Errores

Fuentes de error

Inherentes → errores de entrada

mediciones

Redondeo → limitaciones de memoria/almacenamiento

Truncamiento→ discretización — En esta materia se aplicarán métodos numéricos que serán fuentes de error de truncamiento en los resultados.

del un conjunto de muestras se extraerán medidas de centralidad y dispersión para establecer un valor representativo y una cota de error. Por ejemplo:

$$\mu \pm \sigma$$

Errores \rightarrow El ejercicio se basa en propagar errores inherentes cuando las mediciones son indirectas

Problema 2

Dado un círculo de diámetro D. Se toman varias mediciones con calibre D₁, D₂,...D_n, obteniéndose un diámetro muestral D_m y una incertidumbre ΔD (error absoluto).

- a) Dar la expresión del error absoluto asociado al área del círculo. ¿Es simétrico el intervalo obtenido?
- b) Dar la expresión del error absoluto asociado al área del círculo aplicando la teoría lineal de errores. Compararla con el ítem a). Indique ventajas y desventajas de cada caso.
- c) Agregar la incertidumbre que se cometería al aproximar π por 3.14 a la expresión de b)

$$D = D_m \pm \Delta D$$

$$A(D) = \frac{\pi D^2}{4}$$

$$A_m \pm \Delta A = \frac{\pi (D_m \pm \Delta D)^2}{4} = \frac{\pi (D_m^2 \pm 2D_m \Delta D + \Delta D^2)}{4}$$

$$A_m = \frac{\pi D_m^2}{4}$$

$$A_m = \frac{\pi D_m^2}{4}$$
 Rta a) $\Delta A = \pm \frac{\pi D_m \Delta D}{2} + \frac{\pi \Delta D^2}{4}$

La *Teoría Lineal* propaga los errores LINEALIZANDO la relación entre las variables A v D. Gráficamente se reemplazan los valores propagación de la función por los de la derivada (recta tangente en el punto representativo).

En la teoría lineal se obtiene directamente el termino con ΔD^1 . Cualquier otro termino de orden superior es despreciado

Para este caso resulta:

$$\Delta A \approx \Delta D. \tan \theta = \Delta D. \frac{\partial A}{\partial D} \bigg|_{D=D_m} = \Delta D. \frac{\pi D}{2} \bigg|_{D=D_m} = \Delta D. \frac{\pi D_m}{2}$$
 Rta b)

c) Ahora la constante π tiene incertidumbre: $\pi = \pi_m \pm \Delta \pi$

$$\Delta A \approx \left| \frac{\partial A}{\partial D} \right|_{D=D_m} \Delta D + \left| \frac{\partial A}{\partial \pi} \right|_{\pi=\pi_m} \Delta \pi \qquad 3.14 \quad 0.005$$

$$|\pi_m D_m| \qquad |D_m^2| \qquad \text{se agregan los módulos para contemplar el peor$$

 $\Delta A \approx \left| \frac{\pi_m D_m}{2} \right| \cdot \Delta D + \left| \frac{D_m^2}{4} \right| \cdot \Delta \pi$ Rta c)

se agregan los módulos para contemplar el peor caso posible (evitando restar términos)

