

- () Preliminary Specifications(V) Final Specifications

Module	14.0"(13.97") HD 16:9 Color TFT-LCD with LED Backlight design			
Model Name	B140XTN02.0 (H/W:3A)			
Note (♠)	LED Backlight with driving circuit design			

Customer	Date
Checked & Approved by	Date

Note: This Specification is subject to change without notice.

Approved by	Date
<u>Claire Yu</u>	11/09/2011
Prepared by	Date

NBBU Marketing Division AU Optronics corporation

Contents

1. Handling Precautions	4
2. General Description	5
2.1 General Specification	5
2.2 Optical Characteristics	6
3. Functional Block Diagram	
4. Absolute Maximum Ratings	12
4.1 Absolute Ratings of TFT LCD Module	12
4.2 Absolute Ratings of Environment	12
5. Electrical Characteristics	13
5.1 TFT LCD Module	13
5.2 Backlight Unit	15
6. Signal Interface Characteristic	16
6.1 Pixel Format Image	16
6.2 The Input Data Format	17
6.3 Integration Interface Requirement	18
6.4 Interface Timing	20
7. Panel Reliability Test	22
7.1 Vibration Test	22
7.2 Shock Test	22
7.3 Reliability Test	22
8. Mechanical Characteristics	23
8.1 LCM Outline Dimension	23
9. Shipping and Package	25
9.1 Shipping /Carton Label Format	25
9.2 Carton Package	26
9.3 Shipping Package of Palletizing Sequence	26
10. Appendix: EDID Description	27

Record of Revision

Version and Date Page		Page	Old description	New Description	Remark
0.1	0.1 2011/11/09 All		First Edition for Customer		

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11)After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electronic breakdown.

AU OPTRONICS CORPORATION

2. General Description

B140XTN02.0 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:9 HD, 1366(H) x 768(V) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are LVDS interface compatible.

B140XTN02.0 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 °C condition:

Items	Unit	Specifications					
Screen Diagonal	[mm]	354.95					
Active Area	[mm]	309.4 x 173	3.95				
Pixels H x V		1366 x 3(R	GB) x 76	8			
Pixel Pitch	[mm]	0.2265 x 0.	2265				
Pixel Format		R.G.B. Verl	tical Strip	е			
Display Mode		Normally W	hite				
White Luminance (Note: ILED is LED current)	[cd/m ²]	200 typ. (5 points average) 170 min. (5 points average)					
Luminance Uniformity		1.25 max. (5 points))			
Contrast Ratio		500 (typ)					
Response Time	[ms]	8 typ / 16 M	lax				
Nominal Input Voltage VDD	[Volt]	3.3 typ.					
Power Consumption	[Watt]	3.2 max. (Ir	nclude Lo	ogic and	Blu power)		
Weight	[Grams]	270 max.					
Physical Size			Min.	Тур.	Max.		
Include bracket		Length	319.9	320.4	320.9		
	[mm]	Width	204.6	205.1	205.6		
		Thickness 3.0(Panel Side) 3.2(PCBA Side)					
Electrical Interface		1 channel L	VDS				
Glass Thickness	[mm]	0.4					
Surface Treatment		Glare, Hardness 3H,					
Support Color		262K colors	s (RGB	6-bit)			

Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -20 to +60
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
White Luminance			5 points average	170	200	-	cd/m ²	1, 4, 5.
Viewing Angle		$ heta_{R} hinspace heta_{L}$	Horizontal (Right) CR = 10 (Left)		45 45	-	degree	
viewing Ai	igie	Ψн Ψ∟	Vertical (Upper) CR = 10 (Lower)		15 35			4, 9
Luminan Uniformi		δ_{5P}	5 Points	•	-	1.25		1, 3, 4
Luminance Uniformity		δ _{13P}	13 Points	ı	-	1.60		2, 3, 4
Contrast Ratio		CR		400	500	-		4, 6
Cross ta	lk	%				4		4, 7
		Tr	Rising	-	2			
Response ⁻	Time	T_f	Falling	-	6		msec	4, 8
		T _{RT}	Rising + Falling	-	8	16		
	Red	Rx		TBD	TBD	TBD		
	neu	Ry		TBD	TBD	TBD		
	Groon	Gx		TBD	TBD	TBD		
Color / Chromaticity	Color / Green			TBD	TBD	TBD		
Coodinates	Divis	Вх	CIE 1931	TBD	TBD	TBD		4
	Blue	Ву		TBD	TBD	TBD	-	
	\\/\b!+-	Wx		0.283	0.313	0.343		
	White	Wy		0.299	0.329	0.359		
NTSC		%			45			

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

2 _		Maximum Brightness of five points
δ w5	= '	Minimum Brightness of five points
2		Maximum Brightness of thirteen points
δ w13	= '	Minimum Brightness of thirteen points

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting

Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Center of the screen

Note 5 Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points , $Y_L = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$

L (x) is corresponding to the luminance of the point X at Figure in Note (1).

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR)=
$$\frac{\text{Brightness on the "White" state}}{\text{Brightness on the "Black" state}}$$

Note 7: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

AU OPTRONICS CORPORATION

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

AU OPTRONICS CORPORATION

Note 9. Definition of viewing angle

Viewing angle is the measurement of contrast ratio ≥ 10 , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 14.0 inches wide Color TFT/LCD 40 Pin one channel Module

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

	<u> </u>				
Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 4
Operation Humidity	HOP	5	95	[%RH]	Note 4
Storage Temperature	TST	-20	+60	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Operating Range

Storage Range

+

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	_	-	0.9	[Watt]	Note 1
IDD	IDD Current	-	-	333	[mA]	Note 1
lRush	Inrush Current	-	-	2000	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	

Note 1 : Maximum Measurement Condition : Black Pattern at 3.3V driving voltage. (P_{max}=V_{3.3} x I_{black})

Note 2: Measure Condition

Vin rising time

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
V_{TH}	Differential Input High Threshold (Vcm=+1.2V)	-	100	[mV]
V _{TL}	Differential Input Low Threshold (Vcm=+1.2V)	-100	-	[mV]
V _{ID}	Differential Input Voltage	100	600	[mV]
V _{CM}	Differential Input Common Mode Voltage	1.125	1.375	[V]

Note: LVDS Signal Waveform

Single-end Signal

5.2.1 LED characteristics

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power Consumption	PLED	-	-	2.3	[Watt]	(Ta=25°C), Note 1 Vin =12V
LED Life-Time	N/A	15,000	-	-	Hour	(Ta=25°C), Note 2

Note 1: Calculator value for reference P_{LED} = VF (Normal Distribution) * IF (Normal Distribution) / Efficiency

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

5.2.2 Backlight input signal characteristics

Parameter	Symbol	Min	Тур	Max	Units	Remark
LED Power Supply	VLED	6.0	12.0	21.0	[Volt]	
LED Enable Input High Level	VLED EN	2.5	-	5.5	[Volt]	
LED Enable Input Low Level	VLED_EN	-	-	0.8	[Volt]	Define as
PWM Logic Input High Level	VDV44 511	2.5	-	5.0	[Volt]	Connector Interface
PWM Logic Input Low Level	VPWM_EN	-	-	0.8	[Volt]	(Ta=25°C)
PWM Input Frequency	FPWM	700	1K	2K	Hz	
PWM Duty Ratio	Duty	5	-	100	%	

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1				1366
1st Line	R <mark>G B</mark>	R G B		R G B	R G B
	ı		1	ı	1
			:	'	:
					.
			•	•	.
	:		:		:
		,	•	1	'
			1	'	'
	· ·	١,	'	'	'
768 th Line√	R G B	R G B		R G B	R G B

6.2 The Input Data Format

RxCLKIN	
RxIN0	G0 R5 R4 R3 R2 R1 R0
RxIN1	B1 B0 G5 G4 G3 G2 G1
RxIN2	DE VS HS B5 B4 B3 B2

Signal Name	Description	
R5	Red Data 5 (MSB)	Red-pixel Data
R4	Red Data 4	Each red pixel's brightness data consists of
R3 R2	Red Data 3 Red Data 2	these 6 bits pixel data.
R1	Red Data 1	
R0	Red Data 0 (LSB)	
	,	
	Red-pixel Data	
G5	Green Data 5 (MSB)	Green-pixel Data
G4	Green Data 4	Each green pixel's brightness data consists of
G3 G2	Green Data 3	these 6 bits pixel data.
G2 G1	Green Data 2 Green Data 1	
G0	Green Data 0 (LSB)	
G.G		
	Green-pixel Data	
B5	Blue Data 5 (MSB)	Blue-pixel Data
B4	Blue Data 4	Each blue pixel's brightness data consists of
B3	Blue Data 3	these 6 bits pixel data.
B2 B1	Blue Data 2 Blue Data 1	
B0	Blue Data 0 (LSB)	
	Biao Bata 6 (200)	
	Blue-pixel Data	
RxCLKIN	Data Clock	The signal is used to strobe the pixel data and
		DE signals. All pixel data shall be valid at the
DE	Dianley Timing	falling edge when the DE signal is high.
DE	Display Timing	This signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data
		shall be valid to be displayed.
VS	Vertical Sync	The signal is synchronized to RxCLKIN.
HS	Horizontal Sync	The signal is synchronized to RxCLKIN.

Note: Output signals from any system shall be low or High-impedance state when VDD is off.

6.3 Integration Interface Requirement

6.3.1 Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector
Manufacturer	STM
Type / Part Number	MSAK24025p40
Mating Housing/Part Number	PK24025P40

6.3.2 Pin Assignment

LVDS is a differential signal technology for LCD interface and high speed data transfer device.

		B140XTN02.0
Pin	Signal	Description
1	NC	No Connection (Reserve)
2	VDD	PowerSupply,3.3V(typical)
3	VDD	PowerSupply,3.3V(typical)
4	DVDD	DDC 3.3Vpower
5	NC	No Connection (Reserve)
6	SCL	DDC Clock
7	SDA	DDC Data
8	Rin0-	-LVDS differential data input(R0-R5,G0)
9	Rin0+	+LVDS differential data input(R0-R5,G0)
10	GND	Ground
11	Rin1-	-LVDS differential data input(G1-G5,B0-B1)
12	Rin1+	+LVDS differential data input(G1-G5,B0-B1)
13	GND	Ground
14	Rin2-	-LVDS differential data input(B2-B5,HS,VS,DE)
15	Rin2+	+LVDS differential data input(B2-B5,HS,VS,DE)
16	GND	Ground
17	ClkIN-	-LVDS differential clock input
18	ClkIN+	+LVDS differential clock input
19	NC	No Connection (Reserve)
20	NC	No Connection (Reserve)
21	NC	No Connection (Reserve)
22	GND	Ground
23	NC	No Connection (Reserve)

24	NC	No Connection (Reserve)
25	GND	Ground-Shield
26	NC	No Connection (Reserve)
27	NC	No Connection (Reserve)
28	GND	Ground-Shield
29	NC	No Connection (Reserve)
30	NC	No Connection (Reserve)
31	VLED_GND	LED Ground
32	VLED_GND	LED Ground
33	VLED_GND	LED Ground
34	NC	No Connection (Reserve)
35	PWM	System PWM Signal Input
36	LED_EN	LED enable pin(+3V Input)
37	NC	No Connection (Reserve)
38	VLED	LED Power Supply 6V-21V
39	VLED	LED Power Supply 6V-21V
40	VLED	LED Power Supply 6V-21V

Note1: Input signals shall be low or High-impedance state when VDD is off.

AU OPTRONICS CORPORATION

6.4.1 Timing Characteristics

Basically, interface timings should match the 1366 x 768 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min. Typ. Max.		Unit	
Frame	e Rate	-	TBD 60 -		Hz	
Clock fr	equency	1/ T _{Clock}	•	TBD	80	MHz
	Period	T _V	TBD	TBD	TBD	
Vertical	Active	T _{VD}		768		T_Line
Section	Blanking	T _{VB}	TBD	-	TBD	
	Period	T _H	TBD	-	TBD	
Horizontal	Active	T _{HD}		1366		T_{Clock}
Section	Blanking	T HB	TBD	-	TBD	

Note: DE mode only

6.4.2 Timing diagram

AU OPTRONICS CORPORATION

6.5 Power ON/OFF Sequence

Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off

When the adapter is hot plugged, the backlight power supply sequence is shown as below.

	Powe	er Sequence	Гiming	
	Units			
Parameter	Min.	Тур.	Max.	Omto
T1	0.5	-	10	
T2	0	-	50	
Т3	200	-	-	
T4	200	-	-	
T5	0	-	50	
T6	0	-	10	
Т7	500	-	-	ma
Т8	10	-	-	ms
Т9	10	-	-	
T10	10	-	-	
T11	10	-	-	
T12	0.5	-	10	
T13	1*	-	-	
T14	1*	-	-	

*Note: If Seamless change, T13 & T14 = 5 x TPWM (TPWM= 1/PWM Frequency)

.....

7. Panel Reliability Test

7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

Frequency: 10 - 500Hz Random

30 Minutes each Axis (X, Y, Z) Sweep:

7.2 Shock Test

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2 ms

X,Y,Z .one time for each side Pulse:

7.3 Reliability Test

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40℃, 90%RH, 300h	
High Temperature Operation	Ta= 50℃, Dry, 300h	
Low Temperature Operation	Ta= 0℃, 300h	
High Temperature Storage	Ta= 60℃, 35%RH, 300h	
Low Temperature Storage	Ta= -20℃, 50%RH, 250h	
Thermal Shock Test	Ta=-20℃to 60℃, Duration at 30 min, 100 cycles	
ESD	Contact : ±8 KV	Note 1
	Air: ±15 KV	

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

8. Mechanical Characteristics

8.1 LCM Outline Dimension

23 of 27

Back View

B140XTN02.0 __Document Version : 0.1 24 of 27

- 9. Shipping and Package
- 9.1 Shipping /Carton Label Format

TBD

9.2 Carton Package

The outside dimension of carton is 455 (L)mm x 380 (W)mm x 355 (H)mm

9.3 Shipping Package of Palletizing Sequence

10. Appendix: EDID Description

TBD