# International IOR Rectifier

## IRF7807D1PbF

#### FETKY™ MOSFET / SCHOTTKY DIODE

- Co-Pack N-channel HEXFET® Power MOSFET and Schottky Diode
- · Ideal for Synchronous Rectifiers in DC-DC Converters Up to 5A Output
- Low Conduction Losses
- Low Switching Losses
- Low Vf Schottky Rectifier
- Lead-Free

#### Description

The FETKY™ family of Co-Pack HEXFET®MOSFETs and Schottky diodes offers the designer an innovative, board space saving solution for switching regulator and power management applications. HEXFET power MOSFETs utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. Combining this technology with International Rectifier's low forward drop Schottky rectifiers results in an extremely efficient device suitable for use in a wide variety of portable electronics applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics. The SO-8 package is designed for vapor phase, infrared or wave soldering techniques.



#### **Device Features (Max Values)**

|                     | IRF7807D1    |
|---------------------|--------------|
| $V_{DS}$            | 30V          |
| R <sub>DS(on)</sub> | $25 m\Omega$ |
| $Q_q$               | 14nC         |
| Q <sub>sw</sub>     | 5.2nC        |
| Q <sub>oss</sub>    | 18.4nC       |
| 000                 |              |

#### **Absolute Maximum Ratings**

| Parameter                            |      | Symbol              | Max.       | Units |
|--------------------------------------|------|---------------------|------------|-------|
| Drain-Source Voltage                 |      | V <sub>DS</sub>     | 30         | V     |
| Gate-Source Voltage                  |      | V <sub>GS</sub>     | ±12        |       |
| Continuous Drain or Source           | 25°C | I <sub>D</sub>      | 8.3        |       |
| Current (V <sub>GS</sub> ≥ 4.5V)     | 70°C |                     | 6.6        | Α     |
| Pulsed Drain Current①                |      | I <sub>DM</sub>     | 66         |       |
| Power Dissipation 25°C               |      | P <sub>D</sub>      | 2.5        | W     |
|                                      | 70°C |                     | 1.6        | V V   |
| Schottky and Body Diode              | 25°C | I <sub>F</sub> (AV) | 3.5        | Α     |
| Average ForwardCurrent@              | 70°C |                     | 2.2        | 1     |
| Junction & Storage Temperature Range |      | $T_J, T_{STG}$      | -55 to 150 | °C    |

### **Thermal Resistance**

| Parameter                    |                                   | Max. | Units |
|------------------------------|-----------------------------------|------|-------|
| Maximum Junction-to-Ambient® | $R_{\scriptscriptstyle{	hetaJA}}$ | 50   | °C/W  |

#### **Electrical Characteristics**

| Parameter                                            |                      | Min | Тур  | Max     | Units | Conditions                                             |
|------------------------------------------------------|----------------------|-----|------|---------|-------|--------------------------------------------------------|
| Drain-to-Source<br>Breakdown Voltage*                | V <sub>(BR)DSS</sub> | 30  |      |         | V     | $V_{GS} = 0V$ , $I_D = 250\mu A$                       |
| Static Drain-Source on Resistance*                   | R <sub>DS</sub> (on) |     | 17   | 25      | mΩ    | $V_{GS} = 4.5V, I_{D} = 7A@$                           |
| Gate Threshold Voltage*                              | V <sub>GS</sub> (th) | 1.0 |      |         | V     | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                   |
| Drain-Source Leakage                                 | I <sub>DSS</sub>     |     |      | 90      | μΑ    | $V_{DS} = 24V, V_{GS} = 0V$                            |
| Current*                                             |                      |     |      | 7.2     | mA    | $V_{DS} = 24V, V_{GS} = 0V,$<br>$T_{j} = 125^{\circ}C$ |
| Gate-Source Leakage<br>Current*                      | I <sub>GSS</sub>     |     |      | +/- 100 | nA    | $V_{GS} = +/-12V$                                      |
| Total Gate Charge<br>Synch FET*                      | $Q_{gsync}$          |     | 10.5 | 14      |       | $V_{DS}$ <100mV,<br>$V_{GS}$ = 5V, $I_{D}$ = 7A        |
| Total Gate Charge<br>Control FET*                    | $Q_{gcont}$          |     | 12   | 17      |       | $V_{DS}$ = 16V,<br>$V_{GS}$ = 5V, $I_{D}$ = 7A         |
| Pre-Vth Gate-Source Charge                           | $Q_{gs1}$            |     | 2.1  |         |       | $V_{DS} = 16V$ , $I_D = 7A$                            |
| Post-Vth<br>Gate-Source Charge                       | $Q_{gs2}$            |     | 0.76 |         | nC    |                                                        |
| Gate to Drain Charge                                 | $Q_{gd}$             |     | 2.9  |         |       |                                                        |
| Switch Charge* (Q <sub>gs2</sub> + Q <sub>gd</sub> ) | $Q_{sw}$             |     | 3.66 | 5.2     |       |                                                        |
| Output Charge*                                       | Q <sub>oss</sub>     |     | 15.3 | 18.4    | †     | $V_{DS} = 16V, V_{GS} = 0$                             |
| Gate Resistance                                      | $R_g$                |     | 1.2  |         | Ω     |                                                        |

### Schottky Diode & Body Diode Ratings and Characteristics

| Parameter               |                 | Min                                                                                            | Тур | Max  | Units | Conditions                                                             |
|-------------------------|-----------------|------------------------------------------------------------------------------------------------|-----|------|-------|------------------------------------------------------------------------|
| Diode Forward Voltage   | V <sub>SD</sub> |                                                                                                |     | 0.5  | V     | $T_i = 25^{\circ}C, I_s = 1A, V_{GS} = 0V^{\circ}$                     |
|                         |                 |                                                                                                |     | 0.39 |       | $T_i = 125$ °C, $I_s = 1A$ , $V_{GS} = 0V$ ②                           |
| Reverse Recovery Time   | trr             |                                                                                                | 51  |      | ns    | $T_{j} = 25^{\circ}\text{C}, I_{s} = 7.0\text{A}, V_{DS} = 16\text{V}$ |
| Reverse Recovery Charge | Qrr             |                                                                                                | 48  |      | nC    | di/dt = 100A/µs                                                        |
| Forward Turn-On Time    | t <sub>on</sub> | Intrinsic turn-on time is negligible (turn-on is dominated by L <sub>S</sub> +L <sub>D</sub> ) |     |      |       |                                                                        |

① Repetitive rating; pulse width limited by max. junction temperature.
 ② Pulse width ≤ 300 µs; duty cycle ≤ 2%.
 ③ When mounted on 1 inch square copper board, t < 10 sec.</li>
 ④ 50% Duty Cycle, Rectangular
 \* Devices are 100% tested to these parameters.



Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics



Fig 3. Typical Reverse Output Characteristics

Fig 4. Typical Reverse Output Characteristics

International

TOR Rectifier



**Fig 5.** Typical Capacitance Vs. Drain-to-Source Voltage

**Fig 6.** Typical Gate Charge Vs. Gate-to-Source Voltage





**Fig 7.** Normalized On-Resistance Vs. Temperature

Fig 8. Typical Transfer Characteristics

4 www.irf.com

100



Fig 9. On-Resistance Vs. Gate Voltage

Fig 10. On-Resistance Vs. Drain Current



**Fig 11.** Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (HEXFET® MOSFET)

### **MOSFET**, Body Diode & Schottky Diode Characteristics



Fig. 12 - Typical Forward Voltage Drop Characteristics



**Fig. 13** - Typical Values of Reverse Current Vs. Reverse Voltage

# International TOR Rectifier

### IRF7807D1PbF

### SO-8 Package Outline

Dimensions are shown in milimeters (inches)



### SO-8 Part Marking Information (Lead-Free)



### SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)



#### NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
  2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
  3. OUTLINE CONFORMS TO EIA-481 & EIA-541.



- NOTES:
  1. CONTROLLING DIMENSION: MILLIMETER.
  2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.



IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.05/04