Oles Embeddings (work in progress)

Paul Blain Levy

University of Birmingham

November 12, 2015

Frank Oles in his PhD thesis (1982) defined a category of store shapes for semantics of local state with John Reynolds.

Frank Oles in his PhD thesis (1982) defined a category of store shapes for semantics of local state with John Reynolds.

I applied his construction to a game category in "Global state considered helpful" (MFPS 2008)

Frank Oles in his PhD thesis (1982) defined a category of store shapes for semantics of local state with John Reynolds.

I applied his construction to a game category in "Global state considered helpful" (MFPS 2008)

Frank Oles in his PhD thesis (1982) defined a category of store shapes for semantics of local state with John Reynolds.

I applied his construction to a game category in "Global state considered helpful" (MFPS 2008)

It's connected to numerous structures in the semantics of effects:

- Power and Plotkin's lookup-update algebras
- Power and Plotkin's and Melliès' redundancy theorems for lookup equations
- Power and Shkaravska's account of arrays as comodels
- Hyland, Plotkin and Power's combination of a functor and a monad
- My account and Mossakowski and Schröder's account of monads supporting exception handling
- Hermida and Tennent's account of monoidal indeterminates
- Johnson et al's account of lenses.

Three levels of generality

- Oles embedding in a category
- Oles embedding across an action
- Base for a monad

Three levels of generality

- Oles embedding in a category
- Oles embedding across an action
- 3 Base for a monad

Most of the talk will be about (1).

- Oles embeddings and their complements
- Oles expansions and their quotients
- Oles intersections.

Complementors

The complementor of an injection $f: A \rightarrow B$ is the function $f^c: B \rightarrow B + A$ sending

- $f(a) \mapsto \operatorname{inr} a$
- $b \mapsto \text{inl } b \text{ if } b \notin \text{range}(f)$.

Complementors

The complementor of an injection $f: A \rightarrow B$ is the function $f^c: B \to B + A$ sending

- $f(a) \mapsto \operatorname{inr} a$
- $b \mapsto \text{inl } b \text{ if } b \notin \text{range}(f)$.

We then have the equations:

Basic definition

Let $\mathcal C$ be a category with binary coproducts and initial object. We form a category $\mathrm{Oles}(\mathcal C)$ with the same objects as $\mathcal C$.

Basic definition

Let ${\mathcal C}$ be a category with binary coproducts and initial object.

We form a category Oles(C) with the same objects as C.

An Oles embedding $f: A \rightarrow B$ consists of

- an map $f^{i}: A \rightarrow B$ (the injection)
- a map $f^c : B \rightarrow B + A$ (the complementor)

satisfying the equations:

In **Set**, f^{i} is an injection and f^{c} is its complementor.

Alternative: don't mention the injector

An Oles embedding $A \rightarrow B$ can be described as a map $g: B \rightarrow B + A$ such that

$$B \xrightarrow{g} B + A \xrightarrow{g+A \atop \text{inl}+A} (B+A) + A$$

is an equalizer.

Making a category

The identity on A has injector id_A and complementor

inr :
$$A \rightarrow A + A$$

The composite of $f: A \rightarrow B$ and $g: B \rightarrow C$ has injector

$$A \xrightarrow{f^i} B \xrightarrow{g^i} C$$

and complementor

$$C \xrightarrow{g^c} C + B \xrightarrow{C+f^c} C + (B+A) \xrightarrow{[inl,g^i+A]} C + A$$

Basic properties

- (Oles(C), 0, +) is a symmetric monoidal category.
- ullet Its groupoid of isomorphisms is the same as that of ${\cal C}.$
- 0 is a strict initial object. (Strict means: any morphism to it is an isomorphism.)

Oles embeddings in extensive categories

In an extensive category:

- The forgetful functor $-^i: \mathrm{Oles}\mathcal{C} \to \mathcal{C}$ is faithful, so complementors are redundant. (Not true in $\mathbf{Set}^{\mathrm{op}}$)
- Injectors are monic. (Not true in Set^{op})

Oles embeddings in extensive categories

In an extensive category:

- The forgetful functor $-^i: \mathrm{Oles}\mathcal{C} \to \mathcal{C}$ is faithful, so complementors are redundant. (Not true in $\mathbf{Set}^{\mathrm{op}}$)
- Injectors are monic. (Not true in Set^{op})

In many commonly occurring extensive categories, it's easy to say when a map is an injector.

Examples Set Cpo $[\mathbb{C}, Set]$ Fam (\mathcal{B}) .

Oles embeddings in extensive categories

In an extensive category:

- The forgetful functor $-^i: \mathrm{Oles}\mathcal{C} \to \mathcal{C}$ is faithful, so complementors are redundant. (Not true in $\mathbf{Set}^{\mathrm{op}}$)
- Injectors are monic. (Not true in Set^{op})

In many commonly occurring extensive categories, it's easy to say when a map is an injector.

```
Examples Set Cpo [\mathbb{C}, Set] Fam(\mathcal{B}).
```

In an extensive category with 1, an Oles embedding $A \rightarrow B$ can be described as

- a map $\chi_f: B \to 1+1$ (the characteristic map)
- and an isomorphism $A \cong \chi_f^* \top$.

From coproduct embeddings to Oles embeddings

A coproduct embedding $A \rightarrow B$ consists of an object X and $\alpha : X + A \cong B$.

From coproduct embeddings to Oles embeddings

A coproduct embedding $A \rightarrow B$ consists of an object X and $\alpha : X + A \cong B$.

These give a symmetrical monoidal bicategory with the same objects as $\mathcal{C}.$

A 2-cell from (X, α) to (Y, β) is $h : X \rightarrow Y$ such that

From coproduct embeddings to Oles embeddings

A coproduct embedding $A \rightarrow B$ consists of an object X and $\alpha : X + A \cong B$.

These give a symmetrical monoidal bicategory with the same objects as \mathcal{C} .

A 2-cell from (X, α) to (Y, β) is $h : X \rightarrow Y$ such that

Every coproduct embedding gives rise to an Oles embedding, so there's a symmetric monoidal functor from the bicategory of coproduct embeddings to $Oles(\mathcal{C})$.

Complements of an Oles embedding

A complement of an Oles embedding $f:A \rightarrow B$ is a coproduct embedding that gives rise to it. These form a category.

Complements of an Oles embedding

A complement of an Oles embedding $f: A \rightarrow B$ is a coproduct embedding that gives rise to it. These form a category.

Does every Oles embedding have

- a complement? Not necessarily
- ullet an essentially unique complement? If ${\mathcal C}$ is extensive.
- ullet a terminal complement? If $\mathcal C$ has equalizers preserved by -+X
- an initial complement? Not necessarily

The dual story: Oles expansions

Let C have binary products and a terminal object.

An Oles expansion $A \to B$ is an Oles embedding in $\mathcal{C}^{\mathsf{op}}$

The dual story: Oles expansions

Let C have binary products and a terminal object.

An Oles expansion $A \to B$ is an Oles embedding in $\mathcal{C}^{\mathsf{op}}$

- a morphism $p : B \rightarrow A$ (the projection)
- a morphism : $B \times A \rightarrow B$ (the overwriter)

satisfying

$$\forall b \in B, a \in A.$$
 $p(b \bullet a) = a$
 $\forall b \in B.$ $b \bullet p(b) = b$
 $\forall b \in B, a, a, a' \in A.$ $(b \bullet a) \bullet a' = b \bullet a'$

Also called a very well-behaved lens.

Oles expansions in Set

In **Set**, an Oles expansion $A \rightarrow B$ can be described as

- a map $p : B \rightarrow A$ (the projection)
- ullet an equivalence relation \sim on B

such that for every $b \in B$ and $a \in A$ there is unique $c \in B$ such that $c \sim b$ and p(c) = a.

A product expansion $A \to B$ consists of an object X and $X \times A \cong B$. We take 2-cells to be C-morphisms.

A product expansion $A \to B$ consists of an object X and $X \times A \cong B$. We take 2-cells to be C-morphisms.

A quotient of an Oles expansion $f: A \rightarrow B$ is a product expansion that gives rise to it.

A product expansion $A \to B$ consists of an object X and $X \times A \cong B$. We take 2-cells to be C-morphisms.

A quotient of an Oles expansion $f:A\to B$ is a product expansion that gives rise to it.

In Set, the Oles expansion $0 \to 0$ has initial quotient 0 and terminal quotient 1.

A product expansion $A \to B$ consists of an object X and $X \times A \cong B$. We take 2-cells to be C-morphisms.

A quotient of an Oles expansion $f: A \rightarrow B$ is a product expansion that gives rise to it.

In Set, the Oles expansion $0 \to 0$ has initial quotient 0 and terminal quotient 1.

Oles proved: in **Set**, every expansion has an initial quotient.

Disjoint embeddings

In Set, this just says the ranges are disjoint.

Oles intersection square

A square of Oles embeddings $A > \stackrel{h}{\longrightarrow} C$ is an Oles intersection square $A > \stackrel{h}{\longrightarrow} C$ is an Oles intersection square $A > \stackrel{h}{\longrightarrow} C$

when

$$D \xrightarrow{f^{c}} D + B$$

$$\downarrow g^{c} \downarrow \qquad \qquad \downarrow g^{c+k^{c}}$$

$$D + C \xrightarrow{f^{c}+h^{c}} (D+B) + (C+A) \xrightarrow{\cong} (D+C) + (B+A)$$

In Set, this is just an intersection square.

The case A = 0 says that f and g are disjoint.

An Oles intersection square

An Oles intersection square $A > \stackrel{h}{\longrightarrow} B$ is not a pullback in general. $\downarrow g$ \downarrow

It is if binary coproducts are extensive.

It is if binary coproducts are extensive.

If there exists a \mathcal{C} -morphism $D \to A$ it's an absolute pullback in \mathcal{C} . Proved by Trnková for $C = \mathbf{Set}$.

An Oles intersection square $A > \stackrel{h}{\longrightarrow} B$ is not a pullback in general. $\bigvee_{k \neq 0} \bigvee_{f} g$ $C > \stackrel{f}{\longrightarrow} D$

It is if binary coproducts are extensive.

If there exists a \mathcal{C} -morphism $D \to A$ it's an absolute pullback in \mathcal{C} . Proved by Trnková for $\mathcal{C} = \mathbf{Set}$.

It's also a pullback in Oles(C), provided -+Y preserves pullbacks.

Oles intersection squares: basic properties

• The identity square $A > \stackrel{\text{id}}{\longrightarrow} A$ is an Oles intersection. $f \bigvee_{f} \bigvee_{id} f$ $B > \stackrel{\text{id}}{\longrightarrow} B$

- Closed under composition.
- Closed under transpose.
- Closed under +.
- The square $A > \stackrel{\text{id}}{\longrightarrow} A$ is an Oles intersection. $\downarrow^{\text{id}} \downarrow^{f} A > \stackrel{}{\longrightarrow} B$

Oles intersection diagrams

Let I be a finite meet semilattice.

An *I*-shaped Oles intersection diagram is a functor $I \to \text{Oles}\mathcal{C}$ where

is an Oles intersection square for every $j, k \leq i$.

Alternative formulation

A coalgebra for the comonad L on $[I, \mathbf{Set}]$.

$$(LA)_i = \sum_{j \leqslant i} A_j.$$

Properties of disjointness

is pairwise disjoint.

Properties of disjointness

is pairwise disjoint.

For any pairwise disjoint cocone

there's a unique Oles embedding $\sum_{i < n} A_i \to B$ that's a morphism of cocones.

Covering intersection squares

Given two Oles intersection squares

if the inner one is covering then there is a unique Oles embedding $D \rightarrow E$ that's a morphism of cocones.

Covering intersection squares

Given two Oles intersection squares

if the inner one is covering then there is a unique Oles embedding $D \rightarrow E$ that's a morphism of cocones.

This may be generalized to other diagram shapes.

Base for a monad

A monad T on a category \mathcal{D} gives a comonad F^TU^T on the Eilenberg-Moore category \mathcal{C}^T .

Base for a monad

A monad T on a category \mathcal{D} gives a comonad F^TU^T on the Eilenberg-Moore category \mathcal{C}^T .

A coalgebra for this comonad is called a *T*-base. Lack, Taylor, Jacobs . . .

This consists of an object P and maps $\theta: TP \to P$ and $\phi: P \to TP$, satisfying 5 equations, of which 2 are redundant.

Base for a monad

A monad T on a category \mathcal{D} gives a comonad F^TU^T on the Eilenberg-Moore category \mathcal{C}^T .

A coalgebra for this comonad is called a *T*-base. Lack, Taylor, Jacobs . . .

This consists of an object P and maps $\theta: TP \to P$ and $\phi: P \to TP$, satisfying 5 equations, of which 2 are redundant.

In fact θ is redundant: a T-base can be described as $\phi: P \to TP$ such that

$$P \xrightarrow{\phi} TP \xrightarrow{T\phi} T^2P$$

is an equalizer.

Monoidal actions

A monoidal action of a symmetric monoidal category $(\mathcal{C}, I, \otimes)$ on a category \mathcal{D} is a map $\otimes : \mathcal{D} \times \mathcal{C} \to \mathcal{D}$ and isomorphisms

$$P \otimes (B \otimes C) \cong (P \otimes B) \otimes C$$

 $P \otimes I \cong P$

satisfying the pentagon and the triangle.

Oles embedding across a monoidal action

Suppose $\mathcal C$ has binary coproducts and an initial object, and acts monoidally on $\mathcal D.$

Any A in C gives a monad $P \mapsto P \otimes A$ on \mathcal{D} .

A base structure on P for this monad is called an Oles embedding $A \rightarrow P$.

Oles embedding across a monoidal action

Suppose $\mathcal C$ has binary coproducts and an initial object, and acts monoidally on $\mathcal D.$

Any A in C gives a monad $P \mapsto P \otimes A$ on \mathcal{D} .

A base structure on P for this monad is called an Oles embedding $A \rightarrow P$.

We can compose Oles embeddings

$$A \rightarrowtail B \rightarrowtail P$$

and speak of disjoint embeddings and intersection squares into P.

Examples: category acting on itself

 ${\cal C}$ acts monoidally on itself.

This gives Oles embeddings in C.

Lookup/update algebras

Set^{op} acts monoidally on **Set** via exponentiation.

An Oles embedding from $S \rightarrow P$ is a lookup/update algebra structure on P. Plotkin and Power

A lookup function $P^S \longrightarrow P$ and an update function $P \longrightarrow P^S$ satisfying 5 equations.

Think: *P* is the set of computations of a given type.

Lookup/update algebras

Set^{op} acts monoidally on **Set** via exponentiation.

An Oles embedding from $S \rightarrow P$ is a lookup/update algebra structure on P. Plotkin and Power

A lookup function $P^S \longrightarrow P$ and an update function $P \longrightarrow P^S$ satisfying 5 equations.

Think: P is the set of computations of a given type.

Plotkin and Power showed this to be precisely an algebra for the state monad $X \mapsto S \to (S \times X)$.

Lookup/update algebras

Set^{op} acts monoidally on **Set** via exponentiation.

An Oles embedding from $S \rightarrow P$ is a lookup/update algebra structure on P. Plotkin and Power

A lookup function $P^S \longrightarrow P$ and an update function $P \longrightarrow P^S$ satisfying 5 equations.

Think: P is the set of computations of a given type.

Plotkin and Power showed this to be precisely an algebra for the state monad $X \mapsto S \to (S \times X)$.

Disjoint embedding indicate lookup/update for separate cells.

Let MonadSet be the category of monads on Set.

• Set acts on MonadSet via

$$(\mathbf{T} \odot E)X = \mathbf{T}(X + E)$$

Let MonadSet be the category of monads on Set.

• Set acts on MonadSet via

$$(\mathbf{T} \otimes E)X = \mathbf{T}(X + E)$$

Set^{op} × Set acts on MonadSet via

$$(\mathbf{T} \odot (S, E))X = S \rightarrow \mathbf{T}(X + E)$$

Let **MonadSet** be the category of monads on **Set**.

• Set acts on MonadSet via

$$(\mathbf{T} \odot E)X = \mathbf{T}(X + E)$$

Set^{op} × Set acts on MonadSet via

$$(\mathbf{T} \otimes (S, E))X = S \rightarrow \mathbf{T}(X + E)$$

An Oles embedding $(S, E) \rightarrow T$ says how T models effect handling for reading and exceptions.

Let MonadSet be the category of monads on Set.

• Set acts on MonadSet via

$$(\mathbf{T} \odot E)X = \mathbf{T}(X + E)$$

• Set op X Set acts on MonadSet via

$$(\mathbf{T} \odot (S, E))X = S \rightarrow \mathbf{T}(X + E)$$

An Oles embedding $(S, E) \rightarrow \mathbf{T}$ says how \mathbf{T} models effect handling for reading and exceptions.

Disjoint embeddings indicate that the effect handling is independent.

 $T \otimes H$ is the monad $X \mapsto \mu Y$. T(X + HY) It's the free extension of T by H. Hyland, Plotkin, Power

 $T \otimes H$ is the monad $X \mapsto \mu Y$. T(X + HY)It's the free extension of T by H. Hyland, Plotkin, Power

Let $(P_o|o\in \mathsf{Op})$ be the signature representing a collection of input operations,

giving rise to the functor H_{Σ} .

 $T \otimes H$ is the monad $X \mapsto \mu Y$. T(X + HY)It's the free extension of T by H. Hyland, Plotkin, Power

Let $(P_o|o \in \mathsf{Op})$ be the signature representing a collection of input operations,

giving rise to the functor H_{Σ} .

An Oles embedding $H_{\Sigma} \rightarrow T$ says how T models effect handling for I/O.

Summary

In a category

- Oles embeddings and their complements
- Oles expansions and their quotients
- Oles intersections
- Covering Oles intersections are initial.

Summary

In a category

- Oles embeddings and their complements
- Oles expansions and their quotients
- Oles intersections
- Covering Oles intersections are initial.

Oles embeddings across an action includes many structures in the semantics of state, exceptions and I/O.

Disjoint embeddings indicate that effects are treated independently.