Зміст

1	Топологічні простори			
	1.1	Топологія	2	
	1.2	Зв'язок з метричними просторами	3	
	1.3	Збіжність в топологічному просторі		
	1.4	Неперервні відображення		
	1.5	Гомеоморфність топологічних просторів		
	1.6	Конструкція топології за базою		
	1.7	Конструкція топології за передбазою	10	
	1.8	Характеристики точок множин	10	
	1.9	Топологічний підпростір		
	1.10	Добуток просторів		
		Фактортопологія		
2	Компактні простори			
	2.1	Компактність	17	
	2.2	Компактність та підпростори		
	2.3	Компактність та добуток просторів		
	2.4	Компактність та факторпростори		
3	Зв'язні простори			
	3.1	Зв'язність		
	3.2	Лінійна зв'язність		
	3.3	Компоненти зв'язності та лінійної зв'язності		
4	Лем	Лема Урисона		
-		Корисні леми		

Топологічні простори 1

1.1 Топологія

Definition 1.1.1 Задано X – деяка множина.

Клас τ , що містить підмножини X, називається **топологією**, якщо:

$$X,\emptyset \in \tau$$

$$\forall \{U_{\alpha} \in \tau\} : \bigcup_{\alpha} U_{\alpha} \in \tau$$

$$\forall U,V \in \tau : U \cap V \in \tau$$

Пару (X, τ) називатимемо **топологічним простором**.

Definition 1.1.2 Задано (X, τ) – топологічний простір. Множина U називається **відкритою**, якщо

 $U \in \tau$

Множина V називається **замкненою**, якщо

$$X \setminus V \in \tau$$

Example 1.1.3 Зокрема будь-який метричний простір (X, ρ) задає топологію $\tau_{\rho} = \{$ всі відкриті множини в $(X, \rho)\}$. Тому що там виконуються твердження: X, \emptyset – відркиті, будьяке об'єднання сім'ї відкритих – відкрита, будь-який перетин двох відкритих – відкрита.

Example 1.1.4 Розглянемо множину X та $\tau = 2^X$. Тоді вона також задає топологію. (X, τ) , де $\tau = 2^X$, ще називають дискретною топологією.

Example 1.1.5 Розглянемо множину X та $\tau = \{\emptyset, X\}$. Тоді вона також задає топологію. (X,τ) , де $\tau = \{\emptyset, X\}$, ще називають **недискретною топологією**.

Example 1.1.6 Маємо $X = \mathbb{R}$ та розглянемо $\tau = \{U \subset \mathbb{R} \mid U = \emptyset \text{ або } U = \mathbb{R} \setminus S, S \subset \mathbb{R} - \text{деяка скінченна} \}.$ Вона утворює топологію, а називається вона топологія Заріского.

Дійсно, $\emptyset \in \tau$, а також $X \in \tau$, тому що $X = \mathbb{R} \setminus \emptyset$.

Нехай $\{U_{\alpha}\in \tau\}$ – сім'я, поки нехай всі такі, що $U_{\alpha}=\mathbb{R}\setminus S_{\alpha}$ для декяої $\{S_{\alpha}\}$ сім'ї скінченних підмножин. Тоді звідси $\bigcup_{\alpha} U_{\alpha} = \mathbb{R} \setminus \bigcap_{\alpha} S_{\alpha}$. Зрозуміло цілком, що $\bigcap_{\alpha} S_{\alpha}$ буде скінченною, тож $\bigcup_{\alpha} U_{\alpha} \in \tau$. Якщо існує принаймні одна множина U_{α} , де $U_{\alpha} = \emptyset$, то тоді прибираємо їх – повертаємось до пер-

шого випадку.

Нехай $U_1,U_2\in au,$ тобто $U_1=\mathbb{R}\setminus S_1$ та $U_2=\mathbb{R}\setminus S_2,$ де множини S_1,S_2 – скінченні. Тоді $U_1\cap U_2=$ $\mathbb{R}\setminus (S_1\cup S_2)$, де $S_1\cup S_2$, зрозуміло, скінченна. Тож $U_1\cap U_2\in \tau$. Якщо серед них $U_i=\emptyset$, то тоді все

Definition 1.1.7 Задано (X, τ) та (X, τ') – два топологічних простори. τ' називається **сильнішою за** τ , якщо

$$\tau'\supset \tau$$

 τ' називається слабшою за τ , якщо

$$\tau' \subset \tau$$

Example 1.1.8 Якщо є множина X, то дискретна топологія є найсильнішою серед всіх інших топології; а недискретна топологія є найслабшою серед всіх інших топології.

Definition 1.1.9 Задано (X, τ) – топологічний простір та $x \in X$.

Відкритим околом точки x назвемо таку відкриту множину U, де

$$U\ni x$$

Околом точки x назвемо таку множину V, що містить відкритий окіл т. x, тобто

 $\exists U$ – відкритий окіл точки $x:V\supset U$

Example 1.1.10 Розглянемо \mathbb{R} зі стандартною метрикою. Тоді $(-\varepsilon, \varepsilon)$ буде відкритим околом точки 0, тому що даний інтервал відкритий та містить 0.

Водночас $[-\varepsilon,\varepsilon],(-\varepsilon,\varepsilon],[-\varepsilon,\varepsilon)$ будуть околами точки 0, тому що всі вони містять відкритий окіл точки 0 (наприклад) $(\varepsilon,\varepsilon)$.

Remark 1.1.11 Відкритий окіл точки x – також окіл точки x.

Дійсно, нехай U — відкритий окіл x. Тоді $\exists U$ — відкритий окіл точки $x:U\supset U$. Тобто за означенням, U — просто окіл точки x.

Definition 1.1.12 Задано (X, τ) – топологічний простір та $A \subset X$.

Точка x називається **внутрішньою** для A, якщо

$$\exists V$$
 – окіл точки $x:V\subset A$

Proposition 1.1.13 Задано (X, τ) – топологічний простір.

U – відкрита $\iff \forall x \in U : x$ – внутрішня точка для U.

Це те саме звичне означення відкритої множини, яку ми давали в метричному просторі.

Proof.

 \implies Дано: U — відкрита. Тоді якщо $x \in U$, то тоді U — відкритий окіл точки x, причому $U \subset U$. Тобто x — внутрішня точка для U.

 \sqsubseteq Дано: $\forall x \in U: x$ – внутрішня точка для U. Тобто це означає, що $\exists V_x$ – окіл точки $x: V_x \subset U$. Оскільки V_x – окіл точки x, то тоді $\exists U_x$ – відкритий окіл точки $x: U_x \subset V_x \subset U$.

Зауважимо, що $U = \bigcup_{x \in U} U_x$. Оскільки $\{U_x, x \in U\}$ — сім'я відкритих множин, то в силу означення

топології, U буде відкритою як об'єднання.

1.2 Зв'язок з метричними просторами

Definition 1.2.1 Задано (X, τ) – топологічний простір.

Топологічний простір називається метризуючим, якщо

$$\exists \rho$$
 – метрика на множині $X: \tau_{\rho} = \tau$

Інакше кажучи, метрика ρ **індукує ту саму топологію**, що була на початку.

Example 1.2.2 Зокрема дискретний топологічний простір (X,τ) буде метризуючим. Тому що існує метрика $d(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$ – дискретна метрика. У цьому випадку (із теорії метричних просторів) будь-яка підмножина X буде відкритою. Значить, $\tau_d = \tau$.

Example 1.2.3 Але недискретний топологічний простір (X,τ) не буде метризуючим при $\#X \ge 2$. !Припустимо, що існує метрика ρ , яка індукує ту саму топологію. Зауважимо, що існує відкритий окіл $\emptyset \subsetneq B(x;r) \subsetneq X$ при деякому r>0. Якби було навпаки, тобто $\forall r>0$ було б B(x;r)=X, то звідси $\bigcap_{r>0} B(x;r)=X=\{x\}$, проте у нас X містить більше одного елементу.

Таким чином, знайшли $B(x;r) \neq X, B(x;r) \neq \emptyset$ — ще одна відкрита множина, але $B(x;r) \notin \tau$ — суперечність!

Remark 1.2.4 Один й той самий топологічний простір можна метризувати двома різними метриками (тобто нема ін'єктивності переходу з метричного в топологічний простори).

Example 1.2.5 Маємо (\mathbb{Z},τ) — дискретний топологічний простір, яка метризується метрикою d. Розглянемо іншу метрику $\rho(m,n)=|m-n|$ на \mathbb{Z} . Зауважимо, що тоді кожна множина — відкрита. І дійсно, $B\left(\frac{1}{2},x\right)=\left\{y\in\mathbb{Z}:|x-y|<\frac{1}{2}\right\}=\{x\}$ — будь-яка одноточкова множина відкрита. Тому якщо брати довільні об'єднання, то тоді вони будуть відкритими.

Remark 1.2.6 Не кожний топологічний простір може бути метризуючим (тобто нема сюр'єктивності переходу з метричного в топологічний простори).

Дійсно, ми довели, що недискретний топологічний простір не може бути метризуючим.

Definition 1.2.7 Задані (X, ρ) та (X, ρ') – два метричних простори. Метрики називаються **топологічно еквівалентнтими**, якщо

$$\tau_{\rho} = \tau_{\rho}$$

Тобто вони індукують одну й ту саму топологію. Позначення: $\rho \stackrel{\tau}{\sim} \rho'$.

Definition 1.2.8 Задані (X, ρ) та (X, ρ') – два метричних простори.

Метрики називаються Ліпшицево еквівалентнтими, якщо

$$\exists C, c > 0 : \forall x, y \in X : c\rho(x, y) \le \rho'(x, y) \le C\rho(x, y)$$

Позначення: $\rho \stackrel{\text{Lipsch}}{\sim} \rho'$.

Remark 1.2.9 Зрозуміло, що два означення задають відношення еквівалентності.

Proposition 1.2.10 Задані (X, ρ) та (X, ρ') – два метричних простори. Відомо, що $\rho \stackrel{\text{Lipsch}}{\sim} \rho'$. Тоді $\rho \stackrel{\tau}{\sim} \rho'$.

Proof.

Нам треба доввести, що $au_{
ho} = au_{
ho'}$. Це теж саме, що довести, що

U – відкрита в $(X, \rho) \iff U$ – відкрита в (X, ρ') .

Нехай U — відкрита в (X,ρ) . Нехай $x\in U$, тоді за умовою, $\exists B_{\rho}(x;r)\subset U$. За умовою твердження, існують константи c,C>0, для яких $c\rho(x,y)\leq \rho'(x,y)\leq C\rho(x,y)$. Із цієї нерівності випливає $\rho'(x,y)\leq C\rho(x,y)$, а з неї випливає, що $B_{\rho'}(x,cr)\subset B_{\rho}(x,r)$. І дійсно,

$$y \in B_{\rho'}(x, cr) \implies \rho'(x, y) \le cr \implies \rho(x, y) \le \frac{1}{c} \rho'(x, y) \le r \implies y \in B_{\rho}(x, r).$$

Отже, $B_{\rho'}(x,cr)\subset U$, тобто знайшли такий окіл, а тому x – внутрішня точка U відносно (X,ρ') . Оскільки це для довільної точки, то U – відкрита в (X,ρ') .

Нехай U — відкрита в (X, ρ') , то тоді аналогічно доводиться. Просто цього разу в нерівності $c\rho(x,y) \le \rho'(x,y) \le C\rho(x,y)$ використовується права частина нерівності.

Remark 1.2.11 Якщо $\rho \stackrel{\tau}{\sim} \rho'$, то не обов'язково $\rho \stackrel{\text{Lipsch}}{\sim} \rho'$.

Example 1.2.12 Зокрема маємо (\mathbb{Z},d) та (\mathbb{Z},ρ) – два метричних простори. Тут d – дискретна метрика та ρ задається як $\rho(m,n)=|m-n|$. Із **Ex. 1.2.5**, вони генерують одну й ту саму топологію, тобто $\tau_d=\tau_\rho$. А це означає, що $d\stackrel{\sim}{\sim}\rho$.

При цьому ми маємо d $\not\sim$ ρ . Дійсно, нехай C>0. Можна підібрати x=2[C]+1,y=[C], причому тут $x,y\in\mathbb{Z}$, для яких $\rho(x,y)>Cd(x,y)$.

1.3 Збіжність в топологічному просторі

Definition 1.3.1 Задані (X, τ) – топологічний простір та послідовність $\{x_n \in X, n \geq 1\}$. Послідовність збігається до точки $x \in X$, якщо

$$\forall U$$
 — відкритий окіл точки $x:\exists N\in\mathbb{N}: \forall n\geq N: x_n\in U$

Example 1.3.2 Розглянемо $(X, \tau_{\mathrm{disc}})$ – дискретний топологічний простір.

Послідовність $\{x_n \in X, n \geq 1\}$ збігається до точки $x \in X \iff \exists N : \forall n \geq N : x_n = x.$

 \implies Дано: $\{x_n\}$ збігається до $x \in X$. Тоді для будь-якого відкритого околу точки x, зокрема для $\{x\}$ існує номер N, де $\forall n \geq N : x_n \in \{x\}$, тобто $x_n = x, \forall n \geq N$.

 \sqsubseteq Дано: $\exists N: \forall n\geq N: x_n=x$. Нехай U — відкритий окіл точки x. У нас є номер N, де $\forall n\geq N: x\in U$, зокрема звідси $x_n\in U$, а тому звідси $\{x_n\}$ збігається до точки $x\in X$.

Example 1.3.3 Розглянемо $(X, \tau_{\text{indisc}})$ – недискретний топологічний простір. Тоді довільна послідовність $\{x_n \in X, n \geq 1\}$ збігається до будь-якої точки $x \in X$.

Дійсно, нехай U — відкритий окіл точки $x \in X$. У недискретному просторі лише U = X буде відкритим околом точки x. А значить, існує номер N = 1, де $\forall n \geq N : x_n \in X$.

Для того, щоб позбутися такої аномалії, нам треба нова класифікація топологічних просторів. Але це буде трошки пізніше.

1.4 Неперервні відображення

Definition 1.4.1 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори. Відображення $f: X \to Y$ називається **неперервним**, якщо

$$\forall U \in \tilde{\tau} : f^{-1}(U) \in \tau$$

Або простіше кажучи казати так:

$$\forall U$$
 – відкрита в $Y: f^{-1}(U)$ – відкрита в X

Example 1.4.2 Задано відображення $f: X \to Y$, де $(X, \rho), (Y, \rho')$ – два метричних простори. Тоді звідси f – неперервне (в топологічному сенсі).

Example 1.4.3 Задано відображення $f \colon X \to Y$, де (X, τ_{discr}) – дискретний топологічний простір. Тоді f – неперервне.

Справді, беремо U — відкриту множину в Y. Тоді прообраз $f^{-1}(U)$ буде відкритим в X, бо в дискретній топології всі множини — відкриті.

Example 1.4.4 Задано відображення $f: X \to Y$, де $(Y, \tau_{\text{indiscr}})$ – недискретний топологічний простір. Тоді f – неперервне.

Справді, оберемо \emptyset, Y — єдині відкриті множини в Y. Тоді $f^{-1}(\emptyset) = \emptyset$ та $f^{-1}(Y) = X$ — обидва відкриті в X.

Example 1.4.5 Задано відображення id: $X \to X$, тут відображення між (X, τ) та (X, τ') . Тоді id – неперервне $\iff \tau$ сильніша за τ' .

 \Rightarrow Дано: id – неперервне. Тобто $\forall U \in \tau' : \mathrm{id}^{-1}(U) = U \in \tau$. А це в точності $\tau' \subset \tau$.

 $\vdash \Box$ Дано: $\tau' \subset \tau$. Тобто $\forall U \in \tau' : U \in \tau$, але при цьому $U = \mathrm{id}^{-1}(U) \in \tau$. Отже, id – неперервне.

Proposition 1.4.6 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори. Відображення $f: X \to Y$ – неперервне $\iff \forall U$ – замкнена в $Y: f^{-1}(U)$ – замкнена в X.

Proof.

 \Rightarrow Дано: f – неперервне. Оберемо U – замкнену в Y. За означенням, $X \setminus U$ – відкрита в Y, а тому за неперервністю, $f^{-1}(X \setminus U)$ – відкрита в X. Зауважимо, що $f^{-1}(X \setminus U) = X \setminus f^{-1}(U)$ – відкрита в X. Отже, $f^{-1}(U)$ – замкнена в X.

⟨ Ділком аналогічно доводиться.

В принципі, часто про відображення кажуть просто про неперервність, не уточнюючи в якій точці. Але для такого сценарія означення теж ϵ .

Definition 1.4.7 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори. Відображення $f: X \to Y$ називається **неперервним в точці** $x \in X$, якщо

$$\forall V$$
 – окіл точки $f(x):\exists U$ – окіл точки $x:f(U)\subset V$

Proposition 1.4.8 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори.

Відображення $f: X \to Y$ – неперервне $\iff \forall x \in X: f$ – неперервне в точці x.

Proof.

 \Longrightarrow Дано: f – неперервне. Оберемо будь-яку точку $x\in X$. Нехай V – окіл точки f(x). Тоді існує \tilde{V} – відкритий окіл точки f(x), де $V\supset \tilde{V}$. Значить, за неперервністю, $f^{-1}(\tilde{V})$ – відкритий окіл точки x. Також із $V\supset \tilde{V}$ випливає $f^{-1}(V)\supset f^{-1}(\tilde{V})$. Таким чином, $f^{-1}(V)$ – окіл точки x. Нарешті, варто зауважити, що виконується $f(f^{-1}(V))\subset V$.

Таким чином, f – неперервне в точці $x \in X$, причому довільній.

 \sqsubseteq Данл: $\forall x \in X : f$ – неперервне в точці x. Нехай U – відкрита множина в Y. Хочемо показати, що $f^{-1}U$ – відкрита, тобто всі точки внутрішні.

Нехай $x \in f^{-1}U$, тобто $f(x) \in U$, тоді за означення неперервності в точці, існує окіл U_x точки x, де $f(U_x) \subset U \implies U_x \subset f^{-1}U$. Отже, x – внутрішня точка.

Таким чином, f – неперервне відображення.

Proposition 1.4.9 "Означення Гейне"

Задані (X,τ) та $(Y,\tilde{\tau})$ — два топологічних простори та відображення $f\colon X\to Y$ — неперервне. Тоді виконується "означення Гейне тобто

нехай $\{x_n \in X, n \geq 1\}$ збігається до точки $x \in X$. Тоді $\{f(x_n) \in Y, n \geq 1\}$ збігається до точки $f(x) \in Y$.

Proof.

Нехай $\{x_n \in X, n \geq 1\}$ збігається до точки x. Оберемо U – відкритий окіл точки f(x), тоді за неперервністю, $f^{-1}(U)$ – відкритий окіл точки x, а тому звідси за збіжністю, існує N, де $\forall n \geq N$: $x_n \in f^{-1}(U) \implies f(x_n) \in U$.

Remark 1.4.10 Якщо виконано означення Гейне, то з цього в загальному випадку неперервність НЕ випливає.

Proposition 1.4.11 Інші властивості

- 1. іd: $X \to X$ неперервне відображення будь-якій топології τ ;
- 2. Нехай $f\colon X\to Y$ та $g\colon Y\to Z$ обидва неперервні. Тоді $g\circ f\colon X\to Z$ неперервне.
- 1. Вказівка: $id^{-1}(U) = U$.
- 2. Вказівка: $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$.

Remark 1.4.12 Нехай відображення $f: X \to Y$ бієктивне. Якщо f – неперервне, то не обов'язково (!), щоб f^{-1} було неперервним.

Example 1.4.13 Зокрема вже відомо, що іd: $\mathbb{R} \to \mathbb{R}$ буде неперервним відображенням, якщо в першому (\mathbb{R}, d) – дискретний метричний простір та в другому (\mathbb{R}, ρ) – стандартний евклідів простір. Тут виконується неперервність, оскільки τ_{discr} – найсильніша топологія.

Утім відображення $id^{-1}: \mathbb{R} \to \mathbb{R}$ уже не буде неперервним. Тому що [-1,1] – відкрита множина відносно дискретної топології, але $id^{-1}([-1,1]) = [-1,1]$ – НЕ відкрита множина відносно евклідової топології.

Example 1.4.14 Більш геометричний приклад буде наступним. Маємо відображення $f:(0,1]\to S$, де $S=\{z\in\mathbb{C}:|z|=1\}$ – одиничне коло (метрика буде стандартною всюду). Визначимо $f(t)=e^{2\pi it}$. Зрозуміло, що це бієктивне відображення та є неперервним.

У цьому напрямку неперервність означає, що ми (0,1] деформували в коло S, просто об'єднавши тіпа края.

Але $f^{-1}: S \to (0,1]$ уже не буде неперервним.

!Припустимо, що все-таки неперервне. Тоді оскільки $\left\{1-\frac{1}{n}, n\geq 1\right\}$ збігається до 1, а тому $f\left(1-\frac{1}{n}\right)\to f(1)=e^{2\pi i}=1$. Утім в силу неперервності f^{-1} ми маємо $f^{-1}\left(f\left(1-\frac{1}{n}\right)\right)=1-\frac{1}{n}\to 1$, хоча $f^{-1}(1)=0$. Суперечність!

Тут щоб із кола зробити палку, треба розірвати її в точці z=1. Тому нема неперервності. Саме тому приходить новий розділ, де ми хочемо, щоб, деформувавши один об'єкт, отримали топологічно той самий об'єкт і навпаки.

6

1.5 Гомеоморфність топологічних просторів

Definition 1.5.1 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори. Відображення $f: X \to Y$ називається **гомеоморфізмом**, якщо

f – неперервне f – бієктивне f^{-1} – неперервне

Definition 1.5.2 Задані (X, τ) та $(Y, \tilde{\tau})$ – два топологічних простори. Вони будуть називатися **гомеоморфними**, якщо

$$\exists f \colon X \to Y$$
 – гомеоморфізм

Позначення: $X \cong Y$.

Remark 1.5.3 Топологічні простори, які є гомеоморфними, задають відношення еквівалентності. $X \cong X$, оскільки іd: $X \to X$ (одна топологія) – гомеоморфізм.

 $X\cong Y\iff Y\cong X$ просто за означенням гомеоморфізма.

 $X\cong Y,Y\cong Z\implies X\cong Z$, тому що $g\circ f$ задає гомеоморфізм між ними. У цьому випадку $f\colon X\to Y,g\colon Y\to Z$ – гомеоморфізми.

Example 1.5.4 Зокрема відрізок $[0,1] \cong [a,b]$, якщо встановити $f: [0,1] \to [a,b]$ як f(t) = (1-t)a + tb – і це відображення буде гомеоморфізмом.

Дійсно, $f \in C([0,1])$ як лінійна функція. Далі знайдемо обернене відображення — воно дорівнює $f^{-1}(u) = \frac{u-a}{b-a}$, причому $f^{-1} \in C([a,b])$ знову як лінійна функція.

Example 1.5.5 Із цього прикладу можна отримати $[a,b]\cong [c,d]$, тому що $[a,b]\cong [0,1]$ та $[0,1]\cong [c,d]$ \Longrightarrow $[a,b]\cong [c,d]$.

Аналогічно можна довести, що $(a,b)\cong(c,d)$, $(a,b]\cong(c,d)\cong[c,d)\cong[a,b)$.

Example 1.5.6 За **Ex. 1.4.14**, ми отримали $(0,1] \not\cong S$.

Example 1.5.7 Також маємо $(a,b)\cong \mathbb{R}$. Можна спочатку довести, що $(-1,1)\cong \mathbb{R}$, якщо задати $f(x)=\frac{x}{1-|x|}$ – це дійсно буде гомеоморфізмом.

А вже далі в силу транзитивності, ми отримаємо $(a,b) \cong \mathbb{R}$.

Example 1.5.8 Тепер розглянемо такі два об'єкти. Перший: кільце з внутрішнім радіусом 1 та зовнішнім радіусом 2, для зручності розташуємо центр на початку координат. Другий: циліндр без двох основ. Інтуїтивно вони будуть гомеоморфними, тому що:

циліндр отримаємо з кільця, якщо його кільце намагатися розтягнути вгору; кільце отримаємо з циліндра, якщо його сплющити.

Строго можна довести гомеоморфність цих об'єктів, якщо задати відображення $(r\cos\theta, r\sin\theta) \mapsto$ $(\cos \theta, \sin \theta, r)$, що буде гомеоморфізмом. У цьому випадку $r \in [1, 2]$ та $\phi \in [0, 2\pi]$.

Example 1.5.9 Ще важливий приклад, $[a, b] \ncong \mathbb{R}$.

!Припустимо, що все ж таки $[a,b] \cong \mathbb{R}$, тобто існує між ними гомеоморфізм $f:[a,b] \to \mathbb{R}$. Оскільки $f \in C([a,b])$, то звідси воно досягає найбільшого значення M та найменшого значення m. Тобто f([a,b])=[m,M]. Але оскільки f – бієкція, то звідси $f([a,b])=\mathbb{R}$. Але при цьому $[m,M]\neq\mathbb{R}$ – суперечність!

Example 1.5.10 Мабуть, в алгебраїчній топології буде доведено, що $\mathbb{R}^n \cong \mathbb{R}^m \iff n=m.$

Конструкція топології за базою

Definition 1.6.1 Задано (X, τ) – топологічний простір. Клас \mathcal{B} підмножин X назвемо **базою топології** τ , якщо

$$\forall U \in \tau : U = \bigcup_{V \in \tilde{\mathcal{B}}} V, \ \tilde{\mathcal{B}} \subset \mathcal{B}$$

Тобто $\mathcal B$ називається базою, якщо кожна відкрита множина записується як об'єднання множин з класу \mathcal{B} .

Example 1.6.2 Зокрема маємо метричний простір (X, ρ) , де індукується топологія τ_{ρ} . Тоді для неї база $\mathcal{B} = \{B(x;r) \mid x \in X, r>0\}$ – набір всіх відкритих куль. Дійсно, нехай U – відкрита множина, тоді $\forall x \in U: x$ – відкрита, а тому $\exists B(x;r_x) \subset U.$ Тоді звідси $U = \bigcup_{x \in X} B(x;r_x).$

Example 1.6.3 Якщо (X, τ_{discr}) – дискретна топологія, то тоді $\mathcal{B} = \{\{x\} \mid x \in X\}$ – база. Дійсно, кожна підмножина $U = \bigcup_{x \in U} \{x\}$, ну й U уже апріорі відкрита.

Proposition 1.6.4 Задано (X, τ) – топологічний простір та \mathcal{B} – база топології. Тоді:

- 1. $X = \bigcup_{U \in \mathcal{B}} U$ тобто X записуємо як об'єданання всіх множин із бази;
- 2. $\forall B_1, B_2 \in \mathcal{B}: B_1 \cap B_2 = \bigcup_{U \in \tilde{\mathcal{B}}} U$, де $\tilde{\mathcal{B}} \subset \mathcal{B}$ тобто перетин елементів з бази записуються як об'єднання з цієї самої бази.

Proof.

Дійсно, оскільки \mathcal{B} – база топології, то кожна відкрита множина – це об'єдання множин із бази.

1. Зокрема X — відкрита, тому $X = \bigcup_{U \in \mathcal{B}} U$. 2. Нехай $B_1, B_2 \in \mathcal{B}$. Вони вдвох є відкритими, тому що вони записані як об'єднання однієї множини з бази. Значить, $B_1\cap B_2$ є відкритою множиною, а тому $B_1\cap B_2=\bigcup\ U.$

Definition 1.6.5 Нехай задано множину X (уже не топологічний простір). Клас \mathcal{B} підмножин X назвемо базою множини X, якщо

$$1.~X=\bigcup_{U\in\mathcal{B}}U$$
2. $\forall B_1,B_2\in\mathcal{B}:B_1\cap B_2=\bigcup_{U\in\tilde{\mathcal{B}}}U,$ де $\tilde{\mathcal{B}}\subset\mathcal{B}$

Якщо (X, τ) – топологія та \mathcal{B} – база топології, то \mathcal{B} – база множини.

Виявляється, що якщо в нас ϵ множина X, для якої ми хочемо згенерувати топологію, то нам потрібно створити базу \mathcal{B} множини X.

Proposition 1.6.6 Конструкція топології за базою

Задано
$$X$$
 – множину та \mathcal{B} – база цієї множини. Створимо $au_{\mathcal{B}} = \left\{ \bigcup_{U \in \tilde{\mathcal{B}}} U \mid \tilde{\mathcal{B}} \subset \mathcal{B} \right\}$ – тобто клас, що

складається з усіх можливих об'єднань елементів з бази. Тоді $(X, \tau_{\mathcal{B}})$ утворює топологічний простір. Ми $\tau_{\mathcal{B}}$ називаємо **топологією, що породжена базою** \mathcal{B} . Причому це єдина така топологія, де \mathcal{B} база топології.

Proof.

Маємо
$$au_{\mathcal{B}} = \left\{ \bigcup_{U \in \tilde{\mathcal{B}}} U \mid \tilde{\mathcal{B}} \subset \mathcal{B} \right\}$$
, перевіримо всі пункти для топології.

Маємо
$$\tau_{\mathcal{B}} = \left\{ \bigcup_{U \in \tilde{\mathcal{B}}} U \mid \tilde{\mathcal{B}} \subset \mathcal{B} \right\}$$
, перевіримо всі пункти для топології.
1. $\emptyset \in \tau_{\mathcal{B}}$, тому що можна записати $\emptyset = \bigcup_{U \in \emptyset} U$, де $\emptyset \subset \mathcal{B}$. Також $X \in \tau_{\mathcal{B}}$, тому що \mathcal{B} – база множини

$$X$$
, а значить, $X = \bigcup_{U \in \mathcal{B}} U$.

2. Нехай
$$\{U_\alpha\mid U_\alpha\in\tau_\mathcal{B}\}$$
 — сім'я відкритих множин. Тобто $U_\alpha=\bigcup_{\mathcal{B}_\alpha}U$, де $\mathcal{B}_\alpha\subset\mathcal{B}$. Тоді звідси

$$\bigcup_{\alpha} U_{\alpha} = \bigcup_{\alpha} U_{\alpha} \text{ причому } \bigcup_{\alpha} \mathcal{B}_{\alpha} \subset \mathcal{B}. \text{ Отже, } \bigcup_{\alpha} U_{\alpha} \in \tau_{\mathcal{B}}$$

3. Нехай
$$U_1,U_2\in au_{\mathcal{B}}.$$
 Тобто звідси $U_1=\bigcup_{U\in\mathcal{B}_1}U$ та $U_2=\bigcup_{U\in\mathcal{B}_2}U,$ де $\mathcal{B}_1,\mathcal{B}_2\subset\mathcal{B}.$ Значить, звідси

2. Нехай
$$\{U_{\alpha}\mid U_{\alpha}\in\tau_{\mathcal{B}}\}$$
 — сім'я відкритих множин. Тобто $U_{\alpha}=\bigcup_{\mathcal{B}_{\alpha}}U$, де $\mathcal{B}_{\alpha}\subset\mathcal{B}$. Тоді звідси $\bigcup_{\alpha}U_{\alpha}=\bigcup_{\alpha}U$, причому $\bigcup_{\alpha}\mathcal{B}_{\alpha}\subset\mathcal{B}$. Отже, $\bigcup_{\alpha}U_{\alpha}\in\tau_{\mathcal{B}}$.

3. Нехай $U_{1},U_{2}\in\tau_{\mathcal{B}}$. Тобто звідси $U_{1}=\bigcup_{U\in\mathcal{B}_{1}}U$ та $U_{2}=\bigcup_{U\in\mathcal{B}_{2}}U$, де $\mathcal{B}_{1},\mathcal{B}_{2}\subset\mathcal{B}$. Значить, звідси $U_{1}\cap U_{2}=\bigcup_{U\in\mathcal{B}_{1}}(U\cap V)$. Оскільки $U,V\in\mathcal{B}$, то в силу того, що \mathcal{B} — база множини X , звідси $U_{1}\cap U_{2}=\bigcup_{U\in\mathcal{B}_{2}}U$

$$U\cap V=\bigcup_{W\in ilde{\mathcal{B}}_{U,V}}^{U\in \mathcal{B}_1}W.$$
 Тоді $U_1\cap U_2=\bigcup_{U\in \mathcal{B}_1}\bigcup_{W\in ilde{\mathcal{B}}_{U,V}}W=\bigcup_{W\in ilde{\mathcal{B}}}W.$ Детально треба уточнити, що кожний $ilde{\mathcal{B}}_{U,V}\subset \mathcal{B},$ тоді $\bigcup_{V\in \mathcal{B}_1}\tilde{\mathcal{B}}_{U,V}\stackrel{\mathrm{позн.}}{=}\tilde{\mathcal{B}}\subset \mathcal{B}.$ Висновок: $U_1\cap U_2$ записали як об'єднання множин з бази $\mathcal{B},$

$$ilde{\mathcal{B}}_{U,V}\subset\mathcal{B}$$
, тоді $\bigcup_{\substack{U\in\mathcal{B}_1\\V\in\mathcal{B}_2}} ilde{\mathcal{B}}_{U,V}\stackrel{ ext{nosh}}{=} ilde{\tilde{\mathcal{B}}}\subset\mathcal{B}$. Висновок: $U_1\cap U_2$ записали як об'єднання множин з бази \mathcal{B}_1

тож $U_1 \cap U_2 \in \tau_{\mathcal{B}}$.

Із цих пунктів випливає, що $au_{\mathcal{B}}$ – дійсно топологія.

Також з цього випливає, що \mathcal{B} – не просто база множини X, а ще й база топології $\tau_{\mathcal{B}}$.

Припустимо, що існує τ' – якась інша топологія на X, яка має базу топології \mathcal{B} . Нам треба довести, що $\tau' = \tau_{\mathcal{B}}$.

Нехай $U\in au'$, тоді звідси за означенням бази топології, $U=\bigcup_{V\in \tilde{\mathcal{B}}}V$, де $\tilde{\mathcal{B}}\subset \mathcal{B}$. Але в силу того, як

ми визначали $au_{\mathcal{B}}$, випливає, що $U \in au_{\mathcal{B}}$. Нехай $U \in au_{\mathcal{B}}$, тоді звідси за побудовою, $U = \bigcup_{r=a}^{\infty} V$, але тоді $V \in au'$ – відкрита множина як

об'єднання однієї множини з бази. За означенням топології, $U \in \tau'$.

Власне, з цього випливає, що $\tau_{\mathcal{B}} = \tau'$.

Proposition 1.6.7 Задані $(X,\tau),(Y,\tilde{\tau})$ — топологічні простіри та $\tilde{\mathcal{B}}$ — база топології $\tilde{\tau}$. Відомо, що $\forall U \in \tilde{\mathcal{B}} : f^{-1}(U) \in \tau$. Тоді $f : X \to Y$ – неперервне.

Remark 1.6.8 Тобто коли топологія побудована за базою, то для неперервності достатньо перевірити умову для елементів з бази, а не з усієї топології.

Нехай U — відкрита множина в Y, тобто звідси $U = \bigcup_{V \in \mathcal{B}'} V$, де $\mathcal{B}' \subset \tilde{\mathcal{B}}$ за визначенням бази. Тоді звідси $f^{-1}(U) = \bigcup_{V \in \mathcal{B}'} f^{-1}(V)$, де всі $f^{-1}(V)$ відкриті за умовою. Отже, $f^{-1}(U)$ — відкрита як

об'єднання. Отже, $f\colon X\to Y$ – неперервне.

Definition 1.6.9 Задано (X, τ) – топологічний простір та \mathcal{B} – його база. Простір задовольняє другу аксіому зліченності (англ. second-countable), якщо

Example 1.6.10 Зокрема (\mathbb{R}, τ) з евклідовою топологією буде second-countable.

Розглянемо $\mathcal{B} = \{(a,b) \mid a,b \in \mathbb{Q}\}$. Варто спочатку довести, що вона утворює базу стандартної топології. Дійсно, нехай $U \in \tau$. Її можемо в стандартній топології записати як $U = \bigcup_{x \in U} (x-r, x+r)$.

Надалі вся увага на $(x-r,x+r)\stackrel{\text{позн.}}{=}(u,v)$. Слід зауважити, що тут $u,v\in\mathbb{R}$. Але відомо, що для u існує послідовність раціональних чисел $\{q_n, n \geq 1\}$ так, щоб $v \geq q_n \geq u$, а також $q_n \to u$. Аналогічно існує послідовність раціональних чисел $\{r_n, n \geq 1\}$ так, щоб $u \leq r_n \leq v$, а також $r_n \to v$. Тоді запишемо $(u,v)=\bigcup_{\substack{q_n,r_n\in\mathbb{Q}\\q_n< r_n}}(q_n,r_n).$ Таким чином, отримали (u,v) як об'єднання множин з бази, тобто U записується як об'єднання множин з бази.

Висновок: \mathcal{B} – база стандартної топології. Оскільки \mathbb{Q} – зліченна множина, то кількість інтервалів (a,b) також буде зліченною, тому second-countable.

1.7 Конструкція топології за передбазою

Definition 1.7.1 Задано (X, τ) – топологічний простір. Клас S підмножин X назвемо **передбазою топології** τ , якщо

$$\mathcal{B} \stackrel{\mathrm{def.}}{=} \left\{ \bigcap_{i=1}^{n} S_i \mid S_i \in \mathcal{S} \right\}$$

утворює базу топології τ . Тобто з цього випливає, що

$$\forall U \in \tau : U = \bigcup_{\bigcap_{i=1}^n S_i \in \tilde{\mathcal{B}}} \bigcap_{i=1}^n S_i, \text{ де } \tilde{\mathcal{B}} \subset \mathcal{B}$$

Тобто кожна відкрита множина записується як об'єднання множин, кожна з яких записується лише як скінченні перетини множин з S.

Ми вже знаємо, що якщо є база \mathcal{B} , то тоді можна побудувати топологію. Тобто якщо ми хочемо, щоб S була передбазою, то треба спочатку утворити базу B, а із бази вже утворити топологію. ТОДО: доповнити

Характеристики точок множин

Нам вже відоме означення внутрішньої точки. Ще раз нагадаю:

Definition 1.8.1 Задано (X, τ) – топологічний простір та $A \subset X$. Точка x називається **внутрішньою** для A, якщо

$$\exists V$$
 – окіл точки $x:V\subset A$

Definition 1.8.2 Задано (X, τ) – топологічний простір та $A \subset X$. Точка $x \in X$ називається **граничною для** A, якщо

$$\forall V$$
 – окіл точки $x:V\cap (A\setminus \{x\})\neq \emptyset$

Є ще різні види точок, але поки зосередимось на них.

У метричному просторі ми вводили поняття відкритих та замкнених множин як раз через внутрішні та граничні точки. У топологічному просторі ми означення відкритої множини звели до означення з використанням внутрішніх точок. Зробимо те саме для замкнених множин.

Proposition 1.8.3 Задано (X, τ) – топологічний простір та $A \subset X$. A – замкнена \iff A містить всі граничні точки A.

Proof.

 \implies Дано: A – замкнена, тобто $X \setminus A$ – відкрита множина.

 $\overline{\text{ІПрипустимо}}$, що x — гранична точка A, але $x \notin A$. Тобто $x \in X \setminus A$. Водночас звідси x буде внутрішньою точкою $X \setminus A$, тобто існує V — окіл точки x, для якого $V \subset X \setminus A \implies V \cap (A \setminus \{x\}) = \emptyset$. Але для цього ж околу ми знаємо, що $V \cap A \setminus \{x\} \neq \emptyset$ — суперечність!

Отже, обов'язково треба вимагати $x \in A$.

 \models Дано: A містить всі свої граничні точки. Доведемо, що $X\setminus A$ відкрита.

Нехай $x \in X \setminus A$, тоді вона уже не є граничною точкою, тобто $\exists V$ – окіл точки $x : V \cap (A \setminus \{x\}) = \emptyset$, зокрема звідси $V \subset X \setminus A$. Отже, x – внутрішня точка.

Тож звідси $X \setminus A$ — відкрита, тобто A — замкнена.

TODO: ∂onucamu!

1.9 Топологічний підпростір

Definition 1.9.1 Задано (X, τ) – топологічний простір та $A \subset X$.

Топологією підпростору на A називають таку множину:

$$\tau_A = \{ U \subset A \mid \exists W \in \tau : U = A \cap W \}$$

Пара (A, τ_A) називається **підпростором** топологічного простору (X, τ) .

Якщо $U \in \tau_A$, то будемо казати, що U відкрита на A. Також якщо $A \setminus U \in \tau_A$ будемо казати, що U – замкнена на A.

Proposition 1.9.2 τ_A задає топологію та (A, τ_A) теж утворює топологічний простір.

Proof.

- 1. $\emptyset, A \in \tau_A$ зі зрозумілих причин;
- 2. Нехай $\{U_{\alpha} \in \tau_A\}$ сім'я відкритих. Тобто $U_{\alpha} = A \cap W_{\alpha}$, де $\{W_{\alpha} \in \tau\}$ сім'я відкритих в (X, τ) . Тоді звідси $\bigcup U_{\alpha} = A \cap \bigcup W_{\alpha}$, де множина $\bigcup W_{\alpha} \in \tau$. Отже, $\bigcup U_{\alpha} \in \tau_A$.
- 3. Нехай $U_1, \overset{\alpha}{U}_2 \in \tau_A$, тобто $U_1 = A \cap W_1$ та $\overset{\alpha}{U}_2 = A \cap W_2$ при $\overset{\alpha}{W}_1, W_2 \in \tau$. Звідси маємо $U_1 \cap U_2 = A \cap (W_1 \cap W_2)$, де $W_1 \cap W_2 \in \tau$, але звідси $U_1 \cap U_2 \in \tau_A$.

Example 1.9.3 Зокрема в метричному просторі (X, ρ) , якщо $A \subset X$, ми вже знаємо, що U – відкрита на $A \iff U = A \cap W$ для деякої W – відкритої в X. Тобто, по суті, індукований простір (A, ρ_A) індукує топологію підпростору τ_A .

Example 1.9.4 Маємо (X, τ_{discr}) – дискретний топологічний простір. Оберемо $A \subset X$, тоді підпростір (A, τ_A) – теж дискретний топологічний простір.

Ну дійсно, $U \subset A \subset X$, а будь-яка підмножина в дискретному просторі — відкрита.

Example 1.9.5 Маємо $(X, \tau_{\text{indiscr}})$ – дискретний топологічний простір. Оберемо $A \subset X$, тоді підпростір (A, τ_A) – теж дискретний топологічний простір.

Дійсно, нехай U — відкрита в A, тобто звідси $U = A \cap W$, де W — відкрита в X. Значить, або $W = \emptyset$, або W = X. Тоді звідси $U = A \cap X = A$ або $U = \emptyset$. Інших відкритих — нема.

Proposition 1.9.6 Задано (X, τ) – топологічний простір та $A \subset X$.

V – замкнена на $A \iff \exists S$ – замкнена в $X:V=A\cap S$.

Proof.

 \implies Дано: V — замкнена на A, тобто $A \setminus V$ — відкрита на A, а тому $A \setminus V = A \cap W$ при W — відкрита на X. Значить, звідси $V = A \setminus (A \setminus V) = A \setminus (A \cap W) = A \cap (X \setminus W)$. Позначимо $X \setminus W = S$, яка є замкненою в X. Звідси випливає, що $V = A \cap S$.

 \Leftarrow Аналогічно.

Proposition 1.9.7 Задано (X, τ) – топологічний простір та $U \subset A \subset X$. Відомо, що U – відкрита на A та A – відкрита на X. Тоді U – відкрита на X.

Аналогічно виконується, якщо всюди - замкнені множини.

Proof.

За умовою, U – відкрита на A, тобто звідси $U = A \cap W$; причому W – відкрита на X та A – відкрита на X за умовою. Отже, U – відкрита на X як перетин.

 ${f Remark}$ 1.9.8 У цьому твердженні дуже важливо, щоб A була відкритою на X!

Example 1.9.9 Маємо $X = \mathbb{R}$ із евклідовою метрикою, $A = [0, +\infty)$ та U = [0, 1).

У цьому випадку A не ε відкритою на X – зрозуміло. Далі зауважимо, що U – відкрита на A, просто тому що $[0,1)=[0,+\infty)\cap(1,+\infty)$, де $(1,+\infty)$ – відкрита на X. Але U – не відкрита на X.

Remark 1.9.10 Задано (X, τ) – топологічний простір та $A \subset X$. Означення топології підпростору на A можна переписати по-інакшому. Для цього розглянемо вкладення $\imath_A \colon A \to X$, а далі зауважимо, що для кожної $W \subset X$ маємо $\imath_A^{-1}(W) = W \cap A$. Тоді звідси маємо:

$$\tau_A = \imath_A^{-1}(\tau)$$

Тоді τ_A ще інколи називають **індукованою топологією** на A.

Proposition 1.9.11 Задано (X,τ) – топологічний простір та A – підпростір. Тоді вкладення $\imath_A\colon A\to X$ неперевне.

Вказівка: $i_A^{-1}(W) = W \cap A$.

Remark 1.9.12 τ_A – найслабша на A топологія серед всіх інших, для якої \imath – неперервне. Тому що τ_A визначено так, що лише $\imath_A^{-1}(W)$ – відкриті, більше нічого.

Proposition 1.9.13 Задано (X,τ) – топологічний простір та A – підпростір. Нехай $(Y,\tilde{\tau})$ – інший топологічний простір.

Відображення $f\colon Y\to A$ – неперервне $\iff \imath\circ f\colon Y\to X$ – неперервне.

$$Y \xrightarrow{f} A$$

$$\downarrow \iota$$

$$\downarrow \iota$$

$$X$$

Proof.

 \Longrightarrow Дано: $f\colon Y\to A$ – неперервне. Тоді автоматично $\imath\circ f\colon Y\to X$ буде неперервним як композиція неперервних.

 \sqsubseteq Дано: $i\circ f\colon Y\to X$ — неперервне. Оберемо U — відкриту на A, тобто $U=A\cap W$ при деякому W — відкрита на X. Розглянемо $f^{-1}(U)=f^{-1}(A\cap W)=f^{-1}(\imath^{-1}(W))=(\imath\circ f)^{-1}(W)$. Але оскільки W — відкрита на X, то за умовою, $(\imath\circ f)^{-1}(W)$ — відкрита на Y.

Example 1.9.14 Зокрема на стандартних топологіях маємо відображення $f: \mathbb{R} \to [-1, 1]$ як $f(x) = \sin x$. Із мат. аналізу, воно є неперервним. Але за твердженням вище, $i \circ f: \mathbb{R} \to \mathbb{R}$, де мається $i: [-1, 1] \to \mathbb{R}$, – неперервне теж відображення.

Тобто твердження каже, що властивість неперервності залишається, якщо збільшити чи зменшити область значень.

Proposition 1.9.15 Задано (X, τ) – топологічний простір та $f \colon X \to Y$ – неперервне. Тоді звуження $f \Big|_A \colon A \to Y$ – теж неперервне, де $A \subset X$.

Вказівка: $f\Big|_A = f \circ \imath, \ \partial e \ \imath \colon A \to X.$

Example 1.9.16 Тобто маємо $f: \mathbb{R} \to [-1,1]$, що задано $f(x) = \sin x$, що неперервне. Тоді $f\Big|_{[-\pi,\pi]}: [-\pi,\pi] \to [-1,1]$ – теж неперервне.

Example 1.9.17 Тепер маємо $f: \mathbb{R} \to \mathbb{R}$, що задається як $f(x) = \frac{1}{x}$. У цьому випадку $f\Big|_{(0,+\infty)}$ буде неперервним відображенням з мат. аналізу, але f – не є неперервним.

1.10 Добуток просторів

Нехай задані (X_1, τ_1) та (X_2, τ_2) – два топологічних простори. Хочеться задати топологію на $X_1 \times X_2$. Перше вгадування: чи буде множина $\{U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2\}$ утворювати топологію? Ні, цього недостатньо.

Example 1.10.1 Зокрема маємо (\mathbb{R} , τ_1) та \mathbb{R} , τ_2) – дві евклідові топології. Розглянемо множину $U_1 \times U_2 = (0,2) \times (0,2)$ та множину $V_1 \times V_2 = (1,3) \times (1,3)$. А далі треба подивитися на ($U_1 \times U_2$) \cup ($V_1 \times V_2$) та зауважити наступне: це буде відкрита множина, але не потрапляє в нашу 'топологію', тому що я не можу її записати як $W_1 \times W_2$.

Значить, треба трошки по-інакшому до цього підійти.

Розглянемо $\mathcal{B} = \{U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2\}$. Якщо вона ще не утворює топологію, то спробуємо показати, що це утворює базу множини $X_1 \times X_2$. Дійсно:

- 1. $X_1 \times X_2 \in \mathcal{B}$, навіть не обов'язково розписувати як об'єднання. Хоча можна це зробити, $X_1 \times X_2 = \bigcup_{U_1 \times U_2 \in \mathcal{B}} U_1 \times U_2$, і в це же об'єднання буде входити $X_1 \times X_2$, а тому рівність легітимна;
- $U_1 \times U_2 \in \mathcal{B}$ 2. Нехай $U, V \in \mathcal{B}$, тобто $U = U_1 \times U_2$ та $V = V_1 \times V_2$, у цьому випадку U_1, V_1 відкриті в X_1 та U_2, V_2 відкриті в X_2 . Тоді звідси зауважимо, що $U \cap V = (U_1 \times U_2) \cap (V_1 \times V_2) = (U_1 \cap V_1) \times (U_2 \cap V_2)$. Оскільки $U_1 \cap V_1$ та $U_2 \cap V_2$ залишаються відкритими у себе, то звідси $U \cap V$ записали як добуток відкритих, тож $U \cap V \in \mathcal{B}$.

Таким чином, \mathcal{B} – дійсно база $X_1 \times X_2$, а тому можна спородити топологію.

Definition 1.10.2 Задані (X_1, τ_1) та (X_2, τ_2) — два топологічних простори. Добутком топологій τ_1, τ_2 назвемо топологію, яка породжена базою

$$\mathcal{B} = \{ U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2 \}$$

Позначення: $\tau_1 \times \tau_2 \stackrel{\text{def.}}{=} \tau_{\mathcal{B}}$.

Це ще інколи називають тіхоновською топологією.

Proposition 1.10.3 Задані (X_1, τ_1) та (X_2, τ_2) – два топологічних простори. Наступні твердження еквівалентні:

- 1) U відкрита на $X_1 \times X_2$;
- 2) $U=\bigcup_{\alpha}U_1^{\alpha}\times U_2^{\alpha}$ для деяких сімей $\{U_1^{\alpha}\}$ та $\{U_2^{\alpha}\}$ відкритих множин відповідно на $X_1,X_2;$
- 3) $\forall (x_1,x_2) \in U: \exists U_1,U_2$ відповідно відкриті околи точки $x_1,x_2:U_1\times U_2\subset U.$

Proof.

 $1)\Leftrightarrow 2)$ виплива ϵ з означення добутку топологій.

- $(2) \Rightarrow 3)$ зрозуміло.
- $2) \Leftarrow 3$ Дано: виконується 3), тоді для кожної точки $(x_1, x_2) \in U$ існують відкриті околи U_1^x, U_2^x , причому $U_1^x \times U_2^x \subset U$. Зауважимо, що $U = \bigcup_{(x_1, x_2) \in U} U_1^x \times U_2^x$, тож 2) виконано.

Theorem 1.10.4 Задано \mathbb{R}^n із евклідовою топологією. Тоді вона буде збігатися з добутком топології $\mathbb{R} \times \cdots \times \mathbb{R}$, де в \mathbb{R} стоїть стандартна топологія.

Remark 1.10.5 Зауважимо, що топологія з евклідовою метрикою збігається з топологією, що породжена метрикою $d_{\infty} = \max_{i=1,n} |x_i - y_i|$. Це суттєво спростить доведення теореми.

Proof.

Тобто треба довести, що U – відкрита в $\mathbb{R}^n \iff U$ – відкрита в $\mathbb{R} \times \cdots \times \mathbb{R}$.

 \Rightarrow Дано: U – відкрита в \mathbb{R}^n .

Нехай $(x_1,\ldots,x_n)\in U$, тоді звідси існує окіл $B_{d_\infty}(\vec x,r)=(x_1-r,x_1+r)\times\cdots\times(x_n-r,x_n+r)\subset U$. Позначимо $U_i=(x_i-r,x_i+r)$ — отримали, що існують U_i — відкриті околи точок $x_i,i=\overline{1,n}$, для яких $U_1\times\cdots\times U_n\subset U$. А тому звідси U — відкрита на $\mathbb{R}\times\cdots\times\mathbb{R}$.

 \leftarrow Дано: U – відкрита в $\mathbb{R} \times \cdots \times \mathbb{R}$.

 $\overline{\operatorname{Hexa}}$ й $(x_1,\ldots,x_n)\in U$, тоді існують відкриті околи U_i точок $x_i,i=\overline{1,n}$, для яких $U_1\times\cdots\times U_n\subset U$. Оскільки U_i – відкриті околи, то існує $(x_i-r_i,x_i+r_i)\subset U_i$ при $r_i>0$. Значить, $(x_1-r_1,x_1+r_1)\times\cdots\times (x_n-r_n,x_n+r_n)\subset U$. Покладемо $r=\min_{i=\overline{1,n}}r_i$, тоді звідси $(x_1-r,x_1+r)\times\cdots\times (x_n-r,x_n+r)\subset U$.

Або, інакше кажучи, $B_{d_{\infty}}(\vec{x},r)\subset U$. Тобто звідси U – відкрита на \mathbb{R}^n відносно d_{∞} , а тому й відносно еквлідової метрики.

Proposition 1.10.6 Задані (X_1, τ_1) та (X_2, τ_2) – два топологічних простори. Тоді відображення $\operatorname{pr}_1\colon X_1\times X_2\to X_1$ та $\operatorname{pr}_2\colon X_1\times X_2\to X_2$ – неперервні.

$$X_1 \stackrel{\operatorname{pr}_1}{\longleftarrow} X_1 \times X_2 \stackrel{\operatorname{pr}_2}{\longrightarrow} X_2$$

Proof.

Достатньо показати для pr_1 , бо з pr_2 все симетрично.

Нехай U_1 — відкрита в X_1 . Тоді звідси $\operatorname{pr}_1^{-1}(U_1) = \{(x_1, x_2) \in X_1 \times X_2 \mid x_1 \in U_1\} = U_1 \times X_2$ — відкрита як добуток двох відкритих.

Remark 1.10.7 $\tau_1 \times \tau_2$ — найслабша на $X_1 \times X_2$ топологія серед всіх інших, для якої проєкції — неперервні. *TODO: обміркувати*

Proposition 1.10.8 Задані (X_1, τ_1) та (X_2, τ_2) – два топологічних простори. Нехай (Z, σ) – також топологічний простір, встановимо відображення $f \colon Z \to X_1 \times X_2$ як $z \mapsto (f_1(z), f_2(z))$. f – неперервне $\iff f_1, f_2$ – обидва неперервні (покоординатно).

Proof.

 \Rightarrow Дано: f – неперервне. Зауважимо, що $f_1 = \operatorname{pr}_1 \circ f$ та $f_2 = \operatorname{pr}_2 \circ f$. Тоді f_1, f_2 – неперервні як композиція неперервних.

 \leftarrow Дано: f_1, f_2 – обидва неперервні.

Нехай $U \in \mathcal{B}$ — база топології $\tau_1 \times \tau_2$, тобто $U = U_1 \times U_2$, де U_1, U_2 — відкриті на X_1, X_2 . Звідси $f^{-1}(U) = \{z \in Z \mid (f_1(z), f_2(z)) \in U_1 \times U_2\} = f_1^{-1}(U_1) \cap f_2^{-1}(U_2)$. За умовою, маємо $f_1^{-1}(U_1), f_2^{-1}(U_2)$ — відкриті на Z. Тобто звідси випливає, що $f^{-1}(U)$ — відкрита на Z.

Remark 1.10.9 Можна узагальнити означення добутку топології. Маємо $\{(X_{\alpha}, \tau_{\alpha})\}$ – сім'я топологічних просторів та $X = \prod_{\alpha} X_{\alpha}$ – декартів добуток. Якщо визначити клас

$$\mathcal{B} = \left\{ \prod_{\alpha} U_{\alpha} \mid U_{\alpha} \in \tau_{\alpha}, U_{\alpha} \neq X_{\alpha} \text{ лише скінченне число разів} \right\},$$

то вона утворить базу множини X, а тому можна утворити топологію.

Позначення: $\prod_{\alpha} \tau_{\alpha} \stackrel{\text{def.}}{=} \tau_{\mathcal{B}}$.

1.11 Фактортопологія

Тут є куча варіантів, як це визначати, тому розглянемо всі.

Definition 1.11.1 Задано (X, τ) – топологічний простір та $q: X \to Y$ – сюр'єктивне відображення. **Фактортопологію на** Y визначимо таким чином:

$$U \subset Y$$
 – відкрита на $Y \iff q^{-1}U$ – відкрита на X

Позначення: $\tau/_{\sim}$ (скоро це позначення буде виправданим).

Remark 1.11.2 $\tau/_{\sim}$ дійсно задає топологію та (Y, τ_{\sim}) утворює топологічний простір. Це випливає з властивостей прообразів.

Оскільки q сюр'єктивне відображення, то для кожної $y \in Y$ знайдеться $x \in X$, щоб y = q(x). По-інакшому це можна сказати як $q^{-1}(\{y\}) \neq \emptyset$.

Також в силу сюр'єктивності ми маємо розбиття множини X. Тобто звідси отримали $X = \bigsqcup_{y \in Y} q^{-1}(\{y\})$.

Навпаки, нехай множина X має розбиття, тобто $X = \bigsqcup_y S_y$. Тоді можна визначити відображення q таким чином: якщо $y \in S_y$, то тоді $S_y \ni x \stackrel{q}{\mapsto} y$, причому це задає сюр'єктивне відображення.

Нехай знову є розбиття множини X, тоді вона має відношення еквівалентності $x_1 \sim x_2 \iff x_1, x_2$ лежать в одній множині розбиття.

А якщо є відношення еквівалентності на X, то зрозуміло, що відбувається розбиття класами еквівалентності [x].

Коротше, у нас виникла така діаграма:

Мораль така: ми можемо трьома різними способами задати фактортопологію: або через довільну сюр'єкцію, або через розбиття (досить рідко), або через відношення еквівалентності. Запишу інше означення:

Definition 1.11.3 Задано (X, τ) – топологічний простір та \sim – відношення еквівалентності на X. **Фактортопологію на** $X/_{\sim}$ визначимо таким чином:

$$U \subset X/_{\sim}$$
 – відкрита на $X/_{\sim} \iff \pi^{-1}(U)$ – відкрита на X ,

де $\pi \colon X \to X/_{\sim}$ – факторвідображення (яке є сюр'єктивним).

Remark 1.11.4 Із означення випливає, що $\pi \colon X \to X/_{\sim}$ – неперервне.

Proposition 1.11.5 Задано (X,τ) – топологічний простір та \sim – відношення еквівалентності на X. $V\subset X/_{\sim}$ – замкнена на $X/_{\sim}\iff \pi^{-1}(V)$ – замкнена на X. Вправа: довести.

Proposition 1.11.6 Задано (X, τ) – топологічний простір та \sim – відношення еквівалентності на X. Також нехай (Y, σ) – інший топологічний простір та відображення $f \colon X/_{\sim} \to Y$. f – неперервне $\iff f \circ \pi$ – неперервне.

Proof.

 \implies випливає з того, що f,π одночасно неперервні.

Дано: $f \circ \pi$ – неперервне. Нехай тепер U – відкрита в Y. За умовою, $(f \circ \pi)^{-1}(U)$ відкрита на X, але тоді $\pi^{-1}f^{-1}(U)$ відкрита на X. Значить, за означенням, $f^{-1}(U)$ – відкрита на $X/_{\sim}$.

Example 1.11.7 Розглянемо відрізок X = [-1, 1]. Ми можемо задати на ній відношення еквівалентності таким чином: $-1 \sim 1$. Інтуїтивно кажучи, відношення еквівалентності 'склеює' точки один з одним (тобто в цьому випадку -1, 1 будуть склеєними). У результаті маємо отримати коло:

Тобто, інтуїтивно кажучи, $X/_\sim\cong\mathcal{S}^1,$ саме гомеоморфні.

Скоро математично я це доведу.

ТОДО: доповнити!

$\mathbf{2}$ Компактні простори

Компактність 2.1

Definition 2.1.1 Задано (X, τ) – топологічний простір.

Покриттям X назвемо сім'ю підмножин $\{U_i \mid i \in I\}$ множини X, для яких

$$\bigcup_{i \in I} U_i = X$$

Якщо множина індексів I скінченна, то покриття називається **скінченним**. Якщо всі множини в сім'ї відкриті, то покриття називається відкритим.

Definition 2.1.2 Задано (X, τ) – топологічний простір. Нехай $\{U_i \mid i \in I\}$ – покриття X. **Підпокриттям** назвемо набір $\{U_i \mid i \in J\}$, де $J \subset I$, якщо це теж покриття.

Example 2.1.3 Зокрема множини $(n-1, n+1), n \in \mathbb{Z}$ утворюють відкрите покриття \mathbb{R} .

Definition 2.1.4 Задано (X, τ) – топологічний простір.

Даний простір назвемо компактним, якщо

$$\forall \{U_i \mid i \in I\}$$
 – відкрите : $\exists \{U_i \mid i \in J\}, J \subset I, J$ – скінченний індекс

Тобто для будь-якого відкриттого покриття X існує скінченне підпокриття.

Example 2.1.5 \mathbb{R} не ε компактом.

Дійсно, оберемо відкрите покриття $\{(n-1,n+1)\mid n\in\mathbb{Z}\}$. Якби існувало скінченне підпокриття $\{(n-1,n+1)\mid n\in J\}$, то тоді в $J\subset\mathbb{Z}$ є найбільший елемент $N\in\mathbb{Z}$. Тоді з цього випливає, що $N+1 \notin \bigcup_{n \in J} (n-1,n+1)$. Але водночас $\bigcup_{n \in J} (n-1,n+1) = \mathbb{R}$, тобто $N+1 \notin \mathbb{R}$ – це неможливо. Висновок: знайшли покриття $\{(n-1,n+1) \mid n \in \mathbb{Z}\}$, яка не містить скінченне підпокриття.

Example 2.1.6 Недискретний топологічний простір $(X, \tau_{\text{indiscr}})$ – компактний.

Дійсно, оберемо будь-яке відкрите покриття $\{U_i \mid i \in I\}$, у нас $\bigcup_{i \in I} U_i = X$. Кожний $U_i = \emptyset$ або X.

Значить, існує множина $U_{i_0} = X$. Тоді $\{U_{i_0}\}$ формує скінченне підпокриття.

Example 2.1.7 Будь-який скінченний простір – компактний.

Маємо відкрите покриття $\{U_i \mid i \in I\}$, тобто $\bigcup U_i = X$. Топологічний простір скінченний, тобто X – скінченний, тож $X=\{x_1,\ldots,x_n\}$. Кожний $x_j\in U_{i_j}$. Тож існує скінченне підпокриття $\{U_{i_1},\ldots,U_{i_j}\}$.

Example 2.1.8 Дискретний простір $(X, \tau_{\mathrm{discr}})$ – компактний \iff це скінченний простір.

 \Rightarrow Дано: $(X, au_{ ext{discr}}$ – компактний. Тобто для будь-якого відкритого покриття, зокрема для $\{\{x\} \mid$ $x \in X$ } існує скінченне підпокриття $\{x_1, x_2, \dots, x_n\}$, звідси $X = \bigcup \{x_i\}$.

 \Leftarrow ∂ue . Ex. 2.1.7

Definition 2.1.9 Задано множину X та $A \subset X$.

Покриттям множини A назвемо сім'ю $\{W_i \mid i \in I\}$ підмножин X, для яких

$$A \subset \bigcup_{i \in I} W_i$$

 $\{W_i \mid i \in J\}, J \subset I$ називаєтсья **підпокриттям**, якщо це теж покриття множини A.

Remark 2.1.10 Особливий випадок при A = X, із першим означенням збігається.

Definition 2.1.11 Задано (X, τ) – топлогічний простір та $A \subset X$.

Множина (!) A називається компактом, якщо

$$(A, \tau_A)$$
– компактний простір,

тобто будь-яке відкрите покриття A підмножинами A має скінченне підпокриття.

Proposition 2.1.12 Задано (X, τ) – топологічний простір та $A \subset X$.

A – компактна \iff будь-яке покриття A відкритими підмножинами X містить скінченне підпокриття.

Proof.

 \Rightarrow Дано: A — компактна, тобто (A, τ_A) — компактнии простір. Пелан $\{m_i \in I\}$ покриття множини A, тобто звідси $A \subset \bigcup_{i \in I} W_i$. Але звідси випливає, що $A \cap \bigcup_{i \in I} W_i = \bigcup_{i \in I} (A \cap W_i) = A$. Отримали покриття $\{A \cap W_i \mid i \in I\}$ множини A підмножинами A. Оскільки (A, τ_A) — компактний, то звідси існує скінченне підпокриття $\{A \cap W_i \mid i \in J\}$, тобто звідси $\bigcup_{i \in J} (A \cap W_i) = A = A \cap \bigcup_{i \in J} (A \cap W_i)$.

3начить, звідси $A\subset\bigcup_{i\in J}W_i$. Тобто $\{W_i\subset X\mid i\in J\}$ — скінченне підпокриття.

 \models Дано: будь-яке покриття A відкритими підмножинами X містить скінченне підпокриття. Насправді, ідейно все те саме робиться.

2.2Компактність та підпростори

Example 2.2.1 Із курсу математичного аналізу, [0,1] – компактний (лема Гайне-Бореля). Однак $(0,1) \subset [0,1]$ більше не є компактом, тому що відкрите покриття $\{(\varepsilon,1) \mid \varepsilon>0\}$ не містить скінченного підпокриття.

Тобто цей приклад показує, що треба додати певні обмеження, щоб підмножина була теж автоматично компактною.

Proposition 2.2.2 Задано (X,τ) – компактний простір та $A\subset X$ – замкнена. Тоді (A,τ_A) – компактний.

Нехай $\{W_i\subset X\mid i\in I\}$ — відкрите покриття A, тобто $\bigcup_{i\in I}W_i\supset A$. Але ми знаємо, що A — замкнена, тобто $X\setminus A$ — відкрита. Зауважимо, що $(X\setminus A)\cup\bigcup_{i\in I}W_i=X$. Тобто $\{X\setminus A\}\cup\{W_i\mid i\in I\}$ утворює відкрите покриття X. За компактністю, існує скінченне підпокриття $\{X\setminus A\}\cup\{W_i\mid i\in J\}$, тож звідси $(X \setminus A) \cup \bigcup W_i = X$.

Із цього випливає, що $\bigcup W_i\supset A.$ Тобто знайшли скінченне підпокриття $\{W_i\subset X\mid i\in J\}.$

Окремо варто звернути увагу, коли із відкритого покриття $\{X \setminus A\} \cup \{W_i \mid i \in I\}$ може бути скінченне підпокриття $\{W_i \mid i \in K\}$. Тоді звідси $\bigcup_{i \in K} W_i = X \supset A$ — автоматично доводиться.

Коротше, будь-яка замкнена множина – компактна. Але не кожна компактна множина буде замкненою.

Example 2.2.3 Зокрема маємо $(X, \tau_{\text{indiscr}})$ – недискретний простір, оберемо $Y \subsetneq X$, утворимо знову недискретний простір (Y, τ_Y) за **Ex. 1.9.5**.

Зауважимо, що Y – компактна множина, тому що (Y, τ_Y) – компактний простір в силу недискретності. Але Y – НЕ замкнена множина, тобто $X \setminus Y$ – НЕ відкрита множина, тому що в $(X, \tau_{\text{indiscr}})$ лише \emptyset, X – відкриті.

Утім можна зробити певні зміни, аби в зворотному напрямку це спрацювалю.

Proposition 2.2.4 Задано (X, τ) – гаусдорфів (уже не компактний) простір та A – компактна множина. Тоді A – замкнена.

Proof.

Ми хочемо зараз довести, що $X \setminus A$ – відкрита множина. Значить, нехай $x \in X \setminus A$. Оберемо також будь-який $a \in A$. У силу гаусдорфовості, існують околи U_a, V_a – відповідно відкриті околи точки x,a такі, що $U_a\cap V_a=\emptyset$. Зауважимо, що $\bigcup V_a\supset A$. Маємо $\{V_a\subset X\mid a\in A\}$ – відкрите покриття,

а за компактністю A, можна знайти скінченне підпокриття $\{V_a\subset X\mid a\in B\}.$

Зафіксуємо $U = \bigcap U_a$, який є теж відкритим (в силу скінченного перетину) та околом точки x.

Доведемо, що $U \subset X \setminus A$.

Нехай $y \in A$, тобто $y \in V_b$ при деякому $b \in B$. Але відомо, що $V_b \cap U_b = \emptyset$, а тому $b \notin U_b \implies b \notin U$. Висновок: $X \setminus A$ – відкрита, а тому A – замкнена.

Corollary 2.2.5 Задано (X, τ) – компактний та гаусдорфів простір.

A – компактна \iff A – замкнена.

2.3 Компактність та добуток просторів

Theorem 2.3.1 Теорема Тіхонова (скінченний варіант)

Задані (X, τ_1) та (Y, τ_2) – компактні топологічні простори. Тоді $(X \times Y, \tau_1 \times \tau_2)$ – теж компактний топологічний простір.

Proof.

Отже, нехай $\{S_i \mid i \in I\}$ – відкрите покриття $X \times Y$. Для кожного $(x,y) \in X \times Y$ можна обрати $S_i\ni (x,y)$, а звідси можна обрати відкриті $U_{x,y},W_{x,y}$ – відповідно околи точки x,y, для яких $U_{x,y}\times W_{x,y}\subset S_i$. Сім'я множин $\{U_{x,y}\times W_{x,y}\mid x\in X,y\in Y\}$ – відкрите покриття $X\times Y$, бо

$$\bigcup_{(x,y)\in X\times Y} (U_{x,y}\times W_{x,y}) = \bigcup_{x\in X} U_{x,y}\times \bigcup_{y\in y} W_{x,y} = X\times Y.$$
 Тому достатньо шукати скінченне підпокриття саме для цієї сім'ї.

Зафіксуємо $x \in X$. Зауважимо, що $\{W_{x,y} \mid y \in Y\}$ — відкрите покриття Y. Але оскільки (Y, τ_2) компактний, то існує скінченне підпокриття $\{W_{w,y} \mid y \in \tilde{Y}\}$. Покладемо тепер $U_x = \bigcap U_{x,y}$, що

також буде відкритим околом точки x. Тоді звідси випливає, що $U_x \times Y \subset \bigcup (U_{x,y} \times W_{x,y})$, бо

 $(x,y)\in U_x\times Y$, тому $x\in U_{x,y}$ для всіх $y\in \tilde{Y}$. Обравши довільний $y\in \tilde{Y}$, отримаємо $y\in W_{x,y}$. Тепер $\{U_x \mid x \in X\}$ – відкрите покриття X (за міркуваннями вище). Але оскільки (X, τ_1) – компактний, то існує скінченне підпокриття $\{U_x \mid x \in X\}$.

Нарешті, я стверджую, що $\{U_{x,y} \times W_{x,y} \mid x \in \tilde{X}, y \in \tilde{Y}\}$ буде скінченним підпокриттям $X \times Y$. Те, що це скінченна, випливає зі скінченності \tilde{X}, \tilde{Y} . Нехай тепер $(x,y) \in X \times Y$, тоді $x \in U_x$ для деякого $x \in \tilde{X}$, тож $(x,y) \in U_x \times Y$, але тоді $(x,y) \in U_{x,y} \times W_{x,y}$ для деякого $y \in \tilde{Y}$.

Remark 2.3.2 Цілком зрозуміло, що теорема Тіхонова працює, коли в нас n штук компактних топологічний просторів.

Example 2.3.3 Зокрема звідси $[0,1]^n$ буде компактною множиною, оскільки [0,1] – компактна.

Компактність та факторпростори

Lemma 2.4.1 Задані $(X,\tau),(Y,\tilde{\tau})$ – два топологічних простори та $f\colon X\to Y$ – неперервне. Якщо X – компактна, то тоді fX – компактна.

Маємо $\{W_i \subset Y \mid i \in I\}$ – відкрите покриття fX. Візьмемо сім'ю прообразів $\{f^{-1}(W_i) \subset X \mid i \in I\}$.

$$\bigcup_{i \in I} f^{-1}(W_i) = f^{-1}\left(\bigcup_{i \in I} W_i\right) \supset f^{-1}f(X) = X.$$

Отже, $\{f^{-1}(W_i)\subset X\mid i\in I\}$ – відкрите покриття X, але в силу компактності існує скінченне підпокриття $\{f^{-1}(W_i)\subset X\mid i\in J\}$. Залишилось показати, що $\{W_i\subset Y\mid i\in J\}$ (яке вже ϵ скінченним) буде підпокриттям fX. І дійсно, ми маємо $X = \bigcup_{i \in J} f^{-1}(W_i) = \bigcup_{i \in J} W_i$. Але тоді

$$fX = f\left(f^{-1} \bigcup_{i \in J} W_i\right) \subset \bigcup_{i \in J} W_i.$$

Corollary 2.4.2 Будь-який факторпростір – компактний простір. *Випливає з того, що* $\pi: X \to X/_{\sim}$ – неперервне відображення.

Definition 2.4.3 Задані $(X, \tau), (Y, \tilde{\tau})$ — два топологічних простори та $f \colon X \to Y$ — відображення. f називається **відкритим**, якщо

$$\forall U \subset -$$
 відкрита в $X: fU-$ відкрита в Y

f називається **замкненим**, якщо

$$\forall V \subset \$$
– замкнена в $X: fU$ – замкнена в Y

Proposition 2.4.4 Задані $(X, \tau), (Y, \tilde{\tau})$ — один компактний, а другий — гаусдорфів простори та $f: X \to Y$ — неперервне відображення. Тоді f — замкнене.

Proof.

Нехай V – замкнена на X, тоді V – компакт як множина. Значить, fV – компакт. У силу гаусдорфовості, fV – замкнена в Y.

Уже якось було, що неперервна бієкція не гарантує гомеоморфність між двома просторами. Але, додавши певні обмеження, можна саме так і ствердити:

Proposition 2.4.5 Задані $(X, \tau), (Y, \tilde{\tau})$ — один компактний, а другий — гаусдорфів простори та $f \colon X \to Y$ — неперервна бієкція. Тоді f — гомеоморфізм.

Proof.

Нам треба лишень довести, що $f^{-1} \colon Y \to X$ буде неперервним відображенням.

Нехай V – замкнена в X та розглянемо $(f^{-1})^{-1}(V) \stackrel{f}{=} fV$. Нам уже відомо, що f – замкнене відображення, а тому fV має бути замкненою на Y. Тобто $(f^{-1})^{-1}(V)$ – замкнена на Y.

Example 2.4.6 Зокрема будь-які дві компактно-гаусдорфові простори будуть між собою гомеоморфими.

Proposition 2.4.7 Задані $(X, \tau), (Y, \tilde{\tau})$ — один компактний, а другий — гаусдорфів простори та $f \colon X \to Y$ — неперервна сюр'єкція. Тоді $Y \cong X/_{\sim}$. Тут відношення еквівалентності $x_1 \sim x_2 \iff f(x_1) = f(x_2)$.

ТОДО: доробити!

3 Зв'язні простори

3.1 Зв'язність

Definition 3.1.1 Задано (X, τ) — топологічний простір. Ми назвемо простір **незв'язним**, якщо

$$\exists U, V \in \tau : U \neq \emptyset, V \neq \emptyset : X = U \sqcup V$$

У протилежному випадку ми будемо це називати зв'язним.

Example 3.1.2 Зокрема $X = \mathbb{R} \setminus \{0\}$ – незв'язнии, тому що існують відкриті непорожні та неперетинні $(-\infty,0),(0,+\infty)$, які дають $(-\infty,0)\cup(0,+\infty)=X$.

Example 3.1.3 Простір \mathbb{Q} (як підпростір \mathbb{R}) — незв'язний. Дійсно, нехай $U = (-\infty, \sqrt{2}) \cap \mathbb{Q}$ та $V = (\sqrt{2}, +\infty) \cap \mathbb{Q}$ — два відкритих, непорожніх та неперетинних множин. Тоді $U \cap V = \mathbb{Q}$ (оскільки $\sqrt{2}$ ірраціональне).

Example 3.1.4 Будь-який (X, τ_{dicsr}) – дискретний топологічний простір – незв'язний, якщо $\#X \ge 2$. Оберемо $x \in X$, тоді $\{x\} \sqcup (X \setminus \{x\}) = X$.

Example 3.1.5 Будь-який $(X, \tau_{\text{indicsr}})$ – недискретний топологічний простір – зв'язний, якщо $X \neq \emptyset$. Розпишемо $X = U \sqcup V$, тут обидва відкриті. Але звідси вилпиває, що $U \in \{X,\emptyset\}$ та $V \in \{X,\emptyset\}$. Тобто дійсно, $U = \emptyset$ або $V = \emptyset$. Це означає, що порушується означення незв'язності.

Lemma 3.1.6 Задані $(X,\tau),(Y,\tilde{\tau})$ — топологічних простори та $f\colon X\to Y$ — відображення. Нехай U,V — такі відкриті підмножини, що $U\sqcup V=X$.

f – неперервне $\iff f|_U, f|_V$ – неперервні.

Дану лему часто називають pasting lemma.

Proof.

 \implies Дано f — неперервне. Тоді треба згадати, що $f|_U = f \circ \imath_U$ та $f|_V = f \circ \imath_V$. Вкладення вже неперервне, тобто звідси $f|_U, f|_V$ — неперервні як композиція.

 \Leftarrow Дано: $f|_U$, $f|_V$ – неперервні. Нехай W – відкрита в Y. Тоді $f^{-1}(W) = \{x \in U \mid f(x) \in W\} \sqcup \{x \in V \mid f(x) \in W\} = (f|_U)^{-1}(W) \sqcup (f|_V)^{-1}(W)$. За умовою, $(f|_U)^{-1}(W)$ – відкрита в U, але сама U – відкрита в X. Значить, $(f|_U)^{-1}(W)$ – відкрита в X. Аналогічним чином $(f|_V)^{-1}(W)$ – відкрита в U. Разом отримаємо $f^{-1}(W)$ – відкрита в X.

Remark 3.1.7 Згідно з означенням, \emptyset буде зв'язним. Бачив авторів, які не вважали дану множину ані зв'язною, ані незв'язною.

Proposition 3.1.8 Еквівалентні означення

Задано $(X, \tau), X \neq \emptyset$ – топологічний простір. Наступні еквівалентні:

- 1) (X, τ) зв'язний;
- 2) єдині підмножини X, що є відкритими та замкненими одночасно, це \emptyset, X ;
- 3) будь-яке неперервне відображення $f \colon X \to D$, де D дискрений простір, буде сталим.
- 4) будь-яке неперервне відображення $f \colon X \to \{y_1, y_2\}$, де $\{y_1, y_2\}$ двоточковий дискретний простір, буде сталим.

Proof.

 $\lfloor 1) \Rightarrow 2 \rfloor$ Дано: (X, τ) – зв'язний. Нехай U – замкнена та відкрита одночасно. Тобто $U, X \setminus U$ одночасно відкриті. При цьому вони неперетинні, непорожні, а тому звідси $U \sqcup (X \setminus U) = X$. У силу зв'язності єдина можлива опція – це бути U = X або $U = \emptyset$.

 $(2)\Rightarrow 3)$ Дано: єдині підмножини X, що є відкритими та замкненими одночасно, — це \emptyset,X . Розглянемо неперервне відображення $f\colon X\to D$, де D — дискретний. Оберемо $x\in X$, тоді $\{f(x)\}$ — відкрита й замкнена одночасно в D. У силу неперервності, $f^{-1}\{f(x)\}$ — відкрита та замкнена в X, тоді $f^{-1}\{f(x)\}=\emptyset$ або $f^{-1}\{f(x)\}=X$. Перша рівність неможлива, бо точка x там лежить. Значить, $f^{-1}\{f(x)\}=X$. Висновок: $f(y)=f(x), \forall y\in X$, тобто тут f(x) грає роль константи.

 $3) \Rightarrow 4$ Дано: будь-яке неперервне відображення $f: X \to D$, де D – дискрений простір, буде сталим. Зокрема фіксуємо $D_{2 \text{ points}}$ – довільний двоточковий дискретний простір – закінчили.

 $[4)\Rightarrow 1)$ Дано: будь-яке неперервне відображення $f\colon X\to \{y_1,y_2\}$, де $\{y_1,y_2\}$ – двоточковий дискретний простір, буде сталим. Нехай U,V – відкриті підмножини так, щоб $U\sqcup V=X$. Визначимо відображення $g\colon X\to \{y_1,y_2\}$, що задано як $g(x)=\begin{cases} y_1,&x\in U\\ y_2,&x\in V \end{cases}$. Тоді $g|_U,g|_V$ неперервні (легко ручками перевірити), а звідси g – неперервне за лемою. Але оскільки g задовольняє умові 'дано', то звідси g приймає стале значення. Тобто $U=X,V=\emptyset$ або навпаки.

Lemma 3.1.9 Задано (X,τ) — топологічний простір. Нехай $A,B\subset X$ такі, що $A\subset B\subset \mathrm{Cl}(A)$. Також нехай A — зв'язна. Тоді B — також зв'язна.

Proof.

Нехай $f\colon B\to D$ – неперервне відображення до дискретного простору. Тоді $f|_A\colon A\to D$ також неперервне (композиція неперервних, бо $f|_A=f\circ \imath_A$). Тоді це стала функція, оскільки A – з'єднана область за умовою. Скажімо, $f|_A(a)=d, \forall a\in A$. Тепер, d та f – обидва неперервні функції з B в D (який є гаусдорфовим). Зауважимо, що A – щільна на B в силу $A\subset B\subset \mathrm{Cl}(A)$. Дійсно, якщо розглянути підпростір (B,τ_B) , то B – замкнена та містить A, а тому $B\supset \mathrm{Cl}(A)$; отже, $B=\mathrm{Cl}(A)$. На щільній множині A виконано A0 — A1 пому A2 — A3 на всій множині A4. Отже, A3 тому A4 — A5 пому A5 — A6 пому A6 — A8 пому A9 — A8 пому A9 — A9 пому A9 пому

Lemma 3.1.10 Задані $(X,\tau),(Y,\tilde{\tau})$ – топологічні простори та $f\colon X\to Y$ – неперервне. Відомо, що X – зв'язний. Тоді f(X) – також зв'язний.

Proof.

Спочатку розглянемо випадок, коли f – сюр'єктивне. У цьому випадку f(X) = Y. Маємо $U \sqcup V = Y$, де U, V – відкриті в Y, тоді $f^{-1}(U), f^{-1}(V)$ – неперетинні та відкриті в X, при цьому $f^{-1}(Y) = X = f^{-1}(U) \sqcup f^{-1}(V)$. Оскільки X – зв'язний, то (наприклад) $f^{-1}(U) = \emptyset$, а за сюр'єктивністю, $U = \emptyset$. Якщо $f \colon X \to Y$ – довільне, то тоді $g \colon X \to f(X)$, де $g \equiv f$, – сюр'єктивне, і там закінчили.

Proposition 3.1.11 Задані (X, τ_1) та (Y, τ_2) – два зв'язних топологічних простори. Тоді $(X \times Y, \tau_1 \times \tau_2)$ – також зв'язний.

Proof.

Розглянемо неперервне відображення $f\colon X\times Y\to D$, де D – дискретний простір. Оберемо $(x,y),(x',y')\in X\times Y$. Зауважимо, що $\{x\}\times Y\cong Y$, тож звідси $\{x\}\times Y$ має бути зв'язною також. Значить, $f|_{\{x\}\times Y}$ буде сталою. Зокрема звідси f(x,y)=f(x,y').

Аналогічним чином $X \times \{y'\} \cong X$, а там через зв'язність отримаємо f(x',y') = f(x,y'). Разом отримали f(x,y) = f(x',y'), тобто f – стала. Отже, $X \times Y$ – зв'язна.

Example 3.1.12 Із курсу матана, [a,b] – зв'язний. Але за твердженням, звідси випливає, що всі куби $[a_1,b_1] \times \cdots \times [a_n,b_n]$ будуть зв'язними в \mathbb{R}^n .

Lemma 3.1.13 Задано (X, τ) – топологічний простір та $(A_i, i \in I)$ – покриття X, причому всі A_i – зв'язні, та всі вони перетинаються між собою. Тоді X – зв'язна.

Proof.

Нехай $f\colon X\to D$ — неперервне відображення, де D — дискретний простір. Тоді неперервним буде $f|_{A_i}\colon A_i\to D$, але в силу зв'язності A_i , ми маємо $f|_{A_i}\equiv d_i$. Оберемо інше звуження $f|_{A_j}\colon A_j\to D$, тоді аналогічно $f|_{A_j}\equiv d_j$. Проте $A_i\cap A_j\neq\emptyset$, тож звідси $d_i=d_j$. Таким чином, стала не залежить від $i\in I$, а тому f буде сталою на X. Отже, X — зв'язна.

3.2 Лінійна зв'язність

Definition 3.2.1 Задано (X, τ) – топологічний простір.

Шляхом в X називають неперервне відображення $\gamma \colon [0,1] \to X$. Ми називаємо γ **шляхом від** x до y, якщо $\gamma(0) = x, \gamma(1) = y$.

Простір $X \neq \emptyset$ називається **лінійно зв'язним**, якщо

$$\forall x, y \in X : \exists \gamma -$$
шлях від x до y

Lemma 3.2.2 Задано (X, τ) – топологічний простір. Нехай X – лінійно зв'язний. Тоді X – (просто) зв'язний.

Proof.

Нехай $f\colon X\to D$ — неперервне, де D — дискретний простір. Оберемо $x,y\in X$, тоді, за умовою, існує шлях $\gamma\colon [0,1]\to X$, причому $\gamma(0)=x,\gamma(1)=y$. Звідси відображення $f\circ\gamma\colon [0,1]\to D$ — також неперервне. Оскільки [0,1] — зв'язна, то тоді $f\circ\gamma$ — стале відображення, зокрема $f(x)=f(\gamma(0))=f(\gamma(1))=f(y)$. Отже, f — також стале, а тому X — зв'язний.

Example 3.2.3 Підмножина $X \subset \mathbb{R}^n$ називається **випуклою**, якщо $\forall x,y \in X, \forall t \in [0,1]: (1-t)x+ty \in X$. Тоді кожна випукла підмножина \mathbb{R}^n буде лінійно зв'язною, оскільки $t \mapsto (1-t)x+ty$ визначає довільний шлях з x в y.

Отже, всі випуклі підмножини \mathbb{R}^n – зв'язні.

Нехай задані шлях γ з x в y та шлях δ з y в z. Ми можемо їх об'єднати ці шляхи таким чином: визначаємо $\gamma * \delta \colon [0,1] \to X$, який задається ось так:

$$(\gamma * \delta)(t) = \begin{cases} \gamma(2t), & t \in \left[0, \frac{1}{2}\right] \\ \delta(2t - 1), & t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

Задане відображення досі залишається шляхом, тільки тепер з x в z.

Example 3.2.4 Простір $\mathbb{R}^n\setminus\{0\}$ буде лінійно зв'язним при $n\geq 2$. Нехай $x,y\in\mathbb{R}^n$.

Якщо пряма між x, y не проходить через 0, то тоді дана пряма визначає шлях з x в y.

Інакше ми можемо обрати точку $z \in X$, що не лежить на цій прямій (це можливо в силу умови $n \ge 2$). Пряма через x, z не проходить через 0, тому це — шлях з x в z. Аналогічно пряма через z, y не проходить через 0, тому це — шлях з z в y. Отже, можна об'єднати два шляхи — отримаємо шлях з x в y.

Lemma 3.2.5 Задано $(X,\tau),(Y,\tilde{\tau})$ – топологічні простори та $f\colon X\to Y$ – неперервне. Тоді $\Gamma_f\cong X,$ де $\Gamma_f=\{(x,y)\in X\times Y:y=f(x)\}$ – графік функції (для дійснозначних функцій це був би справді графік).

Proof.

Визначимо такі функції:

$$p: \Gamma_f \to X$$
 $(x,y) \mapsto x$
 $q: X \to \Gamma_f$ $x \mapsto (x, f(x)).$

Зауважимо, що $p\circ q=\mathrm{id}_X$ та $q\circ p=\mathrm{id}_{\Gamma_f}.$ Тож вони взаємно оборотні. Залишилося довести, що ці два відображення — неперервні.

Для p маємо $p=\operatorname{pr}\circ\imath$, де $\operatorname{pr}\colon X\times Y\to X,\ \imath\colon \Gamma_f\to X\times Y.$ Оскільки ці два відображення неперервні, то композиція теж буде неперервною.

Для q ми розглянемо $i \circ q \colon X \to X \times Y$. Зауважимо, що $(i \circ q)(x) = (x, f(x)) = (\mathrm{id}_X(x), f(x))$ – обидві функції неперервні, тож $i \circ q$ – неперервне. За **Prp. 1.9.13**, q – неперервне.

Remark 3.2.6 Тепер, нарешті, можемо поговорити про те, що зворотне твердження не працює. Тобто зі зв'язності не випливає лінійна зв'язність в загальному випадку.

Example 3.2.7 Розглянемо підмножини $L = \{(0,y) \in \mathbb{R}^2 : -1 \le y \le 1\}$ та $C = \left\{ \left(x, \sin \frac{1}{x} \right) \in \mathbb{R}^2 : x > 0 \right\}$. Будемо зосереджені підпросторі $X = L \cup C$, яка називається **сіносуїдальною кривою тополога**.

$I. \ X$ – зв'язна.

Спочатку зауважимо, що $C\cong (0,+\infty)$ за **Lm. 3.2.5** та $(0,+\infty)$ – зв'язна, тож сама C буде також зв'язною. Залишилося довести, що $\mathrm{Cl}(C)\supset X\supset C$ – і тоді вже X буде зв'язною за $\mathbf{Lm.~3.1.9}.$ Нехай $(0,y)\in L$, тут $|y|\leq 1$. Оберемо довільне $\varepsilon>0$. Тоді існує елемент $z>\frac{1}{\varepsilon}$, для якого $y=\sin z$.

Покладемо $x=\frac{1}{z}$, тоді отримаємо $(x,y)\in C$, при цьому $\|(0,y),(x,y)\|=|x|<\varepsilon$. Таким чином, $(0,y)\in \mathrm{Cl}(C)$, що дає нам вкладення $\mathrm{Cl}(C)\supset L$. Проте оскільки $\mathrm{Cl}(C)\supset C$, то з цих двох вкладень випливає $Cl(C) \supset X$. (насправді кажучи, X = Cl(C)).

II. X – не лінійно зв'язна.

II. X – не лінійно зв'язна. !Припустимо, що існує шлях γ із точки (0,0) до точки $\left(\frac{1}{\pi},0\right)$. Маємо $\gamma(t)=(\gamma_1(t),\gamma_2(t))$, де $t\in[0,1]$. Оскільки γ – неперервний, то γ_1,γ_2 – також неперервні. Але [0,1] – компакт, тож γ_1,γ_2 – рівномірно неперервні, тож $\exists \delta>0: \forall t,t'\in[0,1]: |t-t'|<\delta \Longrightarrow |\gamma_2(t)-\gamma_2(t')|<2$. Оберемо таке $N \in \mathbb{N}$, щоб $\frac{1}{N} < \delta$. Далі відрізок [0,1] розіб'ємо на підвідрізки довжини $\frac{1}{N}$ рівномірним чином. Тобто $\left[0,\frac{1}{N}\right], \left[\frac{1}{N},\frac{2}{N}\right],\dots, \left[\frac{N-1}{N},1\right]$. Оскільки γ_1 – шлях від 0 до $\frac{1}{\pi}$, то за теоремою Коші про середнє, існують $t_k \in [0,1]$, для яких $\gamma_1(t_k) = \frac{1}{\left(2k + \frac{1}{2}\right)\pi}$. Тут в нас $k \ge 1$.

Оскільки кількість t_k нескінченна, то має знайтися інтервал $\left[\frac{i-1}{N},\frac{i}{N}\right]$, який містить хоча б дві точки формату t_k . Тобто тут будуть точки $t_k, t_m \in \left[\frac{i-1}{N}, \frac{i}{n}\right]$, де припустимо $1 \le k < m$. Звідси випливає, що $\frac{1}{\left(2k+\frac{1}{2}\right)\pi} > \frac{1}{\left(2k+\frac{3}{2}\right)\pi} > \frac{1}{\left(2m+\frac{1}{2}\right)\pi}$. Знову за теоремою Коші про середнє, знайдеться точка t між t_k та t_m , для якої $\gamma_1(t) = \frac{1}{\left(2k+\frac{3}{2}\right)\pi}$. Але тоді

$$|\gamma_2(t_k) - \gamma_2(t)| = |1 - (-1)| = 2$$
, при цьому $|t_k - t| \le \frac{1}{N} < \delta$ – суперечність!

Тим не менш, існує критерій, для якого зв'язність та лінійна зв'язність – це однакові речі, просто треба додати дещо.

Proposition 3.2.8 Задано
$$(X, \tau)$$
 — топологічний простір. X — лінійно зв'язний $\iff \begin{cases} X - \text{зв'язний} \\ \text{кожна точка } X \text{ має хоча 6 один окіл, який є лінійно зв'язний} \end{cases}$

Proof.

⇒ Уже доводили, що із лінійної зв'язності випливає зв'язність. Друга умова виконується, бо

кожна точка $x \in X$ містить окіл X, який є лінійно зв'язним.

 \Leftarrow Дано: $\begin{cases} X$ — зв'язний кожна точка X має хоча б один окіл, який є зв'язний шляхом

Зафіксуємо $x \in X$. Розглянемо множину $U = \{y \in X : \text{існує шлях між } x \text{ та } y\}$. Хочемо довести, що U є відкритою та замкненою одночасно: таким чином, оскільки X зв'язна, то U = X (бо $x \in U$), а це буде означати, що між двома довільними точками знайдеться шлях; а тому X буде лінійно зв'язним.

Отже, нехай $y \in U$, тобто існує шлях між x та y. За умовою, для точки y можна взяти окіл W_y , який є лінійно зв'язним. Тоді для кожної точки $w \in W_y$ існує шлях між y та w_y . Якщо склеїти два шляхи, отримаємо шлях між x та w. Тож $w \in W_y$. Таким чином, $W_y \subset U \Longrightarrow U$ — відкрита. Тепер нехай $y \in X \setminus U$. За умовою, для точки y можна взяти окіл W_y , який є лінійно зв'язним. Значить, $W_y \subset X \setminus U$. Якщо припустити, що це не так, то знайдеться точка $w \in W_y \cap U$; значить, існує шлях між x, w та шлях між w, y — отримаємо шлях між x, y, але тоді $y \in U$ — суперечить умові. Отже, $X \setminus U$ — відкрита, тобто U — замкнена.

Lemma 3.2.9 Задані $(X,\tau),(Y,\tilde{\tau})$ — топологічні простори та $f\colon X\to Y$ — неперервне. Відомо, що X — лінійно зв'язний. Тоді f(X) — також лінійно зв'язний.

Proof.

Нехай $y, y' \in f(X)$. Тоді $y = f(x), \ y' = f(x')$ для $x, x' \in X$. Оскільки X – лінійно зв'язний, то існує шлях $\gamma \colon [0, 1] \to X$ між x, x' в просторі X. Тоді $f \circ \gamma \colon [0, 1] \to Y$ – шлях між y, y' в просторі Y.

Proposition 3.2.10 Задані (X, τ_1) та (Y, τ_2) – два лінійно зв'язних топологічних простори. Тоді $(X \times Y, \tau_1 \times \tau_2)$ – також лінійно зв'язний.

Proof

Нехай $(x,y),(x',y') \in X \times Y$. Оскільки X,Y – лінійно зв'язні, то існують шляхи: γ_1 між x,x' в X; γ_2 між y,y' в Y. Тож $\gamma = (\gamma_1,\gamma_2) \colon [0,1] \to X \times Y$ задає шлях між (x,y),(x',y') уже в $X \times Y$.

3.3 Компоненти зв'язності та лінійної зв'язності

Задано (X, τ) – непорожній топологічний простір. Задамо **відношення зв'язності**:

$$x \sim y \iff \exists C \subset X, C$$
 — зв'язна : $x, y \in C$

Lemma 3.3.1 Відношення зв'язності задає відношення еквівалентності.

Proof.

- І. Рефлексивність. Беремо $\{x\} \subset X$, що є зв'язною, тоді $x, x \in \{x\}$, тобто $x \sim x$.
- II. Симетричність. Миттєво видно з означення.
- III. Транзитивність. Маємо $x\sim y,y\sim z$, тобто існують множини $C,D\subset X$, що є зв'язними та $x,y\in C,\,y,z\in D$. Зауважимо, що $C\cup D\subset X$ буде також зв'язною, причому $x,z\in C\cup D$. Отже, $x\sim z$

Клас еквівалентності називають **компонентом зв'язності** X.

Proposition 3.3.2 Задано (X, τ) – топологічний простір та відношення зв'язності. Тоді:

- 1) кожний компонент зв'язності множини X зв'язний;
- 2) кожний компонент зв'язності множини X максимальний серед інших зв'язних підпросторів;
- 3) найбільший зв'язний підпростір X компонент зв'язності.

Отже, компоненти зв'язності топологічного простору – найбільші зв'язні підпростори.

Proof.

Доведемо кожний пункт окремо.

1) Нехай C — компонент зв'язності X. Оскільки це клас еквівалентності, то C=[x]. Оберемо довільний $y\in C$, тоді $x\sim y$, тобто існує зв'язна підмножина $D_y\subset X$, для якої $x,y\in D_y$. Зауважимо, що для всіх $y\in C$ ми маємо $D_y\subset C$, оскільки для кожного $z\in D_y$ ми маємо $z\sim x$, тобто $z\in C$. Значить, $C=\bigcup_{y\in C}D_y$. Всі D_y зв'язні, тож об'єднання буде також зв'язним.

2) Нехай C – компонент зв'язності X.

Припустимо, що існує $D \subset X$ — такий зв'язний підпростір, що $D \supset C$. Тобто існує ще більша множина. Маємо C = [x]. Зауважимо, що $D \subset C$, адже при $z \in D$ маємо $x \in C \subset D$, тобто $x \sim z$ (за означенням \sim). Тобто $z \in C$. Таким чином, D = C.

3) Нехай C — найбільший зв'язний підпростір X. У нас точно $C \neq \emptyset$, тож оберемо точку $x \in C$. Для кожного $y \in C$ ми маємо $x \sim y$, бо $C \ni x, y$ та є зв'язним. Значить, $C \subset [x]$. Із іншого боку, [x] — зв'язний за 1), тоді за максимальністю C, маємо C = [x].

Усі пункти доведені.

Proposition 3.3.3 Задано (X, τ) – топологічний простір.

X – зв'язний $\iff X$ містить лише один компонент зв'язності.

Proof.

 \implies Дано: X — зв'язний. Тоді дана множина є компонентом зв'язності X. Дійсно, $X\subset X, X$ — зв'язна та $x,y\in X$.

 \sqsubseteq Дано: X має лише один компонент зв'язності. Даний компонент зв'язності дорівнює X. Кожний компонент зв'язності — зв'язний, тобто X — зв'язний.

Proposition 3.3.4 Задано (X, τ) – топологічний простір. Тоді кожний компонент зв'язності – замкнена множина.

Proof.

Нехай C – компонент зв'язності X. За **Lm. 3.1.9**, маємо Cl(C) – зв'язна множина та $Cl(C) \supset C$. Оскільки C – максимальна зв'язна множина, то звідси C = Cl(C), що гарантує замкненість.

Example 3.3.5 Компонентами зв'язності $\mathbb{R} \setminus \{0\}$ будуть $(-\infty, 0)$ та $(0, +\infty)$.

Definition 3.3.6 Задано (X, τ) – топологічний простір.

Простір називається цілком незв'язним, якщо

кожний компонент зв'язності – одноточкова множина.

Еквівалентно кажучи, якщо кожний зв'язний підпростір має рівно один елемент.

Example 3.3.7 Ми знаємо, що дискретний простір – зв'язний, тільки якщо це простір з однієї точки. Оскільки кожний підпростір дискретного простору – дискретний, то єдині зв'язні підпростори – ці, що з одним елементом. Отже, дискретний простір – цілком незв'язний.

Example 3.3.8 \mathbb{Q} – цілком незв'язна множина (яка не є дискретною, бо $\{0\}$ не відкрита). Нехай $x,y\in\mathbb{Q}$ при $x\neq y$, тоді звідси $x\not\sim y$. Дійсно, ми можемо обрати ірраціональне число $u\in\mathbb{R}$ між x,y, а потім якщо $C\subset\mathbb{Q}$ містить x,y, ми матимемо неперетинні непорожні відкриті підмножини $(-\infty,u)\cap C$ та $C\cap(u,+\infty)$, об'єднання якого дає C. Тоді C – незв'язна.

Лема Урисона 4

4.1 Корисні леми

Lemma 4.1.1 Задано (X,τ) – топологічний простір. Для всіх $r \in [0,1] \cap \mathbb{Q}$ задамо відкриті множини $V_r \subset X$, для яких виконується $\mathrm{Cl}(V_r) \subset V_{r'}$ при r < r'. Тоді існує неперервна функція $f \colon X \to [0,1]$, для якої $f(x) = 0, x \in V_0$ та $f(x) = 1, x \notin V_1$.

Proof.

Визначимо функцію
$$f\colon [0,1]$$
 ось таким чином: $f(x)=\begin{cases} 1, & x\notin V_1\\ \inf_{x\in V_r}\{r\}, & x\in V_1 \end{cases}$. Зауважимо, що в нашому випадку, що при $x\in V_0$ маємо $f(x)=0$. Дійсно, оскільки $x\in V_0$, то

звідси $x \in V_r, \forall r \in [0,1] \cap \mathbb{Q}$, найменше можливе значення – це нуль. Тож звідси f(x) = 0.

Для доведення неперервності ми спочатку розглянемо сім'ю $\mathcal{S} = \bigcup_{a \in [0,1]} \{[0,a),(a,1]\}$. Вона буде

утворювати передбазу топології [0,1]. Це випливає з того факту, що $\mathcal{S}_{\mathbb{R}} = \bigcup \ \{(-\infty,a),(b,+\infty)\}$

утворює передбазу топології \mathbb{R} , а також з того факту, що [0,1] – топологічний підпростір \mathbb{R} . Нам залишилося перевірти два прообрази для кожного $a \in [0,1]$.

$$f^{-1}([0,a)) = \bigcup_{r < a} V_r.$$

 $f^{-1}([0,a)) = \bigcup_{r < a} V_r.$ Дійсно, маємо $x \in f^{-1}([0,a)) \iff f(x) < a \iff \inf_{x \in V_r} \{r\} < a \iff x \in V_r$ для деякого r < a.

Ми отримали, що $f^{-1}([0,a))$ – відкрита як зліченне об'єднання відкритих.

$$f^{-1}((a,1]) = \bigcup_{r>a} (X \setminus \operatorname{Cl}(V_r)).$$
 (ТОРО: додумати).

Lemma 4.1.2 Задано (X, τ) – нормальний топологічний простір. Припустимо, що A – замкнена та U – відкрита, де $A \subset U$. Тоді існує V – відкрита множина, для якої $A \subset V$, $\mathrm{Cl}(V) \subset U$.

Тобто між замкненою та відкритою множинах можна підібрати проміжну відкриту множину, яка містить замкнену, а замикання міститься в відкритій.

Оберемо $A, X \setminus U$ – обидва замкнені множини. За нормальністю, існують відкриті множини V, W, що неперетинні, для яких $V\supset A,W\supset X\setminus U$. Тобто $V\supset A$ та $X\setminus W\subset U$. Із того, що V,W неперетинні, тобто $V \cap W = \emptyset$, випливає $V \subset X \setminus W$. Маємо ланцюг $A \subset V \subset X \setminus W \subset U$. Оскільки $V \subset X \setminus W$, то тоді й $\mathrm{Cl}(V) \subset \mathrm{Cl}(X \setminus W) = X \setminus W$. Власне, звідси довели: $A \subset V, \mathrm{Cl}(V) \subset U$.

Theorem 4.1.3 Лема Урисона

Задано (X,τ) – нормальни топологічний простір та A,B – замкнені та неперетинні. Тоді існує неперервна функція $f: X \to [0,1]$, для якої $f(x) = 0, x \in A$ та $f(x) = 1, x \in B$.

Ідея доведення полягає в наступному: ми хочемо побудувати відкриті множини $V_r \subset X, r \in [0,1] \cap \mathbb{Q}$, що задовольняє таким вимогам:

- 1) $A \subset V_0$;
- 2) $B \subset X \setminus V_1$;
- 3) $r < r' \implies \operatorname{Cl}(V_r) \subset V_{r'}$.

Оскільки $[0,1]\cap \mathbb{Q}$ – зліченна множина, то ми маємо послідовність $r_1,r_2,r_3,\ldots,r_n,\ldots$ різних раціональних чисел. Не втрачаючи загальності, $r_1 = 1, r_2 = 0$, а всі решта $0 < r_n < 1$.

 $\mathit{База}$ iндукції (їх будуть дві): треба побудувати $V_{r_1}=V_1$ та $V_{r_2}=V_0$. Покладемо $V_1=X\setminus B$ – уже відкрита. Оскільки $A\subset X, V_1\subset X$ – одна замкнена, інша відкрита, то за другою лемою, існує відкрита множина V_0 , для якої $A\subset V_0$ та $\mathrm{Cl}(V_0)\subset V_1$. Уже маємо $V_{r_1},V_{r_2},$ які задовольняють вимогам

Для всіх інших V_{r_n} нам достатньо буде довести 3).

 $\Pi punyщення iн \partial y \kappa u i i: V_{r_3}, \dots, V_{r_n}$ побудовані так, що задовольняють нашим умовам вище.

Kрок індукції: побудуємо $V_{r_{n+1}}$. Із нашох послідовності r_1, r_2, \ldots, r_n оберемо два якнайближчих числа r_i, r_j , щоб $r_i < r_{n+1} < r_j$. Нам достатньо довести, що $\mathrm{Cl}(V_{r_i}) \subset V_{r_{n+1}}$, $\mathrm{Cl}(V_{r_{n+1}}) \subset V_{r_j}$. Зауважимо, що $\mathrm{Cl}(V_{r_i})$ та V_{r_j} – відповідно замкнена та відкрита множини. Тоді за другою лемою,

існує відкрита множина (яку як раз-таки позначимо й за $V_{r_{n+1}}$), для якої справджуються ці два

вкладення.

MI доведено.

Значить, за першою лемою, існує неперервна функція $f\colon X\to [0,1]$, для якої $f(x)=0, x\in V_0$ та $f(x)=1, x\notin V_1$. За умовами 1),2), отримаємо $f(x)=0, x\in A$ та $f(x)=1, x\in B$.

Remark 4.1.4 Справедливе й зворотне твердження. Маємо (X, τ) та A, B — довільні замкнені та неперетинні, для яких завжди існує неперервна функція $f \colon X \to [0, 1]$, для якої $f(x) = 0, x \in A$ та $f(x) = 1, x \in B$. Тоді X — нормальний простір.

Proof.

Припустимо, що A,B – замкнені та неперетинні множини. Тоді існує $f\colon X\to [0,1]$, що неперервна та задовільняє іншим умовам. Зауважимо, що $A\subset f^{-1}\left(\left[0,\frac{1}{2}\right)\right)$ та $B\subset f^{-1}\left(\left(\frac{1}{2},1\right]\right)$. Ці прообрази відкриті в силу неперервності, а також неперетинні в силу неперетинностей цих інтервалів. Тобто ми довели означення нормальності.

Використані джерела

 $1. \ \, {\rm Tom \ Leinster}, \, {\rm General \ Topology}, \, 2014\mbox{-}2015$