Lesson 5 – Operations with Algebraic Vectors in \mathbb{R}^2

PART A: Vectors in R2 expressed in terms of Unit Vectors

We can express the vector \overrightarrow{OP} in terms of unit vectors $\hat{\imath}$ and $\hat{\jmath}$. The unit vectors $\hat{\imath}$ and $\hat{\jmath}$ have a magnitude of 1, and have their tails at the origin. The head of $\hat{\imath}$ is on the x-axis at (1,0)and the head of \hat{j} is on the y - axis at (0,1). In the notation for Cartesian vectors, $\hat{i} = [1,0]$ and $\hat{\jmath}=[0,1]$. The unit vectors $\hat{\imath}$ and $\hat{\jmath}$ are the building blocks for Cartesian vectors, and will be referred to as the Standard Basis Vectors.

In two-dimensional space, there are two standard basis vectors:

$$\hat{\imath} = [1,0] \quad \hat{\jmath} = [0,1]$$

In three-dimensional space, there are three standard basis vectors

$$\hat{i} = [1,0]$$
 $\hat{j} = [0,1]$ $\hat{k} = [0,0,1]$

Standard basis vectors are unit vectors

May 2-7:18 AM

Apr 26-8:24 AM

PART B: Magnitude of a Vector

To find the magnitude of a vector, use the formula for the distance between two points

Magnitudes in \mathbb{R}^2

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are two points, then $|\overrightarrow{AB}| =$ $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$

(Recall: the vector $\overrightarrow{AB} = [x_2 - x_1, y_2 - y_1]$ is the related position vector)

Apr 26-8:24 AM

PART C: Adding vectors

To add two Cartesian vectors $\vec{u} = [u_1, u_2]$ and $\vec{v} = [v_1, v_2]$

$$\vec{u} + \vec{v} = [u_1 + v_1, u_2 + v_2]$$

Example 2: $\vec{u} = [2,1]$ and $\vec{v} = [3,5]$ determine $\vec{u} + \vec{v}$.

May 3-7:56 AM

PART D: Subtracting vectors

To subtract two Cartesian vectors $\vec{u} = [u_1, u_2]$ and $\vec{v} = [v_1, v_2]$

$$\vec{u} - \vec{v} = [u_1 - v_1, u_2 - v_2]$$

Example 3: $\vec{u} = [2,1]$ and $\vec{v} = [3,5]$ determine $\vec{u} - \vec{v}$.

$$\vec{N} - \vec{V} = \begin{bmatrix} 2 - 3, 1 - 5 \end{bmatrix}$$

= $\begin{bmatrix} -1, -4 \end{bmatrix}$

May 2-8:26 AM

Apr 26-8:50 AM