

Geometric Similarity

 Geometric similarity – the model is the same shape as the application, usually scaled

Linear scale ratio:

$$\delta_l = \frac{l}{l'} = \text{const}$$

$$\left(\frac{L}{B}\right)_{model} = \left(\frac{L}{B}\right)_{prototype}$$

Model

Kinematic Similarity

 Kinematic similarity – fluid flow of both the model and real application must undergo similar time rates of change motions. (fluid streamlines are similar)

Velocity scale ratio:

$$\delta_{v} = \frac{v}{v'} = \text{const}$$

Model

$$\left(\frac{v_A}{u_A}\right)_{prototype} = \left(\frac{v_a}{u_a}\right)_{model}$$

$$\left(\frac{v_B}{u_B}\right)_{prototype} = \left(\frac{v_b}{u_b}\right)_{model}$$

 Dynamic similarity – Ratios of all forces acting on corresponding fluid particles and boundary surfaces are constant

Density scale ratio:

$$\delta_{\rho} = \frac{\rho}{\rho'} = 常数$$

Prototype

$$\left(\frac{FA_v}{FA_h}\right)_{prototype} = \left(\frac{Fa_v}{Fa_h}\right)_{mode}$$

$$=\left(\frac{Fa_v}{Fa_h}\right)_m$$

$$\left(\frac{FB_v}{FB_h}\right)_{prototype} = \left(\frac{Fb_v}{Fb_h}\right)_{mode}$$

In a system involving flow of fluid, different forces due to different causes may act on a fluid element.

Pressure Force (due to different in pressure)	F_{p}
Viscous Force (due to viscosity)	F _u
Gravity Force (due to gravitational attraction)	F_{α}
Capillary Force (due to surface tension)	F_c
Compressibility Force (due to elasticity)	F_k

$$\delta_{F_{p}} = \frac{(F_{p})}{(F_{p})'} = \frac{pA}{p'A'} = \delta_{p}\delta_{l}^{2} \qquad \delta_{F_{\mu}} = \frac{(F_{\mu})}{(F_{\mu})'} = \frac{\mu A \frac{dv}{dl}}{\mu'A' \frac{dv'}{dl'}} = \delta_{\mu}\delta_{l}\delta_{v} \qquad \delta_{F_{g}} = \frac{(F_{g})}{(F_{g})'} = \frac{\rho gV}{\rho'g'V'} = \delta_{\rho}\delta_{g}\delta_{l}^{3}$$

$$(F_{p}) = \frac{(F_{p})}{(F_{p})'} = \frac{\mu A \frac{dv}{dl}}{(F_{p})'} = \frac{\mu A \frac{dv}{dl}}{(F_{g})'} = \frac{\rho gV}{\rho'g'V'} = \delta_{\rho}\delta_{g}\delta_{l}^{3}$$

$$(F_{p}) = \frac{\mu A \frac{dv}{dl}}{(F_{p})'} = \frac{\mu A \frac{dv}{dl}}{(F_{p})'} = \frac{\rho gV}{\rho'g'V'} = \delta_{\rho}\delta_{g}\delta_{l}^{3}$$

$$\delta_{F_c} = \frac{(F_c)}{(F_c)} = \frac{\sigma l}{\sigma' l'} = \delta_{\sigma} \delta_l \qquad \delta_{F_K} = \frac{(F_K)}{(F_K)'} = \frac{K l^2}{K' l'^2} = \delta_K \delta_l^2 \qquad \delta_{F_L} = \frac{(ma)}{(ma)'} = \frac{\rho l^3 \frac{\partial V}{\partial t}}{\rho' l'^3 \frac{\partial V'}{\partial t'}} = \delta_{\rho} \delta_l^2 \delta_v^2$$

$$\delta_p \delta_l^2 = \delta_\mu \delta_l \delta_\nu = \delta_\rho \delta_g \delta_l^3 = \delta_\sigma \delta_l = \delta_K \delta_l^2 = \delta_\rho \delta_l^2 \delta_\nu^2$$

If similarity:
$$\frac{\delta_{\rho}\delta_{v}^{2}}{\delta_{p}} = \frac{\delta_{\rho}\delta_{l}\delta_{v}}{\delta_{\mu}} = \frac{\delta_{v}^{2}}{\delta_{l}\delta_{g}} = \frac{\delta_{\rho}\delta_{v}^{2}\delta_{l}}{\delta_{\sigma}} = \frac{\delta_{\rho}\delta_{v}^{2}}{\delta_{K}} = 1$$

- Impossible to have all force ratios the same unless the model is the same size as the prototype
- Need to determine which forces are important and attempt to keep those force ratios the same

$$\frac{\delta_{\rho}\delta_{\nu}^{2}}{\delta_{p}} = 1$$

$$\frac{\delta_{\rho}\delta_{\nu}^{2}}{\delta_{p}} = 1 \qquad \frac{\rho v^{2}}{p} = \frac{\rho' v'^{2}}{p'} = \frac{1}{Eu}$$

>Eu denotes pressure force/inertia force

$$\frac{\delta_{\rho}\delta_{l}\delta_{\nu}}{\delta_{\mu}} = 1$$

$$\frac{\delta_{\rho}\delta_{l}\delta_{v}}{\delta_{u}} = 1 \qquad \frac{\rho l v}{\mu} = \frac{\rho' l' v'}{\mu'} = Re$$

>Re denotes inertia force/viscous force

$$\frac{\delta_{v}^{2}}{\delta_{l}\delta_{g}} = 1$$

$$\frac{\delta_{v}^{2}}{\delta_{l}\delta_{g}} = 1 \qquad \frac{v^{2}}{gl} = \frac{v'^{2}}{g'l'} = Fr$$

>Fr denotes inertia force/gravity force

$$\frac{\delta_{\rho}\delta_{v}^{2}\delta_{l}}{\delta_{\sigma}}=1$$

$$\frac{\rho v^2 l}{\sigma} = \frac{\rho' v'^2 l'}{\sigma'} = B \alpha$$

 $\frac{\delta_{\rho}\delta_{v}^{2}\delta_{l}}{\delta_{\sigma}}=1 \qquad \frac{\rho v^{2}l}{\sigma}=\frac{\rho^{'}v^{'2}l^{'}}{\sigma^{'}}=Bo \quad \text{``Bo denotes inertia force/surface tension force'}$

$$\frac{\delta_{\rho}\delta_{\nu}^{2}}{\delta_{\kappa}} = 1$$

$$\sqrt{\frac{\rho v^2}{K}} = \sqrt{\frac{\rho' v'^2}{K'}} = Ma$$

 $\frac{\delta_{\rho}\delta_{v}^{2}}{\delta_{K}} = 1 \qquad \sqrt{\frac{\rho v^{2}}{K}} = \sqrt{\frac{\rho' v'^{2}}{K'}} = Ma \qquad \text{>M denotes inertia force/elastic}$

Example

Consider a submarine modeled at 1/40 th scale. The application operates in sea water at 0.5 °C, moving at 5 m/s. The model will be tested in fresh water at 20 °C. Find the power required for the submarine to operate at the stated speed.

Variable	Application	Scaled mode	Units	
L (diameter of submarine)	1	1/40	(m)	
V (speed)	5	calculate	(m/s)	
(density)	1028	998	(kg/m³)	
(dynamic viscosity)	1.88x10 ⁻³	1.00x10 ⁻³	Pa·s (N s/m²)	
F (force)	calculate	to be measured	N (kg m/s²)	

$$R_e = \left(\frac{\rho V L}{\mu}\right)$$
 $C_p = \left(\frac{2\Delta p}{\rho V^2}\right), F = \Delta p L$

Dimensional Analysis

- In physics and all science, dimensional analysis is a tool to find or check relations among physical quantities by using their dimensions.
- The dimension of a physical quantity is the combination of the basic physical dimensions (usually length, mass, time, electric current, temperature, amount of substance and luminous intensity) which describe it.
- Any meaningful equation (and any inequality and inequation)
 must have the same dimensions in the left and right sides.
 Checking this is the basic way of performing dimensional
 analysis.

Dimensional Analysis

Dimensions of physical quantities

Physical quantity	Dimension	Physical quantity	Dimension	
Area A	L ²	Pressure p	ML ⁻¹ T ⁻²	
Volume V	L ³	Stress τ	ML ⁻¹ T ⁻²	
Velocity v	LT ⁻¹	Force F	MLT ⁻²	
Acceleration a	LT ⁻²	Dynamic vis μ	ML-1T-1	
Rotation speed <i>n</i>	T-1	Kinematic vis v	L ² T ⁻¹	
Heat quantity Q _H	Н	Flow rate Q	L ³ T ⁻¹	
Density $ ho$	ML ⁻³	Energy <i>E</i>	ML ² T ⁻²	

Example

 A typical fluid mechanics problem in which experimentation is required, consider the steady flow of an incompressible Newtonian fluid through a long, smoothwalled, horizontal, circular pipe.

$$\Delta P = f(L, d, v, \mu, \rho)$$

Pressure drop depends on five variables:

Length(L);Diameter (D); speed (V); fluid density (ρ); fluid viscosity(μ)

Buckingham Pi Theorem

If an equation involving k variables is dimensionally homogeneous, it can be reduced to a relationship among k-r independent dimensionless products, where r is the minimum number of reference dimensions required to describe the variables.
 Pi terms

 Given a physical problem in which the dependent variable is a function of k-1 independent variables.

$$u1 = f(u2, u3,, uk)$$

 The k variables may be grouped into k-r independent dimensionless products, or Π terms, expressible in functional form by

$$\Pi_1 = \phi(\Pi_2, \Pi_3 ..., \Pi_{k-r})$$

- Step 1 List all the variables
 - Let k be the number of variables

$$\Delta P = f(L, d, v, \mu, \rho)$$

- Step 2 List all the variables
 - Express each of the variables in terms of basic dimensions. Find the number of reference dimensions
 - >Example: For pressure drop, we choose MLT

variables	L	d	V	μ	ρ	ΔP
Dimensions	L	L	LT ⁻¹	ML-1T-1	ML ⁻³	ML-1T-2

- Step 3 Determine the required number of piterms
 - ➤ The number of pi terms is k-r
 - ➤ Example: For pressure drop, The number of pi terms is 6-3

- Step 4 Select a number of repeating variables, where the number required is equal to the number of reference dimensions
 - Example: For pressure drop (r = 3) select ρ , ν , d
- Step 5 Form a Pi term by multiplying one of the repeating variables, each raised to an exponent that will make the combination dimensionless.
 - Set up dimensional equations, combining the variables selected in Step 4 with each of the other variables (nonrepeating variables) in turn, to form dimensionless groups or dimensionless product.

$$\Pi_{3} = \frac{L}{\rho^{a} v^{b} d^{c}} = M^{0} L^{0} T^{0} \qquad \qquad \frac{L}{(M L^{-3})^{a} (L T^{-1})^{b} (L)^{c}} = M^{0} L^{0} T^{0}$$

a = 0, b = 0, c = 1

- Step 6 Check all the resulting Pi terms to make sure they are dimensionless
 - >check to see that each group obtained is dimensionless
- Step 7 Express the final form as a relationship among the Pi terms, and think about what is means.
 - ➤Example:

$$\frac{\Delta P}{\rho v^2} = \phi(\frac{L}{d}, \frac{\mu}{\rho vD}) = \phi(\frac{L}{d}, \frac{1}{Re})$$

Pipe pressure loss
$$\frac{\Delta P}{\rho g} = \frac{64}{Re} \frac{L}{d} \frac{v^2}{2g}$$

