HW18

20202041 Park, Nuri

Finite Volume Method (box method)

Differential form : $\nabla \cdot F = s$ \rightarrow Integrated form $\oint_{\partial \Omega} F \cdot da = \int_{\Omega} s d^3 x$ Ω is the Voronoi cell

 $A_{01}^2 + \left(\frac{l_{01}}{2}\right)^2 = R^2$, R is the radius of the circumcenter of the triangle.

Since we want to solve Laplace equation, we have equation

$$\sum_{i} C_{0i} \phi_{i} - \phi_{0} \sum_{i} C_{0i} = 0, \qquad \left(\frac{A_{0i}}{l_{0i}} = C_{0i} \right)$$

Thus, the matrix we would make is,

Upper figure shows triangular mesh. The blue circle is the circumcenter for each triangle. For each triangle, we would calculate R, A, I to make proper matrix which solve laplace matrix.

We give $\phi=0$ on one point and $\phi=1$ on another point. Then, each point of the triangle would have correspoding ϕ values. We now show the result of them.

Result 1.

Result 2.

Result 3.

Result 4.

