Раздел 5. Компактность

Лекция 8 Компактность метрических пространств и множеств.

МП называется компактом, если любая бесконечная последовательность его элементов содержит сходящуюся подпоследовательность.

Подмножество метрического пространства называем компактом, если оно образует компакт в индуцированной метрике. В этом случае любая бесконечная последовательность его элементов содержит подпоследовательность, сходящуюся к элементу этого множества.

Ещё одно определение компакта: каждое его открытое покрытие содержит конечное подпокрытие (это свойство ещё называют бикомпактностью). Мы не будем им пользоваться. Для нас важна секвенциальная компактность – т.е. на языке последовательностей.

Множество называют предкомпактным (в узком смысле), если его замыкание – компакт. В этом случае любая бесконечная последовательность его элементов содержит сходящуюся подпоследовательность, однако предел не обязательно является элементом этого множества.

Действительно, элементы последовательности принадлежат также и замыканию множества, являющемуся компактом, поэтому эта последовательность содержит подпоследовательность, сходящуюся к элементу этого замыкания, который, однако, может не принадлежать исходному множеству.

Очевидно, компакт предкомпактен, поскольку его замыкание совпадает с ним самим.

Замечание. Данные определения без изменения переносятся на топологические пространства, поскольку в них определены понятия сходимости и замыкания.

МП или множество будем называть предкомпактным (в широком смысле), если любая бесконечная последовательность его элементов содержит фундаментальную подпоследовательность.

Замечание: такое определение на топологические пространства не обобщается, поскольку в них нет понятия фундаментальной последовательности. Замечание. Другой вариант терминологии: предкомпактное (в широком смысле) МП или множество назвыают компактным МП (множеством), при этом отличая его от компакта.

Утверждение: предкомпактное в узком смысле множество предкомпактно и в широком смысле.

Действительно, любая последовательность его элементов содержит подпоследовательность, сходящуюся к элементу замыкания. Эта подпоследовательность фундаментальна.

Утверждение: подмножество полного МП, предкомпактное в широком

смысле, предкомпактно и в узком смысле.

То есть нам нужно доказать, что если $A\subset X$, где A – предкомпактное в широком смысле множество, а X – полное МП, то замыкание [A] – компакт. Доказательство: пусть $\{x_n\}$ – бесконечная последовательность элементов из [A]. Тогда существует эквивалентная ей последовательность $\{x_n'\}$ элементов из A. Из неё в силу предкомпактности A можно выбрать фундаментальную подпоследовательность $\{\tilde{x}_n'\}$. Тогда соответствующая ей подпоследовательность исходной последовательности $\{\tilde{x}_n\}$ (с теми же номерами) будет ей эквивалентна и, следовательно, также фундаментальна. В силу полноты X эта подпоследовательность имеет предел в X. В силу замкнутости [A] этот предел принадлежит [A]. Таким образом, произвольная последовательность элеменов из [A] содержит сходящуюся в [A] подпоследовательность.

В дальнейшем предкомпактность будет всюду пониматься в широком смысле. Также иногда будем для краткости импользовать термин "предкомпакт" (для предкомпактного МП или множества).

Утверждение: МП предкомпактно ⇔ его пополнение – компакт. (Доказать.)

Компакт является предкомпактным МП.

Полное предкомпактное МП является компактом.

Неполное МП компактом не является (из расходящейся $\Phi\Pi$ нельзя выделить сходящуюся подпоследовательность).

Утверждение: любое подмножество предкомпактного множества (и, в частности, компакта) предкомпактно. В частности, если [A] – компакт, то A предкомпактно.

Следствие: любое множество, содержащее непредкомпактное подмножество, непредкомпактно.

Утверждение: любое замкнутое подможество компакта – компакт.

Замечание. В дальнейшем для просторы формулировок исключим \emptyset из рассмотрения и под предкомпактными (компактными) множествами мы будем понимать непустые множества.

Утверждение: если $F:(X,\rho_X)\to (Y,\rho_Y)$ – непрерывная сюрьекция, то из компактности (X,ρ_X) следует компактность (Y,ρ_Y) . То есть непрерывный образ компакта – компакт.

Доказательство. Пусть $\{y_n\}$ – бесконечная последовательность элементов из Y. В силу сюрьективности F найдутся такие $x_n \in X$, что $y_n = F(x_n)$. В силу компактности (X, ρ_X) найдётся сходящаяся подпоследовательность $\tilde{x}_n \to x^*$. Тогда, в силу непрерывности F, $\tilde{y}_n = F(\tilde{x}_n) \to y^* = F(x^*)$. Поскольку $\{\tilde{y}_n\}$ – подпоследовательность исходной последовательности $\{y_n\}$, МП (Y, ρ_Y) – компакт.

Утверждение: если $F:(X,\rho_X)\to (Y,\rho_Y)$ – непрерывная в обе стороны биекция, то пространства либо одновременно являются компактами, либо нет.

Утверждение: если $F:(X,\rho_X)\to (Y,\rho_Y)$ – равномерно непрерывная сюрьекция, то из предкомпактности (X,ρ_X) следует предкомпактность (Y,ρ_Y) . То есть равномерно непрерывный образ предкомпактного множества (МП) предкомпактен.

Доказательство. Пусть $\{y_n\}$ – бесконечная последовательность элементов из Y. В силу сюрьективности F найдутся такие $x_n \in X$, что $y_n = F(x_n)$. В силу предкомпактности (X, ρ_X) найдётся фундаментальная подпоследовательность \tilde{x}_n . Тогда, в силу равномерной непрерывности F, последовательность $\tilde{y}_n = F(\tilde{x}_n)$ фундаментальна. Поскольку $\{\tilde{y}_n\}$ – подпоследовательность исходной последовательности $\{y_n\}$, МП (Y, ρ_Y) – предкомпакт.

Утверждение: если $F:(X,\rho_X)\to (Y,\rho_Y)$ – равномерно непрерывная в обе стороны биекция, то пространства либо одновременно являются предкомпактными, либо нет. Частный случай – изометрия: изометрическая копия предкомпакта – предкомпакт (для компакта – аналогично).

Замечание: одной лишь непрерывности недостаточно. Пример: $\mathrm{tg}: (-\pi/2,\pi/2) \to E^1$.

Применим это к тожденственному отображению.

Утверждение: пусть (X, ρ_1) , (X, ρ_2) – метрические пространства с одним и тем же носителем, причём в первом сходимость более сильная, и (X, ρ_1) – компакт. Тогда (X, ρ_2) также компакт.

Утверждение: если МП с одним и тем же носителем топологически эквивалентны, то они одновременно являются или не являются компактами. С предкомпактностью это не обязательно так.

Утверждение: пусть (X, ρ_1) , (X, ρ_2) – метрические пространства с одним и тем же носителем, причём $\exists c > 0 \, \forall x', x" \in X : \rho_2(x', x") \leq c \rho_1(x', x")$. Тогда из предкомпактности (X, ρ_1) следует предкомпактность (X, ρ_2) . Частный случай: множества в ЛНП с одинаковыми носителями, вторая норма подчинена первой.

Пример: компактное (предкомпактное) в пространстве C[a,b] множество является компактным (предкомпактным) также в $L_1[a,b]$ и в $L_2[a,b]$. Множество, компактное (предкомпактное) в $L_2[a,b]$, компактно (предкомпактное) в $L_1[a,b]$. Множество, компактное (предкомпактное) в $l_1[a,b]$, компактно (предкомпактное) в $l_2[a,b]$.

Утверждение: если на одном и том же носителе заданы эквивалентные метрики, то соответствующие МП одновременно являются или не являются предкомпактными. Частный случай: множества в ЛНП с одинаковыми носителями и эквивалентными нормами.

Пример: в пространствах E^n , \mathbb{R}^n_1 , \mathbb{R}^n_{\max} компактны (предкомпактны) одни и те же множества.

Утверждение: конечное множество – компакт в любой метрике (есть постоянная подпоследовательность).

Примеры предкомпактных и компактных множеств. Доказать: в E^n , \mathbb{R}^n_1 , \mathbb{R}^n_{\max} любое ограниченное множество предкомпактно, а любое ограниченное и замкнутое множество – компакт (следствие из теоремы Больцано-Вейерштрасса).

Утверждение: если множество (или МП) содержит бесконечное ε -дискретное подмножество, то оно непредкомпактно.

Примеры: $E^1 \supset \mathbb{Z}$; единичный шар в l_1 или l_2 .

Замечание: видим, что в общем случае из ограниченности (и замкнутости) предкомпактность (компактность) не следует.

Утверждение: неограниченное множество (МП) непредкомпактно.

Утверждение: незамкнутое множество не является компактом.

Таким образом: ограниченность – необходимое условие предкомпактности. Ограниченность и замкнутость – необходимые условия компактности.

Новое свойство: компактность оператора.

Оператор $F:(X,\rho_X)\to (Y,\rho_Y)$ называют компактным, если образ любого ограниченного множества предкомпактен.

Утверждение: компактный оператор ограничен.

Другое определение: оператор компактен, если образ произвольной ограниченной последовательности содержит фундаментальную подпоследовательность.

Утверждение: если пространство Y полно, то при действии компактного оператора образ произвольной ограниченной последовательности содержит сходящуюся подпоследовательность.

Утверждение: приведённые определения компактности оператора эквивалентны.

Доказательство. Пусть оператор F произвольное ограниченное множество переводит в предкомпактное. Возьмём ограниченную последовательность $\{x_n\}$, множество её элементов ограничено. Тогда множество элементов последовательности $\{y_n=F(x_n)\}$ предкомпактно и, следовательно, из него можно выбрать фундаментальную подпоследовательность.

Пусть теперь F не любое ограниченное множество переводит в компактное, т.е. найдётся ограниченное множество A, для которого множество B=F(A) предкомпактным не является. Тогда найдётся последовательность $\{y_n\}$, элементы которой лежат в B, не содержащая фундаментальной подпоследовательности. Тогда найдётся и последовательность $\{x_n\}$, элементы которой лежат в A, для которой $y_n=F(x_n)$. Последовательность $\{x_n\}$ ограничена, поскольку ограничено множество A, при этом её образ не содержит фундаментальной подпоследовательности. Эквивалентность доказана.

Напоминание: понятие ε -сети и вполне ограниченного МП (множества).

Теорема (критерий предкомпактности Хаусдорфа). МП предкомпактно тогда и только тогда, когда оно вполне ограничено.

Достаточность (полная ограниченность \Rightarrow предкомпактность).

Рассмотрим последовательность $\{x_1, x_2, \dots\}, x_j \in X$ и будем строить фундаментальную подпоследовательность.

Числовая последовательность $\varepsilon_m \to 0$. Рассмотрим конечную ε_1 -сеть для X, тогда X содержится в объединении конечного числа шаров радиуса ε_1 . По крайней мере один из шаров (обозначим его центр a_1 , а сам шар $S_{\varepsilon_1}(a_1)$)

содержит бесконечное число элементов последовательности. Отбрасываем все элементы последовательности, которые не содержатся в $S_{\varepsilon_1}(a_1)$, выбираем первый из оставшихся, называем его \hat{x}_1 , $\hat{x}_1 \in S_{\varepsilon_1}(a_1)$.

Следующий шаг: Рассмотрим конечную ε_2 -сеть для X, тогда X содержится в объединении конечного числа шаров радиуса ε_2 . По крайней мере один из шаров (обозначим его центр a_2 , а сам шар $S_{\varepsilon_2}(a_2)$) содержит бесконечное число элементов оставшейся последовательности. Отбрасываем все элементы последовательности, которые не содержатся в $S_{\varepsilon_2}(a_2)$, выбираем первый из оставшихся, называем его \hat{x}_2 , $\hat{x}_2 \in S_{\varepsilon_1}(a_1) \cap S_{\varepsilon_2}(a_2)$.

Продолжаем процедуру. На m-ом шаге рассматриваем конечную ε_m -сеть для X, тогда X содержится в объединении конечного числа шаров радиуса ε_m . По крайней мере один из шаров (обозначим его центр a_m , а сам шар $S_{\varepsilon_m}(a_m)$) содержит бесконечное число элементов оставшейся последовательности, которые по построению содержатся в пересечении всех предыдущих шаров $S_{\varepsilon_k}(a_k),\ k < m$. Отбрасываем все её элементы, не содержащиеся в $S_{\varepsilon_m}(a_m)$, выбираем первый из оставшихся, называем его \hat{x}_m , $\hat{x}_m \in \bigcap_{k < m} S_{\varepsilon_k}(a_k)$.

Построенная подпоследовательность будет фундаментальной, поскольку $\forall m,n>N$ $\hat{x}_{m,n}\in S_{\varepsilon_N}(a_N)\Rightarrow \rho(\hat{x}_m,\hat{x}_n)<2\varepsilon_N.$

Необходимость (нет полной ограниченности \Rightarrow нет предкомпактности). Если нет полной ограниченности, то найдётся ε , для которого нет конечной ε -сети.

Выберем произвольный элемент $x_1 \in X$. Поскольку он не образует ε -сети, найдётся элемент $x_2 \in X$: $\rho(\hat{x}_1,\hat{x}_1) > \varepsilon$. Поскольку $\{x_1,x_2\}$ также не образуют ε -сеть, найдётся $x_3 \in X$: $\rho(\hat{x}_{1,2},\hat{x}_3) > \varepsilon$. Продолжая процедуру, получаем ε -дискретную последовательность, не имеющую фундаментальной подпоследовательности.

Замечание. Если X — не всё МП, а его подмножество, то элементы сети могут принадлежать X, а могут и не принадлежать. На доказательство это никак не повлияет.

Следствие из теоремы. Для того, чтобы множество (или МП) было предкомпактно, необходимо и достаточно, чтобы для любого ε для него существовала предкомпактная ε -сеть.

Необходимось: множество предкомпактно \Rightarrow вполне ограничено, т.е. для любого ε для него существует конечная ε -сеть \Rightarrow она будет и предкомпактной

Достаточность: в силу произвольности ε для множества найдётся предкомпактная $\varepsilon/2$ -сеть, а для неё, в свою очередь, найдётся конечная $\varepsilon/2$ -сеть, которая для исходного множества является конечной ε -сетью.

Теорема Арцела-Асколи (критерий предкомпактности в C[a,b]). Множество функций $Q\subset C[a,b]$ предкомпактно в C[a,b] тогда и только тогда, когда оно равномерно ограничено и равностепенно непрерывно.

Замечание: равномерная ограниченность множества непрерывных функций – это ограниченность этого множества в МП C[a,b].

Необходимость.

Необходимым условием предкомпактности множества является его ограни-

ченность ⇒ отсюда первое свойство.

Докажем равностепенную непрерывность. Воспользуемся $\varepsilon/3$ -приёмом. По критерию Хаусдорфа если множество предкомпактно, то для него найдётся конечная $\varepsilon/3$ -сеть $\{y_i(t), j=1,\ldots,N\}$.

T.e. $\forall x \in Q \, \exists m : \rho(x, y_m) < \varepsilon/3$.

Иными словами, $\forall t \in [a, b] : |x(t) - y_m(t)| < \varepsilon/3$.

 Φ ункции, входящие в сеть, непрерывны на отрезке \Rightarrow следовательно, они равномерно непрерывны (по теореме Кантора).

Было доказано: конечное множество равномерно непрерывных функций равностепенно непрерывно. Тогда

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall m : \{ |t' - t''| < \delta \Rightarrow |y_m(t') - y_m(t'')| < \varepsilon/3 \}.$$

Отсюда

$$|x(t') - x(t'')| \le |x(t') - y_m(t')| + |y_m(t') - y_m(t'')| + |y_m(t'') - x(t'')| < \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon$$

Равностепенная непрерывность доказана (т.к. δ зависит лишь от ε и не зависит от выбора функции $x \in Q$).

Достаточность. В предположении, что множество Q равномерно ограничено и равностепенно непрерывно, мы по ε построим предкомпактную ε -сеть, что и будет означать предкомпактность самого множества (по следствию из критерия Хаусдорфа).

Множество Q равномерно ограничено:

 $\exists M > 0 \, \forall x \in Q \, \forall t \in [a, b] : |x(t)| \le M.$

Множество Q равностепенно непрерывно:

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in Q : \{ |t' - t''| < \delta \Rightarrow |x(t') - x(t'')| < \varepsilon/2 \}.$$

Разобьём [a,b] на n равных участков длиной $h=(b-a)/n<\delta$.

Сетка $\{t_j = a + jh, j = 0, \dots, n\}.$

Сеточная функция $\{x_j = x(t_j), j = 0, \dots, n\}.$

При этом для $t\in [t_{j-1},t_j]$ справедливо неравенство $|x_j-x(t)|<\varepsilon/2$, поскольку $|t_j-t|<\delta$. В частности, $|x_j-x_{j-1}|<\varepsilon/2$.

Покажем, что множество Y кусочно-линейных функций (непрерывных на [a,b] и линейных на каждом из отрезков $[t_{j-1},t_j]$), не превосходящих по модулю M, является ε -сетью для Q. Для этого сопоставим каждой функции $x\in Q$ соответствующую функцию $y\in Y$ – линейный интерполяционный сплайн – по правилу:

$$y(t) = x_{j-1} + \frac{x_j - x_{j-1}}{h} (t - t_{j-1}), \quad t \in [t_{j-1}, t_j],$$

при этом $\{y_j = y(t_j) = x_j, j = 0, \dots, n\}.$

Для линейной на $[t_{i-1}, t_i]$ функции

$$|y_j - y(t)| \le |y_j - y_{j-1}| = |x_j - x_{j-1}| < \varepsilon/2,$$
 поэтому

 $|x(t)-y(t)|\leq |x(t)-x_j|+|x_j-y(t)|<arepsilon/2+arepsilon/2=arepsilon.$ Отсюда вытекает, что ho(x,y)<arepsilon, т.е. Y-arepsilon-сеть для Q.

Осталось показать, что множество Y предкомпактно. Для этого убедимся, что оно является изометрической копией куба со стороной 2M в пространстве \mathbb{R}^{n+1}_{\max} . Действительно, пусть $y,z\in Y$, тогда

 $ho_{C[a,b]}(y,z) = \max_{t \in [a,b]} |y(t)-z(t)| = \max_j \max_{t \in [t_{j-1},t_j]} |y(t)-z(t)| = \dots$ На каждом из отрезков $[t_{j-1},t_j]$ функция y(t)-z(t) линейна, её наибольшее и наименьшее значения достигается на границах отрезка и, следовательно, её модуль достигает наибольшего значения также на одном из концов отрезка. Следовательно,

 $ho_{C[a,b]}(y,z) = \cdots = \max_j |y(t_j) - z(t_j)| = \max_j |y_j - z_j| =
ho_\infty(\hat{y},\hat{z}),$ где $\hat{y} = (y_0,y_1,\ldots,y_n),\ \hat{z} = (z_0,z_1,\ldots,z_n)$ – векторы пространства \mathbb{R}^{n+1}_{\max} , представляющие соответствующие кусочно-линейные функции. Поскольку все координаты y_j и z_j не превосходят по модулю M, множество Y изометрически отображается в куб с ребром 2M. Как установлено выше, этот куб, как и любое ограниченное множество в \mathbb{R}^{n+1}_{\max} , предкомпактен (и даже компактен в силу замкнутости), поэтому предкомпактно и множество Y – его изометрическая копия. Таким образом, для произвольного ε у множества Q найдётся предкомпактная ε -сеть, а потому и само множество Q предкомпактно.

Замечание. Как указано выше, множества, предкомпактные в C[a,b], предкомпактны и в пространствах с интегральной метрикой.

Теперь несколько слов о достаточных условиях предкомпактности или непредкомпактности множеств в C[a,b].

Как указано выше, достаточным условием равностепенной непрерывности множества является равномерная липшицевость. Тогда равномерная липшицевость совместно с ограниченностью множества обеспечивает его предкомпактность.

Достаточным условием равномерной липшицевости с показателем 1 является равномерная ограниченность производных (следствие из формулы конечных приращений). Это означает, что множество, ограниченное в $C^1[a,b]$, предкомпактно в C[a,b]. Как говорят, $C^1[a,b]$ компактно вкладывается в C[a,b] (оператор вложения компактен).

Если равностепенная непрерывность установлена, то для доказательства равномерной ограниченности множества функций на отрезке достаточно убедиться в его равномерной ограниченности в какой-либо одной точке (почему?).

Если окажется, что в какой-то выделенной точке отсутствует равностепенная непрерывность (или равномерная ограниченность), то множество непредкомпактно в C[a,b].

Множество непредкомпактно в C[a,b], если из него можно выбрать последовательность функций, поточечно сходящуюся к разрывной функции. Из такой последовательности нельзя выбрать фундаментальную подпоследовательность (почему?).

Если множество непрерывных функций $\{x_n, n \in \mathbb{N}\}$ счётно, и последовательность x_n равномерно сходится на [a,b], то это множество предкомпактно в C[a,b].