VII. Árvore Geradora Mínima (Minimum Spanning Tree)

1. Árvore

O grafo não orientado G = { V,A} em que "V" é um conjunto com 2 ou mais vértices e "A" é o conjunto das arestas, constitui uma "Árvore" se é Conexo e Acíclico (sem ciclos).

São definições equivalentes:

- G é acíclico e tem "n-1" arestas (sendo "n" o número de vértices)
- G é conexo e tem "n-1" arestas
- G é acíclico mas passa a ter ciclo se aumentado com mais uma aresta
- G é conexo mas suprimindo qualquer aresta passará a ter duas componentes conexas (deixa de ser conexo)
- Em G há uma e só uma cadeia entre cada par dos seus vértices

O grafo da figura é uma Árvore.

Qualquer Árvore tem pelo menos dois vértices Suspensos (extremos de uma única aresta).

2. Árvore Geradora Mínima

Um grafo G, conexo, admite várias Árvores.

Uma Árvore com todos os vértices do grafo G denomina-se Árvore Geradora ou de Suporte ou Máxima.

Na figura tem-se o grafo G, uma Árvore Geradora e uma Árvore de G:

A condição necessária e suficiente para que o grafo G admita uma Árvore Geradora é que G seja conexo.

Um grafo G pode admitir mais do que uma Árvore Geradora.

Se às arestas de um grafo associarmos um "encargo" c_{ij} a $\acute{A}rvore~Geradora$ com Encargo Total Mínimo designas se $\acute{A}rvore~Geradora~Mínima$.

3. Cálculo da Árvore Geradora Mínima

Uma empresa pretende, a partir de um sistema de captação de água situado em "D", montar um sistema de rega com aspersão em "A", "B", "C" e "E" (ver figura).

Os custos da instalação (possível) de condutas entre os diferentes pontos da rede estão associadas a cada uma das arestas.

Que condutas devem ser instaladas Minimizando o custo total da instalação?

A solução do problema é a Árvore Geradora Mínima (a.g.m.) do Grafo.

Veja-se a sua determinação pelo <u>Método Gráfico</u> sabendo que a solução tem 5 vértices, "n -1 = 4 arestas", não tem ciclos e tem pelo menos 2 vértices suspensos.

Determinação da a.g.m.:

• Seleccionar a conduta de menor custo (AD);

Seleccionar a conduta de menor custo que ligue a A ou D.
 Não seleccionar aresta que estabeleça ciclo(s). A conduta a seleccionar é AB;

Seleccionar a conduta de menor custo que ligue a A, B, ou D.
 Não seleccionar aresta que estabeleça ciclo(s). A conduta a seleccionar é BE;

Seleccionar a conduta de menor custo que ligue a A, B, D ou
E. Não seleccionar aresta que estabeleça ciclo(s). A conduta a
seleccionar é BC;

Na figura tem-se a Árvore Geradora Minima com custo total mínimo de 16 u.m.

Como é notório ao usar o método gráfico a dificuldade reside em identificar a melhor aresta a acrescentar em cada momento evitando que tal escolha provoque ciclo(s).

O *Algoritmo de Prim* aplicado na matriz dO grafo contorna estas dificuldades e segue exacTamente a mesma sequência do método gráfico.

Para a situação precedente organiza-se a matriz do grafo. Porque este é não orientado, a matriz é simétrica sendo por isso suficiente a metade inferior ou superior daquela para aplicar o método de Prim.

Seleccionar a conduta de menor custo (AD);
 (para ligar outra aresta a "A" ou "D", a mesma tem que tEr extremos em "A" ou "D"; estes extremos podem ser visualizados cortando com rectas as linhas e colunas de "A" e "D". As intersEcções das rectas interditam as arestas que provocam ciclo(s).

Deste modo a escolha seguinte fica facilitada pois será feita sobre as rectas e evitando as intersecções destas.

	Α	В	C	D	E
A					
В	2.3				
C	7.2	6.7			
D	(6)	3.1	7.5		
E	5.5	5.4	10.4	6.2	

C

7.5

10.4

В

6.7

3.1

5.4

Α

В

C

D

E

D

6.2

E

 Seleccionar, nas rectas traçadas, a conduta de menor custO que ligue a A ou D.

Nas rectas traçadas o menOr custo é 2.3 (BA).

Assinalar a escolha. Cortar com rectas as linhas e colunas de B e A (este último já está cortado).

 Seleccionar, nas rectas traçadas, a conduta de menor custo (que ligue a A, B ou D)
 Nas rectas traçadas o menor custo é 5.4 (EB).

Assinalar a escolha. Cortar com rectas as linhas e colunas de E e B (este último já está cortado).

 Seleccionar, nas rectas traçadas, a conduta de menor custo (que ligue a A, B, D ou E)

Nas rectas traçadas o menor custo é 6.7 (CB).

Assinalar a escolha. Cortar com rectas as linhas e colunas de C e B (este último já está cortado).

Na matriz as arestas não escolhidas estão em intersecções de rectas pelo que se seleccionadas produzem ciclo(s); estão seleccionadas 4 arestas = nº de vértices -1; a Árvore Geradora Mínima está calculada; o conjunto de arestas é AB, CB, DA e EB (ver figura no método gráfico).

4. Auto Teste

a. Considere a matriz de custos (u.m.) associados às arestas de um grafo G e determine a Árvore Geradora Mínima.

	Α	В	С	D	Е	F	G	Н	I	J	K	L
Α		7	5	13	11	19	8	9	15	9	7	16
В	7		12	9	8	10	12	5	14	17	6	14
C	5	12		7	14	6	7	11	16	12	15	8
D	13	9	7		7	5	8	12	14	10	18	22
Ε	11	8	14	7		11	9	3	12	11	21	17
F	19	10	6	5	11		5	14	11	.13	19	13
G	8	12	7	8	9	5		7	13	15	16	21
Н	9	5	11	12	3	14	7		9	10	13	12
Ι	15	14	16	14	12	11	13	9	75. T.	7	4	14
J	9	17	12	10	11	13	15	10	7		6	5
K	7	6	15	18	21	19	16	13	4	6		9
L	16	14	8	22	17	13	21	12	14	5	9	

b. Uma empresa pretende acrescentar 6 terminais à sua rede de informática.

O computador central encontra-se no local "X" devendo os terminais ser instalados nos locais L_1 , L_2 , L_3 , L_4 , L_5 , L_4 , L_5 ,

Feita a medição de distância (metros) entre locais de instalação e computador central organizou-se a matriz seguinte:

	X	L_1	L_2	L_3	L_4	L_5	L_6
X		34	30	35	43 -	35	40
L_1	34		40	40	35	39	45
L_2	30	40		35	38	37	.36
L_3	35	40	35		40	38	46
L_4	43	35	38	40		43	42
L ₅	35	39	37	38	43		36
L ₆	40	45	36	46	42	36	

A ligação ao computador central é estabelecida com fibra óptica com custo de montagem de 1000 u.m./metro.

Calcule a instalação de custo mínimo.