Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 11: Criteri di stabilità per sistemi lineari e non lineari

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022

In questa lezione

▶ Stabilità di sistemi lineari

▶ Teorema di linearizzazione per la stabilità di sistemi non lineari

Stabilità di sistemi lineari a t.c.

$$\dot{x}(t) = Fx(t), \quad F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$\Re[\lambda_i] < 0, orall i$$
 \Longrightarrow sistema asintoticamente stabile $\Re[\lambda_i] \leq 0, \ orall i \ e$ $u_i = g_i \ {
m se} \ \Re[\lambda_i] = 0$ \Longrightarrow sistema semplicemente stabile

G. Baggio

 $\exists \lambda_i$ tale che $\Re[\lambda_i] > 0$

o $\Re[\lambda_i] = 0$ e $\nu_i > g_i$

Lez. 11: Stabilità di sistemi lineari e non lineari

sistema instabile

Stabilità di sistemi lineari a t.d.

$$x(t+1) = Fx(t)$$
, $F \in \mathbb{R}^{n \times n}$ con autovalori $\{\lambda_i\}_{i=1}^k$

$$|\lambda_i| < 1, orall i$$
 sistema asintoticamente stabile

$$|\lambda_i| \leq 1, \ \forall i \ \mathrm{e}$$
 $\nu_i = g_i \ \mathrm{se} \ |\lambda_i| = 1$ \Longrightarrow sistema semplicemente stabile

$$\exists \lambda_i \text{ tale che } |\lambda_i| > 1$$

o $|\lambda_i| = 1$ e $\nu_i > g_i$ \Longrightarrow sistema instabile

Stabilità vs. BIBO stabilità

$$\dot{x}(t) = Fx(t) + Gu(t)$$
 $\qquad \qquad x(t+1) = Fx(t) + Gu(t)$ $\qquad y(t) = Hx(t) + Ju(t)$ $\qquad y(t) = Hx(t) + Ju(t)$

Definizione: Un sistema lineare si dice BIBO stabile se per ogni vettore d'ingresso con componenti limitate in t la corrispondente uscita forzata ha componenti limitate in t.

Teorema: Siano $\{p_i\}_{i=1}^r$ i poli della matrice di trasferimento del sistema ridotta ai minimi termini, cioè dopo tutte le possibili cancellazioni zero-polo dei suoi elementi. Il sistema è BIBO stabile se e solo se $\Re[p_i] < 0$ per ogni $i = 1, 2, \ldots, r$.

Stabilità asintotica ⇒ BIBO stabilità

Teorema di linearizzazione a t.c.

$$\dot{x}(t) = f(x(t))$$
: sistema non lineare con punto di equilibrio $ar{x}$

Teorema: Sia $\dot{\delta}_x(t) = F \delta_x(t)$ il sistema linearizzato di $\dot{x}(t) = f(x(t))$ attorno a \bar{x} e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di F. Allora:

- **1** Se il sistema linearizzato è asintoticamente stabile $(\Re[\lambda_i] < 0, \forall i)$, allora \bar{x} è un punto di equilibrio asintoticamente stabile per il sistema non lineare.
- **2** Se il sistema linearizzato ha un autovalore con parte reale positiva $(\exists i \text{ tale che } \Re[\lambda_i] > 0)$, allora \bar{x} è un punto di equilibrio instabile per il sistema non lineare.

Caso critico:
$$\Re[\lambda_i] \leq 0$$
, $\forall i$, $e \exists i$: $\Re[\lambda_i] = 0$

Teorema di linearizzazione a t.c.: esempi

$$\mathbf{1.} \ \dot{x} = \sin x \qquad \qquad \frac{\bar{x} = 0}{\bar{x} = \pi}$$

$$\implies \quad \begin{array}{ll} \bar{x} = 0 \text{ instabile} \\ \bar{x} = \pi \text{ stabile} \end{array}$$

2.
$$\begin{cases} \dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ \dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2) \end{cases} \quad \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \bar{x} \text{ instabile}$$

3.
$$\dot{x} = \alpha x^3$$
. $\alpha \in \mathbb{R}$. $\bar{x} = 0$

⇒ caso critico!

Teorema di linearizzazione a t.d.

$$x(t+1) = f(x(t))$$
: sistema non lineare con punto di equilibrio \bar{x}

Teorema: Sia $\delta_x(t+1) = F\delta_x(t)$ il sistema linearizzato di x(t+1) = f(x(t)) attorno a \bar{x} e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di F. Allora:

- **1** Se il sistema linearizzato è asintoticamente stabile ($|\lambda_i| < 1$, $\forall i$), allora \bar{x} è un punto di equilibrio asintoticamente stabile per il sistema non lineare.
- **2** Se il sistema linearizzato ha un autovalore con modulo maggiore di uno $(\exists i \text{ tale } \text{che } |\lambda_i| > 1)$, allora \bar{x} è un punto di equilibrio instabile per il sistema non lineare.

Caso critico:
$$|\lambda_i| \leq 1$$
, $\forall i$, e $\exists i$: $|\lambda_i| = 1$