ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

2η Εργαστηριακή Άσκηση

Μία βιομηχανία διαθέτει ένα μηχάνημα το οποίο δουλεύει συνεχώς στη γραμμή παραγωγής. Σε κάθε χρονική περίοδο $k \in [0, K]$, όπου K ο χρονικός ορίζοντας της διεργασίας, πρέπει να αποφασίζεται για το αν η βιομηχανία θα κρατήσει το μηχάνημα ή θα το αντικαταστήσει πουλώντας το σαν μεταχειρισμένο και αγοράζοντας καινούριο. Όταν η ηλικία x(k) του μηχανήματος γίνει ίση με X χρονικές περιόδους, το μηχάνημα πρέπει υποχρεωτικά να αντικατασταθεί. Στην αρχή της διεργασίας αυτής έχει αγορασθεί ένα καινούριο μηχάνημα, δηλαδή x(0) = 1, ενώ η τελική κατάσταση είναι ελεύθερη. Το κόστος λειτουργίας του μηχανήματος είναι $\phi_2[x(k), k]$ ενώ το κόστος αντικατάστασης $\phi_1[x(k), k]$ υπολογίζεται λαμβάνοντας υπόψη την τιμή αγοράς $T\sqrt{k}$ ενός καινούριου μηχανήματος και την τιμή πώλησης c[x(k), k] του μεταχειρισμένου μηχανήματος ηλικίας x(k). Το τελικό κόστος $\theta[x(K)]$ υπολογίζεται λαμβάνοντας υπόψη την αξία του μεταχειρισμένου μηχανήματος τη χρονική περίοδο K.

- 1. Διατυπώστε το πρόβλημα βέλτιστου ελέγχου με το κριτήριο κόστους, την καταστατική εξίσωση και όλους τους περιορισμούς.
- 2. Αναπτύξτε έναν κώδικα που δέχεται σαν δεδομένα εισόδου τις τιμές X, K, T, $\varphi_2[x(k), k] = x(k)^2$, c[x(k), k] = exp[-x(k)] και προσδιορίζει την βέλτιστη πολιτική αντικατάστασης u(k), $k=0,\ldots,K-1$.
- 3. Χρησιμοποιώντας τον κώδικα του προηγούμενου ερωτήματος, υπολογίστε την βέλτιστη πολιτική αντικατάστασης για X=4, K=5 και T=10.