Раздел 2. Предел функции. Непрерывность.

1.1 Определение предела

Окрестностью точки x_0 называется любой интервал с центром в точке x_0 .

Пусть функция f(x) определена в некоторой окрестности точки x_0 кроме, быть может, самой точки x_0 . Дадим первое определение предела функции (по Гейне):

Число A называется npedenom функции f(x) в точке x_0 , если для любой последовательности $\{x_n\}$, сходящейся к x_0 ($x_n \neq x_0 \ \forall n$), последовательность $\{f(x_n)\}$ соответствующих значений функции к A.

Обозначается это так: $\lim_{x\to x_0} f(x) = A$ или $f(x) \to A$ (при $x\to x_0$).

Первое определение предела функции эквивалентно второму определению (по Коши):

Число A называется *пределом функции* f(x) в точке x_0 , если для любого сколь угодно малого числа $\varepsilon > 0$ найдётся такое число $\delta > 0$ (вообще говоря, зависящее от ε), что для всех x таких, что $|x - x_0| < \delta$, $x \neq x_0$, выполняется неравенство $|f(x) - A| < \varepsilon$.

Первое определение называется также определением предела функции «на языке последовательностей», а второе — определением предела «на языке $\varepsilon - \delta$ » (эпсилон дельта).

1.2 Операции над пределами функций

Пусть функции f(x) и g(x) определены в некоторой окрестности точки x_0 и, кроме того $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$. Тогда:

1. Предел суммы (разности) этих функций равен сумме (соответственно, разности) их пределов, т.е.

$$\lim_{x \to x_0} (f(x) \pm g(x)) = A \pm B$$

2. Предел произведения функций равен произведению их пределов (при условии), т.е.

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = A \cdot B$$

3. Предел частного функций равен частному их пределов (при условии $B \neq 0$), т.е.

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}$$

Отсюда, в частности, вытекает, что постоянный множитель можно вынести за знак предела функции, т.е.

$$\lim_{x \to x_0} f(x) = A \implies \forall a \in R: \lim_{x \to x_0} a f(x) = a \lim_{x \to x_0} f(x) = aA.$$

Для функций справедливы аналоги соответствующих теорем для последовательностей о пределах корня и степени.

1.3 Пределы функций и неравенства

Пусть функции $f_1(x)$ и $f_2(x)$ определены в некоторой окрестности точки x_0 (кроме, быть может, самой этой точки) и $f_1(x) \le f_2(x)$ для всех значений x из этой окрестности. Пусть, кроме того,

$$\lim_{x \to x_0} f_1(x) = A_1, \lim_{x \to x_0} f_2(x) = A_2$$

Тогда $A_1 \leq A_2$.

Теорема 1 (о промежуточной переменной). Пусть функции $f_1(x), f(x), f_2(x)$ определены в некоторой окрестности $U(x_0)$ точки x_0 (кроме, быть может, самой этой точки) и для всех $x \in U(x_0), x \neq x_0$ верно неравенство $f_1(x) \leq f(x) \leq f_2(x)$. Пусть, кроме того, $\lim_{x \to x_0} f_1(x) = \lim_{x \to x_0} f_2(x) = A$. Тогда $\lim_{x \to x_0} f(x)$ также существует и равен A.

Теорема 2 (о сохранении знака). Если предел функции в данной точке x_0 положителен, то и все значения функции в некоторой окрестности этой точки (кроме, быть может, самой точки x_0) положительны.

Теорема 3 (об ограниченности функции, имеющей предел). Пусть функция имеет предел в данной точке. Тогда она ограничена в некоторой окрестности этой точки.

1.4 Предел функции на бесконечности

Пусть функция f(x) определена на бесконечном промежутке $(a; +\infty)$.

Число A называется npedenom функции f(x) npu $x \to +\infty$, если для любой положительной бесконечно большой последовательности $\{x_n\}$ (т.е. $x_n \to +\infty$, $n \to \infty$)последовательность $\{f(x_n)\}$ соответствующих значений функции сходится к A.

Обозначение: $\lim_{x\to +\infty} f(x) = A$.

Равносильное определение предела функции при $x \to +\infty$, на языке $\varepsilon - \delta$ будет выглядеть так:

Число A называется пределом функции f(x) при $x \to +\infty$, если для любого числа $\varepsilon > 0$ найдётся такое число M > 0, что для всех значений x > M выполняется неравенство $|f(x) - A| < \varepsilon$.

Аналогично определяется предел функции f(x) при $x \to -\infty$,

Обозначение: $\lim_{x\to -\infty} f(x) = A$

1.5 Односторонние пределы

Пусть функция f(x) определена в правой полуокрестности точки x_0 . Т.е. на некотором интервале $(x_0, x_0 + \delta)$, где $\delta > 0$. Тогда говорят, что число A называется *пределом функции* f(x) справа в точке x_0 (или правосторонним пределом), если для любой последовательности $\{x_n\}$, сходящейся к x_0 и такой, что все её члены больше, чем x_0 , соответствующая последовательность значений функции $\{f(x_n)\}$ сходится к числу A.

Обозначения: $\lim_{x\to x_0+0} f(x) = A$ или $f(x_0+0) = A$

Аналогично определяется *предел функции слева* (или левосторонний предел) в точке x_0 , обозначаемый $\lim_{x\to x_0-0} f(x)$ или $f(x_0-0)$.

Очевидно, что $\lim_{x\to x_0} f(x)$ существует в том и только в том случае, когда существуют $\lim_{x\to x_0+0} f(x)$ и $\lim_{x\to x_0-0} f(x)$ односторонние пределы и причём все три числа равны, т.е.

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x)$$

1.6 Замечательные пределы

Первый замечательный предел

$$\lim_{x\to 0} \frac{\sin x}{x} = 1.$$

Второй замечательный предел

$$\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x = e.$$

Часто используются следующие следствия из обоих замечательных пределов

$$\lim_{x \to 0} \frac{\sin \alpha x}{x} = \alpha, \ \alpha \in R$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e, \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1, \lim_{x \to 0} \frac{e^{x}-1}{x} = 1.$$

1.7 Бесконечно малые и бесконечно большие функции

Функция $\varphi(x)$ называется бесконечно малой при $x \to x_0$ (или в окрестности точки x_0), если $\lim_{x \to x_0} \varphi(x) = 0$

Таким образом, $A = \lim_{x \to x_0} f(x) \Leftrightarrow f(x) = A + \alpha(x)$,

где $\alpha(x)$ бесконечно малая при $x \to x_0$.

Пусть $\alpha(x)$ и $\beta(x)$ – бесконечно малые функции при $x \to x_0$

Тогда:

1) Если $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = A \neq 0$, то функции $\alpha(x)$ и $\beta(x)$ называются бесконечно малыми одного порядка в окрестности точки x_0 .

В частности, если $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 1$, то $\alpha(x)$ и $\beta(x)$ называются эквивалентными бесконечно малыми (в окрестности точки x_0), что обозначается так: $\alpha(x) \sim \beta(x)$, $x \to x_0$

2) Если $\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=0$, то функция $\alpha(x)$ называется бесконечно малой более высокого порядка, чем $\beta(x)$. Этот факт записывается так: $\alpha(x)=o\big(\beta(x)\big), x\to x_0 \text{ и говорят, что } \alpha(x)-o\text{ малое от }\beta(x)\text{ при }x\to x_0.$ В частности, если $\alpha(x)$ – бесконечно малая при $x\to x_0$, то $\alpha(x)=o(1)$, $x\to x_0$.

При решении многих задач используются следующие эквивалентности, верные при $x \to 0$:

$$\sin x \sim x$$
, $1 - \cos x \sim \frac{x^2}{2}$, $\tan x \sim x$, $\arcsin x \sim x$, $\arctan x \sim x$, $n \sim x$

Кроме того, имеет место следующий факт: если $\beta(x) \sim \beta_1(x)$, $x \to x_0$ и существуют пределы $\lim_{x \to x_0} \alpha(x) \cdot \beta(x)$ и $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$, то

$$\lim_{x \to x_0} \alpha(x) \cdot \beta(x) = \lim_{x \to x_0} \alpha(x) \cdot \beta_1(x)$$

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\beta_1(x)}.$$

Таким образом, предел произведения или частного двух бесконечно малых не меняется при замене любой из них на эквивалентную бесконечно малую.

Пример 1

Используя свойства пределов функций, найти следующие пределы:

1)
$$\lim_{x\to -1} \frac{3x^2-1}{4x^2+5x+2}$$
;

2)
$$\lim_{x\to 2} \frac{x^2-4}{x^2-5x+6}$$
;

3)
$$\lim_{x\to 1} \frac{\sqrt{x+8}-3}{x-1}$$
;

4)
$$\lim_{x\to\infty} \frac{1+x-x^2}{2x^2+3x}$$
;

Решение

1) Применяя теорему о действиях над пределами функций, получим:

$$\lim_{x \to -1} \frac{3x^2 - 1}{4x^2 + 5x + 2} = \frac{\lim_{x \to -1} (3x^2 - 1)}{\lim_{x \to -1} (4x^2 + 5x + 2)}$$

$$= \frac{\lim_{x \to -1} 3x^2 - \lim_{x \to -1} 1}{\lim_{x \to -1} 4x^2 + \lim_{x \to -1} 5x + \lim_{x \to -1} 2}$$

$$= \frac{\lim_{x \to -1} x \cdot \lim_{x \to -1} x - 1}{4 \lim_{x \to -1} x \cdot \lim_{x \to -1} x + 5 \lim_{x \to -1} x + 2}$$

$$= \frac{3 \cdot (-1)(-1) - 1}{4 \cdot (-1)(-1) + 5(-1) + 2} = 2$$

2) Так как пределы числителя и знаменателя при $x \to 2$ равны нулю, то мы имеем неопределённость вида $\frac{0}{0}$. «Раскроем» эту неопределённость (т.е. избавимся от неё), разложив числитель и знаменатель на множители и сократив их далее на общий множитель x - 2:

$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)(x - 3)} = \lim_{x \to 2} \frac{x + 2}{x - 3}$$

В полученной дроби знаменатель уже не стремится к нулю при $x \to 2$, поэтому можно применять теорему о пределе частного:

$$\lim_{x \to 2} \frac{x+2}{x-3} = \frac{\lim_{x \to 2} (x+2)}{\lim_{x \to 2} (x-3)} = \frac{2+2}{2-3} = -4$$

Окончательно $\lim_{x\to 2} \frac{x^2-4}{x^2-5x+6} = -4$.

3) Здесь мы также имеем неопределённость вида $\frac{0}{0}$. Домножим числитель и знаменатель дроби на выражение, сопряженное к числителю (избавляемся от иррациональности в числителе):

$$\lim_{x \to 1} \frac{\sqrt{x+8} - 3}{x - 1} = \lim_{x \to 1} \frac{(\sqrt{x+8} - 3)(\sqrt{x+8} + 3)}{(x - 1)(\sqrt{x+8} + 3)}$$

$$= \lim_{x \to 1} \frac{(\sqrt{x+8})^2 - 3^2}{(x - 1)(\sqrt{x+8} + 3)}$$

$$= \lim_{x \to 1} \frac{(x+8) - 9}{(x - 1)(\sqrt{x+8} + 3)}$$

$$= \lim_{x \to 1} \frac{x - 1}{(x - 1)(\sqrt{x+8} + 3)} = \lim_{x \to 1} \frac{1}{\sqrt{x+8} + 3} = \frac{1}{\sqrt{1+8} + 3}$$

$$= \frac{1}{6}$$

4) Числитель и знаменатель дроби — бесконечно большие функции, поэтому здесь имеет место неопределённость $\frac{\infty}{\infty}$. Раскрывая эту неопределённость, поделим числитель и знаменатель дроби на старшую степень x, т.е. на x^2 :

$$\frac{1+x-x^2}{2x^2+3x} = \frac{\frac{1}{x^2} + \frac{1}{x} - 1}{2 + \frac{3}{x}}$$

Осталось воспользоваться свойствами пределов, а также тем, что функции $\frac{1}{x}$ и $\frac{1}{x^2}$ – бесконечно малые при $x \to \infty$:

$$\lim_{x \to \infty} \frac{1 + x - x^2}{2x^2 + 3x} = \lim_{x \to \infty} \frac{\frac{1}{x^2} + \frac{1}{x} - 1}{2 + \frac{3}{x}} = \lim_{x \to \infty} (\frac{1}{x^2} + \frac{1}{x} - 1) = \lim_{x \to \infty} (2 + \frac{3}{x})$$

$$= \frac{\lim_{x \to \infty} \frac{1}{x^2} + \lim_{x \to \infty} \frac{1}{x} - \lim_{x \to \infty} 1}{\lim_{x \to \infty} 2 + 3 \lim_{x \to \infty} \frac{1}{x}} = \frac{0 + 0 - 1}{2 + 0} = -\frac{1}{2}$$

Найти пределы:

1)
$$\lim_{x\to 0} \frac{\sin \alpha x}{x}$$
, $\alpha \in R$;

2)
$$\lim_{x\to 0} \frac{\sin 5x}{\sin 3x}$$
;

3)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{2x - \pi}$$
;

4)
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$

Решение

1) Сделаем замену $y = \alpha x$, тогда $y \to 0$ при $x \to 0$ и $\lim_{x \to 0} \frac{\sin \alpha x}{x} = \lim_{y \to 0} \frac{\sin y}{\frac{y}{\alpha}} = \lim_{y \to 0} \frac{\alpha \sin}{y} = \alpha \lim_{y \to 0} \frac{\sin y}{y} = \alpha$. В последнем равенстве мы воспользовались первым замечательным пределом. Таким образом, $\lim_{x \to 0} \frac{\sin \alpha x}{x} = \alpha$.

2) Поделим числитель и знаменатель дроби под знаком предела на x, после чего воспользуемся предыдущим пунктом:

$$\lim_{x \to 0} \frac{\sin 5x}{\sin 3x} = \lim_{x \to 0} \frac{\left(\frac{\sin 5x}{x}\right)}{\left(\frac{\sin 3x}{x}\right)} = \frac{\lim_{x \to 0} \left(\frac{\sin 5x}{x}\right)}{\lim_{x \to 0} \left(\frac{\sin 3x}{x}\right)} = \frac{5}{3}$$

3) Сводя предел к первому замечательному, сделаем замену $y=x-\frac{\pi}{2}$. Тогда $y\to 0$ при $x\to \frac{\pi}{2}$, а $x=y+\frac{\pi}{2}$, откуда

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{2x - \pi} = \lim_{y \to \frac{\pi}{2}} \frac{\cos \left(y + \frac{\pi}{2}\right)}{2\left(y + \frac{\pi}{2}\right) - \pi} = \lim_{y \to 0} \frac{-\sin y}{2y} = -\frac{1}{2} \lim_{y \to 0} \frac{\sin y}{y} = -\frac{1}{2}$$

Во втором равенстве в этой цепочке мы использовали формулу приведения, а в последнем – первый замечательный предел.

4) Сделаем замену $t = \arcsin x$, т.е. $x = \sin t$. Ясно, что $t \to 0$ при $x \to 0$, поэтому

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{t \to 0} \frac{t}{\sin t} = \lim_{t \to 0} \frac{1}{\left(\frac{\sin t}{t}\right)} = \frac{1}{\lim_{t \to 0} \frac{\sin t}{t}} = 1$$

Пример 3

Найти пределы:

1)
$$\lim_{x\to\infty} \left(1+\frac{k}{x}\right)^x$$
, $k\in R$;

2)
$$\lim_{x\to 0} \sqrt[x]{1+5x}$$
;

3)
$$\lim_{x\to\infty} \left(\frac{x+3}{x-2}\right)^x$$
;

4)
$$\lim_{x\to 0} \frac{e^{2x}-1}{7x}$$
.

Решение

1) В данном случае мы имеем неопределённость вида 1^{∞} . Для её раскрытия сделаем замену $y = \frac{x}{k}$. Тогда $y \to \infty$ при $x \to \infty$ и исходный предел сводится ко второму замечательному пределу:

$$\lim_{x \to \infty} \left(1 + \frac{k}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{1}{\left(\frac{x}{k} \right)} \right)^{k \cdot \frac{x}{k}} = \lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^{k \cdot y} = \left[\lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^y \right]^k$$

$$= e^k$$

2) Поскольку $\lim_{x\to 0} \sqrt[x]{1+5x} = (1+5x)^{\frac{1}{x}}$, то здесь мы также имеем дело с неопределённостью 1^{∞} , для раскрытия которой нам снова понадобится одна их форм второго замечательного предела. Сделаем замену y=5x. Тогда $y\to 0$ при $x\to 0$ и

$$\lim_{x \to 0} \sqrt[x]{1 + 5x} = \lim_{x \to 0} (1 + 5x)^{\frac{1}{5x} \cdot 5} = \lim_{y \to 0} (1 + y)^{\frac{1}{y} \cdot 5} = \left[\lim_{y \to 0} (1 + y)^{\frac{1}{y}} \right]^5 = e^5$$

3) Поделив числитель и знаменатель дроби на x, сведём данный предел к частному пределов из пункта 1):

$$\lim_{x \to \infty} \left(\frac{x+3}{x-2} \right)^x = \lim_{x \to \infty} \left(\frac{1+\frac{3}{x}}{1-\frac{2}{x}} \right)^x = \lim_{x \to \infty} \frac{\left(1+\frac{3}{x}\right)^x}{\left(1-\frac{2}{x}\right)^x} = \frac{\lim_{x \to \infty} \left(1+\frac{3}{x}\right)^x}{\lim_{x \to \infty} \left(1-\frac{2}{x}\right)^x} = \frac{e^3}{e^{-2}}$$

$$= e^5$$

4) Сделав замену y = 2x и применяя одно из следствий из второго замечательного предела, получим:

$$\lim_{x \to 0} \frac{e^{2x} - 1}{7x} = \lim_{y \to 0} \frac{e^{y} - 1}{\frac{7}{2}y} = \frac{2}{7} \lim_{y \to 0} \frac{e^{y} - 1}{y} = \frac{2}{7}$$

Пример 4

Заменяя бесконечно малые эквивалентными, найти пределы:

1)
$$\lim_{x\to 0} \frac{\sin 4x}{\sin 3x}$$

2)
$$\lim_{x\to 0} \frac{x(e^x-1)}{1-\cos}$$
.

Решение

- 1) В силу следствия из первого замечательного предела $\sin \alpha x \sim \alpha x$, $x \to 0$. отсюда (при $x \to 0$) $\sin 4x \sim 4x$, а $\sin 3x \sim 3x$, поэтому $\lim_{x \to 0} \frac{\sin 4x}{\sin 3x} = \lim_{x \to 0} \frac{4x}{3x} = \frac{4}{3}$.
- 2) При $x \to 0$ имеем $e^x 1 \sim x$ и $1 \cos x \sim \frac{x^2}{2}$, откуда $\lim_{x \to 0} \frac{x(e^x 1)}{1 \cos x} = \lim_{x \to 0} \frac{x \cdot x}{\frac{x^2}{2}} = 2$

2.1 Непрерывность функции в точке

Функция f(x) называется *непрерывной в точке* x_0 , если она определена в некоторой окрестности этой точки и $\lim_{x\to x_0} f(x) = f(x_0)$.

Если обозначить $x - x_0 = \Delta x$ (приращение аргумента), $f(x) - f(x_0) = \Delta y$ (приращение функции, соответствующее приращению аргумента Δx), то это определение можно записать в эквивалентной форме.

Функция f(x) называется *непрерывной в точке* x_0 , если она определена в некоторой окрестности этой точки и

$$\lim_{x \to x_0} \Delta y = 0$$

Таким образом, если функция f(x) непрерывна в точке x_0 , то бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции.

2.2 Односторонняя непрерывность

Функция f(x) называется непрерывной слева в точке x_0 , если она определена на некотором полуинтервале $(a; x_0]$ и

$$\lim_{x \to x_0 - 0} f(x) = f(x_0)$$

Функция f(x) называется *непрерывной справа в точке* x_0 , если она определена на некотором полуинтервале $[x_0; b)$ и

$$\lim_{x \to x_0 + 0} f(x) = f(x_0)$$

Функция f(x) непрерывна в точке x_0 тогда и только тогда, когда она непрерывна слева и справа в этой точке, т.е. когда

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x) = f(x_0)$$

2.3 Непрерывность функции на промежутке

Функция f(x) называется *непрерывной на данном промежутке* (интервале, полуинтервале, отрезке), если она непрерывна в каждой точке этого промежутка.

При этом если функция определена в конце промежутка, то под непрерывностью в этой точке понимается непрерывность справа или слева. В частности, функция f(x) называется непрерывной на [a;b], если она:

1) Непрерывна в каждой точке интервала (a; b);

- 2) Непрерывна справа в точке a;
- 3) Непрерывна слева в точке b.

2.4 Точки разрыва функции

Пусть точка x_0 принадлежит области определения функции f(x) или является граничной точкой этой области. Точка называется *точкой разрыва* функции f(x), если f(x) не является непрерывной в этой точке.

Точки разрыва подразделяются на точки разрыва 1-го и 2-го рода.

Если в точке x_0 существуют конечные односторонние пределы $\lim_{x\to x_0-0} f(x)$ и $\lim_{x\to x_0+0} f(x)$, но они не равны между собой, или же односторонние пределы равны между собой, а значение функции в этой точке не совпадает с односторонними пределами, то x_0 называется точкой разрыва 1-го рода.

Если в точке x_0 существует конечный предел $\lim_{x\to x_0} f(x_0)$, а $f(x_0)$ не определено или $\lim_{x\to x_0} f(x) \neq f(x_0)$, то эта точка называется точкой устранимого разрыва.

Точки разрыва 1-го рода функции f(x), не являющиеся точками устранимого разрыва, называются точками скачка этой функции.

Если x_0 точка скачка функции f(x), то разность $\Delta f(x_0) = \lim_{x \to x_0 + 0} f(x) - \lim_{x \to x_0 - 0} f(x)$ не равна нулю и называется скачком функции f(x) в точке x_0 .

Если в точке x_0 не существует хотя бы один из односторонних пределов $\lim_{x\to x_0-0} f(x)$ или $\lim_{x\to x_0+0} f(x)$, то x_0 называется точкой разрыва 2-го рода.

2.5 Свойства функций, непрерывных в точке

Теорема 1 Пусть функции f(x) и g(x) непрерывны в точке x_0 . Тогда функции $f(x) \pm g(x)$, $f(x) \cdot g(x)$ и f(x)/g(x) (если $g(x_0) \neq 0$) также непрерывны в точке x_0 .

В частности, если функция f(x) непрерывна в точке x_0 , то функция $\alpha \cdot f(x)$, где $\alpha \in R$, также непрерывна в точке x_0 .

Теорема 2 (о непрерывности сложной функции). Пусть функция u(x) непрерывна в точке x_0 , а функция f(u) непрерывна в точке $u_0 = u(x_0)$. Тогда сложная функция f(u(x)) непрерывна в точке x_0 .

2.6 Непрерывность элементарных функций

Теорема 3 Все простейшие элементарные функции $(c, x^a, a^x, \log_a x, \sin x, \cos x, \arcsin x, \arccos x)$ непрерывны в каждой точке своих областей определения.

Из этой теоремы, а также из двух предыдущих следует, что также непрерывны в каждой точке своих областей определения все функции, полученные из простейших с помощью конечного числа арифметических операций и операции композиции.

2.7 Свойства функций, непрерывных на отрезке

Теорема 4 (Больцано-Коши). Пусть функция f(x) определена и непрерывна на отрезке [a;b] и принимает на его концах разные знаки. Тогда найдётся хотя бы одна такая точка $x_0 \in (a;b)$, что $f(x_0) = 0$.

Теорема 5 (о промежуточных значениях). Пусть функция f(x) определена и непрерывна на отрезке [a;b]. Тогда для любого числа C, заключённого между числами f(a) и f(b), найдётся такая точка $x_0 \in [a;b]$, что $f(x_0) = C$.

Теорема 6 (1-я теорема Вейеритрасса). Пусть функция f(x) определена и непрерывна на отрезке [a;b]. Тогда эта функция ограничена на этом отрезке.

Теорема 7 (2-я теорема Вейеритрасса). Пусть функция f(x) определена и непрерывна на отрезке [a;b]. Тогда эта функция принимает на отрезке [a;b] свои наибольшие и наименьшие значения, т.е. существуют такие точки $x_1, x_2 \in [a;b]$, что для любой точки $x \in [a;b]$ справедливы неравенства

$$f(x_1) \le f(x) \le f(x_2)$$

<u>Пример 1</u> Заполнить таблицу для функции f(x), найдя для каждого приращения Δx в точке $x_0 = 2$ соответствующие приращения

$$\Delta y = f(x) - f(x_0).$$

Δχ	-1	-0,2	-0,1	-0,01	1	0,2	0,1	0,01
Δy								

a)
$$f(x) = 3x + 1$$
;

б)
$$f(x) = \begin{cases} x - 2 \text{ при } x \le 0 \\ 1 \text{ при } x > 0 \end{cases}$$

На основании заполненной таблицы сделать предположение о поведении функции в точке $x_0=2$.

Решение

А) При
$$\Delta x = -1$$
 имеем $x = x_0 + \Delta x = 2 - 1 = 1$, откуда $\Delta y = f(x) - f(x_0) = f(1) - f(2) = 4 - 7 = -3$

Аналогично находим и другие значения Δy . В результате получаем таблицу

Δχ	-1	-0,2	-0,1	-0,01	1	0,2	0,1	0,01
Δy	-3	-0,6	-0,3	-0,03	3	0,6	0,3	0,03

Как видно из этой таблицы, малым значениям приращения аргумента соответствуют малые значения приращения функции. Поэтому можно сделать предположение о непрерывности данной функции в точке $x_0=2$. Разумеется, подобные нестрогие рассуждения не могут служить доказательством непрерывности функции в данной точке.

Б) Производя вычисления как в пункте а), получаем таблицу

Δχ	-1	-0,2	-0,1	-0,01	1	0,2	0,1	0,01
Δy	-1	-0,2	-0,1	-0,01	1	1	1	1

Из таблицы видно, что малые приращения функции соответствуют малым приращениям аргумента лишь слева от точки $x_0 = 2$; справа же от этой точки (т.е. при $\Delta x > 0$) Δy не уменьшается при уменьшении Δx . Отсюда можно предположить, что $x_0 = 2$ – точка разрыва данной функции; при этом f(x) непрерывна слева в этой точке.

<u>Пример 2</u> Исследовать на непрерывность и построить график функции

$$f(x) = \begin{cases} x \text{ при } x \le -\pi \\ \sin x \text{ при } -\pi < x < \frac{\pi}{2} \\ 1 \text{ при } x > \frac{\pi}{2} \end{cases}$$

Найти скачок функции в точках скачка

Решение

Функции y=x, $y=\sin x$ и y=1 непрерывны на всей числовой прямой, поэтому данная функция может иметь разрывы только в точках, где меняется её аналитическое выражение, т.е. в точках $x_1=-\pi$ и $x_2=\frac{\pi}{2}$.

Исследуем функцию на непрерывность в этих точках, для чего найдём соответствующие односторонние пределы и значения функции.

В точке $x_1 = -\pi$ имеем:

$$\lim_{x \to -\pi - 0} f(x) = \lim_{x \to -\pi} x = -\pi, \lim_{x \to -\pi + 0} f(x) = \lim_{x \to -\pi} \sin x = 0,$$

$$f(-\pi) = -\pi$$

Таким образом, в этой точке

$$\lim_{x \to -\pi - 0} f(x) = f(-\pi) \neq \lim_{x \to -\pi + 0} f(x)$$

Т.е. функция имеет разрыв 1-го рода и непрерывна слева. Скачок функции f(x) в точке $x_1 = -\pi$ равен

$$\Delta f(-\pi) = \lim_{x \to -\pi + 0} f(x) - \lim_{x \to -\pi - 0} f(x) = \pi$$

Аналогично, для точки $x_2 = \frac{\pi}{2}$ получим:

$$\lim_{x \to \frac{\pi}{2} - 0} f(x) = \lim_{x \to \frac{\pi}{2} - 0} \sin x = \sin \frac{\pi}{2} = 1$$

$$\lim_{x \to \frac{\pi}{2} + 0} f(x) = \lim_{x \to \frac{\pi}{2} + 0} 1 = 1$$

А значение $f\left(\frac{\pi}{2}\right)$ не определено. Отсюда следует, что $x_2=\frac{\pi}{2}$ — точка устранимого разрыва для функции f(x).

а значенис $f\left(\frac{\pi}{2}\right)$ не определ точка устранимого разрыва

<u>Пример 3</u> Установить характер разрыва функции $f(x) = \frac{2x+1}{x-2}$ в точке

$$x_0 = 2$$

<u>Решение</u>

Находим
$$\lim_{x\to 2-0} \frac{2x+1}{x-2} = -\infty$$
, $\lim_{x\to 2+0} \frac{2x+1}{x-2} = +\infty$

То есть функция в точке $x_0=2$ не имеет ни одного из односторонних пределов. Отсюда следует, что $x_0=2$ – точка разрыва 2-го рода.