Cryptographie dans les réseaux radiomobiles

Henri Gilbert
resp. du laboratoire de cryptographie de l'ANSSI
henri.gilbert@ssi.gouv.fr

10 février 2016

sommaire

- introduction
 - besoins de sécurité liés à l'accès radio (tous systèmes)
- sécurité des systèmes 2G (GSM / circuits et GSM / paquets : GPRS)
 - architecture de sécurité
 - ▶ authentification et distribution de clés : algorithmes A3/A8
 - ► chiffrement : algorithmes A5 et GEA
- sécurité des systèmes 3G (UMTS : universal mobile telecommunications system)
 - architecture de sécurité
 - authentification et distribution de clé :
 - l'exemple d'algorithme MILENAGE, fondé sur l'AES
 - chiffrement et intégrité : algorithmes KASUMI et SNOW 3G
 - algorithme par blocs KASUMI, modes f8 et f9
 - algorithme de repli SNOW 3G
- sécurité 4G esquisse (EPS evolved packet system)

2/63

menaces	contre-mesures	
usurpation d'identité (clonage, rejeu)	authentification de l'abonné	
détournement de communication (hijacking)	intégrité de la signalisation	
écoute depuis un équipement passif	chiffrement limité ou non à la voie radio	
coute depuis une fausse station radio attaques dans le milieu)	- authentification mutuelle (protection partielle) - chiffrement systématique (imposé par le mobile) - indicateur de chiffrement	
localisation / filature radio	identités temporaires et chiffrement	

menaces	contre-mesures	
usurpation d'identité (clonage, rejeu)	authentification de l'abonné	
détournement de communication (hijacking)	intégrité de la signalisation	
écoute depuis un équipement passif	chiffrement limité ou non à la voie radio	
écoute depuis une fausse station radio (attaques dans le milieu)	- authentification mutuelle (protection partielle) - chiffrement systématique (imposé par le mobile) - indicateur de chiffrement	
localisation / filature radio	identités temporaires et chiffrement	
vol de la carte (U)SIM vol du terminal abonnements fantômes	code PIN listes noires d'IMEI organisationnelles	

	Cryptographie symétrique	Cryptographie asymétrique
Confidentialité	chiffrement symétrique	chiffrement asymétrique
Authentification d'entité	authentification	identification
Authentification de message	code d'authentification de message (MAC)	signature
Echange de clé	-	schéma d'échange de clé

exemples d'algorithmes à flot algorithme taille clé / IV utilisé dans origine 40-256 / -RSA-Labs RC4 SSL A5/1 64 / 22 ETSI GSM GEA2 64 / 32 **ETSI GPRS** SEAL 128 / 32 SCREAM Shrinking Generator 128 / 128 IBM ≥ 128 /-E0 128 / -Bluetooth **SNOW 2.0** 128 / 128 U. Lund 128 / 128 3GPP UMTS SNOW 3G + 7 algorithmes à flot retenus à l'issue de la compétition

 $\blacktriangleright \mathsf{MSC} \, / \, \mathsf{SGSN} \to \textbf{S-GW} \ \, (\mathsf{serving} \ \, \mathsf{gateway})$

VLR → MME (mobility management equipment)

► HLR → HSS (home subscriber server)

HSS

LTE / EPS : architecture de sécurité (esquisse)

- SAE (system architecture evolution)
 - ▶ IK et CK servent de point de départ à la dérivation de 5 types de clés de session
 - pour la gestion de la mobilité ME-MME : chiffrement + intégrité
 - pour la gestion des ressources radio ME-eNB : chiffrement + intégrité
 - pour le trafic ME-eNB : chiffrement (s'arrête à l'eNB contrairement à l'UMTS)
- algorithmes de chiffrement et d'intégrité partiellement renouvelés
 - ▶ EPS encryption / integrity algorithms (EEA1 / EIA1) : fondés sur SNOW 3G
 - ▶ EPS encryption / integrity algorithms (EEA2 / EIA2) : fondés sur AES
 - ▶ EPS encryption / integrity algorithms (EEA3 / EIA3) : fondés sur ZUC (algorithmes chinois en cours d'adoption par le 3GPP)

la séparation cryptographique entre les algorithmes est renforcée

conclusions

- sécurité de l'accès radio GSM, UMTS, EPS
 - érosion de la confidentialité des communications GSM
 - ▶ peu d'attaques actives constatées à ce jour (mais diminution du coût de telles attaques)
 - ▶ pas de vulnérabilité connue aussi grave que p.ex. celle des anciens systèmes WiFi
- évolutions en cours et impacts sur la sécurité (autres aspects)

 - contre-mesures : vérification / certification de code + signature + détection de malware
 - ▶ software radio + protocoles open source → risques accrus d'attaques par déni de service
 depuis des mobiles ou des fausses stations isolés ou coordonnés
 - contre-mesures : régulation de charge, détection d'intrusion et réaction automatique
 - $\blacktriangleright \ \text{infrastructures IP plus ouvertes} \rightarrow \ \text{risques accrus d'attaques depuis le réseau fixe}$
 - la protection de la signalisation devient indispensable (tunnels IPSec. etc.)