GIZA++

计算语言学 第七次作业

下载统计机器翻译工具包GIZA++(https://github.com/moses-smt/giza-pp)并学习如何使用。

以下面的中文-英文平行语料库(注意需要转成GIZA++规定的格式)作为输入,使用默认参数运行GIZA++,提交生成的**词语对齐结果文件**(后缀名是"*.A3.final")。

我喜欢读书。 III i like reading.

我也喜欢音乐。 III i also like music.

你喜欢读书。III you like reading.

你喜欢音乐吗? III do you like music?

你喜欢足球吗? III do you like football?

1. 目标

- 1.1 下载并编译 GIZA++ 和 mkcls,获得所需的可执行文件。
- 1.2 利用平行双语语料库、通过 mkcls 构建 word classes。
- 1.3 利用平行双语语料库,通过 GIZA++ 进行 IBM Model 的训练。

2. 实验准备

2.1 GIZA++

GIZA++ 是由 Franz Och 开发的 GIZA 的一个扩展,并包含了许多其他的特点

2.2 mkcls

mkcls 是由 Franz Och 开发的一个训练词语聚类的工具。

2.3 平行双语语料库

汉英平行语料库,汉语语料需要切分,英语语料需要 tokenize

2.4 实验环境

Mac OSX 10.12.6 x64

Apple LLVM version 9.0.0 (clang-900.0.39.2)

3. 实验步骤

3.1 编译GIZA++

从github上clone GIZA++(https://github.com/moses-smt/giza-pp.git)因为GIZA++是在Linux下开发的,而且年代久远,不能被 gcc 4.3 或更高版本编译。需要对代码做一些微调,才能再Mac下编译通过。这些修改是要把tr1的所有调用都去掉。修改如下:

文件	操作
GIZA++-v2/mystl.h	修改#include <tr1 unordered_map="">为 #include <unordered_map></unordered_map></tr1>
GIZA++-v2/mystl.h	删除using namespace std::tr1
mkcls-v2/myleda.h	修改#include <tr1 unordered_map=""> 为#include <unordered_map></unordered_map></tr1>
mkcls-v2/myleda.h	修改 std::tr1::unordered_map <a,b> 为std::unordered_map<a,b></a,b></a,b>
mkcls-v2/mystl.h	修改#include <tr1 unordered_map=""> 为#include <unordered_map></unordered_map></tr1>
mkcls-v2/mystl.h	删除namespace tr1 {}
GIZA++-v2/Makefile	删除 -DBINARY_SEARCH_FOR_TTABLE

在giza-pp目录下通过make命令编译,得到可执行文件:

文件夹	文件
GIZA++-v2/	GIZA++
	plain2snt.out
	snt2cooc.out
	snt2plain.out
mkcls-v2/	mkcls

3.2 语料预处理

将提供的语料分成分好词的chinese.txt和english.txt,这是两个平行语料。文件中每句一行,需要有换行符。

将处理好的chinese.txt和english.txt,和编译GIZA++后生成的5个可执行文件都放入新文件夹。

3.3 构建GIZA++所需的文件

1) 运行命令

./plain2snt.out chinese.txt english.txt

将普通文本转化为GIZA++的格式。生成如下两个文件:

文件	内容	示例
chinese.vcb	 单词编号 汉语句子中的单词 单词的出现次数 	2 我 2 3 喜欢 5 4 读书 2
english.vcb	 单词编号 英语句子中的单词 单词的出现次数 	2 i 2 3 like 5 4 reading 2
chinese_english.snt	1. 每个句子对出现的次数 2. 汉语句子中的单词编号 3. 英语句子中的token编号 注: 0是保留给特殊的"空"token	1 8 3 11 9 10 9 8 3 11 10
english_chinese.snt	1. 每个句子对出现的次数 2. 英语句子中的token编号 3. 汉语句子中的单词编号 注: 0是保留给特殊的"空"token	1 9 8 3 11 10 8 3 11 9 10

2) 运行命令

./snt2cooc.out chinese.vcb english.vcb chinese_english.snt > chn_eng.cooc
./snt2cooc.out english.vcb chinese.vcb english_chinese.snt > eng_chn.cooc
获得共线文件chn_eng.cooc,eng_chn.cooc

3) 构建GIZA++所需的mkcls文件

运行命令

./mkcls -pchinese.txt -Vchinese.vcb.classes opt

./mkcls -penglish.txt -Venglish.vcb.classes opt

参数设置:

参数	含义
-n	训练迭代次数,默认为1

参数	含义
-р	需要聚类的已分词文本
-V	输出信息
opt	优化运行

生成文件:

文件	内容	示例
chinese.vcb.classes	1. 按字母表序的单词 2. 单词词类	。 11 也 6
english.vcb.classes	1. 按字母表序的单词 2. 单词词类	also 7 do 5
chinese.vcb.classes.cat	1. 单词词类 2. 对应词类的一组单词	2:吗, 3:我,
english.vcb.classes.cat	1. 单词词类 2. 对应词类的一组单词	2:reading, 3:i,

4) 运行GIZA++

运行命令

./GIZA++ -S chinese.vcb -T english.vcb -C chinese_english.snt -

CoocurrenceFile chn_eng.cooc -O c2e

./GIZA++ -S english.vcb -T chinese.vcb -C english_chinese.snt -

CoocurrenceFile eng_chn.cooc -O e2c

运行参数:

参数	含义
-S	源端词汇表
– T	目标端词汇表
-C	源端到目标端的snt文件
-CoocurrenceFile	共现文件 .cooc
-0	输出文件名的前缀

生成文件:(以汉-英为例)

文件	内容	示例
Decoder.config	用作解码的配置文件,用于ISI Rewrite Decoder解码器	
trn.src.vcb, trn.trg.vcb	类似于chinese.vcb和english.vcb文件	
tst.src.vcb, tst.trg.vcb	由于没设置测试集,为空文件	
ti.final	从英文到中文的词语对齐 词语对齐通过token编号表示,并在每 组数字后给出相应的对齐概率	11 11 1 10 10 1 9 9 1
actual.ti.final	从英文到中文的词语对齐词语对齐词语对齐通过实际 token 表示,并在每组 token 后给出相应的对齐概率注意:如果需要生成该文件,需要删除GIZA++v2/Makefile中的-DBINARY_SEARCH_FOR_TTABLE选项,再重新编译即可,否则默认使用id的方式进行加载,不会生成该文件	football 足球 1 ?? 1 do 吗 1 .。 1 reading 读书 1 music 音乐 1 like 喜欢 1 i 我 1 you 你 1 also 也 1
A3.final	记录了在 IBM Model 3迭代训练后,每个句对的一个最佳对齐 (Viterbi Alignment)。第一行是一个可用于作为对齐可视化工具的标题的一个标签,包含训练的语料库中的有关该句编号的信息在训练语料,句子长度和对齐概率。第二行是目标语言,第三行是源语言,源语言中的每个记号之后是一个零或多个数字的集合,这些数字代表的与源语言记号连接的目标语言记号位置。	# Sentence pair (1) source length 4 target length 4 alignment score: 0.471324 i like reading. NULL ({ }) 我 ({ 1 }) 喜欢 ({ 2 }) 读书 ({ 3 })。 ({ 4 })
perp	在训练的最后生成,保存了训练过程 中,多个模型每轮迭代的困惑度 perlexity	

文件	内容	示例
a3.final	记录的是源端词位置和目标端词位置的概率关系,包含的形式如下的表ijlmp(i/j,l,m)j=position of target sentencei=position of source sentencel=length of the source sentencem=length of the target sentencep(i j,l,m)=is the probability that a source word in position i is moved to position j in a pair of sentences of length I and m	1 1 4 100 1 2 2 4 100 1 3 3 4 100 1 4 4 4 100 1 1 1 5 100 0.333333 4 1 5 100 0.666667 1 2 5 100 0.666667 2 2 5 100 0.333333 2 3 5 100 0.666667 3 3 5 100 0.666667 4 4 5 100 0.333333 5 5 5 100 1
d3.final	反向的位变模型,类似于a3.final文 件,只是 交换了i 和 j 的位置	
n3.final	繁衍率(fertility)文件,源语言 token 的 fertility 分别为 0, 1,, n 时的概率表,形式如下: sourceid p0 p1 p2 pn, p0 是 fertility为0时的概率	
t3.final	IBM Model 3训练后的翻译概率表, 形式如下: s_id t_id P(t_id/s_id) s_id: 源语言token编号 t_id: 目标语言token编号 P(t_id / s_id): 源语言token翻译为目 标语言token的概率	
D4.final	IBM Model 4的distortion表	
d4.final	IBM model4 中的位变模型	
Gizacfg	包含训练当中所用的所用参数设置 训练可以精确复制	

4. 运行结果

中文对英文的字间映射概率存储在c2e.actual.ti.final文件中,英文对中文的字间映射概率存储在e2c.actual.ti.final文件中

英	中	英对中概率	中对英概率
football	足球	1	1
?	?	1	1

英	中	英对中概率	中对英概率
do	吗	1	1
	o	1	1
reading	读书	1	1
music	音乐	1	1
like	喜欢	1	1
i	我	1	1
you	你	1	1
also	也	1	1

对应结果正确。

A3.final 记录了在 IBM Model 3迭代训练后,每个句对的一个最佳对齐 (Viterbi Alignment)。

第一行是一个可用于作为对齐可视化工具的标题的一个标签,包含训练的语料库中的有关该句编号的信息在训练语料,句子长度和对齐概率。

第二行是目标语言

第三行是源语言,源语言中的每个记号之后是一个零或多个数字的集合,这些数字代表的与源语言记号连接的目标语言记号位置。

c2e.A3.final (中文到英文的最佳对齐)

对齐概率	目标句子	源语言句子
0.471324	i like reading .	NULL ({ }) 我 ({ 1 }) 喜欢 ({ 2 }) 读书 ({ 3 }) 。 ({ 4 })
0.375791	i also like music .	NULL ({ }) 我 ({ 1 }) 也 ({ 2 }) 喜欢 ({ 3 }) 音乐 ({ 4 }) 。 ({ 5 })
0.167943	you like reading .	NULL ({ }) 你 ({ 1 }) 喜欢 ({ 2 }) 读书 ({ 3 }) 。 ({ 4 })
0.253913	do you like music?	NULL ({ }) 你 ({ 2 }) 喜欢 ({ 3 }) 音乐 ({ 4 }) 吗 ({ 1 }) ? ({ 5 })
0.253912	do you like football ?	NULL ({ }) 你 ({ 2 }) 喜欢 ({ 3 }) 足球 ({ 4 }) 吗 ({ 1 }) ? ({ 5 })

e2c.A3.final (英文到中文的最佳对齐)

对齐概率	目标句子	源语言句子
0.471324	我 喜欢 读书 。	NULL ({ }) i ({ 1 }) like ({ 2 }) reading ({ 3 }) . ({ 4 })
0.375791	我 也 喜欢 音乐 。	NULL ({ }) i ({ 1 }) also ({ 2 }) like ({ 3 }) music ({ 4 }) . ({ 5 })

对齐概率	目标句子	源语言句子
0.471324	你 喜欢 读书 。	NULL ({ }) you ({ 1 }) like ({ 2 }) reading ({ 3 }) . ({ 4 })
0.375791	你 喜欢 音乐 吗?	NULL ({ }) do ({ 4 }) you ({ 1 }) like ({ 2 }) music ({ 3 }) ? ({ 5 })
0.37579	你 喜欢 足球 吗?	NULL ({ }) do ({ 4 }) you ({ 1 }) like ({ 2 }) football ({ 3 }) ? ({ 5 })

训练语料是句子级别对齐的,词对齐工具用来从句子对齐中学习到词对齐,对齐 这个概念可以理解成为两个词的翻译对应关系。

5. 实验结论

词语对齐采用开源工具完成,比如现在用的最多的GIZA++,但是在平行语料数据量大的情况下,可能其完成整个词语对齐的过程耗时较长。现在也有MGIZA++,它是GIZA++的一个多线程版本,并对GIZA++的内存使用等方面做了优化,可以同时在linux下和windows下编译。

GIZA++是GIZA(SMT工具包EGYPT的一个组成部分)的扩展,扩展部分主要由 Franz Josef Och开发。GIZA++主要算法是IBM model、HMM等。

提供给GIZA++的平行句对中的中文部分都被切分成了相应的短语,而英文的大小写、格式、相应的空格也都需要加上了。词语对齐的目标是得到中英文词或短语的对齐信息,便于翻译系统做解码时寻找相应的phrase。