

# COS30015 IT Security

Live Lecture Week 2

• • • • • •

. . . . . .

### Acknowledgement of Country

We respectfully acknowledge the Wurundjeri People of the Kulin Nation, who are the Traditional Owners of the land on which Swinburne's Australian campuses are located in Melbourne's east and outer-east, and pay our respect to their Elders past, present and emerging.

We are honoured to recognise our connection to Wurundjeri Country, history, culture, and spirituality through these locations, and strive to ensure that we operate in a manner that respects and honours the Elders and Ancestors of these lands.

We also respectfully acknowledge Swinburne's Aboriginal and Torres Strait Islander staff, students, alumni, partners and visitors.

We also acknowledge and respect the Traditional Owners of lands across Australia, their Elders, Ancestors, cultures, and heritage, and recognise the continuing sovereignties of all Aboriginal and Torres Strait Islander Nations.



. . . . . . . . . . . . .

# Assignment 1 --- Research Project

- Worth 40% of the subject assessment
- Due Date: Thursday the 8th of Sept 2022 at 23:59pm.
- Workload
  - The literature review should consist of 2500-4000 words (at least 6 pages, single spaced, 12pt fonts, on a normal A4 paper).
  - Each student should spend at least 30 hours working on the assignment.



# Assignment 1 --- Research Project

#### What is a literature review?

- A standalone literature review
- As part of a thesis or research paper

#### What is a good literature review?

- Has a clear understanding of key concepts within the topic.
- Clarifies important definitions and terminology.
- Covers the breadth of the specific topic.
- Critically discusses the ideas in the literature and evaluates how authors present them.
- Clearly indicates a research gap for future enquiry.



# Assignment 1--- Topics

#### Attacks:

- Advanced persistent threat
- Insider threat
- Emerging Attacks on Blockchain or the defences
- Emerging Attacks on IoTs or the defences
- Emerging Attacks on AI or the defences
- Backdoor attacks or the defences
- Denial of service or Distributed Denial of service
- Eavesdropping
- Exploits
- Malware
- o Spam
- Phishing
- o Ransomware
- Vulnerabilities

#### Defences:

- Access control
- Application security
- Secure coding
- o Authentication
- Multi-factor authentication
- Authorization
- Data-centric security
- o Encryption
- Intrusion detection/prevention system
- Mobile security
- cloud security

Too much literature?

Not enough literature?



- Abstract
- Introduction
- Overview/Background
- Literature Review
- Discussion
- Conclusion

# **Attachments**

<u>AssignmentCoverSheet.doc</u> <u>↓</u>



#### Decide what you will write about

• Spreadsheet, collect relevant information, record, help shape your narrative.

| Year        | Topic Class (Infra                | Cyber Attack                      | ▼ Targeted Information (/                                                                      | ▼ Methodology ▼                            | Paper List 🔻                                                                                | Problem Solving / Main Work                                                                                                                                                 | Similarities & Differencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ▼ Limitations                                                                                                                                                                                                                   | Further/ Future Work                                                                                                                                                      | Experiment Datse                                                                                        | Query input & output                                                                                                                                                 | ▼ Comments ▼                                                                                  |
|-------------|-----------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| SP 201      | Cloud Service<br>(MLaaS System)   | Steal Controlled Mod              | Linear and Kernal ML<br>Models'<br>el hyperparameters<br>(Objective functions'<br>coefficient) |                                            | Stealing Hyperparameters in Machine<br>Learning                                             | Hyperparameters stealing attack via observing minima objective function against MLaaS in black-box setting.                                                                 | Trainig data was uploaded to train the popular classifier     The classifier was trained & stored in the cloud     A. Tatacker aim at learning model hyperparameters [* inference)     A. Attacker in all a tearning model by perparameters the process     The control of the process     The process of the process of the process of the process     The process of th | Successful Train-Steal-Retrain startegy rely on data quality in etraining an accurate model.     Cannot steal ML algorithm and hyperparters when ML algorithm is unknown.     3. Do not consider other kinds of hyperparameters | 1. The security of hyperparameters fo<br>other ML (i.e. K for KNN) 2. The possibility of stealing ML<br>algorithm and hyperparameters 3. Defences except rounding para  ✓ | Regression:<br>Diabetes;<br>GeoOrig;<br>UJIIndoor<br>Classification: Iris;<br>Madelon; Bank             | Membership inputs (randon<br>d-dimensional inputs)<br>Output: a label only<br>(confidence value vector/<br>some data structure info -><br>API)                       | Amazon: extract model<br>trained by ourselves<br>Microsoft: extract model                     |
| CCS<br>2015 | Cloud Service<br>(MLaaS System)   | Steal Controlled<br>Training Data | Participants' training dataset                                                                 | Model inversion attack                     | Model inversion attacks that exploit confidence information and basic countermeasures (125) | Model inversion attacks leverage confidence information with predictions against MLaaS APIs in white-box (+) and black-box setting.                                         | Trainig data was uploaded to train the DT & NN / black-box     The classifier was trained & stored in the cloud     Attacker aim at learning victim's training data     Attacker aitack after training process     Prior know: prediction + input + learning algorithm (/+ para*)     Protect by rounding the confidence score (obfuscation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recover only prototypical examples [#11]     Mi works well for MIP networks but falls with Nhs clearly.     The proposed simple mitigation technique not guarantee any rigorous privacy notion [#14]                            | MI-resistant ML     Optimize the MI attack using approximate gradients                                                                                                    | FiveThirtyEight<br>survey.<br>GSS marital<br>happiness survey.                                          | Input: sensitive attributes<br>Output: label + confidence<br>value                                                                                                   | Decision tree API:<br>Microsoft Mt. (black-box),<br>Wise.io, BigML (white-box<br>& black-box) |
| SP 201      | , Cloud Service<br>(MLaaS System) | Steal Controlled<br>Training Data | Participants' training dataset                                                                 |                                            | Membership inference Attacks Against<br>Machine Learning Models                             | Membership inference attacks<br>leverage shadow training<br>technique to determine the<br>specific record's membership of<br>original training set in black-box<br>setting. | Trainig data was uploaded to train the black-box classifier     The classifier was trained & stored in the cloud     A. ttacker aim a tlearning victim's training data     (membership)     A. ttacker aim attack after training process     Frior know: predictions + inputs + learning algrithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The proposed simple mitigation technique not guarantee any rigorous privacy notion [#14]                                                                                                                                        |                                                                                                                                                                           | CIFAR100,<br>CIFAR10,<br>Purchases,<br>Foursquare, Texas<br>hospital stays,<br>MNIST, Adult<br>(income) | Input: sensitive attributes<br>Output: label + confidence<br>value                                                                                                   | Google API: black-box<br>Amazon: black-box                                                    |
| CCS<br>2017 | Cloud Service<br>(MLaaS System)   | Steal Controlled<br>Training Data | Participants' training<br>dataset                                                              | Generative Adversarial<br>Networks attacks | Deep Models Under the GAN: Information<br>Leakage from Collaborative Deep Learning          | Collaborative deep learning mode [77] which was used to preserve the training process of centralised training model -> attacked by GAN -> leaking user's training dataset.  | 1. Trainig data was uploaded to train the NN classifier     2. The classifier was trained & stored in the cloud     3. Training data protected with distributed collaborative learning     4. Attacker aim at learning victim's training data     5. Attacker participate in training process     6. Prior know. Jeaning algorithm y parameters + inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No effective countermeasures to against<br>GAN     The attack is specific to collaborative deep<br>learning model     Attacker participate in training process                                                                  | Build a real system for collaborative<br>learning with device, class, or user-<br>level DP                                                                                | MNIST<br>AT&T                                                                                           | Not query, participate in<br>training process<br>Upload part of parameters<br>differential privacy<br>Download part of PS<br>parameter (replace laocal<br>parameter) | +<br>Key                                                                                      |

Considering this, what could we be writing about?



#### Literature Body

• How you decide the space is organized, where literature goes, the review body should reflect this.

# Phases of the Intrusion Kill Chain Reconnaissance Research, identification, and selection of targets Pairing remote access malware with exploit into a deliverable payload (e.g. Adobe PDF and Microsoft Office files)

Installation

Command & Control

Actions on Objective

Delivery

Transmission of weapon to target (e.g. via email attachments, websites, or USB drives)

Exploitation

Once delivered, the weapon's code is triggered, exploiting vulnerable applications or systems

The weapon installs a backdoor on a target's system allowing persistent access

Outside server communicates with the weapons providing "hands on keyboard access" inside the target's network.

The attacker works to achieve the objective of the intrusion, which can include exfiltration or destruction of data, or intrusion of another target

| REV      | TEW OF LITERATURE                             |
|----------|-----------------------------------------------|
| 2.1      | LITERATURE METHODOLOGY                        |
|          | 2.1.1 Contribution in Research Methodology 14 |
|          | 2.1.2 UPDATED KILL CHAIN FOR APT 14           |
| 2.2      | REVIEW OF STATE-OF-THE-ART APT DEFENCE 17     |
|          | 2.2.1 Defence Against Reconnaissance          |
|          | 2.2.2 Defence Against Weaponisation 19        |
|          | 2.2.3 Defence Against Delivery                |
|          | 2.2.4 Defence Against Exploitation 20         |
|          | 2.2.5 Defence Against Installation            |
|          | 2.2.6 Defence Against Command & Control 33    |
|          | 2.2.7 Defence Against Actions on Objective 36 |
| $^{2.3}$ | REVIEW SUMMARY AND KEY RESEARCH GAPS 4        |
|          | 2.3.1 Summary and Lessons Learned 4           |
|          | 2.3.2 Research Gaps Addressed 50              |



#### Questions

- Help shape what you write about in the review body
- Data collection
- Example: What are the most pressing (APT issues/vulnerability types) being researched? Or What detection methods are most appropriate for current and future (attacks/vulnerabilities)?

#### Discussion

- Number of questions = number of subsections in the discussion
- Answer your research questions





# Physical Security

# Physical Protections and Attacks

## Physical security

- The use of physical measures to protect valuables, information, or access to restricted resources.
- Three important components: access control, surveillance, and testing.
- Locks
- Authentication technologies
- Physical Attacks
- Social Engineering
- Computer Forensics





#### Locks

## Commonly used lock types

- Pin tumbler locks (easy to pick)
- Radial locks
- Wafer locks (medium security)
- Combination locks (low security)
- Electronic locks
  - Electronic combination
  - mag stripe
  - RFID
  - biometric
  - easy to change combination
  - easy to monitor





# Pin tumbler locks







5

Shear line





# Master and Control Keys

- Organizations require a key system
- Access control
  - Who has which key
  - How are keys issued returned and disabled
  - Lost/stolen keys
- Key types
  - Change keys
  - Master keys
  - Grandmaster keys
  - Control keys







#### **Attacks on Locks**

- Lock picking
- Lock bumping
- Key duplication and impressioning



- Higher security locks are invented to make bypassing locks more difficult
- Security pins
  - o Mushroom head pins
  - o Serrated pin
- Disc tumbler lock



### Side Channel Attacks

- Remove the hinges
- Cut through the door
- Enter through the roof (tiles, vents, manhole)
- Enter through emergency exits, windows
- Social engineering
  - deliveries
  - tail-gating





|   | • | • | • | • | • | • | • |
|---|---|---|---|---|---|---|---|
| • | • | • | • | • | • | • | • |
|   | • | • | • | • | • | • | • |



# More Authentication Technologies

(alternatives to keys and locks)

### Barcodes

- Developed initially for improving efficiency in grocery checkout
- Supermarket checkout
- Parcel tracking
- Ticket confirmation
- Boarding pass
- Cashless Payment
- Non-alterable encoded data







# Magnetic Strip Cards

- Plastic card with magnetic stripe on the back
- ID Cards, Credit Cards, etc.
- Swipe to use
- Targeted for fraud









# **Smart Cards**

- Credit card size
- Built-in chip
- Used in financial, mobile phones, public transit, etc
- Security





#### RFIDs

- Three components:
  - RFID tags / smart label
  - RFID reader
  - Antenna
- Transmit information via radio waves
- Must be used with a separate reader or writer
- With/without battery
- Range varies from CMs to Ms





#### **Biometrics**

- Measures a human characteristic and compares features of it to those stored in a database.
- Universal everyone must have the characteristic.
- Distinctive characteristic must be different for everyone
- Permanent characteristic must not change with time
- Collectable must be possible to collect characteristic.
- Low False-positive /false-negative rate
- Hard to forge



Voice Recognition



Ear Shape Recognition



**DNA Matching** 



Fingerprint Recognition



Finger Geometry Recognition





Retina Recognition



Vein Patterns

Recognition

**Face Recognition** 



Signature

Recognition

**Privacy Protection** 



Biometric Recognition



Authentication



Iris Recognition



**Getting Access** 



Hand Geometry Recognition

Biometric Data

Security

# Physical identifiers - Biometrics

- Fingerprints
- Face, retina, iris
- Voice
- Signature
- DNA (law enforcement)



## Behavioral identifiers - Biometrics

- Typing patterns
- Physical movements
- Navigation patterns
- Engagement patterns





# Risks

- All are problematic. Fingerprint probably the best.
- Database containing feature data can be compromised.











# Physical Attacks

#### Environmental attacks and accidents

- Computing equipment operates in a natural environment. Computing environment includes:
  - Electricity
  - Temperature
  - Limited conductance



Vector**Stock**®

VectorStock.com/273524



# Eavesdropping

- Eavesdropping is the process of secretly listening in on another person's conversation
- Keyboard Listening
- WiFi Sniffing
- MITM attacks (proxying, malware)
- Phone tapping





# Attacks on special purpose machines

# Attacking ATMS

- Skimming
- Shimming
- Card Trapping
- Cash Trapping
- Physical attacks (brute force)





### What's in this week's lab?

- ☐ Lecture Topic --- Physical Security
- ☐ Lab Task --- Set up a Network
- ☐ Let's welcome Andrew to introduce this week's lab task



### Task List for Week 2

- ☐ Lecture Activity
  - Video-streaming lecture
- ☐ Complete this week's Lab Task
- Plan for your Assignment 1
- ☐ Suggest: external readings in Week 2 Module



#### Next Week --- Guest Lecturer

- ☐ Topic: "Converged Security"
- ☐ Guess Lecturer: Simon Lee-Steere
  - Deputy Chief Security Officer at nbn® Australia

