Previously.

- Polynomial Rings

– The Division Algorithm

- The Factor Theorem

- The Remainder Theorem

This Section.

- Factoring degree 2 and 3 polynomials

- Unique Factorization

- Factoring in $\mathbb{C}[x]$, $\mathbb{R}[x]$, $\mathbb{Q}[x]$, $\mathbb{Z}[x]$

Definition. Let F be a field and $p \neq 0$ in F[x] a polynomial. We call p <u>irreducible over F</u> if $deg(p) \geq 1$ and

if
$$p = fg$$
 for $f, g \in F[x]$, then either $\deg(f) = 0$ or $\deg(g) = 0$.

Otherwise we call p reducible.

Theorem 4.2.1. Let F be a field and consider p in F[x] where $deg(p) \geq 2$.

- **1.** If p is irreducible, then p has no root in F.
- **2.** If deg(p) is 2 or 3, then p is irreducible if and only if it has no root in F.

Example. (a) $x^2 + 1$ is irreducible in $\mathbb{R}[x]$

- (b) $x^2 2$ is irreducible over \mathbb{Q}
- (c) $p = x^3 + 3x^2 + x + 2$ is irreducible over \mathbb{Z}_5

Unique Factorization Theorem (4.2.12). Let F be a field, and f be a nonconstant polynomial in F[x]. Then

- **1.** $f = ap_1p_2 \cdots p_m$, where $a \in F$ and p_1, p_2, \dots, p_m are monic and irreducible in F[x].
- 2. The factorization is unique up to the order of the factors.

Note. The proof for (1) is a pretty straight-forward induction proof. The proof for (2) uses the fact that if

$$p|q_1q_2\cdots q_n,$$

where p, q_1, q_2, \ldots, q_n are irreducible, then $p|q_i$ for some i.

Remark. If F is a field, we call F[x] a unique factorization domain because it is a domain and the elements factor uniquely.

Factorization over \mathbb{C}

Fundamental Theorem of Algebra (Theorem 4.2.2). If $f \in \mathbb{C}[x]$ with deg f > 0, then f has at least one root in \mathbb{C} .

Theorem 4.2.3. 1. If deg $f = n \ge 1$, $f \in \mathbb{C}[x]$, then f factors completely as

$$f = u(x - a_1)(x - a_2) \cdots (x - a_n),$$

for $u \neq 0, a_1, a_2, \dots, a_n \in \mathbb{C}$.

2. The only irreducible polynomials in $\mathbb{C}[x]$ are linear.

Exercise 1. Complex conjugation is a ring homomorphism. So let's assume that z = a + bi is a root of a polynomial $f \in \mathbb{R}[x]$.

Prove that $\bar{z} = a - bi$ is also a root of f.

Factorization over \mathbb{R}

Theorem 4.2.4. Every nonconstant polynomial $f \in \mathbb{R}[x]$ factors as

$$f = u(x - r_1)(x - r_2) \cdots (x - r_m)q_1q_2 \cdots q_k,$$

where r_1, r_2, \ldots, r_m are the real roots of f and q_1, q_2, \ldots, q_k are monic irreducible quadratics in $\mathbb{R}[x]$.

Corollary. The irreducible polynomials in $\mathbb{R}[x]$ are either linear or quadratic.

Factoring over \mathbb{Q}

Gauss' Lemma (Theorem 4.2.5). Let f = gh in $\mathbb{Z}[x]$. If a prime $p \in \mathbb{Z}$ divides every coefficient of f, then p divides every coefficient of g or p divides every coefficient of h.

Theorem 4.2.6. Let $f \in \mathbb{Z}[x]$ be a non-constant polynomial.

- **1.** If f = gh with $g, h \in \mathbb{Q}[x]$, then $f = g_0h_0$ where $g_0, h_0 \in \mathbb{Z}[x]$, $\deg g = \deg g_0$, and $\deg h = \deg h_0$.
- **2.** f is irreducible in $\mathbb{Q}[x]$ if and only if f = ag where $a \in \mathbb{Z}$ are the only factorizations of f in $\mathbb{Z}[x]$.

Exercise 2. Consider

$$4x^{8} + 2x^{7} - 4x^{6} - 5x^{5} - 6x^{4} - 7x^{3} - 3x^{2} - x - 1 = \left(\frac{20}{3}x^{3} + \frac{10}{3}x^{2} + \frac{5}{3}\right)\left(\frac{3}{5}x^{5} - \frac{3}{5}x^{3} - \frac{3}{5}x^{2} - \frac{3}{5}x - \frac{3}{5}\right).$$

Write this polynomial as a product of polynomials in $\mathbb{Z}[x]$.

Reduction mod p. Using the mod p map, $\mathbb{Z} \to \mathbb{Z}_p$, we induce a map from $\mathbb{Z}[x]$ to $\mathbb{Z}_p[x]$ given by

$$f = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \mapsto \bar{f} = \bar{a}_0 + \bar{a}_1 x + \bar{a}_2 x^2 + \dots + \bar{a}_n x^n.$$

We call \bar{f} the <u>reduction</u> of f modulo p. This map is in fact an onto ring homomorphism.

Modular Irreducibility (Theorem 4.2.7). Let $0 \neq f \in \mathbb{Z}[x]$ and suppose that a prime p exists such that

- 1. p does not divide the leading coefficient of f.
- **2.** The reduction, \bar{f} of f modulo p is irreducible in $\mathbb{Z}_p[x]$.

Then f is irreducible over \mathbb{Q} .

Exercise 3. Show that $f = 32x^3 - 51x^2 - 2x + 25$ is irreducible over \mathbb{Q} . (Hint: Check mod 3.)

Eisenstein's Criterion (Theorem 4.2.8). Consider $f = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$ in $\mathbb{Z}[x]$, where $n \geq 1$ and $a_0 \neq 0$. Let $p \in \mathbb{Z}$ be a prime number satisfying

- **1.** p divides each of $a_0, a_1, a_2, \ldots, a_{n-1}$.
- **2.** p does not divide a_n .
- **3.** p^2 does not divide a_0 .

Then f is irreducible in $\mathbb{Q}[x]$.

Exercise 4. Show that $x^5 - 3x^2 + 6x - 12$ is irreducible in $\mathbb{Q}[x]$.

Exercise 5. Show that $f = x^n - 2$ is irreducible in $\mathbb{Q}[x]$ for all n.

So What's the Point?. If $f \in \mathbb{Q}[x]$ and we want to find the roots, we can think of $f_1 \in \mathbb{Z}[x]$.

Polynomials in $\mathbb{Z}[x]$ are "easier" than those in $\mathbb{Q}[x]$.

Polynomials in $\mathbb{Z}_p[x]$ are way easier than those in $\mathbb{Q}[x]!!$