Altera PCIe reference design testing

CRU INDIA TEAM

Example Design: Variation

We have found four example designs:

1. Stratix V Avalon-ST Interface for PCIe Solutions -- for better understanding of PCIe hip

2. Stratix V Avalon-MM Interface for PCIe Solutions—for quick design

3. V-Series Avalon-MM DMA Interface for PCIe Solutions - high performance DMA engine

4. PCI Express Multi-Channel DMA Interface--multichannel DMA ,support 8chs, one mem for 8 chs

Figure 1: PCI Express Multi-Channel DMA Interface Example Design System-Level Block Diagram

PCIe_Testing

- There are multiple PCIe reference design available in web. We have selected reference design based on 1st and 3rd example design:
 - -- Stratix V Avalon-ST Interface for PCIe Solutions
 - -- V-Series Avalon-MM DMA Interface for PCIe Solutions
- APPs
 - --Both the reference design includes a Windows-based software application that sets up the DMA transfers. The software application also measures and displays the performance achieved for the transfers.
 - --We have another jungo app that detect the presence of Altera board on PCI bus and fetch the details of reference design.
- Ref design selection:
 - --Reference design1 based on 1^{st} example design has multiple variation .We have selected the three of them --Gen 1 \times 8/Gen2 \times 8/Gen3 \times 4
 - --Reference design2 based on 3^{rd} example design also has multiple variation. We have selected the one of them --Gen 3×8
- There are two computers in VECC ,one support upto Gen2X8 and another upto Gen3 X8.
- We are not able to install the windows application for ref design 1 on computer that support upto Gen3X8. So,the result for DMA is for Gen2 X8
- We are able to install the drivers for ref design 2 on computer that support upto Gen3X8. Device manager has listed the Altera board. But, not able to run the application prog. till now.. So, right now we do not have results for DMA of reference design 2.

Reference design 1

User design contains the DMA engine

Reference design 2

User design contains the only the dual port RAM, DMA is accessed through MM regs

Board and system setup

Before prog. the FPGA, we have to change some DIP switches setting to create
the testing environment and manage the trade off b/n configuration time and
bus enumeration time

Problem

- --Configuration time is much much greater than Bus enumeration time
- --FPGA will be still in configuration mode after bus enumeration, So, host will not detect PCIe based FPGA board

Reasons behind solution:

- --FPGA needs power for configuration.
- --After configuration FPGA needs Power (either via PCI BUS or externally) to hold the configuration.
- --But when we shut down and restart or restart the host., FPGA will not get power for some time in case of Power source=PCI BUS.
- --So, FPGA will lose its configuration.
- --So, We need to apply external power for the time being.

Solution:

- --apply external power to prog. the FPGA
- --shut down and restart or restart the host i.e bus enumeration (FPGA remains configured ,since we have applied external power)
- --so host will detect FPGA board on PCI bus
- To manage the trade off b/n configuration time and bus enumeration time, there are other solutions like CvP and FPPX32
- But, CvP is not supported by Gen3 X8 mode
- · We are trying to program the FLASH using PFL.

PCIe Control DIP Switch

PCI Express Control DIP Switch

The PCI Express control DIP switch (SW6) can enable or disable different configurations. Table 2–16 shows the switch controls and descriptions.

Table 2-16. PCI Express Control DIP Switch Controls

Switch	Schematic Signal Name	Description	Default	
4	PCIE_PRSNT2n_x1	ON : Enable x1 presence detect	ON	
'		OFF : Disable x1 presence detect	UN	
2	PCIE_PRSNT2n_x4	ON : Enable x4 presence detect	ON	
		OFF : Disable x4 presence detect	UN	
3	PCIE_PRSNT2n_x8	ON : Enable x8 presence detect	ON	
٥		OFF : Disable x8 presence detect	ON	
4	_	Unused	_	

SW setting: OFF OFF ON ON

JTAG Control DIP Switch

JTAG Control DIP Switch

The JTAG control DIP switch (SW3) provides you an option to either remove or include devices in the active JTAG chain. However, the Stratix V GX FPGA device is always in the JTAG chain. Table 2–14 shows the switch controls and its descriptions.

Table 2-14. JTAG Control DIP Switch Controls

Switch	Schematic Signal Name	Description	Default	
4	EMODIO TERO EN	ON : Bypass MAX V CPLD System Controller.	OFF	
'	5M2210_JTAG_EN	OFF: MAX V CPLD System Controller in-chain.	Ull	
2	HSMA_JTAG_EN	ON: Bypass HSMC port A.	ON	
2		OFF : HSMC port A in-chain.	ON	
3	HSMB_JTAG_EN	ON : Bypass HSMC port B.	ON	
3		OFF : HSMC port B in-chain.		
4	PCIE JTAG EN	ON : On-Board USB-Blaster II or external USB-Blaster is the chain master.	ON	
٦	PCIE_DIAG_EN	OFF : PCI Express edge connector is the chain master.	ON	

SW setting: ON ON ON ON

Board setting DIP Switch

Board Settings DIP Switch

The board settings DIP switch (SW5) controls various features specific to the board and the MAX V CPLD System Controller logic design. Table 2–12 lists the switch controls and descriptions.

Table 2-12. Board Settings DIP Switch Controls (Part 1 of 2)

Switch	Schematic Signal Name	Description		
1	CLK_SEL	ON : SMA input clock select. OFF : Programmable oscillator input clock select (default 100 MHz).	0FF	
		ON : On-Board oscillator enabled.	ON	
2	CLK_ENABLE	OFF : On-Board oscillator disabled.	ON	

Table 2-12. Board Settings DIP Switch Controls (Part 2 of 2)

Switch	Schematic Signal Name	Description		
3 FACTORY LOAD		ON : Load user 1 design from flash at power up.		
Ů	THOTOKI_BOAD	OFF : Load factory design from flash at power up.	OFF	
4	SECURITY MODE	ON : Do not send FACTORY command at power-up.	ON	
4		OFF : Send FACTORY command at power-up.		

SW setting: OFF ON ON OFF

Gen1 x8 Avalon ST reference design1: Results

Memory Read/Write

Interrupt

Data Passed the protocol layer

Gen2 x8 Avalon ST reference design1:Results

Memory Read/Write(error)

Memory Read/Write

Interrupt

Gen3 x4 Avalon ST reference design1:Results

Memory Read/Write

Interrupt

Results

Result of reference design1 using Jungo app(see jungo_app_results section)

		Memory RD/WR(32/64 bit)	Interrupt	Configuration Header
•	Gen1 X8	Yes, both 32 and 64 bit RD &WR successful	Listen to Interrupt failed	Shows the header
•	Gen2 X8	Yes, both 32 and 64 bit RD &WR successful	Listen to Interrupt failed	Shows the header
•	Gen3 X4	Yes, both 32 and 64 bit RD &WR successful	Listen to Interrupt failed	Shows the header

- 1. We have tested the memory read and write functionality(32 bit and 64 bit) for each variation . Memory read and write is successful except in case of Gen2 X8, where initially there are wrong memory read and write. The problem resolved when we have re-tested (done everything from step1) it later.
- 2. Listen to interrupt failed for each variation. Evaluating interrupt....
- --Implement MSI-X option is off in Capabilities register > MSI-X Capabilities
- 3. Show the Configuration space register (header) for each variation.

PCIE DMA APPLICATION

Design summary and Link training status

Write only/7 iterations/transfer length=100000 bytes look the performance

Write only/2 iterations/transfer length=100 bytes look the performance**

Altera Corporation - PCI	Express - Performanc	e Demo			X
Sti	atıx		Performar	nce (MB/s)	
Transfer length (bytes): Address offset(Hex): Sequence: Number of iterations:	OnChipMe 0 Write only	V			
Board:	Stratix V - PCIe	slot 0 🔻	Peak 882	Average 458	Last 33
DMA write: 882 MB/s					
☐ Continous loop	dom C Incremental	,	Stop		

Read only/5 iterations/transfer length=100000 bytes look the performance

Read then write/5 iterations/transfer length=100000 bytes look the performance

Write then Read/5 iterations/transfer length=100000 bytes look the performance

Read and write /5 iterations/transfer length=100000 bytes look the performance

EP configuration space registers

Scan the Motherboard PCI BUS

EP memory write

EP memory write

Results

Result of reference design1 (gen2 X8) using DMA app

- 1. Performance is same for write only, read only, write then read, read then write ,write and read
- 2. Performance degraded when the transfer length reduces from 100000 byte to 100 bytes
 --- due to the increasing ratio of header versus payload data and partly filled PCIe packets
- 3. App fetches board settings, PCI bus of motherboard ,EP configuration space register information
- 4. App reads and writes to the target memory.
- 5. Link training status gives some other indication.

Figure 1: TLP Format

Start	SequenceID	TLP Header	Data Payload	ECRC	LCRC	End
1 Byte	2 Bytes	3-4 DW	0-1024 DW	1 DW	1 DW	1 Byte

The theoretical maximum throughput is calculated using the following formula:

Throughput % = payload size / (payload size + overhead)

For a 256-byte maximum payload size and a three dword TLP header (or five dword overhead), the maximum possible throughput is (256/(256+20)), or 92%.

Benchmark results 1

- The following tables list the performance of x1, x4, and x8 operations with the Stratix V GX FPGA development board for the Intel i7-3930K 3.8 GHz Sandy Bridge-E processor using reference design1.
- The table shows the average throughput with the following parameters:
 - 100 KByte transfer
 - 20 iterations
 - A 256-byte payload
 - Maximum 512-byte read request
 - 256-byte read completion

In CRU, input data stream for single DMA ch is 3200 MB/s

Table 7: Stratix V Hard IP for PCI Express Performance - Intel i7-3930K Processor

Configuration	DMA Reads (MB/s)	DMA Writes (MB/s)	Simultaneous DMA Read/ Writes (MB/s)	Theoretical Maximum Throughput (MB/s)		
,				Read	Write	
Gen3, x4	3324	3473	3212/2991	3710	3710	
Gen2, x8	3326	3507	3267/2910	3710	3710	
Gen2, x4	1704	1767	1653/1514	1855	1855	
Gen2, x1	475	438	401/358	463	463	
Gen1, x8	1676	1763	1647/1491	1855	1855	
Gen1, x4	839	881	832/800	927	927	
Gen1, x1	222	222	214/200	231	231	

Figure 3. PCIe payload throughput of C-RORC to host RAM transfer as a sum of 12 independent DMA channels for a range of TPC event sizes tested on two different machines.

3e+05 TPC Event Size (bytes)

100000

Figure 5: C-RORC Installation in the ALICE HLT for Run 2 and schematic drawing of the dataflow in the firmware.

- --SandyBridge architecture having the PCIe endpoint implemented directly in the CPU against a Ne-halem architecture where PCIe is connected using an IO-Hub.
- --Both architectures show decreased transfer rates for small event sizes due to the increased overhead into the ReportBuffer, the increas-ing ratio of header versus payload data and only partly filled PCIe packets.
- --is sum equal to 12*DMA transfer rate of one ch?
- --independent chs??

PCIF & CRU

Gathered basic idea of PCIe w.r.t. our requirement based on Erno's view

- 1. PCIe is a BUS protocol, so multiple components can share it --multiple GBT links can share the PCIe BUS
- 2. Two types of BUS protocol-EP and RP
 - --CRU will use EP BUS and O2 will use RP BUS protocol
- 3. O2 will see CRU (PCI40)as a piece of HW on PCI BUS
 - --multiple FW blocks of CRU will be accessed via BAR registers
 - --CSRs(contains BARS) will be mapped to system memory
 - --Thus, we can access the FW blocks (registers) of CRU via application program (running on computers) by simple system memory RD and WR
- 4. To speed up data transfer, we need DMA(minimum processor intervention)
 - --processor handover the memory transfer request to DMA and after successful transfer, DMA sends an ack. to processor
 - --multiple GBT links send the data to DMA controllers
 - --DMA controllers manage the data transfer b/n CRU and system memory through PCI BUS
 - --DMA controller is master on that PCI BUS, so, multichannel bus master DMA term is used (from CRU development status slide,18th feb,2015)
- 5. PCIE configuration space is 256 byte space

Future plans

- More precise requirement analysis of MC BM DMA
 - ---data flow,interfaces,architecture
- Comparison table -module required and modules available with Altera
- More DMA performance test with available reference design
- Study the DMA controller