

Flight Mechanics/Dynamics (Course Code: AE 305/305M/717)

Department of Aerospace Engineering Indian Institute of Technology Bombay Instructor: Shashi Ranjan Kumar 6 May 2021

Total Points: 100

Time: 180 Minutes

End-Semester Examination

Instructions

- All questions are mandatory.
- In case a question is missing some data/information, assume the same suitably and clearly mention it in your answer sheet.
- You are only allowed to open lecture slides of the course, any other form of help/reference is not permitted.
- In cases where the answers of two students are found to be copied, both of them will be awarded zero marks for that particular question.
- Answer sheets need to be submitted in a single "Roll_Number.pdf" format on Moodle.
- You will get 15 minutes duration for submission of your answer sheet on Moodle after the exam time.
- 1. The coefficients of the characteristic polynomial corresponding to lateral–directional stability of an aircraft are

$$A = 1, B = 9.42, C = 9.48 + N_v, D = 10.29 + 8.4N_v, E = 2.24 - 0.39N_v.$$

Find the range of values of N_v for which the aircraft will be laterally dynamically stable.

[10]

- 2. Consider an aircraft equipped with accelerometers and gyroscopes to measure accelerations and body rates.
 - (a) If the aircraft is undergoing a steady rotation with angular velocity components in body axes system p=10 deg/s, q=2 deg/s, and r=5 deg/s, then determine the corresponding Euler angle rates at the time instant where the Euler angles are $\psi=-30$ deg, $\theta=10$ deg, and $\phi=15$ deg.
 - (b) If the aircraft is flying at an angle of attack of 10° , sideslip of 5° , and a bank angle of 10° and the onboard accelerometers record $a_{xb} = 10$ ft/s², $a_{yb} = 5$ ft/s², and $a_{zb} = -5$ ft/s², then determine the acceleration components in the wind axes system.

[7.5+7.5]

- 3. Answer the following:
 - (a) Determine the missing elements of the following direction cosine matrix:

$$C = \begin{bmatrix} 0.1587 & c_{12} & 0.4858 \\ 0.8595 & -0.1218 & c_{23} \\ c_{31} & 0.4963 & 0.7195 \end{bmatrix}$$

- (b) Consider a rotation of a vector, using quaternion, about an axis defined by the vector (1,0,0) through an angle of $2\pi/3$.
 - (i) Obtain the quaternion Q to perform this rotation.
 - (ii) Compute the effect of rotation on the basis vector $\mathbf{k} = (0, 0, 1)$.

[5+10]

4. Consider the speed controller, as shown in Fig. 1, with the system output, $\mathbf{y} = [u \ \gamma]^T$ and the control vector $\mathbf{c} = [\delta_e \ \delta_p]^T$. Note that only the elevator input is in feedback loop. The desired and actual speeds are denoted by u_c and u, respectively. Transfer function matrix $\mathbf{G}(s)$ which relates the control vector, \mathbf{c} , to the output, \mathbf{y} , is represented as

$$\boldsymbol{G}(s) = \begin{bmatrix} G_{u\delta_e} & G_{u\delta_p} \\ G_{\gamma\delta_e} & G_{\gamma\delta_p} \end{bmatrix}.$$

Figure 1: Speed controller

Explicitly derive the closed-loop transfer functions, denoted by $G^{\star}_{u\delta_p}$ and $G^{\star}_{\gamma\delta_p}$, corresponding to the throttle input and the outputs, i.e., $\delta_p \to u$ and $\delta_p \to \gamma$.

[10+10]

5. Show that the small-disturbance equations, with $\theta_0 = 0$ and neglecting all Y force derivatives, yields the following approximation for the lateral displacement:

$$\Delta y_E(t) = g \int_0^t \int_0^t \phi(\tau) d\tau dt.$$

[10]

6. Consider a stable system whose transfer function is

$$G(s) = \frac{Y(s)}{U(s)} = \frac{N(s)}{f(s)} = \frac{1}{(s^2 + 3s + 2)(s^2 + 7s + 12)}.$$

The roots of the characteristic equation are denoted as $\lambda_1, \lambda_2, \lambda_3$ and λ_4 . Find these roots and derive the expression for output y(t) of the system in time domain, using the partial fraction expansion, for an input given by $u(t) = e^{i2t}$. Also, show that the steady state output becomes a scaled version of the input along with some phase change depending on the transfer function.

[10]

7. Consider the following approximate system of equations, corresponding to the short period mode of an aircraft, given by

$$\begin{split} \dot{w} &= \frac{Z_w}{m} w + u_0 q \,, \\ \dot{q} &= \frac{1}{I_u} \left[M_w + \frac{M_{\dot{w}} Z_w}{m} \right] w + \frac{1}{I_u} \left[M_q + M_{\dot{w}} u_0 \right] q \,, \end{split}$$

where u_0 is the nominal speed and m is the mass of the aircraft.

- (a) Find the natural frequency and damping ratio corresponding to the short period mode as a function of $m, u_0, I_y, M_w, M_q, M_{\dot{w}}$ and Z_w .
- (b) If an aircraft weighing 2×10^6 N is moving at a nominal speed of 230 m/s has the following structural and aerodynamic parameters: $I_y = 0.5 \times 10^8$ kg m², $M_w = -1.563 \times 10^4$ Nm, $M_q = -1.521 \times 10^7$ Nm, $M_w = -1.702 \times 10^4$ Nm and $Z_w = -9.030 \times 10^4$ N, then use the relationships derived in the previous part to compute the natural frequency and damping ratio corresponding to short-period mode of the aircraft. Assume the gravitational acceleration to be 9.81 m/s².

[20]