1. 首先根据两步握手逻辑, 画出 STG 图:

2. 将两步握手的 STG 图,编写成 phase_two.g 文件:

```
.outputs Aout Rout
.inputs Rin Ain
.graph
Rin+ Aout+
Ain- Aout+
Rin+ Rout+
Ain- Rout+
Aout+ Rin-
Rout+ Ain+
Rin- Aout-
Ain+ Aout-
Rin- Rout-
Ain+ Rout-
Aout- Rin+
Rout- Ain-
.marking{<Aout-,Rin+><Rout-,Ain->}
.end
```

3. 得到 phase_two.eqn 文件, 作为控制逻辑:

```
# EQN file for model p
# Generated by petrify 5.2 (compiled Tue 2 May 11:53:24 BST 2017)
# Outputs between brackets "[out]" indicate a feedback to input "out"
# Estimated area = 7.00

INORDER = Rin Ain Rout Aout csc0;
OUTORDER = [Rout] [Aout] [csc0];
[Rout] = csc0';
[Aout] = csc0';
[csc0] = (Ain Rin') + csc0 (Ain + Rin');
# No set/reset pins required.
```

4. 根据 phase_two.eqn 文件中等价关系,编写一级流水线的控制逻辑;再编写一级流水线数据通路的逻辑;最终得到三级流水线。

	3'h3		3h1	3'h2	3'h3	
/stage_3combind_tb/sc3/data1_out	3'h3	(3'h)	3'h1	3'h2	3'h3	
-/- /stage_3combind_tb/sc3/data2_in	3'h3	3'h0	3'h1)3'h2	(3'h3	
/> /stage_3combind_tb/sc3/data2_out	3'h3	(3'h)),3'h1),3'h2)3'h3	
/stage_3combind_tb/sc3/data3_in	3'h3	(3'h0)(3	h1 (3'h2		3'h3
<u>→</u>	3'h3	(3'h))3	h1 (3'h2		3'h3