

T81-574.02: Foundations of Analytics

Fall 2019

INSTRUCTOR: Dihui Lai, PhD

Senior Data Scientist @ RGA

Contact info (dlai@wustl.edu; dlai@rgare.com)

Master of Engineering Management The Henry Edwin Sever Institute | School of Engineering & Applied Science Washington University in St. Louis

COURSE OVERVIEW

The steeply decreasing costs to gather, store, and process data has created a strong motivation for organizations to move toward "data driven" approaches to problem solving. As such, data analytics continues to grow rapidly in importance across industry, government, and non-profit organizations. This course seeks to equip students with a wide range of data analytics techniques that serve as the foundation for a broad range of applications including descriptive, inferential, predictive, and prescriptive analytics. Students will learn the process of building a data model as well as a variety of analytics techniques and under what situations they are best employed. Through lectures and practical exercises, students will become familiar with the computational mathematics that underpin analytics; the elements of statistical model and machine learning; model interpretation and assessment; structured and unstructured data analysis. Students will also undertake a project to build an analytical model using a "real-world" data set.

TEXTBOOKS

- Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd Edition) ISBN: 0387848576
- Daniel Jurafsky, James H. Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition (2nd Edition) ISBN: 9780131873216

GROUPS

Please form a team of 4-5 members for the final project. Some homework will be assigned as group practice too. Please consider the following roles while you are forming a team: speaker, programmer, and project manager.

COURSE SCHEDULE

Date	Theme / Topics	Homework Due
08/27/2019	Introduction to data science/analytics	Start to form
	 Linear algebra review 	teams
	Python environment setup	

SCHOOL OF ENGINEERING & APPLIED SCIENCE

09/03/2019	Statistical description of structured data	Submit team			
	 Introduction to statistics: random variables, 	proposals			
	random distribution, histogram				
	Statistic distributions: Gaussian, Poisson etc.				
09/10/2019	Linear model and logistic regression	Homework 1			
	 Correlation 	771			
	 Linear regression; logistic regression 	Finalize			
	Optimization method I: Newton method and	teams			
	gradient descent				
09/17/2019	Generalized Linear Model				
	Exponential family				
	Generalized linear model				
09/24/2019	Statistical Modeling Framework	Homework 2			
	 Empirical modeling practices 				
	 Feature engineer; variable selection 				
	Model evaluations				
10/01/2019	Machine Learning I				
	 Naïve Bayesian 	Naïve Bayesian			
	• KNN				
10/08/2019	Machine Learning II: Tree Algorithms				
	CART model				
	 Random forest and GBM 				
	Optimization method II				
10/15/2019	Mid-Term Presentation	Homework 3			
10/22/2019	Machine Learning III:				
	 Random process, random walk 				
	Hidden Markov model				
	 Neural network basics; stochastic gradient 				
	descent				
10/29/2019	Nature Language Process I				
	 Text mining basics: regular expression, word 				
	count, bag of words				
	Word embedding; language model				
11/05/2019	Nature Language Process II	Homework 4			
	 Part-of-speech tagging 				
	 Named entity recognition 				
	 Document classification 				
11/12/2019	Unsupervised Learning				
	• PCA				
	K-mean clustering and hierarchical clustering				
11/19/2019	Image Analysis	Homework 5			
	Computer vision				
	Optical character recognition (OCR)				
11/26/2019	Thanksgiving Break – no classes				
12/03/2019	Last official day of class	Final paper			
	Final presentation				

COURSE GRADINGS

Grades will be based on the assignment sets (50%), mid-term presentation (20%) and final project (30%).

COURSE ASSIGNMENTS

There will be 5 course assignments that will be due bi-weekly. Students will have two weeks to complete and submit the assignment. Assignments are due in class on the due date. Late assignments will not be accepted. The homework can be submitted electronically.

GRADING SCALE:

Letter Grade	%	Points Toward GPA	Letter Grade	%	Points Toward GPA
A+	≥ 97%	4.0	C+	77% - 79%	2.3
A	93% - 97%	4.0	С	73% - 76%	2.0
A-	90% - 92%	3.7	C-	70% - 72%	1.7
B+	87% - 89%	3.3	D+	67% - 69%	1.3
В	83% - 86%	3.0	D	65% - 66%	1.0
B-	80% - 82%	2.7	F	< 65%	0.0

Privacy and Security

Recording of class sessions either audio or video is prohibited without permission from the instructor and the other class members.

Collaboration:

With the exception of your team projects, all assignments are to be completed on your own. You are encouraged to discuss ideas and techniques broadly with other class members, but all written or presentation work, whether in preliminary or final form, is to be generated by you working alone. If in doubt - *ask*.

Language Sensitivity

When in the classroom, all students should speak English at all times. While meeting with classmates on a classroom project, speak a language that every student present (in your group) understands, without exception.

Professionalism

You are part of a professional, graduate program. Consequently, it is expected that your fellow students conduct yourselves in a *professional* manner. This includes being on time for classes and meetings, being prepared, and participating in class discussions, group activities, projects,

etc. The level of professionalism you exhibit throughout the course will impact your final grade. It directly affects the participation portion of the grade but is also taken into consideration in all other aspects of the course as it reflects the overall quality of professional performance.

Mental Health Service

Mental Health Services' professional staff members work with students to resolve personal and interpersonal difficulties, many of which can affect the academic experience. These include conflicts with or worry about friends or family, concerns about eating or drinking patterns, and feelings of anxiety and depression. See: shs.wustl.edu/MentalHealth

Sexual Harassment

Sexual harassment is a form of discrimination that violates university policy and will not be tolerated. It is also illegal under state and federal law. Title IX of the Education Amendments of 1972 prohibits discrimination based on sex (including sexual harassment and sexual violence) in the university's educational programs and activities. Title IX also prohibits retaliation for asserting claims of sex discrimination. The university has designated the Title IX Coordinator identified below to coordinate its compliance with and response to inquiries concerning Title IX. For more information or to report a violation under the Policy on Discrimination and Harassment, please contact:

Discrimination and Harassment Response Coordinators

Apryle Cotton, Asst. Vice Chancellor for Human Resources

Section 504 Coordinator Phone: 314-362-6774

Email: apryle.cotton@wustl.edu

Leanne Stewart, Employee Relations Manager

Phone: 314-362-8278

Email: leannerstewart@wustl.edu

Title IX Coordinator

Jessica Kennedy, Director of Title IX Office

Title IX Coordinator Phone: 314-935-3118

Email: jwkennedy@wustl.edu

You may also submit inquiries or a complaint regarding civil rights to the United States Department of Education's Office of Civil Rights at 400 Maryland Avenue, SW, Washington, DC 20202-1100 or by visiting the <u>U.S. Department of Education website</u> or calling 800-421-3481.