

CS5228: Knowledge Discovery and Data Mining

Lecture 4 — Association Rule Mining

Course Logistics — Update

Assignment 1

- Submission deadline: Thu, Sep 12 (11.59 pm)
- Honor code: don't cheat, don't copy, don't steal, don't plagiarize, etc.
- Don't forget to check Discussion and Errata page Canvas

Project

- Teams finalized (please get all in contact)
- Kaggle competition launched

Recap — Hierarchical Clustering

- AGNES (AGglomerative NESting)
 - Start with *N* clusters, one for each data point
 - Iteratively merge nearest clusters into one
 - Stop if all data points are in one cluster
- Core questions: How to calculate distances between clusters?

Recap — Linkage Methods

Single Linkage

Complete Linkage

Average Linkage

Recap — Cluster Evaluation

- If ground truth available: external quality measures
 - Cluster purity
 - TP/TN/FP/FN-based metrics (e.g., Rand index)
- Unlabelled data: internal quality measures
 - Elbow method using SSE
 - Silhouette Coefficient (SC)

favor blob-like clusters

- Cluster evaluation in practice (unlabeled data)
 - No fool-proof method to find "best" clustering
 - Decision on clustering often rather pragmatic

Recap — Clustering as a Means to an End

- Clustering as part of EDA
 - SSE plot, SC plot, dendrogram, etc. can provide useful insights into the data
 - Little requirements "only" similarity/distance between data points needed
 - In the gray area between (simple) EDA and proper data analysis
- Clustering for data preprocessing example:
 - Cluster persons according to their height into K=10 groups
 - Assign each person new height = centroid of cluster

form of aggregation or binning & smoothing

Outline

- Association Rule Mining
 - Overview
 - Applications
- Definitions
- Algorithms
 - Brute-Force
 - Apriori
- Discussion

Association Rules — Basic Setup

- Input database:
 - Set of transactions
 - Transaction = set of items
- Output: Association Rules
 - Rules predicting the occurrence of some items based on occurrence of other items

antecedent → consequent

$$\{\text{item}_2, \text{ item}_3\} \rightarrow \{\text{item}_5\}$$

 $\{\text{item}_1\} \rightarrow \{\text{item}_3\}$

TID	Items
1	item ₁ , item ₂ , item ₃ , item ₄ , item ₅
2	item ₂ , item ₃ , item ₅
3	item ₁ , item ₄ , item ₅
4	item ₂ , item ₃ , item ₅ , item ₆ , item ₇
5	item ₁ , item ₃ , item ₅ , item ₇

Applications — Market Basket Analysis

Understanding customers shopping behavior

■ Items: products in supermarket/store

■ Transaction: baskets at check-out

Interesting rules:

- Customers who by {a, b} also tend to buy {x, y}
- Example: {cereal}→{milk}

Purpose

- Shelf management / item placement
- Promotions (product bundles)
- Recommendations
- Pricing strategies

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

Applications — Medical Data Analysis

Diagnosis Support Systems

■ Items: symptoms, diseases

Transaction: patient's medical history

ID	Items
1	covid-19, anosmia, cough, fatigue
2	flu, anosmia, headache
3	covid-19, anosmia, headache, fatigue, fever
4	covid-19, flu, anosmia, fatigue
5	flu, depression, fatigue, fever, headache

{anosmia, fatigue}→{covid-19}

• ADR discovery (adverse drug reaction)

- Items: drugs, reactions/symptoms
- Transaction: patient's medical history

ID	Items
1	d ₁ , d ₂ , d ₃ , rash, vomit
2	d ₁ , d ₃ , headache, nausea, rash,
3	d ₂ , d ₃ , nausea, vomit
4	d ₁ , nausea, rash, vomit
5	d ₃ , d ₄ , headache, depression

$$\{d_1\}\rightarrow \{rash\}$$

Applications — Census Data Analysis

Getting insights into a population

■ Items: demographic data

Transaction: census record

Interesting rules:

- Correlations among groups of people based on shared demographics
- Example: {uni-grad, ≥30}→{high-income}

Purpose

- Policy & decision making
- Resource allocation
- Urban planning

TID	Items
1	female, ≥25, uni-grad, hdb, single, high-income
2	male, ≥25, uni-grad, hdb, single, mid-income
3	male, ≥25, uni-grad, hdb, condo, high-income
4	male, ≥30, uni-grad, condo, married, high-income
5	female, ≥30, uni-grad, condo, married, high-income

Applications — Behavior Data Analysis

User preferences & linkings

- Items: movies, songs, books, etc.
- Transaction: viewing/listening/reading history

Interesting rules (movies):

- Viewer who watched movies {a, b} also watched movies {x, y}
- Example: {Jaws}→{It}

Purpose

Recommendation systems

TID	Items
1	Jaws, Halloween, Scream, It
2	Alien, Jaws, Scream, It
3	Tenet, Inception, Interstellar
4	Jaws, Halloween, It
5	Alien, Tenet Jaws, It

Association Rules — **Problem Statement**

- Association rules are not "hard" rules
 - e.g., {cereal}→{milk} does not mean that customers always by milk when buying cereal
 - each possible combination (e.g., {yogurt, bread}→{milk}) is potential association rule
- Given d unique items $\rightarrow 3^d 2^{d+1} + 1$ rules
 - d = 6 → 602 possible rules!
- Association Rule Mining
 - Finding interesting/significant association rules
 - Finding such rules efficiently

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

Outline

- Association Rule Mining
 - Overview
 - Applications
- Definitions
- Algorithms
 - Brute-Force
 - A-Priori
- Discussion & Summary

Definitions — Itemset, K-itemset

Itemset

A subset of items

```
{bread}, {yogurt}, {bread, yogurt}, {milk}, {cereal}, {eggs}, {bread, milk}, {bread, milk, cereal}, ...
```

K-itemset

■ An itemset containing k items, e.g., k=3:

```
{bread, milk, cereal}, {bread, yogurt, cheese}, {yogurt, milk, cereal}, {yogurt, cereal, cheese}, {milk, cereal, cheese}, {bread, milk, eggs}, ...
```

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

Definitions — Support Count, Support (for itemsets)

Support count SC

- Number of transactions containing an itemset
- e.g., SC({bread, yogurt, milk}) = 2

Support S

- Fraction of transactions containing an itemset
- e.g., S({bread, yogurt, milk}) = 2/5

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

Definitions — Frequent Itemset

Frequent itemset

- Itemset with a support greater or equal than a minimum threshold minsup
- e.g., all frequent itemsets if

```
minsup = 2/5
                            minsup = 3/5
                             {yogurt}
{yogurt}
                             {milk}
{milk}
                             {cereal}
{cheese}
                             {bread}
{cereal}
                             {bread, milk}
{bread}
                             {yogurt, milk}
{bread, milk}
                             {cereal, milk}
{yogurt, milk}
                             {bread, yogurt}
{bread, cereal}
{cereal, milk}
{bread, yogurt}
{cereal, yogurt}
{cereal, yogurt, milk}
{bread, cereal, milk}
{bread, yogurt, milk}
```

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

Definitions — Association Rule

Association Rule

- Implication expression X→Y, where X and Y are itemsets
- e.g., {yogurt, milk}→{bread}

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

Definitions — Support (for association rules)

- Support of an association rule
 - Fraction of transactions containing all items of an association rule X→Y

$$S(X \to Y) = \frac{SC(X \cup Y)}{N} = S(X \cup Y)$$
 #transactions

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

$$S(\{yogurt, milk\} \rightarrow \{bread\}) = \frac{SC(\{yogurt, milk, bread\})}{N} = 2/5$$

$$S(\{yogurt, bread\} \rightarrow \{milk\}) = \frac{SC(\{yogurt, milk, bread\})}{N} = 2/5$$

Definitions — Confidence

- Confidence of an association rule X→Y
 - Probability of Y given X

$$C(X \to Y) = \frac{S(X \to Y)}{S(X)} = \frac{S(X \cup Y)}{S(X)}$$

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

$$C(\{yogurt, milk\} \rightarrow \{bread\}) = \frac{S(\{yogurt, milk, bread\})}{S(\{yogurt, milk\})} = 2/3$$

High Support, High Confidence → Interesting Rules

X → Y	Low Support	High Support
Low Confidence	 The items in (X∪Y) do not frequently appear together Even if the items in X appear together, they do so often without the items in Y 	 The items in (X∪Y) frequently appear together If the items in X appear together, they often do so without the items in Y
High Confidence	 The items in (X∪Y) do not frequently appear together If the items in X appear together, they often do so with the items in Y 	 The items in (X∪Y) frequently appear together If the items in X appear together, they do so often with the items in Y

Quick Quiz

Given an association rule R, which inequality regarding the support S(R) and confidence C(R) holds?

$$S(R) > C(R)$$

B

$$S(R) \ge C(R)$$

C

$$S(R) \le C(R)$$

D

$$S(R) < C(R)$$

Outline

- Association Rule Mining
 - Overview
 - Applications
- Definitions
- Algorithms
 - Brute-Force
 - A-Priori
- Discussion & Summary

Brute Force Approach — Algorithm

- Given a set of transactions,
 find all association rules X→Y with
 - Support $S(X \rightarrow Y) \ge minsup$
 - Confidence $C(X \rightarrow Y) \ge minconf$
- Brute force algorithm
 - List all possible association rules X→Y
 - Calculate support $S(X \rightarrow Y)$ and confidence $C(X \rightarrow Y)$ for each rule
 - Drop rules with $S(X \rightarrow Y) < minsup$ and $C(X \rightarrow Y) < minconf$

Brute Force Approach — Computation Complexity

- Given d unique items $\rightarrow 3^d 2^{d+1} + 1 \in O(3^d)$ rules
 - d = 6 → 602 (theoretically) possible rules!

Average number items carried in a supermarket in 2019
Source: FMI

28,112

https://www.fmi.org/our-research/supermarket-facts

Brute Force Approach — Computation Complexity

- ullet Let w be the maximum number of items in a transaction within the database
 - N=5, w=4 → ≤ 250 "available" rules!

The difference between 250 and 602 seems negligible, but this is only because in this toy example, d=6 and w=4 are of the same magnitude.

The number 250 also ignores duplicate rules.

(typically $w \ll d$)

	TID	Items
	1	bread, yogurt
	2	bread, milk, cereal, eggs
$N \mid$	3	yogurt, milk, cereal, cheese
	4	bread, yogurt, milk, cereal
	5	bread, yogurt, milk, cheese
7		w

True number of different rules: 154

Decoupling Support and Confidence

• Recall
$$S(X \to Y) = \frac{SC(X \cup Y)}{N}$$

$$S(\{yogurt, milk\} \rightarrow \{bread\})$$

$$S(\{yogurt, bread\} \rightarrow \{milk\})$$

$$S(\{milk, bread\} \rightarrow \{yogurt\})$$

$$= \frac{SC(\{yogurt, milk, bread\})}{N} = S(\{yogurt, milk, bread\})$$

Observation 1

- A rule X→Y has only sufficient support if X∪Y is a frequent itemset
- No need to calculate confidence of rules where X∪Y is not a frequent item set

$$S(X \to Y) \geq minsup \iff S(X \cup Y) \geq minsup$$

Two-Part Algorithm for Mining Association Rules

- Part 1 Frequent Itemset Generation
 - Generate itemsets with support ≥ *minsup*
 - "Only" 2^d-1 possible itemsets to check
- Part 2: Association Rule Generation
 - Generate rules from frequent itemsets
 - Return rules with confidence ≥ minconf

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

Frequent itemsets:

{milk}, {cereal, milk}, {bread, milk}, ...

Association rules:

 $\{cereal\} \rightarrow \{milk\}$

Frequent Itemset Generation

Frequent Itemset Generation — Brute Force Algorithm

```
support\_counts \leftarrow dict(\{\})

for each transaction t in database:

for k in 1..(t.length):

k\_itemsets \leftarrow generate\_itemsets(t,k)

for each itemset in k\_itemsets:

support\_counts[itemset] += 1
```

Global counter for all found itemsets

For each transaction, generate k-itemsets, with k = 1, 2, 3, ... (up to #items in transaction)

For k-itemset, increase its global counter by 1

Question: Why do we need to count 1-itemsets if an association rule requires at least 2 items?

Frequent Itemset Generation — Brute Force Algorithm

Complexity Analysis

Outline

- Association Rule Mining
 - Overview
 - Applications
- Definitions
- Algorithms
 - Brute-Force
 - A-Priori
- Discussion & Summary

Apriori Principle (Anti-Monotonicity Principle)

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

- Observation 2: If X and Y are itemsets and X⊆Y, then
 - $S(X) \ge S(Y)$
 - If Y is frequent, then X is frequent
 - If X is not frequent, then Y is not frequent

Apriori Principle (Anti-Monotonicity Principle)

Apriori Principle (Anti-Monotonicity Principle)

Apriori Algorithm

Notations

- L_k candidate k-itemsets
- \blacksquare F_k frequent k-itemsets $(F_k \subseteq L_k)$

For k in 1..w:

- Generate L_k from F_{k-1}
- Prune k-itemsets from L_k using F_{k-1}
- Calculate SC for remaining L_k itemsets
- Filter L_k itemsets with insufficient SC → F_k
- If $|F_k| = 0$, stop

Quick Quiz

Which of the four steps is generally the **most expensive** one?

For k in 1..w:

- Generate L_k from F_{k-1}
- Prune k-itemsets from L_k using F_{k-1}
- Calculate SC for remaining L_k itemsets
- Filter L_k itemsets with insufficient SC → F_k
- If $|F_k| = 0$, stop

Generate

B

Prune

C

Calculate

D

Filter

minsup = 0.4 → minimum support count: 2

Generating

Itemset
{bread}
(cereal)
{cheese}
{eggs}
{milk}
{yogurt}

Calculating

Itemset	sc	
{bread}	4	
{cereal}	3	
{cheese}	2	
(eggs)	1	
{milk}	4	
{yogurt}	4	

Itemset	sc
{bread}	4
{cereal}	3
{cheese}	2
{milk}	4
{yogurt}	4

Filtering:

Remove all L₁ itemsets with insufficient support count SC

minsup = 0.4 → minimum support count: 2

Generating

Itemset
{bread}
{cereal}
{cheese}
{eggs}
{milk}
{yogurt}

Calculating

Itemset	sc
{bread}	4
{cereal}	3
{cheese}	2
{eggs}	1
{milk}	4
{yogurt}	4

ng •

Itemset	sc
{bread}	4
{cereal}	3
{cheese}	2
{milk}	4
{yogurt}	4

Generating

li	temset
{	bread, cereal}
{	bread, cheese}
{	bread, milk}
{	bread, yogurt}
{	cereal, cheese}
{	cereal, milk}
{	cereal, yogurt}
{	cheese, milk}
{	cheese, yogurt}
{	milk, yogurt}

Calculating

Itemset	sc
{bread, cereal}	2
{bread, cheese}	1
{bread, milk}	3
{bread, yogurt}	3
{cereal, cheese}	1
{cereal, milk}	3
{cereal, yogurt}	2
{cheese, milk}	2
{cheese, yogurt}	2
{milk, yogurt}	3

J		

Itemset	sc
{bread, cereal}	2
{bread, milk}	3
{bread, yogurt}	3
{cereal, milk}	3
{cereal, yogurt}	2
{cheese, milk}	2
{cheese, yogurt}	2
{milk, yogurt}	3
!! !	

Filtering:

Remove all L_1 itemsets with insufficient support count SC

Filtering:

Remove all L_2 itemsets with insufficient support count S_{S_2}

minsup = 0.4 → minimum support count: 2

minsup = 0.4 → minimum support count: 2

Pruning:

Only {bread, milk, yogurt} is in F₃

- → {bread, cheese, milk, yogurt} ∉ F₄
- → SC({bread, cheese, milk, yogurt}) not needed!

- Output: All frequent itemsets F_i with
 - $i \ge 2$ cannot create rules from a single item
 - $|F_i| > 0$ set of itemsets is not empty

- Implementation details
 - Generating/Pruning How to get from F_{k-1} to L_k ?
 - Calculating How to calculate SC for L_k itemsets efficiently? (not covered here as this is done on the implementation level)

Itemset	sc	
{bread, cereal}	2	
{bread, milk}	3	
{bread, yogurt}	3	
{cereal, milk}	3	
{cereal, yogurt}	2	
{cheese, milk}	2	
{cheese, yogurt}	2	
{milk, yogurt}	3	
{bread, cereal, milk}	2	
{bread, milk, yogurt}	2	
{cereal, milk, yogurt}	2	F
{cheese, milk yogurt}	2	

Generating/Pruning: $F_{k-1} \times F_1$ Method

F₂: frequent 2-itemsets

L₂: 3-itemsets

Itemset {bread, cereal, cheese} {bread, cereal, milk} {bread, cereal, yogurt} {bread, cheese, milk} {bread, cheese, yogurt} {bread, milk, yogurt} {cereal, cheese, milk} {cereal, cheese, yogurt} {cereal, milk, yogurt} {cheese, yogurt, milk}

Pruning:

Delete all k-itemsets with at least one containing (k-1)-itemset not in F_{k-1}

L₃: 3-itemsets (pruned)

Itemset {bread, cereal, milk} {bread, cereal, yogurt} {bread, milk, yogurt} {cereal, milk, yogurt} {cheese, milk, yogurt}

Generating/Pruning: $F_{k-1} \times F_{k-1}$ Method

F₂: frequent 2-itemsets

Itemset

{bread, cereal}

{bread, milk}

{bread, yogurt}

{cereal, milk}

{cereal, yogurt}

{cheese, milk}

{cheese, yogurt}

{milk, yogurt}

Generating:

Merge frequent (k-1)-itemsets that overlap in (k-2) items to get all possible k itemsets

L_a: 3-itemsets

Itemset

{bread, cereal, milk}

{bread, cheese, milk}

{bread, cereal, yogurt}

{bread, cheese, yogurt}

{bread, milk, yogurt}

{cereal, cheese, milk}

{cereal, cheese, yogurt}

{cereal, milk, yogurt}

{cheese, milk, yogurt}

Pruning:

Delete all k-itemsets with at least one containing (k-1)-itemset not in F_{k-1}

L₃: 3-itemsets (pruned)

Itemset

{bread, cereal, milk}

{bread, cereal, yogurt}

{bread, milk, yogurt}

{cereal, milk, yogurt}

{cheese, milk, yogurt}

Calculating Support Counts

- Calculating SC for each candidate itemset in L_k
 - Requires **full scan** of database
 - For each transactions T, check for each itemset s if s∈T
 - If s∈T, **update** counter of s

→ This is the step we want to minimize!

L₃: 3-itemsets with SC values

Itemset	sc
{bread, cereal, milk}	2
{bread, cereal, yogurt}	1
{bread, milk, yogurt}	2
{cereal, milk, yogurt}	2
{cheese, milk, yogurt}	2

Two-Part Algorithm for Mining Association Rules

- Part 1 Frequent Itemset Generation
 - General itemsets with support ≥ *minsup*
 - Apriori algorithm

- Part 2: Association Rule Generation
 - Generate rules from frequent itemsets through binary partitioning of itemsets
 - Return rules with confidence ≥ minconf

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

Frequent itemsets:

{milk}, {cereal, milk}, {bread, milk}, ...

Association rules:

{cereal} → {milk}

Rule Generation

- For each frequent itemset S, derive candidate rules X→Y
 - A rule is a binary split of s, i.e., Y=S-X

- For each rule X→Y
 - Calculate confidence $C(X \rightarrow Y)$
 - If confidence ≥ minconf, add rule to final result set

2^{|S|}-2 possible rules for each frequent itemset

$$C(X \to Y) = \frac{SC(X \cup Y)}{SC(X)} \longleftarrow$$

Both values have been calculated during Frequent Itemset Generation!

- → No need to access database
- → Fast

Apriori Principle (Anti-Monotonicity Principle)

• Given itemset S and two derived rules $X_1 \rightarrow Y_1$, $X_2 \rightarrow Y_2$ with $X_1 \cup Y_1 = X_2 \cup Y_2 = S$

$$C(X_1 \to Y_1) = \frac{S(X_1 \cup Y_1)}{S(X_1)}$$
 $C(X_2 \to Y_2) = \frac{S(X_2 \cup Y_2)}{S(X_2)}$

$$X_1 \subseteq X_2 \Rightarrow S(X_1) \ge S(X_2)$$

 $\Rightarrow C(X_1 \to Y_1) \le C(X_2 \to Y_2)$

- Example: If {A,B,C}→{D} has low confidence, so have:
 - $\blacksquare \ \ \{A\} {\longrightarrow} \{B,C,D\}, \ \{B\} {\longrightarrow} \{A,C,D\}, \ \{C\} {\longrightarrow} \{A,B,D\}, \ \{A,B\} {\longrightarrow} \{C,D\}, \ \{A,C\} {\longrightarrow} \{B,D\}, \ \{B,C\} {\longrightarrow} \{A,D\} \}$

Apriori Principle (Anti-Monotonicity Principle)

Rule lattice

Node: association rule

Edge: containment relationship w.r.t. antecedent/consequent

• 2^{|S|}-2 rules

S|=4 → 14 rules


```
YS = \{ \{s\} \mid s \in S \}
                                                                YS = \{ \{A\}, \{B\}, \{C\}, \{D\} \} \}
repeat:
    YS_{-}valid = \mathbf{evaluate}(S, YS, minconf)
    YS = \mathbf{generate}(YS\_valid)
until |YS| = 0
evaluate(S, YS, minconf):
    YS\_obsolete \leftarrow \{\}
    for each Y in YS:
                                                       Y = \{A\} \qquad Y = \{B\} \qquad Y = \{C\}
           X = S - Y
                                                        \{BCD\} \rightarrow \{A\} \mid \{ACD\} \rightarrow \{B\} \mid \{ABD\} \rightarrow \{C\}
          if C(X \to Y) > minconf:
                 output (X \to Y) as a valid rule
           else:
                 YS \ obsolete \leftarrow YS \ obsolete \cup Y
    return YS - YS obsolete
```

```
YS = \{ \{s\} \mid s \in S \}
repeat:
    YS_{-}valid = \mathbf{evaluate}(S, YS, minconf)
    YS = \mathbf{generate}(YS\_valid)
until |YS| = 0
evaluate(S, YS, minconf):
    YS\_obsolete \leftarrow \{\}
    for each Y in YS:
          X = S - Y
          if C(X \to Y) > minconf:
                output (X \to Y) as a valid rule
          else:
                YS \ obsolete \leftarrow YS \ obsolete \cup Y
    return YS - YS obsolete
```

```
Y = \{B, C\} \qquad Y = \{B, D\} \qquad Y = \{C, D\} \{AD\} \to \{BC\} \qquad \{AC\} \to \{BD\} \qquad \{AB\} \to \{CD\}
```

$$\{ \{B,C\}, \{B,D\}, \{C,D\} \}$$

```
YS = \{ \{s\} \mid s \in S \}
repeat:
    YS_{-}valid = \mathbf{evaluate}(S, YS, minconf)
    YS = \mathbf{generate}(YS\_valid)
until |YS| = 0
evaluate(S, YS, minconf):
    YS\_obsolete \leftarrow \{\}
    for each Y in YS:
          X = S - Y
         if C(X \to Y) \ge minconf:
                output (X \to Y) as a valid rule
          else:
                YS \ obsolete \leftarrow YS \ obsolete \cup Y
    return YS - YS obsolete
```

 $Y = \{B, C, D\}$ $\{A\} \to \{B, C, D\}$

 $\{ \{B,C,D\} \}$

```
YS = \{ \{s\} \mid s \in S \}
repeat:
    YS_{-}valid = \mathbf{evaluate}(S, YS, minconf)
    YS = \mathbf{generate}(YS_valid)
until |YS| = 0
evaluate(S, YS, minconf):
    YS\_obsolete \leftarrow \{\}
    for each Y in YS:
          X = S - Y
          if C(X \to Y) > minconf:
               output (X \to Y) as a valid rule
          else:
                YS \ obsolete \leftarrow YS \ obsolete \cup Y
    return YS - YS obsolete
```


Two-Part Algorithm for Mining Association Rules

- Part 1 Frequent Itemset Generation
 - General itemsets with support ≥ *minsup*
 - Apriori algorithm

- Part 2: Association Rule Generation
 - Generate rules from frequent itemsets through binary partitioning of itemsets

■ Return rules with confidence ≥ minconf

TID	Items
1	bread, yogurt
2	bread, milk, cereal, eggs
3	yogurt, milk, cereal, cheese
4	bread, yogurt, milk, cereal
5	bread, yogurt, milk, cheese

Frequent itemsets:

{milk}, {cereal, milk}, {bread, milk}, ...

Association rules:

{cereal} → {milk}

Definitions — Lift

- Lift of an association rule X→Y
 - Probability of Y given X while controlling for support of Y (i.e., popularity of Y)

$$L(X \to Y) = \frac{S(X \to Y)}{S(X)S(Y)} = \frac{S(X \cup Y)}{S(X)S(Y)}$$

TID	Items
1	bread, yogurt
2	bread, cereal, milk, eggs
3	yogurt, milk, cereal, cheese
4	bread, cereal, yogurt, milk
5	bread, yogurt, milk, cheese

$$L(\{cereal\} \rightarrow \{bread\}) = \frac{S(\{cereal, bread\})}{S(\{cereal\})S(\{bread\})} = \frac{0.4}{0.6 \cdot 0.8} = 0.833$$

Lift — Interpretation

$$L(\{cereal\} \rightarrow \{bread\}) = \frac{S(\{cereal, bread\})}{S(\{cereal\})S(\{bread\})} = \frac{0.4}{0.6 \cdot 0.8} = 0.833$$

- Probability of {bread} $S(\{bread\}) = 0.8$
- Probability of {bread} given {cereal} $C(\{cereal\} \rightarrow \{bread\}) = 0.66$

Presence of cereal **reduces** probability of bread!

$$\Rightarrow L(\{cereal\} \rightarrow \{bread\}) \le 1.0$$

- Usage of lift (and other metrics for association rules)
 - Further filtering and ranking of association rules
 - Finding "substitution" items

Note: Lift is not part of Apriori algorithm since anti-monotonicity principle does not hold here

Quick "Quiz"

Which association rule would you expect to have the **smallest lift**?

$$\{cereal\} \rightarrow \{milk\}$$

B

$$\{coke\} \rightarrow \{pepsi\}$$

C

$$\{milo\} \rightarrow \{nutella\}$$

D

$$\{banana\} \rightarrow \{grapes\}$$

Outline

- Association Rule Mining
 - Overview
 - Applications
- Definitions
- Algorithms
 - Brute-Force
 - A-Priori
- Discussion & Summary

Discussion

- Alternative metric to decide whether a rule is interesting (beyond confidence and lift)
 - Conviction, all-confidence, collective strength, leverage
- Additional useful information to consider, for example:
 - Attributes of items (e.g., quantity and price of products)
 - Sequence of items (e.g., order when products have be added to the cart)
 - Categories of items (e.g., "milk" and "yogurt" are both "dairy" products)
 - User information (e.g., associating multiple transactions to the same user)
- Reminder: Rules indicate correlations / co-occurrences, NOT causality!

Summary

- Pattern of interest: Association Rule X→Y
 - Predicting the occurrence of some items Y based on occurrence of other items X
 - Applicable to a wider range of task for transactional data
 - Various metrics that define whether a rule is useful (e.g., support, confidence, lift)
- Practical algorithm to handle complexity
 - Decoupling calculations of support and confidence
 - Apriori algorithm for Frequent Itemset Generation and Association Rule Generation

Solutions to Quick Quizzes

- Slide 22: C
- Slide 37: C
- Slide 57: B