Symplectic Geometry

Regoon Wang *

October 29, 2013

Abstract

This is a note while I reading Ana Cannas's *Lectures on Symplectic Geometry*. However, it's not just a copy. It contains my understanding, questions and solutions to homework. I believe it's a good way for me to self-study mathematics. Make it slow and carefully, learn it by doing it.

Contents

1	Notations			
2	Symplectic Forms 2.1 Skew-Symmetric Bilinear Maps 2.2 Symplectic Vector Space 2.3 Symplectic Manifolds 2.4 Symplectomorphisms 2.5 Homework			
3	Symplectic Form on the Cotangent Bundle 3.1 Cotangent Bundle 3.2 Tautological and Canonical Forms in Coordinates 3.3 Coordinate-Free Definitions 3.4 Naturality of the Tautological and Canonical Forms 3.5 Homework			
4	Lagrangian Submanifolds4.1Submanifolds4.2Lagrangian Submanifolds of T^*X 4.3Conormal Bundles4.4Application to Symplectomorphisms4.5Homework			
5	Generating Functions 5.1 Constructing Symlectomorphisms			
6	Recurrence 6.1 Periodic Points 6.2 Billiards 6.3 Poincaré Recurrence 6.4 Homework 6.5 Recurrence 6.6 Homework			

 $^{{\}rm *ChemE@UNSW,\,wang.regoon@gmail.com}$

7	Pre	paration for the Local Theory	7		
	7.1	Isotopies and Vector Fields	7		
	7.2	Tubular neighborhood Theorem	7		
	7.3	Homotopy Formula	7		
	7.4	Homework	7		
8	Moser Theorems				
	8.1	Notions of Equivalence for Symplectic Structure	7		
	8.2	Moser Trick	7		
	8.3	Moser Local Theorem	7		
	8.4	Homework	7		
9	Darboux-Moser-Weinstein Theory				
	9.1	Classical Darboux Theorem	7		
	9.2	Lagrangian Subspaces	7		
	9.3	Weinstein Lagrangian Neighborhood Theorem	7		
	9.4	Homework	7		
10	Wei	instein Tubular Neighborhood Theorem	7		
		Observation from linear algebra	7		
	10.2	Tubular Neighborhoods	7		
		Tangent space to the group of symplectomorphisms	7		
	10.4	Fixed points of symplectomorphisms	7		
	10.5	Homework	7		
11	Con	ntact Forms	7		
	11.1	Contact Structure	7		
		Examples	7		
		First Properties	7		
		Homework	7		

1 Notations

In order to keep the text short, common used notations are introduced here.

- V be an m-dimensional vector space over \mathbb{R} .
- $\Omega: V \times V \to \mathbb{R}$ be a bilinear map.
- (V, Ω) is a symplectic vector space.

2 Symplectic Forms

Def. 2.1. The map Ω is skew-symmetric if $\Omega(u,v) = -\Omega(v,u), \forall u,v \in V$.

Thm. 2.1 (Standard Form for Skew-symmetric Bilinear Map). $\exists \ a \ basis \ u_1, \cdots, u_k, e_1, \cdots, e_n, f_1, \cdots, f_n \ of \ V \ s.t. \ \forall i, j \ and v \in V$

$$\Omega(u_i, v) = \Omega(e_i, e_j) = \Omega(f_i, f_j) = 0, \quad \Omega(e_i, f_j) = \delta_{ij}$$

Remark.

1. The basis is not unique, though it is traditionally also called a "canonical" basis.

2. In matrix notation with respect to such basis, we have

$$\Omega(u,v) = \begin{bmatrix} - & u & - \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & I_n \\ 0 & -I_n & 0 \end{bmatrix} \begin{bmatrix} 1 \\ v \\ 1 \end{bmatrix}$$

and all normed linear independt enginvectors are basis.

Proof. This induction proof is a skew-symmetric version of the Gram-Schmidt process. Let $U := \{u \in V \mid \Omega(u, v) = 0, \forall v \in V\}$. Choose a basis u_1, \dots, u_k , and choose a complementary space W,

$$V = U \oplus W$$

. Take any nonzero $e_1 \in W$. Then there is $f_1 \in W$ s.t. $\Omega(e_1, f_1) = 1$. Let

$$W_1 = span\{e_1, f_1\}$$

 $W_1^{\Omega} = \{w \in W \mid \Omega(w, v) = 0, \forall v \in W_1\}$

Claim. $W_1 \cap W_1^{\Omega} = 0$.

Suppose that $v = ae_1 + bf_1 \in W_1 \cap W_1^{\Omega}$.

$$0 = \Omega(v, e_1) = -b
0 = \Omega(v, f_1) = a$$

$$\Rightarrow v = 0$$

Claim. $W = W_1 \oplus W_1^{\Omega}$.

Suppose that $v \in W$ has $\Omega(v, e_1) = c, \Omega(v, f_1) = d$. Then

$$v = \underbrace{(-cf_1 + de_1)}_{\in W_1} + \underbrace{(v + cf_1 - de_1)}_{\in W_1^{\Omega}}$$

Go on with W_1^{Ω} : choose $e_2, f_2 \in W_1^{\Omega}$ s.t. $\Omega(e_2, f_2) = 1$, let $W_2 = spane_2, f_2$, etc. This process eventually stops because $\dim V < \infty$. We hence obtain

$$V = U \oplus W_1 \oplus \cdots \oplus W_n$$

. Remark.

- 1. $k := \dim U$ is an invariant of (V, Ω) .
- 2. n is an invariant of (V, Ω) ; 2n is called the **rank** of Ω .

2.1 Skew-Symmetric Bilinear Maps

Def. 2.2. The map $\tilde{\Omega}: V \to V^*$ is the linear map defined by $\tilde{\Omega}(v)(u) = \Omega(v, u)$.

Def. 2.3. A skew-symetric bilinear map Ω is **symplectic** (or nondegenerate) if $\tilde{\Omega}$ is bijective, i.e., U = 0. The map Ω is then called a **linear symplectic structure** on V, and (V, Ω) is called a **symplectic vector space**.

Note. These are immediate properties of symplectic map:

- 1. Duality: the map $\Omega: V \stackrel{\sim}{\to} V^*$ is a bijection.
- 2. $\dim U = 0, \dim V = 2n$.

3. (V, Ω) has a basis $e_1, \dots, e_n, f_1, \dots, f_n$ s.t.

$$\Omega(u,v) = \begin{bmatrix} - & u & - \end{bmatrix} \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \begin{bmatrix} 1 \\ v \\ 1 \end{bmatrix}$$

Remark. Not all subspace W of a (V, Ω) look the same:

- W is symplecite if $\Omega \mid_W$ is nondegenerate, for instance $W = spane_1, f_1$.
- W is **isotropic** if $\Omega \mid_W \equiv 0$, for instance $W = spane_1, e_1$.

2.2 Symplectic Vector Space

Def. 2.4. A symplectomorphism φ between (V,Ω) and (V',Ω') is a linear isomorphism $\varphi:V\stackrel{\simeq}{\to} V'$ s.t. $\varphi^*\Omega'=\Omega, (\varphi^*\Omega')(u,v)=\Omega'(\varphi(u),\varphi(v))$. If a symplectomorphism exists, these two spaces are said to be symplectomorphic.

Remark. Thm 2.1 shows that any symplectic space is symplectomorphic to $(\mathbb{R}^{2n}, \Omega_0)$.

2.3 Symplectic Manifolds

Let ω be a de Rham 2-form on a manifold M, that is, for each $p \in M$, the map $\omega_p : T_pM \times T_pM \to \mathbb{R}$ is skew-symmetric bilinear on the tangent space to M at p, and ω_p varies smoothly in p. We say that ω is closed if it satisfies the differential equation $d\omega = 0$, where d is the de Rham differential.

Def. 2.5. The 2-form ω is symplectic if ω is closed and ω_p is symplectic for all $p \in M$.

If ω is symplectic, then $\dim T_m M = \dim M$ must be even.

Def. 2.6. A symplectic manifold is a pair (M, ω) where M is a manifold and ω is a symplectic form.

Example. Let $M = \mathbb{R}^{2n}$ with linear coordinates $x_1, \dots, x_n, y_1, \dots, y_n$. Then the form

$$\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i$$

is symplectic, and the set

$$\left\{ \left(\frac{\partial}{\partial x_1}\right), \cdots, \left(\frac{\partial}{\partial x_n}\right), \left(\frac{\partial}{\partial y_1}\right), \cdots, \left(\frac{\partial}{\partial y_n}\right) \right\}$$

is a symplectic basis.

Example. Let $M = \mathbb{C}^n$ with linear coordinates z_1, \dots, z_n . The form

$$\omega_0 = \frac{i}{2} \sum_{i=1}^n dz_k \wedge d\overline{z}_k$$

is symplectic. In fact $\mathbb{C}^n \equiv \mathbb{R}^{2n}, z_k = x_k + \mathbf{i} y_k$.

2.4 Symplectomorphisms

Def. 2.7. Let (M_1, ω_1) and (M_2, ω_2) be 2n-dim symplectic manifolds, and let $g: M_1 \to M2$ be a diffeomorphism. Then g is a **symplectomorphism** if $g^*\omega_2 = \omega_1$.

Thm. 2.2 (Darboux). Let (M, ω) be 2n-dim symplectic manifold and point $p \in M$. Then there is a coordinate chart $(\mathcal{U}, x_1, \dots, x_n, y_1, \dots, y_n)$ centered at p s.t. the symplectic form is

$$\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$$

More precisely, any symplectic manifold (M^{2n}, ω) is locally symplectomorphic to (\mathbb{R}^2, ω_0) .

2.5 Homework

Given a linear subspace Y of a symplectic vector space (V, Ω) , its **symplectic orthogonal** is defined as

$$Y^{\Omega} := \{ v \in V \mid \Omega(v, u) = 0, \forall u \in Y \}.$$

Exer 2.1. $\dim Y + \dim Y^{\Omega} = \dim V$.

Exer 2.2. $(Y^{\Omega})^{\Omega} = Y$.

Exer 2.3. if Y, W are subspace, then $Y \subseteq W \Leftrightarrow W^{\Omega} \subseteq Y^{\Omega}$.

Exer 2.4. Y is symplectic $\Leftrightarrow Y \cap Y^{\Omega} = \{0\} \Leftrightarrow V = Y \oplus Y^{\Omega}$.

Exer 2.5. Y is isotropic $\Rightarrow \dim Y \leq \frac{1}{2} \dim V$.

Exer 2.6. An isotropic Y is called **Lagrangian** when $\dim Y = \frac{1}{2}\dim V$. Check that: Y is lagrangian $\Leftrightarrow Y$ is isotropic and coisotropic $\Leftrightarrow Y = Y^{\Omega}$.

Exer 2.7. We call Y coisotropic when $Y^{\Omega} \subseteq Y$. Check that every codimension 1 subspace Y is coisotropic.

3 Symplectic Form on the Cotangent Bundle

- 3.1 Cotangent Bundle
- 3.2 Tautological and Canonical Forms in Coordinates
- 3.3 Coordinate-Free Definitions
- 3.4 Naturality of the Tautological and Canonical Forms
- 3.5 Homework

4 Lagrangian Submanifolds

- 4.1 Submanifolds
- 4.2 Lagrangian Submanifolds of T^*X
- 4.3 Conormal Bundles
- 4.4 Application to Symplectomorphisms
- 4.5 Homework

5 Generating Functions

- 5.1 Constructing Symlectomorphisms
- 5.2 Method of Generating Functions
- 5.3 Application to Geodesic Flow
- 5.4 Homework

6 Recurrence

- 6.1 Periodic Points
- 6.2 Billiards
- 6.3 Poincaré Recurrence
- 6.4 Homework

7 Preparation for the Local Theory

- 7.1 Isotopies and Vector Fields
- 7.2 Tubular neighborhood Theorem
- 7.3 Homotopy Formula
- 7.4 Homework

8 Moser Theorems

- 8.1 Notions of Equivalence for Symplectic Structure
- 8.2 Moser Trick
- 8.3 Moser Local Theorem
- 8.4 Homework