Quant III

Lab 5: Beyesian: Basics

Junlong Aaron Zhou

October 09, 2020

Outline

- Homework Question
- Bayes Basics
- Estimates and Inference

Homework Question:

- Uniform distribution $U(0,\theta)$
- If θ is known:

$$f(y) = \begin{cases} \frac{1}{\theta} & y \in [0, \theta] \\ 0 & \text{otherwuse} \end{cases}$$

Homework Question:

- Uniform distribution $U(0, \theta)$
- If θ is known:

$$f(y) = \begin{cases} \frac{1}{\theta} & y \in [0, \theta] \\ 0 & \text{otherwuse} \end{cases}$$

- Therefore: $f(y) = \frac{1}{\theta} \mathbb{I}(y \le \theta)$
- $L = \prod_{i=1}^n \frac{1}{\theta} \mathbb{I}(y_i \leq \theta)$
- Note L = 0 if $\exists y_i > \theta$, and decreasing in θ

Homework Question:

- Uniform distribution $U(0, \theta)$
- If θ is known:

$$f(y) = \begin{cases} \frac{1}{\theta} & y \in [0, \theta] \\ 0 & \text{otherwuse} \end{cases}$$

- Therefore: $f(y) = \frac{1}{\theta} \mathbb{I}(y \le \theta)$
- $L = \prod_{i=1}^n \frac{1}{\theta} \mathbb{I}(y_i \leq \theta)$
- Note L=0 if $\exists y_i > \theta$, and decreasing in θ
- $\hat{\theta}_{MLE}$ is the smallest possible value, i.e. $max\{y_i\}$

Negative Binomial Model

• Remind me later.

Basic Bayes

• WARNINGS: Please do ask questions.

Basic Bayes

- WARNINGS: Please do ask questions.
- Frequentist v.s.Bayesian
 - ullet Natural, fixed, unknown parameter heta v.s. distribution of heta
 - Infinite sampling (hypothetical)/ Asymptotics v.s. Limited observations
- Take-away: different way of thinking.

Bayesian Estimation: Setup

- ullet Unknown parameter: heta
- Prior: $P(\theta)$
- Posterior $P(\theta|Y)$ given by Bayes Rule:

Bayesian Estimation: Setup

- Unknown parameter: θ
- Prior: $P(\theta)$
- Posterior $P(\theta|Y)$ given by Bayes Rule:

$$P(\theta|Y) = \frac{P(\theta, Y)}{P(Y)}$$
$$= \frac{P(Y|\theta)P(\theta)}{\int_{\theta} P(Y|\theta)P(\theta)}$$

$$\begin{split} P(\theta|Y) &= \frac{P(\theta,Y)}{P(Y)} \\ &= \frac{P(Y|\theta)P(\theta)}{\int_{\theta} P(Y|\theta)P(\theta)} \end{split}$$

$$P(\theta|Y) = \frac{P(\theta, Y)}{P(Y)}$$
$$= \frac{P(Y|\theta)P(\theta)}{\int_{\theta} P(Y|\theta)P(\theta)}$$

• Likelihood enters: $L(\theta) = \prod f_{\theta}(Y) = P(Y|\theta)$

7 / 16

$$P(\theta|Y) = \frac{P(\theta, Y)}{P(Y)}$$
$$= \frac{P(Y|\theta)P(\theta)}{\int_{\theta} P(Y|\theta)P(\theta)}$$

• Likelihood enters: $L(\theta) = \prod f_{\theta}(Y) = P(Y|\theta)$

Rewrite posterior:
$$P(\theta|Y) = \frac{1}{P(Y)} \times \text{Likelihood} \times \text{Prior}$$

= Constant $\times \text{Likelihood} \times \text{Prior}$
 $\propto \text{Likelihood} \times \text{Prior}$

$$P(\theta|Y) = \frac{P(\theta, Y)}{P(Y)}$$
$$= \frac{P(Y|\theta)P(\theta)}{\int_{\theta} P(Y|\theta)P(\theta)}$$

• Likelihood enters: $L(\theta) = \prod f_{\theta}(Y) = P(Y|\theta)$

Rewrite posterior:
$$P(\theta|Y) = \frac{1}{P(Y)} \times \text{Likelihood} \times \text{Prior}$$

= Constant $\times \text{Likelihood} \times \text{Prior}$
 $\propto \text{Likelihood} \times \text{Prior}$

• Kernel: $P(Y|\theta)P(\theta)$. Once you know this, you know the distribution.

Junlong Aaron Zhou Quant III October 09, 2020 7 / 16

Point Estimation

- MLE (Maximum Likelihood Estimation): $\max_{\theta} L(\theta)$ MAP (Maximum A Posteriori): $\max_{\theta} L(\theta)P(\theta)$

Point Estimation

- \bullet MLE (Maximum Likelihood Estimation): $\mathop{\it Max}_{\theta} L(\theta)$
- MAP (Maximum A Posteriori): $\underset{\theta}{\mathit{Max}} L(\theta) P(\theta)$
- Prior!
- MLE = MAP when $P(\theta)$ is constant.
- Choose prior is important

Point Estimation

- MLE (Maximum Likelihood Estimation): $\mathop{\it MaxL}_{\theta}(\theta)$
- MAP (Maximum A Posteriori): $\underset{\theta}{\mathit{MaxL}}(\theta)P(\theta)$
- Prior!
- MLE = MAP when $P(\theta)$ is constant.
- Choose prior is important
 - Conjugate prior: get an analytic solution
 - Otherwise: Numerically approximate the posterior (MCMC, VI).
 - Computational convenience, and/or subjective knowledge
 - Sometimes: uninformative prior

Conjugate prior

- Beta is conjugate prior for Bernoulli distribution.
- What does that mean?
- ullet Prior Beta, likelihood derived from Bernoulli o Posterior Beta.

Conjugate prior ctd.

- Normal is conjugate prior for Normal.
- Consider $\theta \sim N(\mu_0, \sigma_0^2)$
- $Y \sim N(\theta, \sigma^2)$

Conjugate prior ctd.

- Normal is conjugate prior for Normal.
- Consider $\theta \sim N(\mu_0, \sigma_0^2)$
- $Y \sim N(\theta, \sigma^2)$

$$\begin{split} P(\theta|Y) &\propto \prod \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_i - \theta)^2}{2\sigma^2}} * \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(\theta - \mu_0)^2}{2\sigma_0^2}} \\ &\propto e^{-\frac{1}{2}(\frac{1}{\sigma^2}\sum(\theta - y_i)^2 + \frac{1}{\sigma_0^2}(\theta - \mu_0)^2)} \\ &\propto e^{-\frac{1}{2}(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2})(\theta - \frac{\mu_0}{\sigma_0^2} + \frac{n\bar{y}}{\sigma^2}}{\sigma_0^2 + \frac{n}{\sigma^2}})^2} \end{split}$$

Conjugate prior ctd.

- Normal is conjugate prior for Normal.
- Consider $\theta \sim N(\mu_0, \sigma_0^2)$
- $Y \sim N(\theta, \sigma^2)$

$$\begin{split} P(\theta|Y) &\propto \prod \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_i - \theta)^2}{2\sigma^2}} * \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(\theta - \mu_0)^2}{2\sigma_0^2}} \\ &\propto e^{-\frac{1}{2}(\frac{1}{\sigma^2}\sum(\theta - y_i)^2 + \frac{1}{\sigma_0^2}(\theta - \mu_0)^2)} \\ &\propto e^{-\frac{1}{2}(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2})(\theta - \frac{\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{y}}{\sigma^2}}{\sigma_0^2 + \frac{n}{\sigma^2}})^2} \\ &\theta|Y &\sim N(\frac{\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{y}}{\sigma^2}}{\sigma_0^2 + \frac{n}{\sigma^2}}, (\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2})^{-1}) \end{split}$$

Point Estimation ctd.

- We can get more statistics, why?
- We know the whole posterior distribution.

Point Estimation ctd.

- We can get more statistics, why?
- We know the whole posterior distribution.
 - Expected value of θ ?
 - What is the most likely value of θ ? (MAP)
 - The probability of $\theta > 0$?

Inference

Quick question: what's the difference between point estimation and inference?

Inference

- Quick question: what's the difference between point estimation and inference?
- Frequentist: Confidence Interval (Rely on infinitely sampling)
- Bayesian: We know the whole posterior distribution, and therefore:

Inference

- Quick question: what's the difference between point estimation and inference?
- Frequentist: Confidence Interval (Rely on infinitely sampling)
- Bayesian: We know the whole posterior distribution, and therefore:
 - Credible Interval
 - We call set A is 95% Credible interval of θ if $Pr(\theta \in A) = \int_A P(\theta|y) d\theta = 0.95$
- Difference?

Inference ctd.

- Symmetric credible interval: bounded by α and $1-\alpha$ quantile.
- Highest posterior density interval (HPD): the density inside the region has to be higher than at any point outside the interval.

