# ME571/Geol571 Geology and Economics of Strategic and Critical Minerals

Commodities: Tellurium

Virginia T. McLemore

#### **ASSIGNMENT**

- Barker, J. M., and McLemore, V. T., 2005, Sustainable development and Industrial minerals: Mining Engineering, December, p. 48-52, <a href="http://geoinfo.nmt.edu/staff/mclemore/docume-nts/sustdevIM.pdf">http://geoinfo.nmt.edu/staff/mclemore/docume-nts/sustdevIM.pdf</a>
- McLemore, V. T., and Dennis Turner, D., 2006, Sustainable development and exploration: Mining Engineering, February, p. 56-61, <a href="http://geoinfo.nmt.edu/staff/mclemore/docume-nts/sustdev.pdf">http://geoinfo.nmt.edu/staff/mclemore/docume-nts/sustdev.pdf</a>

#### Mickey Fulp: 'We Need to Eliminate the Zombie Miners'

Monday March 23, 2015, 10:40am PDT

By Charlotte McLeod+ - Exclusive to Gold Investing News



Mercenary Geologist Mickey Fulp wasn't able to make it to PDAC this year due to adverse weather conditions, but that doesn't mean he wasn't watching what went on at the conference. In this post-PDAC video, Fulp delivers interesting information about the finances of some companies in attendance, also touching on issues currently plaquing many major gold miners.

In terms of PDAC, Fulp reiterates his view that the TSX Venture Exchange is home to "zombie miners" that by all rights shouldn't still be listed there — namely "companies that are not solvent." He cites a study done by Tony Simon that indicates that "600 of the 1,200 exploration and mining companies [listed on the exchange] ... have negative working capital," and points out that 52 of the companies that paid for a booth at PDAC are on Simon's list.

"How are these companies that have no cash and have in some instances millions of dollars in negative working capital ... how do they afford to have an exhibitor booth at PDAC? Because those booths aren't cheap," he guips.

In terms of major gold miners, Fulp answers some questions about subjects he's touched on in videos with the team at Ciper Research, explaining that while such companies are inconsistent in the way they report their costs, it's also partially an issue with reporting regulations. "It's a combination of

http://resourceinvestingnews.com/84838-mickey-fulp-we-need-to-eliminate-the-zombie-miners.html?pmc=E-

1&MyID=ginger@nmbg.nmt.edu&utm\_source=Resource+Investing+News&utm\_campaign= a0cc415742-RSS\_EMAIL\_CAMPAIGN&utm\_medium=email&utm\_term=0\_f83d87db0f- a0cc415742-248853569



http://www.visualcapitalist.com/not-a-drop-to-drink-americas-water-crisis/?utm\_source=Visual+Capitalist+Infographics+%28All%29&utm\_campaign=9248b 63fb1-Most\_Valuable\_Cash\_Crop&utm\_medium=email&utm\_term=0\_31b4d09e8a-9248b63fb1-43004761

#### AND THEN THERE'S THE "HIDDEN WATER" IN WHAT WE CONSUME AND ITEMS WE USE EVERY DAY.



A SO-WATT BULB
can use up to

5 GALLONS
OF WATER
for every hour it's left on.



A pound of beef, from farm to plate, uses

1,800 GALLONS

WE USE PLENTY OF WATER EVERY DAY, BUT WE NEED TO FIND A WAY TO CONSERVE.

#### CONSERVATION

THERE ARE SMALL THINGS WE CAN ALL DO:

Old toilets use 7 GALLONS per flush.

New toilets can use as little as 1 GALLON.

INSTALLING WATER-EFFICIENT FIXTURES CAN REDUCE A HOUSEHOLD'S DAILY WATER USE BY

35 PERCENT.

#### AND BIG THINGS THAT INDUSTRIES CAN DO:

Farms that change to overhead or drip irrigation, from traditional surface irrigation, could significantly improve agricultural water efficiency, while preventing runoff and food waste.

Replacing grass lawns with native plants (especially in dry communities) can save over

15,000 GALLONS



### INTRODUCTION

### INTRODUCTION

#### **Tellurium – critical in use, possible supply risk**

- 0.0000001% of earth's crust (compare gold -- 0.0000004%)
- Almost all comes from by-product of copper smelting
- Key in Cd-Te thin-film solar photovoltaics





Figure 1. Periodic table of the elements. The rare earth elements comprise 15 elements, which range in atomic number from 57 to 71, including lanthanum (La) to lutetium (Lu). The elements are also commonly referred to as "lanthanides." Yttrium (Y, atomic number 39) is also typically included with the rare earth elements group because it shares chemical, physical, and application properties with the lanthanides.

#### Tellurium

- Atomic number of 52
- Atomic weight of 127.6
- One of the least abundant in the crust, ~0.005
   ppm
- Brittle, mildly toxic, rare, silver-white
- Tellurium was discovered in gold ores by Franz Joseph Mδller von Reichenstein, the chief inspector of mines in Trannsylvania in 1782
- Technically not a metal, but a metalloid



Figure 1 Relative abundance of rare earths (highlighted in red). Figure courtesy of Gordon Haxel, USGS.

### Uses of Te



Energy includes the production, transmission, and storage of energy, as well as lighting. Health includes elements necessary for life (food & pharmaceuticals) and for the growing of crops (fertilizers and pesticides). Buildings include materials needed for structures and their general contents and the tools needed to construct them. Transportation includes vehicles and infrastructure, including moving water and wastewater. Information includes communication systems, electronics, and optics. Money includes items that are held as a backing of currencies or to substitute for money, plus jewelry and the arts. From Jon Price, 2015.

#### Uses of Te

- Alloying additive in steel to improve machining characteristics
- Processing of rubber
- As a component of catalysts for synthetic fiber production
- As pigments to produce various colors in glass and ceramics
- Thermal imaging devices
- Thermoelectric cooling devices, such as summertime beverage coolers
- Thermoelectronics
- Solar panels/cells

#### End uses and substitutes



### Uses—TF solar panels





**Figure 1.** A generalized diagram showing the structure of an electricity-generating solar (photovoltaic) cell. Semiconductor films contain such metals as cadmium, gallium, germanium, indium, selenium, and tellurium. The *p* layer generates a positive charge and the *n* layer generates a negative charge. Front and back contacts made up of conductive metals and alloys containing aluminum, copper, gold, molybdenum, and silver. Diagram courtesy of California Energy Commission, used with permission.

Table 2. Metals required to produce thin-film photovoltaic cells with effective annual capacity of 8,760 gigawatthours.

[CIGS, copper-indium-gallium-selenide alloy; e, estimated; XX, not applicable]

|                                 |           | Metals required                          |                                                                                                |                                                                     |  |  |
|---------------------------------|-----------|------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Type of photovoltaic technology | Metal     | Quantity <sup>e,2</sup><br>(metric tons) | Percentage of 2008 estimated<br>world refinery production from<br>primary sources <sup>3</sup> | Value of contained metal <sup>e,4</sup><br>(in millions of dollars) |  |  |
| Thin-film CIGS                  | Gallium   | 30                                       | 27                                                                                             | 17                                                                  |  |  |
|                                 | Indium    | 90                                       | 16                                                                                             | 62                                                                  |  |  |
|                                 | Selenium  | 180                                      | 6                                                                                              | 13                                                                  |  |  |
|                                 | Total     | XX                                       | XX                                                                                             | 92                                                                  |  |  |
| Thin-film cadmium telluride     | Cadmium   | 340                                      | 2                                                                                              | 2                                                                   |  |  |
|                                 | Tellurium | 390                                      | 82                                                                                             | 82                                                                  |  |  |
|                                 | Total     | XX                                       | XX                                                                                             | 84                                                                  |  |  |

<sup>&</sup>lt;sup>1</sup>Metals required to produce photovoltaic cells that can generate 4 gigawatts (GW) of peak power or 8,760 gigawatthours per year (GWh/yr) of effective capacity. One GW is equivalent to 1 billion watts, 1,000 megawatts, and 1 million kilowatts of effective capacity of electricity production. Applying a 25 percent capacity factor, an installed peak capacity of approximately 4 GW would be required to produce 1 GW of electricity on an average daily basis or 8,760 GWh/yr, electricity sufficient to meet the average annual need of 11,000 kilowatthours for 800,000 households in the United States (U.S. Department of Energy, Energy Information Administration, 2009a). No energy storage, such as batteries, was assumed.

#### **Tellurium in Photovoltaics**



- 9 gm/m<sup>2</sup> & 10% efficiency → 1/10 gm (Te)/W or 100 tonnes (Te)/GW
- ÷ 20 25% capacity factor → 400 tonnes (Te)/GW
- World electric consumption (2006) ~2000 GW (USEIA)
- Te "Reserve base" approx. 48,000 tonnes (usgs) → 120 GW

Bottom line — we don't know of enough Te in the world today to make solar as big a contributor to power generation as we would like.



#### Bismuth telluride heat pump.

This is a small bismuth telluride thermoelectric heat pump. Apply a DC voltage and one side gets cold while the other side gets hot. If you attach a good heat sink and fan to the hot side, you can pump heat out of something, cooling it down. This particular device was deployed inside a USB-powered mini-fridge designed to cool one can of soda using power from your computer.

Source: eBay seller goods\_keeper

Contributor: Theodore Gray Acquired: 28 March, 2009 Text Updated: 29 March, 2009

Price: \$6 Size: 1.5" Purity: <20%

#### **PRODUCTION**

## PRODUCTION (US est 50 tonnes)

All Districts of the Basics

MINERAL COMMODITY
SUMMARIES 2015

All Districts of the Basics

All Distri

| Salient Statistics—United States:                        | 2010 | 2011 | 2012 | 2013 | 2014° |
|----------------------------------------------------------|------|------|------|------|-------|
| Production, refinery                                     | W    | W    | W    | W    | W     |
| Imports for consumption, unwrought, waste and scrap      | 42   | 71   | 36   | 64   | 68    |
| Exports                                                  | 59   | 39   | 47   | 42   | 44    |
| Consumption, apparent                                    | W    | W    | W    | W    | W     |
| Price, dollars per kilogram, 99.95% minimum <sup>1</sup> | 221  | 349  | 150  | 112  | 117   |
| Stocks, producer, refined, yearend                       | W    | W    | W    | W    | W     |
| Net import reliance <sup>2</sup> as a percentage of      |      |      |      |      |       |
| apparent consumption                                     | >60% | <50% | >60% | >80% | >80%  |

|                              | Refinery pro | duction<br>2014 | Reserves <sup>3</sup> |
|------------------------------|--------------|-----------------|-----------------------|
| United States                | W            | W               | 3,500                 |
| Canada                       | 12           | 10              | 800                   |
| Japan                        | 48           | 45              | _                     |
| Peru                         | _            | _               | 3,600                 |
| Russia                       | 35           | 40              | NA                    |
| Other countries <sup>4</sup> | <u>NA</u>    | <u>NA</u>       | 16,000                |
| World total (rounded)        | NA           | NA              | 24,000                |

#### PRODUCTION

<u>Domestic Production and Use</u>: In 2014, one firm in Texas produced commercial-grade tellurium from domestic copper anode slimes and lead refinery skimmings. Primary and intermediate producers further refined domestic and imported commercial-grade metal and tellurium dioxide, producing high-purity tellurium and tellurium compounds for specialty applications.

<u>World Resources</u>: Data on tellurium resources were not available. More than 90% of tellurium has been produced from anode slimes collected from electrolytic copper refining, and the remainder was derived from skimmings at lead refineries and from flue dusts and gases generated during the smelting of bismuth, copper, and lead-zinc ores. In copper production, tellurium was recovered only during electrolytic refining of smelted copper. Other potential sources of tellurium include bismuth telluride, gold telluride, and lead-zinc ores.



### Major sources of Te production

- There is no primary Te mine
- Te is recovered as a byproduct of nonferrous metal mining
  - Copper porphyry deposits
  - Lead and zinc deposits

2% Te in Te-bearing anode slimes (USGS)

Figure 4
Recoverable Tellurium in Concentrates Shipped From Canadian Mines, 1930-2005



Source: Natural Resources Canada.

### Tellurium reserves and potential deposits for direct mining



Source: USGS (2012); Green (2009)

### Demand

Economics will prevail (e.g., the ratio of the value of global copper production to that of tellurium in 2014 was approximately 2300 to 1, which means metallurgists won't risk lowering copper recovery to improve tellurium recovery).

| Country         | Reserves<br>Contained Cu<br>Metric Tons | Contained Te<br>Metric Tons | Reserve Base <sup>1</sup><br>Contained Cu<br>Metric Tons | Contained Te<br>Metric Tons | Total<br>Contained Te<br>Metric Tons |
|-----------------|-----------------------------------------|-----------------------------|----------------------------------------------------------|-----------------------------|--------------------------------------|
| '- 1 o          |                                         |                             |                                                          |                             |                                      |
| United States   | 41,000,000                              | 8,200                       | 82,000,000                                               | 16,000                      | 24,200                               |
| Australia       | 6,000,000                               | 1,300                       | 21,000,000                                               | 4,200                       | 5,500                                |
| Canada          | 10,000,000                              | 2,000                       | 21,000,000                                               | 4,200                       | 6,200                                |
| Chile           | 80,000,000                              | 16,000                      | 148,000,000                                              | 30,000                      | 46,000                               |
| China           | 3,000,000                               | 500                         | 7,000,000                                                | 1,500                       | 2,000                                |
| Indonesia       | 10,000,000                              | 2,000                       | 14,000,000                                               | 2,700                       | 4,700                                |
| Kazakhstan      | 13,000,000                              | 2,500                       | 18,000,000                                               | 3,600                       | 6,100                                |
| Peru            | 6,000,000                               | 700                         | 22,000,000                                               | 2,200                       | 2,900                                |
| Philippines     | 6,000,000                               | 1,300                       | 10,000,000                                               | 2,000                       | 3,300                                |
| Poland          | 18,000,000                              | 3,600                       | 33,000,000                                               | 6,500                       | 10,100                               |
| Russia          | 18,000,000                              | 3,600                       | 27,000,000                                               | 5,400                       | 9,000                                |
| Zaire           | 9,000,000                               | 1,800                       | 27,000,000                                               | 5,400                       | 7,200                                |
| Zambia          | 11,000,000                              | 2,200                       | 34,000,000                                               | 6,200                       | 8,400                                |
| Other Countries | 50,000,000                              | 10,000                      | 91,000,000                                               | 18,000                      | 28,000                               |
| Total           | 281,000,000                             | 55,700                      | 549,000,000                                              | 107,900                     | 163,600                              |

Note: All Figures Rounded

| To              | ns Production   | Contained      | Contained Te | Total Possible<br>Production/Yr. |
|-----------------|-----------------|----------------|--------------|----------------------------------|
| Country Ele     | ctrolytic Coppe | er Te (Pounds) | Metric Tons  | (50% Rec.) M/Tons                |
| TT 1: 10: .     | 1 720 000       | 540,000        | 240          | 104                              |
| United States   | 1,730,000       | 548,000        | 249          | 124                              |
| Australia       | 490,000         | 196,000        | 89           | 44                               |
| Canada          | 654,700         | 261,880        | 118          | 59                               |
| Chile           | 2,511,000       | 1,004,400      | 455          | 227                              |
| China           | 414,000         | 165,600        | 75           | 37                               |
| Bulgaria        | 100,000         | 40,000         | 18           | 9                                |
| Indonesia       | 529,000         | 211,648        | 96           | 48                               |
| Iran            | 108,000         | 43,200         | 20           | 10                               |
| Kazakhstan      | 316,000         | 126,400        | 57           | 28                               |
| Mexico          | 342,319         | 136,928        | 62           | 31                               |
| Mongolia        | 125,300         | 50,120         | 23           | 11                               |
| Paupa New Guine | ea 111,700      | 44,680         | 20           | 10                               |
| Peru            | 391,265         | 78,253         | 35           | 17                               |
| Poland          | 414,000         | 165,600        | 75           | 37                               |
| Portugal        | 106,500         | 42,600         | 19           | 9                                |
| Russia          | 505,000         | 202,000        | 92           | 46                               |
| South Africa    | 186,000         | 74,400         | 34           | 17                               |
| Zambia          | 287,000         | 114,800        | 52           | 26                               |
| TOTAL           | 9,321,784       |                | 1,589        | 795                              |

Note: Tellurium tonnage calculations rounded.

|               |                 |             |              | Total Possible    |
|---------------|-----------------|-------------|--------------|-------------------|
|               | Tons Production | Contained   | Contained Te | Production/Yr.    |
| Country       | Refined Lead    | Te (Pounds) | Metric Tons  | (50% Rec.) M/Tons |
|               |                 |             |              |                   |
| United States | 343,000         | 34,300      | 16           | 8                 |
| Australia     | 204,000         | 20,400      | 9            | 4.5               |
| Belgium       | 84,400          | 8,440       | 4            | 2                 |
| Bulgaria      | 60,000          | 6,000       | 3            | 1.5               |
| Canada        | 162,000         | 16,200      | 7            | 3.5               |
| China         | 506,000         | 50,600      | 23           | 11.5              |
| France        | 115,000         | 11,500      | 5            | 2.5               |
| Germany       | 90,000          | 9,000       | 4            | 2                 |
| India         | 69.000          | 6,900       | 3            | 1.5               |
| Italy         | 115,000         | 11,500      | 5            | 2.5               |
| Japan         | 142,326         | 14,233      | 6            | 3                 |
| Kazakhstan    | 65,000          | 6,500       | 3            | 1.5               |
| Korea(North   | 75,000          | 7,500       | 3            | 1.5               |
| Korea(Repub   | olic) 121,296   | 12,130      | 6            | 3                 |
| Mexico        | 168,164         | 16,816      | 8            | 4                 |
| Morocco       | 64,200          | 6,420       | 3            | 1.5               |
| Peru          | 86,105          | 8,611       | 4            | 2                 |
| Poland        | 50,000          | 5,000       | 2            | 1                 |
| Sweden        | 50,000          | 5,000       | 2            | 1                 |
| United Kingo  | dom 215,000     | 21,524      | 11           | 5.5               |
| TOTAL         | 2,785,491       |             | 127          | 64                |

|             |                                        | Development Rate |        |        |  |
|-------------|----------------------------------------|------------------|--------|--------|--|
| Year        | Item                                   | Slow             | Medium | Fast   |  |
|             |                                        |                  |        |        |  |
| 2000        |                                        |                  |        |        |  |
|             | Mw PV Generated Power                  | 1                | 5      | 10     |  |
|             | Consumption of Te (Kg/Mw)              | 130              | 130    | 130    |  |
|             | % Manufacturing Loss                   | 40               | 40     | 40     |  |
|             | Consumption of Te in Metric Tons       | 0.2              | 1      | 2      |  |
| 2005        | Mw PV Generated Power                  | 5                | 25     | 100    |  |
|             | Consumption of Te (Kg/Mw)              | 130              | 130    | 130    |  |
|             | % Manufacturing Loss                   | 30               | 30     | 30     |  |
|             | Consumption of Te in Metric Tons       | 1                | 5      | 19     |  |
| 2010        | Mw PV Generated Power                  | 25               | 100    | 1,000  |  |
|             | Consumption of Te (Kg/Mw)              | 90               | 90     | 90     |  |
|             | % Manufacturing Loss                   | 20               | 20     | 20     |  |
|             | Consumption of Te in Metric Tons       | 3                | 11     | 112    |  |
| 2020        | Mw PV Generated Power                  | 100              | 500    | 10,000 |  |
|             | Consumption of Te (Kg/Mw)              | 90               | 90     | 90     |  |
|             | % Manufacturing Loss                   | 10               | 10     | 10     |  |
|             | Consumption of Te in Metric Tons       | 10               | 50     | 1,000  |  |
| 2030        | Mw Pv Generated Power                  | 500              | 2,000  | 30,000 |  |
| *********** | Consumption of Te (Kg/Mw)              | 90               | 90     | 90     |  |
|             | % Manufacturing Loss                   | 10               | 10     | 10     |  |
|             | Consumption of Te in Metric Tons       | 50               | 200    | 3,000  |  |
|             | -                                      |                  |        | -,     |  |
| Note: 7     | Fellurium Tonnage calculations rounded |                  |        |        |  |

### Tellurium: Historical production forecast supply and future demand



#### Tellerium average yearly price Tellerium average price Year

Source: USGS (2011)

#### Solar energy metals requirements

| Technology | Elements | Annual EU De | mand (tonnes) |       | Annual EU Demand / World Supply |  |
|------------|----------|--------------|---------------|-------|---------------------------------|--|
|            |          | 2020         | 2030          | 2020  | 2030                            |  |
| Solar PV   | Te       | 150          | 126           | 12.0% | 6.9%                            |  |
|            | In       | 145          | 121           | 7.6%  | 4.9%                            |  |
|            | Sn       | 14,913       | 12,505        | 3.6%  | 2.6%                            |  |
|            | Ag       | 619          | 519           | 1.7%  | 1.2%                            |  |
|            | Ga       | 4            | 3             | 0.8%  | 0.5%                            |  |
|            | Se       | 15           | 13            | 0.4%  | 0.3%                            |  |
|            | Cd       | 109          | 91            | 0.3%  | 0.2%                            |  |
|            | Cu       | 70,650       | 59,241        | 0.3%  | 0.2%                            |  |
|            | Pb       | 8,672        | 7,272         | 0.1%  | <0.1%                           |  |

EC JRC/SETIS (2013), Critical Metals in the Path towards the Decarbonisation of the EU Energy Sector





Source: GTM PV News, May 2013



#### Demand

- Currently 300 metric tons of Te per year are required
- By 2020 1,000 metric tons and non PV Te demand is estimated to be 600 metric tons
- By 2020 new sources of Te will have to be developed in order to meet any increasing demand by the PV industry

## Mineralogy

### Major Te minerals

- calaverite AuTe<sub>2</sub>
- krennerite (AuAg)Te<sub>2</sub>
- petzite Ag<sub>3</sub>AuTe<sub>2</sub>
- sylvanite AgAuTe<sub>4</sub>
- hessite (Ag<sub>2</sub>Te)
- tellurobismuthite (BiTe<sub>3</sub>)
- tetradymite (Bi<sub>2</sub>Te<sub>2</sub>S)
- altaite (PbTe)

- native metal
- 40 minerals
- many of which are telluride minerals
- Few elements to bond with native Au
- Coal—2 ppm Te



Sylvanite, AgAuTe<sub>4</sub>, Pyrite from Silver City, New Mexico http://www.johnbetts-fineminerals.com/jhbnyc/mineralmuseum/picshow.php?id=20437



Altaite, PbTe, Hilltop Mine, Organ District, Dona Ana County, NM

http://www.johnbetts-fineminerals.com/jhbnyc/mineralmuseum/picshow.php?id=20437

#### TYPES OF TELLURIUM DEPOSITS

#### Te associated

- Any age
- Alkaline rocks
- Porphyry deposits
- Bismuth deposits
- Pyrrhotite-chalocpyrite-pentlandite-telluride deposits
- Palladium in PGM deposits

#### TYPES OF TELLURIUM DEPOSITS

- Au-Ag-Te alkaline-related veins
- Volcanic-epithermal veins
- Skarns/carbonate-hosted deposits
- Polymetallic veins
- Vein and replacement deposits in Proterozoic rocks
- Porphyry copper (±molybdenum, gold) deposits
- Polymetallic gold deposits
- Gold quartz-pebble conglomerate deposits
- Carlin-type deposits
- Lead-zinc ores
- Black shale hosted deposits
- Coal

| Type of deposit       | Te (ppm)   |
|-----------------------|------------|
| Gold-quartz veins     | 0.2-2,200  |
| Gold skarn deposits   | 0.2-0.5    |
| Polymetallic gold     | 0.2-10     |
| deposits              |            |
| Gold quartz-pebble    | <0.2-0.7   |
| conglomerate deposits |            |
|                       |            |
| Carlin-type deposits  | <0.2-0.6   |
| Porphyry copper       | <0.1-6,000 |
| deposits              |            |
| Lead-zinc ores        | 0.5-1.0    |

Ranges in concentration of tellurium in selected deposits (Everett, 1964; Boyle, 1979; Cox et al., 1995).

|                                                   | Tellurium Concentration         |  |  |  |  |
|---------------------------------------------------|---------------------------------|--|--|--|--|
| Deposit/Region                                    | Pounds Per Refined Ton Of Metal |  |  |  |  |
|                                                   |                                 |  |  |  |  |
| U.S. Porphyry Copper Deposits                     | 0.4                             |  |  |  |  |
| Sudbury Canada Massive Sulfide Deposits           | 0.06                            |  |  |  |  |
| World Wide Lead Ore Deposits                      | 0.1                             |  |  |  |  |
| Peru Porphyry Copper Deposits                     | 0.2                             |  |  |  |  |
| Chile Porphyry Copper Deposits                    | 0.4                             |  |  |  |  |
| Congo Copper Deposits                             | 0.4                             |  |  |  |  |
| Zambia Copper Deposits                            | 0.4                             |  |  |  |  |
| Russian/CIS Copper Nickel-Copper, Massive Sulfide |                                 |  |  |  |  |
| Deposits                                          | 0.4                             |  |  |  |  |
| Mexican Copper and Massive Sulfide Deposits       | 0.4                             |  |  |  |  |
| Australia/New Guinea Copper Deposits              | 0.4                             |  |  |  |  |
| Japan/Philippines/Chinese Copper and Massive Sul  | lfide                           |  |  |  |  |
| Deposits                                          | 0.4                             |  |  |  |  |
| European Copper and Massive Sulfide Deposits      | 0.4                             |  |  |  |  |

## Au-Ag-Te alkaline-related veins

Table 1 Traditional gold and copper deposit types related to alkaline rocks

| Deposit type                                        | Example                                      | Metals         | Related alkaline rocks                                                            | Selected reference                     |
|-----------------------------------------------------|----------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------------------------------|
| Porphyry Cu-Au                                      | Cadia, NSW, Australia                        | Au-Cu          | Monzodiorite-quartz<br>monzonite porphyry stock                                   | Holliday et al. (2001),<br>this volume |
| Skarn                                               | Lukas Canyon, New<br>Mexico                  | Au-Cu          | Monzonite and latite<br>porphyry stocks                                           | Maynard et al. (1990)                  |
| Sediment-hosted<br>(Carlin-style)                   | Foley Ridge and Annie<br>Creek, South Dakota | Au             | Monzonite porphyry,<br>quartz monzonite porphyry<br>and phonolite dykes and sills | Lessard and Loomis<br>(1990)           |
| Breccia pipe                                        | Golden Sunlight, Montana                     | Au             | Latite porphyry intrusions                                                        | Spry et al. (1996)                     |
| Low-sulphidation<br>epithermal vein                 | Emperor, Fiji                                | Au             | Absarokite-shoshonite shield<br>volcano and monzonite stocks                      | Eaton and Setterfield<br>(1993)        |
| Pluton-related<br>(mesothermal or<br>orogenic) vein | Dongpin, China                               | Au             | Syenite pluton, latite porphyry<br>and lamprophyre dykes                          | Zhang and Mao (1985)                   |
| Volcanogenic massive<br>sulphide (VMS)              | Rea, British Columbia                        | Cu-Zn-Pb-Ag-Au | Alkaline basalt tuffs                                                             | Höy (1991)                             |

### Au-Ag-Te alkaline-related veins

- Cripple Creek
- Zortman-Landusky
- Golden Sunlight
- White Oaks and Ortiz



http://pubs.usgs.gov/of/1995/ofr-95-0831/CHAP15.pdf

Fig. 1a-d Cartoons to show the generalised nature of the porphyry-epithermal transition in four gold ± copper systems related to alkaline rocks, a Navisi 3, Fiji (inspired by Eaton and Setterfield 1993). b Porgera. Papua New Guinea (inspired by Richards and Kerrich 1993, and Ronacher et al. 1999), e Ladolam, Papua New Guinea (inspired by Moyle et al. 1990). d Golden Sunlight, Montana. United States (inspired by Spry et al. 1996; personal observations, 1980). Existence of the high-sulphidation epithermal environment at Navisi 3 is unusual in alkaline igneous centres, which appear to be typified by low-sulphidation epithermal mineralisation above or overprinting the porphyry environment



#### Au-Ag-Te alkaline-related veins

- calaverite and sylvanite
  - Au:Te ratio is 1:1
- petzite and krennerite
  - Au:Te ratio is 2:1
- Emperor mine (Fiji) the Au-Te is 10 ppm for Au and 10 ppm for Te
- Bambola ore deposit, the Au-Te is 1:176
- Lone Pine ore deposit (NM), the ratio of Au (4.5 ppm) to Te (4500 ppm) becomes 1:1000

Table 1: Representative Au-Te deposits. Supplementary data from Jensen and Barton (2000); Sillitoe (2002)

| Deposit                                         | Province                         | Туре                       | Tellurides | Tellurides |       | Age (Ma)         | Reference(s)                                       |
|-------------------------------------------------|----------------------------------|----------------------------|------------|------------|-------|------------------|----------------------------------------------------|
|                                                 |                                  |                            | Au-Ag Bi   | Others     | 3     |                  |                                                    |
| Golden Mile, Kalgoor-<br>lie, Western Australia | Yilgarn Craton                   | Transitional epi-mesozonal | X          | Х          | 1,457 | 2675-2660        | Hagemann & Cassidy 2000;<br>Shackleton et al. 2003 |
| Cripple Creek,<br>CO, USA                       | Colorado alk. prov.              | Epithermal LS              | X          |            | 834   | 31-28            | Kelley et al. 1998                                 |
| Golden Sunlight,<br>MT, USA                     | Montana alk. prov.               | Epithermal LS              | X          |            | 112   | 70-80            | Spry et al. 1997                                   |
| Emperor, Fiji                                   | Pacific Rim                      | Epithermal LS              | X          | X          | 120   | 5-4              | Pals & Spry 2003                                   |
| Porgera, Papua<br>New Guinea                    | Pacific Rim                      | Epithermal LS              | X          |            | 660   | 6                | Richards & Kerrich 1993                            |
| Ladolam, Papua<br>New Guinea                    | Pacific Rim                      | Epithermal LS              | X          |            | 1,190 | <1               | Müller et al. 2002                                 |
| Acupan, Baguio,<br>Philippines                  | Pacific Rim                      | Epithermal LS              | X          |            | 200+  | 0.6              | Cooke & McPhail 2001                               |
| Sacarîmb,<br>Romania                            | 'GQ', Apuseni Mts.               | Epithermal LS              | X          | Х          | 32    | 12-10            | Ciobanu et al. 2004a                               |
| Kochbulak,<br>Uzbekistan                        | Kurama Belt,<br>Middle Tien Shan | Epithermal<br>LS/HS        | X X        | Х          | 33.5  | 280 <b>-</b> 270 | Kovalenker et al. 1997                             |

Table 2 Aberrant gold and copper deposits related to alkaline rocks

| Deposit                      | Metal content                   | Related alkaline rocks                                                  | Age (Ma) | Tectonic setting                                                               | Selected reference             |
|------------------------------|---------------------------------|-------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------|--------------------------------|
| Cripple Creek,<br>Colorado   | 834 t Au                        | Phonotite to alkali basalt<br>(lamprophyre) diatreme<br>complex         | 31–28    | Extensional back<br>arc, preparatory to<br>Rio Grande<br>intracontinental rift | Kelley et al. (1998)           |
| Ladolam, New<br>Papua Guinea | 1,190 t Au                      | Trachyandesite-latite<br>stratovolcano,<br>monzodiorite stocks          | < 1      | Post-subduction<br>extension                                                   | Moyle et al. (1990)            |
| Porgera, Papua<br>New Gunea  | 660 t Au                        | Minor alkaline gabbro<br>and mafic porphyry<br>stocks                   | 6        | Fold-thrust belt<br>linked to continent-<br>island are collision               | Richards and Kerrich<br>(1993) |
| Olympic Dam,<br>Australia    | 20 Mt Cu, 1,200 t<br>Au, 1 Mt U | Syenogranite pluton,<br>felsic and alkaline<br>mafic-ultramafic dykes   | ~1590    | Intracontinental rift                                                          | Reeve et al. (1990)            |
| Phalaborwa,<br>South Africa  | 4.25 Mt Cu + Au                 | Foskorite and carbonatite<br>intrusions                                 | ~2060    | Intracontinental<br>extension                                                  | Verwoerd (1986)                |
| Zortman-Landusky,<br>Montana | 120 t Au                        | Quartz monzonite and<br>syenite phases of<br>laccolith, tinguaite dykes | ~62      | Extensional<br>back-arc above flat<br>slab                                     | Russell (1991)                 |

#### North American Alkaline Gold Belt





hypothesis that Laramide subduction prepared the mantle underlying the western United States for subsequent ore genesis

devolatilization reactions in a subducted slab can cause the overlying mantle to be enriched in volatile ore-forming constituents

Fig. 2. Map showing localities of Laramide and younger epithermal ores of the western United States where data on Te and Se exists. See Table 1 for deposit names, data sources.









#### **New Mexico Deposits**

- Elizabethtown-Baldy district
  - 471,400 oz Au produced
- Old Placers district
  - 450,000 oz produced
- New Placers district
- Jicarilla district
- White Oakes district
- Nogal-Bonito district
- Orogrande district
  - 305,000 metric tons of ore grading 1.7 ppm Au

- Great Western deposit –
   3.275 million metric tons of ore containing less than 2 ppm Au
- Vera Cruz deposit 188,590 metric tons of ore grading 4.8 ppm Au
- Carache Canyon breccia deposit—4.5 million metric tons of ore grading 3.2 ppm Au
- Lukas Canyon—5.4
   million metric tons of ore
   grading 1 ppm Au



**Mining** districts in **New Mexico** with tellurium minerals or chemical assays >20 ppm Te

#### Te in NM deposits

- Laughlin Peak-Chico Hills—210 ppm Te (Schreiner, 1991)
- Mudpuppy-Waterdog deposit—7.1 ppm Te
- Te minerals reported in Elizabethtown-Baldy

### Types of deposits

- polymetallic epithermal to mesothermal veins
- gold-bearing breccia deposits and quartz veins
- copper-gold and/or gold porphyries
- iron skarns and replacements
- copper, lead-zinc, and gold skarns or carbonatehosted replacements
- gold placers
- Th-U-REE-fluorite epithermal veins and breccias

## Polymetallic epithermal to mesothermal veins

- thin, less than a meter wide, have steep dips, and occur along faults
- weak propylitic to argillic
- Ag/Au ratios less than 5
- Te spotty, with pyrite and gold

# Gold-bearing breccia deposits and quartz veins

- Breccia deposits occur as pipes or conical bodies and vary in size
  - Vera Cruz deposit is approximately 200 m long and 60 m wide
  - Cunningham Hill deposit was approximately 210 m long and 120 m wide
- Quartz, pyrite, electrum, and native gold with little or no additional sulfides
- Breccia fragments are typically highly altered and vary in size
- multiple banding, hydrothermal brecciation, bladed calcite and/or quartz, vuggy textures, and druzzy quartz
- Te unknown but reported

#### Copper-gold and/or gold porphyries

- Cu minerals and locally Au and Mo occur as disseminations and stockwork veinlets
- Mudpuppy-Waterdog
   – zoned outer propylitic
   to argillic to inner phyllic alteration to a core
   of silicified and oxidized breccia
- Ag/Au ratios >1
- Te???

### Iron skarns and replacements

- Capitan, contained >1 million tons of Fe ore grading 45.64% Fe
- hematite and magnetite
- lenses or irregular bodies in limestone and as veins filling fractures, faults, and along bedding planes
- Te??

## Iron ore from the Capitan Mts

- Produced 250,000 mill tons Fe ore 1963-1988
- El Capitan Precious Metals Corp. claims a resource of 141,000 tons ore of 0.041 oz/t Au
- Drilling permit approved by MMD 11/26/07, but rejected by the USFS requesting additional work





# Copper, lead-zinc, and gold skarns or carbonate-hosted replacements

# Organ Mountains, Doña Ana County—carbonate-hosted Pb-Zn





**Mining** districts in **New Mexico** with tellurium minerals or chemical assays >20 ppm Te



Figure 8—District zoning in the Organ Mountains, Doña Ana County, New Mexico (modified from Dunham, 1935; Seager, 1981).

Lueth and McLemore (1998) and McLemore et al. (1996)

## Minerals

- ALTAITE (PbTe)
- RICKARDITE (Cu<sub>3</sub>Te<sub>2</sub>)
- TETRADYMITE (Bi<sub>2</sub>Te<sub>2</sub>S)





Paragenesis (Lueth, 1998)

# Origin of Te mineralization

Part of the porphyry copper system

#### OR

Superimposed on the porphyry system as a retrograde phase

#### OR

Separate event

## Deer Horn, British Columbia

- Au-Ag-Te deposit (some Mo, W)
- 1.5 km long
- May be the only NI 43-101 resources for Te





http://www.deerhornmetals.com/i/pdf/report s/2013-03-12\_PEA-NI43-101.pdf

Figure 7-4 Common geometric arrangements of fault-filled and extensional veins in shear zones



Figure 7-4 shows common geometric arrangements of fault-filled and extensional veins in shear zones and their relationship to incremental axes of shortening (dZ) and elongation (dX). A) Fault-filled veins in the central part of a reverse shear zone showing conflicting crosscutting relationships with planar extensional veins extending outside the shear zone; B) Arrays of en echelon sigmoidal extensional veins within shear zones; C) Arrays of stacked planar extensional veins within shear zones (Robert and Poulsen, 2001).







## Deer Horn, British Columbia

| Indicated Resource<br>(1.00 g/t Au cut-off) |                        |                        |       |                        |                        |              |
|---------------------------------------------|------------------------|------------------------|-------|------------------------|------------------------|--------------|
|                                             | $\mathbf{A}\mathbf{u}$ | $\mathbf{A}\mathbf{g}$ | Te    | Containe               | d Ounces               | Contained Kg |
| Tonnes                                      | (g/t)                  | (g/t)                  | (ppm) | $\mathbf{A}\mathbf{u}$ | $\mathbf{A}\mathbf{g}$ | Te           |
| 414,000                                     | 5.12                   | 157.50                 | 160   | 68,000                 | 2,120,000              | 66,000       |
| Inferred Resource                           |                        |                        |       |                        |                        |              |
| (1.00 g/t Au cut-off)                       |                        |                        |       |                        |                        |              |
|                                             | $\mathbf{A}\mathbf{u}$ | $\mathbf{A}\mathbf{g}$ | Te    | Containe               | d Ounces               | Contained Kg |
| Tonnes                                      | (g/t)                  | (g/t)                  | (ppm) | Au                     | $\mathbf{A}\mathbf{g}$ | Te           |
| 197,000                                     | 5.04                   | 146.50                 | 137   | 32,000                 | 930,000                | 27,000       |

#### Production highlights for the 14 year mine life are as follows:

| Total Tonnes to Mill                                                            | 949,000                       |  |  |  |
|---------------------------------------------------------------------------------|-------------------------------|--|--|--|
| Annual Tonnes to Mill                                                           | 74,000                        |  |  |  |
| Average Grades: Gold (grams per tonne) Silver (grams per tonne) Tellurium (ppm) | 2.45<br>77<br>74              |  |  |  |
| Total Production: Gold (ounces) Silver (ounces) Tellurium (kg)                  | 67,000<br>2,112,000<br>63,000 |  |  |  |

http://www.deerhornmetals.com/s/news.asp? ReportID=576227

# Moctezuma district, Mexico

## Moctezuma district, Mexico

- replacement-style zinc-lead base metal deposits in mantos (Oposura)
- Structure-controlled veins
- Quartz and quartz-carbonate (San Miguel and La Bambolla, Blanca Norte)

## **AUROTELLURIO Regional Map**





http://www.mexivada.com/i/maps/mx/Moctezuma\_Geology.jpg





| SAMPLE | Au-AA24 | ME-MS61 | ME-MS61 |
|--------|---------|---------|---------|
|        |         | Ag      | Te      |
| 51401  | <0.005  | 357     | 0.07    |
| 51402  | < 0.005 | 220     | 0.05    |
| 51403  | <0.005  | 17.2    | <0.05   |
| 51404  | <0.005  | 6.88    | 12.95   |
| 51405  | < 0.005 | 0.33    | 0.47    |
| 51406  | 0.008   | 16.85   | 0.28    |
| 51407  | 0.011   | 13.85   | 0.25    |
| 51408  | 0.005   | 32.1    | 0.57    |
| 51409  | < 0.005 | 0.63    | 0.08    |
| 51410  | 0.007   | 0.17    | 3.96    |
| 51411  | 0.183   | 20.1    | 5.4     |
| 51412  | 0.059   | 0.72    | 16.55   |
| 51413  | 0.015   | 0.49    | 2.07    |

Table 3. Surface Sampling in the Moctezuma Mining District.

# Kankberg, Boliden in Sweden



# Kankberg

- Skellefte district
- VMS deposit
- Previously operated for Cu-Zn in the 1990s
- Underground
- Concentrator and goldrecovery plant





Weihed et al., Econ Geol, v. 91, 1996

#### The project

- Project includes
  - Mine facilities
  - Underground development
  - Leaching plant rebuilding
- Production until 2020
  - Gold 1,150 kg average annual volume
  - Tellurium 41 tonnes average annual volume
- Start of production mid 2012
- Ore reserve 2,880 ktonnes
- Average grades
  - Gold 4.1 g/tonne
  - Tellurium 186 g/tonne





#### Kankberg – a new gold mine

- Mineral reserve: 3,100 ktonnes
- Average grades
  - Gold 4.1 g/tonne
  - Tellurium 186 g/tonne
- Production between 2012-2020
  - Ore 320,000 tonnes
  - Gold 1,150 kg<sup>1)</sup>
  - Tellurium 41 tonnes1)
- The SEK 475 million investment includes:
  - Mine infrastructure
  - A new leaching plant
- Production starts in mid-2012



1) Metal content



#### The Kankberg mine – side view





#### **Boliden concentrator**

#### leaching plant to be rebuilt





| Boliden Mineral, Mineral Reserves as of December 31, 2012 |                    |              |              |           |           |         |         |         |           |           |
|-----------------------------------------------------------|--------------------|--------------|--------------|-----------|-----------|---------|---------|---------|-----------|-----------|
|                                                           |                    | 2012<br>Kton | 2011<br>Kton | Au<br>g/t | Ag<br>g/t | Cu<br>% | Zn<br>% | Pb<br>% | Mo<br>g/t | Te<br>g/t |
| Boliden Area                                              |                    |              |              | _         | _         |         |         |         | _         | _         |
| Polymetallic Mineralizations                              |                    |              |              |           |           |         |         |         |           |           |
| Kristineberg                                              | Proven             | 1,000        | 1,020        | 1.3       | 24        | 1.4     | 1.8     | 0.1     |           |           |
|                                                           | Probable           | 3,600        | 3,800        | 0.5       | 42        | 0.4     | 7.1     | 0.4     |           |           |
| Renström                                                  | Proven             | 140          | 140          | 3.0       | 137       | 0.6     | 7.5     | 1.5     |           |           |
|                                                           | Probable           | 2,840        | 2,180        | 2.1       | 121       | 0.9     | 5.6     | 1.1     |           |           |
| Maurliden                                                 | Proven<br>Probable | 1,300        | 1,300        | 1.3       | 51        | 0.2     | 3.6     | 0.4     |           |           |
| Maurliden Östra                                           | Proven             |              |              |           |           |         |         |         |           |           |
|                                                           | Probable           | 190          | 520          | 0.5       | 14        | 1.0     | 0.2     |         |           |           |
| Total                                                     | Proven             | 2,430        | 2,460        | 1.4       | 45        | 0.7     | 3.1     | 0.3     |           |           |
| Polymetallic Min                                          | . Probable         | 6,680        | 6,500        | 1.2       | 74        | 0.6     | 6.2     | 0.7     |           |           |
| Gold Mineralizat                                          | ions               |              |              |           |           |         |         |         |           |           |
| Kankberg                                                  | Proven             | 1,050        | 500          | 2.7       | 10        |         |         |         |           | 161       |
|                                                           | Probable           | 2,530        | 2,600        | 4.3       | 16        |         |         |         |           | 184       |
| Aitik                                                     | Proven             | 476,000      | 486,000      | 0.14      | 1.5       | 0.24    |         |         | 26        |           |
| Aluk                                                      | Probable           | 226,000      | 224,000      | 0.15      | 1.7       | 0.26    |         |         | 30        |           |
| Garpenberg                                                | Proven             | 15,400       | 17,400       | 0.3       | 117       | 0.06    | 5.5     | 2.2     |           |           |
| Carpenberg                                                | Probable           | 10,200       | 6,200        | 0.3       | 151       | 0.05    | 4.6     | 1.9     |           |           |
| Tara                                                      | Proven             | 2,300        | 3,300        |           |           |         | 7.5     | 1.8     |           |           |
| I di d                                                    | Probable           | 11,700       | 12,400       |           |           |         | 7.5     | 1.7     |           |           |
|                                                           | Flobable           | 11,700       | 12,400       |           |           |         | 7.1     | 1.7     |           |           |
| Roundings may occur                                       |                    |              |              |           |           |         |         |         |           |           |

#### Pb-Zn veins

- Romania, Bulgaria and Russia
- veins, lens-shaped and metasomatic bodies within granites, volcanic-sedimentary, acid granites and alkaline derivatives
- Altaite
- Zyryanovsk, Russia with galena containing 150ppm Te in the oxidation zone, as altaite
- Baia de Aries, Romania, where the Te field occurs in the western part of the metallogenic area, as vein bodies



Fig. 3 Simplified geological map of the Baia de Aries deposit (Ciofica et al., 1999)

# Lone Pine, Wilcox district, Catron County—volcanic epithermal vein





**Mining** districts in **New Mexico** with tellurium minerals or chemical assays >20 ppm Te

## Production

Discovered about 1889

- 5 tons of Te 1961-1962
- 1.23 oz Au
- 19 oz Ag
- 10,603 tons of fluorite

# Geology

- Hosted by volcanic rocks
- Fracture fillings and veinlets
- Along north- and northwest-trending fractures and faults that were intruded by rhyolite dikes
- Clay alteration, locally silicified, hematization
- Pyrite to pyrite-Te to fluorite-rich zones
- 400 to 500 feet long
- up to 1,800 feet long
- As much as 5000 ppm Te, 6 oz/ton Au



Figure 61-Mines and prospects in the Wilcox mining district, Grant and Catron Counties, New Mexico.

- Quartz
- Pyrite Minerals (Lueth et al., 1995)
- Acanthite
- Bismuthinite
- Tellurite
- Paratellurite
- Teeurobismuthite
- Native tellurium
- Tetradymite?
- Krennerite(?)
- emmonsite (Fe<sub>2</sub>Te<sub>3</sub>O<sub>9</sub> 2H<sub>2</sub>O)
- mackayite (FeTe<sub>2</sub>O<sub>5</sub>(OH))
- sonoraite (FeTeO<sub>3</sub>(OH) •H<sub>2</sub>O)
- blakeite (Fe<sub>2</sub>(TeO<sub>3</sub>)<sub>3</sub>)
- poughite (Fe<sub>2</sub>(TeO<sub>3</sub>)<sub>2</sub>(SO<sub>4</sub>) 3H<sub>2</sub>O)
- rajite (CuTe<sub>2</sub>O<sub>5</sub>)







http://www.mindat.org/loc-3966.html



tetradymite (Bi<sub>2</sub>Te<sub>2</sub>S)

# Sylvanite district, New Mexico



Sylvanite, AgAuTe<sub>4</sub>



https://www.mineralauctions.com/auctions/weekly-collection-liquidation-auctions-end-march-31-478/sylvanite-old-rare-nm-locale-velte-coll-22476.html



**Mining** districts in **New Mexico** with tellurium minerals or chemical assays >20 ppm Te

# Laramide Porphyry copper deposits

- Current
  - Gold
  - Silver
  - Molybdenum
- Possible
  - Tellurium
  - Gallium
  - Germanium
  - Indium
  - Others



# Copper Flat, Hillsboro, Sierra County, NM







# Copper Flat

- proven and probable reserves of 45.5Mt of ore at a reported grade of 0.45% Cu, 0.14g/t Au, 2.3 g/t Ag and 0.0015% Mo
- quartz monzonite stock (CFQM; 74.93±0.66
   Ma) with a breccia pipe is located in the center of the district
- Surrounded by Laramide veins and carbonatehosted Pb-Zn and Ag-Mn deposits





#### Chemistry

Alteration filter diagrams showing fresh and altered fields (after Wilt, 1995; Keith and Swan, 1996). Na index (a) is the ratio of  $Na_2O$  to the sum of  $K_2O$  and ACNK. ACNK is the molecular ratio of  $Al_2O_3$  to total CaO,  $Na_2O$ , and  $K_2O$  and is calculated by  $[(Al_2O_3/102)/((CaO/56)+(Na_2O/62)+(K_2O/94)]$ . Potassic index (b) is the ratio of the sum of  $K_2O$ ,  $Na_2O$ , and MgO by the sum of CaO and  $(0.9Fe_2O_3+FeO)$ . The alteration index (c) is the ratio of 100 times the sum of  $K_2O$  and MgO by the sum of  $K_2O$ , MgO,  $Na_2O$ , and CaO. The scatter in the data is a result of hydrothermal alteration. These diagrams were used to distinguish fresh from altered igneous rocks.





#### **DISTRICT ZONING**

- I—porphyry-copper deposit forms the center of mineralization (Cu, Mo, Au)
- II—propagating outward radially from the Copper Flat quartz monzonite are Laramide Au-Ag-Cu veins (Pb, Zn, Sb, As, and Bi) hosted by many of the latite and quartz latite dikes
- III—carbonate-hosted replacement deposits in the southern and northern parts of the district, distal from the center (Ag, Pb, Mn, V, Mo Sb, Ba, Zn)



Drilling on approximate 100-foot spacing has indicated internal continuity and consistency of grade

# Chemistry

#### **Laramide veins**

- 8-64,600 ppb Au
- <0.2-590 ppm Ag
- 40-57,337 ppm Cu
- <1-475 ppm Mo
- 57-8906 ppm Pb
- 138-17,026 ppm Zn
- Recent drilling 40 ppm
   Te in veins

# Carbonate-hosted replacement deposits

- <5-99 ppb Au
- 1-<50 ppm Ag
- 131-173 ppm Cu
- 2-140 ppm Mo
- 30->10,000 ppm Pb
- 123->20,000 ppm Zn
- <130 ppm Te
- <3400 ppm Bi

#### ANOMALOUS GOLD LOCATIONS Legend Au>100ppb Deposits in Hillsboro district Deposit Type carbonate-hosted Carbonate hosted Pb-Zn(Cu,Ag) tomestake-Tripp Carbonate hosted Ag-Mn(Pb) replacement Cu-Pb-Zn-skarn Little Jewess plack Diagrapho Republic Sweetwater epithermal Mn Happy Jack Laramide Vein mill Soutian sternberg **III**Fullerton placer gold porphyry Cu-Mo Smokey-Jones porphyry Cu NMSHD 6-5 smelter Mary Richmond-Mary C Chmond volcanic epithermal ■Ross Smuggler Eighty five faults Mesa Del Oro Alkali Basalt Chet-Mar 2-4 Anderson ---- dikes Adamallite Opportunity ■Wicks Guich placers Warm Springs Canyon Stock ///Wicks Vein Porphyry deposit-Copper Flat Jasperoids tleshake placers Andesite Magdalena Group Undivision Lake Valley Limestone □smelter El Paso Limestone Fusselman Dolomite <u> ■Va</u>nadinite-Endlichite 1,100 550 1,100 Meters Bliss Sandstone Percha

#### ANOMALOUS TELLURIUM LOCATIONS Legend ★ Te>10ppm Deposits in Hillsboro district Deposit Type carbonate-hosted Carbonate hosted Pb-Zn(Cu,Ag) Homestake Tripp Carbonate hosted Ag-Mn(Pb) replacement ttle Jewess Cu-Pb-Zn-skarn Sack Diamond Republic Sweetwater epithermal Mn Happy Jack Laramide Vein ∐SandeW Copper Flat Castle Hill **I**Fullerton placer gold porphyry Cu-Mo Smokey Jones DShance porphyry Cu NMSHD 6-5 **□Emoir** smelter Mary Richmond-Mary C Richmond volcanic epithermal ■Ross-Smuggler Eighty five faults El Dorado Mesa Del Oro Alkali Basalt Chet-Mar 2-4 Veins Anderson Compromise ----- dikes Sherman ŬWjcks Adamallite Opportunity ■WICKS Guich placers Warm Springs Canyon Stock ■Wicks Vein Porphyry deposit-Copper Flat al Defense Jasperoids ttlesnake placers Andesite Magdalena Group Undivision Lake Valley Limestone □smelter El Paso Limestone Fusselman Dolomite Vanadinite-Endlichite 1,100 550 1.100 Meter Bliss Sandstone Percha

## Microprobe studies

- Au and Ag were identified
- Au, Ag, and Mo are found in sulfides
- Molybdenite
- But Te, Se, Cd, Bi, and As are not detected



Back scattered image of molybdenite

| MINERAL PARAGENITIC SEQUENCE |            |
|------------------------------|------------|
|                              | EARLY LATE |
| QUARTZ $\square$             |            |
| BIOTITE                      |            |
| ORTHOCLASE                   |            |
| PYRITE                       |            |
| CHALCOPYRITE                 |            |
| MAGNETITE                    |            |
| MOLYBDENITE                  |            |
| CHLORITE                     |            |
| SERICITE                     |            |
| CALCITE                      |            |
| APATITE                      |            |

#### Sequence of Events

- Eruption of andesite volcano (75 Ma)
- Intrusion of quartz monzonite porphyry and formation of breccia pipe deposit (75 Ma)
- Latite and quartz latite dikes (70-75 Ma)
- Formation of jasperoids (35-75 Ma)
- Burial? or possibly minor erosion? (35-75? Ma)
- Eruption of Sugarlump and Kneeling Nun Tuffs (Emory caldera) (35-34 Ma)
- Uplift of the Copper Flat volcanic/intrusive complex followed by erosion (21-22 Ma)
- Eruption of alkali basalt (4 Ma)

## Summary

Need more work to determine where Te resides

# Te-rich ferromanganese crusts

 Hydrogenetic ferromanganese oxyhydroxide crusts (Fe-Mn crusts) precipitate out of cold ambient ocean water onto hard-rock surfaces (seamounts, plateaus, ridges) at water depths of about 400 to 4000 m throughout the ocean basins

## **Areas of Major Potential in the US**

- Ducktown, TN (Massive Sulfides)
- Leadville, CO (Massive Sulfides)
- Joplin, MO (Massive Sulfides)
- WV, IL, IN (High-Sulfur Coal Waste Dumps)
- Hydrothermal Deposits (CA, NV, CO, NM, ...)

 Note: World's best may be mountainous Cuslag heaps on Cyprus (e.g., Troodos)

#### **ECONOMICS** Te

- Gravimetric
  - Many are surrounded by mafic alkaline rocks (gravity high) or sedimentary rocks (gravity low)
- Geochemical
- Drilling, trenching

- The Au-Ag-Te and the Te-Bi mineral assemblages may be an indicator for the size of the ore deposit.
- When Au occurs exclusively as tellurides
   (calaverite or Au-Ag tellurides (sylvanite,
   krennerite) at the intrusion outskirts, as in the
   case of Au-Ag Emperor Mine, calaverite
   precipitates in fissures on the margins of the
   igneous body, followed by later Au-Ag tellurides.

- The economic feasibility is also indicated by the Bi and Te content; for instance, when such contents are around or below 10 ppm, the mineralization is economically uninteresting.
- When concentrations span between 10 and 300 ppm, the ore deposit is economic, subject to the reserves and mining capacity.
- Values over 300 ppm are economically interesting regardless of mining capacity.

- The zoning of Te-Bi ore deposits is less known to many geologists.
- Two aspects of zoning should be underlined; one refers to the vertical zoning with respect to the intrusive bodies, as in the case of Larga ore deposit in Metaliferi Mts., where the Au-Te zone is located in the upper part, whereas the Te-Bi zone occurs at 1 km in depth, marginal to the intrusive body. In Henan province, China, the Au-Te mineralization lies between 2 and 10 km lateral to the intrusive body.

# Mining

- Underground
- Porphyry copper deposits are open pit

#### **Production Necessities**

- Existence of desired commodities in economic concentrations, etc.
- Logistics (roads, electrical, water, labor, ...)
- Availability of properties for mining
- Financing
- Permitting (regulations & legalities)
- An assured long-term market

#### **PROCESSING**

#### **PROCESSING**

- Electrolytic Copper Refining-Anode Slime
   Processing
- Lead Refining-Soda Slag Processing
- Platinum Group Metals Refining -Nickel/Copper Leaching
- Gold Milling-Gold/Telluride Processing

#### Tellerium from copper anode slimes



Source: Ullman & Bohnet (2012)

#### Substitutions

- Se, Bi, Pb can substitute in some metallurgical uses
- Se, S can substitute in rubber

#### Environmental issues

- No case histories
- Pyrite is generally presence=acid drainage potential
- If U and Th are present=radioactive wastes

#### **Economic risks**

- Less than 1 in 10,000 deposits become mines
- Estimated 1 in 2,000 or 3,000 prospects become mines
- Ore processing is very deposit specific because of the mineralogy

#### Recommendations

- Detailed geochemical analyses of all potential
   Te deposits to find out where Te resides
- Develop specific geologic models on how tellurium deposits form and how to explore for them
- Continue research on mineralized areas and mine/smelter waste dumps, etc., to enable generation of reasonable supply/demand data

#### **ASSIGNMENT**

- Barker, J. M., and McLemore, V. T., 2005, Sustainable development and Industrial minerals: Mining Engineering, December, p. 48-52, <a href="http://geoinfo.nmt.edu/staff/mclemore/docume-nts/sustdevIM.pdf">http://geoinfo.nmt.edu/staff/mclemore/docume-nts/sustdevIM.pdf</a>
- McLemore, V. T., and Dennis Turner, D., 2006, Sustainable development and exploration: Mining Engineering, February, p. 56-61, <a href="http://geoinfo.nmt.edu/staff/mclemore/docume-nts/sustdev.pdf">http://geoinfo.nmt.edu/staff/mclemore/docume-nts/sustdev.pdf</a>