

RADIO TEST REPORT

Report No.: DL-20210624009-4E

Applicant: Nebra Ltd

Address: Unit 4 Bells Yew Green Business Court, Bells Yew Green, East Sussex, United Kingdom

Manufacturer: Shenzhen Eastech Company Limited.

Address: 2nd floor, 3rd building, Baishixia Development Area, Fuyong Street, Bao'an District,

Shenzhen City, Guangdong Province, China.

EUT: 150Mbps 2 in 1 Bluetooth wifi adapter

Trade Mark: N/A

Model Number: FX-8723B

Date of Receipt: Jun. 17, 2021

Test Date: Jun. 17, 2021 - Jun. 24, 2021

Date of Report: Jun. 24, 2021

Prepared By: Shenzhen DL Testing Technology Co., Ltd.

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong

Street, Longgang District, Shenzhen, Guangdong, China

Applicable

Standards: ETSI EN 300 328 V2.2.2 (2019-07)

Test Result: Pass

Report Number: DL-20210624009-4E

Prepared (Engineer): Alisa Song

Reviewer (Supervisor): Jack Bu

Approved (Manager): Jade Yang

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 1 of 40

TABLE OF CONTENT

Page	Test Re
3	. VE
3	. TE
N4	. GE
D11	. TE
12	. RF
ENCE, TX-GAP14	. DU
MIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE15	. AC
SEPARATION17	. но
18	. AD
L BANDWIDTH20	0.
ANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN21	1.
ANTED EMISSIONS IN THE SPURIOUS DOMAIN24	2.
JS EMISSIONS28	3.
IG32	4.
PABILITY35	5.
PHS36	6.
S37	7.

Report No.: DL-20210624009-4E

1. VERSION

Version No.	Date	Description
00 Jun. 24, 2021		Original

Report No.: DL-20210624009-4E

2. TEST SUMMARY

No	Test Item	Clause No	Result					
	Transmitter Parameters							
1	RF output power	4.3.1.2	PASS					
2	Duty Cycle, Tx-sequence, Tx-gap	4.3.1.3	N/A					
3	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	4.3.1.4	PASS					
4	Hopping Frequency Separation	4.3.1.5	PASS					
5	Medium Utilization (MU) factor	4.3.1.6	N/A					
6	Adaptivity (Adaptive FHSS)	4.3.1.7	N/A					
7	Occupied Channel Bandwidth	4.3.2.8	PASS					
8	Transmitter unwanted emissions in the out-of-band domain	4.3.2.9	PASS					
9	Transmitter unwanted emissions in the spurious domain	4.3.2.10	PASS					
	Receiver Parameters							
9	Receiver spurious emissions	4.3.2.11	PASS					
10	Receiver Blocking	4.3.2.12	PASS					
11	Geo-location capability	4.3.2.13	N/A					

Note: (1)" N/A" denotes test is not applicable in this Test Report

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street,

Longgang District, Shenzhen, Guangdong, China

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 3 of 40

⁽²⁾ Test Facility: Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-20210624009-4E

3. GENERAL INFORMATION

3.1 Description of Device (EUT)

EUT: 150Mbps 2 in 1 Bluetooth wifi adapter

Trade Mark: N/A

Model Number: FX-8723B
Test Model: FX-8723B

Model difference: N/A

Power Supply: DC 5V from USB

Receiver Category: 3

Operation Frequency: 2402~2480 MHz

Modulation Type: GFSK, PI/4 DQPSK, 8DPSK

Number of Channel: 79

Bit Rate of Transmitter: 1/2/3Mbps

Antenna Type: Internal Antenna

Antenna Gain: 2dBi
Receiver Category: 1
Hardware Version: --Software Version: ---

Note1: For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Channel List								
Channel	Frequence (MHz)	Char	nnel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	2	1	2423	40	2442	61	2463
01	2403	2	2	2424	41	2443	62	2464
02	2404	2:	3	2425	42	2444	63	2465
~	~	,		~	~	~	~	~
18	2420	3	7	2439	58	2460	76	2478
19	2421	38	8	2440	59	2461	77	2479
20	2422	39	9	2441	60	2462	78	2480

ANNEX E.2

a) The type of wideband data transmission equipment:

■ FHSS

☐ non-FHSS

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 4 of 40

Report No.: DL-20210624009-4E

b) In case of FHSS:	
•In case of non-Adaptive FHSS equipment:	
The number of Hopping Frequencies:	
•In case of Adaptive FHSS equipment:	
The maximum number of Hopping Frequencies: 79	
The minimum number of Hopping Frequencies: 79	
•The (average) dwell time:	
c) Adaptive / non-adaptive equipment:	
☐ non-adaptive Equipment	
adaptive Equipment without the possibility to switch to a non-adaptive mode	
☐ adaptive Equipment which can also operate in a non-adaptive mode	
d) In case of adaptive equipment:	
The Channel Occupancy Time implemented by the equipment: ms	
☐ The equipment has implemented an LBT mechanism	
In case of non-FHSS equipment:	
☐ The equipment is Frame Based equipment	
☐ The equipment is Load Based equipment	
☐ The equipment can switch dynamically between Frame Based and Load Based equipment	
The CCA time implemented by the equipment: µs	
■ The equipment has implemented a DAA mechanism	
☐ The equipment can operate in more than one adaptive mode	
e) In case of non-adaptive Equipment:	
The maximum RF Output Power (e.i.r.p.): -0.73dBm	
The maximum (corresponding) Duty Cycle: %	
Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combination	s o
duty cycle an <mark>d corresponding p</mark> ower levels to be declared):	
f) The worst case operational mode for each of the following tests:	
RF Output Power	
GFSK	
Power Spectral Density	
GFSK	
Duty cycle, Tx-Sequence, Tx-gap	
GFSK	
Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)	
Hopping Frequency Separation (only for FHSS equipment)	
Medium Utilisation	
Adaptivity & Receiver Blocking	
Nominal Channel Bandwidth	
1MHz	

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 5 of 40

• Transmitter unwanted emissions in the OOB domain

Report No.: DL-20210624009-4E

GFSK

Transmitter unwanted emissions in the spurious domain
GFSK
Receiver spurious emissions
GFSK
g) The different transmit operating modes (tick all that apply):
Operating mode 1: Single Antenna Equipment
Equipment with only one antenna
☐ Equipment with two diversity antennas but only one antenna active at any moment in time
☐ Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one
antenna is used (e.g. IEEE 802.11™ legacy mode in smart antenna systems)
□ Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming
Single spatial stream/Standard throughput/(e.g. IEEE 802.11™ legacy mode)
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
NOTE1: Add more lines if more channel bandwidths are supported.
□ Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
Single spatial stream/Standard throughput (e.g. IEEE 802.11™ legacy mode)
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
NOTE2: Add more lines if more channel bandwidths are supported.
h) In case of Smart Antenna Systems:
The number of Receive chains:
The number of Transmit chains:
☐ symmetrical power distribution
☐ asymmetrical power distribution
In case of beam forming, the maximum (additional) beam forming gain: dB
NOTE: The additional beam forming gain does not include the basic gain of a single antenna.
i) Operating Frequency Range(s) of the equipment:
Operating Frequency Range 1: 2402 MHz to 2480 MHz
Operating Frequency Range 2: MHz to MHz
NOTE: Add more lines if more Frequency Ranges are supported.
j) Occupied Channel Bandwidth(s):
• Nominal Channel Bandw <mark>idth</mark> 1: 0.877MHz
Nominal Channel Bandwidth 2: 1.231MHz
NOTE: Add more lines if more channel bandwidths are supported.
k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.):
■ Stand-alone
☐ Combined Equipment
☐ Plug-in radio device
☐ Other
I) The normal and the extreme operating conditions that apply to the equipment:

Normal operating conditions (if applicable):

Operating temperature:25° C

Other (please specify	if applicable):			
Extreme operating of	onditions:			
Operating temperatur	e range: Minimu	um: -20 °C Ma	aximum 55°C	
Other (please specify	if applicable):	Minimum:	Maximum	
Details provided are f	or the: 🗌 stand	d-alone equipme	ent	
	■ comb	oined (or host) e	quipment	
	☐ test j	ig		
The intended combinat	tion(s) of the ra	adio equipment	power settings and one or more antenn	na
assemblies and their co	orresponding e	e.i.r.p. levels:		
 Antenna Type 				
■ Integral Antenna (information to b	e provided in ca	se of conducted measurements)	
Antenna Gain: 2 d	lBi			
If applicable, addit	ional beamform	ing gain (exclud	ing basic antenna gain): dB	
☐ Temporary RF cor	nnector provided	d		
☐ No temporary RF	connector provi	ded		
□ Dedicated Antenn	as (equipment v	with antenna cor	nnector)	
☐ Single power level	l with correspon	ding antenna(s)		
☐ Multiple power set	tings and corre	sponding antenn	na(s)	
Number of differer	nt Power Levels			
Power Level 1:	dBm			
Power Level 2:	dBm			
Power Level 3:	dBm			
NOTE 1: Add mor	e lines in case t	he equip <mark>ment ha</mark>	as more power levels.	
NOTE 2: These po	ower levels are	conducted power	er levels (at antenna connector).	
• For each of the Powe	er Levels, p <mark>rovi</mark> d	le the intended a	ntenna assemblies, their corresponding g	ains (G) and
the resulting e.i.r.p.	levels also takin	ng into account t	he beamforming gain (Y) if applicable	
Power Level 1: -0.7	73 dBm			
Number of antenna	assemblies pro	vided for this po	wer level:	
Assembly #	Gain (dBi)	e.i.r.p.	Part number or model name	7
		(dBm)		
1	2	-0.73		
2				1
3		-		1
4				1
NOTE 3: Add more				_

Report No.: DL-20210624009-4E

Number of ante <mark>nna</mark> assemblies provided for this power level:						
Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name			
1						
2						
3						
4						

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 7 of 40

Report No.: DL-20210624009-4E

NOTE 4: Add more rows in case more antenna assemblies are supported for this power level. Power Level 3: dBm Number of antenna assemblies provided for this power level: Assembly # Gain (dBi) e.i.r.p. Part number or model name (dBm) 1 2 3 4 NOTE 5: Add more rows in case more antenna assemblies are supported for this power level. n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined equipment or test jig in case of plug-in devices: Details provided are for the:

stand-alone equipment combined equipment ☐ test jig Supply Voltage ☐ AC mains State AC voltage V DC State DC voltage: 5V In case of DC, indicate the type of power source ☐ Internal Power Supply □ External Power Supply or AC/DC adapter ☐ Battery: V ☐ Other: o) Describe the test modes available which can facilitate testing: The EUT can be into the Engineer mode for testing. p) The equipment type (e.g. Bluetooth®, IEEE 802.11™, IEEE 802.15.4™, proprietary, etc.): Bluetooth q) If applicable, the statistical analysis referred to in clause 5.4.1 q) (to be provided as separate attachment) r) If applicable, the statistical analysis referred to in clause 5.4.1 r) (to be provided as separate attachment) s) Geo-location capability supported by the equipment: Yes The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user No **ANNEX E.3** From all combinations of conducted power settings and intended antenna assembly(ies) specified in clause 5.4.1 m), specify the combination resulting in the highest e.i.r.p. for the radio equipment. Unless otherwise specified in ETSI EN 300 328, this power setting is to be used for testing against the requirements of ETSI EN 300 328. In case there is more than one such conducted power setting resulting in the same (highest) e.i.r.p. level, the highest power setting is to be used for testing. See also ETSI EN 300 328, clause 5.3.2.3. Highest overall e.i.r.p. value: dBm

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 8 of 40

Report No.: DL-20210624009-4E

Corresponding Antenna assembly gain: dBi	Antenna Assembly #:
Corresponding conducted power setting: dBm	Listed as Power Setting #:
(also the power level to be used for testing)	
ANNEX E.4.1	
ITU Class(es) of emission:	
Can the transmitter operate unmodulated? \square yes \square	no
ANNEX E.4.2	
The transmitter is intended for: $\ \square$ Continuous duty	
☐ Intermittent duty	
☐Continuous operation	possible for testing purposes
ANNEX E.4.3	
☐ The equipment submitted are representative production	n models
$\hfill \square$ If not, the equipment submitted are pre-production mo	dels?
$\hfill \square$ If pre-production equipment are submitted, the final pre-	oduction equipment will be identical in all respects with
the equipment tested	
☐ If not, supply full details	
ANNEX E.4.4	
☐ Spare batteries (e.g. for portable equipment)	
☐ Battery charging device	
☐ External Power Supply or AC/DC adapter	
☐ Test jig or interface box	
☐ RF test fixture (for equipment with integrated antennas	3)
☐ Combined equipment Manufacturer:	
Model #:	
Model name:	
☐ User Manual	
☐ Technical documentation (Handbook and circuit diagra	ams)
	,
3.2 Tested System Details	
None.	
None.	
2.2. Plack Diagram of Toot Set up	
3.3 Block Diagram of Test Set-up	
EUT	

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 9 of 40

3.4 Test Mode Description

Mode	data rate (Mbps)	Channel	Frequency (MHz)
	1	Low: CH1	2402
GFSK	1	Middle: CH39	2441
	1	High: CH78	2480
	2	Low: CH1	2402
PI/4 DQPSK	2	Middle: CH39	2441
	2	High: CH78	2480
	3	Low: CH1	2402
8DPSK	3	Middle: CH39	2441
	3	High: CH78	2480

Report No.: DL-20210624009-4E

3.5 Test Conditions

	Normal Conditions	Extreme Conditions		
Temperature range	25℃	HTHV	DC 5.5V, 55℃°	
	25 C	HTLV	DC 5.5V, -20C°	
Power supply	DC EV	LTLV	DC 4.5V, -20C°	
	DC 5V	LTHV	DC 4.5V, 55C°	

Note 1: The test procedure described in clause 5.1of EN300 328 was used for extreme test procedure.

2: The Extreme Temperature and Extreme Voltages declared by the manufacturer.

3.6 Test Uncertainty

Item	MU	Remark
Uncertainty for Conducted Emission Test	2.50dB	
Uncertainty for Radiation Emission test in 3m chamber	3.04dB	Polarize: V
(30MHz to 1GHz)	3.02dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	3.56dB	Polarize: H
(Above)	3.84dB	Polarize: V
Unce <mark>rtain</mark> ty for radio frequency	1×10 ⁻⁹	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.6C°	
Uncertainty for humidity	1%	

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 10 of 40

Report No.: DL-20210624009-4E

4. TEST INSTRUMENT USED

TESTINSTRUMEN	For All Test									
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.					
Comprehensive Tester	ROHDE&SCHWAR Z	CMW500	106504	Dec. 07, 2020	Dec. 06, 2021					
Spectrum Analyzer	KEYSIGHT	N9020A	MY55370280	Dec. 07, 2020	Dec. 06, 2021					
Signal Source	Agilent	N5182A	MY46240766	Dec. 07, 2020	Dec. 06, 2021					
Signal Source	Agilent	83752B	3610A01631	Dec. 07, 2020	Dec. 06, 2021					
Probe	KEYSIGHT	U2021XA	MY55210018	Dec. 07, 2020	Dec. 06, 2021					
Attenuator	MAIWEI	MANASR0206S 2	DLE-160	Dec. 07, 2020	Dec. 06, 2021					
RF Control Box	MAIWEI	MW100-RFCB	DLE-179	Dec. 07, 2020	Dec. 06, 2021					
RF Control Box	MAIWEI	MW200-RFCB	DLE-180	Dec. 07, 2020	Dec. 06, 2021					
RF Cable	MAIWEI	Z302S	18054391	Dec. 07, 2020	Dec. 06, 2021					
RF Cable	MAIWEI	Z302S	19051973	Dec. 07, 2020	Dec. 06, 2021					
RF Cable	MAIWEI	Z302S	19051987	Dec. 07, 2020	Dec. 06, 2021					
RF Cable	MAIWEI	Z302S	19051988	Dec. 07, 2020	Dec. 06, 2021					
RF Cable	MAIWEI	Z302S	19063251	Dec. 07, 2020	Dec. 06, 2021					
RF Cable	MAIWEI	Z302S	19063254	Dec. 07, 2020	Dec. 06, 2021					
RF Cable	MAIWEI	Z302S	19063257	Dec. 07, 2020	Dec. 06, 2021					
RF Cable	MAIWEI	Z302S	19063259	Dec. 07, 2020	Dec. 06, 2021					
DC power	LODESTAR	LP532DE	LP1908158	Dec. 07, 2020	Dec. 06, 2021					
966 Chamber	ChengYu	966 Room	966	Nov. 25, 2019	Nov. 24, 2022					
Spectrum Analyzer	Agilent	E4408B	MY50140780	Dec. 07, 2020	Dec. 06, 2021					
EMI Receiver	R&S	ESRP7	101393	Dec. 07, 2020	Dec. 06, 2021					
Amplifier	Schwarzbeck	BBV9743B	00153	Dec. 07, 2020	Dec. 06, 2021					
Amplifier	EMEC	EM01G8GA	00270	Dec. 07, 2020	Dec. 06, 2021					
Active Loop Antenna	Daze	ZN30900A	SEL0097	Dec. 07, 2020	Dec. 06, 2021					
Broadband Trilog Antenna	Schwarzbeck	VULB9162	00306	Nov. 28, 2020	Nov. 27, 2021					
Horn Antenna Schwarzbeck		BBHA9120D	02139	Nov. 28, 2020	Nov. 27, 2021					
966 Cable 1#	ChengYu	966	004	Dec. 07, 2020	Dec. 06, 2021					
966 Cable 2#	ChengYu	966	003	Dec. 07, 2020	Dec. 06, 2021					
Temperature Controller	Terchy	MHQ	120	Dec. 07, 2020	Dec. 06, 2021					

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 11 of 40

5. RF OUTPUT POWER

5.1 Block Diagram of Test Setup

Temperature Chamber

Report No.: DL-20210624009-4E

Variable AC or DC power supply

5.2 Limit

The RF output power for non-FHSS equipment shall be equal to or less than 20 dBm.

Notes: For Non-adaptive FHSS equipment, the manufacturer may have declared a reduced RF Output Power (seeclause 5.4.1 m)) and associated Duty Cycle (see clause 5.4.1 e)) that will ensure that the equipment meets the requirement for the Medium Utilization (MU) factor further described in clause 4.3.2.5. This is verified by the conformance test referred to in clause 4.3.2.5.4.

For non-adaptive non-FHSS equipment, where the manufacturer has declared an RF output power of less than 20 dBm e.i.r.p., the RF output power shall be equal to or less than that declared value.

5.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.2.2.1.2

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 12 of 40

5.4 Test Result

	Total e.i.r.p (dBm) Result								
Mode	Test CH			Limit	Result				
ivioue	Test CH	Normal	HTLV	LTLV	LTHV	HTHV	(dBm)	Result	
	Low	-0.92	-0.96	-0.87	-0.84	-0.83	20.00	Pass	
GFSK	Middle	-0.96	-0.94	-0.87	-0.80	-0.75	20.00	Pass	
	High	-0.97	-0.91	-0.88	-0.83	-0.76	20.00	Pass	
	Low	-0.97	-0.73	-0.87	-0.84	-0.81	20.00	Pass	
PI/4DQPSK	Middle	-0.98	-0.74	-0.77	-0.80	-0.78	20.00	Pass	
	High	-0.87	-0.75	-0.88	-0.83	-0.74	20.00	Pass	
	Low	-0.87	-0.81	-0.77	-0.84	-0.83	20.00	Pass	
8DPSK	Middle	-0.88	-0.87	-0.87	-0.80	-0.88	20.00	Pass	
	High	-0.87	-0.78	-0.87	-0.82	-0.75	20.00	Pass	

Report No.: DL-20210624009-4E

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 13 of 40

Report No.: DL-20210624009-4E

6. DUTY CYCLE, TX-SEQUENCE, TX-GAP

6.1 Block Diagram of Test Setup

6.2 Limit

Non-adaptive FHSS equipment shall comply with the following:

- The Duty Cycle shall be equal to or less than the maximum value declared by the manufacturer.
- The maximum Tx-sequence time shall be 5 ms.
- The minimum Tx-gap time shall be 5 ms.

NOTE: For Non-adaptive FHSS equipment, the manufacturer may have declared a reduced RF Output Power (see clause 5.4.1 m)) and associated Duty Cycle (see clause 5.4.1 e)) that will ensure that the equipment meets the requirements for the Medium Utilization (MU) factors further described in clause 4.3.1.6. This is verified by the conformance test referred to in clause 4.3.1.6.4.

6.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.2.2.1.3

6.4 Test Result

The equipment's output power is below 10dBm, no requirements for this item.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 14 of 40

7. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

7.1 Block Diagram of Test Setup

7.2 Limit

For Non-adaptive FHSS equipment

The Accumulated Transmit Time on any hopping frequency shall not be greater than 15 ms within any observation period of 15 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.

Report No.: DL-20210624009-4E

In order for the FHSS equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

Option 1: Each hopping frequency of the Hopping Sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.

Option 2: The probability that each hopping frequency is occupied shall be between $((1 / U) \times 25 \%)$ and 77 % where U is the number of hopping frequencies in use.

The Hopping Sequence(s) shall contain at least N hopping frequencies where N is either 5 or the result of 15 MHz divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

NOTE: See also clause 4.3.1.5.3.1 for the Hopping Frequency Separation applicable to non-adaptive FHSS equipment.

Non-Adaptive FHSS equipment, may blacklist some but not all hopping frequencies. From the N hopping frequencies defined above, the equipment shall transmit on at least one hopping frequency. For the blacklisted frequencies, the equipment has to occupy these frequencies for the duration of the average dwell time (see also definition for blacklisted frequency in clause 3.1).

For Adaptive FHSS equipment

Adaptive FHSS equipment shall be capable of operating over a minimum of 70 % of the band specified in table 1.

The Accumulated Transmit Time on any hopping frequency shall not be greater than 400 ms within any observation period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.

In order for the FHSS equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

Option 1: Each hopping frequency of the Hopping Sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.

Option 2: The occupation probability for each frequency shall be between $((1 / U) \times 25 \%)$ and 77 % where U is the number of hopping frequencies in use.

The Hopping Sequence(s) shall contain at least N hopping frequencies at all times, where N is either 15 or the result of 15 MHz divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 15 of 40

NOTE: See also clause 4.3.1.5.3.2 for the Hopping Frequency Separation applicable to adaptive FHSS equipment.

Report No.: DL-20210624009-4E

For Adaptive FHSS equipment, from the N hopping frequencies defined above, the equipment shall consider at least one hopping frequency for its transmissions. Providing that there is no interference present on this hopping frequency with a level above the detection threshold defined in clause 4.3.1.7.2.2, point 5 or clause 4.3.1.7.3.2, point 5, then the equipment shall have transmissions on this hopping frequency. For Adaptive FHSS equipment using LBT, if a signal is detected during the CCA, the equipment may jump immediately to the next hopping frequency in the Hopping Sequence (see clause 4.3.1.7.2.2, point 2) provided the limit for Accumulated Transmit Time on the new hopping frequency is respected.

7.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.4

7.4 Test Result

Mode	Channel	Pulse time (ms)	Dwell time(ms)	Mini frequency occupation Time(ms)	Dwell time Limit (ms)	Number of hopping channel	Result
	Low	0.32	108.80	435.20			Pass
GFSK	Middle	0.32	108.80	435.20			Pass
	High	0.32	108.80	435.20			Pass
PI/4	Low	1.51	244.80	979.20			Pass
DQPSK	Middle	1.51	244.80	979.20	<400ms	79	Pass
DQF3K	High	1.51	244.80	979.20			Pass
	Low	2.73	289.07	1254.40			Pass
8DPSK	Middle	2.73	289.07	1254.40			Pass
	High	2.73	289.07	1254.40			Pass

Note1: DH1=1600/(79*(DH))*79*0.4* Pulse time .(DH1=2, DH3=4, DH5=6)

2: Mini frequency occupation Time(ms)=4*Dwell time(ms)

Mode]	ating hopping dwidth (MHz)	Hopping sequence	Limit	Result
GFSK			81.78	97.95%		Pass
PI/4 DQPSK			81.64	97.82%	>70%	Pass
8DPSK			81.83	98.01%		Pass
Note1: Hopping Sequence(%) = (20dB BW/83.5)*100						

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 16 of 40

8. HOPPING FREQUENCY SEPARATION

8.1 Block Diagram of Test Setup

8.2 Limit

For Non-adaptive FHSS equipment:

For non-adaptive FHSS equipment, the Hopping Frequency Separation shall be equal to or greater than the Occupied Channel Bandwidth (see clause 4.3.1.8), with a minimum separation of 100 kHz.

Report No.: DL-20210624009-4E

For FHSS equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for non-adaptive FHSS equipment operating in a mode where the RF Output power is less than 10 dBm e.i.r.p., the Hopping Frequency Separation shall be equal to or greater than 100 kHz.

For Adaptive FHSS equipment:

For adaptive FHSS equipment, the minimum Hopping Frequency Separation shall be 100 kHz. Adaptive FHSS equipment that switched to a non-adaptive mode for one or more hopping frequencies because interference was detected on each of these hopping frequencies with a level above the threshold level defined in clause 4.3.1.7.2.2, point 5 or clause 4.3.1.7.3.2, point 5, does not have to comply with the Hopping Frequency Separation provided in clause 4.3.1.5.3.1 for non-adaptive FHSS equipment. If the Hopping Frequency Separation is below the Occupied Channel Bandwidth but greater than 100 kHz, the equipment is allowed to continue to operate with this Hopping Frequency Separation as long as the interference remains present on these hopping frequencies. As this relaxed Hopping Frequency Separation only applies to adaptive FHSS equipment, the FHSS equipment shall continue to operate in an adaptive mode on all other hopping frequencies.

Adaptive FHSS equipment which decided to operate in a non-adaptive mode on one or more hopping frequencies without the presence of interference, shall comply with the limit for Hopping Frequency Separation for non-adaptive FHSS equipment defined in clause 4.3.1.5.3.1 (first paragraph) for these hopping frequencies.

8.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.5

8.4 Test Result

Mode	Channel	Frequency Separation	Limit (MHz)	Result
GFSK	Low/Mid/High	0.98	>0.1	Pass
PI/4 DQPSK	Low/Mid/High	1.01	>0.1	Pass
8DPSK	Low/Mid/High	1.01	>0.1	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 17 of 40

9. ADAPTIVITY

9.1 Block Diagram of Test Setup

Report No.: DL-20210624009-4E

Figure 5: Test set-up for verifying the adaptivity of an equipment

9.2 Limit

Adaptive FHSS equipment using LBT shall comply with the following minimum set of requirements:

- 1) At the start of every dwell time, before transmission on a hopping frequency, the equipment shall perform a Clear Channel Assessment (CCA) check using energy detect. The CCA observation time shall be not less than 0,2 % of the Channel Occupancy Time with a minimum of 18 µs. If the equipment finds the hopping frequency to be clear, it may transmit immediately.
- 2) If it is determined that a signal is present with a level above the detection threshold defined in step 5 the hopping frequency shall be marked as 'unavailable'. Then the equipment may jump to the next frequency in the hopping scheme even before the end of the dwell time, but in that case the 'unavailable' channel cannot be considered as being 'occupied' and shall be disregarded with respect to the requirement of the minimum number of hopping frequencies as defined in clause 4.3.1.4.3.2. Alternatively, the equipment can remain on the frequency during the remainder of the dwell time. However, if the equipment remains on the frequency with the intention to transmit, it shall perform an Extended CCA check in which the (unavailable) channel is observed for a random duration between the value defined for the CCA observation time in step 1 and 5 % of the Channel Occupancy Time defined in step 3. If the Extended CCA check has determined the frequency to be no longer occupied, the hopping frequency becomes available again. If the Extended CCA time has determined the channel still to be occupied, it shall perform new Extended CCA checks until the channel is no longer occupied.
- 3) The total time during which an equipment has transmissions on a given hopping frequency without reevaluating the availability of that frequency is defined as the Channel Occupancy Time. The Channel

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 18 of 40

Occupancy Time for a given hopping frequency, which starts immediately after a successful CCA, shall be less than 60 ms followed by an Idle Period of minimum 5 % of the Channel Occupancy Time with a minimum of 100 µs.

Report No.: DL-20210624009-4E

After the Idle Period has expired, the procedure as in step 1 shall be repeated before having new transmissions on this hopping frequency during the same dwell time.

For LBT based adaptive FHSS equipment with a dwell time < 60 ms, the maximum Channel Occupancy Time is limited by the dwell time.

- 4) 'Unavailable' channels may be removed from or may remain in the Hopping Sequence, but in any case:
- apart from Short Control Signalling Transmissions referred to in clause 4.3.1.7.4, there shall be no transmissions on 'unavailable' channels;
- a minimum of N hopping frequencies as defined in clause 4.3.1.4.3.2 shall always be maintained.
- 5) The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

 $TL = -70 \text{ dBm/MHz} + 10 \times \log_{10} (100 \text{ mW} / P_{out})$ (P_{out} in mW e.i.r.p.)

6) The equipment shall comply with the requirements defined in step 1 to step 4 of the present clause in the presence of an unwanted CW signal as defined in table 2.

Table 2: Unwanted Signal parameters

Wanted s	ignal mean power	U	nwanted CW signal frequency	Unwanted CW signal	
from co	mpanion device		(MHz)	power (dBm)	
sufficient t	o maintain the link		2 395 or 2 488,5	-35	
(see note:	2)		(see note 1)	(see note 3)	
NOTE 1:	The highest freque	nc	shall be used for testing operating	ng channels within the	
			442 MHz, while the lowest freque		
	testing operating c	nar	nnels within the range 2 442 MHz	to 2 483,5 MHz. See	
	clause 5.4.6.1.				
NOTE 2:	A typical conducted	v k	alue which can be used in most ca	ases is -50 dBm/MHz.	
NOTE 3:	The level specified	is	the level at the UUT receiver inpu	t assuming a 0 dBi	
	antenna assembly	ga	n. In case of conducted measure	ments, this level has to be	
corrected for the (in-band) antenna assembly gain (G). In case of radiated					
			vel is equivalent to a power flux d		
	UUT antenna.				

9.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.6

9.4 Test Result

Not applicable

Note: The maximum output power of EUT less than 10dBm, so not applicable.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 19 of 40

10. OCCUPIED CHANNEL BANDWIDTH

10.1 Block Diagram of Test Setup

EUT		Spectrum Analyzer
	•	

10.2 Limit

The Occupied Channel Bandwidth shall be within the band given in 2.4GHz to 2.4835GHz..

In addition, for non-adaptive non-FHSS equipment with e.i.r.p. greater than 10 dBm, the Occupied Channel Bandwidth shall be equal to or less than 20MHz.

Report No.: DL-20210624009-4E

10.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.7

Connect the UUT to the spectrum analyzer and use the following settings:

Centre Frequency:	The centre frequency of the channel under test		
RBW	~1 % of the span without going below 1 %		
VBW	3 × RBW		
Frequency Span:	2 × Nominal Channel Bandwidth		
Detector Mode:	RMS		
Trace Mode:	Max Hold		
Sweep time:	1s		

10.4 Test Result

Test	Test	Occupied	Measured	Frequency	Limit	Result	
Mode	Channel	Bandwidth	F _L (MHz)	F _H (MHz)	LIIIII	rtoodit	
GFSK	Low	0.874	2401.356	/	>2400MHz And	Pass	
GISK	High	0.876	/	2480.778	<2483.5MHz	Pass	
PI/4	Low	1.102	2401.365	/	>2400MHz	Pass	
DQPSK	High	1.105	/	2480.851	And <2483.5MHz	Pass	
8DPSK	Low	1.231	2401.353	/	>2400MHz And	Pass	
ODPSK	High	1.227	/	2480.843	<2483.5MHz	Pass	

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 20 of 40

11. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

11.1 Block Diagram of Test Setup

Temperature Chamber

Report No.: DL-20210624009-4E

Variable AC or DC power supply

11.2 Limit

The transmitter unwanted emissions in the out-of-band domain shall not exceed the values provided by the mask in figure 3.

Figure 3: Transmit mask

11.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.8.

Connect the UUT to the spectrum analyzer and use the following settings:

RBW/VBW	1MHz/3MHz
Span	0Hz
Filter mode	Channel filter

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 21 of 40

Sweep mode	Continuous
Sweep Points	5000
Detector	RMS
Trace mode	Clear/Write
Trigger Mode	Video trigger

Report No.: DL-20210624009-4E

11.4 Test Result

	Test	Lower Ba	nd Edge	Higher	Band Edge	
Test Mode	Condition	Segment A	Segment B	Segment A	Segment B	
	Condition	(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	
GFSK	Normal	-50.51	-54.35	-50.78	-50.52	
PI/4	Normal	-50.34	-54.63	-51.07	-50.78	
DQPSK	Nomai	-50.54	-54.05	-51.07	-30.76	
8DPSK	Normal	-50.13	-53.94	-50.43	-50.14	
Limit		-10	-20	-10	-20	
Conclusion			PA	ASS		

Remark1: All modulations of EUT have been tested, but only show the test data of the worst case in this report.

2: The plots only show the worst mode data.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 22 of 40

Report No.: DL-20210624009-4E

GFSK Low Channel

GFSK High Channel

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 23 of 40

12. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

12.1 Block Diagram of Test Setup

Below 1GHz

Report No.: DL-20210624009-4E

Above 1GHz

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 24 of 40

12.2 Limit

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 12.

Table 12: Transmitter limits for spurious emissions

Report No.: DL-20210624009-4E

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 694 MHz	-54 dBm	100 kHz
694 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

12.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.9.

12.4 Test Result

Below 1GHz

	Spurious Emission Test Data							
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Marging (dB)	Result			
35.85	Vertical	-62.45	-36	-26.45	Pass			
58.47	Vertical	-64.44	-54	-10.44	Pass			
186.69	Vertical	-63.71	-54	-9.71	Pass			
231.52	Vertical	-63.39	-36	-27.39	Pass			
489.43	Vertical	-61.45	-54	-7.45	Pass			
835.22	Vertical	-63.71	-36	-27.71	Pass			
44.57	Horizontal	-63.45	-36	-27.45	Pass			
125.31	Horizontal	-62.29	-36	-26.29	Pass			
313.64	Horizontal	-63.54	-36	-27.54	Pass			
485.56	Horizontal	-64.52	-54	-10.52	Pass			
598.35	Horizontal	-60.82	-54	-6.82	Pass			
713.52	Horizontal	-62.68	-36	-26.68	Pass			

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 25 of 40

Report No.: DL-20210624009-4E

Above 1GHz

		Spurious Em	ission Test Data		
Mode	Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	4804	Vertical	-43.41	-30.00	Pass
0501	7206	Vertical	-46.05	-30.00	Pass
GFSK	9608	Vertical	-48.97	-30.00	Pass
Low	4804	Horizontal	-43.63	-30.00	Pass
Channel	7206	Horizontal	-47.26	-30.00	Pass
	9608	Horizontal	-49.65	-30.00	Pass
	4882	Vertical	-43.31	-30.00	Pass
0501	7323	Vertical	-45.46	-30.00	Pass
GFSK	9764	Vertical	-50.63	-30.00	Pass
Middle	4882	Horizontal	-42.51	-30.00	Pass
Channel	7323	Horizontal	-46.65	-30.00	Pass
	9764	Horizontal	-49.77	-30.00	Pass
	4960	Vertical	-42.90	-30.00	Pass
	7440	Vertical	-44.82	-30.00	Pass
GFSK High	9920	Vertical	-48.37	-30.00	Pass
Channel	4960	Horizontal	-42.87	-30.00	Pass
	7440	Horizontal	-46.14	-30.00	Pass
	9920	Horizontal	-49.90	-30.00	Pass
	4804	Vertical	-42.98	-30.00	Pass
PI/4	7206	Vertical	-45.55	-30.00	Pass
DQPSK	9608	Vertical	-48.49	-30.00	Pass
Low	4804	Horizontal	-43.20	-30.00	Pass
Channel	7206	Horizontal	-46.86	-30.00	Pass
	9608	Horizontal	-49.13	-30.00	Pass
	4884	Vertical	-42.92	-30.00	Pass
PI/4	7326	Vertical	-45.04	-30.00	Pass
DQPSK	9768	Vertical	-50.15	-30.00	Pass
Middle	4884	Horizontal	-42.07	-30.00	Pass
Channel	7326	Horizontal	-46.23	-30.00	Pass
	9768	Horizontal	-49.26	-30.00	Pass
	4960	Vertical	-42.45	-30.00	Pass
PI/4	7440	Vertical	-44.37	-30.00	Pass
DQPSK	9920	Vertical	-47.87	-30.00	Pass
High	4960	Horizontal	-42.44	-30.00	Pass
Channel	7440	Horizontal	-45.67	-30.00	Pass
Ī	9920	Horizontal	-49.39	-30.00	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 26 of 40

Spurious Emission Test Data							
Mode	Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	4804	Vertical	-44.75	-30.00	Pass		
000016	7206	Vertical	-47.43	-30.00	Pass		
8DPSK	9608	Vertical	-50.41	-30.00	Pass		
Low	4804	Horizontal	-44.95	-30.00	Pass		
Channel	7206	Horizontal	-48.84	-30.00	Pass		
	9608	Horizontal	-51.26	-30.00	Pass		
	4884	Vertical	-44.36	-30.00	Pass		
000014	7326	Vertical	-46.45	-30.00	Pass		
8DPSK	9768	Vertical	-52.38	-30.00	Pass		
Middle Channel	4884	Horizontal	-43.40	-30.00	Pass		
Channel	7326	Horizontal	-48.11	-30.00	Pass		
	9768	Horizontal	-51.25	-30.00	Pass		
	4960	Vertical	-44.20	-30.00	Pass		
oppou	7440	Vertical	-46.18	-30.00	Pass		
8DPSK	9920	Vertical	-49.83	-30.00	Pass		
High Channel	4960	Horizontal	-44.17	-30.00	Pass		
Channel	7440	Horizontal	-47.54	-30.00	Pass		
	9920	Horizontal	-51.41	-30.00	Pass		

13. RECEIVER SPURIOUS EMISSIONS

13.1 Block Diagram of Test Setup Below 1GHz

Report No.: DL-20210624009-4E

Above 1GHz

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 28 of 40

13.2 Limit

The spurious emissions of the receiver shall not exceed the values given in table 13.

Table 13: Spurious emission limits for receivers

Report No.: DL-20210624009-4E

Frequency range	Maximum power	Bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

13.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.9.

13.4 Test Result

Below 1GHz

	Receiver S	purious Emiss	ions Test Data		
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Marging (dB)	Result
37.84	Vertical	-68.35	-57.00	-11.35	Pass
57.78	Vertical	-69.62	-57.00	-12.62	Pass
185.27	Vertical	-69.51	-57.00	-12.51	Pass
232.93	Vertical	-69.64	-57.00	-12.64	Pass
486.68	Vertical	-69.75	-57.00	-12.75	Pass
831.27	Vertical	-68.68	-57.00	-11.68	Pass
47.53	Horizontal	-69.38	-57.00	-12.38	Pass
126.68	Horizontal	-68.45	-57.00	-11.45	Pass
312.65	Horizontal	-69.15	-57.00	-12.15	Pass
487.68	Horizontal	-70.41	-57.00	-13.41	Pass
594.46	Horizontal	-70.83	-57.00	-13.83	Pass
713.54	Horizontal	-72.53	-57.00	-15.53	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 29 of 40

Report No.: DL-20210624009-4E

Above 1GHz

		Receiver Spuriou	s Emissions Test Da	ta	
Mode	Frequency	Polarization	Level	Limit (dBm)	Result
Wiode	(MHz)	Polarization	(dBm)	Lillill (dBill)	Result
	4804	Vertical	-54.12	-47.00	Pass
OFOK	7206	Vertical	-54.41	-47.00	Pass
GFSK	9608	Vertical	-61.35	-47.00	Pass
Low Channel	4804	Horizontal	-53.48	-47.00	Pass
Channel	7206	Horizontal	-60.44	-47.00	Pass
	9608	Horizontal	-59.12	-47.00	Pass
	4884	Vertical	-58.23	-47.00	Pass
GFSK Middle	7326	Vertical	-58.35	-47.00	Pass
	9768	Vertical	-53.82	-47.00	Pass
	4884	Horizontal	-53.73	-47.00	Pass
Channel	7326	Horizontal	-59.54	-47.00	Pass
	9768	Horizontal	-60.98	-47.00	Pass
	4960	Vertical	-58.13	-47.00	Pass
	7440	Vertical	-60.15	-47.00	Pass
GFSK	9920	Vertical	-56.63	-47.00	Pass
High	4960	Horizontal	-56.07	-47.00	Pass
Channel	7440	Horizontal	-55.85	-47.00	Pass
	9920	Horizontal	-57.99	-47.00	Pass
	4804	Vertical	-53.60	-47.00	Pass
	7206	Vertical	-53.52	-47.00	Pass
PI/4DQPSK	9608	Vertical	-60.42	-47.00	Pass
Low	4804	Horizontal	-52.94	-47.00	Pass
Channel	7206	Horizontal	-59.83	-47.00	Pass
	9608	Horizontal	-59.25	-47.00	Pass
	4884	Vertical	-57.67	-47.00	Pass
DI/AD GDG:	7326	Vertical	-57.78	-47.00	Pass
PI/4DQPSK	9768	Vertical	-53.22	-47.00	Pass
Middle	4884	Horizontal	-53.23	-47.00	Pass
Channel	7326	Horizontal	-58.91	-47.00	Pass
ļ	9768	Horizontal	-60.36	-47.00	Pass
	4960	Vertical	-58.34	-47.00	Pass
	7440	Vertical	-59.30	-47.00	Pass
PI/4DQPSK	9920	Vertical	-56.66	-47.00	Pass
High	4960	Horizontal	-55.54	-47.00	Pass
Channel	7440	Horizontal	-55.31	-47.00	Pass
	9920	Horizontal	-57.42	-47.00	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 30 of 40

	Receiver Spurious Emissions Test Data						
Mode	Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	4804	Vertical	-51.58	-47.00	Pass		
ODDOK	7206	Vertical	-51.50	-47.00	Pass		
8DPSK	9608	Vertical	-58.14	-47.00	Pass		
Low Channel	4804	Horizontal	-50.95	-47.00	Pass		
Chamilei	7206	Horizontal	-57.59	-47.00	Pass		
	9608	Horizontal	-57.00	-47.00	Pass		
	4884	Vertical	-55.48	-47.00	Pass		
ODDCK	7326	Vertical	-55.58	-47.00	Pass		
8DPSK Middle	9768	Vertical	-51.28	-47.00	Pass		
Channel	4884	Horizontal	-51.24	-47.00	Pass		
Chamie	7326	Horizontal	-56.75	-47.00	Pass		
	9768	Horizontal	-58.08	-47.00	Pass		
	4960	Vertical	-56.11	-47.00	Pass		
ODDOK	7440	Vertical	-57.34	-47.00	Pass		
8DPSK	9920	Vertical	-53.95	-47.00	Pass		
High Channel	4960	Horizontal	-53.32	-47.00	Pass		
Chamie	7440	Horizontal	-53.52	-47.00	Pass		
	9920	Horizontal	-55.26	-47.00	Pass		

Report No.: DL-20210624009-4E

14. RECEIVER BLOCKING

14.1 Block Diagram of Test Setup

Report No.: DL-20210624009-4E

14.2 Limit

Table 14 contains the Receiver Blocking parameters for Receiver Category 1 equipment.

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal	Blocking signal	Type of
	frequency	power (dBm)	blocking
	(MHz)	(see note 4)	signal
(-133 dBm + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2) (-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 380 2 504 2 300 2 330 2 360 2 524 2 584 2 674	-34	CW

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 32 of 40

Table 15 contains the Receiver Blocking parameters for Receiver Category 2 equipment.

Table 15: Receiver Blocking parameters receiver Category 2 equipment

Report No.: DL-20210624009-4E

1	d signal mean power from mpanion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
	n + 10 × log ₁₀ (OCBW) + 10 dB) Bm + 10 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	cw
	OTE 1: OCBW is in Hz. OTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P _{min} + 26 dB where P _{min} is the			
NOTE 3:	minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected			

for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 16 contains the Receiver Blocking parameters for Receiver Category 3 equipment.

Table 16: Receiver Blocking parameters receiver Category 3 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + $10 \times log_{10}(OCBW) + 20 dB$) or (-74 dBm + 20 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	cw
NOTE 1: OCBW is in Hz. NOTE 2: In case of radiated measuremen wanted signal from the companimacy be performed using a want minimum level of wanted signal criteria as defined in clause 4.3. NOTE 3: The level specified is the level a assembly gain. In case of conductor the (in-band) antenna assem this level is equivalent to a power with the UUT being configured/p	ion device cannoted signal up to formall up	ot be determined P _{min} + 30 dB wh et the minimum p sence of any blo ver input assumi nents, this level h case of radiated PFD) in front of the	d, a relative test ere P _{min} is the performance ocking signal. ing a 0 dBi antenna has to be corrected I measurements, he UUT antenna

14.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.11.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 33 of 40

14.4 Test Results

Marila	Wanted	Blocking	Blocking	Measured	Limit
Mode	Power(dBm)	Frequency (MHz)	Power(dB)	PER (%)	(%)
GFSK	-74	2380	-34	0.22	10
	-74	2504	-34	0.35	10
Gran	-74	2300	-34	0.43	10
	-74	2584	-34	0.44	10
	-74	2380	-34	0.31	10
PI/4DQPSK	-74	2504	-34	0.33	10
FI/4DQF3N	-74	2300	-34	0.38	10
	-74	2584	-34	0.63	10
	-74	2380	-34	0.21	10
8DPSK	-74	2504	-34	0.34	10
	-74	2300	-34	0.28	10
	-74	2584	-34	0.51	10

Report No.: DL-20210624009-4E

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 34 of 40

15. GEO-LOCATION CAPABILITY

15.1 Definition and Requirements

Geo-location capability is a feature of the equipment to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates.

Report No.: DL-20210624009-4E

The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location.

15.2 Test Results

This product doesn't support Geo-location.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 35 of 40

16. SETUP PHOTOGRAPHS

Report No.: DL-20210624009-4E

17. EUT PHOTOGRAPHS

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 37 of 40

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 38 of 40

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 39 of 40

*** END OF REPORT ***

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 40 of 40