On an Algebraic Identity

September 19, 2008

Roberto Bosch Cabrera

Abstract

We solve problem U23 from Mathematical Reflections (which remained open for a while.) We use a simple algebraic identity concerning polynomials and their derivatives, demonstrating its usefulness in solving problems.

U23. Evaluate the sum

$$\sum_{k=0}^{n-1} \frac{1}{1 + 8\sin^2(\frac{k\pi}{n})}$$

Dorin Andrica and Mihai Piticari

Solution:

It is well known that

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

SO

$$1 + 8\sin^{2}\left(\frac{k\pi}{n}\right) = 5 - 2\left(e^{i\frac{2k\pi}{n}} + e^{-i\frac{2k\pi}{n}}\right).$$

Let

$$e^{i\frac{2k\pi}{n}} = \xi_k$$

then we need to find the following sum:

$$\sum_{k=0}^{n-1} \frac{\xi_k}{-2\xi_k^2 + 5\xi_k - 2}.$$

But we know the following

$$\frac{x}{-2x^2 + 5x - 2} = \frac{-x}{(2 - x)(1 - 2x)} = \frac{2}{3} \cdot \frac{1}{2 - x} - \frac{1}{3} \cdot \frac{1}{1 - 2x}$$

so it follows that

$$\sum_{k=0}^{n-1} \frac{\xi_k}{-2\xi_k^2 + 5\xi_k - 2} = \frac{2}{3} \cdot \sum_{k=0}^{n-1} \frac{1}{2 - \xi_k} - \frac{1}{6} \cdot \sum_{k=0}^{n-1} \frac{1}{\frac{1}{2} - \xi_k}.$$

Observe that ξ_k , k = 0, ..., n - 1 are the n roots of the polynomial $p(x) = x^n - 1$.

So we have to solve the following subproblem:

Let a_k (k = 1, ..., n) be the roots of the polynomial p(x) of degree n. Find the sum:

$$\sum_{k=1}^{n} \frac{1}{x - a_k}$$

This question is well known and it was the motivation to write this article. The answer is quite simple

$$\sum_{k=1}^{n} \frac{1}{x - a_k} = \frac{p'(x)}{p(x)}.$$
 (1)

We continue with the proof to the above statement. Because $p(x) = (x - a_1) \cdots (x - a_n)$ then the product rule of differentiation yields

$$p'(x) = (x - a_2) \cdots (x - a_n) + \cdots + (x - a_1) \cdots (x - a_{n-1})$$

and we are done.

Now we turn to the solution of U23:

In this case $p(x) = x^n - 1$ so $\frac{p'(x)}{p(x)} = \frac{nx^{n-1}}{x^n - 1}$. We know the following equalities are true

$$\sum_{k=0}^{n-1} \frac{1}{2-\xi_k} = \frac{p'(2)}{p(2)} = \frac{n2^{n-1}}{2^n - 1}$$

and

$$\sum_{k=0}^{n-1} \frac{1}{\frac{1}{2} - \xi_k} = \frac{p'(\frac{1}{2})}{p(\frac{1}{2})} = \frac{\frac{n}{2^{n-1}}}{\frac{1}{2^n} - 1} = \frac{2n}{1 - 2^n}.$$

Finally

$$\sum_{k=0}^{n-1} \frac{1}{1 + 8\sin^2(\frac{k\pi}{n})} = \frac{2}{3} \cdot \frac{n2^{n-1}}{2^n - 1} - \frac{1}{6} \cdot \frac{2n}{1 - 2^n} = \frac{n}{3} \cdot \frac{2^n + 1}{2^n - 1}.$$

We now discuss some problems and leave others for the reader to solve.

1. Let p(x) be a non-constant polynomial with real roots. Prove that

$$p'(x)^2 \ge p(x)p''(x)$$
 for all $x \in \mathbb{R}$.

(Martin Aigner, Günter M. Ziegler, Proofs from The Book, Third edition)

Solution:

If $x = a_i$ is a root of p(x), then there is nothing to show. Assume that x is not a root, then

$$\frac{p'(x)}{p(x)} = \sum_{k=1}^{n} \frac{1}{x - a_k}.$$

Differentiating this expression we obtain

$$\frac{p''(x)p(x) - p'(x)^2}{p(x)^2} = -\sum_{k=1}^{n} \frac{1}{(x - a_k)^2} < 0$$

and this concludes the proof.

2. Let P be an algebraic polynomial of degree n having only real zeros and real coefficients.

a) Prove that for every real x the following inequality holds:

$$(n-1)P'(x)^2 \ge nP(x)P''(x)$$
 (2)

b) Examine the cases of equality.

(IMC 1998)

Solution:

Observe that both sides of (2) are equal to zero if n = 1. Suppose that n > 1 and let $x_1, ..., x_n$ be the zeros of P. Clearly (2) is true when $x = x_i$, $i \in \{1, ..., n\}$, and equality is possible only if $P'(x_i) = 0$, i.e if x_i is a multiple zero of P. Now suppose that x is not a zero of P. Using the identities

$$\frac{P'(x)}{P(x)} = \sum_{i=1}^{n} \frac{1}{x - x_i}, \quad \frac{P''(x)}{P(x)} = \sum_{1 \le i \le j \le n} \frac{2}{(x - x_i)(x - x_j)}.$$

we find

$$(n-1)\left(\frac{P'(x)}{P(x)}\right)^2 - n\frac{P''(x)}{P(x)} = \sum_{i=1}^n \frac{n-1}{(x-x_i)^2} - \sum_{1 \le i < j \le n} \frac{2}{(x-x_i)(x-x_j)}.$$

But this last expression is simply

$$\sum_{1 \le i < j \le n} \left(\frac{1}{x - x_i} - \frac{1}{x - x_j} \right)^2$$

and therefore is positive. The inequality is proved. In order for (2) to hold with equality sign for every real x it is necessary that $x_1 = x_2 = \ldots = x_n$. A direct verification shows that indeed, if $P(x) = c(x - x_1)^n$, then (2) becomes an identity.

3. Suppose that every zero of the polynomial f(x) is simple. Find the sum of the reciprocals of the differences between the roots of the equation f'(x) = 0 and the roots of the equation f(x) = 0.

(E.J.Barbeau. Polynomials.)

Solution:

Let r_i be the zeros of f(x) and let s_j be the zeros of f'(x). Then, since

$$f'(x) = f(x) \sum (x - r_i)^{-1},$$

for each j we have:

$$0 = f'(s_j) = f(s_j) \sum_{i=1}^{n} (s_j - r_i)^{-1}.$$

Because $f(s_j) \neq 0$ then we can conclude that $\sum (s_j - r_i)^{-1} = 0$.

4. Determine those values of the real number a and positive integer n exceeding 1 for wich

$$\sum_{k=1}^{n} \frac{x_k + 2}{x_k - 1} = n - 3$$

where $x_1, ..., x_n$ are the zeros of $x^n + ax^{n-1} + a^{n-1}x + 1$.

(E.J.Barbeau. Polynomials.)

Solution: Let $p(x) = x^n + ax^{n-1} + a^{n-1}x + 1$ then $p'(x) = nx^{n-1} + a(n-1)x^{n-2} + a^{n-1}$. We have

$$\frac{x_k + 2}{x_k - 1} = 1 + \frac{3}{x_k - 1}$$

therefore

$$\sum_{k=1}^{n} \frac{x_k + 2}{x_k - 1} = n - 3\sum_{k=1}^{n} \frac{1}{1 - x_k} = n - 3\frac{p'(1)}{p(1)}$$

Mathematical Reflections 5 (2008)

and we have

$$n - 3 \cdot \frac{n + an - a + a^{n-1}}{a^{n-1} + a + 2} = n - 3$$

or equivalently (a+1)(n-2)=0, so a=-1 or n=2. The case a=-1 yields the polynomial $x^n-x^{n-1}-x+1=(x-1)(x^{n-1}-1)$. But in this case, one of the zeros is 1 and the left side of the given equation is undefined. Hence $a\neq -1$. The case n=2 yields the polynomial $x^2+2ax+1$, whose zeros can be verified to satisfy the condition, provided $a\neq -1$.

5. Let -1 < x < 1. Show that

$$\sum_{k=0}^{6} \frac{1 - x^2}{1 - 2x \cos(\frac{2k\pi}{7}) + x^2} = 7 \cdot \frac{1 + x^7}{1 - x^7}$$
 (3)

(Longlist IMO 1988)

Solution:

We will use the follwing fact

$$\cos\left(\frac{2k\pi}{7}\right) = \frac{e^{i\frac{2k\pi}{7}} + e^{-i\frac{2k\pi}{7}}}{2}.$$

Let

$$e^{i\frac{2k\pi}{7}} = \xi_k$$

so

$$\frac{1-x^2}{1-2x\cos(\frac{2k\pi}{7})+x^2} = \frac{2(1-x^2)\xi_k}{-2x\xi_k^2 + (2+2x^2)\xi_k - 2x}.$$

The discriminant of the quadratic $-2x\xi_k^2 + (2+2x^2)\xi_k - 2x$ is $D = 4(1-x^2)^2$. Therefore $\sqrt{D} = 2|1-x^2| = 2(1-x^2)$ and the zeros are x and $\frac{1}{x}$. We have $-2x\xi_k^2 + (2+2x^2)\xi_k - 2x = -2x(\xi_k - x)(\xi_k - \frac{1}{x})$. Finally,

$$\frac{1-x^2}{1-2x\cos(\frac{2k\pi}{7})+x^2} = \frac{(x-\frac{1}{x})\xi_k}{(\xi_k-x)(\xi_k-\frac{1}{x})} = \frac{\frac{1}{x}}{\frac{1}{x}-\xi_k} - \frac{x}{x-\xi_k}$$

and

$$\sum_{k=0}^{6} \frac{1-x^2}{1-2x\cos(\frac{2k\pi}{7})+x^2} = \frac{1}{x} \sum_{k=0}^{6} \frac{1}{\frac{1}{x}-\xi_k} - x \sum_{k=0}^{6} \frac{1}{x-\xi_k} = \frac{1}{x} \cdot \frac{p'(\frac{1}{x})}{p(\frac{1}{x})} - x \cdot \frac{p'(x)}{p(x)} = 7 \cdot \frac{1+x^7}{1-x^7}$$

where $p(x) = x^7 - 1$.

6. Let $x_1, x_2, ..., x_n$ be real numbers that satisfy $0 < x_1 < x_2 < \cdots < x_n < 1$ and let $x_0 = 0, x_{n+1} = 1$. Given:

$$\sum_{j=0, j\neq i}^{n+1} \frac{1}{x_i - x_j} = 0 \quad i = 1, 2, ..., n$$

prove that $x_{n+1-i} = 1 - x_i$ for i = 1, 2, ..., n.

(Shortlist IMO 1986)

Solution:

Let $P(x) = (x - x_0)(x - x_1) \cdots (x - x_n)(x - x_{n+1})$. Then

$$P'(x) = \sum_{j=0}^{n+1} \frac{P(x)}{x - x_j}$$

$$P''(x) = \sum_{j=0}^{n+1} \sum_{k \neq j} \frac{P(x)}{(x - x_j)(x - x_k)}.$$

Therefore

$$P''(x_i) = 2P'(x_i) \sum_{j \neq i} \frac{1}{x_i - x_j}$$

for i=0,1,...,n+1 and the given condition implies $P''(x_i)=0$ for i=1,2,...,n. Consequently

$$x(x-1)P''(x) = (n+2)(n+1)P(x). (4)$$

It is easy to observe that there is a unique monic polynomial of degree n+2 satisfying the differential equation (4). On the other hand, the polynomial $Q(x) = (-1)^n P(1-x)$ also satisfies this equation, is monic, and deg Q = n + 2. Therefore $(-1)^n P(1-x) = P(x)$, and the result follows.

7. Let p(z) be a polynomial of degree n with complex coefficients. Its roots (in the complex plane) can be covered by a disk of radius r. Show that for any complex number k, the roots of the polynomial np(z) - kp'(z) can be covered by a disk of radius r + |k|.

(Putnam 1957)

Solution:

Let the roots of p(z) be $a_1, a_2, ..., a_n$. Suppose they all lie in a disk with center c and radius r, then $|c - a_n| \le r$. Suppose that |c - w| > r + |k|. We will show that w is not a root of np(z) - kp'(z). Indeed, we have that $|w - a_i| \ge |w - c| - |c - a_i| > r + |k| - r = |k|$, thus $\frac{p'(z)}{p(z)} = \sum \frac{1}{(z-a_i)}$ (note that this is still true if we have repeated roots), so $|\frac{p'(w)}{p(w)}| < \frac{n}{|k|}$ and hence $|k\frac{p'(w)}{p(w)}| < n$. Thus $|n - k\frac{p'(w)}{p(w)}| > 0$, but |p(w)| > 0 (since w lies outside the disk containing all the roots of p(z)), so $|np(w) - kp'(w)| = |p(w)||n - k\frac{p'(w)}{p(w)}| > 0$.

8. Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane and let $g(z) = \frac{p(z)}{z^{\frac{n}{2}}}$. Show that all zeros of g'(z) = 0 have absolute value 1.

(Putnam 2005)

Solution:

We have $z^{\frac{n}{2}}g(z)=p(z)$, therefore $\frac{g'(z)}{g(z)}=\frac{p'(z)}{p(z)}-\frac{n}{2z}$. Moreover

$$\frac{g'(z)}{g(z)} = \sum_{j=1}^{n} \left(\frac{1}{z - r_j} - \frac{1}{2z} \right) = \frac{1}{2z} \sum_{j=1}^{n} \frac{z + r_j}{z - r_j}$$

where $r_1, ..., r_n$ are the zeros of p(z). Now if $z \neq r_j$ for all j, then

$$\frac{z+r_j}{z-r_i} = \frac{(z+r_j)(\overline{z}-\overline{r_j})}{|z-r_i|^2} = \frac{|z|^2 - 1 + 2Im(\overline{z}r_j)i}{|z-r_i|^2}$$

and so

$$Re\left(\frac{zg'(z)}{g(z)}\right) = \frac{|z|^2 - 1}{2} \cdot \left(\sum_{j=1}^n \frac{1}{|z - r_j|^2}\right).$$

Since the quantity in parentheses is positive g'(z) can be 0 only if |z| = 1. If on the other hand $z = r_j$ for some j, then |z| = 1 anyway.

9. For any polynomial g, denote by d(g) the minimum distance of any two of its real zeros $(d(g) = \infty)$ if g has at most one real zero). Assume that g and g + g' both are of degree $k \ge 2$ and have k distinct real zeros. Then $d(g + g') \ge d(g)$.

(IMC 2007)

Solution:

Let $x_1 < x_2 < \cdots < x_k$ be the roots of g. Suppose that a and b are roots of g + g' satisfying 0 < b - a < d(g). Then a and b cannot be roots of g and

$$\frac{g'(a)}{g(a)} = \frac{g'(b)}{g(b)} = -1. \tag{5}$$

Since $\frac{g'}{g}$ is strictly decreasing between consecutive zeros of g (see problem 1.), we must have $a < x_j < b$ for some j. For all i = 1, 2, ..., k-1 we have $x_{i+1} - x_i > b - a$ hence $a - x_i > b - x_{i+1}$. If i < j both sides of this inequality are negative, if $i \ge j$ both sides are positive. In any case $\frac{1}{a-x_i} < \frac{1}{b-x_{i+1}}$ and hence:

$$\frac{g'(a)}{g(a)} = \sum_{i=1}^{k-1} \frac{1}{a - x_i} + \underbrace{\frac{1}{a - x_k}}_{<0} < \sum_{i=1}^{k-1} \frac{1}{b - x_{i+1}} + \underbrace{\frac{1}{b - x_1}}_{>0} = \frac{g'(b)}{g(b)}$$

This contradicts (5).

Problems for independent study

1. From problem **5.** deduce that: $\csc^2(\frac{\pi}{7}) + \csc^2(\frac{2\pi}{7}) + \csc^2(\frac{3\pi}{7}) = 8$.

(Longlist IMO 1988)

2. Let the roots of an nth degree polynomial P(z), with complex coefficients, lie on the unit circle in the complex plane. Prove that the roots of the polynomial

$$2zP'(z) - nP(z)$$

lie on the same circle.

(IMC 1995)

3. If all zeros of a polynomial P(z) lie in the same half plane, then all zeros of the derivative P'(z) lie in the same half plane.

(In a sharper formulation the problem tells us that the smallest convex polygon that contains the zeros of P(z) also contains the zeros of P'(z)).

(Gauss-Lucas Theorem)

Acknowledgements

I would like to thank Mario Garcia Armas.