

Heatmap and Others

热图和其他

鸢尾花书中常用来可视化矩阵运算

每个孩子都是艺术家。问题在于他长大后如何保持艺术家的本质。

Every child is an artist. The problem is how to remain an artist once he grows up.

—— 毕加索 (Pablo Picasso) | 西班牙艺术家 | 1881 ~ 1973

- numpy.linalg.cholesky() Cholesky 分解
- numpy.linalg.eig() 特征值分解
- ◀ numpy.linalg.svd() 奇异值分解
- ◀ numpy.zeros_like() 用来生成和输入矩阵形状相同的零矩阵
- ✓ seaborn.clustermap() 绘制聚类热图
- ✓ seaborn.heatmap() 绘制热图
- ◀ sklearn.datasets.load_iris() 加载鸢尾花数据
- matplotlib.image.imread() 读取图像文件并返回对应的图像数据
- ◀ matplotlib.pyplot.hist() 绘制直方图
- matplotlib.pyplot.imshow() 显示图像数据
- ◀ numpy.zeros()返回给定形状和类型的新数组,用零填充
- ◀ numpy.zeros like() 用来生成和输入矩阵形状相同的零矩阵
- ◀ skimage.color.rgb2gray() 将彩色图像转换为灰度图像
- skimage.io.imread() 读取图像文件并返回对应的图像数据

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

11.1

Seaborn 中的热图

热图 (heatmap), 也叫热力图, 是"鸢尾花书"中极为常见的可视化手段。特别是在展示数据、矩 阵分解时, 我们常用热图可视化矩阵。

虽然,matplotlib 中也有绘制热图的工具;但是,推荐大家使用 seaborn 中的 heatmap 函 数。这个函数绘制热图更方便。

Seaborn 是一款基于 matplotlib 的数据可视化库,其中包括了各种绘图函数,其中之一就是 heatmap。使用 Seaborn 的 heatmap 函数可以让大家快速而方便地可视化矩阵数据,使得数据分析 更加直观和易于理解。

热图可以用于可视化二维数组。图 1 所示为用热图可视化鸢尾花四个量化特征数据。在 Jupyter notebook 中,大家可以看到我们用 cmap 控制色谱,用 xticklabels、yticklabels 分别控制横 轴、纵轴标签,用 cbar_kws 设置色谱条位置,并用 vmin、vmax 控制色谱条起止位置。

BK_2_Ch11_01.ipynb 图 1. 热图可视化鸢尾花数据 |

Seaborn 中的 heatmap 函数还包括许多其他参数,用于自定义热图的外观和行为。例如,大家可 以使用 annot 参数在热图中显示数值,使用 fmt 参数指定数字格式,使用 linewidths 参数调整单 元格边框宽度等等。

聚类热图

Seaborn 中,clustermap 是一个用于绘制聚类热图的函数,其原理是将矩阵中的行和列进行聚类,并以聚类后的顺序重新排列矩阵的行和列。这样可以将具有相似特征的行和列放在一起,从而更容易地发现它们之间的相似性和差异性。图 2 所示为鸢尾花数据的聚类热图。

图 2. 热图可视化鸢尾花数据 | GBK_2_Ch11_01.ipynb

矩阵运算

"鸢尾花书"中,大家会经常看到用一组热图可视化矩阵运算,特别是矩阵分解。图 15 所示为常见的几个矩阵运算。注意,后期制作时,热图的形状做了修改。

《矩阵力量》一册将从代数、数据、线性组合、优化、几何、统计等角度和大家讨论这些矩阵 运算。此外,大家还会看到我们用热图可视化协方差矩阵、相关性系数矩阵,以及这些矩阵对应的线性 代数运算。本节就不再展开讨论了。

11.2 伪彩色网格图

在 Matplotlib 中,pcolormesh 函数用于创建一个伪彩色网格图,类似热图。它可以用于绘制二维数据的色彩填充图,其中每个数据点的颜色根据其对应的数值进行映射。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载:https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

在 pcolormesh 函数中,可以使用 rasterized 参数来控制是否将图形渲染为矢量图形或光栅图像。rasterized 参数是一个布尔值,用于指定是否将图形渲染为光栅图像。当设置为 True 时,图形将以光栅化的形式保存,这对于包含大量数据点或复杂图形时可以提高渲染性能和文件大小。默认情况下,rasterized 参数的值为 False,即图形以矢量格式渲染。

如图 16 所示, pcolormesh 函数还常用来绘制分类算法的决策边界。此外, pcolormesh 函数可以绘制网格, 并用来可视化线性、非线性变换, 具体如图 4、图 17 所示。

pcolor 函数也是 matplotlib 库中的函数,用于绘制伪彩色图,效果和 pcolormesh 类似。与 pcolor 相比,pcolormesh 在效率上更高,特别适用于绘制大型数据集。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

11.3 非矢量图片

本章最后再聊聊非矢量图片。matplotlib.image 模块提供了读取和处理图像的函数,其中最常用的函数是 imread。 imread 函数可以读取图像文件,并将其解码为一个三维的 numpy 数组。

matplotlib.pyplot.imshow() 是 matplotlib 中用于显示图像的函数。将如图 5 所示鸢尾花照片导入后,容易发现这幅图像实际上式一个 2990 × 2714 × 3 的数组。

图片**像素** (pixel) 是图片的基本单位,是构成图片的最小元素。它是一个有限的、离散的、二维的点,有着特定的位置、颜色和亮度值。在数字图像中,每个像素都有一个确定的坐标和值。图片中的像素数量越多,图片的分辨率就越高,图片的清晰度和细节也就越好。

像素的颜色通常使用 RGB 值 (红、绿、蓝三种颜色的强度组合) 表示。每个像素都有一个红、绿、蓝三个通道的值。红、绿、蓝可以分别被编码为一个数字,例如 8 位的数字可以表示 256 种颜色。

也就是说,图 5 这幅图中每个像素首先分解成红绿蓝三个数值。这些数值的取值范围都在 [0, 255] 之间。换个角度,图 5 可以理解成是由三幅图片叠加而成,如图 6 所示。

此外,我们可以获得如图 7 所示的红绿蓝颜色的分布。越靠近 0,颜色越靠近黑,越靠近 255 颜色越靠近纯色。本书前文已经和大家聊过 [0, 0, 0] 代表纯黑,[255, 255, 255] 代表纯白。注意,在 matplotlib 中 [1, 1, 1] 代表纯白。

在彩色图像中,每个像素的颜色可以由三个 8 位数字(红、绿、蓝)组成,因此彩色图像中的每个像素可以表示 $2^{3\times8}$ 种不同的颜色,约为 1600 万种。

在数字图像处理中,对图像进行各种操作,例如缩放、旋转、裁剪、调整亮度和对比度等,都会涉及到像素的处理和修改。

图 6. 鸢尾花照片分解成红绿蓝三个通道 | GBK_2_Ch11_05.ipynb

红绿蓝三个通道

图 8 给出的三幅子图,每幅图仅保留两色通道,另外一个通道数值全部置零。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在B站——生姜 DrGinger; https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮籍: jiang.visualize.ml@gmail.com 图 8. 鸢尾花照片,只保留两色通道 | GBK_2_Ch11_05.ipynb

色谱

它可以用来显示二维数组或图像文件中的图像。imshow 函数有很多参数可以控制图像的外观。例如,可以使用 cmap 参数指定要使用色谱。图 9 所示为使用色谱展示红色通道。Jupyter notebook 中还给出更多范例。

图 9. 使用色谱展示红色通道 | ⁽⁺⁾ BK_2_Ch11_05.ipynb

灰度

Scikit-image (skimage) 是一个用于图像处理和计算机视觉的 Python 包。它提供了一系列算法,函数和工具,可用于图像处理,包括图像滤波,几何变换,色彩空间转换,图像分割,特征提取等等。具体来说,skimage 可以用于: a) 加载和保存图像; b) 调整图像大小,旋转,裁剪等几何变换; c) 进行图像滤波和增强; d) 在不同颜色空间之间进行转换; e) 检测边缘和角点; f) 进行图像分割和分析; g) 进行特征提取和图像匹配。

图 10 所示为使用 skimage 将彩色图片转化为灰度图片。注意图片的每个像素的取值在 [0, 1] 之间。此外,图像识别一般都使用灰度图像。

图 10. 将彩色图片转化成灰度 | GBK_2_Ch11_05.ipynb

修改部分像素

由于图片本身就是一个数组,我们可以通过修改数组的具体值来修改图片。如所示,我们将灰度照片的左上角 500 × 500 的像素变为白色。

图 11. 修改图片像素 | 😌 BK_2_Ch11_05.ipynb

降低像素

图 12 所示为通过采样降低图像像素。图 5 这幅图片的像素大小为 2990 × 2714。每 200 个像素采样一个像素,我们便得到图 12。这幅图的像素为 15 × 14,很明显图片的颗粒度很粗糙。

图 12. 采样降低像素 | ^仓BK_2_Ch11_05.ipynb

当图像像素较低时,为了让图片看上去更细腻,我们可以采用插值。

插值

imshow() 函数中,我们可以通过设置 interpolation 参数来控制如何在图像像素之间进行插值,以生成更平滑的图像。

imshow() 函数 interpolation 参数的默认值是 'antialiased', 它使用反走样技术来平滑图像, 使其在缩放时更加清晰。这意味着在缩放图像时, imshow() 函数会自动对图像进行插值, 以获得更平滑的外观。

除了默认的 'antialiased' 插值, imshow() 函数还支持其他插值方法, 包括 'nearest', 'bilinear', 'bicubic' 等。这些插值方法可以通过 interpolation 参数来设置。例如, 'nearest' 插值只是在最近的像素值之间进行插值, 而 'bicubic' 插值使用更复杂的算法来生成更平滑的图像。图 13 所示为图 12 的两种插值结果。本节的 Jupyter notebook 中给出更多插值方法。

《数据有道》一册将详细讲解常见插值算法。

选择不同的插值方法会影响图像的视觉效果,因此选择合适的插值方法可以使图像更清晰或更平滑,更符合数据的视觉表达。

图 13. 插值平滑 | ^仓BK_2_Ch11_05.ipynb

仿射变换

图 14 所示为对图片采取各种仿射变换。本章后续将专门介绍各种平面、立体几何变换。

本章介绍了三种可视化方案,热图、伪彩色网格图、非矢量图片。鸢尾花书常用 seaborn 中的 heatmap 展示各种矩阵运算,需要大家格外留意。

BK_2_Ch11_01.ipynb 图 15. 用热图可视化矩阵运算 |

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 16. 用 pcolormesh 函数绘制分类决策边界 | BK_2_Ch11_03.ipynb

图 17. 用 pcolormesh 函数可视化线性、非线性变换 | GBK_2_Ch11_04.ipynb