

lavorazione ad asportazione di truciolo

Foratura Svasatura Filettatura Tornitura Fresatura

Sia la lamiera antiusura HARDOX che la lamiera ad alta resistenza WELDOX possono lavorarsi per asportazione di truciolo con utensili di acciaio rapido (HSS) o metallo duro (MD). Questa brochure proporziona una guida alla scelta dell'utensile e dei dati di taglio. Sono anche trattati altri fattori che devono essere considerati in ogni lavorazione per asportazione di truciolo. Questa guida è stata ottenuta per mezzo di test effettuati in proprio con utensili di diversa concezione e origine ed in collaborazione con fabbricanti leader.

PROPRIETÀ TIPICHE DELLE LAMIERE WELDOX E HARDOX

	WELDOX 420 / 460	_	_	WELDOX 900 / 960	_	HARDOX 400	HARDOX 450	HARDOX 500
Carico di rottura, R _m [N/mm²]	~550	~620	~860	~1040	~1350	~1250	~1400	~1550
Durezza [HBW]	~ 180	~200	~260	~320	~430	~400	~450	~500

Foratura

La foratura può essere effettuata con punte di acciaio rapido o in metallo duro. La scelta della punta dipenderà dal tipo di macchina disponibile e dalla sua rigidezza.

Lavori su trapani radiali od a colonna

Per minimizzare le vibrazioni ed aumentare la vita della punta raccomandiamo:

- Minimizzare la distanza fra la punta e la colonna.
- Evitare l'uso di placche di fissaggio in legno.
- Fissare rigidamente il pezzo e forare il più vicino possibile alle placche di fissaggio.
- Minimizzare il braccio di leva sulla punta, utilizzando punte corte e teste portautensili corte.
- Poco prima che la punta attraversi totalmente lo spessore da forare, staccare l'avanzamento, durante ca. 1 secondo.
 - Questa precauzione neutralizzerà i giuochi ed il ritorno elastico della macchina, che potrebbero danneggiare la punta. Riattaccare l'avanzamento non appena i giuochi ed il ritorno elastico siano stati assorbiti.
- Utilizzare abbondante liquido di taglio.

Utilizzare punte HSS-Co (8% Co) a piccola elica e nocciolo robusto, che sopporta elevati momenti torcenti.

	WELDOX 420 / 460	WELDOX 500	WELDOX 700	WELDOX 900 / 960	WELDOX 1100	HARDOX 400	HARDOX 450	HARDOX 500	
v_c [m/min]	~26	~22	~18	~15	~7	~9	~7	~5	
D [mm]	Avanzamento, f [mm/tr] / g.p.m., n [giri/min]								
5	0,14 / 1700	0,12 / 1520	0,10 / 1150	0,10 / 950	0,05 / 445	0,05 / 570	0,05 / 445	0,05 / 320	
10	0,17 / 860	0,15 / 760	0,10 / 575	0,10 / 475	0,09 / 220	0,10 / 290	0,09 / 220	0,08 / 130	
15	0,18 / 570	0,17 / 500	0,16 / 400	0,16 / 325	0,15 / 150	0,16 / 190	0,15 / 150	0,13 / 85	
20	0,28 / 430	0,26 / 380	0,23 / 300	0,23 / 235	0,20 / 110	0,23 / 150	0,20 / 110	0,18 / 65	
25	0,30 / 340	0,30 / 300	0,30 / 240	0,30 / 195	0,25 / 90	0,30 / 110	0,25 / 90	0,22 / 50	
30	0,38 / 280	0,36 / 250	0,35 / 200	0,35 / 165	0,30 / 75	0,35 / 90	0,30 / 75	0,25 / 45	

Punte integrali in metallo duro

- Diametri a partire da ~ 3 mm
- Tolleranze strette (alta precisione)
- Riaffilabili
- Fragili in presenza di vibrazioni

Lavori in macchine intrinsecamente rigide come alesatrici o fresatrici a tavola piana

Nelle macchine moderne e rigide devono usufruirsi i vantaggi di maggiore produttività offerti dalle punte in metallo duro.

Esistono tre tipi principali di punte con fili taglienti in metallo duro. La scelta del tipo di punta dipende dalla rigidezza della macchina utensile, dal fissaggio del pezzo, dal diametro del foro e la sua tolleranza. Utilizzare punte le più corte possibili.

Liquido di taglio/emulsione

- Utilizzare liquido di taglio/emulsione indicato per foratura.
- Valore guida per foratura con punte a canali di raffreddamento interni: Portata di liquido di taglio $[1/min] \approx Diametro del foro [mm]$.

Punte con inserti in metallo duro brasati

- ullet Diametri a partire da \sim 10 mm
- Tolleranze strette (alta precisione)
- Riaffilabili
- Meno fragili di quelle in MD in presenza di vibrazioni

Punte con inserti a fissaggio meccanico

- Diametri a partire da ~ 12 mm
- Alta produttività
- Tolleranze maggiori che nei due casi precedenti (minore precisione)
- Buona economia di produzione

		WELDOX 420 / 460	WELDOX 500	WELDOX 700	WELDOX 900 / 960	WELDOX 1100	HARDOX 400	HARDOX 450	HARDOX 500
			Velocità d	li taglio, v _c	[m/min] e	Avanzamen	to, f [mm/g	giro]	
Metallo duro,	V _c	50-70	50-70	50-70	40-50	30-40	35-45	30-40	25-35
integrale	f	0,1-0,2	0,1-0,2	0,10-0,18	0,10-0,18	0,10-0,15	0,10-0,15	0,10-0,15	0,08-0,12
Metallo duro,	V _c	50-70	40-60	40-60	40-60	30-40	35–45	30-40	20-30
brasate	f	0,12 - 0,20	0,12-0,20	0,12-0,18	0,12-0,18	0,10-0,15	0,10-0,15	0,10-0,15	0,08-0,12
A fissaggio	V _c	160–180	110 – 130	100-120	70-90	50-70	60-80	50-70	40-60
meccanico	f	0,1-0,2	0,1-0,2	0,10-0,18	0,10-0,18	0,06-0,14	0,06-0,14	0,06-0,14	0,06-0,12

Se il diametro della punta è piccolo, scegliere un valore di avanzamento basso, all'interno dell'intervallo dato.

Così viene calcolato il numero di g.p.m. a partire dalla velocità di taglio:

Esempio per diametro di punta D =15 mm e velocità di taglio $v_c = 80 \text{ m/min}$

g.p.m., n =
$$\frac{v_c \times 1000}{\pi \times D}$$
 = $\frac{80 \times 1000}{3,14 \times 15}$ = 1698 \approx 1700 g.p.m

Formule:

v_c = velocità di taglio [m/min] D = diametro del foro [mm]

= numero di giri per minuto [g.p.m.]

 $\pi = 3,14$

 $v_f = avanzamento [mm/min]$

f = avanzamento [mm/giro]

Svasatura

La svasatura piana e conica sono meglio effettuate con utensili ad inserti a fissaggio meccanico in metallo duro, munite di guida girevole. Utilizzare liquido di taglio.

IMPORTANTE

- 1. Diminuire i valori dei dati di taglio di 30% in caso di svasatura conica.
- 2. Utilizzare guida girevole.

	WELDOX 420 / 460	WELDOX 500 ¹	WELDOX 700 ¹	WELDOX 900 / 960	WELDOX 1100	HARDOX 400	HARDOX 450	HARDOX 500
$v_c[m/min]$	90-140 ²	80-120 ²	70-100 ²	40-652	20-50 ²	25-70 ²	20-50 ²	17-50 ²
Avanzamento f [mm/giro]	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20
D [mm]		Numero di giri per minuto, n [g.p.m.]						
19	1510-2345	1340-2010	1175–1675	670-1090	335-840	420-1175	335-840	285-840
24	1195-1860	1060-1590	930-1325	530-865	265-665	330-930	265-665	225-665
34	845-1310	750–1125	655-935	375-610	185-470	235-655	185-470	160-470
42	680-1060	605-910	530-760	300-495	150-380	190-530	150-380	130-380
57	505-780	445-670	390-560	225-365	110-280	140-390	110-280	95-280

- 1) In caso di problemi per spezzare il truciolo, svasare 2 mm alla volta.
- 2) In macchine di bassa potenza, scegliere la velocità di taglio fra i valori inferiori dell'intervallo.

Gli utensili di acciaio rapido per svasatura, a tre fili taglienti e con guida girevole, possono essere utilizzati per le qualità di acciaio WELDOX sottoindicate. Usare abbondante liquido di taglio.

		WELDOX 420 / 460	WELDOX 500	WELDOX 700	WELDOX 900 / 960	
v_c [m/min]	~12	~10	~8	~7	
D [mm]	Avanzamento f [mm/giro]	Numero di giri per minuto, n [g.p.m.]				
15	0,05-0,20	250	210	170	150	
19	0,05-0,20	200	170	130	120	
24	0,07-0,30	160	130	100	90	
34	0,07-0,30	110	90	70	70	
42	0,07-0,30	90	60	60	50	
57	0,07-0,30	70	60	40	40	

Filettatura

Con l'adeguato utensile di filettatura si può filettare su tutte le qualità di acciai HARDOX e WELDOX.

Si raccomandano maschi a 4 fili, i quali sopportano gli elevati momenti torcenti originati durante la filettatura di materiali duri. Per la filettatura di HARDOX e WELDOX si raccomanda usare olio o grasso da filettatura. Per gli acciai più blandi, WELDOX 420, WELDOX 460 eWELDOX 500, può anche essere utilizzato dell'olio emulsionato.

Nelle applicazioni in cui la resistenza del filetto non è un fattore essenziale, si può fare un foro leggermente più grande (3%) di quello standard e di questo modo diminuire gli sforzi nel maschio da filettatura. Questa precauzione aumenta la vita utile dell'utensile, specialmente nella filettatura di HARDOX e WELDOX 1100.

	HSS rico- perto con TiN	HSS-Co (HSS-E) ricoperto con TiN o TiCN		HSS-Co (HSS-E) ricoperto con TiCN				
	WELDOX 420/460/500	WELDOX 700	WELDOX 900 / 960	WELDOX 1100	HARDOX 400	HARDOX 450	HARDOX 500	
$v_c[m/min]$	15	10	8	3	5	3	2,5	
Dimensione		Numero di giri per minuto, n [g.p.m.]						
M10	475	320	255	95	160	95	80	
M12	395	265	210	80	130	80	65	
M16	300	200	160	60	100	60	50	
M20	235	160	125	45	80	45	40	
M24	200	130	105	40	65	40	30	
M30	160	105	85	32	50	32	25	
M42	110	75	60	22	35	22	20	

Fresatura

SCELTA DEL METODO E UTENSILE DA FRESATURA

Per una produzione in serie si raccomanda fresare con inserti in metallo duro

Considerazioni da tenere presente in lavori di fresatura:

- Fissare rigidamente la pezzo.
- In caso di macchina di bassa potenza, utilizzare frese a denti ben separati.
- Evitare nel possibile l'uso di una testa universale, poiché questa debilita il fissaggio dell'utensile e la trasmissione di potenza.
- In caso di spianatura, la larghezza della zona lavorata dovrà essere 75-80% del diametro della fresa (vedi figura a destra).
- In caso di spianatura di superfici di larghezza inferiore al diametro della fresa, questa deve essere sistemata eccentricamente, per avere il maggior numero di denti in presa.
- Nella fresatura di bordi ossitagliati, la profondità di taglio dovrà essere almeno di 2 mm, per evitare lo strato superficiale duro del bordo (vedi figura).

Larghezza di lavoro raccomandata in caso di spianatura

Distribuzione di durezza su bordo ossitagliato (in aria)

		SPIANA	ATURA		FRESATURA CON FRESA A PUNTA PIANA			
	MD ric	operto	Cermet	MD ricop.	Metallo Duro			HSS-Co
Tipo di materiale dell'utensile	P40/C5	P25/C6	P20 / C6-C7	K20/C2	K10 / C3 non ricoperto	K10 / C3- ricoperto	P10 / C7- fiss. meccanico	TiCN- ricoperto
Rigidezza macchina	bassa	media	alta	alta	alta	alta	alta	bassa
Avanzamento (f _z)	0,1-0,2-0,3	0,1-0,2-0,3	0,1-0,2	0,1 – 0,2	0,02 – 0,10	0,02 – 0,20	0,05 – 0,15	0,03 – 0,09
Qualità di lamiera			Ve	locità di tagl	io, v _c [m/m	in]		
WELDOX 420/460	220-180-120	250-210-180	350 – 280	_	130	210	220 – 180	60
WELDOX 500	220-180-120	250-210-180	350 – 280	_	125	210	220 – 180	50
WELDOX 700	195–150–95	220-180-150	240 – 200	_	100	180	195 – 150	40
WELDOX 900/960	95-75-50	200-160-130	220 – 170	_	90	130	140 – 120	18
WELDOX 1100	_	150-120-110	150 – 120	_	90	100	110 –90	18
HARDOX 400	_	150-120-110	150 – 120	_	90	100	110 –90	18
HARDOX 450	_	150-120-110	150 – 120	_	90	100	110 –90	18
HARDOX 500	-	120-100	120 – 100	120 – 100	50	80	90-70	-

A un aumento dell'avanzamento dovrà corrispondere una diminuzione della velocità di taglio.

Formule:

v_c = velocità di taglio [m/min] $v_c = \frac{\pi \times D \times n}{1000}$ D = diametro della fresa [mm] Diminuire la velocità di taglio. $n = \frac{v_c \times 1000}{}$ n = giri per minuto [g.p.m.] Thomas of the state of the stat $\pi = 3,14$ Aumentare la velocità di taglio. v_f = avanzamento [mm/min] $f_z = avanzamento al dente [mm/dente]$ Diminuire l'avanzamento al dente. z = numero di denti della fresa $v_f = f_z \times n \times z$ Aumentare l'avanzamento al dente. Scegliere una qualità di MD di maggiore resistenza all' usura (vedi fig. a pag. 8). Scegliere una qualità di MD più tenace (vedi fig. a pag. 8). In caso di problemi ... Utilizzare una fresa di denti ben distanziati. Usura della faccetta di taglio Formazione di intagli isolati sulla faccetta di taglio Variare la larghezza della superficie Formazione di cratere (concavità) sulla faccetta di taglio. asportata dalla fresa. Deformazione plastica Evitare l'uso di liquido di taglio. Ricrescita del filo di taglio su sé stesso Cricche con forma di « pettine » Passare da una fresa in HSS-Co Piccole cricche nel filo di taglio ad una in MD integrale. Rottura del filo di taglio Controllare il fissaggio della fresa. Vibrazioni Bassa qualità di finitura Vita utile molto corta, frese HSS-Co

Tornitura

I dati di taglio sottoindicati si applicano a qualità di metallo duro tenaci, richieste per lavori in cui l'utensile è sottoposto ad urti, ad es. nella tornitura di bordi ossitagliati.

Qualità di MD	P25 / C6	P35 / C6-C5	K20 / C2
Avanzamento, f _n [mm/giro]	0,1-0,4-0,8	0,1-0,4-0,8	0,1-0,3
	Velocit	à di taglio, v _c [ı	m/min]
WELDOX 420/460	450 – 300 – 210	285 – 175 – 130	-
WELDOX 500	450 – 300 – 210 285 – 175 – 130		-
WELDOX 700	285 – 195 – 145	230 – 150 – 100	-
WELDOX 900/960	130 – 90 – 70	105 – 65 – 45	-
WELDOX 1100	130 – 90 – 70	105 – 65 – 45	-
HARDOX 400	130 – 90 – 70	105 – 65 – 45	-
HARDOX 450	130 – 90 – 70	105 – 65 – 45	-
HARDOX 500	-	-	100-80

Ad un aumento dell'avanzamento dovrà corrispondere una diminuzione della velocità di taglio.

Formule:

 $v_c = \frac{\pi \times D \times n}{1000} \qquad v_c = \text{velocità di taglio [m/min]}$ $n = \frac{v_c \times 1000}{\pi \times D} \qquad n = \text{giri per minuto [g.p.m.]}$ $v_f = f_n \times n \qquad v_f = \text{avanzamento [mm/min]}$ $f_n = \text{avanzamento [mm/giro]}$

Materiali per utensili / Qualità di metallo duro

Questa brochure è stata compilata in cooperazione con Sandvik Coromant AB e Dormer Tools AB. La ditta Granlund Tools AB ha contribuito con materiale grafico e dati di taglio della sezione svasatura.

Per ulteriori informazioni, contattare il ns. Servizio Tecnico Clienti. La brochure *Lavorazione per asportazione di truciolo* forma parte di una serie di pubblicazioni che forniscono raccomandazioni ed istruzioni su come lavorare con le lamiere HARDOX e WELDOX. Le altre brochure sono *Saldatura*, *Piegatura/cesoiatura* e *Taglio*. Richieda questo materiale alla ns. divisione di Market Communication.

