Advanced Mathematical Reference

Contents			1.2 Set Operations
1	Set Theory	1	• $A \cup B$: Union
	1.1 Basic Definitions	1	• $A \cap B$: Intersection
	1.2 Set Operations	1	• $A \setminus B$: Set difference
2	Linear Algebra	1	• A^c : Complement of A
	2.1 Vector Spaces	1	
	2.2 Linear Independence	1	• $\mathcal{P}(A)$: Power set of A
	2.3 Basis and Dimension	1	
	2.4 Linear Transformations	1	2 Linear Algebra
	2.5 Matrices	2	2.1 Vector Spaces
3	Analysis	2	 Definition 2.1. A vector space V over a field F is a set with operations + and · satisfying: 1. Closure under addition and scalar multiplication
	3.1 Limits	2	
	3.2 Continuity	2 2	
	3.4 Integration	2	2. Associativity and commutativity of addition
1	Topology	2	3. Existence of zero vector and additive inverses
4	4.1 Metric Spaces	2	4. Distributivity of scalar multiplication over vector addition
	4.2 Open and Closed Sets	2	
5	Complex Analysis	2	5. Distributivity of scalar multiplication over field addition
	5.1 Complex Numbers	2	6. Associativity of scalar multiplication
	5.2 Analytic Functions	2	7. Existence of multiplicative identity for scalars
	5.3 Cauchy-Riemann Equations	2	
	5.4 Contour Integration	2	2.2 Linear Independence
6	Probability and Statistics	2	Definition 2.2. Vectors $\{v_1, \ldots, v_n\}$ are linearly independent if $\sum_{i=1}^n c_i v_i = 0$ implies $c_i = 0$ for all i .
	6.1 Probability Basics	2	
	6.2 Random Variables	2	
	6.3 Common Distributions	2	2.3 Basis and Dimension
1	Set Theory		Definition 2.3. A basis for a vector space V is a linearly independent set that spans V. The dimension of V is the cardinality of its basis.
1.	1 Basic Definitions		2.4 Linear Transformations
•	Set: Collection of distinct objects		
•	• Ø: Empty set		Definition 2.4. A linear transformation $T: V \to W$ is a function satisfying:
•	${x: P(x)}$: Set of all x satisfying property P		1. $T(u + v) = T(u) + T(v)$
•	$A \subseteq B$: A is a subset of B		$2. \ \ T(cv) = cT(v)$

2.5 Matrices

• Matrix multiplication: $(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

• Determinant (2x2): $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$

• Trace: $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$

• Eigenvalues: $det(A - \lambda I) = 0$

• Eigenvectors: $(A - \lambda I)v = 0$

3 Analysis

3.1 Limits

Definition 3.1. $\lim_{x\to a} f(x) = L$ if $\forall \epsilon > 0, \exists \delta > 0$ such that $0 < |x-a| < \delta \implies |f(x) - L| < \epsilon$

3.2 Continuity

Definition 3.2. f is continuous at a if $\lim_{x\to a} f(x) = f(a)$

3.3 Differentiation

• $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

• Product rule: (fg)' = f'g + fg'

• Chain rule: $(f \circ g)' = (f' \circ g) \cdot g'$

3.4 Integration

• Definite integral: $\int_a^b f(x)dx = \lim_{n\to\infty} \sum_{i=1}^n f(x_i^*) \Delta x$

• Fundamental Theorem of Calculus:

1. If F' = f, then $\int_{a}^{b} f(x)dx = F(b) - F(a)$

 $2. \ \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$

4 Topology

4.1 Metric Spaces

Definition 4.1. A metric space (X, d) is a set X with a function $d: X \times X \to R$ satisfying:

1. $d(x, y) \ge 0$ and d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x)

3. $d(x, z) \leq d(x, y) + d(y, z)$

4.2 Open and Closed Sets

• Open ball: $B_r(x) = \{ y \in X : d(x,y) < r \}$

• Open set: A \subseteq X is open if $\forall x \in A, \exists r > 0$ such that $B_r(x) \subseteq A$

• Closed set: A is closed if A^c is open

5 Complex Analysis

5.1 Complex Numbers

• z = a + bi, where $i^2 = -1$

 $\bullet |z| = \sqrt{a^2 + b^2}$

• $\bar{z} = a - bi$

• $e^{i\theta} = \cos\theta + i\sin\theta$

5.2 Analytic Functions

Definition 5.1. f is analytic at z_0 if it is differentiable in a neighborhood of z_0 .

5.3 Cauchy-Riemann Equations

For f(x + yi) = u(x, y) + v(x, y)i:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

5.4 Contour Integration

• $\oint_C f(z)dz = \int_a^b f(z(t))z'(t)dt$

• Cauchy's Integral Formula: $f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z-a} dz$

6 Probability and Statistics

6.1 Probability Basics

 $\bullet \ P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• $P(A|B) = \frac{P(A \cap B)}{P(B)}$

• Bayes' Theorem: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

6.2 Random Variables

• Expected value: $E[X] = \sum_{x} x P(X = x)$ or $\int_{-\infty}^{\infty} x f(x) dx$

• Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$

6.3 Common Distributions

• Binomial: $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$

• Poisson: $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$

• Normal: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$