TRABAJO PRÁCTICO Nº3

Límite de una función RESUELTOS

Ejercicio Nº1

a) Utilice la gráfica de "f" para establecer el valor de cada cantidad si ésta existe. Si no existe, explique por qué.

$$i) \lim_{x \to 2^{-}} f(x)$$

Se lee el límite de la función "f" cuando "x" tiende a 2 por la izquierda (signo menos)

$$\lim_{x \to 2^-} f(x) = 3$$

$$ii) \lim_{x \to 2^+} f(x)$$

Se lee el límite de la función "f" cuando "x" tiende a 2 por la derecha (signo mas)

$$\lim_{x \to 2^+} f(x) = 1$$

$$iii) \lim_{x \to 2} f(x)$$

El límite general o total (o sea, no hay menos ni más en el exponente) existe cuando los límites laterales son iguales, y es ese mismo valor:

$$\lim_{x\to 2} f(x) = \nexists \to no \ existe$$

$$f(2) = 3$$

*no toma el valor igual a "1", porque hay un punto hueco ahí.

$$v)\lim_{x\to 4}f(x)$$

$$\lim_{x \to 4} f(x) = 4$$

$$\rightarrow f(4) = \nexists$$

*no existe la función en ese punto porque hay un punto hueco ahí.

b) Para la función "g", que se grafica a continuación, determine los límites siguientes o explique por qué no existen.

$$i)\lim_{x\to 1^-}g(x)$$

$$\lim_{x \to 1^{-}} g(x) = 1$$

$$ii)\lim_{x\to 1^+}g(x)$$

$$\lim_{x\to 1^+}g(x)=0$$

$$iii) \lim_{x \to 1} g(x)$$

$$\lim_{x\to 1}g(x)=\nexists$$

$$iv)\lim_{x\to 2}g(x)$$

$$\lim_{x \to 2} g(x) = 1$$

$$v)\lim_{x\to 3}g(x)$$

$$\lim_{x\to 3}g(x)=0$$

$$\rightarrow g(3) = 1$$

*no existe la función en ese punto porque hay un punto hueco ahí.

Ejercicio Nº2

Evalúe el límite y justifique cada paso indicando las leyes de los límites apropiadas.

c)
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6}$$

Cuando tengo que calcular un límite analíticamente o matemáticamente, se reemplaza el valor al cual tiende la variable, en el límite, en la función:

$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6} = \sqrt{(-2)^4 + 3(-2) + 6} = \sqrt{16} = 4$$

d)
$$\lim_{x \to 2} (1 + \sqrt[3]{x}) (2 - 6x^2 + x^3)$$

$$\lim_{x \to 2} (1 + \sqrt[3]{x}) \cdot \lim_{x \to 2} (2 - 6x^2 + x^3)$$

$$(1 + \sqrt[3]{2})(2 - 6 \cdot 2^2 + 2^3) = (1 + \sqrt[3]{2})(-14)$$

Ejercicio Nº3

Encuentre cada uno de los siguientes límites si éstos existen. Si el límite no existe, explique por qué.

a)
$$\lim_{x \to -6} \frac{2x + 12}{|x + 6|}$$

Se analiza el denominador como si fuese una función por tramos:

$$|x+6| = \begin{cases} x+6 & \text{si } x+6 \ge 0 \to x \ge -6 \\ -(x+6) & \text{si } x+6 < 0 \to x < -6 \end{cases}$$

Entonces calculamos los límites laterales y luego el límite general o total:

$$\lim_{x \to -6^+} \frac{2x+12}{x+6} = \frac{2(-6)+12}{-6+6} = \frac{0}{0} \to indeterminación$$

*Indeterminación es cuando la función no está definida en ese punto (podría ser un punto hueco)

$$\lim_{x \to -6^+} \frac{2(x+6)}{x+6} = 2$$

$$\lim_{x \to -6^{-}} \frac{2x+12}{-(x+6)} = \frac{2(-6)+12}{-(-6+6)} = \frac{0}{0} \to indeterminación$$

*Indeterminación es cuando la función no está definida en ese punto (podría ser un punto hueco)

$$\lim_{x \to -6^+} \frac{2(x+6)}{-(x+6)} = -2$$

$$\lim_{x \to -6} \frac{2x + 12}{|x + 6|} = \nexists$$

*no existe porque los límites laterales son distintos

Ejercicio Nº4

a) Sea
$$f(x) = \begin{cases} x^2 + 2 \sin x < 1 \\ (x - 1)^2 \sin x \ge 1 \end{cases}$$

i) Encuentre $\lim_{x\to 1^-} f(x)$ y $\lim_{x\to 1^+} f(x)$

$$\lim_{x \to 1^{+}} f(x)$$

$$\lim_{x \to 1^{-}} f(x)$$

$$\to \lim_{x \to 1^{-}} x^{2} + 2 = 1^{2} + 2 = 3$$

$$\lim_{x \to 1^{+}} f(x)$$

$$\to \lim_{x \to 1^{+}} (x - 1)^{2} = (1 - 1)^{2} = 0$$

ii) ¿Existe $\lim_{x\to 1} f(x)$?

$$\to \lim_{x\to 1} f(x) = \nexists$$

*no existe porque los límites laterales son distintos

iii) Trace la gráfica de la función

