

山东大学机器学习课程 实验报告

——实验四:parzen 窗与 knn 非参数估计

姓名:刘梦源

学院:计算机科学与技术学院

班级: 计算机 14.4

学号:201400301007

一、实验目的:

- (1) 了解分参数估计的原理和思想。
- (2) 用 parzen 窗和 knn 方法设计非参数估计器。
- (3)编写程序,通过具体实验来分析不同非参数估计方法的异同,非参数估计和参数估计之间的异同,他们的优缺点分别是什么,以及在两种非参数化估计中,h 和 k 对估计的结果分别是什么。

二、实验环境:

(1) 硬件环境:

英特尔® 酷睿™ i7-7500U 处理器 512 GB PCIe® NVMe™ M. 2 SSD 8 GB LPDDR3-1866 SDRAM

(2) 软件环境:

Windows10 家庭版 64 位操作系统 Matlab R2016a

三、实验内容

样本	w1			w2			w3		
	x1	x2	x3	x1	x2	x3	x1	x2	x3
1	0.28	1.31	-6.2	0.011	1.03	-0.21	1.36	2. 17	0.1
2	0.07	0.58	-0.78	1.27	1.28	0.08	1.41	1.45	-0.3
3	1.54	2.01	-1.63	0.13	3. 12	0.16	1.22	0.99	0.6
4	-0.44	1.18	-4. 32	-0.21	1. 23	-0.11	2.46	2. 19	1.3
5	-0. 81	0.21	5. 73	-2.18	1. 39	-0.19	0.68	0.79	0.8
6	1. 52	3. 16	2.77	0.34	1.96	-0.16	2.51	3. 22	1.3
7	2.2	2.42	-0.19	-1.38	0.94	0.45	0.6	2.44	0.9
8	0.91	1.94	6. 21	-0. 12	0.82	0.17	0.64	0.13	0.9
9	0.65	1.93	4. 38	1.44	2. 31	0.14	0.85	0.58	0.9
10	-0. 26	0.82	-0.96	0.26	1.94	0.08	0.66	0. 51	0.8

(1) Parzen 窗非参数话估计法:

利用课本公式 P135 (11):

$$p_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi(\frac{x - x_i}{h_n})$$

(2) Knn 非参数估计法:

利用课本公式 P145 (32):

$$p_n(x \mid w_i) = \frac{k_i / n}{V}$$

对于一维情况, V 为 k 近邻的距离的绝对值的 2 倍, 对于二维情况, V 为 U k 近邻的距离 为半径的圆的面积, 对于三位情况, V 为 U k 近邻的距离为半径的球的体积。

四、实验结果

- (1) Parzen 窗非参数话估计法:
- (a) 令 h=1

(b) ♦ h=0.1 (0.5, 1.0, 0.0):

(0.0)	, 210, 610, 1									
	1	2	3							
	3.5015e-22	2.7011e-07	3.1924e-19							
1										

(0.31, 1.51, -0.50):

	1	2	3	
	1.1457e-22	4.7893e-08	8.6167e-28	
(-0.3,	0.44, -0.1):			
	1	2	3	
	1.4514e-14	1.5096e-06	4.2459e-42	

发现, h 在取 1 和 0.1 时,这三个测试点都是第二类的概率密度比较大,因此把这三个测试点都分到了第二类。

为进一步研究 h 的大小对非参数估计的影响,我们取第一类样本点的前两个特征值做实验。画出概率密度高程图象如下所示。可以发现当 h 取 1 时得到的较为平滑,也更为理想。

再调整 h 的大小, 得到下列图像:

(2) Knn 非参数估计法:

(a) 对类别 w3 中的特征 x1 进行概率密度估计:

(b) 对类别 w2 中的特征 x1, x2 进行概率密度估计:

0.5
0.4
0.3
0.2
0.1
0
2
0.1
0
2
3
4

K=5

(c) 对三个测试点进行概率密度估计:

不妨取 k=3:

$$x=[0.14,0.72,4.1]$$
 在三类中的概率密度分别为 0.0043 9.6478e-04 0.0021

$$x = [-0.81 \ 0.61 \ -0.38]$$
在三类中的概率密度分别为

至此,本次实验报告得到较为完美的结果,实验目的基本达到。