Variable Compleja I

Tema 12: El teorema general de Cauchy

1 Índice

2 Cadenas y ciclos

3 Teorema general de Cauchy

Motivación

$$a \in \mathbb{C}, r \in \mathbb{R}^+, z \in \mathbb{C} \setminus C(a,r)^*$$

$$\frac{1}{2\pi i} \int_{C(a,r)} \frac{dw}{w - z} = \begin{cases} 1 & \text{si } |z - a| < r \\ 0 & \text{si } |z - a| > r \end{cases}$$

Definición de índice

 γ camino cerrado, $z \in \mathbb{C} \setminus \gamma^*$

Îndice del punto z con respecto al camino γ :

$$\operatorname{Ind}_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{dw}{w - z}$$

Es el nº de vueltas que da y alrededor del punto E (da un número entero)

Ejemplos sencillos

•
$$\gamma = C(a,r) + C(a,r)$$
:

$$\operatorname{Ind}_{\gamma}(z) = \begin{cases} 2 & \text{ si } |z-a| < r & \text{ El purto esta dentro} \\ 0 & \text{ si } |z-a| > r & \text{ El purto esta fuero} \end{cases}$$

 $\bullet \ \gamma = -C(a,r):$

$$\operatorname{Ind}_{\gamma}(z) = \begin{cases} -1 & \text{si } |z - a| < r \\ 0 & \text{si } |z - a| > r \end{cases}$$

$$\operatorname{Ind}_{\gamma}(z) = 0 \quad \forall z \in \mathbb{C} \setminus \gamma^*$$

Logaritmo derivable de un arco

Lema

$$a, b \in \mathbb{R}, \ a < b, \ \sigma : [a, b] \to \mathbb{C} \text{ un arco}, \ z \in \mathbb{C} \setminus \sigma^*$$

$$\tau: [a,b] \to \mathbb{C}^*, \quad \tau(t) = \sigma(t) - z \quad \forall t \in [a,b]$$

Entonces τ admite un logaritmo derivable, es decir,

$$\exists \, \phi : [a,b] \to \mathbb{C} \,, \ \, \text{derivable, tal que} \quad e^{\, \phi(t)} = \tau(t) \quad \forall t \in [a,b]$$

Como consecuencia, se tiene:

$$\int_{\sigma} \frac{dw}{w - z} = \varphi(b) - \varphi(a) \in \operatorname{Log}\left(\frac{\sigma(b) - z}{\sigma(a) - z}\right)$$

Propiedades del índice

 γ camino cerrado

- Ind $\gamma(z) \in \mathbb{Z}$ $\forall z \in \mathbb{C} \setminus \gamma^*$
- La función $\operatorname{Ind}_{\gamma}:\mathbb{C}\setminus\gamma^*\to\mathbb{Z}$ es continua. Por el lema 1 del tema 20 Equivalentemente, es constante en cada componente conexa de $\mathbb{C}\setminus\gamma^*$
- Si U es la componente conexa no acotada de $\mathbb{C} \setminus \gamma^*$, entonces:

$$\operatorname{Ind}_{\gamma}(z) = 0 \quad \forall z \in U$$

Definiciones

• Una cadena es una suma formal de caminos:

$$\Gamma = \gamma_1 + \gamma_2 + \ldots + \gamma_n = \sum_{k=1}^n \gamma_k$$

donde $n \in \mathbb{N}$ y γ_k es un camino, para todo $k = 1, 2, \dots, n$.

- Imagen de una cadena: $\Gamma^* = \bigcup_{k=1}^n \gamma_k^*$
- Suma de cadenas: $\Sigma = \sum_{k=1}^{m} \sigma_k$ otra cadena.

$$\Gamma + \Sigma = \gamma_1 + \gamma_2 + \ldots + \gamma_n + \sigma_1 + \sigma_2 + \ldots + \sigma_m$$

- Cadena opuesta: $-\Gamma = (-\gamma_1) + (-\gamma_2) + \dots + (-\gamma_n) = \sum_{k=1}^{n} (-\gamma_k)$
- $(\Gamma + \Sigma)^* = \Gamma^* \cup \Sigma^*$ y $(-\Gamma)^* = \Gamma^*$.

Integral sobre una cadena

Definición

$$\Gamma = \sum_{k=1}^{n} \gamma_k$$
 una cadena

 $C(\Gamma^*)$ funciones continuas del compacto Γ^* en \mathbb{C} Espacio de Banach complejo con:

$$||f||_{\infty} = \max \{|f(z)| : z \in \Gamma^*\} \quad \forall f \in C(\Gamma^*)$$

Integral sobre una cadena: $\int_{\Gamma} f(z) dz = \sum_{k=1}^{n} \int_{\gamma_{k}} f(z) dz \quad \forall f \in C(\Gamma^{*})$

Longitud de una cadena:
$$l(\Gamma) = \sum_{k=1}^{n} l(\gamma_k)$$
.

Propiedades de la integral sobre una cadena Γ

• Linealidad: $\alpha, \beta \in \mathbb{C}$ $f, g \in C(\Gamma^*)$

$$\int_{\Gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\Gamma} f(z) dz + \beta \int_{\Gamma} g(z) dz$$

• Continuidad: $f \in C(\Gamma^*)$

$$\left| \int_{\Gamma} f(z) \, dz \right| \leqslant l(\Gamma) \, ||f||_{\infty}$$

• Aditividad: Σ otra cadena, $f \in C(\Gamma^* \cup \Sigma^*)$

$$\int_{\Gamma+\Sigma} f(z) dz = \int_{\Gamma} f(z) dz + \int_{\Sigma} f(z) dz$$

Cadena opuesta:
$$\int_{\Gamma} f(z) dz = -\int_{\Gamma} f(z) dz \quad \forall f \in C(\Gamma^*)$$

Ciclos e índice

Ciclos

Un ciclo es una suma formal de caminos cerrados: $\Gamma = \sum_{k=1}^{n} \gamma_k$, donde $n \in \mathbb{N}$

y γ_k es un camino cerrado, para todo k = 1, 2, ..., n.

- Todo lo dicho sobre cadenas se aplica en particular a los ciclos
- La suma de dos ciclos es un ciclo
- La cadena opuesta de un ciclo también es un ciclo

Índice con respecto a un ciclo

$$\Gamma = \sum_{k=1}^{n} \gamma_{k} \text{ ciclo, } z \in \mathbb{C} \setminus \Gamma^{*}$$

$$\operatorname{Ind}_{\Gamma}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{dw}{w - z} = \frac{1}{2\pi i} \int_{\gamma_{k}}^{\infty} \frac{dw}{w - z} = \sum_{k=1}^{n} \operatorname{Ind}_{\gamma_{k}}(z)$$

Propiedades del índice con respecto a un ciclo

Propiedades

 Γ un ciclo

- Ind $\Gamma(z) \in \mathbb{Z}$ $\forall z \in \mathbb{C} \setminus \Gamma^*$
- \bullet La función $\mbox{ Ind }\gamma:\mathbb{C}\setminus\gamma^*\to\mathbb{Z}\mbox{ es constante en cada componente conexa de }\mathbb{C}\setminus\Gamma^*$
- Si U es la componente conexa no acotada de $\mathbb{C} \setminus \Gamma^*$, entonces:

$$\operatorname{Ind}_{\Gamma}(z) = 0 \quad \forall z \in U$$

Esquema común de los teoremas de Cauchy

$$\Omega = \Omega^{\circ} \subset \mathbb{C} \,, \ \Gamma \text{ ciclo en } \Omega \,, \ f \in \mathcal{H}(\Omega)$$

Hipótesis adicional

$$\Downarrow$$

$$\int_{\Gamma} f(z) \, dz = 0$$

- ullet ¿Cuál es la hipótesis más general posible sobre f?
- \bullet ¿Cuál es la hipótesis más general posible sobre Γ ?
- ullet Cuál es la hipótesis más general posible sobre Ω ?

Respuesta a la primera pregunta

Problema 1

Dado un abierto Ω del plano, caracterizar las funciones $f \in \mathcal{H}(\Omega)$ tales que

$$\int_{\Gamma} f(z) dz = 0 \text{ para todo ciclo } \Gamma \text{ en } \Omega$$

Caracterización de la existencia de primitiva

$$\Omega = \Omega^{\circ} \subset \mathbb{C}$$
, $f \in \mathcal{H}(\Omega)$. Son equivalentes:

- $\int_{\Gamma} f(z) dz = 0$ para todo ciclo Γ en Ω
- f tiene una primitiva en Ω : $\exists F \in \mathcal{H}(\Omega) : F'(z) = f(z) \ \forall z \in \Omega$

Respuesta a la segunda pregunta

Problema 2

Dado un abierto Ω del plano, caracterizar los ciclos Γ en Ω tales que

$$\int_{\Gamma} f(z) dz = 0 \quad \forall f \in \mathcal{H}(\Omega)$$

Condición obviamente necesaria

$$\begin{split} \Omega &= \Omega^{\circ} \subset \mathbb{C} \,, \quad \Gamma \text{ ciclo en } \Omega \quad & \text{ for concreto para} \\ \int_{\Gamma} f(z) \, dz &= 0 \quad \forall \, f \in \mathcal{H}(\Omega) \quad \Longrightarrow \quad \int_{\Gamma} \frac{dz}{z-w} = 0 \quad \forall \, w \in \mathbb{C} \setminus \Omega \end{split}$$

Un ciclo Γ en Ω es nul-homólogo con respecto a Ω cuando

$$\operatorname{Ind}_{\Gamma}(w) = 0 \quad \forall w \in \mathbb{C} \setminus \Omega$$

Esta condición, obviamente necesaria, jitambién es suficiente!!

Respuesta a la tercera pregunta

Problema 3

Caracterizar los abiertos Ω del plano, tales que

$$\int_{\Gamma} f(z) \, dz = 0 \quad \forall \, f \in \mathcal{H}(\Omega), \quad \forall \, \Gamma \ \, \text{ciclo en } \, \, \Omega$$

Respuestas

Para un abierto Ω del plano, son equivalentes:

- $\int_{\Gamma} f(z) dz = 0$ para toda $f \in \mathcal{H}(\Omega)$ y para todo ciclo Γ en Ω
- \bullet Toda función holomorfa en Ω tiene primitiva
- \bullet Todo ciclo en Ω es nul-homólogo con respecto a Ω

Se dice que un abierto Ω del plano es homológicamente conexo cuando todo ciclo en Ω es nul-homólogo con respecto a Ω .

El teorema general de Cauchy

Forma general del Teorema de Cauchy y de la fórmula de Cauchy

Sea Ω un abierto del plano, Γ un ciclo en Ω nul-homólogo con respecto a Ω y $f\in\mathcal{H}(\Omega)$. Entonces:

•
$$\operatorname{Ind}_{\Gamma}(z) f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w - z} dw \quad \forall z \in \Omega \setminus \Gamma^*$$

Abiertos homológicamente conexos

Caracterizaciones de los abiertos homológicamente conexos del plano

Para un abierto Ω del plano, las siguientes afirmaciones son equivalentes:

• Ω es homológicamente conexo, es decir, para todo ciclo Γ en Ω se tiene:

$$\operatorname{Ind}_{\Gamma}(w) = 0 \quad \forall w \in \mathbb{C} \setminus \Omega$$

• Para todo ciclo Γ en Ω y toda $f \in \mathcal{H}(\Omega)$ se tiene

$$\int_{\Gamma} f(z) \, dz = 0$$

 \bullet Toda función holomorfa en Ω tiene primitiva, es decir:

$$\forall f \in \mathcal{H}(\Omega) \ \exists F \in \mathcal{H}(\Omega) : F'(z) = f(z) \ \forall z \in \Omega$$

 \bullet Toda función holomorfa en $\Omega,$ que no se anule, tiene un logaritmo holomorfo, es decir:

$$f \in \mathcal{H}(\Omega), \ f(\Omega) \subset \mathbb{C}^* \implies \exists g \in \mathcal{H}(\Omega) : e^{g(z)} = f(z) \ \forall z \in \Omega$$

Abiertos sin "agujeros"

Si Ω es un abierto del plano tal que ninguna componente conexa de $\mathbb{C} \setminus \Omega$ está acotada, entonces Ω es homológicamente conexo.