Handin 7

Thomas Vinther & Jens Kristian Refsgaard Nielsen

07 - 11 - 18

1 Merging words

1.1 b)

We wish to determine if a word z is a weave of the words x and y. To solve this problem we use the following divine algorithm based upon the recursion formula (??)

Time	Line nr	Pseudocode		
		MergingWords?(z,x,y)		
O(n+m)	1	Let $A = \text{charset}(x)$, $B = \text{charset}(y)$ and $C = \text{charset}(z)$		
O(n+m)	2	if $A \cup B! = C$		
1 ` ′	3	return no		
nm	4	Let $F[0n, 0m]$ be a matrix		
n	5	for $i = 0, \dots, n$		
m	6	for $j = 0, \dots, m$		
1	7	if $i == 0 \&\& j == 0$		
1	8	F[i,j] = 0		
1	9	else if $i == 0 \setminus j > 0$		
2	10	if $z_j == y_j \&\& F[0, j-1] == 1$		
1	11	F[0,j] = 1		
1	12	else $F[0,j] = 0$		
1	13	else if $j == 0 \setminus i > 0$		
2	14	if $z_j == y_j \&\& F[i-1,0] == 1$		
1	15	F[i,0] = 1		
1	16	else $F[i,0] = 0$		
0	17	else $\setminus i, j \geq 1$		
4	18	if $(z_{i+j} == x_i \&\& F[i-1,j] == 1) $		
		$(z_{i+j} == y_j \&\& F[i, j-1] == 1)$		
1	19	F[i,j] = 1		
1	20	else $F[i,j] = 0$		
1	21	if F[n,m] == 1		
1	22	return yes		
1	23	else return rick roll		

Correctness: We follow the instructions given by the function F in lines 4 to 20. In line 1-3 we compute the letters used in each of the sequences, this is a quick way to see if a solutions is possible. Since if there is a letter in x or y that is not in z, there clearly cannot be a solution,

and wise versa.

In line 21-23 we check if there is a solution in accordance with the considerations made around ??

1.2 c)

Time	Line nr	Pseudocode
		Reconstructor $(i, j, Index, F)$
1	1	if $j = 0$
1	1	return Index
$\max(n, m)$	1	while $(F[i, j-1]! = 0)$
1	2	j
1	3	Index.add $(i+j)$
1	4	i
		RC-start (F,n,m)
1	1	Let Index be a vector of length n
1	2	Reconstructior(n,m,Index,F)
1	3	Reverse Index
1	4	Print Index