

اثر جانشانی هالوژن ها بر روی خواص الکترونی و مغناطیسی تک لایه دی یدید کروم

فراهانی،زینب ؛رضایی رکن آبادی، محمود؛ مدرسی،محسن گروه فیزیک، دانشکده علوم، دانشگاه فردوسی مشهد

تتايج

با محاسبه $(E_{ex}=E^{AFM}-E^{FM})$ ، حالت پایه تمام دی هالیدهای کروم ید فرومغناطیس است.

CrIF و CrIBr CrI_2 دارای رفتار نیمه رسانایی است. دارای رفتار شبه فلزی و تک لایه CrICl دارای رفتار نیمه رسانایی است. با محاسبه انرژی ناهمسانگردی مغناطیسی، تک لایه های CrICl دارای ممان های مغناطیسی عمود بر صفحه و CrIBr دارای ممان های مغناطیسی عمود بر صفحه و CrIBr دارای ممان های مغناطیسی درون صفحه می باشند. براساس قضیه مرمین-واگنر و درجه آزادی درون صفحه ای برای این ممان ها، در تک لایه CrIBr امکان ایجاد مغناطش بلندبرد و در دمای CrIBr و جود ندارد. برای سه ماده باقیمانده دمای کوری را با استفاده از مدل هایزنبرگ و تقریب فاز تصادفی محاسبه می کنیم. [5]

CrIX	a (Å)	l _{Cr_X} (Å)	l _{I _ X} (Å)	M (μ_B)	J (meV)	Δ (meV)	T_c (K)
CrI_2	4.00	2.81	3.95	3.51	1.179	0.46	86.6
CrIBr	3.97	2.68	3.85	3.80	7.99	-3.99	In – plane
CrICl	4.21	2.42	3.99	3.91	1.05	0.01	18
CrIF	3.71	1.98	3.36	3.31	1.73	0.48	113

پارامترها به ترتیب: a ثابت شبکه ، c_{r-X} طول پیوند کروم و اتم هالوژن ، l_{I-X} مغناطش اتم کروم، l_{I-X} بارامتر تبادلی، d انرژی ناهمسانگردی مغناطیس، d دمای کوری.

تحلیل نتایج

براساس نتایج ما، با جانشانی هالوژن ها امکان تغییر جهت محور آسان مغناطش و تغییر دمای کوری برای تک لایه دی یدید کروم وجود دارد.

مراجع

- [1] Memarzadeh, Sara, et al. "Role of charge doping and strain in the stabilization of in-plane ferromagnetism in monolayer at room temperature." 2D Materials 8.3 (2021): 035022.
- [2] Huang, Pu, et al. "Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications." Nanoscale 12.4 (2020): 2309-2327.
- [3] Peng, Lang, et al. "Mott phase in a van der Waals transition-metal halide at single-layer limit." *Physical Review Research* 2.2 (2020): 023264
- [4] Li, Peigen, et al. "Single-layer Crl₃ grown by molecular beam epitaxy." Science Bulletin 65.13 (2020): 1064-1071..
- [5] Modarresi, Mohsen, et al. "Lateral spin valve based on the two-dimensional Cr N/P/Cr N heterostructure."

a) CrI ₂	b) CrIBr	c) CrICl	d) CrIF
4 spin-uj			4
spin-do	own		
Energy(eV	0	0	0
-2	-2	-2	-2
	M K ⁻⁴ Κ Γ Μ		

ساختار شبکه و ساختار نواری دی هالیدهای کروم ید (اتم کروم با رنگ آبی استار شبکه و ساختار فلوئور با رنگ خاکستری-اتم کلر با رنگ سبز - اتم برم با رنگ قهوه ای مشخص شده است.)

40120

مغناطیس در ابعاد پایین در توسعه پژوهش های فیزیکی از دو دیدگاه کوانتومی و کاربردهای اسپینترونیکی نقش مهمی ایفا می کند. از لحاظ نظری، براساس نظریه مرمین—واگنر ایجاد مغناطش خود به خود در مدل هایزنبرگ همسانگرد در مواد با ابعاد پایین $(d \le 2)$ و در دمای محدود امکان ندارد.[1]

تک V یه دی یدید کروم با ساختار شبکه هگزاگونال، به دلیل شباهت به دی کالکوژن های فلزات واسطه، دارای دو فاز V و V است.[2]

اخیراً لانگ پنگ و همکارانش توانستند فیلم های CrI_2 را در فاز 1T به صورت تجربی و با روش برآرایی پرتو مولکولی بر روی یک بستر 6H-Sic(0001) رشد دهند.[3]

پیگن و همکارانش توانستند با رشد همبافته CrI_3 بر روی بستر طلا و با باز پخت نمونه تا دمای ٤٥٢ کلوین، ساختار [44] را کشف کنند. [44] در کنار محاسبات نظری زیادی که بر روی تک لایه [47] انجام شده است، تحقیقات نظری بر روی تک لایه $[CrI_3]$ ناشناخته است.

وش

محاسبات در چارچوب نظریهی تابعی چگالی و با استفاده از کد محاسباتی کوانتوم اسپرسو و شبه پتانسیل فوق نرم (USPP) انجام گرفته است. برای تابع تبادلی-همبستگی از تقریب شیب تعمیم یافته جامدات (GGA + PBESOL) استفاده شده است. انرژی قطع تابع موج 95Ry و انتگرال گیری بر روی منطقه اول بریلوئن به روش منخورست-پک و با مشبندی ۱۸×۱۸×۱ انجام شده است. برای در نظر گرفتن اثرات همبستگی الکترونی قوی،روش DFT + U لحاظ شده است. با یارامتر هابار د U = 3eV لحاظ شده است.