Shudhanshu Ranjan

+1 551 344 2982 | s.ranjan0304@gmail.com | linkedin.com/in/shudhanshu-ranjan | github.com/git4sudo | sudoai.org

EDUCATION

Stevens Institute of Technology, Hoboken, NJ

Master of Science in Computer Science | GPA: 3.63/4.0

Sep 2022 - May 2024

Coursework: Algorithmic Complexity, NLP, CV, Applied Statistics with Application in Finance, RL, and Sequential Decision-Making

Graduate Certificate in Machine Learning | GPA: 3.75/4.0

Nov 2023 - May 2024

Coursework: Artificial Intelligence, Machine Learning, Statistical Machine Learning, Deep Learning

Presidency University, Bangalore, India

Bachelor of Technology in Computer Science and Engineering | CGPA: 8.41/10

Aug 2018 - May 2022

Coursework: Data Structures, Algorithms, DBMS, Data Visualization, Image Processing, Neural Networks, Graph Theory

SKILL

Technical: Python - (Pandas, Numpy, Scikit-learn, MatPlotLib, SciPy, Statsmodels, ARIMA, Seaborn, NLTK, CV2, XGBoost, LightGBM), Generative AI - (GAN, VAE, GPT, BERT, T5, LLaMA, RAG), C++, Tensorflow, PyTorch, Keras, MatLab, SQL, GCP - (Vertex AI, BigQuery ML, Bigtable, LookML, Deployment Manager), Git, Jupyter Notebook, MLflow, Weights & Biases, Hadoop, Kubernetes, PySpark, Docker.

Certification: TensorFlow Developer Certificate (by Tensorflow); 60+ GCP skill badges of 200+ hours worth of training from cloudskillsboost (ML Infrastructures, Serverless Cloud Run Development, Cloud Dataflow, Pub/Sub, BigQuery, Cloud Architecture).

WORK EXPERIENCE

Software Engineer, Neurability Foundation, Remote, US (Volunteer)

Dec 2024 - Present

- Architected the end-to-end backend for an Al-driven productivity tool using FastAPI, PostgreSQL, Pinecone, with Claude Sonnet & GPT-40 mini API, deploying via Cloud Run with integrated observability for latency, memory, and error rate alerts.
- Refactored LLM inference pipeline from 3rd-party APIs to Vertex AI, deploying two fine-tuned models (LLaMA 1B & 7B instruct), reducing system latency by ~70% from ~650ms to <200ms while improving inference reliability and scalability.
- Trained and deployed custom LLMs to power task decomposition and prioritization for ADHD users, generating 3-level nested task trees, dynamic system prompts, context-aware reminders, and a batch email summarization agent.

Machine Learning Engineer, Health Innovators, Remote, US (Volunteer)

Dec 2024 - Present

- Built and deployed an end-to-end multimodal medical assistant using HealthGPT models, enabling X-ray, CT, MRI comprehension, translation, reconstruction, and super-resolution; supported 12+ medical tasks and processed 100+ high-res images/day.
- Fine-tuned and deployed an LLaMA-2-7B chatbot for patient-doctor conversations using PEFT (LoRA) with 4-bit quantization; integrated Firestore for memory with conversational logging; explored FAISS-based RAG for long-term medical context retention.
- Developed a hybrid NER pipeline combining Stanza, BioBERT, and Gemini Pro to extract and normalize medical entities from clinical notes; mapped over 50+ disease mentions to SNOMED codes with >92% accuracy using embedding-based similarity and ontology linking via Qwen2-1.5B (Mixture of Experts) model.

Graduate Research Assistant, Stevens Institute of Technology, Hoboken, NJ

Jan 2024 - Present

- Extracted 10k tweets using the Twitter v2 REST API to develop a misinformation classifier, enhancing AI content moderation.
- Conducted literature review on crowdsourced fact-checking models (Matrix Factorization, Difference in Differences, and Regression Discontinuity Design), noting Community Notes' improvement from 4% to 12.5%, increasing annotation relevance.
- Assisted PhD students and postdocs in co-authoring a research paper on parameter-efficient fine-tuning & prompt engineering by analyzing 10+ NLP datasets with various LLMs to benchmark performance on time complexity, optimizing model efficiency.
- Researched style transfer in NLP using GPT-2 and T5 LLMs from the Hugging Face API, achieving a 2.4x improvement in BLEU score on the GYAFC and XFORMAL datasets with over 110k sentence pairs, utilizing PyTorch and CUDA for efficient computation.

Deep Learning Research Intern, Prayogpeti, Bangalore, IN

Sep 2021 - Jun 2022

- Constructed a comparative study between 3 inductive Graph Neural Networks, namely TexTING, In-GCN, and In-GAT, to determine
 the best-performing model for text classification. Published in IEEE: DOI: 10.1109/ASSIC55218.2022.10088315.
- Modified Inductive GAT models, finding higher entropy in smaller datasets like IMDB (~50k datapoints) and lower initial entropy in larger datasets like DBPedia (~630k datapoints), which led to an increase in model accuracy to 98.10% on 14 different classes.

Machine Learning Engineer Intern, UAV Team, iNeuron Intelligence PVT LTD, Bangalore, IN

May 2021 - Aug 2021

- Designed & implemented **UAV simulations** in ROS and Gazebo, and performed **real-time object detection** on those simulations.
- Optimized by converting a YOLOv5 model to a MobileNetV3 architecture, retrained on TPU, resulting in a 5.5x increase in inference speed on CPU and improved frames per second (FPS) performance.

Machine Learning Engineer Intern, SAT IMG Team, iNeuron Intelligence PVT LTD, Bangalore, IN

Nov 2020 - May 2021

- Adapted an innovative satellite image masking method and presented a U-Net with Inception CNN model on a 21.69 GB dataset.
 Devised a novel image subtraction algorithm and a prototype to outline the differences between multiple reference images.
- Retrieved **MultiPolygons detailed masks** for both 3-band and 16-band format images, used said MultiPolygons to detect 10 different object classes in the image, and evaluated the performance by **Jaccard similarity** on the region of interest.

PROJECT

RL-Based Stock Trading System Utilizing Sentiments Analysis [LINK]

Feb 2024 - Present

- Developed a comprehensive automated trading system by training 5 distinct RL agents (A2C, DDPG, PPO, SAC, TD3) using the FinRL and OpenAl Gym, leveraging 20 years of data and trading 10 company stocks across 5 sectors for 4 years.
- Incorporated emotion and sentiment data from tweets, applied SMOTE, and used BiLSTM to impute missing values with 75% accuracy, yielding 1.53x returns over counterpart agents and improving system performance in real-time market conditions.
- Benchmarked against DOW, S&P 500, NASDAQ, and MVO across all the stock options, the best model (PPO) demonstrated superior
 performance in volatile markets, achieving a 2.98x return with a 1.33 Sortino Ratio for a fixed 3.5% yearly risk-free rate.