Equations Sheet

Electricity:

$$F_{\text{Electric}} = k \frac{q_1 q_2}{d^2}$$
, where q is charge

$$1 \text{ volt} = 1 \frac{\text{Joule}}{\text{Coulomb}}$$

$$Current = \frac{Voltage}{Resistance}, I = \frac{V}{R}$$

$$1 \ ampere = 1 \ \frac{volt}{ohm}$$

Power = Voltage
$$\times$$
 Current = VI

$$1 \ watt = 1 \ ampere \times 1 \ volt = 1 \frac{Joule}{s}$$

Electromagnetic Induction:

Induced $V \propto$ Number of loops × Area of loops × $\frac{\Delta B}{\Delta t}$

$$\frac{Primaty\ Voltage}{Secondaty\ Voltage} = \frac{N_{loops}\ Primary}{N_{loops}\ Secondary}$$

 $(Voltage \times Current)_{primary} = (Voltage \times Current)_{secondary}$

Electromagnetic Waves:

Frecuency =
$$\frac{c}{\text{Wavelength}}$$
, $f = \frac{c}{\lambda}$

$$c = 3 \times 10^8 \ m/s$$
 (speed of light)

 λ = Wavelength

$$1 nm = 10^{-9} meters$$

$$1 Hz = \frac{1}{second}$$

Light Quanta (Photons):

Eenergy =
$$hf = h\frac{c}{\lambda}$$

 $h = \text{Planck's Constant} = 4.14 \times 10^{-15} \ eV \cdot s$

Matter Waves:

Wavelength =
$$\frac{h}{\text{Momentum}} = \frac{h}{mv}$$

$$h = \text{Planck's Constant} = 6.63 \times 10^{-34} J \text{ s}$$

$$1 \ Joule = 1 \ \frac{kg \ m^2}{s^2}$$