

Minor actinide burning

Janne Wallenius

Nuclear Engineering, KTH

Intended learning outcomes

Fast spectrum Generation IV-reactors are capable of burning of minor actinides, thereby

Reduced time required to isolate residual waste to less than 1000 years

Reduce volume of geologic repository by factor 3-6

After this lecture you will be able to:

- Evaluate the benefits of minor actinide burning on repository performance
- Assess the detrimental impact of minor actinides on safety parameters
- Design a fast reactor to accommodate minor actinides in the fuel

Minor actinide production in LWRs

Np and Am are produced in LWRs as follows:

$$n + 235U \rightarrow 236U + \gamma$$

$$n + 236U \rightarrow 237U^* \rightarrow 237Np + \beta$$

$$241Pu \rightarrow 241Am + \beta$$

$$n + 242Pu \rightarrow 243Pu \rightarrow 243Am + \beta$$

Production rate of minor actinides

Elemets	kg/TVVh _e	kg/TWh _{th}
TRU	32.3	11.0
Pu	28.8	9.8
MA	3.5	1.2
Am+Cm	1.8	0.6

Nuclide	Fraction	
Fission products	5,145 %	
235U	0.767%	
236U	0.552%	
238U	92.186%	
²³⁷ Np	0.072%	
²³⁸ Pu	0.042%	
²³⁹ Pu	0.623%	
²⁴⁰ Pu	0.286%	
²⁴¹ Pu	0.155%	
²⁴² Pu	0.095%	
²⁴¹ A m	0.038%	
²⁴³ Am	0.028%	
²⁴⁴ Cm	0.010%	
²⁴⁵ Cm	0.001%	

Radiotoxic inventory

Dose coefficients for ingestion

Nuclide	€ 50 [nSV/Bq]	
235U	47	
236U	47	
238U	44	
²³⁷ Np	110	
238Pu	230	
239Pu	250	
²⁴⁰ Pu	250	
²⁴¹ Pu	5	
²⁴² Pu	240	
²⁴¹ Am	200	
²⁴³ A m	200	
²⁴⁴ Cm	120	
²⁴⁵ Cm	210	

Contribution of transuranium elements to radio-toxic inventory of spent PWR fuel after 50 GWd/ton burn-up and four years of cooling.

Time until decay of TRU reduces specific radio-toxicity to below that of uranium in nature ≈ 200 000 years

Heat production in repository

10000

1000

- Forced cooling of repository is conducted until decay of fission products permits closure.
- Heat from decay of ²⁴¹Am is dimensioning for the distance between spent fuel canisters
- Removal of ²⁴¹Pu and ²⁴¹Am from repository can reduce its specific volume by factor of 3-6

100

10

Transmutation of americium

- In Generation IV reactors with breeding ratio ≈ 1.0, the inventory of Pu is roughly constant.
- Americium is added to the fuel (or a burning blanket) for transmutation, mainly by neutron capture.
- Main transmutation products: 238Pu, 242Pu, 242mAm, 244Cm

$$n + {}^{243}Am \rightarrow {}^{244}Am \rightarrow {}^{244}Cm + \beta$$

Impact of americium on safety of fast reactors

- Introduction of americium will lead to
- Reduction of Doppler feedback
- Increase in coolant temperature coefficient
- Reduced delayed neutron fraction
- Degraded performance under transients

Doppler feedback

- When the fuel temperature increases, all nuclides vibrate with larger amplitude around their average crystal lattice positions.
- In the lab system, the cross section for resonance absorption is reduced at the peak and increases at the tails. Area under resonance peak is conserved.
- Neutrons under moderation first experience an increase in absorption cross section when approaching the higher energy tail. Fewer neutrons reach the energy of the resonance peak.
- Net effect: increase in spectrum averaged cross section for capture and reduction in reactivity.
- In fast reactors, the reactivity decreases logarithmically with temperature.

Doppler feedback (2)

The Doppler coefficient α_D is the change of reactivity with temperature due to broadening of absorption cross section.

$$\alpha_D \equiv \frac{d\rho}{dT} = \frac{1}{k^2} \frac{dk}{dT}$$

In a fast spectrum, reactivity decreases logarithmically with temperature.

$$\rho(T) = \rho(0) + K_D \ln(T)$$

The constant of proportionality K_D is called "The Doppler constant"

$$K_D = T \frac{d\rho}{dT}$$

The Doppler coefficient is obtained by dividing the Doppler constant with T

$$\alpha_D = \frac{K_D}{T}$$

Doppler feedback (3)

- Doppler feedback mainly derives from neutron captures occurring below 100 keV
- The lower the energy of the resonance where capture occurs, the more efficient is the Doppler feedback
- In an SFR with standard MOX fuel, 65% of the Doppler feedback derives from neutron captures below 3 keV, constituting only 15% of all captures!
- Typical order of magnitude: $K_D = -500$ pcm
- Spectrum dependence is significant!

Doppler feedback (4)

- Cross section for neutron capture in ²⁴¹Am
 order of magnitude higher than for ²³⁸U
- Even with modest concentration of Am in the fuel, fewer neutrons are slowed down to energy region ($E_n < 30 \text{ keV}$) where Doppler broadening is of relevance.
- Doppler constant is reduced by factor three when Am concentration is ≈ 10% (even if ²³⁸U concentration is > 70%!)

Delayed neutrons

Nuclide	$V_{ ext{tot}}$	$V_{\rm d}/V_{\rm tot}$
238U	2.53	1.89%
239 P u	3.02	0.22%
²⁴¹ Am	3.37	0.13%
²⁴⁴ Cm	3.42	0.13%

- Delayed neutrons are emitted by unstable fission products having a half-life of up to 55 s.
- Main contributors: Kr, Br, I, Rb, Cs
- Increasing mass of mother nuclide shifts mass of the lighter fission product (Why?)
- Yield of Kr and Br is reduced.
- Delayed neutron yield in fission of Am and Cm is extremely low!

Effective delayed neutron fraction

Fuel	β_{eff}/β	
(U _{0.8} ,Pu _{0.2})O ₂	390/460	
(U _{0.7} ,Pu _{0.2} ,Am _{0.1})O ₂	330/430	
(U _{0.6} ,Pu _{0.2} ,Am _{0.2})O ₂	270/390	
(U _{0.5} ,Pu _{0.2} ,Am _{0.3})O ₂	220/350	

- Effective delayed neutron fraction β_{eff} is the fraction of fissions induced by delayed neutrons.
- Delayed neutron spectrum is softer than prompt neutron spectrum
- Am captures delayed neutrons with a higher probability than prompt neutrons.
- eta_{eff} drops faster than eta as function of Am concentration.

Coolant temperature feedback

Fission probability

- When the coolant heats up, the neutron spectrum hardens
- Capture cross section of ²⁴¹Am drops faster than of ²³⁸U (see slide 11)
- Threshold for increase in fission probability is situated at lower neutron energy
- Spectrum component of coolant temperature coefficient is more positive, and increases with concentration of Am

Impact on transient behaviour

Peak fuel temperature during UTOP

- The combined deterioration of Doppler feedback, effective delayed neutron fraction and coolant temperature coefficient leads to poorer performance during transients.
- UTOP = Unprotected Transient Over-Power (e.g. due to control rod withdrawal without SCRAM)
- If a core with 1% Am in the fuel is designed to respect fuel melting with 100 K margin during a UTOP, it will fail if Am concentration is raised to 3%.

Home assignment 2

- Use Serpent to calculate the Doppler constant and coolant temperature coefficient in a fast reactor with rod diameter 10.0 mm, fuel cladding thickness of 0.5 mm a d fuel column height 1.0 m. Do the calculation for Am concentrations of 2, 5 and 8%, and a constant Pu fraction of 15%. That means:
 U/Pu/Am = 1 0.15 C(Am) / 0.15 / C(Am).
- The Doppler constant can be calculated as: $K_D = \frac{\rho(T_1) \rho(T_2)}{\ln(T_2/T_1)}$, changing cross section library only.
- The coolant temperature coefficient is calculated by changing its density in the active core region only.
- Compare the ratio of fuel Doppler coefficient to the coolant temperature feedback. Discuss how the safety parameters depend on Am concentration.

Group No	Sodium	Lead	Helium
Oxide	1	5	9
Nitride	2	6	10
Carbide	3	7	11
Metal alloy	4	8	