A.2.3 Frequency weighting in ADMB-RE

Model description Let X_i be binomially distributed with paramters N=2 and p_i , and assume that

$$p_i = \frac{\exp(\mu + u_i)}{1 + \exp(\mu + u_i)},\tag{A.3}$$

where μ is a parameter and $u_i \sim N(0, \sigma^2)$ is a random effect. Assuming independe, the loglikelihood function for the parameter $\theta = (\mu, \sigma)$ can be written:

$$l(\theta) = \sum_{i=1}^{n} \log \left[p(x_i; \theta) \right]. \tag{A.4}$$

In ADMB-RE $p(x_i; \theta)$ is approximated using the Laplace approximation. However, since x_i only can take the values 0, 1 and 2, we can re-write the loglikelihood as

$$l(\theta) = \sum_{j=0}^{2} n_j \log \left[p(j; \theta) \right], \tag{A.5}$$

where n_j is the number x_i being equal to j. Still the Laplace approximation must be used to approximate $p(j;\theta)$, but now only for j=0,1,2, as opposed to n times above. For large n this can give large savings.

To implement the loglikelihood (A.5) in ADMB-RE you must organize your code into a SEPARABLE_FUNCTION (see the section "Nested models" in the ADMB-RE manual). Then you should do the following

- Formulate the objective function in the weighted form (A.5).
- Include the statement !! set_multinomial_weights(w) in the PARAMTER_SECTION, where w is a vector (with indexes starting at 1) containing the weights, so in our case $w = (n_0, n_1, n_2)$.

Files http://otter-rsch.com/admbre/examples/weights/weights.html

Bibliography

- ADMB Development Core Team (2009), An Introduction to AD Model Builder, ADMB project.
- ADMB Foundation (2009), 'ADMB-IDE: Easy and efficient user interface', *ADMB Foundation Newsletter* **1**, 1–2.
- Eilers, P. & Marx, B. (1996), 'Flexible smoothing with B-splines and penalties', Statistical Science 89, 89–121.
- Harvey, A., Ruiz, E. & Shephard, N. (1994), 'Multivariate stochastic variance models', *Review of Economic Studies* **61**, 247–264.
- Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Vol. 43 of Monographs on Statistics and Applied Probability, Chapman & Hall, London.
- Kuk, A. Y. C. & Cheng, Y. W. (1999), 'Pointwise and functional approximations in Monte Carlo maximum likelihood estimation', Statistics and Computing 9, 91–99.
- Lin, X. & Zhang, D. (1999), 'Inference in generalized additive mixed models by using smoothing splines', J. Roy. Statist. Soc. Ser. B 61(2), 381–400.
- Pinheiro, J. C. & Bates, D. M. (2000), *Mixed-Effects Models in S and S-PLUS*, Statistics and Computing, Springer.
- Rue, H. & Held, L. (2005), Gaussian Markov random fields: theory and applications, Chapman & Hall/CRC.
- Ruppert, D., Wand, M. & Carroll, R. (2003), Semiparametric Regression, Cambridge University Press.

70 BIBLIOGRAPHY

Skaug, H. & Fournier, D. (2006), 'Automatic approximation of the marginal likelihood in non-gaussian hierarchical models', *Computational Statistics & Data Analysis* **56**, 699–709.

Zeger, S. L. (1988), 'A regression-model for time-series of counts', Biometrika **75**, 621–629.