

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1 - 51 (Canceled)

52. (Currently Amended) A kit for treating cancer, comprising a peptide or peptidomimetic targeting moiety that binds to $\alpha_5\beta_1$ receptor, and a chelator, wherein the targeting moiety is bound to the chelator and the compound has 0-1 linking groups between the targeting moiety and chelator, or a pharmaceutically acceptable salt thereof, and ~~at least one agent selected from the group consisting of a chemotherapeutic agent and a radiosensitizer agent~~, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

53. (Currently Amended) A kit according to Claim 52 wherein said kit comprises a plurality of separate containers, at least one of said containers containing ~~one or more agents selected from the group consisting of a chemotherapeutic agent and a radiosensitizer agent~~, or a pharmaceutically acceptable salt thereof.

54. (Original) A kit according to Claim 52, wherein the chemotherapeutic agent is selected from the group consisting of mitomycin, tretinoin, ribomustine, gemcitabine, vincristine, etoposide, cladribine, mitobronitol, methotrexate, doxorubicin, carboquone, pentostatin, nitrocrine, zinostatin, cetrorelix, letrozole, raltitrexed, daunorubicin, fadrozole, fotemustine, thymalfasin, sobuzoxane, nedaplatin, cytarabine, bicalutamide, vinorelbine, vesnarinone, aminoglutethimide, amsacrine, proglumide, elliptinium acetate, ketanserin, doxifluridine, etretinate, isotretinoin, streptozocin, nimustine, vindesine, flutamide, drogenil, butocin,

carmofur, razoxane, sizofilan, carboplatin, mitolactol, tegafur, ifosfamide, prednimustine, picibanil, levamisole, teniposide, imrosulfan, enocitabine, lisuride, oxymetholone, tamoxifen, progesterone, mepitiostane, epitostanol, formestane, interferon-alpha, interferon-2 alpha, interferon-beta, interferon-gamma, colony stimulating factor-1, colony stimulating factor-2, denileukin diftitox, interleukin-2, and leutinizing hormone releasing factor.

55. (Original) A kit according to Claim 52, wherein the chemotherapeutic agent is selected from the group consisting of mitomycin, tretinoin, ribomustin, gemcitabine, vincristine, etoposide, cladribine, mitobronitol, methotrexate, doxorubicin, carboquone, pentostatin, nitrocrine, zinostatin, cetrorelix, letrozole, raloxifene, daunorubicin, fadrozole, fotemustine, thymalfasin, sobuzoxane, nedaplatin, cytarabine, bicalutamide, vinorelbine, vesnarinone, aminoglutethimide, amsacrine, proglumide, elliptinium acetate, ketanserin, doxifluridine, etretinate, isotretinoin, streptozocin, nimustine, vindesine, flutamide, drogenil, butocin, carmofur, razoxane, sizofilan, carboplatin, mitolactol, tegafur, ifosfamide, prednimustine, picibanil, levamisole, teniposide, imrosulfan, enocitabine, and lisuride.

56. (Previously Presented) A kit according to Claim 52 wherein the chemotherapeutic agent is selected from the group consisting of oxymetholone, tamoxifen, progesterone, mepitiostane, epitostanol, and formestane.

57. (Previously Presented) A kit according to Claim 52 wherein the chemotherapeutic agent is selected from the group consisting of interferon-alpha, interferon-2 alpha, interferon-beta,

interferon-gamma, colony stimulating factor-1, colony stimulating factor-2, denileukin diftitox, interleukin-2, and leutinizing hormone releasing factor.

58 - 65 (Canceled)

66. (Presently Presented) A method according to Claim 83 wherein the cancer is selected from the group consisting of carcinomas of the lung, breast, ovary, stomach, pancreas, larynx, esophagus, testes, liver, parotid, biliary tract, colon, rectum, cervix, uterus, endometrium, kidney, bladder, prostate, and thyroid, squamous cell carcinomas, adenocarcinomas, small cell carcinomas, melanomas, gliomas, and neuroblastomas.

67. (Previously Presented) A method according to Claim 83 wherein the chemotherapeutic agent is selected from the group consisting of mitomycin, tretinoin, ribomustine, gemcitabine, vincristine, etoposide, cladribine, mitobronitol, methotrexate, doxorubicin, carboquone, pentostatin, nitracrine, zinostatin, cetrorelix, letrozole, raltitrexed, daunorubicin, fadrozole, fotemustine, thymalfasin, sobuzoxane, nedaplatin, cytarabine, bicalutamide, vinorelbine, vesnarinone, aminoglutethimide, amsacrine, proglumide, elliptinium acetate, ketanserin, doxifluridine, etretinate, isotretinoin, streptozocin, nimustine, vindesine, flutamide, drogenil, butocin, carmofur, razoxane, sizofilan, carboplatin, mitolactol, tegafur, ifosfamide, prednimustine, picibanil, levamisole, teniposide, imrosulfan, enocitabine, lisuride, oxymetholone, tamoxifen, progesterone, mepitiostane, epitiostanol, formestane, interferon-alpha, interferon-2 alpha, interferon-beta, interferon-gamma, colony stimulating factor-1,

colony stimulating factor-2, denileukin diftitox, interleukin-2, and leutinizing hormone releasing factor.

68-69. (Canceled)

70. (Currently Amended) A composition comprising:

- (i) a metal;
- (ii) ~~at least one agent selected from the group consisting of~~ a chemotherapeutic agent and a radiosensitizer agent, or a pharmaceutically acceptable salt thereof;
- (iii) a peptide or peptidomimetic targeting moiety that binds to $\alpha_5\beta_1$ receptor, and a chelator, wherein the targeting moiety is bound to the chelator and the compound has 0-1 linking groups between the targeting moiety and chelator, or a pharmaceutically acceptable salt thereof; and
- (iv) a pharmaceutically acceptable carrier.

71. (Presently Presented) A composition according to Claim 70, wherein the targeting moiety, linking group, and chelator are of the formula:

$(Q)d-L_n-Ch$ or $(Q)d-L_n-(Ch)d'$

wherein, Q is a peptide independently selected from the group:

K is an L-amino acid independently selected at each occurrence from the group: arginine, citrulline, N-methylarginine, lysine, homolysine, 2-aminoethylcysteine, δ-N-2-imidazolinylornithine, δ-N-benzylcarbamoylornithine, and β-2-benzimidazolylacetyl-1,2-diaminopropionic acid;

K' is a D-amino acid independently selected at each occurrence from the group: arginine, citrulline, N-methylarginine, lysine, homolysine, 2-aminoethylcysteine, δ-N-2-imidazolinylornithine, δ-N-benzylcarbamoylornithine, and β-2-benzimidazolylacetyl-1,2-diaminopropionic acid;

L is independently selected at each occurrence from the group: glycine, L-alanine, and D-alanine;

M is L-aspartic acid;

M' is D-aspartic acid;

R¹ is an amino acid substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, L-valine, D-valine, alanine, leucine, isoleucine, norleucine, 2-aminobutyric acid, 2-aminohexanoic acid, tyrosine, phenylalanine, thienylalanine, phenylglycine, cyclohexylalanine, homophenylalanine, 1-naphthylalanine, lysine, serine, ornithine, 1,2-diaminobutyric acid, 1,2-diaminopropionic acid, cysteine, penicillamine, and methionine;

R² is an amino acid, substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, valine, alanine, leucine, isoleucine, norleucine, 2-aminobutyric acid, 2-aminohexanoic acid, tyrosine, L-phenylalanine, D-phenylalanine, thienylalanine, phenylglycine, biphenylglycine, cyclohexylalanine, homophenylalanine, L-1-naphthylalanine, D-1-naphthylalanine, lysine, serine, ornithine, 1,2-diaminobutyric acid, 1,2-

diaminopropionic acid, cysteine, penicillamine, methionine, and 2-aminothiazole-4-acetic acid;

R^3 is an amino acid, substituted with 0-1 bonds to L_n , independently selected at each occurrence from the group: glycine, D-valine, D-alanine, D-leucine, D-isoleucine, D-norleucine, D-2-aminobutyric acid, D-2-aminohexanoic acid, D-tyrosine, D-phenylalanine, D-thienylalanine, D-phenylglycine, D-cyclohexylalanine, D-homophenylalanine, D-1-naphthylalanine, D-lysine, D-serine, D-ornithine, D-1,2-diaminobutyric acid, D-1,2-diaminopropionic acid, D-cysteine, D-penicillamine, and D-methionine;

R^4 is an amino acid, substituted with 0-1 bonds to L_n , independently selected at each occurrence from the group: glycine, D-valine, D-alanine, D-leucine, D-isoleucine, D-norleucine, D-2-aminobutyric acid, D-2-aminohexanoic acid, D-tyrosine, D-phenylalanine, D-thienylalanine, D-phenylglycine, D-cyclohexylalanine, D-homophenylalanine, D-1-naphthylalanine, D-lysine, D-serine, D-ornithine, D-1,2-diaminobutyric acid, D-1,2-diaminopropionic acid, D-cysteine, D-penicillamine, D-methionine, and 2-aminothiazole-4-acetic acid;

R^5 is an amino acid, substituted with 0-1 bonds to L_n , independently selected at each occurrence from the group: glycine, L-valine, L-alanine, L-leucine, L-isoleucine, L-norleucine, L-2-aminobutyric acid, L-2-aminohexanoic acid, L-tyrosine, L-phenylalanine, L-thienylalanine, L-phenylglycine, L-cyclohexylalanine, L-homophenylalanine, L-1-naphthylalanine, L-lysine, L-serine, L-ornithine, L-1,2-diaminobutyric acid, L-1,2-diaminopropionic acid, L-cysteine, L-penicillamine, L-methionine, and 2-aminothiazole-4-acetic acid;

provided that one of R¹, R², R³, R⁴, and R⁵ in each Q is substituted with a bond to L_n, further provided that when R² is 2-aminothiazole-4-acetic acid, K is N-methylarginine, further provided that when R⁴ is 2-aminothiazole-4-acetic acid, K and K' are N-methylarginine, and still further provided that when R⁵ is 2-aminothiazole-4-acetic acid, K' is N-methylarginine;

d is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

L_n is a linking group having the formula:

(CR⁶R⁷)_g-(W)_h-(CR^{6a}R^{7a})_{g'}-(Z)_k-(W)_{h'}-(CR⁸R⁹)_{g''}-(W)_{h''}-(CR^{8a}R^{9a})_{g'''}

provided that g+h+g'+k+h'+g''+h''+g''' is other than 0;

W is independently selected at each occurrence from the group: O, S, NH, NHC(=O), C(=O)NH, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, (OCH₂CH₂)_s, (CH₂CH₂O)_{s'}, (OCH₂CH₂CH₂)_{s''}, (CH₂CH₂CH₂O)_t, and (aa)_{t'};

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-3 R¹⁰, C₃-10 cycloalkyl substituted with 0-3 R¹⁰, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁰;

R⁶, R^{6a}, R⁷, R^{7a}, R⁸, R^{8a}, R⁹ and R^{9a} are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, PO₃H, C₁-C₅ alkyl substituted with 0-3 R¹⁰, aryl substituted with 0-3 R¹⁰, benzyl substituted with 0-3 R¹⁰, and C₁-C₅ alkoxy substituted with 0-3 R¹⁰, NHC(=O)R¹¹, C(=O)NHR¹¹, NHC(=O)NHR¹¹, NHR¹¹, R¹¹, and a bond to Ch;

R^{10} is independently selected at each occurrence from the group: a bond to C_h , $COOR^{11}$, OH , NHR^{11} , SO_3H , PO_3H , aryl substituted with 0-3 R^{11} , C₁₋₅ alkyl substituted with 0-1 R^{12} , C₁₋₅ alkoxy substituted with 0-1 R^{12} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{11} ;

R^{11} is independently selected at each occurrence from the group: H, aryl substituted with 0-1 R^{12} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R^{12} , C₃₋₁₀ cycloalkyl substituted with 0-1 R^{12} , polyalkylene glycol substituted with 0-1 R^{12} , carbohydrate substituted with 0-1 R^{12} , cyclodextrin substituted with 0-1 R^{12} , amino acid substituted with 0-1 R^{12} , polycarboxyalkyl substituted with 0-1 R^{12} , polyazaalkyl substituted with 0-1 R^{12} , peptide substituted with 0-1 R^{12} , wherein the peptide is comprised of 2-10 amino acids, and a bond to C_h ;

R^{12} is a bond to C_h ;

k is selected from 0, 1, and 2;

h is selected from 0, 1, and 2;

h' is selected from 0, 1, 2, 3, 4, and 5;

h'' is selected from 0, 1, 2, 3, 4, and 5;

g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

g'' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

g''' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

s'' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

C_h is a metal bonding unit having a formula selected from the group:

, and

A¹, A², A³, A⁴, A⁵, A⁶, A⁷, and A⁸ are independently selected at each occurrence from the group N, NR¹³, NR¹³R¹⁴, S, SH, S(Pg), O, OH, PR¹³, PR¹³R¹⁴, P(O)R¹⁵R¹⁶, and a bond to L_n;

E is a bond, CH, or a spacer group independently selected at each occurrence from the group: C₁-C₁₀ alkyl substituted with 0-3 R¹⁷, aryl substituted with 0-3 R¹⁷, C₃-10 cycloalkyl substituted with 0-3 R¹⁷, heterocyclo-C₁-10 alkyl substituted with 0-3 R¹⁷, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4

heteroatoms independently selected from N, S, and O, C₆-10 aryl-C₁-10 alkyl substituted with 0-3 R¹⁷, C₁-10 alkyl-C₆-10 aryl- substituted with 0-3 R¹⁷, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷;

R¹³, and R¹⁴ are each independently selected from the group: a bond to L_n, hydrogen, C₁-C₁₀ alkyl substituted with 0-3 R¹⁷, aryl substituted with 0-3 R¹⁷, C₁-10 cycloalkyl substituted with 0-3 R¹⁷, heterocyclo-C₁-10 alkyl substituted with 0-3 R¹⁷, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆-10 aryl-C₁-10 alkyl substituted with 0-3 R¹⁷, C₁-10 alkyl-C₆-10 aryl- substituted with 0-3 R¹⁷, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷, and an electron, provided that when one of R¹³ or R¹⁴ is an electron, then the other is also an electron;

alternatively, R¹³ and R¹⁴ combine to form =C(R²⁰)(R²¹); R¹⁵ and R¹⁶ are each independently selected from the group: a bond to L_n, -OH, C₁-C₁₀ alkyl substituted with 0-3 R¹⁷, C₁-C₁₀ alkyl substituted with 0-3 R¹⁷, aryl substituted with 0-3 R¹⁷, C₃-10 cycloalkyl substituted with 0-3 R¹⁷, heterocyclo-C₁-10 alkyl substituted with 0-3 R¹⁷, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆-10 aryl-C₁-10 alkyl substituted with 0-3 R¹⁷, C₁-10 alkyl-C₆-10 aryl- substituted with 0-3 R¹⁷, and

a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷;

R¹⁷ is independently selected at each occurrence from the group: a bond to L_n, =O, F, Cl, Br, I, -CF₃, -CN, -CO₂R¹⁸, -C(=O)R¹⁸, -C(=O)N(R¹⁸)₂, -CHO, -CH₂OR¹⁸, -OC(=O)R¹⁸, -OC(=O)OR^{18a}, -OR¹⁸, -OC(=O)N(R¹⁸)₂, -NR¹⁹C(=O)R¹⁸, -NR¹⁹C(=O)OR^{18a}, -NR¹⁹C(=O)N(R¹⁸)₂, -NR¹⁹SO₂N(R¹⁸)₂, -NR¹⁹SO₂R^{18a}, -SO₃H, -SO₂R^{18a}, -SR¹⁸, -S(=O)R^{18a}, -SO₂N(R¹⁸)₂, -N(R¹⁸)₂, -NHC(=S)NHR¹⁸, =NOR¹⁸, NO₂, -C(=O)NHOR¹⁸, -C(=O)NHNR¹⁸R^{18a}, -OCH₂CO₂H, 2-(1-morpholino)ethoxy, C₁-C₅ alkyl, C₂-C₄ alkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkylmethyl, C₂-C₆ alkoxyalkyl, aryl substituted with 0-2 R¹⁸, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O;

R¹⁸, R^{18a}, and R¹⁹ are independently selected at each occurrence from the group: a bond to L_n, H, C₁-C₆ alkyl, phenyl, benzyl, C₁-C₆ alkoxy, halide, nitro, cyano, and trifluoromethyl;

Pg is a thiol protecting group;

R²⁰ and R²¹ are independently selected from the group: H, C₁-C₁₀ alkyl, -CN, -CO₂R²⁵, -C(=O)R²⁵, -C(=O)N(R²⁵)₂, C₂-C₁₀ 1-alkene substituted with 0-3 R²³, C₂-C₁₀ 1-alkyne substituted with 0-3 R²³, aryl substituted with 0-3 R²³, unsaturated 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³, and unsaturated C₃-C₁₀ carbocycle substituted with 0-3 R²³;

alternatively, R²⁰ and R²¹, taken together with the divalent carbon radical to which they are attached form:

R²² and R²³ are independently selected from the group: H, R²⁴, C₁-C₁₀ alkyl substituted with 0-3 R²⁴, C₂-C₁₀ alkenyl substituted with 0-3 R²⁴, C₂-C₁₀ alkynyl substituted with 0-3 R²⁴, aryl substituted with 0-3 R²⁴, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²⁴, and C₃-C₁₀ carbocycle substituted with 0-3 R²⁴;

alternatively, R²², R²³ taken together form a fused aromatic or a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O;

a and b indicate the positions of optional double bonds and n is 0 or 1;

R²⁴ is independently selected at each occurrence from the group: =O, F, Cl, Br, I, -CF₃, -CN, -CO₂R²⁵, -C(=O)R²⁵, -C(=O)N(R²⁵)₂, -N(R²⁵)₃⁺, -CH₂OR²⁵, -OC(=O)R²⁵, -OC(=O)OR^{25a}, -OR²⁵, -OC(=O)N(R²⁵)₂, -NR²⁶C(=O)R²⁵, -NR²⁶C(=O)OR^{25a}, -NR²⁶C(=O)N(R²⁵)₂, -NR²⁶SO₂N(R²⁵)₂, -NR²⁶SO₂R^{25a}, -SO₃H, -SO₂R^{25a}, -SR²⁵, -S(=O)R^{25a}, -SO₂N(R²⁵)₂, -N(R²⁵)₂, =NOR²⁵, -C(=O)NHOR²⁵, -OCH₂CO₂H, and 2-(1-morpholino)ethoxy; and,

R²⁵, R^{25a}, and R²⁶ are each independently selected at each occurrence from the group: hydrogen and C₁-C₆ alkyl; and a pharmaceutically acceptable salt thereof.

72. (Presently Presented) A composition according to Claim 71 wherein:

L is glycine;

R¹ is an amino acid, optionally substituted with a bond to L_n, independently selected at each occurrence from the group: L-valine, D-valine, alanine, leucine, isoleucine, norleucine, 2-aminobutyric acid, tyrosine, phenylalanine, phenylglycine, cyclohexylalanine, homophenylalanine, lysine, ornithine, 1,2-diaminobutyric acid, and 1,2-diaminopropionic acid;

R² is an amino acid, optionally substituted with a bond to L_n, independently selected at each occurrence from the group: valine, alanine, leucine, isoleucine, norleucine, 2-aminobutyric acid, tyrosine, L-phenylalanine, D-phenylalanine, thienylalanine, phenylglycine, biphenylglycine, cyclohexylalanine, homophenylalanine, L-1-naphthylalanine, D-1-naphthylalanine, lysine, ornithine, 1,2-diaminobutyric acid, 1,2-diaminopropionic acid, and 2-aminothiazole-4-acetic acid;

R³ is an amino acid, optionally substituted with a bond to L_n, independently selected at each occurrence from the group: D-valine, D-alanine, D-leucine, D-isoleucine, D-norleucine, D-2-aminobutyric acid, D-tyrosine, D-phenylalanine, D-phenylglycine, D-cyclohexylalanine, D-homophenylalanine, D-lysine, D-serine, D-ornithine, D-1,2-diaminobutyric acid, and D-1,2-diaminopropionic acid;

R^4 is an amino acid, optionally substituted with a bond to L_n , independently selected at each occurrence from the group: D-valine, D-alanine, D-leucine, D-isoleucine, D-norleucine, D-2-aminobutyric acid, D-tyrosine, D-phenylalanine, D-thienylalanine, D-phenylglycine, D-cyclohexylalanine, D-homophenylalanine, D-1-naphthylalanine, D-lysine, D-ornithine, D-1,2-diaminobutyric acid, D-1,2-diaminopropionic acid, and 2-aminothiazole-4-acetic acid;

R^5 is an amino acid, optionally substituted with a bond to L_n , independently selected at each occurrence from the group: L-valine, L-alanine, L-leucine, L-isoleucine, L-norleucine, L-2-aminobutyric acid, L-tyrosine, L-phenylalanine, L-thienylalanine, L-phenylglycine, L-cyclohexylalanine, L-homophenylalanine, L-1-naphthylalanine, L-lysine, L-ornithine, L-1,2-diaminobutyric acid, L-1,2-diaminopropionic acid, and 2-aminothiazole-4-acetic acid;

d is selected from 1, 2, and 3;

W is independently selected at each occurrence from the group: O, NH, NHC(=O), C(=O)NH, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, (OCH₂CH₂)_s, (CH₂CH₂O)_{s'}, (OCH₂CH₂CH₂)_{s''}, and (CH₂CH₂CH₂O)_t,

Z is selected from the group: aryl substituted with 0-1 R¹⁰, C₃-10 cycloalkyl substituted with 0-1 R¹⁰, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁰; R⁶, R^{6a}, R⁷, R^{7a}, R⁸, R^{8a}, R⁹, and R^{9a} are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, C₁-C₅ alkyl substituted with 0-1 R¹⁰, aryl substituted with 0-1 R¹⁰, benzyl substituted with 0-1 R¹⁰, and C₁-C₅ alkoxy substituted

with 0-1 R^{10} , $NHC(=O)R^{11}$, $C(=O)NHR^{11}$, $NHC(=O)NHR^{11}$, NHR^{11} , R^{11} , and a bond to Ch ;

R^{10} is independently selected at each occurrence from the group: $COOR^{11}$, OH , NHR^{11} , SO_3H , aryl substituted with 0-1 R^{11} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R^{11} , C_1-C_5 alkyl substituted with 0-1 R^{12} , C_1-C_5 alkoxy substituted with 0-1 R^{12} , and a bond to Ch ;

R^{11} is independently selected at each occurrence from the group: H, aryl substituted with 0-1 R^{12} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R^{12} , polyalkylene glycol substituted with 0-1 R^{12} , carbohydrate substituted with 0-1 R^{12} , cyclodextrin substituted with 0-1 R^{12} , amino acid substituted with 0-1 R^{12} , and a bond to Ch ;

k is 0 or 1;

h is 0 or 1;

h' is 0 or 1;

s is selected from 0, 1, 2, 3, 4, and 5;

s' is selected from 0, 1, 2, 3, 4, and 5;

s'' is selected from 0, 1, 2, 3, 4, and 5;

t is selected from 0, 1, 2, 3, 4, and 5;

$A^1, A^2, A^3, A^4, A^5, A^6, A^7$, and A^8 are independently selected at each occurrence from the group: NR^{13} , $NR^{13}R^{14}$, S, SH, S(Pg), OH, and a bond to L_n ;

E is a bond, CH, or a spacer group independently selected at each occurrence from the group: C₁-C₁₀ alkyl substituted with 0-3 R¹⁷, aryl substituted with 0-3 R¹⁷, C₃-10 cycloalkyl substituted with 0-3 R¹⁷, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷;

R¹³, and R¹⁴ are each independently selected from the group: a bond to L_n, hydrogen, C₁-C₁₀ alkyl substituted with 0-3 R¹⁷, aryl substituted with 0-3 R¹⁷, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷, and an electron, provided that when one of R¹³ or R¹⁴ is an electron, then the other is also an electron;

alternatively, R¹³ and R¹⁴ combine to form =C(R²⁰)(R²¹);

R¹⁷ is independently selected at each occurrence from the group: a bond to L_n, =O, F, Cl, Br, I, -CF₃, -CN, -CO₂R¹⁸, -C(=O)R¹⁸, -C(=O)N(R¹⁸)₂, -CH₂OR¹⁸, -OC(=O)R¹⁸, -OC(=O)OR^{18a}, -OR¹⁸, -OC(=O)N(R¹⁸)₂, -NR¹⁹C(=O)R¹⁸, -NR¹⁹C(=O)OR^{18a}, -NR¹⁹C(=O)N(R¹⁸)₂, -NR¹⁹SO₂N(R¹⁸)₂, -NR¹⁹SO₂R^{18a}, -SO₃H, -SO₂R^{18a}, -S(=O)R^{18a}, -SO₂N(R¹⁸)₂, -N(R¹⁸)₂, -NHC(=S)NHR¹⁸, =NOR¹⁸, -C(=O)NHNR¹⁸R^{18a}, -OCH₂CO₂H, and 2-(1-morpholino)ethoxy;

R¹⁸, R^{18a}, and R¹⁹ are independently selected at each occurrence from the group: a bond to L_n, H, and C₁-C₆ alkyl;

R²⁰ and R²¹ are independently selected from the group: H, C₁-C₅ alkyl, -CO₂R²⁵, C₂-C₅ 1-alkene substituted with 0-3 R²³, C₂-C₅ 1-alkyne substituted with 0-3 R²³, aryl

substituted with 0-3 R²³, and unsaturated 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³;

alternatively, R²⁰ and R²¹, taken together with the divalent carbon radical to which they are attached form:

R²² and R²³ are independently selected from the group: H, and R²⁴;
alternatively, R²², R²³ taken together form a fused aromatic or a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O;

R²⁴ is independently selected at each occurrence from the group: -CO₂R²⁵, -C(=O)N(R²⁵)₂, -CH₂OR²⁵, -OC(=O)R²⁵, -OR²⁵, -SO₃H, -N(R²⁵)₂, and -OCH₂CO₂H;
and,

R²⁵ is independently selected at each occurrence from the group: H and C₁-C₃ alkyl.

73. (Presently Presented) A composition according to Claim 72 wherein:

Q is a peptide selected from the group:

R¹ is L-valine, D-valine, D-lysine optionally substituted on the ε amino group with a bond to L_n or L-lysine optionally substituted on the ε amino group with a bond to L_n;

R² is L-phenylalanine, D-phenylalanine, D-1-naphthylalanine, 2-aminothiazole-4-acetic acid, L-lysine optionally substituted on the ε amino group with a bond to L_n or tyrosine, the tyrosine optionally substituted on the hydroxy group with a bond to L_n;

R³ is D-valine, D-phenylalanine, or L-lysine optionally substituted on the ε amino group with a bond to L_n;

R⁴ is D-phenylalanine, D-tyrosine substituted on the hydroxy group with a bond to L_n, or L-lysine optionally substituted on the ε amino group with a bond to L_n;

provided that one of R¹ and R² in each Q is substituted with a bond to L_n, and further provided that when R² is 2-aminothiazole-4-acetic acid, K is N-methylarginine;

d is 1 or 2;

W is independently selected at each occurrence from the group: NHC(=O), C(=O)NH, C(=O), (CH₂CH₂O)_s', and (CH₂CH₂CH₂O)_t;

R⁶, R^{6a}, R⁷, R^{7a}, R⁸, R^{8a}, R⁹, and R^{9a} are independently selected at each occurrence from the group: H, NHC(=O)R¹¹, and a bond to Ch;

k is 0;

h" is selected from 0, 1, 2, and 3;

g is selected from 0, 1, 2, 3, 4, and 5;

g' is selected from 0, 1, 2, 3, 4, and 5;

g'' is selected from 0, 1, 2, 3, 4, and 5;

g''' is selected from 0, 1, 2, 3, 4, and 5;

s' is 1 or 2;

t is 1 or 2;

A^1 is selected from the group: OH, and a bond to L_n ;

A^2 , A^4 , and A^6 are each N;

A^3 , A^5 , and A^8 are each OH;

A^7 is a bond to L_n or NH-bond to L_n ;

E is a C_2 alkyl substituted with 0-1 R^{17} ;

R^{17} is =O;

A^1 is NH_2 or $N=C(R^{20})(R^{21})$;

E is a bond;

A^2 is NHR^{13} ;

R^{13} is a heterocycle substituted with R^{17} , the heterocycle being selected from

pyridine and pyrimidine;

R^{17} is selected from a bond to L_n , $C(=O)NHR^{18}$, and $C(=O)R^{18}$;

R¹⁸ is a bond to L_n;

R²⁴ is selected from the group: -CO₂R²⁵, -OR²⁵, -SO₃H, and -N(R²⁵)₂;

R²⁵ is independently selected at each occurrence from the group: hydrogen and methyl;

alternatively, C_h is ;

A¹, A², A³, and A⁴ are each N;

A⁵, A⁶, and A⁸ are each OH;

A⁷ is a bond to L_n;

E is a C₂ alkyl substituted with 0-1 R¹⁷; and,

R¹⁷ is =O.

74. (Previously Presented) A composition according to Claim 70, wherein the metal is selected from the group: ^{99m}Tc, ⁹⁵Tc, ¹¹¹In, ⁶²Cu, ⁶⁴Cu, ⁶⁷Ga, and ⁶⁸Ga.

75. (Previously Presented) A composition according to Claim 74, further comprising a first ancillary ligand and a second ancillary ligand capable of stabilizing the composition.

76. (Currently Amended) A composition according to Claim 74 comprising a compound selected from the group:

99mTc(tricine)(TPPTS)(cyclo(Arg-Gly-Asp-D-Tyr(N-[5-[carbonyl]-2-pyridinyl]diazenido]-3-aminopropyl)-Val)) [SEQ ID NO.: 33];

99mTc(tricine)(TPPMS)(cyclo(Arg-D-Val-D-Tyr(N-[5-[carbonyl]-2-pyridinyl]diazenido]-3-aminopropyl)-D-Asp-Gly)) [SEQ ID NO.: 34];

99mTc(tricine)(TPPDS)(cyclo(Arg-D-Val-D-Tyr(N-[5-[carbonyl]-2-pyridinyl]diazenido]-3-aminopropyl)-D-Asp-Gly)) [SEQ ID NO.: 35];

99mTc(tricine)(TPPTS)(cyclo(Arg-D-Val-D-Tyr(N-[5-[carbonyl]-2-pyridinyl]diazenido]-3-aminopropyl)-D-Asp-Gly)) [SEQ ID NO.: 36];

99mTc(tricine)(TPPTS)(cyclo(Arg-Gly-Asp-D-Phe-Lys(N-[5-[carbonyl]-2-pyridinyl]diazenido)))) [SEQ ID NO.: 37];

99mTc(tricine)(TPPTS)(cyclo(Arg-Gly-Asp-D-Tyr-Lys(N-[5-[carbonyl]-2-pyridinyl]diazenido)))) [SEQ ID NO.: 38];

99mTc(tricine)(TPPTS)([2-[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-Phe-Glu(cyclo {Lys-Arg-Gly-Asp-D-Phe})-cyclo {Lys-Arg-Gly-Asp-D-Phe}) [SEQ ID NO.: 39];

99mTc(tricine)(TPPTS)(cyclo {Arg-Gly-Asp-D-Nal-Lys([2-[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid]))) [SEQ ID NO.: 40];

99mTc(tricine)(TPPTS)([2-[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-Glu(cyclo {Lys-Arg-Gly-Asp-D-Nal})-cyclo {Lys-Arg-Gly-Asp-D-Nal}) [SEQ ID NO.: 41];

99mTc(tricine)(TPPTS)(cyclo(Arg-Gly-Asp-D-Tyr((N-[5-[carbonyl]-2-pyridinyl]diazenido]-18-amino-14-aza-4,7,10-oxy-15-oxo-octadecoyl)-3-aminopropyl)-Val))
[SEQ ID NO.: 42];

99mTc(tricine)(TPPTS)(N-[5-[carbonyl]-2-pyridinyl]diazenido]-Glu(O-cyclo(Lys-Arg-Gly-Asp-D-Phe))-O-cyclo(Lys-Arg-Gly-Asp-D-Phe)) [SEQ ID NO.: 43];

99mTc(tricine)(TPPTS)(N-[5-[carbonyl]-2-pyridinyl]diazenido]-Glu(O-cyclo(D-Tyr(3-aminopropyl)-Val-Arg-Gly-Asp))-O-cyclo(D-Tyr(3-aminopropyl)-Val-Arg-Gly-Asp))
[SEQ ID NO.: 44];

99mTc(tricine)(TPPTS)(cyclo(Arg-Gly-Asp-Lys(N-[5-[carbonyl]-2-pyridinyl]diazenido))-D-Val)) [SEQ ID NO.: 45];

99mTc(tricine)(TPPTS)(cyclo {D-Lys([2-[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid])-D-Phe-D-Asp-Gly-Arg}) [SEQ ID NO.: 46];

99mTc(tricine)(TPPTS)([2-[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-Glu(cyclo {D-Lys-D-Phe-D-Asp-Gly-Arg})-cyclo {D-Lys-D-Phe-D-Asp-Gly-Arg}) [SEQ ID NO.: 47];

99mTc(tricine)(TPPTS)(cyclo {D-Phe-D-Lys([2-[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid])-D-Asp-Gly-Arg}) [SEQ ID NO.: 48];

99mTc(tricine)(TPPTS)(cyclo(N-Me-Arg-Gly-Asp-ATA-D-Lys(N-[5-[carbonyl]-2-pyridinyl]diazenido)))) [SEQ ID NO.: 49];

99mTc(tricine)(TPPTS)(cyclo {Cit-Gly-Asp-D-Phe-Lys([2-[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid)})) [SEQ ID NO.: 50];

99mTc(tricine)(1,2,4-triazole)(cyclo(Arg-Gly-Asp-D-Tyr(N-[5-[carbonyl]-2-pyridinyl]diazenido]-3-aminopropyl)-Val)) [SEQ ID NO.: 51];
(DOTA-¹¹¹In)-Glu(cyclo{Lys-Arg-Gly-Asp-D-Phe})-cyclo{Lys-Arg-Gly-Asp-D-Phe} [SEQ ID NO.: 52];
cyclo(Arg-Gly-Asp-D-Phe-Lys(DTPA-¹¹¹In)) [SEQ ID NO.: 53]; and
cyclo(Arg-Gly-Asp-D-Phe-Lys)₂(DTPA-¹¹¹In) [SEQ ID NO.: 54].

77. (Previously Presented) A composition according to Claim 70, wherein the metal is selected from the group: ³³P, ¹²⁵I, ¹⁸⁶Re, ¹⁸⁸Re, ¹⁵³Sm, ¹⁶⁶Ho, ¹⁷⁷Lu, ¹⁴⁹Pm, ⁹⁰Y, ²¹²Bi, ¹⁰³Pd, ¹⁰⁹Pd, ¹⁵⁹Gd, ¹⁴⁰La, ¹⁹⁸Au, ¹⁹⁹Au, ¹⁶⁹Yb, ¹⁷⁵Yb, ¹⁶⁵Dy, ¹⁶⁶Dy, ⁶⁷Cu, ¹⁰⁵Rh, ¹¹¹Ag, and ¹⁹²Ir.

78. (Currently Amended) A composition according to Claim 77 comprising a compound selected from the group:

cyclo(Arg-Gly-Asp-D-Phe-Lys(DTPA-¹⁵³Sm)) [SEQ ID NO.: 55];
cyclo(Arg-Gly-Asp-D-Phe-Lys)₂(DTPA-¹⁵³Sm) [SEQ ID NO.: 56];
cyclo(Arg-Gly-Asp-D-Tyr(N-DTPA(¹⁵³Sm)-3-aminopropyl)-Val [SEQ ID NO.: 57];
cyclo(Arg-Gly-Asp-D-Phe-Lys(DTPA-¹⁷⁷Lu)) [SEQ ID NO.: 58];
(DOTA-¹⁷⁷Lu)-Glu(cyclo{Lys-Arg-Gly-Asp-D-Phe})-cyclo{Lys-Arg-Gly-Asp-D-Phe} [SEQ ID NO.: 59];

cyclo(Arg-Gly-Asp-D-Phe-Lys)2(DTPA-¹⁷⁷Lu) [**SEQ ID NO.: 60**];
cyclo(Arg-Gly-Asp-D-Tyr(N-DTPA(¹⁷⁷Lu)-3-aminopropyl)-Val) [**SEQ ID NO.: 61**]; and
(DOTA-⁹⁰Y)-Glu(cyclo {Lys-Arg-Gly-Asp-D-Phe})-cyclo {Lys-Arg-Gly-Asp-D-Phe} [**SEQ ID NO.: 62**].

79. (Previously Presented) A composition according to Claim 70, wherein the metal is selected from the group: Gd(III), Dy(III), Fe(III), and Mn(II).

80. (Currently Amended) A composition according to Claim 79 wherein the compound is:
cyclo(Arg-Gly-Asp-D-Tyr(N-DTPA(Gd(III))-3-aminopropyl)-Val) [**SEQ ID NO.: 63**].

81. (Previously Presented) A composition according to Claim 70, wherein the metal is selected from the group: Re, Sm, Ho, Lu, Pm, Y, Bi, Pd, Gd, La, Au, Au, Yb, Dy, Cu, Rh, Ag, and Ir.

82. (Previously Presented) A composition according to Claim 70, further comprising a therapeutic isotope selected from the group: ³⁵S, ³²P, ¹²⁵I, ¹³¹I, and ²¹¹At.

83. (Currently Amended) A method of treating cancer in a patient, comprising:
administering a radiopharmaceutical comprising:

(i) a metal;

DOCKET NO.: BMS-2288/DM-6958A
Application No.: 10/622,246
Office Action Dated: January 7, 2005

PATENT

- (ii) at least one agent selected from the group consisting of a chemotherapeutic agent and a radiosensitizer agent, or a pharmaceutically acceptable salt thereof;
- (iii) a peptide or peptidomimetic targeting moiety that binds to $\alpha_5\beta_1$ receptor, and a chelator, wherein the targeting moiety is bound to the chelator and the compound has 0-1 linking groups between the targeting moiety and chelator, or a pharmaceutically acceptable salt thereof; and
- (iv) a pharmaceutically acceptable carrier, to a patient.