Zadanie 1.

Pewne przedsiębiorstwo transportowe posiada dwie grupy samochodów:

A – małe samochody ciężarowe,

B – duże samochody ciężarowe.

Łączna wartość szkód w grupie A jest niezależna od łącznej wartości szkód w grupie B; obie zmienne mają złożone rozkłady Poissona.

Częstotliwość szkód wynosi:

w grupie A: 3 na rok w grupie B: 1 na rok

Wartość pojedynczej szkody ma rozkład:

w grupie A:

- $Pr(Y_A = 30) = 0.5$,
- $Pr(Y_A = 50) = 0.3$,
- $Pr(Y_A = 150) = 0.2$;

w grupie B:

- $Pr(Y_B = 50) = 0.6$,
- $Pr(Y_B \ge 150) = 0.4$.

Prawdopodobieństwo, że łączna wartość szkód w przedsiębiorstwie w ciągu roku będzie nie większa niż 100 wynosi (z dokładnością do 0.005)

- (A) 0.121
- (B) 0.136
- (C) 0.151
- (D) 0.166
- (E) 0.196

Zadanie 2.

Pewien podmiot maksymalizuje wartość oczekiwaną funkcji użyteczności o postaci: $u(x) = \ln(x)$.

Tymczasem majątek tego podmiotu wynosi w. Połowa tego majątku narażona jest jednak na ryzyko całkowitej utraty, co może nastąpić z prawdopodobieństwem q. Od tego ryzyka można się na rynku ubezpieczyć. Rynek oferuje kontrakty z udziałem własnym ubezpieczonego, wyceniane według wartości oczekiwanego odszkodowania pomnożonej przez czynnik $(1+\theta)$. Przy założeniu, iż:

$$w = 2$$
, $q = 0.2$, $\theta = 0.25$

podmiot ten wybierze kontrakt z udziałem własnym w wysokości:

- (A) 0 (tzn. ubezpieczenie pełne)
- (B) $\frac{7}{15}$
- (C) $\frac{10}{15}$
- (D) $\frac{23}{30}$
- (E) 1 (tzn. nie ubezpieczy się wcale)

Zadanie 3.

Ilość zgłaszanych roszczeń ma rozkład ujemny dwumianowy z parametrami (r, q). Przyjmijmy typowe oznaczenie: p = 1 - q.

Niezależnie od przebiegu procesu zgłaszania roszczeń, każde roszczenie z prawdopodobieństwem P jest oddalane, zaś z prawdopodobieństwem Q=1-P jest uznawane. Decyzje oddalania/uznawania kolejnych roszczeń są także nawzajem niezależne. Rozkład ilości roszczeń uznanych jest także rozkładem ujemnym dwumianowym, z parametrami:

(A)
$$(r \cdot Q, q)$$

(B)
$$\left(r, \frac{qQ}{1-qQ}\right)$$

(C)
$$\left(r, \frac{qQ}{1-qP}\right)$$

(D)
$$\left(r, \frac{qQ}{p+Q}\right)$$

(E) nie jest to rozkład ujemny dwumianowy

Zadanie 4.

Proces nadwyżki ubezpieczyciela ma postać:

$$U(t) = u + c \cdot t - S(t)$$

gdzie:

- *u* wartość początkowa nadwyżki,
- S(t) łączna wartość szkód jest złożonym procesem Poissona z parametrem czestotliwości λ ,
- wartość pojedynczej szkody ma rozkład wykładniczy
- składka c zawiera stosunkowy narzut bezpieczeństwa (*relative security loading*) $\theta = 0.2$, co zapewnia iż prawdopodobieństwo ruiny:

$$\Psi(u) = \Pr(U(t) < 0 \quad dla \ pewnego \quad t > 0) \text{ równe jest } \frac{1}{10}.$$

Udziałowcy zwiększyli nadwyżkę początkową dwukrotnie - do wysokości $2 \cdot u$. Zakładając, iż wszystkie pozostałe parametry procesu nie uległy zmianie, prawdopodobieństwo ruiny wyniesie teraz:

- (A) 0.010
- (B) 0.012
- (C) 0.0144
- (D) $\frac{1}{144}$
- (E) za mało danych do udzielenia odpowiedzi liczbowej

Zadanie 5.

Pewne ryzyko generuje zawsze dokładnie jedną szkodę. Wartość tej szkody (oznaczmy ją przez X) jest zawsze dodatnia, przy czym:

$$E(X) = 10$$

$$Pr(X = k) = \frac{k}{30}$$
 dla $k = 1, 2, 3, 4, 5,$

$$\Pr(X \ge 6) = \frac{1}{2}$$

Ubezpieczyciel proponuje kilka wariantów ubezpieczenia - różniących się wysokością kwotowo określonego udziału własnego. Składka za pokrycie nadwyżki szkody ponad k skalkulowana jest zgodnie ze wzorem:

$$Sk \cdot adka[(X-k)_+] = 11-k$$
 dla $k = 1, 2, 3, 4, 5$.

Dla którego *k* proponowana składka zawiera najmniejszy narzut procentowy na wartość oczekiwaną świadczenia ubezpieczeniowego?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

Zadanie 6.

O rozkładzie pewnego ryzyka X posiadamy następujące informacje:

• znamy oczekiwaną wartość nadwyżki ponad 20:

$$E[(X-20)_{+}]=8$$

• oraz znamy następujące charakterystyki dotyczące przedziału (10, 20]:

$$\Pr(X \le 20) = \frac{3}{4}$$

$$\Pr(X \le 10) = \frac{1}{4}$$

$$E(X|10 < X \le 20) = 13$$

Wobec tego oczekiwana wartość nadwyżki ponad 10:

$$E[(X-10)_{+}],$$

wynosi:

- (A) 12
- (B) 12.5
- (C) 13
- (D) 13.5
- (E) 14

Zadanie 7.

Łączna wartość szkód *S* ma złożony rozkład Poissona z oczekiwaną ilością szkód równą 4 oraz z rozkładem wartości pojedynczej szkody danym:

gęstością
$$f(x) = \begin{cases} \frac{3}{8} & dla \quad x \in (0, 2) \\ \frac{1}{24} & dla \quad x \in (2, 5) \end{cases}$$

oraz masą prawdopodobieństwa równą 0.125 w punkcie x = 5.

Wariancja zmiennej S wynosi:

(A)
$$\frac{125}{12}$$

- (B) 16
- (C) 23
- (D) 30
- (E) 32

Zadanie 8.

Rozważamy proces nadwyżki ubezpieczyciela postaci:

$$U(t) = u + c \cdot t - N(t),$$

gdzie N(t) jest procesem Poissona (*zwyklym*, *a nie złożonym*!) z parametrem częstotliwości λ .

Niech

$$\Psi(u) = \Pr(U(t) < 0 \quad dla \ pewnego \quad t > 0).$$

Wiemy, że dla dowolnego u > 1 zachodzi:

$$\left(\frac{1}{2}\right)^{u-1} \leq \Psi(u) \leq \left(\frac{1}{2}\right)^{u}.$$

Wobec tego składka c przypadająca na jednostkowy okres czasu wynosi:

(A)
$$\frac{e^{\lambda}}{\ln 2}$$

(B)
$$\frac{1+\lambda}{\ln 2}$$

(C)
$$\lambda \cdot e^2$$

(D)
$$\lambda \cdot \ln 2$$

(E)
$$\frac{\lambda}{\ln 2}$$

Zadanie 9.

Zakładamy, że narastanie łącznej wartości szkód opisuje złożony proces Poissona:

$$S(t) = \sum_{n=1}^{N(t)} Y_n,$$

gdzie N(t) jest procesem Poissona z parametrem częstotliwości λ na jednostkę czasu, a wartości kolejnych szkód są niezależne nawzajem i od procesu N(t), oraz mają wartość oczekiwaną $E(Y_n) = \mu$.

Niech $T_1 < T_2 < \dots$ oznaczają momenty wystąpienia kolejnych szkód. Zdyskontowana wartość szkód:

$$\widetilde{S} = \sum_{n=1}^{\infty} \frac{Y_n}{(1+i)^{T_n}}$$

ma (przy założeniu dodatniej efektywnej stopy procentowej i) wartość oczekiwaną równą:

(A)
$$\frac{\mu \cdot \lambda}{i}$$

(B)
$$\frac{\mu \cdot \lambda}{e^i - 1}$$

(C)
$$\frac{\mu \cdot \lambda}{\ln(1+i)}$$

(D)
$$\frac{\mu \cdot (1 - e^{-\lambda})}{\ln(1 + i)}$$

(E)
$$\frac{\lambda \cdot (e^{\mu} - 1)}{\ln(1+i)}$$

Zadanie 10.

Proces pojawiania się szkód startuje w momencie $T_0=0$. Niech T_n oznacza moment zajścia n-tej szkody. Ponieważ szkody numerujemy według kolejności zajścia, wobec tego zachodzi $0 < T_1 < T_2 < \dots$.

Wypłata odszkodowania za n-tą szkodę następuje w momencie T_n+D_n . Załóżmy, iż zmienne losowe: T_1 , T_2-T_1 , T_3-T_2 , ...

oraz:
$$D_1$$
, D_2 , D_3 , ...

są wszystkie nawzajem niezależne i mają identyczny rozkład wykładniczy o wartości oczekiwanej równej 1.

Prawdopodobieństwo, iż dla pewnego ustalonego n wypłata odszkodowania za szkodę n+1-szą poprzedzi wypłatę odszkodowania za szkodę n-tą wynosi:

- (A) 0
- $(B) \qquad \frac{1}{6}$
- (C) $\frac{1}{5}$
- (D) $\frac{1}{4}$
- (E) $\frac{1}{3}$

Egzamin dla Aktuariuszy z 23 października 1999 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIED	OZI
Pesel		

Zadanie nr	Odpowiedź	Punktacja*
1	D	
2	В	
3	С	
4	В	
5	Е	
6	A	
7	С	
8	E	
9	С	
10	D	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypelnia Komisja Egzaminacyjna.