Građa računala

3. Logička vrata, tablice istine i Boolean-ova algebra. Pojednostavljeni model CISC i RISC procesora.

Preddiplomski izvanredni stručni studij Informacijske tehnologije

- matematička osnova za digitalnu logiku
- pogodan alat u analizi opisivanja funkcija digitalnih krugova
- osnove Boolean-ove algebre:
- varijable mogu imati vrijednost:
 - 1(TRUE) ili 0 (FALSE)
- osnovne funkcije: AND, OR i NOT

Osnovni logički sklopovi

Operacija	Simbol (ANSI)	Simbol (IEC)	Booleov izraz	Ta	ablic	a istine
				UL	.AZ	IZLAZ
				Α	В	AIB
I (AND)	\neg	- & _	$A \cdot B$	0	0	0
I (AND)			$A \cdot D$	0	1	0
				1	0	0
				1	1	1
	⇒	≥1		UL	ΑZ	IZLAZ
			A+B	Α	В	A ILI B
II I (OB)				0	0	0
ILI (OR)				0	1	1
				1	0	1
				1	1	1
NE (NOT)				UL	.AZ	IZLAZ
	<u></u>	1	\overline{A}		A	NE A
	7				0	1
					1	0

Izvedeni logički sklopovi

Operacija	Simbol (ANSI)	Simbol (IEC)	Booleov izraz	Tablica istine		
				UI	LAZ	IZLAZ
				Α	В	A NI B
NI (NAND)		- & _		0	0	1
NI (NAND)			$\overline{A\cdot B}$	0	1	1
				1	0	1
				1	1	0
	⇒ ~	≥1	$\overline{A+B}$	ULA	λZ	IZLAZ
				Α	В	A NILI B
NILI (NOR)				0	0	1
NILI (NOK)				0	1	0
				1	0	0
				1	1	0

Izvedeni logički sklopovi

Operacija	Simbol (ANSI)	Simbol (IEC)	Booleov izraz	Tablica istine		
				U	LAZ	IZLAZ
XILI (XOR)				Α	В	A XILI B
		- =1 L	$A\oplus B$	0	0	0
			$A \oplus B$	0	1	1
				1	0	1
				1	1	0
		=1	$\overline{A\oplus B}$	UL	٩Z	IZLAZ
				Α	В	A XNILI B
XNILI (XNOR)	\mathcal{A}			0	0	1
ANILI (ANOK)				0	1	0
				1	0	0
				1	1	1

- Osnovni aksiomi Boolean-ova algebre
- A.1. Neutralni element
 - a) A+0 = A
 - b) $A \cdot 0 = 0$

- A.2. Komplement
 - a) $A + \bar{A} = 1$
 - b) $A \cdot \bar{A} = 0$

- Osnovni aksiomi Boolean-ova algebre
- A.3. Komutativnost

a)
$$A+B=B+A$$

b)
$$A \cdot B = B \cdot A$$

A.4. Distributivnost

a)
$$A \cdot (B+C) = A \cdot B + A \cdot C$$

b)
$$A + B \cdot C = (A+B) \cdot (A+C)$$

 Primjer: Na slici je prikazan logički sklop ostvaren upotrebom logičkih sklopova I i ILI. Koju logičku funkciju sklop ostvaruje?

• Označimo sa i1 i i2 međurezultate:

• i2=i1+c

•
$$f=i2 \cdot d = (i1 + c) \cdot d = (a \cdot b + c) \cdot d$$

• *Primjer*: Napišite tablicu logičkih stanja za sklop iz prethodnog primjera.

i	a	b	i1	С	i2	d	f
0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0
2	0	0	0	1	1	0	0
3	0	0	0	1	1	1	1
4	0	1	0	0	0	0	0
5	0	1	0	0	0	1	0
6	0	1	0	1	1	0	0
7	0	1	0	1	1	1	1
8	1	0	0	0	0	0	0
9	1	0	0	0	0	1	0
10	1	0	0	1	1	0	0
11	1	0	0	1	1	1	1
12	1	1	1	0	1	0	0
13	1	1	1	0	1	1	1
14	1	1	1	1	1	0	0
15	1	1	1	1	1	1	1

 Ako imamo zadanu tablicu kombinacija za logičku funkciju tada je možemo prikazati kao:

- sumu standardnih produkata (mintermi)

umnožak standardnih suma (makstermi)

 Primjer: Zadana je tablica kombinacija za logičku funkciju. Prikažite logičku funkciju kao zbroj mintermi.

Α	В	С	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- U tablici kombinacija promatramo minterme za koje logička funkcija daje vrijednost 1.
- To su minterme *m4*, *m5*, *m7*, pa je suma standardnih produkata:

$$f = m4 + m5 + m7$$

А	В	С	f	mintermi
0	0	0	0	m_0
0	0	1	0	m ₁
0	1	0	0	m ₂
0	1	1	0	m ₃
1	0	0	1	m 4
1	0	1	1	m 5
1	1	0	0	m 6
1	1	1	1	m 7

- U retku koji pripada mintermu m4 , vrijednosti varijabli su slijedeće: A=1, B=0, C=0. Budući da minterm odgovara umnošku varijabli, a u tom retku funkcija mora poprimiti vrijednost 1, slijedi da umnožak mora biti 1, tj. m4=1=1·1·1= $A \bullet B \bullet C$
- Sličnim razmatranjem se dobije za:

$$m5 = A \bullet \overline{B} \bullet C$$

$$m7 = A \bullet B \bullet C$$

Tražena funkcija tada glasi:

$$f(A,B,C) = A \bullet \overline{B} \bullet \overline{C} + A \bullet \overline{B} \bullet C + A \bullet B \bullet C = \Sigma(4,5,7)$$

- Komponente modela:
 - Akumulator A
 - Programsko brojilo PC
 - Instrukcijski registar IR
 - Brojilo podataka DC
 - Privremeni registar PR
 - Status-registar (Registar stanja)
 - Aritmetičko-logička jedinica (ALU)
 - Interna sabirnica
 - Upravljačka jedinica

- Upravljačka jedinica na temelju dekodiranja strojne instrukcije generira sve potrebne upravljačke signale za vremensko vođenje i upravljanje ostalim jedinicama računala
- Ti se signali dovode u tzv. upravljačke točke i njima se aktiviraju sklopovi u pojedinim funkcijskim jedinicama.

- Upravljačka jedinica zadužena je za automatsko izvršavanje programa - upravljanje slijedom izvršavanja instrukcija kojima je predočen algoritam obrade
- Svaki je korak algoritma predstavljen jednom strojnom instrukcijom ili slijedom strojnih instrukcija.
- One određuju elementarne operacije koje sklopovlje može izvesti.

Format instrukcije

OPERACIJSKI KOD

ADRESNO POLJE

- polje operacijskog koda –što treba izvršiti
- adresno polje nad kojim podacima treba izvršiti operaciju

Redoslijed izvršavanja instrukcije

Instrukcijski ciklus

Instrukcijski ciklus

- U fazi pribavljanja na osnovi adrese zapisane u registru PC pribavlja se instrukcija iz memorije i prenosi u instrukcijski registar
- U drugoj fazi se instrukcija izvršava tako da se dekodira i da upravljački sklop generira signale potrebne za izvršavanje instrukcije
- Zadnji korak izvršavanja instrukcije je povećanje adrese u registru PC za jedan
- Nakon toga se postupak ponavlja sve dok se ne generira signal koji označava kraj niza instrukcija, odnosno programa

Usporedba CISC i RISC

- CISC –Complex Instruction Set Computers
 - –Arhitektura računala sa kompleksnim skupom instrukcija
- RISC –Reduced Instruction Set Computers
 - Arhitektura računala sa reduciranim skupom instrukcija

Obilježja CISC arhitekture

- Bogati skup instrukcija, od jednostavnih do vrlo složenih
- Instrukcija se izvršava u više od jednog takta
- Instrukcije različitih dužina
- Različiti i složeni načini adresiranja memorije
- Mikroprogramirana upravljačka jedinica
- Bez cjevovodne (no pipelining) arhitekture

Obilježja CISC arhitekture

- Dobre performanse sa jednostavnim prevodiocima (složene instrukcije)
- Segmentirana memorija
- Malo registara
- Slabije performanse FPU (od engl. FloatingPoint Unit) —jedinica za operacije s pomičnim zarezom
- Kompatibilnost sa prethodnicima

Predstavnici CISC arhitekture

- DEC VAX
- IBM System/360, System/370
- Burroughs B5000, B6000, B7000
- Motorola MC6800, MC68000, ..., MC68040,...
- Intel 8080, 8086, 80286, 80386, 80486,
 Pentium

Obilježja RISC arhitekture

- Jednostavne instrukcije i malo načina adresiranja
- Instrukcije se izvode u jednom taktu
- Uniformirana dužina instrukcija i fiksni instrukcijski format
- Adresiranje memorije sa "load"i "store"
- Sklopovska realizacija upravljačke jedinice
- Cjevovodna (pipelining) arhitektura

Predstavnici RISC arhitekture

- HP PA-RISC
- University Berkeley: RISC I, RISC II
- Stanford University: MIPS R2000
- AcornARM 6
- IBM 801, RS6000, RT-PC
- Intel i860, i960
- Motorola 88K
- Motorola/IBM PowerPC
- Sun SPARC

Predstavnici RISC arhitekture

- danas najpoznatiji ARM (Advanced RISC) procesori
- temelje na dizajnu britanske korporacija *ARM Holdings* koja ne proizvodi ove procesore nego ih samo dizajnira i potom naplaćuje licencu od proizvođača

Primjeri izvedbe ARM arhitekture

- Apple Axx.. procesori IPhone, IPad
- Samsung mobilni uređaji, tableti
- Sustavi na jednom procesoru:
 - Qualcomm Snapdragon
 - Raspberry Pi

—

 Televizori, automobili, mrežni uređaji, gotovo svi danas poznati pametni telefoni

. . .

Primjer RISC procesora

- MIPS R2000 mikroprocesor razvijen od strane tvrtke MIPS Computer Systems
- Koristit ćemo ga kao primjer na predavanjima iz ovog predmeta
- Zašto je važan prvi komercijalni RISC procesor, predstavljen 1986. godine

Bitna svojstva MIPS R2000

- 32 registra opće namjene po 32 bita
- Programsko brojilo –32 bita
- Dva 32 bitna registra koja sadrže rezultate cjelobrojnog dijeljenja ili množenja
- Procesor izravno podržava tri tipa podataka:
 - -32-bitnu riječ
 - 16-bitnu riječ
 - -8-bitni bajt

Formati instrukcija MIPS R2000

- Instrukcije su sve iste duljine –32 bita
- Postoje samo tri formata instrukcija:
 - I-tip (Immediate) –sadrži 16-bitni usputni podatak
 - J-tip (Jump) –26 bita koristi za ciljnu adresu grananja
 - R-tip (Register) troadresni format

	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	
Register	op	reg1	reg2	des	shift	funct	
Immediate	op	reg1	reg2	16-bit constant			
Jump	op	26-bit constant					

Formati instrukcija MIPS R2000

- Prvih šest bitova svake instrukcije nazivaju se op poljem. Polje op određuje o kojoj se vrsti instrukcije radi (register, immediate, jump)
- Ovisno o tome što je op, dijelovi ostatka instrukcije mogu predstavljaju imena registara, konstantne memorijske adrese, 16-bitne cijele brojeve ili opis druge op instrukcije

	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits		
Register	op	reg1	reg2	des	shift	funct		
Immediate	op	reg1	reg2	16-bit constant				
Jump	op	26-bit constant						

Formati instrukcija MIPS R2000

- Ako je op polje 0, tada se radi o instrukciji registra (engl. Register) koja općenito izvršava zadanu aritmetičku ili logičku operaciju
- Polje funct definira operaciju koja se izvodi, dok polja reg1 and reg2 predstavljaju adrese registara nad kojim se izvršava zadana operacija
- Polje *des* predstavlja adresu registra u kojem se pohranjuje rezultat

	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
Register	op	reg1	reg2	des	shift	funct

Primjer instrukcije MIPS 2000

- Zbrajanje vrijednosti registara s adresama 20 i 17 i spremanje rezultata u registar na heksadekadskoj adresi 16
- Instrukcija binarno:

0000 0010 1001 0001 1000 0000 0010 0000

Field	op	reg1	reg2	des	shift	funct
Width	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
Values	0	20	17	16	0	add
Binary	000000	10100	10001	10000	00000	100000

Instrukcija heksadekadski:

0x02918020