Machine Learning Model Hardening

•••

For Fun and Profit

Ariel Herbert-Voss

@adversariel

What is this about?

Most industry uses of machine learning are either deployed on site or provide API access

I will thoroughly disabuse you of the notion that it is a good idea to implement a vanilla ML model API with no model hardening

For simplicity, we're talking about black box access to neural network-based machine learning models

Machine Learning pipeline

Threats versus Solutions

Attack	data	model	predictions
Adversarial examples			X
Model inversion	X	X	
Memorization	X	X	
Model theft		X	

Solutions:

- Homomorphic encryption
- Secure multiparty encryption
- Differential privacy

Threats versus Solutions

Attack	data	model	predictions
Adversarial examples			X
Model inversion	X	X	
Memorization	X	X	
Model theft		X	

- Homomorphic encryption
- Secure multiparty encryption
- Differential privacy

Homomorphic encryption

Can perform computations on encrypted information

- Can't read data but still preserves statistical structure
- Fully homomorphic encryption schemes are too slow to be practical
- Only fits needs if model is not an API

Secure multi-party computation

Multiple parties can jointly compute a function while keeping the function input private

- Cheaper than homomorphic encryption but requires more interaction between parties
- Have to redefine operators and functions
- Also slow as hell

Differential privacy

Adding or removing an element from the data doesn't change the output distribution very much

- Also very slow, BUT
- Even works in scenarios where adversary has full knowledge of training mechanisms and access to parameters

Differential privacy

How do we do it?

- 1. Add noise to the output
- 2. Keep track of how many data access requests are granted

Adversarial examples

Give some slightly perturbed input to get incorrect predictions

Adversarial examples

Model inversion

Given a categorization model/API that provides confidence values and predictions, we can recover information encoded in the model through the training data

Scenario: adversary has somebody's name and wants to get an image of that person out of a facial recognition API

training image

recovered image

Model inversion

Model inversion

Memorization

Given a known data format like a credit card number we can extract this information by using a search algorithm on the model predictions

Model theft

Given black box access, we can construct a new model to closely approximate target

Model theft

General observations

Think about model hardening from the perspective of black box access

Notice how many of these attacks don't matter if the data is encrypted or not as long as you can still get a "clear value" for the predictions

Model hardening is still more engineering than science, but much of it involves adding noise to the predictions to make it harder for adversaries to misuse information

Other hardening methods

Defensive distillation

Deep k-Nearest Neighbors

Ensemble adversarial training

Practical take-away summary slide

Hardening tips:

- Give the bare minimum amount of information
- Add some noise to output predictions
- Consider using an ensemble of models and return aggregate predictions

Most attacks are trying to get at information held in the model

So far differential privacy is the most reliable method of model hardening

For more information

Differential privacy:

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/dwork.pdf

Adversarial examples: https://arxiv.org/pdf/1605.07277.pdf

Model inversion: https://www.cs.cmu.edu/~mfredrik/papers/fjr2015ccs.pdf

Memorization: https://arxiv.org/pdf/1802.08232.pdf

Model theft: https://arxiv.org/pdf/1609.02943.pdf

Feel free to contact me via twitter or protonmail (adversariel), or grab a beer with me