Consider all 100 digit numbers, i.e. those between 0 to $10^{100} - 1$, inclusive. For each number, take the product of non-zero digits (treat the product of digits of 0 as 1), and sum across all the numbers. What's the last digit?

GCD

The greatest common divisor of two numbers, gcd(a, b), is the largest positive integer that is a divisor of both numbers. For example, gcd(8, 12) = 4 since 8/4 = 2 and 12/4 = 3. Pairs of numbers for which gcd(a, b) = 1 are called *coprime*.

Geometrically, an $a \times b$ rectangle grid can be covered with square tiles of side length c only if c is a common divisor of a and b

Computing the last m digits of a^x

Numbers raised to a power follow a pattern in their digits. For instance, in decimal to get the last m digits a^x we want to compute

$$a^x \mod 10$$
 last digit $a^x \mod 100 = a^x \mod 10^2$ last 2 digits $a^x \mod 10^m$ last m digits

There are known patterns in numbers raised to a power behave. Number that end in

The last digit of powers of 1 is always	1
The last digits of powers of 2 repeat in a cycle of	
The last digits of powers of 3 repeat in a cycle of	9, 7, 1, 3
The last digits of powers of 4 repeat in a cycle of	6, 4
The last digit of powers of 5 is always	5
The last digit of powers of 6 is always	6
The last digits of powers of 7 repeat in a cycle of	9, 3, 1, 7
The last digits of powers of 8 repeat in a cycle of	
The last digits of powers of 9 repeat in a cycle of	1,9

For example, $21^3 = 21 \times 441 = 9261$. Consider a number with the last digit 2, such as 12. The last digit of each number each time 12 is raised to a power is shown.

$$12^2 = 144, 12^3 = 1728, 12^4 = 20736, 12^5 = 248832, 12^6 = 2985984, 12^7 = 35831808, 12^8 = 429981696.$$

The last digit follows a periodic pattern: 4, 8, 6, 2, 4, 8, 6, 2, Table above shows the pattern, and the table below summarises the period for each last digit.

Digit	Period
0, 1, 5, 6	1
2, 3, 7, 8	4
4, 9	2

To simplify modular calculations we can use Euler's totient function, or the Chinese remainder theorem.

Euler's totient

Often denoted by ϕ the totient function counts the number of natural numbers less than or equal to n that are coprime to n. For example $\phi(15) = 8$, since starting with

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$$

We eliminate numbers that are multiples of 3 and 5 since $15 = 3 \times 5$. This leaves

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$$

leaving 8 numbers. For $\phi(n)$, each number, a, that remains in the depleted set satisfies $\gcd(a,n)=1$.

To compute $\phi(n)$ we can express n in prime factors.

$$\phi(n) = \phi\left(p_1^{f_1}...p_k^{f_k}\right) = \prod_{i=1}^k \phi\left(p_i^{f_i}\right)$$
$$= \prod_{i=1}^k \left(p_i^{f_i} - p_i^{f_{i-1}}\right)$$

We can use Eulers theorem to reduce large exponents

If gcd(a, n) = 1 and $\phi(n)$ denotes Eulers totient, then

$$a^{\phi(n)} = 1 \mod n$$

Example find last 2 digits of 33^{42} .

We need to compute $33^{42} \mod 100$ to find the last two digits. In the above, n = 100. So

$$\phi(100) = \phi(2^25^2) = (2^2 - 2^1)(5^2 - 5^1) = (2)(20) = 40$$

Need to check if 33 = 3 * 11 is coprime to 100, which it is, therefore gcd(33, 100) = 1. Therefore

$$33^{42} = 33^{40+2} = 33^{40}33^2 = 33^{\phi(100)}33^2 \mod{100} = 33^2 \mod{100} = 1089 \mod{100} = 89$$

So last 2 digits are 89.

Using the Chinese remainder

When finding the last m digits of a^x , the idea is to express $10^m = 2^m 5^m$ and then find

$$u = a^x \mod 2^m, \quad v = a^x \mod 5^m$$

and combine these to find the last m digits by solving for y satisfying

$$y = u \mod 2^m, \quad y = v \mod 5^m$$

Example find last 2 digits of 34^{540}

$$34^{540} \mod 4 = (2*17)^{540} = 2^{540}17^{540} = 0 \mod 4$$

$$34^{540} \mod 25 = 9^{540} \mod 25 = 9^{\phi(25)*27} = 1 \mod 25$$

So u = 0 and v = 1. Now we solve

$$y = 0 \mod 4, \quad y = 1 \mod 25$$

So the answer is y = 76 = 3 * 25 + 1 = 4 * 19. So last 2 digits are 76.

Multinomial expansions

The expansion

$$(x_1 + x_2 + \dots + x_m)^n = \sum_{k_1 + \dots + k_m = n} n \atop k_1, k_2, \dots, k_m \prod_{i=1}^m x_i^{k_i}$$
where
$$n \atop k_1, k_2, \dots, k_m = \frac{n!}{k_1! k_2! \dots k_m!},$$
and each $k_i > 0$

Answering the question

We are asked to find the sum of the product of the digits over all 0 to 100 digit numbers. We are told to treat 0 as 1 for the purposes of multiplication. Scaling down, consider 3 digit numbers and let the operator D compute the product of the digits, according to the above.

$$D(101) = 1 * 1 * 1 = 1^{3}$$

$$D(050) = 1 * 5 * 1 = 1^{2}5^{1}$$

$$D(722) = 7 * 2 * 2 = 2^{2}7^{1}$$

The possible digits are 0 to 9, and it is clear each such product may be written as

$$1^{k_1}1^{k_2}2^{k_3}...9^{k_{10}}$$

Clearly the number of such combinations are simply the numerous ways of partitioning 100 into 10 non-negative summands. Therefore,

$$\sum_{\substack{k_1 + \dots + k_{10} = 100 \\ k_1 + \dots + k_{10} = 100}} \frac{100}{k_1, k_2, \dots, k_{10}} \prod_{i=1}^{10} x_i^{k_i}, \text{ where } x_1 = 1, x_2 = 1, x_3 = 2, \dots, x_{10} = 9$$

By the multinomial theorem, this simply equals

$$\left(\sum_{i=1}^{10} x_i\right)^{100} = (1+1+2+3+\dots+9)^{100} = 46^{100}$$

The last digit is clearly 6, as the last digit of 46 is 6 (recall from the table above, the digits 0.1,5,6 have period 1 when raised to powers). In order to show algebraicly,

$$46 = 2 * 23 \implies 46^{100} \mod 10 = 2^{100}23^{100} \mod 10$$

since $\phi(10) = 4$ and $100 = 4 * 25$
 $2^{100}23^{100} = (2^4)^{25}(23^4)^{25} = (2^4)^{25} \mod 10$ by Euler $2^4 = 16 = 6 \mod 10$

Therefore the last digit is 6.