

Q#1: Patients arrive for a physical examination according to poisson process _____, if 2 attenders are available.

Solution:

Given:=
$$\lambda = 1/hh$$
 $M = \frac{1}{453} \times 60^4 = \frac{4}{3} = 1.33 \text{ patients/hz}$
 $C = 2$
 $L_0 = ?$

(i)
$$\ell = \frac{\lambda}{CM} = \frac{1}{2(1.33)} = 0.3759 = 37.67$$

$$\begin{cases} c = \frac{\lambda}{\mu} = \frac{1}{1.33} = 0.7518 \\ c = \left\{ \left[\frac{(0.7518)^{\circ}}{0!} + \frac{(0.7518)^{\circ}}{1!} \right] + \left[\frac{(0.7518)^{\circ}}{1!} \right] + \left[\frac{(0.7518)^{\circ}}{1!} \right] \end{cases}$$

citio Ls=
$$C\ell + \frac{(c\ell)^{c+1} \ell_0}{c(c!)(1-\ell)^2}$$

Ls = $0.7510 + (0.7510) \cdot (0.4535)$
 $2(2.4)(1-0.5459) \cdot (0.4535)$

Ls= $0.7510 + 0.42249(0.4535)$
 $4(0.3895)$

Ls= $0.7510 + 0.1236$

= $0.7510 + 0.1236$

= $0.7510 + 0.1236$

= $0.7510 + 0.1236$

= $0.7510 + 0.1236$

= $0.7510 + 0.1236$

= $0.7510 + 0.1236$

= $0.7510 + 0.1236$
 $0.7510 + 0.1236$
 $0.7510 + 0.1236$
 $0.7510 + 0.1236$
 $0.7510 + 0.1236$
 $0.7510 + 0.1236$
 $0.7510 + 0.1236$
 $0.7510 + 0.1236$
 $0.7510 + 0.1236$

Lq= $0.7510 + 0.1236$

Result:

Avg. no of delayed patient is 0 or 1

A tool crib with one attendant serves a group of 10 mechanics ---- justify by comparing answers?

Solution:

Given :-

Mechanicis arrival time = 20 mins Mechanicis arrival rate(λ) = $\frac{1}{20}$ = 0.05 x 60 = 3/ Mz

Service time = 3 mins Service rate(μ) = $\frac{1}{3}$ = 0.33/mins = 0.83×60 = 20/WL

Required:-

Whether 2 attendants are required or not =?

WHEN THERE IS ONLY ONE ATTENDANT.

$$e^{2} = \frac{\lambda}{\mu}$$

$$= \frac{3}{20} = 0.15$$

$$e^{2} = 15\%$$

$$0.0 = 1 - 0.00 = 0.85$$

$$L_{s} = \frac{\lambda}{\lambda - \lambda}$$

$$= \frac{3}{20 - 3} = \frac{3}{17} = 0.176$$

$$W_{s} = \frac{1}{11 - 1}$$

$$= \frac{1}{20 - 3} = \frac{1}{17} = 0.050 \text{ hzs}$$

•
$$Wq = \frac{\lambda}{4(4-\lambda)}$$

= $\frac{3}{20(20-3)} = \frac{3}{20\times17}$
= 8.82×10^{-3}
[$Wq = 0.00882 \text{ M/s}$]

$$L_{q} = \frac{\lambda^{2}}{\lambda(\mu - \lambda)}$$

$$= \frac{3^{2}}{20(20 - 3)} = \frac{9}{20 \times 17} = 0.026$$

Laz o or 1 mechanic

WHEN THERE ARE 2 ATTENDANTS (c=2)

$$ACC = \frac{\lambda}{M}$$

= $\frac{3}{20} = 0.15$

$$c_0 = \left\{ \left[\frac{2!}{n=0} \frac{(ce)^n}{n!} \right] + \left[(ce)^c \times \frac{1}{c!} \times \left(\frac{1}{1-e} \right) \right] \right\}^{-1}$$

$$c_0 = \left\{ \left[\frac{2!}{n=0} \frac{(0.15)^n}{n!} \right] + \left[(0.15)^t \times \frac{1}{2!} \times \frac{1}{(1-0.075)} \right] \right\}^{-1}$$

$$c_0 = \left\{ \left[\frac{(0.15)^0}{0!} + \frac{(0.15)^t}{1!} \right] + \left[(0.0025) \times \frac{1}{2} \times \frac{1}{0.925} \right] \right\}^{-1}$$

$$\begin{cases} c = \left[(1+0.15) + \left[0.0225 \times 0.5 \times 1.09 \right] \right]^{-1} \\ c = \left[(1.15+0.01215)^{2} \right]^{-1} = (1.162)^{-1} = 1/1.162 \\ c = 0.8604 \\ c = 86.047, \end{cases}$$

$$= Ls i = (c()) + (c())^{c+1} c \\ c \times c! \times (1-c)^{2} \\ = 0.15 + (0.15)^{3} \times 0.8604 \\ 2 \times 2! \times (1-0.075)^{2} \\ = 0.15 + (0.003375) \times 0.8604 \\ 4 \times (0.855) \end{cases}$$

$$Ls = 0.15 + 8.4 \times 10^{-4} \\ = 0.1508 \\ Ls = 0.0502 \text{ his}$$

$$= 0.1509 \\ Mc = 0.0502 \text{ his}$$

$$= 0.0502 - \frac{1}{20}$$

$$Mq = 0.0002 \text{ his}$$

$$Lq = \lambda \times Mq$$

$$= 3 \times 0.0002$$

$$Lq = 0.0006$$

$$Lq = 0.0006$$

and collins

Results:-

The utilization of system decreases from 15% to 7.5%. When we have 2 attendants.

However, the maiting time of mechanic is slightly decreased with two attendants but it does not have much impact. So, since, system utilization is more with only 1 attendant, it is adviseable to not have second attendant.

Q3: The port of trop can service 3 ships at a time however____operational characteristics

Solution:-

Given.

Arrival rate (1) = 7/week

Service rate (11) = 0/week

No. of cervers(c) = 3

Waiting space in ship = 3

Required:

1)
$$\ell = \frac{\lambda}{CH} = \frac{7}{3x8} = \frac{7}{24} = 0.291$$

 $\ell = 29.17.$

$$=\frac{7}{8}$$

2)
$$l_0 = \{ [\frac{1}{2} (\frac{1}{2})^n] + [(\frac{1}{2})^n] + [(\frac{1}{2}$$

$$= 0.0751 + (0.075)^3 \times 0.415$$

$$3 \times 3! \times (1-0.291)^2$$

$$= 0.875 + 0.026$$

$$= 0.901$$

$$L_{s} = 0 \text{ or } 1 \text{ ship}$$

4)
$$W_{S} = \frac{L_{S}}{\lambda}$$

= 0.901
 $\frac{7}{7}$
 $W_{S} = 0.128$ week

5)
$$M_{2} = W_{5} - 1/L1$$

= 0.128 - $\frac{1}{8} = 0.128 - 0.125$
[$W_{2} = 0.003$ Neek]

(6)
$$L_{q} = \lambda \times W_{q}$$

= $7 \times 0.003 = 0.021$
 $L_{q} \approx 0$ or 1 Ship

Results:

The utilization of system decreases from 151. to 7.51. when we have 2 attendants. However, the waiting time of mechanic is slightly decreased with the two attendants but its does not have much impact. So, since system whilization is more with only 1 attendant, it is advisable to not have second attendant.

Q41 Classic care has 3 Morkers _____ to wash a car?

SOLUTIONI

Required 1-

a)
$$L_{s=(cl)} + (cl)^{c+1}l_{s} - (i)$$

$$\Rightarrow \ell = \frac{\lambda}{CH} = \frac{1.333}{3(1.667)} = 0.265 \times 100 = 26.57.$$

$$e = \left\{ \left[\frac{c}{n} \right] + \left[\left(\frac{c}{c} \right)^{n} \right] + \left[\left(\frac{1}{1 - \ell} \right) \right] \right\}^{-1}$$

$$Cl = \frac{\lambda}{4} = 0.7996$$

$$e = \left\{ \left(\sum_{n=0}^{\frac{N}{2}} (0.7996)^n \right) + \left[0.7496^3 \times \frac{1}{3!} \times \frac{1}{(1-0.765)} \right] \right\}^{-1}$$

$$= \left\{ \left[\frac{2}{5} (0.7996)^{1} \right] + \left[\frac{1}{5} (0.5112 \times \frac{1}{5} \times 1.360) \right]^{-1} \right\}$$

(i)
$$\rightarrow$$
 Ls = 0.7996 + 0.7996 (\rightarrow 0.447)
$$= 0.7996 + 0.1827$$
9.7240
Ls = 0.810 \approx 0 or 1 cars

b)
$$W_s = \frac{L_s}{\lambda}$$

= $\frac{0.010}{1.333}$
 $W_s = 0.613 \text{ Ms}$

c)
$$W_{q} = W_{s} - \frac{1}{u}$$

= 0.613 - $\frac{1}{1.667}$
 $W_{q} = 0.013 \text{ hrs}$

\$5: The manager of a computer network ____ distribution?

SOLUTION:

Given:-

 $\alpha = 0.01$

1) Ho = Service interruptions follows poisson distribution.

Haz Service interruptions do not follow poisson distribution.

2)	Χi	Oi	$P_i = \frac{e^{-\lambda}(\lambda)^x}{x!}$	Ei=SDDPi (nPi)	X, = (0-E)
	0	160	$e^{-1.3}(1.3)^{\circ} = 0.27-2$	136	$\frac{(160 - 136)^2}{136} = 4.235$
	1	175	$e^{-1.3}(1.3)! = 0.354$	177	$\frac{(175-177)^2}{177} = 0.0225$
	2	86	$\frac{e^{-1.3}(1.3)^2}{2!} = 0.230$	115	$\frac{(86-115)^2}{115} = 7.313$
	3	41	$\frac{e^{-1.3}(1.3)^2}{3!} = 0.099$	49.5	$\frac{(41 - 49.5)^2}{49.5} = 1.459$
	4	18	$e^{-1.3}(1.3)^{4} = 0.032$	16	$(10-16)^2 = 0.25$
	5	12.	$\frac{e^{-1.3}(1.3)^{5}}{5!} = 6.008$	4	(1 <u>2-4</u>)=16
	6	0	$\frac{e^{-1.3}(1.3)^{6}}{6!}=0.001$	0.5	$\frac{(8-0.5)^2}{0.5} = 112.5$

Finding
$$\lambda := \lambda = \chi = (0x160) + (1x175) + (2x86) + (3x41) + (4x18) + (5x12) + (6x8)$$

$$\lambda = 0 + 175 + 172 + 123 + 72 + 60 + 48$$

SOO

$$\lambda = 6501600 = 1.3$$

3) Degree of freedom =
$$K-S-1$$

= $7-1-1$
= 5

4)
$$\chi^2_{5,0.01} = 15.1$$
 (from table)

Hence; service interruptions don't follow poisson distribution.

\$6! Suppose the Penn state ----- 401. male?

SOLUTION:

Siven;
$$= 0.05$$

1) Ho = Penn State student population is 60% female & 40% male. Ha = Penn State student population is not 60% female & 40% male.

2)	Categories	Observed(o)	Expected (E=nPi)	$\chi_{0}^{r} = \frac{(0-E)^{r}}{E}$
	Male	47	401.x100= 40	$\left(\frac{47-40}{40}\right)^2 = 1.225$
- 11	Ferale	53	601. ×100 = 60	$\frac{(53-60)^2}{60} = 0.816$
			Total	2,041

3)
$$DF = K - S - 1$$

= $2 - D - 1$
= 1

87: The manager of commercial mortage..... distribution?

SOLUTION:

Given:-

d=0.01, n=104

1) Ho = The distribution is poisson distribution.

Ha = The distribution is not poisson distribution

Finding $\lambda = \overline{X} = (0x/3) + (1x/25) + (2x/32) + (3x/7) + (4x/9) + (5x/6) + (6x/1) + (7x/1)$

$$= 0 + 25 + 64 + 51 + 36 + 30 + 6 + 7 = 219 = [2.11]$$

$$104$$

2)	Xi	Di	$P_{i} = [e^{-2.11}(2.11)^{x}]/x!$	E: = 104(Pi)	$\chi_{\nu}^{2} = \frac{(D - E)^{2}}{E}$
(0	13	e ^{2.11} (2.11)° = 0.121	104×0.121=12.58	12.584 = 0.0138
	1	25	$e^{-2.11}(2.11)^{1}=0.256$	26.624	(25-26.624)=0.0990
	2	32	$e^{-2.11}(2.11)^{\frac{1}{2}}=0.269$	27.976	(32-27.976) ² 0.5788
	3	17	$e^{-2.11}(2.11)^3 = 0.189$	19.686	(17-19.656) = 0.3589
	4	9	$\frac{e^{-2.11}(2.11)^4}{e^{-2.11}(2.11)^4} = 0.100$	10.4	(9-10.4) = 0.1984
	5	67	[e-2.11(2.11)5]/S! = 0.0423	4.39927	10.4
	6	1 8	[e-2.11/6]/6! = 0.015	1.56	4.6168 = 0.3906
The state of the s	7	1)	$[e^{-2.11}(2.11)^{5}]/S! = 0.0423$ $[e^{-2.11}(2.11)^{6}]/G! = 0.015$ $[e^{-2.11}(2.11)^{7}]/7! = 0.0044$	0.4576	4.6168
				Total	1.69.95

4)
$$\chi_{0F,\alpha}^2 = \chi_{4,0.01}^2 = 13.277 (from table)$$

 $\chi_{0F,\alpha}^2 = \chi_{4,0.01}^2 = 13.277 (from table)$

i.e: [1.6295 < 13.274]

So, Ho is accepted.

OP: One study of grand juries --- proportion?

SOLUTION:

Given :-

1) Ho = For each age group, juniors proportion is consistent with country's proportion Ha= For each age group, juniors proportion isn't consistent with country's proportion

2).					
	Xi	Oi	Pi	E=nPi	1 = (Di - Ei)2 Ei
	21-40	5	421.	66× 42=27.72	(5-27.72)2 = 18.62
the section of	41-50	9	231.	$66 \times \frac{23}{100} = 15.18$	$\frac{(9-15\cdot10)^2}{18+18} = 2.52$
	SI-60.	.19	16/.	66 x 16 = 10.56	$\frac{18-18}{10.56} = 2.52$
	Over 60	33	19%	66 x 19 = 12. Sy	$\frac{(33 - 12.54)^2}{12.54} = 33.38$
			700	100	12.54
	Total	66	100%	C6	X2 = 61.27

3)
$$DF = K - S - 1$$

= $4 - 0 - 1$
= 3

4)
$$\chi^2_{3,0.05} = 7.81 (from table)$$

... $\chi^2_{0} < \chi^2_{0}$
[i.e. 61.27 & 7.81]

So, H. is rejected.

SOLUTION:

Given:

n=80, a=0.05, p=116

Since Pi=1/6=0.1666 for all the classes, we don't need to calculate 1.

1) Ho = Service times are exponentially distributed. Ha = services times are not exponentially distributed.

Classes (xi)	Observed freq. (0:) Expected frea. (Ei=nPi)	x' = (0-E)/E
[0,0.220)	B		(8-8.33)78.33=0.013
[0.220,0.489)	. 11	. 0.33	(11-8.33)/8.33=0.855
[0.489,0.836)	9	B.33	[9-8.33] 78:33 = 0.053
[0.836,1.325)	S	8.33	(5-0:33) 8.33=1.331
[1.325,2.161)	10	8.33	(10-8.33) 7 8.33 = 0.334
[2.161,00)	7	8.33	(7-8.33)78.33=0.212
Total:	50	49.98	$\chi_{o}^{2} = 2.7983$

3)
$$DF = K - S - 1$$

= $6 - 1 - 1$
= 4

2)

4)
$$\chi_{1,0.05}^{2} = 9.49 \text{ if rom table}$$

 $\chi_{0}^{2} < \chi_{4,0.05}^{2}$
 $1e^{2.798} < 9.49$

Ho is accepted.

Reachability Graph:

Boundness.

Pr. Ps. is 1-bounded -> safe.

Liveness :-

Petrinet is live because all transitions are fired.

911: Greate a petrinet.___

Reachability Graph:

Boundness

Pr. Pz. Pz are 1-bounded =>. Safe Pu and Ps are 2-bounded

Liveness

Petrinet is live as all transitions are fired.