Package

June 12, 2019

Title TinderMIX: An R package to cluster gene expression by contour plots

Type Package

Version 0.1.0

Author Angela Serra
Maintainer Angela Serra <angela.serra@tuni.fi></angela.serra@tuni.fi>
Description The TinderMIX package allows to analyse toxicogenomics data with multiple dose levels and time-points. It allows to identify the expression patterns with respect to both variables and to cluster molecular features accordingly. It also identify enriched pathways/go terms that are associated to each cluster.
Depends R (>= 3.4),
stats, utils, AnnotationDbi, gProfileR, gtools, reshape, plotly, clv, gplots, org.Hs.eg.db, org.Mm.eg.db, org.Rn.eg.db, xlsx
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
R topics documented:
build_items_list
1

build_items_list

	compute_anova_dose_time	3
	compute_enrichment	4
	convert_genes	5
	create_contour	5
	create_prototypes	6
	enrich	7
	findCenter	8
	fisher_test	8
	hls_genes_clustering	9
	plot3d	10
	plot_clusters_prototypes	10
	write_xlsx_for_funmappone	11
Index		12

 $\verb|build_items_list|$

This function computes the venn diagram of the genes associated to time, dose or their interaction

Description

This function computes the venn diagram of the genes associated to time, dose or their interaction

Usage

```
build_items_list(PvalMat, p.val.th = 0.01)
```

Arguments

PvalMat matrix with pvalue associated to the dose, timepoint and the dose*timepoint effect that is the output of the compute_anova_dose_time function

p.val.th is the threshold at which p.values are considered significant. Default = 0.01

Value

a list containing the genes in each position of the venn diagram

```
data("WY14643")
exp_data = WY14643$exp_data
pheno_data = WY14643$pheno_data
PvalMat = compute_anova_dose_time(exp_data, pheno_data,dose_index = 2,time_point_index = 3)
ItemsList = build_items_list(PvalMat)
```

clustering_summary 3

clustering_summary	This function evaluate the summary index for a clustering results by taking into account the within and between variability
--------------------	---

Description

This function evaluate the summary index for a clustering results by taking into account the within and between variability

Usage

```
clustering_summary(DB, cluster)
```

Arguments

DB your matrix dataset

cluster is a numeric vector of clustering results

Value

a vector of evaluation indexes

```
compute_anova_dose_time
```

This function computes a two way anova between dose and time for the expression value of every genes

Description

This function computes a two way anova between dose and time for the expression value of every genes

Usage

```
compute_anova_dose_time(exp_data, pheno_data, dose_index, time_point_index)
```

Arguments

exp_data is the expression matrix with genes on the rows and samples on the columns pheno_data is a dataframe with phenodata informations. Samples are on the rows. The columns should include the dose and time point information.

dose_index numeric value specifing the column of the phenodata table containing the doses time_point_index

numeric value specifing the column of the phenodata table containing the time points

Value

a matrix with pvalue associated to the dose, timepoint and the dose*timepoint effect

4 compute_enrichment

Examples

```
data("WY14643")
exp_data = WY14643$exp_data
pheno_data = WY14643$pheno_data
PvalMat = compute_anova_dose_time(exp_data, pheno_data, dose_index = 2,time_point_index = 3)
```

compute_enrichment

This function perform enchment of the genes in each cluster

Description

This function perform enchment of the genes in each cluster

Usage

```
compute_enrichment(optimal_clustering, corrType = "fdr",
  type_enrich = "KEGG", org_enrich = "rnorvegicus", pth = 0.05,
  sig = FALSE, mis = 0, only_annotated = FALSE)
```

Arguments

```
optimal_clustering
```

vector of final clustering

corrType string specifing the algorithm used for determining the significance threshold,

one of gSCS, fdr, bonferroni. Default: fdr

type_enrich string specifying the enrichment type. Default = KEGG org_enrich string specifying the organism. Default = rnorvegicus

pth numeric value specifyint the pvalue threshold. Default = 0.05

sig whether all or only statistically significant results should be returned mis minimum size of functional category, smaller categories are excluded

only_annotated statistical domain size, one of "annotated", "known"

Value

a list with the enriched pathways for each cluster of genes

```
data("WY14643")
exp_data = WY14643$exp_data
pheno_data = WY14643$pheno_data
PvalMat = compute_anova_dose_time(exp_data, pheno_data,dose_index = 2,time_point_index = 3)
ItemsList = build_items_list(PvalMat)
responsive_genes = unique(c(unlist(ItemsList$Dose),unlist(ItemsList$Time),unlist(ItemsList$`Dose:Time:Dose
contour_res = create_contour(exp_data, pheno_data, responsive_genes,dose_index = 2,time_point_index = 3,gric
hls_res = hls_genes_clustering(contour_res$GenesMap, nClust = c(5,10,15,20,25), method="pearson", hls.methoc
clpr = create_prototypes(clust_res = hls_res,summaryMat = hls_res$summaryMat,contour_res)
enrRes = compute_enrichment(clpr$optcl,corrType = "fdr",type_enrich="KEGG", org_enrich = "rnorvegicus",pth = ""
```

convert_genes 5

convert_genes This function convert genes identifiers	convert_genes	This function convert genes identifiers	
---	---------------	---	--

Description

This function convert genes identifiers

Usage

```
convert_genes(organism = "hsapiens", GList, annType = "SYMBOL")
```

Arguments

organism a string specifying the organism under analysis

GList a list of genes identifier

annType string specifying the wanted gene identifier

Value

a list with the converted genes identifiers

create_contour	This function fits a 3D regression model for every gene in the dataset and creates an $N \times N$ contour plot
	and creates an N x N contour plot

Description

This function fits a 3D regression model for every gene in the dataset and creates an N x N contour plot

Usage

```
create_contour(exp_data, pheno_data, responsive_genes, dose_index,
  time_point_index, gridSize = 50)
```

Arguments

exp_data is the expression matrix with genes on the rows and samples on the columns pheno_data is a dataframe with phenodata informations. Samples are on the rows. The columns should include the dose and time point information.

responsive_genes

responsive_genes character vector with the genes statistically significant for the

two-way anova

 $\label{lem:containing} \mbox{dose_index} \quad \mbox{numeric value specifing the column of the phenodata table containing the doses } \\ \mbox{time_point_index}$

numeric value specifing the column of the phenodata table containing the time

points

gridSize numeric value specifing size of the z-grid

6 create_prototypes

Value

a list with list with estimated contour objects, 3D fitted objects, fitting statistics and feature values for time and dose

GenesMap a matrix with the z-maps computed for each gene

RPGenes a list with the 3D fitted objects

Statis a matrix with the fitting statistics: PValue, Adj. R. Square, RMSE

DFList a list with the data used for the fitting

Examples

```
data("WY14643")
exp_data = WY14643$exp_data
pheno_data = WY14643$pheno_data
PvalMat = compute_anova_dose_time(exp_data, pheno_data, dose_index = 2,time_point_index = 3)
ItemsList = build_items_list(PvalMat)
responsive_genes = unique(c(unlist(ItemsList$Dose), unlist(ItemsList$Time), unlist(ItemsList$`Dose:Time:Dose
contour_res = create_contour(exp_data, pheno_data, responsive_genes, dose_index = 2,time_point_index = 3,grice
```

create_prototypes this function create the cluster prototypes as the mean values of the z

maps of all the genes in the cluster

Description

this function create the cluster prototypes as the mean values of the z maps of all the genes in the cluster

Usage

```
create_prototypes(clust_res, summaryMat, contour_res)
```

Arguments

clust_res the clustering results object given in input by the function hls_genes_clustering summaryMat the matrix with the summary statistics computed for the different k values contour_res a list with the contours object returned in output by the create_contour function

Value

a list with the contour objects for each clustering prototype and the vector of the optimal clustering

meanXYZ a list the contour object for each prototype

optcl a vector with the optimal clustering

enrich 7

Examples

```
data("WY14643")
exp_data = WY14643$exp_data
pheno_data = WY14643$pheno_data
PvalMat = compute_anova_dose_time(exp_data, pheno_data, dose_index = 2,time_point_index = 3)
ItemsList = build_items_list(PvalMat)
responsive_genes = unique(c(unlist(ItemsList$Dose),unlist(ItemsList$Time),unlist(ItemsList$`Dose:Time:Dose
contour_res = create_contour(exp_data, pheno_data, responsive_genes,dose_index = 2,time_point_index = 3,gric
hls_res = hls_genes_clustering(contour_res$GenesMap, nClust = c(5,10,15,20,25), method="pearson", hls.metho
clpr = create_prototypes(clust_res = hls_res,summaryMat = hls_res$summaryMat,contour_res)
```

enrich

This function perform enchment of the genes in each cluster

Description

This function perform enchment of the genes in each cluster

Usage

```
enrich(x, type, org, pval, adjust_method, sig = FALSE, mis = 0,
  only_annotated = TRUE)
```

Arguments

x	a dataframe with the gene names on the first column
type	string specifying the enrichment type. Default = KEGG
org	string specifying the organism. Default = rnorvegicus
pval	numeric value specifyint the pvalue threshold. Default = 0.05
adjust_method	string specifing the algorithm used for determining the significance threshold, one of gSCS, fdr, bonferroni. Default: fdr
sig	whether all or only statistically significant results should be returned
mis	minimum size of functional category, smaller categories are excluded
only_annotated	statistical domain size, one of "annotated", "known"

Value

a list with the enriched pathways for each cluster of genes

fisher_test

findCenter This function select cluster prototypes. It select the prototype as the more correlated with the other elements in the cluster	findCenter	
---	------------	--

Description

This function select cluster prototypes. It select the prototype as the more correlated with the other elements in the cluster

Usage

```
findCenter(DB, clust_vector)
```

Arguments

DB your matrix dataset

clust_vector a numeric vector of clustering results

Value

a matrix of prototypes

fisher_test	This function construct confusion matrix between patient classes and
	the obtained clustering

Description

This function construct confusion matrix between patient classes and the obtained clustering

Usage

```
fisher_test(classes, clustering, matrixRownames, nCluster)
```

Arguments

classes is a vector of patient labels clustering is a vector of clustering results

matrixRownames is a vector of names to assign as rownames of the confusion matrix

nCluster is the number of obtained clusters

Value

the confusion matrix

hls_genes_clustering 9

 ${\tt hls_genes_clustering} \quad \textit{It clusters the contour plots by also estimating the ideal number of} \\ \quad \textit{clusters} \\$

Description

It clusters the contour plots by also estimating the ideal number of clusters

Usage

```
hls_genes_clustering(GenesMap, nClust = c(5, 10, 25, 50, 75, 100, 125, 150, 175, 200, 250, 300), method = "pearson", hls.method = "ward")
```

Arguments

GenesMap a matrix with the z-maps computed with the function create_contour

nClust vector of putative numbers used to determine number of clusters. Default =

c(5,10,25,50,75,100,125,150,175,200,250,300)

method string specifying the correlation method. Default = "pearson"

hls.method string specifying method for the hierarchical clustering. Default = "ward"

Value

a list with the clustering results and statistics for the optimal number of clusters

hls_res a list containing the clustering results, the clustering vector and the centers for

each k value given in input

summaryMat a matrix with summary statistic for each k value given in input

clusterList a list with the clustering vectors

```
data("WY14643")
exp_data = WY14643$exp_data
pheno_data = WY14643$pheno_data
PvalMat = compute_anova_dose_time(exp_data, pheno_data, dose_index = 2,time_point_index = 3)
ItemsList = build_items_list(PvalMat)
responsive_genes = unique(c(unlist(ItemsList$Dose),unlist(ItemsList$Time),unlist(ItemsList$`Dose:Time:Dose
contour_res = create_contour(exp_data, pheno_data, responsive_genes,dose_index = 2,time_point_index = 3,gric
hls_res = hls_genes_clustering(contour_res$GenesMap, nClust = c(5,10,15,20,25), method="pearson", hls.method
```

plot3d	This function plots the fitted 3d surface for the expression value of a
	gene

Description

This function plots the fitted 3d surface for the expression value of a gene

Usage

```
plot3d(toPlot = list(x, y, z), DF)
```

Arguments

toPlot is a list containing the predicted value for the x, y and z axis

DF is the data frame containing the information for the samples used in the fitting

process

Value

a plotly object

Examples

```
data("WY14643")
exp_data = WY14643$exp_data
pheno_data = WY14643$pheno_data
PvalMat = compute_anova_dose_time(exp_data, pheno_data,dose_index = 2,time_point_index = 3)
ItemsList = build_items_list(PvalMat)
responsive_genes = unique(c(unlist(ItemsList$Dose),unlist(ItemsList$Time),unlist(ItemsList$`Dose:Time:Dose
contour_res = create_contour(exp_data, pheno_data, responsive_genes,dose_index = 2,time_point_index = 3,gric
plot3d(toPlot = contour_res$RPGenes[["Pdk4"]],DF = contour_res$DFList[["Pdk4"]])
```

```
plot_clusters_prototypes
```

this function plots the clusters prototype

Description

this function plots the clusters prototype

Usage

```
plot_clusters_prototypes(meanXYZ, nR = 2)
```

Arguments

meanXYZ a list the contour object for each prototype computed with the function cre-

ate_prototypes

nR the number of rows to use in the plot

Examples

write_xlsx_for_funmappone

This function create an excel file with the same format of the input need by the FunMappOne tool

Description

This function create an excel file with the same format of the input need by the FunMappOne tool

Usage

```
write_xlsx_for_funmappone(optimal_clustering,
  filePath = "../contour_clustering/gene_clustering.xlsx")
```

Arguments

optimal_clustering

is a numeric vector with the clustering result for every gene

filePath is a string specifying the path of the xlsx file

```
data("WY14643")
exp_data = WY14643$exp_data
pheno_data = WY14643$pheno_data
PvalMat = compute_anova_dose_time(exp_data, pheno_data,dose_index = 2,time_point_index = 3)
ItemsList = build_items_list(PvalMat)
responsive_genes = unique(c(unlist(ItemsList$Dose),unlist(ItemsList$Time),unlist(ItemsList$`Dose:Time:Dose
contour_res = create_contour(exp_data, pheno_data, responsive_genes,dose_index = 2,time_point_index = 3,gric
hls_res = hls_genes_clustering(contour_res$GenesMap, nClust = c(5,10,15,20,25), method="pearson", hls.metho
enrRes = compute_enrichment(clpr$optcl,corrType = "fdr",type_enrich="KEGG", org_enrich = "rnorvegicus",pth =
write_xlsx_for_funmappone(clpr$optcl,filePath = "../contour_clustering/gene_clustering.xlsx")
```

Index

```
*Topic clustering;
    findCenter, 8
    fisher_test, 8
*Topic clustering
    clustering_summary, 3
*Topic confusion
    fisher_test, 8
*Topic correlation
    findCenter, 8
*Topic evaluation
    {\tt clustering\_summary}, {\tt 3}
*Topic matrix
    fisher_test, 8
*Topic multi-view
    findCenter, 8
    fisher_test, 8
*Topic prototype;
    findCenter, 8
build_items_list, 2
clustering_summary, 3
{\tt compute\_anova\_dose\_time, 3}
compute\_enrichment, 4
convert_genes, 5
create_contour, 5
create\_prototypes, 6
enrich, 7
findCenter, 8
fisher\_test, 8
hls\_genes\_clustering, 9
plot3d, 10
plot_clusters_prototypes, 10
write_xlsx_for_funmappone, 11
```