Preliminares

Teorema 1. Sea $K \subseteq \mathbb{R}^n$. Entonces, K es compacto si y solo si K es cerrado y acotado.

Funciones continuas en \mathbb{R}^n

Definición 2. Sean $K \subseteq \mathbb{R}^n$ y $f \colon K \to \mathbb{R}^m$, $a \in K$ y $l \in \mathbb{R}^m$. Decimos que l es el límite de f cuando x tiende a a si para cada $\varepsilon > 0$ existe $\delta > 0$ tal que si $||x - a|| < \delta$, entonces $||f(x) - l|| < \varepsilon$.

Si el límite de f cuando x tiende a a es f(a), decimos que f es contínua en a.

 $Si\ f\ es\ continua\ en\ cada\ punto\ de\ K,\ decimos\ que\ f\ es\ continua\ en\ K.$

Ejemplo 3. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ tal que para cada $x \in \mathbb{R}^2$, $f(x) := x_1x_2$. Demostrar que f es continua en \mathbb{R}^2 .

Demostración. Sea $a \in \mathbb{R}^2$. Para cada $x \in \mathbb{R}^2$ estimamos la diferencia:

$$|f(x) - f(a)| = |x_1x_2 - a_1a_2|$$

$$\leq |x_2||x_1 - a_1| + |a_1||x_2 - a_2|$$

$$\leq (||x|| + ||a||)||x - a||.$$

Supongamos que $\|x-a\|<1$. Entonces, $\|x\|-\|a\|\leq \|x-a\|<1$. Por lo que, para cada $x\in B(a,1), \|x\|<1+\|a\|$. Haciendo $\delta\coloneqq\min\left\{1,\frac{\varepsilon}{1+2\|a\|}\right\}$, tenemos

$$|f(x) - f(a)| \le (||x|| + ||a||)||x - a||$$

 $\le (1 + 2||a||)||x - a|| < \varepsilon.$

Proposición 4. Sea $X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}^m$ y $a \in X$. Entonces, f es continua en a si y solo si para cada sucesión $(x^k)_{k \in \mathbb{N}}$, tal que $\lim_{k \to \infty} x^k = a$, se tiene $\lim_{k \to \infty} f(x^k) = f(a)$.

- $Demostraci\'on. \Longrightarrow)$ Supongamos que f es continua en a. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesi\'on tal que $\lim_{k\to\mathbb{N}} x^k = a$. Queremos verificar que $\lim_{k\to\infty} f(x^k) = f(a)$. Sea $\varepsilon > 0$. Como f es continua en a, existe $\delta > 0$ tal que si $||x-a|| < \delta$ entonces $||f(x)-f(a)|| < \varepsilon$. Como $\lim_{k\to\mathbb{N}} x^k = a$, para δ existe $N \in \mathbb{N}$ tal que si n > N entonces, $||x^n a|| < \delta$. Por lo tanto, si n > N, $||f(x^n) f(a)|| < \varepsilon$. Es decir, $\lim_{k\to\infty} f(x^k) = f(a)$.
- \iff Supongamos que para cada sucesión $(x^k)_{k\in\mathbb{N}}$ tal que $\lim_{k\to\mathbb{N}} x^k = a$, se satisface $\lim_{k\to\infty} f(x^k) = f(a)$. Supongamos además, que f no es continua en a. Entonces, existe $\varepsilon_0 > 0$ tal que para cada $\delta > 0$, si $||x a|| < \delta$ entonces $||f(x) f(a)|| \ge \varepsilon_0$.

Para cada $k \in \mathbb{N}$, sea $x^k \in B\left(a, \frac{1}{k}\right)$. Entonces, $(x^k)_{k \in \mathbb{N}}$ es una sucesión tal que $\lim_{k \to \infty} x^k = a$, por lo que $\lim_{k \to \infty} f(x^k) = f(a)$. Luego, existe $N \in \mathbb{N}$ tal que si n > N entonces, $\|f(x^n) - f(a)\| < \frac{\varepsilon_0}{2}$. Por otro lado, $\varepsilon_0 \le \|f(x^n) - f(a)\|$. Lo cual es una contradicción. Por lo tanto, f debe ser continua en a.

Definición 5. Sean $X \subseteq \mathbb{R}^n$ y $f, g: X \to \mathbb{R}^n$. Definimos las funciones:

1. $f + g: X \to \mathbb{R}^n$, donde para cada $x \in \mathbb{R}^n$,

$$(f+g)(x) := f(x) + g(x).$$

2. Sea $\alpha \in \mathbb{R}$. Hacemos $\alpha f: X \to \mathbb{R}^n$, donde para cada $x \in \mathbb{R}^n$,

$$(\alpha f)(x) := \alpha f(x).$$

3. Si m = 1, hacemos $fg: X \to \mathbb{R}^n$, donde para cada $x \in \mathbb{R}^n$,

$$(fg)(x) \coloneqq f(x)g(x).$$

4. Si m = 1, sea $D_g := \{x \in X : g(x) \neq 0\}$. Hacemos $\frac{f}{g} : X \to \mathbb{R}$, donde para cada $x \in D_g$,

$$\left(\frac{f}{g}\right)(x) \coloneqq \frac{f(x)}{g(x)}.$$

Proposición 6. Sean $X \subseteq \mathbb{R}^n$, $a \in X$ y $f, g \colon X \to \mathbb{R}^m$ continuas en a. Entonces,

- 1. f + g es continua en a.
- 2. Para cada $\alpha \in \mathbb{R}$, αf es continua en a.
- 3. Si m = 1, fg es continua en a.

Demostración. Ejercicio

Proposición 7. Sean $X \subseteq \mathbb{R}^n$, $a \in X$ y $f: X \to \mathbb{R}^m$. Entonces, $f = (f_1, \ldots, f_m)$ es continua en a si y solo si para cada $j \in \{1, \ldots, m\}$, f_j es continua en a.

Demostración. \Longrightarrow) Supongamos que f es continua en a. Sea $\varepsilon > 0$. Entonces, existe $\delta > 0$ tal que si $||x - a|| < \delta$, $||f(x) - f(a)|| < \varepsilon$. Luego, para cada $j \in \{1, \ldots, m\}$,

$$|f_i(x) - f(a)| < ||f(x) - f(a)|| < \varepsilon.$$

Por lo tanto, f_j es continua en a.

 \iff Supongamos que para cada $j \in \{1, \dots, m\}$, f_j es continua en a. Sea $\varepsilon > 0$. Luego, para cada $j \in \{1, \dots, m\}$ existe $\delta_j > 0$ tal que si $\|x - a\| < \delta_j$, entonces se tiene $|f_j(x) - f_j(a)| < \frac{\varepsilon}{m}$. Hagamos $\delta \coloneqq \min\{\delta_j\}_{j=1}^m$. Si $\|x - a\| < \delta$, entonces

$$||f(x) - f(a)|| \le \sum_{j=1}^{m} |f_j(x) - f_j(a)| < \varepsilon.$$

Proposición 8. Sean $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$, $a \in X$, $f: X \to \mathbb{R}^m$ y $g: Y \to \mathbb{R}^p$ tales que $f[X] \subseteq Y$, f es continua en a y g es continua en f(a). Entonces, $g \circ f: X \to \mathbb{R}^p$ es continua en a.

Demostración. Sea $\varepsilon > 0$. Por hipótesis, g es continua en f(a). Luego, existe $\delta_1 > 0$ tal que si $||y - f(a)|| < \delta_1$, entonces $||g(y) - g(f(a))|| < \varepsilon$. Como f es continua en a, para δ_1 existe $\delta_2 > 0$ tal que si $||x - a|| < \delta_2$, entonces $||f(x) - f(a)|| < \delta_1$. Por lo tanto, si $||x - a|| < \delta_1$, tenemos que $||g(f(x)) - g(f(a))|| < \varepsilon$.

Proposición 9. Sea $X \subseteq \mathbb{R}^n$ y $f: X \to \mathbb{R}^m$. Entonces, f es continua en X si y solo si para cada abierto $W \subseteq \mathbb{R}^m$ existe un abierto $U \subseteq \mathbb{R}^n$ tal que

$$f^{-1}[W] = X \bigcap U.$$

Demostración. \Longrightarrow) Supongamos que f es continua en X y que $f^{-1}[W] \neq \emptyset$. Como W es abierto, para cada $x \in f^{-1}[W]$ existe $\varepsilon_x > 0$ tal que $B(f(x), \varepsilon_x) \subseteq W$. Como f es continua, para cada ε_x existe $\delta_x > 0$ tal que si $z \in B(x, \delta_x)$ entonces, $f(z) \in B(f(x), \varepsilon_x)$. Hagamos

$$U := \bigcup_{x \in f^{-1}[W]} B(x, \delta_x).$$

Entonces, U es abierto y $f^{-1}[W] \subseteq U \cap X$. Sea $y \in U \cap X$. Existe $x \in U$ tal que $y \in B(x, \delta_x)$. Luego, $f(y) \in B(f(x), \varepsilon_x) \subseteq W$. Por lo tanto, $y \in f^{-1}[W]$. Así, tenemos la contención $U \cap X \subseteq f^{-1}[W]$.

 \iff Supongamos que para cada abierto $W \subseteq \mathbb{R}^m$ existe un abierto $U \subseteq \mathbb{R}^n$ tal que $f^{-1}[W] = X \cap U$. Sean $a \in X$ y $\varepsilon > 0$. Como $B(f(a), \varepsilon)$ es abierto en \mathbb{R}^m , existe U abierto en \mathbb{R}^n tal que

$$f^{-1}[B(f(a),\varepsilon)] = U \bigcap X.$$

Entonces, $a \in U \cap X$. Como U es abierto, existe $\delta > 0$ tal que $B(a, \delta) \subseteq U$.

Proposición 10. Sea $K \subseteq \mathbb{R}^n$ compacto $y \ f \colon K \to \mathbb{R}^m$. Entonces, f[K] es compacto.

Demostración. Sea $(U_{\alpha})_{\alpha \in I}$ una cubierta de f[K]. Por la proposición 9, para cada $\alpha \in I$ existe $W_{\alpha} \subseteq \mathbb{R}^n$ tal que

$$f^{-1}[U_{\alpha}] = W_{\alpha} \bigcap K.$$

Si $x \in K$, existe $\alpha_0 \in I$ tal que $f(x) \in U_{\alpha_0}$. Luego, $x \in f^{-1}[U_{\alpha_0}] = W_{\alpha_0} \cap K \subseteq W_{\alpha_0}$. Como K es compacto, existen $p \in \mathbb{N}$ y $\alpha_1, \ldots, \alpha_p \in I$ tales que $K \subseteq \bigcup_{j=1}^p U_{\alpha_j}$. Sea $y \in f[K]$. Entonces, existe $x \in K$ tal que f(x) = y. Luego, existe $j \in \{1, \ldots, p\}$ tal que $x \in W_{\alpha_j}$. Por lo que $f(x) \in U_{\alpha_j}$. Así, $f[K] \subseteq \bigcup_{j=1}^p U_{\alpha_j}$.

Proposición 11. Sea $K \subseteq \mathbb{R}^n$ compacto $y \ f \colon K \to \mathbb{R}$ continua en K. Entonces, existen $a, b \in K$ tales que

$$f(a) = \sup_{x \in K} f(x), \qquad f(b) = \inf_{x \in K} f(x),$$

Demostración. Por la proposición 10, f[K] es compacto. Por el teorema 1, f[K] es cerrado y acotado. Como f[K] es acotado, existen $M := \sup_{x \in K} f(x)$ y $m := \inf_{x \in K} f(x)$. Como f[K] es cerrado, $M, m \in f[K]$. Luego, existen $a, b \in K$ tales que f(a) = M y f(b) = m.

Ejercicios

- 1. Demuestre la proposición 6.
- 2. Sea $T: \mathbb{R}^n \to \mathbb{R}^m$ una transformación lineal. Demuestre que T es continua en \mathbb{R}^n .
- 3. Sea $\mathcal{F}(\mathbb{R}^n, \mathbb{R}^m) := \{ f : \mathbb{R}^n \to \mathbb{R}^m \}$. Demuestre que $\mathcal{F}(\mathbb{R}^n, \mathbb{R}^m)$ es un espacio vectorial.
- 4. Sea $\mathcal{C}(\mathbb{R}^n, \mathbb{R}^m) := \{ f \in \mathcal{F}(\mathbb{R}^n, \mathbb{R}^m) : f \text{ es continua en } \mathbb{R}^n \}$. Demuestre que $\mathcal{C}(\mathbb{R}^n, \mathbb{R}^m)$ es un subespacio de $\mathcal{F}(\mathbb{R}^n, \mathbb{R}^m)$.
- 5. Sea $X \subseteq \mathbb{R}^n$ y $f: X \to \mathbb{R}^m$. Entonces, f es continua si y solo si para cada cerrado $D \subseteq \mathbb{R}^m$ existe un cerrado $C \subseteq \mathbb{R}^m$ tal que $f^{-1}[C] = B \cap X$.
- 6. Demuestre la proposición 10, mostrando que f[K] es secuencialmente compacto.
- 7. Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ continua. Demostrar que $A := \{x \in \mathbb{R}^n : f(x) \neq 0\}$ es abierto.
- 8. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ donde para cada $x \in \mathbb{R}^2$, $f(x) := \frac{x_1 x_2^2}{x_1^2 + x_2^4}$. Demuestre que f no es continua en (0,0).