Data Analysis with R - Day 3

ylee@dongguk.edu // dryl@icloud.com

2019-4-30

File I/O

Graphing

File I/O

File Input/Output

First, one must be able to locate a file.

2019-4-30

In A Typical Unix Family Machine

Machine nickname: eblis User name: ylee

Name	Display	Full Path
Home	eblis: ylee\$	/Users/ylee
Root	eblis:/ ylee\$	
R Library	eblis:library ylee\$	/Library/Frameworks/R.framework/Versions/3.5/Resources/library

2019-4-30

Set up the working directory in R: **setwd()** and **getwd()**

```
(oldPath <- getwd())
## [1] "/Users/ylee/Library/Mobile Documents/com~apple~CloudDocs/2019/2019-med-informatics/premed2/sl/day3"
setwd("/Users/ylee")
qetwd()
## [1] "/Users/vlee"
dir()
                                "Creative Cloud Files" "Desktop"
   [1] "Applications"
                                "Downloads"
   [4] "Documents"
                                                        "eclipse"
                                                        "Music"
   [7] "Library"
                                "Movies"
## [10] "Pictures"
                                "Public"
                                                        "VirtualBox VMs"
setwd(oldPath)
getwd()
## [1] "/Users/vlee/Library/Mobile Documents/com~apple~CloudDocs/2019/2019-med-informatics/premed2/sl/day3"
dir()
                         "d3.aux"
                                         "d3.log"
                                                          "d3.nav"
   [1] "boxplot.pdf"
                                                          "d3.tex"
   [5] "d3.out"
                         "d3.pdf"
                                         "d3.snm"
   [9] "d3.toc"
                         "d3.vrh"
                                         "d3d08_Rnw"
                                                          "d3d09 Rnw"
   [13] "d3d095,Rnw"
                         "d3x.aux"
                                         "d3x.loa"
                                                          "d3x.nav"
  [17] "d3x.out"
                         "d3x.snm"
                                         "d3x.tex"
                                                          "d3x.toc"
  [21]
        "d3x.vrb"
                         "d3xp.pdf"
                                         "d3y.aux"
                                                          "d3y.log"
                                                          "d3y.snm"
## [25] "d3v.nav"
                         "d3v.out"
                                         "d3v.pdf"
```

"d3v.toc"

[29] "d3v.tex"

"figure"

"d3v.vrb"

R data.frame: revisit

- A final data is grid-structured and stored commonly in data.frame() in R.
- R distributes enormous amount of educational material as its data.frame().

	var1	var2	var3	var4	
record1					
record2					
record3					

Try Google with "R common datasets to learn ..."

Orthodont dataset

```
data(Orthodont, package = "nlme")
is.data.frame(Orthodont)
## [1] TRUE
head(Orthodont, 5)
    distance age Subject Sex
## 1
        26.0 8
                     M01 Male
        25 A 1A
## 2
                     MO1 Male
## 3
        29.0 12 M01 Male
        31.0 14 M01 Male
## 4
        21.5 8 M02 Male
## 5
str(Orthodont)
## Classes 'nfnGroupedData', 'nfGroupedData', 'qroupedData' and 'data.frame': 108 obs. of 4 variables:
## $ distance: num 26 25 29 31 21.5 22.5 23 26.5 23 22.5 ...
## $ age : num 8 10 12 14 8 10 12 14 8 10 ...
## $ Subject : Ord.factor w/ 27 levels "M16"<"M05"<"M02"<...: 15 15 15 15 3 3 3 3 7 7 ...
            : Factor w/ 2 levels "Male". "Female": 1 1 1 1 1 1 1 1 1 1 ...
## - attr(*, "outer")=Class 'formula' language ~Sex
## ....- attr(*, ".Environment")=<environment: R_GlobalEnv>
## - attr(*. "formula")=Class 'formula' language distance ~ age | Subject
   ....- attr(*, ".Environment")=<environment: R_GlobalEnv>
## - attr(*. "labels")=List of 2
   ..$ x: chr "Age"
##
    .. $ y: chr "Distance from pituitary to pterygomaxillary fissure"
   - attr(*, "units")=List of 2
    ..$ x: chr "(yr)"
##
   ..$ v: chr "(mm)"
##
## - attr(*, "FUN")=function (x)
   ... attr(*, "source")= chr "function (x) max(x, na.rm = TRUE)"
## - attr(*, "order.groups")= logi TRUE
```

0	-	٠	h	^	Ы	^	n	٠
U		L	ш	u	u	u	ш	4

##		distance	age	Subject	Se
##	1	26.0	8	M01	Mal
##	2	25.0	10	M01	Mal
##	3	29.0	12	M01	Mal
##	4	31.0	14	M01	Mal
##	5	21.5	8	M02	Mal
##	6	22.5	10	M02	Mal
##	7	23.0	12	M02	Mal
##	8	26.5	14	M02	Mal
##	9	23.0	8	M03	Mal
##	10	22.5	10	M03	Mal
##	11	24.0	12	M03	Mal
##	12	27.5	14	M03	Mal
##	13	25.5	8	M04	Mal
##	14	27.5	10	M04	Mal
##	15	26.5	12	M04	Mal
##	16	27.0	14	M04	Mal
##	17	20.0	8	M05	Mal
##	18	23.5	10	M05	Mal
##	19	22.5	12	M05	Mal
##	20	26.0	14	M05	Mal
##	21	24.5	8	M06	Mal
##	22	25.5	10	M06	Mal
##	23	27.0	12	M06	Mal
##	24	28.5	14	M06	Mal
##	25	22.0	8	M07	Mal
##	26	22.0		M07	
##	27	24.5	12	M07	Mal
##	28	26.5	14	M07	Mal
##	29	24.0	8	M08	Mal
##	30	21.5		M08	Mal
##		24.5		M08	Mal
##	32	25.5		80M	Mal
##		23.0		M09	
##	34	20.5	10	M09	
##	35	31.0	12	M09	Mal

36

Indexing and subsetting values within a data.frame

```
Orthodont$distance
    [1] 26.0 25.0 29.0 31.0 21.5 22.5 23.0 26.5 23.0 22.5 24.0 27.5 25.5 27.5
    [15] 26.5 27.0 20.0 23.5 22.5 26.0 24.5 25.5 27.0 28.5 22.0 22.0 24.5 26.5
   [29] 24.0 21.5 24.5 25.5 23.0 20.5 31.0 26.0 27.5 28.0 31.0 31.5 23.0 23.0
   [43] 23.5 25.0 21.5 23.5 24.0 28.0 17.0 24.5 26.0 29.5 22.5 25.5 25.5 26.0
    [57] 23.0 24.5 26.0 30.0 22.0 21.5 23.5 25.0 21.0 20.0 21.5 23.0 21.0 21.5
   [71] 24.0 25.5 20.5 24.0 24.5 26.0 23.5 24.5 25.0 26.5 21.5 23.0 22.5 23.5
   [85] 20.0 21.0 21.0 22.5 21.5 22.5 23.0 25.0 23.0 23.0 23.5 24.0 20.0 21.0
   [99] 22.0 21.5 16.5 19.0 19.0 19.5 24.5 25.0 28.0 28.0
head(Orthodont[1:5, 1:2])
     distance age
## 1
        26.0 8
## 2
        25 A 1A
        29.0 12
## 3
        31.0 14
## 4
## 5
        21 5 8
Orthodont[, 1]
    [1] 26.0 25.0 29.0 31.0 21.5 22.5 23.0 26.5 23.0 22.5 24.0 27.5 25.5 27.5
    [15] 26.5 27.0 20.0 23.5 22.5 26.0 24.5 25.5 27.0 28.5 22.0 22.0 24.5 26.5
    [29] 24.0 21.5 24.5 25.5 23.0 20.5 31.0 26.0 27.5 28.0 31.0 31.5 23.0 23.0
   [43] 23.5 25.0 21.5 23.5 24.0 28.0 17.0 24.5 26.0 29.5 22.5 25.5 25.5 26.0
   [57] 23.0 24.5 26.0 30.0 22.0 21.5 23.5 25.0 21.0 20.0 21.5 23.0 21.0 21.5
   [71] 24.0 25.5 20.5 24.0 24.5 26.0 23.5 24.5 25.0 26.5 21.5 23.0 22.5 23.5
    [85] 20.0 21.0 21.0 22.5 21.5 22.5 23.0 25.0 23.0 23.0 23.5 24.0 20.0 21.0
   [99] 22.0 21.5 16.5 19.0 19.0 19.5 24.5 25.0 28.0 28.0
OrthoF <- subset(Orthodont, Sex == "Female")
is.data.frame(OrthoF)
## [1] TRUE
```

텍스트 파일 변환 없이 R data.frame을 그래도 저장하고 부를 수 있다.

```
nrow(OrthoF); ncol(OrthoF)
## [1] 44
## [1] 4
save(OrthoF, file = "OrthoF.RData")
#
#
#
Load("OrthoF.Rdata")
#
#
#
```

Universal text-format of table data

- CSV (*.csv): Comma-separated values
- TSV (*.tsv *.txt): Tab-separated values

```
CSV
"distance", "age", "Subject", "Sex"
26,8, "M01", "Male"
25,10, "M01", "Male"
29,12, "M01", "Male"
31,14, "M01", "Male"
21.5,8, "M02", "Male"
.
```

```
TSV

"distance" "age" "Subject" "Sex"

26 8 "M01" "Male"

25 10 "M01" "Male"

29 12 "M01" "Male"

31 14 "M01" "Male"

21.5 8 "M02" "Male"

.
```

Try:

```
write.table(Orthodont, "Orthodont.csv", sep = ",", row.names = FALSE)
```

Compare:

```
write.table(Orthodont, "Orthodont.tsv", sep = "\t", row.names = FALSE)
```

```
orthoFromCSV <- read.table("Orthodont.csv", sep = ",", header = TRUE)
is.data.frame(orthoFromCSV)
## [1] TRUE
str(orthoFromCSV)
  'data.frame': 108 obs. of 4 variables:
  $ distance: num 26 25 29 31 21.5 22.5 23 26.5 23 22.5 ...
  $ age : int 8 10 12 14 8 10 12 14 8 10 ...
##
## $ Subject : Factor w/ 27 levels "F01", "F02", "F03",...: 12 12 12 12 13 13 13 14 14 ...
## $ Sex : Factor w/ 2 levels "Female". "Male": 2 2 2 2 2 2 2 2 2 ...
orthoFromCSV2 <- read.table("Orthodont.csv", sep = ",",
   stringsAsFactors = FALSE, header = TRUE)
str(orthoFromCSV2)
  'data.frame': 108 obs. of 4 variables:
  $ distance: num 26 25 29 31 21.5 22.5 23 26.5 23 22.5 ...
##
  $ age : int 8 10 12 14 8 10 12 14 8 10 ...
## $ Subject : chr "M01" "M01" "M01" "M01" ...
## $ Sex : chr "Male" "Male" "Male" ...
```

Reading CSV from Distant Source

```
# https://vincentarelbundock.github.io/Rdatasets/csv/boot/calcium.csv
calcium <- read.csv("https://vincentarelbundock.github.io/Rdatasets/csv/boot/calcium.csv",</pre>
header = TRUE)
str(calcium)
   'data frame': 27 obs. of 3 variables:
   $ X : int 1 2 3 4 5 6 7 8 9 10 ...
   $ time: num 0.45 0.45 0.45 1.3 1.3 2.4 2.4 2.4 4 ...
   $ cal : num  0.3417 -0.00438  0.82531  1.77967  0.95384  ...
head(calcium)
    X time
               cal
## 1 1 0.45 0.34170
## 2 2 0.45 -0.00438
## 3 3 0.45 0.82531
## 4 4 1.30 1.77967
## 5 5 1.30 0.95384
## 6 6 1.30 0.64080
```

Orthodont 자료철에서 연령별, 성별로 구분하여 길이(distance)의 요약통계량을 구하라.

^a평균은 mean(), quantile(), summary() 함수 이용

Orthodont 자료철에서 연령별, 성별로 구분하여 길이(distance)의 요약통계량을^a 구하라.

^a평균은 mean(), quantile(), summary() 함수 이용

mean(Orthodont\$distance)

[1] 24.02315

quantile(Orthodont\$distance)

0% 25% 50% 75% 100% ## 16.50 22.00 23.75 26.00 31.50

summary(Orthodont\$distance)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 16.50 22.00 23.75 24.02 26.00 31.50

Notice

Excel data (*.xlsx), a famous spreadsheet format, SPSS data (*.dat), or SAS data (*. bdat) can be easily imported to R, which is not covered in this course of lecture.

2019-4-30

Graphing

A Typical Scientific Graphic Chart

To understand before graphing a chart, we always split a chart into *DATA*, *ELEMENT* and *GUIDE*.

2019-4-30

Component	Content
ELEMENT	line (position (angle * its
	sine value))
GUIDE	axis (dim(1), limit(0, 350),
	tick(50), label = "angle
	(degrees)")
GUIDE	axis (dim(2), limit(-1.0,
	+1.0), tick(0.5), label =
	"sine ")

Component	Content
ELEMENT	line (position (angle * its sine value), linetype = "solid")
ELEMENT	line (position (angle * its cossine value), linetype = "broken")
GUIDE	<pre>axis (dim(1), limit(0, 350), tick(50), label = "angle (degrees)")</pre>
GUIDE	axis (dim(2), limit(-1.0, +1.0), tick(0.5), label = "sine (solid), cosine (bro- ken)")

Component	Content
ELEMENT	point (position (lvp * mvo))
GUIDE	axis (dim(1), limit(23, 45),
	tick(5), $label = "lvp"$)
GUIDE	axis (dim(2), limit(77, 117),
	tick(10), label = "mvo")

Component	Content
ELEMENT	point (position (age * distance))
ELEMENT	line (position (age * distance))
GUIDE	axis (dim(1), discrete(8, 10, 12, 14), tick(1), label = "age (years)")
GUIDE	<pre>axis (dim(2), limit(15, 32), tick(5), label = "distance (mm)")</pre>

Component	Content
ELEMENT	point (position (age * dis-
	tance), shape (gender),
	color (subject))
ELEMENT	line (position (age * dis-
	tance), shape (gender),
	color (subjec))
GUIDE	legend.point (dim(1), la-
	bel(gender))
GUIDE	legend.line (dim(1), la-
	bel(gender))
GUIDE	axis (dim(1), discrete(8,
	10, 12, 14), tick(1), label =
	"age (years)")
GUIDE	axis (dim(2), limit(15, 32),
	tick(5), label = "distance
	(mm)")

Component	Content
ELEMENT	point (position (lvp * mvo))
GUIDE	axis (dim(1), limit(23, 45),
	tick(5), $label = "lvp"$)
GUIDE	axis (dim(2), limit(77, 117),
	tick(10), label = "mvo")

Component	Content
ELEMENT	point (position (lvp * mvo))
GUIDE	axis (dim(1), limit(23, 45),
	tick(5), $label = "lvp"$)
GUIDE	axis (dim(2), limit(77, 117),
	tick(10), label = "mvo")

Component	Content	
ELEMENT	point (position (lvp * mvo))	plot(lvp, mvo, data = dogs)
GUIDE	axis (dim(1), limit(23, 45), tick(5), label = "lvp")	xlab = "lvp", xlim = c(23, 45)
GUIDE	axis (dim(2), limit(77, 117), tick(10), label = "mvo")	ylab = "mvo", ylim = $c(77, 117)$

Try:

```
require(boot)
data(dogs, package = "boot")
plot(mvo ~ lvp, data = dogs,
    xlab = "lvp", xlim = c(23, 45),
        ylab = "mvo", ylim = c(77, 117))
```

Compare:

```
plot(mvo ~ lvp, data = dogs)
plot(dogs$lvp, dogs$mvo)
```

```
t(dogs)

## 1 2 3 4 5 6 7

## mvo 78 92 116 90 106 78 99

## lvp 32 33 45 30 38 24 44

par(mar = c(5, 4, 0, 2))
plot(mvo ~ lvp, data = dogs)
```



```
par(mar = c(5, 4, 0, 2))
plot(mvo ~ lvp, data = dogs,
    xlab = "left ventricular pressure",
        ylab = "cardiac oxygen consumption")
```


left ventricular pressure

```
par(mar = c(5, 4, 0, 2))
plot(mvo ~ lvp, data = dogs,
    type = "l")
```


97마리의 고양이의 체중과 신장 자료로부터 체중과 신장의 기초통계량을 구한 뒤 둘 사이의 관계를 산포도로 표현한 뒤 "Relationship between Weight and Height of Cats"로 붙이시오. (자료는 https://vincentarelbundock.github.io/Rdatasets/csv/boot/catsM.csv에 있다.)

```
catsM <- read.csv("https://vincentarelbundock.github.io/Rdatasets/csv/boot/catsM.csv", header</pre>
str(catsM)
   'data.frame': 97 obs. of 4 variables:
   $ X : int 1 2 3 4 5 6 7 8 9 10 ...
##
   $ Sex: Factor w/ 1 level "M": 1 1 1 1 1 1 1 1 1 1 ...
  $ Bwt: num 2 2 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 ...
```

head(catsM)

##

```
X Sex Bwt Hwt
## 1 1
        M 2.0 6.5
        M 2.0 6.5
## 2 2
## 3 3
        M 2.1 10.1
## 4 4
        M 2.2 7.2
## 5 5
        M 2.2 7.6
## 6 6
        M 2.2 7.9
```

summarv(catsM)

##	X	Sex	Bwt	Hwt
##	Min. : 1	M:97	Min. :2.0	Min. : 6.50
##	1st Qu.:25		1st Qu.:2.5	1st Qu.: 9.40
##	Median :49		Median :2.9	Median :11.40
##	Mean :49		Mean :2.9	Mean :11.32
##	3rd Qu.:73		3rd Qu.:3.2	3rd Qu.:12.80
##	Max. :97		Max. :3.9	Max. :20.50

\$ Hwt: num 6.5 6.5 10.1 7.2 7.6 7.9 8.5 9.1 9.6 9.6 ...

```
plot(Bwt ~ Hwt, data = catsM,
    main = "Relationship between Weight and Height of Cats")
```

Relationship between Weight and Height of Cats

고양이 체중신장 그래프에서 가로축과 세로축의 이름에 변수명이 아닌 설명을 넣으려면?

고양이 체중신장 그래프에서 가로축과 세로축을 하나씩만 남기려면?

축의 원점을 0, 0으로 잡으려면?

회귀직선을 넣을 수 있을까?

Matrix plot with matplot()

```
head(Orthodont)
    distance age Subject Sex
        26.0 8
                    M01 Male
## 2
        25.0 10
                    M01 Male
        29.0 12
## 3
                  M01 Male
## 4
        31.0 14
                 M01 Male
        21.5 8
                 M02 Male
## 5
        22.5 10
                    M02 Male
## 6
distanceAsMatrix <- matrix(Orthodont$distance, byrow = TRUE, nrow = 4)
table(Orthodont$Sex) / 4
##
##
    Male Female
      16
          11
matplot(c(8, 10, 12, 14), distanceAsMatrix, type = "b",
   pch = 1, col = 1, ltv = 1.
       xlab = "Age",
       ylab = "Distance")
```


39/49

앞의 Orthodont 자료를 matplot()으로 연령별 변화를 도식하되 남자아이와 여자아이를 구별하는 방법이 있을까?

Grammar of Graphics

Component	Content
ELEMENT	point (position (age * dis-
	tance), shape (gender),
	color (subject))
ELEMENT	line (position (age * dis-
	tance), shape (gender),
	color (subjec))
GUIDE	legend.point (dim(1), la-
	bel(gender))
GUIDE	legend.line (dim(1), la-
	bel(gender))
GUIDE	axis (dim(1), discrete(8,
	10, 12, 14), tick(1), label =
	"age (years)")
GUIDE	axis (dim(2), limit(15, 32),
	tick(5), label = "distance
	(mm)")

boxplot: 수치형 자료의 고급 통계도식법

Schema as an element

Component	Content
ELEMENT	schema (position (bin.quantile.letter(distance
	* age)))
GUIDE	axis (dim(1), discrete(8, 10, 12, 14), label =
	"age")
GUIDE	axis $(dim(2), limit(15, 32), tick(5), label =$
	"distance")


```
summary(catsM$Hwt)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.50 9.40 11.40 11.32 12.80 20.50
median(catsM$Hwt) - IQR(catsM$Hwt) * 1.5
## [1] 6.3
median(catsM$Hwt) + IQR(catsM$Hwt) * 1.5
## [1] 16.5
```

Orthodont 자료철을 이용해서 다음의 element와 guide를 가지는 그래프를 완성하라.

Component	Content
ELEMENT	schema (position (bin.quantile.letter(distance
	* (age * Sex)), color (Sex)))
GUIDE	axis (dim(1), discrete(8, 10, 12, 14), label =
	"age")
GUIDE	axis $(dim(2), limit(15, 32), tick(5), label =$
	"distance")

Crampton은 음식물 내 아스코르브산이 용량 별로 실험동물의 치아 성장에 미치는 효과를 알고자 총 60마리의 기니피그를 골라 비타민캡슐과 오렌지주스로 나누어 실험하였다[®] R의 내장 자료철 **ToothGrowth**가 이 실험자료를 가지고 있으며 다음처럼 변수 **len** (numeric. 치아 길이), **supp** (factor. 오렌지주스는 OJ, 비타민캡슐은 VC로 코딩), **dose** (numeric. 용량)로 구성되어 있다:

이 **ToothGrowth** 자료에서 치아의 성장을 아스코르브산 용량에 따라 도해하면서 오렌지주스와 비타민캡슐을 색깔로 대별할 수 있도록 하되, R 기본함수인 **boxplot()**을 이용하라.

^aCrampton, E. W. (1947). The growth of the odontoblast of the incisor teeth as a criterion of vitamin C intake of the guinea pig. The Journal of Nutrition, 33(5), 491–504. doi: 10.1093/jn/33.5.491.

- Read more about "Grammar of Graphics" from *The Grammar* of *Graphics* (2nd Edition. 2005) by Leland Wilkinson
- Look around more R graphics by googling an "R graphic gallery."