

逻辑函数的公式化简

逻辑函数化简的意义是什么?

逻辑函数公式化简的方法有哪些?

一、化简的意义

1.逻辑函数表达式的不同形式

异或门
$$Y = A\overline{B} + \overline{A}B = A \oplus B$$

 $Y = A\overline{B} + \overline{A}B$ 与或表达式
 $= \overline{AB} + \overline{AB}$ 与或非-非表达式
 $= \overline{AB} \cdot \overline{AB}$ 与非-与非表达式
 $= \overline{(A+B) \cdot (A+B)}$ 或与非表达式
 $= \overline{AB} + \overline{AB}$ 与或非表达式
 $= \overline{AB} + \overline{AB}$ 与或非表达式
 $= \overline{AB} + \overline{AB}$ 与或非表达式
 $= \overline{AB} + \overline{AB}$ 可非-或非表达式

每一个逻辑函数式都对应 着一个具体电路。在具体实现 电路时,往往根据现有的元器 件(集成门电路)选择相应的 逻辑表达式。

一、化简的意义

2.逻辑函数化简的意义

在数字电路中,是由逻辑门电路来实现一定的逻辑功能,逻辑函数的化简就意味着实现该功能的电路简化,能用较少的门电路实现相同的逻辑功能,不仅可以<mark>降低成本</mark>,而且还可<mark>提高</mark>电路工作的可靠性。

每一种表达形式的最简标准都不同,与或式的最简标准为:

- (1) 表达式中所含的或项数最少。
- (2) 每个或项所含的变量数最少。

1.并项法

利用公式 AB + AB = A , 把两项合并为一项,并消去一个因子。

【例1】化简逻辑函数 $Y = ABC + AB\overline{C}$

【解】
$$Y = ABC + AB\overline{C}$$

= $AB (C + \overline{C})$
= AB

2.吸收法

利用公式A+AB=A, 吸收多余项AB。

【例2】化简逻辑函数 $Y = A\overline{C} + A\overline{B}\overline{C}D$

【解】
$$Y = A\overline{C} + A\overline{B}\overline{C}D$$

= $A\overline{C}(1 + \overline{B}D)$
= $A\overline{C}$

3.消去法

利用公式 $A + \overline{AB} = A + B$, 消去 \overline{AB} 项中的多余因子 \overline{A} .

【例3】化简逻辑函数 $Y = AB + \overline{AC} + \overline{BC}$

【解】
$$Y = AB + \overline{AC} + \overline{BC}$$

 $= AB + (\overline{A} + \overline{B}) C$
 $= \underline{AB} + (\overline{AB}) C$
 $= AB + C$

4.配项法

利用公式 $A+\overline{A}=1$,给适当项配项,并进一步化简。

【例4】化简逻辑函数 $Y = A\overline{B} + \overline{B}C + B\overline{C} + \overline{A}B$

(#)
$$Y = A\overline{B} + \overline{B}C + B\overline{C} + \overline{A}B$$

 $= A\overline{B} + (A + \overline{A})\overline{B}C + B\overline{C} + \overline{A}B \quad (C + \overline{C})$
 $= A\overline{B} + A\overline{B}C + \overline{A}BC + B\overline{C} + \overline{A}BC + \overline{A}BC$
 $= A\overline{B} + B\overline{C} + \overline{A}C \quad (\overline{B} + B)$
 $= A\overline{B} + B\overline{C} + \overline{A}C$

逻辑函数的公式化简

一、化简的意义

- 1.逻辑函数表达式的不同形式
- 2.逻辑函数化简的意义

用较少的门电路实现相同的逻辑功能,不仅可以降低成本,而且还可提高电路工作的可靠性。

二、公式化简的方法

- 1.并项法
- 2.吸收法
- 3.消去法
- 4.配项法

谢谢!