Claus Aranha caranha@cs.tsukuba.ac.jp

Department of Computer Science

March 27, 2014

What is this course about?

A "Strange" Course

Introduction

Goal: Improve the understanding of algorithms and programming techniques.

Method: Solve short and hard problems using well known algorithms

Course Outline

Introduce new concept:

- Eg: Sorting
- 4 problems related to this concept

Try to solve the problems:

- Is my algorithm correct?
- Is my algorithm efficient?
- Can I explain my algorithm?

Submit the final Version

- Automatic Robot Judge

Discuss the problems in Class

- Ask questions
- Explain your algorithm
- Exchange ideas

Course Languages

- Program Language: C, C++, Java, Pascal
- Spoken Language: Japanese
- Materials and Problems: English
- Reports and Questions: Both!

Short (but sometimes hard) problem involving algorithms

Components

- Problem Outline
- Example Data
- Example Result
- Hidden Data
- Judge Result

Start with an integer n. If n is even, divide by 2. If n is odd, multiply by 3 and add 1. Repeat this process with the new value of n, terminating when n = 1. For example:

22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

In the example above, the cycle length of 22 is 16. Given any two numbers i and j, you are to determine the maximum cycle length over all numbers between i and j, including both endpoints.

Short (but sometimes hard) problem involving algorithms

Components

- Problem Outline
- Example Data
- Example Result
- Hidden Data
- Judge Result

Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

Output

For each pair of input integers i and j, output i, j in the same order in which they appeared in the input and then the maximum cycle length for integers between and including i and j.

Short (but sometimes hard) problem involving algorithms

Components

- Problem Outline
- Example Data
- Example Result
- Hidden Data
- Judge Result

Sample Input

1 10 100 200

201 210

900 1000

Sample Output

1 10 20 100 200 125

100 200 125

201 210 89

900 1000 174

Short (but sometimes hard) problem involving algorithms

System

Components

- Problem Outline
- Example Data
- Example Result
- Hidden Data
- Judge Result

Sample Input

1 10 100 200

201 210

900 1000

Sample Output

1 10 20

100 200 125

201 210 89

900 1000 174

Short (but sometimes hard) problem involving algorithms

Components

Introduction

- Problem Outline
- Example Data
- Example Result
- Hidden Data
- Judge Result

Accepted

Rejected

Time Limited Exceeded (TLE)

How the Classes will work

Monday

Introduction

Problem presentation: The week theme will be presented, and 4 problems regarding that theme will be shown.

Friday

Problem discussion: Students discuss together questions about problems and how to solve them.

Deadline

Deadline for program submission is Sunday, Midnight Programs submitted after the deadline are accepted with penalty.

Evaluation is based on solving the programs, and participation in class.

System

- C: One problem per class;
- B: Two problems per class, or 20 problems;
- A: Three problems per class, or 30 problems;

Bonus: Grade Up

Good participation in class and good Comments in code.

Penalty: Grade Down

More than 25% late problems.

How to submit problems - 1

Problem Submission System

- Make an account at
 - http://www.programming-challenges.com;
 (If possible use your Student Number as ID)

System

- 2 Send your ID to the professor by e-mail; mailto:caranha@cs.tsukuba.ac.jp
- You will be added to the classroom Tsukuba Programming Challenges 2015;

How to submit problems - 2

Introduction

Problem Submission System

- Click "Joined Classrooms", select Tsukuba Programming Challenges 2015;
- 6 Click the name of the problem for a description, then "Submit" to send your code.
- 6 Choose the language; upload a file or paste your code.
- 7 Wait for the response from the Judge!

Some notes about program submission

Please Keep in Mind:

Introduction

- Don't copy programs from the internet, or from your friends;
- It is okay to copy <u>ideas</u> from the internet or your friends;
 If you do, mention it in the comments
- Add some commentary on top of the program, explaining what you did, what went right, or what went wrong.

Some notes about program submission

Good Comment

```
/**
```

- * I used quicksort to solve this problem.
- * I sorted the age of the persons in the input.
- * To make it faster, people with the same age were
- * removed from the data.
- */

Bad Comment

```
/**
```

* Quicksort.

*/

How the Judge Works

Accepted

Introduction

Congratulations!

Wrong Answer

Your answer does not match with the judge's answer. Remember to check for worst-case scenarios!

Time Limited Exceeded

Your algorithm is too slow. Think about computational efficiency.

Compilation Error, Runtime Error, etc.

- What are Programming Contests?
- Examples: ACM-ICPC, TOPCODER, ATCODER, ...

- 3n+1 Problem
- Minesweeper
- The Trip

Interpreter

A proper introduction to these problems will be made next week!