Numerical Optimization Chapter 7: Numerical Differentiation

Oscar Dalmau

Centro de Investigación en Matemáticas CIMAT

April 27, 2021

Outline

- Finite Differences using Taylor Differences of higher order
- 2 The Method of Undetermined Coefficients
- 3 Richardson's Extrapolation
- 4 Application: Boundary value problem
- 5 Approximating the gradient
- 6 Approximating the Hessian

There are several reasons to approximate derivatives:

- In some cases, there exists an underlying function that we need to differentiate, but we might know its values only at a sampled data set without knowing the function itself.
- There are some cases where it is not obvious that an underlying function exists and we only have a discrete data set. In this case, we may still be interested in studying changes in the data (which are related to derivatives).

- In some cases we have the exact formula, but it is very complicated to compute the derivative.
- For example:

$$f(x; \boldsymbol{a}, \boldsymbol{b}) = \sigma(a_1 \sigma(a_2 \sigma(a_3 x + b_3)) + b_2) + b_1)$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

and we interested in computing $\frac{\partial F_x}{\partial a_i}$ where

$$F_x(\boldsymbol{a}, \boldsymbol{b}) := f(x; \boldsymbol{a}, \boldsymbol{b})$$

 It might be simpler to approximate the derivative instead of computing the exact value or use an automatic technique.

- When we find approximate solutions to variational problem and ordinary (or partial) differential equations, we typically represent the solution as a discrete approximation that is defined on a grid.
- Since we have to evaluate derivatives at the grid points, we need methods for approximating the derivatives at these points
- The underlying function (in this case the solution of the equation) is unknown.

- Finite Differencing. This technique has is based on the Taylor's theorem
- Automatic Differentiation. This technique takes the view that the computer code for evaluating the function can be broken down into a composition of elementary arithmetic operations (build a Computational graph), to which the chain rule can be applied, for example backpropagation (reverse mode) in machine learning, or forward mode.
- Symbolic Differentiation. In this technique, the algebraic specification for the function f is manipulated by symbolic manipulation tools to produce new algebraic expressions for each component of the gradient, for example Mathematica or Maple

Forward difference

(See: http://web.media.mit.edu/ crtaylor/calculator.html): Let $f: \mathbb{R} \to \mathbb{R}$. Using Taylor

$$f(x+h) = f(x) + f'(x)h + O(h^2)$$

then

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$

Forward difference with order of approximation error 1 or is O(h) (or first order method)

$$\delta_h^+ f(x) = \frac{f(x+h) - f(x)}{h}$$

Approximating the Hessian

Backward difference

Let $f: \mathbb{R} \to \mathbb{R}$. Using Taylor

$$f(x-h) = f(x) - f'(x)h + O(h^2)$$

Then

$$f'(x) = \frac{f(x) - f(x-h)}{h} + O(h)$$

Backward difference of approximation with error of order 1 or is O(h)

$$\delta_h^- f(x) = \frac{f(x) - f(x-h)}{h}$$

Centered differences

Using Taylor for $x \pm h$

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{6}f'''(x)h^3 + \dots$$

$$f(x-h) = f(x) - f'(x)h + \frac{1}{2}f''(x)h^2 - \frac{1}{6}f'''(x)h^3 + \dots$$

then

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

Centered differences of approximation error of order 2 or is $O(h^2)$

$$\delta_h f(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Centered differences

We note that centered differences

$$\delta_h f(x) = \frac{f(x+h) - f(x-h)}{2h}$$

can be written as follows

$$\delta_h f(x) = \frac{1}{2} (\delta_h^+ f(x) + \delta_h^- f(x)) = \frac{f(x+h) - f(x-h)}{2h}$$

Approximating the Hessian

Centered differences

In general, if $a \neq 0$

$$\begin{array}{lcl} \delta_{ah}^{+}f(x) & = & \frac{f(x+ah)-f(x)}{ah} \\ \delta_{ah}^{-}f(x) & = & \frac{f(x)-f(x-ah)}{ah} \\ \delta_{ah}f(x) & = & \frac{f(x+ah)-f(x-ah)}{2ah} = \frac{1}{2} \left(\delta_{ah}^{+}f(x) + \delta_{ah}^{-}f(x) \right) \end{array}$$

For example, if $a = \frac{1}{2}$ then

$$\delta_{\frac{h}{2}}f(x) = \frac{f(x+\frac{h}{2}) - f(x-\frac{h}{2})}{h} = \frac{1}{2} \left(\delta_{\frac{h}{2}}^+ f(x) + \delta_{\frac{h}{2}}^- f(x) \right)$$

Approximating the Hessian

Example

Consider the function $f(x) = xe^x$ whose first derivative is $f'(x) = (x+1)e^x$ at point $x_0 = 2$ is $f'(x_0) = 22.1672$. Comment: the error is the truncation error

Table: Finite difference approximations at $x_0 = 2$.

h	$\delta_h^+(x_0)$	$\delta_h^-(x_0)$	$\delta_h(x_0)$	$\delta_{h/2}(x_0)$	$\delta_{h/4}(x_0)$
0.1	23.7084	20.7491	22.2288	22.1826	22.1710
error	1.5413	1.4180	0.0616	0.0154	0.0038
0.01	22.3156	22.0200	22.1678	22.1673	22.1672
error	0.1484	0.1472	0.0006	0.0002	0.0000
0.001	22.1820	22.1524	22.1672	22.1672	22.1672
error	0.0148	0.0148	0.0000	0.0000	0.0000

Outline

- Finite Differences using Taylor Differences of higher order
- 2 The Method of Undetermined Coefficients
- 3 Richardson's Extrapolation
- 4 Application: Boundary value problem
- 6 Approximating the gradient
- 6 Approximating the Hessian

Second-order approximation of the second derivative

How to approximate f''(x)? Using Taylor

$$f(x+h) = f(x) + f'(x)\hbar + \frac{1}{2}f''(x)h^2 + \frac{1}{3!}f'''(x)h^3 + \dots$$

$$f(x-h) = f(x) - f'(x)\hbar + \frac{1}{2}f''(x)h^2 - \frac{1}{3!}f'''(x)h^3 + \dots$$

then

$$f(x+h) + f(x-h) = 2f(x) + f''(x)h^2 + O(h^4)$$

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

Second-order approximation of the second derivative

From

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

we obtain the **second-order central difference** of error approximation of order 2

$$\delta_h^2 f(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Note: u_h is said to be nth-order accurate if the error, $E(h):=\|u-u_h\|$ is proportional to the step-size h to the nth power

$$E(h) = ||u - u_h|| \le Ch^n$$

ie,
$$E(h) = ||u - u_h|| = O(h^n)$$

Approximating the Hessian

Second-order approximation of the second derivative

Second order forward difference of approximation order 1

$$\delta_{h}^{+2}f(x) = \frac{\delta_{h}^{+}f(x+h) - \delta_{h}^{+}f(x)}{h} = \frac{\frac{f(x+2h) - f(x+h)}{h} - \frac{f(x+h) - f(x)}{h}}{h}$$
$$= \frac{f(x+2h) - 2f(x+h) + f(x)}{h^{2}}$$

Second-order backward difference of approximation order 1

$$\delta_{h}^{-2}f(x) = \frac{\delta_{h}^{-}f(x) - \delta_{h}^{-}f(x-h)}{h} = \frac{\frac{f(x) - f(x-h)}{h} - \frac{f(x-h) - f(x-2h)}{h}}{h}$$
$$= \frac{f(x) - 2f(x-h) + f(x-2h)}{h^{2}}$$

Homework: Compute the approximation order using the Taylor series approach, compute the *truncation error* $f''(x) - \delta^{+2}_{h} f(x)$

Application: Boundary value problem
Approximating the gradient
Approximating the Hessian

Approximation of the third derivative

How to approximate f'''(x)? Using Taylor (trial and error!)

$$f(x+h) = f(x)+f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{3!}f'''(x)h^3 + \frac{1}{4!}f^{(iv)}(x)h^4 + \dots$$

$$f(x-h) = f(x)-f'(x)h + \frac{1}{2}f''(x)h^2 - \frac{1}{3!}f'''(x)h^3 + \frac{1}{4!}f^{(iv)}(x)h^4 + \dots$$

then

$$f(x+h) - f(x-h) = 2f'(x)h + \frac{2}{3!}f'''(x)h^3 + \frac{2}{5!}f^{(v)}(x)h^5 + \dots$$

evaluating the previous relation in 2h (similar to Richardson extrapolation, see next Section)

$$f(x+2h) - f(x-2h) = 4f'(x)h + \frac{16}{3!}f'''(x)h^3 + \frac{64}{5!}f^{(v)}(x)h^5 + \dots$$

Approximation of the third derivative

$$f(x+h) - f(x-h) = 2f'(x)h + \frac{2}{3!}f'''(x)h^3 + \frac{2}{5!}f^{(v)}(x)h^5 + \dots$$
$$f(x+2h) - f(x-2h) = 4f'(x)h + \frac{16}{3!}f'''(x)h^3 + \frac{64}{5!}f^{(v)}(x)h^5 + \dots$$

multiplying the first relation by 2 and substracting side by side

$$2f(x+h) - 2f(x-h) = 4f'(x)h + \frac{4}{3!}f'''(x)h^3 + \frac{4}{5!}f^{(v)}(x)h^5 + \dots$$
$$f(x+2h) - f(x-2h) = 4f'(x)h + \frac{16}{3!}f'''(x)h^3 + \frac{64}{5!}f^{(v)}(x)h^5 + \dots$$

we get

$$f'''(x) = \frac{f(x+2h) - 2f(x+h) + 2f(x-h) - f(x-2h)}{2h^3} + O(h^2)$$

Undetermined Coefficients Method

- Then Undetermined Coefficients Method is a practical way for generating approximations of derivatives (or integration), ie, better than the previous trial and error method
- For example, suppose that we are interested in finding an approximation of the second derivative f''(x) based on the values of the function at three equally spaced points, f(x-h), f(x), f(x+h), i.e.,

$$f''(x) \approx af(x+h) + bf(x) + cf(x-h)$$

the problem is to find the coefficients a, b, c

Undetermined Coefficients Method

In order to find a,b,c we can use Taylor Series for f(x-h),f(x+h), substitute both expansions in

$$f''(x) \approx af(x+h) + bf(x) + cf(x-h)$$

and solve a 3×3 linear system for a, b, c

Undetermined Coefficients Method

Approximating the Hessian

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{3!}f'''(x)h^3 + \dots$$

$$f(x-h) = f(x) - f'(x)h + \frac{1}{2}f''(x)h^2 - \frac{1}{3!}f'''(x)h^3 + \dots$$

$$f''(x) \approx af(x) + af'(x)h + \frac{a}{2}f''(x)h^2 + \frac{a}{3!}f'''(x)h^3 + \dots + bf(x) + cf(x) - cf'(x)h + \frac{c}{2}f''(x)h^2 - \frac{c}{3!}f'''(x)h^3 + \dots = (a+b+c)f(x) + (a-c)f'(x)h + \frac{a+c}{2}f''(x)h^2 + \dots$$

Undetermined Coefficients Method

Then

$$a+b+c = 0$$

$$a-c = 0$$

$$\frac{a+c}{2}h^2 = 1$$

Solving for a,b,c we obtain $a=c=\frac{1}{h^2}$ and $b=-\frac{2}{h^2}$ then

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

as $\frac{a-c}{3!}f'''(x)h^3=0$ and $\frac{a+c}{4!}f''''(x)h^4\neq 0$ the approximation order is 2, ie, $\frac{O(h^4)}{h^2}=O(h^2)$, or we can compute the error $f''(x)-\frac{f(x+h)-2f(x)+f(x-h)}{h^2}$ using Taylor

Undetermined Coefficients Method

- The previous strategy can be generalized for any number of points x+ih, $i\in I=\{a_1,a_2,\cdots,a_{|I|}\}$ and any derivative order N such that N<|I|.
- The problem becomes a $|I| \times |I|$ linear system which should be solved for the unknown coefficients $a_1, a_2, \cdots, a_{|I|}$.
- We can use the Taylor approach to compute the approximation order, ie, by computing the error
- $s = \{a_1, a_2, \cdots, a_{|I|}\}$ is called |I|-point stencil. For example, $s = \{-2, -1, 0, 1, 2\}$ is a five-point stencil.
- Examples: In the forward difference derivative $s=\{0,1\}$, in the backward difference derivative $s=\{-1,0\}$ and in the second-order central difference $s=\{-1,0,1\}$

Approximating the Hessian

Richardson's Extrapolation

- Richardson's extrapolation is a general procedure for improving the accuracy of approximations when the structure of the error is known.
- Here we use it in the context of numerical differentiation, however, it can also be used for numerical integration.
- The general idea is to use two different approximations to some quantity (derivative/integral) to form a third more accurate approximation.

Approximating the Hessian

Richardson's Extrapolation

Example 1: Suppose $a_1a_2 \neq 0$ and the quantity A satisfies

$$A = A(h) + a_1h + a_2h^2$$

where

- A is the exact value,
- A(h) is an approximation of A using the step size h and
- 1 is the known order of accuracy (error approximation order O(h)) of the method/approximation in this example.

Approximating the Hessian

Richardson's Extrapolation

From

$$A = A(h) + a_1h + a_2h^2$$

we can use the half of the step size and then we multiply by 2

$$A = A\left(\frac{h}{2}\right) + a_1\frac{h}{2} + a_2\frac{h^2}{4}$$
$$2A = 2A\left(\frac{h}{2}\right) + a_1h + a_2\frac{h^2}{2}$$

and substracting the first relation

$$A = 2A\left(\frac{h}{2}\right) - A(h) - a_2\frac{h^2}{2} = 2A\left(\frac{h}{2}\right) - A(h) + O(h^2)$$

finally, $2A\Big(\frac{h}{2}\Big)-A(h)$ has an approximation order 2 while A(h) is 1st order accurate.

Approximating the Hessian

Richardson's Extrapolation

In general, if $a_1 \neq 0$, $k_1 < k_2$ and

$$A = A(h) + a_1 h^{k_1} + O(h^{k_2})$$

A(h) has accuracy order k_1 . Using half of the step size and multiplying by 2^{k_1}

$$2^{k_1}A = 2^{k_1}A\left(\frac{h}{2}\right) + a_1h^{k_1} + O(h^{k_2})$$

and substracting the first relation

$$A = \frac{2^{k_1} A\left(\frac{h}{2}\right) - A(h)}{2^{k_1} - 1} + O(h^{k_2})$$

and the new approximation has accuracy order k_2

Richardson's Extrapolation

Example 2: For derivative approximation

Approximating the Hessian

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + a_1h^2 + a_2h^4 + \cdots$$

in this case

- D = f'(x) is the exact value,
- $D(h) = \frac{f(x+h) f(x-h)}{2h}$ is an approximation of D using the step size h and
- 2 is the known order of accuracy (approximation order 2) of the method/approximation in this example.

Approximating the gradient Approximating the Hessian

Richardson's Extrapolation

Following the Example 1,

$$D = \frac{4D(h) - D(2h)}{3} + O(h^4)$$

ie,

$$f'(x) \approx \frac{4D(h) - D(2h)}{3}$$

$$= \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}$$

has an approximation order 4 while D(h) has 2

Boundary value problem

Second order linear two-point boundary value problem: Find the function u(x) such that

$$-u''(x) + \kappa u(x) = f(x); x \in I = [0, 1]$$

$$u(0) = a; \qquad u(1) = b$$

Question: Can we use Euler-Lagrange equation to obtain the previous problem, ie, which is the corresponding variational optimization problem?

Boundary value problem

Second order linear two-point boundary value problem: Find the function u(x) such that

$$-u''(x) + \kappa u(x) = f(x); x \in I = [0, 1]$$

$$u(0) = a; \qquad u(1) = b$$

First, we define a discretization $x_i=x_0+ih$; $i=0,1,\cdots,n+1$, $x_0=0$ and $x_{n+1}=1$. Due to $x_i=ih$ and $x_{n+1}=1$ then

$$x_{n+1} = (n+1)h$$

$$h = \frac{1}{n+1}$$

$$x_i = \frac{i}{n+1}$$

Boundary value problem

Using an approximation of u''(x), for example, central difference

$$-\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + \kappa u_i = f_i; \ i = 1, 2, \dots, n$$
$$u_0 = a; \qquad u_{n+1} = b$$

with

$$u_i \stackrel{def}{=} u(x_i) = u(\frac{i}{n+1})$$

$$f_i \stackrel{def}{=} f(x_i) = f(\frac{i}{n+1})$$

for
$$i = 0, 1, 2, \dots, n + 1$$
.

Boundary value problem

Then we need to solve (use for example, Conjugate Gradient)

$$Au = b$$

(it corresponds to a 'discrete' quadratic optimization problem) where $u = [u_1, u_2, \cdots, u_n]^T$, $u_0 = a$, $u_{n+1} = b$ and

$$A \ = \ \begin{bmatrix} 2 + h^2 \kappa & -1 & 0 & \cdots & 0 & 0 \\ -1 & 2 + h^2 \kappa & -1 & \cdots & 0 & 0 \\ & \dots & \dots & \ddots & \dots & \dots \\ 0 & 0 & 0 & \cdots & 2 + h^2 \kappa & -1 \\ 0 & 0 & 0 & \cdots & -1 & 2 + h^2 \kappa \end{bmatrix}$$

$$b_i = h^2 f_i; i = 2, 3, \dots, n-1$$

$$b_1 = h^2 f_1 + u_0 = h^2 f_1 + a$$

$$b_n = h^2 f_n + u_{n+1} = h^2 f_n + b$$

Approximating the gradient

- An approximation to the gradient vector $\nabla f(x)$ can be obtained by evaluating the function f at different points, where $f: \mathbb{R}^n \to \mathbb{R}$.
- We can approximate the partial derivative $\frac{\partial f}{\partial x_i}$ using the forward difference, backward difference or central difference, as follows

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h}$$

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \frac{f(\mathbf{x}) - f(\mathbf{x} - h\mathbf{e}_i)}{h}$$

$$\frac{\partial f(\mathbf{x})}{\partial x_i} \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x} - h\mathbf{e}_i)}{2h}$$

$$i=1,2,\cdots,n$$

Approximating the gradient

The difference approximation, of the partial derivatives $\frac{\partial f(x)}{\partial x_i}$, can also be obtained from Taylor's theorem where $\xi \in (0,1)$

$$f(\boldsymbol{x} \pm \boldsymbol{d}) = f(\boldsymbol{x}) \pm \nabla f(\boldsymbol{x})^T \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^T \nabla^2 f(\boldsymbol{x} + \xi \boldsymbol{d}) \boldsymbol{d}$$
$$f(\boldsymbol{x} \pm \boldsymbol{d}) = f(\boldsymbol{x}) \pm \nabla f(\boldsymbol{x})^T \boldsymbol{d} + O(\|\boldsymbol{d}\|^2)$$

by taking $d = he_i$ with e_i a vector of the canonical basis.

Approximating the gradient

If $\nabla^2 f(x)$ is bounded, ie $\|\nabla^2 f(x)\| \leq M$, then

$$|f(\boldsymbol{x} + \boldsymbol{d}) - f(\boldsymbol{x}) - \nabla f(\boldsymbol{x})^T \boldsymbol{d}| \le \frac{M}{2} ||\boldsymbol{d}||^2$$

for example, if $d = he_i$ then

$$|f(\boldsymbol{x} + h\boldsymbol{e}_i) - f(\boldsymbol{x}) - h\frac{\partial f(\boldsymbol{x})}{\partial x_i}| \le \frac{M}{2}h^2$$

$$h \frac{\partial f(\mathbf{x})}{\partial x_i} = f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x}) + O(h^2)$$
$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h} + O(h)$$

Approximating the Jacobian

If $r: \mathbb{R}^n o \mathbb{R}^m$ then

$$r(x+d) = r(x) + J(x)d + O(||d||^2)$$

where the Jacobian J(x) is computed as follows

$$J(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial r_j}{\partial x_i} \end{bmatrix}_{\substack{j=1,\dots,m\\i=1,\dots,n}} = \begin{bmatrix} \nabla r_1(\boldsymbol{x})^T \\ \nabla r_2(\boldsymbol{x})^T \\ \dots \\ \nabla r_m(\boldsymbol{x})^T \end{bmatrix}$$

Approximating the Jacobian

We could be interested in approximating

- One entry of the Jacobian, ie, $\frac{\partial r_j}{\partial x_i}$
- One column of the Jacobian, ie, $\frac{\partial r}{\partial x_i}$
- One row of the Jacobian, ie, $\nabla_{\boldsymbol{x}} r_j$
- Or directly the product J(x)d

Approximating the Jacobian

When r is twice continuously differentiable with bounded second order derivative, then

$$|r(x+d) - r(x) - J(x)d| \le \frac{M}{2} ||d||^2$$

We can directly approximate J(x)d as

$$J(x)d = \frac{r(x+hd) - r(x)}{h} + O(h)$$

 $J(x)d \approx \frac{r(x+hd) - r(x)}{h}$

with accuracy order 1

Approximating the Jacobian

In one requires to **approximate the Jacobian**, we can do this **by column**

$$\frac{\partial \boldsymbol{r}}{\partial x_i} \approx \frac{\boldsymbol{r}(\boldsymbol{x} + h\boldsymbol{e}_i) - \boldsymbol{r}(\boldsymbol{x})}{h}$$

$$i=1,2,\cdots,n$$

Approximating the Jacobian

entry by entry

$$\frac{\partial r_j}{\partial x_i} \approx \frac{r_j(\boldsymbol{x} + h\boldsymbol{e}_i) - r_j(\boldsymbol{x})}{h}$$

 $i=1,2,\cdots,n$ (column) and $j=1,2,\cdots,m$ (row).

$$\nabla_{\boldsymbol{x}} r_j = \left[\frac{\partial r_j}{\partial x_i} \right]_i$$

Approximating the Jacobian: Example

Just to illustrate the idea, consider the following function (you can imagine more complicated cases)

$$\begin{array}{ll} \boldsymbol{r}(\boldsymbol{x}) & = \begin{bmatrix} 2(x_2^3 - x_1^2) \\ 3(x_2^3 - x_1^2) + 2(x_3^3 - x_2^2) \\ 3(x_3^3 - x_2^2) + 2(x_4^3 - x_3^2) \\ 3(x_4^3 - x_3^2) + 2(x_5^3 - x_4^2) \\ 3(x_5^3 - x_4^2) \end{bmatrix} \end{array}$$

Approximating the Jacobian: Example

Structure of the Jacobian

$$J(oldsymbol{x}) \;\; = \;\; egin{bmatrix} imes & ime$$

Then

Approximating the Jacobian: Example

$$J(\boldsymbol{x})\boldsymbol{d} = \begin{bmatrix} \frac{\partial r_1(\boldsymbol{x})}{\partial x_1} d_1 + \frac{\partial r_1(\boldsymbol{x})}{\partial x_2} d_2 \\ \frac{\partial r_2(\boldsymbol{x})}{\partial x_1} d_1 + \frac{\partial r_2(\boldsymbol{x})}{\partial x_2} d_2 + \frac{\partial r_2(\boldsymbol{x})}{\partial x_3} d_3 \\ \frac{\partial r_3(\boldsymbol{x})}{\partial x_2} d_2 + \frac{\partial r_3(\boldsymbol{x})}{\partial x_3} d_3 + \frac{\partial r_3(\boldsymbol{x})}{\partial x_4} d_4 \\ \frac{\partial r_4(\boldsymbol{x})}{\partial x_3} d_3 + \frac{\partial r_4(\boldsymbol{x})}{\partial x_4} d_4 + \frac{\partial r_4(\boldsymbol{x})}{\partial x_5} d_5 \end{bmatrix}$$

In some algorithms, we do not require to compute the full Hessian but the product $\nabla^2 f_k d_k$, like Newton-CG algorithms, then,

$$\nabla f(\boldsymbol{x} + h\boldsymbol{d}) = \nabla f(\boldsymbol{x}) + h\nabla^2 f(\boldsymbol{x})\boldsymbol{d} + O(h^2)$$

and $\nabla^2 f(x)d$ can be approximated as

$$\nabla^2 f(\boldsymbol{x}) \boldsymbol{d} = \frac{\nabla f(\boldsymbol{x} + h\boldsymbol{d}) - \nabla f(\boldsymbol{x})}{h} + O(h)$$
$$\nabla^2 f(\boldsymbol{x}) \boldsymbol{d} \approx \frac{\nabla f(\boldsymbol{x} + h\boldsymbol{d}) - \nabla f(\boldsymbol{x})}{h}$$

with approximation error h.

The **entries of the Hessian** can be approximated using Taylor, ie,

$$f(\boldsymbol{x}+\boldsymbol{d}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^T \nabla^2 f(\boldsymbol{x}) \boldsymbol{d} + O(\|\boldsymbol{d}\|^3)$$
 with $\boldsymbol{d} = h\boldsymbol{e}_i$, $\boldsymbol{d} = h\boldsymbol{e}_j$ and $\boldsymbol{d} = h(\boldsymbol{e}_i + \boldsymbol{e}_j)$

The entries of the Hessian can be approximated using Taylor, ie,

$$f(\boldsymbol{x} + h\boldsymbol{e}_i) = f(\boldsymbol{x}) + h\frac{\partial f(\boldsymbol{x})}{\partial x_i} + \frac{1}{2}h^2\frac{\partial^2 f(\boldsymbol{x})}{\partial x_i^2} + O(h^3)$$

$$f(\boldsymbol{x} + h\boldsymbol{e}_j) = f(\boldsymbol{x}) + h\frac{\partial f(\boldsymbol{x})}{\partial x_j} + \frac{1}{2}h^2\frac{\partial^2 f(\boldsymbol{x})}{\partial x_j^2} + O(h^3)$$

$$f(\boldsymbol{x} + h(\boldsymbol{e}_i + \boldsymbol{e}_j)) = f(\boldsymbol{x}) + h\left(\frac{\partial f(\boldsymbol{x})}{\partial x_i} + \frac{\partial f(\boldsymbol{x})}{\partial x_j}\right)$$

$$+ \frac{1}{2}h^2\left(\frac{\partial^2 f(\boldsymbol{x})}{\partial x_i^2} + 2\frac{\partial^2 f(\boldsymbol{x})}{\partial x_i\partial x_j} + \frac{\partial^2 f(\boldsymbol{x})}{\partial x_j^2}\right) + O(h^3)$$

Then

$$f(\boldsymbol{x} + h(\boldsymbol{e}_i + \boldsymbol{e}_j)) - f(\boldsymbol{x} + h\boldsymbol{e}_i) - f(\boldsymbol{x} + h\boldsymbol{e}_j) = -f(\boldsymbol{x}) + h^2 \frac{\partial^2 f(\boldsymbol{x})}{\partial x_i \partial x_j} + O(h^3)$$

$$\frac{f(\boldsymbol{x} + h\boldsymbol{e}_i + h\boldsymbol{e}_j) - f(\boldsymbol{x} + h\boldsymbol{e}_i) - f(\boldsymbol{x} + h\boldsymbol{e}_j) + f(\boldsymbol{x})}{h^2} = \frac{\partial^2 f(\boldsymbol{x})}{\partial x_i \partial x_j} + O(h)$$

The entries of the Hessian can be approximated using for example the forward-differences

$$\frac{\nabla^2 f(\mathbf{x})}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \frac{\partial f(\mathbf{x})}{\partial x_j} \\
\approx \frac{\frac{\partial f(\mathbf{x} + h\mathbf{e}_i)}{\partial x_j} - \frac{\partial f(\mathbf{x})}{\partial x_j}}{h} \\
\approx \frac{\frac{f(\mathbf{x} + h\mathbf{e}_i + h\mathbf{e}_j) - f(\mathbf{x} + h\mathbf{e}_i)}{h} - \frac{f(\mathbf{x} + h\mathbf{e}_j) - f(\mathbf{x})}{h}}{h} \\
= \frac{f(\mathbf{x} + h\mathbf{e}_i + h\mathbf{e}_j) - f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x} + h\mathbf{e}_j) + f(\mathbf{x})}{h^2}$$

with approximation error h.