LAB: Create 3 VPCs and Load Balance between the VPCs

1. Create 3 VPCs

VPC1: 10.0.0.0/16
VPC2: 192.168.0.0/16
VPC3: 172.0.0.0/16

2. Create 2 Subnets in each VPC

(Note: Create each subnet in a different Availability Zone)

01. VPC1

• subnetA_VPC1: 10.0.0.0/20

subnetB_VPC1: 10.0.16.0/20

02. VPC2

• subnetA_VPC2: 192.168.0.0/20

subnetB_VPC2: 192.168.16.0/20

03. VPC3

subnetA_VPC3: 172.16.0.0/20subnetB_VPC3: 172.16.16.0/20

- 3. Create Internet Gateways for each VPC and attach them to respective VPCs
- IGW VPC1
- IGW_VPC1
- IGW_VPC1

- 4. Create 3 Peering Connections
 - VPC1 VPC2
 - VPC2_VPC3
 - VPC3_VPC1

- 5.
- A. There will be 3 Route Tables that will be created automatically created by default as the VPCs are created. Rename them as follows:
 - LocalRT_VPC1
 - LocalRT_VPC2
 - LocalRT_VPC3

These are the Local routes i.e. connections within the respective VPCs only.

B. Create 3 Route Tables separately.

Then add the following routes for each as follows:

For InternetRT VPC1

☐ For the Internet Gateway: 0.0.0.0/0

☐ For peering b/w VPC1 and VPC2: 192.168.0.0/16

☐ For peering b/w VPC1 and VPC3: 172.16.0.0/16

Route Tables > Edit routes

Edit routes

For InternetRT_VPC2

□ For the Internet Gateway: 0.0.0.0/0□ For peering b/w VPC2 and VPC1: 10.0.0.0/16

☐ For peering b/w VPC2 and VPC3: 172.16.0.0/16

For InternetRT_VPC3

□ For the Internet Gateway: 0.0.0.0/0
□ For peering b/w VPC3 and VPC1: 10.0.0.0/16
□ For peering b/w VPC3 and VPC2: 192.168.0.0/16

- 6. Associate the Subnets having public connection to the newly created Route Tables as follows:
 - For InternetRT_VPC1

For InternetRT_VPC2

IPv4 CIDR

172.16.0.0/20

IPv6 CIDR

7. Create 2 Instances for each VPC as follows:

subnet-0d0eb4f4884a2d66c | subnetA_VPC3

• EC2 VPC1 Private

Subnet ID

- subnetB_VPC1
- EC2_VPC1_Public
 - subnetA_VPC1
- EC2_VPC2_Private
 - subnetB_VPC2
- EC2_VPC2_Public
 - subnetA_VPC2
- EC2_VPC3_Private
 - subnetB_VPC3
- EC2_VPC3_Public
 - subnetA_VPC3

Testing

- 8. SSH into EC1_VPC1_Public
 - Ping google.com (there should be reply)
 - SSH into EC2_VPC1_Private instance from the EC1_VPC1_Public
 - 1. create mykey.pem file in EC1_VPC1_Public instance
 - vi mykey.pem
 - Copy the entire contents of the Security Key file that is saved on the local system and paste it in the mykey.pem file and save it :wq
 - 2. chmod 700 mykey.pem
 - 3. ssh -i mykey.pem ec2-user@private_ip_of_EC2_VPC1_Private_Instance
 - 4. Ping google.com from this instance (there should be no reply)
 - 5. Similarly login to EC2_VPC2_Private Instance from EC2_VPC1_Private Instance and so on to check one by one.

LOAD BALANCER

You do not hav

Select load balancer type

Elastic Load Balancing supports three types of load balancers: Application Load Balancers, Network Load Balancers (new), and Classic Load Balancers. Choose the load balancer type that meets your needs. Learn more about which load balancer is right for you

Cancel

Step 1: Configure Load Balancer

Basic Configuration

To configure your load balancer, provide a name, select a scheme, specify one or more listeners, and select a network. The default configuration i network with a listener that receives HTTP traffic on port 80.

Listeners

1. Configure Load Balancer

us-east-1b

us-east-1f

A listener is a process that checks for connection requests, using the protocol and port that you configured.

Select the user created VPC (in this case VPC1)

subnet-05990b9abec7c75f8

subnet-01403ade5431fd56a

10.0.0.0/20

10.0.32.0/20

5. Register Targets

Public_subnetA_VPC1

Public_subnetC_VPC1

Change subnet..

At least two subnets must be specified

Step 1: Configure Load Balancer

Select Target type as IP

Go to Register Targets and add the private ips of respective instances.

- 192.168.31.36
- 10.0.36.210
- 10.0.14.66
- 172.16.11.91

Review and click on create

Go to Listeners Tab → Click on view/edit rules

A listener checks for connection requests using its configured protocol and port, and the load balancer uses add, remove, or update listeners and listener rules.

Add the following rules

TESTING

- Install httpd service in all the instances
 - → yum install httpd
- cd /var/www/html
- Create an html page in every instance
 - → vi index.html
- Start the httpd service
 - → service httpd start
- Copy DNS of Load Balancer and check in browser if its working or not