Module 04 – Multiperiod Modeling

Exploratory Da	ta Analysis
-----------------------	-------------

D		U
first_payment_year	second_payment_year	
3	6	
250	250	
investment_pct	month_can_start_investing	can_invest_every
0.02	1	1
0.0423	1	2
0.0646	2	3
0.087	3	4
0.1095	1	5
	st_payment_year 3 250	first_payment_year second_payment_year 3 6 250 250 investment_pct month_can_start_investing 0.02 1 0.0423 1 0.0646 2

Model Formulation

MIN: A1 + B1 + C1 + D1 + E1

Subject to:

1.02A1 - 1A2 - 1C2 = 0

1.0423B1 + 1.02A2 - 1A3 - 1B3 - 1D3 = 250

1.02A3 - 1A4 = 0

1.0646C2 + 1.0423B3 + 1.02A4 - 1A5 - 1B5 - 1C5 = 0

1.1095E1 + 1.02A5 - 1A6 = 250

1.087D3 + 1.0423B5 + 1.02A6 - 1A7 - 1B7 = 0

1.0646C5 + 1.02A7 - 1A8 = 0

1.0423B7 + 1.02A8 - 1A9 = 0

1.02A10 = 500

Constraints:

Surplus funds = required payments

Amount ≥ 0

Model Optimized for Least Cost out of Pocket

The model is recommending that the optimal solution is \$880.28.

Model with Stipulation

If we remove the midterm payments and instead pay the entirety at the end of the time period, does your model change at all? If so, why may there be a change?

Yes, my model does change, and there will be a change because the payment is all at last and not in midterm payments.