

Fizyka 3.1 Wyznaczanie stałej Plancka na podstawie charakterystyki diody elektroluminescencyjnej (ćwiczenie 48)

Sprawozdanie z Labolatorium

4 listopada 2023

Wydział i kierunek studiów

W12N, Automatyka i Robotyka

Termin zajęć

każdy wtorek, 15:15 - 16:55

Prowadzący

dr Krzysztof Gałkowski

Numer i temat ćwiczenia

48 Wyznaczanie stałej Plancka na podstawie charakterystyki diody elektroluminescencyjnej

Data ćwiczenia, termin oddania sprawozdania

24.10.2023, 7.11.2023

Wykonawca

Adam Prystupa

1 Cel ćwiczenia

Celem ćwiczenia jest pomiar charakterystyki prądowo-napięciowej diody elektroluminescencyjnej oraz wyznaczenie długości fali promieniowania emitowanego przez tą diodę. Na podstawie obliczeń należy wyznaczyć stałą Plancka.

2 Opis ćwiczenia

2.1 Wprowadzenie teoretyczne

Z charakterystyki prądowo-napięciowej diody elektroluminescencyjnej jesteśmy w stanie wyznaczyć barierę potencjału (bariera potencjału jest używana by opisać energię fotonu wzorem: $E_f = U_b \cdot e$, gdzie e - ładunek elementarny, U_b - bariera potencjału. Bariera potencjału w tym wypadku oznacza energię jaką powinien posiadać jeden elektron żeby "przejść" na wyższe pasmo przewodnictwa) oraz długość fali promieniowania emitowanego przez diodę elektroluminescencyjną. Mając do dyspozycji te dwie wartości możemy skorzystać ze wzoru: $E_f = \frac{h \cdot c}{\lambda}$ i wyznaczyć z niego stałą Plancka: $h = \frac{e \cdot U_b \cdot \lambda}{c}$ (gdzie h - stała Plancka, c - prędkość światła, λ - długość fali promieniowania emitowanego przez diodę elektroluminescencyjną).

2.2 Wykaz przyrządów

- 1. Układ zasilający z płynną regulacją napięcia w kierunku przewodzenia i zaporowym,
- 2. Diody elektroluminescencyjne,
- 3. Multimetr cyfrowy Sanwa CD771 (pomiar prądu ze względu na większą dokładność na niższych zakresach),
- 4. Multimetr cyfrowy Master M890G (pomiar napiecia),
- 5. Detektor fotooporowy.

2.3Schemat układu pomiarowego

Pomiary zostały wykonane z użyciem poniższego układu pomiarowego:

Wykorzystane wzory i stałe fizyczne wraz z przykładowymi 3 obliczeniami

1. Stała Plancka:

$$h = 6,62607015 \cdot 10^{-34}, [J \cdot s]$$

2. Prędkość światła w próżni:

$$c = 299792458, \left[\frac{m}{s}\right]$$

3. Ładunek elementarny:

$$e = 1,602176634 \cdot 10^{-19}, [C]$$

4. Energia fotonu:

$$E_f = \frac{h \cdot c}{\lambda}, [J]$$

$$E_f = U_b \cdot e, [J]$$

5. Wzór na stałą Plancka z użyciem energii fotonu:

$$h = \frac{e}{c} \cdot \lambda \cdot U_b, [J \cdot s]$$

$$h = \frac{1,60217...\cdot10^{-19}}{299792...} \cdot 626 \cdot 10^{-9} \cdot 1,91 \approx 6,39 \cdot 10^{-34} [J \cdot s]$$

6. Niepewność pomiaru napięcia:

Niepewność pomiaru napięcia:
$$u(U) = \frac{\Delta U}{\sqrt{3}}, [V]$$
 $u(1,5) = \frac{0.005 \cdot 1.5 + 0.01}{\sqrt{3}} \approx 0.011[V]$

7. Niepewność pomiaru prądu:

$$u(I) = \frac{\Delta I}{\sqrt{3}}, [A] \ u(1, 45 \cdot 10^{-3}) = \frac{0,018 \cdot 1,45 \cdot 10^{-3} + 0,03}{\sqrt{3}} \approx 0,018 \cdot 10^{-3} [A]$$

8. Niepewność współczynnika kierunkowego regresji liniowej:

$$u(a) = \frac{\Delta a}{\sqrt{3}}$$

9. Niepewność wyrazu wolnego regresji liniowej:

$$u(b) = \frac{\Delta b}{\sqrt{3}}$$

10. Bariera potencjału:

$$V_0 = -\frac{b}{a}, [V]$$

 $V_0 = -\frac{-338}{176,9} \approx 1,91[V]$

11. Niepewność bariery potencjału:

$$u(V_0) = \sqrt{\left(\frac{b}{a^2} \cdot \Delta a\right)^2 + \left(-\frac{1}{a} \cdot \Delta b\right)^2}, [V]$$

$$u(V_0) = \sqrt{\left(\frac{-338}{2 \cdot 176,9} \cdot 12, 6\right)^2 + \left(-\frac{1}{176,9} \cdot 25, 363\right)^2} \approx 0, 12[V]$$

4 Wyniki pomiarów

Przedstawione poniżej wyniki pomiarów zostały opracowane dla trzech diod: czerwonej, niebieskiej oraz zielonej. Wyznaczenie długości fali promieniowania emitowanego przez diodę elektroluminescencyjną zostały wyznaczone przy pomocy punktu e)i. instrukcji: "za pomocą oka". Częstotliwość pomiarów była na bieżąco dopasowywana do "zachowania" diod w trakcie pomiarów. Punkty pomiarów, których wartości nie różniły się między sobą zostały pominięte w poniższych tabelach.

4.1 Dioda czerwona

Ι	U	u(U)	I	u(I)	λ	$u(\lambda)$	U_b	$u_c(U_b)$	h	$u_c(h)$
L.p.	[V]	[V]	[mA]	[mA]	[nm]	[nm]	[V]	[V]	$[J \cdot s]$	$[J \cdot s]$
1	0,0000	0,0058	0,000	0,018						
16	1,500	0,011	0,000	0,018						
17	1,600	0,011	0,010	0,018						
18	1,630	0,011	0,030	0,018						
19	1,660	0,011	0,060	0,018						
20	1,690	0,011	0,140	0,019						
21	1,710	0,011	0,200	0,020						
22	1,730	0,011	0,310	0,021						
23	1,750	0,011	0,460	0,023						
24	1,770	0,011	0,700	0,025						
25	1,790	0,011	1,000	0,028						
26	1,810	0,011	1,450	0,033	626, 0	5,8	1,91	0,12	$6,39 \cdot 10^{-34}$	$4,1\cdot 10^{-35}$
27	1,830	0,012	1,990	0,039	020,0	0,0	1,51	0,12	0,00 10	1,1 10
28	1,850	0,012	2,660	0,045						
29	1,870	0,012	3,550	0,055						
30	1,890	0,012	4,670	0,066						
31	1,910	0,012	5,910	0,079						
32	1,930	0,012	7,430	0,095						
33	1,950	0,012	9,20	0,12						
34	1,970	0,012	11, 17	0, 14						
35	1,990	0,012	13,91	0,17						
36	2,010	0,012	17, 12	0,20						
37	2,030	0,012	20,48	0,24						
38	2,050	0,012	24,65	0,28						
39	2,070	0,012	28,82	0,32						

4.2 Dioda niebieska

Т	U	u(U)	I	u(I)	λ	$u(\lambda)$	U_b	$u_c(U_b)$	h	$u_c(h)$
L.p.	[V]	[V]	[mA]	[mA]	[nm]	[nm]	[V]	[V]	$[J \cdot s]$	$[J \cdot s]$
1	0,0000	0,0108	0,000	0,018						
25	2,397	0,013	0,000	0,018						
26	2,430	0,013	0,000	0,018						
27	2,450	0,013	0,010	0,018						
28	2,470	0,013	0,020	0,018						
29	2,490	0,013	0,030	0,018						
30	2,510	0,014	0,060	0,018						
31	2,530	0,014	0,090	0,019						
32	2,550	0,014	0,130	0,019						
33	2,570	0,014	0,220	0,020						
34	2,590	0,014	0,290	0,021						
35	2,610	0,014	0,420	0,022						
36	2,630	0,014	0,550	0,024						
37	2,650	0,014	0,730	0,025						
38	2,670	0,014	0,860	0,027						
39	2,690	0,014	1,090	0,029					9.4	٥٣
40	2,710	0,014	1,370	0,032	462, 0	5, 8	2,78	0, 11	$6,86 \cdot 10^{-34}$	$2,9 \cdot 10^{-35}$
41	2,730	0,014	1,640	0,035						
42	2,750	0,014	2,010	0,039						
43	2,770	0,014	2,390	0,043						
44	2,790	0,014	2,780	0,047						
45	2,810	0,014	3,340	0,053						
46	2,830	0,014	3,830	0,058						
47	2,850	0,015	4,420	0,064						
48	2,870	0,015	5,090	0,071						
49	2,890	0,015	5,980	0,080						
50	2,910	0,015	6,660	0,087						
51	2,930	0,015	7,460	0,095						
52	2,950	0,015	8,39	0,11						
53	2,970	0,015	9,33	0, 12						
54	2,990	0,015	10,66	0, 13						
55	3,040	0,015	13, 22	0, 16						
56	3,090	0,015	16,46	0, 19						
57	3,140	0,015	18, 29	0,21						

4.3 Dioda zielona

Т	U	u(U)	I	u(I)	λ	$u(\lambda)$	U_b	$u_c(U_b)$	h	$u_c(h)$
L.p.	[V]	[V]	[mA]	[mA]	[nm]	[nm]	[V]	[V]	$[J \cdot s]$	$[J \cdot s]$
1	0,0000	0,0058	0,000	0,018						
18	1,640	0,011	0,000	0,018						
19	1,660	0,011	0,010	0,018						
20	1,680	0,011	0,010	0,018						
21	1,700	0,011	0,030	0,018						
22	1,720	0,011	0,050	0,018						
23	1,740	0,011	0,080	0,019						
24	1,760	0,011	0,130	0,019						
25	1,780	0,011	0,220	0,020						
26	1,800	0,011	0,320	0,021						
27	1,820	0,012	0,460	0,023						
28	1,840	0,012	0,680	0,025	571, 0	5, 8	1,97	0,49	$6, 1 \cdot 10^{-34}$	$1, 2 \cdot 10^{-34}$
29	1,860	0,012	1,050	0,029						
30	1,880	0,012	1,550	0,034						
31	1,900	0,012	2,260	0,041						
32	1,920	0,012	3,150	0,051						
33	1,940	0,012	4,500	0,065						
34	1,960	0,012	6,530	0,086						
35	1,980	0,012	8, 26	0,11						
36	2,000	0,012	11, 12	0, 14						
37	2,020	0,012	14, 26	0,17						
38	2,040	0,012	18, 22	0, 21						
39	2,060	0,012	23,44	0,27						
40	2,070	0,012	28,72	0,064						

5 Wykresy

5.1 Dioda czerwona

Wykres 1: Wykres przedstawia charakterystykę prądowo-napięciową diody czerwonej. Regresja liniowa umieszczona na wykresie została wykonana w programie Microsoft Excel z użyciem funkcji "REGLINP".

a	b	u(a)	u(b)	R^2
176, 9	-338	7,3	14, 7	0,9933

Tabela 1: Tabela przedstawia wartości regresji liniowej z powyższego wykresu (Wykres 1).

5.2 Dioda niebieska

Wykres 2: Wykres przedstawia charakterystykę prądowo-napięciową diody niebieskiej. Regresja liniowa umieszczona na wykresie została wykonana w programie Microsoft Excel z użyciem funkcji "REGLINP".

a	b	u(a)	u(b)	R^2
50, 9	-141, 3	1,4	4, 1	0,9944

Tabela 2: Tabela przedstawia wartości regresji liniowej z powyższego wykresu (Wykres 2).

5.3 Dioda zielona

Wykres 3: Wykres przedstawia charakterystykę prądowo-napięciową diody zielonej. Regresja liniowa umieszczona na wykresie została wykonana w programie Microsoft Excel z użyciem funkcji "REGLINP".

a	b	u(a)	u(b)	R^2
278	-548	39	80	0,9628

Tabela 3: Tabela przedstawia wartości regresji liniowej z powyższego wykresu (Wykres 3).

6 Wnioski

	Czerwona	Niebieska	Zielona
h [J*s]	$6,39 \cdot 10^{-34}$	$6,86 \cdot 10^{-34}$	$6, 1 \cdot 10^{-34}$
u(h) [J*s]	$4,1\cdot 10^{-35}$	$2,9 \cdot 10^{-35}$	$1, 2 \cdot 10^{-34}$

Tabela 4: Tabela przedstawia zestawienie obliczonych stałych Plancka i jej niepewnośći dla każdej diody.

- 1. Obliczone wartości są zbliżone do nominalnej wartości stałej Plancka. Oznacza to, że ze sporym prawdopodobieństwem eksperyment został przeprowadzony poprawnie.
- 2. Dla każdej diody zaobserwowano świecenie przy dostarczeniu innego prądu. Co oznacza, że każda dioda miała inny prąd progowy i wielkość tego prądu rośnie odwrotnie proporcjonalnie do długości fali emitowanej przez diodę.
- 3. Duże niepewności są spowodowane niedokładnymi pomiarami (pomimo zwiększeniu ilości próbek po uwagach prowadzącego) dokonano zbyt mało pomiarów aby z zadowalającą dokładnościa przeprowadzić regresję dla każdej diody. Co przełożyło się na większe niedokładności w późniejszych obliczeniach.
- 4. Duży błąd pomiarowy wprowadziła również metoda wyznaczania długości fali. Metoda ta opierała się na wzroku eksperymentatorów co było obarczone dużym ryzykiem błędnego odczytu (trudne jest jednoznaczne określenie punktu, w którym dioda świeci najmocniej).

7 Literatura

- 1. DOKŁADNOŚĆ MIERNIKÓW STOSOWANYCH W LPF; https://lpf.wppt.pwr.edu.pl/pomoce/niedokladnosc-miernikow-lpf.pdf
- 2. *ĆWICZENIE 48*; https://lpf.wppt.pwr.edu.pl/instrukcje/cwn048.pdf
- 3. Physical constant; https://en.wikipedia.org/wiki/Physical_constant