Package 'a4Classif'

February 25, 2015

Title Automated Affymetrix Array Analysis Classification Package

Type Package

Version 1.15.0
Date 2011-05-21
Author Willem Talloen, Tobias Verbeke
Maintainer Tobias Verbeke <tobias.verbeke@openanalytics.eu>, Willem Ligtenberg <willem.ligtenberg@openanalytics.eu></willem.ligtenberg@openanalytics.eu></tobias.verbeke@openanalytics.eu>
Description Automated Affymetrix Array Analysis Classification Package
Depends methods, a4Core, a4Preproc, MLInterfaces, ROCR, pamr, glmnet, varSelRF
Imports a4Core
Suggests ALL
License GPL-3
biocViews Microarray
NeedsCompilation no
R topics documented:
lassoClass
pamClass
rfClass
ROCcurve
Index 7

2 lassoClass

lassoClass

Classify using the Lasso

Description

Classify using the Lasso algorithm as implemented in the glmnet package

Usage

```
lassoClass(object, groups)
```

Arguments

object containing the expression measurements; currently the only method sup-

ported is one for ExpressionSet objects

groups character string indicating the column containing the class membership

Value

object of class glmnet

Author(s)

Willem Talloen

References

Goehlmann, H. and W. Talloen (2009). Gene Expression Studies Using Affymetrix Microarrays, Chapman & Hall/CRC, pp. 183, 205 and 212.

See Also

glmnet

Examples

```
if (require(ALL)){
   data(ALL, package = "ALL")
   ALL <- addGeneInfo(ALL)
   ALL$BTtype <- as.factor(substr(ALL$BT,0,1))

resultLasso <- lassoClass(object = ALL, groups = "BTtype")
   plot(resultLasso, label = TRUE,
        main = "Lasso coefficients in relation to degree of
   penalization.")
   featResultLasso <- topTable(resultLasso, n = 15)
}</pre>
```

pamClass 3

pamClass	Classify using Prediction Analysis for MicroArrays

Description

Classify using the Prediction Analysis for MicroArrays (PAM) algorithm as implemented in the pamr package

Usage

```
pamClass(object, groups, probe2gene = TRUE)
```

Arguments

object object containing the expression measurements; currently the only method sup-

ported is one for ExpressionSet objects

groups character string indicating the column containing the class membership

probe2gene logical; if TRUE Affymetrix probeset IDs are translated into gene symbols; if

FALSE no such translation is conducted

Value

object of class pamClass

Author(s)

Willem Talloen

References

Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu (1999). Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 99: 6567-6572.

Available at www.pnas.org

Goehlmann, H. and W. Talloen (2009). Gene Expression Studies Using Affymetrix Microarrays, Chapman & Hall/CRC, p. 221.

See Also

```
pamr.train
```

4 rfClass

_			
rf	<i>(,</i>)	20	. c
1 1	~ 1	.as	, 3

Classify using Random Forests

Description

Classify using the Random Forest algorithm of Breiman (2001)

Usage

```
rfClass(object, groups, probe2gene = TRUE)
```

Arguments

object object containing the expression measurements; currently the only method sup-

ported is one for ExpressionSet objects

groups character string indicating the column containing the class membership

probe2gene logical; if TRUE Affymetrix probeset IDs are translated into gene symbols in the

output object; if FALSE no such translation is conducted

Value

Object of class 'rfClass'

Note

topTable and plot methods are available for 'rfClass' objects.

Author(s)

Tobias Verbeke and Willem Talloen

References

Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.

See Also

randomForest

ROCcurve 5

ROCcurve Receiver operating curve	ROCcurve	Receiver operating curve
-----------------------------------	----------	--------------------------

Description

A ROC curve plots the fraction of true positives (TPR = true positive rate) versus the fraction of false positives (FPR = false positive rate) for a binary classifier when the discrimination threshold is varied. Equivalently, one can also plot sensitivity versus (1 - specificity).

Usage

```
ROCcurve(object, groups, probesetId = NULL, geneSymbol = NULL, main = NULL, probe2gene = TRUE, ...)
```

Arguments

object	ExpressionSet object for the experiment
groups	String containing the name of the grouping variable. This should be a the name of a column in the pData of the expressionSet object.
probesetId	The probeset ID. These should be stored in the $featureNames$ of the $expressionSet$ object.
geneSymbol	The gene symbol. These should be stored in the column `Gene Symbol` in the featureData of the expressionSet object.
main	Main title on top of the graph
probe2gene	Boolean indicating whether the probeset should be translated to a gene symbol (used for the default title of the plot)
	Possibility to add extra plot options. See par

Author(s)

Willem Talloen

References

Some explanation about ROC can be found on http://en.wikipedia.org/wiki/ROC_curve and http://www.anaesthetist.com/mnm/stats/roc/Findex.htm. The latter has at the bottom a nice interactive tool to scroll the cut-off and to see how it affects the FP/TP table and the ROC curve.

Examples

```
# simulated data set
esSim <- simulateData()
ROCcurve(probesetId = 'Gene.1', object = esSim, groups = 'type', addLegend = FALSE)
# ALL data set
if (require(ALL)){</pre>
```

6 ROCcurve

```
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
ROCres <- ROCcurve(gene = "ABL1", object = ALL, groups = "BTtype")
}</pre>
```

Index

```
*Topic models
lassoClass, 2
pamClass, 3
rfClass, 4

glmnet, 2

lassoClass, 2

pamClass, 3
pamr.train, 3
par, 5
plot.rfClass(rfClass), 4

randomForest, 4
rfClass, 4
ROCcurve, 5
```