Set Theory

- A **set** is a loosely defined collection of items called **elements**.
- Sets are completely determined by their elements, i.e. two sets with exactly the same elements are the same set.
- The order in which elements are listed is irrelevant, and elements may be listed more than once without changing the set.
- Examples:

$$\{1,3\} = \{3,1\} = \{3,3,1,3,1,1\}$$

The collection of all people in this room is a set.

The collection of your favourite songs is a set.

The collection of all real numbers \mathbb{R} is a set.

- Sets come from a **universe** of elements \mathcal{U} .
- For example, the set of even numbers comes from the universe \mathbb{Z} .
- Sets can be contained in other sets and can be finite or infinite.

- Some important sets of numbers are:
 - $\mathbb{N} = \{1, 2, 3, ...\}$ (NATURAL)
 - $\mathbb{Z} = \{..., -2, -1, 0, 1, 3, ...\}$ (INTEGER)
 - $\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\}$ (RATIONAL)
 - $\mathbb{R} = Set\ of\ all\ real\ numbers$ (RATIONAL AND IRRATIONAL)
- A set can be defined by a property of elements of a bigger set.
- Given a set S, define a set T by:

$$T = \{x \in S : p(x)\}$$

All elements of S that satisfy p.

Example:

The set $x \in \mathbb{R}$: $-2 < x \le 5$ is the set of all real numbers between -2 and 5, not including -2. This set is an internal, which can be denoted as (-2, 5].

Exercise:

The set $\{x \in \mathbb{Z} : -2 < x \le 5\}$ can be rewritten how?

Exercise:

The set $\{x \in \mathbb{R} : x^3 = x \text{ can be rewritten how} ?$

- The **empty set** is the set with no elements, denoted by \emptyset .
- It can be represented in different ways:

$${x \in \mathbb{N} : x \neq x}; {x \in \mathbb{R} : 3 < x < 2}$$

- A set is **finite** if $\exists n \in \mathbb{N}$ such that there is a one-to-one correspondence with the set $\{1, 2, ..., n\}$.
- For a set S of this size, we write |S| = n and say that S has **cardinality** n.
 - NOTE: $|\emptyset| = 0$
- A set that is not finite is said to be **infinite**.

Subsets

Definition:

- Let *A* and *B* be sets.
- We say A is a subset of B, written $A \subseteq B$, IFF every element of A is also an element of B.

```
Definition – Subsets:
```

$$A \subseteq B \Leftrightarrow \forall x, x \in A \Rightarrow x \in B$$

Supersets

Definition:

- If *A* is a subset of *B*.
- Then *B* is called a superset of *A*.
- We also say that *A* is contained in *B*, and that *B* contains *A*.
- If at least one element of A is not in B, then A is not a subset of B.

Definition – Supersets:

$$A \nsubseteq B \Leftrightarrow \exists x \ni x \in A \land x \notin B$$

Exercise:

Decide true or false.

- a) $\{1,2\} \subseteq \{1,2,3\}$
- b) $\{0,2\} \subseteq \{1,2,3\}$

b)
$$\{0,2\} \subseteq \{1,2,3\}$$
 $\{1,2,3\}$ $\{1,$

- e) For all sets $A, \emptyset \subseteq A$

Proper Subsets

Definition:

- A subset $A \subset B$ is **proper** if $\exists x \in B \ni x \notin A$.
 - We write $A \subset B$
 - For example, $\{1\} \subseteq \{1, 2\}$ and $\{1, 2\} \subseteq \{1, 2\}$, but $2 \in \{1, 2\}$ and $2 \notin \{1\}$, so actually $\{1\} \subset \{1, 2\}$.

Definition – Proper Subsets:

$$A \subset B$$
, $\exists x \in B \ni x \notin A$

Exercise:

Order the sets \mathbb{R} , \mathbb{N} , \mathbb{Q} , \emptyset , \mathbb{Z} in terms of subsets. Are any of these proper subsets?

& CNCZCQCR - They are all proper

Exercise:

True or false? Let $A = \{1, 2, 3\}$.

- a) $A \subset A \in$
- b) $\emptyset \in A$
- c) $\emptyset \subseteq A$ \blacktriangleleft
- d) $\{\emptyset\} \subseteq A \subseteq$
- e) $2 \in A$ T
- f) {2} ∈ *A* □
- g) $2 \subseteq A$
- h) $\{2\} \subseteq A$ \mathcal{T}
- i) $\{2\} \subseteq \{\{1\}, \{2\}\}$
- $j) \{2\} \in \{\{1\}, \{2\}\}$

Definition:

- Let *A* and *B* be sets.
- We say A equals B, written A = B, if and only if, A contains B and B contains A.

Definition – Set Equality

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

• To prove two sets are equal, prove the two contentions, $A \subseteq B$ and $B \subseteq A$.

Prove that $A = \{n \in \mathbb{N} : n \text{ is even}\}$ and $B = \{n \in \mathbb{N} : n^2 \text{ is even}\}$ are equal.

- (\subseteq) Let $n \in A$. Then n = 2k for some $k \in \mathbb{N}$. $n^2 = n \cdot n = (2k)(2k) = 2(2k^2), 2k^2 \in \mathbb{N} \Rightarrow n^2 \text{ is even } \Rightarrow n \in B.$
- (⊇) Let $n \in B$, so n^2 is even. Suppose that *n* is odd, n = 2k + 1 for some $k \in \mathbb{N}$. Then $n^2 = (2k+1)(2k+1) = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ is a contradiction Hench, n is even and $n \in A$. $\therefore B \subseteq A$

$$A = B$$

Exercise:

Define:

Define:
$$A = \{n \in \mathbb{Z} : n = 2p, p \in \mathbb{Z}\}\$$
 $B = \{n \in \mathbb{Z} : n \text{ is even}\}\$
 $C = \{n \in \mathbb{Z} : n = 2q - 2, q \in \mathbb{Z}\}\$
 $D = \{k \in \mathbb{Z} : k = 3r + 1, r \in \mathbb{Z}\}\$
a) Is $A = B$?
b) Is $A = D$?
c) Is $A = C$?

Operations on Sets

- Let A, B be subsets pf a universe $\mathcal{U}/$
 - 1) The **union** of *A* and *B*, written $A \cup B$, is the set of all elements that are in *A* or in *B*.

$$A \cup B = \{x \in \mathcal{U} : x \in A \lor x \in B\}$$

2) The **intersection** of *A* and *B*, written $A \cap B$, is the set of all elements that are in *A* and in *B*.

$$A \cap B = \{x \in \mathcal{U} : x \in A \land x \in B\}$$

3) The **complement** of A, written \overline{A} or $\mathcal{U}\setminus A$, is the set of all elements that are not in A.

$$\overline{A} = \mathcal{U} \backslash A = \{ x \in \mathcal{U} : x \notin A \}$$

4) The **difference** of *B* minus *A*, written B - A, is the set of all elements that are in *B* and not in *A*.

$$B - A = \{ x \in \mathcal{U} : x \in B \land x \notin A \}$$

Power Set

Definition:

• The **power set** of a universe \mathcal{U} , denoted by $P(\mathcal{U})$, is the set of all subsets of \mathcal{U} .

Exercise:

Let
$$A = \{1, 2, 3\}.$$

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, A\}$$

- If |A| = n, then $|P(A)| = 2^n$
- The operations of set theory are equivalent to their counterpart connectives of logic, as follows:

Set Operation	Name	Connective
\	Complement	~
U	Union	V
Λ	Intersection	۸
⊆	Subset	⇒
=	Equality	\Leftrightarrow

Exercise:

Let $\mathcal{U} = \mathbb{Z}$. Write down \overline{A} for the following.

a)
$$A = \{1, 2, 3\}$$

$$\overline{A} = \{ \chi \in \mathbb{Z} : 1 < \chi > 73 \} \text{ or } \{ \chi \in \mathbb{Z} : \chi \neq 1, 2, 3 \}$$

b)
$$A = \{x \in \mathbb{Z} : x \text{ is even}\}$$

c)
$$A = \{x \in \mathbb{Z} : x > 0 \lor x < 0\}$$

Exercise:

Let $\mathcal{U} \in \mathbb{R}$. Write down $A \cup B$ for the following, and $A \cap B$.

a)
$$A = \{1\}, B = \{2\}$$

b) A is the set of even integers, B is the set of odd integers.

c)
$$A = \{x \in \mathbb{R} : 0 \le x \le 2\}$$
 and $B = \{x \in \mathbb{R} : 1 \le x \le 3\}$

Prove or disprove: $(A \subseteq C) \land (B \subseteq C) \Rightarrow A \cup B \subseteq C$.

A:
$$[(A \Rightarrow C) \land (B \Rightarrow C)] \Rightarrow [(A \lor B) \Rightarrow C]$$
Use a truth tuble, ar suppose the main connective is false.

$$[(A \Rightarrow C) \land (B \Rightarrow C)] \Rightarrow [(A \lor B) \Rightarrow C]$$
F

T

T

T

T

A:T

C:F?

The contradiction is C cannot be false for LHS to be true.

$$(A \Rightarrow C) \land (B \Rightarrow C) \Rightarrow A \lor B \Rightarrow C \Box$$

Exercise:

Prove or disprove: $(A \subseteq C) \land (B \subseteq C) \Rightarrow A \cap B \subseteq C$

$$A: [(A\Rightarrow C) \land (B\Rightarrow C)] \Rightarrow [(A \land B) = 2 C]$$

$$F$$

$$T$$

$$T$$

$$C:T?$$

$$A:T,B:T$$

$$C:F?(!)$$

$$A:C \Rightarrow C \Rightarrow A \land B$$

Exercise:

Let $\mathcal{U} = \mathbb{R}$, $A = \{1, 2, 3\}$, $B = \{2\}$, $C = \{2, 3, 4\}$. D = [0,1].

a)
$$A - C = \{1\}$$

b)
$$B-C=\emptyset$$

c)
$$D - B = \bigcirc$$

d)
$$D - A = \left(0, 1 \right)$$

e)
$$A - D = \{2, 3\}$$

Disjoints

Definition:

• The sets *A* and *B* are **disjoints** if $A \cap B = \emptyset$.

Exercise:

Let $\mathcal{U} = \mathbb{R}$. Write down some sets that are disjoint to the following.

a)
$$A = \{x \in \mathbb{Z} : x \text{ is even}\}$$
 $\mathcal{B} = \{x \in \mathbb{Z} : x \text{ is odd }\}$

b)
$$A = \{x \in \mathbb{R} : x^2 - 5x + 6 \ge 0\}$$
 $b = \{x \in \mathbb{R} : x < 0\}$

c)
$$A = \mathbb{Q}$$
 $\mathcal{L} = \mathbb{R} \setminus \mathbb{Q}$

Definition (Addition Rule):

- Let *A*, *B* be finite, disjoint sets.
- Then $A \cup B$ is finite and $|A \cup B| = |A| + |B|$.

Venn Diagrams

• If we represent sets as regions in the plane, then the relationships among sets can be represented by drawing called **Venn diagrams**.

Algebra on Sets

- There are many rules that govern set theory and the relationships among sets.
- All the following statements can be proved using the definitions we have seen so far.

Theorem:

- Let \mathcal{U} be a set, and A, B, C be element of $P(\mathcal{U})$. Then...
 - 1) $(A \subseteq B \land B \subseteq) \Rightarrow A \subseteq C$

$$A \subseteq A \cup B; B \subseteq A \cup B$$

$$A \cap B \subseteq A; A \cap B \subseteq B$$

2) $A = B \Leftrightarrow (A \subseteq B \land B \subseteq A)$

$$A\subseteq B \Leftrightarrow A\cup B=B$$

$$A \subseteq B \Leftrightarrow A \cap B = A$$

3) $A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$

$$A\subseteq B\Rightarrow A\cap C\subseteq B\cap C$$

4) Commutative Laws:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

5) Associative Laws:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

6) Distributive Laws:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

7) De Morgan's Laws:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

8)
$$(\overline{A}) = A$$

$$A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}$$

$$A - B = A \cap \overline{B}$$

$$\overline{\mathcal{U}} = \emptyset$$

$$\overline{\emptyset} = \mathcal{U}$$

9) $A \cap \mathcal{U} = A$; $A \cup \emptyset = A$

$$A \cap \emptyset = \emptyset$$
; $A \cup \mathcal{U} = \mathcal{U}$

$$A \cap \overline{A} = \emptyset; A \cup \overline{A} = \mathcal{U}$$

10) $(A \subseteq C \land B \subseteq C) \Leftrightarrow (A \cup B) \subseteq C$

$$(A \subseteq B \land A \subseteq C) \Leftrightarrow A \subseteq (B \cap C)$$

Prove (7) $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

(E) Let
$$x \in \overline{A \cup B}$$
. Then $x \notin A \cup B$
 $\Rightarrow x \notin A$ and $x \notin B$
 $\Rightarrow x \in \overline{A}$ and $x \in \overline{B}$
 $\Rightarrow x \in \overline{A} \cap \overline{B}$

(2) Let
$$\chi \in \overline{A} \cap \overline{B}$$
. Then $\chi \in \overline{A}$ and $\chi \in \overline{B}$
 $\Rightarrow \chi \notin A$ and $\chi \notin B$
 $\Rightarrow \chi \notin A \cup B$
 $\Rightarrow \chi \in A \cup B$

Exercise:

Prove (2) $A \subseteq B \Leftrightarrow A \cup B = B$.

(E) Let x e AUB. Then XEA or XEB Since ASB, if XEA then XEB.

: x e A UB => x eB i.e. A UB = B

(E) Let AUB = B Let XEA. Then XE AUB. But AUB = B, SO XEB =) A = B

Prove that the difference operator is not commutative.

A: Show that
$$A - (B-C) \neq (A-B)-C$$

$$(B-C) = A - (B \cap C) \qquad (8) A-B = A \cap B$$

$$= A \cap (B \cap C) \qquad (8) A-B = A \cap B$$

$$= A \cap (B \cup C) \qquad (7) \overline{A \cap B} = \overline{A} \cup B \qquad (De Morgan's)$$

$$= (A \cap B) \cup (A \cap C) \qquad (6) A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \qquad (Destrib)$$

(2)
$$(A-B)-C = (A \wedge \overline{B})-C$$
 (8)
= $A \wedge \overline{B} \wedge \overline{C}$ (8)

Let $x \in An C$. Then by $(0, x \in A - (B-C))$, and Since $x \in A$ and $x \in C$. We have $x \notin C$. So by $(2), x \notin (A-B)-C$: $A-(B-C) \neq (A-B)-C$

Pairwise Disjoint

Definition:

• The sets $A_1, A_2, ..., A_k$ are **pairwise disjoint** if $A_i \cap A_j = \emptyset$ for all $i \neq j$.

Theorem (Extension of Addition Rule):

- Let $A_1, A_2, ..., A_k$ be finite, pairwise disjoint sets.
- Then $A_1 \cup A_2 \cup ... \cup A_k$ is finite and $|A_1 \cup A_2 \cup ... \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$.