

LTE全系统仿真

带宽: B = 20MHz

信道采样率: $f_s = 40MHz$

载波频率: 2GHz

子载波个数: 1602

子载波带宽: $B_S = \frac{20MHz}{1602} = 12.484KHz$

传输速率: 20Mbps----60Mbps

均方时延: $\sigma_{\tau}^2 = E(\tau^2) - (\bar{\tau})^2 = 4.264us^2$

相干带宽: $B_c = 1/5\sigma_{\tau} = 97KHz$

 $B \gg B_c$

频率选择性衰落、时间非选择性衰落

符号周期: $T_s = 1/\Delta f = 1602/20MHz = 80.1us$

最大多普勒频偏: $f_m = 111Hz$

相干时间: $T_c \approx 0.423/f_m = 0.004s$

 $T_s \ll T_c$

最大导频间隔: $B_c/B_s = 97/12.48 = 8$

最小保护间隔: $\tau_{max} \times f_s = 360$

晶振频偏: $1ppm \times 2GHz = 2KHz$

频域交织深度: $d > B_c / B_s \approx 8$ (76)

信道条件(SISO)

相对时延	相对功率dB
0	0.0
1.5 us	-3
4us	-6
6us	-9
9us	-15

信道条件(MIMO EVA5Hz)

1->1

2->1

1->2

相对时延	相对功率dB
0	0.0
30 ns	-1.5
150 ns	-1.4
310ns	-3.6
370ns	-0.6
710 ns	-9.1
1090ns	-7.0
1730ns	-12.0
2510ns	-16.9

导频估计与信道均衡

SISO导频设计

在MIMO的导频设计中,天线1与天线2需要保持正交导频,以避免天线间的导频干扰(浅色为空)。

MIMO导频设计

天线1导频

天线2导频

MIMO信道最大似然估计

$$\begin{pmatrix} Y(1) \\ Y(2) \end{pmatrix} = \begin{pmatrix} H_{11} & H_{21} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} X(1) \\ X(2) \end{pmatrix} \qquad \begin{pmatrix} \widehat{Y}(1) \\ \widehat{Y}(2) \end{pmatrix} = \begin{pmatrix} \widehat{H}_{11} & \widehat{H}_{21} \\ \widehat{H}_{21} & \widehat{H}_{22} \end{pmatrix} \begin{pmatrix} X(1) \\ X(2) \end{pmatrix}$$

 $\arg\min[d(Y-\widehat{Y})], X(1)X(2)$

以BPSK为例:

枚举天线1、天线2发送序列的所有可能: (1,1)(1,-1)(-1,1)(-1,-1)

$$\begin{pmatrix} \widehat{H}_{11} & \widehat{H}_{21} \\ \widehat{H}_{21} & \widehat{H}_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \widehat{Y}_{11} & (1) \\ \widehat{Y}_{11} & (2) \end{pmatrix} = \widehat{Y}_{11} \qquad \qquad \begin{pmatrix} \widehat{H}_{11} & \widehat{H}_{21} \\ \widehat{H}_{21} & \widehat{H}_{22} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \widehat{Y}_{1-1} & (1) \\ \widehat{Y}_{1-1} & (2) \end{pmatrix} = \widehat{Y}_{1-1}$$

$$\begin{pmatrix} \widehat{H}_{11} & \widehat{H}_{21} \\ \widehat{H}_{21} & \widehat{H}_{22} \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} \widehat{Y}_{-11} & (1) \\ \widehat{Y}_{-11} & (2) \end{pmatrix} = \widehat{Y}_{-11} \qquad \begin{pmatrix} \widehat{H}_{11} & \widehat{H}_{21} \\ \widehat{H}_{21} & \widehat{H}_{22} \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} \widehat{Y}_{-1-1} & (1) \\ \widehat{Y}_{-1-1} & (2) \end{pmatrix} = \widehat{Y}_{-1-1}$$

$$\text{arg min} \left[d(Y - \widehat{Y}_{11}), d(Y - \widehat{Y}_{1-1}), d(Y - \widehat{Y}_{-11}), d(Y - \widehat{Y}_{-1-1}) \right], X(1)X(2)$$

IFFT块

定时起点范围

时间同步模块

时间同步重要性:

OFDM系统接收端数据恢复过程,定时起点的选择非常重要,否则会引入符号间干扰(ISI)和载波间干扰(ICI)

- 定时过早、定时过晚: IFFT运算会涉及前(过早)后(过晚)两个符号ISI
- 定时合适: IFFT运算只涉及本符号中点数

IFFT块截取起点与时延扩展起点对齐(非最强径)

OFDM帧同步 同步序列选择: PN序列

%% PN序列生成

h = commsrc.pn('GenPoly', [9 5 0], 'NumBitsOut', K);%长度: 510 [9 5 0] Hpn=generate(h);

时间同步模块

图 2 OFDM 的帧结构及相关函数的计算

问题一:

由于多径效应存在多个相关峰(假峰)

问题二:

主径不一定是强度最强路径, 而排除码间干扰需要主径作为起点

解决办法:

- 1、设置门限
- 2、通过K=510,确定PN组
- 3、通过排序得到,最小值位置设定为主径起点

基于PN序列的频率同步

CORDIC (Coordinate Rotation Digital Computer) 算法

$$\begin{cases} PN * conj (PN) = 1 \\ PN'' = PN * e^{phase} \\ phase = 2j * \pi * fd * Ts * cont_i \end{cases}$$

$$R_{xy} = PN1'' * conj(PN2'')$$

$$= (PN1) * e^{phase1} * conj(PN2) * e^{-phase2}$$

$$= e^{phase1-phase2}$$

$$= e^{j2\pi fdTs*(cont1-cont2)}$$

$$= e^{j2\pi fdTs*(-K)}$$

$$phase_{compensation} = R_{xy} * \frac{1}{2\pi * K * Ts}$$

译码输出

Turbo编码

软解调输入

误码率时高时低

一换种子误码率就变

采用等待重传机制

接收

采用等待重传机制

发送

接收

采用等待重传机制

采用等待重传机制

发送

接收

采用等待重传机制

采用等待重传机制

发送

接收

采用等待重传机制

采用等待重传机制

发送

采用等待重传机制

采用等待重传机制

发送

接收

采用等待重传机制

SISO系统的仿真结果

MIMO系统的仿真结果

导频间隔: 16(子载波)

子载波数: 1200

OFDM符号数: 14

保护间隔: 20(子载波)

循环前缀: 106

空口时延: 3um

频偏: 2000Hz (1ppm)

信道条件: LTE EVA 5Hz

卷积编码: (2、1、7)

交织深度: 63

频谱利用率 $\eta = 90.7\%$

OFDM符号周期T_{OFDM} = 60um

MIMO系统的仿真结果

导频间隔: 16(子载波)

子载波数: 1200

OFDM符号数: 14

保护间隔: 20(子载波)

循环前缀: 106

空口时延: 3um

频偏: 2000Hz (1ppm)

信道条件: LTE EVA 5Hz

卷积编码: (2, 1, 7)

交织深度: 63

频谱利用率 $\eta = 90.7\%$

OFDM符号周期T_{OFDM} = 60um

BER: 8.3587e-04 (最大似然)

MIMO系统的仿真结果

总结

我们通过信源与信道条件确定了系统相关参数,在发送端实现了CRC校验码、Turbo编码、 卷积,在接收端完成了时间与频率同步、MMSE信道均衡、HARQ机制,对LTE全系统进行了仿 真,得到了较好的误码性能。同时在EVA 5Hz信道条件下,尝试了2x2 MIMO技术与最大似然估 计译码,最后通过GUI界面对以上结果进行展示。

不足

- 1、在本次实验中,ACK和NAK信号应该在PHICH信道上传输,而本次实验并未细分各个逻辑信道, 没有逻辑信道到物理信道的映射;
- 2、在实验中为了代码的简洁性,接收方的ACK,NAK信号直接与发送方相连,不存在丢失的情况,与实际真实有偏差;
- 3、在MIMO仿真中,采用了最大似然的译码方式,其译码运算复杂度与天线数目成指数关系,若采用STBC空时分组码,则运算复杂度下降;
- 4、本次实验采用梳状导频,可以选择在时域和频域都插入导频的格状导频图案,使得信道的预测和均衡更加准确与时效

LTE全系统仿真