

Second Internet Backbone Study

Johann Schlamp, Thomas C. Schmidt, Matthias Wählisch schlamp@leitwert.net | {schmidt, mw}@link-lab.net

Anders Kölligan, Markus de Brün

{anders.koelligan, markus.debruen}@bsi.bund.de

Why?

- Ongoing consolidation
 - central service providers
 - consequences of outages
- Changing Internet landscape
 - role of content providers
 - open standards vs. proprietary systems

Overview

Chapter 1
Introduction and
Motivation

Chapter 2
Real
Internet Outages

Chapter 3
Virtual
Internet Outages

Chapter 4
International
Cable
Connections

Chapter 5
Changes of the Internet Infrastructure

Chapter 6
Social and
Economical
Implications

Chapter 7
Outlook &
Anticipated
Developments

Chapter 8 Conclusion

Overview – Chapter 2

Chapter 1
Introduction and
Motivation

Chapter 2
Real
Internet Outages

Chapter 3
Virtual
Internet Outages

Chapter 4
International
Cable
Connections

Chapter 5
Changes of the Internet Infrastructure

Chapter 6
Social and
Economical
Implications

Chapter 7
Outlook &
Anticipated
Developments

Chapter 8 Conclusion

Catalogue of 107 Internet incidents (2008-2019)

Category SERVICE OUTAGE	RANDOM
Physical damage [11], [12], [13], [14], [15], [16], [17], [18] [111], [112]	l, [I9], [I10],
Human error [113], [114], [115], [116], [117], [118], [1 [121], [122], [123]	19], [I20],
Software bug [124], [125], [126], [127], [128], [129], [132], [133], [134], [135], [136], [137], [
Number of incidents	38
Damage potential	MEDIUM
Likelihood of event	HIGH

Category REROUTING	NEGLIGENT
Fibre cut [139], [140], [141], [142], [143], [144], [147]	[145], [146],
Peering dispute [148], [149], [150], [151], [152], [153], [156]	[154], [155],
Route leak [157], [158], [159], [160], [161], [162], [165], [166], [167], [168], [169]	[163], [164],
Number of incidents	31
Damage potential	HIGH
Likelihood of event	MEDIUM

Assessment of each incident

BERSICHT	-			☐ Mit Detailanalyse Kategorien 1 von 10 ▼ Richtung Aufsteigend ▼ Sortieren nach Datum	▼ Be	ewert	en na	ch Re	ihenfo	olge
Datum	Kategorie	Dienst	Betroffener	Vorfall	Dauer ♦	Reichweite 🗢	Auswirkung ♦	Komplexität 🗢	Post-Mortem \$	Datenlage \$
21.03.2013	BGP-Hijacking	Enterprise	Spamhaus	Übernahme des DNSBL-Dienstes führt zu weitreichender Spam-Markierung von Emails	3	2	3	3	2	3
16.08.2013	BGP-Hijacking	Cloud	Santrex	Hacking Team unterstützt italienischen Geheimdienst bei Angriff auf eigenen Server	3	1	1	1	2	3
03.02.2014	BGP-Hijacking	Cloud	Amazon	Kanadischer ISP fängt mehrfach Bitcoin Mining-Verkehr im Wert von \$83,000 ab	3	2	2	3	1	3
26.04.2017	BGP-Hijacking	Enterprise	Finanzsektor	Rostelecom übernimmt 50 Präfixe populärer Bezahldienstleister für wenige Minuten	1	3	2	1	1	3
12.12.2017	BGP-Hijacking	Content	OTTs	Russisches Schläfer-AS übernimmt 80 Präfixe populärer Dienste für wenige Minuten	1	3	2	1	1	3
24.04.2018	BGP-Hijacking	DNS	Amazon	US-ansässiger ISP übernimmt DNS-Dienst und leitet Bitcoin-Wallets nach Russland um	2	2	3	3	1	3
30.07.2018	BGP-Hijacking	Content	Telegram	Iran Telecommunication übernimmt spezifischere Präfixe des Messenger-Dienstes	1	2	3	1	1	3
08.05.2019	BGP-Hijacking	DNS	TWNIC	ISP in Brasilien übernimmt kurzzeitig Privacy-fokussierten DNS-Dienst Quad-101	1	2	2	2	1	3
				«						

Detailed analysis of 5 selected incidents

Excursus: Internet measurements (1/3)

Excursus: Internet measurements (2/3)

2nd Internet Backbone Study DENOG15, Berlin 2023 9

Excursus: Internet measurements (3/3)

Overview – Chapter 3

Chapter 1
Introduction and
Motivation

Chapter 2
Real
Internet Outages

Chapter 3
Virtual
Internet Outages

Chapter 4
International
Cable
Connections

Chapter 5
Changes of the Internet Infrastructure

Chapter 6
Social and
Economical
Implications

Chapter 7
Outlook &
Anticipated
Developments

Chapter 8
Conclusion

Fictitious incidents

Outage of international cable connections

- Virtual incident: TAT-14 outage

Blackout of transit connections via a country

- Virtual incident: Russia black

DDoS attack on a central Internet service

- Virtual incident: IONOS DNS attack

Outage of a popular Internet Exchange point

- Virtual incident: DE-CIX outage

Typ	Szenario	Verwandt	Betroffen	Behebung	Daner
BGP-Hijacking	Peering LAN Blackhole über manipulierte BGP Communitiy	_	Kontrollschicht	Intern	m
BGP-Hijacking	Verkehrsmanipulation über gespoofte BGP Updates	[I75, I74, I73, I72, I71, I70]	Kontrollschicht	Intern	m
Denial-of- Service	Terabit-Angriff auf single-homed DE-CIX Kunden	[I83, I87, I81, I79, I80]	Datenschicht	Extern	m
Hacking-Angriff	Unkontrolliertes Verkehrsfiltern nach Übernahme des SDN Controllers	_	Kontrollschicht	Intern	h
Hacking-Angriff	Unbemerkte Kompromittierung des Kundenportals	_	Management	Service	d
Kabelschäden	Kabelbrand im Meet-Me-Room von Interxion FRA2	_	Infrastruktur	Service	h
Kabelschäden	Ausfall mehrerer Metroverbin- dungen bei Bauarbeiten	[I47, I45, I43, I42, I40]	Infrastruktur	Extern	h
Menschlicher Fehler	Netzausfall durch fehlkonfigurierten VLAN-Trunk	_	Management	Intern	m
Menschlicher Fehler	Isolation des Route Servers durch fehlerhafte Filter-Policies	[113]	Kontrollschicht	Intern	m
Peering Dispute	Erzwungene Teilnahme der DTAG am Public Peering	[I55, I56, I53, I48]	Kontrollschicht	Intern	m
Route Leak	Re-Announcement eines full- table Leaks durch den Route Server	[I69, I68, I65, I66, I61]	Kontrollschicht	Intern	m
Route Leak	Weltweites more-specific Announcement des Peering LANs	[157]	Kontrollschicht	Intern	m
Software-Fehler	Wiederkehrende Reboots aller 7950 XRS Line-Cards	[138]	Datenschicht	Hersteller	d
Software-Fehler	Verbindungsausfälle durch fehlerhaften ARP Proxy	_	Kontrollschicht	Intern	m
Software-Fehler	Überlastung der Route Server nach Konfigurations-Update	[I37, I36, I27, I24]	Kontrollschicht	Intern	m
Staatliche Aktion	Zensurversuch durch Deaggregation europäischer Netze		Kontrollschicht	Extern	\propto
Staatliche Aktion	Totalausfall nach missglückter G10-Maßnahme	[I103]	Management	Intern	m
Technischer Defekt	Anhaltender Stromausfall im Stadtteil Ostend	[I11, I10, I8, I5, I2]	Infrastruktur	Service	d

DE-CIX outage (fictitious)

Russia transit outage (fictitious)

Overview – Chapter 5

Chapter 1
Introduction and
Motivation

Chapter 2
Real
Internet Outages

Chapter 3
Virtual
Internet Outages

Chapter 4
International
Cable
Connections

Chapter 5
Changes of the Internet Infrastructure

Chapter 6
Social and
Economical
Implications

Chapter 7
Outlook &
Anticipated
Developments

Chapter 8 Conclusion

Two fundamental changes, unfortunately

Chapter 5
Changes of the Internet Infrastructure

Consolidation

Splinternet

We see consolidation everywhere

We see consolidation everywhere across layers

Who owns transatlantic fiber cables?

Consolidation is a friendly word for monopolization.

Internet routing relations over the last two decades

2nd Internet Backbone Study DENOG15, Berlin 2023 20

Development of IXP connections for large CDNs

Prevent monopolization of content delivery by new network architectures, e.g., ICN + edge data centers

Two OTT case studies: Disney+ and Netflix

NETFLIX

Originally using Akamai and Limelight Since 2012 operating own CDN Uses AWS to store and code movies

Started in USA in November 2019
Distributes Disney movies exclusively
No own CDN but Akamai, Lumen,
Limelight, Edgecast, CloudFront, and Fastly
Did not change the global data volume or
peering

Two OTT case studies: Disney+ and Netflix

An example where de-consolidation is not beneficial – fragmentation for end users increases.

2nd Internet Backbone Study DENOG15, Berlin 2023 24

Many states introduce Internet regulations to improve cyber sovereignty – for the good but also for the bad.

The **Splinternet**.

The Internet is not open anymore. Free flow of information is restricted or suppressed.

Even if you receive information under well-known names, you cannot rely on them.

We should raise awareness and be vocal.

The **Splinternet**.

The Internet is not open anymore.

Free flow of information is restricted or suppressed.

Even if you receive information under well-known names, you cannot rely on them.

Overview – Chapter 5

Chapter 1
Introduction and
Motivation

Chapter 2
Real
Internet Outages

Chapter 3
Virtual
Internet Outages

Chapter 4
International
Cable
Connections

Chapter 5
Changes of the Internet Infrastructure

Chapter 6
Social and
Economical
Implications

Chapter 7
Outlook &
Anticipated
Developments

Chapter 8 Conclusion

Lessons from the past. Network access.

Provisioning of network access infrastructure is a challenging business outside metropolitan areas

Traditionally, public telephone monopolies were split up in the western countries

Network infrastructure w/ last mile coverage remains monolithic

How to organize a provider market that

- continuously invests into state-of-the-art access technologies?
- maintains and develops network coverage also in rural areas?
- allows for plurality in the last mile without replicating infrastructure?

The US case

The US telephone monopolist AT&T was split up in 1984

- Seven independent regional Bell Operating Companies (Baby Bells)
- AT&T remained as long distance telephone company

Geographic split without competition at consumers

Since then

- Southwestern Bell bought three other Baby Bells and later AT&T
- Atlantic Bell bought the remainders and formed Verizon

Two large companies monopolize area-wise most of the US

Today, 50M households (40 %) only have a single provider choice

The German case

Deutsche Telekom (DTAG) lost the network monopoly in 1996

Per law, the access to cable infrastructure was regulated

- DTAG kept its cables but had to open access at regulated prices
- DTAG had to sell the TV cable network (CATV)

Horizontal split across all last miles, competition at consumers

Since then

- Pluralistic network access at nation-wide prices
- TV cable network partly monopolized with Vodafone

Diverse ecosystem of (partly regional) providers, relevant newcomers

Conclusion and a (positive) outlook

If we continue with the changes of the last ten years, the Internet will be doomed*.

*There is some hope, though.

Your turn. Three questions, your opinion. Thanks!

https://tudvote.tu-dresden.de/42071

Measurement data and interactive incident catalog

https://zwiback.leitwert.net