Steering Angle Prediction using Image Processing & NN

Dhavan Raveendranath - <u>dhavanraveendra@oakland.edu</u> Sunish Vadakkeveetil - <u>svadakkeveetil@oakland.edu</u>

GitHub Link:

https://github.com/svadakkeveetil/csi5130_steer_angle_pred

Agenda

- Introduction
- Related Work
- Data
- Extraction
- Models
- Results
- Conclusion

Introduction

- Levels of Autonomy
- Features required multiple sensors to perceive the environment
- 3 inputs Brake, Throttle and Steering
- Research on Drive by wire systems to achieve L4+ autonomy
- Accurate estimation & control of steering wheel angle important for safety & stability of system

Features

warning

warning

lane departure

control

SAE J3016™ LEVELS OF DRIVING AUTOMATION™

Learn more here: sae.org/standards/content/j3016 202104

wheel may or

conditions

may not be

installed

control at the

same time

Where is the data coming from?

NVIDIA DRIVE™ PX

 Udacity self driving Challenge - Used NVIDIA drive to extracted CAN data and camera images from cameras mounted

Data in ROSBAG format

Information of ROSBAG

can bus dbw/can rx center camera/camera info center_camera/image_color/compressed ecef/ imu/data left_camera/camera_info left camera/image color/compressed right camera/camera info right_camera/image_color/compressed time reference vehicle/brake info report vehicle/brake_report vehicle/dbw_enabled vehicle/filtered accel vehicle/fuel_level_report vehicle/gear_report vehicle/gps/fix vehicle/gps/time vehicle/gps/vel vehicle/imu/data raw vehicle/joint_states vehicle/misc_1_report vehicle/sonar_cloud vehicle/steering report vehicle/surround report vehicle/suspension_report vehicle/throttle info report vehicle/throttle_report vehicle/tire pressure report vehicle/twist controller/parameter descriptions vehicle/twist controller/parameter updates vehicle/wheel_speed_report velodyne_packets

0m00s 0m05s 0m10s 0m15s 0m20s

Preparing the Data - Extracting Images

ROSBAG Files Center Camera Steering Angle Creates .jpg - Images Creates .csv Data File

PreProcessing Data

Load Data

Image Preprocessing

X_train .npy Files Save Image Data

Y_train .npy Files Save Steering Angle

Models

- Multi CNN layer with single FC
- ReLu vs Batch Normalization
- NVIDIA model
- Large FC layers

Figure 4: CNN architecture. The network has about 27 million connections and 250 thousand parameters.

Model Training

Different Models

Model	CNN Layers	Activation Layer	Fully Connected Layer/ Dense Layer	Issues
Comma Model Prelu	3	PReLu	1 (512 units)	No
Comma model Irelu	3	LReLu	1 (512 units)	No
Comma Model Batch Normalization	3	BN & ReLu	1 (512 units)	No
Comma Model ReLu	2	ReLu	1 (256 units)	No
Comma Model Prelu LSTM	3	PReLu & 1 LSTM	1 (512 units)	No
Comma Model Large	2	ReLu	1 (1024 units)	Yes (Same predictions for test set)
Comma Model Large Dropouts	2	ReLu	1 (1024 units) with dropouts 0.5	No
NVIDIA	5	ReLu	3 (100, 50, 10 units)	Yes (Same predictions for test set)

Results

Model	MSE	RMSE
Comma Model PRelu	0.00864	0.09295160031
Comma model LReLu	0.03348	0.1829754082
Comma Model Batch Normalization	0.05733	0.2394368393
Comma Model 6	0.00662	0.08136338243
Comma Model Prelu LSTM	0.01642	0.1281405478
Comma Model Prelu Large with Drop out	0.01307	0.1143241007
Rambo	0.00324	0.05692099788

Comma Model with Prelu as activation layer performed the best comparing the RMSE values

Visualization

- Model 6 with multiple CNN and a single dense layer and ReLu activation performed the best
- Output visualization of estimated vs actual was created using PyGame

Conclusion

- Steering wheel angle recognition using image processing and neural networks.
- NN models based on CNN & dense layers
- ReLu & Batch normalization used as activation layers
- 6 model evaluated using MSE and RMSE

Next Steps

- Analyze the NVIDIA and using large dense layers
- Hyperparameter tuning for different filters and batch size
- Data augmentation to include the effect of shadow and daylight savings
- Evaluate the performance of using transfer learning and LSTM

Thank You Any Questions?