Operator's Guide Power Patrol Power Meter

Includes:

Power Patrol

and

HeadStart 1.0 Software

Setra Systems, Inc. | 159 Swanson Rd. | Boxborough, MA 01719 USA Phone 978.263.1400 | Fax 978.264.0292 | www.setra.com

Table of Contents

Introduction	6
The Power Patrol Power Meter	6
Power Patrol Meter Safety Summary and Specifications	6
Symbols on Equipment	
Power Patrol Résumé de Sécurité et Spécifications	9
Symboles des Equipements	9
Power Patrol Meter Technical Specifications	11
FIELD INSTALLATION	13
Mounting a Power Patrol Meter	13
Wiring Connections on a Power Patrol Meter	13
Wiring CTs	14
CT Wire Lead Polarity	14
Connecting a Communication Cable	15
Connecting via a USB Cable Adapter	15
Connecting via a RS-485 Adapter	15
Installing the RS-485 Adapter to a Computer	16
Connecting via an Ethernet Cable	17
Powering the Power Patrol Meter	17
Power Patrol Single-Phase Connections	17
COM—Communications LED	18
Power Patrol (Serial & Ethernet Communication)	
Phase Verification	19
Verifying the Power Patrol Meter Setup Using the LEDs	19
Phase Verification Error Table	20
Power Patrol Meter Diagram	21
COMMUNICATING WITH A POWER PATROL METER	22
Setting the Network Address Switches	
Installing the HeadStart Software and Communicating with the Power Patrol Meter	
Communication Setup	
About IP Addresses	
Connecting the Ports	
Establishing Communication Protocol	
Using HeadStart Software	
HeadStart Screens	30

Communication and Status Messages	30
HeadStart Command Buttons	30
Communications	31
Setting USB Communication Parameters	31
Setting Serial Communication Parameters	32
Setting Ethernet Communication Parameters	33
Communication Error	35
Meter Setup	36
Entering Wiring Information for an Element	37
Comms. Setup	38
Real-Time Values	38
Using Real-Time Values to Verify Setup	39
Read/Write Registers—Read/Set Objects	40
Resetting BACnet Objects/Modbus Registers	
Sync Registers	
Firmware	42
SECTION IV—ALL THINGS MODBUS	43
Modbus Data Scaling—Interpreting the Power Patrol Registers	43
Selecting a Scalar	44
Examples Using a Data Scalar	44
Values Requiring Two Registers	45
Configuration Registers	45
Pulse Output/Input Registers	46
Absolute/Net Value Measurement Registers	47
Positive Power/Energy Measurement Registers	51
Negative Power/Energy Measurement Registers	55
Protocol Commands	60

SECTION V—ALL THINGS BACNET	64
Configuration Objects	64
Pulse Output/Input Objects	66
Absolute/Net Value Measurement Objects	66
Positive Power/Energy Measurement Objects	69
Negative Power/Energy Measurement Objects	70
Appropriate	74
APPENDICES	
Appendix A—Power Patrol Meter Wiring Diagrams	
Power Patrol Plus Wiring Diagrams	
Appendix B—Connecting to a Network	
Communication Protocol	
Daisy Chain Layout for RS-485 Network	
Networking Using the BACnet/Modbus Protocol	
Appendix C—Digital I/O Functions	
Digital Pulse Outputs	
Appendix D—VERIS H8035/H8036 Emulation	78
VERIS Modbus Integer Registers	79
VERIS Multipliers	80
VERIS Modbus Floating Point Registers	82
Appendix E—Conversion Table	85
Decimal to Hexadecimal Conversion Table	85
Appendix F—Troubleshooting	87
Troubleshooting Communication Issues	87
Frequently Asked Questions	88
GLOSSARY	90

INTRODUCTION

The Power Patrol meter monitors the voltage, current, power, energy, and many other electrical parameters on single- and three-phase electrical systems. A Power Patrol meter uses direct connections to each phase of the voltage, and uses current transformers or Rogowski coils to monitor each phase of the current. Information on energy use, demand, power factor, line frequency, and more are derived from the voltage and current inputs.

The communications interface to the meter is an USB communication, or RS-485 serial/Ethernet connection that uses the BACnet Master Slave Token Passing (MS/TP) protocol or Modbus protocol for sending commands and retrieving data. A separate remote terminal unit (RTU), Data Logger, or Building Management and Control System is usually connected to the Power Patrol to provide data recording and trend logging plus a human interface or display.

POWER PATROL

The Power Patrol is light-weight and compact enough to mount within an electrical panel. It is typically used for long-term monitoring of electrical systems.

Up to 127 Power Patrol meters may be connected to a single BACnet client for monitoring and recording power usage at multiple locations within a single site. Up to 247 meters may be connected to Modbus.

There is a configurable digital pulse output port on the Power Patrol that can be used to output kWh, kVARh, or kVAh pulses to external devices, or to toggle on and off to control a remote device or relay.

Power Patrol Meter Safety Summary and Specifications

This general safety information is to be used by both the Power Meter operator and servicing personnel. Setra Systems, Inc. assumes no liability for user's failure to comply with these safety guidelines.

These items conform to the following:

((

Conforms to UL Std 61010-1, 3rd Edition & IEC 61010-2-030, 1st Edition

Certified to CSA Std C22.2 No. 61010-1, 3rd Edition

The Power Patrol is an over-voltage Category III device. Use approved rubber gloves with mechanical protection and goggles when operating the device.

CAUTION: THIS METER MAY CONTAIN LIFE THREATENING VOLTAGES. QUALIFIED PERSONNEL MUST DISCONNECT ALL HIGH VOLTAGE WIRING BEFORE USING OR SERVICING THE METER.

WARNING

Use of this device in a manner for which it is not intended may impair its means of protection.

Symbols on Equipment

Denotes caution. See manual for a description of the meanings.

When connecting the Power Patrol to an AC load, follow these steps in sequence to prevent a shock hazard.

- 1. De-energize the circuit to be monitored.
- 2. Connect the CTs to the phases being monitored.
- Connect the voltage leads to the different phases. Use proper safety equipment (gloves and protective clothing) as required for the voltages monitored.

DENOTES HIGH VOLTAGE. RISK OF ELECTRICAL SHOCK. LIFE THREATENING VOLTAGES MAY BE PRESENT. QUALIFIED PERSONNEL ONLY.

Hazardous voltage exist, there are no user serviceable parts inside. Do not open the enclosure.

DO NOT EXCEED 600V. This meter is equipped to monitor loads up to 600V. Exceeding this voltage will cause damage to the meter and danger to the user. Always use a Potential Transformer (PT) for loads in excess of 600V. The Power Patrol is a 600 Volt Over Voltage Category III device.

Pulse output: 30V max open voltage, 5mA max current.

See the appendix for pulse output usage.

SENSOR LIMITATIONS

USE ONLY SHUNTED CURRENT TRANSFORMERS (CTs).

Do not use other CTs. Only use shunted CTs with a 333mV maximum output only. Serious shock hazard and logger damage can occur if unshunted CTs are used. The UL listing covers the use of the following Setra Systems CTs that are UL Recognized and have been evaluated to IEC 61010-1:

CT-SCP-020 (20A), CT-SCP-050 (50A), CT-SCP-0100 (100A), CT-SCP-0200 (200A), CT-PF-12 (Power Flex Rogowski Coil), CT-PF-24 (Power Flex Rogowski Coil) and the CT-PF-36 (Power Flex Rogowski Coil).

FCC COMPLIANCE

SPP-E-N, SPP-E-D, SPP-S-N, SSP-S-D

This device has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at user's own expense.

Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

	Equipment protected throughout by double insulation (IEC 536 Class II).
--	---

MAINTENANCE

There is no required maintenance with the **Power Patrol**. Abide by the following items:

Cleaning: No cleaning agents, including water, should be used on the Power Patrol.

Battery Life: (If equipped) The lithium battery is only used to maintain the date and clock settings during power failure and has a life expectancy of greater than 10 years. Contact Setra Systems for service.

No accessories are approved for use with the **Power Patrol** other than those specified in the Setra Systems product literature and price sheets.

If the power Meter appears damaged or defective, first disconnect all power and sensors. Call or email technical support for assistance.

Setra Systems, Inc. 159 Swanson Road Boxborough, MA 01719 Phone: 978-263-1400 www.setra.com

Power Patrol Résumé de Sécurité et Spécifications

Cette information de sécurité est destinée à être utilisée à la fois par l'opérateur de l'enregistreur et le personnel de service. Setra Systems, Inc n'assume aucune responsabilité pour l'utilisateur qui ne respecte pas les directives en matière de sécurité.

Tous les articles sont conformes à ce qui suit:

Conforme à UL Std 61010-1, 3rd Edition & IEC 61010-2-030, 1st Edition Certifié CSA Std C22.2 No. 61010-1, 3rd Edition

Le Power Patrol est un appareil de surtension de catégorie III. Utiliser des gants en caoutchouc approuvé avec protection mécanique et des lunettes lors de l'utilisation de l'appareil.

ATTENTION: CE METER PEUT CONTENIR DE HAUTES TENSIONS QUI PEUVENT ÊTRE DANGEREUSES. UN PERSONNEL QUALIFIÉ DOIT DÉBRANCHER TOUS LES CÂBLES À HAUTE TENSION AVANT D'UTILISER OU DE RÉPARER DU METER.

ATTENTION

L'utilisation de cet appareil d'une manière pour laquelle il n'est pas destiné peut annuler ses moyens de protection.

Symboles des Equipements

Signifie prudence. Voir le manuel pour une description de la signification.

En faisant la connexion du Power Patrol à une prise de courant alternatif, suivez ces étapes en ordre pour empêcher un risque de choc.

- 1. Décharger le circuit à contrôler.
- 2. Connectez le TC aux phases à surveiller.
- 3. Connectez les fils de tension à des phases différentes. Utiliser des équipements de sécurité (gants et des vêtements de protection) qui sont nécessaires pour les tensions surveillées.

INDIQUE HAUTE TENSION. RISQUE DE CHOC ÉLECTRIQUE. HAUTES TENSIONS PEUVENT ÊTRE PRÉSENTES QUI METTENT LA VIE EN DANGER. PERSONNEL QUALIFIÉ UNIQUEMENT.

Tension dangereuse existent, il n'y a aucune pièce réparable par l'utilisateur n'ouvrez pas le boîtier.

NE PAS DEPASSER 600V. Ce compteur peut contrôler les charges jusqu'à 600V. Le dépassement de cette tension peut causer des dommages à l'appareil et du danger pour l'utilisateur. Utiliser toujours le potentiel transformateur (PT) pour des charges de plus de 600V. Le Power Patrol est un appareil à 600 V de surtension de catégorie III.

Sortie d'impulsion: 30V max tension ouverte, 5 mA courant maxi. Voir l'appendice pour sortie d'impulsions l'utilisation.

LIMITATIONS DE DÉTECTEUR

UTILISEZ SEULEMENT TRANSFORMATEURS DE COURANT (TC) SHUNTÉE.

N'utilisez pas d'autres TC. Utilisez seulement des TC shuntée avec une puissance maximale 333mV. Un sérieux risque de décharge électrique et des dommages à l'enregistreur peut se produire si des TC pas shuntée sont utilisés. Utiliser seulement les CTs des Setra Systems suivants qui sont énumérés jusqu'au 600V/CATIII. CT-SCP-020 (20A), CT-SCP-050 (50A), CT-SCP-0100 (100A), CT-SCP-0200 (200A), CT-PF-12 (Power Flex

CT-SCP-020 (20A), CT-SCP-050 (50A), CT-SCP-0100 (100A), CT-SCP-0200 (200A), CT-PF-12 (Power Flex Rogowski Coil), CT-PF-24 (Power Flex Rogowski Coil) and the CT-PF-36 (Power Flex Rogowski Coil).

L'équipement protégé en double isolation (IEC 536 Classe II)

Entretien

Il n'y a aucun entretien requis avec le **Power Patrol**. Respectez les points suivants:

Nettoyage: Aucun agents de nettoyage, y compris l'eau, doit être utilisé sur le Power Patrol.

Espérance de Vie de la Batterie: La pile au lithium est utilisée uniquement pour maintenir les paramètres de date et d'heure en cas de coupure de le courant et a une espérance de vie de plus de 10 ans. Contactez DENT Instruments pour le service.

Pas d'accessoires approuvés pour une utilisation avec le **Power Patrol** sauf ceux spécifiés par DENT Instruments dans ses documentations sur les produits et également sur les prix.

Si le compteur semble endommagé ou défectueux, tout d'abord déconnecter le pouvoir de l'appareil. Alors s'il vous plaît appelez 541.388.4774 ou contacter par courriel l'assistance technique pour obtenir de l'aide.

Setra Systems, Inc. 159 Swanson Road Boxborough, MA 01719 Phone: 978-263-1400 www.setra.com

Email:

Power Patrol Meter Technical Specifications

Specification		Description	
Service Types		Single Phase, Three Phase-Four Wire (WYE), Three Phase-Three Wire (Delta)	
3 Voltage Channels		80-346 Volts AC Line-to-Neutral, 600V Line-to-Line, CAT III	
Current Channels		3 channels, 0.525 VAC max, 333 mV CTs, 111 mV Rogowski coils, 0-4,700+ Amps depending on current transducer	
Maxim	num Current Input	158% of current transducer rating (mv CTs) to maintain accuracy. Measure up to 4000 Amps Power Flex Rogowski Coil	
Measu	rement Type	True RMS using high-speed digital signal processing (DSP)	
Line Fr	requency	50/60Hz	
Power		From L1 Phase to L2 Phase. 80-600VAC CAT III 50/60Hz SPP: 90mA Max, Non-user replaceable .5 Amp internal fuse protection	
Power	Out	Unregulated 5VDC output, 140 mA max	
Wavef	form Sampling	12 kHz	
Param	eter Update Rate	.5 seconds	
Measu	irements	Volts, Amps, kW, kWh, kVAR, kVARh, kVA, kVAh, Apparent Power Factor (aPF), Displacement Power Factor (dPF). All parameters for each phase and for system total.	
Accura	асу	Meter: 0.2% (<0.1% typical) ANSI, C12.20-2010 Class 0.2	
Resolu	ition	0.01 Amp, 0.1 Volt, 0.01 watt, 0.01 VAR, 0.01 VA, 0.01 Power Factor depending on scalar setting	
Indicat	tors	Bi-color LEDs (red and green): 1 LED to indicate communication, 3 LEDs for correct phasing (Green when voltage and current on the same phase; Red when incorrectly wired.) Pulse output LED, Power On LED	
Pulse (Output	Open Collector, Optically Isolated , 5mA max current, 30V max open voltage	
Communication		Communication	
Direct		User Selectable Modbus RTU or TCP; BACnet Master Slave Token Passing protocol (MS/TP) RS-485 or IP (Ethernet)	
	Max Communication Length	1200 meters with Data Range of 100K bits/second or less	
Serial Meters	Communication Rate (baud)	Modbus: 9600 (Default), 19200, 38400, 57600, 76800, 115200 BACnet: 9600, 19200, 38400, 76,800 (Default)	
erial	Data Bits	8	
Ň	Parity	None, Even, Odd	
	Stop Bit	2, 1	
Data Formats		BACnet IP, BACnet MS/TP, Modbus TCP, Modbus RTU	
Mechanical			
Operat	ting Temperature	-7 to + 60° C (-20 to 140° F)	
Humidity		5% to 95% non-condensing	
Enclosure		ABS plastic, 94-V0 flammability rating	

Specification	Description	
Weight 366.5 g (12.92 oz, 0.808 lbs)		
Dimensions	24.2 x 8.5 x 4.0 cm (9.5" x 3.3" x 1.6")	
Ingress Protection (IP) Rating	20	
	HeadStart Minimum System Requirements	
Operating System	Windows® 7 (32 or 64 bit), Windows® 8 Pro, Vista (32 or 64 bit), XP	
Communications Port	One USB port or serial port	
Hard Drive	50 MB minimum available	
Processor	Pentium Class 1 GHz or more recommended	
	Safety	
	The following are UL listed:	
	SPP-E-N, SPP-E-D, SPP-S-N, SPP-S-D	
Serial/Ethernet Meters	Power Patrol Meter Conforms to UL Std 61010-1, 3rd Edition & IEC 61010-2-030, 1st Edition Certified to CSA Std C22.2 No. 61010-1, 3rd Edition	

Table I-1: Technical Specifications

Mounting a Power Patrol Meter

WARNING! Remove the meter from all sources of voltage before mounting.

The Power Patrol meter must be installed in an approved electrical panel or enclosure using proper installation practices according to the local electrical codes.

• To mount the Power Patrol, use the two tabs provided at both ends of the case. Securely mount the Power Patrol near a dedicated circuit disconnect breaker.

Figure I-1: Power Patrol mounting tabas

Wiring Connections on a Power Patrol Meter

High voltage MAY BE PRESENT. Risk of electric shock. Life threatening voltages may be present. Qualified personnel only.

Haute tension peut être présente. Risque de choc électrique. Tensions dangereuses peuvent être présentes. Personnel qualifié uniquement.

The Power Patrol meter has the following connections:

- Either a three-wire connector for the RS-485 BACnet/Modbus link and/or an Ethernet connector.
- Four voltage connections. Voltage leads are customer supplied. The Power Patrol meter is self-powered from L1 and L2.

- 3 CT inputs
- Digital output ports. The ports can be used to output kWh, kVARh, or kVAh pulses to external devices, or to toggle on and off to control a remote device or relay.
- USB port for powering the meter during setup

Wiring CTs

1) Insert the CT wires into the connector/s. See the following CT wire lead polarity table for the correct wiring configuration.

CT WIRE LEAD POLARITY

СТ Туре	CT Lead +	CT Lead -	Shield
Power Flex (Rogowski coil)*	Black	Red	Shield Wire
Split Core CT mV (SCP, SCM series)	White	Black	

Table II-1: CT Polarity

- 2) Attach the CT connectors onto the Power Patrol connections labeled CT 1, CT 2 and CT 3.
- 3) Place the CTs on the phase wires of the load to be monitored and corresponding to the phase of the voltage leads. The CT labeled CT 1 must be placed on L1 phase voltage wire, CT 2 must be on the L2 voltage and CT 3 on the L3 voltage. Refer to Phase Verificatio later in this section for information about the CT LEDs and verifying the CT installation.

NOTE: The directionality for Rogowski Coils is the arrow on the label pointing toward the load.

* Power Flex Rogowski Coils have a shield wire which must be connected to the meter. This reduces interference and improves accuracy of the CT.

Connecting Communication Cable

High voltage MAY BE PRESENT. Risk of electric shock. Life threatening voltages may be present. Qualified personnel only.

Haute tension peut être présente. Risque de choc électrique. Tensions dangereuses peuvent être présentes. Personnel qualifié uniquement.

Communication between a Power Patrol meter and a logger or computer is established with an USB cable, a serial RS-485 adapter or an Ethernet connection. A serial connection (RS-485) is limited in speed while a parallel connection (Ethernet) or USB connection is much faster.

NOTE: Configuration of Power Patrol meter can be completed prior to field installation by powering device via computer and USB cable using HeadStart software.

CONNECTING VIA A USB CABLE

Connect one end of USB cable into the Power Patrol and the other end into your computer. To begin communicating via an USB cable you must first set it up with HeadStart Software. See **USB Connection** in the *Communicating with a Power Patrol Meter* section.

CONNECTING VIA A RS-485 ADAPTER

To complete the connection between the Power Patrol meter and the computer, the three wires coming from the RS-485 adapter are plugged into the Power Patrol.

Insert each white ferrule into the appropriate RS-485 connection on the Power Patrol. The red wire inserts in (+), the black wire in (-) and the green wire in GND, Figure II-1.

Verify that the dip switches on the back of the RS-485 adapter are set to: RS-485, Echo Off, 2 Wire, 2 Wire as shown in Figure II-2.

The adapter is ready to be connected to the Power Patrol meter.

Figure II-1: RS-485 Adapter

Figure II-2: Dip switches on back of RS-485 Adapter

INSTALLING THE RS-485 ADAPTER TO A COMPUTER

Installation of an RS-485 adapter and HeadStart software can be completed and tested with a meter prior to the field installation.

- 1) Insert one end of a USB cable into the RS-485 adapter and the other end into a USB port on the computer.
- 2) Insert the CD that came with the RS-485 adapter into your computer.
- 3) The Found New Hardware Wizard window appears.

The window states "This wizard helps you install software for: Model USOPTL4," and asks "What do you want the wizard to do?"

- 4) Select Install the software automatically and click Next.
- 5) Click **Finish** when the installation is complete.

6) Remove the CD from your computer.

CONNECTING VIA AN ETHERNET CABLE

Connect one end of the Ethernet cable into the Power Patrol and the other end into your computer. To begin communicating via an Ethernet cable you must first set it with HeadStart software. See **Ethernet** (TCP/IP) Connection in the *Communicating with a Power Patrol Meter* section.

Powering the Power Patrol Meter

The Power Patrol meter can be powered through USB cable and computer prior to field installation for configuration purposes.

For field installation, connect the Power Patrol meter **14 AWG THHN Minimum 600VAC rating** (or equivalent in order to maintain 600VAC safety rating of the device) voltage leads as close as possible to a building-installed, dedicated circuit disconnect breaker. Mark the breaker as the "disconnect" for the Power Patrol. Refer to the wiring diagrams in the Appendix for specifics of the wiring connections.

Follow local electrical codes during this installation.

Figure II-3: Voltage leads into circuit breaker

The Power Patrol meter is self-powered from the L1 and L2 lines. When 80–600VAC or DC is placed across the L1 and L2 wires, the three phasing LEDs begin to flash in sequence.

POWER PATROL SINGLE-PHASE CONNECTIONS

The Power Patrol meter can be used to monitor single-phase loads. There are several guidelines to keep in mind about this type of connection:

- 1) The Power Patrol is powered from a potential between L1 and L2. This can be phase-to-phase (230V) or phase-to-neutral (115V). With a single-phase 230V panel, the L1 and L2 voltage leads are connected between the L1 and L2 voltage sources. With a 115V circuit, the L1 voltage lead is connected to the L1 "hot lead," and the L2 voltage lead is connected to neutral.
- 2) Each CT must be paired with the correct voltage source. The current and voltage need to be inphase for accurate measurements. For instance, CT 1 would monitor branch circuit supplied by voltage source L1, and so on.
- 3) The neutral must be connected because the Power Patrol uses line-to-neutral measurements for all calculations.

A Typical 230V Single-Phase Panel Setup (US Wire Colors)

Connect the Black L1 voltage lead to Voltage L1, Red L2 voltage lead to L2 voltage, White Neutral voltage lead to neutral. CT1 would monitor L1 loads and CT2 would monitor L2 loads. Based on the above guidelines, CT3 can be used if the Blue L3 voltage lead is connected to either L1 or L2. As long as voltage lead L3 and CT3 are in-phase, the Power Patrol meter will provide correct kW readings. If the Blue L3 voltage lead was connected to L2 voltage source, then CT3 could monitor any L2 branch circuit. Or, if the Blue L3 voltage lead was connected to L1 voltage source, then CT3 could monitor any L1 branch circuit.

A Typical 115V Single-Phase Panel Setup

Connect the Black L1 voltage lead to Voltage L1 (hot), Red L2 voltage lead to Neutral, and White N voltage lead to neutral. CT1 would monitor the L1 load. CT3 can be used if the Blue L3 voltage lead is connected to L1. CT3 could then monitor any L1 branch circuit.

System Values

System values are the sum of L1 + L2 + L3 measurements. System values may not be meaningful since two different devices or loads can be monitored by a single Power Patrol element.

When paired with the right voltage phase, each CT provides individual kW/kWh readings for that CT channel.

COM—Communications LED

The Power Patrol COM LEDs signal the following communication information.

POWER PATROL (SERIAL COMMUNICATION ONLY)

BACnet	Modbus	Description
Steady Green	Steady Green	Power is applied to the meter.
Flashing Green	Flashing Green The meter is communicating.	
	Steady Red	Communications failure, or talking with BACnet while the meter is in Modbus mode.
	Flashing Red	The meter is receiving communication on the bus for a meter at another address.

Table II-2: Serial COM LED Signals

Power Patrol (Serial & Ethernet Communication)

The Ethernet cable has a Link LED on its connector that glows amber when connected to the network and flashes green during Ethernet traffic.

BACnet/Modbus	Description
Steady Green	Power is applied to the meter.
Flashing Green	The meter is communicating.

Table II-3: Ethernet COM LED Signals

Phase Verification

Phase Verification is a unique feature of the Power Patrol meter that simplifies installation by ensuring proper CT orientation and avoiding faulty data collection.

VERIFYING THE POWER PATROL METER SETUP USING THE LEDS

The Power Patrol meter uses three bi-color Phase Verification LEDs to check each phase. These LEDs provide the following information:

- All LEDs are green—the system power factor is greater than 0.55 and the CTs are properly placed on the corresponding voltage phases.
- Any one LED is red—there is a phasing connection error.
- Two LEDs are red and one is green—two CTs are reversed.
- All three LEDs are red—all CTs are incorrectly connected.

Phase Verification LEDs

DID YOU KNOW? If the total system power factor is less than 0.55, the LEDs will be red even if connected properly. This situation is rare but could occur if, for example, the load to be monitored is a lightly loaded electric motor where it is common for the power factor to be less than 0.55 and the corresponding LEDs will be red.

The following table describes the Phase Verification error conditions and the appropriate correction.

PHASE VERIFICATION ERROR TABLE

CT1	CT2	СТЗ	Error Description	Correction
•	•	•	Setup is correct and the system power factor is greater than 0.55or- All CTs are disconnected.	Connect the CTs.
•	•	•	All CTs are incorrectly connected, -or- The system power factor is less than 0.55.	Rotate the CT connections by one position by move CT 1 to CT 2, CT 2 to CT 3 and CT 3 to CT 1, until all LEDs are green. The system power factor is less than 0.55 but the CTs are connected properly indicating a light load.
•	•	•	CT 2 and CT 3 are reversed.	Switch the position of the CTs flashing red.
•	•	•	CT 1 and CT 2 are reversed.	Switch the position of the CTs flashing red.
•	•	•	CT 1 is swapped with either CT 2 or CT 3.	Switch CT 1 with CT 2or- Switch CT 1 with CT 3.
•	•	•	CT 2 is swapped with either CT 1 or CT 3.	Switch CT 2 with CT 1or- Switch CT 2 with CT 3.
•	•	•	CT 3 is swapped with either CT 1 or CT 2.	Switch CT 3 with CT 1or- Switch CT 3 with CT 2.
•	•	•	CT 1 and CT 3 are reversed.	Switch the position of the CTs flashing red.

Table II-4: Phase Verification LED Error Resolution

EXAMPLE POWER PATROL WIRING DIAGRAM

Below is an example wiring diagram for a four-wire WYE. More wiring diagrams are available in the appendix.

Figure II-4: Four-wire Wye

Use a Service Type **0** (zero) value for BACnet Object 12080 or a **0** (zero) value for Modbus Register 44607 on this wire configuration.

COMMUNICATING WITH POWER PATROL METER

There are a few things to determine before starting to communicate with your Power Patrol meter. Are you using BACnet or Modbus as your communication protocol? Will you use your own logger/controller to record measurements, or will you use the HeadStart software supplied with the meter to read real-time values? Is the data delivered over an RS-485 adapter or via the Ethernet? These determinations figure into how you set up the Power Patrol meter for operation.

- BACnet vs. Modbus
 - Set the network address switches on the meter to either Modbus or BACnet
- Customer-supplied logger vs. HeadStart
 - Communication configuration must be set up in the HeadStart software even if you use a separate logger to record data
- RS-485 vs. Ethernet
 - The type of connection is part of the configuration set up in the HeadStart software
- Laptop/PC for setup verification via USB
 - A convenient method for setup before going in the field, and once in the field, to easily read real-time values

Setting the Network Address Switches

There are two rotary network address switches on a serial Power Patrol, labeled MSB (Most Significant Byte) and LSB (Least Significant Byte). These two switches are used to select the BACnet/Modbus address the client uses to communicate with the Power Patrol meter.

The rotary switches are 16-position, hexadecimal switches. The default factory setting is hex 01. The address is a hexadecimal (hex) value, represented by the digits 0 through 9 and letters A through F. For example, a network address of 100 in decimal is converted to 64 hexadecimal and set on the Power Patrol by:

- Upper switch—select 6
- Lower switch—select 4

In some cases the hex value may need to be converted to decimal when entered into the RTU or data logger. See the Appendix for a hexadecimal conversion table.

Note: BACnet MS/TP masters only support addresses 001–127.

Hexadecimal Address	BACnet Address Availability
00	Reserved for resetting the Power Patrol to Modbus mode with 9600 baud, 8 bit, 1 stop bit and no parity.
01-7F	Available (01 is the factory default setting).
80-FE	Reserved for BACnet slave devices.
FF	The rotary switches can be used to configure the communication protocol to BACnet or Modbus as well as changing the baud rate if unsure of the current settings.

Table III-1: BACnet Hexadecimal/Decimal Address Availability

Hexadecimal Address	Modbus Address Availability
00	Reserved for resetting the Power Patrol to Modbus mode with 9600 baud, 8 bit, 1 stop bit and no parity.
01-F7	Available for Modbus slave devices.
FF	Reserved for network wide broadcast. The rotary switches can be used to configure the communication protocol to BACnet or Modbus as well as changing the baud rate if unsure of the current settings.
N/A	Reserved for communication protocol settings. The rotary switches can be used to configure the communication protocol to BACnet or Modbus as well as changing the baud rate if unsure of the current settings.

Table III-2: Modbus Hexadecimal/Decimal Address Availability

Installing the HeadStart Software and Communicating with the Power Patrol Meter

The HeadStart software is designed to let you easily configure the Power Patrol for different current transformers, check readings, and verify correct setup. HeadStart is compatible with Windows® 7 (32 or 64 bit), Windows® 8 Pro, Vista (32 or 64 bit), or XP.

 Order flash drive with HeadStart software or download installer from www.setra.com/powerpatrol

Browse to the USB flash drive folder and locate the HeadStartInstaller.exe program. If installer was downloaded from website, unzip folder and executable program. Start the installer by double-clicking **HeadStartInstaller.exe**.

COMMUNICATION SETUP

HeadStart can read information through a RS-485 isolated COM port, an Ethernet connection, or through USB port. When the RS-485 connection is selected a base address is required (the base address is the rotary switch settings). When the Ethernet connection is selected an IP address is required. The screen display changes based on your connection selection. When USB connection is selected no other address is necessary.

USB Connection

- 1) Select USB/RS-485(MSTP) as your communication type.
- 2) Select the **PC COM Port** from the drop-down list.
- 3) Click Connect. Status box will show a connected status.

RS-485 Connection

- 1) Select **USB/RS-485(MSTP)** as your communication type.
- 2) Select **Modbus** or **BACnet** as your communication protocol.
- 3) Enter a base address that matches the switches on the Power Patrol meter.
- 4) Select the **PC COM Port** from the drop-down list.
- 5) Click Connect. Status box will show a connected status.

Default settings are used for the two remaining fields: **Data Bits** is 8N1 and the **Baud Rate** is 9600.

NOTE: If HeadStart was installed first, it needs to be restarted following a RS-485 driver installation. If a RS-485 port does not appear in the drop-down list, the RS-485 was not installed correctly.

Ethernet (TCP/IP) Connection

- 1) Select **Ethernet** (TCP/IP) to gather information via a network connection. When selected, the Communications Setup screen changes and an **IP Address** is required.
- 2) Select your mode of communication.
- 3) Enter the **IP Address** for the Ethernet connection of the meter or select one of the previously used addresses from the drop-down list. See *About IP Addresses*.

-or-

Use the Scan Network or Setup buttons to acquire a new IP Address. See About IP Addresses.

- 4) Enter the **Port** connected to the Power Patrol meter. A checkbox is available to make the port the default. Different networks may require different ports. *See your network administrator.*
- 5) Click Connect. Status box will show a connected status.

ABOUT IP ADDRESSES

The Ethernet connection must have an IP Address that is set manually in the *IP Address* field or obtained automatically from the router connected to the logger using the Use DHCP option (dynamic address) found in the Logger Network Setup dialog box accessed via the **Setup** button. Both options have advantages.

NOTE: A Static IP address of 10.75.75.63 is assigned in the factory to all Ethernet Power Patrol meters.

- Static Connection: If you know an IP address that is not being used by another device on the network, enter that address into the IP Address: field. This may require permission from a network administrator. With a static IP address it is easy to connect to meter as there is no doubt about what IP address to use.
- **Dynamic Connection**: If you want the router to assign an IP address to the meter automatically, select Use DHCP. This may avoid the need of a network administrator as the router will assign an IP address that does not conflict with any other devices on the network. A disadvantage of the DHCP option is that the "lease" of the IP address may expire after a period of time and the router could assign a different IP address. A new IP address means that HeadStart cannot connect to the meter until the new IP address has been entered. (See below.)

An additional option is to set the Power Patrol meter to DHCP and go to the router and assign a specific IP address to the MAC address that corresponds to the logger. In this way, if the lease does expire, the router will always assign the same IP number back to the logger. This option may also require a network administrator.

The **Scan Network** button scans the network for possible meters and displays them in the Logger Selection dialog box. Look for the serial number on the meter (found on the back of the meter) to determine which connection point is yours.

Select the correct device from the list of IP Addresses and click OK.

The **Setup** button displays the Logger Network Setup dialog box where network address information is entered. *See your network administrator before making changes.*

DID YOU KNOW? Setra Systems uses well-known and registered port numbers for BACnet (47808) and Modbus (502) assigned by the IANA (Internet Assigned Numbers Authority).

When you select the **Use DHCP** checkbox the Dynamic Host Configuration Protocol is used to populate the IP Address, Subnet Mask, and Gateway Address fields automatically.

NOTE: Each meter connected to the network requires its own unique network IP address. An address is provided automatically if the network allows DHCP (Dynamic Host Configuration Protocol) and the meter is configured to request an address.

Click Update Logger after making your selections.

HeadStart displays the following message when the connection is successful.

CONNECTING PORTS

Once your communication mode is selected, click **Connect** to establish a connection between the computer and the Power Patrol meter.

- When the Power Patrol meter is in the process of connecting to the computer, the Communication Status LED flashes briefly followed by a solid green.
- If the Power Patrol meter cannot connect to the computer, the Communication Status LED flashes red and returns to a solid green. Change the HeadStart hardware settings and click Connect again.

HeadStart fills the **Device Info** fields when the computer communicates with the Power Patrol.

Power Patrol meter installation can be verified using the HeadStart software. Refer to *Using HeadStart Software* further in this section for more information.

Establishing Communication Protocol

The Power Patrol meter communicates using the BACnet MS/TP or Modbus RTU protocols via the RS-485/Ethernet interfaces. To establish communication with a **RS-485**, the settings must meet the following requirements:

- The Modbus/BACnet address on the Power Patrol and in the HeadStart software must be set to the same value. Refer to *Using the HeadStart Software* to set the address on the Communications tab and establish a connection.
- The Power Patrol meter default serial parameters are:

Parameter Defaults	Modbus Settings	BACnet Settings
Baud	9600	76800
Data bits	8	8
Parity	None	None
Stop Bit	1	1

Table III-3: Serial Communication Settings

The supported baud rates include 9600, 19200, 38400, 57600 (Modbus only), 76800, and 115200 (Modbus only).

NOTE: The baud rate on the user interface (HeadStart) must match the Power Patrol setting. If these settings differ, the Power Patrol cannot communicate.

Using HeadStart Software

HeadStart software is used to monitor diagnostics and configure registers with Power Patrol meters. All Power Patrol meters use HeadStart software to communicate with the meter.

The screen displayed for each HeadStart tab can be somewhat different based on the selected meter and the communication protocol (BACnet/Modbus). HeadStart also displays language changes, i.e., registers/objects, in dialog boxes and text fields based on the selected protocol.

The Communications screen is displayed when HeadStart is first started. This is where the software networking parameters are entered to match the Power Patrol networking configuration (PC Interface, COM port, baud rate, base address, etc.). HeadStart remembers your last connection and displays those previous selections when opening the software once again.

HEADSTART SCREENS

HeadStart has six screens accessed by tabs. Click on any tab to display that screen.

- Communications provides the setup parameters that enable HeadStart to communicate with the Power Patrol.
- Meter Setup enables current transformer (CT) type and amperage rating changes.
- Comms Setup enables communications mode (BACnet/Modbus) changes.
- Real-Time Values displays the current readings for verifying the system is configured properly.
- Read/Write Registers provides diagnostic and special configuration options, allowing the changing or viewing of the value of Power Patrol Modbus registers or BACnet objects.
- Firmware verifies the current firmware version and updates the Power Patrol internal firmware when directed.

COMMUNICATION AND STATUS MESSAGES

Common to each screen is a **Status** field that displays information regarding the current process. Also, a **Help** button is available in the upper right-hand corner of each screen where you can access information about the different screens.

HEADSTART COMMAND BUTTONS

Each HeadStart screen includes a row of command buttons at the bottom of the screen. The buttons vary depending on the current screen.

Communications

The **Communications** screen is used to configure the networking options for HeadStart (PC Interface, COM port, Modbus address, etc.)

SETTING USB COMMUNICATION PARAMETERS

- 1) Select USB/RS-485(MSTP) to gather information via HeadStart software.
- 2) Enter the PC COM Port connected to the Power Patrol.

-or-

Select one of the previously used addresses from the drop-down list.

3) Click **Connect** to connect HeadStart with the Power Patrol. The *Status* field informs you of the connection process. When the connection is complete, the *Device Info* fields display Serial Number and Firmware Version of the Power Patrol meter.

SETTING SERIAL COMMUNICATION PARAMETERS

- 1) Select USB/RS-485(MSTP) to gather information via HeadStart software.
- 2) Enter the **PC COM Port** connected to the Power Patrol.

-or-

Select one of the previously used addresses from the drop-down list.

3) Select **Modbus** or **BACnet** as your communication protocol.

When Modbus is selected as the communication protocol the Communications screen displays a Modbus PC COM Port section for entering port information.

Enter a Base Address of the meter on the upper and lower address switches. Available Modbus addresses range from 01 (hex 01) to 247 (hex F7) max. The 00 setting is used to default the Power Patrol communications mode to Modbus, 9600 baud, 8 bits no parity, and 1 stop bit.

When BACnet is selected as the communication protocol the Communications screen displays a BACnet Device ID box to enter the device identification number.

- 4) Enter the **Data Bits**. Default setting is 8N1.
- 5) Enter the **Baud Rate**. Default setting is 9600 (Modbus) or 76,800 (BACnet).

6) Click **Connect** to connect HeadStart with the Power Patrol. The *Status* field informs you of the connection process. When the connection is complete, the *Device Info* fields display Serial Number and Firmware Version of the Power Patrol meter.

NOTE: If HeadStart was installed first, it needs to be restarted following a RS-485 driver installation. If a RS-485 port does not appear in the drop-down list, the RS-485 was not installed correctly.

SETTING ETHERNET COMMUNICATION PARAMETERS

- 1) Select Ethernet (TCP/IP) to gather information via a network connection. When selected, the Communications Setup screen changes and an IP Address is required.
- 2) Select Modbus or BACnet as your communication protocol.
- 3) Enter the IP Address for the Ethernet connection of the meter or select one of the previously used addresses from the drop-down list.
 - The Scan Network button scans the network for possible meters. The Logger Selection dialog box displays.

- 4) Select the correct device from the list of IP Addresses.
- 5) Click Setup. The Logger Network Setup dialog box displays, below.
 - The **Setup** button displays the Logger Network Setup dialog box where network address information is entered. *See your network administrator before making changes*.

DID YOU KNOW? Setra Systems uses well-known and registered port numbers for BACnet (47808) and Modbus (502) assigned by the IANA (Internet Assigned Numbers Authority).

- 6) Select the **Use DHCP** checkbox. The Dynamic Host Configuration Protocol is then used to populate the IP Address, Subnet Mask, and Gateway Address fields.
- 7) Select Modbus from the *Mode* drop-down list.
- 8) Click **Update Logger**.

HeadStart displays the following message when the connection is successful.

- 9) Enter the **Port** connected to the Power Patrol. A checkbox is available to make the port the default. Different networks may require different ports. *See your network administrator.*
- 10) Click **Connect** to connect HeadStart with the Power Patrol. The *Status* field informs you of the connection process. When the connection is complete, the *Device Info* fields display Serial Number and Firmware Version of the Power Patrol meter.

COMMUNICATION ERROR

If HeadStart is unable to communicate with the Power Patrol meter, the **Status** box displays the following message: "Unable to establish connection with meter, please check settings and try again"

Try the following to resolve the communication error on a serial Power Patrol:

- No RS-485 option available in the PC COM Port drop-down list—indicates the Power Patrol is not properly connected or the required software driver is not installed.
- Modbus Base Address Switch does not match the selected hex switch settings on the Power Patrol—change the switch settings.
- The selected Baud Rate does not match the Power Patrol baud rate—change the baud rate.

For more information, refer to the Appendix, *Troubleshooting Communication Issues*.

Meter Setup

The **Meter Setup** screen allows unique changes to an element on the Power Patrol. Within the element, *CT Phase, Type, Amps,* and *Phase Shift* are entered, based on wiring connection, for CT1, CT2, and CT3. The type of wiring connection and the *Digital Output* are also entered for the element. Overall, a *Demand Window* of 1–60 minutes is available for the recording of values and a *Line Frequency* of 50-, 60- is selectable.

NOTE: In Power Patrol meters, Peak Demand is calculated using a moving window and is averaged across the selected demand window size. Each minute the total consumption is recalculated and compared to the last demand window. If the new window is larger than the last recorded value it is recorded. This value is calculated during the sampling of the waveform.

The Meter Setup screen is blank when first accessed. Click **Retrieve Meter Setup** to view the current status of the element(s).

ENTERING WIRING INFORMATION FOR AN ELEMENT

Begin setup by entering an amount of time (1-60 minutes) into the **Demand Window** and selecting a **Line Frequency** from the drop-down list.

Use the following steps:

- 1) Select **WYE** or **DELTA** as the wiring connection.
 - A WYE connection automatically displays all three CTs. Any changes made to CT1 also apply to CT2 and CT3.

Wye Wiring Connection

 A DELTA connection displays only the two available CTs. Any changes made to CT1 also apply to CT3.

Delta Wiring Connection

- 2) Depending on the wiring connection, make changes to CT1, CT2, and/or CT3.
 - *CT Phase—Select which phase to monitor
 - CT Type—Use the drop-down list to select the type of CT attached to the Power Patrol.
 - *CT Amps—Enter the amperage rating.
 - *CT Phase Shift—Enter in degrees the phase shift of the CT. The default is 1.1.
 - *Apply to MilliVolt CT not Rogowski Coils

3) Select a **Digital Output** from the drop-down list. See *Pulse Output Port Function in the Appendix: Other Functions* for more information.

Comms. Setup

The **Comms. Setup** screen shows current communication protocol, BACnet or Modbus, as well as RS-485 settings (Data bits, Baud Rate), BACnet Device Settings (DeviceID, Max. Master, Max. Info Frames) and Ethernet settings (IP Address, Subnet Mask, Gateway Address, Modbus Port, BACnet Port)

Real-Time Values

The **Real-Time Values** screen shows current readings to verify the system is configured properly. The tables display the real-time values of Volts, Amps, KW, KVA, KVAR, apparent power factor (aPF), and displacement power factor (dPF) for Phase L1, Phase L2 and Phase L3. This screen also displays the current Data/Digital Scalar value used for each element, the CT Type connected to the Power Patrol, and the CT Value.

Click **Update** to retrieve the values from the Power Patrol.

-or-

Select the Auto-Update checkbox to automatically update approximately every 20 seconds.

USING REAL-TIME VALUES TO VERIFY SETUP

Values displayed for Volts, Amps, KW, etc., should make sense, meaning the values in the table are relevant for the service being measured. This indicates the Power Patrol setup is correct.

It may also be useful to use a handheld amp meter to test the current and compare its readings to the values provided on the **Real-Time Values** screen.

Read/Write Registers—Read/Set Objects

The **Read/Write Registers** screen provides diagnostic and special configuration options, allowing the changing or viewing of the value of any Power Patrol register. Its use is not required for a basic setup.

1) Enter a register address. Refer to the Appendices, *All Things Modbus* or *BACnet Objects* for a list of registers and their descriptions.

-or-

Click List to select a register from the Register Picker dialog box.

Use the Register Picker dialog box to search for registers/objects by name. The selected value is entered on the Read/Write Registers—Read/Set Objects screen.

- 2) Click **Read** to see the current value.
- 3) Enter a new value in the New Value field.
- 4) Click Write to change to the new value.
- 5) Click Clear Totals to clear accumulated data.

RESETTING BACNET OBJECTS/MODBUS REGISTERS

Many of the Power Patrol registers are real-time values such as instantaneous watts or power factor. However, some objects are accumulated values such as kWh, kVARh, kVAh and various Peak Demand (kW) values.

To reset all BACnet accumulated objects at once:

Write to object identifier 10140 "Clear Accumulated Values" current value 1234.0.

To reset all Modbus accumulated registers at once:

Write to register 44066 "Clear Accumulated Measurements" current value 1234.

In HeadStart, accumulating registers can be reset using the **Read/Write** tab.

Click Clear Totals at the bottom of the screen.

See the tables in the Appendices for a list all of the objects/registers available on the Power Patrol meters.

SYNC REGISTERS

To freeze register readings, press Sync Registers. This will prevent any register from being update in HeadStart until the Sync Registers button is pushed again.

Firmware

The **Firmware** screen verifies the current firmware version and updates the Power Patrol internal firmware. Updating firmware is only supported in Modbus mode and via USB connection. See the appendix *Firmware*.

- 2) Click **Show Version** to see which version of firmware is currently loaded in meter. If a later version of firmware is available, download it from the www.setra.com/powerpatrol
- 3) Click **Browse** to access the *Select a Firmware Update File* dialog box and select the .hex file downloaded from the website.
- 4) Click **Update** to download the latest version.

-or-

Click **Cancel Update** to stop the download.

ALL THINGS MODBUS

Modbus Data Scaling—Interpreting the Power Patrol Registers

The use of Modbus protocols limits the data registers to a maximum of two bytes (16 bits) or a maximum decimal value of 65535. Modbus requires that the data be unsigned (positive) integer values. To overcome these limitations some measured (and stored) values must be *scaled* to fit into the Modbus registers. The raw value read from the Modbus registers is multiplied by a scalar to convert the raw data. The following table lists the data scalars and the respective values for the Power Patrol.

	Scalar Value					
Data Scalar	kW/kWh Demand	kVAR/kVARh	kVA/kVAh	Power Factor	Amps	Volts
0	.00001	.00001	.00001	.01	.01	.1
1	.001	.001	.001	.01	.1	.1
2	.01	.01	.01	.01	.1	.1
3	.1	.1	.1	.01	.1	.1
4	1	1	1	.01	1	1
5	10	10	10	.01	1	1
≥6	100	100	100	.01	1	1

Table D-1: Data Scalars and Values for Registers 44001 thru 44061

The data scalar is stored in register 44602.

When selecting a data scalar, the following guidelines need to be considered:

- If the data scalar selected is too low, an incorrect data result is returned from the register.
- If the data scalar selected is too high, the significant digits following the decimal point are removed.

After selecting a data scalar, the formula for calculating the actual value is:

register value X scalar value = actual value

Or, another way to state this formula is:

actual value/scalar value = register value

DID YOU KNOW: The register value must be less than 65,535.

SELECTING A SCALAR

The following table is an example when selecting a data scalar for 3-phase loads based on the CT size or maximum current. These are the minimum recommended scalar settings.

CT Size or	3-phase Loads		
Max. Current	230 volts	460 volts	
50	Scalar 1	Scalar 2	
100	Scalar 2	Scalar 2	
200	Scalar 2	Scalar 2	
400	Scalar 2	Scalar 2	
600	Scalar 2	Scalar 3	
1000	Scalar 3	Scalar 3	
3000	Scalar 3	Scalar 3	

Table D-2: Data Scalar Selection

EXAMPLES USING A DATA SCALAR

The following examples use kW throughout.

For example 1, the following data is used:

Volts x amps = watts 480 volts x 100 amps = 48,000 watts

Watts x 3 = system watts 48,000 watts x 3 = 144,000 watts (144kW)

Check the register's value using the data scalar 2 value of .01:

System kW / scalar value = register value 144kW/.01 = 14,400

Since 14,400 is less than 65,535, using data scalar 2 is a good choice for this example.

For example 2, the following data is used:

480 volts x 1000 amps = 480,000 watts

480,000 watts x 3 = 1,440,000 watts (1,440kW)

Check the register's value using the data scalar 1 value of .001:

1,440kW/.001 = 1,440,000

Since 1,440,000 is greater than 65,535, using data scalar 1 returns an incorrect result. Data scalar 1 is not an appropriate choice.

Reviewing this example using the data scalar 3 value of .1 provides the following result:

1,440kW/.1 = 14,400

Since 14,400 is less than 65,535, using data scalar 3 is a good choice for this example.

VALUES REQUIRING TWO REGISTERS

Additionally, some values (e.g., kilowatt hours) may cover a dynamic range that is larger than 65535 and require two Modbus registers. Any parameter in the *Modbus Register Assignment* tables that shows two registers (identified by the terms MSW (Most Significant Word) and LSW (Least Significant Word)) are examples of this wide-ranging parameter.

To interpret the values contained in these registers, the steps are:

- 1) Multiply the MSW register by 65536.
- 2) Add the result to the value found in the corresponding LSW register.
- 3) Multiply the result by the appropriate scalar value from Table I-2.

For example, assume that System Total True Energy (kWh) is desired and the value of 5013 is read from register 44001 (LSW) and 13 is read from register 44002 (MSW) and that the register 44602 data scalar is set to 3.

To calculate the total kWh recorded:

Multiply the MSW by 65536: 13 X 65536 = 851968

Add the LSW: 851968 + 5013 = 856981

Multiply by the scalar 3 value of 0.1: 856981 X 0.1 = 85698.1 kWh

DID YOU KNOW?
When reading two
register values,
HeadStart
automatically
calculates the total
value.

CONFIGURATION REGISTERS

Modbus	Offset	Register	Description
40129	0128	Synchronize Register	Multiple Power Patrol's synchronization register
44066	4065	Clear Accumulated Measurements	Writing 1234 resets all 'H' registers, accumulated Power Patrol data (kWh, kWh, etc) stored in flash to CAM Default value
44525	4524	CT Type All	Writes same type for all CTs: 1=MilliVolt, 2=Rogowski
44526	4525	Slave ID	!1=SETRA, 1=Veris; Sets SLAVE_ID to Veris or SETRA
44599	4598	CT Phase Shift All	CT Phase Shift X 100 +/- Writes same value to Registers 50199, 50299, & 50399
44600	4599	CT Integer All	Integer value of all CTs, Writes same value to Registers 50100, 50200, & 50300
44601	4600	CT Decimal All	Decimal value of all CTs, Writes same value to Registers 50100, 50200, & 50300
44602	4601	Data Scalar	A Value of 0-6 that changes the scaling of certain registers
44603	4602	Demand Window Size	Demand window size in minutes; default is 15 min

Modbus	Offset	Register	Description
44604	4603	Volts Multiplier	Multiply volts values by this scalar. Use with Stepdown Transformer. Affects all parameters that use volts (i.e., kW)
44605	4604	Amps Multiplier	Multiply amps value by this scalar. For use with x:5A CTs and single let monitoring of a three phase load. Affects all parameters that use amps (i.e, kW)
44607	4606	Service Type	A value of 0x0001 configures the meter for DELTA A value of 0x0000 configures the meter for WYE
44609	4608	Set Line Frequency	Line frequency setting for metering: 50=50 Hz, 60=60Hz
44612	4611	Communications Settings	Write 1833 to change to BACnet mode
50100	10099	CT1 Integer	Integer part of CT1
50101	10100	CT1 Decimal	Fractional part of NV_CT1
50125	10124	CT1 Type	Select 1=mV or 2=Rogowski CT1s
50199	10198	CT1 Phase Shift	Phase Shift X 100 +/-
50200	10199	CT2 Integer	Integer part of CT2
50201	10200	CT2 Decimal	Fractional part of NV_CT2
50225	10224	СТ2 Туре	Select 1=mV or 2=Rogowski CT2s
50299	10298	CT2 Phase Shift	Phase Shift X 100 +/-
50300	10299	CT3 Integer	Integer part of CT3
50301	10300	CT3 Decimal	Fractional part of NV_CT3
50325	10324	СТЗ Туре	Select 1=mV or 2=Rogowski CT3s
50399	10398	CT3 Phase Shift	Phase Shift X 100 +/-

PULSE OUTPUT/INPUT REGISTERS

Modbus	Offset	Register	Description
44402	4401	Port 1 output control when used as an on/off—open/closed switch	0 = output LOW (closed) 1 = output HIGH (open) [default] Register 45110 must = 0 to use
45110	5109	Digital Port 1 Configuration Turns pulses on/off	0 = No pulses, Port may be used as an on/off— open/closed switch 44001 = System kWh pulses 44008 = System kVARh pulses

Modbus	Offset	Register	Description
			44011 = System kVAh pulses
45111	5110	Port 1 pulse output relay type	0 = normally open (HIGH) 1 = normally closed (LOW)

ABSOLUTE/NET VALUE MEASUREMENT REGISTERS

Offset refers to a base of 40001.

Modbus	Offset	Register	Description * System=sum of three phases
44001	4000	kWh System LSW	System Total True Energy LSW (kWh)
44002	4001	kWh System MSW	System Total True Energy MSW (kWh)
44003	4002	kW System	System Total True Power (kW). Unsigned absolute (ABS) value of ABS (kW L1) + ABS (kW L2) + ABS (kW L3)
44004	4003	kW Demand System Max	System Maximum Demand (peak demand).
44005	4004	kW Demand System Now	Average Power (kW) for most recent demand window
44006	4005	kW System Max	System Maximum Instantaneous kW (Highest kW sample measured)
44007	4006	kW System Min	System Minimum Instantaneous kW (Lowest kW sample measured)
44008	4007	kVARh System LSW	System Total Reactive Energy LSW (kVARh)
44009	4008	kVARh System MSW	System Total Reactive Energy MSW (kVARh)
44010	4009	kVAR System	System Total Reactive Power (kVAR). Unsigned absolute (ABS) value of ABS (kVAR L1) + ABS (kVAR L2) + ABS (kVAR L3)
44011	4010	kVAh System LSW	System Total Apparent Energy LSW (kVAh)
44012	4011	kVAh System MSW	System Total Apparent Energy MSW (kVAh)
44013	4012	kVA System	System Total Apparent Power (kVA). Unsigned WYE = (kVA L1) + (kVA L2) + (kVA L3) Delta = SQRT (kW system ^2 + kVAR system ^2)
44014	4013	Displacement PF System	System Displacement Power Factor (PF). Register is

Modbus	Offset	Register	Description * System=sum of three phases
			100x actual value.
44015	4014	Apparent PF System	System Apparent Power Factor (PF). Register is 100x actual value.
44016	4015	Amps System Avg	Average of all phases.
44017	4016	Volts Line to Line Avg	Voltage Line to line (Volts) Average.
44018	4017	Volts Line to Neutral Avg	Voltage Line to neutral (volts) Average.
44019	4018	Volts L1 to L2	Individual Phase to Phase Voltages
44020	4019	Volts L2 to L3	и
44021	4020	Volts L1 to L3	"
44022	4021	Line Frequency	Line Frequency (Hz)
44023	4022	kWh L1 LSW	Individual Phase True Energy LSW (kWh)
44024	4023	kWh L1 MSW	Individual Phase True Energy MSW (kWh)
44025	4024	kWh L2 LSW	и
44026	4025	kWh L2 MSW	"
44027	4026	kWh L3 LSW	и
44028	4027	kWh L3 MSW	u
44029	4028	kW L1	Individual Phase True Powers (kW)
44030	4029	kW L2	и
44031	4030	kW L3	и
44032	4031	kVARh L1 LSW	Individual Phase Reactive Energy LSW (kVARh)
44033	4032	kVARh L1 MSW	Individual Phase Reactive Energy MSW (kVARh)
44034	4033	kVARh L2 LSW	u
44035	4034	kVARh L2 MSW	"

Modbus	Offset	Register	Description * System=sum of three phases
		-	"
44036	4035	kVARh L3 LSW	
44037	4036	kVARh L3 MSW	u u
44038	4037	kVAR L1	Individual Phase Reactive Powers (kVAR)
44039	4038	kVAR L2	и
44040	4039	kVAR L3	u
44041	4040	kVAh L1 LSW	Individual Phase Apparent Energy LSW (kVAh)
44042	4041	kVAh L1 MSW	Individual Phase Apparent Energy MSW (kVAh)
44043	4042	kVAh L2 LSW	и
44044	4043	kVAh L2 MSW	u u
44045	4044	kVAh L3 LSW	"
44046	4045	kVAh L3 MSW	u u
44047	4046	kVA L1	Individual Phase Apparent Powers (kVA)
44048	4047	kVA L2	u u
44049	4048	kVA L3	u
44050	4049	Displacement PF L1	Individual Phase displacement Power Factor (PF)
44051	4050	Displacement PF L2	u
44052	4051	Displacement PF L3	u
44053	4052	Apparent PF L1	Individual Phase apparent Power Factors (PF)
44054	4053	Apparent PF L2	"
44055	4054	Apparent PF L3	"
44056	4055	Amps L1	Individual Phase Currents (A)
44057	4056	Amps L2	"
44058	4057	Amps L3	u

Modbus	Offset	Register	Description * System=sum of three phases
44059	4058	Volts L1 to Neutral	Individual Phase to Neutral Voltages (V)
44060	4059	Volts L2 to Neutral	u
44061	4060	Volts L3 to Neutral	u
44062	4061	Time Since Reset LSW	Seconds since KWH register was reset. LSW
44063	4062	Time Since Reset MSW	Seconds since KWH register was reset. MSW
44064	4063	Data Tick Counter	Internal sample count (gets cleared every minute): may be used to determine if sample read is a newer sample than last read.
44080	4079	kW System Average	Equals KWH_SYSTEM_L&M ÷ (TimeSinceReset_L&M seconds /3600 seconds/Hr) (resettable)
44081	4080	kW Demand System Min	System Minimum Demand (kW)
44082	4081	kVA Demand System Max	System Maximum Instantaneous kVA Demand (kVA, resettable). It displays the default value after a CAM until 1 demand window elapses. After a power cycle or CPU reset the value is not reset but it does not update again until 1 demand window elapses.
44083	4082	kVA Demand System Now	System Average kVA Demand For the most recent (current) Demand Window.(resettable) Displays the default value after a CAM or reset, or power cycle. Updates every min thereafter. True demand value takes a demand period to get to actual value. Similar to 44005
44084	4083	kVAR Demand System Max	System Maximum kVAR Demand (kVAR, resettable). It displays the default value after a CAM until 1 demand window elapses. After a power cycle or CPU reset the value is not reset but it does not update again until 1 demand window elapses.

POSITIVE POWER/ENERGY MEASUREMENT REGISTERS

Modbus	Offset	Register	Description * System=sum of three phases
46001	6000	Positive kWh System LSW	System Positive True Energy LSW (kWh, resettable)
46002	6001	Positive kWh System MSW	System Positive True Energy MSW (kWh, resettable)
46003	6002	Positive kW System	System Positive Instantaneous Positive True Power (kW) (net sum of all individual kWs, if sum is negative value=0)
46004	6003	kW Demand System Max	System Maximum Demand (peak demand).
46005	6004	kW Demand System Now	Average Power (kW) for most recent demand window
46006	6005	Positive kW System Max	System Net Highest Instantaneous Positive Draw Since Reset (kW, resettable)
46007	6006	Positive kW System Min	System Net Lowest Instantaneous Positive Draw Since Reset (kW, resettable)
46008	6007	Positive kVARh System LSW	System Net Positive Reactive Energy LSW (kVARh, resettable)
46009	6008	Positive kVARh System MSW	System Net Positive Reactive Energy MSW (kVARh, resettable)
46010	6009	Positive kVAR System	System Net Instantaneous Positive Reactive Power (kVAR) (net sum of all individual kVARs, if sum is negative value=0)
46011	6010	kVAh System LSW	System Apparent Energy, LSW (resettable)
46012	6011	kVAh System MSW	System Apparent Energy, MSW (resettable)
46013	6012	kVA System	System Instantaneous Apparent Power
46014	6013	Positive Displacement PF System	System Positive Displacement Power Factor (dPF); Register is 100x actual value (If the System dPF (44014) is positive, this register will contain that value else it will be zero)

Modbus	Offset	Register	Description * System=sum of three phases
46015	6014	Positive Apparent PF System	System Positive Apparent Power Factor (aPF); Register is 100x actual value (If the System aPF (44015) is positive, this register will contain that value else it will be zero)
46016	6015	Amps System Avg	Average of the current in all phases.
46017	6016	Volts Line to Line Avg	Average of the system line to line voltages.
46018	6017	Volts Line to Neutral Avg	Average of the system line to neutral voltages.
46019	6018	Volts L1 to L2	Individual phase to phase voltages.
46020	6019	Volts L2 to L3	"
46021	6020	Volts L3 to L1	и
46022	6021	Measured Line Frequency	Line frequency x 10 (e.g., 602 = 60.2 Hz). On startup, 20 point averaging array is filled with first frequency read.
46023	6022	Positive kWh L1 LSW	Individual Phase Positive True Energy LSW (kWh, resettable)
46024	6023	Positive kWh L1 MSW	Individual Phase Positive True Energy MSW (kWh, resettable)
46025	6024	Positive kWh L2 LSW	u
46026	6025	Positive kWh L2 MSW	и
46027	6026	Positive kWh L3 LSW	и
46028	6027	Positive kWh L3 MSW	u

Modbus	Offset	Register	Description * System=sum of three phases
46029	6028	Positive kW L1	Individual Phase Instantaneous Positive True Powers (kW)
46030	6029	Positive kW L2	a a
46031	6030	Positive kW L3	и
46032	6031	Positive kVARh L1 LSW	Individual Phase Positive Reactive Energy LSW (kVARh, resettable)
46033	6032	Positive kVARh L1 MSW	Individual Phase Positive Reactive Energy MSW (kVARh, resettable)
46034	6033	Positive kVARh L2 LSW	u
46035	6034	Positive kVARh L2 MSW	u
46036	6035	Positive kVARh L3 LSW	и
46037	6036	Positive kVARh L3 MSW	и
46038	6037	Positive kVAR L1	Individual Phase Positive Instantaneous Reactive Powers (kVAR)
46039	6038	Positive kVAR L2	и
46040	6039	Positive kVAR L3	и
46041	6040	kVAh L1 LSW	Individual Phase Apparent Energy LSW (kVAh, resettable)
46042	6041	kVAh L1 MSW	Individual Phase Apparent Energy MSW (kVAh, resettable)
46043	6042	kVAh L2 LSW	и
46044	6043	kVAh L2 MSW	u
46045	6044	kVAh L3 LSW	u
46046	6045	kVAh L3 MSW	u
46047	6046	kVA L1	Individual Phase Instantaneous Apparent Powers (kVA)
46048	6047	kVA L2	u u

Modbus	Offset	Register	Description * System=sum of three phases
46049	6048	kVA L3	u
46050	6049	Positive Displacement PF L1	Individual Phase Positive Displacement Power Factors (dPF); Register is 100x actual value (If the Individual dPF (44050) is positive, this register will contain that value else it will be zero)
46051	6050	Positive Displacement PF L2	u
46052	6051	Positive Displacement PF L3	"
46053	6052	Positive Apparent PF L1	Individual Phase Positive Apparent Power Factors (aPF); Register is 100x actual value (If the Individual aPF(44053) is positive, this register will contain that value else it will be zero)
46054	6053	Positive Apparent PF L2	"
46055	6054	Positive Apparent PF L3	"
46056	6055	Amps L1 Individual Phase Instantaneous Currents (A	
46057	6056	Amps L2	"
46058	6057	Amps L3	
46059	6058	Volts L1 to Neutral Individual Instantaneous Phase to Neutral Volta (V)	
46060	6059	Volts L2 to Neutral	"
46061	6060	Volts L3 to Neutral	и
46062	6061	Time Since Reset LSW (Seconds)	Seconds since kWh, kVAh, kVARh and associated Demand registers were reset. LSW (resettable)
46063	6062	Time Since Reset MSW (Seconds)	Seconds since CAM. MSW
46080	6079	Positive kW System Average Equals Positive KWH_SYSTEM_L&M ÷ (TimeSinceReset_L&M seconds /3600 seconds/Hr (resettable)	
46081	6080	kW Demand System Minimum	Min Average power window (kW)

Modbus	Offset	Register	Description * System=sum of three phases	
46082	6081	kVA Demand System Maximum	Maximum Instantaneous kVA Demand (kW, resettable).	
46083	6082	kVA Demand System Now	System Average kVA Demand for the most recent (current) Demand Window (resettable).	
46084	6083	kVAR Demand System Max	System Maximum kVAR Demand (kVAR, resettable). displays the default value after a CAM until 1 demand window elapses. After a power cycle or CPU reset the value is not reset but it does not update again until 1 demand window elapses.	

NEGATIVE POWER/ENERGY MEASUREMENT REGISTERS

Modbus	Offset	Register	Detailed Description * System=sum of three phases
47001	7000	Negative kWh System LSW	System Negative True Energy LSW (kWh, resettable)
47002	7001	Negative kWh System MSW	System Negative True Energy MSW (kWh, resettable)
47003	7002	Negative kW System	System Negative Instantaneous Negative True Power (kW) (net sum of all individual kWs, if sum is positive value=0)
47004	7003	kW Demand System Max	System Maximum Demand (peak demand).
47005	7004	kW Demand System Now Average Power (kW) for most recent demand	
47006	7005	Negative kW System Max	System Net Highest Instantaneous Negative Draw Since Reset (kW, resettable)
47007	7006	Negative kW System Min	System Net Lowest Instantaneous Negative Draw Since Reset (kW, resettable)
47008	7007	Negative kVARh System LSW System Net Negative Reactive Energy LSW (kresettable)	
47009	7008	Negative kVARh System MSW	System Net Negative Reactive Energy MSW (kVARh, resettable)
47010	7009	Negative kVAR System System Net Instantaneous Negative Reactive Power (kVAR) (net sum of all individual kVARs, if sum is positive value=0)	

Modbus	Offset	Register	Detailed Description * System=sum of three phases	
47011	7010	kVAh System LSW	System Apparent Energy LSW (kVAh, resettable)	
47012	7011	kVAh System MSW	System Apparent Energy MSW (kVAh, resettable)	
47013	7012	kVA System	System Instantaneous Apparent Power (kVA)	
47014	7013	Negative Displacement PF System	System Negative Displacement Power Factor (dPF); Register is 100x actual value (If the System dPF (44014) is Negative, this register will contain that value else it will be zero)	
47015	7014	Negative Apparent PF System	System Negative Apparent Power Factor (aPF); Register is 100x actual value (If the System aPF (44015) is Negative, this register will contain that value else it will be zero)	
47016	7015	Amps System Avg	Average of the current in all phases.	
47017	7016	Volts Line to Line Avg Average of the system line to line voltages.		
47018	7017	Volts Line to Neutral Avg	Average of the system line to neutral voltages.	
47019	7018	Volts L1 to L2	Individual phase to phase voltages.	
47020	7019	Volts L2 to L3	и	
47021	7020	Volts L3 to L1	u	
47022	7021	Measured Line Frequency	Line frequency x 10 (e.g., 602 = 60.2 Hz). On startup, 20 point averaging array is filled with first frequency read.	

Modbus	Offset	Register	Detailed Description * System=sum of three phases	
47023	7022	Negative kWh L1 LSW	Individual Phase Negative True Energy LSW (kWh, resettable)	
47024	7023	Negative kWh L1 MSW	Individual Phase Negative True Energy MSW (kWh, resettable)	
47025	7024	Negative kWh L2 LSW "		
47026	7025	Negative kWh L2 MSW	u	
47027	7026	Negative kWh L3 LSW	"	
47028	7027	Negative kWh L3 MSW	u	
47029	7028	Negative kW L1	Individual Phase Instantaneous Negative True Powers (kW)	
47030	7029	Negative kW L2	и	
47031	7030	Negative kW L3	"	
47032	7031	Negative kVARh L1 LSW	Individual Phase Negative Reactive Energy LSW (kVARh, resettable)	
47033	7032	Negative kVARh L1 MSW	Individual Phase Negative Reactive Energy MSW (kVARh, resettable)	
47034	7033	Negative kVARh L2 LSW	и	
47035	7034	Negative kVARh L2 MSW	"	
47036	7035	Negative kVARh L3 LSW	и	
47037	7036	Negative kVARh L3 MSW	u u	
47038	7037	Negative kVAR L1	Individual Phase Negative Instantaneous Reactive Powers (kVAR)	
47039	7038	Negative kVAR L2	u u	
47040	7039	Negative kVAR L3	u	
47041	7040	kVAh L1 LSW	Individual Phase Apparent Energy LSW (kVAh, resettable)	

Modbus	Offset	Register	Detailed Description * System=sum of three phases	
47042	7041	kVAh L1 MSW	Individual Phase Apparent Energy MSW (kVAh, resettable)	
47043	7042	kVAh L2 LSW	"	
47044	7043	kVAh L2 MSW	и	
47045	7044	kVAh L3 LSW	и	
47046	7045	kVAh L3 MSW	и	
47047	7046	kVA L1	Individual Phase Instantaneous Apparent Powers (kVA)	
47048	7047	kVA L2	и	
47049	7048	kVA L3	u	
47050	7049	Negative Displacement PF L1	Individual Phase Negative Displacement Power Factors (dPF); Register is 100x actual value (If the Individual dPF(44050) is Negative, this register will contain that value else it will be zero)	
47051	7050	Negative Displacement PF L2	u	
47052	7051	Negative Displacement PF L3	и	
47053	7052	Negative Apparent PF L1	Individual Phase Negative Apparent Power Factors (aPF); Register is 100x actual value (If the Individual aPF (44053) is Negative, this register will contain that value else it will be zero)	
47054	7053	Negative Apparent PF L2	u u	
47055	7054	Negative Apparent PF L3	"	
47056	7055	Amps L1	Individual Phase Instantaneous Currents (A)	
47057	7056	Amps L2	"	
47058	7057	Amps L3	"	
47059	7058	Volts L1 to Neutral	Individual Instantaneous Phase to Neutral Voltages (V)	
47060	7059	Volts L2 to Neutral	u	

Modbus	Offset	Register	Detailed Description * System=sum of three phases
47061	7060	Volts L3 to Neutral	u
47062	7061	Time Since Reset LSW (Seconds)	Seconds since kWh, kVAh, kVARh and associated Demand registers were reset. LSW (resettable)
47063	7062	Time Since Reset MSW (Seconds)	Seconds since CAM. MSW
47080	7079	Negative kW System Average	Equals Negative KWH_SYSTEM_L&M ÷ (TimeSinceReset_L&M seconds /3600 seconds/Hr) (resettable)
47081	7080	kW Demand System Minimum Min Average power window (kW)	
47082	7081	kVA Demand System Maximum Maximum Instantaneous kVA Demand (kW, resettable).	
47083	7082	kVA Demand System Now	System Average kVA Demand for the most recent (current) Demand Window (resettable).
47084	7083	kVAR Demand System Max	System Maximum kVAR Demand (kVAR, resettable). It displays the default value after a CAM until 1 demand window elapses. After a power cycle or CPU reset the value is not reset but it does not update again until 1 demand window elapses.

PROTOCOL COMMANDS

The Modbus messaging protocol used for communication follows the Modbus RTU protocol described in this section. Each register read from or written to the Power Patrol is a 16-bit unsigned, positive integer value. The Power Patrol supports the following commands.

Command Name	Command Number (Hex)	Description	
Read Holding Registers	03	Used to read the data values from the Power Patrol.	
Write Single Register	06	Used to write a single holding register to a Power Patrol.	
Report Slave ID	11	Used to read information from the Power Patrol.	

Table D-3: Supported Modbus Commands

The following guidelines are used for these Modbus commands:

- All values are hexadecimal/decimal, depending on your meter, spaces are not included.
- The address is the value of the address switch on the Power Patrol. This must be different for each Power Patrol on a single Modbus network.
- The register's high-order and low-order bits are the 16-bit value of a single, or first, register to be accessed for a read or write.
- The CRC is the 16-bit CRC value. Note that the CRC's LSB and MSB are reversed in comparison to those for the registers and data.

Read Holding Registers

This command reads the contents of a contiguous block of holding registers containing data values from the Power Patrol. When a read command is received, the Power Patrol sends a response that includes the values of the requested registers.

Command Information	Command Layout	Example Command
Power Patrol address	nn	37
Command number	03	03
First register to read – high order bits	XX	00
First register to read – low order bits	XX	0C
Number of registers to read – high order bits	XX	00
Number of registers to read – low order bits	xx	01
CRC low order bits	XX	41
CRC high order bits	xx	9F

Table D-4: Format for Modbus Command 03

Example Command

This command reads from a Power Patrol with an address switch setting of 37 hex (55 in decimal), reading one byte starting at register offset 0C hex (12 in decimal). Note that offset 12 corresponds to Modbus register 40013. All values are hexadecimal.

Example Request Field Name	Command (Hex)	Response Field Name	Response (Hex)
Power Patrol address	37	Power Patrol address	37
Command	03	Command	03
Starting register address to read– high order bits	00	Byte count	02
Starting register address to read–low order bits	0C	Register value –high order bits	00
Number of registers to read – high order bits	00	Register value – low order bits	00
Number of registers to read – low order bits	01	CRC low order bits	70
CRC low order bits	41	CRC high order bits	40
CRC high order bits	9F		

Table D-5: Format for Modbus Command 03

Command: 3703000C0001419F

Response: 37030200007040

The response is from the Power Patrol at address 37. Two bytes were read from the requested register, 000C. The value of the registers read was 0000. The CRC value was 4070. The number of registers read must be between 1 and 125 inclusive.

register address in the read and write Modbus commands is not the register listed in the table, instead an abbreviated version is sent. The actual register address sent is the Modbus register value minus 40001. For example, the address sent in the command message for register 40025 is actually 0024 (0018 hexadecimal), and the address sent for register 44062 is actually 4061 (0FDD hexadecimal).

DID YOU KNOW? The value sent as the

Write Single Register

This command writes to a single holding register of the Power Patrol. The normal response is an echo of the request, returned after the register contents are written.

Command Information	Command Layout	Example Command
Power Patrol address	nn	37
Command number	06	06
Register to write – high order bits	XX	00
Register to write – low order bits	XX	00
Register value to write – high order bits	xx	00
Register value to write – low order bits	XX	00
CRC low order bits	XX	8C
CRC high order bits	XX	5C

Table D-6: Format for Modbus Command 06

Example Command

This command writes to a Power Patrol with an address switch setting of 37 hex (55 in decimal), writing one byte at register 000C, and writing a value of 00 to clear the KWH registers. The data value of 0 is sent to register 0. Note that offset 0 corresponds to Modbus register 40001. The CRC is 5C8C. All values are hexadecimal.

Example Request Field Name	Command (Hex)	Response Field Name	Response (Hex)
Power Patrol address	37	Power Patrol address	37
Command number	06	Command number	06
Register to write – high order bits	00	Register written to – high order bits	00
Register to write – low order bits	00	Register written to – low order bits	00
Register value to write – high order bits	00	Register value written – high order bits	00
Register value to write – low order bits	00	Register value written – low order bits	00
CRC low order bits	8C	CRC low order bits	8C
CRC high order bits	5C	CRC high order bits	5C

Table D-7: Format for Modbus Command 03

Command: 370600000018C5C Response: 370600000018C5C

The response is from the Power Patrol at address 37. One byte was written to at the requested register, 0000. The value written was 0000. The CRC value was 5C8C. An echo of the original command after the contents are written is a valid response.

Error Response

If the first register in this write command is not in the valid range of registers, the Power Patrol returns an error message.

Report Slave ID

This command is used to read the description, the current status and other information specific to a remote device. A normal response includes the data contents specific to the device.

Command Information	Command Layout	Example Command
Power Patrol address	nn	37
Command number	11	11

Table D-8: Format for Modbus Command 11 (17 in decimal)

Example Command

Example Request Field Name	Command (Hex)	Response Field Name	Response (Hex)
Power Patrol address	37	Power Patrol address	37
Command number	11	Command number	11
CRC low order bits	D7	Byte count	
CRC high order bits	8C	Slave ID	
		Run indicator status	
		Additional data	

Table D-9: Format for Modbus Command 11 (17 in decimal)

Slave ID

The Power Patrol uses the following default format for the slave ID:

00hFFhSETRA Setra Systems Power Patrol 3, Serial Number, FW Rev Major Revision. Minor Revision, Scalar X

Example:

00hFFhSETRA Setra Systems Power Patrol 3, PS3912001, FW Rev 1.0, Scalar 3

The 00h is used for version control and the FFh indicates the meter is active. The 00h and FFh are two bytes in front of the string that are not displayed on the RTU.

NOTE: See VERIS H8035/H8036 Emulation for slave ID structure while in Veris emulation.

ALL THINGS BACNET

CONFIGURATION OBJECTS

Object Identifier	Name	Description
10020	Data Acquisition Tick	Internal sample count (gets cleared every minute): may be used to determine if sample read is a newer sample than last read.
10140	Clear Accumulated Measurements	Writing 1234 to the present value will reset all the accumulator objects (kWh, kVAh, kVARh)
10190	Communications protocol	Used to change between BACnet and Modbus communications protocols.
12003	CT3 Phase Shift	CT3 phase shift (degrees)
12011	CT1 Value	CT1 Value
12012	CT2 Value	CT2 Value
12013	CT3 Value	CT3 Value
12030	CT Pulse Scalar	Changes the scaling of the output pulses
12040	Demand Window	Demand window size in minutes; default is 15 min
12050	Volts Multiplier	Multiply volts values by this scalar. For use with stepdown transformer. Affects all parameters that use volts.
12061	CT1 Amps Multiplier	Multiply CT1 amps values by this scalar. For use with stepdown transformer. Affects all parameters that use amps.
12062	CT2 Amps Multiplier	Multiply CT2 amps values by this scalar. For use with stepdown transformer. Affects all parameters that use amps.
12063	CT3 Amps Multiplier	Multiply CT3 amps values by this scalar. For use with stepdown transformer. Affects all parameters that use amps.
12080	Service Type	A value of 1 configures the meter for Delta. A value of 0 configures the meter for Wye.
12090	Line Frequency	Line frequency setting for metering. 50 = 50 Hz, 60 = 60 Hz
12130	CT Type All	Writes same type for all CTs: 1=MilliVolt, 2=Rogowski

Object Identifier	Name	Description
12131	CT1 Type	1=MilliVolt, 2=Rogowski
12132	CT2 Type	1=MilliVolt, 2=Rogowski
12133	СТЗ Туре	1=MilliVolt, 2=Rogowski

PULSE OUTPUT/INPUT OBJECTS

Object Identifier	Name	Description
13020	Port 1 output control when used as an on/off—open/closed switch	0 = output LOW (closed) 1 = output HIGH (open) [default] Object 13100 present value must = 0 to use
13100	Digital Port 1 Configuration Turns pulses on/off	0 = No pulses, Port may be used as an on/off— open/closed switch 44001 = System kWh pulses 44008 = System kVARh pulses 44011 = System kVAh pulses
13110	Port 1 pulse output relay type	0 = normally open (HIGH) 1 = normally closed (LOW)

ABSOLUTE/NET VALUE MEASUREMENT OBJECTS

System=sum of three phases.

Object Identifier	Name	Description * System=sum of three phases
1000	kW Demand System Maximum	System Maximum Demand (peak demand) (Unsigned/Absolute)
1010	kW Demand System Now	Average Power (kW) for most recent demand window (Unsigned/Absolute)
1020	kW Demand System Minimum	Min Average power window (kW) (Unsigned/Absolute)

Object Identifier	Name	Description * System=sum of three phases
1030	kW System	System True Power (kW). Unsigned absolute (ABS) value of ABS (kW L1) + ABS (kW L2) + ABS (kW L3)
1031	kW System Net	System Power (kW) Signed net value of (kW L1) + (kW L2) + (kW L3)
1060	kW System Average	Equals kWh System / (Time Since Reset /3600 seconds/Hr) (resettable)
1100	kW System Maximum	System Highest Instantaneous Draw Since Reset (kW)
1130	kW System Minimum	System Lowest Instantaneous Draw Since Reset (kW, resettable)
1160	kW L1	Individual Phase True Power (kW) (Signed)
1190	kW L2	u
1220	kW L3	u
2000	kWh System Total	System True Energy (kWh) (Unsigned/Absolute)
3000	Volts Line to Line Average	Voltage Line to line Average
3010	Volts Line to Neutral Average	Voltage Line to neutral Average
3020	Volts L1 to L2	Individual Phase to Phase Voltages
3030	Volts L2 to L3	u
3040	Volts L1 to L3	u
3050	Volts L1 to Neutral	Individual Phase to Neutral Voltages (V)
3060	Volts L2 to Neutral	u
3070	Volts L3 to Neutral	u
4010	Amps System Average	Average of all phases.
4020	Amps L1	Individual Phase Currents (A)
4030	Amps L2	u
4040	Amps L3	u

Object Identifier	Name	Description * System=sum of three phases
5000	kVAR System	System Total Reactive Power (kVAR). Unsigned absolute (ABS) value of ABS (kVAR L1) + ABS (kVAR L2) + ABS (kVAR L3)
5001	kVAR System Net	System Total Reactive Power (kVAR). Signed net value of (kVAR L1) + (kVAR L2) + (kVAR L3)
5030	kVAR L1	Individual Phase Reactive Energy LSW (kVARh) (Signed)
5060	kVAR L2	и
5090	kVAR L3	и
5120	kVAR Demand System Max	System Maximum Instantaneous kVAR Demand (kVA, resettable). It displays the default value after a CAM until 1 demand window elapses. After a power cycle or CPU reset the value is not reset but it does not update again until 1 demand window elapses. (Unsigned/Absolute)
5130	kVAR Demand System Now	Average kVAR demand for most recent window (resettable). Displays the default value after a CAM or reset, or power cycle. Updates every min thereafter. True demand value takes a demand period to get to actual value. (Unsigned/Absolute)
6010	kVARh System	System Total Reactive Energy (Unsigned/Absolute)
7000	kVAh System Total	System Total Apparent Energy (Unsigned/Absolute)
8000	kVA System	System Total Apparent Power (kVA). Unsigned absolute (ABS) value of ABS (kVA L1) + ABS (kVA L2) + ABS (kVA L3)
8001	kVA System Net	System Net Apparent Power (kVA). Signed net value of (kVA L1) + (kVA L2) + (kVA L3)
8010	kVA L1	Individual Phase Apparent Powers (kVA) (signed)
8020	kVA L2	"Sign is set to the sign of the kW
8030	kVA L3	и
8040	kVA Demand System Max	System Maximum Instantaneous kVA Demand (kVA, resettable). It displays the default value after a CAM until 1 demand window elapses. After a power cycle or CPU reset the value is not reset but it does not update again until 1 demand window elapses. (Unsigned/Absolute)

Object Identifier	Name	Description * System=sum of three phases
8050	kVA Demand System Now	Average kVA for most recent demand window (resettable). Displays the default value after a CAM or reset, or power cycle. Updates every min thereafter. True demand value takes a demand period to get to actual value. (Unsigned/Absolute)
9000	Displacement PF System	System Total Power Factor (PF) (Signed)
9030	Apparent PF System	System Total Power Factor (PF) (Signed)
9060	Displacement PF L1	Individual Phase displacement Power Factor (PF)
9090	Displacement PF L2	и
9120	Displacement PF L3	"
9150	Apparent PF L1	Individual Phase apparent Power Factors (PF)
9180	Apparent PF L2	"
9210	Apparent PF L3	и
10000	Measured Line Frequency	Line Frequency (Hz)
10010	Time Since Reset	Seconds since accumulator registers were reset.

POSITIVE POWER/ENERGY MEASUREMENT OBJECTS

Object	Name	Description
Identifier		* System=sum of three phases
1080	kW System Average Positive	Equals kWh System Positive / (Time Since Reset /3600 seconds/Hr) (resettable) (Signed Net)
1110	kW System Maximum Positive	System Highest Instantaneous Positive Draw Since Reset (kW) (Signed Net)
1140	kW System Minimum Positive	System Lowest Instantaneous Positive Draw Since Reset (kW, resettable)
2010	kWh System Total Positive	System True Energy (kWh) Positive (Signed Net)
2040	kWh L1 Positive	Individual Phase True Energy (kWh) (Signed)
2070	kWh L2 Positive	и
2100	kWh L3 Positive	и
6010	kVARh System	System Total Reactive Energy (Signed Net)

Object Identifier	Name	Description * System=sum of three phases
6020	kVARh System Total Positive	System True Energy (kVARh) Positive (Signed Net)
6050	kVARh L1 Positive	Individual Phase Reactive Energy (kVAR) (Signed)
6080	kVARh L2 Positive	и
6110	kVARh L3 Positive	и
7001	kVAh System Total Positive	System Total Positive Apparent Energy (kVAh) (Signed Net) Accumulates only when kW is positive
7020	kVAh L1 Positive	Individual Phase Apparent Energy (kVAh) (Signed)
7050	kVAh L2 Positive	и
7080	kVAh L3 Positive	и

NEGATIVE POWER/ENERGY MEASUREMENT OBJECTS

Object Identifier	Name	Detailed Description * System=sum of three phases
1090	kW System Average Negative	Equals kWh System Negative / (Time Since Reset /3600 seconds/Hr) (resettable)
1120	kW System Maximum Negative	System Highest Instantaneous Negative Draw Since Reset (kW)
1150	kW System Minimum Negative	System Lowest Instantaneous Negative Draw Since Reset (kW, resettable)
2020	kWh System Total Negative	System True Energy (kWh) Negative (Signed Net)
2050	kWh L1 Negative	Individual Phase True Energy (kWh) (Signed)
2080	kWh L2 Negative	и
2110	kWh L3 Negative	и
6030	kVARh Sys Negative	System Total Reactive Energy (Signed Net)
6060	kVARh L1 Negative	Individual Phase Reactive Energy (kVARh) (Signed)
6090	kVARh L2 Negative	и
6120	kVARh L3 Negative	и
7002	kVAh System Total Negative	System Total Negative Apparent Energy (Signed Net)
7030	kVAh L1 Negative	Individual Phase Apparent Energy (kVAh) (Signed)
7060	kVAh L2 Negative	и
7090	kVAh L3 Negative	и

APPENDICES

Appendix A—Power Patrol Meter Wiring Diagrams

Typically, the Power Patrol can be wired using any one of the following common wiring setups. These diagrams will assist you in properly connecting your Power Patrol meter for the setup desired. ALL WIRE COLORS ARE U.S. STANDARD.

WARNING! DO NOT EXCEED 600VAC PHASE TO PHASE CAT III.

When complete, close the enclosure cover, if equipped.

Attention: Ne pas dépasser une phase à 600VAC CAT III.

Une fois terminé, fermer le covercle, s'il y en a un.

CAUTION: THE POWER PATROL METER SHOULD ONLY BE WIRED BY QUALIFIED PERSONNEL. HAZARDOUS VOLTAGES EXIST.

ATTENTION: LE POWER PATROL ne doit être branché QUE par un personnel qualifié. TENSIONS DANGEREUSES sont présentEs.

DANGER! THE UNENCLOSED POWER PATROL BOARD REQUIRES EXTRA CAUTION WHEN CONNECTING. LIFE THREATENING VOLTAGES EXCEEDING 600 VOLTS MAY EXIST ON THE BOARD. THE RISK OF SERIOUS INJURY OR DEATH SHOULD NOT BE UNDERESTIMATED.

DANGER! LA PLAQUETTE DE CIRCUITS IMPRIMES SANS COUVERCLE EXIGE UN REDOUBLEMENT DE PRUDENCE QUAND ON FAIT LA CONNEXION. LES TENSIONS DEPASSANT 600 VOLTS PEUVENT EXISTER SUR LA PLAQUETTE ET PEUVENT METTRE LA VIE EN DANGER. LE RISQUE DE BLESSURES GRAVES OU DE MORT NE DOIT PAS ETRE SOUS-ESTIME.

POWER PATROL PLUS WIRING DIAGRAMS

Figure A-1: Three-wire Delta

Use a Service Type **0** (zero) value for BACnet Object 12080 or a **0** (zero) value for Modbus Register 44607 on this wire configuration.

Figure A-2: Two-wire Single Phase

Use a Service Type $\bf 0$ (zero) value for BACnet Object 12080 or a $\bf 0$ (zero) value for Modbus Register 44607 on this wire configuration.

Figure A-3: Three-wire Single Phase

Use a Service Type $\bf 0$ (zero) value for BACnet Object 12080 or a $\bf 0$ (zero) value for Modbus Register 44607 on this wire configuration.

Figure A-4: 3-Phase, 4-Wire Delta

Use a Service Type **0** (zero) value for BACnet Object 12080 or a **0** (zero) value for Modbus Register 44607 on this wire configuration.

Appendix B—Connecting to a Network

This section describes setting up a network with multiple Power Patrol instruments using the BACnet or Modbus communication protocol. A network can support up to 127 Power Patrol instruments using the BACnet protocol and 247 Power Patrol instruments using the Modbus protocol.

COMMUNICATION PROTOCOL

BACnet MS/TP and Modbus RTU are standard communication protocols that allow for communication between a client and multiple devices connected to the same network. RS-485 is the protocol standard used by Power Patrol meters as the hardware's serial interface while BACnet or Modbus is the communication protocol.

Daisy Chain Layout for RS-485 Network

When multiple devices are connected the devices need to be connected in a daisy chain. A daisy chain means that all plus (+) connections are chained together and all minus (-) connections are chained together across the network.

A network containing multiple devices requires a unique address for each device. This allows the master device to identify and communicate with each slave. The BACnet/Modbus network administrator must assign a unique network address to each Power Patrol using the rotary switches SW1-SW2.

Other network layouts are not recommended when using the RS-485 standard.

NETWORKING USING THE BACNET/MODBUS PROTOCOL

- 1) Install the BACnet/Modbus cable.
- 2) Set a unique address for each device using the table in Appendix C.

Appendix C—Digital I/O Functions

DIGITAL PULSE OUTPUTS

There is one configurable digital pulse output port on the SPP. The ports can be used to output kWh, kVARh, or kVAh pulses to external devices, or to toggle on and off to control a remote device or relay.

Pulse Output Port Function

Pulse output is used to generate pulses for external devices such as data loggers that can accept pulses but do not have BACnet or Modbus capability. The Power Patrol can generate pulses based on accumulated value(s) such as system kWh, system kVARh, and system kVAh. When a pulse is generated by the meter, the orange LEDs will briefly flash, otherwise they will remain dark.

The BACnet pulse output 12030 is scaled by the same data scalar as the Modbus register (44602). For example, when the data scalar is set to 3, each pulse will represent .1 kWh, .1kVAh and .1kVARh.

Data Scalar	Pulse Scalar Value						
	kWh	kVAh	kVARh				
0	.00001	.00001	.00001				
1	.001	.001	.001				
2	.01	.01	.01				
3	.1	.1	.1				
4	1	1	1				
5	10	10	10				
≥6	100	100	100				

Table C-1: Pulse Scalar Values

For system pulse output:

- kWh pulse output—write **44001** into the pulse output configuration object.
- kVAh pulse output—write **44011** into the pulse output configuration object.
- kVARh pulse output—write **44008** into the pulse output configuration object.

Modbus Output Port Registers

Refer to the following two tables to configure the Power Patrol output ports when using the Modbus protocol.

Modbus Register	Offset	Register Name	Detailed Description
44402	4401/5301	Port 1 output control when used as an on/off—open/closed switch	0 = output LOW (closed) 1 = output HIGH (open) [default] Register 45110 must = 0 to use
45110	5109/5309	Digital Port 1 Configuration Turns pulses on/off	0 = No pulses, Port may be used as an on/off— open/closed switch 44001 = System kWh pulses 44008 = System kVARh pulses 44011 = System kVAh pulses
45111	5110/5310	Port 1 pulse output relay type	0 = normally open (HIGH) 1 = normally closed (LOW)

Table C-2: Modbus Digital Port Pulse Output

BACnet Output Port Objects

Refer to the following two tables to configure the Power Patrol output ports when using the BACnet protocol.

SPP Object Identifier	Name	Detailed Description
13020	Port 1 output control when used as an on/off—open/closed switch	0 = output LOW (closed) 1 = output HIGH (open) [default] Object 13100 present value must = 0 to use
13100	Digital Port 1 Configuration Turns pulses on/off	0 = No pulses, Port may be used as an on/off— open/closed switch 44001 = System kWh pulses 44008 = System kVARh pulses 44011 = System kVAh pulses
13110	Port 1 pulse output relay type	0 = normally open (HIGH) 1 = normally closed (LOW)

Table C-3: BACnet Digital Port 1 Pulse Output

Appendix D-VERIS H8035/H8036 Emulation

The Power Patrol meter can be used as a direct replacement for the Veris, Inc. H8035/H8036 series of networked power meters. This mirroring of the Veris Modbus register assignments makes replacement with a Power Patrol meter simple. However, because the number of parameters that the Veris meters measure is less than half of what the Power Patrol can measure, the other Modbus registers described in the table need to be used to utilize the additional capabilities of the Power Patrol.

Writing a 1 to register 44526 sets the Slave ID to Veris mode and HeadStart lists the Veris registers in the HeadStart **Read/Write Registers** tab.

When register 44526 contains a 1 for Veris mode, the Slave ID command format is:

91hFFh(Veris type), Full-Data, Modbus, (CT value) Amp

The following is an example command with CT set for 100A:

91hFFhVeris H8036-0100-2, Full-Data, Modbus, 100 Amp

Example command explanation:

- 91h = version control
- FFh = standard for active

The 91h and FFh are 4 bytes in front of the string that are not displayed in the RTU.

CT Amperage Rating	Veris Model Number
CT ≤ 100A	Veris Type = H8036-0100-2 CT Value = 100A
100A < CT ≤ 300A	Veris Type = H8036-0300-2 CT Value = 300A
300A < CT ≤ 400A	Veris Type = H8036-0400-3 CT Value = 400A
400A < CT ≤ 800A	Veris Type = H8036-0800-3 CT Value = 800A
800A < CT ≤ 1600A	Veris Type = H8036-1600-4 CT Value = 1600A
CT >1600A	Veris Type = H8036-2400-4 CT Value = 2400A

Table D-1: CT Amp Rating to Veris Models

VERIS MODBUS INTEGER REGISTERS

Modbus Register	Offset	HeadStart Name	Description
40001	0	kWh System LSW	System True Energy (kWh, Resettable)
40002	1	kWh System MSW	System True Energy (kWh, Resettable)
40003	2	kW System	System True Power (kW)
40004	3	kVAR System	System Reactive Power (kVAR)
40005	4	kVA System	System Apparent Power (kVA)
40006	5	Apparent PF System	System Apparent Power Factor (PF)
40007	6	Volts Line to Line Avg	Average Line to Line Voltage
40008	7	Volts Line to Neutral Avg	Average Line to Neutral Voltage
40009	8	Amps System Avg	Average current of all phases
40010	9	kW L1	Individual Phase True Powers (kW, 3 values)
40011	10	kW L2	п
40012	11	kW L3	п
40013	12	Apparent PF L1	Individual Phase Apparent Power Factors (PF, 3 values)
40014	13	Apparent PF L2	п
40015	14	Apparent PF L3	п
40016	15	Volts L1 to L2	Individual Phase to Phase Voltages (Volts, Delta, 3 values)
40017	16	Volts L2 to L3	n
40018	17	Volts L1 to L3	n
40019	18	Volts L1 to Neutral	Individual Phase to Neutral Voltages (Volts, Wye, 3 values)
40020	19	Volts L2 to Neutral	n
40021	20	Volts L3 to Neutral	n .
40022	21	Amps L1	Individual Phase Currents (Amps, 3 values)

Modbus Register	Offset	HeadStart Name	Description
40023	22	Amps L2	п
40024	23	Amps L3	п
40025	24	kW System Avg	Equals KWH_SYSTEM_L&M ÷ (TimeSinceReset_L&M seconds /3600 seconds/Hr) (resettable)
40026	25	kW Demand System Min	System Minimum Demand (kW, resettable), It displays the default value after a CAM until 1 demand window elapses. After a power cycle or CPU reset the value is not reset but it does not update again until 1 demand window elapses.
40027	26	kW Demand System Max	System Max Demand (kW, resettable). Behaves as 40026.

Table D-2: HeadStart Register Descriptions

VERIS MULTIPLIERS

Address	Units	≤ 100A	101 – 400A	401 – 800A	801 – 1600A	1601 – 32,000A
40001	kWH LSB	7.8125exp-3	0.03125	0.0625	0.125	0.25
40002	kWH MSB	512	2048	4096	8192	16384
40003	kW	0.004	0.016	0.032	0.064	0.128
40004	kVAR	0.004	0.016	0.032	0.064	0.128
40005	kVA	0.004	0.016	0.032	0.064	0.128
40006	aPF	3.0518exp-5	3.0518exp-5	3.0518exp-5	3.0518exp-5	3.0518exp-5
40007	VOLTS L-L	0.03125	0.03125	0.03125	0.03125	0.03125
40008	VOLTS L-L	0.015625	0.015625	0.015625	0.015625	0.015625
40009	AMPS	3.9063exp-3	0.015625	0.03125	0.0625	0.125
40010	kW L1	0.001	0.004	0.008	0.016	0.032
40011	kW L2	0.001	0.004	0.008	0.016	0.032
40012	kW L3	0.001	0.004	0.008	0.016	0.032
40013	aPF L1	3.0518exp-5	3.0518exp-5	3.0518exp-5	3.0518exp-5	3.0518exp-5

Address	Units	≤ 100A	101 – 400A	401 – 800A	801 – 1600A	1601 – 32,000A
40014	aPF L2	3.0518exp-5	3.0518exp-5	3.0518exp-5	3.0518exp-5	3.0518exp-5
40015	aPF L3	3.0518exp-5	3.0518exp-5	3.0518exp-5	3.0518exp-5	3.0518exp-5
40016	VOLTS L1-L2	0.03125	0.03125	0.03125	0.03125	0.03125
40017	VOLTS L2-L3	0.03125	0.03125	0.03125	0.03125	0.03125
40018	VOLTS L3-L1	0.03125	0.03125	0.03125	0.03125	0.03125
40019	VOLTS L1-N	0.015625	0.015625	0.015625	0.015625	0.015625
40020	VOLTS L2- N	0.015625	0.015625	0.015625	0.015625	0.015625
40021	VOLTS L3- N	0.015625	0.015625	0.015625	0.015625	0.015625
40022	AMPS L1	3.9063exp-3	0.015625	0.03125	0.0625	0.125
40023	AMPS L2	3.9063exp-3	0.015625	0.03125	0.03125 0.0625	
40024	AMPS L3	3.9063exp-3	0.015625	0.03125	0.0625	0.125
40025	kW	0.004	0.016	0.032	0.064	0.128
40026	kW	0.004	0.016	0.032	0.064	0.128
40027	kW	0.004	0.016	0.032	0.064	0.128

Table D-3: Veris Multipliers for Integer Registers 40001-40027

Per the Veris implementation, to obtain true engineering units, the values returned from the registers in Table G-2 must be multiplied by the scaling values listed in Table G-3.

For example, if the Power Patrol has 100A CTs connected to it, the system reactive power (kVAR) is calculated by:

- Read register 40004
- Multiply the value returned from register 40004 by 0.004

VERIS MODBUS FLOATING POINT REGISTERS

Modbus Register	Offset	Viewpoint Name	Description
40257	256	VERIS Float kWh System MSW	System Net True Energy (kWh, Resettable)
40258	257	VERIS Float kWh System LSW	System Net True Energy (kWh, Resettable)
40261	260	VERIS Float kW System MSW	System Total True Power MSW
40262	261	VERIS Float kW System LSW	System Total True Power LSW
40263	262	VERIS Float kVAR System MSW	System Total Reactive Power MSW
40264	263	VERIS Float kVAR System LSW	System Total Reactive Power LSW
40265	264	VERIS Float kVA System MSW	System Total Apparent Power MSW
40266	265	VERIS Float kVA System LSW	System Total Apparent Power LSW
40267	266	VERIS Float PF System MSW	System Total Power Factor MSW
40268	267	VERIS Float PF System LSW	System Total Power Factor LSW
40269	268	VERIS Float Volts Line to Line Avg MSW	Voltage Line to Line Average MSW
40270	269	VERIS Float Volts Line to Line Avg LSW	Voltage Line to Line Average LSW
40271	270	VERIS Float Volts Line to Neutral Avg MSW	Voltage Line to Neutral Average MSW
40272	271	VERIS Float Volts Line to Neutral Avg LSW	Voltage Line to Neutral Average LSW
40273	272	VERIS Float Amps System Avg MSW	Total Current in all Phases MSW
40274	273	VERIS Float Amps System Avg LSW	Total Current in all Phases LSW
40275	274	VERIS Float kW L1 MSW	Individual Phase True Power L1 MSW
40276	275	VERIS Float kW L1 LSW	Individual Phase True Power L1 LSW
40277	276	VERIS Float kW L2 MSW	Individual Phase True Power L2 MSW
40278	277	VERIS Float kW L2 LSW	Individual Phase True Power L2 LSW
40279	278	VERIS Float kW L3 MSW	Individual Phase True Power L3 MSW

Modbus Register	Offset	Viewpoint Name	Description
40280	279	VERIS Float kW L3 LSW	Individual Phase True Power L3 LSW
40281	280	VERIS Float Apparent PF L1 MSW	Individual Phase Apparent Power Factor L1 MSW
40282	281	VERIS Float Apparent PF L1 LSW	Individual Phase Apparent Power Factor L1 LSW
40283	282	VERIS Float Apparent PF L2 MSW	Individual Phase Apparent Power Factor L2 MSW
40284	283	VERIS Float Apparent PF L2 LSW	Individual Phase Apparent Power Factor L2 LSW
40285	284	VERIS Float Apparent PF L3 MSW	Individual Phase Apparent Power Factor L3 MSW
40286	285	VERIS Float Apparent PF L3 LSW	Individual Phase Apparent Power Factor L3 LSW
40287	286	VERIS Float Volts L1 to L2 MSW	Phase to Phase Voltage L1 to L2 MSW
40288	287	VERIS Float Volts L1 to L2 LSW	Phase to Phase Voltage L1 to L2 LSW
40289	288	VERIS Float Volts L2 to L3 MSW	Phase to Phase Voltage L2 to L3 MSW
40290	289	VERIS Float Volts L2 to L3 LSW	Phase to Phase Voltage L2 to L3 LSW
40291	290	VERIS Float Volts L1 to L3 MSW	Phase to Phase Voltage L1 to L3 MSW
40292	291	VERIS Float Volts L1 to L3 LSW	Phase to Phase Voltage L1 to L3 LSW
40293	292	VERIS Float Volts L1 to Neutral MSW	Phase to Neutral Voltage L1 to N MSW
40294	293	VERIS Float Volts L1 to Neutral LSW	Phase to Neutral Voltage L1 to N LSW
40295	294	VERIS Float Volts L2 to Neutral MSW	Phase to Neutral Voltage L2 to N MSW
40296	295	VERIS Float Volts L2 to Neutral LSW	Phase to Neutral Voltage L2 to N LSW
40297	296	VERIS Float Volts L3 to Neutral MSW	Phase to Neutral Voltage L3 to N MSW
40298	297	VERIS Float Volts L3 to Neutral LSW	Phase to Neutral Voltage L3 to N LSW
40299	298	VERIS Float Amps L1 MSW	Phase Current L1 MSW
40300	299	VERIS Float Amps L1 LSW	Phase Current L1 LSW
40301	300	VERIS Float Amps L2 MSW	Phase Current L2 MSW
40302	301	VERIS Float Amps L2 LSW	Phase Current L2 LSW

Modbus Register	Offset	Viewpoint Name	Description
40303	302	VERIS Float Amps L3 MSW	Phase Current L3 MSW
40304	303	VERIS Float Amps L3 LSW	Phase Current L3 LSW
40305	304	VERIS Float kW System Avg MSW	System Average Power MSW
40306	305	VERIS Float kW System Avg LSW	System Average Power LSW
40307	306	VERIS Float Demand System Minimum MSW	System Minimum Demand MSW
40308	307	VERIS Float Demand System Minimum LSW	System Minimum Demand LSW
40309	308	VERIS Float Demand System Maximum MSW	System Maximum Demand MSW
40310	309	VERIS Float Demand System Maximum LSW	System Maximum Demand LSW

Appendix E—Conversion Table

DECIMAL TO HEXADECIMAL CONVERSION TABLE

Decimal values are used for the Power Patrol 24 addresses. The table below shows the corresponding hex values.

Decimal	Hex	Decimal	Hex								
1	01	44	2C	87	57	130	82	173	AD	216	D8
2	02	45	2D	88	58	131	83	174	AE	217	D9
3	03	46	2E	89	59	132	84	175	AF	218	DA
4	04	47	2F	90	5A	133	85	176	В0	219	DB
5	05	48	30	91	5B	134	86	177	B1	220	DC
6	06	49	31	92	5C	135	87	178	B2	221	DD
7	07	50	32	93	5D	136	88	179	В3	222	DE
8	08	51	33	94	5E	137	89	180	B4	223	DF
9	09	52	34	95	5F	138	8A	181	B5	224	E0
10	0A	53	35	96	60	139	8B	182	В6	225	E1
11	0B	54	36	97	61	140	8C	183	В7	226	E2
12	0C	55	37	98	62	141	8D	184	B8	227	E3
13	0D	56	38	99	63	142	8E	185	В9	228	E4
14	0E	57	39	100	64	143	8F	186	ВА	229	E5
15	OF	58	3A	101	65	144	90	187	ВВ	230	E6
16	10	59	3B	102	66	145	91	188	ВС	231	E7
17	11	60	3C	103	67	146	92	189	BD	232	E8
18	12	61	3D	104	68	147	93	190	BE	233	E9
19	13	62	3E	105	69	148	94	191	BF	234	EA
20	14	63	3F	106	6A	149	95	192	C0	235	EB
21	15	64	40	107	6B	150	96	193	C1	236	EC
22	16	65	41	108	6C	151	97	194	C2	237	ED
23	17	66	42	109	6D	152	98	195	C 3	238	EE
24	18	67	43	110	6E	153	99	196	C4	239	EF
25	19	68	44	111	6F	154	9A	197	C 5	240	F0
26	1A	69	45	112	70	155	9B	198	C6	241	F1
27	1B	70	46	113	71	156	9C	199	С7	242	F2
28	1C	71	47	114	72	157	9D	200	C8	243	F3
29	1D	72	48	115	73	158	9E	201	C 9	244	F4

Decimal	Hex	Decimal	Hex	Decimal	Hex	Decimal	Hex	Decimal	Hex	Decimal	Hex	
30	1E	73	49	116	74	159	9F	202	CA	245	F5	
31	1F	74	4A	117	75	160	A0	203	СВ	246	F6	
32	20	75	4B	118	76	161	A1	204	СС	247	F7	
33	21	76	4C	119	77	162	A2	205	CD	248	F8	
34	22	77	4D	120	78	163	А3	206	CE	249	F9	
35	23	78	4E	121	79	164	A4	207	CF	250	FA	
36	24	79	4F	122	7A	165	A5	208	D0	251	FB	
37	25	80	50	123	7B	166	A6	209	D1	252	FC	
38	26	81	51	124	7C	167	A7	210	D2	253	FD	
39	27	82	52	125	7D	168	A8	211	D3	254	FE	
40	28	83	53	126	7E	169	A9	212	D4	255		
41	29	84	54	127	7F	170	AA	213	D5			
42	2A	85	55	128	80	171	AB	214	D6			
43	2B	86	56	129	81	172	AC	215	D7			
	Table E-1: Decimal to Hexadecimal Conversion Table											

Appendix F—Troubleshooting

TROUBLESHOOTING COMMUNICATION ISSUES

When the baud rate on the HeadStart **Communications** screen and the Power Patrol do not match, communication fails, the **Status** box displays the following message: "Unable to establish connection with meter, please check settings and try again"

The following headings provide possible solutions for communication errors.

Baud Rate Communications Error (RS-485 Serial Communication)

To correct a baud rate communications error, use the following steps:

- 1) In HeadStart, set the Modbus Base Address Switches field to 00.
- 2) Set the address switches to **00**,
- 3) Power up the meter. With both settings at 00, HeadStart and the Power Patrol will communicate at a 9600 baud rate regardless of a baud rate mismatch. Communications is established.
- 4) Next, select the desired baud rate in HeadStart from the Baud Rate drop-down list. This synchronizes the baud rates between HeadStart and the Power Patrol.
- 5) Click **Connect** in HeadStart to reconfirm communications.

Port Error

If the **PC COM Port** drop-down list does not contain a RS-485 COM port, the RS-485 adapter driver is not installed or the device is not connected to the computer's USB port. Check that the adapter is connected to a live USB port or move the USB cable to another USB port.

Other Communication Failures

The following items can also cause a communication failure.

- Check for wiring and cabling issues with the RS-485 adapter. Check for polarity, frayed wires, and/or pinched insulation.
- Verify that the dip switches on the back of the USB to RS-485 adapter are set to the following:

Reboot the computer. Click Connect on the Communications tab to reestablish communications.

FREQUENTLY ASKED QUESTIONS

What is the maximum distance for BACnet MS/TP or Modbus (RS-485) communication?

BACnet MS/TP or Modbus (RS-485) can reach a distance up to 1200 meters (4000') with data rates at 100 kbps.

One (or more) of the Phase Verification LEDs is red. What does this mean?

Any number of red lights indicates the Power Patrol meter is wired incorrectly. Review the table in *Phase Verification* in Section III of this manual for a description of the indicator lights.

How is the Power Patrol meter powered?

All Power Patrol instrument is line-powered or via USB connection before installation. An internal power supply attached between L1 and L2 provides power to the unit.

Can the Power Patrol be used to monitor single-phase loads?

The Power Patrol meter can be used to monitor single-phase loads. Refer to Section II or III for detailed setup information.

How many Power Patrol instruments can be connected together?

Up to 127 Power Patrol meter can be connected together on a BACnet MS/TP network.

Up to 247 Power Patrol meter can be connected together on a Modbus network.

How is hexadecimal (HEX) to decimal converted?

Use the Decimal to Hexadecimal conversion table in Appendix A of this manual.

What is true RMS?

RMS stands for "Root-Mean-Square." True RMS is the power from AC voltage/current that will produce the equivalent amount of heat in a resistor as a DC voltage/current, whether sinusoidal or not. For example, if a resistive heating element is rated at 15 kW of heat at 240VAC RMS, then the heat would be the same if we applied 240V of DC instead of AC. A meter without true RMS will incorrectly read distorted waveforms. All Setra Systems meters measure true RMS.

How accurate is the Power Patrol meter?

The Power Patrol meter accuracy is 0.2% (meter only)

Can a three-phase balanced load be monitored with one CT?

This is not the best way to measure a three-phase load as it ignores imbalances in voltage and power factor. However, if desired there is an Amp Multiplier Modbus register (44605) that can be set for three (3), which will multiply the current by three and therefore amps, watts, VA, VARs will be 3X greater.

How can I switch the Power Patrol from BACnet to Modbus mode?

Using a PC running HeadStart, go to Comms. Setup tab and select desired communication protocol.

How can I switch the Power Patrol from Modbus to BACnet mode?

Using a PC running HeadStart, go to Comms. Setup tab and select desired communication protocol.

How can I fix BACnet network timing errors/slowness?

The maximum number of the MSTP master should be set to the highest MAC address present in the network. Max Master is a setting on the Communications tab of the HeadStart software.

What is the purpose of setting a scalar value?

Each Modbus register is only 16 bits wide and is in integer format without any fixed number of decimal points. Simply putting a value directly into one of these registers would limit the smallest number to 1, and only allow for a maximum value of 65535. To handle larger numbers, or numbers with better resolution, we use a scalar value to apply a factor in multiples of 10 to the 16 bit data register value.

GLOSSARY

Amp Multiplier A multiplier that changes amperage so that a meter can read higher measurements.

Analog Value A type of BACnet object that is a floating point number. On the Power Patrol, Analog

Value objects are used to represent the electrical measurements.

Building <u>A</u>utomation <u>C</u>ontrol <u>net</u>works. A communications protocol that allows

building automation and control devices and their associated properties (objects) to

be automatically discovered.

CAM <u>Cl</u>ear <u>A</u>ll <u>M</u>easurements

Data Scalar A scalar is used to multiply the raw data value to convert information read from the

Modbus registers. Refer to Table IV-3 for a list of values. Example: if the scalar value in register 44602 is set to 3 and the total true power for the system (kW) is read from

Modbus register 44003 (Offset 4002) and a value of 3465 is returned, the true

system kW is:

3465 X 0.1 = 346.5 kW

Demand Window The Demand Window is how long the meter calculates your demand for recording a

value. For example if your Demand Window is set to 15 min, the meter will calculate your total demand every minute for 15 minutes. At the end of the 15 minutes it will

sum all 15 values. Then it will record that value as the demand.

Digital Output The Power Patrol meter has an output port for each element. The ports can be used

to output kWh, kVARh,or kVAh pulses to external devices, or to toggle on and off to

control a remote device or relay.

Discovery In BACnet devices and the objects they expose can be found through a discovery

process. This means that devices and objects do not need to be manually added if a

BACnet client supports discovery.

Falling edge Transition of the input signal from high to low.

Hexadecimal In mathematics and computer science, hexadecimal (or hex) is a numeral system

with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, and A, B, C, D, E, F (or a through f) to represent

values ten to fifteen.

kVAh Kilovolt-Ampere Hour

kVARh Kilovolt Ampere Reactive Hours

kWh Kilowatt Hour

LSW (Modbus mode only) Least Significant Word. Unit of data with the low-order bytes

at the right.

MS/TP Master-Slave/Token Passing is a model of communication used by BACnet where one

device (the master node) has unidirectional control of the RS-485 serial bus. The token is passed from master node to master node to allow a master node to send

frames over the bus.

MSW (Modbus mode only) Most Significant Word. Unit of data with the high-order bytes

at the left.

Net When a register/object has the word "net" in its description than net equals the sum

of all individual signed measurements.

Object A BACnet object is a standard data structure that on the Power Patrol represents

electrical measurements.

Power Factor The power factor of the AC electric power system is defined as the ratio of the real

power flowing to the load to the apparent power, and is a number between 0 and 1 (frequently expressed as a percentage, e.g., 0.5~pf = 50%~pf). Real power is the capacity of the circuit for performing work in a particular time. Apparent power is the product of the root mean squared current and root mean squared voltage of the circuit. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the

apparent power can be greater than the real power.

Pulse Input Used for counting, accumulating, and scaling pulses received from non-DENT

external pulse initiating meters such as gas, water, or other electrical meters.

Pulse Output Pulse output is used to generate pulses for external devices such as data loggers that

can accept pulses but do not have Modbus capability. The Power Patrol can generate pulses based on accumulated value(s) such as system kWh, system kVARh, and

system kVAh.

Rising edge Transition of the input signal from low to high.

RMS Root-Mean-Square. True RMS is the AC voltage/current that produces the equivalent

amount of heat in a resistor as a DC voltage/current, whether sinusoidal or not. All

Setra Systems meters measure true RMS.

RS-485 EIA-485 is used as the physical layer underlying many standard and proprietary

automation protocols used to implement Industrial Control Systems, including

BACnet/Modbus.

RTU A Remote Terminal Unit (RTU) is a microprocessor controlled electronic device which

interfaces objects in the physical world to a distributed control system or SCADA system by transmitting telemetry data to the system and/or altering the state of

connected objects based on control messages received from the system.

SCADA SCADA stands for Supervisory Control And Data Acquisition. It generally refers to an

industrial control system: a computer system monitoring and controlling a process.

Service A BACnet service are messages to which the Power Patrol must respond and end. In

BACnet these include Whols, I-Am, and ReadProperty.

Volts Multiplier A multiplier that changes voltage so that a meter can read measurements higher

than 600V.