

Sémantique des Langages de Programmation (SemLP) TD n° 8 : Type Inference – Program Transformations

Type Unification

Exercice 1: (LN: 196)

Compute, if possible, by the method of unification the most general types for the following λ -terms :

$$\lambda x.\lambda y.\lambda z.xz(yz)$$
 $\lambda x.\lambda y.x(yx)$ $\lambda k.(k(\lambda x.\lambda h.hx))$

Exercice 2: (LN: 200)

Apply the reduction of unification to type inference to the types t_1 , t_2 and $(t_1 \to t_2)$ relatively to the set of (type) variables $\{t_1, t_2\}$.

Exercice 3: (LN: 202)

Find the $U_{A,B}$ λ -terms of Proposition 201 in the LN to the following types:

1.
$$A = t_1$$
 and $B = t_2$, and

2.
$$A = t_1 \text{ and } B = t_1 \to t_2$$

Program transformations

Exercice 4: (LN: 208)

Write down a simplified CPS transformation for a monadic call-by-value λ -calculus without let-definitions and tuples. Then apply the CPS transformation to show that it is possible to simulate the call-by-value λ -calculus in the call-by-name λ -calculus.

Exercice 5:(LN:213)

Define a closure conversion transformation that applies directly to the source language rather than to the CPS, value named form.

Exercice 6:(LN:215)

Apply the hoisting transformation to the terms resulting from the closure conversion of exercise 5.