Timing analysis of a task running in isolation

What do we want to compute?

Pipelined execution

Running example: execution pipeline

one instruction fetched each cycle (in the program order)

one instruction issued each cycle (in the program order)

one instruction committed each cycle (in the program order)

Running example: task code


```
int product = 1;
int init_val;
for (int i=0; i<N; i++){
    product *= i;
    a[i] = init_val;
}</pre>
```


		_
start:	mov r0,#1 @ product	
	mov r1,#0 @ i	
	adr r2,a	b_0
	adr r3,init_val	
	ldr r3,[r3]	
while:	mul r0,r1,r0	1.
	cmp r1,#N	b_1
	bhs end	
	str r3,[r2],#4	l.
	add r1,r1,#1	D_2
	b while	
end:	adr r2,product	
	str r0,[r2]	D ₃
·		-

0a	start:	mov r0,#1
0b		mov r1,#0
0c		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1 c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

b₁ after b₀

b_1 a	after	b ₀									V	~		/	t ₀₋₁	= 3	СУ	cles
F	0a	0b	0с	0d	0e	1 a	1 b	1 c										
A		0a	0b	0с	0d			1 b	1 c									
Mu							1 a	1 a	1a	1 a	1a							
Ме						0e	0e	0e	0e	0e								
С			0a	0b	0с	0d					0e	1 a	1 b	1 c				

 b_1 after b_2

F									
Α									
Mu									
Ме									
С									

0a	start:	mov r0,#1
0b		mov r1,#0
0c		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1 c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

	_										D_3	D ₂						
b_1	afte	r b ₀									V	_			t ₀₋₁	= 3	3 су	cle
F	0a	0b	0с	0d	0e	1 a	1 b	1c										
Α		0a	0b	0с	0d			1b	1 c									
Mu							1 a											
Ме						0e	0e	0e	0e	0e								
С			0a	0b	0с	0d					0e	1a	1b	1c				
b_1	afte	r b ₂													t ₂₋₁	= 4	l cy	cle
F	2a	2b	2c	х	1a	1b	1 c											
A			2b	2c			1 b	1 c										
Mu						1 a												
Ме		2a	2a	2a	2a	2a												
C	_																	

Improved ILP formulation (IPET)

 $- \max \mathsf{T} = \sum \mathsf{x}_{\mathsf{i}-\mathsf{j}} \cdot \mathsf{t}_{\mathsf{i}-\mathsf{j}}$

with:

$$_{\Box} x_{0} = x_{0-1} = 1$$

$$_{0}$$
 $\chi_{1} = \chi_{0-1} + \chi_{2-1}$

$$_{\Box} \chi_{1} = \chi_{1-3} + \chi_{1-2}$$

$$_{-}$$
 $\chi_{2} = \chi_{1-2}$

$$_{-}$$
 $\chi_{2} = \chi_{2-1}$

 $x_{2-1} \le N \cdot x_{0-1}$

Limitations on reservation tables

- complex pipelines: superscalar, ooo, multiple FUs, etc.
- initial state/history: long timing effects

0a	start:	mov r0,#1
0b		mov r1,#0
0c		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1 c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

b ₁ a	after	b_0						t ₀ :	= 11	1 cy	cle	s to)-1 =	: 3 (cycl	es	
F	0a	0b	0с	0d	0e	1 a	1 b	1 c									
Α		0a	0b	0с	0d			1 b	1 c								
Mu							1a	1 a	1a	1 a	1a						
Ме						0e	0e	0e	0e	0e							
С			0a	0b	0с	0d					0e	1 a	1 b	1 c			

b_2 a	after	b_1											1	1-2	= 3	Сус	cles	
F	1 a	1 b	1 c	2a	2b	2c												
Α			1 b	1 c		2b	2c											
Mu		1 a																
Ме					2a	2a	2a	2a	2a									
С							1 a	1 b	1 c	2a	2b	2c						

Limitations on reservation tables

- complex pipelines: superscalar, ooo, multiple FUs, etc.
- initial state/history: long timing effects

0a	start:	mov r0,#1
0b		mov r1,#0
0c		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1 c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]
		I

$$t_0$$
 = 11 cycles t_{0-1} = 3 cycles t_{1-2} = 3 cycles t_{0-1-2} = t_0 + t_{0-1} + t_{1-2} = 17 cycles

b₂ after b₁ after b₀

F									
Α									
Mu									
Ме									
С									

Limitations on reservation tables

- complex pipelines: superscalar, ooo, multiple FUs, etc.
- initial state/history: long timing effects

0a	start:	mov r0,#1
0b		mov r1,#0
0c		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1 c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

$t_0 = 11$ cycles	$t_{0-1} = 3$ cycles	$t_{1-2} = 3$ cycles
$t_{0-1-2} = t_0$	$t_{0} + t_{0-1} + t_{1-2} = 17$	cycles

b₂ after b₁ after b₀

F	0a	0b	0с	0d	0e	1 a	1 b	1 c	2a	2b	2c							
Α		0a	0b	0с	0d			1 b	1 c		2b	2c						
Mu							1 a											
Ме						0e	0e	0e	0e	0e	2a	2a	2a	2a	2a			
С			0a	0b	0с	0d					0e	1a	1b	1 c		2a	2b	2c

Modern approaches

Abstract interpretation vs.local analysis

What is Abstract Interpretation?

A theory of approximation of the semantics of programs

 partial execution of a program to derive information that can be used to answer a given question

P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, POPL, 1977

0a	start:	mov r0,#1
0b		mov r1,#0
0с		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1 c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

$$t_0 = 11$$

Disclaimer: this is only a possible way to analyze a pipeline with "abstract" interpretation.

This is not the way it is done in tools that use this technique.

0a	start:	mov r0,#1
0b		mov r1,#0
0с		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

$$t_0 = 11$$
 $t_0 = 3$

0a	start:	mov r0,#1
0b		mov r1,#0
0c		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1 c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

$$t_0 = 11$$

$$t_{0-1} = 3$$

0a	start:	mov r0,#1
0b		mov r1,#0
0с		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

$$t_0 = 11$$
 $t_{0-1} = 3$

0a	start:	mov r0,#1
0b		mov r1,#0
0с		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

$$t_0 = 11$$
 $t_{0-1} = 3$

0a	start:	mov r0,#1
0b		mov r1,#0
0с		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1 c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

$$t_0 = 11$$

$$t_{0-1} = 3$$

0a	start:	mov r0,#1
0b		mov r1,#0
0с		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1 c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

$$t_0 = 11$$

$$t_{0-1} = 3$$

0a	start:	mov r0,#1
0b		mov r1,#0
0с		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1 c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

$$t_0 = 11$$
 $t_{0-1} = 3$

0a	start:	mov r0,#1
0b		mov r1,#0
0с		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

$$t_0 = 11$$

 $t_{0-1} = 3$
 $t_{1-2} = \max(4,3) = 4$

	-44	#1
0a	start:	mov r0,#1
0b		mov r1,#0
0с		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1 a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

$$t_0 = 11$$

 $t_{0-1} = 3$
 $t_{1-2} = \max(4,3) = 4$
 $t_{2-1} = \max(4,4) = 4$

$$t_{0-1-2} = 11 + 3 + 4 = 18$$

"Local" pipeline analysis based on execution graphs

0a	start:	mov r0,#1		
0b		mov r1,#0		
0с		adr r2,a		
0d		adr r3,init_val		
0e		ldr r3,[r3]		
1 a	while:	mul r0,r1,r0		
1 b		cmp r1,#N		
1 c		bhs end		
2a		str r3,[r2],#4		
2b		add r1,r1,#1		
2c		b while		
3a	end:	adr r2,product		
3b		str r0,[r2]		

 $t_{1-2} = 3$ cycles

"Local" pipeline analysis based on execution graphs

Parameterized initial state

0a	start:	mov r0,#1
0b		mov r1,#0
0c		adr r2,a
0d		adr r3,init_val
0e		ldr r3,[r3]
1a	while:	mul r0,r1,r0
1 b		cmp r1,#N
1c		bhs end
2a		str r3,[r2],#4
2b		add r1,r1,#1
2c		b while
3a	end:	adr r2,product
3b		str r0,[r2]

each resource has an availability date

starting date of a node

 e_i = depends on resource?

d_i = delay after resource becomes available

 $t_{1-2} = ?$

"Local" pipeline analysis based on execution graphs

C(1c)							
1	1	1	0	1			
8	2	7	0	2			

$$t_{C(1c)} = \max(t_F + 8, t_A + 2, t_{Mu} + 7, t_C + 2)$$
 $t_{C(2c)} = \max(t_F + 11, t_A + 5, t_{Mu} + 10, t_{Me} + 7, t_C + 5)$
 $\leq t_C + 6$

$$t_{C(2c)}$$
 - $t_{C(1c)}$ = max(11-8 , 5-2 , 10-7 , 6-2 , 5-2)
$$t_{1-2} \le 4 \text{ cycles}$$

Handling variable instruction latencies

Variable latencies?

- depending on operand values (e.g. multiplication)
- depending on the state of some components
 - example: instruction or data cache

Timing anomalies

the local worst-case might not be the global worst-case

Timing anomalies

Impact of timing anomalies

How can we get safe WCET estimations?

- by considering all possible latency values, one by one
 - additional states
 - additional cost values for basic blocks
 - changes in the ILP formulation?
- by considering the latency as a parameter when determining the cost of a basic block?