

#//.# 920-02 PATENT

ADTANTHE UNITED STATES PATENT AND TRADEMARK OFFICE

In re	Application of)		RECEIVED
Charl	es E. FARLEY et al.)	E duam Fantana I	_ 2002
Serial	No. 09/694,789)	Group Art Unit: 3751	TC 1700
Filed:	October 24, 2000))	Atty. Dkt. No.: 005242.87031	•
For:	EMULSIFICATION OF ALKENYL SUCCINIC ANHYDRIDE SIZE)		

DECLARATION UNDER 37 C.F.R. § 1.131

RECEIVED

Assistant Commissioner for Patents Washington, DC 20231

SEP 1 2 2002 TECHNOLOGY CENTER R3700

Sir:

We, CHARLES E. FARLEY, GEORGE ANDERSON, and KARLA D. FAVORS citizens of the United States of America, do hereby state:

- 1. THAT we are co-inventors of claims 1-20 of the above-captioned patent application.
- 2. THAT prior to September 26, 2000, we reduced our invention as described and claimed in the above-captioned patent application to practice in this country as evidenced by the following:
 - a) Prior to September 26, 2000 and having earlier conceived of using a starch grafted cationic acrylamide co-polymer for the emulsification of alkenyl succinic anhydride size, we directed laboratory experiments, while being employed by Georgia-Pacific Resins, Inc., to be performed, resulting in the synthesis of alkenyl succinic anhydride emulsifiers. The details of

these experiments are evidenced by the laboratory notebook pages in Exhibit A.

b) As evidenced by Exhibit A:

- i. A solution of a starch grafted cationic acrylamide co-polymer having about 15 wt% solids, at about a 1.1:1 weight ratio of starch to acrylamide, was prepared. The starch used was Penford Gum 280, a hydroxyethylated cornstarch commercially available from Penford Products.
- ii. The starch grafted cationic acrylamide co-polymer was prepared by charging into a reaction vessel at room temperature: 2716 g of deionized water, 494 g of acrylamide (52 wt% aqueous solution), 92.2 g of diallyldimethyl ammonium chloride (63 wt% aqueous solution, available from Ciba Specialties), and 290 g of hydroxyethylated corn starch. The pH of the reaction mass was adjusted to about 4.0 using dilute sulfuric acid. The reactants were de-aerated by sparging with nitrogen for 30 minutes.
- iii. A free radical catalyst solution was prepared by combining 6.04 g of potassium persulfate and 194 g of water to form an approximately 3 wt% aqueous solution of potassium persulfate. The catalyst solution was divided into four equal portions of about 50 g each.
- iv. Following de-aeration, the reaction mass was heated to 75°C. One 50 g portion of the potassium persulfate solution was added and the resulting reaction exotherm increased the reaction mass temperature to about 96°C. The second, third, and fourth 50 g portions of potassium persulfate solution were added at 8, 38, and 68 minutes after the first portion was added. The reaction temperature was maintained at about

90°C for the duration of these additions. After the fourth portion of potassium persulfate was added, the reaction mass was held for one hour, after which the reaction vessel heating was turned off. Following addition of the final catalyst charge, the reaction mass was held for one hour at 90°C, and thereafter was post-treated with a cross-linking agent.

- v. A second synthesis of starch grafted cationic co-polymer was carried out in a similar manner, except that the amount of diallyldimethyl ammonium chloride was doubled to result in a doubling of the cationic charge of the emulsifier.
- c) Under our direction, samples of the starch grafted cationic acrylamide copolymer prepared as described in Exhibit A were tested for sizing ability
 and stability in alkenyl succinic anhydride emulsion blends comprising a
 surfactant. Based on the test results, the samples prepared worked for
 their intended purpose. The details of this testing are evidenced by Tables
 1, 2, and 3 in Exhibit B and discussed below.

d) As evidenced in Exhibit B:

- i. Samples of the starch grafted cationic acrylamide co-polymers, prepared according to the procedures set forth in Exhibit A (referred to as Ambond 1520 and Ambond 1530), were used to emulsify 10 wt% alkenyl succinic anhydride size solutions.
- ii. In a blender, solutions of both starch grafted cationic acrylamide, as synthesized according to Exhibit A, were stirred at medium speed. A third solution of a different emulsifier (EML-2) was prepared for comparative purposes.

- iii. To these three solutions, alkenyl succinic anhydride containing sodium dioctyl sulfosuccinate surfactant was added and the resulting mixture was blended at high speed for four minutes. The resulting 10 wt% alkenyl succinic anhydride emulsions using the emulsifiers in Exhibit A were fluid and milk-white, compared to the emulsion using EML-2, which was viscous and foamy.
- iv. Samples of each of the three emulsions were diluted to 1.5 wt% alkenyl succinic anhydride and particle size was determined both immediately and after standing overnight. Results in Table 1 of Exhibit B showed that the emulsions of Exhibit A afforded superior performance, namely a smaller average particle size and greater emulsion stability, compared to EML-2.
- v. These superior performance results were confirmed in additional emulsification experiments where different cellulosic materials were sized and differing ratios of the starch grafted cationic acrylamide copolymer to alkenyl succinic anhydride were used. The results of these additional experiments are summarized in Tables 2 and 3 of Exhibit B.
- 3. THAT the emulsifier and emulsification process described above meet the limitations of claims 1-8 and 11-20 in the above-captioned patent application.
- 4. THAT each of the dates deleted from Exhibits A and B is prior to September 26, 2000.
- 5. THAT the acts referred to in Exhibits A and B were performed in the United States.
- 6. I declare further that all statements made herein are of my own knowledge are true and that all statements made on information and belief are believed to be true;

and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. §1001 and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Dated: 4 SEPT. 2002

Dated Sept. 4 2002

Dated: 8/30/02

Charles E Farley

George Anderson

Karla D. Favors

	TITLE Hand 1520 Book No	951 D	<u>-</u> <u>)</u>	
	From Page No			
	Purpose: Make Cationic Ambond 1520 for CEFarley	for an	ASA	emulsifier.
	H20 #1 2080 DI Per 290 290 96-FBB-800			
	Aan, 52% 494 DADWC 92.2 H20#2 636 D7			
	Adjust pH from 5.78 to 4.06 W/ dilute 1/250	4		
	Kz) 20x 6.04 } 200 + 4 = 50			
	1:30 Begin Nz Sparge 2:00 Begin heating			
	Time 2:50 TO 75°C Add 50g K2520 2:58 T08 96°C Hick, framy add 50 3:28 T38 90°C Hedd 50g K2520 4:28 T68 90°C Heat off	Op Kes	208	٠
	4:28 T68 90°C Add 50g Kase08 5:18 T128 90°C Heat off	F	RECEI SEP 1.7:20 2 1700	l/r-
	Add KX-28 8.4g	To	EP 1.7 20	OZ D
	Color - light Grey PH 6.37 14.79,15.35 (15.07%) Brook Vise 444 cps	, (1700)
·	12 NV 14.79,15.35 (15.07%) Brook Vise 444 cps		ECEI\	
	EXHIBIT A		SEP 1 2 HNOLOGY CE	2002
		,,,,	T	o Page No
	Witnessed & Understood by me. Date I energy Recorded by / 10 1		Date	
	Cama Cultreash Recorded by KDBOCK	ļ		

Ambond 1520 (515D99	prepolymer)	
	PBW Scale-up		Wt Percent
Penford Gum 290	0.0764	V 290.3365	7.640434753
Acrylamide (52%)	0.1297	V 492.9186	12.97154196
Water#1	0.5474	√ 2 079.9671	54.7359763
Sulfuric Acid (35%)	0.0002	0.9336	0.024567314
DADMAC (63%)	0.0243	√ 92.4222	2.432164118
Water #2	0.1673	,/635.7530	16.73034105
	0.0000	0.0000	0
Slimetrol RX-28 (21%)	0.0022	8.4020	0.221105829
	0.0000	0.0000	0
Potassium Persulfate	0.0016	6.0205	0.15843461
Water (Pot. Persulfate)	0.0509	193.2465	5.085434064
			O
Prepolymer	1.0000	3800.0000	100
		3800.0000	0

1530 Project No._ Book No. 951 D 1520 XZDARAPAR TITLE Ambond rom Page No. 2079. 290 Pen 290 184.8 DADMAC Water #2 636 Dilute H2SD4 679 K25208 Water RK-28 7.25 pH 5.73 Adjust to 3.89pH 4 3 674 dilute Hesay (accidentally added 25%, No.014 (st(pH 10.3) Temp Comment
Boom Begin Nz Sparge

70 954 Add KzJz by

130 911°C RECEIVED

SEP 1.7 2002

TC 1700 pH 6.22 16.28,16.59 6.55 16442 RECEIVED Vise 323cps SEP 1 2 2002 TECHNOLOGY CENTER R3700 To Page No. Witnessed & Understood by me. Date Date Maria Culheath Recorded by KDBlak

Ambond 1520 (515D99			
	PBW	Scale-up	
Penford Gum 290	0.0764	290.3365	
Acrylamide (52%)	0.1297	492.9186	
Water #1	0.5474	2079.9671	
Sulfuric Acid (35%)	0.0002	0.9336	
DADMAC (63%)	0.0243	- 92.4222	184.8
Water #2	0.1673	635.7530	10.4
	0.0000	0.0000	
Slimetrol RX-28 (21%)	0.0022	8.4020	
	0.0000	0.0000	
Potassium Persulfate	0.0016	6.0205	
Water (Pot. Persulfate)	0.0509	193.2465	
Prepolymer	1.0000	3800.0000	
		3800.0000	

TABLE 1
Sizing with Novasize ASA emulsified in EML-2, Ambond 1520, Ambond 1530
Evaluation in Old New sprint

Ambond 1530 "	Ambond 1520	* * * * * * * * * * * * * * * * * * *	Polymer
	1/1		Ratio/ASA (1)
4.5 4.5	4.5 4.5	3.5 4 4.5	ASA; lb / ton
464 536 730	404 487 650	403 556 794	HST
1.37	0.98	2.16	HST Particle Size, microns
stable	stable	white precipitate	Stability, 24 hours

(1). The polymer/ASA ratios are those for a 20% solids Ambond.

TABLE 2
Ambond 1520 and 1530 - Sizing and Emulsion Stability
Old Newsprint Furni sh - Second Test Rou nd

Polymer	Ratio poly./ASA (1)	lb ASA/ton	HST	Particle size, micron	
				immed.	24 hr
EML-2	1/1	3.1	50	2.45	wh. Ppt.
9	•	3.4	71	2.43	wii. Ppt.
	•	3.7	146		
Ambond 1520	1/1	3.1	. 66	0.93	2.99
*	•	3.4	101	0.55	2.55
*	*	3.7	146		
Ambond 1520	0.65/1	3.1	62	1.37	1.84
n	*	3.4	133		
		3.7	162		
Ambond 1530	1/1	3.1	104	1.33	4.49
*		3.4	-		
	•	3.7	212		
Ambond 1530	0.65/1	3.1	181	1.02	2.89
n	•	3.4	223		2.00
	n	3.7	324		

^{(1).} Ratios with Ambond are expressed as liquid resin corrected to a 20% solids product.

TABLE 3
Ambond 1520, 1530 - Sizing and Emulsion Stability
Evaluation in OCC

Polymer	Ratio polymer/ASA	ASA, Ib/ton	нѕт	Particle size, microns	
				immed.	24 hrs
Novasize EML-2 (1)	1/1	1	27	2.04	
•	#	1.4		2.31	16.3
•	•	1.8	180		
•		2.2	274		
		4	983 (2)		
Ambond 1520	1/1	1	•		
•	*	=	6	0.89	3.38
N	•	1.4	48		
•	F	1.8	175		
		2.2	250		
Ambond 1520	0.65/1	1	_		
•	•	· ·	7	1.05	2.67
R		1.4	39		
*	*	1.8	207		
		2.2	434		
Ambond 1530	1/1	1			
*	Ħ	· ·	13	1.31	3.87
n	n	1.4	33		
W	*	1.8	227		
		2.2	418		
Ambond 1530	0.65/1	4	. -		
•	H	1	35	1.33	3.17
Ħ	•	1.4	135		
n	н	1.8	246		
		2.2	494		

^{(1).} Polymer/ASA ratio for EML-2 is liquid, as is basis (for Eml-2 at 30% solids. ratio is 0.3/1, active solids basis). For Ambond 1520 and 1530 ratio is liquid, as is basis corrected to a 20% solids resin. Thus a 1/1 ratio is 0.2/1, active solids basis. 0.65/1 is 0.13/1, active solids basis.

^{(2).} Utterly suspect value; would expect this test value to be 400-500. Suggest ignoring.