

Quantum computing with trapped ions

Hartmut Häffner

Institute for Quantum Optics and Quantum Information, Innsbruck and Department of Physics, University of California, Berkeley, USA

- Introduction to ion trap quantum computing
- Single ion addressing approach
- Coherent operations with global interactions
- Conclusions

bm:bwk

Ion trap quantum computing

The hardware

Requirements for quantum computing

Classical computer

- Initialization
- 1-bit operations (NOT)
- 2-bit gates (e.g. NAND)

Computational 01 space: 10

Read out result

Computational space:

Having the qubits interact

Coherent manipulation

carrier and sideband Rabi oscillations with Rabi frequencies

$$\Omega, \eta \Omega$$

 $\eta = kx_0$ Lamb-Dicke parameter

- Introduction to ion trap quantum information
- Single ion addressing approach
- Coherent operations with global interactions
- Conclusions

Toffoli gate (Tommaso Toffoli, 1980):

..... is a universal reversible logic gate, i.e. any reversible circuit can be constructed from Toffoli gates.

also known as the controlled-controlled-NOT or CCNOT-gate operation

use 2-phonon excitation

Th. Monz, K. Kim et al., Innsbruck 2008

use 2-phonon excitation

Th. Monz, K. Kim et al., Innsbruck 2008

$|\chi|$ - matrix for ideal TOFFOLI gate operation

- Introduction to ion trap quantum information
- Single ion addressing approach
- Coherent operations with global interactions
- Conclusions

 $\ket{ee,n}$

$$|gg\rangle \rightarrow |ee\rangle, |ge\rangle \rightarrow |eg\rangle$$

K. Mølmer, A. Sørensen, Phys. Rev. Lett. **82**, 1971 (1999) C. A. Sackett et al.,

Nature 404, 256 (2000)

 $|eg, n+1\rangle$

 $|eg, n-1\rangle$

 $\ket{eg,n}$

J. Benhelm, G. Kirchmair, C. Roos, Nature Physics **4** 463 (2008).

Theory: C. Roos, New Journal of Physics **10**, 013002 (2008).

 $F_{\rm MS} = 99.3(0.2)\%$

Gate operation after Doppler cooling

Bell state: $\Psi = |SS\rangle + i|DD\rangle$

Fidelity:

$$F = 96.1(5) \%$$

Gate operation ≈ independent of motional state!

Arbitrary quantum gates

N ions

Basic set of operations:

- favorable ion addressing by light shifts ($\sim \Omega^2$)
- no interferometric stability between beams required

 $H_i, H_j
ightarrow [H_i, H_j]$ generate Lie algebra $\mathcal L$ with dim $\mathcal L = 4^N$

Arbitrary unitary operations can be achieved!

...but how?

Arbitrary quantum gates

Similarity with NMR systems:

Refocussing of unwanted interactions:

Entangling gate between ion 1 and 2

Arbitrary quantum gates

Quantum optimal control:

$$H(t) = \sum_{k=1}^{\infty} \alpha_k(t) H_k$$

Find
$$\{\alpha_k(t), k=1\dots n\}$$
 such that $U_{gate} \stackrel{!}{=} \mathcal{T} \int_0^{\tau} dt \, e^{-\frac{i}{\hbar} \sum_k \alpha_k(t) H_k}$

Gradient ascent algorithm: N. Khaneja et al., J. Magn. Res. 172, 296 (2005).

Modification of search algorithm: V. Nebendahl et al., PRA (2009)

No simultaneous application of several Hamiltonians!

Two-ion GHZ-state

Four-ion GHZ state

- 0.2 - 0.6 - 1 - 0.5 - 0.5 - 0.5 - 0.5 - 1 - 0.5 - 0.5 - 1 - 0.5 - 1

See also: Leibfried et al., Nature 438, 639 (2005)

Six-ion GHZ-state

See also: Leibfried et al., Nature 438, 639 (2005)

Eight-ion GHZ state

GHZ-state fidelities

# ions	Fidelity	Witness	
2	0.99 (1)	-0.97 (1)	
4	0.96 (2)	-0.89 (1)	
6	0.92 (3)	-0.81 (3)	
8	0.82 (3)	-0.52 (3)	

$$F = (P_{SS...S} + P_{DD...D} + 2 \text{ Contrast})/2$$

$$W = 1 - 4 \text{ Contrast}$$

GHZ-state fidelities

Entanglement

Quantum error correction

Example: quantum error correction: 3 qubits encode a logical qubit (protection against spin flips)

Implementation: 34 laser pulses (11 entangling pulses)

V. Nebendahl et al., Phys. Rev. A 79, 012312 (2009).

Conclusions

GHZ-states

