CS4495/6495 Introduction to Computer Vision

4A-L1 Introduction to "features"

Text resources

- Forsyth and Ponce: 5.3-5.4
 - Szeliski also covers this well Section 4 4.1.1

The basic image point matching problem

- Suppose I have two images related by some transformation. Or have two images of the same object in different positions.
- How to find the transformation of image 1 that would align it with image 2?

We want Local(1) Features(2)

- Goal: Find points in an image that can be:
 - Found in other images
 - Found precisely well localized
 - Found reliably well matched

We want Local⁽¹⁾ Features⁽²⁾

Why?

- Want to compute a fundamental matrix to recover geometry
- Robotics/Vision: See how a bunch of points move from one frame to another. Allows computation of how camera moved -> depth -> moving objects
- Build a panorama...

Suppose you want to build a panorama

How do we build panorama?

We need to match (align) images

Detect features (feature points) in both images

- Detect features (feature points) in both images
- Match features find corresponding pairs

- Detect features (feature points) in both images
- Match features find corresponding pairs
- Use these pairs to align images

- Problem 1:
 - Detect the same point independently in both images

no chance to match!

We need a repeatable detector

- Problem 2:
 - For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor

More motivation...

- Feature points are used also for:
 - Image alignment (e.g. homography or fundamental matrix)
 - 3D reconstruction
 - Motion tracking
 - Object recognition
 - Indexing and database retrieval
 - Robot navigation
 - ... other

Repeatability/Precision

 The same feature can be found in several images despite geometric and photometric transformations

Saliency/Matchability

Each feature has a distinctive description

Compactness and efficiency

Many fewer features than image pixels

Locality

 A feature occupies a relatively small area of the image; robust to clutter and occlusion