RI2001A: CD1

by LeongHW (梁汉槐)

MCL: Markov Clustering Algorithm

Slides are heavily modified from

Wang, Qichen
Chu Kochen Honors College
Zhejiang University
(08 Aug 2015)

Markov Clustering (MCL)

- □ van Dongen 2000
 - (PhD thesis, University of Utrecht, 2000)
- ☐ Highly scalable and fast, and popular

Key idea:

Random walker "stuck" in dense regions

Introduction

- Random Walks
 - **□** Markov Chain
 - **□** Markov Clustering

http://micans.org/mcl

□ Discussion and Remarks

Random Walks

Key Idea:

If you choose a vertex and randomly walk in the graph, it is more likely for you to *stay* within a cluster, than for you to walk between two clusters.

So, by many doing random walks, it might be possible for us to *discover* the clusters.

Introduction

- □ Random Walks
- **□ □ Markov Chain**
 - **□** Markov Clustering

http://micans.org/mcl

□ Discussion and Remarks

Markov (Chain) Models

Modelling Random Walk: Markov Model

- \square A sequence of variables X_1, X_2, X_3, \ldots (in our case, the probability matrices).
- ☐ Given the present state, the past and future states are independent.
- ☐ Probabilities for the next state only depend on transition probabilities.

Markov Chain

□ A simple example:

	State1	State2
State1	0.6	0.5
State2	0.4	0.5

☐ Begin from State S1, after two steps,

	State1	State2
State1	0.6	0.5
State2	0.4	0.5

	State1	State2
State1	0.6	0.5
State2	0.4	0.5

Markov Chain

☐ The result:

	State1	State2
State1	0.56	0.55
State2	0.44	0.45

 \square How about after n steps? (for large n)

	State1	State2
State1	5/9	5/9
State2	4/9	4/9

Reached steady state

Introduction

- □ Random Walks
- ☐ Markov Chain
- **□ □ Markov Clustering**

http://micans.org/mcl

□ Discussion and Remarks

MCL (van Dongen, 2000)

Repeated inflation and expansion separates the network into multiple dense regions

Dongen, PhD Thesis, CWI, Netherlands, 2000

(NUS-RI Summer Course) Page 10

Random walks with Markov Chain

Algorithm:

Given two parameter e (e > 1) and r.

- 1. Normalize the adjacency matrix; get probability matrix M
- **2.** Expand by taking the e^{th} power of the matrix. $M \leftarrow (M)^e$
- 3. Inflate the resulting matrix M with parameter r
- 4. Repeat 2 & 3 until the matrix M become stable.
- 5. Analyze the resulting matrix to discover clusters.

Expand & Inflate

Expand the matrix M: (take more "steps")

$$M = (M)^e$$

Inflate entries in M: (boost intra, reduce inter)

Inflate r means for all entries M_{ij}

$$M_{ij} = (M_{ij})^r$$

Re-normalize M.

MCL Algorithm: (adj matrix)

MCL Algorithm: (normalize)

\square First we normalize the matrix M:

	1	2	3	4	5	6
1	0	0.33	0.5	0	0	0
2	0.5	0	0.5	0.33	0	0
3	0.5	0.33	0	0	0	0
4	0	0.33	0	0	0.5	0.5
5	0	0	0	0.33	0	0.5
6	0	0	0	0.33	0.5	0

MCL Algorithm: (expand)

\square Expand the matrix by e=2

	1	2	3	4	5	6
1	0.415	0.165	0.165	0.1089	0	0
2	0.25	0.4389	0.25	0	0.165	0.165
3	0.165	0.165	0.415	0.1089	0	0
4	0.165	0	0.165	0.4389	0.25	0.25
5	0	0.1089	0	0.165	0.415	0.165
6	0	0.1089	0	0.165	0.165	0.415

MCL Algorithm: (inflate, renorm)

□ Inflate the matrix by r=2

	1	1			1
1	0.415	0. 172225		1	0.60
2	0.25	2 0.0625		2	0.22
3	0.165	3 0. 027225		3	0.09
4	0.165	4 0. 027225	,	4	0.09
5	0	5		5	0.00
6	0	6 0		6	0.00

MCL Algorithm: (in steady state)

□ Finally, after many interations...

	1	2	3	4	5	6	
1	0	0	0	0	0	0	
2	1	1	1	0	0	0	
3	0	0	0	0	0	0	
4	0	0	0	1	1	1	
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	

MCL (van Dongen, 2000)

Repeated inflation and expansion separates the network into multiple dense regions

Dongen, PhD Thesis, CWI, Netherlands, 2000

(NUS-RI Summer Course) Page 18

Introduction

- □ Random Walks
- **□** Markov Chain
- **□ □ Markov Clustering**

http://micans.org/mcl

□ Discussion and Remarks

Discussion & Areas for Further Work

- \square How to determine the r & e?
 - * r & e should not be too large (Why?)
- □ What's the complexity of this algorithm?
 - $O(n^{2.x} + n^2)$
- ☐ How to improve the accuracy and efficiency?

Discussion & Areas for Further Work

☐ Can it work on a graph like this?

	1	2	3	4	5	6	7
1	0	0	0	0	0	0	0
2	1	1	1	0	0	0	0.5
3	0	0	0	0	0	0	0
4	0	0	0	1	1	1	0.5
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0

(NUS-RI Summer Course) Page 21

MCL (van Dongen, 2000)

- ☐ Fast and scalable
- □ Robust to noise in datasets
 - **&** Can tolerate random noise
- □ Reasonable precision and recall
- □ Produces *non-overlapping* clusters
- ☐ Tends to "lump up" small closely interacting clusters

Thank you!