

TMA4145 Linear

Methods

Fall 2018

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 8

- 1 Which of the following transformations are linear?
 - a) $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ defined by T(p)(x) = xp(x) + p'(x), where $P_n(\mathbb{R})$ denotes the vector space of real-valued polynomials of degree at most n.
 - **b)** $T: \mathbb{C}^2 \to \mathbb{C}^2$ defined by $T(z_1, z_2) = (\overline{z_1}, \overline{z_2})$, where \mathbb{C}^2 is a vector space over \mathbb{R} .

Does the conclusion change if \mathbb{C}^2 is considered as a vector space over \mathbb{C} ? Explain.

- c) Let $M_{n\times n}(\mathbb{R})$ denote the space of all $n\times n$ matrices with real entries.
 - i) $T: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R}), T(A) = A^2.$
 - ii) $T: M_{n \times n}(\mathbb{R}) \to \mathbb{R}, T(A) = \det A.$
- Let X and Y be normed spaces. Show that a linear map $T: X \to Y$ is not continuous if and only if there exists a sequence of unit vectors (x_n) in X such that $||Tx_n|| \ge n$ for $n \in \mathbb{N}$.
- 3 Let X and Y be vector spaces, both real or both complex. Let $T: X \to Y$ be a linear operator with some range $\operatorname{ran}(T) \subset Y$. Show that:
 - a) The inverse operator T^{-1} : $\operatorname{ran}(T) \to X$ exists if and only if

$$Tx = 0 \implies x = 0.$$

(In other words: if and only if $ker(T) = \{0\}$.)

- b) If T^{-1} exists, it is a linear operator.
- c) Even if T is a bounded operator, its inverse T^{-1} need not be.

Note: The inverse operator T^{-1} : $\operatorname{ran}(T) \to X$ is an operator satisfying $T^{-1}(T(x)) = x$ and $T(T^{-1}(y))$ for any $x \in X$ and $y \in \operatorname{ran}(T)$.

Let T be a linear mapping $T: (\mathbb{R}^n, \|.\|_{\infty}) \to (\mathbb{R}^n, \|.\|_{\infty})$ given by a $n \times n$ matrix A. Show that the operator norm of T in terms of A is given by $\|T\| = \max_{i=1,\dots,n} \sum_{j=1}^n |a_{ij}|$.

5 Let T be the integral operator $Tf(x) = \int_0^1 k(x,y)f(y)dy$ defined by a kernel $k \in C([0,1] \times [0,1])$ such that $k(x,y) \geq 0$ for any $(x,y) \in [0,1] \times [0,1]$. Show that the operator norm of T as a mapping on C[0,1] with respect to $\|.\|_{\infty}$ -norm is $\|T\| = \max_{x \in [0,1]} \int_0^1 |k(x,y)| dy$.