Comment: Recall from III or precalc:

y = Mx+ b

Comment: These are called elementary
functions. There are more than these,
but these are most of the building
blocks.

Def: A function f is even if for all x in the domain, f(-x)=f(x). It's odd if for all x in the domain, f(-x) = -f(x). A function's even- or odd-ness is called its parity. As with regular numbers, most finctions are neither even nor odd. E_X : f(x) = x is odd, since f(-x) = -x = -f(x).

 E_{X} : $1s f(x) = x^{2} even? 1s it odd?$ $f(-x) = (-x)^{2} = (-x)(-x) = x^{2}, so$ f(-x) = f(x). Therefore, f is even.

Comment: $f(x) = x^p$ is an even function if p is even, and an odd function if p is odd.

 E_X : If p=1, f(x)=x'=x is odd. So is x^3 , x^5 , Similarly, x^2 , x^4 , ... are all even functions.

Prof: Even functions have graphs that are symmetric about the y-axis, and odd functions have graphs that are rotationally symmetric about the origin (when rotated 180°).

Ex: The graph of $f(x) = x^2$ is

the same when reflected about

the y-axis.

Ex: The graph of $f(x) = x^3$ is

the same when rotated 180° about the origin.

Ex: $1s g(x) = xe^{-x^2}$ an even function? 1s it an odd function?

> We need to check if g(-x) = g(x)and if g(-x) = -g(x).

$$g(-x) = (-x)e^{-(-x)^{2}} = -xe^{-x^{2}} = -(xe^{-x^{2}})$$

= $-g(x)$, so g is odd. $g(x)$

Ex: The function h(x) = x + 1 is neither even nor odd: h(-x) = (-x) + 1 = -x + 1 $\neq h(x)$ and $h(-x) \neq -h(x) = -x - 1$.

Visually, the graph of h isn't symmetric either about the y-axis or the origin.

vertical Transformations

Comment:

If h(t) measures your height in inches t years after you're born, how can we modify h to give an output in centimeters?

Prop:

Let f be a function. The graph of y = -f(x) is the graph of y = f(x) reflected about the x-axis.

Ex

The praph of $y = c \cdot f(x)$ is graph of y = f(x) vertically stretched by a factor of C.

Ex: Graph y=3x2

First, find the parent function. Here, it's $y = x^2$, since we're just multiplying it by a constant (so here c = 3).

Now we'll graph $y=x^2$ and then vertically stretch it by a factor of 3.

Ex: Graph $y = \frac{1}{2} e^{x}$.

Vertical stretches by a factor less than I (but still positive) are squishes.

 $Ex: Graph y=-3x^3$.

Comment: when working with nultiple transformations, start at the value of x in the function equation and work outward (following order of operations).

Theorem: Let f be a function and k be any real number. The graph of y = f(x) + k is the graph of y = f(x) shifted vertically by k units.

 $f(x) = x^2 - 2$, then $|y = x^2 - 2|$

Ex: Graph $y = -2(\ln x) + 3$ First graph $y = \ln x$ vertically stretch by a factor of -2Vertically shift by 3

$$y = -2 \ln x$$
 $y = -2 \ln x$
 $(e,1)$
 $(1,0)$
 $(1,0)$
 $(e,-2)$
 $y = -2 \ln x$
 $y = -2 \ln x$
 $y = -2 \ln x$

Ex: Graph
$$y = -2((ln \times) + 3)$$

Recall: e = 2.718...

 $ln \times = log_e(x) = # you raise e to$ in order to get X.

In 1=0 since e°=1 In e=1 since e'=e

Comment: Vertical transformations are used to rescale the output of a function.

Use them when the function itself works fine, but its output need modification (e.g. it outputs inches instead of cn).

EX: A scientist observes the population of Jear in a park. It is IDD out some point in time, and t years later, it is given by d(t):

what does the function f(t) = d(t) - 100 represent? f(0) = 0 f(t) is the number of new deer in the population after t years.

Horizontal Transformations

Comment: We apply vertical transformations to
the outside of functions. We'll get
horizontal transformations by rescaling
the input.

Prop: Let f be a function. The graph of y = f(-x) is the graph of y = f(x) reflected about the y-axis.

Ex: Graph $y = e^{-x}$. Then graph $y = e^{-x} + 2$.

Prop: Let f be a function and let c70. The graph of y=f(cx) is the graph of y=f(x) stretched horizontally by a factor of 1/c.

Ex: ln (2x)

Comment: Why! Well, the point on the graph of ln (2x) that corresponds to x = 1/3 has the same y-ralve as the point on the graph of ln x that corresponds fo $x=\frac{2}{3}$. In a sense, the factor of 2 accelerates the x-values, making each of them twice as powerful.

Prop: Let f be a function and k be any real number. The graph of y = f(x-k) is the graph of y = f(x), shifted horizontally by k units.

 $E_X: y=(x-2)^3$ $y = (x-2)^3$ Again, subtracting k is "slowing

down" the x-value. To find

the point that used to be

at x=0, you now need to

go fo x=2.

Recall that the formula Comment: for a parabola with vertex (h, k) is $y = a(x-h)^2 + k$. This is taking y=x2, shifting to the right by h units, stretching vertically by a factor of a, then shifting vertically by k units. $y=x^2$ $y=(x-h)^2$ $y=a(x-h)^2$ $y=a(x-h)^2$ th (w, k)