ENTIERS NATURELS

www.eleves.ens.fr/home/yhuang

La notation C_n^k désigne le nombre de sous-ensembles à k éléments dans un ensemble à n éléments.

18.1
$$n = 2^m(2k+1)$$

Tout entier naturel non nul n s'écrit de manière unique sous la forme $2^m(2k+1)$ avec $(m,k) \in \mathbb{N} \times \mathbb{Z}$. On pourra faire une récurrence forte sur |n|, ou bien considérer l'ensemble $\{m \in \mathbb{N}, 2^m | n\}$.

18.2
$$\sum_{k} n_{k} k!$$

Soit $p \in \mathbb{N}$. Soit $0 \le n \le (p+1)! - 1$ un entier naturel. Montrer qu'il existe une unique suite $(n_k)_{0 \le k \le p}$ avec $\forall k, 0 \le n_k \le k$ telle que $n = \sum_k n_k k!$.

18.3 Une somme binomiale

Soit $n \in \mathbb{N}$. Calculer $\sum_{k \in \mathbb{N}, 0 \le 2k \le n} C_n^k$. On pourra penser à former son "complémentaire".

18.4 Une identité

Soit $(n, p, q) \in \mathbb{N}^3$ avec $n \leq p+q$. En regardant $(1+x)^p(1+x)^q$, montrer que $C_{p+q}^n = \sum_{0 \leq k \leq n} C_p^k C_q^{n-k}$. Proposer une interprétation combinatoire.

18.5 Un calcul

Soit
$$n \in \mathbb{N}$$
. Calculer $\sum_{0 \le k \le n} (-1)^k C_{2n+1}^k$.

18.6 Formule d'inversion de Pascal

Soient
$$(u_n)$$
, (v_n) deux suites telles que $\forall n \in \mathbb{N}, v_n = \sum_{0 \le k \le n} C_n^k u_k$.
Montrer que $\forall n \in \mathbb{N}, u_n = \sum_{0 \le k \le n} (-1)^k C_n^k v_k$.

18.7 Une équation binomiale

Considérons l'équation diophantienne $C_{n+1}^{k+1}=C_n^{k+2}$ d'inconnues $(k,n)\in\mathbb{N}^2$. Montrer que si F_i est le *i*-ième nombre de Fibonacci, alors le couple $(n=F_{2i+2}F_{2i+3}-1,k=F_{2i}F_{2i+3}-1)$ est une solution d'équation pour tout $i\in\mathbb{N}$.

¹Ceci permet de montrer certaines propriétés sur le triangle de Pascal, cf. Wikipédia.