Solutions to Written Assignment 3

Problem 1: Yes, T is injective. To prove this, we need to show that the statement

For all
$$\vec{v}_1, \vec{v}_2 \in \mathbb{R}^2$$
, if $T(\vec{v}_1) = T(\vec{v}_2)$, then $\vec{v}_1 = \vec{v}_2$

is true. Let $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^2$ be arbitrary with $T(\vec{v}_1) = T(\vec{v}_2)$. Fix $x_1, x_2, y_1, y_2 \in \mathbb{R}$ with

$$\vec{v}_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
 and $\vec{v}_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$.

Since $T(\vec{v}_1) = T(\vec{v}_2)$, we know that

$$\begin{pmatrix} x_1 - y_1 \\ x_1 + y_1 \end{pmatrix} = \begin{pmatrix} x_2 - y_2 \\ x_2 + y_2 \end{pmatrix},$$

from which we can conclude that $x_1 - y_1 = x_2 - y_2$ and that $x_1 + y_1 = x_2 + y_2$. Adding these two equalities together, we conclude that $2x_1 = 2x_2$. Dividing both sides of this by 2, it follows that $x_1 = x_2$. Plugging this into the first equation gives $x_1 + y_1 = x_1 + y_2$, and by subtracting x_1 from both sides we can conclude that $y_1 = y_2$. We have shown that both $x_1 = x_2$ and $y_1 = y_2$, so we conclude that

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix},$$

and hence $\vec{v}_1 = \vec{v}_2$. Since $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^2$ were arbitrary with $T(\vec{v}_1) = T(\vec{v}_2)$, it follows that T is injective.

Problem 2a: Let $\vec{w}_1, \vec{w}_2 \in \text{range}(T)$ be arbitrary. By definition of range(T), we can fix $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^2$ with $\vec{w}_1 = T(\vec{v}_1)$ and $\vec{w}_2 = T(\vec{v}_2)$. We then have

$$\vec{w}_1 + \vec{w}_2 = T(\vec{v}_1) + T(\vec{v}_2)$$

= $T(\vec{v}_1 + \vec{v}_2)$ (since T is a linear transformation).

Since $\vec{v}_1 + \vec{v}_2 \in \mathbb{R}^2$, it follows that $\vec{w}_1 + \vec{w}_2 \in \text{range}(T)$. Since $\vec{w}_1, \vec{w}_2 \in \text{range}(T)$ were arbitrary, the result follows.

Problem 2b: Let $\vec{w} \in \text{range}(T)$ and $c \in \mathbb{R}$ be arbitrary. By definition of range(T), we can fix $\vec{v} \in \mathbb{R}^2$ with $\vec{w} = T(\vec{v})$. We then have

$$c\vec{w} = c \cdot T(\vec{v})$$

= $T(c\vec{v})$ (since T is a linear transformation).

Since $c\vec{v} \in \mathbb{R}^2$, it follows that $c\vec{w} \in \text{range}(T)$. Since $\vec{w} \in \text{range}(T)$ and $c \in \mathbb{R}$ were arbitrary, the result follows.

Problem 3a: Given arbitrary $x, y \in \mathbb{R}$, we have

$$g_r(x+y) = r(x+y)$$

$$= rx + ry$$

$$= q_r(x) + q_r(y),$$

so g_r satisfies the first condition. Also given arbitrary $x, c \in \mathbb{R}$, we have

$$g_r(cx) = r \cdot cx$$
$$= c \cdot rx$$
$$= c \cdot g_r(x),$$

so g_r satisfies the second condition. Combining both of these, it follows that g_r is a linear transformation.

Problem 3b: Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be arbitrary linear transformations with f(1) = g(1). To show that f = g, we need to show that f(x) = g(x) for all $x \in \mathbb{R}$. Let $x \in \mathbb{R}$ is arbitrary. We have

$$\begin{split} f(x) &= f(x \cdot 1) \\ &= x \cdot f(1) \\ &= x \cdot g(1) \\ &= g(x \cdot 1) \\ &= g(x). \end{split} \qquad \begin{array}{l} \text{(since f is a linear transformation)} \\ \text{(since g is a linear transformation)} \\ \text{(since g is a linear transformation)} \\ \end{array}$$

Since $x \in \mathbb{R}$ was arbitrary, it follows that f = g.