

UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE

Cálculo Diferencial e Integral I

Vinícius Martins Freire

Sumário

ı.	Intro	odução	5				
2.	Conj	ijuntos	6				
	2.1.	Conjuntos Numéricos:	6				
	2.2.	Eixos Coordenados:	6				
	2.3.	Desigualdades:	7				
	2.4.	Valor Absoluto:	9				
3.	Funç	ıção	11				
	3.1.	Tipos de Funções:	13				
	3.1.1	1. Função CONSTANTE:	13				
	3.1.2	2. Função IDENTIDADE:	13				
	3.1.3	3. Função do 1° GRAU	13				
	3.1.4	4. Função MÓDULO:	14				
	3.1.5	5. Função QUADRÁTICA:	14				
	3.1.6	6. Função POLINOMIAL:	14				
	3.1.7	7. Função RACIONAL:	14				
	3.1.8	8. Funções PARES E ÍMPARES:	15				
	3.1.9	9. Funções PERIÓDICAS:	15				
	3.1.1	10. Função INVERSA:	15				
4.	Funç	Funções Elementares do Calculo					
	4.1.	Função EXPONENCIAL:	16				
	4.2.	Função LOGARÍTMICA:	16				
	4.3.	Função LOGARÍTMICA (Logaritmos NATURAIS):	16				
	4.4.	Funções TRIGONOMÉTRICAS:	16				
	4.4.1	1. Função SENO:	16				
	4.4.2	2. Função COSSENO:	17				
	4.4.3	3. Função TANGENTE, COTANGENTE, SECANTE e COSSECANTE:	17				
	4.5.	Funções TRIGONOMÉTRICAS INVERSAS:	18				
	4.6.	Funções HIPERBÓLICAS:	18				
5.	Noçô	ões sobre limites	19				
	5.1.	Limites Laterais:	22				
	5.1.1	1. Expressões Indeterminadas:	23				

6. Li	mites no Infinito:	23
6.1.	Limites Infinitos:	24
6.2.	Assíntotas:	24
6.3.	Limites FUNDAMENTAIS:	25
6.4.	Continuidade:	25
6.5.	Teorema do valor intermediário:	26
7. De	erivada:	27
7.1.	Velocidade e Aceleração:	28
7.2.	A derivada de uma função:	28
7.3.	Taxas de Variação	29
7.4.	Continuidade de Funções Deriváveis	30
7.5.	Regras de Derivação:	30
7.6.	Tabela de Regras de Derivação	31
8. De	erivada de Função Composta:	33
8.1.	Derivada de função inversa	34
8.2.	Derivadas sucessivas	34
8.3.	Derivação Implícita	35
8.4.	Derivadas: Funções trigonométricas inversas	35
8.5.	Derivadas: Funções hiperbólicas	36
8.6.	Derivadas: Funções hiperbólicas inversas	36
8.7.	Diferencial	36
9. Re	egras de L'Hospital	38
9.1.	Máximos e Mínimos	38
9.2.	Teoremas sobre Derivadas	40
9.2	2.1. Teorema de Rolle:	40
9.2	2.2. Teorema do Valor Médio:	40
9.3.	Funções Crescentes e Decrescentes	40
9.4.	Critérios para determinar os Extremos de uma Função	41
9.5.	Concavidade e Pontos de Inflexão	41
9.6.	Taxa de variação	42
9.7.	Construção de gráficos	43
9.8.	Fórmula de Taylor	43
10.	Integrais indefinidas	44
10.1.	. Função primitiva	44
10.2.	. Integral indefinida	45

11.	Integrais Definidas	45				
11.						
11.	2. Integral Definida	47				
11.						
12.	Método da Substituição	49				
13.	Método de integração por Partes					
14.	4. Exercícios de Revisão					
15.	Respostas (Exercícios de Revisão)					
16.	Sugestão de Estudo					
17.	Referências Bibliográficas					

1. Introdução

Esta apostila foi desenvolvida como um projeto de ensino do Programa de Educação Tutorial do Centro de Engenharias da Mobilidade (PET-CEM). O presente trabalho apresenta um resumo da matéria, contendo os principais conceitos fundamentais e exemplos de vários assuntos do calculo diferencial e integral. Somente a leitura deste material não é suficiente para entendimento total da matéria. É necessária a leitura de algum livro do assunto para analisar as demonstrações de fórmulas e resolver outros exemplos.

2. Conjuntos

2.1. Conjuntos Numéricos:

• Números Naturais (N)

$$N = \{1,2,3,4,...\}$$

• Números Inteiros (**Z**)

$$\mathbf{Z} = \{ \dots -2, -1, 0, 1, 2, \dots \}$$

• Números Racionais (**Q**)

$$\mathbf{Q} = \{..., -1, ..., -1/2, ..., 0, ..., \frac{1}{2}, ..., 1 ...\}$$

• Números Irracionais (Q')

$$\mathbf{Q'} = {\sqrt{2} = 1,414 ..., e = 2,71 ..., \pi = 3,14159 ...}$$

• Números Reais (**R**)

$$\mathbf{R} = \mathbf{Q} \cup \mathbf{Q}'$$

O Conjunto dos Números Reais com as operações de <u>adição</u> e <u>multiplicação</u> satisfaz os axiomas abaixo:

- ✓ Fechamento: se $a, b \in IR$,
 - ✓ existe um e somente um número real denotado por a + b, chamado soma;
 - existe um e somente um número real denotado por ab (ou a x b, ou a · b), chamado produto.
- ✓ **Comutatividade:** se $a, b \in IR$ então a + b = b + a e $a \cdot b = b \cdot a$
- ✓ **Associatividade:** se $a, b, c \in IR$ então

$$a + (b+c) = (a+b) + c$$
 e
 $a \cdot (b \cdot c) = (a \cdot b)$.

✓ **Distributividade:** se $a, b, c \in IR$, er $a \cdot (b + c) = ab + ac$

- ✓ Existência de Elementos Neutros: existem $0 \ e \ 1 \in IR$ tais que $a + 0 = a \ e \ a \cdot 1 = a$ para qualquer $a \in IR$.
- ✓ Existência de Simétricos: todo $a \in IR$ tem um simétrico -a, tal que a + (-a) = 0.
- ✓ Existência de inversos: todo $a \in IR$, $a \neq 0$ tem um inverso $\frac{1}{a}$, tal que $a \cdot \frac{1}{a} = 1$.
- ✓ Subtração: a b = a + (-b), $a, b \in IR$.
- ✓ **Divisão:** $\frac{a}{b} = a \cdot \frac{1}{b}$, $a, b \in IR$, $b \neq 0$.

2.2. Eixos Coordenados:

2.3. Desigualdades:

Axioma de Ordem: Nos reais existe um subconjunto de positivos, tal que:

- i. Se $a \in IR \implies a = 0$; ou $a \in positivo$; ou $-a \in positivo$.
- ii. A soma de dois números positivos é positiva;
- iii. O produto de dois números positivos é positiva.

Definições:

- ✓ O número real a é negativo se e somente se -a é positivo.
- Os símbolos < (menor que) e >(maior que) são definidos:
 - $a < b \Leftrightarrow b a \in \text{positivo};$
 - $a > b \Leftrightarrow a b \notin \text{positivo}$.
- ✓ Os símbolos ≤ (menor ou igual que) e ≥ (maior ou igual que) são definidos:
 - i. $a \le b \Leftrightarrow a < b \text{ ou } a = b$;
 - $a \ge b \Leftrightarrow a > b \text{ ou } a = b.$

Propriedades: Sejam $a, b, c, d \in IR$.

- i. Se a > b e b > c, então a > c.
- ii. Se a > b e c > 0, então ac > bc.
- iii. Se a > b e c < 0, então ac < bc.
- iv. Se a > b, então a + c > b + c para todo real c.
- v. Se a > b e c > d, então a + c > b + d.
- vi. Se a > b > 0 e c > d > 0, então ac > bd.

Prova de i. : Se $a > b \stackrel{def}{\Longrightarrow} (a - b) > 0$.

Se b >
$$c \stackrel{def}{\Longrightarrow} (b-c) > 0$$
.

Logo (a-b)+(b-c)>0, ou seja, $(a-c)>0\stackrel{def}{\Longrightarrow} a>c$.

Intervalos:

✓ Intervalo Aberto: $\{x \mid a < x < b\}$ denota-se (a,b) ou]a,b[.

✓ Intervalo Fechado: $\{x \mid a \le x \le b\}$ denota-se [a, b].

✓ Intervalo Fechado à Direita e Aberto à Esquerda:

 $\{x \mid a < x \le b\}$ denota-se (a, b] ou [a, b].

✓ Intervalo Aberto à Direita e Fechado à Esquerda:

 $\{x \mid a \le x < b\}$ denota-se [a, b) ou [a, b].

✓ Intervalos Infinitos:

i.
$$\{x \mid x > a\}$$
 denota-se $(a, +\infty)$ ou $]a, +\infty[$.

ii.
$$\{x \mid x \ge a\}$$
 denota-se $[a, +\infty)$ ou $[a, +\infty[$.

iii.
$$\{x \mid x < b\}$$
 denota-se $(-\infty,b)$ ou $]-\infty,b[$.

iv.
$$\{x \mid x \le b\}$$
 denota-se $(-\infty,b]$ ou $]-\infty,b]$.

Resolução de desigualdades:

Exemplo 1: Determinar todos os intervalos de números que satisfazem a desigualdade abaixo e fazer a representação gráfica: 3+7x < 8x+9

Resolução:
$$3 + 7x - 3 < 8x + 9 - 3$$

$$7x < 8x + 6$$

$$7x - 8x < 8x + 6 - 8x$$

$$-x < 6$$

$$x > -6$$

Portanto,
$$\{x|x > -6\} = (-6, +\infty)$$
 é a solução.

Portanto,
$$\{x|x > -6\} = (-6, +\infty)$$
 é a solução.
Graficamente:

Exemplo 2: Determinar todos os intervalos de números que satisfazem a desigualdade abaixo e fazer a representação gráfica: $7 < 5x+3 \le 9$

Resolução:
$$7 - 3 < 5x + 3 - 3 \le 9 - 3$$

$$4 < 5x \le 6$$

$$\frac{4}{5} < x \le \frac{6}{5}$$

Portanto, $\left\{x \middle| \frac{4}{5} < x \le \frac{6}{5}\right\} = \left(\frac{4}{5}, \frac{6}{5}\right]$ é a solução.

Exemplo 3: Determinar todos os intervalos de números que satisfazem a desigualdade abaixo e fazer a representação gráfica: x/(x+7) < 5, $x \ne -7$

Resolução: vamos multiplicar ambos os membros da desigualdade por x + 7. Precisamos considerar 2 casos:

✓ **Caso 1**:
$$x + 7 > 0$$
, ou seja, $x > -7$

Então,
$$x < 5(x + 7) \Rightarrow x < 5x + 35$$

 $x - 5x < 5x + 35 - 5x \Rightarrow -4x < 35$

$$x > -35/4$$

Portanto, $\{x|x > -7\} \cap \{x|x > -35/4\} = (-7, +\infty)$.

✓ Caso 2:
$$x + 7 < 0$$
, ou seja, $x < -7$.

Então,
$$x > 5(x + 7) \implies x > 5x + 35$$

$$x < -\frac{35}{4}$$

Portanto, $\{x | x < -7\} \cap \{x | x < -\frac{35}{4}\} = (-\infty, -\frac{35}{4})$ é a solução do caso 2.

✓ A solução é:
$$(-\infty, -\frac{35}{4}) \cup (-7, +\infty)$$
.

Graficamente:

2.4. Valor Absoluto:

Definição: O valor absoluto de a, denotado por |a|, é definido como

$$\checkmark$$
 $|a| = a$, se $a \ge 0$

✓
$$|a| = -a$$
, se $a < 0$

Interpretação geométrica: Geometricamente o valor absoluto de a, representa a distância entre a e 0.

Escreve-se então $|a| = \sqrt{a^2}$. De forma geral se a e b são pontos sobre um eixo coordenado, então a distância d entre eles é d = |b - a|.

Propriedades:

i.
$$|x| < a \Leftrightarrow -a < x < a$$
, onde $a > 0$.

ii.
$$|x| > a \Leftrightarrow x > a$$
 ou $x < -a$, onde $a > 0$.

iii. Se
$$a, b \in IR$$
, então $|a \cdot b| = |a| \cdot |b|$.

iv. Se
$$a, b \in IR$$
 $e \ b \neq 0$, então $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$.

v. Desigualdade triangular:

Se
$$a, b \in IR$$
, então $|a + b| \le |a| + |b|$.

vi. Se
$$a, b \in IR$$
, então $|a - b| \le |a| + |b|$.

vii. Se
$$a, b \in IR$$
, então $|a| - |b| \le |a - b|$.

Desigualdades com valor absoluto

$$|x-a| < k$$
, ou seja, $-k < x-a < k$. Logo $a-k < x < a+k$

a-k a a+k
 $|-k \text{ unid.} \rightarrow | \leftarrow k \text{ unid.} \rightarrow |$

$$\sqrt{|x-a|} > k$$
, ou seja, $x-a < -k$ ou $x-a > k$. Logo $x < a-k$ ou $x > a+k$

a-k a a+k

|← k unid.→ |← k unid.→|

Exemplo 1: Resolva a equação:

$$|7x - 1| = |2x + 5|$$

Resolução: Esta equação será satisfeita se:

✓ **Caso 1**:
$$7x - 1 = 2x + 5$$

Então,
$$7x - 2x = 5 + 1 \implies 5x = 6$$

Logo, $x = \frac{6}{5}$

✓ Caso 2:
$$7x - 1 = -(2x + 5) \Rightarrow 7x - 1 = -2x - 5$$

Então,
$$7x + 2x = -5 + 1 \implies 9x = -4$$

Logo,
$$x = -\frac{4}{9}$$

A solução final é $x = \frac{6}{5}$ e $x = -\frac{4}{9}$

Exemplo 2: Encontre os números reais que

$$-4 < 7x - 2 < 4$$

$$-4 + 2 < 7x - 2 + 2 < 4 + 2$$

$$-2 < 7x < 6$$

$$-\frac{2}{7} < x < \frac{6}{7}$$

|7x - 2| < 4

Portanto,
$$x \in \left(-\frac{2}{7}, \frac{6}{7}\right)$$

Exemplo 3: Encontre os números reais que satisfaçam a seguinte desigualdade:

$$\left|\frac{3-2x}{2+x}\right| \le 4, \qquad x \ne -2$$

Resolução: Reescrevendo: $|3 - 2x| \le 4|2 + x|$

Elevando ambos os lados da desigualdade ao quadrado:

$$9 - 12x + 4x^{2} \le 16(4 + 4x + x^{2})$$

$$9 - 12x + 4x^{2} \le 64 + 64x + 16x^{2}$$

$$-12x^{2} - 76x - 55 \le 0$$

$$12x^{2} + 76x + 55 \ge 0$$

$$12(x + \frac{5}{6})(x + \frac{11}{2}) \ge 0$$

Temos $(x + \frac{5}{6})(x + \frac{11}{2}) \ge 0$. A desigualdade será satisfeita quando ambos os fatores tiverem o mesmo sinal:

✓ Caso 1:
$$(x + \frac{5}{6}) \ge 0$$
 $e^{-(x + \frac{11}{2})} \ge 0$
Ou seja, $x \ge -\frac{5}{6}$ $e^{-(x + \frac{11}{2})} \Rightarrow x \ge -\frac{5}{6}$

✓ **Caso 2**:
$$(x + \frac{5}{6}) \le 0$$
 e $(x + \frac{11}{2}) \le 0$
Ou seja, $x \le -\frac{5}{6}$ e $x \le -\frac{11}{2}$ \Rightarrow $x \le -\frac{11}{2}$

Desta forma, a solução final será:

$$\left(-\infty,-\frac{11}{2}\right]\cup\left[-\frac{5}{6},+\infty\right)$$

3. Função

Sejam A e B subconjuntos de IR.

Uma função $f: A \to B$ é uma lei ou regra que a <u>cada elemento de A</u> se faz corresponder um <u>único</u> elemento de B.

O conjunto A é chamado domínio de f e é denotado por D(f).

B é chamado de contra-domínio ou campo de valores de f.

f:
$$A \rightarrow B$$
 ou $y = f(x)$
 $x \rightarrow f(x)$

É função

Não é função

Definição de função:

- (i) Dado x ∈ A, o elemento f(x) ∈ B é chamado de valor da função f no ponto x ou de imagem de x por f.
- (ii) O conjunto de todos os valores assumidos pela função é chamado conjunto imagem de f e é denotado por Im(f).

Definição de gráfico de função:

✓ Seja f uma função. O gráfico de f é o conjunto de todos os pontos (x, f(x)) de um plano coordenado, onde x pertence ao domínio de f.

Exemplo 1: Seja f: $IR \rightarrow IR$, definida por $f(x)=x^2$.

D(f)=IR

$$Im(f) = [0, +\infty)$$

Exemplo 2:

$$f(x) = x$$

$$D(f) = IR$$

$$Im(f) = IR$$

$$f(x) = \begin{cases} -2, & \text{se } x \le -2 \\ 2, & \text{se } -2 < x \le 2 \\ 4, & \text{se } x > 2 \end{cases}$$

$$m(f) = \{-2, 2, 4\}$$

Operações com funções

Dadas as funções f e g, definimos:

(i)
$$(f+g)(x) = f(x) + g(x)$$
;

(ii)
$$(f-g)(x) = f(x) - g(x)$$
;

(iii)
$$(f \times g)(x) = f(x) \times g(x)$$
;

(iv)
$$(f/g)(x) = \frac{f(x)}{g(x)}$$
.

O domínio das funções definidas é a intersecção dos domínios de $f \in g$.

✓ Se f é uma função e k é um número real, definimos:

$$(kf)(x) = kf(x).$$

O domínio de kf coincide com o domínio de f.

Dadas duas funções f e g, a função composta de g com f, denotada por g₀f, é definida por:

$$(g_0 f)(x) = g(f(x)).$$

O domínio $g_0 f$ é o conjunto de todos os pontos x no domínio de f tais que f(x) está no domínio de g.

Exemplo 1: Seja $f(x) = 1 + \sqrt{x - 2}$ e g(x) = x - 3. Determine: (i) (f + g)(x) R: $x - 2 + \sqrt{x - 2}$, $D(f) = [2, +\infty)$ (ii) (f - g)(x) R: $4 - x + \sqrt{x - 2}$, $D(f) = [2, +\infty)$ (iii) (fg)(x) R: $(1 + \sqrt{x - 2})(x - 3)$, $D(f) = [2, +\infty)$ (iv) $(\frac{f}{g})(x)$ R: $\frac{1 + \sqrt{x - 2}}{x - 3}$, $D(f) = [2, +\infty) \setminus \{3\}$

(v) (7f)(x) R: $7 + 7\sqrt{x - 2}$, $D(f) = [2, +\infty)$

(vi) $(f \circ g)(x)$ R: $1 + \sqrt{x - 5}$, $D(f) = [5, +\infty)$ (vii) $(g \circ f)(x)$ R: $-2 + \sqrt{x - 2}$, $D(f) = [2, +\infty)$

Também determine os domínios em cada um dos itens acima.

3.1. Tipos de Funções:

3.1.1. Função CONSTANTE:

É toda função do tipo f(x) = k, que associa a qualquer número real x um mesmo número real k.

(i)O domínio da função f(x)=k é D(f)=IR.

(ii)O conjunto imagem é o conjunto unitário Im(f)={k}.

3.1.2. Função IDENTIDADE:

É a função f: IR \rightarrow IR definida por f(x) = x.

- (i)O domínio da função $f(x) = x \notin D(f) = IR$.
- (ii)O conjunto imagem \notin Im(f) = IR.

3.1.3. Função do 1° GRAU

É toda função que associa a cada número real x o número real ax + b, a \neq 0. Os números reais a e b são chamados, respectivamente, de coeficiente angular e linear.

- (i)O domínio da função $f(x) = ax + b \notin D(f) = IR$.
- (ii)O conjunto imagem \notin Im(f) = IR.

3.1.4. Função MÓDULO:

A função definida por: y = |x|

- (i) O domínio é o conjunto D(f) = IR.
- (ii) O conjunto imagem é $Im(f) = [0, +\infty)$.

3.1.5. Função QUADRÁTICA:

É a função f: IR \rightarrow IR definida por:

$$f(x) = ax^2 + bx + c, com a \neq 0.$$

O domínio da função é D(f) = IR.

3.1.6. Função POLINOMIAL:

É a função f: IR \rightarrow IR definida por:

 $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$, onde $a_0, a_1, \dots, a_n, a_0 \neq 0$, são números reais chamados coeficientes e n inteiro não negativo, determina o grau da função.

O domínio da função é D(f) = IR.

3.1.7. Função RACIONAL:

É a função definida como o quociente de duas funções polinomiais, isto é,

f(x) = p(x) / q(x), onde p(x) e q(x) são polinômios e $q(x) \neq 0$.

O domínio da função é D(f) = IR excluindo aqueles x tais que q(x) = 0.

$$f(x) = \frac{x-1}{x+1}$$

$$f(x) = \frac{(x^2 + 3x - 4)(x^2 - 9)}{(x^2 + x - 12)(x+3)}$$

$$D(f) = IR - \{-1\}$$
 $D(f) = IR - \{-4, -3, 3\}$

3.1.8. Funções PARES E ÍMPARES:

Uma função f(x) é par se, para todo x no domínio de f, f(-x) = f(x). Uma função f(x) é impar se, para todo x no domínio de f, f(-x) = -f(x).

Exemplos:

$$f(x) = x^2$$

 $f(-x) = (-x)^2 = x^2 = f(x) \rightarrow par.$
 $f(x) = x^5 + x^3$
 $f(-x) = (-x)^5 + (-x)^3 = -x^5 - x^3 = -(x^5 + x^3) = -f(x) \rightarrow impar.$
 $f(x) = x^3 + 4 \rightarrow nem \ e \ par \ e \ nem \ e \ impar.$

3.1.9. Funções PERIÓDICAS:

Uma função f(x) é periódica se existe um número real $T \neq 0$ tal que f(x + T) = f(x) para todo $x \in D(f)$.

3.1.10. Função INVERSA:

Definição: Uma função f é chamada função injetora se ela nunca assume o mesmo valor duas vezes; isto é, $f(x_1) = f(x_2)$, se e somente se $x_1 = x_2$.

Teste da reta horizontal: Uma função é injetora se nenhuma reta horizontal intercepta seu gráfico em mais de um ponto.

Definição: Seja f uma função injetora com domínio A e imagem B. Então sua **função inversa** f^{-1} tem domínio B e imagem A, sendo definida por $f^{-1}(y) = x \leftrightarrow f(x) = y$ para todo y em B.

Exemplo 1: A função f: $[0, +\infty) \rightarrow [0, +\infty)$, definida por $f(x) = x^2$, tem como inversa a função $g: [0, +\infty) \rightarrow [0, +\infty]$ $g(x) = x^{1/2}$.

Exemplo 2: A função f: $IR \rightarrow IR$, dada por $f(x) = x^3$, tem como inversa a função g: $IR \rightarrow IR$, $g(x) = x^{1/3}$.

4. Funções Elementares do Calculo

4.1. Função EXPONENCIAL:

De base a, a função f de IR em IR que associa a cada x real o número real a^x , sendo a um número real,

$$0 < a \neq 1$$
.

$$f: IR \rightarrow IR$$

$$x \rightarrow y = a^x$$

Domínio
$$\rightarrow$$
 D(f) = IR
Imagem \rightarrow Im(f) = (0, ∞)

4.2. Função LOGARÍTMICA:

Dado um número real a $(0 < a \ne 1)$, chamamos função logarítmica de base a, a função de IR_+^* em IR que se associa a cada x o número log_a x, isto é, $f: IR_+^* \to IR$

Domínio
$$\rightarrow$$
 D(f) = IR_+^*
Imagem \rightarrow Im(f) = IR

4.3. Função LOGARÍTMICA (Logaritmos NATURAIS):

Uma escolha conveniente para a base do logaritmo é a base *e*. O logaritmo na base *e* é chamado logaritmo natural e tem a seguinte notação:

$$log_e x = ln x$$

Definido por: $\ln x = y \leftrightarrow e^y = x$

Exemplo: Encontre x se $\ln x = 5$.

Aplicando a exponencial a ambos os lados da equação:

$$\ln x = 5 \Rightarrow e^5 = x$$

Logo,

$$x = e^5$$

4.4. Funções TRIGONOMÉTRICAS:

4.4.1. Função SENO:

Função seno é a função f de IR em IR que a cada $x \in IR$ faz corresponder o número real y = sen x, isto é,

"A função seno é periódica e seu período é 2π"

4.4.2. Função COSSENO:

Função cosseno é a função f de IR em IR que a cada $x \in IR$ faz corresponder o número real $y = \cos x$, isto é, $f : IR \rightarrow IR$

$$x \rightarrow y = \cos x$$

"A função cosseno é periódica e seu período é 2π "

4.4.3. Função TANGENTE, COTANGENTE, SECANTE e COSSECANTE:

$$tg x = \frac{\operatorname{sen} x}{\cos x}$$

$$\cot g x = \frac{\cos x}{\sin x}$$

⇒ cossecante:

$$\sec x = \frac{1}{\cos x}$$

$$\csc x = \frac{1}{\sec x}$$

* condição :

* condição :

$$\cos x \neq 0$$

sen $x \neq 0$

$$D(\mathsf{tg}) = \{ x \in R \, | \, x \neq \frac{\pi}{2} + n\pi, n \in Z \}$$

$$D(\sec) = \{ x \in R / x \neq \frac{\pi}{2} + n\pi, n \in \mathbb{Z} \}$$

$$D(\cot g) = \{ x \in \mathbb{R} / x \neq n\pi, n \in \mathbb{Z} \}$$

$$D(\operatorname{cosec}) = \{ x \in R / x \neq n\pi, n \in Z \}$$

4.5. Funções TRIGONOMÉTRICAS INVERSAS:

$$y = \arcsin x \Leftrightarrow \sin y = x$$

$$f:[-\pi/2,\pi/2] \to [-1,1],$$

$$f(x) = \sin x$$

$$f^{-1}: [-1,1] \to [-\pi/2, \pi/2],$$

$$f^{-1}(x) = \arcsin x$$

$$f:[0,\pi]\to[-1,1],$$

$$f(x) = \cos x$$

 $f^{-1}: [-1,1] \to [0,\pi],$

$$f^{-1}(x) = arc \cos x$$

$$f:[-\pi/2,\pi/2] \to IR,$$

$$f(x) = tg x$$

 $f^{-1}:IR \to [-\pi/2, \pi/2],$

$$f^{-1}(x) = arctg x$$

4.6. Funções HIPERBÓLICAS:

$$senh x = \frac{e^x - e^{-x}}{2}$$

⇒ cosseno hiperbólico :

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$D(\text{senh}) = (-\infty, +\infty)$$

$$D(\cosh) = (-\infty, +\infty)$$

$$Im(senh) = (-\infty, +\infty)$$

$$Im(cosh) = [1, +\infty)$$

5. Noções sobre limites

Noção intuitiva:

- ✓ Exemplos de sucessões numéricas:
 - (1) 1, 2, 3, 4, 5, ...
 - (2) 1/2, 2/3, 3/4, 4/5, 5/6, ...
 - (3) 1, 0, -1, -2, -3, ...
 - (4) 1, 3/2, 3, 5/4, 5, 7/6, 7, ...
- ✓ Limite da sucessão:
- (1) $x \rightarrow +\infty$
- (2) $x \rightarrow 1$
- (3) $x \rightarrow -\infty$
- (4) x →"oscila sem tender"
- ✓ Exemplo 1: Analise o limite de y = 1 (1 / x) quando x tende para o infinito
- ✓ Monte a tabela com x_1 = {1, 2, 3, 4, 5, 6, 500, 1000}

$$e x_2 = \{-1, -2, -3, -4, -5, -100, -500\}$$

х	1	2	3	4	5	6	 500	 1000	
У	0	1/2	2/3	3/4	4/5	5/6	 499/500	 999/1.000	

х	-1	-2	-3	-4	-5	 -100	 -500	
у	2	3/2	4/3	5/4	6/5	 101/100	 501/500	

✓ Análise do gráfico:

$$y \to 1$$
 quando $x \to \pm \infty$

$$\lim_{x \to \pm \infty} \left(1 - \frac{1}{x} \right) = 1$$

Definição:

Uma função f(x) tem limite L quando x tende para a, se é possível tornar f(x) arbitrariamente próximo de L, desde que tomemos valores de x, $x \ne a$ suficientemente próximos de a (por ambos os lados de a).

Formalmente:

$$\lim_{x \to a} f(x) = L$$

se para todo $\varepsilon > 0$, existe um $\delta > 0$, tal que $|f(x) - L| < \varepsilon$ sempre que $0 < |x - a| < \delta$.

Unicidade do Limite

Se
$$\lim_{x\to a} f(x) = L_1$$
 e $\lim_{x\to a} f(x) = L_2$, então $L_1 = L_2$

Exemplo:

Usando a definição de limite, provar que: $\lim_{x\to 1} (3x-1) = 2$

$$\lim_{x\to a} f(x) = L \implies \text{Notação de limite}$$

Vejamos o que diz a definição:

para todo $\varepsilon > 0$, existe um $\delta > 0$, tal que $|f(x) - L| < \varepsilon$ sempre que $0 < |x - a| < \delta$.

Então, vamos aplicar a definição:

para todo $\varepsilon > 0$, existe um $\delta > 0$, tal que $|(3x - 1) - 2| < \varepsilon$ sempre $0 < |x - 1| < \delta$.

Para todo
$$\varepsilon > 0$$
, existe um $\delta > 0$, tal que $|(3x - 1) - 2| < \varepsilon$ sempre $0 < |x - 1| < \delta$.

$$|3x - 1 - 2| < \varepsilon$$

$$|3x - 3| < \varepsilon$$

$$|3(x - 1)| < \varepsilon$$

$$3|(x - 1)| < \varepsilon$$

$$|x - 1| < \varepsilon/3$$
Logo $\delta = \varepsilon/3$

Propriedades dos Limites:

Se a, m e n são números reais, então :

$$m \neq 0 \Rightarrow \lim_{x \to a} (mx + n) = ma + n$$

 $\Rightarrow \lim_{x \to a} c = c$
 $\Rightarrow \lim_{x \to a} x = a$

Se
$$\lim_{x\to a} f(x)$$
 e $\lim_{x\to a} g(x)$ existem,

e c é um número real qualquer, então :

(a)
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x);$$

(b)
$$\lim_{x \to a} c \cdot f(x) = c \cdot \lim_{x \to a} f(x);$$

Se $\lim_{x \to a} f(x)$ e $\lim_{x \to a} g(x)$ existem,

e c é um número real qualquer, então :

(c)
$$\lim_{x\to a} (f(x).g(x)) = \lim_{x\to a} f(x).\lim_{x\to a} g(x);$$

(d)
$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
, desde que $\lim_{x \to a} g(x) \neq 0$;

Se $\lim_{x \to a} f(x)$ e $\lim_{x \to a} g(x)$ existem,

e c é um número real qualquer, então :

(e)
$$\lim_{x\to a} [f(x)]^n = \left[\lim_{x\to a} f(x)\right]^n$$
 para qualquer inteiro positivo n;

(f)
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$
, se $\lim_{x \to a} f(x) > 0$ e n inteiro par e também se n impar $\lim_{x \to a} f(x) \ge 0$ ou $\lim_{x \to a} f(x) \le 0$;

Se $\lim_{x \to a} f(x)$ e $\lim_{x \to a} g(x)$ existem,

e c é um número real qualquer, então :

(g)
$$\lim_{x \to a} \ln[f(x)] = \ln[\lim_{x \to a} f(x)] \operatorname{se} \lim_{x \to a} f(x) > 0;$$

(h)
$$\lim_{x \to a} \cos[f(x)] = \cos[\lim_{x \to a} f(x)]$$

(i)
$$\lim_{x \to a} \operatorname{sen}[f(x)] = \operatorname{sen}[\lim_{x \to a} f(x)]$$

(j)
$$\lim_{x \to a} e^{f(x)} = e^{\lim_{x \to a} f(x)}.$$

Teorema do Sanduíche: Se $f(x) \le h(x) \le g(x)$ para todo x em um intervalo aberto contendo a, exceto possivelmente em x = a, e se $\lim_{x \to a} f(x) = L = \lim_{x \to a} g(x)$

Então,

$$\lim_{x \to a} h(x) = L$$

Exemplo:

Encontrar
$$\lim_{x\to 0} x^2 \left| sen \frac{1}{x} \right|$$

✓ Como seno varia de -1 a 1, temos:

$$0 \le \left| sen \frac{1}{x} \right| \le 1, \forall x \ne 0$$

Multiplicando a desigualdade por x², temos

$$0 \le x^2 \left| sen \frac{1}{x} \right| \le x^2, \forall \ x \ne 0$$

✓ Como $\lim_{x\to 0} 0 = 0$ $e \lim_{x\to 0} x^2 = 0$, segue pelo Teorema do Sanduiche que $\lim_{x\to 0} x^2 \left| sen \frac{1}{x} \right| = 0$

5.1. Limites Laterais:

Seja f uma função definida em um intervalo aberto (a, c). Dizemos que um número L é o limite à direita da função f quando x tende para a e escrevemos:

$$\lim_{x \to a^+} f(x) = L$$

se para todo $\varepsilon > 0$ existe um $\delta > 0$, tal que $|f(x) - L| < \varepsilon$ sempre que $a < x < a + \delta$.

Seja f uma função definida em um intervalo aberto (d, a). Dizemos que um número L é o limite à esquerda da função f quando x tende para a e escrevemos:

$$\lim_{x \to a^{-}} f(x) = L$$

se para todo $\varepsilon > 0$ existe um $\delta > 0$, tal que $|f(x) - L| < \varepsilon$ sempre que $a - \delta < x < a$.

TEOREMA: Se f é definida em um intervalo aberto contendo a, exceto possivelmente no ponto a, então:

$$\lim_{x \to a} f(x) = L \text{ se e somente se } \lim_{x \to a^{+}} f(x) = L \text{ e } \lim_{x \to a^{-}} f(x) = L$$

Exemplo:

5.1.1. Expressões Indeterminadas:

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $\infty - \infty$, $0 \times \infty$, 0^0 , ∞^0 e 1^∞

Exemplo:

$$\lim_{x \to -2} \frac{x^3 - 3x + 2}{x^2 - 4}$$

$$\lim_{x \to -2} \frac{x^3 - 3x + 2}{x^2 - 4} = \lim_{x \to -2} \frac{(x^2 - 2x + 1)(x + 2)}{(x - 2)(x + 2)}$$

$$= \lim_{x \to -2} \frac{(x^2 - 2x + 1)}{(x - 2)}$$

$$= \frac{\lim_{x \to -2} (x^2 - 2x + 1)}{\lim_{x \to -2} (x - 2)} = -\frac{9}{4}$$

6. Limites no Infinito:

Seja f uma função definida em um intervalo aberto (a, +∞). Escrevemos:

$$\lim_{x \to +\infty} f(x) = L$$

se para qualquer $\varepsilon > 0$, existe um A > 0 tal que $|f(x) - L| < \varepsilon$ sempre que x > A.

Seja f uma função definida em (-∞, b). Escrevemos:

$$\lim_{x \to -\infty} f(x) = L$$

se para qualquer $\varepsilon > 0$, existe um B < 0 tal que $|f(x) - L| < \varepsilon$ sempre que x < B.

Teorema:

Se n é um número inteiro positivo, então:

(i)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{x^n} = 0$$

(ii)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{x^n} = 0$$

Exemplo 1:

Determinar

(i)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x - 5}{x + 8}$$

$$\lim_{x \to +\infty} \left(\frac{2x-5}{x+8} \right) = \frac{\lim_{x \to +\infty} (2x-5)}{\lim_{x \to +\infty} (x+8)}$$

Temos uma indeterminação do tipo [∞]

Temos uma indeterminação do tipo
$$\frac{5}{x}$$
 (i) $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x-5}{x+8}$? (i) $\lim_{x \to +\infty} \left(\frac{2x-5}{x+8}\right) = \lim_{x \to +\infty} \frac{x(2-\frac{5}{x})}{x(1+\frac{8}{x})} = \lim_{x \to +\infty} \frac{(2-\frac{5}{x})}{(1+\frac{8}{x})} = \lim_{x \to +\infty} \frac{(2-\frac{5}{x})}{(1+\frac{8}{x})} = \lim_{x \to +\infty} \frac{2-\frac{1}{x}}{(1+\frac{8}{x})} = \lim_{x \to +\infty} \frac{2-\frac{1}{x}}{(1+\frac{8}{x})}$

6.1. Limites Infinitos:

✓ Definição:

Seja f(x) uma função definida em um intervalo aberto contendo a, exceto, possivelmente, em x = a. Dizemos que:

$$\lim_{x \to a} f(x) = +\infty$$

se para qualquer A > 0, existe um $\delta > 0$ tal que f(x) > A sempre que $0 < |x - a| < \delta$. \checkmark Teorema:

✓ Definição:

Seja f(x) definida em um intervalo aberto contendo a, exceto, possivelmente, em x = a. Dizemos que:

$$\lim_{x \to a} f(x) = -\infty$$

se para qualquer B < 0, existe um $\delta < 0$, tal que f(x) < B sempre que $0 < |x - a| < \delta$.

Se *n* é um número inteiro positivo qualquer, então:

(i)
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x^n} = +\infty$$

(ii)
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{1}{x^{n}} = \begin{cases} +\infty, \text{se } n \text{ é par} \\ -\infty, \text{se } n \text{ é impar} \end{cases}$$

Determinar

(iv)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (3x^5 - 4x^3 + 1)$$

Temos uma indeterminação do tipo ∞ - ∞

(iv) $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (3x^5 - 4x^3 + 1)$

$$= \lim_{x \to +\infty} \left[x^5 \left(3 - \frac{4}{x^2} + \frac{1}{x^5} \right) \right]$$

$$= \left[\lim_{x \to +\infty} (x)\right]^5 \cdot \left[\lim_{x \to +\infty} (3) - 4 \lim_{x \to +\infty} \left(\frac{1}{x^2}\right) + \lim_{x \to +\infty} \left(\frac{1}{x^5}\right)\right]$$

$$= \left[+ \infty \right] \cdot \left[3 - 4 \cdot 0 + 0 \right] = + \infty$$

6.2. Assíntotas:

✓ Definição:

A reta x = a é uma assíntota vertical do gráfico de y = f(x), se pelo menos uma das seguintes afirmações for verdadeira:

(i)
$$\lim_{x \to a^+} f(x) = +\infty$$

(ii)
$$\lim_{x \to a^-} f(x) = +\infty$$

(iii)
$$\lim_{x \to a^+} f(x) = -\infty$$

(iv)
$$\lim_{x \to 0^-} f(x) = -\infty$$

✓ Definição:

A reta y = b é uma assíntota horizontal do gráfico de y = f(x), se pelo menos uma das seguintes afirmações for verdadeira:

(i)
$$\lim_{x \to +\infty} f(x) = b$$

(ii)
$$\lim_{x \to -\infty} f(x) = b$$

✓ Definição:

A reta y = ax + b é uma assíntota inclinada do gráfico de y = f(x), se pelo menos uma das seguintes afirmações for verdadeira:

(i)
$$\lim_{x \to +\infty} [f(x) - (ax + b)] = 0$$

(ii)
$$\lim_{x \to \infty} [f(x) - (ax + b)] = 0$$

6.3. Limites FUNDAMENTAIS:

Exemplo:

Exemplo 9: Calcule

cule
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x} \right)^{x+1}$$

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e,$$

Lim. Fundamental
$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^x = e,$$

Solução:

$$\lim_{x \to +\infty} \left(1 + \frac{2}{x} \right)^{x+1} = \lim_{x \to +\infty} \left(1 + \frac{2}{x} \right)^x \lim_{x \to +\infty} \left(1 + \frac{2}{x} \right)$$
$$= \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x}{2}} \right)^{\frac{x}{2} \cdot 2} \lim_{x \to +\infty} \left(1 + \frac{2}{x} \right)$$
$$= e^2 \cdot 1 = e^2$$

6.4. Continuidade:

Definição:

Dizemos que a função f é contínua no ponto a se as condições forem satisfeitas:

- (a) f é definida no pontoa;
- (b) $\lim_{x \to a} f(x)$ existe;
- (c) $\lim_{x \to a} f(x) = f(a)$

Proposições:

Proposições:

$$(1) \quad \lim_{x \to 0} \frac{\text{sen } x}{x} = 1$$

$$(2) \quad \lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^x = e,$$

onde e é o número irracional neperiano cujo valor aproximado é 2,718281828459...

(3)
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a \ (a > 0, a \ne 1)$$

Se as funções f e g são contínuas em um ponto a, então:

- (f + g) é continua em a;
- (f g) é continua em a;
- (f . g) é continua em a;
- (f/g) é continua em a, desde que $g(a)\neq 0$;
- Uma função polinomial é contínua para todo número real;
- Uma função racional é contínua em todos os pontos do seu domínio;
- As funções f(x) = sen(x) e f(x) = cos(x) são contínuas para todo número real;
- A função exponencial $f(x) = e^x$ é contínua para todo número real x.

Proposição:

Se $f \in g$ funções tais que $\lim_{x \to a} f(x) = b$ e g é contínua em b. Então,

$$\lim_{x \to a} (g_0 f)(x) = g(b)$$

ou seja,

$$\lim_{x \to a} g[f(x)] = g \left[\lim_{x \to a} f(x) \right]$$

Proposições:

- Se f é continua em a e g é continua em f(a), então a função composta g₀f é contínua no ponto a.
- Seja y = f(x) uma função definida e contínua num intervalo *I*. Seja J = Im(f), se f admite uma função inversa $g = f^{-1}$: $J \rightarrow I$, então g é contínua em todos os pontos de J.

Exemplo 1 : Calcule:

$$\lim_{x \to 1} arc sen \left(\frac{1 - \sqrt{x}}{1 - x} \right)$$

 $\lim_{x\to 1} arc\ sen\ \left(\frac{1-\sqrt{x}}{1-x}\right)$ \checkmark A função $g(x)=arc\ sen\ x$ é contínua, temos:

$$\lim_{x \to 1} arc \ sen \ \left(\frac{1 - \sqrt{x}}{1 - x}\right) = arc \ sen \ \left(\lim_{x \to 1} \left(\frac{1 - \sqrt{x}}{1 - x}\right)\right)$$

$$= arc \ sen \ \left(\lim_{x \to 1} \left(\frac{1 - \sqrt{x}}{1 - x} \cdot \frac{1 + \sqrt{x}}{1 + \sqrt{x}}\right)\right)$$

$$= arc \ sen \ \left(\lim_{x \to 1} \left(\frac{1 - x}{(1 - x)(1 + \sqrt{x})}\right)\right)$$

$$= arc \ sen \ \left(\lim_{x \to 1} \left(\frac{1}{(1 + \sqrt{x})}\right)\right)$$

$$= arc \ sen \ \left(\frac{1}{2}\right) = \frac{\pi}{6}$$

Definição:

Seja f definida num intervalo fechado [a, b].

(i) Se
$$\lim_{x \to a^{+}} f(x) = f(a)$$
, dizemos que f

é contínua à direita no ponto a.

(ii) Se
$$\lim_{x\to b^{-}} f(x) = f(b)$$
, dizemos que f

é contínua à esquerda no ponto b.

(iii) Se f é contínua em todo ponto do intervalo aberto (a,b), f é contínua à direita em a e contínua à esquerda em b, dizemos que f é contínua no intervalo fechado [a, b].

6.5. Teorema do valor intermediário:

Se f é contínua no intervalo fechado [a,b] e L é um número tal que $f(a) \le L \le f(b)$ ou $f(b) \le L \le f(a)$, então existe pelo menos um $x \in [a, b]$ tal que f(x) = L.

7. Derivada:

Encontrar a eq. da reta tangente à curva y = f(x)

Seja curva definida no intervalo (a, b);

Sejam os dois pontos distintos P(x1,y1) e Q(x2,y2);

Seja s a reta secante que passa por P e Q.

Considerando o triângulo retângulo PMQ, temos:

$$tg\alpha = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Considere que P está fixo;

Considere que Q move-se da direita para a esquerda sobre a curva.

$$m(x_1) = \lim_{Q \to P} \frac{\Delta y}{\Delta x}$$

e ainda

$$\Delta x \rightarrow 0$$

Definição:

Dada uma curva y = f(x), seja $P(x_1, y_1)$ um ponto sobre ela. A inclinação da reta tangente à curva no ponto P é dada por:

$$m(x_1) = \lim_{Q \to P} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$m(x_1) = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$$

Se a função f(x) é contínua em x_1 , então a reta tangente à curva y = f(x) em $P(x_1, f(x_1))$ é:

$$y - f(x_1) = m(x - x_1)$$

(i) É a reta que passa por P com inclinação:

$$m(x_1) = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$$
 "se existe o limite"

(ii) É a reta $x = x_1$ se:

$$\lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$$
 "for infinito"

7.1. Velocidade e Aceleração:

Definição: Velocidade instantânea

$$v(t) = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t}$$

Definição: Aceleração instantânea

$$a(t) = \frac{dv}{dt} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t}$$

Exemplo:

- No instante t = 0 um corpo inicia um movimento em linha reta. Sua posição no instante t é dada por $s(t) = 16t - t^2.$
 - a) Determinar a velocidade do corpo no instante t = 2.
 - b) Determinar a aceleração no instante t = 4
- Resolução: a) velocidade num instante t:

colução: a) velocidade num instante
$$t$$
:
$$v(t) = \lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{\left[\frac{16(t + \Delta t) - (t + \Delta t)^2}{\Delta t}\right] - \left[16t - t^2\right]}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{\frac{16(t + 16\Delta t - t^2 - 2t\Delta t - (\Delta t)^2 - 16t + t^2}{\Delta t}}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{16\Delta t - 2t\Delta t - (\Delta t)^2}{\Delta t}$$

$$= \lim_{\Delta t \to 0} 16 - 2t - \Delta t$$

$$= 16 - 2t$$

Quando t = 2 temos: v(2) = 16 - 2.2 = 12 unid. Veloc.

✓ Resolução: b) A aceleração no instante t é:

$$a(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{\frac{16 - 2(t + \Delta t) - 16 + 2t}{\Delta t}}{\frac{16 - 2(t - 2\Delta t - 16 + 2t)}{\Delta t}}$$

$$= \lim_{\Delta t \to 0} \frac{\frac{-2\Delta t}{\Delta t}}{\Delta t} = -2 \text{ unid. Aceler.}$$
Logo a aceleração em $t = 4$ é dada por $a(4) = -2$.

7.2. A derivada de uma função:

A derivada de uma função y = f(x) é a função denotada por f'(x), tal que seu valor em qualquer x ∈ D(f) é dado por:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 "se o limite existir"

Função derivável:

"Quando existe a derivada em todos os pontos de seu domínio"

✓ Diferentes notações:

- (i) D_xf(x) ⇒ lê se derivada f(x) em relação a x;
- (ii) D_xy ⇒ lê se derivada de y em relação a x;
- (iii) $\frac{dy}{dx} \Rightarrow 1\hat{e}$ se derivada de y em relação a x;
- (iv) y ⇒ lê-se y linha de x;
- (v) f'(x)⇒lê-se f linha de x.

Exemplo:

Dada f(x), encontre f'(2):

$$f(x)$$
: $5x^2 + 6x - 1$

✓ Resolução:

Ponto de partida

$$f'(x_1) = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$$

Para $x_1 = 2$ dado:

$$f'(2) = \lim_{\Delta x \to 0} \frac{f(2 + \Delta x) - f(2)}{\Delta x}$$

$$f'(2) = \lim_{\Delta x \to 0} \frac{5(2 + \Delta x)^2 + 6(2 + \Delta x) - 1 - (5 \cdot 2^2 + 6 \cdot 2 - 1)}{\Delta x}$$

$$f'(2) = \lim_{\Delta x \to 0} \frac{20 + 20\Delta x + 5(\Delta x)^2 + 12 + 6\Delta x - 20 - 12}{\Delta x}$$

$$f'(2) = \lim_{\Delta x \to 0} \frac{26\Delta x + 5(\Delta x)^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x (26 + 5\Delta x)}{\Delta x}$$

$$f'(2) = \lim_{\Delta x \to 0} (26 + 5\Delta x) = 26$$

7.3. Taxas de Variação

Seja y = f(x). Se x variar de x₁ para x₂ então a variação de x (incremento de x) é:

$$\Delta x = x_2 - x_1$$

✓ Variação correspondente de y:

$$\Delta y = f(x_2) - f(x_1)$$

✓ O quociente de diferenças

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

é denominado taxa média de variação em y em relação a x no intervalo $[x_1,x_2]$.

✓ Quando x₂ → x₁, ou seja, Δx → 0 essas taxas médias são chamadas de taxa instantânea de variação de y em relação a x:

$$\lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(x_1)$$

Desta forma a derivada f'(a) é a taxa instantânea de variação de y = f(x) em relação a x quando x = a.

7.4. Continuidade de Funções Deriváveis

Continuidade de Funções Deriváveis

Se f(x) é contínua em x_1 não implica a existência de $f'(x_1)$. A recíproca porém é verdadeira, como mostra teorema.

✓ Teorema: Toda função derivável num ponto x_1 é contínua nesse ponto.

Derivadas Laterais

✓ Definição:

Se a função y = f(x) está definida em x_1 , então a derivada à direita de f em x_1 é definida por:

$$f'_{+}(x_{1}) = \lim_{\Delta x \to 0^{+}} \frac{f(x_{1} + \Delta x) - f(x_{1})}{\Delta x}$$
$$= \lim_{x \to x_{1}^{+}} \frac{f(x) - f(x_{1})}{x - x_{1}}$$

caso o limite exista.

Se a função y = f(x) está definida em x_1 , então a derivada à esquerda de f em x_1 é definida por:

$$f'_{-}(x_1) = \lim_{\Delta x \to 0^{-}} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$$
$$= \lim_{x \to x_1^{-}} \frac{f(x) - f(x_1)}{x - x_1}$$

caso o limite exista.

Importante:

- Uma função é derivável em um ponto, quando as derivadas à direita e à esquerda nesse ponto existem e são iguais.
- Se forem diferentes, dizemos que este é um ponto anguloso do gráfico da função.

7.5. Regras de Derivação:

✓ Proposição: Derivada de uma constante

$$f(x) = c \Rightarrow \frac{dy}{dx} = f'(x) = 0$$
ou

$$f(x) = c \Rightarrow f'(x) = 0$$

✓ Proposição: Regra da potência

$$f(x) = x^n \Rightarrow f'(x) = n \cdot x^{n-1}$$

✓ Exemplo 1:

(i) Se
$$f(x) = x^5$$
, então $f'(x) = 5 \cdot x^{5-1} = 5x^4$

(ii) Se
$$g(x) = x$$
, então $g'(x) = 1 \cdot x^{1-1} = 1$

(iii) Se
$$h(x) = x^{10}$$
, então $h'(x) = 10 \cdot x^{10-1} = 10 x^9$

Proposição: Derivada do produto de uma constante por uma função

$$g(x) = c \cdot f(x) \Rightarrow g'(x) = c \cdot f'(x)$$

✓ Exemplo 2:

(i) Se
$$f(x) = 8x^2$$
, então $f'(x) = 8 \cdot (2x^{2-1}) = 16x$

(ii) Se
$$g(z) = -2z^7$$
, então $g'(z) = -2 \cdot (7z^{7-1}) = -14z^6$

✓ Proposição: Derivada de uma soma

$$h(x) = f(x) + g(x) \Longrightarrow h'(x) = f'(x) + g'(x)$$

✓ Exemplo 3:

(i) Se
$$f(x) = 3x^4 + 8x + 5$$
, então
 $f'(x) = 3 \cdot (4x^3) + 8 \cdot 1 + 0 = 12x^3 + 8$

(ii) Se
$$g(y) = 9y^5 - 4y^2 + 2y + 7$$
, então
 $g'(y) = 9 \cdot (5y^4) - 4 \cdot (2y) + 2 \cdot 1 + 0 = 45y^4 - 8y + 2$

✓ Proposição: Derivada de um produto

$$h(x) = f(x) \cdot g(x) \Rightarrow h'(x) = f(x) \cdot g'(x) + f'(x) \cdot g(x)$$

Exemplo 4: f(x) = g(x)Encontrar h'(x) sendo $h(x) = (2x^3 - 1) \cdot (x^4 + x^2)$ ✓ Exemplo 4: $h'(x) = \underbrace{(2x^3 - 1)}_{f(x)} \cdot \underbrace{(4x^3 + 2x)}_{g'(x)} + \underbrace{(6x^2)(x^4 + x^2)}_{f'(x)}$

Proposição: Derivada de um quociente

$$h(x) = \frac{f(x)}{g(x)} \Rightarrow h'(x) = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{[g(x)]^2}$$

Exemplo 5:
Encontrar
$$h'(x)$$
 sendo $h(x) = \frac{2x^4 - 3}{x^2 - 5x + 3}$ $g(x)$

$$h'(x) = \frac{g(x) \qquad f'(x) \qquad f(x) \qquad x^2 - 5x + 3}{(x^2 - 5x + 3) \cdot (8x^3) - (2x^4 - 3) \cdot (2x - 5)}$$

$$(x^2 - 5x + 3)^2 \qquad [g(x)]^2$$

7.6. Tabela de Regras de Derivação

Tabela das Regras básicas de derivação

$$\frac{d}{dx}(c) = 0$$

$$\frac{d}{dx}(c) = 0 \qquad \frac{d}{dx}(x^n) = nx^{n-1} \qquad (cf)' = cf'$$

$$(cf)' = cf'$$

$$(f+g)'=f'+g'$$

$$(f-g)'=f'-g'$$

$$(fg)'=fg'+gf'$$

$$\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$$

TABELA: Derivadas, Integrais e Identidades Trigonométricas

Derivadas

Sejam $u \in v$ funções deriváveis de $x \in n$ constante.

- 1. $y = u^n \Rightarrow y' = n u^{n-1} u'$.

- 2. $y = uv \Rightarrow y' = u'v + v'u$. 3. $y = \frac{u}{v} \Rightarrow y' = \frac{u'v v'u}{v^2}$. 4. $y = a^u \Rightarrow y' = a^u(\ln a) u'$, $(a > 0, a \neq 1)$. 5. $y = e^u \Rightarrow y' = e^u u'$.

- $6. \ y = \log_a u \ \Rightarrow y' = \frac{u'}{u} \log_a e.$ $7. \ y = \ln u \ \Rightarrow y' = \frac{1}{u} u'.$ $8. \ y = u^v \ \Rightarrow y' = v \ u^{v-1} \ u' + u^v (\ln u) \ v'.$
- 9. $y = \operatorname{sen} u \Rightarrow y' = u' \cos u$.
- 10. $y = \cos u \Rightarrow y' = -u' \sin u$.
- 11. $y = \operatorname{tg} u \Rightarrow y' = u' \operatorname{sec}^2 u$.
- 12. $y = \cot u \Rightarrow y' = -u' \csc^2 u$.
- 13. $y = \sec u \Rightarrow y' = u' \sec u \operatorname{tg} u$.
- 14. $y = \csc u \Rightarrow y' = -u' \csc u \cot y$.
- 15. $y = arc \operatorname{sen} u \Rightarrow y' = \frac{u'}{\sqrt{1 u^2}}$
- 16. $y = arc \cos u \Rightarrow y' = \frac{-u'}{\sqrt{1-u^2}}$. 17. $y = arc \operatorname{tg} u \Rightarrow y' = \frac{u'}{1+u^2}$.

- $\begin{array}{ll} 18. \ y = arc \ \cot g \ u \ \Rightarrow \frac{-u'}{1+u^2}. \\ 19. \ y = arc \ \sec \ u, \ |u| \geqslant 1 \\ \qquad \Rightarrow y' = \frac{u'}{|u|\sqrt{u^2-1}}, |u| > 1. \\ 20. \ y = arc \ \mathrm{cosec} \ u, \ |u| \geqslant 1 \\ \qquad \Rightarrow y' = \frac{-u'}{|u|\sqrt{u^2-1}}, |u| > 1. \end{array}$

• Identidades Trigonométricas

- 1. $\sin^2 x + \cos^2 x = 1$.
- 2. $1 + tg^2 x = \sec^2 x$.
- $3. 1 + \cot^2 x = \csc^2 x.$
- 4. $\sin^2 x = \frac{1-\cos 2x}{2}$. 5. $\cos^2 x = \frac{1+\cos 2x}{2}$.
- 6. $\sin 2x = 2 \sin x \cos x$.
- 7. $2 \operatorname{sen} x \cos y = \operatorname{sen} (x y) + \operatorname{sen} (x + y)$.
- 8. $2 \sin x \sin y = \cos(x y) \cos(x + y)$.
- 9. $2 \cos x \cos y = \cos(x y) + \cos(x + y)$.
- 10. $1 \pm \text{sen } x = 1 \pm \cos\left(\frac{\pi}{2} x\right)$.

Integrais

- $\begin{aligned} &1. &\int du=u+c.\\ &2. &\int u^n du=\frac{u^{n+1}}{n+1}+c,\ n\neq -1. \end{aligned}$
- $\begin{array}{l} 3. \ \int \frac{du}{u} = \ln |u| + c. \\ 4. \ \int a^u du = \frac{a^u}{\ln a} + c, \ a > 0, \ a \neq 1. \\ 5. \ \int e^u du = e^u + c. \end{array}$
- 6. $\int \operatorname{sen} u \, du = -\cos u + c$.
- 7. $\int \cos u \, du = \sin u + c$.
- 8. $\int \operatorname{tg} u \, du = \ln|\operatorname{sec} u| + c$.
- 9. $\int \cot u \, du = \ln |\sin u| + c$.
- 10. $\int \sec u \, du = \ln |\sec u + \operatorname{tg} u| + c$.
- 11. $\int \operatorname{cosec} u \, du = \ln \left| \operatorname{cosec} u \operatorname{cotg} u \right| + c$.
- 12. $\int \sec u \, \mathrm{tg} \, u \, du = \sec u + c$.
- 13. $\int \operatorname{cosec} u \operatorname{cotg} u \, du = -\operatorname{cosec} u + c$.
- 14. $\int \sec^2 u \, du = \operatorname{tg} u + c$.
- 15. $\int \csc^2 u \, du = -\cot u + c$.
- 16. $\int \frac{du}{u^2 + a^2} = \frac{1}{a} arc \operatorname{tg} \frac{u}{a} + c$.
- 17. $\int \frac{du}{u^2 a^2} = \frac{1}{2a} \ln \left| \frac{u a}{u + a} \right| + c, \ u^2 > a^2.$
- 18. $\int \frac{du}{\sqrt{u^2+a^2}} = \ln \left| u + \sqrt{u^2+a^2} \right| + c.$
- 19. $\int \frac{du}{\sqrt{u^2 a^2}} = \ln \left| u + \sqrt{u^2 a^2} \right| + c.$ 20. $\int \frac{du}{\sqrt{a^2 u^2}} = arc \operatorname{sen} \frac{u}{a} + c, \ u^2 < a^2.$ 21. $\int \frac{du}{u\sqrt{u^2 a^2}} = \frac{1}{a}arc \operatorname{sec} \left| \frac{u}{a} \right| + c.$

• Fórmulas de Recorrência

- $$\begin{split} 1. \int sen^n au \ du &= \tfrac{sen^{n-1}au \ \cos \ au}{+\left(\frac{n-1}{n}\right) \int sen^{n-2}au \ du}. \end{split}$$
- 2. $\int \cos^n au \ du = \frac{\sin au \cos^{n-1} au}{an + \left(\frac{n-1}{n}\right) \int \cos^{n-2} au \ du}.$
- 3. $\int tg^n au \ du = \frac{tg^{n-1}au}{a(n-1)} \int tg^{n-2}au \ du$.
- 4. $\int \cot g^n au \ du = -\frac{\cot g^{n-1}au}{a(n-1)} \int \cot g^{n-2}au \ du.$
- 5. $\int \sec^n au \ du = \frac{\sec^{n-2} au \ tg \ au}{a(n-1)} + \left(\frac{n-2}{n-1}\right) \int \sec^{n-2} au \ du.$
- 6. $\int cosec^n au \ du = -\frac{cosec^{n-2}au \ cotg \ au}{a(n-1)} + \left(\frac{n-2}{n-1}\right) \int cosec^{n-2}au \ du.$

8. Derivada de Função Composta:

Proposição: Regra da cadeia

Se y = g(u) e u = f(x) e as derivadas dy/dx e du/dxexistem, então a função composta y = g[f(x)] tem derivada que é dada por:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \text{ ou } y'(x) = g'(u) \cdot f'(x)$$

Exemplo 7:

Dado $y = f(x) = (x^2 + 5x + 2)^7$, determinar $\frac{dy}{dx}$

✓ Resolução:

$$y = g(u) = u^7$$
 e $u = f(x) = x^2 + 5x + 2$

$$\frac{dy}{dx} = (7u^6) \cdot (2x+5) = 7 \cdot (x^2 + 5x + 2)^6 \cdot (2x+5)$$

Exemplo 8: Dada a função:

$$y = (3x^2 + 1)^3 (x - x^2)^2$$
, determinar $\frac{dy}{dx}$

✓ Resolução: Temos o produto de duas funções

$$f(x) = (3x^2 + 1)^3$$
 e $g(x) = (x - x^2)^2$

$$y'(x) = f(x).g'(x) + f'(x).g(x)$$

✓ Pela regra da cadeia temos:

$$f'(x) = 3(3x^{2} + 1)^{2}.6x$$

$$g'(x) = 2(x - x^{2}).(1 - 2x)$$

$$y'(x) = f(x).g'(x) + f'(x).g(x)$$

✓ Logo

$$y'(x) = (3x^2 + 1)^3 \cdot 2(x - x^2)(1 - 2x)$$
$$+3(3x^2 + 1)^2 \cdot 6x \cdot (x - x^2)^2$$
$$= 2(3x^2 + 1)^3(x - x^2)(1 - 2x)$$
$$+ 18(3x^2 + 1)^2(x - x^2)^2$$

Exemplo 9: Calcule a derivada da função:

$$y = \frac{x+1}{\sqrt{x^2 - 3}}$$

 ✓ Resolução: Temos o quociente de duas funções, logo,

$$y'(x) = \frac{g(x).f'(x) + f(x).g'(x)}{[g(x)]^2}$$

onde.

$$f(x) = x + 1$$
 e $g(x) = \sqrt{x^2 - 3}$

Logo:

$$y'(x) = \frac{-3 - x}{(x^2 - 3)\sqrt{x^2 - 3}}$$

8.1. Derivada de função inversa

Teorema:

Seja y = f(x) uma função definida em um intervalo aberto (a, b). Suponhamos que f(x) admita inversa x = g(y) contínua. Se f'(x) = dy/dx existe e é diferente de zero para qualquer $x \in (a, b)$, então $g = f^{-1}$ é derivável e vale:

$$g'(y) = \frac{1}{f'(x)} = \frac{1}{f'[g(y)]}$$

Exemplo:

Seja $y = f(x) = 8x^3$. A sua inversa é dada por :

$$x = g(y) = \frac{1}{2} \sqrt[3]{y}$$
Podemos ver que: $f'(x) = 24x^2$ e para $x \neq 0$

$$g'(y) = \frac{1}{f'(x)} = \frac{1}{24x^2} = \frac{1}{24\left(\frac{1}{2}\sqrt[3]{y}\right)^2} = \frac{1}{6y^{\frac{2}{3}}}$$

8.2. Derivadas sucessivas

Definição: Seja f uma função derivável. Se f' também for derivável, então a sua derivada é chamada **derivada segunda** de f e é representada por:

$$f''(x) = \frac{d^2 f(x)}{dx^2}$$

Se f" é derivável, então a sua derivada é chamada **derivada terceira**:

$$f^{(3)}(x) = f^{III}(x) = \frac{d^3y}{dx^3} = \frac{d^3f(x)}{dx^3}$$

Derivada n-ésima:

$$f^{(n)}(x) = f^{(n)}(x) = \frac{d^n y}{dx^n} = \frac{d^n f(x)}{dx^n}$$

Exemplo:

Seja
$$y = f(x) = 3x^2 + 8x + 1$$
, então:
 $y' = f'(x) = 6x + 8$
 $y'' = f''(x) = 6$

8.3. Derivação Implícita

Consideremos a equação:

$$F(x, y) = 0$$

Dizemos que a função y = f(x) é definida implicitamente pela equação acima se, ao substituirmos y por f(x), esta equação se transforma numa identidade.

- Nem sempre é possível encontrar a forma explícita de uma função definida implicitamente.
- O método da derivação implícita permite encontrar a derivada de uma função assim definida, sem a necessidade de explicitá-la.

Sabendo que y = f(x) é definida pela equação $xy^2 + 2y^3 = x - 2y$, determinar y'.

Resolução:

$$(xy^{2} + 2y^{3})' = (x - 2y)'$$

$$(xy^{2})' + (2y^{3})' = (x)' - (2y)'$$

$$x \cdot 2y \frac{dy}{dx} + y^{2} + 6y^{2} \frac{dy}{dx} = 1 - 2\frac{dy}{dx}$$

$$x \cdot 2yy' + y^{2} + 6y^{2}y' = 1 - 2y'$$
Isolando y':
$$y' = \frac{1 - y^{2}}{2xy + 6y^{2} + 2}$$

8.4. Derivadas: Funções trigonométricas inversas

$$y = \text{arc} \quad \text{sen } u \Rightarrow y' = \frac{u'}{\sqrt{1 - u^2}}$$

$$y = \text{arc} \quad \cos u \Rightarrow y' = \frac{-u'}{\sqrt{1 - u^2}}$$

$$y = \text{arc} \quad \tan y \Rightarrow y' = \frac{u'}{1 + u^2}$$

$$y = \text{arc} \quad \cot y \Rightarrow y' = \frac{-u'}{1 + u^2}$$

$$y = \text{arc} \quad \cot y \Rightarrow y' = \frac{-u'}{1 + u^2}$$

$$y = \text{arc} \quad \cot y \Rightarrow y' = \frac{u'}{1 + u^2}$$

$$y = \text{arc} \quad \cot y \Rightarrow y' = \frac{u'}{1 + u^2}$$

$$y = \text{arc} \quad \cot y \Rightarrow y' = \frac{-u'}{|u|\sqrt{u^2 - 1}}, |u| > 1$$

$$y = \text{arc} \quad \csc u, |u| \ge 1 \Rightarrow y' = \frac{-u'}{|u|\sqrt{u^2 - 1}}, |u| > 1$$

8.5. Derivadas: Funções hiperbólicas

$$y = \operatorname{senh} u \Rightarrow y' = \cosh u \cdot u'$$

 $y = \cosh u \Rightarrow y' = \operatorname{senh} u \cdot u'$
 $y = \operatorname{tgh} u \Rightarrow y' = \operatorname{sech}^2 u \cdot u'$
 $y = \operatorname{cotgh} u \Rightarrow y' = -\operatorname{cosech}^2 u \cdot u'$
 $y = \operatorname{sech} u \Rightarrow y' = -\operatorname{sech} u \cdot \operatorname{tgh} u \cdot u'$
 $y = \operatorname{cosech} u \Rightarrow y' = -\operatorname{cosech} u \cdot \operatorname{cotgh} u \cdot u'$

8.6. Derivadas: Funções hiperbólicas inversas

$$y = \operatorname{arg senh} u \Rightarrow y' = \frac{u'}{\sqrt{u^2 + 1}}$$

$$y = \operatorname{arg cosh} u \Rightarrow y' = \frac{u}{\sqrt{u^2 - 1}}, u > 1$$

$$y = \operatorname{arg tgh} u \Rightarrow y' = \frac{u'}{1 - u^2}, |u| < 1$$

$$y = \operatorname{arg cotgh} u \Rightarrow y' = \frac{u}{1 - u^2}, |u| > 1$$

$$y = \operatorname{arg cotgh} u \Rightarrow y' = \frac{u}{1 - u^2}, |u| > 1$$

$$y = \operatorname{arg sech} u \Rightarrow y' = \frac{-u'}{u\sqrt{1 - u^2}}, 0 < u < 1$$

$$y = \operatorname{arg cosech} u \Rightarrow y' = \frac{-u'}{|u|\sqrt{1 - u^2}}, u \neq 0$$

8.7. Diferencial

Sejam y = f(x) uma função derivável e Δx um acréscimo de x. Definimos:

a) A diferencial da variável independente:

$$dx = \Delta x$$

b) A diferencial da variável dependente:

$$dy = f'(x) \cdot \Delta x = f'(x) \cdot dx$$
ou
$$\frac{dy}{dx} = f'(x)$$

✓ Interpretação Geométrica:

$$f'(x_1) = \operatorname{tg}(\alpha)$$

$$f'(x_1) = \operatorname{tg}(\alpha) = \frac{\overline{MR}}{\overline{PM}}$$

$$f'(x_1) = \frac{\overline{MR}}{\overline{PM}} = \frac{dy}{dx}$$

Como $\overline{PM}=dx$, segue que $dy=\overline{MR}$

Exemplo:

Se
$$y = 6x^2 - 4$$
, calcule Δy e dy para $x = 2$ e $\Delta x = 0.001$.

Resolução:

Usando a definição de Δy , temos:

$$\Delta y = f\left(^{x}_{1} + \Delta x\right) - f\left(^{x}_{1}\right)$$

$$\Delta y = f(2 + 0.001) - f(2)$$

$$\Delta y = [6 \cdot (2,001)^2 - 4] - [6 \cdot 2^2 - 4]$$

$$\Delta y = 20,024006 - 20 = 0,024006$$

Usando a definição de dy, temos:

$$dy = f'(x) \cdot \Delta x$$

$$dy = 12x \cdot \Delta x = 12 \cdot 2 \cdot 0,001$$

$$dy = 0.024$$

Observe que $\Delta y - dy = 0,000006$.

9. Regras de L'Hospital

Proposição: Fórmula de Cauchy

Se f e g são duas funções contínuas em [a, b], deriváveis em (a, b) e se g'(x) \neq 0 para todo x \in (a, b), então existe um número $z \in (a, b)$ tal que:

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(z)}{g'(z)}$$

Proposição: Regras de L'Hospital

Sejam f e g funções deriváveis num intervalo aberto I, exceto, possivelmente, em um ponto $a \in I$. Suponhamos que $g'(x) \neq 0$ para todo $x \neq a$ em I.

(i) Se
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
 e $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$, (ii) Se $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$ e $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$,

(ii) Se
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$$
 e $\lim_{x \to a} \frac{f(x)}{g(x)} = L$

então
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)} = L;$$

então
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)} = L;$$

Exemplo:

Determinar:

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 3x + 2}$$

Temos uma indeterminação do tipo $\frac{0}{0}$. Aplicando a regra de L' Hospital, temos:

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 3x + 2} = \lim_{x \to 2} \frac{2x + 1}{2x - 3} = \frac{2 \cdot 2 + 1}{2 \cdot 2 - 3} = 5$$

9.1. Máximos e Mínimos

Pontos de abscissas $\rightarrow x1, x2, x3$ e x4. \rightarrow (*Pontos extremos* da função).

Os valores f(x1) e $f(x3) \rightarrow$ máximos relativos

Os valores f(x2) e $f(x4) \rightarrow$ mínimos relativos

Uma função f tem um máximo relativo em c, se existir um intervalo aberto I, contendo c, tal que $f(c) \ge f(x)$ para todo $x \in I \cap D(f)$.

Definição:

Uma função f tem um mínimo relativo em c, se existir um intervalo aberto I, contendo c, tal que $f(c) \ge f(x)$ para todo $x \in I \cap D(f)$.

Proposição:

Suponhamos que f(x) existe para todos os valores $x \in (a, b)$ e que f tem um extremo relativo em c, onde a < c < b. Se f'(c) existe, então f'(c) = 0.

Se f'(c) existe, então f'(c) = 0 é condição necessária, mas não suficiente p/ existência de extremo relativo.

O ponto $c \in D(f)$ tal que f'(c) = 0 ou f'(c) não existe, é chamado ponto crítico de f.

Proposição:

Seja $f: [a,b] \to IR$ uma função contínua, definida em um intervalo fechado [a,b]. Então f assume máximo e mínimo absoluto em [a,b].

Definições:

Dizemos que f(c) é o máximo absoluto da função f, se $c \in D(f)$ e $f(c) \ge f(x)$ para todos os valores de x no domínio de f.

Dizemos que f(c) é o mínimo absoluto da função f, se $c \in D(f)$ e $f(c) \ge f(x)$ para todos os valores de x no domínio de f.

Exemplo:

(i) - A função $f(x) = x^2 + 6x - 3$ tem um mínimo absoluto igual a -12 em c = -3. (graf. a)

9.2. Teoremas sobre Derivadas

9.2.1. Teorema de Rolle:

Seja f uma função definida e contínua em [a, b] e derivável em (a, b). Se f(a) = f(b) = 0, então existe pelo menos um ponto c entre a e b tal que f '(c) = 0.

O teorema pode ser estendido para funções tais que $f(a) = f(b) \neq 0$.

9.2.2. Teorema do Valor Médio:

Seja f uma função contínua em [a, b] e derivável em (a, b). Então existe um número c no intervalo (a, b) tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Interpretação Geométrica:

9.3. Funções Crescentes e Decrescentes

Definição:

Dizemos que uma função f, definida num intervalo I, é crescente neste intervalo se para quaisquer xI, $x2 \in I$, xI < x2, temos $f(xI) \le f(x2)$.

Dizemos que uma função f, definida num intervalo I, é decrescente neste intervalo se para quaisquer xI, $x2 \in I$, xI < x2, temos $f(xI) \ge f(x2)$.

Proposição:

Seja f uma função contínua no intervalo [a, b] e derivável no intervalo (a, b).

- (i) Se f'(x) > 0 para todo $x \in (a, b)$, então $f \in c$ crescente em [a, b];
- (ii) Se f'(x) < 0 para todo $x \in (a, b)$, então $f \in decrescente em [a, b]$.

9.4. Critérios para determinar os Extremos de uma Função

Teorema: Critério da derivada primeira para determinação de extremos

Seja f uma função contínua no intervalo fechado [a, b] que possui derivada em todo o ponto do intervalo (a, b), exceto possivelmente num ponto c.

- (i) Se f'(x) > 0 para todo x < c e f'(x) < 0 para todo x > c, então f tem um máximo relativo em c;
- (ii) Se f'(x) < 0 para todo x < c e f'(x) > 0 para todo x > c, então f tem um mínimo relativo em c.

Teorema: Critério da derivada segunda para determinação de extremos

Seja f uma função derivável num intervalo (a, b) e c um ponto crítico de f neste intervalo, isto é, f'(c) = 0, com a < c < b. Se f admite a derivada f'' em (a, b), temos:

- (i) Se f''(c) < 0, f tem um valor máximo relativo em c.
- (ii) Se f''(c) > 0, f tem um valor mínimo relativo em c.

9.5. Concavidade e Pontos de Inflexão

- ✓ Qual sentido gira a reta tangente?
 ✓ Gira no sentido anti-horário.
 ✓ E a concavidade?
 ✓ Voltada para cima.
- ✓ Qual sentido gira a reta tangente?
 Gira no sentido horário.
 ✓ E a concavidade?
 Voltada para baixo.

Uma função f é dita côncava para cima no intervalo (a, b), se f'(x) é crescente neste intervalo.

Uma função f é dita côncava para baixo no intervalo (a, b), se f'(x) for decrescente neste intervalo.

Proposição:

Seja f uma função contínua no intervalo [a, b] e derivável até segunda ordem no intervalo (a, b).

- (i) Se f''(x) > 0 para todo $x \in (a, b)$, então $f \notin c$ ôncava para cima em (a, b).
- (ii) Se f "(x) < 0 para todo $x \in (a, b)$, então f é côncava para baixo em (a, b).

Definição:

Um ponto P(c, f(c)) do gráfico de uma função contínua f é chamado um ponto de inflexão, se existe um intervalo (a, b) contendo c, tal que uma das seguintes situações ocorra:

- (i) f é côncava para cima em (a, c) e côncava para baixo em (c, b).
- (ii) f é côncava para baixo em (a, c) e côncava para cima em (c, b).

9.6. Taxa de variação

Dada uma função y = f(x), o quociente:

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Representa a *taxa média de variação* de y em relação a x.

A derivada:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

É a taxa instantânea de variação ou simplesmente taxa de variação de y em relação a x.

Exemplo:

Um tanque tem a forma de um cone invertido com 16m de altura e uma base com 4m de raio. Se água está sendo bombeada para dentro do tanque a uma taxa de 2m³/min. Com que velocidade o nível da água está se elevando quando sua profundidade for de 5m?

9.7. Construção de gráficos

Etapas	Procedimento	Definições e
		Teoremas
1 ^a	Encontrar D(f)	
2 ^a	Calcular os pontos de	
	intersecção com os eixos	
3a	Encontrar os pontos	Teorema de Rolle
	críticos	
4 ^a	Determinar os intervalos	Proposição
	de crescimento e	
	decrescimento de $f(x)$	
5a	Encontrar os máximos e	Teorema da
	mínimos relativos	derivada segunda
6ª	Determinar a	Proposição
	concavidade e os pontos	
	de inflexão da função	
7a	Encontrar as assíntotas	Definições de
	horizontais e verticais, se	assíntotas
	existirem	
8a	Esboçar o gráfico	

9.8. Fórmula de Taylor

Definição:

Seja $f: I \to IR$ uma função que admite derivadas até ordem n num ponto c do intervalo I. O polinômio de Taylor de ordem n de f no ponto c, que denotamos por $P_n(x)$, é dado por:

$$P_n(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n.$$

$$\text{Em } x = c, P_n(c) = f(c).$$

Exemplo:

Determinar o polinômio de Taylor de ordem 4, da função $f(x) = e^x$, no ponto c = 0.

$$f(x) = f'(x) = \dots = f^{(h)}(x) = e^{x}.$$
e assim
$$f(0) = f'(0) = \dots = f^{(h)}(0) = e^{0} = 1.$$

$$P_{n}(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^{2} + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^{n}.$$

$$P_{4}(x) = 1 + 1(x - 0) + \frac{1}{2!}(x - 0)^{2} + \frac{1}{3!}(x - 0)^{3} + \frac{1}{4!}(x - 0)^{4}$$

$$P_{4}(x) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!}$$

Resto
$$\Rightarrow R_n(x) = f(x) - P_n(x)$$
 ou $f(x) = P_n(x) + R_n(x)$

Logo $P_n(x)$ é uma proximação para f(x), com

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n + R_n(x)$$

10. Integrais indefinidas

10.1. Função primitiva

Definição:

Uma função F(x) é chamada uma primitiva da função f(x) em um intervalo I, se, para todo $x \in I$, temos:

$$F'(x) = f(x)$$

Proposição:

Seja F(x) uma função primitiva da função f(x). Então, se c é uma constante qualquer, a função também é primitiva de f(x).

$$G(x) = F(x) + c$$

Proposição:

Se f'(x) se anula em todos os pontos no intervalo I, então f é constante em I.

Proposição:

Se F(x) e G(x) são funções primitivas de f(x) no intervalo I, então existe uma constante c tal que G(x) - F(x) = c, para todo $x \in I$.

10.2. Integral indefinida

Definição:

Se F(x) é uma primitiva de f(x), a expressão F(x) + c é chamada *integral indefinida* da função f(x) e é denotada por:

$$\int f(x)dx = F(x) + c \Leftrightarrow F'(x) = f(x)$$

Propriedades:

Sejam $f, g: I \in IR$ e K uma constante. Então:

$$(i) \int K f(x) dx = K \int f(x) dx$$

$$(ii) \int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$$

11. Integrais Definidas

11.1. Área

Matemática da antiguidade: Método da Exaustão

"Aproximar a figura dada por meio de outras, cujas áreas são conhecidas".

Encontre a área do círculo acima:

$$A_n = n \cdot A_{T_n}$$

onde:

 $A_n \Rightarrow$ é a área do polígono P_n

 $A_{T_n} \Rightarrow$ é a área do triângulo

 $n \Rightarrow$ é a quantidade de triângulos

$$A_{T_n} = \frac{l_n \cdot h_n}{2}$$

onde:

 $l_n \Rightarrow$ base do triângulo

 $h_n \Rightarrow$ altura do triângulo

$$A_n = n \cdot A_{T_n}$$

$$A_n = n \cdot \frac{l_n}{l_n} h_n = \frac{p_n \cdot h_n}{2}$$

pois:

 $p_n \Rightarrow$ perímetro do polígono

$$p_n = nl_n$$

Quando:

$$n \to +\infty$$

$$p_n \cong 2\pi r$$

$$h_n = r$$

Comprimento da circunferência

Temos:

$$\lim_{n\to\infty} A_n = \frac{2\pi r \cdot r}{2} = \pi r^2 \implies \text{Area do circulo}$$

Região plana S: Soma de Riemann

Aproximamos a figura por polígonos cujas áreas possam ser calculadas pelos métodos de geometria elementar.

A soma das áreas dos *n* retângulos é:

$$S_n = f(c_1)\Delta x_1 + f(c_2)\Delta x_2 + \dots + f(c_n)\Delta x_n$$
ou
$$S_n = \sum_{i=1}^n f(c_i)\Delta x_i$$

Tal fórmula é conhecida como Soma de Riemann

Seja y = f(x) uma função contínua, não negativa em [a, b]. A área sob a curva y = f(x), de a até b, é definida por:

$$A = \lim_{m \neq x \Delta x_i \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

onde para cada $i = 1, ..., n, c_i$ é um ponto arbitrário do intervalo $[x_{i-1}, x_i]$.

11.2. Integral Definida

Definição:

Seja *f* uma função definida no intervalo [*a*, *b*] e seja *P* uma partição qualquer de [*a*, *b*]. A integral definida de f de a até b, denotada por:

$$\int_{a}^{b} f(x) dx$$

É dada por:

$$\int_{a}^{b} f(x)dx = \lim_{m \neq x \Delta x_{i} \to 0} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i}$$

a e b são os limites de integração

a =limite inferior

b = limite superior

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(s)ds$$

Podemos usar qualquer símbolo para representar a variável independente

$$\int_{a}^{b} f(x)dx$$

$$y = f(x)$$

$$b$$

$$x$$

(a) Se a > b, então:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

(b) Se a = b e f(a) existe, então:

$$\int_{a}^{a} f(x)dx = 0$$

Teorema:

Se f é contínua sobre [a, b], então f é integrável em [a, b].

Propriedades:

Proposição:

Se f é integrável em [a, b] e k é um número real arbitrário, então kf é integrável em [a, b] e

$$\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$$

Proposição:

Se $f \in g$ são funções integráveis em [a, b], então f + g é integrável em [a, b] e

$$\int_{a}^{b} \left[f(x) + g(x) \right] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Proposição:

Se a < c < b e f é integrável em [a, c] e em [c, b], então f é integrável em [a, b] e

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Proposição:

Se f é integrável e se $f(x) \ge 0$ para todo x em [a, b], então

$$\int_{a}^{b} f(x)dx \ge 0$$

Proposição:

Se $f \in g$ são integráveis em $[a, b] \in f(x) \ge g(x)$ para todo x em [a, b], então:

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx$$

Proposição:

Se f é uma função contínua em [a, b], então:

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

Proposição:

Se f é uma função contínua em [a, b], existe um ponto c entre a e b tal que:

11.3. Teorema Fundamental do Cálculo

Proposição:

Seja f uma função contínua num intervalo fechado [a, b]. Então a função $G: [a, b] \to IR$, definida por:

$$G(x) = \int_{a}^{x} f(t)dt$$

Tem derivada em todos os pontos $x \in [a, b]$ que é dada por:

$$G'(x) = f(x)$$
, ou seja,

$$\frac{d}{dx}\int_{a}^{x} f(t)dt = f(x)$$

Teorema:

Se f é contínua sobre [a, b] e se F é uma primitiva de f neste intervalo, então:

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a)$$

Ou simplesmente,

$$F'(x) = f(x)$$

12. Método da Substituição

- Sejam f(x) e F(x) duas funções tais que F'(x) = f(x).
- Suponhamos que g seja outra função derivável tal que a imagem de g esteja contida no domínio de F.
- Podemos considerar a função composta F₀g.
- Pela **regra da cadeia**, temos:

$$[F(g(x))]' = F'(g(x)) \cdot g'(x) = f(g(x)) \cdot g'(x)$$

Isto é, F(g(x)) é uma primitiva de $f(g(x)) \cdot g'(x)$.

Então,

$$\int f(g(x)) \cdot g'(x) dx = F(g(x)) + c$$

Fazendo u = g(x), du = g'(x)dx, teremos:

$$\int f(g(x)) \cdot g'(x) dx = \int f(u) du = F(u) + c$$

Exemplo:

Calcular a integral:

$$\int \frac{2x}{1+x^2} dx = ?$$

Mudança de variáveis

$$g(x) = u = ??? \Rightarrow g'(x) = \frac{du}{dx} = ???$$

Mudança de variáveis

$$u = 1 + x^2 \Rightarrow du = 2xdx$$

$$\int f(g(x)) \cdot g'(x) dx = \int f(u) du = F(u) + c$$

Calculando a integral:

$$\int \frac{du}{u} = \ln|u| + c$$

$$\int \frac{du}{u} = \ln|u| + c = \ln(1 + x^2) + c$$

13. Método de integração por Partes

Sejam u = f(x) e v = g(x) funções deriváveis no intervalo I. Temos:

$$\frac{d}{dx}(u \cdot v) = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}$$

011

$$(u \cdot v)' = u \cdot v' + v \cdot u'$$

ou ainda

$$[f(x) \cdot g(x)]' = f(x) \cdot g'(x) + g(x) \cdot f'(x)$$

Reescrevendo a derivada do produto de f(x) e g(x), temos:

$$f(x) \cdot g'(x) = [f(x) \cdot g(x)]' - g(x) \cdot f'(x)$$

Integrando ambos os lados dessa equação, obtemos:

$$\int f(x) \cdot g'(x) \, dx = \int [f(x) \cdot g(x)] dx - \int g(x) \cdot f'(x) \, dx$$

Observe que a integral da derivada é igual a função.

Logo,

$$\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int g(x) \cdot f'(x) dx$$

Na prática:

$$u = f(x) \Rightarrow du = f'(x)dx$$

 $v = g(x) \Rightarrow dv = g'(x)dx$

Logo,

$$\int u \, dv = u \cdot v - \int v \cdot du$$

Exemplo:

Calcular a integral:
$$\int x^2 sen(x) dx = ?$$

$$u = x^2 \implies du = 2xdx$$

$$dv = \operatorname{sen} xdx \implies v = \int \operatorname{sen} xdx = -\cos x + c$$
Substituir em
$$\int u \, dv = u \cdot v - \int v \cdot du$$

$$\int x^2 sen(x) dx = x^2 \cdot (-\cos x) - \int (-\cos x) \cdot 2x dx$$

$$\int x^2 sen(x) dx = -x^2 \cos x + 2 \int x \cos x dx$$
Integra por partes:
$$u = x \implies du = dx$$

$$dv = \cos x dx \implies v = \int \cos x dx = \sin x + c$$

$$\int x^2 \operatorname{sen} x dx = -x^2 \cos x + 2 \left(x \operatorname{sen} x - \int \operatorname{sen} x dx\right)$$

$$= -x^2 \cos x + 2x \operatorname{sen} x + 2 \cos x + c$$

14. Exercícios de Revisão

1. Determinar todos os intervalos de números que satisfaçam as desigualdades abaixo.

a)
$$\frac{x-1}{x-2} < 0$$

b)
$$|x-3| \ge 1$$

c)
$$2x - 1 \ge 5x + 3$$

$$\mathbf{d}) \left| \frac{3-2x}{2+x} \right| \le 4$$

2. Determine o domínio, imagem e inversa das funções abaixo:

a)
$$f(x) = \frac{1-x}{x+1}$$

b)
$$g(x) = \frac{\sqrt{x-1}}{x^2+1}$$

c)
$$h(x) = \sqrt{\frac{x}{x-1}}$$

3. Encontre as assíntotas horizontais e verticais das funções abaixo e esboce o gráfico destacando-as.

a)
$$f(x) = \frac{1}{x^2 - 1}$$

$$\mathbf{b)} \ \ g(x) = \frac{sen(x)}{x}$$

c)
$$h(x) = \frac{x}{x^2 - 4x + 3}$$

4. Calcule os limites a seguir:

a)
$$\lim_{x\to -1} \frac{x^2+6x+5}{x^2-3x-4}$$

b)
$$\lim_{x\to 0} \frac{10x}{\sqrt{x^2+3} - \sqrt{x+3}}$$

c)
$$\lim_{x\to -\infty} \frac{y-2}{y^2+2y+3}$$

d)
$$\lim_{x\to+\infty} \sqrt{x^2+1} - x$$

e)
$$\lim_{x\to 0} \frac{x}{\sqrt{1-\cos^2(x)}}$$

f)
$$\lim_{x\to+\infty} \left(\frac{x}{x+1}\right)^x$$

5. Analise a continuidade das funções abaixo:

a)
$$f(x) = \begin{cases} \frac{5}{(x-4)^2}, & \text{se } x \neq 4\\ 1, & \text{se } x = 4 \end{cases}$$

b)
$$f(x) = \begin{cases} x^2 + 2, & \text{se } x \le 0 \\ 2 - x, & \text{se } x > 0 \end{cases}$$

6. Calcule os limites abaixo:

a)
$$\lim_{x\to 0} \left(\frac{2}{sen^2x} - \frac{1}{1-cosx} \right)$$

b)
$$\lim_{x\to 0} \frac{\cot g(x)}{\cot g(2x)}$$

7. Determine a primeira e a segunda derivada das funções a seguir.

a)
$$f(x) = \frac{x^2 + x}{2x - 3}$$

b)
$$g(x) = (ln(x) - x^3)^2$$

8. Resolva as integrais abaixo pelo método que julgar conveniente:

a)
$$\int \frac{\ln x}{x(1+\ln^2 x)} dx$$

b)
$$\int x sec^2(2x) dx$$

c)
$$\int \frac{(\sqrt{x}+1)^{\frac{1}{3}}}{\sqrt{x}} dx$$

9. Calcule a área delimitada simultâneamente pelas curvas $y=x^3, y=-2x^2+3$ e x=0:

10. Um campo retângular está limitado por uma cerca em três de seus lados e por um córrego reto no quarto lado. Determine as dimensões do campo, com área máxima, que pode ser cercado com 1.000m de cerca.

Respostas (Exercícios de Revisão) 15.

1.

a)
$$1 < x < 2$$

c)
$$x \le -\frac{4}{3}$$

b)
$$x \ge 4$$
 ou $x \le 2$

b)
$$x \ge 4$$
 ou $x \le 2$ d) $x \le -\frac{11}{2}$ ou $x \ge -\frac{5}{6}$

2.

a)
$$D(f) = \mathbb{R} - \{-1\},$$
 c) $D(h) = \mathbb{R} - [0, 1],$ $Im(f) = \mathbb{R} - \{-1\},$ $Im(f) = \mathbb{R}^+ - \{1\},$ $f^{-1}(x) = \frac{1-x}{x+1};$ $h^{-1}(x) = \frac{y^2}{y^2-1};$

c)
$$D(h) = \mathbb{R} - (0, 1],$$

$$Im(f) = \mathbb{R}^+ - \{1\},$$

 $h^{-1}(x) = \frac{y^2}{}$:

a) Assíntotas Verticais:
$$x = 1$$
 e $x = -1$. Assíntotas Horizontais: $y = 0$.

b) Assíntotas Verticais: Não existe. Assíntotas Horizontais: y = 0.

c) Assíntotas Verticais: x = 1 e x = 3. Assíntotas Horizontais: y = 0.

a)
$$-\frac{4}{5}$$
;

b)
$$-20\sqrt{3}$$
;

f)
$$\frac{1}{e}$$

5. a)
$$f$$
 não é contínua em $x = 4$;

b) f é contínua em x = 0.

6.a)
$$\frac{1}{2}$$
;

6.b) 2;

7.a)
$$f'(x) = \frac{2x^2 - 6x - 3}{4x^2 - 12x + 9}$$
, $f''(x) = \frac{30}{(2x - 3)^3}$;

7.b)
$$g'(x) = \frac{-2(ln(x) - x^3)(-1 + 3x^3)}{x}, g''(x) = \frac{+2 - 10x^3 + 30x^6 - 2ln(x) - 12x^3ln(x)}{x^2};$$

8.a)
$$F(x) = \frac{\ln|1 + \ln^2(x)|}{2} + c;$$

8.b)
$$F(x) = \frac{xtan(2x)}{2} - \frac{ln|sec(2x)|}{4} + c$$

8.c)
$$F(x) = \frac{3}{2}(\sqrt{x}+1)^{4/3} + c;$$

9)
$$A = \frac{25}{12}$$
 u.a.;

10) Comprimento: 500m Largura: 250m

16. Sugestão de Estudo

Para melhor entendimento da matéria, primeiramente deve se ler os capítulos do livro que são estudados em sala assim que lhe são apresentados. Após o término da leitura do capítulo, é sugerido tentar resolver os exemplos do livro sem olhar a resolução e em seguida resolver os exercícios sugeridos pelo professor. Para fixar e revisar o assunto, essa apostila deve ser estudada.

17. Referências Bibliográficas

GUIDORIZZI, H. L. Um Curso de Cálculo. Vol. 1; 5ª edição, Livros Técnicos e Científicos Editora S.A., Rio de Janeiro, 2002.

STEWART, J. Cálculo. Vol. 1; 6ª edição, Cengage Learning, São Paulo, 2009.

FLEMING, D. M. & GONÇALVES, M. B. Cálculo A. Vol. 1; 6ª edição, Pearson Prentice Hall, São Paulo, 2007.

SWOKOWSKI, E. W. Um Curso de Cálculo com Geometria Analítica. Vol. 1; 2ª edição, McGrawHill Ltda, São Paulo, 1994.

BOYER, C. B. História da Matemática; 3ª edição, Edgar Blucher, São Paulo, 2010.

ÁVILA, G. Análise Matemática para Licenciatura. 3ª edição revista e ampliada, Edgar Blucher, São Paulo, 2006.

GRANVILLE, W. A.; SMITH, P. F. & LONGLEY, W. R. Elementos de Cálculo Diferencial e Integral. Âmbito Cultural Edições Ltda, Rio de Janeiro, 1961.