

TD Théorèmes généraux

Ex 1:

1. Calculer la différence de potentiel (d.d.p.) Eo aux bornes du réseau I, puis la résistance R vue des bornes A et B du réseau II

2. En utilisant les lois de Kirchhoff, calculer le courant qui passerait dans une résistance R placée entre les bornes A et B du réseau I. Montrer que ce courant peut se mettre sous la forme :

$$I = \frac{E_0}{R_{AB} + R}$$

Conclure.

3. Calculer en utilisant le théorème de Thévenin la tension V_s du circuit suivant:

Ex 2:

Calculer la tension V_{AB} du circuit suivant en utilisant les théorèmes de : Millman , Superposition , Thévenin et Norton .

Ex 3:

En utilisant le théorème de Thévenin, calculer la tension V du circuit ci-dessous .

En déduire le courant I dans la résistance R.

Ex 4:

Déterminer la tension V aux bornes de la résistance R du circuit suivant en utilisant :

- a. Le théorème de superposition.
- b. Le théorème de Thévenin.
- c. Le théorème de Millman.

Ex 5:

Trouver le courant I dans le circuit ci-dessous par application des théorèmes de Millman et de Norton.

Ex 6:

Déterminer les intensités dans les différentes branches du réseau ci-dessous par application du théorème de superposition.

MA

Tel que : $E_{_1}=\,2V$, $E_{_2}=\,1.\,5V$, $R_{_1}=\,1\Omega$, $R_{_2}=\,3\Omega$, $R_{_3}=\,2\Omega$, $R_{_4}=\,6\Omega$, $R_{_5}=\,5\Omega$, $R_{_6}=\,0\Omega$

Ex 7:

a. Déterminer le générateur de Thévenin équivalent au circuit ci-dessous vu des points A et B .

Tel que :
$$E_1=8V$$
 , $E_2=12V$, $E_3=2V$, $R_0=5\Omega$, $R_1=10\Omega$, $R_2=15\Omega$, $R_3=20\Omega$.

b. Déterminer le générateur de Norton équivalent.

Ex 8:

Déterminer la tension aux bornes de la résistance R du circuit suivant

Ex 9:

- 1. Quelle valeur faut-il donner à la f.é.m. E, dans le circuit représenté ci dessus pour qu'il soit équivalent (entre les bornes A et B) à une résistance pure ?
- 2. Donner la valeur de cette résistance.

Ex 10:

On considère le réseau de la figure ci-dessous où tous les générateurs de tension ont la même force électromotrice (f.é.m.) E, tous les générateurs de courant débitent le même courant I et toutes les résistances ont la même valeur R.

- 1. Déterminer le générateur de Thévenin ($E_{\mathit{Th}},\,R_{\mathit{Th}}$) vu des points A, B.
- 2. Déterminer le générateur de Norton (I_N, R_N) entre les points B, C.

Ex 11:

On se propose d'étudier le circuit ci dessous

- 1. Quel est le type de la source αV_1 ? Par rapport aux points C et D .
- 2. Déterminer le générateur de Thévenin équivalent.
- 3. Calculer de deux façons différentes, la résistance interne de ce générateur.

