APPROCHE QUALITATIVE DE LA CINÉTIQUE ÉLECTROCHIMIQUE

Sommaire

I	Cinétique des réactions rédox - courbes courant-potentiel				
	I.1	Situation du problème et conventions	3		
	I.2	Lien entre vitesse de réaction rédox et courant d'électrode	4		
		a - Système à courant nul : équilibre électrochimique et vitesse nulle	4		
		b - Système à courant non nul : réaction dominante et vitesse non nulle	5		
	I.3	Etude expérimentale de la cinétique électrochimique pour une électrode donnée : le			
		montage à 3 électrodes (utile en TP)	5		
	I.4	Allure de la courbe et surtension	6		
II	Etude des courbes courant-potentiel				
	II.1	Les modes de transfert à l'électrode : transfert de charge (TC), transport de matière			
		(TM)	7		
	II.2	Contrôle par TC : systèmes rapides et systèmes lents	7		
		a - Systèmes rapides; exemple Fe^{3+}/Fe^{2+}	7		
		b - Systèmes lents	8		
		c - Cas particulier de l'eau	9		
		d - Influence de la nature de l'électrode \dots	10		
	II.3	Contrôle par TM : courant limite de diffusion - rôle de la concentration $\ \ldots \ \ldots$	11		
		a - Allure des courbes courant-potentiel	11		
		b - Quelques explications : loi de Fick et régime de diffusion $\ \ldots \ \ldots \ \ldots$	11		
	II.4	Vagues successives	12		
	II.5	Mur(s) du solvant - domaine d'électroactivité	12		
ш	Cine	étique des réactions rédox thermodynamiquement favorisées	13		
	III.1	Potentiel mixte (important)	13		
		a - Principe	13		
		h - Evemple : cémentation des ion argent(I) par le cuivre	14		

CHAPITRE V. APPROCHE QUALITATIVE	DE LA CINETIQUE ELECTROCHIMIQU

c - Blocage cinétique $\ \ldots \ \ldots \ \ldots \ \ldots \ 14$

I Cinétique des réactions rédox - courbes courant-potentiel

I.1 Situation du problème et conventions

On considère la demi-cellule électrochimique suivante (hors équilibre i.e. la réaction a lieu) :

FIGURE V.1 – Electrode conductrice en solution électrolytique du couple Ox/Red

La demi-équation de la réaction rédox du couple redox Ox/Red se produisant à la surface est :

$$\nu_{red}Red \xrightarrow[reduc]{oxyd} \nu_{Ox}Ox + ne^{-} \qquad (\xi)$$

FIGURE V.2 – Tranfert de charge au contact de l'électrode

DÉFINITION - (I.1) - 1:

milieu à conduction électronique : électrode
 transfert de charge électronique entre : et
 milieu à conduction ionique : électrolyte

Réaction électrochimique

• Transfert de charge entre l'électrode solide et la solution, soit deux phases différentes \Longrightarrow Etude d'une cinétique chimique hétérogène (dans ce cours)

Convention retenue:

- si le courant arrive sur l'électrode, c'est à dire si les électrons quittent celle-ci, il est compté positivement et l'électrode est une anode : $[i = i_a > 0]$
- si le courant quitte l'électrode, c'est à dire si les électrons arrivent sur celle-ci, il est compté négativement et l'électrode est une cathode : $i = i_c < 0$
- On définit dans un pemier temps les vitesses des réactions par :

$$v = \frac{d\xi}{dt}$$

I.2 Lien entre vitesse de réaction rédox et courant d'électrode

a - Système à courant nul : équilibre électrochimique et vitesse nulle

Si le courant est nul i=0 alors la $\frac{1}{2}$ cellule est à l'équilibre électrochimique (c'est par conséquent le cas pour l'autre éventuelle $\frac{1}{2}$ cellule).

■POINT DE VUE THERMODYNAMIQUE :

Le potentiel de l'électrode est donné par la loi de Nernst :

$$E_E = E_{equ} = V_E - V_{sol} = E_{Ox/Red}^0 + \frac{0.06}{n} \log \frac{[Ox]^{\nu_{ox}}}{[Red]^{\nu_{red}}}$$

■POINT DE VUE CINÉTIQUE :

• La vitesse de la réaction dans le sens de l'oxydation, ou vitesse anodique est définie par :

$$v_a = \frac{d\xi_{ox}}{dt} = \frac{1}{\nu_{ox}} \frac{dn_{ox}}{dt} = -\frac{1}{\nu_{red}} \frac{dn_{red}}{dt} = \frac{1}{n} \frac{dn_{e^-}}{dt} = \frac{1}{n\mathcal{F}} \frac{dQ}{dt}$$

IDÉE : la réaction se produit sur une électrode de surface connue \Longrightarrow on "normalise" la vitesse en divisant par la surface A de l'électrode :

Nouvelle définition de la vitesse :

$$v_a = \frac{1}{nA\mathcal{F}} \frac{dQ}{dt} = \frac{i_a}{nA\mathcal{F}} = \frac{j_a}{n\mathcal{F}} \ge 0$$

en utilisant la densité de courant anodique j_a .

• La vitesse de réaction dans le sens de la **réduction**, ou vitesse cathodique est obtenue par la même démarche avec :

$$v_c = \frac{1}{A} \frac{d\xi_{red}}{dt} = -\frac{1}{nA} \frac{dn_{e^-}}{dt} = -\frac{1}{nA\mathcal{F}} \frac{dQ}{dt} = -\frac{i_c}{nA\mathcal{F}} = -\frac{j_c}{n\mathcal{F}} \ge 0$$

On définit alors la vitesse globale de la réaction dans le sens $Red \longrightarrow Ox$ par la somme algébrique :

$$v_{Red \to Ox} = v_a - v_c = \frac{i_c + i_a}{nA\mathcal{F}} = \frac{i}{nA\mathcal{F}}$$
 avec i courant global sur l'électrode

A retent : En situation d'équilibre on a : $i=0 \Longrightarrow v_{Red \to Ox} = 0 \Longrightarrow v_a = v_c$

Système à courant non nul : réaction dominante et vitesse non nulle

HYPOTHÈSE: on fait sortir l'électrode de la situation d'équilibre en imposant un potentiel contrôlé par un générateur.

2 cas de figure:

 \rightarrow Si $E_E > E_{equ}$ alors la réaction dominante est une oxydation (l'électrode est une anode

$$\nu_{red}Red \xrightarrow{domin} \nu_{Ox}Ox + ne^-$$

$$v_a = \frac{i_a}{nA\mathcal{F}} > v_c > 0 \implies v_{Red \to Ox} = v_a - v_c = \frac{i}{nA\mathcal{F}} > 0$$

 \rightarrow Si $E_E < E_{equ}$ alors la réaction dominante est une réduction (l'électrode est une cathode):

$$\nu_{red}Red \xrightarrow{\frac{min}{domin}} \nu_{Ox}Ox + ne^{-}$$

$$\nu_{red}Red \xrightarrow{\underset{domin}{min}} \nu_{Ox}Ox + ne^{-}$$

$$v_{c} = -\frac{i_{c}}{nA\mathcal{F}} > v_{a} > 0 \implies v_{Red \to Ox} = v_{a} - v_{c} = \frac{i}{nA\mathcal{F}} < 0$$

FIGURE V.3 – Cas $E > E_{eq}$: l'oxydation domine

FIGURE V.4 – Cas $E < E_{eq}$: la réduction domine

CONCLUSION : faire un relevé de courant d'électrode revient à étudier la cinétique électrochimique de la réaction rédox se produisant sur l'électrode :

$$v_{Red \to Ox} = v_a - v_c = \frac{i_c + i_a}{nA\mathcal{F}} = \frac{i}{nA\mathcal{F}}$$

 ${f NB}:$ on aurait également pu étudier la réaction rédox dans le sens : $Ox \to Red$ qui aurait conduit à la vitesse : $v_{Ox \to Red} = v_c - v_a = -rac{i_c + i_a}{nA\mathcal{F}} = -rac{i}{nA\mathcal{F}}$ (moins pratique pour la suite en raison du signe -)

Etude expérimentale de la cinétique électrochimique pour une électrode donnée : le montage à 3 électrodes (utile en TP)

On sait que la mesure du courant d'électrode renseigne sur la cinétique de la réaction rédox dont elle est le siège.

QUESTION : quel montage pour étudier la cinétique de la réaction rédox sur une électode ou

RÉPONSE : le montage à 3 électrodes.

le voltmètre prend la tension entre l'électrode d'étude notée E et une électrode au calomel saturé ECS de potentiel parfaitement déterminé à $T=298~K~(E_{ECS}=0,246~V~$ à 298 K) et plongée dans la solution.

 \Diamond

FIGURE V.5 – Protocole d'étude des courbes intensité-potentiel

L'usage de l'ECS permet d'accéder au potentiel E_E de l'électrode d'étude E par le voltmètre qui mesure U_E , avec :

$$U_E = E_E - \underbrace{E_{ECS}}_{T=298K}_{0,246 \ V \simeq 0,25 \ V}$$

On peut faire varier la tension imposée par le générateur qui s'écrit $U_G = E_E - E(aux)$, et donc on fait varier $E_E \implies \begin{cases} \text{si } U_G > 0 \text{ oxydation sur (E) } et \ i > 0 \\ \text{si } U_G < 0 \text{ réduction sur (E) } et \ i < 0 \end{cases}$

Conclusion : on enregistre la courbe $I = f(U_E)$ ou mieux : $I = f(E_E)$ appelée Courbe courant-potentiel. et celle-ci renseigne sur la cinétique des réactions se produisant sur (E).

I.4 Allure de la courbe et surtension

La courbe acquise en faisant varier la tension d'électrode autour de la valeur d'équilibre :

Figure V.6 – Courbe courant potentiel de l'électrode (E) pour le couple Ox/Red

On définit les surtensions anodique $\eta_a > 0$ et cathodique $\eta_c < 0$ par les écarts de potentiel d'équilibre pour obtenir un courant mesurable, par exemple arbitrairement : $|i| = 10 \ \mu A$

 \diamond CPGE MP3...

$$\begin{cases}
\eta_a = E_E - E_{equ}|_{|i|=10 \ \mu A} > 0 \\
\eta_c = E_E - E_{equ}|_{|i|=-10 \ \mu A} < 0
\end{cases}$$

II Etude des courbes courant-potentiel

II.1 Les modes de transfert à l'électrode : transfert de charge (TC), transport de matière (TM)

La cinétique Rédox d'une électrode est hétérogène et essentiellement deux processus de transferts réactifs/produits/électrons peuvent être cinétiquement limitants.

2 processus:

- LE TRANSFERT DE MATIÈRE TM : processus de déplacement des réactifs/produits à proximité de l'électrode ; plus efficace si beaucoup de réactifs.
 - ♦ migration : déplacement des ions sous l'effet d'un champ électrique à proximité de (E)
 - ♦ diffusion : déplacement de matière par gradient de concentration de réactif/produit
 - ♦ convection : déplacement de matière par agitation (convection forcée)/gradient de température (convection naturelle)
- LE TRANSFERT DE CHARGE TC : processus de transfert des électrons en surface de l'électrode

FIGURE V.7 – Processus de tranfert de charge et transfert de masse sur l'électrode

IMPORTANT : c'est le processus le plus lent qui imposera la vitesse de réaction \Leftrightarrow **Processus limitant**

II.2 Contrôle par TC: systèmes rapides et systèmes lents

a - Systèmes rapides; exemple Fe^{3+}/Fe^{2+}

Hypothèses:

• Solution électrolytique d'ions fer II (Fe^{2+}) et fer III (Fe^{3+}) (en milieu sulfurique), et de concentration identique :

$$[Fe^{2+}] = [Fe^{3+}] \Longrightarrow E_{equ} = E(Fe^{3+}/Fe^{2+}) = E^0(Fe^{3+}/Fe^{2+}) + 0,06\log\underbrace{\frac{[Fe^{3+}]}{[Fe^{2+}]}}_{=1} = E^0(Fe^{3+}/Fe^{2+})$$

• Electrode d'étude : platine (Pt)

On enregistre la courbe courant-potentiel de l'électrode d'étude E. On obtient l'allure décrite sur la figure ci-dessous, soit :

FIGURE V.8 – Courbe courant-potentiel du système Fe^{3+}/Fe^{2+}

COMMENTAIRES:

• Si le courant est nul i = 0

On mesure le potentiel d'équilibre thermodynamique du couple Fe^{3+}/Fe^{2+} soit $E=E_{equ}=0,68\ V=E^0(Fe^{3+}/Fe^{2+})$.

- Si le courant est non nul $i \neq 0$
- \diamond Pour $E_E > E_{equ}$ il se produit l'oxydation des ions Fer II :

$$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$$
 branche anodique

 ${\bf NB}:$ le courant noté i_a (dit anodique) est très important pour une faible valeur de surtension anodique par rapport à E_{equ} .

 \diamond Pour $E_E < E_{equ}$ il se produit la réduction des ions Fer III :

$$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$$
 branche cathodique

 ${f NB}$: le courant noté i_c (dit cathodique) est très important pour une faible valeur de surtension cathodique par rapport à E_{equ} .

<u>Bilan</u>: Compte tenu de ces observations, le système Fe^{3+}/Fe^{2+} est qualifié de système rapide.

b - Systèmes lents

Reprenons l'expérience précédente en utilisant cette fois une solution d'acide arsénieux et arsénique, respectivement $HAsO_2$ et H_3AsO_4 .

Les nombres d'oxydation de l'élément arsenic dans les composés acides utilisés sont :

$$NO_{As}(H_3AsO_4) = +V$$

et

$$NO_{As}(HAsO_2) = +III$$

Ainsi, 2 électrons doivent être mis en jeu dans la demi-réaction rédox entre les deux composés :

$$H_3AsO_4 + 2e^- + 2H^+ \xrightarrow{\frac{1}{2}} HAsO_2 + 2H_2O$$

La courbe $I=f(E_E)$ obtenue présente l'allure ci-dessous :

FIGURE V.9 – Courbe intensité-potentiel du système $H_3AsO_4/HAsO_2$

- i=0 Dans ce système rédox, on constate que la situation de courant nul n'est pas obtenue pour un potentiel clairement défini, mais un assez large plateau à courant nul apparaît ($\simeq 0,5~V$) $\Rightarrow E_{equ}$ potentiel d'équilibre du couple non mesurable : $E+\eta_c < E < E+\eta_a$
- $i \neq 0$ alors • $i = 10\mu A > 0$ si $E > E_{equ} + \eta_A \Rightarrow \eta_A = E - E_{equ} > 0$ surtension anodique forte. • $i = -10\mu A < 0$ si $E < E_{equ} + \eta_C \Rightarrow \eta_C = E - E_{equ} < 0$ surtension cathodique forte (en valeur absolue).

Compte tenu de ces observations, le système $H_3AsO_4/HAsO_2$ est qualifié de système lent.

c - Cas particulier de l'eau

2 couples rédox font intervenir l'eau : $\left[\begin{array}{c} O_2/H_2O\\ H^+(H_2O)/H_2 \end{array}\right.$

Suivant le potentiel imposé par le générateur, l'électrode d'étude se comporte :

• soit en anode i>0 pour $E>E_{eq}(O_2/\underbrace{H_2O}_{_{\rm H_2O\ r\'educteur}})$ avec la demi-réaction :

$$H_2O \longrightarrow \underbrace{\frac{1}{2}O_2}_{\text{dégagement dioxygène}} + 2H^+ + 2e^- \quad E_{equ} = \underbrace{E^0(O_2/H_2O)}_{=1,23\ V} + \underbrace{\frac{0,06}{2}\log[H^+]^2\left(\frac{P(O_2)}{P^0}\right)^{1/2}}_{}$$

• soit en cathode i < 0 pour $E < E_{eq}(\underbrace{H^+}_{H^+(H_2O) \text{ oxydant}}/H_2)$ avec la demi-réaction :

$$H^+(H_2O)$$
 oxydant

$$2H^{+} + 2e^{-} \longrightarrow \underbrace{H^{+}(H_{2}O) \text{ oxydant}}_{\text{dégagement dihydrogène}} E_{equ} = \underbrace{E^{0}(H^{+}/H_{2})}_{=0 \ V} + \frac{0,06}{2} \log \frac{[H^{+}]^{2}}{\left(\frac{P(H_{2})}{P^{0}}\right)}$$

FIGURE V.10 – Courbe courant-potentiel de l'eau avec $P_{H_2}=P_{O_2}=P^0$ et $[H^+]=1\ mol.L^{-1}$

On constate les surtensions de valeurs respectives :

$$\begin{cases} \eta_A = E_A - E_{equ}(O_2/H_2O) \simeq 0,5 \ V : \text{surtension anodique (oxydation) forte} \Rightarrow \text{système lent} \\ \eta_C = E_C - E_{equ}(H^+/H_2) \simeq -0,05 \ V : \text{surtension cathodique (réduction) faible} \Rightarrow \text{système rapide} \end{cases}$$

d - Influence de la nature de l'électrode

QUESTION : quel est l'influence de la nature du métal de l'électrode sur la surtension? On fait divers relevés du courant cathodique de l'eau obtenus avec des électrodes de nature différente :

FIGURE V.11 – Courbe courant-potentiel cathodique du couple H^+/H_2 sur différents types d'électrodes

On note que les valeurs de surtensions cathodiques η_C varient très fortement suivant la nature de l'électrode:

Electrode	Pt	Fe	Zn	Hg
η_C	-0,05 V	-4 V	-0.75 V	-1,04 V

II.3 Contrôle par TM : courant limite de diffusion - rôle de la concentration

a - Allure des courbes courant-potentiel

QUESTION : que se passe-t-il si on augmente fortement le potentiel d'électrode, soit :

$$|E_E - E_{eau}| \gg |\eta_{a/c}|$$

RÉPONSE : on constate un palier de courant (anodique ou cathodique)

⇒ limitation de la cinétique par le transfert de matière (TM) : l'approvisionnement en réactif auprès de l'électrode devient limitant (renouvellement insuffisant des réactifs)

⇒ Courant limite de diffusion

FIGURE V.12 – Courants limites de diffusion anodique et cathodique

b - Quelques explications : loi de Fick et régime de diffusion

Hypothèses:

- on choisit l'exemple du courant anodique du couple Rédox Fe^{3+}/Fe^{2+}
- le transfert de matière vers l'électrode se fait essentiellement par diffusion (gradient de concentration).
- la surface de l'électrode est grande \Longrightarrow PB 1D
- $\bullet\,$ on considère la réaction anodique $Fe^{2+}\longrightarrow\;Fe^{2+}+e^{-}$

On appelle \overrightarrow{J}_n le nombre de mole d'ions $[Fe^{2+}]$ traversant une surface unitaire par unité de temps : $[\overrightarrow{J}_n] = [n] \cdot L^{-2} \cdot T^{-1}$:

$$\overrightarrow{J}_n = -D_n \cdot \overrightarrow{grad}[Fe^{2+}] \stackrel{\text{\tiny 1D}}{=} -D_n \cdot \frac{d[Fe^{2+}]}{dx} \cdot \overrightarrow{e_x} \qquad \textbf{Loi de Fick avec} \ D_n \ \textbf{coefficient de diffusion} \ [D_n] = L^2.T^{-1}$$

En appelant δ l'épaisseur de couche limite dans laquelle se fait la variation de concentration (schéma à faire), on peut modéliser la loi de Fick à 1D par :

$$J_n = -D_n \frac{[Fe^{2+}]_{\infty} - [Fe^{2+}]_{electr}}{\delta}$$

Si on est en régime de diffusion pure alors la zone de proximité de l'électrode est totalement appauvrie en réactif $\longrightarrow [Fe^{2+}]_{electr} \simeq 0$:

$$J_n = -D_n \frac{[Fe^{2+}]_{\infty}}{\delta}$$

Ainsi, la densité de courant anodique maximale est :

$$J_{a,lim} = -\underbrace{\frac{n}{\nu_F e^{2+}}}_{=1} \mathcal{F} \cdot j_n = \mathcal{F} D_n \frac{[Fe^{2+}]_{\infty}}{\delta}$$

Si S est la surface totale immergée de l'électrode (surface d'échange), alors :

$$i_{a,lim} = \frac{\mathcal{F}SD_n}{\delta} \cdot [Fe^{2+}]_{\infty}$$

CONCLUSION:

le courant maximal est proportionnel à la concentration en réactif dans la solution (loin de l'électrode).

A RETENIR:

$$|i_{a/c,max}| \sim [\text{réactif}]$$

<u>IMPORTANT!!!!</u>: si le solvant ou l'électrolyte support présent en très forte concentration est impliqué en tant que réactif ⇒ pas de courant limite car réactif non limitant!!!

II.4 Vagues successives

Hypothèse: présence d'autres couples \Longrightarrow apparition de "vagues successives, résultat de la superposition des courbes courant-potentiel.

Exemple : Ox/Red en présence de Ox'/Red' et Ox''/Red'' :

La courbe courant potentiel est donc :

II.5 Mur(s) du solvant - domaine d'électroactivité

<u>Hypothèse</u> : couple Ox/Red seul, et on augmente la surtension $|E_E-E_{equ}|$ \nearrow

 \implies les vagues des couples de l'eau peuvent intervenir chacune dans une branche et former des "murs" de courant appelé **murs du solvant**.

<u>CONCLUSION</u>: impossibilité de mesurer la cinétique d'un couple en dehors du domaine :

 $E \in [E_{equ}(H^+/H_2) + \eta_c, E_{equ}(O_2/H_2O) + \eta_a] \equiv$ domaine d'électroactivité dans l'eau (/domaine utile)

Figure V.13 – Apparition de "vagues successives"

FIGURE V.14 – Mur du solvant

III Cinétique des réactions rédox thermodynamiquement favorisées

QUESTION : si une réaction rédox est thermodynamiquement possible (cf chap. IV règle du γ), qu'en est-il de sa cinétique? \longrightarrow vérification à l'aide des courbes courant-potentiel!

III.1 Potentiel mixte (important)

a - Principe

<u>HYPOTHÈSE</u>: réaction rédox entre les deux couples Ox_1/Red_1 et Ox_2/Red_2 tel que les deux demiréactions se déroulent rigoureusement sur le même locus \Longrightarrow simple échange électronique entre les deux couples sans courant extérieur mesurable 1 :

$$Ox_2 + Red_1 \longrightarrow Ox_1 + Red_2$$

EN LIVE : ajouter la cellule galvanique associée en court-circuit.

La conservation de la charge impose $i_a = -i_c$ dans la courbe courant-potentiel \Longrightarrow permet de définir le potentiel commun E_M de ces deux couples qui impose la relation $i_a = -i_c$:

 \implies ce potentiel E_M est appelé **potentiel mixte**.

^{1.} en quelques sortes, une situation hors d'équiilbre à courant nul. Le chapitre sur la corrosion sera l'occasion de revenir sur cette définition.

Figure V.15 – Illustration du potentiel mixte

b - Exemple : cémentation des ion argent(I) par le cuivre

La cémentation est l'une des techniques permettant l'extraction sélective des ions de métaux précieux d'une solution; on peut par exemple réduire les ions Ag^+ d'une solution par contact avec du cuivre métallique :

Principe : action du cuivre (réducteur) $E^0(Cu^{2+}/Cu) = 0,34 V$ sur les ions argent (oxydant) $E^0(Ag^+/Ag) = 0,8 V$

Exercice de cours: (III.1) - n° 1 Montrer que la réaction :

$$\underbrace{Cu}_{ajout\acute{e}\ en\ poudre}$$
 + $2Ag^+$ \longrightarrow Cu^{2+} + $\underbrace{2Ag}_{extrait\ par\ filtration}$

démarre spontanément. Sachant que les deux couples sont rapides, donnée l'allure de la courbe courantpotentiel.

c - Blocage cinétique

Dans certains cas la cinétique rédox est défavorable. Par exemple un morceau d'aluminium plongé dans une solution d'acide chlorhydrique n'est pas attaqué par les ions H^+ ($[H^+] = 1 \ mol.L^{-1}$ et $P_{H_2} = P^0$) en raison du **caractère "lent"** du couple H^+/H_2 sur électrode d'aluminium :

$$Al + 3H^+ \longrightarrow Al^{3+} + \frac{3}{2}H^2 \implies$$
 ne se produit pas!!! \implies on parle de blocage cinétique.

Figure V.16 – Illustration du blocage cinétique

<u>Exercice de cours:</u> (III.1) - n° 2 Si le morceau d'aluminium est touché par un fil de platine on constate un dégagement de dihydrogène au niveau du platine. Interpréter.

CPGE MP3...