Codes

1 second, 128MB

You are given a sequence of **N** integers ($3 \le N \le 100,000$); the integers in the sequence are between 0 and 20,000. You know that a spy has modified the sequence so that it contains a hidden secret integer code for launching an attack against a particular country.

The secret is planted in the sequence in such a way that if you try to find the differences between consecutive numbers (the i-th and (i+1)-th numbers) and also the differences between the i-th and (i+2)-th integers in the sequence, the secret is the most frequent absolute value that you see.

Consider the following example. If you are given a sequence with 6 integers

The differences between consecutive integers are 5, 3, 98, 93, and 7. The differences between the i-th and (i+2)-th integers are 8, 95, 5, and 100. The number you see most frequently is 5 so the secret is 5.

If there are more than one most frequent integers, you should answer the smallest.

Input

The first line contains one integer **N**. ($3 \le N \le 100,000$). The next **N** lines contain the sequence.

Output

The output contains one line with one integer representing the secret in the sequence.

Example

Input	Output
трис	σατρατ
6	5
10	
5	
2	
100	
7	
0	