Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning

Лучшая статья ICLR

Congratulations on winning the ICLR 2023 Outstanding Paper Honorable Mention!!

ICLR 2023 Conference Program Chairs

21 Mar 2023 ICLR 2023 Conference Paper5565 Official Comment Readers: Stow Revisions

Комитет ICLR 2023 считает это очень интересным теоретическим объяснением, которое приводит к лучшему пониманию эффективности дистилляции.

Ансамбли

Предшествующие работы

- Ensembles for feature selection: A review and future trends.
- Greedy function approximation: a gradient boosting machine.
- Bagging predictors. Machine learning

Ансамбли

Предшествующие работы

- Бустинг: где коэффициенты, связанные с комбинациями отдельных моделей, действительно обучаются;
- Бутстрэппинг/Бэггинг: тренировочные данные различаются для каждой отдельной модели;
- Ансамбль моделей различных типов и архитектур;
- Ансамбль случайных признаков или деревьев решений.

random feature mappings

• В некоторых случаях f(W,x) может быть приближено с помощью:

$$f(W,x) \approx f(W_0,x) + \langle W - W_0, \nabla_W f(W_0,x) \rangle$$

Где

W0 - это случайная инициализация нейронной сети, и

$$\Phi_{W_0}(x) = \nabla_W f(W_0, x)$$

является отображением признаков neural tergent kernel (NTK).

random feature mappings

- Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern recognition.
- Diversity in search strategies for ensemble feature selection. Information fusion.

random feature mappings

• Традиционные теоремы предполагают, что ансамбль независимо обученных моделей со случайными признаками действительно может значительно улучшить производительность во время тестирования за счет увеличения пространства признаков:

$$\Phi_{W_0}(x) \mapsto \{\Phi_{W_0^{(i)}}(x)\}_{i \in [L]} \text{ for } L \text{ many sampled } W_0^{(i)}$$

random feature mappings

• Противоречие: усредненное обучение работает еще лучше;

$$F(x) = \frac{1}{L} \left(f_1 + f_2 + \dots + f_L \right)$$

Ансамбль линейных функций на основе признаков NTK действительно улучшает точность теста, но только благодаря более крупному набору случайных признаков, чьи комбинации лучше обобщают.

Взгляд через призму смещения и разброса

Некоторые предыдущие работы также пытаются объяснить преимущество ансамблей снижением разброса индивидуальных решений из-за шума в метках или невыпуклого ландшафта целевой функции обучения.

- Управление разнообразием в ансамблях регрессии. Журнал исследований машинного обучения;
- Экспериментальный анализ смещения и разброса ансамблей SVM на основе методов повторной выборки. Транзакции IEEE по системам, людям и кибернетике.

Взгляд через призму смещения и разброса

- Снижение разброса может уменьшить выпуклую тестовую потерю, но не обязательно ошибку тестовой классификации;
- Более того, на практике обычно отдельные нейронные сети обучаются одинаково хорошо, то есть с почти идентичной ошибкой на тесте, тем не менее, ансамбль этих моделей все же улучшает точность тестирования.

Новизна исследования

- Ансамбли и дистилляция знаний в глубоком обучении работают совершенно иначе, чем традиционная теория обучения;
- Тщательный и обоснованный теоретический анализ, который уменьшает разрыв между теорией и практикой;
- В предыдущих работах не было подобной теории.

Потенциальные направления работы

• Повышение производительности: авторы убеждены, что практически во всех приложениях глубокого обучения, где ансамбли/дистилляция знаний еще не использованы по максимуму, существует потенциал для улучшения.