### 第四章 网络层 4.3 IPv4地址与NAT

#### IP编址的历史阶段:

- (1) 分类的IP地址
- (2) 子网的划分
- (3) 构成超网(无分类的编址方法)

#### IPv4地址:

每台主机(或路由器)都分配一个全世界唯一的3**2位/4字节标识** 符,即IP地址,

传统的IP地址是分类的地址、分为A、B、C、D、E五类。

无论哪类**IP**地址,都由**网络号**和<mark>主机号</mark>两部分组成。即**IP地** 址::={<**网络号>**, <**主机号>**}。

其中**网络号标志主机(或路由器)所连接的网络**。一个网络号在整个因特网范围内必须是**唯一**的。

一台主机号在它面前的网络号<mark>所指明的网络范围内必须是唯一</mark> <mark>的</mark>。



#### IP地址写法:

<mark>点分十进制</mark>:每一个字节写成一个十进制数,然后每个数用点分隔开。

## 分类的IP地址如下图:



## 特殊的IP地址:

| NetID<br>网络号 | HostID主机<br>号  | 作为IP分组<br>源地址 | 作为IP分组目<br>的地址 | 用途                                         |
|--------------|----------------|---------------|----------------|--------------------------------------------|
| 全0           | 全0             | 可以            | 不可以            | 本网范围内表示主机,路由表中用于表示默认路由<br>(表示整个Internet网络) |
| 全0           | 特定值            | 不可以           | 可以             | 表示本网内某个特定主机                                |
| 全1           | 全1             | 不可以           | 可以             | 本网广播地址 (路由器不转发)                            |
| 特定值          | 全0             | 不可以           | 不可以            | 网络地址,表示一个网络                                |
| 特定值          | 全1             | 不可以           | 可以             | 直接广播地址,对特定网络上的所有主机进行广播                     |
| 127          | 任何数<br>(非全0/1) | 可以 378        | 可以<br>735862   | 用于本地软件换回测试, 称为环回地址                         |

## 私有的IP地址:

| 地址类别 | 地址范围                        | 网段个数 |
|------|-----------------------------|------|
| A类   | 10.0.0.0~10.255.255.255     | 1    |
| B类   | 172.16.0.0~172.31.255.255   | 16   |
| c类   | 192.168.0.0~192.168.255.255 | 256  |

路由器对目的地址是私有IP地址的数据报一律不进行转发。

# 常用的是三种类别IP地址的适用范围:

| 网络类别 | 最大可用网络数            | 第一个可用的网络号    | 最后一个可用的网络号  | 每个网络中的最大主机数        |
|------|--------------------|--------------|-------------|--------------------|
| A    | 27-2               | 1            | 126         | 2 <sup>24</sup> -2 |
| В    | 2 <sup>14</sup> -1 | 128.1        | 191.255     | 2 <sup>16</sup> -2 |
| 欢c迎  | 长注微-1信公            | 众号192.0.1号研末 | 223.255.255 | 28-2               |

下 1 夕 × 00 班 270725062

A类地址可用网络数减2的原因: 网络号全为0的IP地址是保留地址和网络号为127的IP地址为环回测试网络。

B类地址可用网络减1的原因:网路号为128.0的网络号不可以指派。

C类地址可用网络数减1的原因: 网络号为192.0.0的地址不可被指派。

#### 网络地址转换NAT

网络地址转换NAT定义:在专用网连接到因特网的<mark>路由器上安装NAT软件</mark>,安装了NAT软件的路由器叫做**NAT路由器**,它至少有一个有效的外部全球IP地址。

为了网络安全,划分出部分IP地址为私有IP地址,私有IP地址只用于

#### LAN、不用于WAN连接。

因此私有IP地址不能直接用于Internet,必须通过网关利用NAT把私有IP地址转换为internet中合法的IP地址后才能用于网络。

NAT路由器使用**NAT转换表**将本地地址转换成全球地址,或将全球地址转换成本地地址。

NAT转换表中存放着{本地IP地址:端口}到{全球IP地址:端口}的映射。可以让多个私有IP地址映射到同一个全球IP地址。

#### 举个例子:

以宿舍共享宽带上网为例进行说明。假设某个宿舍办理了2Mb/s的电信宽带,那么这个宿舍就获得了一个全球IP地址,如138.76.29.7,而宿舍内4台主机使用私有地址(192.168.0.0网段)。宿舍的网关路由器应该开启NAT功能,并且某时刻路由器的NAT转换表如下图。

那么,当路由器从LAN端口收到源IP端口号为192.168.0.2:2233的数据报时,就将其映射成138.76.29.7:5001,然后从WAN端口发送到因特网上。当路由器从WAN端口收到目的IP及目的端口号为138.76.29.7:5060的数据报时,就将其映射成192.168.0.3:1234,然后从LAN端口发送给相应的本地主机。这样。只需一个全球网址,就可以让多台主机同时访问因特网。

| NAT 转换表          |                  |  |  |
|------------------|------------------|--|--|
| WAN 端            | LAN 端            |  |  |
| 138.76.29.7:5001 | 192.168.0.2:2233 |  |  |
| 138.76.29.7:5060 | 192.168.0.3:1234 |  |  |
| •••              |                  |  |  |

#### 注意:

(1) 普通路由器在转发IP数据报时,不改变其源IP地址和目的IP地址,

而NAT路由器在转发IP数据报时,一定要更换其IP地址(转换源IP地址 或目的IP地址)。<mark>普通路由器仅工作在网络层</mark>,而<mark>NAT路由器</mark>转发数据 报时**需要查看和转换传输层的端口号**。