

# Lab 5: Get Started with oneAPI/DPC++

**Due Date**: See the Blackboard announcement.

rev:04/14/2020

### **Objectives**

- Learn the basics of oneAPI/DPC++ programming framework
- Learn the basics of compiling and executing a oneAPI sample program on a FPGA board.

### Description

In this lab, you will follow the getting-started guide on Intel's website to learn how to compile and run a oneAPI/DPC++ sample project. You are expected to learn from the sample how a oneAPI/DPC++ program is implemented. You can then compare it with the OpenCL programs that you have worked with.

You need to do the following in this lab:

- (1) Login to Intel DevCloud.

  Run "devcloud\_login" to choose "Arria 10 oneAPI" node. You will then be logged into a node that is equipped with Arria 10 and supports oneAPI development
- (2) Setup the oneAPI development environment.

  Run "tools\_setup" to choose "Arria 10 oneAPI" to set up the proper environment variables in your shell.
- (3) Follow the instructions at <a href="https://software.intel.com/en-us/get-started-with-intel-oneapi-base-linux-run-a-sample-project-using-the-command-line">https://software.intel.com/en-us/get-started-with-intel-oneapi-base-linux-run-a-sample-project-using-the-command-line</a> to create a cpp project. You can then select "Intel oneAPI Base Tookit"-> "oneAPI DPC++ Compiler" -> "CPU, GPU and FPGA" -> "Vector Add" project supported by all types of processors. Save the project to a directory that you specify.
- (4) After creating the project folder, you can then compile the source code to emulation option using the following commands make fpga emu -f Makefile.fpga

you can compile the report using the command below, and You can view the report at vector-add\_report.prj/reports/report.html.

make report -f Makefile.fpga

```
To run the emulation code, you can do make run emu -f Makefile.fpga
```

- (5) To compile for execution on FPGA hardware, do the following make hw -f Makefile.fpga This will take a couple of hours. After compilation completes, we can run the design on FPGA card make run\_hw -f Makefile.fpga
- (6) Read the source code of the design. List the major differences between this DPC++ code and its OpenCL version.
- (7) Read the reports generated during the compilation phase to understand the analytics data about the function realized on FPGA, such as area and memory usages, loop structure and other information.
- (8) Optionally, try to select and create other DPC++ projects and repeat the process.

In this lab, you will practice the commands, and perform the compilation and execution steps in a Linux environment. **You must execute the binary on the FPGA board**, instead of running the program in emulation mode. Please plan your work early so you can have adequate time for FPGA development on Intel DevCloud.

## **Helpful Notes**

## Start the lab early.

#### Due date

See the due date posted on Blackboard.

#### Deliverables

A Lab report that contains the following sections:

- 1. Description of the lab in your own words
- 2. Summary of the outcome (final results, working, partial working, etc.). In this lab you will need to capture the outputs from the execution. In addition, please describe how the a DPC++ program differs from an OpenCL program.
- 3. Main hurdles and difficulties (expected to include some specifics)
- 4. Things learned from this lab (valuable takeaways)
- 5. Suggestions (Optional)

#### Reference

[1] Lab Assignment materials posted on git repository: https://github.com/ACANETS/eece-6540-labs