

Diplomski studij

Informacijska i komunikacijska tehnologija Telekomunikacije i informatika

Računarstvo Računarska znanost Programsko inženjerstvo i informacijski sustavi

Raspodijeljeni sustavi

Pitanja za provjeru znanja s odgovorima 2. blok predavanja

Napomena:

Preporučena literatura su bilješke s predavanja i interna skripta.

Zadatak

Objasnite što je replika podatka, a što je nekonzistentnost replike podatka.

8.1

Zadatak

Objasnite što je povezana konzistentnost operacija u raspodijeljenim sustavima? Na primjeru procesa p, q i r prikažite slijed operacija čitanja i pisanja koji je a) u skladu i b) nije u skladu s načelima povezane konzistentnosti.

Zadatak

8.3

Raspodijeljeni sustav uključuje tri računala (R_0 , R_1 , R_2) s lokalnim spremnicima. U lokalnom spremniku računala R_1 nalazi se trajna replika dokumenta, dok se u lokalnom spremniku računala R_2 nalazi obična replika dokumenta. Korisnik putem računala R_3 provodi operaciju pisanja nad dokumentom primjenom postupka lokalnog obnavljanja stanja replike. Skicirajte i objasnite korake postupka.

Zadatak

8.4

U sustavu replika koji se sastoji od glavnog poslužitelja i n=4 podjednako opterećena pomoćna poslužitelja, odredite metodu održavanja konzistentnosti replika za koju će prosječno mrežno (prometno) opterećenje poslužitelja L biti najmanje. Pri tome pretpostavite da korisnike isključivo poslužuju pomoćni poslužitelji, da je prosječna frekvencija upita fu=5 upita/s, prosječna frekvencija promjena fp=1 promjena/min te da su prosječne veličine upita/odgovora, operacija za promjenu sadržaja i replika lp=1kB, lo=50 kB i lr=100 kB. Usporedite dobivena opterećenja s centraliziranim slučajem kada korisnike poslužuje glavni poslužitelj.

Zadatak

Objasnite razliku između ispada sustava i neispravnosti u sustavu.

9.1

Zadatak

Pretpostavite da grupa procesa treba postići sporazum. U slučaju da su dva procesa grupe u stanju bizantskog ispada, koji je minimalni ukupni broj procesa u grupi za postizanje sporazuma?

Zadatak

Objasnite razliku protokola three-phase commit u odnosu na two-phase commit.

9.3

9.4

9.2

Zadatak

U grupi od 4 procesa (p₁, p₂, p₃ i p₄) proces p₁ je neispravan (pretpostavite bizantski ispad). Grupa procesa želi postići sporazum o identifikatorima ostalih procesa grupe. U koracima 1 i 3 procesi međusobno razmjenjuju podatke, a u koracima 2 i 4 prikupljaju i analiziraju primljene podatke. Nacrtajte na slici podatke koje procesi razmjenjuju u koracima 1 i 3, a za korake 2 i 4 navedite podatke koje pojedini proces ima na raspolaganju radi donošenja odluke o sporazumu.

Zadatak

10.1

10.2

10.3

Disk za trajno spremanje podataka ispunjava 50 zahtjeva u sekundi. Srednje vrijeme obrade zahtjeva operacija pisanja i čitanja je 10 ms. Disk ima prosječno 1 zahtjev u repu. Koliko je prosječno vrijeme čekanja na obradu zahtjeva?

Zadatak

Web aplikacija uključuje podršku korisnicima putem chat usluge. Kupci sami odabiru jedan od 10 repova čekanja. Mjerenja pokazuju da zahtjevi prosječno dolaze 3 upita u minuti te da svaki kupac prosječno čeka 3 minute u repu i prosječno provodi 2 minute u konverzaciji. Koliko je srednje vrijeme zadržavanja kupaca za zadani sustav?

Zadatak

Prikažite elemente osnovnog modela repa čekanja. Koje su osnovne veličine, a koje izvedene u modelu repa čekanja? Kako je definirano stacionarno stanje sustava?

Zadatak

Upiti dolaze na poslužitelj s učestalošću od 12 upita u sekundi te zahtijevaju 0,75 sekundi za obradu. Za 30 % paketa dogodi se pogreška pri obradi te se oni moraju 10.4 ponovno obraditi. Izračunajte koliko vremena paket prosječno provede u sustavu?

Zadatak

11.1

Na slici je prikazana mreža Chord koja se sastoji od 6 čvorova (A, B, C, D, E i F) i koristi prostor identifikatora duljine N=32 (dovoljno je m=5 bita za kodiranje). Ukoliko je H1(A)=0, H1(B)=5, H1(C)=10, H1(D)=14, H1(E)=25 i H1(F)=27, odgovorite na sljedeća pitanja:

1. Popunite tablice usmjeravanja čvorova A i F.

Routing table A(0)	

Routing table F(27)	

- 2. Na kojem će se čvoru pohraniti podatak X s ključem $H_2(X)=20$?
- 3. Odredite slijed čvorova preko kojih se usmjerava upit od čvora A s ciljem pronalaska podatka Y s ključem $H_2(Y)=26$.
- 4. Dodan je novi čvor $G(H_1(G)=21)$ u mrežu. Što će se promijeniti u tablici usmjeravanja čvora A?

Kako se izvodi pretraživanje kod strukturiranih, a kako kod nestrukturiranih sustava Zadatak sustava P2P (peer-to-peer)? Koji od ovih sustava su skalabilni i zašto? 11.2

Objasnite načine na koje se indeks dokumenata može podijeliti između čvorova u Zadatak raspodijeljenim tražilicama. 11.3

Objasnite parametre kojima se određuje kvaliteta tražilice i grafički prikažite omjer Zadatak ovih parametara za tipičnu i idealnu tražilicu. 11.4

Skicirajte i ukratko objasnite slojevitu arhitekturu spleta računala. Zadatak 12.1

Na primjeru opišite značajke raspoređivanja zasnovanog na korištenju prostorne Zadatak lokalnosti. 12.2

Prikažite i opišite elemente modela grozda računala. Zadatak 12.3

Nadopunite skicu i objasnite primjer ostvarivanja razmjernog rasta sustava Zadatak primjenom metode DNS poslužitelja. 12.4

