

SH1101

132 X 64 Dot Matrix OLED/PLED Segment/Common Driver with Controller

Features

- Support maximum 132 X 64 dot matrix panel
- Embedded 132 X 64 bits SRAM
- Operating voltage:
 - Logic voltage supply: VDD1 = 2.4V 3.5V
 - DC-DC voltage supply: VDD2 = 2.4V 3.5V
 - OLED Operating voltage supply: VPP = 7.0V 16.0V
- Maximum segment output current: 320µA
- Maximum common sink current: 45mA
- 8-bit 6800-series parallel interface, 8-bit 8080-series parallel interface, serial peripheral interface

- Programmable frame frequency and multiplexing ratio
- Row re-mapping and column re-mapping (ADC)
- Vertical scrolling
- On-chip oscillator
- Available internal DC-DC converter
- 256-step contrast control on monochrome passive OLED panel
- Low power consumption
 - Sleep mode: <5μA
- Wide range of operating temperatures: -40 to +85°C
- Available in COG and TAB form

General Description

SH1101 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display system. SH1101 consists of 132 segments, 64 commons that can support a maximum display resolution of 132 X 64. It is designed for Common Cathode type OLED panel.

SH1101 embeds with contrast control, display RAM oscillator and efficient DC-DC converter, which reduces the number of external components and power consumption. SH1101 is suitable for a wide range of compact portable applications, such as sub-display of mobile phone, calculator and MP3 player, etc.

1

V2.0

Pin Configuration

Pad Configuration

Block Diagram

Pad Description

Power Supply

Pad No.	Symbol	I/O	Description
44 - 50	VDD1	Supply	2.4 - 3.5V power supply input.
53, 66, 91	VDD1	Supply	2.4 - 3.5V power supply output for pad option.
32 - 35	VDD2	Supply	2.4 - 3.5V power supply pad for the internal buffer of the DC-DC voltage converter.
10 - 27	Vss	Supply	Ground.
36, 40, 51, 55, 57, 59, 61, 63, 89, 92	Vss	Supply	Ground output for pad option.
74 - 80, 98 - 101	VPP	Supply	This is the most positive voltage supply pad of the chip. It should be supplied externally.
94	VPP	Supply	This is the most positive voltage output for pad option, which cannot be used as the most positive voltage input.
6 - 9	VsL	Supply	This is a segment voltage reference pad. This pad should be connected to Vss externally.
1 - 5	VcL	Supply	This is a common voltage reference pad. This pad should be connected to Vss externally.

OLED Driver Supplies

Pad No.	Symbol	I/O	Description		
97	VREF	I	This is a voltage reference pad for pre-charge voltage in driving OLED device. Voltage should be set to match with the OLED driving voltage in current drive phase. It can either be supplied externally or by connecting to VPP.		
93	lref	0	This is a segment current reference pad. A resistor should be connected between this pad and Vss. Set the current at $10\mu A$.		
67 - 73, 95, 96	Vсомн	0	This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and Vss.		
28 - 31	SW	0	This is an output pad driving the gate of the external NMOS of the booster circuit.		
37	FB	I	This is a feedback resistor input pad for the booster circuit. It is used to adjust the booster output voltage level, VPP.		
38	SENSE	I	This is a source current pad of the external NMOS of the booster circuit.		
39	39 VBREF O		This is an internal voltage reference pad for booster circuit. A stabilization capacitor, typical $1\mu F$, should be connected to Vss.		

System Bus Connection Pads

Pad No.	Symbol	I/O			Desc	cription			
56	CL	I/O	This pad is the system clock input. When internal clock is enabled, this pad should be Left open. The internal clock is output from this pad. When internal oscillator is disabled, this pad receives display clock signal from external clock source.						
90	CLS	I	CLS = CLS = When 0	the internal clock of "H": Internal oscilla "L": Internal oscilla CLS = "L", an exte operation.	ator circuit is enab ator circuit is disab	led (requires exter	rnal input). d to the CL pad for		
52	C86	I	C86 = '	the MPU interface 'H": 8080 series M 'L": 6800 series M	IPU interface.				
54	P/S	I	This is the parallel data input/serial data input switch pad. P/S = "H": Parallel data input. P/S = "L": Serial data input. When P/S = "L", D2 to D7 are HZ. D2 to D7 may be "H", "L" or Open. RD (E) WR (R/W) are fixed to either "H" or "L". With serial data input, RAM displa data reading is not supported. These are MPU interface input selection pads See the following table for selecting different interfaces: 6800-Parallel 8080-Parallel Serial Interface C86 0 1 0 P/S 1 1 0				out, RAM display		
58	CS	I	-	nd is the chip selecta/command I/O is	•	= "L", then the ch	nip select becomes active,		
60	RES	I		a reset signal inpu peration is perform	<u> </u>		settings are initialized. The		
62	A0	I	data or A0 = "H	a command. I": the inputs at D0	to D7 are treated	l as display data.	ether the data bits are and registers.		
64	\overline{WR} (R/ \overline{W})	I	A0 = "L": the inputs at D0 to D7 are transferred to the command registers. This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU \overline{WR} signal. The signals on the data bus are latched at the rising edge of the \overline{WR} signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When R/\overline{W} = "H": Read. When R/\overline{W} = "L": Write.						
65	RD (E)	I	When on the sign when the when of						

System Bus Connection Pads (continued)

Pad No.	Symbol	I/O	Description
81 - 88	D0 - D7	I/O	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI). At this time, D2 to D7 are set to high impedance. When the chip select is inactive, D0 to D7 are set to high impedance.
81	(SCL)	I	
82	(SI)	I	

OLED Drive Pads

Pad No.	Symbol	I/O	Description
133 - 121, 266 - 278, 120 - 102, 279 -297	COM0 - 63	0	These pads are Common signal output for OLED display.
134 - 265	SEG0 - 131	0	These pads are Segment signal output for OLED display.

Test Pads

Pad No.	Symbol	I/O	Description			
41	TEST1	I	Test pads, internal pull low, no connection for user.			
43	TEST2	0	Test pads, no connection for user.			
42	TEST3	I	Test pads, no connection for user.			
-	NC	-	NC pads, no connection for user.			

Functional Description

Microprocessor Interface Selection

The 8080-Parallel Interface, 6800-Parallel Interface or Serial Interface (SPI) can be selected by different selections of C86, P/S as shown in Table 1.

Table. 1

	6800-Parallel Interface	8080-Parallel Interface	Serial Interface
C86	0	1	0
P/S	1	1	0

6800-series Parallel Interface

The parallel interface consists of 8 bi-directional data pads (D7-D0), \overline{WR} (R/ \overline{W}), \overline{RD} (E), A0 and \overline{CS} . When \overline{WR} (R/ \overline{W}) = "H", read operation from the display RAM or the status register occurs. When \overline{WR} (R/ \overline{W}) = "L", Write operation to display data RAM or internal command registers occurs, depending on the status of A0 input. The \overline{RD} (E) input serves as data latch signal (clock) when it is "H", provided that \overline{CS} = "L" as shown in Table. 2.

Table, 2

P/S	C86	Туре	cs	Α0	RD	WR	D0 to D7
1	0	6800 microprocessor bus	CS	A0	E	R/\overline{W}	D0 to D7

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processings are internally performed, which require the insertion of a dummy read before the first actual display data read. This is shown in Figure. 1 below.

Figure. 1

8080-series Parallel Interface

The parallel interface consists of 8 bi-directional data pads (D7-D0), \overline{WR} (R/ \overline{W}), \overline{RD} (E), A0 and \overline{CS} . The \overline{RD} (E) input serves as data read latch signal (clock) when it is "L" provided that \overline{CS} = "L". Display data or status register read is controlled by A0 signal. The \overline{WR} (R/ \overline{W}) input serves as data write latch signal (clock) when it is "L" and provided that \overline{CS} = "L". Display data or command register write is controlled by A0 as shown in Table. 3.

Table. 3

P/S	C86	Туре	CS	Α0	RD	WR	D0 to D7
1	1	8080 microprocessor bus	CS	A0	RD	\overline{WR}	D0 to D7

Similar to 6800-series interface, a dummy read is also required before the first actual display data read.

Data Bus Signals

The SH1101 identifies the data bus signal according to A0, \overline{RD} (E) and \overline{WR} (R/ \overline{W}) signals.

Table. 4

Common	6800 processor	8080 pr	ocessor	Function	
A0	(R/W)	RD	WR	Function	
1	1	0	1	Reads display data.	
1	0	1	0	Writes display data.	
0	1	0	1	Reads status.	
0	0	1	0	Writes control data in internal register. (Command)	

Serial Interface (SPI)

The serial interface consists of serial clock SCL, serial data SI, A0 and \overline{CS} . SI is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... and D0. A0 is sampled on every eighth clock and the data byte in the shift register is written to the display data RAM or command register in the same clock. See Figure. 2.

Table, 5

P/S	C86	Туре	CS	A0	RD	WR	D0	D1	D2 to D7
0	0	Serial Interface (SPI)	CS	A0	-	-	SCL	SI	(HZ)

Note: "-" Must always be HIGH or LOW.

Figure. 2

- When the chip is not active, the shift registers and the counter are reset to their initial statuses.
- Read is not possible while in serial interface mode.
- Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend the operation
 be rechecked on the actual equipment.

Access to Display Data RAM and Internal Registers

This module determines whether the input data is interpreted as data or command. When A0 = "H", the inputs at D7 - D0 are interpreted as data and be written to display RAM. When A0 = "L", the inputs at D7 - D0 are interpreted as command, they will be decoded and be written to the corresponding command registers.

Display Data RAM

The Display Data RAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 132 X 64 bits.

For mechanical flexibility, re-mapping on both segment and common outputs can be selected by software.

For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display.

The Page Address Circuit

As shown in Figure. 3, page address of the display data RAM is specified through the Page Address Set Command. The page address must be specified again when changing pages to perform access.

The Column Address

As shown in Figure. 3, the display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/ write command. This allows the MPU display data to be accessed continuously. Because the column address is independent of the page address, when moving, for example, from page0 column 83H to page 1 column 00H, it is necessary to re-specify both the page address and the column address.

Furthermore, as shown in Table. 6, the Column re-mapping (ADC) command (segment driver direction select command) can be used to reverse the relationship between the display data RAM column address and the segment output. Because of this, the constraints on the IC layout when the OLED module is assembled can be minimized.

Table, 6

Segment Output	SEG0		SEG131
ADC "0"	0 (H) →	Column Address	→ 83 (H)
ADC "1"	83 (H) ←	Column Address	← 0 (H)

The Line Address Circuit

The line address circuit, as shown in Figure. 3, specifies the line address relating to the common output when the contents of the display data RAM are displayed. Using the display start line address set command, what is normally the top line of the display can be specified (this is the COM0 output when the common output mode is normal, and the COM63 output for SH1101, when the common output mode is reversed. The display area is a 64-line area for the SH1101 from the display start line address.

If the line addresses are changed dynamically using the display start line address set command, screen scrolling, page swapping, etc. that can be performed relationship between display data RAM and address (if initial display line is 1DH).

Figure. 3

The Oscillator Circuit

This is a RC type oscillator (Figure. 4) that produces the display clock. The oscillator circuit is only enabled when CLS = "H". When CLS = "L", the oscillation stops and the display clock is inputted through the CL terminal.

Figure. 4

DC-DC Voltage Converter

It is a switching voltage generator circuit, designed for hand held applications. In SH1101, built-in DC-DC voltage converter accompanied with an external application circuit (shown in Figure. 5) can generate a high voltage supply VPP from a low voltage supply input VDD2. VPP is the voltage supply to the OLED driver block.

Figure. 5

$$VPP=(1+\frac{R1}{R2}) X VBREF, (R2: 80 - 120k\Omega)$$

Current Control and Voltage Control

This block is used to derive the incoming power sources into different levels of internal use voltage and current. VPP and VDD2 are external power supplies. VREF, a reference voltage, which is used to derive the driving voltage for segments and commons. IREF is a reference current source for segment current drivers.

Common Drivers/Segment Drivers

Segment drivers deliver 132 current sources to drive OLED panel. The driving current can be adjusted up to $320\mu A$ with 256 steps. Common drivers generate voltage scanning pulses.

Reset Circuit

When the RES input falls to "L", these reenter their default state. The default settings are shown below:

- 1. Display is OFF. Common and segment are in high impedance state.
- 2. 132 X 64 Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 is mapped to column address 00H and COM0 mapped to row address 00H).
- 4. Shift register data clear in serial interface.
- 5. Display start line is set at display RAM line address 00H.
- 6. Column address counter is set at 0.
- 7. Normal scanning direction of the common outputs.
- 8. Contrast control register is set at 80H.
- 9. Internal DC-DC is selected.

Commands

The SH1101 uses a combination of A0, \overline{RD} (E) and \overline{WR} (R/ \overline{W}) signals to identify data bus signals. As the chip analyzes and executes each command using internal timing clock only regardless of external clock, its processing speed is very high and its busy check is usually not required. The 8080 series microprocessor interface enters a read status when a low pulse is input to the \overline{RD} pad and a write status when a low pulse is input to the \overline{WR} pad. The 6800 series microprocessor interface enters a read status when a high pulse is input to the \overline{RD} pad and a write status when a low pulse is input to this pad. When a high pulse is input to the E pad, the command is activated. (For timing, see AC Characteristics.). Accordingly, in the command explanation and command table, \overline{RD} (E) becomes 1(HIGH) when the 6800 series microprocessor interface reads status of display data. This is an only different point from the 8080 series microprocessor interface.

Taking the 8080 series, microprocessor interface as an example command will explain below.

When the serial interface is selected, input data starting from D7 in sequence.

Command Set

1. Set Lower Column Address: (00H - 0FH)

2. Set Higher Column Address: (10H - 1FH)

Specifies column address of display RAM. Divide the column address into 4 higher bits and 4 lower bits. Set each of them into successions. When the microprocessor repeats to access to the display RAM, the column address counter is incremented during each access until address 132 is accessed. The page address is not changed during this time.

Higher bits Lower bits

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	0	0	1	A7	A6	A5	A4
0	1	0	0	0	0	0	А3	A2	A1	Α0

A7	A6	A5	A4	A3	A2	A1	A0	Line address
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
			:	•				:
1	0	0	0	0	0	1	1	131

Note: Don't use any commands not mentioned above.

3 - 5. Reserved Command

These three commands are reserved for user.

6. Set Display Start Line: (40H - 7FH)

Specifies line address (refer to Figure. 3) to determine the initial display line or COM0. The RAM display data becomes the top line of OLED screen. It is followed by the higher number of lines in ascending order, corresponding to the duty cycle. When this command changes the line address, the smooth scrolling or page change takes place.

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	1	A5	A4	А3	A2	A1	Α0

A5	A4	A3	A2	A1	A0	Line address
0	0	0	0	0	0	0
0	0	0	0	0	1	1
			:			:
1	1	1	1	1	0	62
1	1	1	1	1	1	63

7. Set Contrast Control Register: (Double Bytes Command)

This command is to set contrast setting of the display. The chip has 256 contrast steps from 00 to FF. The segment output current increases as the contrast step value increases.

Segment output current setting: ISEG = $\alpha/256$ X IREF X scale factor

Where: α is contrast step; IREF is reference current equals 10 μ A; Scale factor = 32.

■ The Contrast Control Mode Set: (81H)

When this command is input, the contrast data register set command becomes enabled. Once the contrast control mode has been set, no other command except for the contrast data register command can be used. Once the contrast data set command has been used to set data into the register, then the contrast control mode is released.

A0	$\frac{E}{RD}$	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	0	0	0	1

■ Contrast Data Register Set: (00H - FFH)

By using this command to set eight bits of data to the contrast data register; the OLED segment output assumes one of the 256 current levels.

When this command is input, the contrast control mode is released after the contrast data register has been set.

A0	$\frac{E}{RD}$	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0	ISEG
0	1	0	0	0	0	0	0	0	0	0	Small
0	1	0	0	0	0	0	0	0	1	0	
0	1	0	0	0	0	0	0	0	1	1	
0	1	0					:				:
0	1	0	1	0	0	0	0	0	0	0	POR
0	1	0					:				:
0	1	0	1	1	1	1	1	1	1	0	
0	1	0	1	1	1	1	1	1	1	1	Large

When the contrast control function is not used, set the D7 - D0 to 1000,0000.

8. Set Segment Re-map: (A0H - A1H)

Change the relationship between RAM column address and segment driver. The order of segment driver output pads can be reversed by software. This allows flexible IC layout during OLED module assembly. For details, refer to the column address section of Figure. 3. When display data is written or read, the column address is incremented by 1 as shown in Figure. 1.

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	0	0	0	ADC

When ADC = "L", the right rotates (normal direction). (POR)

When ADC = "H", the left rotates (reverse direction).

9. Set Entire Display OFF/ON: (A4H - A5H)

Forcibly turns the entire display on regardless of the contents of the display data RAM. At this time, the contents of the display data RAM are held.

This command has priority over the normal/reverse display command.

Α0	$\frac{E}{RD}$	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	0	1	0	D

When D = "L", the normal display status is provided. (POR)

When D = "H", the entire display ON status is provided.

10. Set Normal/Reverse Display: (A6H -A7H)

Reverses the display ON/OFF status without rewriting the contents of the display data RAM.

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	0	1	1	D

When D = "L", the RAM data is high, being OLED ON potential (normal display). (POR)

When D = "H", the RAM data is low, being OLED ON potential (reverse display)

11. Set Multiplex Ration: (Double Bytes Command)

This command switches default 64 multiplex modes to any multiplex ratio from 1 to 64. The output pads COM0-COM63 will be switched to corresponding common signal.

■ Multiplex Ration Mode Set: (A8H)

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	1	0	0	0

■ Multiplex Ration Data Set: (00H - 3FH)

A0	$\frac{E}{RD}$	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0	Multiplex Ratio
0	1	0	*	*	0	0	0	0	0	0	1
0	1	0	*	*	0	0	0	0	1	0	2
0	1	0	*	*	0	0	0	0	1	1	3
0	1	0					:				:
0	1	0	*	*	1	1	1	1	1	0	63
0	1	0	*	*	1	1	1	1	1	1	64 (POR)

12. Set DC-DC OFF/ON: (Double Bytes Command)

This command is to control the DC-DC voltage converter. The converter will be turned on by issuing this command then display ON command. The panel display must be off while issuing this command.

■ DC-DC Control Mode Set: (ADH)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	1	1	0	1

■ DC-DC ON/OFF Mode Set: (8AH - 8BH)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	1	0	1	D

When D = "L", DC-DC is disable.

When D = "H", DC-DC will be turned on when display on. (POR)

Table. 7

DC-DC STATUS	DISPLAY ON/OFF STATUS	Description
0	0	Sleep mode
0	1	External VPP must be used.
1	0	Sleep mode
1	1	Built-in DC-DC is used, Normal Display

13. Display OFF/ON: (AEH - AFH)

Alternatively turns the display on and off.

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	1	1	1	D

When D = "L", Display OFF OLED. (POR)

When D = "H", Display ON OLED.

When the display OFF command is executed, power saver mode will be entered.

Sleep mode:

This mode stops every operation of the OLED display system, and can reduce current consumption nearly to a static current value if no access is made from the microprocessor. The internal status in the sleep mode is as follows:

- (1) Stops the oscillator circuit and DC-DC circuit.
- (2) Stops the OLED drive and outputs HZ as the segment/common driver output.
- (3) Holds the display data and operation mode provided before the start of the sleep mode.
- (4) The MPU can access to the built-in display RAM.

14. Set Page Address: (B0H - B7H)

Specifies page address to load display RAM data to page address register. Any RAM data bit can be accessed when its page address and column address are specified. The display remains unchanged even when the page address is changed.

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	1	Аз	A2	A1	Ao

Аз	A2	A1	Ao	Page address
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7

Note: Don't use any commands not mentioned above for user.

15. Set Common Output Scan Direction: (C0H - C8H)

This command sets the scan direction of the common output allowing layout flexibility in OLED module design. In addition, the display will have immediate effect once this command is issued. That is, if this command is sent during normal display, the graphic display will be vertically flipped.

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	0	D	*	*	*

When D = "L", Scan from COM0 to COM [N -1]. (POR)

When D = "H", Scan from COM [N -1] to COMO.

16. Set Display Offset: (Double Bytes Command)

This is a double byte command. The next command specifies the mapping of display start line to one of COM0-63 (it is assumed that COM0 is the display start line, that equals to 0). For example, to move the COM16 towards the COM0 direction for 16 lines, the 6-bit data in the second byte should be given by 010000. To move in the opposite direction by 16 lines, the 6-bit data should be given by (64-16), so the second byte should be 100000.

■ Display Offset Mode Set: (D3H)

Α0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	1	0	0	1	1

■ Display Offset Data Set: (00H~3FH)

A0	$\frac{E}{RD}$	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0	COMx
0	1	0	*	*	0	0	0	0	0	0	0 (POR)
0	1	0	*	*	0	0	0	0	1	0	1
0	1	0	*	*	0	0	0	0	1	1	2
0	1	0					:				:
0	1	0	*	*	1	1	1	1	1	0	62
0	1	0	*	*	1	1	1	1	1	1	63

Note: "*" stands for "Don't care"

17. Set Display Clock Divide Ratio/Oscillator Frequency: (Double Bytes Command)

This command is used to set the frequency of the internal display clocks (DCLKs). It is defined as the divide ratio (Value from 1 to 16) used to divide the oscillator frequency. POR is 1. Frame frequency is determined by divide ratio, number of display clocks per row, MUX ratio and oscillator frequency.

■ Divide Ratio/Oscillator Frequency Mode Set: (D5H)

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	1	0	1	0	1

■ Divide Ratio/Oscillator Frequency Data Set: (00H - 3FH)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	A7	A6	A5	A4	Аз	A2	A1	Ao

 A_3 - A_0 defines the divide ration of the display clocks (DCLK). Divide Ration = A[3:0]+1.

Аз	A2	A1	Ao	Divide Ration
0	0	0	0	1 (POR)
		:		:
1	1	1	1	16

A7 - A4 sets the oscillator frequency. Oscillator frequency increase with the value of A[7:4] and vice versa.

Ат	A6	A5	A4	Oscillator Frequency of fosc
0	0	0	0	-25%
0	0	0	1	-20%
0	0	1	0	-15%
0	0	1	1	-10%
0	1	0	0	-5%
0	1	0	1	fosc (POR)
0	1	1	0	+5%
0	1	1	1	+10%
1	0	0	0	+15%
1	0	0	1	+20%
1	0	1	0	+25%
1	0	1	1	+30%
1	1	0	0	+35%
1	1	0	1	+40%
1	1	1	0	+45%
1	1	1	1	+50%

18. Set Dis-charge/Pre-charge Period: (Double Bytes Command)

This command is used to set the duration of the pre-charge period. The interval is counted in number of DCLK. POR is 2 DCLKs.

■ Pre-charge Period Mode Set: (D9H)

Α0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	1	1	0	0	1

■ Dis-charge/Pre-charge Period Data Set: (00H - FFH)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	A7	A6	A5	A4	Аз	A2	A1	Ao

Pre-charge Period Adjust: (A3 - A0)

Аз	A2	A1	Ao	Pre-charge Period
0	0	0	0	INVALID
0	0	0	1	1 DCLKs
0	0	1	0	2 DCLKs (POR)
		:		:
1	1	1	0	14 DCLKs
1	1	1	1	15 DCLKs

Dis-charge Period Adjust: (A7 - A4)

۸-7	۸۵	۸۶	Λ.4	Die oberge Beried
A7	A6	A5	A4	Dis-charge Period
0	0	0	0	INVALID
0	0	0	1	1 DCLKs
0	0	1	0	2 DCLKs (POR)
		:		:
1	1	1	0	14 DCLKs
1	1	1	1	15 DCLKs

19. Set Common pads hardware configuration: (Double Bytes Command)

This command is to set the common signals pad configuration (sequential or alternative) to match the OLED panel hardware layout

■ Common Pads Hardware Configuration Mode Set: (DAH)

A0	E RD	$\frac{R}{WR}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	1	1	0	1	0

■ Sequential/Alternative Mode Set: (02H - 12H)

A0	$\frac{E}{RD}$	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	0	0	D	0	0	1	0

When D = "L", Sequential.

COM31, 30 - 1, 0	SEG0, 1 - 130, 131	COM32, 33 - 62, 63

When D = "H", Alternative. (POR)

001100 00 0 0	0500 4 400 404	00144 0 04 00
COM62, 60 – 2, 0	SEG0, 1 - 130, 131	COM1, 3 - 61, 63

20. Set VCOM Deselect Level: (Double Bytes Command)

This command is to set the common pad output voltage level at deselect stage.

■ VCOM Deselect Level Mode Set: (DBH)

A0	$\frac{E}{RD}$	R/\overline{W} \overline{WR}	D7	D6	D5	D4	D3	D2	D1	D0	
0	1	0	1	1	0	1	1	0	1	1	l

■ VCOM Deselect Level Data Set: (00H - FFH)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	A7	A6	A5	A4	Аз	A2	A1	Ao

Vcom = β X VREF = (0.430 + A[7:0] X 0.006415) X <math>VREF

A[7:0]	β	A[7:0]	β
00H	0.430	20H	
01H		21H	
02H		22H	
03H		23H	
04H		24H	
05H		25H	
06H		26H	
07H		27H	
08H		28H	
09H		29H	
0AH		2AH	
0BH		2BH	
0CH		2CH	
0DH		2DH	
0EH		2EH	
0FH		2FH	
10H		30H	
11H		31H	
12H		32H	
13H		33H	
14H		34H	
15H		35H	0.770 (POR)
16H		36H	
17H		37H	
18H		38H	
19H		39H	
1AH		3AH	
1BH		3BH	
1CH		3CH	
1DH		3DH	
1EH		3EH	
1FH		3FH	
40H - FFH	1		

21. Read-Modify-Write: (E0H)

A pair of Read-Modify-Write and End commands must always be used. Once read-modify-write is issued, column address is not incremental by read display data command but incremental by write display data command only. It continues until End command is issued. When the End is issued, column address returns to the address when read-modify-write is issued. This can reduce the microprocessor load when data of a specific display area is repeatedly changed during cursor blinking or others.

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	0

Cursor display sequence:

22. End: (EEH)

Cancels Read-Modify-Write mode and returns column address to the original address (when Read-Modify-Write is issued.)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	1	1	1	0

Figure. 7

23. NOP: (E3H)

Non-Operation Command.

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	1

24. Write Display Data

Write 8-bit data in display RAM. As the column address is incremental by 1 automatically after each write, the microprocessor can continue to write data of multiple words.

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
1	1	0			W	/rite R	AM da	ta		

25. Read Status

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	BUSY	ON/OFF	*	*	*	0	0	0

BUSY: When high, the SH1101 is busy due to internal operation or reset. Any command is rejected until BUSY goes low. The busy check is not required if enough time is provided for each cycle.

ON/OFF: Indicates whether the display is on or off. When goes low the display turns on. When goes high, the display turns off. This is the opposite of Display ON/OFF command.

26. Read Display Data

Reads 8-bit data from display RAM area specified by column address and page address. As the column address is increment by 1 automatically after each write, the microprocessor can continue to read data of multiple words. A single dummy read is required immediately after column address being setup. Refer to the display RAM section of FUNCTIONAL DESCRIPTION for details. Note that no display data can be read via the serial interface.

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
1	0	1			R	ead R	AM da	ta		

Command Table

Command	Code											Function
Command	Α0	RD	\overline{WR}	D7	D6	D5	D4	D3	D2	D1	D0	Function
Set Column Address 4 lower bits	0	1	0	0	0	0	0	Lowe	er colu	mn ad	dress	Sets 4 lower bits of column address of display RAM in register. (POR = 00H)
Set column Address Higher bits	0	1	0	0	0	0	1	High	er colu	mn ad	dress	Sets 4 higher bits of column address of display RAM in register. (POR = 10H)
3. Reserved Command	0	1	0	0	0	1	0	0	1	0	0	Reserved
4. Reserved Command	0	1	0	0	0	1	0	0	1	1	0	Reserved
5. Reserved Command	0	1	0	0	0	1	0	1	1	1	D	Reserved
6. Set Display Start Line	0	1	0	0	1			Line a	ddress	1		Specifies RAM display line for COM0. (POR = 40H)
7. The Contrast Control Mode Set	0	1	0	1	0	0	0	0	0	0	1	This command is to set Contrast Setting of the display.
Contrast Data Register Set	0	1	0			(Contra	st Data	a			The chip has 256 contrast steps from 00 to FF. (POR = 80H)
8. Set Segment Re-map (ADC)	0	1	0	1	0	1	0	0	0	0	ADC	The right (0) or left (1) rotation. (POR = A0H)
9. Set Entire Display OFF/ON	0	1	0	1	0	1	0	0	1	0	D	Selects normal display (0) or Entire Display ON (1). (POR = A4H)
10. Set Normal/ Reverse Display	0	1	0	1	0	1	0	0	1	1	D	Normal indication (0) when low, but reverse indication (1) when high. (POR = A6H)
11. Multiplex Ration Mode Set	0	1	0	1	0	1	0	1	0	0	0	This command switches default 63 multiplex mode to
Multiplex Ration Data Set	0	1	0	*	*		N	Multiple	ex Rati	0		any multiplex ratio from 1 to 64. (POR = 3FH)
12. DC-DC Control Mode Set	0	1	0	1	0	1	0	1	1	0	1	This command is to control the DC-DC voltage DC-DC will be
DC-DC ON/OFF Mode Set	0	1	0	1	0	0	0	1	0	1	D	turned on when display on converter (1) or DC-DC OFF (0). (POR = 8BH)

Command Table (Continued)

0						Code						Formations
Command	Α0	RD	\overline{WR}	D7	D6	D5	D4	D3	D2	D1	D0	Function
13. Display OFF/ON	0	1	0	1	0	1	0	1	1	1	D	Turns on OLED panel (1) or turns off (0). (POR = AEH)
14. Set Page Address	0	1	0	1	0	1	1	F	Page A	Addres	S	Specifies page address to load display RAM data to page address register. (POR = B0H)
15. Set Common Output Scan Direction	0	1	0	1	1	0	0	D	*	*	*	Scan from COM0 to COM [N - 1] (0) or Scan from COM [N -1] to COM0 (1). (POR = C0H)
16. Display Offset Mode Set	0	1	0	1	1	0	1	0	0	1	1	This is a double byte command which specifies
Display Offset Data Set	0	1	0	*	*			CO	Мх			the mapping of display start line to one of COM0-63. (POR = 00H)
17. Set Display Divide Ratio/Oscillator Frequency Mode Set	0	1	0	1	1	0	1	0	1	0	1	This command is used to set the frequency of the internal display clocks. (POR = 50H)
Divide Ratio/Oscillator Frequency Data Set	0	1	0	Osc	illator	Freque	ency		Divide	Ratio		
18. Dis-charge / Pre-charge Period Mode Set	0	1	0	1	1	0	1	1	0	0	1	This command is used to set the duration of the dis-charge and pre-charge
Dis-charge /Pre-charge Period Data Set	0	1	0	Dis	s-charç	ge Peri	od	Pro	e-char	ge Per	iod	period. (POR = 22H)
19. Common Pads Hardware Configuration Mode Set	0	1	0	1	1	0	1	1	0	1	0	This command is to set the common signals pad configuration. (POR = 12H)
Sequential/Alternat ive Mode Set	0	1	0	0	0	0	D	0	0	1	0	
20. VCOM Deselect Level Mode Set	0	1	0	1	1	0	1	1	0	1	1	This command is to set the common pad output voltage
VCOM Deselect Level Data Set	0	1	0			VC	COM (F	3 X VRI	EF)			level at deselect stage. (POR = 35H)
21. Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	Read-Modify-Write start.
22. End	0	1	0	1	1	1	0	1	1	1	0	Read-Modify-Write end.
23. NOP	0	1	0	1	1	1	0	0	0	1	1	Non-Operation Command
24. Write Display Data	1	1	0	Write RAM data								
25. Read Status	0	0	1	BUSY	ON/ OFF	*	*	*	0	0	0	
26. Read Display Data	1	0	1			R	ead R	AM da	ta			

Note: Do not use any other command, or the system malfunction may result.

Command Description

Instruction Setup: Reference

- 1. Power On and Initialization
- 1.1. When the built-in DC-DC pump power is being used immediately after turning on the power:

1.2. When the external DC-DC pump power is being used immediately after turning on the power:

2. Power Off

Absolute Maximum Rating*

DC Supply Voltage (VDD1, VDD2) -0.3V to +3.6V DC Supply Voltage (VPP) -0.3V to +18V Input Voltage -0.3V to VDD1 + 0.3V Operating Ambient Temperature -40°C to +85°C Storage Temperature -55°C to +125°C

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device under these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

DC Characteristics (Vss = 0V, VDD1 = 2.4 - 3.5V TA =+25°C, unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
VDD1	Operating voltage	2.4	-	3.5	V	
VDD2	Operating voltage	2.4	-	3.5	V	
VPP	OLED Operating voltage	7.0	-	16.0	٧	
VBREF	Internal voltage reference	1.20	1.26	1.32	٧	With one 1μF capacitor
IDD1	Dynamic current consumption 1	-	110	160	μΑ	VDD1 = 3V, VDD2 = 3V, IREF = 10μ A, Contrast α = 256, Bulid-in DC-DC OFF, Display ON, display data = All ON, No panel attached.
lDD2	Dynamic current consumption 2	-	190	285	μΑ	VDD1 = 3V, VDD2 = 3V, VPP = 12V, IREF = -10 μ A, Contrast α = 256, Bulid-in DC-DC ON, Display ON, Display data = All ON, No panel attached.
lpp	OLED dynamic current consumption	-	550	825	μΑ	VDD1 = 3V, VDD2 = 3V, VPP = 12V, IREF = -10 μ A, Contrast α = 256, Display ON, All ON, No panel attached.
ISP	Sleep mode current consumption in VDD1 & VDD2	-	0.01	5	μА	During sleep, TA = +25°C, VDD1 = 3V, VDD2 = 3V.
101	Sleep mode current consumption in VPP	-	0.01	5	μΑ	During sleep, TA = +25°C, VPP = 12V.
		-308	-320	-342	μΑ	VDD1 = 3V, VPP = 12V, IREF = -10 μ A, RLOAD = 20k Ω , Display ON. Contrast α = 256.
ISEG	Sogment output ourrent	-	-220	-	μΑ	VDD1 = 3V, VPP = 12V, IREF = -10 μ A, RLOAD = 20k Ω , Display ON. Contrast α = 176.
ISEG	Segment output current	-	-120	-	μΑ	VDD1 = 3V, VPP = 12V, IREF = -10 μ A, RLOAD = 20k Ω , Display ON. Contrast α = 96.
		-	-20	-	μА	VDD1 = 3V, VPP = 12V, IREF = -10 μ A, RLOAD = 20k Ω , Display ON. Contrast α = 16.
ΔlSEG1	Segment output current uniformity	-	-	±3	%	Δ ISEG1 = (ISEG - IMID)/IMID X 100% IMID = (IMAX + IMIN)/2 ISEG [0:131] at contrast α = 256.
∆lseg2	Adjacent segment output current uniformity	-	-	±2	%	\triangle ISEG2 = (ISEG [N] - ISEG [N+1])/(ISEG [N] + ISEG [N+1]) X 100% ISEG [0:131] at contrast α = 256.

DC Characteristics (Continued)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
VIHC	High-level input voltage	0.8 X VDD1	-	VDD1	٧	A0, D0 - D7, \overline{RD} (E), \overline{WR} (R/ \overline{W}), \overline{CS} , CLS,
VILC	Low-level input voltage	Vss	-	0.2 X VDD1	V	CL, C86, P/S and RES .
Vонс	High-level output voltage	0.8 X V DD1	-	VDD1	٧	Iон = -0.5mA (D0 - D7, and CL).
Volc	Low -level output voltage	Vss	-	0.2 X VDD1	V	IoL = 0.5mA (D0 - D7, and CL).
lu	Input leakage current	-1.0	-	1.0	μА	$\frac{\text{Vin} = \text{VDD1 or Vss} (A0, \overline{RD} (E), \overline{WR} (R/\overline{W}),}{\overline{CS}, CLS, C86, P/S \text{ and } \overline{RES}).}$
lHZ	HZ leakage current	-1.0	-	1.0	μА	When the D0 - D7, and CL are in high impedance.
fosc	Oscillation frequency	315	360	420	kHz	TA = +25°C.
fFRM	Frame frequency for 64 Commons	-	104	-	Hz	When fosc = 360kHz, Divide ratio = 1, common width = 54 DCLKs.

AC Characteristics

(1) System buses Read/Write characteristics 1 (For the 8080 Series Interface MPU)

 $(V_{DD1} = 2.4 - 3.5V, T_A = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc8	System cycle time	300	-	-	ns	
tAS8	Address setup time	0	-	-	ns	
tAH8	Address hold time	0	-	-	ns	
tDS8	Data setup time	40	-	-	ns	
tDH8	Data hold time	15	-	-	ns	
tcH8	Output disable time	10	-	70	ns	CL = 100pF
tACC8	RD access time	-	-	140	ns	CL = 100pF
tccLw	Control L pulse width (WR)	100	-	-	ns	
tcclr	Control L pulse width (RD)	120	-	-	ns	
tcchw	Control H pulse width (WR)	100	-	-	ns	
tcchr	Control H pulse width (RD)	100	-	-	ns	
tr	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

(2) System buses Read/Write Characteristics 2 (For the 6800 Series Interface MPU)

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc6	System cycle time	300	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tAH6	Address hold time	0	-	-	ns	
tDS6	Data setup time	40	-	-	ns	
tDH6	Data hold time	15	-	-	ns	
tон6	Output disable time	10	-	70	ns	CL = 100pF
tACC6	Access time	-	-	140	ns	CL = 100pF
tewnw	Enable H pulse width (Write)	100	-	-	ns	
tewhr	Enable H pulse width (Read)	120	-	-	ns	
tewLw	Enable L pulse width (Write)	100	-	-	ns	
tEWLR	Enable L pulse width (Read)	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

(3) System buses Write characteristics 3(For the Serial Interface MPU)

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	250	-	-	ns	
tsas	Address setup time	150	-	-	ns	
tsah	Address hold time	150	-	-	ns	
tsps	Data setup time	100	-	-	ns	
tsdh	Data hold time	100	-	-	ns	
tcss	CS setup time	120	-	-	ns	
tсsн	CS hold time time	60	ı	ı	ns	
tshw	Serial clock H pulse width	100	ı	ı	ns	
tsLw	Serial clock L pulse width	100	ı		ns	
tR	Rise time	-	ı	15	ns	
tF	Fall time	-	-	15	ns	

(4) Reset Timing

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tR	Reset time	-	-	1.0	μS	
trw	Reset low pulse width	5.0	-	-	μS	

Application Circuit (for reference only)

Reference Connection to MPU:

1. 8080 series interface: (Internal oscillator, External VPP)

Figure. 8

Note:

C1 - $\text{C3}\text{: }4.7\mu\text{F}.$

R1: about $910k\Omega$, R1 = (Voltage at IREF - Vss)/IREF

2. 6800 Series Interface: (Internal oscillator, Built-in DC-DC)

Figure. 9

Note:

L, D, Q, R1, R2, R3, C1 - C6: Please refer to following description of DC-DC module. C6, C7: $4.7\mu F$

R3: about 910k Ω , R4 = (Voltage at IREF - Vss)/IREF

3. Serial Interface: (External oscillator, External VPP)

Figure. 10

Note:

C1 - C3: $4.7\mu F$

R1: about 910k Ω , R1 = (Voltage at IREF - Vss)/IREF

DC-DC:

Below application circuit is an example for the input voltage of 3V VDD2 to generate VPP of about 12V@10mA-25mA application.

Figure. 11

Symbol	Value	Recommendation
L	10μΗ	LQH3C100K24
D	SCHOTTKY DIODE	20V@0.5A, MBR0520
Q	MOSFET	N-FET with low R ds(on) and low V th , MGSF1N02LT1
R1	930kΩ	1%, 1/8W
R2	110kΩ	1%, 1/8W
R3	0.12Ω	1%, 1/2W
C1	1 - 10μF	Ceramic/16V
C2	0.1 - 1μF	Ceramic/16V
Сз	1μF	Ceramic/16V
C4	6.8μF	Low ESR/25V
C5	1000pF	Ceramic/16V

TAB Pin Layout

(Copper Side View)

TAB Pin Assignment (Total: 249 pads)

Pin No.	Designation	Pin No.	Designation	Pin No.	Designation	Pin No.	Designation
1	NC	41	COM49	81	SEG123	121	SEG83
2	VPP	42	COM47	82	SEG122	122	SEG82
3	Vсомн	43	COM45	83	SEG121	123	SEG81
4	İREF	44	COM43	84	SEG120	124	SEG80
5	D7	45	COM41	85	SEG119	125	SEG79
6	D6	46	COM39	86	SEG118	126	SEG78
7	D5	47	COM37	87	SEG117	127	SEG77
8	D4	48	COM35	88	SEG116	128	SEG76
9	D3	49	COM33	89	SEG115	129	SEG75
10	D2	50	COM31	90	SEG114	130	SEG74
11	D1	51	COM29	91	SEG113	131	SEG73
12	D0	52	COM27	92	SEG112	132	SEG72
13	RD	53	COM25	93	SEG111	133	SEG71
14	\overline{WR}	54	COM23	94	SEG110	134	SEG70
15	A0	55	COM21	95	SEG109	135	SEG69
16	RES	56	COM19	96	SEG108	136	SEG68
17	CS	57	COM17	97	SEG107	137	SEG67
18	NC	58	COM15	98	SEG106	139	SEG66
19	P/S	59	COM13	99	SEG105	139	SEG65
20	C86	60	COM11	100	SEG104	140	SEG64
21	VDD1	61	COM9	101	SEG103	141	SEG63
22	NC	62	COM7	102	SEG102	142	SEG62
23	NC	63	COM5	103	SEG101	143	SEG61
24	NC	64	COM3	104	SEG100	144	SEG60
25	VBREF	65	COM1	105	SEG99	145	SEG59
26	SENSE	66	NC	106	SEG98	146	SEG58
27	FB	67	NC	107	SEG97	147	SEG57
28	VDD2	68	NC	108	SEG96	148	SEG56
29	SW	69	NC	109	SEG95	149	SEG55
30	Vss	70	NC	110	SEG94	150	SEG54
31	NC	71	NC	111	SEG93	151	SEG53
32	NC	72	NC	112	SEG92	152	SEG52
33	NC	73	SEG131	113	SEG91	153	SEG51
34	COM63	74	SEG130	114	SEG90	154	SEG50
35	COM61	75	SEG129	115	SEG89	155	SEG49
36	COM59	76	SEG128	116	SEG88	156	SEG48
37	COM57	77	SEG127	117	SEG87	157	SEG47
38	COM55	78	SEG126	118	SEG86	158	SEG46
39	COM53	79	SEG125	119	SEG85	159	SEG45
40	COM51	80	SEG124	120	SEG84	160	SEG44

TAB Pin Assignment (continued)

Pin No.	Designation	Pin No.	Designation	Pin No.	Designation	Pin No.	Designation
161	SEG43	184	SEG20	207	NC	230	COM28
162	SEG42	185	SEG19	208	NC	231	COM30
163	SEG41	186	SEG18	209	NC	232	COM32
164	SEG40	187	SEG17	210	NC	233	COM34
165	SEG39	188	SEG16	211	NC	234	COM36
166	SEG38	189	SEG15	212	NC	235	COM38
167	SEG37	190	SEG14	213	NC	236	COM40
168	SEG36	191	SEG13	214	NC	237	COM42
169	SEG35	192	SEG12	215	NC	238	COM44
170	SEG34	193	SEG11	216	COM0	239	COM46
171	SEG33	194	SEG10	217	COM2	240	COM48
172	SEG32	195	SEG9	218	COM4	241	COM50
173	SEG31	196	SEG8	219	COM6	242	COM52
174	SEG30	197	SEG7	220	COM8	243	COM54
175	SEG29	198	SEG6	221	COM10	244	COM56
176	SEG28	199	SEG5	222	COM12	245	COM58
177	SEG27	200	SEG4	223	COM14	246	COM60
178	SEG26	201	SEG3	224	COM16	247	COM62
179	SEG25	202	SEG2	225	COM18	248	NC
180	SEG24	203	SEG1	226	COM20	249	NC
181	SEG23	204	SEG0	227	COM22		
182	SEG22	205	NC	228	COM24		
183	SEG21	206	NC	229	COM26		

Note:

Following is the details of pad connection in SH1101B (TAB Form).

- "CLS" pad connects to "VDD1" pad, Internal oscillator circuit is enabled.
- "VREF" pad connects to "VPP" pad.
- "Vcl" & "Vsl" pad connects to "Vss" pad.
- "C86" & "P/S" pad options can be selected by user. So SH1101B (TAB Form) supports 8-bit 6800-series parallel interface, 8-bit 8080-series parallel interface or serial peripheral interface.
- SH1101B (TAB Form) supports internal DC-DC converter function.

External View of TAB Pins

Cautions Concerning Storage:

- 1. When storing the product, it is recommended that it be left in its shipping package.

 After the seal of the packing bag has been broken, store the products in a nitrogen atmosphere.
- 2. Storage conditions:

Storage state	Storage conditions		
unopened (less than 90 days)	Temperature: 5 to 30°C; humidity: 80%RH or less.		
After seal of broken (less than 30 days)	Room temperature, dry nitrogen atmosphere		

- 1. Don't store in a location exposed to corrosive gas or excessive dust.
- 2. Don't store in a location exposed to direct sunlight of subject to sharp changes in temperature.
- 3. Don't store the product such that it subjected to an excessive load weight, such as by stacking.
- 4. Deterioration of the plating may occur after long-term storage, so special care is required. It is recommended that the products be inspected before use.

Ordering Information

Part No.	Package		
SH1101G	Gold bump on chip tray		
SH1101B	TAB Form		

Data Sheet Revision History

Version	Content	Date
2.0	Horizontal scroll command description deleted	Mar. 2005
1.0	Original	Mar. 2005