#### **Organic Chemistry 5.13**

September 13, 2006 Prof. Timothy F. Jamison

#### **Notes for Lecture #4**

Organic Structure Determination: Infrared Spectroscopy (IR) and MS Fragmentation Patterns

#### **Molecules of the Day**

Isoamyl acetate – banana
Benzaldehyde – almonds
(R)–Limonene – lemon, lime
1,4-Diaminobutane – a.k.a. putrescine

Imagine that four unlabelled vials, each containing one of our four "Molecules of the Day", had somehow become mixed up. How could IR spectroscopy (instead of your sense of smell) be employed to identify the contents of each vial?

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Figure by MIT OCW.

### **Three-Stage Strategy for Organic Structure Determination**

- Determine the molecular formula using elemental analysis and mass spectrometry.
- Identify the functional groups using infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR).
- Elucidate the **connectivity** using <sup>1</sup>**H NMR** ("proton NMR") and <sup>13</sup>**C NMR** ("carbon NMR") spectroscopy.

# **Absorption Spectroscopy**

| Type of Radiation | Energy (kcal/mol) | Frequency Wavelength         | Molecular<br>Interaction                                                                      |
|-------------------|-------------------|------------------------------|-----------------------------------------------------------------------------------------------|
|                   | _                 |                              | Translation                                                                                   |
| Microwave         | 0.001 - 1         | 1 - 400 cm-1                 | Molecular<br>Rotations<br>Rotation of the molecular<br>as a whole about its center<br>of mass |
| Infrared          | 1.1 - 11          | 400 - 4,000 cm <sup>-1</sup> | Molecular Vibrations Stretching and binding of bonds                                          |
| Visible           | 50 - 75           | 400 - 600 nm                 | Electronic<br>Excitation                                                                      |
| Ultraviolet       | 75 - 150          | 200 - 400 nm                 | Promotion of electrons to higher energy levels                                                |

# Infrared Absorption Spectroscopy

| 4000 cm <sup>-1</sup>        | 2000 cm                         | -1 150                         | 0 cm <sup>-1</sup> 400 cm <sup>-1</sup>                     |
|------------------------------|---------------------------------|--------------------------------|-------------------------------------------------------------|
| X - H<br>Region              | SP<br>Region                    | X = Y<br>Region                | Fingerprint<br>Region                                       |
| 2500 - 4000 cm <sup>-1</sup> | 2000 -<br>2500 cm <sup>-1</sup> | 1500<br>2000 cm-1              | 400 - 1500 cm <sup>-1</sup>                                 |
| C-H N-H O-H<br>Stretching    | C=C<br>C=N<br>Stretching        | C=C<br>C=O<br>C=N<br>Stretchin | Single Rond Stretching Bond Bending Polyatomic Vibrations g |

## Infrared Spectra: Tables of Reference

## X-H Region

| Phenols and Alcohols | ROH                             | 3700-3500 sharp<br>or 3200-3600 broad(H-bonded)  |
|----------------------|---------------------------------|--------------------------------------------------|
| Acids                | RCO <sub>2</sub> H              | 2800-3600 very broad                             |
| Amides and Amines    | RCONHR<br>R <sub>2</sub> NH     | 3300-3500                                        |
| C-H bonds            | C≡C-H<br>C=C-H<br>C-C-H<br>RCHO | 3100-3300<br>3000-3200<br>2850-3000<br>2700-2800 |

## sp Region

| Acetylenes | C≡C   | 2100 |  |
|------------|-------|------|--|
| Nitriles   | C≡N   | 2200 |  |
| Ketenes    | C=C=O | 2150 |  |
| Allenes    | C=C=C | 1950 |  |

## Double Bond Region

| Alkenes | C=C              | 1600-1670 weak unless conjugated |
|---------|------------------|----------------------------------|
| Imines  | C=N              | 1600-1700                        |
| Nitro   | -NO <sub>2</sub> | 1350-1550(two bands)             |

## Carbonyl Groups

| Note: subtract ca. 30 cm <sup>-1</sup> for conjugation (e.g. with a double bond or aromatic ring) | Ketones<br>R <sub>2</sub> C=O | 1710 (subtract ca. 30 cm <sup>-1</sup> for conjugation) |
|---------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------|
|---------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------|

| Anhydrides                | 1740-1780,  | ~ 0     | 6-member | ed and larger c  | yclic ketones |
|---------------------------|-------------|---------|----------|------------------|---------------|
| RC(O)OCOR                 | 1800-1840   |         | 1710     | . 0              |               |
| Acid Chlorides            | (two bands) | ~ 0     |          |                  | 1680          |
| RCOCI                     | 1790-1815   |         | 1740     | 0                |               |
| Esters                    |             |         |          |                  | 1715          |
| RCO <sub>2</sub> R        | 1725-1755   | O       |          |                  |               |
| Acids                     | 1700-1725   |         | 1780     | <b>1</b> 0       |               |
| RCO <sub>2</sub> H Amides | 1/00-1/23   | ~ .0    |          |                  | 1740          |
| RCONR <sub>2</sub>        | 1630-1700   |         | 1770     | $\sim$ 0         |               |
| Urethanes                 |             |         |          | \ \rightarrow NR | 1690-1740     |
| $R_2NCO_2R$               | 1700        | 0       |          | ~ .0             |               |
| Aldehydes                 |             |         | 1730     |                  | 1650          |
| RCHO                      | 1720-1740   | <u></u> |          | NR               | 1650          |
| 1                         |             |         |          |                  |               |

|                                                                                                                                                                                | 4-4      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Infrared Spectra of 2-hexanone and 3-hexanone                                                                                                                                  |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                | <i>e</i> |
| Images of Infrared Spectra of 2-hexanone and 3-hexanone removed due to copyright restric<br>Please see: http://www.aist.go.jp/RIODB/SDBS/cgi-bin/direct_frame_top.cgi?lang=eng | tions.   |
| induce coo. http://www.alot.gorjp/rttobb/cob/og/ bill/alloc_lop/log/rhallg=clig                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |
|                                                                                                                                                                                |          |

### Mass Spectrometry data for 2-hexanone and 3-hexanone





Figures by MIT OCW.