« Magatypyón: Aν η $\sqrt{\alpha_n} \xrightarrow{n\to\infty} 1$, δεν δίνει συμπέρα όμα. Λ·χ· $\alpha_n = n$, $\beta_n = \frac{1}{n}$; τότε η $\sqrt{\alpha_n} = n\sqrt{n} \xrightarrow{n\to\infty} 1$ και $\sqrt{\beta_n} = \frac{1}{n\sqrt{n}} \xrightarrow{n\to\infty} 1$ με $\alpha_n \xrightarrow{n\to\infty} \kappa\alpha_1$ $\beta_n \xrightarrow{n\to\infty} 0$

· Npotden: Esta (an) n ako ADUDID T.W. dn >D, the IN.

a) Av unapper 0<p<1 T.w. "Van <p, the IN, Tote dy ->0
B) Av unapper p>1 T.w. "Van >p, the IN, Tote dy ->0

o Pldpd Suxpid: 'Estw (dn)_n = $((^n\sqrt{n}-1)^n)_n$. Tote $^n\sqrt{dn} = ^n\sqrt{n}-1 \rightarrow 1-1$ 1 Apd $dn = (^n\sqrt{n}-1)^n \longrightarrow 0$ $n \rightarrow \infty$

& 7 Movoroves akodovDies kan ougkliby

· be: 'EGTW (dn) n dro Aou Did. Népre oti n (dn) n Ervai

i) dûzould av thim Exoupe and am

in) prysius difored ar them Exoups an < du

1911 (Privouda de finsm Exoupe an Zam

in) jonding allivouda du tom Exoupe de 7 de

H (du)n Kalasitai provissory du sivai éva anó ta naganáva

- Μαρατηρήσεις: i) Για να είναι η (απ)η αύξουδα (αντ. χν. αύξι
 Ψθίνουδα, χν Ψθ,) αρκεί τη ΕΙΝ να 16 χύει απ+1 παη (αντ. απ+1 παη,
 απ+1 ≤αη, απ+1 < αη).
 - ii) (dn)n yv. dů 3 => (dn)n dů 3, (dn)n yv. 40. => (dn)n 40.
 - iii) (dn), dizoved => (dn), xàtu lfdxprévy (npáxpráti, 16xúer dn zdn, théin)
 iv) (du), qvívoued => (dn), àvu lfdxprévy
- θεώρημα: Κάθε μονότονη και Υραγμένη ακολουθία δυγκλίνει.
 - d) $1 = 6 \text{ TW} \text{ (dn)}_n \text{ dis}_0 \times 6 \text{d}$, dv (dn)_n $1 = 1 \text{ (dn)}_n \text { (dn)}_n \text{ (dn)}_n \text { (dn)}_n \text{ (dn)}_n \text{ (dn)}_n \text { (dn)}_n$
 - B) 1E6TW (dn)n 40 (vovod, dv (dn)n 4fdx prévn, tote dn m inf fdn=nEINJEIR Evé dv (dn)n py 4fdx prévn, vote dn m inf fdn=nEINJEIR
- 6 Napa typý 6 215

 AV (dn)n dižová (dvt. χv aiž) V_1 tóte dn $\leq \lambda$ (χv t. χv du χv t. χv aiž) V_2 tóte dn χv t. χ
- Ο χριθμός ε: θεωρείστε την ακολουθία (dn)n = $(1+\frac{1}{n})^n$ Αποδεικνύεται ότι η (dn)n είναι γνησίως αύξουδα και ψραγμένη. ¹Αρα συγκλίνα. Ορίζουμε e = lim $(1+\frac{1}{n})^n$, Μάλιστα, $n \to \infty$ $(1+\frac{1}{n})^n$, Μάλιστα,

AZK: EGW (dn)n ME dn 70, thEN Kai nVan moo 21.

AZK: D.O. nVn ->1-

MGGT: 1 Exoupe 1 Vn $\gtrsim 1$, 1 Vn $\in \mathbb{N}$, 1 Apd unapxer 1 Dn 1 Vn = 1+ 1 Dn = 1+ 1 Dn = 1+

 $n = (1+\theta_n)^n \geqslant 1 + n\theta_n + \binom{n}{2}\theta_n^2 > \frac{n(n-1)}{2}\theta_n^2$

 $\frac{n(n-1)}{2}$

Apd, $0 \le \theta_n \le \sqrt{\frac{2}{n-1}}$, $\forall n \ge 2$ Kai Énétai dnó to kpitýpio napembodnís óti $\theta_n \xrightarrow{n \to \infty} 0$ Kai $\eta = 1$.

 $A \ge K$: $[E \in TW (din)_n distributed Kall Updyméry Kall É \ \ \alpha = \text{Sup } \frac{1}{2} \text{din} = \text{N } \frac{1}{2} \distributed \text{N } \distributed \text{N } \frac{1}{2} \distributed \text{N } \frac{1}{2} \distributed \text{N } \frac{1}{2} \distributed \text{N } \din \text{N } \dinterpoold$

 $N i \epsilon \eta^2$: Το δύνολο $A = \int dn = n \in IN \hat{J}$ είναι μη κενό και άνω $Q \rho d \gamma \mu \bar{\epsilon} v \delta$ (ξιότι η $[dn]_{M}$ είναι $[dv_{W}]$ $[Q \rho d \gamma \mu \bar{\epsilon} v \gamma]$, $d\rho d an \bar{\delta}$ το $d \chi^2 i \omega \mu d n d \gamma \rho \delta \tau \gamma \tau d \zeta_1$ $[u n d \rho \chi \epsilon i \tau \delta]$ το sup $A = d \cdot \theta \cdot \delta \cdot \delta \cdot \delta$. $d \eta = \frac{100}{3} d \cdot n \rho d \gamma \mu d \tau i$, $\bar{\epsilon} \epsilon \tau \omega \in \mathcal{D} \delta$, $\tau \delta \tau \xi d n \delta \tau \delta v \chi d \rho d k \tau \gamma \rho i \epsilon \mu \delta$ του sup A, $\gamma v \omega \rho i \int \sigma v \mu \epsilon \delta \tau i$

- 1) on Ed, the IN
- 2)] no EIN WOTE 2- E < 2no

Zupnepairoupe Aoinór Jóyw Tys porotorids óti

 $n \ge n_0 \implies d - i \angle dn_0 \le dn \le d \angle d + i$ Ku inopérus $dn \xrightarrow{n \to \infty} d$.

AZK: BPETE TO OPIO THS $(du)_n = \left(\frac{2^n n!}{nn!}\right)$

Núen: Fid Káte nEIN EXOUPE

 $\frac{dn+1}{dn} = \frac{2^{n+1} \left[(n+1)! \, n^n \right]}{\left((n+1)! \, n^n \right]} = \frac{2 \left((n+1)! \, n^n \right)}{\left((n+1)! \, n^n \right)} = 2 \left(\frac{n}{n+1} \right)^n = \frac{2}{\left((n+1)! \, n^n \right)} = \frac{2}{\left((n+1)! \, n^n$

ME = <1. Anó Kpirypio dógou zn! nososo

$$\frac{A\Xi K}{1}: \quad ^{\prime}E67\omega \quad \text{or} \quad ^{\prime}ANDAODIES \quad (a_n)_n = \left(\left(1+\frac{1}{n}\right)^n\right)_n \quad \text{Kel} \quad (b_n)_n = \left(\left(1+\frac{1}{n}\right)^{n+1}\right)_n$$

(i) D.o. y (an) avdi profins auford Evin y (bu) n Eval yrysing (Biroved.

(iii) D.o. or (dn) n kar (bn) n Etras effet préveg kar requér an < bn, the IN

(tt) D.o. or can'n kar (bn)n syxthion sto if is opio nou oropiè fetar e.

(iv) D.O. e E (2,3).

 $\frac{d_{\mu\nu}(i\omega\zeta, \theta d)}{d_{\mu\nu}(i\omega\zeta, \theta d)} = \frac{d_{\nu\nu}(\eta d)}{d_{\nu\nu}(\eta d)} = \frac{d_{\nu\nu}(\eta d)}{d_{\nu\nu}($

(ii) neordaviós Exorpe an Zbn, $\forall n \in \mathbb{N}$, $del 16x ver a_1 \leq a_n \leq b_n \leq b_1$, $\forall n \in \mathbb{N}$, (iii) kar or $(a)_n$, $(b_n)_n$ evar eleaypéves. Energy, evar porótores enjectivour kar pádica Exor to ídio ófio, a cloú $b_n = a_n (1 + \frac{1}{n})$ kar

lim by = (lim ay), lim (1+ 1/2) = lim ay .

(iv) Example
$$a_{11} < e < b_{11}$$
, $\forall n \in \mathbb{N}$.

The $n = 1$, $a_{1} = 2 < e < b_{1} = 2^{2} = 4$

The $n = 1$, $a_{1} = 2 < e < b_{2} = 2^{2} = 4$

The $n = 5$ $a_{2} = (\frac{6}{5})^{5} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{5} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{5} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} < e < b_{3} = (\frac{6}{5})^{6}$
 $a_{1} = (\frac{6}{5})^{6} <$

Byldasy drikn n300 d. B