设备(智能交通摄像机)

网络 SDK 编程指南

V5.2

声明

非常感谢您购买我公司的产品,如果您有什么疑问或需要请随时联系我们。

- 我们已尽量保证手册内容的完整性与准确性,但也不免出现技术上不准确、与产品功能及操作不相符或印刷错误等情况,如有任何疑问或争议,请以我司最终解释为准。
- 产品和手册将实时进行更新, 恕不另行通知。
- 本手册中内容仅为用户提供参考指导作用,请以 SDK 实际内容为准。

目 录

声	î	明		1
E		录		II
1		SDK 简介		1
2		SDK 版本	更新	4
3		函数调用	顺序	17
	3.	1 SDK	接口调用主要流程	17
	3.	2 报警	~(布防)流程	18
	3.	3 报警	~(监听)流程	19
4		函数调用	实例	20
	4.	1 参数	如置模块的示例代码	20
	4.		自图片上传示例代码	
	4.	3 抓扣	胡实时状态检测结果上传	27
5		函数说明	J	29
	5.	1 SDK	初始化	29
		5.1.1	初始化 SDK NET_DVR_Init	29
		5.1.2	释放 SDK 资源 NET_DVR_Cleanup	
	5.	2 SDK	本地功能	29
		SDK 本地	参数配置	
		5.2.1	获取 SDK 本地参数 NET_DVR_GetSDKLocalCfg	
		5.2.2	设置 SDK 本地参数 NET_DVR_SetSDKLocalCfg	
		连接和接	收超时时间及重连设置	
		5.2.3	设置网络连接超时时间和连接尝试次数 NET_DVR_SetConnectTime	
		5.2.4	设置重连功能 NET_DVR_SetReconnect	
		5.2.5	设置接收超时时间 NET_DVR_SetRecvTimeOut	
		多网卡维	3定	
		5.2.6	获取所有 IP,用于支持多网卡接口 NET_DVR_GetLocalIP	
		5.2.7	设置 IP 绑定 NET_DVR_SetValidIP	
		SDK 版本	、状态和能力	
		5.2.8	获取 SDK 的版本号和 build 信息 NET_DVR_GetSDKBuildVersion	
		5.2.9	获取当前 SDK 的状态信息 NET_DVR_GetSDKState	
		5.2.10	获取当前 SDK 的功能信息 NET_DVR_GetSDKAbility	
			写日志	
		5.2.11	启用写日志文件 NET_DVR_SetLogToFile	
			[回调	
		5.2.12	注册接收异常、重连等消息的窗口句柄或回调函数 NET_DVR_SetExceptionCallBack_V30	
			信息	
		5.2.13	返回最后操作的错误码 NET_DVR_GetLastError	
		5.2.14	返回最后操作的错误码信息 NET_DVR_GetErrorMsg	
	5.		7注册	
		5.3.1	激活设备 NET_DVR_ActivateDevice	
		5.3.2	通过解析服务器,获取设备的动态 IP 地址和端口号 NET_DVR_GetDVRIPByResolveSvr_EX	
		5.3.3	用户注册设备 NET_DVR_Login_V40	37

5.3.4	用户注销 NET_DVR_Logout	37
5.4 获	取设备能力集	37
5.4.1	获取设备能力集 NET_DVR_GetDeviceAbility	37
5.4.2	获取设备能力集 NET_DVR_GetSTDAbility	39
5.5 实	时预览	39
5.5.1	主码流动态产生一个关键帧 NET_DVR_MakeKeyFrame	39
5.5.2	子码流动态产生一个关键帧 NET_DVR_MakeKeyFrameSub	39
5.5.3	实时预览 NET_DVR_RealPlay_V40	40
5.5.4	停止预览 NET_DVR_StopRealPlay	40
5.5.5	获取预览时用来解码和显示的播放库句柄 NET_DVR_GetRealPlayerIndex	41
5.6 预	览时播放声音控制	41
5.6.1	设置声音播放模式 NET_DVR_SetAudioMode	41
5.6.2	独占声卡模式下开启声音 NET_DVR_OpenSound	41
5.6.3	独占声卡模式下开启声音 NET_DVR_CloseSound	41
5.6.4	共享声卡模式下开启声音 NET_DVR_OpenSoundShare	42
5.6.5	共享声卡模式下关闭声音 NET_DVR_CloseSoundShare	42
5.6.6	调节播放音量 NET_DVR_Volume	42
5.7 实	时预览数据捕获	
5.7.1	注册回调函数,捕获实时码流数据 NET_DVR_SetRealDataCallBack	42
5.7.2	捕获数据并保存到指定的文件中 NET_DVR_SaveRealData	43
5.7.3	停止数据捕获 NET_DVR_StopSaveRealData	43
5.8 预	览时抓图	44
5.8.1	设置抓图模式 NET_DVR_SetCapturePictureMode	44
5.8.2	预览时,单帧数据捕获图片并保存成文件 NET_DVR_CapturePicture	44
5.9 布	防、撤防	44
设置报	警等信息上传的回调函数	44
5.9.1	注册报警回调函数 NET_DVR_SetDVRMessageCallBack_V31	44
布防撤	防	
5.9.2	建立报警上传通道,获取报警等信息 NET_DVR_SetupAlarmChan_V41	46
5.9.3	撤销报警上传通道 NET_DVR_CloseAlarmChan_V30	46
5.10 监	听报警	46
5.10.1	启动监听,接收设备主动上传的报警等信息 NET_DVR_StartListen_V30	46
5.10.2	停止监听(支持多线程)NET_DVR_StopListen_V30	48
5.11 远	程参数配置	48
通用参	数配置	48
5.11.1	获取设备的配置信息 NET_DVR_GetDVRConfig	48
5.11.2	设置设备的配置信息 NET_DVR_SetDVRConfig	49
5.11.3	批量获取配置信息 NET_DVR_GetDeviceConfig	50
5.11.4	 批量设置配置信息 NET_DVR_SetDeviceConfig	
	数配置	
5.11.5	获取设备的配置信息 NET_DVR_GetDVRConfig	
5.11.6	设置设备的配置信息 NET_DVR_SetDVRConfig	
5.11.7	批量获取配置信息 NET_DVR_GetDeviceConfig	
5.11.8	批量设置配置信息 NET DVR SetDeviceConfig	

5 44 0	世界以及分类 NET DVD C ISTDC C	
5.11.9	获取设备参数 NET_DVR_GetSTDConfig	
5.11.10	设置设备参数 NET_DVR_SetSTDConfig	
	参数配置	
5.11.11		
5.11.12	逐个获取查找到的结果信息 NET_DVR_GetNextRemoteConfig	
5.11.13		
5.11.14		
	备支持的云台协议	
5.11.15		
	书管理	
证书创	建、删除	61
5.12.1	远程控制 NET_DVR_RemoteControl	61
证书信	息获取	
5.12.2	批量获取配置信息 NET_DVR_GetDeviceConfig	62
证书上	传下载	62
5.12.3	上传文件 NET_DVR_UploadFile_V40	62
5.12.4	获取文件上传的进度和状态 NET_DVR_GetUploadState	63
5.12.5	停止文件上传 NET_DVR_UploadClose	63
5.12.6	开始下载文件 NET_DVR_StartDownload	63
5.12.7	获取文件下载的进度和状态 NET_DVR_GetDownloadState	64
5.12.8	停止文件下载 NET_DVR_StopDownload	64
5.13 远	程控制	64
5.13.1	远程控制 NET_DVR_RemoteControl	64
5.14 手	动触发抓拍	65
5.14.1	网络触发抓拍 NET_DVR_ContinuousShoot	65
5.14.2	手动抓拍 NET_DVR_ManualSnap	65
5.15 雨	刷控制	65
5.15.1	云台控制操作 NET_DVR_PTZControl_Other	65
5.16 图	片的查找、下载	66
查找图	片	66
5.16.1	根据类型和时间查找图片 NET_DVR_FindPicture	66
5.16.2	逐个获取查找到的图片 NET_DVR_FindNextPicture	66
5.16.3	关闭图片查找,释放资源 NET_DVR_CloseFindPicture	67
图片下	载	67
5.16.4	获取图片数据并存放在指定的内存空间中 NET_DVR_GetPicture_V30	67
5.16.5	图片下载 NET_DVR_GetPicture	67
5.17 文	件上传	
5.17.1	上传文件 NET_DVR_UploadFile_V40	68
5.17.2	获取文件上传的进度和状态 NET_DVR_GetUploadState	68
5.17.3	停止文件上传,释放资源 NET_DVR_UploadClose	
5.18 获	取设备状态	
5.18.1	获取设备状态信息 NET_DVR_GetDeviceStatus	
5.19 设	备维护管理	
	杰检测	69

	5.19.1	设备在线状态检测 NET_DVR_RemoteControl	69
	远程升约	圾	70
	5.19.2	设置远程升级时网络环境 NET_DVR_SetNetworkEnvironment	70
	5.19.3	远程升级 NET_DVR_Upgrade	70
	5.19.4	获取远程升级的进度 NET_DVR_GetUpgradeProgress	71
	5.19.5	获取远程升级的状态 NET_DVR_GetUpgradeState	71
	5.19.6	关闭远程升级句柄,释放资源 NET_DVR_CloseUpgradeHandle	71
	日志查排	戈	71
	5.19.7	查找设备的日志信息 NET_DVR_FindDVRLog_V30	71
	5.19.8	逐条获取查找到的日志信息 NET_DVR_FindNextLog_V30	72
	5.19.9	释放查找日志的资源 NET_DVR_FindLogClose_V30	72
	恢复设金	备默认参数	72
	5.19.10	恢复设备默认参数 NET_DVR_RestoreConfig	72
	5.19.11	完全恢复出厂默认参数 NET_DVR_RemoteControl	72
	导入/导	出配置文件	73
	5.19.12	导出配置文件 NET_DVR_GetConfigFile_V30	73
	5.19.13	导出配置文件 NET_DVR_GetConfigFile	73
	5.19.14	导入配置文件 NET_DVR_SetConfigFile_EX	73
	5.19.15	导入配置文件 NET_DVR_SetConfigFile	74
	远程重点	自	74
	5.19.16	重启设备 NET_DVR_RebootDVR	74
6	错误代码	马及说明	75
	6.1 网络	各通讯库错误码	75
	6.2 RTS	SP 通讯库错误码	81
	6.3 软角	解码库错误码	81
7	附录:结	构体	83

1 SDK 简介

设备网络 SDK 是基于设备私有网络通信协议开发的,为嵌入式网络硬盘录像机、NVR、视频服务器、网络摄像机、网络球机、解码器、多屏控制器、报警主机等网络产品服务的配套模块,用于远程访问和控制设备软件的二次开发。本文档主要介绍智能交通摄像机(抓拍机)相关的功能,设备型号如下:

(i)DS-2CD9361(-S)、(i)DS-2CD9282(-S)、DS-2CD9111(-S)、(i)DS-2CD9120(-H/-HS)、(i)DS-2CD9121(-S/-V/A/A-S)、DS-2CD9122(-S/-H/-HS)、(i)DS-2CD9131(-S/-IS/-KS)、(i)DS-2CD9151A(-S)、(i)DS-2CD9152(-H/-S/-HS/-HIS/-HKS)、(i)DS-2CD9182(-H/-HS)、DS-2CD986A、DS-2CD986C、DS-2CD977、DS-2CD976(-V)、DS-2CD966(-V)等(i)DS-2CD93xx、(i)DS-2CD91xx、和 DS-2CD9xx 系列智能交通摄像机。

设备网络 SDK 主要功能:实时码流预览、摄像机参数配置、网络触发抓拍以及获取上传的抓拍图片等功能。

注意:该文档附录中结构体说明仅供参考,更多说明及更新请参见《设备网络 SDK 使用手册.chm》。

设备网络 SDK 包含网络通讯库、播放库等功能组件,我们提供 Windows 和 Linux 两个版本的 SDK,各自所包含的组件如下:

HCNetSDK.h 头文件 外部接口 HCNetSDK.lib LIB 库文件 网络通讯库 HCNetSDK.dll DLL 库文件 HCCore.lib LIB 库文件 核心组件 HCCore.dll DLL 库文件 设备配置核心组件 HCCoreDevCfg.dll DLL 库文件 HCNetSDKCom 文件夹 HCNetSDKCom 文件夹 HCPreview.lib LIB 库文件 预览组件 HCPreview.dll DLL 库文件 HCNetSDKCom 文件夹 DLL 库文件 HCNetSDKCom 文件夹 回放组件 HCPlayBack.dll 语音组件 HCVoiceTalk.dll DLL 库文件 HCNetSDKCom 文件夹 组件库 HCAlarm.lib LIB 库文件 HCNetSDKCom 文件夹 报警组件 HCAlarm.dll DLL 库文件 HCNetSDKCom 文件夹 HCDisplay.dll DLL 库文件 HCNetSDKCom 文件夹 显示组件 行业应用管理配置组件 HCIndustry.dll DLL 库文件 HCNetSDKCom 文件夹 LIB 库文件 HCNetSDKCom 文件夹 HCGeneralCfgMgr.lib 维护管理配置组件 HCGeneralCfgMgr.dll DLL 库文件 HCNetSDKCom 文件夹 RTSP 通讯库 StreamTransClient.dll DLL 库文件 HCNetSDKCom 文件夹 转封装库 SystemTransform.dll HCNetSDKCom 文件夹 DLL 库文件 DLL 库文件 字符转码库 libiconv2.dll HCNetSDKCom 文件夹

表 1.1 Windows SDK 组件

模拟能力集		LocalXml.zip	XML 文件包	
帧分析库		AnalyzeData.dll	DLL 库文件	HCNetSDKCom 文件夹
五文 計井序		AudioIntercom.dll	DLL 库文件	HCNetSDKCom 文件夹
语音对讲库		OpenAL32.dll	DLL 库文件	HCNetSDKCom 文件夹
		PlayM4.h、WindowsPlayM4.h	头文件	
	核心库文件	PlayCtrl.lib	LIB 库文件	
		PlayCtrl.dll	DLL 库文件	
	视频渲染库	SuperRender.dll	DLL 库文件	
	音频渲染库	AudioRender.dll	DLL 库文件	
播放库	小鹰眼库	EagleEyeRender.dll	DLL 库文件	
	GPU 硬解码库	HWDecode.dll	DLL 库文件	
	鱼眼库	MP_Render.dll	DLL 库文件	
	视频后处理库	MP_VIE.dll	DLL 库文件	
	测温信息抓图库	YUVProcess.dll	DLL 库文件	
	DirectX 组件库	D3DCompiler_43.dll	DLL 库文件	

表 1.2 Linux SDK 组件

		1.2 LINUX JUN SILIT		
	外部接口	HCNetSDK.h	头文件	
网络通讯库		libhcnetsdk.so	SO 库文件	
	核心组件	libHCCore.so	SO 库文件	
	设备配置核心组件	libHCCoreDevCfg.so	SO 库文件	HCNetSDKCom 文件夹
	预览组件	libHCPreview.so	SO 库文件	HCNetSDKCom 文件夹
	回放组件	libHCPlayBack.so	SO 库文件	HCNetSDKCom 文件夹
加供定	语音组件	libHCVoiceTalk.so	SO 库文件	HCNetSDKCom 文件夹
组件库	报警组件	libHCAlarm.so	SO 库文件	HCNetSDKCom 文件夹
	显示组件	libHCDisplay.so	SO 库文件	HCNetSDKCom 文件夹
	行业应用管理配置组件	libHCIndustry.so	SO 库文件	HCNetSDKCom 文件夹
	维护管理配置组件	libHCGeneralCfgMgr.so	SO 库文件	HCNetSDKCom 文件夹
hpr 库		libhpr.so	SO 库文件	
RTSP 通讯库		libStreamTransClient.so	SO 库文件	HCNetSDKCom 文件夹
转封装库		libSystemTransform.so	SO 库文件	HCNetSDKCom 文件夹
字符转码库		libiconv2.so	SO 库文件	HCNetSDKCom 文件夹
帧分析库		libanalyzedata.so	SO 库文件	HCNetSDKCom 文件夹
極分亡	拉《庄文集	PlayM4.h、LinuxPlayM4.h	头文件	
播放库	核心库文件	libPlayCtrl.so	SO 库文件	

视频渲染库	libSuperRender.so	SO 库文件
音频渲染库	libAudioRender.so	SO 库文件

本版本的设备网络 SDK 开发包中包含以上各个组件,HCNetSDK.dll、HCCore.dll 必须加载(对于 Linux SDK,即 libhcnetsdk.so、libHCCore.so),其他组件,用户可以根据需要选择其中的一部分或者全部,以下将对各个组件在 SDK 中的作用和使用条件分别说明。

- 网络通讯库:设备网络 SDK 的主体,主要用于网络客户端与各类产品之间的通讯交互,负责远程功能调控,远程参数配置及码流数据的获取和处理等。设备网络 SDK V5.0 针对产品应用业务进行细化,对之前版本的 SDK 的功能模块进行组件化,其中外部接口(HCNetSDK.dll)仍然保持和设备网络 SDK V4.x 版本保存一致(向下兼容),其他单独的业务功能(预览、回放等)可以加载单独的模块组件,多个业务功能也可以组合使用。更新 SDK 时,HCNetSDK.dll、HCCore.dll 以及 HCNetSDKCom 文件夹下的功能组件库文件都需要更新加载,且 HCNetSDKCom 文件夹名不能修改。
- hpr 库: 网络通讯库的依赖库, Linux SDK 使用时和网络通讯库同时加载。
- RTSP 通讯库: 支持 RTSP 传输协议的网络库。当需要对支持 RTSP 协议的产品进行取流等操作时就必须加载该项组件。
- 转封装库:库的功能可以分为两种:一种是将标准码流转换成采用我们公司封装格式的码流。当用户需要对支持 RTSP 协议的产品捕获采用本公司封装格式的码流数据时(即当设置 NET_DVR_RealPlay_V40接口中的回调函数捕获数据或者调用 NET_DVR_SetRealDataCallBack 接口捕获数据时)必须加载该组件。另一种功能是能将标准码流转换成其他格式的封装,如 3GPP、PS 等。例如,当用户需要对支持 RTSP协议的产品实时捕获指定封装格式的码流数据(对应的 SDK 接口为 NET_DVR_SaveRealData)时必须加载该项组件。
- 语音对讲库:用于语音对讲时通过声卡采集数据并按照指定的编码格式编码码流或者解码播放音频码流数据(不带封装格式的码流数据)。V4.2.2.5 及以前版本 SDK 均采用 windows API 实现相关功能。之后版本默认使用语音对讲库的方式,通过接口 NET_DVR_SetSDKLocalCfg 可以选择之前的 windows API 模式。OpenAL32.dll 为依赖库,语音对讲库模式下必须加载。Windows64 位或者 Linux 系统下无语音对讲功能。
- **字符转换库:** 电脑字符集和设备字符集不一致时, SDK 内部需要进行字符编码转换, SDK 默认使用 libiconv 库进行类型转换。如果用户不想使用 libiconv 编码库,可以调用 NET_DVR_SetSDKLocalCfg (类型: NET_SDK_LOCAL_CFG_TYPE_BYTE_ENCODE)设置字符转码回调函数,将用户自己的字符编码接口告知 SDK, 然后 SDK 将使用用户提供的字符编码接口进行字符串处理。
- 模拟能力集: 如果需要获取设备能力集(NET_DVR_GetDeviceAbility),建议调用 NET_DVR_SetSDKLocalCfg 启用模拟能力集,此时需要加载 LocalXml.zip(要求和网络通讯库放在同一个目录下)。
- 帧分析库:用于分析视音频帧数据,调用NET_DVR_SetESRealPlayCallBack、
 NET_DVR_SetPlayBackESCallBack 设置裸码流回调函数等接口时,必须加载该库文件。
- 播放库:主要用于对实时码流数据进行解码显示(实现预览功能)和对录像文件进行回放解码等。用户如果需要在 SDK 内部进行对实时流和录像码流播放显示时(即 NET_DVR_RealPlay_V40 接口的第二个结构体参数的播放句柄设置成有效句柄时)必须加载该组件,而如果用户仅需要用网络通讯库捕获到数据后再外部自行处理就不需要加载该组件,这种情况下用户在外部自行解码将更灵活,可参见软解码库函数说明《播放器 SDK 编程指南》。

2 SDK 版本更新

Version 5.1.6.25 (build20160401)

- 更新原因:智能交通摄像机 V4.2.0
- 新增报警控制配置功能(对应接口: <u>NET_DVR_GetSTDConfig</u> 和 <u>NET_DVR_SetSTDConfig</u>): 配置类型: <u>NET_DVR_GET_ALARMCTRL_CFG</u>、<u>NET_DVR_SET_ALARMCTRL_CFG</u>。
- 新增报警控制能力集(对应接口: <u>NET DVR GetSTDAbility</u>): 配置类型: <u>NET DVR GET ALARMCTRL CAPABILITIESG</u>。
- 新增车辆子品牌文件上传功能(对应接口: <u>NET DVR UploadFile V40</u>): UPLOAD SUBBRAND FILE。
- <u>NET_ITS_PICTURE_INFO(</u>抓拍图片信息)使用 5 个保留字节新增参数: dwUTCTime(UTC 时间)、byCompatibleAblity(兼容能力字段)。
- <u>NET_ITS_PLATE_RESULT(</u>识别结果)使用 5 个保留字节新增参数: bylllegalFromatType(违章信息格式类型)、plllegalInfoBuf(违法代码字符信息)。
- NET DVR MANUALSNAP(手动抓拍参数)使用 1 个保留字节新增参数: byLaneNo(车道号)。
- ITS OVERLAP ITEM TYPE(字符叠加类型)新增枚举类型: OVERLAP_ITEM_CAR_SUBBRAND(车辆子品牌)。
- <u>NET_DVR_SNAP_CAMERAPARAMCFG</u>(CCD 参数)使用 8 个保留字节新增参数: byMCEEnabled(记忆色增强使能)、byMCELevel(记忆色增强强度)、byAutoContrastEnabled(自动对比度使能)、byAutoContrastLevel(自动对比等级)、byLSEDetailEnabled(细节增强使能)、byLSEDetailLevel(细节增强等级)、byLPDEEnabled(车牌增强使能)、byLPDELevel(车牌增强等级)。
- <u>NET_ITC_ICR_AOTOSWITCH_PARAM(ICR</u> 自动切换参数)使用 1 个保留字节新增参数: bylCRAutoSwitch(ICR 自动切换加阈值选项)。
- 触发参数配置扩展:
 - 1) <u>ITC TRIGGERMODE TYPE(</u>触发模式)新增枚举类型: ITC_REDLIGHT_PEDESTRIAN_TYPE(行人闯红灯触发)、ITC NOCOMITY PEDESTRIAN TYPE(不礼让行人触发)。
 - 2) NET_ITC_TRIGGER_PARAM_UNION(触发参数联合体)中新增:
 - NET ITC REDLIGHT PEDESTRIAN PARAM(行人闯红灯参数)、NET ITC NOCOMITY PEDESTRIAN PARAM(不礼让行人参数)。
 - 3) <u>NET_ITC_PLATE_RECOG_PARAM(</u>牌识参数)中 dwRecogMode(识别的类型)新增取值: bit18-使馆车牌识别、bit19-车辆子品牌识别。
 - 4) <u>NET_ITC_SINGLE_IOSPEED_PARAM(</u>单组 IO 测速参数)、<u>NET_ITC_LANE_PARAM(</u>卡口 RS485 触发模式车 道参数)、<u>NET_ITC_SINGLEIO_PARAM(</u>单 IO 参数)分别使用 1 个保留字节新增参数: byEmergencyCapEn(是 否启用应急车道抓拍)。
- 视频电警触发参数扩展:
 - 1) <u>NET_ITC_VIOLATION_DETECT_PARAM(</u>违规检测参数)使用 1 个保留字节新增参数: byPostSnapTimes(卡口抓拍张数)。
 - 2) <u>NET_ITC_LANE_VIDEO_EPOLICE_PARAM(</u>车道参数)使用 20 个保留字节新增参数: struInterval(抓拍间隔 参数)。
- 设备通用能力集(对应接口: <u>NET_DVR_GetDeviceAbility</u>,能力集类型: <u>DEVICE_ABILITY_INFO</u>),其中智能交通设备能力(ITDeviceAbility)扩展:
 - 1) <ITSAbility>中<triggerMode>新增取值: postNoComityPed(不礼让行人触发)、postRedLightPed(行人闯红灯触发)。

- 2) <ITSAbility>中<ManualSnap>新增子节点: <laneNo>(车道号)。
- 新增错误码: 1605~1620。

Version 5.1.3.25 (build20150916)

- 更新原因:智能交通摄像机 V4.1.1
- NET DVR SNAPCFG(触发参数)使用 4 个保留字节新增参数: dwSnapVehicleNum(抓拍匹配序号)。

Version 5.1.1.17 (build20150602)

- 更新原因: 智能交通摄像机 V4.1.0
- NET ITC POST IMT PARAM(智慧监控配置)使用 1 个保留字节新增参数: bySnapMode(抓拍类型)。
- <u>NET_ITC_EPOLICE_LANE_PARAM</u>(电警 RS485 车检器触发模式车道参数)使用 1 个保留字节新增参数: bySnapPicPreRecord(抓拍图片预录时间点)。
- <u>NET_ITC_POST_MPR_PARAM</u>(卡口多帧检测(MPR)触发参数)使用 1 个保留字节新增参数: byPicUploadType(图片上传类型)。
- <u>NET_DVR_PICCFG_V30</u>和 NET_DVR_PICCFG_V40(通道图像参数)分别使用 1 个保留字节新增参数: byOSDMilliSecondEnable(视频叠加时间支持毫秒)。
- <u>NET_ITC_LANE_VIDEO_EPOLICE_PARAM(</u>视频电警触发模式车道参数)使用 1 个保留字节新增参数: bySnapPicPreRecord(抓拍图片预录时间点)。
- NET_ITC_IOOUT_PARAM(IO 输出配置参数)中 byIOWorkMode(IO 输出口工作模式)新增取值: 2- 常亮灯。
- <u>NET_DVR_SNAPENABLECFG</u>(使能参数)使用 1 个保留字节新增参数: bySnapPicResolution(抓拍图片分辨率)。
- <u>NET_DVR_SNAP_ABILITY</u>(智能交通摄像机能力集)的 bySupport2 新增取值: bySupport2&0x02, 表示是否 支持时间毫秒视频叠加功能。
- 设备通用能力集(DEVICE_ABILITY_INFO),其中智能交通设备能力(ITDeviceAbility)扩展,<ITCAbility>中 <imageOverlayString>新增子节点<itemTypeCustomLength>(自定义类型长度)。
- 设备图像参数能力集(DEVICE_VIDEOPIC_ABILITY)扩展,<OSD>新增子节点: <OSDMilliSecond>(频叠加时间支持毫秒)。
- 新增支持完全恢复出厂默认参数功能(对应接口: <u>NET_DVR_RemoteControl</u>): 命令: <u>NET_DVR_COMPLETE_RESTORE_CTRL</u>。

Version 5.0.3.15 (build20150129)

- 更新原因:智能交通摄像机 V4.0.0
- 新增字符叠加参数配置扩展(对应接口: <u>NET_DVR_GetDeviceConfig</u>和 <u>NET_DVR_SetDeviceConfig</u>): 命令: <u>NET_ITS_GET_OVERLAP_CFG_V50</u>、<u>NET_ITS_SET_OVERLAP_CFG_V50</u>,兼容 <u>NET_ITS_GET_OVERLAP_CFG</u>、<u>NET_ITS_SET_OVERLAP_CFG</u>。
- 新增上传违法字典文件功能(对应接口: <u>NET_DVR_UploadFile_V40</u>) 上传文件类型: <u>UPLOAD_VIOLATION_FILE</u>。
- 新增雷达报警上传(对应接口: <u>NET_DVR_SetDVRMessageCallBack_V31</u>): COMM_ITS_RADARINFO。
- 触发参数配置扩展:
 - 1) ITC TRIGGERMODE TYPE (触发模式)新增枚举类型: ITC_POST_HVT_TYPE_V50(混行卡口视频触发模式)、ITC POST IMT TYPE(智慧监控配置)。
 - 2) NET ITC TRIGGER PARAM UNION(触发参数联合体)中新增结构体参数:
 NET ITC POST HVT PARAM V50(混行卡口视频触发)、NET ITC POST IMT PARAM(智慧监控配置)。

- 3) <u>ITC LANE USEAGE TYPE(</u>车道用途)新增枚举类型: ITC_LANE_BAN_LEFT(禁左车道)、ITC LANE BAN RIGHT(禁右车道)。
- 4) <u>ITC_LANE_DIRECTION_TYPE</u>(车道方向)新增枚举类型: ITC_LANE_FORWARD(正向行驶)、
- ITC_LANE_BACKWARD(背向行驶)、ITC_LANE_BOTHWAY(双向行驶)、ITC_LANE_STRAIGHT_WAIT_RIGHT(直行行+右转)。
- 5) <u>NET_ITC_LANE_LOGIC_PARAM(</u>车道属性)使用 1 个保留字节新增参数: byCarDriveDirect(车辆行驶方向)。
- 6) <u>NET_ITC_LANE_PARAM(</u>车道参数)、<u>NET_ITC_SINGLE_IOSPEED_PARAM(</u>单组 IO 测速参数)分别使用 4 个保留字节新增参数: byRelaLaneDirectionType(关联车道方向类型)、byLowSpeedLimit(小车限低速值)、byBigCarLowSpeedLimit(大车限低速值)、byLowSpeedCapEn(是否启用低速抓拍)。
- 7) <u>NET_ITC_VTLANE_PARAM(</u>虚拟线圈触发模式车道参数)、<u>NET_ITC_EPOLICE_LANE_PARAM(</u>电警 RS485 车检器触发模式车道参数)、NET_ITC_LANE_MPR_PARAM(多帧检测模式车道参数)、
- NET ITC LANE PRS PARAM(视频检测触发模式车道参数)分别使用 1 个保留字节新增参数: byRelaLaneDirectionType(关联车道方向类型)。
- 8) <u>NET_ITC_POST_RS485_PARAM</u>(卡口 RS485 车检器触发参数)中的 byTriggerSpareMode(触发备用模式)新增取值: 2- 卡口混合车道模式。
- <u>NET_ITS_IMGMERGE_CFG(图片合成配置)</u>中 dwTwoMergeType(两张图合成方式)、dwThreeMergeType(三 张图合成方式)新增合成编码取值: 203~210、313~320。
- 车牌识别上传信息扩展:
 - 1) <u>NET_DVR_VEHICLE_INFO</u>(车辆信息)中 bylllegalType(违法类型)新增取值: 18-禁右、19-禁左、20-压黄线、21-未系安全带。
 - 2) NET ITS PICTURE INFO(抓拍图片信息)使用 1 个保留字节新增参数: byPicRecogMode(图片背向识别)。
 - 3) <u>NET_ITS_PLATE_RESULT(</u>交通识别结果)使用 5 个保留字节新增参数: byRelaLaneDirectionType(关联车道方向类型)、dwCustomIllegalType(自定义违章类型)。
 - 4) <u>NET_DVR_PLATE_RESULT(</u>交通识别结果老报警信息类型)使用 1 个保留字节新增参数: byRelaLaneDirectionType(关联车道方向类型)。
- <u>NET_ITC_VIOLATION_DETECT_PARAM(</u>违规检测参数)使用 2 个保留字节新增参数: byTurnAroundEnable(违章掉头使能)、byThirdPlateRecogTime(第三张牌识时间)。
- <u>NET_DVR_CAMERAPARAMCFG_EX</u>(前端参数配置)使用 64 个保留字节新增参数: struSnapCCD(抓拍机 CCD 参数)。
- NET DVR SETUPALARM PARAM(报警布防参数)中 byLevel(布防优先级)增加支持三级布防。
- <u>NET_DVR_SNAP_ABILITY</u>(智能交通摄像机能力集参数)使用 1 个保留字节新增参数: bySupportWhiteBalance(白平衡能力)。
- 设备通用能力集(DEVICE_ABILITY_INFO),其中智能交通设备能力(ITDeviceAbility)扩展,<ITCAbility>中 <imageOverlayString>新增子节点<itemTypeCustomLength>(自定义类型长度)。

Version 4.3.1.5 (build20141017)

- 更新原因:智能交通摄像机 V3.8.2
- 新增交通统计信息上传报警类型(对应接口: <u>NET DVR SetDVRMessageCallBack V30</u>和 <u>NET DVR StartListen V30</u>):
 - COMM_ALARM_TPS_REAL_TIME、COMM_ALARM_TPS_STATISTICS。
- 新增支持监听方式获取车牌识别结果(对应接口: <u>NET_DVR_SetDVRMessageCallBack_V30</u>和 <u>NET_DVR_StartListen_V30</u>): COMM_ITS_PLATE_RESULT。
- 新增支持码流附加信息配置(对应接口: NET DVR GetDVRConfig 和 NET DVR SetDVRConfig):

- 命令: NET_DVR_GET_STREAM_ATTACHINFO_CFG、NET_DVR_SET_STREAM_ATTACHINFO_CFG。
- 车牌识别信息上传扩展:
 - 1) <u>NET_DVR_SETUPALARM_PARAM(</u>报警布防参数)使用 2 个保留字节新增参数: bySupport(bit0 表示二级布防是否上传图片)。
 - 2) <u>NET_ITS_PLATE_RESULT</u>(识别结果),使用 6 个保留字节新增参数: byVehicleAttribute(车辆属性)、byPilotSafebelt(主驾驶员是否系安全带)、byCopilotSafebelt(副驾驶员是否系安全带)、byPilotSunVisor(主驾驶是否打开遮阳板)、byCopilotSunVisor(副驾驶是否打开遮阳板)、byPilotCall(主驾驶员是否在打电话),参数 byVehicleType 新增取值: 9-SUV/MPV、10-中型客车。
 - 3) NET ITS PICTURE INFO(抓拍图片信息)中 byType 新增取值: 6-人脸子图(主驾驶)、7-人脸子图(副驾驶)。
- 闪光灯状态检测功能:
 - 1) <u>NET_DVR_EXDEVDET_COND(</u>外设状态检测条件)中 byExternalDevType(外接设备类型)新增取值: 2-闪光灯。
 - 2) NET DVR ALARMINFO V30(报警信息)中 dwAlarmType(报警类型)新增取值: 17-闪光灯异常。
- 视频电警触发模式扩展:
 - 1) <u>ITC VIOLATION DETECT TYPE</u>(违规检测类型)新增枚举类型: ITC_VIOLATION_TURN_AROUND(违法掉头)、ITC_VIOLATION_CONGESTION(拥堵),ITC_VIOLATION_INTERSECTION_PARK 类型含义从"路口停车"修改为"红灯越线"。
 - 2) <u>NET_ITC_PLATE_RECOG_PARAM(</u>牌识参数)中 dwRecogMode(识别的类型)新增取值: bit15-遮阳板检测、bit16-黄标车检测、bit17-危险品车辆检测。
- <u>ITS_OVERLAP_ITEM_TYPE</u>(字符叠加类型)新增枚举类型: OVERLAP_ITEM_YELLOW_SIGN_CAR(黄标车)、OVERLAP_ITEM_DANGEROUS_CAR(危险品车)。
- NET DVR SNAP ABILITY(智能交通摄像机能力集)扩展:
 - 1) bySupport1 新增取值: bySupport1&0x80 表示是否支持 tps 报警数据上传。
 - 2) 使用 1 个保留字节新增 bySupport2: bySupport2&0x01 表示是否支持码流附加信息配置。
- 设备通用能力集(DEVICE_ABILITY_INFO),其中智能交通设备能力(ITDeviceAbility)扩展,<ITCAbility>新增子节点<FlashLampDet >。

Version 4.3.1.3 (build20140912)

- 更新原因: DS-2CD9121A-S(B)牌识出入口
- 新增视频检测触发模式:
 - 1) ITC TRIGGERMODE TYPE 新增枚举类型: ITC_POST_PRS_TYPE(视频检测触发配置)。
 - 2) <u>NET_ITC_PLATE_RECOG_PARAM(</u>牌识参数)中 dwRecogMode(识别的类型)新增取值: bit12-民航车牌识别、bit13-车牌过渡倾斜处理、bit14-超大车牌识别。
 - 3) <u>NET_ITC_TRIGGER_PARAM_UNION(</u>触发参数联合体)新增结构体参数: NET_ITC_POST_PRS_PARAM(视频 检测触发)。
- 设备通用能力集(DEVICE_ABILITY_INFO),其中智能交通设备能力(ITDeviceAbility)扩展,<ITSAbility>中 <triggerMode>新增取值: postPRS。

Version 4.3.0.6 (build20140722)

- 更新原因:智能交通摄像机 V3.8.0
- 新增 GPS 参数配置功能(对应接口: <u>NET_DVR_GetDVRConfig</u> 和 <u>NET_DVR_SetDVRConfig</u>): NET_DVR_GPS_DATACFG。
- 新增车辆黑白名单信息同步功能(对应接口: <u>NET_DVR_StartRemoteConfig_</u>和 NET_DVR_SendRemoteConfig_):

- 命令: NET DVR VEHICLELIST CTRL START。
- <u>NET_DVR_CAMERA_SETUPCFG</u>(相机架设参数)使用 8 个保留参数新增: fHorFieldAngle(相机水平视场角角度)、fVerFieldAngle(相机垂直视场角角度)。
- <u>NET_ITS_PLATE_RESULT(</u>车牌识别结果)使用 2 个保留参数新增: byBarrierGateCtrlType(道闸控制类型)、byAlarmDataType(报警数据类型)。
- NET DVR VEHICLE INFO(车辆信息)的参数 bylllegalType(违章类型)新增取值: 15-违章停车、16-违章掉头、17-占用应急车道。
- NET_ITC_IOOUT_PARAM(IO 输出配置)使用 1 个保留字节新增参数: byIOWorkMode(IO 输出口工作模式)。
- <u>NET ITS IMGMERGE CFG(图片合成配置)</u>扩展,使用 1 个保留字节新增参数: byCloseupProportion(特写图比例),新增合成方式: 309、310、311、312。
- <u>ITS_OVERLAP_ITEM_TYPE</u> (叠加信息类型)新增枚举类型: OVERLAP_ITEM_MONITOR_ID(监测点编号)、OVERLAP_ITEM_SUN_VISOR(遮阳板)、OVERLAP_ITEM_LANE_DIRECTION(车道行驶方向)。
- <u>NET_DVR_ENTRANCE_CFG(</u>出入口控制参数)使用 1 个保留字节新增参数: byBarrierGateCtrlMode(道闸控制模式)。
- 触发参数配置扩展:
 - 1) ITC LANE USEAGE TYPE(车道用途)新增枚举类型: ITC_LANE_MIX(混合车道)、ITC_LANE_EMERGENCY(应急车道)。
 - 2) <u>NET_ITC_SINGLEIO_PARAM</u>(单 IO 参数)、 <u>NET_ITC_SINGLE_IOSPEED_PARAM</u>(单组 IO 测速参数)、 <u>NET_ITC_LANE_PARAM</u>(RS485 触发模式车道参数)分别使用 1 个保留参数新增: byUseageType(车道用途类型)。
 - 3) <u>NET_ITC_POST_MPR_PARAM</u>(卡口多帧检测触发参数)使用 1 个保留参数新增: bySourceType(信号源类型), <u>NET_ITC_LANE_MPR_PARAM</u>(多帧检测模式车道参数)使用 4 个字节新增联合体参数 uTssParamInfo。4) ITC_VIOLATION_DETECT_TYPE(违规检测类型)新增枚举类型: ITC_VIOLATION_HIGH_SPEED(超速)、
 - ITC_VIOLATION_LOW_SPEED(低速)。
 - 5) <u>NET_ITC_VIOLATION_DETECT_PARAM(</u>违规检测参数)使用 1 个保留参数新增: bySpeedTimes(违法超速抓拍张数)。
 - 6) <u>NET_ITC_LANE_VIDEO_EPOLICE_PARAM(</u>视频电警触发的单个车道参数)使用 2 个保留参数新增: byCarSpeedLimit(车速限制值)、byCarSignSpeed(标志限速)。
- ICR 切换新增算法自动模式:
 - 1) NET ITC ICRCFG(ICR 参数配置)的参数 bySwitchType(切换模式)新增取值: 4- 算法自动。
 - 2) <u>NET_ITC_ICR_PARAM_UNION</u>(ICR 切换配置)新增结构体参数: <u>NET_ITC_ICR_ALGAOTOSWITCH_PARAM</u>(算法自动)。
- <u>NET_DVR_SNAP_ABILITY</u>(智能交通摄像机能力集)的 bySupport1 新增取值: bySupport1&0x20,表示是否支持 GPS 模块参数配置; bySupport1&0x40,表示是否支持 NTP 校时间隔支持分钟设置。
- 设备通用能力集(DEVICE_ABILITY_INFO),其中智能交通设备能力(ITDeviceAbility)扩展,<ITCAbility>中<,新增节点: <GPSDATACFG>; ITCIOoutParam>新增子节点<ioWorkMode>; <CameraSetUpCfg>新增子节点: <horFieldAngle>、<verFieldAngle>; <ICRCFG>新增子节点: <switchType>、<AlgorithmAutoSwitch>; <ITCEntranceCfg>新增子节点<bar>obarrierGateCtrlMode>。
- 设备网络应用参数能力(DEVICE_NETAPP_ABILITY)扩展,<IPAddrFilter>中新增子节点<IPTest>。

Version 4.2.8.5 (build20140317)

- 更新原因: 出入口抓拍单元(一体机) DS-TCG113 V3.7
- 新增出入口黑名单数据同步功能(对应接口: NET DVR StartRemoteConfig):

- 命令: NET DVR VEHICLE CONTROL LIST START。
- 新增获取出入口黑名单数据功能(对应接口: <u>NET_DVR_StartRemoteConfig</u>): 命令: <u>NET_DVR_GET_ALL_VEHICLE_CONTROL_LIST</u>。
- 新增远程控制功能(对应接口: <u>NET_DVR_RemoteControl</u>):
 命令: NET_DVR_VEHICLE_DELINFO_CTRL(删除设备黑名单数据库信息)、NET_DVR_BARRIERGATE_CTRL(远程控制道闸)、NET_DVR_GATELAMP_CTRL(常亮灯功能)。
- 新增出入口参数配置功能(对应接口: <u>NET_DVR_GetDeviceConfig</u> 和 <u>NET_DVR_SetDeviceConfig</u>): 命令: <u>NET_DVR_GET_ENTRANCE_PARAMCFG</u>、<u>NET_DVR_SET_ENTRANCE_PARAMCFG</u>。
- 新增报警信息上传(对应接口: <u>NET_DVR_SetDVRMessageCallBack_V30</u>和 <u>NET_DVR_StartListen_V30</u>): NET_DVR_VEHICLE_CONTROL_LIST_DSALARM(黑白名单数据需要同步报警)、
 NET_DVR_VEHICLE_CONTROL_ALARM(黑白名单车辆报警)、NET_DVR_FIRE_ALARM(消防报警)。
- <u>NET_DVR_SNAP_ABILITY</u>(智能交通摄像机能力集)的 bySupport1 新增取值: bySupport1&0x10 表示是否支持出入口配置。
- 设备通用能力集(DEVICE_ABILITY_INFO),其中智能交通设备能力(ITDeviceAbility)扩展,新增节点: <ITCGateNum>、<ITCEntranceCfg>。

Version 4.2.8.5 (build20140317)

- 更新原因:智能交通摄像机 V3.7.0
- 新增云存储配置功能(对应接口: <u>NET_DVR_GetDeviceConfig</u>和 <u>NET_DVR_SetDeviceConfig</u>): 命令: <u>NET_DVR_GET_CLOUDSTORAGE_CFG</u>、<u>NET_DVR_SET_CLOUDSTORAGE_CFG</u>。
- 新增获取设备当前触发模式的功能(对应接口: <u>NET_DVR_GetDVRConfig</u>): <u>NET_DVR_CURTRIGGERMODE</u>。
- 新增(MPR)多帧检测触发模式: 联合体 <u>NET_ITC_TRIGGER_PARAM_UNION</u>中新增 NET_ITC_POST_MPR_PARAM, ITC_TRIGGERMODE_TYPE 新增枚举类型 ITC_POST_MPR_TYPE。
- 新增获取信号灯状态功能(对应接口: <u>NET_DVR_GetDeviceStatus</u>): 命令: <u>NET_DVR_GET_SIGNALLAMP_STATUS</u>,状态结构体: <u>NET_DVR_EXDEVDET_CFG</u>
- 新增上传报警信息类型(对应接口: <u>NET_DVR_SetDVRMessageCallBack_V30</u>和 <u>NET_DVR_StartListen_V30</u>): 信号灯异常检测报警: COMM_SIGNAL_LAMP_ABNORMAL, 对应结构体: <u>NET_DVR_SIGNALLAMP_DETCFG</u>。
- <u>NET_ITS_PICTURE_INFO</u>(抓拍图片信息)使用 1 个保留字节新增参数: byDataType(数据上传方式,支持上传云存储_URL),参数 byType 新增取值: 3-特写图、4-二值图、5-码流。
- NET DVR VEHICLE INFO(车辆信息)中 byVehicleType(车辆类型)新增取值: 4-二轮车触发、5-三轮车触发。
- <u>NET_ITS_PLATE_RESULT(</u>智能交通识别结果)中 byVehicleType(车辆类型)新增取值: 6-行人、7-二轮车、8-三轮车。
- <u>NET_ITC_PLATE_RECOG_PARAM(</u>车牌识别参数)中 dwRecogMode(识别类型)新增取值: bit8-摩托车识别、bit9-场景模式,原"微小车牌"识别类型修正为: bit10-微小车牌。
- NET ITC RADAR PARAM(雷达参数)中 byRadarType(雷达类型)新增取值: 5-安道雷(无雷达控制器)。
- 卡口视频触发模式配置扩展:
 - 1) NET ITC VTLANE PARAM(虚拟线圈触发模式车道参数)使用 2 个保留字节新增参数:
 - byLowSpeedLimit(小车低速限速)、byBigCarLowSpeedLimit(大车低速限速)。
 - 2) <u>NET_ITC_VTCOIL_INFO</u>(虚拟线圈参数)使用 2 个保留字节新增参数: byUseageType(车道用途类型)、byCarDriveDirect(车辆行驶方向)。
 - 3) <u>NET_ITC_POST_VTCOIL_PARAM</u>(卡口虚拟线圈触发参数)使用 6 个保留字节新增参数: bySpeedDetector(测速方式)、dwVioDetectType(违规检测类型)、byDebugMode(调试模式)。
- 卡口 IO 测速模式配置扩展, NET ITC SINGLE IOSPEED PARAM(单组 IO 测速参数)使用 2 个保留字节新增

- 参数: byBigCarSignSpeed(大车标志限速)、byCarSignSpeed(小车标志限速)。
- 视频电警触发模式配置扩展:
 - 1) <u>NET_ITC_VIOLATION_DETECT_PARAM</u>(违规检测参数)使用 1 个保留字节新增参数: byDriveLineSnapSen(压线灵敏度)。
 - 2) <u>NET ITC LANE VIDEO EPOLICE PARAM(</u>单个车道视频电警触发参数)使用 1 个保留字节新增参数: byEnableRadar(启用雷达测试)。
 - 3) <u>NET_ITC_SINGLE_VIDEO_DETECT_LIGHT_PARAM</u>(单组视频检测交通信号灯参数)使用 1 个保留字节新增参数: byYellowLightTime(黄灯持续时间)。
- OSD 字符叠加配置扩展:
 - 1) <u>NET_ITS_OVERLAPCFG_COND</u>(字符叠加配置条件参数)使用 1 个保留字节新增参数: byPicModeType(大小图_图片模式)。
 - 2) ITS OVERLAP ITEM TYPE (叠加字符选项)新增类型: OVERLAP_ITEM_SEATBELT(26-有无系安全带)。
 - 3) NET ITS OVERLAP SINGLE ITEM PARAM(单条字符叠加信息)使用 5 个保留字节新增参数:
 - byEnablePos(是否启用坐标显示)、wStartPosTop(起始上坐标)、wStartPosLeft(起始左坐标)。
 - 4) NET ITS OVERLAP ITEM PARAM(字符叠加参数配置)使用 7 个保留字节新增参数:
 - byParamFillZeroEnble(参数补零使能)、byPlateLeftCornerEnable(车牌小图叠加左上角使能)、
 - wStartSPicPosTop(起始上坐标)、wStartSPicPosLeft(起始左坐标)、byOsdLocate(OSD 叠加位置)。
- 10. FTP 参数配置扩展:
 - 1) NET_DVR_PICTURE_NAME(图片命名规则)中 byItemOrder 新增取值类型:
 - PICNAME_ITEM_CAR_COLOR(车身颜色)、PICNAME_ITEM_PLATE_COORDINATE(车牌坐标)、
 - PICNAME_ITEM_CAR_TYPE(车辆类型)、PICNAME_ITEM_VIOLATION_TYPE(违规类型)、PICNAME_ITEM_CUSTOM(自定义)。
 - 2) <u>NET_ITC_FTP_CFG</u>(FTP 配置)使用 33 个保留字节新增参数: byUploadPlateEnable(车牌小图是否上传)、szPicNameCustom[32](自定义图片命名)。
- 11. 图片查找扩展:
 - 1) <u>NET_DVR_FIND_PICTURE_PARAM(图片查找条件)</u>使用 13 个保留字节新增参数: dwTrafficType(图片检索生效项)、dwVehicleType(车辆类型)、dwIllegalType(违规检测类型)、byLaneNo(车道号)。
 - 2) <u>NET_DVR_FIND_PICTURE(</u>图片查找结果)使用 2 个保留字节新增参数: byPlateColor(车牌颜色)、byVehicleLogo(汽车品牌)。
 - 3) VCA_PLATE_COLOR(车牌颜色)新增枚举类型: VCA_GREEN_PLATE(绿色车牌)、VCA_BKAIR_PLATE(民航黑色车牌)、VCA_OTHER(其他)。
 - 4) VLR VEHICLE CLASS(汽车品牌)新增枚举类型: 15~62。
- NET DVR COMPRESSION INFO V30(码流压缩参数)中 byResolution(分辨率)新增取值: 60-2752*2208。
- <u>NET_DVR_SNAP_ABILITY</u>(智能交通摄像机能力集),使用 2 个保留字节新增参数: byRelayNum(支持继电器的个数)、bySupport1(设备能力扩展,视频触发优化、DDNS 配置、获取当前触发模式等能力),参数 bySupport 新增能力取值: bySupport&0x80 表示是否支持云存储功能。
- 设备通用能力集(DEVICE ABILITY INFO), 其中智能交通设备能力(ITDeviceAbility)扩展, 节点<ITCAbility>:
 - 1) 新增子节点<ParamFillZero>、<CloudStorage>、<SignalLampDet>、<CurTriggerMode>、<ManualSnap>;
<supportMilliCheckTime>新增子节点<customSetTimeSignLen>;
<supportUploadPlate>、<picNameCustomLen>。
 - 2) <triggerMode>新增取值: postMPR; <support>新增取值: CloudStorage; <overlapType>新增取值: seatBelt; <charSize>新增取值: 128*128; <radarType>新增取值: AndaoleiWithoutCtrl; <itemOrder>新增取值: carColor,plateCoordinate,carType,violationType,custom。
- 新增错误号: 1414~1499、1600、1601

- 原有接口或者结构, V3.7 新增支持:
 - 1) 图片查找、下载: <u>NET_DVR_FindPicture</u>、<u>NET_DVR_FindNextPicture</u>、<u>NET_DVR_CloseFindPicture</u>、<u>NET_DVR_GetPicture</u>。
 - 2) DDNS 网络参数配置,对应接口: <u>NET_DVR_GetDVRConfig</u> 和 <u>NET_DVR_SetDVRConfig</u>,对应命令: NET_DVR_GET_DDNSCFG_V30、NET_DVR_SET_DDNSCFG_V30。
 - 3) ROI 区域检测,对应接口: <u>NET_DVR_GetDeviceConfig</u> 和 <u>NET_DVR_SetDeviceConfig</u>,对应命令: NET_DVR_GET_ROI_DETECT_NUM、NET_DVR_GET_ROI_DETECT、NET_DVR_SET_ROI_DETECT。
 - 4) 多码流压缩参数配置(支持三码流),对应接口: <u>NET_DVR_GetDeviceConfig</u>和 <u>NET_DVR_SetDeviceConfig</u>,对应命令: NET_DVR_GET_MULTI_STREAM_COMPRESSIONCFG、NET_DVR_SET_MULTI_STREAM_COMPRESSIONCFG。

Version 4.2.7.3 (build20131209)

- 更新原因:智能交通摄像机 V3.6.0
- 新增参数配置功能(对应接口: <u>NET_DVR_GetDVRConfig</u>和 <u>NET_DVR_SetDVRConfig</u>): <u>NET_ITC_ICRCFG(ICR</u> 切换配置)、<u>NET_ITC_EXCEPTION(</u>异常参数配置)
- 新增参数批量配置功能(对应接口: <u>NET_DVR_GetDeviceConfig_</u>和 <u>NET_DVR_SetDeviceConfig</u>): RS485 关联接入设备配置: NET_ITC_GET_RS485_ACCESSINFO、NET_ITC_SET_RS485_ACCESSINFO FTP 信息配置(扩展支持四级目录): NET_ITC_GET_FTPCFG、NET_ITC_SET_FTPCFG
- <u>NET_DVR_SNAP_ABILITY</u>使用 7 个保留字节新增参数: wSupportMultiRadar(RS485 口关联雷达能力)、bylCRPresetNum(支持的 ICR 预置点数)、bylCRTimeSlot(支持的 ICR 的时间段数)、bySupportRS485Num(支持的 RS485 口数)、byExpandRs485SupportSensor(RS485 口关联车检器能力)、byExpandRs485SupportSignalLampDet(RS485 口关联信号灯检测器能力),原有参数 bySupport 新增取值定义: bySupport&0x4、bySupport&0x8、bySupport&0x10、bySupport&0x20、bySupport&0x40。
- <u>NET_ITC_POST_SINGLEIO_PARAM</u>参数,struSingleIO[MAX_IOIN_NUM]扩展为 struSingleIO[MAX_IOIN_NUMEX],byRes[32]扩展为 byRes[360]。
- <u>NET_ITC_SINGLEIO_PARAM</u>、<u>NET_ITC_SINGLE_IOSPEED_PARAM</u>、<u>NET_ITC_LANE_PARAM</u>、 <u>NET_ITC_VTLANE_PARAM</u>、<u>NET_ITC_SINGLE_IOTL_PARAM</u>、<u>NET_ITC_EPOLICE_LANE_PARAM</u> 分别使用 1 个保留字节新增参数: byRelatedIOOutEx(关联的 IO 输出口扩展)。
- <u>NET_DVR_CAMERA_SETUPCFG</u>分别使用 3 个保留字节新增参数: wVideoDetCoefficient(视频测试系数)、byErectMethod(架设方式)。
- 设备通用能力集(DEVICE_ABILITY_INFO),其中智能交通设备能力(ITDeviceAbility),节点<ITCAbility>新增子节点: <support>、<supportMultiRadar>、<ICRPresetNum>、<ICRTimeSlot>、<expandRs485SupportSensor>、<expandRs485SupportSignalLampDet>、<videoDetCoefficient>、<erectMethod>、<ExceptionAlarmITC>、<ICRCFG>、<ITCFTP>。
- 设备软硬件能力集(DEVICE_SOFTHARDWARE_ABILITY)新增节点: <RS485>。
- 新增错误号: 1413
- 原有接口或者结构, V3.6 新增支持:
 - 1) 多网卡相关配置,对应接口: <u>NET_DVR_GetDVRConfig</u>和 <u>NET_DVR_SetDVRConfig</u>,对应命令: NET_DVR_GET_NETCFG_MULTI、NET_DVR_SET_NETCFG_MULTI、NET_DVR_GET_NETWORK_BONDING、NET_DVR_SET_NETWORK_BONDING
 - 2) 硬盘满、读写硬盘出错等异常报警信息上传,对应接口: <u>NET_DVR_SetDVRMessageCallBack_V30</u>和 NET_DVR_StartListen_V30,对应报警信息类型: COMM_ALARM_V30
 - 3) 雨刷控制,对应接口: NET DVR PTZControl Other,对应命令: WIPER PWRON

Version 4.2.5.6 (build20130808)

- 更新原因:智能交通摄像机 V3.5.0
- 新增远程配置功能(对应接口: <u>NET_DVR_GetDVRConfig_和 NET_DVR_SetDVRConfig</u>): <u>NET_DVR_CABINET_CFG</u>(机柜参数配置)、<u>NET_DVR_CALIBRATE_TIME</u>(时间校时扩展)、NET_DVR_CAMERAPARAMCFG_EX(前端参数配置扩展)。
- 新增报警布防上传信息类型(对应接口: <u>NET_DVR_SetDVRMessageCallBack_V30</u>): <u>NET_ITS_ROADINFO(</u>路口设备异常)
- 新增交通灯状态检测: <u>NET_ITC_TRAFFIC_LIGHT_COLOR</u>(常量矫正参数)、<u>NET_ITC_TRAFFIC_LIGHT_TURN</u>(常量矫正参数)
- <u>NET_DVR_STATUS_DETECTCFG</u> 使用 1 个保留字节新增参数: byEnableTrafficLightDetect(开启交通灯状态检测)。
- <u>NET_ITC_RADAR_PARAM</u>使用 10 个保留字节新增参数: wRadarSpeedValidTime(雷达速度有效时间)、fLineCorrectParam(线性矫正参数)、iConstCorrectParam(常量矫正参数),byRadarType 新增取值: 4- 雷达接 IO 扩展盒。
- NET ITC VTLANE PARAM 使用 16 个保留字节新增参数: struLine(车道线)。
- <u>NET_ITC_POST_VTCOIL_PARAM</u>使用 **17** 个保留字节新增参数: bySnapMode(抓拍模式)、struLine(右车道线)。
- <u>NET_ITC_EPOLICE_LANE_PARAM</u>使用 2 个保留字节新增参数: byRedTrafficLightChan(红灯通道号)、byYellowTrafficLightChan(黄灯通道号)。
- NET_ITC_EPOLICE_RS485_PARAM 使用 1 个保留字节新增参数: byTrafficLightSignalSrc(交通灯信号来源)。
- <u>NET_ITC_VIOLATION_DETECT_PARAM</u>使用 4 个保留字节新增参数: byChangeLaneTimes(违法变道抓拍张数)、bybanTimes(违法禁令抓拍张数)、wSnapPosFixPixel(抓拍位置最小偏移),参数 dwVioDetectType 新增违规检测类型: ITC_VIOLATION_INTERSECTION_PARK、ITC_VIOLATION_GREEN_PARK。
- <u>NET_ITC_PLATE_RECOG_PARAM</u>使用 1 个保留字节新增参数: byVehicleLogoRecog(汽车品牌识别), dwRecogMode 新增识别类型: bit8-微小车牌。
- <u>NET_DVR_FTPCFG</u>使用 1 个保留字节新增参数: byEnableAnony(启用匿名), wTopDirMode 和 wSubDirMode 新增取值: 0x6- 自定义、0x7- 违规类型、0x8- 方向、0x9- 地点。
- NET DVR SNAPENABLECFG 使用 2 个保留字节新增参数: wJpegPicSize(JPEG 图片大小)。
- NET ITC IOOUT PARAM 使用 1 个保留字节新增参数: byAutoPlateBrightness(车牌亮度自动使能闪光灯)。
- <u>NET_DVR_VEHICLE_INFO</u>使用 1 个保留字节新增参数: byVehicleLogoRecog(汽车品牌), byVehicleType 新增取值: 3- 行人触发、6- 机动车触发,byColor 新增取值: 0xff- 未进行车身颜色识别。
- <u>NET_ITS_PLATE_RESULT</u>使用 16 个保留字节新增参数: struSnapFirstPicTime(端点时间)、dwlllegalTime(违法持续时间)。
- <u>NET_DVR_CAMERA_SETUPCFG</u>使用 5 个保留字节新增参数: bySetupHeightUnit(架设高度单位)、dwSceneDis(图像下边缘位置与相机之间的水平距离)。
- NET DVR PLCCFG 使用 2 个保留字节新增参数: wPlcBrightOffSet(车牌亮度补偿灵敏度)。
- NET_DVR_PICTURE_NAME 的参数 byItemOrder 新增元素: PICNAME_ITEM_CAR_NUMBER(车辆序号)。
- <u>NET_DVR_SNAP_ABILITY</u>的参数 bySupport 新增取值: bySupport&0x2 表示是否支持扩展的校时配置结构。
- 前端参数能力集 IPC_FRONT_PARAMETER_V20 新增能力节点: <CorridorMode>、<BrightCompensate>、<ExposureSegment>;智能交通能力集 DEVICE_ABILITY_INFO 新增新增能力节点:

 - <ITClOoutParam>、 <CameraSetUpCfg>、 <PlcCfg>、 <CabinetAlarmParamCfg>。

Version 4.2.1.10 (2013-3-29)

- 智能交通摄像机 V3.4.0
- NET ITC LANE PARAM、NET ITC VTCOIL INFO 使用 1 个保留字节新增参数 byLaneType(车道类型)
- <u>NET_ITC_SINGLE_IOSPEED_PARAM</u> 使用 2 个保留字节新增参数: byLaneType(车道类型)、byBigCarSpeedLimit(大车限速)。
- NET ITS PLATE RESULT、NET DVR PLATE RESULT使用1个保留字节新增参数 byVehicleType(车辆类型)。
- NET ITC VIDEO EPOLICE PARAM 使用 1 个保留字节新增参数 byLogicJudge(闯红灯违规判断逻辑)。
- <u>NET_ITC_SINGLE_RS485_LIGHT_PARAM</u>使用 1 个保留字节新增参数 byRelatedYLightChan(黄灯关联的红绿灯检测器通道号)。
- NET ITC VIOLATION DETECT PARAM 使用 1 个保留字节新增参数 byNonDriveSnapTimes(机占非抓拍张数)
- <u>NET_ITC_VTLANE_PARAM</u>使用 2 个保留字节新增参数: byBigCarSignSpeed(大车标志限速)、byBigCarSpeedLimit(大车限速值)。
- <u>NET_ITC_EPOLICE_LANE_PARAM</u>使用 2 个保留字节新增参数: byBigCarSignSpeed(大车标志限速值)、byBigCarSpeedLimit(大车限速值)。
- <u>ITC VIOLATION DETECT TYPE</u>新增枚举类型: ITC_VIOLATION_BAN(违法禁令)。
- <u>NET_DVR_VEHICLE_INFO</u> 中参数 bylllegalType 新增取值类型: 10-机动车违反规定使用专用车道, 11-黄牌车禁限, "4-闯红灯"类型更改为违反交通灯指示。

Version 4.2.1.7 (2013-1-11)

- 智能交通摄像机 V3.3.0
- 新增布防上传的报警信息类型(对应接口: <u>NET_DVR_SetDVRMessageCallBack_V30</u>): NET_ITS_TRAFFIC_COLLECT。
- 新增远程配置功能(对应接口: <u>NET_DVR_GetDVRConfig</u> 和 <u>NET_DVR_SetDVRConfig</u>): 交通统计报警参数(<u>NET_DVR_TPS_ALARMCFG</u>)、相机架设参数(<u>NET_DVR_CAMERA_SETUPCFG</u>)、图片合成配置参(<u>NET_ITS_IMGMERGE_CFG</u>)。
- 新增批量配置功能(对应接口: <u>NET_DVR_GetDeviceConfig</u>和 <u>NET_DVR_SetDeviceConfig</u>): 命令: <u>NET_ITS_GET_OVERLAP_CFG</u>、<u>NET_ITS_SET_OVERLAP_CFG</u>。
- 新增获取智能交通摄像机能力集(对应接口: <u>NET_DVR_GetDeviceAbility</u>): 前端参数能力(IPC_FRONT_PARAMETER_V20)、智能抓拍设备能力(DEVICE_ABILITY_INFO)。
- 新增报警录像下载功能: NET DVR StartDownload。
- <u>NET_DVR_PLATE_RESULT</u>使用 2 个保留字节新增参数: wAlarmRecordID(报警录像 ID),参数 byResultType增加类型取值: 2-长录像(支持查询)。
- <u>ITC_VIOLATION_DETECT_TYPE</u>增加机占非抓拍和违法变道的枚举类型: ITC_VIOLATION_NONDRIVEWAY、ITC_VIOLATION_CHANGELANE。
- <u>NET_ITC_VIOLATION_DETECT_PARAM</u>使用 6 个保留字节增加参数: byDriveLineSnapTimes(压车道线抓拍张数)、byReverseSnapTimes(逆行抓拍张数)、wStayTime(机占非停留时间)和 wStopLineDis(电警第 2 张违规图片与停止线的最短距离)。
- ITC LANE USEAGE TYPE 增加禁止货车车道的枚举类型: ITC LANE BAN TRUCKS。
- <u>NET_ITC_LIGHT_ACCESSPARAM_UNION</u>新增视频检测信号灯参数: NET_ITC_VIDEO_DETECT_LIGHT_PARAM。
- NET_ITC_TRAFFIC_LIGHT_PARAM 的参数 bySource 增加类型取值: 2-视频检测。
- <u>NET_ITC_LANE_VIDEO_EPOLICE_PARAM</u>使用 6 个保留字节增加参数:bySensitivity(线圈灵敏度)和 byRecordEnable(闯红灯周期录像标志)、byRecordType(闯红灯录像类型)、byPreRecordTime(闯红灯录像 预录时间)、byRecordDelayTime(闯红灯录像延时时间)、byRecordTimeOut(闯红灯录像超时时间)。
- ITC SERIAL PROTOCOL 为闯红灯违规的逻辑抓拍类型枚举结构,增加类型:

- ITC_DOUBLE_COIL_PROTOCOL_MODE4、ITC_DOUBLE_COIL_PROTOCOL_MODE5、ITC DOUBLE COIL PROTOCOL MODE6 和 ITC SINGLE COIL PROTOCOL1。
- <u>NET_ITC_SERIAL_INFO</u>使用 3 个保留字节增加参数: byNormalPassProtocol(正常过车抓拍协议)、byInverseProtocol(逆行抓拍协议)和 bySpeedProtocol(超速抓拍协议)。
- <u>NET_DVR_VIDEOEFFECT</u>使用 3 个保留字节新增参数: byEnableFunc(防过曝、低照度或强光抑制使能)、byLightInhibitLevel(强光抑制等级)和 byGrayLevel(灰度值域)。
- <u>NET_DVR_WHITEBALANCE</u> 的参数 byWhiteBalanceMode 新增类型取值: 3-锁定白平衡, 4-白炽灯, 5-暖光灯, 6-自然光, **7**-日光灯。
- <u>NET_DVR_DAYNIGHT</u>使用 5 个保留字节新增参数(定时模式的起止时间以及报警输入触发状态): byBeginTimeMin、byBeginTimeSec、byEndTimeMin、byEndTimeSec 和 byAlarmTrigState。
- <u>NET_ITC_LANE_PARAM</u>使用 3 个保留字节新增参数: byOverlayDriveWay(OSD 叠加的车道号)、byCartSignSpeed(大车标志限速)和 byCartSpeedLimit(大车限速值)。
- <u>NET_ITC_EPOLICE_LANE_PARAM</u> 使用 2 个保留字节新增参数: byOverlayDriveWay(OSD 叠加的车道号)、bySerialType(车检器类型)。
- <u>NET_ITC_POST_RS485_PARAM</u>使用 2 个保留字节新增参数: byTriggerSpareMode(触发备用模式)、byFaultToleranceTime(容错时间)。
- NET ITC IOOUT PARAM 使用 1 个保留字节新增参数: byMode(闪光灯工作方式)。
- <u>NET_DVR_VEHICLE_INFO</u>的参数 bylllegalType 增加违法类型取值: 7-路口滞留, 8-机占非, 9-违法变道。
- <u>NET_DVR_SINGLE_HD</u>使用 12 个保留字节新增参数: dwStorageType(存储类型)、dwPictureCapacity(硬盘 图片容量)和 dwFreePictureSpace(剩余图片空间)。
- NET DVR SNAP ABILITY 使用 1 个保留字节新增能力参数: bySupport。
- 新增智能交通摄像机错误码: 1400~1499。

Version 4.2.1.3 (2012-12-10)

- 智能交通摄像机 V3.2.2
- 新增布防上传的报警信息类型(对应接口 <u>NET_DVR_SetDVRMessageCallBack_V30</u>): NET_ITS_PLATE_RESULT
- <u>NET_DVR_DEVICEINFO_V30</u>参数 bySupport1 新增是否支持多磁盘数、rtsp over http 以及车牌新报警信息的能力,并且使用 2 个保留字节增加参数 byMultiStream、byMultiStreamProto表示多码流能力。
- <u>NET_DVR_SETUPALARM_PARAM</u>使用 1 个保留字节增加参数 byAlarmInfoType,支持选择智能交通摄像机上传的报警信息类型。
- <u>NET_DVR_VEHICLE_INFO</u>使用 16 个保留字节增加数组参数 byCustomInfo[16],上传自定义信息,并且 byIllegalType 增加违法类型: 5-压车道线、6-不按导向。

Version 4.1.8 (2012-9-28)

- 新增智能交通摄像机设备型号: iDS-2CD9121(-S)、iDS-2CD9152(-S)、DS-2CD9121(-S)、DS-2CD9152(-S)、DS-2CD9151A(-S)、DS-2CD9152(-S)。
- 新增 v3.1 及之后版本设备视频电警触发参数配置功能: <u>NET ITC VIDEO TRIGGER PARAM</u>,对应接口: NET DVR GetDeviceConfig、NET DVR SetDeviceConfig。

Version 4.1.4 (2012-4-20)

● 能力集 <u>NET_DVR_SNAP_ABILITY</u>增加能力参数,用于区分新老设备的功能差异(比如触发模式): byPreTriggerSupport、dwAbilityType、byIoSpeedGroup、byIoLightGroup、byRecogRegionType,对应接口: <u>NET_DVR_GetDeviceAbility</u>。

- 新增获取智能 IPC 设备(v3.1 及之后版本)的能力集功能: <u>NET_ITC_TRIGGERMODE_ABILITY</u>,对应接口: <u>NET_DVR_GetDeviceAbility</u>。
- 新增 V3.1 及以后版本设备支持的配置功能(对应接口: <u>NET_DVR_GetDVRConfig</u> 和 <u>NET_DVR_SetDVRConfig</u>): IO 输出配置(<u>NET_ITC_IOOUT_PARAM</u>)、触发参数配置(<u>NET_ITC_TRIGGERCFG</u>)、获取触发模式推荐参数(<u>NET_ITC_SINGLE_TRIGGERCFG</u>)、获取状态检测使能参数(<u>NET_DVR_STATUS_DETECTCFG</u>)。
- 新增状态检测上传功能 (对应接口: <u>NET_DVR_StartListen_V30</u>): <u>NET_ITC_STATUS_DETECT_RESULT</u>
- 新增布防(扩展)接口: NET_DVR_SetupAlarmChan_V41, 支持设置布防优先级。
- 抓拍机使能配置(<u>NET_DVR_SNAPENABLECFG</u>)中增加是否上传抓拍附加信息到 FTP(byUploadInfoFTP)和是否自动格式化 SD 卡(byAutoFormatSD)配置参数。
- 设备状态结构(NET_DVR_DEVICESTATECFG)中增加SD卡状态(bySDStatus)和布防等级(byFortifyLevel)。
- 增加日志类型(对应接口: <u>NET_DVR_FindDVRLog_V30</u>): MINOR_SET_TRIGGERMODE_CFG、MINOR_GET_TRIGGERMODE_CFG、MINOR_SET_IOOUT_CFG、MINOR_GET_IOOUT_CFG、MINOR_GET_TRIGGERMODE_DEFAULT、MINOR_GET_ITCSTATUS、MINOR_SET_STATUS_DETECT_CFG、MINOR_GET_STATUS_DETECT_CFG、MINOR_GET_VIDEO_TRIGGERMODE_CFG、MINOR_SET_VIDEO_TRIGGERMODE_CFG。

Version 4.0.3 (2011-3-21)

- 新增智能交通摄像机设备型号: DS-2CD966(-V)、DS-2CD986C、DS-2CD986A。
- 新增配置功能(对应接口: <u>NET DVR GetDVRConfig</u> 和 <u>NET DVR SetDVRConfig</u>): 车牌亮度补偿配置功能(<u>NET DVR PLCCFG</u>)、卡口电警参数配置功能(<u>NET DVR POSTEPOLICECFG</u>)。
- 闪光灯时控配置功能(<u>NET_DVR_FLASH_OUTCFG</u>)中新增时间段: byStartHour、byStartMinute、byEndHour、byEndMinute、byFlashLightEnable。
- 获取设备状态(NET_DVR_DEVICESTATECFG)增加获取获取车检器状态(byDetectorLinkState)。

Version 4.0.2 (2010-12-30)

- SDK 新增智能交通摄像机设备型号: DS-2CD966(-V)、DS-2CD986C、DS-2CD986A。
- ●新增配置功能(对应接口: <u>NET_DVR_GetDVRConfig</u>和 <u>NET_DVR_SetDVRConfig</u>): 车牌亮度补偿配置功能(<u>NET_DVR_PLCCFG</u>)、卡口电警参数配置功能(<u>NET_DVR_POSTEPOLICECFG</u>)。
- 闪光灯时控配置功能(<u>NET_DVR_FLASH_OUTCFG</u>)中新增时间段: byStartHour、byStartMinute、byEndHour、byEndMinute、byFlashLightEnable。
- 获取设备状态(NET DVR_DEVICESTATECFG)增加获取获取车检器状态(byDetectorLinkState)。

Version 4.0.1 (2010-9-8)

- 新增配置功能(对应接口: <u>NET_DVR_GetDVRConfig</u> 和 <u>NET_DVR_SetDVRConfig</u>): 车牌识别配置 (<u>NET_DVR_SPRCFG</u>)、获取设备状态信息(<u>NET_DVR_DEVICESTATECFG</u>)。
- 使能配置功能(<u>NET_DVR_SNAPENABLECFG</u>)新增配置信号灯同步和图像翻转(byFrameFlip、wFlipAngle、byLightSyncPower)。
- 手动触发连拍(<u>NET_DVR_ContinuousShoot</u>)。

Version 4.0.0 (2010-3-9)

- SDK 新增支持智能交通摄像机(抓拍机),设备型号: DS-2CD976、DS-977。
- 新增配置功能(对应接口: <u>NET_DVR_GetDVRConfig</u> 和 <u>NET_DVR_SetDVRConfig</u>): 前端参数配置功能 (NET_DVR_CAMERAPARAMCFG)、IO 输入配置功能(NET_DVR_IO_INCFG)、IO 输出配置功能

(<u>NET_DVR_IO_OUTCFG</u>)、闪光灯配置功能(<u>NET_DVR_FLASH_OUTCFG</u>)、红绿灯配置功能(<u>NET_DVR_LIGHTSNAPCFG</u>)、测速配置功能(<u>NET_DVR_MEASURESPEEDCFG</u>)、图像叠加配置功能(<u>NET_DVR_IMAGEOVERLAYCFG</u>)、单 IO 触发配置功能(<u>NET_DVR_SNAPCFG</u>)、虚拟线圈配置功能(<u>NET_DVR_VTPARAM</u>)、使能配置功能(<u>NET_DVR_SNAPENABLECFG</u>)。

- 新增手动触发抓拍(NET_DVR_ManualSnap)。
- 新增能力集类型: SNAPCAMERA_ABILITY,对应接口: <u>NET_DVR_GetDeviceAbility</u>。
- 新增智能交通摄像机报警上传功能(<u>NET_DVR_PLATE_RESULT</u>),对应接口:
 <u>NET_DVR_SetDVRMessageCallBack_V30</u>。

3 函数调用顺序

3.1 SDK 接口调用主要流程

图 3.1 SDK 调用主要流程

智能交通摄像机功能模块包括参数配置、抓拍结果报警和获取设备能力集等功能。该模块的所有功能都需要先进行用户注册,NET DVR Login V40 接口返回的用户 ID 号作为其他功能接口的参数。

- 抓拍结果报警:智能交通摄像机抓拍(IO 触发、视频触发、网络触发等)通过"布防"报警的方式上传,在报警回调函数中获取抓拍结果,包括抓拍图片、车牌信息等。详见 3.2 报警(布防)流程。
- 参数配置:主要完成对智能交通摄像机的基本参数的配置功能,调用的接口为 <u>NET_DVR_GetDVRConfig</u> 和 <u>NET_DVR_SetDVRConfig</u>。如果已经通过 IE 或者配套客户端软件完成配置,不需要调用这些接口再次配置。
- 网络触发报警:通过网络触发设备抓拍,调用的接口为 NET DVR ContinuousShoot。
- 获取设备能力集:通过 NET DVR GetDeviceAbility 接口获取智能交通摄像机能力信息。

调用实例代码

3.2 报警(布防)流程

图 3.2 报警布防流程

- "布防"报警方式: 是指 SDK 主动连接设备,并发起报警上传命令,设备发生报警立即发送给 SDK。
- "布防"方式需要先进行用户注册(<u>NET DVR Login V40</u>)。虚线框部分是实现报警信息上传的必要条件,主要完成相关的报警条件和处理方法的配置,参数配置的接口为 <u>NET DVR GetDVRConfig</u> 和 <u>NET DVR SetDVRConfig</u>,或者是网络触发连拍(<u>NET DVR ContinuousShoot</u>)。IO 触发、虚拟线圈触发、红绿灯触发等模式,如果参数事先已经配置完成,那么虚线框部分可以省略。接下来就是设置报警回调函数(<u>NET DVR SetDVRMessageCallBack V30</u>),调用成功后还需要设置布防(NET DVR SetupAlarmChan V41)。
- <u>NET DVR CloseAlarmChan V30</u>撤销报警上传通道,设备将不再上传报警信息。
- 抓拍机的抓拍结果报警信息(COMM_UPLOAD_PLATE_RESULT)只能通过布防方式获取,交通统计数据(COMM ITS TRAFFIC COLLECT)只能通过布防而且是一级布防才能获取。

调用实例代码

3.3 报警(监听)流程

图 3.3 报警监听流程

- "监听"报警方式: 是指 SDK 不主动发起连接设备,只是在设定的端口上监听接收设备主动上传的报警信息。
- 这个过程需要远程配置设备的报警主机地址(即 PC 机地址)和报警主机端口(即 PC 的监听端口),报警主机就在该端口上监听接收设备主动上传的报警信息。如果报警主机地址和报警主机端口已配置完成,那么"报警(监听)的流程图"中虚线框"用户注册"和"配置报警主机地址和端口"部分就可以省略,但事先没有配置,就必须调用参数配置接口(NET DVR GetDVRConfig 和 NET DVR SetDVRConfig)对设备的网络参数(NET DVR NETCFG V30)进行配置。而虚线框"配置报警条件和处理方法"部分与"布防"中的一致。对以上需要配置的参数都设置完后,调用 NET DVR StartListen V30 函数,开启 SDK 的监听端口,准备接收设备上传的报警信息。
- 该方式适用于多个设备向一台客户端上传报警,而且不需要设备登录即可完成,设备重启后不影响报 警上传:缺点是设备只支持一个报警主机地址和端口号的配置。

调用实例代码

4 函数调用实例

4.1 参数配置模块的示例代码

相关模块流程图

配置 IO 触发参数(NET_DVR_SNAPCFG)

```
#include <stdio.h>
#include <iostream>
#include "Windows.h"
#include "HCNetSDK.h"
using namespace std;
void main() {
 //-----
 // 初始化
 NET_DVR_Init();
 //设置连接时间与重连时间
  NET_DVR_SetConnectTime(2000, 1);
  NET_DVR_SetReconnect(10000, true);
 //-----
 // 注册设备
 LONG IUserID;
  NET_DVR_DEVICEINFO_V30 struDeviceInfo;
 IUserID = NET_DVR_Login_V30("192.0.0.64", 8000, "admin", "12345", &struDeviceInfo);
 if (IUserID < 0)
  {
       printf("Login error, %d\n", NET_DVR_GetLastError());
       NET_DVR_Cleanup();
       return;
 }
  int iRet;
 //获取 IO 触发参数
  DWORD dwReturnLen;
  NET_DVR_SNAPCFG struParams = {0};
  iRet = NET_DVR_GetDVRConfig(IUserID, NET_DVR_GET_SNAPCFG, struDeviceInfo.byStartChan, \
          &struParams, sizeof(NET_DVR_SNAPCFG), &dwReturnLen);
 if (!iRet)
  {
      printf("NET_DVR_GetDVRConfig NET_DVR_GET_SNAPCFG error.\n");
      NET_DVR_Logout(IUserID);
```

```
NET_DVR_Cleanup();
    return;
}
//设置 IO 触发参数
struParams.bySnapTimes = 2;
struParams. wSnapWaitTime = 1000;
struParams. wIntervalTime[0] =1000;
iRet = NET_DVR_SetDVRConfig(IUserID, NET_DVR_SET_SNAPCFG, struDeviceInfo.byStartChan, \
         &struParams, sizeof(NET_DVR_SNAPCFG));
if (!iRet)
{
    printf("NET_DVR_GetDVRConfig NET_DVR_SET_SNAPCFG error.\n");
    NET_DVR_Logout(IUserID);
    NET_DVR_Cleanup();
    return;
}
printf("Video Bitrate is %d\n", struParams.struNormHighRecordPara.dwVideoBitrate);
//注销用户
NET_DVR_Logout(IUserID);
//释放 SDK 资源
NET_DVR_Cleanup();
return;
```

4.2 抓拍图片上传示例代码

相关模块流程图

布防报警的示例代码:

```
#include <stdio.h>
#include <iostream>
#include "Windows.h"
#include "HCNetSDK.h"
using namespace std;

typedef HWND (WINAPI *PROCGETCONSOLEWINDOW)();
PROCGETCONSOLEWINDOW GetConsoleWindow;

int iNum=0;
void CALLBACK MSesGCallback(LONG ICommand, NET_DVR_ALARMER *pAlarmer, char *pAlarmInfo, DWORD dwBufLen, void*
pUser)
```

```
int i=0;
char filename[100];
FILE *fSnapPic=NULL;
FILE *fSnapPicPlate=NULL;
//以下代码仅供参考,实际应用中不建议在该回调函数中直接处理数据保存文件,
//例如可以使用消息的方式(PostMessage)在消息响应函数里进行处理。
switch (ICommand)
{
     case COMM_UPLOAD_PLATE_RESULT:
          NET_DVR_PLATE_RESULT struPlateResult={0};
         memcpy (\&struPlateResult, pAlarmInfo, size of (struPlateResult));\\
          printf("车牌号: %s\n", struPlateResult.struPlateInfo.sLicense);//车牌号
         switch(struPlateResult.struPlateInfo.byColor)//车牌颜色
               case VCA_BLUE_PLATE:
                    printf("车辆颜色: 蓝色\n");
                    break;
               case VCA_YELLOW_PLATE:
                    printf("车辆颜色: 黄色\n");
                    break;
               case VCA_WHITE_PLATE:
                    printf("车辆颜色: 白色\n");
                    break;
               case VCA_BLACK_PLATE:
                    printf("车辆颜色: 黑色\n");
                    break;
               default:
                    break;
         }
          //场景图
          if (struPlateResult.dwPicLen != 0 && struPlateResult.byResultType == 1)
               sprintf(filename,"testpic_%d.jpg",iNum);
               fSnapPic=fopen(filename,"wb");
               fwrite (struPlateResult.pBuffer1, struPlateResult.dwPicLen, 1, fSnapPic);\\
               iNum++;
               fclose(fSnapPic);
          //车牌图
```

```
if (struPlateResult.dwPicPlateLen != 0 && struPlateResult.byResultType == 1)
                                            {
                                                            sprintf(filename, "testPicPlate_%d.jpg", iNum);
                                                            fSnapPicPlate=fopen(filename,"wb");
                                                            fwrite (struPlateResult.pBuffer1, struPlateResult.dwPicLen, 1, fSnapPicPlate); \\
                                                            iNum++;
                                                            fclose(fSnapPicPlate);
                                           }
                                            //其他信息处理.....
                                            break;
                             }
                              case COMM_ITS_PLATE_RESULT:
                                             NET_ITS_PLATE_RESULT struITSPlateResult={0};
                                             memcpy (\&strulTSP lateResult, pAlarmInfo, size of (strulTSP lateResult));\\
                                             for (i=0;i<struITSPlateResult.dwPicNum;i++)
                                             {
                                                          printf("车牌号: %s\n", strulTSPlateResult.struPlateInfo.sLicense);//车牌号
                                                          switch(struITSPlateResult.struPlateInfo.byColor)//车牌颜色
                                                                       case VCA_BLUE_PLATE:
                                                                                   printf("车辆颜色: 蓝色\n");
                                                                                   break;
                                                                       case VCA YELLOW PLATE:
                                                                                   printf("车辆颜色: 黄色\n");
                                                                                   break;
                                                                       case VCA_WHITE_PLATE:
                                                                                   printf("车辆颜色: 白色\n");
                                                                                   break;
                                                                       case VCA_BLACK_PLATE:
                                                                                   printf("车辆颜色: 黑色\n");
                                                                                   break;
                                                                       default:
                                                                                   break;
                                                          }
                                                          //保存场景图
                                                          if ((stru|TSP|ateResult.struPicInfo[i].dwDataLen != 0) \&\& (stru|TSP|ateResult.struPicInfo[i].byType == 0) \&\& (struPicInfo[i].byType ==
1)||(struITSPlateResult.struPicInfo[i].byType == 2))
                                                                       sprintf(filename,"testITSpic%d_%d.jpg",iNum,i);
                                                                       fSnapPic=fopen(filename,"wb");
                                                                       fwrite(struITSPlateResult.struPicInfo[i].pBuffer, struITSPlateResult.struPicInfo[i].dwDataLen,1,fSnapPic);
                                                                       iNum++;
```

```
fclose(fSnapPic);
                  }
                  //车牌小图片
                  if ((strulTSPlateResult.struPicInfo[i].dwDataLen != 0) \& (strulTSPlateResult.struPicInfo[i].byType == 0)) \\
                      sprintf(filename,"testPicPlate%d_%d.jpg",iNum,i);
                      fSnapPicPlate=fopen(filename,"wb");
                      fSnapPicPlate);
                      iNum++;
                     fclose(fSnapPicPlate);
                  }
                  //其他信息处理.....
             }
             break;
         }
         default:
             break;
    }
    return;
}
void main()
    //-----
    //初始化
    NET_DVR_Init();
    //获取控制台窗口句柄
    HMODULE hKernel32 = GetModuleHandle("kernel32");
    GetConsoleWindow = (PROCGETCONSOLEWINDOW)GetProcAddress(hKernel32, "GetConsoleWindow");
    //设置连接时间与重连时间
    NET_DVR_SetConnectTime(2000, 1);
    NET_DVR_SetReconnect(10000, true);
    //注册设备
    LONG lUserID;
    NET_DVR_DEVICEINFO_V30 struDeviceInfo;
    lUserID = NET_DVR_Login_V30("172.6.24.119", 8000, "admin", "12345", &struDeviceInfo);
    if (IUserID < 0)
    {
         printf("Login error, %d\n", NET_DVR_GetLastError());
         NET_DVR_Cleanup();
```

```
return;
}
//设置报警回调函数
NET_DVR_SetDVRMessageCallBack_V30(MSesGCallback, NULL);
//启用布防
NET_DVR_SETUPALARM_PARAM struSetupParam={0};
struSetupParam.dwSize=sizeof(NET_DVR_SETUPALARM_PARAM);
//上传报警信息类型: 0- 老报警信息(NET DVR PLATE RESULT), 1- 新报警信息(NET ITS PLATE RESULT)
struSetupParam.byAlarmInfoType=1;
LONG | Handle = NET_DVR_SetupAlarmChan_V41(IUserID,&struSetupParam);
if (IHandle < 0)
{
    printf("NET_DVR_SetupAlarmChan_V41 error, %d\n", NET_DVR_GetLastError());
    NET DVR Logout(IUserID);
    NET_DVR_Cleanup();
    return;
}
//-----
//启动预览
LONG IRealPlayHandle;
HWND hWnd = GetConsoleWindow();
                                //获取窗口句柄
NET_DVR_PREVIEWINFO struPlayInfo = {0};
                             //需要 SDK 解码时句柄设为有效值,仅取流不解码时可为空(设置回调函数)
struPlayInfo.hPlayWnd = hWnd;
                              //预览通道号
struPlayInfo.lChannel
                      = 1;
struPlayInfo.dwStreamType = 0;  //0-主码流,1-子码流,2-码流 3,3-码流 4,以此类推
struPlayInfo.dwLinkMode = 0; //0- TCP 方式, 1- UDP 方式, 2- 多播方式, 3- RTP 方式, 4-RTP/RTSP, 5-RSTP/HTTP
                             //0- 非阻塞取流, 1- 阻塞取流
struPlayInfo.bBlocked
                      = 1;
IRealPlayHandle = NET_DVR_RealPlay_V40(IUserID, &struPlayInfo, NULL, NULL);
if (IRealPlayHandle < 0)
                           //预览失败
{
    printf("NET_DVR_RealPlay_V40 error, %d\n", NET_DVR_GetLastError());
    NET_DVR_Logout(IUserID);
    NET_DVR_Cleanup();
    return;
}
Sleep(5000);
//关闭预览
NET_DVR_StopRealPlay(IRealPlayHandle);
printf("\n");
printf("\n");
printf("\n");
```

```
//网络触发抓拍
NET_DVR_SNAPCFG struSnapCfg;
memset(&struSnapCfg, 0, sizeof(NET_DVR_SNAPCFG));
//结构体大小
struSnapCfg.dwSize = sizeof(NET_DVR_SNAPCFG);
//线圈抓拍次数,0-不抓拍,非0-连拍次数,目前最大5次
struSnapCfg.bySnapTimes = 3;
//抓拍等待时间,单位 ms,取值范围[0,60000]
struSnapCfg.wSnapWaitTime = 1000;
//连拍间隔时间,单位 ms,取值范围[67,60000]
struSnapCfg.wIntervalTime[0] = 1000;
struSnapCfg.wIntervalTime[1] = 1000;
//触发 IO 关联的车道号,取值范围[0,9]
struSnapCfg.byRelatedDriveWay = 0;
//网络触发连拍
if (!NET_DVR_ContinuousShoot(IUserID, &struSnapCfg))
    printf("NET DVR ContinuousShoot error, %d\n", NET DVR GetLastError());
    return;
}
//退出
Sleep(20000);
//撤销布防上传通道
if (!NET_DVR_CloseAlarmChan_V30(lHandle))
{
    printf("NET_DVR_CloseAlarmChan_V30 error, %d\n", NET_DVR_GetLastError());
    NET_DVR_Logout(IUserID);
    NET_DVR_Cleanup();
    return;
}
//注销用户
NET_DVR_Logout(IUserID);
//释放 SDK 资源
NET_DVR_Cleanup();
return;
```

4.3 抓拍机实时状态检测结果上传

相关模块流程图

```
#include <stdio.h>
#include <iostream>
#include "Windows.h"
#include "HCNetSDK.h"
using namespace std;
void CALLBACK MessageCallback(LONG ICommand, NET_DVR_ALARMER *pAlarmer, char *pAlarmInfo, DWORD dwBufLen, void
*pUser)
{
  int i;
  NET_ITC_STATUS_DETECT_RESULT struAlarmInfo; //状态监测结果结构体
  memcpy (\&struAlarmInfo, pAlarmInfo, size of (NET\_ITC\_STATUS\_DETECT\_RESULT));
  switch(ICommand)
  {
  case COMM_ITC_STATUS_DETECT_RESULT:
          switch (struAlarmInfo.dwStatusType)
          case 1: //IO 触发
               for (i=0; i<8; i++) //#define MAX_IOIN_NUM 8 //最大 IO 输入口个数
                {
                    if (struAlarmInfo.uStatusParam.struTrigIO.byTriggerIOIndex[i] == 1)
                         printf("IO 触发, 触发 IO 号: %d\n", i+1);
                    }
               break;
           default:
               break;
  break;
  default:
  break;
  }
void main() {
  //----
  // 初始化
  NET_DVR_Init();
```

```
//设置连接时间与重连时间
NET_DVR_SetConnectTime(2000, 1);
NET_DVR_SetReconnect(10000, true);
//-----
// 注册设备
LONG IUserID;
NET_DVR_DEVICEINFO_V30 struDeviceInfo;
IUserID = NET_DVR_Login_V30("172.0.0.100", 8000, "admin", "12345", &struDeviceInfo);
if (IUserID < 0)
{
     printf("Login error, %d\n", NET_DVR_GetLastError());
     NET_DVR_Cleanup();
     return;
//启用监听
LONG IHandle;
IHandle = NET_DVR_StartListen_V30(NULL,7200, MessageCallback, NULL);
if (IHandle < 0)
    printf("NET_DVR_StartListen_V30 error, %d\n", NET_DVR_GetLastError());
    NET_DVR_Logout(IUserID);
    NET_DVR_Cleanup();
    return;
}
Sleep(5000);
//停止监听
if (!NET_DVR_StopListen_V30(IHandle))
    printf("NET_DVR_StopListen_V30 error, %d\n", NET_DVR_GetLastError());
    NET_DVR_Logout(IUserID);
    NET_DVR_Cleanup();
    return;
}
//注销用户
NET_DVR_Logout(IUserID);
//释放 SDK 资源
NET_DVR_Cleanup();
return;
```

5 函数说明

5.1 SDK 初始化

5.1.1 初始化 SDK NET_DVR_Init

函数: BOOL NET_DVR_Init()

参数: 无

返回值: TRUE 表示成功, FALSE 表示失败。 说 明: 调用设备网络 SDK 其他函数的前提。

返回目录

5.1.2 释放 SDK 资源 NET_DVR_Cleanup

函数: BOOL NET_DVR_Cleanup()

参数: 无

返回值: TRUE 表示成功, FALSE 表示失败。

说 呀: 在结束之前最后调用。接口返回失败请调用 <u>NET DVR GetLastError</u> 获取错误码,通过错误码判

断出错原因。

返回目录

5.2SDK 本地功能

SDK 本地参数配置

5.2.1 获取 SDK 本地参数 NET_DVR_GetSDKLocalCfg

函数: BOOL NET DVR GetSDKLocalCfg(NET SDK LOCAL CFG TYPE enumType, void *lpOutBuff)

参数: [in] enumType 配置类型,不同的取值对应不同的 SDK 参数,详见表 5.1

[out] lpOutBuff 输出参数,不同的配置类型,输出参数对应不同的结构,详见表

5 1

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

表 5.1 本地参数类型

enumType 宏定义	类型值	含义	lpOutBuff 对应结构体
NET_SDK_LOCAL_CFG_TYPE_TCP_PORT_BIND	0	本地 TCP 端口绑定配置	NET DVR LOCAL TCP PORT BIND CFG
NET_SDK_LOCAL_CFG_TYPE_UDP_PORT_BIND	1	本地 UDP 端口绑定配置	NET DVR LOCAL UDP PORT BIND CFG
NET_SDK_LOCAL_CFG_TYPE_MEM_POOL	2	内存池本地配置	NET DVR LOCAL MEM POOL CFG
NET_SDK_LOCAL_CFG_TYPE_MODULE_RECV_TIMEOUT	3	按模块配置超时时间	NET_DVR_LOCAL_MODULE_RECV_TIMEOUT_CFG
NET_SDK_LOCAL_CFG_TYPE_ABILITY_PARSE	4	是否使用能力集解析库	NET DVR LOCAL ABILITY PARSE CFG
NET_SDK_LOCAL_CFG_TYPE_TALK_MODE	5	对讲模式配置	NET_DVR_LOCAL_TALK_MODE_CFG
NET_SDK_LOCAL_CFG_TYPE_CHECK_DEV	10	心跳交互间隔时间配置	NET_DVR_LOCAL_CHECK_DEV

返回目录

5.2.2 设置 SDK 本地参数 NET_DVR_SetSDKLocalCfg

函数: BOOL NET_DVR_SetSDKLocalCfg(NET_SDK_LOCAL_CFG_TYPE enumType, void* const lpInBuff)

参数: [in] enumType 配置类型,不同的取值对应不同的 SDK 参数,详见表 5.2

[in] lpInBuff 输入参数,不同的配置类型,输出参数对应不同的结构,详见表

5.2

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

表 5.2 本地参数类型

enumType 宏定义	类型值	含义	lpInBuff 对应结构体
NET_SDK_LOCAL_CFG_TYPE_TCP_PORT_BIND	0	本地 TCP 端口绑定配置	NET DVR LOCAL TCP PORT BIND CFG
NET_SDK_LOCAL_CFG_TYPE_UDP_PORT_BIND	1	本地 UDP 端口绑定配置	NET_DVR_LOCAL_UDP_PORT_BIND_CFG
NET_SDK_LOCAL_CFG_TYPE_MEM_POOL	2	内存池本地配置	NET_DVR_LOCAL_MEM_POOL_CFG
NET_SDK_LOCAL_CFG_TYPE_MODULE_RECV_TIMEOUT	3	按模块配置超时时间	NET DVR LOCAL MODULE RECV TIMEOUT CFG
NET_SDK_LOCAL_CFG_TYPE_ABILITY_PARSE	4	是否使用能力集解析库	NET_DVR_LOCAL_ABILITY_PARSE_CFG
NET_SDK_LOCAL_CFG_TYPE_TALK_MODE	5	对讲模式配置	NET DVR LOCAL TALK MODE CFG
NET_SDK_LOCAL_CFG_TYPE_CHECK_DEV	10	心跳交互间隔时间配置	NET DVR LOCAL CHECK DEV
NET_SDK_LOCAL_CFG_TYPE_CHAR_ENCODE	13	配置字符编码相关处理 回调	NET DVR LOCAL BYTE ENCODE CONVERT
NET_DVR_LOCAL_CFG_TYPE_LOG	15	日志参数配置	NET DVR LOCAL LOG CFG

返回目录

连接和接收超时时间及重连设置

5.2.3 设置网络连接超时时间和连接尝试次数 NET_DVR_SetConnectTime

函数: BOOL NET_DVR_SetConnectTime(DWORD dwWaitTime,DWORD dwTryTime)

参数: [in] dwWaitTime 超时时间,单位毫秒,取值范围[300,75000],实际最大超时时间

因系统的 connect 超时时间而不同。

[in] dwTryTimes 连接尝试次数(保留)

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u>获取错误码,通

过错误码判断出错原因。

说 明: SDK 默认建立连接的超时时间为 3 秒。SDK4.0 及以后版本中当设置的超时时间超过或低于限制

的值时接口不返回失败,将取最接近的上下限限制值作为实际的超时时间。

<u>返回目录</u>

5.2.4 设置重连功能 NET DVR SetReconnect

函数: BOOL NET_DVR_SetReconnect (DWORD dwInterval,BOOL bEnableRecon)

参数: [in] dwInterval 重连间隔,单位:毫秒

[in] bEnableRecon 是否重连,0-不重连,1-重连,参数默认值为 1

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u>获取错误码,通过错误码判断出错原因。

说 呀: 该接口可以同时控制预览、透明通道和布防的重连功能。不调用该接口时,SDK 默认启动预览、透明通道和布防的重连功能,重连时间间隔为 5 秒。

返回目录

5.2.5 设置接收超时时间 NET_DVR_SetRecvTimeOut

函数: BOOL NET_DVR_SetRecvTimeOut(DWORD nRecvTimeOut)

参数: [in] nRecvTimeOut 接收超时时间,单位毫秒,默认为 5000,最小为 3000 毫秒

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u>获取错误码,通过错误码判断出错原因。

说 呀: 该接口用于设置接收超时时间,例如预览接收实时流数据、回放下载接收录像数据、报警接收报警信息等接收超时时间。

返回目录

多网卡绑定

5.2.6 获取所有 IP,用于支持多网卡接口 NET_DVR_GetLocalIP

函数: BOOL NET_DVR_GetLocalIP(char strIP[16][16], DWORD *pValidNum, BOOL *pEnableBind)

参数: [out] strIP 存放 IP 的缓冲区,不能为空

[out] pValidNum 所有有效 IP 的数量

[out] pEnableBind 是否绑定

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u>获取错误码,通

过错误码判断出错原因。

说 明: 该接口获取客户端本地多网卡的所有 IP 地址,可以通过接口 NET_DVR_SetValidIP 选择要使用的

IP 地址。

返回目录

5.2.7 设置 IP 绑定 NET_DVR_SetValidIP

函数: BOOL NET_DVR_SetValidIP(DWORD dwIPIndex, BOOL bEnableBind)

参 数: [in] dwIPIndex 选择使用的 IP 下标,由 NET DVR GetLocalIP 获取

[in] bEnableBind 是否绑定

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

SDK 版本、状态和能力

5.2.8 获取 SDK 的版本号和 build 信息 NET_DVR_GetSDKBuildVersion

函数: DWORD NET DVR GetSDKBuildVersion()

参数:

返回值: 获取 SDK 的版本号和 build 信息。

斑 9: SDK 的版本号和 build 信息。2 个高字节表示版本号 : 25~32 位表示主版本号,17~24 位表示次版本号; 2 个低字节表示 build 信息。如 0x03000101:表示版本号为 3.0,build 号是 0101。

返回目录

5.2.9 获取当前 SDK 的状态信息 NET_DVR_GetSDKState

函数: BOOL NET_DVR_GetSDKState(LPNET_DVR_SDKSTATE pSDKState);

参数: [out] pSDKState 状态信息结构,请参见结构体: NET DVR SDKSTATE

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

<u>返回目录</u>

5.2.10 获取当前 SDK 的功能信息 NET_DVR_GetSDKAbility

函数: BOOL NET_DVR_GetSDKAbility(LPNET_DVR_SDKABL pSDKAbl)

参数: [out] pSDKAbl 功能信息,请参见结构体: NET DVR SDKABL

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

SDK 启用写日志

5.2.11 启用写日志文件 NET_DVR_SetLogToFile

函数: BOOL NET_DVR_SetLogToFile(DWORD bLogEnable,char* strLogDir,BOOL bAutoDel)

参数: [in] bLogEnable 日志的等级(默认为 0):

0-表示关闭日志,

1-表示只输出 ERROR 错误日志,

2-输出 ERROR 错误信息和 DEBUG 调试信息,

3-输出 ERROR 错误信息、DEBUG 调试信息和 INFO 普通信息等所

有信息

[in] strLogDir 日志文件的路径, windows 默认值为"C:\\SdkLog\\"; linux 默认值

"/home/sdklog/"

[in] bAutoDel 是否删除超出的文件数,默认值为 TRUE

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 呀: ● 日志文件路径必须是绝对路径,且以"\\"结尾,例如"C:\\SdkLog\\",建议用户先手动创建文件。 若未指定文件路径,则采用默认路径"C:\\SdkLog\\"。

- 可多次调用该接口创建新的日志文件,更改目录时到下一次写文件时才会使用新的目录写文件。
- bAutoDel 为 TRUE 时表示覆盖模式,日志文件个数超过 SDK 限制个数时将会自动删除超出的文件。SDK 限制个数默认为 10 个,可以调用接口 <u>NET_DVR_SetSDKLocalCfg</u>(配置类型: NET_DVR_LOCAL_CFG_TYPE_LOG)进行修改配置。

<u>返回目录</u>

异常消息回调

5.2.12 注册接收异常、重连等消息的窗口句柄或回调函数

NET_DVR_SetExceptionCallBack_V30

函 数: Windows 系统下:

BOOL NET_DVR_SetExceptionCallBack_V30 (UINT nMessage,HWND hWnd,fExceptionCallBack cbExceptionCallBack,void* pUser)

Linux 系统下:

BOOL NET_DVR_SetExceptionCallBack_V30(UINT nMessage,void* hWnd,fExceptionCallBack cbExceptionCallBack,void* pUser)

参数: [in]nMessage 消息, Linux 下该参数保留

[in]hWnd 接收异常消息的窗口句柄, Linux 下该参数保留

[in]cbExceptionCallBack 接收异常消息的回调函数,回调当前异常的相关信息

[in]pUser 用户数据

typedef void(CALLBACK* fExceptionCallBack)(DWORD dwType, LONG lUserID, LONG lHandle, void *pUser)

[out]dwType 异常或重连等消息的类型,详见表 5.3

[out]lUserID 登录 ID

[out]lHandle 出现异常的相应类型的句柄

[out]pUser 用户数据

表 5.3 异常消息类型

dwType 宏定义	宏定义值	含义		
EXCEPTION_EXCHANGE	0x8000	用户交互时异常(注册心跳超时,心跳间隔为2分钟)		
EXCEPTION_AUDIOEXCHANGE	0x8001	语音对讲异常		
EXCEPTION_ALARM	0x8002	报警异常		
EXCEPTION_PREVIEW	0x8003	网络预览异常		
EXCEPTION_SERIAL	0x8004	透明通道异常		
EXCEPTION_RECONNECT	0x8005	预览时重连		
EXCEPTION_ALARMRECONNECT	0x8006	报警时重连		
EXCEPTION_SERIALRECONNECT	0x8007	透明通道重连		
SERIAL_RECONNECTSUCCESS	0x8008	透明通道重连成功		
EXCEPTION_PLAYBACK	0x8010	回放异常		
EXCEPTION_DISKFMT	0x8011	硬盘格式化		
PREVIEW_RECONNECTSUCCESS	0x8015	预览时重连成功		
ALARM_RECONNECTSUCCESS	0x8016	报警时重连成功		
RESUME_EXCHANGE	0x8017	用户交互恢复		
NETWORK_FLOWTEST_EXCEPTION	0x8018	网络流量检测异常		

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: Windows 下该函数的 hWnd 和 cbExceptionCallBack 不能同时为 NULL,Linux 下 cbExceptionCallBack 不能设置为 NULL,否则将接收不到异常消息。

如果此结构是以回调方式反馈异常消息,那么应用程序中的异常回调函数实现如下,该函数中的参数 dwType 表示异常消息类型(见上表); IHandle 表示发生异常的相应类型的句柄。

示例代码:

//注册接收异常消息的回调函数

NET_DVR_SetExceptionCallBack_V30(WM_NULL, NULL, g_ExceptionCallBack, NULL);

//接收异常消息的回调函数的外部实现

void CALLBACK g_ExceptionCallBack(DWORD dwType, LONG lUserID, LONG lHandle, void *pUser)

{

```
char tempbuf[256];
ZeroMemory(tempbuf,256);
switch(dwType)
case EXCEPTION_AUDIOEXCHANGE:
                                     //语音对讲时网络异常
  sprintf(tempbuf,"语音对讲时网络异常!!!");
         TRACE("%s",tempbuf);
         //TODO: 关闭语音对讲
         break;
case EXCEPTION_ALARM:
                                     //报警上传时网络异常
         sprintf(tempbuf,"报警上传时网络异常!!!");
         TRACE("%s",tempbuf);
         //TODO: 关闭报警上传
         break;
                                     //网络预览时异常
case EXCEPTION_PREVIEW:
         sprintf(tempbuf,"网络预览时网络异常!!!");
         TRACE("%s",tempbuf);
         //TODO: 关闭网络预览
         break;
case EXCEPTION_RECONNECT:
                                     //预览时重连
         break;
default:
         break;
}
```

返回目录

获取错误信息

5.2.13 返回最后操作的错误码 NET_DVR_GetLastError

函数: DWORD NET_DVR_GetLastError()

参数:

返回值: 返回最后操作的错误码。详见错误码宏定义

说明: 返回值为错误码。错误码主要分为网络通讯库错误码、RTSP通讯库错误码和软硬解库错误码。

返回目录

5.2.14 返回最后操作的错误码信息 NET_DVR_GetErrorMsg

函数: char* NET_DVR_GetErrorMsg(LONG *pErrorNo) 参数: [out] pErrorNo 错误码数值的指针

返回值: 返回值为错误码信息的指针。错误码主要分为网络通讯库错误码、RTSP 通讯库错误码和软硬解

库错误码。详见错误码宏定义

说明:

返回目录

5.3 用户注册

5.3.1 激活设备 NET DVR ActivateDevice

函数: BOOL NET_DVR_ActivateDevice(char* sDVRIP, WORD wDVRPort, LPNET_DVR_ACTIVATECFG

IpActivateCfg)

参数: [in]sDVRIP 设备 IP 地址

[in]wDVRPort 设备端口,默认: 8000

[in]lpActivateCfg 激活参数,包括激活使用的初始密码,详见结构体:

NET DVR ACTIVATECFG

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通过

错误码判断出错原因。

说 明: 出厂设备需要先激活,然后再使用激活使用的初始密码登录设备。

返回目录

5.3.2 通过解析服务器, 获取设备的动态 IP 地址和端口号

NET_DVR_GetDVRIPByResolveSvr_EX

数: BOOL NET_DVR_GetDVRIPByResolveSvr_EX (char* sServerIP, WORD wServerPort, BYTE* sDVRName, WORD wDVRNameLen, BYTE* sDVRSerialNumber, WORD wDVRSerialLen, char* sGetIP, DWORD* dwPort)

参 数: [in]sServerIP 解析服务器的 IP 地址

[in]wServerPort 解析服务器的端口号,IP Server 解析服务器端口号为 7071,

HiDDNS 服务器的端口号为80

[in]sDVRName 设备名称

[in]wDVRNameLen设备名称的长度[in]sDVRSerialNumber设备的序列号[in]wDVRSerialLen设备序列号的长度

[out]sGetIP获取到的设备 IP 地址指针[out]dwPort获取到的设备端口号指针

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过

错误码判断出错原因。

说 9: 该接口中的设备名称和设备序列号不能同时为空。通过设备域名或者序列号解析出设备当前 IP 地址和端口,然后调用 NET DVR Login V40 登录设备。支持的解析服务器有 IPServer 和 hiDDNS。

<u>返回目录</u>

5.3.3 用户注册设备 NET_DVR_Login_V40

函数: LONG NET_DVR_Login_V40(LPNET_DVR_USER_LOGIN_INFO pLoginInfo, LPNET_DVR_DEVICEINFO_V40 lpDeviceInfo)

参数: [in]pLoginInfo 登录参数,包括设备地址、登录用户、密码等,详见结构体:

NET DVR USER LOGIN INFO

[out]lpDeviceInfo 设备信息(同步登录即 pLoginInfo 中 bUseAsynLogin 为 0 时有效),

详见结构体: NET DVR DEVICEINFO V40

返回值: 异步登录的状态、用户 ID 和设备信息通过 NET_DVR_USER_LOGIN_INFO 结构体中设置的回调函数(fLoginResultCallBack)返回。对于同步登录,接口返回-1 表示登录失败,其他值表示返回的用户 ID 值。用户 ID 具有唯一性,后续对设备的操作都需要通过此 ID 实现。接口返回失败请调用NET_DVR_GetLastError 获取错误码,通过错误码判断出错原因。

- 设备同时最多允许 128 个用户注册。
- SDK 支持 2048 个注册,返回 UserID 的取值范围为 0~2047。

返回目录

5.3.4 用户注销 NET_DVR_Logout

函数: BOOL NET DVR Logout(LONG IUserID)

参数: [in] IUserID 用户 ID 号,NET_DVR_Login_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

呀: 建议使用此接口实现注销功能。

返回目录

5.4 获取设备能力集

说

5.4.1 获取设备能力集 NET_DVR_GetDeviceAbility

函数: BOOL NET_DVR_GetDeviceAbility(LONG lUserID, DWORD dwAbilityType, char* pInBuf, DWORD dwInLength, char* pOutBuf, DWORD dwOutLength)

参数: [in] lUserID NET DVR Login V40 的返回值

[in] dwAbilityType能力类型,具体定义见表 5.4[in] plnBuf输入缓冲区指针,详见表 5.5

[in] dwInLength 输入缓冲区的长度

[out] pOutBuf 输出缓冲区指针,详见表 5.5 [in] dwOutLength 接收数据的缓冲区的长度

表 5.4 设备能力集类型

宏定义	宏定义值	含义
DEVICE_SOFTHARDWARE_ABILITY	0x001	设备软硬件能力
DEVICE_ENCODE_ALL_ABILITY_V20	0x008	设备所有编码能力
IPC_FRONT_PARAMETER_V20	0x009	设备前端参数
DEVICE_USER_ABILITY	0х00с	设备用户管理参数能力
DEVICE_NETAPP_ABILITY	0x00d	设备网络应用参数能力
DEVICE_VIDEOPIC_ABILITY	0x00e	设备图像参数能力
DEVICE_SERIAL_ABILITY	0x010	设备 RS232 和 RS485 串口能力
DEVICE_ABILITY_INFO	0x011	智能交通摄像机和智能终端设备能力
SNAPCAMERA_ABILITY	0x300	智能交通摄像机抓拍能力
ITC_TRIGGER_MODE_ABILITY	0x301	智能交通摄像机(V3.1 及以后版本)的触发模式能力

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

表 5.5 设备能力集描述

能力类型宏定义	能力类型说明	pInBuf	pOutBuf
DEVICE_SOFTHARDWARE_ABILITY	获取设备软硬件能力	无	设备软硬件能力 XML 描述
DEVICE_ENCODE_ALL_ABILITY_V20	获取设备所有编码能力	编码能力获取输入 XML 描述	设备所有编码能力 XML 描述
IPC_FRONT_PARAMETER_V20	获取前端参数能力	前端参数能力输入 XML 描述	前端参数能力 XML 描述
DEVICE_USER_ABILITY	获取用户管理参数能力	用户管理参数能力输入 XML 描述	设备用户管理参数能力 XML 描述
DEVICE_NETAPP_ABILITY	获取网络应用参数能力	网络应用参数能力输入 XML 描述	设备网络应用参数能力 XML 描述
DEVICE_VIDEOPIC_ABILITY	获取图像参数能力	图像参数能力输入 XML 描述	设备图像参数能力 XML 描述
DEVICE_SERIAL_ABILITY	获取 RS232 和 RS485 串口能力	串口能力获取输入 XML 描述	设备串口能力 XML 描述
DEVICE_ABILITY_INFO	设备通用能力类型,具体能 力根据发送的能力节点来区	获取安全认证配置能力集	安全认证配置能力 XML 描述 (SecurityAbility)
	分+	获取智能交通摄像机输入 XML 描述	智能交通摄像机和智能终端的 能力(ITDeviceAbility)
SNAPCAMERA_ABILITY	获取智能交通摄像机的抓拍 能力	无	NET DVR SNAP ABILITY
ITC_TRIGGER_MODE_ABILITY	获取智能交通摄像机(V3.1 及以后版本)触发模式能力	无	NET_ITC_TRIGGERMODE_ABILITY

注:能力集 XML 描述详细内容请参见《设备网络 SDK 使用手册.chm》。

5.4.2 获取设备能力集 NET_DVR_GetSTDAbility

函数: BOOL NET_DVR_GetSTDAbility(LONG lUserID, DWORD dwAbilityType, LPNET_DVR_STD_ABILITY

lpAbilityParam)

[in]lUserID 用户 ID 号,NET DVR Login V40 的返回值

[in]dwAbilityType 能力类型,具体定义见表 5.6

[in&out]lpAbilityParam 设备能力集参数(包括输入和输出参数),不同的能力集对应不同

的输入输出参数

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

数:

参

表 5.6 获取设备能力集

宏定义	宏定义值	含义	IpCondBuffer	lpOutBuffer
NET_DVR_GET_ALARMCTRL_CAPABILITIES	3146	获取报警控制能力集	NULL	<u>AlarmCtrlParam</u>

返回目录

5.5 实时预览

5.5.1 主码流动态产生一个关键帧 NET_DVR_MakeKeyFrame

函数: BOOL NET_DVR_MakeKeyFrame(LONG lUserID, DWORD lChannel) 参数: [in] lUserID NET_DVR_Login_V40 的返回值

[in] IChannel 通道号

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明: 此接口用于重置 I 帧,根据设置的预览参数(NET_DVR_CLIENTINFO)为主码流或者子码流分别调用

NET_DVR_MakeKeyFrame 或者 <u>NET_DVR_MakeKeyFrameSub</u> 实现重置 I 帧。

返回目录

5.5.2 子码流动态产生一个关键帧 NET_DVR_MakeKeyFrameSub

函数: BOOL NET_DVR_MakeKeyFrameSub(LONG IUserID, DWORD IChannel)

参数: [in] IUserID NET DVR Login V40 的返回值

[in] IChannel 通道号

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: 此接口用于重置 I 帧,根据设置的预览参数(<u>NET_DVR_CLIENTINFO</u>)为主码流或者子码流分别调用 NET_DVR_MakeKeyFrame 或者该接口实现重置 I 帧。

返回目录

5.5.3 实时预览 NET_DVR_RealPlay_V40

函数: LONG NET DVR RealPlay V40(LONG IUserID, LPNET DVR PREVIEWINFO IpPreviewInfo,

REALDATACALLBACK fRealDataCallBack_V30, void *pUser)

参数: [in] lUserID NET_DVR_Login_V40的返回值

[in] lpPreviewInfo 预览参数,包括码流类型、取流协议、通道号、预览窗口句柄等,

详见结构体: NET DVR PREVIEWINFO

[in] fRealDataCallBack_V30 码流数据回调函数

[in] pUser 用户数据

typedef void(CALLBACK *REALDATACALLBACK) (LONG IRealHandle, DWORD dwDataType, BYTE

*pBuffer, DWORD dwBufSize, void *pUser);

[out]lRealHandle 当前的预览句柄

[out]dwDataType 数据类型,详见表 5.7 [out] pBuffer 存放数据的缓冲区指针

[out]dwBufSize缓冲区大小[out]pUser用户数据

表 5.7 码流数据类型

dwDataType 宏定义	宏定义值	含义	
NET_DVR_SYSHEAD	1	系统头数据	
NET_DVR_STREAMDATA	2	流数据(包括复合流或音视频分开的视频流数据)	
NET_DVR_AUDIOSTREAMDATA	3	音频数据	

返回值: -1 表示失败,其他值作为 NET_DVR_StopRealPlay 等函数的句柄参数。接口返回失败请调用 NET_DVR_GetLastError 获取错误码,通过错误码判断出错原因。

- **说 明:** 该接口预览参数结构中可以设置当前预览操作是否阻塞(通过 bBlocked 参数设置),若设为不阻塞,表示发起与设备的连接就认为连接成功,如果发生码流接收失败、播放失败等情况以预览异常的方式通知上层。在循环播放的时候可以减短停顿的时间,与 NET_DVR_RealPlay处理一致。若设为阻塞,表示直到播放操作完成才返回成功与否。
 - 该接口中的回调函数可以置为空,这样该函数将不回调码流数据给用户,不过用户仍可以通过接口 <u>NET_DVR_SetRealDataCallBack</u> 或 <u>NET_DVR_SetStandardDataCallBack</u> 注册捕获码流数据的回调函数以捕获码流数据。
 - fRealDataCallBack_V30 回调函数中不能执行可能会占用时间较长的接口或操作,不建议调用该SDK(HCNetSDK.dll)本身的接口。
 - 客户端异常离线时,设备端对取流连接的保持时间为 10 秒。

返回目录

5.5.4 停止预览 NET_DVR_StopRealPlay

函数: LONG NET_DVR_StopRealPlay (LONG IRealHandle)

参数: [in] | RealHandle 预览句柄,NET_DVR_RealPlay_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

5.5.5 获取预览时用来解码和显示的播放库句柄 NET_DVR_GetRealPlayerIndex

函数: int NET_DVR_GetRealPlayerIndex(LONG IRealHandle)

参数: [in] | RealHandle 预览句柄,NET_DVR_RealPlay_V40 的返回值

返回值: -1 表示失败,其他值表示播放句柄。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: 用户可以通过返回的句柄自行实现播放库 SDK 提供的其他功能,详见本公司提供的软解码库函数说明《播放器 SDK 编程指南》。例如使用 PlayM4_GetBMP(LONG nPort,.....)、

PlayM4_GetJPEG(LONG nPort,......)这两个接口时,即可实现将当前预览图像以 BMP 或 JPEG 格式

抓图保存到内存中: PlayM4_GetBMP(NET_DVR_GetRealPlayerIndex(),.....)

PlayM4 GetJPEG(NET DVR GetRealPlayerIndex(),.....)

返回目录

5.6 预览时播放声音控制

5.6.1 设置声音播放模式 NET_DVR_SetAudioMode

函数: BOOL NET DVR SetAudioMode(DWORD dwMode)

参数: [in] dwMode 声音播放模式: 1-独占声卡,单路音频模式;

2-共享声卡,多路音频模式

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说 明: 不调用该接口设置声音播放模式,默认为独占播放。

返回目录

5.6.2 独占声卡模式下开启声音 NET_DVR_OpenSound

函数: BOOL NET_DVR_OpenSound(LONG | RealHandle)

参数: [in] IRealHandle NET DVR RealPlay V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 呀: 如果当前是共享模式播放,调用该接口将返回失败。以独占方式只能打开一路通道播放,即依次打开多个通道时仅打开最后一路。

返回目录

5.6.3 独占声卡模式下开启声音 NET_DVR_CloseSound

函数: BOOL NET_DVR_CloseSound()

参数: 无

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

返回目录

5.6.4 共享声卡模式下开启声音 NET_DVR_OpenSoundShare

函数: BOOL NET_DVR_OpenSoundShare(LONG | RealHandle)

参数: [in] | RealHandle NET_DVR_RealPlay_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET_DVR_GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.6.5 共享声卡模式下关闭声音 NET_DVR_CloseSoundShare

函数: BOOL NET_DVR_CloseSoundShare (LONG lRealHandle)

参数: [in] | RealHandle NET_DVR_RealPlay_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.6.6 调节播放音量 NET_DVR_Volume

函数: BOOL NET_DVR_Volume(LONG | RealHandle,WORD wVolume)

参数: [in] lRealHandle NET_DVR_RealPlay_V40 的返回值

[in] wVolume 音量,取值范围[0,0xffff]

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说 明: 该接口调节的是 PC 的音量。

返回目录

5.7 实时预览数据捕获

5.7.1 注册回调函数,捕获实时码流数据 NET_DVR_SetRealDataCallBack

函数: BOOL NET_DVR_SetRealDataCallBack(LONG | RealHandle, fRealDataCallBack cbRealDataCallBack,

DWORD dwUser)

参数: [in] | RealHandle 预览句柄, NET DVR RealPlay V40 的返回值

[in] cbRealDataCallBack 码流数据回调函数

[in] dwUser 用户数据

typedef void(CALLBACK *fRealDataCallBack)(LONG IRealHandle, DWORD dwDataType, BYTE *pBuffer,

DWORD dwBufSize,DWORD dwUser)

[out] | RealHandle 当前的预览句柄

[out] dwDataType数据类型,详见表 5.8[out] pBuffer存放数据的缓冲区指针

[out] dwBufSize缓冲区大小[out] dwUser用户数据

表 5.8 码流数据类型

dwDataType 宏定义	宏定义值	含义
NET_DVR_SYSHEAD	1	系统头数据
NET_DVR_STREAMDATA	2	流数据(包括复合流或音视频分开的视频流数据)
NET_DVR_AUDIOSTREAMDATA	3	音频数据

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: 此函数包括开始和停止用户处理 SDK 捕获的数据,当回调函数 cbRealDataCallBack 设为非 NULL 值时,表示回调和处理数据;当设为 NULL 时表示停止回调和处理数据。回调的第一个包是 40 个字节的文件头,供后续解码使用,之后回调的是压缩的码流。回调数据最大为 256K 字节。

• cbRealDataCallBack 回调函数中不能执行可能会占用时间较长的接口或操作,不建议调用该SDK(HCNetSDK.dll)本身的接口。

返回目录

5.7.2 捕获数据并保存到指定的文件中 NET_DVR_SaveRealData

函数: BOOL NET_DVR_SaveRealData(LONG | RealHandle, char *sFileName) 参数: [in] | IRealHandle NET DVR | RealPlay V40 的返回值

[in] sFileName 文件路径指针

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 呀: V5.0.3.2 或以后版本,通过该接口保存录像,文件最大限制为 1024MB,大于 1024M 时,SDK 自动新建文件进行保存,文件开始将 40 字节头自动写入,文件名命名规则为"在接口传入的文件名基础上增加数字标识(例如: *_1.mp4、*_2.mp4)"。

返回目录

5.7.3 停止数据捕获 NET_DVR_StopSaveRealData

函数: BOOL NET_DVR_StopSaveRealData(LONG IRealHandle)

参数: [in] lRealHandle NET_DVR_RealPlay_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

返回目录

5.8 预览时抓图

5.8.1 设置抓图模式 NET_DVR_SetCapturePictureMode

函数: BOOL NET_DVR_SetCapturePictureMode(DWORD dwCaptureMode)

enum tagPDC PARAM KEY{

BMP_MODE = 0, // BMP 模式 JPEG_MODE = 1 // JPEG 模式

}CAPTURE_MODE

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说 明: 调用该接口设置抓图模式后,NET_DVR_CapturePicture 可抓取相应的图片。

返回目录

5.8.2 预览时,单帧数据捕获图片并保存成文件 NET_DVR_CapturePicture

函数: BOOL NET_DVR_CapturePicture(LONG lRealHandle, char *sPicFileName)

参数: [in] IRealHandle NET_DVR_RealPlay_V40 的返回值

[in] sPicFileName 保存图象的文件路径,包含文件名。路径长度和操作系统有关,

sdk 不做限制, windows 默认路径长度小于等于 256 字节(包括

文件名在内)。

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

式为 JPEG 模式,抓取的是 JPEG 图片,保存路径后缀应为.jpg。

• 调用该接口进行抓图,实际是播放库解码抓图,要求在调用 <u>NET_DVR_RealPlay_V40</u>等接口时 传入非空的播放句柄(播放库解码显示),否则时接口会返回失败(调用次序错误)。

• 智能交通摄像机车牌抓拍请参考 3.2 报警(布防)模块流程。

返回目录

5.9 布防、撤防

设置报警等信息上传的回调函数

5.9.1 注册报警回调函数 NET DVR SetDVRMessageCallBack V31

函数: BOOL NET_DVR_SetDVRMessageCallBack_V31(MSGCallBack_V31 fMessageCallBack, void* pUser)

参数: [in]fMessageCallBack 报警信息回调函数

[in]pUser 用户数据

typedef BOOL(CALLBACK * MSGCallBack_V31)(LONG ICommand, NET_DVR_ALARMER *pAlarmer, char *pAlarmInfo, DWORD dwBufLen, void *pUser)

[out]ICommand 上传的消息类型,详见表 5.9

[out]pAlarmer 报警设备信息,详见 <u>NET_DVR_ALARMER</u>

[out]pAlarmInfo报警信息,详见表 5.10[out]dwBufLen报警信息缓存大小

[out]pUser 用户数据

表 5.9 布防报警信息类型

宏定义	宏定义值	含义
COMM_UPLOAD_PLATE_RESULT	0x2800	交通抓拍结果上传(老报警信息类型)
COMM_ITS_PLATE_RESULT	0x3050	交通抓拍结果上传(新报警信息类型)
COMM_ITS_TRAFFIC_COLLECT	0x3051	交通统计数据上传
COMM_VEHICLE_CONTROL_LIST_DSALARM	0x3058	黑白名单数据需要同步报警上传
COMM_VEHICLE_CONTROL_ALARM	0x3059	黑白名单车辆报警上传
COMM_FIRE_ALARM	0x3060	消防报警上传
COMM_ITS_RADARINFO	0x3079	雷达报警上传
COMM_SIGNAL_LAMP_ABNORMAL	0x3080	信号灯异常检测上传
COMM_ALARM_TPS_REAL_TIME	0x3081	TPS 实时过车数据上传
COMM_ALARM_TPS_STATISTICS	0x3082	TPS 统计过车数据上传
COMM_ALARM_V30	0x4000	设备普通报警信息上传
COMM_ITS_ROAD_EXCEPTION	0x4500	路口设备异常报警上传

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 呀: 该接口中回调函数的第一个参数(ICommand)和第三个参数(pAlarmInfo)是密切关联的,其 关系如表 5.10 所示。

表 5.10 报警信息结构

消息类型(ICommand)	上传内容	pAlarmInfo 对应的结构体
COMM_UPLOAD_PLATE_RESULT	交通抓拍结果(老报警信息类型)	NET DVR PLATE RESULT
COMM_ITS_PLATE_RESULT	交通抓拍结果(新报警信息类型)	NET_ITS_PLATE_RESULT
COMM_ITS_TRAFFIC_COLLECT	交通统计数据上传	NET_ITS_TRAFFIC_COLLECT
COMM_VEHICLE_CONTROL_LIST_DSALARM	黑白名单数据需要同步报警上传	NET DVR VEHICLE CONTROL LIST DSALARM
COMM_VEHICLE_CONTROL_ALARM	黑白名单车辆报警上传	NET DVR VEHICLE CONTROL ALARM
COMM_FIRE_ALARM	消防报警上传	NET_DVR_FIRE_ALARM
COMM_ITS_RADARINFO	雷达报警上传	NET_DVR_ALARM_RADARINFO
COMM_SIGNAL_LAMP_ABNORMAL	信号灯异常检测上传	NET DVR SIGNALLAMP DETCFG
COMM_ALARM_TPS_REAL_TIME	TPS 实时过车数据上传	NET_DVR_TPS_REAL_TIME_INFO
COMM_ALARM_TPS_STATISTICS	TPS 统计过车数据上传	NET_DVR_TPS_STATISTICS_INFO
COMM_ALARM_V30	设备普通报警信息	NET DVR ALARMINFO V30
COMM_ITS_ROAD_EXCEPTION	路口设备异常报警信息	NET ITS ROADINFO

- COMM_UPLOAD_PLATE_RESULT 和 COMM_ITS_PLATE_RESULT 分别对应接口 <u>NET_DVR_SetupAlarmChan_V41</u>中布防参数 byAlarmInfoType=0 和 byAlarmInfoType=1。设备是否支持新报警信息可从注册返回的能力获知,详见 <u>NET_DVR_DEVICEINFO_V30</u>结构中 bySupport1 & 0x80(表示是否支持车牌新报警信息),如果注册返回能力不支持,设备仅 支持老报警信息上传。
- COMM_UPLOAD_PLATE_RESULT: 兼容旧型号(976/986/966 等)抓拍机,一次回调只上传一张图片信息
- COMM_ITS_PLATE_RESULT:应用于违章图片组一次性上传以及合成图片上传等新功能。
- COMM ITS TRAFFIC COLLECT: 支持收集交通调度信息的设备版本,用于接收交通调度统计信息。

返回目录

布防撤防

5.9.2 建立报警上传通道,获取报警等信息 NET_DVR_SetupAlarmChan_V41

函数: LONG NET_DVR_SetupAlarmChan_V41(LONG lUserID, LPNET_DVR_SETUPALARM_PARAM lpSetupParam)

参数: [in]lUserID NET_DVR_Login_V40的返回值

[in]lpSetupParam 报警布防参数,请参见结构体: <u>NET_DVR_SETUPALARM_PARAM</u>

返回值: -1 表示失败,其他值作为 NET_DVR_CloseAlarmChan_V30 函数的句柄参数。接口返回失败请调用 NET_DVR_GetLastError 获取错误码,通过错误码判断出错原因。

返回目录

5.9.3 撤销报警上传通道 NET_DVR_CloseAlarmChan_V30

函数: BOOL NET_DVR_CloseAlarmChan_V30(LONG lAlarmHandle)

参数: [in]lAlarmHandle NET_DVR_SetupAlarmChan_V41 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

返回目录

5.10 监听报警

5.10.1 启动监听,接收设备主动上传的报警等信息 NET_DVR_StartListen_V30

函数: LONG NET_DVR_StartListen_V30(char *sLocalIP, WORD wLocalPort, MSGCallBack DataCallback, void* pUserData = NULL)

参数: [in] sLocalIP PC 机本地 IP 地址,可以置为 NULL

[in] wLocalPort PC 本地监听端口号。由用户设置,必须和设备端设置的一致

[in] DataCallback 报警信息回调函数

[in] pUserData 用户数据

typedef void(CALLBACK *MSGCallBack)(LONG ICommand,NET_DVR_ALARMER *pAlarmer,char *pAlarmInfo,DWORD dwBufLen,void *pUser)

[out] ICommand 上传的消息类型,详见表 5.11

[out] pAlarmer 报警设备信息,详见 <u>NET_DVR_ALARMER</u>

[out] pAlarmInfo报警信息,详见表 5.12[out] dwBufLen报警信息缓存大小

[out] pUser 用户数据

表 5.11 监听报警信息类型

宏定义	宏定义值	含义
COMM_ITC_STATUS_DETECT_RESULT	0x2810	实时状态检测结果上传
COMM_ITS_PLATE_RESULT	0x3050	交通抓拍结果上传(新报警信息类型)
COMM_VEHICLE_CONTROL_LIST_DSALARM	0x3058	黑白名单数据需要同步报警上传
COMM_VEHICLE_CONTROL_ALARM	0x3059	黑白名单车辆报警上传
COMM_FIRE_ALARM	0x3060	消防报警上传
COMM_SIGNAL_LAMP_ABNORMAL	0x3080	信号灯异常检测上传
COMM_ALARM_TPS_REAL_TIME	0x3081	TPS 实时过车数据上传
COMM_ALARM_TPS_STATISTICS	0x3082	TPS 统计过车数据上传
COMM_ALARM_V30	0x4000	设备普通报警信息上传
COMM_ITS_ROAD_EXCEPTION	0x4500	路口设备异常报警上传

- 返回值: -1 表示失败,其他值作为 NET_DVR_CloseAlarmChan_V30 函数的句柄参数。接口返回失败请调用 NET_DVR_GetLastError 获取错误码,通过错误码判断出错原因。
- **说 呀**: 该接口中回调函数的第一个参数(ICommand)和第三个参数(pAlarmInfo)是密切关联的,其 关系如表 5.12 所示。
 - ▶ SDK 最大能支持 512 路监听。
 - ➤ 要使 PC 能够收到设备主动发过来的报警等信息,必须将设备的网络配置中的远程报警主机地址(struAlarmHostlpAddr)设置成 PC 机的 IP 地址(与接口中的 sLocalIP 参数一致),远程报警主机端口号(wAlarmHostlpPort)设置成 PC 机的监听端口号(与接口中的 wLocalPort 参数一致)。
 - ▶ 该接口中的回调函数优先级高于其他回调函数,即设置了该接口中的回调函数,其他回调函数将接收不到报警信息。

表 5.12 报警信息结构

消息类型(ICommand)	上传内容	pAlarmInfo 对应的结构体
COMM_ITC_STATUS_DETECT_RESULT	实时状态检测结果	NET_ITC_STATUS_DETECT_RESULT
COMM_ITS_PLATE_RESULT	交通抓拍结果(新报警信息类型)	NET_ITS_PLATE_RESULT
COMM_VEHICLE_CONTROL_LIST_DSALARM	黑白名单数据需要同步报警上传	NET DVR VEHICLE CONTROL LIST DSALARM
COMM_VEHICLE_CONTROL_ALARM	黑白名单车辆报警上传	NET_DVR_VEHICLE_CONTROL_ALARM
COMM_FIRE_ALARM	消防报警上传	NET_DVR_FIRE_ALARM
COMM_SIGNAL_LAMP_ABNORMAL	信号灯异常检测上传	NET DVR SIGNALLAMP DETCFG
COMM_ALARM_TPS_REAL_TIME	TPS 实时过车数据上传	NET DVR TPS REAL TIME INFO
COMM_ALARM_TPS_STATISTICS	TPS 统计过车数据上传	NET_DVR_TPS_STATISTICS_INFO

COMM_ALARM_V30	设备普通报警信息	NET_DVR_ALARMINFO_V30
COMM_ITS_ROAD_EXCEPTION	路口设备异常报警信息	NET_ITS_ROADINFO

返回目录

5.10.2 停止监听(支持多线程)NET_DVR_StopListen_V30

函数: BOOL NET_DVR_StopListen_V30(LONG | ListenHandle)

参数: [in] IListenHandle 监听句柄,NET_DVR_StartListen_V30 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.11 远程参数配置

通用参数配置

5.11.1 获取设备的配置信息 NET_DVR_GetDVRConfig

函数: BOOL NET_DVR_GetDVRConfig(LONG lUserID, DWORD dwCommand,LONG lChannel, LPVOID

IpOutBuffer, DWORD dwOutBufferSize, LPDWORD IpBytesReturned)

参数: [in] IUserID 用户ID号,NET DVR Login V40的返回值

[in] dwCommand 设备配置命令,详见表 5.13

[in] IChannel 通道号,如果命令不需要通道号,该参数无效,置为 0xFFFFFFF

即可

[out] lpOutBuffer 接收数据的缓冲指针,详见表 5.13

[in] dwOutBufferSize 接收数据的缓冲长度(以字节为单位),不能为 0

[out] lpBytesReturned 实际收到的数据长度指针,不能为 NULL

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说 明: 不同的获取功能对应不同的结构体和命令号,如表 5.13 所示。

对于智能交通摄像机,设备只有一个通道,通道号即为1。

表 5.13 通用参数获取

V					
dwCommand 宏定义	dwCommand 含义		IpOutBuffer 对应结构体	宏定义值	
NET_DVR_GET_DEVICECFG_V40	获取设备参数(扩展)	无效	NET DVR DEVICECFG V40	1100	
NET_DVR_GET_DECODERCFG_V30	获取(RS485)云台解码器参数	通道号	NET_DVR_DECODERCFG_V30	1042	
NET_DVR_GET_RS232CFG_V30	获取 RS232 串口参数	无效	NET_DVR_RS232CFG_V30	1036	
NET_DVR_GET_TIMECFG	获取时间参数	无效	NET DVR TIME	118	
NET_DVR_GET_USERCFG_V30	获取用户参数	无效	NET_DVR_USER_V30	1006	
NET_DVR_GET_SECURITY_CFG	获取安全认证配置	无效	NET_DVR_SECURITY_CFG	147	

NET_DVR_GET_EXCEPTIONCFG_V30	获取异常参数	无效	NET_DVR_EXCEPTION_V30	1034
NET_DVR_GET_NETCFG_V30	获取网络参数	无效	NET_DVR_NETCFG_V30	1000
NET_DVR_GET_NETCFG_MULTI	获取多网卡配置参数	无效	NET_DVR_NETCFG_MULTI	1161
NET_DVR_GET_NETWORK_BONDING	获取 BONDING 网卡参数	无效	NET_DVR_NETWORK_BONDING	1254
NET_DVR_GET_NTPCFG	获取网络应用参数(NTP)	无效	NET_DVR_NTPPARA	224
NET_DVR_GET_DDNSCFG_V30	获取网络应用参数(DDNS)	无效	NET_DVR_DDNSPARA_V30	1010
NET_DVR_GET_PICCFG_V30	获取图象参数	通道号	NET DVR PICCFG V30	1002
NET_DVR_GET_COMPRESSCFG_V30	获取压缩参数	通道号	NET_DVR_COMPRESSIONCFG_V30	1040
NET_DVR_GET_RECORDCFG_V40	获取录像计划参数	通道号	NET DVR RECORD V40	1008
NET_DVR_GET_SHOWSTRING_V30	获取叠加字符参数	通道号	NET DVR SHOWSTRING V30	1030
NET_DVR_GET_NFSCFG	获取 NFS (网络文件系统)参数	无效	NET_DVR_NFSCFG	230
NET_DVR_GET_ZONEANDDST	获取时区和夏时制参数	无效	NET_DVR_ZONEANDDST	128
NET_DVR_GET_VIDEOOUTCFG_V30	获取视频输出参数	无效	NET DVR VIDEOOUT V30	1028
NET_DVR_GET_STREAM_ATTACHINFO_CFG	获取码流附加信息配置	通道号	NET DVR STREAM ATTACHINFO CFG	5042
NET_DVR_GET_HDCFG	获取硬盘管理参数	无效	NET_DVR_HDCFG	1054
NET_DVR_GET_DISK_QUOTA_CFG	获取磁盘配额信息	通道号	NET DVR DISK QUOTA CFG	1278

<u>返回目录</u>

5.11.2 设置设备的配置信息 NET_DVR_SetDVRConfig

函数: BOOL NET_DVR_SetDVRConfig(LONG IUserID, DWORD dwCommand,LONG IChannel, LPVOID lpInBuffer, DWORD dwInBufferSize)

参数: [in] IUserID 用户 ID 号,NET_DVR_Login_V40 的返回值

[in] dwCommand 设备配置命令,详见表 5.14

[in] IChannel 通道号,如果命令不需要通道号,该参数无效,置为 OxFFFFFFFF

即可

[in] lpInBuffer 输入数据的缓冲指针,详见表 5.14 [in] dwInBufferSize 输入数据的缓冲长度(以字节为单位)

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说 明: 不同的获取功能对应不同的结构体和命令号,如表 5.14 所示。

表 5.14 通用参数设置

7					
dwCommand 含义	通道号	IpInBuffer 对应结构体	宏定义值		
设置设备参数(扩展)	无效	NET_DVR_DEVICECFG_V40	1101		
设置(RS485)云台解码器参数	通道号	NET_DVR_DECODERCFG_V30	1043		
设置 232 串口参数	无效	NET DVR RS232CFG V30	1037		
设置时间参数	无效	NET DVR TIME	119		
设置用户参数	无效	NET DVR USER V30	1007		
	设置设备参数(扩展) 设置(RS485)云台解码器参数 设置 232 串口参数 设置时间参数	设置设备参数(扩展) 无效 设置 (RS485)云台解码器参数 通道号 设置 232 串口参数 无效 设置时间参数 无效	设置设备参数(扩展) 无效 NET_DVR_DEVICECFG_V40 设置(RS485)云台解码器参数 通道号 NET_DVR_DECODERCFG_V30 设置 232 串口参数 无效 NET_DVR_RS232CFG_V30 设置时间参数 无效 NET_DVR_TIME		

NET_DVR_SET_SECURITY_CFG	设置安全认证配置	无效	NET_DVR_SECURITY_CFG	148
NET_DVR_SET_EXCEPTIONCFG_V30	设置异常参数	无效	NET_DVR_EXCEPTION_V30	1035
NET_DVR_SET_NETCFG_V30	设置网络参数	无效	NET_DVR_NETCFG_V30	1001
NET_DVR_SET_NETCFG_MULTI	设置多网卡配置参数	无效	NET_DVR_NETCFG_MULTI	1162
NET_DVR_SET_NETWORK_BONDING	设置 BONDING 网卡参数	无效	NET_DVR_NETWORK_BONDING	1255
NET_DVR_SET_NTPCFG	设置网络应用参数(NTP)	无效	NET_DVR_NTPPARA	225
NET_DVR_SET_DDNSCFG_V30	设置网络应用参数(DDNS)	无效	NET DVR DDNSPARA V30	1011
NET_DVR_SET_PICCFG_V30	设置图像参数	通道号	NET_DVR_PICCFG_V30	1003
NET_DVR_SET_COMPRESSCFG_V30	设置压缩参数	通道号	NET_DVR_COMPRESSIONCFG_V30	1041
NET_DVR_SET_RECORDCFG_V40	设置录像计划参数	通道号	NET DVR RECORD V40	1009
NET_DVR_SET_SHOWSTRING_V30	设置叠加字符参数	通道号	NET_DVR_SHOWSTRING_V30	1031
NET_DVR_SET_NFSCFG	设置 NFS(网络文件系统)参数	无效	NET_DVR_NFSCFG	231
NET_DVR_SET_ZONEANDDST	设置时区和夏时制参数	无效	NET DVR ZONEANDDST	129
NET_DVR_SET_VIDEOOUTCFG_V30	设置视频输出参数	无效	NET DVR VIDEOOUT V30	1029
NET_DVR_SET_STREAM_ATTACHINFO_CFG	设置码流附加信息配置	通道号	NET_DVR_STREAM_ATTACHINFO_CFG	5043
NET_DVR_SET_HDCFG	设置硬盘管理参数	无效	NET_DVR_HDCFG	1055
NET_DVR_SET_DISK_QUOTA_CFG	设置磁盘配额信息	通道号	NET DVR DISK QUOTA CFG	1279

<u>返回目录</u>

5.11.3 批量获取配置信息 NET_DVR_GetDeviceConfig

函数: BOOL NET_DVR_GetDeviceConfig(LONG IUserID, DWORD dwCommand, DWORD dwCount, LPVOID lpInBuffer,DWORD dwInBufferSize,LPVOID lpStatusList,LPVOID lpOutBuffer, DWORD dwOutBufferSize)

参数: [in] IUserID 用户ID号,NET DVR Login V40的返回值

[in] dwCommand 设备配置命令,详见表 5.15

[in] dwCount 一次要获取配置参数的个数, 0 和 1 都表示 1 个信息, 2 表示 2 个

信息,最大64个

[in] lpInBuffer 配置条件缓冲区,详见表 5.16

[in] dwInBufferSize 缓冲区长度

[out] lpStatusList 错误信息列表,和要查询的配置一一对应,例如 lpStatusList[2]就

对应 lplnBuffer[2],由用户分配内存,每个错误信息为 4 个字节,

参数值: 0- 成功,大于0-失败

[out] lpOutBuffer 设备返回的参数内容(详见表 5.16),和要查询的监控点一一对

应。如果某个监控点对应的 lpStatusList 信息为大于 0 值,对应

IpOutBuffer 的内容就是无效的

[in] dwOutBufferSize 输出缓冲区大小

返回值: TRUE 表示成功,但不代表每一个配置都成功,哪一个成功,对应查看 lpStatusList[n]值; FALSE 表示全部失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通过错误码判断出错原

因。

说 呀: 该接口是带有发送数据的批量获取配置信息的通用接口。lpInBuffer 指定需要获取的信息,lpOutBuffer 保存获取得到的 dwCount 个配置信息。不同的 dwCommand 对应不同的结构体和命令号,如表 5.16 所示。

表 5.15 参数批量获取命令

dwCommand 宏定义	含义	宏定义值
NET_DVR_GET_MULTI_STREAM_COMPRESSIONCFG	远程获取多码流压缩参数	3216
NET_DVR_GET_ROI_DETECT_NUM	获取 ROI 检测区域编号数目	3349
NET_DVR_GET_ROI_DETECT	获取 ROI 检测区域配置	3350

表 5.16 批量获取设备参数

dwCommand	lpInBuffer 对应结构体	IpOutBuffer 对应结构体		
NET_DVR_GET_MULTI_STREAM_COMPRESSIONCFG	dwCount 个	dwCount 个		
	NET DVR MULTI STREAM COMPRESSIONCEG COND	NET DVR MULTI STREAM COMPRESSIONCFG		
NET_DVR_GET_ROI_DETECT_NUM	dwCount 个	dwCount 个 <u>NET_DVR_ROI_DETECT_NUM</u>		
	NET DVR MUL STREAM CHANNEL GROUP			
NET_DVR_GET_ROI_DETECT	dwCount 个 <u>NET_DVR_ROI_DETECT_COND</u>	dwCount 个 <u>NET_DVR_ROI_DETECT_CFG</u>		

返回目录

5.11.4 批量设置配置信息 NET_DVR_SetDeviceConfig

函数: BOOL NET_DVR_SetDeviceConfig(LONG lUserID, DWORD dwCommand, DWORD dwCount, LPVOID lpInBuffer, DWORD dwInBufferSize, LPVOID lpStatusList, LPVOID lpInParamBuffer, DWORD dwInParamBufferSize)

[in] IUserID 用户 ID 号, NET_DVR_Login_V40 的返回值 数: 设备配置命令,详见表 5.17表 5.18 [in] dwCommand 一次要设置的配置参数个数,0和1都表示1个,2表示2个,最 [in] dwCount 大 64 个 [in] lpInBuffer 配置条件缓冲区,详见表 5.18 [in] dwInBufferSize 缓冲区长度 [out] IpStatusList 错误信息列表,和要设置的配置——对应,例如 lpStatusList[2]就 对应 lpInBuffer[2],由用户分配内存,每个错误信息为 4 个字节, 参数值: 0- 成功, 大于 0-失败 需要设置给设备的参数内容(详见表 5.18),和 lpInBuffer ——对

[in] lpInParamBuffer 需要设置给设备的参数内容(详见表 5.18),和 lpInBuffer 一一对应。如果某个配置对应的 lpStatusList 信息为大于 0 值,表示对应的 lpInBuffer 设置失败,为 0 则设置成功

[in] dwInParamBufferSize 设置内容缓冲区大小

返回值: TRUE 表示成功,但不代表每一个配置都成功,哪一个成功,对应查看 lpStatusList[n]值; FALSE 表示全部失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明: 该接口是带有发送数据的批量设置子设备配置信息的通用接口,IpInBuffer 指定需要设置哪 dwCount 个,lpInParamBuffer 是设置 dwCount 个配置的参数信息。不同的获取功能对应不同的 结构体和命令号,如表 5.18 所示。

表 5.17 参数批量设置命令

dwCommand 宏定义	含义	宏定义值
NET_DVR_SET_MULTI_STREAM_COMPRESSIONCFG	远程设置多码流压缩参数	3217
NET_DVR_SET_ROI_DETECT	设置 ROI 检测区域配置	3351

表 5.18 批量设置设备参数

dwCommand	lpInBuffer 对应结构体	lpInParamBuffer 对应结构体
NET_DVR_SET_MULTI_STREAM_COMPRESSIONCFG	dwCount 个	dwCount 个
	NET DVR MULTI STREAM COMPRESSIONCEG COND	NET DVR MULTI STREAM COMPRESSIONCFG
NET_DVR_SET_ROI_DETECT	dwCount 个 <u>NET_DVR_ROI_DETECT_COND</u>	dwCount 个 <u>NET_DVR_ROI_DETECT_CFG</u>

返回目录

抓拍参数配置

5.11.5 获取设备的配置信息 NET_DVR_GetDVRConfig

数: 函 BOOL NET_DVR_GetDVRConfig(LONG IUserID, DWORD dwCommand,LONG IChannel, LPVOID IpOutBuffer, DWORD dwOutBufferSize, LPDWORD IpBytesReturned)

数: [in] IUserID 用户 ID 号,NET DVR Login V40 的返回值

> 设备配置命令,详见表 5.19 [in] dwCommand

[in] IChannel 通道号,如果命令不需要通道号,该参数无效,置为 Oxffffffff

即可

接收数据的缓冲指针,详见表 5.19 [out] IpOutBuffer

[in] dwOutBufferSize 接收数据的缓冲长度(以字节为单位),不能为0

实际收到的数据长度指针,不能为 NULL [out] lpBytesReturned

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说 明: 不同的获取功能对应不同的结构体和命令号,如表 5.19 所示。

- 对于智能交通摄像机,设备只有一个通道,通道号即为1。
- 当命令为 NET ITC GET TRIGGERCFG 或 NET ITC GET TRIGGER DEFAULTCFG 时,IChannel 有效, 0表示获取当前启用的触发模式参数,其他值详见 ITC TRIGGERMODE TYPE。
- 设备支持的 IO 输入输出口个数、单 IO 触发组、红绿灯模式组数、测速模式组数、支持的触发 模式通过能力集获取(NET DVR GetDeviceAbility)。

表 5.19 ITC 参数获取

dwCommand 宏定义	dwCommand 含义	通道号	lpOutBuffer 对应结构体	宏定义值
NET_DVR_GET_FTPCFG	获取 FTP 上传参数	无效	NET_DVR_FTPCFG	134
NET_DVR_GET_CCDPARAMCFG	获取前端 CCD 参数	通道号	NET_DVR_CAMERAPARAMCFG	1067

NET_DVR_GET_IOINCFG	获取 IO 输入参数	IO 输入口号,从1开始	NET_DVR_IO_INCFG	1070
NET_DVR_GET_IOOUTCFG	获取 IO 输出参数	IO 输出口号,从1开始	NET_DVR_IO_OUTCFG	1072
NET_DVR_GET_FLASHCFG	获取闪光灯参数	IO 输出口号,从1开始	NET_DVR_FLASH_OUTCFG	1074
NET_DVR_GET_LIGHTSNAPCFG	获取红绿灯功能参数	红绿灯组号,从1开始	NET_DVR_LIGHTSNAPCFG	1076
NET_DVR_GET_MEASURESPEEDCFG	获取测速功能参数	测速模式组号,从1开始	NET_DVR_MEASURESPEEDCFG	1078
NET_DVR_GET_IMAGEOVERLAYCFG	获取图像叠加信息参数	无效	NET_DVR_IMAGEOVERLAYCFG	1080
NET_DVR_GET_SNAPCFG	获取单 IO 触发功能参数	单 IO 触发组号,从1开始	NET DVR SNAPCFG	1082
NET_DVR_GET_VTPPARAM	获取虚拟线圈参数	无效	NET_DVR_VTPARAM	1084
NET_DVR_GET_SNAPENABLECFG	获取使能参数	无效	NET_DVR_SNAPENABLECFG	1086
NET_DVR_GET_POSTEPOLICECFG	获取卡口电警参数	无效	NET DVR POSTEPOLICECFG	1088
NET_DVR_GET_JPEGCFG_V30	获取 JPEG 参数	无效	NET_DVR_JPEGCFG_V30	1090
NET_DVR_GET_SPRCFG	获取车牌识别参数	无效	NET_DVR_SPRCFG	1092
NET_DVR_GET_PLCCFG	获取车牌亮度补偿参数	无效	NET DVR PLCCFG	1094
NET_DVR_GET_DEVICESTATECFG	获取设备状态参数	无效	NET DVR DEVICESTATECFG	1096
NET_DVR_GET_CALIBRATE_TIME	获取时间校时(扩展)	无效	NET_DVR_CALIBRATE_TIME	1098
NET_ITC_GET_TRIGGERCFG	获取触发参数(3.1 及之 后版本)	触发模式	NET_ITC_TRIGGERCFG	3003
NET_ITC_GET_IOOUT_PARAM_CFG	获取 IO 输出参数(3.1 及 之后版本)	IO 输出口号,从1开始	NET ITC IOOUT PARAM	3005
NET_DVR_GET_CAMERA_SETUPCFG	获取相机架设参数	通道号	NET_DVR_CAMERA_SETUPCFG	3007
NET_ITC_GET_TRIGGER_DEFAULTCFG	获取触发模式推荐参数 (3.1 及之后版本)	触发模式	NET ITC SINGLE TRIGGERCFG	3013
NET_DVR_GET_STATUS_DETECTCFG	获取状态检测使能参数	通道号	NET_DVR_STATUS_DETECTCFG	3015
NET_DVR_GET_TPS_ALARMCFG	获取交通统计报警参数	通道号	NET DVR TPS ALARMCFG	3019
NET_DVR_GET_CABINETCFG	获取机柜参数	无效	NET_DVR_CABINET_CFG	3104
NET_ITC_GET_ICRCFG	获取 ICR 切换参数	无效	NET_ITC_ICRCFG	3115
NET_ITC_GET_EXCEPTIONCFG	获取异常参数	无效	NET_ITC_EXCEPTION	3119
NET_DVR_GET_CURTRIGGERMODE	获取设备当前触发模式	无效	NET_DVR_CURTRIGGERMODE	3130
NET_DVR_GET_GPSDATACFG	获取 GPS 参数	无效	NET_DVR_GPS_DATACFG	3131
NET_DVR_GET_CCDPARAMCFG_EX	获取前端 CCD 参数(扩展)	无效	NET DVR CAMERAPARAMCFG EX	3368
NET_ITS_GET_IMGMERGE_CFG	获取图片合成配置参数	通道号	NET ITS IMGMERGE CFG	5063

返回目录

5.11.6 设置设备的配置信息 NET_DVR_SetDVRConfig

函数: BOOL NET_DVR_SetDVRConfig(LONG lUserID, DWORD dwCommand,LONG lChannel, LPVOID

IpInBuffer, DWORD dwInBufferSize)

参数: [in] IUserID 用户ID号, NET DVR Login V40的返回值

[in] dwCommand 设备配置命令,详见表 5.20

[in] IChannel 通道号,如果命令不需要通道号,该参数无效,置为 0xFFFFFFF

即可

[in] lpInBuffer 输入数据的缓冲指针,详见表 5.20 [in] dwInBufferSize 输入数据的缓冲长度(以字节为单位)

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说 明: 不同的获取功能对应不同的结构体和命令号,如表 5.20 所示。

• 对于智能交通摄像机,设备只有一个通道,通道号即为1。

● 限速值:如果没有设置 IO 测速模式,卡口电警(<u>NET DVR POSTEPOLICECFG</u>)中限速值有效;如果设置 IO 测速模式,则测速模式(<u>NET DVR MEASURESPEEDCFG</u>)中限速值有效。

● 当命令为 NET_ITC_SET_TRIGGERCFG 时,IChannel 有效,取值详见 <u>ITC_TRIGGERMODE_TYPE</u>。

● 设备支持的 IO 输入输出口个数、单 IO 触发组、红绿灯模式组数、测速模式组数、支持的触发模式通过能力集获取(NET DVR GetDeviceAbility)。

表 5.20 ITC 参数设置

农 5.20 IIC 多效以且				
dwCommand 宏定义	dwCommand 含义	通道号	IpInBuffer 对应结构体	宏定义值
NET_DVR_SET_FTPCFG	设置 FTP 上传参数	无效	NET DVR FTPCFG	135
NET_DVR_SET_CCDPARAMCFG	设置前端 CCD 参数	通道号	NET_DVR_CAMERAPARAMCFG	1068
NET_DVR_SET_IOINCFG	设置 IO 输入参数	IO 输入口号,从1开始	NET_DVR_IO_INCFG	1071
NET_DVR_SET_IOOUTCFG	设置 IO 输出参数	IO 输出口号,从1开始	NET DVR IO OUTCFG	1073
NET_DVR_SET_FLASHCFG	设置闪光灯参数	IO 输出口号,从1开始	NET_DVR_FLASH_OUTCFG	1075
NET_DVR_SET_LIGHTSNAPCFG	设置红绿灯功能参数	红绿灯组号,从1开始	NET_DVR_LIGHTSNAPCFG	1077
NET_DVR_SET_MEASURESPEEDCFG	设置测速功能参数	测速模式组号,从1开始	NET_DVR_MEASURESPEEDCFG	1079
NET_DVR_SET_IMAGEOVERLAYCFG	设置图像叠加信息参数	无效	NET_DVR_IMAGEOVERLAYCFG	1081
NET_DVR_SET_SNAPCFG	设置单 IO 触发功能参数	单 IO 触发组号,从1开始	NET_DVR_SNAPCFG	1083
NET_DVR_SET_VTPPARAM	设置虚拟线圈参数	无效	NET_DVR_VTPARAM	1085
NET_DVR_SET_SNAPENABLECFG	设置使能参数	无效	NET DVR SNAPENABLECFG	1087
NET_DVR_SET_POSTEPOLICECFG	设置卡口电警参数	无效	NET_DVR_POSTEPOLICECFG	1089
NET_DVR_SET_JPEGCFG_V30	设置 JPEG 参数	无效	NET_DVR_JPEGCFG_V30	1091
NET_DVR_SET_SPRCFG	设置车牌识别参数	无效	NET DVR SPRCFG	1093
NET_DVR_SET_PLCCFG	设置车牌亮度补偿参数	无效	NET_DVR_PLCCFG	1095
NET_DVR_SET_CALIBRATE_TIME	设置时间校时(扩展)	无效	NET_DVR_CALIBRATE_TIME	1097
NET_ITC_SET_TRIGGERCFG	设置触发参数(3.1 及之后 版本)	触发模式	NET ITC TRIGGERCFG	3004
NET_ITC_SET_IOOUT_PARAM_CFG	设置 IO 输出参数(3.1 及 之后版本)	IO 输出口号,从1开始	NET ITC IOOUT PARAM	3006
NET_DVR_SET_CAMERA_SETUPCFG	设置相机架设参数	通道号	NET DVR CAMERA SETUPCFG	3008

NET_DVR_SET_STATUS_DETECTCFG	设置状态检测使能参数	无效	NET_DVR_STATUS_DETECTCFG	3016
NET_DVR_SET_TPS_ALARMCFG	设置交通统计报警参数	通道号	NET_DVR_TPS_ALARMCFG	3020
NET_DVR_SET_CABINETCFG	设置机柜参数	无效	NET_DVR_CABINET_CFG	3105
NET_ITC_SET_ICRCFG	设置 ICR 切换参数	无效	NET_ITC_ICRCFG	3116
NET_ITC_SET_EXCEPTIONCFG	设置异常参数	无效	NET_ITC_EXCEPTION	3120
NET_DVR_SET_GPSDATACFG	设置 GPS 参数	无效	NET_DVR_GPS_DATACFG	3132
NET_DVR_SET_CCDPARAMCFG_EX	设置前端 CCD 参数(扩展)	无效	NET DVR CAMERAPARAMCFG EX	3369
NET_ITS_SET_IMGMERGE_CFG	设置图片合成参数	通道号	NET_ITS_IMGMERGE_CFG	5064

返回目录

5.11.7 批量获取配置信息 NET_DVR_GetDeviceConfig

函数: BOOL NET_DVR_GetDeviceConfig(LONG lUserID, DWORD dwCommand, DWORD dwCount, LPVOID lpInBuffer,DWORD dwInBufferSize,LPVOID lpStatusList,LPVOID lpOutBuffer, DWORD dwOutBufferSize)

参数: [in] IUserID 用户 ID 号,NET_DVR_Login_V40 的返回值

[in] dwCommand 设备配置命令,详见表 5.21

[in] dwCount 一次要获取配置参数的个数, 0 和 1 都表示 1 个信息, 2 表示 2 个

信息,最大64个

[in] lpInBuffer 配置条件缓冲区,详见表 5.22

[in] dwInBufferSize 缓冲区长度

[out] lpStatusList 错误信息列表,和要查询的配置一一对应,例如 lpStatusList[2]就

对应 lpInBuffer[2],由用户分配内存,每个错误信息为 4 个字节,

参数值: 0- 成功, 大于 0-失败

[out] lpOutBuffer 设备返回的参数内容(详见表 5.22),和要查询的监控点一一对

应。如果某个监控点对应的 lpStatusList 信息为大于 0 值,对应

lpOutBuffer 的内容就是无效的

[in] dwOutBufferSize 输出缓冲区大小

表 5.21 ITC 参数批量获取命令

dwCommand 宏定义	含义	宏定义值
NET_ITC_GET_VIDEO_TRIGGERCFG	获取视频触发参数	3017
NET_ITC_GET_RS485_ACCESSINFO	获取 RS485 关联接入设备的信息	3117
NET_ITC_GET_FTPCFG	获取 FTP 信息	3121
NET_DVR_GET_ENTRANCE_PARAMCFG	获取出入口控制参数	3126
NET_DVR_GET_CLOUDSTORAGE_CFG	获取云存储配置参数	5058
NET_ITS_GET_OVERLAP_CFG_V50	获取字符叠加参数配置	5055
NET_DVR_GET_TRIGGEREX_CFG	获取触发模式配置	5074

返回值: TRUE 表示成功,但不代表每一个配置都成功,哪一个成功,对应查看 lpStatusList[n]值; FALSE 表示全部失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原

因。

说 呀: 该接口是带有发送数据的批量获取配置信息的通用接口。IpInBuffer 指定需要获取哪 dwCount 个信息,IpOutBuffer 保存获取得到的 dwCount 个相应配置信息。不同的获取功能对应不同的结构体和命令号,如表 5.22 所示。

表 5.22 批量获取 ITC 参数

dwCommand 宏定义	lpInBuffer 对应结构体	lpOutBuffer 对应结构体
NET_ITC_GET_VIDEO_TRIGGERCFG	dwCount 个 <u>NET_ITC_VIDEO_TRIGGER_COND</u>	dwCount 个 <u>NET_ITC_VIDEO_TRIGGER_PARAM</u>
NET_ITC_GET_RS485_ACCESSINFO	dwCount 个 NET_ITC_RS485_ACCESS_INFO_COND	dwCount 个 <u>NET_ITC_RS485_ACCESS_CFG</u>
NET_ITC_GET_FTPCFG	dwCount 个 <u>NET_ITC_FTP_TYPE_COND</u>	dwCount 个 <u>NET_ITC_FTP_CFG</u>
NET_DVR_GET_ENTRANCE_PARAMCFG	dwCount 个 <u>NET_DVR_BARRIERGATE_COND</u>	dwCount 个 <u>NET_DVR_ENTRANCE_CFG</u>
NET_DVR_GET_CLOUDSTORAGE_CFG	dwCount 个 <u>NET_DVR_CLOUDSTORAGE_COND</u>	dwCount 个 <u>NET_DVR_CLOUDSTORAGE_CFG</u>
NET_ITS_GET_OVERLAP_CFG_V50	dwCount 个 <u>NET_ITS_OVERLAPCFG_COND</u>	dwCount 个 <u>NET_ITS_OVERLAP_CFG_V50</u>
NET_DVR_GET_TRIGGEREX_CFG	dwCount 个 <u>NET_DVR_TRIGGER_COND</u>	dwCount 个 <u>NET_ITC_TRIGGERCFG</u>

返回目录

5.11.8 批量设置配置信息 NET_DVR_SetDeviceConfig

数: BOOL NET_DVR_SetDeviceConfig(LONG IUserID, DWORD dwCommand, DWORD dwCount,LPVOID IpInBuffer, DWORD dwInBufferSize, LPVOID IpStatusList, LPVOID IpInParamBuffer, DWORD dwInParamBufferSize)

参数: [in] lUserID 用户ID号, NET DVR Login V40的返回值

[in] dwCommand 设备配置命令,详见表 5.23

[in] dwCount 一次要设置的配置参数个数,0和1都表示1个,2表示2个,最

大64个

[in] lpInBuffer 配置条件缓冲区,详见表 5.24

[in] dwInBufferSize 缓冲区长度

[out] lpStatusList 错误信息列表,和要设置的配置一一对应,例如 lpStatusList[2]就

对应 lpInBuffer[2],由用户分配内存,每个错误信息为 4 个字节,

参数值: 0- 成功,大于0-失败

[in] lpInParamBuffer 需要设置给设备的参数内容(详见表 5.24),和 lpInBuffer ——对

应。如果某个配置对应的 lpStatusList 信息为大于 0 值,表示对应

的 lpInBuffer 设置失败,为 0 则设置成功

[in] dwInParamBufferSize 设置内容缓冲区大小

表 5.23 ITC 参数批量设置命令

dwCommand 宏定义	含义	宏定义值
NET_ITC_SET_VIDEO_TRIGGERCFG	设置视频触发参数	3018
NET_ITC_SET_RS485_ACCESSINFO	设置 RS485 关联接入设备的信息	3118
NET_ITC_SET_FTPCFG	设置 FTP 信息	3122
NET_DVR_SET_ENTRANCE_PARAMCFG	设置出入口控制参数	3127
NET_DVR_SET_CLOUDSTORAGE_CFG	设置云存储配置参数	5059

NET_ITS_SET_OVERLAP_CFG_V50	设置字符叠加参数配置	5056
NET_DVR_SET_TRIGGEREX_CFG	设置触发模式配置	5075

返回值: TRUE 表示成功,但不代表每一个配置都成功,哪一个成功,对应查看 lpStatusList[n]值; FALSE 表示全部失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 啰: 该接口是带有发送数据的批量设置子设备配置信息的通用接口,lplnBuffer 指定需要设置哪 dwCount 个,lplnParamBuffer 是设置 dwCount 个配置的参数信息。不同的获取功能对应不同的 结构体和命令号,如表 5.24 所示。

表 5.24 批量设置 ITC 参数

dwCommand 宏定义	lpInBuffer 对应结构体	lpInParamBuffer 对应结构体
NET_ITC_SET_VIDEO_TRIGGERCFG	dwCount 个 <u>NET_ITC_VIDEO_TRIGGER_COND</u>	dwCount 个 <u>NET_ITC_VIDEO_TRIGGER_PARAM</u>
NET_ITC_SET_RS485_ACCESSINFO	dwCount 个 <u>NET_ITC_RS485_ACCESS_INFO_COND</u>	dwCount 个 <u>NET_ITC_RS485_ACCESS_CFG</u>
NET_ITC_SET_FTPCFG	dwCount 个 <u>NET_ITC_FTP_TYPE_COND</u>	dwCount ↑ NET ITC FTP CFG
NET_DVR_SET_ENTRANCE_PARAMCFG	dwCount 个 <u>NET_DVR_BARRIERGATE_COND</u>	dwCount ↑ NET_DVR_ENTRANCE_CFG
NET_DVR_SET_CLOUDSTORAGE_CFG	dwCount 个 <u>NET_DVR_CLOUDSTORAGE_COND</u>	dwCount 个 <u>NET_DVR_CLOUDSTORAGE_CFG</u>
NET_ITS_SET_OVERLAP_CFG_V50	dwCount 个 <u>NET ITS OVERLAPCFG COND</u>	dwCount 个 NET_ITS_OVERLAP_CFG_V50
NET_DVR_SET_TRIGGEREX_CFG	dwCount 个 <u>NET_DVR_TRIGGER_COND</u>	dwCount 个 <u>NET_ITC_TRIGGERCFG</u>

返回目录

5.11.9 获取设备参数 NET_DVR_GetSTDConfig

函数: BOOL NET_DVR_GetSTDConfig(LONG IUserID, DWORD dwCommand, LPNET_DVR_STD_CONFIG IpConfigParam)

参数: [in]lUserID 用户ID号,NET_DVR_Login_V40的返回值

[in]dwCommand 设备配置命令,详见表 5.25

[in&out]lpConfigParam 配置输入输出参数,不同的配置功能对应不同的输入输出参数,

详见表 5.25

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 呀: 获取配置参数时,IpConfigParam 结构体中的 IpInBuffer 无效,设为 NULL。对于不同的配置功能(dwCommand),IpConfigParam 中 IpCondBuffer、IpOutBuffer 分别对应不同的内容,具体如表 5.25 所示。

表 5.25 获取设备参数

dwCommand 宏定义	dwCommand 含义	lpCondBuffer	IpOutBuffer	宏定义值
NET_DVR_GET_ALARMCTRL_CFG	获取报警控制	4 字节(DWORD)通道号	NET DVR ALARMCTRL CFG	3148

返回目录

5.11.10 设置设备参数 NET_DVR_SetSTDConfig

函数: BOOL NET_DVR_SetSTDConfig(LONG IUserID, DWORD dwCommand, LPNET_DVR_STD_CONFIG

IpConfigParam)

参数: [in]lUserID 用户ID号,NET_DVR_Login_V40的返回值

[in]dwCommand 设备配置命令,详见表 5.26

[in&out]lpConfigParam 配置输入输出参数,不同的配置功能对应不同的输入输出参数,

详见表 5.26

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说 明: 设置配置参数时,lpConfigParam 结构体里面的 lpOutBuffer 无效,设为 NULL。对于不同的配置功

能(dwCommand),lpConfigParam 中的 lpCondBuffer、lpInBuffer 分别对应不同的内容,具体如

表 5.26 所示。

表 5.26 设置设备参数

dwCommand 宏定义	dwCommand 含义	lpCondBuffer	lpInBuffer	宏定义值
NET_DVR_SET_ALARMCTRL_CFG	设置报警控制	4 字节(DWORD)通道号	NET DVR ALARMCTRL CFG	3147

返回目录

长连接参数配置

5.11.11 启动长连接远程配置 NET DVR StartRemoteConfig

函数: LONG NET_DVR_StartRemoteConfig(LONG lUserID, DWORD dwCommand, LPVOID lpInBuffer, DWORD dwInBufferLen, fRemoteConfigCallback cbStateCallback, LPVOID pUserData)

参数: [in] IUserID 用户ID号,NET DVR Login V40返回值

[in] dwCommand 配置命令,详见表 5.27

[in] lpInBuffer 输入参数,具体内容跟配置命令相关,详见表 5.27

[in] dwInBufferLen输入缓冲的大小[in] cbStateCallback状态回调函数[in] pUserData用户数据

typedef void(CALLBACK *fRemoteConfigCallback)(DWORD dwType, void *lpBuffer, DWORD

dwBufLen, void *pUserData)

[out] dwType 配置状态,具体取值参见表 5.29

[out] lpBuffer 存放数据的缓冲区指针,具体取值参见表 5.29

[out] dwBufLen 缓冲区大小 [out] pUserData 用户数据

返回值: TRUE 表示成功,FALSE 表示失败。获取错误码调用 NET DVR GetLastError。

斑 呀: 不同的功能对应不同的命令号(dwCommand),同时 lplnBuffer 对应不同的结构体,如表 5.27 所示。调用该接口启动长连接远程配置后,还需要调用其他接口获取或者设置相关参数,如表 5.28 所示。

表 5.27 长连接配置

dwCommand 宏定义	宏定义值	控制功能	IpInBuffer	回调函数
NET_DVR_VEHICLE_CONTROL_LIST_START	3123	设置车辆黑白名单信息	NULL	返回状态
NET_DVR_GET_ALL_VEHICLE_CONTROL_LIST	3124	获取所有车辆黑白名单 信息	NET_DVR_VEHICLE_CONTROL_COND	NULL
NET_DVR_VEHICLELIST_CTRL_START	3133	设置车辆黑白名单信息	NULL	返回状态
		(批量)		

表 5.28 后续接口调用

dwCommand 宏定义	后续接口调用
NET_DVR_VEHICLE_CONTROL_LIST_START	NET DVR SendRemoteConfig
NET_DVR_GET_ALL_VEHICLE_CONTROL_LIST	NET_DVR_GetNextRemoteConfig
NET_DVR_VEHICLELIST_CTRL_START	NET_DVR_SendRemoteConfig

表 5.29 长连接回调参数取值

dwCommand 宏定义	dwType	lpInBuffer
NET_DVR_VEHICLE_CONTROL_LIST_START	typedef enum{	NULL
	NET_SDK_CALLBACK_STATUS_SUCCESS = 1000, //成功	
	NET_SDK_CALLBACK_STATUS_PROCESSING, //处理中	
	NET_SDK_CALLBACK_STATUS_FAILED //失败	
	}NET_SDK_CALLBACK_STATUS_NORMAL;	
NET_DVR_VEHICLELIST_CTRL_START	typedef enum{	dwType 为 0 时,前 4 个字节(DWORD)的值
	NET_SDK_CALLBACK_TYPE_STATUS = 0, //回调状态值	对应状态,详见:
	NET_SDK_CALLBACK_TYPE_PROGRESS, //回调进度值	NET_SDK_CALLBACK_STATUS_NORMAL
	NET_SDK_CALLBACK_TYPE_DATA //回调数据内容	如果 lpBuffer 前 4 个字节数据值为
	}NET_SDK_CALLBACK_TYPE;	NET_SDK_CALLBACK_STATUS_FAILED 时,
		后面每4个字节表示一个错误号

返回目录

5.11.12 逐个获取查找到的结果信息 NET_DVR_GetNextRemoteConfig

数: LONG NET_DVR_GetNextRemoteConfig(LONG lHandle, void *lpOutBuff, DWORD dwOutBuffSize) 函

查找句柄,NET_DVR_StartRemoteConfig 的返回值 [in] IHandle [in] lpOutBuff

输出数据缓冲区,与 NET_DVR_StartRemoteConfig 的命令

(dwCommand) 有关, 详见表 5.31

[in] dwOutBuffSize 缓冲区长度

返回值: -1 表示失败, 其他值表示当前的获取状态等信息, 如表 5.30 所示。获取错误码调用

NET DVR GetLastError。

参数:

表 5.30 长连接状态

宏定义	宏定义值	含义
NET_SDK_GET_NEXT_STATUS_SUCCESS	1000	成功读取到数据,处理完本次数据后需要再次调用
		NET_DVR_GetNextRemoteConfig 获取下一条数据
NET_SDK_GET_NETX_STATUS_NEED_WAIT	1001	需等待设备发送数据,继续调用 NET_DVR_GetNextRemoteConfig
NET_SDK_GET_NEXT_STATUS_FINISH	1002	数据全部取完,可调用 NET_DVR_StopRemoteConfig 结束长连接
NET_SDK_GET_NEXT_STATUS_FAILED	1003	出现异常,可调用 NET_DVR_StopRemoteConfig 结束长连接

说 明: 调用该接口获取查找结果之前,必须先调用 NET_DVR_StartRemoteConfig_得到当前的查找句柄。 此接口用于获取一条已查找到的信息,若要获取全部已查找到的信息,需要循环调用此接口。 表 5.31 长连接获取参数

dwCommand 宏定义	宏定义值	控制功能	lpOutBuff 对应结构体
NET_DVR_GET_ALL_VEHICLE_CONTROL_LIST	3124	获取所有车辆黑白名单信息	NET DVR VEHICLE CONTROL LIST INFO

返回目录

5.11.13 发送长连接数据 NET_DVR_SendRemoteConfig

函数: BOOL NET_DVR_SendRemoteConfig(LONG lHandle, DWORD dwDataType, char *pSendBuf, DWORD dwBufSize)

参数: [in] lHandle 长连接句柄,NET_DVR_StartRemoteConfig 的返回值

[in] dwDataType 数据类型,详见表 5.32

[in] pSendBuf 保存发送数据的缓冲区,与 dwDataType 有关,详见表 5.32

[in] dwBufSize 发送数据的长度

返回值: TRUE 表示成功,FALSE 表示失败。获取错误码调用 <u>NET_DVR_GetLastError</u>。

说 明: 在调用该接口之前,必须先调用 <u>NET_DVR_StartRemoteConfig</u> 获取长连接句柄。不同的数据类

型(dwDataType), pSendBuf 对应不同的结构体, 如表 5.32 所示。

表 5.32 长连接发送数据

dwCommand 宏定义	宏定义值	含义	
NET_DVR_VEHICLE_CONTROL_LIST_START	3123	设置车辆黑白名单信息长连接	
dwDataType 宏定义	宏定义值	控制功能	lpOutBuff 对应结构体
DVR_VEHICLE_CONTROL_LIST	0x1	发送车辆黑白名单数据	NET DVR VEHICLE CONTROL LIST INFO

dwCommand 宏定义	宏定义值	含义	
NET_DVR_VEHICLELIST_CTRL_START	3133	设置车辆黑白名单信息(批量)	
dwDataType 宏定义	宏定义值	含义	pSendBuf 对应结构体
ENUM_SENDDATA	0x0	发送车辆黑白名单数据	m 个(m 最大为 128)
			NET DVR VEHICLE CONTROL LIST INFO

返回目录

5.11.14 关闭长连接配置 NET_DVR_StopRemoteConfig

函数: BOOL NET_DVR_StopRemoteConfig(LONG lHandle)

参数: [in] lHandle 句柄,NET_DVR_StartRemoteConfig 的返回值返回值: TRUE 表示成功,FALSE 表示失败。获取错误码调用 <u>NET_DVR_GetLastError</u>。

说 明: 关闭长连接配置接口所创建的句柄,释放资源。

返回目录

获取设备支持的云台协议

5.11.15 获取设备支持的云台协议 NET_DVR_GetPTZProtocol

函数: BOOL NET_DVR_GetPTZProtocol(LONG lUserID, NET_DVR_PTZCFG *pPtzcfg) 参数: [in]lUserID 用户ID号,NET_DVR_Login_V40的返回值 [out]pPtzcfg 设备的云台协议,请参见 NET_DVR_PTZCFG

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说 明: 在配置前端云台协议时必须调用该接口获取当前设备支持的云台协议。

返回目录

5.12 证书管理

证书创建、删除

5.12.1 远程控制 NET_DVR_RemoteControl

函数: BOOL NET_DVR_RemoteControl(LONG lUserID, DWORD dwCommand, LPVOID lpInBuffer, DWORD

dwInBufferSize)

参数: [in]lUserID 用户 ID 号,NET_DVR_Login_V40 的返回值

[in]dwCommand 控制命令,详见表 5.33

[in]lpInBuffer 输入参数,具体内容跟控制命令相关,详见表 5.33

[in]dwInBufferSize 输入参数长度

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET_DVR_GetLastError 获取错误码,通

过错误码判断出错原因。

说明: 不同的控制功能对应不同的命令号,同时 IpInBuffer 对应不同的结构体,如表 5.33 所示。

表 5.33 远程配置命令

dwCommand 宏定义	宏定义值	控制功能	lpInBuffer 对应结构体
NET_DVR_CREATE_CERT	6138	创建证书	NET_DVR_CERT_INFO
NET_DVR_DELETE_CERT	6139	删除证书	NET_DVR_CERT_PARAM

返回目录

证书信息获取

5.12.2 批量获取配置信息 NET_DVR_GetDeviceConfig

函数: BOOL NET_DVR_GetDeviceConfig(LONG IUserID, DWORD dwCommand, DWORD dwCount, LPVOID lpInBuffer,DWORD dwInBufferSize,LPVOID lpStatusList,LPVOID lpOutBuffer, DWORD dwOutBufferSize)

参数: [in] IUserID 用户 ID 号, NET DVR Login V40 的返回值

[in] dwCommand 设备配置命令,详见表 5.34

[in] dwCount 一次要获取配置参数的个数, 0 和 1 都表示 1 个信息, 2 表示 2 个

信息,最大64个

[in] lpInBuffer 配置条件缓冲区,详见表 5.34

[in] dwInBufferSize 缓冲区长度

[out] lpStatusList 错误信息列表,和要查询的配置一一对应,例如 lpStatusList[2]就

对应 lplnBuffer[2],由用户分配内存,每个错误信息为 4 个字节,

参数值: 0 或者 1 表示成功,其他值为失败对应的错误号

[out] lpOutBuffer 设备返回的参数内容(详见表 5.34),和要查询的监控点一一对

应。如果某个监控点对应的 lpStatusList 信息为大于 0 值,对应

IpOutBuffer 的内容就是无效的

[in] dwOutBufferSize 输出缓冲区大小

返回值: TRUE 表示成功,但不代表每一个配置都成功,哪一个成功,对应查看 lpStatusList[n]值; FALSE 表示全部失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u>获取错误码,通过错误码判断出错原 因。

说 啰: 该接口是带有发送数据的批量获取配置信息的通用接口。IpInBuffer 指定需要获取的信息,IpOutBuffer 保存获取得到的 dwCount 个配置信息。不同的 dwCommand 对应不同的结构体和命令号,如表 5.34 所示。

表 5.34 参数批量获取命令

dwCommand 宏定义	含义	lpInBuffer 对应结构体	lpOutBuffer 对应结构体	宏定义值
NET_DVR_GET_CERT	获取证书信息	dwCount 个 NET_DVR_CERT_PARAM	dwCount 个 <u>NET_DVR_CERT_INFO</u>	6142

返回目录

证书上传下载

5.12.3 上传文件 NET_DVR_UploadFile_V40

数: LONG NET_DVR_UploadFile_V40(LONG IUserID, DWORD dwUploadType, LPVOID lpInBuffer, DWORD dwInBufferSize, char *sFileName, LPVOID lpOutBuffer, DWORD dwOutBufferSize)

参数: [in] lUserID NET_DVR_Login_V40的返回值

[in] dwUploadType 上传文件类型,详见表 5.35

[in] lpInBuffer 不同的 dwUploadType,输入参数不同,详见表 5.35

[in] dwInBufferSize 输入缓冲区大小

[in] sFileName 上传文件的绝对路径(包括文件名)

[out] lpOutBuffer 输出参数,不同的 dwUploadType,输出参数不同,详见表 5.35

[in] dwInBufferSize 输出缓冲区大小

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

表 5.35 文件上传类型

dwUploadType 宏定义	宏定义值	含义	lpInBuffer 对应结构体	lpOutBuffer 对应结构体
UPLOAD_CERTIFICATE	1	上传证书(WIFI、HTTPS 等)	NET DVR CERT PARAM	NULL

返回目录

5.12.4 获取文件上传的进度和状态 NET_DVR_GetUploadState

函数: LONG NET_DVR_GetUploadState(LONG lUploadHandle,LPDWORD pProgress)

参数: [in] lUploadHandle 文件上传的句柄,NET_DVR_UploadFile 的返回值

[out] pProgress 返回的进度值,取值范围: 0~100

返回值: -1 表示函数调用失败,其他为上传的状态值: 1- 上传成功; 2- 正在上传; 3- 上传失败; 4- 网络断开,状态未知; 6- 硬盘错误; 7- 无审讯文件存放盘; 8- 容量不足; 9- 设备资源不足; 10-

文件个数超过 40; 19- 文件格式不正确; 20- 文件内容不正确。接口返回失败请调用

NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

说明:

返回目录

5.12.5 停止文件上传 NET_DVR_UploadClose

函数: BOOL NET_DVR_UploadClose(LONG lUploadHandle)

参数: [in] IUploadHandle 文件上传的句柄,NET_DVR_UploadFile 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.12.6 开始下载文件 NET_DVR_StartDownload

函数: LONG NET_DVR_StartDownload(LONG lUserID, DWORD dwDownloadType, LPVOID lpInBuffer, DWORD dwInBufferSize, char const *sFileName)

参数: [in] IUserID 用户 ID, NET DVR Login V40 的返回值

[in] dwDownloadType 下载文件类型,详见表 5.36

[in] lpInBuffer 输入参数。不同的 dwUploadType,输入参数不同,详见表 5.36

[in] dwInBufferSize 输入缓冲区大小

[in] sFileName 下载文件的保存路径(绝对路径,包括文件名)

返回值: -1 表示失败,其他值作为 NET_DVR_StopDownload 和 NET_DVR_GetDownloadState 等函数的参数。

接口返回失败请调用 NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

说明:

表 5.36 文件下载类型

dwDownloadType	宏定义值	含义	IpInBuffer 对应结构体
NET_SDK_DOWNLOAD_CERT	0	下载证书	NET DVR CERT PARAM

返回目录

5.12.7 获取文件下载的进度和状态 NET DVR GetDownloadState

函数: LONG NET_DVR_GetDownloadState(LONG IDownloadHandle, LPDWORD pProgress) 参数: [in] IDownloadHandle 文件下载的句柄,NET_DVR_StartDownload 的返回值

[out] pProgress 返回的进度值,取值范围: 0~100

返回值: -1 表示函数调用失败,其他为下载的状态值: 1- 下载成功; 2- 正在下载; 3- 下载失败; 4- 网络断开,状态未知。接口返回失败请调用 <u>NET DVR GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

返回目录

5.12.8 停止文件下载 NET_DVR_StopDownload

函数: BOOL NET_DVR_StopDownload(LONG lHandle);

参数: [in] lHandle 文件下载的句柄,NET DVR StartDownload 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

返回目录

5.13 远程控制

5.13.1 远程控制 NET_DVR_RemoteControl

函数: BOOL NET_DVR_RemoteControl(LONG lUserID, DWORD dwCommand, LPVOID lpInBuffer, DWORD dwInBufferSize)

参数: [in] lUserID 用户 ID 号,NET_DVR_Login_V40 返回值

[in] dwCommand 控制命令,详见表 5.37

[in] lpInBuffer 输入参数,跟控制命令相关,详见列表

[in] dwInBufferSize 输入参数长度

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明: 不同的控制功能对应不同的命令号,同时 IpInBuffer 对应不同的结构体,如表 5.37 所示。

表 5.37 远程控制命令

dwCommand 宏定义	宏定义值	控制功能	IpInBuffer 对应结构体
NET_DVR_VEHICLE_DELINFO_CTRL	3125	删除设备内黑名单数据库信息	NET DVR VEHICLE CONTROL DELINFO
NET_DVR_BARRIERGATE_CTRL	3128	远程控制道闸	NET_DVR_BARRIERGATE_CFG
NET_DVR_GATELAMP_CTRL	3129	常亮灯功能	NET_DVR_GATELAMP_INFO

返回目录

5.14 手动触发抓拍

5.14.1 网络触发抓拍 NET_DVR_ContinuousShoot

函数: BOOL NET DVR ContinuousShoot(LONG IUserID,LPNET DVR SNAPCFG IpInter)

参数: [in] lUserID NET_DVR_Login_V40 的返回值

[in] lpInter 网络触发抓拍配置,请参见 <u>NET_DVR_SNAPCFG</u>

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明: 使用网络触发连拍接收图片,需要先对设备进行布防(NET_DVR_SetupAlarmChan_V41)并设置

回调函数(NET DVR SetDVRMessageCallBack V30),通过回调获取抓拍的图片数据。

返回目录

5.14.2 手动抓拍 NET_DVR_ManualSnap

函数: BOOL NET_DVR_ManualSnap(LONG lUserID, LPNET_DVR_MANUALSNAP lpInter, LPNET_DVR_PLATE_RESULT lpOuter);

参 数: [in] lUserID NET_DVR_Login_V40 的返回值

[in] IpInter手动抓拍参数,请参见 NET DVR MANUALSNAP[out] IpOuter抓拍结果,请参见 NET DVR PLATE RESULT

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 啰: 对于抓拍机,该接口一般用于调试,不能频繁调用进行抓图。调用该接口前,应用层需要自己 先分配 lpOuter 输出结构体里面的 pBuffer1 等缓冲区的内存,不能小于抓图图片的数据大小。

返回目录

5.15 雨刷控制

5.15.1 云台控制操作 NET_DVR_PTZControl_Other

函数: BOOL NET_DVR_PTZControl_Other(LONG lUserID, LONG lChannel, DWORD dwPTZCommand, DWORD dwStop)

参数: [in] IUserID NET_DVR_Login_V40 的返回值

[in] IChannel 设备通道号

[in] dwPTZCommand 云台控制命令,详见表 5.38

[in] dwStop 云台停止动作或开始动作: 0- 开始, 1- 停止

表 5.38 云台控制命令

dwPTZCommand 宏定义	宏定义值	含义
WIPER_PWRON	3	接通雨刷开关

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.16 图片的查找、下载

查找图片

5.16.1 根据类型和时间查找图片 NET_DVR_FindPicture

函数: LONG NET_DVR_FindPicture(LONG lUserID, NET_DVR_FIND_PICTURE_PARAM* pFindParam)

参数: [in]lUserID NET_DVR_Login_V40的返回值

[in]pFindParam 图片查找条件信息,请参见 <u>NET_DVR_FIND_PICTURE_PARAM</u>

返回值: -1 表示失败,其他值作为 NET_DVR_CloseFindPicture 等函数的参数。接口返回失败请调用

NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

说 明: 该接口指定了要查找的图片的类型和查找时间范围,调用成功后,就可以调用

NET DVR FindNextPicture 接口来获取图片信息。注:该接口查找的是设备本地的图片,可通过

NET_DVR_SetDVRConfig 配置设备的抓图计划(NET_DVR_SCHED_CAPTURECFG)。

返回目录

5.16.2 逐个获取查找到的图片 NET_DVR_FindNextPicture

函数: LONG NET DVR FindNextPicture(LONG | FindHandle,LPNET DVR FIND PICTURE | pFindData)

参数: [in]lFindHandle 图片查找句柄,NET DVR FindPicture 的返回值

[out]lpFindData 保存图片信息的指针,请参见 NET DVR FIND PICTURE

返回值: -1 表示失败, 其他值表示当前的获取状态等信息, 如表 5.39 所示。接口返回失败请调用

NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

表 5.39 查找状态信息

宏定义	宏定义值	含义
NET_DVR_FILE_SUCCESS	1000	获取图片信息成功
NET_DVR_FILE_NOFIND	1001	未查找到图片

NET_DVR_ISFINDING	1002	正在查找请等待
NET_DVR_NOMOREFILE	1003	没有更多的图片,查找结束
NET_DVR_FILE_EXCEPTION	1004	查找图片时异常

斑 呀: 在调用该接口获取查找图片之前,必须先调用 **NET_DVR_FindPicture** 得到当前的查找句柄。此接口用于获取一条已查找到的图片信息,若要获取全部的已查找到的图片信息,需要循环调用此接口。

返回目录

5.16.3 关闭图片查找,释放资源 NET_DVR_CloseFindPicture

函数: BOOL NET_DVR_CloseFindPicture(LONG IFindHandle)

参数: [in]IFindHandle 图片查找句柄,NET_DVR_FindPicture 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

图片下载

5.16.4 获取图片数据并存放在指定的内存空间中 NET_DVR_GetPicture_V30

函数: BOOL NET_DVR_GetPicture_V30(LONG lUserID, char *sDVRFileName, char *sSavedFileBuf, DWORD dwBufLen, DWORD *lpdwRetLen)

参数: [in]lUserID NET DVR Login V40的返回值

[in]sDVRFileName 图片名称

[in]sSavedFileName 保存图片的缓冲区

[in]dwBufLen 缓冲区大小

[out]lpdwRetLen 实际收到的数据长度指针,不能为 NULL

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 呀: 图片为 JPEG 格式,数据保存在缓冲区 sSavedFileName 中,读取缓冲区的图片数据自己显示或者保存成文件。

返回目录

5.16.5 图片下载 NET_DVR_GetPicture

函数: BOOL NET_DVR_GetPicture(LONG lUserID, char *sDVRFileName, const char *sSavedFileName)

参数: [in]lUserID NET_DVR_Login_V40的返回值

[in] sDVRFileName 要下载的图片名称

[in] sSavedFileName 下载图片的保存路径(包括文件名)

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明: 图片为 JPEG 格式, 文件名后缀为.jpg。

返回目录

5.17 文件上传

5.17.1 上传文件 NET_DVR_UploadFile_V40

函数: LONG NET_DVR_UploadFile_V40(LONG lUserID, DWORD dwUploadType, LPVOID lpInBuffer, DWORD dwInBufferSize, char *sFileName, LPVOID lpOutBuffer, DWORD dwOutBufferSize)

参数: [in] lUserID NET_DVR_Login_V40 的返回值

[in] dwUploadType 上传文件类型,详见表 5.40

[in] lpInBuffer 输入参数,不同的 dwUploadType,输入参数不同,详见表 5.40

[in] dwInBufferSize 输入缓冲区大小

[in] sFileName 上传文件的路径(包括文件名)

[out] lpOutBuffer 输出参数,不同的 dwUploadType,输出参数不同,详见表 5.40

[in] dwOutBufferSize 输出缓冲区大小

返回值: -1 表示失败,其他值作为 NET DVR CloseFindPicture 等函数的参数。接口返回失败请调用

NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

说明: 上传文件类型不同,对应不同的命令号(dwUploadType),输入参数也对应不同的结构体,如表

5.40 所示。

表 5.40 上传文件类型

dwUploadType 宏定义	宏定义值	dwUploadType 含义	lpInBuffer 对应结构体	IpOutBuffer 对应结构体
UPLOAD_VIOLATION_FILE	7	上传违法字典文件	NULL	NULL
UPLOAD_SUBBRAND_FILE	23	上传车辆子品牌文件	NULL	NULL

返回目录

5.17.2 获取文件上传的进度和状态 NET_DVR_GetUploadState

函数: LONG NET_DVR_GetUploadState(LONG IUploadHandle, LPDWORD pProgress)

参数: [in] lUploadHandle 文件上传的句柄,NET_DVR_UploadFile_V40 的返回值

[out] pProgress 返回的进度值,取值范围: 0~100

返回值: -1 表示函数调用失败,其他为上传的状态值: 1- 上传成功; 2- 正在上传; 3- 上传失败; 4- 网

络断开,状态未知。接口返回失败请调用 <u>NET DVR GetLastError</u> 获取错误码,通过错误码判断

出错原因。

说明:

返回目录

5.17.3 停止文件上传,释放资源 NET_DVR_UploadClose

函数: BOOL NET_DVR_UploadClose(LONG lUploadHandle)

参数: [in] lUploadHandle 文件上传的句柄,NET DVR UploadFile V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.18 获取设备状态

5.18.1 获取设备状态信息 NET_DVR_GetDeviceStatus

数: BOOL NET_DVR_GetDeviceStatus(LONG IUserID,DWORD dwCommand,DWORD dwCount, LPVOID IpInBuffer, DWORD dwInBufferSize,LPVOID IpStatusList, LPVOID IpOutBuffer, DWORD dwOutBufferSize)

参数: [in] lUserID 用户 ID 号,NET_DVR_Login_V40 的返回值

[in] dwCommand 获取设备状态的命令值,详见表 5.41

[in] dwCount要获取的状态个数,设为 1[in] lpInBuffer配置条件缓冲区,详见表 5.41

[in] dwInBufferSize 缓冲区长度

[out] lpStatusList 错误信息列表,和要查询的监控点一一对应,例如 lpStatusList[2]

就对应 lpInBuffer[2],由用户分配内存,每个错误信息为 4 个字节(1 个 32 位无符号整数值),参数值:0-成功,大于 0-失败

[out] lpOutBuffer 设备返回的参数内容(详见表 5.41),和要查询的监控点一一

对应。如果某个监控点对应的 IpStatusList 信息为大于 0 值,对应

IpOutBuffer 的内容就是无效的

[in] dwOutBufferSize 输出缓冲区大小

返回值: TRUE 表示成功,但不代表每一个配置都成功,哪一个成功,对应查看 lpStatusList[n]值; FALSE 表示全部失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错

原因。

说 明: 该接口是带有发送数据的批量获取设备状态信息的通用接口。不同的获取功能对应不同的结构

体和命令号,如表 5.41 所示。

表 5.41 设备状态

dwCommand 宏定义	dwCommand 含义	IpInBuffer	lpOutBuffer 对应结构体	宏定义值
NET_DVR_GET_SIGNALLAMP_STATUS	信号灯检测	dwCount 个	dwCount 个	5099
		NET_DVR_EXDEVDET_COND	NET_DVR_EXDEVDET_CFG	

返回目录

5.19设备维护管理

在线状态检测

5.19.1 设备在线状态检测 NET_DVR_RemoteControl

函数: BOOL NET_DVR_RemoteControl(LONG IUserID, DWORD dwCommand, LPVOID lpInBuffer, DWORD dwInBufferSize)

参数: [in]lUserID 用户ID号,NET DVR Login V40的返回值

[in]dwCommand 控制命令,详见表 5.42

[in]lpInBuffer 输入参数,具体内容跟控制命令相关,详见表 5.42

[in]dwInBufferSize 输入参数长度

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明: 该控制命令用于手动检测设备是否在线,接口返回TRUE表示在线,FALSE表示与设备通信失败

或者返回错误状态。设备在线状态自动巡检功能通过 NET_DVR_SetSDKLocalCfg(配置类型:

NET_SDK_LOCAL_CFG_TYPE_CHECK_DEV) 进行配置。

表 5.42 远程控制命令

dwCommand 宏定义	宏定义值	控制功能	lpInBuffer 对应结构体
NET_DVR_CHECK_USER_STATUS	20005	检测设备是否在线	NULL

返回目录

远程升级

5.19.2 设置远程升级时网络环境 NET_DVR_SetNetworkEnvironment

函数: BOOL NET_DVR_SetNetworkEnvironment(DWORD dwEnvironmentLevel)

参数: [in] dwEnvironmentLevel 网络环境级别

enum{

LOCAL_AREA_NETWORK = 0, //局域网环境 WIDE_AREA_NETWORK //广域网环境

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说 明: 接口中的网络环境级别参数分为两类,

LOCAL_AREA_NETWORK 表示局域网环境(网络环境好,通讯流畅); WIDE_AREA_NETWORK 表示广域网环境(网络环境差,易阻塞)。 在调用远程升级接口之前,可以通过此接口适应不同的升级环境。

}

返回目录

5.19.3 远程升级 NET_DVR_Upgrade

函数: LONG NET_DVR_Upgrade(LONG lUserID, char *sFileName)

参数: [in] lUserID NET DVR Login V40 的返回值

[in] sFileName 升级的文件路径(包括文件名)。路径长度和操作系统有关,sdk

不做限制, windows 默认路径长度小于等于 256 字节(包括文件

名在内)。

返回值: -1 表示失败,其他值作为 NET DVR GetUpgradeState 等函数的参数。接口返回

失败请调用 NET DVR GetLastError 获取错误码,通过错误码判断出错原因。

说明:

5.19.4 获取远程升级的进度 NET_DVR_GetUpgradeProgress

函数: int NET_DVR_GetUpgradeProgress(LONG lUpgradeHandle) 参数: [in] lUpgradeHandle NET_DVR_Upgrade 的返回值

返回值: -1 表示失败,0~100 表示升级进度。接口返回失败请调用 NET DVR GetLastError 获取错误码,

通过错误码判断出错原因。

说明:

返回目录

5.19.5 获取远程升级的状态 NET_DVR_GetUpgradeState

函数: int NET_DVR_GetUpgradeState(LONG lUpgradeHandle)

参数: [in] lUpgradeHandle NET_DVR_Upgrade 的返回值

返回值: -1表示失败,其他值定义: 1-升级成功; 2-正在升级; 3-升级失败; 4-网络断开,状态未知;

5- 升级文件语言版本不匹配。接口返回失败请调用 NET DVR GetLastError 获取错误码,通过错

误码判断出错原因。

说明:

返回目录

5.19.6 关闭远程升级句柄,释放资源 NET DVR CloseUpgradeHandle

函数: BOOL NET_DVR_CloseUpgradeHandle(LONG lUpgradeHandle)

参数: [in] lUpgradeHandle NET DVR Upgrade 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

日志查找

5.19.7 查找设备的日志信息 NET_DVR_FindDVRLog_V30

函数: LONG NET_DVR_FindDVRLog_V30(LONG IUserID, LONG ISelectMode, DWORD dwMajorType,DWORD dwMinorType, LPNET_DVR_TIME IpStartTime, LPNET_DVR_TIME IpStopTime, BOOL bOnlySmart)

参数: [in]lUserID NET DVR Login V40 的返回值

 [in]|SelectMode
 查询方式: 0- 全部; 1- 按类型; 2- 按时间; 3- 按时间和类型

 [in]|dwMajorType
 日志主类型(S.M.A.R.T 搜索时无效), 0表示全部类型, 其他类型

定义请参见设备日志主类型

[in]dwMinorType 日志次类型(S.M.A.R.T 搜索时无效), 0表示全部类型,根据不同

的主类型的次类型定义请参见设备日志次类型

 [in]lpStartTime
 文件的开始时间,请参见结构体 NET DVR TIME

 [in]lpStopTime
 文件结束时间,请参见结构体 NET DVR TIME

[in]bOnlySmart 是否只搜索带 S.M.A.R.T 信息的日志

返回值: -1 表示失败,其他值作为 NET_DVR_FindNextLog_V30 等函数的参数。接口返回失败请调用 NET_DVR_GetLastError 获取错误码,通过错误码判断出错原因。

说 呀: 该接口如果用于搜索普通日志信息,一般设备支持 2000 条,而搜索带 S.M.A.R.T 信息(硬盘运行日志记录)的日志最大只支持 500 条。通常不需要搜索详细的 S.M.A.R.T 信息时,置 bOnlySmart 为 FALSE 即可完成所有日志信息的搜索。

返回目录

5.19.8 逐条获取查找到的日志信息 NET_DVR_FindNextLog_V30

函数: LONG NET_DVR_FindNextLog_V30(LONG | LogHandle, LPNET_DVR_LOG_V30 | lpLogData)

参数: [in]lLogHandle 日志查找句柄,NET_DVR_FindDVRLog_V30 的返回值 [out]lpLogData 保存日志信息的指针,请参见结构体 <u>NET_DVR_LOG_V30</u>

返回值: -1 表示失败,其他值表示当前的获取状态等信息。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明: 在调用该接口获取查找日志之前,必须先调用 NET_DVR_FindDVRLog_V30 得到当前的查找句柄。

返回目录

5.19.9 释放查找日志的资源 NET_DVR_FindLogClose_V30

函数: BOOL NET_DVR_FindLogClose_V30(LONG lLogHandle)

参数: [in]lLogHandle 日志查找句柄,NET DVR FindDVRLog V30 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

返回目录

恢复设备默认参数

5.19.10 恢复设备默认参数 NET_DVR_RestoreConfig

函数: BOOL NET_DVR_RestoreConfig(LONG lUserID)

参数: [in] IUserID 用户 ID 号,NET_DVR_Login_V40 的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通过错误码判断出错原因。

说明:

返回目录

5.19.11 完全恢复出厂默认参数 NET_DVR_RemoteControl

函数: BOOL NET_DVR_RemoteControl(LONG lUserID, DWORD dwCommand, LPVOID lpInBuffer, DWORD dwInBufferSize)

参数: [in] lUserID 用户 ID 号,NET_DVR_Login_V40 的返回值

[in] dwCommand 控制命令,详见表 5.43

[in] lpInBuffer 输入参数,跟控制命令相关,详见列表

[in] dwInBufferSize 输入参数长度

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说 明: 不同的控制功能对应不同的命令号,同时 IpInBuffer 对应不同的结构体,如表 5.43 所示。

表 5.43 远程控制命令

dwCommand 宏定义	宏定义值	控制功能	IpInBuffer 对应结构体
NET_DVR_COMPLETE_RESTORE_CTRL	3420	设置完全恢复出厂值	NET_DVR_COMPLETE_RESTORE_INFO

返回目录

导入/导出配置文件

5.19.12 导出配置文件 NET_DVR_GetConfigFile_V30

函数: BOOL NET_DVR_GetConfigFile_V30(LONG lUserID, char *sOutBuffer, DWORD dwOutSize, DWORD

*pReturnSize)

参数: [in]lUserID 用户ID号,NET_DVR_Login_V40的返回值

[out] sOutBuffer 存放配置参数的缓冲区

[in] dwOutSize 缓冲区大小

[out] pReturnSize 实际获得的缓冲区大小

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明: 当 sOutBuffer = NULL、dwOutSize = 0 且 pReturnSize!= NULL 时用于获取参数配置文件的所需的缓

冲区长度;

当 sOutBuffer != NULL 且 dwOutSize != 0 时用于获取参数配置文件的所需的缓冲区内容。

返回目录

5.19.13 导出配置文件 NET_DVR_GetConfigFile

函数: BOOL NET_DVR_GetConfigFile(LONG lUserID, char *sFileName)

参 数: [in] lUserID 用户 ID 号,NET_DVR_Login_V40 的返回值

[in] sFileName 存放保存配置文件的文件路径(二进制文件)

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 <u>NET_DVR_GetLastError</u> 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.19.14 导入配置文件 NET_DVR_SetConfigFile_EX

函数: BOOL NET_DVR_SetConfigFile_EX(LONG lUserID, char *sInBuffer, DWORD dwInSize)

参数: [in] lUserID 用户 ID 号,NET_DVR_Login_V40 的返回值

[in] slnBuffer 存放配置参数的缓冲区

[in] dwInSize 缓冲区大小

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET_DVR_GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

5.19.15 导入配置文件 NET_DVR_SetConfigFile

函数: BOOL NET_DVR_SetConfigFile(LONG lUserID, char *sFileName)

参数: [in] IUserID 用户 ID 号,NET DVR Login V40 的返回值

[in] sFileName 存放保存配置文件的文件路径(二进制文件)

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

远程重启

5.19.16 重启设备 NET_DVR_RebootDVR

函数: BOOL NET_DVR_RebootDVR(LONG lUserID)

参数: [in] IUserID 用户ID号,NET DVR Login V40的返回值

返回值: TRUE 表示成功,FALSE 表示失败。接口返回失败请调用 NET DVR GetLastError 获取错误码,通

过错误码判断出错原因。

说明:

返回目录

6 错误代码及说明

6.1 网络通讯库错误码

错误名称	错误值	说明
NET_DVR_NOERROR	0	没有错误。
NET_DVR_PASSWORD_ERROR	1	用户名密码错误。注册时输入的用户名或者 密码错误。
NET_DVR_NOENOUGHPRI	2	权限不足。该注册用户没有权限执行当前对
		设备的操作,可以与远程用户参数配置做对 比。
NET_DVR_NOINIT	3	SDK 未初始化。
NET_DVR_CHANNEL_ERROR	4	通道号错误。设备没有对应的通道号。
NET_DVR_OVER_MAXLINK	5	连接到设备的用户个数超过最大。
NET_DVR_VERSIONNOMATCH	6	版本不匹配。SDK 和设备的版本不匹配。
NET_DVR_NETWORK_FAIL_CONNECT	7	连接设备失败。设备不在线或网络原因引起的连接超时等。
NET_DVR_NETWORK_SEND_ERROR	8	向设备发送失败。
NET_DVR_NETWORK_RECV_ERROR	9	从设备接收数据失败。
NET_DVR_NETWORK_RECV_TIMEOUT	10	从设备接收数据超时。
NET_DVR_NETWORK_ERRORDATA	11	传送的数据有误。发送给设备或者从设备接 收到的数据错误,如远程参数配置时输入设 备不支持的值。
NET DVD ODDED EDDOD	12	调用次序错误。
NET_DVR_ORDER_ERROR NET_DVR_OPERNOPERMIT	13	无此权限。
NET_DVR_COMMANDTIMEOUT	14	设备命令执行超时。
NET_DVR_ERRORSERIALPORT	15	串口号错误。指定的设备串口号不存在。
NET_DVR_ERRORALARMPORT	16	报警端口错误。指定的设备报警输出端口不
		存在。
NET_DVR_PARAMETER_ERROR	17	参数错误。SDK 接口中给入的输入或输出参数为空。
NET_DVR_CHAN_EXCEPTION	18	设备通道处于错误状态
NET_DVR_NODISK	19	设备无硬盘。当设备无硬盘时,对设备的录 像文件、硬盘配置等操作失败。
NET_DVR_ERRORDISKNUM	20	硬盘号错误。当对设备进行硬盘管理操作
NET DVD DIGK FILL	24	时,指定的硬盘号不存在时返回该错误。
NET_DVR_DISK_FULL	21	设备硬盘满。
NET_DVR_DISK_ERROR	22	设备硬盘出错
NET_DVR_NOSUPPORT	23	设备不支持。
NET_DVR_BUSY	24	设备忙。
NET_DVR_MODIFY_FAIL	25	设备修改不成功。
NET_DVR_PASSWORD_FORMAT_ERROR	26	密码输入格式不正确
NET_DVR_DISK_FORMATING	27	硬盘正在格式化,不能启动操作。

NET DVP DVPNORESOURCE	28	设备资源不足。
NET_DVR_DVRNORESOURCE NET_DVR_DVROPRATEFAILED	28	设备操作失败。
NET_DVR_OPENHOSTSOUND_FAIL	30	语音对讲、语音广播操作中采集本地音频或
NET_DVK_OPENHOSTSOOND_FAIL	30	打开音频输出失败。
NET DVD DVDVOICEODENED	31	设备语音对讲被占用。
NET_DVR_DVRVOICEOPENED		时间输入不正确。
NET_DVR_TIMEINPUTERROR	32	回放时设备没有指定的文件。
NET_DVR_NOSPECFILE	33 34	创建文件出错。本地录像、保存图片、获取
NET_DVR_CREATEFILE_ERROR	34	配置文件和远程下载录像时创建文件失败。
NET DVD EHEODENEAU	35	打开文件出错。设置配置文件、设备升级、
NET_DVR_FILEOPENFAIL	55	上传审讯文件时打开文件失败。
NET DVD ODEDNOTEINICH	26	上次的操作还没有完成
NET_DVR_OPERNOTFINISH	36	
NET_DVR_GETPLAYTIMEFAIL	37	获取当前播放的时间出错。
NET_DVR_PLAYFAIL	38	播放出错。
NET_DVR_FILEFORMAT_ERROR	39	文件格式不正确。
NET_DVR_DIR_ERROR	40	路径错误
NET_DVR_ALLOC_RESOURCE_ERROR	41	SDK 资源分配错误。
NET_DVR_AUDIO_MODE_ERROR	42	声卡模式错误。当前打开声音播放模式与实
		际设置的模式不符出错。
NET_DVR_NOENOUGH_BUF	43	缓冲区太小。接收设备数据的缓冲区或存放
		图片缓冲区不足。
NET_DVR_CREATESOCKET_ERROR	44	创建 SOCKET 出错。
NET_DVR_SETSOCKET_ERROR	45	设置 SOCKET 出错。
NET_DVR_MAX_NUM	46	个数达到最大。分配的注册连接数、预览连
		接数超过 SDK 支持的最大数。
NET_DVR_USERNOTEXIST	47	用户不存在。注册的用户 ID 已注销或不可
	_	用。
NET_DVR_WRITEFLASHERROR	48	写 FLASH 出错。设备升级时写 FLASH 失败。
NET_DVR_UPGRADEFAIL	49	设备升级失败。网络或升级文件语言不匹配
		等原因升级失败。
NET_DVR_CARDHAVEINIT	50	解码卡已经初始化过。
NET_DVR_PLAYERFAILED	51	调用播放库中某个函数失败。
NET_DVR_MAX_USERNUM	52	登录设备的用户数达到最大。
NET_DVR_GETLOCALIPANDMACFAIL	53	获得本地 PC 的 IP 地址或物理地址失败。
NET_DVR_NOENCODEING	54	设备该通道没有启动编码。
NET_DVR_IPMISMATCH	55	IP 地址不匹配。
NET_DVR_MACMISMATCH	56	MAC 地址不匹配。
NET_DVR_UPGRADELANGMISMATCH	57	升级文件语言不匹配。
NET_DVR_MAX_PLAYERPORT	58	播放器路数达到最大。
NET_DVR_NOSPACEBACKUP	59	备份设备中没有足够空间进行备份。
NET_DVR_NODEVICEBACKUP	60	没有找到指定的备份设备。
NET_DVR_PICTURE_BITS_ERROR	61	图像素位数不符,限 24 色。
NET_DVR_PICTURE_DIMENSION_ERROR	62	图片高*宽超限,限 128*256。
NET_DVR_PICTURE_SIZ_ERROR	63	图片大小超限,限 100K。

NET_DVR_LOADPLAYERSDKFAILED	64	载入当前目录下 Player Sdk 出错。
NET_DVR_LOADPLAYERSDKPROC_ERROR	65	找不到 Player Sdk 中某个函数入口。
NET_DVR_LOADDSSDKFAILED	66	载入当前目录下 DSsdk 出错。
NET_DVR_LOADDSSDKPROC_ERROR	67	找不到 DsSdk 中某个函数入口。
NET_DVR_DSSDK_ERROR	68	调用硬解码库 DsSdk 中某个函数失败。
NET_DVR_VOICEMONOPOLIZE	69	声卡被独占。
NET_DVR_JOINMULTICASTFAILED	70	加入多播组失败。
NET_DVR_CREATEDIR_ERROR	71	建立日志文件目录失败。
NET_DVR_BINDSOCKET_ERROR	72	绑定套接字失败。
NET_DVR_SOCKETCLOSE_ERROR	73	socket 连接中断,此错误通常是由于连接中
		断或目的地不可达。
NET_DVR_USERID_ISUSING	74	注销时用户ID正在进行某操作。
NET_DVR_SOCKETLISTEN_ERROR	75	监听失败。
NET_DVR_PROGRAM_EXCEPTION	76	程序异常。
NET_DVR_WRITEFILE_FAILED	77	写文件失败。本地录像、远程下载录像、下
		载图片等操作时写文件失败。
NET_DVR_FORMAT_READONLY	78	禁止格式化只读硬盘。
NET_DVR_WITHSAMEUSERNAME	79	远程用户配置结构中存在相同的用户名。
NET_DVR_DEVICETYPE_ERROR	80	导入参数时设备型号不匹配。
NET_DVR_LANGUAGE_ERROR	81	导入参数时语言不匹配。
NET_DVR_PARAVERSION_ERROR	82	导入参数时软件版本不匹配。
NET_DVR_IPCHAN_NOTALIVE	83	预览时外接 IP 通道不在线。
NET_DVR_RTSP_SDK_ERROR	84	加载标准协议通讯库 StreamTransClient 失
		败。
NET_DVR_CONVERT_SDK_ERROR	85	加载转封装库失败。
NET_DVR_IPC_COUNT_OVERFLOW	86	超出最大的 IP 接入通道数。
NET_DVR_MAX_ADD_NUM	87	添加录像标签或者其他操作超出最多支持
		的个数。
NET_DVR_PARAMMODE_ERROR	88	图像增强仪,参数模式错误(用于硬件设置
		时,客户端进行软件设置时错误值)。
NET_DVR_CODESPITTER_OFFLINE	89	码分器不在线。
NET_DVR_BACKUP_COPYING	90	设备正在备份。
NET_DVR_CHAN_NOTSUPPORT	91	通道不支持该操作。
NET_DVR_CALLINEINVALID	92	高度线位置太集中或长度线不够倾斜。
NET_DVR_CALCANCELCONFLICT	93	取消标定冲突, 如果设置了规则及全局的实
		际大小尺寸过滤。
NET_DVR_CALPOINTOUTRANGE	94	标定点超出范围。
NET_DVR_FILTERRECTINVALID	95	尺寸过滤器不符合要求。
NET_DVR_DDNS_DEVOFFLINE	96	设备没有注册到 ddns 上。
NET_DVR_DDNS_INTER_ERROR	97	DDNS 服务器内部错误。
NET_DVR_ALIAS_DUPLICATE	150	别名重复(EasyDDNS 的配置)
NET_DVR_DEV_NET_OVERFLOW	800	网络流量超过设备能力上限
NET_DVR_STATUS_RECORDFILE_WRITING_NOT_LOCK	801	录像文件在录像,无法被锁定

NET DVD CTATUS CANT FORMAT LITTLE DISK	802	由于硬盘太小无法格式化
NET_DVR_STATUS_CANT_FORMAT_LITTLE_DISK 抓拍机错误码	802	田丁暎益太小儿宏怡八化
NET_DVR_ERR_LANENUM_EXCEED	1400	车道数超出能力。
NET_DVR_ERR_PRAREA_EXCEED	1400	牌识区域讨大。
	1401	信号灯接入参数错误。
NET_DVR_ERR_LIGHT_PARAM	1402	车道线配置错误。
NET_DVR_ERR_LANE_LINE_INVALID		
NET_DVR_ERR_STOP_LINE_INVALID	1404	停止线配置错误。
NET_DVR_ERR_LEFTORRIGHT_LINE_INVALID	1405	左/右转分界线配置错误。
NET_DVR_ERR_LANE_NO_REPEAT	1406	叠加车道号重复。
NET_DVR_ERR_PRAREA_INVALID	1407	牌识多边形不符合要求。
NET_DVR_ERR_LIGHT_NUM_EXCEED	1408	视频检测交通灯信号灯数目超出最大值。
NET_DVR_ERR_SUBLIGHT_NUM_INVALID	1409	视频检测交通灯信号灯子灯数目不合法
NET_DVR_ERR_LIGHT_AREASIZE_INVALID	1410	视频检测交通灯输入信号灯框大小不合法。
NET_DVR_ERR_LIGHT_COLOR_INVALID	1411	视频检测交通灯输入信号灯颜色不合法。
NET_DVR_ERR_LIGHT_DIRECTION_INVALID	1412	视频检测交通灯输入灯方向属性不合法。
NET_DVR_ERR_LACK_IOABLITY	1413	IO 口实际支持的能力不足
NET_DVR_ERR_FTP_PORT	1414	FTP 端口号非法(端口号重复或者异常)
NET_DVR_ERR_FTP_CATALOGUE	1415	FTP 目录名非法(启用多级目录,多级目录 传值为空)
NET_DVR_ERR_FTP_UPLOAD_TYPE	1416	FTP 上传类型非法(单 ftp 只支持全部/双 ftp
		只支持卡口和违章)
NET_DVR_ERR_FLASH_PARAM_WRITE	1417	配置参数时写 FLASH 失败
NET_DVR_ERR_FLASH_PARAM_READ	1418	配置参数时读 FLASH 失败
NET_DVR_ERR_PICNAME_DELIMITER	1419	FTP 图片命名分隔符非法
NET_DVR_ERR_PICNAME_ITEM	1420	FTP 图片命名项非法(例如 分隔符)
NET_DVR_ERR_PLATE_RECOGNIZE_TYPE	1421	牌识区域类型非法(矩形和多边形有效性校
		验)
NET_DVR_ERR_CAPTURE_TIMES	1422	抓拍次数非法(有效值是0~5)
NET_DVR_ERR_LOOP_DISTANCE	1423	线圈距离非法(有效值是 0~2000ms)
NET_DVR_ERR_LOOP_INPUT_STATUS	1424	线圈输入状态非法 (有效值)
NET_DVR_ERR_RELATE_IO_CONFLICT	1425	测速组 IO 关联冲突
NET_DVR_ERR_INTERVAL_TIME	1426	连拍间隔时间非法(0~6000ms)
NET_DVR_ERR_SIGN_SPEED	1427	标志限速值非法(大车标志限速不能大于小 车标志限速)
NET_DVR_ERR_PIC_FLIP	1428	图像配置翻转(配置交互影响)
NET_DVR_ERR_RELATE_LANE_NUMBER	1429	关联车道数错误(重复 有效值校验 1~99)
NET_DVR_ERR_TRIGGER_MODE	1430	配置抓拍机触发模式非法
NET_DVR_ERR_DELAY_TIME	1431	触发延时时间错误(2000ms)
NET_DVR_ERR_EXCEED_RS485_COUNT	1432	超过最大 485 个数限制
NET_DVR_ERR_RADAR_TYPE	1433	雷达类型错误
NET_DVR_ERR_RADAR_TIFE NET_DVR_ERR_RADAR_ANGLE	1434	雷达角度错误
NET_DVR_ERR_RADAR_ANGLE NET_DVR_ERR_RADAR_SPEED_VALID_TIME	1434	雷达有效时间错误
	1436	雷达线性矫正参数错误
NET_DVR_ERR_RADAR_CONST_CORRECT		
NET_DVR_ERR_RADAR_CONST_CORRECT	1437	雷达常量矫正参数错误

NET_DVR_ERR_RECORD_PARAM	1438	录像参数无效(预录时间不超过 10s)
NET_DVR_ERR_LIGHT_WITHOUT_COLOR_AND_DIRECTION	1439	视频检测信号灯配置信号灯个数,但是没有 勾选信号灯方向和颜色的
NET_DVR_ERR_LIGHT_WITHOUT_DETECTION_REGION	1440	视频检测信号灯配置信号灯个数,但是没有 画检测区域
NET_DVR_ERR_RECOGNIZE_PROVINCE_PARAM	1441	牌识参数省份参数的合法性
NET_DVR_ERR_SPEED_TIMEOUT	1442	IO 测速超时时间非法(有效值大于 0)
NET_DVR_ERR_NTP_TIMEZONE	1443	ntp 时区参数错误
NET_DVR_ERR_NTP_INTERVAL_TIME	1444	ntp 校时间隔错误
NET_DVR_ERR_NETWORK_CARD_NUM	1445	可配置网卡数目错误
NET_DVR_ERR_DEFAULT_ROUTE	1446	默认路由错误
NET_DVR_ERR_BONDING_WORK_MODE	1447	bonding 网卡工作模式错误
NET_DVR_ERR_SLAVE_CARD	1448	slave 网卡错误
NET_DVR_ERR_PRIMARY_CARD	1449	Primary 网卡错误
NET_DVR_ERR_DHCP_PPOE_WORK	1450	dhcp 和 pppoE 不能同时启动
NET_DVR_ERR_NET_INTERFACE	1451	网络接口错误
NET_DVR_ERR_MTU	1452	MTU 错误
NET_DVR_ERR_NETMASK	1453	子网掩码错误
NET_DVR_ERR_IP_INVALID	1454	IP 地址不合法
NET_DVR_ERR_MULTICAST_IP_INVALID	1455	多播地址不合法
NET_DVR_ERR_GATEWAY_INVALID	1456	网关不合法
NET_DVR_ERR_DNS_INVALID	1457	DNS 不合法
NET_DVR_ERR_ALARMHOST_IP_INVALID	1458	告警主机地址不合法
NET_DVR_ERR_IP_CONFLICT	1459	IP 冲突
NET_DVR_ERR_NETWORK_SEGMENT	1460	IP 不支持同网段
NET_DVR_ERR_NETPORT	1461	端口错误
NET_DVR_ERR_PPPOE_NOSUPPORT	1462	PPPOE 不支持
NET_DVR_ERR_DOMAINNAME_NOSUPPORT	1463	域名不支持
NET_DVR_ERR_NO_SPEED	1464	未启用测速功能
NET_DVR_ERR_IOSTATUS_INVALID	1465	IO 状态错误
NET_DVR_ERR_BURST_INTERVAL_INVALID	1466	连拍间隔非法
NET_DVR_ERR_RESERVE_MODE	1467	备用模式错误
NET_DVR_ERR_LANE_NO	1468	叠加车道号错误
NET_DVR_ERR_COIL_AREA_TYPE	1469	线圈区域类型错误
NET_DVR_ERR_TRIGGER_AREA_PARAM	1470	触发区域参数错误
NET_DVR_ERR_SPEED_LIMIT_PARAM	1471	违章限速参数错误
NET_DVR_ERR_LANE_PROTOCOL_TYPE	1472	车道关联协议类型错误
NET_DVR_ERR_INTERVAL_TYPE	1473	连拍间隔类型非法
NET_DVR_ERR_INTERVAL_DISTANCE	1474	连拍间隔距离非法
NET_DVR_ERR_RS485_ASSOCIATE_DEVTYPE	1475	RS485 关联类型非法
NET_DVR_ERR_RS485_ASSOCIATE_LANENO	1476	RS485 关联车道号非法
NET_DVR_ERR_LANENO_ASSOCIATE_MULTIRS485	1477	车道号关联多个 RS485 口
NET_DVR_ERR_LIGHT_DETECTION_REGION	1478	视频检测信号灯配置信号灯个数,但是检测
		区域宽或高为0

NET_DVR_ERR_DN2D_NOSUPPORT	1479	不支持抓拍帧 2D 降噪
NET_DVR_ERR_IRISMODE_NOSUPPORT	1480	不支持的镜头类型
NET_DVR_ERR_WB_NOSUPPORT	1481	不支持的白平衡模式
NET_DVR_ERR_IO_EFFECTIVENESS	1482	IO 口的有效性
NET_DVR_ERR_LIGHTNO_MAX	1483	信号灯检测器接入红/黄灯超限(16)
NET_DVR_ERR_LIGHTNO_CONFLICT	1484	信号灯检测器接入红/黄灯冲突
NET_DVR_ERR_CANCEL_LINE	1485	直行触发线
NET_DVR_ERR_STOP_LINE	1486	待行区停止线
NET_DVR_ERR_RUSH_REDLIGHT_LINE	1487	闯红灯触发线
NET_DVR_ERR_IOOUTNO_MAX	1488	IO 输出口编号越界
NET_DVR_ERR_IOOUTNO_AHEADTIME_MAX	1489	IO 输出口提前时间超限
NET_DVR_ERR_IOOUTNO_IOWORKTIME	1490	IO 输出口有效持续时间超限
NET_DVR_ERR_IOOUTNO_FREQMULTI	1491	IO 输出口脉冲模式下倍频出错
NET_DVR_ERR_IOOUTNO_DUTYRATE	1492	IO 输出口脉冲模式下占空比出错
NET_DVR_ERR_VIDEO_WITH_EXPOSURE	1493	以曝闪起效,工作方式不支持视频
NET_DVR_ERR_PLATE_BRIGHTNESS_WITHOUT_FLASHDET	1494	车牌亮度自动使能闪光灯仅在车牌亮度补
	1.5.	偿模式下起效
NET_DVR_ERR_RECOGNIZE_TYPE_PARAM	1495	识别类型非法 车牌识别参数(如大车、小
112	1.55	车、背向、正向、车标识别等)
NET_DVR_ERR_PALTE_RECOGNIZE_AREA_PARAM	1496	牌识参数非法 牌识区域配置时判断出错
NET_DVR_ERR_PORT_CONFLICT	1497	端口有冲突
NET_DVR_ERR_LOOP_IP	1498	IP 不能设置为回环地址
NET_DVR_ERR_DRIVELINE_SENSITIVE	1499	压线灵敏度出错(视频电警模式下)
NET_DVR_ERR_EXCEED_MAX_CAPTURE_TIMES	1600	抓拍模式为频闪时最大抓拍张数为 2 张(IVT
		模式下)
NET_DVR_ERR_REDAR_TYPE_CONFLICT	1601	相同 485 口关联雷达类型冲突
NET_DVR_ERR_LICENSE_PLATE_NULL	1602	车牌号为空
NET_DVR_ERR_WRITE_DATABASE	1603	写入数据库失败
NET_DVR_ERR_LICENSE_EFFECTIVE_TIME	1604	车牌有效时间错误
NET_DVR_ERR_PRERECORDED_STARTTIME_LONG	1605	预录开始时间大于违法抓拍张数
NET_DVR_ERR_TRIGGER_RULE_LINE	1606	触发规则线错误
NET_DVR_ERR_LEFTRIGHT_TRIGGERLINE_NOTVERTICAL	1607	左/右触发线不垂直
NET_DVR_ERR_FLASH_LAMP_MODE	1608	闪光灯闪烁模式错误
NET_DVR_ERR_ILLEGAL_SNAPSHOT_NUM	1609	违章抓拍张数错误
NET_DVR_ERR_ILLEGAL_DETECTION_TYPE	1610	违章检测类型错误
NET_DVR_ERR_POSITIVEBACK_TRIGGERLINE_HIGH	1611	正背向触发线高度错误
NET_DVR_ERR_MIXEDMODE_CAPTYPE_ALLTARGETS	1612	混合模式下只支持机非人抓拍类型
NET_DVR_ERR_CARSIGNSPEED_GREATERTHAN_LIMITSPEED	1613	小车标志限速大于限速值
NET_DVR_ERR_BIGCARSIGNSPEED_GREATERTHAN_LIMITSPEED	1614	大车标志限速大于限速值
NET_DVR_ERR_BIGCARSIGNSPEED_GREATERTHAN_CARSIGNSPEED	1615	大车标志限速大于小车标志限速值
NET_DVR_ERR_BIGCARLIMITSPEED_GREATERTHAN_CARLIMITSPEED	1616	大车限速值大于小车限速值
NET_DVR_ERR_BIGCARLOWSPEEDLIMIT_GREATERTHAN_CARLOWSPEEDLIMIT	1617	大车低速限速值大于小车低速限速值
NET_DVR_ERR_CARLIMITSPEED_GREATERTHAN_EXCEPHIGHSPEED	1618	小车限速大于异常高速值
NET_DVR_ERR_BIGCARLIMITSPEED_GREATERTHAN_EXCEPHIGHSPEED	1619	大车限速大于异常高速值

 ${\tt NET_DVR_ERR_STOPLINE_MORETHAN_TRIGGERLINE}$

1620

停止线超过直行触发线

6.2 RTSP 通讯库错误码

错误名称	错误值	说明
NET_DVR_RTSP_GETPORTFAILED	407	获取 RTSP 端口错误
NET_DVR_RTSP_DESCRIBESENDTIMEOUT	411	RTSP DECRIBE 发送超时
NET_DVR_RTSP_DESCRIBESENDERROR	412	RTSP DECRIBE 发送失败
NET_DVR_RTSP_DESCRIBERECVTIMEOUT	413	RTSP DECRIBE 接收超时
NET_DVR_RTSP_DESCRIBERECVDATALOST	414	RTSP DECRIBE 接收数据错误
NET_DVR_RTSP_DESCRIBERECVERROR	415	RTSP DECRIBE 接收失败
NET_DVR_RTSP_DESCRIBESERVERERR	416	RTSP DECRIBE 服务器返回 401,501 等错误
NET_DVR_RTSP_SETUPSENDTIMEOUT	421	RTSP SETUP 发送超时
NET_DVR_RTSP_SETUPSENDERROR	422	RTSP SETUP 发送错误
NET_DVR_RTSP_SETUPRECVTIMEOUT	423	RTSP SETUP 接收超时
NET_DVR_RTSP_SETUPRECVDATALOST	424	RTSP SETUP 接收数据错误
NET_DVR_RTSP_SETUPRECVERROR	425	RTSP SETUP 接收失败
NET_DVR_RTSP_OVER_MAX_CHAN	426	设备超过最大连接数
NET_DVR_RTSP_PLAYSENDTIMEOUT	431	RTSP PLAY 发送超时
NET_DVR_RTSP_PLAYSENDERROR	432	RTSP PLAY 发送错误
NET_DVR_RTSP_PLAYRECVTIMEOUT	433	RTSP PLAT 接收超时
NET_DVR_RTSP_PLAYRECVDATALOST	434	RTSP PLAY 接收数据错误
NET_DVR_RTSP_PLAYRECVERROR	435	RTSP PLAY 接收失败
NET_DVR_RTSP_PLAYSERVERERR	436	RTSP PLAY 设备返回错误状态
NET_DVR_RTSP_TEARDOWNSENDTIMEOUT	441	RTSP TEARDOWN 发送超时
NET_DVR_RTSP_TEARDOWNSENDERROR	442	RTSP TEARDOWN 发送错误
NET_DVR_RTSP_TEARDOWNRECVTIMEOUT	443	RTSP TEARDOWN 接收超时
NET_DVR_RTSP_TEARDOWNRECVDATALOST	444	RTSP TEARDOWN 接收数据错误
NET_DVR_RTSP_TEARDOWNRECVERROR	445	RTSP TEARDOWN 接收失败
NET_DVR_RTSP_TEARDOWNSERVERERR	446	RTSP TEARDOWN 设备返回错误状态

6.3 软解码库错误码

错误名称	错误值	说明
NET_PLAYM4_NOERROR	500	没有错误
NET_PLAYM4_PARA_OVER	501	输入参数非法
NET_PLAYM4_ORDER_ERROR	502	调用顺序不对
NET_PLAYM4_TIMER_ERROR	503	多媒体时钟设置失败
NET_PLAYM4_DEC_VIDEO_ERROR	504	视频解码失败
NET_PLAYM4_DEC_AUDIO_ERROR	505	音频解码失败

NET_PLAYM4_ALLOC_MEMORY_ERROR506分配內存失败NET_PLAYM4_OPEN_FILE_ERROR507文件操作失败NET_PLAYM4_CREATE_OBJ_ERROR508创建线程事件等失败NET_PLAYM4_CREATE_DDRAW_ERROR509创建 directDraw 失败NET_PLAYM4_CREATE_OFFSCREEN_ERROR510创建后端缓存失败NET_PLAYM4_BUF_OVER511缓冲区满,输入流失败
NET_PLAYM4_CREATE_OBJ_ERROR 508 创建线程事件等失败 NET_PLAYM4_CREATE_DDRAW_ERROR 509 创建 directDraw 失败 NET_PLAYM4_CREATE_OFFSCREEN_ERROR 510 创建后端缓存失败
NET_PLAYM4_CREATE_DDRAW_ERROR 509 创建 directDraw 失败 NET_PLAYM4_CREATE_OFFSCREEN_ERROR 510 创建后端缓存失败
NET_PLAYM4_CREATE_OFFSCREEN_ERROR 510 创建后端缓存失败
NET_PLAYM4_BUF_OVER 511 缓冲区满,输入流失败
NET_PLAYM4_CREATE_SOUND_ERROR 512 创建音频设备失败
NET_PLAYM4_SET_VOLUME_ERROR 513 设置音量失败
NET_PLAYM4_SUPPORT_FILE_ONLY 514 只能在播放文件时才能使用此接口
NET_PLAYM4_SUPPORT_STREAM_ONLY 515 只能在播放流时才能使用此接口
NET_PLAYM4_SYS_NOT_SUPPORT 516 系统不支持,解码器只能工作在 Pentium 3 以上
NET_PLAYM4_FILEHEADER_UNKNOWN 517 没有文件头
NET_PLAYM4_VERSION_INCORRECT 518 解码器和编码器版本不对应
NET_PALYM4_INIT_DECODER_ERROR 519 初始化解码器失败
NET_PLAYM4_CHECK_FILE_ERROR 520 文件太短或码流无法识别
NET_PLAYM4_INIT_TIMER_ERROR 521 初始化多媒体时钟失败
NET_PLAYM4_BLT_ERROR 522 位拷贝失败
NET_PLAYM4_UPDATE_ERROR 523 显示 overlay 失败
NET_PLAYM4_OPEN_FILE_ERROR_MULTI 524 打开混合流文件失败
NET_PLAYM4_OPEN_FILE_ERROR_VIDEO 525 打开视频流文件失败
NET_PLAYM4_JPEG_COMPRESS_ERROR 526 JPEG 压缩错误
NET_PLAYM4_EXTRACT_NOT_SUPPORT 527 不支持该文件版本.
NET_PLAYM4_EXTRACT_DATA_ERROR 528 提取文件数据失败

7 附录:结构体

7.1 宏定义

宏定义	宏定义值	含义
MAX_NAMELEN	16	设备本地登录名长度
MAX_RIGHT	32	设备支持的权限(1-12 表示本地权限,13-32 表示远程权限)
NAME_LEN	32	用户名长度
PASSWD_LEN	16	密码长度
SERIALNO_LEN	48	序列号长度
MACADDR_LEN	6	MAC 地址长度
MAX_LINK	6	最大视频流连接数
MAX_ANALOG_CHANNUM	32	最大 32 个模拟通道
MAX_ANALOG_ALARMOUT	32	最大 32 路模拟报警输出
MAX_ANALOG_ALARMIN	32	最大 32 路模拟报警输入
MAX_IP_CHANNEL	32	允许加入的最多 IP 通道数
MAX_IP_ALARMIN	128	允许加入的最多报警输入数
MAX_IP_ALARMOUT	64	允许加入的最多报警输出数
MAX_CHANNUM_V30	64	(MAX_ANALOG_CHANNUM + MAX_IP_CHANNEL)
MAX_ALARMOUT_V30	96	(MAX_ANALOG_ALARMOUT + MAX_IP_ALARMOUT)
MAX_ALARMIN_V30	160	(MAX_ANALOG_ALARMIN + MAX_IP_ALARMIN)
MAX_PRESET_V30	256	支持的云台预置点数
MAX_TRACK_V30	256	支持的云台轨迹数
MAX_CRUISE_V30	256	支持的云台巡航数
MAX_SERIAL_PORT	8	支持 232 串口数
MAX_FORTIFY_NUM	10	最大布防个数
MAX_DRIVECHAN_NUM	16	最大车道数
MAX_COIL_NUM	3	最大线圈个数
MAX_ETHERNET	2	设备可配以太网络
MAX_DOMAIN_NAME	64	最大域名长度
MAX_EXCEPTIONNUM_V30	32	设备的最大异常处理数
MAX_SHELTERNUM	4	V3.0 以下版本支持的设备的最大遮挡区域数
MAX_STRINGNUM_V30	8	最大 OSD 字符行数
PATHNAME_LEN	128	路径长度
PICNAME_MAXITEM	15	最大命名项数目
MAX_TIMESEGMENT_V30	8	最大时间段数

MAX_VIDEOOUT_V30	4	视频输出数
MAX_VGA_V30	4	最大可接 VGA 数
MAX_MATRIXOUT	16	最大模拟矩阵输出个数
MAX_DAYS	7	每周的天数
PHONENUMBER_LEN	32	PPPoE 拨号号码最大长度
MAX_DISKNUM_V30	33	最大硬盘数
MAX_NFS_DISK	8	最大 NFS 硬盘数
MAX_LICENSE_LEN	16	车牌号最大长度
MAX_SIGNALLIGHT_NUM	6	最大信号灯个数
MAX_LANERECT_NUM	5	最大车牌识别区域数
MAX_INTERVAL_NUM	4	最大时间间隔个数
MAX_CHJC_NUM	3	最大车辆省份简称字符个数
MAX_VL_NUM	5	最大虚拟线圈个数
MAX_IOSPEED_GROUP_NUM	4	IO 测速组个数
MAX_IOOUT_NUM	4	最大 IO 输出口个数
MAX_IOIN_NUMEX	10	最大 IO 输入口个数(扩展)
MAX_IOIN_NUM	8	最大 IO 输入口个数
MAX_ITC_LANE_NUM	6	最大车道个数
MAX_LIGHT_NUM	6	最大交通灯数
MAX_LANEAREA_NUM	2	单车道最大区域个数
MAX_USERNUM_V30	32	设备的最大用户数
ITC_MAX_POLYGON_POINT_NUM	20	检测区域最多支持 20 个点的多边形
MAX_ITC_SERIALCHECK_NUM	8	串口校验类型个数
MAX_VIDEO_DETECT_LIGHT_NUM	12	视频检测交通信号灯检测区域最大个数
MAX_CABINET_COUNT	8	最大机柜个数
ITS_MAX_DEVICE_NUM	32	最大设备个数
MAX_CUSTOMDIR_LEN	32	自定义目录长度
MAX_ICR_NUM	8	抓拍机红外滤光片预置点数
MAX_ITC_EXCEPTIONOUT	32	抓拍机最大报警输出个数

7.2 COUNTRY_INDEX:国家索引值

```
enum _COUNTRY_INDEX_{
 COUNTRY_NONSUPPORT
                      = 0,
                            //算法库不支持牌识国家
                            //Czech Republic 捷克共和国
 COUNTRY_CZE
                      = 1,
                            //France 法国
 COUNTRY_FRA
                      = 2,
                            //Germany 德国
 COUNTRY_DEU
                      = 3,
                            //Spain 西班牙
 COUNTRY_ESP
                      = 4,
```

```
//Italy 意大利
COUNTRY ITA
                    = 5,
COUNTRY NLD
                           ///Netherlands 荷兰
                    = 6,
                           //Poland 波兰
COUNTRY_POL
                    = 7,
                          //Slovakia 斯洛伐克
COUNTRY_SVK
                    = 8,
COUNTRY BLR
                          //Belorussia 白俄罗斯
                    = 9,
COUNTRY_MDA
                    = 10,
                          //Moldova 摩尔多瓦
                           //Russia 俄罗斯
COUNTRY RUS
                    = 11,
                          //Ukraine 乌克兰
COUNTRY_UKR
                    = 12,
COUNTRY BEL
                     = 13,
                          //Belgium 比利时
COUNTRY_BGR
                    = 14,
                           //Bulgaria 保加利亚
COUNTRY DNK
                    = 15,
                           //Denmark 丹麦
                           //Finland 芬兰
COUNTRY FIN
                     = 16,
COUNTRY_GBR
                    = 17,
                           //Great Britain 英国
                           //Greece 希腊
COUNTRY GRC
                    = 18,
                           //Croatia 克罗地亚
COUNTRY_HRV
                    = 19,
                           //Hungary 匈牙利
COUNTRY HUN
                     = 20.
COUNTRY ISR
                    = 21,
                           //Israel 以色列
COUNTRY LUX
                    = 22,
                           //Luxembourg 卢森堡
                          //Macedonia 马其顿共和国
COUNTRY_MKD
                    = 23,
                          //Norway 挪威
COUNTRY_NOR
                     = 24,
                           //Portugal 葡萄牙
COUNTRY PRT
                     = 25,
                           //Romania 多马尼亚
COUNTRY_ROU
                     = 26,
COUNTRY SRB
                     = 27,
                           //Serbia 塞尔维亚
COUNTRY_AZE
                     = 28,
                           //Azerbaijan 阿塞邦疆共和国
                           //Georgia 即格鲁吉亚
COUNTRY GEO
                     = 29,
                           //Kazakhstan 哈萨克斯坦
                     = 30,
COUNTRY_KAZ
COUNTRY_LTU
                     = 31,
                           //Lithuania 立陶宛共和国
                     = 32,
                           //Turkmenistan 土库曼斯坦
COUNTRY TKM
COUNTRY_UZB
                     = 33,
                           //Uzbekistan 乌兹别克斯坦
                     = 34,
                           //Latvia 拉脱维亚
COUNTRY LVA
COUNTRY_EST
                           //Estonia 爱沙尼亚
                     = 35,
                           //Albania 阿尔巴尼亚
COUNTRY ALB
                     = 36,
                           //Austria 奥地利
COUNTRY AUT
                     = 37,
COUNTRY_BIH
                     = 38,
                           //Bosnia and Herzegovina 波斯尼亚和黑塞哥维那
                            //Ireland 爱尔兰
COUNTRY_IRL
                     = 39,
                     = 40,
                           //Iceland 冰岛
COUNTRY_ISL
                           //Vatican 梵蒂冈
COUNTRY VAT
                     = 41,
                           //Malta 马耳他
COUNTRY_MLT
                     = 42,
                           //Sweden 瑞典
COUNTRY SWE
                     = 43,
                           //Switzerland 瑞士
COUNTRY_CHE
                     = 44,
COUNTRY_CYP
                     = 45,
                          //Cyprus 塞浦路斯
COUNTRY TUR
                     = 46,
                           //Turkey 土耳其
                            //Slovenia 斯洛文尼亚
COUNTRY SVN
                     = 47,
COUNTRY UNRECOGNIZED = 0xfe, //Unrecognized 无法识别
```

COUNTRY_ALL }COUNTRY_INDEX = 0xff //ALL 全部

7.3 NET_DVR_ACTIVATECFG:设备激活参数

struct{

DWORD dwSize;

BYTE sPassword[PASSWD_LEN];

BYTE byRes[108];

}NET_DVR_ACTIVATECFG,*LPNET_DVR_ACTIVATECFG;

Members

dwSize

结构体大小

sPassword

初始密码,密码等级弱或者以上

bvRes

保留,置为0

Remarks

- 出厂设备需要先激活,然后再使用激活使用的初始密码登录设备。
- 将密码输入分为数字(0~9)、小写字母(a~z)、大写字母(A~Z)、特殊符号(:\"除外)4类,等级分为4个等级,如下所示:
 - 1) 等级 0 (风险密码): 密码长度小于 8 位,或者只包含 4 类字符中的任意一类,或者密码与用户名一样,或者密码是用户名的倒写。例如: 12345、abcdef。
 - 2) 等级 1 (弱密码): 包含两类字符,且组合为(数字+小写字母)或(数字+大写字母),且长度大于等于 8 位。例如: abc12345、123ABCDEF
 - 3) 等级 2 (中密码): 包含两类字符,且组合不能为(数字+小写字母)和(数字+大写字母),且长度大于等于 8 位。例如: 12345***++、ABCDabcd。
 - 4) 等级 3 (强密码): 包含三类字符及以上, 且长度大于等于 8 位。例如: Abc12345、abc12345++。

7.4 NET_DVR_ALARM_RADARINFO:雷达报警报警信息

struct{

DWORD dwSize;

DWORD dwRadarTriggerTimeSecond;

DWORD dwRadarTriggerTimeMSecond;

DWORD dwVedioTriggerTimeSecond;

DWORD dwVedioTriggerTimeMSecond;

DWORD dwVedioRadarDiffTimeMSecond;

DWORD dwRadarSpeed;

BYTE byRes[16];

}NET_DVR_ALARM_RADARINFO,*LPNET_DVR_ALARM_RADARINFO;

Members

dwSize

结构体大小

dwRadarTriggerTimeSecond

雷达触发时间: 秒

dwRadarTriggerTimeMSecond

雷达触发时间:毫秒

dwVedioTriggerTimeSecond

视频触发时间: 秒

dwVedioTriggerTimeMSecond

视频触发时间:毫秒

dwVedioRadarDiffTimeMSecond

雷达视频触发时间差: 毫秒

dwRadarSpeed

雷达速度

byRes

保留

Remarks

该报警在三级布防下才会产生,布防等级在布防(NET DVR SetupAlarmChan V41)时选择。

7.5 NET DVR ALARMCTRL CFG:报警控制配置

struct{

DWORD dwSize;

BYTE byListenPicUploadEnabled;

BYTE byRes[259];

}NET_DVR_ALARMCTRL_CFG, *LPNET_DVR_ALARMCTRL_CFG;

Members

dwSize

结构体大小

 $by {\it Listen Pic Upload Enabled}$

监听图片上传使能: 0- 禁用, 1- 启用

byRes

保留,置为0

Remarks

设备是否支持报警控制配置或者支持的参数能力,可以通过设备能力集进行判断,对应报警控制能力集(<u>AlarmCtrlParam</u>),相关接口: <u>NET_DVR_GetSTDAbility</u>,能力集类型:
 NET_DVR_GET_ALARMCTRL_CAPABILITIES。

7.6 NET_DVR_ALARMER:报警设备信息

struct{

BYTE byUserIDValid; BYTE bySerialValid; BYTE byVersionValid;

BYTE byDeviceNameValid; **BYTE** byMacAddrValid; **BYTE** byLinkPortValid; **BYTE** byDeviceIPValid; **BYTE** bySocketIPValid; LONG lUserID; **BYTE** sSerialNumber[SERIALNO_LEN]; DWORD dwDeviceVersion; sDeviceName[NAME LEN]; char **BYTE** byMacAddr[MACADDR_LEN]; WORD wLinkPort; char sDeviceIP[128]; char sSocketIP[128]; **BYTE** bylpProtocol; **BYTE** byRes2[11]; }NET_DVR_ALARMER,*LPNET_DVR_ALARMER;

Members

byUserIDValid

userid 是否有效: 0一无效; 1一有效

bySerialValid

序列号是否有效: 0-无效; 1-有效

byVersionValid

版本号是否有效: 0-无效: 1-有效

byDeviceNameValid

设备名字是否有效: 0-无效; 1-有效

byMacAddrValid

MAC 地址是否有效: 0一无效; 1一有效

byLinkPortValid

Login 端口是否有效: 0一无效; 1一有效

byDeviceIPValid

设备 IP 是否有效: 0一无效; 1一有效

bySocketIPValid

Socket IP 是否有效: 0-无效; 1-有效

IUserID

NET_DVR_Login 或 NET_DVR_Login_V40 的返回值, 布防时有效

sSerialNumber

序列号

dwDeviceVersion

版本信息: V3.0 以上版本支持的设备最高 8 位为主版本号,次高 8 位为次版本号,低 16 位为修复 版本号; V3.0 以下版本支持的设备高 16 位表示主版本, 低 16 位表示次版本

sDeviceName

设备名称

byMacAddr

MAC 地址

wLinkPort

设备通讯端口

sDeviceIP

设备 IP 地址

sSocketIP

报警主动上传时的 Socket IP 地址

bylpProtocol

IP协议: 0-IPV4, 1-IPV6

byRes2

保留,置为0

7.7 NET_DVR_ALARMINFO_V30:上传的报警信息

struct{

DWORD dwAlarmType;

DWORD dwAlarmInputNumber;

BYTE byAlarmOutputNumber[MAX_ALARMOUT_V30];
BYTE byAlarmRelateChannel[MAX_CHANNUM_V30];

BYTE byChannel[*MAX_CHANNUM_V30*];
BYTE byDiskNumber[*MAX_DISKNUM_V30*];

}NET_DVR_ALARMINFO_V30,*LPNET_DVR_ALARMINFO_V30;

Members

dwAlarmType

报警类型: 0-信号量报警, 1-硬盘满, 2-信号丢失, 3-移动侦测, 4-硬盘未格式化, 5-读写硬盘出错, 6-遮挡报警, 7-制式不匹配, 8-非法访问, 9-视频信号异常, 10-录像/抓图异常, 11-智能场景变化, 12-阵列异常, 13-前端/录像分辨率不匹配, 17-闪光灯异常

dwAlarmInputNumber

报警输入端口

byAlarmOutputNumber

触发的报警输出端口,值为 1 表示该报警端口输出,如 byAlarmOutputNumber[0]=1 表示触发第 1 个报警输出口输出,byAlarmOutputNumber[1]=1 表示触发第 2 个报警输出口,依次类推。

byAlarmRelateChannel

触发的录像通道,值为 1 表示该通道录像,如 byAlarmRelateChannel[0]=1 表示触发第 1 个通道录像 byChannel

发生报警的通道。当报警类型为 2、3、6、9、10、11、13、17 时有效,如 byChannel[0]=1 表示第 1 个通道报警

byDiskNumber

发生报警的硬盘。当报警类型为 1、4、5 时有效, byDiskNumber[0]=1 表示 1 号硬盘异常

Remarks

抓拍机支持类型: 1-硬盘满、5-读写硬盘出错、8-非法访问,这里的硬盘即指 SD 卡。

7.8 NET_DVR_BACKLIGHT: 背光补偿参数

```
struct{
  BYTE
             byBacklightMode;
  BYTE
             byBacklightLevel;
  BYTE
             byRes1[2];
  DWORD
             dwPositionX1;
  DWORD
              dwPositionY1;
  DWORD
             dwPositionX2;
  DWORD
             dwPositionY2;
  BYTE
             byRes2[4];
}NET_DVR_BACKLIGHT, *LPNET_DVR_BACKLIGHT;
Members
byBacklightMode
       背光补偿:0-off、1-UP、2-DOWN、3-LEFT、4-RIGHT、5-MIDDLE、6-自定义
byBacklightLevel
      0x0-0xF
byRes1
       保留
dwPositionX1
      X 坐标 1
dwPositionY1
      Y 坐标 1
dwPositionX2
      X 坐标 2
dwPositionY2
      Y 坐标 2
byRes2
       保留
```

7.9 NET_DVR_BARRIERGATE_CFG: 道闸控制参数

```
struct{
  DWORD
             dwSize;
  DWORD
             dwChannel;
  BYTE
             byLaneNo;
  BYTE
             byBarrierGateCtrl;
  BYTE
             byRes[14];
}NET_DVR_BARRIERGATE_CFG,*LPNET_DVR_BARRIERGATE_CFG;
Members
dwSize
       结构体大小
dwChannel
```

通道号

byLaneNo

道闸号: 0- 表示无效值(设备需要做有效值判断), 1- 道闸 1

byBarrierGateCtrl

控制参数: 0- 关闭道闸, 1- 开启道闸, 2- 停止道闸, 3- 锁定道闸

byRes

保留,置为0

7.10 NET_DVR_BARRIERGATE_COND:出入口控制条件

struct{

BYTE byLaneNo;

BYTE byRes[3];

}NET_DVR_BARRIERGATE_COND,*LPNET_DVR_BARRIERGATE_COND;

Members

byLaneNo

车道号: 0- 表示无效值(设备需要做有效值判断), 1- 车道1

byRes

保留,置为0

7.11 NET_DVR_CABINET_AIARM_PARAMCFG:机柜报警参数

struct{

char sCabinetName[NAME_LEN];

BYTE byAssociateIO;

BYTE byCabinetState;

BYTE byAlarmIntervalTime;

BYTE byRes1[25];

}NET_DVR_CABINET_Alarm_PARAMCFG,*LPNET_DVR_CABINET_Alarm_PARAMCFG;

Members

sCabinetName

机柜名称

byAssociate10

关联的 IO 口号,取值范围: 1~4 表示具体的 IO 通道号, 0xff 表示不启用

byCabinetState

机柜触发报警状态: 0- 低电平, 1- 高电平

byAlarmIntervalTime

报警上传时间间隔,取值范围: 1~60,单位: 秒

byRes1

保留,置为0

7.12 NET_DVR_CABINET_CFG:机柜配置参数

```
struct{
 DWORD
                                   dwSize;
 BYTE
                                   byEnable;
 BYTE
                                   byRes[3];
 NET DVR CABINET AIARM PARAMCFG
                                   struCabinetCfg[MAX_CABINET_COUNT];
                                   byRes1[84];
}NET_DVR_CABINET_CFG,*LPNET_DVR_CABINET_CFG;
Members
dwSize
      结构体大小
byEnable
      使能: 0- 禁用, 1- 启用
byRes
      保留,置为0
struCabinetCfg
      机柜报警参数配置
byRes1
      保留,置为0
```

7.13 NET_DVR_CALIBRATE_TIME:时间校时参数

```
struct{
 DWORD
                 dwSize;
 NET DVR TIME
                 struTime;
 WORD
                  wMilliSec;
 BYTE
                  byRes[14];
}NET_DVR_CALIBRATE_TIME,*LPNET_DVR_CALIBRATE_TIME;
Members
dwSize
      结构体大小
struTime
      时间参数,年月日时分秒
wMilliSec
      毫秒
bvRes
      保留,置为0
```

7.14 NET_DVR_CAMERAPARAMCFG:前端参数配置

struct{

DWORD dwSize;

NET_DVR_VIDEOEFFECT struVideoEffect;

NET DVR GAIN struGain;

NET_DVR_WHITEBALANCE struWhiteBalance;
NET_DVR_EXPOSURE struExposure;

NET DVR GAMMACORRECT struGammaCorrect;

NET_DVR_WDRstruWdr;NET_DVR_DAYNIGHTstruDayNight;NET_DVR_BACKLIGHTstruBackLight;NET_DVR_NOISEREMOVEstruNoiseRemove;

BYTE byPowerLineFrequencyMode;

BYTE bylrisMode;
BYTE byMirror;

BYTE byDigitalZoom;
BYTE byDeadPixelDetect;

BYTE byBlackPwl;
BYTE byEptzGate;

BYTE byLocalOutputGate;
BYTE byCoderOutputMode;

BYTE byLineCoding;
BYTE byDimmerMode;
BYTE byPaletteMode;
BYTE byEnhancedMode;
BYTE byDynamicContrastEN;
BYTE byDynamicContrast;
BYTE byJPEGQuality;

NET DVR CMOSMODECFGstruCmosModeCfg;BYTEbyFilterSwitch;BYTEbyFocusSpeed;

BYTE byAutoCompensationInterval;

BYTE bySceneMode;

}NET DVR CAMERAPARAMCFG, *LPNET DVR CAMERAPARAMCFG;

Members

dwSize

结构体大小

struVideoEffect

视频效果参数

struGain

增益参数

struWhiteBalance

白平衡参数

struExposure

曝光参数

struGammaCorrect

Gamma 校正参数

struWdr

宽动态参数

struDayNight

日夜转换功能参数

struBackLight

背光补偿参数

struNoiseRemove

数字降噪参数

byPowerLineFrequencyMode

0-50HZ; 1-60HZ

byIrisMode

0 自动光圈;1 手动光圈

byMirror

镜像: 0 关闭;1 左右;2 上下;3 中间

byDigitalZoom

数字缩放: 0- 不启用, 1- 启用。对于热成像仪,表示数字倍率: 0- 关闭, 1-×2, 2-×4

byDeadPixelDetect

坏点检测是否启用,0-不启用,1-启用

byBlackPwl

黑电平补偿, 0-255

byEptzGate

EPTZ 开关变量: 0-关闭电子云台; 1-开启电子云台

byLocalOutputGate

本地输出开关变量:

- 0-本地输出关闭
- 1-本地 BNC 输出打开
- 2-HDMI 输出关闭
- 20-HDMI_720P50 输出开
- 21-HDMI_720P60 输出开
- 22-HDMI_1080I60 输出开
- 23-HDMI 1080I50 输出开
- 24-HDMI 1080P24 输出开
- 25-HDMI_1080P25 输出开
- 26-HDMI_1080P30 输出开
- 27-HDMI_1080P50 输出开
- 28-HDMI_1080P60 输出开

byCoderOutputMode

编码器 fpga 输出模式: 0-直通; 3-像素搬家

by Line Coding

是否开启行编码: 0- 否, 1- 是

byDimmerMode

调光模式: 0- 半自动, 1- 自动, 适用于热成像仪

byPaletteMode

调色板: 0- 白热, 1- 黑热, 2- 调色板 2, ..., 8- 调色板 8, 适用于热成像仪

byEnhancedMode

增强方式 (探测物体周边): 0- 不增强, 1-1, 2-2, 3-3, 4-4, 适用于热成像仪

byDynamicContrastEN

动态对比度增强: 0-不增强; 1-增强

byDynamicContrast

动态对比度: 0~100

byJPEGQuality

JPEG 图像质量: 0~100。对于 V3.5 或以上版本的智能交通摄像机,该参数无效,相关功能通过使能参数(NET_DVR_SNAPENABLECFG)的 wJpegPicSize 实现。

struCmosModeCfg

CMOS 模式下前端参数配置,镜头模式从能力集获取

byFilterSwitch

滤波开关: 0- 不启用, 1- 启用, 适用于热成像仪

byFocusSpeed

镜头调焦速度,取值范围 0~10,适用于热成像仪

byAutoCompensationInterval

定时自动快门补偿,取值范围 1~120,单位:分钟,适用于热成像仪

bySceneMode

场景模式: 0- 室外, 1- 室内

7.15 NET_DVR_CAMERAPARAMCFG_EX:前端参数配置(扩展)

struct{

DWORD dwSize;

NET DVR VIDEOEFFECT struVideoEffect;

NET DVR GAIN struGain;

NET DVR WHITEBALANCEstruWhiteBalance;NET DVR EXPOSUREstruExposure;

<u>NET_DVR_GAMMACORRECT</u> struGammaCorrect;

NET DVR WDR struWdr;

NET_DVR_DAYNIGHTstruDayNight;NET_DVR_BACKLIGHTstruBackLight;NET_DVR_NOISEREMOVEstruNoiseRemove;

BYTE byPowerLineFrequencyMode;

BYTE bylrisMode;
BYTE byMirror;
BYTE byDigitalZoom;
BYTE byDeadPixelDetect;

BYTE byBlackPwl;
BYTE byEptzGate;

BYTE byLocalOutputGate;
BYTE byCoderOutputMode;

BYTE byLineCoding;

BYTE byDimmerMode; **BYTE** byPaletteMode; **BYTE** byEnhancedMode; **BYTE** byDynamicContrastEN; **BYTE** byDynamicContrast; **BYTE** byJPEGQuality; **NET DVR CMOSMODECFG** struCmosModeCfg; **BYTE** byFilterSwitch; **BYTE** byFocusSpeed;

BYTE byAutoCompensationInterval;

BYTE bySceneMode;
https://www.bysceneMode;
<a href="https://www.bysceneMode;
<a href="https://wwww.bysceneMode;
<a href="https://www.bysceneMode;
<a href="https://

NET DVR ELECTRONICSTABILIZATION struElectronicStabilization;

NET DVR CORRIDOR MODE CCD struCorridorMode;

BYTE byExposureSegmentEnable;
BYTE byBrightCompensate;
BYTE byCaptureModeN;
BYTE byCaptureModeP;
NET DVR SMARTIR PARAM struSmartIRParam;

NET_DVR_PIRIS_PARAMstruPIrisParam;NET_DVR_LASER_PARAM_CFGstruLaserParam;NET_DVR_FFC_PARAMstruFFCParam;NET_DVR_DDE_PARAMstruDDEParam;NET_DVR_AGC_PARAMstruAGCParam;

BYTE byLensDistortionCorrection;

BYTE byRes1[3];

NET_DVR_SNAP_CAMERAPARAMCFG struSnapCCD;

BYTE byRes2[188];

}NET_DVR_CAMERAPARAMCFG_EX, *LPNET_DVR_CAMERAPARAMCFG_EX;

Members

dwSize

结构体大小

struVideoEffect

视频效果参数

struGain

增益参数

struWhiteBalance

白平衡参数

struExposure

曝光参数

struGammaCorrect

Gamma 校正参数

struWdr

宽动态参数

struDayNight

日夜转换功能参数

struBackLight

背光补偿参数

struNoiseRemove

数字降噪参数

byPowerLineFrequencyMode

0-50HZ; 1-60HZ

byIrisMode

0- 自动光圈; 1- 手动光圈

byMirror

镜像: 0- 关闭, 1- 左右, 2- 上下, 3- 中间

byDigitalZoom

数字缩放: 0- 不启用,1- 启用。对于热成像仪,表示数字倍率: 0- 关闭,1-×2, 2-×4 byDeadPixelDetect

坏点检测是否启用,0-不启用,1-启用

byBlackPwl

黑电平补偿, 0-255

byEptzGate

EPTZ 开关变量: 0-关闭电子云台, 1-开启电子云台

byLocalOutputGate

本地输出开关变量:

- 0-本地输出关闭
- 1-本地 BNC 输出打开
- 2-HDMI 输出关闭
- 11-缩放输出
- 12-裁剪输出
- 13-裁剪缩放输出
- 20-HDMI_720P50 输出开
- 21-HDMI_720P60 输出开
- 22-HDMI_1080I60 输出开
- 23-HDMI_1080I50 输出开
- 24-HDMI_1080P24 输出开
- 25-HDMI_1080P25 输出开 26-HDMI_1080P30 输出开
- **27-HDMI_1080P50** 输出开

byCoderOutputMode

编码器 fpga 输出模式: 0-直通; 3-像素搬家

byLineCoding

是否开启行编码: 0- 否, 1- 是

byDimmerMode

调光模式: 0- 半自动, 1- 自动, 适用于热成像仪

byPaletteMode

调色板: 0- 白热, 1- 黑热, 2- 调色板 2, ..., 8- 调色板 8, 适用于热成像仪

byEnhancedMode

增强方式 (探测物体周边): 0- 不增强, 1-1, 2-2, 3-3, 4-4, 适用于热成像仪

byDynamicContrastEN

动态对比度增强: 0-不增强; 1-增强

byDynamicContrast

动态对比度: 0~100

byJPEGQuality

JPEG 图像质量: 0~100。对于 V3.5 或以上版本的智能交通摄像机,该参数无效,相关功能通过使能参数(NET DVR SNAPENABLECFG)的 wJpegPicSize 实现。

struCmosModeCfa

CMOS 模式下前端参数配置,镜头模式从能力集获取

byFilterSwitch

滤波开关: 0- 不启用, 1- 启用, 适用于热成像仪

byFocusSpeed

镜头调焦速度,取值范围 0~10,适用于热成像仪

byAutoCompensationInterval

定时自动快门补偿,取值范围 1~120,单位:分钟,适用于热成像仪

bySceneMode

场景模式: 0- 室外, 1- 室内

struDefogCfg

透雾参数

struElectronicStabilization

电子防抖

struCorridorMode

旋转功能

byExposureSegmentEnable

曝光时间和增益呈阶梯状调整: 0- 不启用, 1- 启用,比如曝光往上调整时,先提高曝光时间到中间值,然后提高增益到中间值,再提高曝光到最大值,最后提高增益到最大值

byBrightCompensate

夜晚亮度增强,取值范围: [0,100]

byCaptureModeN

视频输入模式(N制):

0-关闭,1-640*480@25fps,2-640*480@30ps,3-704*576@25fps,4-704*480@30fps,

 $5-1280*720@25 fps, \ 6-1280*720@30 fps, \\ 7-1280*720@50 fps, \\ 8-1280*720@60 fps, \\ 9-1280*960@15 fps, \\ 9-1280*$

10-1280*960@25fps, 11-1280*960@30fps, 12-1280*1024@25fps, 13--1280*1024@30fps,

14-1600*900@15fps, 15-1600*1200@15fps, 16-1920*1080@15fps, 17-1920*1080@25fps,

18-1920*1080@30fps, 19-1920*1080@50fps, 20-1920*1080@60fps, 21-2048*1536@15fps,

22-2048*1536@20fps, 23-2048*1536@24fps, 24-2048*1536@25fps, 25-2048*1536@30fps,

26-2560*2048@25fps, 27-2560*2048@30fps, 28-2560*1920@7.5fps, 29-3072*2048@25fps,

30-3072*2048@30fps, 31-2048*1536@12.5fps, 32-2560*1920@6.25fps, 33-1600*1200@25fps,

34-1600*1200@30fps, 35-1600*1200@12.5fps, 36-1600*900@12.5fps, 37-1600@900@15fps,

38-800*600@25fps, 39-800*600@30fps, 40-4000*3000@12.5fps, 41-4000*3000@15fps,

42-4096*2160@20fps, 43-3840*2160@20fps, 44-960*576@25fps, 45-960*480@30fps,

```
46-752*582@25fps, 47-768*494@30fps, 48-2560*1440@25fps, 49-2560*1440@30fps, 50-720P@100fps, 51-720P@120fps, 52-2048*1536@50fps, 53-2048*1536@60fps, 54-3840*2160@25fps, 55-3840*2160@30fps, 56-4096*2160@25fps, 57-4096*2160@30fps, 58-1280*1024@50fps, 59-1280*1024@60fps, 60-3072*2048@50fps, 61-3072*2048@60fps, 62-3072*1728@25fps, 63-3072*1728@30fps, 64-3072*1728@50fps, 65-3072*1728@60fps, 66-336*256@50fps, 67-336*256@60fps, 68-384*288@50fps, 69-384*288@60fps, 70-640*512@50fps, 71-640*512@60fps, 72-2592*1944@25fps, 73-2592*1944@30fps, 74-2688*1536@25fps, 75-2688*1536@30fps, 76-2592*1944@20fps, 77-2592*1944@15fps, 78-2688*1520@20fps, 79-2688*1520@15fps, 80-2688*1520@25fps, 81-2688*1520@30fps, 82-2720*2048@25fps, 83-2720*2048@30fps, 84-336*256@25fps, 85-384*288@25fps, 86-640*512@25fps, 87-1280*960@50fps, 88-1280*960@60fps, 89-1280*960@100fps, 90-1280*960@120fps, 91-4000*3000@20fps
```

byCaptureModeP

视频输入模式(P制),取值同 byCaptureModeN

struSmartIRParam

红外过爆配置信息

struPIrisParam

P-Iris 红外光圈大小等级配置信息

struLaserParam

激光参数

struFFCParam

FFC 参数,保留

struDDEParam

DDE 参数,保留

struAGCParam

AGC 参数,保留

byLensDistortionCorrection

镜头畸变校正: 0- 关闭, 1- 开启

byRes1

保留,置为0

struSnapCCD

抓拍机 CCD 参数,只用于智能交通摄像机(抓拍机)

byRes

保留,置为0

7.16 NET_DVR_CAMERA_SETUPCFG:相机架设参数

struct{

DWORD dwSize;

WORD wSetupHeight; BYTE byLensType;

BYTE bySetupHeightUnit;

DWORD dwSceneDis; float fPitchAngle; float finclineAngle;

float fRotateAngle;

WORD wVideoDetCoefficient;

BYTE byErectMethod;

BYTE byCameraViewAngle;

DWORD dwHorizontalDistance;

BYTE byDetailLensType;

BYTE byRes[3];

float fHorFieldAngle;

float fVerFieldAngle;

BYTE byRes1[24];

}NET_DVR_CAMERA_SETUPCFG,*LPNET_DVR_CAMERA_SETUPCFG;

Members

dwSize

结构体大小

wSetupHeight

架设高度,取值范围: [0,20]

byLensType

镜头焦距类型: 0-未知,1-8mm,2-12mm,3-16mm,4-25mm,5-35mm,6-50mm

bySetupHeightUnit

架设高度单位: 0- 米(m), 1- 厘米(cm)

dwSceneDis

图像下边缘位置与相机之间的水平距离,单位:厘米

fPitchAngle

相机俯仰角度(暂不支持),取值范围:[-180,180],单位:度

fInclineAngle

相机倾斜角度(暂不支持),取值范围:[-180,180],单位:度

fRotateAngle

相机旋转角度(暂不支持),取值范围:[-180,180],单位:度

wVideoDetCoefficient

视频测试系数,取值范围: [0,300]

byErectMethod

架设方式: 0-正装, 1-侧装

byCameraViewAngle

摄像机安装视野角度: 0- 垂直 (默认), 1- 倾斜

dwHorizontalDistance

摄像机与出入口水平距离,取值范围: 1~1000,默认: 30,单位: cm,摄像机角度为倾斜时有效 byDetailLensType

镜头类型,取值范围: 1~100,默认: 28,单位: 0.1mm

byRes

保留

fHorFieldAngle

摄像机水平视场角角度,取值范围: [0,360],单位:度

fVerFieldAngle

摄像机垂直视场角角度,取值范围:[0,360],单位:度

byRes1

保留

7.17 NET_DVR_CERT_INFO:证书信息

struct{

DWORD dwSize;

NET_DVR_CERT_PARAM struCertParam;
DWORD dwValidDays;

BYTE byPasswd[NAME_LEN];

NET_DVR_CERT_NAME
NET_DVR_CERT_NAME
StrulssuerName;
NET_DVR_TIME_EX
StruBeginTime;
StruEndTime;

BYTE serialNumber[NAME_LEN];

BYTE byVersion;

BYTE byKeyAlgorithm;

BYTE byKeyLen;

BYTE bySignatureAlgorithm;

BYTE byRes[128];

}NET_DVR_CERT_INFO,*LPNET_DVR_CERT_INFO;

Members

dwSize

结构体大小

struCertParam

证书参数

dwValidDays

有效天数,类型为自签名时有效

byPasswd

私钥密码

struCertName

证书名称

strulssuerName

证书发行者名称(自签名证书信息获取时有效)

struBeginTime

证书创建时间(自签名证书信息获取时有效)

struEndTime

证书截止时间(自签名证书信息获取时有效)

serialNumber

证书标识码(自签名证书信息获取时有效)

byVersion

证书版本

byKeyAlgorithm

加密类型: 0-RSA, 1-DSA

byKeyLen

加密长度: 0-512, 1-1024, 2-2048

bySignatureAlgorithm

签名算法类型(自签名证书信息获取时有效)

byRes

保留,置为0

7.18 NET_DVR_CERT_NAME:证书名称信息

```
struct{
 BYTE
         byCountry[MAX_COUNTRY_NAME_LEN];
 BYTE
         byState[MAX_DOMAIN_NAME];
 BYTE
         byLocality[MAX_DOMAIN_NAME];
 BYTE
         byOrganization[MAX_DOMAIN_NAME];
 BYTE
         byUnit[MAX DOMAIN NAME];
 BYTE
         byCommonName[MAX_DOMAIN_NAME];
 BYTE
         byEmail[MAX_DOMAIN_NAME];
 BYTE
         byRes[128];
}NET_DVR_CERT_NAME,*LPNET_DVR_CERT_NAME;
Members
byCountry
      国家简写,如:CN
byState
```

洲或省

byLocality

地区

byOrganization

组织

byUnit

单位

byCommonName

域名或者 IP 地址

byEmail

Email 地址

byRes

保留,置为0

7.19 NET_DVR_CERT_PARAM:证书参数

$struct \{$

DWORD dwSize; WORD wCertFunc; WORD wCertType;

BYTE byFileType;

BYTE byRes[35];

}NET_DVR_CERT_PARAM, *LPNET_DVR_CERT_PARAM;

Members

dwSize

结构体大小

wCertFunc

证书种类: 0-802.1x, 1-HTTPS, 2-EAP-TLS

wCertType

证书类型: 0-CA, 1-Certificate, 2-私钥文件

byFileType

证书文件类型: 0- PEM, 1- PFX

byRes

保留,置为0

7.20 NET_DVR_CLIENTINFO:预览参数

struct{

LONG IChannel;

LONG lLinkMode;

HWND hPlayWnd;

char *sMultiCastIP;

}NET_DVR_CLIENTINFO, *LPNET_DVR_CLIENTINFO;

Members

IChannel

通道号,对于摄像机,只有一个通道,通道号为1

lLinkMode

最高位(31)为 0 表示主码流,为 1 表示子码流; 0~30 位表示连接方式: 0- TCP 方式,1- UDP 方式,

2- 多播方式, 3-RTP 方式, 4-RTP over RTSP, 5-RTSP over HTTP

例如子码流 TCP 连接,则 lLinkMode=0x80000000

hPlayWnd

播放窗口的句柄,为 NULL 表示不显示图像

sMultiCastIP

多播组地址

Remarks:

Windows 下该结构中的 hPlayWnd 参数若设置为 NULL,则 SDK 仍取流,但不进行解码显示,所以仍可以录像。Linux 下该结构中的 hPlayWnd = {0}则 SDK 仍取流,不进行解码显示,所以仍可以录像,但是不能设置 hPlayWnd = 0(即 NULL),否则非法结构地址会导致调用 hPlayWnd.x 等去判断的时候崩溃。

当客户选择普通协议传输时,若设备支持 RTSP 协议,SDK 将直接转成 RTSP 方式连接设备。

Linux 下

HWND 表示播放窗口的句柄, 定义为:

typedef unsigned int HWND;

如果使用 Qt 进行界面开发,示例如下:

NET_DVR_CLIENTINFO tmpclientinfo; tmpclientinfo.hPlayWnd = (HWND)m_framePlayWnd->GetPlayWndId();

7.21 NET_DVR_CLOUDSTORAGE_CFG:云存储配置

```
struct{
 DWORD
                     dwSize;
 BYTE
                     byEnable;
 BYTE
                     byRes[3];
 NET DVR IPADDR
                     struIP;
 WORD
                     wPort;
 BYTE
                     byRes1[2];
 char
                     szUser[CLOUD_NAME_LEN];
 char
                     szPassword[CLOUD_PASSWD_LEN];
 NET DVR POOLPARAM struPoolInfo[16];
 BYTE
                     byRes2[128];
}NET_DVR_CLOUDSTORAGE_CFG,*LPNET_DVR_CLOUDSTORAGE_CFG;
Members
dwSize
      结构体大小
byEnable
      是否启用: 0- 不启用, 1- 启用
byRes
      保留,置为0
struIP
      云存储服务器 IP 地址
wPort
      云存储服务器端口号
byRes1
      保留,置为0
szUser
      服务器用户名
szPassword
      服务器密码
struPoolInfo
      云存储数据池参数
byRes2
      保留,置为0
```

7.22 NET_DVR_CLOUDSTORAGE_COND:云存储配置条件

struct{
 DWORD dwSize;

```
DWORD dwChannel;
BYTE byRes1[64];
}NET_DVR_CLOUDSTORAGE_COND,*LPNET_DVR_CLOUDSTORAGE_COND;
Members
dwSize
结构体大小
dwChannel
通道号
byRes1
保留,置为 0
```

7.23 NET_DVR_CMOSMODECFG:CMOS 模式下前端镜头配置

```
struct{
 BYTE
          byCaptureMod;
 BYTE
          byBrightnessGate;
 BYTE
          byCaptureGain1;
 BYTE
          byCaptureGain2;
 DWORD
           dwCaptureShutterSpeed1;
 DWORD
           dwCaptureShutterSpeed2;
 BYTE
           byRes[4];
}NET_DVR_CMOSMODECFG, *LPNET_DVR_CMOSMODECFG;
Members
byCaptureMod
      抓拍模式: 0-抓拍模式 1; 1-抓拍模式 2
byBrightnessGate
      亮度阈值
byCaptureGain1
      抓拍增益 1, 0-100
byCaptureGain2
      抓拍增益 2, 0-100
dwCaptureShutterSpeed1
      抓拍快门速度1
dwCaptureShutterSpeed2
      抓拍快门速度 2
byRes
      保留
```

7.24 NET_DVR_COLOR:图像参数

```
struct{
BYTE byBrightness;
BYTE byContrast;
```

BYTE bySaturation;

BYTE byHue;

}NET_DVR_COLOR, *LPNET_DVR_COLOR;

Members

byBrightness

亮度,取值范围[0,255]

byContrast

对比度,取值范围[0,255]

bySaturation

饱和度,取值范围[0,255]

byHue

色调,取值范围[0,255]

7.25 NET_DVR_COMPLETE_RESTORE_INFO:完全恢复出厂值控制参数

struct{

DWORD dwSize;

DWORD dwChannel;

BYTE byRes[64];

}NET_DVR_COMPLETE_RESTORE_INFO,*LPNET_DVR_COMPLETE_RESTORE_INFO;

Members

dwSize

结构体大小

dwChannel

设备通道号,目前该参数无效

bvRes

保留,置为0

Remarks

远程控制设备完全恢复出厂默认值,包括设备 IP 地址会恢复成 192.0.0.64。只有 admin 管理员账号才支持该功能。

完全恢复之后设备会恢复为未激活状态,调用 <u>NET DVR ActivateDevice</u> 可以激活设备。

7.26 NET_DVR_COMPRESSIONCFG_V30:通道压缩参数

struct{

DWORD dwSize;

NET DVR COMPRESSION INFO V30 struNormHighRecordPara;

NET <u>DVR COMPRESSION INFO V30</u> struRes;

NET DVR COMPRESSION INFO V30 struEventRecordPara;

NET DVR COMPRESSION INFO V30 struNetPara;

}NET_DVR_COMPRESSIONCFG_V30, *LPNET_DVR_COMPRESSIONCFG_V30;

Members

dwSize

结构体大小

struNormHighRecordPara

录像的码流压缩参数(即主码流的压缩参数)

struRes

保留,置为0

struEventRecordPara

事件触发压缩参数,智能交通摄像机不支持,保留

struNetPara

网传的码流压缩参数(即子码流的压缩参数)

7.27 NET_DVR_COMPRESSION_INFO_V30:码流压缩参数

```
struct{
  BYTE
             byStreamType;
  BYTE
             byResolution;
  BYTE
             byBitrateType;
  BYTE
             byPicQuality;
  DWORD
             dwVideoBitrate;
  DWORD
             dwVideoFrameRate;
  WORD
             wIntervalFramel;
  BYTE
             byIntervalBPFrame;
  BYTE
             byres1;
  BYTE
             byVideoEncType;
             byAudioEncType;
  BYTE
  BYTE
             byVideoEncComplexity;
  BYTE
             byres[9];
```

}NET_DVR_COMPRESSION_INFO_V30, *LPNET_DVR_COMPRESSION_INFO_V30;

Members

byStreamType

码流类型: 0-视频流, 1-复合流

byResolution

分辨率: 0-DCIF(528*384/528*320),1-CIF(352*288/352*240),2-QCIF(176*144/176*120),3-4CIF(704*576/704*480)或 D1(720*576/720*486),4-2CIF(704*288/704*240),6-QVGA(320*240),7-QQVGA(160*120),12-384*288,13-576*576,16-VGA(640*480),17-UXGA(1600*1200),18-SVGA(800*600),19-HD720P(1280*720),20-XVGA(1280*960),21-HD900P(1600*900),23-1536*1536,24-1920*1920,27-1920*1080p,28-2560*1920,29-1600*304,30-2048*1536,31-2448*2048,32-2448*1200,33-2448*800,34-XGA(1024*768),35-SXGA(1280*1024),36-WD1(960*576/960*480),37-1080i(1920*1080),38-WXGA(1440*900),39-HD_F(1920*1080/1280*720),40-HD_H(1920*540/1280*360),41-HD_Q(960*540/630*360),42-2336*1744,43-1920*1456,44-2592*2048,45-3296*2472,46-1376*768,47-1366*768,48-1360*768,49-WSXGA+,50-720*720,51-1280*1280,52-2048*768,53-2048*2048,54-2560*2048,55-3072*2048,56-2304*1296,57-WXGA(1280*800),58-1600*600,59-1600*900,60-2752*2208,0xff-Auto(使用当前码流分辨率) byBitrateType

码率类型: 0-变码率, 1-定码率

byPicQuality

图象质量: 0-最好, 1-次好, 2-较好, 3-一般, 4-较差, 5-差

dwVideoBitrate

码率: 0-保留,1-16K(保留),2-32K,3-48k,4-64K,5-80K,6-96K,7-128K,8-160k,9-192K,10-224K,11-256K,12-320K,13-384K,14-448K,15-512K,16-640K,17-768K,18-896K,19-1024K,20-1280K,21-1536K,22-1792K,23-2048K,24-3072K,25-4096K,26-8192K,27-16384K。

最高位(31位)置成 1表示是自定义码流,0~30位表示码流值,最小值 16k

dwVideoFrameRate

帧率: 0-全部,1-1/16,2-1/8,3-1/4,4-1/2,5-1,6-2,7-4,8-6,9-8,10-10,11-12,12-16,13-20,14-15,15-18,16-22

wIntervalFrameI

I 帧间隔, 0xffff-无效

byIntervalBPFrame

帧格式: 0-BBP 帧, 1-BP 帧, 2-单 P 帧, 0xff-无效

byres1

保留,置为0

byVideoEncType

视频编码类型: 0-私有 264, 1-标准 h264, 2-标准 mpeg4, 7-M-JPEG, 0xff-无效

byAudioEncType

音频编码类型: 0-OggVorbis, 1-G711_U, 2-G711_A, 6-G726, 0xff-无效

byVideoEncComplexity

视频编码复杂度: 0- 低, 1- 中, 2- 高

byres

保留,置为0

Remarks

当修改设备视频编码类型时,需要重启设备生效。

7.28 NET_DVR_CORRIDOR_MODE_CCD:旋转功能参数

struct{

BYTE byEnableCorridorMode;

BYTE byRes[11];

}NET_DVR_CORRIDOR_MODE_CCD, *LPNET_DVR_CORRIDOR_MODE_CCD;

Members

byEnableCorridorMode

是否启用旋转功能: 0- 不启用, 1- 启用

bvRes

保留

Remarks

开启旋转功能后,视频编码将逆时针旋转 90°,例如 1280*720 旋转为 720*1280。摄像机旋转安装时, 启用该功能,可以提高垂直方向的监控有效范围,适用于走廊、道路等场所。

byNightToDayFilterLevel

struct{

7.29 NET_DVR_CURTRIGGERMODE: 当前触发模式

```
DWORD
          dwSize;
  DWORD
         dwTriggerType;
  BYTE
          byRes[24];
}NET_DVR_CURTRIGGERMODE,*LPNET_DVR_CURTRIGGERMODE;
Members
dwSize
      结构体大小
dwTriggerType
      触发类型,详见 ITC TRIGGERMODE TYPE
bvRes
      保留
7.30 NET_DVR_DAYNIGHT:日夜转换功能参数
struct{
  BYTE
            byDayNightFilterType;
  BYTE
            bySwitchScheduleEnabled;
  BYTE
            byBeginTime;
  BYTE
            byEndTime;
  BYTE
            byDayToNightFilterLevel;
  BYTE
            byNightToDayFilterLevel;
  BYTF
            byDayNightFilterTime;
  BYTE
            byBeginTimeMin;
  BYTE
            byBeginTimeSec;
  BYTE
            byEndTimeMin;
  BYTE
            byEndTimeSec;
  BYTE
            byAlarmTrigState;
}NET_DVR_DAYNIGHT, *LPNET_DVR_DAYNIGHT;
Members
byDayNightFilterType
      日夜切换: 0-白天, 1-夜晚, 2-自动, 3-定时, 4-报警输入触发
bySwitchScheduleEnabled
      0- 启动, 1- 禁用。(保留)
byBeginTime
      定时模式开始时间(小时),取值范围:0~23
byEndTime
      定时模式结束时间(小时),取值范围:0~23
byDayToNightFilterLevel
      0~7
```

```
0~7
```

byDayNightFilterTime

60秒

byBeginTimeMin

定时模式开始时间(分),取值范围:0~59

byBeginTimeSec

定时模式开始时间(秒),取值范围:0~59

byEndTimeMin

定时模式结束时间(分),取值范围:0~59

byEndTimeSec

定时模式结束时间(秒),取值范围:0~59

byAlarmTrigState

域名

sServerName

报警输入触发状态: 0-白天, 1-夜晚

7.31 NET_DVR_DDNSPARA_V30:网络应用参数(DDNS)

```
struct{
 BYTE
          byEnableDDNS;
 BYTE
          byHostIndex;
 BYTE
          byRes1[2];
 struct{
                 sUserName[NAME_LEN];
          BYTE
          BYTE
                 sPassword[PASSWD_LEN];
          BYTE
                 sDomainName[MAX_DOMAIN_NAME];
          BYTE
                 sServerName[MAX_DOMAIN_NAME];
          WORD wDDNSPort;
          BYTE
                 byRes[10];
 }struDDNS[MAX_DDNS_NUMS];
 BYTE
          byRes2[16];
}NET_DVR_DDNSPARA_V30,*LPNET_DVR_DDNSPARA_V30;
Members
byEnableDDNS
      是否使能: 0- 否, 1- 是
byHostIndex
      0- Private DNS, 1- Dyndns, 2- PeanutHull(花生壳), 3- NO-IP, 4- hiDDNS
byRes1
      保留,置为0
sUsername
      DDNS 账号用户名
sPassword
      DDNS 账号密码
sDomainName
```

DDNS 对应的服务器地址,可以是 IP 地址或域名

wDDNSPort

DDNS 端口

byRes

保留,置为0

byRes2

保留,置为0

7.32 NET_DVR_DECODERCFG_V30:云台解码器(RS485)参数

struct{

DWORD dwSize;

DWORD dwBaudRate;

BYTE byDataBit;

BYTE byStopBit;

BYTE byParity;

BYTE byFlowcontrol;

WORD wDecoderType;

WORD wDecoderAddress;

BYTE bySetPreset[MAX_PRESET_V30];

BYTE bySetCruise[MAX_CRUISE_V30];

BYTE bySetTrack[MAX_TRACK_V30];

}NET_DVR_DECODERCFG_V30, *LPNET_DVR_DECODERCFG_V30;

Members

dwSize

结构体大小

dwBaudRate

波特率(bps), 0-50, 1-75, 2-110, 3-150, 4-300, 5-600, 6-1200, 7-2400, 8-4800, 9-9600, 10-19200, 11-38400, 12-57600, 13-76800, 14-115.2k

byDataBit

数据有几位: 0-5 位,1-6 位,2-7 位,3-8 位

byStopBit

停止位: 0-1 位, 1-2 位

byParity

是否校验: 0-无校验, 1-奇校验, 2-偶校验

byFlowcontrol

是否流控: 0-无, 1-软流控,2-硬流控

wDecoderType

解码器类型,通过 <u>NET_DVR_GetPTZProtocol</u> 获取,该值对应于结构 <u>NET_DVR_PTZ_PROTOCOL</u>中的 dwType

wDecoderAddress

解码器地址: [0,255]

bySetPreset

预置点是否设置: 0-没有设置, 1-设置

bySetCruise

巡航是否设置: 0-没有设置, 1-设置

bySetTrack

轨迹是否设置: 0-没有设置, 1-设置

Remarks

在早前的设备中规定了一系列云台协议,但在后期的设备仅保留一部分常用的协议,所以在配置解码器类型时必须调用 NET DVR GetPTZProtocol 获取当前设备支持的云台协议。

7.33 NET_DVR_DEFOGCFG:透雾参数

```
struct{
    BYTE byMode;
    BYTE byLevel;
    BYTE byRes[6];
}NET_DVR_DEFOGCFG, *LPNET_DVR_DEFOGCFG;
Members
byMode
    透雾模式: 0-不启用, 1-自动模式, 2-常开模式
byLevel
    透雾等级,取值范围: 0~100
bvRes
```

7.34 NET_DVR_DEVICECFG_V40:设备参数

struct{

DWORD dwSize;

保留

BYTE sDVRName[NAME_LEN];

DWORD dwDVRID;

DWORD dwRecycleRecord;

BYTE sSerialNumber[SERIALNO LEN];

DWORD dwSoftwareVersion;DWORD dwSoftwareBuildDate;DWORD dwDSPSoftwareVersion;DWORD dwDSPSoftwareBuildDate;

DWORD dwPanelVersion;DWORD dwHardwareVersion;BYTE byAlarmInPortNum;BYTE byAlarmOutPortNum;

BYTE byRS232Num; BYTE byRS485Num;

BYTE byNetworkPortNum;

BYTE byDiskCtrlNum;

```
BYTE
             byDiskNum;
  BYTE
             byDVRType;
  BYTE
             byChanNum;
  BYTE
             byStartChan;
  BYTE
             byDecordChans;
  BYTE
             byVGANum;
  BYTE
             byUSBNum;
  BYTE
             byAuxoutNum;
  BYTE
             byAudioNum;
  BYTE
             byIPChanNum;
  BYTE
             byZeroChanNum;
  BYTE
             bySupport;
  BYTE
             byEsataUseage;
  BYTE
             byIPCPlug;
  BYTE
             byStorageMode;
  BYTE
             bySupport1;
  WORD
             wDevType;
  BYTE
             byDevTypeName[24];
  BYTE
             byRes2[16];
}NET_DVR_DEVICECFG_V40,*LPNET_DVR_DEVICECFG_V40;
```

Members

dwSize

结构体大小

sDVRName

设备名称

dwDVRID

设备 ID 号,用于遥控器, v1.4 的设备号范围为(0-99), v1.5 及以上版本的设备号为(0-255)

dwRecycleRecord

是否循环录像: 0一不是; 1一是

以下参数不可更改

sSerialNumber

设备序列号

dwSoftwareVersion

软件版本号, V3.0 以上版本支持的设备最高 8 位为主版本号, 次高 8 位为次版本号, 低 16 位为修 复版本号; V3.0 以下版本支持的设备高 16 位表示主版本,低 16 位表示次版本

dwSoftwareBuildDate

软件生成日期, 0xYYYYMMDD

dwDSPSoftwareVersion

DSP 软件版本, 高 16 位是主版本, 低 16 位是次版本

dwDSPSoftwareBuildDate

DSP 软件生成日期,0xYYYYMMDD

dwPanelVersion

前面板版本,高16位是主版本,低16位是次版本

dwHardwareVersion

硬件版本,高16位是主版本,低16位是次版本

byAlarmInPortNum

设备报警输入个数

byAlarmOutPortNum

设备报警输出个数

byRS232Num

设备 232 串口个数

byRS485Num

设备 485 串口个数

byNetworkPortNum

网络口个数

byDiskCtrlNum

硬盘控制器个数

byDiskNum

硬盘个数

byDVRType

设备类型

byChanNum

设备模拟通道个数

byStartChan

起始通道号

byDecordChans

设备解码路数

byVGANum

VGA 口的个数

byUSBNum

USB 口的个数

byAuxoutNum

辅口的个数

byAudioNum

语音口的个数

byIPChanNum

最大数字通道

byZeroChanNum

零通道编码个数

bySupport

能力,位与结果为0表示不支持,1表示支持

bySupport & 0x1,表示是否支持智能搜索

bySupport & 0x2,表示是否支持备份

bySupport & 0x4,表示是否支持压缩参数能力获取

bySupport & 0x8,表示是否支持双网卡

bySupport & 0x10,表示支持远程 SADP

bySupport & 0x20,表示支持 Raid 卡功能

bySupport & 0x40,表示支持 IPSAN 搜索

bySupport & 0x80,表示支持 rtp over rtsp

byEsataUseage

Esata 的默认用途, 0-默认备份, 1-默认录像

byIPCPlug

0-不支持即插即用,1-支持即插即用

byStorageMode

0-盘组模式,1-磁盘配额

bySupport1

能力集扩充,位与结果为0表示不支持,1表示支持

bySupport1 & 0x1, 表示是否支持 snmp v30

bySupport1 & 0x2, 支持区分回放和下载

wDevType

设备型号

byDevTypeName

设备型号名称

byRes2

保留,置为0

Remarks

如果 byDVRType 是 0,则接口中解析 wDevType 作为设备型号,设备端同时将设备型号的名称传过来。 如果 byDVRType 不是 0,则接口中将不解析 wDevType 及 byDevTypeName,使用已有的设备型号及名称 对 byDVRType、wDevType、byDevTypeName 进行填充,其中 byDVRType=wDevType。

建议开发时使用 wDevType、byDevTypeName,而不要使用 byDVRType,sdk 内部兼容。byDVRType 和 wDevType 取值定义如下所示:

宏定义	宏定义值	设备类型
ITCCAM	35	智能交通摄像机

7.35 NET_DVR_DEVICEINFO_V30:设备参数

struct{

BYTE sSerialNumber[SERIALNO_LEN];

BYTE byAlarmInPortNum;

BYTE byAlarmOutPortNum;

BYTE byDiskNum;

BYTE byDVRType;

BYTE byChanNum;

BYTE byStartChan;

BYTE byAudioChanNum;

BYTE byIPChanNum;

BYTE byZeroChanNum;

BYTE byMainProto;

BYTE bySubProto;

BYTE bySupport;

BYTE bySupport1;

BYTE bySupport2;

WORD wDevType;

BYTE bySupport3;

BYTE byMultiStreamProto;

BYTE byStartDChan;

BYTE byStartDTalkChan;

BYTE byHighDChanNum;

BYTE byRes2[11];

}NET_DVR_DEVICEINFO_V30,*LPNET_DVR_DEVICEINFO_V30;

Members

sSerialNumber

序列号

byAlarmInPortNum

报警输入个数

byAlarmOutPortNum

报警输出个数

byDiskNum

硬盘个数

byDVRType

设备类型, 详见下文列表

byChanNum

设备模拟通道个数,数字(IP)通道最大个数通过 NET_DVR_GetDVRConfig(配置命令 NET_DVR_GET_IPPARACFG_V40)获取(dwDChanNum)。

byStartChan

模拟通道的起始通道号,目前设备模拟通道号从 1 开始,数字通道的起始通道号通过 NET_DVR_GetDVRConfig(配置命令 NET_DVR_GET_IPPARACFG_V40)获取(dwStartDChan)。

byAudioChanNum

设备语音通道数

byIPChanNum

设备最大数字通道个数,低 8 位,高 8 位见 byHighDChanNum。可以根据 IP 通道个数来判断是否调用 NET_DVR_GetDVRConfig(配置命令 NET_DVR_GET_IPPARACFG_V40)获取模拟和数字通道相关参数(NET_DVR_IPPARACFG_V40)。

byZeroChanNum

零通道编码个数

byMainProto

主码流传输协议类型: 0-private, 1-rtsp

bySubProto

子码流传输协议类型: 0-private, 1-rtsp

bySupport

能力,位与结果为0表示不支持,1表示支持

bySupport & 0x1,表示是否支持智能搜索

bySupport & 0x2,表示是否支持备份

bySupport & 0x4,表示是否支持压缩参数能力获取

bySupport & 0x8, 表示是否支持双网卡

bySupport & 0x10, 表示支持远程 SADP

bySupport & 0x20, 表示支持 Raid 卡功能

bySupport & 0x40, 表示支持 IPSAN 目录查找

bySupport & 0x80, 表示支持 rtp over rtsp

bySupport1

能力集扩充,位与结果为0表示不支持,1表示支持

bySupport1 & 0x1, 表示是否支持 snmp v30

bySupport1 & 0x2, 表示是否支持区分回放和下载

bySupport1 & 0x4, 表示是否支持布防优先级

bySupport1 & 0x8, 表示智能设备是否支持布防时间段扩展

bySupport1 & 0x10,表示是否支持多磁盘数(超过 33 个)

bySupport1 & 0x20,表示是否支持 rtsp over http

bySupport1 & 0x40,表示是否支持延时预览

bySupport1 & 0x80,表示是否支持车牌新报警信息

bySupport2

能力集扩充,位与结果为0表示不支持,1表示支持

bySupport2 & 0x1,表示解码器是否支持通过 URL 取流解码

wDevType

设备型号,详见下文列表

bySupport3

能力集扩展,位与结果为0表示不支持,1表示支持

bySupport3 & 0x1, 表示是否支持多码流

byMultiStreamProto

多码流是否支持 rtsp 协议取流,按位表示,0-不支持,1-支持: bit0- 码流 3, bit1- 码流 4, 依次类 推

byStartDChan

起始数字通道号,0表示无效

byStartDTalkChan

起始数字对讲通道号,区别于模拟对讲通道号,0表示无效

byHighDChanNum

数字通道个数,高8位

byRes2

保留,置为0

Remarks

如果 byDVRType 是 0,则接口中解析 wDevType 作为设备型号;如果 byDVRType 非 0,则接口中 byDVRType 和 wDevType 值相等,都是 byDVRType。推荐使用 wDevType 作为设备类型。

byDVRType 和 wDevType 取值定义如下所示:

宏定义	宏定义值	设备类型
ITCCAM	35	智能交通摄像机

7.36 NET_DVR_DEVICEINFO_V40:设备参数

struct{

NET DVR DEVICEINFO V30struDeviceV30;BYTEbySupportLock;BYTEbyRetryLoginTime;BYTEbyPasswordLevel;

BYTE byRes1;

DWORD dwSurplusLockTime;
BYTE byCharEncodeType;
BYTE byRes2[255];

}NET_DVR_DEVICEINFO_V40,*LPNET_DVR_DEVICEINFO_V40;

Members

struDeviceV30

设备参数

bySupportLock

设备是否支持锁定功能,bySupportLock 为 1 时,dwSurplusLockTime 和 byRetryLoginTime 有效 byRetryLoginTime

剩余可尝试登陆的次数,用户名、密码错误时,此参数有效

byPasswordLevel

密码安全等级: 0- 无效, 1- 默认密码, 2- 有效密码, 3- 风险较高的密码, 当管理员用户的密码为出厂默认密码(12345)或者风险较高的密码时,建议上层客户端提示用户更改密码

byRes1

保留,置为0

dwSurplusLockTime

剩余时间,单位: 秒,用户锁定时此参数有效。在锁定期间,用户尝试登陆,不管用户名密码输入对错,设备锁定剩余时间重新恢复到 30 分钟

byCharEncodeType

字符编码类型 (SDK 所有接口返回的字符串编码类型, 透传接口除外): 0- 无字符编码信息(老设备), 1-GB2312(简体中文), 2-GBK, 3-BIG5(繁体中文), 4-Shift_JIS(日文), 5-EUC-KR(韩文), 6-UTF-8, 7-ISO8859-1, 8-ISO8859-2, 9-ISO8859-3, ..., 依次类推, 21-ISO8859-15(西欧)

byRes2

保留,置为0

Remarks

将密码输入分为数字(0~9)、小写字母(a~z)、大写字母(A~Z)、特殊符号(:\"除外)4类,等级分为4个等级,如下所示:

- 等级 0 (风险密码):密码长度小于 8 位,或者只包含 4 类字符中的任意一类,或者密码与用户名一样,或者密码是用户名的倒写。例如: 12345、abcdef。
- 等级 1 (弱密码): 包含两类字符,且组合为(数字+小写字母)或(数字+大写字母),且长度大于等于 8 位。例如: abc12345、123ABCDEF。
- 等级 2 (中密码): 包含两类字符,且组合不能为(数字+小写字母)和(数字+大写字母),且长度大于等于 8 位。例如: 12345***++、ABCDabcd。
- 等级 3 (强密码): 包含三类字符及以上, 且长度大于等于 8 位。例如: Abc12345、abc12345++。

7.37 NET_DVR_DEVICESTATECFG:设备状态参数

struct{

DWORD dwSize;

WORD wPreviewNum;
WORD wFortifyLinkNum;

NET_DVR_IPADDR struFortifyIP[MAX_FORTIFY_NUM];

DWORD dwVideoFrameRate;

BYTE byResolution;
BYTE bySnapResolution;
BYTE byStreamType;
BYTE byTriggerType;
DWORD dwSDVolume;
DWORD dwSDFreeSpace;

BYTE byDetectorState[MAX_DRIVECHAN_NUM][MAX_COIL_NUM];

BYTE byDetectorLinkState;

BYTE bySDStatus;

BYTE byFortifyLevel[MAX_FORTIFY_NUM];

BYTE byRes2[116];

}NET_DVR_DEVICESTATECFG, *LPNET_DVR_DEVICESTATECFG;

Members

dwSize

大小

wPreviewNum

预览连接个数

wFortifyLinkNum

布防连接个数

struPreviewIP

预览的用户 IP 地址

struFortifyIP

布防连接的用户 IP 地址

dwVideoFrameRate

帧率: 0-全部; 1-1/16; 2-1/8; 3-1/4; 4-1/2; 5-1; 6-2; 7-4; 8-6; 9-8; 10-10; 11-12; 12-16; 13-20; 14-15; 15-18; 16-22;

byResolution

视频分辨率: 0-DCIF 1-CIF, 2-QCIF, 3-4CIF, 4-2CIF, 16-VGA(640*480), 17-UXGA(1600*1200), 18-SVGA (800*600),19-HD720p(1280*720),20-XVGA, 21-HD900p, 27-HD1080i, 28-2560*1920, 29-1600*304, 30-2048*1536, 31-2448*2048, 32-2448*1200, 33-2448*800, 34-XGA(1024*768), 35-SXGA(1280*1024),36-WD1(960*576/960*480), 37-1080i, 38-2336*1744, 39-1940*1460, 0xff-Auto(使用当前码流分辨率)

bySnapResolution

抓拍分辨率: 0-DCIF 1-CIF, 2-QCIF, 3-4CIF, 4-2CIF, 16-VGA(640*480), 17-UXGA(1600*1200), 18-SVGA

(800*600),19-HD720p(1280*720), 20-XVGA, 21-HD900p, 27-HD1080i, 28-2560*1920, 29-1600*304, 30-2048*1536, 31-2448*2048, 32-2448*1200, 33-2448*800, 34-XGA(1024*768), 35-SXGA(1280*1024), 36-WD1(960*576/960*480), 37-1080i, 38-2336*1744, 39-1940*1460 0xff-Auto(使用当前码流分辨率)

byStreamType

码流类型: 0- 主码流, 1- 子码流

byTriggerType

触发模式: 0- 视频触发, 1- 普通触发

dwSDVolume

SD 卡容量

dwSDFreeSpace

SD 卡剩余空间

byDetectorState

车道的线圈状态: 0- 未使用, 1- 正常, 2- 异常

byDetectorLinkState

车检器连接状态: 0- 未连接, 1- 连接

bySDStatus

SD 卡状态: 0- 活动, 1- 休眠, 2- 异常, 3- 无 sd 卡

byFortifyLevel

布防等级: 0- 一等级(高), 1- 二等级(中), 2- 三等级(低), 0xff- 无

byRes2

保留,置为0

Remarks

该中参数 byFortifyLevel 和 struFortifyIP 是一一对应的

7.38 NET_DVR_DISK_QUOTA:磁盘配额信息

struct{

BYTE byQuotaType;
BYTE byRes1[5];
WORD wStoragePeriod;
DWORD dwHCapacity;

DWORD dwLCapacity; DWORD dwHUsedSpace; DWORD dwLUsedSpace; BYTE byQuotaRatio;

BYTE byRes2[21];

}NET_DVR_DISK_QUOTA,*LPNET_DVR_DISK_QUOTA;

Members

byQuotaType

磁盘配额类型: 1- 按容量, 2- 按比例, 3- 按时间

byRes1

保留

wStoragePeriod

录像存储周期,单位:天,配额类型为按时间时有效

```
dwHCapacity
```

分配的磁盘容量高 32 位,单位 MB

dwLCapacity

分配的磁盘容量低 32 位,单位 MB

dwHUsedSpace

已使用的磁盘空间高 32 位,位 MB

dwLUsedSpace

已使用的磁盘空间低 32 位,单位 MB

byQuotaRatio

分配的磁盘比例,单位:%

byRes2

保留

7.39 NET_DVR_DISK_QUOTA_CFG:磁盘配额配置

struct{

DWORD dwSize;

NET DVR DISK QUOTA struPicQuota;
NET DVR DISK QUOTA struRecordQuota;

BYTE res2[60];

}NET_DVR_DISK_QUOTA_CFG,*LPNET_DVR_DISK_QUOTA_CFG;

Members

dwSize

结构体大小

struPicQuota

图片配额

struRecordQuota

录像配额

res2

保留,置为0

7.40 NET_DVR_DOWNLOAD_ALARM_RECORD_COND:报警录像下载条

件

struct{

DWORD dwSize;

WORD wAlarmRecordID;

BYTE byRes[130];

}NET_DVR_DOWNLOAD_ALARM_RECORD_COND, *LPNET_DVR_DOWNLOAD_ALARM_RECORD_COND;

Members

dwSize

结构体大小

wAlarmRecordID

报警录像 ID

byRes

保留,置为0

7.41 NET_DVR_ELECTRONICSTABILIZATION:电子防抖参数

struct{

BYTE byEnable; BYTE byLevel;

BYTE byRes[6];

 $\verb| NET_DVR_ELECTRONICSTABILIZATION|, \verb| *LPNET_DVR_ELECTRONICSTABILIZATION|; \\$

Members

byMode

电子防抖使能: 0- 不启用, 1- 启用

byLevel

电子防抖等级,取值范围:0~100

byRes

保留

7.42 NET_DVR_ENTRANCE_CFG:出入口控制参数

struct{

DWORD dwSize;
BYTE byLaneNo;

BYTE byBarrierGateCtrlMode;

BYTE byRes1[2];

DWORD dwRelateTriggerMode;
DWORD dwMatchContent;

NET_DVR_RELAY_PARAMstruRelayRelateInfo[MAX_RELAY_NUM];BYTEbyGateSingleIO[MAX_IOIN_NUM];

NET_DVR_VEHICLE_CONTROL struVehicleCtrl[MAX_VEHICLE_TYPE_NUM];

BYTE byRes2[64];

}NET_DVR_ENTRANCE_CFG,*LPNET_DVR_ENTRANCE_CFG;

Members

dwSize

结构体大小

byLaneNo

使能: 0- 关闭, 1- 打开

 $by Barrier Gate {\it Ctrl} Mode$

道闸控制模式: 0- 相机自动控制, 1- 平台外部控制

byRes1

保留,置为0

dwRelateTriggerMode

触发模式,参见 ITC TRIGGERMODE TYPE

dwMatchContent

异常处理,不同异常处理方式的"或"结果:

0x00: 不做匹配

0x01: 车牌匹配(带车牌颜色) 0x02: 车牌匹配(不带车牌颜色)

0x04: 卡号匹配

struRelayRelateInfo

继电器关联配置信息(一个继电器只能控制一个接入设备),数组0表示继电器1,数组1表示继电器2,依次类推

byGateSingleIO

单个 IO 触发参数,数组 0 表示 IO1,数组 1 表示 IO2,依次类推,具体数组值的含义: 0- 无, 1- 道闸开到位, 2- 道闸关到位, 3- 消防报警

struVehicleCtrl

车辆信息管控:

数组 0- 临时车辆配置的模式

数组 1- 黑名单车辆的模式

数组 2- 白名单车辆的模式

byRes2

保留,置为0

7.43 NET_DVR_ETHERNET_MULTI:单个网卡配置信息

struct{

NET DVR IPADDR struDVRIP;

NET DVR IPADDR struDVRIPMask;

DWORD dwNetInterface;

BYTE byCardType;

BYTE byRes1;

WORD wMTU;

BYTE byMACAddr[*MACADDR_LEN*];

BYTE byRes2[2];
BYTE byUseDhcp;
BYTE byRes3[3];

NET_DVR_IPADDRstruGatewayIpAddr;NET_DVR_IPADDRstruDnsServer1IpAddr;NET_DVR_IPADDRstruDnsServer2IpAddr;

}NET_DVR_ETHERNET_MULTI, *LPNET_DVR_ETHERNET_MULTI;

Members

struDVRIP

设备IP地址

struDVRIPMask

设备IP地址掩码

dwNetInterface

网络接口: 1-10MBase-T; 2-10MBase-T 全双工; 3-100MBase-TX; 4-100M 全双工; 5-10M/100M/1000M 自适应

byCardType

网卡类型: 0-普通网卡, 1-内网网卡, 2-外网网卡

byRes1

保留

wMTU

MTU 设置,默认 1500

byMACAddr

设备物理地址,只读

byRes2

保留

byUseDhcp

是否启用 DHCP

bvRes3

保留

struGatewayIpAddr

网关地址

struDnsServer1IpAddr

域名服务器 1 的 IP 地址

struDnsServer2IpAddr

域名服务器 2 的 IP 地址

Remarks

MTU 的设置范围为 500-9676, 若 MTU 设置过小客户端将无法注册到设备,并且客户端预览、回放、配置参数也会失败。

7.44 NET_DVR_ETHERNET_V30:以太网配置

struct{

NET DVR IPADDR struDVRIP;
NET DVR IPADDR struDVRIPMask;
DWORD dwNetInterface;
WORD wDVRPort;

WORD wMTU;

BYTE byMACAddr[MACADDR_LEN];

BYTE byRes[2];

}NET_DVR_ETHERNET_V30, *LPNET_DVR_ETHERNET_V30;

Members

struDVRIP

设备 IP 地址

struDVRIPMask

设备 IP 地址掩码

dwNetInterface

网络接口: 1-10MBase-T; 2-10MBase-T 全双工; 3-100MBase-TX; 4-100M 全双工; 5-10M/100M/1000M 自适应; 6-1000M 全双工

wDVRPort

设备端口号

wMTU

MTU 设置,默认 1500

byMACAddr

设备物理地址

byRes

保留

Remarks

MTU 的设置范围为 500-9676, 若 MTU 设置过小客户端将无法注册到设备,并且客户端预览、回放、配置参数也会失败。

7.45 NET_DVR_EXCEPTION_V30:异常参数

struct{

DWORD dwSize;

NET_DVR_HANDLEEXCEPTION_V30 struExceptionHandleType[MAX_EXCEPTIONNUM_V30];

}NET_DVR_EXCEPTION_V30,*LPNET_DVR_EXCEPTION_V30;

Members

dwSize

结构体大小

struExceptionHandleType

异常信息处理方式:

数组0一硬盘满

数组1一硬盘出错

数组 2一网线断

数组3-IP 地址冲突

数组 4一非法访问

数组5一输入/输出视频制式不匹配

数组6一视频信号异常

数组7一录像异常

7.46 NET_DVR_EXDEVDET_CFG:外设状态信息

struct{

DWORD dwSize;

BYTE byExternalDevStatus;

BYTE byRes[63];

}NET_DVR_EXDEVDET_CFG,*LPNET_DVR_EXDEVDET_CFG;

Members

dwSize

结构体大小

byExternalDevStatus

外设状态: 0- 正常, 1- 异常

byRes

保留,置为0

7.47 NET_DVR_EXDEVDET_COND:外设状态检测条件

struct{

DWORD dwSize;

DWORD dwChannel;

BYTE byExternalDevType;

BYTE byRes[63];

}NET_DVR_EXDEVDET_COND,*LPNET_DVR_EXDEVDET_COND;

Members

dwSize

结构体大小

dwChannel

通道号

byExternalDevType

外接设备类型: 0- 无效值(保留), 1- 信号灯, 2- 闪光灯

byRes

保留,置为0

7.48 NET_DVR_EXPOSURE:CCD 曝光控制参数

struct{

BYTE byExposureMode;

BYTE byAutoApertureLevel;

BYTE byRes[2];

DWORD dwVideoExposureSet;
DWORD dwExposureUserSet;

DWORD dwRes;

}NET_DVR_EXPOSURE, *LPNET_DVR_EXPOSURE;

Members

byExposureMode

0-手动曝光,1-自动曝光

by Auto Aperture Level

自动光圈灵敏度,取值范围:0~10

byRes

保留

dwVideoExposureSet

自定义视频曝光时间(单位 us),自动曝光时该值为曝光最慢值

dwExposureUserSet

自定义曝光时间。在智能高清网络摄像机上应用及 CCD 模式时,是指抓拍快门速度,(单位 us) dwRes

保留

7.49 NET_DVR_FIND_PICTURE:图片查找结果信息

```
struct{
                  sFileName[PICTURE_NAME];
  char
                   struTime;
  NET DVR TIME
  DWORD
                   dwFileSize;
  char
                  sCardNum[CARDNUM_LEN_V30];
  BYTE
                   byPlateColor;
  BYTE
                   byVehicleLogo;
  BYTE
                   byRes[30];
}NET_DVR_FIND_PICTURE,*LPNET_DVR_FIND_PICTURE;
Members
sFileName
       图片名称
struTime
       图片的时间
dwFileSize
       图片的大小
sCardNum
       卡号
byPlateColor
```

车牌颜色,具体定义如下:

```
enum_VCA_PLATE_COLOR_{

VCA_BLUE_PLATE = 0,

VCA_YELLOW_PLATE,

VCA_WHITE_PLATE,

VCA_BLACK_PLATE,

VCA_GREEN_PLATE,

VCA_GREEN_PLATE,

VCA_BKAIR_PLATE,

VCA_OTHER = 0xff

}VCA_PLATE_COLOR
```

VCA_BLUE_PLATE

蓝色车牌

VCA_YELLOW_PLATE

黄色车牌

VCA_WHITE_PLATE

白色车牌

VCA_BLACK_PLATE

黑色车牌

VCA_GREEN_PLATE

绿色车牌

VCA_BKAIR_PLATE

民航黑色车牌

VCA_OTHER = 0xff

其他

byVehicleLogo

汽车品牌,定义如下所示:

```
enum _VLR_VEHICLE_CLASS_{
 VLR_OTHER
                      //其它
                 = 0,
                      //大众
 VLR VOLKSWAGEN = 1,
 VLR_BUICK
                 = 2,
                      //别克
 VLR_BMW
                 = 3,
                     //宝马
 VLR_HONDA
                      //本田
                 = 4,
 VLR_PEUGEOT
                     //标致
                 = 5,
 VLR_TOYOTA
                     //丰田
                 = 6,
 VLR_FORD
                 = 7,
                      //福特
                     //日产
 VLR NISSAN
                 = 8,
 VLR_AUDI
                     //奥迪
                = 9,
 VLR_MAZDA
                = 10, //马自达
                = 11, //雪佛兰
 VLR_CHEVROLET
 VLR_CITROEN
                = 12, //雪铁龙
                = 13, //现代
 VLR HYUNDAI
 VLR_CHERY
                = 14, //奇瑞
 VLR_KIA
                = 15,
                     //起亚
 VLR_ROEWE
                = 16, //荣威
 VLR_MITSUBISHI
                = 17, //三菱
 VLR_SKODA
                = 18, //斯柯达
 VLR_GEELY
                = 19, //吉利
                = 20, //中华
 VLR_ZHONGHUA
 VLR_VOLVO
                = 21, //沃尔沃
 VLR_LEXUS
                = 22, //雷克萨斯
 VLR FIAT
                = 23, //菲亚特
 VLR_EMGRAND
                = 24, //帝豪
 VLR_DONGFENG
                = 25, //东风
 VLR_BYD
                = 26, //比亚迪
 VLR_SUZUKI
                = 27, //铃木
 VLR_JINBEI
                = 28, //金杯
               = 29, //海马
 VLR_HAIMA
 VLR_SGMW
               = 30, //五菱
 VLR_JAC
               = 31, //江淮
 VLR_SUBARU
               = 32, //斯巴鲁
 VLR_ENGLON
                = 33,
                     //英伦
 VLR_GREATWALL
               = 34,
                     //长城
```

```
//哈飞
 VLR_HAFEI
                = 35,
                      //五十铃
 VLR ISUZU
                = 36,
                = 37, //东南
 VLR_SOUEAST
 VLR_CHANA
                = 38,
                     //长安
 VLR_FOTON
                = 39, //福田
 VLR_XIALI
               = 40, //夏利
 VLR BENZ
               = 41, //奔驰
               = 42, //一汽
 VLR_FAW
                = 43, //依维柯
 VLR_NAVECO
               = 44, //力帆
 VLR_LIFAN
               = 45, //一汽奔腾
 VLR BESTURN
 VLR_CROWN
               = 46, //皇冠
 VLR_RENAULT
               = 47, //雷诺
 VLR_JMC
               = 48, //JMC
               = 49, //MG 名爵
 VLR_MG
               = 50, //凯马
 VLR_KAMA
 VLR_ZOTYE
               = 51, //众泰
 VLR CHANGHE
               = 52, //昌河
 VLR_XMKINGLONG = 53, //厦门金龙
 VLR_HUIZHONG
                = 54, //上海汇众
 VLR_SZKINGLONG = 55, //苏州金龙
 VLR_HIGER
               = 56, //海格
 VLR YUTONG
                = 57, //宇通
 VLR_CNHTC
               = 58, //中国重汽
 VLR_BEIBEN
                = 59, //北奔重卡
                = 60, //华菱星马
 VLR_XINGMA
 VLR_YUEJIN
                = 61, //跃进
                = 62 //黄海
 VLR_HUANGHAI
}VLR_VEHICLE_CLASS
```

byRes

保留

7.50 NET_DVR_FIND_PICTURE_PARAM:图片查找条件

```
struct{
   DWORD dwSize;
   LONG lChannel;
   BYTE byFileType;
   BYTE byNeedCard;
   BYTE byRes1[2];
   BYTE sCardNum[CARDNUM_LEN_V30];
   NET DVR_TIME struStartTime;
```

NET DVR_TIME struStopTime;
DWORD dwTrafficType;

DWORD dwVehicleType;
DWORD dwIllegalType;
BYTE byLaneNo;
BYTE byRes2[27];

NET DVR FIND PICTURE PARAM,*LPNET DVR FIND PICTURE PARAM;

Members

dwSize

结构体大小

IChannel

通道号

byFileType

查找的图片类型: 0- 定时抓图, 1- 移动侦测抓图, 2- 报警抓图, 3- 报警 | 移动侦测抓图, 4- 报警&移动侦测抓图, 6- 手动抓图, 9-智能图片, 10- PIR 报警, 11- 无线报警, 12- 呼救报警, 0xa- 预览时截图, 0xd- 人脸侦测, 0xe- 越界侦测, 0xf- 入侵区域侦测, 0x10- 场景变更侦测, 0x11- 设备本地回放时截图, 0x12- 智能侦测, 0xff- 全部类型

byNeedCard

是否需要卡号

byRes1

保留,置为0

sCardNum

卡号

struStartTime

查找图片的开始时间

struStopTime

查找图片的结束时间

dwTrafficType

图片检索生效项,具体类型如下:

```
enum _VCA_OPERATE_TYPE_{

VCA_LICENSE_TYPE = 0x1,

VCA_PLATECOLOR_TYPE = 0x2,

VCA_CARDNO_TYPE = 0x4,

VCA_PLATETYPE_TYPE = 0x8,

VCA_LISTTYPE_TYPE = 0x10,

VCA_INDEX_TYPE = 0x20,

VCA_OPERATE_INDEX_TYPE = 0x40

}VCA_OPERATE_TYPE
```

VCA LICENSE TYPE

车牌号码

VCA PLATECOLOR TYPE

车牌颜色

VCA_CARDNO_TYPE

卡号

VCA_PLATETYPE_TYPE

车牌类型

```
VCA_LISTTYPE_TYPE
车辆名单类型
VCA_INDEX_TYPE
数据流水号
VCA_OPERATE_INDEX_TYPE
操作数
```

dwVehicleType

车辆类型,具体类型如下:

```
enum _VCA_VEHICLE_TYPE_{
  VCA_OTHER_TYPE
                           = 0x1,
  VCA_SMALLCAR_TYPE
                           = 0x2,
  VCA_BIGCAR_TYPE
                           = 0x4,
  VCA_BUS_TYPE
                           = 0x8,
  VCA_TRUCK_TYPE
                           = 0x10,
  VCA_CAR_TYPE
                           = 0x20,
  VCA MINIBUS TYPE
                           = 0x40,
  VCA_SMALL_TRUCK_TYPE
                           = 0x80
}VCA_VEHICLE_TYPE
```

VCA_OTHER_TYPE

其它车型

VCA_SMALLCAR_TYPE

小型车

VCA_BIGCAR_TYPE

大型车

VCA BUS TYPE

客车

 VCA_TRUCK_TYPE

货车

VCA_CAR_TYPE

轿车

VCA_MINIBUS_TYPE

面包车

VCA_SMALL_TRUCK_TYPE

小货车

dwlllegalType

违规检测类型,具体类型如下:

```
enum_VCA_ILLEGAL_TYPE_{

VCA_POSTPIC_TYPE = 0x1,

VCA_LOWSPEED_TYPE = 0x2,

VCA_HIGHSPEED_TYPE = 0x4,

VCA_RETROGRADE_TYPE = 0x8,

VCA_RUSH_REDLIGHT_TYPE = 0x10,

VCA_PRESS_LANE_TYPE = 0x20,

VCA_VIOLATE_GUIDE_TYPE = 0x40,
```

```
VCA_ROAD_STRAND_TYPE
                                 = 0x80,
  VCA_VEHICLE_ILLEGAL_LANE_TYPE
                                 = 0x100,
  VCA_ILLEGAL_LANE_CHANGE_TYPE = 0x200,
  VCA_ILLEGAL_LANE_DRIVE_TYPE
                                = 0x400,
  VCA_VIOLATE_BAN_TYPE
                                 = 0x800,
  VCA_CROSS_PARKING_TYPE
                                = 0x1000,
  VCA_GREEN_PARKING_TYPE
                                 = 0x2000
}VCA_ILLEGAL_TYPE
VCA_POSTPIC_TYPE
卡口图片
```

VCA_LOWSPEED_TYPE

低速

VCA_HIGHSPEED_TYPE

高速

VCA_RETROGRADE_TYPE

逆行

VCA_RUSH_REDLIGHT_TYPE

闯红灯

VCA_PRESS_LANE_TYPE

压车道线

VCA_VIOLATE_GUIDE_TYPE

不按导向

VCA_ROAD_STRAND_TYPE

路口滞留(设备不支持)

VCA_VEHICLE_ILLEGAL_LANE_TYPE

机占非

VCA_ILLEGAL_LANE_CHANGE_TYPE

违法变道

VCA_ILLEGAL_LANE_DRIVE_TYPE

不按车道

VCA_VIOLATE_BAN_TYPE

违法禁令

VCA_CROSS_PARKING_TYPE

路口停车

VCA_GREEN_PARKING_TYPE

绿灯停车

byLaneNo

车道号,取值范围:1~99

byRes2

保留,置为0

7.51 NET_DVR_FIRE_ALARM:消防报警信息

struct{

DWORD dwSize;

NET_DVR_TIME_V30 struAlarmTime;
BYTE byRes[128];

}NET_DVR_FIRE_ALARM,*LPNET_DVR_FIRE_ALARM;

Members

dwSize

结构体大小

struAlarmTime

报警时间

byRes

保留,置为0

7.52 NET_DVR_FLASH_OUTCFG:IO 闪光灯输出参数

struct{

DWORD dwSize;

BYTE byMode;

BYTE byRelatedIoIn;

BYTE byRecognizedLane;

BYTE byDetectBrightness;

BYTE byBrightnessThreld;

BYTE byStartHour;

BYTE byStartMinute;

BYTE byEndHour;

BYTE byEndMinute;

BYTE byFlashLightEnable;

BYTE byRes[2];

}NET_DVR_FLASH_OUTCFG, *LPNET_DVR_FLASH_OUTCFG;

Members

dwSize

结构体大小

byMode

闪光灯闪烁模式,0-不闪,1-闪,2-关联闪,3-轮闪

byRelatedIoIn

闪光灯关联的输入 IO 号(关联闪时此参数有效,暂时保留)

byRecognizedLane

关联的 IO 号,按位表示,bit0 表示 IO1 是否关联,0-不关联,1-关联 byDetectBrightness

自动检测亮度使能闪光灯 0-不检测; 1-检测

byBrightnessThreld

使能闪光灯亮度阈值,范围[0,100],高于阈值闪

byStartHour

开始时间,单位:小时,取值范围[0,23]

byStartMinute

开始时间,单位:分,取值范围[0,59]

byEndHour

结束时间,单位:小时,取值范围[0,23]

byEndMinute

结束时间,单位:分,取值范围[0,59]

byFlashLightEnable

闪光灯时间是否开启: 0-关, 1-开

byRes

保留,置为0

7.53 NET_DVR_FTPCFG:FTP 上传参数

struct{

DWORD dwSize;

DWORD dwEnableFTP; char sFTPIP[16]; DWORD dwFTPPort;

BYTE sUserName[NAME_LEN];
BYTE sPassword[PASSWD_LEN];

DWORD dwDirLevel;
WORD wTopDirMode;
WORD wSubDirMode;
BYTE byEnableAnony;

BYTE byRes[23];

}NET_DVR_FTPCFG, *LPNET_DVR_FTPCFG;

Members

dwSize

结构体大小

dwEnableFTP

是否启用 FTP, 0-不启用, 1-启用

sFTPIP

FTP 服务器 IP 地址

dwFTPPort

FTP 端口号

sUserName

用户名

sPassword

密码

dwDirLevel

目录结构,0-不使用目录结构,直接保存在根目录,1-使用 1 级目录,2-使用 2 级目录 wTopDirMode

一级目录,0x1-使用设备名,0x2-使用设备号,0x3-使用设备 ip 地址,0x4-使用监测点,0x5-使用时间(年月),0x6-自定义,0x7-违规类型,0x8-方向,0x9-地点

wSubDirMode

二级目录, 0x1-使用通道名, 0x2-使用通道号, 0x3-使用时间(年月日), 0x4-使用车道号, 0x5-自定义, 0x6-违规类型, 0x7-方向, 0x8-地点

byEnableAnony

启用匿名: 0- 否, 1- 是, 智能交通摄像机不支持该字段

byRes

保留

7.54 NET_DVR_GAIN:增益参数

struct{

BYTE byGainLevel;
BYTE byGainUserSet;

BYTE byRes[2];

DWORD dwMaxGainValue;

}NET_DVR_GAIN, *LPNET_DVR_GAIN;

Members

byGainLevel

增益,单位 dB,取值范围[0,100]

byGainUserSet

用户自定义增益,单位 dB,取值范围[0,100],对于智能高清网络摄像机,是 CCD 模式下的抓拍增益 byRes

保留,置为0

dwMaxGainValue

最大增益值,单位 dB

7.55 NET_DVR_GAMMACORRECT:Gamma 校正配置参数

struct{

BYTE byGammaCorrectionEnabled;
BYTE byGammaCorrectionLevel;

BYTE byRes[6];

}NET_DVR_GAMMACORRECT, *LPNET_DVR_GAMMACORRECT;

Members

byGammaCorrectionEnabled

Gamma 校正是否启用, 0-不启用, 1-启用

byGammaCorrectionLevel

0-100

byRes

保留,置为0

7.56 NET_DVR_GATELAMP_INFO:常亮灯控制参数

```
struct{
 DWORD
          dwSize;
 DWORD
          dwChannel;
 BYTE
          byLaneNo;
 BYTE
          byBrightlampCtrl;
 BYTE
          byRes[14];
}NET_DVR_GATELAMP_INFO,*LPNET_DVR_GATELAMP_INFO;
Members
dwSize
      结构体大小
dwChannel
      通道号
byLaneNo
      道闸号: 0- 表示无效值(设备需要做有效值判断), 1- 道闸 1
byBrightlampCtrl
      控制参数: 0- 关闭常亮灯, 1- 开启常亮灯
byRes
      保留,置为0
```

7.57 NET_DVR_GEOGLOCATION:地址位置信息

```
enum _PROVINCE_CITY_IDX_{
 ANHUI_PROVINCE
                               = 0,
 AOMEN_PROVINCE
                               = 1,
 BEIJING_PROVINCE
                               = 2,
 CHONGQING_PROVINCE
                               = 3,
 FUJIAN_PROVINCE
                               = 4,
 GANSU_PROVINCE
                               = 5,
 GUANGDONG_PROVINCE
                              = 6,
 GUANGXI_PROVINCE
                               = 7,
 GUIZHOU_PROVINCE
                               = 8,
  HAINAN_PROVINCE
                               = 9,
```

	HEBEI_PROVINCE	= 10,
	HENAN_PROVINCE	= 11,
	HEILONGJIANG_PROVINCE	= 12,
	HUBEI_PROVINCE	= 13,
	HUNAN_PROVINCE	= 14,
	JILIN_PROVINCE	= 15,
	JIANGSU_PROVINCE	= 16,
	JIANGXI_PROVINCE	= 17,
	LIAONING_PROVINCE	= 18,
	NEIMENGGU_PROVINCE	= 19,
	NINGXIA_PROVINCE	= 20,
	QINGHAI_PROVINCE	= 21,
	SHANDONG_PROVINCE	= 22,
	SHANXI_JIN_PROVINCE	= 23,
	SHANXI_SHAN_PROVINCE	= 24,
	SHANGHAI_PROVINCE	= 25,
	SICHUAN_PROVINCE	= 26,
	TAIWAN_PROVINCE	= 27,
	TIANJIN_PROVINCE	= 28,
	XIZANG_PROVINCE	= 29,
	XIANGGANG_PROVINCE	= 30,
	XINJIANG_PROVINCE	= 31,
	YUNNAN_PROVINCE	= 32,
	ZHEJIANG_PROVINCE	= 33
}P	ROVINCE_CITY_IDX	
	NUUU DDOLUNGE	

ANHUI_PROVINCE

安徽

AOMEN_PROVINCE

澳门

BEIJING_PROVINCE

北京

CHONGQING_PROVINCE

重庆

FUJIAN_PROVINCE

福建

 ${\it GANSU_PROVINCE}$

甘肃

 $GUANGDONG_PROVINCE$

广东

 ${\it GUANGXI_PROVINCE}$

广西

 $GUIZHOU_PROVINCE$

贵州

HAINAN_PROVINCE

海南

HEBEI_PROVINCE

河北

HENAN_PROVINCE

河南

HEILONGJIANG_PROVINCE

黑龙江

HUBEI_PROVINCE

湖北

HUNAN_PROVINCE

湖南

JILIN_PROVINCE

吉林

JIANGSU_PROVINCE

江苏

JIANGXI_PROVINCE

江西

LIAONING_PROVINCE

辽宁

NEIMENGGU_PROVINCE

内蒙古

NINGXIA_PROVINCE

宁夏

QINGHAI_PROVINCE

青海

SHANDONG_PROVINCE

山东

SHANXI_JIN_PROVINCE

山西

SHANXI_SHAN_PROVINCE

陕西

SHANGHAI_PROVINCE

上海

SICHUAN_PROVINCE

四川

TAIWAN_PROVINCE

台湾

TIANJIN_PROVINCE

天津

XIZANG_PROVINCE

西藏

XIANGGANG_PROVINCE

香港

XINJIANG_PROVINCE

新疆

YUNNAN_PROVINCE

云南

ZHEJIANG_PROVINCE

浙江

7.58 NET_DVR_GPS_DATACFG:GPS 参数

struct{

DWORD dwSize;

BYTE byGpsDataMode;
BYTE byLongitudeType;
BYTE byLatitudeType;

BYTE byRes;

NET_DVR_LATITUDE_PARAMstruLatitude;NET_DVR_LONGITUDE_PARAMstruLongitude;BYTEbyRes1[128];

}NET_DVR_GPS_DATACFG, *LPNET_DVR_GPS_DATACFG;

Members

dwSize

结构体大小

byGpsDataMode

GPS 数据获取方式: 0- 自动, 1- 手动

byLongitudeType

经度: 0- 东经, 1- 西经

byLatitudeType

纬度: 0- 南纬, 1- 北纬

byRes

保留,置为0

struLatitude

纬度

struLongitude

经度

byRes1

保留,置为0

7.59 NET_DVR_HANDLEEXCEPTION_V30:报警和异常处理

struct{

DWORD dwHandleType;

BYTE byRelAlarmOut[MAX_ALARMOUT_V30];

}NET_DVR_HANDLEEXCEPTION_V30, *LPNET_DVR_HANDLEEXCEPTION_V30;

Members

dwHandleType

处理方式:

0x00: 无响应

0x01: 监视器上警告

0x02: 声音警告

0x04: 上传中心

0x08: 触发报警输出

0x10: Jpeg 抓图并上传 Email 0x20: 无线声光报警器联动 0x200: 抓图并上传 ftp

byRelAlarmOut

报警触发的输出通道,0-不触发,1-触发输出,按位表示输出通道,例如 byRelAlarmOut[0]==1 表示触发输出通道 1,byRelAlarmOut[1]==1 表示触发输出通道 2,依此类推

7.60 NET_DVR_HDCFG:设备硬盘配置结构体

struct{

DWORD dwSize;
DWORD dwHDCount;

NET_DVR_SINGLE_HD struHDInfo[MAX_DISKNUM_V30];

}NET_DVR_HDCFG, *LPNET_DVR_HDCFG;

Members

dwSize

结构体大小

dwHDCount

硬盘数, 该参数只能获取, 不支持设置

struHDInfo

硬盘信息参数

Remarks

本结构体中的 dwHDCount 参数是指设备本地的硬盘数,因此只能获取该信息,不能设置。对硬盘的信息进行设置后需要重启设备才生效。

7.61 NET_DVR_IMAGEOVERLAYCFG:图像叠加参数

struct{

DWORD dwSize;

BYTE byOverlayInfo;

BYTE byOverlayMonitorInfo;

BYTE byOverlayTime;
BYTE byOverlaySpeed;
BYTE byOverlaySpeeding;
BYTE byOverlayLimitFlag;
BYTE byOverlayPlate;

```
BYTE
         byOverlayColor;
 BYTE
         byOverlayLength;
 BYTE
         byOverlayType;
 BYTE
         byOverlayColorDepth;
 BYTE
         byOverlayDriveChan;
 BYTE
         byOverlayMilliSec;
 BYTE
         byOverlayIllegalInfo;
 BYTE
         byOverlayRedOnTime;
 BYTE
         byRes1[5];
 BYTE
         byMonitorInfo1[32];
 BYTE
         byMonitorInfo2[44];
 BYTE
         byRes2[52];
}NET_DVR_IMAGEOVERLAYCFG, *LPNET_DVR_IMAGEOVERLAYCFG;
Members
dwSize
      大小
byOverlayInfo
      叠加使能开关,0-不叠加,1-叠加
byOverlayMonitorInfo
      是否叠加监测点信息,0-不叠加,1-叠加
byOverlayTime
      是否叠加时间,0-不叠加,1-叠加
byOverlaySpeed
      是否叠加速度,0-不叠加,1-叠加
byOverlaySpeeding
      是否叠加超速比例,0-不叠加,1-叠加
byOverlayLimitFlag
      是否叠加限速标志,0-不叠加,1-叠加
byOverlayPlate
      是否叠加车牌,0-不叠加,1-叠加
byOverlayColor
      是否叠加车身颜色,0-不叠加,1-叠加
byOverlayLength
      是否叠加车长,0-不叠加,1-叠加
byOverlayType
      是否叠加车型,0-不叠加,1-叠加
byOverlayColorDepth
      是否叠加车身颜色深浅, 保留
byOverlayDriveChan
      是否叠加车道,0-不叠加,1-叠加
byOverlayMilliSec
      是否叠加毫秒信息,0-不叠加,1-叠加
byOverlayIllegalInfo
      是否叠加违章信息,0-不叠加,1-叠加
```

byOverlayRedOnTime

叠加红灯已亮时间 0-不叠加, 1-叠加

byres1

保留,置为0

byMonitorInfo1

监测点信息 1

byMonitorInfo2

监测点信息 2

byres2

保留,置为0

7.62 NET_DVR_IO_INCFG:IO 输入配置参数

```
struct{
```

DWORD dwSize;

BYTE byloInStatus;

BYTE byRes[3];

}NET_DVR_IO_INCFG, *LPNET_DVR_IO_INCFG;

Members

dwSize

大小

byloInStatus

输入的 IO 口状态, 0-下降沿, 1-上升沿, 2-上升沿和下降沿, 3-高电平, 4-低电平

byRes

保留,置为0

7.63 NET_DVR_IO_OUTCFG:IO 输出配置参数

struct{

DWORD dwSize;

BYTE byDefaultStatus;

BYTE byloOutStatus;

WORD wAheadTime;

DWORD dwTimePluse;

DWORD dwTimeDelay;

BYTE byFreqMulti;

BYTE byDutyRate;

BYTE byRes[2];

}NET_DVR_IO_OUTCFG, *LPNET_DVR_IO_OUTCFG;

Members

dwSize

大小

byDefaultStatus

IO 默认状态: 0-低电平, 1-高电平

byloOutStatus

IO 起效时状态: 0-低电平, 1-高电平, 2-脉冲

wAheadTime

输出 IO 提前时间,单位 us,取值范围[0,300]

dwTimePluse

脉冲间隔时间,单位 us

dwTimeDelay

IO 有效持续时间,单位 us

byFreqMulti

倍频,数值范围[1,15]

byDutyRate

占空比, [0,40%]

byRes

保留,置为0

7.64 NET_DVR_IPADDR:IP 地址

 $struct \{$

char slpV4[16];

BYTE slpV6[128];

}NET_DVR_IPADDR, *LPNET_DVR_IPADDR;

Members

slpV4

设备 IPv4 地址

slpV6

设备 IPv6 地址

7.65 NET_DVR_JPEGCFG_V30:JPEG 抓图参数配置

struct{

DWORD dwSize;

<u>NET_DVR_JPEGPARA</u> struJpegPara[*MAX_CHANNUM_V30*];

WORD wBurstMode;
WORD wUploadInterval;
NET_DVR_PICTURE_NAME struPicNameRule;
BYTE bySaveToHD;
BYTE byRes1;

WORD wCatchInterval;
BYTE byRes2[12];

NET_DVR_SERIAL_CATCHPIC_PARA struRs232Cfg;
NET_DVR_SERIAL_CATCHPIC_PARA struRs485Cfg;

DWORD dwTriggerPicTimes[MAX_CHANNUM_V30];

```
DWORD
```

dwAlarmInPicChanTriggered[MAX_ALARMIN_V30];

}NET_DVR_JPEGCFG_V30, *LPNET_DVR_JPEGCFG_V30;

Members

dwSize

大小

struJpegPara

每个通道的图像参数

wBurstMode

抓图方式,按位设置,0x1=报警输入触发,0x2=移动侦测触发,0x4=232 触发,0x8=485 触发,0x10=网络触发

wUploadInterval

图片上传间隔(秒),取值范围[0,65535]

struPicNameRule

图片命名规则

bySaveToHD

是否保存到硬盘

byRes1

保留

wCatchInterval

抓图间隔(秒),取值范围[0,65535]

byRes2

保留

struRs232Cfg

232 抓图参数

struRs485Cfg

485 串口抓图参数

dwTriggerPicTimes

每个通道一次触发拍照次数

dw A larm In Pic Chan Triggered

报警触发抓拍通道,按位设置,从第1位开始

7.66 NET_DVR_JPEGPARA:JPEG 图像信息

struct{

WORD wPicSize;

WORD wPicQuality;

}NET_DVR_JPEGPARA,*LPNET_DVR_JPEGPARA;

Members

wPicSize

图片尺寸: 0-CIF, 1-QCIF, 2-D1, 3-UXGA(1600x1200), 4-SVGA(800x600), 5-HD720p(1280x720), 6-VGA, 7-XVGA, 8-HD900p, 9-HD1080, 10-2560*1920, 11-1600*304, 12-2048*1536, 13-2448*2048, 14-2448*1200 , 15-2448*800 , 16-XGA(1024*768) , 17-SXGA(1280*1024) , 18-WD1(960*576/960*480),19-1080i

wPicQuality

图片质量系数: 0-最好, 1-较好, 2-一般

7.67 NET_DVR_LATITUDE_PARAM:纬度参数

```
struct{
 BYTE
         byDegree;
 BYTE
         byMinute;
 BYTE
         bySec;
 BYTE
         byRes;
}NET_DVR_LATITUDE_PARAM, *LPNET_DVR_LATITUDE_PARAM;
Members
byDegree
      度,取值范围: [0,179]
byMinute
      分,取值范围: [0,59]
byMinute
      秒,取值范围: [0,59]
```

7.68 NET_DVR_LASER_PARAM_CFG:激光参数配置

```
struct{
  BYTE
          byControlMode;
  BYTE
          bySensitivity;
  BYTE
          byTriggerMode;
  BYTE
          byBrightness;
  BYTE
          byAngle;
  BYTE
          byLimitBrightness;
  BYTE
          byRes[10];
}NET_DVR_LASER_PARAM_CFG, *LPNET_DVR_LASER_PARAM_CFG;
Members
```

 $by {\it Control Mode}$

控制模式: 0-无效, 1-自动, 2-手动, 默认: 自动

bySensitivity

byRes

保留,置为0

激光灯灵敏度,取值范围:0~100,默认:50

by Trigger Mode

激光灯触发模式: 0-无效, 1-机芯触发, 2-光敏触发, 默认: 机芯触发

byBrightness

激光灯亮度,控制模式为手动模式下有效,取值范围:0~255,默认:100

byAngle

激光灯角度, 0 表示无效,取值范围: 1~36,默认: 12。激光灯照射范围为一个圆圈,调节激光角度是调节这个圆的半径的大小

byLimitBrightness

byRes

激光灯亮度限制,控制模式为自动模式下有效,取值范围:0~100

保留

7.69 NET_DVR_LIGHTSNAPCFG:红绿灯功能参数

```
struct{
 DWORD
           dwSize;
 BYTE
           byLightIoIn;
 BYTE
           byTrigIoIn;
 BYTE
           byRelatedDriveWay;
 BYTE
           byTrafficLight;
 BYTE
           bySnapTimes1;
 BYTE
           bySnapTimes2;
 BYTE
           byRes1[2];
 WORD
            wIntervalTime1[MAX_INTERVAL_NUM];
 WORD
            wIntervalTime2[MAX_INTERVAL_NUM];
 BYTE
           byRecord;
 BYTE
           bySessionTimeout;
 BYTE
           byPreRecordTime;
 BYTE
           byVideoDelay;
 BYTE
           byRes2[32];
}NET_DVR_LIGHTSNAPCFG, *LPNET_DVR_LIGHTSNAPCFG;
Members
dwSize
      大小
byLightIoIn
      红绿灯的 IO 号,从1开始
byTrigIoIn
      触发的 IO 号,从1开始
byRelatedDriveWay
      触发 IO 关联的车道号,取值范围[0,9]
byTrafficLight
      0-高电平红灯,低电平绿灯;1-高电平绿灯,低电平红灯
bySnapTimes1
      红灯抓拍次数,0-不抓拍,非0-连拍次数,最大5次
bySnapTimes2
      绿灯抓拍次数,0-不抓拍,非0-连拍次数,最大5次
byRes1
      保留,置为0
wIntervalTime1
      红灯连拍间隔时间,单位 ms,取值范围[67,60000]
wIntervalTime2
```

绿灯连拍间隔时间,单位 ms,取值范围[67,60000]

byRecord

闯红灯周期录像标志,0-不录像,1-录像

bySessionTimeout

闯红灯周期录像超时时间(单位秒),取值范围[0,100]

byPreRecordTime

闯红灯录像片段预录时间(单位秒),取值范围[0,100]

byVideoDelay

闯红灯录像片段延时时间(单位秒),取值范围[0,100]

byRes2

保留,置为0

7.70 NET_DVR_LOCAL_ABILITY_PARSE_CFG:能力集解析库配置

struct{

BYTE byEnableAbilityParse;

BYTE byRes[127];

}NET_DVR_LOCAL_ABILITY_PARSE_CFG,*LPNET_DVR_LOCAL_ABILITY_PARSE_CFG;

Members

byEnableAbilityParse

使用能力集解析库: 0-不使用, 1-使用, 默认不使用

byRes

保留,置为0

Remarks

模拟能力集默认禁用,调用该接口可以启用模拟能力集,支持获取设备各种能力。如果需要获取能力集(NET_DVR_GetDeviceAbility),可以调用此接口来启用模拟能力集,并且需要加载 LocalXml.zip(要求和SDK 库文件放在同一个目录下)。

7.71 NET_DVR_LOCAL_BYTE_ENCODE_CONVERT:字符编码转换参数

struct{

CHAR_ENCODE_CONVERT fnCharConvertCallBack;

BYTE byRes[256];

}NET_DVR_LOCAL_BYTE_ENCODE_CONVERT,*LPNET_DVR_LOCAL_BYTE_ENCODE_CONVERT;

Members

fnCharConvertCallBack

字符编码转换回调函数

byRes

保留,置为0

Callback Function

typedef int(CALLBACK *CHAR_ENCODE_CONVERT)(

char *pInput,
DWORD dwInputLen,

DWORD dwInEncodeType, char *pOutput, DWORD dwOutputLen,

DWORD dwOutEncodeType

);

Callback Function Parameters

pInput

[in] 输入字符串,内存由 SDK 申请,字符串数据也由 SDK 提供

dwInputLen

[in] 输入字符串缓冲区大小

dwInEncodeType

[in] 输入的字符编码格式: 0- 无字符编码信息(老设备), 1- GB2312(简体中文), 2- GBK, 3- BIG5(繁体中文), 4- Shift_JIS(日文), 5- EUC-KR(韩文), 6- UTF-8, 7- ISO8859-1, 8- ISO8859-2, 9- ISO8859-3, ..., 依次类推, 21- ISO8859-15(西欧)

pOutput

[out] 输出字符串,内存由 SDK 申请,存放使用用户字符编码接口转换之后的字符串

dwOutputLen

[out] 输出字符串缓冲区大小

dwOutEncodeType

[out] 输出字符编码格式: 0- 无字符编码信息(老设备), 1-GB2312(简体中文), 2-GBK, 3-BIG5(繁体中文), 4-Shift_JIS(日文), 5-EUC-KR(韩文), 6-UTF-8, 7-ISO8859-1, 8-ISO8859-2, 9-ISO8859-3, ..., 依次类推, 21-ISO8859-15(西欧)

Remarks

- 回调函数的返回值:-1表示失败,0表示成功(内存足够存放转换以后的字符串)。
- 设备的字符编码类型在登录接口返回,对应 <u>NET_DVR_DEVICEINFO_V40</u> 结构体中的参数 byCharEncodeType。SDK 内部需要字符编码转换时,SDK 默认使用 libiconv 库进行类型转换。如果不想使用 libiconv 编码库,可以调用 <u>NET_DVR_SetSDKLocalCfg</u>(类型: NET_SDK_LOCAL_CFG_TYPE_BYTE_ENCODE) 设置字符转码回调函数,告知 SDK 用户自己的字符编码接口,然后 SDK 将使用用户提供的字符编码接口进行字符串处理。

7.72 NET DVR LOCAL CHECK DEV:设备在线巡检参数

struct{

DWORD dwCheckOnlineTimeout;

DWORD dwCheckOnlineNetFailMax;

BYTE byRes[256];

NET DVR LOCAL CHECK DEV, *LPNET DVR LOCAL CHECK DEV;

Members

dwCheckOnlineTimeout

巡检时间间隔,单位: ms,取值范围: 30s~120s,0表示用默认值(120s),推荐设置 30s

dwCheckOnlineNetFailMax

由于网络原因失败的最大累加次数,达到该次数,SDK 才回调用户异常消息,0 表示使用默认值 1,推荐设置 3 次

byRes

保留,置为0

Remarks

• SDK 按照该结构体中的时间间隔对设备进行自动巡检,巡检过程中如果连失败或者重连成功在 NET DVR SetExceptionCallBack V30 设置的异常消息回调函数中返回,对应异常消息类型为: EXCEPTION EXCHANGE、RESUME EXCHANGE。

• 推荐设置 30s 时间间隔、3次,即心跳间隔为 1.5 分钟。

7.73 NET_DVR_LOCAL_LOG_CFG:SDK 日志参数配置

struct{

WORD wSDKLogNum;

BYTE byRes[254];

}NET_DVR_LOCAL_LOG_CFG,*LPNET_DVR_LOCAL_LOG_CFG;

Members

wSDKLogNum

SDK 日志文件个数, SDK 写日志模式为覆盖模式(<u>NET_DVR_SetLogToFile</u>接口中参数 bAutoDel 为 TRUE)时日志生成的个数, 0表示默认值(即 10 个)

byRes

保留,置为0

7.74 NET_DVR_LOCAL_MEM_POOL_CFG:内存池本地配置

struct{

DWORD dwAlarmMaxBlockNum;
DWORD dwAlarmReleaseInterval;

BYTE byRes[60];

}NET_DVR_LOCAL_MEM_POOL_CFG,*LPNET_DVR_LOCAL_MEM_POOL_CFG;

Members

dwAlarmMaxBlockNum

报警模块内存池最多向系统申请的内存块(block)个数,每个 block 为 64MB,超过这个上限则不向系统申请,0 表示无上限

dwAlarmReleaseInterval

报警模块空闲内存释放的间隔,单位: 秒,为0表示不释放空闲的内存

byRes

保留,置为0

7.75 NET_DVR_LOCAL_MODULE_RECV_TIMEOUT_CFG:按模块配置超时

时间

struct{

DWORD dwPreviewTime;

```
DWORD dwAlarmTime;
```

DWORD dwVodTime;

DWORD dwElse;

BYTE byRes[512];

NET DVR LOCAL MODULE RECV TIMEOUT CFG, *LPNET DVR LOCAL MODULE RECV TIMEOUT CFG;

Members

dwPreviewTime

预览模块超时时间,单位:毫秒,取值范围:0~3000,000

dwAlarmTime

报警模块超时时间,单位:毫秒,取值范围:0~3000,000

dwVodTime

回放模块超时时间,单位:毫秒,取值范围:0~3000,000

dwElse

其他模块超时时间,单位:毫秒,取值范围:0~3000,000

byRes

保留,置为0

7.76 NET_DVR_LOCAL_PROTECT_KEY_CFG:密钥配置

struct{

BYTE byProtectKey[128];

BYTE byRes[128];

}NET_DVR_LOCAL_PROTECT_KEY_CFG,*LPNET_DVR_LOCAL_PROTECT_KEY_CFG;

Members

byProtectKey

密钥,默认设置为0

byRes

保留,置为0

7.77 NET_DVR_LOCAL_TALK_MODE_CFG:对讲模式配置

struct{

BYTE byEnableAbilityParse;

BYTE byRes[127];

NET DVR LOCAL TALK MODE CFG,*LPNET DVR LOCAL TALK MODE CFG;

Members

byTalkMode

对讲模式: 0- 使用对讲库 (默认), 1- 使用 windows api 模式

byRes

保留,置为0

Remarks

V4.2.2.5 及以前版本 SDK 均采用 windows API 实现相关功能。之后版本默认使用语音对讲库的方式,语音对讲库模式下必须加载 AudioIntercom.dll 和 OpenAL32.dll。

7.78 NET_DVR_LOCAL_TCP_PORT_BIND_CFG:本地 TCP 端口绑定配置

struct{

WORD wLocalBindTcpMinPort;

WORD wLocalBindTcpMaxPort;

BYTE byRes[60];

}NET_DVR_LOCAL_TCP_PORT_BIND_CFG,*LPNET_DVR_LOCAL_TCP_PORT_BIND_CFG;

Members

wLocalBindTcpMinPort

本地绑定 TCP 最小端口

wLocalBindTcpMaxPort

本地绑定 TCP 最大端口

byRes

保留,置为0

Remarks

端口绑定的策略是:给一个端口段,可以保证使用的端口都是在这个段里(多播除外),但不能保证每一个段内的端口都用到,因为是循环利用的;端口池中取出的端口会去尝试绑定,如果被占用了,将取下一个,如果段内每一个都绑定不了,则连接操作返回失败。建议最好不要设置系统预留的端口(1-1024),比如80等。

设置的最大端口应该大于等于最小端口,[0,0]表示清除绑定,[0,非0]将设置失败,因为0不能进行绑定。

7.79 NET_DVR_LOCAL_UDP_PORT_BIND_CFG:本地 UDP 端口绑定配置

 $struct \{$

WORD wLocalBindUdpMinPort;

WORD wLocalBindUdpMaxPort;

BYTE byRes[60];

}NET_DVR_LOCAL_UDP_PORT_BIND_CFG,*LPNET_DVR_LOCAL_UDP_PORT_BIND_CFG;

Members

wLocalBindUdpMinPort

本地绑定 UDP 最小端口

w Local Bind Udp Max Port

本地绑定 UDP 最大端口

byRes

保留,置为0

Remarks

端口绑定的策略是:给一个端口段,可以保证使用的端口都是在这个段里(多播除外),但不能保证每一个段内的端口都用到,因为是循环利用的;端口池中取出的端口会去尝试绑定,如果被占用了,将取下一个,如果段内每一个都绑定不了,则连接操作返回失败。建议最好不要设置系统预留的端口(1-1024),比如 80 等。

设置的最大端口应该大于等于最小端口,[0,0]表示清除绑定,[0,非0]将设置失败,因为0不能进行绑定。

7.80 NET_DVR_LOG_V30:日志信息

struct{

BYTE sPanelUser[MAX_NAMELEN];
BYTE sNetUser[MAX_NAMELEN];

NET DVR IPADDR struRemoteHostAddr;

DWORD dwParaType;
DWORD dwChannel;
DWORD dwDiskNumber;
DWORD dwAlarmInPort;
DWORD dwAlarmOutPort;

DWORD dwInfoLen;

char sInfo[LOG_INFO_LEN]; }NET_DVR_LOG_V30,*LPNET_DVR_LOG_V30;

Members

strLogTime

日志时间

dwMajorType

报警主类型,定义请参见设备日志主类型

dwMinorType

报警次类型,根据不同的主类型的次类型定义请参见设备日志次类型

sPanelUser

操作面板的用户名

sNetUser

网络操作的用户名

struRemoteHostAddr

远程主机地址

dwParaType

对于 DS-90xx 设备,当日志次类型为 MINOR_START_VT 或者 MINOR_STOP_VT 时,表示语音对讲端口号。

当日志的主类型为 MAJOR_OPERATION=03 (操作),且次类型为 MINOR_LOCAL_CFG_PARM=0x52 (本地配置参数) 或 MINOR_REMOTE_GET_PARM=0x76 (远程获得参数) 或

MINOR_REMOTE_CFG_PARM=0x77(远程配置参数)时, 该参数类型有效,其含义如下:

宏定义	宏定义值	含义
PARA_VIDEOOUT	0x1	视频输出结构配置
PARA_IMAGE	0x2	图像参数结构配置
PARA_ENCODE	0x4	压缩参数结构配置
PARA_NETWORK	0x8	网络参数结构配置
PARA_ALARM	0x10	报警参数结构配置

PARA_EXCEPTION	0x20	异常参数结构配置
PARA_DECODER	0x40	解码器参数结构配置
PARA_RS232	0x80	RS232 参数结构配置
PARA_PREVIEW	0x100	本地预览参数结构配置
PARA_SECURITY	0x200	用户权限参数结构配置
PARA_DATETIME	0x400	本地系统配置
PARA_FRAMETYPE	0x800	帧信息参数结构配置

dwChannel

通道号

dwDiskNumber

硬盘号

dwAlarmInPort

报警输入端口

dwAlarmOutPort

报警输出端口

dwInfoLen

日志附加信息长度

sInfo

日志附加信息

7.81 NET_DVR_LONGITUDE_PARAM:经度参数

struct{

BYTE byDegree;

BYTE byMinute;

BYTE bySec;

BYTE byRes;

}NET_DVR_LONGITUDE_PARAM, *LPNET_DVR_LONGITUDE_PARAM;

Members

byDegree

度,取值范围: [0,179]

byMinute

分,取值范围: [0,59]

byMinute

秒,取值范围: [0,59]

byRes

保留,置为0

7.82 NET_DVR_MANUALSNAP:手动抓拍请求参数

struct{

```
BYTE byOSDEnable;
BYTE byLaneNo;
```

BYTE byRes[22];

}NET_DVR_MANUALSNAP, *LPNET_DVR_MANUALSNAP;

Members

byOSDEnable

抓拍图片上是否关闭 OSD 信息叠加: 0- 不关闭(默认), 1- 关闭

byLaneNo

车道号,取值范围:1~6,默认为1

byRes

保留,置为0

7.83 NET_DVR_MEASURESPEEDCFG:测速功能参数

struct{

DWORD dwSize;
BYTE byTriglo1;
BYTE byTriglo2;

BYTE byRelatedDriveWay;
BYTE byTestSpeedTimeOut;

DWORD dwDistance;
BYTE byCapSpeed;
BYTE bySpeedLimit;

BYTE bySnapTimes1;
BYTE bySnapTimes2;

WORD wIntervalTime1[MAX_INTERVAL_NUM];
WORD wIntervalTime2[MAX_INTERVAL_NUM];

BYTE byRes[32];

}NET_DVR_MEASURESPEEDCFG, *LPNET_DVR_MEASURESPEEDCFG;

Members

dwSize

结构体大小

byTrigIo1

测速第1线圈,从1开始

byTrigIo2

测速第2线圈,从1开始

byRelatedDriveWay

触发 IO 关联的车道号,取值范围[0,9]

byTestSpeedTimeOut

测速模式超时时间,单位 s,取值范围[0,255]

dwDistance

线圈距离,单位 cm,取值范围[0,20000]

byCapSpeed

测速模式起拍速度,单位 km/h,取值范围[0,255]

bySpeedLimit

限速值,单位 km/h,取值范围[0,255]

bySnapTimes1

线圈 1 抓拍次数, 0-不抓拍, 非 0-连拍次数, 最大 5 次

bySnapTimes2

线圈 2 抓拍次数, 0-不抓拍, 非 0-连拍次数, 最大 5 次

wIntervalTime1

线圈 1 连拍间隔时间,单位 ms,取值范围[67,20000]

wIntervalTime2

线圈 2 连拍间隔时间,单位 ms,取值范围[67,20000]

byRes

保留,置为0

7.84 NET_DVR_MUL_STREAM_CHANNEL_GROUP:单组码流配置参数

struct{

DWORD dwSize;
DWORD dwGroup;

NET DVR MULTI STREAM COMPRESSIONCFG COND struStreamPara;

BYTE byRes[64];

}NET_DVR_MUL_STREAM_CHANNEL_GROUP,*LPNET_DVR_MUL_STREAM_CHANNEL_GROUP;

Members

dwSize

结构体大小

dwGroup

组号

struStreamPara

多码流配置参数

byRes

保留

7.85 NET_DVR_MULTI_STREAM_COMPRESSIONCFG:多码流压缩参数配

置

struct{

DWORD dwSize;

DWORD dwStreamType;

NET_DVR_COMPRESSION_INFO_V30 struStreamPara;

BYTE byRes[80];

}NET_DVR_MULTI_STREAM_COMPRESSIONCFG,*LPNET_DVR_MULTI_STREAM_COMPRESSIONCFG;

Members

dwSize

结构体大小

dwStreamType

码流类型: 0-主码流, 1-子码流, 2-事件类型, 3-码流 3, 4-虚拟码流,

struStreamPara

码流压缩参数

byRes

保留

7.86 NET_DVR_MULTI_STREAM_COMPRESSIONCFG_COND:多码流压缩

参数配置条件

struct{

DWORD dwSize;

NET_DVR_STREAM_INFO struStreamInfo;
DWORD dwStreamType;
BYTE byRes[32];

}NET_DVR_MULTI_STREAM_COMPRESSIONCFG_COND,*LPNET_DVR_MULTI_STREAM_COMPRESSIONCFG_COND;

Members

dwSize

结构体大小

struStreamInfo

流信息,流 ID 或者通道号

dwStreamType

码流类型: 0-主码流, 1-子码流, 2-事件类型, 3-码流 3, 4-虚拟码流,

byRes

保留

7.87 NET_DVR_NFSCFG:网络文件系统参数

struct{

DWORD dwSize;

}NET DVR NFSCFG, *LPNET DVR NFSCFG;

Members

dwSize

结构体大小

struNfsDiskParam

NFS 配置子结构

Remarks

修改 NFS 各参数时需要重启设备才能生效。

7.88 NET_DVR_NETCFG_MULTI:多网卡网络配置

struct{

DWORD dwSize;

BYTE byDefaultRoute;
BYTE byNetworkCardNum;

BYTE byRes[2];

NET_DVR_ETHERNET_MULTI struEtherNet[MAX_NETWORK_CARD];

NET DVR IPADDR struManageHost1IpAddr;
NET DVR IPADDR struManageHost2IpAddr;
NET DVR IPADDR struAlarmHostIpAddr;
WORD wManageHost1Port;
WORD wManageHost2Port;
WORD wAlarmHostIpPort;

BYTE byIpResolver[MAX_DOMAIN_NAME];

WORD wlpResolverPort;

WORD wDvrPort; WORD wHttpPortNo; BYTE byRes2[6];

NET DVR IPADDR struMulticastlpAddr;

NET_DVR_PPPOECFG struPPPoE; BYTE byRes3[24];

}NET_DVR_NETCFG_MULTI,*LPNET_DVR_NETCFG_MULTI;

Members

dwSize

结构体大小

by De fault Route

默认路由,0 表示 struEtherNet[0],1 表示 struEtherNet[1]

byNetworkCardNum

设备实际可配置的网卡数目

byRes

保留,置为0

struEtherNet

以太网口

struManageHost1IpAddr

主管理主机 IP 地址

struManageHost2lpAddr

辅管理主机 IP 地址

struAlarmHostIpAddr

报警主机 IP 地址

wManageHost1Port

主管理主机端口号

wManageHost2Port

辅管理主机端口号

wAlarmHostIpPort

报警主机端口号

byIpResolver

IP 解析服务器域名或 IP 地址

wIpResolverPort

IP 解析服务器端口号

wDvrPort

通讯端口,默认8000

wHttpPortNo

HTTP 端口号

byRes2

保留,置为0

struMulticastlpAddr

多播组地址

struPPPoE

PPPoE 参数

byRes3

保留,置为0

7.89 NET_DVR_NETCFG_V30:网络配置

struct{

DWORD dwSize;

NET_DVR_ETHERNET_V30 struEtherNet[MAX_ETHERNET];

NET DVR IPADDR struRes1[2];

<u>NET_DVR_IPADDR</u> struAlarmHostIpAddr;

WORD wRes2[2];

WORD wAlarmHostlpPort;

BYTE byUseDhcp;
BYTE byRes3;

NET_DVR_IPADDR
StruDnsServer1lpAddr;
NET_DVR_IPADDR
struDnsServer2lpAddr;

BYTE byIpResolver[MAX_DOMAIN_NAME];

WORD wlpResolverPort; WORD wHttpPortNo;

NET_DVR_IPADDR struMulticastIpAddr;
NET_DVR_IPADDR struGatewayIpAddr;

NET_DVR_PPPOECFG struPPPoE; BYTE byRes[64];

}NET_DVR_NETCFG_V30,*LPNET_DVR_NETCFG_V30;

Members

dwSize

大小

struEtherNet

以太网口

struRes1

保留,置为0

struAlarmHostIpAddr

报警主机 IP 地址

wRes2

保留,置为0

wAlarmHostIpPort

报警主机端口号

byUseDhcp

是否启用 DHCP: 0xff-无效; 0-不启用; 1-启用

byRes3

保留,置为0

struDnsServer1IpAddr

域名服务器 1 的 IP 地址

struDnsServer2IpAddr

域名服务器2的IP地址

byIpResolver

IP 解析服务器域名或 IP 地址 (8000 设备不支持域名)

wlpResolverPort

IP 解析服务器端口号

wHttpPortNo

HTTP 端口号

struMulticastIpAddr

多播组地址

struGatewayIpAddr

网关地址

struPPPoE

PPPoE 参数

byRes

保留,置为0

Remarks

3.0 协议以下的设备,参数 byUseDhcp 为 0xff-无效,将其 IP 地址填成空,设备会自动去获取 DHCP。

7.90 NET_DVR_NETWORK_BONDING:BONDING 网卡配置

struct{

DWORD dwSize;
BYTE byEnable;
BYTE byNum;
BYTE byRes1[2];

NET_DVR_ONE_BONDING struOneBond[MAX_BOND_NUM];

BYTE byRes2[40];

}NET_DVR_NETWORK_BONDING,*LPNET_DVR_NETWORK_BONDING;

Members

dwSize

结构体大小

byEnable

是否启用 bonding 功能

byNum

Bonding 网卡的个数

bvRes1

保留

struOneBond

单 BONDING 网卡配置参数

byRes2

保留

7.91 NET_DVR_NOISEREMOVE:数字降噪功能参数

struct{

BYTE byDigitalNoiseRemoveEnable;

BYTE byDigitalNoiseRemoveLevel;

BYTE bySpectralLevel;

BYTE byTemporalLevel;

BYTE byRes[4];

}NET_DVR_NOISEREMOVE, *LPNET_DVR_NOISEREMOVE;

Members

byDigitalNoiseRemoveEnable

数字去噪是否启用,0-不启用,1-普通模式数字降噪,2-专家模式数字降噪

 $by {\it Digital Noise Remove Level}$

普通模式数字降噪级别: 0x0-0xF

bySpectralLevel

专家模式下空域强度: 0-100

byTemporalLevel

专家模式下时域强度: 0-100

byRes

保留,置为0

7.92 NET_DVR_NTPPARA:网络应用参数(NTP)

struct{

BYTE sNTPServer[64];

WORD winterval;
BYTE byEnableNTP;

signed char cTimeDifferenceH;

signed char cTimeDifferenceM;

BYTE res1;

WORD wNtpPort; BYTE res2[8];

}NET_DVR_NTPPARA,*LPNET_DVR_NTPPARA;

Members

sNTPServer

NTP 服务器域名或者 IP 地址

wInterval

校时间隔时间,以分钟或小时为单位(通过能力集 <u>NET DVR GetDeviceAbility</u> 获取,对应网络应用参数能力集: <u>DEVICE NETAPP ABILITY</u>)

byEnableNTP

NTP 校时是否启用: 0一否, 1一是

cTimeDifferenceH

与国际标准时间的时差(小时),-12 ... +13

cTimeDifferenceM

与国际标准时间的时差(分钟), 0,30,45

res1

保留,置为0

wNtpPort

NTP 服务器端口,设备默认为 123

res2

保留,置为0

7.93 NET_DVR_ONE_BONDING:单 BONDING 网卡配置

struct{

BYTE byMode;
BYTE byUseDhcp;
BYTE byMasterCard;
BYTE byStatus;

BYTE byBond[MAX NETWORK CARD];

NET DVR ETHERNET V30 struEtherNet;

NET DVR IPADDR struGatewayIpAddr;

BYTE byRes[20];

}NET_DVR_ONE_BONDING,*LPNET_DVR_ONE_BONDING;

Members

byMode

工作模式: 0- 网络容错, 1- 负载均衡

byUseDhcp

是否使能 dhcp

byMasterCard

指定哪张网卡为主网卡

byStatus

BONDING 的状态: 0- 异常, 1-正常, 只能获取不能设置

byBond

byBond[0]== 1 表示使用 eh0, 0 表示不使用 eh0

struEtherNet

网卡参数

struGatewayIpAddr

网关地址

byRes

保留

7.94 NET_DVR_PICCFG_V30:通道图像

struct{

DWORD dwSize;

BYTE sChanName[NAME_LEN];

DWORD dwVideoFormat;
char reservedData[64];
DWORD dwShowChanName;
WORD wShowNameTopLeftX;
WORD wShowNameTopLeftY;

NET_DVR_VILOST_V30 struVILost;
NET_DVR_VILOST_V30 struRes;
NET_DVR_MOTION_V30 struMotion;
NET_DVR_HIDEALARM_V30 struHideAlarm;
DWORD dwEnableHide;

NET_DVR_SHELTER struShelter[MAX_SHELTERNUM];

DWORD dwShowOsd; WORD wOSDTopLeftX; WORD wOSDTopLeftY; BYTE byOSDType; **BYTE** byDispWeek; **BYTE** byOSDAttrib; **BYTE** byHourOsdType; **BYTE** byFontSize;

BYTE byOSDColorType;
BYTE byAlignment;

BYTE byOSDMilliSecondEnable;

NET_DVR_RGB_COLOR struOsdColor;
BYTE byRes[56];

}NET_DVR_PICCFG_V30,*LPNET_DVR_PICCFG_V30;

Members

dwSize

大小

sChanName

通道名称

dwVideoFormat

视频制式: 1-NTSC, 2-PAL

reservedData

保留,置为0

dwShowChanName

预览的图象上是否显示通道名称: 0-不显示, 1-显示(区域大小 704*576)

wShowNameTopLeftX

通道名称显示位置的 x 坐标

wShowNameTopLeftY

通道名称显示位置的 y 坐标

struVILost

视频信号丢失报警参数,智能交通摄像机不支持,保留

struRes

保留,置为0

struMotion

移动侦测报警参数,智能交通摄像机不支持,保留

struHideAlarm

遮挡报警参数,智能交通摄像机不支持,保留

dwEnableHide

是否启动遮挡: 0-否, 1-是, 智能交通摄像机不支持, 保留

struShelter

遮挡区域参数,智能交通摄像机不支持,保留

dwShowOsd

预览的图象上是否显示 OSD: 0-不显示, 1-显示(区域大小 704*576)

wOSDTopLeftX

OSD 的 x 坐标

wOSDTopLeftY

OSD 的 y 坐标

byOSDType

OSD 类型(年月日格式):

0-xxxx-xx 年月日

1-XX-XX-XXXX 月日年

2-XXXX 年 XX 月 XX 日

3-XX月XX日XXXX年

4-XX-XX-XXXX 日月年

5-XX 日 XX 月 XXXX 年

byDispWeek

是否显示星期: 0-不显示, 1-显示

byOSDAttrib

OSD 属性 (透明/闪烁):

1一透明,闪烁

2一透明,不闪烁

3一闪烁,不透明

4一不透明,不闪烁

byHourOsdType

小时制: 0表示 24 小时制, 1表示 12 小时制或 am/pm

byFontSize

字体大小: 0- 小, 1- 中, 2- 大, 智能交通摄像机不支持, 保留

byOSDColorType

OSD 颜色模式: 0- 默认 (黑白), 1-自定义(颜色见 struOsdColor)

byAlignment

对齐方式: 0- 自适应, 1- 右对齐

byOSDMilliSecondEnable

视频叠加时间支持毫秒(智能交通摄像机 V4.1 及以后版本支持): 0- 不叠加, 1- 叠加 struOsdColor

OSD 自定义颜色

byRes

保留,置为0

Remarks

设备通道名称、OSD、移动侦测、视频遮挡等图像参数配置能力,对应设备图像参数能力集(VideoPicAbility),相关接口: <u>NET_DVR_GetDeviceAbility</u>,能力集类型: <u>DEVICE_VIDEOPIC_ABILITY</u>。智能交通摄像机,视频叠加是否支持时间毫秒(byOSDMilliSecondEnable)也可以通过能力集

<u>NET_DVR_SNAP_ABILITY</u>中的 bySupport2&0x02 进行判断。

7.95 NET_DVR_PICTURE_NAME:图片命名规则

struct{

BYTE byltemOrder[*PICNAME_MAXITEM*];

BYTE byDelimiter;

}NET_DVR_PICTURE_NAME, *LPNET_DVR_PICTURE_NAME;

Members

byItemOrder |

按数组定义文件命名的规则,每个元素取值见上传的相关元素的定义:

宏定义	宏定义值	含义
PICNAME_ITEM_DEV_NAME	1	设备名
PICNAME_ITEM_DEV_NO	2	设备号
PICNAME_ITEM_DEV_IP	3	设备 IP
PICNAME_ITEM_CHAN_NAME	4	通道名
PICNAME_ITEM_CHAN_NO	5	通道号
PICNAME_ITEM_TIME	6	时间
PICNAME_ITEM_CARDNO	7	卡号
PICNAME_ITEM_PLATE_NO	8	车牌号码
PICNAME_ITEM_PLATE_COLOR	9	车牌颜色
PICNAME_ITEM_CAR_CHAN	10	车道号

PICNAME_ITEM_CAR_SPEED	11	车辆速度
PICNAME_ITEM_CARCHAN	12	监测点
PICNAME_ITEM_SPEED_LIMIT_VALUES	15	限速值
PICNAME_ITEM_ILLEGAL_CODE	16	国标违法代码
PICNAME_ITEM_CROSS_NUMBER	17	路口编号
PICNAME_ITEM_DIRECTION_NUMBER	18	方向编号
PICNAME_ITEM_CAR_COLOR	19	车身颜色
PICNAME_ITEM_PLATE_COORDINATE	20	车牌坐标
PICNAME_ITEM_CAR_TYPE	21	车辆类型
PICNAME_ITEM_VIOLATION_TYPE	22	违规类型
PICNAME_ITEM_CUSTOM	255	自定义

byDelimiter

分隔符,"""-""+""=""",一般为''

7.96 NET_DVR_PIRIS_PARAM:P-Iris 红外光圈大小等级配置

struct{

BYTE byMode;

BYTE byPIrisAperture;

BYTE byRes[6];

}NET_DVR_PIRIS_PARAM, *LPNET_DVR_PIRIS_PARAM;

Members

byMode

P-Iris 模式: 0- 自动, 1- 手动

byPIrisAperture

红外光圈大小等级(等级越高,光圈越大): 1~100,默认:50,手动模式下可修改 byRes

保留,置为0

7.97 NET_DVR_PLATE_INFO:车牌信息

struct{

BYTE byPlateType; **BYTE** byColor; **BYTE** byBright; **BYTE** byLicenseLen; BYTE byEntireBelieve; **BYTE** byRegion; **BYTE** byCountry; **BYTE** byRes[33];

```
struPlateRect;
 NET_VCA_RECT
 char
                      sLicense[MAX_LICENSE_LEN];
 BYTE
                      byBelieve[MAX_LICENSE_LEN];
}NET_DVR_PLATE_INFO, *LPNET_DVR_PLATE_INFO;
Members
byPlateType
      车牌类型,具体定义如下:
      enum _VCA_PLATE_TYPE_{
        VCA_STANDARD92_PLATE = 0,
        VCA_STANDARD02_PLATE,
        VCA_WJPOLICE_PLATE,
        VCA_JINGCHE_PLATE,
        STANDARD92_BACK_PLATE,
        VCA_SHIGUAN_PLATE,
        VCA_NONGYONG_PLATE,
        VCA_MOTO_PLATE
      }VCA_PLATE_TYPE
      VCA_STANDARD92_PLATE
      标准民用车与军车车牌
      VCA_STANDARD02_PLATE
      02 式民用车牌
      VCA_WJPOLICE_PLATE
      武警车车牌
      VCA_JINGCHE_PLATE
      警车车牌
      STANDARD92_BACK_PLATE
      民用车双行尾牌
      VCA_SHIGUAN_PLATE
      使馆车牌
      VCA_NONGYONG_PLATE
      农用车车牌
      VCA MOTO PLATE
      摩托车车牌
byColor
      车牌颜色,具体定义如下:
      enum _VCA_PLATE_COLOR_{
        VCA BLUE PLATE = 0,
        VCA_YELLOW_PLATE,
        VCA_WHITE_PLATE,
        VCA_BLACK_PLATE,
        VCA_GREEN_PLATE,
        VCA_BKAIR_PLATE,
        VCA_OTHER = 0xff
      }VCA_PLATE_COLOR
```

VCA_BLUE_PLATE

蓝色车牌

VCA_YELLOW_PLATE

黄色车牌

VCA_WHITE_PLATE

白色车牌

VCA_BLACK_PLATE

黑色车牌

VCA GREEN PLATE

绿色车牌

VCA_BKAIR_PLATE

民航黑色车牌

VCA_OTHER

其他

byBright

车牌亮度

byLicenseLen

车牌字符个数

byEntireBelieve

整个车牌的置信度,取值范围:0~100

byRegion

区域索引值: 0- 保留, 1- 欧洲(Europe Region), 2- 俄罗斯(Russian Region), 3- 欧洲&俄罗斯(EU&CIS), 0xff- 所有

byCountry

国家索引值,取值定义详见 COUNTRY INDEX,不支持 0xff(全部)

byRes

保留

struPlateRect

车牌位置

sLicense

车牌号码

byBelieve

各个识别字符的置信度,如检测到车牌"浙 A12345",置信度为 20,30,40,50,60,70,则表示"浙"字正确的可能性是 20%, "A"字的正确的可能性是 30%

7.98 NET_DVR_PLATE_RESULT:车牌识别结果

struct{

DWORD dwSize;

BYTE byResultType;
BYTE byChanIndex;
WORD wAlarmRecordID;
DWORD dwRelativeTime;
BYTE byAbsTime[32];

DWORD dwPicLen; **DWORD** dwPicPlateLen; **DWORD** dwVideoLen; BYTE byTrafficLight; **BYTE** byPicNum; **BYTE** byDriveChan; BYTE byVehicleType; **DWORD** dwBinPicLen; **DWORD** dwCarPicLen; **DWORD** dwFarCarPicLen; **BYTE** *pBuffer3; **BYTE** *pBuffer4; **BYTE** *pBuffer5;

BYTE byRelaLaneDirectionType;

BYTE byRes3[7];

NET DVR PLATE INFO struPlateInfo;

NET DVR VEHICLE INFO struVehicleInfo;

BYTE *pBuffer1; BYTE *pBuffer2;

}NET_DVR_PLATE_RESULT, *LPNET_DVR_PLATE_RESULT;

Members

dwSize

结构体大小

byResultType

识别结果类型, 0-通过视频识别, 1-通过图像识别, 2-长录像(支持查询)

byChanIndex

车道号

wAlarmRecordID

报警录像 ID(用于查询录像,仅当 byResultType 为 2 时有效)

dwRelativeTime

相对时间(保留)

byAbsTime

绝对时间,精确到毫秒,yyyymmddhhmmssxxx,例如 20090810235959999

dwPicLen

图片长度(近景图)

dwPicPlateLen

车牌小图片长度(车牌彩图)

dwVideoLen

录像内容长度

byTrafficLight

0-非红绿灯抓拍, 1-绿灯时抓拍; 2-红灯时抓拍

byPicNum

连拍的图片序号

byDriveChan

触发的车道号

byVehicleType

车辆类型: 0- 未知, 1- 客车, 2- 货车, 3- 轿车, 4- 面包车, 5- 小货车

dwBinPicLen

二值图长度(仅 iDS-65xx 支持)

dwCarPicLen

车辆原图长度(仅 iDS-65xx 支持)

dwFarCarPicLen

远景图长度(仅 iDS-65xx 支持)

pBuffer3

车牌二值图(仅 iDS-65xx 支持)

pBuffer4

车辆原图(仅 iDS-65xx 支持)

pBuffer5

远景图(仅 iDS-65xx 支持)

byRelaLaneDirectionType

关联车道方向类型,定义详见 <u>ITC RELA LANE DIRECTION TYPE</u>,与关联车道号对应,确保车道唯一性

byRes3

保留

struPlateInfo

车牌信息参数

struVehicleInfo

车辆信息参数

*pBuffer1

当上传的是图片(近景图)信息时,指针指向图片信息,图片长度为 dwPicLen; 当上传的是录像时,指针指向录像信息,录像长度为 dwVideoLen

*pBuffer2

当上传的是图片(车牌图)信息时,指针指向车牌小图片信息,车牌小图片的长度为 dwPicPlateLen

Remarks

- 智能交通摄像机报警上传的信息是图片或者录像中的一种,可以通过判断图片和录像的长度是否为 0 以确定上传的是图片信息还是录像信息。图片数据为场景图片+车牌小图片。视频长度为 0xffffffff 时,表示视频内容异常,此时只上传报警信息,后面无视频内容,指向视频内容的指针为 NULL。
- iDS-65xx 手动抓拍只支持上传 pBuffer1 和 pBuffer2。
- 当 byResultType 为 2 时,可以用 wAlarmRecordID 作为查找条件,搜索报警录像。

7.99 NET_DVR_PLCCFG:车牌亮度补偿参数

struct{

DWORD dwSize;

BYTE byPlcEnable;

BYTE byPlateExpectedBright;

BYTE byRes1[2];

BYTE byTradeoffFlash;

BYTE byCorrectFactor;

WORD wLoopStatsEn;

WORD wPlcBrightOffSet;

BYTE byRes[18];

}NET_DVR_PLCCFG,*LPNET_DVR_PLCCFG;

Members

dwSize

结构体大小

byPlcEnable

是否启用车牌亮度补偿(默认启用): 0-关闭, 1-启用

byPlateExpectedBright

车牌的预期亮度(默认值50),范围[0,100]

byRes1

保留

byTradeoffFlash

是否考虑闪光灯的影响(默认启用): 0-关闭, 1-启用。(使用闪光灯补光时, 如果考虑减弱闪光灯的亮度增强效应, 则需要设为 1, 否则为 0)

byCorrectFactor

纠正系数 (默认值 50), 范围[0,100]。默认值 50(在 byTradeoffFlash 切换时,恢复默认值)

wLoopStatsEn

触发线圈是否参与车牌亮度统计,按位表示,0-不统计,1-统计

wPlcBrightOffSet

车牌亮度补偿灵敏度(虚拟线圈模式起效),取值范围: 1~100

byRes

保留

7.100 NET DVR POOLPARAM:云存储数据池参数

struct{

DWORD dwPoolID;

BYTE byRes[4];

}NET_DVR_POOLPARAM,*LPNET_DVR_POOLPARAM;

Members

dwPoolID

云存储分配节点号

byRes

保留,置为0

7.101 NET_DVR_POSTEPOLICECFG:卡口电警参数

struct{

DWORD dwSize;

DWORD dwDistance;

DWORD dwLightChan[MAX_SIGNALLIGHT_NUM];

BYTE byCapSpeed;
BYTE bySpeedLimit;
BYTE byTrafficDirection;

BYTE byRes[129];

}NET_DVR_POSTEPOLICECFG,*LPNET_DVR_POSTEPOLICECFG;

Members

dwSize

结构体大小

dwDistance

线圈距离,单位: cm,取值范围: [0,20000]

dwLightChan

信号灯通道号

byCapSpeed

标志限速,单位 km/h,取值范围[0,255]

bySpeedLimit

限速值,单位 km/h,取值范围[0,255]

byTrafficDirection

车流方向,0-由东向西,1-由西向东,2-由南向北,3-由北向南

byRes

保留

7.102 NET DVR PPPCFG V30:PPP 参数结构体

struct{

NET DVR IPADDR struRemotelP;
NET DVR IPADDR struLocalIP;

char sLocalIPMask[16];

BYTE sUsername[NAME_LEN];
BYTE sPassword[PASSWD_LEN];

BYTE byPPPMode;
BYTE byRedial;
BYTE byRedialMode;
BYTE byDataEncrypt;

DWORD dwMTU;

char sTelephoneNumber[PHONENUMBER_LEN];

}NET_DVR_PPPCFG_V30, *LPNET_DVR_PPPCFG_V30;

Members

struRemoteIP

远端 IP 地址

struLocalIP

本地 IP 地址

sLocalIPMask

本地 IP 地址掩码

```
sUsername
```

用户名

sPassword

密码

byPPPMode

PPP 模式: 0一主动, 1一被动

byRedial

是否回拨: 0-否, 1-是

byRedialMode

回拨模式: 0-由拨入者指定, 1-预置回拨号码

byDataEncrypt

数据加密: 0-否, 1-是

dwMTU

MTU

sTelephoneNumber

电话号码

7.103 NET_DVR_PPPOECFG:PPPoE 配置

struct{

DWORD dwPPPOE;

BYTE sPPPoEUser[NAME_LEN];

char sPPPoEPassword[PASSWD_LEN];

NET DVR IPADDR struPPPoEIP;

}NET_DVR_PPPOECFG, *LPNET_DVR_PPPOECFG;

Members

dwPPPOE

是否启用 PPPoE: 0-不启用, 1-启用

sPPPoEUser

PPPoE 用户名

sPPPoEPassword

PPPoE 密码

struPPPoEIP

PPPoE IP 地址

7.104 NET_DVR_PREVIEWINFO:预览参数

struct{

LONG IChannel;

DWORD dwStreamType;
DWORD dwLinkMode;
HWND hPlayWnd;
BOOL bBlocked;

BOOL bPassbackRecord;

BYTE byPreviewMode;

BYTE byStreamID[STREAM_ID_LEN];

BYTE byProtoType;

BYTE byRes[222];

}NET_DVR_PREVIEWINFO, *LPNET_DVR_PREVIEWINFO;

Members

IChannel

通道号,设备模拟通道号从1开始。

dwStreamType

码流类型: 0-主码流, 1-子码流, 2-码流 3, 3-虚拟码流, 以此类推

dwLinkMode

连接方式: 0-TCP 方式, 1-UDP 方式, 2-多播方式, 3-RTP 方式, 4-RTP/RTSP, 5-RSTP/HTTP

hPlayWnd

播放窗口的句柄,为 NULL 表示不解码显示。

bBlocked

0- 非阻塞取流, 1- 阻塞取流。如果阻塞取流, SDK 内部 connect 失败将会有 5s 的超时才能够返回, 不适合于轮询取流操作。

bPassbackRecord

0-不启用录像回传, 1-启用录像回传。ANR 断网补录功能, 客户端和设备之间网络异常恢复之后自动将前端数据同步过来, 需要设备支持。

byPreviewMode

预览模式: 0- 正常预览, 1- 延迟预览

byStreamID

流 ID, 为字母、数字和""的组合, IChannel 为 0xffffffff 时启用此参数

byProtoType

应用层取流协议: 0- 私有协议,1-RTSP协议。主子码流支持的取流协议通过登录返回结构参数 NET_DVR_DEVICEINFO_V30的 byMainProto、bySubProto 值得知。设备同时支持私协议和 RTSP协议时,该参数才有效,默认使用私有协议,可选 RTSP协议。

byRes

保留

Remarks

- 该结构体中可以设置当前预览操作是否阻塞(通过 bBlocked 参数设置)。若设为不阻塞,表示发起与设备的连接就认为连接成功,如果发生码流接收失败、播放失败等情况以预览异常的方式通知上层。在循环播放的时候可以减短停顿的时间,与 NET_DVR_RealPlay 处理一致。若设为阻塞,表示直到播放操作完成才返回成功与否。
- dwStreamType、bPassbackRecord、byPreviewMode、byStreamID 这些参数的取值需要设备支持。
- NET_DVR_RealPlay_V40 支持多播方式预览(dwLinkMode 设为 2),不需要传多播组地址,底层自动从设备获取已配置的多播组地址(NET DVR NETCFG V30->struMulticastlpAddr)并以该多播组地址实现多播。
- Linux 64 位系统不支持软解码功能,因此需要将窗口句柄传 NULL,设置回调函数,只取流不解码显示。

7.105 NET DVR PTZCFG:云台协议

struct{

DWORD dwSize;

NET_DVR_PTZ_PROTOCOL struPtz[PTZ_PROTOCOL_NUM];

DWORD dwPtzNum;
BYTE byRes[8];
}NET_DVR_PTZCFG, *LPNET_DVR_PTZCFG;

Members

dwSize

结构体大小

struPtz

协议信息,最多 200 种

dwPtzNum

有效的 PTZ 协议数目,从 0 开始(即总数为该值加 1)

byRes

保留,置为0

7.106 NET_DVR_PTZ_PROTOCOL:云台协议信息

struct{

DWORD dwType;

BYTE byDescribe[DESC_LEN];

}NET_DVR_PTZ_PROTOCOL, *LPNET_DVR_PTZ_PROTOCOL;

Members

dwType

协议类型值

byDescribe

协议描述符

7.107 NET_DVR_RECORDDAY_V40:全天录像参数

struct{

BYTE byAllDayRecord;

BYTE byRecordType;

char byRes[62];

}NET_DVR_RECORDDAY_V40, *NET_DVR_RECORDDAY_V40;

Members

byAllDayRecord

是否全天录像: 0-否, 1-是

byRecordType

录象类型: 0-定时录像, 1-移动侦测录像, 2-报警录像, 3-移动侦测或报警录像, 4-移动侦测和报警录像, 5-命令触发录像, 6-智能报警录像, 10-PIR 报警, 11-无线报警, 12-呼救报警, 13-全部事件(移动侦测、PIR、无线、呼救等所有报警类型的"或"), 14-智能交通事件, 15-越界侦测, 16-区域入侵侦测, 17-音频异常侦测, 18-场景变更侦测, 19-智能侦测(越界侦测|区域入侵侦测|进入区域侦测|离开区域侦测|人脸侦测), 20-人脸侦测, 22-进入区域侦测, 23-离开区域侦测, 24-徘徊侦测, 25-

人员聚集侦测,26-快速运动侦测,27-停车侦测,28-物品遗留侦测,29-物品拿取侦测,30-火点检测

byRes

保留,置为0

Remarks

配置录像计划时,如果录像类型设置为 13(全部事件)时,按文件类型、时间方式查找时查找到的文件类型标志也为 13:按事件方式查找时,可以得到具体的录像事件类型。

7.108 NET DVR RECORDSCHED V40:时间段录像参数

struct{

NET_DVR_SCHEDTIME struRecordTime;
BYTE byRecordType;
BYTE byRes[31];

}NET_DVR_RECORDSCHED_V40, *LPNET_DVR_RECORDSCHED_V40;

Members

struRecordTime

录像时间段,开始时间-结束时间

byRecordType

录象类型: 0-定时录像, 1-移动侦测录像, 2-报警录像, 3-移动侦测或报警录像, 4-移动侦测和报警录像, 5-命令触发录像, 6-智能报警录像, 10-PIR报警, 11-无线报警, 12-呼救报警, 13-移动侦测、PIR、无线、呼救等所有报警类型的"或", 14-智能交通事件, 15-越界侦测, 16-区域入侵侦测, 17-音频异常侦测, 18-场景变更侦测, 19-智能侦测(越界侦测|区域入侵侦测|进入区域侦测|离开区域侦测|人脸侦测), 20-人脸侦测, 22-进入区域侦测, 23-离开区域侦测, 24-徘徊侦测, 25-人员聚集侦测, 26-快速运动侦测, 27-停车侦测, 28-物品遗留侦测, 29-物品拿取侦测, 30-火点检测

bvRes

保留,置为0

7.109 NET_DVR_RECORD_V40:通道录像参数

struct{

DWORD dwSize; DWORD dwRecord;

<u>NET_DVR_RECORDDAY_V40</u> struRecAllDay[*MAX_DAYS*];

NET DVR RECORDSCHED V40 struRecordSched[MAX DAYS][MAX TIMESEGMENT V30];

DWORD dwRecordTime;
DWORD dwPreRecordTime;
DWORD dwRecorderDuration;
BYTE byRedundancyRec;
BYTE byAudioRec;

BYTE byAudioRec;
BYTE byStreamType;
BYTE byPassbackRecord;
WORD wLockDuration;

BYTE byRecordBackup;

BYTE bySVCLevel;

BYTE byRecordManage;
BYTE byExtraSaveAudio;

BYTE byRes[126];

}NET_DVR_RECORD_V40, *LPNET_DVR_RECORD_V40;

Members

dwSize

结构体大小

dwRecord

是否启用计划录像配置: 0-否, 1-是

struRecAllDay

全天录像布防参数

struRecordSched

时间段录像布防参数

dwRecordTime

录象延时时间,0-5 秒, 1-10 秒, 2-30 秒, 3-1 分钟, 4-2 分钟, 5-5 分钟, 6-10 分钟

dwPreRecordTime

预录时间: 0-不预录, 1-5 秒, 2-10 秒, 3-15 秒, 4-20 秒, 5-25 秒, 6-30 秒, 7-0xffffffff(尽可能预录) *dwRecorderDuration*

录像保存的最长时间,单位:天。超过这个时间,该录像文件将被强制删除;若设置为0天则不强制删除,除非文件被循环覆盖。获取参数时若为0xfffffff,表示设备不支持设置该字段。

byRedundancyRec

是否冗余录像(重要数据双备份): 0-不录像, 1-录像

byAudioRec

录像时复合流编码时是否记录音频数据: 0-不记录, 1-记录

byStreamType

码流类型: 0- 主码流, 1- 子码流, 2- 主码流&子码流, 3- 第三码流

byPassbackRecord

0- 不回传录像, 1- 回传录像

wLockDuration

录像锁定时长,单位:小时,0表示不锁定,0xffff表示永久锁定。录像段的时长大于锁定的持续时长的录像,将不会锁定

byRecordBackup

0- 录像不存档, 1- 录像存档, 目前定时录像不存档

bySVCLevel

SVC 抽帧类型: 0- 不抽, 1- 抽二分之一, 2- 抽四分之三

byRecordManage

录像调度: 0- 启用, 1- 不启用。启用时进行定时录像;不启用时不进行定时录像,但是录像计划仍在使用,比如移动侦测、回传都还在按这条录像计划进行

byExtraSaveAudio

是否单独存储音频录像: 0- 不存储, 1- 存储

byRes

保留,置为0

7.110 NET_DVR_RELAY_PARAM:继电器关联配置

struct{

BYTE byExternalDevInfo;

BYTE byRes[3];

}NET DVR RELAY PARAM,*LPNET DVR RELAY PARAM;

Members

byRes

byExternalDevInfo

外接设备信息: 0- 不接入设备, 1- 开道闸, 2- 关道闸, 3- 停道闸, 4- 报警信号, 5- 常亮灯

保留,置为0

7.111 NET_DVR_ROI_DETECT_CFG:ROI 检测区域配置

struct{

DWORD dwSize;

DWORD dwStreamType;
BYTE byRoiDetectType;

BYTE byRes[3];

NET DVR ROI DETECT UNION uRoiDetectInfo; byRes1[36];

NET_DVR_ROI_DETECT_CFG,*LPNET_DVR_ROI_DETECT_CFG;

Members

dwSize

结构体大小

dwStreamType

码流类型: 0-主码流, 1-子码流, 2-事件类型, 3-码流 3,

byRoiDetectType

区域检测类型具体定义如下:

enum _DETECT_ROI_TYPE_{

 $DETECT_FIX_ROI = 0,$

DETECT_TRACK_ROI = 1

}DETECT_ROI_TYPE

DETECT_FIX_ROI

检测 ROI 固定区域

DETECT_TRACK_ROI

检测 ROI 动态跟踪区域

byRes

保留

uRoiDetectInfo

ROI 检测区域

byRes1

保留

Remarks

- ROI: Region Of Interest,感兴趣区域编码。用户可以通过启用 ROI 功能设置视频画面中最关心、最感兴趣的区域,摄像机在进行视频编码时会提高相应区域的视频图像质量。
- dwStreamType (码流类型) 用于选择设置 ROI 的"主码流"、"子码流"、"第三码流"或者更多码流,分别对不同码流设置不同的感兴趣区域,不同码流相互独立。
- "固定区域"和"动态跟踪区域"为 ROI 的两种不同工作模式,用户可根据需要设置固定的提升区域或允许 摄像机动态提升侦测到人脸经过区域的画质。

7.112 NET_DVR_ROI_DETECT_COND:ROI 检测区域信息

struct{

DWORD dwSize;
DWORD dwRoilD;

NET_DVR_MULTI_STREAM_COMPRESSIONCFG_COND struMultiStreamCfg;
BYTE byRoiDetectType;
byRoiDetectTrackType;

BYTE byRes[30];

}NET_DVR_ROI_DETECT_COND,*LPNET_DVR_ROI_DETECT_COND;

Members

dwSize

结构体大小

dwRoiID

区域检测 ID 号

struMultiStreamCfg

多码流配置

byRoiDetectType

区域检测类型具体定义如下:

enum _DETECT_ROI_TYPE_{
 DETECT_FIX_ROI = 0,
 DETECT_TRACK_ROI = 1
}DETECT_ROI_TYPE

DETECT FIX ROI

检测 ROI 固定区域

DETECT_TRACK_ROI

检测 ROI 动态跟踪区域

byRoiDetectTrackType

固定区域时,该字段无效;动态跟踪区域时,跟踪类型: 1- 人脸侦测(IPC), 2- 移动物体跟踪 byRes

保留

7.113 NET_DVR_ROI_DETECT_NUM:ROI 检测区域编号数目信息

struct{

DWORD dwSize;

DWORD dwGroup;

DWORD dwStreamType;

DWORD dwRoiFixNum;

DWORD dwRoiFixID[MAX_ROIDETECT_NUM];

BYTE szFixRoiName[MAX_ROIDETECT_NUM][NAME_LEN];

DWORD dwRoiTrackNum;

DWORD dwRoiTrackID[MAX_ROIDETECT_NUM];

BYTE byRes[320];

}NET_DVR_ROI_DETECT_NUM,*LPNET_DVR_ROI_DETECT_NUM;

Members

dwSize

结构体大小

dwGroup

组号

dwStreamType

码流类型: 0-主码流, 1-子码流, 2-事件类型, 3-码流 3,

dwRoiFixNum

固定区域总数,确定后续再次获取的组号

dwRoiFixID

ROI 固定区域 ID, IPC 现在支持 4 个, 球机现在支持 24 个(根据能力集可以扩展支持数量)

szFixRoiName

ROI 固定区域名称

dwRoiTrackNum

ROI动态跟踪区域总数,确定后续再次获取的组号

dwRoiTrackID

ROI 动态跟踪区域 ID, IPC 现在支持 4 个, 球机现在支持 24 个(根据能力集可以扩展支持数量)

byRes

保留

Remarks

- ROI: Region Of Interest,感兴趣区域编码。用户可以通过启用 ROI 功能设置视频画面中最关心、最感兴趣的区域,摄像机在进行视频编码时会提高相应区域的视频图像质量。
- dwGroup 是组号的概念,如果后续扩展超出每组 MAX_ROIDETECT_NUM 个区域的时候,需要分组去获取。 第一次获取的时候,组号为 1 或 0;当 dwRoiFixNum 或者 dwRoiTrackNum 数目超过 MAX_ROIDETECT_NUM 的时候,进行分组获取,组号依次递增。

7.114 NET_DVR_ROI_DETECT_UNION:ROI 检测区域配置联合体

struct{

DWORD uLen[128];

NET DVR ROI FIX RECT CFG strRoiFixRectCfg;

NET DVR ROI TRACK RECT CFG strRoiTrackRectCfg;

}NET_DVR_ROI_DETECT_UNION,*LPNET_DVR_ROI_DETECT_UNION;

Members

uLen

联合体大小,512字节

strRoiFixRectCfg

固定区域模式

strRoiTrackRectCfg

保留

自动跟踪模式

Remarks

- ROI: Region Of Interest,感兴趣区域编码。
- 当前设备在单场景下支持 4 个绘画区域(区域检测号);球机多场景下一共支持 24 个绘画区域(区域检测号)。

7.115 NET_DVR_ROI_FIX_RECT_CFG:ROI 固定区域模式配置

```
struct{
 BYTE
                 byEnableFixRoi;
 BYTE
                 byImageQualityLevel;
 BYTE
                 byRes[2];
 BYTE
                 byFixRoiName[NAME_LEN];
                 struRoiRect;
 NET VCA RECT
 BYTE
                 byRes1[468];
}NET_DVR_ROI_FIX_RECT_CFG,*LPNET_DVR_ROI_FIX_RECT_CFG;
Members
byEnableFixRoi
      ROI 固定区域模式是否启用: 0- 不启用, 1- 启用
byImageQualityLevel
      图像质量提升等级,取值范围:1~6
byRes
      保留
byFixRoiName
      ROI 固定区域名称
struRoiRect
      ROI 区域
byRes1
```

7.116 NET_DVR_ROI_TRACK_RECT_CFG:ROI 动态跟踪模式配置

```
struct{

BYTE byEnableTrackRoi;

BYTE byImageQualityLevel;

BYTE byModeType;

BYTE byRes1[509];

}NET_DVR_ROI_TRACK_RECT_CFG,*LPNET_DVR_ROI_TRACK_RECT_CFG;
```

Members

byEnableTrackRoi

ROI 动态跟踪模式是否启用: 0- 不启用, 1- 启用

byImageQualityLevel

图像质量提升等级,取值范围: 1~6

byModeType

动态跟踪模式: 0- 保留, 1- 人脸模式, 2- 移动物体跟踪

byRes1

保留

7.117 NET_DVR_RS232CFG_V30:RS232 串口参数结构体

struct{

DWORD dwSize;

<u>NET_DVR_SINGLE_RS232</u> struRs232[MAX_SERIAL_PORT];

NET DVR PPPCFG V30 struPPPConfig;

}NET_DVR_RS232CFG_V30, *LPNET_DVR_RS232CFG_V30;

Members

dwSize

结构体大小

struRs232

RS232 串口参数,设备只有一个232 串口,采用第一个取 struRs232[0]即可

struPPPConfig

PPP 参数

7.118 NET DVR SCHEDTIME:起止时间段参数

struct{

BYTE byStartHour;

BYTE byStartMin;

BYTE byStopHour;

BYTE byStopMin;

}NET_DVR_SCHEDTIME, *LPNET_DVR_SCHEDTIME;

Members

byStartHour

开始时间:时

byStartMin

开始时间:分

byStopHour

结束时间: 时

byStopMin

结束时间:分

7.119 NET_DVR_SDKABL:SDK 功能信息

struct{

DWORD dwMaxLoginNum; **DWORD** dwMaxRealPlayNum; **DWORD** dwMaxPlayBackNum; **DWORD** dwMaxAlarmChanNum; **DWORD** dwMaxFormatNum; **DWORD** dwMaxFileSearchNum; **DWORD** dwMaxLogSearchNum; **DWORD** dwMaxSerialNum; **DWORD** dwMaxUpgradeNum; **DWORD** dwMaxVoiceComNum; **DWORD** dwMaxBroadCastNum; **DWORD** dwRes[10];

}NET_DVR_SDKABL,*LPNET_DVR_SDKABL;

Members

dwMaxLoginNum

最大注册用户数

dwMaxRealPlayNum

最大实时预览的路数

dwMaxPlayBackNum

最大回放或下载的路数

dwMaxAlarmChanNum

最大建立报警通道的路数

dwMaxFormatNum

最大硬盘格式化的路数

dwMaxFileSearchNum

最大文件搜索的路数

dwMaxLogSearchNum

最大日志搜索的路数

dwMaxSerialNum

最大建立透明通道的路数

dwMaxUpgradeNum

最大升级的路数

dwMaxVoiceComNum

最大语音转发的路数

dwMaxBroadCastNum

最大语音广播的路数

dwRes

保留,置为0

7.120 NET_DVR_SDKLOCAL_CFG:模拟能力集参数

struct{

BYTE byEnableAbilityParse;

BYTE byVoiceComMode;

BYTE byRes[510];

}NET_DVR_SDKLOCAL_CFG,*LPNET_DVR_SDKLOCAL_CFG;

Members

byEnableAbilityParse

使用能力集解析库: 0- 不使用, 1- 使用, 默认不使用

byVoiceComMode

对讲模式: 0- 使用对讲库 (默认), 1- 使用 windows api 模式

byRes

保留

7.121 NET_DVR_SDKSTATE:SDK 状态信息

struct{

DWORD dwTotalLoginNum;

DWORD dwTotalRealPlayNum;

DWORD dwTotalPlayBackNum;

DWORD dwTotalAlarmChanNum;

DWORD dwTotalFormatNum;

DWORD dwTotalFileSearchNum;

DWORD dwTotalLogSearchNum;

DWORD dwTotalSerialNum;

DWORD dwTotalUpgradeNum;

DWORD dwTotalVoiceComNum;

DWORD dwTotalBroadCastNum;

DWORD dwRes[10];

}NET_DVR_SDKSTATE,*LPNET_DVR_SDKSTATE;

Members

dwTotalLoginNum

当前注册的用户数

dwTotalRealPlayNum

当前实时预览的路数

dwTotalPlayBackNum

当前回放或下载的路数

dwTotalAlarmChanNum

当前建立报警通道的路数

dwTotalFormatNum

当前硬盘格式化的路数

dwTotalFileSearchNum

当前文件搜索的路数

dwTotalLogSearchNum

当前日志搜索的路数

dwTotalSerialNum

当前建立透明通道的路数

dwTotalUpgradeNum

当前升级的路数

dwTotalVoiceComNum

当前语音转发的路数

dwTotalBroadCastNum

当前语音广播的路数

dwRes

保留,置为0

7.122 NET_DVR_SECURITY_CFG:安全认证配置

```
struct{
```

DWORD dwSize;

BYTE byRes1[3];

BYTE byWebAuthentication;

BYTE byRtspAuthentication;

BYTE byTeInetServer;

BYTE bySSHServer;

BYTE bylllegalLoginLock;

BYTE byRes[28];

}NET_DVR_SECURITY_CFG,*LPNET_DVR_SECURITY_CFG;

Members

dwSize

结构体大小

byRes1

保留,置为0

byWebAuthentication

web 认证配置: 0- Digest, 1- basic(默认)

byRtspAuthentication

rtsp 认证配置: 0- 禁用, 1-basic(默认)

byTeInetServer

telnet 设置: 0- 禁用, 1- 启用

bySSHServer

SSH 设置: 0- 禁用 (默认), 1- 启用

byIllegalLoginLock

开启登录锁定: 0- 启用 (默认), 1- 禁用

byRes

保留,置为0

Remarks

struct{

- 安全认证配置,只有管理员用户(admin)才有权限。
- 安全认证参数配置能力,对应安全认证配置能力集(SecurityAbility),相关接口: NET_DVR_GetDeviceAbility(能力集类型: DEVICE_ABILITY_INFO)。

7.123 NET_DVR_SERIAL_CATCHPIC_PARA: 串口抓图参数

```
struct{
 BYTE
           byStrFlag;
 BYTE
           byEndFlag;
            wCardIdx;
 WORD
 DWORD
            dwCardLen;
 DWORD
            dwTriggerPicChans;
}NET_DVR_SERIAL_CATCHPIC_PARA, *LPNET_DVR_SERIAL_CATCHPIC_PARA;
Members
byStrFlag
      串口数据开始符
byEndFlag
      串口数据结束符
wCardIdx
      卡号相对起始位置
dwCardLen
      卡号长度
dwTriggerPicChans
      所触发的通道号, 按位, 从第 1 位开始计, 即 0x2 表示第一通道
```

7.124 NET DVR SETUPALARM PARAM:报警布防参数

```
DWORD
           dwSize;
 BYTE
           byLevel;
 BYTE
           byAlarmInfoType;
 BYTE
           byRetAlarmTypeV40;
 BYTE
           byRetDevInfoVersion;
 BYTE
           byRetVQDAlarmType;
 BYTE
           byFaceAlarmDetection;
 BYTE
           bySupport;
 BYTE
           byRes[9];
}NET_DVR_SETUPALARM_PARAM, *LPNET_DVR_SETUPALARM_PARAM;
Members
dwSize
      结构体大小
byLevel
      布防优先级: 0- 一等级(高), 1- 二等级(中), 2- 三等级(低)
```

byAlarmInfoType

智能交通报警信息上传类型: 0- 老报警信息(<u>NET DVR PLATE RESULT</u>),1- 新报警信息 (<u>NET ITS PLATE RESULT</u>)

byRetAlarmTypeV40

保留,置为0

byRetDevInfoVersion

保留,置为0

byRetVQDAlarmType

保留,置为0

byFaceAlarmDetection

保留,置为0

bySupport

按位表示,值: 0-上传,1-不上传 bit0-表示二级布防是否上传图片

byRes

保留,置为0

Remarks

- 一级布防最大连接数为1个,二级最大连接数为3个,三级最大连接数为5个,设备支持一级、二级和三级布防同时进行,一级布防优先上传信息。
- byAlarmInfoType 是否支持新报警信息可从注册返回的能力获知,详见 NET_DVR_DEVICEINFO_V30_结构中bySupport1(表示是否支持车牌新报警信息),如果注册返回能力不支持,设备仅支持老报警信息上传。布防时设置 byAlarmInfoType 值为 0 或者 1,则 NET_DVR_SetDVRMessageCallBack_V31_设置的回调或者函数中上传的报警信息类型(ICommand)对应 COMM_UPLOAD_PLATE_RESULT 或者 COMM_ITS_PLATE_RESULT。

7.125 NET DVR SHOWSTRINGINFO:字符叠加参数子结构

struct{

WORD wShowString; WORD wStringSize;

WORD wShowStringTopLeftX; WORD wShowStringTopLeftY;

char sString[44];

}NET_DVR_SHOWSTRINGINFO,*LPNET_DVR_SHOWSTRINGINFO;

Members

wShowString

预览的图象上是否显示字符: 0一不显示, 1一显示(显示区域范围为 704*576, 单个字符的大小为 32*32)

wStringSize

该行字符的长度,不能大于44个字符

wShowStringTopLeftX

字符显示位置的 x 坐标

wShowStringTopLeftY

字符显示位置的y坐标

sString

要显示的字符内容

7.126 NET_DVR_SHOWSTRING_V30:字符叠加参数结构体

struct{

DWORD dwSize;

<u>NET_DVR_SHOWSTRINGINFO</u> struStringInfo[MAX_STRINGNUM_V30];

}NET_DVR_SHOWSTRING_V30,*LPNET_DVR_SHOWSTRING_V30;

Members

dwSize

结构体大小

struStringInfo

要显示的字符内容,支持 4 行,取数组 struStringInfo [0]~ struStringInfo [3]

7.127 NET DVR SINGLE HD:设备硬盘信息配置结构体

```
struct{
```

DWORD dwHDNo;

DWORD dwCapacity;

DWORD dwFreeSpace;

DWORD dwHdStatus;

BYTE byHDAttr;

BYTE byHDType;

BYTE byDiskDriver;

BYTE byRes1[1];

DWORD dwHdGroup;

BYTE byRecycling;

BYTE byRes2[3];

DWORD dwStorageType;

DWORD dwPictureCapacity;

DWORD dwFreePictureSpace;

BYTE byRes3[104];

}NET_DVR_SINGLE_HD, *LPNET_DVR_SINGLE_HD;

Members

dwHDNo

硬盘号,取值范围[0,MAX DISKNUM V30-1], 其中#define MAX DISKNUM V30 33

dwCapacity

硬盘容量, 该参数只能获取, 不支持设置

dwFreeSpace

硬盘剩余空间, 该参数只能获取, 不支持设置

dwHdStatus

硬盘状态, 该参数只能获取, 不支持设置: 0一正常, 1一未格式化, 2一错误, 3一S.M.A.R.T 状态,

4一不匹配,5一休眠,6-未连接状态(网络硬盘),7-虚拟磁盘正常且支持扩容,8-虚拟磁盘次正常(未使用),9-虚拟磁盘降级(未使用),10-硬盘正在修复(9000v2.0),11-硬盘正在格式化(9000v2.0)

硬盘属性: 0一默认, 1一冗余(备份重要数据), 2一只读

byHDType

硬盘类型: 0-本地硬盘, 1-ESATA 硬盘, 2-NFS 硬盘, 3-iSCSI 硬盘, 4-RAID 虚拟磁盘

byDiskDriver

硬盘盘值,代表其 ASCII 字符

bvRes1

保留,置为0

dwHdGroup

该硬盘属于哪个盘组,取值范围[1,MAX_HD_GROUP],其中#define MAX_HD_GROUP 16

byRecycling

是否循环利用: 0- 不循环利用, 1- 循环利用

byRes2

保留,置为0

dwStorageType

按位表示: 0-不支持, 非 0-支持,

dwStorageType & 0x1 表示是否是普通录像专用存储盘

dwStorageType & 0x2 表示是否是抽帧录像专用存储盘

dwStorageType & 0x4 表示是否是图片录像专用存储盘

dwPictureCapacity

硬盘图片容量(不可设置),单位: MB

dwFreePictureSpace

剩余图片空间(不可设置),单位: MB

byRes3

保留,置为0

Remarks

- 本结构体中的 dwCapacity、dwFreeSpace 和 dwHdStatus 参数是关于设备本地硬盘的属性,因此只能获取该信息,不能设置。
- dwCapacity 和 dwFreeSpace 表示录像和图片的总容量; dwPictureCapacity 是指预留给图片的总容量,其值非 0 有效,为 0 表示无效。IPC 等设备该值有效,DVR、NVR 等设备不区分录像和图片容量,统一分配。

7.128 NET DVR SINGLE NFS:NFS 配置子结构

struct{

char sNfsHostIPAddr[16];

BYTE sNfsDirectory[PATHNAME_LEN];

}NET_DVR_SINGLE_NFS, *LPNET_DVR_SINGLE_NFS;

Members

sNfsHostIPAddr

网络文件系统主机 IP 地址

sNfsDirectory

NFS 路径

7.129 NET_DVR_SINGLE_RS232:RS232 串口参数子结构

```
struct{
```

DWORD dwBaudRate;
BYTE byDataBit;
BYTE byStopBit;
BYTE byParity;
BYTE byFlowcontro

BYTE byFlowcontrol; DWORD dwWorkMode;

}NET_DVR_SINGLE_RS232, *LPNET_DVR_SINGLE_RS232;

Members

dwBaudRate

波特率(bps): 0-50,1-75,2-110,3-150,4-300,5-600,6-1200,7-2400,8-4800,9-9600,10-19200,11-38400,12-57600,13-76800,14-115.2k

byDataBit

数据有几位: 0-5 位, 1-6 位, 2-7 位, 3-8 位

byStopBit

停止位: 0-1 位, 1-2 位

byParity

是否校验: 0-无校验, 1-奇校验, 2-偶校验

byFlowcontrol

是否流控: 0-无, 1-软流控,2-硬流控

dwWorkMode

工作模式,0一窄带传输(232 串口用于 PPP 拨号),1一控制台(232 串口用于参数控制),2一透明通道,3-ptz 模式(审讯温湿度传感器),4-报警盒模式

7.130 NET_DVR_SIGNALLAMP_DETCFG:信号灯异常检测信息

struct{

DWORD dwSize;

BYTE byAbsTime[32];

NET DVR IPADDR struAlarmCamIP;

DWORD dwPic1Len;

Char *pPic1Buffer;

Char *pPic2Buffer;

BYTE byRes[128];

}NET_DVR_SIGNALLAMP_DETCFG, *LPNET_DVR_SIGNALLAMP_DETCFG;

Members

dwSize

结构体大小

byAbsTime

绝对时间点,yyyymmddhhmmssxxx,e.g.20090810235959999,最后三位为毫秒数

```
struAlarmCamIP
```

报警摄像机 IP 地址

dwPic1Len

异常图片 1 数据长度

dwPic2Len

异常图片 2 数据长度

pPic1Buffer

数据缓冲区指针 1, 为叠加车道线的图片

pPic2Buffer

数据缓冲区指针 2, 为叠加信号灯状态的图片

byRes

保留

7.131 NET_DVR_SMARTIR_PARAM:SMART IR(防过曝)配置参数

struct{

BYTE byMode;

BYTE byIRDistance;

BYTE byShortIRDistance;

BYTE byLongIRDistance;

}NET_DVR_SMARTIR_PARAM, *LPNET_DVR_SMARTIR_PARAM;

Members

byMode

SMART IR 模式: 0- 自动, 1- 手动

byIRDistance

红外距离等级(等级越高,红外距离越远): 1~100,默认:50,手动模式下可修改

byShortIRDistance

近光灯距离等级,取值范围: 1~100

byLongIRDistance

远光灯距离等级,取值范围: 1~100

7.132 NET_DVR_SNAPCFG:触发参数

struct{

DWORD dwSize;

BYTE byRelatedDriveWay;

BYTE bySnapTimes; WORD wSnapWaitTime;

WORD wIntervalTime[MAX_INTERVAL_NUM];

DWORD dwSnapVehicleNum;

BYTE byRes2[20];

}NET_DVR_SNAPCFG, *LPNET_DVR_SNAPCFG;

Members

dwSize

结构体大小

byRelatedDriveWay

触发 IO 关联的车道号,取值范围[0,9]

bySnapTimes

线圈抓拍次数,0-不抓拍,非0-连拍次数,目前最大5次

wSnapWaitTime

抓拍等待时间,单位 ms,取值范围[0,60000]

wIntervalTime

连拍间隔时间,单位 ms,取值范围[67,60000]

dwSnapVehicleNum

抓拍匹配序号,与车牌报警上传 <u>NET ITS PLATE RESULT</u>中 dwMatchNo 字段对应,网络触发连拍时有效

byRes2

保留,置为0

7.133 NET_DVR_SNAP_CAMERAPARAMCFG:智能交通摄像机 CCD 参数

struct{

BYTE byWDRMode;
BYTE byWDRType;
BYTE byWDRLevel;
BYTE byRes1;

NET_DVR_TIME_EX struStartTime;
NET_DVR_TIME_EX struEndTime;

BYTE byDayNightBrightness;

BYTE byMCEEnabled;
BYTE byMCELevel;

BYTE byAutoContrastEnabled;
BYTE byAutoContrastLevel;
BYTE byLSEDetailEnabled;
BYTE byLSEDetailLevel;
BYTE byLPDEEnabled;
BYTE byLPDELevel;
BYTE byRes[35];

}NET_DVR_SNAP_CAMERAPARAMCFG, *LPNET_DVR_SNAP_CAMERAPARAMCFG;

Members

byWDRMode

宽动态模式: 0- 关闭, 1- 数字宽动态, 2- 宽动态态

byWDRType

宽动态切换模式: 0- 强制启用, 1- 按时间启用, 2- 按亮度启用

byWDRLevel

宽动态等级,索引0~6分别对应等级1~7,默认索引2(即3级)

byRes1

保留

struStartTime

开始宽动态时间

struEndTime

结束宽动态时间

byDayNightBrightness

日夜转换亮度阈值,取值范围: 0~100,默认: 50

byMCEEnabled

记忆色增强使能: 0- 关闭, 1- 开启

byMCELevel

记忆色增强强度,取值范围:0~100,默认值:50

byAutoContrastEnabled

自动对比度使能: 0- 关闭, 1- 开启

byAutoContrastLevel

自动对比等级,取值范围: 0~100,默认值: 50

byLSEDetailEnabled

细节增强使能: 0- 关闭, 1- 开启

byLSEDetailLevel

细节增强等级,取值范围:0~100,默认值:50

byLPDEEnabled

车牌增强使能: 0- 关闭, 1- 开启

byLPDELevel

车牌增强等级,取值范围:0~100,默认值:50

byRes

保留

7.134 NET_DVR_SNAP_ABILITY:智能交通 IPC 能力集参数

struct{

DWORD dwSize; **BYTE** byloInNum; **BYTE** byloOutNum; **BYTE** bySingleSnapNum; **BYTE** byLightModeArrayNum; **BYTE** byMeasureModeArrayNum; **BYTE** byPlateEnable; **BYTE** byLensMode; **BYTE** byPreTriggerSupport;

DWORD dwAbilityType;
BYTE byloSpeedGroup;
BYTE byloLightGroup;
BYTE byRecogRegionType;

BYTE bySupport;

WORD wSupportMultiRadar;

```
BYTE
             byICRPresetNum;
 BYTE
             byICRTimeSlot;
 BYTE
             bySupportRS485Num;
 BYTE
             byExpandRs485SupportSensor;
 BYTE
             byExpandRs485SupportSignalLampDet;
 BYTE
             byRelayNum;
 BYTE
             bySupport1;
 BYTE
             bySupport2;
 BYTE
             bySupportWhiteBalance;
 BYTE
             byRes[10];
}NET_DVR_SNAP_ABILITY, *LPNET_DVR_SNAP_ABILITY;
Members
dwSize
      结构体大小
byloInNum
      IO 输入口数
byloOutNum
      IO 输出口数
bySingleSnapNum
      单 IO 触发组数
byLightModeArrayNum
      红绿灯模式组数
byMeasureModeArrayNum
      测速模式组数
byPlateEnable
      车牌识别能力,0-没有,1-有
byLensMode
      前端镜头模式: 0-CCD, 1-CMOS
by \textit{PreTriggerSupport}
      是否支持原触发模式: 0- 支持, 1- 不支持
dwAbilityType
      支持的触发模式能力,按位表示,定义如下所示:
      enum _ITC_MAINMODE_ABILITY_{
        ITC_MODE_UNKNOW
        ITC_POST_MODE
                             = 0x1,
        ITC_EPOLICE_MODE
                            = 0x2,
        ITC POSTEPOLICE MODE = 0x4
      }ITC_MAINMODE_ABILITY
      ITC_MODE_UNKNOW
      无
      ITC_POST_MODE
      卡口模式
      ITC_EPOLICE_MODE
      电警模式
```

ITC_POSTEPOLICE_MODE

自卡式电警模式动

byloSpeedGroup

支持的 IO 测速组数

byloLightGroup

支持的 IO 红绿灯组数

byRecogRegionType

牌识区域支持的类型, 定义如下所示:

enum ITC RECOG REGION TYPE {

ITC_REGION_RECT = 0x0,

ITC_REGION_POLYGON = 0x1

}ITC_RECOG_REGION_TYPE

ITC_REGION_RECT

矩形

ITC_REGION_POLYGON

多边形

bySupport

设备能力, 按位表示, 值: 0-不支持, 1-支持

bySupport&0x1,表示是否支持扩展的字符叠加配置(NET_ITS_OVERLAP_CFG)

bySupport&0x2,表示是否支持扩展的校时配置结构(NET DVR CALIBRATE TIME)

bySupport&0x4, 表示是否支持多网卡(多网隔离)(NET DVR NETCFG MULTI)

bySupport&0x8, 表示是否支持网卡的 bonding 功能(网络容错)(NET_DVR_NETWORK_BONDING)

bySupport&0x10, 表示是否支持语音对讲

bySupport&0x20, 表示是否支持单 IO 触发界面 IO 使能配置(<u>NET_ITC_SINGLEIO_PARAM_</u>中参数 byRelatedIOOutEx)

bySupport&0x40, 表示是否支持扩展的 FTP 接口(NET ITC FTP CFG)

bySupport&0x80,表示是否支持云存储接口(NET_DVR_CLOUDSTORAGE_CFG)

w Support MultiRadar

设备能力(RS485口关联雷达能力),按位表示,值: 0-不支持,1-支持

wSupportMultiRadar&0x1,表示卡口 RS485 雷达是否支持车道关联雷达处理

wSupportMultiRadar&0x2,表示卡口虚拟线圈是否支持车道关联雷达处理

wSupportMultiRadar&0x8, 表示视频检测是否支持车道关联雷达处理

byICRPresetNum

表示支持的 ICR 预置点(滤光片偏移点)数

byICRTimeSlot

表示支持的 ICR 的时间段数 (1~8)

bySupportRS485Num

表示支持的 RS485 口的数量

byExpandRs485SupportSensor

设备能力(RS485口关联车检器能力),按位表示,值: 0-不支持,1-支持

byExpandRs485SupportSensor&0x1,表示电警车检器是否支持车检器

byExpandRs485SupportSensor&0x2,表示卡式电警车检器是否支持车检器

byExpandRs485SupportSignalLampDet

设备能力(RS485口关联信号灯检测器能力),按位表示,值: 0-不支持,1-支持

byExpandRs485SupportSignalLampDet&0x1,表示电警车检器是否支持外接信号灯检测器byExpandRs485SupportSignalLampDet&0x2,表示卡式电警车检器是否支持外接信号灯检测器byExpandRs485SupportSignalLampDet&0x4,表示视频电警是否支持外接信号灯检测器

bySupport1

设备能力(扩展),按位表示,值:0-不支持,1-支持

bySupport1&0x1, 表示是否支持自定义校时信息配置(NET DVR CALIBRATE TIME)

bySupport1&0x2, 表示是否支持视频触发优化方案(NET ITC POST VTCOIL PARAM)

bySupport1&0x4, 表示是否支持 DDNS 配置(NET_DVR_DDNSPARA_V30)

bySupport1&0x8, 表示是否支持获取设备当前触发模式接口命令(NET DVR CURTRIGGERMODE)

bySupport1&0x10, 表示是否支持出入口配置(NET DVR ENTRANCE CFG)

bySupport1&0x20, 表示是否支持 GPS 模块参数配置(NET_DVR_GPS_DATACFG)

bySupport1&0x40,表示是否支持 NTP 校时间隔支持分钟设置(NET DVR NTPPARA)

bySupport1&0x80, 表示是否支持 TPS 报警数据上传(COMM_ALARM_TPS_REAL_TIME 和 COMM ALARM TPS STATISTICS)

bySupport2

设备能力(扩展), 按位表示, 值: 0-不支持, 1-支持

bySupport2&0x01, 表示是否支持码流附加信息配置(NET DVR STREAM ATTACHINFO CFG)

bySupport2&0x02, 表示是否支持通道图像参数 (<u>NET_DVR_PICCFG_V30</u>) 中视频叠加时间毫秒使能参数(byOSDMilliSecondEnable)

bySupportWhiteBalance

白平衡能力(默认都是支持手动白平衡、自动白平衡、自动白平衡 2 这 3 种模式),按位表示,值: 0-不支持,1-支持

bySupportWhiteBalance &0x01,表示是否支持日光灯模式bySupportWhiteBalance &0x02,表示是否支持自然光模式bySupportWhiteBalance &0x04,表示是否支持暖光灯模式bySupportWhiteBalance &0x08,表示是否支持白炽灯模式

byRes

保留,置为0

Remarks

V3.0(含)之前版本仅支持老的触发模式(byPreTriggerSupport=0),不支持新的触发模式(dwAbilityType = 0)。

7.135 NET_DVR_SNAPENABLECFG:使能参数

struct{

BYTE

DWORD dwSize;

BYTE byPlateEnable;
BYTE byRes1[2];
BYTE byFrameFlip;
WORD wFlipAngle;
WORD wLightPhase;
BYTE byLightSyncPower;

BYTE byUploadSDEnable;

byFrequency;

BYTE byPlateMode;
BYTE byUploadInfoFTP;

BYTE byAutoFormatSD;

WORD wJpegPicSize;

BYTE bySnapPicResolution;

BYTE byRes[55];

}NET DVR SNAPENABLECFG, *LPNET DVR SNAPENABLECFG;

Members

dwSize

结构体大小

byPlateEnable

是否支持车牌识别: 0- 不支持, 1- 支持

byRes1

保留,置为0

byFrameFlip

图像是否翻转: 0- 不翻转, 1- 翻转

wFlipAngle

图像翻转角度: 0,90,180,270

wLightPhase

相位,取值范围[0,360]

byLightSyncPower

是否信号灯电源同步: 0- 不同步, 1- 同步

byFrequency

信号频率

byUploadSDEnable

是否自动上传 SD 图片: 0- 否, 1- 是

byPlateMode

识别模式参数(仅iDS-65xx 支持): 0-视频触发, 1-外部触发。

byUploadInfoFTP

是否上传抓拍附加信息到 FTP: 0- 否, 1- 是

byAutoFormatSD

是否自动格式化 SD 卡: 0- 否, 1- 是

wJpeqPicSize

Jpeg 图片大小,取值范围: 64~8196,单位: KB,用于 V3.5 或以上版本的智能交通摄像机的图像质量配置

bySnapPicResolution

抓拍图片分辨率(与 NET DVR COMPRESSION INFO V30 中分辨率保持一致):

O-DCIF(528*384/528*320),1-CIF(352*288/352*240),2-QCIF(176*144/176*120),3-4CIF(704*576/704*480) 或 D1(720*576/720*486), 4-2CIF(704*288/704*240), 6-QVGA(320*240), 7-QQVGA(160*120), 12-384*288, 13-576*576, 16-VGA(640*480), 17-UXGA(1600*1200), 18-SVGA(800*600), 19-HD720P(1280*720),20-XVGA(1280*960),21-HD900P(1600*900),22-1360*1024,23-1536*1536, 24-1920*1920,27-1920*1080p,28-2560*1920,29-1600*304,30-2048*1536,31-2448*2048, 32-2448*1200,33-2448*800,34-XGA(1024*768),35-SXGA(1280*1024),36-WD1(960*576/960*480), 37-1080i(1920*1080) , 38-WXGA(1440*900) , 39-HD F(1920*1080/1280*720) , 40-HD_H(1920*540/1280*360) , 41-HD_Q(960*540/630*360) , 42-2336*1744 , 43-1920*1456 , 44-2592*2048,45-3296*2472,46-1376*768,47-1366*768,48-1360*768,49-WSXGA+,50-720*720,51-1280*1280 , 52-2048*768 , 53-2048*2048 , 54-2560*2048 , 55-3072*2048 , 56-2304*1296 , 57-WXGA(1280*800) , 58-1600*600 , 59-1600*900 , 60-2752*2208 , 61-384*288 ,62-4000*3000 , 63-4096*2160 , 64-3840*2160 , 65-4000*2250 , 66-3072*1728 , 67-2592*1944 , 68-2464*1520 , 69-1280*1920,70-2560*1440,71-1024*1024,72-160*128,73-324*240,74-324*256,75-336*256,76-640*512 ,77-2720*2048 ,78-384*256 ,79-384*216 ,80-320*256 ,81-320*180 ,82-320*192 , 83-512*384 ,84-325*256 ,85-256*192 ,86-640*360,0xff-Auto(使用当前码流分辨率)

byRes

保留,置为0

Remarks

使能参数配置能力: <u>NET_DVR_GetDeviceAbility</u>(能力集类型: DEVICE_ABILITY_INFO),获取抓拍机和智能终端能力(ITDeviceAbility),对应节点: <SnapEnableCfg>。

7.136 NET_DVR_SPRCFG:车牌识别参数

struct{

DWORD dwSize;

BYTE byDefaultCHN[MAX_CHJC_NUM];

BYTE byPlateOSD;
BYTE bySendJPEG1;
BYTE bySendJPEG2;

WORD wDesignedPlateWidth;

BYTE byTotalLaneNum;

BYTE byRes1;

WORD wRecognizedLane;

NET VCA RECT struLaneRect[MAX LANERECT NUM];

DWORD dwRecogMode;
BYTE bySendPRRaw;
BYTE bySendBinImage;
BYTE byDelayCapture;
BYTE byUseLED;

BYTE byUseLED; BYTE byRes2[68];

}NET_DVR_SPRCFG, *LPNET_DVR_SPRCFG;

Members

dwSize

结构体大小

byDefaultCHN

设备运行省份的汉字简写

byPlateOSD

0-不叠加车牌彩色图,1-叠加车牌彩色图

bySendJPEG1

0-不传送近景 JPEG 图,1-传送近景 JPEG 图

bySendJPEG2

0-不传送远景 JPEG 图,1-传送远景 JPEG 图

wDesignedPlateWidth

车牌设计宽度

byTotalLaneNum

识别的车道数

byRes1

保留,置为0

wRecognizedLane

识别的车道号,按位表示,bit0表示车道1是否识别,0-不识别,1-识别

struLaneRect

车道识别区域

dwRecogMode

识别的类型,

bit0-背向识别: 0-正向车牌识别, 1-背向识别(尾牌识别);

bit1-大车牌识别或小车牌识别: 0-小车牌识别, 1-大车牌识别;

bit2-车身颜色识别: 0-不采用车身颜色识别,在背向识别或小车牌识别时禁止启用,1-车身颜色识别;

bit3-农用车识别: 0-不采用农用车识别, 1-农用车识别;

bit4-模糊识别: 0-不采用模糊识别, 1-模糊识别;

bit5-帧定位或场定位: 0-帧定位, 1-场定位;

bit6-帧识别或场识别: 0-帧识别, 1-场识别;

bit7-晚上或白天: 0-白天, 1-晚上

bySendPRRaw

是否发送车辆原图(仅 iDS-65xx 支持): 0-不发送, 1-发送

bySendBinImage

是否发送车牌二值图(仅iDS-65xx 支持): 0-不发送, 1-发送

byDelayCapture

延时抓拍控制(仅 iDS-65xx 支持),单位:帧

byUseLED

是否使用 LED 控制(仅 iDS-65xx 支持): 0-否, 1-是

byRes2

保留,置为0

7.137 NET_DVR_STATUS_DETECTCFG:状态检测使能参数

struct{

DWORD dwSize;

BYTE byEnableTrigIODetect;
BYTE byEnableFlashOutDetect;
BYTE byEnableRS485Detect;
BYTE byEnableTrafficLightDetect;

BYTE byRes[28];

}NET_DVR_STATUS_DETECTCFG,*LPNET_DVR_STATUS_DETECTCFG;

Members

```
dwSize
```

结构体大小

byEnableTrigIODetect

开启触发 IO 状态检测: 1- 是, 0- 否

byEnableFlashOutDetect

开启同步输出状态检测: 1- 是, 0- 否

byEnableRS485Detect

开启 RS485 接收状态检测: 1- 是, 0- 否

byEnableTrafficLightDetect

开启交通灯状态检测,1-是,0-否

bvRes

保留

7.138 NET_DVR_STREAM_ATTACHINFO_CFG:码流附加信息配置

struct{

DWORD dwSize;

BYTE byStreamWithVca;

BYTE byRes[127];

}NET_DVR_STREAM_ATTACHINFO_CFG, *LPNET_DVR_STREAM_ATTACHINFO_CFG;

Members

dwSize

结构体大小

byStreamWithVca

码流中叠加智能信息: 0- 不叠加, 1- 叠加

byRes

保留

7.139 NET_DVR_STREAM_INFO:流信息

struct{

DWORD dwSize;

BYTE byID[STREAM_ID_LEN];

DWORD dwChannel; BYTE byRes[32];

}NET_DVR_STREAM_INFO,*LPNET_DVR_STREAM_INFO;

Members

dwSize

结构体大小

byID

流 ID,为字母、数字和"_"的组合。智能交通摄像机不支持流 ID 标识功能,设为 0

dwChannel

设备通道号

byRes

保留,置为0

7.140 NET_DVR_SYSTEM_TIME:时间信息

```
struct{
 WORD
           wYear;
 WORD
           wMonth;
 WORD
           wDay;
 WORD
           wHour;
 WORD
           wMinute;
 WORD
           wSecond;
 WORD
           wMilliSec;
 BYTE
           byRes[2];
}NET_DVR_SYSTEM_TIME,*LPNET_DVR_SYSTEM_TIME;
Members
wYear
      年
wMonth
      月
wDay
       日
wHour
      肘
wMinute
      分
wSecond
      秒
wMilliSec
      毫秒
byRes
      保留
```

7.141 NET_DVR_TIME:时间参数

```
struct{
    DWORD dwYear;
    DWORD dwMonth;
    DWORD dwDay;
    DWORD dwHour;
    DWORD dwMinute;
    DWORD dwSecond;
}NET_DVR_TIME, *LPNET_DVR_TIME;
```

Members

dwYear

年

dwMonth

月

dwDay

日

dwHour

时

dwMinute

分

dwSecond

秒

7.142 NET_DVR_TIME_EX:时间参数

```
struct{
WOR
```

WORD wYear;

BYTE byMonth;

BYTE byDay;

BYTE byHour;

BYTE byMinute;

BYTE bySecond;

BYTE byRes;

}NET_DVR_TIME_EX, *LPNET_DVR_TIME_EX;

Members

wYear

年

byMonth

月

byDay

日

byHour

肘

byMinute

分

bySecond

秒

byRes

保留

7.143 NET_DVR_TIME_V30:时间参数(扩展)

```
struct{
  WORD
           wYear;
  BYTE
           byMonth;
  BYTE
           byDay;
  BYTE
           byHour;
  BYTE
           byMinute;
  BYTE
           bySecond;
  BYTE
           byRes;
 WORD
           wMilliSec;
  BYTE
           byRes1[2];
}NET_DVR_TIME_V30, *LPNET_DVR_TIME_V30;
Members
wYear
       年
byMonth
       月
byDay
       日
byHour
       时
byMinute
bySecond
byRes
       保留
wMilliSec
       毫秒
byRes1
       保留
```

7.144 NET_DVR_TIMEPOINT:时间点参数结构体

```
struct{
    DWORD dwMonth;
    DWORD dwWeekNo;
    DWORD dwWeekDate;
    DWORD dwHour;
    DWORD dwMin;
}NET_DVR_TIMEPOINT, *LPNET_DVR_TIMEPOINT;

Members
```

```
dwMonth
```

月:[0,11]取值分别表示第1个月到第12个月

dwWeekNo

周: 0-第1周, 1-第2周, 2-第3周, 3-第4周, 4-最后一周

dwWeekDate

星期: 0一星期日,1一星期一,2一星期二,3一星期三,4一星期四,5一星期五,6一星期六

dwHour

小时: 开始时间 0~23, 结束时间 1~23

dwMin

分: 0~59

7.145 NET_DVR_TPS_ALARMCFG:交通统计报警参数结构体

struct{

DWORD dwSize;

BYTE byEnable;

BYTE byRes1[3];

DWORD dwInterval;

BYTE byRes[248];

}NET_DVR_TPS_ALARMCFG,*LPNET_DVR_TPS_ALARMCFG;

Members

dwSize

结构体大小

byEnable

是否启用交通统计报警上传

bvRes1

保留

dwInterval

统计间隔时间,单位:分钟

byRes

保留

7.146 NET_DVR_TPS_LANE_PARAM:单车道 TPS 交通统计信息

struct{

BYTE byLane;

BYTE bySpeed;

BYTE byRes[2];

DWORD dwLightVehicle;

DWORD dwMidVehicle;

DWORD dwHeavyVehicle;

DWORD dwTimeHeadway;

DWORD dwSpaceHeadway;

```
float
           fSpaceOccupyRation;
 float
           fTimeOccupyRation;
 BYTE
           byRes1[16];
}NET_DVR_TPS_LANE_PARAM, *LPNET_DVR_TPS_LANE_PARAM;
Members
byLane
      对应车道号
bySpeed
      车道过车平均速度
byRes
      保留
dwLightVehicle
      小型车数量
dwMidVehicle
      中型车数量
dwHeavyVehicle
      重型车数量
dwTimeHeadway
      车头时距,以秒计算
dwSpaceHeadway
      车头间距,以米来计算
```

fSpaceOccupyRation

空间占有率,百分比计算

fTimeOccupyRation

时间占有率,百分比计算

byRes1

保留

7.147 NET_DVR_TPS_PARAM:TPS 交通参数信息

```
struct{
  BYTE
          byStart;
  BYTE
          byCMD;
  BYTE
          byRes[2];
  WORD
          wDeviceID;
  WORD
          wDataLen;
  BYTE
          byLane;
  BYTE
          bySpeed;
  BYTE
          byLaneState;
          byQueueLen;
  BYTE
  BYTE
          byRes1[24];
}NET_DVR_TPS_PARAM, *LPNET_DVR_TPS_PARAM;
Members
byStart
```

开始码(串口命令)

byCMD

命令号: 01- 进入指令, 02- 离开指令, 03- 拥堵状态指令(为 03 时, 只有 byLaneState 和 byQueueLen 有效)

byRes

保留

wDeviceID

设备ID

wDataLen

数据长度(串口信息)

byLane

对应车道号

bySpeed

对应车速,单位: Km/h

byLaneState

车道状态: 0- 无状态, 1- 畅通, 2- 拥挤, 3- 堵塞

byQueueLen

堵塞状态下排队长度,单位:米,比如50米

byRes1

保留

7.148 NET_DVR_TPS_REAL_TIME_INFO:TPS 实时过车数据信息

struct{

DWORD dwSize;
DWORD dwChan;
NET_DVR_TIME_V30 struTime;

NET DVR TPS PARAM struTPSRealTimeInfo;

BYTE byRes[24];

}NET_DVR_TPS_REAL_TIME_INFO, *LPNET_DVR_TPS_REAL_TIME_INFO;

Members

dwSize

结构体大小

dwChan

通道号

struTime

检测时间

struTPSRealTimeInfo

交通参数实时信息

byRes

保留

struct{

7.149 NET_DVR_TPS_STATISTICS_INFO:TPS 统计过车数据信息

```
struct{
  DWORD
                                  dwSize;
  DWORD
                                  dwChan;
  NET DVR TPS STATISTICS PARAM
                                  struTPSStatisticsInfo;
  BYTE
                                  byRes[128];
}NET_DVR_TPS_STATISTICS_INFO, *LPNET_DVR_TPS_STATISTICS_INFO;
Members
dwSize
       结构体大小
dwChan
       通道号
struTPSStatisticsInfo
       交通参数统计信息
byRes
       保留
```

7.150 NET_DVR_TPS_STATISTICS_PARAM:TPS 交通统计信息

```
BYTE
                            byStart;
 BYTE
                            byCMD;
 BYTE
                            byRes[2];
 WORD
                            wDeviceID;
 WORD
                            wDataLen;
 BYTE
                            byTotalLaneNum;
 BYTE
                            byRes1[15];
 NET_DVR_TIME_V30
                            struStartTime;
 DWORD
                             dwSamplePeriod;
 NET DVR TPS LANE PARAM
                            struLaneParam[MAX_TPS_RULE];
}NET_DVR_TPS_STATISTICS_PARAM, *LPNET_DVR_TPS_STATISTICS_PARAM;
Members
byStart
      开始码(串口命令)
byCMD
      命令号: 01- 进入指令, 02- 离开指令, 03- 拥堵状态指令(为 03 时, 只有 byLaneState 和 byQueueLen
      有效)
bvRes
      保留
wDeviceID
      设备 ID
wDataLen
```

数据长度(串口信息)

byTotalLaneNum

有效车道总数

byRes1

保留

struStartTime

统计开始时间

dwSamplePeriod

统计时间,单位:秒

struLaneParam

每个车道 TPS 统计信息

7.151 NET_DVR_TRIGCOORDINATE:线圈位置配置参数

struct{

WORD wTopLeftX; WORD wTopLeftY; WORD wWdith; WORD wHeight;

Whenghi,

}NET_DVR_TRIGCOORDINATE, *LPNET_DVR_TRIGCOORDINATE;

Members

wTopLeftX

线圈左上角横坐标(2个字节), 默认为160

wTopLeftY

线圈左上角纵坐标(2个字节),默认为210

wWdith

线圈宽度(2个字节),默认为1000

wHeight

线圈高度(2个字节),默认为45

7.152 NET_DVR_TRIGGER_COND:触发模式配置条件

 $struct \{$

DWORD dwSize;

DWORD dwChannel;DWORD dwtriggerMode;

BYTE byRes[64];

 $\verb| NET_DVR_TRIGGER_COND, *LPNET_DVR_TRIGGER_COND; \\$

Members

dwSize

结构体大小

dwChannel

通道号

dwTriggerMode

触发模式,按位表示,定义详见 ITC TRIGGERMODE TYPE

byRes

保留,置为0

NET DVR USER INFO V30:单用户参数 7.153

```
struct{
 BYTE
                     sUserName[NAME LEN];
 BYTE
                     sPassword[PASSWD_LEN];
 BYTE
                     byLocalRight[MAX RIGHT];
 BYTE
                     byRemoteRight[MAX_RIGHT];
 BYTE
                     byNetPreviewRight[MAX_CHANNUM_V30];
 BYTE
                     byLocalPlaybackRight[MAX_CHANNUM_V30];
 BYTE
                     byNetPlaybackRight[MAX_CHANNUM_V30];
 BYTE
                     byLocalRecordRight[MAX CHANNUM V30];
 BYTE
                     byNetRecordRight[MAX_CHANNUM_V30];
 BYTE
                     byLocalPTZRight[MAX_CHANNUM_V30];
 BYTE
                     byNetPTZRight[MAX_CHANNUM_V30];
 BYTE
                     byLocalBackupRight[MAX_CHANNUM_V30];
                     struUserIP;
 NET DVR IPADDR
                     byMACAddr[MACADDR_LEN];
 BYTE
 BYTE
                     byPriority;
 BYTE
                     byAlarmOnRight;
 BYTE
                     byAlarmOffRight;
 BYTE
                     byBypassRight;
 BYTE
                     byRes[14];
}NET_DVR_USER_INFO_V30,*LPNET_DVR_USER_INFO_V30;
Members
sUserName
      用户名
sPassword
       密码
byLocalRight
      本地操作权限,参数取值为1表示使能:
      数组 0一本地控制云台
      数组 1一本地手动录象
      数组 2一本地回放
```

数组3一本地设置参数

数组 4一本地查看状态、日志

数组 5一本地高级操作(升级,硬盘管理(格式化、设置硬盘属性、设置盘组、阵列扩容、RAID 固 件升级))

数组 6-本地查看参数

数组 7-本地管理模拟和 IP camera

数组 8-本地备份

数组 9-本地关机/重启

byRemoteRight

远程操作权限,参数取值为1表示使能:

数组 0一远程控制云台

数组 1一远程手动录象

数组 2一远程回放

数组 3一远程设置参数(恢复默认参数,写日志)

数组 4一远程查看状态、日志

数组 5一远程高级操作(升级,硬盘管理(格式化、设置硬盘属性、设置盘组、阵列扩容、RAID 固件升级), JPEG 抓图, 前面板锁定与解锁)

数组 6一远程发起语音对讲

数组7一远程预览

数组8一远程请求报警上传、报警输出

数组9一远程控制,本地输出

数组 10一远程控制串口

数组 11-远程查看参数

数组 12—远程管理模拟和 IP camera

数组 13-远程关机/重启

byNetPreviewRight

远程可以预览的通道: 1-有权限, 0-无权限

byLocalPlaybackRight

本地可以回放的通道: 1-有权限, 0-无权限

byNetPlaybackRight

远程可以回放的通道: 1-有权限, 0-无权限

byLocalRecordRight

本地可以录像的通道: 1-有权限, 0-无权限

byNetRecordRight

远程可以录像的通道: 1-有权限, 0-无权限

byLocalPTZRight

本地可以控制 PTZ 的通道: 1-有权限, 0-无权限

byNetPTZRight

远程可以控制 PTZ 的通道: 1-有权限, 0-无权限

byLocalBackupRight

本地备份权限通道: 1-有权限, 0-无权限

struUserIP

用户 IP 地址(为 0 时表示允许任何地址)

byMACAddr

物理地址

byPriority

优先级: 0xff-无, 0-低, 1-中, 2-高

无 (表示不支持优先级的设置)

低(默认权限:包括本地和远程回放,本地和远程查看日志和状态,本地和远程关机/重启)

中(包括本地和远程控制云台,本地和远程手动录像,本地和远程回放,语音对讲和远程预览,本

地备份,本地/远程关机/重启)

高(管理员)

byAlarmOnRight

报警输入口布防权限

byAlarmOffRight

报警输入口撤防权限

byBypassRight

报警输入口旁路权限

byRes

保留,置为0

7.154 NET_DVR_USER_LOGIN_INFO:用户登录参数

struct{

char sDeviceAddress[NET_DVR_DEV_ADDRESS_MAX_LEN];

BYTE byRes1; WORD wPort;

char sUserName[NET_DVR_LOGIN_USERNAME_MAX_LEN];
char sPassword[NET_DVR_LOGIN_PASSWD_MAX_LEN];

fLoginResultCallBack cbLoginResult;

void *pUser;

BOOL bUseAsynLogin;
BYTE byRes2[128];

}NET_DVR_USER_LOGIN_INFO,*LPNET_DVR_USER_LOGIN_INFO;

Members

sDeviceAddress

设备地址, IP 或者普通域名

byRes1

保留,设为 0

wPort

设备端口号,例如:8000

sUserName

登录用户名,例如: admin

sPassword

登录密码,例如: 12345

cbLoginResult

登录状态回调函数, bUseAsynLogin 为 1 时有效

pUser

用户数据

bUseAsynLogin

是否异步登录: 0- 否, 1- 是

byRes2

保留,置为0

Callback Function

typedef void(CALLBACK *fLoginResultCallBack)(
LONG | UserID,

DWORD | dwResult,

LPNET DVR DEVICEINFO V30 | IpDeviceInfo,

void | *pUser);

Callback Function Parameters

IUserID

[out] 用户 ID, NET_DVR_Login_V40 的返回值

dwResult

[out] 登录状态: 0- 异步登录失败, 1- 异步登录成功

IpDeviceInfo

[out] 设备信息,设备序列号、通道、能力等参数

pUser

[out] 用户数据

7.155 NET_DVR_USER_V30:用户参数

struct{

DWORD dwSize;

}NET_DVR_USER_V30,*LPNET_DVR_USER_V30;

Members

dwSize

结构体大小

struUser

用户信息参数

7.156 NET_DVR_VEHICLE_CONTROL:车辆信息管控参数

struct{

BYTE byGateOperateType;

BYTE byRes1;

WORD wAlarmOperateType;

BYTE byRes[8];

}NET_DVR_VEHICLE_CONTROL,*LPNET_DVR_VEHICLE_CONTROL;

Members

byGateOperateType

操作类型: 0- 无操作, 1- 开道闸

byRes1

保留,置为0

wAlarmOperateType

报警处理类型: 0- 无操作, bit0- 继电器输出报警, bit1- 布防上传报警, bit3- 告警主机上传, 值: 0-表示关, 1-表示开, 可复选

byRes

保留,置为0

7.157 NET_DVR_VEHICLE_CONTROL_ALARM: 车辆报警(黑白名单)报警信息

```
struct{
 DWORD
                      dwSize;
 BYTE
                      byListType;
 BYTE
                      byPlateType;
 BYTE
                      byPlateColor;
 BYTE
                      byRes1;
 char
                      sLicense[MAX_LICENSE_LEN];
 char
                      sCardNo[MAX_CARDNO_LEN];
                      struAlarmTime;
 NET DVR TIME V30
 BYTE
                      byRes2[64];
}NET_DVR_VEHICLE_CONTROL_ALARM,*LPNET_DVR_VEHICLE_CONTROL_ALARM;
Members
dwSize
      结构体大小
byListType
      名单属性 (黑白名单): 0- 白名单, 1- 黑名单, 2- 临时名单
```

车牌类型,具体定义如下:

byPlateType

```
enum_VCA_PLATE_TYPE_{
VCA_STANDARD92_PLATE = 0,
VCA_STANDARD02_PLATE,
VCA_WJPOLICE_PLATE,
VCA_JINGCHE_PLATE,
STANDARD92_BACK_PLATE,
VCA_SHIGUAN_PLATE,
VCA_NONGYONG_PLATE,
VCA_MOTO_PLATE
}VCA_PLATE_TYPE
```

VCA_STANDARD92_PLATE 标准民用车与军车车牌 VCA_STANDARD02_PLATE 02 式民用车牌 VCA_WJPOLICE_PLATE 武警车车牌 VCA_JINGCHE_PLATE 警车车牌 STANDARD92_BACK_PLATE 民用车双行尾牌

VCA_SHIGUAN_PLATE

使馆车牌

VCA_NONGYONG_PLATE

农用车车牌

VCA_MOTO_PLATE

摩托车车牌

byPlateColor |

车牌颜色,具体定义如下:

enum _VCA_PLATE_COLOR_{

VCA_BLUE_PLATE = 0,

VCA_YELLOW_PLATE,

VCA_WHITE_PLATE,

VCA_BLACK_PLATE,

VCA_GREEN_PLATE,

VCA_BKAIR_PLATE,

VCA_OTHER = 0xff

}VCA_PLATE_COLOR

VCA_BLUE_PLATE

蓝色车牌

VCA_YELLOW_PLATE

黄色车牌

VCA_WHITE_PLATE

白色车牌

VCA_BLACK_PLATE

黑色车牌

VCA_GREEN_PLATE

绿色车牌

VCA_BKAIR_PLATE

民航黑色车牌

 $VCA_OTHER = 0xff$

其他

byRes1

保留,置为0

sLicense

车牌号码

sCardNo

卡号

struAlarmTime

报警时间

byRes2

保留,置为0

7.158 NET_DVR_VEHICLE_CONTROL_COND:车辆黑白名单信息获取条

件

```
struct{
 DWORD
           dwChannel;
 DWORD
           dwOperateType;
           sLicense[MAX_LICENSE_LEN];
 char
 char
           sCardNo[MAX_CARDNO_LEN];
 BYTE
           byListType;
 BYTE
           byRes1[3];
 DWORD
           dwDataIndex;
 BYTE
           byRes[116];
}NET_DVR_VEHICLE_CONTROL_COND,*LPNET_DVR_VEHICLE_CONTROL_COND;
Members
dwChannel
      通道号,0xffffffff 表示全部通道(ITC 默认是 1)
dwOperateType
      操作类型(可复选),具体类型如下:
      enum _VCA_OPERATE_TYPE_{
        VCA_LICENSE_TYPE
                              = 0x1,
        VCA_PLATECOLOR_TYPE
                               = 0x2,
        VCA_CARDNO_TYPE
                               = 0x4,
        VCA_PLATETYPE_TYPE
                             = 0x8,
        VCA_LISTTYPE_TYPE
                             = 0x10,
        VCA_INDEX_TYPE
                              = 0x20,
        VCA OPERATE INDEX TYPE = 0x40
      }VCA_OPERATE_TYPE
      VCA_LICENSE_TYPE
      车牌号码
      VCA_PLATECOLOR_TYPE
      车牌颜色
      VCA_CARDNO_TYPE
      卡号
      VCA_PLATETYPE_TYPE
      车牌类型
      VCA_LISTTYPE_TYPE
      车辆名单类型
      VCA INDEX TYPE
      数据流水号
      VCA_OPERATE_INDEX_TYPE
      操作数
sLicense
```

车牌号码

sCardNo

卡号

byListType

名单属性 (黑白名单): 0- 白名单, 1- 黑名单, 0xff- 全部

byRes1

保留,置为0

dwDataIndex

数据流水号

byRes

保留,置为0

Remarks

同步操作数用来标记平台更新到哪个操作,为同步记录表的流水号,主要是平台进行增量数据同步时使用。数据流水号是具体描述:操作的是平台数据表哪一条记录,因为平台中黑白名单是分开的两个表,前端相机需要根据数据流水号+类型来唯一定位一条数据记录。同步操作数和数据流水号均由平台进行控制,通过这两个字段可以对外提供黑白名单增量更新的功能。

7.159 NET_DVR_VEHICLE_CONTROL_DELINFO:黑名单数据库删除信息

struct{

DWORD dwSize; DWORD dwDelType;

char sLicense[MAX_LICENSE_LEN];
char sCardNo[MAX_CARDNO_LEN];

BYTE byPlateType;
BYTE byPlateColor;

BYTE byOperateType;
BYTE byListType;

DWORD dwDataIndex;

char sOperateIndex[MAX OPERATE INDEX LEN];

BYTE byRes[24];

}NET_DVR_VEHICLE_CONTROL_DELINFO,*LPNET_DVR_VEHICLE_CONTROL_DELINFO;

Members

dwSize

结构体大小

dwDelType

删除条件类型(可复选,byOperateType 为 0 时有效),具体定义如下:

```
enum_VCA_OPERATE_TYPE_{

VCA_LICENSE_TYPE = 0x1,

VCA_PLATECOLOR_TYPE = 0x2,

VCA_CARDNO_TYPE = 0x4,

VCA_PLATETYPE_TYPE = 0x8,

VCA_LISTTYPE_TYPE = 0x10,

VCA_INDEX_TYPE = 0x20,
```

```
VCA_OPERATE_INDEX_TYPE = 0x40
      }VCA_OPERATE_TYPE
      VCA_LICENSE_TYPE
      车牌号码
      VCA_PLATECOLOR_TYPE
      车牌颜色
      VCA_CARDNO_TYPE
      卡号
      VCA_PLATETYPE_TYPE
      车牌类型
      VCA_LISTTYPE_TYPE
      车辆名单类型
      VCA_INDEX_TYPE
      数据流水号
      VCA_OPERATE_INDEX_TYPE
      操作数
sLicense
      车牌号码
sCardNo
      卡号
byPlateType
      车牌类型,具体定义如下:
      enum _VCA_PLATE_TYPE_{
       VCA_STANDARD92_PLATE = 0,
       VCA_STANDARD02_PLATE,
       VCA_WJPOLICE_PLATE,
       VCA_JINGCHE_PLATE,
       STANDARD92_BACK_PLATE,
       VCA_SHIGUAN_PLATE,
       VCA_NONGYONG_PLATE,
       VCA_MOTO_PLATE
      }VCA PLATE TYPE
      VCA_STANDARD92_PLATE
      标准民用车与军车车牌
      VCA_STANDARD02_PLATE
      02 式民用车牌
      VCA WJPOLICE PLATE
      武警车车牌
      VCA_JINGCHE_PLATE
```

警车车牌 STANDARD92_BACK_PLATE 民用车双行尾牌 VCA_SHIGUAN_PLATE

使馆车牌

```
VCA_NONGYONG_PLATE
```

农用车车牌

VCA_MOTO_PLATE

摩托车车牌

byPlateColor

车牌颜色,具体定义如下:

enum _VCA_PLATE_COLOR_{

VCA_BLUE_PLATE = 0,

VCA_YELLOW_PLATE,

VCA_WHITE_PLATE,

VCA_BLACK_PLATE,

VCA_GREEN_PLATE,

VCA_BKAIR_PLATE,

VCA_OTHER = 0xff

 ${\tt }{\tt VCA_PLATE_COLOR}$

VCA_BLUE_PLATE

蓝色车牌

VCA_YELLOW_PLATE

黄色车牌

VCA_WHITE_PLATE

白色车牌

VCA_BLACK_PLATE

黑色车牌

VCA_GREEN_PLATE

绿色车牌

VCA_BKAIR_PLATE

民航黑色车牌

VCA_OTHER = 0xff

其他

byOperateType

删除操作类型: 0- 条件删除, 0xff- 删除全部

byListType

名单属性 (黑白名单): 0- 白名单, 1- 黑名单

dwDataIndex

数据流水号(平台黑名单表和白名单表的流水号,在这里有可能会重复,要与 byListType 配合才能 唯一确定一条记录)

sOperateIndex

操作数

byRes

保留,置为0

7.160 NET_DVR_VEHICLE_CONTROL_LIST_DSALARM:黑白名单数据需要同步报警信息

struct{

DWORD dwSize;

DWORD dwDataIndex;

char sOperateIndex[MAX_OPERATE_INDEX_LEN];

BYTE byRes[32];

}NET_DVR_VEHICLE_CONTROL_LIST_DSALARM,*LPNET_DVR_VEHICLE_CONTROL_LIST_DSALARM;

Members

dwSize

结构体大小

dwDataIndex

数据流水号(这个值返回设备当前接收到的数据的最后一个数据流水号,平台同步的时候从下一个流水号开始同步)

sOperateIndex

操作数(平台同步表流水号不会重复,用于增量更新,代表同步到同步表的某一条记录了,存在相 机内存,重启后会清 0)

byRes

保留,置为0

7.161 NET_DVR_VEHICLE_CONTROL_LIST_INFO:出入口黑白名单的数据 同步信息

struct{

DWORD dwSize;
DWORD dwChannel;
DWORD dwDataIndex;

char sLicense[MAX_LICENSE_LEN];

BYTE byListType;
BYTE byPlateType;
BYTE byPlateColor;
BYTE byRes[21];

char sCardNo[MAX_CARDNO_LEN];

NET DVR TIME V30 struStartTime;
NET DVR TIME V30 struStopTime;

char sOperateIndex[MAX_OPERATE_INDEX_LEN];

BYTE byRes1[224];

}NET_DVR_VEHICLE_CONTROL_LIST_INFO,*LPNET_DVR_VEHICLE_CONTROL_LIST_INFO;

Members

dwSize

结构体大小

dwChannel

通道号, 0xffffffff 表示全部通道(ITC 默认是 1)

dwDataIndex

数据流水号(平台维护的数据唯一值,客户端操作的时候,该值不会起效。该值主要用于数据增量 同步)

sLicense

车牌号码

byListType

名单属性 (黑白名单): 0- 白名单, 1- 黑名单

byPlateType

车牌类型,具体定义如下:

enum _VCA_PLATE_TYPE_{

VCA STANDARD92 PLATE = 0,

VCA_STANDARD02_PLATE,

VCA WJPOLICE PLATE,

VCA_JINGCHE_PLATE,

STANDARD92_BACK_PLATE,

VCA_SHIGUAN_PLATE,

VCA_NONGYONG_PLATE,

VCA_MOTO_PLATE

}VCA_PLATE_TYPE

VCA_STANDARD92_PLATE

标准民用车与军车车牌

VCA STANDARDO2 PLATE

02 式民用车牌

VCA_WJPOLICE_PLATE

武警车车牌

VCA_JINGCHE_PLATE

警车车牌

STANDARD92_BACK_PLATE

民用车双行尾牌

VCA_SHIGUAN_PLATE

使馆车牌

VCA_NONGYONG_PLATE

农用车车牌

VCA MOTO PLATE

摩托车车牌

byPlateColor

车牌颜色,具体定义如下:

enum _VCA_PLATE_COLOR_{

VCA_BLUE_PLATE = 0,

VCA_YELLOW_PLATE,

VCA_WHITE_PLATE,

VCA_BLACK_PLATE,

VCA_GREEN_PLATE,

VCA_BKAIR_PLATE,

VCA OTHER = 0xff

}VCA PLATE COLOR

VCA_BLUE_PLATE

蓝色车牌

VCA_YELLOW_PLATE

黄色车牌

VCA_WHITE_PLATE

白色车牌

VCA_BLACK_PLATE

黑色车牌

VCA GREEN PLATE

绿色车牌

VCA BKAIR PLATE

民航黑色车牌

VCA_OTHER = 0xff

其他

byRes

保留,置为0

sCardNo

卡号

struStartTime

有效开始时间

struStopTime

有效结束时间

sOperateIndex

同步操作数(平台同步表流水号不会重复,用于增量更新,代表同步到同步表的某一条记录了,存在相机内存,重启后会清 **0**)

byRes2

保留,置为0

Remarks

同步操作数用来标记平台更新到哪个操作,为同步记录表的流水号,主要是平台进行增量数据同步时使用。数据流水号是具体描述:操作的是平台数据表哪一条记录,因为平台中黑白名单是分开的两个表,前端相机需要根据数据流水号+类型来唯一定位一条数据记录。同步操作数和数据流水号均由平台进行控制,通过这两个字段可以对外提供黑白名单增量更新的功能。

7.162 NET_DVR_VEHICLE_INFO:车辆信息参数

struct{

DWORD dwIndex;

BYTE byVehicleType;

BYTE byColorDepth;

BYTE byColor;

BYTE byRes1;

WORD wSpeed;

WORD wLength;

BYTE bylllegalType;

BYTE byVehicleLogoRecog;

BYTE byVehicleSubLogoRecog;

BYTE byVehicleModel;

BYTE byCustomInfo[16];

WORD wVehicleLogoRecog;

BYTE byRes3[14];

}NET_DVR_VEHICLE_INFO, *LPNET_DVR_VEHICLE_INFO;

Members

dwIndex

车辆序号

byVehicleType

车辆类型: 0- 其他车辆, 1- 小型车, 2- 大型车, 3- 行人触发, 4- 二轮车触发, 5- 三轮车触发, 6- 机动车触发

byColorDepth

车身颜色深浅, 0-深色, 1-浅色

byColor

车身颜色: 0-其他色, 1-白色, 2-银色, 3-灰色, 4-黑色, 5-红色, 6-深蓝, 7-蓝色, 8-黄色, 9-绿色, 10-棕色, 11-粉色, 12-紫色, 0xff-未进行车身颜色识别

byRes1

保留

wSpeed

车辆速度,单位 km/h

wLength

车身长度

byIllegalType

违法类型: 0-正常: 1-低速, 2-超速, 3-逆行, 4-闯红灯, 5-压车道线, 6-不按导向, 7-路口滞留, 8-机占非, 9-违法变道, 10-机动车违反规定使用专用车道, 11-黄牌车禁限, 12-路口停车, 13-绿灯停车, 14-未礼让行人, 15-违章停车, 16-违章掉头, 17-占用应急车道, 18-禁右, 19-禁左, 20-压黄线, 21-未系安全带。V4.0.0 及以上版本的智能交通摄像机的违法类型也支持通过

NET ITS PLATE RESULT 中的 willegalType 进行判断

byVehicleLogoRecog

汽车品牌,定义详见 VLR VEHICLE CLASS

byVehicleSubLogoRecog

车辆子品牌,根据不同的主类型,子品牌取值定义不同

byVehicleModel

车辆子品牌年款,根据不同的主类型,子品牌年款取值定义不同

by Custom Info

自定义信息

wVehicleLogoRecog

车辆主品牌(该字段兼容 byVehicleLogoRecog), 定义详见 VLR VEHICLE CLASS

byRes3

保留

Remarks

车辆主品牌对应的子品牌、子品牌年款取值,请参考相应设备提供的品牌对应关系列表

7.163 NET DVR VIDEOEFFECT:视频参数

struct{ **BYTE** byBrightnessLevel; **BYTE** byContrastLevel; **BYTE** bySharpnessLevel; **BYTE** bySaturationLevel; **BYTE** byHueLevel; **BYTE** byEnableFunc; **BYTE** byLightInhibitLevel; **BYTE** byGrayLevel;

}NET_DVR_VIDEOEFFECT, *LPNET_DVR_VIDEOEFFECT;

Members

byBrightnessLevel

亮度,取值范围[0,100]

byContrastLevel

对比度,取值范围[0,100]

bySharpnessLevel

锐度,取值范围[0,100]

bySaturationLevel

饱和度,取值范围[0,100]

byHueLevel

色度,取值范围[0,100],保留

byEnableFunc

使能,按位表示,bit0-SMART IR(防过曝),bit1-低照度,bit2-强光抑制使能,值: 0-否,1-是。例如: byEnableFunc&0x2==1 表示使能低照度功能。

byLightInhibitLevel

强光抑制等级,取值范围: [1,3]

byGrayLevel

灰度值域:0-[0,255], 1-[16,235]

7.164 NET_DVR_VIDEOOUT_V30:视频输出参数

struct{

DWORD dwSize;

NET_DVR_VOOUT
struVOOut[MAX_VIDEOOUT_V30];

NET_DVR_VGAPARA struVGAPara[MAX_VGA_V30];

NET_DVR_MATRIXPARA_V30 struMatrixPara[MAX_MATRIXOUT];

BYTE byRes[16];

}NET_DVR_VIDEOOUT_V30,*LPNET_DVR_VIDEOOUT_V30;

Members

dwSize

结构体大小

struVOOut

模拟视频 BNC 输出口参数

struVGAPara

VGA 参数,智能交通摄像机不支持,保留

struMatrixPara

MATRIX 参数,智能交通摄像机不支持,保留

byRes

保留,置为0

7.165 NET_DVR_VOOUT:模拟视频输出参数

struct{

BYTE byVideoFormat;

BYTE byMenuAlphaValue;

WORD wScreenSaveTime;

WORD wVOffset;

WORD wBrightness;

BYTE byStartMode;

BYTE byEnableScaler;

}NET_DVR_VOOUT,*LPNET_DVR_VOOUT;

Members

byVideoFormat

输出制式: 0-PAL, 1-NTSC

byMenuAlphaValue

菜单与背景图象对比度

wScreenSaveTime

屏幕保护时间: 0-从不, 1-1 分钟, 2-2 分钟, 3-5 分钟, 4-10 分钟, 5-20 分钟, 6-30 分钟

wVOffset

视频输出偏移

wBrightness

视频输出亮度

byStartMode

启动后视频输出模式: 0-菜单, 1-预览

byEnableScaler

是否启动缩放: 0-不启动, 1-启动

Remarks

该结构体中各参数配置需要设备支持,例如:智能交通摄像机不支持配置是否启动缩放,默认启动缩

放成 D1(720*576)输出。

7.166 NET_DVR_VTPARAM:虚拟线圈参数

struct{ **DWORD** dwSize; **BYTE** byEnable; **BYTE** byIsDisplay; BYTE byLoopPos; **BYTE** bySnapGain; **BYTE** dwSnapShutter; **NET DVR TRIGCOORDINATE** struTrigCoordinate; **NET DVR TRIGCOORDINATE** struRes[MAX_VL_NUM]; **BYTE** byTotalLaneNum; **BYTE** byPolarLenType; BYTE byDayAuxLightMode; **BYTE** byLoopToCalRoadBright; **BYTE** byRoadGrayLowTh; **BYTE** byRoadGrayHighTh; WORD wLoopPosBias; **DWORD** dwHfrShtterInitValue; **DWORD** dwSnapShtterInitValue; **DWORD** dwHfrShtterMaxValue; **DWORD** dwSnapShtterMaxValue; **DWORD** dwHfrShtterNightValue; **DWORD** dwSnapShtterNightMinValue; **DWORD** dwSnapShtterNightMaxValue; **DWORD** dwInitAfe; **DWORD** dwMaxAfe; WORD wResolutionX; WORD wResolutionY; WORD dwGainNightValue; WORD dwSceneMode; WORD dwRecordMode; NET DVR GEOGLOCATION struGeogLocation; **BYTE** byTrigFlag[MAX_VL_NUM]; BYTE byTrigSensitive[MAX_VL_NUM]; **BYTE** byRes2[62]; }NET_DVR_VTPARAM, *LPNET_DVR_VTPARAM; **Members** dwSize 结构体大小 byEnable 是否使能虚拟线圈,0-不使用,1-使用

byIsDisplay

是否显示虚拟线圈, 0-不显示, 1-显示

byLoopPos

晚间触发线圈的偏向: 0-正向, 1-负向(保留)

bySnapGain

抓拍增益

dwSnapShutter

抓拍快门速度

struTrigCoordinate

虚拟线圈参数

struRes

保留

byTotalLaneNum

视频触发的车道数

byPolarLenType

偏振镜类型, 0: 不加偏振镜; 1: 加施耐德偏振镜

byDayAuxLightMode

白天辅助照明模式, 0: 无辅助照明; 1: LED 灯照明; 2: 闪光灯照明

byLoopToCalRoadBright

用以计算路面亮度的车道(虚拟线圈)

byRoadGrayLowTh

路面亮度低阈值初始化值,默认值为1

byRoadGrayHighTh

路面亮度高阈值初始化值,默认值为140

wLoopPosBias

晚间触发线圈位移,默认值为30

dwHfrShtterInitValue

连续图像曝光时间的初始值,单位 us,默认值为 2000

dwSnapShtterInitValue

抓拍图像曝光时间的初始值,默认值为500

dwHfrShtterMaxValue

连续图像曝光时间的最大值,默认值为20000

dwSnapShtterMaxValue

抓拍图像曝光时间的最大值,默认值为1500

dwHfrShtterNightValue

晚间连续图像曝光时间的设置值,默认值为3000

dwSnapShtterNightMinValue

晚间抓拍图像曝光时间的最小值,默认值为3000

dwSnapShtterNightMaxValue

晚间抓拍图像曝光时间的最大值,默认值为5000

dwInitAfe

增益的初始值,默认值为200

dwMaxAfe

增益的最大值,默认值为400

```
wResolutionX
```

设备当前分辨率宽

wResolutionY

设备当前分辨率高

dwGainNightValue

晚间增益,默认值70

dwSceneMode

场景模式

enum _SCENE_MODE_{

UNKOWN_SCENE_MODE = 0,

HIGHWAY_SCENE_MODE = 1,

SUBURBAN_SCENE_MODE = 2,

URBAN_SCENE_MODE = 3,

TUNNEL_SCENE_MODE = 4

}SCENE_MODE

UNKOWN_SCENE_MODE

未知场景模式

HIGHWAY_SCENE_MODE

高速场景模式

SUBURBAN_SCENE_MODE

郊区场景模式(保留)

URBAN_SCENE_MODE

市区场景模式

TUNNEL_SCENE_MODE

隧道场景模式(保留)

dwRecordMode

录像标志: 0-不录像, 1-录像

struGeogLocation

地址位置

byTrigFlag

触发标志,0-车头触发;1-车尾触发;2-车头/车尾都触发

byTrigSensitive

触发灵敏度,1-100

byRes2

保留

7.167 NET_DVR_WDR:宽动态参数

struct{

BYTE byWDRLevel1;
BYTE byWDRLevel2;

BYTE byWDRContrastLevel;

BYTE byRes[16];

```
}NET_DVR_WDR, *LPNET_DVR_WDR;
```

Members

byWDREnabled

宽动态是否启用,0-不启用,1-启用,2-自动

byWDRLevel1

0-F

byWDRLevel2

0-F

byWDRContrastLevel

0-100

bvRes

保留

7.168 NET_DVR_WHITEBALANCE: 白平衡参数

struct{

BYTE byWhiteBalanceMode;

BYTE byWhiteBalanceModeRGain; BYTE byWhiteBalanceModeBGain;

BYTE byRes[5];

}NET_DVR_WHITEBALANCE, *LPNET_DVR_WHITEBALANCE;

Members

byWhiteBalanceMode

0-手动白平衡, 1-自动白平衡 1 (范围小), 2-自动白平衡 2 (范围宽, 2200K-15000K), 3-锁定白平 衡, 4-白炽灯, 5-暖光灯, 6-自然光, 7-日光灯

byWhiteBalanceModeRGain

手动白平衡时有效, 手动白平衡 R 增益

by White Balance Mode BGain

手动白平衡时有效, 手动白平衡 B 增益

byRes

保留

7.169 NET_DVR_ZONEANDDST:夏令时参数结构体

struct{

DWORD dwSize;
BYTE byRes1[16];
DWORD dwEnableDST;
BYTE byDSTBias;
BYTE byRes2[3];
NET_DVR_TIMEPOINT struBeginPoint;
NET_DVR_TIMEPOINT struEndPoint;

}NET_DVR_ZONEANDDST,*LPNET_DVR_ZONEANDDST;

```
Members
```

dwSize

结构体大小

byRes1

保留,置为0

dwEnableDST

是否启用夏时制: 0一不启用, 1一启用

byDSTBias

夏令时偏移值(以分钟计): 30min, 60min, 90min, 120min

byRes2

保留,置为0

struBeginPoint

夏时制开始时间

struEndPoint

夏时制停止时间

7.170 NET_IPC_LANE_HVT_PARAM:IPC 混行卡口车道参数

struct{

BYTE byLaneNO;

BYTE byCarDriveDirect;

BYTE byRes[62];

NET ITC LINE struLaneLine;

NET ITC POLYGON struPlateRecog;

BYTE byRes1[256];

}NET_IPC_LANE_HVT_PARAM, *LPNET_IPC_LANE_HVT_PARAM;

Members

byLaneNO

车道号

byCarDriveDirect

车辆行驶方向,具体定义如下:

enum_ITC_LANE_CAR_DRIVE_DIRECT_{
 ITC_LANE_DRIVE_UNKNOW = 0,
 ITC_LANE_DRIVE_UP_TO_DOWN = 1,
 ITC_LANE_DRIVE_DOWN_TO_UP = 2
}ITC_LANE_CAR_DRIVE_DIRECT

ITC_LANE_DRIVE_UNKNOW

未知

ITC_LANE_DRIVE_UP_TO_DOWN

从上往下行驶(下行)

ITC_LANE_DRIVE_DOWN_TO_UP

从下往上行驶(上行)

byRes

保留,置为0

struLaneLine

车道线

struPlateRecog

牌识区域

byRes1

保留,置为0

7.171 NET_IPC_POST_HVT_PARAM:IPC 混行卡口触发参数

struct{

BYTE byEnable;
BYTE byLaneNum;
BYTE byRes[62];

NET_ITC_LINE struLaneBoundaryLine;

NET ITC PLATE RECOG PARAM struPlateRecog;

NET IPC LANE HVT PARAM struLaneParam[MAX_ITC_LANE_NUM];

char szSceneName[NAME_LEN];

BYTE byRes1[408];

}NET_IPC_POST_HVT_PARAM,*LPNET_IPC_POST_HVT_PARAM;

Members

byEnable

是否启用: 0- 不启用, 1- 启用

byLaneNum

识别的车道个数

byRes

保留

struLaneBoundaryLine

车道边界线(最左边车道的左边界线)

struPlateRecog

车牌识别参数

struLaneParam

车道参数

szSceneName

场景名称

byRes1

保留

7.172 NET_ITC_ACCESS_DEVINFO_PARAM_UNION:RS485 关联接入设备配置

struct{

BYTE uLen[128];

```
NET_ITC_RADAR_INFO_PARAM struRadarInfoParam;
}NET_ITC_ACCESS_DEVINFO_PARAM_UNION, *LPNET_ITC_ACCESS_DEVINFO_PARAM_UNION;
Members
uLen
联合体大小,128 字节
struRadarInfoParam
雷达参数配置
```

7.173 NET_ITC_EPOLICE_IOTL_PARAM: 电警 IO 红绿灯参数

7.174 NET_ITC_EPOLICE_LANE_PARAM: 电警 RS485 车检器触发模式车道参数

```
struct{
  BYTE
                                          byEnable;
  BYTE
                                          byRelatedDriveWay;
  WORD
                                          wDistance;
  BYTE
                                          byRecordEnable;
  BYTE
                                          byRecordType;
  BYTE
                                          byPreRecordTime;
  BYTE
                                          byRecordDelayTime;
  BYTE
                                          byRecordTimeOut;
  BYTE
                                          bySignSpeed;
  BYTE
                                          bySpeedLimit;
  BYTE
                                          byOverlayDriveWay;
  NET ITC SERIAL INFO
                                          struSerialInfo;
  BYTE
                                          byRelatedIOOut[MAX_IOOUT_NUM];
  BYTE
                                          byFlashMode;
  BYTE
                                          bySerialType;
```

BYTE byRelatedIOOutEx;

BYTE bySnapPicPreRecord;

<u>NET_ITC_PLATE_RECOG_REGION_PARAM</u> struPlateRecog[MAX_LANEAREA_NUM];

BYTE byBigCarSignSpeed;
BYTE byBigCarSpeedLimit;
BYTE byRedTrafficLightChan;
BYTE byYellowTrafficLightChan;
BYTE byRelaLaneDirectionType;

BYTE byRes3[11];

}NET_ITC_EPOLICE_LANE_PARAM,*LPNET_ITC_EPOLICE_LANE_PARAM;

Members

byEnable

是否启用: 0- 不启用, 1- 启用

by Related Drive Way

关联的车道号

wDistance

线圈距离 (保留),单位:厘米

byRecordEnable

闯红灯周期录像标志: 0- 不录像, 1- 录像

byRecordType

闯红灯录像类型: 0- 预录, 1- 延时录像

byPreRecordTime

闯红灯录像片段预录时间(默认0),单位:秒

by Record Delay Time

闯红灯录像片段延时时间(默认0),单位:秒

byRecordTimeOut

闯红灯周期录像超时时间,单位:秒

bySignSpeed

标志限速(卡式电警模式有效),单位: km/h

bySpeedLimit

限速值(卡式电警模式有效),单位: km/h

byOverlayDriveWay

OSD 叠加的车道号

struSerialInfo

车检器参数

byRelatedIOOut

关联的 IO 输出口,可以同时关联多个

byFlashMode

闪光灯闪烁模式: 0- 同时闪, 1- 轮流闪

bySerialType

车检器类型: 0-私有车检器, 1-私有 OEM 车检器, 2-其他车检器

byRelatedIOOutEx

关联的 IO 输出口,按位表示输出口号: bit0 表示 IO 输出口 1, bit1 表示 IO 输出口 2,以此类推。值: 0-不关联,1-关联,最多支持关联到 8 个 IO 输出口(兼容 byRelatedIOOut 字段)

bySnapPicPreRecord

抓拍图片预录时间点: 0- 默认值(第二张图片),1- 第一张图片,2- 第二张图片,3- 第三张图片 struPlateRecog

牌识区域参数

byBigCarSignSpeed

大车标志限速,单位 km/h

byBigCarSpeedLimit

大车限速值,单位 km/h

byRedTrafficLightChan

红灯通道号: 1~16(红绿灯检测器)

by Yellow Traffic Light Chan

黄灯通道号:1~16(红绿灯检测器)

byRelaLaneDirectionType

关联车道方向类型,定义详见 ITC RELA LANE DIRECTION TYPE

byRes3

保留

Remarks

该结构体中的参数 byRelatedDriveWay 为关联车道号,是和车检器中的车道关联匹配,实现抓拍。byOverlayDriveWay 为叠加车道号,为实际车道号。

当 bySerialType 为 0 时,struSerialInfo 参数有效。

7.175 NET_ITC_EPOLICE_RS485_PARAM:电警/卡式电警 RS485 车检器

触发参数

struct{

BYTE byRelatedLaneNum;
BYTE byTrafficLightSignalSrc;

BYTE byRes1[2];
NET ITC PLATE RECOG PARAM struPlateRecog;

NET ITC EPOLICE LANE PARAM struLane[MAX_ITC_LANE_NUM];

BYTE byRes[32];

}NET_ITC_EPOLICE_RS485_PARAM,*LPNET_ITC_EPOLICE_RS485_PARAM;

Members

byRelatedLaneNum

关联的车道个数

 $by {\it Traffic Light Signal Src}$

交通灯信号来源: 0- 车检器, 1- 红绿灯检测器

byRes1

保留

struPlateRecog

牌识参数

struLane

关联的车道参数

byRes

保留

Remarks

在交通灯信号来源为红绿灯检测器时,NET_ITC_EPOLICE_LANE_PARAM 中关联红灯通道号和关联黄灯通道号有效;在交通灯信号来源为车检器时,关联红灯通道号和关联黄灯通道号无效。

7.176 NET ITC EXCEPTION:智能交通摄像机异常参数

struct{

DWORD dwSize;

NET ITC HANDLEEXCEPTION struSnapExceptionType[MAX EXCEPTIONNUM V30];

}NET_ITC_EXCEPTION,*LPNET_ITC_EXCEPTION;

Members

dwSize

结构体大小

struSnapExceptionType

异常信息处理方式,每位数组表示一种异常:

数组0一硬盘出错

数组 1-网线断

数组 2-IP 地址冲突

数组3一车检器异常

数组 4一信号灯检测器异常

7.177 NET_ITC_FLASHOUT_INFO:同步输出参数

struct{

BYTE byFlashOutIndex[MAX_IOOUT_NUM];

BYTE byRes[44];

}NET_ITC_FLASHOUT_INFO,*LPNET_ITC_FLASHOUT_INFO;

Members

byFlashOutIndex

同步输出号

byRes

保留

7.178 NET ITC FTP CFG:智能交通摄像机 FTP 配置

 $struct\{\\$

DWORD dwSize; BYTE byEnable;

BYTE byAddressType; WORD wFTPPort;

```
union{
       struct{
         BYTE
                          szDomain[MAX_DOMAIN_NAME];
         BYTE
                          byRes1[80];
      }struDomain;
       struct{
         NET DVR IPADDR
                           strulp;
      }struAddrIP;
  }unionServer;
  BYTE
                          szUserName[NAME_LEN];
  BYTE
                          szPassWORD[PASSWD LEN];
  BYTE
                          byRes4;
  BYTE
                          byDirLevel;
  BYTE
                          byIsFilterCarPic;
  BYTE
                          byUploadDataType;
                          struPicNameRule;
  NET DVR PICTURE NAME
  BYTE
                          byTopDirMode;
  BYTE
                          bySubDirMode;
  BYTE
                          byThreeDirMode;
  BYTE
                          byFourDirMode;
  BYTE
                          szPicNameCustom[MAX CUSTOMDIR LEN];
  BYTE
                          szTopCustomDir[MAX_CUSTOMDIR_LEN];
  BYTE
                          szSubCustomDir[MAX_CUSTOMDIR_LEN];
  BYTE
                          szThreeCustomDir[MAX_CUSTOMDIR_LEN];
  BYTE
                          szFourCustomDir[MAX CUSTOMDIR LEN];
  BYTE
                          byRes3[900];
}NET_ITC_FTP_CFG,*LPNET_ITC_FTP_CFG;
Members
dwSize
      结构体大小
byEnableFTP
      是否启动 ftp 上传功能: 0- 否, 1- 是
byAddressType
      地址类型: 0- 实际 ipv4/ipv6 地址, 1- 域名
wFTPPort
      FTP 端口号
unionServer 为FTP 地址联合体
      szDomain
           服务器地址,域名
      byRes1
           保留,置为0
      strulp
           IPv4 或者 IPv6 地址, 144 字节
szUserName
```

用户名

szPassWORD

密码

byRes4

保留,置为0

byDirLevel

目录等级: 0- 不使用目录结构,直接保存在根目录; 1- 使用 1 级目录; 2- 使用 2 级目录; 3- 使用 3 级目录; 4-使用 4 级目录

byIsFilterCarPic

车牌小图是否上传: 0- 上传, 1- 不上传

byUploadDataType

上传数据类型: 0- 全部, 1- 卡口, 2- 违章 (单 FTP 时默认选择全部, 双 FTP 时支持卡口、违章的选择)

struPicNameRule

图片命名规则

byTopDirMode

一级目录: 0x1- 使用设备名, 0x2- 使用设备号, 0x3- 使用设备 ip 地址, 0x4- 使用监测点, 0x5- 使用时间(年月), 0x6- 使用时间(年月日), 0x7- 违规类型, 0x8- 方向, 0x9- 地点, 0xa- 通道名, 0xb- 通道号, 0xc-车道号, 0xff- 自定义

bySubDirMode

二级目录: 0x1- 使用设备名, 0x2- 使用设备号, 0x3- 使用设备 ip 地址, 0x4- 使用监测点, 0x5- 使用时间(年月), 0x6- 使用时间(年月日), 0x7- 违规类型, 0x8- 方向, 0x9- 地点, 0xa- 通道名, 0xb- 通道号, 0xc-车道号, 0xff- 自定义

byThreeDirMode

三级目录: 0x1- 使用设备名, 0x2- 使用设备号, 0x3- 使用设备 ip 地址, 0x4- 使用监测点, 0x5- 使用时间(年月), 0x6- 使用时间(年月日), 0x7- 违规类型, 0x8- 方向, 0x9- 地点, 0xa- 通道名, 0xb- 通道号, 0xc-车道号, 0xff- 自定义

byFourDirMode

四级目录: 0x1- 使用设备名, 0x2- 使用设备号, 0x3- 使用设备 ip 地址, 0x4- 使用监测点, 0x5- 使用时间(年月), 0x6- 使用时间(年月日), 0x7- 违规类型, 0x8- 方向, 0x9- 地点, 0xa- 通道名, 0xb- 通道号, 0xc-车道号, 0xff- 自定义

szPicNameCustom

图片命名自定义,当文件命名规则选择 PICNAME ITEM CUSTOM 时生效

szTopCustomDir

自定义一级目录

szSubCustomDir

自定义二级目录

szThreeCustomDir

自定义三级目录

szFourCustomDir

自定义四级目录

byRes3

保留,置为0

See Also

设备是否支持该 FTP 配置通过能力集 NET DVR SNAP ABILITY 中的 bySupport&0x40 进行判断。

7.179 NET_ITC_FTP_TYPE_COND:FTP 参数配置条件结构体

```
struct{
    DWORD dwChannel;
    BYTE byWorkMode;
    BYTE byRes[7];
}NET_ITC_FTP_TYPE_COND,*LPNET_ITC_FTP_TYPE_COND;

Members

dwChannel
    设备通道号

byWorkMode
    FTP 模式: 0- FTP1(主 FTP), 1- FTP2(备 FTP)

byRes

    保留
```

7.180 NET_ITC_HANDLEEXCEPTION:智能交通摄像机报警和异常处理参数

```
struct{
 DWORD dwHandleType;
 BYTE
          byEnable;
 BYTE
          byRes;
 WORD
         wDuration;
 BYTE
          by Alarm Out Triggered [\emph{MAX\_ITC\_EXCEPTIONOUT}];
 BYTE
          byRes1[8];
}NET_ITC_HANDLEEXCEPTION, *LPNET_ITC_HANDLEEXCEPTION;
Members
dwHandleType
      处理方式,异常处理方式的"或"结果:
      0x04: 上传中心
      0x08: 触发报警输出(继电器输出)
byEnable
      是否启用异常处理: 0- 不启用, 1- 启用
byRes
      保留
wDuration
```

byRelAlarmOut

持续时间,单位: s

报警触发的输出通道,数组下标表示通道号,0-不触发,1-触发输出 例如,byRelAlarmOut[0]==1 表示触发输出通道 1,byRelAlarmOut[1]==1 表示触发输出通道 2,依次 类推

byRes1

保留

Remarks

触发报警输出功能,目前只有型号带 "-K"的智能交通摄像机(例如,DS-2CD9131-KS)支持(支持一个继电器),非-K设备不支持。

7.181 NET ITC ICR ALGAOTOSWITCH PARAM:ICR 算法自动参数

struct{

BYTE byDetectThreshold;

BYTE byAbBrightnessThreshold;

BYTE byRes[154];

NET ITC ICR ALGAOTOSWITCH PARAM, *LPNET ITC ICR ALGAOTOSWITCH PARAM;

Members

byDetectThreshold

检测阈值(交通灯滤光片切换等级阈值设置,高于阈值打开滤光片),范围: [0,100], 默认: 50 byAbBrightnessThreshold

异常亮度阈值(ICR 自动切换后前后亮度统计差值,若比该检测阈值大,则认为检测异常;若比该值小,则认为检测正常),范围:[0,100],默认:12

byRes

保留,置为0

7.182 NET_ITC_ICR_AOTOSWITCH_PARAM:ICR 自动切换参数

struct{

BYTE byICRPreset[MAX_ICR_NUM];

BYTE byICRAutoSwitch;

BYTE byRes[147];

NET ITC ICR AOTOSWITCH PARAM, *LPNET ITC ICR AOTOSWITCH PARAM;

Members

byICRPreset

ICR 预置点,数组下标表示预置点号(即下标 0~7 对应 1~8,实际支持预置点个数通过能力集获取),取值范围: [0,100],值越大 ICR 滤光面积越大

byICRAutoSwitch

ICR 自动切换加阈值选项,取值范围: [0,100]

byRes

保留,置为0

Remarks

设备支持的 ICR 预置点(滤光片偏移点)个数通过能力集 <u>NET_DVR_SNAP_ABILITY</u> 获取,对应其中参数: byICRPresetNum

7.183 NET_ITC_ICR_MANUALSWITCH_PARAM:ICR 手动切换参数

struct{

BYTE byICRPreset[MAX_ICR_NUM];

BYTE bySubSwitchMode;

BYTE byRes[147];

}NET_ITC_ICR_MANUALSWITCH_PARAM, *LPNET_ITC_ICR_MANUALSWITCH_PARAM;

Members

byICRPreset

ICR 预置点,设备支持的 ICR 预置点个数大于 0 时有效,数组下标表示预置点号(即下标 0~7 对应 1~8,实际支持预置点个数通过能力集获取),取值范围: [0,100],值越大 ICR 滤光面积越大 bvSubSwitchMode

1- 白天, 2- 晚上,设备支持的 ICR 预置点个数为 0 时有效

byRes

保留,置为0

See Also

设备支持的 ICR 预置点(滤光片偏移点)个数通过能力集 <u>NET_DVR_SNAP_ABILITY</u>获取,对应其中参数: byICRPresetNum。

7.184 NET_ITC_ICR_PARAM_UNION:ICR 切换配置联合体

struct{

BYTE uLen[156];

NET ITC ICR AOTOSWITCH PARAM strulCRAutoSwitch;

NET ITC ICR MANUALSWITCH PARAM strulCRManualSwitch;

NET ITC ICR TIMESWITCH PARAM strulCRTimeSwitch;

NET ITC ICR ALGAOTOSWITCH PARAM strlCRAlgorithmAutoSwitch;

}NET_ITC_ICR_PARAM_UNION, *LPNET_ITC_ICR_PARAM_UNION;

Members

uLen

联合体大小,156字节

struICRAutoSwitch

自动切换参数

struICRManualSwitch

手动切换参数

struICRTimeSwitch

定时切换参数

struICRTimeSwitch

算法自动参数

7.185 NET_ITC_ICR_TIMESWITCH_PARAM:ICR 定时切换参数

struct{

<u>NET_ITC_ICRTIMECFG</u> struAutoCtrlTime[MAX_TIMESEGMENT_V30];

BYTE byICRPreset[MAX_ICR_NUM];

BYTE byRes[20];

}NET_ITC_ICR_TIMESWITCH_PARAM, *LPNET_ITC_ICR_TIMESWITCH_PARAM;

Members

struAutoCtrlTime

自动切换时间段(现在支持 4 组,其他 4 组预留)

byICRPreset

ICR 预置点,设备支持的 ICR 预置点个数大于 0 时有效,数组下标表示预置点号(即下标 $0\sim7$ 对应 $1\sim8$,实际支持预置点个数通过能力集获取),取值范围: [0,100],值越大 ICR 滤光面积越大

byRes

保留,置为0

See Also

设备支持的ICR 预置点(滤光片偏移点)个数和支持的ICR 的时间段数通过能力集 <u>NET_DVR_SNAP_ABILITY</u> 获取,分别对应其中参数: bylCRPresetNum 和 bylCRTimeSlot。

7.186 NET_ITC_ICRCFG:ICR 切换配置参数

struct{

DWORD dwSize;

BYTE bySwitchType;
BYTE byRes[3];
NET ITC ICR PARAM UNION ulCRParam;

}NET_ITC_ICRCFG, *LPNET_ITC_ICRCFG;

Members

dwSize

结构体大小

bySwitchType

切换模式: 1- 自动切换, 2- 手动切换, 3- 定时切换

byRes

保留,置为0

uICRParam

ICR 切换配置联合体

7.187 NET ITC ICRTIMECFG:ICR 定时切换时间参数

struct{

NET DVR SCHEDTIME struTime;

BYTE byAssociateRresetNo;

BYTE bySubSwitchMode;

BYTE byRes[10];

}NET_ITC_ICRTIMECFG, *LPNET_ITC_ICRTIMECFG;

Members

struTime

自动切换时间段,XX时XX分至XX时XX分

by Associate Rreset No

预置点号(设备支持的ICR 预置点个数大于0时可设): 1~8,0代表无

bySubSwitchMode

切换模式(设备支持的 ICR 预置点个数等于 0 时有效): 0- 无, 1- 白天, 2- 晚上

bvRes

保留,置为0

7.188 NET_ITC_INTERVAL_PARAM:抓拍间隔参数

struct{

BYTE byIntervalType;

BYTE byRes1[3];

WORD winterval[MAX_INTERVAL_NUM];

BYTE byRes[8];

}NET_ITC_INTERVAL_PARAM,*LPNET_ITC_INTERVAL_PARAM;

Members

byIntervalType

间隔类型 (默认按时间): 0- 时间起效, 1- 距离起效

byRes1

保留

wInterval

连拍间隔时间(单位: ms)或连拍间隔距离(单位: 分米)。当 byIntervalType 为 0 时,表示间隔时间,当 byIntervalType 为 1 时,表示距离

byRes

保留

7.189 NET_ITC_IO_LIGHT_PARAM:IO 接入信号灯参数

struct{

BYTE byRes[8];

}NET_ITC_IO_LIGHT_PARAM,*LPNET_ITC_IO_LIGHT_PARAM;

Members

struIOLight

单个 IO 接入信号灯参数

byRes

保留

7.190 NET_ITC_IOOUT_PARAM:IO 输出配置参数

```
struct{
 DWORD
          dwSize;
 BYTE
          byDefaultStatus;
 BYTE
          byloOutStatus;
 BYTE
          byMode;
 BYTE
          byIOWorkMode;
 DWORD
          dwTimeDelay;
 WORD
          wAheadTime;
 BYTE
          byFreqMulti;
 BYTE
          byDutyRate;
 BYTE
          byDetectBrightness;
 BYTE
          byBrightnessThreld;
 BYTE
          byFlashLightEnable;
 BYTE
          byStartHour;
 BYTE
          byStartMinute;
 BYTE
          byEndHour;
 BYTE
          byEndMinute;
 BYTE
          byAutoPlateBrightness;
 BYTE
          byRes[8];
}NET_ITC_IOOUT_PARAM, *LPNET_ITC_IOOUT_PARAM;
Members
dwSize
      大小
byDefaultStatus
      IO 默认状态: 0- 低电平, 1- 高电平
byloOutStatus
      IO 起效时状态: 0- 低电平, 1- 高电平, 2- 脉冲
byMode
      闪光灯工作方式,按位表示: bit0-视频, bit1-卡口, bit2-违章, 值: 0-表示工作, 1-表示不工作。
byIOWorkMode
      IO 输出口工作模式: 0- 闪光灯, 1- 偏振镜, 2- 常亮灯
dwTimeDelay
      IO 有效持续时间,单位: us
wAheadTime
      输出 IO 提前时间,单位: us
byFreqMulti
      倍频,数值范围: [1,15]
byDutyRate
      占空比,取值范围: [0,40%]
byDetectBrightness
```

自动检测亮度使能闪光灯/偏振镜/常亮灯: 0- 不检测, 1- 检测

byBrightnessThreld

使能闪光灯/偏振镜/常亮灯亮度阈值(byDetectBrightness 为 1 时有效),范围: [0,100],高于阈值闪 byFlashLightEnable

设置闪光灯/偏振镜/常亮灯时间使能: 0- 关, 1- 开

byStartHour

开始时间(byFlashLightEnable 为 1 时有效): 小时,取值范围: [0,23]

byStartMinute

开始时间(byFlashLightEnable 为 1 时有效):分,取值范围:[0,59]

byEndHour

结束时间(byFlashLightEnable 为 1 时有效): 小时,取值范围: [0,23]

byEndMinute

结束时间(byFlashLightEnable 为 1 时有效):分,取值范围:[0,59]

byAutoPlateBrightness

车牌亮度自动使能闪光灯: 0- 不启用, 1- 启用。启用了该功能后,时控和光控都将不起作用。

byRes 保留,置为 0

Remarks

各个模式下各个车道配置的关联 IO,IO 根据 byMode 参数处于何种工作状态,例如:byMode 为 0 表示视频、卡口、违章情况下都工作。

7.191 NET ITC LANE HVT PARAM V50:混行卡口车道参数

struct{ **BYTE** byLaneNO; **BYTE** byFlashMode; **BYTE** bySignSpeed; **BYTE** bySpeedLimit; **BYTE** bySignLowSpeed; **BYTE** byLowSpeedLimit; **BYTE** byBigCarSignSpeed; **BYTE** byBigCarSpeedLimit; **BYTE** byBigCarSignLowSpeed; **BYTE** byBigCarLowSpeedLimit; **BYTE** bySnapTimes; **BYTE** byDriveLineSnapTime; **BYTE** byHighSpeedSnapTime; **BYTE** byLowSpeedSnapTime; **BYTE** byBanSnapTime; **BYTE** byReverseSnapTime; **BYTE** byRelatedDriveWay; **BYTE** byLaneType; **BYTE** byRelaLaneDirectionType; **BYTE** byRes1[29]; **DWORD** dwVioDetectType;

DWORD dwRelatedIOOut;

NET_ITC_LINE struTrigLine;

NET_ITC_LINE struLineLeft;

NET_ITC_POLYGON struPlateRecog;

NET ITC LANE LOGIC PARAM struLane;

NET ITC INTERVAL PARAM struInterval;

BYTE byRes2[280];

}NET_ITC_LANE_HVT_PARAM_V50,*LPNET_ITC_LANE_HVT_PARAM_V50;

Members

byLaneNO

关联的车道号(用于叠加和上传),取值范围: 1~255

byFlashMode

闪光灯闪烁模式: 0- 同时闪, 1- 轮流闪

bySignSpeed

小车标志限高速,单位: km/h

bySpeedLimit

小车限高速值,单位: km/h

bySignLowSpeed

小车标志限低速,单位: km/h

byLowSpeedLimit

小车限低速值,单位: km/h

byBigCarSignSpeed

大车标志限高速,单位: km/h(新交规)

$by Big {\it CarSpeedLimit}$

大车限高速值,单位: km/h(新交规)

byBigCarSignLowSpeed

大车标志限低速,单位: km/h

$by {\it Big Car Low Speed Limit}$

大车限低速值,单位: km/h

bySnapTimes

卡口抓拍张数,取值范围: 1~3

byDriveLineSnapTime

压线抓拍张数,取值范围: 1~3

byHighSpeedSnapTime

超高速抓拍张数,取值范围: 1~3

byLowSpeedSnapTime

超低速抓拍张数,取值范围: 1~3

byBanSnapTime

违反禁令抓拍张数,取值范围: 1~3

byReverseSnapTime

逆行抓拍张数,取值范围: 1~3

byRelatedDriveWay

关联车道号,用于匹配车检器

byLaneType

车道类型: 0- 未配置, 1- 高速公路, 2- 城市快速路, 0xff- 其他道路

byRelaLaneDirectionType

关联车道方向类型,类型详见 <u>ITC RELA LANE DIRECTION TYPE</u>。该参数为车道方向参数,与关联车道号 byRelatedDriveWay 对应,确保车道唯一性

byRes1

保留,置为0

dwVioDetectType

违规检测类型,按位表示,取值: 0-不启用,1-启用参考,类型详见 <u>ITC_VIOLATION_DETECT_TYPE</u> dwRelatedIOOut

关联的 IO 输出口(可以同时关联多个),按位表示 IO 输出口,第 0 位表示 IO 输出口 1,以此类推,取值: 0-不关联,1-关联

struTrigLine

触发线,目前仅使用第一个车道

struLineLeft

左车道线

struPlateRecog

牌识区域

struLane

车道属性,其中 byUseageType 和 byCarDriveDirect 有效

struInterval

抓拍间隔参数

byRes2

保留,置为0

7.192 NET_ITC_LANE_IMT_PARAM:智慧监控车道参数

struct{

BYTE byLaneNO;

BYTE byRelaLaneDirectionType;

BYTE byRes[146];

NET ITC LINE struLaneLine;
BYTE byRes1[256];

}NET_ITC_LANE_IMT_PARAM,*LPNET_ITC_LANE_IMT_PARAM;

Members

byLaneNO

叠加车道号

by Rela Lane Direction Type

关联车道方向类型,类型详见 <u>ITC RELA LANE DIRECTION TYPE</u>。该参数为车道方向参数,与关联车道号 byRelatedDriveWay 对应,确保车道唯一性

byRes

保留,置为0

struLaneLine

车道线

byRes1

保留,置为0

7.193 NET_ITC_LANE_LOGIC_PARAM:车道属性参数

```
struct{
 BYTE
         byUseageType;
 BYTE
         byDirectionType;
 BYTE
         byCarDriveDirect;
 BYTE
         byRes[33];
}NET_ITC_LANE_LOGIC_PARAM, *LPNET_ITC_LANE_LOGIC_PARAM;
Members
byUseageType
      车道用途类型,定义详见 ITC LANE USEAGE TYPE
byDirectionType
      车道方向类型,定义详见 ITC LANE DIRECTION TYPE
byCarDriveDirect
      车辆行驶方向,具体定义如下:
       enum _ITC_LANE_CAR_DRIVE_DIRECT_{
        ITC_LANE_DRIVE_UNKNOW
        ITC_LANE_DRIVE_UP_TO_DOWN = 1,
        ITC_LANE_DRIVE_DOWN_TO_UP = 2
      }ITC_LANE_CAR_DRIVE_DIRECT
      ITC_LANE_DRIVE_UNKNOW
      未知
      ITC_LANE_DRIVE_UP_TO_DOWN
      从上往下行驶(下行)
      ITC_LANE_DRIVE_DOWN_TO_UP
      从下往上行驶(上行)
byRes
      保留,置为0
```

7.194 NET_ITC_LANE_MPR_PARAM:多帧检测模式车道参数

```
struct{

BYTE byLaneNO;

union{

BYTE uLen[4];

struct{

BYTE byIONo;

BYTE byTriggerType;

BYTE byRes1[2];

}struIO;

struct{
```

```
BYTE
                   byRelateChan;
      BYTE
                   byRes2[3];
    }struRS485;
 }uTssParamInfo;
 BYTE
                  byCarDriveDirect;
 BYTE
                  byRes[58];
 NET ITC LINE
                  struLaneLine;
 NET ITC POLYGON
                   struPlateRecog;
 BYTE
                   byRelaLaneDirectionType;
 BYTE
                  byRes1[255];
}NET_ITC_LANE_MPR_PARAM,*LPNET_ITC_LANE_MPR_PARAM;
Members
byLaneNO
      车道号
uTssParamInfo 为触发参数信息联合体
  uLen
        联合体大小,4个字节
  strulO 为 IO 触发方式相关参数结构体
  byIONo
        关联的 IO 号,从1开始
  byTriggerType
        触发模式: 0- 下降沿, 1- 上升沿
  byRes1
        保留,置为0
  struRS485 为 RS485 触发方式相关参数结构体
  byRelateChan
        关联车检器通道号,取值范围: [1,16]
  byRes2
        保留,置为0
byCarDriveDirect
      车辆行驶方向,具体定义如下:
       enum ITC LANE CAR DRIVE DIRECT {
        ITC_LANE_DRIVE_UNKNOW
                                   = 0,
        ITC_LANE_DRIVE_UP_TO_DOWN = 1,
        ITC_LANE_DRIVE_DOWN_TO_UP = 2
      }ITC_LANE_CAR_DRIVE_DIRECT
      ITC LANE DRIVE UNKNOW
      未知
      ITC_LANE_DRIVE_UP_TO_DOWN
      从上往下行驶(下行)
      ITC_LANE_DRIVE_DOWN_TO_UP
      从下往上行驶(上行)
byRes
      保留
```

struLaneLine

车道线

struPlateRecog

牌识区域参数

byRelaLaneDirectionType

关联车道方向类型,定义详见 ITC RELA LANE DIRECTION TYPE

byRes1

保留

Remarks

NET_ITC_POST_MPR_PARAM 中 bySourceType 为 1 时联合体 uTssParamInfo 中 strulO 有效,bySourceType 为 2 时联合体 uTssParamInfo 中 struRS485 有效。

7.195 NET_ITC_LANE_NOCOMITY_PEDESTRIAN_PARAM:不礼让行人触

发模式车道参数

struct{

BYTE byRelatedDriveWay;

BYTE byRelaLaneDirectionType;

BYTE byPedestriansNum;
BYTE byVehicleSpeed;
DWORD dwVehicleInterval;
BYTE byPedesDetRule;

BYTE byRes[3];

NET_ITC_LINE struLaneLine;

NET_ITC_LINE struStopLine;

NET_ITC_POLYGON struPlateRecog;

BYTE byRes1[280];

}NET_ITC_LANE_NOCOMITY_PEDESTRIAN_PARAM,*LPNET_ITC_LANE_NOCOMITY_PEDESTRIAN_PARAM;

Members

byRelatedDriveWay

关联的车道号

byRelaLaneDirectionType

关联车道方向类型

byPedestriansNum

行人数量阈值,取值范围: 1~100,默认值: 1

byVehicleSpeed

车辆速度阈值,取值范围: 1~100,默认值: 0

dwVehicleInterval

跟车检测阈值,取值范围:0~65536,默认值:0

byPedesDetRule

行人检测规则,代表行人检测区域中行人行驶方向: 0- 向左,1- 向右

byRes

保留,置为0

struLaneLine

车道线

struStopLine

停止线

struPlateRecog

牌识区域

byRes1

保留,置为0

7.196 NET_ITC_LANE_PARAM:车道参数

struct{

BYTE byEnable;

BYTE byRelatedDriveWay;

WORD wDistance;

WORD wTrigDelayTime;
BYTE bySpeedCapEn;
BYTE bySignSpeed;
BYTE bySpeedLimit;
BYTE bySnapTimes;

BYTE byOverlayDriveWay;

NET ITC INTERVAL PARAM struInterval;

BYTE byRelatedIOOut[MAX_IOOUT_NUM];

BYTE byFlashMode;
BYTE byCartSignSpeed;
BYTE byCartSpeedLimit;
BYTE byRelatedIOOutEx;

<u>NET_ITC_PLATE_RECOG_REGION_PARAM</u> struPlateRecog[*MAX_LANEAREA_NUM*];

BYTE byLaneType;
BYTE byUseageType;

BYTE byRelaLaneDirectionType;

BYTE byLowSpeedLimit;

BYTE byBigCarLowSpeedLimit;
BYTE byLowSpeedCapEn;
BYTE byEmergencyCapEn;

BYTE byRes[9];

}NET_ITC_LANE_PARAM,*LPNET_ITC_LANE_PARAM;

Members

byEnable

是否启用该车道: 0- 不启用, 1- 启用

byRelatedDriveWay

关联的车道号

wDistance

线圈距离, 计算速度

wTrigDelayTime

触发延迟时间 (默认 200), 单位: 毫秒

byTrigDelayDistance

触发延迟距离 (默认 0),单位:分米

bySpeedCapEn

是否启用超速抓拍: 0- 否, 1- 是

bySignSpeed

标志限速,单位: km/h

bySpeedLimit

限速值,单位: km/h

bySnapTimes

抓拍次数 (默认 1): 0- 不抓拍; 非 0- 连拍次数, 最大 5

byOverlayDriveWay

OSD 叠加的车道号

struInterval

抓拍间隔参数

byRelatedIOOut

关联的 IO 输出口,可以同时关联多个

byFlashMode

闪光灯闪烁模式: 0- 同时闪, 1- 轮流闪

byCartSignSpeed

标志限速(大车),单位: km/h

byCartSpeedLimit

限速值(大车),单位: km/h

byRelatedIOOutEx

关联的 IO 输出口,按位表示输出口号: bit0 表示 IO 输出口 1, bit1 表示 IO 输出口 2,以此类推。值: 0-不关联,1-关联,最多支持关联到 8 个 IO 输出口(兼容 byRelatedIOOut 字段)

struPlateRecog

车道牌识区域参数

byLaneType

车道类型: 0- 未配置, 1- 高速公路, 2- 城市快速路, 0xff- 其他道路

byUseageType

车道用途类型,定义详见 ITC LANE USEAGE TYPE

byRelaLaneDirectionType

关联车道方向类型,定义详见 ITC RELA LANE DIRECTION TYPE

byLowSpeedLimit

小车限低速值,单位: km/h

byBigCarLowSpeedLimit

大车限低速值,单位: km/h

byLowSpeedCapEn

是否启用低速抓拍: 0- 否, 1- 是

byEmergencyCapEn

是否启用应急车道抓拍: 0- 否, 1- 是

byRes

保留

Remarks

该结构体中的参数 byRelatedDriveWay 为关联车道号,是和车检器中的车道关联匹配,实现抓拍。byOverlayDriveWay 为叠加车道号,为实际车道号。原 bySignSpeed 和 bySpeedLimit 为小车适用,卡口模式一般使用于高速场景,新增 byCartSignSpeed 和 byCartSpeedLimit 为大车适用,电警模式下不需要区分大小车。

7.197 NET ITC LANE PRS PARAM:视频检测触发模式车道参数

```
struct{
 BYTE
                    byLaneNO;
 union{
          BYTE
                    uLen[4];
          struct{
          BYTE
                    byIONo;
          BYTE
                    byTriggerType;
          BYTE
                    byRes1[2];
          }struIO;
          struct{
          BYTE
                    byRelateChan;
          BYTE
                    byRes2[3];
          }struRS485;
 }uTssParamInfo;
 BYTE
                    byRes[59];
 NET ITC LINE
                    struLaneLine;
 NET ITC POLYGON
                    struPlateRecog;
 BYTE
                    byRelaLaneDirectionType;
 BYTE
                    byRes1[255];
}NET_ITC_LANE_PRS_PARAM,*LPNET_ITC_LANE_PRS_PARAM;
Members
byLaneNO
      车道号
uTssParamInfo 为触发参数信息联合体
  uLen
        联合体大小,4个字节
  strulO 为 IO 触发方式相关参数结构体
  byIONo
         关联的 IO 号,从1开始
  byTriggerType
        触发模式: 0- 下降沿, 1- 上升沿
  byRes1
         保留,置为0
  struRS485 为 RS485 触发方式相关参数结构体
  byRelateChan
```

关联车检器通道号,取值范围: [1,16]

byRes2

保留,置为0

byRes

保留

struLaneLine

车道线

struPlateRecog

牌识区域

byRelaLaneDirectionType

关联车道方向类型,定义详见 ITC RELA_LANE_DIRECTION_TYPE

byRes1

保留

NET_ITC_LANE_VIDEO_EPOLICE_PARAM:视频电警触发模式车道 7.198

参数

struct{ **BYTE** byLaneNO; **BYTE** bySensitivity; **BYTE** byEnableRadar; **BYTE** byRes1; NET ITC LANE LOGIC PARAM struLane; NET ITC VIOLATION DETECT PARAM struVioDetect; NET ITC VIOLATION DETECT LINE struLine; **NET ITC POLYGON** struPlateRecog; **BYTE** byRecordEnable; **BYTE** byRecordType; BYTE byPreRecordTime; **BYTE** byRecordDelayTime; **BYTE** byRecordTimeOut; **BYTE** byCarSpeedLimit; **BYTE** byCarSignSpeed; **BYTE** bySnapPicPreRecord; NET ITC INTERVAL PARAM struInterval; **BYTE** byRes[36]; }NET_ITC_LANE_VIDEO_EPOLICE_PARAM, *LPNET_ITC_LANE_VIDEO_EPOLICE_PARAM; **Members byLaneNO** 关联的车道号

bySensitivity

线圈灵敏度,取值范围: [1,100]

byEnableRadar

启用雷达测试: 0- 不启用, 1- 启用

byRes1

保留,置为0

struLane

车道参数

struVioDetect

违规检测参数

struLine

违规检测线

struPlateRecog

牌识区域参数

byRecordEnable

闯红灯周期录像标志: 0-不录像, 1-录像

byRecordType

闯红灯录像类型: 0-预录, 1-延时录像

byPreRecordTime

闯红灯录像片段预录时间(默认0),单位:秒

byRecordDelayTime

闯红灯录像片段延时时间(默认0),单位:秒

byRecordTimeOut

闯红灯周期录像超时时间,单位:秒

byCarSpeedLimit

车速限制值,单位: km/h

byCarSignSpeed

标志限速,单位: km/h

bySnapPicPreRecord

抓拍图片预录时间点: 0- 默认值(第二张图片),1- 第一张图片,2- 第二张图片,3- 第三张图片 *struInterval*

抓拍间隔参数

byRes

保留,置为0

7.199 NET_ITC_LIGHT_ACCESSPARAM_UNION:交通信号灯接入参数联

合体

 $union \ \{$

DWORD uLen[122];

NET_ITC_IO_LIGHT_PARAM strulOLight;

NET_ITC_RS485_LIGHT_PARAM struRS485Light;

NET ITC VIDEO DETECT LIGHT PARAM struVideoDelectLight;

}NET_ITC_LIGHT_ACCESSPARAM_UNION, *LPNET_ITC_LIGHT_ACCESSPARAM_UNION;

Members

uLen

```
联合体大小
```

struIOLight

IO 接入信号灯参数

struRS485Light

RS485 接入信号灯参数

struRS485Light

byRes

视频检测信号灯参数

7.200 NET_ITC_LINE:视频电警线结构体

```
struct{
 NET_VCA_LINE
                 struLine;
 BYTE
                 byLineType;
 BYTE
                 byRes[7];
}NET_ITC_LINE, *LPNET_ITC_LINE;
Members
struLine
      线参数
byLineType
      线类型,具体定义如下:
      enum _ITC_LINE_TYPE_{
        ITC_LINT_UNKNOW
                               = 0,
        ITC_LINE_WHITE
                              = 1,
        ITC_LINE_STOP
                              = 2,
        ITC_LINE_SINGLE_YELLOW = 3,
        ITC_LINE_DOUBLE_YELLOW = 4,
        ITC_LINE_GUARD_RAIL
        ITC_LINE_NO_CROSS
                              = 6
      }ITC_LINE_TYPE
      ITC_LINT_UNKNOW
      未知
      ITC LINE WHITE
      车道间的白实线
      ITC_LINE_STOP
      车道停止线
      ITC_LINE_SINGLE_YELLOW
      单黄线
      ITC_LINE_DOUBLE_YELLOW
      双黄线
      ITC_LINE_GUARD_RAIL
      车道线上有护栏
      ITC_LINE_NO_CROSS
      车辆无法跨越的车道线
```

保留,置为0

7.201 NET_ITC_NOCOMITY_PEDESTRIAN_PARAM:不礼让行人触发参数

struct{

BYTE byEnable;
BYTE byLaneNum;
BYTE byRes[74];

NET ITC LINE struLaneBoundaryLine;

NET_ITC_LINE struTriggerLine;
NET_ITC_POLYGON struPedesDetRecog;

<u>NET_ITC_LANE_NOCOMITY_PEDESTRIAN_PARAM</u> struLaneParam[*MAX_ITC_LANE_NUM*];

NET ITC PLATE RECOG PARAM struPlateRecog;
BYTE byRes1[400];

}NET_ITC_NOCOMITY_PEDESTRIAN_PARAM,*LPNET_ITC_NOCOMITY_PEDESTRIAN_PARAM;

Members

byEnable

使能: 0- 禁用, 1- 启用

byLaneNum

识别的车道个数,1~3

byRes

保留,置为0

struLaneBoundaryLine

车道边界线(最右边车道的右车道线)

struTriggerLine

不礼让行人触发线

struPedesDetRecog

行人检测区域

struLaneParam

车道参数,每位数组表示一个车道

struPlateRecog

车牌识别参数

byRes1

保留,置为0

7.202 NET_ITC_PLATE_RECOG_PARAM: 牌识参数

struct{

BYTE byDefaultCHN[MAX_CHJC_NUM];

BYTE byEnable;
DWORD dwRecogMode;
BYTE byVehicleLogoRecog;

BYTE byProvince;

BYTE byRegion;

BYTE byRes1;

WORD wPlatePixelWidthMin; WORD wPlatePixelWidthMax;

BYTE byRes[24];

}NET_ITC_PLATE_RECOG_PARAM,*LPNET_ITC_PLATE_RECOG_PARAM;

Members

byDefaultCHN

设备运行省份的汉字简写

byEnable

是否启用该区域牌识: 0- 否, 1- 是

dwRecogMode

识别的类型, bit0-背向识别: 0- 正向车牌识别, 1- 背向识别(尾牌识别)

bit1-大车牌识别或小车牌识别: 0- 小车牌识别, 1- 大车牌识别

bit2-车身颜色识别: 0- 不采用车身颜色识别,在背向识别或小车牌识别时禁止启用; 1- 车身颜色识别

bit3-农用车识别: 0- 不采用农用车识别, 1- 农用车识别

bit4-模糊识别: 0- 不采用模糊识别, 1- 模糊识别

bit5-帧定位或场定位: 0- 帧定位, 1- 场定位

bit6-帧识别或场识别: 0- 帧识别, 1- 场识别

bit7-晚上或白天: 0- 白天, 1- 晚上

bit8-摩托车识别: 0- 不采用摩托车识别, 1- 摩托车识别

bit9-场景模式: 0- 电警/多帧, 1- 卡口

bit10-微小车牌: 0- 不启用, 1- 启用微小车牌识别(像素 60~80)

bit12-民航车牌识别: 0-不启用, 1-开启民航车牌识别

bit13-车牌过渡倾斜处理: 0-不启用, 1-开启过渡倾斜处理(PRS)

bit14-超大车牌识别: 0-不启用, 1-开启超大车牌识别(PRS)

bit15-遮阳板检测: 0-不启用, 1-启用遮阳板检测

bit16-黄标车检测: 0-不启用, 1-启用黄标车检测

bit17-危险品车辆检测: 0-不启用, 1-启用危险品车辆检测

bit18-使馆车牌识别: 0-不启用, 1-启用使馆车牌识别

bit19-车辆子品牌识别: 0-不启用, 1-启用车辆子品牌识别

byVehicleLogoRecog

汽车品牌识别: 0- 不启用, 1- 启用

byProvince

省份索引值: 0-保留, 1-澳, 2-京, 3-渝, 4-闽, 5-甘, 6-粤, 7-桂, 8-贵, 9-琼, 10-冀, 11-豫, 12-黑, 13-鄂, 14-湘, 15-吉, 16-苏, 17-赣, 18-辽, 19-蒙, 20-宁, 21-青, 22-鲁, 23-晋, 24-陕, 25-沪, 26-川, 27-台, 28-津, 29-藏, 30-港, 31-新, 32-云, 33-浙, 34-皖, 0xff-全部

byRegion

区域索引值: 0- 保留, 1- 欧洲(Europe Region), 2- 俄罗斯(Russian Region), 3- 欧洲&俄罗斯(EU&CIS) byRes1

保留

wPlatePixelWidthMin

车牌像素识别宽度最小值,单位:像素,当前推荐范围:[130,500]

wPlatePixelWidthMax

车牌像素识别宽度最大值,单位:像素,当前推荐范围:[130,500]

byRes

保留

Remarks

摩托车牌识别用于背向识别,也就是说电警车检器、卡警车检器和视频电警会用到,卡口均不使用。

7.203 NET_ITC_PLATE_RECOG_REGION_PARAM: 牌识区域参数

```
struct{
  BYTE
         byMode;
  BYTE
         byRes1[3];
  union{
           NET_VCA_RECT
                                   struRect;
           NET ITC POLYGON
                                  struPolygon;
  }uRegion;
  BYTE
         byRes[16];
}NET_ITC_PLATE_RECOG_REGION_PARAM,*LPNET_ITC_PLATE_RECOG_REGION_PARAM;
Members
byMode
      区域类型: 0- 矩形, 1- 多边形
byRes1
       保留
struRect
      矩形区域
struPolygon
       多边形区域
byRes
```

7.204 NET_ITC_POLYGON:多边型

```
struct{
```

保留

DWORD dwPointNum;

NET VCA POINT struPos[ITC_MAX_POLYGON_POINT_NUM];

}NET_ITC_POLYGON,*LPNET_ITC_POLYGON;

Members

dwPointNum

有效点,大于等于 3,若是 3 点在一条线上认为是无效区域,线交叉认为是无效区域 struPos

多边形边界点,最多20个

7.205 NET_ITC_POST_HVT_PARAM_V50:混行卡口参数

 $struct\{$

BYTE byLaneNum;
BYTE byCapType;
BYTE byCapMode;
BYTE bySceneMode;
BYTE bySpeedMode;
BYTE byLineRuleEffect;
BYTE byRes1[78];

NET ITC LINE struLeftTrigLine;
NET ITC LINE struRigtTrigLine;

NET ITC LINE struLaneBoundaryLine;

NET ITC POLYGON struDetectArea;
NET DVR GEOGLOCATION struGeogLocation;

NET_ITC_LANE_HVT_PARAM_V50 struLaneParam[MAX_ITC_LANE_NUM];

NET ITC PLATE RECOG PARAM struPlateRecog;
BYTE byRes2[260];

}NET_ITC_POST_HVT_PARAM_V50,*LPNET_ITC_POST_HVT_PARAM_V50;

Members

byLaneNum

识别的车道个数,1~6

byCapType

抓拍类型: 0- 机、非、人(默认), 1- 机动车

抓拍方式: 0- 视频抽帧, 1- 打断抓拍, 2- 混合模式

bySceneMode

场景模式: 0- 城区道路 (默认), 1- 小区出入口, 2- 高速公路

bySpeedMode

测速模式: 0- 无测速, 1- 雷达测速, 2- 视频测速

byLineRuleEffect

触发规则线有效性,每一位代表一条触发线,取值: 0- 无效,1- 有效

bit0- 左触发线

bit1- 右触发线

bit2- 视频检测区域

byRes1

保留,置为0

struLeftTrigLine

左触发线(一条垂直线)

struRigtTrigLine

右触发线(一条垂直线)

struLaneBoundaryLine

车道边界线(最右边车道的右车道线)

struDetectArea

视频检测区域

struGeogLocation

地址位置 (默认浙江)

struLaneParam

单车道属性,每位数组表示一个车道信息

struPlateRecog

车牌识别参数

byRes2

保留,置为0

7.206 NET_ITC_POST_IMT_PARAM: 智慧监控配置参数

struct{

BYTE byEnable;
BYTE byLaneNum;
BYTE bySnapMode;
BYTE byRes[61];
NET ITC PLATE RECOG PARAM struPlateRecog;

NET ITC LINE struLaneBoundaryLine;

<u>NET_ITC_LANE_IMT_PARAM</u> struLaneParam[MAX_ITC_LANE_NUM];

BYTE byRes1[1584];

}NET_ITC_POST_IMT_PARAM,*LPNET_ITC_POST_IMT_PARAM;

Members

byEnable

是否启用智慧监控模式: 0- 禁用, 1- 启用

byLaneNum

识别的车道个数,1~6

bySnapMode

抓拍类型: 0- 机动车, 1- 机非人

byRes

保留,置为0

struPlateRecog

车牌识别参数

struLaneBoundaryLine

车道边界线(最左边车道的左边界线)

struLaneParam

单车道属性

byRes1

保留,置为0

7.207 NET_ITC_POST_IOSPEED_PARAM:卡口 IO 测速参数

```
struct{
```

NET ITC PLATE RECOG PARAM struPlateRecog;

NET ITC SINGLE IOSPEED PARAM struSingleIOSpeed[MAX_IOSPEED_GROUP_NUM];

BYTE byRes[32];

}NET_ITC_POST_IOSPEED_PARAM,*LPNET_ITC_POST_IOSPEED_PARAM;

Members

struPlateRecog

牌识参数

struSingleIOSpeed

单个 IO 测速组参数

bvRes

保留

7.208 NET_ITC_POST_MOBILE_PARAM:移动交通触发参数

struct{

BYTE byEnable;

BYTE bySceneMode;

WORD wExpressWayCapType;

WORD wUrbanRoadCapType;

BYTE byCapNum;

BYTE byRecordEnable; DWORD dwPreRecordTime;

DWORD dwOverRecordTime;

BYTE byRes[256];

}NET_ITC_POST_MOBILE_PARAM,*LPNET_ITC_POST_MOBILE_PARAM;

Members

byEnable

是否启用: 0- 否, 1- 是

bySceneMode

场景模式: 0- 高速公路, 1- 城市道路

wExpressWayCapType

高速公路抓拍类型,按位表示, bit0- 卡口, bit1- 大车占道, bit2- 压硬路肩

wUrbanRoadCapType

城市道路抓拍类型,按位表示, bit0- 卡口, bit1- 机占非, bit2- 占用专用车道

byCapNum

抓拍张数,取值范围: [2,3]

by Record Enable

违章录像使能: 0- 关闭, 1- 开启

dwPreRecordTime

录像预录时间,单位:秒(s)

dwOverRecordTime

录像超时时间,单位:秒(s)

byRes

保留,置为0

7.209 NET_ITC_POST_MPR_PARAM:卡口多帧检测(MPR)触发参数

struct{

BYTE byEnable;
BYTE byLaneNum;
BYTE bySourceType;
BYTE byPicUploadType;

BYTE byRes[60];

NET_ITC_LINE struLaneBoundaryLine;

NET ITC PLATE RECOG PARAM struPlateRecog;

NET ITC LANE MPR PARAM struLaneParam[MAX ITC LANE NUM];

BYTE byRes1[440];

}NET_ITC_POST_MPR_PARAM,*LPNET_ITC_POST_MPR_PARAM;

Members

byEnable

是否启用: 0- 不启用, 1- 启用

byLaneNum

识别的车道个数

bySourceType

信号源类型: 0- MPR 触发(视频触发),1- 关联 IO 触发(地感线圈),2- 关联 RS485 触发 byPicUploadType

图片上传类型: 0-全部上传, 1-正向上传, 2-背向上传

byRes

保留

struLaneBoundaryLine

车道边界线(最左边车道的左边界线)

struPlateRecog

车牌识别参数

struLaneParam

多帧检测车道参数

byRes1

保留

7.210 NET_ITC_POST_PRS_PARAM:视频检测(PRS)触发参数

struct{

BYTE byEnable;
BYTE byLaneNum;

BYTE bySourceType;
BYTE bySnapMode;
BYTE byCapMode;
BYTE byRes[59];

NET ITC LINE struLaneBoundaryLine;

NET ITC PLATE RECOG PARAM struPlateRecog;

NET_ITC_LANE_PRS_PARAM struLaneParam[MAX_ITC_LANE_NUM];

BYTE byRes1[440];

}NET ITC POST PRS PARAM,*LPNET ITC POST PRS PARAM;

Members

byEnable

是否启用: 0- 否, 1- 是

byLaneNum

识别的车道个数

bySourceType

信号源类型: 0- 视频检测, 1- 关联 IO 触发(地感线圈), 2- 关联 RS485 的触发信号

bySnapMode

抓拍模式: 0- 全景图, 1- 全景图+特写

byCapMode

bySourceType 为 0 视频检测时使用, 0- 频闪模式, 1- 爆闪模式

bvRes

保留,置为0

struLaneBoundaryLine

车道边界线(最左边车道的左边界线)

struPlateRecog

牌识参数

struLaneParam

车道参数

byRes1

保留,置为0

7.211 NET_ITC_POST_RS485_PARAM:卡口 RS485 车检器触发参数

struct{

BYTE byRelatedLaneNum;
BYTE byTriggerSpareMode;
BYTE byFaultToleranceTime;

BYTE byRes1;

NET ITC PLATE RECOG PARAM struPlateRecog;

NET ITC LANE PARAM struLane[MAX_ITC_LANE_NUM];

BYTE byRes[32];

}NET_ITC_POST_RS485_PARAM,*LPNET_ITC_POST_RS485_PARAM;

Members

by Related Lane Num

关联的车道个数

byTriggerSpareMode

触发备用模式: 0-无, 1-卡口虚拟线圈模式, 2- 卡口混合车道模式

byFaultToleranceTime

容错时间(单位:分钟),用于检测车检器是否正常的最大时间

byRes1

保留

struPlateRecog

牌识参数

struLane

关联的车道参数

byRes

保留

7.212 NET_ITC_POST_RS485_RADAR_PARAM:卡口 RS485 雷达触发参数

struct{

BYTE byRelatedLaneNum;

BYTE byRes1[3];

NET ITC PLATE RECOG PARAM struPlateRecog;

NET_ITC_LANE_PARAM struLane[MAX_ITC_LANE_NUM];

NET_ITC_RADAR_PARAM struRadar;
BYTE byRes[32];

}NET_ITC_POST_RS485_RADAR_PARAM,*LPNET_ITC_POST_RS485_RADAR_PARAM;

Members

byRelatedLaneNum

关联的车道个数

byRes1

保留

struPlateRecog

牌识参数

struLane

关联的车道参数

struRadar

雷达参数

byRes

保留

7.213 NET_ITC_POST_SINGLEIO_PARAM:单 IO 触发参数

struct{

NET_ITC_PLATE_RECOG_PARAM struPlateRecog;

NET ITC SINGLEIO PARAM struSingleIO[MAX_IOIN_NUMEX];

BYTE byRes[360];

}NET_ITC_POST_SINGLEIO_PARAM,*LPNET_ITC_POST_SINGLEIO_PARAM;

Members

struPlateRecog

牌识参数

struSingleIO

单个 IO 触发参数,数组 0 表示 IO1,数组 1 表示 IO2,依次类推

byRes

保留

7.214 NET_ITC_POST_VTCOIL_PARAM:卡口虚拟线圈触发参数

struct{

BYTE byRelatedLaneNum;

BYTE byIsDisplay; BYTE byLoopPos; **BYTE** byPolarLenType; **BYTE** byDayAuxLightMode; **BYTE** byVideoLaneNO; **BYTE** byVideoLowTh; **BYTE** byVideoHighTh; **BYTE** byRecordMode; **BYTE** bySnapMode; **BYTE** bySpeedDetector;

BYTE byRes2;

WORD wResolutionX; WORD wResolutionY; **DWORD** dwDayInitExp; **DWORD** dwDayMaxExp; **DWORD** dwNightExp; **DWORD** dwSnapExp; **BYTE** byDayInitGain; **BYTE** byDayMaxGain; **BYTE** byNightGain; **BYTE** bySnapGain; **DWORD** dwSceneMode; **NET DVR GEOGLOCATION** struGeogLocation;

NET ITC VTCOIL INFO struVtCoil[MAX_VL_NUM];

struPlateRecog;

NET ITC RADAR PARAM struRadar;
NET VCA LINE struLine;

NET_ITC_PLATE_RECOG_PARAM

DWORD dwVioDetectType;
BYTE byDebugMode;
BYTE byRes[11];

}NET_ITC_POST_VTCOIL_PARAM,*LPNET_ITC_POST_VTCOIL_PARAM;

Members

byRelatedLaneNum

关联的车道个数

byIsDisplay

视频中是否显示虚拟线圈: 0- 不显示, 1- 显示

byLoopPos

晚间触发线圈的偏向(默认 10)

byPolarLenType

偏振镜类型: 0- 不加偏振镜, 1- 加施耐德偏振镜

byDayAuxLightMode

白天辅助照明模式: 0- 无辅助照明, 1-LED 灯照明, 2- 闪光灯照明

byVideoLaneNO

视频参考亮度的参考车道号

byVideoLowTh

视频参考亮度低阈值初始化值(默认 40)

byVideoHighTh

视频参考亮度高阈值初始化值(默认55)

byRecordMode

录像标志: 0- 不录像, 1- 录像

bySnapMode

抓拍模式: 0- 频闪模式, 1- 爆闪模式

bySpeedDetector

测速方式: 0- 不测速, 0x1- 雷达测速, 0x2- 视频测速

byRes2

保留

wResolutionX

设备当前分辨率宽

wResolutionY

设备当前分辨率高

dwDayInitExp

视频白天曝光时间的初始值,默认为2000

dwDayMaxExp

视频白天曝光时间的最大值, 默认为 20000

dwNightExp

晚间视频曝光时间的设置值,默认为3000

dwSnapExp

抓拍曝光时间

byDayInitGain

视频白天增益的初始值,默认为200

byDayMaxGain

视频白天增益的最大值,默认为400

byNightGain

晚间视频增益

```
bySnapGain
```

抓拍增益

dwSceneMode

场景模式

```
enum_SCENE_MODE_{

UNKOWN_SCENE_MODE = 0,

HIGHWAY_SCENE_MODE = 1,

SUBURBAN_SCENE_MODE = 2,

URBAN_SCENE_MODE = 3,

TUNNEL_SCENE_MODE = 4

}SCENE_MODE
```

UNKOWN_SCENE_MODE

未知场景模式

HIGHWAY_SCENE_MODE

高速场景模式

SUBURBAN_SCENE_MODE

郊区场景模式(保留)

URBAN_SCENE_MODE

市区场景模式

TUNNEL_SCENE_MODE

隧道场景模式(保留)

struGeogLocation

地址位置(默认浙江)

struPlateRecog

牌识参数

struVtCoil

虚拟线圈参数

struRadar

雷达参数

struLine

右车道线

dwVioDetectType

违规检测类型,按位表示,其值: 0- 不启用,1- 启用,类型定义详见 ITC VIOLATION DETECT TYPE byDebugMode

调试模式: 0- 不启用, 1- 启用

byRes

保留

7.215 NET_ITC_RADAR_INFO_PARAM:RS485 关联雷达配置参数

struct{

NET_ITC_RADAR_PARAMstruRadarParam;BYTEbyAssociateLaneNo;BYTEbyRes[103];

}NET_ITC_RADAR_INFO_PARAM, *LPNET_ITC_RADAR_INFO_PARAM;

Members

struRadarParam

雷达参数

by Associate Lane No

关联车道号,按位表示车道: bit1-车道 1, bit2-车道 2, bit3-车道 3, bit4-车道 4, bit5-车道 5, bit6-车道 6, 值: 0-不关联, 1-关联

byRes

保留,置为0

7.216 NET_ITC_RADAR_PARAM:雷达参数

struct{

BYTE byRadarType;

BYTE byLevelAngle;

WORD wRadarSensitivity;

WORD wRadarSpeedValidTime;

BYTE byRes1[2];

float fLineCorrectParam; int iConstCorrectParam;

BYTE byRes[8];

}NET_ITC_RADAR_PARAM,*LPNET_ITC_RADAR_PARAM;

Members

byRadarType

雷达类型: 0- 无雷达, 1- 安道雷雷达, 2- 奥利维亚, 3- 川速微波, 4- 雷达接 IO 扩展盒(此参数在卡口虚拟线圈界面中使用,卡口 RS485 雷达不使用), 5- 安道雷(无雷达控制器), 0xff- 其它类型

byLevelAngle

与水平线所成角度,默认为 25°,取值范围: 0~90 度

wRadarSensitivity

雷达灵敏度

wRadarSpeedValidTime

雷达速度有效时间,取值范围: (0,2000],0表示不支持

byRes1

保留

fLineCorrectParam

线性矫正参数(乘操作),取值范围: [0.0,2.0]

iConstCorrectParam

常量矫正参数(加减操作),取值范围: [-100,100]

byRes

保留

Remarks

卡口 RS485 雷达触发模式下,雷达检测车辆通过时要及时进行触发,速度值和抓拍信号是几乎同时接收,因此该模式下 wRadarSpeedValidTime 无效。

7.217 NET_ITC_REDLIGHT_PEDESTRIAN_PARAM:行人闯红灯触发参数

struct{

BYTE byEnable;

BYTE bySnapNumTimes;

BYTE byPedesDir;
BYTE byDelayTime;

BYTE byStackTargetEnble;
BYTE byCalibRecogCtrl;

BYTE byRes1[2];

NET_ITC_TRAFFIC_LIGHT_PARAM struTrafficLight;

NET_ITC_LINE struStopLine;

<u>NET_ITC_POLYGON</u> struCalibRecog[*MAX_CALIB_RECOG_NUM*];

BYTE byRes[440];

}NET_ITC_REDLIGHT_PEDESTRIAN_PARAM,*LPNET_ITC_REDLIGHT_PEDESTRIAN_PARAM;

Members

bvEnable

使能: 0- 禁用, 1- 启用

bySnapNumTimes

抓拍张数,取值范围:1~3,默认3张

byPedesDir

行人方向: 0- 正向, 1- 背向, 2- 双向

byDelayTime

延时时间,取值范围: 1~5,单位: s(秒)

byStackTargetEnble

叠加目标框(即抓拍第一张图片上框住闯红灯的行人): 0- 不叠加, 1- 叠加

struTriggerLine

标定区域控制: 0- 移除标定区域, 1- 添加标定区域

byRes1

保留,置为0

struTrafficLight

交通信号灯参数

struStopLine

停止线

struCalibRecog

标定区域

byRes

保留,置为0

7.218 NET_ITC_RS485_ACCESS_CFG:RS485 关联接入设备配置

struct{

DWORD dwSize;

BYTE byModeType;

BYTE byRes[3];

NET ITC ACCESS DEVINFO PARAM UNION uITCAccessDevinfoParam;

BYTE byRes1[12];

}NET_ITC_RS485_ACCESS_CFG, *LPNET_ITC_RS485_ACCESS_CFG;

Members

dwSize

结构体大小

byModeType

接入设备类型: bit0- 预留, bit1- 雷达, bit2- 车检器, bit3- 信号灯检测器, 取值: 0- 不关联, 1- 关联, 目前只支持雷达

byRes

保留,置为0

uITCAccessDevinfoParam

关联接入设备配置联合体

bvRes1

保留,置为0

7.219 NET_ITC_RS485_ACCESS_INFO_COND:RS485 关联接入设备配置

条件参数

struct{

DWORD dwSize;

DWORD dwChannel;

DWORD dwTriggerModeType;

BYTE byAssociateRS485No;

BYTE byRes[15];

}NET_ITC_RS485_ACCESS_INFO_COND, *LPNET_ITC_RS485_ACCESS_INFO_COND;

Members

dwSize

结构体大小

dwChannel

设备通道号

dwTriggerModeType

触发模式,参见 ITC TRIGGERMODE TYPE

byAssociateRS485No

关联的 RS485 号,取值范围: 1~5

byRes

保留,置为0

7.220 NET_ITC_RS485_LIGHT_PARAM:RS485 接入信号灯参数

```
struct{
```

NET ITC SINGLE RS485 LIGHT PARAM struRS485Light[MAX_LIGHT_NUM];

BYTE byRes[8];

}NET_ITC_RS485_LIGHT_PARAM, *LPNET_ITC_RS485_LIGHT_PARAM;

Members

struRS485Light

单个 485 接入信号灯参数

byRes

保留,置为0

Remarks

当选择闯红灯模式为按方向(NET_ITC_VIDEO_EPOLICE_PARAM 里配置)时,三组可配置,即左转灯、直行灯、右转灯这三种灯,红、黄灯可配置。数组 struRS485Light[0]、struRS485Light[1]和 struRS485Light[2]分别表示三个方向的配置。

7.221 NET_ITC_SERIAL_CHECKINFO: 串口参数

struct{

BYTE bySerialIndex[MAX_ITC_SERIALCHECK_NUM];

BYTE byRes[40];

}NET_ITC_SERIAL_CHECKINFO,*LPNET_ITC_SERIAL_CHECKINFO;

Members

bySerialIndex

485 串口校验结果: 0- 无效, 1- 有效, bySerialIndex[0]表示正确的头, bySerialIndex[1]表示正确的尾

byRes

保留

7.222 NET_ITC_SERIAL_INFO:车检器参数

struct{

BYTE bySerialProtocol;

BYTE byIntervalType;

WORD winterval;

BYTE byNormalPassProtocol;

BYTE byInverseProtocol;

BYTE bySpeedProtocol;

BYTE byRes[9];

}NET_ITC_SERIAL_INFO,*LPNET_ITC_SERIAL_INFO;

Members

bySerialProtocol

车检器协议类型, 定义如下所示:

```
enum ITC SERIAL PROTOCOL {
 ITC_PROTOCOL_UNKNOW
                                   = 0,
 ITC SINGLE COIL PROTOCOL
                                   = 1,
 ITC DOUBLE COIL PROTOCOL MODE1 = 2,
 ITC_DOUBLE_COIL_PROTOCOL_MODE2 = 3,
 ITC DOUBLE COIL PROTOCOL MODE3 = 4,
 ITC_DOUBLE_COIL_PROTOCOL_MODE4 = 5,
 ITC DOUBLE COIL PROTOCOL MODE5 = 6,
 ITC DOUBLE COIL PROTOCOL MODE6 = 7,
 ITC SINGLE COIL PROTOCOL1
                                   = 8,
 ITC_OTHER_PROTOCOL
                                   = 0xff
}ITC_SERIAL_PROTOCOL
```

ITC PROTOCOL UNKNOW

未知

ITC SINGLE COIL PROTOCOL

单线圈车检器协议(动态显示:到达、离开、离开延迟抓拍,离开牌识)

ITC_DOUBLE_COIL_PROTOCOL_MODE1

双线圈车检器协议模式1(动态显示:到达一、离开一、离开二抓拍,离开一牌识)

ITC_DOUBLE_COIL_PROTOCOL_MODE2

双线圈车检器协议模式 2 (动态显示: 离开一、离开二、离开二延时抓拍,离开一牌识,默认为延时距离 1m)

ITC_DOUBLE_COIL_PROTOCOL_MODE3

双线圈车检器协议模式 3 (动态显示: 进入二、离开一、离开二延时抓拍,离开一牌识,默认为延时距离 1m)

ITC DOUBLE COIL PROTOCOL MODE4

双线圈车检器协议模式 4 (到达 2 线圈、离开 1 线圈、离开 2 线圈、离开 2 线圈延迟抓拍,离开 1 牌识,上传图像到达 2、离开 2、离开 2 延迟)

ITC_DOUBLE_COIL_PROTOCOL_MODE5

双线圈车检器协议模式 5 (到达 2 线圈、离开 1 线圈、离开 2 线圈、离开 2 线圈延迟抓拍,到达 2、离开 1 牌识,上传图像到达 2、离开 2 延迟)

ITC DOUBLE COIL PROTOCOL MODE6

双线圈车检器协议模式 6 (到达 1 线圈、到达 2 线圈、离开 1 线圈、离开 2 线圈、离开 2 线圈延迟 抓拍,到达 1、离开 1 牌识,上传图像到达 1、离开 2、离开 2 延迟)

ITC_SINGLE_COIL_PROTOCOL1

单线圈模式 2 (到达线圈、离开线圈、离开线圈延迟抓拍,到达和离开牌识)

ITC OTHER PROTOCOL

其它车检器协议

byIntervalType

间隔类型 (默认按时间): 0- 时间起效, 1- 距离起效

wInterval

连拍间隔时间(单位: ms)或连拍间隔距离(单位: 分米)。当 byIntervalType 为 0 时,表示间隔时间,当 byIntervalType 为 1 时,表示距离

byNormalPassProtocol

正常过车抓拍协议类型, 定义如下所示:

```
enum_ITC_NORMAL_PASS_SERIAL_PROTOCOL_{

ITC_NORMAL_PASS_SERIAL_UNKNOW = 0,

ITC_NORMAL_PASS_PROTOCOL_MODE1 = 1,

ITC_NORMAL_PASS_PROTOCOL_MODE2 = 2,

ITC_NORMAL_PASS_PROTOCOL_MODE3 = 3,

ITC_NORMAL_PASS_PROTOCOL_MODE4 = 4,

ITC_NORMAL_PASS_PROTOCOL_MODE5 = 5

}ITC_NORMAL_PASS_SERIAL_PROTOCOL

ITC_NORMAL_PASS_SERIAL_UNKNOW

未知
```

ITC_NORMAL_PASS_PROTOCOL_MODE1

单线圈, 离开抓拍, 牌识上传(默认)

ITC NORMAL PASS PROTOCOL MODE2

线圈,到达、离开抓拍,均牌识,仅上传离开车辆图片和置信度高的车牌结果

ITC NORMAL PASS PROTOCOL MODE3

双线圈, 离开1抓拍, 牌识上传(默认)

ITC_NORMAL_PASS_PROTOCOL_MODE4

双线圈,到达 1、离开 1 抓拍,均牌识,仅上传离开 1 车辆图片和置信度高的车牌结果 ITC_NORMAL_PASS_PROTOCOL_MODE5

双线圈,到达 2、离开 1 抓拍,均牌识,仅上传离开 1 车辆图片和置信度高的车牌结果 byInverseProtocol

逆行抓拍协议类型, 定义如下所示:

```
enum_ITC_INVERSE_SERIAL_PROTOCOL_{

ITC_INVERSE_SERIAL_UNKNOW = 0,

ITC_INVERSE_PROTOCOL_MODE1 = 1,

ITC_INVERSE_PROTOCOL_MODE2 = 2,

ITC_INVERSE_PROTOCOL_MODE3 = 3

}ITC_INVERSE_SERIAL_PROTOCOL
```

ITC_INVERSE_SERIAL_UNKNOW

未知

ITC INVERSE PROTOCOL MODE1

不抓拍

ITC_INVERSE_PROTOCOL_MODE2

到达 1 连抓 2 张、离开 2 抓拍,到达 1 两张均牌识,上传 3 张车辆图片和置信度高的车牌结果 ITC_INVERSE_PROTOCOL_MODE3

到达 1、离开 2 抓拍,到达 1 牌识,上传 2 张车辆图片和车牌结果

bySpeedProtocol

超速抓拍协议类型,定义如下所示:

```
enum_ITC_SPEED_SERIAL_PROTOCOL_{

ITC_SPEED_SERIAL_UNKNOW = 0,

ITC_SPEED_PROTOCOL_MODE1 = 1,

ITC_SPEED_PROTOCOL_MODE2 = 2,

ITC_SPEED_PROTOCOL_MODE3 = 3
```

}ITC_SPEED_SERIAL_PROTOCOL

ITC_INVERSE_SERIAL_UNKNOW

未知

ITC INVERSE PROTOCOL MODE1

不抓拍

ITC_INVERSE_PROTOCOL_MODE2

双/三线圈,离开 1,离开 2,离开 2 延时抓拍,离开 1 牌识,上传车辆图片(卡口离开 1,超速离开 1、离开 2、离开 2 延时)和车牌结果

ITC INVERSE PROTOCOL MODE3

双/三线圈, 离开 1, 离开 2, 离开 2 延时抓拍, 离开 1 牌识, 上传车辆图片(卡口离开 1, 超速离开 1、离开 2) 和车牌结果

byRes

保留

7.223 NET_ITC_SINGLE_IO_LIGHT_PARAM:单个 IO 接入信号灯参数

struct{

BYTE byLightType;

BYTE byRelatedIO;

BYTE byRedLightState;

BYTE byRes[17];

}NET_ITC_SINGLE_IO_LIGHT_PARAM,*LPNET_ITC_SINGLE_IO_LIGHT_PARAM;

Members

byLightType

交通灯导向类型: 0- 左转灯, 1- 直行灯, 2- 右转灯

byRelatedIO

关联的 IO 口号, 1~6

byRedLightState

红灯电平状态: 0- 低电平红灯, 1- 高电平红灯

byRes

保留

7.224 NET_ITC_SINGLE_IOSPEED_PARAM:单组 IO 测速参数

struct{

BYTE byEnable;
BYTE byTrigCoil1;
BYTE byCoil1IOStatus;
BYTE byTrigCoil2;
BYTE byCoil2IOStatus;
BYTE byRelatedDriveWay;

BYTE byTimeOut;

BYTE byRelatedIOOutEx;

DWORD dwDistance; **BYTE** byCapSpeed; **BYTE** bySpeedLimit; **BYTE** bySpeedCapEn; **BYTE** bySnapTimes1; **BYTE** bySnapTimes2; **BYTE** byBigCarSpeedLimit; **BYTE** byBigCarSignSpeed; **BYTE** byIntervalType;

WORD winterval1[MAX_INTERVAL_NUM];
WORD winterval2[MAX_INTERVAL_NUM];
BYTE byRelatedIOOut[MAX_IOOUT_NUM];

BYTE byFlashMode;
BYTE byLaneType;
BYTE byCarSignSpeed;
BYTE byUseageType;

NET_ITC_PLATE_RECOG_REGION_PARAM struPlateRecog[MAX_LANEAREA_NUM];

BYTE byRelaLaneDirectionType;

BYTE byLowSpeedLimit;

BYTE byBigCarLowSpeedLimit;
BYTE byLowSpeedCapEn;
BYTE byEmergencyCapEn;

BYTE byRes[27];

}NET_ITC_SINGLE_IOSPEED_PARAM,*LPNET_ITC_SINGLE_IOSPEED_PARAM;

Members

byEnable

是否启用: 0- 不启用, 1- 启用

byTrigCoil1

第一线圈关联 IO: 0-IO1, 1-IO2, 2-IO3, 3-IO4, 4-IO5, 5-IO6

byCoil1IOStatus

第一线圈 IO 输入口状态: 0- 下降沿(默认), 1- 上升沿, 2- 上升沿和下降沿, 3- 高电平, 4- 低电平

byTrigCoil2

第二线圈关联 IO: 0-IO1, 1-IO2, 2-IO3, 3-IO4, 4-IO5, 5-IO6

byCoil2IOStatus

第二线圈 IO 输入口状态: 0- 下降沿(默认), 1- 上升沿, 2- 上升沿和下降沿, 3- 高电平, 4- 低电平

byRelatedDriveWay

关联的车道号

byTimeOut

超时时间 (默认 10), 单位: s

byRelatedIOOutEx

关联的 IO 输出口,按位表示输出口号: bit0 表示 IO 输出口 1, bit1 表示 IO 输出口 2,以此类推。值: 0-不关联,1-关联,最多支持关联到 8 个 IO 输出口(兼容 byRelatedIOOut 字段)

dwDistance

线圈距离 (默认 1000), 单位: 厘米

byCapSpeed

起拍速度(默认30),单位: km/h

bySpeedLimit

限速值 (默认 60), 单位: km/h

bySpeedCapEn

是否启用超速抓拍: 0- 否, 1- 是

bySnapTimes1

线圈 1 抓拍次数 (默认不抓拍): 0- 不抓拍, 非 0- 连拍次数, 最大 5 次

bySnapTimes2

线圈 2 抓拍次数 (默认 1), 0- 不抓拍, 非 0- 连拍次数, 最大 5 次

byBigCarSpeedLimit

大车车速限制值

byBigCarSignSpeed

大车标志限速,单位: km/h

byIntervalType

间隔类型 (默认按时间), 0- 时间起效, 1- 距离起效

wInterval1

线圈 1 连拍间隔时间(单位: ms)或连拍间隔距离(单位: 分米)。当 byIntervalType 为 0 时,表示间隔时间,当 byIntervalType 为 1 时,表示距离

wInterval2

线圈 2 连拍间隔时间(单位: ms)或连拍间隔距离(单位: 分米)。当 byIntervalType 为 0 时,表示间隔时间,当 byIntervalType 为 1 时,表示距离

byRelatedIOOut

关联的 IO 输出口(可以同时关联多个),数组 0 表示 IO 输出口 1,数组 1 表示 IO 输出口 2,以此类推,其参数值: 0-不关联,1-关联

byFlashMode

闪光灯闪烁模式: 0- 同时闪, 1- 轮流闪

byLaneType

车道类型: 0- 未配置, 1- 高速公路, 2- 城市快速路, 0xff-其他道路

byCarSignSpeed

小车标志限速,单位: km/h

byUseageType

车道用途类型,定义详见 ITC LANE USEAGE TYPE

struPlateRecog

牌识参数(可用牌识区域1个,保留一个)

byRelaLaneDirectionType

关联车道方向类型,定义详见 ITC RELA LANE DIRECTION TYPE

by Low Speed Limit

小车限低速值,单位: km/h

byBigCarLowSpeedLimit

大车限低速值,单位: km/h

byLowSpeedCapEn

是否启用低速抓拍: 0- 否, 1- 是

byEmergencyCapEn

是否启用应急车道抓拍: 0- 否, 1- 是

byRes

保留

byTrigIOStatus

7.225 NET_ITC_SINGLE_IOTL_PARAM:单组 IO 红绿灯参数

```
struct{
  BYTE
                                       byEnable;
  BYTE
                                       byLightIO;
  BYTE
                                       byTrafficLight;
  BYTE
                                       byTrigIO;
  BYTE
                                       byTrigIOStatus;
  BYTE
                                       byRelatedDriveWay;
  BYTE
                                       byRecordEnable;
  BYTE
                                       byRecordType;
  BYTE
                                       byPreRecordTime;
  BYTE
                                       byRecordDelayTime;
  BYTE
                                       byRecordTimeOut;
  BYTE
                                       byRedSnapTimes;
  BYTE
                                       byGreenSnapTimes;
  BYTE
                                       byRelatedIOOutEx;
  BYTE
                                       byRes1;
  BYTE
                                       byIntervalType;
  WORD
                                      wRedInterval[MAX_INTERVAL_NUM];
  WORD
                                      wGreenInterval[MAX INTERVAL NUM];
  BYTE
                                       byRelatedIOOut[MAX_IOOUT_NUM];
  BYTE
                                       byFlashMode;
  BYTE
                                       byRes2[3];
  NET ITC PLATE RECOG REGION PARAM
                                       struPlateRecog[MAX_LANEAREA_NUM];
                                       byRes[32];
}NET_ITC_SINGLE_IOTL_PARAM,*LPNET_ITC_SINGLE_IOTL_PARAM;
Members
byEnable
       是否启用: 0- 不启用, 1- 启用
byLightIO
       红绿灯 IO: 0-IO1, 1-IO2, 2-IO3, 3-IO4, 4-IO5, 5-IO6
byTrafficLight
       红绿灯有效状态: 0- 高电平红灯, 低电平绿灯; 1- 高电平绿灯, 低电平红灯
byTrigIO
       触发的 IO 号: 0- IO1, 1- IO2, 2- IO3, 3- IO4, 4- IO5, 5- IO6
```

触发 IO 口的状态 (默认 0): 0- 下降沿, 1- 上升沿, 2- 上升沿和下降沿, 3- 高电平, 4- 低电平

byRelatedDriveWay

关联的车道号

byRecordEnable

闯红灯周期录像标志: 0- 不录像, 1- 录像

byRecordType

闯红灯录像类型: 0- 预录, 1- 延时录像

byPreRecordTime

闯红灯录像片段预录时间(默认0),单位:秒

byRecordDelayTime

闯红灯录像片段延时时间(默认0),单位:秒

byRecordTimeOut

闯红灯周期录像超时时间,单位:秒

byRedSnapTimes

红灯抓拍次数: 0- 不抓拍; 非 0- 连拍次数, 最大 5 次

byGreenSnapTimes

绿灯抓拍次数: 0- 不抓拍; 非 0- 连拍次数, 最大 5 次

byRelatedIOOutEx

关联的 IO 输出口,接位表示输出口号: bit0 表示 IO 输出口 1, bit1 表示 IO 输出口 2,以此类推。值: 0-不关联,1-关联,最多支持关联到 8 个 IO 输出口(兼容 byRelatedIOOut 字段)

byRes1

保留

byIntervalType

间隔类型 (默认按时间): 0- 时间起效, 1- 距离起效

wRedInterval

红灯连拍间隔时间(单位:ms)或连拍间隔距离(单位:分米)。当 byIntervalType 为 0 时,表示间隔时间,当 byIntervalType 为 1 时,表示距离高

wGreenInterval

绿灯连拍间隔时间(单位:ms)或连拍间隔距离(单位:分米)。当 byIntervalType 为 0 时,表示间隔时间,当 byIntervalType 为 1 时,表示距离

byRelatedIOOut

关联的 IO 输出口,可以同时关联多个

byFlashMode

闪光灯闪烁模式: 0- 同时闪, 1- 轮流闪

byRes2

保留

struPlateRecog

牌识区域参数

byRes

保留

7.226 NET_ITC_SINGLE_RS485_LIGHT_PARAM:单个 485 接入信号灯参

数

struct{

BYTE byLightType;

BYTE byRelatedLightChan;

BYTE byInputLight;

BYTE byRelatedYLightChan;

BYTE byRes[16];

NET ITC SINGLE RS485 LIGHT PARAM, *LPNET ITC SINGLE RS485 LIGHT PARAM;

Members

byLightType

交通灯导向类型: 0- 左转灯, 1- 直行灯, 2- 右转灯

byRelatedLightChan

红灯关联的红绿灯检测器通道号,0~16,0表示无(即没有该种类型的灯)

byInputLight

接入的信号灯类型: 0- 接红灯, 1- 接绿灯, 智能交通摄像机不使用

byRelatedYLightChan

黄灯关联的红绿灯检测器通道号,0~16,0表示无(即没有该种类型的灯)

byRes

保留,置为0

Remarks

如路口信号灯有两个:左转+直行,右转。需要配置三个数组表示,第一个数组配左转灯,关联检测器通道 1;第二组配直行,关联通道 1;第三组配右转,关联通道 2。

7.227 NET_ITC_SINGLE_TRIGGERCFG:单个触发参数

struct{

BYTE byEnable;
BYTE byRes1[3];
DWORD dwTriggerType;

NET ITC TRIGGER PARAM UNION uTriggerParam;
BYTE byRes[64];

}NET_ITC_SINGLE_TRIGGERCFG,*LPNET_ITC_SINGLE_TRIGGERCFG;

Members

byEnable

启用状态: 0- 不启用, 1- 启用

byRes1

保留

dwTriggerType

触发类型,详见 ITC TRIGGERMODE TYPE

uTriggerParam

触发参数

byRes

保留

struLightRect

byRes

交通灯区域

保留,置为0

7.228 NET_ITC_SINGLE_VIDEO_DETECT_LIGHT_PARAM:单组视频检测 交通信号灯参数

```
struct{
 BYTE
                  byLightNum;
 BYTE
                  byStraightLight;
 BYTE
                  byLeftLight;
 BYTE
                  byRightLight;
 BYTE
                  byRedLight;
 BYTE
                  byGreenLight;
 BYTE
                  byYellowLight;
 BYTE
                  byYellowLightTime;
                 struLightRect;
 NET POS PARAM
 BYTE
                  byRes[24];
}NET_ITC_SINGLE_VIDEO_DETECT_LIGHT_PARAM, *LPNET_ITC_SINGLE_VIDEO_DETECT_LIGHT_PARAM;
Members
byLightNum
      交通灯个数
byStraightLight
      是否有直行标志灯: 0- 否, 1- 是
byLeftLight
      是否有左转标志灯: 0- 否, 1- 是
byRightLight
      是否有右转标志灯: 0- 否, 1- 是
byRedLight
      是否有红灯: 0- 否, 1- 是
byGreenLight
      是否有绿灯: 0- 否, 1- 是
byYellowLight
      是否有黄灯: 0- 否, 1- 是
byYellowLightTime
      黄灯持续时间(用于修正红绿灯识别偏差),取值范围:0~10,单位:s
```

7.229 NET_ITC_SINGLEIO_PARAM:单 IO 参数

struct{

BYTE byDefaultStatus;
BYTE byRelatedDriveWay;

BYTE bySnapTimes;
BYTE byRelatedIOOutEx;

NET_ITC_INTERVAL_PARAM struInterval;

BYTE byRelatedIOOut[MAX_IOOUT_NUM];

BYTE byFlashMode;
BYTE byEnable;
BYTE byUseageType;
BYTE byEmergencyCapEn;

NET ITC PLATE RECOG REGION PARAM struPlateRecog[MAX_LANEAREA_NUM];

BYTE byRes[32];

}NET_ITC_SINGLEIO_PARAM,*LPNET_ITC_SINGLEIO_PARAM;

Members

byDefaultStatus

IO 触发默认状态: 0- 低电平, 1- 高电平

byRelatedDriveWay

关联的车道号

bySnapTimes

抓拍次数 (默认 1): 0- 不抓拍; 非 0- 连拍次数, 最大 5

byRelatedIOOutEx

关联的 IO 输出口,按位表示输出口号: bit0 表示 IO 输出口 1, bit1 表示 IO 输出口 2,以此类推。值: 0-不关联,1-关联,最多支持关联到 8 个 IO 输出口(兼容 byRelatedIOOut 字段)

struInterval

抓拍间隔参数

byRelatedIOOut

关联的 IO 输出口,可以同时关联多个

byFlashMode

闪光灯闪烁模式: 0- 同时闪, 1- 轮流闪

byEnable

单 IO 使能标志: 0- 不启用, 1- 启用

byUseageType

车道用途类型,定义详见 ITC_LANE_USEAGE_TYPE

byEmergencyCapEn

是否启用应急车道抓拍: 0- 否, 1- 是

struPlateRecog

牌识区域参数

byRes

保留

7.230 NET_ITC_STATUS_DETECT_RESULT:实时状态检测结果

```
struct{
 ITC_STATUS_DETECT_TYPE
                           dwStatusType;
 NET ITC STATUS UNION
                           uStatusParam;
 DWORD
                           dwHoldTime;
 BYTE
                           byRes[32];
}NET_ITC_STATUS_DETECT_RESULT,*LPNET_ITC_STATUS_DETECT_RESULT;
Members
dwStatusType
      状态检测类型,定义如下所示:
      enum_ITC_STATUS_DETECT_TYPE_{
        ITC STATUS DETECT NULL = 0,
        ITC_STATUS_DETECT_TRIGGERIO,
        ITC_STATUS_DETECT_FLASHOUT,
        ITC_STATUS_DETECT_RS485,
        ITC_STATUS_DETECT_TRIGGERTYPE,
        ITC STATUS DETECT TRAFFICLIGHT COLOR,
        ITC_STATUS_DETECT_TRAFFICLIGHT_TURN
      }ITC_STATUS_DETECT_TYPE
      ITC_STATUS_DETECT_NULL
      未知
      ITC_STATUS_DETECT_TRIGGERIO
      触发IO
      ITC_STATUS_DETECT_FLASHOUT
      同步输出
      ITC STATUS DETECT RS485
      RS485
      ITC_STATUS_DETECT_TRIGGERTYPE
      触发类型 (保留)
      ITC_STATUS_DETECT_TRAFFICLIGHT_COLOR
      交通灯(区分颜色)
      ITC_STATUS_DETECT_TRAFFICLIGHT_TURN
      交通灯(区分转向)
uStatusParam
      状态检测结果
dwHoldTime
      灯亮持续时间(保留),单位: ms
byRes
      保留
```

7.231 NET_ITC_STATUS_UNION:状态检测结果联合体

```
union{
  BYTE
                                 uLen[48];
 NET ITC TRIGGERIO INFO
                                struTrigIO;
  NET ITC FLASHOUT INFO
                                struFlashOut;
  NET ITC SERIAL CHECKINFO
                                struSerial;
  NET_ITC_TRIGGERTYPE_INFO
                                struTrigType;
  NET ITC TRAFFIC LIGHT COLOR
                                struTrafficLightColor;
  NET ITC TRAFFIC LIGHT TURN
                                struTrafficLightTurn;
}NET ITC STATUS UNION,*LPNET ITC STATUS UNION;
Members
uLen
       联合体的最大长度
struTrigIO
       触发 IO 口号
struFlashOut
       同步输出
struSerial
       串口
struTrigType
       触发类型 (保留)
struTrafficLightColor
       交通灯(区分颜色)
struTrafficLightTurn
       交通灯(区分转向)
```

7.232 NET_ITC_TRAFFIC_LIGHT_COLOR:视频电警交通灯颜色参数

```
struct{
    BYTE byLeftLight;
    BYTE byRightLight;
    BYTE byStraightLight;
    BYTE byRes[45];
}NET_ITC_TRAFFIC_LIGHT_COLOR, *LPNET_ITC_TRAFFIC_LIGHT_COLOR;

Members

byLeftLight
    左转灯: 0- 无效,1- 红灯,2- 绿灯 3- 黄灯,4- 灯都不亮

byRightLight
    右转灯: 0- 无效,1- 红灯,2- 绿灯,3- 黄灯,4- 灯都不亮

byStraightLight
    直行灯: 0- 无效,1- 红灯,2- 绿灯,3- 黄灯,4- 灯都不亮

byRes
```

保留,置为0

7.233 NET_ITC_TRAFFIC_LIGHT_PARAM:交通信号灯参数

struct{ **BYTE** bySource; **BYTE** byRes1[3]; NET ITC LIGHT ACCESSPARAM UNION struLightAccess; **BYTE** byRes[32]; }NET_ITC_TRAFFIC_LIGHT_PARAM, *LPNET_ITC_TRAFFIC_LIGHT_PARAM; **Members** bySource 交通信号灯接入源: 0- IO 接入, 1- RS485 接入, 2- 视频检测 byRes1 保留,置为0 struLightAccess 信号灯接入参数

7.234 NET_ITC_TRAFFIC_LIGHT_TURN:交通灯转向参数

struct{

BYTE byLightType[MAX_ITC_LANE_NUM];

BYTE byRes[42];
}NET_ITC_TRAFFIC_LIGHT_TURN,*LPNET_ITC_TRAFFIC_LIGHT_TURN;

Members

byLightType

每一位数组对应一个车道,数组的值: 0- 无效,1- 红灯,2- 绿灯,3- 黄灯,4- 灯都不亮

每一位数组对应一个牛迫,数组的值: 0- 尤效,1- 红灯,2- 绿灯,3- 黄灯,4- 灯都不亮 byRes

保留

7.235 NET_ITC_TRIGGERCFG:触发参数

struct{

byRes

保留,置为0

DWORD dwSize;

NET ITC SINGLE TRIGGERCFG struTriggerParam;

BYTE byRes[32];

}NET_ITC_TRIGGERCFG,*LPNET_ITC_TRIGGERCFG;

Members

dwSize

结构体大小

```
struTriggerParam
```

单个触发参数

byRes

保留

7.236 NET_ITC_TRIGGERIO_INFO:触发 IO 口参数

```
struct{

BYTE byTriggerIOIndex[MAX_IOIN_NUM];

BYTE byRes[40];

}NET_ITC_TRIGGERIO_INFO,*LPNET_ITC_TRIGGERIO_INFO;

Members

byTriggerIOIndex

触发 IO 号

byRes

保留
```

7.237 NET_ITC_TRIGGERMODE_ABILITY:触发模式能力

```
struct{
    DWORD dwSize;
    DWORD dwTriggerType;
    BYTE byRes[16];
}NET_ITC_TRIGGERMODE_ABILITY,*LPNET_ITC_TRIGGERMODE_ABILITY;
Members
dwSize
    大小
dwTriggerType
```

触发类型,按位表示,定义如下所示:

ITC_POST_SINGLEIO_TYPE

```
enum _ITC_TRIGGERMODE_TYPE_{
  ITC POST IOSPEED TYPE
                                      = 0x1,
  ITC_POST_SINGLEIO_TYPE
                                      = 0x2,
  ITC_POST_RS485_TYPE
                                      = 0x4,
  ITC_POST_RS485_RADAR_TYPE
                                      = 0x8,
  ITC POST VIRTUALCOIL TYPE
                                      = 0x10,
  ITC_EPOLICE_IO_TRAFFICLIGHTS_TYPE = 0x100,
  ITC_EPOLICE_RS485_TYPE
                                      = 0x200,
  ITC_PE_RS485_TYPE
                                      = 0x10000,
  ITC_VIDEO_EPOLICE_TYPE
                                      = 0x20000
}ITC TRIGGERMODE TYPE
ITC_POST_IOSPEED_TYPE
IO 测速(卡口)
```

单 IO 触发(卡口)

ITC_POST_RS485_TYPE

RS485 车检器触发(卡口)

ITC_POST_RS485_RADAR_TYPE

RS485 雷达触发(卡口)

ITC_POST_VIRTUALCOIL_TYPE

虚拟线圈触发(卡口)

ITC_EPOLICE_IO_TRAFFICLIGHTS_TYPE

IO 红绿灯(电警)

ITC_EPOLICE_RS485_TYPE

RS485 车检器电警触发(电警)

ITC_PE_RS485_TYPE

RS485 车检器卡式电警触发(卡式电警)

ITC_VIDEO_EPOLICE_TYPE

视频电警触发(卡式电警)

bvRes

保留

7.238 NET_ITC_TRIGGERTYPE_INFO:触发类型参数

struct{

BYTE byTrigTypeIndex;

BYTE byRes[47];

}NET_ITC_TRIGGERTYPE_INFO,*LPNET_ITC_TRIGGERTYPE_INFO;

Members

byTrigTypeIndex

触发类型值

byRes

保留

7.239 NET_ITC_TRIGGER_PARAM_UNION:触发参数联合体

union{

DWORD uLen[1070]; NET ITC POST IOSPEED PARAM struIOSpeed; NET ITC POST SINGLEIO PARAM struSingleIO; NET ITC POST RS485 PARAM struPostRs485; NET ITC POST RS485 RADAR PARAM struPostRadar; NET ITC POST VTCOIL PARAM struVtCoil; NET ITC POST HVT PARAM V50 struHvtV50; NET ITC POST MPR PARAM struPostMpr; NET_ITC_POST_PRS_PARAM struPostPrs; NET ITC EPOLICE IOTL PARAM struIOTL;

NET ITC EPOLICE RS485 PARAM struEpoliceRs485;

NET ITC EPOLICE RS485 PARAM struPERs485;

NET ITC POST IMT PARAM struPostImt;

NET IPC POST HVT PARAM struIpcHvt;

NET ITC POST MOBILE PARAM struPostMobile;

NET ITC REDLIGHT PEDESTRIAN PARAM struRedLightPed;

}NET_ITC_TRIGGER_PARAM_UNION,*LPNET_ITC_TRIGGER_PARAM_UNION;

struNoComityPed;

Members

uLen

联合体长度,1070*4 共4280 字节

NET ITC NOCOMITY PEDESTRIAN PARAM

struIOSpeed

- (卡口)IO 测速参数,触发类型为 ITC_POST_IOSPEED_TYPE 时有效 struSingleIO
- (卡口)RS485 车检器参数,触发类型为 ITC_POST_RS485_TYPE 时有效 struPostRadar
- (卡口)虚拟线圈参数,触发类型为 ITC_POST_VIRTUALCOIL_TYPE 时有效 *struHvtV50*
- (卡口)混行卡口视频触发 V50 参数,触发类型为 ITC_POST_HVT_TYPE_V50 时有效 *struPostMpr*
- (卡口)多帧检测触发参数(MPR),触发类型为 ITC_POST_MPR_TYPE 时有效 *struPostPrs*
- (PRS) 视频检测触发,触发类型为 ITC_POST_PRS_TYPE 时有效 struIOTL
- (电警)RS485 车检器触发参数,触发类型为 ITC_EPOLICE_RS485_TYPE 时有效 *struPERs485*
- 智慧监控配置参数,触发类型为 ITC_POST_IMT_TYPE 时有效 strulpcHvt
- (IPC) 混行卡口参数,触发类型为 IPC_POST_HVT_TYPE 时有效 struPostMobile
- 移动交通触发模式,触发类型为 ITC_POST_MOBILE_TYPE 时有效 struRedLightPed
- 行人闯红灯触发模式,触发类型为 ITC_REDLIGHT_PEDESTRIAN_TYPE 时有效 struNoComityPed
 - 不礼让行人触发参数,触发类型为 ITC_NOCOMITY_PEDESTRIAN_TYPE 时有效

7.240 NET_ITC_VIDEO_DETECT_LIGHT_PARAM:视频检测交通信号灯参

数

```
struct{
```

NET ITC SINGLE VIDEO DETECT LIGHT PARAM struTrafficLight[MAX_VIDEO_DETECT_LIGHT_NUM];

BYTE byRes[8];

}NET_ITC_VIDEO_DETECT_LIGHT_PARAM, *LPNET_ITC_VIDEO_DETECT_LIGHT_PARAM;

Members

struRS485Light

单个视频检测信号灯参数

byRes

保留,置为0

7.241 NET_ITC_VIDEO_EPOLICE_PARAM:视频电警触发参数

struct{

BYTE byEnable;
BYTE byLaneNum;
BYTE byLogicJudge;
BYTE byRes1;

NET ITC PLATE RECOG PARAM struPlateRecog;
NET ITC TRAFFIC LIGHT PARAM struTrafficLight;

NET ITC LANE VIDEO EPOLICE PARAM struLaneParam[MAX_ITC_LANE_NUM];

NET ITC LINE struLaneBoundaryLine;

NET_ITC_LINEstruLeftLine;NET_ITC_LINEstruRightLine;NET_ITC_LINEstruTopZebraLine;NET_ITC_LINEstruBotZebraLine;

BYTE byRes[32];

}NET_ITC_VIDEO_EPOLICE_PARAM,*LPNET_ITC_VIDEO_EPOLICE_PARAM;

Members

byEnable

是否启用: 0- 不启用, 1- 启用

byLaneNum

识别的车道个数,1~6

byLogicJudge

闯红灯违规判断逻辑: 0- 按方向, 1- 按车道

byRes1

保留

struPlateRecog

牌识参数

struTrafficLight

交通信号灯参数

struLaneParam

单车道参数

struLaneBoundaryLine

车道边界线(最右边车道的边界线)

struLeftLine

左转弯分界线

struRightLine

右转弯分界线

struTopZebraLine

上部斑马线

struBotZebraLine

下部斑马线

byRes

保留

7.242 NET_ITC_VIDEO_TRIGGER_COND:视频触发条件

 $struct \{$

DWORD dwSize;

DWORD dwChannel;

DWORD dwTriggerMode;

BYTE byRes[16];

}NET_ITC_VIDEO_TRIGGER_COND, *LPNET_ITC_VIDEO_TRIGGER_COND;

Members

dwSize

大小

dwChannel

通道号

dwTriggerMode

视频触发模式类型,详见 <u>ITC TRIGGERMODE TYPE</u>

byRes

保留,置为0

Remarks

dwTriggerMode 为 ITC_VIDEO_EPOLICE_TYPE 时有效。

7.243 NET_ITC_VIDEO_TRIGGER_PARAM:视频触发参数

struct{

DWORD dwSize;
DWORD dwMode;

NET_ITC_VIDEO_TRIGGER_PARAM_UNION uVideoTrigger;
BYTE byRes[32];

```
}NET_ITC_VIDEO_TRIGGER_PARAM, *LPNET_ITC_VIDEO_TRIGGER_PARAM;

Members

dwSize

大小

dwMode

触发模式,详见 ITC_TRIGGERMODE_TYPE

uVideoTrigger

触发模式参数

byRes

保留,置为 0
```

7.244 NET_ITC_VIDEO_TRIGGER_PARAM_UNION:视频电警触发参数联合体

7.245 NET ITC VIOLATION DETECT LINE:违规检测线参数

```
struct{
  NET ITC LINE
                  struLaneLine;
  NET ITC LINE
                  struStopLine;
  NET ITC LINE
                  struRedLightLine;
  NET ITC LINE
                  struCancelLine;
  NET ITC LINE
                  struWaitLine;
  NET_ITC_LINE
                  struRes[8];
}NET_ITC_VIOLATION_DETECT_LINE, *LPNET_ITC_VIOLATION_DETECT_LINE;
Members
struLaneLine
       车道线参数
struStopLine
       停止线参数
struRedLightLine
       闯红灯触发线参数
struCancelLine
```

直行触发位置取消线

struWaitLine

待行区停止线参数

struRes

保留,置为0

See Also

闯红灯触发线是车辆在红灯状态下行驶过该线则判断为闯红灯,一般图像中闯红灯触发线在直行触发 线的下方。

直行触发位置取消线是当检测到车辆经过该线后就判定为直行,不会再做左右转的判断,用于车辆不按车道行驶的违章判断。

7.246 NET_ITC_VIOLATION_DETECT_PARAM: 违规检测参数

struct{

DWORD dwVioDetectType;

BYTE byDriveLineSnapTimes;

BYTE byReverseSnapTimes;

WORD wStayTime;

BYTE byNonDriveSnapTimes;
BYTE byChangeLaneTimes;

BYTE bybanTimes;

BYTE byDriveLineSnapSen;

WORD wSnapPosFixPixel;

BYTE bySpeedTimes;

BYTE byTurnAroundEnable;

BYTE byThirdPlateRecogTime;

BYTE byPostSnapTimes;

BYTE byRes1[18];
WORD wStopLineDis;

BYTE byRes[14];

}NET_ITC_VIOLATION_DETECT_PARAM, *LPNET_ITC_VIOLATION_DETECT_PARAM

Members

dwVioDetectType

违规检测类型,按位表示,其值: 0- 不启用,1- 启用,类型定义详见 ITC VIOLATION DETECT TYPE

byDriveLineSnapTimes

压车道线抓拍张数,2~3

byReverseSnapTimes

逆行抓拍张数,2~3

wStayTime

机占非停留时间(该时间后抓拍),单位: s

byNonDriveSnapTimes

机占非抓拍张数,2~3

byChangeLaneTimes

违法变道抓拍张数,2~3

bybanTimes

违法禁令抓拍张数,2~3

byDriveLineSnapSen

压线灵敏度,取值范围:0~100

wSnapPosFixPixel

第2、3张抓拍位置最小偏移(违反信号灯时起效),单位:像素

bySpeedTimes

违法超速抓拍张数,2~3

byTurnAroundEnable

违章掉头使能: 0- 关闭, 1- 开启

byThirdPlateRecogTime

第三张牌识时间,取值范围: 0~180,单位: s

byPostSnapTimes

卡口抓拍张数,1~2张

byRes1

保留,置为0

wStopLineDis

电警第2张违规图片与停止线的最短距离,取值范围: [0,300],单位:像素

byRes

保留,置为0

7.247 NET_ITC_VTCOIL_INFO:虚拟线圈

struct{

NET VCA RECTstruLaneRect;BYTEbyTrigFlag;BYTEbyTrigSensitive;

BYTE byRelatedIOOut[MAX_IOOUT_NUM];

BYTE byFlashMode;
BYTE byLaneType;
BYTE byEnableRadar;

NET ITC VTLANE PARAMstruLane;BYTEbyUseageType;BYTEbyCarDriveDirect;BYTEbyRes[30];

}NET_ITC_VTCOIL_INFO,*LPNET_ITC_VTCOIL_INFO;

Members

struLaneRect

虚拟线圈区域

byTrigFlag

触发标志: 0- 车头触发, 1- 车尾触发, 2- 车头/车尾都触发

byTrigSensitive

触发灵敏度: 1~100

byRelatedIOOut

关联的 IO 输出口(可以同时关联多个),数组 0表示 IO 输出口 1,数组 1表示 IO 输出口 2,以此类推, 0-不关联,1-关联

byFlashMode

闪光灯闪烁模式: 0- 同时闪, 1- 轮流闪

byLaneType

车道类型: 0- 未配置, 1- 高速公路, 2- 城市快速路, 0xff- 其他道路

byEnableRadar

是否启用雷达测速: 0- 否, 1- 是

struLane

关联的车道参数

byUseageType

车道用途类型,定义详见 ITC LANE USEAGE TYPE

byCarDriveDirect

车辆行驶方向,具体定义如下:

```
enum _ITC_LANE_CAR_DRIVE_DIRECT_{
  ITC LANE DRIVE UNKNOW
 ITC_LANE_DRIVE_UP_TO_DOWN
                               = 1,
  ITC_LANE_DRIVE_DOWN_TO_UP
                               = 2
}ITC_LANE_CAR_DRIVE_DIRECT
```

ITC_LANE_DRIVE_UNKNOW

未知

ITC_LANE_DRIVE_UP_TO_DOWN

从上往下行驶(下行)

ITC_LANE_DRIVE_DOWN_TO_UP

从下往上行驶(上行)

byRes

保留

NET_ITC_VTLANE_PARAM:车道参数 7.248

struct{ **BYTE** byRelatedDriveWay; **BYTE** bySpeedCapEn; **BYTE** bySignSpeed; **BYTE** bySpeedLimit; **BYTE** bySnapTimes; **BYTE** byBigCarSignSpeed; **BYTE** byBigCarSpeedLimit; **BYTE** byRelatedIOOutEx; **NET ITC INTERVAL PARAM** struInterval; **BYTE**

byRelatedIOOut[MAX_IOOUT_NUM];

BYTE byFlashMode; **BYTE** byLowSpeedLimit;

BYTE byBigCarLowSpeedLimit; **BYTE**

byRelaLaneDirectionType;

NET ITC PLATE RECOG REGION PARAM

struPlateRecog[MAX_LANEAREA_NUM];

NET VCA LINE

struLine;

}NET_ITC_VTLANE_PARAM,*LPNET_ITC_VTLANE_PARAM;

Members

byRelatedDriveWay

关联的车道号

bySpeedCapEn

是否启用超速抓拍: 0- 否, 1- 是

bySignSpeed

标志限速,单位: km/h

bySpeedLimit

限速值,单位: km/h

bySnapTimes

抓拍次数 (默认 1): 0- 不抓拍; 非 0- 连拍次数, 最大 5

byBigCarSignSpeed

大车标志限速,单位 km/h

byBigCarSpeedLimit

大车限速值,单位 km/h

byRelatedIOOutEx

关联的 IO 输出口,接位表示输出口号: bit0 表示 IO 输出口 1, bit1 表示 IO 输出口 2,以此类推。值: 0-不关联,1-关联,最多支持关联到 8 个 IO 输出口(兼容 byRelatedIOOut 字段)

struInterval

抓拍间隔参数

byRelatedIOOut

关联的 IO 输出口,可以同时关联多个

byFlashMode

闪光灯闪烁模式: 0- 同时闪, 1- 轮流闪

byLowSpeedLimit

小车低速限速,单位: km/h

by Big Car Low Speed Limit

大车低速限速,单位: km/h

byRelaLaneDirectionType

关联车道方向类型,定义详见 ITC RELA LANE DIRECTION TYPE

struPlateRecog

车道牌识参数

struLine

车道线

7.249 NET ITS ILLEGAL INFO:违法代码字符信息

struct{

BYTE bylllegalInfo[MAX_ILLEGAL_LEN];

BYTE byRes[256];

}NET_ITS_ILLEGAL_INFO,*LPNET_ITS_ILLEGAL_INFO;

Members

bylllegalInfo

违章类型信息(字符格式)

byRes

保留,置为0

7.250 NET_ITS_IMGMERGE_CFG:图片合成配置参数

struct{

DWORD dwSize;

BYTE bylsMerge;

BYTE byCloseupProportion;

BYTE byRes1[2];

DWORD dwOneMergeType; DWORD dwTwoMergeType;

DWORD dwThreeMergeType;

DWORD dwJpegQuality;

DWORD dwCloseupIndex;

DWORD dwMerageMaxSize;

WORD wCloseupDeviation;

BYTE byRes[30];

}NET_ITS_IMGMERGE_CFG, *LPNET_ITS_IMGMERGE_CFG;

Members

dwSize

结构体大小

byIsMerge

是否需要合成: 0- 不合成, 1- 合成

byCloseupProportion

特写图比例: 1- 原始分辨率大小, 2- 宽高为原始分辨率两倍,以此类推,取值范围: 1~8

byRes1

保留,置为0

dwOneMergeType

抓拍单张图合成方式(保留)

dwTwoMergeType

抓拍两张图合成方式

dwThreeMergeType

抓拍三张图合成方式

dwJpegQuality

压缩质量(0~100)

dwCloseupIndex

特写图抓拍第几张

dwMerageMaxSize

合成图片大小的上限,取值范围: 300-10240,单位: KB

wCloseupDeviation

特写图偏移量(50~图片高度),单位:像素

byRes

保留,置为0

Remarks

wCloseupDeviation 是指特写图在抓拍图片中截取的上下偏移量(调整位置)。仅在图片合成启用下才会取特写图。

取特写图。 图片总数	合成编码	合成方式
2	201	两张图片上下排列合成,合成后图片宽为单张图的1倍,高为2倍。
2	202	两张图片左右排列合成,合成后图片宽为单张图的 2 倍,高为 1 倍。
	203	上下合成,特写在最上边
	204	上下合成,特写在最下边
	205	左右合成,特写在最右边
	206	左右合成,特写在最左边
	207	品字合成,特写图在上边
	208	倒品字合成,特写图在下边
	209	唱字形,左边1张为特写
	210	反唱字形,右边1张为特写
3	301	三张图片上下排列合成,合成后图片宽为单张图的1倍,高为3倍。
	302	三张图片左右排列合成,合成后图片宽为单张图的3倍,高为1倍。
	303	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片"田"字型合成,特写在右下;合成后图片宽为单张图的 2 倍,高为 2 倍。
	304	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片"田"字型合成,特写在右下;合成后图片宽为单张图的1倍,高为1倍。
	305	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片"田"字型合成,特写在左上;合成后图片宽为单张图的 2 倍,高为 2 倍。
	306	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片"田"字型合成,特写在左上;压缩图片分辨率,合成后图片宽为单张图的1倍,高为1倍。
	307	三张图片"品"字型排列合成。
	308	三张图片倒"品"字型排列合成。
	309	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片"田"字型合成,特写在左下;合成后图片宽为单张图的 2 倍,高为 2 倍。
	310	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片"田"字型合成,特写在左下;合成后图片宽为单张图的1倍,高为1倍。
	311	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片"田"字型合成,特写在右上;合成后图片宽为单张图的 2 倍,高为 2 倍。
	312	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片"田"字型合成,特写在右上;压缩图片分辨率,合成后图片宽为单张图的1倍,高为1倍。

	313	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片横"一"字型合成,顺序为:特写图、场景图、场景图、场景图
	314	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片横"一"字型合成,顺序为:场景图、 特写图、场景图、场景图
	315	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片横"一"字型合成,顺序为:场景图、场景图、特写图、场景图
	316	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片横"一"字型合成,顺序为:场景图、场景图、场景图、特写图
	317	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片竖"1"字型合成,顺序为:特写图、场景图、场景图、场景图
	318	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片竖"1"字型合成,顺序为:场景图、特写图、场景图、场景图
	319	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片竖"1"字型合成,顺序为:场景图、 场景图、特写图、场景图
	320	从三张图片中取一幅车牌特写区域,组成四张图片;四张图片竖"1"字型合成,顺序为:场景图、场景图、场景图、特写图
其他	其他	其他

7.251 NET_ITS_OVERLAP_CFG_V50:字符叠加配置

struct{

DWORD dwSize;
BYTE byEnable;
BYTE byRes1[3];

NET ITS OVERLAP ITEM PARAM V50 struOverLapItem;

NET ITS OVERLAP INFO PARAM struOverLapInfo;

BYTE byRes[120];

}NET_ITS_OVERLAP_CFG_V50,*LPNET_ITS_OVERLAP_CFG_V50;

Members

dwSize

结构体大小

byEnable

是否启用: 0- 不启用, 1- 启用

byRes1

保留

struOverLapItem

字符串参数

struOverLapInfo

字符串内容信息

byRes

保留

Remarks

字符叠加配置能力: <u>NET_DVR_GetDeviceAbility</u>(能力集类型: DEVICE_ABILITY_INFO),获取抓拍机和智能终端能力(ITDeviceAbility),对应节点: <imageOverlayString>。

7.252 NET_ITS_OVERLAP_INFO_PARAM:字符叠加内容信息

```
struct{
  BYTE
         bySite[128];
  BYTE
         byRoadNum[32];
  BYTE
         byInstrumentNum[32];
  BYTE
         byDirection[32];
  BYTE
         byDirectionDesc[32];
  BYTE
         byLaneDes[32];
  BYTE
         byRes1[32];
         byMonitoringSite1[44];
  BYTE
  BYTE
         byMonitoringSite2[32];
  BYTE
         byRes[64];
}NET_ITS_OVERLAP_INFO_PARAM,*LPNET_ITS_OVERLAP_INFO_PARAM;
Members
bySite
      地点描述
byRoadNum
      路口编号
byInstrumentNum
       设备编号
byDirection
      方向编号
byDirectionDesc
      方向描述
byLaneDes
       车道描述
byRes1
      保留,置为0
byMonitoringSite1
      监测点1信息
byMonitoringSite2
      监测点 2 信息
byRes
      保留,置为0
```

7.253 NET_ITS_OVERLAP_ITEM_PARAM_V50:字符串参数

struct{

NET_ITS_OVERLAP_SINGLE_ITEM_PARAM_V50 struSingleItem[MAX_OVERLAP_ITEM_NUM]; **DWORD** dwLinePercent; **DWORD** dwItemsStlye; WORD wStartPosTop; WORD wStartPosLeft; WORD wCharStyle; WORD wCharSize; WORD wCharInterval; **BYTE** byRes1[2]; **DWORD** dwForeClorRGB; **DWORD** dwBackClorRGB; **BYTE** byColorAdapt; **BYTE** byParamFillZeroEnble; **BYTE** byPlateLeftCornerEnable; **BYTE** byRes2; WORD wStartSPicPosTop; WORD wStartSPicPosLeft; **BYTE** byOsdLocate; **BYTE** byRes[63]; }NET_ITS_OVERLAP_ITEM_PARAM_V50,*LPNET_ITS_OVERLAP_ITEM_PARAM_V50; **Members** struSingleItem 单条字符参数 dwLinePercent 叠加行百分比(0~100), 默认: 100 dwItemsStlve 叠加方式: 0-横排, 1-竖排(默认横排) wStartPosTop 起始上坐标,只对图片内部叠加有效,取值范围: [0~2448],默认: 0 wStartPosLeft 起始左坐标,只对图片内部叠加有效,取值范围: [0~2448],默认: 0 wCharStyle 字体类型: 0-宋体, 1-魏体(默认) wCharSize 字符大小: 0-16*16, 1-32*32, 2-48x48, 3-64x64(默认) wCharInterval 字符间距,取值范围: [0~16],可设单位: 像素(默认) byRes1 保留,置为0 dwForeClorRGB 前景色的 RGB 值,bit0~bit7: B,bit8~bit15: G,bit16~bit23: R,默认:x00FFFFFF-白 dwBackClorRGB 背景色的 RGB 值, 只对图片外叠加有效, bit0~bit7: B, bit8~bit15: G, bit16~bit23: R, 默认: x00000000-黑

```
byColorAdapt
```

颜色是否自适应: 0-否, 1-是

byParamFillZeroEnble

参数补零使能: 0- 补零, 1- 不补零, 速度、限速值不足 3 位时补 0

byPlateLeftCornerEnable

车牌小图叠加左上角使能 0-不叠加, 1-叠加

byRes2

保留,置为0

wStartSPicPosTop

起始上坐标,只对图片内部叠加有效,取值范围: [0~2448](默认 0)

wStartSPicPosLeft

起始左坐标,只对图片内部叠加有效,取值范围:[0~2448](默认0)

byOsdLocate

OSD 叠加位置: 0- 图片内, 1- 图片上边缘, 2- 图片下边缘(合成图专用的是上边缘外)

byRes

保留,置为0

7.254 NET_ITS_OVERLAP_SINGLE_ITEM_PARAM_V50:单条字符叠加信息

```
struct{
```

BYTE byRes1[2];

BYTE byItemType;

BYTE byChangeLineNum;

BYTE bySpaceNum;

BYTE byRes2[2];

BYTE byEnablePos;

WORD wStartPosTop;

WORD wStartPosLeft;

BYTE byItemTypeCustom[32];

BYTE byRes[8];

}NET_ITS_OVERLAP_SINGLE_ITEM_PARAM_V50,*LP NET_ITS_OVERLAP_SINGLE_ITEM_PARAM_V50;

Members

byRes1

保留

byItemType

类型,定义如下所示:

```
enum_ITS_OVERLAP_ITEM_TYPE_{

OVERLAP_ITEM_NULL = 0,

OVERLAP_ITEM_SITE = 1,

OVERLAP_ITEM_ROADNUM,

OVERLAP_ITEM_INSTRUMENTNUM,

OVERLAP_ITEM_DIRECTION,
```

```
OVERLAP_ITEM_DIRECTIONDESC,
 OVERLAP_ITEM_DIRECTIONDESC,
 OVERLAP_ITEM_LANEDES,
 OVERLAP_ITEM_CAPTIME,
 OVERLAP ITEM CAPTIME MILLSECOND,
 OVERLAP_ITEM_PLATENUM,
 OVERLAP_ITEM_CARCOLOR,
 OVERLAP_ITEM_CARTYPE,
 OVERLAP ITEM CARBRAND,
 OVERLAP_ITEM_CARSPEED,
 OVERLAP ITEM SPEEDLIMIT,
 OVERLAP_ITEM_CARLENGTH,
 OVERLAP_ITEM_ILLEGALNUM,
 OVERLAP ITEM MONITOR INFO,
 OVERLAP_ITEM_ILLEGALDES,
 OVERLAP ITEM OVERSPEED PERCENT,
 OVERLAP_ITEM_RED_STARTTIME,
 OVERLAP_ITEM_RED_STOPTIME,
 OVERLAP_ITEM_RED_DURATION,
 OVERLAP_ITEM_SECUNITY_CODE,
 OVERLAP ITEM CAP CODE,
 OVERLAP_ITEM_SEATBELT,
 OVERLAP_ITEM_MONITOR_ID,
 OVERLAP_ITEM_SUN_VISOR,
 OVERLAP ITEM LANE DIRECTION,
 OVERLAP_ITEM_LICENSE_PLATE_COLOR,
 OVERLAP_ITEM_SCENE_NUMBER,
 OVERLAP_ITEM_SCENE_NAME,
 OVERLAP_ITEM_YELLOW_SIGN_CAR,
 OVERLAP ITEM DANGEROUS CAR,
 OVERLAP_ITEM_CAR_SUBBRAND
}ITS OVERLAP ITEM TYPE
ITC_PROTOCOL_UNKNOW
未知
OVERLAP_ITEM_NULL
0- 未知
OVERLAP ITEM SITE
1- 地点
OVERLAP_ITEM_ROADNUM
2- 路口编号
```

3- 设备编号 OVERLAP_ITE

OVERLAP_ITEM_DIRECTION

OVERLAP_ITEM_INSTRUMENTNUM

4- 方向编号

OVERLAP_ITEM_DIRECTIONDESC

5- 方向

OVERLAP_ITEM_LANENUM

6- 车道号

OVERLAP ITEM LANEDES

7- 车道

OVERLAP_ITEM_CAPTIME

8- 抓拍时间(不带毫秒)

OVERLAP_ITEM_CAPTIME_MILLSECOND

9- 抓拍时间(带毫秒)

OVERLAP_ITEM_PLATENUM

10- 车牌号

OVERLAP_ITEM_CARCOLOR

11- 车身颜色

OVERLAP_ITEM_CARTYPE

12- 车辆类型

OVERLAP_ITEM_CARBRAND

13- 车辆品牌

OVERLAP_ITEM_CARSPEED

14- 车辆速度

OVERLAP_ITEM_SPEEDLIMIT

15- 限速标志

OVERLAP_ITEM_CARLENGTH

16- 车辆长度, 1~99m

OVERLAP ITEM ILLEGALNUM

17- 违法代码(违法代码叠加应该没用的,应该直接叠加违法信息,比如正常、低速、超速、逆行、 闯红灯、占道、压黄线等)

OVERLAP_ITEM_MONITOR_INFO

18- 监测点信息

OVERLAP_ITEM_ILLEGALDES

19- 违法行为

OVERLAP ITEM OVERSPEED PERCENT

20- 超速比

OVERLAP_ITEM_RED_STARTTIME

21- 红灯开始时间

OVERLAP_ITEM_RED_STOPTIME

22- 红灯结束时间

OVERLAP_ITEM_RED_DURATION

23- 红灯已亮时间

OVERLAP_ITEM_SECUNITY_CODE

24- 防伪码

OVERLAP_ITEM_CAP_CODE

25- 抓拍编号

OVERLAP_ITEM_SEATBELT

26- 有无系安全带

OVERLAP_ITEM_MONITOR_ID

27- 监测点编号

OVERLAP_ITEM_SUN_VISOR

28- 遮阳板

OVERLAP_ITEM_LANE_DIRECTION

29- 车道行驶方向

OVERLAP_ITEM_LICENSE_PLATE_COLOR

30- 车牌颜色

OVERLAP_ITEM_SCENE_NUMBER

31- 场景编号

OVERLAP_ITEM_SCENE_NAME

32- 场景名称

OVERLAP_ITEM_YELLOW_SIGN_CAR

33- 黄标车

OVERLAP_ITEM_DANGEROUS_CAR

34- 危险品车

OVERLAP_ITEM_CAR_SUBBRAND

35- 车辆子品牌

byChangeLineNum

叠加项后的换行数,取值范围: [0,10],默认: 0

bySpaceNum

叠加项后的空格数,取值范围: [0-255],默认: 0

byRes2

保留

byEnablePos

是否启用坐标显示: 0- 否, 1- 是

wStartPosTop

起始上坐标,只对图片内部叠加有效,取值范围: [0,2448],默认: 0

wStartPosLeft

起始左坐标,只对图片内部叠加有效,取值范围: [0,2448],默认: 0

byItemTypeCustom

自定义类型,与 byltemType 参数对应,可将 byltemType 参数类型自定义名称。若自定义内容为空,便默认以 byltemType 参数中的类型命名

byRes

保留

7.255 NET ITS OVERLAPCFG COND:字符叠加配置条件

struct{

DWORD dwSize;

DWORD dwChannel;

DWORD dwConfigMode;

BYTE byPicModeType;

BYTE byRes[15];

}NET_ITS_OVERLAPCFG_COND,*LPNET_ITS_OVERLAPCFG_COND;

Members

dwSize

结构体大小

dwChannel

通道号

dwConfigMode

配置模式: 0- 终端, 1- 前端(直连前端或终端接前端)

byPicModeType

图片模式: 0- 小图(独立图), 1- 大图(合成图)

byRes

保留

7.256 NET_ITS_PICTURE_INFO:图片信息结构体

struct{

DWORD dwDataLen; **BYTE** byType; **BYTE** byDataType; **BYTE** byCloseUpType; **BYTE** byPicRecogMode; **DWORD** dwRedLightTime; **BYTE** byAbsTime[32]; NET VCA RECT struPlateRect; NET VCA RECT struPlateRecgRect;

BYTE *pBuffer;
DWORD dwUTCTime;

BYTE byCompatibleAblity;

BYTE byRes2[7];

}NET_ITS_PICTURE_INFO, *LPNET_ITS_PICTURE_INFO;

Members

dwDataLen

媒体数据长度

byType

数据类型: 0-车牌图, 1- 场景图, 2- 合成图, 3- 特写图, 4- 二值图, 5- 码流, 6- 人脸子图(主驾驶), 7- 人脸子图(副驾驶), 8- 非机动车, 9- 行人

byDataType

数据上传方式: 0-数据直接上传; 1-云存储服务器 URL (原先的图片数据变成 URL 数据,图片长度变成 URL 长度)

byCloseUpType

特写图类型: 0- 保留, 1- 非机动车, 2- 行人

byPicRecogMode

图片背向识别: 0- 正向车牌识别, 1- 背向识别(尾牌识别)

dwRedLightTime

经过的红灯时间,单位: s

byAbsTime

绝对时间点: yyyymmddhhmmssxxx, e.g.20090810235959999, 最后三位为毫秒数

struPlateRect

车牌位置

struPlateRecqRect

牌识区域坐标。参数中的边界宽 fWidth 和高 fHeight 若为 0,fX 和 fY 不为 0,则(fX,fY)表示牌识的中心点坐标

pBuffer

保存数据的缓冲区

dwUTCTime

UTC 时间

byCompatibleAblity

兼容能力字段,按位表示,值:0-无效,1-有效

bit0- 表示 dwUTCTime 字段是否有效

byRes2

保留

Remarks

- 如果设备只上传了场景图,用户可以根据牌识区域坐标(struPlateRecgRect)自己从场景图中截取特写图, 宽和高可以根据实际情况自己调节。
- 通过 <u>NET_DVR_CLOUDSTORAGE_CFG_</u>配置可以启用云存储功能,则上传的图片信息将变成获取图片信息的 <u>URL</u> 地址,平台通过该 <u>URL</u> 地址去云存储服务器上获取数据。

7.257 NET_ITS_PLATE_RESULT:识别结果结构体

struPlateInfo;

struct{

DWORD dwSize: **DWORD** dwMatchNo; BYTE byGroupNum; **BYTE** byPicNo; BYTE bySecondCam; **BYTE** byFeaturePicNo; **BYTE** byDriveChan; byVehicleType; **BYTE BYTE** byDetSceneID; **BYTE** byVehicleAttribute; WORD wIllegalType; **BYTE** bylllegalSubType[8]; **BYTE** byPostPicNo; **BYTE** byChanIndex; WORD wSpeedLimit; **BYTE** byRes2[2];

NET DVR PLATE INFO

NET_DVR_VEHICLE_INFO struVehicleInfo;

BYTE byMonitoringSiteID[48];

BYTE byDeviceID[48];

BYTE byDir;

BYTE byDetectType;

BYTE byRelaLaneDirectionType;

BYTE byRes3;

DWORD dwCustomIllegalType; **BYTE** byIllegalFromatType; *plllegalInfoBuf; **BYTE BYTE** byRes4[4]; **BYTE** byPilotSafebelt; **BYTE** byCopilotSafebelt; **BYTE** byPilotSunVisor; **BYTE** byCopilotSunVisor;

BYTE byPilotCall;

BYTE byBarrierGateCtrlType;
BYTE byAlarmDataType;

NET_DVR_TIME_V30 struSnapFirstPicTime;
DWORD dwlllegalTime;

DWORD dwPicNum;

NET ITS PICTURE INFO struPicInfo[6];

}NET_ITS_PLATE_RESULT, *LPNET_ITS_PLATE_RESULT;

Members

dwSize

结构体大小

dwMatchNo

匹配序号,由(车辆序号、数据类型、车道号)组成匹配码

byGroupNum

图片组数量(一辆过车多台相机抓拍的图片组的总数,用于多相机数据匹配,目前该参数值为1)

byPicNo

连拍的图片序号(接收到图片组数量后,表示接收完成;接收超时不足图片组数量时,根据需要保留或删除)

bySecondCam

是否第二相机抓拍(如远近景抓拍的远景相机,或前后抓拍的后相机,特殊项目中会用到)

byFeaturePicNo

闯红灯电警, 取第几张图作为特写图, 0xff-表示不取

byDriveChan

触发车道号

byVehicleType

车型识别: 0- 未知, 1- 客车(大型), 2- 货车(大型), 3- 轿车(小型), 4- 面包车, 5- 小货车, 6- 行人, 7- 二轮车, 8- 三轮车, 9- SUV/MPV, 10- 中型客车

byDetSceneID

检测场景号, 0表示无效, 其他取值: [1,4], IPC为 0(不支持)

byVehicleAttribute

车辆属性,按位表示, 0- 无附加属性, bit1- 黄标车(类似年检的标志), bit2- 危险品车辆, 值: 0- 否, 1- 是

wIllegalType

违章类型,采用国标定义。willegalType 为 0 时违法类型见 dwCustomillegalType,willegalType 和 dwCustomillegalType 都为 0 时表示正常卡口抓拍

byIllegalSubType

违章子类型

byPostPicNo

违章时取第几张图片作为卡口图, 0xff-表示不取

byChanIndex

通道号(保留)

wSpeedLimit

限速上限 (超速时有效)

byRes2

保留

struPlateInfo

车牌信息结构

struVehicleInfo

车辆信息

byMonitoringSiteID

监测点编号

byDeviceID

设备编号

byDir

监测方向: 1-上行, 2-下行, 3-双向, 4-由东向西, 5-由南向北, 6-由西向东, 7-由北向南, 8-其它 *byDetectType*

检测方式: 1-地感触发, 2-视频触发, 3-多帧识别, 4-雷达触发

byRelaLaneDirectionType

关联车道方向类型,定义详见 <u>ITC RELA LANE DIRECTION TYPE</u>,与关联车道号对应,确保车道唯一性

byRes3

保留

dwCustomIllegalType

违章类型定义(用户自定义): 当 willegalType 参数为空时,使用该参数; 若 willegalType 参数为有值时,以 willegalType 参数为准,该参数无效

byIllegalFromatType

违章信息格式类型: 0- 数字格式, 1- 字符格式

pIllegalInfoBuf

违法代码字符信息,bylllegalFromatType 为 1 时有效(此时数字格式的国标违章代码参数 wlllegalType、dwCustomlllegalType 仍有效),字符信息指针指向结构体 <u>NET_ITS_ILLEGAL_INFO</u>

byRes4

保留

byPilotSafebelt

主驾驶员是否系安全带: 0- 未知, 1- 系安全带, 2- 未系安全带

byCopilotSafebelt

副驾驶员是否系安全带(保留, 暂不支持): 0- 未知, 1- 系安全带, 2- 未系安全带

byPilotSunVisor

主驾驶是否打开遮阳板: 0- 未知, 1- 未打开遮阳板, 2- 打开遮阳板

byCopilotSunVisor

副驾驶是否打开遮阳板: 0- 未知, 1- 未打开遮阳板, 2- 打开遮阳板

byPilotCall

主驾驶员是否在打电话(保留, 暂不支持): 0- 未知, 1- 未打电话, 2- 打电话

byBarrierGateCtrlType

道闸控制类型: 0- 开闸, 1- 未开闸 (专用于历史数据中相机根据黑白名单匹配后是否开闸成功的标志)

byAlarmDataType

报警数据类型: 0- 实时数据, 1- 历史数据

struSnapFirstPicTime

端点时间(ms)(抓拍第一张图片的时间)

dwlllegalTime

违法持续时间(ms)=抓拍最后一张图片的时间-抓拍第一张图片的时间

dwPicNum

图片数量(与 byGroupNum 不同,代表本条信息附带的图片数量)

struPicInfo

图片信息,单张回调,最多6张图,由序号区分

Remarks

违章代码:

违章代码	违章描述
0	普通卡口数据
1018	机动车不在机动车道内行驶的(车道禁行)
1019	机动车违反规定使用专用车道的(预留)
1208	不按导向标志行驶(违章左转、违章直行、违章右转等)
1211	通过路口遇停止信号时,停在停止线以内或路口内的(压停止线)
1229	违反禁令标志(预留,目前没有提供此类违章代码)
1230	机动车禁止标线指示 (压车道线等)
1301	逆行
1302	违反信号灯(闯红灯)
1042	机动车不按规定车道行驶
1303	机动车行驶超过规定时速 50%以下
1603	机动车行驶超过规定时速 50%

7.258 NET_ITS_ROADINFO:路口设备异常报警信息

struct{

DWORD dwSize;
DWORD dwChannel;
BYTE bytriggerMode;
BYTE byRes1[3];
DWORD dwDeviceNum;

BYTE byMonitoringSiteID[48];

BYTE byRoadInfo[48];

NET ITS SINGLE DEVICE INFO struSingleDevice[ITS_MAX_DEVICE_NUM];

BYTE byRes[16];

}NET_ITS_ROADINFO,*LPNET_ITS_ROADINFO;

Members

dwSize

结构体大小

dwChannel

通道号, 0xffffffff 表示终端, 其它表示对应的相机

bytriggerMode

触发模式: 0-线圈触发, 1-视频触发

byRes1

保留,置为0

dwDeviceNum

实际设备个数

byMonitoringSiteID

监测点编号

byRoadInfo

监测点信息

struSingleDevice

路口设备信息

byRes

保留, 置为

7.259 NET_ITS_SINGLE_DEVICE_INFO:路口设备信息

 $struct \{$

DWORD dwDeviceType;
DWORD dwDirID;
DWORD dwLaneID;
DWORD dwDeviceState;
BYTE byDeviceName[32];
BYTE byDeviceID[48];
NET DVR TIME V30 struTriggerTime;

BYTE

byRes[4];

}NET_ITS_SINGLE_DEVICE_INFO,*LPNET_ITS_SINGLE_DEVICE_INFO;

Members

dwDeviceType

设备类型: 0-终端, 1-相机, 2-补光灯, 3-车检器, 4-线圈 1, 5-线圈 2, 6-线圈 3, 7-红绿灯检测器, 8-机柜, 9-雷达

dwDirID

方向编号: 1-上行, 2-下行, 3-双向, 4-由东向西, 5-由南向北, 6-由西向东, 7-由北向南, 8-其他 *dwLaneID*

车道编号

dwDeviceState

设备状态: 0-正常, 非 0-异常(参考设备异常代码表)

byDeviceName

设备名称

byDeviceID

设备编号,一般用序列号,车检器用地址

struTriggerTime

触发时间

byRes

保留

Remarks

设备异常代码表如下所示:

设备名称	异常代码	异常说明
机柜	0101	机柜温度异常
	0102	机柜湿度异常
	0103	机柜门状态异常
	0104	机柜异常震动
	0105	其他异常
抓拍单元	0201	抓拍单元温度异常
	0202	抓拍单元湿度异常
	0203	摄像机 DSP 负载率异常
	0204	摄像机内存使用率异常
	0205	摄像机参数配置异常
	0206	摄像机布防异常
	0207	抓拍单元故障
	0208	其他异常
补光灯	0301	补光灯故障
雷达	0401	雷达故障
车辆检测处理器	0501	车检卡异常

LED 诱导屏 ———————— 串口控制器	1101	LED 诱导屏异常 串口控制器异常
	1007	出入口控制终端异常
	1006	其他异常
	1005	出入口控制终端软件异常
	1004	出入口控制终端存储空间异常
	1003	出入口控制终端内存使用率异常
	1002	出入口控制终端 CPU 使用率异常
出入口控制终端	1001	出入口控制终端温度异常
	0902	牌识处理单元异常
牌识处理单元	0901	视频输入异常
	0807	视频分析记录仪异常
	0806	其他异常
	0805	视频分析记录仪软件异常
	0804	视频分析记录仪存储空间异常
	0803	视频分析记录仪内存使用率异常
	0802	视频分析记录仪 CPU 使用率异常
视频分析记录仪	0801	视频分析记录仪温度异常
	0707	终端服务器异常
	0706	其他异常
	0705	终端服务器软件异常
	0704	
	0703	终端服务器内存使用率异常
	0702	终端服务器 CPU 使用率异常
	0701	终端服务器温度异常
	0602	交通信号灯检测器异常
交通信号灯检测器	0601	信号灯电信号异常
	0504	其他异常
	0503	车辆检测处理器异常

7.260 NET_ITS_TRAFFIC_COLLECT:交通统计数据结构体

struct{ DWORD

dwSize;

BYTE byMonitoringSiteID[48];

BYTE byDeviceID[48];
BYTE byLaneNum;

BYTE byDir;

BYTE byDetectType;

BYTE byRes1;

DWORD dwChannel;

NET_DVR_SYSTEM_TIME struStartTime;

DWORD dwSamplePeriod;

NET_ITS_TRAFFIC_DRIVE_CHAN struDriveChan[6];

BYTE byRes2[24];

}NET_ITS_TRAFFIC_COLLECT,*LPNET_ITS_TRAFFIC_COLLECT;

Members

dwSize

结构体大小

byMonitoringSiteID

监测点编号

byDeviceID

设备编号

byLaneNum

车道总数

byDir

监测方向: 1-上行, 2-下行, 3-双向, 4-由东向西, 5-由南向北, 6-由西向东, 7-由北向南, 8-其它

byDetectType

检测方式: 1-地感线圈, 2-视频触发, 3-多帧识别, 4-雷达触发

byRes1

保留

dwChannel

通道号

struStartTime

统计开始时间

dwSamplePeriod

统计时间,单位:秒

struDriveChan

交通流量数据,每个相机支持6个车道

byRes

保留

7.261 NET_ITS_TRAFFIC_DRIVE_CHAN:单个车道路况信息

struct{

BYTE byDriveChan;
BYTE byRes1[3];
WORD wCarFlux;

```
WORD
           wPasserbyFlux;
 WORD
           wShayFlux;
 float
           fAverOccpancy;
 WORD
           wAverSpeed;
 WORD
           wAverCarDis;
 BYTE
           byRes2[16];
}NET_ITS_TRAFFIC_DRIVE_CHAN,*LPNET_ITS_TRAFFIC_DRIVE_CHAN;
Members
byDriveChan
      车道号
byRes1
      保留
wCarFlux
      汽车流量数
wPasserbyFlux
      行人流量数
wShayFlux
      二轮车流量数
fAverOccpancy
      平均车道占有率百分比
wAverSpeed
      平均车速(km/h)
wAverCarDis
      平均时距,单位:毫秒
byRes2
      保留
```

7.262 NET_POS_PARAM:区域参数

```
struct{
 WORD
         wLeft;
 WORD
         wTop;
 WORD
         wRight;
 WORD
         wBottom;
}NET_POS_PARAM, *LPNET_POS_PARAM;
Members
wLeft
     边界框左上角 X 轴坐标,取值范围: [1,1000]
wTop
     边界框左上角 Y 轴坐标,取值范围: [1,1000]
wRight
     边界框右下角 X 轴坐标,取值范围: [1,1000]
wBottom
     边界框右下角Y轴坐标,取值范围: [1,1000]
```

7.263 NET_VCA_LINE:线结构参数

```
struct{
    <u>NET_VCA_POINT</u> struStart;
    <u>NET_VCA_POINT</u> struEnd;
}NET_VCA_LINE,*LPNET_VCA_LINE;
Members
struStart
起点
struEnd
终点
```

7.264 NET_VCA_POINT:点坐标参数

7.265 NET_VCA_RECT:区域框参数

```
struct{
  float
       fX;
  float
       fY;
 float
       fWidth;
  float
       fHeight;
}NET_VCA_RECT,*LPNET_VCA_RECT;
Members
fΧ
      边界框左上角点的 X 轴坐标,取值范围[0.001,1]
fΥ
      边界框左上角点的Y轴坐标,取值范围[0.001,1]
fWidth
      边界框的宽度,取值范围[0.001,1]
fHeight
      边界框的高度,取值范围[0.001,1]
```

7.266 ITC_LANE_DIRECTION_TYPE:车道方向类型枚举

= 0,
= 0, = 1,
= 2,
= 3,
= 4,
= 5,
= 6,
= 7,
= 9,
= 10
= 11
= 12
= 13
= 14

ITC_LANE_BOTHWAY

双向行驶

ITC_LANE_STRAIGHT_WAIT_RIGHT

直行待行 + 右转

ITC_LANE_USEAGE_TYPE:车道用途类型枚举 7.267

```
enum _ITC_LANE_USEAGE_TYPE_{
  ITC_LANE_USEAGE_UNKNOW = 0,
  ITC_LANE_CARRIAGEWAY
                             = 1,
  ITC LANE BUS
                             = 2,
  ITC_LANE_FAST
                             = 3,
  ITC_LANE_SLOW
                             = 4,
  ITC_LANE_MOTOR
                             = 5,
  ITC_LANE_NONMOTOR
                            = 6,
 ITC_LANE_REVERSE_LANE
                            = 7,
  ITC_LANE_BAN_TRUCKS
                            = 8,
  ITC_LANE_MIX
                            = 9,
  ITC_LANE_EMERGENCY
                            = 10,
  ITC_LANE_BAN_LEFT
                            = 11,
  ITC_LANE_BAN_RIGHT
                            = 12
}ITC_LANE_USEAGE_TYPE
Members
```

ITC_LANE_USEAGE_UNKNOW

未知

ITC_LANE_CARRIAGEWAY

普通车道

ITC_LANE_BUS

公交车专用道

ITC_LANE_FAST

快车道

ITC LANE SLOW

慢车道

ITC_LANE_MOTOR

摩托车道

ITC_LANE_NONMOTOR

非机动车道

ITC_LANE_REVERSE_LANE

反向车道

ITC_LANE_BAN_TRUCKS

禁止货车车道

ITC_LANE_MIX

混合车道

ITC_LANE_EMERGENCY

应急车道

ITC_LANE_BAN_LEFT

禁左车道

ITC_LANE_BAN_RIGHT

禁右车道

ITC RELA LANE DIRECTION TYPE:关联车道方向类型枚举 7.268

```
enum ITC RELA LANE DIRECTION TYPE {
 ITC_RELA_LANE_DIRECTION_UNKNOW
                                      = 0,
 ITC RELA LANE EAST WEST
                                      = 1,
 ITC_RELA_LANE_WEST_EAST
                                      = 2,
 ITC_RELA_LANE_SOUTH_NORTH
                                      = 3,
 ITC_RELA_LANE_NORTH_SOUTH
                                      = 4,
 ITC_RELA_LANE_EASTSOUTH_WESTNORTH = 5,
 ITC RELA LANE WESTNORTH EASTSOUTH = 6,
 ITC_RELA_LANE_EASTNORTH_WESTSOUTH = 7,
 ITC_RELA_LANE_WESTSOUTH_EASTNORTH = 8
}ITC_RELA_LANE_DIRECTION_TYPE
Members
ITC_RELA_LANE_DIRECTION_UNKNOW
```

ITC_RELA_LANE_EAST_WEST

从东向西

ITC_RELA_LANE_WEST_EAST

从西向东

ITC_RELA_LANE_SOUTH_NORTH

从南向北

ITC_RELA_LANE_NORTH_SOUTH

从北向南

ITC_RELA_LANE_EASTSOUTH_WESTNORTH

从东南向西北

ITC_RELA_LANE_WESTNORTH_EASTSOUTH

从西北向东南

ITC_RELA_LANE_EASTNORTH_WESTSOUTH

从东北向西南

ITC_RELA_LANE_WESTSOUTH_EASTNORTH

从西南向东北

ITC TRIGGERMODE TYPE:触发模式

enum _ITC_TRIGGERMODE_TYPE_{

ITC_POST_IOSPEED_TYPE = 0x1,ITC_POST_SINGLEIO_TYPE = 0x2,ITC_POST_RS485_TYPE = 0x4,ITC_POST_RS485_RADAR_TYPE = 0x8,ITC_POST_VIRTUALCOIL_TYPE = 0x10,ITC_POST_HVT_TYPE_V50 = 0x20,ITC_POST_MPR_TYPE = 0x40,ITC_POST_PRS_TYPE = 0x80,ITC_EPOLICE_IO_TRAFFICLIGHTS_TYPE = 0x100, ITC_EPOLICE_RS485_TYPE = 0x200,ITC PE RS485 TYPE = 0x10000,ITC_VIDEO_EPOLICE_TYPE = 0x20000,ITC_VIA_VIRTUALCOIL_TYPE = 0x40000,ITC_POST_IMT_TYPE = 0x80000,IPC_POST_HVT_TYPE = 0x100000,ITC POST MOBILE TYPE = 0x200000,ITC_REDLIGHT_PEDESTRIAN_TYPE = 0x400000,ITC_NOCOMITY_PEDESTRIAN_TYPE = 0x800000

}ITC_TRIGGERMODE_TYPE

Members

ITC POST IOSPEED TYPE

IO 测速(卡口)

ITC_POST_SINGLEIO_TYPE

单 IO 触发(卡口)

ITC POST RS485 TYPE

RS485 车检器触发(卡口)

ITC_POST_RS485_RADAR_TYPE

RS485 雷达触发(卡口)

ITC_POST_VIRTUALCOIL_TYPE

虚拟线圈触发(卡口)

ITC_POST_HVT_TYPE_V50

混行卡口视频触发 V50 (卡口)

ITC_POST_MPR_TYPE

多帧识别(卡口)

ITC_POST_PRS_TYPE

视频检测触发配置

ITC EPOLICE IO TRAFFICLIGHTS TYPE

IO 红绿灯(电警)

ITC_EPOLICE_RS485_TYPE

RS485 车检器电警触发(电警)

ITC_PE_RS485_TYPE

RS485 车检器卡式电警触发(卡式电警)

ITC_VIDEO_EPOLICE_TYPE

视频电警触发(卡式电警)

ITC_VIA_VIRTUALCOIL_TYPE

VIA 触发配置

ITC_POST_IMT_TYPE

智慧监控配置

IPC POST HVT TYPE

(IPC) 混行卡口模式

ITC_POST_MOBILE_TYPE

移动交通触发模式

ITC REDLIGHT PEDESTRIAN TYPE

行人闯红灯触发

ITC_NOCOMITY_PEDESTRIAN_TYPE

不礼让行人触发

See Also

- 触发类型为 ITC_VIDEO_EPOLICE_TYPE(卡式电警-视频电警触发)时,触发参数通过接口 <u>NET_DVR_GetDeviceConfig</u>(命令: NET_ITC_GET_VIDEO_TRIGGERCFG)、<u>NET_DVR_SetDeviceConfig</u>(命令: NET_ITC_SET_VIDEO_TRIGGERCFG)进行配置。
- 触发类型为其他类型时,相关触发参数通过 <u>NET_DVR_GetDVRConfig</u>(命令: NET_ITC_GET_TRIGGERCFG)、 <u>NET_DVR_SetDVRConfig</u>(命令: NET_ITC_SET_TRIGGERCFG)进行配置。

7.270 ITC_VIOLATION_DETECT_TYPE:违规检测类型枚举

```
enum _ITC_VIOLATION_DETECT_TYPE_{
  ITC_VIOLATION_POST
                                       = 0x01,
  ITC_VIOLATION_DRIVELINE
                                       = 0x02,
  ITC_VIOLATION_REVERSE
                                       = 0x04,
  ITC_VIOLATION_REDLIGHT
                                        = 0x08,
  ITC_VIOLATION_DIRECTION
                                        = 0x10,
  ITC_VIOLATION_INTERSECTION_CONGEST = 0x20,
  ITC_VIOLATION_NONDRIVEWAY
                                        = 0x40,
  ITC_VIOLATION_CHANGELANE
                                       = 0x80,
  ITC_VIOLATION_BAN
                                        = 0x100,
  ITC VIOLATION INTERSECTION PARK
                                        = 0x200,
  ITC_VIOLATION_GREEN_PARK
                                        = 0x400,
  ITC_VIOLATION_BAN_DRIVE
                                        = 0x800,
  ITC_VIOLATION_ACROSS_YELLOWLINE
                                       = 0x1000,
  ITC_VIOLATION_HIGH_SPEED
                                       = 0x2000,
  ITC VIOLATION LOW SPEED
                                       = 0x4000,
  ITC_VIOLATION_TURN_AROUND
                                       = 0x8000,
  ITC_VIOLATION_CONGESTION
                                       = 0x10000
}ITC_VIOLATION_DETECT_TYPE
```

Members

ITC_VIOLATION_POST

卡口抓拍

ITC_VIOLATION_DRIVELINE

压车道线抓拍

ITC_VIOLATION_REVERSE

逆行抓拍

ITC_VIOLATION_REDLIGHT

闯红灯抓拍

ITC_VIOLATION_DIRECTION

不按导向行驶抓拍

ITC_VIOLATION_INTERSECTION_CONGEST

路口滞留抓拍

ITC_VIOLATION_NONDRIVEWAY

机动车占非机动车车道抓拍

ITC_VIOLATION_CHANGELANE

违法变道

ITC_VIOLATION_BAN

违法禁令

ITC_VIOLATION_INTERSECTION_PARK

红灯越线

ITC_VIOLATION_GREEN_PARK

绿灯停车

ITC_VIOLATION_BAN_DRIVE

禁行

ITC_VIOLATION_ACROSS_YELLOWLINE

跨越黄线

ITC_VIOLATION_HIGH_SPEED

超速(卡口专用)

ITC_VIOLATION_LOW_SPEED

低速(卡口专用)

ITC_VIOLATION_TURN_AROUND

违法掉头

ITC_VIOLATION_CONGESTION

拥堵

Remarks

- 跨越黄线与违法变道区别:跨越黄线是针对相机架设在路边(不调杆),抓拍车辆变道或调头的情况;
 违法变道与电警中的概念是一样的。
- 禁行和违法禁令区别:禁行是指定区域的车牌都需要抓拍,违法禁令是针对车道抓拍某一类车牌。

7.271 VLR_VEHICLE_CLASS:车辆主品牌类型

```
VLR_PEUGEOT
                = 5,
                      //标致
                      //丰田
VLR TOYOTA
                = 6,
VLR_FORD
                     //福特
                = 7,
VLR_NISSAN
                = 8,
                    //日产
VLR_AUDI
               = 9,
                    //奥迪
VLR_MAZDA
               = 10, //马自达
                    //雪佛兰
VLR CHEVROLET
               = 11,
VLR_CITROEN
               = 12, //雪铁龙
VLR_HYUNDAI
               = 13, //现代
VLR_CHERY
               = 14, //奇瑞
                    //起亚
VLR KIA
               = 15,
                    //荣威
VLR_ROEWE
               = 16,
VLR_MITSUBISHI
               = 17,
                    //三菱
VLR_SKODA
                    //斯柯达
               = 18,
VLR_GEELY
               = 19, //吉利
                    //中华
VLR_ZHONGHUA
               = 20,
VLR_VOLVO
               = 21,
                    //沃尔沃
               = 22, //雷克萨斯
VLR LEXUS
VLR_FIAT
               = 23, //菲亚特
VLR_EMGRAND
               = 24, //帝豪
               = 25, //东风
VLR_DONGFENG
VLR_BYD
               = 26, //比亚迪
              = 27, //铃木
VLR SUZUKI
VLR_JINBEI
              = 28, //金杯
VLR_HAIMA
              = 29,
                    //海马
VLR_SGMW
              = 30, //五菱
VLR_JAC
              = 31, //江淮
              = 32, //斯巴鲁
VLR_SUBARU
VLR_ENGLON
              = 33, //英伦
              = 34, //长城
VLR_GREATWALL
VLR_HAFEI
              = 35, //哈飞
              = 36, //五十铃
VLR_ISUZU
              = 37, //东南
VLR_SOUEAST
VLR_CHANA
              = 38,
                    //长安
VLR_FOTON
              = 39, //福田
              = 40, //夏利
VLR_XIALI
VLR_BENZ
              = 41, //奔驰
VLR_FAW
              = 42, //一汽
              = 43, //依维柯
VLR_NAVECO
VLR_LIFAN
              = 44, //力帆
VLR_BESTURN
              = 45, //一汽奔腾
VLR_CROWN
              = 46, //皇冠
VLR RENAULT
              = 47,
                    //雷诺
VLR_JMC
                    //JMC
              = 48,
```

```
VLR_MG
               = 49, //MG 名爵
               = 50, //凯马
 VLR KAMA
 VLR_ZOTYE
               = 51, //众泰
 VLR_CHANGHE
               = 52, //昌河
 VLR_XMKINGLONG = 53, //厦门金龙
 VLR_HUIZHONG
               = 54, //上海汇众
 VLR_SZKINGLONG = 55, //苏州金龙
 VLR_HIGER
               = 56, //海格
 VLR_YUTONG
               = 57, //宇通
 VLR_CNHTC
               = 58, //中国重汽
 VLR BEIBEN
               = 59, //北奔重卡
 VLR_XINGMA
               = 60, //华菱星马
 VLR_YUEJIN
               = 61, //跃进
 VLR_HUANGHAI
               = 62 //黄海
}VLR_VEHICLE_CLASS
```

7.272 XML 描述

AlarmCtrlParam

7.273 设备日志信息

dwMajorType 主类型

宏定义	宏定义值	含义
MAJOR_ALARM	0x1	报警
MAJOR_EXCEPTION	0x2	异常
MAJOR_OPERATION	0x3	操作
MAJOR_INFORMATION	0x4	日志附加信息

dwMinorType 次类型

主类型的宏定义	宏定义值	含义	
---------	------	----	--

MAJOR_ALARM	0x1	报警
次类型的宏定义	宏定义值	含义
MINOR_ALARM_IN	0x1	报警输入
MINOR_ALARM_OUT	0x2	报警输出
MINOR_MOTDET_START	0x3	移动侦测报警开始
MINOR_MOTDET_STOP	0x4	移动侦测报警结束
MINOR_HIDE_ALARM_START	0x5	遮挡报警开始
MINOR_HIDE_ALARM_STOP	0x6	遮挡报警结束
MINOR_VCA_ALARM_START	0x7	智能报警开始
MINOR_VCA_ALARM_STOP	0x8	智能报警结束
MINOR_ITS_ALARM_START	0x09	交通事件报警开始
MINOR_ITS_ALARM_STOP	0x0a	交通事件报警结束
MINOR_NETALARM_START	0x0b	网络报警开始
MINOR_NETALARM_STOP	0x0c	网络报警结束
MINOR_NETALARM_RESUME	0x0d	网络报警恢复

主类型的宏定义	宏定义值	含义
MAJOR_EXCEPTION	0x2	异常
次类型的宏定义	宏定义值	含义
MINOR_RAID_ERROR	0x20	阵列异常
MINOR_VI_LOST	0x21	视频信号丢失
MINOR_ILLEGAL_ACCESS	0x22	非法访问
MINOR_HD_FULL	0x23	硬盘满
MINOR_HD_ERROR	0x24	硬盘错误
MINOR_DCD_LOST	0x25	MODEM 掉线(保留)
MINOR_IP_CONFLICT	0x26	IP 地址冲突
MINOR_NET_BROKEN	0x27	网络断开
MINOR_REC_ERROR	0x28	录像出错
MINOR_IPC_NO_LINK	0x29	IPC 连接异常
MINOR_VI_EXCEPTION	0x2a	视频输入异常(只针对模拟通道)
MINOR_IPC_IP_CONFLICT	0x2b	IPC 的 IP 地址冲突
MINOR_SENCE_EXCEPTION	0x2c	场景异常
MINOR_PIC_REC_ERROR	0x2d	抓图出错,获取图片文件失败
MINOR_VI_MISMATCH	0x2e	视频制式不匹配

主类型的宏定义	宏定义值	含义
MAJOR_OPERATION	0x3	操作

次类型的宏定义	宏定义值	含义
MINOR_START_DVR	0x41	开机
MINOR_STOP_DVR	0x42	关机
MINOR_STOP_ABNORMAL	0x43	异常关机
MINOR_REBOOT_DVR	0x44	本地重启设备
MINOR_LOCAL_LOGIN	0x50	本地登陆
MINOR_LOCAL_LOGOUT	0x51	本地注销登陆
MINOR_LOCAL_CFG_PARM	0x52	本地配置参数
MINOR_LOCAL_PLAYBYFILE	0x53	本地按文件回放或下载
MINOR_LOCAL_PLAYBYTIME	0x54	本地按时间回放或下载
MINOR_LOCAL_START_REC	0x55	本地开始录像
MINOR_LOCAL_STOP_REC	0x56	本地停止录像
MINOR_LOCAL_PTZCTRL	0x57	本地云台控制
MINOR_LOCAL_PREVIEW	0x58	本地预览(保留不使用)
MINOR_LOCAL_MODIFY_TIME	0x59	本地修改时间(保留不使用)
MINOR_LOCAL_UPGRADE	0x5a	本地升级
MINOR_LOCAL_RECFILE_OUTPUT	0x5b	本地备份录象文件
MINOR_LOCAL_FORMAT_HDD	0x5c	本地初始化硬盘
MINOR_LOCAL_CFGFILE_OUTPUT	0x5d	导出本地配置文件
MINOR_LOCAL_CFGFILE_INPUT	0x5e	导入本地配置文件
MINOR_LOCAL_COPYFILE	0x5f	本地备份文件
MINOR_LOCAL_LOCKFILE	0x60	本地锁定录像文件
MINOR_LOCAL_UNLOCKFILE	0x61	本地解锁录像文件
MINOR_LOCAL_DVR_ALARM	0x62	本地手动清除和触发报警
MINOR_IPC_ADD	0x63	本地添加 IPC
MINOR_IPC_DEL	0x64	本地删除 IPC
MINOR_IPC_SET	0x65	本地设置 IPC
MINOR_LOCAL_START_BACKUP	0x66	本地开始备份
MINOR_LOCAL_STOP_BACKUP	0x67	本地停止备份
MINOR_LOCAL_COPYFILE_START_TIME	0x68	本地备份开始时间
MINOR_LOCAL_COPYFILE_END_TIME	0x69	本地备份结束时间
MINOR_LOCAL_ADD_NAS	0x6a	本地添加网络硬盘
MINOR_LOCAL_DEL_NAS	0x6b	本地删除 NAS 盘
MINOR_LOCAL_SET_NAS	0x6c	本地设置 NAS 盘
MINOR_REMOTE_LOGIN	0x70	远程登录
MINOR_REMOTE_LOGOUT	0x71	远程注销登陆
MINOR_REMOTE_START_REC	0x72	远程开始录像

MINOR_REMOTE_STOP_REC	0x73	远程停止录像
MINOR_START_TRANS_CHAN	0x73	开始透明传输
MINOR_STOP_TRANS_CHAN	0x74 0x75	停止透明传输
MINOR_REMOTE_GET_PARM	0x76	远程获取参数
MINOR REMOTE CFG PARM	0x70 0x77	远程配置参数
	0x77	远程获取状态
MINOR_REMOTE_GET_STATUS MINOR REMOTE ARM	0x78 0x79	远程布防
	0x73	远程撤防
MINOR_REMOTE_DISARM		
MINOR_REMOTE_REBOOT	0x7b	远程重启
MINOR_START_VT	0x7c	开始语音对讲
MINOR_STOP_VT	0x7d	停止语音对讲
MINOR_REMOTE_UPGRADE	0x7e	远程升级
MINOR_REMOTE_PLAYBYFILE	0x7f	远程按文件回放
MINOR_REMOTE_PLAYBYTIME	0x80	远程按时间回放
MINOR_REMOTE_PTZCTRL	0x81	远程云台控制
MINOR_REMOTE_FORMAT_HDD	0x82	远程格式化硬盘
MINOR_REMOTE_STOP	0x83	远程关机
MINOR_REMOTE_LOCKFILE	0x84	远程锁定文件
MINOR_REMOTE_UNLOCKFILE	0x85	远程解锁文件
MINOR_REMOTE_CFGFILE_OUTPUT	0x86	远程导出配置文件
MINOR_REMOTE_CFGFILE_INTPUT	0x87	远程导入配置文件
MINOR_REMOTE_RECFILE_OUTPUT	0x88	远程导出录象文件
MINOR_REMOTE_DVR_ALARM	0x89	远程手动清除和触发报警
MINOR_REMOTE_IPC_ADD	0x8a	远程添加 IPC
MINOR_REMOTE_IPC_DEL	0x8b	远程删除 IPC
MINOR_REMOTE_IPC_SET	0x8c	远程设置 IPC
MINOR_REBOOT_VCA_LIB	0x8d	重启智能库
MINOR_REMOTE_ADD_NAS	0x8e	远程添加 NAS 盘
MINOR_REMOTE_DEL_NAS	0x8f	远程删除 NAS 盘
MINOR_REMOTE_SET_NAS	0x90	远程设置 NAS 盘
MINOR_LOCAL_START_REC_CDRW	0x91	本地开始刻录
MINOR_LOCAL_STOP_REC_CDRW	0x92	本地停止刻录
MINOR_REMOTE_START_REC_CDRW	0x93	远程开始刻录
MINOR_REMOTE_STOP_REC_CDRW	0x94	远程停止刻录
MINOR_LOCAL_PIC_OUTPUT	0x95	本地备份图片文件
MINOR_REMOTE_SET_NAS	0x96	远程备份图片文件
MINOR_LOCAL_INQUEST_RESUME	0x97	本地恢复审讯事件

MINOR_REMOTE_INQUEST_RESUME	0x98	远程恢复审讯事件
MINOR_REMOTE_BYPASS	0xd0	远程旁路
MINOR_REMOTE_UNBYPASS	0xd1	远程旁路恢复
MINOR_REMOTE_SET_ALARMIN_CFG	0xd2	远程设置报警输入参数
MINOR_REMOTE_GET_ALARMIN_CFG	0xd3	远程获取报警输入参数
MINOR_REMOTE_SET_ALARMOUT_CFG	0xd4	远程设置报警输出参数
MINOR_REMOTE_GET_ALARMOUT_CFG	0xd5	远程获取报警输出参数
MINOR_REMOTE_ALARMOUT_OPEN_MAN	0xd6	远程手动开启报警输出
MINOR_REMOTE_ALARMOUT_CLOSE_MAN	0xd7	远程手动关闭报警输出
MINOR_REMOTE_ALARM_ENABLE_CFG	0xd8	远程设置报警主机的 RS485 串口使能状态
MINOR_DBDATA_OUTPUT	0xd9	导出数据库记录
MINOR_DBDATA_INPUT	0xda	导入数据库记录
MINOR_MU_SWITCH	0xdb	级联切换
MINOR_MU_PTZ	0xdc	级联 PTZ 控制
MINOR_LOCAL_CONF_REB_RAID	0x101	本地配置自动重建
MINOR_LOCAL_CONF_SPARE	0x102	本地配置热备
MINOR_LOCAL_ADD_RAID	0x103	本地创建阵列
MINOR_LOCAL_DEL_RAID	0x104	本地删除阵列
MINOR_LOCAL_MIG_RAID	0x105	本地迁移阵列
MINOR_LOCAL_REB_RAID	0x106	本地手动重建阵列
MINOR_LOCAL_QUICK_CONF_RAID	0x107	本地一键配置
MINOR_LOCAL_ADD_VD	0x108	本地创建虚拟磁盘
MINOR_LOCAL_DEL_VD	0x109	本地删除虚拟磁盘
MINOR_LOCAL_RP_VD	0x10a	本地修复虚拟磁盘
MINOR_LOCAL_FORMAT_EXPANDVD	0x10b	本地扩展虚拟磁盘扩容
MINOR_LOCAL_RAID_UPGRADE	0x10c	本地 raid 卡升级
MINOR_LOCAL_STOP_RAID	0x10d	本地暂停 RAID 操作(即安全拔盘)
MINOR_REMOTE_CONF_REB_RAID	0x111	远程配置自动重建
MINOR_REMOTE_CONF_SPARE	0x112	远程配置热备
MINOR_REMOTE_ADD_RAID	0x113	远程创建阵列
MINOR_REMOTE_DEL_RAID	0x114	远程删除阵列
MINOR_REMOTE_MIG_RAID	0x115	远程迁移阵列
MINOR_REMOTE_REB_RAID	0x116	远程手动重建阵列
MINOR_REMOTE_QUICK_CONF_RAID	0x117	远程一键配置
MINOR_REMOTE_ADD_VD	0x118	远程创建虚拟磁盘
MINOR_REMOTE_DEL_VD	0x119	远程删除虚拟磁盘
MINOR_REMOTE_RP_VD	0x11a	远程修复虚拟磁盘

MINOR_REMOTE_FORMAT_EXPANDVD	0x11b	远程虚拟磁盘扩容
MINOR_REMOTE_RAID_UPGRADE	0x11c	远程 raid 卡升级
MINOR_REMOTE_STOP_RAID	0x11d	远程暂停 RAID 操作(即安全拔盘)
MINOR_LOCAL_START_PIC_REC	0x121	本地开始抓图
MINOR_LOCAL_STOP_PIC_REC	0x122	本地停止抓图
MINOR_LOCAL_SET_SNMP	0x125	本地配置 SNMP
MINOR_LOCAL_TAG_OPT	0x126	本地标签操作
MINOR_REMOTE_START_PIC_REC	0x131	远程开始抓图
MINOR_REMOTE_STOP_PIC_REC	0x132	远程停止抓图
MINOR_REMOTE_SET_SNMP	0x135	远程配置 SNMP
MINOR_REMOTE_TAG_OPT	0x136	远程标签操作
MINOR_REMOTE_TAG_OPT	0x136	远程标签操作
MINOR_LOCAL_VOUT_SWITCH	0x140	本地输出口切换操作
MINOR_SET_TRIGGERMODE_CFG	0x1001	设置触发模式参数
MINOR_GET_TRIGGERMODE_CFG	0x1002	获取触发模式参数
MINOR_SET_IOOUT_CFG	0x1003	设置 IO 输出参数
MINOR_GET_IOOUT_CFG	0x1004	获取 IO 输出参数
MINOR_GET_TRIGGERMODE_DEFAULT	0x1005	获取触发模式推荐参数
MINOR_GET_ITCSTATUS	0x1006	获取状态检测参数
MINOR_SET_STATUS_DETECT_CFG	0x1007	设置状态检测参数
MINOR_GET_STATUS_DETECT_CFG	0x1008	获取状态检测参数
MINOR_GET_VIDEO_TRIGGERMODE_CFG	0x1009	获取视频电警模式参数
MINOR_SET_VIDEO_TRIGGERMODE_CFG	0x100a	设置视频电警模式参数

主类型的宏定义	宏定义值	含义
MAJOR_INFORMATION	0x4	附加信息
次类型的宏定义	宏定义值	含义
MINOR_HDD_INFO	0xa1	硬盘信息
MINOR_SMART_INFO	0xa2	S.M.A.R.T 信息
MINOR_REC_START	0xa3	开始录像
MINOR_REC_STOP	0xa4	停止录像
MINOR_REC_OVERDUE	0xa5	过期录像删除
MINOR_LINK_START	0xa6	连接前端设备
MINOR_LINK_STOP	0xa7	断开前端设备
MINOR_NET_DISK_INFO	0xa8	网络硬盘信息
MINOR_RAID_INFO	0xa9	raid 相关信息
MINOR_PIC_REC_START	0xb3	开始抓图

MINOR_PIC_REC_STOP	0xb4	停止抓图
MINOR_PIC_REC_OVERDUE	0xb5	过期图片文件删除