Syntaks og semantik

Lektion 9

11 marts 2008

Syntaks vs. semantik Tilgange Anvendelser Transitionssystemer Eksempler Operationel semantik Eksempler Aflukningen

Semantik

- Transitionssystemer
- Eksempler : syntaks
- Operationel semantik
- Eksempler : semantik

Transitionsaflukningen

1 Syntaks vs. semantik
2 Forskellige tilgange til semantik
3 Anvendelser

Syntaks vs. semantik Tilgange Anvendelser Transitionssystemer Eksempler Operationel semantik Eksempler Aflukningen

Syntaks: Læren om sprogs form

- hvordan ser et lovligt program ud?
- beskriv byggesten (alfabet) og hvordan de kan sættes sammen (grammatik, automat etc.)

Semantik: Læren om sprogs betydning

- hvordan opfører et givet program sig?
- beskriv betydningen af byggesten og hvordan betydningen af sammensætninger af byggesten fås ud fra de enkelte betydninger

Syntaks vs. semantik Tilgange Anvendelser Transitionssystemer Eksempler Operationel semantik Eksempler Aflukningen

3/29

- denotationel semantik
- beskriv et programs betydning som funktion fra input til output
- Hvad laver det her program?
- operationel semantik
- beskriv et programs betydning som transitionssystem
- Hvordan udføres det her program?
- aksiomatisk semantik
- beskriv et program ved præ- og post-betingelser
- Hvilke egenskaber har det her program?
- (algebraisk semantik: variant af aksiomatisk semantik)

4/29

Syntaks vs. semantik Tilgange Anvendelser Transitionssystemer Eksempler Operationel semantik Eksempler Aflukningen

- præcis beskrivelse af programmeringssprog
- "rettesnor" til implementation
- automatisk generering af compilere og fortolkere
- automatisk verifikation af programmer
- det kan være dyrt at finde fejl i et program ved aftestning
- ⇒ heller finde fejl før

5/29

Syntaks vs. semantik Tilgange Anvendelser Transitionssystemer Eksempler Operationel semantik Eksempler Aflukningen

Husk: Definition:

- Et transitionssystem er et par (Γ, →), hvor delene er
- Γ : en mængde af tilstande (eller konfigurationer)
- en orienteret graf
- Et afmærket transitionssystem er en tripel $(\Gamma, \Sigma, \rightarrow)$, hvor delene er
- Γ: en mængde af tilstande (eller konfigurationer)
- Σ : en mængde af mærker
- $ightarrow \subseteq \Gamma imes \Sigma imes \Gamma$: transitions-relationen
- De (afmærkede) transitionssystemer vi er interesserede her har alle specificeret et antal sluttilstande $T \subseteq \Gamma$.
- Nogle gange er vi også interesserede i (afmærkede) transitions systemer der har en starttilstand $\gamma_0 \in \Gamma$.
- Hüttels definition 3.2 inkluderer sluttilstande
- Jeg har i lektion 4 givet en definition af transitionssystemer med starttilstand, men uden sluttilstande.

6/29

Syntaks vs. semantik Tilgange Anvendelser Transitionssystemer Eksempler Operationel semantik Eksempler Aflukningen

sluttilstande $(\Gamma, \Sigma, \gamma_0, T, \rightarrow)$, hvor både Γ og Σ er endelige. En NFA er et afmærket transitionssystem med start- og

- En DFA er en NFA der er deterministisk, dvs.
- ② $\forall \gamma \in \Gamma : \forall a \in \Sigma : \forall \gamma_1', \gamma_2' \in \Gamma : (\gamma \xrightarrow{a} \gamma_1' \land \gamma \xrightarrow{a} \gamma_2') \Rightarrow \gamma_1' = \gamma_2'$ En PDA er et afmærket transitionssystem med start- og
- sluttilstande $(\Gamma, \Sigma_1 \times \Sigma_2 \times \Sigma_2, \gamma_0, T, \rightarrow)$, hvor Γ, Σ_1 og Σ_2 er endelige.
- Σ₁: inputalfabet, Σ₂: stackalfabet
 transitioner γ a/b,c γ': læs a, pop b, push c
- dvs. transitionssystemer giver en fælles ramme for syntaktisk beskrivelse af NFAs, DFAs og PDAs, nice!
- men hvad med deres semantik?

Mål: fælles ramme for beskrivelsen af virkemåden for NFA, PDA og en masse andre maskiner

Syntaks vs. semantik Tilgange Anvendelser Transitionssystemer Eksempler Operationel semantik Eksempler Aflukningen

ldé i operationel semantik:

- transitionssystemer (uden mærker) som den mest basale model for beregninger
- "abstrakt maskine"
- modeller (automater, grammatikker, programmeringssprog, ...) gives mening ved at angive hvordan man konverterer dem til transitionssystemer

Eksempel: En operationel semantik for endelige automater:

Givet en NFA $M = (Q, \Sigma, \delta, q_0, F)$:

 konfigurationer: tilstand i Q plus tilbageværende del af inputstrengen

dvs. $\Gamma = Q \times \Sigma^*$ (uendeligt mange konfigurationer!)

- slutkonfigurationer: sluttilstand i F plus tom streng dvs. $T = \{(q, \varepsilon) \mid q \in F\}$
- dvs. $(q, aw) \rightarrow (q', w)$ hver gang $q' \in \delta(q, a)$, og for alle $w \in \Sigma^*$ transitioner: at læse et tegn (eller ε) og gå i en anden tilstand

at $(q_0, w) \stackrel{*}{\rightarrow} \gamma$. *M* accepterer en streng *w* hvis og kun hvis der findes $\gamma \in T$ således

9/29

Syntaks vs. semantik Tilgange Anvendelser Transitionssystemer Eksempler Operationel semantik Eksempler Aflukningen

Eksempel: En operationel semantik for PDAs

Givet en PDA $M = (Q, \Sigma_1, \Sigma_2, \delta, q_0, F)$ (Σ_2 er stackalfabetet):

- konfigurationer: tilstand i Q plus tilbageværende del af dvs. $\Gamma = Q \times \Sigma_1^* \times \Sigma_2^*$ inputstrengen plus stackindhold
- slutkonfigurationer: sluttilstand i F plus tom streng plus vilkårlig stackstreng

dvs. $T = \{(q, \varepsilon, s) \mid q \in F, s \in \Sigma_2^*\}$

transitioner: at læse et tegn (eller ε) fra input og fra stacken, gå for alle $w \in \Sigma_1^*$, $s \in \Sigma_2^*$ i en anden tilstand og pushe et tegn (eller ε) på stacken dvs. $(q, aw, bs) \rightarrow (q', w, cs)$ hver gang $(q', c) \in \delta(q, a, b)$, og

at $(q_0, w, \varepsilon) \rightarrow \gamma$. *M* accepterer en streng *w* hvis og kun hvis der findes $\gamma \in T$ således

10/29

Eksempel: En operationel semantik for kontekstfrie grammatikker:

Givet en CFG $G = (V, \Sigma, R, S)$: konfigurationer: strenge af variable og terminaler:

 $\Gamma = (V \cup \Sigma)^*$

slutkonfigurationer: strenge af terminaler:

transitioner: derivationsskridt $uAv \Rightarrow uwv$ hvis $A \rightarrow w$ er i R

G genererer en streng $w \in T$ hvis og kun hvis $S \stackrel{\Rightarrow}{\Rightarrow} w$.

Syntaks vs. semantik Tilgange Anvendelser Transitionssystemer Eksempler Operationel semantik Eksempler Aflukningen

11/29

Definition 3.11: Lad $(\Gamma, \Longrightarrow, T)$ være et transitionssystem. Transitionsaflukningen i k skridt $\stackrel{k}{\Longrightarrow}$ er defineret induktivt ved

 $\gamma \stackrel{\mathbf{0}}{\Longrightarrow} \gamma \quad \text{for alle } \gamma$

 $\gamma \stackrel{n+1}{\Longrightarrow} \gamma'$ hvis der findes γ'' for hvilket $\gamma \Longrightarrow \gamma'' \stackrel{n}{\Longrightarrow} \gamma'$

Vi skriver $\gamma \stackrel{*}{\Longrightarrow} \gamma'$ hvis der findes et k så $\gamma \stackrel{k}{\Longrightarrow} \gamma'$.

- dvs. $\gamma \stackrel{k}{\Longrightarrow} \gamma'$ hvis der findes en *transitionsfølge*
- $\gamma \Longrightarrow \gamma_1 \Longrightarrow \gamma_2 \Longrightarrow \ldots \Longrightarrow \gamma_{k-1} \Longrightarrow \gamma'$
- vi har allerede brugt aflukningen ⇒ adskillige gange

Bud: big-step

Bims

Aud: big-step

Derivationstræer

Aud: small-step

Egenskaber

Bud: big-step

Operationel semantik

Big-step-semantik for aritmetiske udtryk (uden variable)

- Derivationstræer
- Small-step-semantik for aritmetiske udtryk (uden variable) Egenskaber
- Big-step-semantik for boolske udtryk (uden variable)

Bims Aud: big-step Derivationstræer Aud: small-step Egenskaber Bud: big-step 13/29

$$n \in \mathbf{Num} - \mathbf{Numeraler}$$

 $x \in Var - Variable$

a ∈ Aud — Aritmetiske udtryk

 $b \in \mathbf{Bud} - \mathbf{Boolske}$ udtryk

 $S \in \mathbf{Kom} - \mathbf{Kommandoer}$

basiselementer $:= n_1 \times |a_1 + a_2| a_1 \times a_2 |a_1 \times a_2| (a_1)$:: || $a_1 = a_2 \mid a_1 < a_2 \mid \neg b_1 \mid b_1 \land b_2 \mid (b_1)$ $x:=a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2$ | while b do S

6

S

sammensatte elementer

umiddelbare bestanddele

Aritmetiske udtryk uden variable:

Aud:
$$a := n | a_1 + a_2 | a_1 * a_2 | a_1 - a_2 | (a_1)$$

hvor n er et numeral (talord) (en streng!), ikke et tal

- numeraler skrives <u>42</u>, tal skrives 42
- *værdien* af <u>42</u> er 42
- vi har en semantisk funktion $\mathcal{N}: \mathbf{Num} \to \mathbb{Z}$ som giver værdien af en numeral

Big-step-semantik: udtryk evalueres i ét hug

- transitioner fra udtryk til værdier
- f.x. en transition $(\underline{2}+\underline{4})*(\underline{6}+\underline{1}) \rightarrow 42$

Bims [plus_{bss}] Aud: big-step ↓ ~ Derivationstræer $a_2 \rightarrow v_2$ Aud: small-step hvor $v = v_1 + v_2$ Egenskaber Bud: big-step

15/29

[minus_{bss}] \rightarrow V_1 $a_2 \rightarrow V_2$ a_1 - $a_2 \rightarrow V$ $a_1+a_2 \rightarrow V$ hvor $v = v_1 - v_2$

 $[\mathsf{mult}_\mathsf{bss}]$ $[\mathsf{num}_\mathsf{bss}]$ [parent_{bss}] \rightarrow V_1 $a_2 \rightarrow V_2$ n
ightarrow v hvis $\mathcal{N}[\![n]\!] = v$ $a_1 * a_2 \rightarrow V$ $(a_1) \rightarrow V_1$ $a_1 \rightarrow V_1$ hvor $v = v_1 \cdot v_2$

16/29

transitionsregel $\left[\text{minus}_{\text{bss}}\right) \xrightarrow[]{a_1 \rightarrow v_1} a_2 \rightarrow v_2$ $a_1 - a_2 \rightarrow V$ konklusion

hvor $v \neq v_1 - v_2$

sidebetingelse

aksiom (transitionsregel uden præmis)

 $[num_{bss}]$

n
ightarrow
u hvis $\mathcal{N}[\![n]\!] =
u$

17/29

Aud: big-step

Bims

Derivationstræer

Aud: small-step

Egenskaber

Bud: big-step

 $[\mathsf{plus}_\mathsf{bss}]$

а \rightarrow V_1 $a_2 \rightarrow V_2$ $a_1+a_2 \rightarrow V$

hvor $v = v_1 + v_2$

[minus_{bss}]

 $a_1 \rightarrow v_1 \quad a_2 \rightarrow v_2$ a_1 $-a_2 \rightarrow V$

hvor $v = v_1 - v_2$

 $[\mathsf{mult}_\mathsf{bss}]$

 $a_1 \rightarrow v_1 \quad a_2 \rightarrow v_2$

hvor $v = v_1 \cdot v_2$

 $a_1 \star a_2 \rightarrow V$

 $(a_1) \rightarrow V_1$ $a_1 \rightarrow V_1$

[parent_{bss}] [num_{bss}]

n
ightarrow
u hvis $\mathcal{N}[\![n]\!] =
u$

Transitionssystemet (Γ, \rightarrow, T) :

- ullet $\Gamma = \mathsf{Aud} \cup \mathbb{Z}, \ T = \mathbb{Z}$
- ullet \to består af præcis de transitioner som kan udledes af aksiomerne ved brug af et endeligt antal transitionsregler

Bims

Derivationstræer

Aud: big-step

Aud: small-step

Egenskaber Bud: big-step

At konstruere et derivationstræ for udtrykket $(\underline{2}+\underline{4})*(\underline{6}+\underline{1})$:

 $(\underline{2} {+} \underline{4}) * (\underline{6} {+} \underline{1}) \to ?$

Aud: big-step

Bims

Derivationstræer

Aud: small-step

Egenskaber

Bud: big-step

19/29

At konstruere et derivationstræ for udtrykket $(\underline{2}+\underline{4})*(\underline{6}+\underline{1})$:

 $(\underline{2}{+}\underline{4}) \, \rightarrow \, \boldsymbol{?}$

 $(\underline{6}+\underline{1}) \rightarrow ?$

 $(\underline{2} + \underline{4}) * (\underline{6} + \underline{1}) \rightarrow ?$

Bud: big-step

Bims

Aud: big-step

Derivationstræer

Aud: small-step

Egenskaber

Bud: big-step

At konstruere et derivationstræ for udtrykket $(\underline{2}+\underline{4})*(\underline{6}+\underline{1})$:

$$\underline{2}+\underline{4} \rightarrow ?$$

$$(\underline{2}+\underline{4}) \rightarrow ?$$

$$(\underline{6}+\underline{1}) \rightarrow ?$$

$$(\underline{2}+\underline{4}) * (\underline{6}+\underline{1}) \rightarrow ?$$

At konstruere et derivationstræ for udtrykket $(\underline{2}+\underline{4}) * (\underline{6}+\underline{1})$:

Bims

Aud: big-step

Derivationstræer

Aud: small-step

Egenskaber

Bud: big-step

Bims

21/29

$$\underline{2} \rightarrow \underline{2} \quad \underline{4} \rightarrow 4$$

$$\underline{6} \rightarrow \underline{6} \qquad \underline{1} \rightarrow \underline{1}$$

$$\begin{array}{c}
\underline{2+4} \to 6 \\
(\underline{2+4}) \to 6
\end{array}$$

 $\underline{6}+\underline{1} \rightarrow 7$

 $(\underline{6}+\underline{1}) \rightarrow 7$

$$(\underline{2}{+}\underline{4}) \, \ast \, (\underline{6}{+}\underline{1}) \, \rightarrow 42$$

At konstruere et derivationstræ for udtrykket $(\underline{2}+\underline{4}) * (\underline{6}+\underline{1})$:

derivationstræer:

- aksiomer i bladene
- knude k har sønner p_1, p_2, \ldots, p_n hvis og kun hvis der er en transitionsregel $\rho_1, \rho_2, \ldots, \rho_n$

Aud: big-step Derivationstræer Aud: small-step Egenskaber Bud: big-step 23/29

Small-step-semantik: udtryk evalueres et skridt ad gangen

- transitioner fra udtryk til udtryk og fra udtryk til værdier

$$(\underline{2}+\underline{4})*(\underline{6}+\underline{1}) \Rightarrow (2+\underline{4})*(\underline{6}+\underline{1})$$
$$\Rightarrow (2+4)*(\underline{6}+\underline{1})$$
$$\Rightarrow (6)*(\underline{6}+\underline{1})$$

- transitionssystem (Γ, \Rightarrow, T) :
- $\Gamma = \mathsf{Aud}' \cup \mathbb{Z}, \ T = \mathbb{Z}$
- ⇒ defineret ved transitionsregler (coming up!)

Aritmetiske udtryk uden variable, men med værdier:

Aud':
$$a := n | v | a_1 + a_2 | a_1 * a_2 | a_1 - a_2 | (a_1)$$

hvor $n \in \mathbf{Num}$ er et numeral og $v \in \mathbb{Z}$ en værdi

Bims

Aud: big-step

Derivationstræer

Aud: small-step

Egenskaber

Bud: big-step

Bims

[plus-1_{sss}]
$$\frac{a_1 \Rightarrow a'_1}{a_1 + a_2 \Rightarrow a'_1 + a_2}$$

[plus-2_{sss}]
$$\frac{a_2\Rightarrow a_2'}{a_1+a_2\Rightarrow a_1+a_2'}$$

[plus-3_{sss}]
$$v_1+v_2 \Rightarrow v$$
 hvor $v = v_1 + v_2$

[mult-1_{sss}]
$$\frac{a_1 \Rightarrow a_1'}{a_1 * a_2 \Rightarrow a_1' * a_2}$$

$$\frac{a_2 \Rightarrow a_2'}{a_1 * a_2 \Rightarrow a_1 * a_2'}$$

[mult-2_{sss}]

[mult-3_{sss}]
$$v_1 * v_2 \Rightarrow v$$
 hvor $v = v_1 \cdot v_2$

[sub-1_{sss}]
$$\frac{a_1 \Rightarrow a'_1}{a_1 - a_2 \Rightarrow a'_1 - a_2}$$

$$\frac{a_2 \Rightarrow a_2'}{a_1 - a_2 \Rightarrow a_1 - a_2'}$$

 $[\operatorname{sub-2}_{\operatorname{sss}}]$

[sub-3_{sss}]
$$v_1-v_2 \Rightarrow v$$
 hvor $v = v_1 - v_2$

[parent-1_{sss}]
$$\frac{a_1 \Rightarrow a'_1}{(a_1) \Rightarrow (a'_1)}$$

[parent-2_{sss}]

 $(v) \Rightarrow v$

[num_{sss}]
$$n \Rightarrow v$$
 hvis $\mathcal{N}\llbracket n \rrbracket = v$

Sætning: Vores big-step- og small-step-semantikker for **Aud** er ækvivalente: Givet $a \in \mathbf{Aud}$ og $v \in \mathbb{Z}$, da har vi $a \to v$ hvis og kun hvis $a \stackrel{\Rightarrow}{\Rightarrow} v$. (Bevis næste gang)

Definition: En operationel semantik givet ved et transitionssystem (Γ, \to, T) kaldes deterministisk hvis $\gamma \to \gamma_1$ og $\gamma \to \gamma_2$ medfører $\gamma_1 = \gamma_2$ for alle $\gamma \in \Gamma$ og $\gamma_1, \gamma_2 \in T$ (!). Semantikken kaldes deterministisk på lang sigt hvis $\gamma \overset{*}{\to} \gamma_1$ og $\gamma \overset{*}{\to} \gamma_2$ medfører $\gamma_1 = \gamma_2$ for alle $\gamma \in \Gamma$ og $\gamma_1, \gamma_2 \in T$.

Sætning 3.13 / 3.15 : Vores big-step-semantik for **Aud** er deterministisk. Vores small-step-semantik for **Aud** er deterministisk på lang sigt. (Bevises senere)

Opgave π: Vores small-step-semantik for **Aud** er *ikke deterministisk*. Lav den om så den er!

Aud: big-step Derivationstræer Aud: small-step Egenskaber **Bud: big-step**

27/29

Bims

Boolske udtryk:

Bud:
$$b := a_1 = a_2 \mid a_1 < a_2 \mid \neg b_1 \mid b_1 \land b_2 \mid (b_1)$$

- transitionssystem (**Bud** \cup {tt, tf}, \rightarrow_b , {tt, tf})
- t = sandt, t = falsk
- →_a er transitioner fra Aud-transitionssystemet

[ligmed-1_{bss}]
$$\frac{a_1 \rightarrow_a v_1}{a_1 = a_2 \rightarrow_b tt} \text{ hvis } v_1 = v_2$$

$$[ligmed-2bss]
$$\frac{a_1 \rightarrow_a v_1}{a_1 = a_2 \rightarrow_b tt} \text{ hvis } v_1 \neq v_2$$

$$[størreend-1bss]
$$\frac{a_1 \rightarrow_a v_1}{a_1 < a_2 \rightarrow_b tt} \text{ hvis } v_1 < v_2$$$$$$

[størreend-
$$2_{bss}$$
] $\frac{a_1 \rightarrow_a V_1}{a_1 < a_2 \rightarrow_b ff}$ hvis $v_1 \not< v_2$

Bud: big-step

$$\frac{b \rightarrow_b t}{\neg b \rightarrow_b f}$$

$$\frac{b \rightarrow_b ff}{\neg b \rightarrow_b ff}$$

$$\frac{b_1 \rightarrow_b t}{\neg b_1 \rightarrow_b V}$$

$$\frac{b_1 \rightarrow_b t b_2 \rightarrow_b t}{b_1 \wedge b_2 \rightarrow_b t}$$

$$\frac{b_1 \rightarrow_b ff}{b_1 \wedge b_2 \rightarrow_b ff}$$

$$\frac{b_1 \rightarrow_b ff}{b_1 \wedge b_2 \rightarrow_b ff}$$

$$\frac{b_2 \rightarrow_b ff}{b_1 \wedge b_2 \rightarrow_b ff}$$

[og-1_{bss}]

$$b_1 \wedge b_2 \rightarrow_b ff$$

 $[og-3_{bss}]$

[0g-2_{bss}]