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in T_{02} \text{ and } Z \in T_{23} \}$$

$$&= \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{B\} \}$$

$$\cup \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{A, C\} \}$$

$$&= \emptyset$$

A Ouick Recap

0				
{B}	1			
{S, A}	{ <i>A</i> , <i>C</i> }	2		
Ø	{B}	{A,C}	3	
	?	{ <i>S</i> , <i>C</i> }	{B}	4
			{ <i>S,A</i> }	{ <i>A,C</i> } 5

$$X = baaba$$

$$T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$$

$$T_{14} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{12} \text{ and } Z \in T_{24}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{13} \text{ and } Z \in T_{34}\}$$

A Ouick Recap

0				
{B}	1			
{S, A}	{A,C}	2		
Ø	{B}	{A,C}	3	
	?	{ <i>S</i> , <i>C</i> }	{B}	4
			{ <i>S,A</i> }	{ <i>A,C</i> } 5

$$\begin{aligned} x &= baaba \\ T_{ij} &= \{X \in \mathbb{N} \mid X \xrightarrow{*} x_{ij}\} \end{aligned}$$

$$\begin{aligned} T_{14} &= \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in T_{12} \text{ and } Z \in T_{24}\} \\ & \cup \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in T_{13} \text{ and } Z \in T_{34}\} \\ &= \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in \{A, C\} \text{ and } Z \in \{S, C\}\} \\ & \cup \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{B\}\} \end{aligned}$$

A Ouick Recap

0				
{B}	1			
{S,A}	{A,C}	2		
Ø	{B}	{A,C}	3	
	{B}	{ <i>S</i> , <i>C</i> }	{B}	4
			{ <i>S,A</i> }	{ <i>A,C</i> } 5

$$X = baaba$$

$$T_{ij} = \{X \in N \mid X \xrightarrow{*} x_{ij}\}$$

$$T_{14} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{12} \text{ and } Z \in T_{24}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{13} \text{ and } Z \in T_{34}\}$$

$$= \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{A, C\} \text{ and } Z \in \{S, C\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{B\}\}$$

$$= \{B\}$$

A Ouick Recap

<u> </u>	{B}	{ <i>A</i> , <i>C</i> }	3 {B}	4	
Ø	{B}	{A,C}	3		
{S,A}	{A, C}	2			
{ <i>B</i> }	1				
0					

$$X = baaba$$

 $T_{ij} = \{X \in N \mid X \xrightarrow{*} X_{ij}\}$

$$T_{25} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{23} \text{ and } Z \in T_{35}\}\$$

 $\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{24} \text{ and } Z \in T_{45}\}\$

A Ouick Recap

	0					
	{B}	1				
ı	{ <i>S,A</i> }	{ <i>A</i> , <i>C</i> }	2			
ı	Ø	{B}	{A,C}	3		
ı		{B}	{ <i>S</i> , <i>C</i> }	{B}	4	
ı			?	{ <i>S,A</i> }	{ <i>A</i> , <i>C</i> }	5

$$X = baaba$$

$$T_{ij} = \{X \in N \mid X \xrightarrow{*} x_{ij}\}$$

$$T_{25} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{23} \text{ and } Z \in T_{35}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{24} \text{ and } Z \in T_{45}\}$$

$$= \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{A, C\} \text{ and } Z \in \{S, A\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{S, C\} \text{ and } Z \in \{A, C\}\}$$

A Ouick Recap

0					
{B}	1				
{S, A}	{ <i>A</i> , <i>C</i> }	2			
Ø	{B}	{ <i>A</i> , <i>C</i> }	3		
	{B}	{ <i>S</i> , <i>C</i> }	{B}	4	
		{ <i>B</i> }	{ <i>S,A</i> }	{ <i>A,C</i> }	5

$$X = baaba$$

$$T_{ij} = \{X \in N \mid X \xrightarrow{*} x_{ij}\}$$

$$T_{25} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{23} \text{ and } Z \in T_{35}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{24} \text{ and } Z \in T_{45}\}$$

$$= \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{A, C\} \text{ and } Z \in \{S, A\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{S, C\} \text{ and } Z \in \{A, C\}\}$$

$$= \{B\}$$

A Ouick Recap

CFG *G* in Chomsky normal form: $S \rightarrow AB \mid BC \quad A \rightarrow BA \mid a \quad B \rightarrow CC \mid b \quad C \rightarrow AB \mid a$

0 {*B*} {*A*,*C*} {*S*,*A*} 2 Ø {*B*} {*A*,*C*} 3 {*B*} {*B*} {*S*,*C*} {*S*,*A*} {*A,C*} 5 {B}

$$X = \frac{baaba}{T_{ij}} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$$

$$T_{04} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{14}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{02} \text{ and } Z \in T_{24}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{03} \text{ and } Z \in T_{34}\}$$

A Ouick Recap

CFG G in Chomsky normal form: $S \rightarrow AB \mid BC \mid A \rightarrow BA \mid a \mid B \rightarrow CC \mid b \mid C \rightarrow AB \mid a$

$$X = baaba$$

$$T_{ij} = \{X \in N \mid X \xrightarrow{*} x_{ij}\}$$

$$T_{04} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{B\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{S, C\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \emptyset \text{ and } Z \in \{B\}\}$$

x = baaba

A Ouick Recap

CFG G in Chomsky normal form: $S \rightarrow AB \mid BC \mid A \rightarrow BA \mid a \mid B \rightarrow CC \mid b \mid C \rightarrow AB \mid a$

0 {*B*} {*A*,*C*} {*S*,*A*} 2 Ø {B} {*A*,*C*} 3 {*B*} Ø {*B*} {*S*,*C*} {*A*, *C*} 5 {*S*,*A*} {*B*}

$$T_{ij} = \{X \in \mathbb{N} \mid X \xrightarrow{*}_{G} x_{ij}\}$$

$$T_{04} = \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{B\}\}$$

$$\cup \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{S, C\}\}$$

$$\cup \{X \in \mathbb{N} \mid X \to YZ \in P \text{ with } Y \in \emptyset \text{ and } Z \in \{B\}\}$$

$$= \emptyset$$

A Ouick Recap

CFG G in Chomsky normal form: $S \rightarrow AB \mid BC \mid A \rightarrow BA \mid a \mid B \rightarrow CC \mid b \mid C \rightarrow AB \mid a$

0 {*B*} {*A*,*C*} {*S*,*A*} 2 Ø {*B*} {*A*,*C*} 3 {*B*} Ø {*B*} {*S*,*C*} {*S*,*A*} {*A,C*} 5 {*B*}

$$X = baaba$$

$$T_{ij} = \{X \in N \mid X \xrightarrow{*} x_{ij}\}$$

$$T_{15} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{12} \text{ and } Z \in T_{25}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{13} \text{ and } Z \in T_{35}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{14} \text{ and } Z \in T_{45}\}$$

A Ouick Recap

CFG G in Chomsky normal form: $S \rightarrow AB \mid BC \mid A \rightarrow BA \mid a \mid B \rightarrow CC \mid b \mid C \rightarrow AB \mid a$

0 {*B*} {*A*,*C*} {*S*,*A*} 2 Ø {B} {*A*,*C*} 3 {*B*} Ø {*B*} {*S*,*C*} {*A*, *C*} 5 {*S*,*A*} {*B*}

$$X = baaba$$

$$T_{ij} = \{X \in N \mid X \xrightarrow{*} x_{ij}\}$$

$$T_{15} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{A, C\} \text{ and } Z \in \{B\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{S, A\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{A, C\}\}$$

A Ouick Recap

CFG G in Chomsky normal form: $S \rightarrow AB \mid BC \mid A \rightarrow BA \mid a \mid B \rightarrow CC \mid b \mid C \rightarrow AB \mid a$

0 {*B*} 1 {S,A} {*A*, *C*} 2 Ø {*B*} {A, C} 3 {*B*} Ø {B} {S, C} {B} {*A,C*} 5 {*S*, *A*, *C*} {*S*,*A*}

$$X = baaba$$

$$T_{ij} = \{X \in N \mid X \xrightarrow{*} x_{ij}\}$$

$$T_{15} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{A, C\} \text{ and } Z \in \{B\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{S, A\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{A, C\}\}$$

$$= \{S, A, C\}$$

A Ouick Recap

0					
{ <i>B</i> }	1				
{ <i>S</i> , <i>A</i> }	{A, C}	2			
Ø	{B}	{ <i>A</i> , <i>C</i> }	3		
Ø	{ <i>B</i> }	{ <i>S</i> , <i>C</i> }	{ <i>B</i> }	4	
?	{ <i>S</i> , <i>A</i> , <i>C</i> }	{ <i>B</i> }	{ <i>S,A</i> }	{ <i>A</i> , <i>C</i> }	5

$$X = baaba$$

 $T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$

$$T_{05} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{15}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{02} \text{ and } Z \in T_{25}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{03} \text{ and } Z \in T_{35}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in T_{04} \text{ and } Z \in T_{45}\}$$

A Ouick Recap

0					
{B}	1				
{ <i>S,A</i> }	{A, C}	2			
Ø	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }	3		
Ø	{B}	{ <i>S</i> , <i>C</i> }	{B}	4	
?	{ <i>S</i> , <i>A</i> , <i>C</i> }	{ <i>B</i> }	{ <i>S,A</i> }	{ <i>A,C</i> }	5

$$\begin{aligned} x &= baaba \\ T_{ij} &= \{X \in N \mid X \xrightarrow{*} x_{ij}\} \end{aligned}$$

$$T_{05} &= \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{S, A, C\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{B\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \emptyset \text{ and } Z \in \{S, A\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \emptyset \text{ and } Z \in \{A, C\}\}$$

x = baaba

A Ouick Recap

CFG *G* in Chomsky normal form: $S \rightarrow AB \mid BC \quad A \rightarrow BA \mid a \quad B \rightarrow CC \mid b \quad C \rightarrow AB \mid a$

0					
{B}	1				
{ <i>S</i> , <i>A</i> }	{A, C}	2			
Ø	{B}	{ <i>A</i> , <i>C</i> }	3		
Ø	{B}	{S, C}	{B}	4	
{ <i>S</i> , <i>A</i> , <i>C</i> }	{ <i>S</i> , <i>A</i> , <i>C</i> }	{ <i>B</i> }	{ <i>S,A</i> }	{ <i>A,C</i> }	5

$$T_{ij} = \{X \in N \mid X \xrightarrow{*}_{G} x_{ij}\}$$

$$T_{05} = \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{B\} \text{ and } Z \in \{S, A, C\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{B\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \emptyset \text{ and } Z \in \{S, A\}\}$$

$$\cup \{X \in N \mid X \to YZ \in P \text{ with } Y \in \emptyset \text{ and } Z \in \{A, C\}\}$$

 $= \{S, A, C\}$

x = baaba

A Ouick Recap

0				
{B}	1			
{S,A}	{A, C}	2		
Ø	{B}	{A,C}	3	
Ø	{B}	{S, C}	{B}	4
{ <i>S</i> , <i>A</i> , <i>C</i> }	{ <i>S</i> , <i>A</i> , <i>C</i> }	{ <i>B</i> }	{ <i>S,A</i> }	{ <i>A,C</i> }

$$T_{ij} = \{X \in \mathbb{N} \mid X \xrightarrow{*}_{G} x_{ij}\}$$

$$S \in T_{05} \implies x \in L(G)$$

A Ouick Recap

Thanks! & Questions?