Problem statement

A real estate agent want help to predict the house price for regions in USA.He gave us the dataset to work on to use Linear Regression model.Create a model that hepls to determine

Data collection

Importing libraries

```
In [2]:
```

7/27/23, 3:25 PM

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing dataset

```
In [4]:
```

data=pd.read_csv(r"C:\Users\user\Downloads\H.csv")
data

Out[4]:

Address	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry Apt. 674\nLaurabury, NE 3701	1.059034e+06	23086.80050	4.09	7.009188	5.682861	79545.45857	0
188 Johnson Views Suite 079\nLake Kathleen, CA	1.505891e+06	40173.07217	3.09	6.730821	6.002900	79248.64245	1
9127 Elizabeth Stravenue\nDanieltown, WI 06482	1.058988e+06	36882.15940	5.13	8.512727	5.865890	61287.06718	2
USS Barnett\nFPO AP 44820	1.260617e+06	34310.24283	3.26	5.586729	7.188236	63345.24005	3
USNS Raymond\nFPO AE 09386	6.309435e+05	26354.10947	4.23	7.839388	5.040555	59982.19723	4
	•••	•••	•••	•••	•••	•••	•••
USNS Williams\nFPO AP 30153-7653	1.060194e+06	22837.36103	3.46	6.137356	7.830362	60567.94414	4995
PSC 9258, Box 8489\nAPO AA 42991- 3352	1.482618e+06	25616.11549	4.02	6.576763	6.999135	78491.27543	4996

Address	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
4215 Tracy Garden Suite 076\nJoshualand, VA 01	1.030730e+06	33266.14549	2.13	4.805081	7.250591	63390.68689	4997
USS Wallace\nFPO AE 73316	1.198657e+06	42625.62016	5.44	7.130144	5.534388	68001.33124	4998
37778 George Ridges Apt. 509\nEast Holly, NV 2	1.298950e+06	46501.28380	4.07	6.792336	5.992305	65510.58180	4999

5000 rows × 7 columns

head

In [11]:

to display first 8 dataset values
data.head(8)

Out[11]:

t[11]:		Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
	0	79545.45857	5.682861	7.009188	4.09	23086.80050	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
	1	79248.64245	6.002900	6.730821	3.09	40173.07217	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
	2	61287.06718	5.865890	8.512727	5.13	36882.15940	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
	3	63345.24005	7.188236	5.586729	3.26	34310.24283	1.260617e+06	USS Barnett\nFPO AP 44820
	4	59982.19723	5.040555	7.839388	4.23	26354.10947	6.309435e+05	USNS Raymond\nFPO AE 09386
	5	80175.75416	4.988408	6.104512	4.04	26748.42842	1.068138e+06	06039 Jennifer Islands Apt. 443\nTracyport, KS
	6	64698.46343	6.025336	8.147760	3.41	60828.24909	1.502056e+06	4759 Daniel Shoals Suite 442\nNguyenburgh, CO
	7	78394.33928	6.989780	6.620478	2.42	36516.35897	1.573937e+06	972 Joyce Viaduct\nLake William, TN 17778-6483

info

```
In [10]:
```

```
# to identify missing values
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):
```

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

describe

In [8]:

to display summary of the dataset
data.describe()

Out[8]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562390	5.322283	6.299250	3.140000	29403.928700	9.975771e+05
50%	68804.286405	5.970429	7.002902	4.050000	36199.406690	1.232669e+06
75%	75783.338665	6.650808	7.665871	4.490000	42861.290770	1.471210e+06
max	107701.748400	9.519088	10.759588	6.500000	69621.713380	2.469066e+06

columns

```
In [9]:  # to display headings of the dataset
     data.columns
```

EDA and Visualization

In [12]: sns.pairplot(data) Out[12]: <seaborn.axisgrid.PairGrid at 0x2e63fa16d60> 80000 40000 20000 Avg. Area House Age Avg. 60000 Area Population 00000 2.0 0.5

distribution plot

In [34]: sns.displot(data["Area Population"])

Out[34]: <seaborn.axisgrid.FacetGrid at 0x2e642511a00>

correlation

Out[24]: <AxesSubplot:>

To train the model-Model Building

we are going to train Linear Regression model; we need to split out data into two variables x and y where x is independent variable and y is dependent variable on x (output) we could ignore address column as it is not required for our model

```
In [25]:
           x=da[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
                  'Avg. Area Number of Bedrooms', 'Area Population']]
          y=da['Price']
In [26]:
           # to split my dataset into training and test data
          from sklearn.model selection import train test split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [28]:
           from sklearn.linear model import LinearRegression
           lr= LinearRegression()
          lr.fit(x_train,y_train)
Out[28]: LinearRegression()
In [31]:
           print(lr.intercept_)
          -2641289.1850665007
In [30]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[30]:
                                        Co-efficient
                     Avg. Area Income
                                          21.634539
                   Avg. Area House Age 166212.262248
             Avg. Area Number of Rooms
                                     120882.774731
          Avg. Area Number of Bedrooms
                                        1347.590007
                       Area Population
                                          15.104383
In [32]:
           prediction=lr.predict(x_test)
           plt.scatter(y_test,prediction)
Out[32]: <matplotlib.collections.PathCollection at 0x2e6458cb5e0>
```


In [33]: print(lr.score(x_test,y_test))

0.9132511977358058