COMP 3721 Introduction to Data Communications

06a - Week 6 - Part 1

Learning Outcomes

- By the end of this lecture, you will be able to
 - Explain what is bandwidth utilization.
 - Explain what is multiplexing.
 - Explain multiplexing techniques in physical layer.

Bandwidth Utilization

- Bandwidth utilization is the wise use of available bandwidth.
 - We have links with limited bandwidths in real life!
- Two broad categories:
 - One technique is called "multiplexing".
 - Goal: efficiency
 - We combine several channels into one.
 - Other technique is called "spectrum spreading".
 - Goal: privacy
 - We do not discuss this technique in this class.

What is Multiplexing?

- Whenever the bandwidth of a medium linking two devices is greater than the bandwidth needs of the devices, the link can be shared.
 - High-bandwidth media such as optical fiber has a bandwidth far in excess of that needed for the average transmission signal.
- Multiplexing is the set of techniques that allow the simultaneous transmission of multiple signals across a single data link
- Easy definition: Combining several channels into one.

What is Multiplexing?

Link refers to the physical path.

Channel refers to the portion of a link.

Multiplexing Techniques

Frequency-Division Multiplexing (FDM)

Wavelength-Division Multiplexing (WDM)

Time-Division Multiplexing (TDM)

Multiplexing Techniques

Frequency-Division Multiplexing (FDM)

- An analog multiplexing technique.
- Analog signals generated by each sending device modulate different carrier frequencies.
 - The modulated signals are combined into a single composite signal that can be transported by the link.
- Guard bands
 - Strips of unused bandwidth that separate channels from each other.
 - To prevent signals from overlapping and interference.
- FDM can be used when the bandwidth of a link (in hertz) is greater than the combined bandwidths of the signals to be transmitted.

Frequency Division Multiplexing

A Conceptual View of FDM

• Each channel corresponds to a specific carrier frequency allocated to an individual signal source

FDM Process and Demultiplexing Process

Applications of FDM

- Telephone companies
- AM and FM radio broadcasting
- Television broadcasting

• ...

Applications of FDM – Example

- Assume that a voice channel occupies a bandwidth of 4 kHz. We need to combine three voice channels into a link with a bandwidth of 12 kHz, from 20 to 32 kHz. Show the configuration, using the frequency domain.
- Assume there are no guard bands.

Applications of FDM – Example Solution

FDM Implementation

- In many cases, no need for a physical multiplexer/demultiplexer. E.g.:
 - In radio and TV broadcasting, stations agree to send their broadcasts to the air using different carrier frequencies.
 - In case of cellular telephone systems, a base station assigns a carrier frequency to the telephone user (when the user hangs up, her/his bandwidth is assigned to another user).

Wavelength-Division Multiplexing

- An analog multiplexing technique to combine optical signals.
- Due to the high data rate of a fiber-optic cable, using it for a single line wastes the available bandwidth.
- WDM vs FDM
 - Similarity: Both combine different signals of different frequencies.
 - Difference: In WDM, the multiplexing/demultiplexing involve optical signals transmitted through fiber-optic channels and the frequencies are very high.
 - The combining and splitting of light sources are easily handled by a prism.

Types of Electromagnetic Radiation

© Encyclopædia Britannica, Inc.

THE ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC WAVES

THE VISIBLE SPECTRUM

Wavelength-Division Multiplexing

Time-Division Multiplexing

- A digital multiplexing technique that allows several digital signals to share the high bandwidth of a link in time.
 - Each connection occupies a portion of time in the link.
 - TDM is a digital multiplexing technique for combining several low-rate channels into a high-rate one.
- Instead of sharing a portion of the bandwidth as in FDM, time is shared.

Time-Division Multiplexing (Cont.)

• Is it possible to use TDM for analog signal? How?

Time-Division Multiplexing (Cont.)

- Is it possible to use TDM for analog signal? How?
 - An analog signal can be sampled, changed to digital data, and then multiplexed by using TDM.

Time-Division Multiplexing (Cont.)

- In TDM, the data flow of each input connection is divided into units.
- A unit can be 1 bit, one character, or one block of data.
- A round of data units from each input connection is collected into a frame.
- If we have n connections, a frame is divided into n timeslots, and one slot is allocated for each unit.
- If the duration of the input unit is *T*, the duration of each frame is *T*, and the duration of each slot is *T*/*n*.

Synchronous TDM

The data rate of the output link must be *n* times the data rate of a connection to guarantee the flow of data.

Synchronous TDM

The data flow of each input connection is divided into units (e.g., A1, A2, ...), where each unit occupies one input time slot (with duration T).

Synchronous TDM

Each input unit becomes one output unit. However, the duration of an output time slot is n times shorter than the duration of an input time slot (n is the number of connections). Here, n = 3.

Synchronous TDM (Cont.)

• In synchronous TDM, the data rate of the link is *n* times faster, and the unit duration is *n* times shorter.

Synchronous TDM (Cont.)

- In synchronous TDM, the data rate of the link is n times faster, and the unit duration is n times shorter.
- In a system with *n* input lines, each frame has *n* slots, with each slot allocated to carrying data from a specific input line.

Synchronous TDM (Cont.)

- In synchronous TDM, the data rate of the link is n times faster, and the unit duration is n times shorter.
- In a system with *n* input lines, each frame has *n* slots, with each slot allocated to carrying data from a specific input line.
- The duration of a frame is the same as the duration of an input unit.
 The frame rate is always the same as any input rate.

Synchronous TDM – Example

- Bit rate: 1 Mbps
- Bit duration = $1/(Bit rate) = 1 \mu s$
- Bit rate: 4 Mbps
- Bit duration = $0.25 \mu s$
- 1 Mbps input rate
 → 1,000,000 frames/s

Synchronous TDM – Efficiency and Empty Slots

• Synchronous TDM is not efficient. Why?

Synchronous TDM – Efficiency and Empty Slots

- Synchronous TDM is not efficient. Why?
 - If a source does not have data to send, the corresponding slot in the output frame is empty.
 - Statistical TDM can improve the efficiency by removing the empty slots from the frame.

Synchronous TDM – Data Rate Management

- How to handle a disparity in the input data rates?
- Three strategies, or a combination of them, can be used:
 - 1. Multilevel multiplexing
 - 2. Multiple-slot allocation
 - 3. Pulse stuffing

Multilevel Multiplexing

• It is a technique used when the data rate of an input line is a multiple of others.

- 20 kbps ———
- 20 kbps ———
- 40 kbps _____
- 40 kbps ———
- 40 kbps _____

Multilevel Multiplexing

• It is a technique used when the data rate of an input line is a multiple of others.

Multiple-Slot Allocation

- Allocating more than one slot in a frame to a single input line.
 - When an input line has multiple rates of the others.

50 kbps —

25 kbps —

25 kbps —

25 kbps —

Multiple-Slot Allocation

- Allocating more than one slot in a frame to a single input line.
 - When an input line has multiple rates of the others.

Pulse Stuffing

- Pulse stuffing or bit padding or bit stuffing
 - Used when the bit rates of sources are not integer multiples of each other.
 - Makes the highest input data rate the dominant data rate and then adds dummy bits to the input lines with lower rates → their rates are increased.

50 kbps ———

50 kbps ———

46 kbps ———

Pulse Stuffing

- Pulse stuffing or bit padding or bit stuffing
 - Used when the bit rates of sources are not integer multiples of each other.
 - Makes the highest input data rate the dominant data rate and then adds dummy bits to the input lines with lower rates

 their rates are increased.

Synchronous TDM – Frame Synchronizing

• Synchronization between the multiplexer and demultiplexer is a major issue (to maintain the integrity of the frames exchange between source and destination).

Framing bits

 One or more synchronization bits that are usually added to the beginning of each frame.

• Follow a pattern (e.g., 101...) frame to frame \rightarrow Allow the demultiplexer to synchronize with the incoming stream so that it can separate the time slots accurately.

Example 1

• Five channels, each with a 100-kHz bandwidth, are to be multiplexed together. What is the minimum bandwidth of the link if there is a need for a guard band of 10 kHz between the channels to prevent interference?

Example 1 – Answer

• Five channels, each with a 100-kHz bandwidth, are to be multiplexed together. What is the minimum bandwidth of the link if there is a need for a guard band of 10 kHz between the channels to prevent interference?

- 5 channels \rightarrow at least 4 guard bands
- The minimum bandwidth = $(5 \times 100 \text{khz}) + (4 \times 10 \text{khz}) = 540 \text{ kHz}$

Example 2

- A multiplexer combines four 100 kbps channels using a time slot of 2 bits.
 - 1. What is the frame rate?
 - 2. What is the frame duration?
 - 3. What is the bit rate of the shared channel?
 - 4. What is the bit duration?

Example 2 – Answer

- 1. Frame rate = input unit rate = 100 kbps / 2 = 50,000 frames per second
- 2. Frame duration = $1/50,000 \text{ s} = 20 \mu \text{s}$
- 3. Bit rate = $4 \times 100 \text{ kbps}$ = 400 kbps
- 4. Bit duration = 1/400 kbps = $2.5 \mu s$
- Note that the frame duration is 8 times the bit duration because each frame is carrying 8 bits.

Summary

- Bandwidth utilization
- Multiplexing → Efficiency
- Multiplexing techniques: FDM, WDM, and TDM

References

[1] Behrouz A.Forouzan, Data Communications & Networking with TCP/IP Protocol Suite, 6th Ed, 2022, McGraw-Hill companies.

Reading

- Chapter 2 of the textbook, section 2.5
- Chapter 2 of the textbook, section 2.8 (Practice Test)