

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Кафедра автоматических систем

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

по дисциплине «Сети и системы передачи информации»

«Исследование процессов в проводных линиях связи»

Работу выполнил: Савилов Дмитрий Алексеевич		
Группа: ККСО-04-19	Подпись	
Работу проверил: Новоженин Максим Борисович	Подпись	
Работа представлена к защите «»2022 г.		

Лабораторная работа №2

Исследование процессов в проводных линиях связи

Цель: Экспериментальное подтверждение волновых процессов в проводных линиях связи, используемых в качестве физической среды при организации каналов передачи данных и приобретение практических навыков постановки и проведения исследований.

Схема № 1.

Рис. 1 ЛС с потерями в режиме согласованной линии.

В данной схемы использованы следующие элементы:

- Осциллограф
- Переменный источник тока
- Ключ
- Резистор
- Заземление
- Двухпроводная ЛС с потерями

$$Z_0 = \sqrt{\frac{L}{c}}; L \cdot C = \frac{1}{c^2} = 11,11 \cdot 10^{-18}$$

$$Z_0 = \sqrt{\frac{L^2}{11,11 \cdot 10^{-18}}} = \sqrt{\frac{11,11 \cdot 11,11 \cdot 10^{-12}}{11,11 \cdot 10^{-18}}} = 3,3 \text{ кОм}$$

$$C = 10^{-12} = 1 \pi \Phi$$
 $G = \frac{RC}{L} = \frac{10^{-12}}{11,11 \cdot 10^{-18}} = 9 \cdot 10^{-8} = 90 \text{ HCm/m}$

Puc.2 При 500 КГц.

Puc.3 При 800 КГц.

Проведем моделирование схемы для $\it R=10\,{\rm \, Om/m}$. Поднимаем проводимость до 900 См/м.

Из показаний осциллограммы следует, что $T2-T1\approx 163\,$ нС. Запоздание

выходного сигнала относительно входного на длину линии в режиме бегущей волны $\beta=197\,$ тС. Амплитуда входного напряжения Ui=7B. Амплитуда выходного напряжения U=6B.

След-но получим:

$$\begin{split} \beta &= \omega \sqrt{LC} = 500 \cdot 10^3 \sqrt{11,11} \cdot 10^{-6} \cdot 10^{-12} = 166 \cdot 10^{-5} \\ \varphi &= \sqrt{RG} = \sqrt{10 \cdot 900 \cdot 10^{-9}} = 3 \cdot 10^{-3} \\ U(t) &= U_i(t) e^{-\alpha t} \cos \omega t - \beta l = 7 \cdot e^{-50 \cdot 3 \cdot 10^{-3}} \cdot \cos \left(-166 \cdot 10^{-5} \cdot 50\right) = 6 \text{ B.} \end{split}$$

Cxema № 2. xsc1 V1 50 m 0.001 Ω 12MHz 0°

Рис.4 ЛС с потерями в режиме несогласованной разомкнутой линии.

В данной схемы использованы следующие элементы:

- Осциллограф
- Переменный источник тока
- Заземление
- Двухпроводная ЛС с потерями

Рис. 5 Показания осциллографа.

Из графика поймём:

Запаздывание выходного сигнала относительно входного $T2-T1 \approx 162$ нС. Амплитуда входного напряжения Ui=6B. Амплитуда выходного напряжения U=14 B.

Схема № 3.

Рис. 6 ЛС с потерями в режиме несогласованной замкнутой линии.

В данной схемы использованы следующие элементы:

• Переменный источник тока

- Двухпроводная ЛС с потерями (3 шт.)
- Осциллограф
- Датчик тока

Рис. 7 Показания осциллографа.

Из графика узнаем:

Запаздывание выходного сигнала относительно входного $T2-T1\approx 83$ нС. Амплитуда входного напряжения Ui=7B. Амплитуда выходного напряжения U=7B. Амплитуда выходного тока I=800мА.

Схема № 4.

Рис. 8 ЛС с потерями в режиме несогласованной нагрузки.

В данной схемы использованы следующие элементы:

- Построитель частотных характеристик
- Двухпроводная ЛС с потерями
- Переменный источник тока
- Резистор
- Ключ

Рис. 8 АЧХ, ключ разомкнут.

Рис. 9 АЧХ, ключ замкнут.

Рис. 10 ФЧХ, ключ разомкнут.

Puc. 11 Φ ЧХ, ключ замкнут.

Вывод

В данной лабораторной работе я изучил волновые процессы в проводных линиях связи и получил практические навыки.