EXHIBIT 11

HTTP Adaptive Streaming in practice

Mark Watson

(with thanks to the Netflix adaptive streaming team!)

ACM MMSys 2011 – 22-24 February 2011, San Jose, CA

Netflix Overview

Netflix corporate headquarters Los Gatos, California

- Started with DVD-by-mail,
 now primarily Internet streaming
- 20+ million¹ subscribers, growing rapidly (>15% of US households subscribe to Netflix)
- USA-only for ten years,
 Canada in 2010,
 further expansion in 2011+
- Unlimited Streaming = \$7.99/month
 Plus 1 DVD at a time = \$9.99/month

Partner Products

Contents

- Why HTTP adaptive streaming?
- Streaming approaches
- Measuring quality and the value of quality
- Adaptation algorithms and open problems

Why HTTP Adaptive Streaming?

Unicast

Multicast

Synchronous

Asynchronous

Client-centric approach

- Client has the best view of network conditions
- No session state in network
 - Redundancy
 - Scalability
- Faster innovation and experimentation
- BUT, relies on client for operational metrics
 - only the client knows what really happened anyway

Scalability examples

- Microsoft streaming of 2008 Olympics
 - 4 Petabytes live & VoD content in one month
 - North America (av. user bandwidth 2Mbit/s)
 - Millions of simultaneous sessions
 - Over existing infrastructure
- Netflix
 - 20% of North American Internet traffic at peak hours
 - Millions of hours of content every day
 - Bitrates up to 4.8Mbit/s
 - Almost no dedicated infrastructure
 - Control servers in AWS
 - Content delivery through CDNs

Netflix Performance on Top Networks - USA

Streaming bitrate performance

(just one device type)

Streaming rebuffer rates

(just one device type)

Contents

- Why HTTP adaptive streaming?
- Streaming approaches
- Measuring quality and the value of quality
- Adaptivity algorithms and open problems

Adaptive streaming in practice

Adaptive streaming in practice

Adaptive streaming in practice

No switchpoint alignment

Switchpoint Alignment

Adaptive streaming summary

For On Demand

- Chunks are unnecessary and costly
- Byte Range requests have caching and flexibility advantages
- Separate audio/video essential for language support

For Live

- Chunks are unavoidable
- Still value in decoupling request size from chunk size
- Multiple language audio tracks are rare
- May need manifest updates

For both

Switch point alignment required for most CE decoding pipelines

MPEG DASH

- Supports both unchunked & chunked
- Supports both separate & combined A/V
- Index formats for efficient byte range operation
- ISO Base Media File Format w/common encryption
- Rigorous definition of stream alignment requirements
- Signaling of different alignment modes
- Many useful stream and track annotations

Currently the best candidate for an open standard for adaptive streaming

Contents

- Why HTTP adaptive streaming?
- Streaming approaches
- Measuring quality and the value of quality
- Adaptivity algorithms and open problems

Measuring quality

- Reliable transport => all-or-nothing delivery
- Quality characterized by
 - Video quality
 - At startup, average and variability
 - Re-buffer rate
 - Re-buffers per viewing hour, duration of re-buffer pauses
 - Startup delay
 - Time from use action to first frame displayed

Importance of client metrics

- Metrics are operationally essential
 - Detecting and debugging failures
 - Managing performance
 - Experimentation
- Absence of server-side metrics places onus on client
- What do we need?
 - Reports of what the user did (or didn't) see
 - Which part of which stream presented when
 - Reports of what happened on the network
 - Requests sent, responses received, timing, throughput

Contents

- Why HTTP adaptive streaming?
- Streaming approaches
- Measuring quality and the value of quality
- Adaptivity algorithms and open problems

Adaptation problem

Choose sequence and timing of requests

to

Minimize probability of re-buffers

Maximize quality

Adaptation problem: Inputs

Capturing and representing all this information is not easy!

Adaptation problem: logic

Possible History Current state choices Stream 1 audio Stream 2 video Stream 3 Model of Expected performance for future each choice bandwidth

Adaptation problem: example

- Model of future bandwidth
 - Constant
 - Equal to average over last 10s
- Analysis of choices
 - Construct "plan" for each choice
 - Determine re-buffers for each plan

Adaptation problem: future work

- Good models of future bandwidth based on history
 - Short term history
 - Long term history (across multiple sessions)
- Tractable representations of future choices
 - Including scalability, multiple streams
- Convolution of future bandwidth models with possible plans

Conclusions

- Asynchronous delivery of same content to many users is a first-class network service
 - HTTP CDNs may not be the "perfect" architecture, but it's working pretty well at scale
- Many variations on HTTP Adaptive Streaming theme in deployed systems and emerging standards
 - MPEG DASH provides sufficient flexibility here
- Adaptation is not straightforward
 - How to model bandwidth future based on history?
 - How to efficiently search choice space to maximise quality goals?
 - What are the quality goals ?

Questions?

Mark Watson, watsonm@netflix.com