RoHS'

HALOGEN

FREE

17 Ω , +12 V / ± 5 V / +5 V / +3 V, 8-Ch / Dual 4-Ch High Performance Analog Multiplexers

DESCRIPTION

The DG408LE, DG409LE are monolithic analog multiplexers / demultiplexers designed to operate on single and dual supplies. Single supply voltage ranges from 3 V to 16 V while dual supply operation is recommended with \pm 3 V to \pm 8 V.

The DG408LE is an 8 channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3 bit binary address (A₀, A₁, A₂). The DG409LE is a dual 4 channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2 bit binary address (A₀, A₁). Break-before-make switching action to protect against momentary crosstalk between adjacent channels.

An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer / demultiplexer to all switches off for stacking several devices. All control inputs, address (Ax) and enable (EN) are TTL compatible over the full specified operating temperature range.

The DG408LE, DG409LE feature low on-resistance, fast switching time, and low leakage. They are ideal for data acquisition, control and automation, test instrument, and healthcare products. The DG408LE, DG409LE has an internal regulator powers the logic circuit. Such design reduces device power consumption and makes them ideal for battery operated applications.

The DG408LE, DG409LE are available in TSSOP16, SOIC16, and QFN16 packages.

FEATURES

 Pin-for-pin compatibility with DG408, DG409, and DG508, DG509

- Low power consumption: 6 μA/max., EN = Vx = 5 V
- Lower on-resistance: $R_{DS(on)}$ 17 Ω typ.
- Fast switching: ton 55 ns, toff 36 ns
- Break-before-make guaranteed
- Low leakage: I_{S(OFF)} 1 nA max.
- TTL, CMOS, LV logic (3 V) compatible
- -99 dB off-isolation and -98 dB crosstalk at 100 kHz
- Low parasitic capacitances: C_{S(OFF)} = 5.5 pF, C_{D(ON)} = 35 pF (DG408LE)
- ESD Protection:
 - ± 2.5 kV human body model
 - ± 100 V machine model
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details.

BENEFITS

- · High accuracy
- Single and dual power rail capacity
- Wide operating voltage range
- Simple logic interface

APPLICATIONS

- Automatic test equipment
- Data acquisition systems
- Meters and instruments
- Medical and healthcare systems
- Communication systems
- Audio and video signal routing
- Relay replacement
- Battery powered systems
- Computer peripherals
- Audio and video signal routing

FUNCTIONAL BLOCK DIAGRAMS AND PIN CONFIGURATIONS

DG408LE

DG409LE

Dual-In- Line, SOIC and TSSOP

Document Number: 78084

QFN OUTLINE

TRUTH TABLE (DG408LE)										
A ₂	A ₁	A ₀	EN	ON SWITCH						
Х	Х	Х	0	None						
0	0	0	1	1						
0	0	1	1	2						
0	1	0	1	3						
0	1	1	1	4						
1	0	0	1	5						
1	0	1	1	6						
1	1	0	1	7						
1	1	1	1	8						

TRUTH	TRUTH TABLE (DG409LE)									
A ₁	A ₀	EN	ON SWITCH							
Х	Х	0	None							
0	0	1	1							
0	1	1	2							
1	0	1	3							
1	1	1	4							

Note

• For low and high voltage levels for V_{AX} and V_{EN} consult "Digital Control" parameters for specific V+ operation.

ORDERING INF	ORDERING INFORMATION									
TEMP. RANGE	CONFIGURATION	PACKAGE	PART NUMBER	MIN. ORDER / PACK. QUANTITY						
		16-pin TSSOP	DG408LEDQ-GE3	Tube 360 units						
		10-рін 1330ғ	DG408LEDQ-T1-GE3	Tape and reel, 3000 units						
	8 Channel	16 pin 2010	Variation 2	Tube 500 units						
	Single Ended DG408LE	16-ріп 3010		Tape and reel, 2500 units						
-40 °C to +85 °C	DO400EE	(3 mm x 3 mm)		Tape and reel, 2500 units						
Lead-free		16 pin TSSOD		Tube 360 units						
		16-ріп 1330Р		Tape and reel, 3000 units						
	Dual 4 Channel	16-pin SOIC	DG409LEDY-GE3	Tube 500 units						
	Differential DG409LE	10-ріп 3010	DG409LEDY-T1-GE3	Tape and reel, 2500 units						
	DG409EE	16-pin QFN (3 mm x 3 mm) Variation 2	DG409LEDN-T1-GE4	Tape and reel, 2500 units						

Note

- -T1 indicates tape and reel, -GE3 indicates lead (Pb)-free and RoHS-compliant, NO -GE3 indicates standard tin/lead finish.
- Exposed pad of QFN package can be connected to GND, V-, or left floating.

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	LIMIT	UNIT					
V+ to V- e		18					
GND to V-		-18	V				
Digital Inputs ^a , V _S , V _D		(V-) - 0.3 to (V) + 0.3					
Current (any terminal)		30	mA				
Peak Current, S or D (pulsed at 1 ms, 10 % of	duty cycle max.)	100	IIIA				
Storage Temperature	(D suffix)	-65 to +125	°C				
	16-pin plastic TSSOP ^c	600					
Power Dissipation (package) ^b	16-pin narrow SOIC ^c	600	mW				
	16-pin miniQFN ^d	1385					
ESD Human Body Model (HBM); per ANSI / I	ESDA / JEDEC® JS-001	2500	V				
Latch Up Current, per JESD78D		300	mA				

Notes

- a. Signals on S_X, D_X, A_X, or EN exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads soldered or welded to PC board.
- c. Derate 8 mW/°C above 75 °C.
- d. Derate 17.3 mW/°C above 70 °C
- e. Also applies when V- = GND

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP. b	TYP. d		JFFIX o +85 °C	UNIT
	STWIBOL	V+ = 12 V, ± 10 %, V- = 0 V V _{EN} = 0.8 V or 2.4 V ^f	I EIVIP. ~	117. "	MIN. °	MAX. c	ONII
Analog Switch	,						
Analog Signal Range e	V _{ANALOG}		Full	-	0	12	V
Drain-Source	R _{DS(on)}	$V_D = 10.8 \text{ V}, V_D = 2 \text{ V or } 9 \text{ V}, I_S = 10 \text{ mA}$	Room	17	-	23	
On-Resistance	11DS(on)	sequence each switch on	Full	-	-	27	
R _{DS(on)} Matching Between Channels ^g	ΔR_{DS}	$V_D = 10.8 \text{ V}, V_D = 2 \text{ V or } 9 \text{ V}$	Room	1	-	3	Ω
On-Resistance Flatness	R _{FLAT(on)}	I _S = 10 mA	Room	3		6.5	
	laa		Room	-	-1	1	
Switch Off Leakage	I _{S(off)}	$V_{EN} = 0 \text{ V}, V_{D} = 11 \text{ V or } 1 \text{ V}$	Full	-	-5	5	
Current ^a	la.	V _S = 1 V or 11 V	Room	-	-1	1	nA
	I _{D(on)}		Full	-	-5	5	II/A
Channel On Leakage		V _S = V _D = 1 V or 11 V	Room	-	-1	1	
Current ^a	I _{D(on)}	V _S = V _D = 1 V OI 11 V	Full	-	-5	5	
Digital Control							
Logic High Input Voltage	V_{INH}		Full	-	2.4	-	V
Logic Low Input Voltage	V_{INL}		Full	-	-	8.0	V
Input Current ^a	I _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.8 \text{ V}$	Full	-	-1	1	μΑ
Dynamic Characteristics	1						
		$V_{S1} = 8 \text{ V}, V_{S8} = 0 \text{ V}, (DG408LE)$	Room	85	-	100	
Transition Time	t _{TRANS}	$V_{S1b} = 8 \text{ V}, V_{S4b} = 0 \text{ V}, \text{ (DG409LE)}$ see figure 2	Full	-	-	110	
Draek Defere Make Time	topen	t_{OPEN} $V_{S(all)} = V_{DA} = 5 \text{ V}$ see figure 4	Room	34	1	-]
Break-Before-Make Time	LOPEN		Full	-	-	-	ns
Facility Truss On Times			Room	55	-	72	
Enable Turn-On Time	t _{ON(EN)}	$V_{AX} = 0 \text{ V}, V_{S1} = 5 \text{ V (DG408LE)}$	Full	-	-	82	1
Facility To Off Trans		$V_{AX} = 0 \text{ V, } V_{S1b} = 5 \text{ V (DG409LE)}$ see figure 3	Room	36	-	47	
Enable Turn-Off Time	t _{OFF(EN)}	see ligare o	Full	-	-	50	1
Charge Injection e (DG408LE)	_	0 4 5 7 0 7 0 0 0	Room	-11	-	_	
Charge Injection e (DG409LE)	Q	$C_L = 1 \text{ nF}, V_{GEN} = 6 \text{ V}, R_{GEN} = 0 \Omega$	Room	-10	=.	-	pC
Off Isolation e, h (DG408LE)			Room	-99	-	-	
Off Isolation e, h (DG409LE)	OIRR		Room	-87	-	-	
Crosstalk e (DG408LE)		$f = 100 \text{ kHz}, R_L = 50 \Omega$	Room	-98	-	-	dB
Crosstalk e (DG409LE)	X _{TALK}		Room	-109	-	-	
Source Off Capacitance ^e (DG408LE)			Room	5.5	-	-	
Source Off Capacitance e (DG409LE)	C _{S(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	5.5	-	-	
Drain Off Capacitance e (DG408LE)			Room	25	-	-	_
Drain Off Capacitance e (DG409LE)	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 2.4 \text{ V}, V_{EN} = 0 \text{ V}$	Room	13.5	-	-	pF
Drain On Capacitance (DG408LE)		f = 1 MHz, V _D = 0 V, V _{EN} = 2.4 V	Room	35	-	-	1
Drain On Capacitance e (DG409LE)	C _{D(on)}	(DG409LE only)	Room	23.5	-	-	1
Power Supplies	<u> </u>			1	1	1	
Power Supply Range	V+			-	3	12	V
. orre. eappiyage							

- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = 25 °C, Full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)} \text{ max. } R_{DS(on)} \text{ min.}$
- h. Worst case isolation occurs on Channel 4 do to proximity to the drain pin.

SPECIFICATIONS (Dual Sup	oly V+ = 5 V, V - = -5 V)						
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP. b	TYP. d	D SUFFIX -40 °C to +85 °C		UNIT	
	01202	V+ = 5 V, ± 10 %, V- = -5 V V _{EN} = 0.6 V or 2.4 V ^f			MIN. c	MAX. c	0	
Analog Switch								
Analog Signal Range e	V _{ANALOG}		Full	-	-5	5	V	
Drain-Source	B-ac	$V_D = \pm 3.5 \text{ V}, I_S = 10 \text{ mA}$	Room	15	-	25	Ω	
On-Resistance	R _{DS(on)}	sequence each switch on	Full	-	-	30	22	
	lo, m		Room	-	-1	1		
Switch Off Leakage	I _{S(off)}	V+ = 5.5, V- = 5.5 V	Full	-	-5	5		
Current ^a	la	$V_{EN} = 0 \text{ V}, V_D = \pm 4.5 \text{ V}, V_S = \pm 4.5 \text{ V}$	Room	-	-1	1	nA	
	I _{D(off)}		Full	-	-5	5	IIA.	
Channel On Leakage	I	V+ = 5.5 V, V- = -5.5 V	Room	-	-1	1		
Current a	I _{D(on)}	$V_{EN} = 2.4 \text{ V}, V_D = \pm 4.5 \text{ V}, V_S = \pm 4.5 \text{ V}$	Full	-	-5	5		
Digital Control								
Logic High Input Voltage	V _{INH}		Full	-	2.4	-	V	
Logic Low Input Voltage	V _{INL}		Full	-	-	0.6	V	
Input Current ^a	I _{IN}	V _{AX} = V _{EN} = 2.4 V or 0.6 V	Full	-	-1	1	μΑ	
Dynamic Characteristics								
	t _{TRANS}	V _{S1} = 3.5 V, V _{S8} = -3.5 V, (DG408LE) V _{S1b} = 3.5 V, V _{S4b} = -3.5 V, (DG409LE) see figure 2	Room	87	-	100		
Transition Time			Full	-	-	120		
Break-Before-Make Time	+	V _{S(all)} = V _{DA} = 3.5 V see figure 4	Room	84	1	-	ns	
Dreak-Delore-Make Time	LOPEN		Full	-	-	-		
Enable Turn-On Time	+		Room	58	-	73		
Enable rum-On Time	t _{ON(EN)}	$V_{AX} = 0 \text{ V}, V_{S1} = 3.5 \text{ V} (DG408LE)$	Full	-	-	80		
Enable Turn-Off Time	_	$V_{AX} = 0 \text{ V}, V_{S1b} = 3.5 \text{ V (DG409LE)}$ see figure 3	Room	31	-	46		
Enable rum-Oil Time	t _{OFF(EN)}	3	Full	-	-	51		
Source Off Capacitance e (DG408LE)			Room	6	-	-		
Source Off Capacitance e (DG409LE)	C _{S(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	5.5	-	-		
Drain Off Capacitance e (DG408LE)		f 1 MH= V 0 V V 0 V	Room	26	-	-	F	
Drain Off Capacitance e (DG409LE)	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	14	-	-	pF	
Drain On Capacitance ^e (DG408LE)		6 1MIE V 0VV 04V	Room	36	-	-		
Drain On Capacitance ^e (DG409LE)	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 2.4 \text{ V}$	Room	24	-	-		

- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = 25 $^{\circ}$ C, full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)} \text{ max.} R_{DS(on)} \text{ min.}$
- h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.

www.vishay.com

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP. b	TYP. d		JFFIX o +85 °C	UNIT
	OTHIBOL	$V+ = 5 V$, $\pm 10 \%$, $V- = 0 V$ $V_{EN} = 0.6 V or 2.4 V f$	i Livii .		MIN. c	MAX. c	Oitii
Analog Switch							
Analog Signal Range ^e	V_{ANALOG}		Full	-	0	5	V
Drain-Source On-Resistance	R _{DS(on)}	$V+ = 4.5 \text{ V}, V_D \text{ or } V_S = 1 \text{ V or } 3.5 \text{ V}, I_S = 5 \text{ mA}$	Room Full	28	-	36 41	
R _{DS(on)} Matching Between Channels ^g	ΔR_{DS}	$V+ = 4.5 \text{ V}, V_D = 1 \text{ V or } 3.5 \text{ V},$	Room	1	-	3	Ω
On-Resistance Flatness	R _{FLAT(on)}	$I_S = 5 \text{ mA}$	Room	-	-	4	
	-		Room	-	-1	1	
Switch Off Leakage	I _{S(off)}	$V+ = 5.5 V, V_S = 1 V \text{ or } 4 V$	Full	-	-5	5	
Current a		$V_D = 4 \text{ V or } 1 \text{ V}$	Room	-	-1	1	nA
	I _{D(off)}		Full	-	-5	5	IIA
Channel On Leakage	-	$V+ = 5.5 V$, $V_D = V_S = 1 V$ or 4 V	Room	-	-1	1	
Current a	I _{D(on)}	sequence each switch on	Full	-	-5	5	
Digital Control							
Logic High Input Voltage	V_{INH}	V+ = 5 V	Full	-	2.4	-	V
Logic Low Input Voltage	V_{INL}	V+ = 5 V	Full	-	-	0.6	V
Input Current ^a	I _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.6 \text{ V}$	Full	-	-1	1	μΑ
Dynamic Characteristics							
Transition Time	t _{TRANS}	$V_{S1} = 3.5 \text{ V}, V_{S8} = 0 \text{ V}, (DG408LE)$	Room	113	-	135	ns
		$V_{S1b} = 3.5 \text{ V}, V_{S4b} = 0 \text{ V}, (DG409LE)$ see figure 2	Full	-	-	165	
Break-Before-Make Time	t _{OPEN}	$V_{S(all)} = V_{DA} = 3.5 \text{ V},$	Room	75	1	-	
break-before-wake filme		see figure 4	Full	-	-	-	
Enable Turn-On Time	t _{ON(EN)}		Room	77	-	89	
Lilable fulli-Off fillie		$V_{AX} = 0 \text{ V}, V_{S1} = 3.5 \text{ V} (DG408LE)$	Full	-	-	110	
Enable Turn-Off Time	+	$V_{AX} = 0 \text{ V}, V_{S1b} = 3.5 \text{ V (DG409LE)}$ see figure 3	Room	43	-	50	
Lilable fulli-Oil fillie	t _{OFF(EN)}	,	Full	ī	-	53	
Charge Injection e (DG408LE)	Ø	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega, V_{GEN} = 2.5 \text{ V}$	Room	-2	-	-	20
Charge Injection e (DG409LE)	Q	OL = 1 IIF, AGEN = 0.52, VGEN = 2.5 V	Room	-2	-	-	рС
Off Isolation e, h (DG408LE)	OIRR		Room	-100	-	ī	
Off Isolation e, h (DG409LE)	OINN	$f = 100 \text{ kHz}, R_L = 50 \Omega$	Room	-83	-	-	dB
Crosstalk e (DG408LE)	>	1 = 100 kHz, NL = 50 tz	Room	-101	-	-	uБ
Crosstalk e (DG409LE)	X _{TALK}		Room	-108	-	-	
Source Off Capacitance e (DG408LE)	$C_{S(off)}$	f = 1 MHz, V _S = 0 V, V _{EN} = 0 V	Room	6.5	-	-	
Source Off Capacitance e (DG409LE)	- 5(011)	, G = -, -LIN = -	Room	6.5	-	-	
Drain Off Capacitance ^e (DG408LE) Drain Off Capacitance ^e	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	30	-	-	pF
(DG409LE) Drain On Capacitance e			Room	16 40	-	-	
Drain On Gabacitance • I			Room		-		

- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = 25 °C, full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)} \text{ max.} R_{DS(on)} \text{ min.}$
- h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.

SPECIFICATIONS (S	ingic oup	TEST CONDITIONS			D GI	JFFIX	<u> </u>
PARAMETER	SYMBOL	MROI UNLESS OTHERWISE SPECIFIED T	TEMP. b	TYP. d		o +85 °C	UNIT
	O'IMBOL	V+ = 3 V, ± 10 %, V- = 0 V V _{EN} = 0.4 V or 2 V ^f			MIN. c	MAX. c	0
Analog Switch							
Analog Signal Range e	V _{ANALOG}		Full	-	0	3	V
Drain-Source	R _{DS(on)}	$V+ = 2.7 \text{ V}, V_D = 0.5 \text{ or } 2.2 \text{ V},$	Room	63	-	80	Ω
On-Resistance	US(on)	$I_S = 5 \text{ mA}$	Full	-	-	92	22
	lo. 10		Room	-	-1	1	
Switch Off Leakage	I _{S(off)}	$V+ = 3.3 V, V_S = 2 \text{ or } 1 V, V_D = 1 \text{ or } 2 V$	Full	-	-5	5	
Current ^a	la con	$\begin{bmatrix} v + = 3.3 & v, & v_S = 2 & 0 & 1 & v, & v_D = 1 & 0 & 2 & v \end{bmatrix}$	Room	-	-1	1	nA
	I _{D(off)}		Full	-	-5	5	IIA
Channel On Leakage	la.	$V+ = 3.3 \text{ V}, V_D = V_S = 1 \text{ V or } 2 \text{ V}$	Room	-	-1	1	
Current a	I _{D(on)}	sequence each switch on	Full	-	-5	5	
Digital Control							
Logic High Input Voltage	V _{INH}		Full	-	2	-	V
Logic Low Input Voltage	V _{INL}		Full	-	-	0.4	V
Input Current a	I _{IN}	V _{AX} = V _{EN} = 2.4 V or 0.4 V	Full	-	-1	1	μΑ
Dynamic Characteristics						•	
	t _{TRANS}	V _{S1} = 1.5 V, V _{S8} = 0 V, (DG408LE) Room V _{S1b} = 1.5 V, V _{S4b} = 0 V, (DG409LE) see figure 2	Room	211	-	275	ns
Transition Time			Full	-	=	300	
Break-Before-Make Time	+	V _{S(all)} = V _{DA} = 1.5 V, see figure 4	Room	209	1	-	
break-before-wake fille	t _{OPEN}		Full	-	=	=	
Englis Turn On Time				125	-	150	
Enable Turn-On Time	t _{ON(EN)}	$V_{AX} = 0 \text{ V}, V_{S1} = 1.5 \text{ V (DG408LE)}$	Full	-	-	180	
Frankla Tima Off Tima		$V_{AX} = 0 \text{ V}, V_{S1b} = 1.5 \text{ V (DG409LE)}$ see figure 3	Room	45	-	75	
Enable Turn-Off Time	t _{OFF(EN)}		Full	-	-	95	
Charge Injection ^e (DG408LE)	0	0 1 T D 00 V 1 T V	Room	0	-	-	0
Charge Injection ^e (DG409LE)	Q	$C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V_{GEN} = 1.5 \text{ V}$	Room	-0.4	-	-	pC
Off Isolation e, h (DG408LE)	OIDD		Room	-90	-	-	
Off Isolation e, h (DG409LE)	OIRR	(400	Room	-95	-	-	
Crosstalk e (DG408LE)	.,	$f = 100 \text{ kHz}, R_L = 50 \Omega$	Room	-95	-	-	dB
Crosstalk e (DG409LE)	X_{TALK}		Room	-93	-	-	
Source Off Capacitance e (DG408LE)			Room	7	-	-	
Source Off Capacitance e (DG409LE)	$C_{S(off)}$	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	7	-	-	
Drain Off Capacitance e (DG408LE)	C-	f = 1 MHz V= = 0 V V = 0 V	Room	33	-	-	nE
Drain Off Capacitance e (DG409LE)	$C_{D(off)}$	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	18	-	-	pF
Drain On Capacitance e (DG408LE)	Cox	f = 1 MHz, V _D = 0 V, V _{EN} = 2 V	Room	43	-	-	
Drain On Capacitance e (DG409LE)	$C_{D(on)}$	1 - 1 1011 12, VD - 0 V, VEN = 2 V	Room	28	-	-	

- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = 25 °C, full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)} \text{ max.} R_{DS(on)} \text{ min.}$
- h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

R_{DS(on)} vs. V_D and Power Supply

R_{DS(on)} vs. V_D and Temperature (Dual Supply)

Input Threshold vs. V+ Supply Voltage

R_{DS(on)} vs. V_D and Power Supply

R_{DS(on)} vs. V_D and Temperature

Switching Time vs. Supply Voltage

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Leakage Current vs. Analog Voltage

Charge Injection vs. Analog Voltage (DG409LE)

Drain/Source Capacitance vs. Analog Voltage (DG408LE)

Charge Injection vs. Analog Voltage (DG408LE)

Insertion Loss, Off Isolation, and Crosstalk vs. Frequency

SCHEMATIC DIAGRAM (Typical Channel)

Fig. 1

TEST CIRCUITS

Fig. 2 - Transition Time

TEST CIRCUITS

Fig. 3 - Enable Switching Time

Fig. 4 - Break-Before-Make Interval

TEST CIRCUITS

Fig. 5 - Charge Injection

Fig. 6 - Off Isolation

Fig. 7 - Crosstalk

Fig. 8 - Insertion Loss

Fig. 9 - Source Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg278084.

SOIC (NARROW): 16-LEAD JEDEC Part Number: MS-012

	MILLIM	MILLIMETERS		HES					
Dim	Min	Max	Min	Max					
Α	1.35	1.75	0.053	0.069					
A ₁	0.10	0.20	0.004	0.008					
В	0.38	0.51	0.015	0.020					
С	0.18	0.23	0.007	0.009					
D	9.80	10.00	0.385	0.393					
E	3.80	4.00	0.149	0.157					
е	1.27	BSC	0.050	BSC					
Н	5.80	6.20	0.228	0.244					
L	0.50	0.93	0.020	0.037					
0	0°	8°	0°	8°					
ECN: S-0	ECN: S-03946—Rev. F. 09-Jul-01								

DWG: 5300

QFN-16 Lead (3 x 3)

Notes

- (1) All dimensions are in millimeters.
- (2) N is the total number of terminals.
- (3) Dimension b applies to metallized terminal and is measured between 0.25 and 0.30 mm from terminal tip.
- (4) Coplanarity applies to the exposed heat sink slug as well as the terminal.
- (5) The pin #1 identifier may be either a mold or marked feature, it must be located within the zone indicated.

			VARIA	TION 1		VARIATION 2						
DIM.	MI	LLIMETE	RS		INCHES		M	ILLIMETE	RS		INCHES	
	MIN.	NOM	MAX.	MIN.	NOM	MAX.	MIN.	NOM	MAX.	MIN.	NOM	MAX.
А	0.80	0.90	1.00	0.031	0.035	0.039	0.80	0.90	1.00	0.031	0.035	0.039
b	0.18	0.23	0.30	0.007	0.009	0.012	0.18	0.25	0.30	0.007	0.010	0.012
D	2.90	3.00	3.10	0.114	0.118	0.122	2.90	3.00	3.10	0.114	0.118	0.122
D2	1.00	1.15	1.25	0.039	0.045	0.049	1.50	1.70	1.80	0.059	0.067	0.071
E	2.90	3.00	3.10	0.114	0.118	0.122	2.90	3.00	3.10	0.114	0.118	0.122
E2	1.00	1.15	1.25	0.039	0.045	0.049	1.50	1.70	1.80	0.059	0.067	0.071
е		0.50 BSC			0.020 BSC	;		0.50 BSC			0.020 BSC	;
L	0.30	0.40	0.50	0.012	0.016	0.020	0.30	0.40	0.50	0.012	0.016	0.020

ECN: T16-0233-Rev. D, 09-May-16

DWG: 5899

TSSOP: 16-LEAD

	DI	MENSIONS IN MILLIMETE	RS
Symbols	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
В	0.22	0.28	0.38
С	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
е	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
у	-	-	0.10
θ1	0°	3°	6°
ECN: S-61920-Rev D 23	R-Oct-06		

ECN: S-61920-Rev. D, 23-Oct-06

DWG: 5624

Document Number: 74417 www.vishay.com 23-Oct-06 1

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.