Step 1: Express the solution as

$$y = x^{r} C C_{0} + c_{1} x + c_{2} x + ...$$

Step 2: plug in the series to the ODE

 $y' = \sum_{k=0}^{\infty} (k+r) C_{k} x$
 $y'' = \sum_{k=0}^{\infty} (k+r) (k+r-1) C_{k} x$
 $x'' = \sum_{k=0}^{\infty} (k+r) C_{k} x$

 $\frac{5\text{to}3}{\text{rr}}$: Find the indicial eq and the norts: r_1, r_2

 \Rightarrow

Step 4: For each r, find the recurrence relation (Note: After matching the coefficients,

For
$$r_1 = \frac{(-1)^k C_0}{2^k k! (1+\nu)(2+\nu)(3+\nu) - (k+\nu)}, k=1,2,3,...$$

For $r_2 = \frac{(-1)^k C_0}{2^k k! (1-\nu)(2-\nu)(3-\nu) ... (k-\nu)}, k=1,2,3,...$

Step 5: Plug in the cufficients and obtain the general solution

About "gamma function $\Gamma(x)$ " (in Appendix A):

Def: $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ (Check out the graph of $\Gamma(x)$ in Fig A.1)

Properties of $\Gamma(x)$: ① $\Gamma(x+1) = x\Gamma(x)$ ② $\Gamma(n+1) = n!$ when n > positive integer③ $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, $\Gamma(-\frac{1}{2}) = -2\sqrt{\pi}$ ④ $\Gamma(n) \to \infty$ when n = 0 or negative integer

Hovener, depending on the value of "v", there are two possible cases:

- 1) If V is

 To and Joy are

 So, general solution y =
- 2) If V is

 J_V(x) = , which means Jv and J-v are

 We first need to find out the 2nd
 - Q: How to find the 2nd linearly independent solution if one solution is given ?

In the following, let's do some examples with specific order v to see how. Bessel functions look like:

Bessel's eg of order 0:
$$x^2y'' + xy + x^2y = 0$$
 ($\nu = 0$)

general solution $\Rightarrow y = 0$

Bessel's eq of order $\frac{1}{2}$: $x^2y'' + xy' + (x^2 - \frac{1}{4})y = 0$ $(v = \frac{1}{2})$ general solution $\Rightarrow y =$

Properties of

-As x>0,

-For x>0,

-For x>0

Compared to the order O(V=0), except a phase shift of

Bessel's eq of order 1: $x^2y'' + xy' + (x^2 - 1)y = 0$ ($\nu = 1$)

general solution $\Rightarrow y =$

Plut

Properties of

 $-As \times \rightarrow 0$

- As Xis large

properties of

- AS X > 0

-Asxislarge

& Comparing Jy (Bessel functions of the first kind) of different orders:

Properties of Ju

- $J_{x}(x) =$
- 2) Ty (-x)
- 3) T_{\(\nu\)} (\(\nu\)) =
- 4) When xis large,

A Comparing Yo (Bessel functions of the second kind) of different orders:

Properties of Yu

- 1) As X > 0
 - 2) When x is large,

A final remark:

From the general solution of Dessel's equation y = N of that $Yx \to at$ the origin (x=0).