### EXERCICE N°1 Lecture graphique

On a représenté ci-contre une fonction f.

On définit une suite u par  $\forall n \in \mathbb{N}$ ,  $u_n = f(n)$ .

On admet que  $u_0 = 1$ .

Donner les valeurs des six termes suivants.



**EXERCICE** N°2 Utiliser un graphique (méthode à connaître)

On a représenté une fonction g ainsi que la droite d'équation y = x dans le graphique ci-contre.

On définit la suite v par :

$$\begin{cases} v_0 = -3 \\ \forall n \in \mathbb{N} , v_{n+1} = g(v_n) \end{cases}$$

Déterminer les cinq premiers termes de la suite v.



# EXERCICE N°3 Un peu de python



basthon

Soit  $(u_n)_{n\in\mathbb{N}}$  définie par :  $u_0 = 5$  et  $u_{n+1} = -u_n + 4$ .

On considère l'algorithme ci-contre :

- Que permet d'afficher cet algorithme? 1)
- Quelle valeur affiche cet algorithme?
- Modifier cet algorithme pour qu'il affiche la valeur de  $u_{40}$
- Coder cet algorithme en Python.

u ← 5 Pour i allant de 1 à 25  $u \leftarrow -u + 4$ Fin pour Afficher u.

## **EXERCICE** N°4 Encore un peu de python



basthon

Soit u la suite définie par  $\begin{cases} u_0 = 5 \\ \forall n \in \mathbb{N} , u_{n+1} = 2u_n + 1 \end{cases}$ 

1) Calculer  $u_1$  et  $u_2$ .

- 2) Écrire un algorithme permettant de calculer  $u_{20}$ .
- 3) Coder cet algorithme en Python et l'utiliser pour calculer  $u_{20}$

### EXERCICE N°1 Lecture graphique

On a représenté ci-contre une fonction f.

On définit une suite u par  $\forall n \in \mathbb{N}$ ,  $u_n = f(n)$ .

On admet que  $u_0 = 1$ .

Donner les valeurs des six termes suivants.



**EXERCICE** N°2 Utiliser un graphique (méthode à connaître)

On a représenté une fonction g ainsi que la droite d'équation y = x dans le graphique ci-contre.

On définit la suite v par :

$$\begin{cases} v_0 = -3 \\ \forall n \in \mathbb{N} , v_{n+1} = g(v_n) \end{cases}$$

Déterminer les cinq premiers termes de la suite v.



# EXERCICE N°3 Un peu de python



basthon

Soit  $(u_n)_{n\in\mathbb{N}}$  définie par :  $u_0 = 5$  et  $u_{n+1} = -u_n + 4$ .

On considère l'algorithme ci-contre :

- Que permet d'afficher cet algorithme? 1)
- Quelle valeur affiche cet algorithme?
- Modifier cet algorithme pour qu'il affiche la valeur de  $u_{40}$
- Coder cet algorithme en Python.

u ← 5 Pour i allant de 1 à 25  $u \leftarrow -u + 4$ Fin pour Afficher u.

## **EXERCICE** N°4 Encore un peu de python



basthon

Soit u la suite définie par  $\begin{cases} u_0 = 5 \\ \forall n \in \mathbb{N} , u_{n+1} = 2u_n + 1 \end{cases}$ 

1) Calculer  $u_1$  et  $u_2$ .

- 2) Écrire un algorithme permettant de calculer  $u_{20}$ .
- 3) Coder cet algorithme en Python et l'utiliser pour calculer  $u_{20}$