Math 51 Henry Adams

These notes should help you with exercises 12.1-12.11 in Levandosky.

What do rank(A) and nullity(A) tell you about the existence and uniqueness of solutions x to Ax = b?

Let A be an $m \times n$ matrix. Consider the function which takes an input vector $x \in \mathbb{R}^n$ and multiplies it by matrix A to get output vector $Ax \in \mathbb{R}^m$. This is a function that goes from \mathbb{R}^n , the set of vectors of with n components, to \mathbb{R}^m , the set of vectors with m components.

Value rank(A) tells you about the existence of solutions x to Ax = b.

Here's how:

- If rank(A) = m, then for any vector $b \in \mathbb{R}^m$ there exists at least one solution x to Ax = b.
- If $\operatorname{rank}(A) < m$, then there are some vectors $b \in \mathbb{R}^m$ (namely, those $b \notin C(A)$) for which there exist no solutions x to Ax = b.

Why is this true? We will use Proposition 9.1, which says the system Ax = b has a solution x if and only if $b \in C(A)$.

Suppose $\operatorname{rank}(A) = m$. By definition, $\dim(C(A)) = m$. Since C(A) is a subspace of \mathbb{R}^m , it follows that $C(A) = \mathbb{R}^m$. Therefore any vector $b \in \mathbb{R}^m$ satisfies $b \in C(A)$. By Proposition 9.1, for any vector $b \in \mathbb{R}^m$ there exists at least one solution x to Ax = b.

Conversely, suppose $\operatorname{rank}(A) < m$. By definition, $\dim(C(A)) < m$. Since C(A) is a subspace of \mathbb{R}^m , it follows that C(A) is not all of \mathbb{R}^m . Therefore there are some vectors $b \in \mathbb{R}^m$ with $b \notin C(A)$. By Proposition 9.1, there are some vectors $b \in \mathbb{R}^m$ for which there exists no solutions x to Ax = b.

Value nullity (A) tells you about the uniqueness of solutions x to Ax = b.

Here's how:

- If nullity(A) = 0, then any solution x to Ax = b is unique.
- If $\operatorname{nullity}(A) > 0$, then no solution x to Ax = b can be unique.

Why is this true? We will use Proposition 8.2, which says that if there exists a solution x to Ax = b, then the set of all solutions is a translation of N(A).

Suppose nullity (A) = 0. By definition, $\dim(N(A)) = 0$. Hence $N(A) = \{\vec{0}\}$ consists of a single vector. Hence a translation of N(A) is a single vector. By Proposition 8.2, if there exists a solution x to Ax = b, then the set of all solutions is a single vector, so that solution x is unique.

Conversely, suppose nullity (A) > 0. By definition, $\dim(N(A)) > 0$. Hence N(A) consists of many vectors. Hence a translation of N(A) consists of many vectors. By Proposition 8.2, if there exists a solution x to Ax = b, then the set of all solutions consists of many vectors, so that solution x is not unique.

1