In []: 【ハイパーパラメタ・チューニング】

問2

① タイタニックの'train.csv'を読み込み、予測精度に影響が少ない特徴量を 外し、データを学習用:テスト用=7:3に分割し、SVMの学習モデルを作成し、 予測精度を求めてください。(C,gammaの値はデフォルトで)

In [21]: # ①

import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns

df = pd.read_csv('train.csv') df.head()

Out [21]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.250
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.283
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.925
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.100
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.050

```
In [22]: # カテゴリカル変数の'Sex'と'Embarked'のラベルを数値化します df['Sex'] = df['Sex'].apply(lambda x: 0 if x=='male' else 1) df['Embarked'] = df['Embarked'].fillna('S') df['Embarked'] = df['Embarked'].map({'S': 0, 'C': 1, 'Q': 2}) df.head()
```

Out[22]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	0	35.0	0	0	373450	8.0500

```
In [23]: plt.figure(figsize=(8,5))
sns.heatmap(df.corr(), annot=True)
```

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x10fe98518>

Out [24]:

	Survived	Pclass	Sex	Fare	Embarked
0	0	3	0	7.2500	0
1	1	1	1	71.2833	1
2	1	3	1	7.9250	0
3	1	1	1	53.1000	0
4	0	3	0	8.0500	0

```
In [25]: from sklearn.svm import SVC
         from sklearn.metrics import accuracy_score
         from sklearn.model_selection import train_test_split
         x = df.drop('Survived', axis=1)
         y = df['Survived']
         x_train, x_test, y_train, y_test = train_test_split(x, y,
                                                             test_size=0.3,
                                                             random_state=0)
         clf = SVC()
         clf.fit(x_train, y_train)
Out [25]: SVC()
In [26]: pred = clf.predict(x_test)
         acc = accuracy_score(pred, y_test)
         print('accuracy : {:.5f}' .format(acc))
         accuracy : 0.70522
In [27]: # ちなみに、↑の計算で使用されたハイパーパラメーターの値は次のように求められます。
         clf.get params()
Out[27]: {'C': 1.0,
          'break_ties': False,
          'cache_size': 200,
          'class_weight': None,
          'coef0': 0.0,
          'decision_function_shape': 'ovr',
          'degree': 3,
          'gamma': 'scale',
          'kernel': 'rbf',
          'max_iter': −1,
          'probability': False,
          'random state': None,
          'shrinking': True,
          'tol': 0.001,
          'verbose': False}
```