Problem 1 (22 marks)

For $x, y \in \mathbb{Z}$ we define the set:

$$S_{x,y} = \{mx + ny : m, n \in \mathbb{Z}\}.$$

- (a) Give five elements of $S_{4,-6}$. (5 marks)
- (b) Give five elements of $S_{12.18}$. (5 marks)

For the following questions, let $d = \gcd(x, y)$ and z be the smallest positive number in $S_{x,y}$, or 0 if there are no positive numbers in $S_{x,y}$.

- (c) (i) Show that $S_{x,y} \subseteq \{n : n \in \mathbb{Z} \text{ and } d | n\}$. (4 marks)
 - (ii) Show that $d \le z$. (2 marks)
- (d) (i) Show that z|x and z|y (Hint: consider (x % z) and (y % z)). (4 marks)
 - (ii) Show that $z \le d$. (2 marks)

Remark

The result that there exists $m, n \in \mathbb{Z}$ such that $mx + ny = \gcd(x, y)$ is known as Bézout's Identity.

Solution

(a) We have:

so

$$S_{4,-6} = \{\ldots, -2, 0, 2, 4, 6, \ldots\} = 2\mathbb{Z}$$

(b) We have:

$$-6 = (1)12 + (-1)18$$
 $0 = (0)12 + (0)18$ $6 = (-1)12 + (1)18$ $12 = (-2)12 + (2)18$ $18 = (0)12 + (1)18$...

so

$$S_{12,16} = \{\ldots, -6, 0, 6, 12, 18, \ldots\} = 6\mathbb{Z}$$

- (c) (i) d|x and d|y, so d|(mx + ny) for any integers m, n. Therefore, if $w \in S_{x,y}$, d|w. So $S_{x,y} \subseteq \{n : n \in \mathbb{Z} \text{ and } d|n\}$.
 - (ii) $z \in S_{x,y}$ so d|z, that is z = kd for some integer k. If z = 0 then, as $\pm x, \pm y \in S_{x,y}$ it follows that x = y = 0 and hence d = 0. Otherwise z > 0, and as d is a non-negative integer, we have that $k \ge 0$. In both cases, $d \le z$.
- (d) (i) Let r = (x % z) and q = (x div z). From the definition of these operations, we have x = qz + r, or r = x qz. Since $z \in S_{x,y}$, z = mx + ny for some $m, n \in \mathbb{Z}$. Therefore, r = (1 m)x ny, so $r \in S_{x,y}$. From Q1(b), we have that $0 \le r < z$. From the minimality of z, it follows that r = 0 and hence $z \mid x$. Similarly $z \mid y$.

(ii) The previous question shows that z is a common divisor of x and y. Therefore, by the definition of $\gcd, z \le d$.

Discussion

- For (a) and (b): 1 mark for each element correctly identified (justification not needed).
- Full marks for clear and correct proofs.
- Minor errors include missing logical steps in arguments
- Major errors include two+ minor errors; right proof "idea" but not clearly explained; or missing an inclusion when showing set equality.
- Good progress includes some logical argument

Problem 2 (12 marks)

For all $x, y \in \mathbb{Z}$ with y > 1:

- (a) Prove that if gcd(x,y) = 1 then there is at least one $w \in [0,y) \cap \mathbb{N}$ such that $wx =_{(y)} 1$. (4 marks)
- (b) Prove that if gcd(x, y) = 1 and y|kx then y|k. (4 marks)
- (c) Prove that if gcd(x,y) = 1 then there is at most one $w \in [0,y) \cap \mathbb{N}$ such that $wx =_{(y)} 1$. (4 marks)

Solution

- (a) Since gcd(x,y) = 1, from Bézout's identity (or Q1), we have that there exists $m, n \in \mathbb{Z}$ such that mx + ny = 1. Let w = m % y.
 - From the lectures we have that $w \in [0, y)$.
 - Also from the lectures we have that $m =_{(y)} w$, so:

$$wx =_{(y)} mx$$

$$= mx + n \cdot 0$$

$$=_{(y)} mx + ny$$

$$= 1$$

(b) Since gcd(x, y) = 1, from (a) there exists w such that $wx =_{(y)} 1$. Since y|kx we have $kx =_{(y)} 0$. Therefore:

$$0 = 0 \cdot w$$

$$=_{(y)} (kx)w$$

$$= k(wx)$$

$$=_{(y)} k \cdot 1$$

$$=_{(y)} k$$

So y|k as required.

(c) Suppose $w, w' \in [0, y)$ are such that $wx =_{(y)} 1$ and $w'x =_{(y)} 1$. We will show that it must be the case that w = w'. Since $wx =_{(y)} w'x$, we have:

$$0 =_{(y)} wx - w'x = (w - w')x,$$

and therefore y|(w-w')x.

Since gcd(x, y) = 1, from (b) we have that y|(w - w'), so w - w' = ky for some $k \in \mathbb{Z}$.

As $w, w' \in [0, y)$ we have that:

- $w \ge 0$ and w' < y, so w w' > -y, and therefore k > -1; and
- w < y and $w' \ge 0$, so w w' < y, and therefore k < 1.

So k = 0 and therefore w = w'.

Problem 3* (4 marks)

Prove that for all $m, n \in \mathbb{N}_{>0}$ with $n \leq m$:

$$\frac{3}{2}(n+(m\% n)) < m+n.$$

Solution

Suppose $x \ge \lfloor x \rfloor + 1$. Then $\lfloor x \rfloor + 1$ is an integer, smaller than x, but greater than $\lfloor x \rfloor$ – contradicting the definition of $|\cdot|$. Therefore x < |x| + 1.

Because $n \le m$, we have $1 \le \lfloor \frac{m}{n} \rfloor$, and from above we have $\frac{m}{n} < 1 + \lfloor \frac{m}{n} \rfloor$. Therefore,

$$m+n = n\left(\frac{m}{n}+1\right) < n\left(\lfloor \frac{m}{n} \rfloor + 2\right) \leq 3n\lfloor \frac{m}{n} \rfloor.$$

Therefore,

$$3(m \% n) + 3n = 3m - 3n \lfloor \frac{m}{n} \rfloor + 3n = 2m + 2n + (m + n - 3n \lfloor \frac{m}{n} \rfloor) < 2m + 2n.$$

Therefore $\frac{3}{2}((m \% n) + n) < m + n$.

Discussion

- Minor errors include small logical errors or omissions
- Major errors include justifications based on non-standard definitions (e.g. using the "fractional" part) without references
- Shows progress includes working with a correct definition

Problem 4 (16 marks)

Use the laws of set operations (and any results proven in lectures) to prove the following identities:

(a) (Annihilation): $A \cap \emptyset = \emptyset$ (4 marks)

(b)
$$(A \setminus C^c) \cup (B \cap C) = C \cap (B \cup A)$$
 (4 marks)

(c)
$$A^c \oplus \mathcal{U} = A$$
 (4 marks)

(d) (De Morgan's law):
$$(A \cap B)^c = A^c \cup B^c$$
 (4 marks)

Proof assistant

https://www.cse.unsw.edu.au/~cs9020/cgi-bin/logic/21T3/set theory/assignment

Solution

Here are some sample proofs (others exist):

(a)
$$A \cap \emptyset = A \cap (A \cap A^c) \qquad \text{(Complement with } \cap \text{)}$$

$$= (A \cap A) \cap A^c \qquad \text{(Associativity of } \cap \text{)}$$

$$= A \cap A^c \qquad \text{(Idempotence of } \cap \text{)}$$

$$= \emptyset \qquad \text{(Complement with } \cap \text{)}$$

(b)
$$(A \setminus C^c) \cup (B \cap C) = (A \cap C^{cc}) \cup (B \cap C)$$
 (Definition of \)
$$= (A \cap C) \cup (B \cap C)$$
 (Double complement)
$$= (C \cap A) \cup (B \cap C)$$
 (Commutatitivity of \cap \)
$$= (C \cap A) \cup (C \cap B)$$
 (Commutatitivity of \cap \)
$$= (C \cap B) \cup (C \cap A)$$
 (Commutatitivity of \cup \)
$$= C \cap (B \cup A)$$
 (Distributivity of \cap \cup over \cup \)

(c)
$$A^{c} \oplus \mathcal{U} = (A^{c} \cap \mathcal{U}^{c}) \cup (A^{cc} \cap \mathcal{U}) \qquad \text{(Definition of } \oplus)$$

$$= (A^{c} \cap (\mathcal{U}^{c} \cap \mathcal{U})) \cup (A^{cc} \cap \mathcal{U}) \qquad \text{(Identity of } \cap)$$

$$= (A^{c} \cap (\mathcal{U} \cap \mathcal{U}^{c})) \cup (A^{cc} \cap \mathcal{U}) \qquad \text{(Commutatitivity of } \cap)$$

$$= (A^{c} \cap (A^{c} \cap \mathcal{U}) \cup (A^{cc} \cap \mathcal{U}) \qquad \text{(Complement with } \cap)$$

$$= (A^{c} \cap (A^{c} \cap A^{cc})) \cup (A^{cc} \cap \mathcal{U}) \qquad \text{(Associativity of } \cap)$$

$$= (A^{c} \cap A^{cc}) \cup (A^{cc} \cap \mathcal{U}) \qquad \text{(Idempotence of } \cap)$$

$$= (A^{cc} \cap \mathcal{U}) \cup \emptyset \qquad \text{(Complement with } \cap)$$

$$= (A^{cc} \cap \mathcal{U}) \cup \emptyset \qquad \text{(Complement with } \cap)$$

$$= (A^{cc} \cap \mathcal{U}) \cup \emptyset \qquad \text{(Identity of } \cup)$$

$$= A^{cc} \qquad \text{(Identity of } \cap)$$

$$= A \qquad \text{(Double complement)}$$

```
A^c \oplus \mathcal{U} = (A^c \cap \mathcal{U}^c) \cup (A^{cc} \cap \mathcal{U})
                                                                                            (Definition of \oplus)
               = (A^c \cap (\mathcal{U}^c \cap \mathcal{U})) \cup (A^{cc} \cap \mathcal{U})
                                                                                                (Identity of \cap)
               = (A^c \cap (\mathcal{U} \cap \mathcal{U}^c)) \cup (A^{cc} \cap \mathcal{U})
                                                                                  (Commutatitivity of \cap)
               = (A^c \cap \emptyset) \cup (A^{cc} \cap \mathcal{U})
                                                                                   (Complement with \cap)
                                                                                    (Double complement)
               = (A^c \cap \emptyset) \cup (A \cap \mathcal{U})
               = (A^c \cap \emptyset) \cup A
                                                                                                (Identity of \cap)
                    A \cup (A^c \cap \emptyset)
                                                                                  (Commutatitivity of \cup)
                     (A \cup A^c) \cap (A \cup \emptyset)
                                                                           (Distributivity of \cup over \cap)
               = \mathcal{U} \cap (A \cup \emptyset)
                                                                                   (Complement with \cup)
                                                                                  (Commutatitivity of \cap)
               = (A \cup \emptyset) \cap \mathcal{U}
                                                                                                (Identity of \cap)
                = A \cup \emptyset
                    A
                                                                                                (Identity of \cup)
```

(d) First, consider $(A \cap B) \cap (A^c \cup B^c)$:

```
(A \cap B) \cap (A^c \cup B^c) = ((A \cap B) \cap A^c) \cup ((A \cap B) \cap B^c)
= (A \cap (B \cap A^c)) \cup (A \cap (B \cap B^c))
= (A \cap (A^c \cap B)) \cup (A \cap (B \cap B^c))
= ((A \cap A^c) \cap B) \cup (A \cap (B \cap B^c))
= (\emptyset \cap B) \cup (A \cap \emptyset)
= (B \cap \emptyset) \cup (A \cap \emptyset)
= (Complement)
= (B \cap \emptyset) \cup (A \cap \emptyset)
= (Complement)
=
```

From this it follows that $(A^c \cap B^c) \cap ((A^c)^c \cup (B^c)^c) = \emptyset$, so

$$\emptyset = (A^c \cap B^c) \cap ((A^c)^c \cup (B^c)^c)$$

$$= (A^c \cap B^c) \cap (A \cup B)$$
 (Double complement)
$$= (A \cup B) \cap (A^c \cap B^c)$$
 (Commutativity).

By the Principle of Duality, we therefore have:

$$(A \cap B) \cup (A^c \cup B^c) = \mathcal{U}.$$

By the uniqueness of complement it therefore follows that:

$$(A^c \cup B^c) = (A \cap B)^c$$

as required.

Discussion

- For top marks each rule should be on its own line, but multiple applications of the same rule on one line are ok.
- Minor errors include: one or two incorrect rule names (not counting multiple occurrences) ignoring small typos; one or two rule omissions (name or logical step i.e. two rules on the same line). Double complementation is a commonly omitted rule.
- Major errors include: Two+ minor errors; omitting all rule names; unfinished proofs (e.g. finishing (c) at $(A * A^c) * (A * A^c)$)
- Good progress includes: One or two correct logical steps.

Problem 5 (12 marks)

Let $\Sigma = \{0,1\}$. For each of the following, prove that the result holds for all sets $X,Y,Z \subseteq \Sigma^*$, or provide a counterexample to disprove:

(a)
$$(X \cap Y)^* = X^* \cap Y^*$$
 (4 marks)

(b)
$$(XY)^* = (YX)^*$$

(c)
$$X(Y \cap Z) = (XY) \cap (XZ)$$
 (4 marks)

Solution

- (a) This is false. Consider $X = \{00\}$ and $Y = \{000\}$. Then $000000 \in X^*$ and $000000 \in Y^*$ but $X \cap Y = \emptyset$ so $000000 \notin (X \cap Y)^*$.
- (b) This is false. Consider $X = \{0\}$ and $Y = \{1\}$. Then $01 \in (XY)^*$ and $01 \notin (YX)^*$.
- (c) This is false. Consider $X = \{0,00\}$, $Y = \{0\}$, and $Z = \{00\}$. Then $Y \cap Z = \emptyset$ so $X(Y \cap Z) = \emptyset$; but $000 \in XY$ and $000 \in XZ$, so $000 \in (XY \cap XZ)$

Discussion

- Concrete examples for all answers are required for full marks.
- Minor errors for small logical omissions (e.g. not showing that the counterexamples work)
- Major errors include not giving a concrete counterexample for false answers
- Shows progress includes identifying if the statement is true/false without justification.

Problem 6 (12 marks)

- (a) List all possible functions $f: \{a, b, c\} \to \{0, 1\}$, that is, all elements of $\{0, 1\}^{\{a, b, c\}}$. (4 marks)
- (b) Describe a connection between your answer for (a) and $Pow({a,b,c})$. (4 marks)

(c) Describe a connection between your answer for (a) and $\{w \in \{0,1\}^* : \text{length}(w) = 3\}$. (4 marks)

Solution

- (a) There are eight functions from $\{a, b, c\}$ to $\{0, 1\}$:
 - $f_0: a \mapsto 0, b \mapsto 0, c \mapsto 0$
 - f_1 : $a \mapsto 0$, $b \mapsto 0$, $c \mapsto 1$
 - f_2 : $a \mapsto 0$, $b \mapsto 1$, $c \mapsto 0$
 - f_3 : $a \mapsto 0$, $b \mapsto 1$, $c \mapsto 1$
 - f_4 : $a \mapsto 1$, $b \mapsto 0$, $c \mapsto 0$
 - f_5 : $a \mapsto 1$, $b \mapsto 0$, $c \mapsto 1$
 - f_6 : $a \mapsto 1$, $b \mapsto 1$, $c \mapsto 0$
 - f_7 : $a \mapsto 1$, $b \mapsto 1$, $c \mapsto 1$
- (b) We observe that the cardinality of $Pow(\{a,b,c\})$ is equal to the number of functions from $\{a,b,c\}$ to $\{0,1\}$. Indeed, for each function $f:\{a,b,c\}\to\{0,1\}$ we can associate a unique element of $Pow(\{a,b,c\})$ given by $f^{\leftarrow}(1)$. For example, f_0 corresponds to \emptyset ; f_5 corresponds to $\{a,c\}$.
- (c) We again observe that the cardinaltiy of $\Sigma^{=3}$ (where $\Sigma = \{0,1\}$) is equal to the number of functions from $\{a,b,c\}$ to $\{0,1\}$. Indeed, for each function $f:\{a,b,c\} \to \{0,1\}$ we can associate a unique element of $\Sigma^{=3}$ given by f(a)f(b)f(c). For example f_0 corresponds to 000; f_5 corresponds to 101.

Discussion

- For full marks, functions should be clearly defined; the full connection between the sets should be identified; each numeric answer should have a small justification
- Minor errors include small typos that do induce an incorrect answer (e.g. doubling up on a function)
- Major errors include unclear function definitions; only matching cardinalities; numeric answers without justification; incorrect numeric answers with small justification
- Shows promise includes: one or more functions defined; well-founded incorrect numeric answers (e.g. m^2) without justification.

Problem 7* (6 marks)

Show that for any sets A, B, C there is a bijection between $A^{(B \times C)}$ and $(A^B)^C$.

Solution

 $A^{(B \times C)}$ is the set of functions from $B \times C$ to A; and $(A^B)^C$ is the set of functions from C to X where X is the set of functions from B to A. For each $f \in A^{(B \times C)}$, and $c \in C$ let $g_{f,c} \in X$ denote the function from B to A defined as $g_{f,c}(b) = f(b,c)$. For each $f \in A^{(B \times C)}$, let $h_f \in X^C$ denote the

function from C to X defined as $h_f(c) = g_{f,c}$. We claim that the map that takes f to h_f is a bijection.

Injection. First we show that the map is an injection. Take $f, f' \in A^{(B \times C)}$ with $f \neq f'$. Since $f \neq f'$ there exists $b \in B, c \in C$ such that $f(b,c) \neq f'(b,c)$. Therefore $g_{f,c}(b) \neq g_{f',c}(b)$ so $g_{f,c} \neq g_{f',c}$. But then $h_f(c) \neq h_{f'}(c)$ so $h_f \neq h_{f'}$. Therefore the map is injective.

Surjection. Consider any $h: C \to X$. Define $f_h: B \times C \to A$ by setting $f_h(b,c) = [h(c)](b)$. For any $c' \in C$ we have $g_{f_h,c}: B \to A$ is the function that maps b to $f_h(b,c) = [h(c)](b)$. That is, $g_{f_h,c} = h(c)$. But then h_{f_h} is the function that maps c to $g_{f_h,c} = h(c)$. That is $h_{f_h} = h$. Therefore the map is surjective.

Discussion

- For full marks, the argument should apply to any sets *A*, *B*, *C*, not just finite sets (i.e. cardinality arguments will generally not be sufficient).
- Minor errors include well-argued (i.e. defining a bijection) proof for finite sets
- Major errors include a cardinality-based argument that uses exponentiation properties
- Shows promise includes identifying the sets $A^{(B \times C)}$ and $(A^B)^C$.

Problem 8 (16 marks)

Recall the relation composition operator; defined as:

$$R_1$$
; $R_2 = \{(a, c) : \text{there is a } b \text{ with } (a, b) \in R_1 \text{ and } (b, c) \in R_2\}$

Let *S* be an arbitrary set. For each of the following, prove it holds for any binary relations R_1 , R_2 , $R_3 \subseteq S \times S$, or give a counterexample to disprove:

(a)
$$(R_1, R_2)$$
; $R_3 = R_1$; (R_2, R_3) (4 marks)

(b)
$$I; R_1 = R_1; I = R_1$$
 where $I = \{(x, x) : x \in S\}$ (4 marks)

(c)
$$(R_1 \cup R_2); R_3 = (R_1; R_3) \cup (R_2; R_3)$$
 (4 marks)

(d)
$$R_1$$
; $(R_2 \cap R_3) = (R_1; R_2) \cap (R_1; R_3)$ (4 marks)

Solution

(a) This is true. We have:

```
(a,d) \in (R_1;R_2); R_3 iff there exists c \in S such that (a,c) \in R_1; R_2 and (c,d) \in R_3 iff there exists b,c \in S such that (a,b) \in R_1 and (b,c) \in R_2 and (c,d) \in R_3 iff there exists b \in S such that (a,b) \in R_1 and (b,d) \in R_2; R_3 iff (a,d) \in R_1; (R_2;R_3)
```

(b) This is true. Suppose $(a,b) \in R$. Then, because $(a,a) \in I$ we have $(a,b) \in I$; R. Also, because $(b,b) \in I$ we have $(a,b) \in R$; I.

Now suppose $(a, b) \in I$; R. Then there exists $c \in S$ such that $(a, c) \in I$ and $(c, b) \in R$. But from the definition of I, the only such c is c = a, so $(a, b) \in R$.

Finally suppose $(a, b) \in R$; I. Then there exists $c \in S$ such that $(a, c) \in R$ and $(c, b) \in I$. Again, from the definition of I, the only such c is c = b, so $(a, b) \in R$.

- (c) This is true.
- (d) This is false. Consider $R_1 = \{(1,2), (1,3)\}$, $R_2 = \{(2,4)\}$ and $R_3 = \{3,4\}$. Then we hae $R_2 \cap R_3 = \emptyset$, so R_1 ; $(R_2 \cap R_3) = \emptyset$. On the other hand, $(1,4) \in R_1 : R_2$ and $(1,4) \in R_1$; R_3 , so $(R_1; R_2) \cap (R_1; R_3)$ is non-empty.

Discussion

For each question:

- Minor errors for small logical omissions (e.g. not showing that the counterexamples work)
- Major errors include only showing one "direction" of the equality (but correctly stating whether the statement is true/false); not giving a concrete counterexample (i.e. justification for false has ambiguity)
- Shows progress includes identifying if the statement is true/false without justification.