DEVOIR SURVEILLÉ 4

Calculatrice autorisée Lundi 10 février 2025

EXERCICE 1 (8 POINTS)

Soit g la fonction définie sur $[0; +\infty[$ par :

$$g(x) = x^3 + x - 1.$$

- 1. Montrer que l'équation g(x) = 0 admet une unique solution x_0 dans l'intervalle [0;1].
- **2.** Montrer que x_0 est l'unique solution de g(x) = 0 dans $[0; +\infty[$.
- 3. À l'aide de la calculatrice, donner une valeur approchée à 10^{-2} de x_0 .

CORRECTION

- La fonction g est continue sur [0;1] car g est dérivable sur R.
 - g(0) = -1 et g(1) = 1 donc $g(0) \le 0 \le g(1)$.
 - g est strictement croissante sur **R** car $g'(x) = 3x^2 + 1 > 0$.

Ainsi, d'après le théorème des valeurs intermédiaires, g admet une unique solution x_0 dans [0;1] à g(x)=0.

- 2. g est strictement croissante sur $[1;+\infty[$ et son minimum sur cet intervalle est g(1)=1 donc g ne s'annule pas sur $[1; +\infty[$ et par la question précédente, x_0 est l'unique solution de g(x) = 0 dans $[0; +\infty[$.
- **3.** Une lecture graphique sur la calculatrice nous donne $x_0 \approx 0.68$.

EXERCICE 2 (8 POINTS)

La population, en dizaine de milliers d'habitants, à l'année (2015+x), d'une ville nouvelle est modélisée pour les cinq premières années par la fonction f définie sur [0;5] par :

$$f(x) = \frac{2x^3 + 1}{x^3 + 1}.$$

- **1.** Donner l'expression de f' sur [0;5].
- **2.** En déduire les variations de f sur [0;5].
- 3. Montrer que pour la période concernée, la population de cette ville atteindra 18500 habitants.

bonus 4. Donner la date au cours de laquelle le seuil des 18500 habitants a été atteint.

CORRECTION
1.
$$\forall x \in [0;5], f'(x) = \frac{(6x^2)(x^3+1)-(3x^2)(2x^3+1)}{(x^3+1)^2} = \frac{6x^5+6x^2-6x^5-3x^2}{(x^3+1)^2} = \frac{3x^2}{(x^3+1)^2}$$

2. Le quotient $\frac{3x^2}{(x^3+1)^2}$ est strictement positif sur]0;5] car c'est un carré.

Ainsi, f est strictement croissante sur [0;5].

- f est continue sur [0;5] car dérivable.
 - $1 = f(0) \le 1.85 \le f(5) \approx 1.99$.
 - f est strictement croissante sur [0;5] d'après la question précédente.

Ainsi, d'après le théorème des valeurs intermédiaires, f admet une unique solution x_0 dans [0;5] à f(x) = 1,85. Pour la période concernée, la population de cette ville atteindra 18500 habitants.

4. Par lecture graphique sur la calculatrice, $x_0 \approx 1,7828$.

Nous sommes ainsi en 2016, année bissextile. Pour la date exacte, calculons 0,7828 × 365 pour connaître le nombre de jours écoulés puis le 1er janvier 2016. 0,7828 × 366 = 286,505 donc cela fait 286 jours après le 1er janvier 2016, c'est-àdire, le 13 octobre 2016.

EXERCICE 3 (6 POINTS)

Démontrer que l'équation $x^3 - 3x^2 - 1 = 0$ admet une unique solution dans **R** et encadrer celle-ci par des entiers consécutifs.

Indication: On pourra commencer par étudier les variations de f d'expression $f(x) = x^3 - 3x^2 - 1$.

CORRECTION

f d'expression $f(x) = x^3 - 3x^2 - 1$ est dérivable sur **R** et :

$$\forall x \in \mathbf{R}, f'(x) = 3x^2 - 6x = (3x - 6)x.$$

On peut donner le tableau de variations de f:

x	-∞	0		2		+∞
x	_	0	+		+	
3x-6	_		_	0	+	
f'(x)	+	0	_	0	+	
f(x)		/ \		\ /		×

f admet une maximum local en 0 et on a f(0) = -1. Ainsi, d'après le tableau, f ne s'annule que sur $[2; +\infty[$. Une utilisation du TVI sur cet intervalle nous permet d'affirmer qu'il existe une unique solution x_0 à f(x) = 0 sur $[2; +\infty]$ et donc sur \mathbf{R} .

Par balayage sur la calculatrice, on se rend compte que $3 \le x_0 \le 4$.