BETA DECAY HALF-LIVES AND DELAYED PARTICLE EMISSION FROM TOFI MEASUREMENTS

P. L. Reeder, Y. Kim, W. K. Hensley, H. S. Miley, R. A. Warner, Z. Y. Zhou Pacific Northwest Laboratory^(a), Richland, WA 99352 D. J. Vieira, J. M. Wouters, and H. L. Siefert Los Alamos National Laboratory, Los Alamos, NM 87545

Half-lives, delayed-neutron emission probabilities, and average neutron energies have been measured for very neutron-rich nuclides from ⁸Li to ⁴⁵Cl.

We have used the Time-of-Flight Isochronous (TOFI) spectrometer at the LAMPF accelerator to systematically measure the half-life (t1/2), delayed neutron emission probability (Pn), and average energy of delayed neutron spectra for a large number of neutron-rich isotopes for all Z values between Li and Cl. The TOFI spectrometer identifies the Z, A, and Q of each recoiling ion produced by fragmentation reactions from 800-MeV proton bombardment of a ²³²Th target. These ions are stopped in a thin Si detector surrounded by a 2-mm-thick plastic scintillator plus a thick Si detector, which together are used to measure beta particles. The vacuum pipe containing these detectors is surrounded by a polyethylene-moderated neutron counter. Ions are detected during the LAMPF beam pulse. Beta-decay products are detected during the 7-ms period between beam pulses (87.6% duty factor).

Half-lives are determined by a delayed coincidence technique based on time-interval histograms using the arrival time of a specific ion as the start time and the arrival time of subsequent betas or neutrons as the stop time. The neutron yield relative to the number of ions of a specific type provides a measurement of the P_n . Beta-neutron coincidence counting gives an alternative measurement of P_n . An

energy dependent neutron counting efficiency is used based on a calibration curve of efficiency vs. the ratio of counts in the outer ring of neutron counter tubes to counts in the inner ring (ring ratio). Nuclides with well-known P_n values are used to construct the calibration curve. Similarly, average energies of delayed-neutron spectra are determined using a calibration curve of energy vs. ring ratio for nuclides with well-known energy spectra.

Preliminary results with this technique for about 30 nuclides were published previously.¹⁾ Measurements are now available for about 60 nuclides based on data collected over several years. Half-lives have been measured for 55 nuclides and include the first half-life measurements for ²⁵F, ²⁶F, ²⁸Ne, ³⁵Mg, ³³Al, ³⁶Al, ³⁷Si, ⁴¹S, and ⁴⁴Cl. We report P_n values for 40 nuclides including previously unmeasured P_n values for ¹⁴B, ¹⁷C, ¹⁸N, ³⁵Mg, ³²Al, ³³Al, ³⁶Si, ³⁷Si, ³⁸P and ⁴⁵Cl. Average neutron energies are reported for 14 nuclides ranging from ¹¹Li to ³⁰Na.

The average neutron energies for ¹⁷N and ²⁹Na measured here are in excellent agreement with average energies derived from spectra measured with ³He spectrometers. However, the average energies measured here for ¹⁴Be, ¹⁷C, ¹⁸C, and ¹⁸N are much lower than average energies deduced from neutron spectra measured by a time-of-flight technique at Michigan State University.²⁾ This can readily be explained as being due to the high threshold at about 700 keV for the time-of-flight spectrometer. In particular, our average neutron energy of 0.60±0.06 MeV for ¹⁴Be is below the threshold of the MSU detector and suggests that most of the delayed neutrons are emitted from a state at about 1.6 MeV in ¹⁴B.

The P_n values measured here are generally in agreement with previously measured values except for the nuclides listed in Table 1.

Table 1. Nuclides with discrepant P_n values.

Nuclide	P _n from TOFI (%)	P _n from	Lit. (%)
31Mg	6.2 ± 2.0	1.7 ±	, ,
34AI 35AI	12.5 ± 2.5	54. ±1	
³⁶ Si	$26. \pm 4.$ 12.4 ± 4.6	87. +37 <10.	-25 4)
38P	12. \pm 5.	<10.	4)

References:

(a) Pacific Northwest Laboratory is operated for the U. S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.

1) P. L. Reeder et al., Phys. Rev. C <u>44</u>, 1435 (1991).

2) M. D. Belbot, et al., Phys. Rev. C <u>51</u>, 2372 (1995).

3) M. Langevin et al., Nucl. Phys. <u>A414</u>, 151 (1984).

4) A. C. Mueller et al., Z. Phys. A 330, 63 (1988).

Mos high thin deri a co that 2Nalph is th follous

eacl In t are

deu and sug deu

B.H ele

the