Onde elettromagnetiche

$$f = \frac{V_p}{\lambda} \Rightarrow f = \frac{3 \cdot 10^8}{\lambda}$$

$$\lambda = \frac{3 \cdot 10^8}{f} \Rightarrow \lambda [m] = \frac{300}{f [M hz]}$$

Segnale trasmesso Segnale ricevuto

$$s(t) = a \cdot sin(\omega t)$$

 $r(t) = b \cdot sin(\omega t - \omega)$

$$r(t) = b \cdot sin(\omega t - \varphi)$$

$$\varphi = 2\pi \left(\frac{1}{\lambda}\right) =$$

$$= 2\pi \left[int \left(\frac{1}{\lambda} \right) + mod \left(\frac{1}{\lambda} \right) \right]$$

dove **l** è la distanza tra i punti

Riducendosi a 0-2
$$\pi$$
 $\varphi = 2\pi$ m o d $\left(\frac{1}{\lambda}\right)$

$$I = \lambda \left(\frac{\varphi}{2\pi} \right)$$

 $I = \lambda \left(\frac{\varphi}{N} \right) + \frac{\varphi}{2\pi}$ N difficile da misurare senza ambiguità

Modulazione onde elettromagnetiche

Spettro delle frequenze

Utilizzate per

- Comunicazioni
- Radioaiuti
- Radar

Modalità di propagazione

Superamento della curvatura terrestre

Ambiguità del percorso e quindi ambiguità della distanza tra stazione trasmittente e stazione ricevente.

Propagazione rettilinea

$$R = 1.2\sqrt{h_T} + 1.2\sqrt{h_R}$$

dove \mathbf{R} è la distanza massima espressa in miglia nautiche mentre \mathbf{h}_{T} e \mathbf{h}_{R} sono le quote in piedi

Rilevamenti

Rilevamenti

Determinazione del punto come intersezione di linee

ADF Automatic Direction Finder

Not Directional Beacon NDB: stazione al suolo che trasmette sulle frequenze da 90 a 1800 kHz (200 a 415 kHz) in maniera indistinta su tutto l'orizzonte

Automatic Direction Finder ADF: apparato di bordo

Figure 5.40. Minimum and maximum positions of loop antenna. The minimum (null) position is the loop's position during ADF operation. The modern ADF loop antenna is totally solid state with no moving parts. Electrically, it functions in the same manner as the earlier rotatable type loop shown above.

Loop antenna

- (A) Loop in line with the wavefront
- (B) Loop at an angle with the wavefront

(C) Directional pattern of a loop antenna

Loop and sense antenna

Henri Busignies gives the first model of his automatic direction finder to the Smithsonian. His device, developed in 1936, was an outgrowth of his earlier radio compass.

Cardioide

Quadretto di selezione

Quadranti

Homing

LOP Line Of Position

RMI Radio Magnetic Indicator

Rilevamento polare - Rilpo

Avvicinamento in presenza di vento laterale

Rilevazione del punto

Rappresentazione EFIS

