دراسة الدوال و تمثيلها باستعمال دوال مرجعية

$a \neq 0$ حيث $f: x \rightarrow ax^2$ حيث الدالة حيث -1

أ- أمثلة

$$f(x) = 2x^2$$

نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة بـ *

$$f$$
 ندرس تغیرات $D_f = \mathbb{R}$

 $[0;+\infty[$ دالة زوجية و منه اقتصار دراستها على f

$$x \neq y$$
 حیث $[0; +\infty]$ حین $x \neq x$ لیکن

$$\frac{f(x)-f(y)}{x-y} = 2(x+y)$$

$$x \neq y$$
 حیث $[0;+\infty[$ من $x \neq y$ حیث $[0;+\infty[$

\boldsymbol{x}	-8	0	$+\infty$
f		→ 0	

 $y=2x^2$ هي C_f معادلة C_f متماثل بالنسبة لمحور الأراتيب C_f

<u>مُلاحظة</u>

 $0 \prec 2x^2 \prec 2x$ فان $0 \prec x \prec 1$ إذا كان $0 \prec x \prec 1$ فان C_f هذا يعني أن جزء C_f على Δ : y = 2x تحت المستقيم $2x^2 \succ 2x$ فان $x \succ 1$ اذا كان $1 \prec x$

 $[1;+\infty]$ على $[1;+\infty]$ على $[1;+\infty]$

$$(\Delta)$$
: $y = 2x$ فوق المستقيم

			بمر	ول الق	جدو
X	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
f(x)	0	$\frac{1}{2}$	2	$\frac{9}{2}$	8

شلجم رأسه $\,O\,$ يقبل محور الأراتيب كمحور تماثل

$$f(x) = \frac{-1}{2}x^2$$
 بالمثل أدرس الدالة $f(x) = \frac{-1}{2}$

<u>ں- الحالة العامة</u>

بعتبر الدالة العددية f للمتغير الحقيقي x المعرفة ب $a \neq 0$ حيث $f(x) = ax^2$

إذا كان $a \succ 0$ فان

\mathcal{X}	$-\infty$	0	+∞
f		\ 0	

شلجم رأسه $\,O\,$ يقبل محور الأراتيب كمحور تماثل $\,C_{f}\,$

		فان $a \prec$	إذا كان 0
\mathcal{X}	$-\infty$	0	$+\infty$
f		0	—

شلجم رأسه $\,O\,$ يقبل محور الأراتيب كمحور تماثل $\,C_{f}\,$

$$g(x) = \frac{1}{2}x^2$$
 $f(x) = x^2$ تمرین

$$m(x) = -2x^2 \quad h(x) = 3x^2$$

m و g و g و f اعط جدول تغیرات f

2- في نفس المعلم المتعامد الممنظم C_m و C_g و C_g

 $x \rightarrow ax^2 + bx + c$ دراسة الدالة -2

 $(O;\vec{i}\;;\vec{j}\;)$ متجهة في مستوى منسوب الى معلم M'(X;Y) و M'(X;Y) نقطتين و $u(\alpha;eta)$ متجهة في مستوى منسوب الى معلم $u(\alpha;eta)$ و $u(\alpha;eta)$

$$\left\{ egin{aligned} X = x + \alpha \ Y = y + \beta \end{aligned}
ight.$$
 تکافئ $\left\{ egin{aligned} X - \alpha = x \ Y - \beta = y \end{aligned}
ight.$ تکافئ $\left\{ egin{aligned} MM' = \vec{u} \end{array} \right.$ تکافئ $\left\{ egin{aligned} t \left(M \right) = M' \end{array} \right.$

$$f(x) = 2x^2 - 4x - 3$$
 مثال لندرس f حيث f

$$f\left(x\right)=2(x-1)^2-5$$
الشـكل القانوني لـ $f\left(x\right)$ هو

$$y+5=2(x-1)^2$$
 معادلة $y=2(x-1)^2-5$ هي $O(\vec{i};\vec{j})$ معادلة C_f

نقطتین
$$M'(X;Y)$$
 و $M\left(x\,;y\right)$ و لتكن $u\left(1;-5\right)$ نقطتین نعتبر t

 $x \to 2x^2$ ليكن (C) منحنى الدالة

$$t$$
 لنبين أن C_f هو صورة C_f بالإزاحة

$$\begin{cases} X - 1 = x \\ Y + 5 = y \end{cases}$$
تکافئ $t(M) = M'$

$$y = 2x^2$$
 تكافئ $M(x; y) \in (C)$

$$Y + 5 = 2(X - 1)^2$$
 تکافئ

$$M'(X;Y) \in (C_f)$$
 تكافئ

t إذن C_f هو صورة C_f بالإزاحة

وحيث أن (C) شلجم رأسه O(0;0) و محور تماثله

$$t(O) = O$$
'محور الاراتيب فان C_f شلجم رأسه

x=1 أي O'ig(1;-5ig) و محور تماثله المستقيم ذا المعادلة

 $\left[0;+\infty\right[$ و حيث أن الدالة $x \to 2x^2$ تزايدية على

و تناقصية على $\left[-\infty;0\right]$ فان الدالة f تزايدية على

 $]-\infty;1]$ و تناقصية على $[1;+\infty[$

		التغيرات	جدول
\mathcal{X}	$-\infty$	1	$+\infty$
f		-5	—

	,	منحنى	نباء الد	إنن
$\boldsymbol{\mathcal{X}}$	0	1	2	3
f(x)	-3	-5	-3	3

$$y-4=-(x-1)^2$$
 معادلة C_f في المعلم المتعامد $(O;\vec{i};\vec{j})$ هي $(O;\vec{i};\vec{j})$ هي $(C_f)^2+4$ في المعلم المتجهة $(C_f)^2+4$ و $(C_f)^2+4$ نقطتين نعتبر $(C_f)^2+4$ نقطتين

$$x \to -x^2$$
 ليكن (C) منحنى الدالة

$$t$$
 لنبين أن C_f هو صورة C_f بالإزاحة

$$\begin{cases} X-1=x \\ Y-4=y \end{cases}$$
تکافئ $t(M)=M'$

$$y = -x^2$$
 تكافئ $M(x; y) \in (C)$

$$Y - 4 = -(X - 1)^2$$
 تکافئ

$$M'(X;Y) \in (C_f)$$
 تكافئ

$$t$$
 إذن $\left(C_f
ight)$ هو صورة الإزاحة

وحیث أن (C) شـلجم رأسـه O(0;0) و محور

تماثله محور الاراتيب فان $\left(C_f
ight)$ شلجم رأسه

و محور تماثله المستقيم O'(1;4) أي t(O) = O'

x=1 ذا المعادلة

 $[0;+\infty[$ وحيث أن الدالة $x \to -x^2$ تناقصية على و تزايدية على $]-\infty;0]$ فان الدالة f تناقصية على $]-\infty;1]$ و تزايدية على $[1;+\infty[$

جدول التغيرات

$\boldsymbol{\mathcal{X}}$	$-\infty$	1	$+\infty$
f		4	*

إنشاء المنحني

$$x = 3$$
 أو $x = -1$ تكافئ $f(x) = 0$

_		- (,	
\boldsymbol{x}	0	1	2	4
f(x)	3	4	3	-5

$a \neq 0$ حيث $x \rightarrow ax^2 + bx + c$ الحالة العامة

نشاط

$$a \neq 0$$
 و $(a;b;c) \in \mathbb{R}^3$ حیث $f(x) = ax^2 + bx + c$ و $f(x) = ax^2 + bx + c$

f أعط الشكل القانوني لـ 1

بين أن المنحنى (C_f) هو صورة المنحنى (C) الممثل للدالة $x o ax^2$ بالإزاحة (C_f) هو صورة المنحنى (C_f)

$$\left(C_f
ight)$$
 و استنتج طبیعة $ec{u}igg(rac{-b}{2a};figg(rac{-b}{2a}igg)igg)$

a عط جدول تغيرات وفق العدد ثمر أعط

a
eq 0 و $(a;b;c) \in \mathbb{R}^3$ حيث $f(x) = ax^2 + bx + c$ و $(a;b;c) \in \mathbb{R}^3$ حيث و تاكن الدرجة الثانية المعرفة على

f و $\beta=f(lpha)$ هذه الكتابة تسمى الشكل القانوني للدالة $\alpha=rac{-b}{2a}$ و $\alpha=rac{-b}{2a}$ هذه الكتابة تسمى الشكل القانوني للدالة $\alpha=\frac{-b}{2a}$

 $ec{u}(lpha;eta)$ هو صورة المنحنى C الممثل للدالة $x o ax^2$ بالإزاحة ذا المتجهة *

x=lpha اغ معلم معامد هو شلجم رأسه $\Omegaig(lpha;etaig)$ و محور تماثله المستقيم خا f

 $\alpha = \frac{-b}{2a}$ نضع

$$f$$
 ندرس تغیرات - $D_f = \mathbb{R}^*$

 $]0;+\infty[$ دالة فردية و منه اقتصار دراستها على f

$$\frac{f(x)-f(y)}{x-y} = \frac{-2}{xy}$$

$$\frac{f(x)-f(y)}{x-v} = \frac{-2}{xv} \qquad x \neq y \quad \text{(a)} \quad x \neq y \quad x \neq y$$
 ليكن $x \neq y$

$$\frac{f(x)-f(y)}{x-y} < 0$$

$$x \neq y$$
 لكل $x \neq y$ حيث $y \neq x$

 $]0;+\infty[$ يناقصية على f تناقصية على

\mathcal{X}	$-\infty$	0	+∞
f		•	

ملاحظة

 $\frac{2}{x}$ \succ 2 فان $0 \prec x \prec 1$ إذا كان $1 \prec x \prec 1$ فان $2 \prec x \prec 1$ هذا يعني أن جزء C_f على Δ : y = 2 فوق المستقيم $0 \prec \frac{2}{x} \leq 2$ فان $x \geq 1$ إذا كان $1 \prec x \leq 1$ فان $2 \prec x \leq 1$

 $]1;+\infty[$ هذا يعني أن جزء C_f على $(\Delta):y=2$ تحت المستقيم

		بمر	ول الق	جدو
X	$\frac{1}{2}$	1	2	4
f(x)	4	2	1	2

هدلول مرکزه O و مقارباه محورا المعلم C_f

$$f\left(x\right) = \frac{-1}{x}$$
 نعتبر الدالة *
$$f \text{ ندرس تغيرات } -$$

$$D_f = \mathbb{R}^*$$

 $0;+\infty[$ دالة فردية و منه اقتصار دراستها على f دالة $x \neq y$ حيث $x \neq y$ ليكن $x \neq y$ ديث $x \neq y$

$$\frac{f(x)-f(y)}{x-y} = \frac{1}{xy}$$

 $]0;+\infty[$ تزایدیهٔ علی f تزایدیهٔ علی

X	$-\infty$	0	+∞
f			

هدلول مرکزه ${\cal O}$ و مقارباه محورا المعلم

ب- الحالة العامة

$$f(x) = \frac{a}{x}$$
 نعتبر

إذا كان $a \succ 0$ فان

X	$-\infty$	0	+∞
f			•

مدلول مرکزه O و مقارباه محورا المعلم C_f

	إذا كان $a \prec 0$ فان			
\boldsymbol{x}	8	0	+8	
f				

$$c
eq 0$$
 حيث $x
ightarrow rac{ax+b}{cx+d}$ حيث -4 مثال -4

$$f\left(x\right)=2+rac{3}{x-1}$$
 نابجاز القسمة الاقليدية نحصل على أن أن على أن $y-2=rac{3}{x-1}$ أي $y=2+rac{3}{x-1}$ الحلة $y=2+rac{3}{x-1}$ هي $\left(O;\vec{i}\;;\vec{j}\;\right)$ هي المعلم المتعامد $\left(O;\vec{i}\;;\vec{j}\;\right)$ هي

معادلة
$$C_f$$
 في المعلم المتعامد $\left(O; ec{i}; ec{j}
ight)$ هي

نعتبر M'(X;Y) و M(x;y) و لتكن M(x;y) نقطتين

$$x \to \frac{3}{x}$$
 ليكن (C) منحنى الدالة

$$t$$
 لنبين أن C_f هو صورة C_f بالإزاحة

$$\begin{cases} X - 1 = x \\ Y - 2 = y \end{cases}$$
تکافئ $t(M) = M'$

$$M'(X;Y) \in (C_f)$$
 تكافئ $Y-2=\frac{3}{X-1}$ تكافئ $y=\frac{3}{x}$ تكافئ $M(x;y) \in (C)$

$$t$$
 إذن $\left(C_f
ight)$ هو صورة ورث بالإزاحة

وحيث أن C هذلول مركزه O(0;0) و مقارباه محورا المعلم فان ور C_f هذلول مركزه Cy=2 و مقارباه المستقيمان اللذان معادلتهما x=1 و O'(1;2) و t(O)=O'

و حيث أن الدالة $x o rac{3}{x}$ تناقصية على كل من $-\infty$ و $]-\infty$ و أن الدالة $x o rac{3}{x}$ تناقصية على

$$]-\infty;1$$
و و $]-\infty;1$

ات	لتغيرا	IJ	جدوا

•	x	 1 +∞
.;	f	•

إنشاء المنحني

$$x = -\frac{1}{2}$$
تكافئ $f(x) = 0$

$\boldsymbol{\mathcal{X}}$	0	1	2	5
f(x)	-1	//	5	$\frac{11}{4}$

$$f(x) = \frac{2x+3}{x+2}$$
 مثال 2 $D_f = \mathbb{R} - \{-2\}$ -*

*- بإنجاز القسمة الاقليدية نحصل على أن

$$f\left(x\right) = 2 + \frac{-1}{x+2}$$

$$y-2=rac{-1}{x+2}$$
 معادلة C_f في المعلم المتعامد $(O;\vec{i};\vec{j})$ هي $(O;\vec{i};\vec{j})$ هي المعلم المتعامد $(C_f;\vec{i};\vec{j})$ هي نعتبر $(C_f;\vec{i};\vec{j})$ المتجهة $(C_f;\vec{i};\vec{j})$ و لتكن $(C_f;\vec{i};\vec{j})$ و لتكن $(C_f;\vec{i};\vec{j})$ نعتبر $(C_f;\vec{i};\vec{j})$ المتجهة $(C_f;\vec{i};\vec{j})$

$$x \to \frac{-1}{x}$$
 ليكن (C) منحنى الدالة

t لنبين أن C_f هو صورة C_f بالإزاحة

$$\begin{cases} X+2=x \\ Y-2=y \end{cases}$$
تکافئ $t(M)=M'$

$$M'(X;Y) \in (C_f)$$
 تکافئ $Y-2=\frac{-1}{X+2}$ تکافئ $y=\frac{3}{x}$ تکافئ $M(x;y) \in (C)$

t إذن $\left(C_f
ight)$ هو صورة و $\left(C_f
ight)$ بالإزاحة

وحيث أن C هذلول مركزه O(0;0) و مقارباه محورا المعلم فان C هذلول مركزه y=2 و x=-2 أي C(0;0) و مقارباه المستقيمان اللذان معادلتهما C'(-2;2) و C'(-2;2) أي C'(-2;2) و مقارباه المستقيمان اللذان معادلتهما C'(-2;2) أي C'(-2;2) و حيث أن الدالة C'(-2;2) تزايدية على كل من C'(-2;2) و C'(-2;2) فان الدالة C'(-2;2) تزايدية على كل من C'(-2;2) و C'(-2;2)

		تعيرات	جدول ال
\boldsymbol{x}	$-\infty$	-2	8+
f			*

إنشاء المنحني

$$x = -\frac{3}{2}$$
تكافئ $f(x) = 0$

\mathcal{X}	-3	-2	-1	0	2
f(x)	1	//	1	$\frac{3}{2}$	$\frac{7}{4}$

$$c \neq 0$$
 حيث $x \rightarrow \frac{ax+b}{cx+d}$ حيث

نشاط

$$ad-bc \neq 0$$
 و $c \neq 0$ حيث $f\left(x\right) = \dfrac{ax+b}{cx+d}$ ب $\mathbb{R} - \left\{\dfrac{-d}{c}\right\}$ و $c \neq 0$ و $c \neq 0$

$$\mathbb{R} - \left\{ \frac{-d}{c} \right\}$$
 من $f(x) = \beta + \frac{\lambda}{x - \alpha}$ من $\beta \in \mathcal{A}$ حدد α و $\beta \in \mathcal{A}$ من $\beta \in \mathcal{A}$

$$ec{u}(lpha;eta)$$
 هو صورة المنحنى (C_f) الممثل للدالة $x o rac{\lambda}{x}$ بالإزاحة t ذات المتجهة (C_f) هو صورة المنحنى و استنتج طبيعة (C_f)

$$ad-bc
eq 0$$
 و $c \neq 0$ حيث $f(x) = \frac{ax+b}{cx+d}$ ب $\mathbb{R} - \left\{ \frac{-d}{c} \right\}$ و $c \neq 0$ و $c \neq 0$

$$\mathbb{R}-\left\{rac{-d}{c}
ight\}$$
 توجد أعداد حقيقية α و β و λ حيث α عن α توجد أعداد حقيقية st

$$ec{u}(lpha;eta)$$
 الممثل للدالة $x o rac{\lambda}{x}$ بالإزاحة ذا المتجهة *

ب المستقيمان المعرفان المعرفان و مقارباه هما المستقيمان المعرفان ب C_f^*

$$y = \beta$$
 و $x = \alpha$

$$\beta = \frac{a}{c}$$
 ملاحظة: $\alpha = \frac{-d}{c}$

cos دالة الجيب sin دالة جيب التمامأ/ دالة الجيب sin أ/ دالة الجيب

تعريف

 $\sin x$ هي الدالة التي تربط كل عدد حقيقي x بجيبه $\sin x$ نكتب $\sin x \to \sin x$ نكتب نكتب

خاصية1

نقول ان الدالة $\sin\left(-x\right) = -\sin x$ فردية كل x من x

 $\sin x = \sin \left(x + 2k\pi
ight)$ گ من $\mathbb R$ من $x + 2k\pi$ * $\sin x = \sin \left(x + 2\pi
ight)$ ومنه $\sin x = \sin \left(x + 2\pi
ight)$

خاصية2

لکل x من $x=\sin\left(x+2\pi
ight)$ نقول ان الدالة $\sin x=\sin\left(x+2\pi
ight)$ دورية و

التأويل الهندسي

 $\left(O;ec{i}\;;ec{j}
ight)$ نعتبر المعلم المتعامد الممنظم

 $\left(C_{\sin}
ight)$ لتكن $M\left(x;\sin x
ight)$ نقطة من المنحنى

 $\left(C_{\sin}
ight)$ وحيث $\sin x = \sin \left(x + 2k\pi\right)$ فان $\sin x = \sin \left(x + 2k\pi\right)$ نقطة من المنحنى

و بالنادي $mM = 2k\pi i$ اي M طوره M بالإراحة ذات المنجهه π مثلا $-2k\pi i$ و استنتاج ما تبقى من المنحنى و من هذا نستنج أنه يكفي رسم المنحنى على مجال سعته π مثلا $-2k\pi i$ و استنتاج ما تبقى من المنحنى في المجالات $-\pi + 2k\pi i$ باستعمال الإزاحة ذات المتجهة π

ملاحظة

sin فردية و منه المنحني متماثل بالنسبة لأصل المعلم

 $\left[-\pi;0
ight]$ على $\left(C_{\sin}
ight)$ على على يكفي تمثيل المنحنى واستنتاج المنحنى يكفي على يكفي تمثيل المنحنى المنحنى واستنتاج المنحنى المنحنى والمنحنى والمن

التمثيل المبياني لدالة sin

ب/ دالة جيب التمام cos

تعريف

 $\cos x$ الدالة $\cos x$ هي الدالة التي تربط كل عدد حقيقي $\cos \sin us$ نكتب $\cos : x \to \cos x$ نكتب

خاصية1

لكل x من \mathbb{R} من $\cos(-x) = \cos x$ نقول إن الدالة زوجية

 $\cos x = \cos \left(x + 2k\pi
ight)$ گ من $\mathbb R$ من x و لکل *

 $\cos x = \cos(x + 2\pi)$ equip

خاصية2

لکل x من $x=\cos(x+2\pi)$ نقول إن الدالة $\cos x=\cos(x+2\pi)$ دور لها

التأويل الهندسي

 $\left(O; ec{i}\; ; ec{j}\;
ight)$ نعتبر المعلم المتعامد الممنظم

 $\left(C_{\cos}
ight)$ نقطة من المنحنى $M\left(x;\cos x
ight)$ نقطة

 $\left(C_{\cos}
ight)$ وحيث $M'\left(x+2k\pi;\sin x
ight)$ فان $\cos x=\cos\left(x+2k\pi
ight)$ نقطة من المنحنى

 $2k\pi ec{i}$ و بالتالي $2k\pi ec{i}$ أي ' M صورة M بالإزاحة ذات المتجهة

و من هذا نستنج أنه يكفي رسم المنحنى $(C_{
m cos})$ على مجال سعته 2π مثلا $[-\pi;\pi]$ و استنتاج ما تبقى من

 $2k\pi \vec{i}$ المنحنى في المجالات $\left[-\pi+2k\pi;\pi+2k\pi
ight]$ باستعمال الإزاحة ذات المتجهة

ملاحظة

روجية و منه المنحنى $\left(C_{\cos}
ight)$ متماثل بالنسبة لمحو الاراتيب \cos

 $\left[-\pi;0
ight]$ على $\left(C_{\cos}
ight)$ على على يكفي تمثيل المنحنى واستنتاج المنحنى يكفي على يكفي المنحنى

التمثيل المبياني لدالة cos

