

Ejemplo

- **Descripción**
- **Objetivos**
- **☐** Temario
- 🗀 Bibliografía

- Ensayos en laboratorio que determinan la permeabilidad de un material para diferentes presiones
- Estimar su permeabilidad para presiones intermedias
- Determinar el tipo de problema y seleccionar la base de funciones
 - ¿Existencia y unicidad de solución?
 - Soporte $\{x_0, x_1, x_2, ... x_n\}$

Interpolación

- **Descripción**
- <u> Objetivos</u>
- <u> Temario</u>
- 🗀 Bibliografía

- Sustitución de una función (conocida o tabulada) por otra más simple
- Interpolante como combinación de la base de un espacio funcional:

$$\psi(x) = \sum_{i=0}^{n} \alpha_{i} \varphi_{i}(x)$$

- Funciones base: polinómicas, trigonométricas, ...
- Función interpolante "coincide" con la inicial
 - Lagrange: valor de la función en algunos puntos
 - Taylor: valor de las derivadas en un punto
 - Hermite: valor de la función y la derivada
 - ...

Interpolación

- **Descripción**
- **Objetivos**
- **Temario**
- 🗀 Bibliografía

- Plantear las condiciones de existencia y unicidad de solución del problema general de interpolación
- Saber que el problema de Lagrange tiene un único polinomio de interpolación de grado mínimo
- Conocer las diferentes formas de representar dicho polinomio
- Conocer las ventajas e inconvenientes de las formas de Lagrange y de Newton
- Comprender la relación entre diferencias divididas y expansión en serie de Taylor y su uso para acotar el error
- Comprender las limitaciones e incertidumbres de la extrapolación
- Valorar las ventajas e inconvenientes de los diferentes interpolantes segmentarios

Interpolación y el Polinomio de Lagrange

Descripción

Temario

Introducción

Int. Polinomial Int. Segmentaria

🗀 Bibliografía

Una de las clases mas útiles que mapean un conjunto de números reales son los polinomios algebraicos que toman la forma:

$$P_n(x) = a_n x^n a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

n es un entero positivo

$$a_0, a_1, \dots, a_n$$
 constantes reales

Dada una función definida y continua sobre un intervalo cerrado y acotado existe un polinomio que esta "tan cerca" de la función dada como se desee

- <u> Dbjetivos</u>
- **Temario**

Introducción

Int. Polinomial Int. Segmentaria

🗀 Bibliografía

Teorema de Weierstrass

Suponga que f esta definida y es continua en [a, b]. Para cada $\varepsilon > 0$, existe un polinomio P(x) con la propiedad que

$$|f(x) - P(x)| < \varepsilon$$
 para todas las $x \in [a, b]$

Ventajas

- Fácil de escribir los polinomios
- Derivada e integral muy fáciles de determinar

Inconvenientes

 Son inestables cuando el grado del polinomio es mayor a 5

- <u>Descripción</u>
- <u> Objetivos</u>
- <u> Temario</u>

Introducción

Int. Polinomial Int. Segmentaria

Polinomio de Taylor

- **Descripción**
- <u> Objetivos</u>
- **Temario**

Introducción

Int. Polinomial Int. Segmentaria

🗀 Bibliografía

- Concuerdan muy bien con una función en un punto especifico
- Son muy precisos alrededor e ese punto
- A medida que nos alejamos pierden precisión

Ejemplo 1:

Escribir los 6 primeros polinomio de Taylor alrededor de $x_0=0$ para $f(x)=e^x$

Como las derivadas de f(x) son todas e^x Los polinomios quedan:

$$P_0(x) = 1$$
, $P_1(x) = 1 + x$, $P_2(x) = 1 + x + \frac{x^2}{2}$, $P_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$, $\frac{x^2}{6} + \frac{x^3}{6} + \frac{x^4}{6} + \frac{x^5}{6} + \frac{x^4}{6} + \frac{x^5}{6} + \frac{x^4}{6} + \frac{x^5}{6} + \frac{x^4}{6} + \frac{x^5}{6} + \frac{x^5}{6$

$$P_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}, \quad y \quad P_5(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120}.$$

Ejemplo 2:

Escribir los polinomios de Taylor alrededor de $x_0 = 3$ para f(x) = 1/x

Las derivadas de f(x) son::

$$f(x) = x^{-1}, \ f'(x) = -x^{-2}, \ f''(x) = (-1)^2 2 \cdot x^{-3}, \ f^{(k)}(x) = (-1)^k k! x^{-k-1}$$

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(1)}{k!} (x-1)^k = \sum_{k=0}^n (-1)^k (x-1)^k.$$

$$f(3) = \frac{1}{3}$$

n	0	1	2	3	4	5	6	7
$P_n(3)$	1	-1	3	-5	11	-21	43	-85

Descripción

Introducción

Int. Polinomial
Int. Segmentaria

<u> Descripción</u>

Objetivos

Int. Polinomial Int. Segmentaria

🗀 Bibliografía

TemarioIntroducción

https://www.geogebra.org/m/wdxbwyyq

Interpolación de Lagrange

- **Descripción**
- <u> Objetivos</u>
- <u> Temario</u>

Introducción

Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

🗀 Bibliografía

$$P_n(x) = \sum_{i=0}^n \alpha_i x^i : P_n(x_k) = f(x_k), k = 0, 1, \dots n$$

El polinomio de interpolación

- Existe un único polinomio de grado menor o igual a n, pero existen infinitos polinomios de grado mayor.
- Hay formas más fáciles de calcularlo, e infinitas de "escribirlo" (aunque asociadas al cálculo)
 - Forma canónica (resolución frontal) $P_2(x) = x^2 - 3x + 1$ para $\{(-1,5), (0,1), (1,-1)\}$
 - Forma de Lagrange $P_2(x) = \frac{5}{2}x(x-1) - (x+1)(x-1) - \frac{1}{2}x(x+1)$
 - Forma de Newton

$$P_2(x) = 5 - 4(x+1) + x(x+1)$$

☐ Descripción

☐ Objetivos

<u> 🇁 Temario</u>

Introducción

Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

🗀 Bibliografía

Interpolación de Lagrange

El problema es encontrar un polinomio de primer grado que pase por los dos puntos (x_0, y_0) , (x_1, y_1) donde $y_0 = f(x_0)$ e $y_1 = f(x_1)$ y que coincida con los valeres de f en los puntos determinados.

Esto se conoce con el nombre de Interpolación

Definimos

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 $L_1(x) = \frac{x - x_0}{x_1 - x_0}$

El polinomio de Interpolación de Lagrange que pasa por los puntos $(x_0, y_0), (x_1, y_1)$ es

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) = \frac{x - x_1}{x_0 - x_1}f(x_0) + \frac{x - x_0}{x_1 - x_0}f(x_1)$$

Observamos

$$L_0(x_0) = 1$$
, $L_0(x_1) = 0$, $L_1(x_0) = 0$, $L_1(x_1) = 1$

Por lo que ${f P}$ es el ${f único}$ polinomio que pasa por esos puntos

Problema de Lagrange

Descripción

<u> Objetivos</u>

<u> Temario</u>

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

<u> 🗀 Bibliografía</u>

Se trata de encontrar un polinomio de grado n que pase por los puntos $(x_0, f(x_0)), (x_1, f(x_1)), ... (x_n, f(x_n))$, se construye un cociente $L_{n,k}(x_k)$ con la propiedad de que

$$L_{n,k}(x_i) = 0$$
 cuando $i \neq k$ y $L_{n,k}(x_k) = 1$

Se requiere entonces que el numerador contenga

$$(x-x_0)(x-x_1)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)$$

El denominador debe coincidir con el numerador cuando

$$x = x_k$$
.

$$L_{n,k}(x) = \frac{(x - x_0)(x - x_1)\cdots(x - x_{k-1})(x - x_{k-1})\cdots(x - x_n)}{(x_k - x_0)(x_k - x_1)\cdots(x_k - x_{k-1})(x_k - x_{k-1})\cdots(x_k - x_n)} = \prod_{\substack{i=0 \ i \neq k}}^n \frac{(x - x_i)}{(x_k - x_i)}$$

Problema de Lagrange

☐ Objetivos

Temario

Introducción

Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

☐ Descripción

<u> Objetivos</u>

TemarioIntroducción

Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

🗀 Bibliografía

Teorema

Si x_0 , x_1 , x_2 , ... x_n , son n+1 números distintos y si f es una función cuyos valores están dados en esos números, entonces existe un polinomio de grado a lo más n, con la propiedad de que

$$f(x_k) = P(x_k)$$
 para cada $k = 0, 1, 2, ...n$

Este polinomio está dado por

$$P_n(x) = f(x_0)L_{n,0}(x) + \dots + f(x_n)L_{n,n}(x) = \sum_{k=0}^n f(x_k)L_{n,k}(x)$$

$$L_{n,k}(x) = \frac{(x - x_0)(x - x_1)\cdots(x - x_{k-1})(x - x_{k+1})\cdots(x - x_n)}{(x_k - x_0)(x_k - x_1)\cdots(x_k - x_{k-1})(x_k - x_{k+1})\cdots(x_k - x_n)} = \prod_{\substack{i=0 \ i \neq k}}^n \frac{(x - x_i)}{(x_k - x_i)}$$

La grafica de $L_{n,k}(x)$ (cuando n es par)

Objetivos

Temario

Introducción Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

<u> Bibliografía</u>

El error en la interpolación de Lagrange puede calcularse con

<u> Objetivos</u>

<u>Temario</u>

Introducción

Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

$$|f(x_0)-P(x)| \le \frac{f^{n+1}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)...(x-x_n)$$

Polinomios de Lagrange

 Polinomio de interpolación como combinación de polinomios más simples de obtener

$$P_n(x) = \sum_{i=0}^n f(x_i) L_i^n(x) : L_i^n(x_k) = \delta_i^k$$

- Propiedades de los polinomios de Lagrange
 - Cálculo

$$L_{i}^{n}(x) = \frac{(x-x_{0})\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_{n})}{(x_{i}-x_{0})\cdots(x_{i}-x_{i-1})(x_{i}-x_{i+1})\cdots(x_{i}-x_{n})} = \prod_{k=0}^{n} \frac{x-x_{k}}{x_{i}-x_{k}}$$

- Suma
$$\sum_{i=0}^{n} L_{i}^{n}(x) = 1$$
- Derivación
$$\begin{cases} \frac{d}{dx} L_{i}^{n}(x_{i}) = \sum_{j=0}^{n} \frac{1}{x_{i} - x_{j}} \\ \frac{d}{dx} L_{i}^{n}(x_{j}) = \left(\prod_{k=0}^{n} \frac{1}{(x_{i} - x_{k})}\right) \prod_{k=0}^{n} (x_{j} - x_{k}) \\ k \neq i, j \end{cases}$$

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

Ejemplo 1

Descripción

<u> Dbjetivos</u>

Temario

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

🗀 Bibliografía

Grado n y además Ejemplo

$$L_i^n(x) = \prod_{k=0}^n \frac{x - x_k}{x_i - x_k} : L_i^n(x_k) = \delta_i^k$$

X	F(x)
$X_0 = -2$	-13/5
$X_1 = -1$	-3
$X_2 = 1$	-2
X ₃ =2	3/5

$$L_0^3(x) = \frac{(x+1)(x-1)(x-2)}{(-2+1)(-2-1)(-2-2)} = \frac{x^3 - 2x^2 - x + 2}{-12}$$

$$L_1^3(x) = \frac{(x+2)(x-1)(x-2)}{(-1+2)(-1-1)(-1-2)} = \frac{x^3 - x^2 - 4x + 4}{6}$$

$$L_2^3(x) = \frac{(x+2)(x+1)(x-2)}{(1+2)(1+1)(1-2)} = \frac{x^3 + x^2 - 4x - 4}{-6}$$

$$L_3^3(x) = \frac{(x+2)(x+1)(x-1)}{(2+2)(2+1)(2-1)} = \frac{x^3 + 2x^2 - x - 2}{12}$$

$$P_{n}(x) = \sum_{i=0}^{n} f(x_{i}) L_{i}^{3}(x) = -\frac{13}{5} L_{0}^{3}(x) - 3L_{1}^{3}(x) - 2L_{2}^{3}(x) + \frac{3}{5} L_{3}^{3}(x) =$$

$$= -\frac{13}{5} \frac{x^{3} - 2x^{2} - x + 2}{-12} - 3 \frac{x^{3} - x^{2} - 4x + 4}{6} - 2 \frac{x^{3} + x^{2} - 4x - 4}{-6} + \frac{3}{5} \frac{x^{3} + 2x^{2} - x - 2}{12}$$

$$= \frac{1}{10} x^{3} + \frac{1}{2} x^{2} + \frac{2}{5} x - 3$$

<u> Objetivos</u>

Temario

Introducción Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error.

Int. Segmentaria

Ejemplo 2

Aproximación a 1/x con interpolantes de Lagrange

Usaremos $x_0 = 2$, $x_1 = 2.5$ y $x_2 = 4$, para obtener un polinomio de grado 2 para 1/x. $f(x_0) = 0.5$, $f(x_1) = 0.4$ y $f(x_2) = 0.25$.

Los polinomios de Lagrange son:

$$L_0(x) = \frac{(x-2.5)(x-4)}{(2-2.5)(2-4)} = (x-6.5)x+10$$

$$L_1(x) = \frac{(x-2)(x-4)}{(2.5-2)(2.5-4)} = \frac{(-4x+24)x-32}{3}$$

$$L_2(x) = \frac{(x-2)(x-2.5)}{(4-2)(4-2.5)} = \frac{(x+4.5)x+5}{3}$$

$$P(x) = 0.5*((x-6.5)x+10)+0.4*((-4x+24)x-32)/3+0.25*((x+4.5)x+5)/3$$

$$P(x) = (0.05x - 0.425)x + 1.15 = 0.05x^2 - 0.425x + 1.15$$

$$f(3) = P(3) = 0.325$$

Descripción

□ Objetivos

TemarioIntroducción

Int. Polinomial

- Lagrange

- Dif. Divididas

- Acotación del error

Int. Segmentaria

<u> Objetivos</u>

<u> Temario</u>

Introducción Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

<u> Bibliografía</u>

Ejemplo 3

Descripción

- <u> Objetivos</u>

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

🗀 Bibliografía

Ventajas

- Fácil de calcular
- Independientes de la función a interpolar
- *Polinomio*: **y=2x-1**

$$- \{(-2,-5),(-1,-3),(1,1),(2,3)\}$$

$$P_{n}(x) = \sum_{i=0}^{n} f(x_{i}) L_{i}^{3}(x) =$$

$$= -5L_{0}^{3}(x) - 3L_{1}^{3}(x) + 1L_{2}^{3}(x) + 3L_{3}^{3}(x) =$$

$$= -5\frac{x^{3} - 2x^{2} - x + 2}{-12} - 3\frac{x^{3} - x^{2} - 4x + 4}{6} +$$

$$+1\frac{x^{3} + x^{2} - 4x - 4}{-6} + 3\frac{x^{3} + 2x^{2} - x - 2}{12}$$

$$= 0x^{3} + 0x^{2} + 2x - 1$$

• Inconvenientes

- El polinomio
 interpolante puede ser
 mucho más simple que
 los polinomios de
 Lagrange
 - Si cambian los puntos los polinomios obtenidos son inútiles, es necesario repetir todo el proceso

Interpolación de Newton - Diferencias Divididas

<u> Temario</u>

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

🗀 Bibliografía

Suponga que $P_n(x)$ es un polinomio que concuerda con la función f en

$$x_0, x_1, x_2, \dots x_n$$

A pesar de ser único el polinomio lo podemos escribir de la siguiente manera:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \dots (x - x_{n-1})$$

 $a_0, a_1, a_2 \dots a_n$ son constantes

Evaluando el polinomio en x_0 :

$$a_0 = P_n(x_0) = f(x_0)$$

Evaluando en x_1

$$P_n(x_1) = f(x_1) = f(x_0) + a_1(x_1 - x_0)$$

$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Y así sucesivamente sacamos $a_2, a_3 \dots a_n$

La ceroresima diferencia dividida de f respecto a x_i es

$$f[x_i] = f(x_i)$$

La *primera diferencia dividida* de f respecto a x_i, x_{i+1} , es

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i} = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

La segunda diferencia dividida de f respecto a x_i, x_{i+1}, x_{i+2} es

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

La *k*-esima diferencia dividida de *f* respecto a $x_i, x_{i+1}, x_{i+2}, \dots, x_{i+k}$ es $f[x_i, x_{i+1}, x_{i+2}, \dots, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i}$

La enesima diferencia dividida de f respecto a $x_i, x_{i+1}, x_{i+2}, \dots, x_{i+k}$ es $f[x_0, x_1, x_2, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$

Descripción

☐ Objetivos

<u> → Temario</u>

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error.

Int. Segmentaria

<u> 🗀 Bibliografía</u>

Podemos escribir:

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_1) \dots (x - x_{n-1})$$

Donde

$$a_k = f[x_0, x_1, x_2, \dots, x_k]$$
Para $k = 0, 1, 2, \dots, n$

La formula de diferencias divididas de Newton se escribe:

☐ Descripción

☐ Temario

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error.

Int. Segmentaria

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1)(x - x_1) \dots (x - x_{k-1})$$

x	f(x)	Primeras diferencias divididas	Segundas diferencias divididas	Terceras diferencias divididas
<i>x</i> ₀	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$		
x_1	$f[x_1]$	X1 X0	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	
<i>x</i> ₂	$f[x_2]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_1 + x_2}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$
х2	J [A2]	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$x_3 - x_1$	$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$
<i>x</i> ₃	$f[x_3]$	$f[x_4] - f[x_3]$	$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$	$f[x_3, x_4, x_5] - f[x_2, x_3, x_4]$
x_4	$f[x_4]$	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5}$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$
		$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$	$x_5 - x_3$	
<i>X</i> 5	$f[x_5]$			

Algoritmo Interpolación de Newton - Diferencias Divididas

Descripción

<u> 🏳 Temario</u>

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error.

Int. Segmentaria

🗀 Bibliografía

Para obtener los coeficientes de las diferencias divididas del polinomio de interpolación P en los (n + 1) números distintos $x_0, x_1, ..., x_n$ para la función f:

ENTRADA los números x_0, x_1, \ldots, x_n ; valores $f(x_0), f(x_1), \ldots, f(x_n)$ conforme $F_{0,0}, F_{1,0}, \ldots, F_{n,0}$.

SALIDA los números $F_{0,0}, F_{1,1}, \ldots, F_{n,n}$ donde

$$P_n(x) = F_{0,0} + \sum_{i=1}^n F_{i,i} \prod_{j=0}^{i-1} (x - x_j). \ (F_{i,i} \text{ is } f[x_0, x_1, \dots, x_i].)$$

Paso 1 Para i = 1, 2, ..., nPara j = 1, 2, ..., ihaga $F_{i,j} = \frac{F_{i,j-1} - F_{i-1,j-1}}{x_i - x_{i-j}}$. $(F_{i,j} = f[x_{i-j}, ..., x_i])$.

Paso 2 SALIDA $(F_{0,0}, F_{1,1}, ..., F_{n,n});$ PARE.

Ejemplo – Diferencias Divididas

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$$

$$\cdots f[x_0, x_1, \dots x_n](x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

Cálculo de la tabla de Diferencias divididas

┌─ Temario
Introducción
Int. Polinomial
- Lagrange
- Dif. Divididas
- Acotación del error
Int. Segmentaria
🗂 Dibliografía

Descripción

Objectivos

X	F(x)		
x ₀ =-2	$f\left[x_0\right] = \frac{-13}{5}$		
x ₁ =-1	$f\left[x_1\right] = -3$	$f\left[x_{0}, x_{1}\right] = \frac{f\left[x_{0}\right] - f\left[x_{1}\right]}{x_{0} - x_{1}} = \frac{\left(\frac{-13}{5}\right) - \left(-3\right)}{\left(-2\right) - \left(-1\right)} = -\frac{2}{5}$	
		$f[x_1, x_2] = \frac{f[x_1] - f[x_2]}{x_1 - x_2} = \frac{(-3) - (-2)}{(-1) - (1)} = \frac{1}{2}$	* =
x ₃ =2	$f\left[x_3\right] = \frac{3}{5}$	$f\left[x_{2}, x_{3}\right] = \frac{f\left[x_{2}\right] - f\left[x_{3}\right]}{x_{2} - x_{3}} = \frac{\left(-2\right) - \left(\frac{3}{5}\right)}{\left(2\right) - \left(1\right)} = \frac{13}{5}$	$f[x_1, x_2, x_3] = \frac{f[x_1, x_2] - f[x_2, x_3]}{x_1 - x_3} = \frac{7}{10}$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_0, x_1, x_2] - f[x_1, x_2, x_3]}{x_0 - x_3} = \frac{1}{10}$$

$$P_n(x) = \frac{-13}{5} + \frac{-2}{5}(x+2) + \frac{3}{10}(x+2)(x+1) + \frac{1}{10}(x+2)(x+1)(x-1)$$

$$= \frac{3}{5} + \frac{13}{5}(x-2) + \frac{7}{10}(x-2)(x-1) + \frac{1}{10}(x-2)(x-1)(x+1)$$

$$P_3(x) = \frac{1}{10}x^3 + \frac{1}{2}x^2 + \frac{2}{5}x - 3$$

Diferencias Divididas

- <u> Descripción</u>
- <u> Objetivos</u>

Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

- Ventajas
 - Los cálculos son muy simples
 - La tabla de diferencias divididas se simplifica cuando el interpolante es de menor grado
 - Las operaciones se pueden reutilizar al añadir o eliminar puntos

- Inconvenientes
 - El cálculo depende de la función

- Polinomio: y=2x-1
 - $\{(-2,-5),(-1,-3),(1,1),(2,3)\}$

х	F(x)			
x ₀ =-2	-5			
x ₁ =-1	-3	2		
x ₂ =1	1	2	0	
x ₃ =2	3	2	0	0

Podemos expresarlo mas simplificadamente cuando os nodos se ordenan de manera consecutiva y están igualmente espaciados:

$$h = x_{i+1} - x_i$$
 para $i = 0,1,2,....n-1$

$$x = x_0 + s h$$

$$x - x_i = (s - i)h$$

Diferencia de Newton hacia Adelante

$$P_n(x) = P_n(x_0 + sh) = f[x_0] + shf[x_0, x_1] + s(s - 1)h^2 f[x_0, x_1, x_2]$$

$$+ \dots + s(s - 1) \dots (s - n + 1)h^n f[x_0, x_1, \dots, x_n]$$

$$= f[x_0] + \sum_{k=1}^n s(s - 1) \dots (s - k + 1)h^k f[x_0, x_1, \dots, x_k].$$

Diferencia de Newton hacia Atrás

Si los nodos se reordenan desde el ultimo hasta el primero como x_n, x_{n-1}, \dots, x_0 podemos escribir:

$$P_n(x) = f[x_n] + f[x_n, x_{n-1}](x - x_n) + f[x_n, x_{n-1}, x_{n-2}](x - x_n)(x - x_{n-1}) + \dots + f[x_n, x_{n-1}, \dots, x_1](x - x_n)(x - x_{n-1}) \dots \dots (x - x_1)$$

Descripción

<u> Objetivos</u>

<u> 🇁 Temario</u>

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error
- Dif. Div. General.

Int. Segmentaria

Int. Multidimensional

Si además los nodos están igualmente espaciados:

$$h = x_{i+1} - x_i \qquad \text{para } i = 0,1,2,\dots, n-1$$

$$x = x_n + s h$$

$$x - x_i = (s + n - i)h$$

$$P_n(x) = P_n(x_n + sh)$$

$$= f[x_n] + shf[x_n, x_{n-1}] + s(s+1)h^2 f[x_n, x_{n-1}, x_{n-2}] + \cdots$$

$$+ s(s+1) \cdots (s+n-1)h^n f[x_n, \dots, x_0].$$

Ejemplo

		Primeras diferencias divididas	Segundas diferencias divididas	Terceras diferencias divididas	Cuartas diferencias divididas
1.0	0.7651977				
		-0.4837057			
1.3	0.6200860		-0.1087339		
		-0.5489460		0.0658784	
1.6	0.4554022		-0.0494433		0.0018251
		-0.5786120		0.0680685	
1.9	0.2818186		0.0118183		
		-0.5715210			
2.2	0.1103623				

<u> Descripción</u>

<u> Objetivos</u>

Temario

Introducción Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

<u> 🗀 Bibliografía</u>

Diferencias Centradas

Las formulas de diferencias hacia adelante o hacia atrás no son adecuadas cuando el valor de x este en el centro de la tabla. Hay varias formulas, por ejemplo las de Stirling.

Seleccionamos x_0 cerca del punto que se va a aproximar y etiquetamos los nodos directamente abajos de x_0 como $x_1, x_2,$ Y aquellos que están arriba como $x_{n-1}, x_{n-2},$

$$P_n(x) = P_{2m+1}(x) = f[x_0] + \frac{sh}{2} (f[x_{-1}, x_0] + f[x_0, x_1]) + s^2h^2 f[x_{-1}, x_0, x_1]$$

$$+ \frac{s(s^2 - 1)h^3}{2} f[x_{-2}, x_{-1}, x_0, x_1] + f[x_{-1}, x_0, x_1, x_2])$$

$$+ \dots + s^2(s^2 - 1)(s^2 - 4) \dots (s^2 - (m - 1)^2)h^{2m} f[x_{-m}, \dots, x_m]$$

$$+ \frac{s(s^2 - 1) \dots (s^2 - m^2)h^{2m+1}}{2} (f[x_{-m-1}, \dots, x_m] + f[x_{-m}, \dots, x_{m+1}]),$$

x	f(x)	Primeras diferencias divididas	Segundas diferencias divididas	Terceras diferencias divididas	Cuartas diferencias divididas
x_{-2}	$f[x_{-2}]$	er a			
	er 7	$f[x_{-2}, x_{-1}]$			
x_{-1}	$f[x_{-1}]$	er i	$f[x_{-2}, x_{-1}, x_0]$	CF 3	
	er a	$\underline{f[x_{-1},x_0]}$	CF 1	$f[x_{-2}, x_{-1}, x_0, x_1]$	65
x_0	$f[x_0]$	er a	$f[x_{-1}, x_0, x_1]$	65	$f[x_{-2}, x_{-1}, x_0, x_1, x_2]$
	ar 3	$f[x_0, x_1]$	25	$f[x_{-1}, x_0, x_1, x_2]$	
x_1	$f[x_1]$	er a	$f[x_0, x_1, x_2]$		
	25. 2	$f[x_1, x_2]$			
x_2	$f[x_2]$				

Descripción

- **Objetivos**
- <u> 🏳 Temario</u>

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

Error en la interpolación de Lagrange y de Newton

- Descripción
- <u> Objetivos</u>
- <u> Temario</u>

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

<u> Bibliografía</u>

•
$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{k=0}^{n} (x - x_k)$$
 $\xi \in I = (x_{\min}, x_{\max})$

•
$$f[x_0, x_1, \dots x_n] = \frac{f^{(n)}(\xi)}{(n)!}$$
 $\xi \in I = (x_{\min}, x_{\max})$

•
$$|f(z)-P_n(z)| \le \frac{\max_{x \in I} |f^{(n+1)}(x)|}{(n+1)!} \left| \prod_{k=0}^{n} (z-x_k) \right|$$

•
$$\max_{x \in I} |f(x) - P_n(x)| \le \frac{\max_{x \in I} |f^{(n+1)}(x)|}{(n+1)!} \max_{x \in I} \left| \prod_{k=0}^{n} (x - x_k) \right|$$

Error en la interpolación de Lagrange

Descripción

Temario

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

<u> Bibliografía</u>

Datos provienen de

$$f(x) = \frac{x^3 - 5}{x^2 + 1}$$
 $f(0.5) = -3.9$

Valor del interpolante en x=0.5

$$P_n(0.5) = \frac{1}{10}0.5^3 + \frac{1}{2}0.5^2 + \frac{2}{5}0.5 - 3 = \frac{-213}{80} = -2.6$$

Error máximo cometido en x=0.5^{2.5}

$$\max_{x \in [-2,2]} \left| f^{(4)}(x) \right| = \max_{x \in [-2,2]} \left| -24 \frac{x^5 + 25x^4 - 10x^3 - 50x^2 + 5x + 5}{\left(x^2 + 1\right)^5} \right| \approx 122$$

$$|f(0.5) - P_n(0.5)| \le \frac{122}{4!} |(0.5+2)(0.5+1)(0.5-1)(0.5-2)| = \frac{915}{128} \approx 7.1484$$

 $f(x)-P_n(x)$

Error máximo cometido en todo el intervalo

$$\max_{x \in [-2,2]} \left| \prod_{k=0}^{3} (x - x_k) \right| = \left| \prod_{k=0}^{3} (x - x_k) \right|_{x=0} = 4$$

$$\max_{x \in [-2,2]} \left| f(x) - P_n(x) \right| \le \frac{122}{4!} 4 = \frac{61}{3} \approx 20.3333$$

Error en la interpolación de Lagrange

- **Descripción**
- **Objetivos**
- **Temario**

Introducción Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

Bibliografía

- Datos equiespaciados $x_k = x_0 + k h$

$$- \text{Interpolación lineal} \\ \max_{x \in [x_0, x_{0+h}]} \left| f(x) - P_1(x) \right| \leq \frac{\max_{x \in I} \left| f^{(2)}(x) \right|}{2!} \max_{x \in I} \left| \prod_{k=0}^{1} (x - x_k) \right| = \frac{\max_{x \in I} \left| f^{(2)}(x) \right|}{2!} \frac{1}{4} h^2$$

Interpolación parabólica

$$\max_{x \in [x_0, x_{0+2h}]} |f(x) - P_2(x)| \le \frac{\max_{x \in I} |f^{(3)}(x)|}{3!} \max_{x \in I} \left| \prod_{k=0}^{2} (x - x_k) \right| = \frac{\max_{x \in I} |f^{(3)}(x)|}{3!} \frac{2}{3\sqrt{3}} h^3$$

Interpolación cúbica

$$\max_{x \in [x_0, x_{0+3h}]} |f(x) - P_3(x)| \le \frac{\max_{x \in I} |f^{(4)}(x)|}{4!} \max_{x \in I} \left| \prod_{k=0}^{3} (x - x_k) \right| = \frac{\max_{x \in I} |f^{(4)}(x)|}{4!} h^4$$

n	$\max_{s \in [0,n]} \left \prod_{k=0}^{n} (s-k) \right $
4	3.6314
5	16.9009
6	95.8419

n	$\max_{s \in [0,n]} \left \prod_{k=0}^{n} (s-k) \right $
7	640.6010
8	4.9292 10 ³
9	4.2901 10 ⁴

Ejemplo 1 de Interpolación de Lagrange

- <u> Descripción</u>
- **Objetivos**
- **Temario**Introducción
- Int. Polinomial
 - Lagrange
 - Dif. Divididas
 - Acotación del error

Int. Segmentaria

<u> Bibliografía</u>

El mástil de un barco construido con una nueva aleación de aluminio tiene un área transversal de 5.65 cm². Se desarrollan pruebas para definir la relación entre esfuerzo (fuerza aplicada al material por unidad de área) y deformación (deflexión por unidad de longitud), cuyos resultados se muestran en la tabla.

Esfuerzo (Kg/cm ²⁾	Deforma. (m)
126	0.0005
365	0.0013
506	0.002
527	0.0045
562	0.006
703	0.0085

 Utilice polinomios de varios grados para obtener la deformación del mástil debida a la fuerza del viento, evaluada en 2900Kg. . ¿Cual parece ser el más adecuado?.

Ejemplo 1 de Interpolación de Newton

- Punto de interpolación: z= 2900/5.65= 513.2743
- Condiciones para seleccionar el orden de los puntos de interpolación
 - El punto de interpolación z debe pertenecer al intervalo
 - Los puntos deben hacer mínima la cota de error; habitualmente significa que se seleccionan dependiendo de su distancia a z

X	F(x)					
506	0.002					
527	0.0045	0.1190 10 ⁻³				
562	0.006	0.0429 10-3	-0.1361 10 ⁻⁵			
365	0.0013	0.0239 10 ⁻³	0.0117 10 ⁻⁵	-0.1048 10 ⁻⁷		
703	0.0085	0.0213 10-3	-0.0018 10 ⁻⁵	-0.0077 10 ⁻⁷	0.4930 10 ⁻¹⁰	
126	0.0005	0.0139 10-3	0.0031 10 ⁻⁵	-0.0011 10 ⁻⁷	-0.0164 10 ⁻¹⁰	0.1340 10 ⁻¹²

Interpolante	P(z)
$P_1(x)=0.002+0.1190\ 10^{-3}\ (x-506)$	2.865992 10 ⁻³
$P_2(x) = P_1(x) - 0.1361 \ 10^{-5} (x-506)(x-527)$	3.001836 10-3
$P_3(x) = P_2(x) - 0.1048 \ 10^{-7} (x-506)(x-527)(x-562)$	2.950845 10-3
$P_4(x) = P_3(x) + 0.4930 \ 10^{-10}(x-506)(x-527)(x-562)(x-365)$	2.986407 10-3
$P_5(x) = P_4(x) + 0.1340 \ 10^{-12}(x-506)(x-527)(x-562)(x-365)(x-703)$	2.968062 10-3

- **Descripción**
- <u> Objetivos</u>
- <u> Temario</u>

Introducción
Int. Polinomial

- Lagrange
- Dif. Divididas
- Acotación del error

Int. Segmentaria

<u> Bibliografía</u>

Ejemplo 1 de Interpolación de Lagrange

	Interpolante	P(z)
<u> Descripción</u>	$P_1(x)=0.002+0.1190\ 10^{-3}\ (x-506)$	2.865992 10 ⁻³
🗀 Objetivos	$P_2(x) = P_1(x) - 0.1361 \ 10^{-5} (x-506)(x-527)$	3.001836 10-3
	$P_3(x) = P_2(x) - 0.1048 \ 10^{-7} (x-506)(x-527)(x-562)$	2.950845 10 ⁻³
Temario	$P_4(x) = P_3(x) + 0.4930 \ 10^{-10}(x-506)(x-527)(x-562)(x-365)$	2.986407 10-3
Introducción		

2.968062 10-3

 $P_5(x) = P_4(x) + 0.1340 \ 10^{-12} (x-506)(x-527)(x-562)(x-365)(x-703)$

Int. Polinomial

- Lagrange

Int. Segmentaria

- Dif. Divididas

- Acotación del error.

Bibliografía

¡ Sólo tienen sentido físico los interpolantes de primer y segundo grado!

Definición

- En las secciones anteriores vimos la aproximación de una función en un intervalo cerrado mediante un polinomio.
- Un polinomio de orden superior puede oscilar erráticamente por lo que una pequeña oscilación en el intervalo produce grandes errores en el intervalo
- Como alternativa dividimos este intervalo en un conjunto de subintervalos y construimos un polinomio de aproximación diferente en cada subintervalo

"Aproximación Polinomial segmentaria"

- <u> Descripción</u>
 - <u> Objetivos</u>
- <u> Temario</u> Introducción Int. Polinomial

- Lineal
- Cuadrática
- Cúbica (Splines)
- 🗀 Bibliografía

Interpolación Segmentaria Lineal

Consiste en unir un conjunto de puntos dados:

$$(x_0, f(x_0)), (x_1, f(x_1)), \dots (x_n, f(x_n))$$

mediante líneas rectas

→ Temario

Introducción

Int. Polinomial

- Lineal
- Cuadrática
- Cúbica (Splines)
- <u> Bibliografía</u>

- Condiciones (Ecuaciones): 2n
 - La spline coincide con la función en (n+1) puntos
- Coeficientes (Incógnitas): 2n
 - Hay n polinomios lineales
- Sistema compatible determinado. Se obtiene una poligonal
- NO hay difernciabilidad en los extremos por lo que la curva NO es SUAVE

Interpolación Segmentaria Cuadrática

Consiste en ajustar un polinomio cuadrático entre cada par sucesivo de nodos, es decir construir una cuadrática en $[x_0, x_1]$ que concuerda con la función en x_0 y x_1 , otra cuadrática en $[x_1, x_2]$ que concuerde con la función en x_1 y x_2 y así sucesivamente

$$P_k(x) = a_k(x - x_k)^2 + b_k(x - x_k) + c_k$$

- Condiciones (3n-1)
 - La spline coincide con la función en (n+1) puntos
 - La función es continua en (n-1) puntos internos
 - La derivada es continua en (n-1) puntos internos
- Incógnitas (3n)
 - n intervalos con polinomios cuadráticos en cada uno
- Sistema indeterminado (hay 3n incógnitas y 3n-1 ecuaciones)
- Generalmente necesitamos especificar la derivada en los extremos x_0 y x_n y no hay numero suficiente de constantes para garantizar que las condiciones se satisfagan

- **☐ Descripción**
- <u> Objetivos</u>
- <u> D'Temario</u>

Introducción
Int. Polinomial

- Int. Segmentaria
 - Lineal
 - Cuadrática
 - Cúbica (Splines)
- **Bibliografía**

Interpolación Segmentaria Cuadrática: Procedimiento

- Datos de partida $\{(x_0, f(x_0)), (x_1, f(x_1)), ...(x_n, f(x_n))\}$
- Selección de la condición a añadir
- Planteamiento y resolución del sistema
- Recuperación de los coeficientes de los polinomios para cada intervalo
- Selección del intervalo al que pertenece el punto a interpolar y uso del polinomio correspondiente

<u> Temario</u>

Introducción Int. Polinomial Int. Segmentaria

- Lineal
- Cuadrática
- Cúbica (Splines)
- **Bibliografía**

Splines cúbicos: Definición

Consiste en ajustar un polinomio cubico entre cada par sucesivo de nodos, es decir construir una cúbica en $[x_0, x_1]$ que concuerda con la función en x_0 y x_1 , otra cubica en $[x_1, x_2]$ que concuerde con la función en x_1 y x_2 y así sucesivamente:

"Interpolación de Spline Cúbico"

Los polinomios en cada uno de los n intervalos de la partición son cúbicos (cuatro coeficientes cada polinomio).

Spline: Viene de la palabra "Splint" que es una tira de madera que se usaba para unir dos tablas

Posteriormente la palabra se uso para dibujar curvas suaves y continuas al forzar uq la tira pasara por dos puntos específicos y siguiera a lo largo de la curva.

<u> Descripción</u>

☐ Objetivos

Introducción
Int. Polinomial

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)

Los polinomios en cada uno de los n intervalos de la son cúbicos por lo que tienen cuatro constantes cada uno.

- <u>Descripción</u>
- Objetivos
- <u> Temario</u>

Introducción
Int. Polinomial

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- **Bibliografía**

- Condiciones (4n-2)
 - La spline coincide con la función en (n+1) puntos
 - La función es continua en (n-1) puntos internos
 - La derivada es continua en (n-1) puntos internos
 - La derivada segunda es continua en (n-1) puntos internos
- Incógnitas (4n)
 - n intervalos con polinomios cúbicos en cada uno
- Sistema indeterminado (hay 4n incógnitas y 4n-2 ecuaciones)

Splines cúbicos:

- Dada una función f definida en un intervalo [a, b] y un conjunto de nodos $a = x_0 < x_1 < ... < x_n = b$ un Spline Cubico S para f es una función que satisface las siguientes condiciones:
- a) S(x) es un polinomio cúbico, llamado $S_j(x)$ en el intervalo $[x_j, x_{j+1}]$, para cada $j = 0, 1, \dots, n-1$;
- b) $S_j(x_j) = f(x_j)$ y $S_j(x_{j+1}) = f(x_{j+1})$ para cada $j = 0,1, \dots n-1$
- c) $S_j(x_{j+1}) = S_{j+1}(x_{j+1})$ para cada $j = 0,1, \dots n-2$
- d) $S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1})$ para cada $j = 0,1, \dots n-2$
- e) $S''_{j}(x_{j+1}) = S''_{j+1}(x_{j+1})$ para cada $j = 0,1, \dots n-2$
- f) Uno de los siguientes conjunto de condiciones de frontera
 - $S''(x_0) = S''(x_n) = 0$ frontera natural o libre
 - $S'(x_0) = f'(x_0)$ y $S'(x_n) = f'(x_n)$ frontera condicionada

Descripción

<u> Objetivos</u>

Temario

Introducción Int. Polinomial

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- **Bibliografía**

Construcción de Splines cúbicos:

Aplicamos las condiciones anteriores en

Descripción

<u> Temario</u>

Introducción

Int. Polinomial

Int. Segmentaria

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)

□ Bibliografía

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

para cada $j = 0,1, \dots n-1$;

Como $S_i(x_i) = f(x_i) = a_i$ aplicamos la condición c)

$$a_{j+1} = S_j(x_j) = S_j(x_{j+1}) = a_j + b_j(x_{j+1} - x_j) + c_j((x_{j+1} - x_j)^2 + d_j(x_{j+1} - x_j)^3$$

para cada $j = 0, 1, \dots n - 2$

Si llamamos $h_j = x_{j+1} - x_j$ para $j = 0,1, \dots n-1$;

Así:
$$a_{i+1} = a_i + b_i h_i + c_i h_i^2 + d_i h_i^3$$
 (7)

Si $b_n = S'(x_n)$

$$S'_{j}(x) = b_{j} + 2c_{j}(x - x_{j}) + 3d_{j}(x - x_{j})^{2}$$

Si evaluamos en x_j obtenemos $S'_i(x_j) = b_j$ para $j = 0,1, \dots n-1$;

Aplicamos la condicione d) $S'_{j+1}(x_{j+1}) = S'_j(x_{j+1})$

<u> 🏳 Temario</u>

Introducción

Int. Polinomial

Int. Segmentaria

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- **Bibliografía**

Así
$$b_{j+1} = b_j + 2c_jh_j + 3d_jh_j^2$$
 para cada $j = 0,1, \dots n-1;$ (8)

Definimos $c_n = S''(x_n)/2$ y aplicando la condición e) $S''_{j+1}(x_{j+1}) = S''_j(x_{j+1})$

obtenemos $c_{j+1} = c_j + 3d_jh_j$ para cada j = 0,1, ... n - 1;

Despejando
$$d_j = \frac{(c_{j+1} - c_j)}{3h_j}$$
 (9)

Sustituyendo (9) en (7) y (8) obtenemos

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{2} (2c_j + c_{j+1})$$
(10)

$$b_{j+1} = b_j + 2h_j(c_j + c_{j+1}) (11)$$

De la ecuación (10)

TemarioIntroducción

Int. Polinomial

Int. Segmentaria

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- **Bibliografía**

$$b_j = \frac{1}{h_j} \left(a_{j+1} - a_j \right) - \frac{h_j}{3} (2c_j + c_{j+1}) \tag{12}$$

$$b_{j-1} = \frac{1}{h_{j-1}} \left(a_j - a_{j-1} \right) - \frac{h_{j-1}}{3} \left(2c_{j-1} + c_j \right) \tag{13}$$

Sustituyendo (12) y (13) en (11) obtenemos:

$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_jc_{j+1} = \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1})$$

para cada
$$j = 1, \dots n - 1$$

Este sistema tiene solo como incógnitas los valores de "c"

Splines Natural

Dada una función f definida en un intervalo [a, b] y un conjunto de nodos $a = x_0 < x_1 < ... < x_n = b$ entonces d tiene un **spline natural único** S que interpola los puntos x_0, x_1x_2, x_n que satisface que S''(a) = S''(b) = 0

Las condiciones de contorno implican que

$$c_n = \frac{S''(x_n)}{2} = 0$$

$$0 = S''(x_0) = 2c_0 + 6d_0(x_0 - x_0)$$

Por lo que $c_0 = c_n = 0$ Sustituyendo estos valores se obtiene un sistema de

$$Ax = b$$

A es una matriz de (n + 1)x (n + 1)x y b son vectores columna de (n + 1)x (1)

- **Descripción**
- <u> Objetivos</u>
- <u> Temario</u>

Introducción
Int. Polinomial

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- **Bibliografía**

- <u> Objetivos</u>
- <u> 🏻 Temario</u>

Introducción

Int. Polinomial

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- **Bibliografía**

$$\mathbf{b} = \begin{bmatrix} 0 \\ \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 0 \end{bmatrix} \quad \mathbf{y} \quad \mathbf{x} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix}$$

Spline cúbico natural

Para construir el spline cúbico interpolante S para la función f, definido en los números $x_0 < x_1 < \cdots < x_n$, que satisfacen $S''(x_0) = S''(x_n) = 0$:

ENTRADA $n; x_0, x_1, \ldots, x_n; a_0 = f(x_0), a_1 = f(x_1), \ldots, a_n = f(x_n).$

SALIDA a_j, b_j, c_j, d_j para $j = 0, 1, \dots, n-1$.

(Nota: $S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$ para $x_j \le x \le x_{j+1}$.)

Paso 1 Para i = 0, 1, ..., n-1 haga $h_i = x_{i+1} - x_i$.

Paso 2 Para i = 1, 2, ..., n - 1 haga

$$\alpha_i = \frac{3}{h_i}(a_{i+1} - a_i) - \frac{3}{h_{i-1}}(a_i - a_{i-1}).$$

Paso 3 Determine $l_0 = 1$; (Los pasos 3, 4 y 5 y parte del paso 6 resuelven un sistema lineal tridiagonal con un método descrito en el algoritmo 6.7.)

$$\mu_0 = 0;$$

$$z_0 = 0.$$

Paso 4 Para i = 1, 2, ..., n-1haga $l_i = 2(x_{i+1} - x_{i-1}) - h_{i-1}\mu_{i-1};$ $\mu_i = h_i/l_i;$ $z_i = (\alpha_i - h_{i-1}z_{i-1})/l_i.$

Paso 5 Haga $l_n = 1$; $z_n = 0$; $c_n = 0$.

Paso 6 Para j = n - 1, n - 2, ..., 0haga $c_j = z_j - \mu_j c_{j+1};$ $b_j = (a_{j+1} - a_j)/h_j - h_j (c_{j+1} + 2c_j)/3;$ $d_j = (c_{j+1} - c_j)/(3h_j).$

Paso 7 SALIDA $(a_j, b_j, c_j, d_j \text{ para } j = 0, 1, \dots, n-1);$ PARE.

Descripción

Objetivos

Introducción

Int. Polinomial

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- 🗀 Bibliografía

Spline condicionado

Dada una función f definida en un intervalo [a,b] y un conjunto de nodos $a = x_0 < x_1 < ... < x_n = b$ y es diferenciable en [a,b] entonces f tiene un **spline condicionado único** S que interpola los puntos $x_0, x_1x_2, ... x_n$ que satisface que S'(a) = f(a), S'(b) = f'(b)

Se obtiene un sistema de

$$Ax = b$$

A es una matriz de (n + 1)x (n + 1)x y b son vectores columna de (n + 1)x (1)

- **Descripción**
- <u> Objetivos</u>
- <u>Temario</u>

 Introducción

Int. Polinomial

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- Bibliografía

<u> Descripción</u>

<u> Objetivos</u>

Temario

Introducción

Int. Polinomial

Int. Segmentaria

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)

🗀 Bibliografía

$$\mathbf{b} = \begin{bmatrix} \frac{\frac{3}{h_0}(a_1 - a_0) - 3f'(a)}{\frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0)} \\ \vdots \\ \frac{\frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2})}{3f'(b) - \frac{3}{h_{n-1}}(a_n - a_{n-1})} \end{bmatrix}, \quad \mathbf{y} \quad \mathbf{x} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

Spline cúbico condicionado

Para construir el spline cúbico interpolante S para la función f definida en los números $x_0 < x_1 < \cdots < x_n$, que satisfacen $S'(x_0) = f'(x_0)$ y $S'(x_n) = f'(x_n)$:

ENTRADA n; x_0, x_1, \ldots, x_n ; $a_0 = f(x_0), a_1 = f(x_1), \ldots, a_n = f(x_n)$; $FPO = f'(x_0)$; $FPN = f'(x_n)$.

SALIDA a_j, b_j, c_j, d_j para j = 0, 1, ..., n - 1. (Nota: $S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$ para $x_j \le x \le x_{j+1}$.)

Paso 1 Para i = 0, 1, ..., n-1 haga $h_i = x_{i+1} - x_i$.

Paso 2 Haga $\alpha_0 = 3(a_1 - a_0)/h_0 - 3FPO$; $\alpha_n = 3FPN - 3(a_n - a_{n-1})/h_{n-1}$.

Paso 3 Para i = 1, 2, ..., n-1haga $\alpha_i = \frac{3}{h_i}(a_{i+1} - a_i) - \frac{3}{h_{i+1}}(a_i - a_{i-1}).$

Paso 4 Haga $l_0 = 2h_0$; (Los pasos 4, 5 y 6 y parte del paso 7 resuelven un sistema lineal tridiagonal con un método descrito en el algoritmo 6.7.)

$$\mu_0 = 0.5;$$

 $z_0 = \alpha_0/l_0.$

Paso 5 Para i = 1, 2, ..., n-1haga $l_i = 2(x_{i+1} - x_{i-1}) - h_{i-1}\mu_{i-1};$ $\mu_i = h_i/l_i;$ $z_i = (\alpha_i - h_{i-1}z_{i-1})/l_i.$

Paso 6 Haga $l_n = h_{n-1}(2-\mu_{n-1});$ $z_n = (\alpha_n - h_{n-1}z_{n-1})/l_n;$ $c_n = z_n.$

Paso 7 Para j = n - 1, n - 2, ..., 0haga $c_j = z_j - \mu_j c_{j+1};$ $b_j = (a_{j+1} - a_j)/h_j - h_j(c_{j+1} + 2c_j)/3;$ $d_j = (c_{j+1} - c_j)/(3h_j).$

Paso 8 SALIDA $(a_j, b_j, c_j, d_j \text{ para } j = 0, 1, \dots, n-1);$ PARE.

Descripción

Objetivos

Introducción

Int. Polinomial

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- <u> Bibliografía</u>

Ejemplo Spline Natural

- **Descripción**
- <u> Objetivos</u>
- <u> 🏻 Temario</u>

Introducción

Int. Polinomial

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- 🗀 Bibliografía

x	0.9	1.3	1.9	2.1	2.6	3.0	3.9	4.4	4.7	5.0	6.0	7.0	8.0	9.2	10.5	11.3	11.6	12.0	12.6	13.0	13.3
f(x)) 1.3	1.5	1.85	2.1	2.6	2.7	2.4	2.15	2.05	2.1	2.25	2.3	2.25	1.95	1.4	0.9	0.7	0.6	0.5	0.4	0.25

<u> Descripción</u>
□ Objetivos
<u> </u>
Temario
Introducción
Int. Polinomial
Int. Segmentaria

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- 🗀 Bibliografía

j	x_{j}	a_{j}	b_{j}	c_{j}	d_{j}
0	0.9	1.3	0.54	0.00	-0.25
1	1.3	1.5	0.42	-0.30	0.95
2	1.9	1.85	1.09	1.41	-2.96
3	2.1	2.1	1.29	-0.37	-0.45
4	2.6	2.6	0.59	-1.04	0.45
5	3.0	2.7	-0.02	-0.50	0.17
6	3.9	2.4	-0.50	-0.03	0.08
7	4.4	2.15	-0.48	80.0	1.31
8	4.7	2.05	-0.07	1.27	-1.58
9	5.0	2.1	0.26	-0.16	0.04
10	6.0	2.25	80.0	-0.03	0.00
11	7.0	2.3	0.01	-0.04	-0.02
12	8.0	2.25	-0.14	-0.11	0.02
13	9.2	1.95	-0.34	-0.05	-0.01
14	10.5	1.4	-0.53	-0.10	-0.02
15	11.3	0.9	-0.73	-0.15	1.21
16	11.6	0.7	-0.49	0.94	-0.84
17	12.0	0.6	-0.14	-0.06	0.04
18	12.6	0.5	-0.18	00.0	-0.45
19	13.0	0.4	-0.39	-0.54	0.60
20	13.3	0.25			

- <u> Objetivos</u>
- **Temario**

Introducción

Int. Polinomial

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)
- <u> Bibliografía</u>

 \boldsymbol{x}

Polinomio de Lagrange de grado 20

Ejemplo Spline Sujeta

Objetivos

Temario

Introducción

Int. Polinomial

Int. Segmentaria

- Definición
- Lineal
- Cuadrática
- Splines (cúbicas)

Bibliografía

	C	urva 1			(Curva 2			Curva 3		
i	x_i	f(x,)	$f'(x_i)$	i	x,	$f(x_i)$	$f'(x_i)$	i	x,	$f(x_i)$	$f'(x_i)$
0	1	3.0	1.0	0	17	4.5	3.0	0	27.7	4.1	0.33
1	2	3.7		1	20	7.0		1	28	4.3	
2	5	3.9		2	23	6.1		2	29	4.1	
3	6	4.2		3	24	5.6		3	30	3.0	-1.5
4	7	5.7		4	25	5.8					
5	8	6.6		5	27	5.2					
6	10	7.1		6	27.7	4.1	-4.0				
7	13	6.7									
8	17	4.5	-0.67								

<u>Descripción</u>

Objetivos

- Cuadrática

- Splines (cúbicas)

Bibliografía

Temario
Introducción
Int. Polinomial
Int. Segmentaria
- Definición
- Lineal

$$S_j(x) = a_j + b_j(x - x_j) + c_j((x - x_j)^2 + d_j(x - x_j)^3$$

			Frazador 1		
i	X_{i}	$a_i = f(x_i)$	b,	c,	d,
0	1	3.0	0.786	0.0	-0.086
1	2	3.7	0.529	-0.257	0.034
2	5	3.9	-0.086	0.052	0.334
3	6	4.2	1.019	1.053	-0.572
4	7	5.7	1.408	-0.664	0.156
5	8	6.6	0.547	-0.197	0.024
6	10	7.1	0.049	-0.052	-0.003
7	13	6.7	-0.342	-0.078	0.007
8	17	4.5		- Carrier Contract	01170001
		-	Trazador 2		
i	x ,	$a_i = f(x_i)$	b,	e,	d_i
0	17	4.5	1.106	0.0	-0.030
1	20	7.0	0.289	-0.272	0.025
2	23	6.1	-0.660	-0.044	0.204
3	24	5.6	-0.137	0.567	-0.230
4	25	5.8	0.306	-0.124	-0.089
5	27	5.2	-1.263	-0.660	0.314
6	27.7	4.1	Samor 556-4		months out
_	-		Trazador 3		
i	x_i	$a_i = f(x_i)$	b _i	e,	d_i
0	27.7	4.1	0.749	0.0	-0.910
1	28	4.3	0.503	-0.819	0.116
2	29	4.1	-0.787	-0.470	0.157

30

3.0

Resumen

- El problema de Lagrange tiene un único polinomio de interpolación de grado mínimo que se puede obtener mediante
 - Planteamiento directo del sistema lineal
 - Usando los polinomios de Lagrange
 - Usando diferencias divididas de Newton
- Los polinomios de Lagrange sólo dependen de los puntos del problema y son independientes de la función pero pueden ser más complejos que la función de partida
- Las diferencias divididas de Newton dependen tanto de los puntos como de la función y permiten añadir o eliminar puntos del soporte aprovechando los cálculos realizados
- La fórmula de error del polinomio de interpolación es independiente de la forma en que se de éste y no siempre el error disminuye con el aumento del número de puntos del soporte
- Los polinomios de interpolación de grado elevado tienden a tener oscilaciones muy fuertes, lo que limita su aplicabilidad
- La interpolación segmentaria permite disminuir el error con el aumento del número de puntos a consta de calcular interpolantes simples en cada subintervalo
- Los mejores resultados se suelen obtener con los splines cúbicos sujetos, si bien se utilizan las naturales porque los sujetos exigen conocer el valor de la derivada en los extremos

- <u>Descripción</u>
- <u> Objetivos</u>

Int. Polinomial

Int. Segmentaria

- Definición
- Lineal
- Splines (cúbicas)

Resumen

🗀 Bibliografía