

问题1:一个人的智商由基因决定,还是环境

决定?

问题2: 什么是质量性状? 什么是数量性状?

问题3:数量性状遵循孟德尔遗传吗?

问题4:为什么婚姻法要禁止直系血亲、三代

以内的旁系血亲结婚?

同卵双胞胎【国家地理:子宫日记】

第4讲 数量性状遗传

本讲概要:

- I. 数量性状与多基因假说
- II. 数量性状的遗传分析
- III. 近交系数和近亲繁殖
- IV. 杂种优势

https://haokan.baidu.com/v?pd=wisenatural&vid=7569959792989121538, 数量性状的概念与遗传特点

https://haokan.baidu.com/v?pd=wisenatural&vid=13671301871617324615, 遗传率的估算

https://haokan.baidu.com/v?pd=wisenatural&vid=2525666728122168846, 近交与近交系数

1. 数量性状与多基因假说

Discontinuous distribution of shell color in the snail Cepaea nemoralus from a population in England.

◆ 质量性状(qualitative

character): 表现不连续变异的性状, 表型之间截然不同, 具有质的差别, 一般用文字描述。

- 如:植物花色、人体肤色、 籽粒饱满程度等;
- 在群体中质量性状呈间断分布;
- 质量性状的遗传可由孟德尔遗传定律进行分析

1. 多基因控制的小麦籽粒色遗传 —— Nilsson-Ehle

数量性状遗传等位基因数和基因型、表型的关系

等位基因 对的数目	分离的等 位基因数	F2中单一亲本性 状的表达比率	F2中的 基因型数	F2中的 表型数	F2各表型比为二 项式各项系数
1	2	(1/4)1=1/4	(3)1=3	3	(a+b) ²
2	4	(1/4) ² =1/16	(3)2=9	5	(a+b) ⁴
3	6	(1/4) ³ =1/64	(3)3=27	7	(a+b) ⁶
4	8	(1/4)4=1/256	(3)4=81	9	(a+b) ⁸
n	2n	(1/4) ⁿ	(3) ⁿ	2n+1	(a+b) ²ⁿ

2. 烟草花冠长度的遗传受 环境因素影响 —— E. M. East

观察了445株F2植株,未发现一 株表型与亲本相似。

请问,烟草花冠长度至少受几个基因控制?

渝

数量性状的多基因假说 (multiple factor hypothesis)

- 数量性状是多对等位基因共同作用的结果;
- 每一对基因对表型表现所产生的效应是微效的;
- 微效基因的效应相等或相近,而且可以相互累加(加性效应);
- 微效基因的等位基因之间显性不完全;
- 微效基因对环境敏感;
- 由于决定数量性状的基因数目多,每个基因作用小,再加上环境影响,所以数量性状在遗传因素和环境因素的共同作用下表现连续变异。

数量性状的遗传特点

- 两个纯合亲本杂交,F1的表现型一般呈现双亲的中间型;
- 基因型完全相同的纯合亲本和杂交F1代内部均存在 一定的性状变异;
- F2的表现平均值大体上与F1相近,但变异程度远远 超过F1;
- 决定数量性状的等位基因对数越多, F2代的性状变 异程度就越大;

3. 数量性状与质量性状的关系:

两者虽有不同,但往往不能截然区分,因为:

1) 区分性状的标准设定

Copyright @ 1997, by John Wiley & Sons, Inc. All rights reserved.

2) 亲本间相差基因对数不同:

尽管数量性状由多对基因决定,但如果两亲本就此性状只有一对基因的差别,就会表现为质量性状。

比如:水稻突变系 "万年青"、 高植株 (T₁T₁T₂T₂T₃T₃) X 矮植株 (t₁t₁T₂T₂T₃T₃) 杂交

3) 观察层次不同——阈值性状 (threshold trait)

指遗传由多基因决定,而表型是非连续性的一类性状。当变异积累超过一定水平时,性状出现。

例如: 人类的唇裂

表 5.2 唇裂	伴有或没有腭裂的		
亲属	受累亲属	相对于一般人群的发病率的倍数	
A1/14	的百分比/%		
一级亲属	- AUTASIA	THEY MEDICAL	
同胞	4.1	×40	
孩子	3.5	×35	
二级亲属		A THE REAL PROPERTY.	
姑,姨,舅,叔,伯	0.7	× 7	
侄子(女)和外甥(女)	0.8	× 8	
三级亲属			
堂(表)兄妹	0.3	× 3	

单卵 (MZ)和异卵 (DZ) 双生子间常见畸形和疾病的一致性

41,44	一致性/%			
性状	MZ	DZ		
唇裂±腭裂	40	4		
畸形足	30	2		
幽门狭窄	22	2		
先天性髋关节脱位	33	3		
精神分裂症	60	. 10		
胰岛素依赖型糖尿病	50	10		

■ 由遗传基础决定一个个体患病的风险称为易感性 (susceptibility)。 易感性=多基因的累加效应

溃传易患性

■ 而由遗传因素和环境因素共同作用并决定一个个体是否易患 某种遗传病的可能性则称为易患性(liability)。

易患性=易感性+环境因素

■ 由易患性决定的多基因病的发病限度称为阈值(threshold)。

11. 数量性状的遗传分析

1. 数量性状遗传分析中的统计学基本概念

总体 (population): 任何有限或无限个体(生物体)的集合; 样本 (sample): 由于总体无法全部观察,往往从总体中抽取有 限数目的个体进行观察或实验,这些个体组成的就是一个样本。

频率分布图 (frequency distribution): 将从样本获得的测量数据分为几个组(数值区间), 然后统计出现在各个组内的数据次数(频率),可绘制出样本的频率分布图。

Distribution of birth weight of babies (males + females) born to teenagers in Portland, Oregon, in 1992

https://haokan.baidu.com/v?pd=wisenatural&vid=136713018716 17324615, 遗传率的估算

正态分布变量有两种基本特征: 集中性和离散性

- 反映集中性的是平均数 (mean):某一变量观察值的平均,表示资料中观察值的中心位置。可作为一组观察值的代表与另一组资料进行比较,借以明确两者之间相差的程度。
- 反映<mark>离散性</mark>的是方差 (variance),反映一组资料的 变异程度(即分散程度)的统计 参数。

平均数
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

 \bar{r} \bar{r}

2. 遗传变异和遗传率

- ◆ 个体的表现型值(phenotypic value, P)是基因型值 (genotypic value, G)和环境效应(environment effect, E)的 总和: P = G + E
- ◆ 在数理统计分析中,通常采用方差度量某个性状的变异程度。因此,遗传群体的表现型方差 (phenotypic variance, V_P) 是基因型方差 (genotypic variance, V_C) 和环境方差 (environment variance, V_E) 的总和: $V_P = V_C + V_E$

广义遗传率 (heritability): 指遗传变异占总变异(表型变异)的 比率,用以度量遗传因素对性状形成的影响程度。公式为:

$$h^2 = \frac{V_G}{V_P} \times 100\% = \frac{V_G}{V_G + V_E} \times 100\%$$

例: 玉米果穗长度不同的两个品系进行杂交, F1的穗长介于两亲本之间, F2各 植株结的穗长度表现明显的连续变异(下表)。

长度 频率 世代	3	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	N	х	S	V
短穗亲本 No.60	4.	21	24	8		330.6									68008			57	6.632	0.816	0.666
长 穗 亲本 No.54									3	3	12	15	26	15	10	7	2	101	16.802	1.887	3.561
F1				Walley Market		12	12	14	17	9	4							69	12.116	1.519	2.307
F2			ji	10	19	26	47	73	68	68	39	25	15	9				401	12.888	2.252	5.072

$$\overline{x}_{p_1} = \frac{4 \times 5 + 21 \times 6 + 24 \times 7 + 8 \times 8}{4 + 21 + 24 + 8} = \frac{378}{57} = 6.632$$

$$V = \frac{4 \times 5^2 + 21 \times 6^2 + 24 \times 7^2 + 8 \times 8^2 - 378^2 / 57}{57 - 1} = \frac{37.263}{56} = 0.67$$

$$S = \sqrt{\frac{37.263}{56}} = 0.816$$

❖ 不分离世代如P₁、P₂、F₁等群体中的个体其基因型是一致的,无遗传上的变异,因此它们相应的各世代群体的遗传方差应等于0,其表型方差是由环境因素引起的,即有:

$$V_E = V_{P1} = V_{P2} = V_{F1} = 1/3 (V_{P1} + V_{P2} + V_{F1})$$

❖ 已知 $V_{P1} = 0.67$, $V_{P2} = 3.56$, $V_{F1} = 2.31$, $V_{F2} = 5.07$ 后,则:

$$V_E = \frac{1}{3} \left(V_{P_1} + V_{P_2} + V_{F_1} \right) = \frac{1}{3} \left(0.67 + 3.56 + 2.31 \right) = 2.18$$

$$h^2 = \frac{V_{F_2} - V_E}{V_{F_2}} = \frac{5.07 - 2.18}{5.07} = 57\%$$

对遗传率的说明:

- ◆ 遗传率是一个统计学概念,是针对群体,而不是用于个体;
- ◆ 遗传率可作为杂种后代性状选择的指标。遗传率高的性状, 选择较易;遗传率低,选择较难。通常认为遗传率;
 - >50%**→**高; =20~50%**→**中; <20%**→**低。
- ◆ 影响遗传率估值的主要因素:
 - ① 同一群体在两个不同环境中,可能有不同的遗传率估值。(基因型与环境的互作因素)
 - ② 小样本数据

3. 数量性状与选择

W.Johannsen 的菜豆 (Phaseolus vulgaris) 试验

年份	所选用的表 均重量(原	亲代种子平 重克)	所得子代种子的平均 重量(厘克)				
	轻的种子	重的种子	来自轻的种子	来自重的种子			
第一年	30	40	36	35			
第二年	25	42	40	41			
第三年	31	43	31	33			
第四年	27	39	33	39			
第五年	30	46	38	40			
第六年	24	47	37	37			

结论:

在基因型一致的纯系内,其变异只是环境影响的结果,是不遗传的,所以在纯系内选择是无效的;

Enfield对于面粉甲虫体型大小的人工选择 世代数 频率

5000

80 100 120

5500

比较面粉甲虫的大小。小的甲虫来自实验室的 准原种。大的甲虫则显示了经过120代增大体型的选择所得 结果。

2000

(b)

▲ 2500

3000

3500

4000

4500

选择世代数蛹重/mg

4. 人类多基因遗传性状的遗传率

人类若干数量性状的遗传力

性状	遗传力	性状	遗传力
身材	0.81	理科天赋	0.34
坐高	0.76	数学天赋	0.12
体重	0.78	文史天赋	0.45
口才	0.68	拼写能力	0.53
IQ(Binet)	0.68	先天性幽门狭窄	0.75
IQ(Otis)	0.80	精神分裂症	0.80
唇裂	0.76	糖尿病	0.75
高血压	0.62	冠状动脉病	0.65

回归 (regression): 数量性状的遗传过程中子代将向群

体的平均值靠拢。

向平均值回归是一 种保持稳定性的现 象,它使得某给定 物种代际之间大致 相同。

III. 近亲繁殖与近交系数

1.近交的遗传学效应

近交 (inbreeding) : 有亲缘 关系的个体间杂交。

亲缘关系由近到远交配方式:

自交(自花授粉或自体受精)

↓
回交(父女或母子)

↓
全同胞交配(同父母兄妹)

↓
半同胞交配(同父或同母兄妹)

https://haokan.baidu.com/v?pd=wisenatural&vid=2525666728 122168846, 近交与近交系数

图 5.9 有近交效应的一个家系。所有对一个隐性等位基因纯合的白化病个体,都来自近亲婚配。

近交的遗传学效应:

- ① 群体的遗传组成趋于纯合化;
- ② 隐性性状因纯合化而得以表现;

近亲结婚的危害

主要表现为隐性遗传病纯合子患者的频率增高。

例如:某隐性致病基因 a 在群体中的基因频率为q,

- 1)通过随机婚配生育患病子女的概率为: $aa = q^2$;
- 2)通过表兄妹结婚生育患病子女的概率:
 - 由共同祖先而来;

$$F = 1/16$$
 $a = q$ $aa = Fq = (1/16)q$

② 由不同祖先分别而来。

表兄妹婚配和随机婚配出生 aa 的频率

基因频率	随机婚配aa	表亲婚配aa	两者之比
(q)	(q^2)	(q2+pq/16)	
0.2	0.04	0.05	1.25
0.10	0.01	0.15625	1.56
0.04	0.0016	0.004	2.5
0.02	0.0004	0.001625	4.06
0.01	0.0001	0.000719	7.19
0.001	0.000001	0.0000635	63.5

植物如何防止"近亲婚配"?

回交的遗传学效应

在回交过程中,一个杂合子与其轮回亲本回交一次,可使后代增加轮回亲本1/2基因组成,多次连续回交,其后代将基本上回复为轮回亲本的基因组成。

课堂思考:

- 1.假如基因型为AaBb的亲本连续回交基因型为aaBB的亲本, 经许多世代后,后代的基因型有哪些种类?
- 2. 假如基因型为AaBb的亲本连续自交,经许多世代,后代的基因型有哪些种类?

2. 近交系数与亲缘系数

- 近交系数(coefficient of inbreeding, F): 一个个体从其某一祖 先得到一对<u>纯合的、且遗传上等同</u>的基因的频率。
- 亲缘系数(coefficient of relationship, R): 两个个体亲缘程度的 度量值。亲缘系数越大,亲缘关系越近。

亲缘系数 = 近交系数 x 2

堂(表)兄妹

性染色体基因的近交系数(伴X染色体)

- 女性XX,可形成纯合子,男性XY,不存在纯合的问题。 因此,伴X遗传中近亲婚配对男性无影响,只算女性的近交 系数。
- 从遗传特点来看:男性→女儿,概率为1;男性→儿子,概率为0;女性传递给后代的概率都是1/2。

性染色体基因的近交系数 (姨表亲)

性染色体基因的近交系数 (姑表亲)

V. 杂种优势与遗传理论

杂种优势(heterosis/hybrid vigor):是生物界的普遍现象,指两个遗传组成不同的亲本的杂种第一代,在生长势、繁殖力、抗逆性、产量和品质上比其双亲优越的现象。

杂种优势大小取决于:

- 双亲间相对差异和双亲性状互补性
- 双亲基因型的高度纯合有密切关系
- 环境条件具有密切关系

https://v.qq.com/x/page/r0815xvmxz3.html?sf=uri

杂种一定是优势的吗?

杂种优势的遗传理论

1.显性基因假说

◆显性基因互补假说

★多数显性基因比隐性基因更有利于个体的生长和发育,不同纯系(自交系)杂交,双亲的显性基因全部聚集在杂种中产生互补作用,从而导致杂种优势。

★例如: 豌豆株高主要受两基因控制,其中一对基因控制节间长度(长对短为显性L/I),另一对基因控制节数(多对少为显性M/m)。杂种既表现为节间长,又表现为节间数目多,因而株高高于双亲,表现杂种优势。

https://haokan.baidu.com/v?pd=wisenatural&vid=4486266364378665794

超显性假说也称等位基因异质结合假说(shull&East, 1908)

◆超显性假说认为:等位基因间没有显隐性关系;双亲基因 异质结合,等位基因间互作大于纯合基因型的作用。

★设 a_1/a_2 为一对等位基因, a_1 控制代谢功能A, a_2 控制代谢功能B。(1). a_1a_1 具有A功能,设其作用为10个单位;(2). a_2a_2 具有B功能,设其作用为4个单位;(3).杂合体 a_1a_2 具有A、B两种代谢功能,可产生10个以上单位作用,超过最优亲本,即: $a_1a_2>a_1a_1$; $a_1a_2>a_2a_2$ 。

◆上述假说得到了许多试验资料的支持,同时也能够从生物化学和生化遗传水平得到一些支持。但是它否认等位基因间的显隐性关系,忽视了显性基因的作用。

◆两者的相似之处:

- ★都立论于杂种优势来源于双亲基因间的相互关系,也就 是说双亲间基因型的差异对杂种优势起着决定性作用。
- ★都没有考虑到非等位基因间的相互作用(上位性作用)。
- ◆两者的不同之处:
 - ★显性假说认为杂种优势是由于双亲显性基因间互补;
 - ★超显性假说认为杂种优势是由于双亲等位基因间互作。
- □事实上,生物种类是多种多样的,同种生物性状遗传控制 也是多种多样的,因而生物的杂种优势可能是由于上述的某 一个或几个遗传因素共同造成的