Types of Data Sets: (1) Record Data

- Relational records
 - Relational tables, highly structured
- □ Data matrix, e.g., numerical matrix, crosstabs

	China	England	France	1	USA	Total	
	tnina	England	France	Japan	USA	TOTAL	
Active Outdoors Crochet Glove		12.00	4.00	1.00	240.00	257.00	
Active Outdoors Lycra Glove		10.00	6.00		323.00	339.00	
InFlux Crochet Glove	3.00	6.00	8.00		132.00	149.00	
InFlux Lycra Glove		2.00			143.00	145.00	
Triumph Pro Helmet	3.00	1.00	7.00		333.00	344.00	
Triumph Vertigo Helmet		3.00	22.00		474.00	499.00	
Xtreme Adult Helmet	8.00	8.00	7.00	2.00	251.00	276.00	
Xtreme Youth Helmet		1.00			76.00	77.00	
Total	14.00	43.00	54.00	3.00	1,972.00	2,086.00	

Pers_ID	Surname	First_Name	City		
0	Miller	Paul	London		
1	Ortega	Alvaro	Valencia	— no relation	
2	Huber	Urs	Zurich		
3	Blanc	Gaston	Paris		
4	Bertolini	Fabrizio	Rom	 	- I
Car_ID	Model	Year	Value	Doro ID	
ar: Car ID	Model	Voor	Value	Dorra ID	
				Pers_ID	
101	Bentley	1973	100000	0 -	++
101	Bentley	1973	100000	0	
101 102	Bentley Rolls Royce	1973 1965	100000 330000	0	
101 102 103	Bentley Rolls Royce Peugeot	1973 1965 1993	100000 330000 500	0 0 3	
101 102 103 104	Bentley Rolls Royce Peugeot Ferrari	1973 1965 1993 2005	100000 330000 500 150000	0 0 3 4	

Transaction data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

	team	coach	pla y	ball	score	game	n Wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

- ไร้ลาป ข้อมูลที่เป็นตัว แน้วสื่อ

Document data: Term-frequency vector (matrix) of text documents

Types of Data Sets: (2) Graphs and Networks

- Transportation network
- World Wide Web

Molecular Structures

Social or information networks

- 4000 Pu Networks

Types of Data Sets: (3) Ordered Data

■ Video data: sequence of images

■ Temporal data: time-series

altert belie the art of the list

Sequential Data: transaction sequences

Genetic sequence data

Types of Data Sets: (4) Spatial, image and multimedia Data

■ Spatial data: maps

■ Image data:

Video data:

Important Characteristics of Structured Data

- Jary Herrand
- □ Dimensionality → * Dimension 2,3,4,5
 - Curse of dimensionality
- Sparsity
 - האים על פיום בי ליום בי Only presence counts
- Resolution
 - □ Patterns depend on the scale เด็บโอนุ ใส่สีเป็นตุลพ
- Distribution
 - □ Centrality and dispersion → いは xins wooda source ではないがしば

Data Objects

- Data sets are made up of data objects
- A data object represents an entity
- Examples:

MISTELL

- sales database: customers, store items, sales
- medical database: patients, treatments
- university database: students, professors, courses
- ☐ Also called *samples*, *examples*, *instances*, *data points*, *objects*, *tuples*
- Data objects are described by attributes
- $\square \cap \square$ Database rows \rightarrow data objects; columns \rightarrow attributes

Attributes

Les of the Toring

- **Attribute (or dimensions, features, variables)**
 - A data field, representing a characteristic or feature of a data object.
 - E.g., customer_ID, name, address
- Types:

 - Nominal (e.g., red, blue)

 Binary (e.g., {true, false})
 - Ordinal (e.g., {freshman, sophomore, junior, senior})
 - Numeric: quantitative
 - Interval-scaled: 100°C is interval scales
 - Ratio-scaled: 100°K is ratio scaled since it is twice as high as 50°K
- Q1: Is student ID a nominal, ordinal, or interval-scaled data?
- Q2: What about eye color? Or color in the color spectrum of physics?

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes
- Binary
 - Nominal attribute with only 2 states (0 and 1)
 - Symmetric binary: both outcomes equally important
 - e.g., gender เมเบบสอนการเทาตกไ
 - ☐ Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)
- Ordinal
 - Values have a meaningful order (ranking) but magnitude between successive values is not known
 - ☐ Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types - tomologov

Quantity (integer or real-valued)

Interval

- อ แท้ เกามีมากลอยู่ อ แก่ว สือ อแก้
- Measured on a scale of equal-sized units
- Values have order
 - E.g., temperature in C°or F°, calendar dates
- No true zero-point
- Ratio
 - Inherent zero-point
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Chapter 2. Getting to Know Your Data

Data Objects and Attribute Types

nouns late zonnianois

Basic Statistical Descriptions of Data

Data Visualization

Measuring Data Similarity and Dissimilarity

Summary