Sorbonne Université

Cryptologie, cryptographie algébrique

4M035 - 2021/22 - Enseignement à distance

Alain Kraus

Correction du premier devoir

Exercice 1

- 1) Le polynôme $X^2 + X + 1 \in \mathbb{F}_5[X]$ n'a pas de racines dans \mathbb{F}_5 et il est de degré 2, donc il est irréductible sur \mathbb{F}_5 . Le cardinal de K est donc égal à 25.
- 2) On a $\alpha^2 = -\alpha 1$, d'où les égalités $\alpha^3 = -\alpha^2 \alpha = 1$. Par suite, α est d'ordre 3. Par ailleurs, on a $(1+2\alpha)^2 = 1+4\alpha^2+4\alpha$, d'où l'égalité $(1+2\alpha)^2 = 2$. On a ainsi $(1+2\alpha)^4 = -1$, ce qui entraı̂ne que $1+2\alpha$ est d'ordre 8 dans K^* .
- 3) On a l'égalité

$$\alpha(1+2\alpha) = 3+4\alpha.$$

D'après la question précédente, $3 + 4\alpha$ est donc d'ordre 24, d'où le résultat.

- 4) On vérifie que l'on a $(3+4\alpha)^3=2+4\alpha$, d'où a=3.
- 5) Soit m le message décrypté. Avec les notations du cours, on a

$$g = 3 + 4\alpha$$
, $g^x = 1 + \alpha$ et $mg^{ax} = t$.

On a a=3, d'où

$$m = t(1+\alpha)^{-3}.$$

Par ailleurs, on a $\alpha^2 + \alpha + 1 = 0$ i.e. $\alpha(1+\alpha) = -1$, d'où $(1+\alpha)^{-1} = -\alpha$. D'après la question 2, on a $\alpha^3 = 1$. On obtient m = -t.

Exercice 2

1) On a les égalités $\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}}$, $\left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}}$ et $\left(\frac{-2}{n}\right) = \left(\frac{-1}{n}\right)\left(\frac{2}{n}\right)$. Par ailleurs, on a $\alpha_n = 2^{\frac{n}{2}}e^{\frac{n\pi i}{4}} - 1$. En examinant les congruences de n modulo 8, on vérifie que

$$\cos\left(\frac{n\pi i}{4}\right) = \left(\frac{2}{n}\right)\frac{1}{\sqrt{2}}$$
 et $\sin\left(\frac{n\pi i}{4}\right) = \left(\frac{-2}{n}\right)\frac{1}{\sqrt{2}}$,

d'où l'égalité annoncée.

- 2) C'est une conséquence directe de la question 1.
- 3.1) Par hypothèse, il existe $k \in \mathbb{Z}$ tel que b = ka. On a les égalités

$$\alpha_b = ((1+i)^a)^k - 1 = \alpha_a u$$
 où $u = \sum_{s=0}^{k-1} (1+i)^{as} \in \mathbb{Z}[i],$

donc α_a divise α_b dans $\mathbb{Z}[i]$. On a ainsi $M_b = M_a |u|^2$, d'où l'assertion.

3.2) Supposons b=1. On a $M_b=1$. Vu que a>1 est impair, on a $a\geq 3$. Il résulte de la question 2 que l'on a $M_a>1$, d'où le résultat dans ce cas. Supposons $b\geq 3$. On a les inégalités

$$M_a \ge 2^{\frac{a+1}{2}} \left(2^{\frac{a-1}{2}} - 1\right) + 1$$
 et $2^{\frac{b+1}{2}} \left(2^{\frac{b-1}{2}} + 1\right) + 1 \ge M_b$.

Tout revient ainsi à vérifier que l'on a

$$2^{\frac{a-1}{2}} - 1 > 2^{\frac{b-1}{2}} + 1.$$

Parce que a et b sont impairs, on a $a \ge b+2$. On a donc $2^{\frac{a-1}{2}} \ge 2.2^{\frac{b-1}{2}}$. On a $b \ge 3$, d'où $\frac{b-1}{2} \ge 1$ puis $2.2^{\frac{b-1}{2}} \ge 2^{\frac{b-1}{2}} + 2$ et l'inégalité (1).

- 4) Supposons n non premier. Il existe un entier impair $a \geq 3$ divisant n et distinct de n. D'après la question 3, M_a divise M_n et $M_n > M_a$. Par ailleurs, on a $M_a > 1$ donc M_n n'est pas premier, d'où l'assertion.
- 5) D'après la question 2, on a

$$M_p = \begin{cases} 2^p + 2^{\frac{p+1}{2}} + 1 & \text{si } p \equiv 3 \text{ mod. } 8\\ 2^p - 2^{\frac{p+1}{2}} + 1 & \text{si } p \equiv 7 \text{ mod. } 8. \end{cases}$$

Supposons $p \equiv 3 \mod 8$. On a $2^p \equiv 3 \mod 5$ et $2^{\frac{p+1}{2}} \equiv 4 \mod 5$. Par suite, on a $M_p \equiv 3 \mod 5$. D'après la loi de réciprocité quadratique on a donc

$$\left(\frac{5}{M_p}\right) = \left(\frac{M_p}{5}\right) = \left(\frac{3}{5}\right) = -1.$$

De même, si $p \equiv 7 \mod 8$, on a $2^p \equiv 3 \mod 5$ et $2^{\frac{p+1}{2}} \equiv 1 \mod 5$. On obtient de nouveau $M_p \equiv 3 \mod 5$ puis $\left(\frac{5}{M_p}\right) = -1$.

6) D'après la question 2, on a

$$M_p = 2^{\frac{p+1}{2}} \left(2^{\frac{p-1}{2}} - \left(\frac{2}{p} \right) \right) + 1.$$

Posons $h=2^{\frac{p-1}{2}}-\left(\frac{2}{p}\right)$. On a $h<2^{\frac{p+1}{2}}$. Compte tenu de la question précedente, le critère de primalité de Proth (corollaire 2.4 du cours), utilisé avec a=5 et $N=\frac{p+1}{2}$, entraı̂ne alors l'équivalence annoncée.

7) On vérifie avec un logiciel de calcul que l'ensemble des nombres premiers $p \equiv 3 \mod 4$ plus petits que 100 pour lesquels M_p est premier est

$${3,7,11,19,47,79}.$$