Chapter 2.4 Exercise Solutions

Jason Moreau

January 17, 2020

Conceptual

Question 1a.

A flexible statistical learning method would be **worse** if the sample size n is extremely large, and the number of predictors p is small because a flexible method requires more variables (parameters) to reduce the errors.

Question 1b.

A flexible statistical learning method would be **better** if the number of predictors p is extremely large, and the number of observations n is small because it would provide a better fit.

Question 1c.

A flexible statistical learning method would be be **better** if the predictors and response is highly non-linear because the flexible method would provide a better fit of the observations.

Question 1d.

A flexible statistical learning method would be **worse** if the variance of the error terms, i.e. $\sigma^2 = \text{Var}(\varepsilon)$, is extremely high because it would overfit the model and provide an inaccurate reading for the analyst.

Question 2a.

This scenario is a regression problem and we are most interested in inference. We are trying to determine the relationship between the dependent and independent variables/predictors.

```
n = 500 firms in the U.S. p = \text{profit}, number of employees, industry, and the CEO salary
```

Question 2b.

This scenario is a classification problem and we are most interested in prediction. We are trying to determine whether or not the product will be a *success* or *failure*.

n=20 similar products that were previously launched p= success or failure, price charged, marketing budget, competition price, and ten other variables

Question 2c.

This scenario is a regression problem and we are most interested in prediction. We are trying to determine the relationship between the dependent (% change in the USD/Euro exchange rate) and independent variables.

n =Weekly data for all of 2012

p=% change each week in USD/Euro, the % change in the US market, the % change in the British market, and the % change in the German market

Question 4a.

Classification

- To find how many dogs vs. cats are in animal shelters in the United States
- To find which Japanese vehicle brand is purchased more often Honda or Tovota
- To find which college major is most popular

Regression

- Find relationship between stock prices and bond rates
- Find relationship between life expectancy and income
- Find relationship between engine cylinders and miles per gallon

Cluster

- Find ethnicities within a city
- Find the gender demographic of a university
- Find the income demographic of a town

Question 5

The advantage of a very flexible (verses a less flexible) approach for regression or classification is that it provides a better level when conducting prediction modeling. The disadvantage is that level of interpretability suffers and it is not always accurate because it tends to overfit the model.

Question 6

A parametric approach is that allows the analyst to estimate using a set of parameters (ex. β_0 , β_1 , β_2 ,... β_p). A non-parametric approach attempts to estimate by getting a close a possible to fitting the data. An advantage of a parametric approach is that it makes estimating easier because the analyst doesn't have to fit the data the f, function of used to estimate the population, Y.

$$Y = f(X) + \epsilon$$

A disadvantage of a parametric approach is that it might not allow the analyst to pick the right model to obtain the true value of f.

Question 7a.

In the dataset provided we are to make a prediction for Y when $X_1 = X_2 = X_3 = 0$ using K-nearest neighbors.

To find the Euclidean distance in two-dimensions when $\mathbf{X}=\mathbf{0}$ we subtract each observation point by zero.

Observation 1:

$$(0 - 0) = 0, (3 - 0) = 3, (0 - 0) = 0$$

We then square each of the differences to find the absolute value: $(0)^2 = 0$, $(3)^2 = 9$, $(0)^2 = 0$

We then find the sum of the squares: 0 + 9 + 0 = 9

Finally, we take the square root of the sum: $\sqrt{9} = (3)$

Observation 2: 2

Observation 3: 3.16

Observation 4: 2.23

Observation 5: 1.41

Observation 6: 1.73