Ocean: #3 Wind-driven circulation

Averaged wind speed

Averaged wind stress

Wind = wind stress?

Weak stress

Wind = wind stress?

Moderate stress

Wind = wind stress?

Strong stress

Wind stress =
$$c_D \rho_{air} \left| u_{air} - u_{water} \right| \left(u_{air} - u_{water} \right)$$

Drag coefficient

Wind stress $\propto u_{air}^2$

How does the ocean feel the wind stress?

$$F_{x} = \frac{\tau_{x}(z + \delta z) - \tau_{x}(z)}{\rho_{ref}\delta z} = \frac{1}{\rho_{ref}} \frac{\partial \tau_{x}}{\partial z}$$

$$F_{y} = \frac{\tau_{y}(z + \delta z) - \tau_{y}(z)}{\rho_{ref}\delta z} = \frac{1}{\rho_{ref}} \frac{\partial \tau_{y}}{\partial z}$$

How does the ocean feel the wind stress?

Wind stress decreases rather rapidly with depth.

$$-fv + \frac{1}{\rho_{ref}} \frac{\partial p}{\partial x} = F_x$$

$$-fv + \frac{1}{\rho_{ref}} \frac{\partial p}{\partial x} = \frac{1}{\rho_{ref}} \frac{\partial \tau_x}{\partial z}$$

$$-f(v_g + v_a) + \frac{1}{\rho_{ref}} \frac{\partial p}{\partial x} = \frac{1}{\rho_{ref}} \frac{\partial \tau_x}{\partial z}$$

$$-fv_a = \frac{1}{\rho_{ref}} \frac{\partial \tau_x}{\partial z}$$

$$-fv_a = \frac{1}{\rho_{ref}} \frac{\partial \tau_x}{\partial z} \longrightarrow -f\rho_{ref} \int_{-\delta}^0 v_a dz = \tau_{x,wind}$$

$$fu_a = \frac{1}{\rho_{ref}} \frac{\partial \tau_y}{\partial z} \implies f\rho_{ref} \int_{-\delta}^0 u_a dz = \tau_{y,wind}$$

North hemisphere

Transport

$$-f\rho_{ref} \int_{-\delta}^{0} v_a dz = \tau_{x,wind}$$

$$f\rho_{ref} \int_{-\delta}^{0} u_a dz = \tau_{y,wind}$$

- Transport of the water in the Ekman layer is to the right of the wind stress direction in the northern hemisphere
- Transport of the water in the Ekman layer is to the left of the wind stress direction in the southern hemisphere.
- Ekman spiral

Ekman spiral

S. HEMISPHERE

N. HEMISPHERE

Surface Wind Stress (N/m²)

Copyright © 2008, Elsevier Inc. All rights reserved.

$$\frac{\partial \tau_x}{\partial y} < 0$$

- Northern H.: divergence
- Southern H.: convergence

- Northern H.: convergence
- Southern H.: divergence

- Northern H.: convergence
- Southern H.: divergence

- Northern H.: divergence
- Southern H.: convergence

$$\frac{\partial \tau_y}{\partial x} - \frac{\partial \tau_x}{\partial y} < 0$$

$$\frac{\partial \tau_y}{\partial x} - \frac{\partial \tau_x}{\partial y} > 0$$

- Northern H.: convergence
- Southern H.: divergence

- Northern H.: divergence
- Southern H.: convergence

Surface Wind Stress (N/m²)

Copyright © 2008, Elsevier Inc. All rights reserved.

Sea level

Sea Surface Height

Ekman pumping / suction

Ekman pumping / suction

Ekman suction (m/y)

Copyright © 2008, Elsevier Inc. All rights reserved.

Ekman pumping at the equator

Ekman pumping / suction and temperature

Zonal Average Temperature in World Oceans (°C)

