

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-10, Eq. 7.4-1)	16.49 psf	Sloped Roof Snow Load, P_s =
	1.00	I _s =
	0.73	$C_s =$
	0.90	$C_e =$
	1.20	$C_t =$

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 26.53 psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.150	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	- 2.600	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applied away nom the carrage.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>174.83</u>	<u>6381.89</u>	k
Compressive Load =	3421.08	<u>4948.58</u>	k
Lateral Load =	<u>17.17</u>	<u>3955.81</u>	k
Moment (Weak Axis) =	0.03	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 173045.8 in-lbs Resisting Force Required = 2420.22 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4033.70 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 912.69 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2281.72 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 912.69 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

2500 psi

8 in

 $f_c =$ Length =

Bearing Pressure

ASD LC		1.0D	+ 1.0S			1.0D+	0.6W		1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1191 lbs	1191 lbs	1191 lbs	1191 lbs	1246 lbs	1246 lbs	1246 lbs	1246 lbs	1702 lbs	1702 lbs	1702 lbs	1702 lbs	-71 lbs	-71 lbs	-71 lbs	-71 lbs
F _B	1176 lbs	1176 lbs	1176 lbs	1176 lbs	2073 lbs	2073 lbs	2073 lbs	2073 lbs	2314 lbs	2314 lbs	2314 lbs	2314 lbs	-2937 lbs	-2937 lbs	-2937 lbs	-2937 lbs
F _V	164 lbs	164 lbs	164 lbs	164 lbs	1652 lbs	1652 lbs	1652 lbs	1652 lbs	1346 lbs	1346 lbs	1346 lbs	1346 lbs	-1825 lbs	-1825 lbs	-1825 lbs	-1825 lbs
P _{total}	9927 lbs	10143 lbs	10359 lbs	10575 lbs	10878 lbs	11094 lbs	11310 lbs	11526 lbs	11575 lbs	11791 lbs	12007 lbs	12223 lbs	1528 lbs	1657 lbs	1787 lbs	1916 lbs
M	3136 lbs-ft	3136 lbs-ft	3136 lbs-ft	3136 lbs-ft	3043 lbs-ft	3043 lbs-ft	3043 lbs-ft	3043 lbs-ft	4302 lbs-ft	4302 lbs-ft	4302 lbs-ft	4302 lbs-ft	5442 lbs-ft	5442 lbs-ft	5442 lbs-ft	5442 lbs-ft
е	0.32 ft	0.31 ft	0.30 ft	0.30 ft	0.28 ft	0.27 ft	0.27 ft	0.26 ft	0.37 ft	0.36 ft	0.36 ft	0.35 ft	3.56 ft	3.28 ft	3.05 ft	2.84 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft								
f _{min}	240.2 psf	239.5 psf	239.0 psf	238.4 psf	268.9 psf	267.5 psf	266.1 psf	264.8 psf	270.7 psf	269.2 psf	267.8 psf	266.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	331.0 psf	327.9 psf	324.9 psf	322.1 psf	357.1 psf	353.2 psf	349.5 psf	346.0 psf	395.3 psf	390.4 psf	385.7 psf	381.3 psf	145.7 psf	137.7 psf	132.6 psf	129.4 psf

Maximum Bearing Pressure = 395 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_O = 1051.3 \text{ ft-lbs}$

Resisting Force Required = 720.91 lbs S.F. = 1.67

Weight Required = 1201.52 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	255 lbs	617 lbs	255 lbs	737 lbs	1989 lbs	737 lbs	75 lbs	181 lbs	75 lbs		
F _V	2 lbs	0 lbs	2 lbs	7 lbs	0 lbs	7 lbs	1 lbs	0 lbs	1 lbs		
P _{total}	9614 lbs	7560 lbs	9614 lbs	9646 lbs	7560 lbs	9646 lbs	2811 lbs	7560 lbs	2811 lbs		
М	7 lbs-ft	0 lbs-ft	7 lbs-ft	24 lbs-ft	0 lbs-ft	24 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	276.2 psf	217.5 psf	276.2 psf	276.1 psf	217.5 psf	276.1 psf	80.8 psf	217.5 psf	80.8 psf		
f _{max}	277.0 psf	217.5 psf	277.0 psf	278.9 psf	217.5 psf	278.9 psf	81.0 psf	217.5 psf	81.0 psf		

Maximum Bearing Pressure = 279 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 31in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.632 k	Maximum Axial Load =	4.292 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>35%</u>	Utilization =	<u>58%</u>
Diagonal Strut			
Maximum Axial Load =	2.676 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>36%</u>		
	0	Struts under compression are	shown to demon
		transfer from the girder. Singl	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 60.93 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 1.219 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.036 \text{ in} \\ \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 102 \text{ in}$$

$$J = 0.432$$

$$282.18$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{((\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2}))]}$$

$$\phi F_1 = 27.9 \text{ ksi}$$

Weak Axis: 3.4.14

$$L_{b} = 102$$

$$J = 0.432$$

$$179.449$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

 $\varphi F_I = 29.0$

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

 $\phi F_L = 38.9 \text{ ksi}$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

$$y = 41.015 \text{ mm}$$

 $Sx = 1.335 \text{ in}^3$

$$M_{max}St = 2.788 \text{ k-ft}$$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 $L_b = 104.56 \text{ in}$ $L_b = 104.56$ J = 1.08 J = 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.0 \text{ ksi}$ $\phi F_1 =$ 28.9

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$
 S1 = 1.1
$$S2 = C_t$$
 S2 = 141.0
$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

16.2

36.9

0.65

 $\frac{\theta_y}{2}$ 1.3Fcy

3.4.18

h/t =

S1 =

m =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

2.366 in⁴

1.375 in³

3.323 k-ft

$$C_0 = 40$$
 $Cc = 40$
 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L =$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b} [\mathsf{Bc-1.6Dc^*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2})}] \\ \varphi \mathsf{F_L} &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.18 h/t = 24.5

$$\begin{array}{lll} \text{S1} = & 36.9 \\ \text{m} = & 0.65 \\ \text{C}_0 = & 27.5 \\ \text{Cc} = & 27.5 \\ \text{S2} = \frac{k_1 B b r}{m D b r} \\ \text{S2} = & 77.3 \\ \text{ϕF}_L = & 1.3 \text{ϕy$Fcy} \\ \text{$\phi$F}_L = & 43.2 \text{ ksi} \\ \text{ϕF}_L \text{Wk} = & 28.2 \text{ ksi} \\ \text{ϕF}_L \text{Wk} = & 279836 \text{ mm}^4 \\ \text{ϕF}_L \text{Wk} = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ \end{array}$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mD^{1/2}}$

mDbr

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\phi cc = 0.87952$ $\phi F_L = \phi cc (Bc-Dc^*\lambda)$ $\phi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

28.85 kips

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$\underline{\text{Compression}}$

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rcl} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 78.35 $L_b =$ 78.35 in $L_b =$ 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L = 29.8 \text{ ksi}$ 29.8

3.4.16

 b/t = 24.5
 b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$
 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$
 $S1 = 12.2$
 $S1 = 12.2$
 $S2 = \frac{k_1 Bp}{1.6Dp}$
 $S2 = \frac{k_1 Bp}{1.6Dp}$
 $S2 = 46.7$
 $S2 = 46.7$
 $\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$
 $\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1 N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

0.672 in⁴

27.5 mm

0.621 in³

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

1.460 k-ft

 $M_{max}Wk =$

Compression

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.7

$$\begin{array}{lll} \lambda = & 1.8125 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83375 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.88278 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c [Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c [Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕyFcy} \\ \text{ϕF}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.88 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46 866	-46 866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-100.114	-100.114	0	0
2	M14	V	-100.114	-100.114	0	0
3	M15	V	-161.053	-161.053	0	0
4	M16	V	-161.053	-161.053	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	226.345	226.345	0	0
2	M14	V	174.112	174.112	0	0
3	M15	V	95.761	95.761	0	0
4	M16	V	95 761	95 761	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Y		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	818.238	2	1219.98	2	.658	1	.003	1	Ö	1	Ó	1
2		min	-994.367	3	-1549.622	3	.036	15	0	15	0	1	0	1
3	N7	max	.032	9	1021.267	1	636	15	001	15	0	1	0	1
4		min	235	2	-10.848	3	-13.209	1	026	1	0	1	0	1
5	N15	max	.013	9	2631.601	1	0	3	0	3	0	1	0	1
6		min	-2.375	2	-134.482	3	0	1	0	1	0	1	0	1
7	N16	max	2806.208	2	3806.597	2	0	3	0	3	0	1	0	1
8		min	-3042.933	3	-4909.148	3	0	11	0	1	0	1	0	1
9	N23	max	.032	9	1021.267	1	13.209	1	.026	1	0	1	0	1
10		min	235	2	-10.848	3	.636	15	.001	15	0	1	0	1
11	N24	max	818.238	2	1219.98	2	036	15	0	15	0	1	0	1
12		min	-994.367	3	-1549.622	3	658	1	003	1	0	1	0	1
13	Totals:	max	4439.839	2	10376.012	2	0	3	·		·			
14		min	-5031.822	3	-8164.571	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_ LC
1	M13	1	max	75.469	1_	411.476	2	-8.304	15	0	15	.211	1_	0	1
2			min	3.556	15	-705.969	3	-178.238	1	015	2	.01	15	0	3
3		2	max	75.469	1	286.621	2	-6.364	15	0	15	.063	1	.568	3
4			min	3.556	15	-497.321	3	-136.398	1	015	2	.003	15	33	2
5		3	max	75.469	1	161.765	2	-4.424	15	0	15	.002	3	.939	3
6			min	3.556	15	-288.672	3	-94.558	1	015	2	046	1	541	2
7		4	max	75.469	1	36.91	2	-2.485	15	0	15	004	12	1.113	3
8			min	3.556	15	-80.024	3	-52.718	1	015	2	116	1	635	2
9		5	max	75.469	1	128.624	3	466	10	0	15	007	12	1.091	3
10			min	3.556	15	-87.946	2	-10.878	1	015	2	146	1	611	2
11		6	max	75.469	1	337.272	3	30.962	1	0	15	006	15	.871	3
12			min	3.556	15	-212.801	2	182	3	015	2	136	1	469	2
13		7	max	75.469	1	545.921	3	72.801	1	0	15	004	15	.453	3
14			min	3.556	15	-337.657	2	2.002	12	015	2	087	1	209	2
15		8	max	75.469	1	754.569	3	114.641	1	0	15	.004	2	.169	2
16			min	3.556	15	-462.512	2	3.973	12	015	2	006	3	161	3
17		9	max	75.469	1	963.217	3	156.481	1	0	15	.129	1	.664	2
18			min	3.556	15	-587.367	2	5.945	12	015	2	0	3	972	3
19		10	max	75.469	1	1171.865	3	198.321	1	.002	3	.297	1	1.278	2
20			min	3.556	15	-712.223	2	7.916	12	015	2	.008	12	-1.98	3
21		11	max	75.469	1	587.367	2	-5.945	12	.015	2	.129	1	.664	2
22			min	3.556	15	-963.217	3	-156.481	1	0	15	0	3	972	3
23		12	max	75.469	1	462.512	2	-3.973	12	.015	2	.004	2	.169	2
24			min	3.556	15	-754.569	3	-114.641	1	0	15	006	3	161	3
25		13	max	75.469	1	337.657	2	-2.002	12	.015	2	004	15	.453	3
26			min	3.556	15	-545.921	3	-72.801	1	0	15	087	1	209	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
27		14	max	<u>75.469</u>	1	212.801	2	.182	3	.015	2	006	15	.871	3
28			min	3.556	15	-337.272	3	-30.962	1	0	15	136	1	469	2
29		15	max	75.469	1	87.946	2	10.878	1_	.015	2	007	12	1.091	3
30			min	3.556	15	-128.624	3	.466	10	0	15	146	1	611	2
31		16	max	75.469	1_	80.024	3	52.718	1	.015	2	004	12	1.113	3
32			min	3.556	15	-36.91	2	2.485	15	0	15	116	1	635	2
33		17	max	75.469	1	288.672	3	94.558	1	.015	2	.002	3	.939	3
34			min	3.556	15	-161.765	2	4.424	15	0	15	046	1	541	2
35		18	max	75.469	1	497.321	3	136.398	1	.015	2	.063	1	.568	3
36			min	3.556	15	-286.621	2	6.364	15	0	15	.003	15	33	2
37		19	max	75.469	1	705.969	3	178.238	1	.015	2	.211	1	0	1
38			min	3.556	15	-411.476	2	8.304	15	0	15	.01	15	0	3
39	M14	1	max	45.292	1	469.924	2	-8.641	15	.013	3	.252	1	0	1
40			min	2.134	15	-574.655	3	-185.475	1	015	2	.012	15	0	3
41		2	max	45.292	1	345.069	2	-6.701	15	.013	3	.097	1	.467	3
42			min	2.134	15	-415.338	3	-143.635	1	015	2	.005	15	385	2
43		3	max	45.292	1	220.213	2	-4.761	15	.013	3	.004	3	.785	3
44		—	min	2.134	15	-256.021	3	-101.796	1	015	2	019	1	652	2
45		4	max	45.292	1	95.358	2	-2.822	15	.013	3	003	12	.951	3
46		-	min	2.134	15	-96.704	3	-59.956	1	015	2	005	1	801	2
47		5		45.292	1		3	882	15		3	095	12	.967	3
		5	max			62.613				.013			1		
48		6	min	2.134	1 <u>5</u>	-31.624	1	-18.116	1_	015 .013	2	132		832	2
49		6	max	45.292	_	221.93	3	23.724	1		3_	006	15	.833	3
50		-	min	2.134	15	-154.353	2	717	3	015	2	13	1	745	2
51		7	max	45.292	1	381.247	3	65.564	1	.013	3	004	15	.548	3
52			min	2.134	15	-279.209	2	1.647	12	015	2	088	1	54	2
53		8	max	45.292	1	540.564	3	107.404	1	.013	3	.002	10	.113	3
54			min	2.134	15	-404.064	2	3.618	12	015	2	006	3	218	2
55		9	max	45.292	1	699.881	3	149.244	1_	.013	3	.115	1	.239	1
56			min	2.134	15	-528.919	2	5.59	12	015	2	0	3	473	3
57		10	max	45.292	1	859.198	3	191.084	1_	.013	3_	.276	1	.781	2
58			min	2.134	15	-653.775	2	7.561	12	015	2	.007	12	-1.209	3
59		11	max	45.292	1	528.919	2	-5.59	12	.015	2	.115	1	.239	1
60			min	2.134	15	-699.881	3	-149.244	1	013	3	0	3	473	3
61		12	max	45.292	1	404.064	2	-3.618	12	.015	2	.002	10	.113	3
62			min	2.134	15	-540.564	3	-107.404	1	013	3	006	3	218	2
63		13	max	45.292	1	279.209	2	-1.647	12	.015	2	004	15	.548	3
64			min	2.134	15	-381.247	3	-65.564	1	013	3	088	1	54	2
65		14	max	45.292	1	154.353	2	.717	3	.015	2	006	15	.833	3
66			min	2.134	15	-221.93	3	-23.724	1	013	3	13	1	745	2
67		15	max		1	31.624	1	18.116	1	.015	2	006	12	.967	3
68			min	2.134	15	-62.613	3	.882	15	013	3	132	1	832	2
69		16	max	45.292	1	96.704	3	59.956	1	.015	2	003	12	.951	3
70			min	2.134	15	-95.358	2	2.822	15	013	3	095	1	801	2
71		17	max	45.292	1	256.021	3	101.796	1	.015	2	.004	3	.785	3
72			min	2.134	15	-220.213	2	4.761	15	013	3	019	1	652	2
73		18	max	45.292	1	415.338	3	143.635	1	.015	2	.097	1	.467	3
74		'	min	2.134	15	-345.069	2	6.701	15	013	3	.005	15	385	2
75		19	max	45.292	1	574.655	3	185.475	1	.015	2	.252	1	0	1
76		13	min	2.134	15	-469.924	2	8.641	15	013	3	.012	15	0	3
77	M15	1		-2.13 4 -2.271	15	664.225	2	-8.636	15	.015	2	.252	1	0	2
	IVI TO		max					-185.434		011	3	.252	15	0	3
78		2	min	<u>-48.054</u>	1 1 5	-325.55	3		1_						
79		2	max	-2.271	15	481.816	2	-6.696	15	.015	2	.097	1	.267	3
80		_	min	-48.054	1	-240.231	3	-143.594	1_	011	3	.005	15	541	2
81		3	max	-2.271	15	299.407	2	-4.757	15	.015	2	.004	3	.454	3
82			min	-48.054	1_	-154.912	3	-101.755	1_	011	3	019	1	91	2
83		4	max	-2.271	15	116.998	2	-2.817	15	.015	2	003	12	.56	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]					LC
84			min	-48.054	1	-69.594	3	-59.915	1	011	3	096	1	-1.107	2
85		5	max	-2.271	15	15.725	3	877	15	.015	2	006	12	.585	3
86			min	-48.054	1	-65.411	2	-18.075	1	011	3	133	1	-1.131	2
87		6	max	-2.271	15	101.044	3	23.765	1	.015	2	006	15	.53	3
88			min	-48.054	1	-247.82	2	51	3	011	3	13	1	983	2
89		7	max	-2.271	15	186.363	3	65.605	1	.015	2	004	15	.394	3
90			min	-48.054	1	-430.229	2	1.771	12	011	3	088	1	663	2
91		8	max	-2.271	15	271.682	3	107.445	1	.015	2	.001	10	.178	3
92			min	-48.054	1	-612.638	2	3.743	12	011	3	006	1	171	2
93		9	max	-2.271	15	357.001	3	149.285	1	.015	2	.115	1	.494	2
94			min	-48.054	1	-795.047	2	5.714	12	011	3	0	3	119	3
95		10	max	-2.271	15	442.32	3	191.125	1	.015	2	.276	1	1.331	2
96			min	-48.054	1	-977.456	2	7.686	12	011	3	.007	12	496	3
97		11	max	-2.271	15	795.047	2	-5.714	12	.011	3	.115	1	.494	2
98			min	-48.054	1	-357.001	3	-149.285	1	015	2	0	3	119	3
99		12	max	-2.271	15	612.638	2	-3.743	12	.011	3	.001	10	.178	3
100		-	min	-48.054	1	-271.682	3	-107.445	1	015	2	006	1	171	2
101		13	max	-2.271	15	430.229	2	-1.771	12	.011	3	004	15	.394	3
102		10	min	-48.054	1	-186.363	3	-65.605	1	015	2	088	1	663	2
103		14	max	-2.271	15	247.82	2	.51	3	.011	3	006	15	.53	3
104		17	min	-48.054	1	-101.044	3	-23.765	1	015	2	13	1	983	2
105		15	max	-2.271	15	65.411	2	18.075	1	.011	3	006	12	.585	3
106		10	min	-48.054	1	-15.725	3	.877	15	015	2	133	1	-1.131	2
107		16	max	-2.271	15	69.594	3	59.915	1	.011	3	003	12	.56	3
108		10	min	-48.054	1	-116.998	2	2.817	15	015	2	096	1	-1.107	2
109		17	max	-2.271	15	154.912	3	101.755	1	.011	3	.004	3	.454	3
110		17	min	-48.054	1	-299.407	2	4.757	15	015	2	019	1	91	2
111		18		- 2.271	15	240.231	3	143.594	1	.011	3	.097	1	.267	3
112		10	max		1	-481.816	2		15		2		15		2
$\overline{}$		19	min	<u>-48.054</u>	15		3	6.696		015		.005		541	
113		19	max min	-2.271 -48.054	1	325.55 -664.225	2	185.434 8.636	15	.011 015	3	.252 .012	15	0	3
115	M16	1		-4.019	15	608.531	2	-8.321	15	.01	1	.214	1	0	2
116	IVITO		max	-85.258	1	-278.5	3	-178.789	1	013	3	.01	15	0	3
117		2		-4.019	15	426.122	2	-6.381	15	.01	1	.065	1	.223	3
118			max	-85.258	1	-193.181	3	-136.949	1	013	3	.003	15	489	2
119		3	min max	-4.019	15	243.713	2	-4.441	15	.01	1	0	3	.365	3
120		-	min	-85.258	1	-107.862	3	-95.109	1	013	3	045	1	805	2
121		4		-4.019	15	61.304	2	-2.502	15	.01	1	045	12	.426	3
122		4	max	-85.258	1	-22.543	3	-53.269	1	013	3	115	1	949	2
		5			15	62.776	3		15	.01	1		12	.407	3
123		3	max	-4.019				562				007			
124		6	min	<u>-85.258</u> -4.019	1 1 5	-121.105		-11.429	1	013	3	145	15	921	2
125		6	max		15	148.095	3	30.411	1	.01	1	006	15	.308	3
126 127		7	min	-85.258	1	-303.514	2	.417 72.251	12	013	3	136	1 1 5	72	2
128		1	max	-4.019 -85.258	<u>15</u> 1	233.414 -485.923	2	2.389	1 12	.01 013	3	004 088	<u>15</u>	.128 347	2
		0	min		_						1		_		2
129		8	max	-4.019	15	318.733	3	114.091	1	.01		.003	2	.198	
130			min	-85.258	1_	-668.332	2	4.36	12	013	3	004	3	133	3
131		9	max	-4.019	15	404.052	3	155.931	1	.01	1	.128	1	.915	2
132		10	min	<u>-85.258</u>	1	-850.741	2	6.332 197.771	12	013	3	.002	12	474 1.80 <i>E</i>	3
133		10	max	-4.019	15	489.371	3		1	.01	3	.295	12	1.805	3
134		11	min	<u>-85.258</u>	1_	-1033.15	2	8.303	12	013		.009	12	896	
135		11	max	-4.019	15	850.741	2	-6.332	12	.013	3	.128	1	.915	2
136		40	min	-85.258	1	-404.052	3	-155.931	1	01	1	.002	12	474	3
137		12	max	-4.019	15	668.332	2	-4.36	12	.013	3	.003	2	.198	2
138		40	min	-85.258	1_	-318.733	3	-114.091	1	01	1	004	3	133	3
139		13	max	<u>-4.019</u>	15	485.923	2	-2.389	12	.013	3	004	15	.128	3
140			min	-85.258	1	-233.414	3	-72.251	1	01	1	088	1_	347	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

1441		Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]					
1444			14													
1444	$\overline{}$															
146			15													
146																
147			16	max												
148				min						15			115			
149			17	max		<u> 15</u>										
150	148			min	-85.258					15	01			1		
151	149		18	max	-4.019	15	193.181	3	136.949		.013	3	.065	1	.223	3
152	150			min	-85.258	1	-426.122	2	6.381	15	01	1	.003	15	489	2
153	151		19	max	-4.019	15	278.5	3	178.789	1	.013	3	.214	1	0	2
154	152			min	-85.258	1_	-608.531	2	8.321	15	01	1	.01	15	0	3
155	153	M2	1	max	1030.378	2	2.023	4	.42	1	0	3	0	3	0	1
1566	154			min	-1354.342	3	.476	15	.02	15	0	1	0	2	0	1
1566	155		2	max	1030.907	2	1.952	4	.42	1	0	3	0	1	0	15
157						3				15	0	1	0	15	0	
158			3	max	1031,436	2	1.881	4	.42	1	0	3	0	1	0	15
159						3				15	0		0	15	001	
160			4			2					0	3	0			
161											_			15		
162			5			_					_	•	·			
163										_						
164			6													_
165																
166			7	_								•	_			
167																
168			Ω										_			_
169																
170			0			_										
171			9								_					
172			10								_	•	_			
173			10										_	_		
174			44										_			_
175			11													
176			40													
177			12											_		
178 min -1349.578 3 .275 15 .02 15 0 1 0 15 007 4 179 14 max 1037.259 2 1.1 4 .42 1 0 3 .002 1 002 15 180 min -1349.181 3 .259 15 .02 15 0 1 0 15 007 4 181 15 max 1037.788 2 1.029 4 .42 1 0 3 .002 1 002 15 182 min -1348.784 3 .234 12 .02 15 0 1 0 15 008 4 183 16 max 1038.317 2 .958 4 .42 1 0 3 .002 1 002 15 184 min -1348.387 3 .207 <td< td=""><td></td><td></td><td>40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>_</td></td<>			40										_			_
179			13							_						
180 min -1349.181 3 .259 15 .02 15 0 1 0 15 007 4 181 15 max 1037.788 2 1.029 4 .42 1 0 3 .002 1 002 15 182 min -1348.784 3 .234 12 .02 15 0 1 0 15 008 4 183 16 max 1038.317 2 .958 4 .42 1 0 3 .002 1 002 15 184 min -1348.387 3 .207 12 .02 15 0 1 0 15 008 4 185 17 max 1038.846 2 .893 2 .42 1 0 3 .002 1 002 15 186 min -1347.99 3 .179 <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></td<>				_												_
181 15 max 1037.788 2 1.029 4 .42 1 0 3 .002 1 002 15 182 min -1348.784 3 .234 12 .02 15 0 1 0 15 008 4 183 16 max 1038.317 2 .958 4 .42 1 0 3 .002 1 002 15 184 min -1348.387 3 .207 12 .02 15 0 1 0 15 002 15 185 17 max 1038.846 2 .893 2 .42 1 0 3 .002 1 002 15 186 min -1347.99 3 .179 12 .02 15 0 1 0 15 008 4 187 18 max 1039.376 2 .			14													
182 min -1348.784 3 .234 12 .02 15 0 1 0 15 008 4 183 16 max 1038.317 2 .958 4 .42 1 0 3 .002 1 002 15 184 min -1348.387 3 .207 12 .02 15 0 1 0 15 008 4 185 17 max 1038.846 2 .893 2 .42 1 0 3 .002 1 002 15 186 min -1347.99 3 .179 12 .02 15 0 1 0 15 008 4 187 18 max 1039.376 2 .838 2 .42 1 0 3 .003 1 002 15 188 min -1347.196 3 .124												_	_			T
183 16 max 1038.317 2 .958 4 .42 1 0 3 .002 1 002 15 184 min -1348.387 3 .207 12 .02 15 0 1 0 15 008 4 185 17 max 1038.846 2 .893 2 .42 1 0 3 .002 1 002 15 186 min -1347.99 3 .179 12 .02 15 0 1 0 15 008 4 187 18 max 1039.376 2 .838 2 .42 1 0 3 .003 1 002 15 188 min -1347.593 3 .151 12 .02 15 0 1 0 15 009 4 189 19 max 1039.905 2 .783 2 .42 1 0 3 .003 1 002 15			15										_			
184 min -1348.387 3 .207 12 .02 15 0 1 0 15 008 4 185 17 max 1038.846 2 .893 2 .42 1 0 3 .002 1 002 15 186 min -1347.99 3 .179 12 .02 15 0 1 0 15 008 4 187 18 max 1039.376 2 .838 2 .42 1 0 3 .003 1 002 15 188 min -1347.593 3 .151 12 .02 15 0 1 0 15 009 4 189 19 max 1039.905 2 .783 2 .42 1 0 3 .003 1 002 15 190 min -1347.196 3 .124													-			_
185 17 max 1038.846 2 .893 2 .42 1 0 3 .002 1 002 15 186 min -1347.99 3 .179 12 .02 15 0 1 0 15 008 4 187 18 max 1039.376 2 .838 2 .42 1 0 3 .003 1 002 15 188 min -1347.593 3 .151 12 .02 15 0 1 0 15 002 15 189 19 max 1039.905 2 .783 2 .42 1 0 3 .003 1 002 15 190 min -1347.196 3 .124 12 .02 15 0 1 0 15 009 4 191 M3 1 max 733.33 2 8.875 4 .341 1 0 5 0 1 .009			16													
186 min -1347.99 3 .179 12 .02 15 0 1 0 15 008 4 187 18 max 1039.376 2 .838 2 .42 1 0 3 .003 1 002 15 188 min -1347.593 3 .151 12 .02 15 0 1 0 15 009 4 189 19 max 1039.905 2 .783 2 .42 1 0 3 .003 1 002 15 190 min -1347.196 3 .124 12 .02 15 0 1 0 15 009 4 191 M3 1 max 733.33 2 8.875 4 .341 1 0 5 0 1 .009 4 192 min -879.484 3 2.086 <td></td> <td>_</td> <td></td> <td></td> <td></td>													_			
187 18 max 1039.376 2 .838 2 .42 1 0 3 .003 1 002 15 188 min -1347.593 3 .151 12 .02 15 0 1 0 15 009 4 189 19 max 1039.905 2 .783 2 .42 1 0 3 .003 1 002 15 190 min -1347.196 3 .124 12 .02 15 0 1 0 15 002 15 190 min -1347.196 3 .124 12 .02 15 0 1 0 15 002 15 191 M3 1 max 733.33 2 8.875 4 .341 1 0 5 0 1 .009 4 192 min -879.484 3 2.086 15 .016 15 0 1 0 15 <			17										.002	_		
188 min -1347.593 3 .151 12 .02 15 0 1 0 15 009 4 189 19 max 1039.905 2 .783 2 .42 1 0 3 .003 1 002 15 190 min -1347.196 3 .124 12 .02 15 0 1 0 15 009 4 191 M3 1 max 733.33 2 8.875 4 .341 1 0 5 0 1 .009 4 192 min -879.484 3 2.086 15 .016 15 0 1 0 15 .002 15 193 2 max 733.159 2 8.006 4 .341 1 0 5 0 1 .005 2 194 min -879.611 3 1.882														15		_
189 19 max 1039.905 2 .783 2 .42 1 0 3 .003 1 002 15 190 min -1347.196 3 .124 12 .02 15 0 1 0 15 009 4 191 M3 1 max 733.33 2 8.875 4 .341 1 0 5 0 1 .009 4 192 min -879.484 3 2.086 15 .016 15 0 1 0 15 .002 15 193 2 max 733.159 2 8.006 4 .341 1 0 5 0 1 .005 2 194 min -879.611 3 1.882 15 .016 15 0 1 0 15 0 12 195 3 max 732.989 2 7.137 4 .341 1 0 5 0 1 .002 2 196 min -879.739 3 1.678 15 .016 15 0 1 0 15 0 3			18			2	.838					3	.003	1	002	15
190 min -1347.196 3 .124 12 .02 15 0 1 0 15 009 4 191 M3 1 max 733.33 2 8.875 4 .341 1 0 5 0 1 .009 4 192 min -879.484 3 2.086 15 .016 15 0 1 0 15 .002 15 193 2 max 733.159 2 8.006 4 .341 1 0 5 0 1 .005 2 194 min -879.611 3 1.882 15 .016 15 0 1 0 15 0 12 195 3 max 732.989 2 7.137 4 .341 1 0 5 0 1 .002 2 196 min -879.739 3 1.678										15			_	15		
191 M3 1 max 733.33 2 8.875 4 .341 1 0 5 0 1 .009 4 192 min -879.484 3 2.086 15 .016 15 0 1 0 15 .002 15 193 2 max 733.159 2 8.006 4 .341 1 0 5 0 1 .005 2 194 min -879.611 3 1.882 15 .016 15 0 1 0 15 0 12 195 3 max 732.989 2 7.137 4 .341 1 0 5 0 1 .002 2 196 min -879.739 3 1.678 15 .016 15 0 1 0 15 0 3	189		19	max	1039.905	2	.783				0	3	.003	1	002	15
191 M3 1 max 733.33 2 8.875 4 .341 1 0 5 0 1 .009 4 192 min -879.484 3 2.086 15 .016 15 0 1 0 15 .002 15 193 2 max 733.159 2 8.006 4 .341 1 0 5 0 1 .005 2 194 min -879.611 3 1.882 15 .016 15 0 1 0 15 0 12 195 3 max 732.989 2 7.137 4 .341 1 0 5 0 1 .002 2 196 min -879.739 3 1.678 15 .016 15 0 1 0 15 0 3	190			min	-1347.196	3	.124	12	.02	15	0	1	0	15	009	4
192 min -879.484 3 2.086 15 .016 15 0 1 0 15 .002 15 193 2 max 733.159 2 8.006 4 .341 1 0 5 0 1 .005 2 194 min -879.611 3 1.882 15 .016 15 0 1 0 15 0 12 195 3 max 732.989 2 7.137 4 .341 1 0 5 0 1 .002 2 196 min -879.739 3 1.678 15 .016 15 0 1 0 15 0 3		M3	1	max	733.33	2		4	.341		0	5	0	1		4
193 2 max 733.159 2 8.006 4 .341 1 0 5 0 1 .005 2 194 min -879.611 3 1.882 15 .016 15 0 1 0 15 0 12 195 3 max 732.989 2 7.137 4 .341 1 0 5 0 1 .002 2 196 min -879.739 3 1.678 15 .016 15 0 1 0 15 0 3				min						15			0	15		15
194 min -879.611 3 1.882 15 .016 15 0 1 0 15 0 12 195 3 max 732.989 2 7.137 4 .341 1 0 5 0 1 .002 2 196 min -879.739 3 1.678 15 .016 15 0 1 0 15 0 3			2								0	5	0			
195 3 max 732.989 2 7.137 4 .341 1 0 5 0 1 .002 2 196 min -879.739 3 1.678 15 .016 15 0 1 0 15 0 3													0	15		
196 min -879.739 3 1.678 15 .016 15 0 1 0 15 0 3			3									5	_		.002	_
															_	
	197		4				6.268		.341		0	5			0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC	_			LC
198			min		3	1.474	15	.016	15	0	<u>1</u>	0	15	003	3
199		5	max	732.648	2	5.399	4	.341	1	0	5	0	1	001	15
200			min	-879.995	3	1.269	15	.016	15	0	<u>1</u>	0	15	004	4
201		6	max	732.478	2	4.531	4	.341	1	0	5	.001	1	002	15
202		_	min	-880.122	3_	1.065	15	.016	15	0	<u>1</u>	0	15	007	4
203		7	max	732.308	2	3.662	4	.341	1	0	5	.001	1	002	15
204			min	-880.25	3	.861	15	.016	15	0	1_	0	15	009	4
205		8	max		2	2.793	4	.341	1	0	5	.001	1	002	15
206			min	-880.378	3	.657	15	.016	15	0	1_	0	15	01	4
207		9	max	731.967	2	1.924	4	.341	1	0	_5_	.002	1	003	15
208			min	-880.506	3	.452	15	.016	15	0	1_	0	15	011	4
209		10	max	731.797	2	1.055	4	.341	1	0	5	.002	1	003	15
210			min	-880.633	3	.248	15	.016	15	0	1_	0	15	012	4
211		11	max	731.626	2	.299	2	.341	1	0	5	.002	1	003	15
212			min	-880.761	3	103	3	.016	15	0	1	0	15	012	4
213		12	max	731.456	2	16	15	.341	1	0	5_	.002	1	003	15
214			min	-880.889	3	683	4	.016	15	0	1	0	15	012	4
215		13	max	731.286	2	365	15	.341	1	0	5	.002	1	003	15
216			min	-881.017	3	-1.552	4	.016	15	0	1	0	15	012	4
217		14	max	731.115	2	569	15	.341	1	0	5	.002	1	003	15
218			min	-881.144	3	-2.421	4	.016	15	0	1	0	15	011	4
219		15	max	730.945	2	773	15	.341	1	0	5	.003	1	002	15
220			min	-881.272	3	-3.29	4	.016	15	0	1	0	15	009	4
221		16	max	730.775	2	977	15	.341	1	0	5	.003	1	002	15
222			min	-881.4	3	-4.158	4	.016	15	0	1	0	15	008	4
223		17	max	730.604	2	-1.182	15	.341	1	0	5	.003	1	001	15
224			min	-881.528	3	-5.027	4	.016	15	0	1	0	15	006	4
225		18	max	730.434	2	-1.386	15	.341	1	0	5	.003	1	0	15
226			min	-881.656	3	-5.896	4	.016	15	0	1	0	15	003	4
227		19	max	730.264	2	-1.59	15	.341	1	0	5	.003	1	0	1
228		10	min	-881.783	3	-6.765	4	.016	15	0	1	0	15	0	1
229	M4	1			1	0.700	1	637	15	0	1	.003	1	0	1
230	IVIT		min	-13.148	3	0	1	-13.587	1	0	1	0	15	0	1
231		2	_	1018.371	1	0	1	637	15	0	1	0	1	0	1
232			min	-13.02	3	0	1	-13.587	1	0	1	0	15	0	1
233		3	max	1018.542	<u> </u>	0	1	637	15	0	1	0	15	0	1
234		J	min	-12.892	3	0	1	-13.587	1	0	1	0	1	0	1
235		4		1018.712	1	0	1	637	15	0	1	0	15	0	1
		4	_	-12.764	3		1		1		1	_	1		1
236			min			0		-13.587		0		002		0	
237		5		1018.882	1	0	1	637	15	0	1	0	15	0	1
238				-12.637	3_	0	1_	-13.587	1_	0	1_	004	1	0	1
239		6		1019.053	1	0	1	637	15	0	1	0	15	0	1
240		-		-12.509	3	0	1_	-13.587	1_	0	1_	005	1	0	1
241		7		1019.223	1_	0	1	637	15	0	1_	0	15	0	1
242				-12.381	3	0	1_	-13.587	1_	0	1_	007	1	0	1
243		8		1019.393	1_	0	1	637	15	0	1	0	15	0	1
244				-12.253	3	0	1	-13.587	1	0	1_	008	1	0	1
245		9		1019.564	_1_	0	1	637	15	0	1_	0	15	0	1
246				-12.126	3	0	1	-13.587	1	0	1	01	1	0	1
247		10		1019.734	_1_	0	1	637	15	0	1	0	15	0	1
248				-11.998	3	0	1	-13.587	1	0	1	011	1	0	1
249		11	max	1019.904	_1_	0	1	637	15	0	1	0	15	0	1
250			_	-11.87	3	0	1	-13.587	1	0	1	013	1	0	1
251		12	max	1020.075	1	0	1	637	15	0	1	0	15	0	1
252			min	-11.742	3	0	1	-13.587	1	0	1	015	1	0	1
253		13	max	1020.245	1	0	1	637	15	0	1	0	15	0	1
254			min	-11.615	3	0	1	-13.587	1	0	1	016	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255		14		1020.415	<u>1</u>	0	1	637	<u>15</u>	0	<u>1</u> 1	0	<u>15</u>	0	1
256 257		15	min	-11.487 1020.586	<u>3</u> 1	0	1	-13.587 637	<u>1</u> 15	0	1	018 0	15	0	1
258		15		-11.359	3	0	1	-13.587	1	0	1	019	1	0	1
259		16		1020.756	<u> </u>	0	1	637	15	0	1	0	15	0	1
260		10	min		3	0	1	-13.587	1	0	1	021	1	0	1
261		17		1020.926	1	0	1	637	15	0	-	001	15	0	1
262		- '	min	-11.104	3	0	1	-13.587	1	0	1	022	1	0	1
263		18		1021.097	1	0	1	637	15	0	1	001	15	0	1
264			min	-10.976	3	0	1	-13.587	1	0	1	024	1	0	1
265		19		1021.267	1	0	1	637	15	Ö	1	001	15	0	1
266			min	-10.848	3	0	1	-13.587	1	0	1	026	1	0	1
267	M6	1	max	3184.172	2	2.257	2	0	1	0	1	0	1	0	1
268			min	-4292.044	3	.273	12	0	1	0	1	0	1	0	1
269		2	max	3184.702	2	2.201	2	0	1	0	1	0	1	0	12
270			min	-4291.647	3	.245	12	0	1	0	1	0	1	0	2
271		3		3185.231	2	2.146	2	0	1	0	1	0	1	0	12
272			min	-4291.251	3	.217	12	0	1	0	1	0	1	002	2
273		4	max	3185.76	2	2.091	2	0	1	0	1	0	1	0	12
274			min	-4290.854	3	.19	12	0	1	0	1	0	1	002	2
275		5	max	3186.289	2	2.035	2	0	_1_	0	_1_	0	1	0	12
276			min	-4290.457	3	.157	3	0	1	0	1	0	1	003	2
277		6		3186.819	2	1.98	2	0	_1_	0	1	0	1_	0	12
278				-4290.06	3	.115	3	0	1_	0	1	0	1	004	2
279		7		3187.348	2	1.925	2	0	_1_	0	_1_	0	1	0	12
280				-4289.663	3	.074	3	0	1_	0	1	0	1	005	2
281		8		3187.877	2	1.869	2	0	1_	0	1	0	1	0	12
282				-4289.266	3	.032	3	0	_1_	0	1	0	1	005	2
283		9		3188.407	2	1.814	2	0	1_	0	1	0	1	0	3
284		40	min	-4288.869	3	009	3	0	<u>1</u> 1	0	<u>1</u> 1	0	1	006	2
285		10		3188.936 -4288.472	2	1.759	3	0	1	0	1	0	1	0	3
286 287		11	min	3189.465	2	051 1.703	2	0	1	0	1	0	1	006 0	3
288				-4288.075	3	092	3	0	1	0	1	0	1	007	2
289		12		3189.995	2	1.648	2	0	1	0	1	0	1	007 0	3
290		12		-4287.678	3	134	3	0	1	0	1	0	1	008	2
291		13		3190.524	2	1.593	2	0	1	0	1	0	1	0	3
292		10		-4287.281	3	175	3	0	1	0	1	0	1	008	2
293		14		3191.053	2	1.537	2	0	1	0	1	0	1	0	3
294				-4286.884	3	217	3	0	1	0	1	0	1	009	2
295		15		3191.582	2	1.482	2	0	1	0	1	0	1	0	3
296			min	-4286.487	3	258	3	0	1	0	1	0	1	009	2
297		16		3192.112	2	1.427	2	0	1	0	1	0	1	0	3
298				-4286.09	3	3	3	0	1	0	1	0	1	01	2
299		17		3192.641	2	1.371	2	0	1	0	1	0	1	0	3
300			min		3	341	3	0	1	0	1	0	1	01	2
301		18		3193.17	2	1.316	2	0	1	0	1	0	1	0	3
302				-4285.296	3	383	3	0	1	0	1	0	1	011	2
303		19	max	3193.7	2	1.26	2	0	1	0	1	0	1	0	3
304			min	-4284.899	3	424	3	0	1	0	1	0	1	011	2
305	M7	1	max	2553.255	2	8.903	4	0	_1_	0	1	0	1	.011	2
306			min	-2673.743	3	2.091	15	0	1	0	1	0	1	0	3
307		2		2553.084	2	8.034	4	0	_1_	0	1	0	1	.008	2
308				-2673.871	3	1.886	15	0	1	0	1	0	1	002	3
309		3		2552.914	2	7.165	4	0	1_	0	1	0	1	.005	2
310			min	-2673.999	3	1.682	15	0	1_	0	1	0	1	004	3
311		4	max	2552.744	2	6.296	4	0	_1_	0	_1_	0	1_	.002	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
312			min	-2674.126	3	1.478	15	0	1	0	1	0	1	006	3
313		5	max	2552.573	2	5.427	4	0	1	0	1	0	1	0	2
314			min	-2674.254	3	1.274	15	0	1	0	1	0	1	007	3
315		6	max	2552.403	2	4.558	4	0	1	0	1	0	1	002	15
316			min	-2674.382	3	1.069	15	0	1	0	1	0	1	008	3
317		7	max	2552.233	2	3.689	4	0	1	0	_1_	0	1_	002	15
318			min	-2674.51	3	.865	15	0	1	0	1	0	1	009	3
319		8	max	2552.062	2	2.821	4	0	1	0	_1_	0	1	002	15
320			min	-2674.637	3	.661	15	0	1	0	1	0	1	01	4
321		9		2551.892	2	2.018	2	0	1	0	1	0	1	003	15
322			min	-2674.765	3	.357	12	0	1	0	1	0	1	011	4
323		10		2551.722	2	1.341	2	0	1	0	_1_	0	1	003	15
324			min	-2674.893	3	039	3	0	1	0	1	0	1	012	4
325		11	max	2551.551	2	.663	2	0	1	0	1	0	1	003	15
326			min	-2675.021	3	546	3	0	1	0	1	0	1	012	4
327		12	max	2551.381	2	014	2	0	1	0	_1_	0	1	003	15
328			min	-2675.148	3	-1.054	3	0	1	0	1	0	1	012	4
329		13	max	2551.211	2	36	15	0	1	0	_1_	0	1	003	15
330			min	-2675.276	3	-1.562	3	0	1	0	1	0	1	012	4
331		14	max	2551.04	2	565	15	0	1	0	1	0	1	003	15
332			min	-2675.404	3	-2.393	4	0	1	0	1	0	1	011	4
333		15	max		2	769	15	0	1	0	_1_	0	1	002	15
334			min	-2675.532	3	-3.262	4	0	1	0	1	0	1	009	4
335		16	max	2550.7	2	973	15	0	1	0	_1_	0	1	002	15
336			min	-2675.659	3	-4.131	4	0	1	0	1	0	1	008	4
337		17	max	2550.529	2	-1.177	15	0	1	0	_1_	0	1_	001	15
338			min	-2675.787	3	-5	4	0	1	0	1	0	1	006	4
339		18	max	2550.359	2	-1.382	15	0	1	0	_1_	0	1	0	15
340			min	-2675.915	3	-5.868	4	0	1	0	1	0	1	003	4
341		19		2550.188	2	-1.586	15	0	1	0	1	0	1	0	1
342			min	-2676.043	3	-6.737	4	0	1	0	1	0	1	0	1
343	<u>M8</u>	1_		2628.534	_1_	0	1	0	1	0	1	0	1	0	1
344			min		3	0	1	0	1	0	1	0	1	0	1
345		2	max	2628.705	_1_	0	1	0	1	0	_1_	0	1_	0	1
346			min	-136.654	3	0	1	0	1	0	1	0	1	0	1
347		3	max	2628.875	_1_	0	1	0	1	0	_1_	0	1	0	1
348			min		3	0	1	0	1	0	1	0	1	0	1
349		4	max	2629.045	_1_	0	1	0	1	0	_1_	0	1	0	1
350			min	-136.399	3	0	1	0	1	0	1	0	1	0	1
351		5		2629.216	_1_	0	1_	0	1	0	_1_	0	1_	0	1
352				-136.271	3	0	1	0	1	0	1	0	1	0	1
353		6		2629.386	1_	0	1	0	1	0	1	0	1	0	1
354				-136.143		0	1_	0	1	0	1	0	1	0	1
355		7		2629.556	1_	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		2629.727	1_	0	1	0	1	0	1	0	1	0	1
358				-135.888	3	0	1	0	1	0	1	0	1	0	1
359		9		2629.897	1_	0	1	0	1	0	1	0	1	0	1
360			min		3_	0	1	0	1	0	1	0	1	0	1
361		10		2630.068	1_	0	1	0	1	0	1	0	1	0	1
362				-135.632	3	0	1	0	1	0	1	0	1	0	1
363		11		2630.238	1_	0	1	0	1	0	1	0	1	0	1
364				-135.505	3_	0	1_	0	1	0	1	0	1	0	1
365		12		2630.408	1_	0	1	0	1	0	1	0	1	0	1
366				-135.377	3	0	1	0	1	0	1	0	1	0	1
367		13		2630.579	_1_	0	1	0	1	0	1	0	1	0	1
368			min	-135.249	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC	P -	LC		LC
369		14		2630.749	<u>1</u> 3	0	1	0	1	0	1	0	1	0	1
370 371		15	min	-135.121 2630.919	<u> </u>	0	1	0	1	0	1	0	1	0	1
372		10		-134.994	3	0	1	0	1	0	1	0	1	0	1
		16		2631.09	<u>ა</u> 1		1	-	1	_	1	0	1	0	1
373		10	max			0	1	0	1	0	1		1		1
374		17		-134.866	3	0			1		_	0	1	0	1
375		17	max		1	0	1	0	1	0	<u>1</u> 1	0	1	0	1
376		4.0		-134.738	3	0	1		1	0	1	0	1	0	
377		18	max		1	0		0		0		0		0	1
378		10	min	-134.61 2631.601	3	0	1	0	1	0	<u>1</u> 1	0	1	0	1
379		19	_		1_2	0	1	0	1	0	1	0	1	0	1
380	M10	1	min	-134.482	3	2.023		-			1	0	2	0	1
381	IVITO			1030.378	3		4 15	02 42	<u>15</u> 1	0	3	0	3	0	1
383		2	min	1030.907		.476			•	_	<u>ာ</u> 1	0			_
384			min	-1353.945	<u>2</u> 3	1.952 .459	4 15	02 42	<u>15</u>	0	3	0	1 <u>5</u>	0	15
		3		1031.436	2	1.881	4	42	15	0	<u> </u>	0	15	0	15
385		3		-1353.548	3	.442	15	42	1	0	3	0	1	001	4
387		4	min	1031.966		1.81		42	15	0	<u>ာ</u> 1	0	15		15
		4		-1353.151	3		4 15		1	_		0	1	0	
388		5	min	1032.495	2	.426 1.739	4	42 02	15	0	<u>3</u> 1	0	15	002 0	15
		5		-1352.754			15		1			0	1	003	
390		6	min	1033.024	3	.409		42	15	0	<u>3</u>		_	003 0	4
391		6		-1352.357	2	1.668	4 1E	02	1	0		0	15	_	15
392		7	min		3	.392	15	42		0	3	0	1	003	4
393		/		1033.554	2	1.597	4 15	02	<u>15</u>	0	1	0	15	0	15
394		0		-1351.96	3	.376		42	•	0	3	0	1_	004	4
395		8		1034.083	2	1.526	4	02	15	0	1	0	15	001	15
396			min	-1351.563	3	.359	15	42	1_	0	3	001	1_	004	4
397		9		1034.612 -1351.166	2	1.455	4	02	15	0	1	0	15	001	15
398		10	min		3	.342	15	42	1_	0	<u>3</u> 1	001	1_	005	4
399		10		1035.141 -1350.769	2	1.384	4 1E	02	15	0		0	15	001	15
400		11	min	1035.671	3	.326 1.313	<u>15</u>	42	<u>1</u> 15	0	<u>3</u>	001	1 15	006	4
401				-1350.372	3		15	02 42	1	0	3	001	1	001	15
		12	min	1036.2		.309			•	_	<u>ာ</u> 1	0		006	4
403		12	max	-1349.975	3	1.242 .292	4 15	02 42	<u>15</u>	0	3	002	1 <u>5</u>	002 006	15
		12	min	1036.729					15		<u> </u>		_		_
405		13		-1349.578	3	1.171 .275	4 15	02 42	1	0	3	002	1 <u>5</u>	002	15
406		1.1	min						15		<u>ာ</u> 1		15	007	4
407		14		1037.259 -1349.181	3	1.1 .259	4 15	02	1	0	3	0	1	002	15
408		15			_	1.029		42	_	_	<u> </u>	002 0	_	007 002	
409		15		1037.788 -1348.784	2		4	02	15	0	3		15	002	15
410		16	min	1038.317	2	.234 .958	<u>12</u>	42 02	1 15	0	<u>3</u> 1	002 0	1 15	008	15
411		10		-1348.387	3	.958	12	02 42	1	0	3	002	1	002	4
413		17		1038.846	2	.893	2	42	15	0	<u>ာ</u> 1	002	15	002	15
414		17		-1347.99	3	.179	12	42	1	0	3	002	1	002	4
415		18		1039.376	2	.838	2	02	15	0	1	0	15	002	15
416		10		-1347.593	3	.030	12	42	1	0	3	003	1	002	4
417		19		1039.905	2	.783	2	42	15	0	<u> </u>	0	15	009	15
418		13	min	-1347.196	3	.124	12	42	1	0	3	003	1	002	4
419	M11	1	max		2	8.875	4	016	15	0	<u>ာ</u> 1	003	15	.009	4
420	IVI I I			-879.484		2.086	15	341	1		5	0	1	.009	15
		2			3					0	<u> </u>	0			
421		2		733.159	2	8.006	4 15	016	<u>15</u> 1	0		0	1 <u>5</u>	.005	12
422		2		-879.611	3	1.882		341	-	_	5	_	_	0	
423		3		732.989	2	7.137	<u>4</u> 15	016 341	<u>15</u> 1	0	<u>1</u> 5	0	<u>15</u>	.002	3
424		4		-879.739 722.910	3	1.678			15				15	0	
425		4	шах	732.819	2	6.268	4	016	LO	0	_1_	0	LID	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
426			min	-879.867	3	1.474	15	341	1	0	5	0	1	003	3
427		5	max	732.648	2	5.399	4	016	15	0	1	0	15	001	15
428			min	-879.995	3	1.269	15	341	1	0	5	0	1	004	4
429		6	max		2	4.531	4	016	15	0	1	0	15	002	15
430			min	-880.122	3	1.065	15	341	1	0	5	001	1	007	4
431		7	max	732.308	2	3.662	4	016	15	0	1	0	15	002	15
432			min	-880.25	3	.861	15	341	1	0	5	001	1	009	4
433		8	max	732.137	2	2.793	4	016	15	0	1	0	15	002	15
434			min	-880.378	3	.657	15	341	1	0	5	001	1	01	4
435		9	max	731.967	2	1.924	4	016	15	0	1	0	15	003	15
436			min	-880.506	3	.452	15	341	1	0	5	002	1	011	4
437		10	max		2	1.055	4	016	15	0	1	0	15	003	15
438			min	-880.633	3	.248	15	341	1	0	5	002	1	012	4
439		11	max	731.626	2	.299	2	016	15	0	1	0	15	003	15
440			min	-880.761	3	103	3	341	1	0	5	002	1	012	4
441		12	max	731.456	2	16	15	016	15	0	1	0	15	003	15
442			min	-880.889	3	683	4	341	1	0	5	002	1	012	4
443		13	max	731.286	2	365	15	016	15	0	1	0	15	003	15
444			min	-881.017	3	-1.552	4	341	1	0	5	002	1	012	4
445		14	max	731.115	2	569	15	016	15	0	1	0	15	003	15
446			min	-881.144	3	-2.421	4	341	1	0	5	002	1	011	4
447		15	max	730.945	2	773	15	016	15	0	1	0	15	002	15
448			min	-881.272	3	-3.29	4	341	1	0	5	003	1	009	4
449		16	max	730.775	2	977	15	016	15	0	1	0	15	002	15
450			min	-881.4	3	-4.158	4	341	1	0	5	003	1	008	4
451		17	max	730.604	2	-1.182	15	016	15	0	1	0	15	001	15
452			min	-881.528	3	-5.027	4	341	1	0	5	003	1	006	4
453		18	max	730.434	2	-1.386	15	016	15	0	1	0	15	0	15
454			min	-881.656	3	-5.896	4	341	1	0	5	003	1	003	4
455		19	max	730.264	2	-1.59	15	016	15	0	1	0	15	0	1
456			min	-881.783	3	-6.765	4	341	1	0	5	003	1	0	1
457	M12	1		1018.201	_1_	0	1	13.587	1	0	1	0	15	0	1
458			min	-13.148	3_	0	1	.637	15	0	1	003	1	0	1
459		2		1018.371	_1_	0	1_	13.587	1	0	1	0	15	0	1
460			min	-13.02	3	0	1	.637	15	0	1	0	1	0	1
461		3		1018.542	_1_	0	1	13.587	1_	0	1	0	1_	0	1
462			min	-12.892	3	0	1	.637	15	0	1	0	15	0	1
463		4	max		_1_	0	1_	13.587	1_	0	1	.002	1_	0	1
464			min	-12.764	3	0	1	.637	15	0	1	0	15	0	1
465		5_		1018.882	_1_	0	1	13.587	1	0	1	.004	1_	0	1
466				-12.637	3_	0	1	.637	15	0	1	0	15	0	1
467		6		1019.053	_1_	0	1	13.587	1	0	1	.005	1	0	1
468			min		3_	0	1	.637	15	0	1	0	15	0	1
469		7		1019.223	_1_	0	1	13.587	1	0	1	.007	1_	0	1
470			min		3	0	1	.637	15	0	1	0	15	0	1
471		8		1019.393	1_	0	1	13.587	1	0	1	.008	1_	0	1
472			min		3_	0	1	.637	15	0	1	0	15	0	1
473		9		1019.564	_1_	0	1	13.587	1	0	1	.01	1_	0	1
474				-12.126	3	0	1	.637	15	0	1	0	15	0	1
475		10		1019.734	1_	0	1	13.587	1	0	1	.011	1	0	1
476				-11.998	3	0	1	.637	15	0	1	0	15	0	1
477		11_		1019.904	1_	0	1	13.587	1_	0	1	.013	1_	0	1
478			min		3_	0	1	.637	15	0	1	0	15	0	1
479		12		1020.075	1_	0	1	13.587	1	0	1	.015	1_	0	1
480		4.0	min		3	0	1	.637	15	0	1	0	15	0	1
481		13		1020.245	1_	0	1	13.587	1	0	1	.016	1_	0	1
482			min	-11.615	3	0	1	.637	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

400	Member	Sec		Axial[lb]						Torque[k-ft]				_	
483		14		1020.415	1_	0	1_	13.587	1	0	1_	.018	1_	0	1
484		4.5	min	-11.487	3	0	1_	.637	15	0	1_	0	15	0	1
485		15		1020.586	1	0	1	13.587	1	0	1	.019	1_	0	1
486		4.0	min	-11.359	3	0	•	.637	15	0		0	15	0	
487		16	_	1020.756 -11.231	<u>1</u> 3	0	1	13.587	15	0	1	.021	1 15	0	1
488		17	min			0	•	.637		0	_	0		0	-
489		17		1020.926	1_	0	1_	13.587	1	0	1_	.022	1_	0	1
490		40	min	-11.104	3	0	1_	.637	15	0	1_	.001	15	0	1
491		18		1021.097	1	0	1_	13.587	1_	0	1_	.024	1_	0	1
492		40	min	-10.976	3	0	1_	.637	15	0	1_	.001	15	0	1
493		19	max	1021.267	1_	0	1_	13.587	1	0	1	.026	1	0	1
494		_	min	-10.848	3	0	1_	.637	15	0	1_	.001	15	0	1
495	<u>M1</u>	1	max	178.245	_1_	705.897	3	-3.556	15	0	1_	.211	1	0	15
496		_	min	8.304	15	-410.483	2	-75.342	1	0	3	.01	15	015	2
497		2	max	179.087	_1_	704.802	3_	-3.556	15	0	1_	.165	1	.24	2
498		_	min	8.558	15	-411.942	2	-75.342	1	0	3	.008	15	44	3
499		3	max	568.304	3	522.371	2	-3.536	15	0	3	.118	1	.486	2
500			min	-343.239	2	-538.327	3	-75.119	1	0	2	.006	15	863	3
501		4	max		3	520.912	2	-3.536	15	0	3	.071	1_	.171	1
502			min	-342.397	2	-539.422	3	-75.119	1	0	2	.003	15	529	3
503		5	max	569.568	3_	519.453	2	-3.536	15	0	3	.025	1	005	15
504			min	-341.554	2	-540.516	3	-75.119	1	0	2	.001	15	194	3
505		6	max	570.199	3	517.993	2	-3.536	15	0	3	001	15	.142	3
506			min	-340.712	2	-541.61	3	-75.119	1	0	2	022	1	483	2
507		7	max	570.831	3	516.534	2	-3.536	15	0	3	003	15	.479	3
508			min	-339.87	2	-542.705	3	-75.119	1	0	2	069	1	804	2
509		8	max	571.463	3	515.075	2	-3.536	15	0	3	005	15	.816	3
510			min	-339.027	2	-543.799	3	-75.119	1	0	2	115	1	-1.124	2
511		9	max	587.597	3	48.779	2	-5.67	15	0	9	.073	1	.951	3
512			min	-262.056	2	.446	15	-120.464	1	0	3	.003	15	-1.285	2
513		10	max	588.229	3	47.32	2	-5.67	15	0	9	0	15	.929	3
514			min	-261.214	2	.006	15	-120.464	1	0	3	001	1	-1.314	2
515		11	max	588.861	3	45.861	2	-5.67	15	0	9	004	15	.909	3
516			min	-260.372	2	-1.76	4	-120.464	1	0	3	076	1	-1.343	2
517		12	max	604.79	3	363.467	3	-3.399	15	0	2	.113	1	.795	3
518				-183.336	2	-617.338	2	-72.45	1	0	3	.005	15	-1.191	2
519		13	max		3	362.373	3	-3.399	15	0	2	.068	1	.57	3
520			min	-182.493	2	-618.797	2	-72.45	1	0	3	.003	15	808	2
521		14	max		3	361.278	3	-3.399	15	0	2	.023	1	.346	3
522				-181.651	2	-620.256	2	-72.45	1	0	3	.001	15	423	2
523		15		606.685	3	360.184	3	-3.399	15	0	2	001	15	.122	3
524				-180.809	2	-621.715	2	-72.45	1	0	3	022	1	063	1
525		16		607.317	3	359.09	3	-3.399	15	0	2	003	15	.348	2
526		'		-179.966	2	-623.174	2	-72.45	1	0	3	067	1	102	3
527		17		607.949	3	357.995	3	-3.399	15	0	2	005	15	.736	2
528		- ' '		-179.124	2	-624.633	2	-72.45	1	0	3	112	1	324	3
529		18	max		15	610.855	2	-4.019	15	0	3	008	15	.37	2
530		10		-179.625	1	-277.539	3	-85.378	1	0	2	161	1	159	3
531		19	max		15	609.396	2	-4.019	15	0	3	01	15	.013	3
532		13		-178.783	1	-278.633	3	-85.378	1	0	2	214	1	01	1
533	M5	1		396.629	1	2343.611	3	0	1	0	1	0	1	.03	2
534	IVIO		min	15.834	12	-1419.798	2	0	1	0	1	0	1	0	15
535		2		397.471	1	2342.517	3	0	1	0	1	0	1	.912	2
				16.255	12	-1421.257	2	0	1	0	1	0	1		3
536		2							1	-		_	1	-1.45 1.762	
537		3		1770.099 -1125.671	<u>3</u> 2	1443.831 -1621.018	2	0	1	0	1	0		1.763	2
538		A	min				3	0	-	0	_ •	0	1	<u>-2.86</u>	3
539		4	max	1770.731	3	1442.372	2	0	1	0	1_	0	1	.867	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
540			min	-1124.828	2	-1622.113	3	0	1	0	1	0	1	-1.854	3
541		5	max	1771.362	3	1440.913	2	0	1	0	1	0	1	.033	9
542			min	-1123.986	2	-1623.207	3	0	1	0	1	0	1	847	3
543		6	max	1771.994	3	1439.454	2	0	1	0	1	0	1	.161	3
544			min	-1123.144	2	-1624.301	3	0	1	0	1	0	1	921	2
545		7	max	1772.626	3	1437.995	2	0	1	0	1_	0	1	1.169	3
546			min	-1122.301	2	-1625.396	3	0	1	0	1	0	1	-1.814	2
547		8	max	1773.258	3	1436.536	2	0	1	0	1_	0	1	2.179	3
548			min	-1121.459	2	-1626.49	3	0	1	0	1	0	1	-2.706	2
549		9	max	1796.115	3	164.742	2	0	1	0	_1_	0	1	2.509	3
550			min	-957.952	2	.442	15	0	1	0	1	0	1	-3.096	2
551		10	max	1796.747	3	163.283	2	0	1	0	_1_	0	1	2.428	3
552			min	-957.109	2	.001	15	0	1	0	1_	0	1	-3.197	2
553		11	max	1797.378	3	161.824	2	0	1	0	_1_	0	1	2.348	3
554			min	-956.267	2	-1.591	4	0	1	0	1	0	1	-3.298	2
555		12	max	1820.645	3	1058.893	3	0	1	0	_1_	0	1	2.058	3
556			min	-792.89	2	-1767.646	2	0	1	0	1	0	1	-2.949	2
557		13	max	1821.277	3	1057.799	3	0	1	0	<u>1</u>	0	1	1.402	3
558			min	-792.048	2	-1769.105	2	0	1	0	1_	0	1	-1.852	2
559		14	max	1821.909	3	1056.704	3	0	1	0	1_	0	1	.745	3
560			min	-791.206	2	-1770.564	2	0	1	0	1_	0	1	753	2
561		15	max	1822.541	3	1055.61	3	0	1	0	_1_	0	1	.346	2
562			min	-790.363	2	-1772.023	2	0	1	0	1_	0	1	0	15
563		16	max	1823.173	3	1054.516	3	0	1	0	_1_	0	1	1.446	2
564			min	-789.521	2	-1773.483	2	0	1	0	1	0	1	565	3
565		17	max	1823.804	3	1053.422	3	0	1	0	_1_	0	1	2.547	2
566			min	-788.678	2	-1774.942	2	0	1	0	1	0	1	-1.219	3
567		18	max	-17.026	12	2071.384	2	0	1	0	<u>1</u>	0	1	1.303	2
568			min	-396.395	1	-978.203	3	0	1	0	1	0	1	634	3
569		19	max	-16.605	12	2069.925	2	0	1	0	_1_	0	1	.019	1
570			min	-395.553	1	-979.298	3	0	1	0	1_	0	1	027	3
571	<u>M9</u>	1	max	178.245	1	705.897	3	75.342	1	0	3_	01	15	0	15
572			min	8.304	15	-410.483	2	3.556	15	0	1_	211	1	015	2
573		2	max	179.087	1	704.802	3	75.342	1	0	3	008	15	.24	2
574			min	8.558	15	-411.942	2	3.556	15	0	1_	165	1	44	3
575		3	max		3	522.371	2	75.119	1	0	2	006	15	.486	2
576			min	-343.239	2	-538.327	3	3.536	15	0	3	118	1	863	3
577		4	max	568.936	3	520.912	2	75.119	1	0	2	003	15	.171	1
578			min	-342.397	2	-539.422	3	3.536	15	0	3	071	1	529	3
579		5	max		3	519.453	2	75.119	1	0	2	001	15	005	15
580		_	min		2	-540.516		3.536	15	0	3	025	1	194	3
581		6		570.199	3	517.993	2	75.119	1	0	2	.022	1	.142	3
582			min		2	-541.61	3	3.536	15	0	3	.001	15	483	2
583		7	max		3	516.534	2	75.119	1	0	2	.069	1	.479	3
584			min	-339.87	2	-542.705	3	3.536	15	0	3	.003	15	804	2
585		8		571.463	3	515.075	2	75.119	1	0	2	.115	1	.816	3
586		_	min		2	-543.799	3	3.536	15	0	3	.005	15	-1.124	2
587		9	max		3	48.779	2	120.464	1	0	3	003	15	.951	3
588			min	-262.056	2	.446	15	5.67	15	0	9	073	1	-1.285	2
589		10	max		3	47.32	2	120.464	1	0	3	.001	1	.929	3
590			min	-261.214	2	.006	15	5.67	15	0	9	0	15	-1.314	2
591		11		588.861	3	45.861	2	120.464	1	0	3	.076	1	.909	3
592			min		2	-1.76	4	5.67	15	0	9	.004	15	-1.343	2
593		12	max		3	363.467	3	72.45	1	0	3	005	15	.795	3
594			min		2	-617.338	2	3.399	15	0	2	113	1	<u>-1.191</u>	2
595		13	max		3	362.373	3	72.45	1	0	3	003	15	.57	3
596			min	-182.493	2	-618.797	2	3.399	15	0	2	068	1	808	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	606.053	3	361.278	3	72.45	1	0	3	001	15	.346	3
598			min	-181.651	2	-620.256	2	3.399	15	0	2	023	1	423	2
599		15	max	606.685	3	360.184	3	72.45	1	0	3	.022	1	.122	3
600			min	-180.809	2	-621.715	2	3.399	15	0	2	.001	15	063	1
601		16	max	607.317	3	359.09	3	72.45	1	0	3	.067	1	.348	2
602			min	-179.966	2	-623.174	2	3.399	15	0	2	.003	15	102	3
603		17	max	607.949	3	357.995	3	72.45	1	0	3	.112	1	.736	2
604			min	-179.124	2	-624.633	2	3.399	15	0	2	.005	15	324	3
605		18	max	-8.575	15	610.855	2	85.378	1	0	2	.161	1	.37	2
606			min	-179.625	1	-277.539	3	4.019	15	0	3	.008	15	159	3
607		19	max	-8.321	15	609.396	2	85.378	1	0	2	.214	1	.013	3
608			min	-178.783	1	-278.633	3	4.019	15	0	3	.01	15	01	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.197	2	.011	3 1.357e-2	2	NC	1_	NC	1
2			min	0	15	051	3	006	2 -3.528e-3	3	NC	1	NC	1
3		2	max	0	1	.158	3	.027	1 1.482e-2	2	NC	4	NC	2
4			min	0	15	.003	15	001	10 -3.356e-3	3	976.952	3	7418.863	1
5		3	max	0	1	.328	3	.064	1 1.608e-2	2	NC	5	NC	3
6			min	0	15	007	9	.003	10 -3.184e-3	3	538.872	3	3168.077	1
7		4	max	0	1	.432	3	.095	1 1.733e-2	2	NC	5	NC	3
8			min	0	15	031	1	.005	15 -3.013e-3	3	422.364	3	2143.459	1
9		5	max	0	1	.459	3	.11	1 1.859e-2	2	NC	5	NC	3
10			min	0	15	024	1	.005	15 -2.841e-3	3	400.181	3	1855.408	1
11		6	max	0	1	.41	3	.104	1 1.984e-2	2	NC	5	NC	5
12			min	0	15	003	9	.004	10 -2.67e-3	3	442.982	3	1953.128	1
13		7	max	0	1	.3	3	.08	1 2.109e-2	2	NC	4	NC	5
14			min	0	15	.003	15	0	10 -2.498e-3	3	581.519	3	2549.393	1
15		8	max	0	1	.237	2	.044	1 2.235e-2	2	NC	4	NC	2
16			min	0	15	.006	15	007	10 -2.327e-3	3	970.684	3	4675.531	1
17		9	max	0	1	.323	2	.034	3 2.36e-2	2	NC	4	NC	1
18			min	0	15	.008	15	016	2 -2.155e-3	3	1615.955	2	9028.187	3
19		10	max	0	1	.361	2	.033	3 2.485e-2	2	NC	5	NC	1
20			min	0	1	027	3	023	2 -1.984e-3	3	1242.014	2	9226.372	3
21		11	max	0	15	.323	2	.034	3 2.36e-2	2	NC	4	NC	1
22			min	0	1	.008	15	016	2 -2.155e-3	3	1615.955	2	9028.187	3
23		12	max	0	15	.237	2	.044	1 2.235e-2	2	NC	4	NC	2
24			min	0	1	.006	15	007	10 -2.327e-3	3	970.684	3	4675.531	1
25		13	max	0	15	.3	3	.08	1 2.109e-2	2	NC	4	NC	5
26			min	0	1	.003	15	0	10 -2.498e-3	3	581.519	3	2549.393	1
27		14	max	0	15	.41	3	.104	1 1.984e-2	2	NC	5	NC	5
28			min	0	1	003	9	.004	10 -2.67e-3	3	442.982	3	1953.128	1
29		15	max	0	15	.459	3	.11	1 1.859e-2	2	NC	5	NC	3
30			min	0	1	024	1	.005	15 -2.841e-3	3	400.181	3	1855.408	1
31		16	max	0	15	.432	3	.095	1 1.733e-2	2	NC	5	NC	3
32			min	0	1	031	1	.005	15 -3.013e-3	3	422.364	3	2143.459	1
33		17	max	0	15	.328	3	.064	1 1.608e-2	2	NC	5	NC	3
34			min	0	1	007	9	.003	10 -3.184e-3	3	538.872	3	3168.077	1
35		18	max	0	15	.158	3	.027	1 1.482e-2	2	NC	4	NC	2
36			min	0	1	.003	15	001	10 -3.356e-3	3	976.952	3	7418.863	1
37		19	max	0	15	.197	2	.011	3 1.357e-2	2	NC	1	NC	1
38			min	0	1	051	3	006	2 -3.528e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.398	3	.01	3 7.637e-3	2	NC	1	NC	1
40			min	0	15	595	2	006	2 -5.944e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			(n) L/y Ratio			LC
41		2	max	0	1	.653	3	.018	1 8.849			5	NC	1
42		_	min	0	15	848	2	002	10 -7.01			3	NC	1_
43		3	max	0	1	.877	3	.049	1 1.006			5	NC	2
44			min	0	15	<u>-1.075</u>	2	.001	10 -8.079			2	4169.533	1
45		4	max	0	1	1.045	3	.078	1 1.127			<u>15</u>	NC	3
46		_	min	0	15	-1.256	2	.004	15 -9.146			2	2606.769	1
47		5	max	0	1	1.148	3	.095	1 1.249			<u>15</u>	NC 2450,262	3
48		_	min	0	15	-1.381	2	.005	15 -1.021			2	2159.262	1
49		6	max	0	1 15	1.182	3	.093	1 1.376		00011=01	15	NC 2209.233	3
50 51		7	min	<u> </u>	1	<u>-1.448</u> 1.159	3	.003 .072	10 -1.128 1 1.491			<u>2</u> 15	NC	3
52			max	0	15	-1.463	2	0	10 -1.235			2	2824.563	1
53		8	max	0	1	1.098	3	.04	1 1.612			15	NC	2
54			min	0	15	-1.44	2	006	10 -1.34			2	5084.125	1
55		9	max	0	1	1.029	3	.03	3 1.733			15	NC	1
56			min	0	15	-1.403	2	014	2 -1.448			2	NC	1
57		10	max	0	1	.995	3	.029	3 1.855			15	NC	1
58			min	0	1	-1.382	2	021	2 -1.555			2	NC	1
59		11	max	0	15	1.029	3	.03	3 1.733			15	NC	1
60			min	0	1	-1.403	2	014	2 -1.448			2	NC	1
61		12	max	0	15	1.098	3	.04	1 1.612	e-2 2		15	NC	2
62			min	0	1	-1.44	2	006	10 -1.341	le-2 3	241.47	2	5084.125	1
63		13	max	0	15	1.159	3	.072	1 1.491			15	NC	3
64			min	0	1	-1.463	2	0	10 -1.235	5e-2 3	235.153	2	2824.563	1
65		14	max	0	15	1.182	3	.093	1 1.376			15	NC	3
66			min	0	1	-1.448	2	.003	10 -1.128			2	2209.233	1
67		15	max	0	15	1.148	3	.095	1 1.249			15	NC	3
68			min	0	1	-1.381	2	.005	15 -1.02			2	2159.262	1
69		16	max	0	15	1.045	3	.078	1 1.127			15	NC	3
70			min	0	1	-1.256	2	.004	15 -9.146			2	2606.769	1
71		17	max	0	15	.877	3	.049	1 1.006			_5_	NC	2
72		10	min	0	1	<u>-1.075</u>	2	.001	10 -8.079			2	4169.533	1
73		18	max	0	15	.653	3	.018	1 8.849			5	NC	1
74		40	min	0	1	848	2	002	10 -7.01			3	NC NC	1
75		19	max	0	15 1	.398	3	.01	3 7.637			<u>1</u> 1	NC NC	1
76	M15	1	min	0	15	<u>595</u> .406	3	006 .009	2 -5.94 ² 3 5.087			1	NC NC	1
77 78	IVITO	_	max	<u> </u>	1	594	2	005	2 -7.955			1	NC NC	1
79		2	max	0	15	<u>594</u> .591	3	.018	1 5.996			5	NC	1
80			min	0	1	903	2	002	10 -9.225			2	NC	1
81		3	max	0	15	.758	3	.049	1 6.904			5		2
82			min	0	1	-1.176	2	.002	10 -1.05			2	4144.827	1
83		4	max	0	15	.892	3	.079	1 7.813			15		3
84			min	0	1	-1.384	2	.004	15 -1.177			2	2594.083	1
85		5	max	0	15	.988	3	.095	1 8.722			15	NC	3
86			min	0	1	-1.516	2	.005	15 -1.304			2	2149.147	1
87		6	max	0	15	1.043	3	.093	1 9.63		9988.988	15	NC	3
88			min	0	1	-1.568	2	.004	10 -1.431	le-2 2	209.357	2	2197.737	1
89		7	max	0	15	1.061	3	.073	1 1.054	e-2 3		15	NC	3
90			min	0	1	-1.552	2	0	10 -1.558			2	2805.021	1
91		8	max	0	15	1.051	3	.041	1 1.145			15	NC	2
92			min	0	1	-1.49	2	005	10 -1.685			2	5020.223	1
93		9	max	0	15	1.029	3	.027	3 1.236			15	NC	1_
94			min	0	1	-1.417	2	013	2 -1.812			2	NC	1
95		10	max	0	1	1.016	3	.027	3 1.326			<u>15</u>	NC	1
96			min	0	1	-1.38	2	02	2 -1.939			2	NC	1
97		11	max	0	1	1.029	3	.027	3 1.236	e-2 3	NC	15	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) I /v Ratio	I.C.	(n) I /z Ratio	LIC.
98			min	0	15	-1.417	2	013	2 -1.812e-2	2	247.839	2	NC	1
99		12	max	0	1	1.051	3	.041	1 1.145e-2	3	NC	15	NC	2
100			min	0	15	-1.49	2	005	10 -1.685e-2	2	227.623	2	5020.223	1
101		13	max	0	1	1.061	3	.073	1 1.054e-2	3	9965.548	15	NC	3
102			min	0	15	-1.552	2	0	10 -1.558e-2	2	212.883	2	2805.021	1
103		14	max	0	1	1.043	3	.093	1 9.63e-3	3	9988.988	<u>15</u>	NC	3
104			min	0	15	<u>-1.568</u>	2	.004	10 -1.431e-2	2	209.357	2	2197.737	1
105		15	max	0	1	.988	3	.095	1 8.722e-3	3_	NC	<u>15</u>	NC	3
106			min	0	15	-1.516	2	.005	15 -1.304e-2	2	221.264	2	2149.147	1
107		16	max	0	1	.892	3	.079	1 7.813e-3	3_	NC	<u>15</u>	NC	3
108		4-	min	0	15	<u>-1.384</u>	2	.004	15 -1.177e-2	2	258.066	2	2594.083	1
109		17	max	0	1	.758	3	.049	1 6.904e-3	3_	NC 050,000	5_	NC 44.44.007	2
110		40	min	0	15	<u>-1.176</u>	2	.002	10 -1.05e-2	2	350.699	2	4144.827	1
111		18	max	0	1	.591	3	.018	1 5.996e-3	3_	NC CF0.4.40	5	NC NC	1
112 113		19	min	0	15 1	<u>903</u> .406	3	002 .009	10 -9.225e-3 3 5.087e-3	3	659.143 NC	1	NC NC	1
114		19	max	0	15	594	2	005	2 -7.955e-3	2	NC NC	1	NC NC	1
115	M16	1		0	15	<u>594</u> .174	2	.008	3 9.502e-3	3	NC NC	1	NC NC	1
116	IVITO		max	0	1	174 141	3	005	2 -1.136e-2	2	NC NC	1	NC NC	1
117		2	max	0	15	.038	1	.027	1 1.062e-2	3	NC	4	NC NC	2
118			min	0	1	083	3	0	10 -1.212e-2	2	1281.471	2	7506.375	1
119		3	max	0	15	.003	13	.064	1 1.174e-2	3	NC	5	NC	3
120			min	0	1	11	2	.003	15 -1.288e-2	2	716.248	2	3184.212	1
121		4	max	0	15	0	15	.095	1 1.286e-2	3	NC	5	NC	3
122			min	0	1	18	2	.005	15 -1.364e-2	2	575.48	2	2145.513	
123		5	max	0	15	0	13	.11	1 1.398e-2	3	NC	5	NC	3
124			min	0	1	184	2	.005	15 -1.44e-2	2	569.824	2	1850.175	1
125		6	max	0	15	.006	4	.105	1 1.51e-2	3	NC	5	NC	3
126			min	0	1	123	2	.005	15 -1.516e-2	2	686.011	2	1938.171	1
127		7	max	0	15	.034	9	.081	1 1.622e-2	3	NC	3	NC	3
128			min	0	1	138	3	.002	10 -1.592e-2	2	1092.207	2	2508.016	1
129		8	max	0	15	.145	1	.045	1 1.734e-2	3	NC	1_	NC	2
130			min	0	1	209	3	004	10 -1.668e-2	2	2988.691	3	4492.335	1
131		9	max	0	15	.243	1	.024	3 1.846e-2	3	NC	4	NC	1
132			min	0	1	27	3	011	2 -1.744e-2	2	1580.653	3	NC	1
133		10	max	0	1	.294	2	.023	3 1.958e-2	3	NC	5_	NC	1
134			min	0	1	297	3	018	2 -1.82e-2	2	1309.239	3	NC	1
135		11	max	0	1	.243	1	.024	3 1.846e-2	3_	NC	4_	NC	1
136		1.0	min	0	15	27	3	011	2 -1.744e-2	2	1580.653	3	NC	1
137		12	max	0	1	.145	1	.045	1 1.734e-2	3	NC	1	NC	2
138		10	min	0	15	209	3	004	10 -1.668e-2	2	2988.691		4492.335	
139		13	max	0	1	.034	9	.081	1 1.622e-2	3	NC	3	NC 2509 016	3
140		14	min	<u> </u>	15 1	138 .006	3	.002 .105	10 -1.592e-2 1 1.51e-2	3	1092.207 NC	2	2508.016 NC	3
141		14	max min	0	15	123	2	.005	1 1.51e-2 15 -1.516e-2	2	686.011	<u>5</u> 2	1938.171	1
143		15	max	0	1	<u>123 </u>	13	<u>.005 </u>	1 1.398e-2	3	NC	5	NC	3
144		13	min	0	15	184	2	.005	15 -1.44e-2	2	569.824	2	1850.175	
145		16	max	0	1	0	15	.005	1 1.286e-2	3	NC	5	NC	3
146		10	min	0	15	18	2	.005	15 -1.364e-2	2	575.48	2	2145.513	
147		17	max	0	1	.003	13	.064	1 1.174e-2	3	NC	5	NC	3
148			min	0	15	11	2	.003	15 -1.288e-2	2	716.248	2	3184.212	
149		18	max	0	1	.038	1	.027	1 1.062e-2	3	NC	4	NC	2
150			min	0	15	083	3	0	10 -1.212e-2	2	1281.471	2	7506.375	
151		19	max	0	1	.174	2	.008	3 9.502e-3	3	NC	1	NC	1
152			min	0	15	141	3	005	2 -1.136e-2	2	NC	1	NC	1
153	M2	1	max	.008	2	.01	2	.01	1 -1.063e-5		NC	1	NC	2
154			min	01	3	016	3	0	15 -2.256e-4		7437.462	2	7850.933	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
155		2	max	.007	2	.009	2	.009	1	-1.01e-5	<u>15</u>	NC	1	NC	2
156			min	01	3	016	3	0	15		1_	8736.538	2	8555.262	1
157		3	max	.007	2	.007	2	008	1	-9.565e-6 -2.03e-4		NC NC	1	NC 0202.42C	2
158 159		4	min	009 .006	2	016 .006	2	<u> </u>	15 1	-2.03e-4 -9.035e-6	<u>1</u> 15	NC NC	1	9393.126 NC	1
160		4	max min	008	3	015	3	007 0	15		1	NC NC	1	NC NC	1
161		5	max	.006	2	.004	2	.007	1	-8.504e-6		NC	1	NC	1
162			min	008	3	014	3	0	15		1	NC	1	NC	1
163		6	max	.006	2	.003	2	.006	1	-7.974e-6		NC	1	NC	1
164			min	007	3	014	3	0	15	-1.692e-4	1	NC	1	NC	1
165		7	max	.005	2	.002	2	.005	1	-7.443e-6	15	NC	1	NC	1
166			min	007	3	013	3	0	15	-1.579e-4	1	NC	1	NC	1
167		8	max	.005	2	0	2	.004	1	-6.913e-6	15	NC	1	NC	1
168			min	006	3	013	3	0	15	-1.467e-4	1	NC	1	NC	1
169		9	max	.004	2	0	2	.004	1	-6.382e-6	15	NC	1_	NC	1
170			min	006	3	012	3	0	15		1	NC	1	NC	1
171		10	max	.004	2	001	2	.003	1_	-5.852e-6	<u>15</u>	NC	_1_	NC	1_
172			min	005	3	011	3	0	15		_1_	NC	1_	NC	1
173		11	max	.003	2	002	15	.003	1	-5.321e-6		NC	1_	NC	1
174		40	min	004	3	01	3	0	15	-1.128e-4	1_	NC NC	1_	NC NC	1
175		12	max	.003	2	002	15	.002	1	-4.791e-6	<u>15</u>	NC NC	1	NC	1
176		40	min	004	2	009	3	0	15	-1.016e-4	1_	NC NC	1_	NC NC	1
177		13	max	.003		002	15	.002	1	-4.26e-6 -9.029e-5	<u>15</u>	NC NC	1	NC NC	1
178 179		14	min	003 .002	2	008 002	15	<u> </u>	15 1	-9.029e-5 -3.729e-6	15	NC NC	1	NC NC	1
180		14	max min	002	3	002	3	0	15		1	NC NC	1	NC NC	1
181		15	max	.002	2	00 <i>1</i>	15	0	1	-3.199e-6		NC	1	NC	1
182		10	min	002	3	006	3	0	15	-6.774e-5	1	NC	1	NC	1
183		16	max	.001	2	001	15	0	1	-2.668e-6		NC	1	NC	1
184		- ' '	min	002	3	005	4	0	15	-5.646e-5	1	NC	1	NC	1
185		17	max	0	2	0	15	0	1	-2.138e-6	15	NC	1	NC	1
186			min	001	3	003	4	0	15	-4.519e-5	1	NC	1	NC	1
187		18	max	0	2	0	15	0	1	-1.607e-6	15	NC	1	NC	1
188			min	0	3	002	4	0	15			NC	1	NC	1
189		19	max	0	1	0	1	0	1	-1.077e-6	15	NC	1	NC	1
190			min	0	1	0	1	0	1	-2.263e-5	1	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	4.445e-6	_1_	NC	_1_	NC	1
192			min	0	1	0	1	0	1	2.12e-7	15	NC	1_	NC	1
193		2	max	00	3	0	15	0	15		_1_	NC	_1_	NC	1
194			min	0	2	003	4	0	1	1.397e-6	15	NC	1_	NC	1
195		3	max	0	3	001	15	0		5.508e-5		NC	1	NC	1
196		4	min	0	2	006	4	0	1	2.581e-6		NC NC	1_	NC NC	1
197		4	max	.001	3	002	15	0	15		1_	NC NC	1	NC NC	1
198 199		5	min	001 .002	3	009 003	15	0	1 15	3.766e-6 1.057e-4		NC NC	1	NC NC	1
200		3	max min	002	2	003 012	4	<u> </u>	1	4.951e-6	15		4	NC NC	1
201		6	max	.002	3	012	15	0	15		1	NC	5	NC	1
202			min	002	2	015	4	0	1	6.136e-6		6806.115	4	NC	1
203		7	max	.003	3	004	15	0	15		1	NC	5	NC	1
204			min	002	2	018	4	0	1	7.32e-6		5853.356	4	NC	1
205		8	max	.003	3	005	15	0	1	1.817e-4	1	NC	5	NC	1
206			min	003	2	02	4	0	3	8.505e-6		5265.904	4	NC	1
207		9	max	.004	3	005	15	0	1	2.07e-4	1	NC	5	NC	1
208			min	003	2	021	4	0	12			4919.858	4	NC	1
209		10	max	.004	3	005	15	0	1	2.323e-4	1	NC	5	NC	1
210			min	004	2	022	4	0	12	1.087e-5	15	4755.21	4	NC	1
211		11	max	.005	3	005	15	.001	1	2.576e-4	1	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
212			min	004	2	022	4	0	15	1.206e-5	15	4747.794	4	NC	1
213		12	max	.005	3	005	15	.002	1	2.829e-4	1	NC	5_	NC	1_
214			min	004	2	021	4	0	15	1.324e-5	15	4900.017	4	NC	1
215		13	max	.006	3	005	15	.002	1	3.082e-4	1	NC	5	NC	1
216			min	005	2	02	4	0	15	1.443e-5	15	5242.986	4	NC	1
217		14	max	.006	3	004	15	.003	1	3.336e-4	1	NC	5	NC	1
218			min	005	2	018	4	0	15	1.561e-5	15	5852.506	4	NC	1
219		15	max	.007	3	004	15	.004	1	3.589e-4	1	NC	3	NC	1
220			min	006	2	015	4	0	15	1.68e-5	15	6896.13	4	NC	1
221		16	max	.007	3	003	15	.005	1	3.842e-4	1	NC	1	NC	1
222			min	006	2	012	4	0	15	1.798e-5	15	8779.303	4	NC	1
223		17	max	.008	3	002	15	.006	1	4.095e-4	1	NC	1	NC	1
224			min	006	2	009	4	0	15	1.917e-5	15	NC	1	NC	1
225		18	max	.008	3	001	15	.008	1	4.348e-4	1	NC	1	NC	1
226			min	007	2	005	1	0	15	2.035e-5	15	NC	1	NC	1
227		19	max	.009	3	0	10	.009	1	4.601e-4	1	NC	1	NC	1
228			min	007	2	002	3	0	15	2.154e-5	15	NC	1	NC	1
229	M4	1	max	.002	1	.007	2	0	15	1.693e-4	1	NC	1	NC	3
230			min	0	3	009	3	009	1	7.961e-6	15	NC	1	2697.69	1
231		2	max	.002	1	.006	2	0	15	1.693e-4	1	NC	1	NC	3
232			min	0	3	008	3	008	1	7.961e-6	15	NC	1	2927.152	1
233		3	max	.002	1	.006	2	0	15	1.693e-4	1	NC	1	NC	3
234			min	0	3	008	3	008	1	7.961e-6	15	NC	1	3200.648	1
235		4	max	.002	1	.006	2	0	15	1.693e-4	1	NC	1	NC	3
236			min	0	3	007	3	007	1	7.961e-6	15	NC	1	3529.547	1
237		5	max	.002	1	.005	2	0	15	1.693e-4	1	NC	1	NC	3
238			min	0	3	007	3	006	1	7.961e-6	15	NC	1	3929.303	1
239		6	max	.002	1	.005	2	0	15	1.693e-4	1	NC	1	NC	2
240			min	0	3	006	3	006	1	7.961e-6	15	NC	1	4421.348	1
241		7	max	.002	1	.005	2	0	15	1.693e-4	1	NC	1	NC	2
242			min	0	3	006	3	005	1	7.961e-6	15	NC	1	5036.108	1
243		8	max	.001	1	.004	2	0	15	1.693e-4	1	NC	1	NC	2
244		Ť	min	0	3	005	3	004	1	7.961e-6	15	NC	1	5817.945	1
245		9	max	.001	1	.004	2	0	15	1.693e-4	1	NC	1	NC	2
246		1	min	0	3	005	3	004	1	7.961e-6	15	NC	1	6833.635	1
247		10	max	.001	1	.003	2	<u>.004</u>	15	1.693e-4	1	NC	1	NC	2
248		10	min	0	3	004	3	003	1	7.961e-6	15	NC	1	8187.536	1
249		11	max	.001	1	.003	2	<u>003</u>	15	1.693e-4	1	NC	1	NC	1
250			min	0	3	004	3	002	1	7.961e-6	15	NC	1	NC NC	1
251		12	max	0	1	.003	2	0	15	1.693e-4	1	NC	1	NC	1
252		12	min	0	3	003	3	002	1	7.961e-6		NC	1	NC	1
253		13	max	0	1	.002	2	0	15		1	NC	1	NC	1
254		13	min	0	3	003	3	001	1	7.961e-6		NC	1	NC	1
255		14		0	1	.002	2	<u>001</u> 0	15	1.693e-4	1	NC	1	NC	1
256		14	max	0	3	002	3	001	1	7.961e-6	15	NC	1	NC	1
257		15	min	0	1	.002	2	<u>001</u> 0	15	1.693e-4	1	NC NC	1	NC NC	1
		15	max		3										
258		10	min	0		002	3	0	1	7.961e-6	15	NC NC	1	NC NC	1
259		16	max	0	1	.001	2	0	15	1.693e-4	4.5	NC NC	1	NC	1
260		47	min	0	3	001	3	0	1	7.961e-6	15	NC NC	1_	NC NC	1
261		17	max	0	1	0	2	0	15	1.693e-4	1	NC	1_	NC NC	1
262		40	min	0	3	0	3	0	1	7.961e-6	15	NC NC	1_	NC NC	1
263		18	max	0	1	0	2	0	15	1.693e-4	1	NC	1	NC NC	1
264		40	min	0	3	0	3	0	1	7.961e-6		NC	1_	NC	1
265		19	max	0	1	0	1	0	1	1.693e-4	1	NC	1	NC	1
266	140		min	0	1	0	1	0	1	7.961e-6	15	NC	1	NC	1
267	M6	1	max	.024	2	.036	2	0	1	0	1	NC To	3	NC	1
268			min	032	3	05	3	0	1	0	1	2139.79	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
269		2	max	.022	2	.033	2	0	1	0	_1_	NC	3	NC	1
270			min	03	3	048	3	0	1	0	1	2353.3	2	NC	1
271		3	max	.021	2	.03	2	0	1	0	_1_	NC	3	NC	1
272			min	028	3	045	3	0	1	0	1	2611.83	2	NC	1
273		4	max	.02	2	.026	2	0	1	0	_1_	NC	3	NC	1
274			min	027	3	042	3	0	1	0	1	2928.425	2	NC	1
275		5	max	.018	2	.023	2	0	1	0	1	NC	3	NC	1
276			min	025	3	04	3	0	1	0	1	3321.387	2	NC	1
277		6	max	.017	2	.02	2	0	1	0	1	NC	3	NC	1
278			min	023	3	037	3	0	1	0	1	3817.042	2	NC	1
279		7	max	.016	2	.017	2	0	1	0	1	NC	1	NC	1
280			min	021	3	034	3	0	1	0	1	4454.391	2	NC	1
281		8	max	.015	2	.015	2	0	1	0	1	NC	1	NC	1
282			min	02	3	031	3	0	1	0	1	5293.246	2	NC	1
283		9	max	.013	2	.012	2	0	1	0	1	NC	1	NC	1
284			min	018	3	028	3	0	1	0	1	6429.265	2	NC	1
285		10	max	.012	2	.01	2	0	1	0	1	NC	1	NC	1
286			min	016	3	026	3	0	1	0	1	8023.484	2	NC	1
287		11	max	.011	2	.007	2	0	1	0	1	NC	1	NC	1
288			min	014	3	023	3	0	1	0	1	NC	1	NC	1
289		12	max	.009	2	.006	2	0	1	0	1	NC	1	NC	1
290			min	012	3	02	3	0	1	0	1	NC	1	NC	1
291		13	max	.008	2	.004	2	0	1	0	1	NC	1	NC	1
292			min	011	3	017	3	0	1	0	1	NC	1	NC	1
293		14	max	.007	2	.002	2	0	1	0	1	NC	1	NC	1
294			min	009	3	014	3	0	1	0	1	NC	1	NC	1
295		15	max	.005	2	.001	2	0	1	0	1	NC	1	NC	1
296		1.0	min	007	3	011	3	0	1	0	1	NC	1	NC	1
297		16	max	.004	2	0	2	0	1	0	1	NC	1	NC	1
298		'	min	005	3	009	3	0	1	0	1	NC	1	NC	1
299		17	max	.003	2	<u>.000</u>	2	0	1	0	1	NC	1	NC	1
300			min	004	3	006	3	0	1	0	1	NC	1	NC	1
301		18	max	.001	2	0	2	0	1	0	1	NC	1	NC	1
302		''	min	002	3	003	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	<u>.005</u>	1	0	1	0	1	NC	1	NC	1
304		13	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	IVII		min	0	1	0	1	0	1	0	1	NC	1	NC	1
307		2	max	.001	3	0	15	0	1	0	1	NC	1	NC	1
308			min	001	2	004	3	0	1	0	1	NC	1	NC	1
309		3	max	.003	3	004	15	0	1	0	1	NC	1	NC	1
310		-	min	003	2	007	3	0	1	0	1	NC	1	NC	1
311		4	max	.004	3	007	15	0	1	0	1	NC	1	NC	1
312		4	min	004	2	002 011	3	0	1	0	1	NC	1	NC	1
313		5		.006	3	003	15	0	1	0	1	NC	1	NC	1
314		- 5	max min	006	2	003 014	3	0	1	0	1	8270.23	3	NC	1
315		6		.007	3	014 004	15	0	1	0	1	NC	1	NC	1
		-6	max		2		3		1		1	6921.183	4	NC NC	
316		7	min	007		016		0		0	•				1
317		7	max	.009	3	004	15	0	1	0	1	NC 5044.467	2	NC NC	1
318		0	min	008	2	019	3	0		0	1	5944.467	4	NC NC	1
319		8	max	.01	3	005	15	0	1	0	1	NC F242.0F4	2	NC NC	1
320			min	01	2	02	3	0	1	0	1_	5342.054	4	NC NC	1
321		9	max	.012	3	005	15	0	1	0	1	NC	5	NC NC	1
322		40	min	011	2	021	3	0	1	0	1_	4986.476	4	NC NC	1
323		10	max	.013	3	005	15	0	1	0	1	NC 4045 005	5	NC NC	1
324		4.4	min	012	2	022	3	0	1	0	1_	4815.925	4	NC NC	1
325		11	max	.015	3	005	15	0	1	0	_1_	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
326			min	014	2	022	3	0	1	0	1	4805.322	4	NC	1
327		12	max	.016	3	005	15	0	1	0	1	NC	5	NC	1
328			min	015	2	022	3	0	1	0	<u>1</u>	4956.696	4_	NC	1
329		13	max	.017	3	005	15	0	1	0	_1_	NC	_5_	NC	1
330		4.4	min	017	2	021	3	0	1	0	_1_	5301.209	4_	NC	1
331		14	max	.019	3	004	15	0	1	0	1	NC 5045.040	2	NC NC	1
332		45	min	018	2	019	3	0	1	0	1_	5915.248	4	NC	1
333		15	max	.02	3	004	15	0	1	0	1	NC cocz coc	1_	NC NC	1
334		4.0	min	019	2	017	3	0	1	0	1_	6967.896	4	NC NC	1
335		16	max	.022 021	3	003	15	0	1	0	<u>1</u> 1	NC 8868.498	1_1	NC NC	1
336		17	min	.023	3	015 002			1		•	NC	<u>4</u> 1	NC NC	1
337		17	max	022	2	002 012	15	0	1	0	1	NC NC	1	NC NC	1
339		18	min	.025	3	012 001	15	0	1	0	1	NC NC	1	NC NC	1
340		10	max	024	2	009	3	0	1	0	1	NC	1	NC	1
341		19	max	.026	3	<u>009</u> 0	10	0	1	0	1	NC	1	NC	1
342		13	min	025	2	006	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.006	1	.024	2	0	1	0	1	NC	1	NC	1
344	IVIO	'	min	0	3	027	3	0	1	0	1	NC	1	NC	1
345		2	max	.006	1	.023	2	0	1	0	1	NC	1	NC	1
346		_	min	0	3	025	3	0	1	0	1	NC	1	NC	1
347		3	max	.006	1	.022	2	0	1	0	1	NC	1	NC	1
348			min	0	3	024	3	0	1	0	1	NC	1	NC	1
349		4	max	.005	1	.02	2	0	1	0	1	NC	1	NC	1
350			min	0	3	022	3	0	1	0	1	NC	1	NC	1
351		5	max	.005	1	.019	2	0	1	0	1	NC	1	NC	1
352			min	0	3	021	3	0	1	0	1	NC	1	NC	1
353		6	max	.005	1	.018	2	0	1	0	1	NC	1	NC	1
354			min	0	3	019	3	0	1	0	1	NC	1	NC	1
355		7	max	.004	1	.016	2	0	1	0	1_	NC	1_	NC	1_
356			min	0	3	018	3	0	1	0	1	NC	1_	NC	1
357		8	max	.004	1	.015	2	0	1	0	1	NC	1_	NC	1
358			min	0	3	016	3	0	1	0	1_	NC	1_	NC	1
359		9	max	.003	1	.013	2	0	1	0	_1_	NC	_1_	NC	1
360			min	0	3	015	3	0	1	0	1_	NC	1_	NC	1
361		10	max	.003	1	.012	2	0	1	0	1_	NC	_1_	NC	1
362			min	0	3	013	3	0	1	0	1_	NC	1_	NC	1
363		11	max	.003	1	.011	2	0	1	0	1	NC		NC	1
364		40	min	0	3	012	3	0	1	0	1_	NC	1_	NC	1
365		12	max	.002	1	.009	2	0	1	0	1_	NC NC	1_	NC NC	1
366		40	min		3	01	3	0	1	0	1	NC NC	1	NC NC	1
367		13	max	.002	3	.008	2	0	1	0	1	NC NC	1	NC NC	1
368		1.1	min	003	1	009 007	2	0	1	0	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	1
369		14	max	.002	3	.007	3	<u>0</u> 	1	0	1	NC NC	1	NC NC	1
370 371		15	min max	.001	1	007 .005	2	0	1	0	<u>1</u> 1	NC NC	1	NC NC	1
372		10	min	0	3	005 006	3	0	1	0	1	NC NC	1	NC NC	1
373		16	max	.001	1	006 .004	2	0	1	0	1	NC NC	1	NC NC	1
374		10	min	0	3	004 004	3	0	1	0	1	NC NC	1	NC NC	1
375		17	max	0	1	.003	2	0	1	0	1	NC NC	1	NC NC	1
376		17	min	0	3	003	3	0	1	0	1	NC NC	1	NC NC	1
377		18	max	0	1	.003	2	0	1	0	1	NC	1	NC	1
378		1.0	min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		1.5	min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.008	2	.01	2	0	15	2.256e-4	1	NC	1	NC	2
382			min	01	3	016	3	01	1	1.063e-5	15	7437.462	2	7850.933	
					_		_						-		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
383		2	max	.007	2	.009	2	0	15	2.143e-4	_1_	NC	_1_	NC	2
384			min	01	3	016	3	009	1	1.01e-5		8736.538	2	8555.262	1
385		3	max	.007	2	.007	2	0	15	2.03e-4	_1_	NC	_1_	NC	2
386			min	009	3	016	3	008	1	9.565e-6	15	NC	1_	9393.126	1
387		4	max	.006	2	.006	2	0	15	1.918e-4	_1_	NC	_1_	NC	1
388			min	008	3	015	3	007	1	9.035e-6	15	NC	1	NC	1
389		5	max	.006	2	.004	2	0	15	1.805e-4	_1_	NC	_1_	NC	1
390			min	008	3	014	3	007	1	8.504e-6	15	NC	1_	NC	1
391		6	max	.006	2	.003	2	0	15	1.692e-4	1_	NC	1_	NC	1
392			min	007	3	014	3	006	1	7.974e-6	15	NC	1_	NC	1
393		7	max	.005	2	.002	2	0	15	1.579e-4	_1_	NC	_1_	NC	1
394			min	007	3	013	3	005	1	7.443e-6	15	NC	1	NC	1
395		8	max	.005	2	0	2	0	15	1.467e-4	_1_	NC	_1_	NC	1
396			min	006	3	013	3	004	1	6.913e-6	15	NC	1_	NC	1
397		9	max	.004	2	0	2	0	15	1.354e-4	1_	NC	_1_	NC	1
398			min	006	3	012	3	004	1	6.382e-6	15	NC	1	NC	1
399		10	max	.004	2	001	2	0	15	1.241e-4	1_	NC	1_	NC	1
400			min	005	3	011	3	003	1	5.852e-6	15	NC	1	NC	1
401		11	max	.003	2	002	15	0	15	1.128e-4	1_	NC	1	NC	1
402			min	004	3	01	3	003	1	5.321e-6	15	NC	1	NC	1
403		12	max	.003	2	002	15	0	15	1.016e-4	1	NC	1	NC	1
404			min	004	3	009	3	002	1	4.791e-6	15	NC	1	NC	1
405		13	max	.003	2	002	15	0	15	9.029e-5	1	NC	1	NC	1
406			min	003	3	008	3	002	1	4.26e-6	15	NC	1	NC	1
407		14	max	.002	2	002	15	0	15	7.901e-5	1	NC	1	NC	1
408			min	003	3	007	3	001	1	3.729e-6	15	NC	1	NC	1
409		15	max	.002	2	001	15	0	15	6.774e-5	1	NC	1	NC	1
410			min	002	3	006	3	0	1	3.199e-6	15	NC	1	NC	1
411		16	max	.001	2	001	15	0	15	5.646e-5	1	NC	1	NC	1
412			min	002	3	005	4	0	1	2.668e-6	15	NC	1	NC	1
413		17	max	0	2	0	15	0	15	4.519e-5	1	NC	1	NC	1
414			min	001	3	003	4	0	1	2.138e-6	15	NC	1	NC	1
415		18	max	0	2	0	15	0	15	3.391e-5	1	NC	1	NC	1
416			min	0	3	002	4	0	1	1.607e-6	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	2.263e-5	1	NC	1	NC	1
418			min	0	1	0	1	0	1	1.077e-6	15	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	-2.12e-7	15	NC	1	NC	1
420			min	0	1	0	1	0	1	-4.445e-6	1	NC	1	NC	1
421		2	max	0	3	0	15	0	1	-1.397e-6	15	NC	1	NC	1
422			min	0	2	003	4	0	15	-2.976e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	0	1	-2.581e-6	_	NC	1	NC	1
424			min	0	2	006	4	0	15	-5.508e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	0	1	-3.766e-6		NC	1	NC	1
426			min	001	2	009	4	0		-8.039e-5	1	NC	1	NC	1
427		5	max	.002	3	003	15	0	1	-4.951e-6	•	NC	1	NC	1
428			min	002	2	012	4	0		-1.057e-4	1	8387.361	4	NC	1
429		6	max	.002	3	004	15	0	1	-6.136e-6	15	NC	5	NC	1
430			min	002	2	015	4	0	15	-1.31e-4	1	6806.115	4	NC	1
431		7	max	.003	3	004	15	0	1	-7.32e-6	15	NC	5	NC	1
432			min	002	2	004 018	4	0	15	-1.563e-4	1	5853.356	4	NC	1
433		8	max	.002	3	015 005	15	0	3	-8.505e-6		NC	5	NC	1
434		0	min	003	2	005 02	4	0	1	-0.303e-0	1	5265.904	4	NC	1
435		9		.003	3	02 005	15	0	12	-9.69e-6	15	NC	5	NC NC	1
436		3	max	003	2	005 021	4	0	1	-9.09e-6 -2.07e-4	1	4919.858	4	NC NC	1
436		10	min	.003	3	021 005	15	0	12	-2.07e-4 -1.087e-5	•	NC	_ 4 _	NC NC	1
437		10	max	004	2	005 022	4	0	1	-1.087e-5	1	4755.21	<u>5</u> 4	NC NC	1
		11	min				_				_				
439		11	max	.005	3	005	15	0	15	-1.206e-5	15	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
440			min	004	2	022	4	001	1	-2.576e-4	1	4747.794	4	NC	1
441		12	max	.005	3	005	15	0	15	-1.324e-5	15	NC	5	NC	1
442			min	004	2	021	4	002	1	-2.829e-4	1_	4900.017	4	NC	1
443		13	max	.006	3	005	15	0	15	-1.443e-5	15	NC	5	NC	1
444			min	005	2	02	4	002	1	-3.082e-4	1	5242.986	4	NC	1
445		14	max	.006	3	004	15	0	15		15	NC	5	NC	1
446			min	005	2	018	4	003	1	-3.336e-4	1	5852.506	4	NC	1
447		15	max	.007	3	004	15	0	15	-1.68e-5	15	NC	3	NC	1
448			min	006	2	015	4	004	1	-3.589e-4	1	6896.13	4	NC	1
449		16	max	.007	3	003	15	0	15	-1.798e-5	15	NC	1	NC	1
450			min	006	2	012	4	005	1	-3.842e-4	1	8779.303	4	NC	1
451		17	max	.008	3	002	15	0	15	-1.917e-5	15	NC	1	NC	1
452			min	006	2	009	4	006	1	-4.095e-4	1	NC	1	NC	1
453		18	max	.008	3	001	15	0	15	-2.035e-5	15	NC	1	NC	1
454			min	007	2	005	1	008	1	-4.348e-4	1	NC	1	NC	1
455		19	max	.009	3	0	10	0	15	-2.154e-5	15	NC	1	NC	1
456			min	007	2	002	3	009	1	-4.601e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.007	2	.009	1	-7.961e-6	15	NC	1	NC	3
458			min	0	3	009	3	0	15	-1.693e-4	1	NC	1	2697.69	1
459		2	max	.002	1	.006	2	.008	1	-7.961e-6	15	NC	1	NC	3
460			min	0	3	008	3	0	15		1	NC	1	2927.152	1
461		3	max	.002	1	.006	2	.008	1	-7.961e-6	15	NC	1	NC	3
462			min	0	3	008	3	0	15	-1.693e-4	1	NC	1	3200.648	1
463		4	max	.002	1	.006	2	.007	1	-7.961e-6	15	NC	1	NC	3
464			min	0	3	007	3	0	15	-1.693e-4	1	NC	1	3529.547	1
465		5	max	.002	1	.005	2	.006	1	-7.961e-6	15	NC	1	NC	3
466			min	0	3	007	3	0	15	-1.693e-4	1	NC	1	3929.303	1
467		6	max	.002	1	.005	2	.006	1	-7.961e-6	15	NC	1	NC	2
468			min	0	3	006	3	0	15		1	NC	1	4421.348	1
469		7	max	.002	1	.005	2	.005	1	-7.961e-6	15	NC	1	NC	2
470			min	0	3	006	3	0	15		1	NC	1	5036.108	
471		8	max	.001	1	.004	2	.004	1	-7.961e-6	15	NC	1	NC	2
472			min	0	3	005	3	0	15	-1.693e-4	1	NC	1	5817.945	1
473		9	max	.001	1	.004	2	.004	1	-7.961e-6	15	NC	1	NC	2
474			min	0	3	005	3	0	15	-1.693e-4	1	NC	1	6833.635	1
475		10	max	.001	1	.003	2	.003	1	-7.961e-6	15	NC	1	NC	2
476			min	0	3	004	3	0	15	-1.693e-4	1	NC	1	8187.536	
477		11	max	.001	1	.003	2	.002	1	-7.961e-6	15	NC	1	NC	1
478			min	0	3	004	3	0	15		1	NC	1	NC	1
479		12	max	0	1	.003	2	.002	1		15	NC	1	NC	1
480			min		3	003	3	0	15	-1.693e-4	1	NC	1	NC	1
481		13	max	0	1	.002	2	.001	1	-7.961e-6		NC	1	NC	1
482			min	0	3	003	3	0	15		1	NC	1	NC	1
483		14	max	0	1	.002	2	.001	1	-7.961e-6	15	NC	1	NC	1
484			min	0	3	002	3	0	15	-1.693e-4	1	NC	1	NC	1
485		15	max	0	1	.002	2	0	1	-7.961e-6		NC	1	NC	1
486		1.0	min	0	3	002	3	0		-1.693e-4	1	NC	1	NC	1
487		16	max	0	1	.001	2	0	1	-7.961e-6		NC	1	NC	1
488			min	0	3	001	3	0		-1.693e-4	1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-7.961e-6	15	NC	1	NC	1
490			min	0	3	0	3	0		-1.693e-4	1	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-7.961e-6		NC	1	NC	1
492		1.5	min	0	3	0	3	0	15	-1.693e-4	1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.961e-6	•	NC	1	NC	1
494		13	min	0	1	0	1	0	1	-1.693e-4	1	NC	1	NC	1
495	M1	1	max	.011	3	.197	2	0	1	8.817e-3	2	NC	1	NC	1
496	IVII		min	006	2	051	3	0		-1.912e-2	3	NC	1	NC	1
430			11/111	000		001	J	U	10	-1.31Z C- Z	J	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio) LC
497		2	max	.011	3	.095	2	0	15	4.317e-3	2	NC	5	NC	1
498			min	006	2	023	3	007	1	-9.49e-3	3	1335.586	2	NC	1
499		3	max	.011	3	.017	3	0	15	1.139e-5	10	NC	5	NC	1
500			min	006	2	013	2	01	1	-1.95e-4	1	646.355	2	NC	1
501		4	max	.011	3	.078	3	0	15	4.195e-3	2		15	NC	1
502			min	006	2	133	2	009	1	-4.365e-3	3	410.869	2	NC	1
503		5	max	.01	3	.154	3	0	15		2		15	NC	1
504		—	min	006	2	258	2	006	1	-8.622e-3	3	298.145	2	NC	1
505		6		.01	3	.236	3	<u>.000</u>	15	1.264e-2	2		15	NC	1
506		- 0	max	006	2	378	2	003	1	-1.288e-2		235.782	2	NC	1
		7	min						•		3				-
507			max	.01	3	.313	3	0	1	1.686e-2	2		15	NC NC	1
508			min	006	2	<u>485</u>	2	0	3	-1.714e-2	3	198.852	2	NC NC	1
509		8	max	.01	3	.378	3	0	1	2.109e-2	2		15	NC_	1
510			min	006	2	57	2	0	15	-2.139e-2	3	176.962	2	NC	1
511		9	max	.01	3	.42	3	0	15	2.375e-2	2		15	<u>NC</u>	1
512			min	006	2	623	2	0	1	-2.189e-2	3	165.538	2	NC	1
513		10	max	.009	3	.435	3	0	1	2.536e-2	2	5810.185	15	NC	1
514			min	005	2	641	2	0	15	-1.986e-2	3	162.193	2	NC	1
515		11	max	.009	3	.425	3	0	1	2.698e-2	2	5934.225	15	NC	1
516			min	005	2	623	2	0	15		3	166.137	2	NC	1
517		12	max	.009	3	.389	3	0	15	2.59e-2	2		15	NC	1
518			min	005	2	567	2	0	1	-1.539e-2	3	178.735	2	NC	1
519		13	max	.009	3	.332	3	0	15		2		15	NC	1
520		10	min	005	2	478	2	0	1	-1.231e-2	3	203.063	2	NC	1
521		14		.003	3	.258	3	.002	1	1.566e-2	2		15	NC	1
522		14	max min	005	2	367	2	<u>.002</u>	15	-9.235e-3	3	244.632	2	NC NC	1
		4.5													
523		15	max	.008	3	.175	3	.006	1	1.054e-2	2		15	NC NC	1
524		1.0	min	005	2	<u>245</u>	2	0	15	-6.157e-3	3	316.086	2	NC NC	1
525		16	max	.008	3	.089	3	.008	1	5.421e-3	2		15	NC_	1
526			min	005	2	121	2	0	15	-3.079e-3	3	448.066	2	NC	1
527		17	max	.008	3	.006	3	.009	1	6.076e-4	_1_	NC	5	NC	1
528			min	005	2	007	2	0	15	-7.173e-7	3	728.982	2	NC	1
529		18	max	.008	3	.089	2	.007	1	7.364e-3	2	NC	5	NC	1
530			min	005	2	07	3	0	15	-2.642e-3	3	1543.949	2	NC	1
531		19	max	.008	3	.174	2	0	15	1.464e-2	2	NC	1	NC	1
532			min	005	2	141	3	0	1	-5.385e-3	3	NC	1	NC	1
533	M5	1	max	.033	3	.361	2	0	1	0	1	NC	1	NC	1
534			min	023	2	027	3	0	1	0	1	NC	1	NC	1
535		2	max	.033	3	.173	2	0	1	0	1	NC	5	NC	1
536			min	023	2	008	3	0	1	0	1	726.996	2	NC	1
537		3	max	.033	3	.051	3	0	1	0	1		15	NC	1
		3						_	<u> </u>	_					
538		A	min	023	2	041	2	0	1	0	1_1	340.194	2	NC NC	1
539		4	max	.032	3	.183	3	0	1	0	1		15	NC NC	1
540		-	min	023	2	298	2	0	1	0	1_	207.014	2	NC NC	1
541		5	max	.032	3	.366	3	0	1	0	_1_		15	NC_	1
542			min	023	2	579	2	0	1	0	1_	144.916	2	NC	1
543		6	max	.031	3	.572	3	0	1	0	_1_		15	<u>NC</u>	1
544			min	022	2	859	2	0	1	0	1_	111.547	2	NC	1
545		7	max	.03	3	.773	3	0	1	0	1	3671.553	15	NC	1
546			min	022	2	-1.114	2	0	1	0	1	92.257	2	NC	1
547		8	max	.03	3	.943	3	0	1	0	1		15	NC	1
548			min	021	2	-1.319	2	0	1	0	1	81.039	2	NC	1
549		9	max	.029	3	1.052	3	0	1	0	1		15	NC	1
550		Ť	min	021	2	-1.45	2	0	1	0	1	75.28	2	NC	1
551		10	max	.028	3	1.091	3	0	1	0	1		15	NC	1
552		10	min	02	2	-1.494	2	0	1	0	1	73.601	2	NC	1
		11			3		3		1		1				
553		11	max	.027	」 ろ	1.064	ა	0	<u> </u>	0		2988.741	15	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

5556		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
				min	02	2		2		1	•	1				1
558	555		12	max	.027		.971	3	0	1	0	1_	3220.272	15	NC	1
558	556			min	02				0	1	0	1	82.03	2		1
569	557		13	max	.026	3		3	0	1	0	1_	3672.403	15		1
Fig.				min					0	1	0	1				1
February February			14	_				3	0	1	0	_1_		15		_
Face	560			min	019		829		0	1	0	1	117.428	2	NC	1
F653	561		15	max	.025		.424		0	1	0	1_	5810.819	15		1
F664	562			min				2	0	1	0	1		2		1
565	563		16	max					0	1	0	1	8355.745	15		1
Sefe	564			min	018		26		0	1	0	1	236.963	2	NC	1
S68	565		17	max	.023	3	.017	3	0	1	0	1	NC	15	NC	1
Fight	566			min	018	2	021	2	0	1	0	1	415.623	2	NC	1
See	567		18	max	.023	3	.155	2	0	1	0	1	NC	5	NC	1
S70	568			min	018	2	149	3	0	1	0	1	936.034	2	NC	1
S71	569		19	max	.023	3	.294	2	0	1	0	1	NC	1	NC	1
S72	570			min	018	2	297	3	0	1	0	1	NC	1	NC	1
573	571	M9	1	max	.011	3	.197	2	0	15	1.912e-2	3	NC	1	NC	1
573	572			min	006	2	051	3	0	1	-8.817e-3	2	NC	1	NC	1
S74			2	max	.011	3	.095	2	.007	1	9.49e-3	3	NC	5	NC	1
S76	574			min	006	2	023	3	0	15		2	1335.586	2	NC	1
578	575		3	max	.011	3	.017	3	.01	1		1	NC	5	NC	1
578	576			min	006	2	013	2	0	15	-1.139e-5	10	646.355	2	NC	1
S78	577		4	max	.011	3	.078	3	.009	1		3	NC	15	NC	1
579										15						1
S80			5		.01	3	.154	3	.006	1	8.622e-3	3	NC	15	NC	1
581 6 max .01 3 .236 3 .003 1 1.288e-2 3 8429.535 15 NC 1 582 min 006 2 378 2 0 15 -1.264e-2 2 235.782 2 NC 1 583 7 max .01 3 .313 3 0 3 1.714e-2 3 7117.988 15 NC 1 584 min 006 2 485 2 0 1 -1.686e-2 2 188.852 2 NC 1 587 9 max .01 3 .42 3 0 1 -2.109e-2 2 176.962 2 NC 1 587 9 max .01 3 .42 3 0 1 -2.109e-2 2 165.538 2 NC 1 588 min 006 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td>NC</td><td>1</td></td<>										15					NC	1
S82			6			3	.236	3	.003	1		3	8429.535	15	NC	1
583 7 max .01 3 .313 3 0 3 1.714e-2 3 7117.988 15 NC 1 584 min 006 2 485 2 0 1 -1.686e-2 2 198.852 2 NC 1 585 8 max .01 3 .378 3 0 15 2.139e-2 3 6341.245 15 NC 1 586 min 006 2 57 2 0 1 -2.109e-2 2 176.962 2 NC 1 587 9 max .01 3 .42 3 0 1 2.189e-2 3 5934.576 15 NC 1 588 min 006 2 623 2 0 15 2.375e-2 2 165.538 2 NC 1 599 min 005 2 641				min	006					15		2			NC	1
584 min 006 2 485 2 0 1 -1.686e-2 2 198.852 2 NC 1 585 8 max .01 3 .378 3 0 15 2.139e-2 3 6341.245 15 NC 1 587 9 max .01 3 .42 3 0 1 2.189e-2 3 5934.576 15 NC 1 588 min 006 2 623 2 0 15 -2.375e-2 2 165.538 2 NC 1 589 10 max .009 3 .435 3 0 15 1.986e-2 3 5810.185 15 NC 1 590 min 005 2 641 2 0 1 -2.536e-2 2 16C.193 2 NC 1 591 11 max .009 3			7						0	3		3		15		1
585 8 max .01 3 .378 3 0 15 2.139e-2 3 6341.245 15 NC 1 586 min 006 2 57 2 0 1 -2.109e-2 2 176.962 2 NC 1 587 9 max .01 3 .42 3 0 1 2.189e-2 3 5934.576 15 NC 1 588 min 006 2 623 2 0 15 -2.375e-2 2 165.538 2 NC 1 589 10 max .009 3 .435 3 0 15 1.986e-2 3 5810.185 15 NC 1 590 min 005 2 641 2 0 1 -2.536e-2 2 166.137 NC 1 591 min 005 2 623 2				min	006	2		2	0	1		2		2	NC	1
586 min 006 2 57 2 0 1 -2.109e-2 2 176.962 2 NC 1 587 9 max .01 3 .42 3 0 1 2.189e-2 3 5934.576 15 NC 1 588 min 006 2 623 2 0 15 -2.375e-2 2 165.538 2 NC 1 589 10 max .009 3 .435 3 0 15 1.986e-2 3 5810.185 15 NC 1 590 min 005 2 641 2 0 1 -2.536e-2 2 162.193 2 NC 1 591 11 max .009 3 .389 3 0 15 1.784e-2 3 5934.225 15 NC 1 592 min 005 2 623			8	max	.01	3	.378	3	0	15	2.139e-2	3		15	NC	1
588 min 006 2 623 2 0 15 -2.375e-2 2 165.538 2 NC 1 589 10 max .009 3 .435 3 0 15 1.986e-2 3 5810.185 15 NC 1 590 min 005 2 641 2 0 1 -2.536e-2 2 162.193 2 NC 1 591 11 max .009 3 .425 3 0 15 1.784e-2 3 5934.225 15 NC 1 592 min 005 2 -623 2 0 1 1.784e-2 2 166.137 2 NC 1 593 12 max .009 3 .389 3 0 1 1.539e-2 2 178.735 2 NC 1 594 min 005 2 478				min	006	2	57	2	0	1	-2.109e-2	2	176.962	2	NC	1
588 min 006 2 623 2 0 15 -2.375e-2 2 165.538 2 NC 1 589 10 max .009 3 .435 3 0 15 1.986e-2 3 5810.185 15 NC 1 590 min 005 2 641 2 0 1 -2.536e-2 2 162.193 2 NC 1 591 11 max .009 3 .425 3 0 15 1.784e-2 2 166.137 2 NC 1 592 min 005 2 623 2 0 1 2.698e-2 2 166.137 2 NC 1 593 12 max .009 3 .389 3 0 1 1.539e-2 2 178.735 2 NC 1 594 min 005 2 567	587		9	max	.01	3	.42	3	0	1	2.189e-2	3	5934.576	15	NC	1
589 10 max .009 3 .435 3 0 15 1.986e-2 3 5810.185 15 NC 1 590 min 005 2 641 2 0 1 -2.536e-2 2 162.193 2 NC 1 591 11 max .009 3 .425 3 0 15 1.784e-2 3 5934.225 15 NC 1 592 min 005 2 623 2 0 1 -2.698e-2 2 166.137 2 NC 1 593 12 max .009 3 .389 3 0 1 1.539e-2 2 178.735 2 NC 1 594 min 005 2 567 2 0 15 -2.59e-2 2 178.735 2 NC 1 595 13 max .008 3				min	006	2	623	2	0	15	-2.375e-2	2		2	NC	1
590 min 005 2 641 2 0 1 -2.536e-2 2 162.193 2 NC 1 591 11 max .009 3 .425 3 0 15 1.784e-2 3 5934.225 15 NC 1 592 min 005 2 623 2 0 1 -2.698e-2 2 166.137 2 NC 1 593 12 max .009 3 .389 3 0 1 1.539e-2 3 6340.497 15 NC 1 594 min 005 2 567 2 0 15 -2.59e-2 2 178.735 2 NC 1 595 13 max .009 3 .332 3 0 1 1.231e-2 3 7116.672 15 NC 1 596 min 005 2 478 <td></td> <td></td> <td>10</td> <td></td> <td>.009</td> <td>3</td> <td>.435</td> <td>3</td> <td>0</td> <td>15</td> <td></td> <td>3</td> <td></td> <td>15</td> <td>NC</td> <td>1</td>			10		.009	3	.435	3	0	15		3		15	NC	1
592 min 005 2 623 2 0 1 -2.698e-2 2 166.137 2 NC 1 593 12 max .009 3 .389 3 0 1 1.539e-2 3 6340.497 15 NC 1 594 min 005 2 567 2 0 15 -2.59e-2 2 178.735 2 NC 1 595 13 max .009 3 .332 3 0 1 1.231e-2 3 7116.672 15 NC 1 596 min 005 2 478 2 0 15 -2.078e-2 2 203.063 2 NC 1 597 14 max .008 3 .258 3 0 15 9.235e-3 3 8427.302 15 NC 1 598 min 005 2 367 <td></td> <td></td> <td></td> <td>min</td> <td>005</td> <td>2</td> <td>641</td> <td>2</td> <td>0</td> <td>1</td> <td></td> <td>2</td> <td>162.193</td> <td>2</td> <td>NC</td> <td>1</td>				min	005	2	641	2	0	1		2	162.193	2	NC	1
592 min 005 2 623 2 0 1 -2.698e-2 2 166.137 2 NC 1 593 12 max .009 3 .389 3 0 1 1.539e-2 3 6340.497 15 NC 1 594 min 005 2 567 2 0 15 -2.59e-2 2 178.735 2 NC 1 595 13 max .009 3 .332 3 0 1 1.231e-2 3 7116.672 15 NC 1 596 min 005 2 478 2 0 15 -2.078e-2 2 203.063 2 NC 1 597 14 max .008 3 .258 3 0 15 9.235e-3 3 8427.302 15 NC 1 598 min 005 2 367 <td></td> <td></td> <td>11</td> <td></td> <td>.009</td> <td>3</td> <td>.425</td> <td>3</td> <td>0</td> <td>15</td> <td></td> <td>3</td> <td></td> <td>15</td> <td>NC</td> <td>1</td>			11		.009	3	.425	3	0	15		3		15	NC	1
593 12 max .009 3 .389 3 0 1 1.539e-2 3 6340.497 15 NC 1 594 min 005 2 567 2 0 15 -2.59e-2 2 178.735 2 NC 1 595 13 max .009 3 .332 3 0 1 1.231e-2 3 7116.672 15 NC 1 596 min 005 2 478 2 0 15 -2.078e-2 2 203.063 2 NC 1 597 14 max .008 3 .258 3 0 15 9.235e-3 3 8427.302 15 NC 1 598 min 005 2 367 2 002 1 -1.566e-2 2 244.632 2 NC 1 600 min 005 2 24				min	005		623		0	1		2				1
594 min 005 2 567 2 0 15 -2.59e-2 2 178.735 2 NC 1 595 13 max .009 3 .332 3 0 1 1.231e-2 3 7116.672 15 NC 1 596 min 005 2 478 2 0 15 -2.078e-2 2 203.063 2 NC 1 597 14 max .008 3 .258 3 0 15 9.235e-3 3 8427.302 15 NC 1 598 min 005 2 367 2 002 1 -1.566e-2 2 244.632 2 NC 1 599 15 max .008 3 .175 3 0 15 6.157e-3 3 NC 15 NC 1 600 min 005 2 245 <td></td> <td></td> <td>12</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td>0</td> <td>1</td> <td></td> <td>3</td> <td></td> <td>15</td> <td></td> <td>1</td>			12			3			0	1		3		15		1
595 13 max .009 3 .332 3 0 1 1.231e-2 3 7116.672 15 NC 1 596 min 005 2 478 2 0 15 -2.078e-2 2 203.063 2 NC 1 597 14 max .008 3 .258 3 0 15 9.235e-3 3 8427.302 15 NC 1 598 min 005 2 367 2 002 1 -1.566e-2 2 244.632 2 NC 1 599 15 max .008 3 .175 3 0 15 6.157e-3 3 NC 15 NC 1 600 min 005 2 245 2 006 1 -1.054e-2 2 316.086 2 NC 1 601 max .008 3 .089 </td <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>15</td> <td>-2.59e-2</td> <td>2</td> <td>178.735</td> <td></td> <td></td> <td>1</td>				min					0	15	-2.59e-2	2	178.735			1
596 min 005 2 478 2 0 15 -2.078e-2 2 203.063 2 NC 1 597 14 max .008 3 .258 3 0 15 9.235e-3 3 8427.302 15 NC 1 598 min 005 2 367 2 002 1 -1.566e-2 2 244.632 2 NC 1 599 15 max .008 3 .175 3 0 15 6.157e-3 3 NC 15 NC 1 600 min 005 2 245 2 006 1 -1.054e-2 2 316.086 2 NC 1 601 16 max .008 3 .089 3 0 15 3.079e-3 3 NC 15 NC 1 602 min 005 2 121			13													
597 14 max .008 3 .258 3 0 15 9.235e-3 3 8427.302 15 NC 1 598 min 005 2 367 2 002 1 -1.566e-2 2 244.632 2 NC 1 599 15 max .008 3 .175 3 0 15 6.157e-3 3 NC 15 NC 1 600 min 005 2 245 2 006 1 -1.054e-2 2 316.086 2 NC 1 601 max .008 3 .089 3 0 15 3.079e-3 3 NC 15 NC 1 602 min 005 2 121 2 008 1 -5.421e-3 2 448.066 2 NC 1 603 17 max .008 3 .006 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>				min					0	15						1
598 min 005 2 367 2 002 1 -1.566e-2 2 244.632 2 NC 1 599 15 max .008 3 .175 3 0 15 6.157e-3 3 NC 15 NC 1 600 min 005 2 245 2 006 1 -1.054e-2 2 316.086 2 NC 1 601 16 max .008 3 .089 3 0 15 3.079e-3 3 NC 15 NC 1 602 min 005 2 121 2 008 1 -5.421e-3 2 448.066 2 NC 1 603 17 max .008 3 .006 3 0 15 7.173e-7 3 NC 5 NC 1 604 min 005 2 007			14		.008		.258		0				8427.302	15	NC	1
599 15 max .008 3 .175 3 0 15 6.157e-3 3 NC 15 NC 1 600 min 005 2 245 2 006 1 -1.054e-2 2 316.086 2 NC 1 601 16 max .008 3 .089 3 0 15 3.079e-3 3 NC 15 NC 1 602 min 005 2 121 2 008 1 -5.421e-3 2 448.066 2 NC 1 603 17 max .008 3 .006 3 0 15 7.173e-7 3 NC 5 NC 1 604 min 005 2 007 2 009 1 -6.076e-4 1 728.982 2 NC 1 605 18 max .008 3																1
600 min 005 2 245 2 006 1 -1.054e-2 2 316.086 2 NC 1 601 16 max .008 3 .089 3 0 15 3.079e-3 3 NC 15 NC 1 602 min 005 2 121 2 008 1 -5.421e-3 2 448.066 2 NC 1 603 17 max .008 3 .006 3 0 15 7.173e-7 3 NC 5 NC 1 604 min 005 2 007 2 009 1 -6.076e-4 1 728.982 2 NC 1 605 18 max .008 3 .089 2 0 15 2.642e-3 3 NC 5 NC 1 606 min 005 2 07			15					3		15						1
601 16 max .008 3 .089 3 0 15 3.079e-3 3 NC 15 NC 1 602 min 005 2 121 2 008 1 -5.421e-3 2 448.066 2 NC 1 603 17 max .008 3 .006 3 0 15 7.173e-7 3 NC 5 NC 1 604 min 005 2 007 2 009 1 -6.076e-4 1 728.982 2 NC 1 605 18 max .008 3 .089 2 0 15 2.642e-3 3 NC 5 NC 1 606 min 005 2 07 3 007 1 -7.364e-3 2 1543.949 2 NC 1 607 19 max .008 3									006							
602 min 005 2 121 2 008 1 -5.421e-3 2 448.066 2 NC 1 603 17 max .008 3 .006 3 0 15 7.173e-7 3 NC 5 NC 1 604 min 005 2 007 2 009 1 -6.076e-4 1 728.982 2 NC 1 605 18 max .008 3 .089 2 0 15 2.642e-3 3 NC 5 NC 1 606 min 005 2 07 3 007 1 -7.364e-3 2 1543.949 2 NC 1 607 19 max .008 3 .174 2 0 1 5.385e-3 3 NC 1 NC 1			16							15		3				
603 17 max .008 3 .006 3 0 15 7.173e-7 3 NC 5 NC 1 604 min 005 2 007 2 009 1 -6.076e-4 1 728.982 2 NC 1 605 18 max .008 3 .089 2 0 15 2.642e-3 3 NC 5 NC 1 606 min 005 2 07 3 007 1 -7.364e-3 2 1543.949 2 NC 1 607 19 max .008 3 .174 2 0 1 5.385e-3 3 NC 1 NC 1									-							
604 min 005 2 007 2 009 1 -6.076e-4 1 728.982 2 NC 1 605 18 max .008 3 .089 2 0 15 2.642e-3 3 NC 5 NC 1 606 min 005 2 07 3 007 1 -7.364e-3 2 1543.949 2 NC 1 607 19 max .008 3 .174 2 0 1 5.385e-3 3 NC 1 NC 1			17													
605 18 max .008 3 .089 2 0 15 2.642e-3 3 NC 5 NC 1 606 min 005 2 07 3 007 1 -7.364e-3 2 1543.949 2 NC 1 607 19 max .008 3 .174 2 0 1 5.385e-3 3 NC 1 NC 1																
606 min 005 2 07 3 007 1 -7.364e-3 2 1543.949 2 NC 1 607 19 max .008 3 .174 2 0 1 5.385e-3 3 NC 1 NC 1			18							_						1
607																
			19													
														_		

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5}$ (Eq. D-24)									
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)					
4.00	0.50	1.00	2500	7.87					

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

k c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_i)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	$_{d,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (Ib)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τκ,cr (psi)	f short-term	K_{sat}	$\tau_{k,cr}$ (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{ed,Na} \Psi_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N_{a0} \text{ (Sec. D.4.1 \& Eq. D-16b)}$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{ ho, Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 21-31 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.