LECTURE 7 SEP 11

Cosets

Author

Tom Jeong

September 11, 2024

Contents

1 Bijective homomorphism

3

1 Bijective homomorphism

A Bijective homomorphism is called an isomorphism.

Proposition 1.1 (2.4.9).

Let $f:G\to K$ be a group homomorphism.

- 1. the image $Imf \subseteq K$ is a subgroup of K.
- 2. The kernel $Kerf \subseteq G$ is a normal subgroup of G.
- 3. f is injective if and only if $Kerf = \{e\}$

Proof continutes.

2. Normality Let N = Kerf for every g in G and $n \in N$, $gng^{-1} \in N$.

$$f(gng^{-1}) = f(g)f(n)f(g)^{-1}$$
(1)

$$= f(g)f(g)^{-1} \tag{2}$$

$$=e$$
 (3)

so
$$(4)$$

$$gng^{-1} \in Kerf = N \forall g \in G, n \in N$$
 (5)

Hence
$$gNg^{-1} \subseteq N \ \forall g \in G$$
 (6)

3. \rightarrow Since $f(e_G) = e_K$ and f is injective. $kerf = \{e_G\}$

 \leftarrow Suppose $kerf = \{e_G\}$ and f(g) = f(h) then $f(gh^{-1}) = f(g)f(h)^{-1} = e$ so $gh^{-1} \in kerf = \{e_G\}$ so g = h so f is injective.

Theorem 1.2 (2.5.1 Isomorphism Theorem).

Leg G and K be groups and $f:G\to K$ a homomorphism with the kernel Kerf=N, then $\tilde{f}:G/N\to f(G)$ given by $\tilde{f}(gN)=f(g)$ is well defined and a group isomorphism.

Proof. Notice that $f(x) = f(y) \iff f(y)^{-1}f(x) = e_K \iff f(y^{-1}x) = e_K \iff y^{-1}x \in N \iff xN = yN \text{ so } \tilde{f} \text{ is well defined.}$

Recall lemma 2.2.6 -ii that $y^{-1}x \in N \iff xN = yN$ so \tilde{f} . Hence

$$f(x) = f(y) \iff xN = yN$$

 \rightarrow gives that \tilde{f} is injective.

 \leftarrow give that well defined

Proposition 1.3 (2.4.9).

states that Kerf = N is normal so \tilde{f} is a homomorphism since $\tilde{f}((g_1N)(g_2N)) = \tilde{f}(g_1g_2N) = f(g_1g_2) = f(g_1)f(g_2) = \tilde{f}(g_1N)\tilde{f}(g_2N)$ Now \tilde{f} is surjective because f is surjective onto f(G) so \tilde{f} is an isomorphism.

example: D_3 is the symmetries of a triangle; define $f: D_3 \to \mathbb{Z}/2\mathbb{Z}$ by sending rotations (including e) to [0] and [1]

 $Kerf = \{e, r_1, r_2\} = N$ so by Isomorphism Theorem, $\tilde{f}: D_3/N \to \mathbb{Z}/2\mathbb{Z}$ is an isomorphism. $\{e, r_1, r_2\} = eN \mapsto [0]$ $\{s_1, s_2, s_3\} = s_1N \mapsto [1]$

Examples: det $(GL_2(\mathbb{R}), \cdot) \to (\mathbb{R}^*, \cdot)$ is a homomorphism. the kernel is the set of matrices with determinant 1.

 $kerdet = \{A \in GL_2(\mathbb{R}) | detA = 1\} = SL_2(\mathbb{R})$ is a normal subgroup of $GL_2(\mathbb{R})$ and $SL_2(\mathbb{R}) \cong \mathbb{R}^*$

$$\tilde{det}: GL_2(\mathbb{R}/SL_2(\mathbb{R})) \to \mathbb{R}^*$$

is an isomorphism

Another example. Let $K = \{z \in \mathbb{C} | |z| = 1\}$ be the unit circle in \mathbb{C} and $G = \mathbb{R}$ be the group of real numbers under addition. (K,\cdot) is a group and define $f:(\mathbb{R},+)\to (K,\cdot)$ by $f(x)=e^{2\pi ix}$ By Isom Theorem

$$\mathbb{R}/2\pi\mathbb{Z}\cong K$$

Consider
$$g \in G$$
, $n \in \mathbb{Z}^+$, $g^n = \underbrace{g \cdot g \cdot \ldots \cdot g}_{n \text{ times}}$ and $g^{-n} = \underbrace{g^{-1} \cdot g^{-1} \cdot \ldots \cdot g^{-1}}_{n \text{ times}}$ so $g^n \cdot g^{-n} = e_G$

Proposition 1.4 (2.6.1).

Let G be a group and $g \in G$

 $f_g: \mathbb{Z} \to G$

 $f_q(n) \rightarrow g^n$

is a homomorphism

Definition 1.1. 1. the image of f_g is the cyclic subgroup of G generated by g and is denoted $\langle g \rangle$

- 2. we will call — $\langle g \rangle$ the order of g and write |g| or ord G
- 3. Alternatively the order of element $g \in G$ is the smallest posirie integer n such that $g^n = e$

Note If $g^n \neq e$ for only $n \in \mathbb{Z}^+$ then $|g| = \infty$

Definition 1.2. D_3 order of $r_1 = 3$ and order of $s_1 = 2$

Proposition 1.5 (2.6.3).

Let G be a finite group and $g \in G$.

- 1. the order ord g of g divides the order of G
- 2. $g^{|G|} = e$
- 3. if $g^n = e$ then for some positive n, ord(g)|n

Proof.

- 1. $ord(g) = |\langle g \rangle|$ and BY Lagrange's Theorem $|G| = |\langle g \rangle| \cdot [G:\langle g \rangle]$ so ord(g) ||G|
- $2. \ g^{|G|} = g^{|\langle g \rangle| \cdot [G:\langle g \rangle]} = (g^{ord(g)})^{[G:\langle g \rangle]} = e^{[G:\langle g \rangle]} = e$
- 3. If $g^n=e$ then $n\in kerf_g=n_g\mathbb{Z}$ for some $n_g\neq 0$ so we have that $n_g=ord(g)$ so ord(g)|n