Numerical Analysis Semester 4

Contents

Snapter 1	Interpolation	Page 2
1.1	Linear Interpolation	2
1.2	Polynomial Interpolation	2
	Lagrange Polynomials — 2 • Newton Polynomial — 4 • Error due to polynomial interpolation — 6	tion — 6 • Hermite
Chapter 2	Finding $f(x) = 0$	Page 9
2.1	Bisection Method	9
2.2	Lagrange Method	9
2.3	Newton Method	10
	Improved Newton Method — 10	
2.4	Fixed Point Iteration Method	10
2.5	Order of Convergence	11
2.6	Polynomial Shenanigans Roots of $x^3 + px + q = 0$ — 11 • Roots of $x^3 + ax^2 + bx + c = 0$ — 12 • Roots of $x^4 + ax^3 + 12$	$bx^2 + cx + d = 0 - $
	12	

Chapter 1

Interpolation

1.1 Linear Interpolation

Linear interpolation is just drawing lines between the data points.

Definition 1.1.1: Linear Interpolation(lerp) equation

The equation of the lines between data points is

$$y = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}(x - x_i) + y_i.$$

Theorem 1.1.1 Error due to linear interpolation

Let f be a continuous and differentiable on [a,b]. We define the error z(x) to be

$$|z(x)| \leq \frac{(b-a)^2}{8} \sup_{a \leq x \leq b} |f''(x)|.$$

1.2 Polynomial Interpolation

1.2.1 Lagrange Polynomials

Really nice video here explaining Lagrange polynomials.

Theorem 1.2.1 Lagrange polynomial equation

Consider a set of n points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$. The Lagrange polynomial for this set of data is

$$L(x) = \sum_{k=0}^{n} y_k \ell_k(x).$$

where

$$\ell_k(x) = \prod_{\substack{i=1\\i\neq k}}^n \frac{x - x_i}{x_k - x_i}.$$

Case of equidistant points

If the set of x_i are equidistant from each other with a distance of $h = x_{i+1} - x_i$, then we can represent any point as $x_k = x_0 + kh$ where $k \in \mathbb{N}$ and any number $x = x_0 + sh$ where $s \in \mathbb{R}$. We can rewrite the formula as

$$Q(s) = \sum_{k=0}^{n} \ell_k(s) f(x_k).$$

where

$$\ell_k(s) = \prod_{\substack{j=0\\k\neq k}}^n \frac{s-j}{k-j}.$$

by substitution

$$s = \frac{x - x_0}{h}.$$

Existence

Proof: P(x) belongs to the vectorial space of polynomial of degree of, at most, n. Now, we must fins a basis for this vectorial space. Find the polynomial ℓ_k of degree $\leq n$ such that

$$\ell_k(x_i) = \delta_{ki} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}.$$

Then, $\ell_k(x) = \lambda(x - x_0) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)$ where

$$\lambda = \frac{1}{(x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)}.$$

The (n + 1) polynomials $\ell_k(x)$ for a system of generators in the vectorial space of polynomials of degree at most

$$\lambda_0 \ell_0(x) + \lambda_1 \ell_1(x) + \dots + \lambda_k \ell_k(x) + \dots + \lambda_n \ell_n(x) = 0.$$

for $x = x_k$

$$\lambda_0 \ell_0(x_k) + \lambda_1 \ell_1(x_k) + \dots + \lambda_k \ell_k(x_k) + \dots + \lambda_n \ell_n(x_k) = 0$$

$$0 + 0 + \dots + \lambda_k 1 + \dots + 0 = 0 \lambda_k = 0.$$

 \therefore the set of ℓ_k for a basis in the vector space \Rightarrow there has to exist a polynomial passing through the given set of points.

☺

Uniqueness

Proof: Let P and Q be 2 Lagrange polynomials of degrees $\leq n/P(x_i) = Q(x_i) = f(x_i) \quad \forall i = 0, 1, ..., n$. Let

$$\left. \begin{array}{l} R = P - Q \text{ of degree } \leq n \\ R = 0 \; (n+1) \text{ times} \end{array} \right\} R \equiv 0 \Longrightarrow P = Q \; \forall x.$$

☺

1.2.2 Newton Polynomial

Definition 1.2.1: Newton Polynomial equation

Consider a set of n points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$. The Newton polynomial for this set of data is

$$p_n(x) = \underbrace{a_0}_{A_0} + \underbrace{a_1(x - x_0)}_{A_1} + \underbrace{a_2(x - x_0)(x - x_1)}_{A_2} + \cdots + \underbrace{a_n \prod_{i=0}^{n-1} (x - x_i)}_{A_i}.$$

where

$$a_i = f[x_0, x_1, \ldots, x_i].$$

Here $f[\dots]$ is the divided difference of the inputted data.

Definition 1.2.2: Backwards formula

$$P_n(x) = f_n + A_1 + A_2 + \cdots + A_n.$$

where

$$A_i = f[x_n, x_{n-1}, \dots, x_{n-i}] \prod_{j=n-i+1}^n (x - x_j).$$

The divided difference has 2 formulas, the recurrence formula

$$f[x_0,x_1,\ldots,x_{n+1}]=\frac{f[x_1,x_2,\ldots,x_{n+1}]-f[x_0,x_1,\ldots,x_n]}{x_{n+1}-x_0}.$$

and a general formula

$$f[x_0, x_1, \dots, x_n] = \sum_{i=1}^n \frac{y_i}{\prod_{\substack{k=0 \ k \neq i}}^n (x_i - x_k)}.$$

Now forget you ever saw those cause there is an easier method to finding the divided difference.

Divided Difference Table

After we have constructed the table we can find the divided difference we want by looking at the top diagonal

Case of equidistant points

Bla bla bla the formula becomes

$$P(t) = a_0 + a_1(t-0) + a_2(t-0)(t-1) + \dots + a_n \prod_{i=0}^{n-1} (t-i).$$

where in this case

$$a_k = \frac{\nabla^k [y](x_k)}{k!}.$$

and

$$x = x_0 + th.$$

where $\nabla^k[y]$ is the discrete difference.

$$\nabla[y](x_i) = y(x_i + h) - y(x_i).$$

and the backwards formula is

$$P(t) = f_n + A_1 + A_2 + \cdots + A_n.$$

where

$$A_i = \frac{\bar{\nabla}^i f_n}{i!} \prod_{j=n-i+1}^n (t-j).$$

Definition 1.2.3: Discrete Difference

Forward discrete difference:

$$\nabla[y](x_i) = y(x_i + h) - y(x_i)$$

$$\nabla^2[y](x_i) = \nabla[y](x_i + h) - \nabla[y](x_i)$$

$$= y(x_i + 2h) - 2y(x_i + h) + y(x_i)$$

$$\nabla^k[y](x_i) = \nabla\left(\nabla^{k-1}[y](x_i)\right)$$

Backwards discrete difference:

$$\bar{\nabla}[y](x_i) = y(x_i) - y(x_i - h)$$
$$\bar{\nabla}^k[y](x_i) = \bar{\nabla}\left(\bar{\nabla}^{k-1}[y](x_i)\right)$$

1.2.3 Error due to polynomial interpolation

Let f(x) be of class $C^{n+1} \quad \forall x \in [a,b]$ and let the polynomial P(x) interpolate it.

The error function is bounded by

$$|\text{Error}| = |f(x) - P(x)| \le \frac{\left|\prod_{i=0}^{n} (x - x_i)\right|}{(n+1)!} \sup_{x \in [a,b]} |f^{(n+1)}(x)|.$$

1.2.4 Hermite Interpolation

Definition 1.2.4: Hermite interpolation formula

Consider (n + 1) sets of point (x_i, y_i, y_i') representing f(x) $(y_i = f(x_i))$ and $y_i' = f'(x_i)$, the hermite polynomial P(x) interpolates f(x) such that P'(x) = f'(x).

$$P(x) = \sum_{i=0}^{n} h_i(x)y_i + \sum_{i=0}^{n} k_i(x)y_i'.$$

where

$$h_i(x) = \left(1 - 2(x - x_i)\ell_i'(x_i)\right)\ell_i^2(x)$$

$$k_i(x) = (x - x_i)\ell_i^2(x)$$

$$\ell_i(x) = \prod_{\substack{j=0 \ i \neq i}}^n \frac{x - x_j}{x_i - x_j}$$

Theorem 1.2.2 Error due to Hermite interpolation

$$|\text{Error}| = |f(x) - P(x)| \leq \frac{\left|\prod_{i=0}^n (x - x_i)^2\right|}{(2n+2)!} \sup_{x \in [a,b]} |f^{(2n+2)}(x)|.$$

Existence

Proof:

$$P(x) = \sum_{i=0}^{n} h_i(x) y_i + \sum_{i=0}^{n} k_i(x) y_i'.$$

where

$$h_i(x) = \left(1 - 2(x - x_i)\ell_i'(x_i)\right)\ell_i^2(x)$$

$$k_i(x) = (x - x_i)\ell_i^2(x)$$

$$\ell_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$$

Let $i \neq j$.

$$k_i(x_j) = (x_j - x_i)\ell_i^2(x_j) = 0$$

$$k_i(x_i) = (x_i - x_i)\ell_i^2(x_i) = 0$$

and

$$h_i(x_j) = (1 - 2(x_j - x_i)\ell_i'(x_i))\ell_i^2(x_j) = 0$$

$$h_i(x_j) = (1 - 2(x_i - x_i)\ell_i'(x_i))\ell_i^2(x_i) = 1$$

We conclude that $P(x_i) = f(x_i)$

Now we have to prove that $P'(x_i) = f'(x_i)$

$$h'_i(x) = -2\ell'_i(x_i)\ell_i^2(x) + 2(1 - 2(x - x_i)\ell'_i(x_i))\ell_i(x)\ell'_i(x)$$

$$k'_i(x) = \ell_i^2(x) + 2(x - x_i)\ell_i(x)\ell'_i(x)$$

$$h_i'(x_j) = -2\ell_i'(x_i)\ell_i^2(x_j) + 2(1 - 2(x_j - x_i)\ell_i'(x_i))\ell_i(x_j)\ell_i'(x_j) = 0$$

$$h_i'(x_i) = -2\ell_i'(x_i)\ell_i^2(x_i) + 2(1 - 2(x_i - x_i)\ell_i'(x_i))\ell_i(x_i)\ell_i'(x_i) = 0$$

$$k_i'(x_j) = \ell_i^2(x - j) + 2(x_j - x_i)\ell_i(x_j)\ell_i'(x_j) = 0$$

$$k_i'(x_j) = \ell_i^2(x - i) + 2(x_i - x_i)\ell_i(x_i)\ell_i'(x_i) = 1$$

$$\therefore P'(x_i) = f'(x_i)$$

Uniqueness

Proof: Suppose that there exists 2 polynomials P and Q of degree $n \le 2n + 1$ such that $P(x_i) = Q(x_i) = f(x_i)$ and $P'(x_i) = Q'(x_i) = f'(x_i) \ \forall i = 0, 1, ..., n.$

Let R(x) = P(x) - Q(x).

 $R = 0 \ (n+1) \text{ times} \Rightarrow \text{according to Rolle's theorem } \exists n \text{ points } \neq x_i / R' = 0$

R' = 0 n times as a consequence of Rolle's theorem then

$$\left. \begin{array}{l} R'(x) = 0 \; (2n+1) \; \mathrm{times} \\ R'(x) \; \mathrm{is \; of \; degree} \; 2n \end{array} \right\} R'(x) = 0 \; \forall x.$$

$$R'(x) = 0 \Rightarrow R(x) = \text{cnst}$$
 and $R(x_i) = P(x_i) - Q(x_i) = 0 \Rightarrow \text{cnst} = 0$.

$$R(x) = P(x) - Q(x) = 0 \ \forall x.$$

$$\therefore P(x) = Q(x)$$

Chapter 2

Finding f(x) = 0

We will assume that every function is defined in the interval I = [a, b] and that every $x_0 \in I$

2.1 Bisection Method

Suppose that f is a continuous and monotone function on the domain I = [a, b] such that $f(a)f(b) < 0 \Rightarrow \exists r \in]a, b[: f(r) = 0.$

At each step in the algorithm, in an iteration we let c = (a + b)/2, then we check the value of f(c), if it is 0 then we are done.

However when it is not, then we define a new interval such that

$$I = \begin{cases} [a,c] & \text{if } f(c)f(a) < 0\\ [c,b] & \text{if } f(c)f(b) < 0 \end{cases}.$$

We repeat this step until the length of the interval reaches a certain number (for example $|b-a| < 10^{-5}$), at this point we stop and the best guess for the root would be (a+b)/2

Error of the Bisection Method

After n iterations, the error of the approximated root would be

$$\mathrm{Error} \leqslant \frac{|b-a|}{2^{n+1}}.$$

2.2 Lagrange Method

Suppose that f is a continuous and monotone function on the domain I = [a, b] such that $f(a)f(b) < 0 \Rightarrow \exists r \in]a, b[: f(r) = 0.$

The starting value of x_0 depends on the value of f

$$x_0 = \begin{cases} a & \text{if } f(a)f''(a) < 0 \\ b & \text{if } f(b)f''(b) < 0 \end{cases}.$$

then we can find a new guess x depending on the value of x_0

• if $x_0 = a$

$$x_1 = x_0 - \frac{b - x_0}{f(b) - f(x_0)} f(x_0).$$

• if $x_0 = b$

$$x_1 = x_0 - \frac{a - x_0}{f(a) - f(x_0)} f(x_0).$$

Error from Lagrange Method

For the first iteration

$$\operatorname{Error} \leq \sup_{x \in [a,b]} |f''(x)| \frac{(b-a)^2}{8}.$$

For the second iteration

$$M_2 = \sup_{x \in [a,b]} |f''(x)|.$$

• if $x_0 = a$

$$\mathrm{Error} \leq \frac{M_2}{8} \left| \frac{(b-x_0)^3}{f(b)-f(x_0)} \right|.$$

• if $x_0 = b$

$$\mathrm{Error} \leq \frac{M_2}{8} \left| \frac{(a-x_0)^3}{f(a)-f(x_0)} \right|.$$

2.3 Newton Method

Suppose that f is a continuous and monotone function on the domain I = [a, b] such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ such that $f(a)f(b) < 0 \Rightarrow \exists r \in [a, b]$ suc

The starting value of x_0 depends on the value of f

$$x_0 = \begin{cases} a & \text{if } f(a)f''(a) < 0 \\ b & \text{if } f(b)f''(b) < 0 \end{cases}.$$

Then the new guess for the root would be

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

2.3.1 Improved Newton Method

To improve the method we first let $\eta = b - a$, and we define condition

$$\frac{\eta M_2}{2|f'(x_0)|} < 1.$$

if the condition is not satisfied we need to choose another interval $[a_1,b_1] \subset I$ where $f(a_1)f(b_1) < 0$

Error due to Newton Method

For one iteration

Error
$$= \le \frac{\eta^2 M_2}{2|f'(x_0)|}$$
 where $M_2 = \sup_{x \in [x_0 - \eta, x_0 + \eta]} |f''(x)|$.

2.4 Fixed Point Iteration Method

If a function can be converted to the form x = g(x) along with the sequence $x_{n+1} = g(x_n)$ with initial guess x_0 , then it is called a fixed point scheme.

The scheme converges if

- $\forall x \in [a,b] : g(x) \in [a,b]$
- g is strictly contracting meaning that $\exists \varepsilon \in \mathbb{R} \ 0 \le \varepsilon < 1$

$$\forall x, y \in [a, b], |g(x) - g(y)| \le \varepsilon |x - y|.$$

then $\forall x_0$ the sequence converges to $l \in [a, b]$

Note:-

$$\sup_{x \in [a,b]} |g'(x)| = L < 1 \Rightarrow g(x) \text{ is strictly contracting.}$$

Note:-

Let l be the solution to g(l) = l

- If |g'(l)| < 1 then there exists an interval I containing l for which the sequence converges to l
- If |g'(l)| > 1 then the sequence diverges

2.5 Order of Convergence

Order of convergence (Rate of convergence) tells us how the error decreases between 2 iterations. The order of convergence p of a sequence is defined to be

$$\lim_{n\to+\infty}\left|\frac{x_{n+1}-l}{(x_n-l)}\right|\in\mathbb{R}_+^*.$$

Note:-

The order of convergence of

• Lagrange Method

$$g'(l) = \frac{(b-l)^2}{2f(b)}f''(c).$$

If $f''(c) \neq 0$ then $g'(l) \neq 0$ then the order is 1.

• Newton method, if g'(l) = 0 then the order is at least 2.

Note:-

We stop the iteration method when

• First case g'(x) < 0, then we stop iteration when

$$|x_{n+1}-r|<\varepsilon$$
.

• Second case g'(x) > 0, then we stop iteration when

$$|f(x_n)| < \eta.$$

where

$$\eta = \varepsilon \inf |f'(x)|.$$

2.6 Polynomial Shenanigans

2.6.1 Roots of $x^3 + px + q = 0$

Let $y_1(x) = x^3 + px$ and $y_2(x) = -q$

- $p \ge 0 \Rightarrow \exists 1 \text{ root}$
- p < 0 then we have 3 separate cases

$$27q^2 + 4p^3 \begin{cases} = 0 & \text{we have 2 separate real roots (one double and one single)} \\ > 0 & \text{we have one real root} \\ < 0 & \text{we have 3 separate real roots} \end{cases}$$

2.6.2 Roots of $x^3 + ax^2 + bx + c = 0$

If we replace x with X+h where $h=-\frac{a}{3}$, we can get the cubic in the form

$$X^3 + PX + Q = 0.$$

where

$$P = -\frac{a^2}{3} + b$$

$$Q = \frac{2a^3}{27} - \frac{ab}{3} + c$$

2.6.3 Roots of $x^4 + ax^3 + bx^2 + cx + d = 0$

If we replace x with X+h where $h=-\frac{a}{4}$, we can get the quartic in the form

$$X^4 + PX^2 + QX + R = 0.$$

where

$$P = -\frac{3a^{2}}{8} + b$$

$$Q = \frac{a^{3}}{8} - \frac{ab}{2} + c$$

$$R = -\frac{3a^{4}}{256} - \frac{ac}{4} + d$$

Let the circle C be the circle of radius $\left(-\frac{Q}{2},\frac{1-P}{2}\right)$ and of radius $\sqrt{\left(\frac{P-1}{2}\right)^2+\frac{Q^2}{4}-R}$.

The roots of the polynomial $X^4 + PX^2 + QX + R = 0$ are the intersection of the circle C and the parabola $Y = X^2$