Prova escrita de Física Quântica II

Primeira prova

14-12-2014

1. (5 pts) Considere um spin 1/2 num campo magnético da forma $\vec{B} = (B_x, B_y, 0)$. A interacção do spin com o campo dá origem a um hamiltoniano da forma

$$H = a\sigma_x + b\sigma_y,$$

onde a e b são constantes positivas e σ_i (com i = x, y) são as matrizes de Pauli.

- (a) Resolva a equação aos valores próprios $H|\psi\rangle = E|\psi\rangle$.
- (b) Se em t=0 o spin se encontra orientado com o eixo positivo dos z's, isto é, no estado $|\uparrow\rangle$ (componente z do spin igual a 1/2), calcule a probabilidade de ao fim do tempo t encontrar o spin no estado $|\downarrow\rangle$ (componente z do spin igual a -1/2).
- 2. (5 pts) Considere dois spins 1/2, s_1 e s_2 . O estado de spin do sistema conjunto pode ser descrito em duas bases distintas: (i) $|s_1, s_{1,z}; s_2, s_{2,z}\rangle \equiv |s_{1,z}; s_{2,z}\rangle$; (ii) $|s, s_z; s_1, s_2\rangle \equiv |s; s_z\rangle$
 - (a) Mostre que tanto na primeira como na segunda bases existem quatro estados (sem os calcular explicitamente). No último caso comece por identificar os valores possíveis de s e s_z .
 - (b) Mostre que os estados da segunda base se podem escrever à custa dos estados da primeira

$$|?,?\rangle = \frac{1}{\sqrt{2}}(|1/2;-1/2\rangle - |-1/2;1/2\rangle)$$

$$|?,?\rangle = |1/2;1/2\rangle$$

$$|?,?\rangle = \frac{1}{\sqrt{2}}(|1/2;-1/2\rangle + |-1/2;1/2\rangle)$$

$$|?,?\rangle = |-1/2;-1/2\rangle,$$

indentificando os valores numéricos dos pontos de interrogação ("?") que surgem do lado esquerdo das quatro equações anteriores.

(c) Considere agora o hamiltoniano

$$H = \vec{\sigma}_1 \cdot \vec{\sigma}_2 .$$

Mostre que os quatro estados $|?,?\rangle$ são estados próprios de H e determine os correspondentes valores próprios.

3. (5 pts) Considere o hamiltoniano do oscilador harmónico unidimensional, dado por

$$H_0 = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2$$

Se este for sujeito a uma perturbação da forma

$$H_1 = \lambda \frac{1}{2} m \omega^2 x^2 \,,$$

com $0 < \lambda < 1$, calcule:

(a) o espectro exacto do hamiltoniano total, $H = H_0 + H_1$;

- (b) o espectro de H em primeira ordem de teoria de perturbações;
- (c) o espectro de H em segunda ordem de teoria de perturbações;
- 4. (5 pts) Considere o problema de uma partícula numa caixa unidimensional de comprimento L.
 - (a) Determine a função de onda normalizada do estado fundamental da partícula e a correspondente energia.
 - (b) Admita agora a seguinte função de onda variacional

$$\psi_v(x) = \sqrt{\frac{30}{L^5}} x(x - L) .$$

Estime um minorante para a energia da partícula usando $\psi_v(x)$. Compare o resultado obtido com o resultado exacto, calculando o erro relativo entre os dois valores.

Prova escrita de Física Quântica II

Segunda prova

23-01-2015

1. (6 pts) Considere um sistema que está num estado não perturnado $|n\rangle$, em t=0. Durante um tempo t>0 actua uma perturbação H_1 . Mostre que a probabilidade de encontrar o sistema num estado $|k\rangle$ é dada por

$$P_{nk} = \frac{4}{\hbar^2} \frac{|\langle k|H_1|n\rangle|^2}{\omega_{kn}^2} \sin^2(\omega_{kn}t/2), \qquad (1)$$

 $com \ \omega_{kn} = (E_k - E_n)/\hbar.$

- 2. (7 pts) Considere o potencial $V(r) = -V_0\theta(R-r)$, onde $\theta(R-r)$ é a função degrau.
 - (a) Faça um desenho do potencial V(r).
 - (b) Calcule, na primeira aproximação de Born, a secção eficaz diferencial, σ_B .
- 3. (7 pts) Considere, novamente, o potencial $V(r) = -V_0\theta(R-r)$. Admita que uma partícula incide na zona onde se encontra o centro espalhador, propagando-se no sentido positivo do eixo dos z; partícula incidente é descrita pela onda plana $e^{ikz} = e^{ikr\cos\theta}$.
 - (a) Escreva a equação de Schrödinger para a parte radial da função de onda, R(r).
 - (b) Definido R(r) = u(r)/r, simplifique a equação radial anterior.
 - (c) Considerando agora o caso de momento angular nulo, $\ell = 0$, escreva a função de onda u(r) para a região r < R.
 - (d) Para o mesmo caso do item anterior, escreva a função de onda u(r) para a região r > R, à custa da diferença de fase δ_0 , ou seja, no canal de momento angular nulo.
 - (e) Calcule, no limite $kR \ll 1$, a secção eficaz diferencial total incluindo apenas o canal $\ell = 0$.