Artificial Intelligence: Modeling Human Intelligence with Networks

Jeová Farias Sales Rocha Neto jeova_farias@brown.edu

Convolutions and Max Pooling

■ What is an image?

■ What is a pixel?

- What is a pixel?
- A pixel is a set of three numbers between 0 and 255 that together represent a particular color.

- What is a pixel?
- A pixel is a set of three numbers between 0 and 255 that together represent a particular color.
- The values of the set are R (for red), G (for green) and B (for blue)

- What is a pixel?
- A pixel is a set of three numbers between 0 and 255 that together represent a particular color.
- The values of the set are R (for red), G (for green) and B (for blue)

R 2 G 2 B 1	55	G	255 0 204	_	51 204 255
	51 51 0	G	51 51 153	G	255 153 153

■ Now, what is a grayscale image?

- Now, what is a grayscale image?
- \blacksquare Instead of 3 numbers per pixel, just 1.

- Now, what is a grayscale image?
- \blacksquare Instead of 3 numbers per pixel, just 1.

- Now, what is a grayscale image?
- Instead of 3 numbers per pixel, just 1.

- Now, what is a grayscale image?
- Instead of 3 numbers per pixel, just 1.

■ What does the last figure represent, mathematically?

- Now, what is a grayscale image?
- Instead of 3 numbers per pixel, just 1.

- What does the last figure represent, mathematically?
- A matrix!

■ Convolutions involve the concept of a sliding window.

- Convolutions involve the concept of a sliding window.
- \blacksquare It simply sweeps a window over the image

- Convolutions involve the concept of a sliding window.
- It simply sweeps a window over the image
- And compute the dot product between that window and a given matrix f.

- Convolutions involve the concept of a sliding window.
- It simply sweeps a window over the image
- lacksquare And compute the dot product between that window and a given matrix f.
- We will call this matrix a filter (some people call it kernel).

- Convolutions involve the concept of a sliding window.
- It simply sweeps a window over the image
- \blacksquare And compute the dot product between that window and a given matrix f.
- We will call this matrix a filter (some people call it kernel).

Algorithm 1 Convolution

Input: An image I and a filter $f \in \mathbb{R}^{n \times n}$, both matrices **Output**: A matrix M.

- 1: Compute n_row and n_col as the number of rows and columns of I
- 2: Compute d = (n-1)/2
- 3: **for** i from d to $n_row d$ **do**
- 4: **for** j from d to $n_col d$ **do**
- 5: $M[i,j] = I[i-d:i+d+1,j-d:j+d+1] \cdot f$
- 6: end for
- 7: end for

Template Matching

Convolutions can also be used to do cool things with images, like template matching!

■ How can we use the sliding window idea to do that?

Template Matching

 Convolutions can also be used to do cool things with images, like template matching!

Resource Image

Result Image

- How can we use the sliding window idea to do that?
- Let's try to do that in python!

■ This is probably what you got from the exercise:

■ Where do you thing your templates are?

■ This is probably what you got from the exercise:

- Where do you thing your templates are?
- What values do these spots have compared to the others?

■ This is probably what you got from the exercise:

- Where do you thing your templates are?
- What values do these spots have compared to the others?
- How can we select these spots?

■ This is probably what you got from the exercise:

- Where do you thing your templates are?
- What values do these spots have compared to the others?
- How can we select these spots?
- What does "Non-maxima Suppression" mean?

■ The last operation before Deep Learning!

- The last operation before Deep Learning!
- Here's what it does:

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

- The last operation before Deep Learning!
- Here's what it does:

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

■ An example:

- The last operation before Deep Learning!
- Here's what it does:

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

■ An example:

- The last operation before Deep Learning!
- Here's what it does:

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

■ An example:

■ What happened to the image?