Технология Ethernet

Лекция №9

Классификация стандартов

Технология Ethernet

22 мая 1973 г. Роберт Меткалф (Robert Metcalfe) предложил базовые идеи технологии (3 МБит/сек)

30 сентября 1980 г. появился стандарт Ethernet со скоростью (10 МБит/сек)

Сегодня:

- Более 6 млн. локальных сетей используют Ethernet
- Скорость передачи достигает 100ГБит/сек
- К 2015 году должен был появится Terabit Ethernet, но сейчас прогнозы перенесены на 2020 год

Хронология Ethernet

- **B 1985 г.**—опубликован стандарт Ethernet (IEEE 802.3)
- **B 1995 г.**—опубликован стандарт Fast Ethernet (IEEE 802.3u)
- **B 1998 г.**—опубликован стандарт Gigabit Ethernet (IEEE 802.3z и 802.3ab)
- **B 2002 г.**–опубликован стандарт 10 Gigabit Ethernet (IEEE 802.3ae)
- **B 2010 г.**–опубликован стандарт 40 и 100 Gigabit Ethernet (IEEE 802.3ba)

Семейство стандартов Ethernet

- 1. 10Base5 на основе толстого коаксиального кабеля, скорость передачи 10 Мб/сек
- 2. 10Base2 на основе тонкого коаксиального кабеля, скорость передачи 10 Мб/сек
- 3. 10BaseT на основе витой пары, скорость передачи 10 Мб/сек
- 4. 10BaseF на основе оптоволокна, скорость передачи 100 Мб/сек
- 5. 100BaseT (Fast Ethernet) на основе витой пары, скорость передачи 100 Мб/сек
- 6. 1000BaseT (Gigabit Ethernet) на основе витой пары, скорость передачи 1 Гб/сек

Подуровни Ethernet

- В спецификации IEEE 802 канальный уровень модели OSI был разбит на два подуровня:
 - управление логическим каналом (Logical Link Control, LLC)
 - управление доступом к среде передачи (Media Access Control, MAC)
- Подуровень LLC обеспечивает взаимодействие с сетевым уровнем и предоставляет сервисы с установлением и без установления соединения. Не зависит от метода доступа к среде передачи
- Подуровень МАС описывает протоколы, реализующие различные методы доступа к среде передачи, отвечает за физическую адресацию, формирование кадров и обнаружение ошибок
- Физический уровень определяет электрические/оптические спецификации, механические интерфейсы, кодирование и синхронизацию битов и зависит от протокола подуровня МАС

Форматы кадров Ethernet

- Минимальная длина кадра Ethernet –64 байта
- Максимальная длина:
 - стандартного кадра Ethernet –1518 байт;
 - кадра Ethernet с тегом стандарта IEEE 802.1Q
 - 1522 байта-расширенного кадра Ethernet -2000 байт

7 байт	1 байт	6 байт	6 байт	2 байта	46-15	00 байт	4 байта
Preamble	SFP	Destination Address	Source Address	Length	Data	PAD	FCS
			/	7			
			/ .				
		Значение <=0х05	SDC (1500 дес.)	1 байт 1 б		или 2 байта	

Метод доступа CSMA/CD

CSMA/CD — это методо коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-multiply-access with collision detection, CSMA/CD).

Алгоритм работы CSMA/CD

Домен коллизий

- В полудуплексной технологии Ethernet независимо от стандарта физического уровня существует понятие домена коллизий
- Домен коллизий (collision domain) –это часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части сети она возникла
- Сеть Ethernet, построенная на повторителях и концентраторах, образует один домен коллизий

Время двойного оборота и распознавание коллизий

Для надежного распознавания коллизий должно выполняться следующее соотношение:

Tmin - время передачи кадра минимальной длины, PDV - время, за которое сигнал коллизии успевает распространиться до самого дальнего узла сети (Path Delay Value).

^{*} размер кадра минимальной длины вместе с преамбулой составляет 72 байт или 576 бит

Условия корректной работы

- 1. Количество станций в сети не более 1024
- 2. Максимальная длина каждого физического сегмента не более величины, определенной в соответствующем стандарте физического уровня
- 3. Время двойного оборота сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала
- 4. Сокращение межкадрового интервала IPG (Path Variability Value, PW) при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала

Пример расчета PDV для сети

Данные для расчета PDV

Тип сегмента	База левого сегмента, bt	База промежуточного сегмента, bt	База правого сегмента, bt	Задержка среды на 1 м, bt	Максимальная длина сегмента, м
10Base-5	11,8	46,5	169,5	0,0866	500
10Base-2	11,8	46,5	169,5	0,1026	185
10Base-T	15,3	42,0	165,0	0,113	100
10Base-FB	-	24,0	_	0,1	2000
10Base-FL	12,3	33,5	156,5	0,1	2000
FOIRL	7,8	29,0	152,0	0,1	1000
AUI (> 2 M)	0	0	0	0,1026	2+48

Pacчет PDV

Левый сегмент 1/ 15,3 (база) + 100 * 0,113= 26,6.

Промежуточный сегмент 2/33,5 + 1000 * 0,1 = 133,5.

Промежуточный сегмент 3/24 + 500 * 0,1 = 74,0.

Промежуточный сегмент 4/24 + 500 * 0,1 = 74,0.

Промежуточный сегмент 5/ 24 + 600 * 0,1 = 84,0.

Правый сегмент 6/165 + 100 * 0,113 = 176,3.

Сумма всех составляющих дает значение PDV, равное 568,4.

Данные для расчета PW

Тип сегмента	Передающий сегмент, bt	Промежуточный сегмент, bt
10Base-5 или 10Base-2	16	11
10Base-FB	1-1	2
10Base-FL	10,5	8
10Base-T	10,5	8

Расчет PW

Левый сегмент 1 10Base-Т: сокращение в 10,5 bt.

Промежуточный сегмент 2 10Base-FL: 8.

Промежуточный сегмент 3 10Base-FB: 2.

Промежуточный сегмент 4 10Base-FB: 2.

Промежуточный сегмент 5 10Base-FB: 2.

Сумма этих величин дает значение PW, равное 24,5, что меньше предельного значения в 49 битовых интервала.

Вывод по использованию сети

- 1. Так как значение PDV меньше максимально допустимой величины 575, то эта сеть проходит по критерию времени двойного оборота сигнала несмотря на то, что ее общая длина составляет больше 2500 м, а количество повторителей больше 4-х.
- 2. PW, равное 24,5, меньше предельного значения в 49 битовых интервала.

Сеть соответствует стандартам Ethernet по всем параметрам, связанным и с длинами сегментов, и с количеством повторителей.

Коммутируемая сеть Ethernet

• **Коммутируемая сеть Ethernet** (Ethernet switched network) – сеть Ethernet, сегменты которой соединены мостами или коммутаторами

Коммутируемая сеть Ethernet

- Обеспечивает возможность одновременного приема и передачи информации, т.к. к среде передачи подключены только два устройства
- Прием и передача ведутся по двум разным физическим каналам «точка-точка»

• Достоинства:

Коммутатор

- исключается возникновение коллизий в среде передачи
- увеличивается время, доступное для передачи данных
- удваивается полезная полоса пропускания канала
- каждый канал обеспечивает передачу на полной скорости
- исчезло ограничение на общую длину сети и количество устройств в ней
- Спецификации 10, 40 и 100 Gigabit Ethernet поддерживают только полнодуплексный режим работы

Fast Ethernet

Физический уровень Fast Ethernet

Параметры Fast Ethernet

Тип кабелей	Максимальный диаметр сети	Максимальная длина сегмента
Только витая пара (TX)	200 м	100 м
Только оптоволокно (FX)	272 м	136 м
Несколько сегментов на витой паре и один на оптоволокне	260 м	100 м (ТХ) 160 м (FX)
Несколько сегментов на витой паре и несколько сегментов на оптоволокне	272 м	100 м (ТХ) 136 м (FX)

Pacyer Fast Ethernet

- Как и для технологии Ethernet 10 Мбит/с, комитет 802.3 дает исходные данные для расчета времени двойного оборота сигнала. Однако при этом сама форма представления этих данных и методика расчета несколько изменились.
- Комитет предоставляет данные об удвоенных задержках, носимых каждым элементом сети, не разделяя сегменты сети на левый, правый и промежуточный.
- Кроме того, задержки, вносимые сетевыми адаптерами, учитывают преамбулы кадров, поэтому время двойного оборота при расчете конфигурации Fast Ethernet нужно сравнивать с величиной 512 битовых интервала (bt), то есть со временем передачи кадра минимальной длины без преамбулы.

Pacчет Fast Ethernet

Тип кабелей	Удвоенная задержка в bt на 1м	Удвоенная задержка на кабеле максимальной длины
UTP Cat 3	1,14bt	114bt (100м)
UTP Cat 4	1,14bt	114bt (100м)
UTP Cat 5	1,112bt	111,2 bt(100м)
STP	1,112bt	111,2 bt(100м)
Оптоволокно	1,0 bt	412 (412м)

Тип сетевых адаптеров	Максимальная задержка при двойном обороте
Два адаптера ТХ/FX	100bt
Два адаптера Т4	138 bt
Один адаптер TX/FX и один T4	127 bt

Удвоенная задержка, вносимая повторителем класса I, равна 140 bt Удвоенная задержка, вносимая повторителем класса II, равна 39 bt

Pacчет Fast Ethernet

- Для примера рассчитаем рекомендуемую в таблице конфигурацию сети, состоящую из одного повторителя и двух оптоволоконных сегментов длиной по 136 метров.
- Каждый сегмент вносит задержку по 136 bt
- Пара сетевых адаптеров FX дает задержку в 100 bt, а сам повторитель вносит задержку в 140 bt.
- Сумма задержек равна 512 bt, что говорит о том, что сеть корректна, но запас в этом случае принят равным 0

Gigabit Ethernet

- Сохраняются все форматы кадров Ethernet
- Существует полудуплексная версия протокола, поддерживающего CSMA/CD
- Поддерживаются все основные виды кабелей:
 - Волоконно-оптический
 - Витая пара категории 5
 - Экранированная витая пара

Gigabit Ethernet

Спецификация Ethernet

• Максимальная скорость – 10 Мб/сек

Стандарт	Тип кабеля	Топология	Метод физического кодирования	Максимальная длина сегмента, м	Режим работы
10BASE5	Коаксиальный кабель диаметром 0,5 дюйма («толстый Ethernet»)	«Шина»	Манчестерское кодирование	500	Полудуплексный (метод CSMA/CD)
10BASE2	Коаксиальный кабель диаметром 0,25 дюйма («тонкий Ethernet»)	«Шина»	Манчестерское кодирование	185	Полудуплексный (метод CSMA/CD)
10BASE-T	Кабель на основе неэкранированной витой пары (используются две пары проводников с диаметром от 0,4 до 0,6 мм)	«Звезда»	Манчестерское кодирование	100	Полудуплексный (метод CSMA/CD) и полнодуплексный
10BASE-F	Многомодовый волоконно-оптический кабель 62.5/125 мкм	«Звезда»	Манчестерское кодирование	1000 (10BASE-FP) 2000 (10BASE-FB) 2000 (10BASE-FL)	Полудуплексный (10BASE-FP, 10BASE-FB, 10BASE- FL) и полудуплексный (10BASE-FL)

Спецификация Fast Ethernet

Максимальная скорость – 100 Мб/сек

Стандарт	Тип кабеля	Метод кодирования	Максимальная длина сегмента, м	Режим работы
100BASE-T4	Кабель на основе неэкранированной витой пары категорий 3, 4, 5	8B6T	100	Полудуплексный (метод CSMA/CD)
100BASE-TX	Кабель на основе неэкранированной витой пары категории 5 или экранированной витой пары	4B/5B, MLT-3	100	Полудуплексный (метод CSMA/CD) и полнодуплексный
100BASE-FX	Многомодовый волоконно- оптический кабель 50/125 мкм и 62.5/125 мкм	4B/5B, NRZI	400 (полудуплекс) 2000 (полный дуплекс)	Полудуплексный (метод CSMA/CD) и полнодуплексный

• Спецификации, используемые для создания каналов связи «точка-точка»

Стандарт	Тип кабеля	Метод кодирования	Максимальная длина сегмента, м	Режим работы
100BASE-LX10	Одномодовый волоконно- оптический кабель (длина волны 1310 нм)	4B/5B, NRZI	10 000	Полудуплексный и полнодуплексный
100BASE-BX10	Одномодовый волоконно- оптический кабель (длина волны: 1310 нм восходящий поток, 1550 нм нисходящий)	4B/5B, NRZI	10 000	Полудуплексный и полнодуплексный

Спецификация Gigabit Ethernet

Максимальная скорость – 1000 Мб/сек

Стандарт	Тип кабеля	Метод кодирования	Максимальная длина сегмента, м	Режим работы
1000BASE-T	Кабель на основе неэкранированной витой пары категории 5, 5е. Для передачи используются четыре пары проводников.	PAM-5	100	Полудуплексный и полнодуплексный
1000BASE-SX	Многомодовый волоконно- оптический кабель 50/125 мкм и 62.5/125 мкм (используется два волокна, длина волны 850 нм)	8B/10B, NRZ	550 (кабель 50/125) 275 (кабель 62.5/125)	Полудуплексный и полнодуплексный
1000BASE-LX	Многомодовый и одномодовый волоконно-оптический кабель 50/125 мкм и 62.5/125 мкм (используется два волокна, длина волны 1310 нм)	8B/10B, NRZ	550 (многомодовый кабель) 5 000 (одномодовый кабель)	Полудуплексный и полнодуплексный
1000BASE-CX	Твинаксиальный кабель	8B/10B, NRZ	25	Полудуплексный и полнодуплексный

Спецификация Gigabit Ethernet

- Максимальная скорость 1000 Мб/сек
- Спецификации, используемые для создания каналов «точка-точка»

Стандарт	Тип кабеля	Метод кодирования	Максимальная длина сегмента, м	Режим работы
1000BASE-LX10	Многомодовый и одномодовый волоконно- оптический кабель 50/125 мкм и 62.5/125 мкм (используется два волокна, длина волны 1310 нм)	8B/10B, NRZ	550 (многомодовый кабель) 10 000 (одномодовый кабель)	Полудуплексный и полнодуплексный
1000BASE-BX10	Одномодовый волоконно- оптический кабель (используется одно волокно, длина волны: 1310 нм восходящий поток, 1490 нм нисходящий)	8B/10B, NRZ	10 000	Полудуплексный и полнодуплексный

Спецификация 10 Gigabit Ethernet

- Максимальная скорость 10 Гб/сек
- Стандарты семейства 10 Gigabit Ethernet на МАС-подуровне поддерживают работу только в полнодуплексном режиме
- Семейство 10GBASE-X:

Стандарт	Тип кабеля	Максимальная длина сегмента, м
10GBASE-CX	Твинаксиальный кабель	15
10GBASE-LX4	Многомодовый и одномодовый волоконно- оптический кабель 50/125 мкм и 62.5/125 мкм (4 длины волны с шагом 13,4 нм во втором окне прозрачности (1310 нм))	от 240 до 300 (многомодовый кабель) 10 000 (одномодовый кабель)
10GBASE-KX4	Медный кабель. Предназначен для объединительных плат (Backplane) модульных коммутаторов/маршрутизаторов.	1