

CS120: Computer Networks

Lecture 6. Multiple Access 1

Zhice Yang

The Multiplexing Problem

Multiplexing Approaches

- FDM
- TDM
- Packet Switching

Multiple Access Protocol

 Multiple access protocol determines how multiple users use the multiplexed resource

Multiplexing Method – Multiple Seats in One Cabin

Multiple Access Method

Ticket

First come first served

Targeting Scenarios

- Two Types of Channels:
 - Private
 - Point-to-point link between nodes, e.g., 1Gbps Ethernet
 - ✓ Broadcast
 - Shared communication medium, e.g., Wi-Fi, 10Mbps Ethernet
 - Two or more simultaneous transmissions => collision

Targeting Scenarios

- Two Types of Channels:
 - Private
 - Point-to-point link between node, e.g., Current Ethernet
 - ✓ Broadcast
 - Shared communication medium, e.g., Wi-Fi, 10Mbps Ethernet
 - Two or more simultaneous transmissions => collision
- Protocol: Medium Access Control (MAC)
 - Access Control: determines how nodes share the channel, i.e., determine when the node transmits
 - Link Control: reliable point-to-point data link

An Ideal Multiple Access Method

- Consider a Broadcast Channel of Rate R bps
 - When one node wants to transmit, it can send at rate R.
 - When M nodes want to transmit, each can send at average rate R/M
 - Fully decentralized
 - No special node to coordinate transmissions
 - No synchronization of clocks, slots, etc.

Existing Methods

- Fixed Partitioning
 - e.g., TDMA, FDMA
 - Avoid Collisions
- Scheduling
 - e.g., Token Ring, Polling
- Random Access
 - e.g., CSMA
 - Allow Collisions

Random Access

- When node has packet to send
 - Try best to transmit at full channel data rate **R**
 - Two or more transmitting nodes => collisions
- Core Design Goals
 - How to detect collisions
 - How to recover from collisions
- Protocols
 - Transmit and Pray
 - Slotted ALOHA
 - CSMA

Transmit and Pray

- Good solution at low load
- Plenty of collisions at high load
 - Low throughput

Slotted ALOHA

- Assumptions
 - Same frame length
 - Nodes are synchronized
 - Nodes start to transmit only at the beginning of slot
 - Nodes can detect collision
- Operation Rule
 - No collision: node sends a new frame in the next slot
 - Collision: node retransmits the frame in each subsequent slot with probability p until success

Slotted ALOHA

• Cons:

- Collisions waste the entire slot
- There are idle slots
 - None of the transmitter gain the slot
- (minor) Clock synchronization
 - Improved in un-slotted ALOHA

- For each slot, the probability of successful transmission is $Np(1-p)^{(N-1)}$
- p is the probability of transmission. It is determined by the number of nodes N in the network, when N is large, p should be small.
- The optimal p can be calculated by derivation
 - $f(p)=Np(1-p)^{(N-1)}$
 - $f'(p)=N(1-p)^{(N-1)}-Np(N-1)(1-p)^{(N-2)}$
 - Thus the optimal p is 1/N
- So when p=1/N, the probability of successful transmission $\frac{1}{12}$ is $(1-1/N)^{(N-1)}$, when N is large, it is close to 1/e. Thus the utilization of the channel is about 30%

Slotted ALOHA

- Cons:
 - Collisions waste the entire slot 1. take actions to handle collision
 - There are idle slots 2. sense the idle slot
 - None of the transmitter gain the slot
 - (minor) Clock synchronization
 - Improved in un-slotted ALOHA
- For each slot, the probability of successful transmission is $Np(1-p)^{(N-1)}$
- p is the probability of transmission. It is determined by the number of nodes N in the network, when N is large, p should be small.
- The optimal p can be calculated by derivation
 - $f(p)=Np(1-p)^{(N-1)}$

potential improvements:

- $f'(p)=N(1-p)^{(N-1)}-Np(N-1)(1-p)^{(N-2)}$
- Thus the optimal p is 1/N
- So when p=1/N, the probability of successful transmission $\frac{13}{13}$ is $(1-1/N)^{(N-1)}$, when N is large, it is close to 1/e. Thus the utilization of the channel is about 30%

Ethernet

Brief History

IEEE 802.3

Ethernet

Carrier Sense Multiple Access (CSMA)

- CSMA: Listen before Transmit
 - If the channel is sensed idle: transmit the entire frame
 - If the channel is sensed busy: defer the transmission

Can collisions still occur?

CSMA: Collisions

- Collisions can still occur
 - Due to propagation delay
- When collision occurs
 - Entire packet wasted

How to better handle collisions?

CSMA + Collision Detection (CSMA/CD)

 Keep listening to the channel while transmitting

- Abort the transition if collision is detected
 - Opt1: transmitted signal != sensed signal
 - Opt2: energy detection
 - Then, retransmit

Ethernet CSMA/CD Protocol

- If channel idle
 - starts transmission
- Else (channel busy)
 - Waits until channel idle.
- If the entire frame is transmitted without detecting another transmission
 - done
 - go idle
- Else
 - Aborts the transmission and sends jam signals
 - to make sure that all the transmitting adapters become aware of the collision
 - Backoff
 - go idle to retransmit (max 16 times)

Ethernet CSMA/CD Protocol

- Exponential Backoff
 - After mth collisions, chooses K at random from {0,1,2, ..., 2^{m-1}}
 - if m>11
 - chooses K at random from {0,1,2, ..., 1024}
 - if m=16
 - done
 - go idle
 - Waits K*one time slot

More about Ethernet CSMA/CD Protocol

- Ethernet does not use ACK
 - It uses local collision detection to estimate the receiver's conditions
 - collision free => success
 - collision => retransmit
- But what if B stopped transmission before it detects collisions?
 - B failed to identify C's collision
 - => no retransmission => transmission failure

More about Ethernet CSMA/CD Protocol

- Effective Range
 - The larger the network, the more likely to miss the collisions
 - Minimum Packet Size
 - e.g., Range 2500m (Local Area Network)
 - => MaxRTT * rate

Other Aspects of Ethernet

Ethernet Cable

Ethernet Patch Cable

"A" is earlier

Ethernet Crossover Cable

	RJ45 Pin#]	Pin# RJ45		
//	Green/White Tracer	1	<u> </u>	1	Orange/White Tracer	
	Green	2	—X/-	2	Orange	
	Orange/White Tracer	3		3	Green/White Tracer	//
	Blue	4	$\neg x$	4	Brown/White Tracer	//
	Blue/White Tracer	5	-X	5	Brown	
	Orange	6	- XX-	6	Green	
//	Brown/White Tracer	7	-X	7	Blue	
	Brown	8	-	8	Blue/White Tracer	

Ethernet Frame

- Line Code: Manchester coded (10Mbps)
- Preamble
 - 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
 - Sync and Clock Recovery

Ethernet Frame (Address)

- Every Ethernet adapter has an address, the MAC address
 - 6 bytes
 - Find your MAC addresss
 - ifconfig
 - ipconfig /all
 - Find the manufacturer of your adapter
 - http://coffer.com/mac_find/

Ethernet Frame (Address)

- Unicast Address
- Broadcast Address
 - All 1s
- Multicast Address
 - First bit 1

if the packet dest addr is the receiver's address, then pass the error free packet to the host

Ethernet Frame

- Type
 - IPV4, ARP, RoCE, etc.
 - Length
- Body 46-1500 B
- CRC 32
- NO ACK

Reference

- Textbook 2.6
- http://www.ee.columbia.edu/~bbathula/courses/HPCN/lecture04.