ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Advanced Level

MARKING SCHEME

NOVEMBER 2020 SESSION

STATISTICS

6046/1

		2	
1	(a)	$P(I) = \left(\frac{1}{6}\right)\left(\frac{4}{5}\right) + \left(\frac{1}{3}\right)\left(\frac{3}{4}\right) + \left(\frac{1}{2}\right)\left(\frac{19}{20}\right)$	MI
		$= \frac{103}{120} 0.8563$	A1 [2]
	(b)	$P(F/I) = \frac{\frac{1}{2}(\frac{19}{20})}{\frac{103}{120}}$	BIMIduding by H A1
		$=\frac{57}{103} \left(0, 5534\right)$	A1 (5)
2	(a)	Arranging numbers in order of size:	,
		41 42 42 42 43 44 45 46 46 47 48 55	
		$Q_2 = 44.5$	B1
		$Q_1 = 42 \text{ and } Q_3 = 46.5$	B1B1 [3 (]
	(b)	On graph paper	scale and outlier [3] B1 [1] (6)
	(c)	Distribution nearly symmetrical / normal	B1 [N (6)
3	(a)	(i) Number of ways of choosing team = C_4^{11}	,
		$= \frac{11!}{4!7!}$	
		= 330	B1 [<i>Y</i>]
		(ii) Number of ways of choosing 3 men and one woman	<i>y</i> , 1
		$= (C_3^6)(C_1^5)$	
		$= \left(\frac{6!}{3!3!}\right) \left(\frac{5!}{1!4!}\right)$	M1
		= 100	A1 [2
	(b)	When one man is chosen, then 3 women must be chosen	91
		$n(M) = (C_1^6)(C_3^5)$	
		$= \left(\frac{6!}{5!1!}\right) \left(\frac{5!}{3!2!}\right)$	M
		= 60	Af Blook (6)
	111		(-)

∴ P(M) =
$$\frac{60}{330} = \frac{2}{11}$$
 M1A1

4
$$E(X) = 3.5$$

$$1(0,1) + 2(0,3) + a(0,4) + b(0,2) = 3,5$$

2a + b = 14

Var(X) = 2.65

$$1^{2}(0,1) + 2^{2}(0,3) + a^{2}(0,4) + b^{2}(0,2) - 3.5^{2} = 2.65$$

 $2a^2 + b^2 = 68$

$$2a^2 + (14 - 2a)^2 = 68$$

$$(3a-16)(a-4)=0$$

 $a = 4(a = 5\frac{1}{3} \text{ not admissible})$

 $b = \epsilon$

M1

Miathempt to she simultaneously

Αl

A1

[6]

5 (a)
$$\sum x = 225$$
, $\sum x^2 = 8875$, $\sum y = 361$,

 $\sum y^2 = 22641$, $\sum xy = 12905$, n = 6

$$m = \frac{6(12905) - (225)(361)}{6(8875) - (225)^2}$$

= -1.446

$$y - 60.17 = -1.446(x - 37.5)$$

No, because x has been controlled

 $\Rightarrow y = -1.45x + 114.4$

MI correct subst

A1

M1A1

[4]-

B1B1 [2]. [6]

6 (a)
$$\bar{x} = \frac{745}{18} = 41.4 | 41.3889$$

(b)

 $s^2 = \frac{33951}{18} - 41.4^2$

= 172.7066667

M1

A1 [3]

(b) (i)
$$\sum x = 41 \times 17 = 697$$

Mass of pupil who left = 745 - 697

M1

= 48 kg

A1

M1A1 (2)

(ii)
$$S = \sqrt{\frac{31647}{17} - 41^2} = 13.4$$
 MIA1 [2]

7 (a) $P(X = 2) = C_2^{\frac{1}{2}} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^3$ MI

$$= \frac{C_2^{\frac{1}{2}}}{\sqrt{246}} \left(\frac{325}{1236}\right)$$

$$= \frac{0.200938786}{\sqrt{246}} \left(\frac{5}{6}\right)^{\frac{1}{2}} \left(\frac{5}{6}$$

(c)
$$P(X \ge 3) = P(X = 3) + P(X > 3)$$
 $P(X > 2)$ $P(X > 2)$ $P(X > 2)$ $P(X > 3)$ $P(X >$

(c)
$$P(|X - 3| > 6| = P(X < 3) + P(X > 9)$$

 $= P(Z < \frac{-3 - 3}{3}) + P(Z > \frac{9 - 3}{3})$
 $= P(Z < -2) + P(Z > 2)$
 $= 2[1 - \Phi(2)]$

Blintepretation

Μl

$$2[1-\Phi(2)]$$
 2[1-0,9772] At B1 table value

0,0456 A1 [4]

11 (a) Number of years used = 8 B1

(b) Sales for 1985:

$$\hat{y} = 284 + 14.4 (11)$$
 M1
= $537.6 + 442 + 442 + 400$ A1

(c) Annual increase in sales = 14.4 / 144

(d)
$$\hat{y} = \frac{284}{12} + \frac{14.4}{12} \cdot \frac{x}{12}$$

$$= 23.67 + 0.1x$$
M1

To move origin to 15 July 1980, add 36,5 increments of 0,1 to 23,67:

$$\hat{y} = 23,67 + 36.5(0,1) + 0,1x$$
 M1
= $27.32 + 0,1x$ A1

Sales for September 1980:

$$\hat{y} = 27.32 + 0.1(2.5)$$
 M1
$$= 27.57$$
 A1
[9]

12 (a)
$$P(X < 20) = 10 \int_{10}^{20} \frac{dx}{x^2}$$

= $10 \left[-\frac{1}{x} \right]_{10}^{20}$
= $10 \left[\frac{1}{10} - \frac{1}{20} \right]$ M1
= $\frac{1}{2}$ A1

(b) For
$$x > 10$$
, $F(x) = 10 \int_{10}^{x} \frac{dt}{t^{2}}$

$$= 10 \left[-\frac{1}{t} \right]_{10}^{x} \qquad M1$$

$$= 1 - \frac{10}{x} \qquad A1$$
For $x \le 10$, $F(x) = 0$

$$\therefore F(x) = \begin{cases} 1 - \frac{10}{x}, x > 10 \\ 0, x \le 10 \end{cases} \qquad B1$$

$$P(Y \ge 3) = 1 - P(Y < 3) \qquad B1$$

$$= 1 - C_{0}^{6} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)^{6} - C_{1}^{6} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)^{5} - C_{2}^{6} \left(\frac{1}{4} \right)^{2} \left(\frac{1}{2} \right)^{4} \qquad M1$$

$$= 1 - \left(\frac{1}{2} \right)^{6} - 6 \left(\frac{1}{2} \right)^{6} - 15 \left(\frac{1}{2} \right)^{6} \qquad A1$$

$$= 1 - 0.34375 \qquad A1 \qquad [9]$$
(a) $P(A > 65) = P(Z > \frac{65 - 75}{6}) \qquad M1$

$$= P(Z > -1.667) \qquad B1$$

$$= P(Z > -2.218) \qquad B1$$

$$= P(Z > -2.218) \qquad B1$$
(c) $H = A - 1.15 B - N(0.25, 69.0625) \qquad B1B1$

$$= P(Z > -0.03008) \qquad M1$$

0,5120

13

A1

[10]

14 (a)
$$X \sim Bin(500,0.4)$$

 $np = 200 > 5$ and $nq = 300 > 5$
 $X \sim N(200,120)$ B1B1
 $P(X = 190) = P(189.5 < X < 190.5)$ B1
 $= P\left(\frac{189.5 - 200}{\sqrt{120}} < Z < \frac{190.5 - 200}{120}\right)$ M1
 $= P(-0.9585 < Z < -0.8672)$
 $= 0.8312 - 0.8070$
 $= 0.0242$ A1
(b) $P(180 < X < 210) = P(179.5 < X < 210.5)$ B1
 $= P\left(\frac{179.5 - 200}{\sqrt{120}} < Z < \frac{210.5 - 200}{\sqrt{120}}\right)$ M1
 $= P(-1.871 < Z < 0.9585)$
 $= \Phi(1.871) + \Phi(0.9585) - 1$
 $= 0.9694 + 0.8312 - 1$
 $= 0.9694 + 0.8312 - 1$
 $= 0.9696$ A1
(c) $P(X > 180) = P(X > 180.5)$ B1
 $= P(Z > \frac{180.5 - 200}{\sqrt{120}})$ M1
 $= P(Z > -1.780)$
 $= \Phi(1.780)$
 $= 0.9625$ A1

Scanned with CamScanner

[11]

BISOL

Ha: Sample population has some other distribution

 $\alpha = 0.01$

$$df = 8 - 1 - 0 = 7$$

Blook

Reject H0 if $\chi_{cal}^2 > 18,48$

В1

$$E_0 = 600 \times \frac{e^{-2.5}(2.5)^{\circ}}{0!} = 49.2$$

M1A1

M1A1

Bi	Ei	$(O - E)^2 / E$
34	49.3 49.25	
131	123	0.504
160	153.9	0.242
136	128.3	0.467
72	80.2	0.838
37	40.1	0.240
22	16.7	1.682
8	8.5	0.029

A1A1

$$\mathcal{X}^2_{cal} = 8.725$$

M1A1

Since $\chi_{cal}^2 = 8.725 < 18.48$, we do not reject H0 and conclude that \sqrt{M} (A) the sample population has a Poisson distribution. [13]