```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
In [2]:
files = os.listdir(r'D:\Career\Udemy\DA 2\Covid 19\Covid-19')
files
Out[2]:
['country_wise_latest.csv',
  'covid_19_clean_complete.csv',
  'day_wise.csv',
 'full_grouped.csv',
'usa_country_wise.csv',
'worldometer_data.csv']
In [3]:
def read_csv(path,filename):
    return pd.read_csv(path+'/'+filename)
In [4]:
path = r'D:\Career\Udemy\DA 2\Covid 19\Covid-19'
In [5]:
world_data = read_csv(path,'worldometer_data.csv')
In [6]:
day_wise = read_csv(path,files[2])
In [7]:
group_data = read_csv(path,files[3])
In [8]:
usa_data = read_csv(path,files[4])
In [9]:
province_data = read_csv(path,files[1])
Which country has maximum total cases, deaths, recovered and active cases
```

In [10]:

world_data.head()

Out[10]:

	Country/Region	Continent	Population	TotalCases	NewCases	TotalDeaths	NewDeaths	TotalRecovered	NewRecovered	ActiveCases	Serious,Critica
0	USA	North America	3.311981e+08	5032179	NaN	162804.0	NaN	2576668.0	NaN	2292707.0	18296.C
1	Brazil	South America	2.127107e+08	2917562	NaN	98644.0	NaN	2047660.0	NaN	771258.0	8318.C
2	India	Asia	1.381345e+09	2025409	NaN	41638.0	NaN	1377384.0	NaN	606387.0	8944.C
3	Russia	Europe	1.459409e+08	871894	NaN	14606.0	NaN	676357.0	NaN	180931.0	2300.0
4	South Africa	Africa	5.938157e+07	538184	NaN	9604.0	NaN	387316.0	NaN	141264.0	539.0
4											•

In [11]:

import plotly.express as px

```
In [12]:
```

```
columns = ['TotalCases','TotalDeaths','TotalRecovered','ActiveCases']
for i in columns:
    fig = px.treemap(world_data[0:30], values = i, path = ['Country/Region'] ,title = 'Treemap of Countries with respect to {} '.format(i fig.show())
```

Treemap of Countries with respect to TotalCases

Treemap of Countries with respect to TotalDeaths

Treemap of Countries with respect to TotalRecovered

Treemap of Countries with respect to ActiveCases

In [14]:

```
px.line(day_wise, x = 'Date', y = ['Confirmed', 'Deaths', 'Recovered', 'Active'], title = 'Covid Cases W.R.T Date', template = 'plotly_dark'
```

Covid Cases W.R.T. Date

Population Test Ratio

In [15]:

```
world_data['Pop_test_ratio'] = world_data['Population'] / world_data['TotalTests']
```

In [16]:

world_data.head()

Out[16]:

	Country/Region	Continent	Population	TotalCases	NewCases	TotalDeaths	NewDeaths	TotalRecovered	NewRecovered	ActiveCases	Serious,Critica
0	USA	North America	3.311981e+08	5032179	NaN	162804.0	NaN	2576668.0	NaN	2292707.0	18296.0
1	Brazil	South America	2.127107e+08	2917562	NaN	98644.0	NaN	2047660.0	NaN	771258.0	8318.C
2	India	Asia	1.381345e+09	2025409	NaN	41638.0	NaN	1377384.0	NaN	606387.0	8944.0
3	Russia	Europe	1.459409e+08	871894	NaN	14606.0	NaN	676357.0	NaN	180931.0	2300.0
4	South Africa	Africa	5.938157e+07	538184	NaN	9604.0	NaN	387316.0	NaN	141264.0	539.0
4											+

In [17]:

```
px.bar(world_data[0:20], x = 'Country/Region', y = 'Pop_test_ratio', color = 'Country/Region', title = 'Population & Tests Done Ratio')
```

Population & Tests Done Ratio

20 Countries badly affected by Corona

In [18]:

```
world_data.columns
```

Out[18]:

In [19]:

```
px.bar(world_data[0:20], x = 'Country/Region', y = ['Serious,Critical','TotalDeaths','TotalRecovered','ActiveCases','TotalCases'])
```


Top 20 countries having maximum no of confirmed cases

In [20]:

```
fig = px.bar(world_data[0:20], y = 'Country/Region', x = 'TotalCases',color = 'TotalCases', text = 'TotalCases')
fig.update_layout(template = 'plotly_dark', title_text = 'Top 20 Countries of Most cases')
fig.show()
```

Top 20 Countries of Most cases

Top 20 Countries having Maximum Deaths

In [21]:

```
fig = px.bar(world_data.sort_values(by = 'TotalDeaths', ascending = False)[0:20] , y = 'Country/Region', x = 'TotalDeaths', color = 'TotalCeaths', color =
```


Top 20 Countries having Maximum Active Cases

In [22]:

Top 20 Countries of Most Active Cases

Top 20 Countries having Maximum Recovered Cases

In [23]:

```
fig = px.bar(world_data.sort_values(by = 'TotalRecovered', ascending = False)[0:20] , y = 'Country/Region', x = 'TotalRecovered', color =
fig.update_layout(template = 'plotly_dark', title_text = 'Top 20 Countries of Most Recovered Cases')
fig.show()
```

Top 20 Countries of Most Recovered Cases

Pie chart of worst affected countries

In [24]:

```
labels = world_data[0:15]['Country/Region'].values
a = ['TotalCases','TotalDeaths','TotalRecovered','ActiveCases']
for i in a:
    fig = px.pie(world_data[0:15], values = i, names = labels, hole = 0.25, title = '{} recorded with respect to WHO of worst affected country fig.show()
```

TotalCases recorded with respect to WHO of worst affected countries

TotalDeaths recorded with respect to WHO of worst affected countries

TotalRecovered recorded with respect to WHO of worst affected countries

ActiveCases recorded with respect to WHO of worst affected countries

538184

9604.0

NaN

NaN

387316.0

141264.0

NaN

539.0

South Africa

Africa

5.938157e+07

In [26]:

```
px.bar(world_data, x = 'Country/Region', y = 'death_to_conf_ratio', color = 'Country/Region', title = 'Deaths to Confirmed Cases Ratio')
```

Deaths to Confirmed Cases Ratio

Deaths to recovered ratio

In [27]:

```
world_data['death_to_recov_ratio'] = world_data['TotalDeaths']/world_data['TotalRecovered']
px.bar(world_data, x = 'Country/Region', y = 'death_to_recov_ratio', color = 'Country/Region', title = 'Deaths to Recovered Cases Ratio')
```

Deaths to Recovered Cases Ratio

Tests to confirmed Ratio

In [28]:

```
world_data['test_to_conf_ratio'] = world_data['TotalTests']/world_data['TotalCases']
px.bar(world_data, x = 'Country/Region', y = 'test_to_conf_ratio', color = 'Country/Region', title = 'Tests to Confirmed Cases Ratio')
```

Tests to Confirmed Cases Ratio

Serious to Deaths Ratio

In [29]:

```
world_data['serious_to_death_ratio'] = world_data['Serious,Critical']/world_data['TotalDeaths']
px.bar(world_data, x = 'Country/Region', y = 'serious_to_death_ratio', color = 'Country/Region', title = 'Serious/Critical to Death Cases
```

Serious/Critical to Death Cases Ratio

