

DAY-29 #100DAYSRTL

"Aim":-To Specify the differences between a Multi bit flip flop and a register.

Multi-bit Flipflop vs Register :-

Differences between Multi-bit flip-flops and registers:										
Feature	Multi-bit flip-flop	Register								
Definition	A multi-bit flip-flop is a single flip-flop that can store multiple bits of data.	A register is a group of flip-flops that are connected together to store multiple bits of data.								
Common uses	Multi-bit flip-flops are typically used to reduce the area and power consumption of digital circuits.	Registers are typically used to store data temporarily, such as the data that is being processed by a microprocessor or the data that is being transmitted between two devices.								
Reset signal	Multi-bit flip-flops may or may not have a reset signal.	Registers typically have a reset signal.								
Verilog coding	The Verilog code for a multi-bit flip-flop is similar to the Verilog code for a single-bit flip-flop, except that it has multiple D and Q pins.	The Verilog code for a register is simply a group of multi-bit flip-flops that are connected together. The D and Q pins of the flip-flops are connected together in a chain.								

D-4bitFlipFlop

"Design Code":-

```
module d_flip_flop_4bit (
  input clk,
  input [3:0] d,
  output reg [3:0] q
);
  always @(posedge clk) begin
   q <= d;
  end
endmodule</pre>
```

"Waveforms":-

Name	Value	0.000 ns		10.000 ns		20.000 ns		30.000 ns		40.000 ns		50.000 ns	
[™] clk	1												
> 😽 d[3:0]	1001	1010		11	1100		11:	1111		1001			
> V q[3:0]	1001	XXXX	10:	10 110		00	1111				1001		
> V qbar[3:0]	0110	XXXX	01	0101		0011		0000			0110		

"Schematics":-

Summary

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 2.065 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 28.9°C

Thermal Margin: 56.1°C (29.6 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

"4bitRegister":-

"Design Code":-

```
| module register 4bit (
   input clk,
   input [3:0] d,
   input reset,
   output reg [3:0] q,
   output [3:0] qbar
 );
   always @(posedge clk or posedge reset) begin
     if (reset) begin
       q \le 4'b0;
     end else begin
       q <= d;
     end
   end
 assign qbar=~q;
endmodule
```

"Schematics":-

"Waveforms":-

Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 2.111 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 29.0°C

Thermal Margin: 56.0°C (29.6 W)

Effective θJA: 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

