Inferência Estatística II

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Programa de Pós-Graduação em Estatística Aplicada e Biometria Universidade Federal de Viçosa Campus UFV - Viçosa

Sumário

Testes de Hipóteses - Caso Multiparamétrico

 X_1,\ldots,X_n variáveis aleatórias iid com densidade $f(x,\theta),\theta\in\Omega\subset\mathbb{R}^p$. Assumiremos todas as condições de regularidade. As hipóteses de interesse são: $H_0:\theta\in W$ contra $H_1:\theta\in\Omega\cap W^c$, em que $W\subset\Omega$.

 X_1,\ldots,X_n variáveis aleatórias iid com densidade $f(x,\theta),\theta\in\Omega\subset\mathbb{R}^p$. Assumiremos todas as condições de regularidade. As hipóteses de interesse são: $H_0:\theta\in W$ contra $H_1:\theta\in\Omega\cap W^c$, em que $W\subset\Omega$.

Assim, um teste intuitivo (baseado no teorema 6.1.1 do livro texto Hogg et al. (2019)) é baseado na estatística de teste dada pela razão de verossimilhança,

$$\Lambda = \frac{\max_{\theta \in W} L(\theta)}{\max_{\theta \in \Omega} L(\theta)}.$$

Valores grandes de Λ , ou seja, próximos de 1, sugerem que H_0 é verdadeira, enquanto que valores pequenos sugerem que H_1 é verdadeira.

Para um nível de significância $\alpha \in (0,1)$ especificado, isto sugere a seguinte regra de decisão:

• Rejeite H_0 em favor de H_1 se $\Lambda \leq c$, em que c é tal que $\max_{\theta \in W} P_{\theta}(\Lambda \leq c) = \alpha$

Exemplo

Sejam
$$X_1, \ldots, X_n \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$$
.

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

$$heta = (\mu, \sigma^2)^{\top}, \ W = \{(\mu_0, \sigma^2); \sigma^2 > 0\}$$
 $\Omega = \{(\mu, \sigma^2); \mu \in \mathbb{R} \ \mathrm{e} \ \sigma^2 > 0\}$

Exemplo

Sejam
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$$
.

$$egin{aligned} & extit{H}_0: \mu = \mu_0 \ & extit{H}_1: \mu
eq \mu_0, \end{aligned} \ & heta = (\mu, \sigma^2)^ op, \; extit{W} = \{(\mu_0, \sigma^2); \sigma^2 > 0\} \ & \Omega = \{(\mu, \sigma^2); \mu \in \mathrm{I\!R} \; \mathrm{e} \; \sigma^2 > 0\} \end{aligned}$$

• Para $\theta \in \Omega$, já vimos que $\hat{\mu} = \bar{X}$ e $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ são os

EMV de μ e σ^2 , respectivamente. Neste caso,

$$\max_{\theta \in \Omega} L(\theta) = \frac{1}{(2\pi)^{\frac{n}{2}}} \frac{1}{(\hat{\sigma}^2)^{\frac{n}{2}}} \exp\left(-\frac{n}{2}\right)$$

• Para $\theta \in W$, temos $\hat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_0)^2$. Neste caso,

$$\max_{\theta \in W} L(\theta) = \frac{1}{(2\pi)^{\frac{n}{2}}} \frac{1}{(\hat{\sigma}_0^2)^{\frac{n}{2}}} \exp\left(-\frac{n}{2}\right)$$

Daí,

$$\Lambda = \left(rac{\hat{\sigma}^2}{\hat{\sigma}_0^2}
ight)^{rac{n}{2}} = \left(rac{\displaystyle\sum_{i=1}^n (X_i - ar{X})^2}{\displaystyle\sum_{i=1}^n (X_i - \mu_0)^2}
ight)^{rac{n}{2}}$$

Daí,

$$\Lambda = \left(rac{\hat{\sigma}^2}{\hat{\sigma}_0^2}
ight)^{rac{n}{2}} = \left(rac{\displaystyle\sum_{i=1}^n (X_i - ar{X})^2}{\displaystyle\sum_{i=1}^n (X_i - \mu_0)^2}
ight)^{rac{\pi}{2}}$$

 $\Lambda < c$ é equivalente a

$$\frac{\sum_{i=1}^{n} (X_i - \mu_0)^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \ge c' \qquad (\star)$$

Além disso, considerem a identidade

$$\sum_{i=1}^{n} (X_i - \mu_0)^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 + n(\bar{X} - \mu_0)^2 \qquad (\star\star)$$

Além disso considerem a identidade

$$\sum_{i=1}^{n} (X_i - \mu_0)^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 + n(\bar{X} - \mu_0)^2 \qquad (\star\star)$$

Substituindo ($\star\star$) em (\star), segue que

$$1 + \frac{n(\bar{X} - \mu_0)^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \ge c' \iff \left(\frac{\sqrt{n}(\bar{X} - \mu_0)}{\sqrt{\frac{(X_i - \bar{X})^2}{n-1}}}\right) \ge c^*$$

$$\iff |T| \ge c''$$

Podemos tomar $c^{''}=t_{1-\frac{\alpha}{2}}(n-1).$

ullet Rejeite H_0 em favor de H_1 se $|T| \geq t_{1-rac{lpha}{2}}(n-1)$

Teorema 1

Sejam X_1, \ldots, X_n variáveis aleatórias iid com densidade $f(x, \theta), \theta \in \Omega \subset \mathbb{R}^p$. Assuma que as condições de regularidade valem. Seja $\hat{\theta}_n$ uma sequência de soluções consistentes da equação de verossimilhança sob $\theta \in \Omega$ (dimensão p). Seja $\hat{\theta}_{0n}$ uma sequência de soluções consistentes da equação de verossimilhança sob $\theta \in W$ (dimensão q < p). Sob H_0 ,

$$-2\log\Lambda\stackrel{D}{ o}\chi^2(q)$$

Para 🗥

• Exercícios da seção 6.5: 2 ao 5, 7 e 9 ao 11.

Referências I

Hogg, RV, J McKean e AT Craig (2019). Introduction to Mathematical Statistics.

https://est711.github.io/