Melting in Super-Earths

Lars Stixrude University College London

Super-Earth

Gleise 832c

Wittenmyer et al. (2014)

Super-Earth

Gleise 832c

Wittenmyer et al. (2014)

- Interior remembers formation and long term evolution
- Melting is a first order measure of interior state
- Melting produces external manifestations of internal processes that may be detectable

Earth-like Super-Earths

Silicate Melting

Atmospheric Spectroscopy

Tinetti et al. (2007) Nature Marcq et al. (2012) Nat. Geosci.

Iron Melting

Glatzmaier & Roberts (1995) Nature

Exoplanet magnetic fields

Llama et al. (2013) MNRAS

Super Earth Magnetic Fields

- Cooling is an important, perhaps essential energy source for a dynamo
- Rate of cooling depends on the overlying mantle
- Heat transported by convection
- Heat flux must exceed that conducted down the core adiabat
- ΔT across core-mantle boundary

Bunge et al. (1996) Nature

 Melting may be important for habitability of Super-Earths

Habitable Super-Earths

Borucki et al. (2013) Science

Melting and Habitability

Lundin et al. (2007) Space Sci. Rev.

Hoffmann et al. (1998) Science

Super-Earths

 $R \propto M^{\beta}$ $\beta \simeq 0.27$

Deep Melting Today

Stixrude et al. (2009) EPSL

Grüneisen Parameter

- Increases on compression
- Differs from crystalline phases
- Caused by change in liquid structure

$$\gamma = \left(\frac{\partial lnT}{\partial ln\rho}\right)_{S}$$

First Principles Molecular Dynamics

John Brodholt, UCL

Density Functional Theory

- Predictive power
 - No free parameters
 - No *a priori* assumptions regarding shape of charge density or nature of bonding
- Scope
 - Entire pressuretemperature range of planets (and stars)
 - Entire periodic table
- Accuracy
 - Tested via comparison with experimental data

Sun et al. (2011) GCA Karki et al. (2012) Am. Min.

Accretional Heating

Canup (2012) Science; Zhang et al. (2012) Nature Geo.

Accretional Heating

Gravitational Heating

Molten Planet

Viscosity

- Increases by factor of ~10 from surface to base of mantle
- Silicate liquids remain mobile throughout mantle
- Vigorous convection

 $MgSiO_3 \pm H_2O$

Karki & Stixrude (2010) Science

Magma Ocean Dynamics

Flow is super-turbulent

Heat flux exceeds incoming stellar

Ra =
$$\frac{\alpha \rho g (T_M - T_S) L^3}{\kappa \eta} \approx 6 \times 10^{30}$$

$$\Pr = \frac{\eta}{\rho \kappa} \approx 60$$

$$F = 0.22 \frac{k(T_M - T_S)}{L} \text{Ra}^{2/7} \text{Pr}^{-1/7} \approx 6 \times 10^4 \text{ W m}^{-2}$$

Log(Prandtl Number)

Karki & Stixrude (2010) Science

$$\tau = 3.9 \text{ Gyr} \left(\frac{M_P}{M_{\oplus}}\right)^{1-2\beta} \left(\frac{\eta_0 e^{-\alpha \phi}}{1 \times 10^{21} \text{ Pa s}}\right)^{1/3} \left(\frac{T_P - T_S}{1300 \text{ K}}\right)^{-1/3}$$

Stixrude (2014) Phil. Trans.

Thermal Regulation

Cooling

$$\Delta T = \left(\frac{\eta}{\rho^2 \alpha g c k^2}\right)^{1/4} F^{3/4}$$

Boundary Layer Melting

Grüneisen parameter γ controls slope of melting curve (Lindemann Law) slope of adiabat

$$\frac{d\ln T_{\text{melt}}}{d\ln \rho} = 2\left(\gamma - \frac{1}{3}\right)$$

is greater than

$$\frac{dlnT_{\rm adiabat}}{dln\rho} = \gamma$$

$$\gamma \approx 1$$

Stixrude (2014) Phil. Trans.

Planetary Melting

Super-Geotherms

Super-Earth Magnetic Fields

$$F_{\rm CMB} \approx 80 \text{ mW m}^{-2} \frac{M_P}{M_{\oplus}}$$

is greater than

$$F_{\text{cond}} \approx 2k \frac{T_C}{R_C} \ln \frac{T_0}{T_C} = 60 \text{ mW m}^{-2} \left(\frac{M_P}{M_{\oplus}}\right)^{1-\beta}$$

Stixrude (2014) Phil. Trans.

Conclusions

- Super-Earths began in a completely molten state
- Melt survives in upper and lower mantle boundary layers
- Volcanic activity increases with planetary mass
- Magnetic field strength increases with planetary mass
- Suprises in materials physics await...

Silicate Dynamos?

- Metallization of planetforming materials at super-Earth conditions
- Molten silicate becomes metallic at super-Earth conditions
- Possible seat of dynamo activity

