# TRIGONOMETRY Chapter 16





REDUCCIÓN AL PRIMER CUADRANTE I





# HELICOCURIOSIDADES

La norteamericana Karen Uhlenbeck se ha convertido hoy en la primera mujer en ganar el Premio Abel de matemáticas, un galardón de prestigio equivalente a los Nobel en otras disciplinas, por "el impacto fundamental de su trabajo en las áreas de análisis, geometría y física matemática".





# REDUCCIÓN AL PRIMER CUADRANTE

Reducir al primer cuadrante consiste en cambiar el equivalente de las razones trigonométricas de un ángulo de cualquier magnitud en términos de las razones trigonométricas de un ángulo en el IC.

#### 1 CASO: Para ángulos positivos menores a una vuelta

$$\mathsf{RT} {180^{\circ} \pm x \choose 360^{\circ} - x} = \pm \ \mathsf{RT}(x)$$

$$\mathsf{RT}\binom{90^{\circ} \pm x}{270^{\circ} - x} = \pm \mathsf{CO-RT}(x)$$





#### Nota:

Donde el signo ( $\pm$ ) del segundo miembro depende de la RT y el cuadrante al cual pertenece el ángulo a reducir.



#### **Ejemplos**:

Reduzcamos las siguientes razones al primer cuadrante.

$$sen(180^{\circ} + x) = -sen(x)$$

$$tan(270^{\circ} - x) = + \cot(x)$$



#### 2 CASO: Para ángulos negativos

Al calcular las razones trigonométricas de un ángulo negativo  $(-\alpha)$  se cumple:

$$sen(-\alpha) = -sen\alpha$$
 $cos(-\alpha) = -cos\alpha$ 
 $tan(-\alpha) = -tan\alpha$ 
 $cot(-\alpha) = -cot\alpha$ 
 $sec(-\alpha) = -sec\alpha$ 
 $csc(-\alpha) = -csc\alpha$ 

#### **EJEMPLOS**:

$$\cos(-160^{\circ}) = \cos 160^{\circ}$$

$$tan(-250^{\circ}) = -tan250^{\circ}$$





Reduzca 
$$E = \frac{\tan(-x)}{\tan x} - \frac{\cos(-x)}{\cos x}$$



$$tan(-x) = -tanx$$
$$cos(-x) = cosx$$

$$E = \frac{\tan(-x)}{\tan x} - \frac{\cos(-x)}{\cos x}$$

$$E = \frac{-\tan x}{\tan x} - \frac{\cos x}{\cos x}$$

$$E = -1 - 1$$

$$\therefore E = -2$$



## Reduzca $M = sen(-30^{\circ}) \cdot cos(-45^{\circ})$



$$sen 30^{\circ} = \frac{1}{2}$$

$$\cos 45^{\circ} = \frac{\sqrt{2}}{2}$$

$$M = sen(-30^{\circ}) \cdot cos(-45^{\circ})$$

$$M = - sen 30^{\circ} \cdot cos 45^{\circ}$$

$$M = -\frac{1}{2} \cdot \frac{\sqrt{2}}{2}$$

$$\therefore M = -\frac{\sqrt{2}}{4}$$





#### Halle el valor de m, si :

$$4\text{m.cos}(-60^\circ) - \tan(-45^\circ) = 3 \sec(-60^\circ)$$

$$cos(-x) = cosx$$
  
 $sec(-x) = secx$   
 $tan(-x) = -tanx$ 

$$4\text{m.cos}(60^{\circ}) - [-\tan(45^{\circ})] = 3.\sec(60^{\circ})$$

$$4m\left(\frac{1}{2}\right) - (-1) = 3(2)$$
  
 $2m + 1 = 6$ 

$$2m + 1 = 6$$

$$\therefore \mathbf{m} = \frac{5}{2}$$





### Simplifique

$$P = 3sen(180^{\circ}-x) - 2sen(360^{\circ}-x)$$



$$P = 3sen(180^{\circ}-x) - 2sen(360^{\circ}-x)$$

$$P = 3senx - 2(-senx)$$

$$P = 3senx + 2senx$$

$$\therefore$$
 P = 5senx





## Simplifique

$$P = 2\sec(90^{\circ} + x) - \sec(270^{\circ} + x)$$



$$P = 2\sec(90^{\circ} + x) - \sec(270^{\circ} + x)$$

$$P = 2(-\csc x) - (+\csc x)$$

$$P = -2 \csc x - \csc x$$
  $\therefore P = -3 \csc x$ 

$$\therefore P = -3 \csc x$$



El precio de una mascarilla KN95 es de 6sen150° soles y se desea comprar –10 cos(240°) unidades de ese producto. ¿A cuánto asciende el monto total pagado?

#### Resolución:

Calculemos el precio de cada mascarilla, del dato 6sen150°. El resultado será multiplicado por -10cos(240°) dándome el monto pagado.



| IIIC | IIIC | 6sen150° · (-10cos240°) |
| 6sen(180°-30°).{-10cos(180°+60°)} |
| 6sen30° · {(-10)(-cos60°)} |
| 6(
$$\frac{1}{2}$$
) · {(-10)( $-\frac{1}{2}$ )} |
| = 3.5 | ∴ El monto pagado asciende a S/15





La gráfica representa la cantidad de alumnos inscritos en la actividades realizadas por una institución educativa durante el ciclo de verano 2021. Si cada alumno se inscribe en una sola actividad. ¿ Cuántos alumnos se inscribieron en total?



Donde A = 20.cos300°; B =  $5\sqrt{3}$ .cot210°



#### Donde:

$$A = 20.\cos 300^{\circ}$$
IVC

$$A = 20.\cos(360^{\circ}-60^{\circ})$$

$$A = 20.(\cos 60^{\circ})$$

$$A = 20.(\frac{1}{2})$$

$$A = 10$$

### **Resolución:**

$$B = 5\sqrt{3}.\cot 2\underline{10}^{\circ}$$

$$B = 5\sqrt{3} \cdot \cot(180^{\circ} + 30^{\circ})$$

$$B = 5\sqrt{3}.\cot(30^{\circ})$$

$$B = 5\sqrt{3}.(\sqrt{3})$$

$$B = 15$$

.: En total se inscribieron 25 alumnos