

GRUNDLAGEN DER ELEKTROTECHNIK 1

Teil 7:

b) Mesung von Widerständen

GLEICHSTROM

Inhalte der Kapitel 1 – 4: Gleichstrom

4 WIDERSTANDSMESSUNG

4.1 Ohmmeter mit Stromquelle

- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

WAS IST EIN OHMMETER?

Eine Stromquelle mit Voltmeter:

4 WIDERSTANDSMESSUNG

- 4.1 Ohmmeter mit Stromquelle
- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

VIERLEITER-ANSCHLUSSTECHNIK

2-Leiter-Technik

Problem:

 R_{Ltg} = Übergangswiderstand + Zuleitungswiderstand

 \Rightarrow Fehlmessung durch $I \cdot R_{Ltg}$

4-Leiter-Technik für höchste Genauigkeit

Lösung:

 R_{Ltg} ist zwar ebenso groß, aber $I_U << I$

→ kaum Auswirkung auf Spannungsmessung

WIDERSTANDSMESSUNG MIT VIERLEITERTECHNIK

 R_S : Strombegrenzung

 R_{ref} : bekannterReferenzwiderstand

 R_x : Prüfling (unbekannter Widerstand)

4 WIDERSTANDSMESSUNG

- 4.1 Ohmmeter mit Stromquelle
- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

DIE WHEATSTONE'SCHE BRÜCKENSCHALTUNG

- Ziel: Messung von Widerständen
- zuerst beschrieben von Samual Hunter Christie

- Aber: Wheatstone hat als erster den Nutzen der Brückenschaltung zur präzisen Messung von Widerständen erkannt.
- Wann?
- Wheatstone erfand darauf den variablen Widerstand in 1840

WIE MESSEN WIR DAMIT DEN WIDERSTAND?

Aufgabe: Mit einem Voltmeter $(R_{I,V} >> 1k\Omega)$ messen Sie

 $U_{ab} = 1,667 V.$

Wie groß ist R₁?

- A. $3 k\Omega$
- B. $2 k\Omega$
- C. $1 k\Omega$

Betriebsart

⇒ Ausschlagbrücke

Einer von 4 Widerständen ist der "Sensor"

⇒ Viertelbrücke

ANDERE BETRIEBSART: ABGLEICHBRÜCKE

Wählen Sie R_3 , so dass $U_{ab} = 0$

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$

SIMULATION DER BRÜCKENSPANNUNG

VORTEIL DER ABGLEICHBRÜCKE

Frage:

Was ist der Hauptvorteil der Abgleichbrücke?

- A. Man benötigt 4 Widerstände.
- B. Bereits geringe Widerstandsabweichungen können erkannt werden.
- C. Sehr genaue Messung, da kein Strom durch das Messgerät fließt.

AUSSCHLAGBRÜCKE FÜR DIE MESSUNG VON ΔR_1

 U_{ab} für kleine Abweichungen von R_1 vom Abgleichpunkt

Es gilt im Abgleich:
$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \Leftrightarrow R_1 \cdot R_4 = R_2 \cdot R_3$$

Es gilt bei $R_1 + \Delta R_1$:

$$U_{ab} = U_{R4} - U_{R2} = U_0 \cdot \left(\frac{R_4}{R_3 + R_4} - \frac{R_2}{R_1 + \Delta R_1 + R_2} \right)$$

$$\Leftrightarrow \frac{U_{ab}}{U_0} = \frac{R_4 \cdot (R_1 + \Delta R_1 + R_2) - R_2 \cdot (R_3 + R_4)}{(R_3 + R_4) \cdot (R_1 + \Delta R_1 + R_2)}$$

$$\Leftrightarrow \frac{U_{ab}}{U_0} = \frac{R_1 R_4 + \Delta R_1 R_4 + R_2 R_4 - R_2 R_3 - R_2 R_4}{(R_3 + R_4) \cdot (R_1 + \Delta R_1 + R_2)}$$

$$\Leftrightarrow \frac{U_{ab}}{U_0} = \frac{\Delta R_1 R_4}{(R_3 + R_4) \cdot (R_1 + \Delta R_1 + R_2)}$$

$$\Rightarrow \frac{U_{ab}}{U_0} \approx \frac{R_4}{(R_3 + R_4) \cdot (R_1 + R_2)} \cdot \Delta R_1$$

Spezialfall:
$$R_1=R_2=R_3=R_4=R$$

$$U_{ab}\approx U_0\cdot \frac{\Delta R}{4R}$$

AUSSCHLAGBRÜCKE FÜR DIE MESSUNG VON ΔR_1

 U_{ab} bei kleinen Abweichungen von R_1 vom Abgleichpunkt

Wir nennen:

Brückenverhältnis
$$a = \frac{R_2}{R_1} = \frac{R_4}{R_3}$$

relative Verstimmung der Brücke

$$v = \frac{\Delta R_1}{R_1}$$

$$\frac{U_{ab}}{U_0} \approx \frac{R_4}{(R_1 + R_2)(R_3 + R_4)} \cdot \Delta R_1 \quad \Rightarrow \quad \frac{U_{ab}}{U_0} \approx \frac{a}{(1+a)^2} \cdot v$$

BRÜCKENEMPFINDLICHKEIT

Anderung von U_{ab} in Abhängigkeit von R_1 im Abgleichpunkt

$$E_0 = \frac{dU_{ab}}{dR_1} \approx \frac{\Delta U_{ab}}{\Delta R_1} = \frac{U_{ab}}{\Delta R_1} \quad \text{für} \quad \frac{R_1}{R_2} = \frac{R_3}{R_4}$$

Für
$$\Delta R_1 << R_1$$
 ergibt sich mit $\frac{U_{ab}}{U_0} \approx \frac{a}{(1+a)^2} \cdot \frac{\Delta R_1}{R_1}$

$$\frac{U_{ab}}{U_0} \approx \frac{a}{(1+a)^2} \cdot \frac{\Delta R_1}{R_1}$$

$$E_0 =$$

MAXIMALE BRÜCKENEMPFINDLICHKEIT - MATHEMATISCH

Der mathematische Weg:

$$E_0 \approx \frac{U_0}{R_1} \cdot \frac{a}{(1+a)^2} = k \cdot \frac{a}{(1+a)^2}$$

Extremum

 \Leftrightarrow $dE_0/da = 0$

Regel:

$$(u/v)' =$$

$$u =$$

$$u = \Rightarrow u' =$$

$$v =$$

$$\Rightarrow v' =$$

$$\frac{dE_0}{da} = \frac{u'v - v'u}{v^2} = 0 \Leftrightarrow u'v = v'u$$

MAXIMALE BRÜCKENEMPFINDLICHKEIT – GRAPHISCH

$$E_0 \approx \frac{U_0}{R_1} \cdot \frac{a}{(1+a)^2}$$

Für a = 1 erhalten wir:

EINFLUSS DES BRÜCKENVERHÄLTNISSES a AUF E_0

KONSEQUENZ FÜR BRÜCKENSCHALTUNGEN

Frage: Welche Konsequenz folgt aus dem Verlauf von E_0 und a?

$$\Rightarrow a =$$

$$\implies R_1 =$$

$$R_3 =$$

⇒ Typische Konfiguration:

$$U_{ab} \approx U_0 \cdot \frac{\Delta R}{4R}$$

Viertelbrücke:

1 von 4 Widerständen ist aktiv

HALBBRÜCKE

Berechnen Sie die Brückenspannung für 2 aktive Widerstände.

Funktioniert dies auch, wenn die Widerstände sich gleichsinnig verändern?

VOLLBRÜCKE

Berechnen Sie die Brückenspannung für 4 aktive Widerstände. Achten Sie dabei auf die Anordnung der Widerstände.

ANWENDUNGSBEISPIELE

- Messtechnik
 - Temperatur
 - Durchflussgeschwindigkeit
 - Dehnungsmessstreifen

4 WIDERSTANDSMESSUNG

- 4.1 Ohmmeter mit Stromquelle
- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

TEMPERATURMESSUNG

- Typische Sensoren f
 ür die Temperaturmessung
- Pt-100
 - Platin
 - Nennwiderstand von 100 Ω bei θ₀=0°
 - Gebräuchlichster Typ
- Ni-100
 - Nickel

Vorsicht: bei Pt100 stets 0° C als Referenz!

TEMPERATURABHÄNGIGKEIT

- Wiederholung Grundlagen : $R = R_{20} (1 + \alpha(\vartheta \vartheta_{20}))$
- für Temperaturmessung:
 - für hohe Genauigkeit ist die lineare Approximation nicht ausreichend
 - Bezugstemperatur $\theta_0 = 0^{\circ}$

$$R(\vartheta) = R_0(1 + \alpha(\vartheta - \vartheta_0) + \beta(\vartheta - \vartheta_0)^2 + \gamma(\vartheta - \vartheta_0)^4)$$

Rote Kurve

Sensor	α	β	γ
Pt-100 0 850°C	3.90802·10 ⁻³ /K	– 0.580195·10 ⁻⁶ /K²	0
Ni-100 -60 180° <i>C</i>	5.485·10 ⁻³ /K	+ 6.65·10 ⁻⁶ /K ²	28.05·10 ⁻¹² /K

PT-100 VERSUS NI-100

Vorteil des Pt-100:

Vorteil des Ni-100:

TEMPERATURMESSBRÜCKE

Bestimmen Sie U_{ab} als Funktion der Temperatur ϑ .

Lösung:

$$R_{t} = R_{0} \cdot (1 + \alpha \cdot \vartheta)$$

$$U_{ab} \approx U_{0} \cdot \frac{\Delta R}{4R_{0}}$$

$$\Delta R = R_{t} - R_{0}$$

4 WIDERSTANDSMESSUNG

- 4.1 Ohmmeter mit Stromquelle
- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

MESSUNG DER DURCHFLUSSGESCHWINDIGKEIT

mittels eines Widerstandsthermometers

4 WIDERSTANDSMESSUNG

- 4.1 Ohmmeter mit Stromquelle
- 4.2 Vierleiter-Anschlusstechnik für kleine Widerstände
- 4.3 Wheatstonesche Brücke
- 4.4 Temperaturmessung mit Pt-100
- 4.5 Messung der Strömungsgeschwindigkeit
- 4.6 Dehnungsmessstreifen

DEHNUNGSMESSSTREIFEN (DMS)

Messung der Verformung

Messprinzip:

$$R = f(L"ange)$$

WIESO HÄNGT DER WIDERSTAND VON DER LÄNGE AB?

- Metallischer Leiter
 - ρ : spezifischer Widerstand
 - ℓ : Länge
 - A: Querschnittsfläche
 - \cdot R =
- Es habe der Leiter einen Durchmesser D
 - A =

$$\Rightarrow R =$$

WAS PASSIERT, WENN SICH ALLE VARIABLEN ÄNDERN?

Zieht man an dem Leiter, wird er länger <u>und</u> dünner Wie verändert sich dann der Widerstand ? ⇒ totales Differential

$$\Rightarrow \Delta y = \frac{\partial f}{\partial x_1} \Delta x_1 + \frac{\partial f}{\partial x_2} \Delta x_2 + \dots + \frac{\partial f}{\partial x_N} \Delta x_N \text{ von } R = \frac{4 \cdot \rho \cdot \ell}{\pi \cdot D^2} = y = f(\rho, \ell, D)$$

•
$$\frac{\partial R}{\partial \rho} =$$

•
$$\frac{\partial R}{\partial \ell} =$$

•
$$\frac{\partial R}{\partial D} =$$

•
$$\frac{\Delta R}{R} =$$

ZUGBELASTUNG

- (für Halbleiter-DMS ist dies jedoch signifikant) • $\Delta \rho / \rho = 0$
- $\Delta \ell / \ell$ **Dehnung** ε
- $\Delta D/D$ Querkontraktion
- Poissonzahl

Metalle haben eine Poissonzahl von $\mu \approx 0.5$ $\Rightarrow \frac{\Delta D}{D} \approx -\frac{1}{2} \frac{\Delta \ell}{\ell}$

$$\Rightarrow \frac{\Delta R}{R} = \frac{\Delta \rho}{\rho} + \frac{\Delta \ell}{\ell} - \frac{2\Delta D}{D} =$$

$$\Rightarrow \frac{\Delta D}{D} \approx -\frac{1}{2} \frac{\Delta r}{\ell}$$

DMS UND WHEATSTONE'SCHE BRÜCKE

Viertelbrücke

Halbbrücke

$$U_{ab} = \frac{U_0}{4} \frac{\Delta R}{R} = \varepsilon \cdot K \cdot \frac{U_0}{4}$$

$$U_{ab} = \frac{U_0}{2} \frac{\Delta R}{R} = \varepsilon \cdot K \cdot \frac{U_0}{2}$$

WAS SIE MITNEHMEN SOLLEN ...

- Umgang mit dem Ohmmeter
- Messung von sehr kleinen Widerständen
- Wheatstone'sche Brückenschaltung
 - Abgleichbrücke
 - Ausschlagbrücke
 - viertel halb voll
- Anwendungen
 - Temperaturmessung
 - Messung der Durchflussgeschwindigkeit
 - Dehnungsmessung

