Symposium: Innovations in the automated scoring of spoken responses

Evaluating the constructs and automated scoring performance for speaking tasks in the Versant Tests and PTE Academic

Alistair Van Moere

Knowledge Technologies Pearson

Automated Tests of Spoken Proficiency

Versant Test

- Listening-Speaking test
- Uses: Job recruitment, placement, progress monitoring
- Available in English, Spanish, Arabic, Dutch, (French, Chinese)

PTE Academic

- 4-skills language proficiency test
- Uses: Entrance into English-speaking universities

Assessment argument

(Mislevy 2005)

Assessment argument

(Mislevy 2005)

63 responses , 3'30 mins speech

Versant Test Scoring

Trait	Scoring
Fluency	Temporal features of speech predict expert human judgments
Pronunciation	Spectral properties and segmental aspects predict human judgments
Vocabulary	i) Rasch-based ability measures from dichotomous-scored vocabulary items; ii) LSA-based measures on constructed responses predict human judgments
Sentence Mastery	Rasch-based ability measures from word errors on increasingly complex sentences

Versant Test Scoring

Trait	Scoring	Machine- Human, r	Human split-half	Machine split-half
Fluency	Temporal features of speech predict expert human judgments	.94	.99	.97
Pronunciation	Spectral properties and segmental aspects predict human judgments	.88	.99	.97
Vocabulary	i) Rasch-based ability measures from dichotomous-scored vocabulary items; ii) LSA-based measures on constructed responses predict human judgments	.96	.93	.92
Sentence Mastery	Rasch-based ability measures from word errors on increasingly complex sentences	.97	.95	.92
	Overall	.97	.99	.97

Validation sample, n=143, flat score distribution

Repeat Sentence:

Repeat Sentence:

I'll catch up with you soon.

"uh .. I'll catch up you ... I don't know"

Security wouldn't let him in because he didn't have a pass.

"Security wouldn't help him pass"

Repeat Sentence:

I'll catch up with you soon.

"uh .. I'll catch up you ... I don't know" = 2 word errors

Security wouldn't let him in because he didn't have a pass.

"Security wouldn't help him pass" = 7 word errors

Repeat Sentence:

I'll catch up with you soon.

"uh .. I'll catch up you ... I don't know" = 2 word errors

Security wouldn't let him in because he didn't have a pass.

"Security wouldn't help him pass" = 7 word errors

Versant's Domain of Use

Versant's Domain of Use

Versant's Domain of Use

Versant test score correlations with communicative tests

Communicative test	r	n
Test of Spoken English (TSE)	0.88	58
New TOEFL Speaking	0.84	321
BEST Plus interview	0.86	151
IELTS interview test	0.76	130

PTE Academic: Broader construct

PTE Academic: Broader construct

	Describe Image	Retell Lecture	
Preparation time	25 secs	40 secs	
Response time	40 secs	40 secs	

PTE Academic: Broader construct

	Describe Image	Retell Lecture
Preparation time	25 secs	40 secs
Response time	40 secs	40 secs

PTE Academic: Sampling Academic Domain

5 tasks:

- ~ 36 responses
- ~ 8 minutes of speech

• Input:

- Reading texts
- Listening texts
- Visual (non-linguistic)

Output:

- Prepared monologues
- Short, real-time responses

Content Scoring of Constructed Responses

- Word choice (Latent Semantic Analysis)
- Content relevance
- Lexical measures
- Words in sequence; collocations

Example item:Retell Lecture

Prokaryotic cell

Eukaryotic cell

Sample response

"the lecture was given about biotic cells prokaryotic cell was first described and eukaryotic cell was secondly ref uh described uh it was said eukaryotic cells are more complicated than prokaryotic cell eukaryotic cell is microorganisms where it is it has one single cell and multi cell organisms are also present in eukaryotic cell this more complicated than prokaryotic cell which is placed in right side of the screen"

PTE Academic: Reliability

Validation sample n=158

Scoring	Machine-	Human split-	Machine
	Human, r	half	split-half
Overall	.97	.97	.96

SCORING

<u>TASKS</u> <u>SCORING</u>

<u>TASKS</u> <u>SCORING</u>

The tasks tap real-time automatic processes, and sample academic language & domain interactions

CLAIM

SCORING

REBUTTAL

COUNTER

Some tasks are not authentic; the interactions are too constrained

BACKING

The tasks tap real-time automatic processes, and sample academic language & domain interactions

CLAIM

SCORING

REBUTTAL

Many concurrent validation correlations with interview tests > 0.80 (different tasks and different performances)

COUNTER

Some tasks are not authentic; the interactions are too constrained

BACKING

The tasks tap real-time automatic processes, and sample academic language & domain interactions

CLAIM

SCORING

REBUTTAL

Many concurrent validation correlations with interview tests > 0.80 (different tasks and different performances)

COUNTER

Some tasks are not authentic; the interactions are too constrained

BACKING

The tasks tap real-time automatic processes, and sample academic language & domain interactions

CLAIM

The tasks are valid for assessing spoken language proficiency

SCORING

REBUTTAL

Many concurrent validation correlations with interview tests > 0.80 (different tasks and different performances)

COUNTER

Some tasks are not authentic; the interactions are too constrained

BACKING

The tasks tap real-time automatic processes, and sample academic language & domain interactions

Machine-to-human score correlations ~0.97 (same tasks, same performance instance)

CLAIM

The tasks are valid for assessing spoken language proficiency

SCORING

REBUTTAL

Many concurrent validation correlations with interview tests > 0.80 (different tasks and different performances)

COUNTER

Some tasks are not authentic; the interactions are too constrained

Machines are notoriously error prone; scores may be triple counting poor pronunciation

BACKING

The tasks tap real-time automatic processes, and sample academic language & domain interactions

Machine-to-human score correlations ~0.97 (same tasks, same performance instance)

CLAIM

The tasks are valid for assessing spoken language proficiency

SCORING

REBUTTAL

Many concurrent validation correlations with interview tests > 0.80 (different tasks and different performances)

Scores are relatively insensitive to simulations of worse recognition; systems should be optimized for score accuracy.

COUNTER

Some tasks are not authentic; the interactions are too constrained

Machines are notoriously error prone; scores may be double counting poor pronunciation

BACKING

The tasks tap real-time automatic processes, and sample academic language & domain interactions

Machine-to-human score correlations ~0.97 (same tasks, same performance instance)

CLAIM

The tasks are valid for assessing spoken language proficiency

Acknowledgements

Dr Jared Bernstein,
Consulting Scientist, Knowledge Technologies,
Pearson

Prof John De Jong, SVP Global Strategy & Business Development, Pearson