Job No.:
 EHB 06 - 1
 Address:
 10 Kowhai Lane, Oban, New Zealand
 Date:
 24/01/2024

 Latitude:
 -46.897257
 Longitude:
 168.122623
 Elevation:
 25 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N5	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	D
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.9 m
Wind Region	NZ4	Terrain Category	3.0	Design Wind Speed	39.97 m/s
Wind Pressure	0.96 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp,i = -0.3

For roof CP,e from 0 m To 3.30 m Cpe = -0.9 pe = -0.78 KPa pnet = -0.78 KPa

For roof CP,e from 3.30 m To 6.60 m Cpe = -0.5 pe = -0.43 KPa pnet = -0.43 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 8.50 m Cpe = 0.7 pe = 0.60 KPa pnet = 0.89 KPa

For side wall CP,e from 0 m To 3.30 m Cpe = pe = -0.56 KPa pnet = -0.56 KPa

Maximum Upward pressure used in roof member Design = 0.78 KPa

Maximum Downward pressure used in roof member Design = 0.45 KPa

Maximum Wall pressure used in Design = 0.89 KPa

Maximum Racking pressure used in Design = 1.03 KPa

Design Summary

Rafter Design Internal

Internal Rafter Load Width = 4500 mm Internal Rafter Span = 8350 mm Try Rafter 2x360x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 8.40 S1 Upward = 8.40

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	13.24 Kn-m	Capacity	43.44 Kn-m	Passing Percentage	328.10 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	36.47 Kn-m	Capacity	57.92 Kn-m	Passing Percentage	158.82 %
Mo.9D-WnUp	-21.77 Kn-m	Capacity	-72.42 Kn-m	Passing Percentage	332.66 %

First Page

		Pole Shed App	Ver 01 2022		
V _{1.35D}	6.34 Kn	Capacity	55.22 Kn	Passing Percentage	870.98 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	17.47 Kn	Capacity	73.64 Kn	Passing Percentage	421.52 %
$ m V_{0.9D ext{-}WnUp}$	-10.43 Kn	Capacity	-92.04 Kn	Passing Percentage	882.45 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 21.455 mm
Deflection under Dead and Service Wind = 28.805 mm

Limit by Woolcock et al, 1999 Span/240 = 35.42 mm Limit by Woolcock et al, 1999 Span/100 = 85.00 mm

Reactions

Maximum downward = 17.47 kn Maximum upward = -10.43 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 43.67 Kn > -10.43 Kn

Girt Design Front and Back

Girt's Spacing = 1200 mm Girt's Span = 2250 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.89 S1 Downward = 9.63 S1 Upward = 15.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 0.68 Kn-m
 Capacity
 1.87 Kn-m
 Passing Percentage
 275.00 %

 V0.9D-WnUp
 1.20 Kn-m
 Capacity
 12.06 Kn-m
 Passing Percentage
 1005.00 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Second page

Deflection under Snow and Service Wind = 6.46 mm Sag during installation = 1.55 mm Limit by Woolcock et al, 1999 Span/100 = 22.50 mm

Reactions

Maximum = 1.20 kn

Girt Design Sides

Girt's Spacing = 600 mm

Girt's Span = 4250 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.91 S1 Downward =9.63 S1 Upward =14.80

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.21 Kn-m	Capacity	1.91 Kn-m	Passing Percentage	157.85 %
$V_{0.9D\text{-W}nUp}$	1.13 Kn-m	Capacity	12.06 Kn-m	Passing Percentage	1067.26 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 41.12 mm

Limit by Woolcock et al. 1999 Span/100 = 42.50 mm

Sag during installation =19.78 mm

Reactions

Maximum = 1.13 kn

Middle Pole Design

Geometry

250 SED H5 (Minimum 275 dia. at Floor Level)	Dry Use	Height	3500 mm
Area	13125 mm2	As	9843.75 mm2
Ix	75366211 mm4	Zx	574219 mm3
Iy	75366211 mm4	Zx	574219 mm3
Lateral Restraint	3500 mm c/c		

Loads

Total Area over Pole = 19.125 m^2

Dead	4.78 Kn	Live	4.78 Kn
Wind Down	8.61 Kn	Snow	12.05 Kn
Moment wind	13.19 Kn-m	Moment snow	3.94 Kn-m
Phi	0.8	K8	0.96
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	180.53 Kn	PhiMnx Wind	15.93 Kn-m	PhiVnx Wind	23.31 Kn
PhiNcx Dead	108.32 Kn	PhiMnx Dead	9.56 Kn-m	PhiVnx Dead	13.99 Kn
PhiNcx Snow	144.42 Kn	PhiMnx Snow	12.74 Kn-m	PhiVnx Snow	18.65 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.96 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.82 < 1 OK$

Deflection at top under service lateral loads = 36.25 mm < 35.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30)) / (1+\sin(30))$				
Kp =	$(1+\sin(30))/(1-\sin(30))$				

Geometry For Middle Bay Pole

Ds =	0.6 mm	Pile Diameter
L =	1600 mm	Pile embedment length
f1 =	2925 mm	Distance at which the shear force is applied
f2 =	0 mm	Distance of top soil at rest pressure

Loads

Moment Wind =	13.19 Kn-m	Moment Snow =	Kn-m
Shear Wind =	4.51 Kn	Shear Snow =	3.94 Kn

Pile Properties

Safety Factory	0.55	
Hu=	8.07 Kn	Ultimate Lateral Strength of the Pile, Short pile
Mu =	14.19 Kn-m	Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.93 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of

internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 23.89 Kn

Uplift on one Pile = 10.61 Kn

Uplift is ok