北京大学数学科学学院期末试题

2014 - 2015 学年 第一学期

考试科目:	数学分析 (III)	考试图	ij <u>E</u> .	15年	1月	12 🗖
姓名:			풀.	W		
本试题共 十	- 道大題满分 100 分					

- 1. (10) 设 u(x,y,z) 在 R^3 中具有二阶连续偏导数, 计算 $div \mathbf{grad} \sin(u(x,y,z))$.
- 2. (10) 改变累次积分 $\int_{-1}^{1} dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} dx \int_{\sqrt{x^2+y^2}}^{1} f dz$ 的积分顺序 (只做 dz dx dy 一种情况),其中 f(x,y,z) 在 R^3 连续.
- 3. (10) 计算单位球体 $x^2 + y^2 + z^2 \le 1$ 被柱面 $x^2 + y^2 = x$ 所分成的两部分的体积.
- 4. (10) 讨论 $\int_{R^2} \frac{\sin \frac{1}{\sqrt{x^2+y^2+1}} \cos \sqrt{x^2+y^2}}{\sqrt{x^2+y^2+1}} dx dy$ 的敛散性.
- 5. (10) 计算第一型曲面积分 $\int \int_S (x+2y+2z)^2 \sin(x+2y+2z) dS$, 其中 S 为 单位球面 $x^2+y^2+z^2=1$.
- 6. (10) 计算第二型曲面积分 $\iint_S y^2 dy dz + xz dz dx + z^2 dx dy$, 其中 S 是球面 $(x-1)^2 + (y-2)^2 + (z-3)^2 = 1$ 的外侧。
- 7. (10) 证明曲线积分 $\int_{\Gamma} 2x \sin y^2 dx + 2y [\sin y^2 + (x^2 + y^2) \cos y^2] dy$ 在 R^2 中与路线无关并求出 $2x \sin y^2 dx + 2y [\sin y^2 + (x^2 + y^2) \cos y^2] dy$ 的一个原函数.
- 8. (10) 设 f(x) 在 $[0, +\infty)$ 的任何有限闭子区间上可积且 $\int_0^{+\infty} f(x) dx = 1$. 求 (1) $\lim_{y\to 0+0} \int_0^{+\infty} e^{-xy} f(x) dx$, (2) $\lim_{y\to +\infty} \int_0^{+\infty} e^{-xy} f(x) dx$.
- 9. (10) 设 $D \subset R^2$ 为一个区域,u(x,y) 在 D 内具有二阶连续偏导数,证明:u(x,y) 在 D 内调和 (即 u(x,y) 在 D 内满足 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$) 的充分必要条件是: 对于 $\forall (x_0,y_0) \in D$ 和 $\forall r > 0$, 若 $\{(x,y); (x-x_0)^2 + (y-y_0)^2 \leq r^2\} \subset D$ 内,则有 $u(x_0,y_0) = \frac{1}{2\pi} \int_0^{2\pi} u(x_0+r\cos\theta,y_0+r\sin\theta)d\theta$.
- 10. (10) 设 f(x,y) 在 R^2 上一致连续且 $\int \int_{R^2} f(x,y) dx dy$ 收敛. 试问: 当 $r \to +\infty$ 时, $f(r\cos\theta, r\sin\theta)$ 对于 $\theta \in [0, 2\pi]$ 是否一致趋于 0?(说明理由)

@赛艇先生收集