Financial Derivatives (Binomial Model)

Financial Engineering

by

Vivek Vijay

Department of Mathematics

IIT Jodhpur

Financial Derivative

Derivative assets are assets whose values are determined by the value of some other assets, called the **underlying**.

There are two common types of derivatives; Contracts and Options

Contracts – Agreement to buy or to sell something at a pre-specified time (Maturity Time) at some prescribed amount (Strike Price)

Long Position – The party which agrees to buy

Short Position – The party which agrees to sell

* No Exchange of money ** Both are obliged

Contracts

Forward contract – Over the counter

Futures contract – Traded at exchange

Forward Price $F(0,T) = S(0)e^{rT}$

Forward price under dividends $F(0,T) = [S(0) - de^{-rt}]e^{rT}$

Marking to Market – Daily settlement of margins

Note – $F(0,T) < S(0)e^{rT}$ or $F(0,T) > S(0)e^{rT}$ implies arbitrage

Notation

S(0) - Spot price, K – Strike price, T – Time to maturity, r – Rate of interest

Contract - Example

Suppose that the risk-free rate is 10%. Is there any arbitrage profit if F(0, 1) = 89 and S(0) = 83 Rs, and a Rs 2 dividend is paid in the middle of the year, that is, at time 1/2?

Options

A **call option** is a contract giving the owner the right, but not the obligation, to purchase, at expiration, an asset at a specified price called the **strike price**.

A **put option** is a contract giving the owner the right, but not the obligation, to sell, at expiration, an asset at the strike (exercise) price.

The amount of the underlying asset is called the **notional principal** or **underlying amount**.

The price of the option contract is called the option premium.

The issuer of the option (call or put) is called the writer.

Options

There are many types of options.

A **European option** can be exercised only at expiration (T).

An **American option** can be exercised at any time between initiation of the contract and expiration.

A standard or plain vanilla option has no additional contractual features.

An exotic option has additional features affecting the payoff.

Put-Call parity

Call Option Payoff Max((S(T) - K), 0)

Put Option Payoff Max((K - S(T)), 0)

Put-call parity

$$C(0) - P(0) = S(0) - e^{-rT}K$$

Note –
$$C(0) - P(0) < S(0) - e^{-rT}K$$
 or $C(0) - P(0) > S(0) - e^{-rT}K$ implies arbitrage

Option Pricing – Binomial Model

Required Ingredients

Spot Price – S(0)

Strike Price – K

Maturity Time – T

Interest Rate – r

Up factor – u

Down factor – d

Assumptions

- No arbitrage
- Volatility is constant
- Constant rate of interest
- Only two possibilities

Option Pricing – One Period Binomial Model

A European call option price is

$$C(0) = e^{-rT}\tilde{E}((S(T) - K)^{+}),$$

where, the *Expectation* is taken with respect to the **risk neutral probability measure** given by

$$\tilde{p} = \frac{e^{rT} - d}{u - d},$$

where, u and d are up and down factors respectively.

Note – For no arbitrage, d < (1+r) < u

Example

Let S(0) = 100 Rs, u = 1.1, d = 0.90 and r = 0.05. Consider a European call option with strike price K = 105 Rs and exercise time T = 1. Find the option price and the replicating strategy.

What changes do you see if we use two periods?

Option Pricing - Multi Period Binomial Model

A European call option price is

$$C(0) = e^{-rT}\tilde{E}((S(T) - K)^{+}),$$

where, the *Expectation* is taken with respect to the **risk neutral probability measure** given by

$$\tilde{p} = \frac{e^{r\Delta t} - d}{u - d},$$

where, Δt , u and d are time duration, up and down factors respectively for one period.

The risk neutral expectation will be calculated by using the Binomial distribution.

Example

Let S(0) = 100 Rs, u = 1.05, d = 0.95 and r = 0.05. Consider a European call option with strike price K = 105 Rs and exercise time T = 1. Find the option price and the replicating strategy using two period Binomial model.