

FIG. 2

Encryption Procedure

Take of message M as an element in a Galois field $GF(2^k)$ and Operate with secret polynomials $\beta 1(\alpha), \dots, \beta t(\alpha)$ F(X): Primitive polynomial in $GF(2^k)$, $F(\alpha)=0$, $M(\alpha)=M\beta 1(\alpha)\cdot M\beta 2(\alpha)\cdots M\beta t(\alpha)$ mod $F(\alpha)$

Scramble $M(\alpha)$ with noise $r(\alpha)$: $M(\alpha) |_{\Gamma(\alpha)} \longrightarrow \Gamma \in GF(2^n)$ $r(\alpha) \in Galois \ Field \ GF(2^{n-k}),$ Φ^{-1}_{nk} : Mapping given by combining $M(\alpha)$ and $r(\alpha)$ in series and Permutation between them.

```
\Gamma \mid \longrightarrow C = \{C_i(M)\}

Multiply \Gamma by \gamma^x and get C(M):

C_i(M) is the ith order coefficient of C(M) in GF(2^n)(i=0 \sim n-1).

C_i(M) H(X): Primitive polynomial in C_i(M):

C_i(M) is the ith order coefficient of C_i(M) in C_i(M):

C_i(M) is the ith order coefficient of C_i(M) is the ith order coefficient of C_i(M) in C_i(M) is the ith order coefficient of C_i(M) in C_i(M) is the ith order coefficient of C_i(M) in C_i(M) in C_i(M) is the ith order coefficient of C_i(M) in C_i(M) in C_i(M) is the ith order coefficient of C_i(M) in C
```

End

FIG. 3

Equivalent Procedure to the Encryption

Message $M=(m1,\dots,mk)$ is transformed into $C(M)=\{Ci(M)\}$ by substituting M for X in Public key $C(X)=\{C1(X),\dots,Cn(X)\}$.

Ci(M): Polynomials in m1,...,mk

End

FIG. 4

FIG. 5

FIG. 6

