Rešavanje nelinearnih jednačina i sistema jednačina

I Metodi za određivanje rešenja $x^* \in [\alpha, \beta] \quad (f(\alpha) \cdot f(\beta) < 0)$ jednačine

$$f(x) = 0. (1)$$

• Njutnov metod (Njutn-Rafsonov metod ili metod tangente)

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \qquad k = 0, 1, 2, \dots,$$

$$x_0 \in [\alpha, \beta]$$
(2)

Metod sečice

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k), \qquad k = 0, 1, 2, \dots,$$

$$x_0, x_1 \in [\alpha, \beta]$$
(3)

• Metod regula falsi

$$x_{k+1} = x_k - \frac{x_k - x_0}{f(x_k) - f(x_0)} f(x_k), \qquad k = 0, 1, 2, \dots,$$

$$x_0, x_1 \in [\alpha, \beta], \qquad f(x_0) \cdot f(x_1) < 0.$$
(4)

• Metod Stefensena

$$x_{k+1} = x_k - \frac{(f(x_k))^2}{f(x_k + f(x_k)) - f(x_k)}, \qquad k = 0, 1, 2, \dots,$$
 $x_0 \in [\alpha, \beta].$ (5)

• Metod plovljenja intervala (metod bisekcije)

$$[x_0, y_0] = [\alpha, \beta];$$

 $\operatorname{za} n = 0, 1, 2, \dots$ ponavljati: $z_n = \frac{x_n + y_n}{2}$ (6)

- Ako je $f(z_n)=0$, tada je z_n tačno rešenje.
- Ako je $f(x_n) \cdot f(z_n) < 0$, tada je $[x_{n+1}, y_{n+1}] = [x_n, z_n]$.
- Ako je $f(y_n) \cdot f(z_n) < 0$, tada je $[x_{n+1}, y_{n+1}] = [z_n, y_n]$.

ZADACI

Zadatak 1. Sa tačnošću 10^{-4} odrediti sva pozitivna rešenja jednačine

$$e^x + e^{-3x} - 4 = 0.$$

Rešenje:

I Lokalizacija rešenja:

$$f(x) = e^x + e^{-3x} - 4 = 0 \quad \Leftrightarrow \quad e^{-3x} = 4 - e^x$$

Skiciramo grafike funkcija $\varphi(x)=e^{-3x}$ i $\psi(x)=4-e^x$ da bismo odredili broj rešenja.

Jednačina ima dva realna rešenja, od kojih je jedno pozitivno. Radi lokalizacije pozitivnog rešenja izračunavamo vrednosti funkcije u nekim celobrojnim tačkama.

Pozitivno rešenje nalazi se u segmentu [1,2].

II Izbor metoda:

$$f(x) = e^{x} + e^{-3x} - 4,$$

$$f'(x) = e^{x} - 3e^{-3x},$$

$$f''(x) = e^{x} + 9e^{-3x};$$

$$f''(x) > 0, \ \forall x \in \mathbb{R} \quad \Rightarrow \quad f'(x) \nearrow$$

 $f'(1) = e - 3e^{-3} \approx 2.57 > 0 \quad \Rightarrow \quad f'(x) > 0, \ \forall x \in \mathbb{R}.$

Kako je $f'(x) \neq 0$, može da se primeni Njutnov metod (2).

III Primena metoda:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots, \qquad x_0 \in [1, 2];$$

$$x_{k+1} = x_k - \frac{e^{x_k} + e^{-3x_k} - 4}{e^{x_k} - 3e^{-3x_k}}, \quad k = 0, 1, 2, \dots, \qquad x_0 = 2$$

$$\frac{k \mid x_k}{0 \mid 2}$$

$$\frac{1 \quad 1.54054}{2 \quad 1.39457}$$

$$3 \quad 1.38241$$

$$4 \quad 1.38233 \qquad |x_4 - x_3| = 0.00008 < 10^{-4}$$

Približno rešenje je $x_4 = 1.3823$.

Zadatak 2. Data je jednačina

$$\sin|x| = \frac{x}{10} - \frac{1}{10}.$$

Odrediti broj realnih rešenja date jednačine, a zatim sa tačnošću 10^{-4} odrediti najveće rešenje.

Rešenje:

I Lokalizacija rešenja:

Kako je $-1 \le \sin|x| \le 1$, funkcije $\varphi(x) = \sin|x|$ i $\psi(x) = \frac{x}{10} - \frac{1}{10}$ mogu da imaju zajedničke tačke samo ako je

$$-1 \le \frac{x}{10} - \frac{1}{10} \le 1$$
$$-10 \le x - 1 \le 10$$
$$-9 \le x \le 11$$

Zajedničke tačke su redom u intervalima: $(-9, -3\pi/2), (-3\pi/2, 0), (0, \pi), (2\pi, 5\pi/2)$ i $(5\pi/2, 3\pi)$.

Prema tome, jednačina ima 5 realnih rešenja, a najveće je $x^* \in (5\pi/2, 3\pi).$

II Izbor metoda:

$$\sin|x| = \begin{cases} \sin x, & x \le 0, \\ -\sin x, & x \le 0. \end{cases}$$

Tražimo pozitivno rešenje, pa se zato posmatra jednačina

$$f(x) = 0, f(x) = \sin x - 0.1x + 0.1.$$

$$f'(x) = \cos x - 0.1, f''(x) = -\sin x < 0, x \in (5\pi/2, 3\pi)$$

$$\Rightarrow f'(x) \searrow \text{ na } (5\pi/2, 3\pi);$$

$$f'(5\pi/2) = -0.1 \Rightarrow f''(x) \neq 0, x \in (5\pi/2, 3\pi)$$

Može da se primeni Njutnov metod (2).

III Primena metoda:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots, \qquad x_0 \in [1, 2];$$

$$x_{k+1} = x_k - \frac{\sin x_k - 0.1x_k + 0.1}{\cos x_k - 0.1}, \quad k = 0, 1, 2, \dots,$$

$$x_0 = 3\pi \approx 9.42478.$$

$$\frac{k}{0} \frac{x_k}{9.42478}$$

$$\frac{k}$$

Približno rešenje je $x_4 = 8.5666$.

Zadatak 3. Sa tačnošću 10^{-4} odrediti tačku u kojoj funkcija

$$f(x) = x^2 + 2e^{-x}(x^2 + 2x + 3)$$

dostiže minimum.

Rešenje:

I Formiranje jednačine:

Funkcija $f(x)=x^2+2e^{-x}(x^2+2x+3)$ je diferencijabilna na $\mathbb R$ i dostiže minimum u tački za koju važi f'(x)=0.

$$f'(x) = 2x - 2e^{-x}(x^2 + 2x + 3) + 2e^{-x}(2x + 2)$$

= $2x - 2e^{-x}(x^2 + 2x + 3 - 2x - 2)$
= $2(x - e^{-x}(x^2 + 1)).$

Rešavamo jednačinu

$$g(x) = x - e^{-x}(x^2 + 1) = 0.$$

II Lokalizacija rešenja:

$$x - e^{-x}(x^2 + 1) = 0 \quad \Leftrightarrow \quad e^{-x} = \frac{x}{x^2 + 1}$$

III Izbor metoda:

Neka je x^* tačno rešenje. Tada je

$$g(x) = x - e^{-x}(x^2 + 1), \quad g'(x) = 1 + e^{-x}(x - 1)^2 \neq 0,$$

pa može da se primeni Njutnov metod.

IV Primena metoda:

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}, \quad k = 0, 1, 2, \dots, \qquad x_0 \in [0, 1],$$

$$x_{k+1} = x_k - \frac{x_k - e^{-x_k}(x_k^2 + 1)}{1 + e^{-x_k}(x_k - 1)^2}$$

$$= \frac{1 + x_k - x_k^2 + x_k^3}{e^{x_k} + (x_k - 1)^2}, \quad k = 0, 1, 2, \dots, \qquad x_0 = 1.$$

$$\frac{k \mid x_k}{0 \mid 1}$$

$$1 \mid 0.73576$$

$$2 \mid 0.73843$$

$$3 \mid 0.73843$$

Približno rešenje je $x_3 = 0.7384$.

Zadatak 4. Sa tačnošću 10^{-3} odrediti konstantu $a \in \mathbb{R}$ tako da kriva $y = ae^{x^2}$ dodiruje krivu $y = \ln x$.

Rešenje:

I Formiranje jednačine:

Ako se krive $y = f_1(x)$ i $y = f_2(x)$ dodiruju u tački x^* , one u zajedničkoj tački imaju zajedničku tangentu. To znači:

- $f_1(x^*) = f_2(x^*);$
- $f_1'(x^*) = f_2'(x^*)$.

U ovom slučaju:

$$f_1(x) = ae^{x^2}, \quad f'_1(x) = 2axe^{x^2},$$

 $f_2(x) = \ln x, \quad f'_2(x) = \frac{1}{x}.$

Tačka u kojoj se krive dodiruju dobija se rešavanjem sistema jednačina

$$\begin{cases} ae^{x^2} = \ln x, \\ 2axe^{x^2} = \frac{1}{x}. \end{cases}$$

Izrazimo a iz prve jednačine i zamenimo u drugoj:

$$a = e^{-x^2} \ln x$$
, $2x \ln x = \frac{1}{x}$.

Prema tome, približna vrednost tačke dodira x^* može se odrediti rešavanjem jednačine

$$2x^2 \ln x - 1 = 0$$

primenom nekog iterativnog postupka, a približna vrednost konstante a se u svakoj iteraciji određjuje iz veze

$$a = e^{-x^2} \ln x.$$

II Rešavanje jednačine:

• Lokalizacija rešenja

$$f(x) = 2x^2 \ln x - 1 = 0 \quad \Leftarrow \quad 2 \ln x = \frac{1}{x^2}$$

• Njutnov metod (2)

$$f(x) = 2x^2 \ln x - 1$$
, $f'(x) = 2x(1 + 2 \ln x) > 0$, $x \in [1, 2]$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots, \qquad x_0 \in [1, 2],$$

$$x_{k+1} = x_k - \frac{2x_k^2 \ln x_k - 1}{2x_k (1 + 2 \ln x_k)}$$

$$= \frac{1 + 2x_k^2 (1 + \ln x_k)}{2x_k (1 + 2 \ln x_k)}, \quad k = 0, 1, 2, \dots, \qquad x_0 = 2,$$

$$a_k = e^{-x_k^2} \ln x_k.$$

k	x_k	a_k	
	2.		
1	1.5238	0.0413	$ a_3 - a_2 < 10^{-3}$
2	1.3535	0.0485	
3	1.3284	0.0486	

Približno rešenje je $a_3=0.049$.

Zadatak 5. Sa tačnošću 10^{-3} naći rešenje jednačine

$$x^4 - 8|x^2 - 1.3x| - |x^3 - 2x - 3| - 2 = 0,$$

koje se nalazi u intervalu [1, 2].

Rešenje:

Njutnov metod nije pogodan za rešavanje jednačine f(x) = 0, jer funkcija

$$f(x) = x^4 - 8|x^2 - 1.3x| - |x^3 - 2x - 3| - 2$$

nije diferencijabilna u svim tačkama oblasti definisanosti.

Ovde će biti predstavljena primena

- metoda sečice,
- metoda regula falsi,
- metoda Stefensena,
- metoda polovljenja intervala (bisekcije).

I Metod sečice

Rešenje: $x^* \approx x_6 = 1.756$

II Metod regula falsi

$$x_{k+1} = x_k - \frac{x_k - x_0}{f(x_k) - f(x_0)} f(x_k), \qquad k = 0, 1, 2, \dots,$$

$$x_0 = 1, \quad x_1 = 2, \qquad \left((f(x_0) \cdot f(x_1) < 0 \right).$$

$$\frac{k \mid x_k}{0 \mid 1. \quad \text{početna vrednost}}$$

$$1 \quad 2. \quad \text{početna vrednost}$$

$$2 \quad 1.8044$$

$$3 \quad 1.7454$$

$$4 \quad 1.7569$$

$$5 \quad 1.7554$$

$$6 \quad 1.7556 \qquad |x_6 - x_5| < 10^{-3}$$

Rešenje: $x^* \approx x_6 = 1.756$

III Metod Stefensena

$$x_{k+1} = x_k - \frac{(f(x_k))^2}{f(x_k + f(x_k)) - f(x_k)}, \qquad k = 0, 1, 2, \dots,$$

 $x_0 = 2.$

k	x_k	
0	2.	početna vrednost
1	1.9616	
2	1.9209	
3	1.8781	
4	1.8276	
5	1.7415	
6	1.7595	
7	1.7558	
8	1.7556	$ x_8 - x_7 < 10^{-3}$

Rešenje: $x^* \approx x_6 = 1.756$

IV Metod plovljenja intervala (metod bisekcije)

$$[x_0, y_0] = [\alpha, \beta];$$

za $n = 0, 1, 2, \dots$ ponavljati: $z_n = \frac{x_n + y_n}{2}$

- Ako je $f(z_n) = 0$, tada je z_n tačno rešenje.
- Ako je $f(x_n) \cdot f(z_n) < 0$, tada je $[x_{n+1}, y_{n+1}] = [x_n, z_n]$.
- Ako je $f(y_n) \cdot f(z_n) < 0$, tada je $[x_{n+1}, y_{n+1}] = [z_n, y_n]$.

Kriterijum zaustavljanja: $\frac{y_k - x_k}{2} < \varepsilon$

Rešenje:
$$x^* \approx z_k = \frac{x_k + y_k}{2}$$

početni interval:
$$[x(0), y(0)] = [1., 2.], \quad z(0) = 1.5,$$

 $f(x(k)) = -7.4, \ f(y(k)) = 1.8, \ f(z(k)) = -1.9625;$

- korak 1: [x(k), y(k)] = [1.5, 2.], z(k) = 1.75,f(x(k)) = -1.9625, f(y(k)) = 1.8, f(z(k)) = -0.0617;
- korak 2: [x(k), y(k)] = [1.75, 2.], z(k) = 1.875,f(x(k)) = -0.0617, f(y(k)) = 1.8, f(z(k)) = 1.5764;
- korak 3: [x(k), y(k)] = [1.75, 1.875], z(k) = 1.812,f(x(k)) = -0.0617, f(y(k)) = 1.5764, f(z(k)) = 0.6903;
- korak 4: [x(k), y(k)] = [1.75, 1.812], z(k) = 1.781,f(x(k)) = -0.0617, f(y(k)) = 0.6903, f(z(k)) = 0.2983;
- korak 5: [x(k), y(k)] = [1.75, 1.781], z(k) = 1.7656,f(x(k)) = -0.0617, f(y(k)) = 0.2983, f(z(k)) = 0.1144;
- korak 6: [x(k), y(k)] = [1.75, 1.7656], z(k) = 1.7578,f(x(k)) = -0.0617, f(y(k)) = 0.1144, f(z(k)) = 0.0254;
- korak 7: [x(k), y(k)] = [1.75, 1.7578], z(k) = 1.7539,f(x(k)) = -0.0617, f(y(k)) = 0.0254, f(z(k)) = -0.0184;
- korak 8: [x(k), y(k)] = [1.7539, 1.7578], z(k) = 1.7559,f(x(k)) = -0.0184, f(y(k)) = 0.0254, f(z(k)) = 0.0034;
- korak 9: [x(k), y(k)] = [1.7539, 1.7559], z(k) = 1.7549,f(x(k)) = -0.0184, f(y(k)) = 0.0034, f(z(k)) = -0.0075.

Kako je $\frac{y_9 - y_8}{2} < 10^{-3}$, rešenje: $x^* \approx z(9) = 1.756$.

Zadatak 6. Data je funkcija

$$f(x) = \max\{x^3 - 5x + 1, 8 - 5x - x^4\}.$$

Sa tačnošću 10^{-2} odrediti onu nulu funkcije f(x) koja se nalazi u segmentu [1,2].

Rešenje: I Izbor metoda:

Funkcija

$$f(x) = \max\{g_1(x), g_2(x)\},\$$

$$g_1(x) = x^3 - 5x + 1, g_2(x) = 8 - 5x - x^4,$$

definisana je preko elementarnih funkcija na \mathbb{R} , ali nije elementarna. Teško je odrediti u kojim je tačkama diferencijabilna. Zato za rešavanje jednačine ne može da se koristi Njutnov metod.

Rešićemo zadatak metodom polovljenja intervala (6).

II Metod polovljenja intervala:

Formiraju se intervali

$$[x_0, y_0] \supset [x_1, y_1] \supset \cdots \supset [x_n, y_n]$$

tako da svi sadrže tačno rešenje x^* . Približno rešenje je

$$z_n = \frac{x_n + y_n}{2}.$$

Proces se prekida kada je $\frac{y_n - x_n}{2} < \varepsilon$.

Početni interval: $[x_0, y_0] = [1., 2.].$ Kako je $\frac{|y_0 - x_0|}{2} \ge \varepsilon$, izračunavamo $z_0 = \frac{x_0 + y_0}{2} = 1.5.$

$$\begin{split} f(x_0) &= \max\{g_1(x_0), g_2(x_0)\} = \max\{g_1(1.), g_2(1.)\} \\ &= \max\{-3., 2.\} = 2.; \\ f(y_0) &= \max\{g_1(y_0), g_2(y_0)\} = \max\{g_1(2.), g_2(2.)\} \\ &= \max\{-1., -18.\} = -1.; \\ f(z_0) &= \max\{g_1(z_0), g_2(z_0)\} = \max\{g_1(1.5), g_2(1.5)\} \\ &= \max\{-3.125, 4.562\} = -3.125. \end{split}$$

Kako je $f(x_0) \cdot f(z_0) < 0$, funkcija menja znak u intervalu $[x_0, y_0]$, što znači da se u njemu nalazi rešenje jednačine. Zato za novi interval uzimamo

$$[x_1, y_1] = [x_0, z_0] = [1., 1.5].$$

Rezultati u sledećim iteracijama predstavljeni su u tabeli

$$\delta_k = \frac{y_k - x_k}{2}$$

k	x_k	y_k	$ z_k $	δ_k	$g_1(x_k)$	$g_2(x_k)$	$f(x_k)$	$g_1(y_k)$	$g_2(y_k)$	$f(y_k)$	$g_1(z_k)$	$g_2(z_k)$	$f(z_k)$
1	1.	1.5.	1.25	0.25.	-3.	2.	2.	-3.125	-4.562	-3.125	-3.297	-0.691	-0.691
2	1.	1.25.	1.125	0.125	-3.	2.	2.	-3.297	-0.691	-0.691	-3.201	0.773	0.773
3	1.125	1.25	1.186	0.063	-3.201	0.773	0.773	-3.297	-0.691	-0.691	-3.263	0.074	0.074
4	1.186	1.25	1.219	0.032	-3.263	0.074	0.074	-3.297	-0.691	-0.691	-3.283	-0.300	-0.300
5	1.186	1.219	1.203	0.016	-3.263	0.074	0.074	-3.283	-0.300	-0.300	-3.274	-0.111	-0.111
6	1.186	1.203	1.195	0.008									

Rešenje: $x^* \approx z_6 = 1.195$.