16 décembre 2022 MP2I

Devoir Surveillé 4

Je vous rappelle les consignes :

• Écrire lisiblement sur des feuilles grandes et doubles, au stylo ou à l'encre bleu foncé ou noir et souligner ou encadrer ses résultats. On accordera de l'importance à la présentation.

- La calculatrice est interdite.
- Vous avez le droit de sauter des questions et d'admettre les résultats correspondants pour traiter les questions suivantes.
- Les différents exercices sont indépendants et vous pouvez les traiter dans l'ordre que vous désirez. Il est conseillé de parcourir le sujet dans sa globalité avant de commencer.
- La durée de ce devoir est de 3 heures.
- Ne restez pas trop longtemps sur les exercices. Il est conseillé de passer au moins 2 heures 15 sur le problème.

Exercice 1. On se propose de montrer que $\alpha = \frac{\arccos\left(\frac{1}{3}\right)}{\pi} \notin \mathbb{Q}$.

- 1) Vérifier que $e^{i\alpha\pi} = \frac{1+2i\sqrt{2}}{3}$.
- 2) Montrer par double implication que $\alpha \in \mathbb{Q} \Leftrightarrow \exists n \in \mathbb{N}^* / (1 + 2i\sqrt{2})^n = 3^n$.
- 3) Citer la formule du binôme de Newton et l'utiliser pour montrer que :

$$\forall n \in \mathbb{N}^*, \ \exists (a_n, b_n) \in \mathbb{Z}^n \ / \ (1 + 2i\sqrt{2})^n = a_n + ib_n\sqrt{2}.$$

4) En utilisant le fait que $(1+2i\sqrt{2})^{n+1}=(1+2i\sqrt{2})\times(1+2i\sqrt{2})^n$, vérifier que pour $n\in\mathbb{N}^*$:

$$\begin{cases} a_{n+1} = a_n - 4b_n \\ b_{n+1} = 2a_n + b_n \end{cases}.$$

- 5) Montrer par récurrence que $\forall n \in \mathbb{N}^*, \exists c_n \in \mathbb{Z} / a_n b_n = (-1)^n + 3c_n$.
- 6) En déduire que $\alpha \notin \mathbb{Q}$.

Exercice 2. Soient A et B deux parties d'un ensemble E telles que $A \cup B = E$ et $A \cap B = \emptyset$, F un ensemble et $f, g : E \to F$ deux fonctions injectives. On définit alors la fonction suivante :

$$h: \left\{ \begin{array}{ccc} E & \to & F \\ x & \mapsto & f(x) \text{ si } x \in A \\ x & \mapsto & g(x) \text{ si } x \in B \end{array} \right..$$

- 1) Justifier que h est bien définie.
- 2) Montrer que h est injective si et seulement si $f(A) \cap g(B) = \emptyset$.
- 3) Déterminer une condition nécessaire et suffisante portant sur f(A) et g(B) pour que h soit surjective (et faire la preuve!).

1

PROBLÈME

ÉTUDE D'UNE SUITE RÉCURRENTE PERTURBÉE

On définit la suite réelle
$$(u_n)_{n\in\mathbb{N}^*}$$
 par
$$\begin{cases} u_1 \in \mathbb{R}_+ \\ \forall n \in \mathbb{N}^*, \ u_{n+1} = u_n \times \left(u_n + \frac{1}{n}\right) \end{cases}.$$

On définit aussi par récurrence, pour tout entier $n \in \mathbb{N}^*$, les fonctions $f_n : \mathbb{R}_+ \to \mathbb{R}$ par :

- $\forall x \in \mathbb{R}_+, f_1(x) = x$.
- $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}_+, \ f_{n+1}(x) = f_n(x) \times \left(f_n(x) + \frac{1}{n}\right).$

Le but du problème est de déterminer en fonction des valeurs de u_1 la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$ en utilisant différentes propriétés des fonctions f_n .

Partie I. Étude de f_n et lien avec u_n

- 1) Donner pour $x \in \mathbb{R}_+$ l'expression de $f_2(x)$ et de $f_3(x)$ sous forme développée.
- 2) Montrer par récurrence que pour tout $n \in \mathbb{N}^*$:
 - la fonction f_n est dérivable et strictement croissante sur \mathbb{R}_+ .
 - $f_n(0) = 0$.
 - $\lim_{x \to +\infty} f_n(x) = +\infty.$
- 3) En déduire que pour tout $n \in \mathbb{N}^*$, les fonctions f_n sont bijectives de \mathbb{R}_+ dans \mathbb{R}_+ .
- 4) Montrer que pour tout $n \in \mathbb{N}^*$, $u_n = f_n(u_1)$.
- 5) Limites possibles pour u_n .
 - a) En utilisant la définition de $(u_n)_{n\in\mathbb{N}^*}$, montrer que si la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers $l\in\mathbb{R}$, alors on a $l=l^2$.
 - b) En déduire que les limites possibles de $(u_n)_{n\in\mathbb{N}^*}$ sont 0, 1 ou $+\infty$.

Partie II. Trois suites spéciales

On commence dans cette partie par définir deux suites qui nous permettront d'étudier $(u_n)_{n\in\mathbb{N}^*}$ plus facilement.

- 6) Montrer que $\forall n \in \mathbb{N}^*, \exists ! (\alpha_n, \beta_n) \in (\mathbb{R}_+)^2 / f_n(\alpha_n) = 1 \frac{1}{n} \text{ et } f_n(\beta_n) = 1.$
- 7) Convergence des suites $(\alpha_n)_{n\in\mathbb{N}^*}$ et $(\beta_n)_{n\in\mathbb{N}^*}$.
 - a) Montrer que pour tout $n \geq 2$, $f_n(1) > 1$.
 - b) En déduire que pour tout $n \geq 2$, $0 < \alpha_n < \beta_n < 1$. On pourra utiliser la question I.2.
 - c) En utilisant la relation de récurrence vérifiée par la suite de fonction $(f_n)_{n\in\mathbb{N}^*}$, montrer que $\forall n\in\mathbb{N}^*,\, f_{n+1}(\alpha_n)<1-\frac{1}{n+1}$.
 - d) En déduire sans calcul que la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est strictement croissante.
 - e) En procédant de la même manière, montrer que $\forall n \in \mathbb{N}^*, f_{n+1}(\beta_n) > 1$ et en déduire que la suite $(\beta_n)_{n \in \mathbb{N}^*}$ est strictement décroissante.

2

f) Démontrer que les suites $(\alpha_n)_{n\in\mathbb{N}^*}$ et $(\beta_n)_{n\in\mathbb{N}^*}$ convergent dans \mathbb{R} vers deux réels L et L' vérifiant l'encadrement suivant :

$$0 < L \le L' < 1$$
.

- 8) Une troisième suite. Pour $n \in \mathbb{N}^*$, on pose $L_n = f_n(L)$ de sorte que d'après la question I.4, la suite $(L_n)_{n \in \mathbb{N}^*}$ est l'analogue de la suite $(u_n)_{n \in \mathbb{N}^*}$ mais où le premier terme de la suite vaut le réel L défini ci-dessus comme la limite de la suite $(\alpha_n)_{n \in \mathbb{N}^*}$.
 - a) Montrer que pour tout $n \in \mathbb{N}^*$, $\alpha_n < L \le L' < \beta_n$, puis que $1 \frac{1}{n} < f_n(L) \le f_n(L') < 1$.
 - b) En déduire que la suite $(L_n)_{n\in\mathbb{N}^*}$ converge vers 1.

Partie III. Limite en fonction de u_1

La partie précédente nous permet d'affirmer que si $u_1 = L$, alors la suite $(u_n)_{n \in \mathbb{N}^*}$ tend vers 1. Il reste à traiter les autres cas.

- 9) Soit $x \in \mathbb{R}_+$ avec $x \neq L$.
 - a) Pour $n \in \mathbb{N}^*$, justifier que $f_n(x) \neq f_n(L)$ et simplifier l'expression $\frac{f_{n+1}(x) f_{n+1}(L)}{f_n(x) f_n(L)}$.
 - b) En déduire, à l'aide de la question II.8.a, que :

$$\forall n \in \mathbb{N}^*, |f_{n+1}(x) - f_{n+1}(L)| > |f_n(x) - f_n(L)|.$$

- 10) Montrer finalement que $\forall x \in \mathbb{R}_+, \ \forall n \in \mathbb{N}^*, \ |f_n(x) f_n(L)| \ge |x L|$.
- 11) En déduire que $\forall n \in \mathbb{N}^*, 0 \leq L' L \leq \frac{1}{n}$, puis que L = L'.
- 12) On suppose dans cette question que $u_1 > L$.
 - a) Justifier que $\forall n \in \mathbb{N}^*$, $u_n > L_n$ et en déduire que $\forall n \in \mathbb{N}^*$, $u_n + L_n + \frac{1}{n} \ge 2 \frac{1}{n}$. On pourra utiliser la question II.8.a.
 - b) Prouver alors à l'aide de la question III.9.a que $\forall n \geq 2, u_{n+1} L_{n+1} \geq \frac{3}{2}(u_n L_n)$.
 - c) En déduire que $\forall n \geq 2, u_n L_n \geq \left(\frac{3}{2}\right)^{n-2} (u_2 L_2).$
 - d) En déduire $\lim_{n\to+\infty} u_n$.
- 13) On suppose dans cette question que $u_1 < L$.
 - a) Montrer qu'il existe $p \in \mathbb{N}^*$ tel que $u_1 < \alpha_p < L$. La suite $(\alpha_n)_{n \in \mathbb{N}^*}$ a été définie dans la partie II.
 - b) En déduire que $\forall n \geq p, u_n < 1 \frac{1}{n}$
 - c) En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante à partir du rang p.
 - d) En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite.