Lista 13 - Solução

- O raio de um vértice é a maior distância entre este vértice e qualquer outro vértice do grafo.
- Um vértice a em G é chamado de central se a ele possui o menor raio dentre todos os vértices de G.
- O raio do grafo G é precisamente, denotada por rad(G), é igual ao raio de qualquer vértice central de G.
- Note que o vértice central não é necessariamente único, e que o raio não é em geral metade do diâmetro!

Exercício 1. Qual o diâmetro de P_n ? Calcule o raio de todos os vértices. Aponte um vértice central. Qual o raio de P_n ?

Diâmetro n-1, raios são $n-1, n-2, ... \lfloor n/2 \rfloor$. Se n é impar, há um único vértice central, aquele de raio $\lfloor n/2 \rfloor$. Se n é par, há dois vértices centrais, de mesmo raio. De qualquer forma, o raio de P_n é $\lfloor n/2 \rfloor$.

Exercício 2. Qual o diâmetro de C_n ? Calcule o raio de todos os vértices. Aponte um vértice central. Qual o raio de C_n ?

Diâmetro $\lfloor n/2 \rfloor$. O raio de todos os vértices é $\lfloor n/2 \rfloor$, logo todos são centrais, e portanto o raio de C_n é $\lfloor n/2 \rfloor$.

Exercício 3. Qual o diâmetro de K_n ? Calcule o raio de todos os vértices. Aponte um vértice central. Qual o raio de K_n ?

Diâmetro 1. O raio de todos os vértices é 1, logo todos são centrais, e portanto o raio de K_n é 1.

Exercício 4. Argumente em detalhes por que, para qualquer grafo G, valem as desigualdades

$$rad(G) < diam(G) < 2 rad(G)$$
.

Sejam u e v vértices tais que d(u,v) é o diâmetro do grafo. Logo v é o vértice mais distante de u, e portanto d(u,v) é o raio de u. O raio de G é o menor raio dentre seus vértices, logo $d(u,v) \geq \operatorname{rad}(G)$. Para a outra desigualdade, suponha z é um vértice central. Note que $d(u,v) \leq d(z,u) + d(z,v)$, e d(z,u) + d(z,v) é menor ou igual que duas vezes o raio de z.

Exercício 5. Seja T uma árvore, e suponha que T tem um vértice de grau 10. Mostre que T tem pelo menos 10 vértices de grau 1.

Seja x a quantidade de vértices de grau 1, e u o vértice de grau 10. Temos

$$\sum_{v \in V} d(v) = 2(n-1),$$

logo

$$x + 2(n - 1 - x) \le \sum_{v \ne u} d(v) = 2n - 12,$$

daí

$$x \ge 10$$
.

Exercício 6. Dado um grafo G, denotamos por $\delta(G)$ o grau mínimo que aparece dentre os vértices de G.

(a) Mostre que todo grafo contém um caminho de comprimento $\delta(G)$.

Feito em sala.

(b) Mostre que se $\delta(G) \geq 2$, então todo grafo contém um ciclo de comprimento pelo menos $\delta(G) + 1$.

Exercício 7. A cintura de um grafo G é o comprimento do menor ciclo contido no grafo, usualmente denotada por g(G).

(a) Qual a cintura do grafo abaixo?

cinture 4.

- (b) Aponte um vértice central neste grafo acima. Qual o seu raio e o seu diâmetro?
- (c) Suponha que G não é uma árvore, e portanto $g(G) \geq 3$. Mostre que

$$g(G) \le 2 \operatorname{diam}(G) + 1.$$

Feito em sala.

Exercício 8. Suponha que T é uma árvore que não possui qualquer vértice de grau 2. Suponha que T possua x vértices de grau 1, e y vértices de grau maior ou igual a 3. Mostre que x > y. (dica: use o resultado que diz que a soma dos graus é igual a duas vezes o número de arestas).

Note que y = (n - x). Temos

$$x + 3(n - x) \le \sum_{v \in V} d(v) = 2(n - 1),$$

daí $2x \ge n + 2$, logo $x \ge y + 2$.

Exercício 9. O grafo $K_{n,m}$ é o grafo bipartido que possui n vértices de um lado da bipartição, m do outro, e todas as possíveis arestas entre as partes. Quantas arestas possui o grafo $\overline{K_{n,m}}$?

Serão:

$$\binom{n+m}{2}-nm$$
.

Exercício 10. Mostre que é sempre possível particionar os vértices de um grafo qualquer em dois conjuntos A e B de modo que ao menos metade das arestas do grafo estão entre A e a B.

(Por exemplo, se G é bipartido, então é possível particionar de modo que todas as arestas estão entre A e B. Se $G = K_n$, podemos colocar metade dos vértices de cada lado, e teremos $(n/2)^2$ arestas entre A e B, que é mais do que a metade que $\binom{n}{2}$...)

Por indução. Remova um vértice u do grafo G. Por indução, $G \setminus u$ possui uma partição em conjuntos A e B com ao menos metade das arestas entre eles. Readicione u a $G \setminus u$, colocando na parte A ou B em que u tenha menos vizinhos. Logo ao menos metade das arestas de u estarão cruzando a partição, e portanto ao menos metade das arestas de G estarão entre A ou B.

- Em um grafo G com n vértices, a sequência de graus de G é a sequência $(d_1, d_2, ..., d_n)$, onde d_i é o grau do vértice i, e supomos que os vértices foram numerados de modo que $d_i \leq d_{i+1}$.
- Por exemplo, (1,1,2,2,2,2) é a sequência de graus de P_6 , enquanto (2,2,2,3,3) é a sequência de graus de $K_{2,3}$.

Exercício 11. Decida se é possível que exista um grafo G com cada uma das sequências de graus abaixo. Se for possível que o grafo exista, desenhe o grafo, e escreva (sem precisar desenhar o grafo) a sequência de graus do grafo complementar. Se o grafo não existir, dê um motivo simples para tal.

(a) 0,1,2,3,4,5

Não há grafo com todos os vértices de graus diferentes.

(b) 3,3,3,3,3,5

Existe. Um ciclo de 5 vértices e um no meio vizinho a todos. Teremos a sequencia do complementar será

$$(n-1) - 5, (n-1) - 3, (n-1) - 3, (n-1) - 3, (n-1) - 3, (n-1) - 3$$

(c) 1,2,3,4,5,6

Não.

(d) 2,2,2,2,3,3

Sim. Um ciclo adicionado de uma diagonal.

(e) 1,2,3,4,5,5

Se há dois de grau 5, não pode haver um de grau 1.

(f) 2,2,2,2,2,2

Sim, um ciclo.

(g) 1,1,1,1,1,1

Sim, 3 pares de vértices vizinhos.

(h) 2,3,3,3,3

Sim, um ciclo e duas diagonais.

(i) 3,3,3,4,4

Não, a soma deu ímpar.

(j) 0,1,2,2,3

Sim.

(k) 1,2,3,4,4

Não. Se há dois de grau 4, não pode haver um de grau 1.

(1) 1,1,1,1,1

Não. Soma ímpar.

Exercício 12. Dada uma sequência $(d_1,...,d_n)$ tal que $d_1 \ge 1$ e $\sum d_i = 2(n-2)$, mostre como construir uma árvore com esta sequência.

Conecte todos os vértices de grau ≥ 2 num longo caminho. Daí basta mostrar que o número de vértices de grau 1 disponíveis é exatamente o que precisamos para completar os graus dos vértices ao longo do caminho. Vou deixar essa parte para vocês. A árvore resultante é chamada de lagarta, ou "caterpillar tree".

Exercício 13. Seja $\alpha(G)$ o tamanho do maior conjunto de vértices em G que não possui qualquer aresta entre dois dos vértices do conjunto.

(a) Calcule $\alpha(K_n)$ e $\alpha(C_n)$.

$$\alpha(K_n) = 1 \ e \ \alpha(C_n) = |n/2|.$$

(b) Mostre que se G não contém um triângulo, então $\Delta(G) \leq \alpha(G)$.

Seja u vértice de grau máximo $\Delta(G)$. Como não há triângulos, nenhum dos vizinhos de u são vizinhos entre si, logo $\alpha \geq \Delta$.

(c) Mostre que se G tem n vértices e m arestas, e que se G não contém um triângulo, então $m \leq (1/2) \cdot n \cdot \alpha(G)$.

Temos

$$2m = \sum_{v \in V} d(v) \le n\Delta(G) \le n\alpha(G).$$

Exercício 14. Tente mostrar que se $\delta(G) \geq n/2$, então G possui um ciclo Hamiltoniano. Dica: seja P um caminho de comprimento máximo. Considere todos os vizinhos dos vértices extremos de P. Tente achar um ciclo usando todos estes vértices, e conclua que este é um ciclo usando todos os vértices do grafo, por contradição.

Pesquise "Teorema de Dirac".