

Given a Square Matrix A ERnxn and I E A Rnxi , XTAX is called quadratic form.

A Symmetric matrix is called positive definite, if for all non-zero x & Rnx1

OC XATX B

A Symmetric matrix is called positive Semidefinite if

STAX 30 for all XERNXI

The Gradient ;

Suppose f: R^{n×1} → R function,

1.e. input a real vector, output a

Jeal Scaler, Then gradient is

defined as let x & R^{n×1}

$\nabla_{x} f(x) =$	<u>9 f(x)</u>
330)	2~1
	7×1 - 25(2) - 7×2
	975
	:
) f(z)
	2×n

The Hessian:

$$\frac{\partial^2 f(x)}{\partial x^{1/2}} \stackrel{\partial^2 f(x)}{\partial x^{1/2}} \stackrel{\partial^2 f(x)}{\partial x^{1/2}} \stackrel{\partial^2 f(x)}{\partial x^{1/2}} \frac{\partial^2 f(x)}{\partial x^{1/$$

Example:

i) if
$$f(x) = aTx$$
, then

$$\nabla_x^2 f(x) = 0$$

$$f(1) = R \times X^T A \times X$$

$$\frac{\partial f(x)}{\partial x k} = 2 \sum_{i=1}^{n} A_{ki} x_i^i$$

$$\frac{\partial^2 f(x)}{\partial x e \partial x e} = 2A \kappa e$$

$$\Rightarrow \phi \nabla_x^2 f(x) = 2A$$

$$= \sum_{i=1}^{n} A_{ik} x_{ik} + \sum_{j=1}^{n} A_{kj} x_{j}$$

$$= 2 \sum_{i=1}^{n} A_{Ki} X_{i} \left(A_{iK} = A_{Ki} \right)$$

$$\nabla_{x} f(x) = 2 \left[\sum_{i=1}^{2} A_{i}(x_{i}) \right] = 2Ax$$

$$\left[\sum_{i=1}^{2} A_{n}(x_{i}) \right]$$