Calculating Central Tendency

This comic was created in the course of the research project Comixplain, funded by St. Pölten UAS in the course of the Innovation Call 2022.

Project Team:

Victor-Adriel De-Jesus-Oliveira Hsiang-Yun Wu Christina Stoiber Magdalena Boucher Alena Ertl

Contact:

victor.oliveira@fhstp.ac.at

Illustrations:

Magdalena Boucher & Alena Ertl

Not really... I collected a lot of

These are our six apples here:

200 180 190 190 190 180

To calculate the mean, we add all the weight values together...

200 + 180 + 190 + 190 + 190 + 180

...and then divide by the number of apples we have...

(200 + 180 + 190 + 190 + 190 + 180)

from the top, and closer to the tail.

There is one more thing to explain: If we add this whole basket of tiny apples to our set, the first tiny apple is not an outlier* anymore.

* Outliers are extreme values that can be errors in measurement, or accurate reports of rare events.

The mode defines the most frequently occuring value(s) in a dataset.

In this case, we have multiple modes, but there can also be just one, or even no mode at all.

You can apply mean, median, and mode to different samples of apples. But often, some will represent the data better than others.

Mode

70 180 190 200

60, 70, 70, 70, 80, 180, 180, 190, 190, 190, 200

M = 134.5 good MD = 180 parameter Mode = 70 & 190

M = 188.3 good MD = 190 parameters Mode = 190 p

180, 180, 190, 190, 190, 200

M = 171.8 good MD = 190 parameters Mode = 191 square

70, 180, 181, 190, 191, 191, 200

Okay, thank you... I've learned a lot. Now I just have to apply this to the data I have to present. It's from an app that tracks heart rate measurements.

User ID S	Heart Rate (bpm)	Time of Use ©	User Rating ★★★
1	45	13:00	1
2	50	9:00	5
3	55	10:00	3
4	57	9:00	4
5	63	14:00	5
6	70	15:00	5
7	65	16:00	4
8	75	15:00	2

That should be doable - take a look at your data and follow the same steps we just did with the apples! You can use the next page for your calculations.

Feel free to check the calculations. You can take further notes on this page!	

HEART RATE

Calculating the MEAN:

$$\frac{45+50+55+57+63+70+65+75}{8 \text{ users}} = \frac{480}{8} = 60 \text{ bpm}$$

Calculating the MEDIAN:

If there are two central values, the mean of the two values is the median: (57+63)/2 = 60bpm)

Calculating the MODE:

45, 50, 55, 57, 63, 70, 65, 75

Each value only exists once there is no mode!

If the distribution of the values is symmetrical, without any distortions, the mean is equal to the median.

Mode is not only suited for multimodal distributions, but also

when working with ordinal and

categorical data.

MOST FREQUENT TIME OF USE

Calculating the MEAN:

$$\frac{9+9+10+13+14+15+15+16}{8 \text{ users}} = \frac{101}{8} = 12.6?$$

Calculating the MEDIAN:

Calculating the MODE:

9:00, 10:00, 13:00, 14:00, 15:00, 16:00

2 modes:

Time of use is not a quantitative value - so calculating mean and

2x 1x 1x 1x 2x 1x

9:00 & 15:00

STAR RATING

Calculating the MEAN:

$$\frac{1+2+3+4+4+5+5+5}{8 \text{ users}} = \frac{29}{8} = 3.6 \text{ stars}$$

Calculating the MEDIAN:

Calculating the MODE:

For datasets with a skewed distribution, the median is a better way to describe central tendency.

Programming languages like **R**, can help you calculate the central tendency of attributes in large datasets. With R libraries, like **tidyverse**, you can quickly visualize the data distribution.

	model	year	hwy		
1	jetta	1999	44		
2	corolla	2008	37		
3	civic	2008	36		
4	civic	2008	36		
5	corolla	1999	35		
6	altima	2008	32		
7	sonata	2008	31		
	+ other 227 entries				

In tidyverse, you have access to datasets such as mpg with fuel economy data. It includes 11 attributes, such as car model, year of manufacture, and highway miles per gallon (hwy).

The state of the s

You can use **ggplot**, which is included in tidyverse, to visualize the data distribution of highway miles per gallon (hwy) using a histogram, a density curve, or both.

install.packages("tidyverse") # Install it only the first time using the library

library(tidyverse)
plot <- ggplot(mpg, aes(x=hwy))
plot +
 geom_density()
}</pre>

plot +
geom_histogram(
colour="black",
fill="white") \(\)

plot +
 geom_histogram(aes(y=..density..),
 colour="black",
 fill="white") +
 geom_density() \(\)

0.100 - 0.075 - 0.000 - 0.025 - 0.000 - 10

median(mpg\$hwy) = 23.4

median(mpg\$hwy) = 24

library(modeest)
mlv(mpg\$hwy) = 26

R includes native functions to calculate mean and median. For mode, you can build your own function or use the Most Likely Values (mlv) from the library modeest.

Downey, A. (2014). Think stats: exploratory data analysis. O'Reilly Media, Inc. Field, A. (2022). An adventure in statistics: The reality enigma. Sage.

Sources:

Calculating Central Tendency © 2022 by Victor-Adriel De-Jesus-Oliveira, adapted from work of Comixplain Team: Victor-Adriel De-Jesus-Oliveira, Hsiang-Yun Wu, Christina Stoiber, Magdalena Boucher, and Alena Ertl, with illustrations by Magdalena Boucher and Alena Ertl, Sankt Pölten University of Applied Sciences is licensed under CC BY-SA 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/