UNIVERSIDAD DE COSTA RICA

ESCUELA DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA Y CIENCIAS ACTUARIALES DISTRIBUCIÓN DE PÉRDIDAS

Acá se pone un buen título

Bitácora I

Realizado por

Maria José Corea

Cassandra Ramírez

Daniel Ulate

Índice general

_	Bitácora I		
	1.	Integrantes	2
		Primera aproximación	
		Replanteo	
		Argumentación	
		Sobre la base de datos	
Bi	bliog	grafía	6

Capítulo 1

Bitácora I

1. Integrantes

- María José Corea Chinchilla B82352
- Cassandra Paola Ramirez B76199
- Daniel Gustavo Ulate Montero B67212

2. Primera aproximación

Resulta trascendente para las sociedades modernas entender la importancia de prevenir los incendios, dado el alto costo económico y social que estos conllevan cada año. Una gran parte de las pérdidas generadas en incendios, ocurren en un pequeño número de eventos de mayor magnitud, por lo que un reto para los diferentes cuerpos de bomberos, y los gobernantes es tratar de establecer las condiciones adecuadas para limitar o contener los eventos más catastróficos.

Un enfoque primordial que puede tomar la investigación es delimitar de forma adecuada las condiciones que puedan aumentar el riesgo de incendio en primer lugar, por lo que se debe tratar de predecir posibles incendios y su gravedad, intentando identificar patrones en su ocurrencia, particularmente sobre lo que hace que un incendio se convierta en uno con altas pérdidas.

Varias investigaciones en el pasado han intentado responder esta pregunta sobre qué puede determinar la severidad de un siniestro de este estilo, en términos forestales Juan Torres (Torres-Rojo, Juan M., 2021) desarrolla un índice de ocurrencia de incendios forestales en superficies extensas, denominado superficie en riesgo de incendio (SeR). Este autor realiza distintos modelos y señala que un problema para ello es que las colas de estas distribuciones tienden a ser muy pesadas.

Otros estudios como el de David C. Shpilberg (David C. Shpilberg, 1977) presentan un resumen de trabajos en el area de modelaje de la distribución en probabilidad de pérdidas en incendio, e incluso lo presenta como un proceso estocástico. Este papel compara las pérdidas con distintos tipos de distribuciones, lo que puede servir a forma de guía en el modelaje de la misma.

3. Replanteo

Con esta idea, replantéenla de 4 maneras distintas en modo pregunta:

Por ejemplo, si mi idea es "Quisiera saber la temperatura promedio en un día en Costa Rica".

Entonces reformulen esta idea como - ¿Cómo se puede calcular la temperatura promedio en un día en Costa Rica? - ¿Qué es la temperatura promedio en Costa Rica? - ¿Cuáles son los factores que afectan la temperatura promedio en Costa Rica? - ¿Por qué es importante conocer la temperatura promedio en Costa Rica?

En este punto pueden escribir cualquier pregunta que sea relevante para el estudio.

4. Argumentación

Toda pregunta debe tener una posible respuesta o argumentación. Claramente en esta etapa no se tiene que tener todo claro, pero al menos si se tiene que tener un objetivo en la mente. Planteen una posible argumentación para responder cada pregunta del punto anterior. La argumentación tiene que tener estos tres elementos:

- Lógica: Es decir, que sea una respuesta basada en criterio científico o racional.
- Ética: Que la respuesta o los datos provengan de fuentes confiables y que los análisis que ustedes harán no serán alterados para mostrar algo falso.
- Emocional: No se refiere lo que ustedes han visto en textos de ficción, romance, etc. Como esto es un trabajo científico, la emoción se refiere a poner el resultado de su trabajo en un contexto que apele a las emociones o que el lector identifique una solución real al problema que se está planteando.

En el ejemplo anterior se podría poner algo así:

¿Cómo se puede calcular la temperatura promedio en un día en Costa Rica?

La temperatura se puede estimar usando los datos observados que arroja el IMN cada hora y luego tomando el promedio de estos valores (Lógica). Para efectos de completitud se deben revisar si existen datos faltantes o estaciones cuya medición fue errónea (Ética). Esto ayudará al IMN a tener una mejor medición diaria de la temperatura (Emoción).

Repitan este mismo procedimiento para cada una de las preguntas.

5. Sobre la base de datos

- [1] 134901047
- [1] 411962604

La base seleccionada fue obtenida de la página oficial de la ciudad de Toronto, y corresponde a información de los siniestros de tipo incendio.

Este conjunto de datos proporciona información similar a la que se le envía al Jefe de Bomberos de Ontario en relación a los incidentes en los cuales el departamento de bomberos de Toronto intervino, con bastantes detalles.

Por motivos de privacidad, no se proporciona información personal, ni la dirección exacta, sino un aproximado del sitio de ocurrencia. Se menciona también que algunos incidentes han sido excluidos conforme a las exenciones bajo la Sección 8 de la Ley Municipal de Libertad de Información y Protección de la Privacidad (MFIPPA).

La base de datos es de formato 'tabla' y se actualiza de manera anual. Su última actualización se dio en agosto 29 de 2022. Fue publicada por la sección de servicios administrativos de la unidad de

bomberos, y posee 17.536 observaciones con 42 variables. En la siguiente tabla se describe la totalidad de ellos.

Cuadro 1.1: Descripción completa de la base

Columna	Descripcion
X_id	Identificador único del suceso
Area_of_Origin	Area de origen con código y descripción
Building_Status	Código con el estado del edificio y
0-	descripción
Business_Impact	Código con el impacto al negocio y
•	descripción
Civilian_Casualties	Civiles víctimas en la escena
Count_of_Persons_Rescued	Cantidad de personas rescatadas
Est_Dollar_Loss	Pérdida estimada en dólares
Est_Number_Of_Persons_Displaced	Número estimado de personas desplazadas
Exposures	Número de incendios de exposición
•	asociados con este incendio
Ext_agent_app_or_defer_time	Marca de tiempo del agente que se aplicó
	por primera vez o decisión de diferir
Extent_Of_Fire	Cógigo de extensión del fuego y descripción
Final_Incident_Type	Tipo de incidente final
Fire_Alarm_System_Impact_on_Evacuation	Código de impacto del sistema de alarma
, ,	contra incendios y descripción
Fire_Alarm_System_Operation	Código de operación del sistema de alarma
	contra incendios y descripción
Fire_Alarm_System_Presence	Código de presencia del sistema de alarma
•	contra incendios y descripción
Fire_Under_Control_Time	Marca de tiempo del fuego bajo control
Ignition_Source	Código sobre la fuente del incendio y
	despcripción
Incident_Number	Número de incidente de acuerdo al sistema
	de bomberos de Toronto (TFS)
Incident_Station_Area	Area de la estación de ocurrencia según TFS
Incident_Ward	Lugar donde ocurrió el incidente
Initial_CAD_Event_Type	Tipo de evento que dio origen
Intersection	Intersección mayor o menor más cercana en
	el barrio del incidente
Last_TFS_Unit_Clear_Time	Marca de tiempo de la última unidad en el
	incidente
Latitude	Latitud de la intersección más cercana al
	incidente
Level_Of_Origin	Nivel de origen
Longitude	Longitud de la intersección más cercana al
	incidente
Material_First_Ignited	Código del material donde inició y
	descripción
Method_Of_Fire_Control	Código del método de control del fuego y
	descripción
Number_of_responding_apparatus	Número de aparatos del TFS que atendió la
	emergencia
rumoer_or_responding_apparatus	

Número de personal del TFS que atendió la
emergencia
Código de la posible causa y descripción
Código de la propiedad y descripción
Código de la alarma de incendios en el lugar
y descripción
Código de fallo en la alarma de incendios y
descripción
Código del tipo de detector de humo y
descripción
Código de impacto de la alarma contra
incendios en la evacuación y descripción
Código de expansión del humo y descripción
Código de funcionamiento de sistema de
rociadores y descripción
Código de presencia de sistema de
rociadores y descripción
Código de estado del incendio a la llegada y
descripción
Marca de tiempo cuando el TFS fue
notificado
Marca de tiempo cuando el TFS llegó a la
escena
Cantidad de víctimas en el cuerpo de
bomberos

Fuente: Elaboración propia

De todas las variables anteriores, que pueden funcionar para futuros objetivos, se seleccionad de primera mano el estimado de pérdidas en dólares, y el momento en el cuál el sistema de bomberos de toronto fue notificado

Objetivo General:

Comercio exterior de nuevo

α

Objetivos Específicos:

•

.

• (empty citation)

Bibliografía

David C. Shpilberg (mar. de 1977). "The Probability Distribution of Fire Loss Amount". En: *The Journal of Risk and Insurance* 44(1), págs. 103-115.

Torres-Rojo, Juan M. (jun. de 2021). "Índice para la estimación de ocurrencia de incendios forestales en superficies extensas". En: *Revista Chapingo serie ciencias forestales y del ambiente* 26(3), págs. 433-449.