Linear Algebra Lecture Notes

Rostyslav Hryniv

Ukrainian Catholic University
Business Analytics and Computer Science Programmes

4th term Spring 2019

Lecture 13. Singular Value Decomposition

Outline

- Low rank approximations
 - Spectral Theorem
 - Low rank approximations
- Singular Value Decomposition and applications
 - Singular value decomposition
 - Applications of SVD
- What else could have been in that course?

The Spectral Theorem

- Holds for symmetric/Hermitian, skew-Hermitian, orthogonal/unitary matrices
- claims existence of an orthogonal basis of eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_n$ for eigenvalues $\lambda_1, \dots, \lambda_n$
- spectral decomposition:

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^\top + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^\top$$

- orthogonally diagonalizable: with
 - $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$
 - P with columns $\mathbf{u}_1, \dots, \mathbf{u}_n$

$$P^{-1}AP = P^{\top}AP = \Lambda \iff A = P\Lambda P^{\top}$$

- λ_i are
 - real for symmetric/Hermitian matrices
 - purely imaginary for anti-symmetric/skew-Hermitian ones
 - unimodular for orthogonal/unitary matrices

Applications of the Spectral Theorem

- to construct symmetric or anti-symmetric or orthogonal (Hermitian, skew-Hermitian or unitary) matrix with prescribed spectrum and eigenvectors
- to construct low-rank approximation of A:
 - if $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$ and $\lambda_{k+1}, \ldots, \lambda_n$ are small compared to $\lambda_1, \ldots, \lambda_k$, then

$$\mathbf{A}_k = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^\top + \dots + \lambda_k \mathbf{u}_k \mathbf{u}_k^\top$$

is a good rank k approximation of A

in what norm? use the so-called Frobenius norm

$$||A||_F^2 := \sum_{i,k=1}^n |a_{jk}|^2 = \operatorname{tr}(A^*A)$$

- then $\|A\|_F^2 = \sum_{j=1}^n \lambda_j^2 \operatorname{tr}(\mathbf{u}_j \mathbf{u}_j^\top) = \sum_{j=1}^n \lambda_j^2$ and $\|A A_k\|_F^2 = \sum_{j=k+1}^n \lambda_j^2$
- in fact, the SVD says A_k is the best rank k approximation!

Example of low-rank approximation

Let

$$A = \begin{pmatrix} 15 & 10 \\ 10 & 0 \end{pmatrix}$$

- Eigenvalues: $\lambda_1 = 20$, $\lambda_2 = -5$ ($\lambda_1 + \lambda_2 = 15$, $\lambda_1 \lambda_2 = -100$)
- eigenvectors: $\mathbf{u}_1 = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)^\top$, $\mathbf{u}_2 = \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)^\top$
- rank-one approximation:

$$A_1 = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^{\top} = \begin{pmatrix} 16 & 8 \\ 8 & 4 \end{pmatrix}, \qquad A - A_1 = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$$

- Frobenius norms:
 - $||A||_F^2 = 15^2 + 10^2 + 10^2 = 425$,
 - $||A A_1||_F^2 = 25$ is just 1/17 of $||A||_F^2$

Why low-rank?

Why low-rank matrix approximation are important?

- In reality, deal with huge matrices (sizes 10³–10⁶ or larger)
- Sending and efficient storing becomes an issue!
- Low-rank approximations are much easier for storing and sending!

Cost comparison:

- full $m \times n$ matrix requires mn numbers to store;
- rank one matrix requires only m + n + 1
- important e.g. for image compressions

What if A is non-symmetric or non-square?

- If A is non-symmetric, then
 - its eigenvectors need not be orthogonal, or even
 - too few eigenvectors (have to use generalized EVc's)
- If A is non-square, there are no eigenvalues and eigenvectors at all!

However, low rank approximations in (Frobenius norm) exist; what is the best one?

Best rank one approximation to a generic A

Problem

What is the best rank one approximation $\mathbf{u}\mathbf{v}^{\top}$ of an $m \times n$ matrix A in Frobenius norm? (WLOG assume $\|\mathbf{v}\| = 1$)

The matrix $\mathbf{u}\mathbf{v}^{\top}$ has rows $u_1\mathbf{v}^{\top}, \ldots, u_m\mathbf{v}^{\top}$, if the rows of A are $\mathbf{a}_1^{\top}, \ldots, \mathbf{a}_m^{\top}$, then

$$\|A - \mathbf{u}\mathbf{v}^{\top}\|_{F}^{2} = \sum_{i=1}^{m} \|\mathbf{a}_{i}^{\top} - u_{i}\mathbf{v}^{\top}\|^{2} = \sum_{i=1}^{m} \|\mathbf{a}_{i} - u_{i}\mathbf{v}\|^{2}$$

This is minimal if $u_i \mathbf{v}$ is the projection $P_{\parallel} \mathbf{a}_i$ of \mathbf{a}_i onto $ls(\mathbf{v})$:

$$\sum_{j=1}^{m} \|\mathbf{a}_{j} - P_{\parallel} \mathbf{a}_{j}\|^{2} = \sum_{j=1}^{m} \|P_{\perp} \mathbf{a}_{j}\|^{2} = \sum_{j=1}^{m} \|\mathbf{a}_{j}\|^{2} - \sum_{j=1}^{m} \|P_{\parallel} \mathbf{a}_{j}\|^{2}$$

Thus need to maximize

$$\sum_{j=1}^{m} \|P_{\parallel} \mathbf{a}_{j}\|^{2} = \sum_{j=1}^{m} |\mathbf{a}_{j}^{\top} \mathbf{v}|^{2} = \sum_{j=1}^{m} |\mathbf{v}^{\top} \mathbf{a}_{j}|^{2} = \|A\mathbf{v}\|^{2}$$

The trolley-line-location problem

We reduced the above problem to the following one:

Maximize $||A\mathbf{v}||$ under the restriction that $||\mathbf{v}|| = 1$

This is what we get in the trolley-line-location problem:

Choose a direction \mathbf{v} to minimize the sum of squared distances from $\mathbf{a}_1, \dots, \mathbf{a}_m$ to the line

The trolley line problem

Problem:

For the given vectors \mathbf{a}_1 , \mathbf{a}_2 , ... \mathbf{a}_m in \mathbb{R}^n , find their best line fit ℓ The objective function to be minimized:

$$f(\ell) := \sum_{k=1}^m \operatorname{dist}^2(\mathbf{a}_j, \ell)$$

- \mathbf{v} is the unit vector on ℓ and $P_{\mathbf{v}} := \mathbf{v}\mathbf{v}^{\top}$ the orthogonal projector;
- then dist(\mathbf{a}_k, ℓ) = $\|\mathbf{a}_k P_{\mathbf{v}}\mathbf{a}_k\|$, so that

$$f(\ell) = \sum \|\mathbf{a}_k - P_{\mathbf{v}}\mathbf{a}_k\|^2 = \sum \|\mathbf{a}_k\|^2 - \sum \|P_{\mathbf{v}}\mathbf{a}_k\|^2$$

thus one needs to maximize the sum

$$\sum \|\textit{P}_{\textit{\textbf{v}}} \textit{\textbf{a}}_{\textit{k}}\|^2 = \sum \|\textit{\textbf{v}} \textit{\textbf{v}}^{\top} \textit{\textbf{a}}_{\textit{k}}\|^2 = \sum |\textit{\textbf{a}}_{\textit{k}}^{\top} \textit{\textbf{v}}|^2 = \|\textit{\textbf{A}} \textit{\textbf{v}}\|^2,$$

where A has rows \mathbf{a}_1^{\top} , \mathbf{a}_2^{\top} , ..., \mathbf{a}_m^{\top}

Solution to the rank-one approximation problem

Consider the quadratic form

$$Q(\mathbf{v}) := \|A\mathbf{v}\|^2 = (A\mathbf{v})^{\top}(A\mathbf{v}) = \mathbf{v}^{\top}A^{\top}A\mathbf{v}$$

and denote

- the largest eigenvalue by σ_1^2
- \bullet corresponding eigenvector (the first principal axis) by \boldsymbol{v}_1

then
$$A^{\top}A\mathbf{v}_1 = \sigma_1^2\mathbf{v}_1$$

$$\max\{Q(\mathbf{v}) \mid \|\mathbf{v}\| = 1\} = Q(\mathbf{v}_1) = \sigma_1^2$$

and $\mathbf{u}_1 := A\mathbf{v}_1$ satisfies $A^{\top}\mathbf{u}_1 = \sigma_1^2\mathbf{v}_1$

Solution to the rank-one approximation problem:

In Frobenius norm, the best rank-one approximation of A is $\sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\mathsf{T}}$

This leads to the notion of singular values of A

Definition

- Let A be any $m \times n$ matrix
- $B := A^{\top}A$ is $n \times n$ and nonnegative:

$$\boldsymbol{x}^{\top}\boldsymbol{B}\boldsymbol{x} = \boldsymbol{x}^{\top}(\boldsymbol{A}^{\top}\boldsymbol{A})\boldsymbol{x} = (\boldsymbol{A}\boldsymbol{x})^{\top}(\boldsymbol{A}\boldsymbol{x}) = \|\boldsymbol{A}\boldsymbol{x}\|^2 \geq 0$$

- denote by $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ the EV's of B
- $\sigma_i := \sqrt{\lambda_i}$ are called the singular values of A
- notice that there are $r := \operatorname{rank} B = \operatorname{rank} A$ positive σ_j

Example

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$
; $B = A^{T}A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ has EV's $\lambda_1 = 3$ and $\lambda_2 = 1$; thus $\sigma_1 = \sqrt{3}, \sigma_2 = 1$

SVD theorem

Theorem (SVD)

Every $m \times n$ matrix A can be written as

$$A = U\Sigma V^{\top}$$

where U and V are orthogonal and Σ is an $m \times n$ matrix with singular values of A on its main diagonal and zeros otherwise

Remark

This is an analogue of the diagonalization $A = UDU^{\top}$ of a symmetric matrix A

SVD theorem

Theorem (SVD — expanded form)

Every $m \times n$ matrix A of rank r can be written as $A = U \Sigma V^{\top}$, where

$$U=(\mathbf{u}_1\ldots\mathbf{u}_r|\mathbf{u}_{r+1}\ldots\mathbf{u}_m),$$

$$V=(\mathbf{v}_1\ldots\mathbf{v}_r|\mathbf{v}_{r+1}\ldots\mathbf{v}_n),$$

- Σ has σ_j on its main diagonal and zeros otherwise
- \mathbf{v}_j are eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$ with EV's σ_j^2 : $\mathbf{A}^{\top}\mathbf{A}\mathbf{v}_j = \sigma_j^2\mathbf{v}_j$
- $\mathbf{u}_j := A\mathbf{v}_j/\|A\mathbf{v}_j\| = A\mathbf{v}_j/\sigma_j$ for j = 1, ..., r is an ONB for the column space of A
- $\mathbf{u}_1, \dots, \mathbf{u}_m$ is an ONB for \mathbb{R}^m

$$\mathbf{A} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^\top + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^\top$$

The vectors $\mathbf{u}_1, \dots, \mathbf{u}_r$ are the left singular vectors of A; $\mathbf{v}_1, \dots, \mathbf{v}_r$ are the right singular vectors of A

Remark: $A\mathbf{v}_j = \sigma_j \mathbf{u}_j, A^{\top} \mathbf{u}_j = \sigma_j \mathbf{v}_j$

Proof of the SVD decomposition

- Start with normalized eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ and eigenvalues $\sigma_1^2, \dots, \sigma_n^2$ of $A^{\top}A$
- Then $||A\mathbf{v}_j||^2 = \mathbf{v}_i^\top A^\top A \mathbf{v}_j = \sigma_i^2, j = 1, \dots, n$
- Form $\mathbf{u}_j := A\mathbf{v}_j/\|A\mathbf{v}_j\| = A\mathbf{v}_j/\sigma_j, \quad j = 1, \dots, r (= \operatorname{rank} A)$
- $\mathbf{u}_i^{\top} \mathbf{u}_j = \mathbf{v}_i^{\top} A^{\top} A \mathbf{v}_j / (\sigma_i \sigma_j) = \mathbf{v}_i^{\top} (A^{\top} A) \mathbf{v}_j / (\sigma_i \sigma_j) = \frac{\sigma_j}{\sigma_i} \mathbf{v}_i^{\top} \mathbf{v}_j = \delta_{ij}$
- complete with $\mathbf{u}_{r+1}, \dots, \mathbf{u}_m$ to an ONB of \mathbb{R}^m
- Now

$$U\Sigma = (\sigma_1 \mathbf{u}_1 \dots \sigma_r \mathbf{u}_r \underbrace{0 \dots 0}_{n-r})$$
$$= (A\mathbf{v}_1 \dots A\mathbf{v}_r \underbrace{0 \dots 0}_{n-r}) = A(\mathbf{v}_1 \dots \mathbf{v}_n) = AV$$

• since V is orthogonal, $VV^{\top} = I$ yields $A = U\Sigma V^{\top}$

Example

For
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, we find that

•
$$\sigma_1 = \sqrt{3}$$
 and $\sigma_1 = 1$

•
$$\mathbf{v}_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^{\top}$$
 and $\mathbf{v}_2 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})^{\top}$

$$\begin{split} \bullet & \; \textbf{u}_1 = \frac{1}{\sqrt{3}} (\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^\top, \\ & \; \textbf{u}_2 = (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^\top, \\ & \; \textbf{u}_3 = \frac{1}{\sqrt{3}} (-1, 1, 1)^\top \end{split}$$

$$\sigma_1 \mathbf{u}_1 \mathbf{v}_1^\top + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^\top = \begin{pmatrix} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} = A$$

• $\sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\top}$ is the best rank one approximation of A in the Frobenius norm $\sum (a_{ii} - b_{ii})^2$

Interpretation of SVD

 $A = U\Sigma V^{\top}$ implies decomposition of $\mathbf{x} \mapsto A\mathbf{x}$ into

$$\mathbf{x} \mapsto \mathbf{y} := \mathbf{V}^{\top} \mathbf{x}, \qquad \mathbf{y} \mapsto \mathbf{z} := \Sigma \mathbf{y}, \qquad \mathbf{z} \mapsto A \mathbf{x} = U \mathbf{z}$$

- $\mathbf{x} \mapsto \mathbf{y}$ finds the coordinates of the vector \mathbf{x} in terms of one orthonormal basis $(\mathbf{v}_1, \dots, \mathbf{v}_n)$
- $y \mapsto z$ scales those coordinates
- $\mathbf{z} \mapsto A\mathbf{x}$ find the vector with the scaled coordinates over another orthonormal basis $(\mathbf{u}_1, \dots, \mathbf{u}_n)$

Interpretation of SVD

$$\mathbf{v}_1 \mapsto \mathbf{e}_1 \mapsto \sigma_1 \mathbf{e}_1 \mapsto \sigma_1 \mathbf{u}_1$$

 $\mathbf{v}_2 \mapsto \mathbf{e}_2 \mapsto \sigma_2 \mathbf{e}_2 \mapsto \sigma_2 \mathbf{u}_2$

Reduced SVD

- In the SVD representation, some part is uninformative:
 - $\mathbf{v}_{r+1}, \dots, \mathbf{v}_n$ are chosen arbitrarily in the nullspace of A
 - $\mathbf{u}_{r+1}, \dots \mathbf{u}_m$ are chosen arbitrarily in the nullspace of A^T
 - Σ has zero rows or columns
- The reduced SVD removes that uninformative part:

$$A = \underbrace{\begin{pmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_r \end{pmatrix}}_{m \times r} \underbrace{\begin{pmatrix} \sigma_1 & \cdots & 0 \\ \cdots & \cdots & \sigma_r \end{pmatrix}}_{r \times r} \underbrace{\begin{pmatrix} \mathbf{v}_1^\top \\ \vdots \\ \mathbf{v}_r^\top \end{pmatrix}}_{r \times n}$$

• The reduced SVD of A^{\top} :

$$m{A}^{ op} = egin{pmatrix} m{v}_1 & \cdots & m{v}_r \end{pmatrix} egin{pmatrix} \sigma_1 & \cdots & 0 \ \cdots & \cdots & \sigma_r \end{pmatrix} egin{pmatrix} m{u}_1^{ op} \ dots \ m{u}_r^{ op} \end{pmatrix}$$

Polar decomposition

Theorem (Polar decomposition)

Any square matrix A can be written as QS with orthogonal Q and symmetric positive semidefinite S

Why polar?

$$z = re^{i\theta}$$

Proof.

Write
$$A = U\Sigma V^{\top} = (UV^{\top})(V\Sigma V^{\top}) =: QS$$

$$Q := UV^{\top}$$
 is orthogonal

$$S := V \Sigma V^{\top}$$
 is symmetric and positive semidefinite

Image compression

Image compression

Instead of storing $m \times n$ numerical entries, can take the best rank-rapproximation of A; need r(1 + m + n)

numbers

Pseudo-inverse

A rectangular A cannot be inverted!

However, a pseudo-inverse A^+ can be defined s.t.

$$A^+A \approx I_n$$
 and $AA^+ \approx I_m \implies AA^+A \approx A$ and $A^+AA^+ \approx A^+$

Definition (Moore-Penrose pseudo-inverse)

For an $m \times n$ matrix A, its Moore-Penrose pseudo-inverse is an $n \times m$ matrix A^+ satisfying

$$A^{+}AA^{+} = A^{+}, \quad AA^{+}A = A, \quad (A^{+}A)^{\top} = A^{+}A, \quad (AA^{+})^{\top} = AA^{+}$$

Theorem

For every matrix A, its Moore–Penrose pseudo-inverse A⁺ exists and is unique

Pseudo-inverse

Moore-Penrose pseudo-inverse

If $A = U\Sigma V^{\top}$ is the SVD of A, then the pseudo-inverse Σ^{+} of Σ should satisfy $\Sigma^{+}\Sigma = I_{r} \oplus \mathbf{0}_{n-r}, \quad \Sigma \Sigma^{+} = I_{r} \oplus \mathbf{0}_{m-r}$ Thus Σ^{+} gets transposed and σ_{i} replaced with $1/\sigma_{i}$

Therefore, Moore–Penrose pseudo-inverse is $A^+ := V \Sigma^+ U^\top$:

$$A^{+}A = V\Sigma^{+}(U^{\top}U)\Sigma V^{\top} = V\Sigma^{+}\Sigma V^{\top} = V(I_{r} \oplus \mathbf{0}_{n-r})V^{\top}$$

$$AA^{+}A = U\Sigma V^{\top}V(I_{r} \oplus \mathbf{0}_{n-r})V^{\top} = U\Sigma V^{\top} = A$$

$$A^{+}AA^{+} = V(I_{r} \oplus \mathbf{0}_{n-r})V^{\top}V\Sigma^{+}U^{\top} = V\Sigma^{+}U^{\top} = A^{+}$$

Example

• If a rectangular A has linearly independent columns, then

$$A^+ = (A^\top A)^{-1} A^\top$$

is the left inverse of A (ie, $A^+A = I$) and AA^+ is an old friend...

• In terms of A = QR. $A^+ = R^{-1}Q^{\top}$

Theorem

$\hat{\mathbf{x}} = A^+ \mathbf{b}$ is the best solution of $A\mathbf{x} = \mathbf{b}$

- A is invertible \implies $A^+ = A^{-1}$, and $\hat{\mathbf{x}}$ is the unique exact solution
- A has linearly independent columns $\implies A^+ = (A^T A)^{-1} A^T$;
 - if **b** is in the column space, then A^+ is the right inverse of A, and the unique exact solution **x** satisfies $\mathbf{x} = A^+A\mathbf{x} = A^+\mathbf{b} = \hat{\mathbf{x}}$
 - if **b** is not in the column space, then $\hat{\mathbf{x}} := A^+ \mathbf{b}$ is the unique least square solution
- A has linearly dependent columns ⇒ a solution (exact when b ∈ col(A) or least square otherwise) is not unique
 - $\hat{\mathbf{x}} = A^+ \mathbf{b}$ is then the shortest solution (ie, of the smallest norm)
 - Indeed, if $A = U\Sigma V^{\top}$, then

$$\|A\mathbf{x} - \mathbf{b}\| = \|\Sigma V^{\top} \mathbf{x} - U^{\top} \mathbf{b}\| = \|\Sigma \mathbf{y} - U^{\top} \mathbf{b}\| \text{ with } \mathbf{y} := V^{\top} \mathbf{x}$$

- $\Sigma \mathbf{y} U^{\top} \mathbf{b}$ has the smallest norm when its first $r = \operatorname{rank} A$ entries are zero; the rest do not depend on \mathbf{y} and are equal to those of $-U^{\top} \mathbf{b}$
- this specifies the first r entries of y and leave the rest undefined
- $\hat{\mathbf{y}} := \Sigma^+ U^\top \mathbf{b}$ has the required first r entries and all the rest entries zero \implies is of the shortest norm among all such \mathbf{y}
- $\mathbf{x} = V\hat{\mathbf{y}} = V\Sigma^+U^\top\mathbf{b} = \hat{\mathbf{x}}$ is then the shortest one among all solutions

SVD vs PCA

Low rank approximations

- Observe that the largest value of ||Ax|| with $||x|| \le 1$ is obtained for $\mathbf{x} = \mathbf{v}_1$ and is equal to σ_1 :
- this is the first principal axis for A^TA :
 - indeed, $A^TA = V\Sigma^TU^TU\Sigma V^T = V\Sigma^T\Sigma V^T = VDV^T$ is the spectral decomposition of the symmetric matrix $B := A^T A$
 - B has eigenvalues σ_k^2 with eigenvectors \mathbf{v}_k
 - the quadratic form $Q(\mathbf{x}) := \mathbf{x}^T B \mathbf{x}$ is equal to $||A\mathbf{x}||^2$
 - by the minimax properties of the eigenvalues,

$$\begin{split} \sigma_1^2 &= \max_{\|\mathbf{x}\|=1} \mathbf{x}^T B \mathbf{x} = \max_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|^2, \\ \sigma_2^2 &= \max_{\substack{\|\mathbf{x}\|=1, \\ \mathbf{x} \perp \mathbf{v}_1}} \mathbf{x}^T B \mathbf{x} = \max_{\substack{\|\mathbf{x}\|=1, \\ \mathbf{x} \perp \mathbf{v}_1}} \|A\mathbf{x}\|^2, \\ \sigma_3^2 &= \dots \end{split}$$

A^TA can be considered as a covariance matrix for the columns of A

The trolley line problem, revisited

Problem:

For the given vectors \mathbf{a}_1 , \mathbf{a}_2 , ... \mathbf{a}_m in \mathbb{R}^n , find the best-fit subspace L of dimension k. The objective function to be minimized:

$$f(L) := \sum_{j=1}^m \mathsf{dist}^2(\mathbf{a}_j, L)$$

- $\mathbf{u}_1, \dots, \mathbf{u}_k$ is an ONB of L and $P_L := \sum \mathbf{u}_\ell \mathbf{u}_\ell^\top$ the orthoprojector;
- then dist(\mathbf{a}_i, L) = $\|\mathbf{a}_i P_L \mathbf{a}_i\|$, so that

$$f(L) = \sum \|\mathbf{a}_j - P_L \mathbf{a}_j\|^2 = \sum \|\mathbf{a}_j\|^2 - \sum \|P_L \mathbf{a}_j\|^2$$

thus one needs to maximize the sum

$$\sum \|P_L \mathbf{a}_j\|^2 = \sum\nolimits_{j,\ell} \|\mathbf{u}_\ell \mathbf{u}_\ell^\top \mathbf{a}_j\|^2 = \sum\nolimits_{j,\ell} |\mathbf{a}_j^\top \mathbf{u}_\ell|^2 = \sum\nolimits_{\ell} \|A\mathbf{u}_\ell\|^2,$$

where A has rows $\mathbf{a}_1^{\top}, \mathbf{a}_2^{\top}, \dots, \mathbf{a}_m^{\top}$

- Solution: the subspace spanned by the first k right singular vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ of A
- Indeed, $||A\mathbf{u}||^2 = ||\Sigma V^{\top}\mathbf{u}||^2 = ||\Sigma \mathbf{w}||^2 = \sum_{r=1}^{\infty} \sigma_1^2 w_1^2 + \cdots + \sigma_r^2 w_r^2 \dots$

Best low-rank approximation of A

Frobenius norm of a matrix

$$||A||_F^2 = \sum_{i,j} |a_{ij}|^2 = \sum_{i} ||\mathbf{a}_{i}||^2 = \sum_{i} \sigma_i^2$$

- ullet pre-/post-multiplying by an orthogonal matrix does not change $\|\cdot\|_{\mathcal{F}}$
 - thus $A = U\Sigma V^T$ yields $||A||_F^2 = ||U^TAV||_F^2 = ||\Sigma||_F^2$
 - another reason: $||A||_F^2 = \operatorname{tr}(A^T A)$; now $\operatorname{tr}(A^T A) = \operatorname{tr}(V \Sigma^T \Sigma V^T) = \operatorname{tr}(\Sigma^T \Sigma) = \sum \sigma_{\nu}^2$

Best rank-one approximation of A in the Frobenius norm

For a rank-one operator $B = \mathbf{u}\mathbf{v}^T$, $||B||_F^2 = ||\mathbf{u}||^2 ||\mathbf{v}||^2$; thus ($||\mathbf{u}|| = 1$)

$$||A - \mathbf{u}\mathbf{v}^{\top}||_F^2 = \operatorname{tr}(A - \mathbf{u}\mathbf{v}^{\top})^{\top}(A - \mathbf{u}\mathbf{v}^{\top})$$
$$= \dots = ||A||_F^2 - ||A \top \mathbf{u}||^2 + ||A^{\top}\mathbf{u} - \mathbf{v}||^2$$

Thus: maximize $||A\mathbf{u}||$ and take $\mathbf{v} = A^{\top}\mathbf{u} \implies$

$$\mathbf{u} = \mathbf{u}_1$$
 and $\mathbf{v} = A\mathbf{u}_1 = \sigma_1\mathbf{v}_1$

What has not been covered (but could have been):

- Hamming codes as basis problem
- 2D image processing as change of basis problem
- Image rectification
- Iterative methods of solving Ax = v:
 rewrite as x = Bx + x₀ and x_{n+1} = Bx_n + x₀
- Iterative methods for finding eigenvalues/eigenvectors
- PageRank as an eigenvalue problem
- Numerical issues (condition number, stability etc)
- LA and optimization problems
 - and lots of other fun stuff ...

Thanks for being with

Linear Algebra