Question 3

Import required libraries

```
In [1]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
\textbf{from sklearn.model\_selection import} \ \texttt{train\_test\_split}
from sklearn.tree import DecisionTreeRegressor
from sklearn.inspection import permutation_importance
from sklearn.metrics import classification_report, mean_absolute_error, mean_squared_error
RANDOM_STATE = 123
```

Loading Data

In [2]:

```
crawled df = pd.read csv('Q1 Mudah PropAds.csv')
crawled_df.head()
```

Out[2]:

	list_title	url	price	area	category	prop_type	prop_title1	р
0	New Luxury Freehold Residence 4min Walk to Mid	https://www.mudah.my/New+Luxury+Freehold+Resid	597000	Mid Va ll ey City	Apartments	Condo / Services residence / Penthouse / Townh	Freehold	_
1	Sri Putramas 1 1100sqft Jalan Kuching Below Ma	https://www.mudah.my/Sri+Putramas+1+1100sqft+J	405000	Jalan Kuching	Apartments	Condo / Services residence / Penthouse / Townh	Freehold	
2	0% DOWNPAYMENT Arena Green 750SF Bukit Jalil [https://www.mudah.my/0+DOWNPAYMENT+Arena+Green	320000	Bukit Jalil	Apartments	Condo / Services residence / Penthouse / Townh	Freehold	
3	[Duplex Penthouse] Silk Residence Duplex Doubl	https://www.mudah.my/+Duplex+Penthouse+Silk+Re	900000	Cheras	Apartments	Condo / Services residence / Penthouse / Townh	Freehold	
4	BELOW MARKET!! Menara D'Sara Condo Sri Damansa	https://www.mudah.my/BELOW+MARKET+Menara+D+Sar	380000	Sri Damansara	Apartments	Condo / Services residence / Penthouse / Townh	Freehold	
4								>

One Hot Encode Facilities Column

```
In [3]:
```

```
# Convert facilities into one-hot encodings
facilities_list = np.unique([x for row in crawled_df['facilities'].astype(str).unique() for x in row.split(', ') if le
n(x) > 1])
facilities_list = facilities_list[facilities_list != 'Gymnasium,']
for item in facilities_list:
crawled_df[item] = (crawled_df['facilities'].astype(str).str.find(item)>= 0)
crawled_df = crawled_df.rename(columns={'nan':'No Facilities'}).drop('facilities', axis=1)
```

Feature Selection

In [4]:

	price	bedrooms	bathroom	size	24 Hour Security	Balcony/Patio	Cable TV	Gymnasium	Jogging Track	Mini Market	Р
price	1.000000	0.577591	0.650346	0.362834	-0.133872	-0.106777	-0.069274	-0.100904	-0.087112	-0.153133	
bedrooms	0.577591	1.000000	0.801869	0.629412	-0.129402	-0.160680	-0.103236	-0.208460	-0.060593	-0.202835	
bathroom	0.650346	0.801869	1.000000	0.639401	-0.023064	-0.040415	-0.031102	-0.055564	-0.000576	-0.166174	
size	0.362834	0.629412	0.639401	1.000000	-0.130083	-0.107004	-0.075188	-0.104601	-0.077939	-0.148390	
24 Hour Security	-0.133872	-0.129402	-0.023064	-0.130083	1.000000	0.690779	0.463279	0.646027	0.577204	0.580090	
Balcony/Patio	-0.106777	-0.160680	-0.040415	-0.107004	0.690779	1.000000	0.529548	0.591193	0.545449	0.552973	
Cable TV	-0.069274	-0.103236	-0.031102	-0.075188	0.463279	0.529548	1.000000	0.461260	0.649363	0.543607	
Gymnasium	-0.100904	-0.208460	-0.055564	-0.104601	0.646027	0.591193	0.461260	1.000000	0.558140	0.545553	
Jogging Track	-0.087112	-0.060593	-0.000576	-0.077939	0.577204	0.545449	0.649363	0.558140	1.000000	0.559886	
Mini Market	-0.153133	-0.202835	-0.166174	-0.148390	0.580090	0.552973	0.543607	0.545553	0.559886	1.000000	
Playground	-0.134880	-0.097517	-0.039891	-0.126027	0.747265	0.658281	0.508841	0.595067	0.660906	0.664739	
Squash Court	-0.072716	-0.109416	-0.061494	-0.067526	0.352890	0.430767	0.539506	0.496363	0.506873	0.445408	
Swimming Pool	-0.100543	-0.210006	-0.078905	-0.111359	0.715461	0.638514	0.444008	0.861153	0.534073	0.553265	
Tennis Court	-0.075165	-0.138629	-0.064787	-0.069076	0.377434	0.488692	0.540492	0.535132	0.535809	0.409217	
No Facilities	0.147822	0.088343	0.010876	0.137216	-0.870900	-0.648199	-0.470595	-0.571936	-0.549383	-0.644952	

Correlation Heatmap for Numerical/Boolean Attributes

We want to remove features that are highly correlated with each others

- · From those highly correlated pairs, removed one from each pair from the dataframe
 - 1) bedrooms and bathrooms
 - 2) swimming pool and gymnasium
 - 3) tennis court and squash court

```
In [5]:
```

```
crawled_df.drop(['bathroom', 'Gymnasium', 'Squash Court'], axis=1, inplace=True)
```

In [6]:

```
crawled_df.iloc[:,3:].columns
Out[6]:
```

Splitting Data

We use a simple train_test_split for this purpose

In [7]:

```
# One hot remaining categorical items for
dummies = pd.get_dummies(crawled_df[['area', 'category', 'prop_type', 'prop_title1', 'prop_title2', 'size_unit']])
onehot_df = pd.concat([crawled_df.drop(['area', 'category', 'prop_type', 'prop_title1', 'prop_title2', 'size_unit'], a
xis=1), dummies], axis=1).fillna(0)
```

In [8]:

```
# Define X and y, we want to predict property ads price from the property attributes
X = onehot_df.iloc[:,3:]
y = onehot_df['price']
```

```
In [9]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=RANDOM_STATE)
```

Building Decision Tree Model

```
In [10]:
```

```
# Prune Tree and leafs, set criterion to 'entropy'
# max_depth = 5, min_samples_leaf=100
model = DecisionTreeRegressor(criterion='mae', max_depth=5, max_features=22, min_samples_split=3, random_state=RANDOM_STATE)
```

Evaluating Model

In [11]:

```
model.fit(X_train, y_train)
y_pred_train = model.predict(X_train)
mae_train = mean_absolute_error(y_pred_train, y_train)
print(f'Training data mean absolute error: {mae_train}')

y_pred_test = model.predict(X_test)
mae_test = mean_absolute_error(y_pred_test, y_test)
print(f'Testing data mean absolute error: {mae_test}')
```

Training data mean absolute error: 251660.1625 Testing data mean absolute error: 436625.0125

Visualizing Decision Trees

In [12]:

```
from sklearn import tree
features = X_train.columns
fig, ax = plt.subplots(figsize=(40, 15))
tree.plot_tree(model, feature_names=features, fontsize=8, proportion=True, filled=True)

print('In the tree plot below, the darker colors indicate majority class for classification.')
print('\n double click on figure below to zoom in')

# fig.savefig('tree_structure.png')
```

In the tree plot below, the darker colors indicate majority class for classification.

double click on figure below to zoom in

Feature Importance

In [13]:

Top five most importance features are ['bedrooms', 'size', 'area_City Centre', 'prop_type_Bungalow / Villa / Cluster houses']

In [14]:

