74LVC244A; 74LVCH244A

Octal buffer/line driver; 3-state

Rev. 06 — 13 August 2009

Product data sheet

General description 1.

The 74LVC244A; 74LVCH244A is an octal non-inverting buffer/line driver with 3-state outputs. The 3-state outputs are controlled by the output enable inputs 1OE and 2OE. A HIGH on nOE causes the outputs to assume a high-impedance OFF-state. Schmitt-trigger action at all inputs makes the circuit highly tolerant for slower input rise and fall times.

Inputs can be driven from either 3.3 V or 5.0 V devices. In 3-state operation, outputs can handle 5 V. These features allow the use of these devices as translators in a mixed 3.3 V and 5 V environment.

The 74LVCH244A bus hold on data inputs eliminates the need for external pull-up resistors to hold unused inputs.

2. **Features**

- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low-power consumption
- Direct interface with TTL levels
- Inputs accept voltages up to 5.5 V
- High-impedance when V_{CC} = 0 V
- Bus hold on all data inputs (74LVCH244A only)
- Complies with JEDEC standard no. 8-1A
- ESD protection:
 - ◆ HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LVC244AD	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads;	SOT163-1
74LVCH244AD			body width 7.5 mm	
74LVC244ADB	–40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads;	SOT339-1
74LVCH244ADB			body width 5.3 mm	
74LVC244APW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads;	SOT360-1
74LVCH244APW			body width 4.4 mm	
74LVC244ABQ	–40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced	SOT764-1
74LVCH244ABQ			very thin quad flat package; no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm	
74LVC244ABX	–40 °C to +125 °C	DHXQFN20U	plastic dual in-line compatible thermal enhanced	SOT1045-1
74LVCH244ABX			extremely thin quad flat package; no leads; 20 terminals; UTLP based; body $2.5 \times 4.5 \times 0.5$ mm	

4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1 OE , 2 OE	1, 19	output enable input (active low)
1A0, 1A1, 1A2, 1A3	2, 4, 6, 8	data input
2Y0, 2Y1, 2Y2, 2Y3	3, 5, 7, 9	data output
GND	10	ground (0 V)
2A0, 2A1, 2A2, 2A3	17, 15, 13, 11	data input
1Y0, 1Y1, 1Y2, 1Y3,	18, 16, 14, 12	data output
V _{CC}	20	supply voltage

6. Functional description

Table 3. Function table [1]

Control	Input	Output
nOE	nAn	nYn
L	L	L
L	Н	Н
Н	X	Z

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
I_{IK}	input clamping current	$V_I < 0 V$	–50	-	mA
V_{I}	input voltage		[<u>1</u>] –0.5	+6.5	V
I_{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0 V$	-	±50	mA
V_{O}	output voltage	output HIGH or LOW	[2] -0.5	$V_{CC} + 0.5$	V
		output 3-state	<u>[2]</u> –0.5	+6.5	V
I _O	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±50	mA
I _{CC}	supply current		-	100	mA
I_{GND}	ground current		-100	-	mA
T_{stg}	storage temperature		- 65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$	[3]	500	mW

^[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

^[2] The output voltage ratings may be exceeded if the output current ratings are observed.

^[3] For SO20 packages: above 70 °C derate linearly with 8 mW/K.
For (T)SSOP20 packages: above 60 °C derate linearly with 5.5 mW/K.
For DHVQFN20 and DHXQFN20U packages: above 60 °C derate linearly with 4.5 mW/K.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage	maximum speed performance	2.7	-	3.6	V
		functional	1.2	-	3.6	V
V_{I}	input voltage		0	-	5.5	V
Vo	output voltage	output HIGH or LOW	0	-	V_{CC}	V
		output 3-state	0	-	5.5	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CC} = 1.2 \text{ V to } 2.7 \text{ V}$	0	-	20	ns/V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	0	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40 °C to +85 °C			–40 °C to +	Unit		
,				Min	Typ[1]	Max	Min	Max	
V _{IH}	HIGH-level input	V _{CC} = 1.2 V		V _{CC}	-	-	V _{CC}	_	V
	voltage	V _{CC} = 2.7 V to 3.6 V		2.0	-	-	2.0	-	V
V _{IL}	LOW-level input	V _{CC} = 1.2 V		-	-	0	-	0	V
	voltage	V _{CC} = 2.7 V to 3.6 V		-	-	8.0	-	8.0	V
V _{OH} HIGH-level output		$V_I = V_{IH}$ or V_{IL}							
	voltage	$I_O = -100 \mu A;$ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		V _{CC} - 0.2	V_{CC}	-	V _{CC} - 0.3	-	V
		$I_O = -12 \text{ mA}$; $V_{CC} = 2.7 \text{ V}$		2.2	-	-	2.05	-	V
		$I_O = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$		2.4	-	-	2.25	-	V
		$I_O = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$		2.2	-	-	2.0	-	V
•	LOW-level output	$V_I = V_{IH}$ or V_{IL}							
	voltage	$I_O = 100 \mu A;$ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		-	0	0.20	-	0.3	V
		$I_{O} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$		-	-	0.40	-	0.6	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$		-	-	0.55	-	8.0	V
I _I	input leakage current	$V_I = 5.5 \text{ V or GND}; V_{CC} = 3.6 \text{ V}$	[2]	-	±0.1	±5	-	±20	μΑ
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = 5.5$ V or GND; $V_{CC} = 3.6$ V	[2][3]	-	±0.1	±5	-	±20	μΑ
I _{OFF}	power-off leakage current	V_{I} or $V_{O} = 5.5 \text{ V}; V_{CC} = 0.0 \text{ V}$		-	±0.1	±10	-	±20	μΑ
lcc	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 3.6 \text{ V}$		-	0.1	10	-	40	μΑ
Δl _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 0.6 \text{ V}$; $I_O = 0 \text{ A}$; $V_{CC} = 2.7 \text{ V}$ to 3.6 V		-	5	500	-	5000	μΑ
4LVC_LVCH244	A_6						© NXP B	.V. 2009. All rig	hts reser

Table 6. Static characteristics ... continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Parameter Conditions			–40 °C to +85 °C			+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
C _I	input capacitance			-	4.0	-	-	-	pF
I _{BHL}	bus hold LOW current	$V_{CC} = 3.0 \text{ V}; V_I = 0.8 \text{ V}$	[4][5]	75	-	-	60	-	μΑ
I _{BHH}	bus hold HIGH current	$V_{CC} = 3.0 \text{ V}; V_I = 2.0 \text{ V}$	[4][5]	- 75	-	-	-60	-	μΑ
I _{BHLO}	bus hold LOW overdrive current	$V_{CC} = 3.6 \text{ V}$	[4][6]	500	-	-	500	-	μΑ
I _{BHHO}	bus hold HIGH overdrive current	$V_{CC} = 3.6 \text{ V}$	[4][6]	-500	-	-	-500	-	μΑ

- [1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.
- [2] The bus hold circuit is switched off when $V_1 > V_{CC}$ allowing 5.5 V on the input terminal.
- [3] For I/O ports the parameter I_{OZ} includes the input leakage current.
- [4] Valid for data inputs of bus hold parts only (74LVCH244A). Note that control inputs do not have a bus hold circuit.
- [5] The specified sustaining current at the data input holds the input below the specified V_I level.
- [6] The specified overdrive current at the data input forces the data input to the opposite input state.

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 8.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
				Min	Typ[2]	Max	Min	Max	
t _{pd}	propagation	nAn to nYn; see Figure 6	<u>[1]</u>						
	delay	V _{CC} = 1.2 V		-	17.0	-	-	-	ns
	V _{CC} = 2.7 V		1.5	3.3	6.9	1.5	9.0	ns	
		V _{CC} = 3.0 V to 3.6 V	[3]	1.5	2.8	5.9	1.5	7.5	ns
t _{en}	enable time	nOE to nYn; see Figure 7	<u>[1]</u>						
		V _{CC} = 1.2 V		-	24.0	-	-	-	ns
		V _{CC} = 2.7 V		1.5	3.3	8.6	1.5	11	ns
		V _{CC} = 3.0 V to 3.6 V	[3]	1.0	3.4	7.6	1.0	9.5	ns
t _{dis}	disable time	nOE to nYn; see Figure 7	<u>[1]</u>						
		V _{CC} = 1.2 V		-	9.0	-	-	-	ns
		V _{CC} = 2.7 V		1.5	3.2	6.8	1.5	8.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[3]	1.5	2.9	5.8	1.5	7.5	ns
t _{sk(o)}	output skew time		<u>[4]</u>	-	-	1.0	-	1.5	ns

 Table 7.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 8.

Symbol	Parameter	Conditions	–40 °C to +85 °C			–40 °C to	Unit	
			Min	Typ[2]	Max	Min	Max	
C_{PD}	power dissipation capacitance	per buffer; $V_I = GND$ to V_{CC} ; $V_{CC} = 3.3 \text{ V}$ [5]	-	10	-	-	-	pF

- [1] t_{pd} is the same as t_{PLH} and t_{PHL} .
 - t_{en} is the same as t_{PZL} and t_{PZH} .
 - t_{dis} is the same as t_{PLZ} and $t_{\text{PHZ}}.$
- [2] Typical values are measured at T_{amb} = 25 °C.
- [3] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 3.3 V.
- [4] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
- [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).
 - $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:
 - f_i = input frequency in MHz; f_o = output frequency in MHz
 - C_L = output load capacitance in pF
 - V_{CC} = supply voltage in Volts
 - N = number of inputs switching
 - $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

11. AC waveforms

Measurement points are given in Table 8.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 6. The input (nAn) to output (nYn) propagation delays

Fig 7. 3-state enable and disable times.

Table 8. Measurement points

Supply voltage	Input	nput Output				
V _{CC}	V _I	V _M	V _M	V _X	V _Y	
1.2 V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.1 V	V _{OH} – 0.1 V	
2.7 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V	
3.0 V to 3.6 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V	

Test data is given in Table 9.

Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 8. Test circuit for measuring switching times

Table 9. Test data

Supply voltage	Input	Load		V _{EXT}	V _{EXT}		
	VI	t _r , t _f	CL	C _L R _L t		t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
1.2 V	V_{CC}	≤ 2.5 ns	50 pF	$500 \Omega^{[1]}$	open	$2 \times V_{CC}$	GND
2.7 V	2.7 V	≤ 2.5 ns	50 pF	$500~\Omega$	open	$2 \times V_{CC}$	GND
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	$500~\Omega$	open	$2 \times V_{CC}$	GND

[1] The circuit performs better when $R_L = 1 \text{ k}\Omega$.

12. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

0.014

0.009

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEDEC JEITA		PROJECTION	ISSUE DATE	
SOT163-1	075E04	MS-013				99-12-27 03-02-19	

0.394

0.016

0.039

Fig 9. Package outline SOT163-1 (SO20)

0.089

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

SOT339-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8° 0°

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT339-1		MO-150				99-12-27 03-02-19	

Fig 10. Package outline SOT339-1 (SSOP20)

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

NI-4--

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT360-1		MO-153				99-12-27 03-02-19

Fig 11. Package outline SOT360-1 (TSSOP20)

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

Fig 12. Package outline SOT764-1 (DHVQFN20)

Fig 13. Package outline SOT1045-1 (DHXQFN20U)

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74LVC_LVCH244A_6	20090813	Product data sheet	-	74LVC_LVCH244A_5		
Modifications:	 New SOT 	1045-1 package outline o	drawing (DHXQFN20	U package).		
74LVC_LVCH244A_5	20090709	Product data sheet	-	74LVC_LVCH244A_4		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 					
	 Legal texts 	s have been adapted to t	he new company na	me where appropriate.		
	 Added typ 	e numbers 74LVC244AE	3X and 74LVCH244A	BX (DHXQFN20U package).		
74LVC_LVCH244A_4	20031030	Product specification	-	74LVC_LVCH244A_3		
74LVC_LVCH244A_3	20030520	Product specification	-	74LVC_H244A_2		
74LVC_H244A_2	19980520	Product specification	-	74LVC244A_74LVCH244A_1		
74LVC244A_74LVCH244A_1	19960906	Product specification	-	-		

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74LVC244A; 74LVCH244A

Octal buffer/line driver; 3-state

17. Contents

1	General description 1
2	Features
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning
5.2	Pin description 4
6	Functional description 5
7	Limiting values 5
8	Recommended operating conditions 6
9	Static characteristics 6
10	Dynamic characteristics 7
11	AC waveforms 8
12	Package outline 11
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks17
16	Contact information 17
17	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

