HCC4724B HCF4724B

8 BIT ADDRESSABLE LATCH

- SERIAL DATA INPUT ACTIVE PARALLEL OUTPUT
- STORAGE REGISTER CAPABILITY MASTER CLEAR
- CAN FUNCTION AS DEMULTIPLEXER
- STANDARDIZED, SYMMETRICAL OUTPUT CHARACTER
- 100% TESTED FOR QUIESCENT CURRENT AT 20V
- MAXIMUM INPUT CURRENT OF 1μA AT 18V (full package-temperature range), 100nA AT 18V AND 25°C
- NOISE MARGIN (full package-temperature range) = 1V AT V_{DD} = 5V, 2V AT V_{DD} = 10V, 2.5V AT V_{DD} = 15V
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- MEETS ALL REQUIREMENTS OF JEDECTENTATIVE STANDARD N. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF 'B' SERIES CMOS DEVICES"

APPLICATION

- MULTI-LINE DECODERS
- A/D CONVERTERS

DESCRIPTION

The **HCC/HCF4724B** 8-bit addressable latch is a serial-input, parallel-output storage register that can perform a variety of functions.

Data are inputted to a particular bit in the latch when that bit is addressed (by means of inputs A0, A1, A2) and when WRITE DISABLE is at low level. When WRITE DISABLE is high, data entry is inhibited however, all 8 outputs can be continuously read independent of WRITE DISABLE and address inputs.

A master RESET input is available, which resets all bits to a logic "0" level when RESET and WRITE DISABLE are at a high level. When RESET is at a high level, and WRITE DISABLE is at a low level, the latch acts as a 1-of-8 demultiplexer; the bit that is addressed has an active output which follows the data input, while all unaddressed bits are held to a logic "0" level.

September 1988 1/14

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage: HCC Types HCF Types	-0.5 to +20 -0.5 to +18	V
Vi	Input Voltage	-0.5 to V _{DD} + 0.5	V
l _l	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW
	for Top = Full Package Temperature Range	100	mW
T_op	Operating Temperature: HCC Types HCF Types	-55 to +125 -40 to +85	°C °C
T _{stg}	Storage Temperature	-65 to +150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
V_{I}	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature: HCC Types	-55 to +125	°C
	HCF Types	-40 to +85	°C

^{*} All voltage values are referred to V_{SS} pin voltage.

LOGIC DIAGRAM

Definition of WRITE DISABLE ON Time

MODE SELECTION

TYPE	WD	R	Addressed Latch	Unaddressed Latch
А	0	0	Follows Data	Hold Previous State
В	0	1	Follows Data (Active High 8-Channel Demultiplexer)	Reset to "0"
С	1	0	Hold Prev	ious State
D	1	1	Reset to "0"	Reset to "0"

WD = WRITE DISABLE R= RESET

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Test Conditios			Value								
Symbol	Parame	Parameter		Vo	lo	V _{DD}	TLO	w *		25 °C		THI	3H *	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/5			5		5		0.04	5		150	
	Current	HCC	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	^
			0/20			20		100		0.08	100		3000	μΑ
		HCF	0/5			5		20		0.04	20		150	
		Types	0/10			10		40		0.04	40		300	
		, , , , ,	0/15			15		80		0.04	80		600	
V _{OH}	Output High	•	0/5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low		5/0		< 1	5		0.05			0.05		0.05	
-	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V _{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	V
	Voltage			9/1	< 1	10		3			3		3	
				13.5/1.5	< 1	15		4			4		4	
Іон	Output		0/5	2.5		5	-2		-1.6	-3.2		-1.15		
	Drive	HCC	0/5	4.6		5	-0.64		-0.51	-1		-0.36		
	Current	Types	0/10	9.5		10	-1.6		-1.3	-2.6		-0.9		
			0/15	13.5		15	-4.2		-3.4	-6.8		-2.4		mΑ
			0/5	2.5		5	-1.8		-1.6	-3.2		-1.3		
		HCF	0/5	4.6		5	-0.61		-0.51	-1		-0.42		
		Types	0/10	9.5		10	-1.5		-1.3	-2.6		-1.1		
			0/15	13.5		15	-4		-3.4	-6.8		-2.8		
loL	Output	нсс	0/5	0.4		5	0.64		0.51	1		0.36		
	Sink	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	,,,,,,,,	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		HCF	0/5	0.4		5	0.61		0.51	1		0.42		
		Types	0/10	0.5		10	1.5		1.3	2.6		1.1		
		Types	0/15	1.5		15	4		3.4	6.8		2.8		
I _{IH} , I _{IL}	Input Leakag Current	je	0/18	Any In	put	18		±0.1		±10 ⁻⁵	±0.1		±1	μΑ
Cı	Input Capaci	tance		Any In	put					5	7.5			pF

^{*} $T_{LOW} = -55$ °C for **HCC** device: -40 °C for **HCF** device.

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} = 5 V, 2 V min. with V_{DD} = 10 V, 2.5 V min. with V_{DD} = 15 V

^{*} T_{HIGH} = +125 °C for **HCC** device: +85 °C for **HCF** device.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, $C_L = 50$ pF, $R_L = 200$ K Ω , typical temperature coefficent for all V_{DD} values is 03 %/°C, all input rise and fall times= 20 ns)

Symbol	Parameter	Test Condit	Value				
	Faranieter		V _{DD} (V)	Min.	Тур.	Max.	Unit
t _{PLH}	Propagation Delay Time	(See Figure 1)	5		200	400	
t _{PHL}	Data to Output		10		75	150	ns
			15		50	100	
t _{PLH}	Propagation Delay Time	(See Figure 1)	5		200	400	
t_{PHL}	Write Disable to Output		10		80	160	ns
			15		60	120	
t _{PHL}	Propagation Delay Time	(See Figure 1)	5		175	350	
	Reset to Output		10		80	160	ns
			15		65	130	
	Propagation Delay Time	(See Figure 1)	5		225	450	ns
	Address to Output		10		100	200	
			15		75	150	
t _{TLH} t _{THL}	Transition Time Any Output		5		100	200	
			10		50	100	ns
			15		40	80	
tw	Minimum Pulse Width	(See Figure 1)	5		100	200	ns
	Data		10		50	100	
			15		40	80	
	Minimum Pulse Width	(See Figure 1)	5		200	400	ns
	Address		10		100	200	
			15		65	125	
	Minimum Pulse Width	(See Figure 1)	5		75	150	
	Reset		10		40	75	ns
			15		25	50	
ts	Minimum Setup Time	(See Figure 1)	5		50	100	
	Data to Write Disable		10		25	50	ns
			15		20	35	
t _H	Minimum Holf Time	(See Figure 1)	5		75	150	
	Data to Write Disable		10		40	75	ns
			15		25	50	
C _{IN}	Input Capacitance		Any Input		5	7.5	pF

Figure 1: Master Timing Diagram

TYPICAL APPLICATIONS

A/D Converter

Multiple Selection Decoding - 4 x 4 Crosspoint Switch

1 of 6 Decoder/Demultiplexer

Typical Output Low (sink) Current Characteristics

Typical Output High (source) Current Characteristics

Typical Propagation Delay Time (data to Qn) vs Load Capacitance

Minimum Output Low (sink) Current Characteristics

Minimum Output High (source) Current Characteristics

Typical Transition Time vs Load Capacitance

Typical Dynamic Power Dissipation vs Address Cycle Time

TEST CIRCUITS

Quiescent Device Current.

Noise Immunity.

Input Leakage Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
5	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch				
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.004		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			8° (r	nax.)				

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
D.W.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

