Gr-catégories

Hoàng Xuân Sính

Institut pédagogique n°2 de Hanoi

Département de mathématiques

Ce texte a été édité et transcrit par Mateo Carmona

TABLE DE MATIÈRES

Introduction	4
Summary	5
I. ⊗-catégories et ⊗-foncteurs	11
1. ⊗-catégories	11
II. Gr-catégories et Pic-catégories	12
1. ⊗-catégories	12
1. ⊗-catégories	12
III. Pic-enveloppe d'une ⊗-catégorie	13
1. ⊗-catégories	13
1. ⊗-catégories	13
1. ⊗-catégories	13
Ribliographie	14

INTRODUCTION

Ce travail se compose de trois chapitres

SUMMARY

The purpose of these notes is to study the Gr-categories and give some applications of them. Below is a brief description of the organisation of the work.

Chapter I gives some definitions and results, which are used continually in the sequel, on \otimes -categories one can find in [2], [6], [11], [14], [15], the terminology employed in this chapter being of Neantro Saavedra Rivano [14]. A \otimes -category is a category $\mathscr C$ together with a $law \otimes$, i.e. a covariant bifunctor

$$\otimes\!:\mathscr{C}\times\mathscr{C}\longrightarrow\mathscr{C}$$

$$(X,Y) \mapsto X \otimes Y$$

An associativity constraint for a \otimes -category $\mathscr C$ is an isomorphism of bifunctors

$$a_{X,Y,Z}: X \otimes (Y \otimes Z) \xrightarrow{\sim} (X \otimes Y) \otimes Z, \quad X,Y,Z \in Ob(\mathscr{C})$$

satisfying the pentagon axiom, i.e. all the pentagonal diagrams

[]

are commutative. A \otimes -category together with an associativity constraint is called a \otimes -associativity category.

A commutativity constraint for a \otimes -category $\mathscr C$ is an isomorphism of bifunctors

$$c_{X,Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X, \quad X, Y \in Ob(\mathscr{C})$$

verifying the relation

$$c_{Y,X} \circ c_{X,Y} = Id_{X \otimes Y}$$

Hoàng Xuân Sính

The commutativity constraint c is said to be *strict* if $c_{X,X} = Id_{X\otimes}$ for all $X \in Ob(\mathscr{C})$. A \otimes -category together with a commutativity constraint is a \otimes -commutative category. A \otimes -commutative category is *strict* if its commutativity constraint is strict.

An unity constraint for a \otimes -category $\mathscr C$ is a triple $(\underline{1}, g, d)$ where $\underline{1}$ is an object of $\mathscr C$, g and d natural isomorphisms

$$g_X: X \xrightarrow{\sim} \underline{1} \otimes X, \quad d_X: X \xrightarrow{\sim} X \otimes \underline{1}, \quad X \in Ob(\mathscr{C})$$

such that $g_1 = d_1$. A \otimes -category together with an unity constraint is a \otimes -unifer category.

A \otimes -category $\mathscr C$ together with an associativity constraint a and a commutaivity constraint c is a \otimes -AC category if the hexagonal axiom is fulfilled, i.e. all the hexagonal diagram commutes

[]

A \otimes -category \mathscr{C} together with a associativity constraint a and an unity contraint $(\underline{1}, g, d)$ is a \otimes -AU category if all the following triangles commute

Г٦

A \otimes -ACU category is a \otimes -AC and AU category. An object X of a \otimes -ACU category $\mathscr C$ is invertible if there are two objects $X', X'' \in Ob(\mathscr C)$ such that $X' \otimes X \simeq X \otimes X'' \simeq \underline{1}$.

A \otimes -functor from a \otimes -category \mathscr{C} to a \otimes -category \mathscr{C}' is a pair (F,\check{F}) where F is a functor $\mathscr{C} \longrightarrow cC'$ and \check{F} an isomorphism of bifunctors

$$\check{F}_{X,Y}: FX \otimes FY \longrightarrow F(X \otimes Y) \quad X,Y \in Ob(\mathscr{C})$$

A \otimes -functor (F, \check{F}) from a \otimes -associative category \mathscr{C} to a \otimes -associative category \mathscr{C}' is associative if the following diagram commutes:

[]

where a is the associativity constraint of \mathscr{C} and a' of \mathscr{C}' .

A \otimes -functor (F,\check{F}) from a \otimes -commutative category \mathscr{C} to a \otimes -commutative category \mathscr{C}' is *commutative* if the following diagram commutes :

[]

c and c' being the commutativity constraints of $\mathscr C$ and $\mathscr C'$ respectively.

A \otimes -functor (F,\check{F}) from a \otimes -category \mathscr{C} with an unity constraint $(\underline{1},g,d)$ to a \otimes -category \mathscr{C}' with an unity constraint $(\underline{1}',g',d')$ is a \otimes -unifer functor if there exists an isomorphism $\hat{F}:\underline{1}'\xrightarrow{\sim} F\underline{1}$ such that the following diagrams commute:

[]

It follows from the definition that the isomorphism $\hat{F}: \underline{1}' \xrightarrow{\sim} F\underline{1}$, it it exists, is unique.

A \otimes -AC functor is an \otimes -associative and commutative functor.

A \otimes -ACU functor is a \otimes -associative, commutative and unifer functor.

Let (F, \check{F}) and (G, \check{G}) be \otimes -functors from a \otimes -category \mathscr{C} to a \otimes -category \mathscr{C}' . A \otimes -morphism from the \otimes -functor (F, \check{F}) to the \otimes -functor (G, \check{G}) is a morphism of functors $\lambda : F \longrightarrow G$ such that the following diagram commutes

Chapter II is a study of Gr-categories and Pic-categories. A Gr-category is a \otimes -AU category, the objects of which are all invertible, and the base category a groupoid (i.e. all arrows are isomorphisms). Thus a Gr-category is like a group. We obtain from this definition that if $\mathscr P$ is a Gr-category, the set $\pi_0(\mathscr P)$ of the classes up to isomorphism of objects of $\mathscr P$, together with the operation induced by the law \otimes of $\mathscr P$, is a group; the group $\operatorname{Aut}(\underline{1}) = \pi_1(\mathscr P)$ is a commutative group; and for all $X \in Ob(\mathscr P)$

$$\gamma_X : u \mapsto u \otimes Id_X = \operatorname{Aut}(1) \xrightarrow{\sim} \operatorname{Aut}(X)$$

$$\delta_X : u \mapsto Id_X \otimes u = \operatorname{Aut}(\underline{1}) \xrightarrow{\sim} \operatorname{Aut}(X)$$

We attribute thus to a Gr-category \mathscr{P} two groups $\pi_0(\mathscr{P})$ and $\pi_1(\mathscr{P})$ where $\pi_1(\mathscr{P})$ is commutative. Furthermore we can define an action of $\pi_0(\mathscr{P})$ on $\pi_1(\mathscr{P})$ by the formula

$$s u = \delta_X^{-1} \gamma_X(u)$$

for $s \in \pi_0(\mathscr{P})$ represents d by X and $u \in \pi_1(\mathscr{P})$. The commutative group $\pi_1(\mathscr{P})$ together with this action is a left $\pi_0(\mathscr{P})$ -module.

Let M be a group, N a left M-module. A preepinglage of type (M, N) for a Gr-category \mathscr{P} is a pair $\varepsilon = (\varepsilon_0, \varepsilon_1)$ of isomorphisms

$$\varepsilon_0: M \xrightarrow{\sim} \pi_0(\mathcal{P}), \quad \varepsilon_1: N \xrightarrow{\sim} \pi_1(\mathcal{P})$$

compatible wit the action of M on N, $\pi_0(\mathcal{P})$ on $\pi_1(\mathcal{P})$. A Gr-category preeplingled of type (M,N) is a Gr-category \mathcal{P} together with preepinglage. Finally, an arrow of Gr-categories preepingled of type (M,N) $(\mathcal{P},\varepsilon) \longrightarrow (\mathcal{P}',\varepsilon')$ is a \otimes -associative functor such that the following triangles commute:

It follows from this definition that a such arrow is a \otimes -equivalence. Thus the set of the equivalence classes of Gr-categories preepingled of type (M, N) is equal to the set of connected components of the category of Gr-categories preepingled of type (M, N).

If we consider the cohomology group $H^3(M,N)$ of the group M with coefficients N (in the sense of the group cohomology [12]) we obtain a canonical bijection between the set $H^3(M,N)$ and the set of the equivalence classes of Gr-categories preepingled of type (M,N).

A Pic-category is a Gr-category together with a commutativity constraint which is compatible with its associativity constraint, i.e. the hexagon axiom is satisfied. Thus a Pic-category is like a commutative group. We verify immediately that a necessary condition for the existence of a Pic-category structure on a Gr-category is that $\pi_0(\mathcal{P})$ must be commutative and act trivially on $\pi_1(\mathcal{P})$. A Pic-category is *strict* if its commutativity constraint is strict.

Let M, N be abelian groups. A *preepinglage* of type (M,N) for a Pic-category \mathcal{P} is a pair $\varepsilon = (\varepsilon_0, \varepsilon_1)$ of isomorphisms

$$\varepsilon_0: M \xrightarrow{\sim} \pi_0(\mathscr{P}), \quad \varepsilon_1: N \xrightarrow{\sim} \pi_1(\mathscr{P})$$

A Pic-category *preepingled* of type (M, N) is a Pic-category together with a preepinglage. We define the *arrow* of such objects in the same way as for Gr-categories.

For next propositions, let us consider two complexes of free abelian groups

[]

where

so that $L_{\bullet}(M)$ is a truncated resolution of M. One obtains a canonical bijection between the set of the equivalence classes of Pic-categories preepingled of type (M,N) and the set $H^2(Hom('L_{\bullet}(M),N))$. The exactitude of the complex L(M) gives us e triviality of the classification of Pic-categories preepingled of type (M,N) which are strict, i.e. all Pic-categories preepingled of type (M,N) which are strict, are equivalent.

Finally chapter III gives us the construction of the solution of two universal problems: problem of making objects "unity objects" and problem of reversing objects.

Let \mathscr{A} be a \otimes -AC category, \mathscr{A}' another \otimes -AC category whose base category is a groupoid, and $(T, \check{T}): \mathscr{A}' \longrightarrow \mathscr{A}$ a \otimes -AC functors. We try to make the objects TA' of

Gr-catégories

 \mathcal{A} , $A' \in Ob(\mathcal{A}')$, "unity object", i.e. we try to get:

- 1°) A \otimes -ACU category \mathscr{P}
- 2°) A \otimes -AC functor $(D, \check{D}): \mathscr{A} \longrightarrow \mathscr{P}$
- 3°) A ⊗-isomorphism

$$\lambda: (,\check{D}) \circ (T,\check{T}) \xrightarrow{\sim} (I_{\mathscr{P}},\check{I}_{\mathscr{P}})$$

where $(I_{\mathscr{P}}, \check{I}_{\mathscr{P}})$ is the \otimes -constant functors $\underline{1}_{\mathscr{P}}$ from \mathscr{A}' to \mathscr{P} . The triple $(\mathscr{P}, (D, \check{D}), \lambda)$ must be universal for triples $(\mathscr{Q}, (E, \check{E}), \mu)$ satisfying $1^{\circ}, 2^{\circ}, 3^{\circ}$.

For the description of the triple $(\mathcal{P}, (D, \check{D}), \lambda)$, we introduce a quotient category of a \otimes -AC category as follows:

Let \mathscr{A} be a \otimes -AC category, Y a multiplicative subset of \mathscr{A} (that means a subset of the set of all endomorphisms of \mathscr{A} such that $Id_X \in Y$ for all $X \in Ob(\mathscr{A})$ and the tensor product of two arrows of Y belongs to Y). The \otimes -AC category quotient A^Y of \mathscr{A} with respect to Y is the solution of the universal problem

$$(K, \check{K}): \mathscr{A} \longrightarrow \mathscr{B}, \quad K(u) = Id \text{ for all } u \in Y$$

where *B* is a \otimes -AC category and (K, \check{K}) a \otimes -AC functor.

Now let us give an idea of the construction of the triple

Let $\mathscr C$ be a \otimes -ACU category, Z an arbitrary object of $\mathscr C$ different from the unity object $\underline{1}$, S the functor from $\mathscr C$ to $\mathscr C$ defined by

$$X \mapsto X \otimes Z$$
.

The *suspension category* of the \otimes -ACU category $\mathscr C$ defined by the object Z is the triple $(\mathscr P,i,p)$ which solves the universal problem for triples $(\mathscr Q,j,q)$ where $\mathscr Q$ is a category, j a functor from $\mathscr C$ to $\mathscr Q$, and q an equivalence of categories from $\mathscr Q$ to $\mathscr Q$, so that the following diagram commutes

[]

up to natural isomorphism. In the case where \mathscr{C} is the homotopy category of pointed topological spaces Htp_together with the smash []

Let \mathscr{C}' be the \otimes -stable subcategory of \mathscr{C} generated by Z and \mathscr{P} the \otimes -category of fractions of \mathscr{C} with respect to $(\mathscr{C}',(F,Id))$ where $F:\mathscr{C}'\longrightarrow\mathscr{C}$ is the inclusion functor. One

Hoàng Xuân Sính

obtains a functor $G: \mathscr{P} \longrightarrow \mathscr{P}$ from the suspension category to the \otimes -category of fractions of \mathscr{P} . If G is not faithful, that is the case of the homotopy category of pointed topological spaces $\operatorname{\underline{Htp}}$ together with the smash \wedge and the 1-sphere S^1 ; then it is impossible to construct in \mathscr{P} a $\overline{\text{law}} \otimes \text{such}$ that \mathscr{P} together with this law is a \otimes -ACU category, iZ invertible in \mathscr{P} , and i embedded in a pair (i,i) which is a \otimes -ACU functor from \mathscr{C} to \mathscr{P} .

\S I. — \otimes -CATÉGORIES ET \otimes -FONCTEURS

- 1. ⊗-catégories

§ II. — Gr-CATÉGORIES ET Pic-CATÉGORIES

- 1. ⊗-catégories
- 1. ⊗-catégories

§ III. — Pic-ENVELOPPE D'UNE ⊗-CATÉGORIE ACU

- 1. ⊗-catégories
- 1. ⊗-catégories
- 1. ⊗-catégories

BIBLIOGRAPHIE

- [1] BASS, H *K-theory and stable algebra*. Publ. maths de L'IHES, n°22
- [2] BÉNABOU, J Thèse, Paris 1966
- [3] BOURBAKI, N Théorie des ensembles
- [4] Algèbre commutative
- [5] Algèbre multilinéaire
- [6] DELIGNE, P Champs de Picard strictement commutatifs, SGA 4 XVIII
- [7] EILENBERG, S ET KELLY, G M *Closed category*, Proceedings of the conference on categorical algebra (421.561). Springer Verlag 1965
- [8] FREYD, P *Stable homotopy*, Proceedings of the conferece on categorical agebra (121.176). Springer Verlag 1965
- [9] GROTHENDIECK, A Biextensions de faisceaux de groupes, SGA 7, VII
- [10] Catégories cofibrées additives et complexe cotangent relatif, Lecture notes in mathematics n°79. Springer Verlag 1968
- [11] MACLANE, S Categorical algebra, Bull. Amer. Mat. Soc. 71 (1965)
- [12] Homology, Springer Verlag 1967
- [13] MITCHELL, B Theory of categories, Academic Press 1965
- [14] NEANTRO SAAVEDRA RIVANO Thèse, Paris (1970?)

Gr-catégories

- [15] Catégories tannakiennes, Lecture notes in mathematics n°265. Springer Verlag 1972
- [16] Spanier, E- Algebraic topology, McGraw-Hill, 1966