Project 2.1

The Abalone Game

Group 5

Table of content

1. The game (Rules, board, ...)

- 2. The bots:
 - Rule-Based Algorithm
 - Alpha-Beta Tree Search
 - Monte Carlo Tree Search
 - Alternative: Genetic Algorithm

Game Tree

Evaluation functions

3. Pruning techniques

Transposition Table

ordering

4. Conclusion

The Game - Rules

Our GUI

ABALONE

НПШЧЦ AS НПШЧЦ

CLEMENT

- Q TOP_LEFT
- E TOP_RIGHT
- A LEFT
- D RIGHT
- Z BOTTOM_LEFT
- C BOTTOM_RIGHT

Press Enter/P to validate move.

MATHIAS

It is CLEMENT's turn to play.

Turn number 0

Win Page

Rule-Based Algorithm

```
if there is a sumito move:
   pick random sumito move;
else:
    if there is a pushing move:
       pick random pushing move;
   else:
       if there is a triple move:
           pick random triple move;
       else:
           if there is a double move:
               pick random double move;
           else:
               pick random single move;
```

Sumito move:

any move that ejects an opponent's marble

Pushing move:

any move that displace an opponent's marble

Super fast at playing but not super performant...

Game Tree Structure

used by ABTS

- creation in BFS : O(b^d)

- visit in DFS

IMPOSSIBLE TO COMPUTE ENTIRE GAME TREE!

Alpha-Beta Tree Search

Minimax

- Min player and Max player
- Evaluate positions
- Costs a lot of computational time
- Complexity of O(M^D).

Alpha-Beta pruning

- Will result in the same outcome
- Prunes nodes not worth checking
- Allows the AI player to search at depth 3 in reasonable time
- improves with a better move ordering

Alpha-Beta pruning vs MiniMax

- Search algorithm runs faster
- 4.5sec saved on average

- Huge investigated nodes difference
- Up to 96% saved nodes

Monte-Carlo Tree Search

Selection

- Start with the root
- Select the best child until a leaf is reached

Expansion

- Expands the tree with current node children

Simulation

- Select a random child
- Simulate it and get the results

• Back-propagation

- Back-propagate the score till the root

Repeat until **stop condition** is met, then output the best move

Fixed amount of time

MCTS stop condition

- Efficiency threshold at 10 sec
- Inefficient below it
- Constant efficiency above

Evaluation Functions

...all based on heuristics

Neutral

- Most efficient
- Weights adapting
- From offensive to defensive (and vice versa)

Offensive

- Focuses on ejecting
- Risked approach

Defensive

- Focuses on consolidating
- Safed approach

ABTS vs MCTS

Genetic Algorithm

- Goal: advanced evaluation function weights assessment
- Two optimizations
 - Applying both Rank and Tournament selection
 - "Islands" strategy for better performance
- Weights could later be used in MCTS
- Turns out a huge number of games end in a draw

Transposition Table

- Transposition Table = Hash Table
- Hash Function $f(x) \rightarrow$ unique key
- Key → index of the table
- Table contains already computed node score
- Transposed node reused previous evaluation

Transposition Table ON vs OFF

- Almost half of evaluated nodes saved
- Computational gain

Move ordering

- Improves alpha-beta pruning
- Better moves first
- Three different orderings tested:

3 marbles moves 2 marbles moves 1 marble moves

Simple ordering

Random ordering fully random order

Move ordering

- Full ordering greatly outperforms the other two orderings
- Simple ordering still outperforms random ordering.
- Prioritizing capturing and pushing is best.

Conclusion

Bots

- Rule Based
- Monte-Carlo
 Tree Search
- Alpha-Beta Tree Search

Evaluation functions

- Neutral
- Offensive
- Defensive

Pruning techniques

- Move ordering
- Transposition table

THANK YOU FOR LISTENING!

