Reproducing Kernel Hilbert Spaces and Neural Tangent Kernels

Semih Cayci

Basics of Reproducing Kernel Hilbert Spaces

Neural Tangent Kernels

Hilbert Spaces

Generalize $(\mathbb{R}^d, \langle \cdot, \cdot \rangle)$ with $\langle x, x' \rangle = x^\top x'$ to infinite dimension.

Definition (Inner product)

Let \mathcal{H} be a vector space over \mathbb{R} . $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an inner product if:

- 1. (Symmetricity) $\langle f,g \rangle_{\mathcal{H}} = \langle g,f \rangle_{\mathcal{H}}$ for all $f,g \in \mathcal{H}$,
- 2. (Linearity) $\langle \alpha f + \beta g, h \rangle_{\mathcal{H}} = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$, $\forall \alpha, \beta \in \mathbb{R}, f, g, h \in \mathcal{H}$,
- 3. $\langle f, f \rangle_{\mathcal{H}} \geq 0$ with equality iff f = 0.

Norm induced by $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \|f\|_{\mathcal{H}} = \sqrt{\langle f, f \rangle_{\mathcal{H}}}.$

Hilbert Space

A sequence $f_n \in \mathcal{H}$ converges to $f \in \mathcal{H}$ if for any $\epsilon > 0$, there exists $N = N(\epsilon)$ such that

$$\|f_n - f\|_{\mathcal{H}} < \epsilon, \ \forall n \geq N.$$

A sequence $f_n \in \mathcal{H}$ is a Cauchy sequence if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$||f_n - f_m||_{\mathcal{H}} < \epsilon, \ \forall n, m \geq N.$$

Definition (Complete vector space)

A normed space $(\mathcal{H}, \|\cdot\|_{\mathcal{H}})$ is complete if every Cauchy sequence of its elements is convergent.

Definition (Hilbert space)

A complete space $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ for which $\| \cdot \|_{\mathcal{H}}$ is induced by an inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is called a Hilbert space.

Mercer Kernels

Generalizing the concept of inner product.

Definition (Mercer kernel)

Let $\mathcal{X} \subset \mathbb{R}^d$ be closed. $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a Mercer kernel if:

- ▶ (Symmetricity) $K(x, x') = K(x', x), \forall x, x' \in \mathcal{X}$.
- ▶ (Positive definiteness) $\sum_{i,j} \alpha_i \alpha_j K(x_i, x_j) \ge 0$ for any $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in \mathcal{X}$.

Examples:

- 1. $\mathcal{X} = \mathbb{R}^d$, $K(x, x') = x^\top x'$ is a Mercer kernel.
- 2. $\mathcal{X} = B_2(0, \rho)$ for $\rho > 0$ and $\{a_j\}$ such that $\sum_{j=0}^{\infty} a_j R^{2j} < \infty$. Then, $K(x, x') = \sum_{j=0}^{\infty} a_j (x^{\top} x')^j$ is a Mercer kernel.

Linear Span of Kernels

Given a (Mercer) kernel K, let \mathcal{L}_K be the linear span of the set $\{K(x',\cdot): x'\in\mathcal{X}\}$: the set of all functions $f:\mathcal{X}\to\mathbb{R}$ such that

$$f(x) = \sum_{j=1}^{n} c_j K(x, x_j),$$

for all choices of $n \in \mathbb{N}, c_1, \ldots, c_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in \mathcal{X}$.

Reproducing Kernel Hilbert Spaces

For any kernel K, \mathcal{L}_K can be completed into a Hilbert space.

Theorem (RKHS; Cucker and Zhou, 2007)

Let $\mathcal{X} \subset \mathbb{R}^d$ be closed, and $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a Mercer kernel. Then, there exists a unique Hilbert space $(\mathcal{H}_K, \langle \cdot, \cdot \rangle_K)$ s.t.:

- 1. Let $K_x(\cdot) = K(x, \cdot)$. Then $K_x \in \mathcal{H}_K$ and $\langle K_x, K_{x'} \rangle_K = K(x, x')$ for any $x, x' \in \mathcal{X}$.
- 2. The linear space \mathcal{L}_K is dense in \mathcal{H}_K : for any $f \in \mathcal{H}_K$, there exists some $n \in \mathbb{N}$, $x_1, \cdot, x_n \in \mathcal{X}$ and $c_1, \cdot, c_n \in \mathbb{R}$ such that

$$||f - \sum_{i=1}^n c_i K_{x_i}||_{\mathcal{K}} \leq \epsilon.$$

3. For any $f \in \mathcal{H}_K$ and $x \in \mathcal{X}$, $f(x) = \langle f, K_x \rangle_K$.

 $(\mathcal{H}_K, \langle \cdot, \cdot \rangle_K)$ is called the RKHS associated with K.

Mercer's Representation Theorem

Kernels can be represented by series expansions in generality.

Theorem (Mercer; Hajek and Raginsky, 2021)

Suppose $\mathcal{X} \subset \mathbb{R}^d$ closed, and $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a Mercer kernel. Then, there is a sequence of continuous functions $\Phi_i : \mathcal{X} \to \mathbb{R}$ such that

$$K(x,x') = \sum_{i=1}^{\infty} \Phi_i(x) \Phi_i(x'),$$

and

$$c \in \ell^2, \ \sum_i c_i \Phi_i(x) = 0 \Rightarrow c = 0,$$

hold, and $(\Phi_1, \Phi_2...)$ forms an orthonormal basis for \mathcal{H}_K .

Transportation Mappings and Parametric RKHS

Consider a probability distribution p on Θ , and $\Phi: \mathcal{X} \times \Theta \to \mathbb{R}$.

Let
$$K(x, x') = \int_{\Theta} \Phi(x; \theta) \Phi(x'; \theta) p(\theta) d\theta$$
.

K is a Mercer kernel. Let \mathcal{H}_K be the RKHS associated with K.

Proposition (Rahimi and Recht, 2008)

Let ${\mathcal G}$ be the completion of the set of all functions of the form

$$f(x) = \int_{\Theta} v(\theta) \Phi(x; \theta) p(\theta) d\theta,$$

such that $\int_{\Theta} |v(\theta)|^2 p(\theta) d\theta < \infty$, with the inner product

$$\langle f, g \rangle = \int_{\Theta} v(\theta)u(\theta)p(\theta)d\theta$$
, for $g(x) = \int_{\Theta} u(\theta)\Phi(x;\theta)p(\theta)d\theta$.

Then, $\mathcal{H}_{\mathcal{K}} = \mathcal{G}$.

Neural Tangent Kernels - ReLU

Recall:
$$\nabla_W F(x; W, c) = \left(\frac{c_i x \mathbb{1}\{W_i^\top x \ge 0\}}{\sqrt{m}}\right)_{1 \le i \le m}$$
, and

$$F(x; W, c) = \nabla_W^{\top} F(x; W(0), c) (W - W(0)) + \Delta(W, m),$$

where $|\Delta(W,m)| = \mathcal{O}(1/\sqrt{m})$ with high probability.

Proposition

Under symmetric Xavier initialization, for any $x, x' \in \mathbb{R}^d$,

$$\lim_{m \to \infty} \left\langle \nabla_W F(x; W(0), c), \nabla_W F(x'; W(0), c) \right\rangle \\
= \int_{\mathbb{R}^d} \langle \Phi(x; w_0), \Phi(x'; w_0) \rangle p(w_0) dw_0, \text{ a.s.,}$$

where
$$p(w) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp(-\frac{\|w\|_2^2}{2})$$
 and $\Phi(x; w) = x \mathbb{1}\{w^\top x \ge 0\}$.

Transportation Mapping Characterization of NTK

Corollary

Let $v: \mathbb{R}^d \to \mathbb{R}^d$ with $\mathbb{E}_{w_0 \sim \mathcal{N}(0, I_d)} \|v(w_0)\|_2^2 < \infty$. Then, the completion of the functions of type:

$$g(x) = \mathbb{E}_{w_0 \sim \mathcal{N}(0, I_d)}[\langle v(w_0), \Phi(x; w_0) \rangle],$$

is equal to the unique RKHS associated with the neural tangent kernel K.

Remark: It is easy to see that

$$||g||_K^2 = \mathbb{E}_{w_0 \sim \mathcal{N}(0, I_d)} ||v(w_0)||_2^2,$$

and if

$$\sup_{w \in \mathbb{R}^d} \|v(w)\|_2 \le \alpha < \infty,$$

then $\|g\|_K \leq \alpha$. Also, $|g(x)| \leq \alpha \|x\|_2$ from Cauchy-Schwarz and triangle inequality.

Approximation of NTK RKHS with Neural Networks

Let $g(x) = \mathbb{E}[v^{\top}(w_0)\Phi(x; w_0)]$ with $\sup_w ||v(w)||_2 \le \alpha$. Define W = W(0) + U with

$$U_i = \frac{1}{\sqrt{m}}c_i v(W_i(0)), i = 1, 2, ..., m.$$

Then, by Cauchy-Schwarz, $\max_{1 \le i \le m} \|W_i - W_i(0)\|_2 \le \alpha/\sqrt{m}$, therefore, from previous lecture:

$$F(x; W, c) = \nabla_W^{\top} F(x; W(0), c) [W - W(0)] + \mathcal{O}(1/\sqrt{m}).$$

Important: Now, notice that

$$\nabla_{W}^{\top} F(x; W(0), c)[W - W(0)] = \frac{1}{m} \sum_{i=1}^{m} \langle v(W_{i}(0)), \Phi(x; W_{i}(0)) \rangle.$$

Approximation of NTK RKHS with Neural Networks

Theorem

Let $g \in \mathcal{H}_K$ with a transportation mapping $v : \mathbb{R}^d \to \mathbb{R}^d$ such that $\sup_w \|v(w)\|_2 \le \alpha$. Then, there exists a neural network of width m with symmetric Xavier initialization such that for any $\delta \in (0,1)$,

$$|F(x; W, c) - g(x)| \le \alpha \sqrt{\frac{\log(3/\delta)}{m}} + \frac{1+\alpha}{\sqrt{m}} \left(\alpha ||x||_2 + \sqrt{\log(3/\delta)}\right),$$

with probability at least $1-\delta$.

Proof idea: Let
$$W_i = W_i(0) + c_i v(W_i(0)) / \sqrt{m}$$
 for $i = 1, 2, ..., m$.

$$|F(x; W, c) - g(x)| = \underbrace{|F(x; W, c) - \nabla_{W}^{\top} F(x; W(0), c)(W - W(0))|}_{\text{from previous lecture}} + \underbrace{|\nabla_{W}^{\top} F(x; W(0), c)(W - W(0)) - g(x)|}_{\text{Hoeffding's inequality}}$$

Summary

The infinite-width limit of randomly initialized neural networks is functions of type

$$g(x) = \int_{\mathbb{R}^d} \langle v(w_0), \Phi(x; w_0) \rangle p(w_0) dw_0.$$

With infinitely-wide neural networks of width m, there exists (W,c) such that

$$|F(x; W, c) - g(x)| = \mathcal{O}\left(\frac{1}{\sqrt{m}}\right).$$

lacktriangle Optimization: Let $g\in \mathcal{H}_{\mathcal{K}}.$ Can we find $(ilde{W}, ilde{c})$ such that

$$\frac{1}{2n}\sum_{i=1}^n \Big(F(x_i,\tilde{W},\tilde{c})-g(x_i)\Big)^2,$$

is minimized?

Approximation: How rich is the class of functions $x \mapsto \int_{\mathbb{R}^d} \langle v(w_0), \Phi(x; w_0) \rangle p(w_0) dw_0?$