You may also wish to check that residuals are 'nearly Normal', depending on modeling applications:

make histogram of residuals to check Normality
also identify outliers among residuals
hist(residuals(lm1), breaks =15, col = 'oldlace')

or make a Q-Q plot to assess Normality
qqnorm(residuals(lm1))
abline(mean(residuals(lm1)), sd(residuals(lm1)), col = 'tomato')

"How similar are the quantiles in my data compared to what the

Q-Q plots:

compared to what the quantiles would be if my data followed a theoretical probability distribution?"

This plot shows if residuals are spread equally along the ranges of predictors; use it to check for equal variance assumption. A horizontal line with equally spread points is indicative of homoscedasticity. The three observations with largest |residuals| are labeled by default.

This plot helps us find influential observations (if any) – i.e., data points outside of the dashed line representing <u>Cook</u>'s distance. Note that high-leverage or influential points are not necessarily 'problems'. Same with outliers, although all such points should be investigated in context.

Austin Apartment Rents — Checking regression assumptions with base R functions

Before model fitting, use scatterplots to visualize relationships between *Y* response and *X* predictors; check for <u>linearity</u> and outliers.

Use a scatterplot matrix for multiple plots:

plot(rents[c(1,2,9)])

Side-by-side boxplots may be preferable for visualizing *Y* at different levels of a categorical predictor (and useful for identifying outliers)

boxplot(Rent ~ Bathrooms, data = rents)
boxplot(Rent ~ Shuttle, data = rents)

fitting multiple regression model
lm1 <- lm(Rent ~ Area + Age + Bathrooms + Shuttle, data = rents)
summary(lm1)</pre>

After model
fitting, check
assumptions with
a series of plots
based on model
residuals and
fitted values.

	ESTIMATE 3	Lu. Ellor	. Value	PI (>ILI)		
(Intercept)	197.4565	88.3532	2.235	0.02951	str	
Area	0.8087	0.1036	7.809	0.000000000179	力班交	
Age	1.5816	2,2102	0.716	0.47726		
Bathrooms	193.5512	57.7597	3,351	0.00146	京市	
Shuttle	88.4124	50.8820	1.738	0.08788		
Signif, code	es: 0 '***	0.001 '**	0.01	'*' 0.05 ',' O.	1 '	' 1

Residual standard error: 132.6 on 55 degrees of freedom Multiple R-squared: 0.8118, Adjusted R-squared: 0.7981 F-statistic: 59.31 on 4 and 55 DF, p-value: < 0.000000000000000022

adding FITTED VALUES to data frame with mutate() and predict()
rents = rents %>%
 mutate(fitted = predict(model))

adding RESIDUALS to data frame with mutate() and residuals()
rents = rents %>%
 mutate(residuals = residuals(model))

check linearity (and get a sense of equal spread) by plotting
residuals against fitted Y values
plot(predict(lm1), residuals(lm1))
abline(0, 0, col = 'blue') # adds reference line at 0

Relatively equal spread above and below zero reference line as \hat{y} increases is evidence of homoscedasticity.

If the residual plot shows a pattern, make separate plots for each x_j vs residuals e_i to identify which x_j variable(s) is/are the source of a violation of regression assumptions.