Дискретная математика

Коченюк Анатолий

25 октября 2020 г.

0.1 Введение

Связаться:

- stankev@gmail.com Собирать культуру общения: указывать Фамилию, Имя
- Телеграм @andrewzta (для немедленного ответа. Если нет, оно утонет).
- +79219034426 (для катастрофических ситуаций, ожидается, что звонить никто не будет) (ни в коем случае не писать смс)

Обращаться можно по методическим вопросам. Если проблема группы – пишет староста.

Не писать по учебно-методическим проблемам (общежитие, медосмотр, армия ..) для этого есть зам. декана Харченко (легко найти контакты в ису)

Про отчётность будет на первой практике.

Лекции есть в ютубе andrewzta

Глава 1

1 курс

1.1 Фундамент

Множество – неопределяемое понятие. Множество состоит из элементов. $a \in A$ а-маленькое принадлежит множеству А-большое

$$A = \{2, 3, 9\}$$

$$A = \{n \mid n \text{ чётно}, n \in \mathbb{N}\}$$
 — фильтр

A, B:

- $A \cup B = \{a \mid a \in A$ или $a \in B\}$
- $A \cap B = \{a \mid a \in A \text{ и } a \in B\}$
- $A \setminus B = \{a | a \in A \text{ и } a \notin B\}$
- $\overline{A} = \{a | a \notin A\}$??? U универсум

$$\overline{A} = U \setminus A$$

$$A \setminus B = A \cap \overline{B}$$

• $A \triangle B = A \oplus B = (A \cup B) \setminus (A \cap B)$

Замечание. Если множество – любой набор чего-угодно возникает парадокс Рассела

$$A = \{a|a$$
 – множество, $a \notin a\}$

Вопрос лежит ли в себе A?

Определение 1 (Пара). A, B — множества. Мы можем рассмотреть множество пар, где первый элемент из A, а второй из B

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

$$A \times A = A^2$$

$$(A \times B) \times C = \{(x, y) | x \in A \times B, y \in C\} = \{((a, b), y) | a \in A, b \in B, y \in C\}$$

$$A \times (B \times C) = \{(a, (y, z)) | a \in A, y \in B, z \in C\}$$

$$A \times B \times C = \{(a, b, c) | a \in A, b \in B, c \in C\}$$

Для простоты, здесь и далее эта операция будет считаться ассоциативной и первые две строчки будут давать то же, что третья – множество троек.

$$A \times A \times A = A^3 A^n = \begin{cases} A &, n = 1 \\ A \times A^{n-1} &, n > 1 \end{cases}$$

 $A^0 = \{ [] \} = \{ \varepsilon \}$ – пустая последовательность.

Пример.
$$A = 2, 3, 9 -> A \times A = \{(2, 2), (2, 3), (2, 9), (3, 2), (3, 3), \ldots\}$$

Замечание. У множества есть элемента и для любого элемента из универсума, он либо входит (1 раз) либо не входит.

Определение 2. Функция – отображение, которое каждому элементу из одного множества ставит в соответветвие единственный элемент из другого множества

$$f: A \to B$$

График $\{(x, f(x))\}.$

Формально будем отождествлять функцию и её график.

$$f \subset A \times B \quad \forall a \in A \exists ! b \in B \quad (a, b) \in f$$

Замечание. Не путайте принадлежность и включение

 $a \in A$

 $A, B, \forall a \text{ (если } a \in A, \text{ то } a \in B) A \subset B$

 $D_4 = \{n | n \text{ кратно } 4\}$

 $E = \{n|n$ чётно $\}$

 $D_4 \subset E$

 $\{2,3,9\} \subset \{2,3,4,\ldots,9\}$

 $A \subset A$

4

 $\emptyset \subset A$

 $A \subset U$

Замечание. Необязательно все b попадают в график.

 $sqr: \mathbb{N} \to \mathbb{N}$ – только квадраты чисел

Определение 3. $\forall b \in B \exists a \in A : b = f(a)$ – сюръекция

Определение 4. $\forall a \in A \forall b \in B \quad a \neq b \implies f(a) \neq f(b)$

Замечание. Принцип Дирихле – нет инъекции из большего в меньшее множества. Если кроликов больше, чем клеток, то какому-то кролику не хватит клетки

Определение 5. Если f – инъекция и сюръекция, то f – называется биекцией

Если между двумя конечными множествами есть биекция, то у низ равное количество элементов.

Определение 6. Два множества называется равномощными, если между ними есть дикция

 B^A – множество функций из A в B

$$|A| = a, |B| = b$$
 $|A \times B| = a \cdot b$ $|B^A| = b^a$

 $|A^{\emptyset}|=1$ эфемерная функция, которой ничего не передать

$$\emptyset^A = \emptyset, A \neq \emptyset$$

$$\emptyset^{\emptyset} = 1$$

Определение 7. $R \subset A \times B$ – отношение (бинарное)

Пример. $A = B = \mathbb{N}$ $R = \{(a, b) | a < b\}$ R = <

a:b 6:2 6 /5

$$A =$$
 люди, $B =$ собаки, $R = \{(a, b)|a -$ хозяин $b\}$

Рассмотрим 5 классов отношение на квадрате множества:

1. рефлексивные $\forall a \quad aRa$

RC(R) – рефлексивное замыкание, включаем все пары (a,a)

- 2. антирефлексивные $\forall a \neg aRa$
- 3. симметричные $aRb \implies bRa$
- 4. антисимметричные $aRb, a \neq b \implies \neg bRa$ или aRb и $bRa \implies a = b$
- 5. транзитивность $aRb, bRc \implies aRc$

Определение 8. 1+3+5 – рефлексивные, симметричные и тразитивные – называются отношениями эквивалентности.

Теорема 1. R — отношение эквивалентности на X, то элементы X можно разбить на классы эквивалентности так, что:

a и b в одном классе $\implies aRb$ a и b в разных классах $\implies \neg aRb$ множество таких классов обозначается X/R

$$N/\equiv_3=$$

$$\{ \{1,4,7,10,\ldots) \\ \{2,5,8,11,\ldots) \} \\ \{3,6,9,12,\ldots) \} \}$$

Замечание. Отношение равномощности – отношение эквивалентности.

Классы эквивалентности – порядки. Для конечного случая обозначаются числами

Определение 9. 1+4+5 – рефлексивные, антисимметричные и транзитивные – частичные порядки

Множество, на котором введён частичный порядок, то оно называется частично упорядоченным. (ч.у.м – частично упорядоченное множество, poset – partially organised set)

$$R \subset X \times X$$

6

$$X, Y, Z \quad R: X \times Y \quad S: Y \times Z$$

Определение 10. Композиция отношений:

$$T = R \circ S$$
 $xTy \iff \exists z : xRz$ и zSy

т.е. есть z, через который можно пройти, чтобы попасть в y из x

Замечание. $R \subseteq X \times X$ $S \subseteq X \times X$

$$R \circ S \subseteq X \times X$$

 $R \circ R \subseteq X \times X$ – пройти два раза по стрелкам

$$R^3=R\circ R^2=R^2\circ R$$
 – пути длины ровно 3

 $S \circ T \circ U$ – идём по стр
лке из S в T, а потом в U

Определение 11. Транзитивное замыкание.

$$R^+ = \bigcup_{k=1}^{\infty} R^k$$

 $R^0 = \{(x,x) | x \in X\}$ – они не включаются по дефолту в R^+

 $R^* = \bigcup_{k=0}^{\infty} R^k = R^+ \cup R^0$ — если между двумя вершинами существует какой-либо путь

Замечание. Транзитивное замыкание – транзитивно

Пусть
$$xR^+y \implies xR^iy$$

Пусть
$$yR^+z \implies yR^jz$$

$$\implies x(R^i \circ R^j)z \implies xR^kz$$

Замечание. $\forall T: T$ – транзитивно. $T \subset R \implies T^+ \subset R$

Доказательство. По индукции:

База:
$$R^1 \subset T$$
 – дано

Переход:
$$R^i \subset T \implies R^{i+1} \subset T$$

$$xR^{i+1}y \implies x(R \circ R^i)y \implies \exists z: xRz\&zR^iy \implies xTz\&zTy \implies xTy$$
 (по транзитивности $T)$

1.2 Булевы функции

 \emptyset – пустое множество. С функциями из/в него всё достаточно грустно. $\{unit\}$

void – ничего, константная функция

$$\mathbb{B} = \{0, 1\}$$

 $f:A_1\times A_2\times\ldots\times A_n\to B$ – функция от нескольких аргументов. Из одного, но декартового произведения

Булева функция: $f: \mathbb{B}^n \to B$

n=0 – ноль аргументов $\mathbb{B}^0=\{[]\}$

0, 1

n = 1

Таблица 1.1: n=1

Замечание. Подобные таблицы называются таблицами истинности функций

n=2

Таблица 1.2: n=2

x	У	0	\wedge	$\not\!$	P_1	#	P_2	\oplus	\vee	\downarrow	=	$\neg P_2$	\leftarrow	$\neg P_1$	\rightarrow	\uparrow	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

С помощью стрелки Пирса (\downarrow) и штриха Шеффера (†) можно выразить любую другую: $\neg x = x \downarrow x$

1.3 Задания булевых функций

Самый простой способ – таблица истинности

 $\oplus_n - 2^n$ значений. глупо их все отдельно описывать

1. Задание функции формулой.

Определим базисные функции, систему связок

например:
$$\land, \lor, \neg, \oplus$$

$$x_1 \oplus x_2 \oplus x_3 \dots$$

 $\{f_1,f_2,..,f_n\}$ – базисные. строка – формула. $f_i(x_1,\ldots,x_k)$ – формула

Определение 12. Дерево разбора формулы. Если у функции арность – k, то у ноды будет ровно k сыновей

 \overline{F} – функции, которые записываются формулами, используя F (замыкание F)

Теорема 2 (Теорема о стандартном базисе). $\overline{\{\land,\lor,\lnot\}} = \mathbb{B}$

Доказательство. Рассмотрим таблицу истинности функции f Она принимает n аргументов и в ней 2^n строк

Пусть $f \neq 0$. Рассмотрим строчки, в которых единицы.

По аргументам запишем с не – аргументы, которые 0, и без не – те, которые 1

 $\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4 \wedge x^5 - 1$ на ровно одном наборе элементов. А теперь возьмём "или"по всем строкам, в которых 1

Одна такая строка называется термом.

Такая форма называется совершенной дизъюнктивной нормальная формой

Лемма 1. Любая функция, кроме тождественного 0 – есть СДНФ $x \vee \neg x$ – тождественный ноль

Напоминание о способах задания функций:

$$F$$
 $x_1, x_2, \ldots, x_n f \in F$

or(and(x, not(y)), or(0, z)). Такие формы называются формулами. По формуле можно построить дерево разбора.

 \land, \lor, \lnot

СДН Φ — дизюнкция термов, где каждый терм — коньюнкция литералов. Совершенная — в каждом терме есть все переменные по одному разу

Лемма 2. $\supset F$ – некоторое множество. $\overline{F} = \mathbb{BF}$

 $\sqsupset G$ — некоторое множество функций $\forall f \in F \quad f \in \overline{G}$

Тогда с помощью G можно выразить любую функцию $\overline{G}=\mathbb{BF}$

Доказательство. $G o F o orall \implies G o orall$ – то, что нужно доказать

фиксируем функцию $h \in \mathbb{BF}$. Она каким-то деревом разбора выражается через функции $f \in F$. Каждая функция f выражается через $g \in \overline{G}$, тогда подставим выражения функций f через g в узлах дерева и получим выражение функции h через \overline{G} , значит люая функция выражается через $\overline{G} \Longrightarrow \overline{G} = \mathbb{BF}$

Пример. $\{\oplus, \land, 1\}$

 $x \wedge y = x \wedge y$ — $\neg x = x \oplus 1$ — такая запись называется полиномом жегалкина

$$x \lor y = (x \land y) \oplus x \oplus y$$

$$x \wedge y = xy \oplus y \oplus x - \wedge$$
 опускают

$$(x \oplus y)(y \oplus z) = xy \oplus y \oplus xz \oplus yz$$

$$(x \oplus 1)(y \oplus 1) = xy \oplus x \oplus y \oplus 1$$

 $a \wedge a = a$ – идемпотентность

Теорема 3. Любая булева функция (кроме 0) имеет каноничный полином, причём единственный (с точностью до коммутативности и ассоциативности)

Доказательство. булевых функций от n аргументов – 2^{2^n}

Мономов – 2^n . Каждый из них мы можем взять или не взять \implies всего 2^{2^n} – 1, -1 из случая, где мы рассматриваем пустую сумму.

Есть инъекция из булевых функций в полиному Жегалкина. Это инъеция между равномощными множествами ⇒ это биекция. ■

1.4 Линейный функции

Полиному Жкгалкина, в которых нету ∧

$$x \oplus y \quad x \oplus y \oplus 1$$

Определение 13. Функция называется линейной, если её канонический полином Жегалкина не сожержит \wedge

Утверждение 1. Если F содержит только линейный функции, то и \overline{F} содержит только линейный функции

Доказательство. $x_1 \oplus x_2 \oplus x_3$

 $x_7 \oplus x_8 = (x_1 \oplus x_2 \oplus x_3) \dots$ Заменяем и получаем всё ещё сумму переменных или $\mathbb 1$

Если формально, строим дерево, заменяем узлы на линейные фукнции, заменяем повторы, раскрываем скобки (пользуемся ассоциативностью \oplus) и получаем линейную функцию.

Утверждение 2. Если F содержит только функции, сохраняющие 0, то и \overline{F} тоже

аналогично для 1

Определение 14. Функция f называется монотонной \iff для двух наборов x_1,x_2,\ldots,x_n y_1,y_2,\ldots,y_n , что $x_i\leqslant y_i$ 0<1

$$f(x_1, x_2, \dots, x_n) \le f(y_1, y_2, \dots, y_n).$$

Утверждение 3. Из монотонных функций не выразить немонотонную

Доказательство. Доказывается индукцией по дереву разбора. Увеличили аргумента, увеличился уровень выше, выше и корень тоже ■

Определение 15. Функция f называется самодвойственная, если $f(x_1, \ldots, x_n) = \neg f(\neg x_1, \ldots, \neg x_n)$

Утверждение 4. Из самодвойственных функций тоже не выйти. Тоже деревом разборп

Классы Поста:

- 1. F_0 сохраняющие 0
- 2. F_1 сохраняющее 1
- 3. F_l линейные
- 4. F_m монотонные
- 5. F_s самодвойственные

Лемма 3. $F \subseteq F_i, i \in \{0, 1, l, m, s\} \implies \overline{F} \subseteq F_i$

Следствие 1. \overline{F} – не полно

Теорема 4 (критерий Поста). F – полное \iff $F \not\subseteq F_i$ для всех $i \in \{0,1,l,m,s\}$

Доказательство. ⇒ Если нет, то все функции лежат внутри этого класса. Не будет включена ↑ например, не лежащая ни в одном классе Поста

$$\iff f_0 \not\in F_0, f_1 \not\in F_1, f_l \not\in F_l, f_m \not\in F_m, f_s \not\in F_s$$

$$a(x)f_0(x,x,\ldots,x)$$

$$a\left(0\right) = 1$$

$$a \ a(1) = 1 \implies a(x) = 1$$

$$b \ a(1) = 0 \implies a(x) = \neg x$$

$$b(x) = f_1(x, x, \dots, x)$$
 $b(1) = 0$

1.
$$b(1) = 0 \implies b(x) = 0$$

2.
$$b(1) = 1 \implies b(x) = \neg x$$

1a 10

1b 0, ¬

2a 1, ¬

 $2b \neg, x$

1а 1,0 $f_m(x_1,\ldots,x_n) > f_m(y_1,\ldots,y_n)$ $x_i \leqslant y_i$ Значит первое – 1, а второе – 9

$$f_m(x_1,\ldots,x_n)$$

$$f_m(y_1,\ldots,x_n)$$

$$f_m(y_1,\ldots,x_n)$$

:

$$f_m(y_1,\ldots,y_n)$$

В какой-то момент единица сменилась нулём на соседних строках

$$f(y_1,\ldots,y_{i-1},x_i,\ldots,x_n)=1$$

$$f(y_1, \dots, y_{i-1}, y_i, \dots, x_n) = 0$$

$$x_i \leqslant y_i \quad x_i \neq y_i \implies x_i = 0, y_i = 1$$

 $c(z) = f_m(y_1, \dots y_{i-1}, z, x_{i+1}, \dots, x_n)$ здесь вместо х и у подставлены константы

$$c(z) = \neg z$$

2b
$$f_s$$
 $x_1, x_2, \dots, x_n : f_s(x_1, x_2, \dots, x_n) = \neg f(\neg x_1, \dots, \neg x_n) = t$

$$d(z) = f_s(z^{x_1}, z^{x_2}, \dots, z^{x_n}) \quad x^y = \begin{cases} x & , y = 1 \\ \neg x & , y = 0 \end{cases}$$

$$d(0) = t, d(1) = t$$

$$\begin{cases} t = 1 \implies d(t) = 1 \\ t = 0 \implies d(t) = 0 \end{cases}$$

Итак мы получили 1, 0, ¬

Воспользуемся нелинейной функцией: f_l среди нелинейных членов в полиноме Жегалкина выберем тот, в котором меньше всего переменных. Не умаляя общности скажем, что он выглядит как $xyu_1\dots u_k$ $k+2\geqslant 2$

 $h(x,y)=f_l(x,y,\mathbb{1},\mathbb{1},\dots,\mathbb{1}i,\mathbb{0},\mathbb{0},\dots\mathbb{0})$ Вместо u_k подставляем $\mathbb{1},$ а вместо остальных $\mathbb{0}$

$$h(x,y) = xy[\oplus x][\oplus y][\oplus 1]$$
 – восемь вариантов.

Если есть ⊕1, напишем ¬

$$xy[\oplus x][\oplus y]$$

$$xy = x \wedge y$$

$$xy \oplus x \oplus y = x \vee y$$

$$xy \oplus x$$
 $h(x, \neg y) = x(y \oplus 1) \oplus x = xy$

$$xy \oplus y \quad h(\neg x, y) = (x \oplus 1)y \oplus y = xy$$

1.5 Преобразование Мёбиуса

$$f(x_1, x_2, \dots, x_n) = x \vee y/x/y/1$$

$$a_{xy}xy \oplus a_xx \oplus a_yy \oplus a_1$$

$$f(x_1, x_2, \dots, x_n) = \bigoplus_{\vec{s} \in \mathbb{B}^n} a_s \prod_{i: s(i) = 1} x_i = \bigoplus_{\vec{s} \leqslant \vec{x}} a_{\vec{s}}$$

$$s(i) = 1 \implies x(i) = 1 \iff s \& x = s \iff s \leqslant x$$
 (покомпонентно)

Определение 16 (Доминирование). $\vec{a} \leqslant \vec{b} \iff \forall i \quad a_i \leqslant b_i$

Таблица истинности:

$$1 \quad 1 \quad \dots \quad 1 \quad \left| f_{11\dots_1} \right|$$

$$f\in \mathbb{B}^{2^n}$$

$$\vec{a} = M\vec{f}$$
 $\vec{f} = M\vec{a}$

$$M_{xs} = [s \leqslant x]$$

Преобразование Мёбиуса – матрица
$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Теорема 5. Преобразование матрицы – инволюция $(M = M^{-1})$

$$\vec{a}_t = \bigoplus_{x \leqslant t} f_x$$

Доказательство. $\bigoplus_{x\leqslant t}f_x=\bigoplus_{x\leqslant t}\bigoplus_{s\leqslant x}a_s=\bigoplus_{s,x:s\leqslant x\leqslant t}a_s=\bigoplus_S[(\#x:s\leqslant x\leqslant t)\%2]a_s=a_t$

- 1. $s \not \leqslant t \implies \#x = 0$
- $2. \ s = t \implies \#x = 1, s = x = t$
- 3. $s\leqslant t_1$ $s\neq ts$ нечётное число раз ксориться. z различных разрядов, $z\leqslant 1$ 2^z

Пример. $\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}$ $a_{11}=1, a_{01}=0, a_{10}=0, a_{00}=1$

 $xy \oplus 1$ — штрих Шефера

1.6 Схемы из функциональных элементов (Boolean Circuts)

Определение 17. Топологической сортировкой называется отображение $\varphi:V\to\{1,\dots,n\}\quad u\neq v\implies \varphi(u)\neq \varphi(v)\quad uv\in E\implies \varphi(u)<\varphi(v)$

Теорема 6. Ациклический ориентированный граф имеет топологическую сортировку.

Лемма 4. Если G ациклический граф, то существует вершина, из которой не выходит рёбер

Доказательство леммы. Возьмём вершину: если

n>1 возьмём вершину из которой нет рёбер , дадим ей номер n и удалим её из графа. Граф от этого не стал иметь циклов, поэтому по индукционному предположению мы можем занумеровать оставшиеся n-1 элементов

Вершины, в которых нет рёбер называются x_1, x_2, \ldots, x_n . Дальше идут внутренние вершины, обозначаемые функциями. Например, если обозначена \wedge , то в неё входит два ребра. Если некоммутативная функция, то указывается порядок. Исходящая степень может быть любой. Завершает всё вершина выхода

Рис. 1.1: sceme

$$x \oplus y = (x \land \neg y) \lor (\neg x \land y)$$

Дерево разбора легко превращается в схему.

Теорема 7. Не существует формулы $len(\phi) = \tilde{O}(n)$ для \oplus_n в $\{\land, \lor, \lnot\}$

В схеме мы можем пересипользовать то, что в формуле пришлось бы повторять.

B – базис

Теорема 8. Функцию f можно задать формулой в базе $B \iff f$ можно представить схемой

Определение 18. Сложностью функции f в базисе B $size_B(f) = \min$ число функциональных элементов в схеме.

Определение 19. Глубина схемы определяется рекурсивно: глубина входов -0, глубина вершины - максимум из глубины входящих +1 depth $_B(f)$ - минимальная глубина схемы для функции.

Теорема 9. B_1, B_2 – базисы.

 $\exists c \ \forall f \ size_{B_1}(f) \leqslant c \cdot size_{B_2}(f)$

Доказательство. $B_2 = \{b_1, b_2, \dots, b_n\}$

 b_i выразим через B_1

 $C \leqslant \max_{b_i \in B_2} size_{B_1}(b_i)$

(оптимальная схема может быть лучше, поэтому ≤)

Теорема 10. То же самое про глубину

Следствие 2. size(f) без базиса – асимптотическое поведение не зависящее от базиса (по теоремам при переходе к другому базису всё отличается в константу)

Следствие 3. $c_1 size_{B_2}(f) \leqslant size_{B_1}(f) \leqslant c_2 size_{B_2}(f)$

Размер функции с точностью до константы не зависит от базиса

1.7 Конкретные схемы для логических операций

Числа храниться в виде двоичного кода. Занумеруем в двух числах биты: $x_0, \ldots, x_n, y_0, \ldots, y_n$

Побитовое $\mathbf{N}-n$ элементов \wedge принимающие соответствующие разряды.

$$z_0 = x_0 \wedge y_0 \dots z_n = x_n \wedge y_n$$

Размер схемы: n глубина: 1 size = n depth = 1

Побитовое ИЛИ – так же. Любая побитовая операция – так же.

Арифметические операции – не так же. Биты начинают зависеть друг от друга.

Сложение двух битов: заведём два выходных бита: $low=a\oplus b$ $high=a\wedge b$. Такая схема называется неполным сумматором. Неполным, потому что из него не собрать сумматор для целых чисел. Для второго бита понадобиться сложить биты чисел и ещё бит переноса. Но сумма трёх битов, к счастью, все ещё помещается в два бита $1+1+1=3=11_2$

a,b,c $low=\oplus_3(a,b,c)$ $high=med_3(a,b,c)$ – полный сумматор. Первому биту на перенос подаётся $\mathbb O$, а для остальных будут складываться соответствующие биты и перенос с предыдущих битов. Другое название – линейный сумматор.

size = n depth = n

Рис. 1.2: sum

$$\begin{array}{c|cccc} 0 & 0 & 0 & k \text{ (kill)} \\ 0 & 1 & x & p \text{ (propogate)} \\ 1 & 0 & x & p \\ 1 & 1 & 1 & g \text{ (generate)} \\ \end{array}$$

Схема композиции: принимает четыре значения, выдаёт два. Имеет константную глубину.

(Дальше жесть, которую я не могу нарисовать, но суть в том, что раз оно ассоциативное, то мы можем запилить двоичное дерево и делать всё за радостный логарифм.)

 $size = O(n) \quad depth = O(\log n)$ – Двоичный каскадный сумматор. Лучше сделать нельзя.

 $-y = (\sim y) + 1$ отрицательные числа храняться как дополнение +1

x-y=x+(y)+1. Отрицание y сделать легко, но как добавить ещё 1? Но у нас есть нулевой перенос в нулевой разряд. Давайте сделаем его $c_0=1$

Умножать двоичные числа в стлбик просто. Схема даже имеет название Матричный умножитель

Дерево Уоллиса: Во-первых превратим сумму трёх чисел в сумму двух. Для трёх чисел поразрядно сделаем сумматор, который будет возвращать сумму и перенос побитого. Здесь мы не передаём перенос никуда. Дальше из переносов сделаем число и из сумм сделаем число. Получим два числа и нам нужно сложить уже их.

1.8 Линейные программы

Определение 20. x_1, x_2, \ldots, x_n – переменные

 $x_{n+1}, x_{n+2}, \dots, x_{n+t}$ – дополнительные t переменных.

Для базиса (например \vee , \wedge ,).

$$\begin{aligned} x_{n+1} &= x_2 \vee x_7 \\ x_{n+2} &= \neg x_4 \\ x_{n+3} &= x_{n+1} \wedge x_{n+2} \\ &\vdots \end{aligned}$$

В дополнительных переменных разрешается одна функция из базиса применённая к предыдущим переменным.

Пример. Сделаем \oplus

 x_1, x_2

$$x_3 = \neg x_1$$

$$x_4 = \neg x_2$$

$$x_5 = x_1 \land x_4$$

$$x_6 = x_2 \land x_3$$

$$x_7 = x_5 \lor x_6$$

Теорема 11. \exists схема из функциональных элементов длины $t \iff \exists$ линейная программа длины t

Доказательство. Если на схеме задать топологическую сортировку (пронумеровать так, чтобы стрелки были из меньшего числа к большему, то можно идти по полученным номерам: сначала сделать доп. переменные от входов, потом уже зависящие не только от них, но от уже заведённых согласно схеме.

Обратно: каждой доп. переменной соответствует применение функции (функционального элемента) к уже полученным. В этот элемент идут аргументы из определения доп. переменной, а из неё, соответственно её значение. ■

Замечание. Линейных программ больше, чем схем из функциональных переменных:

$$\begin{cases} x_3 = \neg x_1 \\ x_4 = \neg x_2 \end{cases}$$
 и
$$\begin{cases} x_3 = \neg x_2 \\ x_4 = \neg x_1 \end{cases}$$
 приводят к одному результату и одной схеме,

но это различные линейные программы

$$\{\downarrow\}$$
 – базис.

$$n^2 \cdot (n+1)^2 \cdot \ldots \cdot (n+t-1)^2 \leqslant (n+t)^{2t}$$

Лемма 5. Схем из t функциональных переменных $\leqslant (n+t)^{2t}$

$$\frac{2^n}{3n}$$
 Cxem $c \leqslant \left(n + \frac{2^n}{3n}\right)^{\frac{2 \cdot 2^n}{3n}}$

$$\alpha\leqslant\frac{\left(n+\frac{2^n}{3n}\right)^{\frac{2\cdot 2^n}{3n}}}{2^{2^n}}$$
 – для функций, которые можно реализовать за $\frac{2^n}{3n}$ элементов

$$\log_2 \alpha \leqslant \frac{2^{2^n}}{3n} \log_2 \left(n + \frac{2^n}{3n} \right) - 2^n = 2^n \left(\frac{2}{3n} \log_2 \left(n + \frac{2^n}{3n} \right) - 1 \right) \leqslant 2^n \left(\frac{2}{3n} \cdot n - 1 \right) \leqslant -\frac{1}{3} 2^n$$

$$\alpha \leqslant 2^{-\frac{1}{3}2^n} \leqslant \left(\frac{1}{\sqrt[3]{2}}\right)^{2^n} \to 0, n \to \infty$$

$$\exists n_0 : n > n_0 \implies n + \frac{2^n}{3n} \leqslant 2^n$$

Теорема 12. $\forall c>0$ $g(n)\leqslant \frac{2^n}{3n}$ $\exists n_0:n>n_0,$ то (доля функций от n аргументов, которые можно реализовать с помощью $g(n))\leqslant c$

Или (доля функций . . .) $\rightarrow 0, n \rightarrow \infty$

Доказательство. $f(x_1x_2...x_ky_{k+1}...y_n)$

Рассмотрим таблица, где по горизонтали указывается набор x-ов, а по вертикали — y

$$x_1 \oplus y_2 \oplus y_3$$

Разобьём таблицы на горизонтальные полосы длины s

Столбцы $a \sim_j b$ – равны в j полосе – отношение эквивалентности

Число полос $p = \frac{2^k}{s}$

 \exists не более чем 2^s классов эквивалентности.

Для полосы j и маски $m-g_{jm}$ — значения маски в полосе, за её пределами — 0

Теперь возьмём мультиплексор (n входов, 2^n выходов, 1 на выходе с числом $(x_1 \dots x_n)_2$). Выделим в нём полосу j, в неё проогим те значения, которые могут быть 1

$$f(x_1 \dots x_k, y_{k+1} \dots y_n) = \bigvee_{j=1}^p g_{jm_j^c}$$

Суммарно:
$$2^k + 2^{k+s} + 2^{n-k} + 2^{n-k} \cdot \frac{2^k}{s} + 2^{n-k} + 2^{n-k} = O\left(2^{k+s} + \frac{2^n}{s}\right)$$

Теперь возьмём $k = \log_2 s$, а $s = n - 2\log_2 n$

$$2^{k+s} + \frac{2^n}{s} = 2^{n - \log n} + \frac{2^n}{n \cdot 2 \log_2 n} = O\left(\frac{2^n}{n}\right)$$

Определение 21. Алфавит Σ – любое непустое конечное множество.

Последовательность символов: Σ^2 $\Sigma^3\dots \bigcup_{k=0}^\infty \Sigma^k=:\Sigma^*$ — множество всех слов (или подстрочек) над алфавитом Σ

$$\Sigma^0 = \{\varepsilon\}$$

 α, β – два слова.

Определение 22. $\alpha\beta$ – конкатенация $\Sigma^* \times \Sigma^* \to \Sigma^*$ $\alpha \in \Sigma^k$ $\beta \in \Sigma^l$ $\gamma = \alpha\beta \in \Sigma^{k+l}$

$$\gamma[i] = \begin{cases} \alpha[i] & , i \leq k \\ \beta[i-k] & , i > k \end{cases}$$

Свойства конкатенации:

1.
$$(\alpha\beta)\gamma = \alpha(\beta\gamma)$$

$$2. \ \alpha \varepsilon = \epsilon \alpha = \alpha$$

Структуру с ассоциативностью и нейстральным элементом называют моноидом

Определение 23. Σ, Π – алфавиты

Обобщённым кодом ϕ называется функция

$$\varphi: \Sigma^* \to \Pi^*$$
.

Определение 24. Код называется <u>декодируемым</u> (или однозначным), если $\alpha \neq \beta \implies \varphi(\alpha) \neq \varphi(\beta)$

Или, что то же самое, φ – инъективная функция.

Замечание. $zip: \Sigma^* \to \Sigma^*$ — однозначное декодируемый. Не требует, что-бы любая последовательность символов была валидным кодом, в который могло что-то зашифроваться.

 $jpeg: \Sigma^* \to \Sigma^*$ – сжатие с потерями. Когда декодируем, получаем другой файл. Несколько файлов могут сжаться в один код.

png – сжатие без потерь

Транслитерация фамилий в паспорте $A \to A$ $C \to S$ $\Psi \to CH$

Определение 25. Разделяемый код: каждый символ кодирует отдельно $\varphi: \Sigma \to \Pi^*$

$$\varphi(c_1c_2c_3\ldots c_n) = \varphi(c_1)\varphi(c_2)\ldots\varphi(c_n)$$

На время будем считать $\Sigma = \Pi$

Утверждение 5. Не существует кода $\Sigma^* \to \Sigma^*$, который не увеличивает любой текст, а некоторые уменьшает

Доказательство. Длины 0 меньше точно незакодировать

Длины 1 не можем опять.

Длины 2, опять та же проблемы, все тексты меньше уже заняты.

Замечание. Но zip то всё сжимает..

(zip архив точно не сожмёт дальше)

S – строка. Хотим построить для неё оптимальный код. Какой?

 $\Sigma = \{c_1, c_2, \dots, c_n\}$ p_i – количество вхождений c_i в S

 $\varphi: \Sigma \to \mathbb{B}^*$ – двоичный код. $l_i = len(\varphi(c_i)) \quad len(\varphi(s)) = \sum_{i=1}^k l_i p_i$

- Префиксный код
- код Хаффмана
- неравенство Крафта-МакМиллана

Определение 26. φ – префиксный код, если

 $\forall a,b \in \Sigma \quad \varphi(a)$ не префикс $\varphi(b).$

 ${\bf \Pi}{\bf pumep.} \buildrel{a}{b} \buildrel{00}{00}$ Это не префиксный код, потому что a префиксb с $\buildrel{11}{c}$

- a 0 b 00
- c 11

Это уже префиксный код

Лемма 6. Префиксный код однозначно декодируемый

Можно строить дерево двоичного кода.

Рис. 1.3: tree

Сиволам, которые встречаются чаще, хотелось бы выдать меньший код

Задача 1. Префиксный код, $\Sigma l_i p_i o \min$

Лемма 7 (1). \exists дерево оптимального, когда два символа с минимальным p_i являются братьями на максимальной глубине.

Доказательство. Рассмотрим дерево, расммотрим две минимальные вершины. Не может быть, чтобы брата не было (иначе у минимальной вершины можно было бы отрезать последний символ, оставив код префиксным.

Если два брата соотвествуют минимальным p_i – всё.

Если нет, p_i, p_j – минимальные p_k, p_l – самые глубокие

$$p_i, p_j$$
 – два самых минимальных $\implies p_j \leqslant p_k, p_j \leqslant p_l$

$$p_k, p_l$$
 – два самых глубоких $\implies l_i \leqslant l_k]quadl_j \leqslant l_l$

$$\sum_{t} l_{t} p_{t} = \sum_{t \neq i, i, k, l} l_{t} p_{t} + p_{i} l_{i} + p_{j} l_{j} + p_{k} l_{k} + p_{l} l_{l}$$

$$\sum_{t} l_t' p_t = \sum_{t \neq i, j, k, l} l_t p_i + p_j l_k + p_j l_l + p_k l_i + p_l l_j$$

Их разность =
$$p_i(l_i - l_k) + p_i(l_i - l_l) - p_k(l_i - l_k) - p_l(l_i - l_l)$$

Пример.
$$\begin{pmatrix} a & b & c \\ 2 & 2 & 3 \end{pmatrix}$$

$$a = x0$$
 $b = x1$

Пусть мы объединили a и b в один символ x

aabbcccc = xxxxccc

$$\sum_{a,b\to x} p_i l_i = \sum_{i\neq x} p_i l_i + p_x l_x = \sum_{i\neq x} p_i l_i + p_a (l_a-1) + p_b (l_b-1) = \sum_{i(a,b)\text{отдельно}} p_i l_i - p_a - p_b$$

Пример. Код Хаффмана

Теорема 13 (Неравенство Крафта-МакМиллана). S $c_1 \dots c_k$

Можно построить однозначно декодируемый двоичный код слов l_i

$$\iff \sum_{i=1}^{k} s^{-l_i} \leqslant 1.$$

Доказательство.

$$= l_1 \le l_2 \le \dots l_k$$

$$2^{-l_1} \ge 2^{-l_2} \ge \dots \ge 2^{-l_k}$$

$$2^{-l_1} + \dots + 2^{-l_i - 1} < \frac{1}{2} \times 2^{l_i}$$

Рис. 1.4: haff

Рис. 1.5: отрезки