Random Forest

```
In [1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
```

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\health.csv")[0:1000]
df

Out[2]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0

768 rows × 9 columns

```
In [9]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

```
In [10]: df.columns
```

```
In [11]: d['Outcome'].value_counts()
Out[11]: 0
               500
               268
          Name: Outcome, dtype: int64
In [12]: | x=d.drop('Outcome',axis=1)
         y=d['Outcome']
In [13]: g1={"Outcome":{"":0,0:1}}
          d=d.replace(g1)
          print(d)
               Pregnancies
                            Glucose BloodPressure
                                                      SkinThickness
                                                                     Insulin
                                                                                BMI
          0
                                 148
                         6
                                                 72
                                                                 35
                                                                               33.6
          1
                         1
                                  85
                                                 66
                                                                 29
                                                                            0
                                                                               26.6
          2
                         8
                                 183
                                                 64
                                                                  0
                                                                            0
                                                                               23.3
          3
                         1
                                  89
                                                 66
                                                                 23
                                                                           94
                                                                               28.1
                                                                          168 43.1
          4
                         0
                                137
                                                                 35
                                                 40
          763
                        10
                                 101
                                                 76
                                                                 48
                                                                          180 32.9
                                                                            0 36.8
          764
                         2
                                122
                                                 70
                                                                 27
          765
                         5
                                121
                                                 72
                                                                          112 26.2
                                                                 23
          766
                                 126
                                                 60
                                                                  0
                                                                            0 30.1
                         1
          767
                         1
                                  93
                                                 70
                                                                 31
                                                                            0
                                                                               30.4
                                          Age Outcome
               DiabetesPedigreeFunction
          0
                                   0.627
                                           50
                                                      1
          1
                                   0.351
                                           31
                                                      1
          2
                                   0.672
                                           32
                                                      1
                                   0.167
          3
                                           21
                                                      1
          4
                                   2.288
                                           33
                                                      1
                                     . . .
                                          . . .
          763
                                   0.171
                                           63
                                                      1
          764
                                   0.340
                                           27
                                                      1
          765
                                   0.245
                                           30
                                                      1
          766
                                           47
                                                      1
                                   0.349
          767
                                   0.315
                                           23
                                                      1
          [768 rows x 9 columns]
In [14]: | from sklearn.model_selection import train_test_split
In [15]: x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [16]:
         from sklearn.ensemble import RandomForestClassifier
In [17]: rfc=RandomForestClassifier()
          rfc.fit(x_train,y_train)
Out[17]: RandomForestClassifier()
In [18]: parameters={'max_depth':[1,2,3,4,5],
                      'min_samples_leaf':[5,10,15,20,25],
                     'n_estimators':[10,20,30,40,50]
          }
```

```
In [23]: plt.figure(figsize=(80,40))
         plot tree(rfc best.estimators [5], feature names=x.columns, class names=['Yes','No'], filled=True
Out[23]: [Text(2232.0, 1902.6000000000001, 'Pregnancies <= 6.5\ngini = 0.452\nsamples = 331\nvalue =
         [352, 185]\nclass = Yes'),
          Text(1116.0, 1359.0, 'Glucose <= 127.0\ngini = 0.408\nsamples = 258\nvalue = [298, 119]\ncla
         ss = Yes'),
          Text(558.0, 815.4000000000001, 'BMI <= 31.1\ngini = 0.219\nsamples = 166\nvalue = [231, 33]
         \nclass = Yes'),
          Text(279.0, 271.799999999999, 'gini = 0.039\nsamples = 94\nvalue = [146, 3]\nclass = Ye
         s'),
          Text(837.0, 271.799999999995, 'gini = 0.386\nsamples = 72\nvalue = [85, 30]\nclass = Ye
         s'),
          Text(1674.0, 815.4000000000001, 'SkinThickness <= 44.0\ngini = 0.492\nsamples = 92\nvalue =
         [67, 86]\nclass = No'),
          Text(1395.0, 271.799999999999, 'gini = 0.499\nsamples = 84\nvalue = [67, 74]\nclass = N
         o'),
          Text(1953.0, 271.799999999999, 'gini = 0.0\nsamples = 8\nvalue = [0, 12]\nclass = No'),
          Text(3348.0, 1359.0, 'SkinThickness <= 28.5\ngini = 0.495\nsamples = 73\nvalue = [54, 66]\nc
         lass = No'),
          Text(2790.0, 815.4000000000001, 'Glucose <= 97.5\ngini = 0.497\nsamples = 47\nvalue = [44, 3
         8]\nclass = Yes'),
          Text(2511.0, 271.799999999999, 'gini = 0.0\nsamples = 10\nvalue = [19, 0]\nclass = Yes'),
          Text(3069.0, 271.799999999999, 'gini = 0.479\nsamples = 37\nvalue = [25, 38]\nclass = N
          Text(3906.0, 815.400000000001, 'BMI <= 38.85\ngini = 0.388\nsamples = 26\nvalue = [10, 28]
         \nclass = No'),
          Text(3627.0, 271.799999999999, 'gini = 0.452\nsamples = 21\nvalue = [10, 19]\nclass = N
          Text(4185.0, 271.799999999999, 'gini = 0.0\nsamples = 5\nvalue = [0, 9]\nclass = No')]
```


In []: