Experiment No. 8

Non- Ideal characteristics of Op Amp Circuits

Objectives:

Measurement of Offset Voltage, Bias Currents, Slew rate and Open-loop Gain of Op-Amps

Equipment/Components Required:

- 1. Op-Amp μA 741
- 2. Resistors 100Ω
- 3. Regulated Power Supply
- 4. Variable Power Supply
- 5. Multimeter
- 6. Digital Storage Oscilloscope
- 7. Arbitrary Function Generator

Steps:

Part A: Input offset voltage

- 1. Wire up the circuit as shown in Figure 1. Let R1=R2= $10k\Omega$.
- 2. Measure the values of the resistors using multimeter.
- 3. Measure the output Voltage, Vo.

Figure 1: Offset voltage measurement

4. The Offset voltage, Vos is calculated as:

$$V_{OS} = \frac{V_0}{A_v}$$

Part B: Offset current measurement

1. First wire up the circuit as shown in Figure 2 (a).

Figure 2: Circuits for Offset current measurement (a) I_B- (b) I_B+

- 2. Measure the output voltage, V₀.
- 3. Now connect the circuit as shown in Figure 2(b) and measure the output voltage.
- 4. Fill-in your observations and calculate the input bias current, I_B and offset current, I_{OS} using the formulae given in the table

Vo (V)	$I_{B^-} = \frac{Vo}{R}$	$I_{B^{+}} = \frac{Vo}{R}$	I _B = (I _B - + I _B +)	$Ios = I_{B^+} - I_{B^-} $

Part C: Slew rate and Bandwidth measurement

Figure 3: Circuit for Slew rate measurement

- 1. Connect the circuit of Figure 3.
- 2. Using a function generator, provide a 1V peak-to-peak square wave with a frequency of 25 KHz.
- 3. With an oscilloscope, observe the output of Op-Amp. Adjust the oscilloscope timing the get a couple of cycles.

- 4. Measure the voltage change during rising edge and the falling edge of the output voltage, ΔV .
- 5. Note the change in time change, ΔT for which ΔV occurs in the output waveform.
- 6. Calculate the slew rate using the formula $SR = \Delta V / \Delta T$.

Sl. No	Frequency	ΔV	ΔΤ	$SR = \Delta V/\Delta T$

Part D: Bandwidth measurement

Figure 4: Bandwidth measurement

- 1. Connect the circuit of Figure 4.
- 2. Using a function generator, provide a 1V peak-to-peak sine wave.
- 3. Vary the frequency from 1 kHz to 500 kHz and note down the corresponding gain.
- 4. Measure the bandwidth when gain falls below 3dB.

 $V_i = 1V_{p-p}, R1 = R_2 = 10 \text{ k}\Omega$

Sl. No.	Frequency	Gain

Bandwidth =	=
-------------	----------

Part E: Measurement of DC open-loop gain

One of the most important features of an op amp is a high open-loop gain AOL that is typically in the range 10^5 to 10^6 . Measurement of A_{0L} with a simple scheme shown in Figure 5 does not work for the following reasons:

Figure 5: An op amp operated in the open-loop configuration.

- (a) With a large gain of 10^5 or more, the op amp is likely to be driven to saturation because of the input offset voltage V_{OS} which is typically in the range –5mV to +5mV for Op Amp 741.
- (b) Even if we had a magical op amp with V_{OS} =0V (or we compensated for the effect of V_{OS} by some means), measurement of A_{OL} is still a challenge. Suppose A_{OL} =2×10⁵, and we want an output voltage of 1V, for example. This would require V_i =1V/2×10⁵ =5 μ V, a very small voltage to apply or measure in the lab.

Given the above difficulties, how do we reliably measure V_{0L} ? The trick is to use the op amp in a "servo loop" which ensures that its input voltage remains small enough to keep it in the linear region. The op amp for which we want to measure A_{0L} is marked in the figure 6 as the Device under Test (DUT). The circuit has a high overall gain, but because of the negative feedback provided by R3, it is stable. The capacitor C prevents the circuit from oscillating. We can measure the open-loop gain A_{0L} of the DUT using the following steps.

- 1. Using the 10k pot, first nullify the effect of the offset voltage of the DUT to the extent possible, i.e., adjust the pot, with the switch in position 1 (or simply open), to make V_0 as small as possible. Let us use V_0 and V_{01} to denote the values of Vo and V_{01} , respectively.
- 2. Now change the switch to position 2. With $V_{(2)}$ $\approx V_{(2)}$ + = 0V and with the capacitor behaving like an open circuit in the DC condition, we have i_1 = i_2 , and

$$V_{o1} = V_{-}^{(2)} - i_2 R_4 = 0 - \frac{V'}{R_5} R_4 = -V'$$
.

let V_0 be denoted by V_0^B and V_{o1} by V_0^B and V_{o1} . We can attribute the difference $(V_0^B - V_0^A)$ to the change in V_{o1} , i.e., $\Delta V_{o1} = V_0^B$ and $V_{o1} = V_0^A = V_0^A$.

For the DUT, its output Vo1 has undergone a change of -V', and it is a result of a change in $(V^{(1)} + -V^{(1)})$ which is equal to

$$\frac{R_2}{R_2 + R_3} (V_o^B - V_o^A) \times A_{OL} = -V'$$

Which can be used to obtain AoL for the DUT.

Figure 6: Open loop gain measurement

Vo	Vo ^A	Vo ^B	Aol