北京化工大学

2019-2020-2 学期期末考试试卷

课程名	3称:	<u>高等数</u>	学 A (II)	课程代码:	<u>MAT13905T</u>		
共	四 (20)	渞颕	试题总分	100 分	答题时间:	2 小时	

开卷□

晒 口.	_	=					三				пп	当 八		
题号		1	2	3	4	5	6	1	2	3	4	5	四	总分
得分														

答题要求:

- 1. 试卷共3页,四道大题,20小题。使用答卷纸在指定位置答题。
- 2. 使用黑色签字笔或圆珠笔作答,字迹工整清晰,答卷独立完成;答题纸上第一行,写清课程名称;课程代码;姓名、学号、班级、答卷共几页第几页,不抄题,标清题号。每页中的姓名必须手写。
- 3. 本次考试为开卷考试, 可以看书、查阅纸质资料, 不得以任何形式与他人 交流、 讨论、传阅等, 答卷独立完成, 雷同试卷均按零分处理。

一、填空题(3 分×8=24 分)

- 1. 已知向量 $\vec{a} = (1, -2, 0), \vec{b} = (\lambda, 1, 0)$ 平行,则 $\lambda =$ ______.
- 2. 二元函数的极限 $\lim_{\substack{x\to 0\\y\to 1}} \frac{1+xy}{x^2+y^2} = ______.$
- 3. 设u(x,y)具有二阶连续的偏导数,且u(x,y)的梯度向量为

$$\vec{A}(x,y) = (2xy^4e^{x^2} + 2)\vec{i} + 4e^{x^2}y^{\mu}\vec{j}$$
, $\mathbb{M} \mu = \underline{\qquad}$

5. 设函数 z = f(x, y) 连续,则将以下积分改写成先 x 后 y 的二次积分为

$$\int_{1}^{2} dx \int_{x}^{2} f(x, y) dy + \int_{1}^{2} dy \int_{y}^{4-y} f(x, y) dx = \underline{\qquad}.$$

- 7. 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ 是绝对收敛,条件收敛还是发散?______.
- 8. 周期为 2π 的周期函数 f(x) 在 $[-\pi, \pi)$ 上的表达式为 $f(x) = \begin{cases} x & -\pi \le x < 0 \\ 0 & 0 \le x < \pi \end{cases}$, f(x)

的傅立叶级数的和函数是 S(x) ,则 $S(3\pi) =$ ______.

二、计算题(6分×6=36分)

- 1. 求经过点 (1,-2,3) 且与平面 Π : 2x+y-5z-1=0 垂直的直线方程,并求该直线与平面 Π 的交点坐标。
- 2. 已知 $z = f(\ln(xy), e^{x+y})$,其中 f(u,v) 具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$.
- 3. 求由曲线 $\begin{cases} 3x^2+2y^2=12,\\ z=0 \end{cases}$ 绕 y 轴旋转一周得到的旋转面在点 $(0,\sqrt{3},\sqrt{2})$ 处的切平面 方程。
- 4. 求曲线 $\begin{cases} x^2+z^2=2\\ y^2+z^2=2 \end{cases}$ 在点 $M_0(1,1,1)$ 处的切线方程及法平面方程.
- 5. 求函数 $f(x, y) = 4(x y) x^2 y^2$ 的极值.
- 6. 求函数 $f(x) = \frac{1}{3+x}$ 展开为 x-1 的幂级数并指出其收敛域.

三、解答题(7分×5=35分)

- 1. 计算曲线积分 $\oint_L (x+y) ds$, 其中 L 为以 O(0,0), A(1,0), B(0,1) 为顶点的三角形的边界。
- 2. 计算三重积分 $\iint_{\Omega}z+x\sin(x^2+y^2)dxdydz$,其中 Ω 是 $z=x^2+y^2$ 与平面 z=4 所围成的闭区域。
- 3. 已知曲线积分 $\oint_L \frac{xdy-ydx}{\varphi(x)+y^2} = 0$,其中 L 是任一条第一象限的光滑简单闭曲线, $\varphi(x)$ 有连续的一阶导数,且 $\varphi(1)=1$,求 $\varphi(x)$.
- 4. 计算曲面积分 $\bigoplus_{\Sigma} (x-y) dx dy + (y-z) x dy dz$, 其中 Σ 为柱面 $x^2 + y^2 = 1$ 及平面 z = 0, z = 3 所围成的空间闭区域的整个边界曲面的外侧.
- 5. 求幂级数 $\sum_{n=1}^{\infty} (\frac{1}{3^n} + \frac{1}{n}) x^n$ 的收敛域及其在收敛域上的和函数.

四、证明题(5分)

求证:
$$\frac{3\pi}{2} < \iiint_{\Omega} \sqrt[3]{x + 2y - 2z + 5} dv < 3\pi$$
, 其中 Ω 为 $x^2 + y^2 + z^2 \le 1$.