EDS Assignment 5

Name: Divya Bharsakle

Roll no. 342

Batch: C2

Fish Dataset

CSV File:

	1 to 99 of 99							
Species	Weight	Length1	Length2	Length3	Height	Width		
Bream	242	23.2	25.4	30	11.52	4.02		
Bream	290	24	26.3	31.2	12.48	4.3056		
Bream	340	23.9	26.5	31.1	12.3778	4.6961		
Bream	363	26.3	29	33.5	12.73	4.4555		
Bream	430	26.5	29	34	12.444	5.134		
Bream	450	26.8	29.7	34.7	13.6024	4.9274		
Bream	500	26.8	29.7	34.5	14.1795	5.2785		
Bream	390	27.6	30	35	12.67	4.69		
Bream	450	27.6	30	35.1	14.0049	4.8438		
Bream	500	28.5	30.7	36.2	14.2266	4.9594		
Bream	475	28.4	31	36.2	14.2628	5.1042		
Bream	500	28.7	31	36.2	14.3714	4.8146		
Bream	500	29.1	31.5	36.4	13.7592	4.368		
Bream	340	29.5	32	37.3	13.9129	5.0728		
Bream	600	29.4	32	37.2	14.9544	5.1708		
Bream	600	29.4	32	37.2	15.438	5.58		
Bream	700	30.4	33	38.3	14.8604	5.2854		
Bream	700	30.4	33	38.5	14.938	5.1975		
Bream	610	30.9	33.5	38.6	15.633	5.1338		
Bream	650	31	33.5	38.7	14.4738	5.7276		
Bream	575	31.3	34	39.5	15.1285	5.5695		
3ream	685	31.4	34	39.2	15.9936	5.3704		
Bream	620	31.5	34.5	39.7	15.5227	5.2801		
Bream	680	31.8	35	40.6	15.4686	6.1306		
Bream	700	31.9	35	40.5	16.2405	5.589		
Bream	725	31.8	35	40.9	16.36	6.0532		
Bream	720	32	35	40.6	16.3618	6.09		

Code:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset
data = pd.read_csv('/content/Fish Data.csv')
# Display the first few rows of the dataset
print(data.head())
# Create an interactive dashboard with different types
of plots
plt.figure(figsize=(12, 8))
# 1. Line plot
plt.subplot(3, 4, 1)
plt.plot(data['Weight'], data['Length1'])
plt.title('Line Plot: Weight vs. Length1')
plt.xlabel('Weight')
plt.ylabel('Length1')
# 2. Bar plot
plt.subplot(3, 4, 2)
plt.bar(data['Species'], data['Weight'])
plt.title('Bar Plot: Species vs. Weight')
plt.xlabel('Species')
plt.ylabel('Weight')
# 3. Scatter plot
plt.subplot(3, 4, 3)
plt.scatter(data['Length2'], data['Length3'])
plt.title('Scatter Plot: Length2 vs. Length3')
plt.xlabel('Length2')
plt.ylabel('Length3')
# 4. Histogram
plt.subplot(3, 4, 4)
plt.hist(data['Height'], bins=20)
```

```
plt.title('Histogram: Height Distribution')
plt.xlabel('Height')
plt.ylabel('Frequency')
# 5. Pie chart
plt.subplot(3, 4, 5)
plt.pie(data['Weight'], labels=data['Species'],
autopct='%1.1f%%')
plt.title('Pie Chart: Weight Distribution by Species')
# 6. Box plot
plt.subplot(3, 4, 6)
sns.boxplot(x='Species', y='Width', data=data)
plt.title('Box Plot: Width Distribution by Species')
plt.xlabel('Species')
plt.ylabel('Width')
# 7. Area plot
plt.subplot(3, 4, 7)
plt.stackplot(data.index, data['Length1'],
data['Length2'], labels=['Length1', 'Length2'])
plt.title('Area Plot: Length1 vs. Length2')
plt.xlabel('Index')
plt.ylabel('Length')
# 8. Violin plot
plt.subplot(3, 4, 8)
sns.violinplot(x='Species', y='Length3', data=data)
plt.title('Violin Plot: Length3 Distribution by
Species')
plt.xlabel('Species')
plt.ylabel('Length3')
# 9. Heatmap
plt.subplot(3, 4, 9)
correlation matrix = data[['Weight', 'Length1',
'Length2', 'Length3', 'Height', 'Width']].corr()
sns.heatmap(correlation matrix, annot=True,
cmap='coolwarm')
plt.title('Heatmap: Correlation Matrix')
# 10. Polar plot
```

```
plt.subplot(3, 4, 10, projection='polar')
theta = data['Weight']
r = data['Height']
plt.plot(theta, r)
plt.title('Polar Plot: Weight vs. Height')

# Adjust subplot spacing
plt.tight_layout()

# Show the interactive dashboard
plt.show()
```

Output:

Species	Weight Le	ngth1 Len	gth2 Len	gth3	Height
Width					
0 Bream	n 242.0	23.2	25.4	30.0	11.5200
4.0200					
1 Bream	n 290.0	24.0	26.3	31.2	12.4800
4.3056					
2 Bream	a 340.0	23.9	26.5	31.1	12.3778
4.6961					
3 Bream	n 363.0	26.3	29.0	33.5	12.7300
4.4555					
4 Bream	a 430.0	26.5	29.0	34.0	12.4440
5.1340					

