

Remarque : on a souvent $P_{start} = P_{end} \triangleq P$, auquel cas on remplace $P_{start} + P_{end}$ par 2P dans la formule au-dessus.

□ Comprendre la complexité du modèle – Pour évaluer la complexité d'un modèle, il est souvent utile de déterminer le nombre de paramètres que l'architecture va avoir. Dans une couche donnée d'un réseau de neurones convolutionnels, on a :

	CONV	POOL	FC
Illustration	$F \longrightarrow K$ $\otimes C \times K$	F \max	$N_{ m in}$ $N_{ m out}$
Taille d'entrée	$I \times I \times C$	$I \times I \times C$	$N_{ m in}$
Taille de sortie	$O \times O \times K$	$O \times O \times C$	$N_{ m out}$
Nombre de paramètres	$(F \times F \times C + 1) \cdot K$	0	$(N_{\mathrm{in}}+1) \times N_{\mathrm{out}}$
Remarques	- Un paramètre de biais par filtre - Dans la plupart des cas, $S < F$ - $2C$ est un choix commun pour K	- L'opération de pooling est effectuée pour chaque canal - Dans la plupart des cas, $S=F$	 L'entrée est aplatie Un paramètre de biais par neurone Le choix du nombre de neurones de FC est libre

 \square Champ récepteur – Le champ récepteur à la couche k est la surface notée $R_k \times R_k$ de l'entrée que chaque pixel de la k-ième activation map peut 'voir'. En notant F_j la taille du filtre de la couche j et S_i la valeur de stride de la couche i et avec la convention $S_0=1$, le champ récepteur à la couche k peut être calculé de la manière suivante :

$$R_k = 1 + \sum_{j=1}^k (F_j - 1) \prod_{i=0}^{j-1} S_i$$

Dans l'exemple ci-dessous, on a $F_1=F_2=3$ et $S_1=S_2=1$, ce qui donne $R_2=1+2\cdot 1+2\cdot 1=5$.