Counting integer points in polyhedra

Siddharth Bhat

June 22nd, 2018

Definitions

- ▶ Polyhedra: $\left\{ \vec{x} \in \mathbb{Q}^d \mid Ax \leq \vec{b} \right\}$
- Polytope: bounded polyhedra.
- Cone: $cone(\vec{u_i}) = \left\{ \sum_i \lambda_i \vec{u_i} \mid \lambda_i \geq 0 \right\}, \ \vec{u_i} \in \mathbb{Q}^d$
- ▶ Simple cone: $SK = cone(\vec{u_i}), \vec{u_i} \in \mathbb{Z}^d, \vec{u_i}$ are linearly independent.
- ▶ Unimodular cone: $UK = cone(\vec{u_i})$, $Volume(\vec{u_i}) = 1$
- Line: subspace.

Pictures of defintions!

polytope

cone

polyhedra

Example 1: valuation of line

- ightharpoonup P is a polyhedra, then $\mathcal{F}([P]) = \sum_{\vec{m} \in P \cap \mathbb{Z}^d} (x^{\vec{m}})$
- $\mathcal{F}([P])(\vec{1}) = \text{number of points.}$

$$\begin{split} \mathcal{F}((-\infty,\infty)) &= \sum_{i \in \mathbb{Z}} x^i \\ count(x) &= \mathcal{F}((-\infty,\infty)) \\ &= \mathcal{F}((-\infty,0]) + \mathcal{F}([0,\infty)) - \mathcal{F}(0) \\ &= (\dots + x^{-2} + x^{-1} + x^0) + (x^0 + x^1 + x^2 + \dots) - x^0 \\ &= \frac{1}{1 - \frac{1}{x}} + \frac{1}{1 - x} - 1 \\ &= \frac{-x}{1 - x} + \frac{1}{1 - x} = \frac{1 - x}{1 - x} - 1 = 0 \end{split}$$

number of points in a line is 0!

Example 2: valuation of interval

$$\begin{aligned} \mathsf{count}(x) &= \mathcal{F}([0,n]) = \mathcal{F}([k,\infty)) + \mathcal{F}((-\infty,n]) - \mathcal{F}((\infty, \mathit{infty})) \\ &= (x^k + x^{k+1} + \ldots) + \\ &(\ldots + x^{n-2} + x^{n-1} + x^n) + \\ &(\ldots + x^{-2} + x^{-1} + x^0 + x^1 + \ldots) \\ &= \frac{x^k}{1-x} + \frac{x^n}{1-x^{-1}} + 0 \\ &= \frac{x^k - x^{n+1}}{1-x} \\ \mathsf{count}(1) &= \mathsf{L'hospital} = (n+1) - k = n-k+1 \end{aligned}$$

Proof outline

- ▶ Algbra of polyhedra, $P(\mathbb{Q}^d)$
- $ightharpoonup [\]: \mathbb{Q}^d \to P(\mathbb{Q}^d)$
- ▶ Existence of $\mathcal{F}: P(\mathbb{Q}^d) \to \mathbb{C}(x)$, such that:
 - F is linear
 - ▶ P is a polyhedra, then $\mathcal{F}([P]) = \sum_{\vec{m} \in P \cap \mathbb{Z}^d} (x^{\vec{m}})$
 - $ightharpoonup \mathcal{F}([line]) = 0$ (important, allows modulo line decompositions)
- \triangleright $\mathcal{F}(P)(1) = \text{number of points in } P$
- reduction: F for cones gives full F
- reduction: F for simple cones gives F for cones

Caveats

- \blacktriangleright Do not understand subtleties of convergence arguments (how is evaluating at $\vec{1}$ correct?).
- ▶ No intuition for LLL, Lattice reduction.

Assuming \mathcal{F} for cones, derive full \mathcal{F} : Part 1 (Polytopes)

FIGURE 66. A polytope $P \subset \mathbb{R}^d$ and a cone $K \subset \mathbb{R}^{d+1}$ based on P.

- ▶ Write polytope as intersection of hyperplane + cone.
- $ightharpoonup \mathcal{F}(\mathsf{polytope}) = (\frac{d}{d \times_{d+1}} \mathcal{F}(\mathsf{cone}))(\langle \vec{1}^d, 0 \rangle)$
- ► $\mathcal{F}(\text{cone}) = x_{d+1}^{0}(...) + x_{d+1}(\text{POLYTOPE}) + x_{d+1}^{2}(...) + ...$
- ▶ $\frac{d}{dx_d}\mathcal{F}(\mathsf{cone})(\langle \vec{1}^d, 0 \rangle) = \mathtt{POLYTOPE}(\vec{1}) + 2 \cdot 0 \cdot (\ldots) + \ldots$
- $\frac{d}{dx_d}\mathcal{F}(\mathsf{cone})(\langle \vec{1}^d, 0 \rangle) = \mathtt{POLYTOPE}(\vec{1})$

Assuming \mathcal{F} for cones, derive full \mathcal{F} : Part 2 (Lines)

- ▶ Line = $\sum_{\text{dimension}}$ cone + cone point.
- ▶ Since line can be translated:

$$\forall \vec{x} \in L, L = \vec{x} + L$$
$$\forall x \in L, \mathcal{F}(L) = \mathcal{F}(L) + \mathcal{F}(\vec{x})$$
$$\mathcal{F}(L) = 0$$

$$count(x) = \mathcal{F}((-\infty, \infty))$$

$$= (\dots + x^{-2} + x^{-1} + x^{0}) + (x^{0} + x^{1} + x^{2} + \dots) - x^{0}$$

$$= \frac{1}{1 - \frac{1}{x}} + \frac{1}{1 - x} - 1$$

- ▶ In 1-d example, radius of convergence of left and right cone was 0
- ▶ Is this really well-defined? (what is this ring which admits $f(x) = ... + x^{-1} + x^0 + x^1 + ...$)

Assuming \mathcal{F} for simple cone, derive for cone

- ▶ Simple cone: $SK = co(u_i) = \{\sum_i \lambda_i u_i | \lambda_i \ge 0\}$, $u_i \in \mathbb{Z}^d$, u_i are linearly independent.
- ▶ Cone: $C = co(u_i)$, $u_i \in \mathbb{Q}^d$
- ▶ inclusion exclusion: decompose cone into simple cones.

${\mathcal F}$ for simple cones: Part 1

- ▶ Consider the positive orthant in 3D: $P \subset \mathbb{Q}^3 = \{(x, y, z) \mid x, y, z \geq 0\}$
- P = cone((1,0,0),(0,1,0),(0,0,1))
- ▶ this is a simple cone, and counting is simple:

$$\mathcal{F}([P]) = \sum_{i,j,k \in [0,\infty)} x^i y^j z^k$$
$$= \sum_{i=0}^{\infty} x^i \left(\sum_{j=0}^{\infty} y^j \left(\sum_{k=0}^{\infty} z^k \right) \right)$$
$$= \frac{1}{1-x} \cdot \frac{1}{1-y} \cdot \frac{1}{1-z}$$

\mathcal{F} for simple cones: Part 2

- General story is similar
- \triangleright $SK = co(u_i)$, u_i linearly independent.
- ▶ Since u_i is linearly independent, some points $\vec{x} \in cone(u_i)$ have unique representation $\vec{x} = \sum_i \lambda_i u_i$, $\lambda_i \in \mathbb{Z}$
- fundamental paralellopiped (Π) will tile the plane.
- ▶ We can count the \vec{x} , and make \vec{x} responsible for the "tile" of skipped points.

$$\mathcal{F}(SK) = \left(\sum_{\vec{p} \in \Pi \cap \mathbb{Z}^d} x^{\vec{p}}\right) \prod_{i \text{ tile starting point } \vec{x}} \frac{1}{1 - x^{u_i}}$$

References

- Lattice Points, Polyhedra, and Complexity: Alexander Barvinok
- ▶ Integer points in polyhedra: Alexander Barvinok

Thanks!

Questions?

Assuming \mathcal{F} for cones, derive full \mathcal{F} : Part 1.2 (Polytopes)

FIGURE 36. Representing the interior of a polytope as the sum of the interiors of its tangent cones at the vertices modulo polyhedra with lines.