ControlBurn: Feature Selection by Sparse Forests

2022年6月7日 @ 読み会

発表者:楊明哲

論文情報と選択理由

論文情報

ControlBurn: Feature Selection by Sparse Forests

Brian Liu Cornell University Miaolan Xie Cornell University Madeleine Udell Cornell University

選択理由

特徴量選択手法は説明性、公平性にも大きく関わるから Kaggleの特徴量をとりあえず全部つっこむことに納得できない

TreeBaseの特徴量選択手法を提案

背景:決定木+アンサンブル手法は精度、解釈性ともに優秀

問題:特徴量同士に相関があるデータでは、

特徴量重要度が当てにならない → 相関バイアスに弱い

提案:特徴量選択に重み付きLASSOを適用

結果:相関があるデータで既存の特徴量選択よりも

ROC-AUCが高く、かつ同等の計算コストに抑えた

決定木は相関バイアスに弱い

決定木ベースの手法は 精度と解釈性のバランスが良い アンサンブルベースは特徴量数が

大きい場合でもオーバフィットしにくい

ブースティング系の手法では特徴量重要

度の計算が容易

LightGBM, XGBoost, Scikit-learn
 Ø.feature_importance

相関バイアスによって特徴量重要度が変化する

相関がある特徴量同士で重要度が薄まってしまう

使わない特徴量を後から間引く

最初に決定木による深い森(アンサンブルツリー)を作り あとで必要ない木(特徴量)を燃やす**→** ♣ **→**

応用先

- 説明可能性:必要な特徴量を選択するから解釈しやすい!
- Optimal experimental design
 - 特徴量を取得するためのコストを削減できる
 - 医療分野とかでわざわざデータをとる時など

準備:決定木のいるいる

決定木:ジニ不純度や分類誤差を最小化するように学習

・深さが深くなるほど表現が細かくなる $(d \rightarrow 2^d)$

Bagging: bootstrapしたデータで

学習器を独立に学習,出力を統合して最終出力

Boosting:弱学習器を**直列**に繋いで学習

最終的にはそれぞれのモデルを統合して出力

Feature importance

・ ジニ不純度などを元に計算する → mean Decrease Impurity

Bagging: バリアンスが小さくなりやすい

複数で多数決するからバリアンスが抑えられる

Boosting:バイアスが小さくなりやすい

• 直前のモデルの出力を元にするからバイアスが抑えられる

準備:特徴量選択のいるいる

→ 必要な特徴量を選択したい!

データの中にはモデル性能に影響しない特徴量があるはず モデルがノイズに対して頑健ならいいが、そうはいかない

既存手法3パターン

Filter base: データ統計から特徴量を評価

Wrapper:機械学習モデルを使って評価

Embedding:モデル学習と同時に評価 (e.g. Lasso)

提案手法:Lasso的な制約で特徴量選択

 t_i for $i \in \{1,2,...,n\}$: n個の決定木

 $\alpha_i \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n}$:分類木のmクラスの出力結果

 $g_i \in \{0,1\}^p, G \in \mathbb{R}^{p \times n}$: p個の特徴量を使うかどうかのマスク

 $w \in \mathbb{R}^n$: 決定木の重みパラメータ

λ: 正則化パラメータ

Lasso的な制約で最適化問題とする

minimize $\frac{1}{m}L(A,$ subject to $w \ge 0$,

$$\frac{1}{m}L(A, w, y) + \lambda \|Gw\|_1$$
 $w \geq 0$, Group Lassoみたいな罰則項

wによって赤い枠がきまる

色付きノードが使用する特徴量 \rightarrow Gにより決定

提案手法:森を育てて、木を間引く

森を育てる:決定木の学習方法を2つ提案

- Incremental depth bagging
- Incremental depth bag-boosting

木を間引く:前述の最適化問題を解く

→森を育てるパートと木を間引くパートはそれぞれ独立する

Incremental depth bagging

ハイパラとして最大深さ d_{max} を設定

収束したら木の深さを深くする

Train誤差が十分小さい→baggingは

過学習しにくい+計算が早い

Algorithm 1 Incremental Depth Bagging.

Input: maximum depth d^{max}

- 1: Initialize $d \leftarrow 1, F \leftarrow \emptyset$
- 2: while $d \leq d^{\max} do$
- 3: Sample bag X' from X with replacement
- 4: Fit tree t of depth d on X', y
- 5: Add tree t to forest: $F \leftarrow F \cup t$
- 6: Compute train error of forest *F*
- 7: If train error has converged §3.2.1, increment $d \leftarrow d+1$

Output: Forest F

Incremental depth bag-boosting

• d_{max} は残渣から自動調整できる \rightarrow 改善される限り深く!

```
Algorithm 2: Incremental Depth Bag-Boosting.

    Initialize d ← 1, F' ← ∅, F ← ∅, δ > 0

2 Initialize F(x) by predicting the mean/majority class of y, set e \in \mathbb{R}^m as the vector of residuals
3 while \delta > 0 do
                                                                                                                                              Compute residuals of F<sub>1</sub>
       Sample bag X' from X with replacement
                                                                                                                                                              Fit F<sub>2</sub> on residuals and
       Fit tree t of depth d on X', e
                                                                                                                                                              compute OOB error
       F' \leftarrow F' \cup t
       Compute train error of forest F \cup F'
       if train error has converged §3.2.1 then
           F \leftarrow F \cup F'
           Set e as negative gradient of loss
10
                                                                                                                                              Compute residuals
           Increment d \leftarrow d + 1
11
           Set \delta, the improvement in OOB error from F'
12
           F' \leftarrow \emptyset
13
  Output: Forest F
                                                                                                                                  Repeat until OOB error
```

converges

実験:提案の特徴量選択手法の妥当性を見る

Semi-synthetic:

- ・人工的に相関のある特徴量を追加
- 相関バイアスを上手に扱えるかを見る

Benchmark:

● 43のデータセットで既存手法とROC-AUCの改善を見る

Case studies:

リアルデータセットでどうなるか見る

ベンチマークと計算量評価

事前に全てのデータを使ってランダムフォ レストを学習

特徴量重要度を元に

上位は個の特徴量を選択

選択された特徴量だけで再学習

→ ベンチマークとする

Wrapper-base手法のRecursive Feature Eliminationと計算量比較する

結果:相関バイアスの影響を受けにくかった

Random Forestの特徴量重要 度上位にノイズを加えて、新た な特徴量として追加

ノイズ特徴量が増加しても |影響が受けずに頑健

Benchmark:既存手法より精度が高め

特徴量数をk = 1,2,...,10を 使ったROC-AUCの度数分布

ベンチマークより精度向上が 見られた

Case Studies: リアルデータのノイズでも利用可能だった

リアルデータセットでの相関バイアスが改善

縦軸太字が提案による

上位特徵量

横軸が既存手法の

上位特徵量

Fnlwgtがなぜか上位に来 ているのが消えている

まとめ

- 重み付きLassoベースの 特徴量選択を行うアルゴリズムを提案
- さまざまなデータセットを用いて、既存手法と比べ 相関バイアスに対して頑健であることを示した

感想

- 特徴量選択のモチベーションもわかりやすく、手法のやりたいこともわかったが、実際の学習方法が少し曖昧
- 昔Human boosting読んだが,
 Human Stacking, Human NNとかってあるのか気になった
- 公平性に関していうと、レッドライン効果に対して使えそう
- 相関のある特徴量においてどっちが本質か決定するの難しそう