RECAPITULARE BAZELE STATISTICII

1. Probabilități

1. Știind că variabila $X \sim N(10, 4)$, calculați probabilitățile: P(8 < X < 12) și P(X > 12).

Rezolvare:

$$Z = \frac{X - \mu}{\sigma}$$

$$z_1 = \frac{8 - 10}{2} = -1$$

$$z_2 = \frac{12 - 10}{2} = 1$$

$$P(8 \le X \le 12) = P(-1 \le Z \le 1) = P(-1 \le Z \le 0) + P(0 \le Z \le 1) = \phi(-1) + \phi(1) = 2 \cdot \phi(1) = 2 \cdot 0,3413 = 0,6826$$

$$P(X > 12) = P(Z > 1) = 0.5 - P(0 \le Z \le 1) = 0.5 - \phi(1) = 0.5 - 0.3413 = 0.1587$$

Observație: Valoarea lui $\phi(1)$ se citește din tabela Laplace.

2. Estimarea punctuală a parametrilor unei populații

Parametrul (la nivelul populației)		Estimarea punctuală a parametrului folosind datele de la nivelul eșantionului	
Media (µ)	$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$	Estimația punctuală a medici μ (x̄)	$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
Proporția (n)	$\pi = \frac{N_a}{N}$	Estimația punctuală a proporției π (p)	$p = \frac{n_a}{n}$
Varianța (σ²)	$\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N}$	Estimația punctuală a varianței σ^2 (s^2)	$s^2 = \frac{\sum_{t=1}^n (x_t - \bar{x}_j)^2}{n}$
		Estimația punctuală a varianței modificate σ^2 (s^2)	$s^{2} = \frac{n}{n-1}s^{2}$ sau
		(100-1-21-1)	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}_{j})^{2}}{n-1}$
Abaterea standard (σ)	$\sigma = \sqrt{\sigma^2}$	Estimația punctuală a abaterii standard σ (s)	$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x}_j)^2}{n}}$
		Estimația punctuală a abaterii standard modificate σ (s')	$s' = \sqrt{s'^2} = \sqrt{\frac{n}{n-1}} s^2$
			$s' = \sqrt{s'^2} = \sqrt{\frac{\sum_{t=1}^{n} (x_t - \bar{x}_j)^2}{n-1}}$
Observații:	N: volumul populației N _n : volumul (sub)populației care îndeplinește caracteristica a	Observațui:	n: volumul eșantionului n _a : volumul (sub)eșantionului care îndeplinește caracteristica <mark>a</mark>

3. Estimarea prin interval de încredere a parametrilor unei populații

Interval de încredere	Medie (μ)	Proporție (π)	
se cunoaște σ	$IC(\mu)$: $\left[\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}; \bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$	$IC(\pi)$: $\left[p-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}; p+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$	
	$\phi(z_{\alpha/2}) = \frac{1-\alpha}{2} \Rightarrow z_{\alpha/2} = linie + coloana (Tabela Laplace)$		
	$IC(\mu): \left[\bar{x} - z_{\alpha/2} \sigma_{\bar{\mu}}; \bar{x} + z_{\alpha/2} \sigma_{\bar{\mu}}\right]$ $\sigma_{\bar{\mu}} = \frac{\sigma}{\sqrt{n}}$	$IC(\pi): \left[p-z_{\alpha/2}\sigma_{\hat{\pi}}: p+z_{\alpha/2}\sigma_{\hat{\pi}}\right]$ $\sigma_{\hat{\pi}} = \frac{\sigma}{\sqrt{n}}$	
	σ _μ : eroarea medie de reprezentativitate a mediei	σ _{ft} : eroarea medie de reprezentativitate a proporției	
	$IC(\mu): \left[\bar{x} - \Delta_{\bar{\mu}}; \bar{x} + \Delta_{\bar{\mu}}\right]$ $\Delta_{\bar{\mu}} = \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = \pm z_{\alpha/2} \sigma_{\bar{\mu}}$ $\Delta_{\bar{\mu}}: \text{eroarea maximă admisibilă a mediei}$	$IC(\pi)$: $[p - \Delta_{\hat{\mathbf{n}}}; p + \Delta_{\hat{\mathbf{n}}}]$ $\Delta_{\hat{\mathbf{n}}} = \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = \pm z_{\alpha/2} \sigma_{\hat{\mathbf{n}}}$ $\Delta_{\hat{\mathbf{n}}} : \text{ eroarea maximă admisibilă a proporției}$	
nu se cunoaște σ	$IC(\mu): \left[\bar{x} - t_{\alpha/2;n-1} \frac{s'}{\sqrt{n}}; \bar{x} + t_{\alpha/2} \frac{s'}{\sqrt{n}}\right]$	$IC(\pi)$: $\left[p-t_{\alpha/2;n-1}\frac{s}{\sqrt{n}};p+t_{\alpha/2}\frac{s}{\sqrt{n}}\right]$	
	$s' = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$	$s = \sqrt{p(1-p)}$	
	$IC(\mu): \left[\bar{x} - t_{\alpha/2;n-1} s_{\hat{\mu}} : \bar{x} + t_{\alpha/2;n-1} s_{\hat{\mu}}\right]$ $s_{\hat{\mu}} = \frac{s'}{\sqrt{n}}$ $s_{\hat{\mu}}$: eroarea medie de reprezentativitate a	$IC(\pi): [p - t_{\alpha/2; n-1} s_{\hat{\pi}}; p + t_{\alpha/2; n-1} s_{\hat{\pi}}]$ $s_{\hat{\pi}} = \frac{s}{\sqrt{n}} = \frac{\sqrt{p(1-p)}}{\sqrt{n}}$	
	mediei	s _{ft} : eroarea medie de reprezentativitate a proporției	
	$IC(\mu): \left[\bar{x} - \underline{\Delta}_{\hat{\mu}}; \bar{x} + \underline{\Delta}_{\hat{\mu}}\right]$ $\underline{\Delta}_{\hat{\mu}} = \pm t_{\alpha/2; n-1} \frac{s'}{\sqrt{n}} = \pm t_{\alpha/2; n-1} s_{\hat{\mu}}$	$IC(\pi): [p - \Delta_{\hat{\pi}}; p + \Delta_{\hat{\pi}}]$ $\Delta_{\hat{\pi}} = \pm t_{\alpha/2; n-1} \frac{s}{\sqrt{n}} = \pm t_{\alpha/2; n-1} s_{\hat{\pi}}$	
	$\Delta_{\hat{\mu}}$ eroarea maximă admisibilă a mediei	Δ _μ : eroarea maximă admisibilă a proporției	

Aplicații

1. Din totalul județelor României se extrage aleator repetat un eșantion de 5 județe, care au fost observate după câștigul salarial net. La nivelul eșantionului s-au obținut: $\sum x_i = 100$, $\sum (x_i - \bar{x})^2 = 8$. Se cere să se estimeze prin interval de încredere câștigul mediu la nivelul tuturor județelor, considerând o probabilitate de 95% ($\alpha = 0.05$).

Rezolvare:

$$IC(\mu): \left[\bar{x} - t_{\alpha/2;n-1} \cdot \frac{s'}{\sqrt{n}}; \bar{x} + t_{\alpha/2;n-1} \cdot \frac{s'}{\sqrt{n}} \right]$$

$$\bar{x} = \frac{\sum x_i}{n} = \frac{100}{5} = 20$$

$$s' = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} = \sqrt{\frac{8}{4}} = 1,41$$

$$t_{\alpha/2;n-1} = t_{0.025;4} = 2,776$$

Observație: Valoarea lui $t_{0,025;4}$ se citește din tabela Student, se găsește la intersecția coloanei 0,025 cu linia 4.

$$IC(\mu)$$
: $\left[20 - 2,776 \cdot \frac{1,41}{\sqrt{5}}; 20 + 2,776 \cdot \frac{1,41}{\sqrt{5}}\right]$
 $IC(\mu)$: $\left[18,24; 21,75\right]$

Interpretare: Cu o probabilitate de 95%, se garantează că media populației, μ , (din care a fost extras eșantionul) este acoperită de intervalul [18,24; 21,75].

2. Dintr-un lot de 1000 de piese se extrage aleator repetat un eșantion de 50 de piese, care au fost observate după calitate. În urma observării a rezultat un număr de 7 piese defecte. Se cere să se estimeze prin interval de încredere proporția pieselor defecte la nivelul întregului lot, probabilitatea cu care se garantează rezultatul fiind de 99%.

Rezolvare:

$$IC(\pi): \left[p - t_{\alpha/2;n-1} \cdot \frac{s}{\sqrt{n}}; p + t_{\alpha/2;n-1} \cdot \frac{s}{\sqrt{n}} \right]$$

$$p = \frac{7}{50} = 0.14$$

$$s = \sqrt{p(1-p)} = \sqrt{0.14(1-014)} = 0.346$$

$$t_{\alpha/2;n-1} = t_{0.005;49} = 2.576$$

$$IC(\pi): \left[0.14 - 2.576 \cdot \frac{0.346}{\sqrt{50}}; 0.14 + 2.576 \cdot \frac{0.346}{\sqrt{50}} \right]$$

$$IC(\pi): \left[0.013; 0.266 \right]$$

Interpretare: Cu o probabilitate de 99%, se garantează că ponderea pieselor defecte, π , este acoperită de intervalul [1,3%; 26,6%].

4. Testare parametrilor unei populații

1. Din totalul autoturismelor vândute într-un an de o firmă a fost extras un eșantion de 1000 de autoturisme pentru care a fost înregistrat prețul (mii euro). Datele cunoscute sunt: $\bar{x} = 28$, $\sigma = 4$. Pentru o probabilitate de 90%, se cere să se testeze dacă există diferențe semnificative între prețul mediu al lotului de autoturisme vândute în anul curent și prețul mediu înregistrat anul trecut, de 30 mii euro (μ_0).

Pașii testării	Cazul în care se cunoaște σ
statistice	
1. Formularea	H_0 : $\mu = 30 \ (\mu - 30 = 0)$: între prețul mediu al lotului de autoturisme vândute
ipotezelor	în anul curent și prețul mediu înregistrat anul trecut nu există diferențe
	semnificative
	H_1 : $\mu \neq 30$ ($\mu - 30 \neq 0$): între prețul mediu al lotului de autoturisme vândute
	în anul curent și prețul mediu înregistrat anul trecut există diferențe
	semnificative
2. Alegerea riscului	$\alpha = 0.10$
asumat	
3. Alegerea testului	$\hat{\mu} - \mu_0$
statistic	$Z = \frac{1}{\sigma / \sqrt{n}} \sim N(0,1)$
4. Determinarea	$Z = \frac{\hat{\mu} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$ $\phi(z_{\alpha/2}) = \frac{1 - \alpha}{2} = \frac{1 - 0,10}{2} = 0,45 \Rightarrow$
valorii teoretice a	$\phi(z_{\alpha/2}) = \frac{1}{2} = \frac{1}{2} = 0.45 \Rightarrow$
testului statistic	$\Rightarrow z_{teoretic} = z_{\alpha/2} = 1.6 + 0.05 = 1.65$
	teorette u/2 , , ,
5. Determinarea	$\bar{x} - \mu_0$ 28 - 30
valorii statisticii test	$z_{calc} = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{28 - 30}{4 / \sqrt{1000}} = -15,87$
6. Regula de decizie	$ z_{calc} \le z_{\alpha/2} \Rightarrow A.H_0(1-\alpha)$
o. Regula de decizie	·
	$ z_{calc} > z_{\alpha/2} \Rightarrow R.H_0$
7. Luarea deciziei	$ z_{calc} = 15.87 > z_{\alpha/2} = 1.65 \Rightarrow R.H_0 (90\%)$
8. Interpretare	Cu o probabilitate de 90%, se poate garanta că între prețul mediu al lotului de
	autoturisme vândute în anul curent și prețul mediu înregistrat anul trecut există
	diferențe semnificative

2. Pentru o cercetare de sondaj asupra consumatorilor unui produs se cunoaște că media de vârstă a consumatorilor din eșantion este de 38 de ani. Pentru un risc asumat de 5% și o valoare Sig. de 0,008 se cere să se verifice dacă există diferențe semnificative de vârstă între consumatorii produsului și o valoare stabilită prin strategia de marketing, de 40 de ani.

Pașii testării statistice	Cazul în care nu se cunoaște σ
1. Formularea	H_0 : $\mu = 38 (\mu - 38 = 0)$: între vârsta medie a populației μ și valoarea medie
ipotezelor	de referință de 38 de ani nu există diferențe semnificative sau vârsta medie a
	populației µ nu diferă semnificativ de 38 de ani

	H_1 : $\mu \neq 38$ ($\mu - 38 \neq 0$): între vârsta medie a populației μ și valoarea medie de referință de 38 de ani există diferențe semnificative sau vârsta medie a populației μ diferă semnificativ de 38 de ani
2. Alegerea riscului	$\alpha = 0.05$
asumat	
6. Regula de decizie	$ t_{calc} \le t_{\alpha/2;n-1} \Leftrightarrow Sig \ge \alpha \Rightarrow A.H_0(1-\alpha)$
	$ t_{calc} > t_{\alpha/2;n-1} \Leftrightarrow Sig < \alpha \Rightarrow R.H_0$
7. Luarea deciziei	$Sig = 0.008 < \alpha = 0.05 > \Rightarrow R.H_0(95\%)$
8. Interpretare	Cu o probabilitate de 95% se poate garanta că între vârsta medie a populației μ
	și valoarea medie de referință de 38 de ani există diferențe semnificative.

3. Pentru două eșantioane extrase din două populații cu varianțe diferite, se cunosc $n_1=n_2=100$, $\bar{x}_1=42$, $\bar{x}_2=37$, $s_1'=4$, $s_2'=7$. Pentru o probabilitate de 95%, se cere să se verifice dacă există diferențe semnificative între mediile celor două populații.

Pașii testării statistice	Cazul în care nu se cunosc σ_1 și σ_2	
Formularea ipotezelor Alegerea	H_0 : $\mu_1 = \mu_2$ ($\mu_1 - \mu_2 = 0$): între mediile de la nivelor celor două populații nu există diferențe semnificative sau μ_1 nu diferă semnificativ de μ_2 H_1 : $\mu_1 \neq \mu_2$ ($\mu_1 - \mu_2 \neq 0$): între mediile de la nivelor celor două populații există diferențe semnificative sau μ_1 diferă semnificativ de μ_2 $\alpha = 0.05$	
3. Alegerea testului statistic	$t = \frac{\hat{\mu}_1 - \hat{\mu}_2}{\sqrt{\frac{\hat{\sigma}_1'^2}{n_1} + \frac{\hat{\sigma}_2'^2}{n_2}}} \sim t(n_1 + n_2 - 2)$	
4. Determinarea valorii teoretice a testului statistic	$t_{teoretic} = t_{\alpha/2;n_1+n_2-2} = t_{0,025;198} = 1,96$	
5. Determinarea valorii statisticii test	$t_{calc} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1'^2}{n_1} + \frac{s_2'^2}{n_2}}} = \frac{42 - 37}{\sqrt{\frac{16}{100} + \frac{49}{100}}} = \frac{5}{\sqrt{\frac{16}{100} + \frac{49}{100}}} = 6,2$	
6. Regula de decizie	$ t_{calc} \le t_{\alpha/2;n_1+n_2-2} \Rightarrow A.H_0(1-\alpha)$ $ t_{calc} > t_{\alpha/2;n_1+n_2-2} \Rightarrow R.H_0$	
7. Luarea deciziei	$ t_{calc} = 6.2 > t_{\alpha/2;n_1+n_2-2} = 1.96 \Rightarrow R.H_0(95\%)$	
8. Interpretare	Cu o probabilitate de 95%, se poate garanta că între mediile de la nivelor celor două populații există diferențe semnificative.	