Aula 25: Grafos: algoritmos elementares (II)

David Déharbe
Programa de Pós-graduação em Sistemas e Computação
Universidade Federal do Rio Grande do Norte
Centro de Ciências Exatas e da Terra
Departamento de Informática e Matemática Aplicada

Download me from http://DavidDeharbe.github.io

Plano

Ordenação topológica

Componentes fortemente conectados

Referência: Cormen, cap 23.

Ordenação topológica

- Grafos dirigidos acíclicos indicam uma relação de precedência
 - ▶ $u \prec v$: u vem antes de v, aresta (u, v)
 - relação parcial
 - exemplos: pré-requisitos entre componentes curriculares, entre tarefas, etc.
- Ordenação topológica:
 - entrada: uma relação de precedência
 - saída: um "escalonamento" dos vértices que respeita a precedência
- exemplo: grade curricular

Definição

Definição (Grafo dirigido acíclico, DAG)

Um grafo dirígido acíclico, ou DAG^1 é um grafo dirigido G tal que se existe uma aresta dirigda de (u, v), então não existe caminho de v até u.

Não há cíclo em DAGs.

¹Do inglês *Directed Acyclic Graph*.

Exemplo

Ordenação topológica

Algoritmo

Ordenação topológica

- Aplicar DFS;
- Retornar a lista dos vértices em ordem decrescente do atributo f.

Topological-Sort(G)

aplique DFS a G inserindo cada v na cabeça de uma lista quando é finalizado ${\bf return}$ a lista dos vértices

Algoritmo detalhado

Ordenação topológica

```
Topological-Sort(G)
   for v \in G.V
        v.visited = FALSE
   I = \text{Empty-List}
   for v \in G.V
        if \neg v, visited
            Topological-Sort-Visit(\nu)
   return /
TOPOLOGICAL-SORT-VISIT(v, l)
   v.visited = True
   for w \in v. adj
        if \neg w, visited
            Topological-Sort-Visit(v, l)
   I = PUSH-FRONT(v, I)
```

Algoritmo

Exemplo

Complexidade

Ordenação topológica

- ▶ DFS: $\Theta(|V| + |E|)$
- $lackbox{+} \Theta(1)$ cada inserção de vértice $\equiv \Theta(|V|)$
- $ightharpoonup = \Theta(|V| + |E|)$

Correção

Ordenação topológica

- 1. Lema: caracterização de DAG por arestas
- 2. Teorema: correção do algoritmo proposto

Lema (Arestas e DAG)

Um grafo dirigido G = (V, E) é acíclico (um DAG) se e somente se qualquer aplicação de DFS(G) encontra nenhuma aresta de volta.

Lema (Arestas e DAG)

Um grafo dirigido G = (V, E) é acíclico (um DAG) se e somente se qualquer aplicação de DFS(G) encontra nenhuma aresta de volta.

Plano de prova

- ► (←) nenhuma aresta de volta ⇒ nenhum ciclo
- ▶ (\Rightarrow) nenhum ciclo \Rightarrow nenhuma aresta de volta

Demonstração

Demonstração.

- (\Leftarrow) nenhuma aresta de volta \Rightarrow nenhum ciclo \equiv ciclo \Rightarrow aresta de volta
 - ▶ *G* possui um ciclo *c*
 - seja v o primeiro vértice de c encontrado em uma busca em profundidade
 - ightharpoonup seja (u, v) a aresta de c chegando em v
 - pelo teorema do caminho branco: na etapa v.d, há um caminho branco até u
 - ightharpoonup u torna-se um descendente de v na floresta em profundidade
 - ▶ logo, (u, v) é uma aresta de volta.

Demonstração

Demonstração.

 (\Rightarrow) nenhum ciclo \Rightarrow nenhuma aresta de volta

aresta de volta ⇒ ciclo

- ▶ seja (*u*, *v*) uma aresta de volta.
- ightharpoonup logo v é um ancestro de u na floresta de profundidade.
- então há um caminho de v até v, passando por u: é um ciclo

Correção de TOPOLOGICAL-SORT

Teorema (Correção do algoritmo TOPOLOGICAL-SORT)

TOPOLOGICAL-SORT(G) produz uma ordenação topológica de um grafo dirigido acíclico G.

Correção de TOPOLOGICAL-SORT

Demonstração.

- ▶ Basta mostrar que: em um DAG, se há uma aresta (u, v), então v.f < u.f.
- ▶ (*u*, *v*) não é uma aresta de volta
- ▶ Quando encontrado, v é branco ou preto
 - ightharpoonup se v for branco, é um descendente de u e v. f < u. f
 - se v for preto, já foi finalizado e v.f < u.d < u.f.

Componentes fortemente conectados

- ► SCC: Strongly connected components
- Decomposição de um grafo dirigido em grafos menores
- ► Permite, para alguns problemas de grafos, aplicar estratégia de divisão e conquista.

Definição

Notação: u → v existe um caminho de u até v

Definição (Componente fortemente contectado)

Um componente fortemente conectado de um grafo G=(V,E) é um conjunto máximo de vértices $U\subseteq V$ tal que para qualquer $(u,v)\in U^2$, então $u\leadsto v$ e $v\leadsto u$.

Matriz transposta

O algoritmo para encontrar os SCC de G utiliza o grafo transposto de G.

Definição (Grafo transposto)

O grafo transposto de um grafo dirigido G = (V, E) é o grafo dirigido $G^T = (V, E^T)$, onde $E^T = \{(u, v) | (v, u) \in E\}$.

Matriz transposta

O algoritmo para encontrar os SCC de G utiliza o grafo transposto de G.

Definição (Grafo transposto)

O grafo transposto de um grafo dirigido G = (V, E) é o grafo dirigido $G^T = (V, E^T)$, onde $E^T = \{(u, v) | (v, u) \in E\}$.

Matriz transposta

O algoritmo para encontrar os SCC de G utiliza o grafo transposto de G.

Definição (Grafo transposto)

O grafo transposto de um grafo dirigido G = (V, E) é o grafo dirigido $G^T = (V, E^T)$, onde $E^T = \{(u, v) | (v, u) \in E\}$.

Algoritmo

As etapas principais

GRAPH-SCC(G)

- 1 DFS(*G*)
- 2 $G^T = GRAPH-TRANSPOSE(G)$
- 3 DFS(G^T) t. q. laço principal processa vértices por f decrescente
- 4 cada árvore da floresta de profundidade resultado é um SCC

llustração

Ilustração

llustração

llustração

Complexidade

```
Graph-SCC(G)
```

- 1 DFS(G) $/\!\!/ \Theta(|V| + |E|)$
- 2 $G^T = \text{Graph-Transpose}(G) /\!\!/ \Theta(|V| + |E|)$
- 3 DFS(G^T) // $\Theta(|V| + |E^T|) = \Theta(|V| + |E|)$

Complexidade

```
Graph-SCC(G)
```

- 1 DFS(G) $/\!\!/ \Theta(|V| + |E|)$
- 2 $G^T = \text{Graph-Transpose}(G) /\!\!/ \Theta(|V| + |E|)$
- 3 DFS(G^T) // $\Theta(|V| + |E^T|) = \Theta(|V| + |E|)$

$$\Theta(|V|+|E|)$$

Correção (roteiro)

- 1. propriedade dos caminhos entre vértices de um mesmo SCC
- propriedade sobre busca em profundidade e vértices de um SCC
- noção de antepassado de um vértice em uma busca em profundidade
- 4. relação entre antepassado na busca e ancestro no grafo
- 5. propriedade sobre antepassado e SCC
- propriedade sobre antepassados dos vértices de um mesmo SCC
- 7. correção do algoritmo

Caminhos entre vértices de um mesmo SCC

Correção

Lema (Caminhos entre vértices de um mesmo SCC)

Seja u e v dois vértices quaisqueres de um mesmo SCC. Então todos os vértices nos caminhos entre u e v estão neste mesmo SCC.

Caminhos entre vértices de um mesmo SCC

Correção

Lema (Caminhos entre vértices de um mesmo SCC)

Seja u e v dois vértices quaisqueres de um mesmo SCC. Então todos os vértices nos caminhos entre u e v estão neste mesmo SCC.

Demonstração.

Seja w um vértice no caminho de u até v. Logo $u \rightsquigarrow w$. Precisamos verificar que $w \rightsquigarrow u$.

- ▶ Como w está no camino de u até v, então $w \rightsquigarrow v$.
- ▶ Como u e v estão no mesmo SCC, $v \rightsquigarrow u$.

Logo $w \rightsquigarrow u$.

Busca em profundidade e vértices de um SCC Correção

Teorema (Busca em profundidade e vértices de um SCC)

Em qualquer busca em profundidade, todos os vértices em um SCC encontram-se em uma mesma árvore da busca em profundidade.

Busca em profundidade e vértices de um SCC

Correção

Teorema (Busca em profundidade e vértices de um SCC)

Em qualquer busca em profundidade, todos os vértices em um SCC encontram-se em uma mesma árvore da busca em profundidade.

Demonstração.

Seja u o primeiro vértice do SCC encontrado na busca em profundidade, e v qualquer outro vértice do SCC.

- ▶ na etapa u.d, todos os demais vértices do SCC estão brancos
- pelo teorema do caminho branco, v é um descendente de u na floresta de profundidade

Logo, u e v estão na mesma árvore de profundidade.

Antepassado na busca em profundidade

Correção

 \triangleright v.d e v.f são os valores obtidos em DFS(G)

Definição (Antepassado em uma busca em profundidade)

Em uma busca em profundidade, para qualquer vértice u, o antepassado de u, denotado $\phi(u)$, é o vértice v tal que $u \leadsto v$ com o maior valor de f.

Antepassado na busca em profundidade

Correção

▶ v.d e v.f são os valores obtidos em DFS(G)

Definição (Antepassado em uma busca em profundidade)

Em uma busca em profundidade, para qualquer vértice u, o antepassado de u, denotado $\phi(u)$, é o vértice v tal que $u \rightsquigarrow v$ com o maior valor de f.

- lacktriangle um antepassado por SCC (pprox representante do componente)
- primeiro vértice do SCC descoberto na busca em profundidade de G
- último a ser finalizado
- lacktriangle é a raiz da árvore de profundidade na busca em profundidade de G^T

Antepassado na busca em profundidade

Correção

 \triangleright v.d e v.f são os valores obtidos em DFS(G)

Definição (Antepassado em uma busca em profundidade)

Em uma busca em profundidade, para qualquer vértice u, o antepassado de u, denotado $\phi(u)$, é o vértice v tal que $u \rightsquigarrow v$ com o maior valor de f.

Temos:

- 1. $u.f \le \phi(u).f$
- 2. $u \rightsquigarrow v \Rightarrow \phi(v).f \leq \phi(u).f$
- 3. $\phi(\phi(u)) = \phi(u)$

Antepassado na busca em profundidade

Correção

$$u.f \leq \phi(u).f$$

▶ Pois $u \rightsquigarrow u$, e $\forall v | u \rightsquigarrow v \cdot v \cdot f \leq \phi(u) \cdot f$

$$u \rightsquigarrow v \Rightarrow \phi(v).f \leq \phi(u).f$$

▶ Pois $\{w \cdot v \leadsto w\} \subseteq \{w \cdot u \leadsto w\}$

$$\phi(\phi(u)) = \phi(u)$$

- Pois $\phi(u)$. $f \leq \phi(\phi(u))$. f,
- e, como $u \leadsto \phi(u)$, então $\phi(\phi(u)).f \le \phi(u).f$,
- temos $\phi(u).f = \phi(\phi(u)).f$, e
- cada vértice tem um valor de f diferente.

Correção

Teorema (Antepassado é ancestro)

Em um grafo dirigido G=(V,E), o antepassado $\phi(u)$ de qualquer $u\in V$ em qualquer busca em profundidadede G, sempre é um ancestro de u.

Correção

Teorema (Antepassado é ancestro)

Em um grafo dirigido G=(V,E), o antepassado $\phi(u)$ de qualquer $u\in V$ em qualquer busca em profundidadede G, sempre é um ancestro de u.

Demonstração.

Por caso sobre a cor de $\phi(u)$ na etapa u.d

Correção

Teorema (Antepassado é ancestro)

Em um grafo dirigido G = (V, E), o antepassado $\phi(u)$ de qualquer $u \in V$ em qualquer busca em profundidadede G, sempre é um ancestro de u.

Demonstração.

Por caso sobre a cor de $\phi(u)$ na etapa u.d

• Se for GRAY, então $\phi(u)$ é ancestro de u.

Correção

Teorema (Antepassado é ancestro)

Em um grafo dirigido G = (V, E), o antepassado $\phi(u)$ de qualquer $u \in V$ em qualquer busca em profundidadede G, sempre é um ancestro de u.

Demonstração.

Por caso sobre a cor de $\phi(u)$ na etapa u.d

Se for BLACK, então foi finalizado, e $\phi(u).f < u.f$. Contradiz $u.f \le \phi(u).f$.

Correção

Teorema (Antepassado é ancestro)

Em um grafo dirigido G=(V,E), o antepassado $\phi(u)$ de qualquer $u\in V$ em qualquer busca em profundidadede G, sempre é um ancestro de u.

Demonstração.

Por caso sobre a cor de $\phi(u)$ na etapa u.d

- Se for White, consideramos a cor dos vértices no caminho de u até $\phi(u)$
 - ▶ todos são brancos, logo $\phi(u)$ é descendente de u, $\phi(u)$. f < u. f: contradição
 - senão, seja t o último vértice não branco do caminho:
 - t não pode ser preto, pois tem um sucessor branco
 - então há um caminho branco de t até $\phi(u)$, e
 - $\phi(u)$ é descendente de t (teorema do caminho branco)
 - logo $t.f > \phi(u).f$
 - ▶ contradição por definição de $\phi(u)$ e $u \rightarrow t$

Antepassado e SCC

Correção

Corolário (Antepassado e SCC)

Em qualquer busca em profundidade de um grafo dirigido G=(V,E), para qualquer $u\in V$, ambos $u\in \phi(u)$ pertencem ao mesmo SCC.

Antepassado e SCC

Correção

Corolário (Antepassado e SCC)

Em qualquer busca em profundidade de um grafo dirigido G = (V, E), para qualquer $u \in V$, ambos $u \in \phi(u)$ pertencem ao mesmo SCC.

- ▶ Por definição de ϕ , temos $u \rightsquigarrow \phi(u)$.
- ▶ Pelo teorema "antepassado é ancestro", $\phi(u) \leadsto u$.

Correção

Teorema (Antepassados dos vértices de um SCC)

Em um grafo dirigido G = (V, E), os vértices u e v pertencem ao mesmo SCC se, e somente se, possuem o mesmo antepassado na busca em profundidade de G.

Correção

Teorema (Antepassados dos vértices de um SCC)

Em um grafo dirigido G = (V, E), os vértices u e v pertencem ao mesmo SCC se, e somente se, possuem o mesmo antepassado na busca em profundidade de G.

- **▶** (⇒)
- **▶** (⇐)

Correção

Teorema (Antepassados dos vértices de um SCC)

Em um grafo dirigido G = (V, E), os vértices u e v pertencem ao mesmo SCC se, e somente se, possuem o mesmo antepassado na busca em profundidade de G.

- \blacktriangleright (\Rightarrow) u e v pertencem ao mesmo SCC:

 - por definição de ϕ , $\phi(u) = \phi(v)$.
- **▶** (⇐)

Correção

Teorema (Antepassados dos vértices de um SCC)

Em um grafo dirigido G = (V, E), os vértices u e v pertencem ao mesmo SCC se, e somente se, possuem o mesmo antepassado na busca em profundidade de G.

- **▶** (⇒)
- $(\Leftarrow) \ \phi(u) = \phi(v):$
 - ightharpoonup pelo corolário "Antepassado e SCC" u e $\phi(u)$ estão no mesmo SCC
 - $v \in \phi(v)$ estão no mesmo SCC,
 - ▶ logo *u* e *v* estão no mesmo SCC.

Intuição do algoritmo

- ▶ DFS(G) marca os antepassados com o maior valor de f (e o menor valor de d) de cada SCC.
- ▶ DFS(G^T)
 - ightharpoonup começa com um vértice v_1 de maior f, que é um antepassado
 - visita todos os vértices do SCC de v₁
 - continua com um vértice v₂ de maior f entre os não visitados, também é um antepassado
 - visita todos os vértices do SCC de v₂
 - e assim sucessivamente

Teorema da correção

Correção

Teorema (Correção de GRAPH-SCC)

Seja G um grafo dirigido qualquer, GRAPH-SCC(G) calcula corretamente os componentes fortemente conectados de G.

Teorema da correção

Correção

Teorema (Correção de GRAPH-SCC)

Seja G um grafo dirigido qualquer, GRAPH-SCC(G) calcula corretamente os componentes fortemente conectados de G.

Roteiro da demonstração:

- ▶ indução
- ▶ número de árvores de profundidade encontrados em $DFS(G^T)$.
- mostramos que, assumindo que as árvores anteriores são SCC, cada nova árvore formada é um SCC
- trivial para a primeira árvore (não existe árvores anteriores)

Correção

- ▶ Seja T uma árvore de profundidade de raiz r produzida por DFS(G^T).
- ► Seja $C(r) = \{w \cdot \phi(w) = r\}$ (é um SCC)
- ▶ Mostramos que u é incluído em T se e somente se $u \in C(r)$
 - **▶** (⇐)
 - **▶** (⇒)

Correção

- Seja T uma árvore de profundidade de raiz r produzida por DFS(G^T).
- ► Seja $C(r) = \{w \cdot \phi(w) = r\}$ (é um SCC)
- ▶ Mostramos que u é incluído em T se e somente se $u \in C(r)$
 - ▶ (⇐)
 - teorema "busca em profundidade e vértices de um SCC"
 - cada vértice em C(r) termina em uma mesma árvore de profundidade
 - ▶ como $r \in C(r)$, e r é a raiz de T, então cada elemento de C(r) termina precisamente em T.
 - **▶** (⇒)

Correção

- Seja T uma árvore de profundidade de raiz r produzida por DFS(G^T).
- ► Seja $C(r) = \{w \cdot \phi(w) = r\}$ (é um SCC)
- ▶ Mostramos que u é incluído em T se e somente se $u \in C(r)$
 - **▶** (⇐)
 - ▶ (⇒) Mostramos que, para um vértice w, se $\phi(w).f < r.f$, ou $\phi(w).f > r.f$, w não pertence a T

Correção

- Seja T uma árvore de profundidade de raiz r produzida por DFS(G^T).
- ► Seja $C(r) = \{w \cdot \phi(w) = r\}$ (é um SCC)
- ▶ Mostramos que u é incluído em T se e somente se $u \in C(r)$
 - **▶** (⇐)
 - ▶ (⇒) Mostramos que, para um vértice w, se $\phi(w).f < r.f$, ou $\phi(w).f > r.f$, w não pertence a T
 - $\rightarrow \phi(w).f < r.f$
 - ▶ se w for colocado em T, então $w \rightsquigarrow r$
 - ▶ logo, $\phi(w)$. $f \leq \phi(r)$. f = r. f
 - contradição

Correção

- Seja T uma árvore de profundidade de raiz r produzida por DFS(G^T).
- ► Seja $C(r) = \{w \cdot \phi(w) = r\}$ (é um SCC)
- ▶ Mostramos que u é incluído em T se e somente se $u \in C(r)$
 - **▶** (⇐)
 - ▶ (⇒) Mostramos que, para um vértice w, se $\phi(w).f < r.f$, ou $\phi(w).f > r.f$, w não pertence a T
 - $\rightarrow \phi(w).f > r.f$
 - por hipótese de indução, quando r for selecionado em DFS(G^T), w.f terá sido inserido na árvore de raiz φ(w).
 - um vértice é inserido exatamente em uma árvore.

Teorema da correção Correção

Teorema (Correção de GRAPH-SCC)

Seja G um grafo dirigido qualquer, GRAPH-SCC(G) calcula corretamente os componentes fortemente conectados de G.

Teorema da correção

Correção

Teorema (Correção de GRAPH-SCC)

Seja G um grafo dirigido qualquer, GRAPH-SCC(G) calcula corretamente os componentes fortemente conectados de G.

- ▶ indução
- ▶ número de árvores de profundidade encontrados em $DFS(G^T)$.
- mostramos que, assumindo que as árvores anteriores são SCC, cada nova árvore formada é um SCC
- trivial para a primeira árvore (não existe árvores anteriores)

Exercícios

- 1. Como pode evoluir a quantidade de SCC em um grafo quando uma aresta é adicionada? removida?
- 2. Seja G um grafo dirigido. O grafo dos componentes de G é o grafo $G^{SCC} = (V^{SCC}, E^{SCC})$, tal que V^{SCC} contem um vértice por SCC de G, e E^{SCC} contem a aresta (u, v) se existe uma aresta entre um vértice de u e um vértice de v no grafo G.

Mostre que o grafo dos componentes conectados de G é um DAG.

- 3. Escreva um algoritmo que calcula o grafo dos componentes de G=(V,E), com complexidade O(|V|+|E|). Nota: o grafo resultado deve ter, ao máximo, uma aresta entre cada par de vértices.
- 4. Um grafo é semi-conectado se, para qualquer par de vértices (u, v), ou u → v ou v → u.
 Escreva um algoritmo eficiente que testa se um grafo é semi-conectado. Mostre que seu algoritmo é correto.