Build a Forward-Planning Agent

Results

The following table shows the results of running all algorithms for problems 1 and 2.

Table 1: Results for applying all algorithms on problems 1 and 2.

#	Algorithm	# of actions	# of new node	Total time P1/P2
		P1/P2	expansions P1/P2	
1	breadth_first_search	20/72	178/30503	0.00687/2.03841
2	depth_first_graph_search	20/72	84/5602	0.00351/3.11525
3	uniform_cost_search	20/72	240/5154	0.00998/3.37171
4	greedy_best_first_graph_search with h unmet goals	20/72	29/46618	0.00165/0.02115
5	greedy_best_first_graph_search with h_pg_levelsum	20/72	28/170	0.49210/11.63848
6	greedy_best_first_graph_search with h_pg_maxlevel	20/72	24/29	0.14683/6.84647
7	greedy_best_first_graph_search with h_pg_setlevel	20/72	28/84	1.34864/30.31048
8	astar_search with h_unmet_goals	20/72	206/22522	0.00941/2.31695
9	astar_search with h_pg_levelsum	20/72	122/3426	1.26211/298.64415
10	astar_search with h_pg_maxlevel	20/72	180/26594	0.51405/692.00727
11	astar_search with h_pg_setlevel	20/72	138/9605	3.56769/ 2443.90355

From the table above, algorithms 2, 3, 6, 7, 10, and 11 will be excluded from problems 3 and 4 experiments.

The following table shows running one uninformed search, two heuristics with greedy best-first search, and two heuristics with A*:

Table 2: Results for applying 1, 4, 5, 8, and 9 algorithms on problems 3 and 4.

#	Algorithm	# of actions	# of new node	Total time P3/P4
		P3/P4	expansions P3/P4	
1	breadth_first_search	88/104	129625/944130	10.84590/34.47811
4	greedy_best_first_graph_search	88/104	230/280	0.050520/0.030178
	with h_unmet_goals			
5	greedy_best_first_graph_search	88/104	126/165	9.952331/18.65694
	with h_pg_levelsum			
8	astar_search with h_unmet_goals	88/104	65711/328509	8.56944/56.24570
9	astar_search with h_pg_levelsum	88/104	3403/12210	481.16197/1054.180663

Questions and Answers

- Q1. Which algorithm or algorithms would be most appropriate for planning in a very restricted domain (i.e., one that has only a few actions) and needs to operate in real-time?
- **A1.** From Table 1, I would suggest using **greedy_best_first_graph_search with h_unmet_goals** algorithm as it took a fraction of a second for planning a very restricted domain.
- Q2. Which algorithm or algorithms would be most appropriate for planning in very large domains (e.g., planning delivery routes for all UPS drivers in the U.S. on a given day)
- **A2.** From Table2, I believe algorithms **greedy_best_first_graph_search with h_unmet_goals** and **greedy_best_first_graph_search with h_pg_levelsum** execution time isn't too long.
- Q3. Which algorithm or algorithms would be most appropriate for planning problems where it is important to find only optimal plans?
- **A3.** The first three algorithms, namely: breadth_first_search, breadth_first_search, and uniform_cost_search.