Capacites du chapitre 2

Capacité 1 Conjecturer la limite d'une suite définie par un motif géométrique On colorie un carré en plusieurs étapes :

- Étape 1 : on partage le carré en quatre carrés de même aire et on colorie le carré en bas à gauche;
- Étape 2 : on partage chaque carré non coloriée en quatre en quatre carrés de même aire et on colorie le carré en bas à gauche;
- Étapes suivantes : on répète le procédé avec chaque carré non colorié obtenu à l'étape précédente.

Pour tout entier $n \ge 0$, soit b_n la fraction du carré initial qui n'est pas coloriée à l'étape n, ainsi $b_1 = \frac{3}{4}$.

- **1.** Pour tout entier $n \ge 0$, exprimer b_{n+1} en fonction de b_n et en déduire la nature de la suite (b_n) .
- 2. Pour tout entier $n \ge 0$, déterminer une formule explicite de b_n .
- 3. Conjecturer avec la calculatrice si la suite (b_n) possède une limite finie.
- Écrire une fonction Python qui retourne le nombre d'étapes nécessaires pour que 99% du carré initial soit colorié.

1) Pour tout entrèr n/o, ona:

bn+x = 3 x b n

Con en de duit-que la suite (bn) est-geomètrique
de rovien 34.

2) D'après une proprièté du cours, pour tout entier n>0: bn=box(3)

```
den km = (\frac{3}{4})^m can b_0 = 1

3) Avec la calculabrice en peut-conjecturer

que lim b_m = 0

m \to tco
```

4)

```
1 # Type your text here
 2 \# u(0) = 1
 3 \# u(n+1) = 0.75 * u(n)
 4 # recherche du plus petit entier
 5 #n tel que u(n) <= 0.01
 7 def seuil(s):
 8
    u = 1
    n = 0
9
    while u > s:
10
     u = 0.75 * u
11
12
     n = n + 1
13
    return n
14
15 print(seuil(0.01))
```

```
deg PYTHON

>>> from chapitre2_capacite1 -

17

>>> |

Relancer Sauvegarder
```

Capacité 2 *Utiliser la définition d'une suite convergente*1. Soit la suite (u_n) définie pour tout entier $n \ge 1$ par $u_n = 1 - \frac{1}{n}$. a. La suite (u_n) est-elle monotone? Justifier. b. Quelle limite peut-on conjecturer pour la suite (u_n) ? c. Déterminer à partir de quel rang, on a $u_n \in [-10^{-3}; 10^{-3}]$. d. À partir de la définition, démontrer que (u_n) converge.

- **2.** Soit la suite (v_n) définie pour tout entier $n \ge 1$ par $v_n = 1 \frac{(-1)^n}{n}$.
 - **a.** La suite (v_n) est-elle monotone? Justifier.
 - **b.** Conjecturer la limite de (v_n) puis démontrer qu'elle converge à partir de la définition.
- 3. Soit la suite (w_n) définie pour tout entier naturel n par $w_n = (-1)^n$.

la) Démantions que la suite (un) nos est craissante:

Pour bout entier n> 1:

Long - Lo 1 - (1 - 1) - 1 - 1

Long Long - Lo 1 - (1 - 1) - 1 - 1

Long Long - Lo 1 - (1 - 1) - 1

Long Long - Lo 1 - (1 - 1) - 1

danc Unti-Un >0

La oriète (un) nou est-denc strictement croissante

Suites	Graph	ique	Tableau					
Régler l'inter	égler l'intervalle							
n		un						
	1	. 0						
	2	0.5						
	3	0.6666667						
	4	0.75						
	5	0.8						
	6	0.8333333						
	7	0.8571429						

b) Avec le tableur de la calculatrice, on peut conjecturer que cum converge vers 1.

2) Soit- (von) la suite définie pour tout entier n > 1 par: von = 1 _ (-1)^m a Pour tout entier nyt, on a: $\frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{1+1}} = \frac{1}$ done $\sqrt{m_{1}} - \sqrt{m} = (-1) \times \frac{2mt^{2}}{m(mt^{2})}$ on a 2mt^ >0 dans Nontr-Non de signe on (nth) met non met non met non n'est pas de signe constant in son sia de la parlée de not rivir non de norte de la rivir de non de la la rivir de nontre de la rivir de la rivir de nontre de la rivir de la rivir de nontre de la rivir de nontre de la rivir de nontre la la rivir de nontre la rivir d 2) b) Avec le Calleur de la calculatrio on peut conjecturer que (von mon converge Régler l'intervalle veis 0.8333333 1.142857 Directors que von Converge vers 1 Bet a un réel strictement possible.

Hypothèse on suppose que la suite (non) converge vois un rècl l. Par définition : l'ensite un entier moss, tel que pour tout-entier n > moss, on a: W_n ∈ Il-0,5,2+0,5 En penliculier en doit avoir: No, et womanne deux l'intervalle no, s Jl-05. Pto,5[on mos most 1-2 can deuntermes condentifs de la suite ont pour voluis-1 En aboulit à une contradiction: la distance entre US et NS est est de 2 et ils doissent apparlenir à "Zl-0,5; l to,5[I shillens to Par conséquent l'huyalress de départé est puesse et en pout affirmer que la suite (Wn re converge posseus)

🚀 Capacité 4 Modélisation par une suite et algorithme de seuil

Chaque semaine, un agriculteur propose en vente directe à chacun de ses clients un panier de produits frais qui contient une seule bouteille de jus de fruits. Dans un esprit de développement durable, il fait le choix de bouteilles en verre incassable et demande à ce que chaque semaine, le client rapporte sa bouteille vide.

On suppose que le nombre de clients de l'agriculteur reste constant.

Une étude statistique réalisée donne les résultats suivants :

 à la fin de la première semaine, la probabilité qu'un client rapporte la bouteille de son panier est 0,6;

Page 4/14

https://frederic-junier.org/

Limites de suites

SpéMaths

- · si le client a rapporté la bouteille de son panier une semaine, alors la probabilité qu'il ramène la bouteille du panier la semaine suivante est 0,95;
- si le client n'a pas rapporté la bouteille de son panier une semaine, alors la probabilité qu'il ramène la bouteille du panier la semaine suivante est 0,2.

On choisit au hasard un client parmi la clientèle de l'agriculteur. Pour tout entier naturel n non nul, on note R_n l'évènement «le client rapporte la bouteille de son panier de la n-ième semaine ». Pour tout entier naturel n non nul, on note r_n la probabilité que le client rapporte la bouteille du panier de la n-ième semaine. On a alors $r_n = \mathbb{P}(R_n)$.

Recopier et compléter l'arbre pondéré (aucune justification n'est attendue) :

P(Rm+n) = P(Rm) × P= (Rm+n) + P(Rm) × PR (Rm+n) P[Rm+1)= (1-Tm) X 0,2+ mm X 0,95 Love P(Rm+1) = 0,2+0,75×m donc Month = 0,2+0,75×n 3) four tout entier malurel n > 1, on définit la propriété: 5 " Trn < 0,8 Démontions par récurrence que Dn'est vrai pour tout entier n > 1: Initialisation on a T = P(R) = 0,6 June 20,8 dons Dy est mais Heredite Hypothèse de récurrence se traduit par: On applique la relation de récurrence. 0,75 mm+0,2 < 0,75 ×0,8 +92

Lone Monta <0,8 donc la propriété est héréditaire. Conclusion In est initialisée pour n=1 et-elle est héréditaire danc elle est vraie par récurserve pour tout entier n > 1. Set the interval undef 0.6875 0.715625 0.7367187 On peut conjecturer que la suite (Tn) converge vous 0,8. 5) On admet que (m) converge vers une limite l. Pour tent entier n/1, on a: 7m4n = 0,75 xm +6,2 D'oprés une propriété du cour,

si lim x = l alors lim x = l

be rècles apèrataires de produe tot-de

benne à con danc en passant-à

la limite dans mn+ = 0,75m +0,2:

l=0,75x l+0,2

=> 0,25l=0,2

[a suite (m) converge danc vers 0,8.

6. Justifier qu'il existe un entier n tel que $u_n > 0$, 79 et compléter la fonction Python ci-dessous pour que seuil (0.79) retourne le plus petit entier n tel que $r_n > 0$, 79. Il s'agit d'un **algorithme de seuil**.

Si lim n=0,8 ales par de finition cloude en entier N tel que pour tout entier n>N, on a: Mn E] 0,79;0,81[

Pour tout entier n > N, on a donc:

7. Modifier la fonction seuil(s) en une fonction seuil2(s) qui retourne le plus grand entier n tel que $m_n < s$. Pour quelles valeurs de s, l'exécution de seuil2(s) ne se terminera-t-elle pas?

```
def serifum serif 2(8):

r = 0.9

n = 1

while r ... 5:

r = .0.75*Th 0.2

n = n + 1

return n - 1
```

l'exécution de seul 2(s) ne se terminera pour toute voleur 2>0.8.

🚀 Capacité 6 Passer à limite dans une inégalité
On définit les suites (u_n) et (v_n) pour tout entier $n \ge 1$ par $u_n = \sum_{k=1}^n \frac{9}{10^k}$ et $v_n = 1 + e^{-n}$.
1. Pour tout entier $n \ge 1$, exprimer u_n sous une forme plus simple. \uparrow
2. Pour tout entier $n \ge 1$, comparer u_n et v_n .
3. On admet que $\lim_{n\to+\infty} 0$, $1^n=0$. Qu'obtient-on lorsqu'on passe à limite dans l'inégalité établie à la question précédente?
1) Pour but entir my 1, on a:
$\frac{5}{2}$ - 9×1 , $1-\frac{1}{10}$ - $9\times 10\times (1-1)$ - $1-\frac{1}{1}$
$\frac{\sum_{k=1}^{\infty} \frac{3}{10^{k}} - \frac{3}{10} \times \frac{1}{10^{k}} - \frac{3}{10} \times \frac{10}{3} \times \left(1 - \frac{1}{10^{k}}\right) = 1 - \frac{1}{10^{k}}$
Somme des termes consecutofs d'une suite géométrique de
reison 1
2) Pour tout entiern /, ona;
, and the state of
$\frac{4}{100} = 1 - \frac{1}{100} \frac{1}{100$
Ainsi ona: un<1 <n< th=""></n<>
), a ₀
3) Sion admet que lim 1 =0 alas par somme, ona:
lim 1-1 = 1 c'est-à-dira lim un = 1
Le même, en a e = 1
lim en = +40 danc par qualient lim 1 = 0+ n->+100 en = 0+
Par somme en a donc Rim 1 + 1 = 1
c'est-à-dire lim 5m=1
En passant à la limite dans l'inègalité vaie pour tout entier n > 0, un < 1 < 15m, on obtient
tout entier n > 0, un / 1 < 15, on obtient
lim un < 1 < lim on
(=) 1 \le 1 \le 1

	ustifier qu'une suite diverge avec	-	ar comparaison					
	fonction définie sur \mathbb{R} par $f(x) = e^x - (1 + e^x)$ erminer le tableau de variations de la for							
	déduire que pour tout réel x , on a $1+x \le$	*						
	léduire que la suite $(e^n)_{n\geqslant 0}$ a pour limite							
	léduire que la suite $(e^{-n})_{n\geqslant 0}$ a pour limit							
l 2. Soit la sui	ite (u_n) définie par : $\forall n \in \mathbb{N}, u_n = 3n + n$	cosn.						
Page 8/14 https://frederic-junier.org/								
LATEN OF PRICE	Limites de s		SpéMaths					
	er que (u_n) est divergente de limite $+\infty$. ite (v_n) définie par : $\forall n \in \mathbb{N}, v_n = \sin n - \infty$							
Étudier la	limite de la suite (v_n) .							
4. Soit la sui	ite (w_n) définie par : $\forall n \in \mathbb{N}$, $w_n = \frac{n^2 + n}{n + n}$	$\frac{(-1)^n}{-1)^{n+1}}$.						
Étudier la	limite de la suite (w_n).							
1) Soit P	la Parellian di	Pinie sul	R par P(n	1= en - (-	1+m)			
. 8	0.00	R 1- 00		~0 ~	00 G '			
a) 1	la fanction di divinable sur f'(n) = en-	t ex po	une court	de le	onco,			
(),,,:	- 0 C & CM - 1	- 0 (-) e -	-1 - > ~ =	7)				
0)()	= 0 (=) e ⁿ -1:		× 0					
L'(N)	>0(=) e'(;	>1 (=) 6	<u> </u>	$\sim > 0$				
	 							
ж	-8	0	+0					
f (n)		0 +						
P (a)								
(CX)	+	· 0						
_								
P) (admet o treel x, on	emmo	minimur	~	surlR	•		
Pour tou	treda, in	a donc	f_(n) >	> ()				
	o D— .l	vc en	1+2					
		VC 6						
c) Cm	en déduit-	que jou	w bout.	enlier.	n > 0, or	رمر		
	$e^{m} > 1$, 			
(n f	im 1+n-	- + \D						
~	->+w		P. '222 /	³ m - 4c ×				
Slanc	im 1+m= Cut(-).	formen.	~->+e>	2				
人)	Your tout	enlier o	n > 0, on 0	x e = :	1			
an lin	Pour tout or em= tes +cs	donc har	lanchaus.		ღ^			
~-	74 W	-W. (C. 1/49)	Ans coo. 0	•				

Ex lim 1 =0 par quolent dong per somme lim $-\frac{1}{2n^2} + \frac{1}{2} = \frac{1}{2}$ et lim $\frac{1}{2n^2} + \frac{1}{2} = \frac{1}{2}$ On peut alors appliquer le Prévience de l'inste par encadrement pour concluse que: lim (-1) + 12 = 1