SEOUENCE LISTING

<110> WANG, XIAODONG LIU, XUESONG

<120> DNA FRAGMENTATION FACTOR INVOLVED IN APOPTOSIS

<130> UTSD:546USD1

<140> UNKNOWN

<141> 2000-12-22

<150> 09/061,702 <151> 1998-04-16

<160> 21

<170> PatentIn Ver. 2.1

<210> 1

<211> 2839

<212> DNA

<213> Homo sapiens

<400> 1

qqcacccqqc ctqtqccaqc ttqcagaqct caccagqtqc agacccctqc gqccaggqcg 60 aggacggatc tgagcagctg ggcagcaggt gccaccgcct gtgggaccca gagggcttga 120 ggacatctgc aatgctccag aagcccaaga gcgtgaagct gcgggccctg cgcagcccga 180 ggaagttegg cgtggctggc cggagctgcc aggaggtgct gcgcaagggc tgtctccgct 240 tocagetece tgagegeggt teceggetgt geetgtaega ggatggeaeg gagetgaegg 300 aagattactt ccccagtgtt cccgacaacg ccgagctggt gctgctcacc ttgggccagg 360 cctggcaggg ctatgtgagc gacatcaggc gcttcctcag tgcatttcac gagccacagg 420 tggggctcat ccaggccgcc cagcagctgc tgtgtgatga gcaggcccca cagaggcaga 480 ggctgctggc tgacctcctg cacaacgtca gccagaacat cgcggccgag acccgggctg 540 aggacccqcc qtqqtttgaa ggcttggagt cccgatttca gagcaagtct ggctatctga 600 gatacagetg tgagageegg ateeggagtt acetgaggga ggtgagetee taceeeteea 660 cagtgggtgc ggaggctcag gaggaattcc tgcgggtcct cggctccatg tgccagaggc 720 teeggteeat geagtacaat ggeagetaet tegacagagg ageeaaggge ggeageegee 780 tetgeacace ggaaggetgg tteteetgee agggteeett tgaeatggae agetgettat 840 caagacactc catcaacccc tacagtaaca gggagagcag gatcctcttc agcacctgga 900 acctggatca cataatagaa aagaaacgca ccatcattcc tacactggtg gaagcaatta 960 aggaacaaga tggaagagaa gtggactggg agtattttta tggcctgctt tttacctcag 1020 agaacctaaa actagtgcac attgtctgcc ataagaaaac cacccacaag ctcaactgtg 1080 acccgagcag aatctacaaa ccccagacaa ggttgaagcg gaagcagcct gtgcggaaac 1140 gccagtgaca cgtacacacc acgtcctggt ctttgtttga ggcctgacgt gggcatcatt 1200 ttaacaggtg cettttttgt ttttttgttt ttegttttt tggtcaetee agtageteet 1260 ggaaaaaacc ttaaaaaatg tttcctccaa atctgatttc attacatttc tgaattgttg 1320 ggtttttttt tgttgttttg ttttgttttg tagatggagt ttcacttttg ttgcccaggc 1380

```
tqqaqtqtag tggcgcgatc tcggctcagc ctcccgagta gctgggatta caggcatgtg 1440
ccaccacgcc cggctaatgt ttgtattttt agtagagacg gggtttcacc atgttggtca 1500
qqctqqtctc aaactcctga cctcaqqtga tccqcccacc tcaqcctccc aaagtgctgg 1560
gatgacaggt gtgagccact gcgcccagcc tgaatcattt cttatacctt ctgacagccc 1620
aacttccaqa ggacagetet ggggtacteg ttggatgtet gtgagtacet ggtcatacgg 1680
gtcagtaggg ataagaattg tctctgggct gaggaattct tctgttctct ggtttcacca 1740
gcgttgggtt tgctcatgta atgtggtcac catactcaaa tggtgtcatg gctgaagttg 1800
gccaccttgc ttgagggaca agttgtttat gtatcagctc tctgctgggt ctccctttcc 1860
atggcaaatg ggcagctcca tcctcttgat cttctaaatg cccaaaagag gtgtcatgct 1920
ttgggggtac gatgtttata ctccgtaaag aacatacaag gacattcact gctgattttt 1980
ttttttgttt gtttgagaca gggtctcact ctgtcgctca ggctggagtg cagtgatgca 2040
atcttqqctc actqcaacct ccqcctctca ggttcaagtg gttctcctgc ctcagcctcc 2100
caagtagctg ggattacagg cacctaccac cagggccagc taatttttgt atgtttagta 2160
qtaacqqqqt ttcaccatqt tqqccagqct gttctcqaac tcctgacctc aggtgatctg 2220
cccgcctcgg tctcccaaag tgctgggatt acaggcatga gccactgcac ctgacctgct 2280
quattyttta taatqqcaaq aaataggaaa ccccccaatg tctgttgaac agctatcacg 2340
ttgaaccacg tgaaactgct gttttctagg ccaaaaatgg tgagcgatca tttatttcat 2400
qattcaacct gatacattta catagtgcaa aactgtgtca cagtttcagg cttttatgag 2460
gaaagcgttt ctgtgtagaa actggaagct gttcagggca tcggcagctg aaccctgctc 2520
cqttqqtcaq cqttactatc atctcqqatc atatqqaqct catqtcaqcc gtgtgggtgg 2580
cgggtgcaca gagacggtct ggaaggaaac acgcggatct gaacagcagt aatcctgggg 2640
qatacqqqqq ttqqqctaqa ttacaqaqqq ctcattttct acqtcatqta ttttatqata 2700
cttgaatttt ttgaaatggg catttatttt ataacatgtt aaaatgtact ttttaaatta 2760
agtcattttg taatatttga atttttacat ttgttgtaca atcaggaaaa gcaataaaga 2820
                                                                  2839
tttttcaaaa ataaaaaaa
```

```
<210> 2
<211> 338
<212> PRT
<213> Homo sapiens
```

<400> 2

Met Leu Gln Lys Pro Lys Ser Val Lys Leu Arg Ala Leu Arg Ser Pro 1 5 10

Arg Lys Phe Gly Val Ala Gly Arg Ser Cys Gln Glu Val Leu Arg Lys 20 25 30

Gly Cys Leu Arg Phe Gln Leu Pro Glu Arg Gly Ser Arg Leu Cys Leu $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Tyr Glu Asp Gly Thr Glu Leu Thr Glu Asp Tyr Phe Pro Ser Val Pro 50 55 60

Asp Asn Ala Glu Leu Val Leu Leu Thr Leu Gly Gln Ala Trp Gln Gly 65 70 75 80

Tyr Val Ser Asp Ile Arg Arg Phe Leu Ser Ala Phe His Glu Pro Gln · 85 Val Gly Leu Ile Gln Ala Ala Gln Gln Leu Leu Cys Asp Glu Gln Ala Pro Gln Arg Gln Arg Leu Leu Ala Asp Leu Leu His Asn Val Ser Gln Asn Ile Ala Ala Glu Thr Arg Ala Glu Asp Pro Pro Trp Phe Glu Gly Leu Glu Ser Arg Phe Gln Ser Lys Ser Gly Tyr Leu Arg Tyr Ser Cys Glu Ser Arg Ile Arg Ser Tyr Leu Arg Glu Val Ser Ser Tyr Pro Ser Thr Val Gly Ala Glu Ala Gln Glu Glu Phe Leu Arg Val Leu Gly Ser Met Cys Gln Arg Leu Arg Ser Met Gln Tyr Asn Gly Ser Tyr Phe Asp Arg Gly Ala Lys Gly Gly Ser Arg Leu Cys Thr Pro Glu Gly Trp Phe Ser Cys Gln Gly Pro Phe Asp Met Asp Ser Cys Leu Ser Arg His Ser Ile Asn Pro Tyr Ser Asn Arg Glu Ser Arg Ile Leu Phe Ser Thr Trp Asn Leu Asp His Ile Ile Glu Lys Lys Arg Thr Ile Ile Pro Thr Leu 260 1 Val Glu Ala Ile Lys Glu Gln Asp Gly Arg Glu Val Asp Trp Glu Tyr Phe Tyr Gly Leu Leu Phe Thr Ser Glu Asn Leu Lys Leu Val His Ile Val Cys His Lys Lys Thr Thr His Lys Leu Asn Cys Asp Pro Ser Arg Ile Tyr Lys Pro Gln Thr Arg Leu Lys Arg Lys Gln Pro Val Arg Lys

)> 3 l> 16	589														
<212	2> DN	NΑ														
<213	3> нс	omo s	sapie	ens												
<220)> l> CI	าร														
	2> (1		(11	105)												
<400																
gcgt	cgad	ccg a	aacta	acato	ct co	ccgg	caggo	c tgo	cggaa	aggg	ggto	cgagt	cag a	aagga	accgcc	60
gcto	ccggc	cct o	ccg	egaet	ct ct	cgaa	aggto	g ggd	caggt	ccc	acct	tgt	gga (g gag et Glu 1	118
														act Thr		166
aag	ccg	tgt	ctg	ctg	cgc	cgc	aac	tac	agc	cgc	gaa	cag	cac	ggc	gtg	214
Lys	Pro 20	Cys	Leu	Leu	Arg	Arg 25	Asn	Tyr	Ser	Arg	Glu 30	Gln	His	Gly	Val	
-	-		-		_	-	_							att		262
Ala 35	Ala	Ser	Cys	Leu	Glu 40	Asp	Leu	Arg	Ser	Lys 45	Ala	Cys	Asp	Ile	Leu 50	
-		_	_		-									gag		310
Ala	Ile	Asp	Lys	Ser 55	Leu	Thr	Pro	Val	Thr 60	Leu	Val	Leu	Ala	Glu 65	Asp	
														tcc		358
Gly	Thr	Ile	Val 70	Asp	Asp	Asp	Asp	Tyr 75	Phe	Leu	Cys	Leu	Pro 80	Ser	Asn	
	_			-	_	_	_							aac		406
Thr	Lys	Phe 85	Val	Ala	Leu	Ala	Ser 90	Asn	Glu	Lys	Trp	Ala 95	Tyr	Asn	Asn	
														gta		454
Ser	100	GTÀ	GTÀ	Thr	Ala	Trp 105	TTE	ser	GIn	GLU	Ser 110	rne	Asp	Val	Аѕр	

-		-				ggg Gly										502
_		-		_		agc Ser										550
_	-		-	-	-	ccc Pro	_		_	_	-	_	-			598
_	-	-	_		-	cag Gln		_	_							646
	-		-		-	gtg Val 185	_	_		_			-			694
		-	-	_		aaa Lys			-		_		_	_	-	742
			-	-		ggt Gly										790
-	-	-				tcg Ser	_	-		_						838
						cag Gln										886
						aag Lys 265										934
_			_		_	aag Lys	-									982
						ctg Leu										1030

cgg agc atc tca gca agc aag gcc tca cca cct ggt gac ctg cag aat Arg Ser Ile Ser Ala Ser Lys Ala Ser Pro Pro Gly Asp Leu Gln Asn 310 315 cct aag cga gcc aga cag gat ccc aca tagcagcagc gggaagtgtg 1125 Pro Lys Arg Ala Arg Gln Asp Pro Thr 325 ccaaqqaaqc tctqtqqcqt tqtqttattq qtagacaccc tcagcctcat catttgacta 1185 cctatqtact actctacccc ctgccttaga gcaccttcca gagaagctat tccaggtctc 1245 aacatacgcc qttccaccaa ttttttttt agccccacca gcttcaggac ttctgccaat 1305 tttgaatgat atagctgcac caacaatatc ccgcctcctc taattacata tgatgttctc 1365 tgttcaaaag taattggcag tgattggcca ggcgcagtgg ctcacgcctg taatcccagc 1425 actgggaggc cgagggggc ggatcgtgaa gtcaggagat cgagaccatc ctggctaaca 1485 tgqtqaaacc ctgtctctac taaaaataca aaaaaaatta gccagccatg gtggcgggcg 1545 cctgtaatcc cagctacttg ggaggctgag gcaggagaat ggcatgaacc tgggaggcag 1605 agettgeagt gagetgagat tgegeeactg cacteeagee tgggeaacag agegagaete 1665 1689 cgtctcaaaa aaaaaaaaaa aaaa <210> 4 <211> 331 <212> PRT <213> Homo sapiens <400> 4 Met Glu Val Thr Gly Asp Ala Gly Val Pro Glu Ser Gly Glu Ile Arg 10 15 1 5 Thr Leu Lys Pro Cys Leu Leu Arg Arg Asn Tyr Ser Arg Glu Gln His 20 25 30 Gly Val Ala Ala Ser Cys Leu Glu Asp Leu Arg Ser Lys Ala Cys Asp 35 40 45

Ile Leu Ala Ile Asp Lys Ser Leu Thr Pro Val Thr Leu Val Leu Ala 50 55 60

Glu Asp Gly Thr Ile Val Asp Asp Asp Tyr Phe Leu Cys Leu Pro

Ser Asn Thr Lys Phe Val Ala Leu Ala Ser Asn Glu Lys Trp Ala Tyr

	130	
Asp 145	Leu	Gli
Leu	Arg	Glr
Gln	Val	Lei
Gln	Leu	Ту: 195
Gln	Glu 210	Glı
Thr 225	Gly	Me
Ile	Leu	Th:
Ser	Gln	Ası

				85					90					95	
Asn	Asn	Ser	Asp 100	Gly	Gly	Thr	Ala	Trp 105	Ile	Ser	Gln	Glu	Ser 110	Phe	Asp
Val	Asp	Glu 115	Thr	Asp	Ser	Gly	Ala 120	Gly	Leu	Lys	Trp	Lys 125	Asn	Val	Ala
Arg	Glu 130	Leu	Lys	Glu	Asp	Leu 135	Ser	Ser	Ile	Ile	Leu 140	Leu	Ser	Glu	Glu
Asp 145	Leu	Gln	Met	Leu	Val 150	Asp	Ala	Pro	Cys	Ser 155	Asp	Leu	Ala	Gln	Glu 160
Leu	Arg	Gln	Ser	Cys 165	Ala	Thr	Val	Gln	Arg 170	Leu	Gln	His	Thr	Leu 175	Gln
Gln	Val	Leu	Asp 180	Gln	Arg	Glu	Glu	Val 185	Arg	Gln	Ser	Lys	Gln 190	Leu	Leu
Gln	Leu	Tyr 195	Leu	Gln	Ala	Leu	Glu 200	Lys	Glu	Gly	Ser	Leu 205	Leu	Ser	Lys
Gln	Glu 210	Glu	Ser	Lys	Ala	Ala 215	Phe	Gly	Glu	Glu	Val 220	Asp	Ala	Val	Asp
Thr 225	Gly	Met	Ser	Arg	Glu 230	Thr	Ser	Ser	Asp	Val 235	Ala	Leu	Ala	Ser	His 240
Ile	Leu	Thr	Ala	Leu 245	Arg	Glu	Lys	Gln	Ala 250	Pro	Glu	Leu	Ser	Leu 255	Ser
Ser	Gln	Asp	Leu 260	Glu	Leu	Val	Thr	Lys 265	Glu	Asp	Pro	Lys	Ala 270	Leu	Ala
Val	Ala	Leu 275	Asn	Trp	Asp	Ile	Lys 280	Lys	Thr	Glu	Thr	Val 285	Gln	Glu	Ala
Cys	Glu 290	Arg	Glu	Leu	Ala	Leu 295	Arg	Leu	Gln	Gln	Thr 300	Gln	Ser	Leu	His
Ser 305	Leu	Arg	Ser	Ile	Ser 310	Ala	Ser	Lys	Ala	Ser 315	Pro	Pro	Gly	Asp	Leu 320
Gln	Asn	Pro	Lys	Arg	Ala	Arg	Gln	Asp	Pro	Thr					

```
<210> 5
       <211> 26
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> modified_base
       <222> (6)..(12)
       <223> N = Inosine
       <220>
       <221> modified_base
       <222> (11)..(15)
       <223> R = A \text{ or } G
<220>
       <221> modified_base
       <222> (18)..(24)
       \langle 223 \rangle Y = C \text{ or } T
       <220>
       <221> modified base
Ħ
       <222> (10)
H
       \langle 223 \rangle W = A or T
N
N
       <220>
N
       <223> Description of Artificial Sequence: Synthetic
             Primer
       <400> 5
                                                                                26
       gaggtnganw rngartaytt ytaygg
       <210> 6
       <211> 20
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Description of Artificial Sequence: Synthetic
             Primer
       <400> 6
                                                                                20
       atttaggtga cactatagaa
```

```
<210> 7
       <211> 26
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> modified_base
       <222> (3)
       <223> R = A \text{ or } G
       <220>
       <221> modified_base
       <222> (6)..(24)
       \langle 223 \rangle Y = C \text{ or } T
       <220>
       <221> modified_base
<222> (15)..(21)
       <223> N = Inosine
       <220>
       <223> Description of Artificial Sequence: Synthetic
              Primer
-
Ξ
       <400> 7
ļ.
       gartayttyt ayggnytnyt nttyac
N
<210> 8
       <211> 17
       <212> DNA
       <213> Artificial Sequence
       <220'>
       <221> modified_base
       <222> (3)..(9)~
       \langle 223 \rangle Y = C \text{ or } T
       <220>
       <221> modified_base
       <222> (6)
       \langle 223 \rangle N = A, C, G or T
       <220>
       <221> modified_base
```

9

<222> (12)

```
<220>
        <221> modified_base
        <222> (15)
        <223> D = G, C or A
       <220>
       <223> Description of Artificial Sequence: Synthetic
              Primer
       <400> 8
       gtytgnggyt trtadat
                                                                            17
       <210> 9
       <211> 30
       <212> DNA
       <213> Homo sapiens
 EI 171 EI 171 E
       <400> 9
       tcagagaacc taaaactagt gcacattgtc
                                                                           30
       <210> 10
       <211> 30
퍞
      <212> DNA
₩
      <213> Homo sapiens
ħJ
Ţ
      <400> 10
T.
      tgccataaga aaaccaccca caagctcaac
30
<210> 11
      <211> 31
      <212> DNA
      <213> Homo sapiens
      <400> 11
      atccgatatc atgctccaga agcccaagag c
                                                                          31
      <210> 12
      <211> 58
      <212> DNA
      <213> Homo sapiens
      <400> 12
```

 $\langle 223 \rangle$ R = A or G

	atccctcgag t	cacttgtcg	tcgtcgtcct	tgtagtcctg	gcgtttccgc	acaggctg	58
	<210> 13						
	<211> 43						
	<212> DNA						
	<213> Homo s	apiens					
	<400> 13						
	cccctctaga a	tagaaggag	atatgctcca	gaagcccaag	agc		43
	<210> 14						
	<211> 52						
	<212> DNA						
	<213> Homo sa	apiens					
	<400> 14						
	atccctcgag to	caatgatga H	tgatgatgat	gctggcgttt	ccgcacaggc ·	tg	52
i.	<210> 15						
Ó	<211> 40						
<u></u>	<212> DNA						
Ji	<213> Homo sa	piens					
i	<400> 15						
tast tast trees trees the	atccctcgag ga	aggagata t	ggaggtgac	cggggacgcc			40
¥	<210> 16						
= =	<211> 33						
펎	<212> DNA						
	<213> Homo sa	piens					
	<400> 16						
	agaatactcg ag	ctatgtgg g	atcctgtct	ggc			33
	<210> 17			\ ·			
	<211> 30						
	<211> 30 <212> DNA						
	<213> Homo sag	piens					
	<400> 17		,				
	gacatctcat ato	gctccaga a	gcccaagag				30

```
<210> 18
      <211> 30
      <212> DNA
     <213> Homo sapiens
     <400> 18
     gtcaggcctc gagcaaagac caggacgtgg
     <210> 19
     <211> 9
     <212> PRT
     <213> Mus musculus
     <400> 19
     Glu Val Asp Trp Glu Tyr Phe Tyr Gly
                        5
<210> 20
     <211> 9
      <212> PRT
     <213> Mus musculus
     <400> 20
     Glu Tyr Phe Tyr Gly Leu Leu Phe Thr
                       5
H
n
N
     <210> 21
     <211> 6
      <212> PRT
      <213> Mus musculus
      <400> 21
      Ile Tyr Lys Pro Gln Thr
```

1