CLAIMS

A method of controlling parasites in or on an animal comprising 1. administering to the animal a parasiticidally effective amount of a 5-substitutedalkylaminopyrazole derivative of formula (I):

$$R^{6}S(O)_{n}$$
 R^{1} $R^{5}-S(O)_{m}$ R^{2} W R^{3} R^{3}

wherein:

R1 is CN;

W is C-halogen, C-CH₃ or N;

R² is hydrogen, halogen or CH₃;

 R^3 is (C_1-C_3) -haloalkyl, (C_1-C_3) -haloalkoxy or $S(O)_p$ - (C_1-C_3) -haloalkyl; R⁴ is hydrogen, (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₂-C₆)-haloalkynyl, (C₃-C₇)-cycloalkyl, CO-(CH₂)_q-R⁷, COR⁸, CO-(CH₂)_q-R⁹, -CO-(C₁-C₄)-alkyl-(C₁-C₆)-alkoxy, -CO₂-(CH₂)_q-R⁷, CO₂R⁸, -CO₂-(CH₂)_q-R⁹, -CO₂-(C₃- C_7)-cycloalkyl, - CO_2 -(C_1 - C_4)-alkyl-(C_3 - C_7)-cycloalkyl, - CO_2 -(C_3 - C_6)-alkenyl, - CO_2 -(C_3 - C_6 C_6)-alkynyl, $CONR^{10}R^{11}$, $-CH_2R^7$, $-CH_2R^9$, OR^7 , OR^8 or OR^9 ; or (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₇)-cycloalkyl, $S(O)_pR^8$, CO_2 - $(C_1$ - $C_6)$ -alkyl, -O(C=O)- $(C_1$ - $C_6)$ -alkyl, $NR^{10}COR^{12}$, $NR^{10}R^{11}$, $CONR^{10}R^{11},\,SO_2NR^{10}R^{11},\,OH,\,CN,\,NO_2,\,OR^7,\,NR^{10}SO_2R^8,\,COR^8\,\,and\,\,OR^9;$ A is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C3-C8)-cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C1- C_6)-alkyl and halogen; or is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene in which last

two mentioned groups a methylene moiety is replaced by a group selected from -C(=O)-, -C(=NH)-, -O-, -S- and $-NR^{15}$ -, with the proviso that the replacing group is not bonded to the adjacent $S(O)_m$ group or N atom; or is (C_2-C_{12}) -alkenylene or (C_2-C_{12}) -haloalkenylene;

 R^5 is H, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_7) -cycloalkyl, $-(CH_2)_qR^7$, $-(CH_2)_qR^9$ or $NR^{10}R^{11}$ provided that for the last mentioned radical m is 2; or is (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -haloalkenyloxy, (C_3-C_6) -alkynyloxy, (C_3-C_6) -haloalkynyloxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CN, NO_2 , OH, COR^{10} , $NR^{10}COR^{12}$, $NR^{10}SO_2R^8$, $CONR^{10}R^{11}$, $NR^{10}R^{11}$, $S(O)_pR^7$, $S(O)_pR^9$, OR^7 , OR^9 and CO_2R^{10} ; or when A is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene and R^5 is (C_1-C_6) -alkyl unsubstituted or substituted by one or more halogen radicals, one or more of the carbon atoms of R^5 may, together with $S(O)_m$ and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

 R^6 is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl or (C_2-C_6) -haloalkynyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸, COR¹¹, COR¹³, CONR¹⁰R¹¹, SO₂NR¹⁰R¹¹, NR¹⁰R¹¹, OH, SO₃H and (C₁-C₆)-alkylideneimino;

 R^8 is $(C_1\text{-}C_6)$ -alkyl or $(C_1\text{-}C_6)$ -haloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-haloalkoxy, NO₂, CN, CO₂(C₁-C₆)-alkyl, S(O)_pR⁸, OH and oxo;

 R^{10} and R^{12} are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-alkenyl, (C₃-C₆)-haloalkenyl, (C₃-C₆)-alkynyl, (C₃-C₆)-haloalkynyl, (C₃-C₆)-cycloalkyl, -(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl, -(CH₂)_qR¹³ or -(CH₂)_qR⁹; or

R¹⁰ and R¹¹ and/or R¹⁰ and R¹² each together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being

unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl and (C₁-C₆)-haloalkyl;

R¹¹ and R¹⁴ are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl,

(C₃-C₆)-cycloalkyl or -(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl;

 R^{13} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹⁴;

 R^{15} is R^{11} or $-(CH_2)_a R^{13}$;

m, n and p are each independently zero, one or two;

q is zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S;

or a pesticidally acceptable salt thereof.

2. The method as claimed in claim 1, wherein the symbols and indices in formula (I) have the following meanings:

R¹ is CN;

W is C-Cl;

R² is chlorine;

R³ is CF₃ or OCF₃;

 R^4 is hydrogen, $CO_{2^-}(C_1-C_3)$ -alkyl, or (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen and (C_1-C_3) -alkoxy;

A is (C₁-C₄)-alkylene;

 R^5 is (C_3-C_6) -cycloalkyl, $-(CH_2)_qR^7$, (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl; or when R^5 is (C_1-C_6) -alkyl, one or more of the carbon atoms of the R^5 group may, together with the $S(O)_m$ group and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

R⁶ is CF₃, CF₂Cl, CFCl₂, CBrF₂ or CHF₂;

R⁷ is phenyl;

m and n are each independently zero, one or two; and

g is zero or one.

3. The method as claimed in claim 1, wherein the symbols and indices in formula (I) have the following meanings:

R¹ is CN;

W is C-Cl;

R² is Cl;

R³ is CF₃ or OCF₃;

 R^4 is hydrogen, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_3-C_7) -cycloalkyl, COR^9 (where R^9 is tetrahydrofuryl), $-COCH_2-(C_1-C_6)$ -alkoxy, $-CO_2-(C_1-C_6)$ -alkyl, $-CO_2-(CH_2)_q-R^7$, OR^7 , OR^8 or OR^9 (where R^9 is pyridyl); or (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkoxy, (C_3-C_7) -cycloalkyl and $S(O)_pR^8$;

A is (C_1-C_6) -alkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_6) -cycloalkyl ring;

 R^5 is (C_3-C_6) -alkenyl, (C_3-C_7) -cycloalkyl, $-(CH_2)_qR^7$ or $NR^{10}R^{11}$ provided that for the last mentioned radical X is SO_2 ; or is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

R⁶ is CF₃, CF₂Cl, CFCl₂, CBrF₂, CHF₂ or CH₃;

 R^7 is phenyl unsubstituted or substituted by one or more (C₁-C₆)-alkoxy groups; R^8 is (C₁-C₆)-alkyl;

 R^{10} and R^{11} are the same or different (C1-C6)-alkyl; or

R¹⁰ and R¹¹ together with the attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N;

m and n are each independently zero, one or two; and q is zero or one.

4. 5-Substituted-alkylaminopyrazole derivatives of formula (I) as in claim 1, or pesticidally acceptable salts thereof, wherein the symbols and indices in formula (I) have the following meanings:

R¹ is CN;

W is C-halogen or C-CH₃;

R² is hydrogen, halogen or CH₃;

 R^3 is (C_1-C_3) -haloalkyl, (C_1-C_3) -haloalkoxy or $S(O)_p$ - (C_1-C_3) -haloalkyl; R^4 is (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl, (C_2-C_6) -haloalkynyl, (C_3-C_6) -alkynyl, (C_3-C_6) -alkynyl, (C_3-C_6) -alkyl- (C_3-C_7) -cycloalkyl, $-CO_2$ - (C_3-C_6) -alkenyl, $-CO_2$ - (C_3-C_6) -alkynyl, $CONR^{10}R^{11}$, $-CH_2R^7$, $-CH_2R^9$, OR^7 , OR^8 or OR^9 ; or (C_1-C_6) -alkyl which is substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CO_2 - (C_1-C_6) -alkyl, -O(C=O)- (C_1-C_6) -alkyl, $NR^{10}COR^{12}$, $NR^{10}R^{11}$, $CONR^{10}R^{11}$, $SO_2NR^{10}R^{11}$, OH, CN, NO_2 , OR^7 , $NR^{10}SO_2R^8$, COR^8 and OR^9 ;

A is (C_1-C_{12}) -alkylene and (C_1-C_{12}) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_8) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen; or is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene in which last two mentioned groups a methylene moiety is replaced by a group selected from -C(=O)-, -C(=NH)-, -O-, -S- and $-NR^{15}$ -, with the proviso that the replacing group is not bonded to the adjacent $S(O)_m$ group or N atom; or is (C_2-C_{12}) -alkenylene or (C_2-C_{12}) -haloalkenylene;

 R^5 is H, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_7) -cycloalkyl, $-(CH_2)_qR^7$, $-(CH_2)_qR^9$ or $NR^{10}R^{11}$ provided that for the last mentioned radical m is 2; or is (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -haloalkenyloxy, (C_3-C_6) -alkynyloxy, (C_3-C_6) -haloalkynyloxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CN, NO_2 , OH, COR^{10} , $NR^{10}COR^{12}$, $NR^{10}SO_2R^8$, $CONR^{10}R^{11}$, $NR^{10}R^{11}$, $S(O)_pR^7$, $S(O)_pR^9$, OR^7 , OR^9 and CO_2R^{10} ; or when A is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene and R^5 is (C_1-C_6) -alkyl unsubstituted or substituted by one or more halogen radicals, one or more of the carbon atoms of R^5 may, together with $S(O)_m$ and one or more of, the carbon atoms of A, form a 5- or 6-membered ring;

 R^6 is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -haloalkynyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -alkylideneimino;

 R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, NO_2 , CN, $CO_2(C_1-C_6)$ -alkyl, $S(O)_pR^8$, OH and OXO;

 R^{10} and R^{12} are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-alkynyl, (C₃-C₆)-haloalkynyl, (C₃-C₆)-haloalkynyl, (C₃-C₆)-cycloalkyl, -(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl, -(CH₂)_qR¹³ or -(CH₂)_qR⁹; or

 R^{10} and R^{11} and/or R^{10} and R^{12} each together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl and (C_1-C_6) -haloalkyl;

 R^{11} and R^{14} are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl,

 (C_3-C_6) -cycloalkyl or $-(C_1-C_6)$ -alkyl- (C_3-C_6) -cycloalkyl;

 R^{13} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹⁴;

 R^{15} is R^{11} or $-(CH_2)_q R^{13}$;

m, n and p are each independently zero, one or two;

g is zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.

5. 5-Substituted-alkylaminopyrazole derivatives of formula (I) as in claim 1, or pesticidally acceptable salts thereof, wherein:

R¹ is CN;

W is C-halogen or C-CH₃;

R² is hydrogen, halogen or CH₃;

 R^3 is (C_1-C_3) -haloalkyl, (C_1-C_3) -haloalkoxy or $S(O)_p$ - (C_1-C_3) -haloalkyl; R^4 is hydrogen, (C_1-C_6) -alkyl or COR^8 ;

A is (C_1-C_{12}) -alkylene and (C_1-C_{12}) -haloalkylene in which 2, 3 or 4 adjacent carbon atoms optionally form part of a (C_3-C_8) -cycloalkyl ring which is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) -alkyl and halogen; or is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene in which last two mentioned groups a methylene moiety is replaced by a group selected from -C(=O)-, -C(=NH)-, -O-, -S- and $-NR^{15}$ -, with the proviso that the replacing group is not bonded to the adjacent $S(O)_m$ group or N atom; or is (C_2-C_{12}) -alkenylene or (C_2-C_{12}) -haloalkenylene;

 R^5 is H, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_6) -alkenyl, $-(CH_2)_qR^7$, $-(CH_2)_qR^9$ or $NR^{10}R^{11}$ provided that for the last mentioned radical $S(O)_m$ is SO_2 ; or is (C_1-C_6) -alkyl substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -haloalkenyloxy, (C_3-C_6) -alkynyloxy, (C_3-C_6) -haloalkynyloxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$, CN, NO_2 , OH, COR^{10} , $NR^{10}COR^{12}$, $NR^{10}SO_2R^8$, $CONR^{10}R^{11}$, $NR^{10}R^{11}$, $S(O)_pR^7$, $S(O)_pR^9$, OR^7 , OR^9 and CO_2R^{10} ; or when A is (C_1-C_{12}) -alkylene or (C_1-C_{12}) -haloalkylene and R^5 is (C_1-C_6) -alkyl substituted by one or more halogen radicals, one or more of the carbon atoms of R^5 may, together with $S(O)_m$ and one or more of the carbon atoms of A, form a 5- or 6-membered ring;

 R^6 is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -haloalkynyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_1-C_6) -alkylideneimino;

 R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

 R^9 is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -alkyl, (C_1-C_4) -a

R¹⁰ and R¹² are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)alkenyl, (C₃-C₆)-haloalkenyl, (C₃-C₆)-alkynyl, (C₃-C₆)-haloalkynyl, (C₃-C₆)-cycloalkyl, -(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl, –(CH₂)_qR¹³ or –(CH₂)_qR⁹; or R¹⁰ and R¹¹ and/or R¹⁰ and R¹² each together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C1-C6)-alkyl and (C1-C6)-haloalkyl; R¹¹ and R¹⁴ are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C_3-C_6) -cycloalkyl or $-(C_1-C_6)$ -alkyl- (C_3-C_6) -cycloalkyl; R¹³ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_1-C_6) -alkoxy, (C_1-C_6) haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR¹¹R¹⁴; R^{15} is R^{11} or $-(CH_2)_q R^{13}$; m, n and p are each independently zero, one or two; q is zero or one; and each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.

- 6. 5-Substituted-alkylaminopyrazole derivatives of formula (I), or pesticidally acceptable salts thereof, wherein the symbols and indices in formula (I) have the following meanings:
- R^1 is CN; R^2 is chlorine; R^3 is CF_3 or OCF₃; W is C-Cl; R^4 is hydrogen or (C₁-C₆)-alkyl; R^5 is (C₁-C₆)-alkyl; R^6 is CF₃; A is (C₂-C₃)-alkylene and m and n are each independently zero, one or two.
- 7. The use of compounds of formula (I) and pesticidally acceptable salts thereof according to one or more of claims 1 to 6 for the control of parasites in and on animals.

- 8. The use of compounds of formula (I) and pesticidally acceptable salts thereof according to one or more of claims 1 to 6 for preparing a veterinary medicament.
- 9. A pesticidal composition comprising a compound of formula (I) or a pesticidally acceptable salt thereof as defined in any one of claims 1 to 6, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.
- 10. A process for the preparation of a compound of formula (I) or a salt thereof as defined in one or more of claims 1 to 6, which process comprises:
- a) where R¹, R², R³, R⁶, W, A, m and n are as defined in claim 1, R⁴ and R⁵ are as defined in claim 1 with the exclusion of hydrogen, and R⁴ is H, reacting a compound of formula (II):

wherein R^1 , R^2 , R^3 , R^6 , W and n are as defined in claim 1, and L is a leaving group, with a compound of formula (III):

$$R^5$$
— $S(O)_m$ — A — NH_2

wherein m and A are as defined in claim 1 and R⁵ is as defined in claim 1 with the exclusion of hydrogen; or

b) where R¹, R², R³, R⁴, R⁶, W, A, m and n are as defined in claim 1 and R⁴ is as defined in claim 1 with the exclusion of hydrogen, OR⁷, OR⁸ and OR⁹, and R⁵ is as defined in claim 1 with the exclusion of H, reacting a compound of formula (IV):

93

$$R^{6}S(O)_{n}$$
 R^{5}
 R^{5}

wherein R^1 , R^2 , R^3 , R^6 , W, A, m and n are as defined in claim 1 and R^5 is as defined in claim 1 with the exclusion of hydrogen, with a compound of formula (V):

wherein R^4 is as defined in claim 1 with the exclusion of hydrogen, OR^7 , OR^8 and OR^9 , and L^1 is a leaving group; or

c) where R¹, R², R³, R⁴, R⁶, W, A, m and n are as defined in claim 1 and R⁵ is as defined in claim 1 with the exclusion of hydrogen, reacting a compound of formula (VI):

wherein R^1 , R^2 , R^3 , R^4 , R^6 , W and n are as defined in claim 1, with a compound of formula (VII):

$$R^5$$
-S(O)_m-A-L² · (VII)

wherein m and A are as defined in claim 1, R⁵ is as defined in claim 1 with the exclusion of hydrogen and L² is a leaving group;

d) where R¹, R², R³, R⁶, W and n are as defined in claim 1, R⁵ is as defined in claim 1 with the exclusion of hydrogen, R⁴ is hydrogen; A is -CH₂- and m is zero, reacting a compound of formula (VIII):

wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^6 , W and n are as defined in claim 1, with a mixture of formaldehyde and a compound of formula (IX):

R⁵-SH (IX)

wherein R⁵ is as defined in claim 1 with the exclusion of hydrogen; or
e) where R¹, R², R³, R⁴, R⁶, A, W and n are as defined in claim 1, R⁵ is as defined in claim 1 with the exclusion of hydrogen, and m is zero, reacting a compound of formula (X):

(X) ·

wherein R^1 , R^2 , R^3 , R^4 , A, W and n are as defined in claim 1, with a compound of formula (XI):

wherein R⁵ is as defined in claim 1 with the exclusion of hydrogen, and L³ is a leaving group; or

f) where R¹, R², R³, R⁴, R⁵, R⁶, A, W and n are as defined in claim 1, and m is zero, reacting a compound of formula (XII):

wherein R^1 , R^2 , R^3 , R^4 , A, W and n are as defined in claim 1 and L^4 is a leaving group, with a compound of formula (IX) as defined above; or

g) where R^1 , R^2 , R^3 , R^4 , R^6 , W, and n are as defined in claim 1, R^5 is as defined in claim 1 with the exclusion of hydrogen, and A is (C_2-C_{12}) -alkylene of which a two carbon chain links the R^5 -S $(O)_m$ - and -N R^4 - groups, reacting a compound of formula (VI) above wherein R^1 , R^2 , R^3 , R^4 , R^6 , W and n are as defined in claim 1, with a compound of formula (XIII):

$$R^5$$
-S-(O)_m-A¹
(XIII)

wherein R^5 is as defined in claim 1, and A^1 is a (C_2-C_{12}) -alkenyl group in which the double bond is adjacent to the R^5 -S(O)_m group; or

h) where R¹, R², R³, R⁴, R⁶, A, W, and n are as defined in claim 1, R⁵ is hydrogen, and m is zero, reacting the corresponding compound of formula (XII) as defined above, with a compound of formula (XIV):

$$R^a$$
-C(=S)SH (XIV)

wherein R^a is (C_1-C_6) -alkyl, to give a compound of formula (XV):

wherein the various symbols are as defined above, followed by hydrolysis of the compound of formula (XV) to give the corresponding compound of formula (I) in which R^5 is H; or

- i) where R¹, R², R³, R⁴, R⁵, R⁶, W and A are as defined in claim 1, and m and/or n is 1 or 2, oxidising a corresponding compound in which m and/or n is 0 or 1; and
- j) if desired, converting a resulting compound of formula (I) into a pesticidally acceptable salt thereof.