Regression Analysis

Regression Analysis in Practice

Nicoleta Serban, Ph.D.

Professor

School of Industrial and Systems Engineering

Predicting Customer Churn

Georgia Tech

About This Lesson

Prediction

Using the full model

pred.full = predict(full.model.red, newdata =

test.reduced, type = "response")

Using the model from stepwise selection

Variables not selected : Gender, Senior Citizen, Online

Backup and Device Protection

pred.step = predict(step.model, newdata =

test.reduced, type = "response")

Using the model from LASSO

Variables not selected : Online Backup and Payment

Method

pred.lasso = predict(lasso.retrained, newdata =

as.data.frame(new_test), type = "response")

Using the model from Elastic Net (All selected)

pred.elnet = as.vector(predict(elnet.model, newx = x.test, type = "response", s = cv.elnet\$lambda.min))

Use classification threshold = 0.5

Predicted churn probability < 0.5 => Churn prediction = 0 Predicted churn probability > 0.5 => Churn prediction = 1

Georgia Tech

predClass

elnet

0

0

0

0

0

0

0

0

0

Prediction Output

full

0

0

0

Churn predClass. predClass. predClas.

step

0

lasso

0

0

0

0

Actual

Value

0

0

0

0

0

0

Customers

in Test Data

122

139

257

522

951

982 1078

1091

1094

1123

1161

1249

Prediction (cont'd)

Using the full model

pred.full = predict(full.model.red, newdata =
test.reduced, type = "response")

Using the model from stepwise selection

Variables not selected : Gender, Senior Citizen, Online

Backup and Device Protection

pred.step = predict(step.model, newdata =

test.reduced, type = "response")

Using the model from LASSO

Variables not selected: Online Backup and Payment

Method

pred.lasso = predict(lasso.retrained, newdata =

as.data.frame(new_test), type = "response")

Using the model from Elastic Net (All selected)

pred.elnet = as.vector(predict(elnet.model, newx =

x.test, type = "response", s = cv.elnet\$lambda.min))

Use classification threshold = 0.5

Predicted churn probability < 0.5 => Churn prediction = 0 Predicted churn probability > 0.5 => Churn prediction = 1

Classification Accuracy

Classification Evaluation Metrics

Accuracy:

Proportion of response values Y_i (churn value) predicted correctly

Sensitivity (True Positive Rate):

Proportion of responses with $Y_i = 1$ (customers who left the company) predicted correctly

Specificity (True Negative Rate):

Proportion of responses with $Y_i = 0$ (customers who remained with the company) predicted correctly

Georgia Tech

Model Comparison via Classification Evaluation Metrics

```
## Calculate the Accuracy, the Sensitivity and the Specificity metrics to evaluate these models at 0.5 threshold

pred_metrics = function(modelName, actualClass, predClass) {
    cat(modelName, '\n')
    conmat <- confusionMatrix(table(actualClass, predClass))
    c(conmat\$overall["Accuracy"], conmat\$byClass["Sensitivity"],
    conmat\$byClass["Specificity"])
}

##Full model

pred_metrics("Full Model",test\$Churn.Value, predClass.full)

##Stepwise selection model

pred_metrics("Stepwise Regression Model",test\$Churn.Value, predClass.step)

##Lasso model

pred_metrics("Lasso Regression Model",test\$Churn.Value, predClass.lasso)

##Elastic Net model

pred_metrics("Elastic Regression Model",test\$Churn.Value, predClass.elnet)
```

Model Comparison via Classification Evaluation Metrics

Full Model Accuracy Sensitivity Specificity 0.8180 0.8577 0.6832 Stepwise Regression Model Accuracy Sensitivity Specificity

Lasso Regression Model

0.8174

Accuracy Sensitivity Specificity 0.8168 0.8576 0.6799

0.8582

0.6807

Threshold value: 0.5

All models have very similar prediction metrics. In this case, correctly identifying positives is more important for us. Therefore, we should choose a model with higher Sensitivity.

Georgia Tech

Classification Evaluation Metrics: Different Threshold

Full Model Sensitivity Specificity Accuracy 0.5521 0.7742 0.9116 Stepwise Regression Model Accuracy Sensitivity Specificity 0.7776 0.9136 0.5567 Lasso Regression Model Sensitivity Specificity Accuracy

0.9111

0.5547

0.7759

Threshold value: 0.3

All models have very similar prediction metrics. Sensitivity has improved while the specificity has decreased as well as the overall accuracy.

Goodness of fit

Measure how well the Logistic Regression model (after variable selection through Stepwise Selection) fits on the training data

Removing variables not selected by stepwise regression

step.predictors <- names(coef(full.model.red)[index.step])

x.train <- as.data.frame(x.train)

train.final <- x.train[, - which(colnames(x.train) %in% step.predictors)]

Aggregating the data

obdata.agg.n = aggregate(y.train \sim . , data = train.final, FUN = length) obdata.agg.y = aggregate(y.train \sim . , data = train.final, FUN = sum)

dat.aggr <- cbind(obdata.agg.y, total = obdata.agg.n\$y.train)

Fitting the model

 $mod.aggr = glm(y.train / total \sim . , data = dat.aggr, weight = total, family = binomial) summary(mod.aggr)$

Georgia Tech

Goodness of fit (cont'd)

Find the Chi-square test statistics and the corresponding p-value to test the given null hypothesis.

res = resid(mod.aggr, type="deviance")
cbind(statistic = sum(res^2), pvalue = 1-pchisq(sum(res^2),
mod.aggr\$df.resid))

Test statistic =
$$X^2 = \sum_{i=1}^{p} r_i^2 \sim \chi^2$$
 with $dof = n - (p+1)$
P value = $P(\chi^2_{n-(p+1)} < X^2)$

Chi-Square Test Statistics P-value 4180.503 1

P-value is equal to 1, so our model reasonably fits the training data.

