

Alexandria University
Parallel Computing
Faculty of Engineering
Assigned: 10/20/2023

Computer and Systems Engineering Department

Due: 27/10/2023

Mathematica LAB

Assignment 1

The Following graph represents Functional dependency F (γ,q) = S γ (p,n) of the speedup for a varying number of compute units $p = \frac{2q}{q}$, varying computation-to-communication ratios γ , and a fixed amount $n = \frac{210}{q}$ of processed numbers (strong scaling). The thick line represents the points of optimal speedups S γ $(p(\gamma), n)$ where $p(\gamma) = \gamma \ln 2 \gamma + 2 n$ for the introductory example discussed in chapter 1.

FIGURE 1.6

Requirements:

- Plot the previous graph using Jupiter
- deliver a report explaining your work

<u>Due Date:</u> Tuesday 27/10/2023 @ 13:59

<u>Late delivery</u> = -25% for each day of delay.

Good Luck		
	<u>Good Lack</u>	