Plan du cours

I.	Rappel des définitions des différents solides		
	1.	Parallélépipède rectangle (ou pavé droit)	1
	2.	Prisme droit	1
	3.	Cylindre de révolution	2
11.	II. Se repérer dans l'espace		3

Chapitre 5 : Prisme droit et cylindre de révolution

Mes objectifs:

- → Je dois savoir utiliser, produire et mettre en relation des situations spatiales (schémas, croquis, maquettes, patrons, coordonnées dans l'espace, différents théorèmes).

I. Rappel des définitions des différents solides

1. Parallélépipède rectangle (ou pavé droit)

Définition

Un pavé droit est un solide composé de six faces rectangulaires. Cas particulier : le cube.

Perspective cavalière :

2. Prisme droit

Définition

Un prisme droit est un solide qui possède :

- deux polygones superposables pour faces parallèles, appelées bases;
- des rectangles pour toutes les autres faces, appelées faces latérales.

Perspective cavalière :

Volume: $V = B \times h$

3. Cylindre de révolution

Définition

Un cylindre de révolution est un solide qui possède :

- deux bases qui sont deux disques superposables et parallèles,
- une face latérale qui s'enroule autour des bases et qui est perpendiculaire aux bases.

Perspective cavalière :

Volume: $V = \mathcal{B} \times h = \pi r^2 \times h$

II. Se repérer dans l'espace

Introduction : Découverte du repérage dans un pavé droit

PARTIE A

A l'aide de 64 petits cubes, on a formé un grand cube qui a été représenté en perspective.

Pour se repérer sur ce grand cube, on a besoin de trois informations données dans cet ordre :

• quelle rangée : A, B, C ou D

• quelle ligne: 1, 2, 3 ou 4?

• quel étage : I, II, III ou IV ?

Ainsi le petit cube rouge est repéré par R(B; 3; IV)

1. Donner le repérage correspondant au cube bleu et vert.

2. Repérer le cube repéré par (D; 1; IV) et (A; 4; IV)

PARTIE B

Le principe est le même que celui utilisé dans la partie A, mais chaque coordonnées est repérée par un chiffre entre 1 et 4.

Ainsi le cube rouge est repéré par R(3; 2; 4)

1. Indiquer les coordonnées des autres cubes colorés.

.....

2. Repérer le cube repéré par les coordonnées (2; 4; 4)

Définition

Dans un parallélépipède rectangle, un repère est formé par un sommet (appelé origine du repère) et trois demidroites (appelées axes du repère) portées par les arêtes issues de l'origine.

Définition

Pour repérer un point dans l'espace, il faut trois coordonnées :

- Son abscisse x
- Son ordonnée y
- Son altitude z (ou cote z)

Soit M un point d'abscisse x_M , d'ordonnée y_M et d'altitude z_M . Les coordonnées de M se notent $(x_M;y_M;z_M)$

Remarque : L'ordre des coordonnées est très important, (abscisse ; ordonnée ; altitude (ou cote)).

Exemple:

Dans l'exemple ci-contre, on considère le repère (G; H; F; C).

L'origine du repère est le sommet

L'axe des abscisses est porté par la demi-droite

L'axe des ordonnées est porté par la demi-droite

L'axe des altitudes est porté par la demi-droite

Le point A a pour :

- abscisse,
- ordonnée,
- altitude (cote)

Exercice d'application 1 -

Placer les points A(3; 0; 0); B(0; 2; 4); C(1; 3; 2) et D(5; 7; 4)

