FDU 泛函分析 2. Banach 空间

本文参考以下教材:

- 工科泛函分析基础 (孙明正、李冱岸、张建国、邹杰涛) 第3章
- 应用泛函分析 (姚泽清、苏晓冰、郑琴、王在华) 第3章

欢迎批评指正!

2.1 赋范空间

2.1.1 定义

设 X 是域 $\mathbb F$ 上的线性空间 (又称向量空间),记其加法单位元为 0_X . 若存在函数 $\|\cdot\|:X\mapsto\mathbb R_+$ 满足:

- ① 正定性: $||x|| \geq 0 \ (\forall \ x \in X)$ 当且仅当 $x = 0_X$ 时取等
- ② 齐次性: $\|\alpha x\| = |\alpha| \|x\| \ (\forall \ x \in X, \alpha \in \mathbb{F})$
- ③ 三角不等式: $\|x+y\| \leq \|x\| + \|y\|$ ($\forall x,y \in X$) 实际上我们可以得到完整的三角不等式: $\|\|x\| \|y\|\| \leq \|x+y\| \leq \|x\| + \|y\|$ ($\forall x,y \in X$) 这是因为:

$$\begin{cases} ||x|| = ||x - y + y|| \le ||x - y|| + ||y|| & \Rightarrow ||x|| - ||y|| \le ||x - y|| \\ ||y|| = ||y - x + x|| \le ||y - x|| + ||x|| & \Rightarrow ||y|| - ||x|| \le ||x - y|| \\ \Rightarrow ||x|| - ||y||| \le ||x - y|| \ (\forall x, y \in X) \end{cases}$$

则我们称 X 为**赋范空间**,称 $\|\cdot\|$ 为 X 上的**范数**.

- 有限维复 Euclid 空间 $(\mathbb{C}^n, \|\cdot\|_p)$ $(p \ge 1)$ 为赋范空间 其中 $\|x\|_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$ $(\forall x \in \mathbb{C}^n)$ (特殊地,当 $p = \infty$ 时 $\|\cdot\|_{\infty} := \max_{1 \le i \le n} |x_i|$ $(\forall x \in \mathbb{C}^n)$)
- p 次幂可和序列空间 $(l^p, \|\cdot\|_p)$ $(1 \le p < \infty)$ 为赋范空间:

$$egin{aligned} l^p &:= \{\{x_k\}_{k=1}^\infty: x_k \in \mathbb{C} ext{ for all } k \in \mathbb{Z}_+, \sum_{k=1}^\infty |x_k|^p < \infty \} \ & \|x\|_p := (\sum_{i=1}^\infty |x_i|^p)^{1/p} \end{aligned}$$

有界序列空间 (l[∞], ||·||_∞) 为赋范空间:

$$egin{aligned} l^\infty := \{\{x_k\}_{k=1}^\infty : x_k \in \mathbb{C} ext{ for all } k \in \mathbb{Z}_+, \sup_{k \in \mathbb{Z}_+} |x_k| < \infty \} \ & \|x\|_\infty := \sup_{k \in \mathbb{Z}_+} |x_k| \end{aligned}$$

• p 次幂可积实值函数空间 $(L^p(\Omega), d_p)$ $(1 \le p < \infty)$ 为赋范空间: (其中 Ω 为给定的 Lebesgue 可测集,且 $m(\Omega) < \infty$) (实际上 Ω 可以是无限测度的,但必须要求它是 σ -有限的,即存在至多可数个可测子集能够覆盖它)

$$L^p(\Omega):=\{x:\Omega\mapsto \mathbb{R}:\int_{\Omega}|x(t)|^p\mathrm{d}t<\infty\}$$
 $\|x\|_p:=(\int_{\Omega}|x(t)|^p\mathrm{d}t)^{rac{1}{p}}$

• 几乎处处有界的可测函数空间 $(L^{\infty}(\Omega), d_{\infty})$ 为赋范空间:

(其中 Ω 为给定的 Lebesgue 可测集,且 $m(\Omega) < \infty$)

$$\begin{split} L^{\infty}(\Omega) := \{x: \Omega \mapsto \mathbb{R} : \operatorname{ess\ sup}_{t \in \Omega} |x(t)| < \infty \} \\ \|x\|_{\infty} := \operatorname{ess\ sup}_{t \in \Omega} |x(t)| \end{split}$$

其中 ess sup 代表本质上确界,即几乎处处的意义下的上确界.

 $\sup_{t \in \Omega} |x(t)| := \inf\{M : M \geq 0 \text{ such that } |x(t)| \leq M \text{ holds almost everywhere on } \Omega\}$ $= \inf_{\Omega_0 \subset \Omega \text{ such that } m(\Omega_0) = 0} \sup_{t \in \Omega \setminus \Omega_0} |x(t)|$

其特例是闭区间 [a,b] 上的**连续实值函数空间** $(C([a,b]), \|\cdot\|_{\infty})$ 其中范数 $\|\cdot\|_{\infty}$ 的定义可等价写为:

$$\|x\|_{\infty}:=\max_{t\in[a,b]}|x(t)|$$

我们还可定义闭区间 [a,b] 上的**具有** k **阶连续导数的函数空间** $(C^k([a,b]), \|\cdot\|)$ 其中范数 $\|\cdot\|$ 的定义为:

$$\|\cdot\|:=\sum_{i=0}^k \max_{t\in[a,b]}|x^{(i)}(t)| ext{ where } x^{(i)}(t) ext{ denote the i-th derivative of } x(t)$$

• 闭区间 [a,b] 上的**有界变差函数空间** $\mathrm{BV}([a,b]):=\{f:[a,b]\mapsto \mathbb{R}\mid |\Delta f|_{[a,b]}<\infty\}$ 按照以下 范数构成赋范空间:

$$\|f\|:=|f(a)|+|\Delta f|_{[a,b]}\ (orall\ f\in\mathrm{BV}([a,b]))$$

其中 $|\Delta f|_{[a,b]}$ 代表 f 在 [a,b] 上的全变差 (定义参考 FDU 泛函分析 0. 实分析基础)

2.1.2 依范数收敛

设 $\{x_n\}$ 为赋范空间 $(X, \|\cdot\|)$ 中的序列.

- 若存在 $x \in X$ 使得 $\|x_n x\| \to 0$ $(n \to \infty)$,则我们称 $\{x_n\}$ 在 X 上依范数 $\|\cdot\|$ 收敛于 x
- 若存在 M>0 使得 $\|x_n\|\leq M$ ($\forall n\in\mathbb{Z}_+$),则我们称序列 $\{x_n\}$ 有界. 赋范空间 $(X,\|\cdot\|)$ 中的收敛序列一定有界.

(工科泛函分析基础, 定理 3.2.3, 泛函分析讲义, 定理 3.2.1)

任意赋范空间 $(X,\|\cdot\|)$ 中的范数 $\|\cdot\|:X\mapsto\mathbb{R}_+$ 都是连续泛函. 换言之,只要 $\|x_n-x\|\to 0\ (n\to\infty)$,就有 $\|x_n\|\to\|x\|\ (n\to\infty)$ 这个结论可由完整的三角不等式 $||x_n\|-\|x||\le \|x_n-x\|\ (orall\ n\in\mathbb{Z}_+)$ 简单推得.

(泛函分析讲义, 定理 3.2.2)

任意赋范空间 $(X, \|\cdot\|)$ 中的加法与数乘运算都是连续的:

$$egin{cases} \left\{ egin{aligned} \|x_n-x\| &
ightarrow 0 & (n
ightarrow \infty) \ \|y_n-y\| &
ightarrow 0 & (n
ightarrow \infty) \end{aligned}
ight.
igh$$

(Schauder 基)

设 $\{e^{(k)}\}_{k=1}^\infty$ 是域 $\mathbb F$ 上的无限维赋范空间 $(X,\|\cdot\|)$ 中的序列. 若对于任意 $x\in X$ 都存在唯一的 $\mathbb F$ 上的数列 $\{\alpha_k\}_{k=1}^\infty$ 使得:

$$\lim_{n o\infty}\left\|\sum_{k=1}^nlpha_ke^{(k)}-x
ight\|=0$$

则我们称 $\{e^{(k)}\}_{k=1}^{\infty}$ 是 $(X,\|\cdot\|)$ 中的 **Schauder 基** 级数 $\sum_{k=1}^{\infty} \alpha_k e^{(k)}$ 称为 $x \in X$ 关于 $\{e^{(k)}\}_{k=1}^{\infty}$ 的展开式数列 $\{\alpha_k\}_{k=1}^{\infty}$ 称为 $x \in X$ 关于 $\{e^{(k)}\}_{k=1}^{\infty}$ 的展开系数.

(存疑: 上述定义的是可数形式的 Schauder 基,它可推广到不可数形式,即指标集不是可数集)

2.1.3 赋范空间是度量空间的特例

设 $(X, ||\cdot||)$ 为赋范空间.

我们称 $d(x,y) = \|x-y\| \ (\forall \ x,y \in X)$ 为由范数 $\|\cdot\|$ 导出的度量. 显然 (X,d) 为度量空间,且 X 中的序列依度量 d 收敛等价于依范数 $\|\cdot\|$ 收敛. 因此赋范空间都是度量空间 (反过来不成立),度量空间的性质在赋范空间中都成立.

(泛函分析讲义,例 3.2.6)
 序列空间(C[∞], d)

$$egin{aligned} \mathbb{C}^\infty &:= \{\{x_k\}_{k=1}^\infty: x_k \in \mathbb{C} ext{ for all } k \in \mathbb{Z}_+ \} \ d(x,y) &:= \sum_{k=1}^\infty rac{1}{2^k} rac{|x_k - y_k|}{1 + |x_k - y_k|} \end{aligned}$$

这是一个典型的例子: 它是度量空间, 但不是赋范空间.

由度量 d 导出的泛函 $\|x\|:=d(x,0_{\mathbb{C}^\infty})=\sum_{k=1}^\infty rac{1}{2^k}rac{|x_k|}{1+|x_k|}$ 显然不满足齐次性

(例如当 $x=(1,1,\ldots)$ 时我们有 $\|2x\| \neq 2\|x\|$)

其中 $0_{\mathbb{C}^{\infty}} := (0,0,\ldots)$ 是序列空间 \mathbb{C}^{∞} 的加法单位元.

(存疑: 不保证其他度量也不能导出范数)

下面我们给出一个度量 d 可以导出范数的充分条件:

(工科泛函分析基础, 定理 3.2.10, 泛函分析讲义, 定理 3.2.4)

设 X 是域 \mathbb{F} 上的线性空间,记其加法单位元为 0_X

若 X 上定义的度量 $d: X \times X \mapsto \mathbb{R}_+$, 且满足:

- ① $d(x y, 0_X) = d(x, y) \ (\forall x, y \in X)$
- ② $d(\alpha x, 0_X) = |\alpha| d(x, 0_X) \ (\forall \ x \in X, \alpha \in \mathbb{F})$

则泛函 $||x|| := d(x, 0_X)$ ($\forall x \in X$) 是 X 上的一个范数.

证明:

- ① 正定性: $||x|| = d(x, 0_X) > 0 \ (\forall x \in X)$ 当且仅当 $x = 0_X$ 时取等.
- ② 齐次性: $\|\alpha x\| = d(\alpha x, 0_X) = |\alpha|d(x, 0_X) = |\alpha|\|x\| \ (\forall x \in X, \alpha \in \mathbb{F})$
- ③ 三角不等式:

对于任意 $x, y \in X$ 我们都有:

$$egin{aligned} \|x+y\| &= d(x+y,0_X) \ &\leq d(x+y,y) + d(y,0_X) \quad ext{(note that } d(x-y,0_X) = d(x,y) \ (orall \ x,y \in X)) \ &= d((x+y)-y,0_X) + d(y,0_X) \ &= d(x,0_X) + d(y,0_X) \ &= \|x\| + \|y\| \end{aligned}$$

2.1.4 积空间与积范数

设X,Y为域 \mathbb{F} 上的线性空间.

我们定义直积集 $X \times Y := \{(x,y) : x \in X, y \in Y\}$ 为 X,Y 的**积空间** (它也是线性空间, 加法即元组加法, 数乘即元组数乘)

若 $(X, \|\cdot\|_X)$ 和 $(Y, \|\cdot\|_Y)$ 为域 \mathbb{F} 上的赋范空间. 则积空间 $X \times Y$ 按照以下范数都构成赋范空间:

$$\|(x,y)\|_p := (\|x\|_X^p + \|y\|_Y^p)^{rac{1}{p}} \ (orall \ 1 \leq p < \infty) \ \|(x,y)\|_\infty := \max\{\|x\|_X,\|y\|_Y\}$$

上述范数通称为积范数,它们导出的收敛都是依坐标收敛.

2.2 Banach 空间

2.2.1 定义

我们称完备的赋范空间为 Banach 空间 (即其中的 Cauchy 序列都是收敛列)

- 有限维赋范空间都是 Banach 空间. 因此**有限维复 Euclid 空间**($\mathbb{C}^n, \|\cdot\|_p$)($p \geq 1$)为 Banach 空间 其中 $\|x\|_p := (\sum_{i=1}^n |x_i|^p)^{1/p} \ (\forall \ x \in \mathbb{C}^n)$ (特殊地,当 $p = \infty$ 时 $\|\cdot\|_{\infty} := \max_{1 \leq i \leq n} |x_i| \ (\forall \ x \in \mathbb{C}^n)$)
- p 次幂可和序列空间 $(l^p, \|\cdot\|_p)$ (1 为 Banach 空间:

$$egin{aligned} l^p &:= \{\{x_k\}_{k=1}^\infty: x_k \in \mathbb{C} ext{ for all } k \in \mathbb{Z}_+, \sum_{k=1}^\infty |x_k|^p < \infty \} \ & \|x\|_p := (\sum_{i=1}^\infty |x_i|^p)^{1/p} \end{aligned}$$

• 有界序列空间 $(l^{\infty}, \|\cdot\|_{\infty})$ 为 Banach 空间:

$$egin{aligned} l^\infty := \{\{x_k\}_{k=1}^\infty : x_k \in \mathbb{C} ext{ for all } k \in \mathbb{Z}_+, \sup_{k \in \mathbb{Z}_+} |x_k| < \infty \} \ & \|x\|_\infty := \sup_{k \in \mathbb{Z}_+} |x_k| \end{aligned}$$

• p 次幂可积实值函数空间 $(L^p(\Omega),d_p)$ $(1\leq p<\infty)$ 为 Banach 空间: (其中 Ω 为给定的 Lebesgue 可测集,且 $m(\Omega)<\infty$) (实际上 Ω 可以是无限测度的,但必须要求它是 σ -有限的,即存在至多可数个可测子集能够覆盖它)

$$L^p(\Omega):=\{x:\Omega\mapsto \mathbb{R}:\int_{\Omega}|x(t)|^p\mathrm{d}t<\infty\} \ d_p(x,y):=(\int_{\Omega}|x(t)-y(t)|^p\mathrm{d}t)^{rac{1}{p}}$$

• 几乎处处有界的可测函数空间 $(L^{\infty}(\Omega), d_{\infty})$ 为 Banach 空间: (其中 Ω 为给定的 Lebesgue 可测集,且 $m(\Omega) < \infty$)

$$L^{\infty}(\Omega) := \{x: \Omega \mapsto \mathbb{R} : \operatorname{ess \ sup}_{t \in \Omega} |x(t)| < \infty \}$$

$$\|x\|_{\infty} := \operatorname{ess \ sup}_{t \in \Omega} |x(t)|$$

其中 ess sup 代表本质上确界,即几乎处处的意义下的上确界.

$$\sup_{t \in \Omega} |x(t)| := \inf\{M : M \geq 0 \text{ such that } |x(t)| \leq M \text{ holds almost everywhere on } \Omega\} \\ = \inf_{\Omega_0 \subset \Omega \text{ such that } m(\Omega_0) = 0} \sup_{t \in \Omega \setminus \Omega_0} |x(t)|$$

其特例是闭区间 [a,b] 上的**连续实值函数空间** $(C([a,b]), \|\cdot\|_{\infty})$ 其中范数 $\|\cdot\|_{\infty}$ 的定义可等价写为:

$$\|x\|_{\infty}:=\max_{t\in[a,b]}|x(t)|$$

我们还可定义闭区间 [a,b] 上的**具有** k **阶连续导数的实值函数空间** $(C^k([a,b]), \|\cdot\|)$ 其中范数 $\|\cdot\|$ 的定义为:

$$\|\cdot\|:=\sum_{i=0}^k \max_{t\in[a,b]}|x^{(i)}(t)| ext{ where } x^{(i)}(t) ext{ denote the i-th derivative of } x(t)$$

or

$$\|\cdot\|:=\max_{0\leq i\leq k}\max_{t\in[a,b]}|x^{(i)}(t)|$$
 where $x^{(i)}(t)$ denote the i -th derivative of $x(t)$

• 闭区间 [a,b] 上的**有界变差函数空间** $\mathrm{BV}([a,b]):=\{f:[a,b]\mapsto\mathbb{R}\mid |\Delta f|_{[a,b]}<\infty\}$ 按照以下 范数构成 Banach 空间:

$$\|f\|:=|f(a)|+|\Delta f|_{[a,b]}\ (orall\ f\in\mathrm{BV}([a,b]))$$

其中 $|\Delta f|_{[a,b]}$ 代表 f 在 [a,b] 上的全变差 (定义参考 FDU 泛函分析 0. 实分析基础) (若 $\{f_n\}$ 是 $\mathrm{BV}([a,b])$ 中的 Cauchy 序列,则全变差的完备性保证了存在收敛的极限函数 f,并且 f 的全变差有限)

Banach 空间	范数
\mathbb{C}^n (可分)	$\ x\ _p := (\sum_{i=1}^n x_i ^p)^{1/p}$
$l^p:=\{\{x_k\}_{k=1}^\infty:x_k\in\mathbb{C} ext{ for all }k\in\mathbb{Z}_+,\sum_{k=1}^\infty x_k ^p<\infty\}$ (可分)	$\ x\ _p := (\sum_{i=1}^\infty x_i ^p)^{1/p}$
$l^\infty:=\{\{x_k\}_{k=1}^\infty:x_k\in\mathbb{C} ext{ for all }k\in\mathbb{Z}_+,\sup_{k\in\mathbb{Z}_+} x_k \}$ (不可分)	$\ x\ _{\infty}:=\sup_{k\in\mathbb{Z}_+} x_k $
$L^p(\Omega):=\{x:\Omega\mapsto \mathbb{R}:\int_\Omega x(t) ^p\mathrm{d}t<\infty\}$ (可分)	$\ x\ _p := \int_\Omega x(t) ^p \mathrm{d}t$
$L^\infty(\Omega):=\{x:\Omega\mapsto\mathbb{R}:\operatorname{ess\ sup}_{t\in\Omega} x(t) \}$ (不可分)	$\ x\ _{\infty} := \mathrm{ess} \sup_{t \in \Omega} x(t) $
$C(\Omega):=\{x:\Omega\mapsto \mathbb{R}:x ext{ is continuous on }\Omega\}$ (可分)	$\ x\ _{\infty} := \max_{t \in \Omega} x(t) $

值得说明的是, $C(\Omega)$ 在范数 $\|x\|_{\infty}:=\max_{t\in\Omega}|x(t)|$ 的意义下是完备的,

且自己就是自己的可数稠密子集,因而可分.

但 $C(\Omega)$ 在范数 $\|x\|_\infty:=\mathrm{ess}\ \sup_{t\in\Omega}|x(t)|$ (其收敛性更宽松) 的意义下是不完备的,其完备化便是 $L^\infty(\Omega)$

而 $L^\infty(\Omega)$ 是不可分的,这是因为 $L^\infty(\Omega)$ 中 0-1 函数全体是不可数集且不同 0-1 函数之间距离为 1 假设 $L^\infty(\Omega)$ 存在稠密子集,那么就会被 $L^\infty(\Omega)$ 中的 0-1 函数划分成不可数个足够小的 (因而不相交的) 邻域,

这说明 $L^{\infty}(\Omega)$ 的任意稠密子集都是不可数的,即不存在可数稠密子集,表明 $L^{\infty}(\Omega)$ 是不可分的.

2.2.2 基本性质

(应用泛函分析, 定理 3.3.2)

Banach 空间 $(X, \|\cdot\|)$ 的赋范子空间 $(Y, \|\cdot\|)$ 是完备的 (即是 Banach 空间),当且仅当 Y 是 X 中 的闭集

这实际上是完备度量空间的性质,我们将其搬运到完备赋范空间(即 Banach 空间)上了:

完备度量空间具有一些非常好的性质.

例如,完备度量空间总是闭的,

即不管把它放在什么样的更大空间中, 它总是一个闭集.

更准确地说:

(工科泛函分析基础, 定理 2.4.7, 泛函分析讲义 定理 2.4.3)

因此完备度量空间 (X,d) 的子集 $(Y,d|_{Y\times Y})$ 是完备的, 当且仅当 Y 是 X 中的闭集.

(泛函分析讲义, 例 3.2.3)

试证明 $\mathbb C$ 上的收敛数列全体构成的空间 c^∞ 按照范数 $\|\cdot\|_\infty$ 构成 Banach 空间.

• 我们只需说明 $(c^{\infty}, \|\cdot\|_{\infty})$ 是 $(l^{\infty}, \|\cdot\|_{\infty})$ 的闭子空间,就可说明 $(c^{\infty}, \|\cdot\|_{\infty})$ 是 Banach 空

考虑 $(c^{\infty}, \|\cdot\|_{\infty})$ 任意给定的收敛序列 $\{x^{(n)}\}$, 设其极限为 $x^{(0)}$ 则对于任意 $\varepsilon > 0$ 都存在 $N \in \mathbb{Z}_+$ 使得:

$$\|x^{(n)}-x^{(0)}\| = \sup_{k \in \mathbb{Z}_+} |x_k^{(n)}-x_k^{(0)}| < rac{arepsilon}{3} \; (orall \; n \geq N)$$

取 n=N,则根据上式可知 $|x_k^{(N)}-x_k^{(0)}|<rac{arepsilon}{3}\ (orall\ k\in\mathbb{Z}_+)$

注意到 $x^{(N)}=\{x_k^{(N)}\}_{k=1}^\infty$ 为收敛数列,故它一定是 Cauchy 数列,即存在 $K\in\mathbb{Z}_+$ 使得 $|x_k^{(N)}-x_l^{(N)}|<rac{arepsilon}{3}\ (orall\ k,l\geq K)$

因此对于任意 k, l > K 我们都有:

$$\begin{split} |x_k^{(0)} - x_l^{(0)}| &\leq |x_k^{(0)} - x_k^{(N)}| + |x_k^{(N)} - x_l^{(N)}| + |x_l^{(N)} - x_l^{(0)}| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\ &= \varepsilon \end{split}$$

这表明 $x^{(0)}=\{x_k^{(0)}\}_{k=1}^\infty$ 是 $\mathbb C$ 上的 Cauchy 数列.

根据复数域 $\mathbb C$ 的完备性可知 $x^{(0)}=\{x_k^{(0)}\}_{k=1}^\infty$ 是 $\mathbb C$ 上的收敛数列,即 $x^{(0)}\in c^\infty$

这就说明了 $(c^{\infty},\|\cdot\|_{\infty})$ 是 $(l^{\infty},\|\cdot\|_{\infty})$ 的闭子空间,故 $(c^{\infty},\|\cdot\|_{\infty})$ 是 Banach 空间.

(泛函分析讲义, 例 3.2.4)

试证明 $\mathbb C$ 上的收敛于 0 的数列全体构成的空间 c_0^∞ 按照范数 $\|\cdot\|_\infty$ 构成 Banach 空间.

• 我们只需说明 $(c_0^\infty, \|\cdot\|_\infty)$ 是 $(l^\infty, \|\cdot\|_\infty)$ 的闭子空间,就可说明 $(c_0^\infty, \|\cdot\|_\infty)$ 是 Banach 空

考虑 $(c^{\infty}, \|\cdot\|_{\infty})$ 任意给定的收敛序列 $\{x^{(n)}\}$,设其极限为 $x^{(0)}$ 则对于任意 $\varepsilon > 0$ 都存在 $N \in \mathbb{Z}_+$ 使得:

$$\|x^{(n)} - x^{(0)}\| = \sup_{k \in \mathbb{Z}_+} |x_k^{(n)} - x_k^{(0)}| < rac{arepsilon}{2} \; (orall \; n \geq N)$$

取 n=N,则根据上式可知 $|x_k^{(N)}-x_k^{(0)}|<\frac{\varepsilon}{2}$ $(\forall k\in\mathbb{Z}_+)$

注意到 $x^{(N)}=\{x_k^{(N)}\}_{k=1}^\infty$ 是收敛于 0 的数列,即存在 $K\in\mathbb{Z}_+$ 使得

 $|x_k^{(N)} - 0| < rac{arepsilon}{2} \; (orall \; k \geq K)$

因此对于任意 k > K 我们都有:

$$|x_k^{(0)} - 0| \le |x_k^{(0)} - x_k^{(N)}| + |x_k^{(N)} - 0|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

这表明 $x^{(0)} = \{x_k^{(0)}\}_{k=1}^\infty$ 是 \mathbb{C} 上收敛于 0 的数列,即 $x^{(0)} \in c_0^\infty$ 这就说明了 $(c_0^\infty, \|\cdot\|_\infty)$ 是 $(l^\infty, \|\cdot\|_\infty)$ 的闭子空间,故 $(c_0^\infty, \|\cdot\|_\infty)$ 是 Banach 空间.

(F. Riesz 引理, 应用泛函分析, 引理 3.4.1, 泛函分析讲义, 引理 3.2.1)

设 $(X, ||\cdot||)$ 为赋范空间.

若 X 中的真子空间 $S \subset X$ 是闭的,

则对于任意 $arepsilon\in(0,1)$ 都存在满足 $\|x_0\|=1$ 的 $x_0\in X$ 使得 $\|x-x_0\|>arepsilon$ ($orall\ x\in S$)

- 若上述引理中的真子空间 S 不是闭集,则结论可能不成立.
- 一般来说,上述引理中的 " $\forall \ \varepsilon \in (0,1), \exists \ x_0 \in X \ \text{such that} \ \|x-x_0\| > \varepsilon \ (\forall \ x \in S)$ " 不能加强为 " $\exists \ x_0 \in X \ \text{such that} \ \|x-x_0\| \geq 1 \ (\forall \ x \in S)$ 但对于内积空间的情况是可以这样加强的.
- 上述引理表明赋范空间中的闭真子空间 S 和其空间 X 中的元素之间,总是存在某种程度的分离。 这意味着 X 中的任意闭真子空间都不可能填满 X 的整个空间.

证明:

由于 $S \subset X$ 是 X 的真子空间,故存在 $x_1 \in X \setminus S$

我们定义 $d(x_1, S) := \inf_{x \in S} ||x - x_1||$

由于 S 是闭的,故 $d(x_1,S)>0$

(如若不然,则 $d(x_1,S)=0$ 代表存在 $\{x_n\}\subset S$ 使得 $\|x_n-x_1\|\to 0$ $(n\to\infty)$,根据 S 的闭性可知 $x_1\in S$,矛盾!)

对于任意 $arepsilon\in(0,1)$,我们都有 $\frac{d(x_1,S)}{arepsilon}>d(x_1,S)=\inf_{x\in S}\|x-x_1\|$ 根据下确界的性质可知存在 $x_2\in S$ 使得 $\|x_2-x_1\|<\frac{d(x_1,S)}{arepsilon}$

定义 $x_0 := rac{x_1 - x_2}{\|x_1 - x_2\|}$,显然满足 $\|x_0\| = 1$

则对于任意 $x \in S$ 我们都有:

$$\begin{aligned} \|x - x_0\| &= \left\| x - \frac{x_1 - x_2}{\|x_1 - x_2\|} \right\| \\ &= \frac{1}{\|x_1 - x_2\|} \|(\|x_1 - x_2\|x + x_2) - x_1\| \quad \text{(note that } \left\{ \substack{x \in S \\ x_2 \in S} \Rightarrow \|x_1 - x_2\|x + x_2 \in S \right) \\ &\geq \frac{1}{\|x_1 - x_2\|} \inf_{x \in S} \|x - x_1\| \\ &= \frac{1}{\|x_1 - x_2\|} d(x_1, S) \quad \text{(note that } \|x_2 - x_1\| < \frac{d(x_1, S)}{\varepsilon}) \\ &> \varepsilon \end{aligned}$$

命题得证.

(应用泛函分析 定理 3.4.4, 泛函分析讲义 定理 3.2.11)

设 $(X, ||\cdot||)$ 是赋范空间,则下列命题等价:

- ① X 是有限维的
- ② X 中的有界集都是列紧集
- ③ X 中的有界闭集都是紧集
- ④ X 中的单位闭球 $\bar{B}(0_X,1)=\{x\in X:\|x\|\leq 1\}$ 是紧集
- ⑤ X 中的单位球面 $\mathrm{bd}(\bar{B}(0_X,1)) = \{x \in X : ||x|| = 1\}$ 是紧集

我们这里仅证明 $\mathfrak{S} \Rightarrow \mathfrak{1}$:

设X 中的单位球面 $\mathrm{bd}(\bar{B}(0_X,1)) = \{x \in X : ||x|| = 1\}$ 是紧集.

(**反证法**) 假设 $(X, \|\cdot\|)$ 是无限维赋范空间,

则存在 X 中的序列 $\{x_n\}$,其任意有限个元素都线性无关.

记 $X_n:=\operatorname{span}\{x_1,\ldots,x_n\}\ (orall\ n\in\mathbb{Z}_+)$

由于 X_n 是 X 的有限维子空间,故它一定是闭的,于是 X_{n-1} 一定是 X_n 的闭子空间。

根据 **F. Riesz 引理**可知,存在 $y_n\in X_n$ 满足 $\left\{ \begin{aligned} \|y_n\|&=1\\ \|y_n-x\|&\geq \frac{1}{2}\ (\forall\ x\in X_{n-1}) \end{aligned} \right.$ 这样我们就得到了单位球面 $\mathrm{bd}(\bar{B}(0_X,1))$ 上的点列 $\left\{y_n\right\}$ 满足 $\left\|y_m-y_n\right\|\geq \frac{1}{2}\ (\forall\ m>n\geq 2)$

(注意到 $y_n \in X_{m-1}$)

因此 $\{y_n\}$ 的任一子列都不可能是 Cauchy 列,从而不可能有收敛子列.

这与 "单位球面 $\operatorname{bd}(B(0_X,1))$ 是紧集" 的假设矛盾,说明 $(X, \|\cdot\|)$ 必须是有限维赋范空间.

(应用泛函分析, 定理 3.3.1, 泛函分析讲义, 定理 3.2.6)

设 $(X, \|\cdot\|)$ 是赋范空间,则 X 为 Banach 空间的充要条件是: 对于任意 $\{x_n\}\subset X$,只要 $\sum_{k=1}^\infty \|x_k\|$ 收敛,就有 $\sum_{k=1}^\infty x_k$ 收敛. (类似于数学分析中的结论: 绝对收敛的序列一定收敛)

• 必要性:

设 $(X, \|\cdot\|)$ 是 Banach 空间.

任意给定 $\{x_n\}\subset X$,记 $S_n:=\sum_{k=1}^n x_k\ (orall\ n\in\mathbb{Z}_+)$

若 $\sum_{k=1}^{\infty} \|x_k\|$ 收敛,则我们有:

$$egin{align} \|S_{n+p}-S_n\|&=\left\|\sum_{k=1}^{n+p}x_k-\sum_{k=1}^nx_k
ight\|\ &=\left\|\sum_{k=n+1}^{n+p}x_k
ight\|\ &\leq\sum_{k=n+1}^{n+p}\|x_k\| o 0\ (n o\infty) \end{aligned}$$

因此 $\{S_n = \sum_{k=1}^n x_k\}$ 是 X 中的 Cauchy 序列. 由于 $(X,\|\cdot\|)$ 是 Banach 空间,故序列 $\{S_n=\sum_{k=1}^n x_k\}$ 收敛,即 $\sum_{k=1}^\infty x_k$ 收敛.

充分性:

设对于任意 $\{x_n\}\subset X$,只要 $\sum_{k=1}^\infty \|x_k\|$ 收敛,就有 $\sum_{k=1}^\infty x_k$ 收敛.

现考虑任意给定 Cauchy 序列 $\{x_n\}\subset X$,

根据 Cauchy 序列的定义可知存在正整数序列 $\{n_k\}$ 满足 $\|x_{n_{k+1}}-x_{n_k}\|<rac{1}{2^k}$ $(orall\ k\in\mathbb{Z}_+)$

根据 $\sum_{k=1}^{\infty} rac{1}{2^k}$ 的收敛性可知 $\sum_{k=1}^{\infty} \|x_{n_{k+1}} - x_{n_k}\|$ 收敛,

从而根据假设可知 $\sum_{k=1}^{\infty}(x_{n_{k+1}}-x_{n_k})=\lim_{k o\infty}x_{n_{k+1}}-x_{n_1}$ 收敛,

于是可知序列 $\{x_{n_{k+1}}-x_{n_1}\}$ 收敛,即子列 $\{x_{n_k}\}$ 收敛,

进而可知 Cauchy 序列 $\{x_n\}$ 收敛,表明赋范空间 $(X, \|\cdot\|)$ 是 Banach 空间.

(应用泛函分析, 定理 3.3.3)

对于域 \mathbb{F} 上的赋范空间 $(X, \|\cdot\|_X)$ 和 $(Y, \|\cdot\|_Y)$

其积空间 $X \times Y$ 依积范数构成 Banach 空间,当且仅当 $(X, \|\cdot\|_X)$ 和 $(Y, \|\cdot\|_Y)$ 均为 Banach 空

其中积范数的定义可以是以下任意一种:

$$\|(x,y)\|_p := (\|x\|_X^p + \|y\|_X^p)^{rac{1}{p}} \ (orall\ 1 \leq p < \infty) \ \|(x,y)\|_\infty := \max\{\|x\|_X,\|y\|_Y\}$$

2.2.3 有限维 Banach 空间

(范数的等价性)

设 $\|\cdot\|_{\alpha}$ 和 $\|\cdot\|_{\beta}$ 是线性空间 X 上的两个范数. 若对于 X 中的任意序列 $\{x_n\}$,依 $\|\cdot\|_{\alpha}$ 收敛等价于依 $\|\cdot\|_{\beta}$ 收敛 (即 $\lim_{n\to\infty}\|x_n\|_{\alpha}=0\Leftrightarrow \lim_{n\to\infty}\|x_n\|_{\beta}=0$) 则我们称范数 $\|\cdot\|_{\alpha}$ 和 $\|\cdot\|_{\beta}$ 是等价的.

(范数等价定理, 应用泛函分析 定理 3.4.1, 泛函分析讲义, 定理 3.2.7)

线性空间 X 上的范数 $\|\cdot\|_{\alpha}$ 和 $\|\cdot\|_{\beta}$ 等价的充要条件是存在常数 $c_1, c_2 > 0$ 使得:

$$|c_1||x||_{\alpha} \le ||x||_{\beta} \le |c_2||x||_{\alpha} \ (\forall \ x \in X)$$

• 充分性:

设存在常数 $c_1, c_2 > 0$ 使得 $c_1 \|x\|_{\alpha} \leq \|x\|_{\beta} \leq c_2 \|x\|_{\alpha} \ (\forall \ x \in X)$ 对于 X 中的任意序列 $\{x_n\}$ 若 $\lim_{n \to \infty} \|x_n\|_{\alpha} = 0$,则根据 $\|x\|_{\beta} \leq c_2 \|x\|_{\alpha} \ (\forall \ x \in X)$ 可知 $\lim_{n \to \infty} \|x_n\|_{\beta} = 0$ 若 $\lim_{n \to \infty} \|x_n\|_{\beta} = 0$,则根据 $\|x\|_{\alpha} \leq \frac{1}{c_1} \|x\|_{\beta} \ (\forall \ x \in X)$ 可知 $\lim_{n \to \infty} \|x_n\|_{\alpha} = 0$ 因此 $\lim_{n \to \infty} \|x_n\|_{\alpha} = 0$ 会 $\lim_{n \to \infty} \|x_n\|_{\beta} = 0$,表明范数 $\|\cdot\|_{\alpha}$ 和 $\|\cdot\|_{\beta}$ 等价.

• 必要性:

设范数 $\|\cdot\|_{\alpha}$ 和 $\|\cdot\|_{\beta}$ 是等价的.

(**反证法)** 假设不存在 $c_2>0$ 使得 $\|x\|_{\beta}\leq c_2\|x\|_{\alpha}$ ($\forall\;x\in X$) 则对于任意 $n\in\mathbb{Z}_+$ 都存在 $x_n\in X$ 使得 $\|x_n\|_{\beta}>n\|x_n\|_{\alpha}$ 定义 $y_n:=\frac{x_n}{\|x_n\|_{\beta}}$ ($\forall\;n\in\mathbb{Z}_+$),则我们有:

$$egin{aligned} \|y_n\|_lpha &= \left\|rac{x_n}{\|x_n\|_eta}
ight\|_lpha &= rac{\|x_n\|_lpha}{\|x_n\|_eta} < rac{1}{n}
ightarrow 0 \ (n
ightarrow \infty) \ \|y_n\|_eta &= \left\|rac{x_n}{\|x_n\|_eta}
ight\|_eta &= rac{\|x_n\|_eta}{\|x_n\|_eta} = 1
ightarrow 0 \ (n
ightarrow \infty) \end{aligned}$$

这与范数 $\|\cdot\|_{\alpha}$ 和 $\|\cdot\|_{\beta}$ 的等价性矛盾,故存在 $c_2>0$ 使得 $\|x\|_{\beta}\leq c_2\|x\|_{\alpha}$ ($\forall\;x\in X$) 同理可证存在 $c_1>0$ 使得 $\|x\|_{\alpha}\leq c_1^{-1}\|x\|_{\beta}$ ($\forall\;x\in X$) 因此存在常数 $c_1,c_2>0$ 使得 $c_1\|x\|_{\alpha}\leq \|x\|_{\beta}\leq c_2\|x\|_{\alpha}$ ($\forall\;x\in X$)

(准范数)

设 X 是域 $\mathbb F$ 上的 n 维线性空间.

若X上的实值函数f满足:

- 非负性: $f(x) \geq 0 \ (\forall x \in X)$
- 正定性: f(x) = 0 当且仅当 $x = 0_X$
- 齐次性: $f(\alpha x) = |\alpha| f(x) \ (\forall x \in X, \alpha \in \mathbb{F})$
- 连续性: f(x) 在 X 上关于 Euclid 范数是连续的,即 $\lim_{n \to \infty} \|x_n x\|_2 = 0 \Rightarrow \lim_{n \to \infty} |f(x_n) f(x)| = 0$

则我们称 f 为 X 上的**准范数** (pre-norm)

满足三角不等式的准范数就是范数.

(工科泛函分析基础 定理 3.2.12, 泛函分析讲义 定理 3.2.8, Matrix Analysis 定理 5.4.4)

 $\mathbb{F} = \mathbb{R}$ or \mathbb{C} 上的有限维线性空间 X 上的任意两个范数都是等价的. (上述等价性可推广到准范数,因为证明中我们没有用到三角不等式)

• 证明:

设线性空间 X 的维度为 n,它的一组基为 $\{e^{(1)},\ldots,e^{(n)}\}$ 对于任意 $x\in X$ 我们定义其坐标为 $z(x)=(z_1(x),\ldots,z_n(x))$,满足:

$$z_1(x),\ldots,z_n(x)\in \mathbb{F}$$
 $x=\sum_{k=1}^n z_k(x)e^{(k)}$

设 $\|\cdot\|_{lpha}, \|\cdot\|_{eta}$ 是 X 上的两个范数,定义 $\begin{cases} f_1(z) := \|\sum_{k=1}^n z_k e^{(k)}\|_{lpha} \\ f_2(z) := \|\sum_{k=1}^n z_k e^{(k)}\|_{eta} \end{cases}$

它们天然是连续实值函数.

有限维实或复赋范空间上的范数都是一致连续函数:

设 $\|\cdot\|$ 是 n 维实或复赋范空间 X 上的范数, $\{e^{(1)},\dots,e^{(n)}\}$ 是 X 的一组给定的基. 对于任意 $x,\Delta x\in X$,我们定义其在基 $\{e^{(1)},\dots,e^{(n)}\}$ 下的坐标为 $\begin{cases}z=(z_1,\dots,z_n)\\\Delta z=(\Delta z_1,\dots,\Delta z_n)\end{cases}$

) 则我们有:

$$egin{aligned} |\|x + \Delta x\| - \|x\|| &\leq \|(x + \Delta x) - x\| \ &= \|\Delta x\| \ &= \|\Delta z_1 \cdot e^{(1)} + \dots + \Delta z_n \cdot e^{(n)} \| \ &\leq \sum_{k=1}^n |\Delta z_k| \|e^{(k)} \| \ &\leq (\max_{1 \leq k \leq n} |\Delta z_k|) \sum_{k=1}^n \|e^{(k)} \| \ &= (\sum_{k=1}^n \|e^{(k)}\|) \cdot \|\Delta z\|_\infty \end{aligned}$$

注意到 $\sum_{k=1}^n \|e^{(k)}\|$ 是与 x, Δx 无关的常数 因此当 $\Delta x \to 0_X$ (即 $\|\Delta z\|_\infty = \max_{1 \le k \le n} |\Delta z_k| \to 0$) 时,我们有 $|\|x + \Delta x\| - \|x\|| \to 0$,而且收敛速度与 x 无关. 这表明 $\|\cdot\|$ 在 X 上是一致连续的.

在 Euclid 单位球面 $S:=\{z\in\mathbb{F}^n:\|z\|_2=1\}$ (它是一个紧集) 上定义 $h(z)=\frac{f_2(z)}{f_1(z)}$ 显然 h 是紧集 S 上的连续函数. (分母必不为零,因为 $f_1(z)=\|\sum_{k=1}^n z_k e^{(k)}\|_\alpha\neq\|0_X\|_\alpha=0$ ($\forall~z\in S$))

(Weierstrass 定理, Nonlinear Programming 命题 A.8)

设 \mathcal{X} 为 $\mathbb{F}=\mathbb{R}$ or \mathbb{C} 上的有限维赋范空间V 的非空子集

且 $f: \mathcal{X} \mapsto \mathbb{R}$ 在 \mathcal{X} 处下半连续

即对于满足 $\lim_{k \to \infty} x^{(k)} = x$ 的每一个序列 $\{x^{(k)}\} \subset \mathcal{X}$ 都有 $f(x) \leq \lim_{k \to \infty} \inf f(x^{(k)})$

(特殊地,连续函数一定下半连续)

若下列条件有一个成立:

- ① X 是紧集 (即有界闭集)
- 。 ② $\mathcal X$ 是闭集,且 f 在 $x\in\mathcal X$ 上是强制的 (coercive) 即对于满足 $\lim_{k\to\infty}\|x^{(k)}\|=\infty$ 的每一个序列 $\{x^{(k)}\}\subset\mathcal X$ 都有 $\lim_{k\to\infty}f(x^{(k)})=\infty$
- 。 ③ 存在 $\alpha \in \mathbb{R}$ 使得下水平集 $\{x \in \mathcal{X} : f(x) \leq \alpha\}$ 是紧集

则 f 在 \mathcal{X} 上的全局最小点的集合 $\arg\min_{x\in\mathcal{X}}f(x)$ 为非空紧集.

根据 Weierstrass 定理可知 h 在 S 上存在有限的最小值 C_{\min} 和最大值 C_{\max} 即对于任意 $z \in S$ (即 $z \in \mathbb{F}^n$ 且 $\|z\|_2 = 1$) 我们都有 $C_{\min} \le h(z) = \frac{f_2(z)}{f_1(z)} \le C_{\max}$ 根据范数的正定性,并结合 $0_n \notin S$ 可知 $C_{\min}, C_{\max} > 0$

根据范数的齐次性可知:

对于任意非零向量 $z \in \mathbb{F}^n$ 都有:

$$egin{aligned} C_{\min} & \leq h\left(rac{z}{\|z\|_2}
ight) = rac{f_2(rac{z}{\|z\|_2})}{f_1(rac{z}{\|z\|_2})} = rac{rac{1}{\|z\|_2}f_2(z)}{rac{1}{\|z\|_2}f_1(z)} = rac{f_2(z)}{f_1(z)} \leq C_{\max} \ & \Leftrightarrow \ & C_{\min}f_1(z) \leq f_2(z) \leq C_{\max}f_1(z) \end{aligned}$$

显然 $z=0_n$ 也满足不等式 $C_{\min}f_1(z) \leq f_2(z) \leq C_{\max}f_1(z)$ 因此我们有:

$$C_{\min}f_1(z) \leq f_2(z) \leq C_{\max}f_1(z) \ \ (orall \ z \in \mathbb{F}^n)$$
 \Leftrightarrow $C_{\min}igg\|\sum_{k=1}^n z_k e^{(k)}igg\|_{lpha} \leq igg\|\sum_{k=1}^n z_k e^{(k)}igg\|_{eta} \leq C_{\max}igg\|\sum_{k=1}^n z_k e^{(k)}igg\|_{lpha} \ \ (orall \ z \in \mathbb{F}^n)$ \Leftrightarrow $C_{\min}\|x\|_{lpha} \leq \|x\|_{eta} \leq C_{\max}\|x\|_{lpha} \ \ (orall \ x \in X)$

命题得证.

(工科泛函分析基础 定理 3.2.13, 泛函分析讲义 定理 3.2.9)

- (应用泛函分析 定理 3.4.3) 数域 \mathbb{F} (例如 \mathbb{R} or \mathbb{C}) 上的 n 维赋范空间同构于 \mathbb{F}^n ,依范数的收敛性等价于依坐标收敛.
- (应用泛函分析 推论 3.4.1)
 有限维赋范空间一定是 Banach 空间.
- (应用泛函分析 推论 3.4.2) 任意赋范空间的有限维子空间一定是 Banach 空间,从而也是闭子空间.

但赋范空间的无限维子空间不一定是闭的.

(工科泛函分析基础 例 3.2.15, 泛函分析讲义 例 3.2.8)

无穷维赋范空间中存在不闭的无限维子空间.

• 考虑 2 次可和序列空间 $(l^2,\|\cdot\|_2)$ 中只有有限个非零坐标的元素构成的集合 $S\subset l^2$ 显然 S 对 l^2 上的加法和数乘封闭,故 S 是 l^2 的线性子空间. 下面我们举例说明 S 不是闭的: 定义 S 中的序列 $\{x_n\}$ 如下:

$$x_1 = (1,0,0,\ldots)$$
 $x_2 = (1, \frac{1}{2}, 0, 0 \ldots)$
 \ldots
 $x_n = (1, \frac{1}{2}, \ldots, \frac{1}{2^{n-1}}, 0, 0, \ldots)$

可以证明 $\{x_n\}$ 收敛于 $x=(1,\frac{1}{2},\ldots,\frac{1}{2^{n-1}},\ldots)\in l^2$:

$$egin{align*} \lim_{n o \infty} \|x_n - x\|_2 &= \lim_{n o \infty} \left(\sum_{k=n}^\infty \left|rac{1}{2^k}
ight|^2
ight)^{rac{1}{2}} \ &= \lim_{n o \infty} \left(\sum_{k=n}^\infty rac{1}{4^k}
ight)^{rac{1}{2}} \quad ext{(note that } \sum_{k=0}^\infty rac{1}{4^k} = rac{4}{3} ext{ is a convergent series)} \ &= 0 \end{aligned}$$

但注意到 $x \notin S$,因此 l^2 的线性子空间 S 不是闭的.

The End