Задача А. Топологическая сортировка

Имя входного файла: topsort.in Имя выходного файла: topsort.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дан ориентированный невзвешенный граф. Необходимо его топологически отсортировать.

Формат входных данных

В первой строке входного файла даны два натуральных числа N и M ($1 \le N \le 100\,000$, $0 \le M \le 100\,000$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходных данных

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, вывести -1.

topsort.in	topsort.out
6 6	4 6 3 1 2 5
1 2	
3 2	
4 2	
2 5	
6 5	
4 6	
3 3	-1
1 2	
2 3	
3 1	

Задача В. Конденсация графа

Имя входного файла: cond.in
Имя выходного файла: cond.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан ориентированный невзвешенный граф. Необходимо выделить в нем компоненты сильной связности и топологически их отсортировать.

Формат входных данных

В первой строке входного файла находятся два натуральных числа N и M ($1\leqslant N\leqslant 20\,000, 1\leqslant M\leqslant 200\,000$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходных данных

Первая строка выходного файла должна содержать целое число k — количество компонент сильной связности в графе. Вторая строка выходного файла должна содержать n чисел — для каждой вершины выведите номер компоненты сильной связности, которой она принадлежит. Компоненты должны быть занумерованы таким образом, чтобы для каждого ребра (u,v) номер компоненты, которой принадлежит v.

cond.in	cond.out
6 7	2
1 2	1 1 1 2 2 2
2 3	
3 1	
4 5	
5 6	
6 4	
2 4	

Задача С. Кратчайший путь

Имя входного файла: shortpath.in Имя выходного файла: shortpath.out Ограничение по времени: 2 секунды

Дан ориентированный взвешенный ациклический граф. Требуется найти в нем кратчайший путь из вершины s в вершину t.

Формат входных данных

Первая строка входного файла содержит четыре целых числа n, m, s и t — количество вершин, дуг графа, начальная и конечная вершина соответственно. Следующие m строк содержат описания дуг по одной на строке. Ребро номер i описывается тремя натуральными числами b_i , e_i и w_i — началом, концом и длиной дуги соответственно ($1 \le b_i, e_i \le n, |w_i| \le 1000$).

Входной граф не содержит циклов и петель.

 $1 \le n \le 100\,000, \ 0 \le m \le 200\,000.$

Формат выходных данных

Первая строка выходного файла должна содержать одно целое число — длину кратчайшего пути из s в t. Если пути из s в t не существует, выведите «Unreachable».

shortpath.in	shortpath.out
2 1 1 2	-10
1 2 -10	
2 1 2 1	Unreachable
1 2 -10	

Задача D. Игра

Имя входного файла: game.in
Имя выходного файла: game.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан ориентированный невзвешенный ациклический граф. На одной из вершин графа стоит «фишка». Двое играют в игру. Пусть «фишка» находится в вершине u, и в графе есть ребро (u,v). Тогда за ход разрешается перевести «фишку» из вершины u в вершину v. Проигрывает тот, кто не может сделать ход.

Формат входных данных

В первой строке входного файла находятся три натуральных числа N, M и S ($1 \leqslant N, S, M \leqslant 100\,000$) — количество вершин рёбер и вершина, в которой находится «фишка» в начале игры соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин.

Формат выходных данных

Если выигрывает игрок, который ходит первым, выведите «First player wins», иначе — «Second player wins».

game.in	game.out
3 3 1	First player wins
1 2	
2 3	
1 3	
3 2 1	Second player wins
1 2	
2 3	

Задача Е. Поиск цикла

Имя входного файла: cycle.in
Имя выходного файла: cycle.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан ориентированный невзвешенный граф. Необходимо определить есть ли в нём циклы, и если есть, то вывести любой из них.

Формат входных данных

В первой строке входного файла находятся два натуральных числа N и M ($1 \leqslant N \leqslant 100\,000, M \leqslant 100\,000$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходных данных

Eсли в графе нет цикла, то вывести «NO», иначе — «YES» и затем перечислить все вершины в порядке обхода цикла.

cycle.in	cycle.out
2 2	YES
1 2	2 1
2 1	
2 2	NO
1 2	
1 2	

Задача F. Гамильтонов путь

Имя входного файла: hamiltonian.in Имя выходного файла: hamiltonian.out

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дан ориентированный граф без циклов. Требуется проверить, существует ли в нем путь, проходящий по всем вершинам.

Формат входных данных

Первая строка входного файла содержит два целых числа n и m — количество вершин и дуг графа соответственно. Следующие m строк содержат описания дуг по одной на строке. Ребро номер i описывается двумя натуральными числами b_i и e_i — началом и концом дуги соответственно $(1 \leq b_i, e_i \leq n)$.

Входной граф не содержит циклов и петель.

 $1 \leqslant n \leqslant 100\,000, \, 0 \leqslant m \leqslant 200\,000.$

Формат выходных данных

Если граф удовлетворяет требуемому условию, то выведите YES, иначе NO.

hamiltonian.in	hamiltonian.out
3 3	YES
1 2	
1 3	
2 3	
3 2	NO
1 2	
1 3	