

For more such worksheets visit www.edugain.com

Answer the questions

(1) Simplify
$$\frac{\sin x - \sin y}{\cos x + \cos y} + \frac{\cos x - \cos y}{\sin x + \sin y}$$

(2) Simplify 1 +
$$\frac{\tan^2 \beta}{1 + \sec \beta}$$

(3) Simplify
$$\frac{(1+\cot\theta+\tan\theta)(\sin\theta-\cos\theta)}{\sec^3\theta-\csc^3\theta}$$

(4) If cosec $\theta = a/b$ and $0^{\circ} > \theta > 90^{\circ}$, find value of cot θ .

(5) Simplify
$$\sqrt{\frac{\sec\theta-1}{\sec\theta+1}} + \sqrt{\frac{\sec\theta+1}{\sec\theta-1}}$$

- (6) Simplify $3(\sin^4\theta + \cos^4\theta) 2(\sin^6\theta + \cos^6\theta)$
- (7) A rope is tightly stretched and attached from top of a vertical tower to the ground. The angle made by rope with ground is 30°. If height of the tower is 2 m, find length of the rope.

(8) If
$$7 \tan \theta = 4$$
, find the value of
$$\frac{7 \sin \theta - \cos \theta}{7 \sin \theta + \cos \theta}$$

(9) If AB = 6 and AC = 12, find value of (sin A × tan A).

(10) If $2\sin\theta - \cos\theta = 2$, find the value of $\sin\theta + 2\cos\theta$.

(11) If $\tan \theta + \cot \theta = 5$, find the value of $\tan^2 \theta + \cot^2 \theta$.

(12) Simplify
$$\tan^2\theta \left(\frac{\csc\theta-1}{1+\cos\theta}\right)-\csc^2\theta \left(\frac{\cos\theta-1}{1+\csc\theta}\right)$$

(13) Simplify $(1 + \cot\theta + \csc\theta) (1 + \tan\theta - \sec\theta)$

Choose correct answer(s) from the given choices

(14)
$$\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} + \frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta} = ?$$

a.
$$\frac{2}{2 \sin^2 \theta - 1}$$

b.
$$\frac{2}{1 - \sin^2 \theta}$$

c.
$$\frac{2}{1-\cos^2\theta}$$

d.
$$\frac{2}{1 - 2 \sin^2 \theta}$$

Check True/False

(15)
$$\tan 8^{\circ} - \cot 8^{\circ} < 0$$

True

False

© 2017 Edugain (www.edugain.com). All Rights Reserved

Many more such worksheets can be generated at www.edugain.com

Answers

(1) 0

Step 1
On combining two fractions
$$= \frac{\sin x - \sin y}{\cos x + \cos y} + \frac{\cos x - \cos y}{\sin x + \sin y}$$

$$= \frac{(\sin x - \sin y)(\sin x + \sin y) + (\cos x + \cos y)(\cos x - \cos y)}{(\cos x + \cos y)(\sin x + \sin y)}$$

$$= \frac{\sin^2 x - \sin^2 y + \cos^2 x - \cos^2 y}{(\cos x + \cos y)(\sin x + \sin y)}$$
Step 2
Since $\sin^2 \theta + \cos^2 \theta + = 1$

$$= \frac{1 - 1}{(\cos x + \cos y)(\sin x + \sin y)} = 0$$

(2) sec β

Step 1

Let,
$$S = 1 + \frac{\tan^2 \beta}{1 + \sec \beta}$$

Step 2

Using identity $tan^2\theta = sec^2\theta - 1$,

$$\Rightarrow S = 1 + \frac{\sec^2\beta - 1}{1 + \sec\beta}$$

Using
$$a^2 - b^2 = (a+b)(a-b)$$
,

$$\Rightarrow S = 1 + \frac{(\sec\beta + 1)(\sec\beta - 1)}{1 + \sec\beta}$$

$$\Rightarrow S = 1 + (\sec\beta - 1)$$

$$\Rightarrow S = \sec\beta$$

 $\sin^2\theta\cos^2\theta$ (3)

Step 1

We have been asked to simplify the $\frac{(1+\cot\theta+\tan\theta)(\sin\theta-\cos\theta)}{\sec^3\theta-\csc^3\theta}$

Step 2

$$\frac{(1+\cot\theta+\tan\theta)(\sin\theta-\cos\theta)}{\sec^3\theta-\csc^3\theta} \ = \ \frac{(1+\frac{\cos\theta}{\sin\theta}+\frac{\sin\theta}{\cos\theta})(\sin\theta-\cos\theta)}{(\sec\theta-\csc\theta)(\sec^2\theta+\sec\theta\times\csc\theta+\csc^2\theta)} \) \ [\text{Since},$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2]$$

$$=\frac{(\frac{\sin\theta\cos\theta+\cos^2\theta+\sin^2\theta}{\sin\theta\cos\theta})(\sin\theta-\cos\theta)}{(\frac{1}{\cos\theta}-\frac{1}{\sin\theta})(\frac{1}{\cos^2\theta}+\frac{1}{\sin\theta\cos\theta}+\frac{1}{\cos^2\theta})} \text{ [Since, } \sec\theta=\frac{1}{\cos\theta} \text{ and } \csc\theta=\frac{1}{\cos\theta}$$

$$\frac{1}{\sin\theta}$$

$$(\frac{1 + \sin\theta \cos\theta}{\sin\theta \cos\theta})(\sin\theta - \cos\theta)$$

$$\frac{(\sin\theta - \cos\theta)(\sin^2\theta + \sin\theta \cos\theta + \cos^2\theta)}{(\sin\theta - \cos\theta)(\sin^2\theta + \sin\theta \cos\theta + \cos^2\theta)}$$

 $(\sin\theta\cos\theta)(\sin^2\theta\cos^2\theta)$

$$= \frac{(1 + \sin\theta \cos\theta)(\sin\theta - \cos\theta)(\sin^3\theta \cos^3\theta)}{(\sin\theta \cos\theta)(\sin\theta - \cos\theta)(1 + \sin\theta \cos\theta)}$$

 $= \sin^2\theta \cos^2\theta$

Step 3

Therefore, $\frac{(1+\cot\theta+\tan\theta)(\sin\theta-\cos\theta)}{\sec^3\theta-\csc^3\theta} \ \ \text{is equal to the } \sin^2\!\theta\cos^2\!\theta.$

(4)
$$\sqrt{\frac{a^2-b^2}{b^2}}$$

Step 1

We know that,

$$\cot \theta = \sqrt{(\csc^2 \theta - 1)}$$

Step 2

Now replace value of $cosec(\theta)$ in above equation

$$\Rightarrow \cot(\theta) = \sqrt{\left(\frac{a}{b}\right)^2 - 1}$$

Step 3

Simplify RHS of above equation

$$\Rightarrow \cot(\theta) = \sqrt{\frac{a^2 - b^2}{b^2}}$$

(5) 2 tanθ

Step 1

$$=\sqrt{\frac{(\sec\theta-1)(\sec\theta-1)}{(\sec\theta+1)(\sec\theta-1)}}+\sqrt{\frac{(\sec\theta+1)(\sec\theta+1)}{(\sec\theta-1)(\sec\theta+1)}}$$

Step 2

$$=\sqrt{\frac{(\sec\theta-1)^2}{\cot^2\theta}}+\sqrt{\frac{(\sec\theta+1)^2}{\cot^2\theta}}$$

$$= \frac{(1 + \sec \theta + 1 - \sec \theta)}{\cot \theta} = 2 \tan \theta$$

(6) 1

=
$$3 (\sin^4 \theta + \cos^4 \theta) - 2 [(\sin^2 \theta)^3 + (\cos^2 \theta)^3]$$

Step 2

$$= 3 \left(\sin^4\!\theta + \cos^4\!\theta \right) - 2 \left[\left(\sin^2\!\theta + \cos^2\!\theta \right) \left\{ (\sin^2\!\theta)^2 + (\cos^2\!\theta)^2 - \sin^2\!\theta \cos^2\!\theta \right\} \right]$$

Step 3

Since
$$\sin^2\theta + \cos^2\theta = 1$$

=3 $(\sin^4\theta + \cos^4\theta) - 2 \{\sin^4\theta + \cos^4\theta - \sin^2\theta \cos^2\theta \}$

Step 4

$$=\sin^4\theta + \cos^4\theta + 2\sin^2\theta\cos^2\theta$$

Step 5

$$=(\sin^2\theta + \cos^2\theta)^2 = 1^2 = 1$$

Step 1

In following figure, AC shows the towerm BC is the rope connected from ground to tower, and angle $\angle B$ is the angle angle made by rope with ground.

$$AC/BC = \sin(\angle B)$$

$$\Rightarrow$$
 AC/BC = $\sin(30^{\circ})$

$$\Rightarrow \frac{2}{BC} = \frac{1}{2}$$

$$_{\Rightarrow}BC=rac{2}{1}$$

$$\Rightarrow BC = 4$$

(8) 3/5

Step 1

Lets

$$S = \frac{7 \sin\theta - \cos\theta}{7 \sin\theta + \cos\theta}$$

Step 2

Now divide numerator and denominator of this fraction by $\mbox{cos}\theta$

$$\Rightarrow S = \frac{(7 \sin\theta - \cos\theta)/\cos\theta}{(7 \sin\theta + \cos\theta)/\cos\theta}$$
$$\Rightarrow S = \frac{(7 \sin\theta/\cos\theta - 1)}{(7 \sin\theta/\cos\theta - 1)}$$

$$\Rightarrow S = \frac{(7 \tan \theta - 1)}{(7 \tan \theta + 1)}$$

Step 3

Now replace 7 $tan\theta$ with is value (7 $tan\theta = 4$)

$$\Rightarrow S = \frac{(4-1)}{(4+1)}$$

$$\Rightarrow$$
 S = 3/5

(9) $\frac{3}{2}$

Step 1

$$BC = \sqrt{AC^2 - AB^2}$$

Step 2

BC =
$$6\sqrt{3}$$

Step 3

 $\sin A \times \tan A = (BC/AC) \times (BC/AB) = \frac{3}{2}$

(10) 1

Step 1

It is given that

$$2\sin\theta - \cos\theta = 2$$

$$\Rightarrow$$
 $(2\sin\theta - \cos\theta)^2 = 2^2$ [On squaring both sides]

Step 2

Now add $(\sin\theta + 2\cos\theta)^2$ to both sides of equation

$$\Rightarrow (2\sin\theta - \cos\theta)^2 + (\sin\theta + 2\cos\theta)^2 = 2^2 + (\sin\theta + 2\cos\theta)^2$$

$$\Rightarrow 4\sin^2\theta + \cos^2\theta - 4\sin\theta\cos\theta + \sin^2\theta + 4\cos^2\theta + 4\sin\theta\cos\theta = 4 + (\sin\theta + 2\cos\theta)^2$$

$$\Rightarrow 5\sin^2\theta + 5\cos^2\theta + \frac{4\sin\theta\cos\theta}{4\sin\theta\cos\theta} - \frac{4\sin\theta\cos\theta}{4\sin\theta\cos\theta} = 4 + (\sin\theta + 2\cos\theta)^2$$

$$\Rightarrow 5(\sin^2\theta + \cos^2\theta) = 4 + (\sin\theta + 2\cos\theta)^2$$

$$\Rightarrow 5 = 4 + (\sin\theta + 2\cos\theta)^2$$

$$\Rightarrow$$
 (sin θ + 2cos θ)² = 5 - 4

$$\Rightarrow (\sin\theta + 2\cos\theta)^2 = 1$$

$$\Rightarrow \sin\theta + 2\cos\theta = \pm 1$$

Step 3

Since $2\sin\theta - \cos\theta = 2$, ignore the negative value.

Therefore, $\sin\theta + 2\cos\theta = 1$

(11) 23

Step 1

 $\tan \theta + \cot \theta = 5$

Step 2

On squaring both sides,

$$(\tan \theta + \cot \theta)^2 = 5^2$$

Step 3

 $tan^2\theta + cot^2\theta + 2 tan\theta cot\theta = 25$

Step 4

 $\tan^2\theta + \cot^2\theta + 2 = 25$

Step 5

 $tan^2\theta + cot^2\theta = 25 - 2 = 23$

(12) 0

Step 1

On adding two fractions

$$= \frac{\tan^2(\csc\theta - 1)(\csc\theta + 1) - \csc^2(\cos\theta - 1)(\cos\theta + 1)}{(1 + \cos\theta)(1 + \csc\theta)}$$

Step 2

$$= \frac{\tan^2(\csc^2\theta - 1) - \csc^2(\cos^2\theta - 1)}{(1 + \cos\theta)(1 + \csc\theta)}$$

Step 3

$$= \frac{-\tan^2\cot^2\theta + \csc^2\sin^2\theta}{(1+\cos\theta)(1+\csc\theta)}$$

$$=\frac{-1+1}{(1+\cos\theta)(1+\csc\theta)}=0$$

Step 1

We need to find following product

$$S = (1 + \cot\theta + \csc\theta) (1 + \tan\theta - \sec\theta)$$

Step 2

On multiplying each terms

$$\Rightarrow$$
 S = 1 (1 + tanθ - secθ) + cotθ (1 + tanθ - secθ) + cosecθ (1 + tanθ - secθ)
 \Rightarrow S = (1 + tanθ - secθ) + (cotθ + cotθ tanθ - cotθ secθ) + (cosecθ + cosecθ tanθ - cosecθ secθ)

Step 3

Using identities $\cot\theta$ $\tan\theta = 1$, $\cot\theta$ $\sec\theta = \csc\theta$ and $\csc\theta$ $\tan\theta = \sec\theta$

$$\Rightarrow S = (1 + \tan\theta - \sec\theta) + (\cot\theta + 1 - \csc\theta) + (\csc\theta + \sec\theta - \csc\theta \sec\theta)$$

Step 4

Now positive $\csc\theta$ and $\sec\theta$ will cancel each other

$$\Rightarrow S = (1 + \tan\theta - \sec\theta) + (\cot\theta + 1 - \csc\theta) + (\csc\theta + \sec\theta - \csc\theta \sec\theta)$$

$$\Rightarrow$$
 S = 2 + tanθ + cotθ - cosecθ secθ

Step 5

Using identities $tan\theta = sin\theta/cos\theta$, and $cot\theta = cos\theta/sin\theta$

$$\Rightarrow S = 2 + \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} - \csc\theta \sec\theta$$

$$\Rightarrow S = 2 + \frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta} - \csc\theta \sec\theta$$

$$\Rightarrow$$
 S = 2 + $\frac{1}{\sin\theta\cos\theta}$ - cosecθ secθ

$$\Rightarrow$$
 S = 2 + cosecθ secθ - cosecθ secθ

$$\Rightarrow$$
 S = 2

(14) a.
$$\frac{2}{2 \sin^2 \theta - 1}$$

Step 1

On adding two fractions,

$$S = \frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} + \frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta}$$

Step 2

Let,

$$\Rightarrow S = \frac{(\sin\theta + \cos\theta)(\sin\theta + \cos\theta) + (\sin\theta - \cos\theta)(\sin\theta - \cos\theta)}{(\sin\theta - \cos\theta)(\sin\theta + \cos\theta)}$$

$$\Rightarrow S = \frac{(\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta) + (\sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta)}{(\sin^2\theta - \cos^2\theta)}$$

Step 3

Using identity $\sin^2\theta + \cos^2\theta = 1$

Using identity
$$\sin^2\theta + \cos^2\theta = 1$$

$$\Rightarrow S = \frac{(1 + 2\sin\theta\cos\theta) + (1 - 2\sin\theta\cos\theta)}{(\sin^2\theta - \cos^2\theta)}$$

$$\Rightarrow S = \frac{2}{(\sin^2\theta - \cos^2\theta)}$$

$$\Rightarrow S = \frac{2}{\sin^2\theta - (1 - \sin^2\theta)}$$

$$\Rightarrow S = \frac{2}{2\sin^2\theta - 1}$$

(15) True

We know that $\cot\theta$ is greater than $\tan\theta$, if $\theta < 45^{\circ}$.

Therefore $\tan 8^{\circ}$ - $\cot 8^{\circ}$ will be negative, and statement " $\tan 8^{\circ}$ - $\cot 8^{\circ}$ < 0" is **True**.