ASSESSMENT FOR LEARNING

1) UNGROUPED DATA

Mean Formula

Mean = Sum of All Data Points

Number of Data Points

2) GROUPED DATA

Mean = $(\sum f_i x_i) / \sum f_i$

3)

Median for Grouped Data

$$Median=I+\left[\frac{\frac{n}{2}-c}{f}\right]\times h$$

Mode Formula

Mode = L +
$$h \frac{(f_m - f_1)}{(f_m - f_1) + (f_m - f_2)}$$

Population	Sample
$\sigma = \sqrt{\frac{\sum (X - \mu)^2}{N}}$	$S = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$
X - The Value in the data distribution μ - The population Mean N - Total Number of Observations	X - The Value in the data distribution \overline{x} - The Sample Mean n - Total Number of Observations

7. The **basic formula** for a <u>sample</u> is:

$$z = (x - \mu) / \sigma$$

8. Standard Error of the Mean

When you have multiple samples and want to describe the standard deviation of those sample means (the standard error), you would use this z score formula:

$$z = (x - \mu) / (\sigma / \sqrt{n})$$

9 The t score formula is:

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

Where

 $\bar{x} = \underline{sample mean}$

 μ_0 = population mean

s = sample standard deviation

n = sample size

10 Formula of Correlation Coefficient

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{\left[n\sum x^2 - (\sum x)^2\right]\left[n\sum y^2 - (\sum y)^2\right]}}$$