Solids: Regular & Non-Regular

Regular: Cube, cuboid

Non-Regular: Cone, Pyramid

In Cube/Cuboid

No. of faces = 6

No. of edges = 12

No. of corners/Vertices = 8

For any Solid

Edges + 2 = Faces + Corners

LSA/CSA: Area without top & bottom.

TSA/SA: Sum of area of the all the visible surfaces

Or

LSA + Area of top & bottom.

Volume: Capacity

Diagonal:

Cube = 
$$\sqrt{3}$$
 a

Cuboid = 
$$\sqrt{l^2+b^2+h^2}$$

| S.<br>No | Name                       | Figure | Lateral/Curved<br>Surface Area                                              | Total<br>Surface<br>Area         | Volume                         |
|----------|----------------------------|--------|-----------------------------------------------------------------------------|----------------------------------|--------------------------------|
| 1.       | Cuboid                     |        | $2 \times h \times (l \times b)$<br>h - height<br>l - length<br>b - breadth | 2( <i>l</i> b + bh + <i>l</i> h) | $l \times b \times h$          |
| 2.       | Cube                       |        | 4a <sup>2</sup><br>a – edge                                                 | 6a <sup>2</sup>                  | a <sup>3</sup>                 |
| 3.       | Right Circular<br>Cylinder |        | 2πrh<br>r – radius<br>h – height                                            | 2 π r (r + h)                    | πr²h                           |
| 4.       | Right Circular Cone        |        | $\pi r l$ h - height r - radius $l$ - slant height $l^2 = r^2 + h^2$        | πr (r + <i>l</i> )               | $\frac{1}{3} \times \pi r^2 h$ |
| 5.       | Sphere                     |        | 4πr²<br>r – radius                                                          | 4πr²<br>r – radius               | $\frac{4}{3} \times \pi r^3$   |
| 6.       | Hemi-sphere                |        | $2\pir^2$                                                                   | $3\pi r^2$                       | $\frac{2}{3} \times \pi r^3$   |

Volume of any Pyramid =  $\frac{1}{3}$  × Base area × height



Problem: 2 cubes each of side 5 cm are joined together to form a cuboid. Find its surface area?

2 cubes each of side 5 cm are joined together to form a cuboid. Find its surface area?

Each cube is having 6 faces and therefore, total 12 faces out of which only 10 are visible.



Therefore

 $SA = 10 \times Area of each face = 10 \times 25$ 

## Problem:

A cube of side 7cm is painted blue and then cut into small identical cubes each of side 1 cm. How many small cubes have exactly 1 face painted?

A cube of side 7cm is painted blue and then cut into small identical cubes each of side 1 cm. How many small cubes have exactly 1 face painted?

For n<sup>3</sup>

- 1 face painted =  $6 \times (n-2)^2$  (faces)
- 2 face painted =  $12 \times (n-2)$  (edges)
- 3 face painted = 8 (corners)
- 0 face painted =  $(n-2)^3$

Answer =  $6 \times 25 = 150$ 

**Problem:** Find the length of the longest rod that can be kept inside the cylinder formed by folding a square with sides  $10\pi\text{cm}$ ?

Find the length of the longest rod that can be kept inside the cylinder formed by folding a square with side  $10\pi$ cm?



Height of cylinder =  $10\pi$ 

Circumference of base =  $2\pi R = 10\pi$ 

$$R = 5cm$$

$$Longest \ rod = \sqrt{(2R)^2 + h^2}$$

$$\sqrt{5^2 + (10\pi)^2} = \sqrt{25 + 100\pi}$$

## Problem:

Find the volume of the right circular cone with slant height 10cm and diameter 16cm.

Find the volume of the right circular cone with slant height 10cm and diameter 16cm.



$$R = 8, 1 = 10$$

As we know,  $h^2+r^2=l^2$ 

Triplet is (6,8,10)

Therefore, h = 6

$$v = \frac{1}{3} \times 8 \times 8 \times 6 = 128$$

## Problem:

A right circular cylinder with radius 6cm and height 14 cm is cut into 2 equal parts by cut perpendicular to its base then find the increase in the surface area?

A right circular cylinder with radius 6cm and height 14 cm is cut into 2 equal parts by cut perpendicular to its base then find the increase in the surface area?



Increase in SA = Area of 2 rectangles

$$= 2 (2r \times h)$$

$$= 2 \times 2 \times 6 \times 14 = 336$$