Investigating treatment pathways

History of OHDSI and OMOP

- The Observational Medical Outcomes Partnership (OMOP) started in 2008
- Planned to be a five-year public/private partnership
- Created a framework for collaborative study in the growing set of EHR, federal, and commercial databases
- The primary goal for OMOP was to improve surveillance for adverse events related to drugs
- The primary barriers were related to the disparate data sources

History of OHDSI and OMOP

- The Observational Health Data Sciences and Informatics (OHDSI) program started in 2014
- Continuation of the mission of OMOP
- Updated the OMOP Common Data Model (CDM)
- Continues and expands OMOP's work
 - Updating terminology mappings
 - Supporting groups interested in research in observational health data
 - Creating new techniques and tools to assist in analysis of such data
 - Working together to study areas of interest
- OHDSI provides a suite of open source analytic tools designed to operate on the OMOP CDM

Role of the CDM

- In this study, the CDM allowed for easier collaboration among sites
- Code only had to be created once and can be run anywhere
- Sites did need to check performance locally to ensure comparable coding

Understanding treatment pathways

- Treatment for a particular condition can vary significantly over time
 - New drugs on the market
 - Discovery of biomarkers
 - Changing costs
- And at different institutions:
 - What is reimbursable?
 - Population differences
 - Institutional policies
 - Personal preferences

Who was involved?

- Ajou University School of Medicine
- MarketScan Commercial Claims and Encounters
- UK Clinical Practice Research Datalink
- Columbia University Medical Center
- General Electric Centricity
- Regenstrief Institute, Indiana Network for Patient Care
- Japan Medical Data Center
- MarketScan Medicaid Multi-State
- MarketScan Medicare Supplemental and Coordination of Benefits
- Optum Clinformatics
- Stanford Translational Research Integrated Database Environment

Diseases and Medications

- Studied three diseases, defined by SNOMED CT terms:
 - Hypertension
 - Type 2 Diabetes
 - Depression
- Each disease had an associated medication class as defined by the Anatomical Therapeutic Chemical (ATC) Classification System or First Databank (FDB):
 - Antihypertensives, diuretics, peripheral vasodilators, beta blocking agents, calcium channel blockers, agents acting on the renin-angiotensin system (ATC)
 - Drugs used in diabetes (ATC) or diabetic therapy (FDB)
 - Antidepresents (ATR or FDB)
- Some exclusions applied

Identifying individuals

- Must have at least one disease and at least one matching medication.
- Must have at least 1 year of history before the first medication date
 - To increase the likelihood that this was a first treatment of the disease by any medication
- Must have at least 3 years of continuous treatment after the index date with some medication targeted to the disease
 - To ensure sufficient time to characterize a pathway

Identifying individuals

Overall treatment pathways

Distinct treatment pathways

- Many individuals had a "unique" treatment pathway, ie, no one else had the same sequence of treatments
 - 10% of diabetes patients
 - 24% of hypertension patients
 - 11% of depression patients
- The response to the question, "In an underlying population of 250 million, based on my 3-year treatment pathway, what patients are like me?" would be "No one."

Differences among sources

Monotherapy trends

- (A) Shows a trend of increasing use of monotherapy (use of a single medication in the entire 3-year window)
- (B) Displays cases in which the sequence contains only the most common monotherapy
- Illustrates that for hypertension and depression, unlike diabetes, the monotherapy trend is not driven by a single medication
- (C) shows cases in which a sequence begins with the most common starting medication for that disease
- It demonstrates the degree to which a single medication dominates as a starting medication for the disease; more variation for hypertension and depression.

ATC to compare switching drug classes

- They used the World Health Organization's Anatomical Therapeutic Chemical (ATC) classification to group medications into classes
- This allowed them to compare the extent to which medications were changed or added
 - Within the same medication class
 - Across medication classes
- They did not note a large change
 - Depression shows a stronger tendency to stay within class than diabetes or hypertension
 - However, depression has fewer classes (6) than diabetes (23 classes) or hypertension (29 classes).

General stability of results

- One might expect a lot of variability given the very different data sources
- Despite this, the results seemed reasonable across sites (eg, trends in figure 5)
- The world is moving toward more consistent therapy over time across diseases and across locations
- There are some large outliers, which is concerning for single site/country studies

Converging on a therapy?

- The proportion of patients with a unique treatment pathway is notable (almost 25% for hypertension)
- There may not be a consistently most effective treatment
- Lack of indications for WHY a particular medication is chosen first
- Very much trial an error currently
- Drug therapies for depression are notable
- Treatment resistant hypertension