

Rapport de stage Deuxième Année

Elève: Antônio Guilherme FERREIRA VIGGIANO

Tuteur pédagogique : M. Pascal Préa

Tuteur de stage : M. Clemenceau Roberto DA SILVA

Remerciements

Je voudrais remercier à tous ceux qui ont contribué pour le bon déroulement de ce stage, en particulier à :

- Mme Mirta JUAREZ et Mme Cécile LOUBET pour les réponses rapides à toute question concernant le stage à l'international.
- M. Marco Aurélio RABELO président-directeur général de Asert, pour être si proche des employés.
- M. Clemenceau Roberto DA SILVA directeur de technologie de l'entreprise, qui m'a bien accueilli par email et personnellement au sein de l'entreprise.
- M. Thiago RODRIGUES PEREIRA architecte logiciel, pour m'avoir formé dans le framework de l'entreprise et m'avoir introduit aux bonnes pratiques en génie logiciel.

Résumé

Ce rapport décrit un stage technique d'assistant ingénieur d'une durée de deux mois au sein de Asert Serviços e Tecnologia da Informação (Asert Services et Technologies de l'Information). Cette entreprise de petite taille située à Goiânia, la capitale de l'état brésilien Goiás, offre des solutions de développement de technologies et externalisation de services informatiques, et est spécialisée en services d'aide médicale.

Le poste qui m'a été affecté a été celui de développeur logiciel dans le Centre de Développement de Services de la société, où j'ai travaille essentiellement avec les langages de programmation Java et Flex. Ces technologies ont été utilisées pour l'élaboration d'un portail web Flash de gestion de personnes adhérentes à la société d'assurance mutuelle Celgmed, une mutuelle de santé destinée aux employés de CELG, la Compagnie Énergétique de Goiás, similaire à Électricité de France S.A.

Le mode de fonctionnement de l'entreprise, sa taille, son marché et ses produits seront également présentés en détail, aussi bien que sa politique concernant l'hygiène, la sécurité au travail et le climat social. Les remarques personnelles de l'élève et l'apport de cette expérience seront discutés dans la conclusion de ce rapport.

Abstract

retraduzir TODO

This report describes a two-month technical internship as an engineer assistant at Asert Serviços e Tecnologia da Informação, a small software development company that provides outsourcing and IT services, specialized in medical services. This internship took place at Goiânia, the capital of the Brazilian state of Goiás. The functions I executed were in the Services Development Center, where I worked as a software developer mostly in Java and Flex, two of the technologies which will be discribed later. The mode of operation of the company, its size, its market and its products will be presented in detail, as well as its policy concerning hygiene, safety and social climate. Personal remarks of the student and the contribution of this experiment will be discussed in the conclusion of this report.

Mots clefs

- Stage assistant ingénieur
- Asert Serviços e Tecnologia da Informação
- École Centrale Marseille
- Externalisation de services
- Systèmes de gestion intégrés
- Audit en services d'aide médicale
- Portail web
- Java
- Flex
- Flash

Glossaire

Table des matières

1	Intr	roduction	7	
2	Pré	esentation de l'entreprise	8	
	2.1	Historique	8	
	2.2	Implantation et Taille		
	2.3	Type de structure		
	2.4	Gamme de produits		
		2.4.1 Technologies de l'information	9	
		2.4.2 Systèmes Intégrés	10	
	2.5	Marché	11	
		2.5.1 Le marché des technologies de l'information et communication		
		au Brésil	11	
		2.5.2 La position de Asert dans le marché	12	
3	Der	coulement de la mission	13	
	3.1	Outils de développement	13	
	3.2	Architecture logiciel	14	
		3.2.1 L'architecture trois tiers	15	
		3.2.2 L'architecture Modèle-vue-contrôleur (MVC)	16	
		3.2.3 Cas pratique dans le système de gestion CELGMED	17	
	3.3	Framework	17	
	3.4	Developpement	17	
4	Con	nclusion	19	
Bi	Bibliographie			

Introduction

L'École Centrale Marseille propose dans son cursus aux élèves de découvrirent le monde économique et ses contraintes et de bien appréhender la complexité du métier d'ingénieur, au travers d'un stage en entreprise d'une durée de 8 semaines au minimum. Celle-ci est une opportunité complémentaire au stage ouvrier de la première année extrêmement enrichissante dans plusieurs aspects.

Ce rapport présente les expériences dans l'établissement Asert Serviços e Tecnologia da Informação, une petite société informatique qui propose des solutions de systèmes de gestion intégrés à d'autres entreprises, principalement à celles d'aide médicale.

Le déroulement de ce stage a été du 3 juin 2013 au 26 juillet 2013, avec une durée totale de huit semaines, où j'ai occupé le poste de développeur logiciel dans le Centre de Développement de Systèmes à Asert.

Ce document a pour objectif montrer de façon détaillée les expériences vécues lors du stage, et pour cella il est divisé en trois parties : la présentation de l'entreprise, la description du poste occupée, avec une mise en évidence du processus de développement logiciel, et la conclusion contenant les remarques personnelles de l'élève en ce qui concerne cette expérience.

Présentation de l'entreprise

2.1 Historique

Basée dans la capitale de Goiás, Asert a été fondée en 2002 par deux employés de Evoluti Tecnologia e Serviços (Evoluti Technologie et Services) avec l'idée de fournir des systèmes de gestion au secteur de la santé, un domaine qui ne possédait pas les compétences techniques nécessaires à l'intégration de tous ses services. Tout de même, Asert n'a éte qu'une branche rattachée à Evoluti jusqu'en 2008, lorsque l'entreprise a réussi à avoir suffisamment de projets indépendants.

De 2008 à 2010, la société a travaillé fondamentalement avec des systèmes pour des mutuelles de santé. Récemment, suivant les tendances du marché, l'organisation a élargi son champ d'application jusqu'à l'externalisation de tout type de service spécialisé.

2.2 Implantation et Taille

Asert est une micro-entreprise localisée dans la région commerciale de Goiânia, dans un bureau d'approximativement 110 m², actuellement avec un effectif de 12 employés. En 2010, grâce à un projet en partenariat avec l'état de Goiás, l'entreprise comptait 200 personnes, y compris des médecins, des auditeurs et consultants, des professionnels de TI, etc. Cependant, à la fin de l'engagement, Asert a dû mettre à terme les contrats de travail à durée déterminée et rester avec son équipe principale.

2.3 Type de structure

L'entreprise se partage en deux secteurs, le Centre de Développement de Systèmes, où quatre développeurs sont gérés par un chef d'équipe, et le Centre Commercial-Financier, où des commerciaux, compteurs et administrateurs sont dirigés par le directeur financier.

L'équipe commerciale se charge de trouver de nouveaux clients et de faire une analyse préalable de la situation de l'entreprise. Le chef de projets du centre de développement fait ensuite l'analyse technique du système de gestion souhaité, en prenant note de toutes les particularités spécifiques aux règles métier (ou "'business rules" en anglais) regle-metier de l'application. Une fois le besoin du client complètement identifié, l'équipe de développement décide la structure "physique" du système – quelle base de données relationnelle utiliser, quelle langage de programmation ou technologie la plus adaptée au problème, etc. – et passe à l'étape de codage.

L'équipe financière travaille en parallèle de toutes ces étapes, en analysant les coûts de travail et d'équipements.

2.4 Gamme de produits

Même si Asert est spécialisée en services de santé, le groupe travaille sur deux grandes gamme de projets, ceux de technologies et de l'information et ceux de systèmes intégrés.

2.4.1 Technologies de l'information

Dans l'axe des sciences de l'information et de la communication, l'entreprise propose des services de audit et conseil, de développement de systèmes, d'informatique décisionnelle (en anglais *Business Intelligence*) et de gestion.

Audit et conseil

Le rôle du conseil en technologies de l'information est de fournir au client un bilan de la situation actuelle de l'entreprise, d'identifier les problèmes liés à la politique, à la structure, aux procédures et aux méthodes, afin de recommander et d'aider à mettre en œuvre les mesures appropriées aux étapes d'innovation et de croissance de l'entreprise. Après ce diagnostic fondé sur le besoin du client et les résultats attendus, Asert s'occupe du développement de solutions spécialisées et de projets techniques, avec des professionnels qualifiés au travail. Le service de consulting comprend :

- Mise à niveau et modernisation de la technologie de la société;
- Evaluation, sélection et embauche de services et logiciels tiers;
- Préparation de projets de logiciels;
- Gestion de projets.

Développement de systèmes

Ce n'est pas toujours que les systèmes de gestion disponibles sur le marché répondent aux demandes des organisations. C'est en vue de cela que Asert propose des systèmes sur mesure, en produisant des outils personnalisés en fonction des besoins des clients, de manière à assurer une plus grande productivité et amélioration de la gestion internet des entreprises.

Asert utilise les plus modernes méthodologies de développement logiciel, utilisant des méthodes de contrôle de version et de testes unitaires afin d'avoir un rendu selon les exigences et les besoins des clients.

Informatique décisionnelle – Business Intelligence

Les systèmes d'information sont responsables par la manipulation d'une quantité de données très importante au sein des entreprises. L'informatique décisionnelle, aussi connue par la traduction anglaise "intelligence d'affaires", est le processus de collecte, d'organisation, d'analyse, de partage et de suivi de ces données, afin d'extraire des informations et des indicateurs pour soutenir la gestion de l'établissement. Les services B.I. de Asert incluent :

- Analyse et conception d'environnements de gestion de l'information;
- Analyse de la qualité des données;
- Gestion des données;
- Rendu de rapports dynamiques destinés aux gestionnaires de l'entreprise.

Gestion des T.I.

L'équipe de Asert est axée sur la satisfaction du client, prête à résoudre les difficultés dans l'accès ou l'utilisation des technologies de l'information. Elle fournit également aux utilisateurs un centre d'assistance pour résoudre à tout problème technique lié à ses services, afin de rétablir le fonctionnement normal des activités dès que possible, minimisant ainsi les impacts commerciaux causés par des pannes informatiques.

La gestion des technologies de l'information apporte plusieurs avantages aux organisations, comme la construction d'un lien entre les T.I. et la gestion d'entreprise, la réduction des coûts, l'acheminement des appels aux équipes spécialisées, le soutien aux utilisateurs finaux et l'amélioration de la qualité des services.

2.4.2 Systèmes Intégrés

Les systèmes intégrés de l'entreprise se partagent en deux secteurs : la médecine, celle-ci divisé en Asert Santé et Asert Méd, et l'industrie, avec Asert Cycle.

Asert Santé

Asert Santé est le type de système informatisé pour la gestion des sociétés d'assistance médicale. Développé avec les technologies les plus modernes, le système se traduit par un portail web comme interface d'administration d'utilisateurs et d'adhérents, et de bases de données relationnelles qui manipulent toutes les informations. Ces systèmes sont en conformité avec les spécifications de l'Agence Nationale de Santé brésilienne.

Ces caractéristiques techniques, alliées à une interface conviviale et intuitive, rend le système facile à utiliser, sans demander beaucoup de ressources matérielles. Techniquement, le système est divisé en modules indépendants, qui sont intégrés selon la réalité et l'organisation de l'entreprise de santé. Ce type de développement "en couches" sera détaillé par la suite.

Les particularités de Asert Santé sont :

- Modules intégrés;
- En accord avec les normes de l'Agence Nationale de Santé brésilienne;

- Rapidité, efficacité et fiabilité dans les tâches effectuées;
- Vérification électronique;
- Normalisation des tables de facturation et des rapports de gestion;
- Facturation électronique.

Asert Méd

Asert Méd est un outil idéal pour la gestion des cliniques, des hôpitaux, des laboratoires et des bureaux de médecin. Ce système vise à faciliter le service clients, la facturation et la présentation des comptes, adapté aux besoins du client.

Caractéristiques et avantages :

- Modules intégrés;
- En accord avec les normes de l'Agence Nationale de Santé brésilienne;
- Enregistrement unique des patients;
- Assistance aux patients affiliés ou adhérents à une mutuelle de santé;
- Émission de demandes de visites médicales dans les modèles des normatifs;
- Contrôle des rapports médicaux personnalisés et de factures de soins médicaux et hospitaliers;
- Contrôle des stocks multiple (entrepôt, pharmacie, soins infirmiers, etc.);
- Gestion financière;
- Graphiques et rapports de gestion;
- Dossier médical électronique d'un patient.

Asert Cycle

Asert Cycle est un système développé avec les dernières technologies sur le marché pour la gestion d'industries, permettant de façon innovante le contrôle, le suivi et l'intégration des politiques de management, de production, de commerce et fiscales des entreprises. Ce système se caractérise par :

- Gestion de stock;
- Suivi du produit dans toutes les étapes de fabrication;
- Expédition et vente des produits;
- Émission de la facture;
- Gestion de la production.

2.5 Marché

2.5.1 Le marché des technologies de l'information et communication au Brésil

Le marché des TIC au Brésil est composé de 99 % de petites et moyennes entreprises et est actuellement en croissance, meme si cela n'est pas un secteur traditionnel de l'économie du pays. En 2010, les technologies de l'information et communication ont été responsables par 102,6 milliard de dollars, environ 3% [1] du produit intérieur brut [2] de l'annee.

2.5.2 La position de Asert dans le marché

Dans les années 1990 et 2000, le boom des des progiciels de gestion intégré (ou en anglais ERP, "Enterprise Resource Planning") a encouragé la création de plusieurs entreprises de de logiciels en tant que service (de l'anglais "Software as a Service", SaaS) dans l'état de Goiás, tels que Canion Software, Interagi Tecnologia, et Apta. Cependant, ce phénomène de haute concurrence a fait tomber les prix des ERPs et a empêché la croissance des petites et moyennes entreprises de technologie.

Ce que l'on constate aujourd'hui est le retour aux systèmes personnalisées. Les clients sont plus exigeantes dans les systèmes adaptés et ne veulent plus de logiciels génériques, souvent critiqués d'être de difficile adaptation et de ne pas représenter l'identité de l'entreprise. Avec ce changement de valeurs du marché, Asert a gagné de nouveaux clients et a assuré sa position en tant qu'entreprise de développement de solutions individualisées.

Au cours du temps, les projets de Asert ont évolué non pas seulement en taille mais aussi en type. Lorsque l'entreprise était rattaché au groupe Evoluti. Le premier projet de Asert a été la mise en ouvre d'un système de gestion pour l'association d'assistance médicale "Ipasgo" (Institut de l'assistance publique de l'Etat de Goias). Ensuite, le système s'est adapté à la ville de Palmas, capitale de l'état de Tocantins. Aujourd'hui ces deux projets sont en phase d'assistance — l'étape finale de toutes les solutions d'externalisation de l'entreprise.

Actuellement, l'entreprise subit des transformations structurelles afin de pouvoir agir comme un moteur d'innovation de l'état. En partenariat avec l'instituition gouvernementalle FAPEC et avec l'instituition d'enseignement et de recherche Université de Goias, Asert est en train de developper un système expert pour la gestion sanitaire de rèfrigèrateurs pour le client Friboi. Toutes les ètapes de production, ainsi comme la qualitè de la viande bovine seront analisèes avec des rèseaux bayèsiens afin de minimiser les pertes par contamination bacterienne. Ce projet est encore en cours de conception et n'a pas de date prèvue de livraison.

Deroulement de la mission

La mission qui m'a été affecte a été celle d'aider dans le développement logiciel d'un progiciel de gestion intégré pour le service d'aide médicale CELGMED.

Au cours des deux premières semaines, l'architecte logiciel responsable par le projet m'a formé dans le framework de l'entreprise, c'est-a-dire, des fonctions et librairies qui ont été développées au sein de l'entreprise spécifiques a la mise en œuvre des projets.

Encore dans le premier mois de mon stage, des notions d'architecture logicielle m'ont été présentées, en particulier celle des trois couches et la MVC (Model View Controller), qui seront détaillées par la suite.

Après cette période de formation, j'ai pu participer au développement du système ERP. J'étais charge de l'exécution de plusieurs fenêtres, dès la conception de l'interface graphique jusqu'à la création des entités dans la base de donnes et des classes dans le programme.

Toutes ces étapes de la mission seront décrites avec plus de détails dans ce chapitre.

3.1 Outils de développement

Les solutions Asert sont presque toujours supportées par les mêmes outils de développement logiciel, dans le modèle suivant :

Microsoft Windows – le système d'exploitation utilisé aussi bien pour le développement que pour l'hébergement des applications.

Adobe Flash Builder – aussi connu comme Adobe Flex [3], l'environnement de développement (IDE) construit en tant qu'une couche sur la plate-forme Eclipse destinée au développement d'applications internet pour la plate-forme Adobe Flash.

GlassFish – un serveur d'applications en stage final de développement qui est supporté par Oracle et la communauté GlassFish en utilisant une licence open source. GlassFish Server [4] est généralement publié avec le soutien de la dernière plate-forme [jee], bien en avance sur les autres implémentations de serveurs d'applications.

- Microsoft SQL Server système de gestion de base de données relationnelles qui stocke et de récupère les données demandées par d'autres applications logicielles, que ce soit ceux sur le même ordinateur ou celles en cours d'exécution sur un autre ordinateur dans un réseau, comme l'Internet [5].
- Hibernate framework open source gérant la persistance des objets Java en base de données relationnelle. Hibernate apporte une solution aux problèmes d'adaptation entre le paradigme objet et les SGBD en remplaçant les accès à la base de données par des appels à des méthodes objet de haut niveau [6].
- Spring framework libre qui facilite la construction et définition de l'infrastructure d'une application Java, ainsi comme des tests de routine [7]. Il rend possible l'inversion de contrôle, un patron d'architecture qui fonctionne selon le principe que le flot d'exécution d'un logiciel n'est plus sous le contrôle direct de l'application elle-même (et donc du programmeur qui l'a développé) mais du framework ou de la couche logicielle sous-jacente [8].
- BlazeDS technologie permettant de réaliser du « remoting » et du « web-messaging » tout cela basé sur un serveur en Java. Elle permet notamment de récupérer et d'insérer des données en temps réel pour les technologies Adobe Flex et Adobe Integrated Runtime. BlazeDS fournit, en fait, des services qui permettent de lier une application client et une application serveur afin de récupérer, modifier et insérer des données [9].
- JasperReports un outil de reporting open source, offert sous forme d'une bibliothèque qui peut être embarquée dans tous types d'applications Java. Il se base sur des fichiers XML (dont l'extension est en général .jrxml) pour la présentation des états, et est souvent couplé à iReport pour faciliter sa mise en œuvre dans une application Java, classique ou orientée web [10].
- iReport Designer concepteur libre de compte rendus et dossiers pour JasperReports. Il est possible de créer des mises layouts très sophistiqués contenant des graphiques, des images, etc. Les données sont accessibles via XML, Hibernate, et d'autres, et les rapports peuvent être publiés à de nombreux formats, dont PDF, XML, CSV, HTML, DOCX et OpenOffice [11].

3.2 Architecture logiciel

Un motif architectural est une solution générale, réutilisable à un problème qui se pose souvent dans l'architecture logicielle dans un contexte donné. Modèles architecturaux sont souvent documentées dans les modèles de conception de logiciels. [12]

Suivant la conception traditionnelle d'architecture, un « style d'architecture logiciel » est une méthode de construction spécifique, caractérisé par les particularités qui le rendent remarquable. Un style architectural définit une famille de systèmes en termes d'un modèle d'organisation structurelle, un vocabulaire de composants et de connecteurs, avec des contraintes sur la façon dont ils peuvent être combinés. Les styles architecturaux sont des « paquets » réutilisables de décisions de conception et des contraintes qui sont appliquées à une architecture d'induire des qualités souhaitables choisis. Il existe de nombreux modèles et de styles architecturaux reconnus,

parmi lesquels : à base de composants ; application monolithique ("grande boule de boue") ; en couches ; etc. [13]

L'architecture des systèmes développés à Asert est souvent un intermédiaire entre celle en couches et la MVC (modèle-vue-contrôleur).

3.2.1 L'architecture trois tiers

L'architecture trois tiers, niveaux ou couches est l'application du modèle plus général qu'est le multi-tier [14]. L'architecture logique du système est divisée en trois niveaux ou couches :

La couche de présentation correspondante à l'affichage, la restitution sur le poste de travail, le dialogue avec l'utilisateur.

La couche métier correspondante à la mise en œuvre de l'ensemble des règles de gestion et de la logique applicative.

La couche d'accès aux données correspondante aux données qui sont destinées à être conservées sur la durée, voire de manière définitive.

FIGURE 3.1 – Architecture trois couches

Dans cette approche, les couches communiquent entre elles au travers d'un « modèle d'échange », et chacune d'entre elles propose un ensemble de services rendus. Les services d'une couche sont mis à disposition de la couche supérieure. On

s'interdit par conséquent qu'une couche invoque les services d'une couche plus basse que la couche immédiatement inférieure ou plus haute que la couche immédiatement supérieure (chaque couche ne communique qu'avec ses voisins immédiats).

Le rôle de chacune des couches et leur interface de communication étant bien définis, les fonctionnalités de chacune d'entre elles peuvent évoluer sans induire de changement dans les autres couches. Cependant, une nouvelle fonctionnalité de l'application peut avoir des répercussions dans plusieurs d'entre elles. Il est donc essentiel de définir un modèle d'échange assez souple, pour permettre une maintenance aisée de l'application.

Ce modèle d'architecture 3-tiers a pour objectif de répondre aux préoccupations tels que l'allègement du poste de travail client, la prise en compte de l'hétérogénéité des plates-formes (serveurs, clients, langages, etc.), l'amélioration de la sécurité des données, en supprimant le lien entre le client et les données, la rupture du lien de propriété exclusive entre application et données et enfin, meilleure répartition de la charge entre différents serveurs d'application. [15]

3.2.2 L'architecture Modèle-vue-contrôleur (MVC)

L'architecture MVC est un motif d'architecture qui sépare la représentation de l'information à partir de l'interaction de l'utilisateur avec elle. Le modèle comprend des données d'application, les règles métier, la logique et les fonctions. Une vue peut être n'importe quelle représentation de sortie de données, comme un graphique ou un diagramme. Plusieurs vues des mêmes données sont possibles, comme un graphique à barres pour la gestion et une vue tabulaire pour les comptables. L'entrée de la médiation du contrôleur, le convertir en commandes pour le modèle ou la vue [16].

FIGURE 3.2 – Architecture modèle-vue-contrôleur

Souvent confondue avec l'architecture trois couches, la MVC se distingue dans le fait que l'architecture 3-tiers sépare la couche métier de la couche d'accès aux données. Pour qu'une application MVC soit une vraie application 3-tiers, il faut lui ajouter une couche d'abstraction d'accès aux données de type *DAO* (Data Access Object). Inversement pour qu'une application 3-Tiers respecte MVC il faut lui ajouter une couche de contrôle entre l'interface utilisateur et les règles métier. Loin d'être

antagonistes, ces deux pratiques se combinent et sont la fondation de la plupart des frameworks de création d'applications web [17].

3.2.3 Cas pratique dans le système de gestion CELGMED

Dans le système de gestion des adhérents à la société d'assurance des employés de la compagnie énergétique de l'état de Goiás, le système trois couches/MVC est représenté par des classes de Vue, Contrôle, Business et Persistance. D'autres classes de support, telles que les « Vérificateur », étaient aussi présentes, mais plus pour une question d'organisation que de style d'architecture.

Comme l'on peut voir, ce style est composé à la fois de classes de Présentation/Vue, de Business/Logique/Modèle, de Données/Persistance et de Contrôle, ce qui assure une gestion de donnés et de développement logiciel plus rigoureux que les deux systèmes séparés : si d'un côté il y a plus d'entités qui détiennent un accès limité aux informations, et donc il faut écrire plus de lignes de code, de l'autre côté cela assure la modularité du programme et la maintenance du code.

De mode général, ce flux de contrôle se passe de la façon suivante :

- 1. L'utilisateur du programme fait une action dans la **Vue**, ce qui génère un événement
- 2. Cet événement est capté par Vue et transmis au Contrôleur associé
- 3. Le Contrôleur fait appel au **Business**, qui applique la logique du système selon le cas échéant
 - Les Vérificateurs interviennent normalement entre le Contrôleur et le Business, lorsque l'utilisateur fait un action limitée par la conception de la Vue, qui n'a pas de rapport avec la logique intrinsèque du système
- 4. Le Business appelle la **Persistance** pour consulter ou modifier la base de données du système
- 5. Une message de confirmation ou d'erreur est transmise dans le flux contraire jusqu'à la Vue et à l'utilisateur.

La table 3.1 représente ce flux de manière schématique avec l'exemple d'un utilisateur qui veut consulter tous les clients de la base de données :

3.3 Framework

3.4 Developpement

Flux de contrôle	Classes concernées
L'utilisateur clique sur le bouton « Afficher	Utilisateur o Vue
clients »	
La Vue appelle le Contrôleur afin d'interpréter	$Vue \rightarrow Contrôleur$
l'événement clic	
Le Contrôleur fait usage du Vérificateur pour	Contrôleur \rightarrow (Vérificateur)
voir si toutes les champs de saisie de texte ont	\rightarrow Business
été bien remplis (par exemple, n'a-t-il pas mis	
de caractères de l'alphabet dans le champ « pé-	
riode de consultation »?) En cas positif, il ap-	
pelle le Business; sinon, un message d'erreur se	
produit et l'utilisateur réécrit les informations.	
Le Business vérifie la logique du système (par	Business \rightarrow Persistance
example, est-ce que l'utilisateur a le droit d'ac-	
cès à tous les clients de la base de données?).	
Ensuite, il appelle la Persistance pour retrouver	
l'information correspondante	
La persistance utilise des commandes SQL pour	Persistance $\rightarrow \cdots \rightarrow Vue$
consulter la base de données et retrouver les	
clients indiqués par le Business (par example,	
les clients supprimés ne seront pas affichés). La	
réponse de cette requête est donc renvoyé dans	
le flux inversé jusqu'à la Vue.	
La Vue organise l'information et la rend visible	$Vue \rightarrow Utilisateur$
à l'utilisateur, sous forme de table mise en forme	

Table 3.1 – Flux de contrôle dans l'architecture des systèmes Asert

Conclusion

Bibliographie

- [1] Wikipedia BRASIL. Evolucao do PIB do Brasil. Mai 2013. URL: http://pt.wikipedia.org/wiki/Anexo:Evolu\%C3\%A7\%C3\%A3o_do_PIB_do_Brasil (visité le 10 août 2013).
- [2] Olhar Digital UOL. Mercado brasileiro de Tecnologia da Informação cresce 11% e ultrapassa US\$ 100 bilhoes. Mai 2012. URL: http://olhardigital.uol.com.br/noticia/mercado-brasileiro-de-tecnologia-da-informação-cresce-11-e-ultrapassa-us-100-bilhoes/26172 (visité le 10 août 2013).
- [3] Adobe FLEX. Flex. Février 2013. URL: http://www.adobe.com/products/flex.html (visité le 15 août 2013).
- [4] ORACLE. GlassFish Server. Août 2013. URL: https://glassfish.java.net/(visité le 15 août 2013).
- [5] MICROSOFT. SQL Server. Janvier 2013. URL: http://www.microsoft.com/en-us/sqlserver/default.aspx (visité le 15 août 2013).
- [6] HIBERNATE. About Hibernate. Janvier 2013. URL: http://www.hibernate.org/(visité le 15 août 2013).
- [7] SPRING. Spring Framework. Janvier 2013. URL: http://projects.spring.io/spring-framework/ (visité le 15 août 2013).
- [8] WIKIPEDIA. *Inversion de contrôle*. Juillet 2013. URL: http://fr.wikipedia.org/wiki/Inversion_de_contr%C3%B4le (visité le 15 août 2013).
- [9] WIKIPEDIA. *Tutoriel BlazeDS*. Avril 2012. URL: http://www.mti.epita.fr/blogs/2012/04/10/tutoriel-blazeds/ (visité le 15 août 2013).
- [10] WIKIPEDIA. Jasper Reports. Juillet 2013. URL: http://fr.wikipedia.org/wiki/JasperReports (visité le 15 août 2013).
- [11] Jaspersoft COMMUNITY. *iReport Designer*. Janvier 2013. URL: http://community.jaspersoft.com/project/ireport-designer (visité le 15 août 2013).
- [12] WIKIPEDIA. Software architecture. Septembre 2013. URL: http://en.wikipedia.org/wiki/Software_architecture (visité le 15 août 2013).
- [13] WIKIPEDIA. Software Architecture styles and patterns. Juin 2013. URL: http://en.wikipedia.org/wiki/Software_Architecture_styles_and_patterns (visité le 15 août 2013).

- [14] WIKIPEDIA. Multitier architecture. Septembre 2013. URL: http://en.wikipedia.org/wiki/Multitier_architecture (visité le 15 août 2013).
- [15] WIKIPEDIA. Architecture trois tiers. Mars 2013. URL: http://fr.wikipedia.org/wiki/Architecture_trois_tiers (visité le 15 août 2013).
- [16] WIKIPEDIA. *Model-view-controller*. Septembre 2013. URL: http://en.wikipedia.org/wiki/Multitier_architecture (visité le 15 août 2013).
- [17] Batiste BIELER. Architectures MVC et 3-Tier. Juin 2006. URL: http://batiste.dosimple.ch/blog/2006-06-02-1/ (visité le 15 août 2013).