```
% Specify the root folder where your dataset is stored
rootFolder = 'dataset'; % Update this to your dataset path
% List of categories as subfolder names within the root folder
categories = {'spoon', 'fork', 'butter_knife', 'cutting_knife', 'ladle'};
% Create an imageDatastore and automatically label the images based on
folder names
imds = imageDatastore(fullfile(rootFolder, categories), 'LabelSource',
'foldernames', 'IncludeSubfolders', true);
% Split the datastore into training and validation sets
[trainingSet, validationSet] = splitEachLabel(imds, 0.75, 'randomized');
% Create a bag of features (visual vocabulary) from the training set
bag = bagOfFeatures(trainingSet);
Creating Bag-Of-Features.
* Image category 1: butter_knife
* Image category 2: cutting_knife
* Image category 3: fork
* Image category 4: ladle
* Image category 5: spoon
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].
* Extracting features from 55 images...done. Extracted 11903544 features.
* Keeping 80 percent of the strongest features from each category.
* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 1637549.
** Using the strongest 1637549 features from each of the other image categories.
* Creating a 500 word visual vocabulary.
* Number of levels: 1
* Branching factor: 500
* Number of clustering steps: 1
* [Step 1/1] Clustering vocabulary level 1.
* Number of features : 8187745
* Number of clusters : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 57/100 iterations (~16.40 seconds/iteration)...converged in 57 iterations.
* Finished creating Bag-Of-Features
img = readimage(imds, 1);
featureVector = encode(bag, img);
```

Encoding images using Bag-Of-Features.

* Encoding an image...done.

```
% Plot the histogram of visual word occurrences
figure
bar(featureVector)
title('Visual word occurrences')
xlabel('Visual word index')
ylabel('Frequency of occurrence')
```


% Train an image category classifier using the bag of features
categoryClassifier = trainImageCategoryClassifier(trainingSet, bag);

Training an image category classifier for 5 categories.

```
· Catanami 1. hittan linita
```

- * Category 1: butter_knife
- * Category 2: cutting_knife
- * Category 3: fork
- * Category 4: ladle
- * Category 5: spoon
- * Encoding features for 55 images...done.
- * Finished training the category classifier. Use evaluate to test the classifier on a test set.

% Evaluate the classifier using the training set (as a sanity check)
confMatrixTrain = evaluate(categoryClassifier, trainingSet);

Evaluating image category classifier for 5 categories.

- * Category 1: butter_knife
 * Category 2: cutting_knife
- * Category 3: fork
- * Category 4: ladle
- * Category 5: spoon
- * Evaluating 55 images...done.
- * Finished evaluating all the test sets.
- * The confusion matrix for this test set is:

KNOWN	butter_knife	PREDICTE cutting_knife	ED fork	ladle	spoon
butter_knife cutting_knife fork ladle	0.64 0.00 0.00 0.00	0.18 0.82 0.00 0.00	0.09 0.00 0.82 0.00	0.09 0.18 0.00 1.00	0.00 0.00 0.18 0.00
spoon	0.00	0.00	0.00	0.18	0.82

* Average Accuracy is 0.82.

```
trainAccuracy = mean(diag(confMatrixTrain));
```

% Evaluate the classifier using the validation set confMatrixValidation = evaluate(categoryClassifier, validationSet);

Evaluating image category classifier for 5 categories.

- * Category 1: butter_knife
- * Category 2: cutting_knife
- * Category 3: fork
- * Category 4: ladle
- * Category 5: spoon
- * Evaluating 19 images...done.
- * Finished evaluating all the test sets.
- * The confusion matrix for this test set is:

	PREDICTED						
KNOWN	butter_knife	cutting_knife	fork	ladle	spoon		
butter_knife cutting_knife fork ladle spoon	0.25 0.25 0.00 0.00 0.00	0.00 0.25 0.00 0.00 0.00	0.25 0.00 0.75 0.00 0.00	0.50 0.25 0.25 1.00 0.00	0.00 0.25 0.00 0.00		

* Average Accuracy is 0.65.

```
validationAccuracy = mean(diag(confMatrixValidation));
% Display the accuracies
fprintf('Training Accuracy: %.2f%%\n', trainAccuracy * 100);
```

Training Accuracy: 81.82%

fprintf('Validation Accuracy: %.2f%\n', validationAccuracy * 100);

Validation Accuracy: 65.00%