Exercices: Barbara Tumpach Relecture: François Lescure

Intégrale de Riemann

1 Rappel

Soient f une fonction bornée et $\sigma = \{a_0 = a < a_1 < \dots < a_n = b\}$ une subdivision de [a,b]. On note : $m_k = \inf\{f(x), x \in]a_{k-1}, a_k[\}$ et $M_k = \sup\{f(x), x \in]a_{k-1}, a_k[\}$. On appelle somme de Riemann inférieure relativement à σ la quantité : $\underline{S}_f^{\sigma} := \sum_{k=1}^n m_k (a_k - a_{k-1})$. De même, la somme supérieure de Riemann de f relativement à σ est égale à $\overline{S}_f^{\sigma} := \sum_{k=1}^n M_k (a_k - a_{k-1})$. La somme inférieure de Riemann de f est définie par : $\underline{S}_f = \sup_{\sigma} \underline{S}_f^{\sigma}$. La somme supérieure de Riemann de f est définie par : $\overline{S}_f = \inf_{\sigma} \overline{S}_f^{\sigma}$.

Définition. Une fonction f est Riemann-intégrable sur [a,b] si $\underline{S}_f = \overline{S}_f$. L'intégrale de f sur [a,b] est alors définie par : $\int_a^b f(x) dx = \underline{S}_f = \overline{S}_f$.

Théorème. Une fonction f bornée est intégrable au sens de Riemann sur [a,b] si et seulement si pour tout $\varepsilon > 0$, il existe une subdivision σ de [a,b] telle que

$$\overline{S}_f^{\sigma} \leq \underline{S}_f^{\sigma} + \varepsilon.$$

2 Propriétés de l'intégrale de Riemann

Exercice 1

En utilisant la définition d'une fonction intégrable au sens de Riemann, montrer les propriétés suivantes :

- 1. Si f et g sont Riemann-intégrables sur [a,b], alors f+g est Riemann-intégrable sur [a,b].
- 2. Si f est Riemann-intégrable sur [a,b] et $\lambda \in \mathbb{R}$, alors λ f est Riemann-intégrable sur [a,b].
- 3. Si f et g sont deux fonctions Riemann-intégrables sur [a,b] telles que, pour tout $t \in [a,b]$, $f(t) \leq g(t)$, alors $\int_a^b f(t) dt \leq \int_a^b g(t) dt$.
- 4. Une limite uniforme de fonctions Riemann-intégrables sur [a,b] est Riemann-intégrable sur [a,b].

Correction ▼ [005917]

3 Quelles sont les fonctions Riemann-intégrables ?

Exercice 2

Montrer qu'une fonction *monotone* sur [a,b] est Riemann-intégrable sur [a,b].

Correction ▼ [005918]

Exercice 3

Montrer qu'une fonction *continue* sur [a,b] est Riemann-intégrable sur [a,b].

Correction ▼ [005919]

Exercice 4

1. Montrer que la fonction $f:[0,1]\to\mathbb{R}$ définie par :

$$f(x) = \begin{cases} 1 & \text{si} \quad x \in \mathbb{Q} \\ 0 & \text{si} \quad x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

n'est pas Riemann-intégrable sur [0, 1].

2. Montrer que la fonction $g:[0,1] \to \mathbb{R}$ définie par :

$$g(x) = \begin{cases} \frac{1}{q} & \text{si} \quad x = \frac{p}{q} \text{ avec } p \text{ et } q \text{ premiers entre eux} \\ 0 & \text{si} \quad x \in \mathbb{R} \setminus \mathbb{Q} \text{ ou } x = 0 \end{cases}$$

est Riemann-intégrable sur [0,1].

Correction ▼ [005920]

Exercice 5

On dit qu'une partie A de \mathbb{R} est $n\acute{e}gligeable$ si, pour tout nombre réel $\varepsilon > 0$, il existe une suite $(I_n)_{n \in \mathbb{N}}$ d'intervalles $I_n =]a_n, b_n[$ telle que :

$$A\subset \bigcup_{n\in\mathbb{N}}I_n$$
 et $\sum_{n\in\mathbb{N}}(b_n-a_n)\leq \varepsilon.$

- 1. Montrer qu'une réunion dénombrable d'ensembles négligeables est un ensemble négligeable.
- 2. Montrer qu'une fonction bornée $f:[a,b] \to \mathbb{R}$ est intégrable au sens de Riemann sur [a,b] si et seulement si l'ensemble des points où f n'est pas continue est négligeable.

Correction ▼ [005921]

4 Peut-on intervertir limite et intégrale?

Exercice 6

Pour tout $n \in \mathbb{N}$, on définit $f_n:]0,1] \to \mathbb{R}$ par : $f_n(x) = ne^{-nx}$. Montrer que la suite $(f_n)_{n \in \mathbb{R}}$ converge simplement vers une fonction f sur [0,1] mais que

$$\int_0^1 \lim_{n \to +\infty} f_n(x) \, dx \quad \neq \quad \lim_{n \to +\infty} \int_0^1 f_n(x) \, dx.$$

Vérifier que la convergence de $(f_n)_{n\in\mathbb{N}}$ vers f n'est pas *uniforme* sur]0,1].

Correction ▼ [005922]

5 Applications

Exercice 7

Montrer que, si $f:[a,b]\to\mathbb{R}$ est une fonction intégrable au sens de Riemann, on a :

$$\frac{1}{b-a} \int_a^b f(t) dt = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n f\left(a + k \frac{b-a}{n}\right).$$

En déduire les limites suivantes :

a)
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \tan \frac{k}{n}$$
 b)
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2}$$
 c)
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \log \left(\frac{n}{n+k} \right)^{\frac{1}{n}}$$

Correction ▼ [005923]

Exercice 8

1. Montrer que si $f:[a,b] \to \mathbb{R}$ est Riemann-intégrable, alors

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx.$$

2. Calculer (en utilisant 1.) les intégrales suivantes :

a)
$$\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$$
 b)
$$\int_0^{\frac{\pi}{4}} \log(1 + \tan x) dx.$$

Rappel:
$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$

Correction ▼ [005924]

1. Soit $\varepsilon > 0$ donné. Puisque f est Riemann-intégrable sur [a,b], il existe une subdivision $\sigma_1 = \{a_0 = a < a_1 < \dots < a_n = b\}$ de [a,b] telle que $\overline{S}_f^{\sigma_1} \leq \underline{S}_f^{\sigma_1} + \frac{\varepsilon}{2}$. Puisque g est Riemann-intégrable sur [a,b], il existe une subdivision $\sigma_2 = \{b_0 = a < b_1 < \dots < b_p = b\}$ de [a,b] telle que $\overline{S}_g^{\sigma_2} \leq \underline{S}_g^{\sigma_2} + \frac{\varepsilon}{2}$. On note $\sigma_1 \cup \sigma_2 = \{c_0 = a < c_1 < \dots < c_{q-1} < c_q = b\}$ la subdivision de [a,b] obtenue en ordonnant l'ensemble $\{a_0,\dots,a_n,b_0,\dots,b_n\}$ par ordre croissant, puis en identifiant les points qui apparaissent plusieurs fois (on obtient une subdivision de [a,b] en q intervalles avec $\max\{n,p\} \leq q \leq n+p$). Puisque $\sigma_1 \cup \sigma_2$ est une subdivision plus fine que σ_1 , on a :

$$\overline{S}_f^{\sigma_1 \cup \sigma_2} \le \overline{S}_f^{\sigma_1} \quad \text{et} \quad \underline{S}_f^{\sigma_1} \le \underline{S}_f^{\sigma_1 \cup \sigma_2}.$$
 (1)

De même,

$$\overline{S}_g^{\sigma_1 \cup \sigma_2} \le \overline{S}_g^{\sigma_2}$$
 et $\underline{S}_g^{\sigma_2} \le \underline{S}_g^{\sigma_1 \cup \sigma_2}$. (2)

De plus, sur un intervalle $|c_{k-1}, c_k|$ donné, on a :

$$\sup\{f(x) + g(x), x \in]c_{k-1}, c_k[\} \leq \sup\{f(x), x \in]c_{k-1}, c_k[\} + \sup\{g(x), x \in]c_{k-1}, c_k[\}.$$

De même:

$$\inf\{f(x) + g(x), x \in]c_{k-1}, c_k[\} \ge \inf\{f(x), x \in]c_{k-1}, c_k[\} + \inf\{g(x), x \in]c_{k-1}, c_k[\}.$$

On en déduit que :

$$\overline{S}_{f+g}^{\sigma_1 \cup \sigma_2} \le \overline{S}_f^{\sigma_1 \cup \sigma_2} + \overline{S}_g^{\sigma_1 \cup \sigma_2},\tag{3}$$

et

$$\underline{S}_f^{\sigma_1 \cup \sigma_2} + \underline{S}_g^{\sigma_1 \cup \sigma_2} \le \underline{S}_{f+g}^{\sigma_1 \cup \sigma_2}. \tag{4}$$

En utilisant les inégalités (1), (2), (3) et (4), il vient alors

$$\overline{S}_{f+g}^{\sigma_1\cup\sigma_2}\leq \overline{S}_f^{\sigma_1}+\overline{S}_g^{\sigma_2}\leq \underline{S}_f^{\sigma_1}+\underline{S}_g^{\sigma_2}+\varepsilon\leq \underline{S}_{f+g}^{\sigma_1\cup\sigma_2}+\varepsilon.$$

D'après le théorème rappelé en introduction, on en déduit que f+g est Riemann-intégrable sur [a,b]. De plus, de l'inégalité

$$\underline{S}_f^{\sigma_1} + \underline{S}_g^{\sigma_2} \leq \underline{S}_{f+g}^{\sigma_1 \cup \sigma_2},$$

on déduit que

$$\sup_{\sigma_1,\sigma_2} \left(\underline{S}_f^{\sigma_1} + \underline{S}_g^{\sigma_2} \right) \leq \sup_{\sigma_1,\sigma_2} \underline{S}_{f+g}^{\sigma_1 \cup \sigma_2}.$$

Or

$$\sup_{\sigma_1,\sigma_2} \left(\underline{S}_f^{\sigma_1} + \underline{S}_g^{\sigma_2} \right) = \sup_{\sigma_1} \underline{S}_f^{\sigma_1} + \sup_{\sigma_2} \underline{S}_g^{\sigma_2} = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx$$

et

$$\sup_{\sigma_1,\sigma_2} \underline{S}_{f+g}^{\sigma_1 \cup \sigma_2} = \sup_{\sigma} \underline{S}_{f+g}^{\sigma} = \int_a^b \left(f(x) + g(x) \right) \, dx.$$

Ainsi

$$\int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx \le \int_{a}^{b} (f(x) + g(x)) \, dx.$$

De même, l'inégalité

$$\overline{S}_{f+g}^{\sigma_1\cup\sigma_2} \leq \overline{S}_f^{\sigma_1} + \overline{S}_g^{\sigma_2}$$

implique $\int_a^b (f(x) + g(x)) dx \le \int_a^b f(x) dx + \int_a^b g(x) dx$. En conclusion, $\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$.

- 2. Pour $\lambda = 0$ il n'y a rien a démontrer.
 - · Si f est Riemann-intégrable sur [a,b] et $\lambda > 0$, alors pour tout subdivision $\sigma = \{a_0 = a < \cdots < a_n = b\}$ de [a,b], on a :

$$\inf\{\lambda f(x), x \in]a_{k-1}, a_k[\} = \lambda \inf\{f(x), x \in]a_{k-1}, a_k[\}$$

$$\sup\{\lambda f(x), x \in]a_{k-1}, a_k[\} = \lambda \sup\{f(x), x \in]a_{k-1}, a_k[\}.$$

Par conséquent, $\underline{S}_{\lambda f}^{\sigma} = \lambda \underline{S}_{f}^{\sigma}$ et $\overline{S}_{\lambda f}^{\sigma} = \lambda \overline{S}_{f}^{\sigma}$. On en déduit que

$$\sup_{\sigma} \underline{S}_{\lambda f}^{\sigma} = \lambda \sup_{\sigma} \underline{S}_{f}^{\sigma} = \lambda \int_{a}^{b} f(x) dx = \lambda \inf_{\sigma} \overline{S}_{f}^{\sigma} = \inf_{\sigma} \overline{S}_{\lambda f}^{\sigma}.$$

En conclusion, λf est Riemann-intégrable et $\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$.

· Si f est Riemann-intégrable sur [a,b] et $\lambda < 0$, alors pour tout subdivision $\sigma = \{a_0 = a < \cdots < a_n = b\}$ de [a,b], on a :

$$\inf\{\lambda f(x), x \in]a_{k-1}, a_k[\} = \lambda \sup\{f(x), x \in]a_{k-1}, a_k[\}$$

$$\sup\{\lambda f(x), x \in]a_{k-1}, a_k[\} = \lambda \inf\{f(x), x \in]a_{k-1}, a_k[\}.$$

Par conséquent, $\underline{S}_{\lambda f}^{\sigma}=\lambda\overline{S}_{f}^{\sigma}$ et $\overline{S}_{\lambda f}^{\sigma}=\lambda\underline{S}_{f}^{\sigma}$. On en déduit que

$$\sup_{\sigma} \underline{S}_{\lambda f}^{\sigma} = \lambda \inf_{\sigma} \overline{S}_{f}^{\sigma} = \lambda \int_{a}^{b} f(x) dx = \lambda \sup_{\sigma} \underline{S}_{f}^{\sigma} = \inf_{\sigma} \overline{S}_{\lambda f}^{\sigma}.$$

En conclusion, λf est Riemann-intégrable et $\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$.

3. Soient f et g deux fonctions Riemann-intégrables sur [a,b] telles que, pour tout $t \in [a,b]$, $f(t) \leq g(t)$. Soit $\sigma = \{a_0 = a < \dots < a_n = b\}$ une subdivision de [a,b]. Alors

$$\inf\{f(x), x \in]a_{k-1}, a_k[\} \le \inf\{g(x), x \in]a_{k-1}, a_k[\}.$$

Il en découle que

$$\sup_{\sigma} \underline{S}_f^{\sigma} \leq \sup_{\sigma} \underline{S}_f^{\sigma},$$

c'est-à-dire $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

4. Soit $\{f_i\}_{i\in\mathbb{N}}$ une suite de fonctions Riemann-intégrables, qui converge uniformément vers f sur [a,b]. Soit $\varepsilon>0$ donné. Il existe N>0 tel que $\forall i>N$, $\sup_{[a,b]}|f_i(t)-f(t)|<\varepsilon$. En particulier, $f_i(t)-\varepsilon< f(t)< f_i(t)+\varepsilon$. Pour un tel i, on en déduit que pour toute subdivision $\sigma=\{a_0=a<\cdots< a_n=b\}$, on a

$$\sup_{|a_{k-1},a_k|} f \leq \sup_{|a_{k-1},a_k|} f_i + \varepsilon \quad \text{et} \quad \inf_{|a_{k-1},a_k|} f \geq \inf_{|a_{k-1},a_k|} f_i - \varepsilon$$

En particulier:

$$\sup_{]a_{k-1},a_k[} f - \inf_{]a_{k-1},a_k[} f \leq \sup_{]a_{k-1},a_k[} f_i - \inf_{]a_{k-1},a_k[} f_i + 2\varepsilon.$$

Il en découle que :

$$\overline{S}_f^{\sigma} - \underline{S}_f^{\sigma} \leq \overline{S}_{f_i}^{\sigma} - \underline{S}_{f_i}^{\sigma} + 2\varepsilon(b-a).$$

Comme f_i est Riemann-intégrable, d'après le théorème de l'introduction, il existe une subdivision σ de [a,b] telle que $\overline{S}_{f_i}^{\sigma} - \underline{S}_{f_i}^{\sigma} \leq \varepsilon$. On en déduit que

$$\overline{S}_{f}^{\sigma} - \underline{S}_{f}^{\sigma} \le \varepsilon (1 + 2(b - a)),$$

ce qui implique que f est Riemann-intégrable.

Correction de l'exercice 2

Soit f une fonction croissante [a,b]. Pour montrer que f est Riemann-intégrable, il suffit de trouver, pour tout $\varepsilon > 0$ donné, une subdivision de [a,b] telle que $\overline{S}_f^{\sigma} - \underline{S}_f^{\sigma} < \varepsilon$. Soit $\sigma = \{a_0 = a < \cdots < a_n = b\}$ la subdivision régulière de [a,b], de pas $(\frac{b-a}{n})$. On a

$$\inf_{]a_{k-1},a_k[} f = f(a_{k-1})$$
 et $\sup_{]a_{k-1},a_k[} f = f(a_k)$.

Ainsi:

$$\overline{S}_f^{\sigma} - \underline{S}_f^{\sigma} = \sum_{k=1}^n (a_k - a_{k-1}) (f(a_k) - f(a_{k-1}))$$

$$= \left(\frac{b-a}{n}\right) \sum_{k=1}^n (f(a_k) - f(a_{k-1}))$$

$$= \left(\frac{b-a}{n}\right) (f(b) - f(a)).$$

Pour n assez grand, la subdivision régulière de [a,b] satisfait $\overline{S}_f^{\sigma} - \underline{S}_f^{\sigma} < \varepsilon$. D'autre part, si g est décroissante, f = -g est croissante, donc g est Riemann-intégrable par l'exercice précédent (question 2.) avec $\lambda = -1$.

Correction de l'exercice 3

Une fonction f continue sur [a,b] est uniformément continue sur [a,b]. En particulier, pour tout $\varepsilon > 0$, il existe n > 0 tel que

$$|x-y| < \left(\frac{b-a}{n}\right) \Rightarrow |f(x)-f(y)| < \varepsilon.$$

Soit $\sigma = \{a_0 = a < \dots < a_n = b\}$ la subdivision régulière de [a,b], de pas $\left(\frac{b-a}{n}\right)$. On a :

$$\sup_{]a_{k-1},a_k[}f-\inf_{]a_{k-1},a_k[}f\leq 2\varepsilon.$$

Il vient alors:

$$\overline{S}_f^{\sigma} - \underline{S}_f^{\sigma} \le \left(\frac{b-a}{n}\right) \sum_{k=1}^n 2\varepsilon = (b-a)2\varepsilon,$$

ce qui permet de conclure grâce au théorème de l'introduction que f est Riemann-intégrable sur [a,b].

Correction de l'exercice 4

1. Considérons la fonction $f:[0,1]\to\mathbb{R}$ définie par :

$$f(x) = \begin{cases} 1 & \text{si} \quad x \in \mathbb{Q} \\ 0 & \text{si} \quad x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}.$$

Pour toute subdivision σ de [a,b], on a :

$$\overline{S}_f^{\sigma} = 1$$
 et $\underline{S}_f^{\sigma} = 0$.

On en déduit que $1 = \sup_{\sigma} \overline{S}_f^{\sigma} \neq \inf_{\sigma} \underline{S}_f^{\sigma} = 0$, ce qui implique que f n'est pas Riemann-intégrable sur [0,1].

2. Considérons la fonction $g:[0,1]\to\mathbb{R}$ définie par :

$$g(x) = \begin{cases} \frac{1}{q} & \text{si} \quad x = \frac{p}{q} \text{ avec } p \text{ et } q \text{ premiers entre eux} \\ 0 & \text{si} \quad x \in \mathbb{R} \setminus \mathbb{Q} \text{ ou } x = 0 \end{cases}$$

Pour toute subdivision σ de [a,b], on a :

$$\underline{S}_g^{\sigma} = 0$$

Pour tout $\varepsilon > 0$ donné, la fonction g prend des valeurs supérieures à $\frac{\varepsilon}{b-a}$ en un nombre fini de points seulement (les points $\frac{k}{q}$, avec $\frac{1}{q} > \frac{\varepsilon}{b-a}$ ce qui équivaut à $q < \frac{b-a}{\varepsilon}$). Notons x_i , $i = 1, \ldots, p$ ces points ordonnés par ordre (strictement) croissant.

Sur $[0,1] \setminus \{x_1,\ldots,x_p\}$ la fonction g prend des valeurs $\leq \varepsilon$ et ≥ 0 . Ainsi avec la subdivision $\sigma = \{x_1,\ldots,x_p\}$ nous obtenons :

$$0 \le \overline{S}_g^{\sigma} \le \frac{\varepsilon}{b-a}(b-a) = \varepsilon$$

Comme On en conclut que g est Riemann-intégrable sur [0,1].

Correction de l'exercice 5

cf André Gramain, Intégration, p. 7, Hermann (1998).

Correction de l'exercice 6 ▲

Pour tout $n \in \mathbb{N}$, on définit $f_n:]0,1] \to \mathbb{R}$ par : $f_n(x) = ne^{-nx}$. Pour tout $x \in]0,1]$, on a $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} ne^{-nx} = 0$. On en déduit que la suite de fonctions f_n converge ponctuellement (ou *simplement*) vers la fonction identiquement nulle $f \equiv 0$. On a $\int_0^1 f(x) dx = 0$ mais

$$\int_0^1 f_n(x) \, dx = 1 - e^{-n},$$

et $\lim_{n\to+\infty} \int_0^1 f_n(x) dx = 1$. La suite $(f_n)_{n\in\mathbb{R}}$ ne converge pas uniformément vers f sur]0,1], car pour tout $\varepsilon > 0$, et pour tout $n \in \mathbb{N}$, on a :

$$\sup_{]0,-\frac{1}{n}\log(\frac{\varepsilon}{n})[}|f_n(x)-f(x)|>\varepsilon.$$

Correction de l'exercice 7

Soit $f:[a,b]\to\mathbb{R}$ une fonction intégrable au sens de Riemann.

Notons $x_k = a + k \frac{b-a}{n}$, k = 1, ..., n les points où

Soit $a_0 = a$, $a_{n+1} = b$ et $a_k = a + \frac{2k+1}{2n}$ pour k = 1, ..., n.

Considérons la subdivision $\sigma = \{a_0 = a < \cdots < a_k < \cdots < a_n = b\}$ de [a,b]. Cette subdivision est presque régulière, seul le premier intervalle et le dernier ont des longueurs différentes. Pour $k = 1, \dots, n-1, x_k$ est le milieu de $[a_k, a_{k+1}]$.

Notons $m_k = \inf\{f(x), x \in]a_{k-1}, a_k[\}$ et $M_k = \sup\{f(x), x \in]a_{k-1}, a_k[\}$.

Donc pour k = 1, ..., n-1 on a $m_k \le f(x_k) \le M_k$. Mais il faut aussi tenir compte de $f(x_n) = f(b)$ et des premiers et derniers intervalles. D'où pour la minoration :

$$\underline{S}_{f}^{\sigma} = (m_{0} + m_{n}) \frac{b - a}{2n} + \frac{b - a}{n} \sum_{k=1}^{n} m_{k} \le (m_{0} + m_{n}) \frac{b - a}{2n} + \frac{b - a}{n} \sum_{k=1}^{n-1} f(x_{k}).$$

Cela donne

$$\underline{S}_f^{\sigma} - (m_0 + m_n + 2f(b)) \frac{b-a}{2n} \le \frac{b-a}{n} \sum_{k=1}^n f(x_k).$$

Quand n tend vers $+\infty$ on trouve que $\underline{S}_f^{\sigma} \to \int_a^b f$ et $(m_0 + m_n + 2f(b)) \frac{b-a}{2n} \to 0$ cela donne l'inégalité :

$$\int_{a}^{b} f \le \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} f(x_k).$$

La somme \overline{S}_f^σ conduit de manière similaire à l'inégalité inverse, d'où :

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \left(\frac{b-a}{n} \right) \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n} \right).$$

On a:

a)
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \tan \frac{k}{n} = -\log(\cos 1)$$
 b) $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2} = \frac{\pi}{4}$

c)
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \log \left(\frac{n}{n+k} \right)^{\frac{1}{n}} = -2 \ln 2 + 1.$$

Correction de l'exercice 8

1.

$$\int_{a}^{b} f(a+b-x)dx = -\int_{a}^{b} f(a+b-x)(a+b-x)'dx$$

$$= -\int_{\varphi(a)}^{\varphi(b)} f(t)dt = -\int_{b}^{a} f(t)dt = \int_{a}^{b} f(t)dt$$

où $\varphi:[a,b] \to [a,b]$, $\varphi(x) = a+b-x$ est une fonction de classe C^1 .

(2. a)

$$I := \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx = \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^{2}(\pi - x)} dx = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^{2} x} dx$$

$$= \pi \int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx - I$$

$$I = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx = -\frac{\pi}{2} \int_{0}^{\pi} \frac{(\cos x)'}{1 + \cos^{2} x} dx = -\frac{\pi}{2} \int_{\phi(0)}^{\phi(\pi)} \frac{1}{1 + t^{2}} dt$$
$$= -\frac{\pi}{2} \int_{1}^{-1} \frac{1}{1 + t^{2}} dt = \frac{\pi}{2} \int_{-1}^{1} \frac{1}{1 + t^{2}} dt = \frac{\pi^{2}}{4}.$$

où $\varphi:[0,\pi]\to[-1,1],\ \varphi(x)=\cos x$ est une fonction de classe C^1 .

$$J := \int_{0}^{\pi/4} \log(1 + \tan x) dx = \int_{0}^{\pi/4} \log\left(1 + \tan(\frac{\pi}{4} - x)\right) dx$$
$$= \int_{0}^{\pi/4} \log\left(1 + \frac{1 - \tan x}{1 + \tan x}\right) dx = \int_{0}^{\pi/4} \log\left(\frac{2}{1 + \tan x}\right) dx = \frac{\pi}{4} \log 2 - J$$

d'où la valeur de l'intégrale est $J = \frac{\pi}{8} \log 2$.