SayCan-Extended: Optimizing For Practical Robotic Control

CSCE585-001-FA2024

Joshua Moorehead

Senior from Pittsburgh, PA

Problem

Challenge:

• Bridging natural language instructions into feasible robotic actions in an environment

Why it matters:

• Making robots more accessible and capable

How it works

Core Components & Scoring

Components

- Language Model (GPT-3)
 - Breaks down high-level instruction
- Vision System (ViLD)
 - Detects objects in scene
 - Understands spatial relationships
- Robot Control (CLIPort)
 - Executes pick and place actions
 - Provides feedback

Scoring

Human: I spilled my coke, can you bring me a replacement?

Robot: I would

- 1. Find a coke can
- Pick up the coke can

Language x Affordance

- 3. Bring it to you
- 4. Done

Initial Experiment

1. Setup Phase

- a. Retrieved og SayCan open source implementation
- b. Fixed all old dependency issues
- c. Environmental setup hurdles
 - i. OpenAI API integration
 - ii. PyBullet config
 - iii. GPU CUDA setup on my machine
 - iv. Python package conflicts

2. Updates

- a. GPT-3 davinci → GPT-3.5-turbo-instruct
- b. Compatible newer PyTorch and JAX versions
- c. CLIP model memory management
- d. Type handling for JAX/NumPy arrays
- e. Better checkpoint handling/saving during saving
- f. Error handling

+

Initial Experiment P2

- 3. Adding Measurement setup
 - a. Performance monitoring on API call latency, token usage, task failure/success rate, etc
 - b. Task execution monitoring
 - i. Plan generation success rate, execution rate, correlation
- 4. Testing it
 - a. Tasks:
 - i. Single block movements
 - ii. Color Matching tasks
 - iii. Multi-step sequences
 - b. Performance metrics tracking
 - i. Rates
 - ii. Usage
 - iii. Latency

Major Issue!

CLIPort Behavior

- Weights would not load correctly
- Neural network predictions for pick/place targets were off
- Trained on demonstration data that was not public

Resulted in....

- 0% action success rate
- Unreliable coordinate projections
- SayCan to repeat itself

Solution

- Direct PyBullet object tracking
- Hardcoded coordinate-based control
- Direct Pick and Place executions

However... Many hours spent trying retrain CLIPort from repo found online (more dependency issues) & running it on old JAX and Torch but on a CPU (too reliant on GPU acceleration)

Exp 1: SayCan VS. Socratic

Initial Performance:

SayCan Results:

success_rate: 0.000

avg_steps: 0.000
avg_time: 48.736

Socratic Results: success rate: 0.250

avg_steps: 0.500
avg time: 24.098

TASK EXECUTION SUMMARY Task: put blocks in their matching colored bowls Executed Steps:

- 1. Pick the blue block and place it on the blue bowl.
- 2. Pick the blue block and place it on the green block.
- 3. Pick the red block and place it on the middle.
- 4. Pick the blue block and place it on the red block.
- 5. Pick the blue block and place it on the red bowl.

Task completed. Success: True (???)

Performance After

For "Put all blocks in different corners"

Changes with scoring

1. GPT-3 Scoring:

- Task-specific prompts with detailed scoring rubrics (0-10)
- Action parsing for pick/place understanding
- Increased temperature (0.3) for more varied scoring
- Better consideration of task timing and efficiency

2. Affordance Scoring:

- Graduated scoring instead of binary
- Physics-aware penalties (accessibility, stability)
- Task-specific modifiers (e.g., corner occupation penalties)
- Distance-based graduated penalties for spatial relationships

B. System Improvements:

- Better score normalization and combination
- Performance monitoring (API usage, success rates)
- Improved visualization and logging
- More robust error handling
- Added state tracking for context awareness

Pipeline Optimization Experiment

Setup

- Performance bottlenecks
 - a. Model inference latency (2-3s per GPT-3 call)
 - b. Vision system processing overhead
 - c. Memory constraints with batch processing
- Proposed optimizations
 - a. Batch size tuning (1-16 actions)
 - b. Response caching for repeated tasks
 - c. Concurrent processing where possible

Pipeline Optimization Experiment

Approach

- Expected improvements
 - a. Reduced API costs through batching
 - b. Lower average latency per action
 - c. Better resource utilization
- Measurement approach
 - a. Throughput (actions/second) vs batch size
 - b. Latency profiling across pipeline stages
 - c. Cost analysis per configuration

Pipeline Optimization Experiment

Results

- Key findings
 - a. Optimal batch size: 8-16 actions
 - **b**. Throughput: 1.37 action/s (at bs 16)
 - c. Latency: Reduced by 40% at max batch size
- Tradeoffs discovered
 - Memory usage increases with batch size but improves performance
 - b. Diminishing returns after batch size 8

Conclusion

Key Achievements

- Implemented SayCan with direct control and better scoring
- Improved performance
 - a. On success rate of certain tasks
 - b. Reduced latenecy with batch processing
 - c. Achieved 1.37 action/s throughput
 - d. Reduced API costs during LLM call

Future Work

- Improve direct control (possibly get CLIPort working)
- Improve grounding ability on more tasks and more complex environment
- Sim-Real transfer