EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 1: Topological spaces

Last update: January 17, 2021

Let $f:\mathbb{R} \to \mathbb{R}$ be a map. Remember that f is continuous if

$$\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists \eta > 0, \forall y \in \mathbb{R}, ||x - y|| < \eta \implies ||f(x) - f(y)|| < \epsilon.$$

Let $f: \mathbb{R} \to \mathbb{R}$ be a map. Remember that f is continuous if

$$\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists \eta > 0, \forall y \in \mathbb{R}, ||x - y|| < \eta \implies ||f(x) - f(y)|| < \epsilon.$$

Aim of this lesson: generalize the notion of continuity to more general spaces

I - Topological spaces

II - Topology of \mathbb{R}^n

III - Topology of subsets of \mathbb{R}^n

VI - Continuous maps

Topological spaces are abstractions of the concept of 'shape' or 'geometric object'.

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha\in A}\subset \mathcal{T}$, we have $\bigcup O_{\alpha}\in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n} O_i \in \mathcal{T}$.

The set \mathcal{T} is called a *topology* on X. The elements of \mathcal{T} are called the *open sets*.

Topological spaces are abstractions of the concept of 'shape' or 'geometric object'.

Definition: A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{{\alpha}\in A}\subset \mathcal{T}$, we have $\bigcup O_{\alpha}\in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n} O_i \in \mathcal{T}$.

The set \mathcal{T} is called a *topology* on X. The elements of \mathcal{T} are called the *open sets*.

In other words,

- ullet the empty set is an open set, the set X itself is an open set,
- an infinite union of open sets is an open set,
- a finite intersection of open sets is an open set.

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha\in A}\subset \mathcal{T}$, we have $\bigcup O_{\alpha}\in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1\}$ be a set with two elements. There exists four different topologies on X:

- $\mathcal{T}_1 = \{\emptyset, \{0, 1\}\},\$
- $\mathcal{T}_2 = \{\emptyset, \{0\}, \{0, 1\}\},\$
- $\mathcal{T}_3 = \{\emptyset, \{1\}, \{0, 1\}\},\$
- $\mathcal{T}_4 = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}.$

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{{\alpha}\in A}\subset \mathcal{T}$, we have $\bigcup O_{\alpha}\in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}\$$

But the following are not:

- $\mathcal{T}_1 = \{\emptyset, \{0\}\},\$
- $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\}\$,
- $\mathcal{T}_3 = \{\emptyset, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\},\$

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha\in A}\subset \mathcal{T}$, we have $\bigcup O_{\alpha}\in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}\$$

But the following are not:

- $\mathcal{T}_1 = \{\emptyset, \{0\}\},\$
- $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$
- $\mathcal{T}_3 = \{\emptyset, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\},\$

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha\in A}\subset \mathcal{T}$, we have $\bigcup O_{\alpha}\in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n}^{\alpha \subset n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}\$$

But the following are not:

- $\mathcal{T}_1 = \{\emptyset, \{0\}\},\$
- $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$
- $\mathcal{T}_3 = \{\emptyset, \{0,1\}, \{1,2\}, \{0,1,2\}\},\$

$$X = \{0, 1, 2\}$$
 is missing

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{\alpha\in A}\subset \mathcal{T}$, we have $\bigcup O_{\alpha}\in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}\$$

But the following are not:

- $\mathcal{T}_1 = \{\emptyset, \{0\}\},\$
- $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$
- $\mathcal{T}_3 = \{\emptyset, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\},\$

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{{\alpha}\in A}\subset \mathcal{T}$, we have $\bigcup O_{\alpha}\in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}\$$

But the following are not:

- $\mathcal{T}_1 = \{\emptyset, \{0\}\},\$
- $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$
- $\mathcal{T}_3 = \{\emptyset, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\},\$

$$\{0,1\} = \{0\} \cup \{1\}$$
 is missing

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{{\alpha}\in A}\subset \mathcal{T}$, we have $\bigcup O_{\alpha}\in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements. The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}\$$

But the following are not:

- $\mathcal{T}_1 = \{\emptyset, \{0\}\}\$,
- $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$
- $\mathcal{T}_3 = \{\emptyset, \{0,1\}, \{1,2\}, \{0,1,2\}\},$ Why ?

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- for every infinite collection $\{O_{\alpha}\}_{{\alpha}\in A}\subset \mathcal{T}$, we have $\bigcup O_{\alpha}\in \mathcal{T}$,
- for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n} O_i \in \mathcal{T}$.

Example: Let $X = \{0, 1, 2\}$ be a set with three elements.

The following is a topology on X:

$$\mathcal{T} = \{\emptyset, \{0\}, \{0, 1, 2\}\}\$$

But the following are not:

- $\mathcal{T}_1 = \{\emptyset, \{0\}\},\$
- $\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\},\$
- $\mathcal{T}_3 = \{\emptyset, \{0,1\}, \{1,2\}, \{0,1,2\}\},$ Why ?

$$\{1\} = \{0,1\} \cap \{1,2\}$$
 is missing

Let (X, \mathcal{T}) be a topological space. For every open set $O \in \mathcal{T}$, its complementary $^cO = \{x \in X, x \notin O\}$ is called a closed set.

In other words, a set $A \subset X$ is closed iff cA is open.

Proposition: We have:

- \bullet the sets \emptyset and X are closed sets,
- for every infinite collection $\{P_{\alpha}\}_{{\alpha}\in A}$ of closed set, $\bigcap_{{\alpha}\in A}P_{\alpha}$ is a closed set,
- for every finite collection $\{P_i\}_{1 \leq i \leq n}$ of closed sets, $\bigcup_{1 \leq i \leq n} P_i$ is a closed set.

Let (X, \mathcal{T}) be a topological space. For every open set $O \in \mathcal{T}$, its complementary $^cO = \{x \in X, x \notin O\}$ is called a closed set.

In other words, a set $A \subset X$ is closed iff cA is open.

Proposition: We have:

- the sets \emptyset and X are closed sets,
- for every infinite collection $\{P_{\alpha}\}_{{\alpha}\in A}$ of closed set, $\bigcap_{{\alpha}\in A}P_{\alpha}$ is a closed set,
- for every finite collection $\{P_i\}_{1 \leq i \leq n}$ of closed sets, $\bigcup_{1 \leq i \leq n} P_i$ is a closed set.

Proof of first point: The set \emptyset is closed because ${}^c\emptyset=X$ is open. The set X is closed because ${}^cX=\emptyset$ is open.

Let (X, \mathcal{T}) be a topological space. For every open set $O \in \mathcal{T}$, its complementary $^cO = \{x \in X, x \notin O\}$ is called a closed set.

In other words, a set $A \subset X$ is closed iff cA is open.

Proposition: We have:

- ullet the sets \emptyset and X are closed sets,
- for every infinite collection $\{P_{\alpha}\}_{{\alpha}\in A}$ of closed set, $\bigcap_{\alpha\in A}P_{\alpha}$ is a closed set,
- for every finite collection $\{P_i\}_{1 \leq i \leq n}$ of closed sets, $\bigcup_{1 \leq i \leq n} P_i$ is a closed set.

Proof of second point: If $\{P_{\alpha}\}_{{\alpha}\in A}$ is an infinite collection of closed set, then for every ${\alpha}\in A$, ${}^cP_{\alpha}$ is open. Now, we use the relation

$${}^{c}\left(\bigcap_{\alpha\in A}P_{\alpha}\right)=\bigcup_{\alpha\in A}{}^{c}P_{\alpha}.$$

This is a union of open sets, hence it is open. Hence $\bigcap_{\alpha \in A} P_{\alpha}$ is closed.

Let (X, \mathcal{T}) be a topological space. For every open set $O \in \mathcal{T}$, its complementary ${}^cO = \{x \in X, x \notin O\}$ is called a closed set.

In other words, a set $A \subset X$ is closed iff cA is open.

Proposition: We have:

- ullet the sets \emptyset and X are closed sets,
- for every infinite collection $\{P_{\alpha}\}_{{\alpha}\in A}$ of closed set, $\bigcap_{{\alpha}\in A}P_{\alpha}$ is a closed set,
- for every finite collection $\{P_i\}_{1 \leq i \leq n}$ of closed sets, $\bigcup_{1 \leq i \leq n} P_i$ is a closed set.

Proof of third point: If $\{P_i\}_{1 \leq i \leq n}$ is a finite collection of closed set, then for every $1 \leq i \leq n$, cP_i is open. Now, we use the relation

$${}^{c}\left(\bigcup_{1\leq i\leq n}P_{i}\right)=\bigcap_{1\leq i\leq n}{}^{c}P_{i}.$$

This is a *finite* intersection of open sets, hence it is open. Hence $\bigcup_{1 \le i \le n} P_i$ is closed.

I - Topological spaces

 II - Topology of \mathbb{R}^n

III - Topology of subsets of \mathbb{R}^n

VI - Continuous maps

Open balls of \mathbb{R}^n

We want to give \mathbb{R}^n a topology.

The Euclidean metric on \mathbb{R}^n is defined for all $x=(x_1,...,x_n)\in\mathbb{R}^n$ as:

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$

Definition: Let $x \in \mathbb{R}^n$ and r > 0. The open ball of center x and radius r, denoted $\mathcal{B}(x,r)$, is defined as:

$$\mathcal{B}(x,r) = \{ y \in \mathbb{R}^n, ||x - y|| < r \}.$$

We want to give \mathbb{R}^n a topology.

The Euclidean metric on \mathbb{R}^n is defined for all $x=(x_1,...,x_n)\in\mathbb{R}^n$ as:

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$

Definition: Let $x \in \mathbb{R}^n$ and r > 0. The open ball of center x and radius r, denoted $\mathcal{B}(x,r)$, is defined as:

$$\mathcal{B}(x,r) = \{ y \in \mathbb{R}^n, ||x - y|| < r \}.$$

Open balls of \mathbb{R}^n

Definition: Let $x \in \mathbb{R}^n$ and r > 0. The open ball of center x and radius r, denoted $\mathcal{B}(x,r)$, is defined as:

$$\mathcal{B}(x,r) = \{ y \in \mathbb{R}^n, ||x - y|| < r \}.$$

Proposition: Let $x \in \mathbb{R}^n$, and r > 0. Let $y \in \mathcal{B}(x,r)$ We have

$$\mathcal{B}(y, r - ||x - y||) \subset \mathcal{B}(x, r).$$

Definition: Let $x \in \mathbb{R}^n$ and r > 0. The open ball of center x and radius r, denoted $\mathcal{B}(x,r)$, is defined as:

$$\mathcal{B}(x,r) = \{ y \in \mathbb{R}^n, ||x - y|| < r \}.$$

Proposition: Let $x \in \mathbb{R}^n$, and r > 0. Let $y \in \mathcal{B}(x,r)$ We have

$$\mathcal{B}(y, r - ||x - y||) \subset \mathcal{B}(x, r).$$

Proof:

By definition,

$$\mathcal{B}(x,r) = \{ z \in \mathbb{R}^n, ||x - z|| < r \}$$

$$\mathcal{B}(y, r - ||x - y||) = \{ z \in \mathbb{R}^n, ||y - z|| < r - ||x - y|| \}$$

Let $z \in \mathcal{B}(y, r - ||x - y||)$.

We have to show that ||x - z|| < r. But

$$||x-z|| \le ||x-y|| + ||y-z||$$
 (triangle inequality)
$$< ||x-y|| + (||x-y|| - r)$$
 (definition of z)
$$= r$$

Hence $z \in \mathcal{B}(x,r)$.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We denote the set of such open sets by $\mathcal{T}_{\mathbb{R}^n}$, the Euclidean topology on \mathbb{R}^n .

Proposition: $\mathcal{T}_{\mathbb{R}^n}$ is a topology on \mathbb{R}^n .

Proof:

We have to check the three axioms of a topological space.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We denote the set of such open sets by $\mathcal{T}_{\mathbb{R}^n}$, the Euclidean topology on \mathbb{R}^n .

Proposition: $\mathcal{T}_{\mathbb{R}^n}$ is a topology on \mathbb{R}^n .

Proof:

We have to check the three axioms of a topological space.

First axiom (the empty set and the set X are open sets).

The set \emptyset is clearly open according to the definition of $\mathcal{T}_{\mathbb{R}^n}$ (indeed, \emptyset contains no point.)

The set \mathbb{R}^n also is open: for every $x \in \mathbb{R}^n$, the ball $\mathcal{B}(x,1)$ is a subset of \mathbb{R}^n .

Euclidean topology

Definition: Let $A \subset \mathbb{R}$ be a subset. Let $x \in A$.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We denote the set of such open sets by $\mathcal{T}_{\mathbb{R}^n}$, the Euclidean topology on \mathbb{R}^n .

Proposition: $\mathcal{T}_{\mathbb{R}^n}$ is a topology on \mathbb{R}^n .

Proof:

Second axiom (an infinite union of open sets is an open set).

Let $\{O_{\alpha}\}_{\alpha\in A}\subset \mathcal{T}_{\mathbb{R}^n}$ be a infinite collection of open sets, and define

$$O = \bigcup_{\alpha \in A} O_{\alpha}.$$

Let $x \in O$. There exists an $\alpha \in A$ such that $x \in O_{\alpha}$. Since O_{α} is open, it is open around x, i.e. there exists r > 0 such that $\mathcal{B}(x,r) \subset O_{\alpha}$.

We deduce that $\mathcal{B}(x,r)\subset O$, and that O is open around x.

Since this it true for any $x \in O$, we proved that O is open.

We say that A is open around x if there exists $\epsilon > 0$ such that $\mathcal{B}(x,r) \subset A$.

We say that A is open if for every $x \in A$, A is open around x.

We denote the set of such open sets by $\mathcal{T}_{\mathbb{R}^n}$, the Euclidean topology on \mathbb{R}^n .

Proposition: $\mathcal{T}_{\mathbb{R}^n}$ is a topology on \mathbb{R}^n .

Proof:

Third axiom (a finite intersection of open sets is an open set).

Consider a finite collection $\{O_i\}_{1\leq i\leq n}\subset \mathcal{T}_{\mathbb{R}^n}$, and define

$$O = \bigcap_{1 \le i \le n} O_i.$$

Let $x \in O$. For every $i \in [1, n]$, we have $x \in O_i$. Since O_i is open, it is open around x, i.e. there exists $r_i > 0$ such that $\mathcal{B}(x, r_i) \subset O_i$.

Define $r_{\min} = \min\{r_1, ... r_n\}$. For every $i \in [1, n]$, we have $\mathcal{B}(x, r_{\min}) \subset O_i$.

We deduce that $\mathcal{B}(x, r_{\min}) \subset O$, and that O is open around x.

Since this is true for any $x \in O$, we proved that O is open.

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0,1],
- [0,1),
- \bullet $(-\infty,1)$,
- the singletons $\{x\}$, $x \in \mathbb{R}$,
- ullet the rationnals \mathbb{Q} .

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0, 1],
- \bullet [0,1),
- \bullet $(-\infty,1)$,
- the singletons $\{x\}$, $x \in \mathbb{R}$,
- ullet the rationnals \mathbb{Q} .

Not open:

with x=0, there exist no r>0 such that $\mathcal{B}(x,r)=(x-r,x+r)\subset [0,1]$

Closed:

its complementary is $^c[0,1]=(-\infty,0)\cup(1,+\infty).$ It is the union of two open sets.

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0,1],
- \bullet $(-\infty,1).$
- the singletons $\{x\}$, $x \in \mathbb{R}$,
- ullet the rationnals \mathbb{Q} .

Not open:

with x=0, there exist no r>0 such that $\mathcal{B}(x,r)=(x-r,x+r)\subset [0,1]$

Not closed:

its complementary is $^c[0,1]=(-\infty,0)\cup[1,+\infty).$

This set is not open around 1.

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0,1],
- [0,1),
- \bullet $(-\infty,1)$
- the singletons $\{x\}$, $x \in \mathbb{R}$,
- the rationnals \mathbb{Q} .

Open:

It is an interval

Not closed:

its complementary is $c(-\infty, 1) = [1, +\infty)$.

This set is not open around 1.

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0,1],
- [0,1),
- $(-\infty,1)$
- the singletons $\{x\}$, $x \in \mathbb{R}$, the rationnals \mathbb{Q} .

Not open:

It is not open around x.

Closed:

its complementary is ${}^c\{x\} = (-\infty, x) \cup (x, +\infty)$. It is a union of two open sets (intervals).

In particular, in $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$, the open intervals (a, b) are open sets.

Exercise:

Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- [0,1],
- [0,1),
- \bullet $(-\infty,1)$,
- the singletons $\{x\}$, $x \in \mathbb{R}$,
- the rationnals Q.

Not open

Not closed

I - Topological spaces

II - Topology of \mathbb{R}^n

III - Topology of subsets of \mathbb{R}^n

VI - Continuous maps

$$\mathcal{T}_{|Y} = \{O \cap Y, O \in \mathcal{T}\}.$$

$$\mathcal{T}_{|Y} = \{O \cap Y, O \in \mathcal{T}\}.$$

Proposition: The set $\mathcal{T}_{|Y}$ is a topology on Y.

Proof: We have to check the three axioms of a topological space.

First axiom (the empty set and the set X are open sets).

The set \emptyset is clearly open for $\mathcal{T}_{|Y}$ because it can be written $\emptyset \cap Y$. The set Y also is open for $\mathcal{T}_{|Y}$ because it can be written $X \cap Y$, and X is open for \mathcal{T} .

$$\mathcal{T}_{|Y} = \{O \cap Y, O \in \mathcal{T}\}.$$

Proposition: The set $\mathcal{T}_{|Y}$ is a topology on Y.

Proof: We have to check the three axioms of a topological space.

Second axiom (an infinite union of open sets is an open set).

Let $\{O_{\alpha}\}_{{\alpha}\in A}\subset \mathcal{T}_{|Y}$ be a infinite collection of open sets, and define $O=\bigcup_{{\alpha}\in A}O_{\alpha}$.

By definition of $\mathcal{T}_{|Y}$, for every $\alpha \in A$, there exists O'_{α} such that $O_{\alpha} = O'_{\alpha} \cap Y$.

Define $O' = \bigcup_{\alpha \in A} O'_{\alpha}$. It is an open set for \mathcal{T} . We have

$$O = \bigcup_{\alpha \in A} O_{\alpha} = \bigcup_{\alpha \in A} O'_{\alpha} \cap Y = \left(\bigcup_{\alpha \in A} O'_{\alpha}\right) \cap Y = O' \cap Y.$$

Hence $O \in \mathcal{T}_{|Y}$.

$$\mathcal{T}_{|Y} = \{O \cap Y, O \in \mathcal{T}\}.$$

Proposition: The set $\mathcal{T}_{|Y}$ is a topology on Y.

Proof: We have to check the three axioms of a topological space.

Third axiom (a finite intersection of open sets is an open set).

Consider a finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}_{\mathbb{R}^n}$, and define $O = \bigcap_{1 \leq i \leq n} O_i$.

Just as before, for every $i \in [1, n]$, there exists O'_i such that $O_i = O'_i \cap Y$.

Define $O' = \bigcup_{1 \le i \le n} O'_i$. It is an open set for \mathcal{T} . We have

$$O = \bigcap_{1 \le i \le n} O_{\alpha} = \bigcap_{1 \le i \le n} O'_{\alpha} \cap Y = \left(\bigcap_{1 \le i \le n} O'_{\alpha}\right) \cap Y = O' \cap Y.$$

Hence $O \in \mathcal{T}_{|Y}$.

$$\mathcal{T}_{|Y} = \{O \cap Y, O \in \mathcal{T}\}.$$

Among the subsets of \mathbb{R}^n that we will consider, let us list:

- the unit sphere $\mathbb{S}_{n-1} = \{x \in \mathbb{R}^n, ||x|| = 1\}$
- the unit cube $C_{n-1} = \{x = (x_1, ..., x_n) \in \mathbb{R}^n, \max(|x_1|, ..., |x_n|) = 1\}$
- the open balls $\mathcal{B}(x,r) = \{y \in \mathbb{R}^n, \|x-y\| < r\}$
- the closed balls $\overline{\mathcal{B}}(x,r) = \{y \in \mathbb{R}^n, ||x-y|| \le r\}$
- the standard simplex

$$\Delta_{n-1} = \{x = (x_1, ..., x_n) \in \mathbb{R}^n, x_1, ..., x_n \ge 0 \text{ and } x_1 + ... + x_n = 1\}$$

I - Topological spaces

II - Topology of \mathbb{R}^n

III - Topology of subsets of \mathbb{R}^n

VI - Continuous maps

Continuous maps

The topologist's point of view allows to define the notion of continuity in great generality.

Let us consider two topological spaces (X, \mathcal{T}) and (Y, \mathcal{U}) .

Definition: Let $f: X \to Y$ be a map. We say that f is *continuous* if for every $O \in \mathcal{U}$, the preimage $f^{-1}(O) = \{x \in X, f(x) \in O\}$ is in \mathcal{T} .

In other words, a map is continuous if the preimage of any open set is an open set.

Continuous maps

The topologist's point of view allows to define the notion of continuity in great generality.

Let us consider two topological spaces (X, \mathcal{T}) and (Y, \mathcal{U}) .

Definition: Let $f: X \to Y$ be a map. We say that f is *continuous* if for every $O \in \mathcal{U}$, the preimage $f^{-1}(O) = \{x \in X, f(x) \in O\}$ is in \mathcal{T} .

In other words, a map is continuous if the preimage of any open set is an open set.

Proposition: A map is continuous if and only if the preimage of closed sets are closed sets.

Definition: Let $f: X \to Y$ be a map. We say that f is *continuous* if for every $O \in \mathcal{U}$, the preimage $f^{-1}(O) = \{x \in X, f(x) \in O\}$ is in \mathcal{T} .

Example: Let $X=Y=\mathbb{R}$, endowed with the Euclidean topology. Let $f\colon \mathbb{R} \to \mathbb{R}$ be defined as f(x)=0 for all $x\leq 0$, and f(x)=1 for all x>0. The set $\{0\}$ is closed, but $f^{-1}(\{0\})=(-\infty,0)$ is not. Hence f is not continuous.

Definition: Let $f: X \to Y$ be a map. We say that f is *continuous* if for every $O \in \mathcal{U}$, the preimage $f^{-1}(O) = \{x \in X, f(x) \in O\}$ is in \mathcal{T} .

Proposition: Let (X, \mathcal{T}) , (Y, \mathcal{U}) and (Z, \mathcal{V}) be three topological spaces, and $f: X \to Y$, $g: Y \to Z$ two continuous maps. The composition $g \circ f$, defined as

$$g \circ f \colon X \longrightarrow Z$$

 $x \longmapsto g(f(x))$

is a continuous map.

Proof: Let $O \in \mathcal{V}$ be an open set of Z. We have to show that $(g \circ f)^{-1}(O)$ is in \mathcal{T} . First, note that $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O))$.

Since g is continuous, the set $g^{-1}(O)$ is in \mathcal{U} , i.e., it is an open set of Y.

But since f is continuous, its preimage $f^{-1}(g^{-1}(O))$ also is an open set (of X).

Since this is true for any open set $O \in \mathcal{V}$, we deduce that $g \circ f$ is continuous.

Consider a continuous map $f \colon \mathbb{R}^n \to \mathbb{R}^m$. Let $\epsilon > 0$.

We have seen that the open ball $\mathcal{B}(f(x), \epsilon)$ is an open set of \mathbb{R}^m . By continuity of f, the preimage $f^{-1}(\mathcal{B}(f(x), \epsilon))$ is an open set.

Note that x belongs to $f^{-1}(\mathcal{B}(f(x),\epsilon))$. By definition of the Euclidean topology, we have that:

 $f^{-1}(\mathcal{B}(f(x),\epsilon))$ is open around x.

Consider a continuous map $f: \mathbb{R}^n \to \mathbb{R}^m$. Let $\epsilon > 0$.

We have seen that the open ball $\mathcal{B}(f(x), \epsilon)$ is an open set of \mathbb{R}^m . By continuity of f, the preimage $f^{-1}(\mathcal{B}(f(x), \epsilon))$ is an open set.

Note that x belongs to $f^{-1}(\mathcal{B}(f(x),\epsilon))$. By definition of the Euclidean topology, we have that:

$$f^{-1}(\mathcal{B}(f(x),\epsilon))$$
 is open around x .

In other words, there exists a $\eta > 0$ such that

$$\mathcal{B}(x,\eta) \subset f^{-1}(\mathcal{B}(f(x),\epsilon)).$$

Consider a continuous map $f: \mathbb{R}^n \to \mathbb{R}^m$. Let $\epsilon > 0$.

We have seen that the open ball $\mathcal{B}(f(x), \epsilon)$ is an open set of \mathbb{R}^m . By continuity of f, the preimage $f^{-1}(\mathcal{B}(f(x), \epsilon))$ is an open set.

Note that x belongs to $f^{-1}(\mathcal{B}(f(x),\epsilon))$. By definition of the Euclidean topology, we have that:

$$f^{-1}(\mathcal{B}(f(x),\epsilon))$$
 is open around x .

In other words, there exists a $\eta > 0$ such that

$$\mathcal{B}(x,\eta) \subset f^{-1}(\mathcal{B}(f(x),\epsilon)).$$

In other words,

$$\forall y \in \mathcal{B}(x,\eta), \ f(y) \in \mathcal{B}(f(x),\epsilon).$$

Consider a continuous map $f: \mathbb{R}^n \to \mathbb{R}^m$. Let $\epsilon > 0$.

We have seen that the open ball $\mathcal{B}(f(x), \epsilon)$ is an open set of \mathbb{R}^m . By continuity of f, the preimage $f^{-1}(\mathcal{B}(f(x), \epsilon))$ is an open set.

Note that x belongs to $f^{-1}(\mathcal{B}(f(x),\epsilon))$. By definition of the Euclidean topology, we have that:

$$f^{-1}(\mathcal{B}(f(x),\epsilon))$$
 is open around x .

In other words, there exists a $\eta > 0$ such that

$$\mathcal{B}(x,\eta) \subset f^{-1}(\mathcal{B}(f(x),\epsilon)).$$

In other words,

$$\forall y \in \mathcal{B}(x,\eta), \ f(y) \in \mathcal{B}(f(x),\epsilon).$$

We deduce that, for all $y \in \mathbb{R}^n$,

$$||x - y|| < \eta \implies ||f(x) - f(y)|| < \epsilon.$$

We recognize the usual definition of continuity.

Proposition: A map $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous if and only if, for every $x \in \mathbb{R}^n$ and $\epsilon > 0$, there exists $\eta > 0$ such that for all $y \in \mathbb{R}^n$,

$$||x - y|| < \eta \implies ||f(x) - f(y)|| < \epsilon.$$

As a consequence, what you already know about continuity still applies here.

Conclusion

We have generalized the notion of continuity (from ϵ - δ calculus) to topological spaces.

This will allow us to define more general concepts (connectedness, triangulations, topological functoriality, ...)

Homework for tomorrow: Exercise 4 and 5

Facultative exercises: Exercise 2 and 7

Conclusion

We have generalized the notion of continuity (from ϵ - δ calculus) to topological spaces.

This will allow us to define more general concepts (connectedness, triangulations, topological functoriality, ...)

Homework for tomorrow: Exercise 4 and 5

Facultative exercises: Exercise 2 and 7