Analyzing the Meaning of words and Sentences

Semantics of English Sentence

The semantics of English sentences refers to the meaning conveyed by the arrangement of words, phrases, and clauses within a sentence.

Word-Level Semantics

Lexical Meaning: Individual words carry inherent meanings

Polysemy and Homonymy: Some words have multiple meanings depending on context

Sentence -level semantics

Compositionality: The meaning of a sentence is derived from the meanings of its parts and the rules used to combine them

Ambiguity:

Lexical Ambiguity: Words with multiple meanings (e.g., "light" as not heavy or illumination).

Structural Ambiguity: Sentence structure leading to multiple interpretations (e.g., "The man saw the woman with a telescope").

Compositional semantics

• Compositional Semantics in Natural Language Processing (NLP) refers to the study and implementation of how the meanings of individual words or phrases combine systematically to determine the meaning of a larger structure, such as a sentence.

```
Sentence: "John ate a ripe apple."

Syntax tree:

S ---> NP ---> Name ---> John

|--> VP ---> Verb ---> ate
|--> NP ---> Det ---> a
|--> Adj ---> ripe
|--> Noun ---> apple
```

Representation

```
Person(p1).
Name(p1,"John").
Ripe(o1).
Apple(o1).
Event(e1,Eat).
Actor(e1,p1).
Object(e1,o1).
```

Lexicon

Compositional rules

Rule 1:

```
Given: NP ---> Name ---> W.
   Denotation(NP) = Denotation(W).
```

Rule 2:

Create a new symbol S. For each Adj/Noun P, assert P.Content(S).
 Denotation(NP) = S.

Rule 3:

Create a new symbol E. Assert Event(E,Verb.Content).
 Assert Actor(E,Denotation(NP1))
 Assert Object(E,Denotation(NP2))

Meaning Representation

• Semantic analysis creates a representation of the meaning of a sentence. But before getting into the concept and approaches related to meaning representation, we need to understand the building blocks of semantic system.

Building Blocks of Semantic System

- Entities It represents the individual such as a particular person, location etc. For example, Haryana. India, Ram all are entities.
- Concepts It represents the general category of the individuals such as a person, city, etc.
- Relations It represents the relationship between entities and concept. For example, Ram is a person.
- Predicates It represents the verb structures. For example, semantic roles
 and case grammar are the examples of predicates.

Approaches to Meaning Representations

- First order predicate logic (FOPL)
- Semantic Nets
- Frames
- Conceptual dependency (CD)
- Rule-based architecture
- Case Grammar
- Conceptual Graphs

Lexical Semantics

The first part of semantic analysis, studying the meaning of individual words is called lexical semantics. It includes words, sub-words, affixes (sub-units), compound words and phrases also. All the words, sub-words, etc. are collectively called lexical items. In other words, we can say that lexical semantics is the relationship between lexical items, meaning of sentences and syntax of sentence.

- Classification of lexical items like words, sub-words, affixes, etc. is performed in lexical semantics.
- Decomposition of lexical items like words, sub-words, affixes, etc. is performed in lexical semantics.
- Differences as well as similarities between various lexical semantic structures is also analyzed.

Word sense disambiguation

- Word sense disambiguation, in natural language processing (NLP), may be defined as the ability to determine which meaning of word is activated by the use of word in a particular context.
- Lexical ambiguity, syntactic or semantic, is one of the very first problem that any NLP system faces. Part-of-speech (POS) taggers with high level of accuracy can solve Word's syntactic ambiguity.
- On the other hand, the problem of resolving semantic ambiguity is called WSD (word sense disambiguation). Resolving semantic ambiguity is harder than resolving syntactic ambiguity.

- I can hear bass/frequency sound.
- He likes to eat grilled bass/fish.

Evaluation of WSD

The evaluation of WSD requires the following two inputs –

A Dictionary

The very first input for evaluation of WSD is dictionary, which is used to specify the senses to be disambiguated.

Test Corpus

Another input required by WSD is the high-annotated test corpus that has the target or correct-senses.

Approaches and Methods to Word Sense Disambiguation

- Dictionary-based or Knowledge-based Methods
- Supervised Methods
- Semi-supervised Methods
- Unsupervised Methods