

THE UNIVERSITY OF TEXAS AT AUSTIN

CS331 Algorithm

Assignment 05

Edited by \LaTeX

Department of Computer Science

STUDENT

Jimmy Lin

xl5224

INSTRUCTOR

Greg Plexton

TASSISTANT

Chunzhi Zhu

RELEASE DATE

March. 31 2014

DUE DATE

April. 9 2014

TIME SPENT

15 hours

	٦,			L .		nt	~
l	7)	n	ı,e	- r	11.	S

1	Exercise 2	2
2	Exercise 5	4

1 Exercise 2

Consider an iteration of Algorithm A on a configuration G = (U, V, E) that increments the price of an item due to a violation of Stability Condition 2. Assume that the MCM M of G associated with this execution of Algorithm A is an MWMCM of G. Let $p(resp., p_0)$ denote the price vector of G maintained by Algorithm A just before (resp., after) this iteration. Prove that if $P_0(G, p)$ holds, then so does $P_0(G, p_0)$. Hint: Make use of Lemma 1 of Assignment 4.

In order to prove that if $P_0(G, p)$ holds, then $P_0(G, p')$ holds after one iteration of algorithm A, we should prove it for all three possible violation cases of algorithm A. Let p be the price vector that violates certain stability condition and q be one arbitrary stable price vector.

Stability Condition 1 is violated. In this case, the algorithm A will halts "unsuccessfully". Hence, there is no change for price vector after the iteration. That is, we have p = p'. And obviously, it is true that if $P_0(G, p)$ holds, then $P_0(G, p')$ holds.

Stability Condition 2 is violated. Since the violation of stability condition 2 causes the iteration of algorithm A, it is true that

$$\exists u, (u, v) \in M, (u, v^*) \in E, \text{ s.t. } w(u, v) - p_v < w(u, v^*) - p_{v^*}$$
 (1)

Let us instantiate the v to v_0 and v^* to v_1 , and have

$$w(u, v_0) - p_{v_0} < w(u, v_1) - p_{v_1}$$
(2)

In this case, the p'_{v_1} will increments by 1, it is true that

$$w(u, v_0) - p_{v_0} \le w(u, v_1) - p'_{v_1} \tag{3}$$

That is,

$$p'_{v_1} \le w(u, v_1) - w(u, v_0) + p_{v_0} \tag{4}$$

For the stable price vector q, according the stability condition 2, we have

$$\forall v^*, \ w(u, v^*) - q_{v^*} \le w(u, v_0) - q_{v_0} \tag{5}$$

Let us instantiate the v^* to v_1 and have

$$w(u, v_1) - q_{v_1} \le w(u, v_0) - q_{v_0} \tag{6}$$

That is,

$$w(u, v_1) - w(u, v_0) + q_{v_0} \le q_{v_1} \tag{7}$$

Since $p_{v_0} \leq q_{v_0}$ holds, we have

$$w(u, v_1) - w(u, v_0) + p_{v_0} \le w(u, v_1) - w(u, v_0) + q_{v_0}$$
(8)

And then we have

$$w(u, v_1) - w(u, v_0) + p_{v_0} \le q_{v_1} \tag{9}$$

Combined with (4), we reach the destiniation as follows

$$p'_{v_1} \le q_{v_1} \tag{10}$$

Since p'_{v_1} is the only item whose price is changed in this iteration, $\forall v \neq v_1, p'_v \leq q_{v_1}$ holds. Hence, we can conclude that after the iteration of algorithm A with the cause of stability violation 2, Predicate 0 still holds. That is, $P_0(G, p) \Rightarrow P_0(G, p')$ holds if one iteration is caused by stability violation 2.

Stability Condition 3 is violated. In the violation of stability condition 3, we have

$$\exists v^*, (u^*, v^*) \in E, u^* \text{ is unmatched in } M, p_{v^*} < w(u^*, v^*)$$
 (11)

Let u_0 to be a unmatched bid in M, and $(u_0, v_0) \in E$. Hence, we can instantiate v^* to v_0 , and u^* to u_0

$$(u_0, v_0) \in E, \ p_{v_0} < w(u_0, v_0)$$
 (12)

Since the algorithm A in this case will increment p_{v_0} by one and other price component remains unchanged, we have

$$p_{v_0} \le w(u, v_0) \tag{13}$$

Since M is already MWMCM, and q is stable price vector, then (M, q) is stable solution. According to the third property of stable solution, we have

$$\forall u^* \in U, \ u^* \text{ is unmatched in } M, \ w(u^*, v_0) \le q_{v_0}$$
 (14)

We instantiate u^* to u_0 , which is reasonable because u_0 is unmatched in M. Then we have

$$w(u_0, v_0) \le q_{v_0} \tag{15}$$

Combined with (13), it is true that

$$p_{v_0} \le q_{v_0} \tag{16}$$

Since other price component does not vary at that iteration, we can conclude that $p \leq q$ holds in this case. That is, $P_0(G, p) \Rightarrow P_0(G, p')$ holds if one iteration is caused by stability violation 3.

Since one iteration in algorithm A will only be caused by one of three cases, and in all of these three cases, $P_0(G, p) \Rightarrow P_0(G, p')$ holds for that iteration, it can be concluded that if $P_1(G, M, p)$ holds, then so does $P_1(G, M, p')$.

© Jimmy Lin(xl5224)

2 Exercise 5

Consider an execution of Algorithm A on a configuration G = (U, V, E). Assume that the associated MCM M of G is an MWMCM of G, and that the initial price vector p for G is such that P(G, M, p) holds. Prove that Algorithm A is guaranteed to halt successfully within a finite number of iterations. Hint: Make use of Lemma 3.

Proof by Contradiction. First assume that Algorithm A is **not necessarily** guaranteed to halt successfully within a finite number of iterations. That is to say, it is possible for Algorithm A to unsuccessfully halt at certain iteration. Let us say the halting iteration to be iteration k. Since the algorithm A halts at iteration k, the only possibility comes from the violation of stability condition 1 for price vector p. That is,

$$\exists (u, v) \in M, \ w(u, v) < p_v \tag{17}$$

Let us see how the above formula contradicts the known condition P(G, M, p). For an stable price vector q, and an MWMCM M, we have

$$\forall v, \ q_v \le w(u, v) \tag{18}$$

Combined with (17), it can be easily seen that

$$\exists (u, v) \in M, \ q_v \le w(u, v) < p_v \tag{19}$$

However, we already know that P(G, M, p) holds and if P(G, M, p), then $P_1(G, M, p)$ must hold. Hence, $P_1(G, M, p)$ holds. That is,

$$\forall v, \ p_v < q_v \tag{20}$$

where q can be arbitrary stable price vector, but here we just instantiate it to be the same stable price vector in (18) for convenience.

Now we can see that there is a contradiction between (19) and (20). Hence, we should negate the initial assumption and conclude that Algorithm A is guaranteed to halt successfully within a finite number of iterations.