УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Компьютерные сети»

Лабораторная работа №4

Студент

Кузнецов М. А.

P33131

Преподаватель

Тропченко А. А.

Цель работы

Изучение принципов настройки и функционирования компьютерных сетей, представляющих собой несколько подсетей, связанных с помощью маршрутизаторов, процессов автоматического распределения сетевых адресов, принципов статической маршрутизации и динамической маршрутизации, а также передачи данных на основе протоколов UDP и TCP

Задание

- построить модели компьютерных сетей, представляющих собой несколько подсетей, объединенных в одну автономную сеть, в соответствии с заданными вариантами топологий, представленными в Приложении (B1 B6);
- выполнить настройку сети при статической маршрутизации, заключающуюся в присвоении IP-адресов интерфейсам сети и ручном заполнении таблиц маршрутизации;
- промоделировать работу сети при использовании динамической маршрутизации на основе протокола RIP и при автоматическом распределении IP-адресов на основе протокола DHCP;
- выполнить тестирование построенных сетей путем проведения экспериментов по передаче данных на основе протоколов UDP и TCP;
- проанализировать результаты тестирования и сформулировать выводы об эффективности сетей с разными топологиями;
- сохранить разработанные модели локальных сетей для демонстрации процессов передачи данных при защите лабораторной работы.

Задание 1. Сеть с одним маршрутизатором (вариант В1)

Таблица маршрутизации для конечных узлов (компьютеров), согласно третьей лабораторной работе, продолжает выглядеть следующим образом.

Г	Destination	Mask	Gateway	Interface	Metric	Source
1	166.44.0.0	255.255.0.0	166.44.39.15	166.44.39.15	0	Connected
2	0.0.0.0	0.0.0.0	166.44.39.18	166.44.39.15	0	Static

Описание таблиц маршрутизации:

Столбцы таблицы:

- 1. Destination: IPv4 адрес подсети назначения
- 2. Маска сети
- 3. Шлюз: IPv4, по которому можно достичь подсеть

- 4. Интерфейс: IPv4 локальный адрес, по которому достигается шлюз
- 5. Метрика, число, характеризующее цену использования данного маршрута

Таблица сформирована относительно настроек сетевой карты.

Каждая запись в таблице формируется при изменении/назначении нового IPадреса компьютеру.

Интереснее обстоит картина с таблицей маршрутизации маршрутизатора: здесь мы можем увидеть все три интерфейса для коммуникации с каждой из подсетей.

Тестирование сети (отправка пакетов).

Порядок отправки пакетов:

- Если неизвестен MAC-адрес маршрутизатора, то отправляется ARP-запрос на его адрес, для получения необходимой информации
- *UDP пакеты, в которых MAC-получателя установлен в MAC-адрес маршрутизатора*
- После прохождения маршрутизатора MAC-адрес отправителя заменяется на MAC-адрес выходного порта маршрутизатора, а MAC-адрес получателя заменяется на MAC-адрес получателя конкретного устройства

При отправке сообщения по протоколу UDP с "Компьютер 5" на "Компьютер 8", видим следующую картину

С журналов видно, что отправка UDP пакетов через роутер ничем особо не отличается. В начале отправляются ARP-запросы, для идентификации macaдреса маршрутизатора. Так как идентификация прошла успешно -> следующий шаг: отправка самого сообщения.

При отправке по UDP сначала передается Ethernet пакет с mac-адресами отправителя и получателя, далее IP пакет с IP-адресами, после этого кадр пакет данных по UDP с информацией о портах отправителя и получателя

Механизм передачи по сети при ТСР остается таким же.

Порядок отправки пакетов:

- Если нет MAC-адреса маршрутизатора в ARP-таблице, то шлется ARP-запрос
- Стандартный принцип отправки ТСР:
 - 1. Отправитель шлёт TCP-сегмент с установленными SYN и ISN для установки соединения
 - 2. Получатель шлёт TCP-сегмент с установленными SYN, ACK и ISN, подтверждающий соединение
 - 3. Отправитель шлёт TCP-сегмент с установленным ACK, ISN = 0
- ullet Отправляется 10 TCP-сегментов с payload без флагов, но с ISN=+
- Обмен идет с шириной окна 10, так что после 10 сегментов получатель подтверждает передачу TCP-сегментом с ISN=0, ACK
- Последний пакет от отправителя помечается флагом FIN vi. MACадреса устанавливаются аналогично при передаче по UDP

Сначала мы посылаем пакет данных с Ethernet и IP пакетами с пакетом TCP. В нем проставлен флаг SYN (таким образом так "Компьютер 5" высказывает намерение установить соединение с "Компьютер 8").

ISN – номер первого передаваемого байта (алгоритмически высчитанное случайное число). Нужен, чтобы не было одинаковых пакетов. Так как если номера пакетов совпадут – начнется неразбериха.

Далее "Компьютер 5" уже получает пакет от "Компьютер 8". В котором зафиксирован новый ISN (дуплексная связь) и в качестве АСК уже наш

сгенерированный до этого ISN. То есть таким образом "Компьютер 8" подтвердил готовность принять байт под номером ISN.

Также выставлен флаг SYN – запрашивает разрешение на установление соединения. И флаг ACK, подтверждающий, что запрашиваемое соединение от "Компьютер 5" он готов принять.

Далее мы снова посылаем TCP пакет, который уже говорит о том, что подтверждает соединение, запрашиваемое "Компьютер 8". Таким образом, получается тройное рукопожатие.

Далее уже отправляются наши пакеты с информацией. Последнее сообщение свидетельствует о получении пакета с "Компьютер 8". Которое говорит нам, что пакеты были приняты правильно (или возникла ошибка при передаче).

Ключевая разница при отправке сообщений по UDP и TCP с использованием маршрутизатора и без него заключается, на мой взгляд, в том, что нам напрямую недоступен компьютер другой подсети, мы знаем только его IP, с помощью механизма маршрутизации. Нам удается выбрать нужное направление и донести информацию до адресата. Поэтому в журналах мы видим MAC-адрес не конечного узла, с которым обмениваемся, а MAC-адреса одного из интерфейсов маршрутизатора.

Задание 2. Сеть с двумя маршрутизаторами (вариант B2)

Состояние таблиц маршрутизации аналогично предыдущему случаю.

Только теперь у нас два маршрутизатора, каждый из которых подключен к двум подсетям (-> в таблице маршрутизации только 2 записи).

Непонятная ситуация с подсетью №2, так как она имеет подключение сразу к 2 маршрутизаторам, из-за этого непонятно, какой шлюз по умолчанию выставлять.

Если выставить на компьютере №3 шлюз по умолчанию равный IP-адресу интерфейса первого маршрутизатора, то ко второму маршрутизатору и, соответственно, к третьей подсети у нас доступа не будет.

Решение проблемы только если добавить по умолчанию, чтобы шлюзы маршрутизаторов ссылались друг на друга.

Тестирование сети (отправка пакетов).

Отправка пакетов по UDP и TCP не будет отличаться от предыдущего пункта.

Точнее механизм и само содержание пакетов отличаться не будет, но будут отличаться маршруты. А точнее их доступность.

Так, например, мы не сможем передать с 1 подсети сообщение в 3 подсеть, так как наш маршрутизатор, подключенный к первой подсети, может взаимодействовать только с первой и второй подсетями. До третьей нам не добраться. (Без добавления в таблицу маршрутизации статической записи на другой маршрутизатор).

Также, спорная ситуация о которой я говорил выше. Отталкиваясь от того, какой шлюз по умолчанию установлен для компьютеров во второй подсети, будет определяться направление передачи пакета с сообщением (либо в первую подсеть, либо во вторую).

Задание 3. Сеть с тремя маршрутизаторами

Как я отметил ранее, спорная ситуация возникает, при подключении к одной подсети сразу двух роутеров, так как непонятно, какой шлюз по умолчанию и выставлять и куда пойдет итоговый трафик.

Поэтому, хоть первая топология (В3) и привлекает своей простотой, но она, в общем случае, не особо практична. Так как нам придется изъять из топологии один маршрутизатор (за ненадобностью), и топология превратится просто в цепь или в общую шину, подобно заданию 2.

То же самое, можно сказать и про схему В6. В ней одна подсеть точно так же подключена к сразу двум маршрутизаторам. Так как имеются альтернативные пути, можно изъять маршрутизатор 2 и, в принципе, все конечные узлы будут достижимы, но опять же не совсем это целесообразно, так как метрика, очевидно, увеличится.

Что не так с топологией В5? Дело в том, что в ней две подсети вообще соединены между собой. Если у нас есть локальная сеть и вторая подсеть, зачем нам три маршрутизатора? Затратно и нелогично. Исходя из этого мой выбор пал на топологию В4, в которой вышеперечисленных проблем не возникает.

Единственная трудность – это появление новых «подсетей» между маршрутизаторами, поэтому и придется добавлять в таблицу маршрутизации статические адреса.

Таблицы маршрутизации выглядят подобно двум предыдущим моделям.

За исключением того, что, так как маршрутизаторы соединены между собой, они составляют собой мнимую своеобразную подсеть -> нам нужна новая группа адресов для 3 дополнительных подсетей, 2 из которых для каждого маршрутизатора мы и наблюдаем в таблице маршрутизации.

Из-за появления новых подсетей (трех пар маршрутизаторов) возникает необходимость в добавлении статических маршрутов в таблицу маршрутизации. Иначе у нас не будет возможности из одной подсети попасть во вторую. Нам нужно задать правило. Таким образом, таблица маршрутизации для первого маршрутизатора выглядит следующим образом:

Routing table					? ×
Destination	Mask	Gateway	Interface	Metric	Source
165.44.0.0	255.255.0.0	165.44.39.18	165.44.39.18	0	Connected
166.44.0.0	255.255.0.0	15.44.39.1	165.44.39.18	0	Static
167.44.0.0	255.255.0.0	17.44.39.1	165.44.39.18	0	Static
15.0.0.0	255.0.0.0	15.44.39.2	15.44.39.2	0	Connected
17.0.0.0	255.0.0.0	17.44.39.1	17.44.39.1	0	Connected
	165.44.0.0 166.44.0.0 167.44.0.0 15.0.0.0	165.44.0.0 255.255.0.0 166.44.0.0 255.255.0.0 167.44.0.0 255.255.0.0 15.0.0.0 255.0.0.0	165.44.0.0 255.255.0.0 165.44.39.18 166.44.0.0 255.255.0.0 15.44.39.1 167.44.0.0 255.255.0.0 17.44.39.1 15.0.0.0 255.0.0.0 15.44.39.2	165.44.0.0 255.255.0.0 165.44.39.18 165.44.39.18 166.44.0.0 255.255.0.0 15.44.39.1 165.44.39.18 167.44.0.0 255.255.0.0 17.44.39.1 165.44.39.18 15.0.0.0 255.0.0.0 15.44.39.2 15.44.39.2	165.44.0.0 255.255.0.0 165.44.39.18 165.44.39.18 0 166.44.0.0 255.255.0.0 15.44.39.1 165.44.39.18 0 167.44.0.0 255.255.0.0 17.44.39.1 165.44.39.18 0 15.0.0.0 255.0.0.0 15.44.39.2 15.44.39.2 0

Тестирование сети (отправка пакетов).

За счет того, что в начале была выбрана В4 топология, то изменения в сети вносить не пришлось, добавив статические записи в таблицу маршрутизации и наладив взаимодействие двух маршрутизаторов друг с другом, мне удалось добиться доступности одной подсети другой. -> передача по протоколам UDP и TCP осуществилась корректно.

Передача ничем принципиальным не отличается от предыдущих случаев, за исключением добавления + 1 уровня на пути к конечной подсети (за счет коммуникации двух маршрутизаторов).

Настройка динамической маршрутизации по протоколу RIP.

RIP (Routing Information Protocol) — это протокол динамической маршрутизации, который используется маршрутизаторами для обмена информацией о маршрутах в сети. RIP отправляет запросы и обновления соседним маршрутизаторам, чтобы узнать о доступных маршрутах и выбрать оптимальные пути для доставки данных. RIP работает на основе метрики, которая определяет стоимость каждого маршрута. RIP-запросы отправляются периодически или при изменении топологии сети.

В таблицах маршрутизации появились новые записи (маршруты), соответствующие удаленным подсетям (с которыми напрямую мы не связаны). Пакеты протокола RIP посылались примерно каждые 30 секунд.

	Destination	Mask	Gateway	Interface	Metric	Source
1	166.44.0.0	255.255.0.0	15.15.21.2	15.15.21.1	7	RIP
2	15.0.0.0	255.0.0.0	15.15.21.1	15.15.21.1	0	Connected
3	16.0.0.0	255.0.0.0	16.15.21.1	16.15.21.1	0	Connected
4	17.0.0.0	255.0.0.0	15.15.21.2	15.15.21.1	1	RIP
5	21.0.0.0	255.0.0.0	15.15.21.2	15.15.21.1	6	RIP

Настройка автоматического получения сетевых настроек по протоколу DHCP.

DHCP (Dynamic Host Configuration Protocol) — это протокол, который автоматически назначает сетевые настройки клиентским устройствам в сети, такие как IP-адрес, маска подсети, адрес шлюза, сервера DNS и другие

параметры конфигурации. Когда устройство подключается к сети и запрашивает IP-адрес, оно отправляет DHCP-запрос, и DHCP-сервер в сети отвечает на этот запрос, предоставляя необходимые настройки. DHCP-запросы могут быть отправлены при подключении устройства к сети или при обновлении настроек сети.

Вывод

В результате выполнения данной лабораторной работы я:

- разобрался со взаимодействием конечных узлов
- разобрался с вариантом объединения маршрутов в подсеть
- познакомился с RIP и DHCP