1.202 Demand Modeling Recitation 9

Kexin (Sally) Chen

April 14, 2023

Announcements

- No class next Monday
- Final exam:
 - May 22nd 9 12, 2-105
 - Open book and open notes
- Case study 3 due tonight
- Case study 4 released.
 - Due: April 28, 2023
 - Specification testing
 - Development of MEV models: nested logit and cross nested logit

Outline

- Test of non-nested hypotheses
- Tests of nonlinear specifications
 - Piecewise linear
 - Power series
 - Box-Cox

- Survey
 - Conducted by the Boeing Company (fall 2004)
 - Sample of the customers of an Internet airline booking service
- Booking (the internet service)
 - Takes a specific user request for travel in a city pair
 - Interrogates the web sites of airlines that provide service in that market
 - Returns to the user a compiled list of available itineraries

- Questionnaire
 - Random selection of customers for the survey
 - Three alternatives based on the origin-destination market request that the respondent entered into the itinerary search engine:
 - A non stop flight
 - A flight with 1 stop on the same airline
 - A flight with 1 stop and a change of airline
- Demographic data
 - age
 - gender
 - Income
 - Occupation
 - Education

- Context data
 - Desired departure time
 - Trip purpose
 - Who is paying for the trip
 - The number of passengers traveling together

Pick Your Preferred Flight

Three flight options are described for your trip from Chicago to San Diego. These are options that might be available on this route or might be new options actively being considered for this route as well as replacing some options that are offered now. The options differ from each other in one or more of the features described on the left.

Please evaluate these options, assuming that eveything about the options is the same except these particular features. Indicate your choices at the bottom of the appropriate column and press the Continue button.

FEATURES	Non-Stop (Option 1)	1 Stop (Option 2)	1 Stop (Option 3)
Departure time (local)	6:00 PM	4:30 PM	6:00 PM
Arrival time (local)	8:14 PM	8:44 PM	9:44 PM
Total time in air	4 hr 14 min	4 hr 44 min	4 hr 44 min
Total trip time	4 hr 14 min	6 hr 14 min	5 hr 44 min
Legroom	typical legroom	2-in more of legroom	4-in more of legroom
Airline [Airplane]	Depart Chicago Continental Airlines [8737] to San Diego	Depart Chicago Southwest Airlines [A320], connecting with Southwest Airlines [MD80] to San Diego	Depart Chicago Northwest Airlines [MD80], connecting with American Airlines [DC9] to San Diego
Fare	\$565	\$485	\$620
1. Which is MOST attractive?	Option 1	Option 2	Dption 3
2. Which is LEAST attractive	?	Dption 2	Dption 3
3. If these were the ONLY th	ree options available, I would i	NOT make this trip by air. 🌹 Ye:	s 🛡 No

- Sample
 - Origin-destination city pairs in the USA
 - 3609 respondents
 - 1 choice each

Outline

- Test of non-nested hypotheses
- Tests of nonlinear specifications
 - Piecewise linear
 - Power series
 - Box-Cox

Test of non-nested hypotheses

- Assume we want to test a model M_1 against another model M_2 , which is not a restricted version of M_1
- Generate a composite model M_C such that both M_1 and M_2 are restricted cases of M_C

- We test M_1 against M_C and M_2 against M_C using the likelihood ratio test
- Three possible outcomes of this test:
 - 1. One of the two models is rejected. Then we keep the other one.
 - 2. Both models are rejected. Then better models should be developed. The composite model could be used as a new basis for future specifications
 - 3. Both models are accepted. Then we choose the model with the highest $\bar{\rho}^2$ index.

- Go to CaseStudies → Ch06_SpecTesting → Airline
 → SpecTest_airline_cox.py
- M_1 has the following systematic utilities

$$\begin{array}{lll} V_{1n} &=& \beta_{Fare}Fare_{1n} + \beta_{Legroom}Legroom_{1n} + \beta_{Total_TT_1}Total_TT_{1n} \\ &+ \beta_{SchedDE}Opt1_SchedDelayEarly_n + \beta_{SchedDL}Opt1_SchedDelayLate_n \\ V_{2n} &=& ASC_2 + \beta_{Fare}Fare_{2n} + \beta_{Legroom}Legroom_{2n} + \beta_{Total_TT_2}Total_TT_{2n} \\ &+ \beta_{SchedDE}Opt2_SchedDelayEarly_n + \beta_{SchedDL}Opt2_SchedDelayLate_n \\ V_{3n} &=& ASC_3 + \beta_{Fare}Fare_{3n} + \beta_{Legroom}Legroom_{3n} + \beta_{Total_TT_3}Total_TT_{3n} \\ &+ \beta_{SchedDE}Opt3_SchedDelayEarly_n + \beta_{SchedDL}Opt3_SchedDelayLate_n \\ \end{array}$$

• Cost related coefficients are linear

• M_2 has the following systematic utilities

$$\begin{array}{lll} V_{1n} & = & \beta_{\mathrm{LogFare}} \log(\mathrm{Fare_{1n}}) + \beta_{\mathrm{Legroom}} \mathrm{Legroom_{1n}} + \beta_{\mathrm{Total_TT_1}} \mathrm{Total_TT_{1n}} \\ & + \beta_{\mathrm{SchedDE}} \mathrm{Opt1_SchedDelayEarly_n} + \beta_{\mathrm{SchedDL}} \mathrm{Opt1_SchedDelayLate_n} \\ V_{2n} & = & \mathrm{ASC_2} + \beta_{\mathrm{LogFare}} \log(\mathrm{Fare_{2n}}) + \beta_{\mathrm{Legroom}} \mathrm{Legroom_{2n}} + \beta_{\mathrm{Total_TT_2}} \mathrm{Total_TT_{2n}} \\ & + \beta_{\mathrm{SchedDE}} \mathrm{Opt2_SchedDelayEarly_n} + \beta_{\mathrm{SchedDL}} \mathrm{Opt2_SchedDelayLate_n} \\ V_{3n} & = & \mathrm{ASC_3} + \beta_{\mathrm{LogFare}} \log(\mathrm{Fare_{3n}}) + \beta_{\mathrm{Legroom}} \mathrm{Legroom_{3n}} + \beta_{\mathrm{Total_TT_3}} \mathrm{Total_TT_{3n}} \\ & + \beta_{\mathrm{SchedDE}} \mathrm{Opt3_SchedDelayEarly_n} + \beta_{\mathrm{SchedDL}} \mathrm{Opt3_SchedDelayLate_n} \\ \end{array}$$

• Cost related coefficients are logarithmic

• M_C has the following systematic utilities

$$\begin{array}{lll} V_{1n} &=& \underline{\beta_{Fare}Fare_{1n} + \beta_{LogFare}\log(Fare_{1n}) + \beta_{Legroom}Legroom_{1n}} \\ &+ \beta_{Total_TT_1}Total_TT_{1n} + \beta_{SchedDE}Opt1_SchedDelayEarly_n \\ &+ \beta_{SchedDL}Opt1_SchedDelayLate_n \\ V_{2n} &=& ASC_2 + \underline{\beta_{Fare}Fare_{1n} + \beta_{LogFare}\log(Fare_{2n})} + \beta_{Legroom}Legroom_{2n} \\ &+ \beta_{Total_TT_2}Total_TT_{2n} + \beta_{SchedDE}Opt2_SchedDelayEarly_n \\ &+ \beta_{SchedDL}Opt2_SchedDelayLate_n \\ V_{3n} &=& ASC_3 + \underline{\beta_{Fare}Fare_{1n} + \beta_{LogFare}\log(Fare_{3n})} + \beta_{Legroom}Legroom_{3n} \\ &+ \beta_{Total_TT_3}Total_TT_{3n} + \beta_{SchedDE}Opt3_SchedDelayEarly_n \\ &+ \beta_{SchedDL}Opt3_SchedDelayLate_n \\ \end{array}$$

- Apply the likelihood ratio test for M_1 against M_C
- Null hypothesis: $\beta_{\text{LogFare}} = 0$.
- Reject H_0 if $-2\left(L(\hat{\beta}_{M_1}) L(\hat{\beta}_{M_C})\right) \ge \chi_{K,(1-\alpha)}^2$ M_1 results M_C results

Summary statistics

Number of observations=3609 $\mathcal{L}(0) = -3964.892$ $\mathcal{L}(\hat{\beta}) = -2320.447$ $\bar{\rho}^2 = 0.412$

Summary statistics

Number of observations=3609

$$\mathcal{L}(0) = -3964.892$$

$$\mathcal{L}(\hat{\beta}) = -2271.656$$

$$\bar{\rho}^2 = 0.425$$

$$-2(-2320.447 + 2271.656) = 97.583.$$
 $\chi^2_{1,95\%} = 3.84$

• We reject H_0

- Apply the likelihood ratio test for M_2 against M_C
- Null hypothesis: $\beta_{Fare} = 0$.
- Reject H_0 if $-2\left(L(\hat{\beta}_{M_2}) L(\hat{\beta}_{M_C})\right) \ge \chi_{K,(1-\alpha)}^2$ M_2 results M_C results

Summary statistics

Number of observations=3609 $\mathcal{L}(0) = -3964.892$ $\mathcal{L}(\hat{\beta}) = -2283.103$ $\bar{\rho}^2 = 0.422$

Summary statistics

Number of observations=3609

$$\mathcal{L}(0) = -3964.892$$

$$\mathcal{L}(\hat{\beta}) = -2271.656$$

$$\bar{\rho}^2 = 0.425$$

$$-2(-2283.103 + 2271.656) = 22.895.$$
 $\chi^{2}_{95\%,1} = 3.84$

• We reject H_0

Outline

- Test of non-nested hypotheses
- Tests of nonlinear specifications
 - Piecewise linear
 - Power series
 - Box-Cox

Test of Nonlinear Specifications

- Consider a variable x of the model (travel time, say)
- Restricted model: V is a linear function of x
- Unrestricted model: V is a nonlinear function of x
 - Piecewise linear
 - Power series
 - Box-Cox transforms
- For each of them, the linear specification is obtained using simple restrictions on the nonlinear specification

Outline

- Test of non-nested hypotheses
- Tests of nonlinear specifications
 - Piecewise linear
 - Power series
 - Box-Cox

Model

- Partition the range of values x into M intervals $[a_m, a_{m+1}], m=1,...,M$
- For example, the partition [0-2], (2-3], (3-) corresponds to M=3, a_1 =0, a_2 =2, a_3 =3, a_4 = + ∞
- The slope of the utility function may vary across intervals
- Therefore, there will be M parameters instead of 1
- The function must be continuous

- Specifications
 - Linear Specification

$$V_i = \beta x_i + \cdots$$

Piecewise linear specification

$$V_i = \sum_{m=1}^M \beta_m x_{im} + \cdots$$

where
$$x_{im} = \max(0, \min(x - a_m, a_{m+1} - a_m))$$

that is
$$x_{im} = \begin{cases} 0 & \text{if } x < a_m \\ x - a_m & \text{if } a_m \le x < a_{m+1} \\ a_{m+1} - a_m & \text{if } a_{m+1} \le x \end{cases}$$

```
from biogeme.models import piecewiseVariables
thresholds = [Null,2,3,Null]

pw_tt = piecewiseVariables(TripTimeHours_1 ,thresholds)
TripTimeHours_1_1 = DefineVariable('TripTimeHours_1_1', \
pw_tt[0], database)
TripTimeHours_1_2 = DefineVariable('TripTimeHours_1_2', \
pw_tt[1], database)
TripTimeHours_1_3 = DefineVariable('TripTimeHours_1_3', \
pw_tt[2], database)
```

• The systematic utility expressions used in this model

```
\begin{split} V_{1n} &= \beta_{Fare}Fare_{1n} + \beta_{Legroom}Legroom_{1n} \\ &+ \beta_{SchedDE}Opt1\_SchedDelayEarly_n + \beta_{SchedDL}Opt1\_SchedDelayLate_n \\ &+ \beta_{Total\_TT_1\_1}Total\_TT\_1_{1n} + \beta_{Total\_TT_1\_2}Total\_TT\_2_{1n} \\ &+ \beta_{Total\_TT_1\_3}Total\_TT\_3_{1n} \\ V_{2n} &= ASC_2 + \beta_{Fare}Fare_{2n} + \beta_{Legroom}Legroom_{2n} \\ &+ \beta_{SchedDE}Opt2\_SchedDelayEarly_n + \beta_{SchedDL}Opt2\_SchedDelayLate_n \\ &+ \beta_{Total\_TT_2}Total\_TT_{2n} \\ V_{3n} &= ASC_3 + \beta_{Fare}Fare_{3n} + \beta_{Legroom}Legroom_{3n} \\ &+ \beta_{SchedDE}Opt3\_SchedDelayEarly_n + \beta_{SchedDL}Opt3\_SchedDelayLate_n \\ &+ \beta_{Total\_TT_3}Total\_TT_{3n} \end{split}
```

Estimation Results: piecewise linear specification

	Estimation results						
		Param.	Rob.	Rob.	Rob.		
	Parameter	estimate	std err	t-stat	p-value		
1	ASC2	-2.33	0.412	-5.65	1.6e-08		
2	ASC3	-2.55	0.438	-5.83	5.57e-09		
3	Fare	-0.0193	0.000799	-24.1	0.0		
4	Legroom	0.227	0.0267	8.51	0.0		
5	SchedDE	-0.14	0.0165	-8.47	0.0		
6	SchedDL	-0.105	0.0137	-7.64	2.22e-14		
7	$Total_TT1_1$	-0.825	0.238	-3.46	0.000531		
8	$Total_TT1_2$	-0.443	0.188	-2.36	0.0184		
9	$Total_TT1_3$	-0.228	0.0889	-2.57	0.0102		
10	$Total_TT2$	-0.3	0.0701	-4.28	1.84e-05		
11	$Total_TT3$	-0.301	0.0701	-4.29	1.82e-05		

Summary statistics

Number of observations=3609

$$\mathcal{L}(0) = -3964.892$$

$$\mathcal{L}(\widehat{\beta}) = -2315.041$$

$$\bar{\rho}^2=0.413$$

Estimation Results: linear specification

	Estimation results						
		Param.	Rob.	Rob.	Rob.		
	Parameter	estimate	std err	t-stat	p-value		
1	ASC2	-1.43	0.183	-7.81	5.55e-15		
2	ASC3	-1.64	0.192	-8.53	0.0		
3	Fare	-0.0193	0.000802	-24.0	0.0		
4	Legroom	0.226	0.0267	8.45	0.0		
5	SchedDE	-0.139	0.0163	-8.53	0.0		
6	SchedDL	-0.104	0.0137	-7.59	3.29e-14		
7	$Total_TT1$	-0.332	0.0735	-4.52	6.27e-06		
8	$Total_TT2$	-0.299	0.0696	-4.29	1.77e-05		
9	$Total_TT3$	-0.302	0.0699	-4.31	1.6e-05		

Summary statistics

Number of observations=3609

$$\mathcal{L}(0) = -3964.892$$

$$\mathcal{L}(\widehat{\boldsymbol{\beta}}) = -2320.447$$

$$\bar{\rho}^2 = 0.412$$

H_0 : the linear specification is the correct model

• Test restrictions $\beta_{\text{Total_TT}_1_1} = \beta_{\text{Total_TT}_1_2} = \beta_{\text{Total_TT}_1_3}$.

• Statistic -2(-2320.447 + 2315.041) = 10.812.

• Threshold. $\chi^2_{2,0.05} = 5.99$

The linear specification is rejected

Outline

- Test of non-nested hypotheses
- Tests of nonlinear specifications
 - Piecewise linear
 - Power series
 - Box-Cox

Power series

- Idea: if the utility function is nonlinear in x, it can be approximated by a polynomial of degree M
- Linear specification

$$V_i = \beta x_i + \cdots$$

• Power series

$$V_i = \sum_{m=1}^M \beta_m x_i^m + \cdots$$

Power series specification

Option 1 utility with square and cubic terms

```
\begin{split} V_{1n} &= \beta_{Fare}Fare_{1n} + \beta_{Legroom}Legroom_{1n} + \\ & \beta_{SchedDE}Opt1\_SchedDelayEarly_n + \beta_{SchedDL}Opt1\_SchedDelayLate_n \\ & + \beta_{Total\_TT}Total\_TT_{1n} + \underline{\beta_{Total\_TT\_1\_sq}Total\_TT_{1n}^2} \\ & + \beta_{Total\_TT_1\_cu}Total\_TT_{1n}^3 \end{split}
```

Estimation Results: power series specification

Estimation results						
		Param.	Rob.	Rob.	Rob.	
	Parameter	estimate	std err	t-stat	p-value	
1	ASC2	-2.32	0.528	-4.39	1.11e-05	
2	ASC3	-2.55	0.55	-4.63	3.66e-06	
3	Fare	-0.0193	0.0008	-24.1	0.0	
4	Legroom	0.227	0.0267	8.52	0.0	
5	SchedDE	-0.14	0.0165	-8.46	0.0	
6	SchedDL	-0.105	0.0137	-7.63	2.31e-14	
7	$Total_TT1$	-0.994	0.516	-1.93	0.0542	
8	$Total_TT1_cu$	-0.0036	0.0145	-0.249	0.804	
9	$Total_TT1_sq$	0.113	0.155	0.728	0.466	
10	$Total_TT2$	-0.301	0.0701	-4.29	1.75 e-05	
11	$Total_TT3$	-0.302	0.0702	-4.3	1.68e-05	

Summary statistics

Number of observations=3609

$$\mathcal{L}(0) = -3964.892$$

$$\mathcal{L}(\widehat{\boldsymbol{\beta}}) = -2314.402$$

$$\bar{\rho}^2 = 0.414$$

Power series: *M*=3

H_0 : the linear specification is the correct model

• Test restrictions $\beta_{\text{Total_TT}_1_\text{sq}} = \beta_{\text{Total_TT}_1_\text{cu}} = 0$.

• Statistic
$$-2(-2320.447 + 2314.402) = 12.090$$
.

• Threshold.
$$\chi^2_{2,0.05} = 5.9$$

The linear specification is rejected

Outline

- Test of non-nested hypotheses
- Tests of nonlinear specifications
 - Piecewise linear
 - Power series
 - Box-Cox

- Definition
 - Let x > 0 be a positive variable
 - Its Box-Cox transform is defined as

$$B(x,\lambda) = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0 \\ \ln x & \text{if } \lambda = 0. \end{cases}$$

where $\lambda \in \mathbb{R}$ is a parameter

• Continuity $\lim_{\lambda \to 0} \frac{x^{\lambda} - 1}{\lambda} = \ln x.$

• Linear specification

$$V_i = \beta x_i + \cdots$$

• Box-Cox specification

$$V_i = \beta B(x, \lambda) + \cdots$$

- Properties
 - Convex if $\lambda > 1$
 - Linear if $\lambda = 1$
 - Concave if $\lambda < 1$

- Estimation
 - λ is estimated from data
 - Utility function not linear-in-parameters
- Testing the linear specification
 - Restriction: $\lambda = 1$
 - Likelihood ratio test
 - *t*-test can also be used

Box-Cox transform specification

Box-Cox transformation for TT in Option 1

```
\begin{split} V_1 &= \beta_{\mathrm{Fare}} \mathrm{Fare}_1 + \beta_{\mathrm{Legroom}} \mathrm{Legroom}_1 \\ &+ \beta_{\mathrm{SchedDE}} \mathrm{Opt1\_SchedDelayEarly} \\ &+ \beta_{\mathrm{SchedDL}} \mathrm{Opt1\_SchedDelayLate} + \beta_{\mathrm{Total\_TT}_1} \frac{\mathrm{Total\_TT}_1^{\lambda} - 1}{\lambda} \end{split}
```

```
from biogeme.models import boxcox

M2_Opt1 = Constant1 + Fare * Fare_1 + Legroom * Legroom_1 \
+ SchedDE * Opt1_SchedDelayEarly \
+ SchedDL * Opt1_SchedDelayLate \
+ Total_TT1 * boxcox(TripTimeHours_1, LAMBDA) \
```

Estimation Results: Box-Cox specification

Estimation results						
		Param.	Rob.	Rob.	Rob.	
	Parameter	estimate	std err	t-stat	p-value	
1	ASC2	-1.51	0.263	-5.76	8.2e-09	
2	ASC3	-1.74	0.28	-6.21	5.16e-10	
3	Fare	-0.0193	0.000799	-24.1	0.0	
4	LAMBDA	-0.139	0.338	-0.412	0.68	
5	$_{ m Legroom}$	0.227	0.0267	8.52	0.0	
6	SchedDE	-0.14	0.0165	-8.47	0.0	
7	SchedDL	-0.105	0.0137	-7.63	2.26e-14	
8	$Total_TT1$	-1.24	0.373	-3.34	0.000839	
9	$Total_TT2$	-0.306	0.068	-4.49	7.03e-06	
10	$Total_TT3$	-0.306	0.0682	-4.48	7.34e-06	

Summary statistics

Number of observations=3609

$$\mathcal{L}(0) = -3964.892$$

$$\mathcal{L}(\hat{\beta}) = -2314.574$$

$$\bar{\rho}^2=0.414$$

H_0 : the linear specification is the correct model

- *t*-test
 - $\lambda = -0.139$
 - Robust asymptotic standard error = 0.338
 - $H_0: \lambda = 1$
 - Test:

$$\frac{-0.139 - 1}{0.338} = -3.37$$

• The hypothesis can be rejected at the 5% level

H_0 : the linear specification is the correct model

- Likelihood ratio test
 - Unrestricted model: -2314.574
 - Restricted model: -2320.447
 - Test: -2(-2320.447 + 2314.574) = 11.747
 - Threshold: $\chi^2_{1,0.05} = 3.84$
 - The hypothesis can be rejected at the 5% level