3.33. По ободу шкива, насаженного на общую ось с маховым колесом, намотана нить, к концу который подвешен груз массой m=1 кг. На какое расстояние h должен опуститься груз, чтобы колесо со шкивом получило частоту вращения n=60 об/мин? Момент инерции колеса со шкивом J=0.42 кг $\cdot$ м $^2$ , радиус шкива R=10 см.

### Решение:



Пусть в верхнем положении груз обладал потенциальной энергией mgh.
При опускании груза на расстояние h эта энергия была преобразована в кинетическую энергию вращения колеса и кинетическую энергию поступательного движения груза.

$$mgh = \frac{J\omega^2}{2} + \frac{mv^2}{2}$$
 — (1). Здесь  $v$  —

скорость опускания груза, равна линейной скорости вращения точек на ободе шкива.  $v = \omega R$ ;  $\omega = 2\pi n$  — (2), отсюда  $v = 2\pi nR$  — (3). Подставив (2) и (3) в (1), получим:  $mgh = 2\pi^2 n^2 \left(J + mR^2\right)$ , следовательно,  $h = \frac{2\pi^2 n^2 \left(J + mR^2\right)}{mg}$ ; h = 86.5 см.

**3.34.** Маховое колесо начинает вращаться с угловым ускорением  $\varepsilon = 0.5$  рад/с² и через время  $t_1 = 15$  с после начала движения приобретает момент импульса L = 73.5 кг·м²/с. Найти кинетическую энергию  $W_{\kappa}$  колеса через время  $t_2 = 20$  с после начала движения.

## Решение:

Кинетическая энергия колеса  $W_{\kappa} = \frac{J\omega^2}{2}$  — (1). Момент инерции J можно найти из соотношения  $M = J\varepsilon$ , откуда 168

 $J=\frac{M}{\varepsilon}$  — (2). Из уравнения моментов  $\vec{M}=\frac{d\vec{L}}{dt}$ . Решая это уравнение методом разделения переменных, получим Mdt=dL;  $M\int\limits_0^{t_1}dt=L$ ;  $Mt_1=L$ , откуда  $M=\frac{L}{t_1}$  — (3). Уравнение (2) с учетом (3) запишем как:  $J=\frac{L}{t_1\varepsilon}$  — (4). Угловое ускорение  $\varepsilon=const$ , следовательно,  $\varepsilon=\frac{\omega}{t}$ . Тогда в момент времени  $t_2$  —  $\varepsilon=\frac{\omega}{t_2}$ , откуда угловая скорость  $\omega=\varepsilon t_2$  — (5). Подставив (4) и (5) в (1), получим  $W_\kappa=\frac{L\varepsilon^2t_2^2}{2t_1}$ ;  $W_\kappa=490\,\mathrm{Дж}$ .

3.35. Маховик вращается с частотой n=10 об/с. Его кинетическая энергия  $W_{\kappa}=7,85$  кДж. За какое время t момент сил M=50 Н м, приложенный к маховику, увеличит угловую скорость  $\omega$  маховика вдвое?

## Решение:

Согласно закону изменения момента импульса  $\tilde{M}=\frac{dL}{dt}$ , где  $L=J\omega$ , а  $dL=Jd\omega$ . Воспользуемся методом разделения переменных:  $Mdt=Jd\omega$ ;  $M\int\limits_0^t dt=J\int\limits_{\omega_1}^{\omega_2} d\omega$  или  $Mt=J(\omega_2-\omega_1)$ . По условию  $\omega_2=2\omega_1$ , следовательно,  $Mt=J\omega_1$ , откуда  $t=\frac{J\omega_1}{M}$  — (1). Момент инерции J найдем из уравнения кинетической энергии вращения махо-

вика. 
$$W_{\kappa} = \frac{J\omega_{1}^{2}}{2}$$
, откуда  $J = \frac{2W_{\kappa}}{\omega_{1}^{2}}$  — (2). Подставив (2) в (1), получим  $t = \frac{2W_{\kappa}}{\omega_{1}M}$  или, с учетом  $\omega_{1} = 2\pi n$ ,  $t = \frac{W_{\kappa}}{\pi nM}$ ;  $t = 5$  с.

**3.36.** К ободу диска массой m = 5 кг приложена касательная сила F = 19,6 Н. Какую кинетическую энергию  $W_{\kappa}$  будет иметь диск через время t = 5 с после начала действия силы?

### Решение:

Импульс силы  $F\Delta t = m\Delta v$ , но  $v_0 = 0$  и  $t_0 = 0$ , следовательно, Ft = mv. Отсюда  $v = \frac{Ft}{m}$ . Кинетическая энергия вращения диска  $W_{\kappa} = \frac{J\omega^2}{2}$ ; где  $J = \frac{1}{2}mR^2$ ,  $\omega = \frac{v}{R}$ ;  $W_{\kappa} = \frac{mR^2v^2}{2\cdot 2\cdot R^2} = \frac{F^2t^2}{4m}$ . После подстановки числовых данных  $W_{\kappa} = 480$  Дж.

3.37. Однородный стержень длиной l=1 м подвешен на горизонтальной оси, проходящей через верхний конец стержня. На какой угол  $\alpha$  надо отклонить стержень, чтобы нижний конец стержня при прохождении положения равновесия имел скорость v=5 м/с?

# Решение:



Рассмотрим движение центра масс стержня. При отклонении на угол  $\alpha$  он обладает потенциальной энергией mgh. При прохождении положения равновесия его потенциальная энергия перешла в кинетическую энергию вращения.

 $mgh = \frac{J\omega^2}{2}$  — (1);  $h = \frac{l}{2} - \frac{l}{2}\cos\alpha = \frac{l}{2}(1-\cos\alpha)$ . Момент инерции стержня относительно оси, проходящей через его конец, найдем по теореме Штейнера:  $J = \frac{1}{12}ml^2 + m\cdot\left(\frac{l}{2}\right)^2 = \frac{1}{3}ml^2$ . Угловая скорость  $\omega = \frac{v'}{l/2}$ , где v' — скорость прохождения положения равновесия центром масс.  $v' = \frac{v}{2}$ , следовательно,  $\omega = \frac{v}{l}$ . С учетом всего вышеизложенного, перепишем уравнение (1):  $mg\frac{l}{2}(1-\cos\alpha) = \frac{ml^2v^2}{6l^2}$ ,  $gl(1-\cos\alpha) = \frac{mv^2}{3}$ . Отсюда  $\cos\alpha = 1 - \frac{v^2}{3gl}$ . Подставим числовые значения  $\cos\alpha = 0.15$ ;  $\alpha = 81^\circ$ .

3.38. Однородный стержень длиной  $l=85\,\mathrm{cm}$  подвешен на горизонтальной оси, проходящей через верхний конец стержня. Какую скорость v надо сообщить нижнему концу стержня, чтобы он сделал полный оборот вокруг оси?

# Решение:

Пусть K — точка подвеса стержня. Если стержень сделает пол-оборота и поднимется вертикально вверх, он будет обладать потенциальной энергией mgl. Для этого центру масс стержня нужно сообщить кинетическую энергию  $\frac{J\omega^2}{2} = mgl$  — (1). Момент инерции стержня относительно оси, проходящей через его конец, найдем по теореме Штейнера:

Рассмотрим движение центра масс стержня.



 $J = \frac{1}{12} m l^2 + m \cdot \left(\frac{l}{2}\right)^2 = \frac{1}{3} m l^2$ . Угловая скорость  $\omega = \frac{v}{l}$  — (3), она одинакова для всех точек, принадлежащих стержню. Подставив (2) и (3) в (1), получим  $\frac{m l^2 v^2}{3 \cdot 2 \cdot l^2} = m g l$ , откуда  $v = \sqrt{6g l}$ ; v = 7,1 м/с. Это скорость, при которой стержень поднимется в строго вертикальное положение. При v > 7,1 м/с он сделает полный оборот.

**3.39.** Карандаш длиной  $l=15\,\mathrm{cm}$ , поставленный вертикально, падает на стол. Какую угловую скорость  $\omega$  и линейную скорость  $\nu$  будет иметь в конце падения середина и верхний конец карандаша?

## Решение:



Рассмотрим движение центра масс карандаша. В вертикальном положении он обладает потенциальной энергией, которая при падении переходит в кинетическую энергию вращения.  $\frac{J\omega_1^2}{2} = mg\frac{l}{2}$  (1).

Момент инерции карандаша относительно оси, проходящей через его конец, найдем по теореме Штейнера:  $J=\frac{1}{12}ml^2+m\left(\frac{l}{2}\right)^2=\frac{1}{3}ml^2$  — (2). Подставив (2) в (1), получим  $\frac{l\omega_1^2}{3}=g$ , откуда  $\omega_1=\sqrt{\frac{3g}{l}}$ ;  $\omega_1=14$  рад/с. Поскольку  $\omega_1=\omega_2=\omega$ , а линейная скорость  $v=\omega R$ , то скорость конца карандаша  $v_1=\omega \cdot l=2$ ,1 м/с. Скорость середины  $v_2=\omega\frac{l}{2}=1$ ,05 м/с.

3.40. Горизонтальная платформа массой  $m=100\,\mathrm{kr}$  вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой  $n_1=10\,\mathrm{of/muh}$ . Человек массой  $m_0=60\,\mathrm{kr}$  стоит при этом на краю платформы. С какой частотой  $n_2$  начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу однородным диском, а человека — точечной массой.

### Решение:

Система «человек — платформа» замкнута в проекции на ось y, т. к. моменты сил  $M_{mg}=0$  и  $M_{mog}=0$  в проекции на эту ось. Следовательно, можно воспользоваться законом сохранения момента импульса. В проекции на ось y:  $J_1\omega_1=J_2\omega_2$ , где  $J_1$  — момент



инерции платформы с человеком, стоящим на ее краю,  $J_2$  — момент инерции платформы с человеком, стоящим в центре,  $\omega_1$  и  $\omega_2$  — угловые скорости платформы в обоих

случаях. Здесь 
$$J_1 = \frac{mR^2}{2} + m_0 R^2$$
,  $J_2 = \frac{mR^2}{2}$  — (2), где

R — радиус платформы. Подставляя (2) в (1) и учитывая, что  $\omega = 2\pi n$ , где n — частота вращения платформы, полу-

чим 
$$\left(\frac{mR^2}{2} + m_0 R^2\right) 2\pi n_1 = 2\pi n_2 \frac{mR^2}{2}$$
;  $n_2 = n_1 \frac{mR^2 + 2m_0 R^2}{mR^2} = m_1 + 2m_0$ 

$$= n_1 \frac{m + 2m_0}{m}$$
;  $n_2 = 22$  об/мин.

**3.41.** Какую работу A совершает человек при переходе от края платформы  $\kappa$  ее центру в условиях предыдущей задачи? Радиус платформы R=1,5 м.

#### Решение:

При переходе с края платформы к центру человек совершает работу, равную разности кинетических энергий вращения.  $A = \frac{J_2\omega_2^2}{2} - \frac{J_1\omega_1^2}{2}$  — (1), где  $J_1$  — момент инерции платформы с человеком на краю,  $J_2$  — момент инерции платформы с человеком в центре.  $J_1 = \frac{mR^2}{2} + m_0R^2$ ;  $J_2 = \frac{mR^2}{2}$ . Частота вращения  $\omega_1 = 2\pi n_1$ ;  $\omega_2 = 2\pi n_2$ . Воспользуемся формулой для  $n_2$ , полученной в задаче 3.40:  $n_2 = n_1 \frac{m+2m_0}{m}$ , тогда  $\omega_2 = 2\pi n_1 \frac{m+2m_0}{m} = \omega_1 \frac{m+2m_0}{m}$ . Подставив числовые значения, получим:  $J_1 = 247.5 \, \mathrm{Kr} \cdot \mathrm{M}^2$ ,  $J_1 = 112.5 \, \mathrm{Kr} \cdot \mathrm{M}^2$ ,  $\omega_1 = 1.1 \, \mathrm{pag/c}$ ,  $\omega_2 = 2.3 \, \mathrm{pag/c}$ . Подставив найденные значения в (1), получим:  $A \approx 162 \, \mathrm{Дж}$ .

3.42. Горизонтальная платформа массой m=80 кг и радиусом R=1 м вращается с частотой  $n_1=20$  об/мин. В центре платформы стоит человек и держит в расставленных руках гири. С какой частотой  $n_2$  будет вращаться платформа, если человек, опустив руки, уменьшит свой момент инерции от  $J_1=2,94$  до  $J_2=0,98$  кг·м²? Считать платформу однородным диском.

# Решение:

Момент инерции платформы с человеком складывается из момента инерции пустой платформы и момента инерции человека. В начальном положении  $J_{10} = J_0 + J_1$  — (1), а когда человек опустил руки  $J_{10} = J_0 + J_2$  — (2). Здесь

$$J_0 = \frac{mR^2}{2}$$
 — (3). По закону сохранения момента импульса

$$J_{10}\omega_1=J_{20}\omega_2$$
, где  $\omega_1=2\pi n_1$ ;  $\omega_2=2\pi n_2$ . Тогда  $J_{10}2\pi n_1=J_{20}2\pi n_2$ , откуда  $n_2=\frac{J_{10}n_1}{J_{20}}$  — (4). Решая сорместно (1) — (4), получим:  $n_2=\frac{\left(mR^2/2+J_1\right)\cdot n_1}{mR^2/2+J_2}$  — (5);  $n_2=0.35$  об/с = 21 об/мин.

**3.43.** Во сколько раз увеличилась кинетическая энергия  $W_{\kappa}$  платформы с человеком в условиях предыдущей задачи?

### Решение:

Кинетическая энергия платформы с человеком  $W_k = \frac{J\omega^2}{2}$ . Тогда первоначальная кинетическая энергия  $W_{k1} = \frac{J_{10}\omega_1^2}{2}$ , а после того, как человек опустил руки  $W_{k2} = \frac{J_{20}\omega_2^2}{2}$ . Здесь  $J_{10} = \frac{mR^2}{2} + J_1$ ;  $J_{20} = \frac{mR^2}{2} + J_2$ ;  $\omega_1 = 2\pi n_1$ ;  $\omega_2 = 2\pi n_2$ . Тогда  $\frac{W_{\kappa 1}}{W_{\kappa 2}} = \frac{J_{20}\omega_2^2}{J_{10}\omega_1^2} = \frac{(mR^2/2 + J_1)4\pi^2n_1^2}{(mR^2/2 + J_2)4\pi^2n_2^2} = \frac{n_1^2(mR^2 + 2J_1)}{n_2^2(mR^2 + J_2)}$ . Из уравнения (5) предыдущей задачи  $n_2 = \frac{(mR^2 + 2J_1)\cdot n_1}{mR^2 + 2J_2}$ , тогда  $\frac{W_{\kappa 2}}{W_{\kappa 1}} = \frac{mR^2 + 2J_2}{mR^2 + 2J_1}$ ;  $\frac{W_{\kappa 2}}{W_{\kappa 1}} = 1,05$ .

3.44. Человек массой  $m_0=60$  кг находится на неподвижной платформе массой m=100 кг. С какой частотой n будет врачаться платформа, если человек будет двигаться по окружности радиусом r=5 м вокруг оси вращения? Скорость движения человека относительно платформы  $\nu_0=4$  км/ч. Радиус плат-

формы R = 10 м. Считать платформу однородным диском, а человека — точечной массой.

### Решение:

По закону сохранения момента импульса  $(J_1+J_2)\times \omega=rm_0v_0$  — (1), где  $J_1=m_0r^2$  — (2) — момент инерции человека;  $J_2=\frac{1}{2}mR^2$  — (3) — момент инерции платформы,  $rm_0v_0$  — момент импульса человека. Подставив (2) и (3) в (1), получим  $(m_0r^2+1/2mR^2)\omega=rm_0v_0$  или  $(m_0r^2+1/2mR^2)2\pi n=rm_0v_0$ , откуда  $n=\frac{rm_0v_0}{\pi(2m_0r^2+mR^2)}$ . Подставив числовые значения, учитывая, что v=1,1 м/с, получим n=0,49 об/мин.

**3.45.** Однородный стержень длиной l=0.5 м совершает малые колебания в вертикальной плоскости около горизонтальный оси, проходящей через его верхний конец. Найти период колебаний T стержня.

## Решение:

В данной задаче стержень является физическим маятником, его период малых колебаний  $T=2\pi\sqrt{\frac{J}{mdg}}$ , где J — момент инерции стержня относительно оси вращения,  $d=\frac{l}{2}$  — (2) — расстояние от центра масс до оси вращения. По теореме Штейнера  $J=J_0+md^2$ , где  $J_0=\frac{1}{12}ml^2$ , отсюда  $J=\frac{ml^2}{12}+\frac{ml^2}{4}=\frac{4ml^2}{12}=\frac{ml^2}{3}$  — (3).

Подставив (2) и (3) в (1), получим 
$$T = 2\pi \sqrt{\frac{2ml^2}{3mlg}} = 2\pi \sqrt{\frac{2l}{3g}}$$
;  $T = 1,16$  с.

3.46. Найти период колебания T стержня предыдущей задачи, если ось вращения проходит через точку, находящуюся на расстоянии d=10 см от его верхнего конца.

## Решение:

Период малых колебаний стержня 
$$T=2\pi \times \sqrt{\frac{J}{m\cdot(l/2-d)g}}$$
 . По теореме Штейнера  $J=J_0+l$  +  $m\left(\frac{l}{2}-d\right)^2$  , где  $J_0=\frac{ml^2}{12}$  . Отсюда  $J=\frac{ml^2}{12}+l$  +  $\frac{ml^2}{4}-mld+md^2=\frac{4ml^2}{12}-md(l-d);\ J=m\cdot\left(\frac{l^2}{3}-dl+d^2\right)$  . Тогда  $T=2\pi\sqrt{\frac{l^2/3-dl+d^2}{g(l/2-d)}}$  ;  $T=1,07$  с.

3.47. На концах вертикального стержня укреплены два груза. Центр масс грузов находится ниже середины стержня на расстоянии d=5 см. Найти длину стержня l, если известно, что период малых колебаний стержня с грузами вокруг горизонтальный оси, проходящей через его середину, T=2 с. Массой стержня пренебречь по сравнению с массой грузов.

# Решение:

Данная система является математическим маятником, для которого квадрат периода малых колебаний определяется по формуле:  $T^2 = 4\pi^2 \frac{J}{(m_1 + m_2)dg}.$  Момент инерции такого маятника:  $J = l^2(m_1 + m_2)/4$ . Отсюда  $T^2 = 4\pi^2 \times$ 



$$imes rac{l^2 \left(m_1 + m_2
ight)}{4 \left(m_1 + m_2
ight) \cdot dg} = \pi^2 rac{l^2}{dg}$$
, откуда окончательно получим:  $l = T \sqrt{dg} \ / \ \pi$  ;  $l = 0.446 \ \mathrm{M}$ .

**3.48.** Обруч диаметром D = 56,5 см висит на гвозде, вбитом в стенку, и совершает малые колебания в плоскости, параллельной стене. Найти период колебаний T обруча.

### Решение:

Центр масс находится в центре обруча, тогда период малых колебаний  $T=2\pi\sqrt{\frac{J}{mRg}}=2\pi\sqrt{\frac{2J}{mDg}}$ , где  $J=\frac{1}{2}m\times (R_1^2+R_2^2)$ ,  $R_1=R_2$ , следовательно,  $J=mR^2=m\frac{D^2}{4}$ . Отсюда  $T=2\pi\sqrt{\frac{2mD^2}{4mDg}}=2\pi\sqrt{\frac{D}{2g}}$ ;  $T=1.5\,\mathrm{c}$ .

3.49. Какой наименьшей длины I надо взять нить, к которой подвешен однородный шарик диаметром D=4 см, чтобы при определении периода малых колебаний T шарика рассматривать его как математический маятник? Ошибка  $\delta$  при таком допущении не должна превышать 1%.

# Решение:

Период малых колебаний математического маятника  $T_1 = 2\pi \sqrt{\frac{l}{g}}$  — (1), период малых колебаний физического маятника  $T_2 = 2\pi \sqrt{\frac{J}{mgl}}$ , где J — момент инерции шарика относительно оси вращения, m — масса шарика и l — расстояние от центра масс шарика до точки подвеса. В 178

нашем случае 
$$J = \frac{2}{5}mR^2 + ml^2 = ml^2 \left[1 + \frac{2}{5} \left(\frac{R}{l}\right)^2\right]$$
. Обозна-

чим  $A = 1 + \frac{2}{5} \left( \frac{R}{l} \right)^2$ , тогда  $J = Aml^2$ . С учетом этого полу-

чим 
$$T_2 = 2\pi \sqrt{\frac{lA}{g}}$$
 — (2). Из (1) и (2) имеем  $\frac{T_2}{T_1} = \sqrt{A}$ .

Ошибка, которую мы делаем, принимая подвешенный шарик за математический маятник, будет  $\delta = \frac{T_2 - T_1}{T_1} =$ 

$$=\frac{T_2}{T_1}-1=\sqrt{A}-1$$
; отсюда  $A=\left[1+\frac{2}{5}\left(\frac{R}{l}\right)^2\right]=(1+\delta)^2$ , или

$$\frac{R}{l} = \sqrt{\frac{5}{2}[(1+\delta)^2 - 1]}$$
 — (3). По условию  $\delta \le 0.01$ . Под-

ставляя в (3), получим  $\frac{R}{l} \le 0.0224$ . Так как  $R = \frac{D}{2} = 0.02$  м,

то предельное расстояние от центра масс шарика до точки подвеса  $l \ge 0.089$  м, а предельная длина нити L = l - R; L = 0.069 м.

3.50. Однородный шарик подвещен на нити, длина которой l равна радиусу шарика R. Во сколько раз период малых колебаний  $T_1$  этого маятника больше периода малых колебаний  $T_2$  математического маятника с таким же расстоянием от центра масс до точки подвеса?

# Решение:

Период малых колебаний данного физического

маятника
 
$$T_1 = 2\pi \sqrt{\frac{J}{m2Rg}}$$
 Период малых

 колебаний
 математического
 маятника



 $T_2 = 2\pi \sqrt{2R/g}$  . По теореме Штейнера  $J = J_0 + m(2R)^2$ , где  $J_0 = \frac{2}{5} mR^2$ , отсюда  $J = \frac{2}{5} mR^2 + 4mR^2 = 4,4mR^2$ . Тогда

где 
$$J_0=\frac{2}{5}mR^2$$
, отсюда  $J=\frac{2}{5}mR^2+4mR^2=4,4mR^2$ . Тогда 
$$T_1=2\pi\sqrt{\frac{4,4mR^2}{2mRg}}=2\pi\sqrt{\frac{2,2R}{g}}\;;\quad \frac{T_1}{T_2}=\frac{2\pi\sqrt{2,2R}\sqrt{g}}{2\pi\sqrt{g}\sqrt{2R}}\;.$$
 После

подстановки  $\frac{T_1}{T_2} = 1.05$ .