Stable simulation of a lumped element rod

Claude Lacoursière
HPC2N/UMIT
and
Department of Computing Science
Umeå University
SE-901 87, Umeå, Sweden
claude@hpc2n.umu.se

April 4, 2016

contact.tex 768 2016-04-04 07:48:45Z claude

Abstract

1 Introduction

2 Lumped element model

We consider a one dimensional rod with N elements of identical mass m and coordinate θ , coupled with spring-damper forces

$$\tau^{(i,i+1)} = -K(\theta^{(i)} - \theta^{(i+1)}) - \gamma(\omega^{(i)} - \omega^{(i+1)}), \text{ and } \tau^{(i+1,i)} = -\tau^{(i,i+1)}. \tag{1}$$

We are particularly interested in the case where K is arbitrarily large, even including $K = \infty$, which justifies the choice of implicit integration below.

The rod can also be forced externally with $\tau^{(1)}$ and $\tau^{(N)}$. In addition to this, it can be subjected to force-velocity coupling with external dynamical systems, assuming these are physical. This is done by adding input spring-dampers at either end which produce forces according to

$$\tau^{\,(c,i)} = -K^{\,(c)}(\theta^{\,(i)} - \bar{\theta}^{\,(c,i)}) - \gamma^{\,(c)}(\omega^{\,(i)} - \bar{\omega}^{\,(c,i)}) \tag{2}$$

where $(\bar{\cdot})$ are either last known quantities, or extrapolations. We also consider the case where only the velocity $\bar{\omega}^{(c,i)}$ is known in which case we have

$$\tau^{(c,i)} = -K^{(c)}\delta\theta^{(i)} - \gamma^{(c)}(\omega^{(i)} - \bar{\omega}^{(c,i)}) \text{ with}$$

$$\dot{\delta\theta}^{(i)} = \omega^{(i)} - \bar{\omega}^{(e,i)}.$$
(3)

This coupling force is reported to the coupled element of course. Given the input and output signals here, this rod can be coupled to other subsystems either kinematically, or via force-velocity or even force-displacements couplings.

Given stiffness requirements, we use a stable integrator, namely, Spook. To get maximum stability, we first introduce the matrix \bar{G} which contains internal, pairwise interactions as

$$\bar{G} = \begin{bmatrix} 1 & -1 & 0 & 0 & \cdots \\ 0 & 1 & -1 & 0 & \cdots \\ \vdots & 0 & \ddots & \ddots & \ddots \\ \vdots & \vdots & \vdots & 1 & -1 \end{bmatrix} . \tag{4}$$

Given its form, the implication here is that $G\theta = 0$ is the unique rest configuration, where

$$\theta = \left[\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n)}\right]^T. \tag{5}$$

Henceforth, quantities without superscripts are understood to be vectors or matrices. We can therefore associate a potential energy

$$U = \frac{1}{2} \theta^T \bar{G}^T K \bar{G} \theta. \tag{6}$$

If we include the external forces due drivers, again, anticipating very high stiffness, we need two additional rows so that

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & -1 & 0 & 0 & \cdots \\ 0 & 1 & -1 & 0 & \cdots \\ \vdots & 0 & \ddots & \ddots & \ddots \\ \vdots & \vdots & \ddots & 1 & -1 \\ \vdots & \vdots & \vdots & 0 & 1 \end{bmatrix} . \tag{7}$$

Under infinite stiffness, these additional rows impose the constraint

$$\omega^{(i)} = \bar{\omega}^{(e,i)}.\tag{8}$$

FiXme Note: The form of the matrix in Eqn. (7) isn't implemented as an option yet meaning that it isn't possible to drive the rod with a hard kinematic driver. The reason being that we would need a special flag to

FiXme Note: no nonholonomic coupling now **choose which form the system matrix takes.** This can also be modified to include the case of displacement-displacement coupling as described further below, as well as the case of high but finite stiffness for coupling.

After a Legendre transform and discretization with fixed step h and discrete time k we arrive at

$$\begin{bmatrix} \mathcal{J} & -G^T \\ G & \tilde{K}^{-1} \end{bmatrix} \begin{bmatrix} \omega_{k+1} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathcal{J}\omega_k + h\tau \\ -\frac{4}{h}\gamma G\theta_k + \gamma G\omega_k \end{bmatrix}$$

$$\theta_{k+1} = \theta_k + h\omega_k$$
(9)

where \mathcal{J} is the (diagonal) inertia matrix and

$$\gamma=\frac{1}{1+4\rho/h}$$
 and ρ is a relaxation rate
$$\tilde{K}=\frac{h^2K^{(i)}}{4\gamma} \eqno(10)$$

The ρ parameter has units of inverse time and describes a relaxation rate, i.e., damping, and ρ/h is the number of steps it takes to loose half the excitation amplitude locally. When this is set to $\rho/h=2$, the energy dissipates rapidly, and this provides unconditional stability via numerical damping. However, as soon as we reach $\rho/h < 1/10$ or so, we have natural damping.

We can of course eliminate the Lagrange multipliers λ and solve instead

$$\left[\mathcal{J} + G^T \tilde{K} G\right] \omega_{k+1} = \mathcal{J} \omega_k + h\tau - \frac{4\gamma}{h} G^T \tilde{K} G \theta_k + \gamma G^T \tilde{K} G \omega_k. \tag{11}$$

where \tilde{K} is defined as before in Eqn. (10). This requires finite K however. But we can mix the two methods and treat the external forcing terms using the relevant part of Eqn. (11) and the rest with Eqn. (9).

3 Coupling details

Coupling to other simulations comes in various forms. A pure torque coupling simply adds $h\tau^{(i,c)}$ to the RHS in Eqn. (9). A velocity or displacement coupling adds $\frac{h^2}{4\gamma}K^{(i,c)}$ to the diagonal as well as

$$h\tau^{(i,c)} = -hK^{(i,c)}(\theta^{(i)} - \bar{\theta}^{(i,c)}) + \frac{h^2}{4}(\omega^{(i)} - \bar{\omega}^{(i)})$$
(12)

or

$$h\tau^{(i,c)} = -K^{(i,c)}\delta\theta^{(i)} + \frac{h^2}{4}(\omega^{(i)} - \bar{\omega}^{(i)})$$
(13)

on the RHS of Eqn. (9). For the latter case, we update $\delta\theta^{(i)}$ with

$$\delta\theta_{k+1}^{(i)} = \delta\theta_k^{(i)} + h(\omega_{k+1}^{(i)} - \bar{\omega}^{(i,c)}). \tag{14}$$

Rev: 768, April 4, 2016

contact.tex

Output variables.

Name	Symbol	Variable	Value ref.	Default	Causality
First angle	θ_1	theta1	0		
Last angle	θ_2	theta2	1		
First angular speed	ω_1	omega1	2		
Last angular speed	ω_2	omega2	3		
First angular acceleration	α_1	alpha1	4		
Last angular acceleration	α_2	alpha2	5		
First angle difference	$\delta heta_1$	dtheta1	6		
Last angle difference	$\delta heta_2$	dtheta2	7		
First output torque	$ au^{(c,1)}$	out_torque1	8		
Last output torque	$ au^{(c,N)}$	out_torque2	9		

Inputs.

Name	Symbol	Variable	Value ref.	Default	Causality
First input torque	$ au^{(1)}$	tau1	10		
Last input torque	$ au^{(N)}$	tau2	11		
First driving displacement	$\bar{\theta}^{(c,1)}$	theta_drive1	12		
First driving velocity	$\bar{\omega}^{(c,1)}$	omega_drive1	13		
Last driving displacement	$\bar{\theta}^{(c,N)}$	theta_drive2	14		
Last driving velocity	$\bar{\omega}^{(c,N)}$	omega_drive2	15		

Parameters.

Name	Symbol	Variable	Value ref.	Default	Causality
Moment of inertia	\mathcal{J}	J	16		
Compliance	K^{-1}	compliance	17		
Damping rate	ho/h	D	18		
First driving spring	$K^{(c,1)}$	K_drive1	19		
First driving damping	$\gamma^{(c,1)}$	D_drive1	20		
Last driving spring	$K^{(c,2)}$	K_drive2	21		
Last driving damping	$\gamma^{(c,2)}$	D_drive2	22		
Time step	h	step	23		
Number of elements	N	${ t n}_{ t e}$ lements	24		
First initial angle	$\theta_0^{(1)}$	theta01	25		
Last initial angle	$\theta_0^{(N)}$	theta02	26		
First initial angular speed	$\omega_0^{(1)}$	omega01	27		
Last initial angular speed	$\omega_0^{(2)}$	omega02	28		
Sign for the first driver	$\sigma^{(1)}$	driver_sign1	29		
Sign for the last driver	$\sigma^{(N)}$	driver_sign2	30		
Integrate angle difference 1		integrate_dt1	31		
$\begin{array}{ccc} \text{Integrate} & \text{angle} \\ \text{difference} & N \end{array}$		integrate_dt2	32		

4 Conclusion

Acknowledgments

References