What is Building informatics?

leveraging information technology, computer science, and related data science technologies — to improve building operation efficiency & user comfort in buildings. dealing with collecting, managing, and analysing building data — improve building efficiency & user comfort.

What is the target of Smart Building?

user experience, increase productivity, reduce costs, mitigate physical & cybersecurity risks

What most Smart Building system contain?

HVAC, lighting, electrical, drainage & plumbing, alarm, fire safety, security & access control

What is the core of Smart Building?

Adaptability, not reactivity

What are the divers for building progression?

- 1. Energy & efficiency
- 2. Longevity
- 3. Comfort & satisfaction

What is similar and difference between Smart Building and Intelligent Building?

- o Similar:
 - Use information technology and data generated by building [Data]
 - Focus on creating integrated system interrelates various subsystems → single control frame work [Frame]
- o Difference:
 - Smart Building also includes wider integration with utilities and city infrastructure to realize smart city (Smart Building 有公共设施和城市基建,实现 Smart city)
 - Smart Building includes use of emerging **machine learning and AI** for advanced control and diagnostics (Smart Building 有 AI 和 ML)
 - Smart Building encompasses the use of <u>emerging IoT</u>, <u>wireless</u> <u>communication</u>, <u>and other related technologies</u> (technologies were not developed when Intelligent building concept was proposed) (Smart Building 会用一些 Intelligent Building 时期未开发的技术)
 - Smart Building considers interaction of users with building and surrounding environment → improve comfort of users apart from building operations.

What is characteristic/feature of Smart Building?

Climate Response: buildings to adapt to external climate conditions

Grid Response: buildings to adapt the information coming from grid (电网) \rightarrow maximize the energy/economic efficiency at district/city scale

User Response: enable a real-time interaction between users and technologies \rightarrow optimized performance & user comfort

Monitoring and Supervision: enable real-time monitoring of building operations and users' behaviour.

Benefit for using Smart Building?

Lower operation cost
Lower energy cost
More flexibility
Improve user comfort, efficiency, wellbeing

Smart Building Framework? And explain the layers.

What aspect to analyse Smart building framework?

Different systems/devices within the smart buildings
Different technologies used within the smart buildings
Different use cases/features supported within the smart building

What is Smart Building underlying system?

Building automation system

What technology does BAS use?

Al, IT, IoT, Big Data, modern control···

What is the major component of BAS?

Sensor, controller, actuator, computer & server, software, network

What are BAS typical functions?

HVAC control, lighting control, Fire detection & alarm, Security & access control, Lift control, Utility management interface

What is popular Smart Building popular certification? And what is important to consider in this certification?

Smart Building collective Consider how the building data is utilized

How many certifications in Smart Building collective? And what are they?

4, Platinum; Gold; Silver; Bronze

What themes in Smart Building collective?

- 1) Building usage
- 2) Building performance
- 3) Building environment
- 4) Health, Safety, Security
- 5) User Behavior & collaboration
- 6) Interactive design & Connectivity

What certification HK apply? And describe what characteristic of building?

Beam Plus, characteristic: New building, existing building, neighbourhood, interior, data centre, existing school

What are the challenges of Smart Building?

Limited interoperability – due to heterogeneity
Limited integration across system and technology
Complex dependency of different systems
Lack standard
Large scale of devices and data

What is IoT structure?

What benefit IoT have?

Save time & energy
Efficient utilisation & monitoring
Enhance real-time data use
Reduce human effort
Security & Efficiency
Get new analytic insights
Create new business opportunities

Challenges for IoT?

Heterogeneity
Integration of device
Lack of standardised protocols
Scalability
Remote device management & diagnostic
Network concern
Energy concern
Reliability concern
Privacy and Security

Solve IoT challenges?

Interoperability of devices and system Low-cost and low-power sensing Low-cost and high-rate networking Cloud/edge computing New security and privacy solution Al ML to get new business insight

What standard does OSI model coordinate?

[ISO] standards

What Layer in OSI model use protocols and what these protocols are?

Transport layer [transmit data] TCP & UCP

What the differences between TCP/IP and OSI model? Sketch it.

TCP/IP Model	Protocols and Services	OSI Model
		Application
Application	HTTP, FTP, TELNET, NTP, DHCP, PING	Presentation
		Session
Transport	TCP, UDP	Transport
Network	IP, ARP, ICMP	Network
Network Interface	ETHERNET, FIBER, ROUTERS, SWITCHES	Data Link
		Physical

What communication medium use in IoT, is it same as protocols in IoT?

Yes, communication medium is same as protocols

Wire: BACnet, KNX, Ethernet, DALI, LonWork

Wireless: WiFi, 3G/4G/5G, Bluetooth, NBIoT, ZigBee, 6LoWPAN

What differences between wire and wireless protocols?

PARAMETER	WIRED	WIRELESS	
Communication	Copper, Fiber etc.	Air	
Medium	Copper, Fiber etc.	Air	
Standard	IEEE 802.3	802.11 family	
Mobility and	Limited	Higher	
Roaming	Limited		
Security	High	Lower than Wired. Also easy to hack	
Speed / Bandwidth	High Speed upto 1 Gbps	Lower speed than Wired Network.	
Access to Network	Physical Access Required	Proximity Required	
Delay	Low	High	
Reliability	High	Lower than Wired	
Flexibility to	Less flexible to changes	More flevible configuration	
change	Less flexible to changes	More flexible configuration	
Working principle	CSMA/CD, operates by detecting the	CSMA/CA , hence reduces possibility of collision be	
	occurrence of a collision.	avoiding collision from happening	
Interference and	75"		
Fluctuations	Very Less	High	
vulnerability			
Installation activity	Cumbersome and manpower intensive	Less labor intensive and easy	
Installation Time	Takes longer time to perform	Very less deployment time	
Dedicated / Shared	Dedicated	Shared	
Connection	Dedicated		
Installation Cost	High	Low	
Maintenance	High	Low	
(Upgrade) cost	nigii		
Related equipment	Router, Switch , Hub	Wireless Router, Access Point	
Benefits	Greater Speed	No Hassles of Cable	
	Higher noise immunity	Best for mobile devices	
	Highly reliable	Greater mobility	
	Greater Security	Easy installation and management	
		https://ipwithease.com	

IoT solution for Smart Building?

Localization for occupants and resource tracking
Occupants' safety and health security
Building health control
Resource management
Energy management
Facility management
Indoor comfort enhancement

What are Big Data Features?

5V's

Velocity

Veracity

Variety

Volume

Value (Not all big data have it)

Big Data Challenges?

Data processing: Data mining & cleansing; Data acquiring & warehousing; Data aggregation

& integration; Data analysis and modelling; Data interpretation

Data management: Cost & Operation cost; Data governess; Data and information sharing;

Data ownership; Privacy & security

Great Cloud Bottleneck? And drawbacks

Bottleneck: cannot apply in IoT

Drawbacks: High cost; High response time (delay); Bandwidth congestion; Limited scalability;

Privacy leakage

What does Edge computing do?

Push computation, storage, and other services close to the data sources

What is the component of Edge computing?

Local devices

Localize data centre

Regional data centre

What is Edge computing function?

Caching

Storage

Processing

Decision making

Security

What is benefit to edge computing?

Low cost

Interoperability of old and new systems

Fast response

Reliable system (intermittent Connectivity)

Security & Compliance

What is Edge network platform features?

On-demand services

Wide access to the network

Pooling resources

Rapid elastically

Measured services

What challenges of Edge network?

Heterogenetic
Resource-constraint
Dynamic network & intermittent connection failure
Sharing & management distributed network
Large scale of divices
Security