Lecture-5 Project allocation

24. FEB Topics will be annound. Analysis 2 2-0pt 128 FEB Allocation Office hours Kecall Model for smoothed analysis After att Leitmes A-bean algorithm A(a) the Performance of the algerithm II- a perturbation model & let N(x) the neighbornhood of Smoothed $A(n) = \max_{x, |x| \ge n} \frac{1}{y \in N(x)}$ (original-Spielman (Normal)
Model I:- (naussian Noise model. x - NG) is defined by adding a Guassian distribution with Mlo Z; ~ independenty distriction independenty distriction (4,0) $\chi = (P_1, P_2, \dots, P_n)$ $2(7,7_1)$

Model 2: density model. $f_i: [0,i]^2 \rightarrow [0,\phi]$ parameter is & 2-opt algorithm ip, appoints Pi-. Pn J- some initial tour. 2-opt step Considu colga e, ez ant (ei) = $d(v, v_2)$ Let it beath tour obtained to replaining (N, NZ) & (N, N4) wilk (N,, N3) (2, NH) if cost(T) > cost(T')replan I by I'l proceed-Halt when no Jurither Emprovemed is possible. Worst corei Algo can run for no many iterations Suppose Pi, -- Pn E-LO, J For any T, cost(1) \le \siz.n. Suppore Dinin isola minimum Emposment

[ix (ast (T) - cost (T') > Dinin.

		1 onvarantine	$\leq \sqrt{2}n$ Δmin	
Asimpli	Lied notion	distanu.		
W =	(x, y,)	be two p	1,-12	
M. Li	distant xicab xicab xhattan	between $u k v$ $d_1(u,v) =$	- 17, - 12)	
Suppor	P, - ' '''	ave uniformy distributed-	$P_{i} = (\alpha_{i}, Y_{i})$	
5-be	one & -c v2, V3, V4)	$\rho t s tep$	-d, (v, v,)-d, (vz, v4, y-, LP, Pn).	
	d. Co		J-LP1, Pn].	
Dmin =	min Syx	シャンメン	$V_{1} = (X_{1}, Y_{1})$ $V_{2} = (X_{2}, Y_{2})$	
D(S)	91,-72 of 12	+ 14, -42) + 1+143-44) -	$v_{4} = cv_{4}, v_{4}$	
	126,	731 + 17, -731	1. Amin.	
Let w	r ~>0	us a Afweshold	Domin ZE Domin ZS ZS ZS ZE)
be want		Dmin S E D CS) Z	Once & is done we can compute A using union bound	
	10 \$151			-

we know $|\pi, -\pi_1| = \pi, -\pi_1$ or $\pi_2 - \pi_1$ depending on $\pi_1 - \pi_2$ or $\pi_2 - \pi_1$ depending on $\pi_1 - \pi_2$ or $\pi_2 - \pi_1$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_1$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_1$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_1$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_1$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_1$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_2$ or $\pi_2 - \pi_1$ or $\pi_2 - \pi_2$ o $eg: \Delta(s) = \gamma_1 - \gamma_2 + \gamma_3 - \gamma_4 + \gamma_3 - \gamma_5 + \gamma_4 - \gamma_5 + \gamma_5 + \gamma_5 - \gamma_5 + \gamma_5 - \gamma_5 + \gamma_5 - \gamma_5 + \gamma_5 - \gamma_5 +$ Fix one such possibility.

Fix one such possibility. A_1x_1+Y $A_2x_1+A_3x_3+A_5x_4+F_5x_5+\cdots+F_4x_4$, $A_1x_1+A_2x_1+A_3x_3+A_5x_4+F_5x_5+\cdots+F_4x_4$, $RLO(S) LEJ \leq E$ $MLY, < \frac{e-\gamma}{\alpha, \gamma} \leq e$ Or $C \ni is a possibility <math>\Delta(s) < t \end{bmatrix} \leq \# \mathcal{T} pass \times C$ $= \mathcal{R}(3S, \Delta(S) < \epsilon^{7}$ Chook an E < "428 e.g. Choox E= ns QL Dmin < 15] < n4.28, 1 = 28. $\text{Pr} L \text{ 2 opt runs } dr > 2 \cdot n^6$ $\leq 2^8$

E [Yun time 2-opt] 5 2.n6.