

Ramaiah Institute of Technology

Team NishJay

IT CHALLENGE

R Jayanth Jadhav

Manav Vikram Raithatha

Team NishJay Ramaiah Institute of Technology

Contents

- INTRODUCTION
- WHAT ARE WE DOING?
- WHAT ARE WE USING?
- HOW ARE WE DOING IT?
 - THE MODEL
 - THE WEB APP
- RESULTS

INTRODUCTION

In the ever-evolving landscape of financial services, **efficient risk assessment** is the cornerstone of responsible lending.

As technology continues to progress it is imperative that we refine our underwriting methods to adopt and utilize the perks of the latest methods and models.

We have developed a **sophisticated system prototype** that will evaluate the risk based on the data available from the previous customers and tell the **amount of risk** the current user carries in **failing to pay the credit** using **gradient and ensemble** learning models.

What are we doing?

Machine Learning MODEL

POOR REGULAR GOOD

Clastinoution: 1 upno

How are we doing it - THE DATASET

Column	Non-Null Count	Dtype	
Month	100,000	int64	
Age	100,000	float64	
Occupation	100,000	object	
Annual_Income	100,000	float64	
Monthly_Inhand_Salary	100,000	float64	
Num_Bank_Accounts	100,000	float64	
Num_Credit_Card	100,000	float64	
Interest_Rate	100,000	float64	
Num_of_Loan	100,000	float64	
Type_of_Loan	100,000	object	
Delay_from_due_date	100,000	int64	

Num_of_Delayed_Payment	100,000	float64
Changed_Credit_Limit	100,000	float64
Num_Credit_Inquiries	100,000	float64
Credit_Mix	100,000	int64
Outstanding_Debt	100,000	float64
Credit_Utilization_Ratio	100,000	float64
Payment_of_Min_Amount	100,000	object
Total_EMI_per_month	100,000	float64
Amount_invested_monthly	100,000	float64
Monthly_Balance	100,000	float64
Credit_Score	100,000	int64
Credit_History_Age_Formated	100,000	float64

What are we using?

- **XGBoost "eXtreme Gradient Boosting"**
 - Combines the strengths of
 - Decision trees with
 - **Gradient boosting**
- Why XGBoost?
 - Handles Imbalanced Data Majority come under "Average" category
 - **High Predictive Accuracy** easy identification of defaulters
 - **Feature Importance -** Give importances of each parameter
 - **Regularization Prevent overfitting**
 - **Speed and Efficiency**
- **STREAMLIT for a**
 - Simple good looking
 - User friendly
 - Interactive
 - Web frontend

01

How are we doing it - THE MODEL

Results

Results

Results

Model	Precision	Recall	F1 Score	ROC AUC
Stacking Ensemble	0.8237	0.8284	0.8257	0.8995
XGBoost	0.7574	0.7621	0.7595	0.9065
Random Forest	0.8240	0.8303	0.8268	0.9383
MLP	0.6201	0.5780	0.5626	0.7780

Accuracy metrics for the combination model

Model	Class 0 AUC	Class 1 AUC	Class 2 AUC
Stacking	0.91	0.85	0.93
XGBoost	0.92	0.86	0.95
Random Forest	0.95	0.90	0.97
MLP	0.76	0.70	0.87

Class Wise metrics

How are we doing it - THE APP WORKFLOW

- **User Visit:** When a user visits our website, they're taking the first step towards finding their category of credit score.
- **Data Input:** The user is prompted to enter their personal details, financial history, and other relevant information. It's like painting a picture of their unique financial journey.
- Behind the Scenes: Behind the scenes, our sophisticated system employs cutting-edge machine learning models, as explained in previous slides, to analyze the user's input. It's like a diligent detective, examining every detail.
- **Credit Score Category:** Within moments, the user is presented with their credit score category. This is the compass guiding them towards financial opportunities.
- Feature Importances: But we don't stop there. We also provide the user with a breakdown of feature importances. This is like revealing the puzzle pieces that determine their creditworthiness, helping them understand and improve their financial future.

How are we doing it - FIREBASE BACKEND

RESULTS - THE APP OUTPUT

Thank You