ECON 711 - PS 4

Alex von Hafften*

10/5/2020

Question 1. Choice rules from preferences

Let X be a choice set and \succeq a complete and transitive preference relation on X. Show that the choice rule induced by \succeq , $C(A,\succeq) = \{x \in A : x \succeq y \ \forall y \in A\}$, must satisfy the Weak Axiom of Revealed Preference (WARP).

Proof: $C(\cdot)$ satisfies WARP if for any sets $A, B \subset X$ and any $x, y \in A \cap B$, if $x \in C(A)$ and $y \in C(B)$, then $x \in C(B)$ and $y \in C(A)$. Since $x \in C(A)$ and $y \in C(B)$, $x \succsim y$ and $y \succsim x$. For an arbitrary $w \in B$, $y \succsim w$ because $y \in C(B)$. By transitivity, $x \succsim w$, so $x \in C(B)$. For arbitrary $z \in A$, $x \succsim z$ because $x \in C(A)$. By transitivity, $y \succsim z$, so $y \in C(A)$. \square

Question 2. Preferences from choice rules

Let X be a choice set and $C: \mathcal{P}(X) \to \mathcal{P}(X)$ a nonempty choice rule. Show that if C satisfies WARP, then the preference relation \succeq_C defined on X by " $x \succeq_C y$ iff there exists a set $A \subseteq X$ such that $x, y \in A$ and $x \in C(A)$ " is complete and transitive, and that the choice rule it induces, $C(\cdot, \succeq_C)$, is equal to C.

Proof: For completeness, choose $x,y\in X$. Construct $A:=\{x,y\}$. Since C is nonempty, we know that $x\in C(A)$ and/or $y\in C(A)$. If $x\in C(A)$, then $x\succsim_C y$. If $y\in C(A)$, then $y\succsim_C x$. Thus, \succsim_C is complete.

For transitivity, choose $x,y,z\in X$ such that $x\succsim_C y$ and $y\succsim_C z$. This setup implies that there exists $A,B\subset X$ such that $x,y\in A,$ $y,z\in B,$ $x\in C(A)$, and $y\in C(B)$. Assume for sake of a contradiction that $x\notin C(A\cup B)$ and $z\in C(A\cup B)$. By WARP, $z\in C(A\cup B)$ and $y\in C(B)$ implies that $y\in C(A\cup B)$, By WARP, $y\in C(A\cup B)$ and $x\in C(A)$ implies that $x\in C(A\cup B)$ $x\in C(A\cup B)$

For equality of $C(\cdot, \succsim_C)$ and C, fix nonempty $A \subset X$. Choose $x \in C(A)$. For an arbitrary $y \in A$, $x \succsim_C y$. Thus, $x \in C(A, \succsim)$. Choose $x \in C(A, \succsim_C)$, then $x \succsim_C y$ for all $y \in A$. Thus, $x \in C(A)$. Therefore, $C(\cdot, \succsim_C)$ is equal to C. \square

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, Tyler Welch, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

Question 3. Choice over finite sets

Let X be a finite set, and \succeq a complete and transitive preference relation on X. (Hint: for (a), fix X finite, and prove by induction. For (b) use induction on |X| to prove the stronger result that when X is finite, a utility representation exists with range $\{1, 2, ..., |X|\}$)

(a) Show that the induced choice rule $C(\cdot, \succeq)$ is nonempty - that is $C(A, \succeq) \neq \emptyset$ if $A = \emptyset$.

Proof (by induction): Let nonempty $A, B \subset X$ such that $A := \{x\}$ for some $x \notin B$ and |B| = n for some $n \in \mathbb{N}$. Notice that |A| = 1. Because \succeq is complete, $x \succeq x$. Thus, x is weakly preferred to all elements of A. Thus, $x \in C(A, \succeq) \neq \emptyset$. Assume $C(B, \succeq) \neq \emptyset$. Notice that $|A \cup B| = n + 1$. Choose arbitrary y from $C(B, \succeq)$, so by definition $y \succeq z$ for all $z \in B$. By completeness, $x \succeq y$ and/or $y \succeq x$. If $x \succeq y$, x is weakly preferred to all elements in B by transitivity, so $x \in C(A \cup B, \succeq)$. If $y \succeq x$, then y is weakly preferred to all elements in $A \cup B$, so $y \in C(A \cup B, \succeq)$. Thus, $C(A \cup B, \succeq) \neq \emptyset$. \square

(b) Show that a utility representation exists.

Proof (by induction):