Prove that for any integer $n \ge 0$, $3n^2 + 15n + 12$ is even.

Proof: Prove by induction on n.

Let P(n) be the property " $3n^2 + 15n + 12$ is even."

Base case: let n = 0. $3 \times (0^2) + 15(0) + 12 = 12$. $12 = 2 \times 6$, and is thus even. Thus P(0) is true.

Inductive hypothesis: suppose that P(k) is true for some $k \ge 0$; that is, " $3k^2 + 15k + 12$ is even." Now it must be shown that P(k+1) is true: that $3(k+1)^2 + 15(k+1) + 12$ is even.

Inductive step:

$$3(k+1)^{2} + 15(k+1) + 12 = 3(k^{2} + 2k + 1) + 15k + 15 + 12$$
$$= 3k^{2} + 6k + 3 + 15k + 15 + 12$$
$$= 3k^{2} + 15k + 12 + 6k + 18$$

Because P(k), $k^2 + 15k + 12 = 2z$ for some $z \in \mathbb{Z}$. Thus,

$$3(k+1)^2 + 15(k+1) + 12 = 2z + 6k + 18$$

= $2(z + 6k + 18)$

which is an even integer for all integers $z, k \in \mathbb{Z}$. So P(k+1) is true.

Thus, because the base case P(0) is true and P(k) implies P(k+1) for all $k \ge 0$, $3n^2 + 15n + 12$ is even for all $n \ge 0$.