МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники»

Исследование и разработка методики и алгоритма генерации виртуального аппаратного обеспечения по спецификации

Диссертация на соискание степени магистра по направлению $09.04.04 \times \text{Программ}$ инженерия»

Научный руководитель: канд. техн. наук, доц. Кононова

Александра Игоревна

<u>Соискатель:</u> магистрант. гр. ПИН-22М Уманский Александр Александрович

Москва, 2022

Проблемная ситуация

При создании прикладного ПО для специализированного аппаратного обеспечения дорого обеспечивать разработчиков самим аппаратным обеспечением.

Причины сложившейся ситуации:

- печать экземпляров аппаратного обеспечения в условиях санкций и дефицита полупроводников стала дорогой;
- простаивание программистов, пока происходит печать и доставка аппаратного обеспечения;
- трудоемкость создания собственного виртуального аппаратного обеспечения.

Пример специализированного аппаратного обеспечения

Рис. 1: Аппаратно-программный модуль доверенной загрузки Максим-М1

Цель и задачи диссертации

Цель: снижение трудоемкости создания виртуальных устройств. **Задачи:**

- аналитический обзор существующих методов создания виртуального аппаратного обеспечения;
- формализация задачи;
- создание методики и алгоритма генерации виртуального аппаратного обеспечения на основе его спецификации;
- разработка лингвистического аппарата (семантика, синтаксис)
 языка для создания программ по генерации виртуального аппаратного обеспечения.

Положения, выносимые на защиту

- формализованное представление алгоритма генерации виртуального аппаратного обеспечения;
- лингвистический аппарат (синтаксис, семантика) языка для создания программ по генерации виртуального аппаратного обеспечения;
- экспериментальные результаты применения генератора аппаратного обеспечения.

Анализ существующих методов создания виртуального аппаратного обеспечения

Метод	Особенности	Недостатки		
Создание stub-симуля-	Требует создания ин- Приходится создавать интер			
тора	терфейсов-адапторов	горов фейсы-адапторы для каждого		
	в прикладном ПО	разрабатываемого ПО		
Использование записи	Быстрый метод, не	• Взаимодействие ПО с		
работы аппаратного	требует специальных	аппаратным обеспечением		
обеспечения	знаний о внутреннем	ограничивается заранее запи-		
	устройстве аппаратно-	санными сценариями		
	го обеспечения			
		• Количество записей очень		
		быстро разрастается		
		• Зачастую записи снимаются		
	только с корректных сценар			
		ев использования		
Использование эмуля-	• Готовая инфраструк-	• Необходимость написания		
тора QEMU	тура для создания вир-	виртуального аппаратного		
	туального аппаратного	обеспечения на низкоуровне-		
	обеспечения вом языке			
	• Постоянная поддерж-	• Необходимость обучения		
	ка эмулятора силами	объектной системе QEMU		
	сообщества	(QOM)		

Формализованное представление (грамматика)

```
::= 'a' ... 'z' | 'A' ... 'Z';
(letter)
                         ::= '0' ... '9' :
\langle digit \rangle
(symbol)
                         ::= \x20 ... \x7E ; (* любой печатный символ, согласно
                              кодам ASCII *)
                         ::= <digit> | '' { <symbol> } '';
const value
(identifier)
                         ::= <letter> [{ <letter> | <digit> | ' ' }];
⟨block start⟩
                         ::= '':
⟨block end⟩
                         ::= '':
⟨field⟩
                          ::= <identifier> '=' <identifier> | <block> ;
                         ::= <block start> <field> [{ ',' <field> }] <block end>;
⟨block⟩
⟨device definition⟩ ::= '#' <identifier>;
device class inheritance ::= '(' <identifier> ':' <identifier> [{ ',' <identifier> }] ')';
(device class block)
                     ::= <device class inheritance> <block>:
⟨bind block⟩
                         ::= '@bind' <block>:
(python block)
                         ::= '@py' <block>;
                          ::= <device definition> <device class block> <bind block>
⟨program⟩
                              <python block>;
```

Рис. 2: Расширенная форма Бэкуса-Наура генератора виртуального аппаратного обеспечения

Формализованное представление (семантика) І

Таблица 2: Денотационная семантика QPyDev

Математическое описание	Значение		
$[[assignment]](x,y) = \lambda x.y$	Операция присваивания значения		
	y переменной x		
$[[terminate]](m) = \ $ Завершение работы компилятора	Терминирование компилятора с сообщением m		
$[[if]](c,e_1,e_2)=egin{cases} e_1, & ext{Если } c=true \ e_2, & ext{Если } c eq true \end{cases}$	Условное исполнение. Если условие c истинно, то выполняется e_1 , иначе e_2		
$[[throw\ error]](c,e) = if(c,e_g,terminate)$	Создание и бросание исключения		
	при ложном условии \emph{c}		
$[[lookup]](o) = [[throw\ error]](o \in Q, o)$	Поиск объекта o в множестве объ-		
	ектов QEMU $\it Q$. В случае, если		
	объект не найден генерируется ис-		
	ключение		

Формализованное представление (семантика) ІІ

$[[< device \ definition >]](i) = lookup(i)$	Поиск указнного класса устройства	
	в объектах QEMU	
$[[< device \ class \ inheritance >]](i_1,,i_n) = \\ lookup(i_1) \wedge \wedge lookup(i_n)$	Поск указанного класса для наследования и интерфейсов в объектах QEMU. Для успешного завершения должны быть найдены все объекты	
$[[< field >]](v_1, v_2) =$		
$[[throw\ error]](v_1 \in Q \land v_2 \in C \cup Q,$	Присваивание полям значений при	
$assignment(v_1,v_2))$	условии, что v_1 принадлежит множеству объектов QEMU, а v_2	
	множеству констант или множе-	
	ству объектов QEMU	
$[[< block >]](f_1,,f_n) = field(f_1) \land \land$	Присваивание связанных с одной	
$field(f_n)$	сущностью полей	
[[< pythonblock >]](b) =	Инициализация специального поля	
assignment(B,B)	с Python-логикой	

•

Методика создания виртуального аппаратного обеспечения

Компиляция устройства

Программная реализация

Рис. 3: Пример созданного с помощью QPyDev виртуального устройства

Выбор метрики оценки эффективности

Основные метрики эффективности:

- время разработки виртуального аппаратного обеспечения (в человеко-часах);
- быстродействие сгенерированного виртуального аппаратного обеспечения.

Экспериментальное устройство выполняет задачу сжатия JPEG-картинки. Данная задача легко поддается измерению, так как:

- легко выбрать сложность входных данных это размер изображения;
- возможна векторизация этапов алгоритма;
- возможно добавить разные подходы к обработке изображения:
 - вызов подпрограммы;
 - отправка данных по сети;
 - реализация алгоритма устройства.

Оценка эффективности

Таблица 3: Сравнение эффективности разработки и производительности виртуальных устройств реализующих алгоритм сжатия JPEG картинки

Метрика	Разработка с нуля		Использование библиотеки	
	С устрой-	Python	С устрой-	Python
	СТВО	устрой-	СТВО	устрой-
		ство		СТВО
Время разра-	100	50	35	10
ботки в чело-				
веко-часах				
Время сжа-	3.915	18.548	1.871	2.786
тия (сек.)				

Вывод: разработка С-устройства дольше, и, соответственно, дороже, но преимуществом является быстрота его работы. Устройство, созданное QPyDev сокращает время разработки вдвое. Использование библиотеки радикально сокращает время разработки в обоих случаях: в 2.8 для C-устройства и 5 раз для Python-устройства. При реализации устройств без сторонних библиотек, Python-устройство в 4.7 раза медленнее аналогичного C-устройства. При использовании библиотек, разрыв сокращается до 1.5 раза, что является более чем приемлимым.

Основные результаты диссертационной работы

- проведен аналитический обзор существующих методов создания виртуального аппаратного обеспечения;
- созданы методика и алгоритм генерации виртуального аппаратного обеспечения на основе его спецификации;
- разработан лингвистический аппарат (семантика, синтаксис)
 языка для создания программ по генерации виртуального аппаратного обеспечения;

Спасибо за внимание!