

The presentation itself introduces the mission and the system requirements and constraints, the logical architecture, the physical architecture, and the controller. Finally, a small (recorded) demo of the mission is required. Please highlight the different choices you have made during the design and why you made them. Do think about the link with the theory. You will get extra questions that link the presentation and the work with the theory. Your presentation should be around 20 minutes without questions.

Mission

Experimental farm module on the dark side of Mun

- Bring experimental farm module to Mun
 - Weight: 4000 Kilograms
 - Energy: 0.29 EC/s
- Provide constant communication between Kerbin and Mun
 - An emergency communication interval of 10 minutes
 - A normal communication interval of 30 minutes
 - 3 Mit/s
- No return vessel nor reusability of used components
- No kerbin onboard
- Delta-V of 5150 m/s -> 5922 m/s (+15%)
- Budget -> It is in the name of science! (we want to be faster than the Russians)

Budget

Given budget by: Chief Financial Officer: Lye G. Batenkaitos

Estimation costs				
Category	Funds (F)			
Farm Module	45 000			
Satellite Network	12 000			
Launch Vehicle	60 000			
Transfer Stage	25 000			
Contingency (10%)	15 000			
Estimation costs	148 000			

ChatGPT-chat

ChatGPT-chat antenna

ChatGPT-chat EC

Farm Power - Decisions

Given energy consumption by: Chief Agricultural Scientist: Regulus G. Corneas

Farm module energy EC/day

39 765

Module Energy Consumption				
Item EC/Sec Number duration/s Total (Energy) / d				
Communotron 16	18	1	231,64	4 169.52
Farm Module	0,28611207	1	138 984,00	39 765

Total EC Consumption 43 934.52 EC/day

Total EC Consumption 0.31611207 EC/day

Farm Power - Decisions

Module Energy Storage					
Item	Energy storage (EC)	Number	Total capacity (EC)		
Big round battery	4 000	6	24 000		
Battery Load (%)		91.53025			
Total charge needed in daytime:		43 934.52			

Module Energy Harvesting					
Item	EC/sec	Number	Duration/day (s)	Total harvested energy (EC)	Charge of battery (%)
Gigantor XL Solar Array	24,4	1	69 492	1 695 604,8	3 819,118965
OX-STAT-XL Photovoltaic Panels	2,8	1	69 492	194 577,6	438,2595534
OX-STAT Photovoltaic Panels	0,35	<mark>3</mark>	69 492	<mark>729 66,6</mark>	166,0803396
SP-L 1x6 Photovoltaic Panels	1,64	1	69 492	113 966,88	256,6948813

Logical Architecture

Physical Architecture

Physical Assembly

Controller Architecture

Demo

Budget - Outcome

actual costs					
Category	Funds (F)	difference with estimation			
Farm Module	37 046	7 954			
Satellite Network	18 270	-6 270			
Launch Vehicle	63 090	-3 090			
Transfer Stage	12 300	2 700			
Contingency (15%)	4 050	11 950			

Total: 134 756 F budget leftover 25 244 F

Excel workdocument

Cost per used part	A	C	Cotonom.	Ch. 4-4-1
Part	Amount	Cos		Sub-total
Mk2 Lander Can		3	3202 Farm Module	9606
Communotron 16		1	300 Farm Module	300
Z-4K Rechargeable Battery Bank		6	4500 Farm Module	27000
OX-STAT Photovoltaic Panels		2	70 Farm Module	140
Cubic Octagonal Strut		7	16 Contingency (15%)	112
Octagonal Strut		1	20 Contingency (15%)	20
AE-FF2 Airstream Protective Shell		2,5	12 Contingency (15%)	630
CompoMax Radial Tubeless		4	300 Contingency (15%)	1200
TD-06 Decoupler		3	150 Contingency (15%)	450
48-7S "Spark" Liquid Fuel Engine		3	240 Transfer Stage	720
Oscar-B Fuel Tank		3	70 Satellite Network	210
Z-200 Rechargeable Battery Bank		9	360 Satellite Network	3240
OX-4W 3x2 Photovoltaic Panels		6	380 Satellite Network	2280
Small Inline Reaction Wheel		3	600 Satellite Network	1800
Communotron 16-S		3	300 Satellite Network	900
Probodobodyne OKTO2		3	1480 Satellite Network	4440
RA-2 Relay Antenna		3	1800 Satellite Network	5400
24-77 "Twitch" Liquid Fuel Engine		2	230 Transfer Stage	460
TD-25 Decoupler		1	300 Transfer Stage	300
Rockomax X200-32 Fuel Tank		2	3000 Transfer Stage	6000
TS-25 Stack Separator		1	400 Transfer Stage	400
Rockomax Jumbo-64 Fuel Tank		1	5750 Launch Vehicle	5750
Mk-55 "Thud" Liquid Fuel Engine		2	820 Launch Vehicle	1640
RC-L01 Remote Guidance Unit		1	3400 Transfer Stage	3400
RE-M3 "Mainsail" Liquid Fuel Engine		1	13000 Launch Vehicle	13000
Delta-Deluxe Winglet		5	600 Launch Vehicle	3000
TT-70 Radial Decoupler		2	700 Launch Vehicle	1400
S2-33 "Clydesdale" Solid Fuel Booster		2	18500 Launch Vehicle	37000
Protective Rocket Nose Cone Mk7		2	450 Launch Vehicle	900
EAS-4 Strut Connector		39	42 Contingency (15%)	1638
TT18-A Launch Stability Enhancer		2	200 Launch Vehicle	400
LT-2 Landing Strut		3	340 Transfer Stage	1020

Operational entities

Operational capabilities SPACE **®** STAKEHOLDERS ROCKET. & INVESTORS **■ FARM 吴 GOVERNMENT** OC MPROVE FARMING TECHNOLOGY EE MUN PROVIDE BUDGET @ GENERAL PUBLIC £ FOOD INDUSTRY KERBIN CREATE TESTBED ON DANGEDE MUIT ♀ FARMERS SATELITE OC CONSTANT COMMUNICATION ENGINEERING DEPARTEMENT 옷 CHIEF SYSTEMS ENGINEE SCIENTIFIC RESEARCH RESEARCHERS OC ♀ ROCKET ENGINEER € CHIEF ARGRICULTURE SCIENTIS IMPROVE SPACE DELIVER A AGRICULTURAL ENGINEER IMISSION CONTROL ₽ SPACE MISSION OPERATORS € LOGISTICS MANAGER

Operational architecture

