Cognome	
Nome	
Matricola	
Aula	

Domande a risposta multipla (indicare con X la risposta corretta nella tabella)

Quesito	1	2	3	4	
Risposta a		X	X		
Risposta b					
Risposta c					
Risposta d	Χ			Χ	
Punteggio totale					

- 1) Un triangolo rettangolo (privo di errore di forma) ha l'ipotenusa pari a (15.0 ± 0.5) cm e il cateto minore pari a (9.0 ± 0.5) cm. Il cateto maggiore vale:
 - a) (12.0 ± 0.5) cm
 - b) (17.5 ± 1.5) cm
 - c) (17.5 ± 1.0) cm
 - d) (12.0 ± 1.0) cm

Soluzione: indico con h, M e m rispettivamente ipotenusa, cateto maggiore e minore.

Il cateto maggiore misura $M = \sqrt{h^2 - m^2} = 12 \ cm$.

Dalla formula di propagazione delle incertezze (metodo deterministico) si ottiene:
$$\delta M = \frac{h}{M}\delta h + \frac{m}{M}\delta m = \frac{15}{12}0.5 + \frac{9}{12}0.5 = 1 \ cm$$

2) Un oscilloscopio digitale in modalità real time presenta una profondità di memoria pari a 100 kSamples. Se il fattore di taratura orizzontale è impostato al valore di 2 ms/DIV e le divisioni orizzontali sono 10, la frequenza di campionamento vale:

a) 5 MHz

- b) 50 MHz
- c) 200 MHz
- d) 20 MHz

Soluzione: ogni divisione di 2 ms/DIV presenta 10 kSamples. Tra un campione ed il successivo intercorre un intervallo ΔT , corrispondente all'intervallo di campionamento, che vale $\Delta T = T_c = \frac{2 \cdot 10^{-3}}{10000} = 2 \cdot 10^{-7} =$

$$200 \ ns \rightarrow f_c = \frac{1}{T_c} = 5 \ \text{MHz}$$

3) Un voltmetro per misure in DC ha la seguente tabella delle incertezze:

Accuracy = \pm (% of reading + % of range)

) = (' · · · · · · · · · · · · · · · · · ·		
Range	Accuracy	
40 mV	±(0.3 % + 0.03 %)	
400 mV	±(0.3 % + 0.03 %)	
4 V	±(0.4 % + 0.05 %)	

Volendo misurare una tensione di circa 300 mV, l'incertezza di misura è pari a:

- a) 1 mV
- b) 10 mV
- 2mV c)
- d) 20 mV

Il fondo scala scelto è di 400 mV da cui l'incertezza è pari a $\pm (0.3 \% 300 \text{ mV} + 0.03 \% 400 \text{ mV}) = 1 \text{ mV}$

4) Un segnale sinusoidale a circa 100 Hz ed ampiezza pari ad 1 V è misurato per mezzo di un voltmetro in continua realizzato con il metodo a doppia rampa. Indicare l'affermazione corretta fra le seguenti:

- a) La lettura ottenuta dipenderà dal valore dei componenti (resistori e condensatori) utilizzati nel circuito integratore
- b) La lettura ottenuta non dipenderà dal tempo di integrazione del segnale di ingresso
- c) La lettura ottenuta dipenderà dalla presenza o meno del condensatore di ingresso
- d) La lettura ottenuta non dipenderà dalla carica iniziale presente sulle armature del condensatore utilizzato nel circuito integratore

Per la soluzione vedere la teoria svolta a lezione

ESERCIZIO

Il valore di un resistore incognito R_X è misurato mediante il metodo volt-amperometrico, utilizzando il circuito indicato in figura, dove:

- ✓ la tensione è misurata mediante un voltmetro digitale con incertezza assoluta espressa dalla relazione $\delta V = \pm (0.20\% \text{ Lettura} + 0.01) V$ e resistenza interna $R_V = 10 \text{ M}\Omega$, $\pm 10\%$;
- ✓ la corrente è misurata con un amperometro analogico con portata 100 mA, classe 0.2 e resistenza interna $R_A = 1 \Omega$, ± 10%.

Valutare la misura (valore e incertezza) del resistore R_X quando la lettura del voltmetro è pari a 7.350 V e quella dell'amperometro è pari a 50 mA (incertezza di lettura trascurabile), se necessario tenendo conto dell'effetto di carico strumentale.

Soluzione

Modello di misura

Misura della resistenza Rx nel caso di strumenti ideali:

$$R_{\rm X} = \frac{V_{\rm m}}{I_{\rm m}} = \frac{7.350}{0.050} = 147 \ \Omega$$

Incertezza relativa corrispondente:

$$\varepsilon R_{\rm X} = \varepsilon V_{\rm m} + \varepsilon I_{\rm m} = \frac{\delta V_{\rm m}}{V_{\rm m}} + \frac{\delta I_{\rm m}}{I_{\rm m}} = \frac{0.002 \cdot 7.350 \text{ V} + 0.010 \text{ V}}{7.350 \text{ V}} + \frac{0.2 \cdot 100}{100 \cdot 50} = \frac{0.025 \text{ V}}{7.350 \text{ V}} + 0.004 \approx 0.0034 + 0.004 \approx 0.0074$$

che corrisponde ad un'incertezza assoluta:

$$\delta R_{\rm x} = R_{\rm x} \cdot \varepsilon R_{\rm x} = 147 \cdot 0.0074 \approx 1.1 \,\Omega$$

Se si tiene conto dell'effetto di carico strumentale dell'amperometro, la cui resistenza interna è collegata in seria alla resistenza R_X , l'effetto sistematico espresso in termini

assoluti è pari ad R_A , ossia 1 Ω , che risulta dello stesso ordine di grandezza dell'incertezza assoluta di R_X . Segue quindi che il modello di misura da adottare è il seguente:

$$R_{\rm X} = \frac{V_{\rm m}}{I_{\rm m}} - R_{\rm A}$$

Valutazione del misurando

Sostituendo i valori numerici nel modello di misura si ottiene:

$$R_{\rm X} = \frac{7.35 \text{ V}}{0.05 \text{ A}} - 1 \Omega = 146 \Omega$$

Valutazione dell'incertezza

$$\begin{split} \delta R_{X} &= \left| \frac{\partial R_{X}}{\partial V_{m}} \right| \cdot \delta V_{m} + \left| \frac{\partial R_{X}}{\partial I_{m}} \right| \cdot \delta I_{m} + \left| \frac{\partial R_{X}}{\partial R_{A}} \right| \cdot \delta R_{A} = \\ &\frac{1}{I_{m}} \cdot \delta V_{m} + \frac{V_{m}}{I_{m}^{2}} \cdot \delta I_{m} + \delta R_{A} = \\ &\frac{V_{m}}{I_{m}} \cdot \left(\varepsilon V_{m} + \varepsilon I_{m} \right) + \delta R_{A} = \\ &147 \cdot \left(0.0034 + 0.004 \right) + 0.1 = \\ &1.1 + 0.1 = 1.2 \ \Omega \end{split}$$

Dichiarazione finale della misura

$$R_X = (146.0 \pm 1.2)\Omega$$