Universidad Politecnica Salesiana

Estudiante: Marcela Zhagui

Cuadrados Medios

Método de los cuadrados medios

GENERACION DE NUMEROS PSEUDOALEATORIOS

- Pasos
 - 1. Elegir una semilla x0 con n dígitos (n>3).
 - 2. Sea x02 el resultado de elevar x0 al cuadrado.
 - Sea x1 =n dígitos del centro y sea ui =0*n dígitos del centro.
 - 3. Sea xi2 el resultado de elevar xi al cuadrado.
 - Sea xi+1 =n dígitos del centro y sea ui =0.n dígitos del centro.
 - 4. Repetir el paso 3 hasta obtener los m números requeridos.

```
In [1]: from tabulate import tabulate
from math import floor
import plotly.graph_objects as go
import numpy as np
```

```
In [4]: | n= int(input("Ingrese Número de interaciones: "))
    x0 = input("Ingrese Semilla: ")
    digitos= int(input("Ingrese Número de Digitos: "))
    xn=pow(int(x0), 2)
    ## Definimos las listas donde se gurdaran los datos generados
    ite=[]
    xn2=[]
    xi=[]
    ui2=[]
    rn2=[]
    1=[]
    a=len(str(xn))
    for i in range(0,n):
        ite.append(i)
        ## Elevamos al cuadrado la semilla
        xi.append(x0)
        x02 = pow(int(x0), 2)
        ##Sacamos la longitud del valor del cuadrado de la semilla
        longitud= len(str(x02))
        ##Determinamos si la longitud es la misma que la inicial
        #Si no es usamos el metodo de añadir "0" al lado izquierdo del numero
        if longitud<a:</pre>
            x02 = str(x02).zfill(a)
            longitud= len(str(x02))
        ## Calculamos UI en base a los digitos
        xn2.append(x02)
        1.append(longitud)
        cant= str(x02)
        aux= floor(len(cant)/2)
        di=digitos/2
        inicio=int(aux)-int(di)
        fin=int(aux)+int(di)
        cantt= str(x02)
        if digitos%2==0:
             ui=cantt[inicio:fin]
        else:
            ui=cantt[inicio:fin+1]
        ui2.append(ui)
        dd='1'
        dig=dd.ljust(digitos+1,'0')
        Rn=int(ui)/int(dig)
        rn2.append(Rn)
        x0=ui
    ##generamos una tabla con la libreria plotly.graph_objects
    fig = go.Figure(data=[go.Table(header=dict(values=['Iteración','xn', 'xn*xn','Log
                      cells=dict(values=[ite,xi, xn2, 1, ui2, rn2])) ])
    fig.show()
    Ingrese Número de interaciones: 100
```

Ingrese Semilla: 12548796 Ingrese Número de Digitos: 10

			7.
Iteración	xn	xn*xn	Logintud
74	1159663717	1344819936526256000	19
75	8199365262	722959069969233000	20
76	5906996923	489261264833147000	20
77	6126483314	753379779672042000	20
78	7977967204	364796070809958000	20
79	9607080995	229600524449019000	20
80	0052444901	2750467640899801	16
81	0467640899	218688010417528200	18
82	8801041752	745833592044723000	20
83	3359204472	128425468470479900	20

Conclusiones

Tiene una fuerte tendencia a degenerar a cero rapidamente

Los números generados pueden repetirse cíclicamente después de una secuencia corta

La utilización de números primos puede generar ciclos más largos en la generación de números pseudoaleatorios