## **EN2550 - Assignment 2 on Fitting and Alignment**

Name: C. J. Kurukulasuriya Index Number: 190337X

GitHub: <a href="https://github.com/chira99/image-processing-opency-python.git">https://github.com/chira99/image-processing-opency-python.git</a>

#### **Question 01**

a) RANSAC algorithm for circle estimation is implemented as follows.

```
def RANSAC_circ(X):
2.
       e = 0.5
                   # outlier ratio
3.
                   # Number of points needed to create the estimated model
4.
       s = 3
       p = 0.99
                   # probability that at least 1 sample is free from outliers
5.
       t = 1.96 * 10/16 # treshold
6.
                   # expected inlier count
7.
       d = 50
8.
       iters = int(np.ceil(np.log(1-p)/np.log(1-(1-e)**s)))
9.
10.
       best_inlier_count = 0
11.
       best_samples = None
12.
13.
       best_fit_inliers = None
14.
15.
       for _ in range(iters):
16.
17.
            # Choose 3 distinct points from dataset
18.
           [p1, p2, p3] = np.random.choice(len(X), size=3, replace=False)
19.
           [p1, p2, p3] = X[p1, :], X[p2, :], X[p3, :]
20.
21.
           # Get circle through the 3 points
           f, g, r = getCircle(p1, p2, p3)
22.
23.
24.
           if r == None:
25.
                continue
26.
27.
           inlier_count, inliers = getInlierCount(f, g, r, X, t)
28.
29.
           if inlier_count > best_inlier_count:
30.
                best_inlier_count = inlier_count
31.
                best_fit_inliers = inliers
32.
                best_samples = [p1, p2, p3]
33.
                best_fit_circle = [f, g, r]
34.
       if best_inlier_count < d:</pre>
35.
36.
           # Repeat RANSAC if no model found
           RANSAC_circ(X)
37.
38.
       ransac_circle = bestFitCircle(best_fit_inliers) # returns f,g,r
39.
40.
41.
        return ransac_circle, best_fit_circle, best_samples, best_fit_inliers
```

#### Parameters of the algorithm:

- The minimum number of points needed to estimate the circle, s = 3
- A threshold of  $\mathbf{t} = 1.96*(\mathbf{r}/16)$  gives the required 95% probability of capturing all inliers since the dataset is corrupted by mean-zero variance-one gaussian noise. ( $\mathbf{r} = 10$ )
- Consensus size,  $\mathbf{d} = \mathbf{50}$ , since 50 points are inliers out of the given 100 dataset points.

b) The resulting circle fitting using RANSAC algorithm is as follows.



# **Question 02**

1. Classical painting projected onto the wall of a display room.



2. Movie poster on billboard display.



3. Sri Lankan flag projected/painted onto Sigiriya.



### **Question 03**

a) The SIFT feature mapping carried out between the two images are as follows.



**b)** Due to the high perspective difference between image 1 and image 5 the number of "good" SIFT feature matches were insufficient to calculate a satisfactory homography transformation between them. Therefore, an intermediate homography was calculated using image 4 and by composition, a satisfactory homography was obtained for image 1 to image 5. The relevant code for calculating the homography is as follows.

```
1.
    def get_homography(X, Y):
2.
        A = []
        zeros = np.array([0,0,0])
3.
4.
5.
        # create matrix A
6.
        for i in range(4):
            A.append(np.hstack((X[i, :], zeros, (-1*Y.T[0, i]*X[i,:]))))
7.
8.
            A.append(np.hstack((zeros, X[i, :], (-1*Y.T[1, i]*X[i,:]))))
9.
        A = np.array(A).squeeze().astype(np.float64)
10.
11.
        # find the eigen vector H corresponding to the smallest eigen value
12.
        eigen_values, eigen_vectors = np.linalg.eig(A.T @ A)
13.
14.
        col_idx = np.argmin(eigen_values)
15.
        H = eigen_vectors[:, col_idx]
16.
17.
        # rearrange H to obtain the Homography transformation matrix
18.
        H = H.reshape(3, -1)
19.
20.
        return H
```

```
    # Calculate homography in two parts
    H1to4 = RANSAC("Images/graf/img1.ppm", "Images/graf/img4.ppm", 1, 20, 10000)
    H4to5 = RANSAC("Images/graf/img4.ppm", "Images/graf/img5.ppm", 1, 20, 10000)
    H1to5 = H4to5 @ H1to4
```

The transformations carried out using the computed homography and the actual homography have a high resemblance, as shown below



The two homography matrices are given below, and their Sum Squared Difference, SSD = 10.08.

• Actual Homography

```
\begin{pmatrix} 6.2544644e - 01 & 5.7759174e - 02 & 2.2201217e + 02 \\ 2.2240536e - 01 & 1.1652147e + 00 & -2.5605611e + 01 \\ 4.9212545e - 04 & -3.6542424e - 05 & 1.0000000e + 00 \end{pmatrix}
```

• Computed Homography after accounting for  $\lambda$  difference

```
\begin{pmatrix} 6.13441589e - 01 & 5.42088817e - 02 & 2.23627892e + 02 \\ 2.19597334e - 01 & 1.15414254e + 00 & -2.28718545e + 01 \\ 4.73030560e - 04 & -4.23432171e - 05 & 1.00000000e + 00 \end{pmatrix}
```

c) The image 1 stitched onto image 5 using the homography calculated is as follows.

