Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Проектування алгоритмів»

***	•	•	•		• ,	N TEN		A 222
LINOEKTV	ванна і ан	япіз япі	ONUTMIR I	тпа виг	ишенна 1	NP-CKT9	дних задач	u 7.''
,, iipociti,	Danin i an	anis ani	opminib /	70171 DELL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		диих зада і	1.4

Виконав(ла)	IT-03 Чабан Антон Свгенович (шифр, прізвище, ім'я, по батькові)	
Перевірив	Γ	

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи — вивчити основні підходи розробки метаеврестичних алгоритмів для типових прикладних задач. Опрацювати методологію підбору прийнятних параметрів алгоритму.

2 ЗАВДАННЯ

Згідно варіанту, формалізувати алгоритм вирішення задачі відповідно загальної методології.

Записати розроблений алгоритм у покроковому вигляді. З достатнім степенем деталізації.

Виконати його програмну реалізацію на будь-якій мові програмування.

Перелік задач наведено у таблиці 2.1.

Перелік алгоритмів і досліджуваних параметрів у таблиці 2.2.

Задача і алгоритм наведені в таблиці 2.3.

Змінюючи параметри алгоритму, визначити кращі вхідні параметри алгоритму. Для цього необхідно:

- обрати критерій зупинки алгоритму (кількість ітерацій або значення
 ЦФ);
- зафіксувати усі параметри крім одного і змінювати цей параметр,
 поки не буде досягнуто пікової ефективності;
 - після цього параметр фіксується і змінюються інші параметри;
- далі повторюємо процедуру спочатку, з першого зафіксованого параметру;
- зупиняємось коли будуть знайдені оптимальні параметри для даної задачі або встановлена залежність одних параметрів від інших.

Зробити узагальнений висновок в якому обов'язково описати залежність якості розв'язку від вхідних параметрів.

Таблиця 2.1 – Прикладні задачі

№	Задача
1	Задача про рюкзак (місткість Р=500, 100 предметів, цінність предметів
	від 2 до 30 (випадкова), вага від 1 до 20 (випадкова)). Для заданої
	множини предметів, кожен з яких має вагу і цінність, визначити яку
	кількість кожного з предметів слід взяти, так, щоб сумарна вага не

перевищувала задану, а сумарна цінність була максимальною.
Задача часто виникає при розподілі ресурсів, коли наявні фінансові обмеження, і вивчається в таких областях, як комбінаторика, інформатика, теорія складності, криптографія, прикладна математика.

Таблиця 2.2 – Варіанти алгоритмів і досліджувані параметри

№	Алгоритми і досліджувані параметри			
3	Бджолиний алгоритм:			
	кількість ділянок;			
	кількість бджіл (фуражирів і розвідників).			

Таблиця 2.3 – Варіанти задач і алгоритмів

№	Задачі і алгоритми
24	Задача про рюкзак + Бджолиний алгоритм

3 ВИКОНАННЯ

3.1 Покроковий алгоритм

As noted above, the main steps of ABC-based algorithm can be summarized as follows:

Step 1: Initialization and set the parameters of ABC.

Step 2: Generation of initial solutions by employed bee. Step 3:

Evaluation of the achieved solutions.

Step 4: The best solution found so far is registered.

Step 5: Selection of scout bees by onlookers, and performing the recruitment process for them.

Step 6: Check the stop criterion:

Step 7: Search neighborhood using the proposed hybrid mutation-based scheme.

Step 8: Go to step 3 and continue.

3.2 Програмна реалізація алгоритму

3.2.1 Вихідний код

Код на GitHub

3.2.2 Приклади роботи

На рисунках 3.1 і 3.2 показані приклади роботи програми.

```
210.31 210.37 206.72 150.78 153.74 147.6 147.68 146.31 143.28 136.74 135.18 129.05 128.05 122.43 122.37 129.59 127.40 127.29 115.49 153.74 147.6 147.88 146.31 143.28 136.74 135.18 129.05 128.05 122.43 122.37 129.59 117.41 129.11 120.37 206.72 181.47 152.07 152.78 148.51 141.54 138.75 138.64 138.79 132.42 129.9 129.06 124.43 122.33 128.28 117.41 129.12 120.37 206.72 175.58 164.47 157.09 158.52 149.53 146.25 142.64 133.79 132.42 129.9 129.06 124.43 122.33 128.28 117.41 129.12 120.37 206.72 175.58 164.47 157.09 158.64 155.32 149.63 146.25 142.64 133.74 128.57 137.09 111.65 111.88 128.62 93.33 120.37 206.72 106.88 166.28 164.91 151.10 144.85 140.54 130.76 128.65 127.68 117.09 111.65 111.88 128.62 93.33 120.37 206.72 160.88 166.28 164.91 151.04 146.85 140.54 130.76 128.65 127.69 117.09 120.54 125.15 166.33 105.15 120.37 206.72 160.48 166.28 164.91 151.04 146.85 140.54 130.76 128.65 127.69 127.09 129.28 5.56 120.31 120.37 206.72 169.28 164.64 144.88 140.21 151.13 127.09 129.45 118.09 117.72 119.09 109.28 5.56 120.31 120.37 206.72 150.30 147.63 146.62 146.81 143.4 130.92 139.04 137.79 134.47 130.93 129.19 120.74 138.09 135.54 96.66 120.31 120.37 206.72 150.28 147.03 147.05 169.42 150.45 143.67 140.55 130.41 143.67 120.71 127.04 124.25 122.85 122.61 119.88 131.28 120.37 206.72 150.28 150.50 147.37 147.78 142.3 142.27 156.83 133.13 129.49 128.51 129.83 120.53 120.37 206.72 150.28 155.62 147.37 147.78 142.3 142.27 156.83 133.13 129.49 128.51 151.40 110.38 120.39 120.37 206.72 157.44 157.6 145.06 142.73 143.19 142.55 137.23 133.74 128.75 127.01 121.81 109.8 100.92 120.33 120.37 206.72 157.44 157.6 145.06 142.73 143.19 142.55 137.23 133.74 128.75 127.01 121.81 109.8 100.92 120.33 120.37 206.72 157.44 157.6 145.06 142.73 143.19 142.55 137.23 133.74 128.75 127.01 121.81 109.8 100.92 120.33 120.37 206.72 157.44 157.6 145.06 142.73 143.19 142.55 137.23 133.74 128.75 127.01 121.81 109.8 100.92 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120.33 120
```

Рисунок 3.1 – Вивід при виконанні 300 ітерацій

Тестування алгоритму

Фуражирів	Розвідників	Ітерацій	Quality	Ділянок
15	18	300	97,42	15
20	18	300	111,96	15
30	18	300	114,42	15
50	18	300	118,35	15
70	18	300	121,46	15
75	18	300	121,91	15
80	18	300	128,76	15
2	13	100	129,87	5
3	13	100	132,31	5
85	18	300	133,74	15
90	18	300	137,23	15
110	18	300	142,73	15
95	18	300	142,95	15
5	13	100	143,01	5
100	18	300	143,19	15
4	13	100	143,79	5
120	18	300	145,06	15
6	13	100	148,62	5
160	18	300	157,44	15
140	18	300	157,60	15
7	13	100	186,66	5
8	13	100	189,87	5
10	13	100	192,06	5
15	13	100	192,25	5
30	13	100	194,22	5
20	13	100	194,75	5
50	13	100	198,11	5
70	13	100	199,14	5
180	18	300	206,72	15
300	18	300	210,31	15
200	18	300	210,37	15

ВИСНОВОК

В рамках даної лабораторної роботи я навчився застосовувати алгоритм бджолиної колонії для розв'язання задачі про рюкзак.