STATS 217: Introduction to Stochastic Processes I

Lecture 10

Recurrence and transience

Let $(X_n)_{n\geq 0}$ be a DTMC on S.

- $s \in S$ is a recurrent state if $f_s = 1$.
- $s \in S$ is a transient state if $f_s < 1$.
- By the formula

$$\mathbb{E}[N(s) \mid X_0 = s] = \frac{f_s}{1 - f_s},$$

we see that

- f_s is recurrent $\iff \mathbb{E}[N(s) \mid X_0 = s] = \infty$.
- f_s if transient $\iff \mathbb{E}[N(s) \mid X_0 = s] < \infty$.

Accessibility

Recall that for any $A \subset S$, $a \in S$

$$\tau_{A,a} = \min\{n \geq 1 : X_n \in A \mid X_0 = a\}.$$

For $a, b \in S$, we let

$$f_{a \to b} = \mathbb{P}[\tau_{\{b\},a} < \infty].$$

- For $a, b \in S$, we say that b is **accessible** from a, denoted by $a \to b$, if at least one of the following holds: (i) a = b, (ii) $f_{a \to b} > 0$.
- Note that

$$a \to b \iff p_{a,b}^n > 0 \text{ for some } n \ge 0.$$

Communication

Let $a, b \in S$, we say that a and b **communicate**, denoted by $a \leftrightarrow b$, if $a \rightarrow b$ and $b \rightarrow a$.

Observe that communication is an equivalence relation i.e.,

- Reflexive: $a \leftrightarrow a$ for all $a \in S$.
- Symmetric: $a \leftrightarrow b \implies b \leftrightarrow a$ for all $a, b \in S$.
- Transitive: $a \leftrightarrow b$ and $b \leftrightarrow c \implies a \leftrightarrow c$ for all $a, b, c \in S$.

Therefore, we can partition S into (maximal) communicating classes i.e.

$$S = S_1 \cup \cdots \cup S_k$$
, such that

- S_1, \ldots, S_k are disjoint.
- $a \leftrightarrow b$ for all $a, b \in S_i$, for all $i = 1, \dots, k$.
- $a \nleftrightarrow b$ for all $a \in S_i$, $b \in S_i$, $i \neq j$.

Class properties

Let $S = S_1 \cup \cdots \cup S_k$ denote the decomposition of S into (maximal) communicating classes.

- We say that a property is a **class property** if for every i = 1, ..., k, either all $s \in S_i$ have the property or no $s \in S_i$ have the property.
- We will now show that recurrence is a class property.
- Note that this just means that if a is recurrent and $a \leftrightarrow b$, then b is recurrent.
- In fact, we will show something more, namely that

a is recurrent, and $a \rightarrow b \implies b$ is recurrent, and $b \rightarrow a$.

Accessibility and recurrence

We want to show that

a is recurrent and $a \rightarrow b \implies b$ is recurrent and $b \rightarrow a$.

Why is this true? Intuitively,

- a being recurrent means that a returns to itself with probability 1. $a \rightarrow b$ means that there is a positive probability of going from a to b. If it were the case that $b \not \rightarrow a$, then once we get to b, we have no way of getting back to a, contradicting recurrence.
- Now, to see the recurrence of b, since we visit a infinitely many times in expectation and since there is a positive probability of going from a to b and of going from b to a, we also visit b infinitely many times in expectation.

Accessibility and recurrence

Formally, we have the inclusion of events

$$\{N(a) < \infty \mid X_0 = a\} \supseteq \{X_n \text{ visits } b \text{ and never returns to } a \mid X_0 = a\}.$$

Taking probabilities, we have

$$0 = \mathbb{P}[N(a) < \infty \mid X_0 = a]$$

$$\geq f_{a \to b} \cdot (1 - f_{b \to a}).$$

Since $f_{a o b} > 0$ by assumption, we must have $f_{b o a} = 1$, so in particular, b o a.

Accessibility and recurrence

- Let us now show that b is recurrent.
- Since $f_{a\to b}>0$, $f_{b\to a}>0$, we must have $p_{a,b}^m>0$ and $p_{b,a}^{m'}>0$ for some m,m'>0.
- Note that for all $n \ge 0$

$$\mathbb{P}[X_{n+m+m'} = b \mid X_0 = b] \ge p_{b,a}^{m'} \cdot p_{a,a}^n \cdot p_{a,b}^m.$$

• Summing this over all n, we have

$$\sum_{n=0}^{\infty} \mathbb{P}[X_{n+m+m'=b} \mid X_0 = b] \ge p_{b,a}^{m'} \cdot p_{a,b}^{m} \cdot \sum_{n=0}^{\infty} p^{n}(a,a).$$

• The RHS is infinite since a is recurrent and $p_{a,b}^m > 0$, $p_{b,a}^{m'} > 0$, which shows that the expected number of returns to b is infinite, and hence b is recurrent.

Decomposition of the state space

Let $S = S_1 \cup \cdots \cup S_k$ be the decomposition of the state space into communicating classes.

- By what we saw, for i = 1, ..., k, either all states in S_i are recurrent or all states in S_i are transient.
- We can say a bit more. Since

a is recurrent, and
$$a \rightarrow b \implies b$$
 is recurrent, and $b \rightarrow a$,

it follows that

$$a \rightarrow b$$
 and $b \not\rightarrow a \implies a$ is transient.

• We say that $A \subseteq S$ is **closed** if for all $a \in A$ and for all $b \in S \setminus A$, $a \not\to b$. In words, once we enter A, we do not exit A.

Decomposition of the state space

- Let $S = S'_1 \cup \cdots \cup S'_k \cup S_1 \cup \ldots S_\ell$ be a decomposition of the state space where S'_i are the transient communicating classes S_j are the recurrent communicating classes.
- It must be the case that S_1, \ldots, S_ℓ are closed.
- Indeed, suppose S_i is not closed. Then, there must exist some $b \in S \setminus S_i$ such that $a \to b$. Since S_i is a maximal communicating class and $b \notin S_i$, we must have $b \not\to a$. But

$$a \rightarrow b$$
 and $b \not\rightarrow a \implies a$ is transient,

a contradiction.

Decomposition of the state space

- Also, it must be the case that S'_1, \ldots, S'_k are not closed.
- Indeed, suppose that S'_i is closed. Fix $a \in S'_i$ and note that

$$\sum_{b \in S_i'} \mathbb{E}[N_{\delta_a}(b)] = \mathbb{E}\left[\sum_{b \in S_i'} N_{\delta_a}(b)\right] = \infty.$$

• Therefore, there must exist some $b \in S_i'$ such that $\mathbb{E}[N_{\delta_a}(b)] = \infty$ and the same geometric random variable argument as before shows that $f_{b \to b} = 1$, which contradicts that b is transient.

Summary

Let $(X_n)_{n\geq 0}$ be a DTMC on a finite state space S. Then,

$$S = S'_1 \cup \cdots \cup S'_k \cup C_1 \cup \ldots C_\ell$$
, where

- Each S'_i , C_i is a communicating class.
- $S'_1, \ldots, S'_k, C_1, \ldots, C_\ell$ are disjoint.
- S'_1, \ldots, S'_k are not closed and all states in $S'_1 \cup \cdots \cup S'_k$ are transient.
- Each C_i is closed and recurrent.
- $S'_1 \cup \cdots \cup S'_k \neq S$.

To see the last point, note that for any starting distribution μ_0 ,

$$\sum_{a\in S}\mathbb{E}[N_{\mu_0}(a)]=\mathbb{E}\left[\sum_{a\in S}N_{\mu_0}(a)\right]=\infty,$$

so that there must exist some $a \in S$ for which $\mathbb{E}[N_{\mu_0}(a)] = \infty$, and now the geometric random variable argument shows that $f_{a \to a} = 1$.

Lecture 10 STATS 217 12 / 12