NOTA BENE

Le seguenti slide contengono una serie di esempi di quelli che sono gli esercizi pratici più frequenti all'esame scritto. Esse <u>non sono esaustive</u>. Il compito scritto può contenere anche esercizi più teorici, del genere:

- Dire su quale tecnica algoritmica si basa un determinato algoritmo
- Domande (teoriche) con risposta vero/falso e motivazione
- Modifica di algoritmi noti

Dato il seguente grafo orientato, se ne effettui una visita in profondità di tutti i vertici, considerando 0 come vertice sorgente e con l'ipotesi che i vertici siano memorizzati nelle liste di adiacenza in ordine alfabetico. Per ogni vertice, si indichino il tempo di inizio e fine visita. Etichettare inoltre ogni arco con T (dell'albero), B (all'indietro), F (in avanti) e C (di attraversamento).

Dire se il grafo è aciclico

No, in quanto l'arco (2,0) è un arco all'indietro e i grafi aciclici non possono avere archi all'indietro.

Dato il grafo orientato con 6 nodi e i seguenti archi:

$$\langle 0,3 \rangle$$
, $\langle 0,4 \rangle$, $\langle 1,5 \rangle$, $\langle 2,3 \rangle$, $\langle 3,1 \rangle$, $\langle 3,5 \rangle$, $\langle 4,1 \rangle$, $\langle 5,2 \rangle$

Utilizzando una qualsiasi tecnica vista, calcolare la componente fortemente connessa contenente il vertice 2. Descrivere il procedimento.

Algoritmo semplice per trovare la cfc contenente il vertice 2:

- 1. Calcoliamo i discendenti del nodo 2
- 1. Calcoliamo gli antenati del nodo 2
- 3. la cfc è data dall'intersezione di questi due insiemi

Algoritmo di Kosaraju

- 1. Visita G con una DFS e costruisci una lista di vertici in ordine decrescente dei tempi di fine visita
- 2. Costruisci GT
- 3. Visita GT con una DFS considerando i vertici nell'ordine trovato al passo 1

Scrivere (in pseudocodice) un algoritmo che, dato un grafo non pesato orientato G ed un vertice t di G, restituisca un vettore contenente in posizione i-esima, con i = 0..n-1:

- V (di Vicino) se il vertice i è a una distanza compresa tra 0 e 1 da t
- M (di Media distanza) se il vertice i è a una distanza compresa tra 2 e
 3 da t
- L (di Lontano) se il vertice i è a una distanza di 4 o più da t

Ad esempio, dato il seguente grafo, e considerando t = 0,

l'algoritmo deve restituire

Dato che dobbiamo tenere conto delle distanze dalla sorgente per livello, possiamo usare una BFS per visitare il grafo e costruire un albero di visita.
All'atto pratico, lo pseudocodice sarebbe:

```
D \leftarrow coda vuota
L ← vettore dei livelli
l ← contatore dei livelli
color[s] \leftarrow grigio
enqueue(D,s)
L[s] \leftarrow V
while NotEmpty(D) do
     u \leftarrow head(D)
     {visita u}
     1++
     for ogni v adj ad u then
          if color[v] = bianco
               color[v] \leftarrow grigio
               predecessore[v] \leftarrow u
               enqueue(D, v)
               if l == 1 L[v] \leftarrow V
               else if 2 \le v \le 3 L[v] \leftarrow M
               else L[v] \leftarrow L
     color[u] \leftarrow nero
     dequeue(D, u)
```


Dato il grafo orientato con 6 nodi e i seguenti archi: $\langle 0,3 \rangle$, $\langle 0,4 \rangle$, $\langle 1,5 \rangle$, $\langle 2,3 \rangle$, $\langle 2,4 \rangle$, $\langle 3,1 \rangle$, $\langle 3,5 \rangle$, $\langle 4,1 \rangle$

Utilizzando una qualsiasi tecnica vista, calcolarne un ordinamento topologico. Descrivere il procedimento.

Algoritmo astratto (sorgenti e pozzi):

G' ← fai una copia di G

ord ← lista vuota di vertici

while esiste u senza archi entranti in G'

appendi u come ultimo elemento di ord

rimuovi da G' u e tutti i suoi archi uscenti

if G' non è vuoto then errore il grafo non è aciclico
else return ord

ORD: {0,2,4,3,1,5} oppure 000:{2,0,4,3,1,5}

```
Algoritmo di ordinamento basato di DFS:
INIZIALIZZA (G)
ord ← un vettore di lunghezza n
t ← n-1
for ogni u \in V do
    if color [u] = white
    then DFS-TOPOLOGICAL (G,u,ord,t)
return ord
DFS-TOPOLOGICAL (G, u, ord, t)
color [u] \leftarrow gray
d[u] \leftarrow time \leftarrow time+1
for ogni v adiacente ad u
    if color[v] = white
         \pi[v] \leftarrow u
         DFS-TOPOLOGICAL (G, v, ord, t)
color[u] \leftarrow black
f[u] \leftarrow time \leftarrow time+1
ord[t] \leftarrow u
t--
```

ORD: {2,0,4,3,1,5}

Si consideri la seguente tabella che associa ad ogni oggetto i un peso p_i ed un costo c_i . Dato uno zaino di capienza P=80, si trovi una soluzione ottima per il problema dello zaino frazionario.

i	1	2	3	4	5	6
p_i	10	20	30	10	10	20
c_i	60	100	120	70	10	60
√;	.6	5	4	7	1	3

Algoritmo greedy per lo zaino frazionario:

- 1. Scegli la variabile xi con vi maggiore
- 2. xi = min(1, P/pi)
- 3. Elimina xi dal problema e P=P-xi*pi
- 4. Se il problema non contiene più nessuna variabile o P=0, restituisci gli elementi selezionati, altrimenti torna al punto 1

$$A) i = 4 \qquad P = 40 \qquad A$$

5)
$$i = 6$$
 $P = 0$ $1/2$

Dato l'alfabeto composto dai caratteri **a, b, c, d, e, f, g** e la seguente tabella delle frequenze, si calcoli una codifica binaria a lunghezza variabile dell'alfabeto secondo l'algoritmo di Huffman. (Si mostri come la struttura mantenuta dall'algoritmo cambia ad ogni iterazione)

Carattere	а	b	С	d	е	f	g
Frequenza	0.20	0.08	0.12	0.15	0.10	0.10	0.25

Algoritmo di Huffman:

7) PQ = {1}

- 1. Per ciascun carattere crea un albero formato solo da una foglia contenente il carattere e la frequenza del carattere
- 2. Fondi i due alberi che hanno frequenze mimine e costruisci un nuovo albero che ha come frequenza la somma delle frequenza degli alberi fusi
- 3. Ripeti la fusione finchè non si ottiene un unico albero

1. Si applichi l'algoritmo di Moore al seguente insieme di lavori, dove dx è la durata del lavoro Lx e sx è la scadenza del lavoro Lx.

Algoritmo di Moore:

- L1: d1: 3 s1: 6 | 1. ordina la sequenza dei lavori per ordine crescente di istante di scadenza
 - 2. inizializza la sequenza soluzione Sol dei job schedulati come sequenza vuota e inizializza il tempo t a 0
 - 3. for i = 1 to n
 aggiungi Li a Sol
 t = t + durata di Li
 if t > scadenza di Li
 togli da Sol il lavoro Lmax di durata massima
 t = t durata Lmax

L2: d2: 3 s2: 5

L3: d3: 1 s3: 5

L4: d4: 3 s4: 8

L6: d6: 2 s6: 8

2)
$$Sol = \{ 13, 12 \} + = 4$$

3) $Sol = \{ 13, 12, 14 \} + = 7$ $tolgo \ 14 = 4$

Dati i seguenti intervalli, con tempi di inizio e fine, trovarne un sottoinsieme costituito da intervalli tutti disgiunti e tale che il numero di intervalli sia il massimo.

- 1. ordina l'insieme degli intervalli in una sequenza S ordinata secondo l'istante finale
- 2. inizializza la soluzione Sol come seguenza vuota
- 3. scandisci S in ordine, e per ogni suo elemento A:
 - se A inizia dopo la fine dell'ultimo elemento di Sol, aggiungilo al fondo di Sol

15: [17,20)
$$S = \{LQ, L1, L3, L4, L5, L8, L7, L6\}$$

16: [21,30) $S = \{LQ, L1, L3, L4, L5, L8, L7, L6\}$
16: [21,30) $S = \{LQ, L4, L3, L4, L3, L3, L4, L6\}$

18: [21,23) 4) Sol = {
$$12$$
, 14 , 15 , 18 } $f = 23$
5) Sol = { 12 , 14 , 15 , 18 , 17 $f = 25$ scanto 16

Si applichi l'algoritmo di **Dijkstra** al seguente grafo, con vertice di partenza A e considerando le liste di adiacenza ordinate in ordine alfabetico. In particolare, per ogni ciclo dell'algoritmo (0 indica la condizione prima di entrare nel ciclo)

- a. compilate la tabella d delle distanze stimate dei vertici da A
- b. compilate la tabella dei vertici inclusi nella soluzione (per cui d[v] = $\delta(A, v)$)
- c. disegnate (sul foglio protocollo) l'albero dei predecessori mantenuto dall'algoritmo (o equivalentemente, compilate una matrice π).

d	Α	В	С	D	Е	F
0	O _N	N N	∞ _N	CON	00	\sim
1	0	87	J	4 A		
2	ON	8	19	3	7 c	∞0
3	On	8 0	1	30	5	\sim
4	Q,,	6 _	1 8	3	5 0	~ ~
5		60	1 ~	30	5	\sim
6	0	6	ا م ا	3 0	5 _D	∞ _N

	Vertici (neri) inclusi nella soluzione
0	
1	A
2	A,C
3	A, C, D
4	A, C, D, E
5	A, C, D, E, B
6	A, C, D, E, B, F

Si consideri una struttura **Union Find** di tipo Quick Union con ottimizzazione by-size e le seguenti operazioni. Si mostri la struttura (con eventuali variabili vicine ai nodi) dopo ogni operazione e gli eventuali output delle operazioni:

- makeSet(A)
- 2. makeSet(B)
- makeSet(C)
- 4. union(A,B)
- 5. union(C,A)
- 6. makeSet(D)
- 7. find(B)
- 8. makeSet(E)
- 9. union(E,D)
- 10. union(D,B)
- 11. find(D)

Si applichi l'algoritmo di **Prim** al seguente grafo, con vertice di partenza A e e considerando le liste di adiacenza ordinate in ordine alfabetico. Dopo ogni iterazione del ciclo (la riga 0 corrisponde alla situazione iniziale, prima di entrare nel ciclo) si compili la tabella delle distanze d e quella dei vertici ("definitivi") inclusi nella soluzione

d	А	В	С	D	E	F		Vertici (neri) inclusi nella soluzione
0	Q . w	~ 		83	\sim	<i>∞</i>	0	
1	O,,	3 A	1 0	3	∞	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	A
2	0	2,	J	10	20	~ ~ ~	2	A, C
3	0	2	1	1	2	00	3	A, C, D
4	0	2	я	l J	2	8	4	A, C, D, B
5	0	2	1	X	J	3	5	A,C,D,B,E
6	O _N	2	1 _A	10	1 8	, 2 E	6	A,C,D,B,E,F

Si applichi l'algoritmo di **Kruskal** al seguente grafo. Si mostri come la foresta e la union find mantenute dall'algoritmo cambiano ad ogni iterazione (non è necessario rappresentare le union find come alberi, basta una rappresentazione grafica/insiemistica).

MAR

PESO MAR: 7

Utilizzando l'algoritmo visto a lezione, trovare la più lunga sottosequenza comune (**LCS**) tra le stringhe "ETUTZE" e "TZUETE".

Per la matrice LCS, utilizzare l'ottimizzazione delle frecce vista a lezione.

matrice LCS

	Т	Z	U	E	T	E
E	1	↑	1	K	←	N
Т	K	-	←	1	N	—
U	1	—	N	(—	—
Т	K	←	1	←	N	←
Z	1	K			1	\
E	1	↑	+	K	—	N

matrice L

		Т	Z	U	E	Т	E
	0	O.	0	0	9	0	0
E	0	0	0	0	7	1	1
Т	0	ノ	1	1	J	2)	2
U	Q	1	1	2	2	ک	2
Т	0	1	1	2	2	3	3
Z	0	1	ک	2	2	3	3
Е	0	1	2	2	3	3	4

Utilizzando l'algoritmo visto a lezione, trovare la più lunga sottosequenza comune (**LCS**) tra le stringhe "AGCCGGATCGAGT" e "TCAGTACGTTA".

Per la matrice LCS, utilizzare l'ottimizzazione delle frecce vista a lezione.

matrice LCS

AGACGT

matrice L

	Α	G	С	С	G	G	Α	Т	С	G	Α	G	Т
Т	1	↑	~	1	1	1	1	N	\downarrow	\	^	1	K
С	1	1	Ľ	K	₩	←	←	←	K	Ų	┙	↓	+
Α	K	\downarrow	\downarrow	←	\downarrow	←	K	\leftarrow	~	V	K	\downarrow	←
G	1	V	↓			←	←	<	↓.	Ľ	1	K	\
Т	1	^	↓	←	↓	(←	K	\	\	—	↑	K
Α	ľ	J	V	←	↓	←	V	+	₩	\downarrow	K	\downarrow	1
С	↑	\	V	K	↓	←	\	←	K	\downarrow	V	₩	1
G	↑	ľ	^	←	V	K	\		↓	V	\downarrow	K	—
Т	↑	1	\	←	1	←	←	K	\	\	\	^	K
Т	1	1	\	-	1	←	←	ĸ	←	+	←	4	K
Α	K	←	←	←	1	~	7	←	<	←	K	←	1

	Α	G	С	С	G	G	Α	Т	С	G	Α	G	Т
Т	9	0	0	0	0	0	0	l	Y	٦	J	J	٦
С	0	0	7	٦	1	7	1	1	2	2	2	2	٤
Α	d	7	く	く	4	ヾ	ょ	3	2	બો	M	ო	3
G	J	N	2	Q	2	્ર	2	2	2	ળ	ო	4	4
Т	,	2	2	2	2	2	2	3	3	3	3	4	5
Α	2	2	2	2	2	2	3	S	Ŋ	Ŋ	4	4	R
С	2	2	േ	d	Ŋ	જ	വ	പ	4	4	4	4	5
G	2	ച	જ	ന	3	(1)	უ	ക	4	り	Ŋ	り	び
Т	2	3	જ	പ	ო	જ	જ	4	4	Μ	Ŋ	りり	6
Т	2	3	B	3	(A)	9	3	4	Ų	YA	٥٤	ભ	6
Α	3	3	Ŋ	3	3	(A)	4	4	4	M	M	ی	6

Si applichi l'algoritmo di **Bellman-Ford** al seguente grafo, considerando gli archi nel seguente ordine:

(A,B) (A,C) (C,D) (C,B) (E,D) (B,E) (B,D)

Si utilizzi la tabella d, se ne compili una per ogni ciclo dell'algoritmo.

d	init	(A,B) 5	(A,C) 3	(C,D) -1	(C,B) 1	(E,D) -4	(B,E) -1	(B,D) -2
А	0	0,	0 7	0 2	0,	0 7	Qu	0 4
В	∞	5 _A	5 A	5 a	40	4 6	40	4 6
С	∞	∞_{N}	3 _A	3 A	3 _A	3 n	3 ,	3 A
D	∞	CO _N	60 _~	2 6	2 _	2 6	ع ر	2 6
E	∞	CO N	00 N	Ø ₂	∞ _N	$\infty_{_{\sqrt{1}}}$	3 &	3 3

d	init	(A,B) 5	(A,C) 3	(C,D) -1	(C,B)	(E,D) -4	(B,E) -1	(B,D) -2
Α	0	0,	0 ~	07	م م	O _N	0 ~	ON
В	4	4 6	40	40	40	40	2, c	42
С	3,	3 _A	3 🛕	3 0	3 _A	3 _A	3 _A	3 _A
D	ي 2	ے 2	2 _	ع ر	2 _	- 1 _€	- 1 E	-1 E
Е	38							3 B

Si applichi l'algoritmo di **Bellman-Ford** al seguente grafo, utilizzando **l'ottimizzazione per DAG**

```
INIZIALIZZA(G)
d[s] ← 0
ord ← TOPOLOGICAL SORT(G)
for i = 0 ... n-1
    for ogni (ord[i],v) then
        if d[v] > d[ord[i]] + W(ord[i],v) then
            predecessore[v] ← ord[i]
            d[v] ← d[ord[i]] + W(ord[i],v)
```


$$OQD = \{A, C, B, E, D\}$$

$$ARCHI = (A, B)(A, C)(C, B)(C, D)(B, D)(B, E)(E, D)$$

$$(A,B) = \begin{bmatrix} V & A & B & C & D & E \\ \hline J(V) & O & 5 & \infty & \infty & \infty \\ \hline V & A & B & C & D & E \\ \hline \pi(V) & NULL & A & NULL & NUL$$

 \subset

E

 \mathcal{D}

	V	A	B	\subset	D	E
(00)	a(~)	0	4	3	2	8
•	✓	A	В	C	מ	E
_	T(v)	NULL		A	<u> </u>	NUL

(V	A	B	<u></u>	C	E
(B,D)	a(v)	0	4	3	2	<i>&</i>
	\checkmark	A	B	<u></u>	D	E
	$\pi(v)$	NULL	. (A	J	NUL

Dato il grafo rappresentato con la seguente matrice di adiacenza, trovare i cammini minimi (ed i loro pesi) tra tutte le coppie di vertici, applicando l'algoritmo di Floyd-Warshall.

Si mostrino le matrici D (dei pesi) e P (dei predecessori) dopo ogni ciclo esterno dell'algoritmo (0 è la situazione iniziale, prima di entrare nel ciclo).

Se I cammini minimi non esistono, si dica il perché.

D ⁰	А	В	С
Α	0	1	-2
В	-1	0	8
С	5	2	0

DA	A	Q	0
A	Q	d	- 2
٩	- 1	0	- 3
C	5	2	0

D.	A	Ø	<u></u>
A	0	7	- 2
۵	- 1	0	-3
<i>-</i>	-1	2	- <i>x</i>

D[A, A] > D[A, B] + D[B, A]

D[A, B] > D[A, B] + D[B, B]

D[A, C] > D[A, B] + D[B, C]

D[B, A] > D[B, B] + D[B, B]

D[B, C] > D[B, B] + D[B, C]

D[C, A] > D[C, B] + D[B, B]

D[C, C] > D[C, B] + D[B, B]

D[C, C] > D[C, B] + D[B, B]

D[C, C] > D[C, B] + D[B, B]

Non esistono cammini minimi in quanto vi sono cicli negativi.

מ	A	Q	<u></u>
A	- 3	0	-3
٩	- 2	- x	-4
<u> </u>	- x	~ J	-1

D[A,A] > D[A,C] + D[C,A]

O[A,B] > D[A,C] + O[C,B]

O[A,C] > D[A,C] + D[C,C]

O[B,A] > D[B,C] + D[C,A]

D[B,B] > D[B,C] + D[C,B]

D[B,C] > D[B,C] + D[C,C]

D[C,A] > D[C,C] + D[C,B]

D[C,B] > D[C,C] + D[C,B]

D[C,C] > D[C,C] + D[C,B]

Utilizzando l'algoritmo approssimato visto a lezione, si trovi un ciclo Hamiltoniano di peso al più 2 volte il peso del cammino Hamiltoniano di peso minimo.

Algoritmo: scegli un vertice r casualmente A ← PRIM(G,W,r) ord ← DFS(A,r) return ord

Altro possibile esercizo

Dati un grafo ed un ciclo Hamiltoniano contenuto in esso, generare il vicinato con la tecnica dei k-scambi con k=2

Costruzione di algoritmi

Un ladro entra in un magazzino e trova n oggetti. L'i-esimo oggetto ha un valore di v_i euro e pesa p_i chilogrammi (i pesi sono numeri **interi positivi**).

Gli oggetti NON sono frazionabili. Quindi il ladro può o prendere l'intero oggetto i, o non prenderlo.

Il ladro ha solo uno zaino, che può contenere oggetti per un massimo di *P* chilogrammi.

Scrivere un algoritmo di programmazione dinamica che restituisca il massimo valore che il ladro può prendere, sapendo che tale valore è dato dall'equazione ricorsiva

$$V(i,j) = \begin{cases} V(i-1,j) & \text{se } j < p_i \\ \max(V(i-1,j),V(i-1,j-p_i) + v_i) & \text{altrimenti} \end{cases}$$

Con V(i,j) che è la soluzione ottima del sottoproblema limitato agli oggetti $1 \dots i$ e con zaino di capienza massima j.

Costruzione di algoritmi – II

In particolare,

- 1. Si descriva la struttura dati necessaria per la memoizzazione
- 2. Si definiscano i casi base, e le loro soluzioni
- 3. Si scriva in pseudocodice un algoritmo di programmazione dinamica che risolva il problema

Costruzione di algoritmi – SOLUZIONE

Struttura di memoizzazione.

V(i,j) ha due parametri:

- i è l'ultimo oggetto che consideriamo
- j è la capienza

Visto che ci sono 2 parametri, possiamo usare una matrice V[]. Di quali dimensioni?

Il problema richiede di trovare la soluzione con n oggetti e P di capienza massima. Quindi la soluzione sarà contenuta in V[n,P].

Ci servono però anche i casi base. In particolare, ci serviranno i V[i,j] tali che i = 0 (nessun oggetto considerato) e/o j = 0 (peso massimo 0).

Quindi la matrice sarà grande $(n + 1) \times (P + 1)$.

Costruzione di algoritmi – SOLUZIONE

Valori casi base.

i = 0 (nessun oggetto considerato) – dato che non abbiamo considerato nessun oggetto, V[0,j] = 0 per ogni $0 \le j \le P$.

j = 0 (peso massimo 0) – dato che non possiamo prendere nessun oggetto, il valore massimo raggiungibile sarà 0. Quindi V[i,0] = 0 per ogni $0 \le i \le n$.

Costruzione di algoritmi – SOLUZIONE Algoritmo.

```
Zaino(n,P,v[],p[]) // v[] e p[] sono i vettori dei valori e dei pesi
V[] \leftarrow \text{nuova matrice (n+1)} \times (P+1)
%inizializzazione
for i=0..n do
  V[i,0] = 0
for j=0..P do
  V[0,j] = 0
%riempimento matrice
for i=1...n
  for j=1..P do
     if(j<p[i]) then</pre>
       V[i,j] = V[i-1,j]
     else
       V[i,j] = max(V[i-1,j], V[i-1,j-p[i]]+v[i])
%soluzione
return V[n,P]
```

Si consideri la seguente tabella che associa ad ogni oggetto i un peso p_i ed un valore v_i . Dato uno zaino di capienza P=10, si trovi una soluzione ottima per il problema dello zaino 0-1.

i	1	2	3	4
p_i	2	7	6	4
v_i	12.7	6.4	1.7	0.3

Soluzione:

	Matrice V										
	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	12,7	12,7	12,7	12,7	12,7	12,7	12,7	12,7	12,7
2	0	0	12,7	12,7	12,7	12,7	12,7	12,7	12,7	19,1	19,1
3	0	0	12,7	12,7	12,7	12,7	12,7	12,7	14,4	19,1	19,1
4	0	0	12,7	12,7	12,7	12,7	13	13	14,4	19,1	19,1

Extra – è possible anche sapere quali oggetti appartengono alla soluzione dello zaino 0-1?

Sì, si deve utilizzare una matrice ausiliaria K (delle stesse dimensioni di V), che conterrà 1 se l'oggetto i-esimo fa parte della soluzione ottima che ha valore complessivo V[i,j]

```
Zaino(n,P,v[],p[]) // v[] e p[] sono i vettori dei valori e dei pesi V[] \leftarrow nuova matrice (n+1) x (P+1) K[] \leftarrow nuova matrice (n+1) x (P+1)
%inizializzazione
for i=0..n do
   V[i,0] = 0
   K[i,0] = 0
for j=0..P do
%riempimento matrice
for i=1...n
   for j=1...P do
       V[i,j] = V[i-1,j]
       if V[i,j] < V[i-1,j-p[i]]+v[i] then V[i,j] = V[i-1,j-p[i]]+v[i]
%soluzione
return V[n,P]
```

Extra – è possible anche sapere quali oggetti appartengono alla soluzione dello zaino 0-1?

Per sapere quali oggetti appartengono alla soluzione, visito K partendo dall'ultima cella (in fondo a destra)

```
d = P
i = n
while( i>0 ) do
    if K[i,d] = 1 then
        stampa "Seleziono oggetto" i
        d = d-p[i]
        i = i-1
```

	Matrice K (in verde le celle visitate)										
	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1	1
2	0	0	0	0	0	0	0	0	0	1	1
3	0	0	0	0	0	0	0	0	1	0	0
4	0	0	0	0	0	0	1	1	0	0	0