Group Assignment 2

Group 11

October 2025

Table of contents

Part I	3
Q1	
$\mathbf{Q}2$	
Q3	
Q4	
Q5	
Q6	5
Q7	
Q8	
Q9	
Part II	7
Q1	
$\overline{\mathrm{Q}2}$	
Q3	
Q4	
Q5	
Part II	11
•	
·	
List o	of Figures
1	Top 3 exchanges by largest total trading volume
2	Autocorrelation Function for HLT
List o	of Tables
1	Top 5 comapanies by largest mean trading volume
2	Top 3 exchanges by largest total trading volume

```
library(dplyr)
library(lubridate)
library(ggplot2)
library(scales)
```

```
sp_data <- read.csv("sp500_2023_2024.csv")

# Remove the rows whose prcod values are NA
sp_data <- filter(sp_data, !is.na(prcod))

# Change datadate format type
sp_data$datadate <- as.Date(sp_data$datadate, format = "%d/%m/%Y")</pre>
```

Part I

Q1

```
# Calculate the unique number of tickers
n_distinct(sp_data$tic)
```

502

Q2

```
# Calculate the unique number of companies
n_distinct(sp_data$conm)
```

499

```
# Display the top 5 companies by largest mean trading volume
sp_data %>%
  group_by(conm) %>%
  summarise(mean_trading_volume = mean(cshtrd)) %>%
```

```
arrange(desc(mean_trading_volume)) %>%
head(n = 5)
```

A tibble: 5×2

Table 1: Top 5 comapanies by largest mean trading volume

conm <chr></chr>	mean_trading_volume <dbl></dbl>
TESLA INC	115314383
NVIDIA CORP	113131835
PALANTIR TECHNOLOG INC	60056251
APPLE INC	57736403
ADVANCED MICRO DEVICES	57143415

Q4

```
# Display the total trading volume of the top 3 exchanges
# by largest total trading volume
top_exchanges <- sp_data %>%
    group_by(exchg) %>%
    summarise(total_trading_volume = sum(cshtrd)) %>%
    arrange(desc(total_trading_volume)) %>%
    head(n = 3)
top_exchanges
```

A tibble: 3×2

Table 2: Top 3 exchanges by largest total trading volume

exchg <int></int>	$total_trading_volume < dbl >$
11	681415756062
14	570830885382
21	385399362

```
# Visualise the total trading volume of the top 3 exchanges
# by largest total trading volume
ggplot(top_exchanges, aes(factor(exchg), total_trading_volume)) +
    geom_col(fill = "dark blue") +
    scale_y_continuous(labels = label_number(scale = 1e-9, suffix = "B")) +
    labs(x = "Stock Exchange Code", y = "Total Trading Volume")
```


Figure 1: Top 3 exchanges by largest total trading volume

```
# Calculate the number of companies with more than 1 ticker
multiple_ticker_num <- sp_data[, c("tic", "conm")] %>%
  group_by(conm) %>%
  summarise(tic_num = n_distinct(tic)) %>%
```

```
filter(tic_num > 1)
nrow(multiple_ticker_num)
```

3

Q7

```
# Find ticker that has the largest positive mean return (simple daily return)
sp_data %>%
  group_by(tic) %>%
  mutate(daily_return = (prccd - lag(prccd)) / lag(prccd)) %>%
  summarise(mean_daily_return = mean(daily_return, na.rm = TRUE)) %>%
  arrange(desc(mean_daily_return)) %>%
  head(n = 1)
```

A tibble: 1 x 2

$\mathrm{tic} <\!\!\mathrm{chr}\!\!>$	$mean_daily_return < dbl >$
PLTR	0.005785119

Q8

```
# Find company that has the largest positive mean return (simple daily return)
sp_data %>%
  group_by(conm) %>%
  mutate(daily_return = (prccd - lag(prccd)) / lag(prccd)) %>%
  summarise(mean_daily_return = mean(daily_return, na.rm = TRUE)) %>%
  arrange(desc(mean_daily_return)) %>%
  head(n = 1)
```

A tibble: 1 x 2

conm <chr></chr>	$mean_daily_return < dbl >$
PALANTIR TECHNOLOG INC	0.005785119

Q9

```
# Find industry that includes the largest number of companies
sp_data %>%
  group_by(sic) %>%
  summarise(company_num = n_distinct(conm)) %>%
  arrange(desc(company_num)) %>%
  head(n = 1)
```

A tibble: 1×2

sic <int></int>	company_num <int></int>
6798	28

Part II

Q1

```
# Calculate simple weekly returns for each ticker in the full dataset
# using the following formula
weekly_sp_data <- sp_data %>%
   mutate(week = floor_date(datadate, "week")) %>%
   group_by(tic, week) %>%
   arrange(datadate) %>%
   summarise(week_end_close_price = last(prccd)) %>%
   ungroup()
head(weekly_sp_data)
```

`summarise()` has grouped output by 'tic'. You can override using the `.groups` argument.

A tibble: 6×3

tic <chr></chr>	week <date></date>	week_end_close_price <dbl></dbl>
A	2023-01-01	147.67
A	2023-01-08	156.92
A	2023-01-15	155.92
A	2023-01-22	155.69
A	2023-01-29	154.55
A	2023-02-05	152.55

A tibble: 6×4

tic <chr></chr>	week <date></date>	week_end_close <dbl></dbl>	e_price weekly_return <dbl></dbl>
A	2023-01-08	156.92	0.062639670
A	2023-01-15	155.92	-0.006372674
A	2023-01-22	155.69	-0.001475115
A	2023-01-29	154.55	-0.007322243
A	2023-02-05	152.55	-0.012940796
A	2023-02-12	148.26	-0.028121927

```
type = 5, na.rm = TRUE), include.lowest = TRUE,
labels = paste0(0:9 * 10, "%")))
head(weekly_sp_data)
```

A tibble: 6 x 5

		week_end_close_p wee kly_return			
tic < chr >	week $<$ date $>$	<dbl $>$	<dbl></dbl>	$\mathrm{deciles} <\!\!\mathrm{fct}\!\!>$	
A	2023-01-08	156.92	0.062639670	90%	
A	2023-01-15	155.92	-0.006372674	30%	
A	2023-01-22	155.69	-0.001475115	40%	
A	2023-01-29	154.55	-0.007322243	30%	
A	2023-02-05	152.55	-0.012940796	30%	
A	2023-02-12	148.26	-0.028121927	10%	

```
# Display a table showing the top ticker (ticker with the highest weekly return)
# in each decile group
top_tickers <- weekly_sp_data %>%
    group_by(deciles) %>%
    slice(which.max(weekly_return)) %>%
    select(deciles, tic, weekly_return) %>%
    arrange(deciles)
print(top_tickers)
```

```
# A tibble: 10 x 3
# Groups: deciles [10]
  deciles tic
                weekly_return
  <fct>
          <chr>
                        <dbl>
1 0%
          DVN
                     -0.0415
2 10%
          FDS
                     -0.0248
3 20%
          TRMB
                     -0.0141
4 30%
         NWS
                     -0.00544
5 40%
          CDNS
                      0.00228
6 50%
          AIG
                      0.0101
7 60%
          HLT
                      0.0185
```

```
8 70% RL 0.0292
9 80% SJM 0.0470
10 90% SMCI 0.784
```

Q4

```
# Plot the autocorrelation function for this ticker's
# entire set of weekly returns
hlt_data <- filter(weekly_sp_data, tic == "HLT")
acf(hlt_data$weekly_return, main = "Autocorrelation Function for HLT")</pre>
```

Autocorrelation Function for HLT

Figure 2: Autocorrelation Function for HLT

Part III

```
# Load and clean the weekly Fama-French 3 factor data
ff3 <- read.csv("fama_french_weekly.csv", skip = 4)

# Remove blank data
ff3 <- na.omit(ff3)

# Change coloumns name
colnames(ff3) <- c("datadate", "Mkt_RF", "SMB", "HML", "RF")

# Convert to decimal</pre>
```

```
ff3[-1] <- ff3[-1] / 100

# Change date format
ff3$datadate <- as.Date(ff3$datadate, format = "%Y%m%d")

# Add a column named "week" for further analysis
ff3 <- mutate(ff3, week = floor_date(datadate, "week"))

# Remain weekly data with ideal dates
ff3_cleaned <- ff3 %>%
    select("week", "Mkt_RF", "SMB", "HML", "RF")
head(ff3_cleaned)
```

A data.frame: 6 x 5

	1	Mkt_RF	CLAD III	TT	DD 11.1
	week <date></date>	<dbl></dbl>	SMB <dbl></dbl>	HML <dbl></dbl>	RF <dbl></dbl>
1	1926-06-27	0.0158	-0.0062	-0.0086	6e-04
2	1926 - 07 - 04	0.0037	-0.0090	0.0031	6e-04
3	1926-07-11	0.0098	0.0059	-0.0144	6e-04
4	1926-07-18	-0.0203	0.0002	-0.0017	6e-04
5	1926-07-25	0.0306	-0.0189	-0.0085	6e-04
6	1926-08-01	0.0204	0.0016	0.0055	6e-04

```
# Fit the Fama-French 3 factor model to the weekly returns
# of the stock selected in Part II

ff3_model <- merge(hlt_data, ff3_cleaned, by = "week")

ff3_model <- ff3_model %>%
    mutate(excess_return = weekly_return - RF) %>%
    select("week", "excess_return", "Mkt_RF", "SMB", "HML", "RF")

head(ff3_model)

summary(lm(excess_return ~ Mkt_RF + SMB + HML, data = ff3_model))
```

A data.frame: 6 x 6

	week <date></date>	excess_re- turn <dbl></dbl>	Mkt_RF <dbl></dbl>	SMB <dbl></dbl>	HML <dbl></dbl>	RF <dbl></dbl>
1	2023-01-08	0.050002111	0.0302	0.0337	-0.0324	9e-04
2	2023-01-15	0.012542431	-0.0069	0.0012	-0.0115	9e-04
3	2023-01-22	0.042280507	0.0257	-0.0009	-0.0122	9e-04
4	2023-01-29	0.013680886	0.0181	0.0354	-0.0199	9e-04
5	2023-02-05	0.001483871	-0.0149	-0.0320	0.0266	9e-04
6	2023-02-12	- 0.006539736	0.0010	0.0203	-0.0147	9e-04

Call:

lm(formula = excess_return ~ Mkt_RF + SMB + HML, data = ff3_model)

Residuals:

Min 1Q Median 3Q Max -0.050719 -0.010592 -0.000428 0.011555 0.035722

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.002611 0.001868 1.398 0.16527
Mkt_RF 0.965943 0.109272 8.840 3.44e-14 ***
SMB -0.058955 0.121771 -0.484 0.62934
HML 0.327167 0.109504 2.988 0.00354 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0185 on 100 degrees of freedom Multiple R-squared: 0.4826, Adjusted R-squared: 0.4671 F-statistic: 31.09 on 3 and 100 DF, p-value: 2.766e-14