Lausnir á rúmfræðidæmi

Bergur Snorrason

20. apríl 2022

▶ Pér er gefinn hringur með geisla r og þú átt að dreifa fjórum punktum jafnt á hringinn.

- ▶ Pér er gefinn hringur með geisla r og þú átt að dreifa fjórum punktum jafnt á hringinn.
- Hver verður fjarlægðin milli aðliggjandi punkta?

► Við vitum að þríhyrningurinn merktur með punktalínum er rétthyrndur (setning Þalesar).

- Við vitum að þríhyrningurinn merktur með punktalínum er rétthyrndur (setning Palesar).
- Svo $2x^2 = 4r^2$ (setning Pýþagorasar).

- Við vitum að þríhyrningurinn merktur með punktalínum er rétthyrndur (setning Palesar).
- Svo $2x^2 = 4r^2$ (setning Pýþagorasar).
- Svarið er því $x = r\sqrt{2}$.

DCC líkur

▶ Gefin heiltala $n \le 10^{18}$, eru til heiltölur a, b > 1 þannig að $n = ab^2$?

Frumþáttum þannig að $n = p_1^{e_1} \dots p_m^{e_m}$.

- Frumþáttum þannig að $n = p_1^{e_1} \dots p_m^{e_m}$.
- lacktriangle Tökum eftir að ef $e_1=\cdots=e_m=1$ þá er þetta ekki hægt.

- Frumþáttum þannig að $n = p_1^{e_1} \dots p_m^{e_m}$.
- ightharpoonup Tökum eftir að ef $e_1=\cdots=e_m=1$ þá er þetta ekki hægt.
- ▶ Ef m = 1 og $e_1 = 2$ þá er þetta heldur ekki hægt.

- Frumþáttum þannig að $n = p_1^{e_1} \dots p_m^{e_m}$.
- ightharpoonup Tökum eftir að ef $e_1=\cdots=e_m=1$ þá er þetta ekki hægt.
- ▶ Ef m = 1 og $e_1 = 2$ þá er þetta heldur ekki hægt.
- Annar er þetta hægt.

- Frumþáttum þannig að $n = p_1^{e_1} \dots p_m^{e_m}$.
- lacktriangle Tökum eftir að ef $e_1=\cdots=e_m=1$ þá er þetta ekki hægt.
- ▶ Ef m = 1 og $e_1 = 2$ þá er þetta heldur ekki hægt.
- Annar er þetta hægt.
- ▶ Þá er til j þannig að $e_j \ge 2$ svo við getum látið $b = p_j$.

- Frumþáttum þannig að $n = p_1^{e_1} \dots p_m^{e_m}$.
- ightharpoonup Tökum eftir að ef $e_1=\cdots=e_m=1$ þá er þetta ekki hægt.
- ▶ Ef m = 1 og $e_1 = 2$ þá er þetta heldur ekki hægt.
- Annar er þetta hægt.
- ▶ Þá er til j þannig að $e_j \ge 2$ svo við getum látið $b = p_j$.
- ▶ Við þurfum að passa að n er stór, svo við þurfum reiknirit Pollards til að lausnin verði nógu hröð.

ightharpoonup Það eru $n \leq 10^{18}$ einstaklingar í bíó og þeir sitja allar í sömu röð og fylla akkúrat röðina.

- ▶ Það eru $n \le 10^{18}$ einstaklingar í bíó og þeir sitja allar í sömu röð og fylla akkúrat röðina.
- ▶ Í hlé fara allir á klóið og vilja svo sæti sem er í mesta lagi tveimur sætum frá upprunalega sætinu sínu.

- ightharpoonup Það eru $n \leq 10^{18}$ einstaklingar í bíó og þeir sitja allar í sömu röð og fylla akkúrat röðina.
- ▶ Í hlé fara allir á klóið og vilja svo sæti sem er í mesta lagi tveimur sætum frá upprunalega sætinu sínu.
- ▶ Á hversu marga vegu geta þeir sest aftur?

 Við leysum þetta með því að finna rakningarvensl sem lýsa dæminu.

- Við leysum þetta með því að finna rakningarvensl sem lýsa dæminu.
- Með því að skoða hvernig dæmið skiptist í smærri tilfelli (og handreikna grunntilfellin) fæst að

$$c_n = 14c_{n-1} + 2c_{n-3} - c_{n-5},$$

ef
$$n > 4$$
 og $c_0 = 1$, $c_1 = 1$, $c_2 = 2$, $c_3 = 6$ og $c_4 = 14$.

- Við leysum þetta með því að finna rakningarvensl sem lýsa dæminu.
- Með því að skoða hvernig dæmið skiptist í smærri tilfelli (og handreikna grunntilfellin) fæst að

$$c_n = 14c_{n-1} + 2c_{n-3} - c_{n-5},$$

ef
$$n > 4$$
 og $c_0 = 1$, $c_1 = 1$, $c_2 = 2$, $c_3 = 6$ og $c_4 = 14$.

Við getum síðan notað fylkjamargföldun til að reikna c_n í logratíma.

- Við leysum þetta með því að finna rakningarvensl sem lýsa dæminu.
- Með því að skoða hvernig dæmið skiptist í smærri tilfelli (og handreikna grunntilfellin) fæst að

$$c_n = 14c_{n-1} + 2c_{n-3} - c_{n-5},$$

ef
$$n > 4$$
 og $c_0 = 1$, $c_1 = 1$, $c_2 = 2$, $c_3 = 6$ og $c_4 = 14$.

- Við getum síðan notað fylkjamargföldun til að reikna c_n í logratíma.
- ► Ef við viljum ekki reikna grunntilfellin í höndunum getum við notað tæmandi leit til þessa að finna þau.

- Við leysum þetta með því að finna rakningarvensl sem lýsa dæminu.
- Með því að skoða hvernig dæmið skiptist í smærri tilfelli (og handreikna grunntilfellin) fæst að

$$c_n = 14c_{n-1} + 2c_{n-3} - c_{n-5},$$

ef
$$n > 4$$
 og $c_0 = 1$, $c_1 = 1$, $c_2 = 2$, $c_3 = 6$ og $c_4 = 14$.

- Við getum síðan notað fylkjamargföldun til að reikna c_n í logratíma.
- Ef við viljum ekki reikna grunntilfellin í höndunum getum við notað tæmandi leit til þessa að finna þau.
- Við getum líka fundið stuðlana með Gauss-Jordan eyðingu.

▶ Gefnir eru $n \le 3000$ punktar í plani.

- ▶ Gefnir eru $n \le 3\,000$ punktar í plani.
- Hversu margar þrenndir í punkta safninu mynda rétthyrndan þríhyrning?

Pað er lítið mál að skoða allar þrenndir punkta, en sú lausn er $\mathcal{O}(n^3)$ sem er of hægt.

- ▶ Það er lítið mál að skoða allar þrenndir punkta, en sú lausn er $\mathcal{O}(n^3)$ sem er of hægt.
- Veljum einhver punkt sem vendipunkt og skoðum allar línur sem liggja gegnum vendi punktinn og einhvern annan punkt í safninu.

- ▶ Það er lítið mál að skoða allar þrenndir punkta, en sú lausn er $\mathcal{O}(n^3)$ sem er of hægt.
- Veljum einhver punkt sem vendipunkt og skoðum allar línur sem liggja gegnum vendi punktinn og einhvern annan punkt í safninu.
- Ef tvær línur skerast í réttu horni þá svara þær til þrenndar í punktasafninu sem myndar rétthyrning.

- ▶ Það er lítið mál að skoða allar þrenndir punkta, en sú lausn er $\mathcal{O}(n^3)$ sem er of hægt.
- Veljum einhver punkt sem vendipunkt og skoðum allar línur sem liggja gegnum vendi punktinn og einhvern annan punkt í safninu.
- Ef tvær línur skerast í réttu horni þá svara þær til þrenndar í punktasafninu sem myndar rétthyrning.
- Við getum fundið, fyrir tiltekna línu, hversu margar línur hún sker undir réttu horni með helmingunarleit (tveimur leitum reyndar) eða gagngrindum á borða við leitartré (set<...>) eða hakkatöflu (unordered_map<...>).

- ▶ Það er lítið mál að skoða allar þrenndir punkta, en sú lausn er $\mathcal{O}(n^3)$ sem er of hægt.
- Veljum einhver punkt sem vendipunkt og skoðum allar línur sem liggja gegnum vendi punktinn og einhvern annan punkt í safninu.
- Ef tvær línur skerast í réttu horni þá svara þær til þrenndar í punktasafninu sem myndar rétthyrning.
- Við getum fundið, fyrir tiltekna línu, hversu margar línur hún sker undir réttu horni með helmingunarleit (tveimur leitum reyndar) eða gagngrindum á borða við leitartré (set<...>) eða hakkatöflu (unordered_map<...>).
- Endurtökum svo þannig að allir punktar verði vendipunktar og styttum svo út endurtekningar.

- ▶ Það er lítið mál að skoða allar þrenndir punkta, en sú lausn er $\mathcal{O}(n^3)$ sem er of hægt.
- Veljum einhver punkt sem vendipunkt og skoðum allar línur sem liggja gegnum vendi punktinn og einhvern annan punkt í safninu.
- Ef tvær línur skerast í réttu horni þá svara þær til þrenndar í punktasafninu sem myndar rétthyrning.
- Við getum fundið, fyrir tiltekna línu, hversu margar línur hún sker undir réttu horni með helmingunarleit (tveimur leitum reyndar) eða gagngrindum á borða við leitartré (set<...>) eða hakkatöflu (unordered_map<...>).
- Endurtökum svo þannig að allir punktar verði vendipunktar og styttum svo út endurtekningar.
- ▶ Þessi lausn er $\mathcal{O}(n^2 \log n)$.

Leiðinda rigning