coordinate geometry

distance between two points

Shortest Distance

Find the shortest distance between all pairs of points

Example 1

Find the shortest distance between the points (1,2) and (5,5).

Find the shortest distance numerically

Find the shortest distance numerically

Find the shortest distance numerically

Find the shortest distance numerically

Find the shortest distance numerically

Shortest distance between two points

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Example 2

Find the shortest distance between (-2,3) and (4,-5).

Example 2

Find the shortest distance between (-2,3) and (4,-5).

10

Example 3

Find the midpoint of the line segment connecting the points W(1,2) and Z(5,7).

Find the midpoint numerically

Find the midpoint numerically

Find the midpoint numerically

Example Find the midpoint numerically

Midpoints General formula

The **midpoint** of a line segment is the average of the two end coordinates

Midpoints

The midpoint of the line segment joining (x_1, y_1) and (x_2, y_2) is

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

Example 4

M is the midpoint of the line segment joining A(1, -3) to B(3, 4).

- a. Find the coordinates of M.
- b. M is also the midpoint of the line segment CD, where C(1,3). Find the coordinates of D.

Example 4

M is the midpoint of the line segment joining A(1, -3) to B(3, 4).

- a. Find the coordinates of M.
- b. M is also the midpoint of the line segment CD, where C(1,3). Find the coordinates of D.
- a. $M(2, \frac{1}{2})$ b. D(3, -2)

Gradient

Gradient Definition

Gradient

$$M = \frac{y_2 - y_1}{x_2 - x_1}$$

Two lines are **parallel** if they have the same gradient.

Example 5

Find the gradient of the lines between

- a. (3,5) and (5,9)
- b. (-2,2) and (1,-4)

Example 5

Find the gradient of the lines between

- a. (3,5) and (5,9)
- b. (-2,2) and (1,-4)
- a. 2 b. -2

Example 6

Show that the points A(-3,2), B(-2,3), C(-1,-1) and D(-3,-3) form a trapezium but not a parallelogram.

Example 6

Show that the points A(-3,2), B(-2,3), C(-1,-1) and D(-3,-3) form a trapezium but not a parallelogram.

Gradients: AB = 1 = DC BC = -4 AD = undefined

Gradient of perpendicular

Gradient of perpendicular

Gradient of perpendicular

Example 7

Find the gradient of the line that is perpendicular to the line connecting (1,5) and (3,9).

Example 7

Find the gradient of the line that is perpendicular to the line connecting (1,5) and (3,9).

$$m_1 = 2 \implies m_2 = -\frac{1}{2}$$

y = mx + c Gradient and y-intercept (number)

y = mx + c Gradient and y-intercept (number)

y = mx + c Gradient and y-intercept (algebra)

y = mx + c Gradient and y-intercept (algebra)

$$y = mx + c$$

For equations of the form y = mx + c

- \bigcirc *m* is the **gradient** of the line
- \bigcirc the line crosses the y-axis at (0, c)

Example 8

The general equation of a line is Ax + By + C = 0. Find the gradient (m) and the y-intercept (c) of the line.

Example 8

The general equation of a line is Ax + By + C = 0. Find the gradient (m) and the y-intercept (c) of the line.

$$m = -\frac{A}{B}$$
 $c = -\frac{C}{B}$

General equation of a line 1 Known gradient and a point on the line

General equation of a line 1

Known gradient and a point on a line

$$y - y_1 = m(x - x_1)$$

Example 9

Find the equation of the line parallel to y = 3x - 17 which passes through the point (2,5).

Example 9

Find the equation of the line parallel to y = 3x - 17 which passes through the point (2,5).

$$y = 3x - 1$$

General equation of a line 2

Two known points on the line

General equation of a line 2

Substituting $\frac{y_2-y_1}{x_2-x_1}$ into the previous equation of a line and rearranging gives

Two known points on the line

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

Example 10

Find the equation of the line passing through the points (-1,1) and (1,5).

Example 10

Find the equation of the line passing through the points (-1,1) and (1,5).

$$y = 2x + 3$$

Example 11

The ends of a line segment are (v - 4w, v + 5w) and (v + 4w, v - 5w), where w is positive. Find the

- a. length
- b. gradient
- c. midpoint

of the line segment.

Example 11

The ends of a line segment are (v - 4w, v + 5w) and (v + 4w, v - 5w), where w is positive. Find the

- a. length
- b. gradient
- c. midpoint

of the line segment.

a.
$$2\sqrt{41}w$$
 b. $\frac{-5}{4}$ c. (v,v)

Extension

The ends of a line segment are (v-4w,v+5w) and (v+4w,v-5w), where w is positive. Pick values for v and w and show the previous result geometrically.

Example 12

The points P(-2,1), Q(2,3), R(0,0) and S(-4,2). Prove that they form a parallelogram.