МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Теория принятия решений»

Тема: Нечеткие модели

Вариант 6 (Шаг 5)

Студент гр. 5381	 Лянгузов А.А
Преподаватель	Попова Е.В.

Санкт-Петербург 2019

Цель работы.

На основании нечеткой модели осуществить ранжирование объектов, оценку точности полученных величин, определить достоверность полученного ранжирования.

Основные теоретические положения.

В лабораторной работе используется в качестве начального этапа нечёткая модель, основанная на нечёткой информации, предоставляемой экспертами. Эксперты формируют опорные значения функции принадлежности коэффициента, отражающего характеристики объекта, который подлежит ранжированию - $u_k^{(ijl)}$ в опорных точках $k=1,\ldots,4$, и для объектов j=1,2,3 по критериям i=1,2,3. Всего экспертов l=1,2. Формируется трапецеидальная функция принадлежности $\mu_{A^l}(u^l)$ нечёткого числа (1):

$$\mu_{A^{l}}(u^{l}) = \begin{cases} 0, & u^{l} \leq u_{1}^{l} \\ \frac{u^{l} - u_{1}^{l}}{u_{1}^{l} - u_{2}^{l}}, & u_{1}^{l} < u^{l} < u_{2}^{l} \\ 1, & u_{2}^{l} \leq u^{l} \leq u_{3}^{l} \\ \frac{u^{l} - u_{4}^{l}}{u_{3}^{l} - u_{4}^{l}}, & u_{3}^{l} < u^{l} < u_{4}^{l} \\ 0, & u^{l} \geq u_{4}^{l}, \end{cases}$$

$$(1)$$

где
$$u_1^l < u_2^l \le u_3^l < u_4^l$$
.

Для вывода выходной функции принадлежности используется принцип обобщения. Нечёткий вывод основывается на базе знаний, которую составляют обобщённые логические правила: ЕСЛИ ((u^1 есть A^1) И (u^2 есть A^2)) ТО (u есть A). Принцип обобщения для функции нескольких переменных представляет собой задание функции принадлежности выходного значения системы (2).

$$\mu_{A}(u) = \bigvee_{u = f(u^{1}, u^{2})} \left(\mu_{A^{1}}(u^{1}) \wedge \mu_{A^{2}}(u^{2})\right), \tag{2}$$

$$\forall u^1, u^2, u \in R$$

где символ ∨ означает объединение множеств на основе операции max, ∧ - означает объединение множеств на основе операции min.

Дефаззификацию трапецеидального числа будем проводить с помощью интегральное представление градуированного среднего значения нечёткого числа А рассчитывают по формуле (3)

$$centr(A) = \frac{\int_0^1 \frac{(L^{-1}(\alpha) + R^{-1}(\alpha)) \cdot \alpha}{2} d\alpha}{\int_0^1 \alpha d\alpha},$$
 (3)

где $0 \le \alpha \le 1$.

$$centr(A) = \frac{u_1 + 2u_2 + 2u_3 + u_4}{6},\tag{4}$$

где $u_1, u_2, u_3, u_4 \in \mathcal{R}$.

Во второй части работы используется метод рандомизированных сводных показателей (МРСП), в котором на входе используются дефаззифицированные значения нечёткой модели. Определяются значимость каждого критерия по отношению к другим с помощью вектора весовых коэффициентов $\mathbf{w} = (w_1, ..., w_m), \ w_i \geq 0$. Вводится нормирование суммы $w_1 + ... + w_m = 1$ и строится синтезирующая функция $Q(q_1, ..., q_m; \mathbf{w}) \in [0,1]$ в виде аддитивной средневзвешенной величины (5)

$$Q^{(j)} = \sum_{i=1}^{m} q_i^j w_{i.}$$
 (5)

Для задания дискретности модели вводится величина шага $h = \frac{1}{n}$, $n \in N$ $w_i \in \{0, \frac{1}{n}, ..., \frac{n-1}{n}, 1\}$, которая задаёт размер множества

допустимых векторов весовых коэффициентов $N(m,n) = \frac{(n+m-1)!}{n!(m-1)!}$.

В качестве детерминированной оценки рандомизированного сводного показателя используется математическое ожидание $\bar{Q}^{(j)} = M \widetilde{Q}^{(j)}$ случайной

величины, а мерой точности оценки $ar{Q}^{(j)}$ служит стандартное отклонение $S^{(j)} = \sqrt{D \, \widetilde{Q}^{(j)}}$ случайной величины. Достоверность доминирования рандомизированного сводного показателя $ar{Q}^{(m)}$ над $ar{Q}^{(l)}$ определяется по формуле (6)

$$P\left(\left\{\widetilde{Q}^{(m)} > \widetilde{Q}^{(l)}\right\}\right) > \alpha, \qquad (6)$$

где $\alpha \in [0,1]$, m, l = 1,...,k.

Таким образом, достигают ранжирование объектов, оценку точности полученных величин, определение достоверности полученного ранжирования..

Постановка задачи.

У нас 3 объекта, которые оцениваются по 3 критериям двумя экспертами.

Таблицы с оценками представлены ниже.

Таблица 1 - входные данные.

Вариант6	5 Эксперт 1.											
	К1				К2				К3			
O1	0	0.1	0.2	0.4	0	0.1	0.2	0.3	0.7	0.8	0.9	1
O2	0.6	0.8	0.9	1	0.2	0.4	0.5	0.6	0	0.1	0.2	0.3
О3	0.1	0.2	0.3	0.5	0.4	0.6	0.7	0.8	0.1	0.3	0.4	0.5
	Экспе	ерт 2	-			-					-	
	К1				К2				КЗ			
O1	0.1	0.2	0.3	0.4	0	0.1	0.2	0.3	0.6	0.7	0.9	1
O2	0.6	0.7	0.8	0.9	0.2	0.3	0.4	0.6	0	0.2	0.3	0.4
O3	0.1	0.2	0.3	0.4	0.6	0.7	0.8	0.9	0.2	0.3	0.4	0.6

Шаг дискретизации = 5

Выполнение работы.

Переход от нечеткой модели. Необходимо заполнить таблицу.

Таблица 2 – г	градуированные	средние.
---------------	----------------	----------

	K1	К2	К3
O1	A11	A12	A13
O2	A21	A22	A23
O3	A31	A32	A33

$$A_{ij} = \frac{u_1 + 2 * u_2 + 2 * u_3 + u_4}{6}$$
, где u1, u2, u3, u4 \in R — опорные элементы соответствующих объектов и критериев.

Таблица 3 – расчеты для опорных элементов А11.

0, 0.2	0, 0.25	0, 0.3	0, 0.35	0, 0.4
0, 0.15	1, 0.2	1, 0.25	0.5, 0.3	0, 0.35
0, 0.1	1, 0.15	1, 0.2	0.5, 0.25	0, 0.3
0, 0.05	0, 0.1	0, 0.15	0, 0.2	0, 0.25

$$A_{11} = \frac{0.1 + 2 * 0.15 + 2 * 0.25 + 0.35}{6} = 0.208.$$

Таблица 4 – расчеты для опорных элементов A12.

0, 0.15	0, 0.2	0, 0.25	0, 0.3
0, 0.1	1, 0.15	1, 0.2	0, 0.25
0, 0.05	1, 0.1	1, 0.15	0, 0.2
0, 0.0	0, 0.05	0, 0.1	0, 0.15

$$A_{12} = \frac{0.05 + 2 * 0.1 + 2 * 0.2 + 0.25}{6} = 0.150.$$

Таблица 5 – расчеты для опорных элементов А13.

0, 0.85	0, 0.9	0, 0.95	0, 1.0
0, 0.8	1, 0.85	1, 0.9	0, 0.95
0, 0.75	1, 0.8	1, 0.85	0, 0.9
0, 0.7	1, 0.75	1, 0.8	0, 0.85
0, 0.65	0, 0.7	0, 0.75	0, 0.8

$$A_{13} = \frac{0.7 + 2 * 0.75 + 2 * 0.9 + 0.95}{6} = 0.825.$$

Таблица 6 – расчеты для опорных элементов А21.

0, 0.75	0, 0.8	0, 0.85	0, 0.9	0, 0.95
0, 0.7	0.5, 0.75	1, 0.8	1, 0.85	0, 0.9
0, 0.65	0.5, 0.7	1, 0.75	1, 0.8	0, 0.85
0, 0.6	0, 0.65	0, 0.7	0, 0.75	0, 0.8

$$A_{21} = \frac{0.65 + 2 * 0.75 + 2 * 0.85 + 0.9}{6} = 0.792.$$

Таблица 7 – расчеты для опорных элементов А22.

0, 0.4	0, 0.45	0, 0.5	0, 0.55	0, 0.6
0, 0.35	0.5, 0.4	0.5, 0.45	0.5, 0.5	0, 0.55
0, 0.3	0.5, 0.35	1, 0.4	1, 0.45	0, 0.5
0, 0.25	0.5, 0.3	1, 0.35	1, 0.4	0, 0.45
0, 0.2	0, 0.25	0, 0.3	0, 0.35	0, 0.4

$$A_{22} = \frac{0.25 + 2 * 0.35 + 2 * 0.45 + 0.55}{6} = 0.400.$$

Таблица 8 – расчеты для опорных элементов А23.

0, 0.2	0, 0.25	0, 0.3	0, 0.35
0, 0.15	1, 0.2	1, 0.25	0, 0.3
0, 0.1	1, 0.15	1, 0.2	0, 0.25
0, 0.05	0.5, 0.1	0.5, 0.15	0, 0.2
0, 0.0	0, 0.05	0, 0.1	0, 0.15

$$A_{23} = \frac{0.05 + 2 * 0.1 + 2 * 0.25 + 0.3}{6} = 0.192.$$

Таблица 9 – расчеты для опорных элементов АЗ1.

0, 0.25	0, 0.3	0, 0.35	0, 0.4	0, 0.45
0, 0.2	1, 0.25	1, 0.3	0.5, 0.35	0, 0.4
0, 0.15	1, 0.2	1, 0.25	0.5, 0.3	0, 0.35
0, 0.1	0, 0.15	0, 0.2	0, 0.25	0, 0.3

$$A_{31} = \frac{0.15 + 2 * 0.2 + 2 * 0.3 + 0.45}{6} = 0.267.$$

Таблица 10 – расчеты для опорных элементов АЗ2.

0, 0.65	0, 0.7	0, 0.75	0, 0.8	0, 0.85
0, 0.6	0.5, 0.65	1, 0.7	1, 0.75	0, 0.8
0, 0.55	0.5, 0.6	1, 0.65	1, 0.7	0, 0.75
0, 0.5	0, 0.55	0, 0.6	0, 0.65	0, 0.7

$$A_{32} = \frac{0.55 + 2 * 0.65 + 2 * 0.75 + 0.8}{6} = 0.692.$$

Таблица 11 – расчеты для опорных элементов АЗЗ.

0, 0.35	0, 0.4	0, 0.45	0, 0.5	0, 0.55
0, 0.3	0.5, 0.35	0.5, 0.4	0.5, 0.45	0, 0.5
0, 0.25	0.5, 0.3	1, 0.35	1, 0.4	0, 0.45
0, 0.2	0.5, 0.25	1, 0.3	1, 0.35	0, 0.4
0, 0.15	0, 0.2	0, 0.25	0, 0.3	0, 0.35

$$A_{33} = \frac{0.2 + 2 * 0.3 + 2 * 0.4 + 0.5}{6} = 0.350.$$

Таблица 12 – градуированные средние (результат).

	K1	К2	К3
O1	0.208	0.150	0.825
O2	0.792	0.400	0.192
O3	0.258	0.692	0.350

Шаг дискретизации $h=\frac{1}{6}\approx 0.167$. Составление векторов весовых

коэффициентов.
$$N(m,n) = \frac{(n+m-1)!}{n!(m-1)!} = 21$$

Таблица 13 – векторы весовых коэффициентов.

w_1	w_2	w_3
0.000	0.000	1.000
0.000	0.200	0.800
0.000	0.400	0.600
0.000	0.600	0.400
0.000	0.800	0.200
0.000	1.000	0.000
0.200	0.000	0.800
0.200	0.200	0.600
0.200	0.400	0.400
0.200	0.600	0.200

w_1	w_2	w_3
0.200	0.800	0.000
0.400	0.000	0.600
0.400	0.200	0.400
0.400	0.400	0.200
0.400	0.600	0.000
0.600	0.000	0.400
0.600	0.200	0.200
0.600	0.400	0.000
0.800	0.000	0.200
0.800	0.200	0.000
1.000	0.000	0.000

Таблица 14 – синтезирующая функция.

Q_1	Q_2	Q_3
0.825	0.192	0.350
0.690	0.233	0.418
0.555	0.275	0.487
0.42	0.317	0.555
0.285	0.358	0.623
0.150	0.400	0.692
0.702	0.312	0.332
0.567	0.353	0.400
0.432	0.395	0.468
0.297	0.437	0.537
0.162	0.478	0.605
0.578	0.432	0.313
0.443	0.473	0.382
0.308	0.515	0.450
0.173	0.557	0.518
0.455	0.552	0.295

Q_1	Q_2	Q_3
0.320	0.593	0.363
0.185	0.635	0.432
0.332	0.672	0.277
0.197	0.713	0.345
0.208	0.792	0.258

Математические ожидания:

Таблица 15 – математические ожидания.

$ar{\mathcal{Q}}_1$	$ar{\mathcal{Q}}_2$	$ar{\mathcal{Q}}_3$
0.394	0.461	0.433

$$\max_{\bar{Q}_i}(\bar{Q}1,\!\bar{Q}2,\!\bar{Q}3)=0.461$$

Стандартное отклонение:

Таблица 16 – математические ожидания.

S_1	S_2	S_3
0.193	0.157	0.118

Вероятности доминирования:

$$P(Q2 > Q1) = 0.619$$

$$P(Q2 > Q3) = 0.476$$

$$P(Q1 > Q3) = 0.429$$

Выводы.

В ходе лабораторной работы было на основании нечеткой модели осуществлено ранжирование объектов, оценка точности полученных величин, определена достоверность полученного ранжирования.