

Mathematics Research Center University of Wisconsin—Madison 610 Walnut Street Madison, Wisconsin 53706

February 1977

(Received December 9, 1976)

Approved for public release Distribution unlimited

Sponsored by

U.S. Army Research Office

P.O. Box 12211

Research Triangle Park North Carolina 27709 American Mathematical Society Providence, Rhode Island 02940

National Science Foundation Washington, D. C. 20550

UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER

ORTHOGONAL POLYNOMIALS Paul G. Nevai

Technical Summary Report #1726 February 1977

ABSTRACT

The purpose of the present paper is to improve some results of R. Askey, P. Erdős, G. Freud, L. Ya. Geronimus, U. Grenander, G. Szegő and P. Turan on orthogonal polynomials, Christoffel functions, orthogonal Fourier series, eigenvalues of Toeplitz matrices and Lagrange interpolation. In particular, Turan's problem will (positively) be answered: is there any weight w with compact support such that for each p>2 the Lagrange interpolating polynomials corresponding to w diverge in $L_{\rm w}^{\rm p}$ for some continuous function f? Most of the paper deals with Christoffel functions and their applications. Many limit relations for orthogonal polynomials are found in the assumption that the coefficients in the recursion formula behave nicely.

- AMS(MOS) Subject Classification 42A52, 33A65, 41A05, 41A10, 41A20, 41A25, 41A35, 41A55, 41A60, 42A04, 42A56, 42A62, 40A25, 26A75, 26A78, 26A82, 26A84, 30A06, 30A84, 30A86, 65D30, 65F15, 65F35.
- Key Words Orthogonal polynomials, Quadrature processes, Fourier series, Interpolation, Positive operators, Toeplitz matrices, Christoffel functions.

Work Unit Number 6 - Spline Functions and Approximation Theory

Sponsored by

¹⁾ the United States Army under Contract No. DAAG29-75-C-0024,

the American Mathematical Society, Providence, Rhode Island 02940,

³⁾ the National Science Foundation, under Grant No. MPS75-06687 #3.

This work is dedicated

to

Richard Askey

Table of Contents

1.	Introduction	1
2.	Notations	4
3.	Basic Facts	10
	3.1. The Generalized Recurrence Formula	10
	3.2. Modified Quadrature Processes	20
	3.3. The Support of $d\alpha$	2.5
4.	Limit Relations	32
	4.1. Pointwise Limits	32
	4.2. Weak Limits	0
5.	Eigenvalues of Toeplitz Matrices	3
6.	Christoffel Functions	3
	6.1. An Interpolation Process	3
	6.2. A Sequence of Positive Operators	8
	6.3. Generalized Christoffel Functions	0
7.	The Coefficients in the Recurrence Formula 16	3
8.	Fourier Series · · · · · · · · · · · · · · · · · · ·	8
9.	Inequalities	8
0.	Lagrange Interpolation	0
	References	0

ORTHOGONAL POLYNOMIALS

Paul G. Nevai

The purpose of the present paper is to improve some results of R. Askey, P. Erdős, G. Freud, L. Ya. Geronimus, U. Grenander, G. Szegő and P. Turan on orthogonal polynomials, Christoffel functions, orthogonal Fourier series, eigenvalues of Toeplitz matrices and Lagrange interpolation. In particular, Turan's problem [I] will be answered: is there any weight w with compact support such that for each p > 2 the Lagrange interpolating polynomials corresponding to w diverge in L^p for some continuous function f? R. Askey [I] conjectured that the answer was yes and the solution was given by the Pollaczek weight because the logarithm of the Pollaczek weight is not integrable. We shall show that Askey's conjecture is right but for different reasons. In fact, there are many weights solving Turan's problem; some of them do have integrable logarithm, some of them do not.

Most of this paper deals with investigation of Christoffel functions and its generalization. The results and the methods are stronger than those of the above authors. The Christoffel functions play a very important role in the theory of orthogonal polynomials. Many results in orthogonal Fourier series and interpolation are based on estimates and asymptotics of Christoffel functions. We shall show how successfully Christoffel functions can be applied in finding necessary conditions for weighted mean convergence of orthogonal Fourier series and Lagrange

nsored by
The United States Army under Contract No. DAAG29-75-C-0024,
The American Mathematical Society, Providence, Rhode Island 02940,
The National Science Foundation, under Grant No. MPS75-06687 #3.

interpolation processes. Introducing generalized Christoffel functions we shall find a connection between different weighted L^p norms of polynomials. Especially interesting is the case when 0 . We shall investigate a new kind of quadrature process which helps to find asymptotics for Christoffel functions and orthogonal polynomials outside the support of the weight function. Taking the recursion formula as a starting point and assuming properties on the coefficients in the recursion formula we shall obtain results on orthogonal polynomals. In certain cases we shall be able to calculate the weight function using the coefficients in the recursion formula. We shall also find the <math>(C, 1) limit of Turan type determinants under rather weak conditions.

I learned the theory of orthogonal polynomials from G. Freud who has been supervising me for several years. Many of the methods I use in this paper can be found in his book on orthogonal polynomials which is a rich source of methods and unsolved research problems. I wish to express my deep feeling of gratitude to G. Freud as well as to R. Askey, L. Bers, M. Cwikel, J. Landin, G. G. Lorentz and W. Proxmire without the help of which this paper would never have been written. I am grateful to the American Mathematical Society, to the National Science Foundation and to the United States Amy for sponsoring my research.

This whole work was born from the attempts to solve problems mentioned in R. Askey's paper [1]. I discussed my results with R. Askey several times. He read a draft version of the manuscript and made various

suggestions to improve the presentation. I dedicate this work to Richard Askey because his generous support and help made it possible for me to carry out the research which led to this paper.

2. Notations

The function $\alpha\colon \mathbb{R} \to \mathbb{R}$ is called a weight function if it is nondecreasing, it has infinitely many points of increase and all the moments

$$\int_{-\infty}^{\infty} x^{2n} d\alpha(x) \qquad (n = 0, 1, \dots)$$

are finite. For a given weight α the corresponding system of orthogonal polynomials $\{p_n(d\alpha)\}_{n=0}^\infty$ is defined by $p_n(d\alpha,x)=\gamma_n(d\alpha)x^n+\ldots,\gamma_n(d\alpha)>0$ and

$$\int_{-\infty}^{\infty} \int_{\mathbb{R}} (d\omega, x) \, p_{m}(d\omega, x) \, d\alpha(x) = \delta_{mm} .$$

If a happens to be absolutely continuous then we shall usually write w and $p_n(w,x)$ instead of a' and $p_n(da,x)$ respectively. In the general case a can be written in the form

where $\alpha_{\rm G}$ is absolutely continuous, $\alpha_{\rm S}$ is singular and $\alpha_{\rm j}$ is a jump function.

One of the basic properties of a system of orthogonal polynomials $\{p_n(d\alpha)\}\ \ is\ that\ the\ polynomials\ \ p_n(d\alpha)\ \ satisfy\ the\ three\ term\ \ recurrence$

$$\begin{aligned} & \operatorname{xp}_{n}(\mathrm{d}\alpha, x) = \frac{\gamma_{n}(\mathrm{d}\alpha)}{\gamma_{n+1}(\mathrm{d}\alpha)} \ p_{n+1}(\mathrm{d}\alpha, x) + \\ & + \alpha_{n}(\mathrm{d}\alpha) \ p_{n}(\mathrm{d}\alpha, x) + \frac{\gamma_{n-1}(\mathrm{d}\alpha)}{\gamma_{n}(\mathrm{d}\alpha)} \ p_{n-1}(\mathrm{d}\alpha, x) \end{aligned}$$

 $(n=0,1,\ldots)$ where $p_{-1}\equiv 0$ and

-3-

$$a_n(da) = \int_{-\infty}^{\infty} t p_n^2(da, t) da(t)$$
.

This recurrence relation will be one of our main points of interest. By a famous result of J. Favard if a system of polynomials $\left\{p_{n}(x)\right\}_{n=0}^{\infty}$ satisfies the recurrence formula

$$x p_n(x) = \frac{\gamma_n}{\gamma_{n+1}} p_{n+1}(x) + \alpha_n p_n(x) + \frac{\gamma_{n-1}}{\gamma_n} p_{n-1}(x)$$

for n = 0,1,... with $p_{-1} \equiv 0$, $p_0 \equiv \gamma_0$, $\gamma_n > 0$ and $\alpha_n \in \mathbf{R}$ then $\{p_n(x)\}$ is orthogonal with respect to some weight α which may not uniquely be determined (see Freud, §II.1)*. In this paper we are going to deal with such cases when both $\{|\alpha_n|\}$ and $\{\gamma_{n-1}/\gamma_n\}$ are bounded and then α is uniquely defined.

The zeros of $p_n(da)$, which are real and distinct, will be denoted by $x_{kn}(da)$: $x_{ln}(da) > x_{2n}(da) > \dots > x_{nn}(da)$. The Christoffel function $\lambda_n(da)$ corresponding to a is defined by

$$\lambda_n(d\alpha,z) = \min_{\pi \in \mathbb{P}_{n-1}} \int_{-\infty}^{\infty} |\pi(t)|^2 d\alpha(t)$$

$$\pi \in \mathbb{P}_{n-1}$$

$$\pi(t) = 1$$

for $z\in C,\ n=1,2,\ldots$ where $I\!\!P_n$ is the set of polynomials of degree at most n . It is rather easy to see that

$$\lambda_n (d\alpha, z)^{-1} = \sum_{k=0}^{n-1} |p_k(d\alpha, z)|^2$$

The numbers $~\lambda_{n}(d\alpha,x_{k_{n}}(d\alpha))~$ are called Christoffel numbers and are usually

denoted by $\lambda_{kn}(d\omega)$. There are two important results involving Christoffel numbers which will often be used. The first of them is the Gauss-Jacobi mechanical quadrature formula:

$$\int\limits_{-\infty}^{\infty}\pi(t)\;\mathrm{d}\alpha(t)=\sum_{k=1}^{n}\;\lambda_{kn}(\mathrm{d}\alpha)\;\pi(x_{kn}(\mathrm{d}\alpha))$$

for each $\pi \in \mathbb{P}_{2n-1}, \;$ the second one is the Markov-Stieltjes inequalities which can be expressed as

$$\sum_{k=1+1}^{n} \lambda_k (do) \le \int_{-\infty}^{\infty} \frac{(do)}{do(t)} \le \sum_{k\geq 1}^{n} \lambda_k (do)$$

points of increase of α . If supp(da) is bounded $\Delta(d\alpha)$ will denote the smallest closed interval containing supp(da). The symbols Δ and τ will always mean closed interval, the interior part of Δ is denoted by Δ^0 . For a given τ the Tschebyshev weight corresponding to τ will be written as v_{τ} . If $\tau = [-1,1]$ then we write v instead of v_{τ} . If $\tau = [-1,1]$ then

$$v_{\tau}(x) = [b^2 - (x-a)^2]^{-\frac{1}{2}}$$

For f $\varepsilon L^1_{d,\sigma}$ (supp(da) is bounded). S (da,f) denotes the n-th partial sum of the orthogonal Fourier series of f. Hence for $x\in\mathbb{R}$

$$S_n(do, f, x) = \int_{-\infty}^{\infty} f(t) K_n(do, x, t) do(t)$$

where

^{*} In the following books listed in the references will be referred by mentioning the name of their authors.

$$K_{k}(da, x, t) = \sum_{k=0}^{n-1} p_{k}(da, x) p_{k}(da, t)$$

or by the Christoffel-Darboux formula

The constituent Darboux formula
$$x_n(da,x,t) = \frac{\gamma_{n-1}(da)}{\gamma_n(da)} \frac{p_{n-1}(da,t)}{n-1} \frac{p_n(da,x)}{x-t} - \frac{p_{n-1}(da,x)}{n-1} \frac{p_n(da,t)}{n-1}$$

For a given function f the Lagrange interpolation polynomial $L_n(d\alpha,f)$ corresponding to α is defined to be the unique polynomial of degree at most n-1 which agrees with f at the nodes $x_{kn}(d\alpha)$ (k = 1, 2, ..., n). If we denote by $t_{kn}(d\alpha)$ the fundamental polynomials of Lagrange interpolation then $L_n(d\alpha,f)$ can be written as

$$L_n(d\alpha, f, x) = \sum_{k=1}^{n} f(x_{kn}(d\alpha)) I_{kn}(d\alpha, x)$$
.

It will be useful to remember that

$$t_{kn}(\mathrm{d}\alpha,x) = \frac{\gamma_{n-1}(\mathrm{d}\alpha)}{\gamma_{n}(\mathrm{d}\alpha)} \ \lambda_{kn}(\mathrm{d}\alpha) \ p_{n-1}(\mathrm{d}\alpha,x_{kn}) \ \frac{P_{n}(\mathrm{d}\alpha,x)}{x-x_{kn}}$$

 $(x_{kn} \equiv x_{kn}(d\alpha))$.

The Tschebyshev polynomials $\cos n \theta$ (x = $\cos \theta$) will always be denoted by $T_n(x)$. For a given set $\mathbf R$ the characteristic function of $\mathbf R$ is $\mathbf 1_{\mathbf R}$ and $\mathbf R(\epsilon)$ ($\epsilon > 0$) means the ϵ -neighborhood of $\mathbf R$. $\mathbf r_n$ and $\mathbf P_n$ denote polynomials belonging to $\mathbf P_n$. The letters $\mathbf N$, $\mathbf R$ and $\mathbf C$ denote the set of natural integers, real numbers and complex numbers respectively. $\mathbf R^+$ is the set of positive real numbers.

For 0 < p < w | | | da, p is defined by

$$\|f\|_{d\alpha, p}^{p} = \int_{-\infty}^{\infty} |f(t)|^{p} d\alpha(t)$$

(Of course, for 0 < p < 1 this is not a norm.)

Sometimes we shall omit unnecessary parameters in the formulas.

 $(E.g. x_k = x_{kn}(da))$.

We assume that the reader is familiar with methods in the theory of one-sided approximation and positive operators.

For the convenience of the reader we give an index where to find the definition of symbols used frequently. D. 3.1.4 below means that see Definition 4 in Chapter 3.1.

- D.7.6	- D.6.2.37	- D.6.1.3	- D.6.2.42	- D.4.2.11	D. 3. 1.4	- D. 6. 1.16	D.7.14	- D.9.28	- D.4.2.4	D.10.17	D.6.3.1	- Formula 4.1(5)
•								•			•	
e u	A, A, B, X, B,	° 6	α, β,	$a_{nk}(da)$	$C_k^{a, b(da)}$	D(da, z)	s,	GJ	r(0)	JS	$\lambda_n(d\alpha, p, x)$	$\lambda_n^*(d\alpha, x)$

M(a, b) - D. 3. 1.6

Pollaczek weight - D. 6. 2. 12 p(z) - D. 4. 1. 8

S . D.4.2.1 $u \equiv u^{(a,b)} . D.6.2.7$

u_n . D.6.3.4 w, . D.9.28

D.6.3.3

3. Basic Facts

3.1. The Generalized Recurrence Formula

Let $\mathbf{U}_{\mathbf{n}}(\mathbf{x})$ denote the Tschebyshev polynomial of second kind,

that is

$$U_n(x) = \frac{\sin(n+1)\theta}{\sin \theta}, \quad x = \cos \theta$$

 $(0 \le \theta \le \pi, -1 \le x \le l)$. The polynomials $U_n(x)$ satisfy the recurrence formula

$$2 \times U_{n-1}(x) = U_n(x) + U_{n-2}(x), \quad n = 1, 2, \dots$$

where $U_{-1}(x) \equiv 0$ and $U_0(x) \equiv 1$.

Theorem 1. Let $0 \le k \le n$. For an arbitrary weight α p $(d\alpha,x)$ can be expressed as

(2)
$$p_n(d\alpha, x) = U_{n-k}(x) p_k(d\alpha, x) - U_{n-k-1}(x) p_{k-1}(d\alpha, x) +$$

where

(3)
$$R_{n,k}(d\alpha, x) = \sum_{j=k+1}^{n} U_{n-j}(x) \{ [1-2\frac{y_{j-1}(d\alpha)}{y_{j-1}(d\alpha)}] p_{j}(d\alpha, x) - \frac{y_{j-2}(d\alpha)}{y_{j-1}(d\alpha)} p_{j-1}(d\alpha, x) + [1-2\frac{y_{j-2}(d\alpha)}{y_{j-1}(d\alpha)}] p_{j-2}(d\alpha, x) \}$$

Proof. We shall prove (2) by induction. If k=n then (2) and (3) give $p_n(d\alpha,x)=p_n(d\alpha,x)$. If $n\geq 1$ and k+1=n then (2) and (3) coincide with the recurrence formula. Now fix n and let $n-1>k\geq 0$. Suppose

that (2) and (3) hold if we replace these k by k + 1, that is

Applying (2) and (3) to the case $n = k+1 \ge 1$ we obtain

Thus by (i)

$$p_n = (U_1 U_{n-k-1} - U_0 U_{n-k-2})^p k - U_{n-k-1}^p k_{-1}^+$$

that is (2) and (3) hold also for k

Remark 2. Putting k=0 and $d\alpha$ = Tschebyshev weight we obtain from Theorem 1

$$T_{n}(x) = \times U_{n-1}(x) - U_{n-2}(x) = T_{1}(x) \ U_{n-1}(x) - T_{0}(x) \ U_{n-2}(x) \ .$$

For k=1 (2) and (3) give the same as for k=0 . When $2 \le k \le n$ we get

$$T_{n}(x) = T_{k}(x) \, U_{n-k}(x) - T_{k-1}(x) \, U_{n-k-1}(x) \ . \label{eq:transform}$$

This formula may easily be checked directly. In fact, the above formula suggested (2) and (3).

(4) $p_{n}(d\alpha, x) = U_{n-k}(\frac{x-a}{b}) p_{k}(d\alpha, x) - U_{n-k-1}(\frac{x-a}{b}) p_{k-1}(d\alpha, x) + R_{n,k}^{a,b}(d\alpha, x)$

where

(5)
$$R_{n,k}^{3,b}(d\alpha,x) = \sum_{j=k+1}^{n} U_{n-j}(\frac{x-a}{b}).$$

$$\{\left[1 - \frac{2}{b} \frac{Y_{j-1}(d\alpha)}{Y_{j}(d\alpha)}\right] p_{j}(d\alpha,x) + \frac{2}{b} \left[a - \alpha_{j-1}(d\alpha)\right] p_{j-1}(d\alpha,x) + \left[1 - \frac{2}{b} \frac{Y_{j-2}(d\alpha)}{Y_{j-1}(d\alpha)}\right] p_{j-2}(d\alpha,x)\right\}.$$

$$\begin{split} & \frac{\text{Proof.}}{p_n(d\sigma^*, \frac{x-a}{b})}, \quad \text{Let } a^* \text{ be defined by } a^*(t) = a(bt+a) \text{ . Then } p_n(d\sigma, x) = \\ & p_n(d\sigma^*, \frac{x-a}{b}), \quad a_n(d\sigma^*) = \frac{1}{b} \{ o_n(d\sigma) - a \} \text{ and } \quad \gamma_{n-1}(d\sigma^*)/\gamma_n(d\sigma^*) = \\ & = \frac{1}{b} \left[\gamma_{n-1}(d\sigma)/\gamma_n(d\sigma) \right]. \quad \text{Apply now Theorem I to } \alpha^* \text{ and then return to } \alpha \text{ .} \end{split}$$

We shall call (4) and (5) the generalized recurrence formula. It will help us to prove many properties of orthogonal polynomials in case the coefficients of the recurrence formula are convergent.

Definition 4. Let a & R, b > 0. Then

$$C_k^{a,\;b}(d\alpha) = \left|\alpha_k(d\alpha) - a\right| + \left|\frac{\gamma_{k-1}(d\alpha)}{\gamma_k(d\alpha)} - \frac{b}{2}\right| + \left|\frac{\gamma_k(d\alpha)}{\gamma_{k+1}(d\alpha)} - \frac{b}{2}\right|.$$

Corollary 5. Let a ϵ \mathbb{R} , b ϵ \mathbb{R}^+ , $0 \le k \le n$. Then

(6)
$$p_n(d\alpha, x) = U_{n-k}(\frac{x-a}{b}) p_k(d\alpha, x) - U_{n-k-1}(\frac{x-a}{b}) p_{k-1}(d\alpha, x) + O(1) \frac{1}{\sqrt{b^2 - (x-a)^2}} \sum_{j=k-1}^n C_j^{a,b}(d\alpha) | p_j(d\alpha, x) |$$

for x (a-b, a+b) where |O(1)| < 2 .

Definition 6. Let a & R, b > 0 . Then a & M(a, b) if

$$\lim_{k\to\infty} C_k^{a,b}(da) = 0.$$

Remark 7. When considering M(a,b) we can always assume without loss of generality that either a=0, b=1 or a=0, b=0. For, if $\alpha\in M(a,b)$ with b>0 then $\alpha^*\in M(0,1)$ where $\alpha^*(t)=\alpha(bt+a)$. If $\alpha\in M(a,0)$ then $\alpha^*\oplus\in M(0,0)$ where $\alpha^*(t)=\alpha(t+a)$.

Theorem 8. Let a ϵ \mathbb{R} , b ϵ \mathbb{R}^+ , 0 < ϵ < 1, \times ϵ [a-b, a+b]. Then

$$[b^{2} - (x - a)^{2}]_{n+1}(do, x) p_{n}^{2}(do, x) \le$$

$$\leq 6 \left\{ \frac{1}{\epsilon^{n}} + 2 \sum_{n(1-\epsilon) \le j \le n} [C_{0}^{a}, b_{(do)}]^{2} \right\}$$

for n = 1, 2, ...

Proof. We obtain from (6) that for $[(1-\epsilon)n] + 1 \le k \le n$

$$\begin{split} \left\{b^2 - (x-a)^2\right\}^{\frac{1}{2}} \left\|p_n(x)\right\| &\leq \left\|p_k(x)\right\| + \left\|p_{k-1}(x)\right\| + \\ &+ 2\left\{\sum_{j=\left[(1-\epsilon)n\right]}^{n} \left(C_j\right)^2 \right.^{\lambda-1}(x)\right\}^{\frac{1}{2}}, \end{split}$$

nat is

$$\left[b^2 - (x-a)^2\right] p_n^2(x) \le 3 \ p_k^2(x) + 3 \ p_{k-1}^2(x) + 12 \ \lambda_{n+1}^{-1}(x) \sum_{j=\left[\left(1-\epsilon\right)n\right]}^{n} \left(\mathbb{C}_j\right)^2 \ .$$

Thu

$$\sum_{k=\left[\left(1-\epsilon\right)n\right]+1}^{n}\left[b^{2}\cdot(x-a)^{2}\right]p_{n}^{2}(x)\leq 6\ \lambda_{n+1}^{-1}(x)+12\ \lambda_{n+1}^{-1}(x)\ .$$

$$\sum_{j=[(1-\epsilon)n]}^{n} (C_j)^2 \sum_{k=[(1-\epsilon)n]+1}^{n} .$$

The theorem follows from this inequality.

Theorem 9. Let $\alpha \in M(a,b)$ with b>0. Then

$$\lim_{n\to\infty} \left[b^2 - (x-a)^2\right] \lambda_{n+1}(d\alpha, x) \ p_n^2(d\alpha, x) = 0$$

uniformly for x \(\) [a-b, a+b].

Proof. By Theorem 8 we have to show that we can choose $\ensuremath{\epsilon} = \ensuremath{\epsilon}_n \ \ensuremath{\varepsilon} \ (0,1)$

$$\lim_{n\to\infty} \ \{\frac{1}{n\epsilon_n} + \frac{\sum\limits_{\{l=\epsilon_n\}n\leq j\leq n} [C^{a,\,\,b}_{j}(\mathrm{d}_{\alpha})]^2\}}{(1-\epsilon_n)n\leq j\leq n} \ .$$

To.

$$\epsilon_n = \frac{1}{n} \left[\sup_{j \ge n} ([C_j]^2 + j^{-2}) \right]^{\frac{1}{2}} \; .$$

Then $\varepsilon_n \le \frac{1}{2}$. Thu

$$\frac{1}{n\epsilon_n} + \sum_{\{1-\epsilon_n^{'}\}n\leq j \leq n} \{C_j\}^2 \leq \frac{1}{n\epsilon_n} + (\epsilon_n \ n+l) \sup_{j \geq \frac{n}{2}} \{C_j\}^2 \leq$$

$$\leq 2 \sup_{j \geq \frac{n}{2}} \{ [C_j]^2 + j^{-2} \}^{\frac{1}{2}} + \sup_{j \geq \frac{n}{2}} [C_j]^2 \longrightarrow 0$$

Remark 10. It is useful to remember that it $supp(do) = \{-1,1\}$ and $v\log a^* \in L^1$ then $a \in M(0,1)$ (See e.g. Freud).

It might be interesting to compare Theorem 9 with (weaker) results of Geronimus (See Chapter III in his book.)

Theorem II. Let $\alpha \in M(a,b)$ with b>0. Suppose that

$$\limsup_{n\to\infty} \sum_{j=n}^{2n} j C_j^{a, \, b} (d\alpha)^2 < \infty \ .$$

Let ${\bf T}_{\rm s}=\overline{{\bf T}_{\rm s}}\subset (a\text{-}b,\ a\text{+}b)$. Then the following two statements are equivalent.

- (i) $\{p_n^2(da,x)\}$ is uniformly bounded for $x \in \mathfrak{B}$.
- (ii) $\{n^{-1}\lambda_{n+1}^{-1}(d\alpha,x)\}$ is uniformly bounded for $x\in\mathfrak{B}$.

 $\frac{\text{Proof.}}{r_1^2(s)} \quad (i) \Longrightarrow (ii); \quad \{(n+1)^{-1} \lambda_{n+1}^{-1}(d\alpha,x)\} \quad \text{is the arithmetical mean of} \quad (i) \Longrightarrow (ii); \quad \{(n+1)^{-1} \lambda_{n+1}^{-1}(d\alpha,x)\} \quad \text{is the arithmetical mean of} \quad (ii) \Longrightarrow (iii); \quad (iii) \Longrightarrow (iii)$

(ii) ⇒ (i): Use Theorem 8.

Let us remark that if $C_j^{(a,\,b)}(da)=O(j^{-1})$ then the conditions of the theorem are satisfied. Example: Jacobi, Pollaczek polynomials.

Theorem 12. Let $\alpha \in M(a,b)$ with b>0 and let

$$\sum_{j=0}^{\infty} C_j^{a, b}(da) < \infty .$$

If $\Delta\subset (a-b,\ a+b)$ then the sequence $\{|p_n(d\sigma,x)|\}$ is uniformly bounded for $x\in\Delta$.

-15-

Proof. Let, for simplicity, $\alpha \in M(0,1)$, $\Delta = [-\epsilon, \epsilon]$, $0 < \epsilon < 1$, $c_j^{0,1}(d\alpha) = c_j$. Let us fix $k = k(\epsilon)$ such that

$$\frac{2}{\sqrt{1-\epsilon^2}} \sum_{j=K-1}^{\infty} c_j < \frac{1}{2} .$$

If m > k then by Corollary 5

$$\begin{split} \left\lceil p_{m}\left(x\right)\right| &\leq & \left\lceil \frac{1}{\sqrt{1-\epsilon}} + 2 \right\rceil \left\lceil \left\lceil p_{k}\left(x\right)\right\rceil + \left\lceil p_{k-1}(x)\right\rceil + \\ &+ \frac{2}{\sqrt{1-\epsilon^{2}}} \right\rceil \sum_{j=k+1}^{m} \left\lceil c_{j} \right\rceil p_{j}(x) \right\rceil \;. \end{split}$$

Honor

$$|p_m(x)| \leq \lceil \frac{1}{\sqrt{1-\epsilon}} + \frac{1}{2} \left\| \lceil \lceil p_k(x) \rceil + \lceil \lceil p_{k-1}(x) \rceil \rceil + \frac{1}{2} \max_{k+1 \leq j \leq m} |p_j(x)| \right\|.$$

us for n > k

$$\max_{k+1 \leq m \leq n} \left \lfloor p_m(x) \right \rfloor \leq \left \lfloor \frac{1}{\sqrt{1-\epsilon^2}} + \frac{1}{2} \left \rfloor \left \lfloor \left \lfloor p_k(x) \right \rfloor + \left \lfloor p_{k-1}(x) \right \rfloor \right \rfloor + \left \lfloor p_{k-1}(x) \right \rfloor \right \rfloor$$

$$+\frac{1}{2}$$
 max max $|p_j(x)| =$ $\frac{1}{2}$ k+1 $\frac{1}{2}$ m k+1 $\frac{1}{2}$ m

$$= \left[\frac{1}{\sqrt{1 - \epsilon^2}} + \frac{1}{2} \left\| \left\lceil p_k(x) \right\rceil + \left\lceil p_{k-1}(x) \right\rceil \right\| \right] + \frac{1}{2} \max_{k+1 \le m \le n} \left\lceil p_m(x) \right\rceil \ ,$$

particular, for n > k

$$\left\| p_{n}(x) \right\| \leq \left[\frac{2}{\sqrt{1-\epsilon^2}} + 1 \right] \left\| p_{k}(x) \right\| + \left\| p_{k-1}(x) \right\| \right] \ .$$

Now remember that k does not depend on n.

Sometimes instead of Theorem 3 we shall use the following generalization of the recurrence formula.

Theorem 13. Let a & R, b & R', 0 < n < k. Then

$$p_n(do, x) = U_{k-n}(\frac{x-a}{b})p_k(do, x)$$
.

-
$$\mathbf{U}_{k-n-1}(\frac{\mathbf{x}-\mathbf{a}}{\mathbf{b}})\mathbf{p}_{k+1}(\mathbf{d}\alpha,\mathbf{x})+\overline{\mathbf{R}}^{\mathbf{a},\mathbf{b}}(\mathbf{d}\alpha,\mathbf{x})$$

where

$$\overline{\mathbb{R}}_{n,\;k}^{a,\;b}(\text{d}_{\alpha},\,x) = \sum_{j=n}^{k-1} \mathrm{U}_{j-n}(\frac{x-a}{b})\;.$$

$$\begin{array}{l} \cdot \ \{ [1 - \frac{2}{b} \ v_{j+1}(d\alpha) \] \ p_{j}(d\alpha, x) + \frac{2}{b} \left[a - \alpha_{j+1}(d\alpha) \right] p_{j+1}(d\alpha, x) + \\ + \left[1 - \frac{2}{b} \ v_{j+2}(d\alpha) \] \ p_{j+2}(d\alpha, x) \right] \ . \end{array}$$

Proof. The theorem can be proved by induction in exactly the same way as Theorem 3.

Corollary 14. Let k > 0. Then

$$U_{k-1}(x) p_{k+1}(d\alpha, x) = U_k(x) p_k(x) +$$

$$\begin{array}{l} k_{-1} \\ + \sum\limits_{j=0}^{k-1} U_{j}(x) \left\{ \left[1 - 2 \, \frac{\gamma_{j}(d\alpha)}{\gamma_{j+1}(d\alpha)} \, \right] \, p_{j}(d\alpha, \, x) \, - \, 2 \, \alpha_{j+1}(d\alpha) \, \, p_{j+1}(d\alpha, \, x) \, + \\ + \left[1 - 2 \, \frac{\gamma_{j+1}(d\alpha)}{\gamma_{j+2}(d\alpha)} \, \right] \, p_{j+2}(d\alpha, \, x) \, \right\} \, - \, \gamma_{0}(d\alpha) \ . \end{array}$$

Theorem 15. Let θ = θ_1 + i θ_2 with $\theta_2 \le 0$. Then $p_n(d\alpha,x)$ (x = cos $\theta)$ can be represented as

•

$$\sin \theta p_n(d\alpha, \cos \theta) = |\phi_{2n}(d\alpha, e^{i\theta})|$$
.

.
$$\sin[(n+1)\theta$$
 - arg $\phi_{2n}(d\alpha,e^{i\theta})]$

0

(8)
$$2i \sin \theta p_n(d\alpha, \cos \theta) =$$

$$= e^{\mathbf{i}(n+1)\theta} \phi_{2n}(\mathrm{d}\alpha,\mathrm{e}^{-\mathrm{i}\theta}) - e^{-\mathbf{i}(n+1)\theta} \phi_{2n}(\mathrm{d}\alpha,\mathrm{e}^{\mathrm{i}\theta})$$

for n = 0, 1, ... where

$$\begin{split} & \phi_{2n}(d\alpha,\,e^{\,i\,\theta}) = \sum_{j=0}^{n} \,a\,(d\alpha,\,\cos\theta)\,e^{\,ij\,\theta} \ , \\ & \delta_{1}(d\alpha,\,x) = \left[1 - 2\frac{Y_{j-1}(d\alpha)}{Y_{j}(d\alpha)}\,\right] p_{j}(d\alpha,\,x) - 2\alpha_{j-1}(d\alpha)\,p_{j-1}(d\alpha,\,x) \ + \\ \end{split}$$

$$+ \left[1 - \frac{\gamma_{j-2}(\mathrm{d}\alpha)}{\gamma_{j-1}(\mathrm{d}\alpha)}\right] \, \mathrm{p}_{j-2}(\mathrm{d}\alpha, \, x)$$

(j = 0, 1, ...). Consequently $\phi_{2n}(d\alpha)$ is a polynomial of degree at most 2n with $\phi_{2n}(d\alpha,0)$ = 2^{-n} $\gamma_n(d\alpha)$ and $\phi_{2n}(d\alpha,z^{-1})$ = $\phi_{2n}(d\alpha,z)$ if |z| = 1

Proof. Let us write (7) in the form

$$p_n(da,\cos\theta)$$
 = Re $\phi_{2n}(da,e^{i\theta})$ $U_n(x)$ -

-
$$\text{Im } \Phi_{2n}(da, e^{i\theta}) T_{n+1}(x) (1-x^2)^{-\frac{1}{2}}$$
.

Thus (7) means that

$$\mathsf{p}_{n}(\mathsf{d}\alpha,\mathsf{x}) = \mathsf{R}_{n,-1}(\mathsf{d}\alpha,\mathsf{x}) \equiv \mathsf{U}_{n}(\mathsf{x}) \, \, \mathsf{p}_{0}(\mathsf{d}\alpha,\mathsf{x}) + \mathsf{R}_{n,\,0}(\mathsf{d}\alpha,\mathsf{x})$$

which is equivalent to (2) applied with k=0. (8) obviously follows from (7).

Corollary 16. Let k be a nonnegative integer and let

$$\frac{\gamma_{1-2}(d\alpha)}{\gamma_{1-1}(d\alpha)} = \frac{1}{2}$$
, $\alpha_{1-1}(d\alpha) = 0$

for 1 > k . Then for each n > k

sin 0 p, (da, cos 0) =

=
$$|\phi_{2k}(d\alpha, e^{1\theta})| \sin[(n+1)\theta - \arg \phi_{2k}(d\alpha, e^{1\theta})]$$
,

that is

$$p_{n}(d\alpha, x) = U_{n-k}(x) p_{k}(d\alpha, x) - U_{n-k-1}(x) p_{k-1}(d\alpha, x)$$

Let us note that the conditions of corollary 16 are satisfied if

 $supp(d\alpha) = [-1, 1]$ and

$$\alpha(x) = \int_{-1}^{x} \frac{\sqrt{1-t^2}}{\pi(t)} dt \qquad (-1 \le x \le 1)$$

where π is a polynomial which is positive on [-1,1]. In this case

$$\frac{2}{\pi} |\phi_{2k}(d\pi, e^{i\theta})|^2 = \pi(\cos \theta)$$

(8 € IR) . (See Szegő, Chapter II.)

-19-

3.2. Modified Quadrature Processes

Lemma I. Let $\alpha \in M(a,b)$ with b>0 . Let m be a nonnegative integer.

If n > m-1 then $x^m p_{n-1}(d\sigma,x)$ may be written in the form

(1)
$$x^m p_{n-1}(d\alpha, x) = R^{d\alpha}_{m-1, n}(x) p_n(d\alpha, x) + \frac{d\alpha}{n-1, m} p_{n-1}(d\alpha, x) + \frac{d\alpha}{n-1, m}$$

where $R^{d\alpha}_{m-1,\,n}$ and $\pi^{n-2,\,m}_{n-2,\,m}$ are polynomials of degree m -1 and n -2 respectively. Further

(2)
$$\lim_{n \to \infty} \frac{d\alpha}{n-1}, m = \frac{2}{\pi b^2} \int_{a-b}^{a+b} t^m \sqrt{b^2 - (t-a)^2} dt$$

<u>Proof.</u> Let, for simplicity, $\alpha \in M(0,1)$. For m=0 the lemma is certainly true. Suppose that for m>1 we have

$$x^{m-1} \sum_{n-1} (\mathrm{d}\alpha, x) = R^{\mathrm{d}\alpha}_{m-2, \; n}(x) \sum_{n} (\mathrm{d}\alpha, x) + \sum_{k=n-m} \mathrm{d}\alpha, \atop k, m-1} \mathrm{d}_k(\mathrm{d}\alpha, x)$$

th existing

$$\lim_{n\to\infty} \frac{d\alpha, n}{k, m-1}$$
 (k = n-m, n-m+l, ..., n-l)

which depends only on M(0,1) and is independent of the particular a ϵ M(0,1). Using the recursion formula we see that

$$\times^{m} p_{n-1}(\mathrm{d}\alpha, x) = \left[x \, R_{m-2, \, n}^{\mathrm{d}\alpha}(x) + \frac{\mathrm{d}\alpha, \, n}{\mathrm{n}_{-1}, \, m_{-1}} \, \frac{\gamma_{n-1}(\mathrm{d}\alpha)}{\gamma_{n}(\mathrm{d}\alpha)} \, \right] p_{n}(\mathrm{d}\alpha, x) \, +$$

$$\left[\begin{smallmatrix} \mathrm{d} \alpha_{1}, n \\ \mathrm{d} -2, m-1 \end{smallmatrix} \right] \frac{ \mathsf{Y}_{n-2}(\mathrm{d} \alpha)}{ \mathsf{Y}_{n-1}(\mathrm{d} \alpha)} + \begin{smallmatrix} \mathrm{d} \alpha_{n}, n \\ \mathrm{d} -1, m-1 \end{smallmatrix} _{n-1}(\mathrm{d} \alpha) \right] p_{n-1}(\mathrm{d} \alpha, \mathsf{x}) +$$

$$\sum_{k=n-m+1}^{n-1} \{a_{\alpha}, n \xrightarrow{Y_{k-1}(d\alpha)} + \frac{d\alpha}{\lambda}, n \xrightarrow{q} \{d\alpha\} + \frac{d\alpha}{\lambda}, n \xrightarrow{Y_{k}(d\alpha)} \}_{k+1,m-1} \xrightarrow{Y_{k}(d\alpha)} \}_{k}(d\alpha, x) + \frac{\sum_{k=n-m+1}^{n} \{a_{k-1}, m-1\}_{k+1,m-1} \xrightarrow{Y_{k+1}(d\alpha)} X_{k+1}(d\alpha)}_{k}(d\alpha, x) + \frac{\sum_{k=n-m+1}^{n} \{a_{k-1}, m-1\}_{k+1,m-1} \xrightarrow{Y_{k+1}(d\alpha)} X_{k+1}(d\alpha)}_{k}(d\alpha)}_{k}(d\alpha, x) + \frac{\sum_{k=n-m+1}^{n} \{a_$$

$$+ \{ a_{n-m}^{d\alpha, n}, a_{n-m}(d\alpha) + a_{n-m+1}^{d\alpha, n}, \frac{v_{n-m}(d\alpha)}{v_{n-m+1}(d\alpha)} \} p_{n-m}(d\alpha, x) + a_{n-m}, \frac{v_{n-m}(d\alpha)}{v_{n-m+1}(d\alpha)} \} p_{n-m-1}(d\alpha, x) + a_{n-m}, \frac{v_{n-m}(d\alpha)}{v_{n-m}(d\alpha)} p_{n-m-1}(d\alpha, x) .$$

This formula proves (1) and shows that $\lim_{n\to\infty} \frac{d\alpha}{n-1,m}$ exists and depends only on M(0,1). To compute (2) we put in (1) α = Tschebyshev weight. We have in this case $\frac{\pi}{2} p_{n-1}^2(v, x_{kn}(v)) = 1 - x_{kn}^2(v)$. Thus by the Gauss-Jacobi mechanical quadrature formula and by (1) we have for

$$\begin{split} &\frac{2}{\pi} \int_{-1}^{1} t^{m} \underbrace{\int_{1-t^{2}}^{1} dt = \frac{2}{\pi} \sum_{k=1}^{n} \lambda_{k} (v) \left[1 - x_{kn}^{2}(v) \right] x_{kn}^{m}(v) =} \\ &= \sum_{k=1}^{n} \lambda_{kn}(v) p_{n-1}^{2}(v, x_{kn}(v)) x_{kn}^{m}(v) = \\ &= \sum_{n-1, m}^{v} \lambda_{kn}(v) p_{n-1}^{2}(v, x_{kn}(v)) + \sum_{k=1}^{n} \lambda_{kn}(v) p_{n-1}(v, x_{kn}(v)) \cdot \\ &= a_{n-1, m} \sum_{k=1}^{n} \lambda_{kn}(v) p_{n-1}(v, x_{kn}(v)) + \sum_{k=1}^{n} \lambda_{kn}(v) p_{n-1}(v, x_{kn}(v)) \cdot \\ &\cdot \prod_{n-2, m}^{v} (x_{kn}(v)) = a_{n-1, m}^{v} \end{split}$$

Lemma 2. Let $\alpha \in M(a,b)$ with b>0. Then $[a-b,\ a+b] \subset \Delta(d\alpha)$.

Proof. It follows from Lemma I that if it is continuous on IR and has

$$\lim_{n\to\infty} \sum_{k=1}^n {}^k_{kn} (\text{d}_{\sigma}) \; f(x_{kn}) \; p_{n-1}^2 (\text{d}_{\sigma}, x_{kn}) = \frac{2}{\pi b^2} \int\limits_{a-b}^{a+b} f(t) \, \sqrt{b^2 - (t-a)^2} \; \mathrm{d}t \; .$$

If $[a-b, a+b] \notin \Delta(da)$, then we can choose f so that $f(x_{kn}) = 0$ for

$$\int_{a-b}^{a+b} f(t) \sqrt{b^2 - (t-a)^2} dt < 0$$

which contradicts to the above limit relation.

Theorem 3. Let $\alpha \in M(a,b)$ with b>0. Let f be a complex valued, bounded function on $\Delta(d\alpha)$. If f is Riemann integrable on [a-b,a+b] then

(3)
$$\lim_{n\to\infty} \sum_{k=1}^{n} \lambda_{kn}(do) \ f(x_k) \ p_{n-1}^2(d^m, x_{kn}) = \frac{2}{\pi b^2} \int_{a-b}^{a+b} \frac{1}{(tt)} \sqrt{b^2 - (t-a)^2} \ dt$$

Proof. If f is a polynomial then the theorem follows immediately from Lemma 1. Otherwise we write

$$f = \mathsf{Re}(f) \mathbf{1}_{\Delta} + \mathsf{Re}(f) \mathbf{1}_{\Delta}(\mathsf{do}) \backslash_{\Delta} + i \, \mathsf{lm}(f) \mathbf{1}_{\Delta} + i \, \mathsf{lm}(f) \mathbf{1}_{\Delta}(\mathsf{do}) \backslash_{\Delta}$$

where Δ = [a-b, a+b]. Let, for simplicity, $\Lambda_n(g) = \sum_{k=1}^n \lambda_k \, g(x_k) \, p_{n-1}^2 (d\omega, x_k)$. Fix $\epsilon > 0$. We construct two polynomials π_1 and π_2 such that

$$\pi_{\mathbf{l}}(\mathbf{x}) \leq \operatorname{Re}(f)(\mathbf{x}) \operatorname{I}_{\Delta}(\mathbf{x}) \leq \pi_{2}(\mathbf{x})$$

x & A(da) and

$$\frac{2}{\pi b^2} \int_{\Delta(\mathrm{d}\,\sigma)} \left[\pi_2(t) - \pi_1(t)\right] \! \mathrm{d}t < \varepsilon \ . \label{eq:energy_energy}$$

We can do this because Re(f) $_\Delta$ is Riemann integrable on $\Delta(\text{do})$ (See e.g. Szegő, 1.5). Hence

$$\lim_{n\to\infty} \Lambda_n (\text{Re}(f) \, \mathbf{1}_\Delta) \, = \, \frac{2}{\pi b^2} \, \int_{a-b}^{a+b} \, \text{Re}(f)(t) \, \sqrt{b^2 \cdot (t-a)^2} \, \, dt \ .$$

We have, further,

$$|\Lambda_n(\text{Re}(f)|_{\Delta(\text{d}\sigma)\backslash\Delta})| \leq \sup_{t\in\Delta(\text{d}\sigma)}|f(t)||\Lambda_n(l_{\Delta(\text{d}\sigma)\backslash\Delta})|$$

and we can find a polynomial # such that

$$\Delta(\mathrm{d}\phi) \setminus \Delta^{(\mathrm{x})} \leq \pi(\mathrm{x}) \quad (\mathrm{x} \in \Delta(\mathrm{d}\phi))$$

and

$$\frac{2}{\pi b} \int_{a-b}^{a+b} \pi(t) dt < \varepsilon .$$

Thus

$$\lim_{n\to\infty} \Lambda_n(\operatorname{Re}(\mathfrak{f}) \, \frac{1}{\Delta(do)} \setminus \Delta) = 0 .$$

The limit of $\Lambda_n(\text{Im}(f))$ can be found in the same way.

Theorem 4. Let a ϵ R, b > 0 . If for every polynomial π

$$\lim_{n\to\infty}\sum_{k=1}^{n}\lambda_{k}(d\sigma)^{-\pi}(x_{kn})^{-2}\sum_{n-1}^{2}(d\sigma,x_{kn})^{-\pi}\sum_{n\to\infty}\frac{2}{n^{2}}\int_{a-b}^{a+b}\frac{a+b}{n^{2}}\int_{a-b}^{a+b}dt$$

then a € M(a, b).

Proof. We have by the recursion formula

$$\sum_{k=1}^{n} \lambda_{kn} (do) \times_{kn} p_{n-1}^{2} (do, x_{kn}) = o_{n-1} (\partial o)$$

900

The theorem follows immediately from the above identities.

3.3. The Support of da

Supp(da), that is the set of points of increase of a, is always closed. Hence supp(da) is compact iff it is bounded.

Lemma 1. The following three statements are equivalent. (i) supp(da) is compact. (ii) sup $|x_{kn}(da)| < \infty$. (iii) sup $c_k^{0,0}(da) < \infty$. $|x_k| |x_k| |$

Proof. Easy computation. Let us prove e.g. (iii) == (iii). We have the following important identity by the Gauss-Jacobi mechanical quadrature formula:

$$x_{kn}(da) = \lambda_{kn}(da) \int_{-\infty}^{\infty} x K_{n}^{2}(da, x, x_{kn})da(x) =$$

$$= \lambda_{kn}(da) \sum_{j=0}^{n-1} a_{j}(da) p_{j}^{2}(da, x_{kn}) +$$

$$+ \lambda_{kn}(da) \sum_{j=1}^{n-1} 2 \frac{\gamma_{j-1}(da)}{\gamma_{j}(da)} p_{j-1}(da, x_{kn}) p_{j}(da, x_{kn}) .$$

Thus

$$|x_{kn}(d\alpha)| \le \max_{0 \le j \le n-1} |a_j(d\alpha)| + 2 \max_{1 \le j \le n-1} \frac{y_{j-1}(d\alpha)}{y_j(d\alpha)}.$$

Lemma 2. If supp(da) is compact, $x \in supp(da)$ and c > 0 then there exists a number N = N(c, x) such that for every $n \ge N$ $p_n(da, t)$ has at least one zero in $\{x \cdot c, x + c\}$, in particular,

$$\Delta(da) = [\lim_{n \to \infty} x_{nn}(da), \lim_{n \to \infty} x_{ln}(da)]$$
.

Further, if α is constant on an interval Δ , then for every n $p_n(da,t)$ has no more than one zero in Δ .

Proof. See Szego and Freud.

Note, that if $a(x)+a(-x)=\mathrm{const}$, $a(x)=\mathrm{const}$ on (-1,1) then for every n $p_{2n+1}(d\sigma,0)=0$ but $p_{2n}(d\sigma,t)$ has no zero in (-1,1).

Lemma 3. Let supp(da) be compact. Then

$$\Delta(d\alpha) \subset [\inf \alpha_j - 2 \sup_{j \geq 0} \frac{v_j}{v_j + 1}, \sup_{j \geq 0} \alpha_j + 2 \sup_{j \geq 0} \frac{v_j}{v_j + 1}]$$

where $\alpha_j = \alpha_j(d\alpha)$ and $\gamma_j = \gamma_j(d\alpha)$.

Proof. Let A =
$$\inf_{j \geq 0} a_j$$
, B = $\sup_{j \geq 0} a_j$. Then by (1)
$$x_{kn} - \frac{A+B}{2} = \lambda_{kn} \sum_{j=0}^{n-1} \left[a_j - \frac{A+B}{2} \right] p_j^2(da, x_{kn}) + \\ + 2 \lambda_{kn} \sum_{j=1}^{n-1} \frac{y_{j-1}}{y_j} p_{j-1}(da, x_{kn}) p_j(da, x_{kn}) .$$

Hence

$$|x_{kn} - \frac{A+B}{2}| \le \frac{B-A}{2} + 2 \sup_{j \ge 0} \frac{v_j}{v_{j+1}}$$

Put here k = 1 and let $n \to \infty$. By Lemma 2 we obtain

$$\Delta(d\alpha) \subset (-\alpha, B+2 \sup_{j \ge 0} \frac{\gamma_j}{\gamma_{j+1}}].$$

If we put k = n in (2) and let n→∞ then we get

$$\Delta(\text{da}) \subset [\text{A-2 sup} \quad \frac{\gamma_1}{1 \geq 0} \quad , \quad \infty) \quad .$$

 $\varepsilon>0$ a takes infinitely many values in $(x-\varepsilon,\ x+\varepsilon)$ then there exists Lemma 4. Let supp(da) be compact and let x be fixed. If for every a sequence of natural integers $\{k_i\}_{n=1}^\infty$ such that $1 \le k_i \le n$ and

$$\lim_{n\to\infty} x_n (da) = x, \lim_{n\to\infty} \lambda_n (da) = 0.$$

Proof. Suppose, without loss of generality, that for every $\epsilon > 0$ a takes $J_n = \{k: x_{kn}(da) < x \le x_{k-1, n}(da)\}$ with $x_{0n} = +\infty$. Let $k_n = J_n + 1$. We shall show that $\{k_n\}_{n=N}^\infty$ satisfies the requirements of the lemma. Beinfinitely many values in $(x-\epsilon,x)$. Let for every n , be defined by cause of Lemma 2 $k_n < n$ for n large. If we can show that

$$\lim_{n\to\infty} x_{n'} = \lim_{n\to\infty} x_{n'} = x$$

and by the Markov-Stieltjes inequalities

$$x_{k_1}$$
, $n \le \int_{x_{k_1}}^{x_{k_1}} da(t) \xrightarrow{n \to \infty} a(x - 0) - a(x - 0) = 0$.

 $(x-\varepsilon,x)$ for $t=1,2,\ldots$ Because α takes infinitely many values in Suppose now that (4) does not hold. Then there exists an $\epsilon > 0$ and a sequence $\{n_{ij}\}$ such that $p_{ij}(d\sigma,t)$ has no more than two zeros in

Hence p (0,t) has at least three zeros in (x-c,x) . This contradiction $n_{\bf l}$ by Lemma 2 p (do,t) must have zeros near each x_k for every ℓ large. (x- ϵ , x) we can find three points $x_1, x_2, x_3 \in (x \cdot \epsilon, x)$ fl supp(do) and

that for every $\, \epsilon > 0 \,$ $\, \alpha \,$ takes infinitely many values in $\, (x \! - \! \epsilon , \, x \! + \! \epsilon) \,$. Then Lemma 5. Let supp(da) be compact and let x & R be fixed. Suppose

$$|\mathbf{x} - \mathbf{c}| \le \lim_{j \to \infty} \sup_{\sigma} |\sigma_j(d\sigma) - \mathbf{c}| + 2 \lim_{j \to \infty} \sup_{\gamma_j(d\sigma)} \frac{\gamma_{j-1}(d\sigma)}{\gamma_j(d\sigma)}$$

In particular, if a = $\lim_{j\to\infty} a_j(d\alpha)$ exists, then

$$x \in \{a - 2 \lim \sup_{j \to \infty} \frac{y_{j-1}}{y_j}, a + 2 \lim \sup_{j \to \infty} \frac{y_{j-1}}{y_j} \}$$

Proof. Let us take
$$\{k_n\}$$
 from Lemma 4. Let $M \in \mathbb{N}$. Then by (1)
$$|\mathbf{x}_n| = c |\mathbf{x}_n| \sum_{j=0}^{M-1} |\sigma_j - c| p_j^2 (d\sigma_j, \mathbf{x}_k, n) + c |\mathbf{x}_n| = c |\mathbf{x}_k| \sum_{j=0}^{M-1} |\sigma_j - c| p_j^2 (d\sigma_j, \mathbf{x}_k, n) + c |\mathbf{x}_k| = c |\mathbf{x}_$$

$$+ \sup_{j \geq M} |a_{j} - c| + 2 \lambda_{k_{n}} \sum_{j=1}^{M-1} \frac{\gamma_{j-1}}{\gamma_{j}} |p_{j-1}(d\omega, x_{k_{n}}, n)| p_{j}(d\omega, x_{k_{n}}, n)| + 1$$

First let n → ∞, then M → ∞.

Lemma 6. Let $\alpha \in M(a,b)$ with b>0 . Then $[a-b,\ a+b] \subset \operatorname{supp}(d\alpha)$.

Proof. If [a-b, a+b] $\not\in$ supp(do) then [a-b, a+b] \cap [R \ [a-b, a+b] \cap supp(do)] contains an interval Δ_1 . Let $\Delta \subset \Delta_1^0$. Then by Theorem 3.2.3

(5)
$$\sum_{\mathbf{x}_{n} \in \Delta} \lambda_{\mathbf{k} n} p_{n-1}^{2} (do, \mathbf{x}_{n}) \xrightarrow{\mathbf{h} = \infty} \frac{2}{\pi b^{2}} \int \sqrt{b^{2} - (t-a)^{2}} dt > 0$$
.

On the other hand by Lemma 2 _ Δ contains no more than one _ x_n for every n since Δ | supp(do) = Φ . Further Δ \subset (a-b, a+b) and by Theorem 3.1.9

$$\lim_{n\to\infty}\lambda_n(d\sigma,x)\ p_{n-1}^2(d\sigma,x)=0$$

uniformly for x (Δ . Thus the left side of (5) converges to 0 when n $\to \infty$. This contradiction shows that $\{a-b,\ a+b\} \subset \text{supp}(d\omega)$.

Theorem 7. Let $\sup(d\sigma)$ be compact and let $\lim_{j\to\infty}\sigma_j(d\sigma)=a$ exist. Then

where A is closed and belongs to

(6)
$$\left\{a-2\lim\sup_{j\to\infty}\frac{\gamma_{j-1}(de)}{\gamma_j(ds)}, a+2\lim\sup_{j\to\infty}\frac{\gamma_{j-1}(ds)}{\gamma_j(ds)}\right\}$$

B is denumerable, isolated, the only two possible limit points of B are the two endpoints of (6), if $x \in B$ then $a_{G} + a_{S}$ is constant near x and a has an isolated jump at x, furthermore,

$$B \subset \{\inf \alpha_j - 2 \sup_{j \ge 1} \frac{\gamma_{j-1}}{\gamma_j}, \sup_{j \ge 0} \alpha_j + 2 \sup_{j \ge 1} \frac{\gamma_{j-1}}{\gamma_j} \}.$$

If $\alpha \in M(a,b)$ then A is the interval (6).

<u>Proof.</u> The theorem follows immediately from Lemmas 1-6. The only thing which we have to show is that if $\alpha \in M(a,0)$ then $a \in \operatorname{supp}(da)$. If

a ϕ supp(da) then B = supp(da) and hence B is closed. But B can be closed only if B is finite and then a has only finitely many points of increase, that is a is not a weight.

Theorem 8. Let $\alpha \in M(a,b)$. If $x \notin \text{supp}(d\alpha)$ then there exist $\epsilon > 0$ and $N \ge 0$ such that for every $n \ge N$ p $(d\alpha,t)$ has no zeros in $[x \cdot \epsilon, x + \epsilon]$. Proof. Let, for simplicity, a = 0. By Theorem 7 $x \notin \text{supp}(d\alpha)$ implies $x \notin [-b,b]$ (or $x \ne 0$ if b = 0). Suppose, without loss of generality, that $b < x < \infty$. If $x \notin \Delta(d\alpha)$ then the theorem says nothing since $x_{kn}(d\alpha) \in \Delta(d\alpha)$ for every n and $1 \le k \le n$. Now let $x \in \Delta(d\alpha) \cap (b,\infty)$. By Theorem 7 $(\frac{b+x}{2}, \infty) \cap \text{supp}(d\alpha)$ is finite and it is not empty since $x \in \Delta(d\alpha)$. Let $t_1 < t_2 < \ldots < t_m$ denote those points of supp(a) which belong to (x,∞) . Let $\epsilon > 0$ be such that

$$x+\epsilon < t_1-\epsilon < t_1+\epsilon < t_2-\epsilon < \dots < t_{m-1}+\epsilon < t_m-\epsilon < t_m+\epsilon$$
 and $[x-\epsilon,x]$ Π supp(da) = Φ . By Lemma 2 we can find $N=N(\epsilon,\{t_1\})$ such that for every $n\geq N(\epsilon)$ $p_n(da,t)$ has zeros in each $[t_1-\epsilon,t_1+\epsilon]$ (i = i, 2, ..., m) . Thus for $n\geq N(\epsilon)$ $p_n(da,t)$ has not less than m zeros in $[t_1-\epsilon,x]$. On the other hand a takes exactly m+1 values in $(x-\epsilon,x)$ if we do not count the values of $a(t_1)$. Further, $[t_m,x)$ does not contain zeros of $p_n(da,t)$ since $\Delta(da)$ Π $(t_m,x)=\varphi$. Thus by Lemma-2 for every $n\geq 0$ p_(da,t) has no more than m zeros in $(x-\epsilon,x)$. Hence for $n>N$ both $(x-\epsilon,x)$ and $[t_1-\epsilon,x)$ contain exactly m zeros of $p_n(da,t)$, that is $[x-\epsilon,x+\epsilon]$ contains no zeros of $p_n(da,t)$ if $n\geq N$.

Let us note that without the assumption $a \in M(a,b)$ Theorem 8 does not necessarily hold. (See Remark 4.1.6.)

4. Limit Relations

4.1. Pointwise Limits

We begin with a simple result which we shall not apply in the following but which is worth recording.

Theorem 1. For every weight a and x . R

1)
$$\sum_{k=0}^{\infty} \lambda_{k+1}^{2} (d\alpha, x) \ p_{k}^{2} (d\alpha, x) \le \left[1 + \alpha(\infty) - \alpha(-\infty)\right]^{2} \ ,$$

in particular, for every x e R

$$\lim_{n\to\infty} \lambda_{n+1}(\mathrm{d}\alpha,x) \, p_n(\mathrm{d}\alpha,x) = 0 \ .$$

Proof. Let x be fixed and let β = $a+\delta_x$ where δ_x is the unit mass concentrated at x. Let us expand $p_n(a_a,t)$ in a Fourier series in $p_k(d\beta,t)$ We have

$$p_n(d\alpha,t) = \frac{\gamma_n(d\beta)}{\gamma_n(d\alpha)} \ p_n(d\beta,t) + \frac{K}{n+1}(d\beta,t,x) \ p_n(d\alpha,x) \ . \label{eq:pn}$$

Putting t = x we obtain

$$p_n(\mathrm{d}\alpha,\mathbf{x}) = \frac{\gamma_n(\mathrm{d}\beta)}{\gamma_n(\mathrm{d}\alpha)} \ p_n(\mathrm{d}\beta,\mathbf{x}) + \frac{1}{\lambda_{n+1}}(\mathrm{d}\alpha,\mathbf{x}) \ p_n(\mathrm{d}\alpha,\mathbf{x}) \ .$$

By an easy computation $\lambda_{n+1}(d\beta,x)=\lambda_{n+1}(d\alpha,x)+1, \ \gamma_n(d\beta)\leq \gamma_n(d\alpha)$ and $\lambda_{n+1}(d\alpha,x)\leq \alpha(\infty)-\alpha(-\infty)$. Thus for every $n=0,1,\ldots$

$$\lambda_{n+1}^2(d\alpha,x)\ p_n^2(d\alpha,x) \le p_n^2(d\beta,x)\left[1+\alpha(\infty)-\alpha(-\infty)\right]^2$$

and

-31-

 $\sum_{k=0}^{n-1}\lambda_{k+1}^2(\mathrm{d}\sigma_{s},x)\;p_k^2(\mathrm{d}\sigma_{s},x)\leq\lambda_n^{-1}(\mathrm{d}\beta,x)\left[1+o(\infty)-o(-\infty)\right]^2\leq$

 $\leq \left[1+\alpha(\pi)-\alpha(-\infty)\right]^2.$

Letting n - x we obtain (1).

Lemma 2. Let a e M(a, b) with b > 0. Then for every x e [a-b, a+b]

$$\lim_{n\to\infty} \sum_{k=1}^{n} \lambda_{kn}(d\sigma) \frac{p_{n-1}^2(d\sigma, x_{kn})}{(x-x_{kn})^2} = +\infty.$$

Proof. Let, for simplicity, a < x < a+b. Let 0 < x < a+b. Let

0 < g < b. Then

$$\sum_{k=1}^{n} {}^{\lambda_{k}}_{kn} \frac{p_{n-1}^{2}(d\sigma_{n},x_{kn})}{(x-x_{kn})^{2}} \geq \epsilon^{-2} \sum_{x-\epsilon \leq x_{kn}-x} {}^{\lambda_{kn}} p_{n-1}^{2}(d\sigma_{n},x_{kn})$$

and by Theorem 3.2.3

$$\lim \inf \sum_{n \to \infty}^{n} \frac{\sum_{k=1}^{2} (d\sigma_s, x_{kn})}{(x - x_k)^2} \geq \frac{2}{\epsilon^2 \pi b^2} \int_{x - \epsilon}^{x} \sqrt{b^2 - (t - a)^2} \ dt \ .$$

If x < a + b the right side is exactly of order ϵ^{-1} , if x = a + b it is exactly of order $\epsilon^{-\frac{1}{2}}$. Letting $\epsilon \to 0$ we obtain (2).

Theorem 3. Let $a \in M(a,b)$ with b>0. Then for $x \in [a-b,a+b]$

$$\lim_{n\to\infty} \lambda_n(\mathrm{d}\alpha,\mathbf{x}) \ p_n^2(\mathrm{d}\alpha,\mathbf{x}) = 0$$

and the convergence is uniform for $x \in \Delta \subset (a-b, a+b)$.

Proof. To get (3) use Lemma 2 and the formula

$$\lambda_{n}(\mathrm{d}\sigma,x)\;p_{n}^{2}(\mathrm{d}\sigma,x)=\frac{\gamma_{n}^{2}(\mathrm{d}\sigma)}{\gamma_{n-1}^{2}(\mathrm{d}\sigma)}\sum_{k=1}^{n}\frac{\lambda_{kn}(\mathrm{d}\sigma)\;p_{n-1}^{2}(\mathrm{d}\sigma,x_{kn})}{\left(x\!-\!x_{kn}\right)^{2}}\,]^{-1}$$

which follows from $\lambda_n^{-1}(d\mathbf{a},\mathbf{x})=\sum\limits_{k=1}^n\frac{t_k^2(d\mathbf{a},\mathbf{x})}{\lambda_k n(d\mathbf{a})}$. The uniform convergence inside (a-b, a+b) follows from Theorem 3.1.9 and from

$$p_{n}^{2}(d\alpha,x) \leq C[p_{n-1}^{2}(d\alpha,x) + p_{n-2}^{2}(d\alpha,x)]$$

for $x\in \Delta(d\alpha)$ which can easily be proved using the recurrence formula.

There are two possible ways to define the Christoffel functions for

complex values of the argument. We can either put
$$\sum_{k=0}^{n-1} \sum_{k=0}^{n-1} p_k^2(d\alpha,z) \}^{-1}$$

20

$$\lambda_n(\mathrm{d}\alpha,z) = [\sum_{k=0}^{n-1} \left| p_k(\mathrm{d}\alpha,z) \right|^2]^{-1} \ . \label{eq:lambda}$$

It is easy to see that the second definition coincides with

$$\lambda_n(\mathrm{d}\alpha,z) = \min \int_{-\infty}^{\infty} \left| (1 + (z - t) \pi_{n-2}(t)) \right|^2 \, \mathrm{d}\alpha(t) \ .$$

To avoid confusion we shall write $\lambda_n^*(d\alpha,z)$ when we mean the first definition:

$$\lambda_{n}^{*}(d\alpha,z) = \left[\sum_{k=0}^{n-1} p_{k}^{2}(d\alpha,z)\right]^{-1}.$$

Let for z, u e C

$$\begin{split} K_{n}(da,z,u) &= \sum_{k=0}^{n-1} p_{k}(da,z) \; \overline{p_{k}(da,u)} \; \; , \\ k_{n}(da,z,u) &= \sum_{k=0}^{n-1} p_{k}(da,z) \; p_{k}(da,u) \; \; . \end{split}$$

Properties 4. Λ_n is real valued, monotonic in n and positive, Λ_n^* is

menomorphic with 2n-2 poles.

$$\lambda_{n}^{-1}(z) = K_{n}(z,z), K_{n}(z,u) = K_{n}(u,z), \quad \lambda_{n}^{*}(t)^{-1} = k_{n}(z,z), \quad k_{n}(z,u) = k_{n}(u,z),$$

$$\begin{pmatrix} K\left(d\alpha,z,u\right) = \sum\limits_{k=1}^{n} \frac{\ell_{kn}\left(d\alpha,z\right) T_{kn}\left(d\alpha,u\right)}{\lambda_{kn}\left(d\alpha\right)} \; , \\ k_{n}\left(d\alpha,z,u\right) = \sum\limits_{k=1}^{n} \frac{\ell_{kn}\left(d\alpha,z\right) \ell_{kn}\left(d\alpha,u\right)}{\lambda_{kn}\left(d\alpha\right)} \; ,$$

further

$$(4) \quad \lambda_{n}^{-1}(d\sigma,z) = \left| p_{n}(d\sigma,z) \right|^{2} \frac{\gamma_{n-1}^{2}(d\sigma)}{\gamma_{n}^{2}(d\sigma)} \quad \sum_{k=1}^{n} \lambda_{kn}^{2}(d\sigma) \frac{p_{n-1}^{2}(d\sigma,x_{kn})}{\left|z-x_{kn}\right|^{2}}$$

.

(5)
$$\lambda_n^* (d\alpha, z)^{-1} = p_n^2 (d\alpha, z) \frac{\gamma_{n-1}^2 (d\alpha)}{\gamma_n^2 (d\alpha)} \sum_{k=1}^n \lambda_k n(d\alpha) \frac{p_{n-1}^2 (d\alpha, x_{kn})}{(z - x_{kn})^2}$$

We obtain immediately from (4) and (5) the following

Theorem 5. Let $\sup (d\alpha)$ be compact and let $z \notin \Delta(d\alpha)$. Then

$$\lim_{n\to\infty}\inf_{n\to\infty} \lambda_n(\mathrm{d}\alpha,z) \left\lceil p_n^2(\mathrm{d}\alpha,z)\right\rceil>0$$

-35-

and

$$\lim_{n\to\infty}\inf\left\{|\lambda_n^*(d\alpha,z)|\,p_n^2(d\alpha,z)\right\}>0\ .$$

Remark 6. It is not true that Theorem 5 holds for every z \triangleleft supp(da). For, if a(x) + a(-x) = const, supp(da) is compact and a(t) = const for t \triangleleft [- ϵ , ϵ] (ϵ) 0) then $p_{2k+1}(da,0) = 0$ although $0 \triangleleft$ supp(da).

Theorem 7. Let a & M(a,0). Then

(i) for every z d supp(da)

$$\lim_{n\to\infty} \lambda_n^*(d\sigma,z) \ p_n^2(d\sigma,z) = \infty, \ \lim_{n\to\infty} \lambda_n^*(d\sigma,z) \ p_n^2(d\sigma,z) = \infty \ .$$

(11) for every x e supp(do)\a

$$\lim_{n\to\infty}\lambda_n(\mathrm{d}\alpha,x)\;p_n^2(\mathrm{d}\alpha,x)=0\;\;.$$

(III) there exist two weights \hat{a} and \hat{a} in M(a, 0) such that

$$\lim_{n\to\infty}\lambda_n(d\hat{a},\,a)\,\,p_n^2(d\hat{a},\,a)=0$$

and

lim inf
$$\lambda_n(d^2, a) p_n^2(d^2, a) = 0$$

lim sup
$$\lambda_n(do, a) p_n^2(do, a) = \infty$$
.

<u>Proof.</u> (i) If z is complex use (4) and (5). Let now z = x be real and $x \neq \text{supp}(da)$. Since supp(da) is compact and a is constant in a neighborhood of x, we have $\lim_{n \to \infty} \lambda_n(da, x) = 0$. Suppose that there exists a sequence $n_1 < n_2 < \dots$ such that

$$\lim_{k\to\infty} \frac{1}{n_k} \frac{(d\alpha,x)}{n_k} \frac{p^2}{(d\alpha,x)} < \infty \ .$$

We have by the recurrence formula

$$\begin{array}{l} x \, \lambda_n^{-1}(x) = \sum\limits_{k=0}^{n-1} \alpha_k \, \, p_k^2(x) + 2 \sum\limits_{k=0}^{n-2} \frac{\nu_k}{\nu_{k+1}} \, \, p_k(x) \, \, p_{k+1}(x) + \\ \\ + \frac{\nu_{n-1}}{\nu_n} \, p_{n-1}(x) \, \, p_n(x) \end{array}$$

with $\lambda_n(x) = \lambda_n(d\alpha, x)$, $\alpha_k = \alpha_k(d\alpha)$ etc. Let M be a natural integer. Then

$$\begin{aligned} |x-a| &\leq \lambda_n(x) \sum_{k=0}^{M-1} |a_k-a| \ p_k^2(x) + \sup_{k \geq M} |a_k-a| + \\ &+ 2\lambda_n(x) \sum_{k=0}^{M-1} \frac{\gamma_k}{\gamma_{k+1}} |p_k(x) \ p_{k+1}(x)| + 2 \sup_{k \geq M} \frac{\gamma_k}{\gamma_{k+1}} + \end{aligned}$$

$$\frac{n}{n} = \frac{1}{k^{2} - 0} \cdot \frac{1}{k^{2} + 1} \cdot$$

Put $n=n_f$, first let $f \to \infty$ and then $M \to \infty$. We get $|x_{-\delta}| \le 0$ that is x = a. By Theorem 3.37 $\times \epsilon$ supplies. This is a contradiction.

(ii) If x ε supp(do)\a then by Theorem 3.3.7 x is a jump of α and consequently (ii) is true.

(iii) Let $\hat{\sigma}$ be defined by $\sigma_1(d\hat{\sigma})$ = a and $\gamma_1(d\hat{\sigma})/\gamma_{1+1}(d\hat{\sigma})$ = (i+1) $^{-\frac{1}{4}}$ for 1 = 0,1,.... Then $\hat{\sigma}(a+x)+\hat{\sigma}(a-x)$ = const and thus $\rho_{2k+1}(d\hat{\sigma},a)$ = 0 for k = 0,1,.... Hence

$$\lim_{k\to\infty} \lambda_{2k+1}(d\hat{a}, a) \ p_{2k+1}^2(d\hat{a}, a) = 0 \ .$$

Let us consider now $~p_{2k}(\mathrm{d}\hat{a},a)$. By the recurrence formula

$$\frac{\gamma_{2k-1}}{\gamma_{2k}} \, p_{2k}(a) + \frac{\gamma_{2k-2}}{\gamma_{2k-1}} \, p_{2k-2}(a) = 0 \ .$$

Hence

$$p_{2k}^2(a) = (\frac{2k}{2k-1})^{\frac{1}{2}} p_{2k-2}^2(a)$$
.

By repeating application of (7) we obtain that for every $j=1,2,\ldots,k$

$$p_{2k}^2(a) = [\frac{2k}{2k-1} \, \frac{2k-2}{2k-3} \, \cdots \, \frac{2k-2(j-1)}{2k-2(j-1)}]^{\frac{1}{j}} \, \frac{2}{2k-2j}(a)$$
 Thus for $j=0,1,\ldots,k-1$

p2 (a) < 12k p2 (a) ,

$$p_{2k}^2(a) \le \sqrt{\frac{2}{k}} \sum_{j=0}^{k-1} p_{2j}^2(a) = \sqrt{\frac{2}{k}} \ \lambda_{2k}^{-1}(a)$$

which together with (6) proves the first part of (iii). Let $\hat{\alpha}$ be defined by $\alpha_1(d\hat{\alpha})\equiv a$ and $\gamma_1(d\hat{\alpha})/\gamma_{1+1}(d\hat{\alpha})=\exp(-(i+1)^2)$ for $i=0,1,\ldots$. Repeating the above argument we see that (6) holds if we replace $\hat{\alpha}$ by $\hat{\hat{\alpha}}$. Further, similarity to (7),

$$p_{2k}^2(d\hat{\hat{a}}, a) = e^{8k-2} p_{2k-2}^2(d\hat{\hat{a}}, a)$$
.

Thus

$$p_{2k}^2(d\hat{\hat{\alpha}},a) \geq \frac{8k-2}{k} \lambda_{2k}^{-1}(d\hat{\hat{\alpha}},a) \ .$$

et now k + w.

Let us remark that both a and a are continuous at a.

Definition 8. For $z \in \mathbb{C} \setminus [-1,1]$ we define $\rho(z)$ by

$$p(z) = z + \sqrt{z^2 - 1}$$

where we take that branch of $\sqrt{z^2}$ -1 for which $\,|\,\rho(z)\,|>1\,$ whenever $z\in \mathbb{C}\setminus\{-1,1\}$. We have

$$\lim_{z\to\infty} \rho(z) = \infty, \quad \lim_{z\to\infty} |z/\rho(z)| = \frac{1}{2}.$$

Lemma 9. Let |z|>1. If

$$\lim_{k\to\infty} a_k z^{-k} = a$$

then

$$\lim_{n\to\infty} \frac{z-1}{z^{n+1}} \sum_{k=0}^{n} a_k = a.$$

Proof. The matrix μ = $[\mu_{kn}]$ where μ_{kn} = $(z\text{-}1)z^{k\text{-}n\text{-}1}$ satisfies the conditions of Toeplitz-Silverman's theorem.

Lemma 10. Let a ϵ R, b ϵ R⁺ and let v₊ denote the Tschebyshev weight corresponding to τ = [a-b, a+b]. Then for every z ϵ C\[a-b, a+b]

$$\lim_{n\rightarrow\infty} \lambda_n(\mathbf{v}_{\tau},t) \left\| p_n^2(\mathbf{v}_{\tau},t) \right\| = \left\| \rho(\frac{z-a}{b}) \right\|^2 - 1$$

Short

$$\lim_{n\to\infty} \lambda_n^*(v_\tau,z) \, \, p_n^2(v_\tau,z) \, = \, \rho(\frac{z-a}{b})^2 \, - 1 \, .$$

Proof. Use Lemma 9 and the formula

$$p_{n}(v_{\tau},z) = \frac{1}{\sqrt{2\pi}} \left[\rho(\frac{z-a}{b})^{n} + \rho(\frac{z-a}{b})^{-n} \right]$$

for n = 1, 2,

Theorem 11. Let $\alpha \in M(a,b)$ with b>0. Then

(1) for every $z \in \text{supp}(d\alpha)$

$$\lim_{n\to\infty}\lambda_n(\mathrm{d}\sigma,z)\,\left|\,p_n^2(\mathrm{d}\sigma,z)\,\right|\,=\,\left|\,\rho(\frac{z-a}{b})\,\right|^2\,-\,1$$

and

$$\lim_{n\to\infty} \lambda_n^*({\rm d}\sigma,z) \ p_n^2({\rm d}\sigma,z) = \rho(\frac{z-a}{b})^2 - 1 \ ,$$

(11) for every $x \in \text{supp}(da)$

$$\lim_{n\to\infty} \lambda_n(\mathrm{d}\alpha,\mathbf{x}) \,\, p_n^2(\mathrm{d}\alpha,\mathbf{x}) = 0 \,\,,$$

(III) the convergence in (II) is uniform inside (a-b, a+b) .

Proof. (1) If $z \notin \Delta(d\alpha)$ then both $|z_{-t}|^{-2}$ and $(z_{-t})^{-2}$ are continuous functions of $t \in \Delta(d\alpha)$. Thus by (4), (5) and Theorem 3.2.3

$$\lim_{n\to\infty}\lambda_{n}(d\sigma,z)\,\left|p_{n}^{2}(d\sigma,z)\right|=\left|\frac{1}{2\pi}\int_{a-b}^{a+b}\frac{\int_{b^{2}-(t-a)^{2}}^{2}}{\left|z-t\right|^{2}}\,dt\right|^{-1}$$

and

(9)
$$\lim_{n\to\infty} \lambda_n^*(d\sigma,z) p_n^2(d\sigma,z) = \left[\frac{1}{2\pi} \int_{a-b}^{a+b} \frac{\sqrt{b^2-(t-a)^2}}{(z-t)^2} dt\right]^{-1}$$
.

-40

If $z \in \Delta(d\sigma)$ but $z \notin \operatorname{supp}(d\sigma)$ then we take ϵ from Theorem 3.3.8 and

$$f_1(t) = \begin{cases} |z_{-t}|^{-2} & \text{for } |z_{-t}| > \epsilon \\ 0 & \text{for } |z_{-t}| \le \epsilon \end{cases},$$

$$f_2(t) = \begin{cases} (z_{-t})^{-2} & \text{for } |z_{-t}| > \epsilon \\ 0 & \text{for } |z_{-t}| \le \epsilon \end{cases}$$

Both f_1 and f_2 satisfy the conditions of Theorem 3.2.3. By Theorem 3.3.8 neither (4) nor (5) will change if we replace $|z_{-1}|^{-2}$ and $(z_{-1})^2$ by $f_1(t)$ and $f_2(t)$ respectively for $n \ge N$. Thus (8) and (9) hold for every $z \notin \text{supp}(da)$. To calculate the integrals on the right sides of (8) and (9) let us remark that it is the same for every $a \in M(a,b)$, in particular, for the Tschebyshev weight corresponding to $[a_-b_+, a_+b]$. Now we use Lemma 10.

(ii) If $x \in [a-b, a+b]$ then use Theorem 3. If $x \in \text{supp}(d\alpha) \setminus [a-b, a+b]$ then by Theorem 3.3.7 α has a jump at x which implies (ii) again.

(iii) See Theorem 3.

Theorem 12. Let $\operatorname{supp}(da)$ be compact and let α $\in \mathbb{R}^+$ be \mathbb{R}^+ . If there exists a sequence $\{z_k\}_{k=1}^\infty$ such that $z_k \in \mathbb{C}^+$, $\lim_{k \to \infty} z_k = \alpha$ and $\lim_{n \to 1} \frac{\operatorname{p}_{n-1}(d\alpha, z_k)}{\operatorname{p}_n(d\alpha, z_k)} = \operatorname{p}(\frac{z-a}{b})^{-1}$

for k = 1, 2, ... then a & M(a, b) .

Proof. Suppose without loss of generality that $z_k \in \Delta(\mathrm{d} a)$ for every k .

e have

$$(10) \quad \frac{z_{p_{n-1}}(\alpha,z)}{p_{n}(d\alpha,z)} = \frac{\gamma_{n-1}(d\alpha)}{\gamma_{n}(d\alpha)} \left[1 + \sum_{k=1}^{n} \lambda_{kn}(d\alpha) \times_{kn} \frac{p_{n-1}^{2}(d\alpha,\kappa_{kn})}{z - \kappa_{kn}}\right]$$

which can easily be checked. Let $d(z)=dist(z,\Delta(d\alpha))$. Then we get with $C=C(supp(d\alpha))$

$$\left|\frac{z_k}{p_n - 1} \frac{p_n(d\alpha, z_k)}{(d\alpha, z_k)}\right| \leq \frac{\gamma_{n-1}(d\alpha)}{\gamma_n(d\alpha)} \left[1 + \operatorname{Cd}(z_k)^{-1}\right] \ .$$

Letting first n → ∞ and then k → ∞ we obtain

$$\frac{b}{2} \le \lim\inf_{n \to \infty} \frac{\gamma_{n-1}(d\alpha)}{\gamma_n(d\alpha)}$$

On the other hand we have by the recurrence formula and Lemma 3.3.1

$$\frac{\gamma_{n-1}(d\omega)}{\gamma_{n}(d\omega)} \leq \left[\left| z_{k} \right| + C_{1} \right] \left| \frac{p_{n-1}(d\alpha,\,z_{k})}{p_{n}(d\alpha,\,z_{k})} \right| + C_{2} \left| \frac{p_{n-2}(d\alpha,\,z_{k})}{p_{n}(d\alpha,\,z_{k})} \right|$$

where $\,C_1\,$ and $\,C_2\,$ depend on $\,{\rm supp}({\rm d}\alpha)$. First let $\,n\to\infty\,\,$ and then $\,k\to\infty\,\,,$

We get

$$\limsup_{n\to\infty} \frac{\gamma_{n-1}(\mathrm{d}\alpha)}{\gamma_n(\mathrm{d}\alpha)} \le \frac{\mathrm{b}}{2} \ .$$

Using again the recurrence formula we obtain

$$\alpha_{n}(\mathrm{d}\alpha)=z_{1}-\frac{\gamma_{n}(\mathrm{d}\alpha)}{\gamma_{n+1}(\mathrm{d}\alpha)}\frac{p_{n+1}(\mathrm{d}\alpha,z_{1})}{p_{n}(\mathrm{d}\alpha,z_{1})}-\frac{\gamma_{n-1}(\mathrm{d}\alpha)}{\gamma_{n}(\mathrm{d}\alpha)}\frac{p_{n-1}(\mathrm{d}\alpha,z_{1})}{p_{n}(\mathrm{d}\alpha,z_{1})}$$

Thus $\alpha_n(d\alpha)$ is convergent and letting $n\to\infty$ we see that

$$\lim_{n\to\infty}\alpha_n(\mathrm{d}\alpha)=z_1-\frac{b}{2}\,\,\rho(\frac{z_1-a}{b})-\frac{b}{2}\,\,\rho(\frac{z_1-a}{b})^{-1}=a$$

Theorem 13. Let $\alpha \in M(a,b)$ and let $z \in \mathbb{C} \setminus \operatorname{supp}(d\alpha)$. Then

$$\lim_{n\to\infty} \frac{p_{n-1}(\mathrm{d}\alpha,z)}{p_n(\mathrm{d}\alpha,z)} = \begin{cases} 0 & \text{for } b=0\\ p(\frac{z-a}{b})^{-1} & \text{for } b>0 \end{cases}.$$

Proof. If b=0 then the theorem follows immediately from (10) and Theorem 3. 3. 8. If b>0 then by (10) and Theorems 3. 2. 3 and 3. 3. 8

$$\lim_{\substack{p \text{ } (\mathrm{d}\alpha,\,z) \\ p_{\mathrm{l}}(\mathrm{d}\alpha,\,z)}}$$

exists for $z \in \text{supp}(da)$ and equals to

It can directly be calculated that the latter expression equals $zp(\frac{z-a}{b})^{-1}$ but it is easier if we remark that $zp_{n-1}(v_{\tau},z)/p_{n}(v_{\tau},z)$ converges to the same limit when v_{τ} is the Tschebyshev weight corresponding to τ =[a-b, a+b].

Theorem 14. Let $\alpha \in M(a,b)$ with b>0 and let $z \in \mathbb{C} \setminus \operatorname{supp}(d\alpha)$. Then

$$\lim_{n\to\infty} \lambda_{n+1}^*(\mathrm{d}\alpha,z) \ p_n^2(\mathrm{d}\alpha,z) = 1 - \rho(\frac{z-a}{b})^{-2}$$

Lemma 15. Let $\alpha \in M(a,b)$ and $z \in \mathbb{C} \setminus \text{supp}(d\alpha)$. Then

-43-

$$\lim_{n\to\infty} \frac{p_1'(d\alpha,z)}{np_0'(d\alpha,z)} = \begin{cases} \frac{1}{z-a} & \text{for } b=0\\ \frac{1}{\sqrt{(z-a)^2-b^2}} & \text{for } b>0 \end{cases}.$$

where $\sqrt{z^2 - 1} > 0$ for z > 1.

Proof. We have for z ∈ C\supp(da)

$$\frac{p_n'(d\omega,z)}{p_n(d\omega,z)} = \sum_{k=1}^n \frac{1}{z-x_{kn}(d\omega)} \ .$$

Let c > 0 and

$$f(t) = \begin{cases} 0 & \text{for } |z-t| < \varepsilon \\ \frac{1}{z-t} & \text{for } |z-t| \ge \varepsilon \end{cases}.$$

By Theorem 3. 3. 8 if $\epsilon = \epsilon(z)$ is small enough and $n \geq N(z)$ then

$$\frac{p_n'(d\omega,z)}{n\,p_n'(d\omega,z)} = \frac{1}{n} \sum_{k=1}^n f(x_{kn}(d\omega)) \ .$$

Using Theorems 5.2 and 5.3 we obtain

$$\lim_{n\to\infty} \frac{p'(ds,z)}{np_n(ds,z)} = \begin{cases} f(a) & \text{for } b=0\\ \frac{1}{\pi} \int_a^{a+b} \frac{f(t)}{a^{-b} - (t-a)^2} dt & \text{for } b>0 \end{cases}$$

and $f(a)=(z-a)^{-1}$ for b=0 and $f(t)=(z-t)^{-1}$ for b>0, te [a-b,a+b]. The calculation of the above integral is simple; put $\alpha=$ Tschebyshev weight corresponding to [a-b,a+b].

-44-

Theorem 16. Let α ∈ M(a, b) and z ∈ C\supp(da). Then

$$\lim_{n\to\infty} n \left[\frac{p_{n-1}(d\alpha,z)}{p_n(d\alpha,z)} - \frac{p_{n-1}'(d\alpha,z)}{p_n'(d\alpha,z)} \right] = \left\{ \begin{array}{c} 0 & \text{for } b=0 \\ \\ \rho(\frac{z-a}{b})^{-1} & \text{for } b>0 \end{array} \right.$$

Toof. From

$$p_{n-1}(\mathrm{d}\sigma,z) = \frac{\gamma_{n-1}(\mathrm{d}\sigma)}{\gamma_{n}(\mathrm{d}\sigma)} \ p_{n}(\mathrm{d}\sigma,z) \sum_{k=1}^{n} \lambda_{kn}(\mathrm{d}\sigma) \frac{p_{n-1}^{2}(\mathrm{d}\sigma_{*},\mathbb{X}_{kn})}{z-x_{kn}}$$

follow

$$n \left[\frac{p_{n-1}(d\sigma,z)}{p_{n}(d\sigma,z)} - \frac{p_{n-1}'(d\sigma,z)}{p_{n}'(d\sigma,z)} \right] =$$

$$= n \frac{p_{n}(d\sigma,z)}{p_{n}'(d\sigma,z)} - \frac{\gamma_{n-1}}{\gamma_{n}} \frac{n}{\kappa_{n-1}} \frac{n}{\kappa_{n}} \frac{p_{n-1}^{2}(d\sigma,\kappa_{n})}{(z-\kappa_{n})^{2}} .$$

If b=0 then use Theorem 3.3.8 and Lemma 15. If b>0 then use

Theorems 3.2.3, 3.3.8 and Lemma 15. For b > 0 we get

$$\lim_{n\to\infty} n \left[\frac{p_{n-1}(d\sigma,z)}{p_n(d\sigma,z)} - \frac{p_{n-1}'(d\sigma,z)}{p_n'(d\sigma,z)} \right] =$$

$$= \sqrt{\left(\frac{z-a}{b}\right)^2 - 1} \cdot \frac{1}{n} \int_{a-b}^{a+b} \frac{\sqrt{b^2 - (t-a)^2}}{(z-t)^2} dt$$

and this integral has been calculated in the course of proof of Theorem 11.

From Theorems 13 and 16 we obtain

Theorem 17. Let $\alpha \in M(a,b)$ and $z \in \mathbb{C} \setminus \operatorname{supp}(d\sigma)$. Then

$$\lim_{n\to\infty} \frac{p'_{n-1}(d\alpha,z)}{p'_{n}(d\alpha,z)} = \begin{cases} 0 & \text{for } b=0\\ p(\frac{z-a}{b})^{-1} & \text{for } b>0 \end{cases}$$

The following result is rather surprising if we compare it with

eorem 13.

Theorem 18. Let $\alpha\in M(a,b)$ with b>0 . Then for every $x\in \text{supp}(d\alpha)\backslash \{a-b,a+b]$

$$\lim_{n\to\infty}\frac{p_{n-1}(\mathrm{d}\alpha,x)}{p_n(\mathrm{d}\alpha,x)}=\rho(\frac{x-\mathrm{d}}{b})\ .$$

Proof. We have

$$p_{n-1}(do,x) = \int\limits_{-\infty}^{\infty} p_{n-1}(do,t) \; K_n(do,x,t) \; do(t) \; \; . \label{eq:pn-1}$$

If $x \in \text{supp}(d\sigma) \setminus [a-b, a+b]$ then by Theorem 3.3.7 x is an isolated point

of $supp(d\sigma)$. Hence we can find $\ensuremath{\epsilon} > 0$ such that

$$\begin{split} p_{n-1}(do,\,x) &= \int\limits_{|x-t| > \epsilon} p_{n-1}(do,\,t) \,\, K_n(do,\,x,\,t) \,\, do(t) \,\, + \\ &+ \frac{o(x+0) - o(x-0)}{h_n(do,\,x)} \,\, p_{n-1}(do,\,x) \,\, . \end{split}$$

Sing

$$K_n(\mathrm{d}\alpha,x,t) \approx \frac{\gamma_{n-1}(\mathrm{d}\alpha)}{\gamma_n(\mathrm{d}\alpha)} \frac{p_{n-1}(\mathrm{d}\alpha,t)\,p_n(\mathrm{d}\alpha,x) - p_n(\mathrm{d}\alpha,t)\,p_{n-1}(\mathrm{d}\alpha,x)}{x - t}$$

e obtain

$$p_{n-1}(da,x) \left[1 - \frac{a(x+0)-a(x-0)}{\lambda_n(da,x)} + \frac{\gamma_{n-1}(da)}{\gamma_n(da)} \right]$$

$$\int_{|\mathbf{x}-\mathbf{t}|>\epsilon} \frac{p_{n-1}(do,t)p_{n}(do,t)}{|\mathbf{x}-\mathbf{t}|} \frac{do_{n}(t)}{do(t)} =$$

$$= p_n(d\omega,x) \cdot \frac{\gamma_{n-1}(d\omega)}{\gamma_n(d\omega)} \int_{|x-t| > \epsilon} \frac{p_{n-1}^2(d\omega,t)}{x_{-t}} \ d\omega(t) \ .$$

Ve have

$$\lim_{1\to\infty} \frac{a(x+0)-a(x-0)}{\lambda_n(d\alpha,x)} = 1$$

(See Freud, Section II. 2, supp(da) is compact!) Thus by Theorem 4.2.13

p (da, x) + 0 for n large a

$$\lim_{n\to\infty} \frac{\frac{1}{n-1}(\mathrm{d}\alpha,x)}{\frac{1}{n}(\mathrm{d}\alpha,x)} = \frac{\frac{1}{n}\int_{a-b}^{a+b} (x-t)^{-1} [b^2-(t-a)^2]^{-\frac{1}{2}} \mathrm{d}t}{\frac{a+b}{n-b}}$$

which equals $p(\frac{x-a}{b})$.

Theorem 19. Let $\alpha \in M(0,1)$ and ℓ be a fixed nonnegative integer.

Then

(11)
$$\lim_{n\to\infty}\lambda_n(\mathrm{d} o,x)\sum_{k=0}^{n-1}p_k(\mathrm{d} o,x)\ p_{k+1}(\mathrm{d} o,x)=T_I(x)$$

for each $x \in [-1,1]$ provided that a is continuous at x; in particular,

(11) holds for almost every $x\,\varepsilon$ supp(do) . If α is continuous on $\tau\subset (-1,1)$ then (11) is satisfied uniformly for $x\,\varepsilon$ τ .

Proof. If t = 1 then the theorem follows from Theorem II and from the formula

$$\begin{aligned} \mathbf{x} - \lambda_n (\mathbf{d} \alpha, \mathbf{x}) \sum_{k=0}^{n-1} p_k (\mathbf{d} \alpha, \mathbf{x}) & p_{k+1} (\mathbf{d} \alpha, \mathbf{x}) = \\ & = \lambda_n (\mathbf{d} \alpha, \mathbf{x}) \sum_{k=0}^{n-1} \alpha_k (\mathbf{d} \alpha) & p_k^2 (\mathbf{d} \alpha, \mathbf{x}) + \\ & + \lambda_n (\mathbf{d} \alpha, \mathbf{x}) \sum_{k=0}^{n-1} \left[2 \frac{\gamma_k (\mathbf{d} \alpha)}{\gamma_{k+1} (\mathbf{d} \alpha)} - 1 \right] p_k (\mathbf{d} \alpha, \mathbf{x}) & p_{k+1} (\mathbf{d} \alpha, \mathbf{x}) - \\ & + \frac{\gamma_{n-1} (\mathbf{d} \alpha)}{\gamma_n (\mathbf{d} \alpha)} & p_{n-1} (\mathbf{d} \alpha, \mathbf{x}) & p_n (\mathbf{d} \alpha, \mathbf{x}) \lambda_n (\mathbf{d} \alpha, \mathbf{x}) \end{aligned}$$

which is a direct consequence of the recurrence formula. Now let $\, {\it I} > 1$. Then by Theorem 3.1.1

$$\begin{split} \lambda_{n}(\mathrm{d}\alpha, \, \mathbf{x}) \sum_{k=0}^{n-1} p_{k}(\mathrm{d}\alpha, \, \mathbf{x}) \, p_{k+1}(\mathrm{d}\alpha, \, \mathbf{x}) = \\ &= U_{\ell-1}(\mathbf{x}) \, \lambda_{n}(\mathrm{d}\alpha, \, \mathbf{x}) \sum_{k=0}^{n-1} p_{k}(\mathrm{d}\alpha, \, \mathbf{x}) \, p_{k+1}(\mathrm{d}\alpha, \, \mathbf{x}) - \\ &- U_{\ell-2}(\mathbf{x}) + \lambda_{n}(\mathrm{d}\alpha, \, \mathbf{x}) \sum_{k=0}^{n-1} p_{k}(\mathrm{d}\alpha, \, \mathbf{x}) \, R_{k+\ell} \, , \, k_{+1} \end{split}$$

Since $\mathbf{U}_{I-1}(\mathbf{x})\mathbf{x} - \mathbf{U}_{I-2}(\mathbf{x}) = \mathbf{T}_I(\mathbf{x})$ we obtain that (11) holds at those points \mathbf{x} where it holds with I=1 and where

$$\lim_{n\to\infty} \lambda_n(\mathrm{d}\alpha,x) \sum_{k=0}^{n-1} p_k(\mathrm{d}\alpha,x) \; P_{k+1}, \, k+1(\mathrm{d}\alpha,x) = 0$$

is also satisfied. To finish the proof we apply 3.1.(3) and Theorem II.

im $\lambda_n(d\alpha, x) = 0$

at every x where a is continuous and the convergence is uniform on every interval of continuity of a since supp(da) is compact. (See Freud, Section II. 3.)

4.2. Weak Limits

Definition 1. We write $o \in S$ if $supp(do) = \{-1,1\}$ and $v \log o' \in L^{\{-1,1\}}$.

Lemma 2. If a e S then

$$\lim_{n\to\infty} \gamma_n(d\sigma) 2^{-n} = \frac{1}{\sqrt{\pi}} \exp\{-\frac{1}{2\pi} \int_{-1}^1 v(t) \log \sigma'(t) dt\} \ .$$

Proof. See e. g. Freud, §V. 6.

Theorem 3. Let $\alpha \in S$ and f be Riemann integrable on [-1,1]. Then

$$\lim_{n\to\infty} \sum_{k=1}^{n} \lambda_{kn}(\mathrm{d}\sigma) \ f(x_{kn}) \ \frac{p_{n-1}^2(\mathrm{d}\sigma,x_{kn})}{1-x_{kn}^2} = \frac{2}{\pi} \int_{-1}^{1} (t) \ \frac{\mathrm{d}t}{\sqrt{1-t^2}} \ .$$

Proof. Let β be defined by $d\beta(x)=(1-x^2)\,d\sigma(x)$. Then $(1-x^2)\,[p_{n-1}^2(d\beta,x)-\gamma_{n-1}^2(d\beta)\,x^{2n-2}]$ is a polynomial of degree 2n-1 and we have by the Gauss-Jacobi mechanical quadrature formula

$$\begin{split} \sum_{k=1}^{n} (1-x_k^2) \left(p_{n-1}^{2}(\mathrm{d}\beta, x_k) - \gamma_{n-1}^2(\mathrm{d}\beta) \; x_k^{2n-2} \right] \lambda_k &= \\ &= 1 + \gamma_{n-1}^2(\mathrm{d}\beta) \int_{-1}^{1} (t^2 - 1) \; t^{2n-2} \; \mathrm{d}\alpha(t) \end{split}$$

(here $x_k = x_k (da)$ and $\lambda_k = \lambda_{kn} (da)$. Thus

$$\sum_{k=1}^{n} (1-x_k^2) \, p_{n-1}^2 (\mathrm{d}\beta, x_k) \, \lambda_k = 1 + \gamma_{n-1}^2 (\mathrm{d}\beta) \; .$$

 $\cdot [\int_{-\pi}^1 t^{2n} \, \mathrm{d} \alpha(t) - \sum_{k=1}^n x_k^{2n} \, \lambda_k] \ .$

Purther

$$\sum_{k=1}^{n} x_{k}^{2n} \lambda_{k} = \sum_{k=1}^{n} L_{n}(da, y^{2n}, x_{k}) \lambda_{k} = \int_{-1}^{1} L_{n}(da, y^{2n}, t) da(t) .$$

fence we obtain

$$\sum_{k=1}^{n} (1 - x_k^2) p_{n-1}^2 (d\beta, x_k) \lambda_k =$$

=
$$1 + \gamma_{n-1}^2 (d\beta) \int_{-1}^{1} [t^{2n} - L_n(d\alpha, y^{2n}, t)] d\alpha(t)$$
.

Since t^{2n} - $L_n(d\alpha, y^{2n}, t)$ is a polynomial of degree 2n which vanishes at the zeros of $p_n(d\alpha, x)$ we have

$$t^{2n} - L_n(d\alpha, y^{2n}, t) = p_n(d\alpha, t) \big[\, \Gamma \, p_n(d\alpha, x) \, + \, \Pi_{n-1}(x) \, \big] \, \, .$$

Comparing the leading coefficients we see that $\Gamma=\gamma_n(d\sigma)^{-2}$. Consequently

$$\sum_{k=1}^{n} (1-x_k^2) \; p_{n-1}^2(\mathrm{d}\beta, \; x_k) \, \lambda_k = 1 + \frac{\gamma_{n-1}^2(\mathrm{d}\beta)}{\gamma_n^2(\mathrm{d}\alpha)} \; .$$

Expand (1-x²) $_{n-1}(d\beta,x)$ in a Fourier series in $\,p_k(d\alpha,x)$. *) It is easy to see that

$$(1-x^2) p_{n-1}(d\beta, x) = \sum_{k=n-1}^{n+1} a_k p_k(d\alpha, x)$$

with $a_{n-1}=\gamma_{n-1}(\mathrm{d}\alpha)/\gamma_{n-1}(\mathrm{d}\beta)$ and $a_{n+1}=-\gamma_{n-1}(\mathrm{d}\beta)/\gamma_{n+1}(\mathrm{d}\alpha)$. Thus

$$(1-x_k^2)_{n-1}(d\beta,x_k) = \frac{v_{n-1}(d\alpha)}{v_{n-1}(d\beta)} \;\; p_{n-1}(d\alpha,x_k) \; -$$

$$\frac{v_{n-1}(d\beta)}{v_{n+1}(d\alpha)} \;\; p_{n+1}(d\alpha,x_k) \;\; .$$

We obtain from the recursion formula that

$$p_{n+1}(d\alpha, x_k) = -\frac{\gamma_{n-1}(d\alpha) \ \gamma_{n+1}(d\alpha)}{\gamma_n(d\alpha)} \ p_{n-1}(d\alpha, x_k) \ .$$

Tono.

$$(1-x_k^2)_{p_{n-1}}(d\beta,\,x_k) = \Big[\frac{v_{n-1}(d\alpha)}{v_{n-1}(d\beta)} + \frac{v_{n-1}(d\beta)\,v_{n-1}(d\alpha)}{v_n^2(d\alpha)}\Big].$$

· p_{n-1}(da, x_k) .

Putting this into (1) we obtain

$$\sum_{k=1}^{n} \lambda_k \frac{p_{n-1}^2(d\alpha, x)}{1 - x_k^2} = \left[1 + \frac{\gamma_{n-1}^2(d\beta)}{\gamma_n^2(d\alpha)}\right] \ .$$

$$\left[\frac{\gamma_{n-1}(d\alpha)}{\gamma_{n-1}(d\beta)} + \frac{\gamma_{n-1}(d\beta)}{\gamma_n^2(d\alpha)}\right]^{-2}$$

From α ϵ S follows β ϵ S and we can use Lemma 2 to show that the limit of the right hand side is 2. Thus by Theorem 3.2.3 if ϵ ϵ (0,1) then

$$\lim_{n\to\infty} \ \, |x \atop k_n |_{>1-\epsilon} \ \, ^{\lambda}_{kn}(\mathrm{d}\sigma) \, \frac{p^2_{n-1}(\mathrm{d}\sigma,\,x_{kn})}{1-x_{kn}^2} = \frac{4}{\pi} \, \int_{1-\epsilon}^1 \, v(t) \mathrm{d}t \ .$$

Let f be Riemann integrable on [-1,1]. By Theorem 3.2.3 we have to

$$\lim_{\epsilon \to +0} \lim_{n\to \infty} \left| |x \sum_{k_n} \rangle_{>1-\epsilon}^{\lambda_k(d\sigma)} f(x_{k_n}) \frac{p_{n-1}^2(d\sigma,x_{k_n})}{1-x_{k_n}^2} \right| = 0 \ .$$

Since f must be bounded on [-1,1] this holds by the previous formula.

^{*)} This argument is due to Christoffel and is given in Szegő, Chapter 3. In the following this argument will be used several times.

Theorem 3 will be used to investigate some interpolation processes.

Definition 4. Let a & S. Then

$$\Gamma(\theta) = -\frac{1}{2\pi} \int_{-1}^{1} \frac{\log W(t) - \log W(x)}{t \cdot x} \frac{\sqrt{1 \cdot x^2}}{\sqrt{1 \cdot t^2}} dt, \quad x = \cos \theta,$$

where W(x) = $a'(x)\sqrt{1-x^2}$, $-1 \le x \le 1$, $0 \le \theta \le \pi$.

Lemma 5. If a & S then

$$\lim_{n\to\infty} \int_0^{\pi} |\mathbf{p}_n(\mathbf{d}\mathbf{e},\cos\theta)| \sqrt{\mathbf{e}'(\cos\theta)\sin\theta} - \frac{1}{2} \int_0^{\pi} |\cos(n\theta - \Gamma(\theta))|^2 d\theta = 0$$

Proof. See Geronimus, Chapter IX.

In the following we shall apply Lemma 5 several times, here we give

three applications of it.

Theorem 6. If $a \in S$ then $\lim_{n \to \infty} \int_{-1}^{1} p_n^2 (d o, \mathbf{x}) \; d[o_S(\mathbf{x}) + o_I(\mathbf{x})] = 0 \; .$

Proof. By the Riemann-Lebesgue lemma and Lemma 5 $\int_{1}^{2} (d\omega, x) \omega_{ac}(x) dx + 1$

Theorem 7. Let o S and fe Ldo. Then

$$\lim_{n\to\infty}\int_{-1}^{1}f(x)\,p_{n}^{2}(\mathrm{d}\sigma_{n},x)\,\,\mathrm{d}\sigma(x)=\frac{1}{\pi}\int_{-1}^{1}\frac{f(x)}{\sqrt{1-x^{2}}}\,\,\mathrm{d}x\ .$$

Proof. Use Lemma 5, Theorem 6 and the Riemann-Lebesgue lemma.

Theorem 8. Let
$$\alpha \in S$$
, $0 , $g(\geq 0) \in L^1_{do}$. If$

lim inf
$$\int_{1-\infty}^{1} \left| p_n(do, t) \right|^p g(t) do(t) = 0$$

then g(t) = 0 for almost every $t \in [-1, 1]$.

Proof. Let first 2 0

g_M(t) = min{g(t), M}

Then 9M . La. Further

$$\int_{-1}^{1} p_{n}^{2}(\mathrm{d} \alpha,\,t) \; g_{M}(t)^{\frac{2}{p}} \, \mathrm{d} \alpha(t) \leq \left[\int_{-1}^{1} \left|p_{n}(\mathrm{d} \alpha,\,t)\right|^{p} \, g(t) \mathrm{d} \alpha(t)\right]^{\frac{2}{p}} \; .$$

By the hypothesis and Theorem 7

 $abox{ p-2 \\ [a(1) - a(-1)] } b$

$$\frac{1}{\pi} \int_{-1}^{1} q_{M}(t) \frac{2}{p} \frac{dt}{\sqrt{1-t^{2}}} = 0$$

for every M > 0 . Hence g=0 . Let now $1 \le p < 2$. Let $g^*(t) = g(\cos t)$, $\epsilon > 0$. Then

$$\int\limits_{-1}^{1}\left|p_{n}(d\sigma,t)\right|^{p}g(t)\;d\sigma(t)\geq\int\limits_{-1}^{1}\left|p_{n}(d\sigma,t)\right|^{p}g(t)\sigma'(t)dt=$$

$$= \int_0^\pi \left| p_n(d\alpha, \cos t) \sqrt{\alpha'(\cos t) \sin t} \right|^p \left[\alpha'(\cos t) \sin t \right]^{-\frac{p}{2}} \frac{\alpha}{g} (t) dt \ .$$

Let
$$q_1(t) = [a'(\cos t) \sin t]^{-\frac{p}{2}} * (t)$$
. Then

Since $p < 2 |\cos|^p \ge |\cos|^2$ and the second integral here converges to 0 by Lemma 5. Thus by the hypothesis

$$\lim_{n\to\infty}\inf_{g_{1}^{-2}}\varepsilon\cos^{2}(nt-\Gamma(t))dt=0\ ,$$

that is ${\rm mes}(q_1 \ge \epsilon) = 0$. Thus $q_1 = 0$ and consequently g = 0. If $0 we can repeat the previous arguments, the only difference is that we consider <math>\left| f \right| \left| p \right| p$ instead of $\left| f \right| \left| p \right| \overline{p}$.

Lemma 9. Let $\omega \in M(a,0)$. Let $\{n_k^{-1}\}$ and $\{m_k^{-1}\}$ be two sequences of natural integers such that at least one of them converges to ω when $k+\infty$. If i is continuous on $\Delta(d\omega)$ then

$$\lim_{k\to\infty}\int_{-\infty}^{\infty}f(t)\;p_{n}\left(\mathrm{d}\sigma,t\right)\;p_{m}\left(\mathrm{d}\sigma,t\right)\;\mathrm{d}\sigma(t)=\left\{ \begin{array}{ccc} f(a)\;\;\mathrm{if}\;\;\mathrm{lim}\;(n_{k}-m_{k})=0\\ & & & \\ 0\;\;\mathrm{if}\;\;\mathrm{lim}\;\mathrm{inf}\;\left|n_{k}-m_{k}\right|>0\;\;.\\ & & & & \\ \end{array} \right.$$

<u>Proof.</u> In the first case we can suppose without loss of generality that $n_k = m_k = k$ for every k. Because of continuity we can also suppose that

f is a polynomial. If f is constant the Lemma is certainly true. Otherwise

$$f(x) = f(a) + \sum_{j=1}^{\deg f} \frac{f^{(j)}(a)}{j!} (x-a)^{j}$$
.

We shall show that for every 1 > 1

$$\lim_{k\to\infty} \int_{-\infty}^{\infty} (\mathbf{x} - \mathbf{a})^{\frac{1}{2}} p_k^2 (d\alpha, \mathbf{x}) d\alpha(\mathbf{x}) = 0 .$$

If j=1 then (2) means that $\lim_{k\to\infty} o_k(\mathrm{d} \sigma)=\mathrm{a}$. If j=2 then

$$\begin{split} & (x - a)^2 \; p_k^2(d\alpha, \, x) = (x - a) \; p_k(d\alpha, \, x) \left[\frac{\gamma_k(d\alpha)}{\gamma_{k+1}(d\alpha)} \; \; p_{k+1}(d\alpha, \, x) \; + \right. \\ & + \left. (\alpha_k(d\alpha) - a) \; p_k(d\alpha, \, x) \; + \frac{\gamma_{k-1}(d\alpha)}{\gamma_k(d\alpha)} \; p_{k-1}(d\alpha, \, x) \right] \; . \end{split}$$

lence

$$\int_{-\infty}^{\infty} (\mathbf{x} \cdot \mathbf{a})^2 \; p_k^2 (d\alpha, \, \mathbf{x}) \; \mathrm{d}\alpha(\mathbf{x}) = \frac{\gamma_k^2}{\gamma_{k+1}^2} + (\alpha_k \cdot \mathbf{a})^2 + \frac{\gamma_{k+1}^2}{\gamma_k^2} \xrightarrow{k + \infty} 0 \; .$$

Since $supp(d\alpha)$ is compact (2) holds also for j>2 if it holds for j = 2. The second case can be obtained from the first one as follows. If k is large then $m_k \neq n_k$. Thus

$$\int\limits_{-\infty}^{\infty}f(t)\;p_{n}\left(\mathrm{d}\alpha,t\right)\;p_{m}\left(\mathrm{d}\alpha,t\right)\;\mathrm{d}\omega(t)=$$

$$=\int\limits_{-\infty}^{\infty}\left[f(t)-f(a)\right]p_{\rm m}\left(\mathrm{d}\alpha,t\right)p_{\rm s}\left(\mathrm{d}\alpha,t\right)\,\mathrm{d}\alpha(t)\ ,$$

that is the absolute value of the left side is not greater then

$$\begin{cases} \int_{-\infty}^{\infty} |f(t) - f(a)| \, p_{n_k}^2 \, (d\alpha, t) \, d\alpha(t) \, \cdot \\ \\ \cdot \int_{-\infty}^{\infty} |f(t) - f(a)| \, p_{m_k}^2 \, (d\alpha, t) \, d\alpha(t) \}^{\frac{1}{2}} \, . \end{cases}$$

Here both factors are bounded and at least one of them tends to 0 when $\mathbf{k} \rightarrow \mathbf{s}$

Theorem 10. Lemma 9 remains true if f_* instead of being continuous on $\Delta(da)_*$ is merely bounded on $\operatorname{supp}(da)_*$ continuous at a and it is da measurable.

Proof. Let \$ > 0 . Then

$$\int_{-\infty}^{\infty} a(t) \ p_k^2(d\alpha,t) \ d\alpha(t) \le \int_{\alpha-\epsilon}^{\alpha+\epsilon} p_k^2(d\alpha,t) \ d\alpha(t) \le 1$$

where g is continuous function vanishing outside [a.e, a+e] with

g(a) = 1 and
$$0 < q(t) \le 1$$
 for $|a-t| \le \epsilon$. Thus by Lemma 9

$$\lim_{k\to\infty}\int_{a-\epsilon}^{a+\epsilon}p_k^2\left(d\alpha,t\right)\,d\alpha(t)=1\;.$$

We have

$$\left| \int_{-\infty}^{\infty} f(t) \; p_k^2(d\sigma, t) \; d\sigma(t) \; - \; f(a) \right| \le \sup_{|t-a| \le e} \left| f(t) \; - \; f(a) \right| \; .$$

$$\int\limits_{\partial - \epsilon}^{\partial + \epsilon} \frac{2}{p_k^2} (d \, \omega, \, t) \, d \sigma(t) + 2 \quad \text{sup} \quad \left| f(t) \right| \left[1 - \int\limits_{\partial - \epsilon}^{\partial + \epsilon} \frac{2}{p_k^2} (d \, \omega, \, t) \, d \sigma(t) \right] \; .$$

Let $k\to \infty$ and then $\epsilon\to 0$. The case when $\lim_{n\to\infty}\inf|m_k-n_k|>0$ follows from the case when $\lim_{k\to\infty}(m_k-n_k)=0$.

Definition II. Let us define the numbers $\alpha_{nk}(d\omega)$ for $n=1,2,\ldots$ and

k = n-1, n, n+1 as follows

$$\alpha_{nk}(\mathrm{d}\alpha) = \begin{cases} \gamma_{n-1}(\mathrm{d}\alpha)/\gamma_n(\mathrm{d}\alpha) & \text{for } k=n-1 \\ \alpha_n(\mathrm{d}\alpha) & \text{for } k=n \end{cases}$$
 for $k=n$

Lemma 12. Let m be a nonnegative integer and n > m . Then

$$x^{m} p_{n}(d\alpha, x) = \sum_{-1 \le k \le 1} \alpha_{n, n+k} (d\alpha) \alpha_{n+k} {}_{1}^{n+k} {}_{1}^{n+k} (d\alpha) .$$

$$\cdots^{\alpha} {_{n+k_1}} + \ldots + {_{m-1}}, {_{n+k_1}} + \ldots + {_k} \pmod{p_{n+k_1}} + \ldots + {_k} \pmod{\alpha} \ .$$

Proof. Apply the recursion formula repeatedly.

Theorem 13. Let $\alpha \in M(a,b)$ with b>0. Let $\{m_k\}$ and $\{n_k\}$ be two sequences of natural integers such that at least one of them converges to ∞ when $k \to \infty$ and the finite or infinite $\lim_{k \to \infty} (m_k - n_k)$ exists. Let f be do measurable, bounded on supp($d\alpha$) and continuous on $\{a-b,a+b\}$.

Then

(3)
$$\lim_{k \to \infty} \int_{-\infty}^{\infty} f(t) p_{m_{k}} (d\alpha, t) p_{m_{k}} (d\alpha, t) d\alpha(t) = \\ = \lim_{k \to \infty} \frac{a+b}{\pi} \int_{a-b}^{T |m_{k}-n_{k}|} \frac{(\frac{t-a}{b})}{\sqrt{b^{2} - (t-a)^{2}}} dt.$$

Proof. Let, without loss of generality, a ϵ M(0,1). First we shall prove (3) when f is continuous on $\Delta(da)$. If $\lim_{k\to\infty} (m_k-n_k) = \infty$ then the right side in (3) equals 0. If f is a polynomial then the integral on the left side of (3) equals 0. If f is big. Thus for every continuous function f the left side in (3) also equals 0. Now let $\lim_{k\to\infty} (m_k-n_k) < \infty$. Then we may assume that for every k $n_k = k$, $m_k = k+1$ where f is a fixed nonnegative integer. Because of linearity and continuity arguments; that is, because of Banach-Steinhaus' theorem, we can suppose that f is of the form $f(t) = t^m$ where m is a fixed nonnegative integer. Thus we have to show that for $m = 0,1,2,\ldots$

(4)
$$\lim_{k \to \infty} \int_{-\infty}^{\infty} t^{m} p_{k}(d\alpha, t) p_{k+1}(d\alpha, t) d\alpha(t) = \frac{1}{\pi} \int_{1}^{1} t^{m} \frac{T_{k}(t)}{\sqrt{1-t^{2}}} dt.$$

Let us remark that (4) is true if α is the Tschebyshev weight. For if $k \ge 1$

$$\int_{-\infty}^{\infty} t^{m} p_{k}(d\omega, t) p_{k+\ell}(d\omega, t) d\omega(t) =$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \cos^{m} \theta \cdot \frac{1}{2} [\cos \ell \theta + \cos(2k+\ell)\theta] d\theta$$

which equals to

(5)
$$\frac{1}{\pi} \int_{-1}^{1} t^m \frac{I_{\ell}(t)}{\sqrt{1-t^2}} dt$$

If $2k+\ell>m$. If $\alpha\in M(0,1)$ then by Lemma 12 we have for k>m

$$\int_{-\infty}^{\infty} t^{m} p_{k}(do,t) p_{k+l}(do,t) do(t) =$$

$$= \sum_{\substack{-1 \le k_1 \le 1 \\ k_1 \le 1, \dots, m}} a_k + k_1 (da) a_{k+k_1} + k_1 + k_2 (da) \dots a_{k+k_1} + \dots + k_{m-1}, k+\ell (da) ...$$

The right side here is convergent when $k \to \infty$ since $a \in M(0,1)$ and t is fixed, its limit depends only on $\lim_{j \to \infty} J_j(da)$ and $\lim_{j \to \infty} J_{j-1}(da)/\gamma_j(da)$, that is in our case this limit equals (5). Hence (4) holds if f is continuous on $\Delta(da)$. If f is continuous only on supp(da) which is closed then f can be extended to a function which is continuous on $\Delta(da)$. If f is a function satisfying the conditions of the theorem then we can write f is further f_2 where f_1 is continuous on $\Delta(da)$, f_2 is bounded and da measurable, further f_2 vanishes on [a-b, a+b]. Hence, if we can show that

(6)
$$\lim_{k\to\infty}\int_{\alpha\pm b}^{+\infty}p_k^2(\alpha_s,t)\;d\alpha(t)=0$$

then we finish the proof of the theorem. Let g be continuous function on $\Delta(d\alpha)$ such that $g(t) \geq 0$ for $t \in \Delta(d\alpha)$, g(t) = 1 for $t \in \Delta(d\alpha) \setminus \{a-b, a+b\}$ and

$$\frac{1}{\pi} \cdot \int_{g(t)}^{a+b} \frac{1}{\sqrt{b^2 - (t \text{-} a)^2}} \, \mathrm{d}t < \epsilon$$

where $\epsilon > 0$ is given. Then

$$\int\limits_{-\infty}^{a-b} + \int\limits_{a+b}^{\infty} p_{k}^{2}(d\sigma,t) d\sigma(t) \leq \int\limits_{-\infty}^{\infty} g(t) \ p_{k}^{2}(d\sigma,t) \ d\sigma(t)$$

and using the fact that the theorem has already been proved for continuous functions we obtain (6) by first letting $k\to\infty$ and then $\epsilon\to0$.

Using one-sided approximation machinery we obtain immediately from Theorem 13 the following

Theorem 14. Let $\alpha \in M(a,b)$ with b>0. If f is da measurable, bounded on supp(da) and Riemann integrable on [a-b, a+b] then

$$\lim_{n\to\infty} \int_{-\infty}^{\infty} f(t) \; p_n^2(d\sigma,\,t) \; d\sigma(t) = \frac{1}{\pi} \int_{\alpha-b}^{a+b} \frac{dt}{\sqrt{b^2-(t-a)^2}} \; \; .$$

Compares this theorem with Theorem 7.

Corollary 15. Let $a \in M(a,b)$, b > 0, $x \in (a-b,a+b)$ and let a be continuous in a neighborhood of x. Then

$$\lim_{h\to 0} \lim_{n\to\infty} \frac{1}{2h} \int_{x-h}^{x+h} \frac{\sum_{p} (\mathrm{d} \sigma, t) \, \mathrm{d} \sigma(t)}{\int_{x} (t-a)^{2}} \, .$$

Proof. The function $1_{(x-\epsilon,x+\epsilon)}$ is do measurable for $\epsilon>0$ small.

Theorem 16. Let $\alpha \in M(a,b)$, b>0. Let f be bounded on $\Delta(d\alpha)$ and Riemann integrable on [a-b,a+b]. Then for every fixed integer I

$$\lim_{n\to\infty} \sum_{k=1}^{n} \lambda_{kn}(da) \ f(x_{kn}) \ p_{n-1}(da, x_{kn}) \ p_{n+1}(a, x_{kn}) =$$

$$= - \operatorname{sign} \mathbf{f} \frac{2}{\pi b^2} \int_{a-b}^{a+b} f(t) \, \left| \mathbf{f}_{[-1]}(\frac{t-a}{b}) \sqrt{b^2 - (t-a)^2} \right| \, dt$$

Proof. We obtain from Theorems 3.1.3 (t>0) and 3.1.13 (t<0) and from the recurrence formula that

$$p_{n+\ell}(d\alpha, x_{kn}) = - sign \ell U_{|\ell|-1}(\frac{x_{kn}-a}{b}) p_{n-1}(d\alpha, x_{kn})$$

where $\lim_{n\to\infty}\sigma(l)\approx 0$ uniformly for $1\le k\le n$ if t is fixed. Thus the theorem follows from Theorem 3.2.3.

Theorem 17. Let a • S, f be Riemann integrable on [-1,1] and f be a fixed integer. Then

$$\lim_{n \to \infty} \sum_{k=1}^{n} \lambda_{kn}(d\omega) \; f(x_{kn}) \; p_{n-1}(d\omega, x_{kn}) \frac{p_{n+1}(d\omega, x_{kn})}{1 - x_{kn}^2} \\ = - \operatorname{sign} \ell \, \frac{1}{\pi} \int_{-1}^{1} f(t) \, U_{|\ell|-1}(t) \frac{dt}{\sqrt{1 - t^2}} \; .$$

Proof. Repeat the proof of Theorem 16 and use Theorem 3 instead of

5. Eigenvalues of Toepliz Matrices

In Grenander-Szegő the proof of Theorem 7.7 and the example 8.1(f) are not correct. In the first the Gauss-Jacobi mechanical quadrature formula is used for polynomials of degree more than 2n-1, in the second an orthonormal system is constructed, but it is, in fact, only normed but not orthogonal. In this section we shall obtain results which are a little bit more general than those of Grenander-Szegő, we shall use some methods of the above book in a simplified form.

Lemma 1. Let supp(da) be compact and let f be continuous on $\Delta(d\sigma)$ with the modulus of continuity ω . Then

$$\begin{aligned} & \{ \sum_{k=1}^{n} f(x_{kn}(do) - \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} f(t) p_{k}^{2}(do, t) do(t) \} | \leq \\ & \leq n \, \omega(n^{-1/3}) \{ 1 + \frac{1}{2} \, | \Delta(do) \, |^{3} \} \end{aligned}$$

for $n > |\Delta(d\sigma)|^{-3}$.

$$\sum_{k=1}^{n} f(x_{kn}) - \sum_{k=0}^{n-1} \int_{-\infty}^{\infty} f(t) \ p_{k}^{2}(t) \ do(t) =$$

$$\approx \sum_{k=1}^n \int_{\Delta(d\sigma)} \left[f(x_{kn}) - f(t) \right] \frac{t^2_{kn}(d\sigma,t)}{\lambda_{kn}(d\sigma)} \ d\sigma(t) \equiv A \ . \label{eq:kn}$$

Let \$ > 0 . Then

-63-

$$\begin{split} |A| & \leq n \ \omega(\varepsilon) + \sum_{k=1}^{n} \int_{\{t - x_{k} | \geq \varepsilon\}} |f(x_{k}) - f(t)| \frac{I_{k}^{2}(t)}{\lambda_{k}} \ do(t) \leq \\ & \leq n \omega(\varepsilon) + \frac{Y_{n-1}}{Y_{n}^{2}} \frac{\omega(|\Delta(do)|)}{\varepsilon^{2}} \sum_{k=1}^{n} \lambda_{k} \sum_{n-1}^{n} (x_{k}) \int_{-\infty}^{\infty} p_{n}^{2}(t) \ do(t) = \\ & = n[\omega(\varepsilon) + \frac{Y_{n-1}}{Y_{n}} \frac{\omega(|\Delta(do)|)}{n \varepsilon^{2}}] \ . \end{split}$$

By easy calculation $|\gamma_{n-1}/\gamma_n \le |\Delta(\text{d}\omega)|/2$. Thus

$$\left|A\right| \leq n[\omega(\epsilon) + \frac{1}{4} \left|\Delta(d\alpha)\right|^2 \, \frac{\omega\left(\left|\Delta(d\alpha)\right|\right)}{n\epsilon^2} \, \right] \; .$$

Let now $\varepsilon = n^{-\frac{1}{2}}$ and use the inequality

$$\frac{\omega(a)}{a} \le 2 \frac{\omega(b)}{b} \qquad (0 < b \le a)$$

which holds for every modulus of continuity $\ensuremath{\omega}$.

Theorem 2. Let a ϵ M(a,0). Let f be bounded on $\Delta(da)$ and continuous at a. Then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nf(x_{kn}(\mathrm{d}\alpha))=f(\mathrm{a})\ .$$

<u>Proof.</u> If f is continuous on $\Delta(da)$ then the theorem follows immediately from Lemma 1 and Lemma 4.2.9. If f is continuous only at a and it is bounded on $\Delta(da)$ then we fix $\epsilon>0$ and we construct two continuous functions f_1 and f_2 on $\Delta(da)$ so that

$$f_1(x) \le f(x) \le f_2(x)$$

for $x \in \Delta(do)$ and $f_{\lambda}(a) - f_{\gamma}(a) \le \varepsilon$ and we apply standard arguments.

Theorem 3. Let $a\in M(a,b)$ with b>0 . Let f be bounded on $\Delta(da)$ and Riemann integrable on $[a-b,\ a+b]$. Then

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \frac{f(x_{kn}(d\sigma))}{f(x_{kn}(d\sigma))} = \frac{1}{n} \int_{a-b}^{a+b} \frac{1}{f(t)} \frac{1}{\int_{b^{-}(t-a)^{-}}^{a}} dt \ ,$$

in particular, for every segment $\Delta \subset \Delta(d\alpha)$

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k_n (do) \in \Delta} \frac{1}{n} \frac{1}{\Delta} \int_{\mathbb{R}^2 (t-a)^2} \frac{1}{(t-a)^2} \, dt \ .$$

Proof. If is continuous on $\Delta(da)$ then use Lemma I and Theorem 4.2.13, otherwise apply the one-sided approximation machinery.

Now we shall translate the previous results into a different language Let supp(da) be compact, if ϵL_d^l be real valued and let us consider the Translitz matrix A(f,da) defined as

$$A(f, d\sigma) = \left[\left[\int_{-\infty}^{\infty} f(t) \, p_{1}(d\sigma, t) \, p_{j}(d\sigma, t) \, d\sigma(t) \right] \right]_{1, \, j=0}^{\infty}$$

Let, further, $A_n(f,d\sigma)$ be the truncated matrix consisting of n^2 elements. The characteristic polynomial $h_n(f,d\sigma,x)$ is $\det[A_n(f,d\sigma)-xE]$, the zeros of $h_n(f,d\sigma,x)$, which we denote by $x_{Kn}(f,d\sigma)$ $(k=1,2,\ldots,n)$ and called the eigenvalues of $A_n(f,d\sigma)$. Since $A_n^*=A_n$ all x_{Kn}^* are real. If $f(t)\equiv 1$ then $A(f,d\sigma)=E$ and $h_n(f,d\sigma,x)=(1-x)^n$, that is

 $x_{kn}(f, do) = 1$ for k = 1, 2, ..., n.

Lemma 4. Let $f(t) \equiv t$. Then for $n = 1, 2, \ldots$

$$h_n(t,d\omega,\mathbf{x})=(-1)^n \, \gamma_n^{-1}(d\omega) \, p_n(d\omega,\mathbf{x})$$

Proof. (-1) $^{n}h_{n}(f,d\sigma,x)$ satisfy the same recurrence formula as $\gamma_{n}^{-1}(d\sigma)$ $p_{n}(d\sigma,x)$, and for n = 1, 2 the lemma can easily be checked.

Definition 5. $\{a_{kn}^{-n}\}_{k=1}^{n}$ and $\{b_{kn}\}_{k=1}^{n}$ $(n=1,2,\ldots;a_{kn}\in\mathbb{R},b_{kn}\in\mathbb{R})$ are equally distributed if there exists an interval Δ such that $a_{kn}\in\Delta$ and $b_{kn}\in\Delta$ for $n=1,2,\ldots$ and $k=1,2,\ldots,n$, further for every continuous function f on Δ

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \left\{ f(a_{kn}) - f(b_{kn}) \right\} = 0 \ .$$

We obtain from Theorems 2 and 3 the following

Theorem 6. Let $f(t) \equiv t$, a.e. B, $b \ge 0$. Then for every pair of weights a_1 and a_2 from M(a,b) the eigenvalues of $A_n(f,da_1)$ and $A_n(f,da_2)$ are equally distributed.

Definition 7. Let $A = \left[\left[a_{1k} \right] \right]_{1, k=1}^{n}$ be a real $n \times n$ matrix. Then

$$TrA = \sum_{k=1}^{n} a_{kk} ,$$

$$||A|| = \left|\frac{1}{n} T_r A\right| ,$$

$$((A))^2 = \sup_{U} \frac{(Au, Au)}{(u, u)}$$

here
$$u = (u_1, \dots, u_n)$$
, $(u, v) = \sum_{k=1}^n u_k v_k$, further

Properties 8. Tr AB = Tr BA, Tr A = E(eigenvalues of A),

If A = A then ((A)) = max eigenvalues of A .

Lemma 9. For every n N

$$((A_n(t, d\alpha))) \le \sup_{t \in \text{supp}(d\alpha)} |f(t)|$$
.

Proof. Let λ be an eigenvalue of $A_n(f,d\alpha)$ for which $((A_nf,d\alpha)))=|\lambda|$ and let u be the corresponding eigenvector with (u,u)=1. Then

$$((A_n(f,d\alpha))) = |\lambda| (u,u) = |(\lambda u,u)| = |(A_n(f,d\alpha)u,u)| =$$

$$= \left| \int\limits_{-\infty}^{\infty} f(t) \left(\sum_{k=0}^{n-1} p_k(d\alpha, t) u_k \right)^2 d\alpha(t) \right| \le \sup\limits_{\text{ts supp}(d\alpha)} \left| f(t) \right| (u, u)$$

where $u = (u_0, u_1, \dots, u_{n-1})$.

Lemmallo. Let $m \in \mathbb{N}$ be fixed and let f_1 (1 = 1,2,..., m) be given.

Then for every je {1,2,...,m}

$$\lim_{n\to\infty}\sup \left\| \prod_{i=1}^{m}A_{i}\left(f_{i}^{2},d\alpha\right)\right\| \leq \\ \leq \lim_{n\to\infty}\sup \left\| \sqrt{A_{i}\left(f_{i}^{2},d\alpha\right)}\right\| \prod_{i\neq j}\sup_{t\neq j}\sup_{t\neq j}\left|f_{i}(t)\right|.$$

- 19-

Poof. For m = 1 the lemma is certainly true. Let m > 2 . By Properties 8

we can suppose that 3 = 1. Let

$$\mathbf{B} = \prod_{\mathbf{1}=2}^{\mathbf{m}} (\mathbf{f}_{\mathbf{1}}, \mathrm{d}\alpha) .$$

Thon

$$\|A_n(f_1,d\alpha)B\| = |\frac{1}{n}\sum_{k=1}^n\sum_{j=1}^n a_{kj}(f_1,d\alpha)b_{jk}| \le$$

$$\leq |\frac{1}{n}\sum_{k=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{a_{k}f}f_{1}^{f},d\alpha|\sum_{j=1}^{n}b_{jk}^{2})^{\frac{1}{2}}|\leq$$

$$\leq \max_{k=1,\;2,\;\ldots,\;n\;j=1} (\sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} a_{kj}^{2}(f_{1},d\alpha))^{\frac{1}{2}} |\;.$$

By Bessel's inequality

$$\sum_{j=1}^{n} a_{kj}^{2}(f_{1}, d\alpha) = \sum_{j=0}^{n-1} \left\{ \int_{-\infty}^{\infty} k_{-1}(d\alpha, t) \ p_{j}(d\alpha, t) \ f_{j}(t) d\alpha(t) \right\}^{2} \le$$

$$\leq \int_{-\infty}^{\infty} p_{k-1}^2 (\mathrm{d}\alpha,t) \; f_1^2(t) \; \mathrm{d}\alpha(t) = \mathrm{a}_{kk} (f_1^2,\mathrm{d}\alpha) \; .$$

Thus by Properties 8

$$\|A_n(f_1, d\alpha)B\| \le \|\sqrt{A_n(f_1^2, d\alpha)}\|$$
 ((B)) $\le \|\sqrt{A_n(f_1, d\alpha)}\| \prod_{i=2}^m ((A_n(f_i, d\alpha)))$

nd now use Lemma 9.

Lemma II. Let $supp(d\alpha)$ be compact, $s \in \mathbb{N}$ and π be a polynomial.

hen

11m
$$\|A_n^S(\pi, da) - A_n^{(\pi^S, da)}\| = 0$$
.

Proof. See Grenander-Szegő, §8.1.

Let us remark that in the previous lemma it is sufficient to suppose that for da the moment problem is well defined, that is for x^kf , $x^kg\in L^2d\alpha\ (k=0,1,\dots)\ A(fg,d\alpha)=A(f,d\alpha)\ A(g,d\alpha)\ .$

Lemma 12. Let $\alpha \in M(a,b)$, f be $d\alpha$ measurable and bounded on supp($d\alpha$). If b=0 and f is continuous at a then

$$\lim_{n\to\infty} \| \int_{A} (f^2, d\alpha) \| = |f(a)|.$$

If b > 0 and f is Riemann integrable on [a-b, a+b] then

$$\lim_{n\to\infty} \|\sqrt{A_n(f^2,d\alpha)}\| = \left[\frac{1}{\pi} \int_{a-b}^{a+b} f^2(t) \frac{dt}{\sqrt{b^2-(ta)^2}}\right]^{\frac{1}{2}}.$$

Proof. See Theorems 4. 2. 10 and 4. 2. 14.

Let us recall that we consider Toeplitz matrices $\,A(t,d\alpha)\,$ for real valued functions $\,f$.

Theorem 13. Let $a \in M(a,b)$, $s \in I\!\!N$, f be da measurable and bounded on supp(da). Let for b = 0 f be continuous at a and for b > 0 f be Riemann integrable on [a-b,a+b]. Then

$$\lim_{n\to\infty} \|A_n^S(f,d\alpha) - A_n(f^S,d\alpha)\| = 0.$$

Proof. Let m be a polynomial. Since Tr AB = Tr BA we have

$$\|A_{n}^{S}(f,d\alpha)-A_{n}(f^{S},d\alpha)\|=\|A_{n}^{S}(f-\pi+\pi,d\alpha)-$$

$$-A_{n}((f-\pi+\pi)^{S}, d\sigma) \| =$$

$$= \left\| \left[\mathsf{A}_{\mathsf{n}}^{\mathsf{S}}(\pi, \mathsf{d}\alpha) - \mathsf{A}_{\mathsf{n}}(\pi^{\mathsf{S}}, \mathsf{d}\alpha) \right] + \right.$$

$$+\sum_{j=1}^{S}\binom{s}{j}A_{n}^{j}(f-\pi,d\sigma)A_{n}^{S-j}(\pi,d\sigma)+$$

$$+A_{n}(-\sum_{j=1}^{S}\binom{s}{j}(f-\pi)^{j}\pi^{S-j},d\alpha)\|=$$

$$= \|A_{I} + A_{II} + A_{III} \| .$$

Let, for the simplicity, b>0. If b=0 then we shall see from the proof that we can put $\pi(t)\equiv f(a)$. By Lemma II

$$\lim_{n\to\infty} \|A_1\| = 0.$$

By Theorem 4.2.14

(1)
$$\lim_{n\to\infty} \|A_{III}\| = \left|\frac{1}{\pi} \int_{a-b}^{a+b} \left\{\sum_{j=1}^{S} {s \choose j} (f(t) - \pi(t))^{\frac{1}{j}} \right\}.$$

We have, further, by Lemma 10

$$\limsup_{n\to\infty} \|A_{II}\| \le \sum_{j=1}^{S} {s \choose j} \lim \sup_{n\to\infty} \| \sqrt{A_{II}((f-\pi)^2, d\alpha)} \|$$

sup
$$|f(t) - \pi(t)|^{\frac{1}{2}-1}$$
 sup $|\pi(t)|$ te supp (do)

Hence by Lemma 12

$$\limsup_{n\to\infty} \|A_{II}\| \leq \left[\frac{1}{\pi} \int_{-a-b}^{a+b} \frac{\{(t_1-\pi(t_1))^2-1\}^{\frac{1}{2}}}{a-b-(t-a)^2} dt\right]^{\frac{1}{2}}.$$

. 2 s sup ($\left| f(t) \right| + \left| \pi(t) \right| \right)^{s-1} \equiv R(f,\pi)$, to Supp(do)

and from (1) we get the same estimate for $\lim_{n\to\infty}\|A_{111}\|$:

$$\lim_{n\to\infty}\|A_{III}\| \le R(f,\pi) \ .$$

The theorem will be proved if we show that for every $\varepsilon > 0$ one can find a polynomial π such that $R(f,\pi) < \varepsilon$. This latter can be shown easily. Let f_1 be a function on Δ (do) such that $f_1(t) = f(t)$ for $t \in [a-b, a+b]$, $|f(t)| \le |f_1(t)|$ for $t \in \Delta(do)$ and $f_1 \in L^\infty(\Delta(do))$. Let us send $\Delta(do)$ to [-1,1] by a linear transformation and then to $[0,\pi]$ by $x = \cos\theta$ (-1 < x < 1), $0 \le \theta \le \pi$). Set $g(\theta) = f_1(t)$ ($t \in \Delta(da)$, $\theta \in [0,\pi]$). Let g^* denote the even extension of g to $[-\pi,\pi]$. Consider the Fejer sums of g^* . They are cosine polynomials, they are bounded in maximum norm: $\|\sigma_n(g^*)\| \le \sup_{t \in \Delta(da)} |f_1(t)|$, they converge to g^* in e.g. $L^{10}[-\pi,\pi]$. Let us return now to $\Delta(da)$ and remark that

$$\int_{a-b}^{a+b} \frac{|f(t)_{-\pi}(t)|^2}{\sqrt{b^2_{-(t-a)}^2}} \, dt \le \mathbb{C} \left[\int_{\Delta(d\alpha)} |f(t)_{-\pi}(t)|^{10} \sqrt{\Delta(d\alpha)}(t) dt \right]^{1/5}.$$

Theorem 14. Let $\alpha \in M(a,0)$, f be do measurable, bounded on $\sup(d\alpha)$ and continuous at a. Let $\mathfrak F$ be bounded on $\Delta \subset f(\operatorname{supp}(d\alpha))$ and $\operatorname{continuous}$ at f(a). Then

ī

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\mathfrak{F}(x_{kn}(f,do))=\mathfrak{F}(f(a))\ .$$

Proof. Observe that if $f(\operatorname{supp}(do)) \subseteq \Delta$ then $x_{kn}(f,do) \in \Delta$ for $n=1,2,\ldots$ and $k=1,2,\ldots,n$. This can be shown by exactly the same argument as in Lemma 9. Let first $\mathfrak{F}(u)=u^{\mathcal{S}}$ $(s=0,1,2,\ldots)$. For s=0 the theorem is true. For s=1

$$\sum_{k=1}^{n} x_{kn}(f, d\omega) = \text{Tr } A_n(f, d\omega)$$

and we apply Theorem 4.2.10. If s > 2 then

$$\sum_{k=1}^{n} \frac{x_{s}^{s}(f, d\sigma) = \text{Tr } A_{n}^{S}(f, d\sigma)}{}$$

as is well known and we use Theorems 13 and 4.2.10. Hence the theorem is true if $\mathfrak F$ is a polynomial, and consequently it is true if $\mathfrak F$ is continuous on Δ . Otherwise we use one-sided approximations.

Theorem 15. Let $a \in M(a,b)$ with b>0. Let f be do measurable, bounded on supp(da) and Riemann integrable on $\{a,b,a+b\}$. Let g be continuous on $\Delta \supset f(supp(da))$. Then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}3(x_{kn}(f,d\sigma))=\frac{1}{\pi}\int_{a-b}^{a+b}\frac{3(f(t))}{\sqrt{b^2-(t-\alpha)^2}}\,\,\mathrm{d}t\ .$$

Proof. The same as that of Theorem 14.

Theorems 14 and 15 give us the following

Theorem 16. Let a ϵ B, b \geq 0 and f be continuous on $\mathbb R$. Then for each pair of weights a_1 and a_2 belonging to M(a,b) the eigenvalues of $A_n(f,da_1)$ and $A_n(f,da_2)$ are equally distributed.

6. Christoffel Functions

6.1. An Interpolation Process

The Hermite-Fejér interpolation polynomial $H_n(d\omega,f,x)$ is the unique polynomial at degree at most 2n-1 which satisfies the conditions

$$H_n(do, f, x_{kn}) = f(x_{kn}), H_n(do, f, x_{kn}) = 0$$

for $k=1,2,\ldots,n$. Here $x_{kn}=x_{kn}(d\omega)$. Hence

$$H_n(d\sigma,f,x) = \sum_{k=1}^n f(x_{kn}) \left[1-2\,I_{kn}'(d\sigma,x_{kn})(x-x_{kn})\right] \!\!\!/_{kn}^2 (d\sigma,x) \ . \label{eq:hamiltonian}$$

Let us compute I'(xk). We have

$$\lambda_n^{-1}(x) = \sum_{k=1}^n \frac{t_k^2(x)}{\lambda_k},$$

that is

$$-\lambda_n'(\mathbf{x})\,\lambda_n^{-2}(\mathbf{x}) = \sum_{k=1}^n \frac{2t_k'(\mathbf{x})t_k'(\mathbf{x})}{\lambda_{kn}} \ .$$

Putting here x = x we obtain

(1)
$$-2I_{k}^{\prime}(\mathbf{x}_{k}) = \lambda_{l}^{\prime}(\mathbf{x}_{k}) \lambda_{kn}^{-1}.$$

Thus

$$\begin{split} &H_n(do,f,x) = \sum_{k=1}^n f(x_{kn}) \left[\lambda_{kn}(do) + \lambda_n'(do,x_{kn})(x-x_{kn}) \right], \\ &f_{kn}(do,x) \\ &\vdots \\ &\frac{I_n^2(do,x)}{\lambda_{kn}(do)} \end{split}$$

This is Freud's representation for $H_n(d\omega,f,x)$. (See [6]). In the brackets here we find an approximate expression for $\lambda_n(d\omega,x)$:

$$\lambda_{n}(x) = \lambda_{kn} + \lambda_{1}(x_{kn})(x - x_{kn}) + \frac{\lambda_{n}'(\theta)}{2}(x - x_{kn})^{2}$$

where θ is between x and x_{kn} . Let us replace the expression in the brackets by $\lambda_n(da,x)$. Denote the resulting expression by $F_n(da,t,x)$:

$$F_n(d\sigma,f,x) = \lambda_n(d\sigma,x) \sum_{k=1}^n f(x_k) \frac{\ell_k^2(d\sigma,x)}{\lambda_k n(d\sigma)} \ .$$

or z e C put

$$F_n(\mathbf{d}\sigma,f,z) = \lambda_n^*(\mathbf{d}\sigma,z) \sum_{k=1}^n f(\mathbf{x}_k) \frac{t_n^2(\mathbf{d}\sigma,z)}{\lambda_{kn}(\mathbf{d}\sigma)}$$

pue

$$\widetilde{F}_{n}(\mathrm{d}\sigma,f,z)=\lambda_{n}(\mathrm{d}\sigma,z)\sum_{k=1}^{n}f(x_{kn})\frac{|t_{kn}^{2}(\mathrm{d}\sigma,z)|}{\lambda_{kn}(\mathrm{d}\sigma)}\ .$$

111

Properties 1. (i) If $f(\mathbf{x}) \equiv 1$ then $F_n(f, \mathbf{x}) \equiv 1$. (ii) If $f(\mathbf{x}) \geq 0$ for $\mathbf{x} \in \Delta(d\sigma)$ then $F_n(f, \mathbf{x}) \geq 0$ for $\mathbf{x} \in \mathbb{R}$. (iii) $F_n(d\sigma, f, \mathbf{x}_{Kn}) = f(\mathbf{x}_{Kn})$ for $k = 1, 2, \ldots, n$. (iv) $F_n(d\sigma, f, \mathbf{x}_{Kn}) = 0$ for $k = 1, 2, \ldots, n$ (use (1)). (v) F_n is a rational function at degree (2n-2, 2n-2), only the numerator degree $f(\mathbf{x}) = f(\mathbf{x}) = f(\mathbf{x$

Because of (11) we can expect that for many weights $|\alpha|_F$ (do, f) converges to f whenever f is continuous. The surprising result is that

the above class of weights σ is very large. We shall consider convergence of $F_n(d\sigma,f)$ for $\sigma\in M(a,b)$ with b>0 since the case when $\sigma\in M(a,0)$ is less interesting. In order to avoid complicated formulas we shall assume, without loss of generality, that $\sigma\in M(0,1)$. Concerning $\rho(z)$ see Definition 4.1.8.

Theorem 2. Let $a\in M(0,1)$. Let f be bounded on $\Delta(da)$. If f is continuous at some $x\in \text{supp}(da)$ then

$$\lim_{n\to\infty} F_n(do, f, x) = f(x) .$$

If is continuous on the segment $\Delta \subset (-1,1)$ then (2) is satisfied uniformly for $x \in \Delta$. If is Riemann integrable on [-1,1] and bounded on $\Delta(d\sigma)$ then for every $z \in \mathbb{C} \setminus \text{supp}(d\sigma)$

$$\lim_{n\to\infty} F_n(d\alpha,f,z) = \frac{\rho^2(z)-1}{2\pi} \int_{-1}^1 f(t) \frac{\sqrt{1-t^2}}{(z-t)^2} dt$$

and

$$\lim_{n\to\infty} \widetilde{F}_n(\mathrm{d}\omega,\,f,\,z) = \frac{\left|\rho(z)\right|^2 - 1}{2^n} \int_{-1}^1 f(t) \, \frac{\sqrt{1-t^2}}{\left|z-t\right|^2} \, \mathrm{d}t \ .$$

Proof. The theorem follows from Theorems 3.2.3, 3.3.8, 4.1.11 and Properties 1. Let us prove e.g. the first part of the theorem. Let $\epsilon > 0$ Then

$$\begin{split} & |F_n(f,x) - f(x)| \le \sup_{|x-t| \le \varepsilon} |f(t) - f(x)| + \\ & |x - t| \le \varepsilon \\ & + 2 \frac{\gamma_{n-1}}{\gamma_n} \varepsilon^{-2} \lambda_n (d\alpha, x) p_n^2 (d\alpha, x) \sup_{t \in \Delta(d\alpha)} |f(t)| . \\ & - 75 - \end{split}$$

First let n - o and then s - 0 .

<u>Definition 3.</u> Let $g(\geq 0) \in L^1_{d,\alpha}$. Then o_g is defined by

$$\alpha_{\mathbf{g}}(\mathbf{t}) = \int_{-\infty}^{\mathbf{t}} g(\mathbf{u}) d\omega(\mathbf{u})$$

Let us remark that a_g may not be a weight, it can happen that either a_g has only a finite number of points of increase or not each moment of a_g is finite. If g is a polynomial then a_g certainly is a weight. If supplies is compact and g^{-1} $\in L^1_{d,\alpha}$ then also a_g is a weight.

Lemma 4. Let g be a linear function, nonnegative on $\operatorname{supp}(d\sigma)$ (g(t) = $c_1^t + c_2$, $c_1 \neq 0$). Then

(3)
$$\lambda_{n}^{-1}(d\alpha_{g}, x) = \sum_{k=1}^{n} \frac{\ell_{kn}^{2}(d\alpha_{k}, x)}{g(x_{kn}(d\alpha)) \lambda_{kn}(d\alpha)}$$

Proof. (By Freud [7]). Let us denote the right hand side of (3) by A . We have to show that for every n_{n-1}

(4)
$$\pi^{2}_{n-1}(x) \le A \int_{-\infty}^{\infty} \pi^{2}_{n-1}(t) d_{\sigma_{g}}(t)$$

and for every $x \in \mathbb{R}$ there exists a π_{n-1}^* which turns (4) into equality. We have $\pi_{n-1} \equiv L_n(d\alpha, \ \pi_{n-1})$. Hence

$$\label{eq:resolvent} \pi_{n-1}^2(x) \le \sum_{k=1}^n \lambda_{kn} (d_{\alpha}) \ \pi_{n-1}^2(x_{kn}) \ g(x_{kn}) \ A \ .$$

Since $\deg \pi_{n-1}^2 \ g \le 2n$ -1 we can use the Gauss-Jacobi mechanical quadrature to obtain

On the other hand we can define " by

$$r_{n-1}(t) = \sum_{k=1}^{n} \frac{r_{kn}(do, t) r_{kn}(do, x)}{q(x_{kn}(do)) \lambda_{kn}(do)}$$

Lemma 5. Let supp(da) be compact and let c be one of the endpoints

of A(da). Then

$$\sum_{k=1}^{n} \lambda_{kn}(d\omega) \frac{p_{n-1}^{2}(d\omega, x_{kn})}{|c-x_{kn}|} \leq \frac{\gamma_{n}^{2}(d\omega)}{\gamma_{n-1}^{2}(d\omega)} |c-\omega_{n}(d\omega)|$$

Proof. (By Freud [8]). Since p, (da, c) # 0

$$\sum_{k=1}^{n} \lambda_{n} (da) \frac{p_{n-1}^{2} (da, x_{n})}{c - x_{kn}} = \frac{\gamma_{n}}{\gamma_{n-1}} \frac{p_{n-1} (da, c)}{p_{n} (da, a)}$$

Further sign $p_{n+1}(d\alpha,c)$ = sign $p_{n-1}(d\alpha,c)$. Thus by the recurrence formula

$$|c-a_n| |p_n(da,c)| \ge \frac{v_{n-1}}{v_n} |p_{n-1}(da,c)|$$
.

The lemma follows from the above two formulas.

Theorem 6. Let $\alpha \in M(0,1)$. Let $g(t) = c_1^1 + c_2$ $(c_1 \neq 0)$ be nonnegative on $supp(d\alpha)$. Then for every $x \in supp(d\alpha)$

$$\lim_{n \to \infty} \frac{\lambda_n(d\omega_g, x)}{\lambda_n(d\omega, x)} = g(x)$$

and the convergence is uniform for $x \in \Delta \subset (-1,1)$.

-77-

Proof. We have by Lemma 4

$$\frac{\lambda_n(d\alpha,x)}{\lambda_n(d\alpha_g,x)} = F_n(d\alpha,g^{-1},x) .$$

If g is positive on $\Delta(da)$ we can directly apply Theorem 2. Next let g vanish at one of the endpoints of $\Delta(da)$ which we denote by c. First we show that

$$\lim_{n\to\infty} \frac{\lambda_n(da_g,c)}{\lambda_n(da_g,c)} = 0 \ (=g(c)) \ .$$

Let $\epsilon > 0$. Then $g + \epsilon$ is positive on $\Delta(d\alpha)$. Hence

$$0 \le \frac{\lambda_n(da_g,c)}{\lambda_n(da_g,c)} \le \frac{\lambda_n(da_g+\epsilon^{\prime}c)}{\lambda_n(da_g,c)} \xrightarrow{n\to\infty} g(c) + \epsilon = \epsilon.$$

Now let $\mathbf{e} \to 0$. If $\mathbf{x} \in \operatorname{supp}(d\sigma) \setminus c$ then for small $\delta > 0$ g^{-1} is bounded in $[\mathbf{x} + \delta, \mathbf{x} + \delta]$ (and g^{-1} is uniformly bounded in $\Delta \subset (-1,1]$). Writing g(t) = A(t-c) we have

$$\begin{split} |F_{n}(da, g^{-1}, x) - g^{-1}(x)| &= |\sum_{|\mathbf{x} - \mathbf{x}_{k}| \le \delta} + \sum_{|\mathbf{x} - \mathbf{x}_{k}| > \delta} \\ &\leq \frac{A\delta}{g(x)} \max_{|\mathbf{t} - \mathbf{x}| \le \delta} - \frac{\gamma}{g(1)} + \delta^{-2} \frac{\gamma_{n-1}^{2}}{\gamma_{n}} \lambda_{n}(x) p_{n}^{2}(x) \\ &\cdot \sum_{|\mathbf{x} - \mathbf{x}_{k}| > \delta} + \frac{|g^{-1}(x) - g^{-1}(\mathbf{x}_{k})| \lambda_{k}}{\gamma_{n}} \sum_{n=1}^{2} (x) p_{n}^{2}(x) \\ &\leq \frac{A\delta}{g(x)} \max_{|\mathbf{t} - \mathbf{x}| \le \delta} - \frac{1}{g}(\mathbf{t}) + \delta^{-2} \frac{\gamma_{n-1}^{2}}{\gamma_{n}} \lambda_{n}(x) p_{n}^{2}(x) p_{n}^{2}(x) \\ &+ A^{-1} \delta^{-2} \frac{\gamma_{n-1}^{2}}{\gamma_{n}} \lambda_{n}(x) p_{n}^{2}(x) \sum_{k=1}^{2} \lambda_{k} \frac{p_{n-1}^{2}(x_{k})}{|x_{k} - c|} \end{split}$$

By Lemma 5 we obtain

$$\begin{split} |F_n(do,g^{-1},x)-g^{-1}(x)| &\leq A\delta g^{-1}(x) \mod x \ g^{-1}(t) + \\ |x-t| &\leq \delta \\ &+ \delta^{-2} \frac{\gamma_{n-1}}{\gamma_n^{-2}} \lambda_n(x) \ p_n^2(x) \ g^{-1}(x) + A^{-1} \delta^{-2} \lambda_n(x) \ p_n^2(x) |c-o_n| \ . \end{split}$$

This estimate and Theorem 4.1.11 shows that

lim F
$$(do, g^{-1}, x) = g^{-1}(x)$$

for x ε supp(da)\c and the convergence is uniform for x ε Δ C (-1,1) .

Lemma 7. Let $u \in \mathbb{C} \setminus (-1,1)$ and $z \in \mathbb{C} \setminus [01,1]$. Then

$$\frac{\rho^{2}(z)-1}{2\pi}\int_{-1}^{1}\frac{\sqrt{1-t^{2}}}{t^{2}(t-u)(t-z)^{2}}\,dt=\frac{1}{z-u}-\frac{\sqrt{z^{2}-1}\,\rho(z)}{(z-u)^{2}}\left[\wp^{-1}(u)-\wp^{-1}(z)\right]$$

where $\sqrt{z^2} - 1 > 0$ for z > 1.

Proof. Because of continuity arguments we can suppose that $z \neq u$ and

$$\frac{1}{\pi} \int_{-1}^{1} \frac{\sqrt{1-t^2}}{z-t} dt = \frac{1}{\rho(z)}$$

(See the proof of Theorem 4.1.13) we have

$$\frac{1}{\pi} \int_{-1}^{1} \frac{\sqrt{1-t^2}}{(u-t)(z-t)} dt = \frac{1}{(z-u)} \left[\rho^{-1}(u) - \rho^{-1}(z) \right] .$$

Differentiating this identity with respect to z we obtain the lemma

Theorem 8. Let $\alpha \in M(0,1)$. Let g(t) = A(t-8) be positive on $\Delta(d\alpha)$.

Then for every z ∈ C \supp(da)

$$\lim_{n\to\infty} \frac{\lambda_n^*(d\sigma,z)}{\lambda_n^*(d\sigma_g^{'},z)} \approx g^{-1}(z) + \sqrt{z^2-1} \ \rho(z) \, \frac{d}{dz} \, g^{-1}(z) \ .$$

 $\cdot \left[\rho^{-1}(8) - \rho^{-1}(z)\right]$,

in particular,

$$\lim_{N \to 0} \frac{\lambda_n(do, B)}{\lambda_n(do_q, B)} = \frac{\rho(B)}{2(B^2 - 1)A}$$

Lemma 9. Let g(t) = A(t-B) (A \neq 0) be nonnegative on supp(do). Then Proof. Use Theorem 2, Lemmas 4, 7, Theorem 3.3.8 and Theorem 4.1.11.

$$\frac{\gamma_{n-1}^2(\mathrm{d}_{\alpha})}{\gamma_{n-1}^2(\mathrm{d}_{\alpha})} = \frac{1}{A} \frac{\gamma_n(\mathrm{d}_{\alpha})}{\gamma_{n-1}(\mathrm{d}_{\alpha})} \frac{p_{n-1}(\mathrm{d}_{\alpha},B)}{p_n(\mathrm{d}_{\alpha},B)}.$$

$$\frac{\gamma_{n-1}^2(\mathrm{d}\alpha_g)}{\gamma_{n-1}^2(\mathrm{d}\alpha)} = \lim_{x \to \infty} \frac{\lambda_n(\mathrm{d}\alpha_x,x)}{\lambda_n(\mathrm{d}\alpha_g,x)}$$

which equals by Lemma 4

$$\lim_{\substack{k=1\\ k=1}} \frac{\prod_{k=1}^{k} \frac{k^2(da, x)x^2}{k^2(da)g(x_k)}}{\prod_{k=1}^{k} \frac{\sum_{k=1}^{k} \frac{k^2(da) p_{n-1}^2(da, x_k) q^{-1}(x_k)}{\sum_{k=1}^{k} k^2(da) p_{n-1}^2(da, x_k)}}$$

$$= -\frac{1}{A}\sum_{k=1}^{n} {}^{k}{}_{k}(\mathrm{d}\omega) \; p_{n-1}^{2}(\mathrm{d}\omega, {}^{k}) \; \frac{1}{B \cdot x_{k}} =$$

$$z = \frac{1}{A} \frac{Y_n(da)}{Y_{n-1}(da)} L_n(da, p_{n-1}(da), B) \cdot \frac{1}{p_n(da, B)} = \frac{1}{A} \frac{Y_n(da)}{Y_{n-1}(da)} \frac{p_n(da, B)}{p_n(da, B)} .$$

Lemma 10. Let $\alpha \in M(0,1)$. Let g(t) = A(t-B) be positive on $\Delta(d\alpha)$.

(5)
$$\lim_{n\to\infty} \frac{\gamma_{n-1}(da_g)}{\gamma_{n-1}(da)} = \left|\frac{2}{A\rho(B)}\right|^{\frac{1}{2}} = \exp\{-\frac{1}{2\pi}\int_{-1}^{1}\log g(t)\frac{dt}{\sqrt{1-t^2}}\}$$
.

Proof. If g is positive on $\Delta(d\alpha)$ then B is outside $\Delta(d\alpha)$. Hence by Theorem 4.1.13

)
$$\lim_{n\to\infty}\frac{p_{n-1}(\mathrm{d}\alpha,B)}{p_n(\mathrm{d}\alpha,B)}=\rho^{-1}(B)<\infty\ .$$

Applying Lemma 9 we see that the equality on the left side of (5) holds and consequently

$$\lim_{n\to\infty} \frac{\gamma_{n-1}(da_g)}{\gamma_n(da_g)} = \frac{1}{2}.$$

Putting α = Tschebyshev weight we have α \in S and α_g \in S (Let us recall that $[-1,1] \subset \Delta(d\beta)$ for $\beta \in M(0,1)$ and hence g is positive on [-1,1]. Using Lemma 4.2.2 we obtain the right side equality in (5). Now we have to show that

$$\lim_{n\to\infty} a_n(\mathrm{d}a_g) = 0 .$$

Let us develop g $p_i(d\alpha_g)$ into a Fourier series in $p_k(d\alpha)$. It is easy to see that

$$g(x)\,p_n(\mathrm{d}\alpha_g,\,x) = \frac{\gamma_n(\mathrm{d}\alpha)}{\gamma_n(\mathrm{d}\alpha_g)}\,\,\,\mathrm{p}_n(\mathrm{d}\alpha,\,x) + A\,\frac{\gamma_n(\mathrm{d}\alpha_g)}{\gamma_{n+1}(\mathrm{d}\alpha)}\,\,\mathrm{p}_{n+1}(\mathrm{d}\alpha,\,x) \ .$$

ence

$$\int_{-\infty}^{\infty} g^2(x) p_n^2(d\alpha_g, x) d\alpha(x) = \frac{\gamma_n^2(d\alpha)}{\gamma_n^2(d\alpha_g)} + A^2 \frac{\gamma_n^2(d\alpha_g)}{\gamma_n^2(d\alpha_g)}$$

The left side equals

$$\int\limits_{-\infty}^{\infty} A(x-B) \, p_n^2(\mathrm{d}\alpha_g, \, x) \, \mathrm{d}\alpha_g(x) = \mathrm{A}\alpha_n(\mathrm{d}\alpha_g) \, - \, \mathrm{A}\mathrm{B} \ .$$

Thus by Lemma 9

$$\alpha_n(\mathrm{d}_{\mathfrak{G}}) = \mathtt{B} - \frac{\gamma_n(\mathrm{d}_{\mathfrak{G}})}{\gamma_{n+1}(\mathrm{d}_{\mathfrak{G}})} \left\{ \frac{p_{n+1}(\mathrm{d}_{\mathfrak{G}},\mathtt{B})}{p_n(\mathrm{d}_{\mathfrak{G}},\mathtt{B})} + \frac{p_n(\mathrm{d}_{\mathfrak{G}},\mathtt{B})}{p_{n+1}(\mathrm{d}_{\mathfrak{G}},\mathtt{B})} \right\}$$

By (6) $\lim_{n\to\infty}a_n(d\alpha_g)$ exists and equals $B-\frac12\left[\rho(B)+\rho^{-1}(B)\right]=0$. Consequently $\alpha_n\in M(0,1)$.

Remark II. Lemma 9 and the proof of Lemma 10 show that if g(t) = A(t-B) is positive on $\Delta(d\alpha)$ and $\alpha \in M(0,1)$ then

$$\lim_{n\to\infty} \frac{g(z)}{p_n(d\alpha,z)} \frac{d(\alpha_g,z)}{d(\alpha_g,z)} = \frac{A}{\sqrt{2}} \left| \frac{1}{A\rho(B)} \right|^{\frac{1}{2}} \left[\rho(z) - \rho(B) \right]$$

for $z \in \mathbb{C} \setminus \sup\{da\} \setminus \{B\} = \mathbb{C} \setminus \sup\{da_d\} \setminus \{B\}$.

This remark and Theorem 4.1.11 give a new proof of Theorem 8. $\frac{\text{Lemma 12}}{\text{Lemma 12}}. \quad \text{Let } \alpha \in M(0,1) \, . \quad \text{Let } g(x) = (x-A)^2 + B^2 \quad \text{with } A \in \mathbb{R} \, ,$ $B^2 > 0 \, . \quad \text{Then } \alpha_g \in M(0,1) \, \text{ and}$

()
$$\lim_{n \to \infty} \frac{\gamma_n(d_Q)}{\gamma_n(d_Q)} = 2 \left| \frac{1}{\rho(A+iB)\rho(A-iB)} \right|^{\frac{1}{2}} = \\ = \exp\left(-\frac{1}{2\pi} \int_{-1}^{1} \log g(t) \frac{dt}{1-t^2} \right).$$

Proof. Let us develop $\operatorname{\mathsf{gp}}_n(\mathsf{da}_{\widehat{\mathsf{g}}})$ in a Fourier series in $\operatorname{\mathsf{p}}_k(\mathsf{da})$. We have

(8)
$$g(x) p_1(da_g, x) = \frac{v_n(da)}{v_n(da_g)} p_n(da, x) + d_{n+1} p_{n+1}(da, x) + \frac{v_n(da_g)}{v_{n+2}(da)} p_{n+2}(da, x) + \frac{v_n(da_g)}{v_{n+2}(da)} p_{n+2}(da, x)$$

Unfortunately we cannot directly calculate $\, d_{n+1} \, . \,$ Let us note that $g(A\pm iB)=0$. Hence

$$\frac{\gamma_{n}(d_{\alpha})}{\gamma_{n}(d_{\alpha}g)} \ p_{n}(d_{\alpha},\, \lambda \pm iB) + d_{n+1} \ p_{n+1}(d_{\alpha},\, \, \lambda \pm iB) +$$

$$\frac{\gamma_n(d\sigma_g)}{\gamma_{n+2}(d\sigma)} p_{n+2}(d\sigma, \ \ A \pm 1B) = 0 \ .$$

Consequently

$$-d_{n+1} = \frac{\gamma_n(d\alpha)}{\gamma_n(d\alpha_g)} \frac{p_n(d\alpha, A+1B)}{p_{n+1}(d\alpha, A+1B)} + \frac{1}{p_n(d\alpha_g, A+1B)}$$

$$\begin{array}{ccc} & \gamma_n (d\alpha_g) & p_{n+2} (d\alpha, \, A+1B) \\ + & \gamma_{n+2} (d\alpha) & p_{n+1} (d\alpha, \, A+1B) \end{array}$$

and

$$\frac{\gamma_n^2(d\alpha)}{\gamma_n^2(d\alpha_g)} = \frac{\gamma_n(d\alpha)}{\gamma_{n+2}(d\alpha)} \left[\frac{p_{n+2}(d\alpha,A+1B)}{p_{n+1}(d\alpha,A+1B)} - \frac{p_{n+2}(d\alpha,A-1B)}{p_{n+1}(d\alpha,A-1B)} \right]$$

$$\begin{bmatrix} p_n(d\alpha,\,A-iB) & p_n(d\alpha,\,A+iB) \\ p_{n+1}(d\alpha,\,A-iB) & p_{n+1}(d\alpha,\,A+iB) \end{bmatrix}^{-1}$$

Letting n→∞ and using Theorem 4.1.13 we obtain

$$\lim_{n\to\infty} \frac{\gamma_n^2(\mathrm{d}_\alpha)}{\gamma_n^2(\mathrm{d}_\alpha^2)} = \frac{1}{4} \left[\rho(\mathrm{A} + \mathrm{IB}) - \rho(\mathrm{A} - \mathrm{IB}) \right] \, .$$

.
$$\left[\rho^{-1}(A-1B) - \rho^{-1}(A+1B)\right]^{-1} = \frac{1}{4} \rho(A+1B) \rho(A-1B)$$

which proves the left side equality in (7). The right side equality in (7) follows from Lemma 4.2.2. Now we shall show that for every

$$z \in \mathbb{C} \setminus \text{supp}(d\alpha) = \mathbb{C} \setminus \text{supp}(d\alpha_q) \quad (z \neq A \pm 1B)$$

(10)
$$\lim_{n\to\infty} \frac{p_n(da_g, z)}{p_n+1(da_g, z)} = p(z)^{-1}.$$

If (10) holds then by Theorem 4.1.12 $~\alpha_{\rm g}^{~\epsilon}$ M(0,1) . We obtain from (8) and (9)

$$\frac{g(z) p_n(da_g,z)}{p_n(da,z)} = \frac{\gamma_n(da_g)}{\gamma_n(da)} \begin{bmatrix} \gamma_{n+2}(da) \gamma_n(da) \\ \gamma_n(da_g) \end{bmatrix}$$

$$\left(\begin{array}{cccc} \gamma_{n+2}(d\sigma) \ \gamma_n(d\sigma) & p_n(d\sigma,A+iB) \\ \gamma_n^2(d\sigma_g) & p_{n+1}(d\sigma,A+iB) \end{array} \right. + \frac{p_{n+2}(d\sigma,A+iB)}{p_{n+1}(d\sigma,A+iB)}$$

$$p_{n+1}(da, z) + p_{n+2}(da, z) \\ p_n(da, z) + p_n(da, z)$$

By (7) and Theorem 4.1.13 for z ∈ C \ supp(da)\ (A ± 1B)

(11)
$$\lim_{n\to\infty} \frac{g(z) p_n(d\alpha_q, z)}{p_n(d\alpha, z)} = \frac{1}{2} \left| \frac{1}{p_1(A+iB)p(A-iB)} \right|^{\frac{1}{2}}.$$

Now (10) follows from Theorem 4.1.13. Hence $\alpha_{\bf q} \in {\mathbb M}(0,1)$.

Let us remark that by Theorem 4.1.13 (10) holds also for $z = A \pm iB$.

Lemma 13. Let $\alpha \in M(0,1)$. Let g(x) = (x-A)(x-B) (A \neq B) be positive on supp(da). Then $\alpha_g \in M(0,1)$,

$$\lim_{n \to \infty} \frac{v_n(d\omega_g)}{v_n(d\omega)} \approx 2 \left| \frac{1}{p(A)} \frac{1}{p(B)} \right|^{\frac{1}{2}} = \exp\left\{-\frac{1}{2\pi} \int_{-1}^{1} \log g(t) \frac{dt}{1-t^2}\right\},$$

further for every z e C \supp(da)\ [A, B]

$$\lim_{n\to\infty} \frac{g(z) p_n(d\alpha_g, z)}{p_n(d\alpha, z)} = \frac{1}{2} \left| \frac{1}{\rho(A) q(B)} \right|^{\frac{1}{2}}$$

.
$$[\rho(z) - \rho(A)][\rho(z) - \rho(B)]$$
.

Proof. The proof of Lemma 12 can be repeated. Note that A, B ϕ [-1,1] but may belong to $\Delta(d\sigma)$.

Lemma 14. Let $\alpha \in M(0,1)$ and let $g(x) = (x-A)^2$ where $A \in \mathbb{R} \setminus \operatorname{supp}(d\alpha)$, that is A may belong to $\Delta(d\alpha)$. Then $\alpha_g \in M(0,1)$ and

(12)
$$\lim_{n\to\infty} \frac{v_n(da_q)}{v_n(da)} = 2\left|\frac{1}{\rho(A)}\right| = \exp\left\{-\frac{1}{2\pi}\int_{-1}^1 \log g(t) \right| \frac{1}{\sqrt{1-t^2}}$$

Proof. The proof of Lemma 12 has to be modified. We have (8) and

$$g(A) = g'(A) = 0$$
. Hence

$$\frac{\gamma_{n}(d\alpha_{p})}{\gamma_{n}(d\alpha_{q})} \; p_{n}(d\alpha_{r},A) + \alpha_{n+1} \, p_{n+1}(d\alpha_{r},A) + \frac{\gamma_{n}(d\alpha_{q})}{\gamma_{n+2}(d\alpha)} \; p_{n+2}(d\alpha_{r},A) = 0$$

Print.

$$\frac{\gamma_{n}(\mathrm{d} \alpha)}{\gamma_{n}(\mathrm{d} \alpha_{g})} \ \sum_{n} (\mathrm{d} \alpha, \mathbb{A}) + \mathrm{d}_{n+1} \ \sum_{n+1} (\mathrm{d} \alpha, \mathbb{A}) + \frac{\gamma_{n}(\mathrm{d} \alpha_{g})}{\gamma_{n+2}(\mathrm{d} \alpha)} \ \sum_{n+2} (\mathrm{d} \alpha, \mathbb{A}) = 0 \ .$$

From here

$$(13) \qquad -d_{n+1} = \frac{\gamma_n(d\alpha)}{\gamma_n(d\alpha_g)} \frac{p_n(d\alpha, \lambda)}{p_{n+1}(d\alpha, \lambda)} + \frac{\gamma_n(d\alpha_g)}{\gamma_{n+2}(d\alpha)} \frac{p_{n+2}(d\alpha, \lambda)}{p_{n+1}(d\alpha, \lambda)}$$

and

$$\frac{p_{n}(d\alpha,A)}{\sum_{n+1}^{p}(d\alpha,A)} - \frac{p_{n}'(d\alpha,A)}{\sum_{n+1}^{p}(d\alpha,A)} - \frac{1}{p_{n+1}'(d\alpha,A)} \ .$$

Now (12) follows from Theorems 4.1.13, 4.1.16 and 4.1.17, further from Lemma 4.2.2. Using (8), (12), (13) and Theorem 4.1.13 we obtain by the same way as we did in the proof of Lemma 12 that

(14)
$$\lim_{n\to\infty} \frac{g(z)p_n(dq_y,z)}{p_n(do,z)} = \frac{1}{2} \left| \frac{1}{\rho(A)} \right| \left[\rho(z) - \rho(A) \right]^2$$

for z ϵ C\supp(da)\{A} which together with Theorems 4.1.12 and 4.1.13 shows that $a_{\rm g}$ ϵ M(0,1) .

Theorem 15. Let a & M(0,1). Let

$$g(x) = A \prod_{k=1}^{N} (x - B_k)$$

be positive on $\operatorname{supp}(\mathrm{d}\mathbf{a})$. Then $\mathbf{a}_{g}\in M(0,1)$,

$$\lim_{n\to\infty}\frac{\gamma_n\left(d\alpha\right)}{\gamma_n\left(d\alpha\right)}=\exp\left\{-\frac{1}{2\pi}\int_{-1}^1\log\,q(t)\frac{dt}{\sqrt{1-t^2}}\right.\}$$

and for every $z \in \mathbb{C} \setminus \text{supp}(d\alpha) \setminus \{B_k\}$

$$\lim_{n \to \infty} \frac{p_n(d\mathbf{a_g}, \mathbf{z})}{p_n(d\mathbf{a}, \mathbf{z})} = \frac{1}{2N} \exp\{-\frac{1}{2\pi} \int_{-1}^1 \log g(t) \frac{dt}{\sqrt{1-t^2}} \}.$$

$$\begin{array}{c} N \\ \hline \uparrow \\ k=1 \end{array} \begin{array}{c} \rho(z) - \rho(B_k) \\ z - B_k \end{array}.$$

Proof. Repeated application of Lemmas 10, 12, 13, 14, of Remark II and of formulas (II) and (14).

Definition 16. Let p . S. Then the Szegő function D(db, z) is defined by

$$D(d\beta,z) = \exp{\{\frac{1}{4\pi}\int_{-\pi}^{\pi} log\beta'(cost) \cdot \frac{1+ze^{-t}t}{1-ze^{-t}t}\,dt\}}$$

or |z| < 1

Properties 17. D \in H₂(|z| < 1), for almost every $t \in [-\pi,\pi]$

$$\lim_{r \to 1-0} D(d\beta, re^{it}) = D(d\beta, e^{it})$$

exists and $|\operatorname{D}(d\beta,e^{1t})|^2=\beta'(\cos t)$ for almost every t* [-\pi, \pi], \operatorname{D}(d\beta,z) * 0

for $|z|<1,\ D(d\beta,0)>0$. (See e.g. Freud, Chapter V.) Lemma 18. Let $\beta \in S,\ z \in \mathbb{C} \setminus [-1,1]$. Then

$$\lim_{n\to\infty} p_n(d\beta,z) \ \rho(z)^{-n} = \frac{1}{\sqrt{2\pi}} \ D(vd\beta, \ \rho(z)^{-1})^{-1}$$

and the convergence is uniform for $|\rho(z)| \ge R > 1$.

Proof. See e. g. Freud.

Lemma 19. Let $g(x) = A \prod_{k=1}^{N} (x - B_k)$ be positive on [-1,1]. Then for $z \in \mathbb{C} \setminus [-1,1]$

15)
$$D(g, \rho(z)^{-1}) = 2^{N} \exp\left(\frac{1}{2\pi} \int_{-1}^{1} \log g(t) \frac{dt}{\sqrt{1-t^{2}}}\right) .$$

$$\cdot \prod_{k=1}^{N} \frac{z - B_{k}}{\rho(z) - \rho(B_{k})} .$$

Proof. Put in Theorem 15 α = Tschebyshev weight and use Lemma 18. Then for $z \in \mathbb{C} \setminus [-1,1] \setminus \{B_k\}$ (15) holds and consequently it holds for every $z \in \mathbb{C} \setminus [-1,1]$.

Let us note that - because of continuity arguments - (15) holds

if $g(\pm 1) = 0$, further (15) holds for $z = \infty$ if g is only nonnegative on

-1,11.

Theorem 20. Let $\alpha \in M(0,1)$ and let g be a polynomial which is positive on supp(da). Then $\alpha \in M(0,1)$ and

$$\lim_{n\to\infty} \frac{\gamma_n(\mathrm{d}\alpha)}{\gamma_n(\mathrm{d}\alpha_g)} = \mathrm{D}(g,6) \ ,$$

$$\lim_{n\to\infty} \frac{p_n(d\alpha,z)}{p_n(d\alpha_g,z)} = D(g,\,\rho(z)^{-1})$$

for z e C \ supp(da) .

Proof. By Theorem 15 and Lemma 19 the only thing which we have to show is that if g(B) = 0 then

$$\lim_{n\to\infty} \frac{p_n(d\alpha,B)}{p_n(d\alpha_g,B)} = D(g,\,\rho(B)^{-1}) \ .$$

(16)

Let $\delta > 0$ be small enough. Then for $|z-B| = \delta$

$$\lim_{n\to\infty} \frac{p_n(d\alpha,z)}{p_n(d\alpha_g,z)} = D(g, p(z)^{-1}),$$

that is by Theorem 4.1.13

$$\lim_{n\to\infty} \frac{p_{n-1}(d\alpha,z)}{p_n(d\alpha g^2,z)} = \rho(z)^{-1} D(g,\, \rho(z)^{-1})$$

for $|z-B|=\delta$. Since $p_{n-1}(d\alpha,z)=L_n(d\alpha_g,\ p_{n-1}(d\alpha),z)$ we have

$$\left|\frac{p_{n-1}(d\alpha_s,z)}{p_n(d\alpha_g,z)}\right| \leq \frac{\gamma_{n-1}(d\alpha_g)}{\gamma_n(d\alpha_g)} \frac{1}{\epsilon} \sum_{k=1}^n \lambda_{kn} \left(d\alpha_g\right) \left| p_{n-1}(d\alpha,x_{kn}) \right| \,.$$

$$| \cdot |_{p_{n-1}(da_g,\, X_{Rn})} | \leq \frac{\gamma_{n-1}(da_g)}{\gamma_n(da_g)} \frac{1}{\epsilon} | (\int_{-\infty}^{p} p_{n-1}(da,t) \; da_g \; (t))^{\frac{1}{2}}$$

$$\leq \frac{\gamma_{n-1}(d\alpha_g)}{\gamma_n(d\alpha_g)} \frac{1}{\epsilon} \max_{t \in \text{supp}(d\alpha)} \left[g(t) \right]^{\frac{1}{p}}$$

for $n\geq N$ where ϵ and N are defined by Theorem 3.3.8. Since both $p_{n-1}(d\alpha,z)/p_n(d\alpha_g,z)$ and $\rho(z)^{-1} \; \mathrm{D}(g,\rho(z)^{-1})$ are analytic in $|z-B|\leq \delta$ if $\delta \leq \epsilon$ and $n\geq N$ we can apply Cauchy's integral formula and Lebesgue's theorem about $\lim_{n} \int_{\Omega} = \int_{\Omega} \inf_{n} f_{n}$ and we obtain

$$\lim_{n\to\infty} \frac{p_{n-1}(d\alpha,\, B)}{p_n(d\alpha_g,\, B)} = \rho(B)^{-1} \, D(g,\, \rho(B)^{-1}) \ .$$

Thus by Theorem 4.1.13 (16) holds.

Now we can easily generalize Theorem 8.

Theorem 21. Let $\alpha \in M(0,1)$. Let g be a polynomial which is positive on supp(d α). Then for every $z \in \mathbb{C} \setminus \text{supp}(d\alpha)$

$$\lim_{n\to\infty} \frac{\lambda_n^*(\mathrm{d}\alpha_g,z)}{\lambda_n^*(\mathrm{d}\alpha_y,z)} = \mathrm{D}(g,\,\rho(z)^{-1})^2$$

and

(17)
$$\lim_{n\to\infty} \frac{\lambda_n(d\alpha_q, z)}{\lambda_n(d\alpha, z)} = |D(g, \rho(z)^{-1}|^2.$$

Proof. Apply Theorems 20 and 4.1.11.

Remark 22. Let us put $\rho(z)^{-1} = re^{i\theta}$ (0 < r < 1) in (17). Then $z = \frac{1}{2} (re^{i\theta} + r^{-1}e^{-i\theta}) \longrightarrow \cos \theta$. By Properties 17 for almost every $\theta \in [-\pi,\pi]$

$$\lim_{r\to 1-0}\lim_{n\to\infty}\frac{\lambda_n(d\alpha_g,z)}{\lambda_n(d\alpha,z)}=g(x)\quad (x=\cos\theta)$$

which suggests

$$\lim_{n\to\infty} \frac{\lambda_n(\mathrm{d}_{\mathbf{g}_p},\mathbf{x})}{\lambda_n(\mathrm{d}_{\mathbf{g}_p},\mathbf{x})} = g(\mathbf{x}) \qquad (-1 \le \mathbf{x} \le 1) \ .$$

Property 23. Let z = re 0 < r < 1. Then

$$|D(d\beta,z)|^2 = \exp\left\{\frac{1}{2\pi}\int_{-\pi}^{\pi}\log\beta'(\cos t)\frac{1-r^2}{1-2\cos(\theta-t)+r^2}dt\right\}$$
.

(See e.g. Freud, Chapter V.)

Lemma 24. Let f be Riemann integrable on $\Delta \supset [-1,1]$ and let $f(x) \geq C > 0$ for $x \in \Delta$. Let 0 < R < 1 be fixed. Then for every $\epsilon > 0$ there exist two polynomials π_1 and π_2 such that

$$\frac{c}{2} \leq \pi_1(x) \leq f(x) \leq \pi_2(x)$$

for x & A and

$$\left| D(\pi_{2},z) \right|^{2} \left(1 \! \cdot \! \epsilon \right) \leq \left| D(f,z) \right|^{2} \leq \left| D(\pi_{1},z) \right|^{2} \left(1 \! + \! \epsilon \right)$$

for |z| < R.

Proof. Let $\epsilon > 0$. We construct a polynomial π_2 such that

$$f(x) \le \pi_2(x) \quad (x \in \Delta)$$

and

$$\int_{-\pi}^{\pi} \left[\pi_2(\cos t) - f(\cos t) \right] dt < \epsilon .$$

(See Szegő, 1.5.) Then by Property 23

$$\left| D(\pi_2,z) \right|^2 = \left| D(\pi_2 \, f^{-1},z) \right|^2 \left| D(f,z) \right|^2$$

and by Jensen's inequality

$$|\,D(\pi_2\,f^{-1},z)\,|^2 \leq \frac{1}{2\pi}\,\int_{-\pi}^{\pi} \frac{\pi_2(\cos t)}{f(\cos t)}\,\frac{1-r^2}{1-2r\cos(\theta-t)+r^2}\,\,\mathrm{d}t$$

 $(z = re^{i\theta})$. Hence

$$|\operatorname{D}(\pi_2^{-1},z)|^2 \le 1 + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\pi_2^{(\cos t) - f(\cos t)}}{f(\cos t)}$$

.
$$\frac{1-r^2}{1-2r\cos(\theta-t)+r^2}\,\,dt \le 1+ \text{const}\,\cdot\,\epsilon$$

for $|z| \le R$. The second part of the lemma can be proved in the same way. Since $f(x) \ge c > 0$ for $x \in \Delta$ we can choose π_1 so that $\pi_1(x) \ge \frac{c}{2}$

for x € △ . (See Szegō, 1.5.)

Theorem 25. Let $\alpha \in M(0,1)$. Let $g(\ge 0)$ be da measurable, $g^{\pm 1}$ be bounded on supp(do) and g be Riemann integrable on [-1,1]. Then for every $z \in \mathbb{C} \setminus \text{supp}(d\omega)$

$$\lim_{n\to\infty}\frac{\lambda_n(\mathrm{d}_{\mathbf{Q}_1},z)}{\lambda_n(\mathrm{d}_{\mathbf{Q}_1},z)}=\left\|\mathrm{D}(\mathbf{g},\rho(z)^{-1}\right\|^2\ .$$

Proof. By the assumptions σ_g is a weight, since g^{-1} ϵ L $d\alpha$. Recall

$$\lambda_n(d\sigma,z) = \min \int_{\pi_{n-2}}^{\infty} \left| (1 + (z - t) \pi_{n-2}(t)) \right|^2 d\sigma(t)$$
.

Let us construct two functions f₁ and f₂ such that both f₁ and f₂ are Then from da \leq d β it follows that $\lambda_n(d\sigma,z)\leq\lambda_n(d\beta,z)$ for every $z\in\mathbb{C}$ Riemann integrable on $\Delta(do)$, $f_1(x) = f_2(x) = g(x)$ for $x \in [-1,1]$ and

$$0 < c_1 \le f_1(x) \le g(x) \le f_2(x) \le c_2 < \infty$$

nomials π_1 and π_2 such that $\pi_1(\mathbf{x}) \geq c_1/2$, $\pi_2(\mathbf{x}) \geq c_1/2$ for $\mathbf{x} \in \Delta(\mathrm{d} \alpha)$, Then $|\rho(z)^{-1}|<1$. Let $\epsilon>0$. Then by Lemma 24 we can find two polyfor x ∈ ∆(da). We can do this by Theorem 3.3.7. Let z ∈ C\supp(da).

$$\lambda_n(d\sigma_n,z) \le \lambda_n(d\sigma_g,z) \le \lambda_n(d\sigma_n,z)$$

$$(1-\epsilon) |D(\pi_2, \rho(z)^{-1})|^2 \le |D(g, \rho(z)^{-1})|^2 \le$$

$$\leq (1+\epsilon) |D(\pi_{\mathbf{l}}, \rho(\mathbf{z})^{-1})|^2$$
.

Thus by Theorem 21

$$|D(q,\rho(z)^{-1})|^2 \frac{1}{1+\epsilon} \le \liminf_{n \to \infty} \frac{\lambda_n (d\sigma_{g'}z)}{\lambda_n (d\sigma_{g}z)} \le \limsup_{n \to \infty} \frac{\lambda_n (d\sigma_{g'}z)}{\lambda_n (d\sigma_{g}z)} \le \frac{1}{1-\epsilon} |D(q,\rho(z)^{-1})|^2 \ .$$

Theorem 26. Let $\alpha \in M(0,1)$ and g be as in Theorem 25. Then

$$\lim_{n\to\infty} \frac{\gamma_n(d\alpha)}{\gamma_n(d\alpha_g)} = D(g, 0) ,$$

and so

$$\lim_{n\to\infty} \frac{\gamma_{n-1}(\mathrm{d}\alpha_g)}{\gamma_n(\mathrm{d}\alpha_g)} = \frac{1}{2} .$$

Proof. Recall that from da \leq d β follows $\gamma_n(d\beta) \leq \gamma_n(d\alpha)$. Now we can repeat the proof of Theorem 25, the only difference is that this time we apply Theorem 20 instead of Theorem 21. Theorem 27. Let $\alpha \in M(0,1)$ and g be as in Theorem 25. Then $\alpha \in M(0,1)$ Proof. If we could directly calculate $a_n(da_q)$ the proof would probably be nice. Unfortunately we cannot do this. Let x supp(da). Then by Theorem 25

$$\lim_{n\to\infty} \frac{\lambda_n(\mathrm{d}_{\mathbf{g}},\mathbf{x})}{\lambda_{n+1}(\mathrm{d}_{\mathbf{g}},\mathbf{x})} \cdot \frac{\lambda_{n+1}(\mathrm{d}_{\mathbf{g}},\mathbf{x})}{\lambda_n(\mathrm{d}_{\mathbf{g}},\mathbf{x})} = 1 \ ,$$

that is

$$\lim_{n \to \infty} \frac{1 + \operatorname{p}_n^2(\mathrm{d}_{\mathcal{G}}, \mathbf{x}) \, \lambda_n(\mathrm{d}_{\mathcal{G}}, \mathbf{x})}{1 + \operatorname{p}_n^2(\mathrm{d}_{\mathcal{G}}, \mathbf{x}) \, \lambda_n(\mathrm{d}_{\mathcal{G}}, \mathbf{x})} = 1$$

Thus by Theorem 4.1.11

$$\lim_{n\to\infty} p_n^2(\mathrm{d}_{\mathbf{g}},\mathbf{x}) \ \lambda_n(\mathrm{d}_{\mathbf{g}},\mathbf{x}) = \rho(\mathbf{x})^2 - 1$$

Using Theorem 26 we obtain

$$\lim_{n\to\infty} \sum_{k=1}^{n} \lambda_{kn} (d_{Q}) \frac{p_{n-1}^{2} (d_{Q}, x_{kn})}{(x-x_{kn})^{2}} = \frac{i}{p(x)^{2} - 1} = -2 \frac{d}{dx} p(x)^{-1}$$

for x d supp(da). By Lebesgue's dominated convergence theorem we get

$$\lim_{n\to\infty}\sum_{k=1}^{n}\lambda_{kn}(\mathrm{d}\alpha_g)\frac{p_{n-1}^2(\mathrm{d}\alpha_g,\kappa_n)}{x-x_{kn}}=\frac{2}{\rho(x)}=\frac{2}{\pi}\int_{-1}^{1}\frac{\sqrt{1-t^2}}{x-t}\,\mathrm{d}t$$

for $x \notin \Delta(da)$. If f is continuous on $\Delta(da)$ then for every $\epsilon > 0$ we can find a function F of the form

$$F(t) = \sum_{j=1}^{N} a_j \frac{1}{x_j - t}$$

where a e C and x e R (A (do) such that

max
$$|F(t) - f(t)| \le \varepsilon$$
.

(See e.g. Achiezer, section of problems). Hence if f is continuous on

A(da) then

$$\lim_{n\to\infty}\sum_{k=1}^{n}\lambda_{kn}(d\sigma_g)\ f(x_{kn})\ p_{n-1}^2(d\sigma_g,x_{kn})=\frac{2}{\pi}\int_{-1}^{1}\ f(t)\sqrt{1-t^2}\ dt\ .$$

Consequently by Theorem 3.2.4 $\alpha_{\rm q}$ ϵ M(0,1).

Remark 2.8. Later we shall show (with the aid of the Pollaczek polynomials),

that if w is defined by

$$w(x) = \exp\{-(1-x^2)^{-\frac{1}{2}}\}$$

for $-1 \le x \le 1$ and supp(w) = [-1,1] then $w \in M(0,1)$. Consequently by

the previous theorem gw e M(0,1) if g > 0 is continuous on [-1, 1].

Let us remark that the above w is the "nicest" weight which does not belong to S.

Theorem 29. Let $a\in M(0,1)$ and let g satisfy the conditions of Theorem 2. Let $K\subset \mathbb{C}\ U\ \{\infty\}\setminus \sup_{x\in \mathbb{R}} U(a_x)$ be an arbitrary closed set. Then

$$\lim_{n\to\infty} \frac{p_n(d\sigma_{g'},z)}{p_n(d\sigma_{s'}z)} = D(g, \rho(z)^{-1})^{-1}$$

iniformly for Z e K.

Proof. If z \in R\supp(d\alpha) then (18) follows immediately from Theorem 25, 27, 3.3.8 and 4.1.11. Let K* be a region in \oplus U (∞) such that KCK*, \overline{K} * \(\text{N}\$ \text{ supp(d\alpha)} = \pha\$ and K* \(\text{N}\$ \text{ R} \times \text{ O}\$. By Theorem 3.3.8 the functions \(\text{p}_1\left(d\alpha_g, z)\) p₁(d\alpha_g, z) p₁(d\alpha_g, z)^{-1} are analytic in K*. If we can show that

(19)
$$\frac{|p_n(d\alpha_g,z)|}{|p_n(d\alpha,z)|} \le const$$

for $z \in \overline{K}^*$ and n=N, N+1, ... where $N=N(\overline{K}^*)$ then the theorem will follow from Vitali's theorem. Let d_N be defined by $d_N=\operatorname{dist}(\overline{K}^*)$, $\{x_{kn}(da)\}_{n=N}^{9,n}$, By Theorem 3. 3. 8 $d_N>0$ for some $N\in \mathbb{N}$. Let $n\geq N$ and $z\in \overline{K}^*$. Then

$$|p_n(\mathrm{d}\alpha_g,z)|^2 \leq \lambda_{n+1}(\mathrm{d}\alpha,z)^{-1} \int_{-\infty}^\infty p_n^2(\mathrm{d}\alpha_g,t) \; \mathrm{d}\alpha(t) \leq$$

$$\leq C \, \lambda_{n+1}(\mathrm{d} \mathfrak{a},z)^{-1} \int_{-\infty}^{\infty} p_n^2(\mathrm{d} \mathfrak{a}_g,t) \, \mathrm{d} \mathfrak{a}_g(t)$$

where $C^{-1} = \inf g(t)$. Hence $t \in Supp(de)$

| p (dog, z) | 2 < C | p (do, z) | 2 + C x (do, z) -1 .

urther we have

$$\lambda_{n} (da, z)^{-1} = \sum_{k=1}^{n} \frac{|\ell_{kn}(da, z)|^{2}}{\lambda_{kn}(da)} \le$$

$$\le \frac{v_{n-1}(da)^{2}}{v_{n}(da)^{2}} |p_{n}(da, z)|^{2} d_{N}^{-2} .$$

Consequently (19) is satisfied with const = $\left[C(1+d^{-2}|\Delta(d\sigma)|^2,\ 0.25)\right]^{\frac{1}{2}}$.

6.2. A Sequence of Positive Operators

Using the well known formula

$$t_{kn}(d\alpha, \mathbf{x}) = \lambda_{kn}(d\alpha) \, \mathbb{K}_n(d\alpha, \mathbf{x}, \mathbf{x}_{kn})$$

we obtain

$$F_n(\mathrm{d}\sigma,f,x) = \lambda_n(\mathrm{d}\sigma,x) \sum_{k=1}^n \lambda_{kn}(\mathrm{d}\sigma) \; f(x_{kn}) \; K_n^2(\mathrm{d}\sigma,x,x_{kn})$$

which is the Riemann-Stieltjes sum for

$$G_{n}(\mathrm{d}\alpha,f,x)=\lambda_{n}(\mathrm{d}\alpha,x)\int_{-\infty}^{\infty}f(t)\;K_{n}^{2}(\mathrm{d}\alpha,x,t)\;\mathrm{d}\alpha(t)\;\;,$$

For z e C we put

$$G_n(d\sigma,f,z) = \lambda_n^*(d\sigma,z) \int_{-\infty}^\infty f(t) \, k_n^2(d\sigma,z,t) \, d\sigma(t) \ . \label{eq:gradient}$$

ee 4. II.

Properties 1. (i) If $f(x) \equiv 1$ then $G_n(f,x) \equiv 1$. (ii) If $f(x) \ge 0$ for $x \in \operatorname{supp}(d\sigma)$ then $G_n(f,x) \ge 0$ for $x \in \mathbb{R}$. (iii) G_n is a rational function of degree (2n-2, 2n-2) where the denominator does not depend on f.

Theorem 2. Let $o \in M(0,1)$. Let f be do measurable and bounded on supp(do). Then for each $x \in \text{supp}(do) \setminus [-1,1]$

$$\lim_{n\to\infty}G_n(\mathrm{d}\alpha,f,x)=f(x)\ .$$

If $x \in [-1,1]$ and f is continuous at x then (1) holds. If f is continuous on $\Delta \subset (-1,1)$ then (1) holds uniformly for $x \in \Delta$. If f if continuous on supp(da) and $z \in \mathbb{C} \setminus \text{supp}(da)$ then

(2)
$$\lim_{n\to\infty} G_n(d\omega, f, z) = \frac{\sqrt{z^2-1}}{\pi} \int_{-1}^{1} \frac{f(t)}{(z-t)\sqrt{1-t^2}} dt.$$

Here \(\frac{z^2}{z} - 1 > 0 \text{ for } z > 1 \text{ .}

Proof. (i) Let $x \in \text{supp}(da) \setminus [-1,1]$. Then by Theorem 3.3.7 x is an isolated point of $\sup(da)$. Hence there exists $\epsilon > 0$ such that

$$G_{n}(f, x) = f(x) \frac{a(x+0) - a(x-0)}{\lambda_{n}(x)} + \lambda_{n}(x) .$$

$$\int_{|x-t| \ge \epsilon} f(t) K_{n}^{2}(x, t) da(t) .$$

Here the first term converges to f(x) when n+ ∞ . (See Freud, §II. 2, supp(d ω) is compact!) Remembering that

$$K_{n}(\mathbf{x},t) = \frac{\gamma_{n-1}}{\gamma_{n}} \frac{p_{n-1}(t) p_{n}(\mathbf{x}) - p_{n}(t) p_{n-1}(\mathbf{x})}{\mathbf{x} + t}$$

and using Theorem 4.1.11 we see that

$$\lim_{n\to\infty} \lambda_n(x) \int_{|x-t|>\epsilon} f(t) K_n^2(x,t) \, \mathrm{d}\alpha(t) = 0 \ .$$

vergence is uniform for $x \in \Delta \subset (-1,1)$. Thus by Properties I the usual machinery of positive operators can be applied. We do not go into details. (iii) Let $z \in \mathbb{C} \setminus \text{supp}(d\sigma)$. By Titze's theorem we can suppose that f is continuous on $\Delta(d\sigma)$. The function $(z-t)^{-2}$ restricted to supp $(d\sigma)$ is continuous and we can extend it to a function g which is continuous on

$$G_{n}(\mathbf{f},\mathbf{z}) = \lambda_{n}^{*}(\mathbf{z}) \frac{\gamma_{n-1}^{2}}{2} \int_{-\infty}^{\infty} \{(\mathbf{t}) \ g(\mathbf{t}) \ [p_{n-1}(\mathbf{t}) \ p_{n}(\mathbf{z}) - \frac{1}{2} \}$$

$$\begin{split} & - p_n(t) \; p_{n-1}(z) \, \Big|^2 \; d_o(t) \; = \\ & + \frac{\gamma_{n-1}^2}{\gamma_n} \, \Big[\lambda_n^*(z) \; p_n^2(z) \; \int_{-\infty}^{\infty} f(t) \; g(t) \; p_{n-1}^2(t) \; d_o(t) \; + \\ & + \lambda_n^*(z) \; p_n^2(z) \; \frac{p_n^2}{p_n^2(z)} \; \int_{-\infty}^{\infty} f(t) \; g(t) \; p_n^2(t) \; d_o(t) \; - \\ & + 2 \lambda_n^*(z) \; p_n^2(z) \; \frac{p_{n-1}(z)}{p_n^2(z)} \; \int_{-\infty}^{\infty} f(t) \; g(t) \; p_{n-1}(t) \; p_n(t) \; d_o(t) \Big] \end{split}$$

Now we apply Theorems 4.1.11, 4.1.13 and 4.2.13. We obtain

$$\lim_{n\to\infty} G_n(f,z) = \frac{1}{4\pi} \left[\rho^2(z) - 1 \right] \left[1 + \rho^{-2}(z) \right] \int_{-1}^{1} \frac{f(t)}{(z-t)^2 \sqrt{1-t^2}} dt - \frac{1}{2\pi} \left[\rho^2(z) - 1 \right] \rho^{-1}(z) \int_{-1}^{1} \frac{tf(t)}{(z-t)^2 \sqrt{1-t^2}} dt \right]$$
But $\left[\rho^2(z) - 1 \right] \left[1 + \rho^{-2}(z) \right] = 4z \sqrt{z^2 - 1}$ and $\left[\rho^2(z) - 1 \right] \rho^{-1}(z) = 2\sqrt{z^2 - 1}$

ance

$$\lim_{n\to\infty} \ G_n(f,z) = \frac{\sqrt{z^2-1}}{\pi} \int_{-1}^1 \frac{z-t}{(z-t)^2} \frac{f(t)}{\sqrt{1-t^2}} \ dt \ .$$

Let us note that once (2) holds for continuous functions then it also holds for Riemann integrable functions if $x \in \mathbb{R} \setminus \text{supp}(da)$. We shall not go into details since in the following we shall concentrate on convergence of $G_p(da,f,x)$ for $x \in \text{supp}(da)$. The following theorem explains why we

introduced the operators $\,G_{i}(d\alpha,f_{i})\,$ and why we should investigate them for as many weights $\,\alpha\,$ as possible.

<u>Theorem 3.</u> Let $g(\ge 0)$ $\in L^1_{d\alpha}$. If α is a weight then

$$\frac{\lambda_n(d_{\mathcal{Q}}, x)}{\lambda_n(d_{\mathcal{Q}}, x)} \le G_n(d_{\mathcal{Q}}, g, x)$$

for x & R and if g -1 e L then

$$G_n^{-1}(d\alpha, g^{-1}, x) \le \frac{\lambda_n(d\alpha_g, x)}{\lambda_n(d\alpha, x)}$$

Or x e R

Before the proof let us remark that (f $\,$ supp(da) is compact and

g-1 e L then og is a weight.

Proof. From

$$\lambda_n(d\sigma, x) = \min_{n=1}^{\infty} \prod_{n=1}^{-2} (x) \int_{-\infty}^{\pi} \prod_{n=1}^{2} (t) d\alpha(t)$$

Hows that

$$\begin{split} \lambda_n (\mathrm{d} \alpha_g, \mathbf{x}) & \leq \mathbf{K}_n^{-2} (\mathrm{d} \alpha_s, \mathbf{x}, \mathbf{x}) \int_{-\infty}^{\infty} \mathbf{K}_n^2 (\mathrm{d} \alpha_s, \mathbf{x}, t) \, \mathrm{d} \alpha_g(t) = \\ & = \lambda_n^2 (\mathrm{d} \alpha_s, \mathbf{x}) \int_{-\infty}^{\infty} \mathbf{K}_n^2 (\mathrm{d} \alpha_s, \mathbf{x}, t) \, g(t) \, \mathrm{d} \alpha(t) = \lambda_n (\mathrm{d} \alpha_s, \mathbf{x}) \, G_n(\mathrm{d} \alpha_s, \mathbf{y}) \end{split}$$

n the other hand

$$\pi_{n-1}(x) = \int_{-\infty}^{\infty} K_n(\mathrm{d} \alpha, x, t) \ \pi_{n-1}(t) \ \mathrm{d} \alpha(t) \ .$$

Thus

$$n_{n-1}^2(x) \le \int_{-\infty}^\infty K_n^2(d\alpha,\,x,\,t) \; g^{-1}(t) \; d\alpha(t) \; .$$

$$\int_{-\infty}^{\infty} \frac{2}{n_{n-1}}(t) \; g(t) \; do(t) \; = \; \lambda_{n}^{-1}(do,x) \; G_{n}(do,g^{-1},x) \; . \label{eq:sigma}$$

$$\int_{-\infty}^{\infty} \frac{2}{n-1}(t) d\alpha_g(t) ,$$

hat is

$$\lambda_n^{-1}(d\omega, g, x) \le \lambda_n^{-1}(d\omega, x) G_n(d\omega, g^{-1}, x)$$
.

From Theorems 2 and 3 we could immediately obtain limit relations

for

$$\lambda_{n}(d\alpha_{g}, x)$$

when both g and g are bounded on $\text{supp}(\text{d}\alpha)$. This condition however may be weakened by using the following two results.

Lemma 4. Let $\alpha \in M(0,1)$. Let $\{k_n\}$ be a sequence of natural integers which is bounded: $k_n \le k$ for every n. Then

$$\lim_{n\to\infty} \frac{\lambda_n(\mathrm{d}\alpha,x)}{\lambda_{n+k_n}(\mathrm{d}\alpha,x)} = 1$$

for every $\,x\,\varepsilon\,$ supp(do) and the convergence is uniform for $\,x\,\varepsilon\,\Delta\,\subset\,(-1,1)$.

oof. Since

$$1 \leq \frac{\lambda_n(\mathbf{x})}{\lambda_n + k_n} (\mathbf{x}) \leq \frac{\lambda_n(\mathbf{x})}{\lambda_n + k_n(\mathbf{x})} = \prod_{j=n}^{k_{r-1}} \frac{\lambda_j(\mathbf{x})}{\lambda_{j+1}(\mathbf{x})}$$

we have to consider only $\lambda_n(x)/\lambda_{n+1}(x)$ which equals

$$1 + \lambda_n(d\alpha, x) p_n^2(d\alpha, x)$$
.

Now we apply Theorem 4.1.111.

Theorem 5. Let $g(\geq 0)$ $\in L^1_{d,\alpha}$. Let a_g be a weight. Then for every polynomial P_i of degree m,

$$\frac{P_1^2(x) \lambda_n(d_{\mathcal{Q}},x)}{\lambda_{n-m_1}(d_{\mathcal{Q}},x)} \leq G_{n-m_1}(d_{\mathcal{Q}},q_1^2,x) \quad (n>m_1) \ .$$

If P_2 is a polynomial of degree m_2 such that $P_2^2 \ g^{-1} \ \epsilon \ L_{d\alpha}^1$ then

(7)
$$P_2^2(x) G_{n+m_2}^{-1}(d\alpha, q^{-1} P_2^2, x) \le \frac{\lambda_n(d\alpha_g, x)}{\lambda_n + m_2(d\alpha, x)}.$$

Let us note that if $\mathrm{supp}(d\sigma)$ is compact and $P_2^2 \ g^{-1} \ \varepsilon \ L_{d\alpha}^1$ for some polynomial P_2 then σ_g is a weight.

Proof. (6) follows from

$$\lambda_{n}(\text{d}_{\sigma_{g'}},x) \leq P_{1}^{-2}(x) \; K_{n-m_{1}}^{-2}(\text{d}_{\sigma_{g}},x,x) \int_{-\infty}^{\infty} P_{1}^{2}(t) \; K_{n-m_{1}}^{2}(\text{d}_{\sigma_{g}},x,t) \cdot \, \text{d}_{\sigma_{g}}(t)$$

whenever $n > m_1$. Further for every $\ensuremath{\pi_{n-1}}$

$$\int_{n-1}^{\infty} (x) \, P_2(x) = \int_{-\infty}^{\infty} \int_{n-1}^{\infty} (t) \, P_2(t) \, K_{n+m_2}(d\omega,x,t) \, d\omega(t) \ ,$$

that is

$$\begin{split} & \prod_{n-1}^{2}(x) \ P_{2}^{2}(x) \leq \int_{-\infty}^{\infty} \prod_{n-1}^{2}(t) \ g(t) \ do(t) \ \cdot \\ & \cdot \int_{-\infty}^{\infty} P_{2}^{2}(t) \ g^{-1}(t) \ K_{n+m_{2}}^{2}(do,x,t) \ do(t) \end{split}$$

which implies (7).

Theorem 6. Let $a \in M(0,1)$. Let $g(\geq 0) \in L^1_{d,\alpha}$ and suppose that there exist two polynomials P_1 and P_2 such that gP_1^2 and $g^{-1}P_2^2$ are bounded on supp(da). Then

(1) for every x e supp(da) \[-1,1]

$$\lim_{n\to\infty}\frac{\lambda_n(d_{g_1},x)}{\lambda_n(d_{g_1},x)}=g(x).$$

(11) If x e [-1,1] and g is continuous at x then (8) holds.

(iii) if g is continuous on $\Delta\subset (-1,1)$ and g(t) > 0 for t.e. Δ then (8) is satisfied uniformly for x.e. Δ .

Proof. Let first $x \in \text{supp}(da) \setminus [-1,1]$. Then by Theorem 3.3.7 x is an isolated point of supp(da). Hence g must be finite at x and then we can suppose that P_1 does not vanish at x. We obtain from Theorems 2,5 and Lemma 4 that

$$\limsup_{n\to\infty} \frac{\lambda_n(\mathrm{d}_{\mathbf{Q}_j},\mathbf{x})}{\lambda_n(\mathrm{d}_{\mathbf{Q}_j},\mathbf{x})} \le g(\mathbf{x})$$

which implies (8) if g(x)=0 . If g(x)>0 then we can assume that P_2 does not vanish at x . Then by the same argument

(10)
$$\lim_{n\to\infty} \inf_{\lambda_n(d\omega_n,x)} \frac{\lambda_n(d\omega_n,x)}{\lambda_n(d\omega_n,x)} \ge g(x) .$$

Let now $x \in [-1,1]$. If g is continuous at x then $g(x) < \infty$ and thus we can suppose that $P_1(x) > 0$. Hence (9) holds again. If g(x) = 0 then (8) follows from (9). If g(x) > 0 then we can suppose $P_2(x) > 0$ which implies (10). If g is continuous on $\Delta \subset (-1,1)$ then the above argument can be used if only g is positive on Δ .

In order to illustrate the strength of this theorem we give a few ex-

amples.

Definition 7. u denotes the Jacobi weight, that is $supp(u) = \{-1,1\}$ and

$$u(x) \equiv u^{(a,b)}(x) = (1-x)^a (1+x)^b$$

for $-1 \le x \le 1$ where a, b > -1. Hence $u^{(-\frac{1}{2}, -\frac{1}{2})} \ge v$.

In the following it will always be clear if a, b are related with $u^{(\cdot,\,b)}$ or M(a,b) .

Example 8. Let α be the Tschebyshev weight $(\mathrm{d}\alpha(x)=v(x)\mathrm{d}x)$ and let $w(x)\sqrt{1-x^2}=g(x)$ be positive and continuous on [-1,1]. Then $w=v_g$. Further, by easy calculation,

$$\lambda_n^{-1}(\mathbf{v},\mathbf{x}) \approx \frac{1}{\pi} \left[n - \frac{1}{2} + \frac{1}{2} \, \mathrm{U}_{2n-2}(\mathbf{x}) \right]$$

where U is the Tschebyshev polynomial of second kind. Hence for every

Itm
$$[n-\frac{1}{2}+\frac{1}{2}U_{2n-2}(x)]\lambda_n(w,x)=\pi w(x)\sqrt{1-x^2}=\pi g(x)$$

(later and fall show that the convergence is uniform for x ([-1,1]), in

p.rtfrad.u

lim n
$$\lambda_n(w, \pm l) = \frac{\pi}{2} g(\pm l)$$
.

Example 9. Let $w = \phi u$ where $\phi > 0$ is continuous on [-1,1]. Then

$$\lim_{n\to\infty} n \lambda_n(w,x) = m \sqrt{1-x^2} w(x)$$

-10

uniformly for $x\in\Delta\subset (-1,1)$. This is, of course, not new.

Example 10. Let b > 0, supp(w) = [-b, b] and w > 0 be continuous on

[-b, b]. Then

$$w^b(x) = w(bx)$$

is a weight on [-l,l]. From the definition of Christoffel function we obtain

$$\lambda_n(w, x) = b\lambda_n(w^b, xb^{-1})$$
.

Hence

$$\lim_{n\to\infty} n \lambda_n(\mathbf{w}, \mathbf{x}) = \pi \sqrt{b^2 \cdot \mathbf{x}^2} \ \mathbf{w}(\mathbf{x})$$

uniformly for $x \in \Delta \subset (-b, b)$.

Example II. Let w be continuous on [-1,1] and w(x)>0 for $x\in (-1,1)$. Let $\varepsilon>0,\ \delta>0$ and $\Delta=[\{-1+\delta,\ 1+\delta\}]$. Then

$$1_{\Delta}(x) w(x) \le w(x) \le w(x) + \varepsilon$$

for -1 < x < 1. Hence

$$n \; \lambda_n(l_\Delta w, x) \le n \; \lambda_n(w, x) \le n \; \lambda_n(w + \varepsilon, x) \;\;,$$

where supp(w+e) = supp(w) is assumed. Thus by the previous examples

we have

$$w(x) = \sqrt{(1-\delta)^2 \cdot x^2} \le \lim_{n \to \infty} \lim_{n \to \infty} |x_n(w, x)| \le \pi \sqrt{1-x^2} \left[w(x) + \epsilon \right]$$

uniformly for $x \cdot \Delta_1 \subset \Delta^0$. Since $\epsilon > 0$ and $\delta > 0$ are arbitrary we

otain

lim n
$$\lambda_n(\mathbf{w}, \mathbf{x}) = \pi \sqrt{1-\mathbf{x}^2} \mathbf{w}(\mathbf{x})$$

uniformly for $x \in \Delta_1 \subset (-1,1)$. Recall that $w(\pm 1)$ may vanish.

Definition 12. Let a, b $\in \mathbb{R}$ with a > |b|. The Pollaczek weight $w^{(a,b)}$ is defined by $\sup(w^{(a,b)}) = [-1,1]$ and

$$= 2 \exp \left\{ \frac{\theta}{\sin \theta} (a \cos \theta + b) \right\} \left[1 + \exp \left\{ \frac{\pi}{\sin \theta} (a \cos \theta + b) \right\} \right]^{-1}$$

θ ε [0, π], x = cos θ.

Properties 13.

(1) We have

$$\alpha_n(w^{(a,b)}) = -\frac{b}{2n+1+a} = -\frac{b}{2n} + O(\frac{1}{2})$$

for n = 0,1,2,... and

$$\frac{v_{n-1}(w^{(a,b)}}{v_n^{(w^{(a,b)})}} = \frac{n}{2\sqrt{(n+\frac{a}{2})^{\frac{1}{2}}}} = \frac{1}{2} - \frac{1}{4an} + O(\frac{1}{2})$$

for n = 1, 2, ... (See Szegö, Appendix) *)

$$n \stackrel{P}{n}(x; a, b) =$$
= $[(2n-1+a)x+b] \stackrel{P}{n-1}(x; a, b) -$
- $(n-1) \stackrel{P}{n-2}(x; a, b), \quad n=2,3,4,...$

(iii)
$$(p_n^2(w^{(a,\,b)},x))$$
 is uniformly bounded for $x\in\Delta\subset(.l,\,l)$. To prove

this use Theorem 3.1.11 and Example II.

(iv) Let

$$\varphi(x) = w^{\left(a,b\right)}(x) \exp \left\{ \frac{(a+b)\pi}{\sqrt{2}\sqrt{1+x}} + \frac{(a-b)\pi}{\sqrt{2}\sqrt{1+x}} \right\}$$

Then φ is continuous and positive on [-1,1].

(v) Let $w^{(a)} = w^{(a,0)}$. Then $w^{(a)}$ is even and

$$\lim_{n\to\infty} \frac{p_n^2(w^{(a)}, 1)}{\sqrt{n} \exp[4\sqrt{a} \sqrt{n}]} = \frac{1}{4\pi} e^{-a} \frac{1}{\sqrt{a}}$$

(See Szegö, Appendix.)

$$\lim_{n \to \infty} \frac{\gamma_n(w^{(a,b)})}{2^n n^{\frac{a}{2}}} = \Gamma(\frac{a+1}{2})^{-1}$$

where Γ denotes the Γ function of Euler. (See Szegő, Appendix.)

711)

$$\lim_{n\to\infty}\lambda_n(w^{\{a\}},x)n=\pi\sqrt{1\!-\!x^2}\ w^{\{a\}}(x)$$

uniformly for $x \in \Delta \subset (-1,1)$ and

$$\lim_{n\to\infty} \lambda_n(\mathbf{w}^{\{\mathbf{a}\}}, \pm 1) n \exp\{\{\pm\sqrt{\mathbf{a}}\sqrt{n}\}\} = 2\pi e^{\mathbf{a}}$$

The first limit relation follows from Example II, the second one from (v) by a standard calculation.

-108-

^{*} Let us note that the formula (1.7) in the Appendix of Szegő's book is not quite correct, it should be written as

(viii) Let z ∈ C \[-1,1]. Then

lim p (w(a,b),z) p -n z
$$\sqrt{z^2-1}$$
 = n - $\sqrt{z^2-1}$ =

$$= \Gamma(\frac{1}{2} + \frac{az+b}{2\sqrt{z^2-1}})^{-1} \left[\frac{2\sqrt{z^2-1}}{\rho(z)} \right]^{-\frac{1}{2}} + \frac{az+b}{2\sqrt{z^2-1}}$$

(See Szegö, Appendix.)

$$\lim_{n\to\infty} \lambda_n^* (w^{(a,b)},z)^{-1} \rho^{-2n}(z) \frac{-\frac{az+b}{\sqrt{z^2-1}}}{n^{-2}} = \frac{az+b}{1}$$

$$= \Gamma\left(\frac{1}{2} + \frac{az+b}{2\sqrt{z^2-1}}\right)^{-2} \frac{1}{4(z^2-1)} \left[\frac{2\sqrt{z^2-1}}{\rho(z)}\right] \sqrt{z^2-1}$$

and

$$\lim_{n \to \infty} \lambda_n(w^{(a,\,b)},\,z)^{-1} \, \left| \, \rho(z) \, \right|^{-2n} \, \left| \, n \, 2\sqrt{z^2 - 1} \, \right|^{-2} = \frac{az + b}{\left| \, \rho(z) \, \right|^2 - 1} \, \left| \, r \, \left(\frac{1}{2} + \frac{az + b}{2\sqrt{z^2 - 1}} \right) \, \right|^{-2} \, \left| \, \frac{az + b}{\rho(z)} \, \right|^{-\frac{1}{2}} + 2\sqrt{z^2 - 1} \, \left| \, z \, \right|^{-\frac{1}{2}} + 2\sqrt{z^2 - 1} \, \left| \, z \, \right|^{-\frac{1}{2}} + 2\sqrt{z^2 - 1} \, \left| \, z \, \right|^{-\frac{1}{2}} + 2\sqrt{z^2 - 1} \, \left| \, z \, \right|^{-\frac{1}{2}}$$

These follow from (ii), (viii) and Theorem 4.1.11.

xample 14. Let w be defined by supp(w) = [-1,1] and

(11)
$$w(x) = \exp\left(-\frac{1}{\sqrt{1-x^2}}\right)$$

for
$$-1 \le x \le 1$$
. By Property 13(1v)

$$g(x) = w(x) w^{(\frac{1}{\pi})}$$

is positive and continuous on [-1,1]. We have $g(\pm 1)=\frac{1}{2}\exp(-\frac{1}{\pi})$ Hence by Properties (ii), (vii) and Theorem 6

$$\lim_{n\to\infty} \lambda_n(w,x)\cdot n = \pi \sqrt{1-x^2} \ w(x)$$

uniformly for $x \in \Delta \subset (-1,1)$ and

$$\lim_{n\to\infty}\lambda_n(w,\,\pm 1)\,n\,\exp\{4\sqrt{n\over\pi}\,\}=\pi\ .$$

By Theorem 6.1.27 w ϵ M(0,1) since w π ϵ M(0,1). By Property 13(v1) and Theorem 6.1.24

$$\lim_{n\to\infty}\frac{\gamma_n(w)}{2^nn^{2\pi}}=\Gamma\left(\frac{n+1}{2\pi}\right)\,\mathbb{D}\!\left(\frac{w}{n^2},\;0\right)^{-1}$$

and by Property 13(1x) and Theorem 6.1.25 for every z ∈ C\[-1,1]

$$\lim_{n\to\infty} \lambda_{n}(w,z) |\rho(z)|^{2n} \left| \sum_{n=-\infty}^{2\pi\sqrt{z^{2}-1}} \right|^{2} = \frac{1}{\pi\sqrt{z^{2}-1}} \left| \sum_{n=-\infty}^{2\pi\sqrt{z^{2}-1}} \right|^{1-\frac{z}{\sqrt{z^{2}-1}}} = \frac{1}{\pi\sqrt{z^{2}-1}} \left| \sum_{n=-\infty}^{2\pi\sqrt{z^{2}-1}} \right|^{1-\frac{z}{\sqrt{z^$$

-110-

Further by Theorem 6.1.29 and Property 13(viii) for every z ∈ C \[-1,1]

lim p₁(w, z) ·
$$\rho(z)^{-n}$$
 . $n^{2\pi}\sqrt{1-z^{2}}$ =

$$= \Gamma\left(\frac{1}{2} + \frac{2\sqrt{z^2-1}}{2m(z^2-1)}\right)^{-1} \cdot \left[\frac{2\sqrt{z^2-1}}{\rho(z)}\right]^{-\frac{1}{2}} + \frac{z}{2m\sqrt{z^2-1}}$$

$$\cdot D\left(\frac{w}{(\frac{1}{\pi})}, \rho(z)^{-1}\right)^{-1}.$$

Using Example 14 and Theorems 6.1.25-27 we immediately obtain Theorem 15. Let w be defined by (II). Let $q(\ge 0) \in L^1_{\mathbf{w}}$ be equivalent to a strictly positive and Riemann integrable function. Then every result in Example 14 remains true if we replace w by $\mathbf{w}_g = g\mathbf{w}$, in particular, $\mathbf{w} \in M(0,1)$.

Now we shall investigate $G_n(u, f)$ where $u = u^{(a, b)}$ is a Jacobi

weight.

Lemma 16. There exists a constant C = C(u) such that

$$p_n^2(u,x) \leq C[\sqrt{1\!-\!x}\,+\!\frac{1}{n}]^{-2a-1}\,[\sqrt{1\!+\!x}\,+\!\frac{1}{n}]^{-2b-1}$$

for |x| < 1, n = 1, 2, ...

Proof. See Szegő, \$7.32.

Lemma 17. For m = n-1, n and n = 1, 2, ...

$$\max_{|\mathbf{x}| \le 1} \lambda_n(\mathbf{u}, \mathbf{x}) \; \frac{2}{m}(\mathbf{u}, \mathbf{x}) = O(\frac{1}{n}) \; .$$

Proof. Apply Lemmas 16 and 6.3.5.

Let us note that Theorem 3.1.11 and Lemma 4 give

$$\max_{\mathbf{x}\in \Delta\subset \{-1,1\}} \lambda_n(u,\mathbf{x}) \; p_m^2(u,\mathbf{x}) = O(\frac{1}{n}) \quad (m=n-1,n) \quad .$$

Lemma 18. Let g (L O L U. Then

$$\lim_{n\to\infty} \frac{1}{n} \int_{-1}^{1} |g(t)| p_n^2(u,t) \ u(t) dt = 0 \ .$$

Proof. Let us consider \int_0^1 . If a < 0 then use Lemma 16. Let a ≥ 0 . Fix $\epsilon > 0$. Then

$$\frac{1}{n} \int\limits_0^1 |g(t)| \; p_n^2(u,t) \; u(t) dt \leq \frac{1}{n} \max_{0 \leq t \leq 1 - \epsilon} p_n^2(u,t) \;\; .$$

$$\int_{-1}^{1} |g(t)| |u(t)dt + C \int_{1-\epsilon}^{1} |g(t)| dt$$

again by Lemma 16. First let $\,n \to \infty\,$ and then $\,\epsilon \to 0\,$.

Theorem 19. Let $\mathfrak{g} \in L^1 \cap L_u^1$. If \mathfrak{g} is continuous on a closed set $\mathfrak{B} \subset [-1,1]$ then

$$\lim_{n\to\infty} G_n(u, g, x) = g(x)$$

uniformly for x e D .

Proof. We have to show that

 $\lim_{n\to\infty} \max_{|\mathbf{x}|\leq 1} \left\{ \lambda_n(\mathbf{u},\mathbf{x}) \int_{-1}^1 (\mathbf{x}\!-\!\mathbf{t})^2 \, K_n^2(\mathbf{u},\mathbf{x},t) \left| g(t) \right| u(t) dt \right\} = 0$

and then the machinery of positive operators can be applied. But this is so by Lemmas 17 and 18.

Theorem 20. Let g $\varepsilon \ L^1 \cap L^1_u$. Let $x \varepsilon$ (-1,1) be a Lebesgue point of g . Then

 $\lim_{n\to\infty} G_n(u,g,x) = g(x) .$

Proof. Let $x \in (-1,1)$ and $\epsilon > 0$ be fixed. If ϵ is small enough then

|G (u, 9, x) - g(x) | <

 $\lambda_n(u,x) \int_{|x-t|<\frac{1}{n}} + \int_{\frac{1}{n}} \frac{1}{s} |x-t| \le \epsilon + \int_{|x-t|>\epsilon} |g(t)-g(x)|$

 $K_n^2(u, x, t)u(t)dt$.

3y Lemmas 16-18

(12)
$$\lambda_n(u, x) \int_{|x-t| < \frac{1}{n}} < Cn \int_{|x-t| < \frac{1}{n}} |g(t) - g(x)| dt$$
,

(13)
$$\lambda_n(u, x) \int_{\overline{1}} \frac{|g(t) - g(x)|}{|x - t| \le e} \le \frac{c}{n} \int_{\overline{1}} \frac{|g(t) - g(x)|}{|x - t| \le e} dt$$

and the third term converges to 0 when $n \to \infty$. Iim (right side of (12)) = 0 $n \to \infty$ because x is a Lebesgue point of g. To estimate the right side of (13) we integrate by parts and remember that $\epsilon > 0$ is arbitrary.

Lemma 21. If a, b > -1 then

$$\lim_{n \to \infty} n^{2a+2} \lambda_n(u,1) = (a+1) 2^{a+b+1} \Gamma(a+1)^2$$

and

$$\lim_{n\to\infty} \frac{2^{b+2}}{n} \lambda_n(u,-1) = (b+1) 2^{a+b+1} \Gamma(b+1)^2$$

Proof. Szegő, §4.5 and easy calculation.

Theorem 22. Let $\operatorname{supp}(w) = [-1,1]$ and $\operatorname{suppose}$ that there exists a polynomial P such that $w^{-1} P^2 \in L^1(-1,1)$. Then for almost every $x \in [-1,1]$

$$\lim_{n\to\infty} n \, \lambda_n(w, x) = \pi \sqrt{1-x^2} \, .$$

If w is positive and continuous on a closed set $\mathfrak{B}\subset (-1,1)$ then (14) holds uniformly for $x\in\mathfrak{A}$. If w is continuous at $x\in (-1,1)$ then (14) holds. If there exists a Jacobi weight u such that w/u is positive and continuous on $\Delta\subset [-1,1]$ then

$$\lim_{n \to \infty} \frac{\lambda_n(\mathbf{w}, \mathbf{x})}{\lambda_n(\mathbf{u}, \mathbf{x})} = \frac{\mathbf{w}(\mathbf{x})}{\mathbf{u}(\mathbf{x})}$$

uniformly for $x \in \Delta$. If w/u in positive and continuous at 1 then

$$\lim_{n\to\infty} n^{2a+2} \lambda_n(\mathbf{w},1) = \frac{w(1)}{u(1)} (a+1) 2^{a+b+1} \Gamma(a+1)^2$$

If w/u is positive and continuous at -1 then

$$\lim_{n\to\infty} \frac{2^{b+2}}{n} \lambda_n(w,-1) = \frac{w(-1)}{u(-1)} (b+1) \frac{2^{a+b+1}}{2^{a+b+1}} \Gamma(b+1)^2$$

Proof. Put g = w, a = Legendre weight in the first part of the theorem and g = w/u, $a = \int u$ in the second part and use **Theorems** 3, 5, 19, 20, Lemmas 4, 21 and Example 9.

Corollary 23. Let supp(w) ⊂ [-1,1]. Then for almost every x € (-1,1)

$$\lim_{n\to\infty} \ _n(w,x) \le \ _n \sqrt{1{\cdot}x^2} \ w(x) \ .$$

Proof. Let $\varepsilon > 0$. Then $\lambda_n(\mathbf{w}, \mathbf{x}) \leq \lambda_n(\mathbf{w} + \varepsilon \mathbf{i}_{[-1,1]}^{\gamma}, \mathbf{x})$ and $(\mathbf{w} + \varepsilon \mathbf{i}_{[-1,1]}^{\gamma})^{-1} \varepsilon L^1$. Corollary 24. If $\frac{1}{\alpha^*} \varepsilon L^1(\Delta)$ then

$$\limsup_{n\to\infty} \frac{1}{n\lambda_n(\mathrm{d}\alpha,\mathbf{x})} < \infty$$

for almost every x . A .

 $\underline{\text{Proof.}} \quad \lambda_n^{(\text{d}\mathbf{a}_i,\mathbf{x})} \geq \lambda_n^{(\mathbf{a}^i,\mathbf{x})} \geq \lambda_n^{(\mathbf{a}^i|\mathbf{\Delta}_i,\mathbf{x})} \text{ and transform } \Delta \text{ to } [\text{-1,1}].$

In the following we shall improve both corollaries. Corollary 24 is a very strong result. To see this compare Corollary 24 with Freud's result (See Freud, §IV.6.)

Theorem. Let supp(w) ⊂ [-1,1] and

$$\int_0^{\pi} \frac{|\mathbf{w}(\cos(\theta+h))\sin(\theta+h) - \mathbf{w}(\cos\theta)\sin\theta|}{\mathbf{w}(\cos\theta)\sin\theta} d\theta =$$

=
$$O(\log^{-\epsilon} \frac{1}{|h|})$$

for h small with $\epsilon > i$. Then for almost every $x \in [-1,1]$

$$\limsup_{n\to\infty} \frac{1}{n\lambda_n(\mathbf{w},\mathbf{x})} < \infty .$$

Let us mention two applications of Corollary 24:

Proof. Corollary 24 and Freud, §IV. 3.

Theorem 26. Let $\alpha \in M(a,b)$ with b>0 and let $\frac{1}{\alpha'} \in L^1(\Delta)$ where $\Delta \subset [a-b,\ a+b]$. If

$$\limsup_{n\to\infty} \sum_{j=n}^{2n} j c_j^a, b_{(da)}^2 < \infty$$

(See Definition 3.1.4.) then the sequence $\{p_n^2(d\alpha,x)\}$ is bounded for almost every $x\in \Delta$.

Proof. Theorem 3.1.11 and Corollary 24.

Later we shall see that in both Theorems 25 and 26 the condition $1/\alpha' \in L^1(\Delta)$ may be weakened to $[\alpha']^{-\mathcal{E}} \in L^1(\Delta)$ for some $\, \epsilon > 0$.

Now we shall consider $G_n(d\alpha,f)$ for weights α which are less nice than the Jacobi weights. In the following $\tau,~\tau_1$ etc. will denote closed intervals. Recall that τ^0 denotes the interior of τ .

Theorem 27. Let $\alpha \in M(0,1)$, $\tau \subset (-1,1)$. Let $\alpha'(t) \geq c > 0$ for almost every $t \in \tau$. Let the sequence $\{p_n^2(\alpha,t)\}$ be uniformly bounded on every $\tau_1 \subset \tau^0$. Let $f \in L^1_{d\alpha}$ and π be a polynomial vanishing at the endpoints of τ . Let $|f(t)| = M < \infty$ for $d\alpha$ almost every $t \in \operatorname{supp}(d\alpha) \setminus \tau$. Then for almost every $\mathbf{x} \in \tau$

(15) $\lim_{n\to\infty} G_n(da, fn, x) = f(x) \pi(x)$.

Proof. Let x e T be a da Lebesque point of fm, that is let

$$\lim_{h\to 0} \frac{1}{h} \int_{x}^{x+h} |f(t)| \pi(t) - f(x)| \pi(x) |d\alpha(t)| = 0$$

It is well known that almost every $x \in \tau^0$ is a du Lebesgue point of fm . (See Freud, §IV. 2.) First we shall show that

(16) $\exists \alpha'(x) < \alpha \implies \lim \sup_{n \to \infty} n \lambda (d\alpha, x) < \alpha$.

Let $\mathbf{v_\Delta}$ be the Tschebyshev weight corresponding to $\Delta(\mathrm{d}a)$. Then

$$\lambda_n(d\alpha,\,x) \leq K_n^{-2}(v_\Delta,\,x,\,x) \int_{-\infty}^\infty K_n^2(v_\Delta,\,x,\,t)\,d\alpha(t) \ . \label{eq:lambda}$$

Since $x \in \tau^0 \in \tau \subset \tau \subset \Delta(d\sigma)^0$ we have by Example 8 $n \lambda_n(d\sigma,x) \leq C \cdot n[\sigma(x+\frac{1}{n}) - \sigma(x-\frac{1}{n})] +$

$$+\frac{c}{n}\int_{|\mathbf{x}-\mathbf{t}|>\frac{1}{n}}\frac{\mathrm{d}\alpha(t)}{(\mathbf{x}-t)^2}$$

and integrating the integral by part we obtain (16). Since $\alpha' \in L^1(-1,1)$ $\alpha'(x) < \infty$ for almost every $x \in \tau^0$. Let now $x \in \tau^0$ be a d α Lebesgue point of $f\pi$ and let $\alpha'(x) < \sigma$. We shall prove (15) for such points x. Let $\epsilon > 0$ be so small that $x \pm \epsilon \in \tau^0$. If n is large then

$$G_n(d\alpha, f\pi, x) - f(x) \pi(x) =$$

$$= \lambda_n(da,x) - \int_{|x-t| \le \frac{1}{n}} + \int_{\frac{1}{n}} + \int_{|x-t| \le e} + \int_{|x-t| > e} + \int_{ter} + \int_$$

 $\left[f(t) \ \pi(t) \ - \ f(x) \ \pi(x)\right] \ K_n^2(\mathrm{d} \alpha, \, x, \, t) \, \mathrm{d} \alpha(t) \ .$

ly (16)

$$\lim_{n\to\infty}\lambda_n(\mathrm{d}\alpha,x)\int_{|x-t|<\frac{1}{n}}=0\ .$$

We have further by (16)

$$\lambda_n(d\sigma,x) \mid \int_{\overline{I}} \frac{1}{n} \leq |x-t| \leq \frac{c}{n} \int_{\overline{I}} \frac{|f(t)\pi(t) - f(x)\pi(x)|}{n} \cdot \frac{1}{n}$$

Integrating by parts we obtain

$$\limsup_{n\to\infty} \lambda_n(\mathrm{d}\alpha,\mathbf{x}) \Big| \int_{\overline{\Omega}} \frac{|\cdot|}{|\cdot|} \mathbf{x} \cdot \mathbf{t} \Big| \frac{|\cdot|}{\varepsilon}$$

$$\leq C \sup_{|h| \leq \epsilon} \frac{1}{h} \int_{x}^{x+h} \left| f(t) \pi(t) - f(x) \pi(x) \right| d\sigma(t) \ .$$

Now consider ∫ . We have | x-t|> €

$$\lambda_n(d\omega,x)\big|\int\limits_{t\in T} \big|\leq \frac{c}{n\epsilon}\int\limits_{t\in T} \big[p_n^2(d\omega,t)+p_{n-1}^2(d\omega,t)\big].$$

· [|f(t) =(t)| + |f(x) =(x)|]da(t) <

$$\leq \frac{c}{n \, \epsilon^2} \, \left| \, f(x) \, \pi(x) \, \right| \, + \sum_{k=n-1}^n \frac{c}{n \, \epsilon^2} \, \int_{te \, T} \, p_k^2(do, \, t) \, \right| \, f(t) \, \pi(t) \, | \, do(t) \ .$$

Here we cannot use simple estimates since the sequence $\{p_k^2(a_a,t)\}$ is uniformly bounded only for $x\in\tau_1^{-1}$ but not for $x\in\tau$. By Theorem 4.1.11

$$\lim_{k\to\infty}\max_{t\in T}\lambda_k^{\prime}(\mathrm{d}\alpha,t)\;\mathrm{p}_k^2(\mathrm{d}\alpha,t)=0\;.$$

Hence for k = n-l, n

$$\frac{1}{n} \int_{te.r.} p_{k}^{2}(da,t) |f(t)| \pi(t) |d\alpha(t)| =$$

$$=\sigma(1)\int_{\xi e^{-T}}\frac{1}{k^{\lambda}_{k}(\mathrm{d}\alpha_{r},t)}\left|f(t)\right.\pi(t)\left|\mathrm{d}\alpha(t)\right..$$

Let $v_{_T}$ denote the Tschebyshev weight corresponding to τ . Then from $\alpha'(t) \geq c > 0$ for almost every $t \in \tau$ follows that

$$\lambda_n(d\alpha,t) \ge \frac{c}{n} v_{\tau}(t)^{-1}$$

for ter (See Freud, §III. 3.) Hence for k = n-l, n

$$\frac{1}{n} \int_{t \in T} p_k^2(\mathrm{d}\alpha,t) \left| f(t) \; \pi(t) \right| \, \mathrm{d}\alpha(t) =$$

$$=\sigma(l)\int_{t\in T}v_{\tau}(t)\left|f(t)\pi(t)\right|\mathrm{d}\alpha(t)\ .$$

Let us recall that # vanishes at the endpoints of T. Thus

1 im
$$\lambda (da, x) \int_{|x-t| > \epsilon} = 0$$
.

Finally, by the conditions and (16)

$$\lambda_n(da, x) \int_{t \neq \tau} \leq \frac{c}{n}$$
.

Consequently (15) holds for almost every x e T.

Theorem 28. Let $\alpha \in M(0,1)$, $\tau \subset (-1,1)$, $\alpha'(t) \geq c > 0$ for almost every $t \in \tau$, $(p_n^2(d\alpha,t))$ be uniformly bounded on each $\tau_1 \subset \tau^0$. Let $f \in L_{d\alpha}^1$, π be a polynomial vanishing at the endpoints of τ and let $|f(t)\pi(t)| \leq M < \infty$ for do almost every $t \in \operatorname{supp}(d\alpha) \setminus \tau$. If f is continuous at $x \in \tau^0$ and $|\alpha(x) - \alpha(t)| \leq K|x-t|$ for |x-t| small then (15) holds. If f is continuous on $\tau_1 \subset \tau^0$ and $\alpha \in Lip 1$ on $\tau_2 (\tau_1 \subset \tau_2^0)$ then (15) is satisfied uniformly for $x \in \tau_1$.

Proof. Repeat the proof of Theorem 27 with the necessary modifications.

Lemma 29. Let $\alpha \in S$. Let $\tau \subset (-1,1)$ and α be absolutely continuous on τ with $\alpha'(t) \equiv 1$ for $t \in \tau$. Then the sequence $\{p_n^2(d\alpha,x)\}$ is uniformly bounded on each $\tau_1 \subset t^0$ and

$$\lim_{n\to\infty} n \lambda_n(\mathrm{d}\alpha,x) = \pi \sqrt{1-x^2}$$

uniformly for $x \in \tau_1 \subset \tau^0$. Moreover, $\alpha \in M(\theta, 1)$

Proof. See Geronimus, §5.4.

Lemma 30. Let β s S. Let $\tau\subset (-1,1)$ and β be absolutely continuous on τ with $1/\beta$ e $L^1(\tau)$. Then for almost every x e τ

lim n
$$\lambda_n(d\beta, \mathbf{x}) = \pi\beta^*(\mathbf{x})\sqrt{1-\mathbf{x}^2}$$

n - ∞

Proof. Let us define a and g by

$$d\alpha(x) = \begin{cases} d\beta(x) & \text{for } x \in [-1,1] \backslash \tau \\ dx & \text{for } x \in \tau \end{cases}$$

with supp(da) = [-1, 1] and

$$g(x) = \begin{cases} 1 & \text{for } x \in [-1,1] \setminus T \\ \beta^{*}(x) & \text{for } x \in T \end{cases}$$

Then $\sigma \in S_r$ $g(x)^{\pm 1} = l < \omega$ for $x \in \{-l, l\} \setminus \tau$ and $\beta = \varrho$. Further a satisfies the conditions of Lemma 29 and consequently a satisfies also the conditions of Theorem 27. Let us put $P_1 = v_T^{-2}$ where v_T is the Tschebyshev weight corresponding to τ . Then by Theorem 5

$$\frac{\frac{1}{r}(x)\,\lambda_{n}(d\beta,x)}{\lambda_{n-2}(d\sigma,x)} \leq G_{n-2}(d\sigma,\,g\,v_{r}^{-4},x)\ .$$

Since $v_{\rm r}^{-4}$ vanishes at the endpoints of τ we obtain from Lemmas 4, 29 and Theorem 27

$$\limsup_{n\to\infty} n \, \lambda_n(\mathrm{d}\beta, x) \le \pi \sqrt{1-x^2} \, \beta'(x)$$

or almost every X e T.

-121-

On the other hand putting $P_2 = v_{\tau}^{-2}$ and using Theorem 5

$$v_{\tau}^{-4}(x) \; G_{n+2}^{-1}(\mathrm{d} \alpha, \; g^{-1}v_{\tau}^{-4}) \leq \frac{\lambda_{n}(\mathrm{d} \beta, x)}{\lambda_{n+2}(\mathrm{d} \alpha, x)}$$

Thus by the same arguments (g $^{-1}$ ϵ $^{L}_{d\alpha}$)

$$\pi \sqrt{1-x^2} \ \beta'(x) \leq \lim_{n \to \infty} \inf_{\lambda_n} \frac{\lambda_n(\mathrm{d}\beta_*\,x)}{\lambda_n(\mathrm{d}\alpha_*\,x)} \ .$$

Lemma 31. Let α be an arbitrary weight. Then for almost every \times \in [-1,1]

$$\lim_{n\to\infty}\lambda_n(v,x)\int_{-1}^1 \frac{K^2_{\sigma}(v,x,t)}{n}\,\mathrm{d}[\alpha_g(t)+\alpha_j(t)]=0 \ .$$

Proof. We have for almost every x ϵ [-1,1]

$$\lim_{h \to 0} \frac{1}{h} \int_{s-h}^{x+h} |d[\alpha_s(t) + \alpha_j(t)]| =$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x-h}^{x+h} d[\alpha_s(t) + \alpha_j(t)] = 0$$

and we can use standard argument.

Lemma 32. Let α be an arbitrary weight. Then for almost every $x \in [-1,1]$

$$\lim_{n\to\infty}\lambda_n(v,x)\int\limits_{-1}^1 \int\limits_{n}^2 (v,x,t)\;\mathrm{d}\alpha(t)=\sqrt{1\!-\!x^2}\;\;\alpha'(x)\;\;.$$

Proof. Since $d\alpha(t) = a_3'(t) dt + d[a_s(t) + a_j(t)] = g(t) v(t) dt + d[a_s(t) + a_j(t)]$ where $g = a_a^v$ the lemma follows from Theorem 20 and Lemma 31.

Theorem 33. If supp(do) ⊂ [-1,1] then

lim sup n $\lambda_n(do, x) \le \pi o'(x) \sqrt{1-x^2}$

for almost every x e [-1,1].

Proof. Use Lemma 32 and the inequality

$$\frac{1}{\lambda_n(\mathbf{v}, \mathbf{x})} \le \lambda_n(\mathbf{v}, \mathbf{x}) \int_{-1}^1 \frac{\mathbf{k}^2(\mathbf{v}, \mathbf{x}, t) \, do(t)}{-1}$$

which follows from supp(da) ⊂ [-1,1].

Now we can prove the following

Theorem 34. Let $\alpha \in S$, $\tau \subset [-1,1]$. If $1/\alpha' \in L^1(\tau)$ then

$$\lim_{n\to\infty} n \lambda_n(\mathrm{d} a, x) = \pi \alpha'(x) \sqrt{1-x^2}$$

for almost every x e T.

Proof. By Theorem 33 we have to show that

lim inf n
$$\lambda_n(d\alpha, x) \ge \pi \alpha'(x) \sqrt{1-x^2}$$

 $n \to \infty$

for almost every x e T. We can assume T C (-1,1). Since

$$n \lambda_n(da, x) \ge n \lambda_n(a', x)$$

and a' satisfies the conditions of Lemma 30 (17) follows from Lemma 30.

Theorem 35. Let $\alpha \in S$. Let $x \in (-1,1)$, let α be absolutely continuous near x and let α ' be continuous at x. Then

$$\lim_{n\to\infty} n \lambda_n(\mathrm{d}\sigma_n x) = \pi \ \sigma'(x) \ \sqrt{1-x^2}$$

If a is absolutely continuous on $\tau \in (-1,1)$, a' is continuous and positive on $\tau_1 \subset \tau^0$ then (18) holds uniformly for $x \in \tau_1$.

Proof. The proof is the same as that of Lemma 30. If in the first part of the theorem $a'(\mathbf{x}) = 0$ then we fix $\mathbf{c} > 0$ and we prove first that

$$\lim_{n\to\infty} n \lambda_n(\mathrm{d}\beta, \mathbf{x}) = \pi \beta'(\mathbf{x}) \sqrt{1-\mathbf{x}^2}$$

where $\beta(x)=\alpha(x)+\epsilon x$ with $\mathrm{supp}(\mathrm{d}\beta)=[-1,1]$ and after we let $\epsilon \to 0$.

Let us note that the first part of Theorem 35 easily follows from results of Geronimus and the second part of it has been obtained by Geronimus in his book. Further, we would not have obtained a stronger result in Theorem 34 if we had supposed the $\pi^2/a' \in L^1(\tau)$ with a suitable polynomial π . Theorem 34 can be formulated as

Theorem 36. Let $\alpha \in S$, $\tau \subset [-1,1]$. If $1/\alpha' \in L^1(\tau)$ then

(C, 1)
$$\lim_{n \to \infty} \left[\alpha'(x) \sqrt{1 - x^2} \right] p_n^2(d\alpha, x) - \frac{2}{\pi} \cos^2(n\theta - \Gamma(\theta)) = 0$$

for almost every $x \in \tau$, where $x = \cos\theta$ $(0 \le \theta \le \pi)$ and $\Gamma(\theta)$ is defined in Definition 4.2.4.

Later we shall improve Theorem 36 for weights having nice coefficients in the recursion formula.

Definition 37. Let ω be a modulus of continuity. Then

(1)
$$f \in A_X^\omega$$
 iff $|f(x) - f(t)| \le C_X \omega(|x-t|)$

|x-t| small.

(ii) for A_T^{ω} if $|f(x) - f(t)| \le C_T^{-\omega}(|x-t|)$ for $x \in T$, if f(x) where f(x) is an $x \in T$ neighborhood of T. (iii) for B_X^{ω} iff f'(x) exists and

 $|f(t) - f(x) - f'(x) (t-x)| \le C_X \omega(|t-x|) |t-x|$

r |x-t| small.

(iv) fe B if f'(x) exists for xe τ and $|f(t)-f(x)-f'(x)| \le C_{\tau} \omega(|t-s|) |t-x|$

for xe T and te T(E).

Theorem 38. Let supp(do) be compact, $x \in \text{supp}(do)$, o be absolutely continuous near x, $0 < c_1 \le o'(t) \le c_2 < \varpi$ for $|x_-t|$ small and let the sequence $\{p_n^2(do,t)\}$ be uniformly bounded for $|x_-t|$ small. Let f be do measurable and bounded on $\sup(do)$. If $f \in A_x^\omega$ then

(19)
$$G_n(do, f, x) = f(x) + O(1) \frac{1}{n} \int_{-\frac{\pi}{n}}^{1} \frac{\omega(t)}{t^2} dt$$
,

where |O(l)| < C with C independent of n. If $\mathrm{supp}(\mathrm{d} a)$ is compact, σ is absolutely continuous in $\tau(\epsilon)$, $0 < c_1 \le \sigma'(t) \le c_2 < \sigma$ in $\tau(\epsilon)$, the sequence $\{p_n^2(\mathrm{d}\sigma,t)\}$ is uniformly bounded in a neighborhood of τ , f is $\mathrm{d}\sigma$ measurable and bounded on $\mathrm{supp}(\mathrm{d}\sigma)$ and $\mathrm{f}\epsilon\,\mathrm{A}_{\mathrm{T}}^\omega$ then (19) holds uniformly for $\mathrm{x}\epsilon\,\tau$.

Proof. Let us prove, for simplicity, the first part of the theorem. Let

ε > 0 be small. Then

$$\begin{aligned} &|G_n(d\sigma,\,f,\,x)-f(x)| \leq \\ &\leq \frac{c}{n} \left\{ \left| \int_{|x-t| < \epsilon} |+|\int_{|x-t| \geq \epsilon} \right| f(t)-f(x) \right| \, K_n^2(d\sigma,x,\,t) \; d\sigma(t) \; . \end{aligned}$$

The second integral is O(1), the first one is

$$O(1)\int_{\{x-t\}<\epsilon}\omega(|t-x|)\frac{n^2}{(1+n|t-x|)^2}\,dt$$

by the usual computation and the latter integral can easily be estimated.

Lemma 39. For n = 1, 2, ...

$$\lambda_n(\mathrm{d}\alpha,x)\int_{-\infty}^{\infty}(t-x)\,K_n^2(\mathrm{d}\alpha,x,t)\,\,\mathrm{d}\alpha(t)=$$

$$=-\frac{\gamma_{n-1}(\mathrm{d}\alpha)}{\gamma_n(\mathrm{d}\alpha)}\,\,\lambda_n(\mathrm{d}\alpha_p(x)\,\,p_{n-1}(\mathrm{d}\alpha,x)\,\,p_n(\mathrm{d}\alpha,x)\ .$$

Proof. See Freud, §V.6.

Theorem 40. Let the conditions of the first part of Theorem 38 be satisfied

with fe Bx instead of fe Ax . Then

(20)
$$G_n(d\alpha, f, x) = f(x) + O(1) \frac{1}{n} \sqrt{\frac{u(1)}{t}} dt$$

where $|O(1)| \le C$ and C does not depend on n. If the conditions of the second part of Theorem 38 are satisfied with i.e. B_{τ}^{ω} instead of i.e. A_{τ}^{ω} then (20) holds uniformly for $x \in \tau$.

Proof. For simplicity let us consider the first part of the theorem. From the proof of Theorem 38 we see that we have to show

$$\left| \int_{|x-t| < \epsilon} \left[f(t) - f(x) \right] K_n^2(\mathrm{d}\sigma,x,t) \; \mathrm{d}\sigma(t) \, \right| = O(1) \int_1^1 \frac{\omega(t)}{t} \, \mathrm{d}t \;\;.$$

The left side here is not greater than

 $\int_{|x-t|<\epsilon} |f(t)-f(x)-f'(x)(t-x)| K_n^2(da,x,t) da(t) +$

+ $|f'(x)|^{\int |t-x| |x|^2 (da, x, t) |da(t)|}$.

Since $f \in B_X^\omega$ the first integral here may easily be estimated. Further

$$\begin{cases} (t-x) K_0^2(da,x,t) da(t) = \begin{cases} \int_{-\infty}^{\infty} -\int_{|x-t| \ge \epsilon} \end{cases}$$

 $(t-x) K_n^2(da, x, t) da(t)$

and we apply Lemma 39.

Remark 41. If $f \in A_X^\omega$ and f(x) > 0 then $f^{-1} \in A_X^\omega$. If $f \in A_T^\omega$ and f(x) > 0 for $x \in T$ then $f^{-1} \in A_T^\omega$. This is obvious. If $f \in B_X^\omega$ and f(x) > 0 then $f^{-1} \in B_X^\omega$ and if $f \in B_T^\omega$ and f(x) > 0 for $x \in T$ then $f^{-1} \in B_X^\omega$. Let us prove the latter. Because of continuity f(t) > 0 for |x-t| small and f(t) > 0 for $t \in T(\epsilon)$ with ϵ small respectively. Now we can use the identity

$$\frac{1}{f(t)} - \frac{1}{f(x)} + \frac{f'(x)}{f^2(x)} (t - x) = \frac{[f(x) - f(t)]^2}{f^2(x) f(t)}$$

$$-\frac{1}{f^2(x)} \big[f(t) - f(x) - f'(x) \; (t-x) \big]$$

740

$$\left\{f(x) \, : \, f(t)\right\}^2 \leq C(t-x)^2 \leq C\left[t-x\right] \, \omega(\left[t-x\right])$$

where C, of course, depends on f.

-127-

Definition 42. For a given weight β and interval τ the weight β_{τ} and the function $g\equiv g_{\beta,\,\tau}$ are defined by

$$d\beta_{\tau}(x) = \begin{cases} d\beta(x) & \text{for } x \neq \tau \\ dx & \text{for } x \in \tau \end{cases}$$

pue

$$g(x) =\begin{cases} \beta^{*}(x) & \text{for } x \in T \\ 1 & \text{for } x \notin T \end{cases}$$

We have $d(\beta_1)_g \le d\beta$ and equality holds iff β is absolutely con-

Theorem 43. Let $\beta \in S$, $x \in (-1,1]$, β be absolutely continuous near x, $\beta' \in A_X^\omega$ (or $\beta' \in B_X^\omega$), $\beta'(x) > 0$, τ^0 be a sufficiently small neighborhood of x. Then

$$\begin{pmatrix} \frac{1}{n} \int_{1}^{1} \frac{\omega(t)}{t^{2}} \, \mathrm{d}t & (\beta^{+} \in A_{X}^{\omega}) \\ \frac{1}{n} (d\beta_{T}, \mathbf{x}) & \beta^{+}(\mathbf{x}) + O(1) \end{pmatrix} \left\{ \begin{array}{l} \frac{1}{n} \int_{1}^{1} \frac{\omega(t)}{t} \, \mathrm{d}t & (\beta^{+} \in B_{X}^{\omega}) \\ \frac{1}{n} \int_{1}^{1} \frac{\omega(t)}{t} \, \mathrm{d}t & (\beta^{+} \in B_{X}^{\omega}) \end{array} \right. .$$

If $\tau_1\subset (-1,1)$, β is absolutely continuous in $\tau_1(\epsilon)$ with some $\epsilon>0$, β , ϵ A_1^ω (or β , ϵ $B_{\epsilon_1}^\omega$), τ^0 is a sufficiently small neighborhood of τ_1 then

$$\begin{cases} \frac{1}{n} \int_{-1}^{1} \frac{\omega(t)}{t^2} dt & (\beta' \in A_T^{\omega}) \\ \frac{n}{n} (d\beta, x) & \\ \frac{\beta}{n} (d\beta_{T^*} x) & = \beta'(x) + O(1) \end{cases}$$

uniformly for x e T1.

Proof. If τ is small then $d(\beta_{\tau}^{\dagger})_g = d\beta$, $g^{\pm 1}$ is bounded on [-1,1], $g^{\pm 1} \in A_X^{\omega}(B_X^{\omega})$ or $g^{\pm 1} \in A_T^{\omega}(B_X^{\omega})$ respectively by Remark 41. Further β_{τ} satisfies the conditions of Lemma 29 and consequently β_{τ} satisfies the conditions of Theorems 38 and 40. Finally, apply Theorem 3.

Lemma 44. If $\tau \subset [-1,1]$ then

$$\lambda_{n}(v,x)\int_{-1}^{1}\frac{K_{n}^{2}(v,x,t)}{r^{2}(v,x,t)}\,\mathrm{d}\beta_{\tau}(t)\leq\sqrt{1\!-\!x^{2}}+O(\frac{1}{n})$$

uniformly for x ϵ τ_1 C τ^0 and consequently if $\operatorname{supp}(\mathrm{d} \beta) \subset [-1,1]$ and

$$n \lambda_n (d\beta_{\tau}, x) \le \sqrt{1-x^2 + O(\frac{1}{n})}$$

uniformly for $x \in \tau_1 \subset \tau^0$.

Proof. See Freud, §V. 6.

Lemma 45. Let $\sup p(d\beta) \subset [-1,1], \ \tau \subset (-1,1)$. Let exist a polynomial π such that $\pi^2/\beta_1^-\varepsilon L^1(-1,1)$. Then

$$\frac{1}{n\lambda_n(\mathrm{d}\beta_\tau,x)} \leq \frac{1}{m\sqrt{1-x^2}} + \mathrm{O}(\frac{1}{n})$$

uniformly for x e T, C TO.

<u>Proof.</u> Let us consider (7) in Theorem 5. We put there α = Tschebyshev weight, $g=\beta_1^+/v$ so that $d\alpha_g(x)=\beta_1^+(x)dx$. Let $P_2=v^{-2}\pi$. We obtain

$$\frac{v^{-4}(x)}{\lambda} \frac{\pi^{2}(x)}{(\beta^{+}_{\tau}, x)} \frac{\lambda_{n+m}(v, x)}{\lambda} \leq G_{n+m}(v, \frac{v^{-3}}{\beta^{+}_{\tau}}, x)$$

where m = deg m + 2 and $v^{-3}\pi^2/\beta_T$, ϵ_L^1 . Since $\beta_T^*(t)$ = 1 for ter we can suppose that m has no zeros in τ^0 . Hence for $x \in \tau^0$

$$\lambda_n^{-1}(d\beta_{\tau},x) \leq \pi^{-2}(x) \, v^4(x) \, \lambda_{n+m}^{-1}(v,x) \, g_{n+m} \, v_* \! \left(\frac{v^{-\frac{3}{n}}^2}{\beta_{\tau}^*}, \, x \right) \ .$$

Now we should apply Theorem 40 with α = Tschebyshev weight, $f = v^{-3} \pi^2/\beta_T \cdot \epsilon B^\omega_{T_1} \quad \text{if } \tau_1 \subset t^0 \quad \text{and } \omega(t) \equiv t, \quad \text{but we cannot do this directly since in our case } f \text{ is not bounded on supp}(v)$. This small problem can be avoided by remarking that the Tschebyshev polynomials are uniformly bounded on [-1,1] and thus

$$\int_{|\mathbf{x}-\mathbf{t}|>\epsilon} |f(t)| \, K_n^2(\mathbf{v},\mathbf{x},t) \, \, v(t) dt \leq \frac{c}{\epsilon^2} \, \int_{-1}^1 |f(t)| \, \, v(t) dt$$

which in our case is finite. Hence

$$G_{n+m}\left(v, \frac{v^{-3} \frac{2}{\pi}}{\beta_{\tau}^{*}}, x\right) = \frac{v^{-3}(x) \frac{\pi^{2}(x)}{\beta_{\tau}^{*}(x)}}{\beta_{\tau}^{*}(x)} + O(\frac{1}{n})$$

uniformly for $x \in \tau_1 \subset \tau^0$ which proves the lemma.

Lemmas 44 and 45 give us

$$n \lambda_n (d\beta_{\tau}, x) = \pi \sqrt{1 - x^2 + O(\frac{1}{n})}$$

uniformly for $x \in \tau_1 \subset \tau^0$.

We obtain immediately from Theorems 43 and 46 the following

Theorem 47. Let $\sup\{da\} = [-1,1]$ and $\sup\{da\} = [-1,1]$ and $\sup\{da\} = [-1,1]$ and $\inf\{da\} = [-1,$

continuous near
$$\mathbf{x}$$
, $\mathbf{a}' \in A_{\mathbf{X}}^{\omega}(B_{\mathbf{X}}^{\omega})$ and $\mathbf{a}'(\mathbf{x}) > 0$ then
$$n \sum_{n} (\mathbf{a}\mathbf{a}, \mathbf{x}) = \pi \mathbf{a}'(\mathbf{x}) \sqrt{1 - \mathbf{x}^2} + O(1) \begin{cases} \frac{1}{n} \int_{1}^{1} \frac{\omega(t)}{t} dt & (\mathbf{a}' \in A_{\mathbf{X}}^{\omega}) \\ \frac{1}{n} \int_{1}^{1} \frac{\omega(t)}{t} dt & (\mathbf{a}' \in B_{\mathbf{X}}^{\omega}) \end{cases}.$$

If $\tau \in (\text{-1},1), \ \alpha$ is absolutely continuous in a neighborhood of $\tau,$

$$a' \in A_T^{\omega}(B_T^{\omega}) \text{ and } a'(t) > 0 \text{ for } t \in T \text{ then}$$

$$\begin{cases} \frac{1}{n} \int_1^1 \frac{\omega(t)}{t^2} \, dt & (a' \in A_T^{\omega}) \\ n & \frac{1}{n} \int_1^1 \frac{\omega(t)}{t^2} \, dt \end{cases}$$

$$(a' \in A_T^{\omega})$$

$$n \lambda_n(da, x) = \pi a'(x) \sqrt{1 - x^2} + O(1)$$

$$\begin{cases} \frac{1}{n} \int_1^1 \frac{\omega(t)}{t^2} \, dt & (a' \in B_T^{\omega}) \\ \frac{1}{n} \int_1^1 \frac{\omega(t)}{t^2} \, dt & (a' \in B_T^{\omega}) \end{cases}$$

The reader should compare Theorem 47 with Freud's results where $\pi^2/\alpha' \in L^\infty \text{ has to be assumed. (See Freud, §V.6).}$

In Theorem 40 we have shown that $G_n(d\sigma,f)$ will converge to f with speed 1/n if f is good. On the other hand for f Lip l we have only obtained $log\,n/n$ as convergence speed for $G_n(d\sigma,f)$. (See Theorem 38.) We may ask two questions, namely, whether $log\,n/n$ occurs because of our weak techniques and how to improve convergence.

Theorem 48. Let f(x) = |x|. Then

for n > 3.

Proof. Since

$$G_n(v, t, 0) = 2 \lambda_n(v, 0) \int_0^1 t K_n^2(v, 0, t) v(t) dt$$

we have only to show that for k odd

$$\int_0^{\frac{\pi}{2}} \frac{\cos^2 kt}{\cos t} dt \ge C \log k \qquad (k \ge 3).$$

The left side here equals

$$\int_0^{\pi} \frac{\sin^2 kt}{\sinh^4 dt} \, dt \ge \int_0^{\pi} \frac{\sin^2 kt}{t} \, dt = \int_0^{\pi} \frac{\sin^2 u}{u} \, du \ge C \log k \ .$$

By Theorem 48 if we want to improve the convergence properties of $G_n(d\alpha,f)$ then we have to modify these operators. Let us put for $n\le m$

$$G_{n,m}(d\omega,f,x) = \lambda_n(d\omega,x) \int_{-\infty}^{\infty} f(t) K_n(d\omega,x,t) K_m(d\omega,x,t) d\omega(t) \ .$$

For z e G G, m(da, f, z) can be defined by

$$G_{n,\,m}(d\alpha,\,f,\,z) = \lambda_n^*(d\alpha,\,z) \int\limits_{-\infty}^{\infty} \{(t) \,\,k_n^{}(d\alpha,\,z,\,t) \,\,k_m^{}(d\alpha,\,z,\,t) \,\,d\alpha(t) \,\,.$$

See 4.1).

Properties 49. (1) $G_{n,m}(d_{\alpha}, m_{n,n}) \equiv m_{n,n}$. (ii) $G_{n,m}$ is a rational function of degree (n+m-2, 2n-2). (iii) The Lebesgue function $G_{n,m}^*(d_{\alpha},x)$ of the operator $G_{n,m}(d_{\alpha})$ is not greater than $\left[\lambda_n(d_{\alpha},x),\lambda_m^{-1}(d_{\alpha},x)\right]^{\frac{1}{2}}$.

Consequently if f is good globally and a is nice locally (near $x \in \text{supp}(da)$) then for e.g. m = 2n $G_n(da,f,x)$ may converge to f(x) very rapidly. On the other hand if a is nice near x then the kernel function of $G_{n,2n}(da)$ has the same majorant only as that of $G_n(da) \equiv G_{n,n}(da)$, namely

(21)
$$\frac{Cn}{1+n^2(x-t)^2}$$

which — as is well known — is too weak to assume good convergence properties for $G_{n,\ 2n}(d\alpha,f,x)$ if f is nice only at x. For this reason we introduce another operator $G_N(d\alpha)$ $(N\equiv(n_1,n_2,\ldots,n_K)$.

Let $k \geq 2$ be fixed and let $n_1 \leq n_2$, $n_1 - 1 + n_2 - 1 \leq n_3 - 1$ and, in gneral, $\sum_{j=1}^{l-1} (n_j - 1) \leq n_l - 1 \text{ for } i = 2, \ldots, k \text{ . We put}$ $G_N(d\sigma, f, x) = \prod_{i=1}^{l-1} \sum_{n_i}^{n_i} (d\sigma, x) \int_{-\infty}^{\sigma} f(t) \prod_{i=1}^{l} K_i(d\sigma, x, t) \, d\sigma(t)$

and for z ϵ C we define $G_N(d\sigma,f,z)$ in exactly the same way as we did when $\nu=2$

Let us note that if e.g. α = Tschebyshev weight then the kernel function of $G_N(d\sigma)$ may be majorated by

$$\frac{Cn}{1+n^{\frac{k}{k}}|x-t|^{\frac{k}{k}}}$$

(x, t ϵ [-1,1] and all n_1 are of order n), which differs very much from (21): (22) implies that for $k \ge 3$ $G_N(v,f,x)$ converges to f(x) with speed 1/n if all n_1 are of order n and $f \in A_N^\omega$ with $\omega(t) \equiv t$.

It should be possible to improve most of the results of this section by using $G_N(da)$ instead of $G_n(da)$. At the present time we cannot do this. Let us mention a simple result which we shall need later.

Lemma 50. Let x & R . Then

$$\left|\pi_{n}(x)\right| \leq \frac{1}{2} \, \lambda_{n}(\mathrm{d} \mathfrak{a}, x) \, \int_{-\infty}^{\infty} \left|\pi_{n}(t)\right| \left[K_{n}^{2}(\mathrm{d} \mathfrak{a}, x, t) \right. +$$

+
$$K_{2n}^2(d\alpha, x, t)]d\alpha(t)$$
.

Proof. Use Property 49(1).

Theorem 51. Let α € M(0,1). Then

$$\limsup_{n\to\infty} n \lambda_n(\mathrm{d} \mathfrak{a},x) \leq \pi \, \mathfrak{o}'(x) \, \sqrt{1\!-\!x^2}$$

for almost every x € supp(da) .

Proof. By Theorem 3.3.7 it is enough to show that (23) holds for almost every $x \in [-1,1]$. If supp(da) = [-1,1] then (23) follows from Theorem 33. Let now $\Delta = supp(da) \setminus [-1,1]$ be not empty. Then there exists $|\varepsilon_1| > 0$

such that for every $\epsilon \in (0, \epsilon_1)$ $\Delta_{\epsilon} = \mathrm{supp}(\mathrm{d}a) \setminus [-1 - \epsilon, 1 + \epsilon]$ is not empty. By Theorem 3.3.7 Δ_{ϵ} contains finitely many points. Let $\Delta_{\epsilon} = \{a_k\}_{k=1}^m$ where $m = m(\epsilon)$. Let π be defined by

$$\pi(x) = \prod_{k=1}^{m} (x - a_k)$$
.

Then for n > m

$$\lambda_{n}(d\mathbf{o}_{s},x) \leq \int_{-\infty}^{\infty} \frac{K^{2}_{n-m}(v_{s},x,t) \, \pi^{2}(t)}{K^{2}_{n-m}(v_{s},x,x) \, \pi^{2}(x)} \, do(t)$$

for x ε [-1,1] where v_2 denotes the Tschebyshev weight corresponding to [-1- ε , 1+ ϵ]. Since π vanishes on Δ_ϵ we obtain

$$\frac{\lambda_{n}(d\omega_{s},x)}{\lambda_{n}(v_{e},x)} \leq \frac{\lambda_{n-m}(v_{e},x)}{\lambda_{n}(v_{e},x)} \pi(x)^{-2}.$$

$$, \ \, \lambda_{n-m}(v_{_E},x) \int\limits_{-1-\epsilon}^{1+\epsilon} \frac{K^2}{n-m}(v_{_E},x,t) \, \, \pi^2(t) \, \, \mathrm{d}\alpha(t) \ . \label{eq:continuous}$$

Transforming [-1-ε,1+ε] into [-1,1] we get

$$\frac{\lambda_{n}(d\omega, x)}{\lambda_{n}(v, \frac{x}{1+\epsilon})} \leq \frac{\lambda_{n-m}(v, \frac{x}{1+\epsilon})}{\lambda_{n}(v, \frac{x}{1+\epsilon})} \pi(x)^{-2}.$$

$$\frac{\lambda_{n}(v, \frac{x}{1+\epsilon})}{\lambda_{n-m}(v, \frac{x}{1+\epsilon})} \int_{-1}^{1} \frac{K^{2}}{n-m}(v, \frac{x}{1+\epsilon}, t) \pi^{2}((1+\epsilon)t) d\omega((1+\epsilon)t) .$$

Let β be defined by $d\beta(t)$ = $\pi^2((l+\epsilon)t)$ do((l+\epsilon)t) . Then β is a weight on [-1,1]. Hence by Lemmas 4 and 32

$$\limsup_{n\to\infty} \frac{\lambda_n(d\alpha,x)}{\lambda_n(v,\frac{x}{1+\varepsilon})} \le \sqrt{1-\frac{x^2}{(1+\varepsilon)^2}} \pi(x)^{-2} \beta^{-1}(\frac{x}{1+\varepsilon}) =$$

$$=\sqrt{(1+\epsilon)^2-x^2}\quad \alpha'(x)$$

for almost every x ([-1,1], that is by Example 9

$$\limsup_{n\to\infty} n \lambda_n(do,x) \le \pi \alpha'(x) \sqrt{(1+\epsilon)^2 - x^2}$$

for almost every $x \in [-1,1]$. Now let $\epsilon \to 0$.

Now we can prove the following theorem which is one of our main .

Theorem 52. Let $\alpha \in M(0,1)$, $\tau \subset (-1,1)$, $1/\alpha' \in L^1(\tau)$. Let exist a sequence $\{\epsilon_K(\geq 0)\}$ with $\lim_{k \to \infty} \epsilon_k = 0$ such that $\log \alpha'(t)/\sqrt{(1-\epsilon_k)^2 - x^2}$ $\in L^1(-1+\epsilon_k, 1-\epsilon_k)$ for every fixed k. Then

14)
$$\lim_{n\to\infty} n \lambda_n (d\alpha, x) = \pi\alpha'(x) \sqrt{1-x^2}$$

for almost every x e T .

Proof. Because of Theorem 51 we only have to show that

$$\lim_{n\to\infty}\inf \ n \ \lambda_n(\mathrm{d}\alpha,x)\geq \pi\alpha'(x)\sqrt{1\!-\!x^2}$$

for almost every x ϵ τ . We have $\lambda_n(a_0,x) \geq \lambda_n(\alpha',x)$. Let k be fixed and w be defined by w(t) = $\alpha'(1-\epsilon_k)t$) for $-1 \leq t \leq 1$ with $\operatorname{supp}(w) = [-1,1]$ By the conditions, w ϵ S and w⁻¹ ϵ $L^1(\tau_1)$, where $\tau_1 = [(1-\epsilon_k)^{-1}c_1$, $(1-\epsilon_k)^{-1}c_2$] if $\tau = [c_1,c_2]$. By Theorem 34

-136

$$\lim_{n\to\infty} n \lambda_n(w, x) = \pi \sqrt{1-x^2} w(x)$$

for almost every x $\mathfrak{e} \, \, \tau_l$. We have by Example 10

$$\lambda_n(\mathbf{w}, \mathbf{x}) = (\mathbf{l} - \mathbf{\varepsilon}_k)^{-1} \lambda_n(\mathbf{l}_{\Delta} \sigma', (\mathbf{l} - \mathbf{\varepsilon}_k) \mathbf{x})$$

$$\leq (\mathbf{l} - \mathbf{\varepsilon}_k)^{-1} \lambda_n(\sigma', (\mathbf{l} - \mathbf{\varepsilon}_k) \mathbf{x})$$

where \$\rightarrow \left[-1+\epsilon_k, 1-\epsilon_k]\$. Hence

$$\liminf_{n\to\infty}\ln \ln \ln \ln \lambda_n(\alpha',\ (1-\varepsilon_k)x)\geq \pi \sqrt{(1-\varepsilon_k)^2-(1-\varepsilon_k)^2 \times^2}\cdot \alpha'((1-\varepsilon_k)x)$$

for almost every x e T₁, that is

lim inf n
$$\lambda_n(\alpha', x) \ge \pi \sqrt{(1-\epsilon_k)^2 - x^2}$$
 $\alpha'(x)$

for almost every x € T. Now let k → ∞.

Later we shall show that If e.g.

$$\sum_{j=0}^{\infty} \left\{ \left| a_{j}(da) \right| + \left| \frac{v_{j}(da)}{v_{j+1}(da)} - \frac{1}{2} \right| \right\} < \infty$$

then for each $\tau \in (-1,1)$ all the conditions of Theorem 52 are satisfied and thus (24) holds for almost every $x \in [-1,1]$. Let us note that Theorem 34 follows from Theorem 52.

Corollary 53. Let a and τ satisfy the conditions of Theorem 52 and let I be a fixed nonnegative integer. Then for almost every $x \in \tau$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}p_k(\mathrm{d}\,\alpha,\,x)\;p_{k+\ell}(\mathrm{d}\alpha,\,x)=\frac{T_\ell(x)}{\pi\alpha'(x)\sqrt{1-x^2}}$$

where T, denotes the 1-th Tschebyshev polynomial.

Proof. Use Theorems 52 and 4.1.19.

Theorem 54. Let $\alpha \in M(0,1)$. Then for almost every $x \in \operatorname{supp}(d\alpha)$

$$\limsup_{n\to\infty} n \lambda_n(do, x) = \pi \alpha'(x) \sqrt{1-x^2}$$

Proof. Let $\mathfrak M$ be defined by $\mathfrak M=\{x;\,\alpha'(x)>0\}$. By Theorem 33 we have to show that (25) holds for almost every $x\in \mathfrak M$.

Since α is almost everywhere continuous, for every $x\in (-1,1)$ we can find a sequence $\{\epsilon_m\}$ such that $\epsilon_m>0$, $\lim_{m\to 0}\epsilon_m=0$, $[x-\epsilon_m,x+\epsilon_m]\subset (-1,1)$ and α is continuous at $x-\epsilon_m$ and $x+\epsilon_m$. By

$$\lim_{n\to\infty} \frac{x+\epsilon_m}{x-\epsilon_m} \frac{1}{n\lambda_n(\mathrm{d}\sigma,t)} \, \mathrm{d}\sigma(t) = \frac{1}{\pi} \int\limits_{x-\epsilon_m}^{x+\epsilon_m} \frac{\mathrm{d}t}{\sqrt{1-t^2}}$$

for m = 1, 2, Thus by Fatou's lemma

$$\frac{1}{2\epsilon_m} \int_{x-\epsilon_m}^{x+\epsilon_m} \lim\inf_{n\to\infty} \frac{1}{n\lambda_n(d\sigma, \tilde{\tau})} \, \, \alpha'(t) dt \leq \frac{1}{2\pi\epsilon_m} \int_{x-\epsilon_m}^{x+\epsilon} \frac{dt}{\sqrt{1-t^2}}$$

Letting m → ∞ and using Lebesgue's theorem we obtain

$$\lim_{n\to\infty}\inf_{n\to\infty}\frac{1}{n^{\lambda_n}(\mathrm{d}_{\alpha},\mathbf{x})} \ \alpha'(\mathbf{x}) \leq \frac{1}{\pi\sqrt{1-x^2}}$$

for almost every $x \in [-1,1]$. By Theorem 3.3.7 $\mathfrak{M} \subset [-1,1]$. Hence for almost every $x \in \mathfrak{M}$

lim sup
$$n \lambda_n(d\alpha, x) \ge \pi\alpha'(x) \sqrt{1-x^2}$$
.

The converse inequality has been proved in Theorem 33.

Theorem 55. Let supp(da) = [-1,1] and o'(x) > 0 for almost every $x \in [-1,1]$. Then (25) holds for almost every $x \in [-1,1]$.

Proof. If f is continuous on [-1,1] then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(\mathbf{x_{kn}}(do)) = \frac{1}{\pi} \int_{-1}^{1} f(t) \frac{dt}{\sqrt{1-t^2}}$$

(See Freud, §III. 9.) Hence by Lemma 5.1

(26)
$$\lim_{n\to\infty} \int_{-1}^{1} f(t) \frac{1}{n \lambda_n(do, t)} do(t) = \frac{1}{\pi} \int_{-1}^{1} f(t) \frac{dt}{1-t^2}$$

If f is continuous on [-1,1]. Using one-sided approximation we obtain that (26) remains valid if f is the characteristic function of a d α measurable interval Δ C (-1,1). Now we peat the proof of Theorem 54.

6.3. Generalized Christoffel Functions

Definition 1. Let 0 . Then the generalized Christoffel function

λ (da, p, x) is defined by

$$\lambda_{n}(\text{d}\varphi,\,p,\,x) = \inf_{n-1} \frac{1}{\left|\pi_{n-1}(x)\right|^{p}} \int_{-\infty}^{\infty} \left|\pi_{n-1}(t)\right|^{p} \text{d}\varphi(t) \ .$$

Later we shall see why we do not introduce a normalization;

 $\lambda_n(d\omega, p, x) = \inf \left[\int_1^{1/p} . \right]$

Properties 2. (1) If do \leq d β then $\lambda_n(d\alpha,p,x)\leq \lambda_n(d\beta,p,x)$.

(ii) $\lambda_n(da,2,x) \equiv \lambda_n(da,x)$. (iii) If supp(da) is compact then

$$\lambda_{1}(\text{do, p, x}) = \min_{n-1} \frac{1}{\left|\pi_{n-1}(x)\right|^{p}} \int_{-\infty}^{\infty} \left|\pi_{n-1}(t)\right|^{p} \, \text{do}(t) \ .$$

Proof. Let us fix a, n, p and $\Delta \supset \Delta(\mathrm{d}\sigma)$. Let us show that $\lambda_{\mathrm{n}}(\mathrm{d}\sigma,\mathrm{p},y)$

 $y \in \Delta \supset \Delta(\text{d}\alpha)$. Then

$$\pi_{n-1}^{\mathrm{m}}(y) \approx \int \pi_{n-1}^{\mathrm{m}}(t) \; K_{mn}(\mathrm{d}\alpha, \, y, \, t) \; \mathrm{d}\alpha(t)$$

y . A . Hence

$$\max_{y \in \Delta} \left| \pi_{n-1}(y) \right|^m \leq C \int_{\Delta} \left| \pi_{n-1}(t) \right|^m \, \mathrm{d}\sigma(t)$$

where C = C(n, m, do, Δ) does not depend on π_{n-1} . Writing $|\pi_{n-1}(t)|^{|m|} = |\pi_{n-1}(t)|^{|m|+p}$ (m-p \geq 0) we obtain

$$\max_{y \in \Delta} \, \big| \frac{1}{n-1}(y) \, \big|^{p} \le C \int_{\Delta} \, \big| \frac{1}{n-1}(t) \, \big|^{p} \, \mathrm{d}\alpha(t) \ ,$$

in particular $\lambda_n(da,p,y) \ge \lambda > 0$ for $y \in \Delta$. Thus

$$\int_{-\infty}^{\infty} \left| \pi_{n-1}(y) \right| \, d\omega(y) \le \lambda^{-\frac{1}{p}} \left[\int_{-\infty}^{\infty} \left| \pi_{n-1}(t) \right|^{\frac{1}{p}} \right]$$

If we write $n_{n-1}(x) \approx \sum_{k=0}^{n-1} a_k \ p_k(da,x)$ then we obtain from the previous inequality that

$$a_k \leq C \left[\int_{-\infty}^{\infty} \left| \pi_{n-1}(t) \right|^p d\alpha(t) \right]^{\frac{1}{p}}$$

where C = C(n, p, dø) does not depend on " $_{n-1}$. Now (iii) follows from Bolzano-Weierstrass' theorem by standard arguments.

First of all we shall investigate the simplest case, that is when a is a Jacobi weight. Let us recall that the Jacobi weight is denoted by u=u(a,b). We shall find the exact order of $\lambda_n(u,p,x)$ on [-1,1] when $n\to\infty$.

<u>Definition 3.</u> We write $\varphi_n(x) \sim \psi_n(x)$ if for every n and for every x in consideration (usually for $-1 \le x \le 1$)

$$0 < c_1 \le \varphi_n(x)/\psi_n(x) \le c_2 < \infty \ .$$

ø(x) ~ ↓(x), n ~ m etc. have similar meanings.

Definition 4. Let a, b . R. Then un is defined by

$$u_n(x) \equiv u_n^{(a,\,b)}(x) = \left[\sqrt{1\!-\!x}\,+\frac{1}{n}\,\right]^{2\,a+1} \left[\sqrt{1\!+\!x\!+\!\frac{1}{n}}\,\right]^{2\,b+1}$$

-141-

Let us remark that if $m \sim n$ then $u_n(x) \sim u_m(x)$.

Lemma 5. We have

$$\lambda_{n}(u^{(a,b)}, x) \sim \frac{1}{n} u_{n}^{(a,b)}(x)$$

for -1 < x < 1.

Proof. See [11].

Lemma 6. Let $\cos\theta_{kn}=\mathbf{x}_{kn}(\mathbf{u})$ for $k=0,1,\ldots,n+1$ with $\mathbf{x}_{0n}=1$ and

 $x_{n+1, n} = -1$. Then

9kn - 9k-1, n - n

for k = 1, 2, ..., n+1.

Proof. See e. g. [12].

Corollary 7. Let $x \in [x_{kn}(u), x_{k-1,n}(u)]$ (k = 1, 2, ..., n+1). Then

$$u_{n}^{(a_{1},\,b_{1})}(x)\sim u_{n}^{(a_{1},\,b_{1})}(x_{k})\sim u_{n}^{(a_{1},\,b_{1})}(x_{k-1})$$

or a, b, e R.

Let v be - as before - the Tschebyshev weight. Then

$$|K_n(v, x, t)| \le C \min\{n, \frac{1}{|x-t|}\}$$

for $x,t\in [-1,1]$. This estimate is good inside (-1,1) but not for x and t close to the endpoints of [-1,1]. We shall need a better estimate which we formulate as

Lemma 8. Let x, t e [-1,1]. Then

$$|K_n(v,x,t)| \le C \min \left\{ n, \frac{\sqrt{1-x^2} + \sqrt{1-t^2}}{|x-t|} \right\}.$$

Proof. The idea comes from Pollard probably;

$$\begin{split} T_{n}(x) & T_{n-1}(t) - T_{n-1}(x) & T_{n}(t) = \begin{bmatrix} T_{n}(x) - T_{n-1}(x) \end{bmatrix} T_{n-1}(t) + \\ & + T_{n-1}(x) \begin{bmatrix} T_{n-1}(t) - T_{n}(t) \end{bmatrix}. \end{split}$$

Lemma 9. Let $0 < \delta < 1$ and a, b, c $\in \mathbb{R}$. Then we have uniformly in n and m such that $1 \le m \le \delta n$

Proof. We write

$$\sum_{k=1}^{n} \sum_{k=1}^{m-1} + \sum_{k=1}^{m-1} + \sum_{k=m+1}^{m-1} + \sum_{k=m+1}^{m-1} + \sum_{k=(\frac{m}{2}(6^{-1}+1))+1}^{n}$$

and each sum can easily be estimated.

Now we can compute the following important

Theorem 10. Let $u=u^{(a,\,b)}$ be given. Then there exists a natural integer $N_1=N_1(a,b)$ such that for every fixed $N\geq N_1$

1)
$$\int_{-1}^{1} \frac{|K_{n}(\mathbf{v}, \mathbf{x}, t)|}{K_{n}(\mathbf{v}, \mathbf{x}, \mathbf{x})} |N_{n}(t)dt \le C \frac{1}{n} u_{n}^{(a, b)}(\mathbf{x})$$

for $-1 \le x \le 1$ and n = 1, 2, ...

<u>Proof.</u> Let us note that if (1) holds for $N_1=N$ then it holds also for every fixed $N>N_1$. Let N be an even natural integer. Then $n^ nN \equiv M$ and by Definition 4 $u_n(x) \sim u_{M}(x)$ for $|x| \le 1$. Let us compute the integral on the left side of (1) by the Gauss-Jacobi mechanical quadrature formula. We can do this since N is even. The above integral equals to

(2)
$$\sum_{k=1}^{M} \lambda_{kM}(u) \left[\frac{K_{n}(\mathbf{v}, \mathbf{x}, \mathbf{x}_{kM}(u))}{K_{n}(\mathbf{v}, \mathbf{x}, \mathbf{x})} \right]^{N}$$

and we shall estimate this sum. We may suppose without loss of generality that $0 \le x \le 1$. Take a suitable value for N such that (1) holds. If $-1 \le x < 0$ then by similar arguments we obtain another value for N such that (1) is satisfied. Taking the maximum of these two values of N we

get a new N which is good for every $x \in [-1,1]$. We have $K_n(\mathbf{v},\mathbf{x},\mathbf{x})^{-N} \sim M^{-N}$ for $-1 \le x \le 1$ by Example 5.2.8. Let m be defined by

$$|x-x_{kM}| \ge |x-x_{mM}|$$
 for $k = 1, 2, ..., M$.

Then

$$(2) \sim M^{-N} \left\{ \sum_{\substack{K_{k} < -\frac{1}{2} \\ k \neq m}} + \sum_{\substack{1 \leq K_{k} < 1 \\ k \neq m}} + \sum_{\substack{K \leq M \\ k \neq m}} \right\}^{\lambda_{k} M} (u) \prod_{n}^{N} (v, x, x_{kM}) .$$

By Lemma 8 the first sum here is O(1) . By Lemma 5 and Corollary 7 the last sum is of order $\,M^{N-1}\,u_M(x)\,$. Hence

(2)
$$\leq C[M^{-N} + \frac{1}{M} u_{M}(x)] + M^{-N} + M^{-N} \sum_{\substack{-\frac{1}{2} \leq x_{K} < 1 \\ k \neq m}}^{\lambda} k_{M}(u) K_{n}^{N}(v, x, x_{KM})$$
.

By Lemma 6 for $k \neq m \left[x - x_{kM}\right| > C \frac{1}{M} \sqrt{1 - x^2}$ and $\left|x - x_{kM}\right| \ge \frac{1}{M^2} \left|k - m\right| \left|k + m\right|$. Consequently by Lemmas 5, 6 and 8

$$\begin{aligned} \mathbf{M}^{-N} & \sum_{-\frac{1}{2} < \mathbf{x}_{K}' < 1} ^{\lambda} k \mathbf{M}(\mathbf{u}) \ K_{n}^{N}(\mathbf{v}, \mathbf{x}, \mathbf{x}_{KM}) \le \\ & k \neq m \end{aligned}$$

$$\leq C \mathbf{M}^{-N-1} & \sum_{-\frac{1}{2} < \mathbf{x}_{K}' < 1} ^{(1-\mathbf{x}_{KM})^{3+\frac{1}{2}}} \left(\frac{\sqrt{1_{1-\mathbf{x}}^{2}} + \sqrt{1_{1-\mathbf{x}_{KM}}^{2}}}{\mathbf{x} - \mathbf{x}_{KM}} \right)^{N} \le \\ & k \neq m \end{aligned}$$

$$\leq CM^{-N-1}(1-x^2)^{\frac{N}{2}}\sum_{k=1}^{N}\frac{(\frac{k}{M})^{2a+1}\left[\frac{(k-m)(k+m)}{M^2}\right]^{-N}}{k \neq m} + \\$$

$$+ CM^{-N-1} \sum_{\substack{k=1\\k\neq m}}^{C_1M} \frac{k}{M} J^{2a+1+N} \underbrace{\left(\frac{(k-m)(k+m)}{M^2}\right)^{-N}}_{\mathbb{R} \neq m} = A+B$$

where $0 < c_1 < 1$. To estimate A and B we use Lemma 9. We obtain

hen

$$A \sim (1-x^2)^{\frac{N}{2}} \, M^{N-2-2a} m^{2a+1-N} \sim (1-x^2)^{\frac{N}{2}} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{2} \, \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1-N} \leq \frac{1}{M} \left[\sqrt{1-x} + \frac{1}{M} \right]^{2a+1$$

$$\leq C \frac{1}{M} u_M^{(a, b)}(x)$$
,

ind if

then

$$B \sim M^{-2-2a} m^{2a+1} - \frac{1}{M} \frac{u(a,b)}{M}(x)$$
.

Thus for N > max {1, 2a+2}

$$(2) \le C[M^{-N} + \frac{1}{M} \frac{u(a,b)}{M}(x)] \le C \frac{1}{M} \frac{u(a,b)}{M}(x) \le C[M^{-N} + \frac{1}{M} \frac{u(a,b)}{M}(x)] \le C[M^{-N} + \frac{1}{M} \frac{u(a,b)}{M}(x)$$

$$\leq \frac{c}{n} u^{(a,b)}(x)$$
.

To finish the proof of the theorem we choose N>0 that $N>\max\{1,2a+2,2b+2\}.$

Lemma II. Let $a > -\frac{1}{2}$, 0 . Then

(3)
$$|\pi_{n-1}(x)|^{p} \le Cn^{2(a+1)} \int_{0}^{1} |\pi_{n-1}(t)|^{p} (1-t)^{a} dt$$

for $\frac{1}{2} \le x \le 1$ and there exists a number $c_1 = c_1(a, p) > 0$ such that

$$(4) \qquad \int\limits_{0}^{1}\left|\pi_{n-1}(t)\right|^{p}\left(1-t\right)^{a}dt \leq 2\int\limits_{0}^{1-c_{1}n^{-2}}\left|\pi_{n-1}(t)\right|^{p}\left(1-t\right)^{a}dt \ .$$

Proof. Let k be a natural integer such that $2k \geq p$. Then $\deg \pi_{n-1}^{\quad k} \sim n$ and by Lemma 5

$$^{2k}_{n-1}(x) \leq C\, n^{2(a+1)} \int_{-1}^{1} \, ^{2k}_{n-1}(t) \, \left(1_{-t}^{2}\right)^{a} \, \mathrm{d}t$$

for -1 < x < 1, that is

$$\max_{|x| \le 1} |x_{n-1}(x)|^{2k} < \max_{|x| \le 1} |x_{n-1}(x)|^{2k-p} \ .$$

.
$$Cn^{2(a+1)}\int_{-1}^{1} \left| \prod_{n-1}^{} (t) \right|^{p} (1-t^2)^a dt$$
 .

herefore

$$|_{\pi_{n-1}(x)}|^p \leq _{\mathbb{C}_n^{2(a+1)}} \int_{-1}^1 |_{\pi_{n-1}(t)}|^p \, _{(1-t^2)^a} \, _{dt}$$

for -1 < x < 1. Let us put here $x^{2M} = \frac{1}{n-1} (x^2)$ instead of $\pi_{n-1}(x)$. Then for M fixed

-147-

$$|x^{2M}|_{m_{n-1}}(x^2)|^p \leq c \, n^{2(a+1)} \int\limits_0^1 ||_{m_{n-1}}(t)|^p \, t \, M^{p-\frac{4}{3}}_{(1-t)^a} \, \mathrm{d}t$$

for $0 \le x \le 1$. Let now M be so large that Mp $-\frac{1}{2} \ge 0$. Hence (3) holds. We obtain from (3) that for $c_1 > 0$

$$\int_{1-\frac{1}{n^2}}^{1} \left| \pi_{n-1}(x) \right|^p (1-x)^a dx \le C n^{2(a+1)} \int_{1-\frac{1}{n^2}}^{1} (1-x)^a dx.$$

$$\int\limits_{0}^{1}\left| \pi_{n-1}(t)\right| ^{p}\left(1-t\right) ^{a}\mathrm{d}t$$

and if $c_1 > 0$ is small then

$$C n^{2(a+1)} \int_{C_{\frac{1}{n}}}^{1} (1-x)^{a} dx \le \frac{1}{2}$$
,

which implies (4).

<u>Lemma 12.</u> Let $min(a,b) \ge -\frac{1}{2}$, 0 . Then

$$\lambda_n(u, x) \le C \lambda_n(u, p, x)$$

for n = 1, 2, ... and $-1 \le x \le 1$.

Proof. Let k be an integer such that $2k \ge p$. Put $a_1 = (a + \frac{1}{2}) \frac{2k}{p} - \frac{1}{2}$ and $b_1 = (b + \frac{1}{2}) \frac{2k}{p} - \frac{1}{2}$. Then $a_1, b_1 \ge -\frac{1}{2}$ and by Lemma 5 and II there exists $\epsilon > 0$ such that

$$\begin{array}{ll} u^{(a_1,\,b_1)}(x)\sqrt{1\!-\!x^2} & \pi_{n-1}(x)^{2\,k} \le \\ \le C \, n \, \int \frac{1\!-\!\frac{\epsilon}{2}}{n} \, \pi_{n-1}(t)^{2\,k} \, u^{(a_1,\,b_1)}(t) \sqrt{1\!-\!t^2} \, \frac{1}{\sqrt{1\!-\!t^2}} \, \, \mathrm{d}t \end{array}$$

for |x| ≤ 1 - 5 . Hence

$$|[u^{(a_1,b_1)}(x)\sqrt{1-x^2}]^{\frac{1}{2^k}} \prod_{n=1}^{\infty} (x)|^{p} \le$$

$$\leq C \, n \, \int_{-n^{2}}^{1 - \frac{E}{2}} \, |\{j^{4}l^{\nu} \, b_{l}^{\nu}(t) \, \sqrt{j_{1} \cdot t^{2}} \, j^{2}k \, \prod_{n-1}^{r}(t) \, |^{p} \, \frac{1}{\sqrt{j_{1} \cdot t^{2}}} \, \, dt \ , \\ -1 + \frac{E}{n^{2}}$$

that is

$$|\pi_{n-1}(\mathbf{x})|^p \le n u_n^{(a, b)}(\mathbf{x})^{-1} \int_{-1}^{1} |\pi_{n-1}(t)|^p u(t) dt$$

for $|\mathbf{x}| < 1 - \frac{\epsilon}{n}$. By Lemma II the latter inequality also holds for $1 - \frac{\epsilon}{2} < |\mathbf{x}| < 1$. Now (6) follows from Lemma 5.

Theorem 13. Let u be a Jacobi weight and 0 . Then

$$\lambda_n(u, p, x) \sim \lambda_n(u, x)$$

for -1 < x < 1.

Poof. Let N be such that (1) holds. Let m $\in \mathbb{N}$ be so big that $mp \ge N$. If we put $n_1 = \lceil \frac{n}{m} \rceil$ then

$$\lambda_{n}(\mathbf{u}, \mathbf{p}, \mathbf{x}) \leq \int_{-1}^{1} \left| \frac{\mathbf{K}_{n}(\mathbf{v}, \mathbf{x}, t)}{\mathbf{K}_{n}(\mathbf{v}, \mathbf{x}, \mathbf{x})} \right|^{mp} u(t) dt \leq C \frac{1}{n_{1}} u_{n}(\mathbf{x}) \approx C \frac{1}{n_{1}} u_{n}(\mathbf{x})$$

$$\sim \frac{1}{n} u_n(x) \sim \lambda_n(u, x) \qquad (|x| \le 1)$$

by Lemma 5 and Theorem 10. Now we shall show that

$$\lambda_{n}(u, x) \leq C \lambda_{n}(u, p, x)$$

for $|x| \le 1$. Let $u = u^{(a,b)}$, $u = u^{(max\{a,-\frac{1}{2}\})}$, $max\{b,-\frac{1}{2}\}$) and

$$(\max\{-\frac{(a+\frac{1}{2})}{p}, \frac{1}{2}, \frac{1}{2}\}, \max\{-\frac{(b+\frac{1}{2})}{p}, \frac{1}{2}, \frac{1}{2}\}$$
. We have by Lemma 5 $\hat{u} = u$

and 12

$$\left|\pi_{n-1}(x)|K_{n}(\widehat{u},x,x)\right|^{p}\leq C n \left[u_{n}^{*}(x)\right]^{-1}.$$

$$\int\limits_{-1}^{1} \left| \pi_{n-1}(t) \; K_{n}(\hat{u},t,t) \right|^{p} \; u^{\;*}(t) \, dt \qquad (\left| \times \right| \leq 1) \;\; ,$$

$$|K_n(\hat{u}, t, t)|^{p_u}(t) \le C n^{p_u(t)}$$
 (|t| \lesssip |

pu

$$u_n^*(x) | K_n(\hat{u}, x, x)|^p \sim n^p u_n(x)$$

for |x| <1. Hence

$$\left| \pi_{n-1}(x) \right|^{p} \le u_{n}(x)^{-1} \int_{-1}^{1} \left| \pi_{n-1}(t) \right|^{p} u(t) dt \ .$$

From this inequality and Lemma 5 we obtain (7).

There is a very important consequence of Theorem 13 which we

ulate as

Theorem 14. Let u be a Jacobi weight and $0 . Then there exists a number <math>c_1 = c_1(u,p) > 0$ such that

$$\int_{-1}^{1} |\pi_{n}(t)|^{p} u(t)dt \le 2 \int_{-1}^{n} |\pi_{n}(t)|^{p} u(t)dt$$

$$-1 + \frac{c_{1}}{2} |\pi_{n}(t)|^{p} u(t)dt$$

r every "n.

-150-

Proof. Use Lemma 5, Theorem 13 and (5).

Corollary 15. Let u be a Jacobi weight, $0 , <math>\varepsilon > 0$. Then for

$$\int_{-1}^{1} \left| \pi_{n}(t) \right|^{p} u(t) dt \le C n^{2\varepsilon} \int_{-1}^{1} \left| \pi_{n}(t) \right|^{p} u(t) (1-t^{2})^{\varepsilon} dt$$

with C = C(p, u, e) .

Corollary 16. Let 0 < q < p < w . Let up be a Jacobi weight. Then

$$\left(\int_{-1}^{1} |\pi_{n}(t) u(t)|^{p} dt\right)^{\frac{1}{p}} \leq C n^{2\left(\frac{1}{q} - \frac{1}{p}\right)} \left(\int_{-1}^{1} |\pi_{n}(t) u(t)|^{q} dt\right)^{\frac{1}{p}}$$

for every π_n where C = C(p,q,u).

Proof. By Lemma 5 and Theorems 13, 14

$$\begin{split} \int_{-1}^{1} \left| \pi_{n}(t) \; u(t) \right|^{p} dt & \leq 2 \int_{-1}^{n} \frac{1 - \frac{1}{2}}{1 + n} (t) \; u(t) \left| p - q + q \; dt \right| \leq \\ -1 + \frac{c_{1}}{2} \left| \pi_{n}(t) \; u(t) \left| p \; dt \right| \frac{p - q}{p} \; \frac{1 - \frac{1}{2}}{2} \right| \\ & \leq C \; n \; \frac{p}{p} \left(\int_{-1}^{1} \left| \pi_{n}(t) \; u(t) \left| p \; dt \right| \right) \frac{p - q}{p} \; \frac{1 - \frac{1}{2}}{2} \left| \pi_{n}(t) \; u(t) \left| q \; dt \right|. \end{split}$$

Let us note that Corollaries 15 and 16 for $1 \le p < \infty$ and $1 \le q$ are not new. (See Khalilova [9].)

Before we begin to investigate the generalized Christoffel functions for weights different from the Jacobi ones we shall need a few lemmas

Lemma 17. Let $a(x) + a(-x) \equiv const$. Let a_1 and a_2 be defined by

$$\alpha_1(x) = \begin{cases} 0 & \text{for } x < 0 \\ \alpha(\sqrt{x}) - \alpha(0) & \text{for } x \ge 0 \end{cases}$$

$$a_2(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$$

$$\sum_{k=0}^{n} p_{k}^{2}(a_{\alpha}, x) = \begin{cases} \frac{1}{2} \lambda_{n}^{-1} (a_{\alpha_{1}}, x^{2}) & \text{for } n \text{ even} \\ \frac{x^{2}}{2} \lambda_{n+1}^{-1} (a_{\alpha_{2}}, x^{2}) & \text{for } n \text{ odd} \end{cases}$$

$$\sum_{k=0}^{n} p_k^2(\alpha_0,x) = \max_{\substack{\pi = n \pmod{2} \\ n}} \sum_{\alpha=n \pmod{2}}^{n} (x)$$

$$\sum_{\substack{\sigma = n \pmod{2} \\ -\infty}}^{\infty} (t) \ d\alpha(t) = 1 \ ,$$

where $\pi \equiv n \pmod{2}$ means that π is even if n is even and π is odd

Proof. Easy calculation.

Having in mind later applications we shall prove the following

Lemma 18. Let $\alpha \in M(0,1)$ and let $\alpha(x) + \alpha(-x) \equiv \text{const.}$ Let α_1 and α_2 be defined as in Lemma 17. Then $\alpha_1,\alpha_2\in M(\frac{1}{2},\frac{1}{2})$.

Proof. The lemma follows from the relations

$$\alpha_{n}(\mathrm{d}\alpha_{1}) = \frac{\gamma_{2n}^{2}(\mathrm{d}\alpha)}{\gamma_{2n+1}^{2}(\mathrm{d}\alpha)} + \frac{\gamma_{2n-1}^{2}(\mathrm{d}\alpha)}{\gamma_{2n}^{2}(\mathrm{d}\alpha)},$$

$$\frac{\gamma_{n-1}(\mathrm{d}a_1)}{\gamma_n(\mathrm{d}a_1)} = \frac{\gamma_{2n-2}(\mathrm{d}a)}{\gamma_{2n}(\mathrm{d}a)}$$

and

$$a_{n}(da_{2}) = \frac{\gamma_{2n+1}^{2}(da)}{\gamma_{2n+2}^{2}(da)} + \frac{\gamma_{2n}^{2}(da)}{\gamma_{2n+1}^{2}(da)},$$

$$\frac{\mathbf{v}_{n-1}(da_2)}{\mathbf{v}_n(da_2)} = \frac{\mathbf{v}_{2n-1}(da)}{\mathbf{v}_{2n+1}(da)}$$

which can easily be checked

 $\frac{Lemma \, 19. \ \ Let \ \ w(t) = |t|^{\Gamma} (1-t^2)^a \ \ for \ \, -1 \le t \le 1 \ \ with \ \, \Gamma, \, a > -1 \ \ and \ \ supp(w) = [-1,1] \, . \ \ Then$

$$\lambda_n(w,x) \sim \frac{1}{n}(|x| + \frac{1}{n})^{\Gamma} (\sqrt{1 \! - \! x} + \frac{1}{n})^{2a+1} (\sqrt{1 \! + \! x} + \frac{1}{n})^{2a+1}$$

for .1 < x < 1.

Proof. Apply Lemmas 5 and 17.

Theorem 20. Let supp(da) be compact, $\Delta \subset \text{supp}(da)$, t $\epsilon \Delta^0$, $\Gamma > -1$. Let a be absolutely continuous in Δ and let

$$\alpha'(t)^{-}|_{t-t}^{*}|^{\Gamma}$$
 (t $\in \Delta$).

-153-

Then

$$\lambda_n(da, x) \sim \frac{1}{n}(|x-t^*| + \frac{1}{n})^{\Gamma}$$

for x $\in \Delta_1 \subset \Delta^0$

Proof. By Lemma 19 we have to show that

$$\lambda_n(da, x) \le C \frac{1}{n}(|x-t^*| + \frac{1}{n})^T$$

for $x\in\Delta_1\subset\Delta^0$. Let \hat{v} denote the Tschebyshev weight corresponding to $\Delta(d\sigma)$ and m be a natural integer. Then

$$\lambda_n(\mathrm{d}\alpha,x) \leq \int_{-\infty}^{\infty} \left[\frac{K_n}{\binom{n}{m}}, (\hat{\mathbf{v}},x,t) \atop \frac{K_n}{m}, (\hat{\mathbf{v}},x,x) \right]^{2m} \mathrm{d}\alpha(t)$$

d hence

$$\lambda_{l}(d\alpha_{s},x)\leq C\;n^{-2m}\int\limits_{t\phi}d\alpha(t)+C\int\limits_{t\varepsilon\Delta}\left|t_{-t}^{*}\right|^{\Gamma}\frac{1}{1+n^{2m}(x-t)^{2m}}\;dt$$

uniformly for $x \in \Delta_1 \subset \Delta^0$ if m is fixed. The second integral on the right side of the latter inequality can be estimated by standard methods. Finally we obtain that (8) is satisfied if we choose m large enough.

Let us note that the calculation in Theorem 20 was simple because we needed estimates only for $x \in \Delta_1 \subset \Delta^0$ and not for $x \in \Delta$.

Lemma 21. Let $0 , <math>\Gamma \ge 0$, $0 \in \Delta_1^0$, $\Delta_1 \subset \Delta^0$. Then for every $\pi_{n-1} = \|\pi_{n-1}(x)\|^p \le C \|\|x\|^{1/p} + \|x\|^{p} \|\|x\|^{p} \|\|x\|^{p}$

uniformly for
$$x \in \Delta_1$$
.

-154-

Proof. Let $\epsilon>0$ be such that $[-2\epsilon,\,2\epsilon]\subset\Delta_1^0$. If $x\in\Delta_1\backslash[-\epsilon,\epsilon]$ then by Lemma 5 and Theorem 13

since $\Gamma \geq 0$. Let now $x \in [-\epsilon, \epsilon]$. Let v_ϵ denote the Tschebyshev weight corresponding to $[-2\epsilon, 2\epsilon]$, M be an even natural integer and m be an integer such that $2m \geq p$. Then by Lemma 19

$$[v_{\varepsilon}(x)^{-M} \, _{\pi_{n-1}}(x)]^{2m} \, v_{\varepsilon}(x)^{-1} \leq C \, _{n}^{\Gamma+1} \int_{-2\varepsilon}^{2\varepsilon} [v_{\varepsilon}(t)^{-M} \, _{\pi_{n-1}}(t)]^{2m} \, |t|^{\Gamma} \, \mathrm{d}t$$

for x ∈ [-2ε, 2ε]. Hence

$$\left| \begin{array}{ccc} -M - \frac{1}{2m} & -M - \frac{1}{2m} \\ v_{\epsilon}(x) & & \\ \end{array} \right| \stackrel{p}{\leq} C \; n^{\Gamma+1} \int_{-2\epsilon}^{2\epsilon} \left| \begin{array}{ccc} -M p - \frac{p}{2m} + 1 \\ & \\ -2\epsilon \end{array} \right|.$$

· It | r dt

for x ε [-2c,2c]. Let now M be so large that -Mp - $\frac{p}{2m}$ +1 \leq 0 . From Lemma 21 we obtain the following

Lemma 22. Let $0 , <math>\Gamma \ge 0$, $0 \in \Delta^0$. Then there exists

 $c_1 = c_1(p, \Gamma, \Delta)$ such that

$$\int_{\Delta} |_{m_{n}-1}(t)|^{p} |_{L}|^{\Gamma} dt \le 2 \int_{te} |_{m_{n}-1}(t)|^{p} |_{L}|^{\Gamma} dt .$$

$$|_{L}|_{\geq \frac{c_{1}}{n}}$$

Lemma 23. Let $0 , <math>\Gamma \ge 0$, $0 \in \Delta_1^0$, $\Delta_1 \subset \Delta^0$. Let $w(t) = |t|^{\Gamma}$ for $t \in \Delta$ with $supp(w) = \Delta$. Then

$$\frac{1}{n}\left(\left|\mathbf{x}\right| + \frac{1}{n}\right)^{\Gamma} \le C \lambda_{n}(\mathbf{w}, \mathbf{p}, \mathbf{x}) \qquad (n = 1, 2, \dots)$$

niformly for x & A, .

Proof. Let $\epsilon > 0$ be such that $[-2\epsilon, 2\epsilon] \subset \Delta_1^0$. If $x \in \Delta_1 \setminus [-\epsilon, \epsilon]$ then (9) follows from Lemma 5 and Theorem 13. If $x \in [-\epsilon, \epsilon]$ then we find an integer m such that $2m \ge p$. We put $w(t) = |t|^{\frac{2m\Gamma}{p}} (4\epsilon^2 + t^2)^{\frac{1}{p}}$.

$$\sqrt{4\epsilon^{2} \cdot x^{2}} \cdot w^{*}(x) \left| \pi_{n-1}(x) \right|^{2m} \le C n \int_{0}^{1} \left| \pi_{n-1}(t) \right|^{2m} \cdot w^{*}(t) dt$$

for $|t| \le 2\varepsilon$ with $supp(w) = [-2\varepsilon, 2\varepsilon]$. Then by Lemmas 19 and 22

for $\frac{c_1}{n} \le |x| \le 2\epsilon$. Hence

$$\leq C n \int_{\Delta} |\pi_{n-1}(t)|^p w(t) dt$$

for $\frac{c_1}{n} \le |x| \le 2\epsilon$. Hence (9) holds also for $\frac{c_1}{n} \le |x| \le \epsilon$. If $|x| \le \frac{c_1}{n}$ we apply Lemma 21.

Lemma 24. Lemma 23 remains true if -1 < Γ < 0 instead of Γ > 0. Proof. Let ϵ > 0 be such that Δ \subset (- ϵ , ϵ). Let w (t) = $|t|^{-\frac{\Gamma}{P}}$ for $|t| \le \epsilon$ with $\sup(w^*) = [-\epsilon, \epsilon]$. Then by Lemma 19

$$\lambda_{n}(w^{*}, x) = \frac{1}{n}(|x| + \frac{1}{n})^{-\frac{1}{p}}$$

for x c A . By Lemma 23

$$\left|\pi_{n-1}(x)\right|^{\lambda-1}(w^*,x)\left|\stackrel{P}{>}\leq \mathbb{C}\left[n\int_{\Delta}\left|\pi_{n-1}(t)\right|^{\lambda-1}(w^*,t)\right|^{p}dt$$

for x & D1. Hence

$$\left| \pi_{n-1}(x) \right|^p (\left| x \right| + \frac{1}{n})^{\Gamma} \leq C \, n \int_{\Delta} \left| \pi_{n-1}(t) \right|^p \left| t \right|^{\Gamma} \, dt$$

X C D 1.

Theorem 25. Let $supp(d\alpha)$ be compact, $\Delta \subset supp(d\alpha), \ t^* \in \Delta^0, \ \Gamma > -1$, $0 . Let <math display="inline">\alpha$ be absolutely continuous in Δ and let

$$a'(t) \sim |t-t^*|^{\Gamma}$$
 (i.e Δ).

Then

$$\lambda_n(\mathrm{d}\alpha,\mathrm{p},\mathrm{x})\sim\lambda_n(\mathrm{d}\alpha,\mathrm{x})\sim\frac{1}{n}\left(\left|\mathrm{x-t}^*\right|+\frac{1}{n}\right)\Gamma$$

for x & A, C A

Proof. The inequality

$$\lambda_n(d\alpha,p,x) \leq \frac{c}{n} (\left\| x - t^* \right\| + \frac{1}{n})^{\Gamma} \quad (x \in \Delta_1 \subset \Delta^0)$$

can be proved exactly by the same way as in Theorem 20 for p = 2 . For the estimate from below we can suppose that $t^* \in \Delta_1$ and then we apply Lemmas 23 and 24.

Corollary 26. Lemma 22 remains valid for -1 < Γ <0 and consequently if Γ >-1, ϵ >0, 0 ϵ Δ^0 and 0 < p < ∞ then for every $^\pi_n$

$$\int\limits_{\Delta} \left| \pi_n(t) \right|^p \left| t \right|^\Gamma \mathrm{d}t \le \mathrm{C} \, \, n^\epsilon \int\limits_{\Delta} \left| \pi_n(t) \right|^p \left| t \right|^{\Gamma + \epsilon} \, \mathrm{d}t$$

where $C = C(p, \Gamma, \epsilon, \Delta)$

Theorem 27. Let $\operatorname{supp}(d\,\sigma)$ be $\operatorname{compact}_7$ 0 , <math>a > -1. Let $\Delta(d\,\sigma) = [c_1, c_2]$, $\delta > 0$ and let α be absolutely continuous in $[c_2 - \delta, c_2]$. Let

$$\alpha'(t) \sim (c_2 - t)^a$$
 (t \([c_2 - 6, c_2]) .

Then

$$\lambda_n(\mathsf{d} \alpha,\, \mathsf{p},\, \mathsf{x}) \sim \frac{1}{n} \, (\sqrt{c_2\!-\!\mathsf{x}}\,+\!\frac{1}{n})^{2\,\mathsf{a}+1}$$

for $x \in [c_2 - \frac{6}{2}, c_2]$.

Proof. We have by Theorem 10 and standard arguments

$$\lambda_n(\mathrm{d}\alpha,\,\mathrm{p},\,\mathrm{x}) \leq \frac{1}{n}\,(\sqrt{c_2\!-\!\mathrm{x}}\,+\!\frac{1}{n})^{2\alpha+1}$$

for x ($[c_2 - \frac{\delta}{2}, c_2]$. The converse inequality follows from Lemma 5 and Theorem 13.

From Theorems 25 and 27 we obtain

$$w(t) = \prod_{k = 1}^{N} |t - t_k|^{\Gamma_k} \qquad (-1 \le t \le 1)$$

with supp(w) = [-1, 1]. Let

$$\overline{w}_{n}(t) = (\sqrt{1-t} + \frac{1}{n})^{2} \frac{2}{\Gamma_{1}} \frac{1}{1} \frac{N-1}{1} \frac{(|t-t_{k}| + \frac{1}{n})^{-k} (\sqrt{1+t} + \frac{1}{n})}{k=2} \frac{2}{N} \frac{N+1}{1}$$

for -1 < t < 1. Then for every 0 < p < 8

$$\lambda_n(w, p, x) \sim \lambda_n(w, x) \sim \frac{1}{n} \frac{\mathbf{w}}{\mathbf{n}}(x)$$

or |x| < 1.

Corollary 29. We can establish inequalities similar to those in Theorem 14 and Corollaries 15 and 16.

The exact formulation of Corollary 29 is left to the reader.

Lemma 30. Let p > 1. Then

$$\int\limits_{-1}^{1} \left| K_{n}(\mathbf{v},\mathbf{x},t) \right|^{p} \, v(t) dt \sim n^{p-1} \sim \lambda_{n}(\mathbf{v},\mathbf{x})^{1-p}$$

or -1 < x < 1.

The estim

$$n^{p-1} \le C \int_{-1}^{1} \left| K_n(\mathbf{v}, \mathbf{x}, \mathbf{t}) \right|^p v(\mathbf{t}) d\mathbf{t}$$

follows immediately from Theorem 13. The converse estimate is obvious when p ≥ 2 and can be obtained by a simple calculation from Lemma 8 when 1 .

Lemma 31. Let α be an arbitrary weight, p>1. Then for almost every $x\in [-1,1]$

-159-

$$\lim_{n\to\infty} \frac{1}{\int_{1}^{1} |K_{(v,x,t)}|^{p} d\sigma(t)} = \sqrt{1-x^{2}} \sigma'(x) .$$

$$\int_{-1}^{1} |K_{n}(v,x,t)|^{p} v(t) dt$$

Proof. Using Lemm* 30 the lemma can be proved in almost the same way as Lemma 6.2.32. We shall not go into details.

Theorem 32. Let $supp(d\sigma)\subset [-1,1]$ and $0<p<\infty$. Then

(10) If
$$\lim \sup_{n \to \infty} n \lambda_n(d\sigma, p, x) \le C \sigma'(x) \sqrt{1-x^2}$$

for almost every $x \in [-1, 1]$ where C = C(p).

Proof. Let m be a natural integer such that mp > 1. Then

$$\lambda_n(\mathrm{d}\alpha,p,x) \leq \int_{-1}^1 \left| \frac{K_n}{[\frac{n}{m}]} (v,x,t) \right|^{mp} \mathrm{d}\alpha(t) \ .$$

Now we apply Lemmas 30 and 31.

Theorem 33. Let $\alpha\in M(0,1)$ and $0< p<\infty$. Then for almost every $x\in supp(d\alpha)$ (10) holds with C=C(p) .

<u>Proof.</u> Combine the arguments used in the proof of Theorems 32 and and 6.2.51.

Theorem 34. Let α be an arbitrary weight. Let Δ and $\varepsilon > 0$ be given and let v_{Δ} denote the Tschebyshev weight corresponding to Δ . Let $[\alpha']^{-\varepsilon} \in L^1(\Delta)$. Then for each $\mathfrak{p} \in (0,\infty)$

lim inf
$$n \lambda_n (d\alpha, p, x) \ge C \alpha'(x) \nu_{\Delta}(x)^{-1}$$

for almost every $x \in \Delta$ where $C = C(\epsilon, \Delta, p)$.

Proof. Let $q = \epsilon p(1+\epsilon)^{-1}$, m and M be natural integers such that mpe >1 and 2 ϵpM >1+ ϵ . Let N = $\lceil \frac{n}{m} \rceil$. We can suppose without loss of generality that $\Delta = \lceil -1, 1 \rceil$. Then by Theorem 13

$$\left\|\lambda_N^{-m}(v,x)\;v(x)^{-2M}_{n-1}(x)\right\|^q \le C\;n\;\int_{-1}^1 \left|K_N^m(v,x,t)\;v(t)^{-2M}_{n-1}(x)\right|^q .$$

Hence by Hölder's inequality

$$\begin{split} & \left| \left| \pi_{n-1}(x) \right|^{p} \leq C \, n^{\frac{p}{q}} \, \lambda_{N}(v,x)^{pm} \, v(x)^{2Mp} \cdot \int_{-1}^{1} \left| \pi_{n-1}(t) \right|^{p} \alpha'(t) dt \; \cdot \\ & \left| \int_{-1}^{1} \left| K_{N}(v,x,t) \right|^{\frac{mpq}{p-q}} \, \frac{p}{v(t)^{\frac{p-q}{p-q}}} \, \frac{2Mpq}{p-q} \, \frac{q}{\alpha'(t)} \, \frac{q}{p-q} \, \right| \frac{p-q}{q} \end{split}$$

Using Lemma 30 we obtain

$$\begin{split} &|\pi_{n-1}(x)|^{p} \leq C \, n \, v(x)^{2M \, p} \int_{-\infty}^{\infty} |\pi_{n-1}(t)|^{p} \, d\alpha(t) \ . \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon - 2M \, \epsilon \, p} \, \alpha'(t)^{-\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon - 2M \, \epsilon \, p} \, \alpha'(t)^{-\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon - 2M \, \epsilon \, p} \, \alpha'(t)^{-\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon - 2M \, \epsilon \, p} \, \alpha'(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon} \, dt \\ &\left\{ \int_{-1}^{1} |K_{N}(v,x,t)|^{m \, \epsilon \, p} \, v(t)^{1+\epsilon}$$

Consequently

$$\frac{1}{n\lambda_n(d\alpha, p, x)} \le C n v(x)^{2Mp}.$$

$$\left\{ \int_{-1}^{1} \frac{1}{|k_N(v, x, t)|} e^{mp} v(t)^{1+\varepsilon-2M\varepsilon p} e^{\alpha'(t)} e^{dt} \right\}^{1/\varepsilon}$$

$$\left\{ \int_{-1}^{1} \frac{1}{|k_N(v, x, t)|} e^{m\varepsilon p} v(t)^{1+\varepsilon-2M\varepsilon p} e^{\alpha'(t)} e^{-dt} \right\}^{1/\varepsilon}$$

By the conditions $v^{1+\epsilon-2M\epsilon p}(a^i)^{-\epsilon}$ is a weight. Thus the theorem follows from Lemma 31.

In Theorem 34 the most important case is when $\,p$ = 2 . Let us formulate it separately as

Theorem 35. Let $\epsilon > 0$. If $(\alpha')^{-\epsilon} \in L^1(\Delta)$ then

$$\limsup_{n\to\infty} \frac{a'(x) v_{\Delta}(x)^{-1}}{n^{\lambda}_{n}(d\alpha,x)} \in L^{\infty}(\Delta) \ .$$

Let us note that 'orollary 6.2.24 is contained in Theorem 35. Hence Theorems 6.2.25 and 6.2.26 remain valid if $[\sigma']^{-E}\,\varepsilon\,L^1(\Delta)$ instead of $1/\sigma'\,\varepsilon\,L^1(\Delta)$.

7. The Coefficients in the Recurrence Formula.

Theorem 1. Let supp (da) ⊂ [-1,1] and

$$\sum_{j=1}^{\infty} \left| \frac{\gamma_{j-1}(d\alpha)}{\gamma_{j}(d\alpha)} - \frac{1}{2} \right| < \infty.$$

Proof. Let $0 \le k \le n$. Let us divide both sides in 3.1(2) by x^n and let x + w. We obtain

$$2^{-n} \ \gamma_n(d\alpha) \ = \ 2^{-k} \ \gamma_k(d\alpha) \ + \ \sum_{j=k+1}^n \ 2^{-j} \ \gamma_j(d\alpha) \bigg[\ 1 - 2 \ \frac{\gamma_{j-1}(d\alpha)}{\gamma_j(d\alpha)} \bigg] \ .$$

Let us fix k so that

$$\sum_{j=k+1}^{8} \left| 1 - 2 \frac{\gamma_{j-1}}{\gamma_{j}} \right| < \frac{1}{2}.$$

Then for every n > k+1

$$2^{-n} \gamma_n \le 2^{-k} \gamma_k + \frac{1}{2} \max_{k+1 \le j \le n} 2^{-j} \gamma_j$$

and thus for every m > k + 1

$$\max_{k+1 \leq n \leq m} \ 2^{-n} \ \gamma_n \leq 2^{-k} \gamma_k + \frac{1}{2} \quad \max_{k+1 \leq j \leq m} \ 2^{-j} \ \gamma_j \ ,$$

in particular for m > k+l

From this inequality and Lemma 4.2.2 we obtain by standard calculations

$$\frac{1}{\sqrt{\pi}} \, \exp \, \left\{ -\frac{1}{2\pi} \, \int_{-1}^{1} v(t) \, \log[\, a'(t) + \epsilon \,] dt \, \right\} \, \le \, 2^{1-k} \, \gamma_k \, \, .$$

Letting & + 0 we see that

$$\int_{-1}^{1} v(t) \log a'(t) dt > -\infty.$$

where φ is an even function of bounded variation with $\varphi(1)>0$. Then for Lemma 2. Let w be of the form $w(x) = \varphi(x)|x|^{\epsilon}$ $(\epsilon > -1, -1 \le x \le 1)$

$$\frac{\gamma_{n-1}(w)}{\gamma_{n}(w)} = \frac{1}{2} \frac{n + \frac{\epsilon}{2} \left[1 + (-1)^{n+1}\right]}{\left[n + \frac{1}{2}(a_n + \epsilon + 1)\right]^{\frac{1}{2}} \left[n + \frac{1}{2}(a_{n-1} + \epsilon - 1)\right]^{\frac{1}{2}} - \frac{1}{2}b_n}$$

$$\mathbf{a}_n = \int_1^1 \mathbf{p}_n^2(\mathbf{w}, \mathbf{x}) \mathbf{x} |\mathbf{x}|^{\varepsilon} d\varphi(\mathbf{x})$$

$$b_n = \int_{-1}^{1} p_{n-1}(w, x) p_n(w, x) |x|^{\epsilon} d\varphi(x)$$
.

 $\frac{\text{Proof.}}{\text{suppose that } \phi(\pm 1) = 1} (w) / \gamma_n(w) = \gamma_{n-1}(cw) / \gamma_n(cw) \text{ for every } c > 0 \text{ we can suppose that } \phi(\pm 1) = 1.$

$$\int_1^1 x[p_n^2(w,x)]^!w(x)dx = 2\int_1^1 p_n(w,x)[n\gamma_n(w)x^n+\dots]w(x)dx = 2n.$$
 On the other hand since w is even

$$\begin{split} \int_{1}^{1} \mathbf{x} [p_{n}^{2}(\mathbf{w}, \mathbf{x})]^{1} \mathbf{w}(\mathbf{x}) d\mathbf{x} &= 2p_{n}^{2}(\mathbf{w}, 1) - \int_{-1}^{1} p_{n}^{2}(\mathbf{w}, \mathbf{x}) d\mathbf{x} \mathbf{w}(\mathbf{x}) &= \\ &= 2p_{n}^{2}(\mathbf{w}, 1)^{-1} - \int_{-1}^{1} p_{n}^{2}(\mathbf{w}, \mathbf{x}) \mathbf{x} \, d\mathbf{w}(\mathbf{x}) \,. \end{split}$$

$$2n+1 \ = \ 2p_n^2(w,1) \ - \ \int_{-1}^1 p_n^2(w,x) x \ dw(x) \ .$$

Because $w(x) \approx \varphi(x) |x|^{\epsilon}$ we obtain

$$\int_{-1}^{1} p_{n}^{2}(w, x) x \, dw(x) = \int_{-1}^{1} p_{n}^{2}(w, x) \, x |x|^{\epsilon} \, d\varphi(x) +$$

$$+ \varepsilon \int_{1}^{1} p_{n}^{2}(w, x) x \, \varphi(x) \, |x|^{\varepsilon - 1} sign \, x \, dx = \int_{-1}^{1} p_{n}^{2}(w, x) x |x|^{\varepsilon} \, d\varphi(x) + \varepsilon \ .$$

onsequently

$$p_n^2(\mathbf{w}, 1) = n + \frac{1+\epsilon}{2} + \frac{1}{2} \int_{-1}^{1} p_n^2(\mathbf{w}, \mathbf{x}) \mathbf{x} |\mathbf{x}|^{\epsilon} d \, \phi(\mathbf{x})$$

for n = 0, 1, ... Now we shall consider another integral:

$$\int_{-1}^{1} \left[p_{n}(\mathbf{w}, \mathbf{x}) p_{n-1}(\mathbf{w}, \mathbf{x}) \right]^{1} \mathbf{w}(\mathbf{x}) d\mathbf{x} = \int_{-1}^{1} p_{n}(\mathbf{w}, \mathbf{x}) p_{n-1}(\mathbf{w}, \mathbf{x}) \mathbf{w}(\mathbf{x}) d\mathbf{x} = \int_{-1}^{1} p_{n-1}(\mathbf{w}, \mathbf{x}) \left[n \gamma_{n}^{1} \mathbf{w} \right] \mathbf{x}^{n-1} + \dots \left[\mathbf{w}(\mathbf{x}) d\mathbf{x} \right] = n \frac{\gamma_{n}(\mathbf{w})}{\gamma_{n-1}(\mathbf{w})}.$$

4

$$\int_{-1}^{1} [p_n(w,x)p_{n-1}(w,x)]^{\nu}w(x)dx = 2p_n(w,1)p_{n-1}(w,1) - \int_{-1}^{1} p_n(w,x)p_{n-1}(w,x)dw(x)$$

700

$$\int_{-1}^{1} p_{n}(w, x) p_{n-1}(w, x) dw(x) = \int_{-1}^{1} p_{n}(w, x) p_{n-1}(w, x) |x|^{\epsilon} d\varphi(x) + \epsilon \int_{1}^{1} p_{n}(w, x) p_{n-1}(w, x) \frac{w(x)}{x} dx.$$

If n is even then $p_{n-1}(w,x)x^{-1}$ is a polynomial of degree n-2 and consequently the latter integral equals 0 . If n is odd then $p_n(w,x)x^{-1}$ is a

polynomial of degree n-1. Thus

$$\int_{-1}^{1} p_{n-1}(w, x) p_{n}(w, x) \frac{w(x)}{x} dx = \int_{-1}^{1} p_{n-1}(w, x) [v_{n}x^{n-1} + \dots] w(x) dx = \frac{v_{n}(w)}{v_{n-1}(w)}$$

Hence for n = 1, 2, ...

$$\int_{-1}^{1} p_{n}(\mathbf{w}, \mathbf{x}) p_{n-1}(\mathbf{w}, \mathbf{x}) \frac{\mathbf{w}(\mathbf{x})}{\mathbf{x}} d\mathbf{x} = \frac{1}{2} \frac{\gamma_{n}(\mathbf{w})}{\gamma_{n-1}(\mathbf{w})} [1 + (-1)^{n+1}].$$

Thus we obtain

(2)
$$\left\{n + \frac{\varepsilon}{2} \left[1 + (-1)^{n+1}\right]\right\} \frac{\gamma_n(w)}{\gamma_{n-1}(w)} =$$

$$= 2 p_n(w, 1) p_{n-1}(w, 1) - \int_1^1 p_n(w, x) p_{n-1}(w, x) |x|^{\varepsilon} d\varphi(x).$$

Putting (1) into (2) we finish the proof.

Theorem 3. Let $supp(w) \subset [-1,1]$, w be even and of bounded variation

with w(1) > 0. Let

sup
$$\int_{1}^{1} p_{n}^{2}(w, x) |dw(x)| < \infty$$
.

If w-e $L^1(\tau)$ (e>0, $\tau \in (-1,1)$) then the sequence $\{|p_n(w,t)|\}$ is

bounded for almost every te T.

<u>Proof.</u> We apply Lemma 2 with $\epsilon = 0$. Both $\{a_n\}$ and $\{b_n\}$ are bounded

$$\frac{\gamma_{n-1}(w)}{\gamma_{n}(w)} = \frac{1}{2} + O(\frac{1}{n})$$
.

Since w is even we obtain $c_j^{0,1}(w) = O(\frac{1}{n})$. Now we use Theorem 6. 2. 26. <u>Theorem 4.</u> Let $w(x) = \varphi(x) |x|^{\epsilon} (\epsilon > -1, -1 \le x \le 1)$. Let φ be even,

continuous and positive and let $\, \phi^{\, \iota} \,$ be also continuous. Then

$$\frac{\gamma_{n-1}(w)}{\gamma_{n}(w)} = \frac{1}{2} + (-1)^{n+1} \frac{E}{4n} + o(\frac{1}{n})$$

for n = 1,2,... . If φ is constant then o($\frac{1}{n}$) can be replaced by O($\frac{1}{n^2}$). Proof. Let us use Lemma 2. By the conditions $a_n = O(1)$ and $b_n = O(1)$.

Thus w ∈ M(0,1). Further

$$\{n + \frac{\varepsilon}{2} [1 + (-1)^{n+1}] \} \frac{v_n}{v_{n-1}} =$$

$$= 2n [1 + \frac{1}{2n} (a_n + \varepsilon + 1)]^{\frac{1}{2}} [1 + \frac{1}{2n} (a_{n-1} + \varepsilon - 1)]^{\frac{1}{2}} - b_n =$$

$$= 2n [1 + \frac{1}{4n} (a_n + \varepsilon + 1) + O(\frac{1}{n^2})] \cdot [1 + \frac{1}{4n} (a_{n-1} + \varepsilon - 1) + O(\frac{1}{n^2})] - b_n =$$

$$= 2n + \varepsilon + \frac{1}{2} (a_n + a_{n-1} - 2b_n) + O(\frac{1}{n}) .$$

$$\frac{\gamma_n}{\gamma_{n-1}} = 2 + \frac{\epsilon(-1)^n}{n + \frac{\epsilon}{2} \left[1 + (-1)^{n+1}\right]} + O\left(\frac{\left|\frac{a}{n} + \frac{a}{n-1} - 2b\right|}{n}\right) + O(\frac{1}{n^2}) \; .$$

$$\frac{\gamma_{n-1}}{\gamma_n} = \frac{1}{2} + (-1)^{n+1} \frac{\epsilon}{4n} + O\left(\frac{|a_n + a_{n-1} - 2b_n|}{n}\right) + O(\frac{1}{2}).$$

If ϕ is constant then $|a_n|=a_{n-1}=b_n=0$. If ϕ is not constant then we have to show that

(4)
$$\lim_{n\to\infty} (a_n + a_{n-1} - 2b_n) = 0 \ .$$
 By the recurrence formula

$$a_n \ = \ \frac{v_n}{v_{n+1}} \ b_{n+1} \ + \ \frac{v_{n-1}}{v_n} b_n \ .$$

$$a_{n} + a_{n-1} - 2b_{n} = \frac{v_{n}}{v_{n+1}} b_{n+1} + 2(\frac{v_{n-1}}{v_{n}} - 1)b_{n} + \frac{v_{n-2}}{v_{n-1}} b_{n-1} \ .$$

Since $\mathbf{w} \in M(0,1)$ if $\lim_{n \to \infty} b_n$ exists and it is finite then (4) holds. But

$$b_n = \int_{-1}^{1} p_n(w, x) p_{n-1}(w, x) \frac{\varphi'(x)}{\varphi(x)} w(x) dx$$
.

By the conditions φ^{\prime}/φ is continuous on [-1,1]. Using Theorem 4,2:13 we

$$\lim_{n\to\infty} b_n = \frac{1}{\pi} \int_{-1}^1 \frac{t \, \varphi'(t)}{\varphi(t) \sqrt{1-t^2}} \, dt < \infty \ .$$

Consequently (4) is satisfied,

Theorem 5. Let α be such that either supp(d α) \subset [-1,1] or α \in M(0,1).

Let $\tau \in [-1,1]$ and φ be defined by

$$\varphi(x) = \sup_{n \ge 0} p_n^2(d\alpha, x) \qquad (x \in \tau).$$

Then for almost every x e T

$$\alpha'(\mathbf{x})\sqrt{1-\mathbf{x}^2} \geq \frac{1}{\pi\varphi(\mathbf{x})}$$

almost every $x \in \tau$ and if $\varphi(x) \le K < \infty$ for almost every $x \in \mathfrak{D} \subset \tau$ then in particular if $\varphi(x)$ is finite for almost every $x \in \tau$ then $\alpha'(x) > 0$ for

$$\alpha'(x)\sqrt{1-x^2} \ge \frac{1}{k\pi}$$

for almost every x ∈ M.

<u>Proof.</u> By the definition of φ , $n\lambda_n(d\varphi,x) \geq \varphi(x)^{-1}$ for $x \in \tau$ and we apply Theorems 6.2.33 and 6.2.51.

Let us note that putting α = Tschebyshev weight we see that the constant K in (5) is not exact. Definition 6. Let supp(da) \subseteq [-1,1]. Let μ = μ be the weight on the unit circumference associated with a in the usual way:

$$\mu(\theta) = \begin{cases} \alpha(1) - \alpha(\cos \theta) & \text{for } 0 \le \theta \le \pi \\ \alpha(\cos \theta) - \alpha(1) & \text{for } -\pi \le \theta \le 0 \end{cases}$$

Let $\phi_n(d\mu,z) = z^n + \dots$ (n = 0,1,...) denote the corresponding system of orthogonal polynomials. It is known that the coefficients of $\varphi_{n}\left(d\mu,z\right)$ are real. (See e.g. Freud, §V.1) We put

Lemma 7.
$$\alpha \in S$$
 iff $\sum_{n=0}^{\infty} a_n^2 < \infty$.

Proof. See Geronimus, §8.2.

Lemma 8. We have

$$\frac{\gamma_n(d\alpha)}{\gamma_{n+1}(d\alpha)} = \frac{1}{2} \left[(1-a_{2n-1})(1-a_{2n}^2)(1+a_{2n+1}) \right]^{\frac{1}{2}}$$

and

$$\alpha_n(d\alpha) = \frac{1}{2}[a_{2n-2}(1+a_{2n-1}) - a_{2n}(1-a_{2n-1})]$$

Proof. Calculation. For the first relation see e.g. Geronimus, §9.1.

From Lemmas 7 and 8 we obtain

Theorem 9. Let
$$a \in S$$
. Then
$$\sum_{j=0}^{\infty} c_j^{0,1} (da)^2 < \omega.$$

Remark 10. The converse of Theorem 9 is not true. Example: the Polleczek

 $\sum_{j=0}^{\infty} c_j^{-1}(da) < \infty. \text{ Later we shall show that } \sum_{j=0}^{\infty} c_j^{-1}(da) < \infty \text{ neither implies that supp}(aa) = [-1,1] \text{ nor that } a \text{ is absolutely continuous but } \sup\{ab,b,a,b\} = [-1,1] \text{ follows from } \sum_{j=0}^{\infty} c_j^{-1}(da) < \infty.$ corresponding orthonormal polynomial. It is obvious that neither $\alpha'(x)>0$ for $-1 \le x \le 1$ nor $|p_n(d\alpha,x)| \le C < \infty$ for $n=1,2,\ldots, -1 \le x \le 1$ follows from $C<\infty$ for $n=1,2,\ldots, -\pi \le \theta \le \pi$, $z=e^{i\theta}$. Here $\varphi_n(d\mu,z)$ denotes the Let us note that Geronimus has proved that if $\sum_{n=0}^{\infty} |a_n| < \infty$ then μ is absolutely continuous, μ^{\prime} is continuous and positive and $|\phi_{n}(d\mu,z)|\leq$

Theorem II. Let a & S. Then the series

$$\sum_{k=1}^{\infty} (1-x^2)^{\lambda} \sum_{k+1}^{k} (do, x)^2_{k} (do, x)$$

converges uniformly for x e [-1,1].

Proof. By Theorem 3.1.8

$$(1-x^2)^{\lambda}$$
 $(d\alpha,x)^2$ $(d\alpha,x) \le C[2^{-k} + \sum_{j=2}^{2} c_j^{0,1}(d\alpha)^2]$

and we apply Theorem 9.

Theorem 12. Let either a ϵ M(0,1) or $\mathrm{supp}(\mathrm{d}a) \subset [-1,1]$. Let $\mathrm{n_1} < \mathrm{n_2} < \ldots$ be such that $\sum_{k=1}^{n-1} n_k^{-1} < \infty$. Then the series

$$\sum_{k=1}^{\infty} \lambda_{n} (d\alpha, x) p^{2}_{n_{k}} (d\alpha, x)$$
 converges for almost every $x \in \operatorname{supp}(d\alpha)$.

Proof. Use Theorems 3, 3, 7, 6, 2, 33, 6, 2, 51 and Beppo Levi's theorem.

<u>Lemma 13.</u> Let $p_n(d\alpha, x) = \gamma_n(d\alpha)x^n + \mu_n(d\alpha)x^{n-1} + \dots$ Then

$$\sum_{j=0}^{n-1} \alpha_j(d\alpha) = -\frac{\mu_n(d\alpha)}{\gamma_n(d\alpha)}$$

for n = 1, 2, ..., in particular,

$$a_{n}(da) = \frac{\mu_{n}(da)}{\gamma_{n}(da)} \cdot \frac{\mu_{n+1}(da)}{\gamma_{n+1}(da)}.$$

Proof. We have

$$\sum_{k=0}^{n-1} \alpha_k(d\alpha) = \int_{-\infty}^{\infty} x \lambda_n^{-1} (d\alpha, x) d\alpha(x) =$$

$$\sum_{k=1}^{n} \lambda_{kn}^{-1} (d\alpha) \int_{-\infty}^{\infty} x \, i_{kn}^{2} (d\alpha, x) d\alpha(x) = \sum_{k=1}^{n} x_{kn} (d\alpha) = \frac{\mu_{n}(d\alpha)}{\gamma_{n}(d\alpha)}.$$

Definition 14. Let te R. Then δ_t denotes the unit mass concentrated at

$$\delta_{\mathbf{t}}(\mathbf{x}) = \begin{cases} 0 & \text{for } \mathbf{x} < t \\ 1 & \text{for } \mathbf{x} \ge t \end{cases}.$$

Lemma 15. Let
$$\varepsilon > 0$$
, if \mathbb{R} , $\beta = \alpha + \varepsilon \delta_t$. Then
$$\frac{\gamma_n(d\alpha)}{\gamma_n(d\beta, x)} = \frac{\gamma_n(d\alpha)}{\gamma_n(d\beta)} \left[p_n(d\alpha, x) - \frac{\varepsilon p_n(d\alpha, t)K_{n+1}(d\alpha, t, x)}{1 + \varepsilon K_{n+1}(d\alpha, t, t)} \right]$$

7)
$$\frac{\gamma_{n}^{2}(d\beta)}{\gamma_{n}(d\alpha)} = 1 - \frac{\epsilon p_{n}^{2}(d\alpha,t)}{1 + \epsilon K_{n+1}(d\alpha,t,t)}$$
,

further

(8)
$$a_n(d\beta) = a_n(d\alpha) + \epsilon \frac{\gamma_n(d\alpha)}{\gamma_{n+1}(d\alpha)} \frac{p_n(d\alpha,t)p_{n+1}(d\alpha,t)}{1 + \epsilon K_{n+1}(d\alpha,t)}$$

$$\frac{\gamma_{n-1}(d\alpha)}{\gamma_n(d\alpha)} \frac{p_{n-1}(d\alpha,t)}{1 + \epsilon K_n(d\alpha,t)}.$$

If $\alpha(x) + \alpha(-x) = const$, t > 0, $\epsilon > 0$ and $\beta = \alpha + \epsilon \delta_t + \epsilon \delta_t$ then

$$\begin{split} p_n(d\beta,x) &= \frac{\gamma_n(d\alpha)}{\gamma_n(d\beta)} \left[p_n(d\alpha,x) - \epsilon \ p_n(d\alpha,t) \right. \\ & \left. \frac{\gamma_n(d\beta)}{\kappa_{n+1}(d\alpha,t,x)} + \left. (-1)^n \kappa_{n+1}(d\alpha,-t,x) \right. \end{split}$$

and

 ${1 + \epsilon \left[{{K_{n + 1}}(\mathrm{d}\alpha ,t,t) + {\left({ - 1} \right)^n}{K_{n + 1}}(\mathrm{d}\alpha , - t,t)} \right]}$

$$\frac{\gamma_n^2(d\beta)}{\gamma_n^2(d\alpha)} = 1 - \frac{\epsilon p_n^2(d\alpha,t)}{\frac{1}{2} + \epsilon \sum_{k=0}^{n} p_k^2(d\alpha,t)}$$

k ≡n(mod 2)

<u>Proof.</u> We shall prove only the first part of the Lemma, the second one can be shown exactly in the same way. Let us note that both (7) and (8) follow from (6). If we multiply both sides of (6) by $p_n(da,x)da(x)$ and we integrate over IR then we get (7). Using Lemma 13 and comparing coefficients in (6) we obtain (8). Let us now prove (6). Develop $p_n(d\beta,x)$ into a Fourier series in $p_k(d\phi,x)$. Then

$$\begin{split} p_n(d\beta,x) &= \int_{-\infty}^{\infty} p_n(d\beta,u) K_{n+1}(d\alpha,x,u) d\alpha(u) &= \\ &\frac{v_n(d\alpha)}{v_n(d\beta)} p_n(d\alpha,x) - \epsilon p_n(d\beta,t) K_{n+1}(d\alpha,x,t) \end{split}$$

Putting here x = t we obtain

(9)
$$p_n(d\beta,t) = \frac{\gamma_n(d\alpha)}{\gamma_n(d\beta)} p_n(d\alpha,t) [1 + \epsilon K_{n+1}(d\alpha,t,t)]^{-1}$$

(6) follows from the above two formulas.

-171-

Lemma 16. Let $\alpha \in M(0,1), \, \epsilon > 0$, to $\mathbb{R}, \ \beta_t = \alpha + \epsilon \, \delta_t$. Then

$$\lim_{n\to\infty} \frac{\gamma_n(d\beta_t)}{\gamma_n(d\alpha)} \ = \left\{ \begin{array}{cc} 1 & \text{for t ε supp(d\alpha)$} \\ |\mu(t)|^{-1} & \text{for t ξ supp(d\alpha)$} \end{array} \right.,$$

the convergence is uniform for t ϵ $\Delta \subset (-1,1)$, further

$$\lim_{n\to\infty} \alpha_n(\mathrm{d}\beta_t) = 0$$

for every to $\mathbb R$ and the convergence is uniform for to $\Delta \subset (-1,1).$ If

 $z \in \mathbb{C} \setminus \sup(da) \setminus \{t\}$ then for $t \notin \sup(da)$

$$\lim_{n\to\infty}\frac{p_n(d\beta_{t,z})}{p_n(d\alpha,z)}=\left|\rho(t)\right|\left[1-\frac{\sqrt{t^2-1}}{\rho(t)}\frac{\rho(z)-\rho(t)}{z-t}\right]$$

and for te supp(da)

$$\lim_{n\to\infty} \frac{p_n(d\beta_t,z)}{p_n(d\alpha,z)} = 1$$

uniformly for t $\varepsilon \; \Delta \subset$ (-1,1). Furthermore

$$\lim_{n\to\infty} p_n(d\beta_{\mathbf{t}'},t)p_n(d\alpha,t) = \left\langle \begin{array}{c} 0 & \text{for te supp}(d\alpha) \\ \frac{2}{\epsilon}\sqrt{|t|^2-1} & \text{for te supp}(d\alpha). \end{array} \right.$$

If x,t ε supp(da), x + t and the sequence $\{|p_{k}(\mathrm{d}\alpha,x)|\}$ is bounded then

$$\lim_{n\to\infty} \left[p_n(\mathrm{d}\beta_{\mathbf{t}},\mathbf{x}) - p_n(\mathrm{d}\alpha,\mathbf{x}) \right] = 0 \ .$$

(10) holds uniformly for $x \in \mathbb{M} = \overline{\mathbb{M}} \subset \operatorname{supp}(d\alpha)$ if $t \in \operatorname{supp}(d\alpha) \backslash \mathbb{M}$ and

 $\{|p_k(d\alpha,x)|\}$ is uniformly bounded for $x\in\mathbb{Z}.$ Finally, $\beta_k\in M(0,l)$ for each $t\in\mathbb{R}$

Proof. The Lemma follows immediately from Lemma 15, Theorems 4.1.11,

4.1.13, 4.1.14 and (9).

Let us note that all the limits in Lemma 16 - except for one- are independent of ϵ .

Lemma 17. Let a : M(0,1) and

$$\sum_{j=0}^{\infty} c_j^{0,1}(da) < \infty.$$

Let for $0 \le k \le n$ R, k(da, x) be as in 3.1(2)-(3). Then

uniformly for $x \in \Delta \subseteq (-l,l)$.

Proof. By Theorem 3.1.12 the sequence {|pk(da,x)|} is uniformly bounded

for x . △ C (-1,1). Now we apply Corollary 3.1.5.

Lemma 18. Let B be a function on [0, m]. Let

$$\varphi_n(\mathbf{x}) = \cos[n\theta + B(\theta)] \quad (\mathbf{x} = \cos\theta)$$

for n = 0,1,... Then for $1 \le k \le n$

$$\varphi_n(\mathbf{x}) \ = \ \varphi_k(\mathbf{x}) \mathbf{U}_{n-k}(\mathbf{x}) \ - \ \varphi_{k-1}(\mathbf{x}) \mathbf{U}_{n-k-1}(\mathbf{x})$$

Proof. Apply Theorem 3.1.1.

Lemma 19. Let
$$\alpha \in M(0,1)$$
 and

$$\sum_{j\geq 0} c_j^{0,1}(d\alpha) < \infty.$$

Suppose that there exist three functions A,B and C on $[0,\pi]$ and a se-

quence $n_1 < n_2 < \ldots < n_k \underset{k \to \infty}{\longleftarrow} \infty$ such that

11)
$$\lim_{k \to \infty} [C(\theta) p_n (d\alpha, x) - \varphi_n(x)] = 0$$

(12) $\lim_{k\to -\infty} \left\{ C(\theta) p_{n_k-1}(d\alpha,x) - e_{n_k-1}(x) \right\} = 0$ where $x = \cos\theta$, $\varphi_n(x) = A(\theta) \cos[n\theta + B(\theta)]$, -1 < x < 1, $C(\theta) < \infty$. Then

(3)
$$\lim_{n \to \infty} \{C(\theta) \, p_n(d\alpha, x) - \varphi_n(x)\} = 0.$$

If the convergence in (11) and (12) is uniform for $x_{\ell} \ \mathfrak{M} \subset \Delta \subset (-1,1)$ and $C(\theta)$

is uniformly bounded for $x \in \mathbb{T}$ then (13) holds uniformly for $x \in \mathbb{T}$

Proof. By Theorem 3.1.1 and Lemma 18

k=k(n) be defined by $k=\max\{n:n\leq n\}$. Then $\lim k\approx \omega$. Now we use for 1 < k < n where v is the Tschebyshev weight. For a fixed n let Lemma 17.

Recall that the function Γ has been defined in Definition 4, 2, 4.

Theorem 20. Let $supp(d\alpha)\subset [-1,1]$ and $\sum_{j=0}^{\infty}c_{j}^{0,1}(d\alpha)<\infty\;.$ Then for almost every $x\in [-1,1]$

$$\sum_{c,j} c_j^{0,1}(d\alpha) < \infty.$$

(14)
$$\lim_{n\to\infty} \left[\sqrt{\alpha'(x)} \sqrt{1-x^2} p_n(d\alpha, x) - \sqrt{\frac{2}{\pi}} \cos(n\theta - \Gamma(\theta)) \right] = 0$$

where $x = \cos \theta$.

Proof. By Theorem 1 a € S. Thus the Theorem follows from Lemmas 19 and

Lemma 21. We have

$$\sum_{k=0}^{n} p_{k}^{2}(v,x) = \frac{n+1}{2^{n}} + \frac{1}{4^{n}} \frac{U_{2n+1}(x)}{x}$$

k ≅n(mod 2)

$$\frac{p_n^2(v,t)}{\frac{1}{c} + \sum\limits_{k=0}^{n} p_k^2(v,t)} = \frac{4t\sqrt{t^2-1}}{\rho(t)^2} + O(1) \, n \, \rho(t)^{-2n}$$

where $|O(1)| \le C$ uniformly for $1 + \varepsilon \le t < \infty$.

Proof, Calculation.

Theorem 22. Let a be the Tschebyshev weight, t > 1, $\beta = a + \delta_t + \delta_{-t}$.

$$\gamma_n(d\beta) = \frac{2^{n-\frac{1}{2}}}{\sqrt{\pi}} [\rho(t)^{-2} + O(1) n \rho(t)^{-2n}]$$

Proof. Apply Lemmas 15 and 21.

Theorem 22 is interesting because of the following

 $\alpha \in M(0,1)$ such that $\{\mathcal{L},\mathcal{C}\} \subseteq \Delta$ (do) and $c_j^{0,1}(d\alpha) = O(\epsilon^j)$, in particular Corollary 23. Let C > 0 and $\epsilon > 0$. Then there exists a weight $\sum_{j=0}^{\infty} c_j^{0,1}(da) < \infty.$

Proof. For the weight β constructed in Theorem 22 $\alpha_1(d\alpha) = 0$ for

Lemma 24. Let $\alpha \in M(0,1), \ \epsilon > 0, -1 < t < 1$, $\beta = \alpha + \epsilon \delta_{+}$. If $\lim_{n\to\infty} \sup_{j=n} \sum_{j} c_{j,1}^{0,1} (d\alpha)^2 < \infty$

$$\alpha_n(d\beta) = \alpha_n(d\alpha) + O(\frac{1}{n})$$

and

$$\frac{\gamma_{n-1}(\mathrm{d}\beta)}{\gamma_n(\mathrm{d}\beta)} = \frac{\gamma_{n-1}(\mathrm{d}\alpha)}{\gamma_n(\mathrm{d}\alpha)} + \mathrm{O}(\frac{1}{n})$$

Proof. The Lemma follows from Theorem 3.1.8 and Lemma 15. It might be interesting to remark that the estimates do not depend on $\,\epsilon\,$.

estimates for $p_n^{-}(d\beta,z), c_j^{-0,1}(d\beta), \lambda_n^{-}(d\beta,z)$ etc. Let us mention two results. every $\varepsilon > 0$, i.e. \mathbb{R} . Hence $\beta = \alpha + \sum_{k=1}^{N} \epsilon_k \delta_{t_k}$ also belongs to M(0,1) and by repeating application of the previous results we obtain asymptotics and By Lemma 16 from $\alpha \in M(0,1)$ follows that $\alpha + \epsilon \delta_t \in M(0,1)$ for

Theorem 25. Let $\alpha \in M(0,1)$, $t_k \in \mathbb{R}$, $\varepsilon_k > 0$ for $k = 1,2,\ldots,N$. Let $\beta = \alpha + \sum_{k=1}^{N} \epsilon_k \delta_k$. Then $\beta \in M(0,1)$,

$$p = \alpha + \sum_{k=1}^{\ell} k_k^{\ell} t, \text{ Then } \beta \in M(0,1),$$

$$\lim_{n \to \infty} \frac{\gamma_n(d\beta)}{\gamma_n(d\alpha)} = \frac{||\mu||}{t_k^{\ell} + \operatorname{supp}(d\alpha)} ||\alpha(t_k)||^{-1}$$
and for every $z \in \mathbb{C} \setminus \operatorname{supp}(d\beta)$

$$\lim_{n\to\infty}\frac{p_n(d\beta,z)}{p_n(d\alpha,z)}=\frac{\prod\limits_{k\not=\sup p(d\alpha)}\{|\rho(t_k)|[1-\frac{\sqrt{t_k^2-1}}{\rho(t_k)}]\frac{\rho(z)-\rho(t_k)}{z-t_k}]\},}{(1+\rho(t_k))!}$$
 Theorem 26. Let supp(da) \subset [-1,1], $\sum\limits_{j=0}^{\infty}\sigma_j^{0,1}(d\alpha)<\infty$, β be defined as in

 $x \in [-1,1]$ the asymptotic formula (14) holds if we replace there $~p_n \left(d\sigma_x x \right)$ Theorem 25 with $t_k \in (-1,1)$ for $k=1,2,\ldots,N$. Then for almost every

We suggest the reader combine these results with those of Sections 4.1, 4.2 and 6.1.

by p₀(dβ, x).

Theorem 27. Let

$$\sum_{j=0}^{\infty} j c_j^{(0,1)}(da) < \infty.$$

Then there exists a positive number $K = K(d\alpha)$ such that

$$\sqrt{1-x^2}\,|\,p_n(d\alpha,x)\,|\,\leq K$$

for $-1 \le x \le 1$ and n = 0,1,... Further

$$|\alpha'(x)| \ge \frac{1}{K^2 \pi} \sqrt{1-x^2}$$

for almost every $\mathbf{x} \in [-1,1]$, in particular, $\alpha' \in S$.

Proof. By an inequality of S. Bernstein

for every " if m > 1. Let 2 < k < n. Then we have by Corollary 3.5.1

 $\max_{|x|\leq 1}|\sqrt{l\cdot x^2}\,\,p_n(d\omega,x)|\,\leq\max_{|x|\leq 1}|\lceil p_k(d\omega,x)\rceil+\lceil p_{k-1}(d\omega,x)\rceil\rceil+|x|\leq 1$

 $+ 2 \sum_{j=k-1}^{n} j c_j^{(0,1)}(d\alpha) \max_{j=k-1} |\sqrt{1-x^2} p_j(d\alpha,x)| ,$

$$A_n \le C(k) + 2 \sum_{j=k+1}^{n} j c_j A_j$$

where $c_j=c_j^{0,1}(d\sigma)$, $A_j=\max |\sqrt{1-x^2}|_{p_j(d\sigma,x)}$ and C(k) is a constant depending on k and $d\sigma$. Let now k be so large that $\sum\limits_{j=k+1}^{\infty}|c_j|<\frac{1}{4}$.

$A_{k+1} \le 2 C(k)$.

Suppose that A \leq 2 C(k) for k < m < n. If A > 2 C(k) then A \leq 2 C(k)

 $<\Lambda_n$, m = k+1,...,n-1, so

To finish the proof we apply Theorem 5.

Remark 28. If we put do(x) = $\sqrt{1-x^2} dx$, supp(da) = [-1,1] then $c_j^{0,1}(da) = 0$ for every $j=0,1,\ldots, a'(x)=\sqrt{1-x^2}$ and for each $T\subset [-1,1]$

 $\max |\sqrt{l-x^2} p_n(d\alpha,x)| = \sqrt{\frac{2}{\pi}}$

If $n \ge n_1(\tau)$ $(n_1([-1,1]) = 0)$. Hence Theorem 27 - except for the constant-

From Theorems 5 and 3.1.12 we obtain

Theorem 27. Let $\sum_{j=0}^{\infty} c_j^{1,1}(da) < \infty$. Then for each $\tau \in (-1,1)$ there exists a number K $K(\tau, d\sigma) > 0$ such that $\sigma'(x) \ge K$ for almost every $x \in \tau$. In particular if α' is continuous at t.e. (-1,1) and $\alpha'(t)=0$ then

Corrollary 30. If $\sum_{j=0}^{\infty} c_j^{0,1}(da) < \infty$ then supp(a') = [-1,1].

Proof. Theorems 3, 3, 7 and 29.

Theorem 31. Let α be such that either supp(d α) \subset [-1,1] or $\alpha \in M(0,1)$.

Let $p \ge 2$ and $w(\ge 0) \in L^1(-1,1)$. Then from

Let
$$p \ge 2$$
 and $w(\ge 0) \in L^*(-1,1)$. Then from
$$\sup_{n \ge 0} \int_{-1}^1 \left| p_n(d\alpha,x) \right|^p w(x) dx < n$$
 follows

follows
$$\int_{-1}^{1} \left[\alpha'(x) \sqrt{1-x^2} \right]^{-\frac{p}{2}} w(x) dx < \omega .$$

$$\frac{\text{Proof.}}{\| n^{-1} \lambda_n^{-1} (d \sigma) \|} \underbrace{ \sum_{n=1}^{n-1} \| p_n^2 (d \sigma) \|}_{w, \frac{D}{2}} \leq \frac{\sup_{n \geq 0} \| p_n^2 (d \sigma) \|}{w, \frac{D}{2}} \leq \frac{\sup_{n \geq 0} \| p_n^2 (d \sigma) \|}{w, \frac{D}{2}}.$$

Because $\int \lim\inf |f| \le \lim\sup \int |f|$ the theorem follows from Theorems

6. 2, 33 and 6, 2, 51.

Theorem 32. Let $\alpha \in S$, $0 , <math>w(\ge 0) \in L^1(-1,1)$. Then

Proof. First let 0 . Then we shall use Lemma 4, 2, 5. Let <math>N > 0and φ_N be defined by

 $\varphi_{N}(t) = \min\left\{N, \; w(\cos t) \sin t \{\sin t a'(\cos t)\}\right\}^{2}$

 $\left|\int_0^\pi \left|\sqrt{\frac{2}{\pi}}\cos[\alpha t-\Gamma(t)]\right|^2 \phi_N(t) dt\right|^p \le \left|\int_0^\pi \left|\sqrt{\frac{2}{\pi}}\cos[\alpha t-\Gamma(t)]\right|^p \phi_N(t) dt\right|^p \le \left|\int_0^\pi \left|\sqrt{\frac{2}{\pi}}\cos[\alpha t-\Gamma(t)]\right|^p \phi_N(t) dt\right|^p \le \left|\int_0^\pi \left|\sqrt{\frac{2}{\pi}}\cos[\alpha t-\Gamma(t)]\right|^p \phi_N(t) dt\right|^p$ $\leq 2^{p} \left[\int_{0}^{\pi} \left| p_{\alpha}(d\alpha, \cos t) \sqrt{\alpha'(\cos t) \sin t} - \sqrt{\frac{2}{\pi}} \cos \left[nt - \Gamma(t) \right] \left| \frac{p}{\sigma_{N}}(t) dt \right|^{p} + \frac{1}{2} \left[\frac{1}{\sigma_{N}} \left(\frac{1}{\sigma_{N}} \right) \left(\frac{1}{\sigma_{N}} \right) \right] \right]$ $+2^{\frac{D}{2}} \left[\int_{0}^{\pi} \left| p_{n}(d\alpha,\cos t) \sqrt{\alpha'(\cos t) \sin t} \right| \, \frac{D}{\varphi_{N}(t)} dt \right]^{\frac{D}{2}} \leq$ $\leq 2^{p}N^{p} + \frac{1}{2} \int_{0}^{\pi} |p_{n}(da, \cos t) \sqrt{a'(\cos t)\sin t} - \frac{1}{2}$ for 0 ≤t≤π. Then

 $- \sqrt{\frac{2}{\pi}} \cos[nt - \Gamma(t)] \Big|^2 dt\Big|^{\frac{1}{2}} + 2^{\frac{1}{p}} \Big| \sqrt{\frac{1}{n} \left| p_n(da, x) \right|^p w(x) dx} \Big|^{\frac{1}{p}}$

By Lemma 4.2.5 the first term in the right side converges to 0 when $n \to \infty$. The limit inferior of the second term is finite. By the Riemann-Lebesgue lemma the left side converges to

$$(\frac{1}{\pi}\int_0^\pi \varphi_N(t)dt) \frac{1}{P}$$

when n-x. Thus by the above inequalities

$$\frac{1}{\pi} \int_{0}^{\pi} \phi_{N}(t) dt \leq 2 \lim\inf_{N \to \infty} \int_{-1}^{1} \left| p_{i}(d\alpha,x) \right|^{p} w(x) dx \; .$$

By Beppo Levi's theorem lim φ_N ($L^1(0,\pi)$ that is (15) holds. If p>2 N $\rightarrow +\infty$

then for N > 0
$$\int_{-1}^{1} p_{n}^{2}(da_{x},x)[a'(x)\sqrt{1-x^{2}} + N^{-1}]^{-\frac{D}{2}} w_{N}(x)a'(x)\sqrt{1-x^{2}}dx \cdot \\ \cdot \int_{-1}^{1} [a'(x)\sqrt{1-x^{2}} + N^{-1}]^{-\frac{D}{2}} w_{N}(x)dx \right\}^{\frac{2-D}{P}} \le$$

$$\le \left\{ \int_{-1}^{1} \left| p_{n}(da_{x},x) \right|^{\frac{D}{P}} w(x)dx \right\}^{\frac{1}{D}}$$

where $\mathbf{w}_N(\mathbf{x}) = \min\{N, \mathbf{w}(\mathbf{x})\}$. Letting $\mathbf{n} \rightarrow \infty$ we obtain from Lemma 4.2.5 and from Remann-Lebesgue's lemma that

$$\leq \lim\inf_{n\to\infty} \int_1^1 \left| p_n(d\sigma,x) \right|^p w(x) dx \ .$$

Hence again by Beppo Levi's theorem (15) holds

Theorem 33. Let w (M(0,1), supp(w) = [-1,1], w be Riemann integrable on [-1,1]. Let $g(\geq 0)$ be almost everywhere continuous on [-1,1] and

$$p \ge 2$$
. Then
$$\lim_{n \to \infty} \int_{1}^{1} \left| p_{\alpha}(w,x) \right|^{p} g(x) dx < \infty$$
 implies

$$\int_1^1 \left[w(x)\sqrt{1\!-\!x^2}\right]^{-\frac{D}{2}} g(x) dx < \sigma$$
 . In the conditions the function φ_N defined by

$$\varphi_N(x) = [w(x)\sqrt{1-x^2} + N^{-1}]^{-\frac{D}{2}} \min \{N, g(x)\}\sqrt{1-x^2}$$

(N>0) is Remann integrable for each N>0. Now we can repeat the

second part of the proof of Theorem 32. Applying Theorem 4.2.14 we obtain

 $\sum_{j=0}^{\infty} c_j^{0,1}(d\alpha) < \infty.$ Theorem 34. Let at M(0,1) and

$$\lim_{k \to \infty} [p_k^2(d\alpha, x) - p_{k-1}(d\alpha, x)p_{k+1}(d\alpha, x)] = \frac{2\sqrt{1-x^2}}{\pi \sigma'(x)}$$

for almost every $x \in \text{supp}(d\alpha)$.

Proof. Let
$$0 \le k \le n$$
 and $\Delta \subset (-1,1)$ Then by Lemma 17

$$p_{n}(d\alpha,x) \; = \; U_{n-k}(x)p_{k}(d\alpha,x) \; - \; U_{n-k-1}(x)p_{k-1}(d\alpha,x) \; + \; \sigma(1)$$

where $\lim \sigma(1) = 0$ uniformly for $x \in \Delta$. By Theorem 3.1.12 the sequence $n > k \to \infty$

$$\{ \lceil p_k(d\alpha,x) \rceil \} \text{ is uniformly bounded for } x \in \Delta. \text{ Hence}$$

$$p_n^2(d\alpha,x) = U_{n-k}^2(x) p_k^2(d\alpha,x) + U_{n-k-1}^2(x) p_{k-1}^2(d\alpha,x) - 2p_{k-1}(d\alpha,x) p_k(d\alpha,x) U_{n-k-1}(x) U_{n-k}(x) + \sigma(1).$$

$$\sum_{k=1}^{k} \frac{1}{u(d\alpha, x)} = \sum_{j=0}^{k} p_k^2(d\alpha, x) + \sum_{j=1}^{m-k} U_j^2(x) p_k^2(d\alpha, x) + \sum_{j=0}^{m-k-1} U_j^2(x) p_k^2(d\alpha, x) - \sum_{j=0}^{k-1} U_j^2(x) p_k^2 - 1(d\alpha, x) - \sum_{j=0}^{k-1} U_j^2(x) p_k^2 - 1(d\alpha, x) - \sum_{j=0}^{m-k-1} U_j^2(x) -$$

 $\sum_{j=0}^{m-k-1} U_{j}(x)U_{j+1}(x)p_{k-1}(d\alpha,x)p_{k}(d\alpha,x) + m \sigma(1) .$

Let us divide this formula by m and let m → ∞. We obtain from Theorems 29, 6.2.52 and Corollary 6.2.53 that

$$\frac{1}{\pi \alpha'(x)\sqrt{1-x^2}} = \frac{1}{2(1-x^2)} \left[p_k^2(d\alpha, x) + p_{k-1}^2(d\alpha, x) \right] \\ - \frac{T_1(x)}{1-x^2} p_{k-1}(d\alpha, x) p_k(d\alpha, x) + \sigma(1)$$

for almost every $x \in \Delta$, that is

(16)
$$\frac{2\sqrt{1-x^2}}{\pi \alpha'(x)} = p_k^2(d\alpha, x) + p_{k-1}^2(d\alpha, x) - 2xp_{k-1}(d\alpha, x)p_k(d\alpha, x) + \sigma(1)$$

for almost every $\mathbf{x} \in \Delta$. By Theorem 3.1.12 and by the recurrence formula

$$\lim_{k \to \infty} \big| 2 x p_{k-1}(da,x) p_k(da,x) - p_k^2(da,x) - p_{k-2}(aa,x) p_k(da,x) \big| = 0$$

uniformly for x & A. Hence

(17)
$$\frac{2\sqrt{1-x^2}}{\pi \alpha'(x)} = p_{k-1}^2(d\alpha, x) - p_{k-2}(d\alpha, x)p_k(d\alpha, x) + \sigma(1)$$

for almost every $x \in \Delta$ where $\lim \sigma(1) = 0$ uniformly for $x \in \Delta$. Since

∆ ⊂ (-1,1) is arbitrary the Theorem follows.

Let us note that the determinant

$$\begin{vmatrix} p_k(d\sigma,x) & p_{k-1}(d\sigma,x) \\ p_{k+1}(d\sigma,x) & p_k(d\sigma,x) \end{vmatrix} = D_k(d\sigma,x)$$

is a rather famous expression, its positivity has been investigated by several authors. (See Szegő, Problems and exercises.) So far $\operatorname{D}_{k}(\mathrm{d}a,\mathrm{x})$ has been considered for the classical weights. From Theorem 29 and (17) we obtain

Corollary 35. Let $\sum\limits_{j=0}^{\infty}c_{j}^{0,1}(d\sigma)<\infty$ and $\Delta\in(-1,1)$. Then there exists a number $N=N(\alpha,\Delta)>0$ such that for each $k\geq N$ $D_k(d\alpha,x)>0$ whenever

The example of the Tschebyshev polynomials shows that A cannot be

replaced by [-1,1] in Corollary 35.

Corollary 36. If
$$\sum_{j=0}^{\infty} c_j^{0,1}(da) < \infty$$
 then limsup $a'(x)\sqrt{1-x^2}$ $p_n^2(da,x) = \frac{2}{\pi}$

for almost every x & supp(dx).

Proof. By Theorems 29 and 6. 2. 51

limsup
$$\alpha'(x)\sqrt{1-x^2}$$
 $p_0^2(d\alpha,x) > \frac{2}{\pi}$

for almost every $x \in \text{supp}(da)$. On the other hand by (16)

$$p_{k-1}(d\alpha,x) = x p_k(d\alpha,x) * \left[(x^2 - 1)p_k^2(d\alpha,x) + \frac{2\sqrt{1-x^2}}{\pi\sigma(x)} + \frac{1}{\pi\sigma(x)} \right]$$
Impost every x [-1, 1], that is by Theorem 3.3.7 for almost ever

for almost every x ([-1,1], that is by Theorem 3.3.7 for almost every

x e supp(da). Hence

$$(1\!-\!x^2)p_n^2(d\alpha,x) \ \le \ \frac{2\sqrt{1\!-\!x^2}}{\pi\alpha'(x)} + \ \sigma(1) \ .$$

Letting n→∞ and using Theorem 29 we obtain the Corollary.

Although the proof of the following Theorem is very simple it is one of our strongest results.

Theorem 37. Let a & S. Then

for almost every x c [-1,1].

Proof By Corollary 3.1.5.

(18)
$$(1-x^2)p_0^2(d\alpha,x) \le 2\{|p_k(d\alpha,x)| + |p_{k-1}(d\alpha,x)|\}^2 + 8n\sum_{j=k-1}^{\infty} c_j^{0,1}(d\alpha)^2 p_j^2(d\alpha,x).$$

By Theorem 9 and Beppo Levi's theorem

$$\sum_{j=0}^{\infty} c_j^{0,1}(da)^2 p_j^2(da,x) < \infty$$

for almost every x ([-1,1]. Dividing both sides of (18) by n and first

letting n- w and then k- w we finish the proof.

Lemma 38. Let $\phi_{2n}(\mathrm{dw,z})$ be defined as in Theorem 3.1.15. If $\sum_{j=0}^{\infty} c_j^{0,1} (da) < \infty$ then

$$\phi(d\alpha,z) = \lim_{n\to\infty} \phi_{2n}(d\alpha,z)$$

is uniform in the unit disc, $\phi(d\sigma,z)$ is analytic for |z|<1 and continuous $(z=e^{-i\theta})$ exists for each $\theta\in(0,2\pi)\backslash\{\pi\}$ and the convergence is uniform for $\theta \in T \subset (0,2\pi) \backslash \{\pi\}$, in particular, $\phi(d\alpha,e^{i\theta})$ is continuous on $(0,2\pi) \backslash \{\pi\}$. $\sum_{j=0}^{\infty} j c_{j}^{-1}(da) < \infty \text{ then (19) exists for each } |z| \le 1, \text{ the convergence}$

Proof. Apply Theorems 3.1.12, 27 and Bernstein's inequality

$$\max_{|\mathbf{x}| \le 1} |\pi_{\mathbf{m}}(\mathbf{x})| \le \max_{|\mathbf{x}| \le 1} |\sqrt{1 - \mathbf{x}^2} |\pi_{\mathbf{m}}(\mathbf{x})| \qquad (m \ge 1).$$

Lemma 39. Let $\phi_{2n}(d\sigma,z)$ be as in Theorem 3.1.15. Let $\sum_{j=0}^{\infty} j c_j^{0,1}(d\sigma) < \infty$.

$$\lim_{n \to \infty} z^{2n} \phi_{2n} (d\alpha, z^{-1}) = 0$$

uniformly for $|z| \le 1-\epsilon$ $(\epsilon > 0)$.

$$z^{2n} \phi_{2n}(d\sigma,z^{-1}) = \sum_{j=0}^{n} \sigma_{j}(d\sigma,\frac{z+z^{-1}}{2}) z^{2n-j}.$$

By Theorem 27

$$\sqrt{1-x^2} |p_j(d\alpha,x)| \le K$$

for $-1 \le x \le 1$, j = 0,1,... Hence

$$|(1-z^2)z^j|_{p_j(d\alpha, \frac{z+z^{-1}}{2})}| \le C$$

for $|z| \le 1$, $j = 0,1,\ldots$ Consequently

$$|z^{2n} \phi_{2n}(d\omega, z^{-1})| \le C(1-|z|^2)^{-1}$$
.

$$\sum_{j=0}^{n} \left\{ (1-2^{\frac{N}{N_j-1}}||z|^{2n-2j}+2|\alpha_{j-1}||z|^{2n-2j+1} \right. +$$

+
$$|1-2 \frac{\gamma_{1-2}}{\gamma_{j-1}} ||z|^{2n-2j+2}$$

which converges uniformly to 0 if $|z| \le 1 - \varepsilon$. Then do can be Theorem 40. Let $\alpha \in M(0,1)$ and $\sum\limits_{j=0}^{\infty} c_j^{0,1}(d\alpha) < \infty$. Then do can be written in the form

$$d\alpha(t) = \alpha'(t) dt + d\alpha_{s}(t)$$

where a^i is continuous and positive in (-1,1), supp $(a^i) = \{-1,1\}$ and $a_i(t)$ is constant for -1 < t < 1. Further

(20)
$$\lim_{n \to \infty} \left| \sin \theta \, p_n(d\sigma, \cos \theta) - \left[\frac{2}{\pi} \frac{\sin \theta}{\sigma'(\cos \theta)} \right]^{\frac{1}{2}} \sin[(n+1)\theta - \varphi(\theta)] \right\} = 0$$

uniformly for θ ($\tau \in (0,\pi)$, where $\varphi(\theta) = \arg \phi(d\alpha,e^{\frac{1}{\theta}})$ (See (19).) is continuous in $(0,\pi)$. α' can be calculated by the formula

$$\frac{2}{\pi} \frac{\sin \theta}{\alpha'(\cos \theta)} = \left| \left. \phi(\mathrm{d}\alpha, \mathrm{e}^{1\theta}) \right|^2 = \lim_{n \to \infty} \mathrm{p}_n^2(\mathrm{d}\alpha, \mathrm{x}) - \mathrm{p}_{n-1}(\mathrm{d}\alpha, \mathrm{x}) \mathrm{p}_{n+1}(\mathrm{d}\alpha, \mathrm{x}) \right|_{(\mathrm{x} = \cos \theta)} = 0$$

$$(x = \cos \theta)$$
. If $\sum_{j=0}^{\infty} j c_j^{0,1}(d\alpha) < \infty$ then

$$\lim_{n\to\infty} \left\{ \sin\theta \, p_n(\mathrm{d}\alpha,\cos\theta) - \psi(\theta) \, \sin[(n+1)\theta - \varphi(\theta)] \, \right\} = 0$$

uniformly for $\theta \in [0,\pi]$. Here $\psi(\theta) = |\phi(d\alpha,e^{-1}\theta)|$ and $\varphi(\theta) = \arg\phi(d\alpha,e^{-1}\theta)$ are continuous functions on $[0,\pi]$.

Proof. Let first $\sum_{j=0}^{\infty} c_j^{0,j}(d\sigma) < \sigma$. Then by Lemma 38 and Theorem 3.1.15 lim { $\sin\theta p_j(d\sigma,\cos\theta) - |\phi(d\sigma,e^{i\theta})| \sin[(n+1)\theta - \arg\phi(d\sigma,e^{i\theta})] \} = 0$ n+ ∞ uniformly for $\theta \in \tau \subset (0,\pi)$. Now let us calculate $|\phi(d\sigma,e^{i\theta})|$. We have

 $(1-x^2)\frac{1}{n\lambda_n(\alpha\alpha,x)}=\left|\phi(\alpha\alpha,e^{i\theta})\right|^2.$

 $\frac{1}{2n} \sum_{k=0}^{n} \left\{ 1 - \cos[2(k+1)\theta - 2 \arg \phi(d\alpha, e^{i\theta})] \right\} + \sigma(1)$

 $(x=\cos\theta)$. Here the right side converges to $\frac{1}{2}|\phi(d\alpha_s\theta^{-\frac{1}{2}\theta})|^2$ when $n\to\infty$ and the convergence is uniform for $\theta\in \tau\subset(0,\pi)$. By Theorem 6.2.54

$$\underset{n \to \infty}{\text{liminf(1-x)}} \frac{1}{n \lambda_n(d\alpha, x)} = \frac{\sqrt{1-x^2}}{\pi \alpha'(x)}$$

for almost every x e supp(da). Hence

(21)
$$|\phi(d\alpha, e^{i\theta})|^2 \approx \frac{2\sqrt{1-x^2}}{\pi\sigma'(x)}$$

for almost every $\theta \in \tau \subset (0,\pi)$. Consequently $[\alpha']^{-1}\sqrt{1-x^2}$ is equivalent to a continuous function. By Theorem 29 $\alpha'(x) \geq k > 0$ for almost every $\theta \in \tau \subset (-1,1)$. Thus $\alpha'(\cos \theta)$ and $|\phi(d\alpha,e^{1\theta})|$ are continuous and positive in $(0,\pi)$ and (21) holds for each $\theta \in (0,\pi)$. Hence (20) holds uniformly for

$$\theta \in \tau \subset (0, \pi)$$
. From (20) we obtain (22)
$$\lim_{n \to \infty} \frac{1}{n} \frac{1}{\lambda_n(d\alpha, x)} = \frac{1}{\pi \alpha'(x) \sqrt{1 - x^2}}$$

uniformly for x € △ C(-1,1). Thus

limsup
$$p_n^2(da,x) > 0$$

for every $x \in (-1,1)$, that is a_j must be constant in (-1,1). Now we shall show that a has no singular component. Because a_j is constant in (-1,1) for every $\Delta \in (-1,1)$ $1_{\Delta} a' v^{-1}$ is do measurable. Consequently by

Theorem 4.2.14

$$\lim_{n\to\infty}\int_{\Delta}\alpha'(t)\sqrt{1-t^2}\,\,p_n^2(d\alpha,t)d\alpha(t)=\frac{1}{\pi}\int_{\Delta}\alpha'(t)dt$$

for every $\Delta \subset (-1,1)$. By (23 we obtain

$$\int_{\Delta} d\alpha(t) = \int_{\Delta} \alpha'(t) dt,$$

that is $\alpha_S(t) \equiv 0$ for -1 < t < 1. Finally we apply Theorem 3.3.7. If $\sum_{s=0}^{\infty} i c_j^{0,1}(da) < \infty$ then we use Lemma 38 and Theorem 3.1.15.

Remark 41. In general the function $\varphi(\theta)$ in .20) does not coincide with $\Gamma(\theta)+\theta-\frac{\pi}{2}$ where Γ is defined in Definition 4.2.4. For instance if β is the weight introduced in Theorem 22 then $\varphi(\theta) \neq \Gamma(\theta)+\theta-\frac{\pi}{2}$. If we know that $\operatorname{supp}(d\alpha)=[-1,1]$ then by Theorem 1 α s and by Theorem 20 $\varphi(\theta)=\Gamma(\theta)+\theta-\frac{\pi}{2}$. Thus by Theorem 41 (14) holds uniformly for \times c $\tau\subset (-1,1)$ if the conditions of Theorem 20 are satisfied.

Theorem 42. Let
$$\alpha \in M(0,1)$$
 and $\sum_{j=0}^{\infty} j c_j^{0,1}(d\alpha) < \infty$. Then

 $\lim_{n\to\infty} p_n(d\alpha,z)\; \mu(z)^{-n-1} = \frac{1}{z\sqrt{z^2-1}}\; \varphi\left(d\alpha,\mu(z)^{-1}\right)$ uniformly for $|p(z)| \geq R > 1$ where φ is defined by (19). $\varphi(d\alpha,\rho(z)^{-1})$ is analytic in the domain |p(z)| > 1 and vanishes for z is $\sup(d\alpha) \left[-1,1 \right]$. Froof. Use Lemmas 38, 39 and Theorem 3.1.15. If x is $\sup(d\alpha) \left[-1,1 \right]$ then by Theorem 3.1.7 α has a jump at x. Hence $\lim_{n\to\infty} p_n(d\alpha,x) = 0$ that is $\varphi(d\alpha,\rho(x)^{-1}) = 0$.

Remark 43. If supp(do) = [-1,1] then o e S and by Lemma 6.1.18

$$\frac{\rho(z)}{2\sqrt{z^2}-1} - \phi(d\alpha, \rho(z)^{-1}) = \frac{1}{\sqrt{2\pi}} D(vd\alpha, \rho(z)^{-1})^{-1}$$

for $|\rho(z)| > 1$.

Theorem 44. Let $\mathbf{a} \in M(0,1)$, $\sum\limits_{j=0}^{\infty} j \, c_j^{0,\, 1}(da) < \infty$. Let $\mathfrak{g}(\geq 0)$ be j=0. Ruemann integrable on $[-1,\, 1]$ and let $\mathfrak{g}^{\pm 1}$ be bounded on $\operatorname{supp}(da)$. Then

$$\lim_{n\to\infty} 2^{-n} \gamma_n (d\sigma_g) = 4(d\sigma_s, 0) D(g, 0)^{-1}$$
,

$$\lim_{n\to\infty} p_1(d_{\mathbf{G}},z)\; \rho(z)^{-n-1} = \frac{1}{2\sqrt{z^2-1}}\; \phi(d_{\mathbf{G}},\rho(z)^{-1}) \cdot \; D(\mathbf{G},\rho(z)^{-1})^{-1}$$
 for $|\rho(z)|>1$ and
$$\lim_{n\to\infty} \lambda_n(d_{\mathbf{G}},z)^{-1} |\rho(z)|^{-2n-2} =$$

 $= \frac{1}{4(\left|\rho(z)\right|^2 - 1)\left|z^2 - 1\right|} \left| 4(d\sigma, \rho(z)^{-1}) \left|^2 \left| D(g, \rho(z)^{-1}) \right|^{-2} \right|$ $\left|\rho(z)\right| > 1.$

Proof. Use Theorems 42, 4.2.11, 6.1.25, 6.1.26 and 6.1.29.

Let us note that some results of Case [4] follows from the previous theorems. For example, Case proved Theorem 40 under the condition $c_j^{0,1}(da)=O(j^{-2})$.

<u>Lemma 1.</u> Let $\operatorname{supp}(da)$ be compact, $g \ge 0$, $g^{\pm 1} \in L^1_{da}$. Let $f \in L^2_{da}$.

Then

(1)
$$|S_n(da_g, f, x) - \lambda_n(da_g, x) \lambda_n^{-1}(da_g, x) S_n(da_g, fg, x)| \le$$

$$\le ||f||_{da_g, 2} \{ \lambda_n^{-1}(da_g, x) [G_n(da, g^{-1}, x) G_n(da, g, x) - 1] \}^{\frac{1}{2}}$$

for x & IR and n = 1, 2,

<u>Proof.</u> Let us denote the left side in (1) by R(x). Then

$$R(\mathbf{x}) = \int_{-\infty}^{\infty} f(t)g(t) [K_n(\mathrm{d}\,\alpha_g,\mathbf{x},t) - \frac{\lambda_n(\mathrm{d}\alpha_s,\mathbf{x})}{\lambda_n(\alpha_g,\mathbf{x})} \frac{K_n(\mathrm{d}\alpha_s,\mathbf{x},t)]\mathrm{d}\alpha(t) \; . \label{eq:Resolution}$$

Se

$$|R(x)|^2 \le ||f||_{d\alpha_{q}, 2}^2 \cdot K(x)$$

here

$$K(\mathbf{x}) \; = \; \int_{-\infty}^{\infty} \left[K_n \left(\mathrm{d} \alpha_{\mathbf{g}}, \mathbf{x}, t \right) \; - \; \frac{\lambda_n \left(\mathrm{d} \alpha_{\mathbf{g}}, \mathbf{x} \right)}{\lambda_n \left(\mathrm{d} \alpha_{\mathbf{g}}, \mathbf{x} \right)} \, \frac{1}{\lambda_n} \left(\mathrm{d} \alpha_{\mathbf{g}}, \mathbf{x}, t \right) \right]^2 \! \mathrm{d} \alpha_{\mathbf{g}}(t) \; . \label{eq:Kappa}$$

Let us calculate K(x). We have

$$\begin{split} K(x) &= K_{n}(da_{g},x,x) - \\ &= \lambda_{n}(da_{g},x) \int_{-\infty}^{\infty} K_{n}(da_{g},x,t) K_{n}(da_{s},x,t) da_{g}(t) + \\ &+ \frac{2}{\lambda_{n}(da_{g},x)} \int_{-\infty}^{\infty} K_{n}^{2}(aa_{s},x,t) da_{g}(t) = \\ &+ \lambda_{n}^{2}(da_{g},x) \int_{-\infty}^{\infty} K_{n}^{2}(aa_{s},x,t) da_{g}(t) = \\ &+ \lambda_{n}^{2}(da_{g},x) \left[\frac{\lambda_{n}(da_{s},x)}{\lambda_{n}(da_{g},x)} \right]_{n} G_{n}(da_{s},x) - 1 \right]. \end{split}$$

Now use Theorem 6.2.3.

Note that putting $f=p_{n-1}(\mathrm{d}\alpha_g)$ in (1) we obtain an inequality which may help us derive asymptotics for $p_{n-1}(\mathrm{d}\alpha_g,x)$.

Recall that α_{τ} , A_{x}^{ω} , B_{x}^{ω} , g etc. have been defined in 6.2.

Theorem 2. Let $\alpha \in S$, if $L^2_{d\alpha}$. Let $x \in (-1,1]$, α be absolutely continuous near x. Let $\alpha' \in B^\omega_X$ with $\omega(t)/t \in L^1$, $\alpha'(x) > 0$. If τ^0 is sufficiently small neighborhood of x then

(2)
$$\lim_{n \to \infty} [S_n(da,f,x) - S_n(da_r,fl_b,x)] = 0$$

where $\mathbf{1}_{\delta}$ denotes the characteristic function of an arbitrary but fixed neighborhood of \mathbf{x} . If $\tau_1 \in (-1,1)$, a is absolutely continuous in $\tau_1(\varepsilon)$, $a' \in \mathbb{B}^{\omega}_1$ with $\omega(t)/t$ $\in L^1$, $a'(\mathbf{x}) > 0$ for $\mathbf{x} \in \tau_1$ and τ^0 is a sufficiently small neighborhood of τ_1 then (2) holds uniformly for $\mathbf{x} \in \tau_1$ if $\mathbf{1}_{\delta}$ is the characteristic function of a neighborhood of τ_1 .

<u>Proof.</u> Since $a = (a_T)_{\mathcal{G}}$ we obtain from Theorems 6.2.40, 6.2.43, Remark 6.2.41 and Lemma 1 that

$$\begin{array}{lll} (3) & \left|S_n(d\boldsymbol{a},f,\boldsymbol{x}) - \frac{\lambda_n(d\boldsymbol{a}_{\boldsymbol{\tau}},\boldsymbol{x})}{\lambda_n(d\boldsymbol{a}_{\boldsymbol{\tau}},\boldsymbol{x})} \cdot \frac{\lambda_n(d\boldsymbol{a}_{\boldsymbol{\tau}},fg,\boldsymbol{x})}{\lambda_n(d\boldsymbol{a}_{\boldsymbol{\tau}},\boldsymbol{x})} \cdot \frac{C\|f\|_{d\boldsymbol{a}_{\boldsymbol{\tau}},2}}{\lambda_n(d\boldsymbol{a}_{\boldsymbol{\tau}},fg,\boldsymbol{x})}. \end{array}$$
 for n = 1,2,... . Note that g is bounded, thus fg ϵ L² . Let us consider now $S_n(d\boldsymbol{a}_{\boldsymbol{\tau}},fg,\boldsymbol{x})$. We have

(4)
$$S_n(d\alpha_{\tau}, fg, x) - g(x) S_n(d\alpha_{\tau}, f, x) =$$

$$= \int_{-1}^{1} \frac{g(t) - g(x)}{t - x} f(t)(t - x) K_n(d\alpha_{\tau}, x, t) d\alpha_{\tau}(t).$$

Since the sequence $\{|p_n(d\sigma_{\tau},x)|\}$ is uniformly bounded for x , $\tau^* \in \tau^o$ (See Lemma 6.2.29.) and

$$\int_{\mathbf{t_{d}}} \frac{g(t) - g(x)}{t - x} \int_{\mathbf{t}} \left| f(t) \right|^{2} dt < \infty$$

we obtain from Bessel's inequality that the right side in (4) tends to 0 when n $\to \infty$. Further by Theorem 6.2.43

$$\frac{\lambda_n \left(\mathsf{d} \alpha_{\boldsymbol{\tau}}, \boldsymbol{x} \right)}{\lambda_n \left(\mathsf{d} \alpha_{\boldsymbol{\tau}}, \boldsymbol{x} \right)} \; = \; \frac{1}{\alpha'(\boldsymbol{x})} \; + \; \bigcirc(\frac{1}{n} \;) \; .$$

Hence

$$\frac{\lambda_n (d\alpha_{\tau}, x)}{\lambda_n (d\alpha_{\tau}, t)} S_n (d\alpha_{\tau}, fg, x) = S_n (d\alpha_{\tau}, f, x) + \\ + O(\frac{1}{n}) S_n (d\alpha_{\tau}, f, x) + O(\frac{1}{n}) + \sigma(1) .$$

We have further

$$|\langle S_n(\mathsf{d}_{\alpha_\tau},\mathbf{f},\mathbf{x})| \leq \|\mathbf{f}\|_{\mathsf{d}_{\alpha_\tau},\,2}^{} \wedge_n^{-\frac{1}{2}} (\mathsf{d}_{\alpha_\tau},\mathbf{x}) = \mathrm{O}(\sqrt{n})$$

since $d\alpha_{\tau}(t) = dt$ for $t \in \tau$. Thus

$$\frac{\lambda_n \left(\mathsf{d}_{\boldsymbol{\sigma_\tau}, \mathbf{x}} \right)}{\lambda_n \left(\mathsf{d}_{\boldsymbol{\sigma_\tau}, \mathbf{x}} \right)} = S_n \left(\mathsf{d}_{\boldsymbol{\sigma_\tau}, \mathbf{t}, \mathbf{x}} \right) + \sigma(1) \ .$$

To $\bf a_T$ we can apply Freud's localization principle (Freud, §IV, 5.), by which $\bf S_n(d\bf a_T,f,x)=\bf S_n(d\bf a_T,f\,l_\delta,x)+\sigma(l)$.

(5) limsup max
$$|S_n(d\alpha, f, t) - S_n(d\alpha_T, f l_\delta, t)| \le C ||f||_{d\alpha, 2}$$
 $n \to \infty$ $t = x$ $(ort \in \tau_1)$

where C does not depend on f. Putting here f- P instead of f where P is a polynomial with $\|f-P\|_{da,2} < \varepsilon$ $(\varepsilon > 0)$ and again using Freud's localization principle for a_{τ} we obtain that the left side in (5) is not greater than $C\varepsilon$. Now let $\varepsilon \to 0$.

Theorem 3. Let $\operatorname{supp}(\mathrm{d} a) = [-1,1]$, $\tau \in (-1,1]$, a be absolutely continuous on τ , a'(t) = 1 for $t \in \tau$, $\tau_1 \in \tau^0$. Suppose that there exists a polynomial π such that $\pi^2/a' \in L^1(-1,1)$. Let $f \in L^2_{da}$ and let 1_δ be the characteristic function of a sufficiently small neighborhood of τ_1 . Then

$$\lim_{n\to\infty} [S_n(d\alpha,f,x) - S_n(v,f l_b,x)] = 0$$

uniformly for $\mathbf{x} \cdot \mathbf{e}^{-\mathsf{T}_1}$.

Proof. We could repeat Freud (§V.7.), but his proof can be simplified. He requires, moreover, that π^2/a' $\in L''$. First of all $f \mid_{\delta} \in L'_{\delta}$ for δ small. Further, $v^{-1}f \mid_{\delta} \in L'_{\delta}$ also and it is easy to see that

$$\lim_{n\to\infty} \left[S_n(\mathbf{v},\mathbf{f}|_{\mathbf{g}},\mathbf{x}) - \mathbf{v}(\mathbf{x}) S_n(\mathbf{v},\mathbf{v}^{-1}\,\mathbf{f}|_{\mathbf{g}},\mathbf{x}) \right] = 0$$
formly for \mathbf{x} , \mathbf{t} since \mathbf{v} is nice \mathbf{v} . Reformed

uniformly for \mathbf{x} , $\mathbf{\tau}_1$ since \mathbf{v} is nice on τ . By Lemma 6.2.29 and by Freud's localization principle $\lim_{n \to \infty} \left[\mathbf{S}_n(\mathbf{do},\mathbf{f},\mathbf{x}) - \mathbf{S}_n(\mathbf{do},\mathbf{f}|_{\delta},\mathbf{x}) \right] = 0$

uniformly for
$$\mathbf{x} \in \mathbf{T}_1$$
. By Theorem 6.2.46
$$\frac{\lambda_n(\mathbf{v}, \mathbf{x})}{\lambda_n(\mathbf{do}, \mathbf{x})} = \mathbf{v}(\mathbf{x}) + O(\frac{1}{n}) \quad (\mathbf{x} \in \mathbf{T}_1).$$

ence

$$\frac{\lambda_{n}(v,x)}{\lambda_{n}(d\sigma_{x}x)} S_{n}(v,v^{-1}\!\!f_{1_{\delta}},x) = v(x) S_{n}(v,v^{-1}\!\!f_{1_{\delta}},x) + O(\frac{1}{\sqrt{n}}) \|v^{-1}\!\!f_{1_{\delta}}\|_{v,2}$$

(x e 1). Consequently we have to show that

$$|S_n(d\alpha,f|_{\alpha^{1,\lambda})} - \frac{\lambda_n(v,x)}{\lambda_n(d\alpha,x)} S_n(v,v^{-1}f|_{\delta^{1,\lambda}})|$$

converges to 0 uniformly for x ϵ τ_1 when n+0. But this expression equals

$$\left| \int_{\Gamma} f(t) \left[K_n(d\sigma, x, t) - \frac{\lambda_n(v, x)}{\lambda_n(d\sigma, x)} R_n(v, x, t) \right] dt \right| \le$$

 $\leq \|f\,\mathbf{1}_{\delta}\|_{d\alpha,\,2}\left\{\lambda_{n}^{-1}(d\alpha,x)\left\{\frac{\lambda_{n}(\nu,x)}{\lambda_{n}(d\alpha,x)}\cdot\lambda_{n}^{-1}(\nu,x)\cdot\int_{-1}^{1}k_{n}^{2}(\nu,x,t)d\alpha(t)-1\right]\right\}^{\frac{1}{2}}.$ By Theorem 6.2.46 and Lemma 6.2.44 the latter expression is not greater

 $C \| f \, \mathbf{1}_{\delta} \|_{d \boldsymbol{\alpha}_{\mathfrak{p}, 2}} \sqrt{n} \, \left\{ (v(x) + O(\frac{1}{n}))(v(x)^{-1} + O(\frac{1}{n})) - \mathbf{1} \right\}^{\frac{1}{2}} = O(1) \, \| f \, \mathbf{1}_{\delta} \|_{d \boldsymbol{\alpha}_{\mathfrak{p}, 2}}$ and this is enough for our purposes.

From Theorems 2 and 3 we obtain the following equiconvergence

Theorem 4. Let $\pi^2/\alpha' \in L^1(-1,1)$ with a suitable polynomial π . If the conditions of the first part of Theorem 2 are satisfied then

$$\lim_{n\to\infty} [S_n(d\alpha, f, x) - S_n(v, f l_6, x)] = 0$$

and in the conditions of the second part of Theorem 2 the convergence is uniform for $\mathbf{x} \in \mathbf{T}_1$. Here $\mathbf{1}_6 = \mathbf{1}_{[\mathbf{x}-\delta,\mathbf{x}+\delta]}$ (or $= \mathbf{1}_{\mathbf{T}_1}(\delta)$) and δ is sufficiently small.

Corollary 5. Let supp(da) = [-1,1], $\pi^2/a' \in L^1$ with a suitable polynomia π . Let a be absolutely continuous in $\tau \subset (-1,1)$, $a'(t) > C_1 > 0$ for $t \in \tau$, $a' \in C^1(\tau)$, $\omega(a'',t)/t \in L^1$ where ω is the modulus of continuity of a''. Let $f \in L^2_{da}$. Then

$$\lim_{n\to\infty}S_n(d\alpha,f,x)=f(x)$$

for almost every x e T.

Proof. Use Theorem 4 and Carleson [3].

In the following we shall investigate the Lebesgue functions

$$R_n(d\alpha, x) = \int_{-\infty}^{\infty} |R_n(d\alpha, x, t)| d\alpha(t)$$

n = 1, 2, One trivial thing is sure:

$$K_n^2(\mathrm{d}\alpha,x) \leq \lambda_n^{-1}(\mathrm{d}\alpha,x)[\alpha(\infty)-\alpha(-\infty)].$$

Hence estimating λ_n^{-1} we obtain estimates for K_n . If e.g. $\sigma'(t) \ge C > 0$ for $t \in [x-\epsilon, x+\epsilon]$ then

It is rather surprising that nobody has tried to improve this estimate for weights satisfying weak conditions (e.g. for $\alpha \in S$). We shall see that Cn can be replaced by $\sigma(n)$ in many cases. First we shall find conditions

If supp(da) is compact and a has a jump at x then $\lim_{n\to\infty}\lambda_n(\mathrm{d}\alpha,x)\;K_n^2(\mathrm{d}\alpha,x)\;=\;0\;.$

liminf λ (do, x) $K_n^2(do, x) \ge o(x+0) - o(x-0)$ $n \rightarrow \infty$

so that (6) cannot hold.

Lemma 6. Let \$ > 0 , x e R. Then

$$\lambda_{n}(da,x) K_{n}^{2}(da,x) \leq 2[a(x+\epsilon)-a(x-\epsilon)] + \\ + \frac{2}{\epsilon^{2}} \lambda_{n}(da,x) \left[\frac{v_{n-1}^{2}(da)}{v_{n}^{2}(da)} + 2(x-a_{n-1}(da))^{2} \right] p_{n-1}^{2}(da,x) +$$

$$+ 2 \frac{\gamma_{n-2}^{2}(da)}{\gamma_{n-1}^{2}(da)} p_{n-2}^{2}(da,x) \Big[(a(\infty) - \alpha(-\infty)) \Big].$$

Proof. We shall use the Christoffel-Darboux and the recurrence formulas.

$$K_{n}(d\sigma,x) \ = \ \left\{ \begin{array}{c} \int \\ |x-t| \le \epsilon \end{array} \right. \left. \left. \left| \begin{array}{c} \int \\ |x-t| \right| > \epsilon \end{array} \right| \ K_{n}(d\sigma,x,t) \right| d\sigma(t).$$

$$\int_{\Omega}^{2} (d\alpha, x) \le 2 \left\{ \int_{|x-t| \le \varepsilon} \right\}^{2} + 2 \left\{ \int_{|x-t| > \varepsilon} \right\}^{2}.$$

$$\begin{split} K_n^2(d\alpha,\mathbf{x}) &\leq 2\bigg\{\int\limits_{|\mathbf{x}-\mathbf{t}| \leq \epsilon} \int\limits_{|\mathbf{x}-\mathbf{t}| > \epsilon} \int\limits_{|\mathbf{x}-\mathbf{t}| > \epsilon}^2 \int$$

Now the final estimate follows from the recurrence formula

Corollary 7. Let supp(da) be compact, $\varepsilon > 0$ and Δ be fixed. Then

$$\lambda_n(d\sigma,x) \, K_n^2(d\sigma,x) \le 2 \big[\alpha(x+\epsilon) - \alpha(x-\epsilon) \big] + \\ + C \, \epsilon^{-2} \, \lambda_n(d\sigma,x) \big[p_{n-1}^2(d\sigma,x) + p_n^2(d\sigma,x) \big]$$

for $x \in \Delta$, n = 1, 2, ... where $C = C(d\alpha, \Delta)$.

Proof. Lemmas 6 and 3.3.1.

Theorem 8. Let $\alpha \in M(0,1)$. If α is continuous at $x \in [-1,1]$ then

(7)
$$\lim_{n\to\infty} \lambda_n(\mathrm{d}\omega,x) K_n^2(\mathrm{d}\omega,x) = 0.$$

If α is continuous on the closed set $\mathfrak{M}\subset (-1,1)$ then (7) is satisfied uniformly for x e m.

Proof. Use Corollary 7 and Theorem 4.1.11.

Theorem 9. Let $\alpha \in M(0,1)$, $\tau \subset [-1,1]$, $\varepsilon > 0$. If $[\alpha']^{-\varepsilon} \in L^1(\tau)$ then

 $\lim n^{-\frac{1}{2}} K_n(\partial \alpha, x) = 0$

for almost every $x \in T$. If α is continuous on τ and $\alpha'(t) \ge C > 0$ for

almost every tert hen (8) holds uniformly for $x \in \tau_l \subset \tau^o$.

Proof. Since α is almost everywhere continuous in [-1,1] the first part of the Theorem follows from Theorems 8 and 6.3,35. The second part follows from Theorem 8 and Example 6.2.9. From Theorem 9 one can easily obtain convergence theorems for $\operatorname{Lip}_2^{\frac{1}{2}}$ (and not for lip_2^1). Let us leave the details to the reader, Let us note that (8) is good for bad weights, for nice weights better estimates can be found. Theorem 10. Let $\operatorname{supp}(da)$ be compact, $\tau \subset \operatorname{supp}(da), \varepsilon > 0, \ [a^i]^{-\varepsilon} \in L^1(\tau).$

$$\lim_{n\to\infty}\inf_{n\to\infty}\frac{1}{n}\left(\mathrm{d}\alpha,x\right)<\infty$$

for almost every x e T.

Proof. Let us put in Lemma 6 $\varepsilon = n^3$. Using Lemma 3.3.1 we obtain

Summing for n = 1, 2,..., m we see that

$$\frac{1}{m} \sum_{n=1}^{m} \frac{1}{n} \frac{K^2(do,x)}{s} \le$$

$$\leq 2 \frac{1}{m} \sum_{n=1}^{m} [n \lambda_n (d \alpha, x)]^{-1} \frac{1}{3} \frac{1}{a(x+n^{\frac{1}{3}}) - a(x-n^{\frac{3}{3}})}] + C[m \lambda_m (d \alpha, x)]^{-1}.$$

Since a is almost everywhere differentiable we obtain from Theorem 6.3.35

:hat

$$\limsup_{n\to\infty}\frac{1}{n}\sum_{n=1}^{m}\frac{2}{x^2}(de,x)<\infty$$

for almost every x t T. Hence the Theorem follows.

Now we shall be again in the situation $a_1 + q_1 \cdot a_T$. (See 6. 2.)

Lemma II, Let a ∈ S, T ⊂ (-1,1). Then

$$K_n(d\sigma_{\tau}, x) \le C \log n$$
 $(n \ge 3)$

uniformly for $x \in \tau_1 \subset \tau^0$.

Proof. Lemma 6.2.29 and Freud, \$IV, 4.

Theorem 12. Let $\alpha \in S$. Let $x \in (-1,1)$, α be absolutely continuous near x, $\alpha' \in A_x^{\infty}$, $\alpha'(x) > 0$. Then

(9)
$$K_n(d\alpha, x) \le C\{\log n + [\int_1^1 \frac{\omega(t)}{t^2} dt]^{\frac{1}{2}}\}$$
 $(n \ge 3)$

where C does not depend on n. If $\tau_1 \in (-i, I)$, α is absolutely continuous near τ_1 , $\alpha' \in A_T^\omega$, $\alpha'(t) > 0$ for $t \in \tau_1$ then (9) holds uniformly for $x \in \tau_1$ with C independent of x and n.

Proof. Let us choose τ (x, τ^0 or $\tau_1 \subset \tau^0$) so small that the corresponding g is bounded from below and above in [-1,1]. We have $\alpha = (\alpha_1)_g$. Hence by formal

$$\begin{split} &K_{n}(d\alpha,x) \leq C \ \lambda_{n}(d\alpha_{\tau},x) \ \lambda_{n}^{-1}(d\alpha,x) \ K_{n}(d\alpha_{\tau},x) + \\ &+ C \left\{ \lambda_{n}^{-1}(d\alpha,x) [G_{n}(d\alpha_{\tau},g^{-1},x) \ G_{n}(d\alpha_{\tau},g,x) - 1] \right\}^{\frac{1}{2}}. \end{split}$$

By Theorem 6.2.6

By Example 6.2.9 $\lambda_n^{-1}(d\alpha,x) \le Cn$. Now the Theorem follows from Lemma II., Theorem 6.2.38, Remark 6.2.41 and Lemma 6.2.29.

Note that if $\omega(t) = t | \log t |$ then $\int_1^1 \frac{\omega(t)}{t^2} dt \sim [\log n]^2.$

A weaker version of Theorem 12 was obtained by Freud, §V.7.

Theorem 13. Let $\alpha \in S$, $u(\geq 0) \in L^1_{d\alpha}$, $w(\geq 0) \in L^1_{d\alpha}$, meas(u > 0) > 0, meas(w > 0) > 0, $1 < q \leq \omega$, $u^{1/1-q} \in L^1_{d\alpha}$ ($q < \omega$), $u^{-1} \in L^1_{d\alpha}$ ($q = \infty$), $0 , <math>p \leq q$. If $q < \omega$ and for every $f \in L^1_{ud\alpha}$

 $\|S_n(d\alpha,t)\|_{wd\alpha,p} \le C\|t\|_{ud\alpha,q}$

$$\int_{-1}^{1} \left[\alpha'(t) \sqrt{1-t^2} \, \right]^{-\frac{D}{2}} \ w(t) \alpha'(t) dt < \infty$$

and

$$\int_{1}^{1} \left[\alpha'(t)\sqrt{1-t^{2}} \, \frac{q}{2(1-q)} \, \frac{1}{u(t)^{1-q}} \, \frac{1}{\alpha'(t)} dt < \infty \right. .$$

If q = w and for u f e Lq

$$\|S_n(da,f)\|_{wda,p} \leq C\|uf\|_{d\boldsymbol{a},q}$$

with $C \neq C(n, f)$ for n = 1, 2, ... then (10) and

$$\int_{-1}^{1} [a'(t) \sqrt{1-t^2}]^{-\frac{1}{2}} u(t)^{-1} a'(t) dt < \infty$$

hold.

<u>Proof.</u> For simplicity we shall consider the case $1 < q < \infty$. By the condi-

ions

$$\|S_n(\mathsf{d}\alpha,\mathfrak{k})-S_{n-1}(\mathsf{d}\alpha,\mathfrak{k})\|_{\mathsf{wd}\alpha,\mathfrak{p}}\leq C\|\mathfrak{k}\|_{\mathsf{ud}\alpha,\mathfrak{q}}\,.$$

This means that

By Hölder's inequality this is equivalent to

$$\sup_{n \geq 1} \left\{ \left\| p_n(\mathsf{d} \alpha) \right\|_{\mathsf{w} \mathsf{d} \alpha, \mathsf{p}} \cdot \left\| p_n(\mathsf{d} \alpha) u^{-1} \right\|_{\mathsf{u} \mathsf{d} \alpha, \mathsf{q}^+} \right\} < \infty$$

where q' = q/(q-1). By Theorem 4. 2. 8 the latter condition is equivalent to

$$\sup_{n\geq 1} \|p_n(d\alpha)\|_{wd\alpha,p} < \infty$$

and

$$\sup_{n > 1} \|p_n(d\alpha)u^{-1}\|_{ud\alpha,q'} < \infty.$$

The Theorem follows now from Theorems 7.31 and 7.32.

Let us note that many special cases of Theorem 13 have been known. We refer to Badkov [2] and to the literature mentioned there. (In particular, to Askey, Muckenhaupt, Newman-Rudin, Pollard, Stein and Wainger.)

Corollary 14. There exists an absolutely continuous a & S such that from

$$\sup_{n \ge 1} \|S_n(d\alpha)\|_{L^{\frac{1}{2}} \to L^{\frac{1}{2}}} < \infty$$

follows p = 2.

<u>Proof.</u> Put $\alpha'(x) = \exp\{-(1-x^2)^{-\frac{1}{4}}\}$. If 1 then apply Theorem 13.

For p = 1, o (II) can never hold.

When investigating the Lebesgue functions of Lagrange interpolating processes we shall have to be able to estimate the expression

$$|\mathbf{x}-\mathbf{x}_{\mathbf{k}_n}(d\mathbf{a})|<\varepsilon$$
 $^{\lambda}\mathbf{k}_n(d\mathbf{a})$.

The following result is very simple.

Lemma 1. Let supp(da) be compact. Then

$$\begin{array}{ccc} \text{lim limsup} & \sum\limits_{\epsilon \to 0} \frac{\lambda_k (d\alpha) = \alpha(x+0) - \alpha(x-0)}{\epsilon \to 0} n \to \infty & |x-x_k| < \epsilon \end{array}$$

The variable

$$\limsup_{n\to\infty} \sum_{|\mathbf{x}-\mathbf{x}_K| < \epsilon} {\lambda_{kn}(\mathrm{d}\alpha)} \le \int\limits_{\mathbf{x}-\mathbf{y}_1} {\mathrm{d}\alpha(t)} \le o(\mathbf{x}+2\epsilon) - o(\mathbf{x}-2\epsilon).$$

, let e → 0 .

Unfortunately, it is not true that (1) is not greater than $\alpha(x+\epsilon)$ - $\alpha(x-\epsilon)$ or $\alpha(x+2\epsilon)$ - $\alpha(x-2\epsilon)$. From the Markov-Stieltjes inequalities we obtain that

$$\sum_{|\mathbf{x}-\mathbf{x}_{kn}|<\varepsilon} \lambda_{kn}(d\alpha) \leq \alpha(\mathbf{x}^1) - \alpha(\mathbf{x}^2)$$

where $x^1_1 = \min_{x_{kn} \ge x+\epsilon} x_n$ if $\{k : x_{kn} \ge x+\epsilon\}$ is not empty and otherwise $x_{kn} \ge x+\epsilon$ $x_n \ge x+\epsilon\}$ and similarly $x^2_1 = \max_{x_{kn} \le x+\epsilon} x_n$ or $x^2_1 = -\infty$. Suppose that neither

$$\{k: x_{kn} < x^1\}$$
 nor $\{k: x_{kn} > x^2\}$ is empty. Let $x_1^1 = \max_{x_{kn}} x_{kn}$ and

 $x_2^2 = \min_{k_1 > x_2} x_{k_1}$. Then

(2) $\sum_{|x-x_{Kn}|<\varepsilon} \lambda_{kn} (da) \le a(x+\varepsilon + x^1 - x_1^1) - a(x-\varepsilon + x^2 - x_2^2).$

Hence we see that to estimate (1) we have to know the behavior of $x_k(da)$ - x_{k+1} , (da).

Lemma 2. Let $\beta \in S$. Then there exists a number $C = C(d\beta) > 1$ such that

p, (db,x) ≤ c Vn

for x ∈ [-1,1] and n = 1,2,...

Proof. See Geronimus, §8.2.

Lemma 3. Let α be an arbitrary weight, Δ \subset supp(d α). Let ν_Δ denote the Tschebyshev weight corresponding to Δ . If ν_Δ log α' \in $L^1(\Delta)$ then

$$\max_{\mathbf{x} \in \Delta} \frac{\pi^2(\mathbf{x})}{n} \le C^{\sqrt{n}} \int_{-\infty}^{\infty} \frac{\pi^2(t) d\sigma(t)}{n} \quad (n \ge 1)$$

for each π_n with a suitable $C = C(d\sigma) > 1$.

Proof. Let $a^*(t) = a(t)$ for $t \in \Delta$ and $a^*(t)$ be constant otherwise. Let us transform Δ into [-1,1]. We get a weight a^* which satisfies the conditional conditions to the conditional conditions are also becomes a substitute of the conditional conditions are constant.

tions of Lemma 2. Returning to Δ we obtain

$$\max_{\mathbf{x} \in \Delta} \frac{\pi^2(\mathbf{x})}{\Delta} \leq \max_{\mathbf{x} \in \Delta} \lambda_{n+1}^{-1} (d\alpha^*, \mathbf{x}) \int \frac{\pi^2}{n} (t) d\alpha^*(t) \leq$$

$$\leq n C^{\sqrt{n}} \int \frac{\pi^2}{n} (t) d\alpha(t) \leq C_1^{\sqrt{n}} \int_{-\infty}^{\infty} \frac{\pi^2}{n} (t) d\alpha(t) .$$

<u>Theorem 4.</u> Let $\mathrm{supp}(\mathrm{d} a)$ be compact, $\Delta \subset \mathrm{supp}(\mathrm{d} a)$, $\mathbf{v_\Delta}$ log $a' \in L^1(\Delta)$.

(3) $x_{kn}(da) - x_{k+1,n}(da) \le C \frac{1}{\sqrt{n}}$ $(n \ge 1)$

for x_k , x_{k+1} (Δ with C independent of n and k. If $\Delta_l \subset \Delta^0$ then (3) holds if either x_k or x_{k+1} belongs to Δ_l .

Proof. Let \mathbf{v}^* denote the Tschebyshev weight corresponding to $\Delta(\mathrm{d} a)$.

Let m be a natural integer and $N=\{\frac{n}{m}\}$. Then

$$\pi_{\mathbf{X}}(t) = K_{N}^{m(v^*, \mathbf{x}, t)} K_{N}^{-m(v^*, \mathbf{x}, \mathbf{x})}$$

is a π_{n-1} with $\pi_X(x) = 1$. By Lemma 3

(4)
$$1 \le C^{\sqrt{n}} \int_{-\infty}^{\infty} \pi^2(t) d\alpha(t)$$

for x $\in \Delta$. Let x_k , $x_{k+1} \in \Delta$ and $x = \frac{1}{2}(x_k + x_{k+1})$. Then $x \in \Delta$. Further $||x_k(x_{jn}(d\omega))|| \le [C_1 \frac{m}{n}(x_k - x_{k+1})^{-1}]^m$

for $j=1,2,\ldots,n$ with $C_1=C_1(\Delta(do))$. Calculating the integral on the right side of (4) by the Gauss-Jacobi mechanical quadrature formula we obtain

$$[x_k \! - \! x_{k+1}]^{2m} \leq C^{\sqrt{n}} \, [C_1 \, \tfrac{m}{n}]^{2m} [\alpha(\infty) - \alpha(-\infty)],$$

hat is

$$x_k - x_{k+1} \le C_2 C^{2m} \frac{m}{n}$$
.

Putting here $m = [\sqrt{n}]$ the first part of the Theorem follows. Using Lemma

3.3.2 we obtain the second part of the Theorem.

Theorem 5. Let $\text{supp}(d\alpha)$ be compact, $\Delta \subseteq \text{supp}(d\alpha), \ \epsilon > 0$, $[\alpha']^{-\epsilon} \in L^l(\Delta)$ Then

(5)
$$x_{kn}(da) - x_{k+1,n}(da) \le C \frac{\log n}{n}$$
 $(n \ge 3)$

for $x_k,\,x_{k+1}$ (Δ where $\,\mathbb{C}\,$ does not depend on $\,$ and $\,k$. If $\,\Delta_l\subseteq\Delta^0\,$ then

(5) holds for either $x_k \in \Delta_l$ or $x_{k+1} \in \Delta_l$.

$$\max_{\mathbf{x} \in \Delta} \frac{\pi^2(\mathbf{x})}{n} \le n^A \int_{-\infty}^{\infty} \frac{\pi^2}{n} (t) d\mathbf{\omega}(t) \qquad (n \ge 2)$$

<u>Proof.</u> We obtain from Theorem 6.3.13 and from $[a']^{-\epsilon} \in L^1(\Delta)$ that

for every " with a suitable constant A > 1. Now we repeat the proof of Theorem 4 and finally we put m = [log n].

Let us note that the proof of Theorems 4 and 5 is based on an idea of Erdös-Turán but our result is stronger than that of Erdös-Turán. (See Szegő,

Theorem 6. Let $\mathrm{supp}(\mathrm{d}a)$ be compact, $\Delta \subset \mathrm{supp}(\mathrm{d}a)$, $\mathrm{v}_{\Delta}\log a'$, $\mathrm{L}^1(\Delta)$, $\epsilon_1 > 0$, $\tau \subset \tau(\epsilon_1) \subset \Delta^0$. Then

$$\sum_{|x-x_n|<\epsilon} \frac{\lambda_n(da)}{|x-x_n|} \leq \alpha(x+\epsilon+\frac{C}{\sqrt{n}}) - \alpha(x-\epsilon-\frac{C}{\sqrt{n}})$$

uniformly for n=1,2,..., $x \in \tau$, $0 \le \varepsilon \le \varepsilon_1$ where $C \ne C(n,x,\varepsilon)$, C > 0.

Proof. Use (2) and Theorem 4.

Lemma 7. Let supp(da) be compact, $\epsilon > 0$, $\tau \subset \tau(\epsilon) \subset \Delta^0 \subset \Delta \subset \operatorname{supp}(da)$.

Then there exists a number $N=N(\epsilon,d\alpha,\Delta)$ such that

$$\sum_{\alpha \in A_{k,n}} \lambda_{k,n}(d\alpha) \leq \alpha(x+2\epsilon) - \alpha(x-2\epsilon)$$

for x or T and n > N.

Proof. Apply Lemma 3.2.2, (2) and the Heine-Borel theorem .

In the following we shall also need estimates for

$$\sum_{k_n \in T} \lambda_{k_n} (d\alpha) |p_{n-1}(d\alpha, x_{k_n})|.$$

It is obvious that (6) is not greater than $[\alpha(\infty) - \alpha(-\infty)]^{\frac{1}{2}}$. The question if (6) may converge to 0 when $n \to \infty$ seems to be more difficult.

Example 8. Let w be the Hermite weight, that is $w(x) = \exp(-x^2)$ for $x \in \mathbb{R}$.

Then

$$|p_{n-1}(w,x_{kn})| \le C n^{-\frac{1}{4}} w(x_{kn})^{-\frac{1}{2}}$$

for $k=1,2,\ldots,n$. Hence by old theorems about quadrature sums

$$\sum_{k=1}^{n} \lambda_{kn}(w) \{ p_{n-1}(w, x_{kn}) \} \le C \, n^{-\frac{1}{2}} \int_{-\infty}^{\infty} w(t)^{\frac{1}{2}} dt \, \underset{n \to \infty}{\longrightarrow} 0 \; .$$

We shall show that this cannot happen if supp(da) is compact and a

is nice in a certain sense. For D(da,0) se Definition 6.1.16.

Lemma 9. Let a & S. Then

$$\underset{n \rightarrow \infty}{\text{liminf}} \ \sum_{k=1}^{n} \lambda_{kn}(\text{d}\omega) \|_{p_{n-1}(\text{d}\omega,\,\kappa_{k,n})} \| \ \ge \ \frac{\sqrt{\pi}}{2} \ \mathbb{D}(\text{d}\omega,0) \ .$$

<u>Proof.</u> Let $n\geq 1$. Then $T_{n-1}(x)=L_n(d\sigma,T_{n-1},x)$. Let us divide both sides by x^{n-1} and let $x\to\infty$. We obtain

by
$$x^{n-1}$$
 and let $x \to \infty$. We obtain
$$2^{n-2} \le y_{n-1}(da) \sum_{k=1}^{n} \lambda_{kn}(da) |p_{n-1}(da, x_{kn})|.$$

Now apply Lemma 4, 2, 2,

The following result is a poor but very useful analogue of Theorem

.2.8.

Theorem 10. Let α_{ℓ} S. Then there exists a number δ = $\delta(d\alpha) > 0$ such that if $\Omega \subset \{-1,1\}$ is an arbitrary finite system of disjoint intervals with $|\Omega| \ge 2 - \delta$

(7) Ilminf
$$\sum_{n \to \infty} \frac{\lambda_{kn}(d\alpha)|p_{n-1}(d\alpha, \mathbf{x}_{kn})| > 0}{x_{kn}(n-1)}$$

<u>Proof.</u> Let $\mathfrak{Q}_0 = [-1,1] \setminus \Omega$. Then $1_{\mathfrak{Q}_0}$ is Riemann integrable on [-1,1]. We have

$$\begin{split} \sum_{k=1}^{n} \lambda_{kn}(d\sigma) \left| p_{n-1}(d\sigma, \mathbf{x}_{kn}) \right| &= \sum_{\mathbf{x}_{kn}} \lambda_{kn}(d\sigma) \left| p_{n-1}(d\sigma, \mathbf{x}_{kn}) \right| + \\ &+ \sum_{k=1}^{n} \frac{1}{\alpha_n} (\mathbf{x}_k) \left| \lambda_{kn}(d\sigma) \right| p_{n-1}(d\sigma, \mathbf{x}_{kn}) \right| &\leq \end{split}$$

$$\leq \sum_{\mathbf{x}_n \in \Omega} \lambda_{\mathbf{x}_n}(d\alpha) |p_{n-1}(d\alpha, \mathbf{x}_{\mathbf{x}_n})| + \sum_{\mathbf{x}_n \in \Omega} \lambda_{\mathbf{x}_n}(d\alpha) |p_{n-1}(d\alpha, \mathbf{x}_{\mathbf{x}_n})|$$

$$+ \left\{ (\alpha(1) \! - \! \alpha(-1)) \right\} \sum_{k=1}^n \frac{1}{\alpha_3} (x_k)^{\lambda_k} (\mathrm{d}\alpha) p_{n-1}^2 (\mathrm{d}\alpha, x_{kn})^{\frac{1}{2}} \; .$$

Now let n → ∞. By Lemma 9 and Theorem 3.2.3

$$\frac{\sqrt{\pi}}{2} \; D(do,0) \leq \liminf_{n \to \infty} \sum_{k_n \in \Omega} {}^{\lambda}_{k_n}(do) |_{p_{n-1}(do,x_{k_n})}| \; + \;$$

+
$$[(\alpha 1) - \alpha (-1)] = \int_{-1}^{2} \int_{-1}^{2} \sqrt{1-t^{2}} dt]^{\frac{1}{2}}$$

Hence (7) holds if |cn| is small.

Theorem II. Let a (M(0,1), τ ⊂ [-1,1]. Then

$$\underset{n\to\infty}{\text{liminf}} \sum_{k_n \in T} \lambda_{k_n}(d\sigma) |p_{n-1}(d\sigma, x_{k_n})| \geq \frac{2}{\pi} \int \sqrt{1-t^2} \, dt.$$

Proof. The Theorem follows from Theorem 3. 2.3 and the inequality

$$\sum_{\substack{x_{kn} \in \tau}} \lambda_{kn}(da) p_{n-1}^2(da,x_{kn}) \leq \max_{\substack{x_{kn} \in \tau}} |p_{n-1}(da,x_{kn})| \cdot$$

Theorem 12. Let supp(da) = [-1,1], $\alpha'(x) > 0$ for almost every $x \in (-1,1]$,

8) liminf { max
$$|p(d\alpha,x)| \sum_{k_n \in \Delta} \lambda_{k_n}(d\alpha)|p_{n-1}(d\alpha,x_{k_n})|$$
 } \geq

$$\geq \frac{|\Delta|}{2\pi} \int_{\Delta} v_{\Delta}(t)^{-1} v(t) dt$$

Proof. By Bernstein's inequality

$$|p_n'(d\alpha,t)| \leq \frac{2n}{|\Delta|} |v_\Delta(t)| \max_{x \in \Delta} |p_n(d\alpha,x)|$$

for x ϵ Δ Further $\gamma_{n-1}(\mathrm{d}\alpha) \leq \gamma_{n}(\mathrm{d}\alpha)$ and

$$\frac{\gamma_{n-1}(d\omega)}{\gamma_{n}(d\omega)} \lambda_{kn}(d\omega) p_{n-1}(d\alpha, x_{kn}) = [p'_{n}(d\alpha, x_{kn})]^{-1}$$

Hence the left side in (8) is not less than

But

$$\lim_{n\to\infty}\frac{1}{n}\sum_{\mathbf{x}_{n}\in\Delta}v_{\Delta}(\mathbf{x}_{kn})^{-1}=\frac{1}{\pi}\int v_{\Delta}(t)^{-1}v(t)dt\;.$$

(See Freud, \$III.9.)

Corollary 13. Let the conditions of Theorem 12 be satisfied. Let the se-

quence $\{|p_n(d\mathfrak{o},x)|\}$ be uniformly bounded for $x\in\Delta$. Then

$$\underset{n\rightarrow\infty}{\text{liminf}} \sum_{k_n \in \Delta} \lambda_{k_n}(\mathsf{d}_{\alpha}) \big| p_{n-1}(\mathsf{d}_{\alpha}, x_{k_n}) \big| > 0 \ .$$

Let us note that the Pollaczek weight satisfies the conditions of

rollary 13.

Now we shall deal with weighted Bernstein-Markov inequalities. Our

aim will be to generalize the following result of Khaillova [9]. $\underbrace{\text{Lemma 14.} \quad \text{Let } 1 \leq p < \infty, \text{ at } \mathbb{R}, \text{ bt } \mathbb{R} \text{ and u be a Jacobi weight. Then } \\ \| \pi_n^{\text{r}} v^{-1} \|_{u,p} \leq C n \| \pi_n^{\text{l}} \|_{u,p}$

Pue

$$\max_{|\mathbf{x}| \le 1} \ \left\{ \left| \pi_n'(\mathbf{x}) \right| \left(\sqrt{1 \! - \! \mathbf{x}} + \frac{1}{n} \right)^{a+1} \left(\sqrt{1 \! + \! \mathbf{x}} + \frac{1}{n} \right)^{b+1} \right\} \le |\mathbf{x}| \le 1$$

$$\leq C \ln \max \left\{ \left| \pi_n(x) \left| \left(\sqrt{1-x} + \frac{1}{n} \right)^3 \left(\sqrt{1+x} + \frac{1}{n} \right) \right| \right.$$

for every T where C does not depend on T and n .

Lemma 15. Let a > -1, 1 < p ≤ ∞. Then

(9)
$$\int_{-1}^{1} |\pi_{n}^{(t)}|^{p} |t|^{a} dt \le C n^{p} \int_{-2}^{2} |\pi_{n}^{(t)}|^{p} |t|^{a} dt$$

T VANA T

Proof. Let first π_n be even, that is let $\pi_n(x) = G_n(x^2)$. Then $\pi'(x) = 2 \times G'_n(x^2)$ and we have to show that

$$\int_{-1}^{1} |x \, G_n'(x^2)|^p |x|^a dx \le C \, n^p \int_{-2}^{2} |G_n(x^2)|^p |x|^a dx$$

5

$$\int_0^1 \left| G_n'(x) \right|^p |x|^{-\frac{p+a-1}{2}} \, \mathrm{d} x \, \le \, C \, n^p \, \int_0^4 \left| G_n(x) \right|^p |x|^{-\frac{a-1}{2}} \, \, \mathrm{d} x \, \, .$$

But

$$\int\limits_0^1 \left| \left. \left. \left. \left| \left. \left. \left| \left. \left| \left. \left| \right| \right| \right| \right| \right| \right| \right|^2 \, dx \right. \le C \int\limits_0^4 \left| \left. \left| \left. \left| \left. \left| \left| \left. \left| \left| \left| \left| \left| \left| \right| \right| \right| \right| \right| \right| \right| \right| \right|^2 \, dx.$$

Hence (9) follows from Lemma 14 when π_n is even. Let now π_n be odd: $\pi(x) = x G_n(x^2)$. In this case $\pi'(x) = G_n(x^2) + 2 x^2 G_n'(x^2)$ and we shall

$$\int_{-1}^{1} |x^{2}G_{n}(x^{2})|^{p}|x|^{a}dx \le C n^{p} \int_{2}^{2} |x|G_{n}(x^{2})|^{p} |x|^{a} dx$$

and

$$\int_{1}^{1} |G_{n}(x^{2})|^{p} |x|^{a} dx \le C \ln^{p} \int_{-2}^{2} |x|G_{n}(x^{2})|^{p} |x|^{a} dx.$$

The first inequality here follows from the first part of the proof by putting there p+a instead of a . The second inequality has been proved in Corollary 6.3.26. Hence (9) holds if π_n is either even or odd. But then it also holds for every π_n with a possibly bigger constant C.

From Lemmas 14 and 15 follows

Let 1 ≤ p < ∞. Then for every π

$$\|\pi'_{n} v^{-1}\|_{w,p} \le C n \|\pi_{n}\|_{w,p}$$

where C does not depend on n and π .

Lemma 17. Let a ϵ R. Then there exists a number ϵ = $\epsilon(a) > 0$ such that

for every "

$$\max_{|\mathbf{x}| \le \frac{E}{n}} |\pi(\mathbf{x})| \le C n^{\frac{a}{n}} \max_{\mathbf{x}} \{|\mathbf{x}|^{\frac{a}{n}} |\pi(\mathbf{x})|\}$$

with C = C(a).

<u>Proof.</u> Let first a = 0. Then (10) follows from Lemmas 6. 2. 50, 6. 3.5 and 6. 3.22 applied for the Legendre weight. If (10) holds for a = 0 then it also holds for $a \ge 0$. If a < 0 then we remark that (10) with a = 0 implies that

11)
$$\max_{|\mathbf{x}| \le \frac{E}{D}} |\pi_{\mathbf{n}}(\mathbf{x})| \le C \max_{\mathbf{n}} |\pi_{\mathbf{n}}(\mathbf{x})|$$

with a possibly new $\epsilon > 0$ and C. Let \mathbf{w} be defined by $\mathbf{w}(t) = |t|^{-3}$ for $-1 \le t \le 1$, supp(w) = [-1,1]. Putting in (II) $K_n(\mathbf{w},\mathbf{x},\mathbf{x}) \pi_n(\mathbf{x})$ instead of $\pi_n(\mathbf{x})$ we obtain from Lemma 6.3.19

$$\max_{\left|x\right| \leq \frac{\epsilon}{3n}} \left| {}^{n}_{n}(x) \left| n^{1-a} \right| \leq C \underbrace{\frac{e}{n}}_{3n} \max_{\left|x\right| \leq \frac{1}{2}} \left\{ \left| \left| r_{n}(x) \right| \left| x\right|^{a} \right\}_{n} \;.$$

Hence (1) follows for a < 0 also.

Lemma 18. Let a & IR. Then

$$\max_{\|\mathbf{x}\| \leq 1} \{ |\pi_n'(\mathbf{x})| (|\mathbf{x}| + \frac{1}{n})^{\mathbf{a}} \} \leq C n \max_{\|\mathbf{x}\| \leq 2} \{ |\pi_n(\mathbf{x})| (|\mathbf{x}| + \frac{1}{n})^{\mathbf{a}} \}$$

every ".

Proof. Repeat the proof of Lemma 15 and use Lemmas 14 and 17.

By Lemmas 14 and 18 we obtain the following

 $\underline{\text{Theorem 19.}} \quad \text{Let } A_k \in \mathbb{R} \text{ for } k=1,2,\ldots,N, \ 1>t_2>\ldots>t_{N-1}>-1,$

$$\mathbf{w}_{n}(\mathbf{x}) \; = \; (\sqrt{1-x} + \frac{1}{n})^{2A_{1}} \frac{N-1}{k=2} (|\mathbf{x} - \mathbf{t}_{k}| + \frac{1}{n})^{A_{k}} (\sqrt{1+x} + \frac{1}{n})^{2A_{N}}$$

or |x| < 1. Then

$$\max_{\|\mathbf{x}\| \le 1} \left\{ \left| \frac{\mathbf{n}'}{\mathbf{n}} (\mathbf{x}) \right| \mathbf{w}_{\mathbf{n}} (\mathbf{x}) (\sqrt{1-\mathbf{x}} + \frac{1}{n}) (\sqrt{1+\mathbf{x}} + \frac{1}{n}) \right\} \le \left| \mathbf{x} \right| \le 1$$

< C n max {
$$|\pi_n(x)|w_n(x)$$
}
 $|x| \le 1$

for every m where C is independent of n and m,

Now we return to estimating the distance between two consecutive

zeros of orthogonal polynomials.

Theorem 20. Let supp(da) be compact, $\Delta \subseteq \text{supp}(da)$, $t^* \in \Delta^0$, $\Gamma > -1$.

Let a be absolutely continuous in A with

Then

$$x_{kn}(da) - x_{k+1,n}(da) \sim \frac{1}{n}$$

for $x_{kn} \in \Delta_l \subset \Delta^0$.

<u>Proof.</u> By Lemma 3.3.2 we can suppose that both x_{kn} and $x_{k+1,n}$ belong

to $\Delta_{\rm l}$. First we shall show that

$$x_{kn} - x_{k+1,n} \le C n^{-1}$$
.

We have the following possibilities.

(12)
$$t^* \le x_{k+1} < x_k \le t^* + \frac{1}{n}$$
 or $t^* - \frac{1}{n} \le x_{k+1} < x_k \le t^*$

or
$$t^* - \frac{1}{n} < x_{k+1} \le t^* < x_k < t^* + \frac{1}{n}$$
,
13) $t^* \le x_{k+1} \le t^* + \frac{1}{n} < x_k$ or $x_{k+1} < t^* - \frac{1}{n} \le x_k \le t^*$,

(14)
$$t^* + \frac{1}{n} \le x_{k+1} < x_k$$
 or $x_{k+1} < x_k \le t^* - \frac{1}{n}$,

(15)
$$x_{k+1} \le t^* - \frac{1}{n} < t^* < x_k \le t^* + \frac{1}{n}$$
 or $t^* - \frac{1}{n} \le x_{k+1} \le t^* < t^* + \frac{1}{n} \le x_k$

and

(16)
$$x_{k+1} \le t^* - \frac{1}{n} < t^* + \frac{1}{n} \le x_k$$
.

In all cases (12)-(16) we shall use Theorem 6.3.25 and the estimate

$$\int_{\mathbf{x}}^{\mathbf{x}_{kn}} d\mathbf{a}(t) \leq \lambda_{kn}(d\mathbf{a}) + \lambda_{k+1,n}(d\mathbf{a}) \qquad (k=1,2,\ldots,n-1)$$

which follows from the Markov-Stieltjes inequalities. In the first case of (13,

$$(x_{k^{-t}}^*)^{\Gamma+1} \leq C[n^{-\Gamma-1} + \frac{1}{n}(x_{k^{-t}}^*)^{\Gamma}] \; .$$

Hence $x_k \le t^* + C\frac{1}{n}$. In the first case of (14) we have $(x_k - t^*)^{r+1} - (x_{k+1} - t^*)^{r+1} \le C\frac{1}{n} \left[(x_k - t^*)^\Gamma + (x_{k+1} - t^*)^\Gamma \right]$.

91110

$$x_{k}^{-x}x_{k+1} \leq C_{n}^{\frac{1}{n}} \frac{[(x_{k}^{-t})^{+}(x_{k+1}^{-t})^{+}][(x_{k}^{-t})^{+} + (x_{k+1}^{-t})^{+}]}{(x_{k}^{-t})^{+} \Gamma^{+1} - (x_{k+1}^{-t})^{+} \Gamma^{+1}}$$

put

$$x_{k^{-}}x_{k+1} \leq C\frac{1}{n} \sup_{1 \leq x < \infty} \frac{(x-1)(x^{-}+1)}{x^{-}+1} \leq C\frac{1}{n}$$

since $\Gamma+l>0$. The other possibilities may be treated similarly. To estimate $x_k \cdot x_{k+1}$ from below let us remark as Erdős-Turán did that

$$l = (x_{kn} - x_{k+1, n}) \frac{d}{dx} t_{kn}^2 (d\phi, x)$$

where $x_{k+1} \le x^* \le x_k$. We have $\ell_{kn}^2(da,x) \le \lambda_{kn}(da) \lambda_n^{-1}(da,x)$.

Using Theorems 19 and 6.3.25 we obtain

$$\left|\frac{d}{dx} t_{kn}^2(da,x)\right| \le C n$$

uniformly for x_{kn} , $x \in \Delta_1 \subset \Delta$. Hence the estimate from below for x_k - x_{k+1}

Theorem 21. Let supplies be compact, $\Delta(do) = [c_1, c_2]$, a > -1, $\delta > 0$. Let α be absolutely continuous in $\{c_2^{-\delta}, c_2^{-\delta}\}$ and let

$$a'(t) \sim (c_2 - t)^a$$

for $t \in [c_2 - \delta, c_2]$. Let $x_{kn}(da) = \frac{1}{2}(c_1 + c_2) + \frac{1}{2}(c_2 - c_1)\cos\theta_k$ for $k = 0, 1, \ldots$, n+l where $0 \le \theta_k \le \pi$ and $x_{0n} = c_2, \; x_{n+l},_n = c_1$. Then $\theta_{k+1} = \theta_k = \frac{1}{n}$

$$\theta_{k+1} - \theta_k \sim 1$$

tain immediately from Theorem 6.3.27 and Markov-Stieltjes' inequalities that $\theta_1=\theta(\frac{1}{n})$ and $\theta_2^{-1}=O(n)$. Now we shall show that $\theta_1^{-1}=O(n)$. Let $m\geq n$ 5 < 1. (Concerning the second assumption see e.g. Freud, \$III.5.) We ob-Proof. We can assume without loss of generality that $\Delta(da) = [-1,1]$ and be fixed. Then by the Gauss-Jacobi mechanical quadrature formula

$$\begin{split} &(1-x_{j_{n}})^{-\lambda} l_{n}(\text{d}\sigma) = \int_{-1}^{1} (1-t) \, f_{j_{n}}^{2} \, (\text{d}\sigma,t) \text{d}\sigma(t) = \\ &= \sum_{k=1}^{m} \, (1-x_{km}) \, f_{j_{n}}^{2} \, (\text{d}\sigma,x_{km})^{-\lambda} k_{km} \, (\text{d}\sigma) \; . \end{split}$$

$$(1-x_{1n})^{\lambda_{1n}(d\alpha)} \ge (1-x_{2m}) \sum_{k=1}^{m} t_{1n}^{2} (d\alpha, x_{km})^{\lambda_{km}(d\alpha)} - (1-x_{2m})^{2} t_{1n}^{2} (d\alpha, x_{1m})^{\lambda_{1m}(d\alpha)} = (1-x_{2m})^{\lambda_{1n}(d\alpha)} t_{1n}^{2} t_{1n}^{2} (d\alpha, x_{1m})^{\lambda_{1m}(d\alpha)}$$

$$= (1-x_{2m})^{\lambda_{1n}(d\alpha)} t_{1n}^{2} t_{1n}^{2} (d\alpha, x_{1m})^{\lambda_{1n}(d\alpha)} t_{1n}^{2} t_{1n}^{2} (d\alpha)$$

and consequently

$$1 - x_{ln} \ge (1 - x_{2m}) \left[1 - \frac{\lambda_{lm}(do)}{\lambda_{m}(do, x_{lm})} \right]$$

Putting here m = Nn where N is big but fixed we obtain from Theorem 6, 3, 27

$$1 - x_{\ln} \ge \frac{1}{2} (1 - x_{2m})$$

if only n is big enough. Hence $\theta_1^{-1} = O(n)$. To prove $\theta_{k+1} - \theta_k = O(n^{-1})$

for $\mathbf{x}_k \in \Delta \subset (1\!-\!\delta,1]$ we shall use the inequalities

$$\sum_{k=1+1}^{n} (1 \pm x_{kn})^{\lambda_{kn}} (d\alpha) \le \int_{-1}^{x} (1 \pm t) d\alpha(t) \le \sum_{k=1}^{x} (1 \pm t) d\alpha(t) \le (1 \pm t)^{\lambda_{kn}} (d\alpha)$$

proved in the same way that Freud proves the Markov-Stieltjes inequalities which is always true if $\Delta(d\alpha) \subset [-1,1]$. We shall not prove (17), it can be in his book. From (17) and Theorem 6.3.27 we get for $x_k \in \Delta$

$$\theta_{k+1} - \theta_k \le \frac{C}{n} \sup_{0 \le x, y \le \frac{\pi}{2}} \frac{|x-y| \left[\sin^{2a+3} x + \sin^{2a+3} y \right]}{|\sin^{2a+4} x - \sin^{2a+4} y|}$$

which is of order 1/n since 2a+3 > 1. The estimate $\left[\theta_{k+1}^{}-\theta_{k}^{}\right]^{-1}=O(n)$ for x_k ε Δ follows from Lemma 14 and Theorem 6.3.27 in the same way as we obtained the estimates from below in Theorem 20. Theorem 22. Let w be as in Theorem 16, $x_{kn}(w) = \cos \theta_{kn}(x_{0n} = 1, x_{n+1,n} = 1, x_{n+1,n})$ = -1, $0 \le \theta_{kn} \le \pi$). Then

$$\frac{1}{8}$$
 $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$

for k = 0, 1, ..., n.

Proof. Use Theorems 20 and 21.

The following inequalities will play a fundamental role in investigations of mean convergence of interpolation processes.

Theorem 23. Let a, Δ_1^* , T and Δ_1 be as in Theorem 20. Let $1 \le p < \infty$ and m≤c_ln. Then for each [™] and n

$$\sum_{\mathbf{x}_{kn}^{c} \Delta_{l}} \big|^{\pi} (\mathbf{x}_{kn}) \big|^{P} \lambda_{kn} (\mathsf{d} \boldsymbol{a}) \, \leq \, C \int \big|^{\pi} (t) \big|^{P} \mathsf{d} \boldsymbol{a}(t)$$

where $C = C(a, \Delta_1, p, c_1)$.

Proof. Let $w = 1_{\Delta}^{\alpha}$ with supp(w) = Δ . Then by Theorem 6, 3, 25

$$\lambda_{kn}(da) \sim \lambda_{n}(\mathbf{w}, \mathbf{x}_{kn}(da)) \sim \lambda_{n}(\mathbf{w}, \mathbf{p}, \mathbf{x}_{kn}(da)) \sim \lambda_{n+m}(\mathbf{w}, \mathbf{p}, \mathbf{x}_{kn}(da))$$

for $x_{kn}(d\sigma)$ ($\Delta_l \subset \Delta^0$ since $m \le c_l n$. Hence

$$\left| \pi_{m}(x_{kn}) \right|^{p} \lambda_{kn}(da) \leq C \int \left| \pi_{m}(t) \right|^{p} da(t)$$

for $x_{kn}(da) \in \Delta_l$. Further we can suppose that $t^* \in \Delta_l$. Let j=J(n) be defined by $x_{j+1,n} \le t^* < x_j$. Consider

$$\sum_{\substack{x_{k_{n}}^{\epsilon} \Delta_{l} \\ k < j - l}} \left| \pi_{m}^{(x_{k_{n}})} \right|^{p} \lambda_{k_{n}}^{(do)} \, .$$

$$\big| ^{\pi}_{m}(x_{kn}) \big|^{p} \leq \big| ^{\pi}_{m}(x) \big|^{p+p} \int_{x_{k+1,n}}^{X_{k-1,n}} \big| ^{\pi}_{m}(t) \big|^{p-1} \big| ^{\pi^{*}}_{m}(t) \big| \, \mathrm{d}t$$

for $x_{k+1,n} \le x \le x_{k-1,n}$. Thus by the Markov-Stieltjes inequalities we

$$\begin{split} \sum_{\substack{K_{R_{1}} \in \Delta_{1} \\ k < j - 1}} & \left| \pi_{m}(x_{k_{1}}) \right|^{p} \lambda_{k_{1}}(d_{0}) \leq 2 \int \left| \pi_{m}(x) \right|^{p} d_{0}(x) + \\ & k < j - 1 \\ & + p \sum_{\substack{K_{1} \in \Delta_{1} \\ k < j - 1}} \lambda_{k_{1}}(d_{0}) \int_{\substack{K_{1} = 1, n \\ k < 1 + n}}^{X_{k_{1}}(t)} \left| \pi_{m}(t) \right|^{p - 1} \left| \pi_{m}^{'}(t) \right| dt \; . \end{split}$$

By Theorems 20 and 6.3, 25

$$\lambda_{kn}(d\alpha) \sim \frac{1}{n} |t-t^*|^{\Gamma}$$

for $x_{k+1,n} \le t \le x_{k-1,n}$ if k < j-1 and $x_{k,n} \in \Delta_1$. Consequently

$$\begin{split} \sum_{\mathbf{x}_{k}n^{\ell}} \lambda_{kn}^{(do)} \int_{\mathbf{x}_{k+1,n}}^{\mathbf{x}_{k+1,n}} |\pi_{m}(t)|^{p-1} |\pi_{m}^{'}(t)| dt & \leq \\ \mathbf{x}_{k} \leq \lambda_{1} \\ \mathbf{x}_{k+1,n} & \mathbf{x}_{k+1,n} \\ & \leq C \frac{1}{n} \{ \int_{\mathbf{x}_{k}} |\pi_{m}(t)|^{p} |t_{-t}^{*}|^{F} dt \}^{p} \cdot \{ \int_{\mathbf{x}_{k}} |\pi_{m}^{'}(t)|^{p} |t_{-t}^{*}|^{F} dt \}^{\frac{1}{p}}, \end{split}$$

where
$$\epsilon > 0$$
 is chosen so that $\Delta_{I}(\epsilon) \subset \Delta^{0}$. By Lemma 15 we obtain
$$\sum_{k,n} \left| \frac{1}{m} (x_{kn}) \right|^{p} \lambda_{kn} (d\alpha) \le C \frac{m+n}{n} \int_{\Delta} |m| (t) |^{p} d\alpha(t)$$
.

The sum for $x_k \in \Delta_l$, k>j+l can be estimated similarly.

Theorem 24. Let α, c_2, a, δ and Δ be as in Theorem 21. Let $\Gamma > -1-a$,

1≤p<∞, m≤c n. Then

$$\sum_{\substack{\mathbf{x}_{k} \in \mathbf{A} \\ \leq c_{2} - \delta}} | \pi_{m}(\mathbf{x}_{k}) |^{P(c_{2} - \mathbf{x}_{k})^{\Gamma} \lambda_{k} n} (da) \leq$$

for each π where $C = C(\alpha, p, \Delta, \Gamma, c)$.

Theorem 25. Let w be as in Theorem 16, u ι $\overset{1}{L}$ be a Jacobi weight,

1≤p<∞ and m≤c n. Then

$$\sum_{k=1}^{n} \left| \left| \right|^{n} (x_{kn}) \right|^{p_{U}(x_{kn})}^{\lambda}_{kn}(w) \le C \int_{1}^{1} \left| \left| \right|^{p_{U}(t) w(t) dt}$$

for every π where C = C(w, u, p).

Theorems 24 and 25 can be proved by the same method as Theorem 23. As an application of the previous results we shall prove two theorems

6.2.12. Let 1≤p≤ ∞, p ≠ 2. Then the sequence of operators {S_o(w)} is Theorem 26. Let w = w (a,b) be the Pollaczek weight defined in Definition not uniformly bounded in L. w.

Proof. By Corollary 13 and Theorem 23 (Γ = 0)

liminf
$$\int_{0}^{1} |p_n(\mathbf{w}, t)|^q \mathbf{w}(t) dt > 0$$

for 1 < q < w. Let 1 < p < w, p ≠ 2. Suppose that

$$\sup_{n\geq 1} \|S_n(w)\|_{L^{\frac{1}{p}} + L^{\frac{1}{p}}} < \infty.$$

Then we obtain exactly in the same way as in Theorem 8.13 that

$$\sup_{n \ge 1} \|p_n(w)\|_{\mathbf{w}, \mathbf{p}} < \infty$$

$$\sup_{n \ge 1} \|p_n(\mathbf{w})\|_{\mathbf{w}, \mathbf{p}'} < \infty$$

where $p' = \frac{p}{p-1}$. Since either p or p' is greater than 2 this cannot happen by Theorem 7.31. For p = 1 or p = 0 the Theorem follows from old results. (See e.g. Freud, remarks on Chapter IV.)

Theorem 27. Theorem 26 remains valid if we replace the Pollaczek weight there by the weight defined in Example 6. 2.14. Proof. By Korous' theorem (See Freud, §1.7.) the corresponding system is uniformly bounded on each $\Delta \subset (-1,1)$. Now we can repeat the proof of

Definition 28. The weight w is a generalized Jacobi weight (w e GJ) if

supp(w) = [-1,1] and

$$w(t) = \varphi(t)(1-t) \prod_{k=2}^{\Gamma_1} |t_k - t|^{-k} (1+t)^N$$

where $\Gamma_k > -1 \ (k=1,2,\ldots,N), \ 1 > t_2 > \ldots > t_{N-1} > -1, \ \varphi(>0)$ is continuous

on [-1,1] and $\omega(\delta)/\delta$ ($L^1(0,1)$ where ω is the modulus of continuity of φ . If w ~ w where w c GJ then we write w ~ GJ. Hence if w c GJ

then also w ~ GJ. For w ~ GJ w is defined by
$$\mathbf{w}_n(t) = (\sqrt{1-t} + \frac{1}{n})^{2\Gamma_1} \prod_{k=2}^{N-1} (|t_k - t| + \frac{1}{n})^{-K} (\sqrt{1+t} + \frac{1}{n})^{2\Gamma_N}$$

(-1 < t < 1; n = 1, 2, ...).

Lemma 29. Let w e GJ. Then

$$(\sqrt{1-x} \ + \frac{1}{n})(\sqrt{1+x} + \frac{1}{n}) w_n(x) \ p_n^2(w,x) \ \le \ \mathbb{C}$$

for $-1 \le x \le 1$, $n = 1, 2, \ldots$ where $C \ne C(n, x)$.

Proof. See Badkov [2].

Lemma 30. Let $\alpha \in S$, $g = v^2$. Then

$$|\mathsf{p}_{\mathsf{n}-1}(\mathsf{d}_{\alpha},\mathsf{x}_{\mathsf{k}})| \sim (\mathsf{l}\!-\!\mathsf{x}_{\mathsf{k}}^2)|\mathsf{p}_{\mathsf{n}-1}(\mathsf{d}_{\alpha_{\mathsf{g}}},\mathsf{x}_{\mathsf{k}})$$

where $x_k = x_{kn}(da)$.

Proof. In course of the proof of Theorem 4.2.3 we have shown that

$$(1-x_k^2)p_{n-1}(da_g,x_k) = p_{n-1}(da,x_k) \cdot \frac{y_{n-1}(da_g)}{y_{n-1}(da_g)} + \frac{y_{n-1}(da_g)y_{n-1}(da)}{y_n^2(da)} - \frac{y_{n-1}(da_g)}{y_n^2(da)} - \frac$$

The expression in the brackets does not depend on k and by Lemma 4. 2. 2 it converges to 1 when n-0.

Theorem 31. Let we GJ. Then

$$w_n(x_{g_n})p_{n-1}^2(w,x_{g_n})\sim \sqrt{1\!-\!x_{g_n}^2}\sim (\sqrt{1\!-\!x_{g_n}}+\frac{1}{n})(\sqrt{1\!-\!x_{g_n}}+\frac{1}{n}),$$

Proof. If we GJ then v-we GJ. Hence by Lemmas 29 and 30

$$\mathsf{w}_n(x_{kn}) \mathsf{p}_{n-1}^2(w, \mathsf{x}_{kn}) \, \leq \, \mathsf{C}(\sqrt{1\!-\!\mathsf{x}}_{kn}^+ + \frac{1}{n})(\sqrt{1\!+\!\mathsf{x}}_{kn}^+ + \frac{1}{n}).$$

By Theorem 22 the right side here is $\sqrt{1-x_{\rm kn}^2}$. The converse inequality

follows from

$$p_{n-1}(w,x_{kn})^{-1} = \frac{\gamma_{n-1}(w)}{\gamma_{n}(w)} \lambda_{kn}(w)p_{n}^{i}(w,x_{kn})$$

and from Theorems 6.3.28, 19, 22 and Lemma 29.

Lemma 32. Let α be an arbitrary weight. Let $x_{0n}(d\alpha)=\infty$, $x_{n+1,n}(d\alpha)=-\infty$, $x_$

$$t_{kn}(d\alpha, x) + t_{k+1,n}(d\alpha, x) \ge 1$$
.

Proof. See Erdős-Turán [5].

Theorem 33. Let we GJ. Then

(18) $\lambda_n(\mathbf{w}, \mathbf{x}) p_n^2(\mathbf{w}, \mathbf{x}) \sim n(\mathbf{x} - \mathbf{x}_k)^2 (\sqrt{1 - \mathbf{x}} + \frac{1}{n})^{-2} (\sqrt{1 + \mathbf{x}} + \frac{1}{n})^{-2}$ for $-1 \le \mathbf{x} \le 1$ where \mathbf{x}_k is the zero of $p_n(\mathbf{w}, \mathbf{x})$ which is closest to \mathbf{x} . Proof. By Theorems 22 and 6, 3, 28

$$I_{kn}^2(\mathbf{w}, \mathbf{x}) \le \lambda_{kn}(\mathbf{w})\lambda_n^{-1}(\mathbf{w}, \mathbf{x}) \le C$$

for -1 < x < 1 where k is the index of x_k in (18). Further, if k = 1 and $x_k \le x \le 1$ or k = n and -1 < x < x_k then by Lemma 32 $t_{kn}^2(w,x) \ge 1$. Otherwise x is between either x_{k-1} and x_k (k > 1) or x_k and $x_{k+1}(k < n)$. Let for simplicity $x_k \le x \le x_{k-1}$. Then by Lemma 32

$$f_{k-1,n}(w,x) + f_{kn}(w,x) \ge 1$$
.

By Theorems 22, 31 and 6.3.28

$$\begin{split} &|^{\lambda}k_{-1,n}(w)p_{n-1}(w,x_{k-1,n})| \sim |^{\lambda}k_n(w)p_{n-1}(w,x_{kn})| \\ \text{and obviously } &\ell_{k-1,n}(w,x) \geq 0, & \ell_{kn}(w,x) > 0 \text{ and sign } p_{n-1}(w,x_{k-1,n}) = \\ &= -\text{sign } p_{n-1}(w,x_{kn}). & \text{Hence} \end{split}$$

Consequently in all possible cases

$$I_{kn}^{2}(w,x) \sim 1.$$

The Theorem follows now from Theorems 22, 31 and 6.3, 28.

Corollary 34. Let w
$$\epsilon$$
 GJ. Then
$$\Gamma_1 + \frac{1}{2}$$

$$P_n(w, l) \sim n$$

and

$$|p_n(w,-1)| \sim n^{-\frac{1}{2}}$$

Proof. In this case either k = 1 or k = n.

Remark 35. Let α , a and c_2 be as in Theorem 21. Then $p_n(d\alpha,c_2) \ge C n^d$ for $n=1,2,\ldots$ where $C \ne C(n)$. This follows immediately from Theorems 21, 6.3.27 and from $\lambda_n^{-1}(d\alpha,x) = \sum\limits_{k=1}^{n} \lambda_n^{-1}(d\alpha,x)$.

$$\lim_{n\to\infty} \frac{\gamma_{n-1}(d\alpha)}{\gamma_n(d\alpha)} > 0.$$

Proof. By Theorem 7.5 $\tau \subset \operatorname{supp}(\alpha') \subset \operatorname{supp}(d\alpha)$. Let $\tau = \lceil c_1, c_2 \rceil$ and $m_1 = m_1(n)$, $m_2 = m_2(n)$ be defined by x_{m_1+1} , $n < C_1 \le x_{m_1n}$ and $x_{m_2,n} \le C_2 < x_{m_2-1,n}$ respectively where $x_{n+1,n} = -\infty$ $x_{0n} = \infty$. By Lemma 3.2.2 $\lim_{n \to \infty} x_{m_1,n} = c_1$ and $\lim_{n \to \infty} x_{m_2,n} = c_2$. We can suppose that α is continuous at c_1 and c_2 . If not we can replace τ by a smaller interval.

$$t_{k-1,n}(d\alpha, \frac{x_{k-1}+x_k}{2}) + t_{kn}(d\alpha, \frac{x_{k-1}+x_k}{2}) \ge 1$$

Let m₂ < k ≤ m₁. Then by Lemma 32

that is

 $x_{k-1} - x_k \le 2 \frac{y_{n-1}(do)}{y_n(do)} C^2 [x_{k-1}, n(do) + \lambda_{kn}(do)]$

where $C = \sup_{n \ge 0} \max_{x \in T} |p(do, x)|$. Hence

$$x_{m_2} - x_{m_1} \le 4c^2 \frac{\gamma_{n-1}(d\omega)}{\gamma_n(d\omega)} \sum_{k=m_2}^{m_1} \lambda_{kn}(d\omega) \ .$$

Letting now we obtain

$$|\tau| \le 4C^2 \lim_{n \to \infty} \frac{\gamma_{n-1}(do)}{\gamma_n(do)} \int_{\Gamma} do(t)$$
.

Theorem 37. Let $\operatorname{supp}(\operatorname{da}) \subset [-1,1]$, $\operatorname{supp}(\operatorname{d\beta}) \subset [-1,1]$, $\tau \subset (-1,1)$ and $\operatorname{cr} = [-1,1] \setminus \tau$. Let $\operatorname{da}(t) = \operatorname{d\beta}(t)$ for $t \in \tau$, a be absolutely continuous in cr and let there exist two polynomials π_1 and π_2 such that $\pi_1 a' / \beta' \in L^1_{\operatorname{da}}(\operatorname{cr})$ and $|\pi_2| + |\pi_1| + |\pi_2| + |\pi_2|$

$$|\mathsf{F}_n(\mathsf{d}\beta,x)| \leq C \{|\mathsf{p}_n(\mathsf{d}\alpha,x)| + |\mathsf{p}_{n-1}(\mathsf{d}\alpha,x)|\}$$

uniformly for $x \in \tau_1 \subset \tau^0$ and $n=1,2,\ldots$

<u>Proof.</u> We can suppose that neither π_1 nor π_2 has zeros in τ^0 . Let

p = T12, deg p = m. Then

$$\rho(x)\rho_n(d\beta,x) = \int_1^1 \rho(t)\rho_n(d\beta,t)K_{n+m+1}(d\alpha,x,t)d\alpha(t).$$

By the conditions $\int_{-1}^{1} (| \mathrm{d} \mathbf{a} = \int_{1}^{1} (| \mathrm{d} \mathbf{\beta} + \int_{\mathrm{CT}} | \mathrm{d} \mathbf{a} - \int_{\mathrm{CT}} (| \mathrm{d} \mathbf{\beta} |$. Let $\mathbf{x} \in \mathbf{T}_{1} \subset \mathbf{T}^{0}$.

$$\int_{CT} \int_{CT} \int_{CT}$$

$$\leq C \left[\left\lceil p_{n+m}(\text{d}\alpha,x) \right\rceil + \left\lceil p_{n+m+1}(\text{d}\alpha,x) \right\rceil \right]^2 \int_{-1}^{1} \frac{\pi^2}{I}(t) d\beta(t)$$

and

$$\{ \int_{c\tau} d(t) p_{n}(d\beta, t) K_{n+m+1}(d\alpha, x, t) d\alpha(t) \}^{2} \le C \{ |p_{n+m}(d\alpha, x)| + |p_{n+m+1}(d\alpha, x)| \}^{2} .$$

$$\le C \{ |p_{n+m}(d\alpha, x)| + |p_{n+m+1}(d\alpha, x)| \}^{2} .$$

$$\cdot \int_{c\tau} p^{2}(t) \frac{\alpha'(t)^{2}}{\beta'(t)} dt \int_{c\tau} p_{n}^{2}(d\beta, t) \beta'(t) dt .$$

Further for n > m

$$\int_{1}^{1} q(t) p_{n}(d\beta, t) K_{n+m+1}(d\alpha, x, t) d\beta(t) =$$

$$\int_{1}^{1} q(t) p_{n}(d\beta, t) \sum_{k=n-m}^{n+m} \left[p_{k}(d\alpha, x) p_{k}(d\alpha, t) \right] d\beta(t) .$$

nsequently

$$\begin{split} & \left| \int_{-1}^{1} a(t) p_n(d\beta, t) K_{n+m+1}(d\alpha, x, t) d\beta(t) \right| \leq \\ & \leq C \sum_{k=n-m}^{n+m} \left| p_k(d\alpha, x) \left| \left\{ \int_{-1}^{1} a(t)^2 p_k^2(d\alpha, t) d\beta(t) \right\}^{\frac{1}{2}} \right. \end{split}$$

But

$$\int_{-1}^1 \mathsf{d} \mathsf{t}(\mathsf{t})^2 p_k^2 (\mathsf{d}_2^1,\mathsf{t}) \mathsf{d} \beta(\mathsf{t}) \; = \; \int_{-1}^1 (\mathsf{d} \mathsf{t})^2 p_k^2 (\mathsf{d} \alpha,\mathsf{t}) \mathsf{d} \alpha(\mathsf{t}) \; + \;$$

 $+\int\limits_{CT} |\alpha(t)^2 p_k^2 (\mathrm{d}\alpha,t) \mathrm{d}\beta(t)| \leq C.$

Thus we have proved that for $x_i \tau_1 \in \tau^0$ $|p_n(d\beta,x)| \le C \sum_{k=n-m}^{n+m+1} |p_k(d\alpha,x)| \cdot .$

By Lemma 36 the sequence $\left\{\frac{Y_n-1^{(Go)}}{\gamma_n^{-(Go)}}\right\}$ 1s bounded from below by a positive

$$|p_k(d\alpha,x)| \leq C^*[|p_n(d\alpha,x)| + |p_{n-1}(d\alpha,x)|]$$

constant. Thus by Lemma 3.3.1 and by the recurrence formula

whenever $n \ge 1$, n-k = O(1) and $x \in \Delta$ where $C = C * (|n-k|, o, \Delta)$.

Remark 38. Theorem 37 becomes useful if we combine it with Korous' theorem and with results in Freud and Geronimus.

Theorem 39. Theorem 37 remains valid if τ is of the form [a,l] or [-1,a] where |a| < l and $\tau_l \in (a,l]$ or $\tau_l \in [-l,a]$ respectively. Proof. The same as that of Theorem 37.

10. Lagrange Interpolation.

First we shall consider the Lebesgue function $L_{\rm I}(d\alpha,x)$ of Lagrange

interpolation corresponding to a which is defined by

$$L_n(d\sigma,x) = \sum_{k=1}^n |\ell_{kn}(d\sigma,x)|$$
.

The estimate

(1)
$$L_n^2(d\alpha, x) \le \lambda_n^{-1}(d\alpha, x)[\alpha(\infty) - \alpha(-\infty)]$$

shows that if α has a jump at x then

$$L_n^2(d\alpha, x) \le \frac{\alpha(\infty) - \alpha(-\infty)}{\alpha(x+0) - \alpha(x-0)}$$

but in general (1) is not a very strong result. Our aim will be to improve (1).

Lemma 1. Let supp(da) be compact and $\epsilon > 0$. Then

$$\lambda_n(\mathrm{d}\alpha,x)L_n^2(\mathrm{d}\alpha,x) \leq 2\sum_{\left|\mathbf{x}-\mathbf{x}_{\mathrm{R}}\right| < \epsilon} \lambda_{\mathrm{K}n}(\mathrm{d}\alpha) + C \, \epsilon^{-2}\lambda_n(\mathrm{d}\alpha,x) p_n^2(\mathrm{d}\alpha,x)$$

for $x \in \Delta$, $n=1, 2, \ldots$ where $C = C(\alpha, \Delta)$.

Proof. Repeat the proof of Lemma 8, 6 and apply Lemma 3, 3, 1,

Theorem 2. Let a (M(0,1). If a is continuous at x ([-1,1] then

$$\lim_{n\to\infty} \lambda_n(\mathrm{d}\alpha,x) \; L_n^2(\mathrm{d}\alpha,x) = 0 \; .$$

If α is continuous on the closed set $\mathbf{R} \subset (-1,1)$ then (2) holds uniformly for

Proof. Apply Theorem 4.1.11, Lemmas 9.1,9.7 and 1.

 $\overline{\text{Theorem 3.}} \quad \text{Let } \alpha \in M(0,1), \tau \subset [-1,1] \, . \ \, \text{If } [\alpha']^{-\epsilon} \in L^1(\tau) \ \, \text{with some } \epsilon > 0$ then

$$\lim_{n\to\infty} n^{-\frac{1}{2}} L_n(da, x) = 0$$

for almost every $x \in \tau$. If $\alpha'(t) \ge c > 0$ for almost every $t \in \tau$ and α is continuous on τ then (3) is satisfied uniformly for $x \in \tau_1 \subset \tau^0$.

Proof. Repeat the reasoning in the proof of Theorem 8.9.

Corollary 4. Convergence theorems for Liph

In the following we shall investigate $L_n^*(d\alpha,x)$ defined by $L_n^*(d\alpha, x)^2 = \frac{1}{n} \sum_{k=1}^n L_k^2(d\alpha, x).$

If we can estimate $\sum_{n=0}^{\infty}(d_{\boldsymbol{\alpha}},x)$ we can also estimate the Lebesgue function of the (C,1) means of Lagrange interpolating polynomials, which we denote by $\hat{L}_n(d\alpha,x)$, since obviously $\hat{L}_n(d\alpha,x) \leq \hat{L}_n^*(d\alpha,x)$. Moreover, we can also estimate the convergence rate of the strong (C,1) means:

$$\sigma_n(\mathrm{d}\alpha,\mathfrak{t},x) = \frac{1}{n} \sum_{k \leq 1}^n \left| f(x) - L_k(\mathrm{d}\alpha,\mathfrak{t},x) \right|.$$

Let $E_k(f)$ denote the best approximation of f by π_{k-1} in $C(\Delta(d\alpha))$. Then

$$\sigma_n(\mathrm{d}\mathfrak{o},\mathfrak{t},x) \leq \frac{1}{n}\sum_{k=1}^n \left[1+L_k(\mathrm{d}\mathfrak{o},x)\right]E_k(\mathfrak{t})\;.$$

Hence by Jackson's theorem

$$\sigma_{\Pi}(f,d\alpha,x) \leq C \cdot L_{\Pi}^*(d\alpha,x) \left\{\frac{1}{n} \int_{\Gamma} \frac{\omega_{\Pi}(f,t)^2}{t^2} dt \right\}^2$$

where ω_R denotes the R-th modulus of smoothness of f.

Theorem 5. Let $\operatorname{Supp}(da)$ be compact, $\tau \in \operatorname{Supp}(da)$, $\epsilon > 0$ and $[a']^{-\epsilon}$

1). Then
$$-\frac{1}{11 \text{msup n}} \prod_{n \to \infty}^{\bullet} (da, x) < \infty$$

(4) holds. If $\alpha \in \text{Lipl}$ on τ and $\alpha'(t) \ge c > 0$ for $t \in \tau$ then (4) is satisfied for almost every \times c.t. If α c. Lip, l and $\alpha'(t) \ge c > 0$ for |x-t| small then uniformly for $\mathbf{x} \in \tau_1 \subset \tau^{\mathbf{0}}$.

Proof. For simplicity let us prove the first part of the Theorem. Let $x \in \tau_1^-$

 \subset τ^0 and ε = n $\frac{1}{3}$. Then by Theorem 9.6 and Lemma 1

$$\begin{split} \lambda_n (\mathrm{d}\alpha, x) L_n^2 (\mathrm{d}\alpha, x) &\leq 2 [\alpha(x + \mathrm{cn} \ ^3) - \alpha(x - \mathrm{cn} \ ^3)] \ + \\ &+ C_1 n^3 \lambda_n (\mathrm{d}\alpha, x) \rho_n^2 (\mathrm{d}\alpha, x) \ . \end{split}$$

$$L_{n}^{*}(d\alpha, x)^{2} \leq \frac{1}{2} \frac{1}{n} \frac{1}{k^{2} + 1} \frac{1}{k \lambda_{k}(d\alpha, x)} k^{3} \left[\alpha(x + ck^{-3}) - \alpha(x - ck^{-3})\right] + C_{1} n^{-\frac{1}{3}} \lambda_{n+1}^{-1} (d\alpha, x).$$

Since a is almost everywhere differentiable we obtain from Theorem 6.3.25

that (3) holds for almost every $\times_{\mathfrak{t}} \tau_1^{}$. But $\tau_1^{} \subset \tau_0^{}$ is arbitrary

Let us note that the second part of Theorem 5 is not new. (See Freud, Some unsolved problems.) Corollary 6. Convergence of (C,1) and strong (C,1) means of Lagrange Interpolation polynomials for f e lip 1/4.

Corollary 7. If supp(da) is compact and $[a']^{-\epsilon} \in L^1(\tau)$ with some $\epsilon > 0$

$$\lim_{n\to\infty}\frac{1}{n} \int_{\Omega}(d\alpha,x) < \infty$$

for almost every x e T.

Theorem 8. Let
$$\alpha_s$$
 S and x_s [-1,1]. Then
$$|p_n(d\alpha_s,x)| \le 4\sqrt{\frac{2}{\pi}} \sum_{i \in G_n(0)^{-1}} L_n(d\alpha_s,x)$$

Proof. We obtain from Lemma 6.1.19 and from the inequality between the arithmetic and geometric means that

$$\gamma_{n-1}({\rm d}a) \le 2^{n-1}\sqrt{\frac{2}{\pi}} \ {\rm D}({\rm d}a,0)^{-1}.$$

$$\frac{2^{n-2}}{y_{n-1}(da)} = \int_{-1}^{1} T_{n-1}(t) p_{n-1}(da,t) da(t) \le \frac{y_{n-1}(da,x_{n})|}{|x_{n-1}(da,x_{n})|}$$

for -1 < x < 1. Hence the Theorem follows.

Remark 9. In general Theorem 8 cannot be improved. Let w ~ GJ with

r, > 0. Then we S and

$$\left\{ \sum_{k=1}^{n} \lambda_{kn}(w) \frac{|p_{n-1}(w, x_{kn})|}{1 - x_{kn}} \right\}^{2} \le$$

$$\le 2 \sum_{k=1}^{n} \lambda_{kn}(w) \frac{p_{n-1}^{2}(w, x_{kn})}{1 - x_{kn}^{2}} \sum_{k=1}^{n} \lambda_{kn}(w)(1 - x_{kn})^{-1}$$

$$\times \text{ounded by Theorems 4.2.3, 6.3.28 and 9.22.}$$

which is bounded by Theorems 4.2.3, 6.3.28 and 9.22.

Lemma II. Let a be an arbitrary weight. Then

$$L_n(\mathrm{d}\alpha,x)-1\sim\tilde{L}_n(\mathrm{d}\alpha,x)$$

for x & IR and n=1,2,...

Proof. By Lemma 9.32

$$\widetilde{L}_{n}(\mathrm{d}\alpha,\mathrm{x})+1\leq L_{n}(\mathrm{d}\alpha,\mathrm{x})\;.$$

On the other hand, since $l_{mn}(d\alpha,x) \ge 0$ and $l_{m+1,n}(d\alpha,x) \ge 0$, we have

$$L_n(\mathbf{do},\mathbf{x}) \approx \widetilde{L}_n(\mathbf{do},\mathbf{x}) + 1 - \sum_{\substack{k=1\\k\neq m,\, m+1}} \ell_{kn}(\mathbf{do},\mathbf{x}) \leq 1 + 2\widetilde{L}_n(\mathbf{do},\mathbf{x}).$$

Recall that GJ and w have been defined in Definition 9, 28,

Theorem 12. Let we GJ. Then

(5)
$$L_n(\mathbf{w}, \mathbf{x}) - 1 \sim \frac{n |\mathbf{x} - \mathbf{x}_j|}{\sqrt{1 - \mathbf{x}^2 + \frac{1}{n}}} \int_{\mathbf{w}} \int_{\mathbf{w}} \frac{w(t)(\sqrt{1 - t^2} + \frac{1}{n})^{\frac{1}{2}} + \frac{1}{n}}{w(t)(\sqrt{1 - \mathbf{x}^2} + \frac{1}{n})} \frac{1}{|\mathbf{x} - t|} dt$$

Proof. The Theorem follows by calculation from Theorems 6.3.28, 9.22, for $-1 \le x \le 1$ where x_i denotes the zero of $p_i(w)$ closest to x9.31, 9.33 and Lemma II.

by Natanson [10]. The Integral on the right hand side of (5) is a rather stand-For the case when w is a Jacobi weight Theorem 12 has been proved ard one, it can easily be estimated but the final formula is so complicated that we shall omit it. We shall formulate only one particular case as

Corollary 13. Let w e GJ. Then

$$L_n(w,1) \sim \begin{cases} 1 & \text{for } -1 < \Gamma_1 < -\frac{1}{2} \\ \log n & \text{for } \Gamma_1 = -\frac{1}{2} \\ n^{-1+\frac{1}{2}} & \text{for } \Gamma_1 > -\frac{1}{2} \end{cases}.$$

Before finding necessary conditions for mean boundedness of Lagrange assume that f is bounded on $\Delta(da)$ and we shall write f $(L^{\infty}(\Delta(da)))$ where interpolation processes let us make some remarks. If we define $L_{n}(d\alpha)$ by $(0 < q < \infty)$ is never bounded, f must always be bounded in $\Delta(da)^0$. To avoid complication, which we cannot solve at the present time, we shall $L_n(d\alpha)f = L_n(d\alpha,f)$ then the norm of $L_n(d\alpha)$ as a mapping from some L^q

 $\|f\|_{\infty}=\sup_{t\in\Delta(d\sigma)}|f(t)|$. An important difference between Fourier sums and

Lagrange interpolation polynomials is that $L_{n+1}(d\sigma,f)$ - $L_n(d\sigma,f)$ is not pro-

portional to p (da). If we write

$$L_n(d\alpha, f, m) = \sum_{k=0}^{n-1} a_k P_k(d\alpha, x)$$

and introduce the notation

$$L_{n,k}(d\alpha,f,x) = \sum_{j=0}^{k-1} a_j p_j(d\alpha,x)$$

for 1 < k < n-1 then

$$L_n(\mathsf{d}\alpha,\mathsf{f},\mathsf{x})-L_{n,n-1}(\mathsf{d}\alpha,\mathsf{f},\mathsf{x})=\mathsf{a}_{n-1}\;\mathsf{p}_{n-1}(\mathsf{d}\alpha,\mathsf{x})$$

where obviously

$$a_{n-1} = \sum_{k=1}^{n} \lambda_{kn}(da) f(x_{kn}) p_{n-1}(da, x_{kn})$$
.

Theorem 14. Let either α s or α satisfy the conditions of Corollary 9.13. Let β be an arbitrary weight. Let us consider the following three conditions.

(i)
$$\sup_{n\geq 1} \|L_n(d\alpha)\|_{L^\infty(\Delta(d\alpha)) \to L^{p}_{d\beta}} < \infty$$
,

(iii)
$$\sup_{n>1} \|p_{n-1}(d\alpha)\|_{d\beta, p} < \infty$$

where $p_{\varepsilon}(0,\infty)$ is given. Then each pair of (1)-(111) implies the third one. <u>Proof.</u> Apply Lemma 9.9 and Corollary 9.13.

The following Theorem is one of our main results.

Theorem 15. Let $\alpha \in S$, $0 and <math>w(\geq 0) \in L^1(-1,1)$ Then from

$$\lim_{n\to\infty}\|L_n(\mathrm{d}\alpha)\|_{L^{\infty}(-1,1)\to L^{\mathrm{p}}_{\mathrm{w}}}<\infty$$

follows

$$\int_{-1}^{1} \left[\alpha'(t) \sqrt{1-t^2} \right]^{-\frac{p}{2}} w(t) dt < \infty .$$

 $\frac{\text{Proof.}}{|\tau|} = \frac{6}{2}. \text{ Let } \delta = \delta(\text{da}) > 0 \text{ be defined by Theorem 9.10. Let } \tau \subset \{-1,1] \text{ with } |\tau| = \frac{\delta}{2}. \text{ Then we can find a system } \Omega = \{\tau_1, \tau_2\} \text{ with } \tau_1 \tau_2 = \phi \text{ , } |\Omega| > > 2-\delta \text{ and dist}(\tau,\Omega) > 0 \text{ such that } (9.7) \text{ is satisfied. Let } f \text{ be a function on } [-1,1] \text{ which satisfies the conditions } \|f\|_{\infty} = 1 \text{ and}$

$$\mathbf{f}(\mathbf{x}_{kn}) = \mathbf{I}_{\Omega}(\mathbf{x}_{kn}) \text{sign}[\mathbf{p}_{n-1}(\mathbf{d}\alpha,\mathbf{x}_{kn})(\mathbf{x}_{kn}-\mathbf{B})]$$

where B is the center of τ . Of course f depends on n, $\tau,\,\Omega,$ and σ .

le have

$$\|\mathbf{1}_{\tau} \, \mathbf{L}_{n}(\mathsf{d}\mathbf{e}, \mathbf{f})\|_{\mathbf{w}, \, \mathbf{p}} \, \leq \, \|\mathbf{1}_{n}(\mathsf{d}\mathbf{e})\|_{L^{\infty}} \cdot \mathbf{L}_{\mathbf{w}}^{\, \mathbf{p}} \ .$$

Since $|\mathbf{x}_{-\mathbf{x}_{kn}}| \leq 2$ for \mathbf{x}_{ℓ} 1, \mathbf{x}_{kn} ℓ 12 we obtain

$$\begin{split} & \| \mathbf{1}_{\tau} \, p_{n}(\mathbf{d} \omega) \|_{\mathbf{w}, \, p} \, \sum_{\mathbf{x}_{k} n^{c} \Omega} \, ^{\lambda}_{kn}(\mathbf{d} \omega) \|_{p_{n-1}(\mathbf{d} \omega, \mathbf{x}_{kn})} | \leq \\ & \leq 2 \, \frac{\gamma_{n}(\mathbf{d} \omega)}{\gamma_{n-1}(\mathbf{d} \omega)} \, \|_{L_{n}(\mathbf{d} \omega)}^{\beta} \|_{L_{n} - L_{\infty}^{p}} \, . \end{split}$$

Letting n → ∞ we receive from Lemma 4, 2, 2 and Theorem 9, 10 that

$$\begin{split} & \underset{n \to -\infty}{\text{liminf}} \ \| \mathbf{1}_T \ \mathbf{p}_n(\mathrm{d} \boldsymbol{\sigma}) \|_{\mathbf{w}, \mathbf{p}} < \infty \ . \end{split}$$
 Hence by Theorem 7.32
$$\int\limits_{T} \left[\alpha'(t) \sqrt{1-t^2} \ \right]^{-\frac{\mathbf{p}}{2}} w(t) \mathrm{d} t < \infty \ . \end{split}$$

Since this inequality holds for every $\tau \in [-1,1]$ with $|\tau| = \frac{\delta}{2}$ and $\delta = \delta(d\sigma) > 0$ it also holds if $\tau = [-1,1]$.

Using the results of sections 7 and 9 we can prove similar theorems

when a | S. We restrict ourselves to the following

is uniformly bounded for x ϵ T. Let w(≥ 0) ϵ L(-1,1). If 0 and

(7)
$$\limsup_{n\to\infty}\|L_n(da)\|_{\infty} + C_{n-1,1} + L_{m}^{p} < \infty$$
 then

limsup
$$\|\mathbf{p}_{n}(d\alpha)\|_{\mathbf{w},\mathbf{p}} < \infty$$
.

If p > 2 and (7) holds then (6) is satisfied.

Proof. By the conditions $\{\|1_T p_i(da)\|_{\mathbf{w}, \mathbf{p}}\}$ is bounded. Let $\mathsf{cT} = [-1,1] \setminus \mathsf{T}$. Let f be defined by $\|\mathsf{f}\|_{\mathbf{x}} = 1$ and

$$f(\mathbf{x}_k) = \mathbf{1}_{\tau}(\mathbf{x}_k)$$
 sign $\mathbf{p}_{n-1}(da, \mathbf{x}_k)$.

Then

$$\|\mathbf{1}_{\text{cT}} \, \mathbf{p}_{n}(\mathsf{d} \boldsymbol{\sigma})\|_{\mathbf{w}, \, p} \cdot \sum_{\mathbf{x}_{kn} \in \mathsf{T}} \lambda_{kn}(\mathsf{d} \boldsymbol{\sigma}) \|\mathbf{p}_{n-1}(\mathsf{d} \boldsymbol{\sigma}, \mathbf{x}_{kn})\| \leq$$

$$\leq 2 \frac{\gamma_n(do)}{\gamma_{n-1}(do)} \|L_n(do)\|_{L^\infty + L^{\frac{p}{W}}}.$$

Now the Theorem follows from Theorem 7.31, Corollary 9.13 and Lemma 9.36. Definition 17. Let us say that a just belongs to S (a ϵ JS) if a ϵ S but for every $\epsilon > 0$ [a']^{- ϵ}v \downarrow L. Example: a'(x) = $\exp\{-(1-x^2)^{-\delta}\}$ (0 < 6 $< \frac{1}{2}$) or a'(x) = $\exp\{-|x|^{-\delta}\}$ (0 < 6 < 1).

Corollary 18. Let either a ()S or a be a Pollaczek weight or a be defined by

$$a'(t) = \phi(t) \exp\{-(1-t^2)^{-\frac{1}{2}}\},$$

 $\varphi(>0)$ (Lipl, supp(da) = [-1,1] and a is absolutely continuous. Then for every p>2 there exists a function f (C[-1,1] such that

limsup
$$\int_{0}^{1} |f(t) - L_n(d\alpha, f, t)|^p \alpha'(t) dt > 0$$
.

Proof. Theorems 15, 16 and Banach-Steinhaus' theorem.

Let us remark that Corollary 18 gives a more or less complete answer to Turán's problem and solves Askey's conjecture ([1]). Let us recall that Turán asked if there exists a weight α with $\operatorname{supp}(\mathrm{d}\alpha) = [-1,1]$ such that the conclusion of Corollary 18 holds and Askey conjectured that the Pollaczek weight solves Turán's problem.

 $\label{eq:continuous} \frac{\text{Theorem 19.}}{\text{Let supp}(d\sigma)} \subset \{-1,1], \quad 0$

$$\lim_{k \to \infty} \int_{-1}^{1} \left| L_{n}(d\alpha, f, x) - f(x) \right|^{p} w(x) dx = 0$$

then

(8)
$$\limsup_{k \to \infty} \| \underset{n_k}{\text{L}} (da) \|_{\infty} + \underset{w}{\text{L}} + \underset{w}{\text{L}}$$

<u>Proof.</u> If $p \ge 1$ then the Theorem follows from Banach-Steinhaus' theorem. Now let $0 . Let us define the functionals <math>\varphi_k : \mathbb{C}[-1,1] + \mathbb{R}$ by

$$\varphi_k(\mathbf{f}) = \int_1^1 \left| L_k(d\alpha, \mathbf{f}, \mathbf{x}) - \mathbf{f}(\mathbf{x}) \right|^p \mathbf{w}(\mathbf{x}) d\mathbf{x}$$

Then $\varphi_k(f+g) \le \varphi_k(f) + \varphi_k(g)$, $\varphi_k(\Lambda f) = |\Lambda|^p \varphi_k(f)$, $\varphi_k(f) \ge 0$ and $\lim_{k \to \infty} \varphi_k(f) = 0$ for every $f,g \in C$. Suppose there exists a subsequence $k_1 < k_2 < \ldots$ such that

$$c_j = \sup_{\|f\| > c_1} \varphi_k(f) + \infty$$

Let us put $J_1=1$ and find a function $f_1\in \mathbb{C}$ such that $\|f_1\|_C \le 1$ and $\phi_{k_1}(f_1) \ge \frac{1}{2}c_1$. Then there exists a number $J_2 > J_1$ such that for each $J \ge J_2 > \phi_{k_1}(f_1) \le 1$. Now we find a function $f_2 \in \mathbb{C}$ such that $\phi_{k_2}(f_2) \ge \frac{1}{2}c_1$ and

 $\|f_2\|_C \le 1. \quad \text{After we choose} \quad {}_3>{}_1> \text{ so that } \quad {}_{\varphi_j}(f_2)<1 \quad \text{for every } 1\ge {}_3.$ Continuing this process we build up two sequences $\{j_\ell\}_{\ell=1}^\infty$ and $\{f_\ell\}_{\ell=1}^\infty$

so that $f_{\ell} \in C$, $\|f_{\ell}\|_{C \le 1}$, $e_{k_{\ell}}(f_{\ell}) \ge \frac{1}{2}c_{j_{\ell}}$ and $e_{k_{\ell}}(f_{m}) \le 1$ for $m = 1, 2, \ldots$, f_{ℓ} . Let us chouse a subsequence $|f_{\ell}| < 1$, $|f_{\ell}| < \ldots$ such that $\sum_{\nu=1}^{\infty} c_{j_{\ell}}^{-p} \le 1$ and $c_{j_{\ell}} \{\sum_{m_{\nu}=m+1}^{\infty} c_{j_{\ell}}^{-1}\} \le 1$ for $m = 1, 2, \ldots$. Let $f_{\ell} = \sum_{\nu=1}^{\infty} c_{j_{\ell}}^{-1} f_{\ell}$. Then $f_{\ell} \in C$. Further for m > 1

$$K_{i_{1}} = \sum_{j_{1} \in K_{i_{1}}} K_{i_{1}} = K_{i_{$$

Jence

$$\sigma_{j_{f}}^{k_{j}}(f) \ge \frac{1}{2}c_{j_{f}}^{1-p} - 2$$
.

etting m- w we obtai

limsup
$$\varphi_k(f) = \infty$$
.
 $k \to \infty$

The contradiction show that

limsup sup
$$\omega_k(f) < \infty$$

 $k \to \infty$ || f|| $\frac{p}{k} < 1$

which is equivalent to (8).

References

Books

Ahlezer, N.I., Theory of Approximation, Fr. Ungar Publ. Co., New York, 1956.

Freud, G., Orthogonal Polynomials, Pergamon Press, New York, 1971.

Geronimus, L. Ya., Orthogonal Polynomials, Consultants Bureau, New York,

Grenander, U. and Szegő, G., Toeplitz Forms and Their Applications, Berkeley, Los Angeles, 1958.

Szegő, G., Orthogonal Polynomials, AMS, New York, 1967.

Periodicals

- [1] Askey, R., Mean convergence of orthogonal series and Lagrange Interpolation, Agra. Math. Acad. Sci. Hungar. 23 (1972), 71-85.
- [2] Badkov, V., Cervergence in mean and almost everywhere of Fourier series in orthogonal polynomials, Mat. Sbosnik 95 (137) (1974), 229-262.
- [3] Carleson, L., On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157.
- [4] Case, K. M., Orthogonal polynomials revisited, in Theory and Application of Special Functions, ed. R. A. Askey, Academic Press, 1975, 289-304.
- [5] Erdős, P. and Turán, P., On interpolation. III, Annals of Math. 41 (1940), 510-553.
- [6] Freud, G., Über die Konvergenz des Hermite-Fejerschen Interpolationsverfahrens, Acta. Math. Acad. Sci. Hungar. 5(1954), 109-128.

- [7] Freud, G., Über eine Klasse Lagrangescher Interpolationsverfahrens, Studia Sci. Math. Hungar. 3 (1968), 249-255.
- [8] Freud, G., On Hermite-Fejer interpolation processes, Studia Sci. Math. Hungar. 7 (1972), 307-316.
- [9] Khalilova, B., On some estimates for polynomials, Izvestija AN Azerb. SSR <u>2</u> (1974), 46-55.
- [10] Natanson, G.I., Two sided estimation of Lebesgue function of Lagrange interpolation with Jacobi nodes, Izvestija Vyssh. Uc. Zav. (Matematika) 11(66) (1967), 67-74.
- [II] Nevai, G. P., Orthogonal polynomials on the real axis with respect to the weight $|\mathbf{x}|^{\mathbf{G}} \exp(-|\mathbf{x}|^{\beta})$. I, Acta Math. Acad. Sci. Hungar. 24 (1973), 335-342.
- [12] Nevai, G. P., Mean convergence of Lagrange interpolation. I, J. of Approximation Th. 18 (1976), 363-377.

Department of Mathematics and Mathematics Research Center University of Wisconsin-Madison Madison, Wisconsin 53706

and

Department of Mathematics The Ohio State University Columbus, Ohio 43210.

REPORT DOCUMENTATION PAGE	READ VITRUCTIONS DEFORE COMPLETING FORM
REPORT NUMBER 2. GOYT ACCESSION	
1726 (14) MRC-TSR-1726) (9/73 ()
TITLE (and Subtitle)	1 TYPE OF REPORT & PERIOD COVERE
TITLE (Mit Juditie)	Summary Report, no specif
ORTHOGONAL POLYNOMIALS	reporting period
OKTHOGONAL FOLTNOWIALS	6. PERFORMING ORG. REPORT NUMBER
The second secon	
AUTHOR(e)	. CONTRACT OR GRANT NUMBER(+)
	DAAG29-75-C-0024
Paul G. Nevai	VSF-MPS75-06687 #3
	According to the second
Mathematics Research Center, University of	10. PROGRAM ELEMENT, PROJECT, TASH
10 Walnut Street Wisconsin	6 - Spline Functions and
Madison, Wisconsin 53706	Approximation Theory
San Itom 19 Polow	12. REPORT DATE Feb. 1977
	13. NUMBER OF PAGES
See Item 18 Below.	231
4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Offi	
* * * * * * * * * * * * * * * * * * *	
	UNCLASSIFIED
	15m. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
Approved for public release; distribution unlimit	ited.
	ted.
Approved for public release; distribution unlimi	
Approved for public release; distribution unlimi	
Approved for public release; distribution unliming. 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different	
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different 8. SUPPLEMENTARY NOTES II S. Army Passarch Office America	n Mathematical Society
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different actions of the approximate and the supplementary notes are a supplementary notes. Where the supplementary notes are a supplementary notes. America Provides	nt from Report)
Approved for public release; distribution unlimit DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different Supplementary notes U.S. Army Research Office P.O. Box 12211 America	n Mathematical Society nce, Rhode Island 02940
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different 8. SUPPLEMENTARY NOTES U. S. Army Research Office Provider P. O. Box 12211 Research Triangle Park National	n Mathematical Society nce, Rhode Island 02940
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different and the supplementary notes U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709 Washing	n Mathematical Society nce, Rhode Island 02940 I Science Foundation gton, D. C. 20550
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different and its answer of the abstract entered in Block 20, if different answer of the abstract entere	n Mathematical Society nce, Rhode Island 02940 l Science Foundation yton, D. C. 20550
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 9. Supplementary notes 1. U. S. Army Research Office 1. Provides 1. Provides 1. Provides 1. Provides 1. Provides 1. Note Carolina 27709 1. Key words (Continue on reverse side if necessary and identify by block num 1. Orthogonal polynomials, Quadrature processes, in	n Mathematical Society nce, Rhode Island 02940 l Science Foundation gton, D. C. 20550 nber) Fourier series, Interpolation,
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different and its answer of the abstract entered in Block 20, if different answer of the abstract entere	n Mathematical Society nce, Rhode Island 02940 l Science Foundation gton, D. C. 20550 nber) Fourier series, Interpolation,
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 9. Supplementary notes 1. U. S. Army Research Office 1. Provides 1. Provides 1. Provides 1. Provides 1. Provides 1. Note Carolina 27709 1. Key words (Continue on reverse side if necessary and identify by block num 1. Orthogonal polynomials, Quadrature processes, in	n Mathematical Society nce, Rhode Island 02940 l Science Foundation gton, D. C. 20550 nber) Fourier series, Interpolation,
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 9. Supplementary notes 10. S. Army Research Office 11. Provides 12. Provides 13. Provides 14. Provides 15. Provides 16. Provides 16. Note Carolina 27709 16. Key words (Continue on reverse side if necessary and identify by block number of the provides of the pr	n Mathematical Society nce, Rhode Island 02940 l Science Foundation gton, D. C. 20550 nber) Fourier series, Interpolation,
Approved for public release; distribution unlimit DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different U.S. Army Research Office P.O. Box 12211 Research Triangle Park North Carolina 27709 NEY WORDS (Continue on reverse side if necessary and identify by block num Orthogonal polynomials, Quadrature processes, Positive operators, Toeplitz matrices, Christoffe	n Mathematical Society nce, Rhode Island 02940 I Science Foundation gton, D. C. 20550 nber) Fourier series, Interpolation, I functions.
Approved for public release; distribution unlimit DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different U.S. Army Research Office P.O. Box 12211 Research Triangle Park North Carolina 27709 Washing Orthogonal polynomials, Quadrature processes, Positive operators, Toeplitz matrices, Christoffe D. ABSTRACT (Continue on reverse elde if necessary and identity by block number of the purpose of the present paper is to improve 30m.	n Mathematical Society nce, Rhode Island 02940 I Science Foundation gton, D. C. 20550 nber) Fourier series, Interpolation, I functions.
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 8. SUPPLEMENTARY NOTES 9. U.S. Army Research Office 9. Provides 9. Provides 9. Provides 9. North Carolina 27709 9. KEY WORDS (Continue on reverse side if necessary and identify by block num 9. Orthogonal polynomials, Quadrature processes, 1 9. Positive operators, Toeplitz matrices, Christoffe 10. ABSTRACT (Continue on reverse side if necessary and identify by block num 11. The purpose of the present paper is to improve 30m.	n Mathematical Society nce, Rhode Island 02940 I Science Foundation gton, D. C. 20550 nber) Fourier series, Interpolation, I functions.
Approved for public release; distribution unlimit DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different L. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709 Washing KEY WORDS (Continue on reverse side if necessary and identify by block num Orthogonal polynomials, Quadrature processes, I Positive operators, Toeplitz matrices, Christoffe ABSTRACT (Continue on reverse side if necessary and identify by block num the purpose of the present paper is to improve som is. Freud, L. Ya. Geronimus, U. Grenander, G. Sz olynomials, Christoffel functions, orthogonal Four	n Mathematical Society nce, Rhode Island 02940 I Science Foundation yton, D. C. 20550 Theory Fourier series, Interpolation, I functions. I functions. Theory of R. Askey, P. Erdös egő and P. Turan on orthogonarier series, eigenvalues of Toep
Approved for public release; distribution unlimit DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different Supplementary notes U.S. Army Research Office P.O. Box 12211 Research Triangle Park North Carolina 27709 Next words (Continue on reverse side if necessary and identify by block num Orthogonal polynomials, Quadrature processes, I Positive operators, Toeplitz matrices, Christoffe D. Abstract (Continue on reverse side if necessary and identify by block num The purpose of the present paper is to improve som S. Freud, L. Ya. Geronimus, U. Grenander, G. Sz olynomials, Christoffel functions, orthogonal Four	n Mathematical Society nce, Rhode Island 02940 I Science Foundation yton, D. C. 20550 Theory Fourier series, Interpolation, I functions. I functions. Theory of R. Askey, P. Erdös egő and P. Turan on orthogonarier series, eigenvalues of Toep
Approved for public release; distribution unlimit DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different L. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709 Nety words (Continue on reverse eide if necessary and identify by block num Orthogonal polynomials, Quadrature processes, Positive operators, Toeplitz matrices, Christoffe D. ABSTRACT (Continue on reverse eide if necessary and identify by block num The purpose of the present paper is to improve som T	n Mathematical Society nce, Rhode Island 02940 I Science Foundation gton, D. C. 20550 nbor) Fourier series, Interpolation, I functions. I functions. Decoy e results of R. Askey, P. Erdős egő and P. Turan on orthogonarier series, eigenvalues of Toep Turan s problem will (positive)
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 1. S. Army Research Office 1. P. O. Box 12211 1. Research Triangle Park 1. North Carolina 27709 1. KEY WORDS (Continue on reverse side if necessary and identify by block number of the purpose of the present paper is to improve some in Freud, L. Ya. Geronimus, U. Grenander, G. Szolynomials, Christoffel functions, orthogonal Foundatrices and Lagrange interpolation. In particular, the Lagrange interpolating polynomials corresponding the corresponding to the polynomials corresponding the Lagrange interpolating polynomials corresponding the corresponding the Lagrange interpolating polynomials corresponding the corresponding to the polynomials corresponding to the polynomial	n Mathematical Society nce, Rhode Island 02940 I Science Foundation gton, D. C. 20550 Interpolation, I functions. I functions. I functions. I functions. I functions. I functions of R. Askey, P. Erdösegö and P. Turan on orthogonarier series, eigenvalues of Toep Turan s problem will (positive support such that for each p> ng to w diverge in L. for son
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 9. Supplementary notes 1. U.S. Army Research Office 1. Provides 1. P	n Mathematical Society nce, Rhode Island 02940 I Science Foundation nton, D. C. 20550 Interpolation, I functions. I functions. I functions. I functions. I functions. I functions of R. Askey, P. Erdő egő and P. Turan on orthogon rier series, eigenvalues of Toe Turan s problem will (positive support such that for each pong to w diverge in L. for so

Sassumption that the coefficients in the recursion formula behave nicely.