

Credit Risk Scoring: A Stacking Generalization Approach

Bernardo Dias Raimundo

Prof. Dr. Jorge Miguel Ventura Bravo

Nova Information Management School

World Cist 2023

02 01 03 04 **Credit Risk Banking Regulations Credit Scoring Methods Ensemble Learning** A significant concern for The revised Basel accords and Regression models and Homogeneous and financial institutions it's contributions machine learning applications heterogenous ensembles

Introduction

NOVA
IMS
Information
Management
School

Research questions

01

How does an ensemble-based approach compare to single based classifiers when predicting the probability of default?

02

Given the ensemble-based approach, how sensitive is the outcome of the ensemble to different model combinations?

Literature Review

NOVA IMS Information Management School

How is the current research in credit risk modeling?

- Altman, E. (1968). Financial Ratios, Discriminant Analysis, and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4): 589–609.
- 02 Wolpert, D. (1992). Stacked Generalization. Neural Networks. 5. 241-259.
- Dietterich, T.G. (2000). Ensemble methods in machine learning. Multiple Classifier Systems: First International Workshop, MCS 2000, Lecture Notes in Computer Science. 1-15.
- Steel, M. F. J. (2020). Model Averaging and Its Use in Economics. Journal of Economic Literature, 58, 644–719.
- Ashofteh, A., & Bravo, J. M. (2021). A conservative approach for online credit scoring. Expert Systems with Applications, 176, 1-16.

Methodology

Exploratory data analysis

Summarized details of the dataset

The dataset was provided by Lending Club. Initially it contained 2.26 million rows and 151 different features.

Personal details (e.g., address, employment status, home ownership)

Credit history (e.g., the balance of accounts and revolving and current past due accounts)

Loan characteristics (e.g., purpose, grade, term)

Dataset transformation

Removing features that contained more than 25% of missing data

Only loans with a final "status" and features available at the time of application were considered

The final dataset contains 1,345 rows and 33 features

Exploratory data analysis

Exploratory data analysis

Employment title (Top 10 records)

Type of application

Relationship between grade and loan amount

Percentage (%)

Exploratory data analysis

Relationship between purpose and loan amount

Exploratory data analysis

Selected features

Characteristics	Selected features
Borrower	Annual income Homeownership Verification status Address State Last payment amount.
Credit	Debt-to-Income-Ratio Delinquency status in the last 2 years Number of inquiries in the last 6 months The number of open credit lines in the borrower's credit file The number of current open credit lines Number of derogatory public records Total credit revolving balance Revolving line utilization rate Number of mortgage accounts FICO Score The number of public record bankruptcies.
Loans	Loan amount Loan term Loan interest rate LC assigned loan grade Purpose

NOVA
IMS
Information
Management
School

Preprocessing pipeline

Outlier Treatment

Outliers were appropriately treated to avoid hampering model performance

Categorization

Two types of categorization was performed:
Ordinal and One Hot Encoding

Principal Component Analysis

PCA was applied to remove irrelevant information increasing performance

Deal with Missing Values

Five features have missing values that represent less than 10% of the total data. These were median imputed

Proper Scaling

Numerical features were standardized by removing the mean and scaled to unit variance

Results and discussion

Single based classifiers

Before and after tunning

Models	Accuracy		Recall		Precision		F1 Score		AUC Score	
	Before Tunning	After Tunning								
Logistic Regression	0.7438	0.7489	0.7676	0.7607	0.4221	0.4276	0.5446	0.5474	0.8325	0.8329
Support Vector Machine	0.7374	0.7454	0.7766	0.7667	0.4156	0.4238	0.5415	0.5459	0.7528	0.7564
K Nearest Neighbors	0.8315	0.8396	0.4639	0.4566	0.6012	0.6372	0.5237	0.5320	0.7845	0.8453
Decision Tree	0.9135	0.9258	0.7757	0.9433	0.7876	0.7492	0.7816	0.8351	0.5768	0.9764
Average	0.8066	0.8149	0.6960	0.7318	0.5566	0.5595	0.5979	0.6151	0.7365	0.8528

Results and discussion

Single based classifiers

After Tunning Vs Sampling

Models	Accuracy		Recall		Precision		F1 Score		AUC Score	
	After Tunning	Sampling								
Logistic Regression	0.7489	0.8387	0.7607	0.8514	0.4276	0.5636	0.5474	0.6783	0.8329	0.9185
Support Vector Machine	0.7454	0.8379	0.7667	0.8584	0.4238	0.5618	0.5459	0.6782	0.7564	0.8450
K Nearest Neighbors	0.8396	0.8607	0.4566	0.8829	0.6372	0.6003	0.5320	0.7167	0.8453	0.9265
Decision Tree	0.9258	0.9262	0.9433	0.9422	0.7492	0.7514	0.8351	0.8361	0.9764	0.9732
Average	0.8149	0.8659	0.7318	0.8837	0.5595	0.6193	0.6151	0.7272	0.8528	0.9162

Results and discussion

Single based classifiers with sampling applied

Single Based Classifiers vs Stacking Approach

Stacking Combination	Models	Accuracy	Recall	Precision	F1 Score	AUC Score
SC1	KNN and SVM (level 0) LR (level 1)	0.8623	0.8790	0.6072	0.7182	0.9335
SC2	DT and SVM (level 0) LR (level 1)	0.9265	0.9415	0.7525	0.8365	0.9726
SC3	DT and KNN (level 0) LR (level 1)	0.9284	0.9404	0.7587	0.8399	0.9739
SC4	DT, KNN and SVM (level 0) LR (level 1)	0.9277	0.9409	0.7564	0.8386	0.9731

1. Conclusion #1

An ensemble-based approach can contribute to improving the predictive accuracy of traditional classifiers in credit risk scoring.

2. Conclusion #2

Despite the overall better performance of the ensemble model combination, the usage of single based classifiers may be on par or even a better alternative. Often, the best solution may be the simplest one.

3. Conclusion #3

Due to its computational power and complexity, as of right now an ensemble model combination may not be the best application in realistic scenarios. Solving complex problems is an arduous task and if even the best solution is achieved it won't be of much use if it lacks interpretability.

Final Conclusions

Recommendations for future work

Recommendation 1

Explore other state-of-the-art machine learning models combinations and different sampling techniques (e.g. SMOTE)

Recommendation 2

A cost sensitive learning approach could serve as an alternative to both undersampling and oversampling

There is always room for improvement, new promising methods, and techniques that may improve results achieved by the proposed solutions are constantly arising permitting continuous learning.

References

- Altman, E. (1968). Financial Ratios, Discriminant Analysis, and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4): 589–609.
- 02 Wolpert, D. (1992). Stacked Generalization. Neural Networks. 5. 241-259.
- Dietterich, T.G. (2000). Ensemble methods in machine learning. Multiple Classifier Systems: First International Workshop, MCS 2000, Lecture Notes in Computer Science. 1-15.
- Steel, M. F. J. (2020). Model Averaging and Its Use in Economics. Journal of Economic Literature, 58, 644–719.
- Ashofteh, A., & Bravo, J. M. (2021). A conservative approach for online credit scoring. Expert Systems with Applications, 176, 1-16.