

Correlation functions andPower Spectral Density

Gunvor Elisabeth Kirkelund Lars Mandrup

Agenda for Today

- Stochastic Processes (repetition)
 - Mean and variance
 - Stationarity
 - Ergodic Processes
- Correlation functions
 - Autocorrelation functions
 - Cross-correlation functions
- Power spectrum density

Stochastic Processes

Definitions:

 A stochastic process is a <u>time dependent</u> stochastic variable:

X(t) Continuous-time

A discrete stochastic process is given by:

where n is an integer.

Discrete-time

Notice:

 When we measure/sample a signal from a stochastic process, we observe only one <u>realization</u> of the process

Sample Functions – Realizations – Ensemble

Definition:

- A Sample Function x(t) is a <u>realization</u> of a stochastic process X
- The Ensemble of the Stochastic Process is the collection of all possible realizations x(t) of the Stochastic Process X

The Mean and Variance Functions

Ensemple mean:

$$\mu_{X(t)}(t) = E[X(t)] = \int_{-\infty}^{\infty} x(t) f_{X(t)}(x(t)) dx(t)$$
 possible realizations to time t

Ensemple variance:

$$Var(X(t)) = \sigma_{X(t)}^{2}(t) = E[\left(X(t) - \mu_{X(t)}(t)\right)^{2}]$$

The time average/variance for one realization of the stochastic process

Temporal mean:

$$\hat{\mu}_{X_i} = \langle X_i \rangle_T = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x_i(t) \ dt$$

Temporal variance:

$$\hat{\sigma}_{X_i}^2 = \langle X_i^2 \rangle_T - \langle X_i \rangle_T^2 = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} (x_i(t)^2 - \hat{\mu}_{X_i}^2) dt = Var(X_i)$$

The mean/variance of all

Stationarity in the Wide Sense (WSS)

Ensemble mean is a constant

Can be tested.

$$\mu_X(t) = E[X(t)] = \mu_X$$
 - independent of time

Ensemble variance is a constant

$$\sigma_X^2(t) = E[X(t)^2] - E[X(t)]^2 = \sigma_X^2$$
 - independent of time

Stationarity in the Strict Sense (SSS):

• The density function $f_{X(t)}(x(t))$ do not change with time

Difficult to test in reality.

Ergodicity

- We can say something about the properties of the stochastic process in general <u>based on one sample function</u>, as long as we have observed it for long enough.
- If ensemble averaging is equivalent to temporal averaging:

Stochastic Processes (signals)

 $observed\ signal = signal\ +\ noise$

Additive Noisemodel

Ensemble mean and variance (to a specific time).

If independent of time: WSS

Tells of the coupling between variables

Correlation and Covariance – Stochastic Variables

Correlation tells of the (biased) coupling between variables

• Correlation:
$$corr(X,Y) = E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f_{X,Y}(x,y) dx dy$$

Covariance is without bias from the mean

• Covariance: $cov(X,Y) = E[(X - \overline{X})(Y - \overline{Y})] = E[XY] - E[X] \cdot E[Y]$

Correlation Coefficient is the normalized Covariance

• Correlation coefficient:
$$\rho = E\left[\frac{X - \overline{X}}{\sigma_X} \cdot \frac{Y - \overline{Y}}{\sigma_Y}\right] = \frac{E[XY] - E[X]E[Y]}{\sigma_X \cdot \sigma_Y}$$

$$-1 \le \rho \le 1$$

Comparing realizations

Correlations – Stochastic Processes

We compare processes at two different times:

Correlation of a process with itself

- Autocorrelation: $R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)^*]$
 - > Says something about how much the signal $X(t_1)$ resembles itself at time t_2
 - Depent on how rapidly the signal changes over time
 - \triangleright Larger if $|t_1 t_2|$ is small

Correlation of two different processes

- Cross-correlation: $R_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)^*]$
 - \succ Can be used to look for places where the signal X(t) is similar to the signal Y(t)

10

Correlations

Master of starry sky

Satellite navigation camera

How is the satellite oriented?

Ensemble Autocorrelation

Tells about the connection at two different times

• In general:

$$R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)^*]$$
 Complex conjugated
= $\iint_{-\infty}^{\infty} x(t_1) x(t_2)^* f_{X(t_1),X(t_2)}(x(t_1), x(t_2)) dx(t_1) dx(t_2)$

For a stationary process (WSS):

$$R_{XX}(t_1, t_2) = R_{XX}(t_1 + T, t_2 + T) = E[X(t_1 + T)X(t_2 + T)^*]$$

Independent of time (t_1) Depends only on $\tau = t_2 - t_1$

• We rewrite to: $R_{XX}(\tau) = E[X(t)X(t+\tau)^*]$ $\tau = t_2 - t_1 \text{ is the lag!}$

Autocorrelation

- For Real WSS: $R_{XX}(\tau) = E[X(t)X(t+\tau)]$
- Properties of the autocorrelation function $R_{XX}(\tau)$:
 - > An even function of τ $(R_{XX}(\tau) = R_{XX}(-\tau))$
 - > Bounded by: $|R_{XX}(\tau)| \le R_{XX}(0) = E[X^2]$ (max. in $\tau = 0$)
 - > If X(t) changes fast, then $R_{XX}(\tau)$ decreases fast from $\tau = 0$
 - > If X(t) changes slowly, then $R_{XX}(\tau)$ decreases slowly from $\tau = 0$
 - > If X(t) is periodic, then $R_{XX}(\tau)$ is also periodic

Notice: If X(t) is WSS, and X(t) and $X(t + \tau)$ are independent for $\tau \neq 0$ then:

$$R_{XX}(\tau) = E[X(t)X(t+\tau)] = E[X(t)] \cdot E[X(t+\tau)]$$

Random Walk – Example

Brownish motions / Wiener Process

• We consider a random walk: W[n] = W[n-1] + X[n]

$$X[n] = \pm \sqrt{\delta}$$

$$EX = 0$$

$$Var(X) = \delta$$

Random Walk – Example

Sample of the autocovariance function:

Autocovariances

Autocovariance function:

Autocorrelation without DC

$$C_{XX}(t_1, t_2) = E[(X(t_1) - \mu_X(t_1))(X(t_2) - \mu_X(t_2))^*]$$

= $R_{XX}(t_1, t_2) - \mu_X(t_1)\mu_X(t_2)$

Especially:
$$C_{XX}(t,t) = E[(X(t) - \mu_X(t))^2] = E[X(t)^2] - E[X(t)]^2 = \sigma_X^2(t)$$

Autocorrelation coefficient:

$$r_{XX}(t_1, t_2) = \frac{c_{XX}(t_1, t_2)}{\sqrt{c_{XX}(t_1, t_1)c_{XX}(t_2, t_2)}}; \qquad 0 \le r_{XX}(t_1, t_2) \le 1$$

Especially: $r_{XX}(t,t) = 1$ (X(t) is totally correlated to itself!)

Autocovariances

For i.i.d. Gaussian (stationary) noise

Autocorrelation and autocovariance

Convolution

Temporal Autocorrelation

Temporal autocorrelation:

$$\mathcal{R}_{XX}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot x(t+\tau) dt$$

 If the process is <u>ergodic</u> the temporal autocorrelation is equal to the ensemble autocorrelation:

Estimate Autocorrelation

Autocorrelation function:

In practise, with respect to the lag:

temporal
$$\mathcal{R}_{XX}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot x(t+\tau) dt$$

N+1 measurements/samples $x(0), x(\Delta t), x(2\Delta t), ..., x(N\Delta t)$

The estimated autocorrelation function:

$$\hat{R}_{XX}(n) = \frac{1}{N-n+1} \sum_{k=0}^{N-n} x(k) \cdot x(k+n)$$
 Number of terms (T/ Δt)

Random Binary Noise – Example

One measurement (5 samples)
 of a WSS and independent
 binary stochastic process X[n]:

n	0	1	2	3	4 = N
X[n]	1	0	1	1	0

The estimated autocorrelation function:

$$\hat{R}_{XX}(\tau) = \frac{1}{N - \tau + 1} \sum_{k=0}^{N-\tau} x(k) \cdot x(k + \tau)$$

$$\tau = 0$$
:

X[n]	1	0	1	1	0
X[n+0]	1	0	1	1	0

$$\tau = 1$$
:

X[n]	1	0	1	1	0
X[n+1]	0	1	1	0	

$$\tau = 2$$
:

X[n]	1	0	1	1	0
X[n+2]	1	1	0		

$$\tau = 3$$
:

X[n]	1	0	1	1	0
X[n+3]	1	0			

$$\tau = 4$$
:

X[n]	1	0	1	1	0
X[n+4]	0				

$$\widehat{R}_{XX}(0) = \frac{1}{5} \sum_{k=0}^{4} x(k) \cdot x(k) = \frac{1}{5} \cdot (1 + 0 + 1 + 1 + 0) = \frac{3}{5}$$

$$\widehat{R}_{XX}(1) = \frac{1}{4} \sum_{k=0}^{3} x(k) \cdot x(k+1) = \frac{1}{4} \cdot (0+0+1+0) = \frac{1}{4}$$

$$\widehat{R}_{XX}(2) = \frac{1}{3} \sum_{k=0}^{2} x(k) \cdot x(k+2) = \frac{1}{3} \cdot (1+0+0) = \frac{1}{3}$$

$$\widehat{R}_{XX}(3) = \frac{1}{2} \sum_{k=0}^{1} x(k) \cdot x(k+3) = \frac{1}{2} \cdot (1+0) = \frac{1}{2}$$

$$\widehat{R}_{XX}(4) = \frac{1}{1} \sum_{k=0}^{0} x(k) \cdot x(k+4) = \frac{1}{1} \cdot (0) = 0$$

Random Binary Noise – Example

Let a stochastic process be defined as:

$$X[n] = \begin{cases} 0 & p = \frac{1}{2} \\ 1 & p = \frac{1}{2} \end{cases} \sim \mathcal{U}[0,1] \text{ i.i.d.}$$

- $> E[X[n]] = \frac{1}{2}; \quad E[X^2[n]] = \frac{1}{2}; \quad Var(X[n]) = \frac{1}{4}$
- > WSS
- > Ergodic
- > Autocorrelation:

$$R_{XX}(\tau) = E[X[n]X[n+\tau]] = \begin{cases} E[X[n]^2] & ; \tau = 0 \\ E[X[n]] \cdot E[X[n+\tau]] & ; \tau \neq 0 \end{cases} = \begin{cases} \frac{1}{2} & ; \tau = 0 \\ \frac{1}{4} & ; \tau \neq 0 \end{cases}$$

White Gaussian Noise – Example

Let a stochastic process be defined as:

$$W(t) \sim \mathcal{N}(0,1)$$
 i.i.d.

- $> E[W(t)] = 0; \quad E[W^2(t)] = 1; \quad Var(W(t)) = 1$
- > WSS
- > Ergodic

$$R_{WW}(t_1, t_2) = E[W(t_1) \cdot W(t_2)] = \begin{cases} E[W^2(t_1)] & t_1 = t_2 \\ E[W(t_1)] \cdot E[W(t_2)] & t_1 \neq t_2 \end{cases}$$

$$= \begin{cases} 1 & \tau = t_1 - t_2 = 0 \\ 0 & \tau = t_1 - t_2 \neq 0 \end{cases} = R_{XX}(\tau)$$

Random Sinusoid – Example

Let a stochastic process be defined as:

$$X(t) = \sum_{i=1}^{n} A_i \cos(\omega_i t + \varphi_i)$$

where $A_i \sim \mathcal{N}(0, \sigma^2)$ i.i.d., $\varphi_i \sim \mathcal{U}(0, 2\pi)$ i.i.d. and $\omega_i = i \cdot \omega_0$

- $\triangleright E[X(t)] = 0; \quad E[X^2(t)] = \frac{1}{2}\sigma^2; \quad Var(X(t)) = \frac{1}{2}\sigma^2$
- > WSS
- > ÷ Ergodic

Random Sinusoid – Example (cont'd)

Autocorrelation:

$$R_{XX}(\tau) = E[X(t)X(t+\tau)]$$

$$= E[\sum_{i=1}^{n} \sum_{j=1}^{n} A_i \cos(\omega_i t + \varphi_i) \cdot A_j \cos(\omega_j (t+\tau) + \varphi_j)]$$

- > Since A_i i.i.d. with $E[A_i] = 0$: $i \neq j \implies E[A_i A_j] = 0$
- $P_{XX}(\tau) = \sum_{i=1}^{n} E[A_i^2] \cdot E[\cos(\omega_i t + \varphi_i) \cdot \cos(\omega_i (t + \tau) + \varphi_i)]$ $= E[A_i^2] \cdot \sum_{i=1}^{n} E[\frac{1}{2} \cdot (\cos(\omega_i \tau) + \cos(\omega_i (2t + \tau) + 2\varphi_i))]$ $= \frac{\sigma^2}{2} \cdot \sum_{i=1}^{n} \cos(\omega_i \tau)$ $[Using: \cos\theta_1 \cdot \cos\theta_2 \\ = \frac{1}{2} (\cos(\theta_1 \theta_2) + \cos(\theta_1 + \theta_2))]$
- ightharpoonup Especially we have: $R_{XX}(0) = n \frac{\sigma^2}{2}$

Random Sinusoid – Example (cont'd)

Two Stochastic Processes

- If we have two stochastic processes X(t) and Y(t)
 - We can compare them by looking at the cross-correlation and cross-covariance:

Cross-correlation
$$R_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)^*]$$

Cross-covariance
$$C_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)^*] - E[X(t_1)]E[Y(t_2)]$$

Ensemble Cross-correlation

Tells about the connection between two different processes

In general:

$$R_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)^*]$$

$$= \iint_{-\infty}^{\infty} x(t_1) y(t_2)^* f_{X(t_1),Y(t_2)}(x(t_1), y(t_2)) dx(t_1) dy(t_2)$$

For two WSS stationary processes:

$$R_{XY}(t_1, t_2) = R_{XY}(t_1 + T, t_2 + T) = E[X(t_1 + T)Y(t_2 + T)^*]$$

• We rewrite to: $R_{XY}(\tau) = E[X(t) \cdot Y(t+\tau)^*]$

Cross-Correlation Functions

• For Real WSS processes X(t) and Y(t):

$$R_{XY}(\tau) = E[X(t)Y(t+\tau)]$$

- Properties of the cross-correlation function $R_{XY}(\tau)$:
 - $> R_{XY}(\tau) = R_{YX}(-\tau))$
 - $> |R_{XY}(\tau)| \le \sqrt{R_{XX}(0)R_{YY}(0)} = \sqrt{E[X^2]E[Y^2]}$
 - $|R_{XY}(\tau)| \le \frac{1}{2} (R_{XX}(0) + R_{YY}(0))$
 - > If X(t) and Y(t) are orthogonal, then $R_{XY}(\tau) = 0$
 - > If X(t) and Y(t) are independent, then $R_{XY}(\tau) = \mu_X \cdot \mu_Y$

Notice: If X(t) and Y(t) are WSS, and X(t) are independent of Y(t) then: $R_{XY}(\tau) = E[X(t)Y(t+\tau)] = E[X(t)] \cdot E[Y(t+\tau)]$

Temporal Cross-correlation

The temporal cross-correlation between X and Y:

$$\mathcal{R}_{XY}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot y(t+\tau) dt$$

 If the two processes are <u>ergodic</u> the temporal cross-correlation is equal to the ensemble cross-correlation:

$$R_{XY}(au) = \mathcal{R}_{XY}(au)$$
 Tempora

Cross-correlation – Uncalibrated noisy signal

- Comparing two signals:
 - > An uncalibrated and noisy signal: $f_2(t)$
 - > Reference signal: $f_0(t) = 10 \cdot e^{-10t^2}$

Cross-correlation – Uncalibrated noisy signal

- Comparing two signals:
 - > An uncalibrated and noisy signal: $f_2(t)$
 - > Reference signal: $f_0(t) = 10 \cdot e^{-10t^2}$
- Cross-correlation: $R_{02}(\tau) = \int_{-\infty}^{\infty} f_0(t) \cdot f_2(t+\tau) dt$

Deterministic vs. Stochastic signal

The probability mass function:

The two random processes have the same pmf.

Deterministic signal

Stochastic signal

Autocorrelation for Stochastic signal

Autocorrelation function averaged over 1000 simulations.

- Linear Time-Invariant (LTI) Systems
- X(t) h(t) Y(t) = h(t) * X(t)LTI System
- Signal analysis → Frequency domain:
 - \triangleright Deterministic signals $f(t) \rightarrow$ Fourier-transformation $\mathcal{F}(f(t))$
 - \triangleright Random signals $X(t) \rightarrow \div$ Fourier-transformation
- For Real WSS:
- Properties of the autocorrelation function $R_{XX}(\tau)$:
 - > If X(t) changes fast, then $R_{XX}(\tau)$ decreases fast from $\tau = 0$
 - > If X(t) changes slowly, then $R_{XX}(\tau)$ decreases slowly from $\tau = 0$
 - > If X(t) is periodic, then $R_{XX}(\tau)$ is also periodic
 - $\rightarrow R_{XX}(\tau)$ contain information about the frequency content in X(t)

- WSS random signals X(t):
- Power Spectral Density Function (psd):

Fourier-transform

$$\triangleright S_{XX}(f) = \mathcal{F}(R_{XX}(\tau)) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j \cdot 2\pi f \cdot \tau} d\tau$$

Invers Fourier-transform

$$ightharpoonup R_{XX}(\tau) = \mathcal{F}^{-1}(S_{XX}(f)) = \int_{-\infty}^{\infty} S_{XX}(f) e^{j \cdot 2\pi f \cdot \tau} df$$

Figure 3.19a Psd of a lowpass random process X(t).

Figure 3.19b Autocorrelation function of X(t).

- Properties of psd $S_{XX}(f) = \mathcal{F}(R_{XX}(\tau))$ (spectrum of X(t)):
 - $\succ S_{XX}(f) \in \mathbb{R}$
 - $ightharpoonup S_{XX}(f) \ge 0$
 - If $X(t) \in \mathbb{R}$: $R_{XX}(-\tau) = R_{XX}(\tau)$ and $S_{XX}(-f) = S_{XX}(f) \to \text{even functions}$
 - \succ If X(t) periodic components: $S_{XX}(f)$ will have impulses (δ-functions)

Impulse response

- $ightharpoonup S_{\chi\chi}(f) \in \mathbb{R}$
- If $X(t) \in \mathbb{R}$: $R_{XX}(-\tau) = R_{XX}(\tau)$ and $S_{XX}(-f) = S_{XX}(f) \rightarrow$ even functions
- \triangleright If *X*(*t*) periodic components: $S_{XX}(f)$ will have impulses (δ-functions)

• Deterministic signals x(t):

- Time-average
- Average power: $P_X = \langle x(t)^2 \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t)^2 dt$ i.e. if x(t) = V(t) (voltage signal) $\to P_X =$ power in 1Ω -resistor
- Stochastic WSS signals X(t):

- \nearrow Average power in X(t)
- ightharpoonup Average power: $P_X = E[X(t)^2] = R_{XX}(0) = \int_{-\infty}^{\infty} S_{XX}(f) df$
- \gt $[S_{XX}(f)] = \frac{W}{Hz} \to \text{Distribution of power with frequency (power spectral density of the stationary random process <math>X(t)$)
- $ightharpoonup P_X[f_1, f_2] = 2 \int_{f_1}^{f_2} S_{XX}(f) df$
 - \rightarrow Power in the frequency-interval $[f_1, f_2]$

Power Spectral Density – White Gaussian Noise

- White Gaussian Noise ($\mu = 0$):
 - $> S_{XX}(f) = \frac{N_0}{2}$ for all f

$$\geq R_{XX}(\tau) = \mathcal{F}^{-1}(S_{XX}(f)) = \frac{N_0}{2} \cdot \delta(\tau) = \begin{cases} \infty & for \ \tau = 0 \\ 0 & for \ \tau \neq 0 \end{cases}$$

 \rightarrow $X(t_1)$ and $X(t_2)$ uncorrelated/independent for $t_1 \neq t_2$

$$\triangleright P_X = E[X(t)^2] = R_{XX}(0) = \int_{-\infty}^{\infty} S_{XX}(f)df = \infty$$

- Thermal Noise
 - White Gaussian Noise in frequency range

Words and Concepts to Know

Cross-correlation

psd

Power Spectral Density

Random walk

Deterministic

Cross-covariance

Autocorrelation

Temporal autocorrelation

Temporal Autocovariance

Autocorrelation Coefficient

Temporal cross-correlation

White Gaussian Noise

Auto-covariance

Non-deterministic