

Laurea magistrale in Ingegneria e scienze informatiche

Obiettivo

Capire il comportamento meccanico del robot per:

- progettare in modo appropriato il robot per i task di interesse
- creare al meglio il software di controllo per l'hardware a disposizione

Manipolatori vs robot mobili

- I bracci robotici sono ancorati al terreno e hanno, di solito, un'unica catena di giunti
- Il workspace di un manipolatore definisce il range (relativamente al punto di ancoraggio) delle possibili posizioni che possono essere raggiunte dagli endeffector del robot

https://www.youtube.com/watch?v=sWgvIAkfqXQ

Manipolatori vs robot mobili

- Il movimento di un robot mobile può essere definito attraverso i vincoli di rotolamento e scivolamento che agiscono al punto di contatto tra ruota e terreno
- Il workspace di un robot mobile definisce il range delle possibili pose che il robot può raggiungere nell'ambiente operativo

https://www.youtube.com/watch?v=E8OKp31eMpE

Limitazioni

- Il movimento di un robot mobile è limitato dalla dinamica
- Per esempio, ad alte velocità, un centro di massa molto alto limita il raggio di curvatura (può esserci pericolo di cappottamento)

https://www.youtube.com/watch?v=0iui1ACWw-c

Position estimation - Manipolatore

- Un manipolatore ha un'estremità ancorata ad un punto dell'ambiente
- Misurare la posizione dell'end-effector di un braccio richiede unicamente di conoscere la cinematica del robot e di misurare la posizione dei giunti intermedi
- La posizione di un manipolatore è sempre calcolabile avendo a disposizione i dati dei sensori

Position estimation - Robot mobile

- Un robot mobile è un sistema auto-contenuto che si muove interamente rispetto all'ambiente (non ci sono punti fissi di contatto)
- Non c'è un modo diretto di misurare la posizione del robot mobile istantaneamente
- E' possibile integrare il movimento del robot al passare del tempo, ottenendo una stima del movimento

Processo bottom-up

- Derivare il modello cinematico per un robot mobile è un processo bottom-up
- Ogni ruota contribuisce individualmente al movimento del robot e, al tempo stesso, impone dei vincoli al movimento
- Poiché le ruote sono collegate tra loro in base alla geometria della scocca, i vincoli posti dalla singola ruota si combinano per formare vincoli che si applicano all'intero sistema

Modello del robot mobile

- Il robot verrà modellato come un corpo rigido su ruote, in grado di muoversi su un piano orizzontale
- Il modello semplificato avrà 3 dimensioni:
 - 2 per descrivere la posizione nel piano
 - 1 per rappresentare l'orientazione del robot lungo l'asse verticale (che è ortogonale al piano su cui avviene il movimento)

Robot pose

- La robot pose è definita come la posizione del robot e la sua orientazione in un dato sistema di riferimento
- Per un robot mobile che si muove su un piano, la pose è definita dalla tripla [x, y, θ]

Localizzazione

- Il termine localizzazione indica l'attività di determinare la robot pose
- "Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities" [I.J. Cox. Blanche—an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Transactions on Robotics and Automation, 7(2):193–204, 1991]

Sistemi di riferimento

 Forze e vincoli relativi ad ogni ruota devono essere espressi rispetto ad un *chiaro* e *coerente* sistema di riferimento

 Poiché il robot si muove all'interno dell'ambiente, è necessario avere a disposizione un mapping tra il sistema di riferimento locale e quello globale

Combinare i sistemi di riferimento

Esistono
 molteplici
 modi di
 combinare i
 diversi sistemi
 di riferimento

 Questo può generare ambiguità

Frame inerziale e frame del robot

Sistema di riferimento globale

Gli assi X_I e Y_I definiscono una arbitraria base inerziale sul piano avente origine $O: \{X_I, Y_I\}$

Punto di riferimento per la posizione

Il punto P rappresenta la posizione del robot

Sistema di riferimento locale

La base $\{X_R, Y_R\}$ definisce il sistema di riferimento locale del robot (body frame)

Posizione P nel frame globale

- Il punto P è rappresentato nel frame globale dalle coordinate x e y
- la differenza angolare tra i frame locale e globale è data da θ

Robot pose:

$$\xi_{I} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

espressa nel frame di riferimento globale

Descrizione del movimento

- Vogliamo descrivere il movimento del robot in base al movimento delle sue componenti
- Per farlo è necessario trovare una trasformazione T che leghi il movimento che si osserva nel sistema di riferimento globale agli assi del sistema locale

 $\begin{array}{ll} \text{movimento espresso} \\ \text{nel frame} \\ \text{di riferimento locale} \end{array} = \begin{array}{ll} \boldsymbol{T} \\ \boldsymbol{\chi} \\ \text{di riferimento globale} \end{array}$

Matrice di rotazione ortogonale

• La matrice di rotazione ortogonale $R(\theta)$ serve a mappare nel frame di riferimento del robot $\{X_R, Y_R\}$ il movimento calcolato nel frame di riferimento globale $\{X_I, Y_I\}$

$$R(\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• otteniamo $\dot{\xi_R} = R(\theta)\dot{\xi}_I$

y $\sin(\pi/2+\theta)$

 $x \cos(\pi/2+\theta) \equiv -x \sin\theta$

 $\equiv y \cos\theta$

Esempio: allineamento con un asse globale

 Calcolo della matrice di rotazione per il robot in figura

$$\theta = \frac{\pi}{2} \qquad \dot{\xi_R} = R(\frac{\pi}{2})\dot{\xi_I}$$

$$R(\frac{\pi}{2}) = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Esempio: allineamento con un asse globale

Data una certa velocità (x, y, θ)
 calcolata nel frame globale,
 possiamo ricavare le componenti
 del movimento nel sistema di
 riferimento del robot come

$$\dot{\xi_R} = R(\frac{\pi}{2})\dot{\xi_I} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \dot{y} \\ -\dot{x} \\ \dot{\theta} \end{bmatrix}$$

Cinematica diretta e inversa

- La cinematica studia gli aspetti geometrici e temporali del moto delle strutture robotiche, senza riferimento alle cause che lo provocano
- La cinematica diretta è una trasformazione dallo spazio dei giunti allo spazio fisico
- La cinematica inversa è una trasformazione dallo spazio fisico allo spazio dei giunti. E' necessaria per controllare il movimento del robot

Cinematica diretta e inversa

n = numero di gradi di libertà (DoF)

Esempio: differential drive robot

Ruote con diametro r

 \bigcirc punto P (centro di massa)

l distanza della ruota dal centro di massa

 ϕ_1 e ϕ_2 velocità di rotazione delle due ruote

abbiamo:

$$\dot{\xi}_{I} = \begin{vmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{vmatrix} = f(l, r, \theta, \dot{\phi}_{1}, \dot{\phi}_{2})$$

Esempio: differential drive robot

$$\dot{\xi}_R = R(\theta)\dot{\xi}_I$$
 $\dot{\xi}_I = R(\theta)^{-1}\dot{\xi}_R$

Strategia: calcoliamo (nel body frame) indipendentemente i contributi di ogni ruota per poi sommarli Y_r

Consideriamo solo il movimento della ruota 1 con la ruota 2 ferma abbiamo:

$$\dot{x}_{r1} = (1/2)r\dot{\varphi}_1 \ \text{e} \ \omega_1 = \frac{r\dot{\varphi}_1}{2l} \ \text{con} \ \dot{y}_{r1} = 0$$

Esempio: differential drive robot

Consideriamo ora il movimento della ruota 2 con la ruota 1 ferma

abbiamo:

$$\dot{x}_{r2} = (1/2)r\dot{\varphi}_2 \ e \ \omega_2 = \frac{-r\varphi_2}{2l}$$

$$con \dot{y}_{r2} = 0$$

Combinando le due ruote abbiamo:

$$\dot{\xi}_{I} = R(\theta)^{-1} \begin{bmatrix} \dot{x}_{R} \\ \dot{y}_{R} \\ \dot{\theta}_{R} \end{bmatrix} = R(\theta)^{-1} \begin{bmatrix} \frac{r\varphi_{1}}{2} + \frac{r\varphi_{2}}{2} \\ 0 \\ \frac{r\varphi_{1}}{2I} + \frac{-r\varphi_{2}}{2I} \end{bmatrix}$$

castor wheel ruota 2 ruota 1

$$\begin{bmatrix} \frac{r\dot{\varphi}_1}{2} + \frac{r\dot{\varphi}_2}{2} \\ 0 \\ \frac{r\dot{\varphi}_1}{2l} + \frac{-r\dot{\varphi}_2}{2l} \end{bmatrix}$$

Inversa di $R(\theta)$

L'inversa di
$$R(\theta)$$
 è $R(\theta)^{-1} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Pertanto otteniamo

$$\dot{\xi_{I}} = R(\theta)^{-1} \begin{bmatrix} \dot{x}_{R} \\ \dot{y}_{R} \\ \dot{\theta}_{R} \end{bmatrix} = R(\theta)^{-1} \begin{bmatrix} \frac{\dot{r}\phi_{1}}{2} + \frac{\dot{r}\phi_{2}}{2} \\ 0 \\ \frac{\dot{r}\phi_{1}}{2l} + \frac{-\dot{r}\phi_{2}}{2l} \end{bmatrix} = \begin{bmatrix} \cos\theta - \sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\dot{r}\phi_{1}}{2} + \frac{\dot{r}\phi_{2}}{2} \\ 0 \\ \frac{\dot{r}\phi_{1}}{2l} + \frac{-\dot{r}\phi_{2}}{2l} \end{bmatrix}$$

Vincoli cinematici

- Il primo step per ottenere il modello cinematico di un robot mobile consiste nell'esprimere i vincoli al movimento imposti dalle singole ruote
- Il movimento complessivo del robot viene calcolato combinando i movimenti delle singole ruote

Ipotesi di funzionamento

- Le parti costituenti sono rigide
- Il robot è composto da una base su cui sono assemblate una o più ruote ideali
- Le ruote possono essere di vario tipo, attive o passive
- Le ruote possono essere sterzanti o non sterzanti, oppure costituite da cingoli
- L'asse di sterzatura è sempre perpendicolare al suolo e vi è un unico punto di contatto tra ruota e terreno
- Il raggio delle ruote è costante
- Il moto delle ruote sul piano è ideale (rotolamento puro, no scivolamento laterale)

Robotica Mobile Basilio Bona

Vincoli dati dalle ruote

Vincolo sul rotolamento:

La ruota deve girare quando il movimento viene attuato nella giusta direzione

2. Vincolo sullo scivolamento:

La ruota non deve scivolare ortogonalmente al proprio piano

Ruota semplice fissa

Ruota semplice fissa

Ruota semplice sterzante

rotolamento
$$\left[\sin(\alpha+\beta)-\cos(\alpha+\beta)(-l)\cos\beta\right]R(\theta)\dot{\xi}_I-r\dot{\phi}=0$$

- vincoli identici a quelli per la ruota fissa
- β non ha impatto diretto quando si considera il movimento istantaneo

Ruota castor

ogni movimento ortogonale al piano della ruota deve essere bilanciato da un opposto ed equivalente movimento di sterzata del castor

Swedish wheel

rotolamento $\left[\sin(\alpha+\beta+\gamma)-\cos(\alpha+\beta+\gamma)(-l)\cos(\beta+\gamma)\right]R(\theta)\dot{\xi}_I-r\dot{\phi}\cos\gamma=0$

 Y_R scivolamento $\left[\cos(\alpha+\beta+\gamma) \sin(\alpha+\beta+\gamma) l\sin(\beta+\gamma)\right] R(\theta)\dot{\xi}_I - r\dot{\phi}\sin\gamma - r_{sw}\dot{\phi}_{sw} = 0$

- Non c'è un asse di rotazione verticale
- γ è l'angolo tra il piano principale della ruota e gli assi di rotazione dei roller

Ruota sferica

Robot chassis

rotolamento $\left[\sin(\alpha + \beta) - \cos(\alpha + \beta) \left(-l \right) \cos \beta \right] R(\theta) \dot{\xi}_I - r \dot{\phi} = 0$ scivolamento $\left[\cos(\alpha + \beta) \sin(\alpha + \beta) \, l \sin \beta \right] R(\theta) \dot{\xi}_I = 0$ • Non ci sono vincoli

 X_R

- Non ci sono vincoli diretti sul movimento
- Non esiste un asse principale di rotazione
- vincoli identici a quelli per la ruota fissa

Laurea magistrale in Ingegneria e scienze informatiche

Docente:

Domenico Daniele Bloisi

http://turtlebot3.readthedocs.io/en/latest/simulation.html

Testare i comandi per lanciare Gazebo

export TURTLEBOT3_MODEL=waffle
roslaunch turtlebot3 gazebo turtlebot3 empty world.launch

Modificare l'ambiente empty_world con l'aggiunta di oggetti (tavoli e sedie) per riprodurre il laboratorio ciberfisico

http://gazebosim.org/tutorials?cat=build_world

Schema di soluzione

Una volta creato il file del modello (per esempio lab.world) inserirlo in

~/catkin_ws/src/turtlebot3_simulations/turtlebot3_gazebo/models

Poi creare nella cartella

~/catkin_ws/src/turtlebot3_simulations/turtlebot3_gazebo/launch un nuovo launch file, in modo che possa essere lanciato il modello del lab con il comando

roslaunch turtlebot3_gazebo turtlebot3_lab_world.launch

Fare attenzione a modificare anche i file in

/opt/ros/kinetic/share/gazebo_ros/launch/