APPLICATION FOR CERTIFICATION On Behalf of

RedOctane, Inc.

Wireless Guitar Receiver for PS2 & PS3

Model Number: 95893.806 (Receiver)

FCC ID: VFI95893806

Prepared for: RedOctane, Inc.

444 Castro Street, Suite#140, Mountain View, CA

94041,USA

Prepared By: Audix Technology (Shenzhen) Co., Ltd.

No. 6, Ke Feng Rd., 52 Block, Shenzhen Science & Industrial Park, Nantou, Shenzhen, Guangdong, China

Tel: (0755) 26639496

Report Number : ACS-F09108

Date of Test : May.15~28, 2009

Date of Report : Lyp.02, 2000

Date of Report : Jun.02, 2009

TABLE OF CONTENTS

scripti	ion	Page
SUN	MMARY OF STANDARDS AND RESULTS	1-1
1.1.	Description of Standards and Results	1-1
GE	NERAL INFORMATION	2-1
2.1.	Description of Device (EUT)	2-1
2.2.	•	
2.3.		
2.4.	Test Uncertainty (95% confidence levels, k=2)	2-3
POV	WER LINE CONDUCTED EMISSION TEST	3-1
3.1.	Test Equipments	3-1
3.2.		
3.3.		
3.4.		
	•	
	A A	
6.3.		
6.4.		
DE	VIATION TO TEST SPECIFICATIONS	7-1
8.2.		
	OTOGRAPH OF EUT	
	SUN 1.1. GE 2.1. 2.2. 2.3. 2.4. PO' 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. RAI 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 20D 5.1. 5.2. 5.3. BAI 6.1. 6.2. 6.3. 6.4. DE' PHO 8.1. 8.2.	2.2. Tested Supporting System Details 2.3. Test Facility 2.4. Test Uncertainty (95% confidence levels, k=2) POWER LINE CONDUCTED EMISSION TEST 3.1. Test Equipments 3.2. Block Diagram of Test Setup 3.3. Power Line Conducted Emission Test Limits 3.4. Configuration of EUT on Test 3.5. Operating Condition of EUT 3.6. Test Procedure 3.7. Power Line Conducted Emission Test Results RADIATED EMISSION TEST 4.1. Test Equipment 4.2. Block Diagram of Test Setup 4.3. Radiated Emission Limit Standard: FCC 15.209 and 15.249 4.4. EUT Configuration on Test 4.5. Operating Condition of EUT 4.6. Test Procedure 4.7. Radiated Emission Test Results 4.8. Duty factor 20DB BANDWIDTH TEST 5.1. Test Equipment 5.2. Limit 5.3. Test Results BAND EDGE COMPLIANCE TEST 6.1. Test Equipment 6.2. Limit 6.3. Test Produce 6.4. Test Results DEVIATION TO TEST SPECIFICATIONS PHOTOGRAPH OF TEST 8.1. Photos of Power Line Conducted Emission Test (In Anechoic Chamber)

TEST REPORT CERTIFICATION

Applicant : RedOctane, Inc.

EUT Description : Wireless Guitar Receiver for PS2 & PS3

FCC ID : VFI95893806

(A)MODEL NO. : 95893.806 (Receiver)

(B)SERIAL NO. : N/A

(C)POWER SUPPLY : DC 5V

(D)TEST VOLTAGE : DC 5V From PS3 Input AC 120V/60Hz

Test Procedure Used:

FCC Rules and Regulations Part 15 Subpart C 2008

The device described above is tested by Audix Technology (Shenzhen) Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits for radiated and conducted emissions.

The test results are contained in this test report and Audix Technology (Shenzhen) Co., Ltd. is assumed full responsibility for the accuracy and completeness of tests. Also, this report shows that EUT is technically compliant with FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Audix Technology (Shenzhen) Co., Ltd.

Date of Test:	May.15~ 28, 2009
Prepared by:	Edie Huang Edie Huang / Assistant
Reviewer:	Jamy Yu / Senior Engineer

AUDIX® 含華科技(深圳)有限公司
Audix Technology (Shenzheng + o....
EMC 部門報告專用章
Stamp only for EMC Dept. Report

Approved & Authorized Signer:

Ken Lu / Manager

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

Standard	
Stanuaru	Results
FCC Part 15C: 15.207 ANSI C63.4-2003	PASS
FCC Part 15C: 15.209 FCC Part 15C: 15.249 ANSI C63.4-2003	PASS
FCC Part 15: 15.249	PASS
FCC Part 15: 15.215	PASS
	ANSI C63.4-2003 FCC Part 15C: 15.209 FCC Part 15C: 15.249 ANSI C63.4-2003 FCC Part 15: 15.249

N/A is an abbreviation for Not Applicable.

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Product name : Wireless Guitar Receiver for PS2 & PS3

Model Number : 95893.806 (Receiver)

FCC ID : VFI95893806

Operation frequency: 2410MHz----2469.2MHz

Operation Channel : 74 Channels

Modulation : MSK

Technology

Maximum emission : 87.75dBuV/m@3m on 2469.2MHz

Antenna Assembly : 0dBi(maximum)

Gain

Power Supply : DC 5V From PS3 Input AC 120V/60Hz

(The supply voltage was varied between 85% and 115% of the

nominal rated (120V/60Hz) supply voltage. And all the emissions include fundamental emissions had no change. So only the nominal power supply test data were recorded.)

Applicant : RedOctane, Inc.

444 Castro Street, Suite#140, Mountain View, CA

94041,USA

Date of Test : May.15~28, 2009

Date of Receipt : May.14, 2009

Sample Type : Prototype production

2.2.Tested Supporting System Details

2.2.1.TV

EMC CODE : ACS-EMC-TV01T

M/N : 1419A Manufacturer : TCL

Power cord : Unshielded, Undetachabled, 1.8m

2.2.2.PS3

S/N : 02-27430423-6785596-CECHC04

2.3.Test Facility

Site Description

Name of Firm : Audix Technology (Shenzhen) Co., Ltd.

No. 6, Ke Feng Rd., 52 Block, Shenzhen Science

& Industrial Park, Nantou, Shenzhen,

Guangdong, China

3m Anechoic Chamber : Mar. 31, 2009 File on Federal Communication

Commission

Registration Number: 90454

3m & 10m Anechoic Chamber : Jan. 31, 2007 File on Federal Communication

Commission

Registration Number: 794232

EMC Lab. : Accredited by DATech, German

Registration Number: DAT-P-091/99-01

Feb. 02, 2009

Accredited by NVLAP, USA NVLAP Code: 200372-0

Apr.01, 2009

2.4. Test Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.88dB	
Uncertainty for Radiation Emission test in 3m chamber	3.86dB	Polarize: V
(30MHz to 1GHz)	4.3dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.78dB	Polarize: H
(1GHz to 25GHz)	2.82dB	Polarize: V
Uncertainty for radio frequency	1×10 ⁻⁹	
Uncertainty for conducted RF Power	0.34dB	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

3. POWER LINE CONDUCTED EMISSION TEST

3.1.Test Equipments

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Test Receiver	Rohde & Schwarz	ESHS10	838693/001	Jan.10, 09	1 Year
2	L.I.S.N.#2	Kyoritsu	KNW-407	8-1636-1	May.08, 09	1 Year
3	L.I.S.N.#3	Kyoritsu	KNW-242C	8-1920-1	May.08, 09	1 Year
4	Terminator	Hubersuhner	50Ω	No. 1	May.08, 09	1 Year
5	RF Cable	Fujikura	3D-2W	LISN Cable 1#	May.08, 09	1Year
6	Coaxial Switch	Anritsu	MP59B	M55367	May.08, 09	1 Year
7	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100341	May.08, 09	1 Year

3.2.Block Diagram of Test Setup

3.2.1. Block diagram of connection between the EUT and Supporting System

(EUT: Wireless Guitar Receiver for PS2 & PS3)

3.3. Power Line Conducted Emission Test Limits

	Maximum RF Line Voltage			
Frequency	Quasi-Peak Level	Average Level		
	$dB(\mu V)$	$dB(\mu V)$		
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*		
500kHz ~ 5MHz	56	46		
5MHz ~ 30MHz	60	50		

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.4. Configuration of EUT on Test

The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4.1. Wireless Guitar Receiver for PS2 & PS3 (EUT)

Model Number : 95893.806 (Receiver)

Serial Number : N/A

3.4.2. Support Equipment : As Tested Supporting System Detail, in Section 2.2

3.5. Operating Condition of EUT

3.5.1. Setup the EUT and simulator as shown as Section 3.2.

3.5.2. Turned on the power of all equipment.

3.5.3. Let the EUT worked in test modes (Tx Mode) and measured it.

3.6. Test Procedure

The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power Via PS3 connected to the power mains through a line impedance stabilization network (L.I.S.N. 2#). This provides a 50 ohm coupling impedance for the EUT (Please refer the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#3). Power on the PS3 and let it work normally, we use a test software, let EUT working in test mode, then test it. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2003 on Conducted Emission Test.

The bandwidth of test receiver (R & S ESHS10) is set at 10kHz.

The frequency range from 150kHz to 30MHz is checked.

The test result are reported on Section 3.7.,

3.7. Power Line Conducted Emission Test Results

PASS. (All emissions not reported below are too low against the prescribed limits.)

NO.6 Ke Feng Road, Block 52, Shenzhen Science&Industry Park Nantou, Shenzhen, Guang dong, China.

Tel:+86-755-26639495 Fax:+86-755-26632877 Postcode:518057

Trace: (Discrete)

Site no : Audix No.1 Conduction Data no :3

Dis./Ant. :** KNW407 1# VA

Limit :FCC PART 15 C

Env./Ins. :Temp:23'C Humi:54% Engineer :Power

EUT :Wireless Guitar Receiver for PS2&PS3
Power Rating :DC 5V From PS3 Iuput AC 120V/60Hz

Test Mode : Tx mode

:M/N:95893.806(Receiver)

No	Freq (MHz)	LISN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark	
1	0.50820	0.20	9.87	26.95	37.02	56.00	18.98	QP	
2	2.986	0.10	9.91	29.07	39.08	56.00	16.92	QP	
3	12.806	0.26	10.01	33.33	43.60	60.00	16.40	QP	

Remarks: 1.Emission Level=LISN Factor+Cable Loss(Include 10dB pulse limit) +Reading 2.If the average limit is met when useing a quasi-peak detector.

the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

NO.6 Ke Feng Road, Block 52, Shenzhen Science&Industry Park Nantou, Shenzhen, Guang dong, China.

Tel:+86-755-26639495 Fax:+86-755-26632877 Postcode:518057

Trace: (Discrete)

Site no :Audix No.1 Conduction Data no

Dis./Ant. :** KNW407 1#

Limit :FCC PART 15 C

Env./Ins. :Temp:23'C Humi:54% Engineer : Power

:Wireless Guitar Receiver for PS2&PS3 Power Rating :DC 5V From PS3 Iuput AC 120V/60Hz

Test Mode :Tx mode

:M/N:95893.806(Receiver)

		LISN	Cable		Emissior	1		
No	Freq	Factor	Loss	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)	
1	0.71715	0.10	9.88	29.24	39.22	56.00	16.78	QP
2	1.971	0.03	9.90	29.13	39.06	56.00	16.94	QP
3	12.478	0.19	10.01	33.55	43.75	60.00	16.25	QP

Remarks: 1.Emission Level=LISN Factor+Cable Loss(Include 10dB pulse limit)+Reading 2. If the average limit is met when useing a quasi-peak detector. the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

4. RADIATED EMISSION TEST

4.1.Test Equipment

Frequency rang: 30~1000MHz

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	3#Chamber	AUDIX	N/A	N/A	Dec.05,08	1 Year
2.	EMI Spectrum	Agilent	E4407B	MY41440292	May.08, 09	1 Year
3.	Test Receiver	Rohde & Schwarz	ESVS10	834468/011	May.08, 09	1 Year
4.	Amplifier	HP	8447D	2648A04738	May.08, 09	1 Year
5.	Bilog Antenna	Schaffner	CBL6111C	2598	Nov.10, 08	1 Year
6.	RF Cable	MIYAZAKI	8D-FB	3# Chamber No.1	May.08, 09	1 Year
7.	Coaxial Switch	Anritsu	MP59B	M73989	May.08, 09	1 Year

Frequency rang: above 1000MHz

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300459	May.08, 09	1 Year
2.	Horn Antenna	EMCO	3115	9607-4877	May.27, 08	1.5 Year
3	Amplifier	Agilent	8449B	3008A02495	Nov.24,08	1 Year
4	RF Cable	Hubersuhner	SUCOFLEX102	28620/2	May.08, 09	1 Year
5	RF Cable	Hubersuhner	SUCOFLEX102	271471/4	May.08, 09	1 Year
6	RF Cable	Hubersuhner	SUCOFLEX102	29086/2	May.08, 09	1 Year

4.2.Block Diagram of Test Setup

4.2.1.Block Diagram of connection between EUT and simulators

(EUT: Wireless Guitar Receiver for PS2 & PS3)

4.2.2. Anechoic Chamber Setup Diagram

ANTENNA TOWER

GROUND PLANE

4.3. Radiated Emission Limit Standard: FCC 15.209 and 15.249

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT		
MHz	Meters	$\mu V/m$	$dB(\mu V)/m$	
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46.0	
960 ~ 1000	3	500	54.0	
Above 1000MHz	3	74.0 dB(μV)/m (Peak)		
		54.0 dB(μV	/)/m (Average)	
Field Strength of	3	94.0 dB(μV)/m (Average)		
Fundamental emission for		$114.0 \text{ dB}(\mu\text{V})/\text{m}(\text{Peak})$		
2.4GHz-2.4835GHz				
Field Strength of	3	74.0 dB(µV)/m (Peak)		
Harmonics		$54.0 \text{ dB}(\mu\text{V})/\text{m} \text{ (Average)}$		

Remark : (1) Emission level $dB\mu V = 20 \log Emission$ level $\mu V/m$

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- (4) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

4.4.EUT Configuration on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.4.1. Wireless Guitar Receiver for PS2 & PS3 (EUT)

Model Number : 95893.806 (Receiver)

Serial Number : N/A

4.5. Operating Condition of EUT

- 4.5.1. Setup the EUT as shown in Section 4.2..
- 4.5.2. Turned on the power of all equipment.
- 4.5.3. Let the EUT worked in test mode and tested it.

4.6.Test Procedure

The EUT and its simulators are placed on a turn table, which is 0.8 meter high above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on Test. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2003 on radiated emission Test.

This test was performed with EUT in X, Y, Z position, and the worse case was found when EUT in X position as the test photo indicated.

The bandwidth of the EMI test receiver (R&S ESVS10) is set at 120kHz for frequency range from 30MHz to 1000 MHz.

The bandwidth of the Spectrum's VBW is set at 1MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW.

This product is pulse modulated, pulse desensitization correction factor was used to determine the Average level.

The frequency range from 30MHz to 10th harmonic (25GHz) are checked. and no any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

4.7. Radiated Emission Test Results

PASS.

All the emissions from 30MHz to 25GHz were comply with the 15.249 and 15.209 limit.

Test Frequency: 30MHz-1000MHz

No.6,Ke Feng Road,Block 52, Shenzhen Science&Industry Park Nantou Shenzhen,Guangdong,China

Tel:+86-755-26639495 Fax:+86-755-26632877 Postcode:518057

Site no. : 3m Chamber Data no. : 3

Dis. / Ant. : 3m CBL6111C Ant. pol. : HORIZONTAL

Limit : FCC PART 15 C (3M)

Env. / Ins. : 24*C/56% Engineer : Power

EUT : Wireless Guitar Receiver For PS2&PS3
Power Rating : DC 5V From PS3 Input AC 120V/60Hz

Test Mode : Running

M/N:95893.806(Receiver)

	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	109.540	11.22	0.80	24.07	36.09	43.50	7.41	QP
2	127.000	12.02	0.84	23.85	36.71	43.50	6.79	QP
3	194.900	9.75	1.12	18.69	29.56	43.50	13.94	QP

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

The emission levels that are 20dB below the official limit are not reported.

No.6, Ke Feng Road, Block 52, Shenzhen Science&Industry Park Nantou Shenzhen, Guangdong, China Tel:+86-755-26639495

Fax:+86-755-26632877 Postcode:518057

Site no. : 3m Chamber Data no. : 4

Dis. / Ant. : 3m CBL6111C Ant. pol. : VERTICAL

Limit : FCC PART 15 C (3M)

Env. / Ins. : 24*C/56% Engineer : Power

EUT : Wireless Guitar Receiver For PS2&PS3
Power Rating : DC 5V From PS3 Input AC 120V/60Hz

Test Mode : Running

M/N:95893.806(Receiver)

	Freq. (MHz)	Ant. Factor (dB/m)	Reading	Emission Level (dBuV/m)	_	Remark
1 2	151.250 270.560		 24.39 16.15	36.83 30.86	 6.67 15.14	QP QP

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

Test Frequency: 1GHz-18GHz

No.6 Ke Feng Road, Block 52, ShenZhen Science & Industry Park Noutou, ShenZhen, GuangDong, China Tel:+86-755-26639495-7 Fax:+86-755-26632877

Postcode:518057

Site no. : 3m Chamber Data no. : 1

Dis. / Ant. : 3m 3115 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2410MHz

M/N : 95893.806(Receiver)

Site no. : 3m Chamber Data no. : 2

Dis. / Ant. : 3m 3115 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS24PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2410MHz

M/N : 95893.806(Receiver)

	Ant. Cable Amp.				Emission				
	-				Reading			_	Remark
	(MHz)	(dB/m)	(dB)	(dB)	(dbuv)	(dBuV/m)	(dBuV/m)	(dB)	
4	2410.000	20 40	6 72	25 12	70 22	79.31	114 00	24 60	Doole
Τ.	2410.000	20.40	0.73	33.12	19.66	79.31	114.00	34.05	reak
2	4820.000	34.47	10.54	34.59	44.10	54.52	74.00	19.48	Peak

Remarks

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

Average emissions Level

Freq	Ant.	Peak Level	PDCF	AV Level	AV Limit	Margin			
(MHz)	Plo.	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)			
4820.0	V	54.52	18.20	36.32	54	17.68			
Note: AV Level= Peak Level – PDCF									

Postcode:518057

Site no. : 3m Chamber Data no. : 3

Dis. / Ant. : 3m 3115 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2410MHz

M/N : 95893.806(Receiver)

Site no. : 3m Chamber Data no. : 4

Dis. / Ant. : 3m 3115 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS24PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2410MHz

M/N : 95893.806(Receiver)

	-	Factor	Factor	Reading (dbuv)		Limits	_	Remark	
_	2410.000		 		87.46 53.42		26.54 20.58		

Remarks

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

Average emissions Level

Freq	Ant.	Peak Level	PDCF	AV Level	AV Limit	Margin			
(MHz)	Plo.	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)			
4820.0	Н	53.42	18.20	35.22	54	18.78			
Note: AV Level= Peak Level – PDCF									

Site no. : 3m Chamber Data no. : 5

Dis. / Ant. : 3m 3115 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS24PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2440MHz

M/N : 95893.806(Receiver)

Site no. : 3m Chamber Data no. : 6

Dis. / Ant. : 3m 3115 Ant. pol. : HORIZONTAL

Frequency (MHz)

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2440MHz

M/N : 95893.806(Receiver)

		Ant.	Cable	Amp.		Emissio	n			
	-				Reading (dbuv)			_	Remark	
1	2440.000	28.53	6.80	35.11	 86.71	86.93	 114.00	27.07	Peak	
_	4880.000					54.11		19.89		

Remarks

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

Average emissions Level

Freq	Ant.	Peak Level	PDCF	AV Level	AV Limit	Margin		
(MHz)	Plo.	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
4880.0	Н	54.11	18.20	35.91	54	18.09		
Note: AV Level= Peak Level – PDCF								

Site no. : 3m Chamber Data no. : 7

Dis. / Ant. : 3m 3115 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2440MHz

M/N : 95893.806(Receiver)

Site no. : 3m Chamber Data no. : 8
Dis. / Ant. : 3m 3115 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

Frequency (MHz)

EUT : Wireless Guitar Receiver for PS2@PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2440MHz

M/N : 95893.806(Receiver)

	Ant. Cable Amp.			Amp.	Emission					
	-				Reading (dbuv)			_	Remark	_
_	2440.000 4880.000				80.06 43.33	80.28 54.09	114.00 74.00	33.72 19.91		_

Remarks

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

Average emissions Level

Freq	Ant.	Peak Level	PDCF	AV Level	AV Limit	Margin			
(MHz)	Plo.	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)			
4880.0	V	54.09	18.20	35.89	54	18.11			
Note: AV Level= Peak Level – PDCF									

Site no. : 3m Chamber Data no. : 9

Dis. / Ant. : 3m 3115 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2469.2MHz

M/N : 95893.806(Receiver)

Site no. : 3m Chamber Data no. : 10
Dis. / Ant. : 3m 3115 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2469.2MHz

M/N : 95893.806(Receiver)

		Ant.	Cable	Amp.		Emissio	n			
	-				Reading (dbuv)			_	Remark	
_	2469.200 4938.400				80.69 44.26	80.98 55.46		33.02 18.54		

Remarks:

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

Average emissions Level

Freq	Ant.	Peak Level	PDCF	AV Level	AV Limit	Margin			
(MHz)	Plo.	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)			
4938.0	V	55.46	18.20	37.26	54	16.74			
Note: AV Level= Peak Level – PDCF									

Site no. : 3m Chamber Data no. : 11

Dis. / Ant. : 3m 3115 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2469.2MHz

M/N : 95893.806(Receiver)

Site no. : 3m Chamber Data no. : 12

Dis. / Ant. : 3m 3115 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2469.2MHz

M/N : 95893.806(Receiver)

	-	Factor	Factor	Reading (dbuv)		Limits	_	Remark	
_	2469.200		 		87.75 55.09	114.00 74.00	26.25 18.91		

Remarks

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

Average emissions Level

Freq	Ant.	Peak Level PDCF AV Level		AV Limit	Margin			
(MHz) Plo.		(dBuV/m)	(dB) (dBuV/m)		(dBuV/m)	(dB)		
4938.0 H		55.09	18.20	36.89	54	17.11		
Note: AV Level= Peak Level – PDCF								

4.8. Duty factor

Average level = Peak level - Duty factor Duty factor = $20 \log (1/x) = 18.20$ X = Tx on / (Tx on + Tx off) = 1.23/10.00

5. 20DB BANDWIDTH TEST

5.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
1	Spectrum Analyzer	Agilent	E4446A	US44300459	May,08, 09	1 Year
2	Attenuator	Agilent	8491B	MY39262165	May,08, 09	1 Year
3	RF Cable	Hubersuhner	SUCOFLEX 102	28618/2	May,08, 09	1Year

5.2.Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

5.3. Test Results

СН	20dB Bandwidth (kHz)	Limit (kHz)	Conclusion
(Low)	780.669		PASS
(Mid)	782.589		PASS
(High)	790.490		PASS

6. BAND EDGE COMPLIANCE TEST

6.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum Analyzer	Agilent	E4446A	US44300459	May,08, 09	1 Year
2	Horn Antenna	EMCO	3115	9607-4877	May, 27, 08	1.5 Year
3	Amplifier	Agilent	8449B	3008A02495	Nov 24.08	1 Year
4	RF Cable	Hubersuhner	SUCOFLEX 102	28620/2	May,08, 09	1 Year
5	RF Cable	Hubersuhner	SUCOFLEX 102	271471/4	May,08, 09	1 Year
6	RF Cable	Hubersuhner	SUCOFLEX 102	29086/2	May,08, 09	1 Year

6.2.Limit

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

6.3. Test Produce

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upperband-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz, PK detector, Sweep=AUTO

6.4. Test Results

Pass (The testing data was attached in the next pages.)

All the levels PK measured and comply with average limit, so the average levels were deemed to comply with average limit

Site no. : 3m Chamber Data no. : 13
Dis. / Ant. : 3m 3115 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2410MHz

M/N : 95893.806(Receiver)

	Ant. Cable Amp. Emi					Emissio:	Emission			
	-		loss (dB)		Reading (dbuv)			_	Remark	
1	2335.410	28.38	6.65	35.13	40.97	40.87	74.00	33.13	Peak	
2	2390.000	28.46	6.71	35.12	44.00	44.05	74.00	29.95	Peak	
3	2400.000	28.46	6.73	35.12	46.39	46.46	74.00	27.54	Peak	
4	2410.000	28.48	6.73	35.12	80.39	80.48	114.00	33.52	Peak	

Remarks

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

Site no. : 3m Chamber Data no. : 14

Dis. / Ant. : 3m 3115 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2410MHz

M/N : 95893.806(Receiver)

	Ant.	Cable	Amp. Emission						
-				_			_	Remark	
2337.300	28.38	6.67	35.13	41.41	41.33	74.00	32.67	Peak	
2390.000	28.46	6.71	35.12	47.29	47.34	74.00	26.66	Peak	
2400.000	28.46	6.73	35.12	53.16	53.23	74.00	20.77	Peak	
2410.000	28.48	6.73	35.12	87.05	87.14	114.00	26.86	Peak	
	(MHz) 2337.300 2390.000 2400.000	Freq. Factor (MHz) (dB/m) 	Freq. Factor loss (MHz) (dB/m) (dB) 	Freq. Factor loss Factor	Freq. Factor loss Factor Reading (MHz) (dB/m) (dB) (dB) (dbuv) 2337.300 28.38 6.67 35.13 41.41 2390.000 28.46 6.71 35.12 47.29 2400.000 28.46 6.73 35.12 53.16	Freq. Factor loss Factor Reading Level (MHz) (dB/m) (dB) (dB) (dbuv) (dBuV/m)	Freq. Factor loss Factor Reading Level Limits (MHz) (dB/m) (dB) (dB) (dbuv) (dBuV/m) (dBuV/m) 2337.300 28.38 6.67 35.13 41.41 41.33 74.00 2390.000 28.46 6.71 35.12 47.29 47.34 74.00 2400.000 28.46 6.73 35.12 53.16 53.23 74.00	Freq. Factor loss Factor Reading Level Limits Margin (MHz) (dB/m) (dB) (dB) (dbuv) (dBuV/m) (dBuV/m) (dB) 2337.300 28.38 6.67 35.13 41.41 41.33 74.00 32.67 2390.000 28.46 6.71 35.12 47.29 47.34 74.00 26.66 2400.000 28.46 6.73 35.12 53.16 53.23 74.00 20.77	Freq. Factor loss Factor Reading Level Limits Margin Remark (MHz) (dB/m) (dB) (dB) (dbuv) (dBuV/m) (dBuV/m) (dB) 2337.300 28.38 6.67 35.13 41.41 41.33 74.00 32.67 Peak 2390.000 28.46 6.71 35.12 47.29 47.34 74.00 26.66 Peak 2400.000 28.46 6.73 35.12 53.16 53.23 74.00 20.77 Peak

Remarks

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

Site no. : 3m Chamber Data no. : 15

Dis. / Ant. : 3m 3115 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2469.2MHz

M/N : 95893.806(Receiver)

		Ant.	Cable	Amp.	Emission				
	-				Reading (dbuv)			_	Remark
1	2469.200	28.55	6.84	35.10	87.57	87.86	114.00	26.14	Peak
2	2483.500	28.58	6.87	35.10	49.71	50.06	74.00	23.94	Peak
3	2492.475	28.60	6.91	35.10	44.67	45.08	74.00	28.92	Peak

Remarks:

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

Site no. : 3m Chamber Data no. : 16
Dis. / Ant. : 3m 3115 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 25*C/60% Engineer :Power Feng

EUT : Wireless Guitar Receiver for PS2&PS3
Power : DC 5V From PS3 input AC 120V/60Hz

Test mode : Tx 2469.2MHz

M/N : 95893.806(Receiver)

		Ant.	Cable	Amp.	Emission					
	•				Reading (dbuv)			_	Remark	
1	2469.200	28.55	6.84	35.10	80.41	80.70	114.00	33.30	Peak	
2	2483.500	28.58	6.87	35.10	43.22	43.57	74.00	30.43	Peak	
3	2494.470	28.60	6.91	35.10	39.70	40.11	74.00	33.89	Peak	

Remarks:

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

7. DEVIATION TO TEST SPECIFICATIONS

[NONE]