#### 1. Genomför nedanstående omvandlingar mellan olika talsystem:

a) Omvandla talet 1101 0110 till dess decimala motsvarighet, både på signerad samt osignerad form.

Osignerat: 214 (decimalt)

Signerat: MSB är 1, dvs talet blir ett negativt tal.  $1101\ 0110\ _2$  –  $1=1101\ 0101\ _2$ . Räkna bort MSB för tillfället och invertera talet, 1->0 - 0->1. =  $0010\ 1010\ _2$  = 32 + 8 + 2 = 42. Med MSB som inverterar talet negativt SVAR =  $-42\ _{10}$ 

b) Omvandla talet 300 till dess 16-bitars signerade motsvarighet.

SVAR: 0000 0001 0010 1100<sub>2</sub> (Skulle kunna förkorta bort alla nollor)

c) Omvandla det decimala talet -123 till dess 8-bitars 2-komplement.

SVAR: -123 till positivt tal är (0111 1011), inverteras till 1000 0100 +1 =  $1000 0101_2$ 

d) Omvandla det binära talet 0110 1101 0111 1010 till dess hexadecimala motsvarighet.

 $SVAR: 0110\ 1101\ 0111\ 1010\ =\ 6\ D\ 7\ A\ =\ 6D7A_{16}$ 

e) Omvandla det hexadecimala talet  $3F754B04_{16}$  till dess binära motsvarighet.

 $SVAR: 3F754B04_{16} = 0011\ 1111\ 0111\ 0101\ 0100\ 1011\ 0000\ 0100_2$  $3\ F\ 7\ 5\ 4\ B\ 0\ 4$ 

#### 2. ErrorCode

```
______
-- Modulen ErrorCode används för att tända lysdioden led vid udda antal höga
-- slideswitchar
-- switch[3:0], förutsatt att tryckknappen key n är nedtryckt.
-- Annars skall lysdioden vara släckt.
-- Därmed gäller att om en eller tre slide-switchar är höga samtidigt som
-- tryckknappen key n trycks ned, så tänds lysdioden, annars hålls den släckt.
______
library IEEE;
use IEEE.std logic 1164.all; -- lagt till .all
entity ErrorCode is
 port
    switch : in std logic vector(3 downto 0);
    key n : in std logic;
    ) ;
end entity;
architecture Behaviour of ErrorCode is
signal led_s : std_logic; -- lagt till std_logic signal
signal odd switches : std logic; -- Ändrat långt namn och gjort om variabel till signal,
-- bool till std logic.
begin
______
-- Vid udda antal höga slide switchar samtidigt som tryckknappen key n trycks ned så
-- tänds lysdioden, annars hålls den släckt.
-- ändrat sensitivity list så odd switches ingår istället för input från switch
-- tagit bort överflödig begin från process.
-- ändrat från !key_n till key = '0'. Lagt till jämförelse om odd switches = '1'
-- lagt till ordet "then" efter jämförelsen.
-- lagt till tilldelning av värde "<= och '' "
-- Använder mig av led s för att kunna tilldela output utanför processen
______
process (odd switches, key n) is
begin
  if (odd switches = '1' and key n = '0') then
    led s <= '1'; -- LAGT TILL TILLDELNING AV VÄRDE "<= och '' "
  else
    led s <= '0'; -- LAGT TILL TILLDELNING AV VÄRDE "<= och '' "
  end if;
end process;
  odd switches <= switch(3) xor switch(2) xor switch(1) xor switch(0);
  led \leq led s;
end architecture;
```

## 3. 8-1 MUX

Dont care införs i sanningstabellen då Multiplexerns bitar S2-S0

Y = S0'S1'S2'C0 + S0S1'S2'C1 + S0'S1S2'C2 + S0S1S2'C3 + S0'S1'S2C4 + S0S1'S2C5 + S0'S1S2C6 + S0S1S2C7

| <b>S2</b> | <b>S1</b> | S0 | CO | <b>C1</b> | C2 | <b>C3</b> | <b>C4</b> | <b>C</b> 5 | C6 | <b>C7</b> | Υ |
|-----------|-----------|----|----|-----------|----|-----------|-----------|------------|----|-----------|---|
| 0         | 0         | 0  | 1  | Χ         | Χ  | Χ         | Χ         | Χ          | Χ  | Χ         | 1 |
| 0         | 0         | 1  | Χ  | 1         | Χ  | Χ         | Χ         | Χ          | Χ  | Χ         | 1 |
| 0         | 1         | 0  | Χ  | Χ         | 1  | Χ         | Χ         | Χ          | Χ  | Χ         | 1 |
| 0         | 1         | 1  | Χ  | Χ         | Χ  | 1         | Χ         | Χ          | Χ  | Χ         | 1 |
| 1         | 0         | 0  | Χ  | Χ         | Χ  | Χ         | 1         | Χ          | Χ  | Χ         | 1 |
| 1         | 0         | 1  | Χ  | Χ         | Χ  | Χ         | Χ         | 1          | Χ  | Χ         | 1 |
| 1         | 1         | 0  | Χ  | Χ         | Χ  | Χ         | Χ         | Χ          | 1  | Χ         | 1 |
| 1         | 1         | 1  | Χ  | Χ         | Χ  | Χ         | Χ         | Χ          | Χ  | 1         | 1 |

 $Y = 50' \ 51' \ 52' \ X0 + 50 \ 51' \ 52' \ X1 + 50' \ 51 \ 52' \ X2 + 50 \ 51 \ 52' \ X3 + 50' \ 51' \ 52 \ X4 + 50 \ 51' \ 52 \ X5 + 50' \ 51 \ 52 \ X6 + 50 \ 51 \ 52 \ X7 + 50' \ 51' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52' \ 52$ 



# Jacob Lundkvist ELA21 – Digital Konstruktion

## 4. 3 bitars AD-omvandlare

Signalen X sanningstabell och Karnaugh

| Α | В | С | D | Ε | F | G | Н | Х |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | Χ | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | Χ | Χ | 0 |
| 0 | 0 | 0 | 0 | 1 | Х | Χ | Χ | 0 |
| 0 | 0 | 0 | 1 | Χ | Χ | Χ | Χ | 1 |
| 0 | 0 | 1 | Χ | Х | Х | Χ | Χ | 1 |
| 0 | 1 | Χ | Χ | Χ | Х | Χ | Χ | 1 |
| 1 | Χ | Χ | Χ | Х | Χ | Χ | Χ | 1 |

| 1    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| X    | EFGH | 0000 | 0001 | 0011 | 0010 | 0100 | 0101 | 0111 | 0110 | 1000 | 1001 | 1011 | 1010 | 1100 | 1101 | 1111 | 1110 |
| ABCI | 0000 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|      | 0001 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 0011 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 0010 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 0100 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 0101 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 0111 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 0110 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1000 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1001 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1011 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1010 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1100 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1101 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1111 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1110 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1,   |

Signalen Y sanningstabell och Karnaugh

| Α | В | C | D | Е | F | G | Η | Υ |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | Χ | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | Χ | Χ | 1 |
| 0 | 0 | 0 | 0 | 1 | Χ | Χ | Χ | 1 |
| 0 | 0 | 0 | 1 | Χ | Χ | Χ | Χ | 0 |
| 0 | 0 | 1 | Χ | Χ | Χ | Χ | Χ | 0 |
| 0 | 1 | Χ | Χ | Х | Χ | Χ | Χ | 1 |
| 1 | Χ | Χ | Χ | Х | Χ | Χ | Χ | 1 |

|   | Υ    | EFGH | 0000 | 0001 | 0011 | 0010 | 0100 | 0101 | 0111 | 0110 | 1000 | 1001 | 1011 | 1010 | 1100 | 1101 | 1111 | 1110 |
|---|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| П | ABCD | 0000 |      |      |      | ,    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|   |      | 0001 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| H |      | 0011 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| П |      | 0010 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| П |      | 0100 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Н |      | 0101 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Ш |      | 0111 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|   |      | 0110 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|   |      | 1000 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| П |      | 1001 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| ı |      | 1011 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|   |      | 1010 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|   |      | 1100 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|   |      | 1101 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|   |      | 1111 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|   |      | 1110 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |

Signalen Z sanningstabell och Karnaugh

| Α | В | С | D | E | F | G | Н | Z |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |   |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | Χ | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | Χ | Χ |   |
| 0 | 0 | 0 | 0 | 1 | Χ | Χ | Χ | 1 |
| 0 | 0 | 0 | 1 | Х | Х | Χ | Χ |   |
| 0 | 0 | 1 | Χ | Χ | Χ | Χ | Χ | 1 |
| 0 | 1 | Χ | Χ | Х | Χ | Χ | Χ |   |
| 1 | Χ | Χ | Χ | Χ | Χ | Χ | Χ | 1 |

| _    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Z    | ЕГСН | 0000 | 0001 | 0011 | 0010 | 0100 | 0101 | 0111 | 0110 | 1000 | 1001 | 1011 | 1010 | 1100 | 1101 | 1111 | 1110 |
| ABCD | 0000 |      |      | 1    | 1    |      |      |      |      | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 0001 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|      | 0011 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 0010 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 0100 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|      | 0101 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|      | 0111 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|      | 0110 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|      | 1000 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1001 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1011 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1010 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1100 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1101 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1111 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|      | 1110 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |





5.

| A[1:0] |    | B[1:0] |    | X[3:0] | 4  | 2         | 1  |   |        |    | B[1:0] |         |     |    |        |    | B[1:0] |    |    |    |
|--------|----|--------|----|--------|----|-----------|----|---|--------|----|--------|---------|-----|----|--------|----|--------|----|----|----|
| A1     | A0 | B1     | В0 | X3     | X2 | <b>X1</b> | XO |   | A[1:0] | X0 | 00     | 01      | 11  | 10 | A[1:0] | X2 | 00     | 01 | 11 | 10 |
| 0      | 0  | 0      | 0  | 0      | 0  | 0         | 0  | 0 |        | 00 | 0      | 0       | 0   | 0  |        | 00 | 0      | 0  | 0  | 0  |
| 0      | 0  | 0      | 1  | 0      | 0  | 0         | 0  | 0 |        | 01 | 0      | 1       | 1   | 0  |        | 01 | 0      |    |    |    |
| 0      | 0  | 1      | 0  | 0      | 0  | 0         | 0  | 0 |        | 11 | 0      | 1       | 1   | 0  |        | 11 | 0      |    |    | 1  |
| 0      | 0  | 1      | 1  | 0      | 0  | 0         | 0  | 0 |        | 10 | 0      | 0       | 0   | 0  |        | 10 | 0      |    | 1  | 1  |
| 0      | 1  | 0      | 0  | 0      | 0  | 0         | 0  | 0 |        |    |        |         |     |    |        |    |        |    |    |    |
| 0      | 1  | 0      | 1  | 0      | 0  | 0         | 1  | 1 |        |    | B[1:0] |         |     |    |        |    | B[1:0] |    |    |    |
| 0      | 1  | 1      | 0  | 0      | 0  | 1         | 0  | 2 | A[1:0] | X1 | 00     | 01      | 11  | 10 | A[1:0] | Х3 | 00     | 01 | 11 | 10 |
| 0      | 1  | 1      | 1  | 0      | 0  | 1         | 1  | 3 |        | 00 | 0      | 0       | 0   | 0  |        | 00 | 0      | 0  | 0  | 0  |
| 1      | 0  | 0      | 0  | 0      | 0  | 0         | 0  | 0 |        | 01 | 0      | 0       | 1   | 1  |        | 01 | 0      |    |    |    |
| 1      | 0  | 0      | 1  | 0      | 0  | 1         | 0  | 2 |        | 11 | 0      | 1       | 0   | 1  |        | 11 | 0      |    | 1  |    |
| 1      | 0  | 1      | 0  | 0      | 1  | 0         | 0  | 4 |        | 10 | 0      | 1       | 1   | 0  |        | 10 | 0      |    |    |    |
| 1      | 0  | 1      | 1  | 0      | 1  | 1         | 0  | 6 |        | +  | 9      | <u></u> | စ္က |    |        |    |        |    |    |    |

X0 = A0 B0

X1= A1'A0 B1 + A1 A0' B0 + A1 B1' B0 + A0 B1 B0

0 0

3

9

1 0 6

0

1

X2 = A1 A0' B1 + A1B1 B0'

0

1 0

X3 = A1 A0 B1 B0

1



Version 1. Typomvandlar "unsigned vektor" till integer och sedan typomvandlas det tillbaka till unsigned -> std logic vector.

| <b>\$</b> 1√             | Msgs |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| <b>-</b> → /math_tb/AB_s | 0000 | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| /math_tb/X_s             | 0    | 0    |      |      |      |      | 1    | 2    | 3    | 0    | 2    | 4    | 6    | 0    | 3    | 6    | 9    |
|                          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |



Testad på FPGA med godkänt resultat.

Version 2. Med logiska uttryck framtaget från Karnaughdiagram.

```
begin
       process(A, B)
begin
              X_s(3) \leftarrow (A(1) \text{ and } A(0) \text{ and } B(1) \text{ and } B(0));
              X_s(2) \leftarrow (A(1) \text{ and not } A(0) \text{ and } B(1)) \text{ or } (A(1) \text{ and } B(1) \text{ and not } B(0));
              X_s(1) \leftarrow (\text{not A}(1) \text{ and A}(0) \text{ and B}(1)) \text{ or } (A(1) \text{ and not A}(0) \text{ and B}(0)) \text{ or } (A(1) \text{ and not B}(1) \text{ and B}(0)) \text{ or } (A(0) \text{ and B}(1) \text{ and not B}(0));
              X_s(0) \leftarrow (A(0) \text{ and } B(0));
       end process;
X <= X_s;
end architecture;
                                                                            X s~3
                                                              1
                                   X_s~1
                                                                                                                          X s~4
                                                                            X_s~2
 A[1..0]
                                                                            X s~6
 B[1..0]
                                                              0
                                                                            ₁X s~7
                                                              0
                                                                                                                          X s~9
                                                                            <sub>4</sub>Χ s~5
```

0

0

X\_s~8

X[3..0]

X\_s~0

X\_s~10

0

0

Testad på FPGA med godkänt resultat.