LSE Summer School FM250 – Finance

Classwork 4: Portfolio Theory Answer key

Question 1

$$\begin{split} x_I &= 0.60 & \sigma_I = 0.10 \\ x_J &= 0.40 & \sigma_J = 0.20 \end{split}$$

$$\sigma_p^2 &= \left[x_I^2 \sigma_I^2 + x_J^2 \sigma_J^2 + 2 (x_I x_J \rho_{IJ} \sigma_I \sigma_J) \right]$$
 (a) $\rho_{IJ} = 1$:
$$\sigma_P^2 &= \left[(0.60)^2 (0.10)^2 + (0.40)^2 (0.20)^2 + 2 (0.60) (0.40) (1) (0.10) (0.20) \right] = 0.0196$$
 (b) $\rho_{IJ} = 0.5$:
$$\sigma_P^2 &= \left[(0.60)^2 (0.10)^2 + (0.40)^2 (0.20)^2 + 2 (0.60) (0.40) (0.50) (0.10) (0.20) \right] = 0.0148$$
 (c) $\rho_{IJ} = 0$:

 $\sigma_{P}^2 = [(0.60)^2(0.10)^2 + (0.40)^2(0.20)^2 + 2(0.60)(0.40)(0)(0.10)(0.20)] = 0.0100$

Question 2

For a two-security portfolio, the formula for portfolio risk is:

Portfolio variance =
$$x_1^2\sigma_1^2 + x_2^2\sigma_2^2 + 2x_1x_{2\rho}\rho_{12}\sigma_1\sigma_2$$

If security one is Treasury bills and security two is the market portfolio, then σ_1 is zero, σ_2 is 20 percent. Therefore:

Portfolio variance =
$$x_2^2 \sigma_2^2 = x_2^2 (0.20)^2$$
; Standard deviation = $0.20x_2$

Portfolio expected return =
$$x_1(0.06) + x_2(0.06 + 0.85) = 0.06x_1 + 0.145x_2$$

Portfolio	X_1	X_2	Expected Return	Standard Deviation
1	1.0	0.0	0.060	0.000
2	0.8	0.2	0.077	0.040
3	0.6	0.4	0.094	0.080
4	0.4	0.6	0.111	0.120
5	0.2	0.8	0.128	0.160
6	0.0	1.0	0.145	0.200

Question 3

Even though it seems that gold is dominated by stocks, gold might still be an attractive asset to hold as a *part* of a portfolio. If the correlation between gold and stocks is sufficiently low, gold will be held as a component in a portfolio, specifically, the optimal tangency portfolio.

Question 4

- (a) False. It is the covariance of returns with the portfolio returns.
- (b) False. Diversification can reduce total risk.
- (c) True. Given that the stocks have the same return and risk, we look for the lowest return correlation.