Resumen EX (materia nueva)

Ignacio Méndez

Principio de inducción simple:

Para una afirmación P(x) sobre los naturales, si P(x) cumple que:

- 1. P(0) es verdadero.
- 2. Si P(n) es verdadero, entonces P(n+1) es verdadero.

Entonces para todo $n \in \mathbb{N}$ se tiene que P(n) es verdadero.

Notación:

- P(0) se llama el caso base.
- En la afirmación 2.
 - o P(n) se llama la hipótesis de inducción.
 - o P(n+1) se llama la **tesis de inducción** o paso inductivo.

$$(P(0) \land (\forall n. P(n) \rightarrow P(n+1))) \rightarrow \forall n. P(n)$$

Principio de inducción fuerte:

Para una afirmación P sobre los naturales y un $k \in \mathbb{N}$, si P cumple que:

- 1. P(k) es verdadero.
- 2. Para todo $n \ge k$, si P(n) es verdadero, entonces P(n+1) es verdadero, entonces P(n) es verdadero para todo $n \ge k$.

$$\left(\forall n. \left(\forall k < n. P(k) \right) \to P(n) \right) \to \forall n. P(n)$$

Definiciones recursivas:

Una definición se dice recursiva si puede ser definida a partir de:

- 1. Casos bases sencillos.
- 2. Una serie de reglas que reducen la definición a casos anteriores.

Ejemplo

Caso base:
$$F(0) = 0$$

$$F(1) = 1$$

Regla recursiva:
$$F(n) = F(n-1) + F(n-2)$$
 para $n \ge 2$

Definición recursiva de conjuntos:

Una definición recursiva de un conjunto S consta de:

- 1. Un conjunto base $B = \{b_1, ..., b_n\}$ tal que $b_i \in \mathbb{S}$ para todo $i \leq N$.
- 2. Reglas recursivas R de la forma:

Si
$$s_1, ..., s_n \in \mathbb{S}$$
 entonces $R(s_1, ..., s_n) \in \mathbb{S}$

3. Una afirmación de exclusión de la forma:

"El conjunto ${\mathbb S}$ son todos los elementos que se construyen solamente a partir de B y las reglas R".

Ejemplos

■ Se define el conjunto N tal que:

Caso base: $0 \in \mathbb{N}$

Regla recursiva: Si $a \in \mathbb{N}$, entonces $a + 1 \in \mathbb{N}$.

 $\mathbb N$ es el conjunto que se construye solo a partir de las reglas anteriores.

En general se omitirán las reglas de exclusión

Inducción estructural:

Sea S un conjunto definido a partir de:

- Un conjunto base *B*.
- Un conjunto de reglas recursivas \mathcal{R} .

Definimos la capa S[n] de S para todo $n \ge 0$ como:

$$\begin{split} \mathbb{S}[0] &= B \\ \mathbb{S}[n+1] &= \mathbb{S}[n] \cup \{T(s_1, \dots, s_k) \mid T \in \mathcal{R} \land s_1, \dots, s_k \in \mathbb{S}[n] \} \end{split}$$

Para todo predicado $P(\cdot)$ sobre \mathbb{S} , la siguiente fórmula es siempre verdadera:

$$\left[\left(\forall s \ n \ \mathbb{S}[0].P(s)\right) \land \forall n.\left(\forall s. \in \mathbb{S}[n].P(s)\right) \rightarrow \left(\forall s' \in \mathbb{S}[n+1].P(s')\right)\right] \rightarrow \forall s \in \mathbb{S}.P(s)$$

División:

Sea \mathbb{Z} el conjunto con $a \neq 0$, diremos que a divide b si $\exists q \in \mathbb{Z}$ tal que $a \cdot q = b$.

$$\boxed{a \mid b}$$
 si, y solo si, $\exists q \in \mathbb{Z}$. $\boxed{a \cdot q = b}$

Proposición:

Para $a, b, c \in \mathbb{Z}$ con $a \neq 0$:

- 1. Si $a \mid b$ y $a \mid c$, entonces $a \mid (b + c)$.
- 2. Si $a \mid b$, entonces $a \mid (b \cdot c)$ para todo $c \in \mathbb{Z}$.
- 3. Si $a \mid b$ y $b \mid c$, entonces $a \mid c$.
- 4. Si $a \mid b \mid a \mid c$, entonces $a \mid (n \cdot b + m \cdot c)$ para todo $n, m \in \mathbb{Z}$.

División con resto:

Sea $a, b \in \mathbb{Z} \operatorname{con} a > 0$.

Entonces existen un único par $q, r \in \mathbb{Z}$ con $0 \le r < a$ tal que:

$$a \cdot q + r = b$$

Definición:

Desde ahora, si $a \cdot q + r = b$ entonces anotaremos:

$$b \operatorname{div} a = q$$

 $b \operatorname{mod} a = r$

Congruencia modular:

Sea $m \in \mathbb{Z}$ con m > 0.

Para todo $a, b \in \mathbb{Z}$ diremos que a es congruente con b módulo m si:

$$a \equiv b \pmod{m}$$
 si, y solo si, $m \mid (a - b)$

Proposición:

Para todo $a, b, m \in \mathbb{Z}$ con m > 0, las siguientes condiciones son equivalentes:

- 1. $a \equiv b \pmod{m}$.
- 2. $a = b + m \cdot s$ para algún $s \in \mathbb{Z}$.
- 3. $(a \, mod \, m) = (b \, mod \, m)$.

Proposición

Para todo m > 0, si $a \equiv b \pmod{m}$ y $c \equiv d \pmod{m}$ entonces:

$$a + c \equiv b + d$$
$$a \cdot c \equiv b \cdot d$$

Corolario

Para todo $a, b, m \in \mathbb{Z}$ con m > 0, se tiene que:

$$(a + b) \mod m = ((a \mod m) + (b \mod m)) \mod m$$

 $(a \cdot b) \mod m = ((a \mod m) \cdot (b \mod m)) \mod m$

Definición

 $\operatorname{Para} m>0,\operatorname{sea}\mathbb{Z}_m=\{0,\ldots,m-1\}.$

Para todo $a,b \in \mathbb{Z}_m$, definimos las operaciones $+_m$ y \cdot_m como:

$$a+_m b = (a+b) \bmod m$$

 $a \cdot_m b = (a \cdot b) \bmod m$

Propiedades

Para todo $a, b, c \in \mathbb{Z}_m$, se cumple que:

Clausura: $a +_m b \in \mathbb{Z}_m \quad y \quad a \cdot_m b \in \mathbb{Z}_m$.

Conmutatividad: $a +_m b = b +_m a$

 $a \cdot_m b = b \cdot_m a$

Asociatividad: $a +_m (b +_m c) = (a +_m b) +_m c$

 $a \cdot_m (b \cdot_m c) = (a \cdot_m b) \cdot_m c$

Identidad: $a +_m 0 = a$

 $a \cdot_m 1 = 1$

Inverso (aditivo): Si $a \neq 0$, entonces existe $a' \in \mathbb{Z}_m$ tal que $a +_m a' = 0$

Distributividad: $a \cdot_m (b +_m c) = (a \cdot_m b) +_m (a \cdot_m c)$

Representación de números:

Sea b>1. Si $n\in\mathbb{N}-\{0\}$, entonces se puede escribir de forma única como:

$$n = a_{k-1}b^{k-1} + a_{k-2}b^{k-2} + \dots + a_1b^1 + a_0b^0 = \sum_{i=0}^{k-1} a_ib^i$$

- $k \ge 1$.
- a_0 , ..., a_{k_1} menor que b $(a_i < b)$.
- $a_{k-1} \neq 0$.

Desde ahora, decimos que la representación n en base b es la secuencia:

$$(n)_b = a_{k-1} \dots a_1 a_0$$

Ejemplo

$$(123)_{10} = 123$$
 $(123)_2 = 1111011$ $(123)_8 = 173$

Para encontrar la representación de n en base b:

Para un $n \in \mathbb{N} - \{0\}$ y b > 1, si $(n)_b = a_{k-1} \dots a_1 a_0$ y $n = q \cdot b + r$, entonces:

$$r = a_0$$
$$(q)_b = a_{k-1} \dots a_1$$

Ejemplo

Para escribir 39 en base 2:

$$39 = 19 \cdot 2 + 1$$

$$19 = 9 \cdot 2 + 1$$

$$9 = 4 \cdot 2 + 1$$

$$4 = 2 \cdot 2 + 0$$

$$2 = 1 \cdot 2 + 0$$

$$1 = 0 \cdot 2 + 1$$

Por lo tanto, $(39)_2 = 100111$.

Para escribir 39 en base 5:

$$39 = 7 \cdot 5 + 4$$

$$7 = 1 \cdot 5 + 2$$

$$1 = 0 \cdot 5 + 1$$

Por lo tanto, $(39)_5 = 124$.

Teorema

Para todo $n \in \mathbb{N}$ y $b \ge 2$, se cumple que $|(n)_b| = \lceil \log_b(n+1) \rceil$.

Por lo tanto,
$$|(n)_b| \in \mathcal{O}(\log (n))$$
.

Máximo común divisor

Sea $a, b \in \mathbb{Z} - \{0\}$.

Se define el **máximo común divisor** gcd(a, b) de a, b como el mayor número d tal que $d \mid a$ y $d \mid b$.

$$\gcd(8,12) = 4$$
 $\gcd(24,36) = 12$ $\gcd(54,24) = 6$

Teorema

Para todo $a, b \in \mathbb{Z} - \{0\}$, gcd(a, b) = gcd(b, (a mod b)).

Ejemplo

$$287 = 91 \cdot 3 + 14 \qquad \gcd(287,91) = \gcd(91,14)$$

$$91 = 14 \cdot 6 + 7 \qquad \gcd(91,14) = \gcd(14,7)$$

$$14 = 7 \cdot 2 \qquad \gcd(14,7) = 7$$

$$\gcd(287,91) = \gcd(91,14) = \gcd(14,7) = 7$$

Este algoritmo se conoce como el algoritmo de Euclides, y está en $\mathcal{O}(\log(b))$.

Conjuntos generadores

Sea $a, b \in \mathbb{Z} - \{0\}$.

Se define el conjunto $\langle a, b \rangle$ generado por a y b como:

$$\langle a, b \rangle = \{ c \in \mathbb{Z} \mid \exists s, t \in \mathbb{Z}. \ c = sa + tb \}$$

Se define el conjunto $\langle a_1, ..., a_n \rangle$ generado por $a_1, ..., a_n$ como:

$$\langle a,b\rangle = \{c \in \mathbb{Z} \mid \exists s_1, \dots, s_n \in \mathbb{Z}. \ c = s_1a_1 + \dots + s_na_n\}$$

Menor elemento de un conjunto generador

Sea $a, b \in \mathbb{Z} - \{0\}$.

Defina g como el menor número positivo en $\langle a, b \rangle$:

$$g = \min\{c \in \langle a, b \rangle \mid c > 0\}$$

Como se cumple que $\langle g \rangle \subseteq \langle a, b \rangle$ y $\langle a, b \rangle \subseteq \langle g \rangle$, entonces

$$\langle g \rangle = \langle a, b \rangle$$

Y g será el máximo común divisor de a y b.

Identidad de Bézout

Para todo $a, b \in \mathbb{Z} - \{0\}$:

1. gcd(a, b) es el menor número positivo tal que existe $s, t \in \mathbb{Z}$:

$$gcd(a,b) = sa + tb$$

2. $\langle a, b \rangle = \langle \gcd(a, b) \rangle$

Ecuaciones de congruencias

Una congruencia lineal es una ecuación de la forma:

$$ax \equiv b \pmod{m}$$

Donde $m \in \mathbb{N} - \{0\}$, $a, b \in \mathbb{Z}$ y x es una variable.

¿Cómo se resuelven?

$$x \equiv a^{-1} \cdot b$$

Definición

Decimos que a y b son primos relativos si gcd(a, b) = 1.

Teorema

Sea $a \in \mathbb{Z}$ y $m \in \mathbb{N}$ con m > 1.

Si a y m son primos relativos, entonces existe un único $a^{-1} \in \mathbb{Z}_m$ tal que:

$$a \cdot a^{-1} \equiv 1 \pmod{m}$$

Corolario

- 1. Si a y m son primos relativos, entonces $ax \equiv b \pmod{m}$ tiene solución en \mathbb{Z}_m .
- 2. Si m es primo entonces, todo $a \in \mathbb{Z}_m \{0\}$ tiene un inverso multiplicativo.