Chapitre 3: Les vecteurs

1 Définition d'un vecteur

1.1 Translation de vecteur \overrightarrow{AB} .

Sur la figure ci-contre, on considère D, l'image de C dans la translation qui transforme A en B.

La flèche rouge indique :

- La direction
- Le sens
- La longueur

du déplacement que l'on doit effectuer pour construire l'image d'un point.

Définition 3.1

La translation qui transforme A en B est appelée translation de **vecteur** \overrightarrow{AB}

Remarque

La longueur d'un vecteur est appelé **norme** du vecteur.

1.2 Egalité de deux vecteurs

Définition 3.2

Soient A,B,C et D quatre points du plan.

Dire que \overrightarrow{AB} est égal à \overrightarrow{CD} signifie que les deux vecteurs ont la même direction, le même sens et la même norme.

Propriété 3.1

 $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si ABDC est un parallélogramme.

1.3 Notation

Il existe une infinité de vecteurs égaux au vecteur \overrightarrow{AB} . Par exemple, sur la figure ci-dessous, $\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF}$. Ce vecteur peut être noté \overrightarrow{u} . $\overrightarrow{AB},\overrightarrow{CD},\overrightarrow{EF}$ sont des **représentants de** \overrightarrow{u}

1.4 Le vecteur nul

Définition 3.3

l On appelle vecteur nul, noté \vec{u} , tout vecteur dont l'origine et l'extrémité sont confondues

Par exemple, $\overrightarrow{AA} = \vec{0}$

Remarque

Le vacteur nulle à une norme égale à 0, mais n'a ni direction, ni sens!

Savoir-Faire 3.1

SAVOIR REPRÉSENTER UN VECTEUR Recopier la figure ci-dessous :

- 1. Construire un vecteur \vec{u} , ayant la même direction et le même sens que \overrightarrow{AB} et pour longueur 3.
- 2. Construire le point P tel que $\overrightarrow{HP} = \overrightarrow{BC}$.
- 3. Construire le point Q tel que $\overrightarrow{GQ} = \overrightarrow{BH}$
- 4. Construire un vecteur \vec{v} , ayant la même direction que \overrightarrow{BC} , un sens contraire à \overrightarrow{BC} , et pour longueur identique à \overrightarrow{BC} .
- 5. Construire le point R tel que $\overrightarrow{RF} = \overrightarrow{GH}$
- 6. Construire le point T tel que $\overrightarrow{BT} = \overrightarrow{0}$

2 Opérations sur les vecteurs

2.1 Somme de deux vecteurs

2.1.1 Définition

Définition 3.4

La somme de deux vecteurs \vec{u} et \vec{v} est le vecteur \vec{w} qui résulte de l'enchaînement des translations de vecteur \vec{u} puis de vecteur \vec{v} .

On écrit : $\vec{u} + \vec{v} = \vec{w}$

Exemple

Savoir-Faire 3.2

SAVOIR REPRÉSENTER LA SOMME DE DEUX VECTEURS

- 1. Tracer un représentant du vecteur $\vec{u} + \vec{v}$.
- 2. Placer le point F tel que $\overrightarrow{BF} = \overrightarrow{u} + \overrightarrow{v}$
- 3. Placer le point G tel que $\overrightarrow{AG} = \overrightarrow{u} + \overrightarrow{w}$
- 4. Placer le point H tel que $\overrightarrow{CH} = \vec{u} + \vec{v} + \vec{w}$
- 5. Placer le point I tel que $\overrightarrow{DI} = \vec{v} + \vec{w}$

2.1.2 Relation de Chasles

Propriété 3.2 (admise)

Relation de Chasles

Pour tous points A,B et C du plan, on a :

Savoir-Faire 3.3

SAVOIR UTILISER LA RELATION DE CHASLES

1. Compléter :

(a)
$$\overrightarrow{AB} + \overrightarrow{BF} = \overrightarrow{BF}$$

(b)
$$\overrightarrow{AK} + \overrightarrow{G} = \overrightarrow{G}$$

(c)
$$\overrightarrow{FR} + \overrightarrow{} = \overrightarrow{FB}$$

(d)
$$\overrightarrow{R} + \overrightarrow{T} = \overrightarrow{B}$$

(e)
$$\overrightarrow{RO} + \overrightarrow{I} = \overrightarrow{RI}$$

(f)
$$\overrightarrow{K} + \overrightarrow{LM} = \overrightarrow{KM}$$

2. Simplifier:

(a)
$$\overrightarrow{AB} + \overrightarrow{BC}$$

(b)
$$\overrightarrow{AR} + \overrightarrow{BA}$$

(c)
$$\overrightarrow{DF} + \overrightarrow{GD}$$

(d)
$$\overrightarrow{BC} + \overrightarrow{AB} + \overrightarrow{CD}$$

(e)
$$\overrightarrow{RG} + \overrightarrow{HI} + \overrightarrow{GH}$$

• Exercice 3.1

Reproduire la figure ci-dessous :

- 1. Construire un représentant du vecteur $\vec{u} = \overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{ED}$, puis un représenant du vecteur $\vec{v} = \overrightarrow{AD} + \overrightarrow{CD} + \overrightarrow{EB}$. (utilser des couleurs). Que constate-t-on?
- 2. Le démontrer à l'aide de la relation de Chasles.

Exercice 3.2

Soit ABCD un parallélogramme. Montrer que :

1.
$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$

$$2. \ \overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{DB}$$

3.
$$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{0}$$

4.
$$\overrightarrow{DC} - \overrightarrow{AD} = \overrightarrow{DB}$$

• Exercice 3.3

Soit RST un triangle.

- 1. Construire le point P tel que $\overrightarrow{RP} = \overrightarrow{RS} + \overrightarrow{RT}$
- 2. Montrer que $\overrightarrow{TP} = \overrightarrow{RS}$. Penser à la relation de Chasles!

2.2 Opposé d'un vecteur

Définition 3.5

L'opposé d'un vecteur \vec{u} du plan est le vecteur noté \vec{u} , qui a :

- même direction que \vec{u} .
- même norme que \vec{u} .
- le sens opposé à celui de \vec{u} .

2.2.1 Soustraction de deux vecteurs

Définition 3.6

Soient \vec{u} et \vec{v} deux vecteurs du plan. On définit la soustraction de \vec{u} par \vec{v} , notée \vec{u} - \vec{v} , le vecteur \vec{w} défini par $\vec{w} = \vec{u} + (-\vec{v})$.

Exemple

Savoir-Faire 3.4

SAVOIR REPRÉSENTER LA DIFFÉRENCE DE DEUX VECTEURS

- 1. Placer le point G tel que $\overrightarrow{AG} = \overrightarrow{v} \overrightarrow{w}$
- 2. Placer le point H tel que $\overrightarrow{DH} = \vec{u} \vec{v}$
- 3. Placer le point I tel que $\overrightarrow{CI} = \overrightarrow{u} \overrightarrow{w}$

2.3 Produit d'un vecteur par un nombre

Définition 3.7

Soient \vec{u} un vecteur du plan et k un réel.

Si k = 0 ou si $\vec{u} = \vec{0}$, alors $k \times \vec{u} = \vec{0}$

Sinon:

- Direction : \vec{u} et $k \times \vec{u}$ ont la même direction.
- Sens:
 - si k>0 alors \vec{u} et $k\times\vec{u}$ ont le même sens
 - $-\sin k < 0$, alors \vec{u} et $k \times \vec{u}$ ont des sens contraires
- Longueur : La longueur du vecteur $k \times \vec{u}$ est égale à la longueur du vecteur \vec{u} multipliée par |k|.

Propriété 3.3 (admise)

Pour tous vecteurs \vec{u} et \vec{v} , pour tous réels k et k', on a :

- $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$
- $(k+k')\vec{u} = k\vec{u} + k'\vec{u}$
- $k(\vec{u} \vec{v}) = k\vec{u} k\vec{v}$
- $k(k'\vec{u}) = (kk')\vec{u}$
- $k\vec{u} = \vec{0}$ si et seulement si k = 0 ou $\vec{u} = \vec{0}$

Exemple

Simplifier les expressions suivantes :

- $5\vec{u} + 3\vec{u} =$
- $5\vec{u} 3\vec{u} =$
- $5\vec{u} + 5\vec{v} =$
- $5 \times (3\vec{v}) =$

Savoir-Faire 3.5

SAVOIR PLACER UN POINT DÉFINI PAR DES ÉGALITÉS VECTORIELLES

- 1. Placer le point G tel que $\overrightarrow{AG} = -2\vec{u} 2\vec{v} 2\vec{w}$
- 2. Placer le point H tel que $\overrightarrow{DH} = 2\overrightarrow{w} + \overrightarrow{v}$
- 3. Placer le point I tel que $\overrightarrow{CI} = 3\vec{u} \vec{v} + 2\vec{w}$

Savoir-Faire 3.6

SAVOIR UTILISER LES RÈGLES DE CALCUL SUR LES VECTEURS AFIN D'EXPRIMER UN VECTEUR EN FONCTION D'UN AUTRE

- 1. Placer trois points A, B et C tels que $\overrightarrow{AC} = 3\overrightarrow{AB}$
- 2. Exprimer \overrightarrow{BC} en fonction de \overrightarrow{AB} . Vérifier la cohérence du résultat obtenu sur la figure.

2.4 Vecteurs colinéaires

Définition 3.8

Soit \vec{u} et \vec{v} deux vecteurs su plan.

On dit que \vec{u} et \vec{v} sont colinéaires si et seulement si il existe un réel k tel que $\vec{v} = k\vec{u}$.

Remarque

- Le vecteur nul $\vec{0}$ est colinéaire à tout autre vecteur.
- Deux vecteurs <u>non nuls</u> sont colinéaires si et seulement si ils ont la même direction.

Exemple de vecteurs \vec{u} et \vec{v} colinéaires

Savoir-Faire 3.7

SAVOIR MONTRER QUE DEUX VECTEURS SONT COLINÉAIRES On considère un triangle \overrightarrow{MNP} non applati. Soit le point R tel que $\overrightarrow{MR} = 2\overrightarrow{MN}$. Soit le point S tel que $\overrightarrow{PS} = 2\overrightarrow{MP}$.

- 1. Faire une figure
- 2. En remarquant que $\overrightarrow{RS} = \overrightarrow{RM} + \overrightarrow{MP} + \overrightarrow{PS}$, exprimer le vecteurs \overrightarrow{RS} en fonction de \overrightarrow{NP}
- 3. Que peut-on en déduire au sujet des deux vecteurs \overrightarrow{RS} et \overrightarrow{NP} ?
- 4. Que peut-on en déduite pour les droites (RS) et (NP)?

Exercice 3.4

Soit EFG un triangle.

On considère les points H et K définis par $\overrightarrow{EH} = -\overrightarrow{EF}$ et $\overrightarrow{HK} = 2\overrightarrow{EG}$.

- 1. Faire une figure
- 2. Montrer que $\overrightarrow{FH} = 2\overrightarrow{FE}$ en utilisant la relation de Chasles.
- 3. Montrer que $\overrightarrow{FK} = 2\overrightarrow{FG}$.
- 4. Que dire des vecteurs \overrightarrow{FK} et \overrightarrow{FG} ?
- 5. Que peut-on endéduire pour les points F, G et K?