PS1

Q1.

- (b) P3=(1,6,4) V3=P3-P,=(0,0,-1)
- (C) $|V_2| = \sqrt{4^2 + (-3)^2 + (-12)^2} = \sqrt{169} = 13$ $|V_3| = \sqrt{0^2 + 0^2 + (-1)^2} = \sqrt{1} = 1$
- (d) Set U_2 , U_3 are unit vectors in the directions of V_2 , V_3 . $U_2 = \frac{V_2}{|V_3|} = \left(\frac{1}{13}, \frac{6}{13}, \frac{5}{13}\right)$ $U_3 = \frac{V_3}{|V_3|} = (0,0,1)$

02.

(a)
$$V_2 \times V_3$$

= $((-3) \times (-1) - (-12) \times 0$, $(-12) \times 0 - 4 \times (-1)$, $4 \times 0 - (-3) \times 0$)
= $(3, 4, 0)$

(b)
$$V_3 \times V_2 = -(V_2 \times V_3) = (-3, -4, 0)$$

(C)
$$V_3 \cdot V_2 = 0 \times 4 + 0 \times (-3) + (-1) \times (-12) = 12$$

Q4.
$$|a| = \frac{1}{4}$$
 $|b| = |c| = 1$
So, b and c are unit vectors

(a)
$$\cos \theta = \frac{u \cdot v}{|u| \cdot |v|}$$

(b)
$$sin\theta = \frac{u \times v}{|u| \cdot |v|} \cdot \frac{u \times v}{|u \times v|} = \frac{|u \times v|}{|u| \cdot |v|}$$

(C) set the vector is A,

$$A = C \cdot (UXV)$$
, c is a constant.

(b)
$$A^{-1} = A^{T}$$