ANSYS MODEL for building in Taufkirchen

This is the building model used for the MDSI project: MSDI page

Author: Wei-Teng Kao (ge2gak@mytum.de)

Run the model

- 1. Specify the path of folder and open the APDL
- 2. Run the line: /input,'main','mac' or copy the script in main.mac directly then paste to the command window (optional).

Files management

- 1. ANSYS_Building_model/PREP: Folder for preprossesor
 - BuildPara_Var.mac : Material properties and parameter
 - BuildGeo_TK.mac : Geometry of the building
 - SSI_LPM_para.mac : Parameter of LPM for SSI
 - MAT27_elem.mac : Assign the material
 - properties to element for SSI
- 2. ANSYS_Building_model/SOLU: Folder for solver
 - Modal_Analysis.mac : Modal analysis
- 3. ANSYS_Building_model/POST: Folder for postprossesor

Parameter

- General:
 - bool_check_real_shape: Plot the building in mesh with defined thickness.
- Preprossesor:
 - bool_inner: Control whether build the inner wall
 - bool_stair : If both bool_inner = 1 and bool_stair = 1, then stair will be built
 - bool_SSI: Control soil-structure interection (MATRIX27)
- Solution:

Solu_type : /	ANYTYPE (APDL) if 2 = Mod	al, 3 = Harmonic, 4 = Tra	ansient analysis