GEOMETRIA ANALÍTICA :: PROVA 01

PROF. TIAGO MACEDO

Nome:	Assinatura:	RA:

Observações

- (1) Provas sem nomes e sem assinaturas serão consideradas inválidas.
- (2) A prova é individual, sem consulta e sem uso de calculadora.
- (3) Serão aplicadas sanções a alunos por improbidade na execução de trabalhos acadêmicos.
- (4) Não é permitida a utilização de quaisquer aparelhos eletrônicos durante a prova. A utilização de um por um aluno implicará na invalidação da avaliação deste aluno.
- (5) Resolva as questões de forma clara, objetiva e organizada, e justifique cada passo. Estes pontos serão levados em consideração durante a correção.

Questão 1 (2,0 pontos). Considere a matriz

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \pi & \pi^2 & \pi^3 \\ 1 & e & e^2 & e^3 \\ 1 & \sqrt{2} & 2 & 2\sqrt{2} \end{pmatrix}.$$

- (a) (1,0 ponto) Determine se A é inversível ou se A é singular. Justifique. (Dica: "sim" não é a resposta correta.)
- (b) (1,0 ponto) Quantas soluções tem o sistema linear

$$\begin{cases} x + y + z + w = 1 \\ x + \pi y + \pi^2 z + \pi^3 w = 1 \\ x + e y + e^2 z + e^3 w = 1 \\ x + \sqrt{2}y + 2z + 2\sqrt{2}w = 1 \end{cases}$$
? Justifique.

Data: 12 de setembro de 2016.

Questão 2 (2,0 pontos). Considere um trapézio ABCD, onde os lados \overline{AB} e \overline{CD} são paralelos. Sejam M o ponto médio do lado \overline{AD} e N o ponto médio do lado \overline{BC} :

Mostre que:

- (a) (1,0 ponto) O segmento \overline{MN} é paralelo aos lados \overline{AB} e \overline{CD} .
- (b) (1,0 ponto) A medida do segmento \overline{MN} é a média aritmética das medidas dos lados \overline{AB} e \overline{CD} .

3

Questão 3 (4,0 pontos). Considere o seguinte sistema linear nas variáveis $x, y \in z$:

$$\Sigma : \begin{cases} x + ky + (k+1)z = k \\ (k+1)x + z = k \\ ky = 0, \end{cases}$$

onde $k \in \mathbb{R}$.

- (a) (1,5 ponto) Determine $k \in \mathbb{R}$ de modo que:
 - (i) Σ seja impossível.
 - (ii) Σ seja possível determinado.
 - (iii) Σ seja possível indeterminado.
- (b) (0.5 ponto) Defina o que é uma solução para o sistema linear Σ .
- (c) (0.5 ponto) Tome k=0 e encontre o conjunto S_0 de todas as soluções de Σ . Justifique.
- (d) (1,5 ponto) Encontre um subcojunto de S_0 (item (c)) que seja linearmente independente e gere S_0 . Justifique.

Questão 4 (4,0 pontos). Determine se as seguintes afirmativas são verdadeiras ou falsas. Em seguida, demonstre as que forem verdadeiras e encontre contra-exemplos para as que forem falsas.

- (a) (1,0 ponto) Toda matriz $A \in M_2(\mathbb{R})$ é equivalente à matriz $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- (b) (1,0 ponto) Se $A \in M_3(\mathbb{R})$ é inversível, então A^t é inversível.
- (c) (1,0 ponto) Para quaisquer $A, B \in M_3(\mathbb{R})$, temos que $(A+B)^2 = A^2 + 2AB + B^2$.
- (d) (1,0 ponto) Se $A,B\in M_2(\mathbb{R})$ são inversíveis, então A+B é inversível.

GEOMETRIA ANALÍTICA :: PROVA 02

PROF. TIAGO MACEDO

Nome:	Assinatura:	RA:

Observações

- (1) Provas sem nomes e sem assinaturas serão consideradas inválidas.
- (2) A prova é individual, sem consulta e sem uso de calculadora.
- (3) Serão aplicadas sanções a alunos por improbidade na execução de trabalhos acadêmicos.
- (4) Não é permitida a utilização de quaisquer aparelhos eletrônicos durante a prova. A utilização de um por um aluno implicará na invalidação da avaliação deste aluno.
- (5) Resolva as questões de forma clara, objetiva e organizada, e justifique cada passo. Estes pontos serão levados em consideração durante a correção.

Questão 1 (3,0 pontos). Considere $\alpha = \{(1,0,0), (0,1,0), (0,0,1)\}$ e

$$\beta = \left\{ \left(\frac{\sqrt{3}}{4}, \frac{1}{4}, \frac{\sqrt{3}}{2} \right), \left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{4} \right), \left(\frac{\sqrt{5}}{20}, -\frac{\sqrt{15}}{4}, \frac{\sqrt{5}}{10} \right) \right\}.$$

- (a) (1,0 ponto) Mostre que β não é uma base ortonormal de \mathbb{R}^3 .
- (b) (1,0 ponto) Calcule a matriz M de mudança de bases da β para α .
- (c) (1,0 ponto) Mostre que $M(v)_{\alpha} = (v)_{\beta}$ para todo $v \in \mathbb{R}^3$.

Data: 31 de outubro de 2016.

Questão 2 (3,0 pontos). Considere os vetores v = (1, -2, 1), u = (1, 2, 3), w = (4, 5, 6).

- (a) (1,0 ponto) Mostre que $\lambda v = u \wedge w$ para algum $\lambda \in \mathbb{R}$.
- (b) (1,0 ponto) Mostre que $S=\{u,v,w\}$ não é um conjunto ortogonal de $\mathbb{R}^3.$
- (c) (1,0 ponto) Mostre que $\left[u,v,w\right]=18.$

Questão 3 (3,0 pontos). Considere o ponto p=(1,2,3), o vetor v=(4,5,6), e a reta $r=\{p+\lambda v\mid \lambda\in\mathbb{R}\}$ em \mathbb{R}^3 .

- (a) (1,0 ponto) Escreva as equações paramétricas de r.
- (b) (1,0 ponto) Escreva as equações simétricas de r.
- (c) (1,0 ponto) Mostre que r é o conjunto solução do sistema linear

$$\begin{cases} 5x - 4y = -3 \\ 3x - 2z = -3 \end{cases}.$$

Questão 4 (3,0 pontos). Considere o ponto p=(1,1,1), os vetores u=(-1,-1,2) e v=(0,0,2), e o plano $\Pi=\{p+\lambda u+\mu v\mid \lambda,\mu\in\mathbb{R}\}$ em \mathbb{R}^3 .

- (a) (1,0 ponto) Escreva a equação geral de Π .
- (b) (1,0 ponto) Determine todos os vetores normais a Π , ou seja, todos os vetores $X \in \mathbb{R}^3$ tais que $X \perp Y$ para todo $Y \in \Pi$.
- (c) (1,0 ponto) Determine a intersecção do plano Π com a reta r (da Questão 3), ou seja, todos os vetores $X \in \mathbb{R}^3$ tais que $X \in r$ e $X \in \Pi$.

GEOMETRIA ANALÍTICA :: PROVA 03

PROF. TIAGO MACEDO

Nome:	Assinatura:	RA:

Observações

- (1) Provas sem nomes e sem assinaturas serão consideradas inválidas.
- (2) A prova é individual, sem consulta e sem uso de calculadora.
- (3) Serão aplicadas sanções a alunos por improbidade na execução de trabalhos acadêmicos.
- (4) Não é permitida a utilização de quaisquer aparelhos eletrônicos durante a prova. A utilização de um por um aluno implicará na invalidação da avaliação deste aluno.
- (5) Resolva as questões de forma clara, objetiva e organizada, e justifique cada passo. Estes pontos serão levados em consideração durante a correção.

Questão 1 (4,0 pontos). Determine se as seguintes afirmativas são verdadeiras ou falsas. Justifique as suas respostas.

- (a) A reta $\{(1,1,0) + \lambda(1,-1,1) \mid \lambda \in \mathbb{R}\}$ e o plano $\{(x,y,z) \in \mathbb{R}^3 \mid -x-y+z=2\}$ são paralelos.
- (b) A reta $\{(0,1,0) + \lambda(\sqrt{2},\sqrt{2},0) \mid \lambda \in \mathbb{R}\}$ e o plano $\{(x,y,z) \in \mathbb{R}^3 \mid y+z=10\}$ formam um ângulo de $\pi/6$.
- (c) A distância entre o ponto (1,0,1) e a reta $\{(x,y,z)\in\mathbb{R}^3\mid x=2y=3z\}$ é $\sqrt{34}/7$.
- (d) A distância da origem ao plano $\{(x,y,z)\in\mathbb{R}^3\mid x-2y-2z=0\}$ é 2.

Questão 2 (3,0 pontos). Considere as seguintes retas em \mathbb{R}^3 :

$$r = \{(1,1,2) + \lambda(1,0,1) \mid \lambda \in \mathbb{R}\} \quad \text{e} \quad s = \{(\pi,\sqrt{17},e^2) + \mu(1,0,-1) \mid \mu \in \mathbb{R}\}.$$

- (a) (1,0 ponto) Mostre que o ângulo entre r e s é $\pi/2$.
- (b) (1,0 ponto) Calcule $r\cap s$ e determine se re ssão perpendiculares.
- (c) (1,0 ponto) Mostre que a distância entre r e s é $\sqrt{17}-1$.

Questão 3 (2,0 pontos). Escreva, em coordenadas polares, a equação de uma elipse centrada na origem, cujo eixo maior está contido no eixo x e tem comprimento 6. Verifique sua resposta.

Questão 4 (3,0 pontos). Considere as seguintes curvas em \mathbb{R}^2 :

$$\gamma_1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + 3xy + 2y^2 = 1\}$$
 e $\gamma_2 = \{(x,y) \in \mathbb{R}^2 \mid 2x^2 + 3xy + 2y^2 = 2\}.$

- (a) (1,0 ponto) Determine se γ_1 é uma elipse, uma hipérbole, ou uma parábola.
- (b) (1,0 ponto) Determine se γ_2 é uma elipse, uma hipérbole, ou uma parábola.
- (c) (1,0 ponto) Calcule os 4 pontos distintos, A,B,C e D, onde γ_1 e γ_2 se intersectam e mostre que a área do paralelogramo ABCD é 3.