

Program Code: J620-002-4:2020

Program Name: FRONT-END SOFTWARE DEVELOPMENT

Title: Numpy

Name: Chuay Xiang Ze

IC Number: 021224070255

Date: 22/06/2023

Introduction: Learning about numpy functions.

Conclusion: Learnt about using things like replace, random and many more.

In [1]:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Module P06 - Numpy

Datasets can include collections of documents, images, sound clips, numerical measurements, or, really anything. Despite the heterogeneity, it will help us to think of all data fundamentally as arrays of numbers.

Arrays of Numbers?	Data type
Pixel brightness across different channels	Images
Pixels brightness across different channels for each frame	Videos
Intensity over time	Sound
No need for transformation	Numbers
Mapping from strings to numbers	Tables

Therefore, the efficient storage and manipulation of large arrays of numbers is really fundamental to the process of doing data science. Numpy and pandas are the libraries within the SciPy stack that specialize in handling numerical arrays and data tables.

<u>Numpy (http://www.numpy.org/)</u> is short for *numerical python*, and provides functions that are especially useful when you have to work with large arrays and matrices of numeric data, like matrix multiplications.

The array object class is the foundation of Numpy, and Numpy arrays are like lists in Python, except that every thing inside an array must be of the same type, like int or float. As a result, arrays provide much more efficient storage and data operations, especially as the arrays grow larger in size. However, in other ways, Numpy arrays are very similar to Python's built-in list type, but with the exception of Vectorization.

Creating arrays

```
In [2]:
```

```
# Create array from lists:
lis = [[1,2,3,4,5],[6,7,8,9,10]]
ary = np.array(lis)
print(ary, type(ary))

[[ 1 2 3 4 5]
  [ 6 7 8 9 10]] <class 'numpy.ndarray'>
```

Using array-generating functions

For larger arrays it is inpractical to initialize the data manually, using explicit python lists. Instead we can use one of the many functions in numpy that generate arrays of different forms. Some of the more common are:

zeros and ones

```
In [5]:
# Create an uninitialized array of integers
# The values will be whatever happens to already exist at that memory location
np.empty((2,3))
Out[5]:
array([[0., 0., 0.],
       [0., 0., 0.]])
In [6]:
np.ones((2,3))
Out[6]:
array([[1., 1., 1.],
       [1., 1., 1.]]
In [7]:
np.zeros((2,3))
Out[7]:
array([[0., 0., 0.],
       [0., 0., 0.]])
In [8]:
np.eye(3, dtype = np.int16)
Out[8]:
array([[1, 0, 0],
       [0, 1, 0],
       [0, 0, 1]], dtype=int16)
In [9]:
# Create a 3x5 array filled with 3.14
np.full((3, 5), 3.14)
Out[9]:
array([[3.14, 3.14, 3.14, 3.14, 3.14],
       [3.14, 3.14, 3.14, 3.14, 3.14],
       [3.14, 3.14, 3.14, 3.14, 3.14]])
```

arange

```
In [10]:
# Large operations work too, and very quickly
np.arange(10000)
Out[10]:
                     2, ..., 9997, 9998, 9999])
array([
         0, 1,
In [11]:
# reshape the 1-D array into a 2-D array
np.arange(100).reshape(10,10)
Out[11]:
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
       [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
       [70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
       [80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
       [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])
random data
In [12]:
# Create a 3x3 array of uniformly distributed
# random values between 0 and 1
np.random.random((3, 3))
Out[12]:
array([[0.28108514, 0.18710526, 0.9639854],
       [0.59668895, 0.99631308, 0.53150584],
       [0.82620659, 0.33418963, 0.67780147]])
In [13]:
# Create a 3x3 array of normally distributed random values
# with mean 0 and standard deviation 1
np.random.normal(0, 1, (3, 3))
Out[13]:
array([[-0.40910106, -0.228818 , -0.59226249],
       [-1.3704682, -0.01518705, -1.19310839],
       [-1.9247604 , 0.2070794 , -0.84998286]])
```

```
In [14]:
# Create a 3x3 array of random integers in the interval [0, 10)
np.random.randint(0, 10, (3, 3))
Out[14]:
array([[7, 0, 7],
       [4, 4, 0],
       [3, 0, 6]])
In [15]:
# Create a 3x3 identity matrix
np.eye(3)
Out[15]:
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])
In [16]:
# another similar functions
np.identity(3)
Out[16]:
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]]
NumPy has many functions that perform the same thing, or can do the same thing if used in a certain way.
It's usually up to the programmer, depending on his/her familiarity with the functions, or some other specific
purpose of using it (efficiency, robustness, etc.).
linspace, logspace
```

```
In [17]:
```

```
# Make several equally spaced points in linear space
# Linspace( start, end, number of samples)
#np.linspace(0,np.pi,3)
np.linspace(0,100,11)
Out[17]:
```

array([0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100.])

```
In [18]:
np.logspace(0, 10, 10, base=np.e)
Out[18]:
array([1.00000000e+00, 3.03773178e+00, 9.22781435e+00, 2.80316249e+01,
       8.51525577e+01, 2.58670631e+02, 7.85771994e+02, 2.38696456e+03,
       7.25095809e+03, 2.20264658e+04])
In [19]:
import math
M = np.logspace(0, 10, 10, base=np.e)
print(math.log(M[1])-math.log(M[0]))
print(math.log(M[2])-math.log(M[1]))
print(math.log(M[3])-math.log(M[2]))
# the distance after applying log is the same. This is considered equal distance in 'log
1.1111111111111111
1.1111111111111114
1.1111111111111111
diag
In [20]:
# a diagonal matrix
np.diag([1,2,3])
Out[20]:
array([[1, 0, 0],
       [0, 2, 0],
       [0, 0, 3]])
In [21]:
# diagonal with offset from the main diagonal
np.diag([1,2,3], k=2)
Out[21]:
array([[0, 0, 1, 0, 0],
       [0, 0, 0, 2, 0],
       [0, 0, 0, 0, 3],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0]])
Vectorization
In [22]:
lis = [1,2,3,4,5]
```

```
In [23]:
```

```
lis + lis
```

Out[23]:

```
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
```

Adding two lists automatically concatenates both lists into one, but if you perform this addition when their types are **NumPy arrays**, things work out differently...

```
In [24]:
```

```
# See the difference???
np_array = np.array(lis)
np_array + np_array
```

Out[24]:

```
array([ 2, 4, 6, 8, 10])
```

In [25]:

```
print(type(lis))
print(type(np_array))
```

```
<class 'list'>
<class 'numpy.ndarray'>
```

In [26]:

```
# Doing the same using normal lists requires a loop! Definitely NumPy is likely to be mo print([x+x \ for \ x \ in \ lis]) print([x**2 \ for \ x \ in \ lis])
```

```
[2, 4, 6, 8, 10]
[1, 4, 9, 16, 25]
```

So we call operations on NumPy arrays as **vectorized** operations. For almost all data intensive computing, we use NumPy because of this feature, and because the whole scientific and numerical Python stack is based on NumPy.

To explain it another way, in a spreadsheet, you would add an entire column to another one by writing a formula in the first cell and auto-filling the rest of the column. Numpy does things in the similar way -- allowing such commands to be performed all in one go.

In [27]:

```
array = np.array([1, 4, 5, 8], float)
print(array)
print("")

# a 2D array/Matrix, this Looks just like how we create lists...
array = np.array([[1, 2, 3], [4, 5, 6]], float)
print(array)
```

```
[1. 4. 5. 8.]
[[1. 2. 3.]
[4. 5. 6.]]
```

Numpy has all of its functionality written in *compiled* code written in C, that is much faster. But this can only be the case because all of the items in a Numpy array are of the same data type!

(Explanation: Python is dynamically typed whereas C is not - this gives extra flexibility and simplicity to Python, but makes it slower as well).

In [28]:

```
big_array = np.random.rand(1000000)
%timeit sum(big_array)
%timeit np.sum(big_array)
```

```
57.6 ms \pm 1.92 ms per loop (mean \pm std. dev. of 7 runs, 10 loops each) 495 \mus \pm 31.8 \mus per loop (mean \pm std. dev. of 7 runs, 1,000 loops each)
```

That's about 100 times faster.

You can index, slice, and manipulate a Numpy *array* the same way you would do with a Python list.

Python has a certain way of doing things. For example, the property of being "listiness". Listiness works on lists, dictionaries, files, and a general notion of something called an iterator. That's because all these objects support **the iterator protocol** - where something behaves in a list-like manner.

Broadcasting

Broadcasting is an important concept in Numpy arrays, which is simply a set of rules for applying binary ufuncs (e.g., addition, subtraction, multiplication, etc.) on arrays of different sizes. It sort of helps us to cater for operations that will be performed on array of different sizes, in an intuitive way.

```
In [29]:
```

```
Out[30]:
```

```
array([[6., 6., 6.],
[6., 6., 6.],
[6., 6., 6.]])
```

Cool. Numpy knows that you are trying to add a single number (think of 1x1 size) to a 3x3 matrix. Mathematically, this is not possible, but Numpy knows that intuitively, you wanted to add a constant number 5 to all elements of the array.

```
In [31]:
```

array([[0, 1, 2],

[1, 2, 3], [2, 3, 4]])

```
a = np.arange(3)
                                     # this adds a 2nd axis to array a. Basically this mea
b = np.arange(3)[:, np.newaxis]
                                      # putting the array elements along the new 2nd axis
                                      # try...
#b = np.arange(3)[np.newaxis, :]
print(a)
print(b)
                                     # this is only 1-D
print(a.shape)
print(b.shape[0], b.shape[1])
                                     # the same array in 2-D representation
[0 1 2]
[[0]]
[1]
[2]]
(3,)
3 1
Of course, there are other ways of doing the same thing, that is, use the reshape function.
In [32]:
np.arange(3).reshape((3,1))
Out[32]:
array([[0],
       [1],
       [2]])
In [33]:
np.arange(3)[np.newaxis,np.newaxis]
                                        # this adds 2 new axes!
Out[33]:
array([[[0, 1, 2]]])
In [34]:
print(a.shape)
print(b.shape)
a + b
(3,)
(3, 1)
Out[34]:
```

Now, adding a 1-D array to a 2-D array shouldn't be possible in the first place, but broadcasting allows the intuition of adding each element of one array to all elements of the other array. This resulted in a 3x3 array.

Rules of Broadcasting

[1, 2, 3], [2, 3, 4]])

Broadcasting in NumPy follows a strict set of rules to determine the interaction between the two arrays:

- **Rule 1:** If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is *padded* with ones on its leading (left) side.
- Rule 2: If the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in that dimension is stretched to match the other shape.
- Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

To make these rules clear, let's consider a few examples in detail.

```
In [35]:
# Rule one
M = np.ones((2, 3))
a = np.arange(3)
print(M)
print(a)
M + a
[[1. 1. 1.]
[1. 1. 1.]]
[0 1 2]
Out[35]:
array([[1., 2., 3.],
       [1., 2., 3.]])
In [36]:
# Rule two
a = np.arange(3).reshape((3, 1))
b = np.arange(3)
print(a.shape)
print(b.shape)
print(a,b)
(3, 1)
(3,)
[[0]]
 [1]
 [2]] [0 1 2]
In [37]:
a + b
Out[37]:
array([[0, 1, 2],
```

```
In [4]:
# Rule three
M = np.ones((3, 2))
a = np.arange(3)
print(M)
print(a)
M + a
[[1. 1.]
 [1. 1.]
 [1. 1.]
[0 1 2]
ValueError
                                              Traceback (most recent call las
t)
Cell In[4], line 6
      4 print(M)
      5 print(a)
----> 6 M + a
ValueError: operands could not be broadcast together with shapes (3,2)
(3,)
We have a problem. Broadcasting cannot happen because the shapes are not similar and there's no way to
replicate. To get over the problem, let's first ensure that they are both 2-D arrays.
In [33]:
# To get over the problem, add a new axis to a
print(a[:, np.newaxis].shape)
print(M.shape)
(3, 1)
(3, 2)
Now, it should work!
In [34]:
M + a[:, np.newaxis]
Out[34]:
array([[1., 1.],
```

The first array (a) is replicated along the 2nd axis and then both arrays can be added correctly.

[2., 2.], [3., 3.]])

More on broadcasting here:

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html (https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

Manipulating arrays

Indexing

We can index elements in an array using square brackets and indices:

```
In [37]:
# a vector: the argument to the array function is a Python list
v = np.array([1,2,3,4])
v[0]

Out[37]:
1
In [39]:

M = np.random.random([3,3])
print(M)
# M is a 2 dimensional array, taking two indices
M[1,1]

[[0.28895494 0.94510634 0.18837395]
[0.44883051 0.52046958 0.02201675]
[0.11998542 0.52862201 0.5464109 ]]
Out[39]:
```

0.5204695816806885

Array Slicing: Accessing Subarrays

Just as we can use square brackets to access individual array elements, we can also use them to access subarrays with the *slice* notation, marked by the colon (:) character. The NumPy slicing syntax follows that of the standard Python list; to access a slice of an array x, use this:

```
x[start:stop:step]
```

If any of these are unspecified, they default to the values start=0, stop= size of dimension, step=1. We'll take a look at accessing sub-arrays in one dimension and in multiple dimensions.

Source: Python Data Science Handbook

If we omit an index of a multidimensional array it returns the whole row (or, in general, a N-1 dimensional array)

```
In [40]:
Μ
Out[40]:
array([[0.28895494, 0.94510634, 0.18837395],
       [0.44883051, 0.52046958, 0.02201675],
       [0.11998542, 0.52862201, 0.5464109]])
In [41]:
M[1]
Out[41]:
array([0.44883051, 0.52046958, 0.02201675])
The same thing can be achieved with using: instead of an index:
In [42]:
M[1,:] #row 1
Out[42]:
array([0.44883051, 0.52046958, 0.02201675])
In [43]:
M[:,1] #column 1
Out[43]:
array([0.94510634, 0.52046958, 0.52862201])
We can assign new values to elements in an array using indexing:
In [44]:
M[0,0] = 1
In [45]:
Μ
Out[45]:
                   , 0.94510634, 0.18837395],
array([[1.
       [0.44883051, 0.52046958, 0.02201675],
       [0.11998542, 0.52862201, 0.5464109]])
```

```
In [46]:
```

```
# also works for rows and columns
M[1,:] = 0
M[:,2] = -1
```

```
In [50]:
```

```
М
```

Out[50]:

```
array([[ 1. , 0.31079608, -1. ], [ 0. , 0. , -1. ], [ 0.55684639, 0.03668258, -1. ]])
```

Index Slicing

Index slicing is the technical name for the syntax M[lower:upper:step] to extract part of an array:

```
In [74]:
```

```
A = np.array([1,2,3,4,5])
A
```

Out[74]:

```
array([1, 2, 3, 4, 5])
```

In [75]:

```
A[1:3]
```

Out[75]:

```
array([2, 3])
```

Array slices are mutable: if they are assigned a new value the original array from which the slice was extracted is modified:

```
In [76]:
```

```
A[1:3] = [-2, -3]
A
```

Out[76]:

```
array([ 1, -2, -3, 4, 5])
```

We can omit any of the three parameters in M[lower:upper:step]:

```
In [77]:
A[::] # lower, upper, step all take the default values
Out[77]:
array([1, -2, -3, 4, 5])
In [78]:
A[::2] # step is 2, lower and upper defaults to the beginning and end of the array
Out[78]:
array([ 1, -3, 5])
In [79]:
A[:3] # first three elements
Out[79]:
array([ 1, -2, -3])
In [80]:
A[3:] # elements from index 3
Out[80]:
array([4, 5])
Index slicing works exactly the same way for multidimensional arrays:
In [27]:
A = np.array([[n+m*10 for n in range(5)] for m in range(5)])
A2 = np.zeros((5, 5), dtype='int16')
for m in range(5):
    for n in range(5):
        A2[m,n] = n+m*10
print(A)
print(A2)
[[0 1 2 3 4]
 [10 11 12 13 14]
 [20 21 22 23 24]
 [30 31 32 33 34]
 [40 41 42 43 44]]
[[0 1 2 3 4]
 [10 11 12 13 14]
 [20 21 22 23 24]
 [30 31 32 33 34]
 [40 41 42 43 44]]
```

```
In [82]:
# a block from the original array
A[1:4, 1:4]
Out[82]:
array([[11, 12, 13],
       [21, 22, 23],
       [31, 32, 33]])
In [83]:
# strides
A[::2, ::2]
Out[83]:
array([[ 0, 2, 4],
       [20, 22, 24],
       [40, 42, 44]])
Fancy indexing
Fancy indexing is the name for when an array or list is used in-place of an index:
In [94]:
row_indices = [0, 2, 3]
A[row_indices]
Out[94]:
array([[ 0, 1, 2, 3, 4],
       [20, 21, 22, 23, 24],
       [30, 31, 32, 33, 34]])
In [103]:
col_indices = [1, 2, -1] # remember, index -1 means the last element
A[row_indices, col_indices]
Out[103]:
array([ 1, 22, 34])
In [86]:
A[[1],[1]]
A[1, 1]
Out[86]:
```

We can also use index masks: If the index mask is an Numpy array of data type bool, then an element is selected (True) or not (False) depending on the value of the index mask at the position of each element:

11

```
In [87]:
B = np.array([n for n in range(5)])
Out[87]:
array([0, 1, 2, 3, 4])
In [65]:
row_mask = np.array([True, False, True, False, False])
B[row mask]
Out[65]:
array([0, 2])
This feature is very useful to conditionally select elements from an array, using for example comparison
operators:
In [9]:
x = np.arange(0, 10, 0.5)
Х
Out[9]:
array([0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.,
       6.5, 7., 7.5, 8., 8.5, 9., 9.5
In [22]:
mask = (5 < x) * (x < 7.5)
mask
Out[22]:
array([False, False, False, False, False, False, False, False, False,
       False, False, True, True, True, False, False, False,
       False, False])
In [23]:
x[mask]
Out[23]:
array([5.5, 6., 6.5, 7.])
```

Using arrays in conditions

When using arrays in conditions, for example if statements and other boolean expressions, one needs to use any or all, which requires that any or all elements in the array evalutes to True:

```
In [69]:
M = np.array([[1, 4], [9, 16]])
Out[69]:
array([[ 1, 4],
       [ 9, 16]])
In [70]:
#any
if (M > 5).any():
    print("at least one element in M is larger than 5")
else:
    print("no element in M is larger than 5")
print((M>5).any())
at least one element in M is larger than 5
True
In [71]:
#all
if (M > 5).all():
    print("all elements in M are larger than 5")
else:
    print("not all elements in M are larger than 5")
print((M>5).all())
not all elements in M are larger than 5
False
In [72]:
B = np.array([n for n in range(1, 5)])
print(B)
B.mean()
[1 2 3 4]
Out[72]:
2.5
```

Functions for extracting data from arrays and creating arrays

where

The index mask can be converted to position index using the where function

→

```
In [73]:
indices = np.where(mask)
indices
Out[73]:
(array([11, 12, 13, 14], dtype=int64),)
In [74]:
x[indices] # this indexing is equivalent to the fancy indexing x[mask]
Out[74]:
array([5.5, 6., 6.5, 7.])
diag
With the diag function we can also extract the diagonal and subdiagonals of an array:
In [26]:
print(A)
np.diag(A)
NameError
                                             Traceback (most recent call las
t)
Cell In[26], line 1
----> 1 print(A)
      2 np.diag(A)
NameError: name 'A' is not defined
In [107]:
np.diag(A, -1)
Out[107]:
array([10, 21, 32, 43])
take
The take function is similar to fancy indexing described above:
In [77]:
v2 = np.arange(-3,3)
v2
Out[77]:
array([-3, -2, -1, 0, 1, 2])
```

```
In [78]:
row_indices = [1, 3, 5]
v2[row_indices] # fancy indexing
Out[78]:
array([-2, 0, 2])
In [79]:
v2.take(row_indices)
Out[79]:
array([-2, 0, 2])
But take also works on lists and other objects:
In [80]:
np.take([-3, -2, -1, 0, 1, 2], row_indices)
Out[80]:
array([-2, 0, 2])
choose
Constructs an array by picking elements from several arrays:
In [24]:
which = [1, 0, 1, 0, 2]
choices = [[-1, -2, -3, -4, -5], [1, 2, 3, 4, 5], [10, 11, 12, 13, 14]]
np.choose(which, choices)
Out[24]:
array([ 1, -2, 3, -4, 14])
```

Linear algebra

In [25]:

np.choose?

Vectorizing code is the key to writing efficient numerical calculation with Python/Numpy. That means that as much as possible of a program should be formulated in terms of matrix and vector operations, like matrix-matrix multiplication.

Scalar-array operations

We can use the usual arithmetic operators to multiply, add, subtract, and divide arrays with scalar numbers.

```
In [30]:
v1 = np.arange(0, 5)
v1
Out[30]:
array([0, 1, 2, 3, 4])
In [84]:
v1 * 2
Out[84]:
array([0, 2, 4, 6, 8])
In [85]:
v1 + 2
Out[85]:
array([2, 3, 4, 5, 6])
In [28]:
print(A * 2)
print(A + 2)
[[02468]
 [20 22 24 26 28]
 [40 42 44 46 48]
 [60 62 64 66 68]
 [80 82 84 86 88]]
[[ 2 3 4 5 6]
 [12 13 14 15 16]
 [22 23 24 25 26]
 [32 33 34 35 36]
 [42 43 44 45 46]]
```

Element-wise array-array operations

When we add, subtract, multiply and divide arrays with each other, the default behaviour is element-wise operations:

```
In [87]:
print(A)
A * A # element-wise multiplication
[[0 1 2 3 4]
 [10 11 12 13 14]
 [20 21 22 23 24]
 [30 31 32 33 34]
 [40 41 42 43 44]]
Out[87]:
array([[
           0,
                        4,
                              9,
                  1,
                                    16],
                      144,
       [ 100,
               121,
                            169,
                                   196],
       [ 400,
               441,
                     484,
                           529,
                                  576],
       [ 900, 961, 1024, 1089, 1156],
       [1600, 1681, 1764, 1849, 1936]])
In [88]:
print(v1)
v1 * v1
[0 1 2 3 4]
Out[88]:
array([ 0, 1, 4, 9, 16])
If we multiply arrays with compatible shapes, we get an element-wise multiplication of each row:
In [32]:
A.shape, v1.shape
Out[32]:
((5, 5), (5,))
In [90]:
A * v1
Out[90]:
array([[
                          9,
          0,
               1,
                     4,
                               16],
              11,
                    24,
                         39,
                               56],
          0,
       L
       [
          0,
              21,
                    44,
                         69,
                               96],
          0,
              31,
       [
                    64, 99, 136],
              41,
                   84, 129, 176]])
```

Matrix algebra

What about matrix mutiplication? There are two ways. We can either use the dot function, which applies a matrix-matrix, matrix-vector, or inner vector multiplication to its two arguments:

```
In [33]:
np.dot(A,A)
Out[33]:
array([[ 300, 310, 320, 330, 340],
       [1300, 1360, 1420, 1480, 1540],
       [2300, 2410, 2520, 2630, 2740],
       [3300, 3460, 3620, 3780, 3940],
       [4300, 4510, 4720, 4930, 5140]])
In [111]:
np.dot(A, v1)
Out[111]:
array([ 30, 130, 230, 330, 430])
In [93]:
print(v1)
np.dot(v1,v1)
[0 1 2 3 4]
Out[93]:
30
Alternatively, we can cast the array objects to the type matrix. This changes the behavior of the standard
arithmetic operators +, -, * to use matrix algebra.
In [94]:
print(A)
print(A.T)
[[0 1 2 3 4]
 [10 11 12 13 14]
 [20 21 22 23 24]
 [30 31 32 33 34]
 [40 41 42 43 44]]
[[ 0 10 20 30 40]
 [ 1 11 21 31 41]
 [ 2 12 22 32 42]
 [ 3 13 23 33 43]
 [ 4 14 24 34 44]]
In [35]:
M = np.matrix(A)
v = np.matrix(v1).T # make it a column vector
```

```
In [37]:
Μ
Out[37]:
matrix([[ 0, 1, 2, 3, 4],
        [10, 11, 12, 13, 14],
        [20, 21, 22, 23, 24],
        [30, 31, 32, 33, 34],
        [40, 41, 42, 43, 44]])
In [36]:
type(M)
Out[36]:
numpy.matrix
Notice that the type is now no longer an 'array', but a 'matrix'. This shows the "array" in matrix mode.
In [38]:
Out[38]:
matrix([[0],
        [1],
         [2],
         [3],
        [4]])
In [39]:
M * M
Out[39]:
matrix([[ 300, 310, 320, 330, 340],
         [1300, 1360, 1420, 1480, 1540],
        [2300, 2410, 2520, 2630, 2740],
        [3300, 3460, 3620, 3780, 3940],
        [4300, 4510, 4720, 4930, 5140]])
In [100]:
Out[100]:
matrix([[ 30],
         [130],
        [230],
         [330],
        [430]])
```

If we try to add, subtract or multiply objects with incomplatible shapes we get an error:

```
In [101]:
v = np.matrix([1,2,3,4,5,6]).T
In [102]:
M.shape, v.shape
Out[102]:
((5, 5), (6, 1))
In [103]:
M * v #error due to different dimension
______
ValueError
                                       Traceback (most recent call las
t)
<ipython-input-103-8477489fc0d7> in <module>
----> 1 M * v #error due to different dimension
D:\Anaconda3\envs\python-dscourse\lib\site-packages\numpy\matrixlib\defmat
rix.py in __mul__(self, other)
               if isinstance(other, (N.ndarray, list, tuple)) :
    216
    217
                  # This promotes 1-D vectors to row vectors
--> 218
                   return N.dot(self, asmatrix(other))
               if isscalar(other) or not hasattr(other, '__rmul__') :
   219
                  return N.dot(self, other)
    220
<__array_function__ internals> in dot(*args, **kwargs)
ValueError: shapes (5,5) and (6,1) not aligned: 5 (dim 1) != 6 (dim 0)
```

NumPy Standard Data Types

NumPy arrays contain values of a single type, so it is important to have detailed knowledge of those types and their limitations. Because NumPy is built in C, the types will be familiar to users of C, Fortran, and other related languages.

The standard NumPy data types are listed in the following table. Note that when constructing an array, they can be specified using a string:

```
np.zeros(10, dtype='int16')
```

Or using the associated NumPy object:

```
np.zeros(10, dtype=np.int16)
```

Data type	Description
bool_	Boolean (True or False) stored as a byte
int_	Default integer type (same as C $$ long; normally either $$ int64 $$ or $$ int32)
intc	Identical to C int (normally int32 or int64)
intp	Integer used for indexing (same as C ssize_t; normally either int32 or int64)

Data type	Description
int8	Byte (-128 to 127)
int16	Integer (-32768 to 32767)
int32	Integer (-2147483648 to 2147483647)
int64	Integer (-9223372036854775808 to 9223372036854775807)
uint8	Unsigned integer (0 to 255)
uint16	Unsigned integer (0 to 65535)
uint32	Unsigned integer (0 to 4294967295)
uint64	Unsigned integer (0 to 18446744073709551615)
float_	Shorthand for float64.
float16	Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32	Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64	Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex_	Shorthand for complex128.
complex64	Complex number, represented by two 32-bit floats
complex128	Complex number, represented by two 64-bit floats

More advanced type specification is possible, such as specifying big or little endian numbers; for more information, refer to the NumPy documentation (http://numpy.org/).

Attributes of Numpy Arrays

```
In [40]:
```

```
# Create a ranged array:
# arange = array range
a = np.arange(15)
a
Out[40]:
```

Reshaping, resizing and other array properties

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

The shape of an Numpy array can be modified without copying the underlaying data, which makes it a fast operation even for large arrays.

```
In [41]:
```

You can specify the type of an array when creating the Numpy array.

```
In [42]:
c = np.array([[1,2],[3,4]], dtype=complex)
Out[42]:
array([[1.+0.j, 2.+0.j],
       [3.+0.j, 4.+0.j]
In [43]:
ndarray = np.array([[1,2,3],[4,5,6]])
print(type(ndarray))
print(ndarray)
<class 'numpy.ndarray'>
[[1 2 3]
[4 5 6]]
In [44]:
# Number of axes or dimensions of the array (also called rank)
ndarray.ndim
Out[44]:
2
In [45]:
# Dimensions of the array:
# For a matrix with n rows and m columns,
# shape will be (n,m).
ndarray.shape
Out[45]:
(2, 3)
In [110]:
# Type of elements in the array
ndarray.dtype
Out[110]:
dtype('int32')
```

Adding a new dimension: newaxis

With newaxis, we can insert new dimensions in an array, for example converting a vector to a column or row matrix:

```
In [111]:
v = np.array([1,2,3])
In [112]:
np.shape(v)
Out[112]:
(3,)
In [113]:
# make a column matrix of the vector v
v[:, np.newaxis]
Out[113]:
array([[1],
       [2],
       [3]])
In [114]:
# column matrix
v[:,np.newaxis].shape
Out[114]:
(3, 1)
In [115]:
v[np.newaxis,:].shape
Out[115]:
```

(1, 3)

Array Concatenation, Splitting & Stacking

```
In [51]:
# Try the following
# np.concatenate (axis = 1)
A = np.arange(10)
B = np.arange(30, 56)
print('A')
print(A)
print('B')
print(B)
np.concatenate((A, B), axis=0)
# np.split(B, 2, axis=0)
# np.hstack((A, B))
# np.vstack
np.dstack
# np.floor
# np.hsplit
# np.vsplit
# np.dsplit
[0 1 2 3 4 5 6 7 8 9]
[30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55]
Out[51]:
<function numpy.dstack(tup)>
In [117]:
# same as concatenate on axis 1
np.vstack([A, np.arange(20, 40).reshape((2,10))])
Out[117]:
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]])
In [118]:
np.dstack([A,A]).shape
Out[118]:
(1, 10, 2)
In [128]:
np.hsplit?
```

Quick Exercises:

1. Create a 3x3 matrix with values ranging from 0 to 8

- 2. Create a 10x10 array with random values and find the minimum and maximum values
- 3. Create a 8x8 matrix and fill it with a checkerboard pattern
- 4. Create random vector of size 10 and replace the maximum value by 0
- 5. Create a 4 * 4 identity matrix.
- 6. Generate a random $4 \times 4 \times 4$ array of Gaussianly distributed numbers.
- 7. Generate n evenly spaced intervals between 0. and 1.
- 8. Create a vector and then reverse the vector (first element becomes last)

Looking for more? Checkout the Neophyte, Novice, and Apprentice levels http://www.loria.fr/~rougier/teaching/numpy.100/).

In [46]:

```
# write your answers here or in Spyder
three_array = np.random.randint(0, 9, (3, 3))
print(three_array)
print("----")
#2.
array = np.random.randint(0, 100, (10, 10))
minimum_value = np.min(array)
maximum_value = np.max(array)
print(array)
print("Minimum value:", minimum_value)
print("Maximum value:", maximum_value)
print("----")
#3.
# Create an 8x8 matrix
matrix = np.zeros((8, 8), dtype=int)
# Fill the matrix with a checkerboard pattern
matrix[1::2, ::2] = 1
matrix[::2, 1::2] = 1
# Print the matrix
for row in matrix:
   print(row)
print("----")
#4.
array2 = np.random.rand(10)
max_value = np.max(array2)
array2[array2 == max_value] = 0
print(array2)
print("----")
identity = np.eye(4, dtype = np.int16)
print(identity)
print("-----")
#6.
normal = np.random.normal(0, 1, (4, 4))
print(normal)
print("----")
#7.
space = np.linspace(0,1,5)
print(space)
```

```
print("----")
#8.
array3 = np.array([1,3,5,4,2])
reverse = np.flip(array3)
print(reverse)
[[5 8 0]
 [8 7 8]
[5 4 7]]
[[ 2 5 1 10 15 49 23 17 15 99]
 [63 74 6 2 34 60 85 28 14 27]
 [38 62 30 83 8 5 30 43 26 74]
 [32 50 45 28 69 41 82 48 65 87]
 [41 20 64 38 85 44 81 84 11 48]
 [51 83 94 65 59 89 67 12 3 85]
 [24  3  29  77  77  60  13  84  33  29]
 [29 47 16 57 14 88 22 16 57 32]
 [49 21 60 39 20 47 51 85 57 46]
 [22 37 36 22 75 10 52 46 34 17]]
Minimum value: 1
Maximum value: 99
-----
[0 1 0 1 0 1 0 1]
[10101010]
[0 1 0 1 0 1 0 1]
[10101010]
[0 1 0 1 0 1 0 1]
[10101010]
[0 1 0 1 0 1 0 1]
[10101010]
0.23948593 0.85388782 0.24018972 0.44425594]
[[1 0 0 0]
 [0 1 0 0]
 [0 0 1 0]
 [0 0 0 1]]
[[-2.35606211 0.54915926 0.39456801 -1.62660104]
 [ 1.36199212 -2.33068357  0.67694715 -0.53206991]
 [-0.68614862  0.43795475  -0.45304922  -0.5112332 ]
 [ 0.52690829 -1.30178076 2.10547814 -0.67209534]]
-----
[0. 0.25 0.5 0.75 1. ]
[2 4 5 3 1]
```

File I/O Revisited

Data processing

Often it is useful to store datasets in Numpy arrays. Numpy provides a number of functions to calculate statistics of datasets in arrays.

For example, let's calculate some properties from the Stockholm temperature dataset used above.

http://bolin.su.se/data/stockholm/homogenized_daily_mean_temperatures.php (http://bolin.su.se/data/stockholm/homogenized_daily_mean_temperatures.php)

To download the data, click here (http://bolin.su.se/data/stockholm/files/stockholm-historical-weather-observations-ver-1 0 2016/temperature/daily/stockholm_daily_mean_temperature_1756_2016_tyt)

```
In [41]:
```

```
#store data from dat format to 'data' variable
data = np.genfromtxt('./Data Files/stockholm_daily_mean_temperature_1756_2017.txt')
```

In [42]:

```
#96594 rows and 7 columns
data.shape
```

Out[42]:

(95694, 7)

In [43]:

```
#visualize the data
print(len(data[:,0]+data[:,1]/12.0))
print(data[:,2]/365)
print(data[:,0]+data[:,1]/12.0+data[:,2]/365)

fig, ax = plt.subplots(figsize=(14,4))
ax.plot(data[:,0]+data[:,1]/12.0+data[:,2]/365, data[:,5])
ax.axis('tight')
ax.set_title('temperatures in Stockholm')
ax.set_xlabel('year')
ax.set_ylabel('temperature (C)');
```

95694

[0.00273973 0.00547945 0.00821918 ... 0.07945205 0.08219178 0.08493151] [1756.08607306 1756.08881279 1756.09155251 ... 2018.07945205 2018.08219178 2018.08493151]

mean

```
In [125]:
```

```
# the temperature data is in column 3
np.mean(data[:,3])
```

```
Out[125]:
```

6.12563065604949

The daily mean temperature in Stockholm since year 1756 has been about 6.11 C.

standard deviations and variance

```
In [126]:
np.std(data[:,3]), np.var(data[:,3])
Out[126]:
(12.010007951154332, 144.24029098679026)
```

min and max

```
In [127]:
```

```
# Lowest daily average temperature
np.min(data[365*50:,3])
np.min(data[:,3])

Out[127]:
-999.0

In [128]:
```

```
# Lowest daily average temperature
np.max(data[:,3])
```

```
Out[128]:
```

28.3

Computations on subsets of arrays

We can compute with subsets of the data in an array using indexing, fancy indexing, and the other methods of extracting data from an array (described above).

For example, let's go back to the temperature dataset:

The dataformat is: year, month, day, daily average temperature, low, high, location.

If we are interested in the average temperature only in a particular month, say April, then we can create a

```
In [129]:
```

```
np.unique(data[:,1]) # the month column takes values from 1 to 12
Out[129]:
array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.,  10.,  11.,  12.])
In [130]:
mask_april = data[:,1] == 4
```

In [131]:

```
# the temperature data is in column 3
np.mean(data[mask_april,3])
```

Out[131]:

3.796819338422392

With these tools we have very powerful data processing capabilities at our disposal. For example, to extract the average monthly average temperatures for each month of the year only takes a few lines of code:

In [132]:

```
months = np.arange(1,13)
monthly_mean = [np.mean(data[data[:,1] == month, 3]) for month in months]

fig, ax = plt.subplots()
ax.bar(months, monthly_mean)
ax.set_xlabel("Month")
ax.set_ylabel("Monthly avg. temp.");
```


Calculations with higher-dimensional data

When functions such as min, max, etc. are applied to a multidimensional arrays, it is sometimes useful to apply the calculation to the entire array, and sometimes only on a row or column basis. Using the axis argument we can specify how these functions should behave:

```
In [133]:
m = np.random.rand(3,3)
m
Out[133]:
array([[0.16931816, 0.93161988, 0.05312506],
       [0.81378994, 0.80902762, 0.56730743],
       [0.38932562, 0.36546258, 0.88327177]])
In [134]:
# global max
m.max()
Out[134]:
0.9316198778199416
In [135]:
# max in each column
m.max(axis=0)
Out[135]:
array([0.81378994, 0.93161988, 0.88327177])
In [136]:
# max in each row
m.max(axis=1)
Out[136]:
array([0.93161988, 0.81378994, 0.88327177])
In [137]:
# 'out' terminology (which skips the stepp of assigning it to a temporary array)
x = np.arange(5)
y = np.empty(5)
np.multiply(x, 10, out=y)
print(y)
[ 0. 10. 20. 30. 40.]
In [138]:
x = np.arange(1, 6)
print(np.add.reduce(x))
print(np.multiply.reduce(x))
print(np.add.accumulate(x))
print(np.multiply.accumulate(x))
15
120
[ 1 3 6 10 15]
  1
     2
           6 24 120]
```

In [139]:

```
# Outer Products
x = np.arange(1, 6)
np.multiply.outer(x, x)
```

Out[139]:

Other aggregation functions

NumPy provides many other aggregation functions, but we won't discuss them in detail here. Additionally, most aggregates have a NaN -safe counterpart that computes the result while ignoring missing values, which are marked by the special IEEE floating-point NaN value (for a fuller discussion of missing data, see Handling Missing Data (03.04-Missing-Values.ipynb)). Some of these NaN -safe functions were not added until NumPy 1.8, so they will not be available in older NumPy versions.

The following table provides a list of useful aggregation functions available in NumPy:

Descriptio	NaN-safe Version	Function Name
Compute sum of element	np.nansum	np.sum
Compute product of element	np.nanprod	np.prod
Compute mean of element	np.nanmean	np.mean
Compute standard deviation	np.nanstd	np.std
Compute variance	np.nanvar	np.var
Find minimum valu	np.nanmin	np.min
Find maximum valu	np.nanmax	np.max
Find index of minimum valu	np.nanargmin	np.argmin
Find index of maximum valu	np.nanargmax	np.argmax
Compute median of element	np.nanmedian	np.median
Compute rank-based statistics of element	np.nanpercentile	np.percentile
Evaluate whether any elements are tru	N/A	np.any
Evaluate whether all elements are tru	N/A	np.all

Source: Python Data Science Handbook