Results

After completing the algorithm for Planning, I have obtained the following results:

Cargo Problem	Expansions	Goal Tests	New Nodes	Plan Length	Time elapsed in s
Breadth-first- search	43	56	180	6	1.39
Depth-first- search	21	22	84	20	0.02
Greedy best first graph search with h1	7	9	28	6	0.007
A* with h_1	55	57	224	6	0.07
A* with h_ignore_prec onditions	41	43	170	6	0.07
A* with h_pg_levelsu m	11	13	50	6	1.58

All plans provided by the different algorithms achieve a goal state, but the plans with length 6 are the optimal ones. One such example is (from A* search with ignore pre-conditions heuristic):

Load(C1, P1, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Unload(C2, P2, SFO)

For Cargo Problem 1, the problem is simple and therefore the state space is not large $2^2 \times (2+2)^2 = 64$, therefore it can be easily traversed by standard informed search algorithms. In particular the greedy best first graph search with h_1 is very fast and expand the fewest amount of nodes. However it is only because the characteristic of the problem that enables it to perform well. A^* with the level sum heuristic is taking a long time to compute the heuristic, and therefore is the slowest among all other algorithms to find a goal.

Heuristic Analysis AIND Feb 2017

Cargo Problem 2	Expansions	Goal Tests	New Nodes	Plan Length	Time elapsed in s
Breadth-first- search	3190	4380	28279	9	16.76
Depth-first- search	1172	1173	9578	200	4.73
Greedy best first graph search with h1	620	622	5355	21	4.56
A* with h_1	4548	4550	40338	9	56.9
A* with h_ignore_prec onditions	1424	1426	12572	9	17.8
A* with h_pg_levelsu m	156	158	1459	9	274.3

All plans provided by the different algorithms achieve a goal state, but the plans with length 9 are the optimal ones. One such example is (from A* search with ignore pre-conditions heuristic):

Load(C2, P2, JFK)
Fly(P2, JFK, ATL)
Load(C3, P2, ATL)
Fly(P2, ATL, SFO)
Unload(C3, P2, SFO)
Load(C1, P1, SFO)
Fly(P1, SFO, JFK)
Unload(C1, P1, JFK)
Unload(C2, P2, SFO)

With Cargo Problem 2, there are significantly more states: $3^3 \times (3 + 3)^3 = 5832$ Again here the A* search with Level Sum heuristic is taking a long time to compute the heuristic function and takes 274 seconds to reach a goal state, it is 15 times slower than A* with ignore preconditions heuristic. Here the fastest algorithm to achieve an optimal plan is Breadth-first-search. It is executing faster than the A* with ignore pre-conditions heuristic.

Heuristic Analysis AIND Feb 2017

Cargo Problem 3	Expansions	Goal Tests	New Nodes	Plan Length	Time elapsed in s
Breadth-first- search	14663	18098	129631	12	146.9
Depth-first- search	408	409	3364	392	2.54
Greedy best first graph search with h1	5578	5580	49150	22	239.6
A* with h_1	18223	18225	159618	12	617.3
A* with h_ignore_prec onditions	5118	5120	45650	12	137.6
A* with h_pg_levelsu m	414	416	3818	12	1012

All plans provided by the different algorithms achieve a goal state, but the plans with length 12 are the optimal ones. One such example is (from A* search with ignore pre-conditions heuristic):

Load(C2, P2, JFK) Fly(P2, JFK, ORD) Load(C4, P2, ORD) Fly(P2, ORD, SFO) Unload(C4, P2, SFO) Load(C1, P1, SFO) Fly(P1, SFO, ATL) Load(C3, P1, ATL) Fly(P1, ATL, JFK) Unload(C3, P1, JFK) Unload(C2, P2, SFO) Unload(C1, P1, JFK)

With Cargo Problem 3, there are even more more states: $4^2 \times (4 + 2)^4 = 20736$ Again here the A* search with Level Sum heuristic is taking a long time to compute the heuristic function and takes 1012 seconds or 9 times A* with ignore preconditions. However it explores fewer nodes and thus converges to the solution more efficiently, at the cost of calculating the heuristic.

Here the fastest algorithm to achieve an optimal plan is A* with ignore pre-conditions heuristic. It is executing faster than the non-heuristic search planning methods.

There is an inherent trade-off between the computing cost of calculating the heuristic and the number of nodes to be explored to reach the goal. In Problem 1 and 2, the search space was rather limited so we could afford to explore unnecessary nodes to search for a solution. However for Problem 3, to have a simple enough to calculate heuristic enables to reduce the number of nodes explored and therefore can reach the goal faster than other non-heuristic search methods.