SECTION : (circle one): A01	MR (Dr. Burford) A02	2 (Dr. Briggs)	A03 MWR (Dr. Burford)		
NAME (Please print clearly.)	<u>Stu</u>	Student No. V0			
SIGNATURE		(I am the above-named student.)			
DISPLAY YOUR ST	UDENT ID CARD ON TH	IE TOP OF	YOUR DESK NOW		
	UNIVERSITY OF VICT	ΓORIA			
Version B	CHEMISTRY 10 Midterm Test 2 November 16, 201 5-6 pm (60 minute	2	Version B		
Answer all multiple choice	e questions on the bubble	sheet provid	led.		
PRINT and shade in only student ID number on the					
Do NOT include any info	about the course, section	or date on t	he bubble sheet.		
Hand in only the bubble sl	heet at the end of the test	period (60 n	ninutes).		
A DATA sheet is included	, unstapled, inside the cov	er page of t	his test.		
This test has 7 pages (not i	including the DATA sheet	c). Count the	e pages before you begin.		
The basic Sharp EL510 ca	lculator is the only one ap	oproved for	use in Chemistry 101.		

DO NOT BEGIN UNTIL TOLD TO DO SO BY THE INVIGILATOR

This test consists entirely of multiple choice questions and is worth 50 marks. There are two marks per question except Question 1. The answers for the 26 questions in this part must be coded on the optical sense form (bubble sheet) using a SOFT PENCIL.

Select the BEST response for each question below.

- 1. This is exam Version B. Mark "B" as the answer to Question 1 on the optical sense form.
- 2. Choose the **CORRECT** statement about the SO₂ molecule.
 - A. The sulfur atom has an unshared (*i.e.* non-bonding) electron pair.
 - B. The S-O bonds are ionic in character.
 - C. The two S-O bonds have different lengths since one is a single bond and the other a double bond.
 - D. The molecule has a linear structure.
 - E. The oxygen atoms have no unshared (i.e. non-bonding) electron pairs.

Questions 3-6 refer to the molecules in this box. Answer these questions referring to these answers.

i. SiH4	ii. BF3	iii. OF2	iv. NF3	v. NO
vi. BrF5	vii. XeF4	viii. OCCl ₂		

- Indicate all of the molecules in the box above for which the best Lewis structure has an atom that is assigned fewer than eight electrons (i.e. an "incomplete octet").
 - A. i only
- B. ii & iv
- C. v only
- D. ii & v
- E. vii only
- Indicate all of the molecules in the box above that have both an electron domain geometry and a molecular geometry that are trigonal planar.
 - A. i & vii
- B. ii only
- C. iii only
- D. ii & viii
- E. iv only
- Indicate **all** of the molecules in the box above that have a square pyramidal molecular shape.
 - A. vi
- B. vii
- C. i

- D. ii
- E. iv
- Indicate **all** of the molecules in the box above that have at least one bond angle of approximately 90°.
 - A. ii only
- B. iv only
- C. vii only

- D. vi & vii
- E. ii & iv
- 7. Of the following three molecules, which is(are) polar? (That is, which molecules have a non-zero net molecular dipole moment?)

 BF_3 NF_3

 CF_4

- A. NF₃ only
- B. BF₃ only
- C. CF₄ only
- D. both BF₃ and NF₃
- E. none of them

8. Using bond energies from the DATA sheet, calculate (estimate) the enthalpy of reaction (heat of reaction, Δ H) in kJ/mol for the decomposition of hydrogen peroxide in the reaction shown below in two formats.

$$2 \text{ H}_2\text{O}_2 \text{ (g)} \longrightarrow 2 \text{ H}_2\text{O (g)} + \text{O}_2 \text{ (g)}$$

2 H
$$\longrightarrow$$
 2 H₂O (g) + O₂ (g)

- A. -203
- B. -349 C. +146
- D. +349
- E. +203

- 9. Which of the following statements is INCORRECT?
 - A. A linear arrangement of electron domains can often be rationalized using sp hybrid orbitals...
 - B. When assigning the orbital hybridization, only bonding electrons are considered, since lone pairs do not participate in hybridization.
 - C. An octahedral molecular geometry is rationalized by the hybridization of six atomic orbitals.
 - D. Double bonds take up more space than single bonds.
 - E. The observed bond angles in NF₃ are slightly less than the regular tetrahedral angle of 109.5°.
- 10. The hybridizations at bromine in BrF₅ and at iodine in ICl₃ are _____ and ____ respectively.
 - A. sp^3 , sp^3d

- B. $\operatorname{sp}^3, \operatorname{sp}^3 \operatorname{d}^2$ C. $\operatorname{sp}^3 \operatorname{d}, \operatorname{sp}^3$ D. $\operatorname{sp}^3 \operatorname{d}^2, \operatorname{sp}^3 \operatorname{d}$ E. $\operatorname{sp}^3 \operatorname{d}, \operatorname{sp}^3 \operatorname{d}^2$
- 11. A Lewis structure of the aspirin molecule is shown below. What are the approximate bond angles (in degrees, °) for the angles labeled "a", "b" and "c" in the drawing?

- A. 120, 120, 120
- B. 120, 109, 180
- C. 120, 120, 109
- D. 180, 120, 120
- E. 109, 109, 120

- 12. Which of the following statements is/are CORRECT?
 - i. In metals, bonding electrons are free to move throughout the sample.
 - ii. The electron-sea model explains the trends in melting points for the transition metals.
 - iii. In an insulator, the energy gap between bonding and antibonding molecular orbitals is large.
 - iv. There are no antibonding molecular orbitals in a semiconductor.
 - A) i
 - B) ii and iii
 - C) i and iii
 - D) i and ii
 - E) ii and iv
- 13. Consider the following molecular orbital energy diagram, which applies to diatomic species that use only 1s orbitals.

The MO diagram shown above is representative of the electron energy levels for which molecule(s) or ion(s)?

- i. H_2^-
- ii. He₂⁺
- iii. He₂
- iv. HHe
- $v. H_2$
- A. i only
- B. i and ii only
- C. iv only
- D. i, ii and iv
- E. ii, iii and iv

14. For which one of the following molecules do we invoke resonance in describing the bonding?

- A. SO_3
- B. CCl₄
- C. N₂
- D. PCl₅
- E. OF₂

15. Which of the following relationships is/are correct when comparing lattice energies?

- i. $CaF_2 > BaF_2$
- ii. CsBr > RbBr > NaCl
- iii. BaO > KF iv. NaCl > MgCl₂ v. NaBr > NaCl

- A. i & v only
- B. ii only
- C. i & iii
- D. iii only
- E. i, ii & iii

16. Consider the two resonance structures for ClO₂⁻ shown below. What is the formal charge on Cl in each of the two resonance structures respectively?

$$\begin{bmatrix} \vdots \ddot{o} - \ddot{c} \vdots - \ddot{o} \vdots \end{bmatrix}^{-} \longrightarrow \begin{bmatrix} \vdots \ddot{o} - \ddot{c} \vdots = \ddot{o} \end{bmatrix}^{-}$$

- A. 0,+1
- B. -1, 0
- C. 0, 0
- D. +1,0
- E. 0, -1

Note: Some of the molecules listed as possible answers to questions 17 -20 are the same, thus you may be able to use the Lewis structures from a previous question in solving later questions.

17. Of the molecules SO_2 , NO_3^- , and CO_3^{-2} , which has/have delocalized pi (π) bonding?

- A. SO₂ and NO₃
- B. SO₂ only

C. SO_2 and CO_3^{2-}

- D. CO_3^{2-} only
- E. SO_2 , NO_3 and CO_3

18. For which of the following pairs of molecules do **both members** have **the same** central atom hybridization?

- A. PF₃ and BF₃
- B. NH₃ and SF₃

C. SO_3^{2-} and SeF_4

- D. IO₂ and HCN
- E. BrF5 and PF5

19. Which **one** of the following molecules would be **non polar**, i.e. exhibit a net molecular dipole moment of zero?

- A. BrF₅
- B. BF₃
- C. NH₃
- D. HCN
- E. H₂O

20. Which **one** of the following molecules would **NOT** exhibit an idealized bond angle of 90°?

- A. IF₃
- B. BrF5
- C. PF₅
- D. NHCl₂
- E. SeF₆

21. Based on MO theory or band theory, which of the following metals would you expect to have the highest melting point?

A. iron

B. nickel

C. calcium

D. copper

E. chromium

22. Which of the following numbers of electron domains on a central atom can give rise to a linear molecule?

- A. 2 only
- B. 3 only
- C. 4 only
- D. 2 and 5
- E. 5 only

23. Consider the intermolecular forces involved in each of the four compounds listed below, and then arrange them in order of increasing boiling point (*i.e.* lowest b.p. first, highest b.p. last).

- СН₃СН₂—ОН
- CF_4
- HOCH₂CH₂OH
- CH₃CH₂CH₂CH₃

A. HOCH2CH2OH < CH3CH2OH < CH3CH2CH2CH2CH3 < CF4

 $B. \quad CF_4 \!\!< \, CH_3CH_2CH_2CH_3 \, < \, HOCH_2CH_2OH \, < \, CH_3CH_2OH$

 $C. \quad HOCH_2CH_2OH < CH_3CH_2CH_2CH_3 < CH_3CH_2OH < CF_4$

D. $CF_4 < CH_3CH_2CH_2CH_3 < CH_3CH_2OH < HOCH_2CH_2OH$

 $E. \ \ CH_{3}CH_{2}CH_{2}CH_{3} \ < \ CF_{4} < \ CH_{3}CH_{2}OH \ < \ HOCH_{2}CH_{2}OH$

24. Which of the following molecules has the highest boiling point? Answer = C

- A. CH₃CH₂CH₂CH₃
- B. CH₃CHCH₃ CH₃

C. CH₃CH₂CH₂CH₂CH₃

- D. CH₃CHCH₂CH₃ CH₃
- E. CH₃
 CH₃CCH₃

25. Benzene, toluene and phenol (shown below) are all solids at -50 °C, the correct order for the melting points from highest to lowest is?

- A. benzene > toluene > phenol
- B. phenol > benzene > toluene
- C. phenol > toluene > benzene
- D. toluene > phenol > benzene
- E. toluene > benzene > phenol
- 26. The alkane pentane, C₅H₁₂, has several structural (i.e. constitutional) isomers, all of which are included in the set of molecules shown below.

$$CH_3$$
 CH_2
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_3
 CH_3
 CH_2
 CH_3
 CH_3

Which of the following sets of structures represents the isomers of pentane without counting any isomer more than once?

- A. 1, 2, 3 and 4 B. 2, 3 and 4 C. 2, 4, 5 and 6 D. 2, 3 and 5
- E. 2, 4 and 6