Определения по матану, семестр 4

7 мая 2018 г.

Содержание

1	Теорема о вложении пространств L^p	3
2	Теорема о сходимости в L_p и по мере	3
3	Полнота L_p	3
4	Лемма Урысона	3
5	Плотность в L_p непрерывных финитных функций	4
6	Теорема о непрерывности сдвига	4
7	Теорема об интеграле с функцией распределения	4
8	Теорема о свойствах сходимости в гильбертовом про- странстве	4
9	Теорема о коэффициентах разложения по ортогональной системе	5
10	Теорема о свойствах частичных сумм ряда Фурье. Нера- венство Бесселя	5

11	Теорема Рисса – Фишера о сумме ряда Фурье. Равенство Парсеваля	6
12	Теорема о характеристике базиса	6
13	Лемма о вычислении коэффициентов тригонометриче- ского ряда	7
14	Теорема Римана-Лебега	7
15	Принцип локализации Римана	7
16	Признак Дини. Следствия	7
17	Корректность определения свертки	8
18	Свойства свертки функции из L^p с функцией из L^q	8
19	Формула Грина	8
20	Формула Стокса	8
21	Формула Гаусса-Остроградского	9
22	Соленоидальность бездивергентного векторного поля	9

1 Теорема о вложении пространств L^p

 $\mu E < +\infty, \ 1 \le s < r \le +\infty$ Тогда:

- 1. $L_r(E,\mu) \subset \mathcal{L}_s(E,\mu)$
- 2. $\forall f$ измеримы $||f||_s \leq \mu E^{1/s-1/r} ||f||_r$

2 Теорема о сходимости в L_p и по мере

 $1 \leq p < +\infty, \ f_n \in L_p(\mathbb{X}, \mu)$ Тогда:

- 1. \bullet $f \in L_p$
 - $ullet f_n o f$ в L_p

Тогда: $f_n \stackrel{\mu}{\Rightarrow} f$ (по мере)

- 2. $f_n \stackrel{\mu}{\Rightarrow} f$ (либо если $f_n \to f$ почти везде)
 - $|f_n| \leq g$ почти при всех $n, g \in L_p$

Тогда: $f_n \to f$ в L_p

3 Полнота L_p

 $L_p(E,\mu)$ $1 \le p < \infty$ – полное

То есть любая фундаментальная последовательность сходиться по норме $||f||_p$.

$$\forall \varepsilon > 0 \; \exists N \; \forall n, k \; ||f_n - f_k|| < \varepsilon \Rightarrow \exists f \; | \; ||f_n - f|| \to 0$$

4 Лемма Урысона

 F_0, F_1 — два непересекающихся замкнутых множества из \mathbb{R}^m Тогда $\exists f : \mathbb{R}^m \to \mathbb{R}$ (непрырывная): $f|_{F_0} = 0, f|_{F_1} = 1$

5 Плотность в L_p непрерывных финитных функций

 $\forall p: 1 \leqslant p < +\infty$ C_0 всюду плотно в $L^p(R^m)$

6 Теорема о непрерывности сдвига

$$f_n(x) = f(x+h)$$
* f - равномерно непрерывна на $\mathbb{R}^m \Rightarrow \lim_{h \to 0} \|f_n - f\|_{\infty} = 0$
* $1 \leqslant p < +\infty$ $f \in L^p(\mathbb{R}^m) \Rightarrow \lim_{h \to 0} \|f_n - f\|_p = 0$
* $f \in \widetilde{C}[0,T] \Rightarrow \lim_{h \to 0} \|f_n - f\|_{\infty} = 0$
* $1 \leqslant p < +\infty$ $f \in L^p[0,T] \Rightarrow \lim_{h \to 0} \|f_n - f\|_p = 0$

7 Теорема об интеграле с функцией распределения

 (\mathbb{R},B,X) $f:\mathbb{R}\to\mathbb{R},f\geq 0$, изм. по Борелю, п.в. конечн. $h:X\to\overline{\mathbb{R}}$ с функцией распределения H(t)

 μ_H – мера Бореля-Стилтьеса (мера Лебега-Стилтьеса на B)

Тогда:
$$\int\limits_X f(h(x)) \ d\mu(x) = \int\limits_{\mathbb{R}} f(t) \ d\mu_H(t)$$

8 Теорема о свойствах сходимости в гильбертовом пространстве

1.
$$x_n \to x, y_n \to y \Rightarrow \langle x_n, y_n \rangle \to \langle x, y \rangle$$

2.
$$\sum x_k$$
 сходится, тогда $\forall y : \sum \langle x_k, y \rangle = \langle \sum x_k, y \rangle$

3. $\sum x_k$ - ортогональный ряд, тогда $\sum x_k$ - $\operatorname{cx} \Leftrightarrow \sum |x_k|^2$ сходится, при этом $|\sum x_k|^2 = \sum |x_k|^2$

9 Теорема о коэффициентах разложения по ортогональной системе

 $\{e_k\}$ — ортогональная система в $\mathbb{H},\ x\in\mathbb{H}, x=\sum_{k=1}^{+\infty}c_k\cdot e_k$ Тогда:

- 1. $\{e_k\}$ Л.Н.З.
- 2. $c_k = \frac{\langle x, e_k \rangle}{||e_k||^2}$
- 3. $c_k \cdot e_k$ проекция x на прямую $\{te_k, t \in \mathbb{R}(\mathbb{C})\}$ Иными словами $x = c_k \cdot e_k + z$, где $z \perp e_k$

10 Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя

 $\{e_k\}$ — ортогональная система в $\mathbb{H}, \ x\in \mathbb{H}, n\in \mathbb{N}$ $S_n=\sum\limits_{k=1}^n c_k(x)e_k, \ \mathcal{L}=Lin(e_1,e_2,...e_n)\subset \mathbb{H}$ Тогда:

- 1. S_n орт. проекция x на пр-во \mathcal{L} . Иными словами $x=S_n+z,\ z\bot\mathcal{L}$
- 2. S_n наилучшее приближение x в $\mathcal{L}(||x S_n|| = \min_{y \in \mathcal{L}} ||x y||)$
- $|3.||S_n|| \leq ||x||$

11 Теорема Рисса – Фишера о сумме ряда Фурье. Равенство Парсеваля

 $\{e_k\}$ – орт. сист. в $\mathbb{H}, x \in \mathbb{H}$

Тогда:

1. Ряд Фурье $\sum\limits_{k=1}^{+\infty}c_k(x)e_k$ сх-ся в $\mathbb H$

2.
$$x = \sum_{k=1}^{+\infty} c_k e_k + z \Rightarrow \forall k \ z \perp e_k$$

3.
$$x = \sum_{k=1}^{+\infty} c_k e_k \Leftrightarrow \sum_{k=1}^{+\infty} |c_k|^2 ||e_k||^2 = ||x||^2$$

12 Теорема о характеристике базиса

 $\{e_k\}$ – орт. сист. в $\mathbb H$

Тогда эквивалентны следующие утверждения:

- 1. $\{e_k\}$ базис
- 2. $\forall x,y\in\mathbb{H}$ $\langle x,y\rangle=\sum c_k(x)\overline{c_k(y)}\|e_k\|^2$ (обобщенное уравнение замкнутости)
- $3. \{e_k\}$ замкн.
- $4. \{e_k\}$ полн.
- 5. $Lin(e_1,e_2,\ldots)$ плотна в $\mathbb H$

13 Лемма о вычислении коэффициентов тригонометрического ряда

Пусть
$$S_n \to f$$
 в $L_1[-\pi, \pi]$

Тогда:
$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) coskx \ dx \quad k = 0, 1, 2, \dots$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) sinkx \ dx \quad k = 0, 1, 2, \dots$$

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} \ dx \quad k = 0, 1, 2, \dots$$

14 Теорема Римана-Лебега

$$E\subset\mathbb{R}$$
 — измеримо, $f\in L^1(E)$ Тогда $\int\limits_E f(x)\cdot e^{ikx}\;dx \xrightarrow[k\to\infty]{} 0$ (То же самое можно и с $\cos x$ и $\sin x$ вместо e^{ikx})

15 Принцип локализации Римана

$$f, g \in L^{1}[-\pi, \pi] \quad x_{0} \in [-\pi, \pi] \quad \exists \delta > 0$$

 $f(x) = g(x)$ при $x \in (x_{0} - \delta, x_{0} + \delta)$
Тогда $S_{n}(f, x_{0}) - S_{n}(g, x_{0}) \xrightarrow[n \to +\infty]{} 0$

16 Признак Дини. Следствия

$$f \in L^1[-\pi,\pi]$$
 $x_0 \in [-\pi,\pi]$ $S \in \mathbb{R}$ (или \mathbb{C})
$$\int_0^\pi \frac{|f(x_0+t)-2S+f(x_0-t)|}{t} dt < +\infty$$
Тогда: $S_n(f,x_0) \to S$

Следствие: $f \in L^1[-\pi,\pi]$ $x_0 \in [-\pi,\pi]$ Существуют 4 конечный предела $\alpha_{\pm} = \lim_{t \to \pm 0} \frac{f(x_0+t)-f(x_0\pm 0)}{t}$ $\frac{\text{Тогда:}}{\text{Следствие:}}$ ряд Фурье сходится в x_0 к $S = \frac{1}{2}(f(x_0+0)+f(x_0-0))$ $\frac{\text{Следствие:}}{\text{Существует конечн.}}$ $f \in L^1[-\pi,\pi]$ - непр. в x_0 $f(x_0)$ $f'(x_0)$ и $\lim_{t \to \pm 0} \frac{f(x_0+t)-f(x_0\pm 0)}{t}$ $f(x_0)$ $f'(x_0)$ $f'(x_0)$

17 Корректность определения свертки

Свертка – корректно заданная функция из $L_1([-\pi,\pi])$

18 Свойства свертки функции из L^p с функцией из L^q

$$f \in L^p$$
 $k \in L^q[-\pi,\pi]$ $\left(\frac{1}{p} + \frac{1}{q} = 1\right)$ $1 \leqslant p < +\infty$ Тогда $f * k$ - непрерывна на $[-\pi,\pi]$ $\|f * k\|_1 \leqslant \|f\|_p * \|k\|_q$

19 Формула Грина

 \mathbb{R}^2 — ориент. с помощью нумерации координат.

 $D \subset \mathbb{R}^2$ — компактное, связное, односвязное, с C^2 -гладкой границей. (P,Q) — гладкое векторное поле.

Пусть граница $D(\partial D)$ ориентирована согласованно с ориентацией плоскости.

Тогда
$$\int_{\partial D} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy$$

20 Формула Стокса

 $D\subset\mathbb{R}^3$ — простая гладкая поверхность в $\mathbb{R}^3,\,\partial D-C^2$ -гладкая кривая,

 n_0 — сторона поверхности; ориентированы согласованно с $\partial D <$ br> (P, Q, R) — гладкое векторное поле на D. Тогда:

$$\int_{\partial D} P dx + Q dy + R dz =
= \iint_{D} (R'_{y} - Q'_{z}) dy dz + (P'_{z} - R'_{x}) dz dx + (Q'_{x} - P'_{y}) dx dy$$

21 Формула Гаусса-Остроградского

$$D\subset\mathbb{R}^3$$
 ∂D — ориент. полем внешних нормалей (P,Q,R) — гл. век. поле в D . Тогда
$$\iint\limits_{\partial D}P\,dy\,dz+Q\,dz\,dx+R\,dx\,dy=\iiint\limits_{D}(P'_x+Q'_y+R'_z)\,dx\,dy\,dz$$

22 Соленоидальность бездивергентного векторного поля

$$A \in C^1$$

 A - соленоидально $\Leftrightarrow div A = 0$