

© octal ® hvadecimal

@ BCD (Binary coded decimal) [4 bits system]

② Excess 3 code = Decimal + 0011 (BCD) = 0000 → 0011

② Self Complimentary ande

\$ BCD ↔ Gurgy Conversions

Binary to Gray Code

Bz Bz Bz B, Bo

| (xxx) (xxx) (xx)

Gz Gz Gi Go

Boolean Algebria & Reduction Techniques O boolean algebra O vun diagram O K-mup

4) Gruin-Mcclukey.

SHOT WILL S

→ Postwates (5) 1904 - Hunfinton E.V

A. (8.c) = (A-B). c A+(B+c)=(A+B)+c

O Associative

A. (B+c) = (A.B)+ A+(B.C) = (A+B). (A+C), (A.C)

2 Distributive

, A.B = B. A A+B = B+A

3 commutative

 $x \cdot 1 = x$ x + 0 = x1 Identity elements

S Inverse law

a+(-a)=0

→ switching algebria. 1938 - Shamon CE

@ AND obviation

A. A = A , A. A = O

OR operation:

A+A=A , A+1=1A+O=A , $A+\bar{A}=1$

1 Involution theorem:

 $(A')' = \overline{A} = A$

1 Demongon's theorem!

A+B+E = A.8.C

(a) Transposition Theorem!

(A+B) (A+c) = A+BC

(Consensus Theroiem! (used to eliminate redundant terim)

3 variables + each variable subversated 2 times
and any one variable should be

AB+BC+ AC = AB+ AC

in Complement:

Duality Theorem! AND
$$\leftrightarrow$$
 or $1 \leftrightarrow 0$

Solvey $2 + 4^{2}z = 1$

* canonical form: every them has all variables

* standard from! all the terms do not have all literals and the contract (4) F(A,B,C) = AB+BZ+A

COSTANA

mast to appear

्रकामाण आर्ग

any binary variable is

witness since to

ormed actions to

called lifed

Max team is complement of Minterm (M= m)

So the Section of the section of SOP (sum of Product): each literal supresent in min term

(A+B+c) (A+B) * Pos!

solve + mention Theorem +

HOVENED disposition

= abc+abc+abc+bc (a+1=1)

F= xyz + yzw+ wxyz+ wxyz

the Apparation Landon & Topolitica soliday a property

Venn-diagram! OR = Union
AND = Interpretion

Wilder Charles Labor 51

manufacture of the state of

F(a,b,c,d)= &(1,5,7,9,12,13,15)

* Implicant = * Prime Implicant — Abtained by maxim possible each individual * Essential Prime implicant adjacent cells.

In the order in Canonical . Ly It is a prime Implicant with one and 2 teams are unique

i-e terms cannot combine

more than 1 time.

have Implicant = 7

Prime Implicant = 3

Implicant:

 $F(a,b,c,d) = \overline{a}\overline{b}\overline{c}d + \overline{a}\overline{b}\overline{c}d + \overline{a}\overline{b}\overline{c}d + ab\overline{c}d + ab\overline{c}d + ab\overline{c}d + ab\overline{c}d + ab\overline{c}d + ab\overline{c}d$

Prime Implicant!

 $f(a_1b_1c_1d) = \overline{c}d + bd + ab\overline{c}$

essential Brime Implicant! abc.

final result = $f(a,b,c,d) = \overline{cd+bd+abc}$

2001	13									
Prinimization Techniques Boolean Theorem /Law / Postulates k-map Grin-rachikay (Tabulation method)										
Limitation of K-map: if no of variable is higher										
# Quin-Maduksy. Method: $F(A,B,C,D,E,F,G) = \leq m (20,28,52,60)$										
				2	m (-			A LET		
Steb (1) Group Min = teams										
		1				1 (6)	6			
Group	minterm A	В	C · :	D	E		G		Two 1 5	
Go	20 0	0	1.	0 -	-	-			1W0 ± 3	
	28 0	0	L	1	1	0	0	ogri)	Three 1's	
Ğı	52 0	States on	1	0	1	0	0			
			-11				0		four 1's	
G ₂	60 0	Ţ	4	1.						
step(ji)	Make	Pain of	mîn	teams	a	nd	make	7 %	st variation	
Google	Paised	A	B	40	D	E	F	G		
Gio	(20,28)	0	C		_	1	0	0	1-bit variable	
	(20,52)	0		1	0	1	0	0		
	(28,60)	0		-1	1	T	o	0	1 bit variable	
6,	(52,60)	0	1	1.	_	1	0	O		

of any paiced min term repeated Step (ii) Pain again for 2 bit variation called redustant Guray CDEFG Paisud min teams (20,28,52,60) 0 - 1 -} radiumnit Gro (20,52, 28,60) 100 If suduntant come we can reglect any 1 expression. so minimized team, we get SHEET ROLL TO THE F(A,B,C,D,E,F,G) = ACEFG # Digital Logic Cincuit > Combinational Logic Circuit (ab not have memory) (output directly depend on I/b) (8) all ALU operations) > sequential Logic Circuit (has memory at each step) (output dip depend on I/p and forevious output)

(eg) FF, ant, Register)

Days C.