

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Star Delta Transformations

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Star Delta Transformations – Numerical Example 3

Question:

Find the equivalent resistance between the terminals A & B in the given network.

Star Delta Transformations – Numerical Example 3

Solution:

$$X = \frac{R*2R}{(R+2R+R)} = \frac{R}{2} \Omega$$

$$Y = \frac{R*R}{(R+2R+R)} = \frac{R}{4} \Omega$$

$$Z = \frac{R*2R}{(R+2R+R)} = \frac{R}{2} \Omega$$

Star Delta Transformations – Numerical Example 3

Solution (Continued..):

2.25R

Star Delta Transformations – Numerical Example 4

Question:

Find the equivalent resistance between the terminals A & B in the network shown.

Star Delta Transformations – Numerical Example 4

Solution:

Star Delta Transformations – Numerical Example 4

Solution (Continued..):

Star Delta Transformations – Numerical Example 5

Question:

Find the voltage drop across 10Ω resistor in the network shown.

Star Delta Transformations – Numerical Example 5

Solution:

Star Delta Transformations – Numerical Example 5

Solution (Continued..):

Star Delta Transformations – Numerical Example 5

PES UNIVERSITY ONLINE

Solution (Continued..):

Current delivered by 60V source,
$$I_S = \frac{60}{R_{eq}} = \frac{60}{19.44} = 3.086A$$

Voltage drop across 10Ω resistor = $I_S*10 = 30.86V$

Text Book & References

Text Book:

Reference Books:

- 1. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 2. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 3. "Engineering Circuit Analysis", William Hayt Jr., Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu