Programming Practice

2018-11-22

Week 12

Notice

Final Project

- We are going to start final project from this week.
- Final project is long-term project.
- You have to do both homework and final project.
- More details will be introduced later.

Practice Lecture

Numerical Analysis

- Calculate approximate value rather than exact answer, using computer.
 - ex) find the root of $\ln(x^4+1) * \ln(x^2+1) = 7$
 - hard to solve mathematically

• Method for finding successively better approximations to the root of f(x) = 0.

• Root of f(x) = 0 equals to the point where y = f(x) and x-axis intersect.

- Start with initial value x_0 .
- Draw a tangent line at $(x_0, f(x_0))$.
 - tangent line: a line with slope $f'(x_0)$ and passes through $(x_0, f(x_0))$.
- new value x_1 equals to the point where the tangent line and x-axis intersect.
- x_1 is closer to the root c. $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$

- Repeatedly, you can calculate x_{i+1} from x_i in a same way.
- x_{i+1} is better approximation. Use $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$
- Do until your approximation is sufficiently close to the root.
- How to know it is sufficient?
 - $|x_i x_{i-1}| \le 10^{-6}$
- This method is not always available related to the shape of function & initial value (Poor initial value problem)

- Example: $f(x) = 8x^3 12x^2 + 6x 1 = 0$, $x_0 = 0.8$
 - $f'(x) = 24x^2 24x + 6$
 - absolute answer is 0.5

```
start: 0.800000
-> 0.700000 -> 0.633333 -> 0.588889 -> 0.559259 -> 0.539506
-> 0.526337 -> 0.517558 -> 0.511706 -> 0.507804 -> 0.505202
-> 0.503468 -> 0.502312 -> 0.501541 -> 0.501028 -> 0.500685
-> 0.500457 -> 0.500304 -> 0.500203 -> 0.500135 -> 0.500090
-> 0.500060 -> 0.500040 -> 0.500027 -> 0.500018 -> 0.500012
-> 0.500008 -> 0.500005 -> 0.500004 -> 0.500002 -> 0.500002

Process returned 0 (0x0) execution time: 0.180 s

Press any key to continue.
```

Summary

- Initial value x_0 and equation f(x) = 0 is given.
- Start with x_0 , calculate $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$ repeatedly.
- Stop when $|x_{i+1} x_i| \le 10^{-6}$. That x_{i+1} is the answer.

Homework Problems

1. Newton-Raphson Method

Problem. 1

Newton-Raphson Method

Description

- Your only job is to implement newtonMethod function which calculates and returns (do not print) the approximate root of f(x) = 0 for arbitrary f(x), f'(x), and initial value x_0 .
- Provided skeleton code newton.c, implement newtonMethod and submit whole of it.
- Do not modify other functions: main(), f1(), df1(), f2(), df2().
- You can assume that the function will only handle the available situation.
- Absolute error is allowed up to 10^-4.

Function Prototype:

double newtonMethod(double x0, double (*fp)(double), double (*dfp)(double))

x0: initial value x_0

fp: function pointer of f(x) dfp: function pointer of f'(x)

Skeleton Code

Function Name	Description
main()	Reads information of $f1(x)$, $f2(x)$, and initial value of those. It will call $newtonMethod(x01,f1,df1)$ and $newtonMethod(x02,f2,df2)$, and print out the results.
f1(x)	Prepared function to test newtonMethod .
df1(x)	First derivative of f1(x).
f2(x)	Another prepared function to test newtonMethod .
df2(x)	First derivative of f2(x).
newtonMethod(x0,f,df)	TODO :: implement newtonMethod function

main()

- how does main call newtonMethod function
- f1, df1, f2, df2 are function pointers

```
int main() {
   double x01, x02;
   double result1, result2;
   scanf("%d %d %d %d", &a, &b, &c, &d);
   scanf("%lf %lf", &x01, &x02);
   result1 = newtonMethod(x01, f1, df1);
   result2 = newtonMethod(x02, f2, df2);
   printf("%lf %lf\n", result1, result2);
   return 0;
}
```

How to Test

- First line of input contains 4 integers a, b, c and d. f1 and f2 will be
 - $f_1(x) = ax^3 + bx^2 + cx + d$
 - $f_2(x) = bx^3 + ax^2 + cx + d$
- Second line contains $(x_0)_1$ and $(x_0)_2$.
 - $(x_0)_1$ is initial value for $f_1(x)$
 - $(x_0)_2$ is initial value for $f_2(x)$
- Each line of output is the approximate root of $f_1(x) = 0$ and $f_2(x) = 0$.
- Try various inputs and check your output with tools such as wolframalpha.

www.wolframalpha.com

Wolframalpha

Sample Testcases

[input] [output] 4 3 2 1 -0.605830 -1.5 -1.4 -1.000000

[input] [output] -1 3 5 7 4.469220 5.5 -2.3 -0.863895