EE353 Network Optimization

Fall 2014

Homework 2

Assigned on Fri. Oct. 31st, Due on Tue. Nov. 11th

Problem 1: What's the maximum flow of the directed graph (Fig.1)?

Figure 1: A directed graph with limited edge capacity

- (a) Show the formulation of the maximum flow problem as a LP problem, and solve it by Matlab.
- (b) Solve the problem by Ford Fulkerson algorithm. Indicate the augmenting path in each iteration and validate whether you achieve the same result as the previous one.

Problem 2: SDP relaxations of two-way partitioning problem. We consider the two-way partitioning problem,

minimize
$$x^T W x$$
 (1)
subject to $x_i^2 = 1, \quad i = 1, \dots, n,$

with variable $x \in \mathbf{R}^n$. The Lagrange dual of this (nonconvex) problem is given by the SDP

minimize
$$-\mathbf{1}^T \nu$$
 (2)
subject to $W + \mathbf{diag}(\nu) \succeq 0$

with variable $\nu \in \mathbf{R}^n$. The optimal value of this SDP gives a lower bound on the optimal value of the partitioning problem (1). In this exercise we derive another SDP that gives

a lower bound on the optimal value of the two-way partitioning problem, and explore the connection between the two SDPs.

(a) Two-way partitioning problem in matrix form. Show that the two-way partitioning problem can be cast as

minimize
$$\mathbf{tr}(WX)$$

subject to $X \succeq 0$, $\mathbf{rank}(X) = 1$
 $X_{ii} = 1, \quad i = 1, \dots, n,$

with variable $X \in \mathbf{S}^n$. Hint. Show that if X is feasible, then it has the form $X = xx^T$, where $x \in \mathbf{R}^n$ satisfies $x_i \in \{-1, 1\}$ (and vice versa).

(b) SDP relaxation of two-way partitioning problem. Using the formulation in part (a), we can form the relaxation

minimize
$$\mathbf{tr}(WX)$$
 (3)
subject to $X \succeq 0$
 $X_{ii} = 1, \quad i = 1, \dots, n,$

with variable $X \in \mathbf{S}^n$. This problem is an SDP, and therefore can be solved efficiently. Explain why its optimal value gives a lower bound on the optimal value of the two-way partitioning problem (1). What can you say if an optimal point X^* for this SDP has rank one?

(c) We now have two SDPs that give a lower bound on the optimal value of the two-way partitioning problem (1): the SDP relaxation (3) found in part (b), and the Lagrange dual of the two-way partitioning problem, given in (2). What is the relation between the two SDPs? What can you say about the lower bounds found by them? *Hint*: Relate the two SDPs via duality.

Problem 3: The pure Newton method. Newton's method with fixed step size t = 1 can diverge if the initial point is not close to x^* . In this problem we consider two examples.

- (a) $f(x) = \log(e^x + e^{-x})$ has a unique minimizer $x^* = 0$. Run Newton's method with fixed step size t = 1, starting at $x^{(0)} = 1$ and at $x^{(0)} = 1.1$.
- (b) $f(x) = -\log x + x$ has a unique minimizer $x^* = 1$. Run Newton's method with fixed step size t = 1, starting at $x^{(0)} = 3$.

Plot f and f', and show the first few iterates.