# **VERMES MIKLÓS Fizikaverseny**

Kolozsvár, JZsUK, 2024. április 13. *Országos döntő* 



Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

## X. osztály

#### 1. feladat (2 pont)

A mellékelt ábrán látható vízszintes hengert egy vékony, hőszigetelő, súrlódás nélkül mozgó dugattyú A és B részre oszt, amelyek térfogata közt a  $V_A/V_B = 2$  arány áll fenn. A henger hossza L = 1 m. Kezdetben a dugattyú rögzített.



Az A térrészben bizonyos tömegű oxigén van ( $\mu_{O2} = 32 \text{ kg/kmol}$ )  $t_A = 127^{\circ}\text{C}$  hőmérsékleten, a B térrészben pedig ugyanakkora tömegű nitrogén található ( $\mu_{N2} = 28 \text{ kg/kmol}$ )  $T_B = 300 \text{ K}$  hőmérsékleten. A gázok ideálisaknak tekinthetők.

- a) Határozd meg egy nitrogénmolekula tömegét!
- b) Határozd meg az oxigén és a nitrogén nyomásainak az arányát!
- c) Felszabadítjuk a dugattyút, és a gázokat azonos hőmérsékletre hozzuk. Határozd meg a dugattyú kezdeti helyzete, és végső, egyensúlyi helyzete közti *x* távolságot!
- d) Eltávolítjuk a dugattyút. Számítsd ki a gázkeverék móltömegét!

#### 2. feladat (3 pont)

Egy ideálisnak tekintett gáz, amely kezdetben  $T_1$  hőmérsékleten található, az alábbi állapotváltozásokon megy át:  $1 \rightarrow 2$  izoterm kiterjedés, amíg a térfogata megduplázódik;  $2 \rightarrow 3$  izobár átalakulás, miközben a gáz visszajut a kezdeti  $V_1$  térfogatra; és  $3 \rightarrow 1$  izochor átalakulás, miközben a gáz visszajut a  $p_1$  nyomásra.



- a) Bizonyítsd be, hogy a mellékelt rajzon látható két körfolyamat során az ideális gázzal működő
  - hőerőgép által végzett mechanikai munkák egyenlők ( $L_{1-2-3} = L_{2-4-5}$ ) amikor a szélső térfogatok aránya 2! (Az  $1\rightarrow 2$  és  $2\rightarrow 4$  izoterm állapotváltozások ugyanannak a  $T_1$  hőmérsékletű izotermának a részei. A  $T_2$  hőmérsékletű izoterma átmegy a 3 és 5 állapotokon.)
- b) Általánosítsd a feladatot:  $L_{1-2-3} = L_{n,n+1}$ .
- c) Ellenőrizd le az általánosítást n = 3 esetére!

#### **3. feladat** (4 pont)

Egy adiabatikusan szigetelt, merev falú tartályt két  $V_1$  és  $V_2$  térrészre oszt egy hővezető dugattyú, amely súrlódás nélkül mozgatható, mint a mellékelt ábrán látható. A két térrészben



ideálisnak tekintett, azonos mennyiségű (mólszámú) gáz található. Az 1-es térrészben hélium található ( $\mu_1 = 4$  g/mol,  $C_{v1} = 1,5 \cdot R$ ), a 2-es térrészben pedig oxigén ( $\mu_2 = 32$  g/mol,  $C_{v2} = 2,5 \cdot R$ ). A hélium kezdeti hőmérséklete  $t_1 = 127$ °C, és nyomása  $p = 1,8 \cdot 10^5$  Pa, az oxigén hőmérséklete  $t_2 = 47$ °C, és nyomása  $p = 1,8 \cdot 10^5$  Pa.

### Határozzuk meg:

- a) az oxigén és a hélium sűrűségének arányát a kezdeti állapotban;
- b) a hélium által a végállapotban elfoglalt térfogat (miután a gázok elérték a hőegyensúlyt és a dugattyú mechanikai egyensúlyban van) és a hélium által a kezdeti állapotban elfoglalt térfogat arányát;
- c) a gázok által elért egyensúlyi hőmérsékletet;
- d) az oxigén nyomását a végső állapotban!

Hivatalból: (1 pont)

Munkaidő: 3 óra