### Constructive Solid Geometry

- Boolean binary operations on primitives
- How to do exactly? Easy if used in ...
  - Ray Tracing
  - Voxels
- But how about meshes?
- How to compute the union, intersection and subtraction of two meshes?





• Let's think about 2D first



• Every intersection



• Every intersection



• Every intersection





- Every intersection
  - Solid = outside, dash = inside



# Example



# Clockwise Edges



# Outside and Inside Edges



#### Intersections and Connections



## $\mathsf{A} \mathsf{U} \mathsf{B}$



## $A \cap B$



A - B



B - A



#### Intersections and Connections



- Compute the Boolean operations of two polygons
- Two 3D meshes?
- Same!

- Assume we can break every triangles into finer triangles and the two meshes only intersect in edges now
- For an edge in the intersection, there will be four triangles (from the two meshes) sharing it
- The crossing is exactly the same scenario of how we connect the edges in 2D

- Assume we can break every triangles into finer triangles and the two meshes only intersect in edges now
- For an edge in the intersection, there will be four triangles (from the two meshes) sharing it
- The crossing is exactly the same scenario of how we connect the edges in 2D





### Wishful Thinking, HOW?

- Assume we can break every triangles into finer triangles and the two meshes only intersect in edges now
- For an edge in the intersection, there will be four triangles (from the two meshes) sharing it
- The crossing is exactly the same scenario of how we connect the edges in 2D

### Wishful Thinking, HOW?

- Assume we can break every triangles into finer triangles and the two meshes only intersect in edges now
- Redefine "intersect"
  - Two triangle "intersect" edge other iff the intersection of their interior is nonempty
  - Interior of a triangle is the triangle minus its edges
- Put all triangles into a set
  - If a triangle does not intersect any other triangle, remove it from the set
  - Otherwise, break and retriangulates the two triangles and their neighbors
    - Replace all these new triangles in the set
  - Repeat until the set is empty

## Down to Two Triangles Intersection

How many types of intersection?

• Leave it as an home exercise

And break the neighbors of these two edges



#### List of Final "Quests"

- Subdivision
  - Barycentric/Loop
  - Partial
  - Mesh Relaxation
- Self-intersection
  - Detection
  - Speed up
  - Object binary operations/Simple CSG
- Registrations
  - ICP
  - Speedup
  - P2P, P2S, P2?
  - Visualizing error between two models

- Decimation
  - Cluster/decimation
  - Quality control
  - Progressive mesh
- Thickening
  - With different cap types
  - Avoid self-intersection
- Remeshing
- Inspection
  - Given two similar meshes, calculate and visualize their errors
- Or any cool things you can think of

### Grading Scheme

- Basic requirements (30%)
- UI (10%)
- Robustness/Extensiveness of test cases (20%)
- Enhancements/extensions (%40)
  - Features
  - Speedup