

Universidade Federal de Uberlândia

FEELT – FACULDADE DE ENGENHARIA ELÉTRICA GRADUAÇÃO EM ENGENHARIA BIOMÉDICA

FEELT31903 - Instrumentação Biomédica II

Prof. Alcimar S. Barbosa e Prof. Sérgio R. J. Oliveira

Laboratório - Microbalança

Leandra Lima de Almada	11911EBI010
Lucas Martins Primo	12021EBI022
Maria Eduarda S. de Souza	11921EBI024
Nathália Maria S. Peña	11921EBI006
Raul Nicolini Rodrigues	12011EBI027
Renato S. S. Filho	12021EBI009

1. ESQUEMA ELETRÔNICO

1 ESP32 ESP32 D22 TX0 RX0 D21 D19 D18 U1 SN74LS14N GND D33 D5 TX2 RX2 D4 D2 D15 13 12 11 10 CRISTAL 20 MHz R1 3Y GND DIODO ZENER C1 0.3n D1 GND ESP32-DEVKITV1_ESP32-DEVKITV1

Figura 1: esquema eletrônico do hardware desenvolvido

Fonte: autoria própria

2. SOFTWARE DESENVOLVIDO

Figura 2: primeira parte do código desenvolvido

```
#include "driver/pcnt.h"
     #include "esp_timer.h"
     #define SIGNAL_PIN 15 // Pino de entrada para o sinal da balança
     #define PCNT_UNIT PCNT_UNIT_0
     esp_timer_handle_t timer_handle;
9
     int16_t pulse_count = 0;
10
     void timer_callback(void* arg) {
   pcnt_get_counter_value(PCNT_UNIT, &pulse_count);
11
12
13
       pcnt_counter_clear(PCNT_UNIT);
14
15
     void setup() {
16
17
       Serial.begin(115200);
18
19
       pcnt_config_t pcnt_config;
       pcnt_config.pulse_gpio_num = SIGNAL_PIN;
20
       pcnt_config.ctrl_gpio_num = PIN;
21
       pcnt_config.channel = PCNT_CHANNEL_1;
22
23
       pcnt_config.unit = PCNT_UNIT;
24
       pcnt_config.pos_mode = PCNT_COUNT_INC;
25
```

Fonte: autoria própria

Figura 3: segunda parte do código desenvolvido

```
pcnt_config.neg_mode = PCNT_COUNT_DIS;
pcnt_config.lctrl_mode = PCNT_MODE_KEEP;
pcnt_config.hctrl_mode = PCNT_MODE_KEEP;
pcnt_config.counter_h_lim = 100000;
pcnt_config.counter_l_lim = 0;
28
29
30
31
32
             pcnt_unit_config(&pcnt_config);
33
             pcnt_counter_pause(PCNT_UNIT);
            pcnt_counter_clear(PCNT_UNIT);
pcnt_counter_resume(PCNT_UNIT);
36
37
             const esp_timer_create_args_t timer_args = {
   .callback = &timer_callback,
   .name = "frequency_timer"
38
39
40
41
            esp_timer_create(&timer_args, &timer_handle);
esp_timer_start_periodic(timer_handle, 1000);
42
43
44
         void loop() [ | // Calcula a frequência
45
46
             unsigned long long int frequency = pulse_count*1000 ;
Serial.print("Frequência: ");
47
             Serial.print(frequency);
             Serial.println(" Hz");
```

Fonte: autoria própria

3. FOTOS DA MONTAGEM

Figura 4: circuito montado

Fonte: autoria própria

Figura 5: circuito montado

Fonte: autoria própria

Figura 6: circuito montado

Fonte: autoria própria

4. VÍDEOS DO FUNCIONAMENTO DO CIRCUITO

Link de acesso aos vídeos:

https://drive.google.com/drive/folders/1J9rLekxxQKNyNY03rYXWH1l5tjgBPgdn?usp=drive_link