ANNEX A

ANTENNA TEST RESULTS ON Martec PLB Kannad XS3-GPS 35407-2

1 - ADMINISTRATION

1. WORK ORDER: Reference ITS: E7555

1. TEST TEAM : Benoît

1. SCHEDULE: 9 & 10 November 2006

2 - PURPOSE

The radiation tests of the dedicated radio beacon are performed in INTESPACE EMC Laboratory in compliance with the test methods described in the COSPAS-SARSAT 406 MHz distress beacon type approval standard: C/S T 007- Issue 4 Revision 1 October 2006.

Two antenna test configurations are cheked:

- 1) The Beacon on the C/S T.007 Ground Plane Fig B2
- 2) The Beacon on RAM, Test Configuration Fig B.5, for all Devices that Might be ☐ required to Operate Without a Ground Plane

3 - RADIO BEACON IDENTIFICATIONS

Manufacturer: MARTEC

Model N°: Kannad XS3-GPS (Opale project)

PN / SN: 35407-2

Antenna: Martec Integrated Whip Antenna

4 - TEST SITE DESCRIPTION

Tests are performed in an anechoic chamber (size $16 \text{ m} \times 10 \text{ m} \times 11 \text{ m}$) Walls, ceilling and doors are lined with EMERSON CUMING foams VHP 36 and VHP 26 type. The Beacon is placed as shown on figure N° 1, B2, B5, B6 and N° 3.

5 - TEST METHOD

The test method describes here after, according to "C/S T 007 - Issue 4 -Revision 1 - October 2006" test sequences is executed for 406 MHz frequency.

The Beacon or the Beacon Antenna placed on center of the electrical ground plane (as show Fig B & Fig 3) the following measurements are performed:

1/ Determination of E field strength in term of $dB\mu V/m$ at 3 m far from the Beacon Antenna for all direction (0° to 360° by step of 30°) and for all search antenna elevation (10° to 50° by step of 10°).

Lenght of search antenna is adjusted to proper $1/2 \lambda$ conditions.

For alls positions the induced voltage is measured with search antenna in vertical and horizontal direction .

- 2/ Beacon antenna polarization is determined .
- 3/ An EIRP (Equivalent Isotropically Radiated Power) from the Beacon Antenna is calculated
- 4/ EIRP is corrected with EOL (end of life factor)
- 5/ Actual EIRP are compared to specified EIRP to be in the range:
 - 1.6 W to 20 W (+ 32 dBm to + 43 dBm) in conf B.3
 - 1 W to 20 W (+ 30 dBm to + 43 dBm) in conf B.5

6 - TESTS EQUIPMENTS

6.1. SEARCH ANTENNA

• Linear antenna (dipole)

Manufacturer: EMCO 3121C-DB4

P/N / S/N : 9904-1436 Antenna Factor : 20,9 dB Calibration validity : Feb 2007

6.2. SPECTRUM ANALYSER

• Manufacturer HP 8566

Reference: RF: 85660B FI: 85662A Serial number: 2449A01077 2403A08359

Calibration validity: nov-06

6.3. CABLES

- 2x10 m cable SUCOFLEX type N

Cable loss at 406 MHz is: 3,5 dB

7 - TESTS OPERATIONS

7.1. EMISSION FIELD STRENGTH FROM BEACON

Beacon electric field strength is obtained from measurement of the output voltage (dB μ V RMS) at antenna port (typical set up are shown figure N° 3 for 406 MHz) and computed with following parameters :

- Antenna factor of search antenna AF in dB
- Directivity factor of the vertical search antenna Dm in dB (Theoritical directivity shown paragraph B-5-4 of C/S T007) as :

$$Dm = 20 \log [\cos (90 \times \sin q) / \cos q]$$

- Cable loss L = 3.5 dB at 406 MHz
- DF: distance factor in dB To calculate field at a constant distance (3 m) from Beacon due to the elevation of the search antenna.
- Power correction factor: end of life correction factor EOL is calculated from the difference between RF power measured during test and end of life power after 24/48 hours operation. This factor is applied to correct EIRP as shown on final test result table
- The measurements are performed on the carrier signal, just before to apply the modulation.
- The effective field strength at 3 m from Beacon is computed from : Linear Antenna (Dipole) : $EdB\mu V/m = UdB\mu V + AF Dm + L + DF$ RHCP Antenna (Spiral Cone) : $EdB\mu V/m = UdB\mu V + AF + L + DF$ (the search antenna point to the BUT antenna)

7.2. POWER CORRECTION FACTORS

EOL factor

	RF Power	RF Power	Loss Factor
TEST FREQUENCY	measured at	measured at the end of	EIRPLOSS
	Ambient Temp. Test	Operating Lifetime Test	
406 MHz BEACON	36,1 dBm	36,0 dBm	0,1 dB

8 - RADIATED POWER CALCULATIONS

8.1. EFFECTIVE ISOTROPICALLY RADIATED POWER OF BEACON

EIRP of Beacon is directly calculated from equation:

 $EIRP = E^2 \times D^2 / 30$

EIRP = W

E = V/m

D = m

Results shown in table N° C1 are given in dBm where :

EIRP dBm = 10 log (EIRP W) + 30

and apparent antenna gain:

GidB = EIRPdBm - RF PowerdBm

9 - SUCCESS CRITERIA

- For B.2 test configuration : 90% of Beacon measurements must be equal or greater than 1,6 W EIRP (32 dBm) . and less than 20 W EIRP (43 dBm)
- For B.2 test configuration : 80% of Beacon measurements must be equal or greater than 1W EIRP (30 dBm) . and less than 20 W EIRP (43 dBm)

10 - BEACON ANTENNA POLARIZATION

Beacon antenna polarization is checked according to C/S T007 procedure paragraph B9 . The Beacon antenna polarization is declared linear when $80\,\%$ of induced voltage measurement Vv and Vh differ by at least $10\,dB$. If more than $20\,\%$ of the induced voltage measurement (Vv, Vh) are within $10\,dB$ of each other the Antenna Polarization is considered Circular .

Antenna model	C/S T.007 Test	Min difference (V	v - Vh) (See C1b les)	C/S T.007 Antenna Polarization
	Conf.	min	% < 10dB	
Integrated Whip Antenna	B2	0,6 dB	27%	Like circular

12 - RESULTS

Test frequency	C/S T.007 Polarization	Reference EIRP (W)	Measurement EIRP		
406 MHz BEACON	Like circular	1.6 < EIRP Ref< 20	According tables F-B.		

CONCLUSIONS

According to the laboratory measurement uncertainties (+/- 2,3 dB) and C/S T.007 measurement tolerance the Beacon Antenna can be declared in EIRP Ref tolerance

406 MHz BEACON ANTENNA TEST RESULTS - B2 Test Configuration

Beacon Model : Kannad XS3-GPS **Antenna Model :** Integrated Whip Antenna

Test Configuration: For "PLB-like" Devices (Figure B2)

<u>Table F-B.1/1: Equivalent Isotropically Radiated Power (dBm) / Antenna Gain (dBi)</u>

Azimuth	Elevation Angle(degrees)									
Angle	10		20		30		40		50	
(degrees)	dBm	dBi	dBm	dBi	dBm	dBi	dBm	dBi	dBm	dBi
0	38,85	2,75	41,35	5,25	39,19	3,09	31,98	-4,12	29,36	-6,74
30	38,76	2,66	41,25	5,15	39,18	3,08	32,71	-3,39	30,64	-5,46
60	38,54	2,44	41,24	5,14	39,22	3,12	33,09	-3,01	31,93	-4,17
90	38,51	2,41	41,10	5,00	39,24	3,14	33,07	-3,03	32,46	-3,64
120	38,60	2,50	41,10	5,00	39,10	3,00	33,00	-3,10	32,85	-3,25
150	38,72	2,62	41,10	5,00	38,90	2,80	32,37	-3,73	32,48	-3,62
180	38,82	2,72	41,10	5,00	39,06	2,96	32,13	-3,97	31,71	-4,39
210	38,93	2,83	41,11	5,01	38,98	2,88	31,07	-5,03	30,21	-5,89
240	39,02	2,92	41,10	5,00	38,95	2,85	30,61	-5,49	27,95	-8,15
270	39,02	2,92	41,30	5,20	39,04	2,94	30,46	-5,64	25,72	-10,38
300	38,92	2,82	41,20	5,10	39,05	2,95	30,88	-5,22	24,79	-11,31
330	39,02	2,92	41,34	5,24	38,84	2,74	31,58	-4,52	26,91	-9,19
Overall Gain Variation (dB)	0,51		0,25		0,40		2,62		7,68	

 $ERP_{max EOL} = MAX [ERP_{max}, (ERP_{max} - ERP_{LOSS}] = MAX (41,24 41,14) = 41,24 dBm$ $ERP_{min EOL} = MIN [ERP_{min}, (ERP_{min} - ERP_{LOSS}] = MIN (30,46 30,36) = 30,36 dBm$

Note: Values with stricken-out text are removed for calculating the EIRP maximum and EIRP minimum

Table F-B.2/1: INDUCED Voltage Measurements Vv / Vh (dBμV)

Azimuth		Elevation Angle (Degrees)									
Angle	10		20		30		40		50		
(Degrees)	Vv	Vh	Vv	Vh	Vv	Vh	Vv	Vh	Vv	Vh	
0	109,49	90,60	111,58	92,90	108,56	95,40	99,66	92,90	93,65	93,00	
30	109,39	90,60	111,48	92,70	108,56	95,30	100,46	93,30	95,95	92,70	
60	109,19	89,50	111,48	91,80	108,66	93,90	101,16	91,40	98,15	91,00	
90	109,19	84,40	111,38	85,40	108,76	90,00	101,46	85,90	99,15	87,70	
120	109,29	79,60	111,38	83,70	108,66	84,00	101,46	81,70	99,65	86,10	
150	109,39	85,50	111,38	83,80	108,46	85,30	100,66	87,90	99,05	89,10	
180	109,49	86,70	111,38	85,50	108,56	91,10	99,86	92,80	97,95	90,70	
210	109,59	87,50	111,38	87,70	108,46	91,90	98,56	92,80	96,25	90,10	
240	109,69	87,20	111,38	85,30	108,46	90,70	98,36	91,20	94,25	86,60	
270	109,69	86,00	111,58	84,40	108,56	90,20	98,66	87,40	92,55	78,20	
300	109,59	86,30	111,48	86,30	108,56	90,60	99,16	86,50	90,85	84,60	
330	109,69	86,90	111,58	92,50	108,26	93,90	99,56	90,70	91,15	90,60	
Min (Vv-Vh)	18,8		17,6		13,2		5,8		0,6		

Antenna Polarization: Like Circular

406 MHz BEACON ANTENNA TEST RESULTS - B5 Test Configuration

Beacon Model: Kannad XS3-GPS **Antenna Model:** Integrated Whip Antenna

Test Configuration For all Devices that Might be Required to Operate Without a Ground Plane

<u>Table F-B.3: Equivalent Isotropically Radiated Power (dBm) / Antenna Gain (dBi)</u>

Azimuth	Elevation Angle(degrees)									
Angle	10		20		30		40		50	
(degrees)	dBm	dBi	dBm	dBi	dBm	dBi	dBm	dBi	dBm	dBi
0	35,76	-0,34	36,12	0,02	33,38	-2,72	30,82	-5,28	26,39	-9,71
90	34,87	-1,23	35,80	-0,30	33,62	-2,48	34,07	-2,03	31,09	-5,01
180	35,21	-0,89	35,63	-0,47	34,16	-1,94	33,22	-2,88	31,30	-4,80
270	35,34	-0,76	35,35	-0,75	32,77	-3,33	30,76	-5,34	27,99	-8,11
Overall Gain Variation (dB)	0,89		1 089 1 0// 1		1,39		3,31		4,91	

 $ERP_{LOSS} = Pt_{AMB} - Pt_{EOL} = 0.1 dB$

Note: Values with stricken-out text are removed for calculating the EIRP maximum and EIRP minimum

