TLDR

: We suggest using SGX as a pragmatic hedge against zk-rollup SNARK vulnerabilities.

Thanks you for the feedback, some anonymous, to an early draft. Special thanks to the Flashbots and Puffer teams for their insights.

Construction

Require two state transition proofs to advance the on-chain zk-rollup state root:

- 1. cryptographic proof
- : a SNARK
 - 1. 2FA

: an additional SGX proof

SGX proofs are generated in two steps:

- 1. one-time registration
- : An SGX program first generates an Ethereum (pubkey, privkey)

pair. This keypair is tied to a specific SGX enclave, and only signs valid state transitions (pre_state_root, post_state_root, block_root)

. The pubkey

is registered on-chain by verifying an SGX remote attestation which attests to the pubkey

being correctly generated.

- 1. proving
- : After registration the SGX program runs the rollup state transition function to sign messages of the form (pre_state_root, post_state_root, block_root)
- . These SGX proofs are verified on-chain by checking signatures against the registered pubkey

Context

Early zk-rollups are prone to SNARK soundness vulnerabilities from circuit or proof system bugs. This is concerning because:

- 1. complexity
- : The engineering of zk-rollups is particularly complex. Even bridges, an order of magnitude less complex than rollups, are routinely hacked.
 - 1. value secured
- : The value secured by leading zk-rollups is expected to become significantly higher than that of today's bridges. These large bounties may be a systemic risk for Ethereum.
 - 1. competition
- : The zk-rollup landscape is competitive, with first-mover advantages. This encourages zk-rollups to launch early, e.g. without multi-proofs. (See Vitalik's <u>presentation</u> and <u>slides</u> on multi-proofs.)

Discussion

SGX 2FA is particularly attractive:

- safety
- : There is no loss of safety to the zk-rollup—the additional requirement for SGX proofs is a strict safety improvement. Notice that the SGX enclaves do not handle application secrets (unlike, say, the <u>Secret Network</u>).
 - liveness

: There is almost no loss of liveness. The registration step does require Intel to sign an SGX remote attestation but: * a) The specific SGX application Intel is providing a remote attestation for can be hidden from Intel. Intel would have to stop providing remote attestations for multiple customers to deny remote attestations for a targetted zk-rollup.

- b) Hundreds of SGX enclaves can register a pubkey prior to the rollup launch. The currently registered pubkeys can generate SGX proofs even if Intel completely stops producing remote attestations for new registrations.
- c) If required, rollup governance can remove the SGX 2FA.
- a) The specific SGX application Intel is providing a remote attestation for can be hidden from Intel. Intel would have to stop providing remote attestations for multiple customers to deny remote attestations for a targetted zk-rollup.
- b) Hundreds of SGX enclaves can register a pubkey prior to the rollup launch. The currently registered pubkeys can generate SGX proofs even if Intel completely stops producing remote attestations for new registrations.
- c) If required, rollup governance can remove the SGX 2FA.
- gas efficiency

: The gas overhead of verifying an SGX proof is minimal since only an Ethereum ECDSA signature is being verified on-chain (other than the one-time cost of verifying remote attestations).

latency

: There is no additional proof latency—producing SGX proofs is faster than producing SNARKs. Notice that SGX 2FA provides little value to optimistic rollups which have multi-day settlement and can use governance to fix fraud proof vulnerabilities.

throughput

: There is no loss of throughput. The Flashbots team has shown Geth can run at over 100M gas per second on a single SGX enclave. If necessary multiple SGX enclaves can work in parallel, with their proofs aggregated.

· computational resources

: The SGX computational resources can be minimal. When the state transition is run statelessly (e.g. seeminigeth) there is no need for an encrypted disk and minimal encrypted RAM is required.

· simplicity

: The engineering of SGX is easy relative to SNARK engineering. Geth can be compiled for Gramine with an 11-line diff. The <u>Puffer</u> team is working on a Solidity verifier for SGX remote attestations, supported by an Ethereum Foundation grant.

· auditability

: Auditing the 2FA should be relatively straightforward. The SGX proof verification logic is contained and the incremental smart contract risk from introducing SGX 2FA is minimal.

flexibility

: Enclaves from non-Intel vendors (e.g. AMD SEV) can replace or be used in parallel to SGX enclaves.

bootstrapping

: 2FA can be used alone—without SNARK verification—to bootstrap an incremental rollup deployment. (This would be similar to Optimism launching without fraud proofs.)

upgradability

: The SGX proof verification logic is upgraded similarly to the SNARK verification logic. Previously registered pubkeys are invalidated and the definition of what constitutes a valid pubkey is changed by upgrading the remote attestation verification logic.

deactivation

: SGX 2FA is removable even without governance. For example, the 2FA could automatically deactivate after 1559 days.

There are also downsides to SGX 2FA:

· memetics

: SGX has a bad reputation, especially within the blockchain space. Association with the technology may be memetically suboptimal.

- false sense of security
- : Easily-broken SGX 2FA (e.g. if the privkey

is easily extractable) may provide a false sense of security.

- novelty
- : No Ethereum application that verifies SGX remote attestations on-chain could be found.