Chapitre X - Droites du plan

I - Caractérisation analytique d'une droite

Exercice 1 : Dans un repère $(O; \ \vec{\imath}, \ \vec{\jmath})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Déterminer une équation de la droite d passant par A et de vecteur directeur $\overrightarrow{\eta}$.

Solution:

Exercice 1 : Dans un repère $(O; \vec{\imath}, \vec{\jmath})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

Solution : Le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ est un vecteur directeur de d, donc $\overrightarrow{v} \begin{pmatrix} 1 \\ -\frac{2}{3} \end{pmatrix}$ est un autre vecteur directeur de d (ici $\overrightarrow{v} = \frac{1}{3}\overrightarrow{u}$ pour avoir un vecteur directeur d'abscisse égale à 1).

Exercice 1 : Dans un repère $(O; \vec{\imath}, \vec{\jmath})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

 $\underline{\text{Solution:}} \text{ Le vecteur } \overrightarrow{u} \binom{3}{-2} \text{ est un vecteur directeur de } d\text{, donc}$

 $\overrightarrow{v} \begin{pmatrix} 1 \\ -\frac{2}{3} \end{pmatrix}$ est un autre vecteur directeur de d (ici $\overrightarrow{v} = \frac{1}{3}\overrightarrow{u}$ pour avoir un vecteur d'abscisse égale à 1).

Le coefficient directeur de d est alors égal à $-\frac{2}{3}$, et une équation de d est

$$\text{de la forme } y = -\frac{2}{3}x + p.$$

Exercice 1 : Dans un repère $(O; \vec{\imath}, \vec{\jmath})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

 $\underline{\text{Solution:}} \text{ Le vecteur } \overrightarrow{u} \binom{3}{-2} \text{ est un vecteur directeur de } d\text{, donc}$

$$\overrightarrow{v} \begin{pmatrix} 1 \\ -\frac{2}{3} \end{pmatrix}$$
 est un autre vecteur directeur de d (ici $\overrightarrow{v} = \frac{1}{3}\overrightarrow{u}$ pour avoir un

vecteur d'abscisse égale à 1).

Le coefficient directeur de d est alors égal à $-\frac{2}{3}$, et une équation de d est

de la forme
$$y = -\frac{2}{3}x + p$$
.

De plus A(-4;5) est sur d, d'où $5=-\frac{2}{3}\times(-4)+p$

$$5 = -\frac{2}{3} \times (-4) + p$$

Exercice 1 : Dans un repère $(O; \vec{\imath}, \vec{\jmath})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

 $\underline{\text{Solution:}} \text{ Le vecteur } \overrightarrow{u} \binom{3}{-2} \text{ est un vecteur directeur de } d\text{, donc}$

$$\overrightarrow{v} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 est un autre vecteur directeur de d (ici $\overrightarrow{v} = \frac{1}{3}\overrightarrow{u}$ pour avoir un

vecteur directeur d'abscisse égale à 1).

Le coefficient directeur de d est alors égal à $-\frac{2}{3}$, et une équation de d est

de la forme
$$y = -\frac{2}{3}x + p$$
.

De plus
$$A(-4; 5)$$
 est sur d , d'où $5 = -\frac{2}{3} \times (-4) + p \iff 5 - \frac{8}{3} = p \iff \frac{7}{3} = p.$

Exercice 1: Dans un repère $(O; \vec{i}, \vec{j})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$. Déterminer une équation de la droite d passant par Aet de vecteur directeur \overrightarrow{n}

<u>Solution</u>: Le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ est un vecteur directeur de d, donc

 $\overrightarrow{v} \begin{pmatrix} 1 \\ 2 \\ -\overrightarrow{z} \end{pmatrix}$ est un autre vecteur directeur de d (ici $\overrightarrow{v} = \frac{1}{3}\overrightarrow{u}$ pour avoir un

vecteur d'abscisse égale à 1).

Le coefficient directeur de d est alors égal à $-\frac{2}{3}$, et une équation de d est de la forme $y = -\frac{2}{3}x + p$.

De plus
$$A(-4;5)$$
 est sur d , d'où $5=-\frac{2}{3}\times(-4)+p\iff 5-\frac{8}{3}=p\iff \frac{7}{3}=p.$ Donc une équation de d est $y=-\frac{2}{3}x+\frac{7}{3}.$