Variables aleatorias

THE KEY IDEA IS THE RANDOM YARIABLE, WHICH WE

WRITE AS A LARGE

A RANDOM VARIABLE IS DEFINED AS THE NUMERICAL OUTCOME OF A RANDOM EXPERIMENT.

Variables aleatorias

Variables aleatorias

$$P(X \in (a,b)) = P(X^{-1}((a,b)))$$

THE TOSSER BEGINS FLIPPING TWO coins repeatedly, keeping track OF THE RESULTS. **Gonick & Smith, The**

Cartoon

Guide to

PROBABILITY MODEL			OBSERVED DATA				
	p(z)	z	nz=number of occurrences	$\frac{n_z}{n}$ = relative frequency			
	.25	0	260	.260			
	.5	1	517	.517			
	.25	2	223	.223			

Gonick & Smith, The Cartoon Guide to

Guide to

THE SAMPLE MEAN WAS DEFINED BY THE EQUATION

$$\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$$

Gonick & Smith, The Cartoon Guide to Statistics

$$\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$$

$$\bar{z} = \frac{1}{n} \sum_{\text{all } z} n_z z$$

OR

$$\bar{z} = \sum_{n \mid z} z \frac{n_z}{n}$$

$$\bar{z} = \sum_{n \mid z} z \frac{n_z}{n}$$

$$\sum_{\text{all } \chi} \chi p(\chi)$$

AND DEFINE THAT AS THE MEAN OF THE PROBABILITY DISTRIBUTION.

 R_X =Recorrido de la variable aleatoria

 R_X = Valores que puede tomar

Función de distribución de masa de probabilidad

$$p_X(x) = P(X = x) \qquad \forall x \in R_X$$

$$p_X(x) \ge 0 \qquad \forall x \in R_X$$

$$P(X \in R_X) = \sum_{x \in R_X} p_X(x) = 1$$

Media

$$\mu = E[X] = \sum_{x \in R_x} x p_X(x)$$

Varianza

$$\sigma^{2} = E\left[(X - \mu)^{2}\right] = \sum_{x \in R_{x}} (x - \mu)^{2} p_{X}(x) = E\left[X^{2}\right] - (E\left[X\right])^{2}$$

Desvío estándar

Momentos

$$\mu_k = E[X^k] = \sum_{x \in R_x} x^k P(X = x)$$

Momentos centrales

$$m_k = E[(X - \mu)^k] = \sum_{x \in R_x} (x - \mu)^k P(X = x)$$

Coeficiente de asimetría

$$\gamma = E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right]$$

Coeficiente de curtosis

$$\kappa = E\left[\left(\frac{X - \mu}{\sigma}\right)^4\right] - 3$$

Muestreo sin reemplazo

X = número de bolillas negras

$$R_x = \{0,1,2,3\}$$

Recuerde que urnas y bolillas son un **MODELO** útil para resolver problemas con tal de traducir los términos al contexto del problema

Caso	Х
BBB	0
NBB	1
BNB	1
BBN	1
BNN	2
NBN	2
NNB	2
NNN	3

Muestreo sin reemplazo

0

0.5

1.5

2

2.5

Muestreo sin reemplazo

$$= 1.2$$

$$= 0.56$$

$$= 0.056$$

$$\gamma = \frac{E[(X - \mu)^3]}{\sigma^3} = 0.1336$$

$$= 0.8192$$

$$\kappa = \frac{E[(X - \mu)^4]}{\sigma^4} - 3 = -0.3878$$

Muestreo sin reemplazo

$$\mu = 1.2$$
, $\sigma = 0.7483$, $\gamma = 0.1336$, $\kappa = -0.3878$

Muestreo con reemplazo

X = número de bolillas negras

$$R_x = \{0,1,2,3\}$$

Recuerde que urnas y bolillas son un **MODELO** útil para resolver problemas con tal de traducir los términos al contexto del problema

Caso	X
BBB	0
NBB	1
BNB	1
BBN	1
BNN	2
NBN	2
NNB	2
NNN	3

Muestreo sin reemplazo

$$\mu = 1.2$$
 , $\sigma = 0.8485$, $\gamma = 0.2357$, $\kappa = -0.6111$

Muestreo sin reemplazo

$$\mu\!=\!8$$
 , $\sigma\!=\!1.9695$, $\gamma\!=\!0.0622$, $\kappa\!=\!-0.0652$

Muestreo con reemplazo

$$\mu\!=\!8$$
 , $\sigma\!=\!2.1909$, $\gamma\!=\!0.0913$, $\kappa\!=\!-0.0917$

