Secure E-Voting

Li Chen

lichen.xd at gmail.com

Xidian University

May 15, 2014

Outline

- 1 Traditional Voting
- 2 E-Voting
- 3 Security requirements for E-Voting
- 4 E-Voting Scheme I [1]
 - 4.1 Voting Model Entities
 - 4.2 Scheme

Vote Generation

Vote Casting

Tallying

4.3 Component

Additive Homomorphic ELGamal Encryption

1-out-of-L Re-encryption Proof

Designed-Verifier Re-encryption Proof

References

 Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic encryption. In *Advances in CryptologyalEUROCRYPT 2000*, pages 539–556. Springer, 2000.

1 Traditional Voting

2 E-Voting

All these steps are completed via a network.

3 Security requirements for E-Voting

- Authentication: only legal voters can cast a vote.
- Privacy (ballot secrecy): vote content cannot be related to voter identities.
- universal verifiability: correctness of the voting process can be checked.
- Receipt-freeness: voter can not prove the vote content to others.

4 E-Voting Scheme I [1]

4.1 Voting Model

Entities

- Authorities A_1, \dots, A_N .
- Voters U_1, \cdots, U_M .
- Votes v_1, \cdots, v_L .
- · Ballot Board.

E-Voting Scheme I

4.2 Scheme

Vote Generation

Let v_i be a valid vote, $e_i^{(0)}$ be the corresponding *standard encryption*. In turn, for each $A_k(k=1,\cdots,N)$:

- 1. A_k picks the encrypted valid votes list $e_1^{(k-1)}, \cdots, e_L^{(k-1)}$, shuffles it randomly, and hand it to the next authority.
 - Shuffle means to re-encrypt each $e_i^{(k-1)}$, and randomly permute the order of the list. Precisely, randomly choose a permutation $\pi_k:\{1,\cdots,L\}\to\{1,\cdots,L\}$, and computes $e_i^{(k)}\leftarrow e_{\pi(i)}^{(k-1)}\bigotimes E(0,r_i^{(k-1)}),r_i^{(k-1)}\stackrel{\$}{\leftarrow}.$
- 2. A_k publicly proves that she honestly shuffled, namely by proving for each i there exists a re-encryption of $e_i^{(k-1)}$ in the list $e_1^{(k)}, \cdots, e_L^{(k)}$, without revealing which.
- 3. A_k secretly conveys to the voters the permutation π_k she used, with a privately proof of its correctness.

4. If the voter does not accept the proof, he publicly complains about the authority. If he does so, we set $e_i^{(k)} \leftarrow e_i^{(k-1)}, i=1,\cdots,L$, i.e. the shuffling of this authority is ignored. Voter may at most complain against N-t authorities.

Vote Casting

The voter drives the position i of the encrypted vote $e_i^{(N)}$ of his choice, and publicly announces it.

Tallying

Those encrypted vote are summed to obtain an encryption E(T) of the sum T of the votes. Authorities decrypt E(T) to output T, with a proof of its correctness.

4.3 Component

Additive Homomorphic ELGamal Encryption

$$E(v) = (g^{\alpha}, \gamma^{v} h^{\alpha})$$

where g, γ are two generator of a commutative group G, with order |G| = q, a larger prime. $h = g^z$, z is the secret key, (g, γ, h) is the public key. A standard encryption of v is denoted as $e_v^{(0)} = (1, \gamma^v)$.

- Homomorphic Property: Let $e_1 = (x_1, y_1), e_2 = (x_2, y_2)$, the addition is defined as $e_1 \bigoplus e_2 = (x_1x_2, y_1y_2)$.
- Re-encryptability: Let e=(x,y) it's re-encryption is $e'=(x',y')=(g^{\xi}x,h^{\xi}y)$.

• Verifiable Decryption: To decrypt T from e = (x, y), the authorities first compute, reveal and prove $\hat{x} = x^z$. This can be obtain by having each authority A_i compute $\hat{x}_i = x_i^{z_i}$, where z_i is A_i 's share of the secret key z, and then compute \hat{x} from \hat{x}_i . Once \hat{x} is obtain with proof of correctness, one can compute

$$\frac{y}{\hat{x}} = \frac{\gamma^T \cdot h^\alpha}{g^{\alpha z}} = \gamma^T$$

1-out-of-L Re-encryption Proof

Suppose a prover want to prove that for an encrypted vote (x,y), there exist a re-encryption in the L encrypted votes list $(x_1,y_1),\cdots,(x_L,y_L)$. Assume that (x_t,y_t) is a re-encryption of (x,y), and the witness is ξ , i.e. $(x_t,y_t)=(g^{\xi}x,h^{\xi}y)$.

1. The prover selects d_1, \dots, d_L and r_1, \dots, r_L at random, record $w = \xi d_t + r_t \pmod{q}$, and computes

$$a_i = \left(\frac{x_i}{x}\right)^{d_i} \cdot g^{r_i}$$
, and $b_i = \left(\frac{y_i}{y}\right)^{d_i} \cdot g^{r_i}$, (for $i = 1, \dots, L$).

and sends a_i,b_i to verifier. (These values commit the prover to d_i and r_i for all $i=1,\cdots,L$ except for i=t.)

- 2. The verifier picks a random challenge $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$, and sends it to the prover.
- 3. The prover modifies d_t , s.t. $c = \sum_{i=1}^{L} d_i \pmod{q}$, modifies r_t to, s.t. $w = \xi d_t + r_t \pmod{q}$, and sends d_1, \dots, d_L and r_1, \dots, r_L to the verifier.

4. the verifier tests wether

$$c \stackrel{?}{=} \sum_{i=1}^{L} d_i \pmod{q}$$

$$a_i \stackrel{?}{=} \left(\frac{x_i}{x}\right)^{d_i} \cdot g^{r_i}, \text{ (for } i = 1, \dots, L).$$

$$b_i \stackrel{?}{=} \left(\frac{y_i}{y}\right)^{d_i} \cdot g^{r_i}, \text{ (for } i = 1, \dots, L).$$

Note: $a_t = g^{\xi d_t + r_t}$ and $b_t = h^{\xi d_t + r_t}$.

Designed-Verifier Re-encryption Proof

Suppose the prover want to privately prove that (x', y') is a re-encryption of (x, y), where ξ is the witness, i.e. $(x', y') = (g^{\xi}x, h^{\xi}y)$. The voter's secret key is denoted as z_v and the public key is given by $h_v = g^{z_v}$.

1. The prover selects d, w and r at random, computes

$$a = g^d$$
, $b = h^d$, and $s = g^w h_v^r$.

and sends it to the verifier. These values commit the power to d, w and r. However, s is a chameleon commitment for w and r, and the verifier can use his knowledge of z_v to open s to arbitrary values w' and r' satisfying $w' + z_v r' = w + z_v r$.

- 2. the verifier picks a random challenge $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and sends it to the prover.
- 3. prover computes $u = d + \xi(c + w)$ and sends w, r, u to the verifier.

4. The verifier tests whether

$$s \stackrel{?}{=} g^w h_v^r$$

$$g^u \stackrel{?}{=} \left(\frac{x'}{x}\right)^{c+w} \cdot a$$

$$h^u \stackrel{?}{=} \left(\frac{y'}{y}\right)^{c+w} \cdot b$$

Thanks! & Questions?

