Lecture 15

Knowledge-based Agents

Lusi Li
Department of Computer Science
ODU

Reading for This Class: Chapter 7, Russell and Norvig

Knowledge-based Agents

- Knowledge-based agents use a process of reasoning over an internal representation of knowledge to decide what actions to take
- A knowledge-based agent includes a knowledge base and an inference engine
- Knowledge base (KB)
 - A set of sentences
 - expressed in a knowledge representation language
 - represent some assertion (or actual facts) about the world
 - Usually starts with some background knowledge
 - can be general (world knowledge) or specific (domain)
- Inference engine
 - Derive new sentences from old
- Actions of an agent
 - TELL
 - ASK

Knowledge-Based Agent

Domain-independent algorithms

The agent operates as follows:

- 1. It TELLs the KB what it perceives.
- 2. It ASKs the KB what action it should perform.
- 3. It TELLS the KB which action is selected and then performs that action.

A Simple Knowledge-Based Agent Program

```
function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t))
action \leftarrow Ask(KB, Make-Action-Query(t))

Tell(KB, Make-Action-Sentence(action, t))
t \leftarrow t + 1
return action
```

- Details hidden in three functions
- The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions

Levels of a Knowledge-based Agent

Knowledge Level:

- In this level, the behavior of an agent is decided by specifying the following
 - The agent's current knowledge it has perceived.
 - The goal of an agent.

Logical Level:

- This level is the logical representation of the knowledge level
- Sentences are encoded in various logics at this level. At the logical level, knowledge is encoded into logical statements.

Implementation Level:

- This level is the physical representation of logic and knowledge.
- Here, it is understood that "how the knowledge-based agent actually implements its stored knowledge."

Types of Knowledge

- Declarative knowledge, e.g.: constraints
 - Knowledge about facts and things
 - The agent designer TELLS sentences to the empty system one by one until the system becomes knowledgeable enough to deal with the environment.
 - It can be used to perform many different sorts of inferences
- Procedural, e.g.: functions
 - Knowledge about how to do something
 - such as reasoning, decision making, and problem solving
 - Such knowledge can only be used in one way -- by executing it

- Approaches to designing a knowledge-based agent:
 - Declarative approach
 - Procedural approach

Example: A Wumpus World

3

2

A Wumpus World

- Cave of 4×4 grid of rooms
- Wumpus: A deadly beast who kills anyone entering his room.
- Pits: Bottomless pits that will trap you forever.
- Gold
- Agent always starts in [1,1]
- The task of the agent is to find the gold, return to [1,1] and climb out of the cave.

A Wumpus World PEAS Description

- Performance measure
 - +1000 for picking up gold
 - -1000 get falling into pit or eaten by the wumpus
 - -1 per step
 - -10 for using the (only) arrow
- **Environment: 4 x 4 grid of rooms**
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter iff gold is in the same square
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
- Sensors: [Stench, Breeze, Glitter, Bump, Scream (shot Wumpus)]
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Reasoning in the Wumpus World

3

- Agent has initial ignorance about the configuration
 - Agent knows his/her initial location, i.e., [1,1]
 - It's safe at [1,1]
 - Agent knows the rules of the environment
- Goal is to explore environment, make inferences (reasoning) to try to find the gold.
- Random instantiations of this problem used to test agent reasoning and decision algorithms.

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1

(a)

A	= Agent
В	= Breeze
G	= Glitter, Gold
OK	= Safe square
P	= Pit
\mathbf{S}	= Stench
\mathbf{V}	= Visited
\mathbf{W}	= Wumpus

		ı	
1,4	2,4	3,4	4,4
1			
1,3	2,3	3,3	4,3
1			
1			
1,2	2,2	3,2	4,2
,,_	P?	0,2	.,_
1			
ОК			
1,1	2,1	3,1 P?	4,1
1	Z, 1 A	I i	
V	В		
OK	OK		

(b)

[1,1] The KB initially contains the rules of the environment.

[Stench, Breeze, Glitter, Bump, Scream]

The first percept is [none, none, none, none, none],

move to safe cell e.g. [2,1]

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
OK			
1,1 A	2,1	3,1	4,1
OK	OK		

A	= Agent
В	= Breeze
G	= Glitter, Gold
OK	= Safe square
P	= Pit
\mathbf{S}	= Stench
\mathbf{V}	= Visited
\mathbf{W}	= Wumpus

1,4	2,4	3,4	4,4
1			
1			
1,3	2,3	3,3	4,3
1			
1			
<u> </u>			
1,2	2,2 P?	3,2	4,2
1	1.		
ок			
1,1	2,1 A	3,1 P?	4,1
V	B		
ОК	ок		

(b)

(a)

[2,1] = breeze

The second percept is [none, breeze, none, none, none]

indicate that there is a pit in [2,2] or [3,1] or both

return to [1,1] to try next safe cell [1,2]

3

1,4	2,4	3,4	4,4
1,3 _{W!}	2,3	3,3	4,3
1,2 A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

A	= Agent
В	= Breeze
\mathbf{G}	= Glitter, Gold
OK	= Safe square
P	= Pit
\mathbf{S}	= Stench

	- DICCZC
G	= Glitter, Gold
OK	= Safe square
P	= Pit
\mathbf{S}	= Stench
\mathbf{V}	= Visited
\mathbf{W}	= Wumpus

1,4	2,4 P?	3,4	4,4
1,3 _{W!}	2,3 A S G B	3,3 _{P?}	4,3
1,2 S V OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

(a) (b)

[1,2] = stench

The third percept is [stench, none, none, none, none]

indicate that Wumpus is in [2,2] or [1,3] or both

Yet not in [2,2] otherwise stench would have been detected in [2,1]

THUS wumpus is in [1,3] THUS [2,2] is safe because of lack of breeze in [1,2] THUS pit in [3,1] (again a clever inference)

move to next safe cell [2,2]

3

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
1,2 A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

A	= Agent
\mathbf{B}	= Breeze
\mathbf{G}	= Glitter, Gold
OK	= Safe square
P	= Pit

OIX	– Jaie Syua
P	= Pit
S	= Stench
\mathbf{V}	= Visited
\mathbf{W}	= Wumpus

1,4	2,4 P?	3,4	4,4
1,3 _{W!}	2,3 A S G B	3,3 _{P?}	4,3
1,2 s V	2,2 V	3,2	4,2
ок	ок	ок	
1,1 V OK	2,1 B V OK	3,1 P!	4,1

(b)

(a)

[2,2] = none, we assume the agent moves to [2,3]

The fifth percept is [stench, breeze, glitter, none, none]

detect a glitter, so it should grab the gold and then return home.

2

3

2

What our example has shown us

- Can represent general knowledge about an environment by a set of rules and facts
- Can gather evidence (percept) and then infer new facts by combining evidence with the rules (KB)
- The conclusions are guaranteed to be correct if
 - The evidence is correct
 - The rules are correct
 - The inference procedure is correct
 - → logical reasoning
- The inference may be quite complex
 - E.g., evidence at different times, combined with different rules, etc.

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines what sentences are legal (well-formed)
 - E.g., arithmetic
 - x+2 ≥ y is a sentence; x2+y > () is not a sentence
- Semantics define the "meaning" of sentences
 - i.e., define truth of each sentence w.r.t to each possible world
 - E.g.,
 - $x+2 \ge y$ is true in a world where x = 7, y = 1
 - $x+2 \ge y$ is false in a world where x = 0, y = 6
- In standard logics, every sentence must be either true or false in each possible world there is no in between.

More on Possible Worlds

- m is a model of a sentence α if α is true in m
- M(α) is the set of all models of α
- Possible worlds ~ models
 - Possible worlds: potentially real environments
 - Models: mathematical abstractions that establish the truth or falsity of every sentence
- Example:
 - -x+y=4, where x=# men, y=# women
 - Possible models = all possible assignments of integers to x and y.
 - For CSPs, possible model = complete assignment of values to variables.

Entailment

Entailment means that a sentence follows logically from another:

$$\alpha \models \beta \text{ iff } M(\alpha) \subseteq M(\beta)$$

- A sentence α entails another sentence β in every model α is true, β must also be true
 - Note the direction of the \subseteq here: if $\alpha \models \beta$, then α is a stronger assertion than β : it rules out more possible worlds
 - What if α is false? since no model makes "false" true, $M(\alpha)$ is \emptyset (\emptyset is a subset of any set), then β can be either true or false.

Examples:

- (x = 0) /= (xy = 0)?
- (p = True) |= (p \lor q) ?
- (p ∧ q) |= (p \lor q) ?
- False |= True ?
- True |= False ?

Entailment

Entailment means that a sentence follows logically from another:

$$\alpha \models \beta \text{ iff } M(\alpha) \subseteq M(\beta)$$

- A sentence α entails another sentence β in every model α is true, β must also be true
 - Note the direction of the \subseteq here: if $\alpha \models \beta$, then α is a stronger assertion than β : it rules out more possible worlds
 - What if α is false? since no model makes "false" true, $M(\alpha)$ is \emptyset (\emptyset is a subset of any set), then β can be either true or false.

• Examples:

- (x = 0) /= (xy = 0)? Yes
- $(p = True) |= (p \lor q)$? Yes
- $(p \land q) = (p \lor q)$? Yes
- False |= True ? Yes
- True |= False ? No

Entailment

$$KB = \alpha \text{ iff } M(KB) \subseteq M(\alpha)$$

- KB entails sentence α iff α is true in all worlds where KB is true
- E.g., KB = "the Phillies won" and "the Reds won" entails α = "Either the Phillies won or the Reds won"

Wumpus World

- Consider possible models for KB assuming only pits in a reduced Wumpus world
- Situation after detecting nothing in [1,1], moving right, detecting breeze in [2,1]
- The agent wants to know if the adjacent squares contain pits.

Wumpus World

All possible models in this reduced Wumpus world.

Inferring Conclusions

- Consider 2 possible conclusions given a KB
 - $-\alpha 1 = "[1,2] is safe"$
 - $\alpha 2 = "[2,2] \text{ is safe"}$
- One possible inference procedure
 - Start with KB
 - Model-checking
 - Check if KB $\models \alpha$ by checking if in all possible models where KB is true that α is also true
- Comments:
 - Model-checking enumerates all possible worlds
 - Only works on finite domains, will suffer from exponential growth of possible models

Wumpus World

KB = wumpus-world rules + observations

- KB = wumpus-world rules + observations
- α1 = "[1,2] is safe"

- KB = wumpus-world rules + observations
- $\alpha 1 = "[1,2] \text{ is safe}"$
- KB $\models \alpha 1$, proved by model checking

- KB = wumpus-world rules + observations
- $\alpha 2 = "[2,2]$ is safe"

- KB = wumpus-world rules + observations
- α 2 = "[2,2] is safe", KB |≠ α 2
 - There are some models entailed by KB where $\alpha 2$ is false.
- The examples not only show entailment, but also how entailment can be used to derive conclusions.

Logical Inference

- Inference is a procedure that allows new sentences to be derived from a knowledge base.
- KB |-_i α
 - sentence α can be derived from KB by the inference procedure i
- An inference procedure is sound or truth preserving if it only derives entailed sentences.
- An inference procedure is complete if it can derive any sentence that is entailed.
- E.g., model-checking is sound and complete
 - enumerate all possible models and check whether α is true.

Connection World-Representation

If KB is true in the real world, then any sentence α derived from KB by a sound inference procedure is also true in the real world.

Propositional logic: Syntax

- Propositional logic is the simplest logic
- Syntax defines allowable sentences.

Sentences:

- Atomic sentences = single proposition symbols
 - E.g., P, Q, R etc are sentences
 - Special cases: True = always true, False = always false
- Complex sentences are combined by connectives (operators) :
 - If P is a sentence, ¬P is a sentence (negation)
 - If P and Q are sentences, P ∧ Q is a sentence (conjunction)
 - If P and Q are sentences, P v Q is a sentence (disjunction)
 - If P and Q are sentences, P ⇒ Q is a sentence (implication)
 - If P and Q are sentences, P ⇔ Q is a sentence (biconditional)
- Literal: atomic sentence or negated atomic sentence

Syntax Summary

A BNF (Backus–Naur Form) grammar of sentences in propositional logic, along with operator precedence, from highest to lowest.

OPERATOR PRECEDENCE : $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$

- Counter examples:
 - $(A \land \Rightarrow R)$
 - (AB) ∨ (¬C)
 - $A \Rightarrow B \Rightarrow C$

Correct examples:

$$(\mathsf{A} \Rightarrow \mathsf{B}) \Rightarrow \mathsf{C}$$

$$A \Rightarrow (B \Rightarrow C)$$

Propositional logic: Semantics

- The semantics define the rules for determining the truth of a sentence with respect to a particular model – a mapping of the atomic symbols into true and false.
- Each model specifies true/false for each proposition symbol

```
E.g. m1 = \{P_{1,2} = false, P_{2,2} = true, P_{3,1} = false\}
```

- With these symbols, 8 possible models, can be enumerated automatically.
- Rules for evaluating truth with respect to a model m:
 - 1) $\neg P$ is true iff P is false
 - 2) $P \wedge Q$ is true iff P is true and Q is true
 - 3) $P \vee Q$ is true iff P is true or Q is true
 - 4) $P \Rightarrow Q$ is true unless P is true and Q is false
 - 5) $P \Leftrightarrow Q$ is true iff $P \Rightarrow Q$ is true and $Q \Rightarrow P$ is true
- The following sentence is evaluated in m1:

$$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$$

Model of Propositional Logic

- Assignment of a truth value true or false to every atomic sentence
- Examples:
 - Let A, B, C, and D be the propositional symbols
 - m = {A=true, B=false, C=false, D=true} is a model
 - m' = {A=true, B=false, C=false} is not a model
- With n propositional symbols, one can define 2ⁿ possible models
- A model for a KB is a "possible world" (assignment of truth values to propositional symbols) in which each sentence in the KB is True.

Summary

- Logic
 - Knowledge-based Agent
 - Entailment
 - Propositional logic

What I want you to do

Review Chapter 7

