## Шпаргалка по нейронным сетям / Концепции Cheatsheet (XeLaTeX)

## Краткий справочник

## Содержание

| VI. B | ведение в Нейронные Сети (NN)               | 1 |
|-------|---------------------------------------------|---|
| 1.1   | VI.А Базовые Структуры: Нейроны и Слои      | 1 |
| 1.2   | VI.В Функции Активации: Внесение Нелиней-   |   |
|       | НОСТИ                                       | 1 |
|       | 1.2.1 ReLU и его вариации                   | 1 |
|       | 1.2.2 Sigmoid и Tanh                        | 2 |
|       | 1.2.3 Softmax                               | 2 |
|       | 1.2.4 Проблема Затухания/Взрыва Гради-      |   |
|       | ентов                                       | 2 |
| 1.3   | VI.C Backpropagation: Как Сеть Учится       | 2 |
| 1.4   | VI.D Оптимизаторы: Обновление Весов         | 3 |
| 1.5   | VI.Е Стабилизация и Регуляризация Обучения  | 3 |
|       | 1.5.1 Dropout                               | 3 |
|       | 1.5.2 Batch Normalization                   | 3 |
| 1.6   | VI.F Специализированные Архитектуры: CNN    |   |
|       | и RNN                                       | 4 |
|       | 1.6.1 CNN (Convolutional Neural Networks)   |   |
|       | - Сети для "Зрения"                         | 4 |
|       | 1.6.2 RNN (Recurrent Neural Networks) - Ce- |   |
|       | ти для Последовательностей                  | 4 |
|       |                                             |   |

## 1 VI. Введение в Нейронные Сети (NN)

## Цель раздела

Понять базовые компоненты нейронных сетей (нейроны, слои, функции активации), основной механизм обучения (Backpropagation) и методы его улучшения (оптимизаторы, регуляризация, нормализация). Заложить основу для понимания сверточных и рекуррентных сетей.

## 1.1. VI.А Базовые Структуры: Нейроны и Слои

### Искусственный Нейрон: Определение

**Что это:** Математическая модель, имитирующая базовую функцию биологического нейрона. Служит основным вычислительным элементом нейросети.

## Искусственный Нейрон: Принцип Работы

#### Шаги вычисления:

- 1. Принимает входы  $(x_i)$ .
- 2. Умножает каждый вход на его **вес**  $(w_i) \to w_i x_i$ .
- 3. Суммирует взвешенные входы  $\rightarrow z_{sum} = \sum_i w_i x_i$ .
- 4. Добавляет **смещение** (b)  $\to z = z_{sum} + b$ .
- 5. Результат z (пред-активация или логит) пропускается через функцию активации  $f(\cdot)$ .
- 6. Выход нейрона  $\rightarrow a = f(z)$  (активация).

**Обучаемые параметры:** Веса  $w_i$  и смещение b.

### Многослойный Перцептрон (MLP): Архитектура

**Что это:** Классическая нейросеть из нескольких последовательных слоев нейронов. **Слои:** 

- Входной (Input): Принимает признаки X. Не содержит вычислительных нейронов.
- **Скрытые (Hidden):** Один или более. Здесь происходит основная обработка, извлечение нелинейных паттернов.
- Выходной (Output): Формирует итоговый результат. Структура зависит от задачи (1 нейрон/линейная активация для регрессии, 1 нейрон/сигмоида для бинарной клас., N нейронов/Softmax для многоклассовой).

**Связи:** Обычно **полносвязные** (Dense / Fully Connected) — каждый нейрон слоя связан с каждым нейроном следующего слоя.

## 1.2. VI.В Функции Активации: Внесение Нелинейности

## Зачем нужна Нелинейность?

Без нелинейных функций активации (f) в скрытых слоях вся нейросеть (даже глубокая) была бы математически эквивалентна одному линейному слою (т.е., простой линейной или логистической регрессии). Нелинейность позволяет сети изучать сложные, нелинейные зависимости в данных.

## 1.2.1. ReLU и его вариации

## **ReLU (Rectified Linear Unit)**

$$f(x) = \max(0, x)$$

**Свойства:** Вычислительно очень проста. Не "насыщается" для x>0 (производная = 1), что помогает градиентам проходить через глубокие сети. **Недостаток:** "Умирающие ReLU" (Dying ReLU) — если вход нейрона стабильно  $\leq 0$ , градиент через него перестает проходить, и нейрон перестает обучаться. **Использование:** Стандартный выбор для скрытых слоев в большинстве современных архитектур.

## **Leaky ReLU**

$$f(x)=egin{cases} x & \text{if } x>0 \ lpha x & \text{if } x\leq 0 \end{cases} \quad (lpha$$
 - малый коэфф., e.g.,  $0.01)$ 

**Свойства:** Решает проблему "умирающих ReLU", позволяя небольшому градиенту ( $\alpha$ ) проходить при  $x \leq 0$ .

## **ELU (Exponential Linear Unit)**

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha(e^x - 1) & \text{if } x \leq 0 \end{cases} \quad (\alpha > 0, \text{ часто } 1)$$

**Свойства:** Похожа на Leaky ReLU, но использует экспоненту. Может давать более гладкие градиенты и отрицательные выходы, что иногда полезно.

## 1.2.2. Sigmoid и Tanh

## Sigmoid (Сигмоида)

$$f(x) = \frac{1}{1 + e^{-x}}$$

**Свойства:** Сжимает выход в диапазон [0, 1], удобен для интерпретации как вероятность. **Недостатки:** Сильно "насыщается" при больших |x| (градиент близок к 0)  $\to$  проблема **затухания градиентов**. Выход не центрирован около нуля. **Использование: Только** выходной слой для **бинарной классификации**. Избегать в скрытых слоях.

## Tanh (Гиперболический тангенс)

$$f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

**Свойства:** Сжимает выход в диапазон [-1, 1], выход центрирован около нуля (лучше Sigmoid для скрытых слоев). **Недостат-ки:** Также страдает от затухания градиентов, хотя и меньше, чем Sigmoid. **Использование:** Иногда в скрытых слоях, часто в ячейках RNN/LSTM/GRU.

#### 1.2.3. Softmax

#### **Softmax**

$$f(x_i) = rac{e^{x_i}}{\sum_{j=1}^N e^{x_j}}$$
 (для  $i = 1..N$  нейронов)

**Свойства:** Преобразует вектор "сырых" оценок (логитов  $x_i$ ) в вектор вероятностей (все  $f(x_i) \geq 0$  и  $\sum f(x_i) = 1$ ). Использование: Только в выходном слое для многоклассовой классификации.

## Графики популярных функций активации

#### Функции активации



## 1.2.4. Проблема Затухания/Взрыва Градиентов

# Определение Проблемы (Vanishing/Exploding Gradients)

**Проблема:** При обучении глубоких сетей (много слоев), во время обратного прохода (Backpropagation) градиенты, передаваемые от слоя к слою, могут либо экспоненциально уменьшаться (затухание, vanishing), становясь близкими к нулю, либо экспоненциально расти (взрыв, exploding). **Причины:** Повторное

умножение на веса и производные функций активации (особенно насыщающихся).

## Последствия Проблемы Градиентов

- Затухание: Ранние слои сети почти не обучаются, так как до них не доходит "сигнал" ошибки. Обучение очень медленное или останавливается.
- **Взрыв:** Большие изменения весов приводят к нестабильности обучения, расходящимся значениям функции потерь (NaN).

#### Решения Проблемы Градиентов

- Использование ненасыщающихся активаций (ReLU и его варианты).
- · Batch Normalization.
- Правильная инициализация весов (Xavier/Glorot, He).
- Residual Connections (проброс связей в обход слоев, как в ResNet).
- Обрезание градиентов (Gradient Clipping) в основном для борьбы со взрывом.

## 1.3. VI.C Backpropagation: Как Сеть Учится

## Backpropagation: Ключевой Алгоритм Обучения

**Цель:** Эффективно вычислить **градиенты** (частные производные) функции потерь J по *всем* обучаемым параметрам ( $W_l, b_l$  каждого слоя l). Градиент  $\partial J/\partial w$  показывает, насколько сильно и в каком направлении изменится итоговая ошибка J, если немного изменить вес w.

#### Этап 1: Прямой Проход (Forward Pass)

**Что происходит:** Данные X проходят через сеть слой за слоем от входа к выходу. На каждом слое l вычисляются предактивационные значения  $z_l=W_la_{l-1}+b_l$  и активации  $a_l=f_l(z_l)$ . Промежуточные  $z_l$  и  $a_l$  сохраняются. **Результат:** Итоговые предсказания сети  $a_L=\hat{y}$ . **Затем:** Вычисляется функция потерь  $J(\hat{y},y)$ , измеряющая ошибку предсказания.

### Этап 2: Обратный Проход (Backward Pass) - Идея

**Задача:** Распространить ошибку J обратно через сеть для вычисления градиентов  $\partial J/\partial W_l$  и  $\partial J/\partial b_l$ . **Метод:** Применение **цепного правила (chain rule)** дифференцирования для вычисления производной сложной функции (функции потерь J, которая зависит от всех весов и смещений через цепочку вычис-

лений).

#### Этап 2: Обратный Проход (Backward Pass) - Механика

#### Как работает (от слоя L к слою 1):

- 1. Начало (выходной слой L): Вычисляется  $\partial J/\partial a_L$  (из производной функции потерь) и  $\partial J/\partial z_L=(\partial J/\partial a_L)\odot f'_L(z_L).$
- 2. Вычисление градиентов для слоя l: Зная  $\partial J/\partial z_l$ , вычисляем:
  - $\partial J/\partial W_l = (\partial J/\partial z_l) \cdot a_{l-1}^T$
  - $\partial J/\partial b_l = \sum (\partial J/\partial z_l)$  (суммирование по батчу/примерам)
- 3. Передача ошибки на предыдущий слой (l-1): Вычисляем  $\partial J/\partial a_{l-1} = W_l^T \cdot (\partial J/\partial z_l)$ .
- 4. Переход к  $z_{l-1}$ : Вычисляем  $\partial J/\partial z_{l-1}=(\partial J/\partial a_{l-1})\odot f'_{l-1}(z_{l-1}).$
- 5. **Повторение:** Шаги 2-4 повторяются для всех слоев от L-1 до 1.

(Примечание:  $\odot$  обозначает поэлементное умножение (Hadamard product),  $\cdot$  - матричное умножение). **Результат:** Градиенты  $\partial J/\partial W_l$  и  $\partial J/\partial b_l$  для всех слоев l.

## 1.4. VI.D Оптимизаторы: Обновление Весов

## Роль Оптимизатора

Использует градиенты  $\nabla J$ , полученные от Backpropagation, для вычисления и применения обновлений к весам  ${\bf w}$  и смещениям  ${\bf b}$  сети, с целью минимизировать функцию потерь J. Определяет *как именно* использовать градиент для шага.

## Mini-batch Gradient Descent (MBGD)

**Подход:** Градиент  $\nabla J_{batch}$  вычисляется (усредняется) по небольшой случайной подвыборке (мини-батч, mini-batch) данных. Обновление:  $\mathbf{w} := \mathbf{w} - \alpha \cdot \nabla J_{batch}(\mathbf{w})$ . Преимущества: Быстрее Batch GD, стабильнее SGD, позволяет использовать матричные операции. Гиперпараметр: Learning rate  $\alpha$  (скорость обучения).

#### Momentum

**Идея:** Добавить "инерцию" к шагу, учитывая предыдущее направление движения v. **Формула (идея):**  $v_t = \beta v_{t-1} + \alpha \nabla J(\mathbf{w})$ ;  $\mathbf{w} := \mathbf{w} - v_t$ . **Гиперпараметры:**  $\alpha$ ,  $\beta$  (коэфф. момента, обычно 0.9). **Польза:** Ускоряет сходимость в "оврагах" функции потерь, помогает преодолевать локальные минимумы и плато.

## **AdaGrad (Adaptive Gradient)**

**Идея:** Адаптивный learning rate *для каждого параметра* отдельно. Уменьшает шаг для параметров с часто большими градиентами. **Механика:** Накапливает сумму квадратов *всех* прошлых градиентов G. Делит learning rate  $\alpha$  на  $\sqrt{G+\epsilon}$ . **Польза:** Хорош для разреженных данных. **Недостаток:** Learning rate может слишком быстро уменьшиться до нуля.

#### **RMSProp**

Идея: Исправить проблему AdaGrad с затуханием шага. Механика: Использует экспоненциальное скользящее среднее (ЕМА) квадратов градиентов  $E[g^2]$ , "забывая" старые. Формула (идея):  $E[g^2]_t = \gamma E[g^2]_{t-1} + (1-\gamma)(\nabla J)^2$ ;  $\Delta w = -\frac{\alpha}{\sqrt{E[g^2]_t+\epsilon}} \nabla J(w)$ . Гиперпараметры:  $\alpha$ ,  $\gamma$  (коэфф. затухания ЕМА, 0.9).

## **Adam (Adaptive Moment Estimation)**

**Идея:** Сочетает идеи Momentum (ЕМА градиентов m) и RMSProp (ЕМА квадратов градиентов v). **Механика:** Использует m и v для адаптивного шага. Включает коррекцию смещения m и v на начальных этапах. **Польза:** Часто самый эффективный оптимизатор по умолчанию. **Гиперпараметры:**  $\alpha$ ,  $\beta_1$  (для m, 0.9),  $\beta_2$  (для v, 0.999).

# 1.5. VI.E Стабилизация и Регуляризация Обучения

## 1.5.1. Dropout

## Dropout: Определение и Цель

**Что это:** Метод **регуляризации** для борьбы с переобучением в нейросетях. **Идея:** Создание подобия ансамбля из множества "прореженных" подсетей.

### Dropout: Механизм Работы

**На обучении:** Перед каждым прямым проходом для каждого нейрона в слое (кроме выходного) с вероятностью p (е.g., p=0.5) его выход искусственно **обнуляется** для данного прохода. Разные нейроны обнуляются на разных проходах. **На предсказании/тесте:** Используются **все** нейроны, но их выходы умножаются на (1-p) (inverted dropout) или используется усреднение по сетям (менее практично). **Эффект:** Заставляет сеть учить более робастные и распределенные представления, не полагаясь на отдельные нейроны.

#### 1.5.2. Batch Normalization

#### Batch Normalization (BatchNorm): Определение и Цель

**Что это:** Техника для **стабилизации и ускорения** обучения глубоких сетей. **Цель:** Бороться с проблемой **Internal Covariate Shift** (изменение распределения входов слоев во время обучения из-за изменения параметров предыдущих слоев).

### BatchNorm: Работа на Обучении

## Процесс для входа z слоя по батчу B:

- 1. Считаем статистику батча:  $\mu_B = \mathrm{mean}(z)$ ,  $\sigma_B^2 = \mathrm{variance}(z)$ .
- 2. **Нормализуем:**  $\hat{z}=(z-\mu_B)/\sqrt{\sigma_B^2+\epsilon}$ . ( $\hat{z}$  имеет среднее 0, дисперсию 1 *по батчу*).
- 3. Масштабируем и сдвигаем:  $y_{BN}=\gamma \hat{z}+\beta$ . ( $\gamma,\beta$  обучаемые параметры).
- 4. **Обновляем скользящие средние:** Параллельно обновляются  $\mu_{run}$ ,  $\sigma_{run}^2$  (оценка среднего и дисперсии по всему датасету через EMA).

### BatchNorm: Работа на Предсказании/Тесте

**Процесс:** Использует **сохраненные** скользящие статистики  $\mu_{run}, \sigma_{run}^2$  и **обученные** параметры  $\gamma, \beta$ . **Формула:**  $y_{BN} = \gamma \frac{z - \mu_{run}}{\sqrt{\sigma_{run}^2 + \epsilon}} + \beta$ .

## BatchNorm: Эффекты и Применение

#### Эффект:

- Стабилизирует и значительно ускоряет обучение.
- Позволяет использовать больший learning rate.
- Действует как слабая форма регуляризации.
- Снижает чувствительность к инициализации весов.

**Применение:** Обычно вставляется *между* линейным преобразованием (Wx+b) и нелинейной активацией (f).

## 1.6. VI.F Специализированные Архитектуры: CNN и RNN

## Зачем нужны специализированные сети?

MLP (полносвязные сети) универсальны, но не учитывают структуру данных (пространственную, временную). Для таких данных CNN и RNN часто гораздо более эффективны и требуют меньше параметров, так как используют априорные знания о структуре через свои архитектурные особенности.

## 1.6.1. CNN (Convolutional Neural Networks) - Сети для "Зрения"

### Ключевые Идеи CNN

- Локальность Связей: Нейроны смотрят только на небольшую локальную область входа (рецептивное поле). Учитывает пространственную близость пикселей/элементов.
- Иерархия Признаков: Слои учатся распознавать все более сложные паттерны, комбинируя выходы предыдущих слоев (грани → текстуры → части объектов → объекты).

**Основное Применение:** Изображения, видео, аудио (спектрограммы), иногда тексты (1D свёртки).

## Сверточный Слой (Conv Layer)

Задача: Извлечение локальных признаков с помощью набора обучаемых фильтров (ядер, kernels). Принцип работы: Каждый фильтр (маленькая матрица весов, е.д., 3х3) "скользит" по входу. В каждой позиции вычисляется скалярное произведение весов фильтра и соответствующего участка входа + смещение. Результаты для одного фильтра формируют карту признаков (feature map). Гиперпараметры: Число фильтров (глубина выхода), размер фильтра (е.д., 3х3, 5х5), шаг (stride), заполнение (padding: 'same' для сохранения размера, 'valid' без заполнения). После Conv: Обычно следует функция активации (ReLU).

### Пулинг Слой (Pooling Layer)

**Задача:** Уменьшение пространственного размера карт признаков (downsampling). **Цели:** 

• Снижение вычислительной нагрузки и числа параметров в последующих слоях.

• Повышение робастности к малым сдвигам/искажениям входных данных (инвариантность).

**Принцип работы:** Применяет агрегирующую функцию к непересекающимся (обычно) окнам (e.g., 2x2).

- Max Pooling: Выбирает максимальное значение в окне (сохраняет самые сильные активации признаков). Наиболее распространен.
- Average Pooling: Вычисляет среднее значение в окне. Гиперпараметры: Тип пулинга, размер окна (pool size), шаг (stride, часто равен размеру окна).

#### Типичная Архитектура CNN

Часто состоит из чередующихся блоков свертки и пулинга, за которыми следуют полносвязные слои для классификации/регрессии:  $Bxod \rightarrow [Conv \rightarrow Activation \rightarrow (BatchNorm) \rightarrow Pool]*N \rightarrow Flatten \rightarrow [Dense \rightarrow Activation \rightarrow (Dropout/BatchNorm)]*M \rightarrow Выходной Dense Слой (<math>N$ , M - количество блоков/слоев)

## 1.6.2. RNN (Recurrent Neural Networks) - Сети для Последовательностей

#### Ключевые Идеи RNN

- Обработка последовательностей: Предназначены для данных, где важен порядок элементов (текст, временные ряды).
- Рекуррентная связь ("Память"): Выход сети на шаге t зависит не только от входа  $x_t$ , но и от информации с предыдущих шагов, хранящейся в скрытом состоянии (hidden state)  $h_t$ . Состояние  $h_{t-1}$  передается на шаг t.
- Общие Веса во Времени (Parameter Sharing): Один и тот же набор весов используется для обработки каждого элемента последовательности  $x_t$ .

**Основное Применение:** Обработка естественного языка (NLP), анализ временных рядов, распознавание речи, генерация музыки.

## Простая RNN Ячейка (Simple RNN / Elman RNN)

**Формула:**  $h_t = f(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$ . Новое состояние  $h_t$  вычисляется на основе текущего входа  $x_t$  и предыдущего состояния  $h_{t-1}$  с использованием функции активации f (часто tanh). Выход (опционально):  $y_t = g(W_{hy}h_t + b_y)$ . Основная Проблема: Затухание/взрыв градиентов при обучении на длинных последовательностях  $\to$  трудности с запоминанием долговременных зависимостей.

### LSTM Ячейка (Long Short-Term Memory)

**Цель:** Решить проблему градиентов RNN и улучшить долговременную память с помощью **гейтов** (управляющих механизмов на основе сигмоид). **Ключевые Компоненты:** 

- Состояние Ячейки  $(C_t)$ : Основной канал для хранения информации ("конвейер памяти"). Может передавать информацию почти без изменений.
- **Forget Gate** ( $f_t$ ): Решает, какую информацию из  $C_{t-1}$  нужно "забыть".
- Input Gate  $(i_t)$ : Решает, какая новая информация из входа  $x_t$  и  $h_{t-1}$  будет сохранена в  $C_t$ . Состоит из двух частей: сигмоиды  $i_t$  и tanh  $\tilde{C}_t$  (кандидат на добавление).
- Output Gate  $(o_t)$ : Решает, какая часть состояния ячейки  $C_t$  будет выведена как скрытое состояние  $h_t$ .

**Результат:** Может эффективно хранить, читать и записывать информацию, управляя потоком данных через гейты.

## GRU Ячейка (Gated Recurrent Unit)

**Цель:** Упрощенная версия LSTM с меньшим числом параметров, также эффективно борется с проблемой градиентов. **Ключевые Компоненты:** 

- Update Gate ( $z_t$ ): Комбинирует Forget и Input гейты LSTM. Определяет, сколько информации из прошлого состояния  $h_{t-1}$  сохранить и сколько добавить из нового кандидата  $\tilde{h}_t$ .
- Reset Gate  $(r_t)$ : Определяет, насколько информация из прошлого состояния  $h_{t-1}$  будет использоваться для вычисления нового кандидата  $\tilde{h}_t$ .

**Особенности:** Нет отдельного состояния ячейки  $C_t$ . **Результат:** Сравнимая с LSTM производительность на многих задачах при меньшей сложности.

#### Использование RNN/LSTM/GRU

Обрабатывают последовательность входов  $x_1, ..., x_T$ . Возможные сценарии использования выходов:

- Многие-к-одному (Many-to-one): Используется только последний выход  $y_T$  или состояние  $h_T$  (e.g., классификация текста по всей последовательности).
- Один-ко-многим (One-to-many): Один вход  $x_1$ , генерация последовательности  $y_1,...,y_T$  (e.g., генерация описания по картинке).
- Многие-ко-многим (Many-to-many, синхронный): Для каждого  $x_t$  генерируется  $y_t$  (e.g., разметка частей речи в предложении).
- Многие-ко-многим (Many-to-many, асинхронный): Вся входная последовательность читается, затем генерируется выходная (seq-to-seq, e.g., машинный перевод).

Часто используется несколько слоев (Stacked RNN), где выход  $h_t$  одного слоя является входом  $x_t$  для следующего.