Shiny UK Map

Air Pollution vs Respiratory Disease

Tzu-hsien, Yang August, 2019 different pages for visual impact and statistical analysis

My Shiny app shows annual average value of air pollution and respiratory disease prevalence by UK area in an interactive map

The material data needed for this map

CCG.code	CCG.geograp	CCG.name.x	Year	Disease	Prevalence
02N	E38000001	NHS AIRED.	2017.18	Asthma	7.21
02P	E38000006	NHS BARNS	2017.18	Asthma	5.71
02Q	E38000008	NHS BASSE	2017.18	Asthma	5.7
02R	E38000019	NHS BRADE	2017.18	Asthma	6.61
02T	E38000025	NHS CALDE	2017.18	Asthma	6.61
02W	E38000018	NHS BRADE	2017.18	Asthma	6.36
02X	E38000044	NHS DONCA	2017.18	Asthma	6.59
02Y	E38000052	NHS EAST R	2017.18	Asthma	6.71
03A	E38000064	NHS GREAT	2017.18	Asthma	6.54
03D	E38000069	NHS HAMBI	2017.18	Asthma	6.25
03E	E38000073	NHS HARRO	2017.18	Asthma	6.22

GIS Boundary

shapefile of local authority boundaries

Statistics

air pollution value and disease prevalence value

Key Packages

Package	Description	Author
shiny	For building interactive web applications in an easy way	Winston et al, 2019
dplyr	dplyr For easier data manipulation	
leaflet	For creating a map widget	Joe et al, 2018
rgdal	For providing bindings to the Geospatial Data Abstraction Library and access to projection/ transformation operations from the 'PROJ.4' library	Roger et al, 2019

Key Packages

Package	Description	Author
ggplot2	ggplot2 For graphically visualising data	
DT	For displaying data as tables on HTML pages, with functions	Yihui Xie et al, 2019
lme4	For fitting and analysing mixed models	Douglas et al, 2015
leafsync	a plugin for leaflet to produce synchronised leaflet web maps	Tim & Kenton, 2019

Key Packages

Package	Description	Author
shinyWidgets	For extending functions as custom widgets in package shiny	Victor et al, 2019
shinydashboard	For creating dashboards with Shiny in a creative way	Winston & Barbara, 2018

```
server<-
                              function(input, output, session){
                                getDataSetdisease <- reactive({</pre>
                                  #data_pg_df[!is.na(data_pg_df$Region) & data_pg_df$Region == input$regionInput, ]
                                  req(input$dataDisease)
                                  req(input$dataYear)
                                  datasubset1 <- full_shp[!is.na(full_shp$Year)&full_shp$Year==input$dataYear&</pre>
                                                              !is.na(full_shp$Disease)&full_shp$Disease==input$dataDisease&
                                                              !is.na(full_shp$PlltntT)&full_shp$PlltntT==input$dataPollu,]
                                  datasubset1
                                3)
                                getDataSetair <- reactive({</pre>
                                  req(input$dataPollu)
                                  datasubset2 <- air[air$PlltntT==input$dataPollu,]</pre>
                                  datasubset2
                                3)
box(width = NULL, solidHeader = TRUE,
   #leafletOutput("EnglandMap", height=400)
                                                           ui + server = shiny app
   selectInput(inputId = "dataYear",
              label = "Select Year:",
   radioButtons("dataPollu", "Select Pollutant Type",
              choices = c("NO2" = "NO2",
                         "NOx" = "NOx",
                         "PM10" = "PM10",
                         "PM2.5" = "PM25")),
   radioButtons(inputId = "dataDisease",
              label = "Select Disease type:",
               choices = c("Asthma", "COPD"),
```

CODE!

body<-

dashboardBody(

navbarPage(theme = "cerulean",

tabPanel("Map",

fluidRow(

),

column(width = 9,

column(width=3,

box(width=NULL,

box(width=NULL,

uiOutput("synced_maps")

dataTableOutput("results")

#uiOutput("yearSelect"),

choices = yer, selected = yer[1]),

selected = "Asthma")

"Menu",

- Interactivity
- Synchronisation
- Geography
- Statistical analysis
- User interface design

- Interactivity
- Synchronisation
- Geography
- Statistical analysis
- User interface design

```
column(width=3,
                box(width=NULL,
                  selectInput(inputId = "dataYear",
                              label = "Select Year:",
                              choices = yer,
                              selected = yer[1]),
                  radioButtons("dataPollu", "Select Pollutant Type",
                         choices = c("NO2" = "NO2",
                                     "NOx" = "NOx"
                                     "PM10" = "PM10",
                                     "PM2.5" = "PM25")),
                  radioButtons(inputId = "dataDisease",
                                label = "Select Disease type:",
                                choices = c("Asthma", "COPD"),
                                selected = "Asthma")
```

Interactive select choices for desiring value

- Interactivity
- Synchronisation
- Geography
- Statistical analysis
- User interface design

```
m1 <-
    leaflet(full_shp,options = leafletOptions(preferCanvas = TRUE)) %>%
   addTiles() %>%
    addPolygons(fillColor = pal(theDatadisease$Prevlnc),
                fillOpacity = 0.8,
                color = "#BDBDC3".
                weight = 2,
                popup = qof_popup,
                data=theDatadisease)%>%
   setView(mean(bounds[1,]),
            mean(bounds[2,]),
            zoom=5.5)
   m2 <-
   leaflet(air,options = leafletOptions(preferCanvas = TRUE)) %>%
   addTiles() %>%
   addPolygons(fillColor = pal_air(theDataair$Vallue),
                fillOpacity = 0.8,
                color = "#525266",
                weight = 2.
                popup = air_popup,
               data=theDataair)%>%
   setView(mean(bounds[1,]),
            mean(bounds[2,]),
            zoom=5.5)
   sync(m1, m2)
```

Create maps and synchronise two maps when click an area in a map

- Interactivity
- Synchronisation
- Geography
- Statistical analysis
- User interface design

```
# Create scatterplot to see the correlation
output$scatterplot <- renderPlot({</pre>
 ggplot(data = disease subset(),
        aes_string(x = input$x, y = input$y, color = input$z)) +
        geom_point()
})
# Create random effect model output
output$summary <- renderPrint({</pre>
 df<-
  df %>%
  spread(key = Disease, value = Prevalence)
 x <- df \% > \% pull(input$x)
 if (input$selected_type == "COPD") {
  print(summary(lmer(COPD \sim x + (1|LocalAuthority), data = df)))
 } else {
  print(summary(lmer(Asthma \sim x + (1|LocalAuthority), data = df)))
})
```

Establish random effect model and scatter plot to see the correlation

- Interactivity
- Synchronisation
- Geography
- Statistical analysis
- User interface design

Create and arrange the interface!

What I've learned from this app

- Spatial mapping in R
- The basic knowledge of GIS
- How to visualise the statistics
- The things you need to know before app creation: the needs!
- The most important things is to keep learning