

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN - ĐHQG HCM

KHOA KỸ THUẬT MÁY TÍNH

TỔ CHỨC VÀ CẦU TRÚC MÁY TÍNH 2

CHƯƠNG 6 KIẾN TRÚC TẬP LỆNH (Phần 1)

PHAN ĐÌNH DUY

TP. Hồ Chí Minh, ngày 05 tháng 9 năm 2022

MỤC TIÊU CHƯƠNG

- Biết được các kiến trúc tập lệnh phổ biến
- Hiểu được những khái niệm cơ bản của kiến trúc MIPS
- > Hiểu được các loại toán hạng trong lệnh của MIPS
- > Hiểu được các định dạng lệnh của MIPS

NỘI DUNG

- Kiến trúc tập lệnh
- > Toán hạng
- > Định dạng lệnh
- Bài tập

- Kiến trúc tập lệnh
- > Toán hạng
- > Định dạng lệnh
- Bài tập

NỘI DUNG

Kiến trúc Tập lệnh – Tổng quan

- > ARM
- ➤ Intel (x86)
- > MIPS

Clock Speed

Kiến trúc Tập lệnh – Định nghĩa

- Lệnh (Instruction) là một chỉ dẫn để máy tính thực hiện công việc nào đó
 - Ví dụ: Lệnh ADD chỉ dẫn máy tính thực hiện phép toán cộng
- > Tập lệnh (Instruction Set) là tập hợp các lệnh của máy tính
 - Tập lệnh quy định máy tính có thể làm những gì!
 - Những máy tính khác nhau sẽ có tập lệnh khác nhau!
 - > NHƯNG! Các tập lệnh đều có điểm chung!!!
- ➤ Kiến trúc Tập lệnh = Tập lệnh + Biểu diễn lệnh

Kiến trúc Tập lệnh – Định nghĩa (2)

- > Tập lệnh: Máy tính có thể làm những gì?
- Định dạng lệnh (biểu diễn lệnh): Mỗi lệnh được biểu diễn như thế nào?
 - > Opcode (Operation Code): Mã lệnh (mã thao tác)
 - Toán hạng: Các toán hạng cần thiết để thực thi lệnh
 - Các trường khác

Kiến trúc Tập lệnh – Phân loại

- Ngăn xếp (stack)
- ➤ Bộ tích lũy (accumulator)
- ➤ Thanh ghi Bộ nhớ (register–memory)
- ➤ Thanh ghi thanh ghi / nạp lưu (register-register/load-store)

Stack	Stack Accumulator		Register (load-store)
Push A	Load A	Load R1,A	Load R1,A
Push B	Add B	Add R1,B	Load R2,B
Add	Store C	Store C,R1	Add R3,R1,R2
Pop C			Store C,R3

Kiến trúc Tập lệnh - Thanh ghi-thanh ghi

- Dữ liệu được lưu trữ ở bộ nhớ
- Tính toán trên thanh ghi (không tính toán trên bộ nhớ)
- Cần nạp dữ liệu từ bộ nhớ vào thanh ghi để tính toán
- Cần lưu giá trị thanh ghi vào bộ nhớ sau khi tính toán

Kiến trúc Tập lệnh - Lệnh

Kiến trúc Tập lệnh – Quiz 1

- > Đề xuất lệnh thực hiện thao tác trừ:
 - A trừ B bằng C
- Chuyển đổi lệnh trong lập trình C thành lệnh hợp ngữ

$$F = (A + B) - (C + D)$$

Kiến trúc Tập lệnh - Tập lệnh MIPS

- Thiết kế theo kiến trúc thanh ghi thanh ghi
- Dộ rộng lệnh: Cố định 32 bit cho tất cả các lệnh
- > Định dạng lệnh: R, I, J
- Tập thanh ghi: 32 thanh ghi 32 bit, thanh ghi \$zero luôn bằng 0

Kiến trúc Tập lệnh - Tập lệnh MIPS (2)

- ➤ Kiểu dữ liệu: Byte (8 bit), halfword (16 bit), word (32 bit)
- Chế độ định địa chỉ: 5 chế độ
- Toán hạng: Thanh ghi, số tức thời (bù 2), bộ nhớ
- Dịnh địa chỉ theo byte

Kiến trúc Tập lệnh - Tập lệnh MIPS (3)

Loại	Lệnh	Ví dụ	Ý nghĩa	ĐD
	Cộng	add \$s1,\$s2,\$s3	\$s1=\$s2 + \$s3	R
Số học	Trừ	sub \$s1,\$s2,\$s3	\$s1=\$s2 - \$s3	R
	Cộng tức thì	addi \$s1,\$s2,20	\$s1=\$s2 + 20	I
Truyền dữ	Nap word	lw \$s1,20(\$s2)	\$s1=Mem[\$s2 + 20]	Ι
liệu	Luu word	sw \$s1,20(\$s2)	Mem[s2 + 20] = \$s1	I
Luận lý	NOR luận lý	nor \$s1,\$s2,\$s3	\$s1= ~(\$s2 \$s3)	R
	Dịch phải luận lý	srl \$s1,\$s2,10	\$s1=\$s2>>10	R
Rẽ nhánh	Nhảy nếu bằng	beq \$s1,\$s2, label	Nếu (\$s1==\$s2) đi đến label	I
Nhảy	Nhảy	j label	Đi đến label	J

- Kiến trúc tập lệnh
- > Toán hạng
- > Định dạng lệnh
- Bài tập

Toán hạng

- Toán hạng là một dữ liệu được dùng để tính toán
- > MIPS có 3 loại toán hạng:
 - Toán hạng thanh ghi: Dữ liệu nằm trong thanh ghi
 - Toán hạng bộ nhớ: Dữ liệu nằm trong bộ nhớ
 - Toán hạng số tức thời: Dữ liệu nằm ngay trong lệnh

16 March 2023

Toán hạng thanh ghi

- > Kiến trúc thanh ghi thanh ghi: Tính toán trên thanh ghi
- ➤ MIPS có 32 thanh ghi 32 bit
 - > Sử dụng cho truy xuất dữ liệu tạm
 - Được đánh số từ 0 đến 31
 - ➤ Kiểu dữ liệu 32 bit (word)
- > Tên gợi nhớ: Tiền tố \$ theo sau là chỉ số hoặc tên (\$2 hay \$sp)
 - > \$t0, \$t1, ..., \$t9 cho các dữ liệu tạm
 - > \$s0, \$s1, ..., \$s7 cho lưu trữ các biến
 - > \$v0, \$v1, \$k1, ... cho các mục đích đặc biệt khác

Toán hạng thanh ghi (2)

NAME	NUMBER	USE	PRESERVEDACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

Toán hạng thanh ghi (3)

Tên hoặc số của thanh ghi là gợi nhớ cho địa chỉ của thanh ghi trong tập thanh ghi

31 | \$ra | 0x12

Toán hạng thanh ghi - Quiz 2

Lệnh	Ví dụ	Ý nghĩa
Cộng	add \$s1,\$s2,\$s3	\$s1=\$s2 + \$s3
Trừ	sub \$s1,\$s2,\$s3	\$s1=\$s2 - \$s3

Chuyển đổi lệnh trong lập trình C thành lệnh hợp ngữ MIPS, biết rằng các biến F, A, B, C và D đều nằm trong các thanh ghi lần lượt từ t0 đến t4:

$$F = (A + B) - (C + D)$$

NAME	NUMBER
\$zero	0
\$at	1
\$v0-\$v1	2-3
\$a0-\$a3	4-7
\$t0-\$t7	8-15
\$s0-\$s7	16-23
\$t8-\$t9	24-25
\$k0-\$k1	26-27
\$gp	28
\$sp	29
\$fp	30
\$ra	31

Toán hạng bộ nhớ

- > Bộ nhớ được đánh địa chỉ theo byte
- ➤ MIPS quy định địa chỉ bộ nhớ phải là bội số của 4 (1 word = 4 byte)
- > MIPS sử dụng mô hình địa chỉ Big-Endian

Toán hạng bộ nhớ (2)

Toán hạng bộ nhớ (3)

Toán hạng bộ nhớ - Quiz 3

Lệnh	Ví dụ	Ý nghĩa
Cộng	add \$s1,\$s2,\$s3	\$s1 = \$s2 + \$s3
Nap word	lw \$s1,20(\$s2)	\$s1= Mem[\$s2 + 20]

Chuyển đổi lệnh trong lập trình C thành lệnh hợp ngữ MIPS, giả sử A là một biến nguyên năm trong \$a0 và mảng các số nguyên B có địa chỉ năm trong \$t0:

$$F = A + B[3]$$

NAME	NUMBER
\$zero	0
\$at	1
\$v0-\$v1	2-3
\$a0-\$a3	4-7
\$t0-\$t7	8-15
\$s0-\$s7	16-23
\$t8-\$t9	24-25
\$k0-\$k1	26-27
\$gp	28
\$sp	29
\$fp	30
\$ra	31

Toán hạng số tức thời

- Dữ liệu hằng số được chỉ định ngay trong lệnh
 - > Sử dụng dữ liệu ngay mà không cần tìm kiếm như thanh ghi và bộ nhớ
 - ➤ Không cần phải nạp dữ liệu từ bộ nhớ!!!
 - > Nhưng giá trị thường nhỏ
- > Ví du:
 - > addi \$s3, \$s2, 4
 - > addi \$t2, \$t1, -7
- > MIPS có thanh ghi số 0 (\$zero) luôn luôn là một hằng số 0
 - > Sao chép giá trị: add \$t2, \$t1, \$zero

Toán hạng số tức thời - Quiz 4

Lệnh	Ví dụ	Ý nghĩa
Cộng	add \$s1,\$s2,\$s3	\$s1=\$s2 + \$s3
Trừ	sub \$s1,\$s2,\$s3	\$s1=\$s2 - \$s3
Cộng tức thì	addi \$s1,\$s2,5	\$s1=\$s2+5

Chuyển đổi lệnh trong lập trình C thành lệnh hợp ngữ MIPS, biết rằng các biến F, A, B, C nằm trong các thanh ghi từ t5 đến t8:

$$F = A - (B + 7) + C$$

NAME	NUMBER
\$zero	0
\$at	1
\$v0-\$v1	2-3
\$a0-\$a3	4-7
\$t0-\$t7	8-15
\$s0-\$s7	16-23
\$t8-\$t9	24-25
\$k0-\$k1	26-27
\$gp	28
\$sp	29
\$fp	30
\$ra	31

NỘI DUNG

- Kiến trúc tập lệnh
- > Toán hạng
- Dịnh dạng lệnh
- Bài tập

Định dạng lệnh

- Lệnh được biểu diễn bằng các mã nhị phân (mã máy)
- Dịnh dạng lệnh là một hình thức biểu diễn một lệnh dưới dạng các trường mã nhị phân
 - ➤ Lệnh của MIPS đều rộng 32 bit
- > MIPS có 3 định dạng lệnh:
 - Dịnh dạng lệnh R: Cho các thao tác tuần túy trên thanh ghi
 - Dịnh dạng lệnh I: Cho các thao tác sử dụng số tức thời có giá trị nhỏ và vừa
 - Dịnh dạng lệnh J: Cho các thao tác sử dụng số tức thời có giá trị lớn

Định dạng lệnh - R

Các trường lệnh dạng R:

oprsrtrdshamtfunct6 bit5 bit5 bit5 bit5 bit

- > op (opcode): Mã lệnh
- rs: Địa chỉ toán hạng thanh ghi nguồn thứ nhất
- rt: Địa chỉ toán hạng thanh ghi nguồn thứ hai
- rd: Địa chỉ toán hạng thanh ghi đích
- > shamt (shift amount): Lượng dịch (mặc định là 00000)
- > funct (function code): Mã lệnh mở rộng cho op

Định dạng lệnh – R (ví dụ)

op	rs	rt	rd	shamt	funct
6 bit	5 bit	5 bit	5 bit	5 bit	6 bit

add \$t0, \$s1, \$s2

op (add)	\$s1	\$s2	\$t0	0	funct (add)
0	17	18	8	0	0x20
000000	10001	10010	01000	00000	100000

00000010001100100100000000100000

0x02324020

16 March 2023

Chuyển đổi lệnh ASM MIPS sang mã máy

- Chuyển câu lệnh assembly (ASM) MIPS sau sang mã máy: and \$t3, \$s0, \$s2
- > Thực hiện việc chuyển đối theo các bước sau:
 - > Bước 1: Tra bảng "MIPS reference data" xem lệnh and thuộc định dạng nào => R type

R[rd] = R[rs] & R[rt] $0/24_{hex}$ And

op	rs	rt	rd	shamt	funct

Chuyển đổi lệnh ASM MIPS sang mã máy (2)

- Chuyển câu lệnh assembly (ASM) MIPS sau sang mã máy: and \$t3, \$s0, \$s2
- > Thực hiện việc chuyển đổi theo các bước sau:
 - Bước 1: Tra bảng "MIPS reference data" xem lệnh and thuộc định dạng nào
 R type
 - > Bước 2: Tra các trường opcode và function

And

and R R[rd] = R[rs] & R[rt]

op	rs	rt	rd	shamt	funct
000000					100100

Chuyển đổi lệnh ASM MIPS sang mã máy (3)

> Chuyển câu lệnh assembly (ASM) MIPS sau sang mã máy:

and \$t3, \$s0, \$s2
$$\Rightarrow$$
 \$t3 = \$s0 & \$s2

- > Thực hiện việc chuyển đổi theo các bước sau:
 - > Bước 1: Tra bảng "MIPS reference data" xem lệnh and thuộc định dạng nào

=> R type

- > Bước 2: Tra các trường opcode và function
- > Bước 3: Tra vị trí và chỉ số các thanh ghi

And

and

 $R \quad R[rd] = R[rs] \& R[rt]$

0 / 24_{hex}

op	rs	rt	rd	shamt	funct
000000	10000	10010	01011		100100

Chuyển đổi lệnh ASM MIPS sang mã máy (4)

> Chuyển câu lệnh assembly (ASM) MIPS sau sang mã máy:

and \$t3, \$s0, \$s2
$$\Rightarrow$$
 \$t3 = \$s0 & \$s2

- Thực hiện việc chuyển đổi theo các bước sau:
 - Bước 1: Tra bảng "MIPS reference data" xem lệnh and thuộc định dạng nào
 R type
 - > Bước 2: Tra các trường opcode và function
 - > Bước 3: Tra vị trí và chỉ số các thanh ghi
 - Bước 4: Điền trường shamt và hoàn thành mã máy của lệnh

op	rs	rt	rd	shamt	funct
000000	10000	10010	01011	00000	100100

Định dạng lệnh - R - Quiz 5

Biểu diễn các lệnh sau:

- > add \$a0, \$t1, \$sp
- > sl1 \$t1, \$t5, 7

NAME	NUMBER
\$zero	0
\$at	1
\$v0-\$v1	2-3
\$a0-\$a3	4-7
\$t0-\$t7	8-15
\$s0-\$s7	16-23
\$t8-\$t9	24-25
\$k0-\$k1	26-27
\$gp	28
\$sp	29
\$fp	30
\$ra	31

Định dạng lệnh - I

Các trường lệnh dạng I:

oprsrtimmediate6 bit5 bit5 bit16 bit

- > op (opcode): Mã lệnh
- rs: Địa chỉ toán hạng thanh ghi nguồn thứ nhất
- rt: Địa chỉ toán hạng thanh ghi nguồn thứ hai hoặc thanh ghi đích
- immediate: Số tức thời 16 bit (biểu diễn dạng bù 2)
 - Thường là độ dời
 - Quy ước: Nếu sử dụng số tức thời lớn hơn 16 bit thì sẽ gây lỗi biên dịch

Định dạng lệnh – I (ví dụ)

op	rs	rt	immediate
6 bit	5 bit	5 bit	16 bit

lw \$t0, -8(\$s2)

op (lw)	\$s2	\$t0	-8
0x23	18	8	-8
100011	10010	01000	111111111111000

1000111001001000111111111111111000

0x4E48FFF8

Định dạng lệnh - I - Quiz 6

Biểu diễn lệnh lw \$a0, 48(\$sp)

NAME	NUMBER
\$zero	0
\$at	1
\$v0-\$v1	2-3
\$a0-\$a3	4-7
\$t0-\$t7	8-15
\$s0-\$s7	16-23
\$t8-\$t9	24-25
\$k0-\$k1	26-27
\$gp	28
\$sp	29
\$fp	30
\$ra	31

Định dạng lệnh - J

op	address
6 bit	26 bit

Các trường lệnh dạng J:

- > op (opcode): Mã lệnh
- > address: Số tức thời 26 bit (biểu diễn dạng bù 2)
 - ➤ Bit [27:2] của địa chỉ nhảy tới

Định dạng lệnh – J (ví dụ)

op address

6 bit 26 bit

0xCAFEBAB8: j sub_pro

. . .

0xCAFEBAFC: sub_pro:

op (j) $0xCAFEBAFC = \{(PC+4)[31:28], address, 2'b0\}$

0x2BFAEBF

000010 1010111111110101111010111111

00001010101111111101011110101111111 0x0ABFAEBF

Định dạng lệnh - J - Quiz 7

Biểu diễn lệnh j IT012

- ➤ Lệnh j ở địa chỉ 0x00CAFE00
- ➤ Nhãn IT012 có địa chỉ tương ứng là 0x0000A5B0

- Kiến trúc tập lệnh
- > Toán hạng
- Dịnh dạng lệnh
- Bài tập

Bài tập 1

Lệnh	Ví dụ	Ý nghĩa
Cộng	add \$s1,\$s2,\$s3	\$s1=\$s2 + \$s3
Nap word	lw \$s1,20(\$s2)	\$s1 = Mem[\$s2 + 20]
Cộng tức thì	addi \$s1,\$s2,5	\$s1=\$s2+5

Chuyển đổi lệnh trong lập trình C thành lệnh hợp ngữ MIPS, giả sử các biến F, B, G nằm trong các thanh ghi và mảng các số nguyên A có địa chỉ lưu trong \$t1:

$$F = A[B + 4]$$

 $G = A[16 - C] + A[B - 4]$

NAME	NUMBER
\$zero	0
\$at	1
\$v0-\$v1	2-3
\$a0-\$a3	4-7
\$t0-\$t7	8-15
\$s0-\$s7	16-23
\$t8-\$t9	24-25
\$k0-\$k1	26-27
\$gp	28
\$sp	29
\$fp	30
\$ra	31

Biểu diễn các lệnh sau:

- > sub \$\$1, \$\$2, \$\$3
- > lw \$t7, 20(\$k0)
- > sw \$v1, 20(\$gp)
- > nor \$at, \$ra, \$a2
- > j ABC
 - ➤ Lệnh j đang ở địa chỉ 0xFEC0
 - Nhãn ABC có địa chỉ tương ứng là 0x2500

Bài tập 2

NAME	NUMBER
\$zero	0
\$at	1
\$v0-\$v1	2-3
\$a0-\$a3	4-7
\$t0-\$t7	8-15
\$s0-\$s7	16-23
\$t8-\$t9	24-25
\$k0-\$k1	26-27
\$gp	28
\$sp	29
\$fp	30
\$ra	31

