|       | CSE-Real Analysis - 2010 Page No Date                                                                                  |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|       |                                                                                                                        |  |  |  |  |  |
| Q)    | Discuss the conversence of fxn y                                                                                       |  |  |  |  |  |
| ,     | Discuss the convergence of dxn y $x_n = \frac{\sin nx}{2}$                                                             |  |  |  |  |  |
|       | 2                                                                                                                      |  |  |  |  |  |
|       | 8                                                                                                                      |  |  |  |  |  |
|       |                                                                                                                        |  |  |  |  |  |
| John: | Let us calculate the limit point of xn                                                                                 |  |  |  |  |  |
|       |                                                                                                                        |  |  |  |  |  |
|       | $\lim_{n\to\infty} x_n = \begin{cases} 1 & \text{if } n=1,5,\ldots,4n+1 \\ 8 & \text{if } n=1,\ldots,4n+1 \end{cases}$ |  |  |  |  |  |
|       | n→∞                                                                                                                    |  |  |  |  |  |
|       | 0; n = 0, 2,, 2n                                                                                                       |  |  |  |  |  |
|       |                                                                                                                        |  |  |  |  |  |
|       | $\frac{-1}{8}; m = 3, 7, \dots, 2n+3$                                                                                  |  |  |  |  |  |
|       |                                                                                                                        |  |  |  |  |  |
|       | Since L'an 4 down't converge to a                                                                                      |  |  |  |  |  |
|       | Since d'an 4 down't converge to a unique limit point 7 (an 4 is NOT convergent                                         |  |  |  |  |  |
|       |                                                                                                                        |  |  |  |  |  |
| 8)    | Show that Ixn y where                                                                                                  |  |  |  |  |  |
|       | x <sub>1</sub> = 5                                                                                                     |  |  |  |  |  |
|       | $2n+1 = \sqrt{4+xn} ; ny1$                                                                                             |  |  |  |  |  |
|       | converges to 1+ JIF.                                                                                                   |  |  |  |  |  |
|       | 2                                                                                                                      |  |  |  |  |  |
|       | •                                                                                                                      |  |  |  |  |  |
| John: | x <sub>1</sub> = 5                                                                                                     |  |  |  |  |  |
|       | $\chi_2 = \sqrt{4+5} = 3$                                                                                              |  |  |  |  |  |
|       | So x2 < x,                                                                                                             |  |  |  |  |  |
|       | Assume $x_n > x_{n+1}$                                                                                                 |  |  |  |  |  |
|       | 7 4+×n 7 4+2n+1                                                                                                        |  |  |  |  |  |
|       | 7 J4+xn > J4+xn+                                                                                                       |  |  |  |  |  |
|       | > 2n+1 > 2n+2                                                                                                          |  |  |  |  |  |
|       |                                                                                                                        |  |  |  |  |  |
|       | So, 2n+1 > 2n+2 (by induction)                                                                                         |  |  |  |  |  |







Q) Consider  $\sum_{n=0}^{\infty} \chi^2$   $n=0 (1+\chi^2)^n$ Find values of x for which it is convergent and also the sum function. Is we Convergence uniform? Then  $a_{n+1} = \frac{\chi^2}{(1+\chi^2)^{n+1}}$   $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = \frac{\chi^2}{(1+\chi^2)^{n+1}} \times \frac{(1+\chi^2)^{n+1}}{\chi^2}$ For convergence:  $1+x^2 > 1 \neq x^2 > 0$ which is true for all values of x

\( \neq \text{ It converges for } \times = \text{IR}. 



Now.  $\int n(x) = (1+x^2)^n - 1$   $(1+x^2)^{n-1}$  $\lim \, \mathcal{S}_{n}(x) = 0 \; ; \; z = 0$  $n \rightarrow \infty$  $\lim_{n\to\infty} \frac{(1+x^2)^n}{(1+x^2)^{n-1}}; x \neq 0$ = lim (1+x2); x ≠ 0 = 1+x2; x f 0 So,  $S(x) = \lim_{n \to \infty} S_n(x) = \begin{cases} 0; x = 0 \\ 1+x^2; x \neq 0 \end{cases}$ which is discontinuous y Convergence is NOT uniform. 8) for(x) = xn; -1 < x < 1. Find the limit function. Is the convergence uniform? Soln:  $f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 0 ; x \in (-1, 1) \\ 1 ; x = 1 \end{cases}$ for the convergence to be uniform, the limit function f(x) must be continuous, which is not the case here \* Convergence is NOT uniform.



| So, the sointwise limit  f(xe) = 0 on (0,17)  Then applying Mn Test:         |
|------------------------------------------------------------------------------|
| So, the pointwise limit                                                      |
| f(x) = 0 on $f(0,1)$                                                         |
|                                                                              |
| <br>Then applying Mn Test:                                                   |
| <br>1 1 0 1 0 1 1 mg [ - 17                                                  |
| $Mn = \sup  f_n(x) - f(x)  $ on $[0,1]$                                      |
| = sup   nx (1-x)"   on [0,1]                                                 |
|                                                                              |
| 1. r 6 h(x) = nx (1-x)                                                       |
| $\phi'(x) - \eta(1-x)' + \eta \chi(1-x)'$                                    |
| $= n(1-x)^{n-1} [1-x+x]$ $= n(1-x)^{n+1}$                                    |
| = m(1-x)"                                                                    |
| Then $\phi'(x) = 0$ for $x = 1$                                              |
| and $\phi'(x) > 0$ on $[0,1]$ do, sup $n \times (1-x)^n = 0$                 |
| So, Sup $n \times (1-x)^n = 0$ So, $Mn = 0$ and $\lim_{n \to \infty} Mn = 0$ |
| So, Mn = 0                                                                   |
| and lim Mn 20                                                                |
| n - 1 W                                                                      |
| onvergent Convergent                                                         |
| , 0                                                                          |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |







| Page | No. |  |
|------|-----|--|
| Date |     |  |

on  $x \in (0,1]$ 

 $\frac{1}{1+n^2e^2}$ where  $e \rightarrow 0$  on (0,1]

> Mn = Sup fn(x) = 0

convergent on an interval NOT containing zero.

of It can be differentiated term by term.

