Notation

The notation used throughout this thesis is summarized below

- x A scalar
- \boldsymbol{x} A vector
- X A matrix
- x_i The *i*th element of a vector x
- X_{ij} Element located at row i column j in matrix X
 - \mathbb{R} The set of real numbers
- \mathbb{R}^n The set of *n*-dimensional vectors of real numbers
- $\mathbb{R}^{n \times m}$ The set of $n \times m$ -dimensional matrices of real numbers, where n is the amount of rows and m is the amount of columns
 - | · | Cardinality
 - ∇f Gradient of f
 - $\nabla_{x} f$ Gradient of f with respect to x
 - $\frac{\partial y}{\partial x}$ Partial derivative of y with respect to x
 - O Big O-notation
 - Element-wise multiplication
- $\mathcal{N}\left(\mu,\sigma^2\right)$ Normal/Gaussian distribution with mean μ and standard deviation σ^2
 - D(a,b) An arbitrary distance function, that computes the distance between a and b
 - L(a,b) An arbitrary loss function, that computes the loss between a and b