同余关系复习

 $\langle Z, + \rangle$ 上的关系 $R = \{(x,y)|x,y \in Z, x-y$ 能被3整除 $\}$,是一个等价关系,它将Z划分成三个等价类:

发现:[1]和[2]中元素相加后结果在[0]中

$$-4+(-2) = -6$$
 $2+4=6$ $-4+7=3.....$

关系R使[0],[1],[2]中任意两个类的元素+运算后所得的结果均在同一个类内

概括: $x_1 R x_1' \land x_2 R x_2' \rightarrow (x_1 + x_2) R(x_1' + x_2')$ (同余)

第六章 群论

- 半群与单位半群
- 群的基本概念
- •变换群
- ●有限群
- ●循环群
- 子群及陪集分解
- ●正规子群与同态

6.1 半群与单位半群

- 半群、子半群的定义
- ●循环半群的定义
- ●单元半群的定义和基本性质

半群、子半群的定义

定义6.1 设V=<S,。>是代数系统,。为二元运算,如果。运算满足结合律,则称V为半群.如果半群运算还满足交换律,则称其为可换半群.

定理6.1 设 $V=<S,\circ>$ 是半群,如果V有子代数 $<M,\circ>$,则此子代数也是半群.

定义6.2 半群<S, • >的子代数亦是半群, 称为半群<S, • >的子半群.

实例

例1

- $(1) < Z^+, +>, < N, +>, < Z, +>, < Q, +>, < R, +> 都是半群,+是普通加法.$
- (2) 设n是大于1的正整数, $< M_n(\mathbf{R}), +> n < M_n(\mathbf{R}), >$ 都是半群,其中+和分别表示矩阵加法和矩阵乘法.
- $(3) < P(B), \oplus >$ 为半群,其中 \oplus 为集合对称差运算.
- $(4) < \mathbb{Z}_n, \oplus >$ 为半群,其中 $\mathbb{Z}_n = \{0,1,...,n-1\}$, \oplus 为模n加法.
- (5) $< A^A, \circ >$ 为半群,其中 \circ 为函数的复合运算.
- (6) < R^* , \circ >为半群,其中 R^* 为非零实数集合,。运算定义如下: $\forall x, y \in R^*, x \circ y = y$.

实数集合上取min、max运算

实例

•	a	b	p	q
a	q	p	b	a
b	b	b	b	b
p	p	p	p	p
q	a	b	p	q

结合律: x∘(y∘z) = (x∘y)∘z

循环半群

对半群 $< S, \circ >$ 的任一元素a,可以定义它的幂:

- $(1) a^0 = e \quad a^1 = a;$
- $(2) a^2 = a \circ a ;$
- $(3) a^{j+1} = a^{j} \circ a$. 由结合律成立, 若m, n为正整数, 则
- (1) $a^n \circ a^m = a^m \circ a^n = a^{n+m}$
- $(2) (a^n)^m = a^{n \times m}$ 如果 $a^2 = a$,则称a为幂等元素.

定义6.3 如果半群<S, \circ >的每个元素均为S内的某个固定元素 a的幂,则此半群称为由a生成的循环半群,a叫做此循环半群 的生成元素.

<N,+,0> 0是么元,生成元是1.

循环半群的性质

例2

代数系统<Z+,+>中,Z+是正整数集,此代数系统是一个循环半群,它的生成元素是1.

定理6.2 循环半群一定是可换半群.

证明 设循环半群 $<S, \circ>$ 的生成元素为a,则它的任意两个元素 $b=a^m$, $c=a^n$,且有:

$$b \circ c = a^m \circ a^n = a^{n+m} = a^n \circ a^m = c \circ b$$

定理6.3 半群内任一元素和它所有的幂组成一个由该元素生成的循环子半群.

证明 显然.

单元半群

定义6.4 设V=<S, $\circ>$ 是半群,若 $e\in S$ 是关于 \circ 运算的单位元,则称V是单元半群(含幺半群,独异点),有时也将单元半群V记作V=<S, \circ ,e>.

例3 整数集Z上的模m相等关系R给出Z的一个划分,等价类为 [0], [1], [2], ..., [m-1], 它的商集Z/R可记为 Z_m , 即

 $\mathbf{Z}_{m} = \{[0], [1], [2], \dots, [m-1]\}$

在 Z_m 上分别定义二元运算 Θ , \emptyset , 对[i], [j] ∈ Z_m 有

 $[i] \oplus [j] = [(i+j) \mod m]$

 $[i] \otimes [j] = [(i \times j) \mod m]$

此时, $\langle Z_m, \Theta \rangle$ 和 $\langle Z_m, \otimes \rangle$ 都是单元半群, 单位元分别为: [0] 和[1].

单元半群的性质

单元半群是半群的扩充,有比半群更多的性质.

定理6.4 一个有可列个元素的单元半群的运算表,每行(列)均不相等.

证明 由于单位元的存在,造成运算表中每行第一个元素及每列第一个元素均不相同.

Note: 一个单元半群也可以有子单元半群和循环单元半群.

0	1	а	b	С	d	•••
1	1	a	b	\boldsymbol{c}	d	•••
a	a					
b	b					
$\boldsymbol{\mathcal{C}}$	c					
d	d					
• • •	•••					

单元半群的性质

定理6.5 如果单元半群 $< M, \circ >$ 存在一个子系统 $< M', \circ >$,且其单位元 $e \in M'$,则 $< M', \circ >$ 也是一个单元半群. 证明 显然.

定义6.5 称以上<M', $\circ>$ 为<M, $\circ>$ 的子单元半群.

定义6.6 如果一个单元半群由它的一个元素a所生成(令 $a^0 = e$, 故单位元也可由a生成),则称其为由a所生成的循环单元半群,把a称为此单元半群的生成元素.

定理6.6 循环单元半群是可换单元半群.证明 与定理6.2证明类似.

单元半群的性质

定理6.7 可换单元半群的所有幂等元素构成一个子单元半群.证明 设 $< M, \circ >$ 是一个可换单元半群,它的幂等元素组成的集合为M'.

思路: (1)证M'是一个代数系统; (2)证M'是M的子半群; (3)证M的单位元也是M'的单位元

(1)设a,b∈M′,且它们是幂等元素,所以有 $a \circ a = a,b \circ b = b$,又 " \circ "满足结合律和交换律,则

$$(a \circ b) \circ (a \circ b) = (a \circ a) \circ (b \circ b) = a \circ b$$

由此可知 $a \circ b$ 亦是幂等元素, 所以 $a \circ b \in M'$, "o"对M'封闭, < M', $\circ >$ 是一个代数系统.

- (2) $M'\subseteq M$, 所以 $< M', \circ >$ 是 $< M, \circ >$ 的一个子系统, 是子半群.
- (3)由于 $e \circ e = e$,所以单位元亦为幂等元素, $e \in M$.

6.1 群

- ●群的基本概念和性质
- •变换群
- ●对称群,置换群
- ●循环群
- 子群及陪集分解
- ●正规子群与同态

6.1 群的定义及其性质

定义6.7 设 $V=<S, \circ>$ 是单元半群, $e \in S$ 是关于•运算的单位元,若 $\forall a \in S, a^{-1} \in S,$ 则称V是群. 通常将群记作G.

实例:

 $\langle Z, + \rangle$ 和 $\langle R, + \rangle$ 是群, $\langle Z_n, \oplus \rangle$ 是群.

n阶 $(n\geq 2)$ 实可逆矩阵集合关于矩阵乘法构成群.

群的定义

定义6.8 (1) 若群G是有穷集,则称G是有限群,否则称为无限群. 群G 的基数称为群 G 的阶,有限群G的阶记作|G|.

- (2) 只含单位元的群称为平凡群.
- (3) 若群G中的二元运算是 $\overline{\eta}$ 交换的,则称G为交换群或阿贝尔 (Abel) 群.

实例:

<**Z**,+>和<**R**,+>是无限群,<**Z**_n, \oplus >是有限群,也是 n 阶群. <{0},+>是平凡群.

上述群都是交换群,n阶($n \ge 2$)实可逆矩阵集合关于矩阵乘法构成的群是非交换群.

群的性质

性质1: 群满足消去律 G为群,则G中满足消去律,即对任意 $a,b,c \in G$ 有

- (1) 若 $a \circ b = a \circ c$,则 b = c.
- (2) 若 $b \circ a = c \circ a$,则 b = c.

证明略

例4 设 $G = \{a_1, a_2, \dots, a_n\}$ 是n阶群,令

$$a_iG = \{a_i \circ a_j | j=1,2,...,n\}$$

证明 $a_iG = G$.

证 由群中运算的封闭性有 $a_iG\subseteq G$. 假设 $a_iG\subseteq G$,即 $|a_iG|< n$. 必有 $a_i,a_k\in G$ 使得

$$a_i \circ a_j = a_i \circ a_k \quad (j \neq k)$$

由消去律得 $a_i = a_k$, 与 |G| = n矛盾.

五阶群

*	е	a	b	c	d	
e	e	a	b	с	d	
a	a	\boldsymbol{b}	c	d	e	
ь	b	c	d	e	a	
C	c	d	e	a	\boldsymbol{b}	
d	d	e	a	\boldsymbol{b}	c	

群的性质

性质2: 方程存在惟一解 G为群, $\forall a,b \in G$,方程 $a \circ x = b$ 和 $y \circ a = b$ 在G中有解且仅有惟一解.

证 $a^{-1} \circ b$ 代入方程左边的x 得 $a \circ (a^{-1} \circ b) = (a \circ a^{-1}) \circ b = e \circ b = b$

所以 $a^{-1} \circ b$ 是该方程的解.

下面证明惟一性. 假设c是方程 $a \circ x = b$ 的解,必有 $a \circ c = b$,从而有 $c = e \circ c = (a^{-1} \circ a) \circ c = a^{-1} \circ (a \circ c) = a^{-1} \circ b$ 同理可证 $b \circ a^{-1}$ 是方程 $y \circ a = b$ 的惟一解.

例5 设群 $G=<P(\{a,b\}),\oplus>$,其中 \oplus 为对称差.解下列群方程: $\{a\}\oplus X=\emptyset$, $Y\oplus\{a,b\}=\{b\}$

解 $X=\{a\}^{-1}\oplus\emptyset=\{a\}\oplus\emptyset=\{a\},$ $Y=\{b\}\oplus\{a,b\}^{-1}=\{b\}\oplus\{a,b\}=\{a\}$

群的性质

性质3:一个阶大于1的群一定没有零元证 因为零元不存在逆元,故得证.

性质4:除了单位元外,一个群一定没有幂等元素

证 若存在幂等元,即 $a \circ a = a$,则必有

$$e = a^{-1} \circ a = a^{-1} \circ (a \circ a) = (a^{-1} \circ a) \circ a = e \circ a = a$$

即幂等元只能是单位元.

群的第二种定义

性质5: 如果一个代数系统满足结合律和性质(2),则它是群

证 (1)找单位元 因为 $a \circ x = b$,设对某一个a,满足方程 $a \circ x = a$ 的x为 e_r ,对 $\forall b$ 有 $y \circ a = b$ 的解c. 此时

$$b \circ e_r = (c \circ a) \circ e_r = c \circ (a \circ e_r) = c \circ a = b$$

同理可得 e_l , 对 $\forall b$ 有 e_l ob = b, 由于 $e_l = e_r = e$, 得到单位元

(2) 找逆元 由 $y \circ a = e$,可得a的唯一左逆元,由 $a \circ x = e$,可得a的唯一右逆元,由于左右逆元相等,因此可得到逆元. 得证.

定义6.9 一个代数系统G若满足下列条件,则称为群

- (1) 满足结合律;
- (2) ∀a,b∈G,方程 $a \circ x=b$ 和 $y \circ a=b$ 在G中有解且仅有惟一解.

群的同态和同构

定义6.10 设<G,o>和<H,*>是两个群,若存在一个函数f: $G\to H$ 使得 $\forall a,b \in G$,有 $f(a\circ b) = f(a)*f(b)$,则称f是从<G,o>到<H,*>的群同态;如果f是双射函数,则称为群同构.

定理6.8 对群满同态f有

$$f(e_G) = e_H$$

 $f(a^{-1}) = [f(a)]^{-1}$

其中 e_G 和 e_H 分别为 $< G, \circ >$ 和< H, *>的单位元.

证 用同态性质易证.

定理6.9 如果群G与代数系统<H, *>满同态或同构, 则<H, *>也是群.

证 用满同态和同构性质易证.

作业

徐 p99 6.1 6.4 6.5

P113 19