# INTRODUCTION TO PROBABILITY

# CARSON JAMES

# Contents

| 1. Basic Probability                                | 2  |
|-----------------------------------------------------|----|
| 2. Probability                                      | 2  |
| 2.1. Distributions                                  | 2  |
| 2.2. Independence                                   | 5  |
| 2.3. $L^p$ Spaces for Probability                   | 8  |
| 2.4. Borel Cantelli Lemma                           | 13 |
| 3. Probability on locally compact Groups            | 15 |
| 3.1. Action on Probability Measures                 | 15 |
| 4. Weak Convergence of Measures                     | 16 |
| 5. Conditional Expectation and Probability          | 17 |
| 5.1. Conditional Expectation                        | 17 |
| 5.2. Conditional Probability                        | 18 |
| 6. Markov Chains                                    | 21 |
| 7. Probabilities Induced by Isometric Group Actions | 22 |
| 7.1. Applications to Bayesian Statistics            | 22 |
| 8. Stochastic Integration                           | 23 |
| References                                          | 24 |

#### 1. Basic Probability

### 2. Probability

#### 2.1. Distributions.

**Definition 2.1.1.** Let  $\Omega$  be a set and  $\mathcal{P} \subset \mathcal{P}(X)$ . Then  $\mathcal{P}$  is said to be a  $\pi$ -system on  $\Omega$  if for each  $A, B \in \mathcal{P}$ ,  $A \cap B \in \mathcal{P}$ .

**Definition 2.1.2.** Let Om be a set and  $\mathcal{L} \subset \mathcal{P}(\Omega)$ . Then  $\mathcal{L}$  is said to be a  $\lambda$ -system on  $\Omega$  if

- (1)  $\mathcal{L} \neq \emptyset$
- (2) for each  $A \in \mathcal{L}$ ,  $A^c \in \mathcal{L}$
- (3) for each  $(A_n)_{n\in\mathbb{N}}\subset\mathcal{L}$ , if  $(A_n)_{n\in\mathbb{N}}$  is disjoint, then  $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{L}$

**Exercise 2.1.3.** Let  $\Omega$  be a set and  $\mathcal{L}$  a  $\lambda$ -system on  $\Omega$ . Then

 $(1) \Omega, \varnothing \in \mathcal{L}$ 

*Proof.* Straightforward.

**Definition 2.1.4.** Let  $\Omega$  be a set and  $\mathcal{C} \subset \mathcal{P}(\Omega)$ . Put

$$\mathcal{S} = \{ \mathcal{L} \subset \mathcal{P}(\Omega) : \mathcal{L} \text{ is a } \lambda \text{-system on } \Omega \text{ and } \mathcal{C} \subset \mathcal{L} \}$$

We define the  $\lambda$ -system on  $\Omega$  generated by  $\mathcal{C}$ ,  $\lambda(\mathcal{C})$ , to be

$$\lambda(\mathcal{C}) = \bigcap_{\mathcal{L} \in \mathcal{S}} \mathcal{L}$$

**Exercise 2.1.5.** Let  $\Omega$  be a set and  $\mathcal{C} \subset \mathcal{P}(\Omega)$ . If  $\mathcal{C}$  is a  $\lambda$ -system and  $\mathcal{C}$  is a  $\pi$ -system, then  $\mathcal{C}$  is a  $\sigma$ -algebra.

*Proof.* Suppose that  $\mathcal{C}$  is a  $\lambda$ -system and  $\mathcal{C}$  is a  $\pi$ -system. Then we need only verify the third axiom in the definition of a  $\sigma$ -algebra. Let  $(A_n)_{n\in\mathbb{N}}\subset\mathcal{C}$ . Define  $B_1=A_1$  and for  $n\geq 2$ ,

define 
$$B_n = A_n \cap \left(\bigcup_{k=1}^{n-1} A_k\right)^c = A_n \cap \left(\bigcap_{k=1}^{n-1} A_k^c\right) \in \mathcal{C}$$
. Then  $(B_n)_{n \in \mathbb{N}}$  is disjoint and therefore  $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n \in \mathcal{C}$ .

**Theorem 2.1.6.** (Dynkin's Theorem)

Let  $\Omega$  be a set.

- (1) Let  $\mathcal{P}$  be a  $\pi$ -system on  $\Omega$  and  $\mathcal{L}$  a  $\lambda$ -system on  $\Omega$ . If  $\mathcal{P} \subset \mathcal{L}$ , then  $\sigma(\mathcal{P}) \subset \mathcal{L}$ .
- (2) Let  $\mathcal{P}$  be a  $\pi$ -system on  $\Omega$ . Then  $\sigma(\mathcal{P}) = \lambda(\mathcal{P})$

Exercise 2.1.7. Let  $(\Omega, \mathcal{F})$  be a measurable space and  $\mu, \nu$  probability measures on  $(\Omega, \mathcal{F})$ . Put  $\mathcal{L}_{\mu,\nu} = \{A \in \mathcal{F} : \mu(A) = \nu(A)\}$ . Then  $\mathcal{L}_{\mu,\nu}$  is a  $\lambda$ -system on  $\Omega$ .

Proof.

- (1)  $\varnothing \in \mathcal{L}_{\mu,\nu}$ .
- (2) Let  $A \in \mathcal{L}_{\mu,\nu}$ . Then  $\mu(A) = \nu(A)$ . Thus

$$\mu(A^c) = 1 - \mu(A)$$
$$= 1 - \nu(A)$$
$$= \nu(A^c)$$

So  $A^c \in \mathcal{L}_{\mu,\nu}$ .

(3) Let  $(A_n)_{n\in\mathbb{N}}\subset\mathcal{L}_{\mu,\nu}$ . So for each  $n\in\mathbb{N}$ ,  $\mu(A_n)=\nu(A_n)$ . Suppose that  $(A_n)_{n\in\mathbb{N}}$  is disjoint. Then

$$\mu\left(\bigcup_{n\in\mathbb{N}} A_n\right) = \sum_{n\in\mathbb{N}} \mu(A_n)$$
$$= \sum_{n\in\mathbb{N}} \nu(A_n)$$
$$= \nu\left(\bigcup_{n\in\mathbb{N}} A_n\right)$$

Hence  $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{L}_{\mu,\nu}$ .

**Exercise 2.1.8.** Let  $(\Omega, \mathcal{F})$  be a measurable space,  $\mu, \nu$  probability measures on  $(\Omega, \mathcal{F})$  and  $\mathcal{P} \subset \mathcal{F}$  a  $\pi$ -system on  $\Omega$ . Suppose that for each  $A \in \mathcal{P}$ ,  $\mu(A) = \nu(A)$ . Then for each  $A \in \sigma(\mathcal{P})$ ,  $\mu(A) = \nu(A)$ .

*Proof.* Using the previous exercise, we see that  $\mathcal{P} \subset \mathcal{L}_{\mu,\nu}$ . Dynkin's theorem implies that  $\sigma(\mathcal{P}) \subset \mathcal{L}_{\mu,\nu}$ . So for each  $A \in \sigma(\mathcal{P})$ ,  $\mu(A) = \nu(A)$ .

**Definition 2.1.9.** Let  $F : \mathbb{R} \to \mathbb{R}$ . Then F is said to be a **probability distribution** function if

- (1) F is right continuous
- (2) F is increasing
- (3)  $F(-\infty) = 0$  and  $F(\infty) = 1$

**Definition 2.1.10.** Let P be a probability measure on  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ . We define  $F_P : \mathbb{R} \to \mathbb{R}$ , by

$$F_P(x) = P((-\infty, x])$$

We call  $F_P$  the probability distribution function of P.

**Exercise 2.1.11.** Let  $(\Omega, \mathcal{F}, P)$  be a probability measure. Then  $F_P$  is a probability distribution function.

*Proof.* (1) Let  $x \in \mathbb{R}$  and  $(x_n)_{n \in \mathbb{N}} \subset [x, \infty)$ . Suppose that  $x_n \to x$ . Then  $(x, x_n] \to \varnothing$  because  $\limsup_{n \to \infty} (x, x_n] = \varnothing$ . Thus

$$F(x_n) - F(x) = P((x, x_n]) \to P(\emptyset) = 0$$

This implies that

$$F(x_n) \to F(x)$$

So F is right continuous.

- (2) Clearly  $F_P$  is increasing.
- (3) Continuity from below tells us that

$$F(-\infty) = \lim_{n \to -\infty} F(n) = \lim_{n \to -\infty} P((-\infty, n]) = 0$$

and continuity from above tell us that

$$F(\infty) = \lim_{n \to \infty} F(n) = \lim_{n \to \infty} P((-\infty, n]) = 1$$

**Exercise 2.1.12.** Let  $\mu, \nu$  be probability measures on  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ . Then  $F_{\mu} = F_{\nu}$  iff  $\mu = \nu$ .

*Proof.* Clearly if  $\mu = \nu$ , then  $F_{\mu} = F_{\nu}$ . Conversely, suppose that  $F_{\mu} = F_{\nu}$ . Then for each  $x \in \mathbb{R}$ ,

$$\mu((-\infty, x]) = F_{\mu}(x)$$

$$= F_{\nu}(x)$$

$$= \nu((-\infty, x])$$

Put  $C = \{(-\infty, x] : x \in \mathbb{R}\}$ . Then C is a  $\pi$ -system and for each  $A \in C$ ,  $\mu(A) = \nu(A)$ . Hence for each  $A \in \sigma(C) = \mathcal{B}(\mathbb{R})$ ,  $\mu(A) = \nu(A)$ . So  $\mu = \nu$ .

**Definition 2.1.13.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X : \Omega \to \mathbb{R}^n$ . Then X is said to be a **random vector** on  $(\Omega, \mathcal{F})$  if X is  $\mathcal{F}$ - $\mathcal{B}(\mathbb{R}^n)$  measurable. If n = 1, then X is said to be a **random variable**. We define

$$L_n^0(\Omega, \mathcal{F}, P) = \{X : \Omega \to \mathbb{R}^n : X \text{ is a random vector}\}$$

and

$$L_n^p(\Omega, \mathcal{F}, P) = \left\{ X \in L_n^0 : \int ||X||^p dP < \infty \right\}$$

**Definition 2.1.14.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and X a random variable on  $(\Omega, \mathcal{F})$ . We define the **probability distribution** of  $X, P_X : \mathcal{B}(R) \to [0, 1]$ , to be the measure

$$P_X = X_*P$$

That is, for each  $A \in \mathcal{B}(\mathbb{R})$ ,

$$P_X(A) = P(X^{-1}(F))$$

We define the **probability distribution function** of  $X, F_X : \mathbb{R} \to [0, 1]$ , to be

$$F_X = F_{P_X}$$

**Definition 2.1.15.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and X a random variable on  $(\Omega, \mathcal{F})$ . If  $P_X \ll m$ , we define the **probability density** of X,  $f_X : \mathbb{R} \to \mathbb{R}$ , by

$$f_X = \frac{dP_X}{dm}$$

**Exercise 2.1.16.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $(X_n)_{n \in \mathbb{N}}$  be a sequence of random variables on  $(\Omega, \mathcal{F})$ . Then for each  $x \in \mathbb{R}$ ,

$$\mathbb{P}\bigg(\liminf_{n\to\infty} X_n > x\bigg) \le \liminf_{n\to\infty} P(X_n > x)$$

Proof. Let  $\omega \in \left\{ \liminf_{n \to \infty} X_n > x \right\}$ . Then  $x < \liminf_{n \to \infty} X_n(\omega) = \sup_{n \in \mathbb{N}} \left( \inf_{k \ge n} X_k(\omega) \right)$ . So there exists  $n^* \in \mathbb{N}$  such that  $x < \inf_{k \ge n^*} X_k(\omega)$ . Then for each  $k \in \mathbb{N}$ ,  $k \ge n^*$  implies that  $x < X_k(\omega)$ . So there exists  $n^* \in \mathbb{N}$  such that for each  $k \in \mathbb{N}$ ,  $k \ge n^*$  implies that  $\mathbf{1}_{\{X_k > x\}}(\omega) = 1$ . Hence  $\inf_{k \ge n^*} \mathbf{1}_{\{X_k > x\}}(\omega) = 1$ . Thus  $\liminf_{n \to \infty} \mathbf{1}_{\{X_k > x\}}(\omega) = \sup_{n \in \mathbb{N}} \left( \inf_{k \ge n} \mathbf{1}_{\{X_k > x\}}(\omega) \right) = 1$ . Therefore

 $\omega \in \liminf_{n \to \infty} \{X_k > x\}$  and we have shown that

$$\left\{ \liminf_{n \to \infty} X_n > x \right\} \subset \liminf_{n \to \infty} \{X_k > x\}$$

Then

$$P\left(\liminf_{n\to\infty} X_n > x\right) \le P\left(\liminf_{n\to\infty} \{X_k > x\}\right)$$
$$\le \liminf_{n\to\infty} P(\{X_k > x\})$$

**Definition 2.1.17.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X \in L^+(\Omega) \cup L^1$ . Define the **expectation of X**, E[X], to be

$$E[X] = \int XdP$$

.

### 2.2. Independence.

**Definition 2.2.1.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $\mathcal{C} \subset \mathcal{F}$ . Then  $\mathcal{C}$  is said to be **independent** if for each  $(A_i)_{i=1}^n \subset \mathcal{C}$ ,

$$P\bigg(\bigcap_{k=1}^{n} A_k\bigg) = \prod_{k=1}^{n} P(A_k)$$

**Definition 2.2.2.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $\mathcal{C}_1, \dots, \mathcal{C}_n \subset \mathcal{F}$ . Then  $\mathcal{C}_1, \dots, \mathcal{C}_n$  are said to be **independent** if for each  $A_1 \in \mathcal{C}_1, \dots, A_n \in \mathcal{C}_n, A_1, \dots, A_n$  are independent.

**Note 2.2.3.** We will explicitly say that for each  $i = 1, \dots, n$ ,  $C_i$  is independent when talking about the independence of the elements of  $C_i$  to avoid ambiguity.

**Definition 2.2.4.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X_1, \dots, X_2$  random variables on  $(\Omega, \mathcal{F})$ . Then  $X_1, \dots, X_n$  are said to be **independent** if for each  $B_1, \dots, B_n \in \mathcal{B}(\mathbb{R})$ ,  $X_1^{-1}B_1, \dots, X_n^{-1}B_n$  are independent.

**Exercise 2.2.5.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X_1, \dots, X_n$  random variables on  $(\Omega, \mathcal{F})$ . Then  $X_1, \dots, X_n$  are independent iff  $\sigma(X_1), \dots, \sigma(X_n)$  are independent.

Proof. Suppose that  $X_1, \dots, X_n$  are independent. Let  $A_1, \in \sigma(X_1), \dots, A_n \in \sigma(A_n)$ . Then for each  $i = 1, \dots, n$ , there exists  $B_i \in \mathcal{B}(\mathbb{R})$  such that  $A_i = X_i^{-1}(B_i)$ . Then  $A_1, \dots, A_n$  are independent. Hence  $\sigma(X_1), \dots, \sigma(X_n)$  are independent. Conversely, suppose that  $\sigma(X_1), \dots, \sigma(X_n)$  are independent. Let  $B_1, \dots, B_n \in \mathcal{B}(\mathbb{R})$ . Then for each  $i = 1, \dots, n, X_i^{-1}B_i \in \sigma(X_i)$ . Then  $X_1^{-1}B_1, \dots, X_n^{-1}B_n$  are independent. Hence  $X_1, \dots, X_n$  are independent.  $\square$ 

**Exercise 2.2.6.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $X_1, \dots, X_n$  random variables on  $(\Omega, \mathcal{F})$  and  $\mathcal{F}_1, \dots, \mathcal{F}_n \subset \mathcal{F}$  a collection of  $\sigma$ -algebras on  $\Omega$ . Suppose that for each  $i = 1, \dots, n, X_i$  is  $\mathcal{F}_i$ -measurable. If  $\mathcal{F}_1, \dots, \mathcal{F}_n$  are independent, then  $X_1, \dots, X_n$  are independent.

*Proof.* For each  $i=1,\cdots,n,\ \sigma(X_i)\subset\mathcal{F}_i$ . So  $\sigma(X_1),\cdots,\sigma(X_n)$  are independent. Hence  $X_1,\cdots,X_n$  are independent.  $\square$ 

**Exercise 2.2.7.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $\mathcal{C}_1, \dots, \mathcal{C}_n \subset \mathcal{F}$ . Suppose that for each  $i = 1, \dots, n$ ,  $\mathcal{C}_i$  is a  $\pi$ -system and  $\mathcal{C}_1, \dots, \mathcal{C}_n$  are independent, then  $\sigma(\mathcal{C}_1), \dots, \sigma(\mathcal{C}_n)$  are independent.

*Proof.* Let  $A_2 \in \mathcal{C}_2$ . Define  $\mathcal{L} = \{A \in \mathcal{F} : P(A \cap A_2) = P(A)P(A_2)\}$ . Then

- (1)  $\Omega \in \mathcal{L}$
- (2) If  $A \in \mathcal{L}$ , then

$$P(A^{c} \cap A_{2}) = P(A_{2}) - P(A_{2} \cap A)$$

$$= P(A_{2}) - P(A_{2})P(A)$$

$$= (1 - P(A))P(A_{2})$$

$$= P(A^{c})P(A_{2})$$

So  $A^c \in \mathcal{L}$ 

(3) If  $(B_n)_{n\in\mathbb{N}}\subset\mathcal{L}$  is disjoint, then

$$P\left(\left[\bigcup_{n\in\mathbb{N}}B_{n}\right]\cap A_{2}\right) = P\left(\bigcup_{n\in\mathbb{N}}B_{n}\cap A_{2}\right)$$

$$= \sum_{n\in\mathbb{N}}P(B_{n}\cap A_{2})$$

$$= \sum_{n\in\mathbb{N}}P(B_{n})P(A_{2})$$

$$= \left[\sum_{n\in\mathbb{N}}P(B_{n})\right]P(A_{2})$$

$$= P\left(\bigcup_{n\in\mathbb{N}}A_{n}\right)P(A_{2})$$

So 
$$\bigcup_{n\in\mathbb{N}} B_n \in \mathcal{L}$$
.

Thus  $\mathcal{L}$  is a  $\lambda$ -system. Since  $\mathcal{C}_1 \subset \mathcal{L}$  is a  $\pi$ -system, Dynkin's theorem tells us that  $\sigma(\mathcal{C}_1) \subset \mathcal{L}$ . Since  $A_2 \in \mathcal{C}_2$  is arbitrary  $\sigma(\mathcal{C}_1)$  and  $\mathcal{C}_2$  are independent. The same reasoning implies that  $\sigma(\mathcal{C}_1)$  and  $\sigma(\mathcal{C}_2)$  are independent. Let  $A_2 \in \mathcal{C}_1, \dots, A_n \in \mathcal{C}_n$  We may do the same process with

$$\mathcal{L} = \left\{ A \in \mathcal{F} : P\left(A \cap \left(\bigcap_{i=2}^{n} A_i\right)\right) = P(A) \prod_{i=2}^{n} P(A_i) \right\}$$

and conclude that  $\sigma(\mathcal{C}_1), \mathcal{C}_2, \cdots, \mathcal{C}_n$  are independent. Which, using the same reasoning would imply that  $\sigma(\mathcal{C}_1), \cdots, \sigma(\mathcal{C}_n)$  are independent.

**Exercise 2.2.8.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $X_1, \dots, X_n$  random variables on  $(\Omega, \mathcal{F})$ . Then  $X_1, \dots, X_n$  are independent iff for each  $x_1, \dots, x_n \in \mathbb{R}$ ,

$$P(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^n P(X_i \le x_i)$$

*Proof.* Suppose that  $X_1, \dots, X_n$  are independent. Then  $\sigma(X_1), \dots, \sigma(X_n)$  are independent. Let  $x_1, \dots, x_n \in \mathbb{R}$ . Then for each  $i = 1, \dots, n$ ,  $\{X_i \leq x_i\} \in \sigma(X_i)$ . Hence

 $P(X_1 \leq x_1, \dots, X_n \leq x_n) = \prod_{i=1}^n P(X_i \leq x_i)$ . Conversely, suppose that for each

$$x_1, \dots, x_n \in \mathbb{R}, P(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^n P(X_i \le x_i). \text{ Define } \mathcal{C} = \{(-\infty, x] : x \in \mathbb{R}\}.$$

Then  $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{C})$ . For each  $i = 1, \dots, n$ , define  $\mathcal{C}_i = X_i^{-1}\mathcal{C}$ . Then for each  $i = 1, \dots, n$ ,  $\mathcal{C}_i$  is a  $\pi$ -system and

$$\sigma(C_i) = \sigma(X^{-1}(C))$$

$$= X_i^{-1}(\sigma(C))$$

$$= X_i^{-1}(\mathcal{B}(\mathbb{R}))$$

$$= \sigma(X_i)$$

By assumption,  $C_1, \dots, C_n$  are independent. The previous exercise tells us that  $\sigma(X_1), \dots, \sigma(X_n)$  are independent. Then  $X_1, \dots, X_n$  are independent.

**Exercise 2.2.9.** Let Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X_1, \dots, X_n$  random variables on  $(\Omega, \mathcal{F})$ . Define  $X = (X_1, \dots, X_n)$ . If  $X_1, \dots, X_n$  are independent, then

$$P_X = \prod_{i=1}^n P_{X_i}$$

.

*Proof.* Let  $A_1, \dots, A_n \in \mathcal{B}(\mathbb{R})$ . Then

$$P_X(A_1 \times \dots \times A_n) = P(X \in A_1 \times \dots \times \in A_n)$$

$$= P(X_1 \in A_1, \dots, X_n \in A_n)$$

$$= P(X_1 \in A_1) \dots P(X_n \in A_n)$$

$$= P_{X_1}(A_1) \dots P_{X_n}(A_n)$$

$$= \prod_{i=1}^n P_{X_i}(A_1 \times \dots \times A_n)$$

Put

$$\mathcal{P} = \{A_1 \times \cdots \times A_n : A_1 \in \mathcal{B}(R), \cdots, A_n \in \mathcal{B}(R)\}$$

Then  $\mathcal{P}$  is a  $\pi$ -system and

$$\sigma(\mathcal{P}) = \mathcal{B}(R) \otimes \cdots \otimes \mathcal{B}(R) = \mathcal{B}(\mathbb{R}^n)$$

A previous exercise then tells us that  $P_X = \prod_{i=1}^n P_{X_i}$ 

**Exercise 2.2.10.** Let Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $X_1, \dots, X_n$  random variables on  $(\Omega, \mathcal{F})$  and  $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R} \in L^0$ . Suppose that  $f_1 \circ X_1, \dots, f_n \circ X_n \in L^+(\Omega)$  or  $f_1 \circ X_1, \dots, f_n \circ X_n \in L^1(\Omega)$ . If  $X_1, \dots, X_n$  are independent, then

$$E[f_1(X_1)\cdots f_n(X_n)] = \prod_{i=1}^n E[f_i(X_i)]$$

*Proof.* Define the random vector  $X: \Omega \to \mathbb{R}^n$  by  $X = (X_1, \dots, X_n)$  and  $g: \mathbb{R}^n \to \mathbb{R}$  by  $g(x_1, \dots, x_n) = f_1(x_1) \dots f_n(x_n)$ . Suppose that for each  $i = 1, \dots, n, f_i \in L^+(\mathbb{R})$ . Then  $g \in L^+(\mathbb{R}^n)$  and by change of variables,

$$E[f_1(X_1)\cdots f_n(X_n)] = E[g(X)]$$

$$= \int_{\Omega} g \circ X dP$$

$$= \int_{\mathbb{R}^n} g(x) dP_X(x)$$

$$= \int_{R^n} g(x) d\prod_{i=1}^n P_{X_i}(x)$$

$$= \prod_{i=1}^n \int_{\mathbb{R}} f_i(x) dP_{X_i}(x)$$

$$= \prod_{i=1}^n \int_{\Omega} f_i \circ X dP$$

$$= \prod_{i=1}^n E[f_i(X_i)]$$

If for each  $i = 1, \dots, n$ ,  $f_i \in L^1(\mathbb{R}, P_{X_i})$ , then following the above reasoning with |g| tells us that  $g \in L^1(\mathbb{R}^n, P_X)$  and we use change of variables and Fubini's theorem to get the same result.

## 2.3. $L^p$ Spaces for Probability.

**Note 2.3.1.** Recall that for a probability space  $(\Omega, \mathcal{F}, P)$  and  $1 \leq p \leq q \leq \infty$  we have  $L^q \subset L^p$  and for each  $X \in L^q$ ,  $||X||_p \leq ||X||_q$ . Also recall that for  $X, Y \in L^2$ , we have that  $||XY||_1 \leq ||X||_2 ||X||_2$ .

**Definition 2.3.2.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X \in L^2$ . Define the **variance** of X, Var(X), to be

$$Var(X) = E[(X - E[X])^{2}]$$

.

**Definition 2.3.3.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X, Y \in L^2$ . Define the

**Definition 2.3.4.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X, Y \in L^2$ . Define the **covariance of** X **and** Y, Cov(X, Y), to be

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

**Exercise 2.3.5.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X, Y \in L^2$ . Then the covariance is well defined and  $Cov(X, Y)^2 \leq Var(X)Var(Y)$ 

*Proof.* By Holder's inequality,

$$|Cov(X,Y)| = \left| \int (X - E[X])(Y - E[Y])dP \right|$$

$$\leq \int |(X - E[X])(Y - E[Y])|dP$$

$$= ||(X - E[X])(Y - E[Y])||_{1}$$

$$\leq ||X - E[X]||_{2}||(Y - E[Y])||_{2}$$

$$= \left( \int |X - E[X]|^{2}dP \right)^{\frac{1}{2}} \left( |Y - E[Y]|^{2} \right)^{\frac{1}{2}}$$

$$= Var(X)^{\frac{1}{2}}Var(Y)^{\frac{1}{2}}$$

So  $Cov(X, Y)^2 \leq Var(X)Var(Y)$ .

**Exercise 2.3.6.** Let  $(\Omega, \mathcal{F}, P)$  be a measure space and  $X, Y \in L^2$ . Then

- (1) Cov(X,Y) = E[XY] E[X]E[Y]
- (2) If X, Y are independent, then Cov(X,Y) = 0
- (3)  $Var(X) = E[X^{2}] E[X]^{2}$
- (4) for each  $a, b \in \mathbb{R}$ ,  $Var(aX + b) = a^2 Var(X)$ .
- (5) Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)

Proof.

(1) We have that

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY - E[Y]X - E[X]Y + E[X]E[Y]]$$

$$= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$$

$$= E[XY] - E[X]E[Y]$$

(2) Suppose that X, Y are independent. Then E[XY] = E[X]E[Y]. Hence

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$
$$= E[X]E[Y] - E[X]E[Y]$$
$$= 0$$

(3) Part (1) implies that

$$Var(X) = Cov(X, X)$$
$$= E[X^{2}] - E[X]^{2}$$

(4) Let  $a, b \in \mathbb{R}$ . Then

$$\begin{split} Var(aX+b) &= E[(aX+b)^2] - E[aX+b]^2 \\ &= E[a^2X^2 + 2abX + b^2] - (aE[X]+b)^2 \\ &= a^2E[X^2] + 2abE[X] + b^2 - (a^2E[X]^2 + 2abE[X] + b^2) \\ &= a^2(E[X^2] - E[X]^2) \\ &= a^2Var(X) \end{split}$$

(5) We have that

$$\begin{split} Var(X+Y) &= E[(X+Y)^2] - E[X+Y]^2 \\ &= E[X^2 + 2XY + Y^2] - (E[X] + E[Y])^2 \\ &= E[X^2] + 2E[XY] + E[Y^2] - (E[X]^2 + 2E[X]E[Y] + E[Y]^2) \\ &= (E[X^2] - E[X]^2) + (E[Y^2] - E[Y]^2) + 2(E[XY] - E[X]E[Y]) \\ &= Var(X) + Var(Y) + 2Cov(X, Y) \end{split}$$

**Definition 2.3.7.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X, Y \in L^2$ . The **correlation** of **X** and **Y**, Cor(X, Y), is defined to be

$$Cor(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Exercise 2.3.8.

**Exercise 2.3.9.** Jensen's Inequality Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $X \in L^1$  and  $\phi : \mathbb{R} \to \mathbb{R}$ . If  $\phi$  is convex, then

$$\phi(E[X]) \le E[\phi(X)]$$

*Proof.* Put  $x_0 = E[X]$ . Since  $\phi$  is convex, there exist  $a, b \in \mathbb{R}$  such that  $\phi(x_0) = ax_0 + b$  and for each  $x \in \mathbb{R}$ ,  $\phi(x) \ge ax + b$ . Then

$$E[\phi(X)] = \int \phi(X)dP$$

$$\geq \int [aX + b]dP$$

$$= a \int XdP + b$$

$$= aE[X] + b$$

$$= ax_0 + b$$

$$= \phi(x_0)$$

$$= \phi(E[X])$$

**Exercise 2.3.10.** Markov's Inequality: Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X \in L^+$ . Then for each  $a \in (0, \infty)$ ,

$$P(X \ge a) \le \frac{E[X]}{a}$$

*Proof.* Let  $a \in (0, \infty)$ . Then  $a\mathbf{1}_{\{X \geq a\}} \leq X\mathbf{1}_{\{X \geq a\}}$ . Thus

$$aP(X \ge a) = \int a\mathbf{1}_{\{X \ge a\}} dP$$
$$= \int X\mathbf{1}_{\{X \ge a\}} dP$$
$$\leq \int X dP$$
$$= E[X]$$

Therefore

$$P(X \ge a) \le \frac{E[X]}{a}$$

.

**Exercise 2.3.11.** Chebychev's Inequality: Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X \in L^2$ . Then for each  $a \in (0, \infty)$ ,

$$P(|X - E[X]| \ge a) \le \frac{Var(X)}{a^2}$$

*Proof.* Let  $a \in (0, \infty)$ . Then

$$\begin{split} P(|X-E[X]| \geq a) &= P((X-E[X])^2 \geq a^2) \\ &\leq \frac{E[(X-E[X])^2]}{a^2} \\ &= \frac{Var(X)}{a^2} \end{split}$$

**Exercise 2.3.12.** Chernoff's Bound: Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X \in L^2$ . Then for each  $a, t \in (0, \infty)$ ,

$$P(X \ge a) \le e^{-ta} E[e^{tX}]$$

*Proof.* Let  $a, t \in (0, \infty)$ . Then

$$P(X \ge a) = P(tX \ge ta)$$
$$= P(e^{tX} \ge e^{ta})$$
$$\le e^{-ta}E[e^{tX}]$$

**Exercise 2.3.13.** Weak Law of Large Numbers: Let  $(\Omega, \mathcal{F}, P)$  be a probability space  $(X_i)_{i \in \mathbb{N}} \subset L^2$ . Suppose that  $(X_i)_{i \in \mathbb{N}}$  are iid. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} E[X_1]$$

*Proof.* Put  $\mu = E[X_1]$  and  $\sigma^2 = Var(X_1)$ . Then

$$E[\frac{1}{n}\sum_{i=1}^{n} X_{i}] = \frac{1}{n}\sum_{i=1}^{n} E[X_{i}]$$

$$= \frac{1}{n}\sum_{i=1}^{n} \mu$$

$$= \mu$$

and

$$Var(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n^2}Var(\sum_{i=1}^{n}X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^{n}Var(X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^{n}\sigma^2$$
$$= \frac{\sigma^2}{n}$$

Let  $\epsilon > 0$ . Then

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - E[X_{1}]\right| \ge \epsilon\right) = P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu\right| \ge \epsilon\right)$$

$$= P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]\right| \ge \epsilon\right)$$

$$\le \frac{Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)}{\epsilon^{2}}$$

$$= \frac{\sigma^{2}/n}{\epsilon^{2}}$$

$$= \frac{\sigma^{2}}{n\epsilon^{2}} \to 0$$

So

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} E[X_1]$$

### 2.4. Borel Cantelli Lemma.

### Exercise 2.4.1. Borel Cantelli Lemma:

Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $(A_n)_{n \in \mathbb{N}} \subset \mathcal{F}$ .

- (1) If  $\sum_{n\in\mathbb{N}} P(A_n) < \infty$ , then  $P(\limsup_{n\to\infty} A_n) = 0$ . (2) If  $(A_n)_{n\in\mathbb{N}}$  are independent and  $\sum_{n\in\mathbb{N}} P(A_n) = \infty$ , then  $P(\limsup_{n\to\infty} A_n) = 1$

Proof.

(1) Suppose that  $\sum_{n\in\mathbb{N}} P(A_n) < \infty$ . Recall that

$$\limsup_{n \to \infty} A_n = \left\{ \omega \in \Omega : \sum_{n \in \mathbb{N}} 1_{A_n}(\omega) = \infty \right\}$$

Then

$$\infty > \sum_{n \in \mathbb{N}} P(A_n)$$

$$= \sum_{n \in \mathbb{N}} \int 1_{A_n} dP$$

$$= \int \sum_{n \in \mathbb{N}} 1_{A_n} dP$$

Thus  $\sum_{n\in\mathbb{N}} 1_{A_n} < \infty$  a.e. and  $P(\limsup_{n\to\infty} A_n) = 0$ . (2) Suppose that  $(A_n)_{n\in\mathbb{N}}$  are independent and  $\sum_{n\in\mathbb{N}} P(A_n) = \infty$ .

**Exercise 2.4.2.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $(X_n)_{n \in \mathbb{N}} \subset L^0$  and  $X \in L^0$ .

- (1) If for each  $\epsilon > 0$ ,  $\sum_{n \in \mathbb{N}} P(|X_n X| \ge \epsilon) < \infty$ , then  $X_n \to X$  a.e.
- (2) If  $(X_n)_{n\in\mathbb{N}}$  are independent and there exists  $\epsilon > 0$  such that  $\sum_{n\in\mathbb{N}} P(|X_n X| \ge \epsilon) = \infty$ , then  $X_n \not\to X$  a.e.

Proof.

(1) For  $\epsilon > 0$  and  $n \in \mathbb{N}$ , set  $A_n(\epsilon) = \{\omega \in \Omega : |X_n(\omega) - X(\omega)| \ge \epsilon\}$ . Suppose that for each  $\epsilon > 0$ ,  $\sum_{n \in \mathbb{N}} P(|X_n - X| \ge \epsilon) < \infty$ . The Borel-Cantelli lemma implies that for each  $m \in \mathbb{N}$ ,

$$P(\limsup_{n\to\infty} A_n(1/m)) = 0$$

Let  $\omega \in \Omega$ . Then  $X_n(\omega) \not\to X(\omega)$  iff

$$\omega \in \bigcup_{m \in \mathbb{N}} \limsup_{n \to \infty} A_n(1/m)$$

So

$$P(X_n \not\to X) = P\bigg(\bigcup_{m \in \mathbb{N}} \limsup_{n \to \infty} A_n(1/m)\bigg)$$

$$\leq \sum_{m \in \mathbb{N}} P(\limsup_{n \to \infty} A_n(1/m))$$

$$= 0$$

Hence  $X_n \to X$  a.e.

(2)

#### 3. Probability on locally compact Groups

Note 3.0.1. In this section, familiarity with Haar measure will be assumed. This section is intended as a continuation of section 7 of [3].

### 3.1. Action on Probability Measures.

Note 3.1.1. We recall some notation from section 7.1 of [3].

- $l_g \in \text{Homeo}(G), \ l_g(x) = gc$   $L_g \in \text{Sym}(L_0(G)), \ L_g f = f \circ l_g^{-1}$  We continue from section 7

Note 3.1.2. The next exercise generalizes the notion of a scale-family.

**Exercise 3.1.3.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space, G a locally compact group,  $\mu$  a left Haar measure on  $G, X \in L_G^0$  and  $g \in G$ . If  $P_X \ll \mu$ , then  $f_{gX} = L_g f_X$ .

*Proof.* Suppose that  $P_X \ll \mu$ . Let  $A \in \mathcal{B}(G)$ . Then

$$P_{gX}(A) = P(gX \in A)$$

$$= P(X \in g^{-1}A)$$

$$= P_X(g^{-1}A)$$

$$= P_X(l_g^{-1}(A))$$

$$= l_{g_*}P_X(A)$$

$$= g \cdot P_X(A)$$

The previous exercise tells us that  $f_{gX} = L_g f_X$ .

# 4. Weak Convergence of Measures

#### 5. Conditional Expectation and Probability

## 5.1. Conditional Expectation.

**Definition 5.1.1.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $\mathcal{G}$  a sub  $\sigma$ -alg of  $\mathcal{F}$  and  $X, Y \in L^1(\Omega, \mathcal{F}, P)$ . Then Y is said to be a **conditional expectation of** X **given**  $\mathcal{G}$  if

- (1) Y is  $\mathcal{G}$ -measurable
- (2) for each  $G \in \mathcal{G}$ ,

$$\int_G Y \, dP = \int_G X \, dP$$

To denote this, we write  $Y = E[X|\mathcal{G}]$ 

**Note 5.1.2.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $(S, \mathcal{S})$  a measurable space,  $X \in L^1(\Omega, \mathcal{F}, P)$  and  $Y \in L^0_S(\Omega, \mathcal{F})$ . We typically write E[X|Y] instead of  $E[X|Y^*\mathcal{S}]$ .

**Exercise 5.1.3.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $\mathcal{G}$  a sub  $\sigma$ -alg of  $\mathcal{F}$  and  $X \in L^1(\Omega, \mathcal{F}, P)$ . Define  $P_{\mathcal{G}} = P|_{\mathcal{G}}$  and  $Q : \mathcal{G} \to [0, \infty)$  by  $Q(G) = \int_G X dP$ . Then  $Q \ll P_{\mathcal{G}}$ .

*Proof.* Let  $G \in \mathcal{G}$ . Suppose that  $P_{\mathcal{G}}(G) = 0$ . By definition, P(G) = 0. So Q(G) = 0 and  $Q \ll P_{\mathcal{G}}$ .

### Exercise 5.1.4. Existence of Conditional Expectation:

Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $\mathcal{G}$  a sub  $\sigma$ -alg of  $\mathcal{F}$  and  $X \in L^1(\Omega, \mathcal{F}, P)$ . Define Q and  $P_{\mathcal{G}}$  as in the previous exercise. Define  $Y = dQ/dP_{\mathcal{G}}$ . Then Y is a conditional expectation of X given  $\mathcal{G}$ .

*Proof.* The Radon-Nikodym theorem implies that Y is  $\mathcal{G}$ -measurable. Since Q is finite, so is |Q|. Since d|Q| = |Y| dP, we have that  $Y \in L^1(\Omega, \mathcal{G}, P_{\mathcal{G}})$ . An exercise in section 3.3 of [3], implies that for each  $G \in \mathcal{G}$ 

$$\int_{G} Y dP = \int_{G} Y dP_{\mathcal{G}}$$
$$= Q(G)$$
$$= \int_{G} X dP$$

**Definition 5.1.5.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $(S, \mathcal{S})$  a measurable space,  $X \in L^1(\Omega, \mathcal{F}, P)$  and  $Y \in L^0_S(\Omega, \mathcal{F})$ . Let  $\phi \in L^0(Y(\Omega), \mathcal{S} \cap Y(\Omega))$ . Then  $\phi$  is said to be a **conditional expectation function of** X **given** Y if for each  $B \in \mathcal{S} \cap Y(\Omega)$ ,

$$\int_{Y^{-1}(B)} X \, dP = \int_B \phi \, dP_Y$$

To denote this, we write  $\phi(y) = E[X|Y = y]$ .

### Exercise 5.1.6. Existence of Conditional Expectation Function:

Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $(S, \mathcal{S})$  a measurable space,  $X \in L^1(\Omega, \mathcal{F}, P)$  and  $Y \in L^0_S(\Omega, \mathcal{F})$ . Suppose that for each  $y \in S$ ,  $\{y\} \in \mathcal{S}$ . Then there exists  $\phi \in L^0(Y(S), \mathcal{S} \cap Y(\Omega))$  such that  $\phi$  is a conditional expectation function of X given Y.

Hint: Doob-Dynkin lemma

*Proof.* Since  $E[X|Y] \in L^0(\Omega, Y^*S)$ , the Doob-Dynkin lemma implies that there exists  $\phi \in L^0(Y(\Omega), S \cap Y(\Omega))$  such that  $\phi \circ Y = E[X|Y]$ . Let  $B \in S \cap Y(\Omega)$ . Then

$$\int_{B} \phi \, dP_Y = \int_{Y^{-1}(B)} \phi \circ Y \, dP$$

$$= \int_{Y^{-1}(B)} E[X|Y] \, dP$$

$$= \int_{Y^{-1}(B)} X \, dP$$

### 5.2. Conditional Probability.

**Definition 5.2.1.** Let (A, A) be a measurable space,  $(B, B, P_Y)$  a probability space and  $Q: B \times A \to [0, 1]$ . Then Q is said to be a **stochastic transition kernel from** (B, B, P) **to** (A, A) if

- (1) for each  $E \in \mathcal{A}$ ,  $Q(\cdot, E)$  is  $\mathcal{B}$ -measurable
- (2) for P-a.e.  $b \in B$ ,  $Q(b,\cdot)$  is a probability measure on (A, A)

**Definition 5.2.2.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $X, Y \in L_n^0(\Omega, \mathcal{F}, P)$  and  $Q : \mathbb{R}^n \times \mathcal{F} \to [0, 1]$ . Then Q is said to be a **conditional probability distribution of** X **given** Y if

- (1) Q is a stochastic transition kernel from  $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), P_Y)$  to  $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$
- (2) for each  $A, B \in \mathcal{F}$ ,

$$\int_{B} Q(y, A)dP_{Y}(y) = P(X \in A, Y \in B)$$

Note 5.2.3. It is helpful to connect this notion of conditional probability with the elementary one by writing  $Q(y, A) = P(X \in A|Y = y)$ . If  $P_Y \ll \mu$ , then property (2) in the definition becomes

$$P(X \in A, Y \in B) = \int_{B} Q(y, A) dP_{Y}(y)$$
$$= \int_{B} P(X \in A | Y = y) f_{Y}(y) d\mu(y)$$

as in a first course on probability.

**Exercise 5.2.4.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $X, Y \in L_n^0$  and  $Q : \mathbb{R}^n \times \mathcal{F} \to [0, 1]$ . Suppose that for each  $A \in \mathcal{F}$ ,  $Q(\cdot, A)$  is  $\mathcal{B}(\mathbb{R}^n)$ -measurable, for  $P_Y$ -a.e.  $y \in \mathbb{R}^n$ ,  $P_{X|Y}(y, \cdot)$  is a probability measure on  $(\Omega, \mathcal{F})$  and  $Q(Y, A) = P(X \in A|Y)$  a.e. Then Q is a conditional probability of X given Y.

*Proof.* By assumption, for each  $A \in \mathcal{F}$ ,  $Q(\cdot, A)$  is  $\mathcal{B}(\mathbb{R}^n)$ -measurable and for  $P_Y$ -a.e.  $y \in \mathbb{R}^n$ ,  $Q(y, \cdot)$  is a probability measure on  $(\Omega, \mathcal{F})$ . Let  $A, B \in \mathcal{F}$ . Then

$$\int_{B} Q(y, A)dP_{Y}(y) = \int_{Y^{-1}(B)} Q(Y(\omega), A)dP(\omega)$$

$$= \int_{Y^{-1}(B)} P(X \in A|Y)dP$$

$$= \int_{Y^{-1}(B)} E[1_{X^{-1}(A)}|Y]dP$$

$$= \int_{Y^{-1}(B)} 1_{X^{-1}(A)}dP$$

$$= \int 1_{X^{-1}(A)} 1_{Y^{-1}(B)}dP$$

$$= \int 1_{X^{-1}(A)\cap Y^{-1}(B)}dP$$

$$= P(X \in A, Y \in B)$$

So Q is a conditional probability distribution of X given Y.

**Definition 5.2.5.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $X, Y \in L_n^0$  and  $\mu$  a  $\sigma$ -finite measure on  $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ . Suppose that  $P_X, P_Y \ll \mu$ . Then  $P_{X,Y} \ll \mu^2$ . Let  $f_X = dP_X/d\mu$ ,  $f_Y = dP_Y/d\mu$  and  $f_{X,Y} = dP_{X,Y}/d\mu^2$ . Define  $f_{X|Y} : \mathbb{R}^n \times \mathbb{R}^n$  by

$$f_{X|Y}(x,y) = \begin{cases} \frac{f_{X,Y}(x,y)}{f_Y(y)}, & y \in \text{supp } Y \\ 0, & y \notin \text{supp } Y \end{cases}$$

Then  $f_{X|Y}$  is called the **conditional probability density of** X **given** Y.

**Exercise 5.2.6.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $X, Y \in L_n^0$  and  $\mu$  a  $\sigma$ -finite measure on  $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ . Suppose that  $P_X, P_Y \ll \mu$ . Define  $Q : \mathbb{R}^n \times \mathcal{F} \to [0, 1]$  by

$$Q(y,A) = \int_{A} f_{X|Y}(x,y) d\mu(x)$$

Then Q is a conditional probability distribution of X given Y.

*Proof.* By the Fubini-Tonelli Theorem, for each  $A \in \mathcal{F}$ ,  $Q(\cdot, A)$  is  $\mathcal{B}(\mathbb{R}^n)$ -measurable and for  $P_Y$ -a.e.  $y \in \mathbb{R}^n$ ,  $Q(y, \cdot)$  is a probability measure on  $(\Omega, \mathcal{F})$ . Let  $A, B \in \mathcal{F}$ . Then

$$\int_{B} Q(y, A) dP_{Y}(y) = \int_{B} \left[ \int_{A} f_{X|Y}(x, y) d\mu(x) \right] dP_{Y}(y)$$

$$= \int_{B \cap \text{supp } Y} \left[ \int_{A \cap \text{supp } Y} \frac{f_{X,Y}(x, y)}{f_{Y}(y)} d\mu(x) f_{Y}(y) \right] d\mu(y)$$

$$= \int_{B \cap \text{supp } Y} \left[ \int_{A} f_{X,Y}(x, y) d\mu(x) \right] d\mu(y)$$

$$= P(X \in A, Y \in B \cap \text{supp } Y)$$

$$= P(X \in A, Y \in B)$$

**Theorem 5.2.7.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $X, Y \in L_n^1(\Omega, \mathcal{F}, P)$ . Suppose that  $\operatorname{Im} X \in \mathcal{B}(\mathbb{R}^n)$ . Then there exists a conditional probability distribution of Y given X.

# 6. Markov Chains

**Definition 6.0.1.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $(X_n)_{n \in \mathbb{N}_0} \in L_n^0$ . Then  $(X_n)_{n \in \mathbb{N}_0}$  is said to be a **homogeneous Markov chain** if for each  $A \in \mathcal{F}$  and  $n \in \mathbb{N}$ ,  $P(X_n \in A|X_1, \dots, X_{n-1}) = P(X_1 \in A|X_0)$  a.e.

### 7. Probabilities Induced by Isometric Group Actions

## 7.1. Applications to Bayesian Statistics.

**Exercise 7.1.1.** Let  $(\mathcal{X}, \mathcal{A})$  be a measurable space  $(\Theta, d)$  a metric space, G a group,  $\phi$ :  $G \times \Theta \to \Theta$  an isometric group action. Suppose that d is a metric on  $\Theta/G$ . Let

- $H_p^{\Theta}$  be the Hausdorff measure on  $\Theta$ ,  $\mu_{\mathcal{X}}$  a measure on  $\mathcal{X}$ ,
- p a denisty on  $\Theta$  and for each  $\theta \in \Theta$ ,  $p(\cdot|\theta)$  a density on  $\mathcal{X}$ .
- $\theta_0 \in \Theta$  and for  $j \in \mathbb{N}$ ,  $X_i \sim p(x|\theta_0)$

Suppose that  $\mu_{\Theta}$  is G-invariant, p is G-invariant and continuous on  $\Theta$  and for each  $x \in \mathcal{X}$ ,  $p(x|\cdot)$  is G-invariant and continuous on  $\Theta$ . For  $n \in \mathbb{N}$ , set  $p(\cdot|X^{(n)}) \propto f(X_1,\ldots,X_n|\cdot)p(\cdot)$ . Define the posterior measure  $P_{\Theta|X^{(n)}}: \mathcal{B}(\Theta) \to [0,1]$  by

$$dP_{\Theta|X^{(n)}}(\theta) = p(\theta|X^{(n)}) dH_p^{\Theta}(\theta)$$

Then there exists a density  $\bar{p}(\cdot|X^{(n)})$  on  $\Theta/G$  such that

$$d\bar{P}_{\Theta|X^{(n)}}(\theta) = \bar{p}(\theta|X^{(n)}) d\bar{H}^{\Theta}(\theta)$$

*Proof.* Clear from previous work.

**Exercise 7.1.2.** Let  $(\mathcal{X}, \mathcal{A})$  be a measurable space  $(\Theta, d)$  a metric space, G a group,  $\phi$ :  $G \times \Theta \to \Theta$  an isometric group action. Suppose that d is a metric on  $\Theta/G$ . Let

- $H_p^{\Theta}$  be the Hausdorff measure on  $\Theta$ ,  $\mu_{\mathcal{X}}$  a measure on  $\mathcal{X}$ , p a denisty on  $\Theta$  and for each  $\theta \in \Theta$ ,  $p(\cdot|\theta)$  a density on  $\mathcal{X}$ .
- $\theta_0 \in \Theta$  and for  $j \in \mathbb{N}$ ,  $X_i \sim p(x|\theta_0)$

Suppose p is G-invariant and continuous on  $\Theta$  and for each  $x \in \mathcal{X}$ ,  $p(x|\cdot)$  is G-invariant and continuous on  $\Theta$ . For  $n \in \mathbb{N}$ , set  $p(\cdot|X^{(n)}) \propto f(X_1,\ldots,X_n|\cdot)p(\cdot)$ . Define the posterior measure  $P_{\Theta|X^{(n)}}: \mathcal{B}(\Theta) \to [0,1]$  by

$$dP_{\Theta|X^{(n)}}(\theta) = p(\theta|X^{(n)}) dH_p^{\Theta}(\theta)$$

Suppose that  $(P_{\Theta|X^{(n)}})_{n\in\mathbb{N}}$  concentrates on  $\bar{\theta}_0\subset\Theta$  a.s. or in probability. Then  $(\bar{P}_{\Theta|X^{(n)}})_{n\in\mathbb{N}}$ concentrates a.s. or in probability on  $\{\bar{\theta_0}\}\subset\Theta/G$  (i.e. is consistent a.s. or in probability)

*Proof.* Let  $V \in \mathcal{N}_{\bar{\theta}_0}$ . Then  $\pi^{-1}(V) \in \mathcal{N}_{\bar{\theta}_0}$ . By definition,

$$\begin{split} \bar{P}_{\Theta|X^{(n)}}(V^c) &= P_{\Theta|X^{(n)}}(\pi^{-1}(V^c)) \\ &= P_{\Theta|X^{(n)}}(\pi^{-1}(V)^c) \\ &\xrightarrow{\text{a.s.}/P} 0 \end{split}$$

**Note 7.1.3.** Some examples of G-invariant priors would be the uniform distribution, or  $N_n(0,\sigma^2 I)$  on  $\mathbb{R}^n$  when acted on by O(n). An example of a G-invariant likelihood would be  $f(A|Z) \sim \text{Ber}(ZZ^T)$  as in a latent position random graph model where  $Z \in \mathbb{R}^{n \times d}$  is the parameter is invariant under right multiplication by  $U \in O_d$ .

### 8. STOCHASTIC INTEGRATION

**Exercise 8.0.1.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space, X a set  $\mathcal{A}_0$  an algebra,  $\mu_0 : \mathcal{A}_0 \to \mathbb{C}$  and  $B : \mathcal{A}_0 \to L^2(\Omega, \mathcal{F}, P)$ . Suppose that

- (1)  $B(\varnothing) = 0$
- (2) for each  $E, F \in \mathcal{A}_0$ , if  $E \cap F = \emptyset$ , then  $B(E \cup F) = B(E) + B(F)$
- (3)  $E[B(E)B(F)^*] = \mu_0(E \cap F)$

Then

- (1) for each  $E \in \mathcal{A}_0$ ,  $\mu_0(E) = E[|B(E)|^2]$ .
- (2) for each  $E \in \mathcal{A}_0$ ,  $0 \le \mu_0(E) < \infty$
- (3) for each  $E, F \in \mathcal{A}_0$ , if  $E \cap F = \emptyset$ , then  $\mu_0(E \cup F) = \mu_0(E) + \mu_0(F)$

Proof.

- (1) Clear
- (2) Clear
- (3) Let  $E, F \in \mathcal{A}_0$ . Suppose that  $E \cap F = \emptyset$ . Then

$$E[B(E)B(F)^*] = \mu_0(E \cap F)$$

$$= \mu_0(\varnothing)$$

$$= E[|B(\varnothing)|^2]$$

$$= E[0]$$

$$= 0$$

This implies that

$$\mu_0(E \cup F) = \mathbb{E}[|B(E \cup F)|^2]$$

$$= \mathbb{E}[|B(E) + B(F)|^2]$$

$$= \mathbb{E}[|B(E)|^2] + \mathbb{E}[|B(F)|^2] + 2\text{ReE}[B(E)B(F)^*]$$

$$= \mu_0(E) + \mu_0(F) + 0$$

$$= \mu_0(E) + \mu_0(F)$$

**Definition 8.0.2.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space, X a set  $\mathcal{A}_0$  an algebra,  $\mu_0 : \mathcal{A}_0 \to [0, \infty)$  a premeasure and  $B : \mathcal{A}_0 \to L^2(\Omega, \mathcal{F}, P)$ . Suppose that

- (1)  $B(\emptyset) = 0$
- (2) for each  $E, F \in \mathcal{A}_0$ , if  $E \cap F = \emptyset$ , then  $B(E \cup F) = B(E) + B(F)$
- (3)  $E[B(E)B(F)^*] = \mu_0(E \cap F)$

Then B is said to be a stochastic premeasure with sturcture  $\mu_0$ 

# REFERENCES

- Introduction to Analysis
   Introduction to Group Theory
   Introduction to Measure and Integration