CS4102 Algorithms Spring 2020

Reminder Warm-Up

Compare
$$f(n+m)$$
 with $f(n)+f(m)$
When $f(n)=O(n)$
When $f(n)=\Omega(n)$

$f(n) \in O(n)$

$$f(n+m) \le f(n) + f(m)$$

$\overline{f(n)} \in \Omega(n)$

$f(n) \in \Theta(n)$

Guess the solution to this recurrence:

$$T(n) = T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + c \cdot n$$

where $c \ge 1$ is a constant

$$T(n) = T(n/5) + T(7n/10) + c \cdot n$$

$$\frac{n}{5} + \frac{7n}{10} = \frac{9n}{10} < n$$

If this was $T\left(\frac{9n}{10}\right)$, then can use Master's Theorem to conclude $\Theta(n)$

Guess: $\Theta(n)$

Suffices to show O(n) since non-recursive cost is already $\Omega(n)$

$$T(n) = T(n/5) + T(7n/10) + c \cdot n$$

Claim: $T(n) \leq 10cn$

Base Case: T(0) = 0

 $T(1) = c \le 10c$ which is true since $c \ge 1$

Strictly speaking, we can handle any c>0, but assuming $c\geq 1$ to simplify the analysis here

$$T(n) = T(n/5) + T(7n/10) + c \cdot n$$

Inductive hypothesis: $\forall n \leq x_0 : T(n) \leq 10cn$

Inductive step:

$$T(x_0 + 1) = T\left(\frac{1}{5}(x_0 + 1)\right) + T\left(\frac{7}{10}(x_0 + 1)\right) + c(x_0 + 1)$$

$$\leq \left(\frac{1}{5} + \frac{7}{10}\right) 10c(x_0 + 1) + c(x_0 + 1)$$

$$= 9c(x_0 + 1) + c(x_0 + 1) = 10c(x_0 + 1)$$

Today's Keywords

- Divide and Conquer
- Sorting
- Quicksort
- Quickselect
- Median of Medians

CLRS Readings

- Chapter 7
- Chapter 9

Homeworks

- HW3 due 11pm tomorrow
 - Programming (use Python or Java!)
 - Divide and conquer
 - Closest pair of points
- HW4 coming soon
 - Written, using LaTeX

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p

Start: unordered list

Goal: All elements < p on left, all > p on right

5	7	3	1	2	4	6	8	12	10	9	11
---	---	---	---	---	---	---	---	----	----	---	----

Partition Summary

- 1. Put p at beginning of list
- 2. Put a pointer (Begin) just after p, and a pointer (End) at the end of the list
- 3. While Begin < End:
 - 1. If Begin value < p, move Begin right
 - 2. Else swap Begin value with End value, move End Left
- 4. If pointers meet at element < p: Swap p with pointer position
- 5. Else If pointers meet at element > p: Swap p with value to the left

Run time? O(n)

Conquer

Recursively sort Left and Right sublists

Quicksort Run Time (Best)

If the pivot is always the median:

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = O(n\log n)$$

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

Then we shorten by 1 each time

$$T(n) = T(n-1) + n$$

$$T(n) = O(n^2)$$

How to pick the pivot?

CLRS, Chapter 9

Good Pivot

- What makes a good Pivot?
 - Roughly even split between left and right
 - Ideally: median
- Can we find median in linear time?
 - Yes!
 - Quickselect

Quickselect

- Finds i^{th} order statistic
 - $-i^{th}$ smallest element in the list
 - 1st order statistic: minimum
 - $-n^{\text{th}}$ order statistic: maximum
 - $-\frac{n_{\rm th}}{2}$ order statistic: median
- CLRS, Section 9.1
 - Selection problem: Given a list of distinct numbers and value i, find value x in list that is larger than exactly i-1 list elements

Quickselect

Idea: pick a pivot element, partition, then recurse on sublist containing index *i*

- Divide: select an element p, Partition(p)
- Conquer: if i = index of p, done!
 - if i < index of p recurse left. Else recurse right
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

Goal: All elements < p on left, all > p on right

Conquer

Recurse on sublist that contains index *i* (adjust *i* accordingly if recursing right)

CLRS Pseudocode

```
RANDOMIZED-SELECT (A, p, r, i)
1 if p == r
       return A[p]
3 q = \text{RANDOMIZED-PARTITION}(A, p, r) // q is the position of pivot
4 k = q - p + 1 // number of points on the left of the pivot
5 if i == k // the pivot value is the answer
       return A[q]
   elseif i < k
       return RANDOMIZED-SELECT (A, p, q - 1, i)
   else return RANDOMIZED-SELECT(A, q + 1, r, i - k)
```

adjust i

Quickselect Run Time

If the pivot is always the median:

Then we divide in half each time

$$S(n) = S\left(\frac{n}{2}\right) + n$$
$$S(n) = O(n)$$

Quickselect Run Time

If the partition is always unbalanced:

Then we shorten by 1 each time

$$S(n) = S(n-1) + n$$

$$S(n) = O(n^2)$$

Good Pivot

- What makes a good Pivot?
 - Roughly even split between left and right
 - Ideally: median

- Here's what's next:
 - An algorithm for finding a "rough" split (Median of Medians)
 - This algorithm uses Quickselect as a subroutine

Good Pivot

What makes a good Pivot?

Median of Medians

- Fast way to select a "good" pivot
- Guarantees pivot is greater than 30% of elements and less than 30% of the elements

• Idea:

- break list into chunks,
- find the median of each chunk,
- use the median of those medians (with Quickselect)

Median of Medians

1. Break list into chunks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Why is this good?

Why is this good?

MedianofMedians

is larger than all of these

Larger than 3 things in each (but one) list to the left
Similarly:

$$3\left(\frac{1}{2}\cdot\left\lceil\frac{n}{5}\right\rceil-2\right)\approx\frac{3n}{10}-6 \text{ elements } < \square$$

$$3\left(\frac{1}{2}\cdot\left\lceil\frac{n}{5}\right\rceil-2\right)\approx\frac{3n}{10}-6 \text{ elements } > \square$$

Quickselect

• Divide: select an element p using Median of Medians, Partition(p) $M(n) + \Theta(n)$

- Conquer: if i = index of p, done, if i < index of p recurse left. Else recurse right $\leq S\left(\frac{7}{10}n\right)$
- Combine: Nothing! $S(n) \le S\left(\frac{7}{10}n\right) + M(n) + \Theta(n)$

Median of Medians, Run Time

1. Break list into chunks of 5 $\Theta(n)$

2. Find the median of each chunk $\Theta(n)$

3. Return median of medians (using Quickselect)

$$S\left(\frac{n}{5}\right)$$

$$M(n) = S\left(\frac{n}{5}\right) + \Theta(n)$$

Quickselect

$$S(n) \le S\left(\frac{7n}{10}\right) + M(n) + \Theta(n)$$

$$= S\left(\frac{7n}{10}\right) + S\left(\frac{n}{5}\right) + \Theta(n)$$

$$= S\left(\frac{7n}{10}\right) + S\left(\frac{n}{5}\right) + \Theta(n)$$

... Guess and Check ...

Warm Up!

$$S(n) = O(n)$$

$$S(n) = \Omega(n)$$

Linear work done at top level

$$S(n) = \Theta(n)$$

Phew! Back to Quicksort

Using Quickselect, with a median-of-medians partition:

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$
$$T(n) = \Theta(n\log n)$$

Is it worth it?

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
- Approach has very large constants
 - If you really want $\Theta(n \log n)$, better off using MergeSort
- Better approach: Random pivot
 - Very small constant (very fast algorithm)
 - Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely