Topics Covered in This Class

CLASSICAL MACHINE LEARNING

Supervised Classification

Classification problem

- Output is categorical variable
 - ✓ Spam / Non-spam
 - ✓ Male / Female
 - ✓ Long / Medium / Short
- Binary classification problem
 - ✓ The number of categories is 2.
 - ✓ Generally, these two categories are denoted as 0 and 1.
 - 0 and 1 are not integer in this case

$$y \in \{0,1\}$$

- Multi-class classification problem
 - ✓ More than two classes

$$y \in \{1, 2, \dots, C\}, \qquad C > 2$$

Supervised: Classification

Which one is a sheep?

Type of Classifiers

• A classifier is a function that assigns a class label \hat{y} to a sample x.

$$\hat{y} = f(x)$$

- A probabilistic classifier obtains conditional distributions P(y|x), meaning that for a given x, they assign probabilities to all $y \in \{1, ..., C\}$
 - Hard classification

$$\hat{y} = \arg\max_{y} P(Y = y | \mathbf{x})$$

The Decision Boundary of Classifiers

Decision boundary

$$y = f(x), y \in \{1, 2, ..., C\}$$

Logistic regression

- Regression model where the dependent variable is categorical
- The probabilities describing the possible outcomes is modeled as explanatory variables

$$f(x) = P(Y|X)$$

Logistic regression is a linear classification algorithm

$$f(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p) = f(\boldsymbol{\beta} \cdot \boldsymbol{x})$$

✓ f(x) should be $0 \le f(x) \le 1$.

How to confine outcome of f(x) within [0,1]?

Logistic Regression: Logistic Function

 Logistic function is the function that can take an input with any value from negative to positive infinity, whereas the output always takes values between zero and one

$$\sigma(t) = \frac{e^t}{e^t + 1} = \frac{1}{1 + e^{-t}}$$

■ In logistic regression, t is determined by explanatory variables

■ *t* is determined by linear combination of explanatory variables

$$t = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$f(x) = P(Y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \beta_2 x_2 - \dots - \beta_p x_p}}$$

Determine class

- Set class boundary
 - ✓ Without any prior knowledge about class, set the boundary to 0.5

✓ If we have some prior knowledge about the class distribution, then the classification boundary can be determined based on the knowledge.

$$f(x) = P(Y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \beta_2 x_2 - \dots - \beta_p x_p}}$$

- Unknown parameters
 - $\beta_0, \beta_1, \dots \beta_p$
- Logistic regression should estimate β_0 , β_1 , ..., β_p based on the given observations.

Maximum Likelihood Estimation

Maximum likelihood estimation

- Method of estimating the parameters of statistical model
- Given a statistical model, maximize likelihood

Likelihood function

- Suppose that dataset $D = \{x_1, x_2, ..., x_n\}$ consists of n independent and identically distributed (iid) samples coming from a distribution with an unknown probability density function f(x).
- Assume f(x) belongs to a certain type of distributions with parameters θ .
- Joint probability density function for all observations

$$f(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n | \boldsymbol{\theta}) = f(\mathbf{x}_1 | \boldsymbol{\theta}) \times f(\mathbf{x}_2 | \boldsymbol{\theta}) \times \cdots \times f(\mathbf{x}_n | \boldsymbol{\theta})$$
because x_i is iid sample

Likelihood

$$\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n) = f(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n | \boldsymbol{\theta}) = \prod_{i=1}^n f(\boldsymbol{x}_i | \boldsymbol{\theta})$$

- Imagine the situation that a ball is drawn with replacement from the bag consisting of three blue balls and five white balls.
 - Drawing is repeated five times and output is color of ball.

	1	2	3	4	5
Case 1	blue	white	blue	white	white
Case 2	blue	blue	blue	blue	blue

Which case is more probable?

Probability of case 1

$$P(\text{Case1}) = p(\text{blue}) \times p(\text{white}) \times p(\text{blue}) \times p(\text{white}) \times p(\text{white})$$

Probability of case 2

$$P(\text{Case2}) = p(\text{blue}) \times p(\text{blue}) \times p(\text{blue}) \times p(\text{blue}) \times p(\text{blue})$$

- Imagine the situation that a ball is drawn with replacement from the bag consisting of three blue balls and five white balls.
 - Drawing is repeated five times and output is color of ball.

	1	2	3	4	5
Case 1	blue	white	blue	white	white
Case 2	blue	blue	blue	blue	blue

Which case is more probable?

Likelihood represents how much probable is observed data samples given statistical model

lacktriangle Want to estimate p_{blue} and p_{white} based on the sampling result.

Sampling with replacement

■ There are only two outputs → Bernoulli distribution

- Bernoulli distribution: the probability distribution of a random variable which takes the value 1 with success probability p and the value 0 with failure probability 1-p
 - ✓ For random variable following Bernoulli distribution,

$$P(X = 1) = 1 - p(X = 0) = p$$

✓ Probability mass function over possible outcomes y

$$f(y;p) = \begin{cases} p, & \text{if } y = 1\\ 1 - p, & \text{if } y = 0 \end{cases}$$

This can also be expressed as

$$f(y;p) = p^{y}(1-p)^{1-y}, \quad \text{for } y \in \{0,1\}$$

- For Bernoulli distribution, p is θ
 - ✓ In this example, assume that blue ball is 1

$$p = p_{blue}$$
$$1 - p = p_{white}$$

■ Want to estimate p_{blue} and p_{white} based on the sampling result.

Sampling with replacement

Likelihood function

✓ If blue ball, f(1; p) = p

✓ If white ball, f(0; p) = 1 - p

$$\mathcal{L} = \prod_{i=1}^{10} p(y_i; p) = p^3 (1 - p)^7$$

✓ Maximize \mathcal{L} with respect to p

■ 1D data samples from Gaussian distribution with $\sigma = 1$

$$f(x;\theta) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\theta)^2}{2}}$$

	1	2	3	4	5
х	2.61	3.73	2.80	4.29	3.12

Likelihood function is a function of parameter θ

$$\mathcal{L}(\theta; \mathbf{x}) = \prod_{i=1}^{5} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}}$$

• If $\theta = 2$, $\mathcal{L}(2) \approx 0.33 \times 0.09 \times 0.29 \times 0.03 \times 0.21 = 0.0000542619$

	1	2	3	4	5
X	2.61	3.73	2.80	4.29	3.12
$f(x;\theta)$	0.33	0.09	0.29	0.03	0.21

 Maximum likelihood estimation is a method to find parameters that maximize likelihood function with given data samples

Compare likelihood with different parameters

• If $\theta = 2$, $\mathcal{L}(2) \approx 0.33 \times 0.09 \times 0.29 \times 0.03 \times 0.21 = 0.0000542619$

	1	2	3	4	5
x	2.61	3.73	2.80	4.29	3.12
$f(x;\theta)$	0.33	0.09	0.29	0.03	0.21

• If $\theta = 3$, $\mathcal{L}(3) \approx 0.37 \times 0.31 \times 0.39 \times 0.17 \times 0.40 = 0.003041844$

	1	2	3	4	5
X	2.61	3.73	2.80	4.29	3.12
$f(x;\theta)$	0.37	0.31	0.39	0.17	0.40

• If $\theta = 4$, $\mathcal{L}(4) \approx 0.15 \times 0.38 \times 0.19 \times 0.38 \times 0.27 = 0.0011111158$

	1	2	3	4	5
X	2.61	3.73	2.80	4.29	3.12
$f(x;\theta)$	0.15	0.38	0.19	0.38	0.27

Likelihood function

$$\mathcal{L}(\theta; \mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (x_i - \theta)^2}{2}\right)$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (\theta^2 - 2x_i \theta + x_i^2)}{2}\right)$$

$$\propto \exp\left(-\sum_{i=1}^{n} (\theta^2 - 2x_i \theta + x_i^2)\right)$$

■ When $\sum_{i=1}^{n} (\theta^2 - 2x_i\theta + x_i^2)$ is minimum, $\mathcal{L}(\theta; x)$ is maximized

$$n\theta^{2} - 2\left(\sum_{i=1}^{n} x_{i}\right)\theta + \sum_{i=1}^{n} x_{i}^{2}$$

• Second order equation of $\theta \rightarrow$ There is a solution to minimize equation

Gaussian (Normal) Distribution

- The Gaussian distribution is a continuous probability distribution
 - Probability density function

$$\mathcal{N}(\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- \checkmark μ : mean or expectation of the distribution
- $\checkmark \sigma$: standard deviation
- When $\mu = 0$ and $\sigma = 1$, the distribution is called the standard normal distribution.
- Multivariate normal distribution is a generalization of the 1D normal distribution
 - Probability density function

$$\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \left(\frac{1}{(2\pi)^p |\boldsymbol{\Sigma}|}\right)^{\frac{1}{2}} e^{-\frac{1}{2}(x-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(x-\boldsymbol{\mu})}$$

- √ p: dimensionality
- $\checkmark \mu$: mean vector
- ✓ **\(\Sigma \)**: covariance matrix

How to Find Parameters for Logistic Regression?

- Output is 0 or 1 \rightarrow Output follows Bernoulli distribution with parameter p
- Each sample has different p depending on the input

$$y_i \sim Bernoulli(P_i)$$

- P_i is the probability that output value is for i-th sample
- Output of each sample follows Bernoulli distribution with parameter P_i

$$f(y_i) = P(Y = y_i) = P_i^{y_i} (1 - P_i)^{1 - y_i}, \quad y_i \in \{0, 1\}$$

How to Find Parameters for Logistic Regression?

Likelihood function of logistic regression model

$$\mathcal{L} = \prod_{i=1}^{n} f(y_i) = \prod_{i=1}^{n} P_i^{y_i} (1 - P_i)^{1 - y_i}$$

•
$$P_i = P(y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-\beta_0 - \beta_! x_1 - \dots - \beta_p x_p}}$$

Log-likelihood function

$$\log \mathcal{L} = \sum_{i=1}^{n} y_i \log P_i + \sum_{i=1}^{n} (1 - y_i) \log(1 - P_i)$$

• Find parameters $\beta_0, \beta_1, ..., \beta_p$ that maximize $\log \mathcal{L}$

Gradient Descent

Odds and Odds Ratio

Odds reflect the likelihood that the event will occur

• In gambling, odds represent the ratio between the amounts staked by parties to a wager or bet

$$\frac{P(wins)}{P(losses)}$$

• In logistic regression, odds represent the ratio between P(y=1) and P(y=0)

$$Odds = \frac{P(y=1)}{P(y=0)} = \frac{\frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \beta_2 x_2 - \dots - \beta_p x_p}}}{1 - \frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \beta_2 x_2 - \dots - \beta_p x_p}}} = \exp(\beta_0 + \beta x_1 + \beta_2 x_2 + \dots + \beta_p x_p)$$

Odds ratio is the ratio between odds when unit increment of a variable

• For the first variable x_1

$$Odds \ Ratio = \frac{odds \ \text{when input is } x_1 = x+1}{odds \ \text{when input is } x_1 = x} = \frac{\exp(\beta_0 + \beta_1(x+1) + \dots + \beta_p x_p)}{\exp(\beta_0 + \beta_1 x + \dots + \beta_p x_p)} = e^{\beta_1}$$

• Odds increase e^{β_1} times for every 1-unit increase in x_1

Logistic Regression: Odds

- A logistic regression is one where the log-odds of the probability (logit function) of an event is a linear combination of independent or predictor variables (binary case)
- Logistic regression model Logist function $\ln(Odds) = \ln\left(\frac{P(y=1)}{P(y=0)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$
- Let P=P(y=1) $\frac{P(y=1)}{P(y=0)} = \frac{P}{1-P}$ $g(P) = \ln\left(\frac{P}{1-P}\right) \neq \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$

Link function

Other Link Functions

Gompertz function

$$P = 1 - \exp(-\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p))$$

$$g(P) = \ln(-\ln(1 - P)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Probit model

$$g(P) = F^{-1}(P) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Normit model

$$g(P) = \Phi^{-1}(P) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

 $\checkmark \Phi^{-1}(x)$ is inverse cumulative density function of normal distribution

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

Properties of Link Functions

- They can take any value on the real line for $0 \le P(y = 1) \le 1$
 - Consider logit function

✓ If
$$P(Y = 1) = 0$$
, $logit(P(Y) = 1) = log 0 = -∞$

$$\checkmark \text{ If } P(Y=1)=1, \log \operatorname{it}(P(Y)=1)=\log \infty=\infty$$

Logistic Regression for Multi-class

- For K classes, $P(y_i = k)$ is the probability that i-th data point belong to class k.
 - It is reasonable to select class k whose probability is the highest

How to extend logistic regression to multi-class classification problems?

Multinomial Logistic Regression

- Multinomial logistic regression assumes that log ratio between probabilities of two different classes is linear
 - Log linear model

$$\ln p(y_i = 1) = \boldsymbol{\beta}_1 \cdot \mathbf{x}_i - \ln Z$$

$$\ln p(y_i = 2) = \boldsymbol{\beta}_2 \cdot \mathbf{x}_i - \ln Z$$

$$\vdots$$

$$\ln p(y_i = K) = \boldsymbol{\beta}_K \cdot \mathbf{x}_i - \ln Z$$

$$\checkmark \mathbf{x}_{i} = (1, x_{i1}, x_{i2}, \dots, x_{ip})$$

$$\checkmark \boldsymbol{\beta}_{k} = (\beta_{k0}, \beta_{k1}, \beta_{k2}, \dots, \beta_{kp})$$

$$\checkmark \boldsymbol{\beta}_{k} \cdot \mathbf{x}_{i} = \beta_{k0} + \beta_{k1}x_{i1} + \dots + \beta_{kp}x_{ip}$$

$$p(y_i = k) = \frac{1}{Z} e^{\beta_k \cdot \mathbf{x}_i}$$

$$Z = \sum_{k=1}^{K} e^{\beta_k \cdot \mathbf{x}_i}$$

Multinomial Distribution

Multinomial distribution is a generalization of the binomial distribution

 Binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments with success probability p

$$p(k) = \frac{n!}{k! (n-k)!} p^k (1-p)^{n-k}$$

- Example of binomial distribution is the distribution of the number of head when flipping a coin n times (in this case, p=0.5)
 - \checkmark Probability that k times head occur among n trials

$$p(k) = \frac{n!}{k! (n-k)!} 0.5^k 0.5^{n-k} = \frac{n!}{k! (n-k)!} 0.5^n$$

• In multinomial distribution, possible outcome is more than two and each outcome has its own probability to occur, $(p_1, ..., p_d)$

$$\checkmark p_1 + \cdots + p_d = 1$$

 \checkmark d is the number of possible outcomes

$$\checkmark n_{\mathbf{x}} = \sum_{i=1}^{d} x_i$$

$$p(\mathbf{x} = (x_1, x_2, ..., x_d)) = \frac{n_{\mathbf{x}}!}{x_1! \cdots x_d!} p_1^{x_1} \cdots p_d^{x_d}$$

Likelihood Function

Likelihood function

$$\mathcal{L} = \prod_{i=1}^{n} \prod_{k=1}^{K} P_{ik}^{v_{ik}}, \qquad v_{ik} = \begin{cases} 1, & y_i = k \\ 0, & y_i \neq k \end{cases}$$

- $P_{ik} = P(y_i = k)$
- Log-likelihood function

$$\log \mathcal{L} = \sum_{i=1}^{n} \sum_{k=1}^{K} v_{ik} \log P_{ik}$$

• Through maximum likelihood estimation, determine $oldsymbol{eta}_k$ as the same as in binary logistic regression

Multiclass Classification Using Binary Classifiers

■ There are other ways to get multi-class classifiers by combining binary classifiers

- For multiclass classification commonly used approach is to construct K separate binary classifiers
 - \checkmark Each model is trained using the data from class C_k as the positive examples and the data from the remaining K-1 classes as the negative examples

$$y(\mathbf{x}) = \max_{k} y_k(\mathbf{x})$$

→ One-versus-the rest approach

Problems of one-versus-the rest approach

- Because each classifier was trained on different task, there is no guarantee that the real-values quantities $y_k(\mathbf{x})$ will have appropriate scales
- Imbalance of data on training

Multiclass Classification Using Binary Classifiers

- Another approach is to train K(K-1)/2 different 2-class classifiers on all possible pairs of classes
 - Classify test points according to which class has the highest number of votes
 - → one-versus-one approach

- Problems of one-versus-one approach
 - It can lead to ambiguities in the resulting classification
 - For large K, it requires significantly more training time

Thank you! Thank you!