

APRENDIZADO POR REFORÇO

Aula 4: Model Free Control

Lucas Pereira Cotrim Marcos Menon José

lucas.cotrim@maua.br marcos.jose@maua.br

Dúvidas Exercício E_2

EXERCÍCIO E_2

- Tarefa a)
 Implementar função env. step(s, a)
- Tarefa b)
 policy_evaluation(env, policy, theta)
- Tarefa c)policy_iteration(env, theta)

Model-Free Control

Model-Free Control

Model-Free Control

• Model-Free Prediction:

Estimar Função Valor $V_{\pi}(s)$, $Q_{\pi}(s,a)$ dada uma política π atuando em um MDP desconhecido.

• Model-Free Control:

Obter Função Valor Ótima $V^*(s)$, $Q^*(s,a)$ e política ótima π^* de um MDP desconhecido.

Em Programação Dinâmica vimos como obter $V^*(s)$ quando o modelo $< S, A, P, R, \gamma >$ é conhecido (Model-Based). Em Model-Free Control os métodos são análogos, mas a experiência deve ser obtida por interação com o ambiente, pois não conhecemos P, R.

Model-Free Control

Os seguintes problemas podem ser modelados como MDPs:

- Controle de robôs móveis para evitar colisões
- Controle de robô humanoide para locomoção em solo irregular
- Administração de carteiras de investimentos
- Logística de aviões

- Direção de navios em canais estreitos
- Treinamento de agente para jogar Xadrez
- Desenvolvimento de sistemas de recomendação de anúncios
- Treinamento de agentes para jogos eletrônicos

Nessas aplicações o MDP é **desconhecido ou muito complexo** para ser utilizado, mas experiência pode ser amostrada por meio de interação.

Algoritmos de Model-Free Control podem solucionar esses problemas

Método Generalizado de iteração de política - Policy Iteration

- Policy Evaluation: Estimar V_{π} : Qualquer método de avaliação de política.
- Policy Improvement: Obter $\pi' \ge \pi$: Qualquer método de melhoria de política.

Monte-Carlo Policy Iteration

Podemos aplicar Monte-Carlo Policy Evaluation para estimar V_{π} a cada passo?

- **Policy Evaluation**: Estimar V_{π} : Monte-Carlo Policy Evaluation.
- **Policy Improvement**: Obter $\pi' \ge \pi$: Obter $\pi' \ge \pi$ como comportamento *greedy* sobre V_{π} .

E utilizar greedy Policy Improvement como em Programação Dinâmica?

Monte-Carlo Policy Iteration

• Para utilizar o comportamento greedy a partir da Função Valor dos Estados $(\pi' = greedy(V))$ para obter uma política melhor $\pi' \ge \pi$ é necessário ter conhecimento do modelo do MDP:

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left[\mathcal{R}(s, a) + \mathcal{P}_{ss'}^{a} V(s') \right]$$

• A utilização do comportamento greedy a partir da Função de Valor dos Pares Estado-Ação Q(s,a) não requer um modelo do MDP (Model-Free), uma vez que conhecemos os valores esperados dos retornos para cada ação:

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$$
 Solução: Aplicar Monte-Carlo Policy Evaluation para estimar $Q \approx Q_{\pi}$, em vez de $V \approx V_{\pi}$

Policy Iteration

Escolha de ações greedy

A política greedy representa sempre a escolha do maior valor V ou Q considerando o estado e suas ações

Um Rato está diante de duas alavancas.

t=1 Ao puxar a primeira, ele recebe um choque. $Q(s, alavanca\ 1)=-1$

t=2 Ao puxar a segunda, ele recebe um pedaço de queijo. $Q(s, alavanca\ 2)=1$

t=3 Ao puxar a segunda, ele recebe três pedaços de queijo. $Q(s, alavanca\ 2)=2$

t=4 Ao puxar a segunda, ele recebe um choque. $Q(s, alavanca\ 2)=1$

É possível garantir que é melhor sempre puxar a segunda alavanca?

Há algum jeito de equilibrar exploração e aproveitamento?

Fonte: UCL Course on RL by David Silver (https://www.davidsilver.uk/teaching/)

Monte-Carlo Policy Iteration: ϵ -greedy Exploration

- O comportamento greedy sobre Q(s,a) equivale a tomar sempre, em cada estado, as ações que acreditamos possuir maior valor entre todas ações possíveis $\left(\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s,a)\right)$. Isso pode levar o agente a não explorar novas ações que poderiam levar a maiores recompensas (Exploration-Exploitation Trade-off)
- O comportamento ϵ -greedy consiste em tomar uma ação aleatória com probabilidade ϵ $\in (0,1]$ e tomar a ação greedy com probabilidade $(1-\epsilon)$:

Solução: Utilizar *ϵ*-greedy Policy Improvement em vez de greedy Policy Improvement

ε-greedy

- Ajuda a controlar o *Trade off* entre exploração e aproveitamento (*Exploration vs Exploitation*)
- Quanto maior o ϵ mais exploração
- Quanto menor o ϵ mais aproveitamento
- Em geral o ε decai de acordo com o tempo (aumenta o aproveitamento)

ε-greedy

O ε-greedy é uma forma intuitiva de escolher a ação dentro da política de ações:

- ε é um valor entre 0 e 1
- Chance de 1- ε de escolher a ação greedy
- Chance de ε de escolher uma ação aleatória
- Garante que todas as ações tem uma chance de serem exploradas

$$\pi(a|s) = \begin{cases} \varepsilon/m + 1 - \varepsilon, & se \ a = \operatorname*{argmax} Q(s, a) \\ \varepsilon/m, & caso \ contr\'{a}rio \end{cases}$$

 $m = |\mathcal{A}|$, número de ações

Monte-Carlo Policy Iteration: ϵ -greedy Policy Improvement

Como garantir que o comportamento ϵ -greedy leva a uma política melhor $\pi' \geq \pi$?

Teorema: Para qualquer política π , a política ϵ -greedy π' com relação a Q_{π} é melhor do que a política original, $V_{\pi'}(s) \geq V_{\pi}(s)$, $\forall s \in \mathcal{S}$.

$$\begin{split} V_{\pi'}(s) &= \sum_{a \in \mathcal{A}} \pi'(a|s) Q_{\pi}(s,a) \\ &= \epsilon/m \sum_{a \in \mathcal{A}} Q_{\pi}(s,a) + (1-\epsilon) \max_{a \in \mathcal{A}} Q_{\pi}(s,a) \\ &\geq \epsilon/m \sum_{a \in \mathcal{A}} Q_{\pi}(s,a) + (1-\epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \epsilon/m}{1 - \epsilon} Q_{\pi}(s,a) \\ &= \sum_{a \in \mathcal{A}} \pi(a|s) Q_{\pi}(s,a) \\ &= V_{\pi}(s) \end{split}$$

Monte-Carlo Policy Iteration

• **Policy Evaluation**: Estimar Q_{π} :

Monte-Carlo Policy Evaluation, $Q = Q_{\pi}$

• Policy Improvement: Obter $\pi' \geq \pi$:

 ϵ -greedy Policy Improvement

Precisamos executar o algoritmo de avaliação da política até convergência $Q = Q_{\pi}$?

Ideia: Estimar $Q \approx Q_{\pi}$ de forma aproximada a cada episódio

- Mais eficiente, uma vez que a política já é alterada a cada iteração de qualquer forma e não é necessária a avaliação precisa $Q=Q_{\pi}$, que pode levar vários episódios.
- Algoritmo Monte-Carlo Control

Monte-Carlo Control

A cada episódio:

• **Policy Evaluation**: Estimar Q_{π} :

Monte-Carlo Policy Evaluation, $Q \approx Q_{\pi}$

• **Policy Improvement**: Obter $\pi' \ge \pi$: ϵ -greedy Policy Improvement

• Amostrar episódio k usando política π :

$$\{S_0,A_0,R_1,\dots,S_{T-1},A_{T-1},R_T\}^k{\sim}\pi$$

• Para cada par Estado-Ação do episódio:

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} [G_t - Q(S_t, A_t)]$$

Melhorar política:

Reduzir ϵ : Pode-se também utilizar uma taxa de decaimento constante $\epsilon \leftarrow \eta \epsilon$ ou qualquer estratégia de exploração que seja greedy no limite em que $k \rightarrow \infty$

Temporal-Difference Learning: Backward-View $TD(\lambda)$ for policy evaluation

Algoritmo: Monte-Carlo Control for estimating $\pi \approx \pi^*$

Parâmetro do Algoritmo: Taxa de decaimento $\eta \in (0,1)$

Inicializar: $\epsilon = 1$, política arbitrária π , N(s, a) = 0 e Q(s, a) aleatoriamente para $s \in S$, $a \in A$.

Repetir para cada episódio:

Amostrar um episódio completo de acordo com política: $\{S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T\} \sim \pi$

Calcular retornos $G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$ para $t = 0, \dots, T-1$

Para t = 0, ..., T - 1:

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} [G_t - Q(S_t, A_t)]$

$$\epsilon \leftarrow \eta \epsilon$$

 $\pi \leftarrow \epsilon - greedy(Q)$

Retorna: $\pi \approx \pi^*$

Diferença entre on policy e off policy

- On Policy: π é atualizado levando em conta a própria política π
 - Aprendizado durante o próprio trabalho
 - \circ Aprendizado sobre a política π a partir da amostra de experiência de π
- Off Policy: π é atualizado levando em conta o melhor Q:
 - $\bigcirc \text{ Q-Learning: } Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) Q(S_t, A_t)]$
 - \circ Aprendizado sobre a política π a partir da amostra de experiência de μ

SARSA

On Policy TD Control
Algoritmo SARSA

Temporal Difference Control

A cada timestep:

- Policy Evaluation: Estimar Q_{π} :

 TD Policy Evaluation, $Q \approx Q_{\pi}$
- Policy Improvement: Obter $\pi' \ge \pi$: ϵ -greedy Policy Improvement

- Temporal Difference Learning possui vantagens em relação a Monte-Carlo:
 - Menor Variância
 - Aprendizado online, a partir de episódios incompletos

Ideia: Aplicar TD Learning na estimativa da Função Valor $Q \approx Q_{\pi}$ e atualizar Q a cada timestep, não somente no final do episódio.

Temporal Difference Control: SARSA

SARSA Definição

O algoritmo é definido pela atualização da função valor Q a cada timestep

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

Onde:

- S_t : Estado atual
- A_t : Ação atual
- α : Taxa de aprendizado (entre 0 e 1)
- R_{t+1} : Recompensa futura

- γ : Fator de desconto
- $Q(S_{t+1}, A_{t+1})$: Valor Q do par estado ação seguinte

SARSA: Pseudocódigo

Algoritmo: SARSA (on-policy TD control)

Parâmetro do Algoritmo: Taxa de aprendizado $\alpha \in (0,1]$

Inicializar $Q_0(s, a)$ arbitrariarmente para todo $s \in S$ e $a \in A(s)$, com $Q_0(s_{term}) = 0$ para estados terminais.

Repetir para cada episódio:

Inicializar estado inicial $S_0 \sim \mathbb{P}(S_0 = s), s \in S$

Escolher ação A_0 em S_0 usando a política derivada de Q (como: ϵ -greedy)

Repetir para cada timestep t = 0,1,2,...:

Executar ação A_t e observar R_{t+1} , S_{t+1}

Escolher A_{t+1} a partir de S_{t+1} usando a política derivada de Q (como: ϵ -greedy)

Fazer update do valor $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$

$$S_t = S_{t+1}$$

$$A_t = A_{t+1}$$

Até que S_t seja um estado terminal

Retorna: Funções Valor e Política ótimas Q^* e π^*

$$\gamma = 0.9$$

 $\alpha = 0.2$
 $\epsilon = 0.7$ Como chegar na função valor e
política ótima Q^* e π^* usando
SARSA para o MDP abaixo?

$$Q(S_t,A_t) \leftarrow Q(S_t,A_t) + \alpha[R_{t+1} + \gamma Q(S_{t+1},A_{t+1}) - Q(S_t,A_t)]$$

$$\gamma = 0.9
\alpha = 0.2
\epsilon = 0.7$$

Episódio 0 - Timestep 0 Estado 0

Tirando um valor aleatório p = 0.1Como $p < \epsilon$, uma ação aleatória é tomada: a_1

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

$$Q(0, a_1) = 0 + 0, 2[-5 + 0, 9 Q(S_{t+1}, A_{t+1}) - 0]$$

Para calcular $Q(S_{t+1}, A_{t+1})$, tiramos novamente um novo valor aleatório p = 0,3Como $p < \epsilon$, uma ação aleatória é considerada para o próximo timestep: a_2

$$Q(S_{t+1}, A_{t+1}) = Q(3, a_2) = 0$$

$$Q(0, a_1) = 0 + 0, 2[-5 + 0, 9 * 0 - 0]$$

$$Q(0, a_1) = -1$$

	\mathbf{a}_1	$\mathbf{a_2}^1$	abela Q	\mathbf{a}_1	\mathbf{a}_2
0	0	0	0	<mark>-1</mark>	0
1	0	0	1	0	0
2	0	0	2	0	0
3	0	0	3	0	0
4	0	0	4	0	0
5	0	0	5	0	0

T-1-1-0

$$Q(Obst\'{a}culo, a) = Q(Objetivo, a) = 0$$

$$\gamma = 0.9
\alpha = 0.2
\epsilon = 0.7$$

Conforme o timestep anterior a ação que foi tomada é: a_2

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

$$Q(3, a_2) = 0 + 0, 2[-100 + 0, 9 Q(S_{t+1}, A_{t+1}) - 0]$$

Neste caso, chegamos no obstáculo que é terminal

$$Q(S_{t+1}, A_{t+1}) = Q(Obstáculo) = 0$$

 $Q(3, a_2) = 0 + 0, 2[-100 + 0, 9 * 0 - 0]$
 $Q(3, a_2) = -20$

$$Q(Obst\'{a}culo, a) = Q(Objetivo, a) = 0$$

$$\gamma = 0.9
\alpha = 0.2
\epsilon = 0.7$$

Episódio 1 - Timestep 0 Estado 0

Tirando um valor aleatório p=0.9Como $p>\epsilon$ a ação com maior valor Q é tomada: a_2

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

Para calcular $Q(S_{t+1}, A_{t+1})$, tiramos novamente um novo valor aleatório p = 0,0Como $p < \epsilon$, uma ação aleatória é considerada para o próximo timestep: a_1

 $Q(0, a_2) = 0 + 0.2[-10 + 0.9 Q(S_{t+1}, A_{t+1}) - 0]$

$$Q(S_{t+1}, A_{t+1}) = Q(1, a_1) = 0$$

 $Q(0, a_2) = 0 + 0, 2[-10 + 0, 9 * 0 - 0]$
 $Q(0, a_2) = -2$

	\mathbf{a}_1	$\mathbf{a_2}^{\mathrm{T}}$	'abela Q	\mathbf{a}_1	$\mathbf{a_2}$
0	-1	0	0	-1	-2
1	0	0	1	0	0
2	0	0	2	0	0
3	0	-20	3	0	-20
4	0	0	4	0	0
5	0	0	5	0	0

$$Q(Obst\'{a}culo, a) = Q(Objetivo, a) = 0$$

$$\gamma = 0.9
\alpha = 0.2
\epsilon = 0.7$$

Conforme o timestep anterior a ação que foi tomada é: a_1

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

$$Q(1, a_1) = 0 + 0, 2[-5 + 0, 9 Q(S_{t+1}, A_{t+1}) - 0]$$

Para calcular $Q(S_{t+1}, A_{t+1})$, tiramos novamente um novo valor aleatório p = 0,3Como $p < \epsilon$, uma ação aleatória é considerada para o próximo timestep: a_1

$$Q(S_{t+1}, A_{t+1}) = Q(3, a_1) = 0$$

$$Q(1, a_1) = 0 + 0, 2[-5 + 0, 9 * 0 - 0]$$

$$Q(1, a_1) = -1$$

	\mathbf{a}_1	$\mathbf{a_2}^{1}$	abela Q	\mathbf{a}_1	$\mathbf{a_2}$
0	-1	-2	0	-1	-2
1	0	0	1	<u>-1</u>	0
2	0	0	2	0	0
3	0	-20	3	0	-20
4	0	0	4	0	0
5	0	0	5	0	0

T-1-1-0

$$Q(Obst\'{a}culo, a) = Q(Objetivo, a) = 0$$

$$\gamma = 0.9
\alpha = 0.2
\epsilon = 0.7$$

Episódio 1 - Timestep 2 Estado 3

Conforme o timestep anterior a ação que foi tomada é: a_1

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

$$Q(3, a_1) = 0 + 0, 2[100 + 0, 9 Q(S_{t+1}, A_{t+1}) - 0]$$

Neste caso, chegamos no Objetivo que é terminal

$$Q(S_{t+1}, A_{t+1}) = Q(Objetivo) = 0$$

 $Q(3, a_1) = 0 + 0, 2[100 + 0, 9 * 0 - 0]$
 $Q(3, a_1) = 20$

	\mathbf{a}_1	$\mathbf{a_2}^{\mathrm{T}}$	'abela Q	$\mathbf{a_1}$	$\mathbf{a_2}$
0	-1	-2	0	-1	-2
1	-1	0	1	-1	0
2	0	0	2	0	0
3	0	-20	3	<mark>20</mark>	-20
4	0	0	4	0	0
5	0	0	5	0	0

$$Q(Obst\'{a}culo, a) = Q(Objetivo, a) = 0$$

$$\gamma = 0.9$$
 $\alpha = 0.2$
 $\epsilon = 0.7$

Episódio 2 - Timestep 0 Estado 0

Tirando um valor aleatório p=0.6Como $p<\epsilon$ uma ação aleatória é tomada: a_1

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

$$Q(0, a_1) = -1 + 0.2[-5 + 0.9 Q(S_{t+1}, A_{t+1}) - -1]$$

Para calcular $Q(S_{t+1}, A_{t+1})$, tiramos novamente um novo valor aleatório p = 0.9Como $p > \epsilon$, consideramos a ação com maior valor Q no estado 3: a_1

$$Q(S_{t+1}, A_{t+1}) = Q(3, a_1) = 20$$

 $Q(0, a_1) = -1 + 0, 2[-5 + 0, 9 * 20 + 1]$
 $Q(0, a_1) = 1, 8$

	\mathbf{a}_1	$\mathbf{a_2}^{\mathrm{T}}$	abela Q	\mathbf{a}_1	$\mathbf{a_2}$
0	-1	-2	0	<mark>1,8</mark>	-2
1	-1	0	1	-1	0
2	0	0	2	0	0
3	20	-20	3	20	-20
4	0	0	4	0	0
5	0	0	5	0	0

T 1 1 \triangle

$$Q(Obst\'{a}culo, a) = Q(Objetivo, a) = 0$$

$$\gamma = 0.9
\alpha = 0.2
\epsilon = 0.7$$

Episódio 2 - Timestep 1 Estado 3

Conforme o timestep anterior a ação que foi tomada é: a_1

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

$$Q(S_t, A_t) = 20 + 0.2[100 + 0.9 Q(S_{t+1}, A_{t+1}) - 20]$$

Neste caso, chegamos no Objetivo que é um estado terminal

$$Q(S_{t+1}, A_{t+1}) = Q(Goal) = 0$$

 $Q(3, a_1) = 20 + 0, 2[100 + 0, 9 * 0 - 20]$
 $Q(3, a_1) = 36$

	\mathbf{a}_1	$\mathbf{a_2}^{\mathrm{T}}$	Cabela Q	\mathbf{a}_1	$\mathbf{a_2}$
0	1,8	-2	0	1,8	-2
1	-1	0	1	-1	0
2	0	0	2	0	0
3	20	-20	3	<mark>36</mark>	-20
4	0	0	4	0	0
5	0	0	5	0	0

$$Q(Obst\'{a}culo, a) = Q(Objetivo, a) = 0$$

Decays

- Em códigos, tanto o ϵ quanto o α devem decair ao contrário exemplo em questão pois:
 - O parâmetro α (learning rate) deve decair ao longo do tempo para a convergência da tabela Q (mais a frente será uma rede neural).
 - O Quanto ao ϵ , faz sentido que queremos explorar mais no começo (o que significa um ϵ maior). Porém, quanto mais já conhecemos do ambiente, mais devemos "aproveitar" os melhores caminhos já descobertos.

SARSA- Exemplo -> Colab: MDP-SARSA.ipynb

SARSA- Exemplo -> MDP-SARSA.ipynb

```
Época: 25
[[ 35.92420369 -3.5950844 ]
  [ 53.25326341 -6.95530195]
  [ 5.4718946 0. ]
  [ 99.83699414 -88.23147535]
  [ 23.14169496 0.44915997]
  [ 50.99643593 0. ]]
```

```
Época: 50

[[-13.81046808 6.74355653]

[ 61.06533861 -4.4614717 ]

[ 6.46359162 7.3151557 ]

[ 99.99773927 -99.66704737]

[-14.75241865 9.58044042]

[ 75.98085612 -29.98682213]]
```

```
Época: 100

[[-43.59936206 -24.92941886]

[ 2.24106893 -7.12029502]

[ 20.08018047 10.26132621]

[ 99.9999963 -99.9999082 ]

[-14.75241865 52.63780096]

[ 97.16801217 -75.96389681]]
```

```
Época: 150

[[ 13.40177354 -3.4239944 ]

[ 38.02741843 14.54468297]

[ 5.25309591 11.76864676]

[100. -99.99999995]

[-52.80459679 -5.60577467]

[ 99.31852566 -91.74054553]]
```

```
Época: 300

[[ 33.97335979 -37.23366674]

[ -8.18710823 -17.64523967]

[ -14.47322538 -47.56046622]

[ 100. -100. ]

[ 51.40069787 -67.65376261]

[ 99.9992107 -99.9863123 ]]
```

```
Época: 500
[[ 21.38306261 -15.55646589]
  [ 15.55026841 -21.81092619]
  [ -27.71761084 31.72686999]
  [ 100. -100. ]
  [ -3.7359396 11.31805447]
  [ 99.99999451 -99.99997704]]
```

```
Época: 100000

[[ 84.53682611 62.52412235]

[ 82.53279554 40.40262229]

[ 35.20952998 65.81821079]

[ 100. -100. ]

[ 27.11192576 35.09618099]

[ 100. -100. ]
```

- É possível verificar que neste caso, o SARSA não convergiu para a função valor ótima.
- Isto acontece porque a nossa política π escolhida é fundamentalmente aleatória de acordo com ϵ

Blackjack simplificado

- O Blackjack ou 21 é um jogo muito comum em casinos e é uma possível aplicação para testar métodos de TD-Control para encontrar uma política ótima π^*
- Escolhemos uma versão simplificada para testar:
 - O objetivo é chegar o mais perto de 21 pontos sem passar de 21.
 - Os pontos são a soma dos valores das cartas, sendo que rei, valete dama valem 10 pontos e o Ás vale 1 ou 11.
 - O jogador começa com duas cartas e a banca começa com uma carta virada para cima.
 - O jogador pode pegar quantas quartas quiser, mas se passar de 21 pontos perde. Quando não quiser mais cartas pode passar.
 - Depois do jogador passar, a banca pega cartas até ou passar o número de pontos do jogador ou estourar com mais de 21 pontos.

SARSA- Exemplo -> Colab: Simplified Blackjack - SARSA.ipynb

Blackjack com SARSA

Expected SARSA

On Policy TD Control

Algoritmo Expected SARSA

Expected SARSA

- Algoritmo similar ao SARSA, porém ao invés de escolher o valor do par estado ação tomada no próximo timestep, calcula-se o valor esperado de Q considerando todas as ações e suas probabilidades.
- Computacionalmente mais complexo que o SARSA, mas elimina a variância uma vez que elimina a escolha aleatória da próxima ação
- Costuma ter resultados melhores que o SARSA quando utilizado com ε-greedy

Expected SARSA

Expected SARSA: Pseudocódigo

Algoritmo: Expected SARSA (on-policy TD control)

Parâmetro do Algoritmo: Taxa de aprendizado $\alpha \in (0,1]$

Inicializar $Q_0(s, a)$ arbitrariarmente para todo $s \in S$ e $a \in A(s)$, com $Q_0(s_{term}) = 0$ para estados terminais.

Repetir para cada episódio:

Inicializar estado inicial $S_0 \sim \mathbb{P}(S_0 = s), s \in S$

Repetir para cada timestep t = 0,1,2,...:

Escolher ação a de s usando a política derivada de Q (como: ϵ -greedy)

Executar ação A_t e observar R_{t+1} , S_{t+1}

Atualizar o valor $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \sum_a \pi(a|S_{t+1})Q(S_{t+1}, a) - Q(S_t, A_t)]$

 $S_t = S_{t+1}$

Até que S_t seja um estado terminal

Retorna: Funções Valor e Política ótimas V^* , Q^* e π^*

Blackjack com Expected SARSA

Expected SARSA- Exemplo -> Colab: Simplified Blackjack - Expected SARSA.ipynb

Q-Learning

Off Policy TD Control

Algoritmo Q-Learning

Comparação de Algoritmos

Q-Learning

Watkins, C.J.C.H. (1989). *Learning from delayed rewards*. PhD Thesis, University of Cambridge, England.

Q-Learning Definição

O algoritmo é definido pela atualização da função valor Q a cada timestep

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

Onde:

- S_t : Estado atual
- A_t : Ação anterior
- α : Taxa de aprendizado (entre 0 e 1)
- R_{t+1} : Recompensa do par estado ação (S_t, A_t)

- γ : Fator de desconto
- $maxQ(S_{t+1}, a)$ maior valor alcançável de Q para o estado futuro considerando cada uma das possíveis futuras ações

Q-Learning: Pseudocódigo

Algoritmo: Q-Learning (off-policy TD control)

Parâmetro do Algoritmo: Taxa de aprendizado $\alpha \in (0,1]$

Inicializar $Q_0(s, a)$ arbitrariarmente para todo $s \in S$ e $a \in A(s)$, com $Q_0(s_{term}) = 0$ para estados terminais.

Repetir para cada episódio:

Inicializar estado inicial $S_0 \sim \mathbb{P}(S_0 = s), s \in S$

Repetir para cada timestep t = 0,1,2,...:

Escolher ação a de s usando a política derivada de Q (como: ϵ -greedy)

Executar ação A_t e observar R_{t+1} , S_{t+1}

Atualizar o valor $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t)]$

$$S_t = S_{t+1}$$

Até que S_t seja um estado terminal

Retorna: Funções Valor e Política ótimas V^* , Q^* e π^*

$$\gamma = 0.9$$
 Episódio 0 - Timestep 0
 $\alpha = 0.2$ Estado 0

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

Tabela Q

 $\mathbf{a_1}$

	1	2		
0	0	0		
1	0	0		
1 2	0	0		
3	0	0		
4 5	0	0		
5	0	0		

 \mathbf{a}_{2}

$$\gamma = 0.9$$
 $\alpha = 0.2$
 $\epsilon = 0.7$
Episódio 0 - Timestep 0
Estado 0

Tirando um valor aleatório p=0,1Como $p<\epsilon$, uma ação aleatória é tomada: a_1

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_{t}, A_{t})]$$

$$Q(0, a_{1}) = 0 + 0, 2[-5 + 0, 9 \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - 0]$$

$$\max_{a \in \mathcal{A}} Q(S_{t+1}, a) = \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - 0$$

$$Q(0, a_{1}) = 0 + 0, 2[-5 + 0, 9 * 0 - 0]$$

$$Q(0, a_{1}) = 0 + 0, 2[-5 + 0, 9 * 0 - 0]$$

$$Q(0, a_{1}) = -1$$

	\mathbf{a}_1	$\mathbf{a_2}^{\mathrm{T}}$	abela Q	$\mathbf{a_1}$	$\mathbf{a_2}$
0	0	0	0	<mark>-1</mark>	0
1	0	0	1	0	0
2	0	0	2	0	0
3	0	0	3	0	0
4	0	0	4	0	0
5	0	0	5	0	0

$$Q(Obst\'{a}culo, a) = Q(Objetivo, a) = 0$$

$$\gamma = 0.9$$

 $\alpha = 0.2$
 $\epsilon = 0.7$ Episódio 0 - Timestep 1
Estado 3

Tirando um valor aleatório p=0.6Como $p < \epsilon$, uma ação aleatória é tomada: a_2

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_{t}, A_{t})]$$

$$Q(3, a_{2}) = 0 + 0, 2[-100 + 0, 9 \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - 0]$$

$$\max_{a \in \mathcal{A}} Q(Obstáculo) = 0$$

 $Q(3, a_2) = 0 + 0, 2[-100 + 0, 9 * 0 - 0]$ $Q(3, a_2) = -20$

$$\gamma = 0.9$$

 $\alpha = 0.2$
 $\epsilon = 0.7$ Episódio 1 - Timestep 0
Estado 0

Tirando um valor aleatório p = 0.9Como $p > \epsilon$, a ação de maior valor Q é tomada: a_2

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_{t}, A_{t})]$$

$$Q(0, a_{2}) = 0 + 0, 2[-10 + 0, 9\max_{a \in \mathcal{A}} Q(S_{t+1}, a) - 0]$$

$$\max_{a \in \mathcal{A}} Q(S_{t+1}, a) = \max_{a \in \mathcal{A}} (Q(1, a_{1}), Q(1, a_{2})) = 0$$

$$Q(0, a_{2}) = 0 + 0, 2[-10 + 0, 9 * 0 - 0]$$

$$Q(0, a_{2}) = -2$$

$$\gamma = 0.9$$

 $\alpha = 0.2$
 $\epsilon = 0.7$ Episódio 1 - Timestep 1
Estado 1

Tirando um valor aleatório p=0,3Como $p<\epsilon$, uma ação aleatória é tomada: a_2

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

$$Q(1, a_2) = 0 + 0, 2[-10 + 0, 9\max_{a \in \mathcal{A}} Q(S_{t+1}, a) - 0]$$

$$\max_{a \in \mathcal{A}} Q(S_{t+1}, a) = \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - 0$$

$$Q(1, a_2) = 0 + 0, 2[-10 + 0, 9 * 0 - 0]$$

$$Q(1, a_2) = 0 + 0, 2[-10 + 0, 9 * 0 - 0]$$

$$Q(1, a_2) = -2$$

$$\gamma = 0.9$$

 $\alpha = 0.2$
 $\epsilon = 0.7$ Episódio 1 - Timestep 2
Estado 2

Tirando um valor aleatório p = 0.6Como $p < \epsilon$, uma ação aleatória é tomada: a_1

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_{t}, A_{t})]$$

$$Q(2, a_{1}) = 0 + 0, 2[-10 + 0, 9\max_{a \in \mathcal{A}} Q(S_{t+1}, a) - 0]$$

$$\max_{a \in \mathcal{A}} Q(S_{t+1}, a) = \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - 0$$

$$Q(2, a_{1}) = 0 + 0, 2[-5 + 0, 9 * 0 - 0]$$

$$Q(2, a_{1}) = -1$$

$$Q(Obst\'{a}culo, a) = Q(Objetivo, a) = 0$$

$$\gamma = 0.9$$

 $\alpha = 0.2$
 $\epsilon = 0.7$ Episódio 1 - Timestep 3
Estado 4

Tirando um valor aleatório p=0.5Como $p<\epsilon$, uma ação aleatória é tomada: a_1

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_{t}, A_{t})]$$

$$Q(4, a_{1}) = 0 + 0, 2[-10 + 0, 9\max_{a \in \mathcal{A}} Q(S_{t+1}, a) - 0]$$

$$\max_{a \in \mathcal{A}} Q(S_{t+1}, a) = \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - 0$$

$$Q(4, a_{1}) = 0 + 0, 2[-15 + 0, 9 * 0 - 0]$$

$$Q(4, a_{1}) = -3$$

$$\gamma = 0.9$$
 Episódio 1 - Timestep 4
 $\alpha = 0.2$ Estado 3

Tirando um valor aleatório p = 0.9Como $p > \epsilon$, a ação de maior valor Q é tomada: a_1

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_{t}, A_{t})]$$

$$Q(3, a_{1}) = 0 + 0, 2[100 + 0, 9maxQ(S_{t+1}, a) - 0]$$

$$maxQ(S_{t+1}, a) = max(Q(Goal, a)) = 0$$

$$Q(3, a_{1}) = 0 + 0, 2[100 + 0, 9 * 0 - 0]$$

$$Q(3, a_{1}) = 20$$

$$\gamma = 0.9$$
 $\alpha = 0.2$
 $\epsilon = 0.7$
Episódio 2 - Timestep 0
Estado 0

Tirando um valor aleatório p = 0.2Como $p < \epsilon$, uma ação aleatória é tomada: a_1

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

$$Q(0, a_1) = -1 + 0, 2[100 + 0, 9maxQ(S_{t+1}, a) - -1]$$

$$maxQ(S_{t+1}, a) = max(Q(3, a_1), Q(3, a_2)) = 20$$

$$Q(0, a_1) = -1 + 0, 2[-5 + 0, 9 * 20 - -1]$$

$$Q(0, a_1) = 1, 8$$

$$Q(Obst\'{a}culo, a) = Q(Objetivo, a) = 0$$

$$\gamma = 0.9$$

 $\alpha = 0.2$
 $\epsilon = 0.7$ Episódio 2 - Timestep 1
Estado 3

Tirando um valor aleatório p = 0.8Como $p > \epsilon$, a ação de maior valor Q é tomada: a_1

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_{t}, A_{t})]$$

$$Q(3, a_{1}) = 20 + 0, 2[100 + 0, 9maxQ(S_{t+1}, a) - 20]$$

$$maxQ(S_{t+1}, a) = max(Q(Goal, a)) = 0$$

$$Q(3, a_{1}) = 20 + 0, 2[100 + 0, 9 * 0 - 20]$$

$$Q(3, a_{1}) = 36$$

Q-Learnin Exemplo -> Colab: MDP-Q-Learning.ipynb

Q-Learning Exemplo -> MDP-Q-Learning.ipynb

```
Época: 5
[[ 30.32457432 -1.78718793]
  [ 24.82712892 0. ]
  [ 0. 0. ]
  [ 75.98917817 -50.99853246]
  [ 0. 0. ]
  [ 0. ]
```

```
Época: 50

[[ 84.95516314 61.87254585]

[ 83.1540738 0.4908778 ]

[ 18.16717342 19.76625631]

[ 99.98655847 -99.94399802]

[ 54.60561034 3.59858052]

[ 65.6903135 -50.98825934]]
```

```
Época: 100

[[ 84.99997503 66.35983797]

[ 84.89274294 34.84024878]

[ 39.54772176 58.65178563]

[ 99.99998921 -99.9999685 ]

[ 64.99899171 28.96997023]

[ 83.17746246 -95.9540262 ]]
```

```
Época: 150
[[ 84.99999996 66.49629877]
[ 84.9978662 54.07670857]
[ 54.83165188 74.48711009]
[100. -99.99999997]
[ 72.59329769 41.20287978]
[ 98.60928977 -97.16630364]]
```

```
Época: 300
[[ 85. 66.49999999]
[ 84.99999999 61.87224008]
[ 62.44442182 79.91712637]
[ 100. -100. ]
[ 74.97640776 70.9067834 ]
[ 99.98052749 -99.88455991]]
```

```
Época: 500
[[ 85. 66.5 ]
[ 85. 61.99960896]
[ 62.49881255 79.99972208]
[ 100. -100. ]
[ 74.99932194 74.88175181]
[ 99.99993359 -99.99919789]]
```

```
Época: 3000

[[ 85. 66.5]

[ 85. 62.]

[ 62.5 80.]

[ 100. -100.]

[ 75. 75.]

[ 100. -100.]]
```

```
Época: 100000

[[ 85. 66.5]

[ 85. 62. ]

[ 62.5 80. ]

[ 100. -100. ]

[ 75. 75. ]

[ 100. -100. ]]
```

Q-Learning Exemplo -> Colab: Simplified Blackjack - Q-Learning.ipynb

BlackJack com Q-Learning

Comparação entre SARSA e Q-Learning

On Policy SARSA
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$
Off Policy Q-Learning
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

- Q-Learning tem uma menor variância, pois não considera um valor aleatório na hora do treino da ação e assim converge mais facilmente.
- SARSA tem a vantagem de fazer um treino online (on-policy) que usa os valores do próximo timestep.
- Q-Learning é mais utilizado por ser mais estável. Mas ele ainda tem problemas!

Double Q-Learning

Off Policy TD Control

Algoritmo Double Q-Learning

Tendência de Superestimação do Q-Learning

• O Q-Learning costuma superestimar os valores Q.

• De forma intuitiva, imagine: uma aplicação que toda a tabela Q é aproximadamente 0. Dado ao caráter randômico da exploração, alguns valores serão negativos e outros positivos. Como o Q-Learning utiliza o maior valor possível de $Q(s_{t+1}, A)$, ele vai acabar utilizando valores positivos para calcular o Q(s, a) assim superestimando seu valor.

• Chamado em inglês de *maximization bias*.

Double Q-Learning

- Um método criado para resolver o problema de maximization bias é o Double Q-Learning
- Similar ao Q-Learning, o Double Q-Learning armazena na memória duas tabelas Q_1 e Q_2 e toda vez que vai se chamar o treino roda-se uma moeda. Para cada um dos casos possíveis, se atualiza apenas uma das tabelas Q:

$$Q_{1}(S_{t}, A_{t}) \leftarrow Q_{1}(S_{t}, A_{t}) + \alpha [R_{t+1} + \gamma Q_{2}(S_{t+1}, \arg \max_{a \in \mathcal{A}} Q_{1}(S_{t+1}, a)) - Q_{1}(S_{t}, A_{t})]$$

$$Q_{2}(S_{t}, A_{t}) \leftarrow Q_{2}(S_{t}, A_{t}) + \alpha [R_{t+1} + \gamma Q_{1}(S_{t+1}, \arg \max_{a \in \mathcal{A}} Q_{2}(S_{t+1}, a)) - Q_{2}(S_{t}, A_{t})]$$

• Como é utilizado uma tabela diferente para pegar os valores de $\underset{a \in \mathcal{A}}{\arg\max} \, Q_2(S_{t+1}, a)$ não há superestimação.

Double Q-Learning: Pseudocódigo

Algoritmo: Double Q-Learning (off-policy TD control)

Parâmetro do Algoritmo: Taxa de aprendizado $\alpha \in (0,1]$

Inicializar $Q_1(s, a)$ e $Q_2(s, a)$ arbitrariarmente para todo $s \in S$ e $a \in A(s)$, com $Q_0(s_{termina}) = 0$ para estados terminais.

Repetir para cada episódio:

Inicializar estado inicial $S_0 \sim \mathbb{P}(S_0 = s), s \in \mathcal{S}$

Repetir para cada timestep t = 0,1,2,...:

Escolher ação a de s usando a política derivada de Q (como: ϵ -greedy)

Executar ação A_t e observar R_{t+1} , S_{t+1}

Com probabilidade 0.5:

$$Q_1(S_t, A_t) \leftarrow Q_1(S_t, A_t) + \alpha [R_{t+1} + \gamma Q_2(S_{t+1}, \arg \max_{a \in \mathcal{A}} Q_1(S_{t+1}, a)) - Q_1(S_t, A_t)]$$

Else:

$$Q_2(S_t, A_t) \leftarrow Q_2(S_t, A_t) + \alpha [R_{t+1} + \gamma Q_1(S_{t+1}, \arg \max_{a \in \mathcal{A}} Q_2(S_{t+1}, a)) - Q_2(S_t, A_t)]$$

$$S_t = S_{t+1}$$

Até que S_t seja um estado terminal

Retorna: Funções Valor e Política ótimas V^* , Q^* e π^*

Double Q-Learning Exemplo -> Colab: Simplified Blackjack - Double Q-Learning.ipynb

Blackjack com Double Q-Learning

Comparação - Quando utilizar qual algoritmo?

- Métodos de TD-Control tabulares são utilizados para espaços ações/estados discretos e pequenos.
- Em geral SARSA e sua variação Expected SARSA costumam ser utilizados e funcionam melhor para treinos online quando as recompensas durante o treino são levadas em conta (o treino acontece no meio real).
- Q-Learning e Double Q-Learning funcionam melhor em ambientes simulados.

Comparação – BlackJack Simplificado

Blackjack with random policy Average payout after 300 rounds is -120.04

Blackjack with SARSA Average payout after 300 rounds is -84.295

Blackjack with Expected SARSA Average payout after 300 rounds is -76.45

Blackjack with Q-Learning Average payout after 300 rounds is -75.945

Blackjack with Double Q-Learning Average payout after 300 rounds is -82.98

Exercício E_3 - Resolver o problema de Supply Chain da Aula 2

MDP EXAMPLE: SUPPLY CHAIN

Gestão de Cadeia Logística (Supply Chain Management):
 Considere o problema de manutenção de inventário de determinado produto, em que cada nível da

cadeia mantém uma quantidade do produto e fornece para o nível inferior (Beer Distribution Game)

- $S_i(t)$: Estoque do nível i no instante de tempo t.
- $O_{ij}(t)$: Tamanho de pedido do nível i para nível j no instante de tempo t.
- $T_{ij}(t)$: Distribuição do nível i para o nível j no instante de tempo t.

Fonte: Geevers, K. Deep Reinforcement Learning in Inventory Management, 2020

58

Exercício E_3

• Tarefa A)

Implementar o Agente Q-Learning

Algoritmo: Q-Learning (off-policy TD control)

Parâmetro do Algoritmo: Taxa de aprendizado $\alpha \in (0,1]$

Inicializar $Q_0(s, a)$ arbitrariarmente para todo $s \in S$ e $a \in A(s)$, com $Q_0(s_{term}) = 0$ para estados terminais.

Repetir para cada episódio:

Inicializar estado inicial $S_0 \sim \mathbb{P}(S_0 = s), s \in \mathcal{S}$

Repetir para cada timestep t = 0,1,2,...:

Escolher ação a de s usando a política derivada de Q (como: ϵ -greedy)

Executar ação A_t e observar R_{t+1} , S_{t+1}

Atualizar o valor $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{t \in S_t} Q(S_{t+1}, a) - Q(S_t, A_t)]$

$$S_t = S_{t+1}$$

Até que S_t seja um estado terminal

Retorna: Funções Valor e Política ótimas V^* , Q^* e π^*

Exercício E_3

- Tarefa A)Implementar o Agente Q-Learning
- Tarefa B)
 Implementar o Loop de Treino

Exercício E_3

Tarefa A)
 Implementar o Agente Q-Learning

Tarefa B)
 Implementar o Loop de Treino

• Tarefa C)

Implementar o Agente Double Q-Learning

Algoritmo: Double Q-Learning (off-policy TD control)

Parâmetro do Algoritmo: Taxa de aprendizado $\alpha \in (0,1]$

Inicializar $Q_1(s, a)$ e $Q_2(s, a)$ arbitrariarmente para todo $s \in S$ e $a \in A(s)$, com $Q_0(s_{termina}) = 0$ para estados terminais.

Repetir para cada episódio:

Inicializar estado inicial $S_0 \sim \mathbb{P}(S_0 = s), s \in S$

Repetir para cada timestep t = 0,1,2,...:

Escolher ação a de s usando a política derivada de Q (como: ϵ -greedy)

Executar ação A_t e observar R_{t+1} , S_{t+1}

Com probabilidade 0.5:

$$Q_1(S_t, A_t) \leftarrow Q_1(S_t, A_t) + \alpha [R_{t+1} + \gamma Q_2(S_{t+1}, \arg \max_{a \in \mathcal{A}} Q_1(S_{t+1}, a)) - Q_1(S_t, A_t)]$$

Else:

$$Q_2(S_t, A_t) \leftarrow Q_2(S_t, A_t) + \alpha [R_{t+1} + \gamma Q_1(S_{t+1}, \arg \max_{a \in \mathcal{A}} Q_2(S_{t+1}, a)) - Q_2(S_t, A_t)]$$

$$S_t = S_{t+1}$$

Até que S_t seja um estado terminal

Retorna: Funções Valor e Política ótimas V^* , Q^* e π^*

Referências Bibliográficas

- [1] Sutton, R. and Barto, A. Reinforcement Learning: An Introduction, The MIT Press (2020).
- [2] UCL Course on RL by David Silver (https://www.davidsilver.uk/teaching/)
- [3] Watkins, C.J.C.H. (1989). Learning from delayed rewards. PhD Thesis, University of Cambridge, England.
- [4] https://github.com/ml874/Blackjack--Reinforcement-Learning
- [5] Geevers, K. Deep Reinforcement Learning in Inventory Management, 2020

Dúvidas

Muito obrigado a todos!

Dúvidas