Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	18 October 2022
Team ID	PNT2022TMID20864
Project Name	Real-Time Communication System Powered by Al for Specially Abled
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	As, a user, I can collect the dataset from various resources with different data	10	Low	Sangeetha P Aishwarya B Aishwarya N
Sprint-1	Image Processing	USN-2	As a user, I can import ImageDataGenerator Library and configure it, Apply ImageDataGenerator functionality to train and test dataset	10	Medium	Aishwarya B Aishwarya N
Sprint-2	Model Building	USN-3	As a user, I will get an application with ML model which provides accurate communication and sharing data with sensor.	5	High	Keerthana V Sangeetha P Aishwarya B Aishwarya N
Sprint-2	Add Cnn layers	USN-4	Creating the model and adding the input, hidden and the output layers to it	5	High	Keerthana V Sangeetha P Aishwarya B Aishwarya N
Sprint-2	Compiling the model	USN-5	With both the training data defined and model defined, it's time to configure the learning process	2	Medium	Keerthana V Sangeetha P
Sprint-2	Fit and Save the model	USN-6	As a user, the model is saved and integrated with an android application or web application in order to predict something	6	Medium	Sangeetha P Aishwarya B Aishwarya N

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-2	Test the model	USN-7	As a user, let us test our model with our image dataset.	2	Medium	Keerthana V
Sprint-3	Building UI Application	USN-8	As a user, I will use the technical button to operate the microphone for recognition	10	High	Keerthana V Sangeetha P
Sprint-3		USN-9	As a user, I can know the details of the fundamental usage of the application	5	Low	Aishwarya N
Sprint-3		USN-10	As a user, I can see the prediction with the help of technical in the application	5	Medium	Sangeetha P Aishwarya B
Sprint-4	Train the model	USN-11	As a user, I train the model IBM and integrate the flask / Django with scoring end point	10	High	Keerthana V Sangeetha P Aishwarya B Aishwarya N
Sprint-4	Cloud Deployment	USN-12	As a user, I can access the web application and make use of the production anywhere.	10	High	Keerthana V Sangeetha P Aishwarya B Aishwarya N

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

https://www.visual-paradigm.com/scrum/scrum-burndown-chart/https://www.atlassian.com/agile/tutorials/burndown-charts

Reference:

https://www.atlassian.com/agile/project-management

https://www.atlassian.com/agile/tutorials/how-to-do-scrum-with-jira-software

https://www.atlassian.com/agile/tutorials/epics https://www.atlassian.com/agile/tutorials/sprints

https://www.atlassian.com/agile/project-management/estimation

https://www.atlassian.com/agile/tutorials/burndown-charts