Sistemas Dinâmicos: Introdução aos Sistemas Discretos e Contínuos

Prof. Ana Isabel C.

June 23, 2025

Introdução

Introdução

Sistemas Discretos

Introdução

Sistemas Discretos

Sistemas Contínuos

Introdução

Sistemas Discretos

Sistemas Contínuos

Comparação

Introdução

Sistemas Discretos

Sistemas Contínuos

Comparação

Introdução

Sistemas Discretos

Sistemas Contínuos

Comparação

O que são Sistemas Dinâmicos?

Definição

Sistemas dinâmicos modelam fenômenos cuja evolução ocorre ao longo do tempo, descritos por equações que definem o estado futuro com base no estado atual.

O que são Sistemas Dinâmicos?

Definição

Sistemas dinâmicos modelam fenômenos cuja evolução ocorre ao longo do tempo, descritos por equações que definem o estado futuro com base no estado atual.

Tipos

- Discretos: Evoluem em passos fixos (ex.: $x_{n+1} = f(x_n)$).
- Contínuos: Evoluem suavemente (ex.: $\dot{x} = f(x)$).

O que são Sistemas Dinâmicos?

Definição

Sistemas dinâmicos modelam fenômenos cuja evolução ocorre ao longo do tempo, descritos por equações que definem o estado futuro com base no estado atual.

Tipos

- Discretos: Evoluem em passos fixos (ex.: $x_{n+1} = f(x_n)$).
- Contínuos: Evoluem suavemente (ex.: $\dot{x} = f(x)$).

Aplicações

- Finanças: Modelos de crescimento de investimentos.
- Física: Movimento orbital.
- Biologia: Dinâmica populacional.

Introdução

Sistemas Discretos

Sistemas Contínuos

Comparação

Sistemas Discretos

Definição

Um sistema discreto é descrito por uma equação de diferença, como $x_{n+1}=f(x_n).$

Sistemas Discretos

Definição

Um sistema discreto é descrito por uma equação de diferença, como $x_{n+1}=f(x_n)$.

Exemplo: Crescimento de Investimento

Um investimento cresce a uma taxa fixa de 5% por período:

$$x_{n+1} = 1,05x_n, \quad x_0 = 1000$$

Solução: $x_n = 1000 \cdot (1,05)^n$. Resposta: Após 10 períodos, $x_{10} \approx 1628,89$.

Sistemas Discretos

Definição

Um sistema discreto é descrito por uma equação de diferença, como $x_{n+1}=f(x_n)$.

Exemplo: Crescimento de Investimento

Um investimento cresce a uma taxa fixa de 5% por período:

$$x_{n+1} = 1,05x_n, \quad x_0 = 1000$$

Solução: $x_n = 1000 \cdot (1,05)^n$. Resposta: Após 10 períodos, $x_{10} \approx 1628,89$.

Introdução

Sistemas Discretos

Sistemas Contínuos

Comparação

Sistemas Contínuos

Definição

Um sistema contínuo é descrito por uma equação diferencial, como $\dot{x}=f(x).$

Sistemas Contínuos

Definição

Um sistema contínuo é descrito por uma equação diferencial, como $\dot{x}=f(x).$

Exemplo: Juros Compostos Contínuos
Um investimento com taxa de juros contínua de 5%:

$$\dot{x} = 0,05x, \quad x(0) = 1000$$

Solução: $x(t)=1000e^{0.05t}$. Resposta: Após 10 anos, $x(10)\approx 1648,72$.

Sistemas Contínuos

Definição

Um sistema contínuo é descrito por uma equação diferencial, como $\dot{x}=f(x).$

Exemplo: Juros Compostos Contínuos

Um investimento com taxa de juros contínua de 5%:

$$\dot{x} = 0,05x, \quad x(0) = 1000$$

Solução: $x(t)=1000e^{0.05t}$. Resposta: Após 10 anos, $x(10)\approx 1648,72$.

Crescimento Contínuo: $x(t) = 1000e^{0.05t}$

Introdução

Sistemas Discretos

Sistemas Contínuos

Comparação

Discretos vs. Contínuos

Comparação

Sistemas discretos usam iterações, enquanto contínuos usam fluxos contínuos. Em finanças, discretos modelam períodos fixos (ex.: meses), e contínuos modelam crescimento instantâneo.

Discretos vs. Contínuos

Comparação

Sistemas discretos usam iterações, enquanto contínuos usam fluxos contínuos. Em finanças, discretos modelam períodos fixos (ex.: meses), e contínuos modelam crescimento instantâneo.

Discretos vs. Contínuos

Comparação

Sistemas discretos usam iterações, enquanto contínuos usam fluxos contínuos. Em finanças, discretos modelam períodos fixos (ex.: meses), e contínuos modelam crescimento instantâneo.

Observação

Para t = n = 10, o contínuo gera R\$1648,72, e o discreto,

Introdução

Sistemas Discretos

Sistemas Contínuos

Comparação

Conclusão

Resumo

- Sistemas dinâmicos modelam evolução temporal.
- Discretos: Iterações em passos fixos.
- Contínuos: Fluxos descritos por EDOs.
- Aplicações em finanças: Modelos de crescimento.

Conclusão

Resumo

- Sistemas dinâmicos modelam evolução temporal.
- Discretos: Iterações em passos fixos.
- Contínuos: Fluxos descritos por EDOs.
- Aplicações em finanças: Modelos de crescimento.

Próxima sessão

Estudo de EDOs e estabilidade de equilíbrios nos próximos capítulos.