Benchmarking Filtering Techniques for Entity Resolution

ICDE 2023, Research Session 8: Information Integration and Data Quality, April 5th 2023

George Papadakis, Marco Fisichella, Franziska Schoger, George Mandilaras, Nikolas Augsten, Wolfgang Nejdl

Introduction

- Entity resolution
 - identifying pairs of entity profiles that represent the same real-world object
- Filtering Techniques
 - don't check every possible pair but only the most promising (candidate pairs)
- Matching

- Example:
- 1 Movie in two databases

id title starring writer editor

Sean Duke, Hugo Weaving,
Lawrence Makoare
Christopher Lee, Catherine
Blanchett, Ian Holm...

© New Line Cinema

Preliminaries

- Two main tasks of ER
 - Clean-Clean ER
 - Dirty ER

- Performance Measures
 - Pair Completeness (PC)
 |Candidates ∩ Matches|

|Matches|

Pairs Quality (PQ)
 |Candidates ∩ Matches|

|Candidates|

Runtime

Main Idea

- Filtering techniques for textual entity profiles:
 - Blocking Workflows
 - NN Methods
- Main idea: compare different filtering techniques in terms of PC, PQ and runtime

All possible Matches pairs

Candidates

Problem (Configuration Optimization):

- Given are two sets of entity profiles, a filter method and a threshold on PC (90%)
- Finetune the parameters of the filtering methods such that the resulting PQ is maximized while the PC is above the threshold

Filtering Methods

Blocking Methods

Filtering Methods

Nearest Neighbor Methods

- Sparse Vector Based NN Methods:
 - Similarity of token sets (Jaccard, Cosine, Dice)
- Dense Vector Based NN Methods:
 - Similarity of Vector Embeddings

Datasets

	D _{c1}	D _{c2}	D _{c3}	D _{c4}	D _{c5}	D _{c6}	D _{c7}	D _{c8}	D _{c9}	D _{c10}
$\mathcal{E}_{_{1}}$ / $\mathcal{E}_{_{2}}$	Rest. 1 / Rest. 2	Abt / Buy	Amazon / GB	DBLP / ACM	IMDb / TMDb	IMDb / TVDB	TMDb / TVDB	Walmart /Amazon	DBLP / GS	IMDb / DBpedia
# entities	339 / 2,256	1,076 / 1,076	1,354 / 3,039	2,616 / 2,294	5,118 / 6,056	5,118 / 7,810	6,056 / 7,810	2,554 / 22,074	2,516 / 61,353	27,615 / 23,182
# duplicates	89	1,076	1,104	2,224	1,968	1,072	1,095	853	2,308	22,863
Cartesian Product	$7.7 \cdot 10^5$	1.2 · 10 ⁶	$4.1 \cdot 10^6$	$6.0 \cdot 10^6$	$3.1 \cdot 10^7$	$4.0\cdot10^7$	$4.7\cdot 10^7$	$5.6 \cdot 10^7$	1.5 · 10 ⁸	$6.4 \cdot 10^{8}$
Best Attribute	Name	Name	Title	Title	Title	Name	Name	Title	Title	Title

Configuration Space

	Method	Number of Configurations				
Blocking Methods	Standard Blocking	3,440				
	Q-Grams Blocking	17,200				
	Extended Q-Grams Blocking	68,800				
	(Ex.) Suffix Arrays Blocking	21,285				
Sparse NN Methods	ε-Join	6,000				
	kNN-Join	12,000				
Dense NN Methods	MH-LSH	168				
	HP-LSH	400				
	CP-LSH	2,000				
	FAISS	2,720				
	SCANN	10,880				
	DeepBlocker	2,720				

Taxonomy

Sc	соре	Blocking	Sparse NN	Dense NN	
Syntactic Representations	Schema- based	✓	✓	✓	
Syntactic	Schema- agnostic	√	✓	√	
antic	Schema- based	-	-	✓	
Semantic Representations	Schema- agnostic	-	-	✓	

Taxonomy

Internal functionality

- Blocking:
 - Lazy or proactive
- NN-Methods:
 - Type of operation
 - Type of threshold

NN Methods	Similarity Threshold	Cardinality Threshold
Deterministic Operation	ε-Join	kNN-Join, FAISS, SCANN
Stochastic Operation	MH-, HP-, CP-LSH	DeepBlocker

- Blocking:
 - Attribute value tokens yield better results than substrings of tokens

- Sparse NN:
 - Cardinality thresholds are more effective than similarity thresholds

- Dense NN:
 - Similarity-based methods produce large numbers of candidate pairs to achieve high PC
 - Learning based tuple embedding module raises the PQ, but does not scale

- → Standard Blocking Workflow (SBW) best
- →kNN-Join more robust and easier to configure and apply

Schema Based Results

- Overall similar trends as for schema-agnostic setting
- Blocking:
 - Substrings of tokens (QBW) slightly better than SBW

→QBW and kNNJ best and most robust

	02	02	03	DA	D ₈	09	overa
SBW -	1	6	4	9	3	5	4.7
QBW -	4	2	2	10	2	6	4.3
EQBW -	2	5	5	7	4	8	5.2
SABW -	3	3	3	11	7	11	6.3
ESABW -	5	1	8	12	8	12	7.7
PBW -	11	15	11	17	14	14	13.7
DBW -	17	15	10	15	10	15	13.7
eJoin -	6	8	7	4	5	3	5.5
kNNJ -	9	4	1	8	1	4	4.5
Dknn -	13	7	6	13	17	9	10.8
MH-LSH -	16	14	16	16	16	17	15.8
CP-LSH -	12	12	14	5	13	16	12.0
HP-LSH -	14	13	15	6	15	10	12.2
FAISS -	8	9	12	1	12	1	7.2
SCANN -	7	9	13	2	11	1	7.2
DeepBlocker -	10	11	9	3	6	7	7.7
DDB -	15	15	17	14	9	13	13.8

- 10

Scalability

- Run on 7 synthetic, dirty ER datasets
 - Ranging from 10,000 to 2M entries
- Techniques were finetuned on the smallest dataset
- The same settings were used for all datasets

Scalability

Conclusions

- We compared 13 methods, all fine-tuned to our problem and 4 baseline methods
- PQ of all methods is highly correlated
 - performance heavily depends on dataset characteristics
- Parameter finetuning significantly increases the performance
- Schema agnostic settings are preferable
- Cardinality thresholds are preferable
- Syntactic representations are preferable

Thank you

Questions?

Coverage

Scalability

