

CS 146: Intro to Web Programming and Project Development

Instructor: Iraklis Tsekourakis

Lieb 213

Email: itsekour@stevens.edu

TCP/IP II

Objectives

Students will be able to:

- Define the layers in TCP/IP
- Understand classes of networks
- Work with IP addresses and subnet masks to determine how many hosts can be connected

Question

How many hosts can you put on a Class C network? **

Answer

 How many hosts can you put on a Class C network?

2^8

- 1 (for the network itself)
- 1 (broadcast address)
- = 256 2 = 254

Subnet Mask Notation

- Subnet masks can be specified with
 - Binary

11111111.00000000.00000000.00000000

Dotted Decimal

255.0.0.0

Slash notation, more properly called CIDR notation (short for Classless Inter-Domain Routing)

/8

Example

- How many subnets and hosts per subnet can you get from the network 192.168.92.0/28? (Steps following)
 - Determine class
 - Convert subnet mask to binary
 - Draw the great divide and subdivide
 - Count by the powers of 2

Problem **

- Network specification is 69.117.198.0/28
 - What is the subnet mask in binary and dotted decimal notations?
 - How valid subnets can there be?
 - How many hosts can there be in each subnet?

Answers

- 255.255.255.240
- $2^{20} = 1,048,576$ subnets
- $2^4 2 = 14$ hosts per subnet

Real-World Network setup (1)

by Philip Giordano

Real-World Network setup (2)

by Philip Giordano

- Computers on one subnet can only see each other; they cannot see computers on other subnets.
- On the switch, each port can be set to a different VLAN*, which DHCP will set the IP address to the correct subnet.
- Otherwise, each computer would have to have a static IP, correlating to its specific subnet, assuming no VLANs were set on the switch.
- DHCP Server can manage everything
 - Lets say we set the subnet mask to 255.255.0.0
 - One subnet: 10.1.x.0-254
 - Second subnet: 10.2.x.0-254

Real-World Network setup (3)

by Philip Giordano

Routing Basics

- Router is a device with 2 separate IP addresses: one for LAN one for WAN
- LAN address is your "gateway"
- When a host is not found, the gateway is asked
- Router checks its routing table to know which IP to ask (probably on the WAN port)
- Routers can be connected to other routers
- NAT (Network Address Translation) allows to modify IP headers to provide the WAN address
- Can also use port forwarding / static NAT

Core Architecture

- Early architecture of the Internet consisted of a small number of core routers
 - They contained comprehensive information about the inter-network
 - Adding more routers expanded the core
 - Core became too large
- Two-level hierarchy was formed with noncore routers on the periphery of the core
 - Still didn't scale well

Autonomous System (AS) Architecture

- Decentralized architecture
- Treats internetwork as a set of independent groups
- Each group (AS) consists of a set of routers and networks controlled by a particular organization or administrative entity
 - Internal routers connect only to other routers in the same AS
 - Border routers connect to other routers within the
 AS and to routers in one or more other ASes

IPv6

- Becoming increasing popular due to the large number of hosts on the Internet
- Uses 128-bit addresses
- About 3.4 x 10³⁸ addresses
 - That's enough for many trillions to be assigned to every person on the planet!
- No need for NAT!
- Subnet mask fixed to 64 bits
- Stateless Address Autoconfiguration (SLAAC)
 - When first connected to a network, a host sends a link-local router solicitation multicast request for its configuration parameters; routers respond to such a request with a router advertisement packet that contains Internet Layer configuration parameters.
- Mandatory support of Internet Protocol Security (IPsec)

IPv6 Supported Address Types

- Unicast Standard unicast addresses as in IPv4.
- Multicast A message sent to a multicast address goes to all devices in the group.
- Anycast When a message must be sent to any member of the group, but does not need to be sent to all of them.
 - A packet sent to an anycast address is delivered to the closest member of a group, according to the routing protocol's measure of distance

IPv6 Addresses and Zero Compression

- Addresses written as 8 groups of 4 hex digits, separated by colons
 - 2011:0BCD:0000:0000:0000:A3BD:0192:BA89
- To simplify, leading 0s in each word can be omitted and strings of 0s are replaced with two colons.
- For example the previous address can be written as
 - 2011:BCD::A3BD:192:BA89
- IPv4-mapped IPv6 addresses
 - 80 bits set to 0, 16 set to 1, and 32 bits of IPv4 address
 (::FFFF:192.168.1.12), or more properly.. **
- Tunneling encapsulates IPv6 headers in an IPv4 packet.

What Happened to IPv5?

- In the late 1970's, a protocol named ST The Internet Stream Protocol - was created for the experimental transmission of voice, video, and distributed simulation
- Two decades later, this protocol was revised to become ST2 and started to get implemented into commercial projects by groups like IBM, NeXT, Apple, and Sun
- ST2 distinguishes its own packets with an Internet Protocol version number 5, although it was never known as IPv5

TCP

- One of the core protocols in the TCP/IP suite
- TCP provides reliable, ordered and error-checked delivery of a stream of octets between programs running on computers connected to a local area network, intranet, or the public Internet
- It resides at the transport layer
- Accepts data from a data stream, segments it into chunks, and adds a TCP header, creating a TCP segment
- TCP segment is encapsulated into an IP datagram
- Windowing!?

Connection Termination Procedure

Sockets

- A socket is a combination of an IP address and a port number
- Ports are like "doors" on your computer, they can be open or closed
- On a standard client/server setup
 - Server has a local socket to receive incoming connections
 - Client opens a socket to connect to the server
 - Server receives the connection, accepting a new socket (the client's)
- Port range is 0-65535

Ports

PORT	SERVICE	DESCRIPTION
20	FTP Data	Port used by the FTP protocol to send data to a client
22	SSH	Used as secure replacment protocol for Telnet
23	Telnet	Port used by Telnet to remotely connect to a workstation or server
25	SMTP	Port used to send e-mail over the internet
53	DNS	Port used for DNS requests and zone transfers
80	HTTP	Protocol used for showing web pages on a browser
110	POP3	Post Office Protocol (POP3) is used to receive/read e-mail
143	IMAP	Internet Message Access Protocol (IMAP) is a new protocol to read e-mail
443	HTTPS	Port used for securing web traffic
3389	RDP	Port used by Remote Desktop to remotely manage a windows system