Topology and geometry of singularities

Zhou Fang, Wenhui Yang, Chenlu Huang May 22, 2024

Motivation

Physical background

Hamiltonian is a matrix corresponding to the system we considered.

Hamiltonian
$$H = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{cases} \text{eigenvalue: energy} \\ \text{eigenvector: state} \end{cases}$$

If Hamiltonian is parametrized, such as parametrized by temperature T:

$$H(T) = \begin{bmatrix} a_{11}(T) & a_{12}(T) & a_{13}(T) \\ a_{21}(T) & a_{22}(T) & a_{23}(T) \\ a_{31}(T) & a_{32}(T) & a_{33}(T) \end{bmatrix}$$

We can draw the energy band

Figure 1: Energy bands

n-band: *n* is the number of eigenvalues

Figure 2: Gapless or Gapped

 T_1 : singular points (points where eigenvalues degenerate)

 $H(T_1)$: gapless Hamiltonian

 $H(T_2)$: gapped Hamiltonian

Exotic phenomina emerge at singular points, so whether a loop in parameter space touches singular points is considerable.

Consider the matrix

$$H = \begin{bmatrix} f_3 & f_2 \\ -f_2 & -f_3 \end{bmatrix}$$

 $f_3, f_2 \in \mathbb{R}$

Draw the degeneracy line:

Figure 3: Degeneracy line

The following numbers means the number of eigenvalues

- Type I: 2
- Type II: $2 \to 1 \to 2 \to 1 \to 2 \to 1 \to 2 \to 1 \to 2 \to 1 \to 2$
- Type III: 1

Goal: Algebraic topology (computable invariants) for those loops to classify the evolution of eigenvalues and eigenstates.

Goal: Algebraic topology (computable invariants) for those loops to classify the evolution of eigenvalues and eigenstates.

There are many cases: Hermitian/non-Hermitian, 2-band/3-band/n-band, whether loop can intersect singular points....

D_2 -bundle over $SO(3)/D_2$

Physical picture for this bundle

- ullet A 3-band gapped Hermitian Hamiltonian can be written as $H=\sum_{j=1}^3 j \left|u^j
 ight> \left< u^j \right|$
- H can be determined by a set of "right hand" orthonormal vectors $(|u^1\rangle, |u^2\rangle, |u^3\rangle$ form an element in SO(3))

 H is unchanged for two of eigenvectors flip: $|u^j\rangle \mapsto -|u^j\rangle$ (modulo D_2).
- H can be describe by $SO(3)/D_2$

Consider the bundle

$$D_2 \hookrightarrow SO(3) \xrightarrow{\pi} SO(3)/D_2 =: X, \quad \pi(x) = \bar{x}$$

Goal: The isomorphism classes of principal D_2 -bundles over X are denoted by $Prin_{D_2}(X)$ and $Prin_{D_2}(X) \simeq [X,BD_2]$ where BD_2 is the classifying space of D_2 . The following will show which $\phi \in [X,BD_2]$ corresponds to the principal D_2 -bundle we considered.

We need to find $\phi: X \to Gr_1(\mathbb{R}^{\infty}) \times Gr_1(\mathbb{R}^{\infty})$, such that $\pi: SO(3) \to X$ appears in the pullback of ϕ and $f \times f$:

$$SO(3) \longrightarrow V_1(\mathbb{R}^{\infty}) \times V_1(\mathbb{R}^{\infty}) = ED_2$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{f \times f}$$

$$X \longrightarrow_{\phi} Gr_1(\mathbb{R}^{\infty}) \times Gr_1(\mathbb{R}^{\infty}) = BD_2$$

Claim: $\phi: SO(3)/D_2 \to Gr_1(\mathbb{R}^{\infty}) \times Gr_1(\mathbb{R}^{\infty})$ is

$$\phi\left(\overline{\begin{bmatrix} a \\ b \\ c \end{bmatrix}}\right) = (span\left(\begin{bmatrix} a & 0 & 0 & \cdots \end{bmatrix}\right), span\left(\begin{bmatrix} b & 0 & 0 & \cdots \end{bmatrix}\right)$$

The pullback of ϕ and $f \times f$ is constructed as:

$$S = X imes_{BD_2} ED_2 = \{ \left(egin{bmatrix} a \ b \ c \end{bmatrix}, (v_1, v_2)
ight) | egin{bmatrix} a \ b \ c \end{bmatrix} \in X, (v_1, v_2) \in V_1\left(\mathbb{R}^\infty
ight) imes V_1\left(\mathbb{R}^\infty
ight),$$

$$\operatorname{span}\left(\begin{bmatrix} a & 0 & 0 & \cdots \end{bmatrix}\right) = \operatorname{span}\left(v_1\right), \operatorname{span}\left(\begin{bmatrix} b & 0 & 0 & \cdots \end{bmatrix}\right) = \operatorname{span}\left(v_2\right)\right\}$$

Since v_1, v_2 are orthonormal, we have $v_1 = [\pm a, 0, 0, \cdots], v_2 = [\pm b, 0, 0, \cdots].$

2-band Hermitian systems

Set-up for Hermitian systems

For a Hermitian system, denote the matrix and the eigenvalues by

$$H_2' = H_2'(f_1, f_3) = \begin{bmatrix} f_3 & f_1 \\ f_1 & -f_3 \end{bmatrix}, \omega_{\pm}' = \pm \sqrt{f_1^2 + f_3^2}.$$

It has two distinct eigenvalues when $(f_3, f_1) \neq (0, 0)$. So a parameter space for this Hamiltonian H_2' is $\mathbf{R}^2 - \{(0, 0)\}$:

Hermitian system

For a Hermitian system, $H_2^{'}=H_2^{'}(f_1,f_3)=\begin{bmatrix}f_3&f_1\\f_1&-f_3\end{bmatrix}$, the eigenvalues

$$\omega_{\pm}' = \pm \sqrt{f_1^2 + f_3^2}.$$

Let $U_1 = \{\mathbf{R}^2 - \{(f_3, 0), f_3 \le 0\}\}, U_2 = \{\mathbf{R}^2 - \{(f_3, 0), f_3 \ge 0\}\}$, then we know that $U_1 \cup U_2 = \mathbf{R}^2 - \{(0, 0)\}$.

In U_1 , the corresponding eigenvectors are

$$v_{+}^{'} = rac{1}{\sqrt{2(f_{1}^{2} + f_{3}^{2}) + 2f_{3}\sqrt{f_{1}^{2} + f_{3}^{2}}}} \begin{bmatrix} f_{3} + \sqrt{f_{1}^{2} + f_{3}^{2}} \\ f_{1} \end{bmatrix},$$

$$v'_{-} = \frac{1}{\sqrt{2(f_1^2 + f_3^2) + 2f_3\sqrt{f_1^2 + f_3^2}}} \begin{bmatrix} -f_1 \\ f_3 + \sqrt{f_1^2 + f_3^2} \end{bmatrix}.$$

Hermitian system

In U_2 ,

$$v'_{+} = \frac{1}{\sqrt{2(f_1^2 + f_3^2) - 2f_3\sqrt{f_1^2 + f_3^2}}} \begin{bmatrix} f_1 \\ -f_3 + \sqrt{f_1^2 + f_3^2} \end{bmatrix},$$

$$v'_{-} = \frac{1}{\sqrt{2(f_1^2 + f_3^2) - 2f_3\sqrt{f_1^2 + f_3^2}}} \begin{bmatrix} f_3 - \sqrt{f_1^2 + f_3^2} \\ f_1 \end{bmatrix}.$$

The transition map of v'_+, v'_- is

$$t_{\pm} = \begin{cases} 1, & f_1 > 0 \\ -1, & f_1 < 0 \end{cases} \tag{1}$$

Hopf bundle

$$v'_{+} = \frac{1}{\sqrt{2(f_1^2 + f_3^2) - 2f_3\sqrt{f_1^2 + f_3^2}}} \begin{bmatrix} f_1 \\ -f_3 + \sqrt{f_1^2 + f_3^2} \end{bmatrix},$$

Notice that v'_+, v'_- are invariant under scaling $(f_3, f_1) \mapsto (\lambda f_3, \lambda f_1)$ for $\lambda \in \mathbf{R}_{>0}$, so the normalized eigenbundle is of the form $\pi : \mathbf{R}_{>0} \times E \to \mathbf{R}_{>0} \times S^1$, where E is a principal S^0 -bundle over S^1 .

There are only two principal S^0 -bundles over S^1 (up to isomorphism). The total space is a connected space, so the bundle is isomorphic to a Hopf bundle $S^0 \hookrightarrow S^1 \to S^1$.

Hermitian system

If we let $(f_3, f_1) \in U_1$ varies along the path $\{f_3^2 + f_1^2 = 1\}$, we may assume $(f_3, f_1) = (\cos \theta, \sin \theta)$, where $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Then $\omega_{+}^{'}=1, \omega_{-}^{'}=-1$, and the eigenvectors can be written as:

$$v_{+}^{'} = \begin{bmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} \end{bmatrix}, \quad v_{-}^{'} = \begin{bmatrix} -\sin \frac{\theta}{2} \\ \cos \frac{\theta}{2} \end{bmatrix}.$$

Hermitian system

Similarly, let $(f_3, f_1) \in U_2$ varies along the path $\{f_3^2 + f_1^2 = 1\}$, assume $(f_3, f_1) = (\cos \theta, \sin \theta)$, where $\theta \in [\frac{\pi}{2}, \frac{3\pi}{2}]$. We can know that

$$v_{+}^{'} = \begin{bmatrix} \cos rac{ heta}{2} \\ \sin rac{ heta}{2} \end{bmatrix}, \quad v_{-}^{'} = \begin{bmatrix} -\sin rac{ heta}{2} \\ \cos rac{ heta}{2} \end{bmatrix}.$$

Hence, we can see that the eigenstates of a Hermitian system can be visualized as:

2-band non-Hermitian systems

Set-up for Non-Hermitian systems

For a non-Hermitian system, denote the matrix and the eigenvalues by

$$H_2 = H_2(f_2, f_3) = \begin{bmatrix} f_3 & f_2 \\ -f_2 & -f_3 \end{bmatrix}, \omega_{\pm} = \pm \sqrt{f_3^2 - f_2^2}.$$

It has a double root if and only if $f_2 = \pm f_3$. As a parameter space for this Hamiltonian H_2 , the f_2f_3 -plane becomes a stratified space:

Non Hermitian system

For a non-Hermitian system, $H_2 = H_2(f_2, f_3) = \begin{bmatrix} f_3 & f_2 \\ -f_2 & -f_3 \end{bmatrix}, \omega_{\pm} = \pm \sqrt{f_3^2 - f_2^2}.$ Let $W_1 = \mathbf{R}^2 - \{(f_3, 0), f_3 \le 0\}, \quad W_2 = \mathbf{R}^2 - \{(f_3, 0), f_3 \ge 0\},$ then we know that $W_1 \cup W_2 = \mathbf{R}^2 - \{(0, 0)\}.$

In W_1 ,

$$v_{+} = \frac{1}{\|*\|} \begin{bmatrix} -f_3 - \sqrt{f_3^2 - f_2^2} \\ f_2 \end{bmatrix}, v_{-} = \frac{1}{\|*\|} \begin{bmatrix} -f_2 \\ f_3 + \sqrt{f_3^2 - f_2^2} \end{bmatrix}.$$

In W_2 ,

$$v_{+} = \frac{1}{\|*\|} \begin{bmatrix} -f_{2} \\ f_{3} - \sqrt{f_{3}^{2} - f_{2}^{2}} \end{bmatrix}, v_{-} = \frac{1}{\|*\|} \begin{bmatrix} f_{3} - \sqrt{f_{3}^{2} - f_{2}^{2}} \\ -f_{2} \end{bmatrix}.$$

Non Hermitian system

And the transition map of v_+ from W_1 to W_2 can be written by

$$t_{+} = \begin{cases} 1, & f_{2} > 0 \\ -1, & f_{2} < 0 \end{cases}$$
 (2)

Meanwhile, the transition map t_- of v_- from W_1 to W_2 has the same formula as v_+ .

Real eigenvalues

We first consider the situation when two eigenvalues are real, i.e, $f_3^2 - f_2^2 > 0$. Again, let (f_3, f_2) varies along the path $\{f_3^2 + f_2^2 = 1\}$.

In
$$W_1 \cap \{f_3^2 + f_2^2 = 1\} \cap \{f_3^2 - f_2^2 > 0\}$$
,

$$v_{+} = \frac{1}{\sqrt{2f_3^2 + 2f_3\sqrt{f_3^2 - f_2^2}}} \begin{bmatrix} -f_3 - \sqrt{f_3^2 - f_2^2} \\ f_2 \end{bmatrix},$$

$$v_{-} = rac{1}{\sqrt{2f_{3}^{2} + 2f_{3}\sqrt{f_{3}^{2} - f_{2}^{2}}}} \left[rac{-f_{2}}{f_{3} + \sqrt{f_{3}^{2} - f_{2}^{2}}}
ight].$$

Figure

First if we look in a 2-dimensional plane, when θ ranges from $-\frac{\pi}{4}$ to $\frac{\pi}{4}$, we have

Figure 4: When $\theta=-\frac{\pi}{4}, v_+=-v_-$, then v_+ travels clockwise while v_- travels counterclockwise, When $\theta=0, v_+\perp v_-$, and $v_+=v_-$ when $\theta=\frac{\pi}{4}$.

Figure

Moreover, the eigenbundle can be then visualized as below.

Similarly, when θ ranges from $\frac{3\pi}{4}$ to $\frac{5\pi}{4}$,

Figure 5: When $\theta=\frac{3\pi}{4}, v_+=v_-$, then v_+ travels counterclockwise while v_- travels clockwise, When $\theta=\pi, v_+\perp v_-$, and $v_+=-v_-$ when $\theta=\frac{5\pi}{4}$.

For the part where θ ranges from $\frac{3\pi}{4}$ to $\frac{5\pi}{4}$, we can visualize it in a same manner.

Put them together, we can get:

Figure 6: The right one corresponds to $\theta \in [-\frac{\pi}{4}, \frac{\pi}{4}]$, and the left one corresponds to $\theta \in [\frac{3\pi}{4}, \frac{5\pi}{4}]$.

Complex eigenvalues

If $f_2^2 - f_3^2 < 0$, two eigenvalues then become pure imaginary number, i.e.,

$$\omega_{+} = i\sqrt{f_2^2 - f_3^2}, \quad \omega_{-} = -i\sqrt{f_2^2 - f_3^2}.$$

The two corresponding eigenvectors have the form of

$$v_{+} = \frac{1}{\sqrt{2}|f_{2}|} \begin{bmatrix} -f_{3} - i\sqrt{f_{2}^{2} - f_{3}^{2}} \\ f_{2} \end{bmatrix}, \quad v_{-} = \frac{1}{\sqrt{2}|f_{2}|} \begin{bmatrix} -f_{3} + i\sqrt{f_{2}^{2} - f_{3}^{2}} \\ f_{2} \end{bmatrix}.$$

Angles in complex vectors

Let
$$\vec{a} = (a_1, a_2, \dots, a_n), \vec{b} = (b_1, b_2, \dots, b_n)$$
, where $a_i, b_j \in \mathbf{C}$.
 $\vec{A} = (A_1, A_2, \dots, A_{2n}), \vec{B} = (B_1, B_2, \dots, B_{2n})$, where $A_{2i-1} = Re(a_i), A_{2i} = Im(a_i), B_{2i-1} = Re(b_i), B_{2i} = Im(b_i)$.

- Euclidean angle: $\cos(\vec{a}, \vec{b}) = \frac{(\vec{A}, \vec{B})}{|A||B|}$.
- Hermitian angle Recall the Hermitian inner product of \vec{a}, \vec{b} is $(\vec{a}, \vec{b})_{\mathbf{C}} = \sum_{i=1}^{n} a_{i} \overline{b_{i}}$, it is a complex number, so we may assume $\frac{(\vec{a}, \vec{b})_{\mathbf{C}}}{|\vec{a}||\vec{b}|} = \rho e^{i\psi}$, where $0 < \rho \le 1$ and $0 \le \psi \le 2\pi$. Hence Hermitian angle: $\cos_{H}(\vec{a}, \vec{b}) = \rho$.
- Pseudo-angle is defined to be ψ .

Angles in complex vectors

Kähler angle

Let
$$\vec{A}' = (-A_2, A_1, \cdots, -A_{2n}, A_{2n-1}), \vec{B}' = (-B_2, B_1, \cdots, -B_{2n}, B_{2n-1})$$
, where $A_{2i-1} = Re(a_i), A_{2i} = Im(a_i), B_{2i-1} = Re(b_i), B_{2i} = Im(b_i)$.
Then
$$\cos \kappa (\vec{a}, \vec{b}) \sin (\vec{a}, \vec{b}) = \cos \kappa (\vec{A}, \vec{B}) \sin (\vec{A}, \vec{B}) = \cos (\vec{A}', \vec{B}).$$

$$\cos_K(\vec{a}, \vec{b}) \sin(\vec{a}, \vec{b}) = \cos_K(\vec{A}, \vec{B}) \sin(\vec{A}, \vec{B}) = \cos(\vec{A'}, \vec{B}).$$

Computations

The Hermitian product of v_+ and v_-

$$\langle v_+, v_-
angle = rac{f_3}{f_2} \left(rac{f_3}{f_2} + i \sqrt{1 - \left(rac{f_3}{f_2}
ight)^2}
ight).$$

If we consider the Hermitian angle of v_+ and v_- , then we know $\cos_H \langle v_+, v_- \rangle = |\frac{f_3}{f_2}|$. The Kähler angle of two real vectors is $\frac{\pi}{2}$.

$$H[f_1, f_2, f_3] = \begin{bmatrix} 1 & f1 & f2 \\ -f1 & -1 & f3 \\ -f2 & f3 & -1 \end{bmatrix}$$

• 4 NLs and 2 NILs

They are two circles:

$$egin{cases} f_1 = \cos t \ f_2 = -\cos t \ f_3 = 1 + \sin t \end{cases} , t \in [0, 2\pi) \ f_3 = 1 + \sin t \ \begin{cases} f_1 = \cos t \ f_2 = \cos t \ f_3 = -1 + \sin t \end{cases} , t \in [0, 2\pi) \end{cases}$$

• 5 MPs

$$(0,0,0)$$

$$(\frac{2\sqrt{2}}{3}, -\frac{2\sqrt{2}}{3}, \frac{2}{3})$$

$$(-\frac{2\sqrt{2}}{3}, \frac{2\sqrt{2}}{3}, \frac{2}{3})$$

$$(\frac{2\sqrt{2}}{3}, \frac{2\sqrt{2}}{3}, -\frac{2}{3})$$

$$(-\frac{2\sqrt{2}}{3}, -\frac{2\sqrt{2}}{3}, -\frac{2}{3})$$

$$\begin{cases} f_1 = \frac{1}{2}\cos t \\ f_2 = \frac{1}{2}\sin t , t \in [0, 2\pi) \\ f_3 = 0 \end{cases}$$

The eigenvalues are

$$\lambda_1 = -1, \lambda_2 = -\frac{\sqrt{3}}{2}, \lambda_3 = \frac{\sqrt{3}}{2},$$

and the corresponding eigenvectors are

$$v_1 = \begin{pmatrix} 0 \\ -\tan t \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} (\sqrt{3}-2)\csc t \\ \cot t \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} -(\sqrt{3}+2)\csc t \\ \cot t \\ 1 \end{pmatrix}$$

Traces of eigenstates

$$\begin{cases} f_1 = \frac{1}{2}\cos(\frac{1}{4}\pi + t) \\ f_2 = \frac{1}{2}\sin(\frac{1}{4}\pi + t) , t \in [0, \pi) \\ f_3 = 0 \end{cases}$$

$$\begin{cases} f_1 = \frac{1}{2\sqrt{2}}\cos t \\ f_2 = \frac{1}{2\sqrt{2}}\cos t , t \in [\pi, 2\pi) \\ f_3 = -\frac{1}{2}\sin t \end{cases}$$

$$\begin{cases} f_1 = \cos t \\ f_2 = \cos t \quad , t \in [0, 2\pi) \end{cases}$$

$$f_3 = 2 + \sin t$$

The corresponding eigenvectors are

$$v_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} \frac{1}{4}(\sqrt{-14 - 18\cos 2t}\sec t + 2\tan t) \\ 1 \\ 1 \end{pmatrix}$$
 $v_3 = \begin{pmatrix} \frac{1}{4}(-\sqrt{-14 - 18\cos 2t}\sec t + 2\tan t) \\ 1 \\ 1 \end{pmatrix}$

References

- 1.Principal bundles, Hopf bundles and eigenbundles, Barbara Roos. https://www.math.uni-tuebingen.de/de/forschung/maphy/personen/dr-barbara-roos/doc/theses/roos_semester_project.pdf
- 2.Non-Abelian band topology in noninteracting metals, Wu, QuanSheng and Soluyanov, Alexey A. and Bzdušek,Tomáš.
- 3. Angles in Complex Vector Spaces, Scharnhorst, K.

