CS204: Discrete Mathematics

Ch 5. Induction and Recursion Mathematical Induction

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Ch 5. Induction and Recursion

5.1 Mathematical Induction

- 5.2 Strong Induction and Well-Ordering
- 5.3 Recursive Definitions and Structural Induction
- 5.4 Recursive Algorithms
- 5.5 Program Correctness

Proof by Induction

- 1. The Principle of Mathematical Induction
- 2. Strong Induction

1. The First Principle of Mathematical Induction

To prove the statement

"Statement(n), for every $n \in \mathbb{N}$ "

1. The Principle of Mathematical Induction

To prove the statement

"Statement(n), for every $n \in \mathbb{N}$ "

it suffices to prove

(Basis Step) Statement(0) and (Induction Step) Statement(k) \Rightarrow Statement (k+1) for k $\in \mathbb{N}$ Induction Hypothesis

Analogy: climbing a staircase

Examples of statements that are proved by induction

- The sum of the first *n* natural numbers is $\frac{n(n+1)}{2}$.
- A binary tree of height n has less than 2^{n+1} nodes.
- A convex *n*-gon has $\frac{n(n-3)}{2}$ diagonals.

What do these examples have in common?

"For every natural number n ... "

Theorem

For any
$$n \ge 1$$
, $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$.

Theorem

For any
$$n \ge 1$$
, $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$.

Statement(*n*):
$$1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$$

Theorem

For any
$$n \ge 1$$
, $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$.

To prove Statement(n):
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Basis Statement(1):
$$1 = \frac{1(1+1)}{2}$$

Theorem

Case:

For any
$$n \ge 1$$
, $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$.

To prove Statement(n):
$$1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$$

Basis Statement(1):
$$1 = \frac{1(1+1)}{2}$$

Statement
$$(k-1)$$
: $1+2+3+\cdots+(k-1)=\frac{(k-1)(k-1+1)}{2}$

Statement(k):
$$1 + 2 + 3 + \cdots + k = \frac{k(k+1)}{2}$$

Proof:

Base Case: If n = 1, then the sum of the first n natural numbers is 1, and $n(n+1)/2 = 1 \cdot 2/2 = 1$, so Statement(1) is true.

Proof:

Base Case: If n = 1, then the sum of the first n natural numbers is 1, and $n(n+1)/2 = 1 \cdot 2/2 = 1$, so Statement(1) is true.

Inductive Hypothesis: Suppose as inductive hypothesis that

$$1+2+\cdots+(k-1)=\frac{(k-1)(k-1+1)}{2}$$

for some k > 1.

Part of inductive step

Proof:

Base Case: If n = 1, then the sum of the first n natural numbers is 1, and $n(n+1)/2 = 1 \cdot 2/2 = 1$, so Statement(1) is true.

Inductive Hypothesis: Suppose as inductive hypothesis that

$$1+2+\cdots+(k-1)=\frac{(k-1)(k-1+1)}{2}$$

for some k > 1.

Part of inductive step

Inductive Step: Adding k to both sides of this equation gives

$$1 + 2 + \dots + (k - 1) + k = \frac{(k - 1)(k - 1 + 1)}{2} + k$$
$$= \frac{(k - 1)(k) + 2k}{2}$$
$$= \frac{k(k + 1)}{2}$$

as required.

2. The Second Principle of Mathematical Induction

To prove the statement

"Statement(n), for every $n \in \mathbb{N}$ "

it suffices to prove

Induction Hypothesis

This principle describes *strong induction*.

Theorem

Every integer $n \ge 2$ is either prime or the product of primes.

Definition

An integer p > 1 is called *prime* if and only if the only positive factors of p are 1 and p.

The first principle of mathematical induction does not work easily for this problem!

Theorem

Every integer $n \ge 2$ is either prime or the product of primes.

Proof.

Every integer $n \ge 2$ is either prime or the product of primes.

Proof.

Base Case: The only factors of 2 are 1 and 2, so 2 is prime.

Every integer $n \ge 2$ is either prime or the product of primes.

Proof.

Base Case: The only factors of 2 are 1 and 2, so 2 is prime.

Inductive Hypothesis: Let k > 2 be given. Suppose as inductive hypothesis that every i such that $2 \le i < k$ is either prime or the product of primes.

Part of inductive step

Definition

An integer p > 1 is called *prime* if and only if the only positive factors of p are 1 and p.

Every integer $n \ge 2$ is either prime or the product of primes.

Proof.

Base Case: The only factors of 2 are 1 and 2, so 2 is prime.

Inductive Hypothesis: Let k > 2 be given. Suppose as inductive hypothesis that every i such that $2 \le i < k$ is either prime or the product of primes.

Part of inductive step

Inductive Step: If k is prime, we are done. If k is not prime, then k = pq for some $p \ge 2$ and $q \ge 2$. And since k = pq, p and q are both less than k. By inductive hypothesis, p and q are both either prime or products of primes, so k = pq is the product of primes.

Quiz 14-1

Which of the following is a proof technique that is different from the others?

- (a) The second principle of mathematical induction
- (b) The course-of-values induction
- (c) The strong induction
- (d) The structural induction

