Chapter 3 — Convergence in Measure

Last Updated: July 29, 2022

Contents

§1 Modes of Convergence

1

§1 Modes of Convergence

For simplicity, we will deal with \mathbb{R} -valued functions only. For further remarks, see the footnote in the book.

Definition §1.0.1. Let (X, \mathscr{A}, μ) be a measure space. Let $f, f_1, f_2, \ldots : X \to \mathbb{R}$ be a sequence of \mathscr{A} -measurable functions. We say that f_n converges to f in measure if for every $\varepsilon > 0$, we have that

$$\lim_{n} \mu \left(\left\{ x \in X : \left| f_{n}(x) - f(x) \right| > \varepsilon \right\} \right) = 0$$

Remark §1.0.2. \land General convergence in measure is neither implied nor implies convergence almost everywhere! As the following examples show:

Example §1.0.3. 1. Consider $(X, \mathcal{B}(\mathbb{R}), \lambda)$. Consider the sequence of functions $\{\chi_{[n,\infty)}\}$. Then $\chi_{[n,\infty)} \to 0$ function everywhere (hence, almost everywhere). But it does not converge in measure! To see this take $\varepsilon = \frac{1}{2}$.

2.