

PRACTICE EXAMPLE Canonical LR(1) Item set

Consider the example grammar that contains the productions

4.
$$E \rightarrow E + T$$

0.
$$G \rightarrow S$$
 4. $E \rightarrow E + T$
1. $S \rightarrow E = E$ 5. $T \rightarrow f$

2.
$$S \rightarrow f$$

2.
$$S \rightarrow f$$
 6. $T \rightarrow T * f$

3.
$$E \rightarrow T$$

Note: G is equivalent to S'.

PRACTICE EXAMPLE Canonical LR(1) Item set $\bullet [G \to .S, \varepsilon]$ $\{S \rightarrow .E = E, \epsilon\}$ $[S \rightarrow .f, \epsilon]$ 0. $G \rightarrow S$ 4. $E \rightarrow E + T$ $[E \rightarrow .T, = :+]$ 1. $S \rightarrow E = E$ 5. $T \rightarrow f$ 2. $S \rightarrow f$ 6. $T \rightarrow T * f$ $[T \rightarrow .f, = :+:*]$ $[T \rightarrow .T * f, = :+:*]$ $[E \rightarrow .E + T, = :+]$ 3. $E \rightarrow T$ 1 $\bullet [S \to E. = E, \epsilon]$ $\bullet [E \to E. + T, = :+]$ $\bullet [E \to T., = :+]$ 2 $\bullet[T \rightarrow T. \bullet f, = :+:\bullet]$ 3 $*[S \to f, \varepsilon]$ $\bullet[T \to f., = :+:\bullet]$ $*[S \rightarrow E = .E, \varepsilon]$ $[E \rightarrow .T, \varepsilon; +]$ $[T \rightarrow f, \epsilon: +: *]$ $[T \rightarrow .T * f, \epsilon: +:*]$ $[E \rightarrow .E + T, \varepsilon; +]$ 5 $\bullet [E \to E + .T, = :+]$ Note: G is equivalent to S'. $[T \rightarrow .f, = :+:*]$ ε is equivalent to \$ $[T \rightarrow .T * f, = :+:*]$

PRACTICE EXAMPLE Canonical LR(1) Item set 6 $*[S \rightarrow E = E., \epsilon]$ $\bullet [E \to E. + T, \epsilon: +]$ 4. $E \rightarrow E + T$ 0. $G \rightarrow S$ 7 *[$E \rightarrow T$., ε : +] 1. $S \rightarrow E = E$ 5. $T \rightarrow f$ $*[T \rightarrow T.*f, \epsilon: +:*]$ 8 $*[T \rightarrow f., \epsilon: +: *]$ 2. $S \rightarrow f$ 6. $T \rightarrow T * f$ 9 $\bullet[T \rightarrow f_{\cdot,} = :+:\bullet]$ 3. $E \rightarrow T$ 10 $*[E \to E + T., = :+]$ $*[T \to T.*f, = :+:*]$ $*[T \rightarrow T *.f, = :+:*]$ 11 $\bullet [T \to T \bullet f., = :+ : \bullet]$ 12 13 $*[E \rightarrow E + .T, \varepsilon: +]$ $[T \rightarrow .f, \epsilon; +; \bullet]$ $[T \rightarrow .T * f, \varepsilon; + : *]$ 14 $*[E \rightarrow E + T, \varepsilon; +]$ $\bullet[T \to T. \bullet f, \epsilon: +: \bullet]$ $\bullet[T \rightarrow T \bullet .f, \epsilon; +; \bullet]$ 15 $\bullet[T \to T \bullet f., \epsilon: +: \bullet]$ 16 Note: G is equivalent to S'. $*[G \rightarrow S., \varepsilon]$ 17 ε is equivalent to \$

Using Ambiguous Grammars

- All grammars used in the construction of LR-parsing tables must be un-ambiguous.
- Can we create LR-parsing tables for ambiguous grammars?
 - Yes, but they will have conflicts.
 - We can resolve these conflicts in favor of one of them to disambiguate the grammar.
 - At the end, we will have again an unambiguous grammar.
- Why we want to use an ambiguous grammar?
 - Some of the ambiguous grammars are much natural, and a corresponding unambiguous grammar can be very complex.
 - Usage of an ambiguous grammar may eliminate unnecessary reductions.
- Ex.

$$E \rightarrow E+E \mid E*E \mid (E) \mid id$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid id$$

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *,) \}$$

State I_7 has shift/reduce conflicts for symbols + and *.

$$I_0 \xrightarrow{E} I_1 \xrightarrow{+} I_4 \xrightarrow{E} I_7$$

when current token is +

shift → + is right-associative

reduce → + is left-associative

when current token is *

shift → * has higher precedence than +

reduce → + has higher precedence than *

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *,) \}$$

State I_8 has shift/reduce conflicts for symbols + and *.

$$I_0 \xrightarrow{E} I_1 \xrightarrow{*} I_5 \xrightarrow{E} I_8$$

when current token is *

shift → * is right-associative

reduce → * is left-associative

when current token is +

shift \rightarrow + has higher precedence than *

reduce → * has higher precedence than +

SLR-Parsing Tables for Ambiguous Grammar

Action							Goto
	id	+	*	()	\$	E
0	s3			s2			1
1		s4	s5			acc	
2	s3			s2			6
3		r4	r4		r4	r4	
4	s3			s2			7
5	s3			s2			8
6		s4	s5		s9		
7		r1	s5		r1	r1	
8		r2	r2		r2	r2	
9		r3	r3		r3	r3	

Error Recovery in LR Parsing

- An LR parser will detect an error when it consults the parsing action table and finds an error entry. All empty entries in the action table are error entries.
- Errors are never detected by consulting the goto table.
- An LR parser will announce error as soon as there is no valid continuation for the scanned portion of the input.
- A canonical LR parser (LR(1) parser) will never make even a single reduction before announcing an error.
- The SLR and LALR parsers may make several reductions before announcing an error.
- But, all LR parsers (LR(1), LALR and SLR parsers) will never shift an erroneous input symbol onto the stack.