Vol. 23 No. 1

文章编号:1002-8743(2006)01-0015-06

On Counting the Number of Non – isomorphic Bipartite Graphs

XU Shang-Jin, WU Zheng-Fei, ZHU Yan

(College of Mathematics and Information Science, Guangxi University, Nanning 530004, P. R. China)

Abstract: A combinatoric method which counts the number of non-isomorphic bi-partite graphs with type [m, m] is obtained by classifying their connection matrices.

Key words: bipartite graph; connection matrix; orbit

* Chinese Library Classification: O157.5 Document code: A

1 Introduction

A graph G is called bipartite graph if its vertex set $V = U \cup W = \{u_1, u_2, \dots, u_m\} \cup \{w_1, w_2, \dots, w_n\}$, where $U \cap W = \emptyset$, and edge set E is a collection of pairs $e = \{u, w\}$, where $u \in U$ and $w \in W$. We denote such a bipartite graph by writing G = (U, E, W) and call it an [m, n] type bipartite graph. Without loss of generality, we may assume that $m \leq n$.

The combinatoric question determining the number of non-isomorphic graphs with certain character is fundamental and interesting. In this paper, a combinatoric method which counts the number of non-isomorphic bipartite graphs with type [m, m] is given by classifying their connection matrices. Speaking of two graphs to be isomorphic, the general definition comes from [2].

Now we define the *connection matrix* A of an [m, m] type bipartite G with edge set E to be the following $m \times n$ matrix:

$$A = (a_{ij})_{m \times n}$$
; where $a_{ij} = \begin{cases} 1 & \{u_i, w_j\} \in E \\ 0 & \{u_i, w_j\} \notin E \end{cases}$.

Denote M to be the set of all $m \times n$ matrices over the two elements field GF(2). Let $\sigma = (\sigma_1 \sigma_2) \in S_m \times S_n$; where S_n is the symmetric group of degree n. Then σ may induce an action on M still denoted by σ , as follows:

$$A^{\sigma} := (a_{i_1}^{\sigma_1})_{m \times n}^{\sigma_2} \in M$$
; where $A = (a_{ij})_{m \times n} \in M$.

For any subgroups Γ of $S_m \times S_n$; each orbit of Γ on M is $A^{\Gamma} := \{A^{\sigma} | \sigma \in \Gamma \}$ where $A \in M$: Obviously, all graphs with connection matrices in A^{Γ} are isomorphic to each other.

If m < n, we easily check that the graphs with type [m,n] are isomorphic if and only if their connection matrices belong to an orbit of $S_m \times S_n$ on M. It is means that the above combinatoric question is equivalent to count the number of all orbits of $S_m \times S_n$.

There are the well-known Burnside lemma below:

Burnside Lemma The number of the orbits of group Γ acting on M is:

Foundation item: National Natural Science Foundations of China (0161001); Guangxi Natural Science Foundations of China (0542044)

Biography: XUShang-jin , male , professor , doctor.

^{*} **Recieved date** : 2005 - 12 - 21

$$\frac{1}{|\Gamma|} \sum_{\sigma \in \Gamma} |\operatorname{fix}_{M}(\sigma)|$$
,

where $\operatorname{fix}_{\mathbf{M}}(\sigma) = \{A \in \mathbf{M} \mid A^{\sigma} = A \}$ and $|\operatorname{fix}_{\mathbf{M}}(\sigma)|$ is the number of those elements in \mathbf{M} fixed by σ .

We denote the set of non-isomorphic bipartite graphs with type [m , n] by \mathcal{G}_m , and let $\Gamma = S_m \times S_n$, then

$$\left| \mathcal{G}_{m,n} \right| = \frac{1}{|\Gamma|} \sum_{\sigma \in \Gamma} \left| \operatorname{fix}_{M}(\sigma) \right| , \qquad (1)$$

Once m=n, the counting problem is little complex. In fact, let $\pi:A \mapsto A^*$, the transpose of A and then denote $\Gamma:=S_n^2$, π , where $S_n^2:=S_n\times S_n$. Clearly, Γ still acts on \mathbf{M} and the number of its orbits equals the number of non-isomorphic bipartite graphs with type [n,n]:

$$|\mathcal{G}_{n,n}| = \frac{1}{|\Gamma|} \sum_{\alpha \in \Gamma} |\operatorname{fix}_{M}(\alpha)|.$$
 (2)

Observing formulas (1) and (2), the key work is how to count $|\operatorname{fix}_{M}(\sigma)|$ ($\sigma \in S_{m} \times S_{n}$) if m < n and $|\operatorname{fix}_{M}(\alpha)|$ ($\alpha \in S_{n}^{2}$, π) if m = n. This will be done in next section.

2 Preliminaries

We denote $\Omega = \{(i,j) | i \in \{1,2,\ldots,m\}, j \in \{1,2,\ldots,n\}\}$ for $m,n \in \mathbb{N}$, where N is the set of positive integers. For a permutation subgroup Γ on Ω each orbit of Γ is called a Γ -orbital. If Γ is a cyclic group generated by a permutation σ , then the Γ -orbitals are briefly called σ -orbitals.

Specially, if $\Gamma \leqslant S_m \times S_n$; we may have a natural action of Γ on Ω by (i, j) :=(i^{σ_1} , j^{σ_2}) for each σ =(σ_1 , σ_2) $\in \Gamma$ and (i; j) $\in \Omega$.

Lemma 2.1 Let $\sigma = (\sigma_1, \sigma_2) \in \Gamma$ and denote the number of all σ -orbitals in Ω by $c(\sigma)$: Then $|\operatorname{fix}_M(\sigma)| = 2^{d(\sigma)}$.

The proofs of Lemma 2.1 and the following except Lemma 2.7 are left out due to their simpleness.

Corollary 2.2 The number of Γ -orbits on M is:

$$\frac{1}{|\Gamma|} \sum_{\sigma \in \Gamma} 2^{\sigma(\sigma)}$$
.

Thus , the problem of counting $|\operatorname{fix}_M(\sigma)|$ is turned into how to count $d(\sigma)$, the number of the σ -orbitals in Ω .

First, we decompose σ_1 , σ_2 respectively into products of several disjoint cycles:

$$\sigma_{1} = (i_{1}^{(1)}, \dots, i_{s_{1}}^{(1)}) (i_{1}^{(2)}, \dots, i_{s_{2}}^{(2)}) \dots (i_{i}^{(u)}, \dots, i_{u}^{(u)}),
\sigma_{2} = (j_{1}^{(1)}, \dots, j_{t_{1}}^{(1)}) (j_{1}^{(2)}, \dots, j_{t_{2}}^{(2)}) \dots (j_{1}^{(w)}, \dots, j_{t_{w}}^{(w)}).$$
(3)

where $\sum_{k=1}^{u} s_k = m$, $\sum_{l=1}^{w} t_l = n$ and s_k , t_l may equal 1.

For the kth cycle ($i_1^{(k)}$,..., $i_{s_k}^{(k)}$) of σ_1 and the lth cycle ($j_1^{(l)}$,..., $j_{t_l}^{(l)}$) of σ_2 , we denote

$$\Omega_{kl}^{(\sigma)} = \{ (i \ j) \mid i \in \{i_1^{(k)}, \dots, i_{s_k}^{(k)}\}; j \in \{j_1^{(l)}, \dots, j_{t_l}^{(l)}\} \}.$$

Obviously,

$$\Omega = \bigcup_{k=1}^{u} \bigcup_{l=1}^{w} \Omega_{kl}^{(\sigma)}.$$
 (4)

Lemma 2.3 (1) $\Omega_{kl}^{(\sigma)}$ consists of (s_k, t_l) σ -orbitals , where (s_k, t_l) is the great common divisor of s_k and t_l ; (2) $d(\sigma) = \sum_{k=1}^{u} \sum_{l=1}^{w} (s_k, t_l)$.

Remark 数据he suffix r+1 is greater than s_k or t_l , we always take its value on module s_k or t_l .

Obviously, if h is the least positive integer which satisfies both $i^{\sigma_1^h} = i$ and $j^{\sigma_2^h} = j$ then h equals [s_k , t_l], the least common multiple. Thus, (i; j) belongs to the following orbit:

$$\{(i,j) = (i_1^{(k)},j_1^{(l)})(i_2^{(k)},j_2^{(l)}),...(i_h^{(k)},j_h^{(l)})\} \subseteq \Omega_{kl}^{(\sigma)},$$

and its length right equals $h = [s_k, t_l]$ and the length does not relate with the choice of (i, j) yet. Anyway, $\Omega_{kl}^{(\sigma)}$ is a union of several σ -orbitals whose lengths are all equal to h. Since $\Omega_{kl}^{(\sigma)}$ has $s_k \times t_l$ elements, then the number of σ -orbitals there equals:

$$\frac{s_k \times t_l}{[s_k, t_l]} = (s_k, t_l).$$

(2) holds immediately from (1) and formula (4).

When m=n, we refer to Lemma 2.1 to have $|\operatorname{fix}_{M}(\alpha)|=2^{d(\alpha)}$, where $\alpha\in S_{n}^{2}$, π and $d(\alpha)$ is still defined as the number of α -orbitals in Ω .

Lemma 2.4 (1) For any $\sigma = (\sigma_1, \sigma_2) \in S_n^2$, we have $\pi^{-1}\sigma\pi = \sigma^* := (\sigma_2, \sigma_1)$; (2) $|S_n^2, \pi| = 2|S_n^2|$, that is, $S_n^2, \pi = S_n^2 \times \pi = S_n^2 + S_n^2\pi$.

Applying the above lemma to formula (2), we have

$$|\mathcal{G}_{n,n}| = \frac{1}{2|S_n^2|} \sum_{\sigma \in S^2} (2^{c(\sigma)} + 2^{c(\sigma\pi)}).$$
 (5)

so , the further work is how to count $c(\sigma\pi)$ and $\sum_{\sigma \in S^2} 2^{c(\sigma\pi)}$.

Lemma 2.5 Let σ_1 , $\sigma_2 \in S_n$. We denote $\alpha := (\sigma_1, \sigma_2)\pi$, $H := \alpha$ and $\sigma = (\sigma_1\sigma_2, \sigma_2\sigma_1)$, $K := \sigma$. Then $H = K + \alpha K$.

Obviously , \forall (i ; j) \in Ω ,(i ,j) K is a σ -orbital and (i ,j) H is an α -orbital.

Lemma 2.6 (1) $\forall (i,j) \in \Omega ; (i,j)^H = (i,j)^K \cup (i,j)^{nK};$

 $(2)(i,j)^{\mathcal{Y}} \in (i,j)^{\mathcal{K}} \iff (i,j)^{\mathcal{Y}} = (i,j)^{\mathcal{K}}.$

Remark The lemma 2.6 illustrates that an α -orbital which contains (i, j) equals either a σ -orbital which contains (i, j) or a union of the two σ -orbitals, one of which contains (i, j) and the other contains (i, j). It depends on whether (i, j) belongs to that σ -orbital which contains (i, j).

We now count α α), the number of α -orbitals in Ω as follows.

Lemma 2.7 Let $\sigma_1 \sigma_2$ be decomposed into a product of several disjoint cycles below:

$$\sigma_1 \sigma_2 = (i_1^{(1)}, \dots, i_{t_1}^{(1)}) (i_1^{(2)}, \dots, i_{t_2}^{(2)}) \dots (i_1^{(u)}, \dots, i_{t_u}^{(u)}),$$
(6)

where $\sum_{k=1}^{u} t_k = n$ and t_k may equal 1. Then

$$c(\alpha) = \sum_{k=1}^{u} [\frac{t_k+1}{2}] + \sum_{k$$

where $\begin{bmatrix} \frac{t}{2} \end{bmatrix}$ denotes the integer part of $\frac{t}{2}$.

Proof Suppose $\sigma_1: i_t^{(k)} \rightarrow j_t^{(k)}$ ($t = 1, 2, ..., t_k$; k = 1, 2, ..., u) By formula (6) and $\sigma_2 \sigma_1 = \sigma_1^{-1}$ ($\sigma_1 \sigma_2$) σ_1 , we are easy to check

$$\sigma_2 \sigma_1 = (j_1^{(1)}, \dots, j_{t_1}^{(1)}) (j_1^{(2)}, \dots, j_{t_2}^{(2)}) \dots (j_1^{(u)}, \dots, j_{t_u}^{(u)})$$

$$(7)$$

and

$$(j_t^{(k)})^{\gamma_2} = (i_t^{(k)})^{\gamma_1 \sigma_2} = i_{t+1}^{(k)}(t = 1, 2, ..., t_k; k = 1, 2, ..., u).$$
 (8)

According to formulas (4), (6), (7) and $\sigma = (\sigma_1 \sigma_2, \sigma_2 \sigma_1)$, and from Lemma 2.3(1), Ω -contains u^2 subsets as $\Omega_{kl}^{(\sigma)}$ (k, l = 1, 2, ..., u) and each $\Omega_{kl}^{(\sigma)}$ has (t_k, t_l) σ -orbitals.

For $\Omega_{kl}^{c,\sigma}$ (k , l=1 2 ,... ,u), we may get the α -orbitals from some σ -orbitals by Lemma 2.6 in two cases : 万方数据

(1) If k = l, we claim that $\Omega_{kk}^{(\sigma)}$ has $\left[\frac{t_k + 1}{2}\right]\alpha$ -orbitals.

In fact , $\Omega_{kk}^{(\sigma)}$ has $t_k \sigma$ -orbitals.

Let a σ -orbital (i j) $^K \subseteq \Omega_{kk}^{(\sigma)}$ and $i = i_1^{(k)}$, $j = j_t^{(k)}$ without loss of generality, then $i^{\sigma_1} = j_1^{(k)}$ by the assumption of σ_1 and $j^{\sigma_2} = i_{t+1}^{(k)}$ by formula (8). Furthermore,

$$(i \ j)^{\alpha} = (i^{\sigma_1} \ j^{\sigma_2})^{\pi} = (i^{(k)}_{t+1} \ j^{(k)}_1) \in \Omega_{kk}^{(\sigma)}. \tag{9}$$

It follows that if a σ -orbitals (i ,j) belongs to $\Omega_{kk}^{(\sigma)}$, then so does another σ -orbitals (i ,j) α^K . Hence , by Lemma 2.6(1), the α - orbital (i ,j) $\alpha^H = (i$,j) $\alpha^K = (i$,

Still by lemma 2.6(2), (i, j) H =(i, j) K \iff (i, j) F \in (i, j) F for $r \in \mathbb{N}$.

Since (i ,j) $\mathcal{T}=$ ($i^{\sigma_1\sigma_2}$, $j^{\sigma_2\sigma_1}$)=($i^{(k)}_2$, $j^{(k)}_{t+1}$), then

$$(i \ j)^{r} = (i_{1+r}^{(k)} \ j_{t+r}^{(k)}).$$
 (10)

Comparing formula (9) with formula (10), we have $i_{t+1}^{(k)} = i_{t+r}^{(k)}$ and $j_t^{(k)} = j_{t+r}^{(k)}$, that is, $t \equiv r \pmod{t_k}$ and $t + r \equiv 1 \pmod{t_k} \Rightarrow 2t \equiv 1 \pmod{t_k}$ is an odd positive integer.

Thus , if t_k is even , then each α -orbital (i, j) in $\Omega_{kk}^{(\sigma)}$ does not equal any σ -orbital and it only consists of two different σ -orbitals (i, j) and (i, j) are Lemma 2.3(1), $\Omega_{kk}^{(\sigma)}$ has $\frac{t_k}{2} = [\frac{t_k+1}{2}] \alpha$ -orbitals.

If t_k is odd, by $2t \equiv 1 \pmod{t_k}$ and $t \leq t_k \Rightarrow t$ exists uniquely. It infers that $\Omega_{kk}^{(\sigma)}$ has only a σ -orbital $(t_1^{(k)}, j_{\frac{t_k}{2}}^{(k)})^K$ to equal an α -orbital and others to unite else α -orbitals per pair. Thus, $\Omega_{kk}^{(\sigma)}$ has $1 + \frac{t_k - 1}{2} = [\frac{t_k + 1}{2}] \alpha$ -orbitals.

Anyway, the claim holds.

(2) If $k \neq l$, we claim that $\Omega_{kl}^{(\sigma)} \cup \Omega_{lk}^{(\sigma)}$ has (t_k, t_l) α -orbitals.

In fact , the union has $\mathcal{X}(t_k, t_l)$ σ -orbitals.

Let a σ -orbital $(i,j)^K \subseteq \Omega_{kl}^{(\sigma)}$ and $i=i_s^{(k)}$, $j=i_t^{(k)}$, then $i^{\sigma_1}=j_s^{(k)}$, $j^{\sigma_2}=i_{t+1}^{(l)} \Rightarrow (i,j)^{\alpha}=(i_{t+1}^{\sigma_1},j_{t+1}^{\sigma_2})^{\alpha}=(i_{t+1}^{(l)},j_{t+1}^{(d)},j_{t+1}^{(d)}) \in \Omega_{lk}^{(\sigma)} \Rightarrow (i,j)^{\alpha} \subseteq \Omega_{lk}^{(\sigma)}$.

It illustrates that if $(i,j)^K$ is a σ -orbital in $\Omega_{kl}^{(\sigma)}$, then $(i,j)^{\alpha K}$ is another α -orbital in $\Omega_{lk}^{(\sigma)}$ and both σ - orbitals $(i,j)^K$ and $(i,j)^{\alpha K}$ unite an α -orbital $(i,j)^H$. Thus, the claim holds.

To sum up (1) and (2), we finally have

$$c(\alpha) = \sum_{k=1}^{u} [\frac{t_k+1}{2}] + \sum_{k$$

The lemma above shows that the value of α (α) = α ((σ_1, σ_2) π) is only related with the type of $\sigma_1 \sigma_2$. So , we definite a function λ : $S_n \rightarrow N$ as follows:

$$\lambda(\sigma_0) := \sum_{k=1}^{u} [\frac{t_k+1}{2}] + \sum_{k\leq l}^{u} (t_k, t_l),$$

where $\sigma_0 \in S_n$ and

$$\sigma_0 = (i_1^{(1)}, \dots, i_{t_1}^{(1)}) (i_1^{(2)}, \dots, i_{t_2}^{(2)}) \dots (i_1^{(u)}, \dots, i_{t_u}^{(u)}).$$
(11)

Lemma 2.8

$$\sum_{\sigma \in S_n^2} 2^{\operatorname{cl}(\sigma\pi)} = n ! \sum_{\sigma_0 \in S_n} 2^{\operatorname{cl}(\sigma_0)}.$$

Corollary 2.9 The number of orbits of S_n^2 , π acting on Ω -is:

$$\frac{1}{2 \left| S_n^2 \right|} \sum_{\sigma \in S_n^2} 2^{\langle \sigma \rangle} + \frac{1}{2 \left| S_n \right|} \sum_{\sigma_0 \in S_n} 2^{\lambda (\sigma_0)}.$$

So $d(\sigma_1, \sigma_2)$ and $d(\sigma_0)$ only depends on the lengths of disjoint cycles of which σ_1, σ_2 and σ_0 are decomposed σ_n , σ_n

To express σ_0 conveniently and depending on its decomposition as formula (11) we denote the lengths shortly by $t_1t_2...t_u$ and called it the type of σ_0 in S_n . We do so to σ_1 , σ_2 , and other permutations.

The remained problems is to count how many permutations whose types equal to the certain one and what kinds of type in S_n .

Lemma 2.10¹¹ Let $\sigma_0 \in S_n$ with type $t_1^{r_1}t_2^{r_2}...t_v^{r_v}$ ($r_1t_1+r_2t_2+...+r_vt_v=n$; $t_1>t_2>...>t_v$) and denote l_n (σ_0) to be the number of those permutations which have the same type as σ_0 , then

$$l_n(\sigma_0) = \frac{n!}{r_1! r_2! ... r_v! t_1^{r_1} t_2^{r_2} ... t_v^{r_v}}.$$

Lemma 2.11^[1] The number of all different types in S_n is equal to the number of nonnegative integer solutions x_1 , x_n of equation

$$\begin{cases} 1x_1 + 2x_2 + \dots + nx_n = n \\ x_1 \geqslant 0 , x_2 \geqslant 0 , \dots , x_n \geqslant 0 \end{cases}$$

And the $n^{x_n}
dots 2^{x_2} 1^{x_1}$ with the nonnegative integer solutions $x_1
dots x_n$ of equation are total types of the permutations in S_n after omitting the term i^{x_i} whose exponent $x^i = 0$.

3 Main Results

According to Corollary 2.2 and Corollary 2.9, we now obtain two main results of this paper as follows.

Theorem 3.1 Let m < n, and $C = C_1 \times C_2$, where C_1 and C_2 denote the sets of all permutation's types in S_m and S_n respectively, if $\sigma = l_m(\sigma_1) \cdot l_n(\sigma_2)$, where $\sigma = (\sigma_1, \sigma_2) \in S_m \times S_n$: Then the number of non-isomorphic bipartite graphs with type [m, n] equals:

$$|\mathcal{G}_{m,n}| = \frac{1}{m!n!} \sum_{\sigma \in C} l(\sigma) 2^{c(\sigma)}.$$

Theorem 3.2 Let $C = C_0^2$, where C_0 denote the sets of all permutation 's types in S_n , $l(\sigma) = l_n(\sigma_1) \cdot l_n(\sigma_2)$, where $\sigma = (\sigma_1, \sigma_2) \in S_n^2$, then the number of non-isomorphic bipartite graphs with type [n, m] equals:

$$\left| \mathcal{G}_{n,n} \right| = \frac{1}{2(n!)^2} \sum_{\sigma \in C} l(\sigma) 2^{l(\sigma)} + \frac{1}{2n!} \sum_{\sigma_0 \in C_0} l_n(\sigma_0) 2^{\lambda(\sigma_0)}.$$

3.1 The Bipartite Graphs with Type [m, n]

As an application of Theorem 3.1 , we may count the number of non-isomorphic bipartite graphs with type [$3\ A$].

Example 3.3 $|\mathcal{G}_{3,4}| = 87.$

First , the permutations in S_3 and S_4 have the types as :3 21 1^3 and 4 31 2^2 21^2 1^4 .

Second , by Lemma 2.10 and Lemma 2.3(2), we obtain two tables about $l(\sigma)$ and $c(\sigma)$ as follows (table 1 and table 2).

table 1							table 2								
<i>l</i> (σ)	4	31	2 ²	21 ²	14	c (σ)	4	31	2 ²	21 ²	14				
3	12	16	6	12	2	3	1	4	2	3	4				
21	18	24	9	18	3	21	3	4	6	7	8				
1 ³	6	8	3	6	1	13	3	6	6	9	12				

Third, by Theorem 3.1, we have

$$|\mathcal{G}_{3\,4}| = \frac{1}{144} (12 \cdot 2^1 + 16 \cdot 2^4 + 6 \cdot 2^2 + 12 \cdot 3^3 + 2 \cdot 2^4 + 18 \cdot 2^3 + 24 \cdot 2^4 + 9 \cdot 2^6 + 18 \cdot 2^7 + 3 \cdot 2^8 + 6 \cdot 2^3 + 8 \cdot 2^6 + 3 \cdot 2^6 + 6 \cdot 2^9 + 1 \cdot 2^{12}) = 87.$$

3.2 The Bipartite Graphs with Type [n, m]

As a application of Theorem 3.2, we count the number of non-isomorphic bipartite graphs with type $[4\ A]$.

Example 3.4 $|\mathcal{G}_{4A}| = 808$.

First , the permutations in S_4 have the types as :4 31 2^2 21^2 1^4 .

Second , by Lemma 2.10 and Lemma 2.7 , we obtain three tables about $l(\sigma)$, $c(\sigma)$, $l_4(\sigma_0)$ and λ (σ_0) as follows (table 3, table 4 and table 5):

table 3						table 4													
ί(σ)	4	31	2 ²	21²	14	c(σ)	4	31	2 ²	21 ²	14								
4	36	48	18	36	6	4	4	2	4	4	4								
31	48	64	24	48	8	31	2	6	4	6	8			table 5					
2 ²	18	24	9	18	3	2 ²	4	4	8	8	8		C_0	4	31	22	21 ²	14	
21 ²	36	48	18	36	6	21 ²	4	6	8	10	12		$l_4(\sigma_0)$	6.	8	3	6	1	
14	6	8	3	6	1	14	4	8	8	12	16		$\lambda(\sigma_0)$	2	4	4	6	10	

Third, by Theorem 3.2, we have

$$|\mathcal{G}_{4|4}| = \frac{1}{1152} [36 \cdot 2^4 + 64 \cdot 2^6 + 9 \cdot 2^8 + 36 \cdot 2^{10} + 1 \cdot 2^{16} + 2(48 \cdot 2^2 + 18 \cdot 2^4 + 36 \cdot 2^4 + 6 \cdot 2^4 + 24 \cdot 2^4 + 48 \cdot 2^6 + 8 \cdot 2^8 + 18 \cdot 2^8 + 3 \cdot 2^8 + 6 \cdot 2^{12})] + \frac{1}{48} (6 \cdot 2^2 + 8 \cdot 2^4 + 3 \cdot 2^4 + 6 \cdot 2^6 + 1 \cdot 2^{10}) = 774 \cdot 5 + 33 \cdot 5 = 808.$$

References:

- [1] Richard A Brualdi. Introductory Combinatorics Third Edition [M]. Prentice Hall.
- [2] Reinhard Diestel. Graph Theory M. Springer.

非同构二部图的计数

徐尚进 ,吴正飞 ,朱 雁

(广西大学 数学与信息科学学院,广西 南宁 530004)

摘要:该文研究的是[m,n]型二部图的计数问题 利用这类图连接矩阵的分类导出了一种组合计数方法. 关键词:二部图 连接矩阵 轨道