Aula 5

Limites laterais

5.1 Limites laterais através de exemplos

Para cada x real, define-se o valor absoluto ou módulo de x como sendo

$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$$

Por exemplo, $|\sqrt{2}| = \sqrt{2}$, |+3| = +3, |-4| = 4, |0| = 0, $|1 - \sqrt{2}| = \sqrt{2} - 1$.

Para apresentar o conceito de limites laterais através de um exemplo, consideraremos a função

$$f(x) = x + \frac{x}{|x|}$$

cujo campo de definição (domínio) é o conjunto $\mathbb{R} - \{0\}$.

Se x > 0, |x| = x e portanto f(x) = x + 1. Se x < 0, |x| = -x e portanto f(x) = x - 1. O gráfico de f é esboçado na figura 5.1.

Se x tende a 0, mantendo-se > 0, f(x) = x+1 tende a 1. Se tende a 0, mantendo-se < 0, f(x) = x-1 tende a -1.

Dizemos então que o limite de f(x), quando x tende a 0 pela direita, é igual a 1, e denotamos

$$\lim_{x\to 0^+} f(x) = 1$$

Dizemos também que o limite de f(x), quando x tende a 0 pela esquerda, é igual a -1, e denotamos

$$\lim_{x\to 0^-} f(x) = -1$$

46 Aula 5

Figura 5.1. Esboço do gráfico de $f(x) = x + \frac{x}{|x|}$.

De um modo geral, sendo f(x) uma função, se x_0 está no interior ou é extremo inferior de um intervalo contido em D(f),

$$\lim_{x \to x_0^+} f(x) \quad \text{significa} \quad \lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$$

Se x_0 está no interior ou é extremo superior de um intervalo contido em D(f),

$$\lim_{x\to x_0^-} f(x) \quad \text{significa} \quad \lim_{\substack{x\to x_0\\ x< x_0}} f(x)$$

Exemplo 5.1.

Consideremos agora a função f(x) = 1/x. Conforme já observado no exemplo 4.7, aula 4 (reveja-o), esta função não tem limite quando $x \to 0$.

Temos $D(f) = \mathbb{R} - \{0\} =] - \infty, 0[\cup]0, +\infty[$. Assim, 0 é extremo superior do intervalo $] - \infty, 0[\subset D(f)$, e também é extremo inferior do intervalo $]0, +\infty[\subset D(f)$.

No esboço do gráfico de f, figura 5.2, ilustramos a ocorrência dos limites laterais

$$\lim_{x \to 0^{+}} \frac{1}{x} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \qquad \lim_{\substack{x \to 0^{-}}} \frac{1}{x} = \lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$$

(Também ilustramos que $\lim_{x\to +\infty} \frac{1}{x} = \lim_{x\to -\infty} \frac{1}{x} = 0$.)

Neste caso, é conveniente denotar, introduzindo novos símbolos em nossa álgebra de limites,

$$\lim_{x \to 0^+} \frac{1}{x} = \frac{1}{0^+} = +\infty \qquad \lim_{x \to 0^-} \frac{1}{x} = \frac{1}{0^-} = -\infty$$

LIMITES LATERAIS 47

Figura 5.2. $\lim_{x\to 0^+} \frac{1}{x} = +\infty$, $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.

Observação 5.1. Em geral,

Dizemos que $\lim_{x\to x_0} f(x) = 0^+$ se

- (i) $\lim_{x\to x_0} f(x) = 0$, e
- (ii) f(x) mantém-se > 0 quando $x \to x_0$, ou seja, f(x) > 0 para todo x suficientemente próximo de x_0 .

Dizemos que $\lim_{x\to x_0} f(x) = 0^-$ se

- (i) $\lim_{x\to x_0} f(x) = 0, e$
- (ii) f(x) mantém-se < 0 quando $x \to x_0$, ou seja, f(x) < 0 para todo x suficientemente próximo de x_0 .

Escrevemos ainda $\lim_{x \to x_0^+} f(x) = 0^+$ para indicar que

(i) $\lim_{x \to x_0^+} f(x) = 0$, $e(ii)^{n} f(x) > 0$ quando $x \to x_0$ $e(x) = x_0$.

Analogamente, podemos também definir condições em que ocorrem os limites

48 Aula 5

$$\lim_{x \to x_0^+} f(x) = 0^-, \ \lim_{x \to x_0^-} f(x) = 0^-, \ e \lim_{x \to x_0^-} f(x) = 0^+.$$

Nossa álgebra de limites passa a contar agora com os seguintes novos resultados:

$$\frac{c}{0^+} = \left\{ \begin{array}{ll} +\infty & \text{se } c > 0 \\ -\infty & \text{se } c < 0 \end{array} \right. \qquad \frac{c}{0^-} = \left\{ \begin{array}{ll} -\infty & \text{se } c > 0 \\ +\infty & \text{se } c < 0 \end{array} \right.$$

Também é fácil intuir que

$$\frac{+\infty}{0^+} = +\infty \qquad \frac{+\infty}{0^-} = -\infty \qquad \frac{-\infty}{0^+} = -\infty \qquad \frac{-\infty}{0^-} = +\infty$$

Exemplo 5.2.

$$\lim_{x\to 1} (x-1)^2 = 0^+, \ portanto \lim_{x\to 1} \frac{1}{(x-1)^2} = \frac{1}{0^+} = +\infty.$$

$$\lim_{x \to 0^+} \frac{2x - 3}{x} = \frac{-3}{0^+} = -\infty$$

$$\lim_{x \to +\infty} \frac{5}{x - 3} = \frac{5}{+\infty} = 0^+$$

Exemplo 5.3. Calcular
$$\lim_{x \to -2^+} \frac{x+2}{|x+2|} e \lim_{x \to -2^-} \frac{x+2}{|x+2|}$$

Solução. Observe que x + 2 > 0 se e somente se x > -2.

Assim sendo, se x > -2, temos x + 2 > 0 e então |x + 2| = x + 2.

Por outro lado, se x < -2, temos x + 2 < 0 e então |x + 2| = -(x + 2).

Assim sendo, temos

$$\lim_{x \to -2^{+}} \frac{x+2}{|x+2|} = \lim_{\substack{x \to -2 \\ x \to -2}} \frac{x+2}{|x+2|} = \lim_{\substack{x \to -2 \\ x \to -2}} \frac{x+2}{x+2} = \lim_{x \to -2} 1 = 1$$

$$\lim_{x \to -2^{-}} \frac{x+2}{|x+2|} = \lim_{\substack{x \to -2 \\ x < -2}} \frac{x+2}{|x+2|} = \lim_{\substack{x \to -2 \\ x < -2}} \frac{x+2}{-(x+2)} = \lim_{x \to -2} -1 = -1$$

Observação 5.2. A afirmação

$$\lim_{x\to x_0} f(x) = a$$

é equivalente às afirmações, simultâneas, de que

$$\lim_{x \to x_0^+} f(x) = a \quad e \quad \lim_{x \to x_0^-} f(x) = a$$

Limites laterais 49

Se no entanto f(x) é definida para $x > x_0$, mas não é definida para $x < x_0$, então $\lim_{x \to x_0} f(x) = \alpha$ significa $\lim_{x \to x_0^+} f(x) = \alpha$

Por exemplo, $\lim_{x\to 0}\sqrt{x}=0$, muito embora \sqrt{x} não esteja definida para x<0. Neste caso, afirmar que $\lim_{x\to 0}\sqrt{x}=0$ é equivalente a afirmar que $\lim_{x\to 0^+}\sqrt{x}=0$, já que não se define o limite $\lim_{x\to 0^-}\sqrt{x}$

Observação 5.3 (O gráfico de uma função contínua em [a,b]).

No exemplo ao início da aula, vimos que a função f(x) = x + x/|x| tem limites laterais diferentes no ponto $x_0 = 0$, sendo $\lim_{x \to 0^+} f(x) = 1$ e $\lim_{x \to 0^-} f(x) = -1$. Assim, conforme podemos visualizar na figura 5.1, o gráfico de f apresenta um salto no ponto 0.

Também a função f(x) = 1/x tem um salto no ponto 0. Agora porém o salto é infinito, sendo $\lim_{x\to 0^+} f(x) = +\infty$ e $\lim_{x\to 0^-} f(x) = -\infty$.

Na aula 4, estivemos observando que a função $f(x) = 1/x^2$ tem limite infinito no ponto 0: $\lim_{x\to 0} f(x) = +\infty$. Aqui, nas proximidades de 0, o gráfico "salta" para cima dos dois lados, apresentando uma quebra na curva do gráfico.

Quando uma função f(x) é contínua nos pontos de um intervalo [a,b], a curva y = f(x), $a \le x \le b$, gráfico de f no intervalo [a,b], não apresenta quebras ou saltos.

Intuitivamente falando, podemos desenhar o gráfico ligando o ponto inicial A = (a, f(a)) ao ponto final B = (b, f(b)) sem tirarmos o lápis do papel, tal como na figura 5.3.

Figura 5.3. f é contínua e diferenciável no intervalo [a, b].

AULA 5

Figura 5.4. f é contínua no intervalo [a, b], mas não tem derivadas nos pontos c e d.

Observação 5.4 (Uma função contínua pode não ter derivada sempre).

Já na figura 5.4 temos uma ilustração do gráfico de uma função f contínua no intervalo $[\mathfrak{a},\mathfrak{b}]$ que, no entanto, não tem derivada em dois pontos desse intervalo. Note que nos pontos do gráfico de f de abscissas c e d não é possível definir retas tangentes ao gráfico.

Observação 5.5 (Continuidade significa $\lim_{\Delta x \to 0} \Delta f = 0$). Na observação 2.1, aula 2, vimos que, quando $x_0 \in D(f)$, se existe $f'(x_0)$ então $\lim_{\Delta x \to 0} \Delta f = 0$. Na verdade, não é necessário termos f diferenciável x_0 para que tenhamos $\lim_{\Delta x \to 0} \Delta f = 0$. A condição necessária e suficiente para que tenhamos $\lim_{\Delta x \to 0} \Delta f = 0$ é que f seja contínua no ponto x_0 .

Demonstraremos agora que a afirmação enunciada na observação 5.5 é verdadeira.

Temos
$$\Delta f = f(x_0 + \Delta x) - f(x_0)$$
.

Fazendo $x=x_0+\Delta x$, temos $\Delta f=f(x)-f(x_0)$. Temos que $\Delta x\to 0$ se e somente se $x\to x_0$.

$$\begin{split} \text{Se} & \lim_{\Delta x \to 0} \Delta f = 0, \text{ então } \lim_{x \to x_0} (f(x) - f(x_0)) = 0, \text{ logo} \\ & \lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left[(f(x) - f(x_0)) + f(x_0) \right] = 0 + f(x_0) = f(x_0). \text{ Assim, } f \text{ \'e contínua em } x_0. \end{split}$$

Se f é contínua em x_0 , $\lim_{x\to x_0} f(x) = f(x_0)$. Logo, $\lim_{x\to x_0} (f(x)-f(x_0)) = 0$, e então $\lim_{\Delta x\to 0} \Delta f = 0$.

Assim,
$$\lim_{\Delta x \to 0} \Delta f = 0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$$
.

Quando existe $f'(x_0)$, temos $\lim_{\Delta x \to 0} \Delta f = 0$ e então $\lim_{x \to x_0} f(x) = f(x_0)$, ou seja, como

51 LIMITES LATERAIS

já demonstrado na observação 2.1, temos a seguinte proposição.

Proposição 5.1 (Diferenciabilidade acarreta continuidade). Se f tem derivada em x_0 então f é contínua em x_0 .

No entanto, podemos ter f
 contínua em x_0 , sem ter derivada em x_0 . Veja problemas 5 e 6 a seguir.

Problemas 5.2

Figura 5.5. Gráfico para o problema 1.

- 1. Na figura 5.5 está esboçado o gráfico de uma função y = f(x). Complete as igualdades:

- (a) $\lim_{x \to 1^{-}} f(x) =$ (b) $\lim_{x \to 1^{+}} f(x) =$ (c) $\lim_{x \to 2^{-}} f(x) =$ (d) $\lim_{x \to 2^{+}} f(x) =$ (e) $\lim_{x \to 0^{-}} f(x) =$ (f) $\lim_{x \to 0^{+}} f(x) =$ (g) $\lim_{x \to +\infty} f(x) =$ (h) $\lim_{x \to -\infty} f(x) =$
- 2. Em que pontos a função f do problema anterior é definida? Em quais pontos é contínua?

3. Calcule os limites laterais

(a)
$$\lim_{x \to \pi^{-}} \frac{|\pi - x|}{x - \pi}$$
 (b) $\lim_{x \to \pi^{+}} \frac{|\pi - x|}{x - \pi}$ (c) $\lim_{x \to 8^{-}} \frac{1}{x - 8}$

(d)
$$\lim_{x \to 8^+} \frac{1}{x - 8}$$
 (e) $\lim_{x \to 2^+} \frac{x^2 - 5x + 4}{2 - x}$ (f) $\lim_{x \to 2^+} \sqrt{x - 2}$

4. Calcule os limites $\lim_{x \to -3^+} f(x)$, $\lim_{x \to -3^-} f(x)$ e diga se existe o limite $\lim_{x \to -3} f(x)$. Diga também se f é contínua no ponto -3.

(a)
$$f(x) = \begin{cases} \frac{1}{2 - 3x} & \text{se } x < -3 \\ \sqrt[3]{x + 2} & \text{se } x \ge -3 \end{cases}$$
 (b) $f(x) = \begin{cases} \frac{9}{x^2} & \text{se } x \le -3 \\ \sqrt[3]{4 + x} & \text{se } x > -3 \end{cases}$

- 5. Verifique que a função f(x) = |x| é contínua em $x_0 = 0$, mas não existe f'(0) (mostre que não existe o limite $\lim_{\Delta x \to 0} \frac{f(0 + \Delta x) f(0)}{\Delta x}$). Mostre que existem os limites laterais $\lim_{\Delta x \to 0^+} \frac{f(0 + \Delta x) f(0)}{\Delta x}$ e $\lim_{\Delta x \to 0^-} \frac{f(0 + \Delta x) f(0)}{\Delta x}$, chamados respectivamente de *derivada direita de* f *no ponto* 0 ($f'(0^+)$) e *derivada esquerda de* f *no ponto* 0 ($f'(0^-)$). Esboce o gráfico de f e interprete geometricamente os fatos deduzidos acima.
- 6. Verifique que a função $f(x) = \sqrt[3]{x}$ é contínua em $x_0 = 0$, mas $\lim_{\Delta x \to 0} \frac{f(0 + \Delta x) f(0)}{\Delta x} = +\infty$. Neste caso, por abuso de linguagem, dizemos que $f'(0) = +\infty$. Esboce o gráfico de f, traçando-o cuidadosamente através dos pontos de abcissas $0, \pm 1/8, \pm 1, \pm 8$, e interprete geometricamente o fato de que $f'(0) = +\infty$.

5.2.1 Respostas e sugestões

1. (a)
$$-\infty$$
 (b) $-1/2$ (c) $+\infty$ (d) 0 (e) -1 (f) -1 (g) $-1/2$ (h) $-\infty$

2. A função f é definida em $\mathbb{R} - \{1\}$. É contínua em $\mathbb{R} - \{1,2\}$.

3. (a)
$$-1$$
 (b) 1 (c) $-\infty$ (d) $+\infty$ (e) $+\infty$ (f) 0

4.

- (a) $\lim_{x \to -3^+} f(x) = -1$, $\lim_{x \to -3^-} f(x) = 1/11$. Não se define (não existe) o limite $\lim_{x \to -3} f(x)$. f(-3) = -1, mas como não existe $\lim_{x \to -3} f(x)$, f não é contínua no ponto -3.
- (b) $\lim_{x\to -3^+} f(x) = 1$, $\lim_{x\to -3^-} f(x) = 1$, $\lim_{x\to -3} f(x) = 1$. f é contínua no ponto -3 pois $\lim_{x\to -3} f(x) = f(-3)$.
- 5. Ao esboçar o gráfico de f, notamos que f(x) = x, se $x \ge 0$, e f(x) = x, se $x \le 0$. Assim, $f'(0^+) = 1$ indica a presença de uma reta tangente ao gráfico de f, "à direita do ponto (0,0)", como sendo a reta tangente ao gráfico de y = x, $x \ge 0$, no ponto (0,0) (a reta tangente a uma reta é a própria reta). Analogamente, interpreta-se $f'(0^-) = -1$.
- 6. $f'(0) = +\infty$ significa que a reta tangente à curva $y = \sqrt[3]{x}$, no ponto (0,0), é vertical.