ЛЕКЦИЯ 2

Бесконечно малые последовательности и функции и их свойства

Определение 1. Последовательность $\{x_n\}$ называется бесконечно малой (б.м.), если $\lim_{n\to\infty}x_n=0$. Функция y=f(x) называется бесконечно малой при $x\to a$ (б.м., $x\to a$), если $\lim_{n\to\infty}f(x)=0$.

T.e.
$$\{x_n\}$$
 - δ .m. $\Leftrightarrow \forall \varepsilon > 0 \exists N = N(\varepsilon)$: $\forall n > N \mid x_n \mid < \varepsilon$; $y = f(x) - \delta$.m., $x \to a \Leftrightarrow \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon)$: $\forall x \in U(a, \delta) \mid f(x) \mid < \varepsilon$.

Теорема 1. Сумма двух бесконечно малых последовательностей (функций при $x \to a$) есть последовательность (функция при $x \to a$) бесконечно малая.

Δ 1. Пусть $\{x_n\}$, $\{y_n\}$ — б.м. Докажем, что $\{x_n+y_n\}$ — б.м., т.е. $\forall \ \epsilon>0 \ \exists \ N=N$ (ϵ): $\forall n>N \ |x_n+y_n|<\epsilon$. Для этого возьмем произвольное $\epsilon>0$. Тогда

$$\begin{split} &\exists \ N_1 \colon \forall n > N_1 \ |x_n| < \varepsilon/2 \quad \text{if} \ \exists \ N_2 \colon \forall n > N_2 \quad |y_n| < \varepsilon/2, \\ &\Rightarrow \forall \ n > N = \max \left(N_1, N_2\right) \quad |x_n + y_n| \leq |x_n| + |y_n| < \varepsilon/2 + \varepsilon/2 = \varepsilon \;. \end{split}$$

2. Пусть $y = f(x), \ y = g(x) - б.м., \ x \to a$. Докажем, что $y = f(x) + g(x) - б.м., \ x \to a$, т.е. $\forall \ \varepsilon > 0 \ \exists \ \delta = \delta \ (\varepsilon) \colon \forall x \in \stackrel{\circ}{U} \ (a, \delta) \ |f(x) + g(x)| < \varepsilon$. Для этого возьмем произвольное $\varepsilon > 0$. Тогда $\exists \ \delta_1 \colon \forall x \in \stackrel{\circ}{U} \ (a, \delta_1) \ |f(x)| < \varepsilon / 2 \ \text{и} \ \exists \ \delta_2 \colon \forall x \in \stackrel{\circ}{U} \ (a, \delta_2) \ |g(x)| < \varepsilon / 2$ $\Rightarrow \forall x \in \stackrel{\circ}{U} \ (a, \min \ (\delta_1, \delta_2)) \ |f(x) + g(x)| \le |f(x)| + |g(x)| < \varepsilon / 2 + \varepsilon / 2 = \varepsilon$.

Теорема 2. Произведение бесконечно малой последовательности (функции при $x \to a$) на ограниченную последовательность (функцию при $x \to a$) есть последовательность (функция при $x \to a$) бесконечно малая.

▲ 1. Пусть $\{x_n\}$ – б.м., $\{y_n\}$ – ограниченная, $|y_n| \le M$. Докажем, что $\{x_n y_n\}$ – б.м., т.е. $\forall \varepsilon > 0 \ \exists \ N = N(\varepsilon)$: $\forall n > N \ |x_n y_n| < \varepsilon$. Возьмем произвольное $\varepsilon > 0 \Rightarrow \exists \ N$: $\forall n > N \ |x_n y_n| < \varepsilon M \Rightarrow \forall n > N \ |x_n y_n| = |x_n||y_n| < \frac{\varepsilon}{M} M = \varepsilon$.

2. Пусть f(x) - 6.м., $x \to a$, g(x) - 6 ограниченная при $x \to a$, т.е. $\exists \ \delta_1 \colon \forall x \in \overset{0}{U}(a, \delta_1)$ $|g(x)| \le M$. Докажем, что f(x)g(x) - 6.м., $x \to a$, т.е. $\forall \ \varepsilon > 0 \ \exists \ \delta = \delta \ (\varepsilon) > 0$ такое, что $\forall x \in \overset{0}{U}(a,\delta) \ |f(x)g(x)| < \varepsilon$. Возьмем произвольное $\varepsilon > 0 \Rightarrow \exists \ \delta_2$ такое, что $\forall \ x \in \overset{0}{U}(x,\delta_2)$ $|f(x)| < \varepsilon/M \Rightarrow \forall \ x \in \overset{0}{U}(a,\min(\delta_1,\delta_2)) \ |f(x)g(x)| = |f(x)||g(x)| < \frac{\varepsilon}{M}M = \varepsilon$.

Следствие 1. Произведение б.м. последовательностей (функций) есть последовательность (функция) б.м.

▲ Так как бесконечно малая имеет конечным пределом 0, а любая последовательность или функция, имеющая конечный предел, ограничена, то можно применить теорему 4. ■

Следствие 2. Произведение б.м. последовательности (функции) на постоянное число есть последовательность (функция) б.м.

▲ Так как постоянное число можно рассматривать как ограниченную последовательность или функцию.■

Следствие 3. Разность б.м. последовательностей (функций) есть последовательность (функция) б.м.

▲ Для последовательностей: $x_n - y_n = x_n + (-1) y_n$, здесь $x_n - 6$.м. по условию, а $(-1)y_n - 6$.м. по следствию 2; значит, $x_n + (-1) y_n - 6$.м. по теореме 1; аналогично для функций: f(x) - g(x) = f(x) + (-1) g(x) и т.д.). ■

Теорема 3. Частное от деления бесконечно малой последовательности (функции при $x \rightarrow a$) на последовательность (функцию), имеющую (при $x \rightarrow a$) конечный и отличный от 0 предел, есть последовательность (функция при $x \rightarrow a$) бесконечно малая.

 \Rightarrow в силу теоремы 2, для доказательства теоремы достаточно показать ограниченность $\{\frac{1}{y_n}\}$ или ограниченность при $x \to a$ функции $\frac{1}{g(x)}$.

1. Пусть в определении 1 $\varepsilon = \frac{|b|}{2} \Rightarrow \exists N: \ \forall n > N \ |y_n - b| < \frac{|b|}{2}. \ \text{Ho} \ |y_n - b| = |b - y_n| \ge$ $\ge |b| - |y_n| \Rightarrow \forall n > N \ |b| - |y_n| < \frac{|b|}{2} \Leftrightarrow |y_n| > \frac{|b|}{2} \Leftrightarrow \frac{1}{|y_n|} < \frac{2}{|b|} \Rightarrow \{\frac{1}{y_n}\} -$

2. В определении 1 возьмем $\varepsilon = \frac{|b|}{2} \Rightarrow \exists \delta > 0$: $\forall x \in \overset{\circ}{U}(a,\delta) \mid g(x) - b \mid < \frac{|b|}{2}$. Но $|g(x) - b| = |b - g(x)| \ge |b| - |g(x)| \Rightarrow \forall x \in \overset{\circ}{U}(a,\delta) \mid b \mid - |g(x)| < \frac{|b|}{2} \Leftrightarrow |g(x)| > \frac{|b|}{2}$ $\Leftrightarrow \frac{1}{|g(x)|} < \frac{2}{|b|} \Rightarrow \frac{1}{|g(x)|} \Rightarrow$

Связь существования предела с бесконечно малыми. Основные теоремы о пределах

Теорема 4. Для того чтобы предел последовательности (функции при $x \to a$) был равен некоторому числу b, необходимо и достаточно, чтобы эту последовательность (функцию) можно было представить в виде суммы этого числа b и бесконечно малой последовательности (функции при $x \to a$).

T.e. $\lim_{n\to\infty}x_n=b \Leftrightarrow x_n=b+\alpha_n$, где $\{\alpha_n\}$ – последовательность б.м.;

 $\lim_{x \to a} f(x) = b \iff f(x) = b + \alpha(x)$, где $\alpha(x)$ – функция б. м., $x \to a$.

▲ Необходимость.

 $1. \lim_{n \to \infty} x_n = b \Leftrightarrow \forall \ \epsilon > 0 \ \exists \ N = N \ (\epsilon): \ \forall n > N \ |x_n - b| < \epsilon. \ \Pi$ оложим $x_n - b = \alpha_n$, $x_n = b + \alpha_n$

$$\Rightarrow \forall \epsilon > 0 \ \exists N = N(\epsilon): \ \forall n > N \ | \alpha_n | < \epsilon \Rightarrow \{\alpha_n\} - 6.M.$$

 $2. \quad \lim_{x\to a} f(x) = b \Leftrightarrow \forall \varepsilon > 0 \; \exists \; \delta = \delta(\varepsilon) > 0 \colon \forall x \in \overset{0}{U} \; (a,\delta) \; \; |f(x)-b| < \varepsilon. \; \; \Pi \text{оложим} \; \; f(x)-b = \alpha(x),$

$$f(x) = b + \alpha(x) \Rightarrow \forall \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0: \ \forall x \in \stackrel{0}{U}(a,\delta) \quad |\alpha(x)| < \varepsilon \Rightarrow \alpha(x) - \delta.m., x \to a.$$

Достаточность.

1. $x_n = b + \alpha_n$, $\{\alpha_n\}$ — б.м. $\Leftrightarrow \forall \ \epsilon > 0 \ \exists \ N = N(\epsilon)$: $\forall n > N \ |\alpha_n| < \epsilon$. Но $\alpha_n = x_n - b \ \Rightarrow \forall \ \epsilon > 0 \ \exists \ N = N(\epsilon)$: $\forall n > N \ |x_n - b| < \epsilon$, но это и означает, что $\lim_{n \to \infty} x_n = b$ (см. выше).

2. $f(x) = b + \alpha(x)$, $\alpha(x) - \delta$.м., $x \to a \Leftrightarrow \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon)$: $\forall x \in \overset{\circ}{U}(a,\delta) |\alpha(x)| < \varepsilon$. Но $\alpha(x) = f(x) - b \Rightarrow \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon)$: $\forall x \in \overset{\circ}{U}(a,\delta) |f(x) - b| < \varepsilon$, но это и означает, что $\lim_{x \to a} f(x) = b$ (см. выше).

Теорема 5. Предел суммы двух последовательностей (функций) равен сумме пределов этих последовательностей (функций), если эти пределы существуют.

▲ 1.Пусть $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$ ⇒по теореме 4 (необходимость) $x_n = a + \alpha_n$, $y_n = b + \beta_n$, где $\{\alpha_n\}$ и $\{\beta_n\}$ – б.м. Сложим оба этих равенства: $x_n + y_n = (a+b) + (\alpha_n + \beta_n)$. В этой формуле a+b – число, $\alpha_n + \beta_n$ – б.м. по теореме 1 ⇒ по теореме 4 (достаточность) $\lim_{n\to\infty} (x_n + y_n) = a + b$.

2. Пусть $\lim_{x\to a} f(x) = b$, $\lim_{x\to a} g(x) = c \Rightarrow$ по теореме 4 (необходимость) $f(x) = b + \alpha(x)$, $g(x) = c + \beta(x)$, где $\alpha(x)$ и $\beta(x) - \delta$.м., $x \to a$. Сложим оба этих равенства: $f(x) + g(x) = -(b+c) + (\alpha(x) + \beta(x))$. В этой формуле b+c – число, $\alpha(x) + \beta(x) - \delta$.м. по теореме $1 \Rightarrow$ по теореме 4 (достаточность) $\lim_{x\to a} (f(x) + g(x)) = b + c$.

Теорема 6. Предел произведения двух последовательностей (функций) равен произведению пределов этих последовательностей (функций), если эти пределы существуют.

▲ 1.Пусть $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$ ⇒ по теореме 4 (необходимость) $x_n = a + \alpha_n$, $y_n = b + \beta_n$, где $\{\alpha_n\}$ и $\{\beta_n\}$ – б.м. Перемножим эти равенства: $x_n y_n = ab + (a\beta_n + b\alpha_n + \alpha_n \beta_n)$. В этой формуле ab – число, а выражение $a\beta_n + b\alpha_n + \alpha_n \beta_n$ – б.м. по теоремам 1 и 2 и их следствиям ⇒ по теореме 4 (достаточность) $\lim_{n\to\infty} x_n y_n = ab$.

2. Пусть $\lim_{x\to a} f(x) = b$, $\lim_{x\to a} g(x) = c \Rightarrow$ по теореме 4 (необходимость) $f(x) = b + \alpha(x)$, $g(x) = c + \beta(x)$, где $\alpha(x)$ и $\beta(x) - \delta$.м., $x\to a \Rightarrow f(x)g(x) = bc + (b\beta(x) + c\alpha(x) + \alpha(x)\beta(x))$. В этой формуле bc — число, а выражение $b\beta(x) + c\alpha(x) + \alpha(x)\beta(x) - \delta$.м. по по теоремам 1 и 2 и их следствиям \Rightarrow по теореме 1 (достаточность) $\lim_{x\to a} f(x)g(x) = bc$.

Следствие 1. Постоянный множитель можно выносить за знак предела.

▲ По теореме 6 $\lim_{n\to\infty} cx_n = \lim_{n\to\infty} c\lim_{n\to\infty} x_n = c\lim_{n\to\infty} x_n$ (так как $\lim_{n\to\infty} c = c - \text{см.}$ задачу 3) предыдущей лекции. Так же $\lim_{x\to a} cf(x) = \lim_{x\to a} c \cdot \lim_{x\to a} f(x) = c\lim_{x\to a} f(x)$. ■

Следствие 2. Предел разности двух последовательностей (функций) равен разности пределов этих последовательностей (функций), если эти пределы существуют.

▲ Применяя теорему 5 и следствие 1, имеем:

1.
$$\lim_{n \to \infty} (x_n - y_n) = \lim_{n \to \infty} (x_n + (-1)y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} (-1)y_n = \lim_{n \to \infty} x_n + (-1)\lim_{n \to \infty} y_n = \lim_{n \to \infty} x_n - \lim_{n \to \infty} y_n$$
.
2. $\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} (f(x) + (-1)g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} (-1)g(x) = \lim_{x \to a} f(x) + (-1)\lim_{x \to a} g(x) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$.

Теорема 7. Предел отношения двух последовательностей (функций) равен отношению пределов этих последовательностей (функций), если эти пределы существуют и предел знаменателя отличен от 0.

 \blacktriangle 1. Пусть $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b \Longrightarrow$ по теореме 4 (необходимость)

$$x_n = a + \alpha_n$$
, $y_n = b + \beta_n$, где $\{\alpha_n\}$ и $\{\beta_n\} - 6.м. \Rightarrow$

$$\frac{x_n}{y_n} = \frac{a + \alpha_n}{b + \beta_n} = \frac{a}{b} + \left(\frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b}\right) = \frac{a}{b} + \frac{ab + b\alpha_n - ab - a\beta_n}{b(b + \beta_n)} = \frac{a}{b} + \frac{b\alpha_n - a\beta_n}{b(b + \beta_n)}.$$

По теореме 3 последняя дробь есть б.м., так как ее числитель, согласно предыдущему, б.м.

и
$$\exists \lim_{n\to\infty} b(b+\beta_n) = b\lim_{n\to\infty} (b+\beta_n) = b(b+0) = b^2 \neq 0$$
, теперь по теореме 4 (достаточность, $\frac{a}{b}$)

число)
$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{a}{b}$$
.

2. Пусть $\lim_{x\to a} f(x) = b$, $\lim_{x\to a} g(x) = c \Rightarrow$ по теореме 4 (необходимость)

$$f(x) = b + \alpha(x), g(x) = c + \beta(x),$$
где $\alpha(x)$ и $\beta(x) - 6$.м., $x \rightarrow a \Rightarrow \frac{f(x)}{g(x)} = \frac{b + \alpha(x)}{c + \beta(x)} = \frac{b}{c} + \left(\frac{b + \alpha(x)}{c + \beta(x)} - \frac{b}{c}\right) = \frac{b}{c} + \frac{c\alpha(x) - b\beta(x)}{c(c + \beta(x))}.$

По теореме 3 последняя дробь есть б.м., так как ее числитель – б.м. и $\exists \lim_{x \to a} c(c + \beta(x)) =$

$$=c\lim_{x\to a}(c+eta(x))=c^2 \neq 0 \Rightarrow$$
 по теореме 4 (достаточность, $\frac{b}{c}$ – число) $\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{b}{c}$.

Замечания.

- 1) Теоремы о пределах функций справедливы и при $a = \infty$.
- 2) В теоремах о пределах последовательностей и функций допускаются и бесконечные пределы, если это имеет смысл: $(+\infty) + (+\infty) = +\infty$; $(-\infty) + (-\infty) = -\infty$; $(+\infty) (-\infty)$
- 3) $(+\infty) + (-\infty)$; $0 \cdot \infty$; $\frac{0}{0}$; $\frac{\infty}{\infty}$ и т.д. это так называемые *неопределенности* (т.е. случаи,

где основные теоремы о пределах сразу не применимы).

Примеры раскрытия неопределенностей.

Найти пределы:

1)
$$\lim_{n\to\infty}\frac{2n^2-3n+5}{3n^2+4n-7}=\lim_{n\to\infty}\frac{2-\frac{3}{n}+\frac{5}{n^2}}{3+\frac{4}{n}-\frac{7}{n^2}}=\frac{2}{3}$$
 ($\frac{\infty}{\infty}$; делим почленно на n^2).

2)
$$\lim_{x \to 1} \frac{x^2 + 5x - 6}{x^2 - 9x + 8} = \lim_{x \to 1} \frac{(x+6)(x-1)}{(x-8)(x-1)} = \lim_{x \to 1} \frac{x+6}{x-8} = -1 \left(\frac{0}{0}\right)$$
; выделяем множитель $x-1$).

Некоторые теоремы о пределах последовательностей и функций

Определение 2. Последовательность $\{x_n\}$ называется *неубывающей* (*невозрастающей*), если для всех $n \in N$ выполняется следующее условие: $x_{n+1} \geq x_n$ ($x_{n+1} \leq x_n$); последовательность называется *монотонной*, если она является либо неубывающей, либо невозрастающей.

Теорема 8. Любая ограниченная сверху неубывающая последовательность имеет конечный предел. Любая ограниченная снизу невозрастающая последовательность имеет конечный предел. Или, объединяя эти утверждения: любая ограниченная монотонная последовательность имеет конечный предел.

▲ Пусть $\{x_n\}$ — неубывающая и ограниченная сверху последовательность. Докажем, что существует конечный предел этой последовательности $\lim_{n\to\infty} x_n$. По теореме 1 лекции 1 существует верхняя грань ограниченного сверху множества значений этой последовательности $\sup_{n\to\infty} \{x_n\} = a$. Покажем, что $\lim_{n\to\infty} x_n = a$. Зададим произвольную окрестность точки a $U(a,\varepsilon)$ и докажем, что, начиная с некоторого номера, все члены последовательности $\{x_n\}$ попадут в эту окрестность. По определению верхней грани $x_n \le a$ и существует n_0 такое, что $x_{n_0} > a - \varepsilon$. Тогда при $n > n_0$ $x_n > x_{n_0} > a - \varepsilon$, а это и означает, что $x_n \in U(a,\varepsilon)$. \blacksquare

Определение 3. Последовательность называется *сходящейся*, если она имеет конечный предел.

Определение 4. Подпоследовательностью последовательности $\{x_n\}$ называется любое бесконечное подмножество членов этой последовательности $\{x_{n_k}\}$, k=1,2,3,...

Теорема 9 (Больцано—**Вейерштрасса).** У любой ограниченной последовательности существует сходящаяся подпоследовательность.

 \blacktriangle Пусть последовательность $\{x_n\}$ ограниченна. Тогда существует отрезок $[\alpha, \beta]$ такой, что для любого номера $n \in N$ все x_n принадлежат этому отрезку (рис. 1). Разделим этот отрезок пополам. Пусть $[\alpha_1, \beta_1]$ — та половина, которая содержит бесконечное число членов исходной последовательности (если обе половины такие, то берем любую из них). Выберем произвольный $x_{n_1} \in [\alpha_1, \beta_1]$. Разделим $[\alpha_1, \beta_1]$ пополам. Пусть $[\alpha_2, \beta_2]$ — та половина, которая содержит бесконечное число членов исходной последовательности (если обе половины такие, то берем любую из них). Выберем произвольный $x_{n_2} \in [\alpha_2, \beta_2]$ с номером $n_2 > n_1$. Разделим $[\alpha_2, \beta_2]$ пополам и т.д.

Рис. 1

Полученная система вложенных отрезков с длинами, стремящимися к нулю, по теореме 2 лекции 1 и замечанию к ней имеет единственную общую точку $a \in [\alpha_n, \beta_n]$ для всех п. Теперь докажем, что $\lim_{k\to\infty} x_{n_k} = a$. Возьмем произвольную ε -окрестность точки a. Тогда существует отрезок [α_{k_0} , β_{k_0}], целиком лежащий в нашей окрестности. Тогда все следующие отрезки тоже будут лежать в этой окрестности. Значит, все точки x_{n_k} , у которых $k > k_0$, лежат в этой окрестности. Или: $\exists k_0 : \forall k > k_0 \ [\alpha_k, \beta_k] \in U(a, \varepsilon) \Rightarrow \forall k > k_0 \ x_{n_k} \in U(a, \varepsilon)$.

Теорема 10 («о двух милиционерах»).

существует и предел $\lim \varphi(x) = b$.

- 1. Пусть $\{x_n\}$, $\{t_n\}$, $\{y_n\}$ три последовательности и $\forall n \in \mathbb{N}$ $x_n \leq t_n \leq y_n$. Пусть существуют конечные пределы $\lim_{n \to \infty} x_n = a$ и $\lim_{n \to \infty} y_n = a$ \Rightarrow существует и предел $\lim_{n \to \infty} t_n = a$. 2. Пусть функции y = f(x), $y = \varphi(x)$, y = g(x) определены в некоторой $\stackrel{0}{U}(a)$ и $\forall x \in \stackrel{0}{U}(a)$ $f(x) \leq \varphi(x) \leq g(x)$. Пусть существуют конечные пределы $\lim_{x \to a} f(x) = b$ и $\lim_{x \to a} g(x) = b$ \Rightarrow
- ▲ 1. Возьмем произвольное $\varepsilon > 0 \Rightarrow \exists N_1$: $\forall n > N_1 x_n \in U(a, \varepsilon)$; $\exists N_2 : \forall n > N_2 y_n \in U(a, \varepsilon)$ $\Rightarrow \forall n > N = \max(N_1, N_2) x_n \in U(a, \varepsilon)$, $y_n \in U(a, \varepsilon) \Rightarrow \forall n > N t_n \in U(a, \varepsilon)$.
- 2. Возьмем произвольное $\varepsilon > 0 \implies \exists \ \mathcal{S}_1 > 0$: $\forall x \in \overset{0}{U}(a, \mathcal{S}_1) \ f(x) \in U(b, \varepsilon)$; $\exists \ \mathcal{S}_2 > 0$: $\forall x \in \overset{0}{U}(a, \mathcal{S}_2) \ g(x) \in U(b, \varepsilon) \implies \forall x \in \overset{0}{U}(a, \delta)$, где $\delta = \min(\delta_1, \delta_2) \ f(x) \in U(b, \varepsilon)$, $g(x) \in U(b, \varepsilon) \implies \forall x \in \overset{0}{U}(a, \delta) \ \varphi(x) \in U(b, \varepsilon)$.

Замечание. В случае функций теорема верна и при a = +∞.

Теорема 11 (о пределе сложной функции). Пусть дана сложная функция $y = \varphi(x)$, z = f(y), т.е. $z = f(\varphi(x))$. Пусть $\lim_{x \to a} \varphi(x) = c$ и $\lim_{y \to c} f(y) = b$ и $\forall x \in U$ (a) $(y \ne c) \Rightarrow \lim_{x \to a} f(\varphi(x)) = b$ (или $\lim_{x \to a} f(\varphi(x)) = \lim_{y \to c} f(y)$ — формула замены переменной).

▲ Докажем, что $\forall \ \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0$: $\forall x \in \overset{0}{U}(a,\delta) \ z \in U(b,\varepsilon)$. Возьмем произвольное $\varepsilon > 0$ $\Rightarrow \exists \ \sigma > 0$: $\forall y \in \overset{0}{U}(c,\sigma) \ z \in U(b,\varepsilon)$. Далее $\exists \ \delta > 0$: $\forall x \in \overset{0}{U}(a,\delta) \ y \in \overset{0}{U}(c,\sigma)$ (при достаточно малом $\delta \ y \neq c$ по условию) $\Rightarrow \forall x \in \overset{0}{U}(a,\delta) \ y \in \overset{0}{U}(c,\sigma) \Rightarrow z \in U(b,\varepsilon)$. ■