



# FCC PART 15B MEASUREMENT AND TEST REPORT

For

# ADBADGE MEDIA

19300 Rinaldi Street #8645, Northridge, CA 91327-8645, USA

FCC ID: Y57ADBADGE204TR01

Report Type: Product Type:

Original Report AD BADGE Smart

**Test Engineer:** Jack Wang

**Report Number:** RSZ10121781

**Report Date:** 2011-01-10

Lisa Zhu

**Reviewed By:** EMC Engineer

**Prepared By:** Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F, the 3rd Phase of WanLi Industrial Building,

ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008

**Note**: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP\*, NIST, or any agency of the Federal Government. \* This report contains data that are not covered by the NVLAP accreditation and are marked with an asterisk "\( \dag{\pi} \)" (Rev.2)

# TABLE OF CONTENTS

| GENERAL INFORMATION                                | 3  |
|----------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | 3  |
| Objective                                          |    |
| RELATED SUBMITTAL(S)/GRANT(S)                      | 3  |
| TEST METHODOLOGY                                   | 3  |
| TEST FACILITY                                      | 3  |
| SYSTEM TEST CONFIGURATION                          | 5  |
| JUSTIFICATION                                      | 5  |
| EUT Exercise Software                              | 5  |
| EQUIPMENT MODIFICATIONS                            |    |
| LOCAL SUPPORT EQUIPMENT LIST AND DETAILS           |    |
| External I/O Cable                                 |    |
| CONFIGURATION OF TEST SETUP                        | 6  |
| BLOCK DIAGRAM OF TEST SETUP                        | 6  |
| SUMMARY OF TEST RESULTS                            | 7  |
| FCC §15.107 – AC LINE CONDUCTED EMISSIONS          | 8  |
| MEASUREMENT UNCERTAINTY                            |    |
| EUT Setup                                          |    |
| EMI TEST RECEIVER SETUP                            | 9  |
| TEST EQUIPMENT LIST AND DETAILS                    | 9  |
| TEST PROCEDURE                                     | 9  |
| TEST RESULTS SUMMARY                               | 9  |
| TEST DATA                                          | 9  |
| FCC §15.109 - RADIATED SPURIOUS EMISSIONS          | 12 |
| MEASUREMENT UNCERTAINTY                            | 12 |
| EUT SETUP                                          | 12 |
| EMI TEST RECEIVER SETUP                            | 13 |
| TEST EQUIPMENT LIST AND DETAILS                    |    |
| TEST PROCEDURE                                     |    |
| CORRECTED AMPLITUDE & MARGIN CALCULATION           |    |
| TEST RESULTS SUMMARY                               |    |
| TEST DATA                                          | 14 |

#### **GENERAL INFORMATION**

#### **Product Description for Equipment under Test (EUT)**

The *ADBADGE MEDIA*'s product, model number: *AD-CM13* or the "EUT" as referred to in this report is a *AD BADGE Smart*, which measures approximately 7.0 cm (L) x 5.0 cm (W) x 1.0 cm (H). Input voltage: DC 5V from the laptop, the highest operating frequency is 48 MHz.

\* All measurement and test data in this report was gathered from production sample serial number: 1012007 (Assigned by BACL, Shenzhen). The EUT was received on 2010-12-17.

#### **Objective**

This Type approval report is prepared on behalf of *ADBADGE MEDIA* in accordance with Part 2, Subpart J, Part 15, Subparts A and B of the Federal Communication Commissions rules.

The objective of the manufacturer is to determine compliance with FCC Part 15B.

#### **Related Submittal(s)/Grant(s)**

N/A.

#### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

#### **Test Facility**

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).



The current scope of accreditations can be found at <a href="http://ts.nist.gov/Standards/scopes/2007070.htm">http://ts.nist.gov/Standards/scopes/2007070.htm</a>

## **SYSTEM TEST CONFIGURATION**

#### **Justification**

The system was configured for testing in a manufacturer testing fashion.

#### **EUT Exercise Software**

AD\_BADGE\_AD\_Viewer V2.1.9. exe

## **Equipment Modifications**

No modification was made to the unit tested.

## **Local Support Equipment List and Details**

| Manufacturer | Description | Model    | Serial Number | FCC ID |
|--------------|-------------|----------|---------------|--------|
| SAST         | Modem       | AEM-2100 | 0293          | Doc    |
| HP           | Printer     | C394IA   | JATVOB2337    | Doc    |
| DELL         | Laptop      | PP01L    | N/A           | Doc    |

#### **External I/O Cable**

| Cable Description                 | Length (m) | From/Port          | То      |
|-----------------------------------|------------|--------------------|---------|
| Shielded Detachable Printer Cable | 1.2        | Parallel Port/Host | Printer |
| Shielded Detachable Serial Cable  | 1.2        | Serial Port/Host   | Modem   |
| Unshielded Detachable USB Cable   | 0.8        | EUT                | Laptop  |

FCC ID: Y57ADBADGE204TR01

# **Configuration of Test Setup**



# **Block Diagram of Test Setup**



# **SUMMARY OF TEST RESULTS**

| FCC Rules | Description of Test         | Results     |
|-----------|-----------------------------|-------------|
| §15.107   | AC Line Conducted Emissions | Compliance  |
| §15.109   | Radiated Spurious Emissions | Compliance* |

<sup>\*</sup>With measurement uncertainty!

# FCC §15.107 - AC LINE CONDUCTED EMISSIONS

#### **Measurement Uncertainty**

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is  $\pm 2.4$  dB (k=2, 95% level of confidence).

#### **EUT Setup**



Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.107 limits.

The spacing between the peripherals was 10 cm.

The adapter of laptop was connected to a 120 VAC/60 Hz power source.

#### **EMI Test Receiver Setup**

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |
|------------------|--------|
| 150 kHz – 30 MHz | 9 kHz  |

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model   | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|---------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCS30  | 830245/006       | 2010-03-03          | 2011-03-02              |
| Rohde & Schwarz | L.I.S.N.          | ESH2-Z5 | 892107/021       | 2010-03-09          | 2011-03-08              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratory Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

During the conducted emission test, the adapter of laptop was connected to the outlet of the first LISN, and other equiement were connected to seconed LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

#### **Test Results Summary**

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.107</u>, with the worst margin reading of:

7.43 dB at 0.210 MHz in the Line conductor mode

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 °C     |
|--------------------|-----------|
| Relative Humidity: | 48 %      |
| ATM Pressure:      | 100.0 kPa |

The testing was performed by Jack Wang on 2011-01-05.

Test Mode: Running

## 120V, 60 Hz, Line:



| Co                 | Conducted Emissions         |                     |                 | C Part 15.107, C | lass B                |
|--------------------|-----------------------------|---------------------|-----------------|------------------|-----------------------|
| Frequency<br>(MHz) | Corrected<br>Factor<br>(dB) | Cord. Result (dBµV) | Limit<br>(dBµV) | Margin<br>(dB)   | Remark<br>(PK/QP/Ave) |
| 0.210              | 46.86                       | 10.06               | 54.29           | 7.43             | Ave                   |
| 0.210              | 56.15                       | 10.06               | 64.29           | 8.14             | QP                    |
| 0.150              | 51.60                       | 10.10               | 66.00           | 14.40            | QP                    |
| 0.275              | 36.00                       | 10.02               | 52.43           | 16.43            | Ave                   |
| 5.635              | 33.18                       | 10.10               | 50.00           | 16.82            | Ave                   |
| 0.345              | 32.57                       | 10.05               | 50.43           | 17.86            | Ave                   |
| 5.425              | 31.84                       | 10.10               | 50.00           | 18.16            | Ave                   |
| 5.635              | 41.50                       | 10.10               | 60.00           | 18.50            | QP                    |
| 5.425              | 40.71                       | 10.10               | 60.00           | 19.29            | QP                    |
| 0.275              | 42.63                       | 10.02               | 62.43           | 19.80            | QP                    |
| 0.345              | 38.28                       | 10.05               | 60.43           | 22.15            | QP                    |
| 0.150              | 31.54                       | 10.10               | 56.00           | 24.46            | Ave                   |

## 120 V, 60 Hz, Neutral:



| Conducted Emissions |                             |                     | F               | CC Part 15B, Cla | ass B                 |
|---------------------|-----------------------------|---------------------|-----------------|------------------|-----------------------|
| Frequency<br>(MHz)  | Corrected<br>Factor<br>(dB) | Cord. Result (dBµV) | Limit<br>(dBµV) | Margin<br>(dB)   | Remark<br>(PK/QP/Ave) |
| 0.210               | 54.38                       | 10.06               | 64.29           | 9.91             | QP                    |
| 0.210               | 43.29                       | 10.06               | 54.29           | 11.00            | Ave                   |
| 0.150               | 50.00                       | 10.10               | 66.00           | 16.00            | QP                    |
| 0.420               | 31.68                       | 10.12               | 48.29           | 16.61            | Ave                   |
| 0.280               | 45.46                       | 10.01               | 62.29           | 16.83            | QP                    |
| 0.280               | 35.25                       | 10.01               | 52.29           | 17.04            | Ave                   |
| 0.350               | 31.62                       | 10.05               | 50.29           | 18.67            | Ave                   |
| 0.350               | 41.45                       | 10.05               | 60.29           | 18.84            | QP                    |
| 0.420               | 38.07                       | 10.12               | 58.29           | 20.22            | QP                    |
| 5.940               | 27.85                       | 10.10               | 50.00           | 22.15            | Ave                   |
| 5.940               | 35.62                       | 10.10               | 60.00           | 24.38            | QP                    |
| 0.150               | 27.34                       | 10.10               | 56.00           | 28.66            | Ave                   |

### FCC §15.109 - RADIATED SPURIOUS EMISSIONS

#### **Measurement Uncertainty**

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is  $\pm 4.0$  dB (k=2, 95% level of confidence).

#### **EUT Setup**



The radiated emission tests were performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC Part 15.109 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter of laptop was connected to a 120 VAC/60 Hz power source.

#### **EMI Test Receiver Setup**

The system was investigated from 30 MHz to 1 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

 Frequency
 RB/W
 VB/W
 IF B/W

 30 MHz-1 GHz
 100 kHz
 300 kHz
 120 kHz

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model   | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|---------|------------------|---------------------|-------------------------|
| НР              | Amplifier         | HP8447E | 1937A01046       | 2010-08-02          | 2011-08-02              |
| Rohde & Schwarz | EMI Test Receiver | ESCI    | 100035           | 2010-11-11          | 2011-11-10              |
| Sunol Sciences  | Broadband Antenna | JB1     | A040904-1        | 2010-03-11          | 2011-03-11              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

During the radiated emissions test, the laptop and all other support equipment were connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detection mode from 30 MHz to 1 GHz.

#### **Corrected Amplitude & Margin Calculation**

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

## **Test Results Summary**

According to the data in the following table, the EUT complied with the FCC Part 15 Class B, with the worst margin reading of:

2.6 dB at 336.063250 MHz in the Horizontal polarization for running mode

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 °C     |
|--------------------|-----------|
| Relative Humidity: | 56 %      |
| ATM Pressure:      | 100.0 kPa |

The testing was performed by Jack Wang on 2010-12-29.

Test Mode: Running





| Frequency<br>(MHz) | Corrected<br>Amplitude<br>(dBµV/m) | Antenna<br>Height<br>(cm) | Test<br>Antenna<br>Polarity<br>(H/V) | Turntable<br>Position<br>(Degree) | Correction<br>Factor<br>(dB) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|--------------------|------------------------------------|---------------------------|--------------------------------------|-----------------------------------|------------------------------|-------------------|----------------|
| 336.063250         | 43.4                               | 101.0                     | Н                                    | 59.0                              | -11.4                        | 46.0              | 2.6*           |
| 300.069250         | 42.4                               | 100.0                     | Н                                    | 262.0                             | -12.4                        | 46.0              | 3.6*           |
| 275.997750         | 41.8                               | 141.0                     | Н                                    | 125.0                             | -12.9                        | 46.0              | 4.2            |
| 192.007250         | 37.5                               | 100.0                     | V                                    | 26.0                              | -14.7                        | 43.5              | 6.0            |
| 333.105250         | 39.8                               | 101.0                     | Н                                    | 77.0                              | -11.5                        | 46.0              | 6.2            |
| 366.399000         | 36.4                               | 134.0                     | Н                                    | 249.0                             | -10.7                        | 46.0              | 9.6            |

<sup>\*</sup>With measurement uncertainty!

\*\*\*\*\* END OF REPORT \*\*\*\*\*