Point Cloud Generation

Mohit Rajan Nandini Menon Pooja Sivakumar Sanjay Govind November 8, 2018

FISAT

Table of Contents

Abstract

Objective

Introduction

Proposed Work

Design

Hardware

Completed Tasks

Task 1:To learn basics of robotic arm manipulation

Task 2: Given end effector co-ordinates, to find the joint angles

Task 3:Implementation of robotic arm

Task 4: To detect the distance of obstacles present

Deployment Diagram

Abstract

Abstract

This project aims at building a robot that visualizes its surroundings by controlling the hardware to scan our surroundings and recreating it digitally.

Objective

 The objective of the project is to retrive data from surroundings and to create and visualize a Point Cloud.

Introduction

Robotic Arm

- Mechanical Arm, which is programmable
- Similar functions to a human arm
- Links connected by joints allowing either rotational motion or translational displacement
- End of the manipulator called End Effector

uArm

- Open Source robotic arm that can be assembled and controlled
- Manufactured by UFACTORY

Point Cloud

- Huge number of tiny data points existing in three dimensions
- Used to represent a 3-D shape or feature

LIDAR

- Stands for Light Detection And Ranging.
- Remote Sensing Method.
- Uses light in the form of a pulsed laser to measure ranges.
- These light pulses along with other data generate precise 3-D information about the shape of the earth and it's surface characteristics.

Proposed Work

Proposed Work

- The proposed work is to create a robot which can detect nearby objects and create a digital image of the same.
- The robot scans it's surroundings using HC-SR04 sensor, the distance is calculated.
- A python script parses this data and finds the values of x, y and z.
- This is then stored in a point cloud data file. We expect to plot these points and visualize it.

Design

Design

Circuit Design

Task 1: To learn basics of robotic arm manipulation

- Familiarised with the parts of the arm.
- Learnt basic foward and inverse kinematics.
- Graphical and Jacobian methods were introspected.

Task 2: Given end effector co-ordinates, to find joint angles

- Given a two-joint robotic arm, with base rotation of 360° and other joint of 180° .
- Find the relation between end effector co-ordinates and joint angles.
- The equation was found using graphical analysis method.

Task 3:Implementation of Robotic arm

- Designed a two-joint robotic arm using Fusion-360.
- Fabricated and assembled the arm.
- Given the end-effector co-ordinates, the arm moved to the target position.

Task 4: To detect the distance of obstacles present

- An ultrasonic sensor HC-SR04 was attached to the end effector position of the arm.
- The arm swept 360° in both clockwise and anti-clockwise direction.
- The sensor detected the distance to the obstacles around it.

Deployment Diagram

Deployment Diagram

- Our project is to implement a two joint robot with an ultrasonic sensor that visualizes its surroundings.
- During the progress of the project we were learnt a lot of concepts.
- These concepts mainly comes under hardware and software sections

- Hardware part
 - 1) 3-D design and modelling
 - 2) Controlling of servo
 - 3) Operations using the arduino

- Software part
 - 1) Concept of point cloud and mapping the surroundings
 - 2) Generating the pcd file for visualization