Notes on "Fast Mixing Random Walks and Regularity of Incompressible Vector Fields"

Alden Green

March 13, 2019

Begin by recalling the isoperimetric inequality of Dyer and Frieze 1991.

Theorem 1 (Isoperimetry of convex sets). Let $(\Omega_1, \Omega_2, \Omega_3)$ be a partition of a convex set Ω with unit volume. Then,

$$\operatorname{vol}(\Omega_3) \geq 2 \frac{d(\Omega_1, \Omega_2)}{D_{\Omega}} \min(\operatorname{vol}(\Omega_1), \operatorname{vol}(\Omega_2))$$

Here vol denotes d-dimensional volume, D_{Ω} denotes the diameter of Ω given by $D_{\Omega} = \max_{x,y \in \Omega} |x-y|$ where |x-y| is the Euclidean distance between $x,y \in \mathbb{R}^d$, and $d(\Omega_1,\Omega_2) = \min_{x \in \Omega_1, y \in \Omega_2} |x-y|$.

Assumption 1 (Embedding). Let Ω be a convex space with boundary $\partial\Omega$, and let Ω' be a bounded connected subset of \mathbb{R}^d . Assume Ω' is the image of Ω under a Lipschitz measure preserving mapping $g: \mathbb{R}^d \to \mathbb{R}^d$:

$$\exists L_{\Omega'} > 0 : \forall x, y \in \Omega, |g(x) - g(y)| \le L_{\Omega'} |x - y|, \det(D_x g) = 1$$

where $D_x g = (D_{x_i} g_j)_{i,j=1}^d$ is the Jacobian matrix of g evaluated at x.

Lemma 1 (Isoperimetry of non-convex sets.). Let Ω be a convex set with unit volume, and assume Ω' satisfies Assumption 1 with respect to $L_{\Omega'} > 0$. Then, for any partition $(\Omega'_1, \Omega'_2, \Omega'_3)$,

$$\operatorname{vol}(\Omega_3') \geq \frac{2}{D_{\Omega}L_{\Omega'}}d(\Omega_1',\Omega_2')\min\{\operatorname{vol}(\Omega_1'),\operatorname{vol}(\Omega_2')\}$$

Proof. For Ω_i' , i = 1, 2, 3, define the pre-image

$$\Omega_i = \{ x \in \Omega : g(x) \in \Omega_i \}$$

where $g: \Omega \to \Omega'$ is a $L_{\Omega'}$ -Lipschitz measure preserving mapping. For any $x_1 \in \Omega_1, x_2 \in \Omega_2$,

$$|x-y| \geq \frac{1}{L_{\Omega'}} |g(x) - g(y)| \geq \frac{1}{L_{\Omega'}} d(\Omega'_1, \Omega'_2).$$

Since $x_1 \in \Omega_1$ and $x_2 \in \Omega_2$ were arbitrary, we have

$$d(\Omega_1, \Omega_2) \ge \frac{1}{L_{\Omega'}} d(\Omega'_1, \Omega'_2).$$

By Theorem 1,

$$\begin{aligned} \operatorname{vol}(\Omega_3) &\geq 2 \frac{d(\Omega_1, \Omega_2)}{D_{\Omega}} \min(\operatorname{vol}(\Omega_1), \operatorname{vol}(\Omega_2)) \\ &\geq \frac{2}{D_{\Omega} L_{\Omega'}} d(\Omega'_1, \Omega'_2) \min(\operatorname{vol}(\Omega_1), \operatorname{vol}(\Omega_2)) \end{aligned}$$

and by the measure-preserving property of g, this implies

$$\operatorname{vol}(\Omega_3') \geq \frac{2}{D_{\Omega}L_{\Omega'}}d(\Omega_1',\Omega_2') \min(\operatorname{vol}(\Omega_1'),\operatorname{vol}(\Omega_2'))$$