Generalization

Bert Huang
Data Intensive Studies Center
Tufts University

Outline

- Introduction
- Bias and Variance (interactive website)
- Cross-Validation
- Relationship to my research

Complexity in Machine Learning

- Relates to issues in philosophy of science, induction
 - Occam's Razor, etc.
- Baseball (sports) statistics

Underfitting

Overfitting

ML Algorithm 2

- Low dimensional
- Heavily regularized
- Bad modeling assumptions

- High dimensional or non-parametric
- Weakly regularized
- Not enough modeling assumptions
- Not enough data

Overfitting and Underfitting

- Training models too complex can cause overfitting
- Training models too simple (or wrong) can cause underfitting

Outline

- Overfitting and underfitting
- Bias and variance
- Validation for model selection

Nearest-Neighbor Classifiers


```
classifier = {
           O: 0,
                     100% training accuracy!
           \( \): 0,
          ②:0,
           () : 0,
                    53% testing accuracy...
```

Held-out Validation

Held-out Validation

0	۵	(2)	Ō
1		\	1
2	2	2_	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	٩

	Accuracy on training data	Accuracy on validation data
Simple	0.91	0.83
Medium	0.95	0.88
Complex	0.99	0.79
Super Complex	1.0	0.54

Fold 1

training data

Fold 2

training data

validation data

Fold 3

training data

Fold 4

training data

Fold 5

training data

training data

training data

training data

training data

0	0	(2)	Ö	0
			4	
a.l	2	2_	2	2.
3	3	3	3	3
4	4	4	4	4
5	5	5	5	5
6	6	6	6	6
7	7	7	7	7
8	8	8	3	8
7 8 9	9	7	4	9

training data

training data

training data

How Many Folds?

- What are the pros and cons of leave-one-out cross-validation?
- We usually train on N-1 folds and test on 1 fold. What are pros and cons of doing the inverse: train on 1 fold and test on N-1 folds?

Training

How Many Folds?

- What are the pros and cons of leave-one-out cross-validation?
- We usually train on N-1 folds and test on 1 fold. What are pros and cons of doing the inverse: train on 1 fold and test on N-1 folds?

Testing

Testing versus Validation

- Best practice for experiments:
 - Hold out test set completely hidden from training
 - Use validation on training data for model (or parameter) selection
 - Evaluate on held-out test data

Model Selection via Validation

- Measure performance on held-out training data
 - Simulate testing environment
- Rotate folds of held-out subsets
- Can even hold out one at a time: leave-one-out validation
- Use (cross) validation performance to tune extra parameters

Take-Away Points

- Overfitting and underfitting, bias and variance
 - bias -> modeling error, variance -> sampling error
 - Always have a mix of two
- Validation for model selection
- Reducing bias may need more complex models, but comes with challenges that researchers are working on solving