

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Capítulo I

Pós-Otimização e Análise de Sensibilidade

Introdução

Nos modelos de programação linear, os parâmetros envolvidos (coeficientes **c**, **b** e **A**) raramente são conhecidos com exatidão, pelo que muitas vezes são valores aproximados, estando sujeitos a variações ao longo do tempo. Por outro lado, pode tornar-se necessário adicionar uma nova variável ou restrição ao modelo.

Deste modo, é fundamental saber se estas modificações alteram a solução ótima inicialmente obtida e, se for o caso, determinar uma nova solução ótima, sendo também importante perceber quão sensível é uma solução a variações dos dados.

Tradicionalmente, costumam ser realizados dois tipos de estudo:

- Análise de pós-otimização, em que é estudado o impacto na solução ótima, de alterações discretas nos parâmetros do modelo;
- Análise de sensibilidade, em que o principal objetivo é a determinação de intervalos de variação para os parâmetros, para os quais a solução ótima não é afetada.

Conceitos introdutórios

Considere-se o seguindo exemplo (*Exemplo 1 do Capítulo 2 de Investigação Operacional*).

"Um fazendeiro deseja otimizar as plantações de arroz e milho da sua quinta, ou seja, quer saber que áreas deve plantar de arroz e milho de modo a ser máximo o lucro obtido das plantações.

O lucro por unidade de área plantada de arroz e de milho é de, respetivamente, 5 e 2 unidades monetárias (UM).

As áreas a plantar de arroz e milho não devem ser maiores que 3 e 4 unidades de área, respetivamente.

O consumo total de mão-de-obra (medido em homens/hora) nas duas plantações não deve ser maior do que 9. Cada unidade de área plantada de arroz necessita de 1 homem/hora e cada unidade de área plantada de milho necessita de 2 homens/hora."

O modelo matemático de PL que o descreve é:

Determinar

 $x_1 = n^o de unidades de área a plantar de arroz$

 $x2 = n^{o}$ de unidades de área a plantar de milho de modo a

maximizar o lucro a obter das plantações, ou seja,

$$\max z = 5 x_1 + 2 x_2$$

sujeito a

$$x_1 \le 3$$

$$x2 \le 4$$

$$x_1 + 2 \ x_2 \le 9$$

$$x_1 \ge 0, x_2 \ge 0$$

O problema na forma aumentada consiste em:

Determinar
$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$$
 de modo a max $z = 5 x_1 + 2 x_2$ sujeito a $x_1 + x_3 = 3$ (1) $x_2 + x_4 = 4$ (2) $x_1 + 2x_2 + x_5 = 9$ (3) $x_1 \ge 0$; $x_2 \ge 0$; $x_3 \ge 0$; $x_4 \ge 0$; $x_5 \ge 0$

Considere-se os seguintes quadros, inicial e ótimo, resultantes da resolução do modelo anterior pelo método simplex.

Quadro inicial:

						A	
	ci	5	2	0	0	/ 0	
хB	$c_{\rm B}$ $x_{\rm j}$	х1	x2	х3	x4 /	X5	b b
Х3	0	1	0	1	0	0	3 /
X4	0	0	1	0	1	0	4
X5	0	1	2	0	0	1	9
Zj	$-c_j$	-5	-2	0	0	0	0

Solução básica admissível inicial:

$$\mathbf{x}_{B} \begin{cases} x3 = 3 \\ x4 = 4 \\ x5 = 9 \end{cases} \quad \text{com } z = 0$$

$$\mathbf{x}_{N} \begin{cases} x1 = 0 \\ x2 = 0 \end{cases}$$

Quadro ótimo:

			<u> </u>]	3-1	
		c_j	5	2	0	0	0 /		$\mathbf{x}_{\mathrm{B}}^*$
хв	св	х _j	x ₁	x 2	Х3	X4	X_5	b	
x ₁	5		1	0	1	0	0	3 📗	
X4	0		0	0	1/2	1	-1/2	1	
X2	2		0	1	-1/2	0	1/2	3	
Zj	_ cj		0	0	4	0	1	21	

Solução básica admissível ótima:

Solução básica admissível ofima:
$$x_1^* = 3$$

 $x_2^* = 1$
 $x_2^* = 3$ com $z^* = 21$
 $x_1^* = 3$
 $x_2^* = 3$ com $z^* = 21$
 $x_1^* = 3$

Verifica-se que $\mathbf{x} = [\mathbf{x}_B, \mathbf{x}_N]$, ou seja, o vetor das variáveis do problema pode subdividir-se nos vetores \mathbf{x}_{B} e \mathbf{x}_{N} , o primeiro com as variáveis básicas e o segundo com as variáveis não básicas.

Por outro lado, A = [B, N], ou seja, a matriz A (matriz dos coeficientes das variáveis nas restrições) pode subdividir-se nas matrizes B e N, a primeira com as colunas das variáveis básicas e a segunda com as colunas das variáveis não básicas.

Sendo a matriz B⁻¹ a matriz inversa de B, **b** o vetor dos termos independentes das restrições e \mathbf{c}_B o vetor dos coeficientes das variáveis básicas na função objetivo, em qualquer solução básica, verifica-se que:

$$\begin{cases} \mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{x}_N = \mathbf{0} \end{cases} \qquad \text{com } \mathbf{z} = \mathbf{c}_B, \ \mathbf{x}_B = \mathbf{c}_B, \ \mathbf{B}^{-1}\mathbf{b} \end{cases}$$

A matriz B é sempre obtida no quadro inicial, através das colunas da matriz A correspondentes às variáveis básicas de uma dada iteração.

No exemplo anterior, a matriz B da base ótima é:

$$B = \begin{bmatrix} (x_1)(x_4)(x_2) \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$

A matriz inversa B⁻¹da base ótima é pois:

$$B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & -1/2 \\ -1/2 & 0 & 1/2 \end{bmatrix}$$

Pode facilmente obter-se esta matriz B^{-1} a partir do quadro ótimo do simplex, selecionando as colunas correspondentes às variáveis básicas do quadro inicial (ou seja, às <u>slacks</u> e às <u>artificiais</u>).

É possível confirmar as fórmulas anteriores, no cálculo da solução ótima e do valor de z*:

$$\mathbf{x}_{B}^{*} = \mathbf{B}^{-1}\mathbf{b}$$

$$\mathbf{x}_{B}^{*} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & -1/2 \\ -1/2 & 0 & 1/2 \end{bmatrix} \mathbf{x} \begin{bmatrix} 3 \\ 4 \\ 9 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$$

$$\mathbf{com} \quad \mathbf{z}^{*} = \mathbf{c}_{B}, \mathbf{x}_{B}^{*} = \begin{bmatrix} 5 & 0 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix} = \mathbf{21}$$

Considere-se novamente os quadros inicial e final da resolução do problema anterior pelo método *simplex*.

Quadro inicial:

Designa-se por $\mathbf{P_f}$, o vetor dos coeficientes da variável $\mathbf{x_f}$ nas restrições funcionais.

<u>Quadro ót</u>	<u>imo</u> :	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	X_5
c_{j}	5 /	2	/ 0 /	0	0	
x_B c_B x_j	x_1	x_2	х3	X4	X5	b
x ₁ 5	1	0	1	0	0	3
x4 0	0	0	1/2	1	-1/2	1
<u>x</u> 2 2	0	1	-1/2	0	1/2	3
$z_i - c_i$	0	0	4	0	1	21

Os vetores X_f são a representação dos vetores P_f na base B, verificando-se a seguinte relação:

$$\mathbf{X}_f = B^{-1}\mathbf{P_f}$$

Pós-Otimização

Considere-se o seguinte problema (retirado do Capítulo 2 da unidade curricular de Investigação Operacional), o qual será utilizado como base nos exercícios deste capítulo.

"Uma empresa de mobiliário de escritório pretende lançar um modelo de secretárias e de estantes.

Pensa-se que o mercado pode absorver toda a produção de estantes, mas aconselha-se a que a produção mensal de secretárias não ultrapasse as 160 unidades.

Ambos os produtos são processados em duas unidades diferentes: unidade de estampagem (UE) e unidade de montagem e acabamento (UMA). A disponibilidade mensal em cada uma destas unidades é de 720 horas/máquina na UE e de 880 horas/máquina na UMA. Cada secretária necessita de 2 horas/máquina na UE e 4 horas/máquina na UMA; cada estante necessita de 4 horas/máquina na UE e 4 horas/máquina na UMA.

O lucro obtido por cada secretária produzida é de 6 unidades monetárias (UM) e por cada estante produzida é de 3 unidades monetárias (UM).

Pretende-se saber qual o plano de produção mensal de secretárias e de estantes que maximiza o lucro."

Formulando-o em termos de um modelo de programação linear, este problema consiste em:

Determinar

 x_1 = número de secretárias a produzir por mês

 x_2 = número de estantes a produzir por mês

de modo a maximizar o lucro mensal, ou seja, maximizar $z = 6 x_1 + 3 x_2$

sujeito a

$$2 x_1 + 4 x_2 \le 720$$

$$4 x_1 + 4 x_2 \le 880$$

$$x_1 \le 160$$

$$x_1 \ge 0, x_2 \ge 0$$

Resolvendo pelo método gráfico obtém-se:

a) Alteração dos coeficientes da função objetivo - cj

Em termos gráficos, significa uma alteração do declive das retas de nível da função objetivo.

Exemplo

Considerando o exemplo anteriormente apresentado (*pág*. *I-8*), suponha que o vetor correspondente aos coeficientes da função objetivo foi alterado de [6 3] para [4 5].

Seja o quadro ótimo do simplex:

$c_{\mathbf{j}}$	6	3	0	0	0		
$x_B c_B^{X_j}$	X 1	X 2	X 3	X4	X 5	b	
x ₃ 0	0	0	1	-1	2	160	$X_1 = 1$
$\mathbf{x_2}$ 3	0	1	0	1/4	-1	60	$\mathbf{x}_2 = \mathbf{c}$
$\mathbf{x_1}$ 6	1	0	0	0	1	160	X3 = 1
Zj - Cj	0	0	0	3/4	3	1140	$\mathbf{X4} = 0$
·							X5 = 0
							$\mathbf{Z} = 114$

Como **x1 e x2** <u>estão na base</u> tem que se atualizar <u>toda</u> a linha "zj - cj".

$\mathbf{c_{j}}$	4	5	0	0	0	
$x_B c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b
← x ₃ 0	0	0	1	-1	<u>2</u> *	160
\mathbf{x}_2 5	0	1	0	1/4	-1	60
$\mathbf{x_1}$ 4	1	0	0	0	1	160
$\mathbf{Z_{j}} - \mathbf{c_{j}}$	0	0	0	5/4	-1	940
J J					^	I

O quadro já não é ótimo => A solução ótima (x^*), o valor de z^* e a base ótima ($\{x_3, x_2, x_1\}$), não se mantêm!

Aplica-se o algoritmo *simplex* até se encontrar novo quadro ótimo.

x ₅ 0	0	0	1/2	-1/2	1	80
\mathbf{x}_2 5	0	1	1/2	-1/4	0	140
$\mathbf{x_1}$ 4	1	0	-1/2	1/2	0	80
$\mathbf{Z}_{\mathbf{j}} - \mathbf{c}_{\mathbf{j}}$	0	0	1/2	3/4	0	1020
0 0	ı					l

A alteração do declive da função objetivo, levou a que o ótimo fosse atingido num outro ponto extremo: $x^* \to x'^*$.

Ou seja, em termos gráficos, uma alteração dos coeficientes **cj** significa uma alteração do declive das retas de nível da função objetivo

- A solução ótima encontrada mantém-se admissível $\mathbf{x}_{\mathbf{B}}^* = \mathbf{B}^{-1}\mathbf{b}$ é sempre não negativo
- A solução ótima encontrada pode deixar de ser ótima pois há alterações em "zj - cj"
 (a solução do dual associado pode tornar-se não admissível)

Seja cf a sofrer um acréscimo (ou decréscimo) Δ cf

$$\tilde{c}$$
 f = cf + Δ cf

- Se xf não pertencer à base ótima:
 - ⇒ atualizar o valor de cf e calcular o valor "zj-cj" correspondente à coluna de xf

$$z_f - \widetilde{c}_f = z_f - (c_f + \Delta c_f)$$

- Se ≥ 0 , solução ótima mantém-se ^{a)};
- Senão, aplicar algoritmo *simplex* até obter nova solução ótima.
- Se xf pertencer à base ótima:
 - ⇒ atualizar toda a linha "z¡ c¡"
 - Se solução ótima se mantiver, calcular novo $z\{c_f + \Delta c_f\}^* = z\{c_f\}^* + \Delta c_f x_f^*;$
 - Senão, aplicar o algoritmo *simplex* até obter nova solução ótima.
- a) se = 0, a solução ótima mantém-se, mas existem novas soluções ótimas alternativas que têm de ser calculadas!

b) Alteração dos termos independentes das restrições - bi

Pode estudar-se o problema dual ou usar-se uma abordagem direta.

- A linha "zj cj" não é afetada
 (a solução do dual associado mantém-se)
- A solução correspondente depende da alteração em análise

$$\mathbf{x}^*\mathbf{B} = \mathbf{B}^{-1}\mathbf{b}$$

e pode tornar-se <u>não admissível</u>.

Seja b_k a sofrer um acréscimo (ou decréscimo) Δb_k

$$\tilde{\mathbf{b}} \ \mathbf{k} = \mathbf{b}\mathbf{k} + \Delta \mathbf{b}\mathbf{k}$$

$$\tilde{\mathbf{x}} \ \mathbf{B} = \mathbf{B}^{-1}\tilde{\mathbf{b}}$$

$$\tilde{\mathbf{x}} \ \mathbf{B} = \mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b})$$

$$\tilde{\mathbf{x}} \ \mathbf{B} = \mathbf{B}^{-1}\mathbf{b} + \mathbf{B}^{-1}\Delta \mathbf{b}$$

$$\tilde{\mathbf{x}} \ \mathbf{B} = \mathbf{x}\mathbf{B}^* + \mathbf{B}^{-1}\Delta \mathbf{b}$$

$$\operatorname{com} \Delta \mathbf{b} = \begin{bmatrix} 0 \\ \vdots \\ \Delta \mathbf{b}\mathbf{k} \\ \vdots \\ 0 \end{bmatrix}$$

- Se $\widetilde{\mathbf{x}}$ $\mathbf{B} \geq \mathbf{0}$, a solução é ótima e $\widetilde{\mathbf{Z}}^*$ é calculado.
- Senão, a solução é não admissível e aplica-se o algoritmo dual do *simplex* para calcular a nova solução admissível (uma vez que a condição de otimalidade não é violada).

Exemplo

Retome-se o exemplo anterior (pág. I-8).

Suponha que o vetor dos termos independentes das

restrições foi alterado de
$$\begin{bmatrix} 720 \\ 880 \\ 160 \end{bmatrix}$$
 para $\begin{bmatrix} 720 \\ 1280 \\ 160 \end{bmatrix}$.

Seja o quadro ótimo:

$\mathbf{c_{j}}$	6	3	0	0	0		
$x_B c_B^{X_j}$	X 1	X 2	X 3	X4	X 5	b	$\mathbf{x}_1 = 1$
X3 0	0	0	1	-1	2	160	$\mathbf{X2} = 0$
$\mathbf{x_2}$ 3	0	1	0	1/4	-1	60	X3 = 1
$\mathbf{x_1}$ 6	1	0	0	0	1	160	X4 =
$\mathbf{Z_{i}} - \mathbf{c_{i}}$	0	0	0	3/4	3	1140	X 5 =
y y	I					I	Z = 114

$$\mathbf{x_B}^* = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 160 \\ 60 \\ 160 \end{bmatrix}$$

$$\Delta \mathbf{b} = \begin{bmatrix} 720 \\ 1280 \\ 160 \end{bmatrix} - \begin{bmatrix} 720 \\ 880 \\ 160 \end{bmatrix} = \begin{bmatrix} 0 \\ 400 \\ 0 \end{bmatrix}$$

A nova solução, resultante das alterações, será:

$$\widetilde{\mathbf{x}} \mathbf{B} = \begin{bmatrix} 160 \\ 60 \\ 160 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1/4 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 400 \\ 0 \end{bmatrix} = \begin{bmatrix} -240 \\ 160 \\ 160 \end{bmatrix}$$

Esta solução é <u>não admissível</u> (relativamente ao problema alterado).

	$\mathbf{c_{j}}$	6	3	0	0	0	
ХB	$c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b
← X3	0	0	0	1	<u>-1</u> *	2	-240
X 2	3	0	1	0	1/4	-1	160
\mathbf{x}_1	6	1	0	0	0	1	160
	Ci	0	0	0	3/4	3	1440
J	J				^		I

Neste caso, aplica-se o algoritmo dual do *simplex*, partindo do quadro anterior:

							$\mathbf{X}_1 = 1$
x ₄ 0	0	0	-1	1	-2	240	$\mathbf{x}_2 = 1$
$\mathbf{x_2}$ 3	0	1	1/4	0	-1/2	100	$\mathbf{X3} = 0$
$\mathbf{x_1}$ 6	1	0	0	0	1	160	X4 = 2
$\mathbf{Z_{i}} - \mathbf{c_{i}}$	0	0	3/4	0	9/2	1260	$\mathbf{X5} = 0$
3 3	ı					ı	Z = 12

A nova solução ótima corresponde ao ponto extremo x'*:

c) Alteração dos coeficientes da matriz A - aij

Seja akf a sofrer um acréscimo (ou decréscimo) Δa_{kf}

$$\tilde{a}_{kf} = a_{kf} + \Delta a_{kf}$$

Há duas situações a considerar:

A) a_{kf} é coeficiente de xf não incluído na base ótima

$$\begin{split} \widetilde{\boldsymbol{X}} \ _f &= B^{\text{--}1} \widetilde{\boldsymbol{P}} \ _f = B^{\text{--}1} (\boldsymbol{P}_f + \Delta \boldsymbol{P}_f) = B^{\text{--}1} \boldsymbol{P}_f + B^{\text{--}1} \Delta \boldsymbol{P}_f \\ \widetilde{\boldsymbol{X}} \ _f &= \boldsymbol{X}_f + B^{\text{--}1} \Delta \boldsymbol{P}_f \end{split}$$

em que
$$\Delta \mathbf{P_f} = \begin{bmatrix} 0 \\ \vdots \\ \Delta \mathbf{akf} \\ \vdots \\ 0 \end{bmatrix}$$

e X_f é a coluna associada a x_f

$$\tilde{\mathbf{z}}_{\mathbf{f}} - \mathbf{c}_{\mathbf{f}} = \mathbf{z}_{\mathbf{f}} + \mathbf{c}'_{\mathbf{B}} \mathbf{B}^{-1} \Delta \mathbf{P}_{\mathbf{f}} - \mathbf{c}_{\mathbf{f}}$$

- Se ≥ 0 , a solução ótima mantém-se;
- Senão, aplica-se o algoritmo *simplex*.

B) a_{kf} é coeficiente de x_f incluído na base ótima (caso mais complexo)

A alteração de uma coluna de A pertencente à <u>matriz</u> <u>identidade</u>, impõe a reconstituição da mesma matriz a qual conduz a um novo quadro *simplex*. Neste novo quadro, podem verificar-se as seguintes situações:

1 - Soluções básicas admissíveis do primal e do dual

⇒ quadro mantém-se ótimo;

2 - Solução básica admissível do primal, mas não admissível do dual

⇒ aplica-se o algoritmo *simplex* para obter nova solução ótima;

3 - Solução básica não admissível para o primal mas admissível para o dual

⇒ aplica-se o algoritmo dual do *simplex* para obter a nova solução ótima;

4 - Soluções básicas não admissíveis para ambos os problemas primal e dual

- ⇒ resolve-se de novo o problema (?) *ou*
- ⇒ força-se a saída de xf da base ótima (do quadro ótimo antes das alterações):
 - 1' <u>Se</u> existir algum elemento positivo na linha da variável xf, correspondente a uma variável não básica, tomar como "pivot" o que tiver menor valor "zj-cj".

Proceder à iteração respetiva e aplicar **A**) à nova SBA

Caso contrário, o processo continua.

2' - Escolher a variável a entrar na base:

$$\min_{j} \left\{ (z_j \text{-} c_j) : (z_j \text{-} c_j) \ge 0 \right\} = (z_r \text{-} c_r)$$

Se $x_{ir} \le 0$ escolher a variável seguinte em termos do valor de " z_j - c_j ".

3' - Escolher a variável a sair da base

$$Q_O = \min_{i} \left\{ \frac{x_{iO}}{x_{ir}} \mid x_{ir} > 0 \right\} = \frac{x_{SO}}{x_{Sr}}$$

4' - Substituir x_S por x_T na base e regressar a 1'.

Exemplo

Considere o exemplo anterior (pág. I-8).

Suponha que o vetor dos coeficientes da variável x1 nas

restrições foi alterado de
$$\begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}$$
 para $\begin{bmatrix} 2 \\ 3.2 \\ 1 \end{bmatrix}$.

Seja o quadro ótimo do simplex:

	$\mathbf{c_{j}}$	6	3	0	0	0		
ХB	$c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b	$X_1 = 160$
Х3	0	0	0	1	-1	2	160	$\mathbf{X2} = 60$
X 2	3	0	1	0	1/4	-1	60	$X_3 = 160$
\mathbf{x}_1	6	1	0	0	0	1	160	X4 = 0
Zj -	- Ci	0	0	0	3/4	3	1140	X5 = 0
J	J	I					I	Z = 1140

x₁ está na base

Soluções admissíveis para os problemas primal e dual ⇒ logo mantêm-se ótimas.

Exemplo

Considere novamente o exemplo anterior (pág. I-8).

Suponha que o vetor dos coeficientes da variável x2 nas

restrições foi alterado de
$$\begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix}$$
 para $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

Seja o quadro ótimo do simplex:

 $\tilde{\mathbf{X}} 2 = \mathbf{X}_2 + \mathbf{B}^{-1} \Delta \mathbf{P}_2$

$\mathbf{c_{j}}$	6	3	0	0	0		
$x_B c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b	$X_1 = 160$
X 3 0	0	0	1	-1	2	160	$\mathbf{X2} = 60$
$\mathbf{x_2}$ 3	0	1	0	1/4	-1	60	X3 = 160
$\mathbf{x_1}$ 6	1	0	0	0	1	160	X4 = 0
Zj - Cj	0	0	0	3/4	3	1140	$\mathbf{X5} = 0$
	ı					I	Z = 1140

x2 está na base

Soluções não admissíveis para os problemas primal e dual ⇒ Faz-se x2 sair da base do quadro ótimo e em seguida introduz-se a alteração enunciada.

Regressando ao quadro ótimo:

O	$\mathbf{c_j}$	6	3	0	0	0		
ХB	c _B X _j	x ₁	X 2	X 3	X 4	X 5	b	$\mathbf{X}_1 = 1_0$
Х3	0	0	0	1	-1	2	160	$\mathbf{X2} = 60$
X 2	3	0	1	0	1/4 *	-1	60	$\mathbf{X3} = 1$
$\mathbf{x_1}$	6	1	0	0	0	1	160	$\mathbf{X4} = 0$
Zj -	cj	0	0	0	3/4	3	1140	$\mathbf{X5} = 0$
ŭ	- 1				<		1	Z = 114

- Elementos positivos na linha x2 ⇒ "1/4"
- O menor valor "zj-cj" corresponde a x4 ⇒ substituir x2 por x4

No novo quadro obtido, x2 é uma VNB. Por essa razão aplica-se A):

$\mathbf{c_j}$	6	3	0	0	0	
$x_B c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b
X 3 0	0	4	1	0	-2	400
$\mathbf{x_4} 0$	0	4	0	1	-4	240
$\mathbf{x_1}$ 6	1	0	0	0	1	160
$\mathbf{Z}_{\mathbf{j}} - \mathbf{c}_{\mathbf{j}}$	0	-3	0	0	+6	1140

$$\widetilde{\mathbf{X}} \ 2 = \mathbf{X}_2 + \mathbf{B}^{-1} \Delta \mathbf{P}_2$$

$$\widetilde{\mathbf{X}} \ 2 = \begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ -3 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

	cj	6	3	0	0	0	
ХB	$c_B^{X_j}$	X 1	X 2	X 3	X 4	X 5	b
← X3	0	0	<u>2</u> *	1	0	-2	400
X 4	0	0	1	0	1	-4	240
x ₁	6	1	0	0	0	1	160
	- Cj	0	-3	0	0	+6	960
· ·	Ü	I	^				ı
X2	3	0	1	1/2	0	-1	200
X 4	0	0	0	-1/2	1	-3	40
x ₁	6	1	0	0	0	1	160
Zj.	. c _j	0	0	+3/2	0	+3	1560

Nova solução ótima:

$$x1* = 160$$

 $x2* = 200$
 $x3* = 0$
 $x4* = 40$
 $x5* = 0$ $com z* = 1560$

