ELECENG 2CI5 Lab 6 Prelab

i.

The measured value of the Thevenin voltage, V_{TH} , is equal the voltage measured across V_o after creating an open circuit, and is measured to be 3.142V. The Thevenin resistance, R_{TH} , is calculated from creating a short circuit across the voltage source and then finding the equivalent resistance across the circuit (excluding R_o). $R_{TH} = (R1||R2||R4||R5) = 174.05\Omega$.

ii

The value of I_N is equal to the value of the I_{SC} when the Thevenin equivalent circuit is short circuited at the load, therefore $I_N = I_{SC} = \frac{V_{TH}}{R_{TH}} = \frac{3.142V}{174.05\Omega} = 18.05 mA$. The Norton resistance, R_N , is equal to the Thevenin resistance of the Thevenin equivalent circuit, therefore $R_N = R_{TH} = 174.05\Omega$.

iii.

The value of R_o that would allow for the maximum power transfer in this circuit is 174.05Ω . This is because the derivative of the power in a Thevenin/Norton circuit is equal to zero when the load resistance is equal to the Thevenin/Norton resistance.

iv.

$$P_{max} = I^2 R_o = \left(\frac{V}{R_o + R_{TH}}\right)^2 R_o = \left(\frac{3.142}{174.05 + 174.05}\right)^2 174.05 = 14.18 mW$$

The maximum power transfer in the circuit is 14.18mW.

v.

The theoretical value for R_{TH} can be calculated by creating a short circuit around the voltage source and then finding the equivalent resistance of the circuit (excluding the load resistor, R_o). $R_{TH} = (R1 || R2 || R4 || R5) = (220 || 1k || 10k || 10k) = 174.05\Omega$. The theoretical value for V_{TH} can be found by creating an open circuit around V_o and calculating the open circuit voltage. We can use nodal analysis, there is a single node with voltage at that node equal to the open circuit voltage, V_{oc} .

$$\left[\frac{1}{220} + \frac{1}{1k} + \frac{1}{10k} + \frac{1}{10k}\right] \left[V_1\right] = \left[\frac{4V}{220}\right]$$
$$\left[V_1\right] = \left[\frac{1}{220} + \frac{1}{1k} + \frac{1}{10k} + \frac{1}{10k}\right]^{-1} \left[\frac{4V}{220}\right]$$
$$\left[V_1\right] = \left[3.1642V\right]$$

After performing nodal analysis, we can see that $V_{TH} = V_1 = 3.1642V$. The measured value of V_{TH} , 3.142V, is very similar to the calculated value of V_{TH} , 3.1642V.

vi.

The resistor used had a resistance of 220Ω . The voltage for the Thevenin circuit using a similar resistance to the Thevenin resistance is similar to the voltage of the original circuit.

