Curso de Verilog - Dia 4

Caio Rodrigo, Jorge Reis, Manuel Adahil

Prática 6 - Moore FSM

Imagine o seguinte cruzamento:

Cruzamento entre duas ruas.

Os elipses hachurados de cinza(TA e TB) são sensores que detectam se alguém está presente na área demarcada e os semáforos indicam se alguém pode passar ou não, possuindo três cores para o controle:

- Vermelho Pare;
- Amarelo Atenção (Transição);
- Verde Siga;

O controlador dos semáforos vai receber como entrada os dados do sensores TA e TB e terá como saída a mudança das luzes, como visto na imagem:

O comportamento deste controlador é indicado pelas tabelas abaixo e pode ser modelado através de uma máquina de estados.

Faça a codificação e o testbench da máquina de estados de Moore que modela o sistema de tráfego explanado anteriormente. A máquina de estados é exibida a seguir:

Moore FSM para o semáforo.

Lembre-se que uma FSM possui dois blocos de lógica combinacional, um para calcular o próximo estado (next state logic) e outro para definir a saída (output logic), e os registradores que armazenam o estado. Os registradores são atualizados em cada borda de subida do clock.

Utilize as tabelas abaixo para codificar os estados, saídas e a transição de estados:

Current State S	Inp T _A	uts T _B	Next State S'
SO	0	X	S 1
SO	1	X	S0
S1	X	X	S2
S2	X	0	\$3
S2	X	1	\$2
S3	X	X	S0

State	Encoding S _{1:0}	
SO	00	
S1	01	
S2	10	
S3	11	

Codificação dos estados
Tabela de transição de estados

Codificação da saída

Prática 7 - Mealy FSM

Modifique a FSM da questão anterior para uma FSM de Mealy. Faça a codificação e compare os testbenches das duas FSMs. **Dica**: você pode instanciar os dois módulos no testbench e testar os dois ao mesmo tempo para facilitar a comparação das ondas.

Em seguida, responda as seguintes questões:

- 1. O que foi modificado no código original (FSM de Moore) para codificar a FSM de Mealy?
- 2. Qual foi a mudança de comportamento em relação à saída da FSM de Moore? Ou seja, quando a saída é modificada na FSM de Moore e de Mealy?
- 3. A FSM de Mealy funciona corretamente?

Fatality

Implemente a FSM de Mealy abaixo bem como seu testbench. Repare que ela possui mais de uma entrada e saída para cada transição.

FSM de Mealy de um multiplicador multicycle