Generalized Prompt Tuning: How to Use a Frozen Pre-Trained Univariate Time Series Foundation Model for Multivariate Time Series Prediction

Carnegie Mellon University

Mingzhu Liu ¹

Angela H. Chen ¹

George H. Chen²

¹ CMU School of Computer Science, ² CMU Heinz College of Information Systems and Public Policy

Introduction

- Q: How do you adapt univariate time series foundation models to your data?
- A: Just fine-tune it like LLMs, for example:
 - Full fine-tuning
 - LoRA
 - Linear probing
 - Prompt tuning (P-Tuning v2)

Or try our fine-tuning strategy for multivariate time series that we call **Generalized Prompt Tuning (Gen-P-Tuning)**

Contributions

- First benchmark on fine-tuning univariate time series foundation models on multivariate time series tasks
 - 8 classification datasets
 - 6 from the UEA archive
 - 2 from MIMIC-III
 - 4 **forecasting** datasets from Autoformer
- We propose Gen-P-Tuning
 - Parameter-efficient
 - Performs well in practice
 - Special cases: linear probing, standard prompt tuning

Background

Pre-trained univariate foundation model:

Can use multiple transformer layers (for simplicity, in this poster we use 1 transformer layer)

T = # time stepsP = # patches

MOMENT, GPT4TS, ... D = embedding dimension

Example models:

Handle multivariate time series with "channel independence":

We call this "linear probing"

Generalized Prompt Tuning (Gen-P-Tuning)

Behaves like adding $C \cdot K$ initial fictitious patches as a prefix

- ullet The prompt ${f P}$ is a **summary across channels** that we attach as a prefix to each channel's embedding representation
- ullet The prompt is learned through **Prompt Module** $f_{
 m prompt}$
 - Can be any neural net for sequential data (eg., transformer, RNN, ...)
 - If Prompt Module does not depend on inputs: get standard Prompt Tuning

Linear Probing

- If prompt size hyperparameter K=0: get standard linear probing
- Only the Prompt Module and prediction head need to be trained

Gen-P-Tuning

Experimental Results

LoRA

For more detailed results on each dataset, see the paper

Prompt Tuning

Average classification accuracy

MOMENT	0.732 ± 0.217	0.763 ± 0.206	0.769 ± 0.204	0.756 ± 0.205	0.761 ± 0.207
GPT4TS	<u>0.741</u> ± 0.213	0.742 ± 0.204	0.742 ± 0.202	0.609 ± 0.221	0.590 ± 0.243
Model	Full	LoRA	Linear Probing	Prompt Tuning	Gen-P-Tuning

Average forecasting mean squared error

Model	Full	LoRA	Linear Probing	Prompt Tuning	Gen-P-Tuning
MOMENT	1.211 ± 1.161	1.121 ± 1.152	3.252 ± 1.965	1.071 ± 1.068	<u>1.118</u> ± 1.137
GPT4TS	1.612 ± 1.313	1.546 ± 1.336	3.242 ± 1.757	1.478 ± 1.255	<u>1.482</u> ± 1.251

In these tables, Gen-P-Tuning uses a nontrivial Prompt Module

Model

Findings

- Gen-P-Tuning is often among the best-performing ones
- A longer version of this paper specialized to healthcare data has been published at Machine Learning for Health (ML4H) proceedings track

- Linear probing sometimes perform well, suggesting that channel-independence is sometimes sufficient
- Keep in mind that Gen-P-Tuning includes linear probing and Prompt Tuning as special cases: can choose between special cases by tuning on a validation set

Full