Devoir maison n°13 : Coniques et matrices symétriques

Exercice I: coniques dans le plan (Maths A 2004)

On note $\mathscr{R}=(O,\overrightarrow{i},\overrightarrow{j})$ le repère orthonormé direct usuel de \mathbb{R}^2 . On considère les matrices :

$$A_1 = \begin{pmatrix} 5 & -3 \\ -3 & 5 \end{pmatrix} \quad \text{et} \quad A_2 = \begin{pmatrix} 0 & \sqrt{3} \\ \sqrt{3} & -2 \end{pmatrix}$$

et on note u_1, u_2 les endomorphismes canoniquement associés aux matrices A_1 et A_2 .

- 1. Calculer $A_1A_2 A_2A_1$.
- 2. Existe-t-il une base de \mathbb{R}^2 dans laquelle les matrices u_1,u_2 sont toutes deux diagonales?
- 3. Soit $a \in \mathbb{R}^*$. On considère les coniques :

$$(\mathscr{C}_1)$$
: ${}^tXA_1X = 8a^2$

$$(\mathscr{C}_2): {}^t X A_2 X = a^2$$

avec
$$X = \begin{pmatrix} x \\ y \end{pmatrix}$$
.

- (a) Déterminer la nature, les éléments de symétrie et les asymptotes éventuelles des coniques \mathscr{C}_1 et \mathscr{C}_2 .
- (b) Existe-t-il une rotation de \mathbb{R}^2 qui amène simultanément les axes de \mathscr{R} sur les axes de symétrie de \mathscr{C}_1 et \mathscr{C}_2 ?
- (c) Déterminer l'angle $\theta \in [0; \frac{\pi}{2}]$ de la rotation vectorielle transformant le repère \mathscr{R} en un repère dont les axes sont les axes de symétrie de \mathscr{C}_1 .

Exercice II: coniques dans l'espace

On se place dans l'espace $E = \mathbb{R}^3$ muni du repère orthonormé direct $\mathscr{R} = (O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

Soit $a \in \mathbb{R}_+^*$: on considère les droites D et D':

$$D: \left\{ \begin{array}{rcl} x-y & = & 0 \\ z+a & = & 0 \end{array} \right. \quad \text{et} \quad D': \left\{ \begin{array}{rcl} x+y & = & 0 \\ z-a & = & 0 \end{array} \right.$$

et on appelle Σ l'ensemble des points $M\in\mathbb{R}^3$ équidistants des droites D et D', c'est-à-dire :

$$d(M,D) = d(M,D').$$

- 1. Déterminer une équation de Σ .
- 2. Soit $h \in \mathbb{R}$; étudier la nature de l'intersection Σ avec le plan z = h et en préciser les les caractéristiques géométriques (asymptotes et sommets éventuels).
- 3. Soit $\theta \in [0; \pi]$ fixé; On désigne par C_{θ} la courbe intersection de Σ et du plan P_{θ} d'équation $x \sin(\theta) y \cos(\theta) = 0$.
 - (a) Déterminer une base orthonormée directe $\mathscr{B}_{\theta} = (\overrightarrow{I_{\theta}}, \overrightarrow{J_{\theta}}, \overrightarrow{n})$ de l'espace dont les deux premiers vecteurs sont des vecteurs directeurs de P_{θ} .
 - (b) Montrer que C_{θ} admet dans \mathscr{R} la représentation paramétrique :

$$\begin{cases} x(t) &= t\cos(\theta) \\ y(t) &= t\sin(\theta) \\ z(t) &= t^2 \frac{\sin(\theta)\cos(\theta)}{2a} \end{cases}, (t \in \mathbb{R}).$$

- (c) On note $\mathcal{R}_{\theta} = (O, \mathcal{B}_{\theta})$: déterminer une représentation paramétrique de C_{θ} dans \mathcal{R}_{θ} .
- (d) En déduire une équation cartésienne de C_{θ} dans \mathcal{R}_{θ} puis la nature géométrique de C_{θ} .

Exercice III: Théorème spectral

Soit $A = (a_{ij})_{1 \leq i,j \leq n}$ une matrice dans $\mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que la matrice ${}^{t}AA$ est diagonalisable.
- 2. Montrer que $Sp({}^tAA) \subset \mathbb{R}_+$.
- 3. Soient $\lambda_1, \ldots, \lambda_n$ les valeurs propres de tAA .

Montrer que
$$\sum_{i=1}^{n} \lambda_i = \sum_{1 \leq k, l \leq n} a_{k,l}^2.$$

- 4. Soit $S \in \mathscr{S}_n(\mathbb{R})$ telle que $Sp(S) \subset \mathbb{R}_+$.
 - (a) Montrer qu'il existe une matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que $S = {}^t AA$.
 - (b) Montrer qu'il existe une matrice $B \in \mathscr{S}_n(\mathbb{R})$ telle que $S = B^2$.