

FIRST SEMESTER 2019-2020

Course Handout

01.08.2019

Course No: CHEM F212

Course Title: ORGANIC CHEMISTRY -I

Instructor-in-charge: Manab Chakravarty

1. Scope and objective of the course: To familiarize the students with basic mechanistic aspects of organic reactions including mechanistic types, thermodynamics and kinetics, the important intermediates involved in organic reactions, functional group chemistry.

2. Text Book: R. T. Morrison, R. Boyd and S. K. Bhattacharjee, Organic Chemistry, 7th edition. **(T1)**

Reference Books: J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, OUP, 1st ed.,

2000. **(R1)**

Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 4th ed., 1992.

carbocation in organic

(R2)

G Marc Loudon, Organic Chemistry, Oxford, 4th Edition, 2002.

Francis A Carey, Organic Chemistry, Tata McGrawHill, 7th edition, 2008.

3. Course Plan:

Lec.	Learning	Topics to be Covered Learning Outcomes		Text book , Chapter, Page
No.	objectives			no.
1-2	Basic	Homolytic, heterolytic	Understanding of basic	T1: Ch. 4, pg. 55-59
	terminology	fission of bonds, concept of	organic reactions	R1: Ch. 5, pg. 116-131.
	and	electrophiles and	and drawing reactions	
	representation	nucleophiles; how to write	realistically towards	
	of organic	organic reaction	creative organic	
	reactions	mechanisms; movement of	chemistry; Representing	
		arrows; curved and fish-	the movement of	
		hook arrows; examples	electrons in reactions by	
			curly arrows	
3-4	Reactive	Carbocations: Structure &	Detailed analysis on the	T1: Ch. 4, pg. 64-69.
	intermediates:	stability, generation and	generation, character,	
	carbocations	reactions	type and role of the	
			useful intermediate	

	1		1	
			reactions, application in	
			organic synthesis with	
			stereochemical outcome	
5	Reactive	Carbanions: Structure &	Idea about another	T1: Ch. 4, pg. 69-72.
	intermediates:	stability, generation and	intermediate and	
	carbanions	reactions	difference between	
			cation and anion	
			intermediates in terms	
			of the synthesis,	
			behavior etc. Use of such	
			intermediate in organic	
			reactions	
6-7	Reactive	Free radicals: Structure &	Intermediate with a free	T1: Ch. 4, pg. 81-86.
	intermediates:	stability, generation and	electron and their	710
	free radicals	reactions	reactions follow	
			different rules than ionic	
			intermediates, Idea of	
			polymerization.	
8-10	Reactive	Carbenes; nitrenes:	Substrate Conditions to	T1: Ch. 4, pg. 72-78.
	intermediates:	generation, stability, and	generate carbenes,	,18
	others	fate	Carbenes are neutral	
			species with only six	
			electrons, electrophilic	
			nature, insertion	
			reaction and application	
			in organic synthesis and	
			modern development;	
			How different these are	
			with the ionic	
			intermediates.	
			Same information	
			related to nitrene is	
			expected to be gained as	
			nitrenes are the nitrogen	
			analogue of carbenes.	
11-	Aromatic	Aromatic nucleophilic	Concept of aromaticity,	T1: Ch. 5C, pg. 262-283;
13	chemistry	substitutions; Aromatic	Understanding the ways	Ch. 9, pg. 488-502.
	chemistry	electrophilic substitutions;	to functionalize the	R1: Ch. 23, pg. 589-604.
		S _N Ar mechanism; benzyne	aromatic ring and its	11. Cit. 25, pg. 505 004.
		mechanism;	usefulness to generate	
		incontantion,	medicines and	
			functional materials	
14-	Thermodynami	Thermodynamic and kinetic	Importance in proposing	T1: Ch. 4, pg. 97-102.
17	cs and kinetics	control; Hammond	mechanism, how the	R1 : Ch. 13, pg.319-330.
-	of reactions	postulate; methods to	thermodynamic and	Ch. 22, pg. 554-556.
		determine mechanisms	kinetic parameters help	Ch. 41, pg.1090-1101.
		(Hammett equation, kinetic	to determine the	R2: Ch. 6, pg. 208-215,
		(Tallilliett equation, Milette	to acternme the	100 Cit. 0, pg. 200 210,

	Т	I	I		
		isotopic effect); examples	feasibility of reactions (the speed and energy), how a reaction rate can vary with different substitution.	217-219, 226.	
18- 21	Alkyl and aryl halides	Synthesis and reactions of alkyl and aryl halides	How this halides are related to our daily needs and the chemistry behind the fact	T1: Ch. 8, pg. 426-462. Ch. 9, pg. 482-485.	
22- 25	Alcohols, phenol and ethers	Synthesis, reactivity; applications of Grignard reagents for synthesis; diols, acid/base catalysed ring opening	The chemistry involved in the naturally occurring functional groups that contain polar C-O bond, the distinct reactivity of these functional groups will be understood.	T1: Ch. 10, pg. 507-537. Ch. 11, pg. 545-562. Lecture notes (epoxides)	
26- 28	Amines and nitro compounds	Synthesis, basicity and reactions	Many interesting natural products and widely used drugs are amines; hence such functional group chemistry will be learnt.	T1: Ch. 15, pg. 696-736. and Lecture Notes (Nitro compounds)	
37	Carbonyl	Synthesis, reactivity, enolates, malonate and ethyl acetoacetate synthesis Aldol, Crossed Aldol and Claisen condensation; Conjugate addition reactions of α, β-unsaturated carbonyl compounds with special reference to Michael addition, Mannich reaction, Wittig reaction	Concept about the most important functional group because its electon-deficient carbons and easily broken π -bond . The important name reactions and their applications in organic synthesis to synthesize medicinally useful molecules.	T1: Ch. 12, pg. 571-611. R1: Ch. 21, pg. 524-541. Lecture notes (malonate & ethyl acetoacetate)	
38- 40	Carboxylic acid & derivatives	Synthesis, reactions, conversion for acid to other derivatives	Enrich with this interesting functional groups in terms of preparation, features important products such as aspirin	res	
41-42	Carbohydrates	Introduction and their reactions	Concept on the largest group of organic molecules in nature, the basic structures and reactions of carbohydrates	T1: Ch. 26, pg. 1228-1236, 1244-1253.	

4. Evaluation:

Component	Duration	Weightage (%)	Date and Time	Remarks
Mid Sem test	90 min.	25	4/10 11.00 12.30	Closed Book
			PM	
Tutorial tests	15 min.	25	Continuous	Closed Book
Seminar/interaction/	continuous	10		Open book
assignment				
				Open book (10%)
Comprehensive Examination	3 hr	40	11/12 AN	+ Closed book
				(30%)

- 5. Make-up(s) will be granted only for genuine reasons.
- 6. Chamber consultation hours: : To be anounced
- **7. Notices:** All the notices pertaining to this course will be displayed on **Department of Chemistry Notice Board only**.
- 8. **Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-inCharge
Organic Chemistry I

I

