Data Gathering in Sensor Networks with Data Mules: Global and Local Approaches

Pablo Luiz Araújo Munhoz^{1,2} Advisor: Lúcia Drummond ¹

Advisor: Philippe Michelon ²

¹Universidade Federal Fluminense Instituto de Computação
²Université d'Avignon et des Pays de Vaucluse Laboratoire Informatique d'Avignon

May, 04 de 2017

Agenda

- Introduction
- 2 Data Mule Scheduling Problem
 - Introduction
 - Related Works
 - DMSP with Constant Speed
 - DMSP with Discrete Speeds
 - DMSP with Continuous Speeds
 - Computational Experiments and Analysis
- 3 Data Mule Routing Problem
 - Introduction
 - Related Works
 - Theoretical Remarks
 - Algorithms for Data Mule with Local View
 - Computer experiments and Analysis
- 4 Conclusions and Future works
 - Conclusions
 - Future works

Introduction

Introduction

- ▶ Wireless Sensor Networks (WSN) have received much attention in last decades
- ► Communication is exclusively wireless
- ▶ There are many practical applications
- ▶ The information routing is one of the main problems of WSN
- Mobile agent (data mule) is responsible to perform the network communication
- ▶ Data mule: greater processing and memory capacities, and energy availability
- ▶ Data transfer: mule in communication range of a sensor

${ m Introduction}$

Two ways of dealing with the problem are studied:

- ▶ Global approach: complete knowledge about the network
 - Data Mule Scheduling Problem
- ▶ Local approach: no previous knowledge about the network
 - Data Mule Routing Problem

Motivation

Motivation

- ▶ Real world applications
 - ▷ Reduce the energy consumption (limited resource)
 - Reduce the latency of messages
- ▶ Challenge to develop efficient algorithms
 - $\triangleright \mathcal{NP}$ -Hard
- ► Emerging theme
 - ▷ Monitoring environmental parameters in remote areas
- ▶ There are few studies in literature that explore contribution of combinatorial optimization for this problem

Data Mule Scheduling Problem

Introduction
Related Works
DMSP with Constant Speed
DMSP with Discrete Speeds
DMSP with Continuous Speeds

Problem definition

Data Mule Scheduling Problem – DMSP

- ▶ Proposed by Zhao e Ammar (2003)
- Common objectives: minimize the service time, path distance, energy consumption, messages latency

telated Works

MSP with Constant Speed

MSP with Discrete Speeds

MSP with Continuous Speeds

Computational Experiments and Analysis

Related Works

Table: Data mule based algorithms

Authors	Sensors Movement	Data Mule	Characteristics		Algorithm
			Dest.	Communication	Aigortiiii
Zhao and Ammar (2003)	Static	Single	Sensors	End-to-end	Exact algorithm
Zhao et al. (2005)	Static	Multiple	Sensors	End-to-end	Assign and route algorithm for TSP
Bin Tariq et al. (2006)	Dynamic	Single	Sensors	End-to-end	Optimized Waypoints
Yuan et al. 2007	Static	Single	$_{\mathrm{BS}}$	End-to-end	Evolutionary Algorithm
Ma and Yang (2007)	Static	Single	$_{\mathrm{BS}}$	End-to-end	Clustering Algorithm
Xing et al. (2008)	Static	Single	Sinks	Multi-hop	Routing tree with pickup points
Rao et al. (2008)	Dynamic	Single	$_{\mathrm{BS}}$	Multi-hop	Ant colony
Ngai et al. (2009)	Static	Multiple	$_{\mathrm{BS}}$	End-to-end	Spanning tree based Algorithm
Sugihara et al. (2010)	Static	Single	$_{\mathrm{BS}}$	End-to-end	Mathematical Formulation
Sugihara et al. (2011)	Static	Single	$_{\mathrm{BS}}$	End-to-end	Shortest Path
Wichmann (2012)	Static	Single	Sinks	End-to-end	Constructive heuristics
Ma et al. (2013)	Static	Multiple	$_{\mathrm{BS}}$	End-to-end	Spanning tree covering algorithm
Our work	Static	Single	BS	End-to-end	

Problem representation

- ▶ Solution representation
 - \triangleright Complete graph G
 - \triangleright The nodes represents the sensors
 - > The edges between two nodes represent the path
 - Have the information about the sensors that can be served

ntroduction **Celated Works** DMSP with Constant Speed DMSP with Discrete Speeds DMSP with Continuous Speeds Computational Experiments and Analysis

Problem representation

Pre-processing phase: fictitious nodes

G٠

- ightharpoonup Be G = (N, E) a complete graph
 - $\triangleright N = \{0, 1, 2, ..., n\} \text{ and } N_a = N \setminus \{0\}$
 - ▶ Node 0 represents the Base Station

$$\triangleright E = \{(i,j) : i,j \in N, i \neq j\}$$

$$\triangleright K = \{v_1, v_2, v_3, ..., v_k, ..., v_p\}$$

- \triangleright Each node $i \in N_a$ have:
 - \triangleright s_i : service demand
 - $ightharpoonup r_i$: radio range
 - $rate_i$: amount of data that the node i can transmit per time unit
- ightharpoonup G' = (N', E')
 - \triangleright $N' = N \cup N_f$
 - $\triangleright E'$
 - \triangleright Edges e
 - $ightharpoonup c_{(p,q)}$: distance between the nodes p and $q, (p,q) \in E'$

- ▶ Definitions
 - $\triangleright A_i = \{(p,q) \in E' : \text{data from sensor } i \in N \text{ can be collect in } (p,q) \in E'\}$

- ▶ In this example:
 - $A_1 = \{(c,1), (1,d), (d,e), ...\}$
 - $A_2 = \{(d, e), (e, 2), ...\}$

▶ Definitions

 $Fict_{pq} = \{i : \text{the node } i \in N \text{ can be serve in the edge } (p, q) \in E'\}$

$$Fict_{4b} = \{4\}$$

$$Fict_{de} = \{1, 2\}$$

- ▶ Definitions
 - ▶ Time to traverse the edge $(p,q) \in E'$ using the speed $v_k \in K$

▶ Maximum amount of data collected in edge $(p, q) \in E'$ using the speed $v_k \in K$

$$\qquad \qquad b \quad d_{pq}^k = t_{pq}^k \; rate_i \qquad \qquad \forall i \in N, \forall (p,q) \in A_i, \forall k \in K$$

stroduction

Garde Works

MSP with Constant Speed

MSP with Discrete Speeds

MSP with Continuous Speeds

omputational Experiments and Analysis

Studied cases

For the DMSP, three different variants were tackled:

- ▶ DMSP with Constant Speed
- ▶ DMSP with Discrete Speeds
- ▶ DMSP with Continuous Speeds

ntroduction *Celated Works DMSP with Constant Speed DMSP with Discrete Speeds DMSP with Continuous Speeds Computational Experiments and Analysis

DMSP with Constant Speed

Consider that |K| = 1, i.e., there is only one available speed v for the data mule.

Two proposed mathematical formulations:

- ▶ Mathematical formulation using speed
- ▶ Mathematical formulation using time

ntroduction telated Works DMSP with Constant Speed DMSP with Discrete Speeds DMSP with Continuous Speeds Camputational Experiments and Analysis

DMSP with Constant Speed

Mathematical formulation using speed

Decision variables

$$\begin{array}{lll} x_{pq} & = & \left\{ \begin{array}{l} 1, \text{ If the edge } (p,q) \in E' \text{ be used in the solution} \\ 0, \text{ Otherwise} \end{array} \right. \\ z_{pq} & = & \left\{ \begin{array}{l} \text{Flow variable associated with each of the edges } (p,q) \in E' \\ z_{pq} \in \mathbb{Z}^+ \end{array} \right. \\ y_p & = & \left\{ \begin{array}{l} 1, \text{ If the node } p \in N' \text{ belong to the current solution} \\ 0, \text{ Otherwise} \end{array} \right. \end{array}$$

DMSP with Constant Speed

Mathematical formulation using speed

$$\min \sum_{p \in N'} \sum_{q \in N'} t_{pq} x_{pq}$$

$$s.t.$$

$$\sum_{p \in N'} x_{pl} + \sum_{q \in N'} x_{lq} = 2y_{l} \quad \forall l \in N'$$

$$\sum_{q \in N'} z_{0q} = 1$$

$$\sum_{q \in N'} z_{lq} = \sum_{p \in N'} z_{pl} + y_{l}$$

$$\forall l \in N' \setminus \{0\}$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$\sum_{p \in N'} z_{p0} = \sum_{p \in N'} y_p + 1$$
$$x_{pq} \le z_{pq}$$

$$\sum_{p \in N'} y_p + 1 \tag{5}$$

$$\forall (p, q) \in E' \tag{6}$$

 $\forall (p,q) \in E', z_{pq} \in \mathbb{Z}^+$

$$x_{pq} \le z_{pq}$$

$$x_{pq} \ge \frac{z_{pq}}{|N'| + 1}$$

$$\forall (p,q) \in E' \tag{6}$$

$$\forall (p,q) \in E' \tag{7}$$

$$\forall i \in N$$

$$\sum_{(p,q)\in A_i} d_{pq} x_{pq} \ge s_i$$
$$x_{pq} \in \{0\}$$

$$\forall (p,q) \in E'$$

$$x_{pq} \in \{0, 1\}$$
$$y_p \in \{0, 1\}$$
$$z_{pq} \ge 0$$

$$(p,q) \in E'$$
 $\forall p \in N'$

Introduction
Related Works
DMSP with Constant Speed
DMSP with Discrete Speeds
DMSP with Continuous Speeds
Computational Experiments and Applysic

DMSP with Constant Speed

Mathematical formulation using time

Decision variables

$$\begin{array}{lll} x_e & = & \left\{ \begin{array}{l} 1, \text{ If the edge } e \in E' \text{ belongs to the solution} \\ 0, \text{ Otherwise} \end{array} \right. \\ z_{pq} & = & \left\{ \begin{array}{l} \text{Flow variable related of each edge} \\ (p,q) \in E', z_{pq} \in \mathbb{Z}^+ \end{array} \right. \\ y_p & = & \left\{ \begin{array}{l} 1, \text{ If the node } p \in N' \text{ is being used in the current solution} \\ 0, \text{ Otherwise} \end{array} \right. \\ H_e^i & = & \text{time spend by the mule in edge } e \in E' \text{ attending the sensor } i \in N \end{array}$$

ntroduction *Celated Works DMSP with Constant Speed DMSP with Discrete Speeds DMSP with Continuous Speeds Computational Experiments and Analysis

DMSP with Constant Speed

Mathematical formulation using time

Another definitions

- $ightharpoonup T_e = rac{c_e}{v}$
- ▶ Let $G'(N', W \cup U)$, where $E' = W \cup U$.
 - ▶ W: edges that can attend some node
 - ▶ *U*: edges that can not attend some node

DMSP with Constant Speed

Mathematical formulation using time

$$\begin{split} \min & \sum_{e \in W} \sum_{i \in N} H_e^i + \sum_{e \in U} \sum_{i \in N} H_e^i \\ & s.t. \\ & \sum_{n \in N'} x_{pl} + \sum_{a \in N'} x_{lq} = 2y_l \end{split}$$

$$\forall l \in N'$$
 (13)

$$\sum_{q \in N'} z_{0q} = 1$$

$$\sum_{q \in N'} z_{lq} = \sum_{p \in N'} z_{pl} + y_l$$

$$\forall l \in N' \setminus \{0\}$$

$$\sum_{p \in N'} z_{p0} = \sum_{p \in N'} y_p + 1$$

$$x_{pq} \le \frac{z_{pq}}{2}$$

$$x_{pq} \ge \frac{z_{pq}}{|N'| + 1}$$

$$\forall (p,q) \in E' \mid p \neq 0$$

$$\sum_{i \in Fict_e} H_e^i = T_e x_e$$

$$\forall (p,q) \in E'$$

$$\sum_{i \in N} H_e^i = T_e x_e$$

$$\forall e \in \mathit{U}$$

(12)

(13)

(14)

(15)

(16)

(17)

(18)

$$\sum_{e \in A_i} rate_i H_e^i \ge s_i$$

$$x_e \in \! \{0,1\}$$

$$\forall e \in E'$$

$$\forall p \in N'$$

$$y_p \in \{0, 1\}$$

 $z_e \ge 0$

 $H_e^i \ge 0$

$$\forall e \in E', z_{pq} \in \mathbb{Z}^+$$

 $\forall q \in E'$

 $\forall e \in E'$

 $\forall i \in N$

$$\forall e \in E', z_{pq} \in \mathbb{Z}^+$$

 $\forall e \in E', i \in N, H_o^i \in \mathbb{R}^+$

Introduction Related Works DMSP with Constant Speed DMSP with Discrete Speeds DMSP with Continuous Speeds Computational Experiments and Analysis

DMSP with Constant Speed

Heuristics

- ▶ Two constructive heuristics: IMB and CML
- \blacktriangleright Local search: RVND using Swap, Shift and Swap(2,1)
- ▶ Two metaheuristics based heuristics: GRVND and GVNS-RVND

ntroduction telated Works MSP with Constant Speed MSP with Discrete Speeds MSP with Continuous Speeds Computational Experiments and Analysis

DMSP with Constant Speed

Solution representation

- ▶ A vector is used as solution representation
- ▶ When a node is not present in a solution, it is added in the end of the vector

Figure: Representation of solution s

Example solution s = [0, 4, 2, 3, 0, 1] represents the route made by the mule $_{23/75}$

atroduction
leated Works
MSP with Constant Speed
MSP with Discrete Speeds
MSP with Continuous Speeds
longutational Experiments and Analysis.

DMSP with Constant Speed

Constructive heuristics

▶ IMB: based in Nearest Insertion

 \triangleright Criterion for add: $\frac{attendance}{distance}$

▶ CML: based in Longest Insertion

ightharpoonup Criterion for remove: $\frac{distance}{attendance}$

atroduction lelated Works MSP with Constant Speed MSP with Discrete Speeds MSP with Continuous Speeds Jomputational Experiments and Analysis.

DMSP with Constant Speed

RVND

A local search based in VND (Variable Neighborhood Descent) using a random neighborhood ordering (RVND) $\,$

- \triangleright N^{Swap} : swapping between two sensors in a given route
- $ightharpoonup N^{Shift}$: reallocating a sensor to another point on the route
- $ightharpoonup N^{Swap(2,1)}$: swapping between two consecutive sensors and another sensor belonging to the solution

ntroduction
Related Works
DMSP with Constant Speed
DMSP with Discrete Speeds
DMSP with Continuous Speeds

DMSP with Constant Speed

Swap

Swap between nodes 2 and 1

 $[0, 4, \mathbf{2}, 3, 0, \mathbf{1}]$

 $[0, 4, \mathbf{1}, 3, 0, \mathbf{2}]$

Marcontenant Related Works DMSP with Constant Speed DMSP with Discrete Speeds DMSP with Continuous Speeds

DMSP with Constant Speed

Shift

Shift node 1 to position 1

[0, 4, 2, 3, 0, 1]

[0, 4, 1, 2, 3, 0]

Introduction
Related Works
DMSP with Constant Speed
DMSP with Discrete Speeds
DMSP with Continuous Speeds

DMSP with Constant Speed

Swap(2,1)

Swap between nodes $[\ 3,\ 0\]$ and 1

 $[0, 4, 2, \mathbf{3}, \mathbf{0}, \mathbf{1}]$

[0, 4, 2, **1**, **3**, **0**]

atroduction elated Works MSP with Constant Speed MSP with Discrete Speeds MSP with Continuous Speeds omputational Experiments and Analysis

DMSP with Constant Speed

Algorithm 1: RVND

11 return s

```
Input: neighborhoods N^{Swap}, N^{Shift} and N^{Swap(2,1)} in a random order, Solution s

1 k \leftarrow 1;

2 while k \leq 3 do

3 | Find the best neighbor s' \in N^k(s);

4 | if f(s') < f(s) then

5 | s \leftarrow s';

6 | k \leftarrow 1;

7 | else

8 | k \leftarrow k + 1;

9 | end

10 end
```

29/75

ntroduction Clelated Works MSP with Constant Speed MSP with Discrete Speeds JMSP with Continuous Speeds Jomputational Experiments and Analysis

DMSP with Constant Speed

Metaheuristic based heuristics

GRASP framework

- ► Construction
- ▶ Local Search

VNS framework

- ► Construction
- ▶ Local Search: systematic change of neighborhood structures
- ▶ Shake procedure
- ▶ GVNS: more than one neighborhood in a local search

atroduction
elated Works
MSP with Constant Speed
MSP with Discrete Speeds
MSP with Continuous Speeds
omputational Experiments and Analysis

DMSP with Discrete Speeds

The data mule can choose between a set K of speeds at each edge $e \in E$, |K| > 1.

Mathematical formulation using a set of speeds K was proposed.

nroduction Clelated Works MSP with Constant Speed MSP with Discrete Speeds MSP with Continuous Speeds Jomputational Experiments and Analysis

DMSP with Discrete Speeds

Mathematical formulation using set of speeds

Decision variables

$$\begin{array}{lll} x_{pq}^k & = & \left\{ \begin{array}{l} 1, \text{ If the edge } (p,q)_k \in E' \text{ be used in the solution with } k \in K \\ 0, \text{ Otherwise} \end{array} \right. \\ \\ z_{pq}^k & = & \left\{ \begin{array}{l} \text{Flow variable associated with each of the edges } (p,q)_k \in E' \\ \text{ with speed } k \in K, z_{pq}^k \in \mathbb{Z}^+ \end{array} \right. \\ \\ y_p & = & \left\{ \begin{array}{l} 1, \text{ If the node } p \in N' \text{ belong to the current solution} \\ 0, \text{ Otherwise} \end{array} \right. \end{array}$$

DMSP with Discrete Speeds

Mathematical formulation using set of speeds

$$\min \sum_{k \in K} \sum_{p \in N'} \sum_{q \in N'} t_{pq}^k x_{pq}^k$$

$$s.t.$$

$$\sum_{k \in K} \sum_{p \in N'} x_{pl}^k + \sum_{k \in K} \sum_{q \in N'} x_{lq}^k = 2y_l \quad \forall l \in N'$$

$$(28)$$

$$\sum_{k \in K} \sum_{p \in N'} \sum_{k \in K} \sum_{q \in N'} \sum_{q \in N} \sum_{q \in N} \sum_{p \in N} \sum_{q \in N} \sum_$$

$$\sum_{k \in K} \sum_{q \in N'} z_{lq}^k = \sum_{k \in K} \sum_{p \in N'} z_{pl}^k + y_l \qquad \forall l \in N' \setminus \{0\}$$
 (30)

$$\sum_{k \in K} \sum_{p \in N'} z_{p0}^k = \sum_{p \in N'} y_p + 1 \tag{31}$$

$$x_{pq}^{k} \leq x_{pq}^{k} \qquad \forall (p, q) \in E', k \in K$$

$$(32)$$

$$x_{pq}^{k} \ge \frac{z_{pq}^{k}}{|N'|+1} \qquad \forall (p,q) \in E', k \in K$$

$$(33)$$

$$x_{pq}^{k} \ge \frac{\gamma_{pq}}{|N'|+1} \qquad \forall (p,q) \in E', k \in K \qquad (33)$$

$$\sum x_{pq}^{k} \le 1 \qquad \forall (p,q) \in E' \qquad (34)$$

(34)

(27)

DMSP with Discrete Speeds

Mathematical formulation using set of speeds

$$x_{pq}^{k} = x_{p'q'}^{k} \qquad \forall (i,j) \in E, \qquad (35)$$

$$\forall (p,q) \subseteq (i,j), \forall (p',q') \subseteq (i,j)$$

$$|(p,q) \neq (p',q') \qquad \forall k \in K$$

$$\sum_{k \in K} \sum_{(p,q) \in A_{i}} d_{pq}^{k} x_{pq}^{k} \ge s_{i} \qquad \forall i \in N \qquad (36)$$

$$x_{pq}^{k} \in \{0,1\} \qquad \forall (p,q) \in E', k \in K \qquad (37)$$

$$y_{p} \in \{0,1\} \qquad \forall p \in N' \qquad (38)$$

$$z_{pq}^{k} \ge 0 \qquad \forall (p,q) \in E', k \in K, z_{pq}^{k} \in \mathbb{Z}^{+} \qquad (39)$$

ntroduction *Celated Works DMSP with Constant Speed DMSP with Discrete Speeds DMSP with Continuous Speeds Computational Experiments and Analysis

DMSP with Continuous Speeds

The mathematical formulation considers only lower and upper bounds for the speeds of Data Mule ($speed_{min}$ and $speed_{max}$, respectively).

- ▶ Let $G'(N', W \cup U)$, where $E' = W \cup U$.
 - ightharpoonup W: edges that can attend some node
 - ▶ *U*: edges that can not attend some node
- ▶ Two new definitions:

$$T_{min}^e = \frac{c_e}{speed_{max}}$$

$$T_{max}^e = \frac{c_e}{speed_{min}}$$

A mathematical formulation using time concepts was proposed.

ntroduction telated Works MSP with Constant Speed MSP with Discrete Speeds MSP with Continuous Speeds Omputational Experiments and Analysis

DMSP with Continuous Speeds

Decision variables

```
x_e = \begin{cases} 1, & \text{If the edge } e \in E' \text{ be used in the solution} \\ 0, & \text{Otherwise} \end{cases}
z_e = \begin{cases} & \text{Flow variable associated with each of the edges } e \in E' \in \mathbb{Z}^+ \end{cases}
y_p = \begin{cases} & 1, & \text{If the node } p \in N' \text{ belong to the current solution} \\ & 0, & \text{Otherwise} \end{cases}
H_e^i = \text{time spend by the mule in edge } e \in E' \text{ attending the sensor } i \in N
```

DMSP with Continuous Speeds

$$\min \sum_{e \in W} \sum_{i \in Fict_e} H_e^i + \sum_{e \in U} \sum_{i \in N} H_e^i \tag{40}$$

s.t.

$$\sum_{p \in N'} x_{pl} + \sum_{q \in N'} x_{lq} = 2y_l \qquad \forall l \in N'$$

$$(41)$$

$$\sum_{q \in \mathcal{N}} z_{0q} = 1 \tag{42}$$

$$\sum_{q \in N'} z_{lq} = \sum_{p \in N'} z_{pl} + y_l \qquad \forall l \in N' \setminus \{0\}$$
 (43)

$$\sum_{p \in N'} z_{p0} = \sum_{p \in N'} y_p + 1 \tag{44}$$

$$x_{pq} \le \frac{z_{pq}}{2} \qquad \forall (p,q) \in E' \mid p \ne 0$$
 (45)

$$x_{pq} \ge \frac{z_{pq}}{|N'| + 1}$$
 $\forall (p, q) \in E'$

$$x_{0q} = z_{0q} \qquad \forall q \in E' \tag{47}$$

(46)

DMSP with Continuous Speeds

$$\sum_{i \in Fict_e} H_e^i \leq T_{max}^e x_e \qquad \forall e \in W \qquad (48)$$

$$\sum_{i \in Fict_e} H_e^i \geq T_{min}^e x_e \qquad \forall e \in W \qquad (49)$$

$$\sum_{i \in N} H_e^i = T_{min}^e x_e \qquad \forall e \in U \qquad (50)$$

$$\sum_{e \in A_i} rate_i H_e^i \geq s_i \qquad \forall i \in N \qquad (51)$$

$$x_e \in \{0, 1\} \qquad \forall e \in E' \qquad (52)$$

$$y_p \in \{0, 1\} \qquad \forall p \in N' \qquad (53)$$

$$z_e \geq 0 \qquad \forall e \in E', z_{pq} \in \mathbb{Z}^+ \qquad (54)$$

$$H_e^i \geq 0 \qquad \forall e \in E', i \in N, H_e^i \in \mathbb{R}^+ \qquad (55)$$

itroduction elated Works MSP with Constant Speed MSP with Continuous Speeds MSP with Continuous Speeds omputational Experiments and Analysis

Computational Experiments and Analysis

Instances

Instances

- ► A set of instances was created
 - ▶ Sensors: 6, 7, 8, 9, 10, 11, 16, 21, 31, 41 and 51
 - Coordinates of the sensors were randomly defined
 - $ightharpoonup Grid: (0, 300) \times (0, 300)$
 - ► The Base Station in three distinct configurations: Central, Eccentric and Random
 - Radius range (r_i) : [1,50]
 - ▶ Transmission rate $(rate_i)$: [1,10]
 - ▶ Service demands (s_i) : [1,20]
 - ► For each # sensors × Base station position: 50 instances
 - ► Total of 1650 instances

utroduction lelated Works MSP with Constant Speed MSP with Discrete Speeds JORD WITH Continuous Speeds JORDUTATIONAL Experiments and Analysis

Computer experiments and Analysis

Computational Environment

- ➤ Tests executed in a Intel Core i7 3.40 Ghz computer, with 16 GB of RAM and Linux Ubuntu
- ▶ Exact method: C++ and CPlex 12.5.1 in its default configuration
- ► Exact method was executed for all instances with a timeout of 1 hour (3600 seconds)
- ▶ Each test was executed 10 times per instance

ntroduction telated Works JMSP with Constant Speed JMSP with Discrete Speeds JMSP with Continuous Speeds Computational Experiments and Analysis

Computer experiments and Analysis

Constructive Heuristics and Local Search

After an exhaustive tests:

- ▶ IMB obtains the best results
 - ► AVG GAP: IMB (51.46%) × CML (68.07%)
- \blacktriangleright Neighborhood structures: Swap, Shift and Swap (2,1)
 - ▶ Best Improvement obtains the best results
 - ▶ MIN GAP, AVG GAP and improvement of a initial solution

stroduction elated Works MSP with Constant Speed MSP with Discrete Speeds MSP with Continuous Speeds omputational Experiments and Analysis

Computer experiments and Analysis

- ► Constructive heuristic: IMB
- ▶ Local Search: RVND with Best Improvement
- ► GRVND and GVNS-RVND
- ➤ Same StoppingCriterion: 50 iterations without improving the current solution
- ▶ Evaluation criteria: *GAP*, *EQUAL* and *IMP*
- ► For the GVNS-RVND:
 - ▶ shakePerc = 30% of $iterMaxWithoutImp \rightarrow shake + 2$ moves

roduction lated Works ISP with Constant Speed ISP with Discrete Speeds ISP with Continuous Speeds mputational Experiments and Analysis

Computer experiments and Analysis

			GRV	ND -	AVG (GAP	GVNS-RVND – AVG GAP			
#	Sensors	Base Station	MIN	T(s)	AVG	T(s)	MIN T(s) AVG	T(s)		
_		central	0.13%	0.085	0.22%	0.092	0.00% 0.082 0.00%	0.087		
	6	eccentric	0.00%	0.081	0.03%	0.092	0.00% 0.013 0.00%	0.014		
		random	0.23%	0.081	0.27%	0.088	0.00% 0.012 0.00%	0.014		
		central	0.01%	0.152	0.26%	0.173	0.00% 0.162 0.00%	0.173		
	7	eccentric	0.00%	0.158	0.25%	0.173	0.00% 0.024 0.00%	0.026		
		random	0.00%		0.05%	0.181	0.00% 0.025 0.00%	0.027		
		central	0.00%	0.269	0.19%	0.306	0.00% 0.288 0.00%	0.312		
	8	eccentric	0.00%	0.278	0.38%	0.324	0.00% 0.043 0.00%	0.046		
		random	0.02%	0.281	0.40%	0.324	0.00% 0.044 0.00%	0.047		
		central	0.02%	0.413	0.42%	0.486	0.00% 0.449 0.00%	0.489		
	9	eccentric	0.21%	0.409	0.36%	0.480	0.00% 0.065 0.00%	0.069		
		random	0.01%	0.415	0.15%	0.489	0.00% 0.067 0.00%	0.072		
		central	0.05%	0.697	0.16%	0.799	0.00% 0.449 0.00%	0.489		
	10	eccentric	$\boldsymbol{0.00\%}$	0.683	0.22%	0.804	0.00% 0.098 0.00%	0.106		
		random	0.02%	0.739	0.13%	0.833	0.00% 0.102 0.00%	0.111		
		central	0.14%	1.068	0.43%	1.276	0.00% 0.510 0.00%	0.554		
	11	eccentric	$\boldsymbol{0.00\%}$	1.007	0.31%	1.284	0.00% 0.156 0.00%	0.170		
		random	0.03%	1.071	0.12%	1.266	0.00% 0.154 0.01%	0.167		
		central	0.07%	6.063	0.24%	7.033	0.00% 0.712 0.02%	0.838		
	16	eccentric	0.02%	6.208	0.11%	7.119	0.00% 0.692 0.00%	0.803		
		random	0.04%	6.060	0.09%	7.050	0.00% 0.714 0.01%	0.805		
		central			-1.40%		<u>-1.54%</u> 2.097 <u>-1.44%</u>	2.737		
	21	eccentric			-0.31%		<u>-0.51%</u> 2.094 -0.46%	2.663		
		random	<u>-0.29%</u>	10.524	-0.18%	12.534		2.675		
	Αv	erage	<u>-0.05%</u>	2.901	0.12%	3.394	<u>-0.10%</u> 0.465 <u>-0.09%</u>	0.562		

roduction lated Works ASP with Constant Speed ASP with Discrete Speeds MSP with Continuous Speeds mputational Experiments and Analysis

Computer experiments and Analysis

// C	D Ctti	GRV	ND -	AVG (GAP	GVNS	-RVN	ND - A	VG GAP
# Sensor	rs Base Station	MIN	T(s)	AVG	T(s)	MIN	T(s)	AVG	T(s)
	central	0.13%	0.085	0.22%	0.092	0.00%	0.082	0.00%	0.087
6	eccentric	0.00%	0.081	0.03%	0.092	0.00%	0.013	0.00%	0.014
	\mathbf{random}	0.23%	0.081	0.27%	0.088	0.00%	0.012	0.00%	0.014
	central	0.01%	0.152	0.26%	0.173	0.00%			
7	eccentric	0.00%	0.158	0.25%	0.173	0.00%	0.024	0.00%	0.026
	random	0.00%	0.162	0.05%	0.181	0.00%	0.025	0.00%	0.027
	central	0.00%		0.19%	0.306	0.00%			
8	eccentric	0.00%	0.278	0.38%	0.324	0.00%	0.043	0.00%	0.046
	\mathbf{random}	0.02%	0.281	0.40%	0.324	0.00%			
	central	0.02%	0.413	0.42%	0.486	0.00%			
9	eccentric	0.21%	0.409	0.36%	0.480	0.00%			
	$_{ m random}$	0.01%	0.415	0.15%	0.489	0.00%	0.067	0.00%	0.072
	central	0.05%	0.697	0.16%	0.799	0.00%	0.449	0.00%	0.489
10	eccentric	0.00%	0.683	0.22%	0.804	0.00%	0.098	0.00%	0.106
	\mathbf{random}	0.02%	0.739	0.13%	0.833	0.00%			
	central	0.14%	1.068	0.43%	1.276	0.00%			
11	eccentric	0.00%		0.31%	1.284	0.00%			
	\mathbf{random}	0.03%	1.071	0.12%	1.266	0.00%			0.167
	central	0.07%	6.063	0.24%	7.033	0.00%	0.712	0.02%	0.838
16	eccentric	0.02%	6.208	0.11%	7.119	0.00%			
	\mathbf{random}	0.04%	6.060	0.09%	7.050	0.00%			0.805
	central	<u>-1.50%</u>				-1.54%			
21	eccentric	-0.44%				<u>-0.51%</u>			
	random	<u>-0.29%</u>				<u>-0.35%</u>			
Α	verage	<u>-0.05%</u>	2.901	0.12%	3.394	-0.10%	0.465	-0.09%	0.562

elated Works
elated Works
MSP with Constant Speed
MSP with Discrete Speeds
MSP with Continuous Speeds
omputational Experiments and Analysis

Computer experiments and Analysis

			GRV	/ND		GVNS-RVND			
# Sensors	# Sensors Base Station		MIN		AVG		MIN		}
		EQUAL	IMP	EQUAL	IMP	EQUAL	IMP	EQUAL	IMP
	central	48	0	47	0	50	0	50	0
6	eccentric	50	0	49	0	50	0	50	0
	random	49	0	48	0	50	0	50	0
	central	50	0	47	0	50	0	50	0
7	eccentric	49	0	47	0	50	0	50	0
	random	50	0	49	0	50	0	50	0
	central	50	0	45	0	50	0	50	0
8	eccentric	50	0	45	0	50	0	50	0
	random	49	0	46	0	50	0	50	0
	central	49	0	40	0	50	0	50	0
9	eccentric	48	0	42	0	50	0	50	0
	random	50	0	48	0	50	0	50	0
	central	49	0	44	0	50	0	50	0
10	eccentric	50	0	46	0	50	0	50	0
	random	49	0	46	0	50	0	50	0
	central	47	0	39	0	50	0	50	0
11	eccentric	50	0	41	0	50	0	50	0
	\mathbf{random}	49	0	47	0	50	0	49	0
	central	47	0	44	0	50	0	49	0
16	eccentric	48	0	45	0	50	0	50	0
	\mathbf{random}	49	0	46	0	50	0	50	0
	central	31	18	27	18	31	19	30	<u>19</u>
21	eccentric	39	9	35	9	41	9	41	19 8 11
	random	38	11	34	<u>10</u>	31	11	39	<u>11</u> 45/75

troduction elated Works MSP with Constant Speed MSP with Discrete Speeds MSP with Continuous Speeds omputational Experiments and Analysis

/75

Computer experiments and Analysis

			GRV	VND			GVNS	-RVND	
# Sensors	Base Station	MIN	1	AVC	3	MIN	1	AVC	7
		EQUAL	IMP	EQUAL	IMP	EQUAL	IMP	EQUAL	IMP
	central	48	0	47	0	50	0	50	0
6	eccentric	50	0	49	0	50	0	50	0
	random	49	0	48	0	50	0	50	0
	central	50	0	47	0	50	0	50	0
7	eccentric	49	0	47	0	50	0	50	0
	random	50	0	49	0	50	0	50	0
	central	50	0	45	0	50	0	50	0
8	eccentric	50	0	45	0	50	0	50	0
	random	49	0	46	0	50	0	50	0
	central	49	0	40	0	50	0	50	0
9	eccentric	48	0	42	0	50	0	50	0
	random	50	0	48	0	50	0	50	0
	central	49	0	44	0	50	0	50	0
10	eccentric	50	0	46	0	50	0	50	0
	random	49	0	46	0	50	0	50	0
	central	47	0	39	0	50	0	50	0
11	eccentric	50	0	41	0	50	0	50	0
	random	49	0	47	0	50	0	49	0
	central	47	0	44	0	50	0	49	0
16	eccentric	48	0	45	0	50	0	50	0
	random	49	0	46	0	50	0	50	0
	central	31	18	27	<u>18</u>	31	19	30	<u>19</u>
21	eccentric	39	9	35	9	41	9	41	<u>8</u>
	random	38	11	34	10	31	11	39	19 8 11

rroduction :lated Works ieoretical Remarks gorithms for Data Mule with Local View imputer experiments and Analysis

Data Mule Routing Problem

telated Works Theoretical Remarks Ugorithms for Data Mule with Local Vie Jomputer experiments and Analysis

Introduction

Data Mule Routing Problem

- ▶ Information exchange in intersection between sensors spatial coverages
- ▶ Sensors are distributed in a bi-dimensional space
- \triangleright Communication range equal to r
- ▶ Responsible to collect all data and take them to a base station
- ▶ Reduce the number of exchanged messages in the network and, consequently, the spent energy for data transmission

telated Works Theoretical Remarks Algorithms for Data Mule with Local Vie Computer experiments and Analysis

Introduction

Data Mule Routing Problem

Data Mule Routing Problem definition

- ➤ Virtual backbones modelled as a Minimum Connected Dominating Set Problem
- ▶ Data mule has to serve each node of the WSN
- ▶ No knowledge about the global network
- ▶ Should visit a minimum number of nodes to serve all demands
- ▶ Local decision
- ► Neighborhood covers

Motivation

- ▶ Deal with realistic scenario
- ▶ Local view
- ▶ Different characteristics

telated Works
Theoretical Remarks
Ulgorithms for Data Mule with Local Vie

Introduction

Data Mule Routing Problem

Data Mule Routing Problem definition

- ightharpoonup G = (V, E)
 - $\triangleright V(G)$ placed in an Euclidean plan
 - Each edge $(i, j) \in E(G)$ exists if i and j are within their communication range (Unit disk graph)
 - \triangleright N(i) contains the neighbour nodes of vertex i
- ▶ Edges have no weights
- \triangleright $s \in V$ is the base station
- ▶ Data mule serves a node i when located in some node $j \in N(i)$
- ▶ Each edge traversed by the mule is included in the path
- ▶ Same edge can be traversed by the data mule more than once

Introduction
Related Works
Theoretical Remarks
Algorithms for Data Mule with Local View

Connected Dominating Set based Algorithms

Neighborhood Knowledge

Global view

- ▶ Das and Bharghavan (1997): All pairs shortest path
- ▶ Zhao et al. (2015): Distributed mathematical formulations

1-hop

- ▶ Alzoubi et al. (2002): MIS and dominating tree
- ▶ Funke et al. (2006): CDS using distance-2-coloring algorithm
- ▶ Islam et al. (2008): CDS using convex-hull and MIS
- ▶ Ghaffari (2014): CONGEST Model based in DS

2-hop

▶ Wu and Li (1999): shortest path for a DS calculation

itroduction elated Works **heoretical Remarks** Igorithms for Data Mule with Local Viev omputer experiments and Analysis

Theoretical Remarks

Objective

DATA MULE WITH GLOBAL VIEW

Input:

A graph G, and a base station node $v \in V(G)$.

Goal:

Determine a minimum closed walk W of G such that $v \in V(W)$, and for all node $x \in V(G)$, $N[x] \cap V(W) \neq \emptyset$. That is, either

and for all node $x \in V(G)$, $V[x] \cap V(W) \neq \emptyset$. That is, $x \in V(W)$ or some neighbor y of x belongs to V(W)

 $x \in V(W)$ or some neighbor y of x belongs to V(W).

Theoretical Remarks

Lower Bounds

Denote d(v, w) as the distance between v and w in G, and $d_v = \max_{w \in V(G)} d(v, w)$.

Lemma

Let OPT(G,v) be an optimal solution value for Data Mule with Global View on G with base station v. It holds that

$$OPT(G, v) \ge 2(d_v - 1).$$

And such lower bound can be found in O(m) time.

Lemma

Given G, v and an integer $k \ge 1$. Let S be a set composed by the k most distant vertices of v, and T_k be a steiner tree to connect $\{v\} \cup S$. Let $LB_k = |T_k| - k + \min_{w \in S} d(v, w) - 1$. For all $k \ge 1$, it holds that

$$OPT(G, v) \ge LB_k$$
.

Introduction Related Works **Theoretical Remarks** Algorithms for Data Mule with Local Vie

Theoretical Remarks

Lower Bounds

 LB_1

$$LB_1 = 2(d_v - 1) = 2(4 - 1) = 6$$

Theoretical Remarks

LB_2

$$LB_2 = |T_k| - k + \min_{w \in S} d(v, w) - 1$$

$$LB_2 = 6 - 2 + 2 - 1 = 5$$

ntroduction elated Works Theoretical Remarks Igorithms for Data Mule with Local View Jomputer experiments and Analysis

Theoretical Remarks

Mathematical Formulation

$$\min \sum_{(i,j)\in A} x_{ij}$$
s.t.
$$\sum_{j\in N(i)\cup\{i\}} y_j \ge 1, \forall i \in V$$

$$\sum_{j\in S^+(i)} x_{ij} \ge y_i, \forall i \in V$$
(56)

$$\sum_{j \in \delta^{-}(i)} x_{ji} \ge y_i, \forall i \in V$$
 (58)

$$\sum_{j \in \delta^{+}(i)} x_{ij} = \sum_{j \in \delta^{-}(i)} x_{ji}, \forall i \in V$$

$$\sum_{j \in \delta^{+}(i)} x_{ij} \leq |N(i)|y_{i}, \forall i \in V$$
(59)

$$\sum_{j \in \delta^{+}(i)} x_{ji} \leq |N(i)|y_{i}, \forall i \in V$$
(61)

$$j \in \delta^{-}(i)$$

 $y_0 = 1$ (62)

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \ge y_s, \forall S \subseteq V \setminus \{0\}, s \in S$$

$$(63)$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in A$$
 (64)

$$y_i \in \{0, 1\}, \, \forall i \in V \tag{65}$$

ntroduction Clelated Works Cleoretical Remarks Ugorithms for Data Mule with Local Vie Computer experiments and Analysis

Proposed Algorithms

Local view

Two proposed algorithms:

- ▶ AlgNUM: where the mule decides his path based on the the number of uncovered nodes by the neighbours of the current sensor node.
- ▶ ALgCH: where the mule decision is based on the computation of convex-hulls of the current sensor node.

Introduction
Related Works
Theoretical Remarks
Algorithms for Data Mule with Local View

Proposed Algorithms

AlgNum

ntroduction Related Works Theoretical Remarks Algorithms for Data Mule with Local Vic Townstre experiments and Analysis

Proposed Algorihtms

AlgCH - Background

Definition of convex hull:

- ightharpoonup Called CH(Q)
- ightharpoonup All point in Q are unique
- ▶ At least three no co-linear points
- ▶ Graham's scan algorithm

ntroduction
Related Works
Pheoretical Remarks
Algorithms for Data Mule with Local Vic

Proposed Algorithms

AlgCH – Background

Introduction
Related Works
Theoretical Remarks
Algorithms for Data Mule with Local View

Proposed Algorithms $_{\text{AlgCH}}$

ntroduction telated Works heoretical Remarks llgorithms for Data Mule with Local Vie

Proposed Heuristics

Complexity Analysis

Local Time and Memory Complexities

Complexity		ule	Regular Sensor u
Complexity	AlgNUM	AlgCH	rtegulai Sensoi u
Memory	$\mathcal{O}(n)$ bytes	$\mathcal{O}(n)$ bytes	$\mathcal{O}(n)$ bytes
Time	$\mathcal{O}(n)$	$\mathcal{O}(n \lg n)$	$\mathcal{O}(1)$

ntroduction telated Works Theoretical Remarks Algorithms for Data Mule with Local View Computer experiments and Analysis

Computer experiments and Analysis

Instances

Instances generated for the Close-enough Traveling Salesman Problem (Mennell, 2009)

- ► Euclidean plan
- ► Same acting range (communication range)
- ► Connected graph

Number of nodes: from 100 to 1000.

ntroduction Related Works Theoretical Remarks Algorithms for Data Mule with Local Viev Computer experiments and Analysis

Computer experiments and Analysis

Computational Environment

Tests executed in a Intel Core i7 3.6 Ghz computer, with 16 GB of RAM and Linux Mint 18.

- ▶ LB_3 : C++ and used a graph library, LEMON¹
- ▶ Mathematical Formulation: C++ and used IBM ILOG CPLEX Optimizer v12.5.1
- ▶ Proposed algorithms: C++ and MPI

¹LEMON – Library for Efficient Modeling and Optimization in Networks, available on https://lemon.cs.elte.hu

Related Works
Related Works
Theoretical Remarks
Algorithms for Data Mule with Local Viev
Computer experiments and Analysis

Computer experiments and Analysis

Theoretical Remarks

Inst.	LB	3	Ma	Mathematical Formulation						
mst.	Sol_{LB_3}	T(s)	$\mathbf{L}\mathbf{R}$	$T_{LR}(s)$	Sol_{Math}	T(s)				
kro100	4	0.01	3	0.01	4	1.31				
rat195	4	0.07	3	0.02	4	4.27				
$team 2_200$	4	0.06	4	0.03	5	14.35				
$team 3_300$	32	0.09	19	0.07	74^{α}	17996.7				
lin318	4	0.18	3.67	0.27	5^{α}	6012.51				
rd400	6	0.28	5	0.97	6	7336.95				
pcb442	6	0.38	4.14	0.88	6	37180.6				
$team6_500$	3	0.66	3	2.20	3	225.29				
dsj1000	6	3.00	4	2.50	8^{α}	24842.1				
bonus1000	8	2.12	7.86	38.46	$22^{lphaeta}$	86400				

 $^{^{\}alpha}$ the mathematical formulation used as input the best solution found by the four heuristics

 $^{^{\}beta}$ the optimal solution was not found in a time limit of 24 hours

Meroduction Related Works Theoretical Remarks Algorithms for Data Mule with Local View Computer experiments and Analysis

Computer experiments and Analysis

Theoretical Remarks

Inst.	LB	3	Ma	Mathematical Formulation					
mst.	Sol_{LB_3}	T(s)	\overline{LR}	$T_{LR}(s)$	Sol_{Math}	T(s)			
kro100	4	0.01	3	0.01	4	1.31			
rat195	4	0.07	3	0.02	4	4.27			
$team2_200$	4	0.06	4	0.03	5	14.35			
$team 3_300$	32	0.09	19	0.07	74^{α}	17996.7			
lin318	4	0.18	3.67	0.27	5^{α}	6012.51			
rd400	6	0.28	5	0.97	6	7336.95			
pcb442	6	0.38	4.14	0.88	6	37180.6			
$team6_500$	3	0.66	3	2.20	3	225.29			
dsj1000	6	3.00	4	2.50	8^{α}	24842.1			
bonus1000	8	2.12	7.86	38.46	$22^{\alpha\beta}$	86400			

 $^{^{\}alpha}$ the mathematical formulation used as input the best solution found by the four heuristics

 $^{^{\}beta}$ the optimal solution was not found in a time limit of 24 hours

ntroduction Kelated Works Theoretical Remarks Algorithms for Data Mule with Local Viev Computer experiments and Analysis

Computer experiments and Analysis

Scenarios

We implemented the algorithms in two scenarios:

- ▶ With ACK: the mule waits for neighborhood update
- ▶ Without ACK: The mule does not wait for neighborhood update

Related Works
Theoretical Remarks
Algorithms for Data Mule with Local View
Computer experiments and Analysis

Computer experiments and Analysis

Computer experiments

Table: Computational results – locality sensitive heuristics

Inst.	Cas	e 1 – W	ith A	CK	Case 2 – Without ACK				
mst.	Sol_{NUM}	msgs	Sol_{CH}	msgs	Sol_{NUM}	msgs	Sol_{CH}	msgs	
kro100	6	11108	6	10538	10.0	6664.7	15.3	5852.4	
rat195	4	43006	4	42108	6.4	23040.8	10.4	21795.9	
$team 2_200$	10	30562	12	29016	14.6	17515.6	18.4	15212.2	
$team 3_300$	74	21742	74	19556	94.2	13586.5	88.6	10876.1	
lin318	8	94250	10	91874	13.2	51019.1	13.4	46772.0	
rd400	14	112694	14	108482	22.8	62300.5	17.2	54981.5	
pcb442	12	169950	12	165778	17.4	90869.9	17.8	85027.3	
$team6_500$	6	312252	6	307818	12.0	164828.5	9.8	154971.2	
dsj1000	8	837514	10	828926	17.8	431716.1	19.9	418260.2	
bonus1000	22	450712	26	441438	36.4	238016.4	35.4	222859.8	

Introduction Related Works Theoretical Remarks Algorithms for Data Mule with Local View Computer experiments and Analysis

Computer experiments and Analysis

Computer experiments

Table: Computational results – locality sensitive heuristics

Inst.	Cas	e 1 – W	ith A	CK	Case 2 – Without ACK				
11150.	Sol_{NUM}	msgs	Sol_{CH}	msgs	Sol_{NUM}	msgs	Sol_{CH}	msgs	
kro100	6	11108	6	10538	10.0	6664.7	15.3	5852.4	
rat195	4	43006	4	42108	6.4	23040.8	10.4	21795.9	
$team2_200$	10	30562	12	29016	14.6	17515.6	18.4	15212.2	
$team 3_300$	74	21742	74	19556	94.2	13586.5	88.6	10876.1	
lin318	8	94250	10	91874	13.2	51019.1	13.4	46772.0	
rd400	14	112694	14	108482	22.8	62300.5	17.2	54981.5	
pcb442	12	169950	12	165778	17.4	90869.9	17.8	85027.3	
$team6_500$	6	312252	6	307818	12.0	164828.5	9.8	154971.2	
dsj1000	8	837514	10	828926	17.8	431716.1	19.9	418260.2	
bonus1000	22	450712	26	441438	36.4	238016.4	35.4	222859.8	

Introduction
Related Works
Theoretical Remarks
Algorithms for Data Mule with Local View
Computer experiments and Analysis

Computer experiments and Analysis

Computer experiments

Table: Maximum data mule local time

Inst.	Case 1 – W	Vith ACK	$\mathbf{Case} 2 - \mathbf{W}$	Case 2 – Without ACK			
mst.	AlgNUM	AlgCH	AlgNUM	AlgCH			
kro100	0.13	0.20	0.22	0.07			
rat195	1.15	1.43	0.53	0.45			
$team 2_201$	0.36	0.73	0.86	0.85			
$team 3_301$	0.20	0.33	0.38	0.37			
lin318	0.75	2.21	1.73	1.12			
rd400	2.18	3.09	1.25	1.56			
pcb442	1.72	2.27	1.73	1.60			
$team6_501$	3.84	4.25	3.31	2.47			
dsj1000	789.72	1213.97	290.25	242.11			
bonus1001	9.13	7.91	6.30	3.62			

Conclusions

Data Mule Scheduling Problem

- ► Three problems: Path Selection, Speed Control and Job Scheduling tackled simultaneously
- ▶ New set of instances created
- ▶ Mathematical formulations prove all optimal solution until 16 nodes
- ▶ Two robust heuristic proposed: GRVND and GVNS-RVND
- ▶ GVNS-RVND is more efficient in solution quality and computational time

Conclusions

Data Mule Routing Problem

- ► Lower Bound (global view)
 - A good lower bound calculation was proposed
 - \triangleright LB₃ is better than LR of mathematical formulation
 - ▶ Some exact solutions found with the LB
 - Parameters to analyze the quality of solutions given by the locality heuristics
- ▶ Locality sensitive heuristics
 - AlgNum and AlgCH obtain good solutions
 - ▶ AlgCH proposed with the idea to obtain better solutions
 - ► Two scenarios (ACK): both approaches can be helpful

Future works

▶ DMSP

- Extend the heuristics for the DMSP with Discrete and Continuous speeds may be done
 - Good results with constant speeds
 - Better improvement is possible with respect to the mathematical formulation

DMRP

- New compatible instances can be tested in order to explore other network characteristics
- Extend for version where speed change is considered
- Real tests can be done in order to observe the behavior of these algorithms

Data Gathering in Sensor Networks with Data Mules: Global and Local Approaches

Pablo Luiz Araújo Munhoz^{1,2} Advisor: Lúcia Drummond ¹

Advisor: Philippe Michelon ²

¹Universidade Federal Fluminense Instituto de Computação

²Université d'Avignon et des Pays de Vaucluse Laboratoire Informatique d'Avignon

May, 04 de 2017

