Superheroes

Motivation

There are thousands of superheroes in the superhero world and each superhero has their unique set of abilities, backstory and personality. This can make it overwhelming for someone who is just entering this world and it would be helpful if the user can get personalized superhero recommendations to explore those superheroes which resonate strongly with him.

1.0: Load Dataset

```
import pandas as pd
            from sklearn.model_selection import StratifiedKFold
            from sklearn.model_selection import KFold
            from copy import copy
            import numpy as np
            from sklearn.metrics import accuracy_score
            import seaborn as sns
            import matplotlib.pyplot as plt
            import os
            import plotly.graph_objs as go
            import plotly.offline as py
            import plotly.express as px
            import plotly.io as pio
            from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
            from sklearn.decomposition import PCA
            from sklearn.cluster import KMeans
            from sklearn.neighbors import KNeighborsClassifier
            from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
            from sklearn.ensemble import RandomForestRegressor
            from sklearn import tree
            from sklearn.metrics import r2_score
            import re
            from sklearn.feature_extraction.text import CountVectorizer
            from sklearn.metrics.pairwise import cosine_similarity
            from collections import defaultdict
            from sklearn.feature_extraction.text import TfidfVectorizer
            from sklearn.preprocessing import MinMaxScaler
            sns.set()
```

In [2]: # Ignore warning messages import warnings

warnings.filterwarnings('ignore')

```
In [3]: # Load dataset

df_supes = pd.read_csv('superheroes_nlp_dataset.csv')

df_supes.head()
```

Out[3]:

	name	real_name	full_name	overall_score	history_text	powers_text	intelligence_sco
0	3-D Man	Delroy Garrett, Jr.	Delroy Garrett, Jr.	6	Delroy Garrett, Jr. grew up to become a track	NaN	
1	514A (Gotham)	Bruce Wayne	NaN	10	He was one of the many prisoners of Indian Hil	NaN	1
2	A-Bomb	Richard Milhouse Jones	Richard Milhouse Jones	20	Richard "Rick" Jones was orphaned at a young	On rare occasions, and through unusual circu	
3	Aa	Aa	NaN	12	Aa is one of the more passive members of the P	NaN	
4	Aaron Cash	Aaron Cash	Aaron Cash	5	Aaron Cash is the head of security at Arkham A	NaN	
5 r	ows × 81 c	columns					

```
Out[4]: Index(['name', 'real_name', 'full_name', 'overall_score', 'history_text',
                'powers_text', 'intelligence_score', 'strength_score', 'speed_scor
        е',
                'durability_score', 'power_score', 'combat_score', 'superpowers',
                'alter_egos', 'aliases', 'place_of_birth', 'first_appearance',
                'creator', 'alignment', 'occupation', 'base', 'teams', 'relative
         s',
                'gender', 'type_race', 'height', 'weight', 'eye_color', 'hair_colo
         r',
                'skin_color', 'img', 'has_electrokinesis', 'has_energy_construct
         s',
                'has_mind_control_resistance', 'has_matter_manipulation',
                'has_telepathy_resistance', 'has_mind_control', 'has_enhanced_hear
         ing',
                'has_dimensional_travel', 'has_element_control', 'has_size_changin
        g',
                'has fire resistance', 'has fire control', 'has dexterity',
                'has_reality_warping', 'has_illusions', 'has_energy_beams',
                'has_peak_human_condition', 'has_shapeshifting', 'has_heat_resista
        nce',
                'has_jump', 'has_self-sustenance', 'has_energy_absorption',
                'has_cold_resistance', 'has_magic', 'has_telekinesis',
                'has_toxin_and_disease_resistance', 'has_telepathy', 'has_regenera
        tion',
                'has_immortality', 'has_teleportation', 'has_force_fields',
                'has_energy_manipulation', 'has_endurance', 'has_longevity', 'has_weapon-based_powers', 'has_energy_blasts', 'has_enhanced_sens
        es',
                'has_invulnerability', 'has_stealth', 'has_marksmanship', 'has_fli
        ght',
                'has_accelerated_healing', 'has_weapons_master', 'has_intelligenc
         e',
                'has_reflexes', 'has_super_speed', 'has_durability', 'has_stamin
         a',
                'has_agility', 'has_super_strength'],
               dtype='object')
```

1.2: Data Cleaning

```
df_supes.isna().sum()

 In [6]:
    Out[6]: name
                                     2
             overall_score
                                     0
             history_text
                                    90
             powers text
                                   364
             intelligence_score
                                     0
             has_super_speed
                                    67
             has_durability
                                    67
             has_stamina
                                    67
             has_agility
                                    67
             has_super_strength
                                    67
             Length: 64, dtype: int64
 In [7]: ▶ # Cleaning up data by assigning "Unknown" to NaN strings
             df_supes['name'] = df_supes['name'].replace(np.nan, 'Unknown')
             df_supes['powers_text'] = df_supes['powers_text'].replace(np.nan, 'Unknown
             df_supes['history_text'] = df_supes['history_text'].replace(np.nan, 'Unkno')
             df_supes['creator'] = df_supes['creator'].replace(np.nan, 'Unknown')
             df_supes['alignment'] = df_supes['alignment'].replace(np.nan, 'Unknown')
 In [8]: ▶ # Replacing special characters with NaN values
             df_supes['overall_score'].replace(r'^\s*$', np.nan, regex=True, inplace=Tr
             df_supes['overall_score'].replace('∞', np.nan, inplace=True)
             df_supes['overall_score'].replace('-', np.nan, inplace=True)
 In [9]:
         # Dropping superheroes with NaN values for superpowers
             df_supes = df_supes.dropna()
In [10]: | df_supes.isna().sum()
   Out[10]: name
                                   0
             overall_score
                                   0
             history_text
                                   0
             powers_text
                                   0
             intelligence_score
                                   0
             has_super_speed
                                   0
             has_durability
                                   0
             has_stamina
                                   0
             has_agility
             has_super_strength
             Length: 64, dtype: int64
          ▶ # Resetting the index column
In [11]:
             df_supes = df_supes.reset_index(drop=True)
```

In [12]: df_supes.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1316 entries, 0 to 1315
Data columns (total 64 columns):

#	Column	Non-Null Count	Dtype
0	name	1316 non-null	object
1	overall_score	1316 non-null	object
2	history_text	1316 non-null	object
3	powers_text	1316 non-null	object
4	intelligence_score	1316 non-null	int64
5	strength_score	1316 non-null	int64
6	speed_score	1316 non-null	int64
7	durability_score	1316 non-null	int64
8	power_score	1316 non-null	int64
9	combat_score	1316 non-null	int64
10	superpowers	1316 non-null	object
11	creator	1316 non-null	object
12	alignment	1316 non-null	object
13	teams	1316 non-null	object
14	has_electrokinesis	1316 non-null	float64
15	has_energy_constructs	1316 non-null	float64
16	has_mind_control_resistance	1316 non-null	float64
17	has_matter_manipulation	1316 non-null	float64
18	has_telepathy_resistance	1316 non-null	float64
19	has_mind_control	1316 non-null	float64
20	has_enhanced_hearing	1316 non-null	float64
21	has_dimensional_travel	1316 non-null	float64
22	has_element_control	1316 non-null	float64
23	has_size_changing	1316 non-null	float64
24	has_fire_resistance	1316 non-null	float64
25	has_fire_control	1316 non-null	float64
26	has_dexterity	1316 non-null	float64
27	has_reality_warping	1316 non-null	float64
28	has_illusions	1316 non-null	float64
29	has_energy_beams	1316 non-null	float64
30	has_peak_human_condition	1316 non-null	float64
31	has_shapeshifting	1316 non-null	float64
32	has_heat_resistance	1316 non-null	float64
33	has_jump	1316 non-null	float64
34	has_self-sustenance	1316 non-null	float64
35	has_energy_absorption	1316 non-null	float64
36	has_cold_resistance	1316 non-null	float64
37	has_magic	1316 non-null	float64
38	has_telekinesis	1316 non-null	float64
39	has_toxin_and_disease_resistance	1316 non-null	float64
40	has_telepathy	1316 non-null	float64
41	has_regeneration	1316 non-null	float64
42	has_immortality	1316 non-null	float64
43	has_teleportation	1316 non-null	float64
44	has_force_fields	1316 non-null	float64
45	has_energy_manipulation	1316 non-null	float64
46	has_endurance	1316 non-null	float64
47	has_longevity	1316 non-null	float64
48	has_weapon-based_powers	1316 non-null	float64
49	has_energy_blasts	1316 non-null	float64
50	has_enhanced_senses	1316 non-null	float64
51	has_invulnerability	1316 non-null	float64

```
52 has_stealth
                                     1316 non-null
                                                     float64
53 has_marksmanship
                                     1316 non-null
                                                     float64
54 has_flight
                                     1316 non-null
                                                     float64
55 has_accelerated_healing
                                     1316 non-null
                                                     float64
                                     1316 non-null float64
56 has_weapons_master
57 has_intelligence
                                     1316 non-null float64
1316 non-null float64
58 has_reflexes
                                     1316 non-null float64
59 has_super_speed
                                     1316 non-null
60 has_durability
                                                     float64
                                     1316 non-null float64
61 has stamina
                                     1316 non-null float64
62 has_agility
                                     1316 non-null
63 has_super_strength
                                                     float64
```

dtypes: float64(50), int64(6), object(8)

memory usage: 658.1+ KB

Data Exploration

Total Power Column

```
# Summing up all the powers of each superhero
In [13]:
            df_supes['all_powers'] = df_supes.sum(axis=1)
```

Creating Smaller DataFrames

```
In [14]: ▶ # Creating a smaller DataFrame for data visualization purposes
             df_merge = df_supes[['name', 'creator', 'alignment', 'all_powers']]
             df_merge
```

Out[14]:

	name	creator	alignment	all_powers
0	3-D Man	Marvel Comics	Good	347.0
1	514A (Gotham)	DC Comics	Unknown	338.0
2	A-Bomb	Marvel Comics	Good	562.0
3	Aa	DC Comics	Good	392.0
4	Aaron Cash	DC Comics	Good	237.0
1311	Zatanna	DC Comics	Good	313.0
1312	Zero	Capcom	Good	585.0
1313	Zoom (New 52)	DC Comics	Bad	514.0
1314	Zoom	DC Comics	Bad	346.0
1315	Zzzax	Marvel Comics	Bad	432.0

1316 rows × 4 columns

```
In [15]: # Making DataFrame of superheroes of comic book creators
    comic_supes = df_merge[df_merge['creator'].str.contains('Comics')==True]
    comic_supes
```

Out[15]:

	name	creator	alignment	all_powers
0	3-D Man	Marvel Comics	Good	347.0
1	514A (Gotham)	DC Comics	Unknown	338.0
2	A-Bomb	Marvel Comics	Good	562.0
3	Aa	DC Comics	Good	392.0
4	Aaron Cash	DC Comics	Good	237.0
1309	Yukio (FOX)	Marvel Comics	Good	324.0
1311	Zatanna	DC Comics	Good	313.0
1313	Zoom (New 52)	DC Comics	Bad	514.0
1314	Zoom	DC Comics	Bad	346.0
1315	Zzzax	Marvel Comics	Bad	432.0

1007 rows × 4 columns

Out[16]:

alignment	Bad	Good	Neutral	Unknown
creator				
DC Comics	406.846667	393.148649	398.725000	396.142857
Dark Horse Comics	427.750000	366.777778	394.000000	0.000000
Icon Comics	192.000000	218.666667	0.000000	0.000000
Image Comics	567.500000	527.833333	0.000000	0.000000
Marvel Comics	381.172619	370.339041	446.222222	393.244444

Out[17]:

	intelligence_score	strength_score	speed_score	durability_score	power_score	combat_s
0	85	30	60	60	40	_
1	100	20	30	50	35	
2	80	100	80	100	100	
3	80	50	55	45	100	
4	80	10	25	40	30	
4						

Creating Pivot Tables

Out[18]:

	comba	at_score)		dural	bility_so	core		intelliger	ıce_
alignment	Bad	Good	Neutral	Unknown	Bad	Good	Neutral	Unknown	Bad	G
creator										
ABC Studios	0.0	12.5	0.0	0.0	0.0	27.5	0.0	0.0	0.0	
Blizzard Entertainment	0.0	0.0	0.0	100.0	0.0	0.0	0.0	55.0	0.0	
Capcom	100.0	90.0	100.0	100.0	50.0	100.0	95.0	90.0	100.0	
Cartoon Network	0.0	40.0	80.0	0.0	0.0	40.0	55.0	0.0	0.0	
Clive Barker	25.0	50.0	0.0	0.0	80.0	100.0	0.0	0.0	90.0	

5 rows × 24 columns

Out[19]:

alignment	Bad	Good	Neutral	Unknown
creator				
ABC Studios	0.0	194.25	0.0	0.0
Blizzard Entertainment	0.0	0.00	0.0	407.0
Capcom	475.0	585.50	570.0	570.0
Cartoon Network	0.0	255.00	380.0	0.0
Clive Barker	352.0	386.00	0.0	0.0

2.0: Data Visualization

```
In [20]: # Define absolute path for saving figures
save_path = os.path.abspath('Charts')
```


In [22]: # Boxplot to show relationship between creator and combined power of super
plt.figure(figsize=(15,10))
plt.xticks(rotation=80)
sns.boxplot(df_merge, x='creator', y='all_powers', hue='alignment', palett

Save figure
plt.savefig(save_path + '/Box_Powers_Creators.jpg')

In [23]: # Stripplot to show relationship between comic book creators and combined
plt.figure(figsize=(15, 10))
sns.stripplot(data=comic_supes, x='creator', y='all_powers', hue='alignmen

Save figure
plt.savefig(save_path + '/Stripp_Powers_Comic_Creators.jpg')

In [24]: # Boxplot to show relationship between comic book creators and combined po
plt.figure(figsize=(15, 10))
sns.boxplot(data=comic_supes, x='creator', y='all_powers', hue='alignment'

plt.savefig(save_path + '/Box_Powers_Comic_Creators.jpg')


```
▶ def correlation_plot():
In [28]:
                 #correlation
                 correlation = score_data.corr()
                 #tick labels
                 matrix_cols = correlation.columns.tolist()
                 #convert to array
                 corr_array = np.array(correlation)
                 trace = go.Heatmap(z = corr_array,
                                    x = matrix_cols,
                                    y = matrix_cols,
                                    colorscale='Viridis',
                                    colorbar = dict(),)
                 layout = go.Layout(dict(title = 'Correlation Matrix for variables',
                                         #autosize = False,
                                         #height = 1400,
                                         #width
                                                = 1600,
                                         margin = dict(r = 0, l = 100,
                                                        t = 0, b = 100,
                                                 = dict(tickfont = dict(size = 9)),
                                         yaxis
                                                 = dict(tickfont = dict(size = 9)),
                                         xaxis
                                        )
                 fig = go.Figure(data = [trace],layout = layout)
                 py.iplot(fig)
```

In [29]: # Heatmap to show correlation of scores between different powers # correlation_plot()


```
In [30]:
            df_heat = df_supes.loc[:, ['intelligence_score','strength_score','speed_sc
            # df_heat.columns = df_heat.columns.map("-".join)
            # Compute a correlation matrix and convert to long-form
            corr_mat = df_heat.corr().stack().reset_index(name="correlation")
            # Draw each cell as a scatter point with varying size and color
            g = sns.relplot(
                data=corr_mat,
                x="level_0", y="level_1", hue="correlation", size="correlation",
                palette="vlag", hue_norm=(-1, 1), edgecolor=".7",
                height=8, sizes=(50, 250), size_norm=(-.2, .8),
            )
            # Tweak the figure to finalize
            g.set(xlabel="", ylabel="", aspect="equal")
            g.despine(left=True, bottom=True)
            g.ax.margins(.02)
            for label in g.ax.get_xticklabels():
                label.set_rotation(90)
            for artist in g.legend.legendHandles:
                artist.set_edgecolor(".7")
            plt.title("Scatterplot Heatmap")
            # Save figure
            plt.savefig(save_path + "/Scatterplot_Heatmap_Scores.jpg")
```


3.0: Sentiment Analysis

```
In [31]: #implement the sentiment score analyzer
analyzer = SentimentIntensityAnalyzer()

scores_dict = dict()

# The history description of superheroes is used to calculate the sentimen
df_supes['sentiment_score'] = df_supes['history_text'].apply(lambda x: ana
scores_dict = df_supes.set_index('name')['sentiment_score'].to_dict()

In [32]: N scores_list = list(scores_dict.values())
scores_list = [float(score) for score in scores_list]
```

```
In [33]: | plt.style.use('ggplot')
    fig, ax = plt.subplots()
    fig.set_size_inches(15, 10)
    colors = ['#FFD700', '#7EC0EE']

# Visualizing the sentiment score distribution
    sns.set_context("paper", font_scale=1.5)
    f = sns.distplot(scores_list, kde=True);
    f.set_xlabel("Sentiment Score",fontsize=18)
    f.set_ylabel("Density",fontsize=18)
    f.set_title('Distribution of Sentiment Scores of Superheroes')
    plt.savefig(save_path + '/Sentiment_Distribution.jpg')
```


4.0: Dimensionality Reduction (PCA)

```
In [34]: # Perform PCA with quantative features to group
x_feat_list = ['intelligence_score','strength_score','speed_score','durabi
x_vals = df_supes.loc[:,x_feat_list].values
```

```
In [35]:
          # Use PCA to fit and transform the features
             pca = PCA()
            pca.fit_transform(x_vals)
   Out[35]: array([[ 17.43096248,
                                    7.29645172, -22.81358134, 16.07210554,
                     -11.81131793, -1.16763795],
                    [ 37.75548557, -19.66816555, -32.62216199, -13.42685929,
                      -6.79972641, -12.04467552],
                    [-80.25115701, 14.67137859, -3.42360011, -4.03704219,
                      2.71364046, 4.95530049],
                    [-47.0685847 , -15.67940003,
                                                  5.6198202 , 34.75294793,
                      0.3892916 , -6.70221852],
                    [ 8.01728314, 2.55427371, 42.7677209, 71.74503242,
                      11.98556258, 9.8877171 ],
                    [-49.19431455, 40.83155648,
                                                                9.110265 ,
                                                  3.17306584,
                     -12.96484911, 34.34807012]])
         # Plot to figure out how many components to use in actual PCA model
In [36]:
             plt.figure(figsize = (10,8))
            plt.plot(range(0,6), pca.explained_variance_ratio_.cumsum(), marker = "*"
            plt.title("Cumulative Variance Explained by PCA Components")
            plt.xlabel('# of PCA Components')
            plt.ylabel('Cumualtive Explained Variance');
             # Save figure
             plt.savefig(save_path + '/CumVariancePCA_LINE.jpg')
```


PCA Analysis

In [37]:

We can see from the cumulative explained variance graph above that after 3 components, there is a marginal increase in the percent of variance explained. Thus, to optimize the PCA model, we will use n components = 3

```
x_pca = pca.fit_transform(x_vals)

# add features back into PCAdataframe (for plotting PCA)
df_supes['PCA 0'] = x_pca[:, 0]
df_supes['PCA 1'] = x_pca[:, 1]

In [38]:  # Seaborn scatter plot for display
sns.scatterplot(data=df_supes, x="PCA 0", y="PCA 1").set(title='Superheroe
# Save fig
plt.savefig(save_path + '/PCAPlot_SCT.jpg')
```

pca = PCA(n_components=3, whiten=False)

5.0: Machine Learning

5.0.1: K-Means Clustering

General Clustering

```
In [40]: # Graph mean distance to centroid to find the optimal n-value
    plt.plot(mean_d_dict.keys(), mean_d_dict.values())
    plt.xlabel('Number Of Clusters')
    plt.ylabel('Mean Distance Squared to Centroid');
    plt.title('Mean Distance Squared from Centroid for Each Cluster');

# Save fig
    plt.savefig(save_path + '/MeanD2Clusters_LINE.jpg')
```


We can see from the above graph comparing the mean distance squared from the centroid for each cluster decreases as the number of clusters increases. To optimize the K-Means Cluster algorithm, we must select the cluster at which the next decrease is marginal compared to the previous ones. However, there is no clear elbow in the graph above so no k will optimize our algorithm.

```
In [41]:  # X values are the features given in PCA y-axis
    x = df_supes['PCA 0'].values.reshape(-1,1)

# Fit in KMeans algorithm
    kmeans = KMeans(n_clusters=3)
    kmeans.fit_transform(x)
    y = kmeans.predict(x)
```

```
In [42]: N sns.scatterplot(data=df_supes, x='PCA 0', y='PCA 1', s=100, hue=y, palette
plt.gcf().set_size_inches(12, 6)
plt.title('K-Means Cluster Visualization')
plt.legend([f"Group {i}" for i in range(0,6)])

# Save figure
plt.savefig(save_path + '/ClusterChart_SCT.jpg')
```


Clustering Similar Superheroes

```
In [43]: N x_feat_list = ['intelligence_score', 'strength_score', 'speed_score', 'durabi
             df_supes_similar = pd.DataFrame()
             for feature in x_feat_list:
                 df_supes_similar[f'{feature}'] = df_supes[feature] / df_supes[feature]
             df supes_similar.var()
   Out[43]: intelligence_score
                                   1.0
             strength_score
                                   1.0
             speed_score
                                   1.0
             durability_score
                                   1.0
             power_score
                                   1.0
             combat_score
                                   1.0
             sentiment_score
                                   1.0
             dtype: float64
In [44]: ▶ # Perform PCA on popular superheroes data
             pca_popular = PCA(n_components=3, whiten=False)
             x pca popular = pca_popular.fit_transform(df_supes_similar[x_feat_list])
             # Add principal components back into dataframe
             df_supes['PCA 0'] = x_pca_popular[:, 0]
             df_supes['PCA 1'] = x_pca_popular[:, 1]
In [45]: ▶ # Optimize number of clusters for popular superheroes
             mean d dict = dict()
             for n_clusters in range(2, 10):
                 kmeans = KMeans(n_clusters=n_clusters)
                 kmeans.fit(x_pca_popular)
                 y = kmeans.predict(x_pca_popular)
                 # Compute & Store mean distance
                 mean_d = -kmeans.score(x_pca_popular)
                 mean_d_dict[n_clusters] = mean_d
          ▶ # Perform K-Means clustering on principal components
In [46]:
             kmeans = KMeans(n_clusters=3)
             df_supes['cluster'] = kmeans.fit_predict(x_pca_popular)
```

```
In [47]:  # Create scatterplot using Plotly Express
# fig = px.scatter(df_supes, x='PCA 0', y='PCA 1', color='cluster', hover_
# fig.update_layout(title='K-Means Cluster Similar Superheroes Visualizati
# legend=dict(yanchor="top", y=0.99, xanchor="left", x
# fig.show()
```


4.0.2: Classification

dtype: float64

Data Splitting & Model Training

```
M comic_supes = df_supes[df_supes['creator'].str.contains('Comics')==True]
In [48]:
In [49]:
          # We divide each feature by the standard deviation
             df_supes_scaled = pd.DataFrame()
             for feature in ['intelligence_score','strength_score','speed_score','durab
                 df_supes_scaled[f'{feature}'] = comic_supes[feature] / comic_supes[fea
             df_supes_scaled.var()
   Out[49]: intelligence_score
                                   1.0
             strength_score
                                   1.0
             speed_score
                                   1.0
             durability_score
                                   1.0
             power_score
                                   1.0
             combat_score
                                   1.0
```

KFold Cross Validation

```
In [50]: k = 3
             x_feat_list = ['intelligence_score','strength_score','speed_score','durabi
             y_feat = 'creator'
             x = df_supes_scaled.loc[:, x_feat_list].values
             y_true = comic_supes.loc[:, y_feat].values
             # initializing a knn_classifier
             knn_classifier = KNeighborsClassifier(n_neighbors=k)
             n_{splits} = 10
             # construction of kfold object
             kfold = StratifiedKFold(n_splits=n_splits, shuffle=True)
             # allocate an empty array to store predictions in
             y_pred = copy(y_true)
             for train_idx, test_idx in kfold.split(x, y_true):
                 # build arrays which correspond to x, y train /test
                 x_test = x[test_idx, :]
                 x_train = x[train_idx, :]
                 y_true_train = y_true[train_idx]
                 # fit happens "inplace", we modify the internal state of knn_classifie
                 knn_classifier.fit(x_train, y_true_train)
                 # estimate each bean's class
                 y_pred[test_idx] = knn_classifier.predict(x_test)
```

Confusion Matrix

In [52]:
Computing the accuracy score of the confusion matrix
print("The accuracy of the model is " + str(round(accuracy_score(y_true, y)))

The accuracy of the model is 60.0%

4.0.3: Decision Tree Regressor

```
In [53]:
             max_depth = 3
             x_feat_list = ['intelligence_score', 'strength_score', 'speed_score', 'dur
             #extracting data from dataframe
             x = df_supes.loc[:, x_feat_list].values
             y = df_supes.loc[:, 'creator'].values
             #build decision tree classifier
             dec_tree_clf = tree.DecisionTreeClassifier(max_depth=max_depth)
             # fit data
             dec_tree_clf.fit(x, y)
             # initialize empty figure (plot_tree sets text size to fill given figure
             # if we resize figure afterwards text size remains too small)
             plt.figure()
             plt.gcf().set_size_inches(20, 15)
             # 'plot' decision tree
             tree.plot_tree(dec_tree_clf,
                            feature_names=x_feat_list,
                            class_names=dec_tree_clf.classes_);
```


4.0.4: Random Forest Regressor

```
In [54]:  x_feat_list = ['intelligence_score', 'strength_score', 'speed_score', 'du
             #extracting data from dataframe
             x = df_supes.loc[:, x_feat_list].values
             y = df_supes.loc[:, 'overall_score'].values
             n_{splits} = 10
             #build Random Forest Regressor
             randomforest_rg = RandomForestRegressor()
             # construction of kfold object
             skfold = KFold(n_splits=n_splits, shuffle=True)
             # allocate an empty array to store predictions in
             y_pred = np.empty_like(y)
             for train_idx, test_idx in skfold.split(x, y):
                 #get training data
                 x_train = x[train_idx, :]
                 y_train = y[train_idx]
                 #get test data
                 x_test = x[test_idx, :]
                 # fit data
                 randomforest_rg = randomforest_rg.fit(x_train, y_train)
                 # estimate on test data
                 y_pred[test_idx] = randomforest_rg.predict(x_test)
             #compute r2 score
             r2 = r2_score(y_true=y, y_pred=y_pred)
```

Out[54]: 0.30304208907401153

```
x_feat_list = ['intelligence_score', 'strength_score', 'speed_score', 'du
In [55]:
             #eextracting data from dataframe
             x = df_supes.loc[:, x_feat_list].values
             y = df_supes.loc[:, 'overall_score'].values
             #construct regressor
             rf_rg = RandomForestRegressor(n_estimators=100)
             #fit data
             rf_rg.fit(x, y)
   Out[55]:
              ▼ RandomForestRegressor
             RandomForestRegressor()
         def plot_feat_import(feat_list, feat_import, sort=True, limit=None):
In [56]:
                 """ plots feature importances in a horizontal bar chart
                 Args:
                     feat_list (list): str names of features
                     feat_import (np.array): feature importances (mean gini reduce)
                     sort (bool): if True, sorts features in decreasing importance
                         from top to bottom of plot
                     limit (int): if passed, limits the number of features shown
                         to this value
                 .....
                 if sort:
                     # sort features in decreasing importance
                     idx = np.argsort(feat_import).astype(int)
                     feat_list = [feat_list[_idx] for _idx in idx]
                     feat_import = feat_import[idx]
                 if limit is not None:
                     # limit to the first limit feature
                     feat_list = feat_list[:limit]
                     feat_import = feat_import[:limit]
                 # plot and label feature importance
                 plt.barh(feat_list, feat_import)
                 plt.gcf().set_size_inches(5, len(feat_list) / 2)
                 plt.xlabel('Feature importance\n(Mean decrease in MSE across RandomFor
```



```
In [58]:
             max_depth = 3
             x_feat_list = ['has_mind_control', 'has_enhanced_hearing', 'has_element_co
                             'has_self-sustenance', 'has_energy_absorption', 'has_magic'
                            'has_energy_manipulation', 'has_endurance', 'has_weapon-bas
                             'has_weapons_master', 'has_intelligence','has_reflexes', 'h
             #extracting data from dataframe
             x = df_supes.loc[:, x_feat_list].values
             y = df_supes.loc[:, 'creator'].values
             #build decision tree classifier
             dec_tree_clf = tree.DecisionTreeClassifier(max_depth=max_depth)
             # fit data
             dec_tree_clf.fit(x, y)
             # initialize empty figure (plot_tree sets text size to fill given figure
             # if we resize figure afterwards text size remains too small)
             plt.figure()
             plt.gcf().set_size_inches(20, 15)
             # 'plot' decision tree
             tree.plot_tree(dec_tree_clf,
                            feature_names=x_feat_list,
                            class_names=dec_tree_clf.classes_);
```


5.0: Recommendation System

```
In [60]:
         ▶ # Define the columns to include in the recommendation system
             text_cols = ["powers_text", "history_text", "creator", "alignment"]
             num_cols = ["intelligence_score", "strength_score", "speed_score", "durabi
                         'has_fire_control', 'has_reality_warping', 'has_energy_beams',
                            'has_self-sustenance', 'has_energy_absorption', 'has_magic'
                            'has_energy_manipulation', 'has_endurance', 'has_weapon-bas
                            'has_weapons_master', 'has_intelligence','has_reflexes', 'h
             # Initialize the scaler
             scaler = MinMaxScaler()
             # Normalize the values in num_cols
             df_supes[num_cols] = scaler.fit_transform(df_supes[num_cols])
             # Concatenate the text and numerical columns
             df_supes["combined_text"] = df_supes[text_cols].apply(lambda x: " ".join(x
             # Fit TfidfVectorizer to the combined text column
             tfidf = TfidfVectorizer()
             tfidf_matrix = tfidf.fit_transform(df_supes["combined_text"])
             # Compute the cosine similarity matrix
             cosine_sim = cosine_similarity(tfidf_matrix)
             def get_recommendations(name, tolerance, cosine_sim=cosine_sim):
                 Function that recommends similar superheroes based on the numerical sc
                 Args:
                     name (str): The name of the superhero to get recommendations for.
                     tolerance (float): The tolerance for similarity between the scores
                     cosine_sim (numpy.ndarray): The cosine similarity matrix to use fo
                 Returns:
                     pandas. Series: A pandas Series containing the names of the recomme
                 idx = df_supes[df_supes["name"] == name].index[0]
                 score_dict = get_scores(name, idx)
                 sim_scores = list(enumerate(cosine_sim[idx]))
                 sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
                 sim_scores = sim_scores[1:4]
                 superhero_indices = [i[0] for i in sim_scores]
                 # Filter by similar numerical scores
                 similar_indices = []
                 for i in superhero_indices:
                     similar = True
                     for col, value in score_dict.items():
                         if not (value - tolerance <= df supes.loc[i, col] <= value + t
                             similar = False
                             break
                     if similar:
                         similar_indices.append(i)
```

```
return df_supes["name"].iloc[similar_indices]
```

In [61]: # Get recommendations for a specific superhero
get_recommendations("Spider-Man (Raimi Trilogy)", tolerance=1)

Out[61]: 517 Harry Osborn (Raimi Trilogy)
494 Green Goblin II
917 Peter Petrelli

Name: name, dtype: object