24. Локални и глобални екстремуми. Необходимо условие за локален екстремум — теорема на Ферма

Локални екстремуми

Дефиниция

Нека $f: D \to \mathbb{R}$, където $D \subseteq \mathbb{R}$.

(а) Казваме, че x_0 е точка на локален минимум за f(x), ако

$$\exists \, \delta > 0 : \quad (x_0 - \delta, x_0 + \delta) \subset D \text{ if } f(x_0) \leq f(x), \quad x \in (x_0 - \delta, x_0 + \delta). \tag{1}$$

Казваме, че x_0 е точка на строг локален минимум за f(x), ако $f(x_0) < f(x)$, $x \in (x_0 - \delta, x_0 + \delta)$, $x \neq x_0$.

(б) Казваме, че \mathbf{x}_0 е точка на локален максимум за $f(\mathbf{x})$, ако

$$\exists \, \delta > 0 : \quad (x_0 - \delta, x_0 + \delta) \subset D \text{ if } f(x_0) \geq f(x), \quad x \in (x_0 - \delta, x_0 + \delta). \tag{2}$$

Казваме, че X_0 е точка на строг локален максимум за f(x), ако $f(x_0) > f(x)$, $x \in (x_0 - \delta, x_0 + \delta)$, $x \neq x_0$.

(в) Казваме, че x_0 е точка на (строг) локален екстремум за f(x), ако тя е точка на (строг) локален минимум или максимум.

(г) Стойността на f(x) в точка на локален минимум или максимум се наричат съответно локален минимум или максимум на f(x).

Глобални екстремуми

Дефиниция

- (a) Казваме, че x_0 е точка на глобален минимум за функцията f(x), ако f(x) достига своята НМ стойност в x_0 .
- (б) Казваме, че x_0 е точка на глобален максимум за функцията f(x), ако f(x) достига своята НГ стойност в x_0 .
- (в) Казваме, че x_0 е точка на глобален екстремум за функцията f(x), ако тя е точка на глобален минимум или максимум за f(x).
- (г) НМ и НГ стойност на f(x) се наричат съответно нейни глобален минимум и максимум.

Бележка

Не всеки локален екстремум е глобален, нито всеки глобален екстремум е локален. Но всеки глобален екстремум, който се достига във вътрешна точка е и локален от същия вид.

Геометрични илюстрации

 x_1 — (строг) локален мин., но не глобален x_2 — (строг) локален и глобален макс.

b — (строг) глобален мин.

 x_1 — (строг) локален и глобален мин. $\forall x \in [x_2, b)$ — локален и глобален макс. b — глобален макс.

D — глооален макс.

НУ за локален екстремум — теорема на Ферма

Теорема (НУ за лок. естр., Ферма)

Ако x_0 е точка на локален екстремум за функцията f(x) и f(x) е диференцируема в x_0 , то $f'(x_0) = 0$.

Бележка

Това означава, че допирателната към графиката на функция в нейна точка на локален екстремум е хоризонтална.

Решенията на уравнението

$$f'(x) = 0 (3)$$

се наричат <u>критични точки</u> на f(x).

Д-во на т-мата на Ферма

Понеже f(x) е диференцируема в т. x_0 , то съществува границата

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$
 (4)

Нека x_0 е точка на локален минимум за f(x). Тогава $\exists \, \delta > 0$ такова, че интервалът $(x_0 - \delta, x_0 + \delta)$ се съдържа в дефиниционната област на ф-цията и

$$f(x_0) \le f(x) \quad \forall x \in (x_0 - \delta, x_0 + \delta).$$
 (5)

Тогава за всяко $\mathbf{x} \in (\mathbf{x}_0 - \delta, \mathbf{x}_0 + \delta), \ \mathbf{x} \neq \mathbf{x}_0$, имаме

$$\frac{f(x) - f(x_0)}{x - x_0} \begin{cases} \leq 0, & x \in (x_0 - \delta, x_0), \\ \geq 0, & x \in (x_0, x_0 + \delta). \end{cases}$$
 (6)

От тези н-ва следва съответно, че

$$\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0 \quad \text{if} \quad \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$
 (7)

Понеже

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \underbrace{\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}}_{\leq 0} = \underbrace{\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0}}_{\geq 0},$$
(8)

то $f'(x_0)$ е както ≤ 0 , така и ≥ 0 ; следователно е = 0.

Нека x_0 е точка на локален максимум за f(x). Тогава x_0 е точка на локален минимум за -f(x) и, според вече доказаното, $(-f)'(x_0) = 0$, т.е. $-f'(x_0) = 0$. Следователно $f'(x_0) = 0$.

Намиране на НГ и НМ стойност

Нека $f:[a,b]\to\mathbb{R}$ е непрекъсната в [a,b] и диференцируема в (a,b). Т-ма на Вайерщрас $\implies f(x)$ има НГ и НМ ст. Всяка една от тях се достига в край на интервала или във вътрешна точка. Ако това става във вътрешна точка, то тя непренно е точка на локален екстемум. Т-ма на Ферма \implies тя е критична точка на f(x).

Това дава възможност да намерим НГ и НМ стойност на f(x), както и точките, в които се достигат по следната схема:

- Намираме критичните точки на f(x), т.е. намираме решенията на у-нието f'(x) = 0 в (a,b). Да ги означим с x_1, x_2, \ldots
- 2 Тогава

$$f_{\rm H\Gamma} = \max\{f(a), f(b), f(x_1), f(x_2), \dots\}$$
 (9)

$$f_{\text{HM}} = \min\{f(a), f(b), f(x_1), f(x_2), \dots\}$$
 (10)