

alswaji 🗸

Video

Number of n-Bit Sequences with k 1's

 $\binom{n}{k} \triangleq \binom{\lfloor n \rfloor}{k} = \#$ n-bit sequences with k 1's

binomial coefficient

 $= |\{110, 101, 011\}| = 3$

 $\# = 3^2 = 6$ Locations of 1's: Ordered Pairs from {1,2,3}

	2	110	
	3	101 <	>110
2	21	110	101
_	23	011 \	
3	31	101 /	>011
,	00	011	

0:00 / 0:00 ▶ 1.0x X CC 66 Start of transcript. Skip to the end.

- Hello again, everyone.

Last time we talked about permutations,

and in this lecture we'll discuss combinations.

So what are they?

So first we're going to look at subsets of a set.

And so a subset of size k is called a k-subset.

4.3_Combinations

POLL

Which of the following is larger for k≤n?

RESULTS

The number of k-permutations of an n-set

90%

The number of k-subsets of an n-set

10%

Submit

Results gathered from 21 respondents.

FEEDBACK

The number of k-permutations is larger.

In selecting subsets, the order doesn't matter, hence the number of k-subsets is the number of k-permutations divided by k!

1

0 points possible (ungraded)

In how many ways can a basketball coach select 5 starting players form a team of 15?

15! 5!10!

 $\frac{15!}{10!}$

None of the above

Explanation

It can be deducted from partial permutation, but the order does not matter. It is $\binom{15}{5} = \frac{15^{\underline{5}}}{5!} = \frac{15!}{5!10!}$.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

2

0 points possible (ungraded)

• In how many ways can you select a group of 2 people out of 5?

10

25

None of the above

~

Explantion

 $\binom{5}{2} = 10.$

• In how many ways can you select a group of 3 people out of 5?

10

25

125

None of the above

~

Explantion

 $\binom{5}{3} = 10.$

• In how many ways can you divide 5 people into two groups, where the first group has 2 people and the second has 3?

10

25

O None of the above

Ex	nla	'n	tid	n	n
^	\mathcal{O}{10}	411	CI,	9	

After we determine the group of 2, the group of 3 is determined as well, hence the answer is ${5 \choose 2} = 10$.

Submit

You have used 4 of 4 attempts

• Answers are displayed within the problem

3

0 points possible (ungraded)

Ten points are placed on a plane, with no three on the same line. Find the number of:

· lines connecting two of the points,

Explanation

Choosing any 2 points out of the 10 points can make a line: $\binom{10}{2}$

• these lines that do not pass through two specific points (say \boldsymbol{A} or \boldsymbol{B}),

Explanation

Choosing any 2 points out of the remaining 8 points (except A,B): ${8 \choose 2}$

• triangles formed by three of the points,

Explanation

As no three on the same line, choosing any 3 points out of the 10 points make a triangle: $\binom{10}{3}$

ullet these triangles that contain a given point (say point $oldsymbol{A}$),

Explanation

With point A fixed, choosing any 2 points out of the remaining 9 points make a triangle: $\binom{9}{2}$

• these triangles contain the side AB.

8	✓ Answer: 8
8	

Explanation

With point A and B fixed, choosing any 1 point out of the remaining 8 points make a triangle: $\binom{8}{1}$

1 Answers are displayed within the problem

4

0 points possible (ungraded)

The set $\{1,2,3\}$ contains 6 nonempty intervals: $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{2,3\}$, and $\{1,2,3\}$.

How many nonempty intervals does $\{1,2,\ldots,10\}$ contain?

(2^10) **★ Answer:** 55

Explanation

 $\{1,2,\ldots,n\}$ contains $\binom{n}{1}$ singleton intervals and $\binom{n}{2}$ intervals of 2 or more elements. Hence the total number of intervals is $\binom{n}{2}+\binom{n}{1}$. By Pascal's identity $\binom{n}{2}+\binom{n}{1}=\binom{n+1}{2}$. This can also be seen by considering the n+1 midpoints $\{0.5,1.5,\ldots n+0.5\}$. Any pair of these points defines an interval in $\{1,2,\cdots n\}$.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

5

0 points possible (ungraded)

A rectangle in an $m \times n$ chessboard is a cartesian product $S \times T$, where S and T are nonempty intervals in $\{1,\ldots,m\}$ and $\{1,2,\ldots,n\}$ respectively. How many rectangles does the 3×6 chessboard have?

6*21 **✓ Answer:** 126

Explanation

Repeating the same analysis as the above question, but for two different intervals, we have $\binom{4}{2} \cdot \binom{7}{2} = 126$.

? Hint (1 of 1): For example, the 2×2 chessboard has $3 \cdot 3 = 9$ rectangles.

Next Hint

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

6 (Graded)

8.0/8.0 points (graded)

A standard 52-card deck consists of 4 suits and 13 ranks. Find the number of 5-card hands where:

• any hand is allowed (namely the number of different hands),

2598960 **✓ Answer:** 2598960

Explanation This is simply $\binom{52}{5}$.		
 all five cards are of same suit, 		
4*1287	✓ Answer: 5148	
$4 \cdot 1287$		
Explanation There are 4 suits in total and 13 c	ards in each suit, hence $4 \cdot \left(rac{13}{5} ight)$ hands.	
• all four suits are present,		
685464	✓ Answer: 685464	
685464		
Explanation One of the 4 suits will appear twice	ce, hence $4 \cdot {13 \choose 2} \cdot 13^3$ hands.	
all cards are of distinct ranks.		
1317888	✓ Answer: 1317888	
1317888		
? Hint (1 of 1): For example, for	choose their suits. Therefore there are $inom{13}{5}\cdot 4^5$ had have the same suit, with 5 clubs, or with 5 diamonds, etc.	nds. Next Hint
Submit You have used 1 of 4	attempts	
Answers are displayed within	n the problem	
7 (Graded) 2.0/2.0 points (graded) A company employs 4 men and 3	women. How many teams of three employees have	e at most one woman?
<u></u>		
2 2		
<u></u>		
<u> </u>		
~		

⊿∪∀0∀UU

Explanation There are $\binom{4}{3}=4$ teams with 0 women and $\binom{3}{1} imes\binom{4}{2}=3 imes6=18$ teams with 1 woman, for a total of 22.

1 Answers are displayed within the problem

8 (Graded)

5.0/5.0 points (graded)

A (tiny) library has 5 history texts, 3 sociology texts, 6 anthropology texts and 4 psychology texts. Find the number of ways a student can choose:

one of the texts,

Explanation

• two of the texts,

Explanation

• one history text and one other type of text,

Explanation

The student can choose 5 different history texts, and 3+6+4=13 other texts, by the product rule there are $5\cdot 13=65$ ways of doing that.

• one of each type of text,

Explanation

The student selects one text of each type, by the product rule this can be done in $5 \cdot 3 \cdot 6 \cdot 4 = 360$ ways.

• two of the texts with different types.

Explanation

There are $5 \cdot 3 = 15$ ways to choose one history and one sociology text, $5 \cdot 6 = 30$ ways to choose one history and one anthropology text, etc. In total there are $5 \cdot 3 + 5 \cdot 6 + 5 \cdot 4 + 3 \cdot 6 + 3 \cdot 4 + 6 \cdot 4 = 119$ ways.

Submit You have used 1 of 4 attempts

1 Answers are displayed within the problem

	_
•	٦
ı	_
•	-

0 points possible (ungraded)

In how many ways can 7 distinct red balls and 5 distinct blue balls be placed in a row such that

• all red balls are adjacent,

Explanation

There are 6 ways to place 7 red balls adjacent. Hence the number of ways is $6 \times 7! \times 5! = 3628800$.

· all blue balls are adjacent,

Explanation

There are 8 ways to place 5 red balls adjacent. Hence the number of ways is $8 \times 7! \times 5! = 4838400$.

• no two blue balls are adjacent.

Explanation

First, decide on the locations of the red and blue balls. Arrange all 7 red balls in a line, we can then choose 5 out of the 8 gaps (including those at the beginning and end) to place the blue balls. Since the balls are distinct we can permute the blue balls, and the red balls, for a total of $\binom{8}{5}$ 7!5! arrangements.

Submit You have used 4 of 4 attempts

1 Answers are displayed within the problem

10

0 points possible (ungraded)

For the set $\{1, 2, 3, 4, 5, 6, 7\}$ find the number of:

• subsets,

Explanation

There are 7 elements in the set. The number of subsets is 2^7 .

• 3-subsets,

Explanation

Choose 3 elements out of 7. The number of ways is $\binom{7}{3}=35$.

• 3-subse	ts containing the num	per 1,	
		X Answer: 15	
Explanation	l		
l is fixed. Choose 2 el	ements out of 6. The r	number of ways is ${6 \choose 2}=15$.	
	ts not containing the r	 ,	
		X Answer: 20	
Explanation		ding 1). The number of ways is ${6 \choose 3}=20$.	
71100se s e	ements out of 6 (excit	dilig 1). The number of ways is $\binom{3}{3} - 20$.	
2 Uint /1	of 1): A 2 pulpost is a s	ubset with 3 elements.	Next Hint
r milit(i	or it. A 3-subset is a s	ubset with 5 elements.	Next Hill
Submit	You have used 4 of 4	attempts	
Answe	rs are displayed withir	the problem	
71110110	is are areplayed within		
11 Functi	ons.		
	ible (ungraded) $^{:}:X ightarrow Y$ is $\emph{injective}$	or $\emph{one-to-one}$ if different elements in $oldsymbol{X}$ ma	p to different elements in $oldsymbol{Y}$,
		$\forall x\neq x^{\prime}\in X, f\left(x\right) \neq f\left(x^{\prime}\right) .$	
A function j	f:X o Y is surjective	ve or onto if all elements in $oldsymbol{Y}$ are images of a	it least one element of $oldsymbol{X}$, namely
		$orall y \in Y \exists x \in X, f\left(x ight) = y.$	
For sets $oldsymbol{A}$:	$=\{1,2,3\}$ and $B=$	$\{a,b,c,d\}$, find the number of	
function	s from $m{A}$ to $m{B}$,		
 function 	s from $oldsymbol{B}$ to $oldsymbol{A}$,		
- one to	one functions from A	o R	
• 0116-10-	one functions from $m{A}$ t	∪ D ,	
• onto fun	ctions from $m{B}$ to $m{A}$.		

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

<u>Careers</u>

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us Help Center Media Kit

© 2022 edX LLC. All rights reserved. 深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>