Office Hour: 1:30-3:30 PM, Th

STAT 610: Discussion 2

1 Summary

- Minimal sufficient statistics
 - Definition: A statistic $T(\mathbf{X})$ is minimal sufficient if for any other sufficient statistics $T'(\mathbf{X})$, $T(\mathbf{x})$ is a function of $T'(\mathbf{x})$.
 - Theorem 6.2.13. $T(\mathbf{X})$ is minimal sufficient for $\boldsymbol{\theta}$ if T has the property that

$$T(\mathbf{x}) = T(\mathbf{y}) \Leftrightarrow \frac{f(\mathbf{x}|\boldsymbol{\theta})}{f(\mathbf{y}|\boldsymbol{\theta})}$$
 does not depend on $\boldsymbol{\theta}$.

- Theorem 6.6.5. See lecture 3.
- In the case of exponential families

Let X_1, \ldots, X_n be i.i.d. from an exponential family with pdf

$$f_{\theta}(x) = h(x)c(\theta) \exp{\{\boldsymbol{\eta}(\boldsymbol{\theta})^T \mathbf{T}(x)\}},$$

where $\boldsymbol{\eta}(\boldsymbol{\theta})^T = (w_1(\boldsymbol{\theta}), \dots, w_k(\boldsymbol{\theta}))$, and $\mathbf{T}(x)^T = (t_1(x), \dots, t_k(x))$. Then,

- $-T(\mathbf{X}) = (\sum_{i=1}^n t_1(X_i), \dots, \sum_{i=1}^n t_k(X_i))$ is a sufficient statistic for $\boldsymbol{\theta}$.
- $-T(\mathbf{X}) = (\sum_{i=1}^n t_1(X_i), \dots, \sum_{i=1}^n t_k(X_i))$ is also minimal sufficient if the parameter space contains an open set in \mathbb{R}^k .
- Ancillary statistics
 - Definition: $U(\mathbf{X})$ is ancillary of θ if the distribution of U does not depend on θ .
- Complete statistics
 - Definition: $T(\mathbf{X})$ is complete if T has the property that

$$\mathbb{E}_{\theta}g(T) = 0$$
 for any measurable g and $\theta \Rightarrow g(T) = 0$ a.s.

– Basu's Theorem: Complete sufficient statistics and ancillary statistics for parameter θ are independent for all θ .

Office Hour: 1:30-3:30 PM, Th

2 Questions

- 1. Let (X_1, \ldots, X_n) be a random sample from density $\theta^{-1}e^{-(x-\theta)/\theta}I_{(\theta,\infty)}(x)$, where $\theta > 0$ is an unknown parameter.
 - (a) Find a statistic that is minimal sufficient for θ .
 - (b) Show whether the minimal sufficient statistic in (a) is complete.
- 2. Let X be a discrete random variable with

$$\mathbb{P}_{\theta}(X=x) = \frac{\binom{\theta}{x} \binom{N-\theta}{n-x}}{\binom{N}{n}}, \quad x = 0, 1, 2, \dots, \min\{\theta, n\}, n - x \le N - \theta$$

where n and N are known positive integers, $N \ge n$, and $\theta = 0, 1, ..., N$. Show that X is complete.

3. (a) If $\frac{X}{Y}$ and Y are independent random variables, show that

$$\mathbb{E}\left(\frac{X}{Y}\right)^k = \frac{\mathbb{E}(X^k)}{\mathbb{E}(Y^k)}.$$

(b) Use Basu's theorem to show that if $X_1, ..., X_n$ are iid gamma (α, β) , where α is known, then for $T = \sum_{j=1}^{i} X_j$

$$\mathbb{E}(X_{(i)}|T) = \mathbb{E}\left(\frac{X_{(i)}}{T}T|T\right) = T\frac{\mathbb{E}(X_{(i)})}{\mathbb{E}T}$$

4. Let (X_1, \ldots, X_n) , $n \geq 2$, be a random sample from a distribution having density $f_{\theta,j}$, where $\theta > 0$, j = 1, 2, $f_{\theta,1}$ is the density of $\mathcal{N}(0, \theta^2)$, and $f_{\theta,2}(x) = (2\theta)^{-1}e^{-|x|/\theta}$. Show that $T = (T_1, T_2)$ is minimal sufficient for (θ, j) , where $T_1 = \sum_{i=1}^n X_i^2$ and $T_2 = \sum_{i=1}^n |X_i|$.