CSCE 222: Discrete Structures for Computing Section 503 Fall 2016

Joseph Martinsen

September 10, 2016

Problem Set 2

Due: 11 September 2016 (Sunday) before 11:59 p.m. on eCampus (ecampus.tamu.edu).

Problem 1. (20 points)

For each of the following functions, determine whether that function is of the same order as n^2 either by finding witnesses or showing that sufficient witnesses do not exist:

1.
$$13n + 12$$

 $13n$ is $O(n)$

2.
$$n^2 + 1000n \log n$$

3.
$$3^n$$

4.
$$3n^2 + n - 5$$

$$5. \ \frac{n^3 + 2n^2 - n + 3}{4n}$$

Solution.

1.
$$13n + 12$$

Is
$$13n + 12 \ O(n^2)$$
? Is $13n + 12 \ \Omega(n^2)$?
$$13n + 12 \le C(n^2)$$

$$13n + 12 \le C(13n^2 + 12)$$

$$13n + 12 \ge C(n^2)$$

$$13n + 12 \ge n^2$$
 for all values of C and k
$$13n + 12 \le 25n^2$$
 $C = 25; \ k \ge 0$

13n+12 is $O(n^2)$ with C=25 and $k\geq 0$ as witnesses but 13n+12 is not $\Omega(n^2)$ because there are no witnesses that satisfy that. Thus 13n+12 is not $\Theta(n^2)$ and therfore 13n+12 is not of the same order as n^2

2.
$$n^2 + 1000n \log n$$

Is
$$n^2 + 1000n \log n \ O(n^2)$$
? Is $n^2 + 1000n \log n \ \Omega(n^2)$?
$$n^2 + 1000n \log n \le C(n^2) \qquad n^2 + 1000n \log n \le C(n^2)$$

$$n^2 + 1000n \log n \le C(n^2 + 1000n^2) \qquad n^2 + 1000n \log n \le C(\frac{1}{2}n^2 + 0n^2)$$

$$n^2 + 1000n \log n \le 1001n^2 \qquad C = 1001; \ k \ge 1 \qquad n^2 + 1000n \log n \ge \frac{1}{2}n^2 \qquad C = \frac{1}{2}; k \ge 1$$

$$n^2 + 1000n \log n \quad \text{is } O(n^2) \text{ with } C = 1001 \text{ and } k \ge 1 \text{ as witnesses and } n^2 + 1000n \log n \text{ is } \Omega(n^2)$$
 with $C = \frac{1}{2}$ and $k \ge 1$ as witnesses. Thus $n^2 + 1000n \log n$ is of the same order as n^2

3. 3^n

Is
$$3^n$$
 $O(n^2)$? Is 3^n $\Omega(n^2)$?
$$3^n \le C(n^2) \qquad \qquad 3^n \ge C(n^2)$$
$$3^n \le n^2 \text{ for all values of } C \ge 0 \text{ and } k \ge 0 \qquad 3^n \ge n^2 \qquad C = 1; \ k \ge 0$$

 3^n is not $O(n^2)$ because there are no witnesses that satisfy that but 3^n is $\Omega(n^2)$ with C=1 and $k \geq 0$ as witnesses. Thus 3^n is not $\Theta(n^2)$ and therefore 3^n is not of the same order as n^2

4. $3n^2 + n - 5$

Is
$$3n^2 + n - 5 O(n^2)$$
?

Is $3n^2 + n - 5 O(n^2)$?

 $3n^2 + n - 5 \le C(n^2)$
 $3n^2 + n - 5 \le C(n^2)$
 $3n^2 + n - 5 \le C(3n^2 + n^2 + n^2)$
 $3n^2 + n - 5 \le C(\frac{1}{2}n^2 + 0n^2 + 0n^2)$
 $3n^2 + n - 5 \le 5n^2$
 $C = 5; k \ge 1$
 $3n^2 + n - 5 \ge \frac{1}{2}n^2$
 $C = \frac{1}{2}; k \ge 1$

 $3n^2+n-5$ is $O(n^2)$ with C=5 and $k\geq 1$ as witnesses and $3n^2+n-5$ is $\Omega(n^2)$ with $C=\frac{1}{2}$ and $k\geq 1$ as witnesses. Thus $3n^2+n-5$ is $\Theta(n^2)$ and therefore $3n^2+n-5$ is of the same order as n^2

5. $\frac{n^3 + 2n^2 - n + 3}{4n}$

$$\begin{array}{ll}
4n \\
\text{Is } \frac{n^3 + 2n^2 - n + 3}{4n} O(n^2)? & \text{Is } \frac{n^3 + 2n^2 - n + 3}{4n} \Omega(n^2)? \\
\frac{n^3 + 2n^2 - n + 3}{4n} \le C(n^2) & \frac{n^3 + 2n^2 - n + 3}{4n} \ge C(n^2) \\
\frac{n^2}{4} + \frac{n}{2} + \frac{3}{4n} \le C(n^2 + n^2 + n^2) & \frac{n^2}{4} + \frac{n}{2} + \frac{3}{4n} \ge C(\frac{1}{5}n^2 + 0n^2 + 0n^2) \\
\frac{n^2}{4} + \frac{n}{2} + \frac{3}{4n} \le 3n^2 \qquad C = 3; \ k \ge 1 & \frac{n^2}{4} + \frac{n}{2} + \frac{3}{4n} \ge \frac{1}{5}n^2 \qquad C = \frac{1}{5}; k \ge 1
\end{array}$$

 $\frac{n^3+2n^2-n+3}{4n}$ is $O(n^2)$ with C=3 and $k\geq 1$ as witnesses and $\frac{n^3+2n^2-n+3}{4n}$ is $\Omega(n^2)$ with $C=\frac{1}{5}$ and $k\geq 1$ as witnesses. Thus $\frac{n^3+2n^2-n+3}{4n}$ is $\Theta(n^2)$ and therefore $\frac{n^3+2n^2-n+3}{4n}$ is of the same order as n^2

Problem 2. (20 points)

Do Supplementary Exercise 29 of Chapter 3 (page 234).

a) Use pseudocode to specify a brute-force algorithm that determines when given as input a sequence of n positive integers whether there are two distinct terms of the sequence that have as sum a third term. The algorithm should loop through all triples of terms of the sequence, checking whether the sum of the first two terms equals the third. b) Give a big-O estimate for the complexity of the bruteforce algorithm from part (a).

Solution.

$$\begin{array}{lll} \textbf{procedure} \ \ brute-force(a_1,a_2,a_3,...,a_n) \\ \textbf{for} \ \ i=1 \ \textbf{to} \ n & O(n) \\ \textbf{for} \ \ i=i+1 \ \textbf{to} \ n & O(n) \\ \textbf{for} \ \ k=1 \ \textbf{to} \ n & O(n) \\ \textbf{if} \ \ a_i+a_j=a_k \ \ \textbf{then} & O(1) \\ \textbf{return} \ \ true \\ \textbf{else} & \textbf{return} \ false \\ \end{array}$$

Problem 3. (20 points)

Do Exercise 31 of Chapter 1.1 (page 15).

Solution.

b)
$$p \neg p p or \neg p$$
 $0 1 1 1 1 0 1$

c)
$$\begin{array}{cccc} & c) & & \\ p & q & (p \text{ or} \neg q) \rightarrow q \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}$$

d)
$$\begin{array}{cccc} & \text{d}) & \\ p & q & (p \text{ or} \neg q) \rightarrow (p \text{ and } q) \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}$$

e)
$$\begin{array}{cccc} {\bf e}) & & \\ {\bf p} & {\bf q} & (p \rightarrow q) \leftrightarrow (\neg p \rightarrow \neg \ q) \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

$$\begin{array}{cccc} f) & & \\ p & q & (p \rightarrow q) \rightarrow (q \rightarrow p) \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}$$

Problem 4. (20 points)

Do Exercises 19, 21, and 23 of Chapter 1.2 (page 23).

Solution.

- 19) A is a knight and B is a knave
- 21) A is a knight and B is a knight
- 23) A is a knave and B is a knight

Problem 5. (20 points)

Do Exercises 50 and 51 of Chapter 1.3 (page 36).

Solution. 50)

a) $p p p p p \downarrow p$ 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1

 $\neg~p$ and $p\downarrow p$ have the same truth values

b)

 $(p\downarrow q)\downarrow (p\downarrow q)$ and p or q have the same truth values.

c) $p \downarrow q$ is the same as $\neg (p \ or \ q)$. Also, the logical operators \neg and or can be used to express any logical expression, \downarrow is logically complete.

51)

Thus $((p\downarrow p)\downarrow q)\downarrow ((p\downarrow p)\downarrow q)$ is the same as $p\to q$

Aggie Honor Statement: On my honor as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment.

Checklist:

- 1. Did you abide by the Aggie Honor Code?
- 2. Did you solve all problems and start a new page for each?
- 3. Did you submit the PDF to eCampus?