# DEL 1 Uten hjelpemidler

# Oppgave 1 (20 poeng)

- a) Skriv på standardform
  - 1) 36 200
  - 2) 0,000 642
  - 3) 53 millioner
  - 4)  $0.034 \cdot 10^{-2}$
- b) Tegn av tabellen nedenfor i besvarelsen din og fyll inn det som mangler.

| Prosentvis endring | Vekstfaktor |
|--------------------|-------------|
| + 2 %              |             |
| - 68 %             |             |
|                    | 0,25        |
|                    | 2           |

- c) Regn ut
  - $1) \quad a^4 \cdot \left(a^2\right)^{-3} \cdot a^0$

Eksamen MAT1015 Matematikk 2P Våren 2011

 $2) \quad \frac{2^{-3} \cdot 4^3}{8^2}$ 

d) Nedenfor ser du hvor mange mål som ble scoret i fotballkampene mellom Rosenborg og Brann i Eliteserien i årene fra 2005 til 2009:

5 5 0 4 3 5 2 0 2 2



- 1) Finn gjennomsnittet og medianen for dette datamaterialet.
- 2) Sett opp resultatene i en tabell. Tabellen skal vise frekvens og kumulativ frekvens.
- 3) Hva er den kumulative frekvensen for to mål, og hva betyr dette?
- e) Ved en skole er det 120 elever. Elevrådet skal arrangere aktivitetsdag, og elevene kan melde seg på én av fire turer.

Elevene fordeler seg slik:

| Tur                          | Antall<br>elever |
|------------------------------|------------------|
| Tur 1 (Robåt)                | 15               |
| Tur 2 (Sykkel)               | 30               |
| Tur 3 (Høgfjell, kort løype) | 40               |
| Tur 4 (Høgfjell, lang løype) | 35               |

Gjør beregninger og lag et sektordiagram som viser fordelingen. Det skal gå klart fram hvor mange grader hver av sektorene i diagrammet er på.

f) En vare selges i to forskjellige butikker. Prisen er den samme i begge butikkene. I butikk A settes prisen opp med 20 %. I butikk B settes prisen først opp med 10 % og så etter noen dager med 10 % til.

Marit påstår at prisen da fremdeles er den samme i begge butikkene.

Forklar Marit hvorfor dette ikke er riktig. Bruk gjerne et eksempel når du forklarer.



g) I en 2P-gruppe er det 10 elever. Læreren har undersøkt hvor mye tid elevene bruker på matematikkleksene i løpet av en uke.

Resultatene er gitt i tabellen nedenfor.

| Antall minutter | Antall elever |
|-----------------|---------------|
| [0,30]          | 1             |
| [30,60]         | 3             |
| [60,120⟩        | 5             |
| [120,240]       | 1             |

Finn gjennomsnittet for dette grupperte datamaterialet.

h) I tallsystemet som vi vanligvis bruker, er grunntallet 10. I totallsystemet er grunntallet 2. Det finnes også tallsystemer med andre grunntall.

Tegn av tabellen nedenfor i besvarelsen din, gjør beregninger og fyll inn det som mangler.

| Tallsystem med grunntall 10 | Tallsystem med grunntall 2 | Tallsystem<br>med grunntall 4 |
|-----------------------------|----------------------------|-------------------------------|
| 27                          |                            | 1234                          |
|                             | 1010102                    |                               |



matematikk.net

Eksamen MAT1015 Matematikk 2P Våren 2011

### Oppgave 2 (4 poeng)

Stig har fått en kakeoppskrift fra tante Mathilde i Amerika. I oppskriften står det at kaken skal stekes på 350 °F. Han lurer på hvor mange grader celsius dette tilsvarer.

Stig har en gradestokk utenfor kjøkkenvinduet som viser både celsiusgrader og fahrenheitgrader. Se bildet til høyre.

a) Tegn av tabellen nedenfor i besvarelsen din. Bruk gradestokken til høyre og fyll ut tabellen.

| ۰F  | 0 |    | 100 |
|-----|---|----|-----|
| ° C |   | 10 |     |

- b) Tegn et koordinatsystem med grader fahrenheit langs x aksen og grader celsius langs y aksen. Marker verdiene fra tabellen i a) som punkter i koordinatsystemet.
- c) Tegn en rett linje som går gjennom punktene. Bruk linjen til å finne ut hvor mange grader celsius Stig skal steke kaken på.



Kilde: Utdanningsdirektoratet



## DEL 2 Med hjelpemidler

## Oppgave 3 (6 poeng)



Vibeke har fått en bakterieinfeksjon og tar tabletter med antibiotika. En tablett inneholder 220 mg antibiotika. Antall milligram antibiotika i kroppen reduseres med 11 % hver time.

- a) Vibeke tar en tablett. Hvor mange milligram antibiotika er det igjen i kroppen hennes
  - 1) etter én time?
  - 2) etter åtte timer?

Vibeke tar en tablett hver åttende time.

- b) Hvor mange milligram antibiotika har hun i kroppen rett etter at hun har tatt sin
  - 1) andre tablett?
  - 2) tredje tablett?
- c) Skisser grafen som viser hvor mange milligram antibiotika Vibeke til enhver tid har i kroppen det første døgnet etter at hun begynte å ta tablettene.



### Oppgave 4 (9 poeng)

Politiet har gjennomført fartskontroller på to veistrekninger. Den ene veistrekningen har fartsgrense 50 km/h og den andre 80 km/h. Nedenfor ser du resultatene fra hver av de to kontrollene.

| Fartsgrense<br>50 km/h | 50           |  |  |
|------------------------|--------------|--|--|
| Fart                   | Antall biler |  |  |
| [45,50)                | 25           |  |  |
| [50,55)                | 26           |  |  |
| [55,60)                | 23           |  |  |
| [60,65                 | 3            |  |  |
| [65,70)                | 2            |  |  |
| [70,75                 | 1            |  |  |

| Fartsgrense<br>80 km/h | 80           |
|------------------------|--------------|
| Fart                   | Antall biler |
| [70,75]                | 7            |
| [75,80)                | 43           |
| [80,85]                | 17           |
| [85,90)                | 8            |
| [90,95]                | 0            |
| [95,125]               | 5            |

- a) Presenter dataene fra tabellene ovenfor i hvert sitt stolpediagram.
- b) Hvor mange prosent av bilførerne kjører 10 % eller mer over fartsgrensen i hver av de to kontrollene?
- c) Finn gjennomsnittsfarten til bilene i hver av de to kontrollene.
- d) Hvor mange prosent over fartsgrensen er gjennomsnittsfarten til bilene i hver av de to kontrollene?
- e) Bruk svarene i a), b), c) og d) til å vurdere om bilførerne kjører mest lovlydig på veistrekningen med fartsgrense 50 km/h eller på veistrekningen med fartsgrense 80 km/h.



#### Oppgave 5 (9 poeng)



Rebecca er på ferie i Kina. Hun vil kjøpe sko til kjæresten, Isak, hjemme i Oslo. Kinesiske skostørrelser er annerledes enn det hun er vant med fra Norge.

Nedenfor ser du hva Rebecca finner ut om kinesiske herresko.

- Den minste størrelsen er 20. Sko i størrelse 20 er 21,5 cm lange.
- Når størrelsen øker med 1, øker skolengden med 5 mm.
- Kineserne bruker halvstørrelser, slik at for eksempel 37,5 er en mulig skostørrelse.

Rebecca vil sammenlikne norske og kinesiske skostørrelser. Hun setter opp tabellen nedenfor.

|       | Minste skostørrelse  | Økning i lengde per størrelse | Halvstørrelser |
|-------|----------------------|-------------------------------|----------------|
| Kina  | 20 (lengde 21,5 cm)  | 5 mm                          | Ja             |
| Norge | 32 (lengde 21,75 cm) | 6,6 mm                        | Nei            |

- a) Hvor lang er en sko som har norsk skostørrelse 40?
- b) 1) Forklar at  $y = (x-20) \cdot 0.5 + 21.5$  er en formel for å regne ut skolengden, y, når du kjenner den kinesiske skostørrelsen, x.
  - 2) Sett opp en tilsvarende formel for å regne ut skolengden når du kjenner den norske skostørrelsen.
- c) Isak bruker norsk skostørrelse 43. Hvilken kinesisk skostørrelse tilsvarer dette?

Det er en lineær sammenheng mellom norske og kinesiske skostørrelser.

 d) Tegn av tabellen til høyre i besvarelsen din.
Fyll ut tabellen og finn den lineære sammenhengen.

| Norsk skostørrelse | Kinesisk skostørrelse |
|--------------------|-----------------------|
| 32                 |                       |
| 43                 |                       |
|                    | 39                    |



### Oppgave 6 (5 poeng)



Når egypterne i oldtiden skulle multiplisere to tall (for eksempel 26 og 33), skrev de det første tallet som en sum av toerpotenser ( $26 = 2^4 + 2^3 + 2^1 = 16 + 8 + 2$ ). Så laget de en tabell med to kolonner, én med toerpotenser (1, 2, 4, ...) og én med det andre tallet og fordoblinger av dette (33, 66, 132 ...).

De satte \* ved de toerpotensene som til sammen blir lik det første tallet. Til slutt summerte de tallene i andre kolonne fra radene i tabellen merket med \* (66+264+528=858).

#### 26.33 blir altså 858.

| 1   | 33  |
|-----|-----|
| *2  | 66  |
| 4   | 132 |
| *8  | 264 |
| *16 | 528 |

= 858

- a) Skriv 29 som en sum av toerpotenser.
- b) Utfør multiplikasjonen 29·25 slik egypterne i oldtiden ville gjort det.
- c) Forklar hvorfor egypternes metode kan brukes til å multiplisere to tall.



#### Oppgave 7 (7 poeng)



Per prøver å finne en sammenheng mellom diameteren og volumet til kuler.

Han måler diameter og volum for noen kuler av ulik størrelse. Se tabellen nedenfor.

| Diameter (cm)                | 3,0 | 6,0 | 10,0 | 16,0  | 26,0  |
|------------------------------|-----|-----|------|-------|-------|
| Volum (cm <sup>3</sup> = mL) | 14  | 113 | 525  | 2 145 | 9 200 |

- Bruk regresjon til å vise at funksjonen f gitt ved  $f(x) = 0.52 \cdot x^{3.0}$  er en god modell for sammenhengen mellom diameteren, x, og volumet, f(x), til kuler.
  - 2) Tegn grafen til funksjonen f.
- b) Finn diameteren til en kule med volum 1000 mL.

Per lærte allerede i grunnskolen at formelen for volumet av en kule er  $V = \frac{4}{3} \cdot \pi \cdot r^3$ , der r er radius i kulen.

c) Stemmer resultatet fra a) med denne formelen? Forklar.



Eksamen MAT1015 Matematikk 2P Våren 2011