Reg. No.:

Name:

Mid-Term Examinations - March 2022

Programme	:	B.Tech. [BCE, MIP,MIM]	Semester	:	Winter 2021-22
Course	:	Applied Linear Algebra	Code	:	MAT3002
Faculty	:	Dr.A.Manickam	Slot/ Class No.	:	A21+A22/ 0626
Time	:	1 ½ hours	Max. Marks	:	50

Answer all the Questions

 $Q.No. \quad \begin{array}{c} Sub. \\ Sec. \end{array} \qquad \qquad Question \ Description \qquad \qquad Marks \\ \end{array}$

The upward velocity of a rocket is given at three different times on the following table. Velocity vs. time data for a rocket

Time, t	Velocity, v			
(s)	(m/s)			
4	100			
6	150			
10	200			

10

The velocity data is approximated by a polynomial as

$$v(t) = at^2 + bt + c$$
, $4 \le t \le 10$.

Set up the equations in matrix form and find the coefficients a,b,c of the velocity profile by LDU Factorization method.

2 (a) Computing the A^{-1} by using Gauss Jordan Elimination

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$$

5

(b) Determine the currents I_1 , I_2 , I_3 in the following network:

Node A: $i_1 = i_2 + i_3$ Node B: $i_2 + i_3 = i_1$

Determine whether (1,1,1,1), (1,2,3,2), (2,5,6,4), (2,6,8,5) form a basis of \mathbb{R}^4 . If not, find the dimension of the subspace they span.

10

5

- 4 Let $B = \{u_1, u_2\} = \{\begin{bmatrix} -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix}\}$ and $C = \{v_1, v_2\} = \{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\}$ are bases of \mathbb{R}^2 . Using these bases, find $[x]_C$, given that $[x]_B = [1,4]^T$.
- a)Show that the function $T(v_1, v_2) = (v_1 v_2, v_1 + 2v_2)$ is a linear transformation from R^2 into R^2 . (b)For any vector $\mathbf{v} = (v_1, v_2)$ in R^2 , and let $T: R^2 \rightarrow R^2$ be defined by $T(v_1, v_2) = (6v_1 - v_2, 8v_1 + 2v_2)$ Find the image of $\mathbf{v} = (-1, 1)$ also Find the preimage of $\mathbf{w} = (-2, 14)$

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$