Longitudional clinical trial using linear mixed-effects models

Valery Liamtsau

2025-08-10

```
# upload packages
library(readxl)
library(tidyverse) # get for tibble
library(ggplot2)
library(ggplot2)
library(DescTools)
library(lmerTest)
library(huxtable) # printing pretty table
library(lme4)
library(lattice)
library(simr)
# temporarily turn off warnings
options(warn=0)
# Import and data preprocessing
# set working directory
path_ <- "C:/Users/valer/Desktop/R_project/Project 7/data.xlsx"</pre>
# loading data containing test and reference datasheets
loading_data <- function(path_, sheet_) {</pre>
  # reading file
  data <- read_excel(path = path_, sheet = sheet_)</pre>
  return (data)
# dataset for the test medicinal product
data_test <- loading_data(path_, "data")</pre>
```

printing the first rows
head(data_test)

Subject	Treatment	Age	Sex	Time	Blood_pressure
1	A	40	M	0	140
1	A	40	M	1	138
1	A	40	M	2	140
1	A	40	M	3	137
1	A	40	M	4	130
1	A	40	M	5	128

Treatment C is a placebo, Treatment B is 10 mg drug dose, Treatment A is 20 mg drug dose

From these figures the obvious trend is revealed; i.e., that on average blood pressure, declines at a faster rate in Treatment A than in Treatment B, and in Treatment B is faster than in Treatment C. The rate and extent of decline varies across the 30 patients.

Longitudinal Modeling

Model will have Subject as random effect, while Treatment and Time will be considered as fixed effects.

```
# fit Model 2
mod2DBP = lmer(Blood_pressure~Treatment+Time+(1|Subject), data_test)
summary(mod2DBP)
```

```
Linear mixed model fit by REML. t-tests use Satterthwaite's method [ lmerModLmerTest]
```

Formula: Blood_pressure ~ Treatment + Time + (1 | Subject)
Data: data_test

REML criterion at convergence: 1978.7

Scaled residuals:

```
Min 1Q Median 3Q Max -5.6936 -0.4642 0.0425 0.4945 3.4594
```

Random effects:

Groups Name Variance Std.Dev.
Subject (Intercept) 85.642 9.254
Residual 6.473 2.544
Number of obs: 390, groups: Subject, 30

Fixed effects:

Estimate Std. Error df t value Pr(>|t|) (Intercept) 125.72857 2.94221 27.26815 42.733 <2e-16 *** 0.307 TreatmentB 4.32308 4.15065 27.00000 1.042 5.42308 4.15065 27.00000 1.307 0.202 TreatmentC Time -0.771430.03443 359.00000 -22.405 <2e-16 *** ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) TrtmnB TrtmnC

TreatmentB -0.705

TreatmentC -0.705 0.500

Time $-0.070 \quad 0.000 \quad 0.000$

Conclusion

It is observed that Treatment A (dose 20 mg) at initial timepoint equals to 125.7, and this is statistically significant. As the time goes on (-0.77 coefficient) the effect of a drug is increasing while the effects of reatment B (10 mg) and Treatment C (pacebo) decrease the blood pressure to much lesser extent. Treatment B and Treatment C both are not statistically significant.

```
# adding Age and Sex to the model
# fit Model 3 include Age effect
mod3DBP = lmer(Blood_pressure~Treatment+Time+Age+(1|Subject), data_test)
summary(mod3DBP)
```

```
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Blood_pressure ~ Treatment + Time + Age + (1 | Subject)
   Data: data_test
```

REML criterion at convergence: 1978.8

Scaled residuals:

Min 1Q Median 3Q Max -5.6971 -0.4669 0.0475 0.4924 3.4540

Random effects:

Groups Name Variance Std.Dev.
Subject (Intercept) 86.281 9.289
Residual 6.473 2.544
Number of obs: 390, groups: Subject, 30

Fixed effects:

df t value Pr(>|t|) Estimate Std. Error (Intercept) 119.32897 7.73660 26.03711 15.424 1.3e-14 *** 4.25733 0.316 TreatmentB 4.16668 26.00000 1.022 TreatmentC 5.05050 4.18679 26.00000 1.206 0.239 Time -0.77143 0.03443 359.00000 -22.405 < 2e-16 *** 0.21916 0.24489 26.00000 0.895 0.379 Age

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) TrtmnB TrtmnC Time

TreatmentB -0.253

TreatmentC -0.176 0.499

Time -0.027 0.000 0.000

Age -0.924 -0.018 -0.099 0.000

the addition of the Age variable does not statistically significant change the model.

anova(mod2DBP, mod3DBP)

npar	AIC	BIC	$\log Lik$	$-2*\log(L)$	Chisq	Df	Pr(>Chisq)
6	2e + 03	2.02e+03	-993	1.99e + 03			
7	2e + 03	2.03e+03	-992	1.98e + 03	0.91	1	0.34

fit Model 4 including Age and Sex
mod4DBP = lmer(Blood_pressure~Treatment+Time+Age+Sex+(1|Subject), data_test)

test the Sex effect
anova(mod3DBP, mod4DBP)

npar	AIC	BIC	logLik	-2*log(L)	Chisq	Df	Pr(>Chisq)
7	2e+03	2.03e+03	-992	1.98e + 03			
8	2e + 03	2.03e+03	-992	1.98e + 03	0.755	1	0.385

This gives a p-value indicating that Age and Sex are not a statistically significant effect.