Integrating Rational Function by Partial Fraction

Anton's Calculus 10th Ed

De compositions

$$\binom{9}{(x-3)(x+4)} = \frac{A}{x-3} + \frac{B}{x+4} - \frac{Ax^{\circ}}{x-3} + \frac{Bx^{\circ}}{x+4}$$

$$\frac{2x-3}{2x^3-x^2} = \frac{2x-3}{2x^2-1} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}$$

$$\chi^{2} = \chi_{1} \chi^{2}_{1} \chi^{3}_{1} \chi^{4}_{1} \chi^{5}_{2} \chi^{5}_{1} \chi^{5}_{1} \chi^{5}_{1} \chi^{5}_{2} \chi^{5}_{2}$$

(1)
$$\frac{1-\chi^2}{\chi^3(\chi^2+2)} = \frac{A}{\chi} + \frac{B}{\chi^2} + \frac{C}{\chi^3} + \frac{D\chi + E}{\chi^2 + 2}$$

$$(\sqrt{1}) \frac{3x}{(x-1)(x^2+6)} = \frac{A}{x-1} + \frac{Bx+1}{x^2+6}$$

$$\frac{An^2+Bn+C}{x^3+2}$$

$$(x^2+5)^2=(x^2+5)^2=(x^2+5)^2$$

$$\left(\sqrt{100} \right) \frac{1 - 3x^4}{(x-2)(x^2+1)^2} = \frac{A}{x-2} + \frac{Bx+E}{(x^2+1)} + \frac{Dx+E}{(x^2+1)^2}$$

(a)
$$\frac{A \pi^2 + 8\pi + C}{\chi^3 + 3} = \frac{A \pi^2 + 8\pi + C}{\chi^3 + 3}$$

b)
$$\frac{1}{\chi^2+3} = \frac{A\chi+9}{\chi^2+3}$$

c)
$$\frac{A}{\chi + 3} = \frac{A}{\chi + 3}$$

Improper Integrals fraction $\int \frac{\chi^3}{\chi^2 + 2} d\chi, \int \frac{\chi^2}{\chi^2 + 2} d\chi$ w J 2 dr proper $\int_{0}^{\infty} \left[3x^{2} + 1 + \frac{1}{x^{2} + x - 2} \right] dx$ $\frac{1}{x^2 + x - 2} = \frac{1}{(x+1)(x-2)}$ $= \frac{3x^3}{3} + x + \int \frac{1}{x^2 + x - 2} dx$ $= \chi^3 + \chi + \int \left(\frac{A}{\chi + 1} + \frac{B}{\chi - 2} \right) d\chi$ Equating factor of Like terms

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20] $= \chi^3 + \chi + \frac{1}{3} \int \left(\frac{1}{\chi + 1} - \frac{1}{\chi - 2} \right) dx$ $=x^3+x+\frac{1}{3}[m|x+1]-ln|x-2]+c$ A= = 3 , B=-1/3 = x3+x+ 13 /1 | x+1 | + C

10th Ed. Anton's Calculus pg 521 $\frac{12\pi - 22}{(\chi - 2)^2} = \frac{A}{(\pi - 2)} + \frac{13}{(\pi - 2)^2}$ 372-10 712-471+4 12x-22 ₹x2-4x+4 $2^{2}-42+4)\frac{3x^{2}+0x-10}{3x^{2}-12x+12}$ $=\frac{12\pi-22}{(\chi-2)^2}$ $= A(\pi-2) + B = A x - 2A + B$ Equating factors of like terms: $\begin{cases}
-22 = -2A + B \\
-22 = -2(12) + B
\end{cases}$ $\begin{cases}
B = -22 + 24 = 2
\end{cases}$ 3+-122-42+4 Now $\int \left(3 + \frac{12x - 22}{x^2 - 4x + 4}\right) dx$ $S = 3x + 12 \ln |x-2| + 2 (x-2)^{-2+1} + C$ $=3x+\int\left(\frac{A}{(n-2)}+\frac{B}{(n-2)^2}\right)dx$ $= 3x + \int \left(\frac{12}{x-2} + \frac{2}{(x-2)^2} \right) dx$ = $3x+12 \ln |x-2| - \frac{2}{x-2} + C$ $\frac{2x^{2}-1}{(4x-1)(x^{2}+1)} = \frac{A}{4x-1} + \frac{Bx+C}{x^{2}+1}$ (29) $\int \frac{2x^2-1}{(4x-1)(x^2+1)} dx$ $\frac{2x^{2}-1}{(4x-1)(x^{2}+1)} = \frac{A(x^{2}+1)+(Bx+C)(4x-1)}{(4x-1)(x^{2}+1)}$ = \ \ \frac{A}{4a-1} + \frac{Ba+C}{2a^2+1} dx 222-1 = A(22+1)+(Ba+c)(42-1) $= \int \frac{A}{(4\pi^{-1})} + \frac{Bx}{\chi^2+1} + \frac{c}{\chi^2+1} dx$ $2x^2-1 = Ax^2+A+4Bx^2+4cx-Bx-C$ $= \int \left(\frac{14}{4x-1} + \frac{14}{17} + \frac{3}{17} \right) dx$ Equating factor of like terms: 2 = A + 4B 0 = 4C - B 0 = 4C 0 = 4 $= \frac{14}{17} \cdot \ln \left| 4x - 1 \right| + \frac{12}{17} \left| \frac{x}{x^2 + 1} \right| + \frac{3}{17} + \frac{1}{17} + \frac$ $= \frac{-7}{34} \ln |4x - 1| + \frac{12}{17} \ln |x^2 + 1| + \frac{3}{17} \tan^{7} x + c \quad \text{(i)} \times 4 \implies -4B + 16C = 0$ $= \frac{-7}{34} \ln |4x - 1| + \frac{12}{17} \ln |x^2 + 1| + \frac{3}{17} \tan^{7} x + c \quad \text{(ii)} \times 4 \implies -4B + 16C = 0$ $= \frac{-7}{34} \ln |4x - 1| + \frac{12}{17} \ln |x^2 + 1| + \frac{3}{17} \tan^{7} x + c \quad \text{(ii)} \times 4 \implies -4B + 16C = 0$ $= \frac{-7}{34} \ln |4x - 1| + \frac{12}{17} \ln |x^2 + 1| + \frac{3}{17} \tan^{7} x + c \quad \text{(ii)} \times 4 \implies -4B + 16C = 0$ $= \frac{-7}{34} \ln |4x - 1| + \frac{12}{17} \ln |x^2 + 1| + \frac{3}{17} \tan^{7} x + c \quad \text{(iii)} \times 4 \implies -4B + 16C = 0$ $= \frac{-7}{34} \ln |4x - 1| + \frac{12}{17} \ln |x^2 + 1| + \frac{3}{17} \tan^{7} x + c \quad \text{(iv)} \times 1 \implies 4B + 16C = 0$ $= \frac{-7}{34} \ln |4x - 1| + \frac{12}{17} \ln |x^2 + 1| + \frac{3}{17} \tan^{7} x + c \quad \text{(iv)} \times 1 \implies 4B + 16C = 0$ $= \frac{-7}{34} \ln |4x - 1| + \frac{12}{17} \ln |x^2 + 1| + \frac{3}{17} \tan^{7} x + c \quad \text{(iv)} \times 1 \implies 4B + 16C = 0$ $= \frac{-7}{34} \ln |4x - 1| + \frac{12}{17} \ln |x^2 + 1| + \frac{3}{17} \tan^{7} x + c \quad \text{(iv)} \times 1 \implies 4B + 16C = 0$ $= \frac{-7}{34} \ln |4x - 1| + \frac{12}{17} \ln |x^2 + 1| + \frac{3}{17} \tan^{7} x + c \quad \text{(iv)} \times 1 \implies 4B + 16C = 0$ $\int \frac{x}{\chi^{2}+1} dM \qquad \text{let} \qquad \frac{1}{17} = -1+.$ $\int \frac{x}{\chi^{2}+1} dM \qquad \text{let} \qquad \frac{3}{17} = -1+.$ $\int \frac{x}{\sqrt{17}} dM \qquad \text{let} \qquad \frac{3}{17} = -1+.$ $\int \frac{x}{\sqrt{17}} dM \qquad \text{let} \qquad \frac{3}{17} = -1+.$ $\int \frac{x}{\sqrt{17}} dM \qquad \text{let} \qquad \frac{3}{17} = -1+.$ $\int \frac{x}{\sqrt{17}} dM \qquad \text{let} \qquad \frac{3}{17} = -1+.$ $\int \frac{x}{\sqrt{17}} dM \qquad \text{let} \qquad \frac{3}{17} = -1+.$ $\int \frac{x}{\sqrt{17}} dM \qquad \text{let} \qquad \frac{3}{17} = -1+.$ $\int \frac{x}{\sqrt{17}} dM \qquad \text{let} \qquad \frac{3}{17} = -1+.$ $= \frac{-7}{34} \ln |4x-1| + \frac{6}{17} \ln |x^2+1| + \frac{3}{17} \tan^{-1} x + C$ 4C = B $B = 4\left(\frac{3}{17}\right) = \frac{12}{17}$ = \\ \frac{1}{2} \dz \quad \(2 \adm = dz \)

= $\frac{1}{2} \ln 2 = \frac{1}{2} \ln (x^2 + 1)$ $2 dx = \frac{1}{2} dz$

pg 3