Rhythmische (Un-)Genauigkeit bei Musikern und Nicht-Musikern:

Eine Untersuchung zur zeitlichen Struktur sensomotorischer Koordination und ihrer Lernprozesse

13. Juni 2007

U N I K A S S E L V E R S I T A T Institut für Musik Timo Fischinger timo.fischinger@uni-kassel.de

Rhythmusforschung

- Timing und rhythmische Präzision sind unverzichtbare Vorraussetzungen für gemeinsames Musizieren.
- Bisher gibt es jedoch nur wenig gesicherte Daten über die genauen Verarbeitungs-prozesse der Rhythmuswahrnehmung und über die zeitliche Steuerung von rhythmischen Bewegungen.

Rhythmusforschung

Um die Grundlagen und Entwicklung musikbezogener rhythmischer Fähigkeiten besser zu verstehen, sollen experimentelle Untersuchungen mit Synchronisations-Aufgaben durchgeführt werden. Zeitreihenanalysen der Daten ermöglichen hierbei Rückschlüsse auf zugrundeliegende Strategien und Verarbeitungswege bei der Ausführung rhythmischer Bewegungen zu externen Eréignissen (z. B. zu einem Metronom).

Tapping-Experimente

- Tapping = rhythmische Fingerbewegungen
- zu einem Metrum, Puls oder Rhythmus
- Untersuchung kognitiv-motorischer Funktionen seit Stevens (1886)
- zeitliche Kopplung von Handlungen mit periodischen externen Ereignissen = einfache Form von Timing-Kontrolle
- Annahme: Diese Integration von Wahrnehmung und Handlung ist auch für komplexe koordinative Leistungen wie das Musizieren verantwortlich.

Zwei theoretische Rahmenmodelle

Der repräsentationale Ansatz

- Parameter für die Steuerung einer Bewegung werden in einem Motorschema (Schmidt, 1975) oder Motorprogramm (Keele et al., 1990) mental repräsentiert.
- Wichtige Parameter für die Rhythmusproduktion sind die Dauern einzelner Intervalle zwischen zwei aufeinander folgenden Taps (Semjen, 2001; Vorberg & Wing 1996).
- Annahme einer zentralen programmierbaren Uhr Zwei-Ebenen-Modell(Wing & Kristofferson, 1973).
- Konzept eines stochastischen Zeitgebers Timekeeper (Vorberg & Hambuch, 1984).
- Rhythmusprogrammhypothese Programmierung der Zielintervalle innerhalb eines hierarchischen Prozesses (Vorberg & Wing, 1994).

Zwei theoretische Rahmenmodelle

Der dynamische Ansatz

- Das Gehirn wird als ein sich selbstorganisierendes, musterbildendes System angesehen (Kelso & Haken, 1997). Menschliches Verhalten wird danach durch nichtlineare Wechselwirkungen im Nervensystem spontan generiert.
- Die Untersuchungen zur Rhythmusproduktion beziehen sich hierbei auf die Übergänge qualitativ verschiedener Verhaltensweisen, wie sie z.B. bei Tempoveränderungen zu beobachten sind.
- Qualitativen Übergänge können mit nichtlinearen Gleichungen von gekoppelten Oszillatoren modelliert werden (Haken et al., 1985; Langner, 2002; Large & Kolen, 1994; McAuley, 1995; Toiviainen, 1998).

am repräsentationalen Ansatz:

am dynamischen Ansatz:

am repräsentationalen Ansatz:

Ansatz:
• Es gibt keine "innere Uhr".

am dynamischen Ansatz:

am repräsentationalen

- Ansatz:Es gibt keine "innere Uhr".
- Kognitive Repräsentationen als Erklärung von Rhythmusproduktion, welche die Komplexität und Abstraktheit eines Rhythmusprogramms erreichen können gibt es nicht.

am dynamischen Ansatz:

am repräsentationalen

- Ansatz:Es gibt keine "innere Uhr".
- Kognitive
 Repräsentationen als
 Erklärung von
 Rhythmusproduktion,
 welche die
 Komplexität und
 Abstraktheit eines
 Rhythmusprogramms
 erreichen können gibt
 es nicht.

am dynamischen Ansatz:

 mathematisch elegant, aber "Blackbox"

- am repräsentationalen Ansatz:
- Ansatz:Es gibt keine "innere Uhr".
- Kognitive
 Repräsentationen als
 Erklärung von
 Rhythmusproduktion,
 welche die
 Komplexität und
 Abstraktheit eines
 Rhythmusprogramms
 erreichen können gibt
 es nicht.

am dynamischen Ansatz:

- mathematisch elegant, aber "Blackbox"
- Problem der "voreiligen Vereinfachungen"

Tapping zu einem Metronom

- Synchronisation vs. Continuation
- Puls finden
- Beat-Induction
- "bottom-up"– und "top-down"–Prozesse
- Negative Lag-1 Autokorrelation
- Zwei-Ebenen-Modell = Open-Loop
- Computerbasiertes Modellieren durch mathematische Modelle
- <u>Problem:</u> Produktion von isochronen Intervall-Sequenzen sind im musikalischen keine "echte" Form von Rhythmusproduktion.
- Negativer Synchronisationsfehler

Der negative Synchronisationfehler

Aschersleben & Prinz (1995); Dunlap (1910); Fraisse (1948); Repp (2000); Stevens (1886); Wohlschläger & Koch (2000)

Negative Asynchronie

- P-Center-Hypothese
- Nervenleithypothese
- Schwellenwertmodell
- Zeitschätzungsfehler

P-Center-Hypothese

Pompino-Marschall (1989); Vos & Rasch (1981); Zwicker & Fastl (1999)

Nervenleithypothese

Paillard (1949); Fraisse (1982); Prinz (1992); Aschersleben (2000); Wohlschläger & Koch (2000)

Schwellenwertmodell

Aschersleben (2000); Gehrke (1997)

Zeitschätzungsfehler

(nach Wohlschläger & Koch, 2000)

Zeitschätzungsfehler

(nach Wohlschläger & Koch, 2000)

Pretest

Pretest

Technischer Versuchsaufbau

Technischer Versuchsaufbau

FTAP-Funktionen

Frage

Wie verändert sich das rhythmisch sehr präzise Tappingverhalten bei Schlagzeugern im Vergleich zu Nicht-Musikern, wenn sie zusätzlich noch eine Zweitaufgabe zu erfüllen haben, die zusäzliche Ressourcen des Arbeitsgedächtnisses beansprucht?

Methode

- Tapping zu einem Metronom mit
 - 1.) ISI = 500 ms
 - 2.) ISI = 600 ms
 - 3.) ISI = 800 ms
 - 4.) ISI = 1000 ms
- Vor jedem Trial Präsentation mehrerer unzusammenhängender Worte als Merkaufgabe
- Kontrolldurchläufe ohne Zweitaufgabe
- Trial mit Merkaufgabe nach 45 Sek.

Rhythmische Präzision und die Funktion des Arbeitsgedächtnisses bei Zweitaufgaben

Timo Fischer¹ Manfred Nusseck²

Haupt-Ex	perime

Beschreibung

Test/Eingewöhnung

vor den Tappings)

ohne Zweitaufgabe

30 Sek.)

35 Sek.)

40 Sek.)

laupt-Experiment								

mit Zweitaufgabe (Einblendung

Zweitaufgabe (Einblendung nach

Zweitaufgabe (Einblendung nach

Zweitaufgabe (Einblendung nach

ISI 400 ms (150 bpm)

120 s (N=300)

N=1800

ISI 500 ms (120 bpm)

120 s (N=240)

N = 1440

120 s (N=200)

N=1200

N

740

740

740

740

740

740

4440

Ergebnisse

Trail mit Dual-Task nach 45 Sek.

Statistik bei gepaarten Stichproben

					Standardab	Standardfe hler des
TRIAL			Mittelwert	Ν	weichung	Mittelwertes
5	Paaren	ALL_3_14	-5,20	123	11,860	1,069
	1	ALL_3_24	-11,83	123	12,495	1,127
6	Paaren	ALL_3_14	-5,95	164	12,578	,982
	1	ALL_3_24	-12,81	164	17,492	1,366
8	Paaren	ALL_3_14	-12,48	93	18,451	1,913
	1	ALL_3_24	-11,88	93	20,276	2,103
10	Paaren	ALL_3_14	-13,44	62	19,223	2,441
	1	ALL_3_24	-17,24	62	27,802	3,531

Korrelationen bei gepaarten Stichproben

TRIAL			Z	Korrelation	Signifikanz
5	Paaren 1	ALL_3_14 & ALL_3_24	123	,137	,130
6	Paaren 1	ALL_3_14 & ALL_3_24	164	,057	,465
8	Paaren 1	ALL_3_14 & ALL_3_24	93	,006	,956
10	Paaren 1	ALL_3_14 & ALL_3_24	62	,041	,754

Test bei gepaarten Stichproben

			Gepaarte Differenzen							
				Standardab	Standardfe hler des	95% Konfidenzintervall der Differenz				
TRIAL			Mittelwert	weichung	Mittelwertes	Untere	Obere	Т	df	Sig. (2-seitig)
5	Paaren 1	ALL_3_14 - ALL_3_24	6,63	16,003	1,443	3,78	9,49	4,598	122	,000
6	Paaren 1	ALL_3_14 - ALL_3_24	6,87	20,950	1,636	3,64	10,10	4,197	163	,000
8	Paaren 1	ALL_3_14 - ALL_3_24	-,60	27,336	2,835	-6,23	5,03	-,212	92	,832
10	Paaren 1	ALL_3_14 - ALL_3_24	3,81	33,152	4,210	-4,61	12,23	,904	61	,370