Algorithms Design. Georgia Institute of Technology. Introduction to the class NP.

What it means for a problem to be hard?

- A typical problem asks for a solution out of an exponentially large set of candidates.
- We (human kind) don't have the time to check each candidate until we find a solution.
- Sometimes this is the best we can do!

Search problems

What is a problem?

Given an instance \mathcal{I} we need to find a solution S for it, or report if such solution does not exists.

Search problems

Search problems

Given an instance \mathcal{I} , and a **candidate solution** S' we can confirm in polynomial time* that S' is indeed a solution.

Search problems

Search problems

Given an instance \mathcal{I} , and a **candidate solution** S' we can confirm in polynomial time* that S' is indeed a solution.

(*) Polynomial in the size of the input $|\mathcal{I}|$.

The classes P and NP

NP= set of all search problems.

P= subset of all search problems that can be solved in polynomial time.

$$\mathsf{P}\subseteq\mathsf{NP}$$

Problem: (K-coloring) Given an integer K > 0 and a graph G = (V, E), return a coloring of V with at most K colors such that every edge gets different colors on its end vertices.

Problem: (K-coloring) Given an integer K > 0 and a graph G = (V, E), return a coloring of V with at most K colors such that every edge gets different colors on its end vertices.

 $\frac{K-\text{coloring is in NP}}{\text{candidate solution (an assignment of at most } K \text{ colors to the vertices of } G!)$ loop through the edges and compare the colors of the end vertices. O(m)

Problem: (SAT) Given a boolean formula in *conjunctive normal form** find an assignment of the variables that evaluates to true or return NO if such assignment does not exist.

conjunctive normal form

$$f(x_1,x_2,\ldots,x_n)\to\{0,1\}$$

Each x_i is a boolean variable: $x_i \in \{0,1\}$.

f is the intersection (AND, denoted by \land) of m clauses, each been a disjunction (OR, denoted by \lor) of *literals*. Each literal is equal to some x_i or its negation $\bar{x_i}$.

$$f = (x_1 \vee x_4) \wedge (\bar{x}_2 \vee x_3 \vee x_5) \wedge (\bar{x}_1) \wedge (\bar{x}_2 \vee \bar{x}_3).$$

$$x_1 = 0$$
, $x_4 = 1$, $x_2 = 1$, $x_3 = 0$, $x_5 = 1$.

Problem: (SAT) Given a boolean formula in *conjunctive normal form** find an assignment of the variables that evaluates to true or return NO if such assignment does not exist.

<u>SAT is in NP:</u> Given an instance (the boolean function f) and a candidate solution S (an assignment of the variables) we can evaluate each clauses in time O(n) and conclude S is a solution if all return true. Since there are m clauses this takes O(mn).

Problem: (MST) Given a weighted, undirected graph G = (V, E), find a minimum spanning tree, or return NO if such tree does not exist.

Problem: (MST) Given a weighted, undirected graph G = (V, E), find a minimum spanning tree, or return NO if such tree does not exist.

MST is in NP: Given an instance (weighted and undirected graph G = (V, E)) and a candidate solution S (a subgraph of G) we must check it is a MST.

MST is in NP: Given an instance (weighted and undirected graph G = (V, E)) and a candidate solution S (a subgraph of G) we must check it is a MST:

- S is spanning.
- S is minimum.

MST is in NP: Given an instance (weighted and undirected graph G = (V, E)) and a candidate solution S (a subgraph of G) we must check it is a MST:

- **1** S is a tree. Run DFS on S and check for back edges!* O(n+m).
- S is spanning.
- \circ S is minimum.
- (*) This tell us that S is cycle-free, not a tree!

MST is in NP: Given an instance (weighted and undirected graph G = (V, E)) and a candidate solution S (a subgraph of G) we must check it is a MST:

- **1** S is a tree. Run DFS on S and check for back edges! O(n+m).
- **3** S is spanning. Run Explore on S and check every vertex has been visited. O(n+m).
- \circ *S* is minimum.

Connectivity and cycle-free imply we have a spanning tree.

MST is in NP: Given an instance (weighted and undirected graph G = (V, E)) and a candidate solution S (a subgraph of G) we must check it is a MST:

- **1** S is a tree. Run DFS on S and check for back edges! O(n+m).
- ② S is spanning. Run DFS on S and check every vertex has been visited. O(n+m).
- **9** S is minimum. Run Kruskal's algorithm on G to get a MST T. Check if $\omega(T) = \omega(S)$. $O(m \log(n))$.

Problem: (Knapsack) Given a list of n objects along with their weights and values, and a capacity B outputs the value of the maximum profit you can make.

object	1	2	 n
weight	w_1	W_2	 Wn
value	v_1	v_2	 V_n

Want a subset $S \subseteq [n]$ such that:

$$\sum_{i \in S} v_i \text{ is maximal while } \sum_{i \in S} w_i \leq B.$$

Knapsack is in NP: Given an instance (objects, weights, values, capacity) and a candidate solution S (a subset of the objects) we must check it maximizes the profit.

Knapsack is in NP:

- Best solution we know runs in exponential time! (cannot find a solution like MST).
- There are exponentially many subsets of [n].

Knapsack is not in NP:

- Best solution we know runs in exponential time! (cannot find a solution like MST).
- There are exponentially many subsets of [n].

The class NP.

Figure: The class NP and the problems from the examples.

The hardest problems in NP.

Informal idea: a problem A is hard if solving it in polynomial time implies we can solve **all** problems in NP also in polynomial time.

Reductions.

Definition

Given two problems A and B. We said A reduces to B if there are two polynomial time algorithms f and h such that f maps an instance \mathcal{I} of A to an instance $f(\mathcal{I})$ of B and h maps a solution S of $f(\mathcal{I})$ back to a solution h(S) of \mathcal{I} .

We write $A \rightarrow B$.

Reductions.

- If $A \rightarrow B$ an algorithm to solve B can be transform into an algorithm to solve A.
- The following holds: \mathcal{I} has a solution if and only if $f(\mathcal{I})$ has a solution.

The hardest problems in NP.

Informal idea: a problem A is hard if solving it in polynomial time implies we can solve **all** problems in NP also in polynomial time.

Definition

A problem B is said to be NP-hard if for any $A \in \mathsf{NP}$ we have $A \to B$. If $B \in \mathsf{NP}$ is NP-hard we said it is NP-complete.

The hardest problems in NP.

Figure: Two NP-hard problems. Since $B \in NP$ it is NP-complete.

Complexity classes.

The big question.

Is P=NP?

We know all problems in the class NP reduce to any NP-hard problem.

Solving **one** NP-hard problem in polynomial time implies P=NP.

How to determine if a problem is hard?

Lemma

Let A be NP-hard and $A \rightarrow B$. Then B is also NP-hard.

Proof: Note that for any three problems $\{X, Y, Z\}$, if $X \to Y$ and

 $Y \rightarrow Z$ then $X \rightarrow Z$.

So, for any problem $C \in NP$:

$$C \rightarrow A \rightarrow B$$
.

SAT is NP-complete.

Cook-Levin Theorem (1971)

SAT is NP-complete.

In 1972, Richard E. Karp published a paper listing many *new* NP-hard problems.