An Optimization Layer for Distributed Matrix Computations

Jonah Brown Cohen, Tselil Schramm, and Ben Weitz

Background

- ▶ SparkR
- Chooses parameters based on statistics from prior jobs
- ▶ sdflksad Adaptive

- sdfadsdfDFC
- sdfadsdf

Motivation

- Distributed machine learning algorithms
- Tradeoffs—time,cost,error
- optimize: humans are dumb as shit

Objective

Automate parameter choice for distributed matrix computations.

Optimizer Design

- Architecture-independent
- Chooses parameters based on statistics from prior jobs ▶ sdflksad
- Adaptive
- sdfadsdf
- Local-optimum Avoiding
- sdfadsdf

Implementation

- ▶ The words chosen by the adversary are hard,
- But once you know theyre difficult it's easy to adjust.
- ► Top 12 words (probability of losing in 6 turns):

Evaluation

Can the AI determine the correct memory of a player?

- Generated data for players with restricted memory.
- Extremely large number of samples required for AIC.
 Can only implement model with memory parameters 1 through 3.
- Computed (corrected) AIC and BIC values
- AIC consistently overestimates.
- BIC consistently underestimates.
- Failure of AIC due to information available to player not captured by the model.

Figure: Plots of AIC and BIC Values against the Memory Parameter for a Dictionary Player with True Memory 2

Future Work

Achievements:

- Can learn a player's strategy assuming restricted memory.
- Can choose words that are hard for that player.
- Compiled a list of hard words for a dictionary-using frequency player.
- Also hard for regular humans.

Future Work:

- Online Learning.
- ► Foiling an Adaptive Player.
- Can we learn an adaptive strategy quickly and counter it?
 Is there a Nash Equilibrium to the responses?

Acknowledgements

We would like to thank:

- Anthony.
- ▶ UC Berkeley and the NSF for providing funds and resources.