Review: HDLC

- Three Frame Types
 - I-Frame: Information Transfer Format
 - S-Frame: Supervisory Format
 - U-Frame: Unnumbered Format
- Implements Flow Control & Error Control mechanisms
 - Stop-And-Wait
 - Go-Back-N
 - Selective Repeat
- Bit-Stuffing to avoid confusion of data and flag

HDLC Frame

frames Flag **Address Control** Information FCS Flag

Only in I- and U

- Flag= 01111110
 - Specifies beginning and end of frame
- Address
 - Specifies secondary station as either sender or receiver
- Control
 - Specifies type of frame and seq.&ack. number
- Frame Check Sequence (FCS)
 - Either 16- or 32-bit CRC

U-Frame Control Field

Code	Command/Response	Meaning
00 001	SNRM	Set normal response mode
11 100	SABM	Set asynchronous balanced mode
00 100	UP	Unnumbered poll
00 000	UI	Unnumbered information
00 110	UA	Unnumbered acknowledgment
00 010	DISC	Disconnect
10 000	SIM	Set initialization mode
11 001	RSET	Reset
11 101	XID	Exchange ID
10 001	FRMR	Frame reject

Managing Connection

* Figure is courtesy of B. Forouzan

I-Frame

- N(S)
 - Sequence Number of Sender
- N(R)
 - Sequence Number of Receiver
- P/F
 - Poll/Final bit
 - Primary Station: Request for information
 - Secondary Station: response or final frame

Information Transfer

S-Frame Control Field

- Code 00 = Receive Ready (RR)
 - Acknowledge frames & waiting for more
- Code 10 = Receive Not Ready (RNR)
 - Acknowledge frames & busy right now
- Code 01 = Reject (REJ)
 - Go-Back-N NAK
- Code 11 = Selective Reject (SREJ)
 - Selective Repeat NAK

Flow&Error Control

* Figure is courtesy of B. Forouzan

Connection & Disconnection

Examples of Operation

Piggybacking with Error

802.2 LLC Control Fields

LLC PDU control field bits

Information transfer command/response (I-format PDU)

Supervisory commands/responses (S-format PDUs)

Unnumbered commands/responses (U-format PDUs)

1	2	3	4	5	6	7	8	9	10–16
0				N(S)			P/F	N(R)
1	0	s	s	х	х	Х	х	P/F	N(R)
1	1	М	М	P/F	М	М	М		

N(S) = sender send sequence number (Bit 2=lower-order-bit)

N(R) = sender receive sequence number (Bit 10=lower-order-bit)

S = supervisory function bit M = modifier function bit

X = reserved and set to zero

P/F = poll bit—command LLC PDUs

final bit—response LLC PDUs

(1=poll/final)

Figure 9—LLC PDU control field formats

max w-size= 64 frames

m = 7

 $2^{m} = 128$

IEEE 802

- 802.3: Ethernet
- 802.11: Wifi
- 802.16: WiMAX
- 802.20: Mobile Broadband Wireless Access (MBWA)
- 802.15.1: Bluetooth

Cyclic Redundancy Check (CRC)

- P(x) divided by C(x) = 0
- (P(x)+remainder) divided by C(x) should be != 0

Polynomial Notation

Polynomial

- Rules for selecting divisor:
 - It should not be divisible by x
 - It should be divisible by x+1

Standard Polynomials

Name	Polynomial	Application
CRC-8	$x^8 + x^2 + x + 1$	ATM header
CRC-10	$x^{10} + x^9 + x^5 + x^4 + x^2 + 1$	ATM AAL
CRC-16	$x^{16} + x^{12} + x^5 + 1$	HDLC
CRC-32	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$	LANs

CRC: Sender

Data transmitted to receiver: 1 0 0 1 0 0 0 0 1

Division - Decimal&Binary

$$39/20 = 1 + 19$$

$$100111 / 10100 = 1 + 10011$$
32 421 16 4 16 21

CRC Calculation

 CRC Calculation → Polynomial Division not Binary Division!!!

$$x^{3} + 4x^{2} + 3x + 12$$
 / $x^{2} + 3 = x + 4$
 $x^{3} + 3x$
 $4x^{2} + 12$

0

CRC Calculation

- CRC Calculation → Polynomial Division not Binary Division!!!
- CRC: Coefficient r={0,1}

1000100000000001011
$$x^{20} + x^{15} + x^4 + x + 1$$
 / $x^{16} + x^{12} + x^5 + 1$

CRC: Receiver

Point-to-Point Protocol (PPP)

Point-to-Point Protocol (PPP)

 Used for any kind of serial point to point connection e.g. dial-up, serial x-wire

Based on HDLC

- Provides
 - Format negotiation
 - Authentication
 - Connection establishment/termination

PPP between Home & ISP

* Figure is courtesy of A. Tanenbaum

PPP – Life Cycle

25

PPP – Life Cycle

Tasks of PPP

PPP Frame

Modified HDLC frame:

- Byte-oriented Protocol
 - Flag Byte: 01111110
 - Escape Byte: 01111101
- FCS: 16- or 32-bit CRC
 - $x^{16} + x^{12} + x^5 + 1$
 - 1 0001 0000 0010 0001 \rightarrow 16 bits remainder \leftarrow 16-degree polynomial
 - $-x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$

PPP Components

LCP: 0xC021

AP: 0xC023 and 0xC223

NCP: 0x8021 and

Data: 0x0021 and

LCP: Link Control Protocol

AP: Authentication Protocol

NCP: Network Control Protocol

LCP Packet

Code	Packet Type	Description
0x01	Configure-request	Contains the list of proposed options and their values
0x02	Configure-ack	Accepts all options proposed
0x03	Configure-nak	Announces that some options are not acceptable
0x04	Configure-reject	Announces that some options are not recognized
0x05	Terminate-request	Requests to shut down the line
0x06	Terminate-ack	Accepts the shut down request

Common Options

Option	Default		
Maximum receive unit	1500		
Authentication protocol	None		
Protocol field compression	Off		
Address and control field compression	Off		

LCP Debug Codes

Code	Packet Type	Description	
0x07	Code-reject	Announces an unknown code	
0x08	Protocol-reject Announces an unknown protocol		
0x09	Echo-request	A type of hello message to check if the other end is alive	
0x0A	Echo-reply	The response to the echo-request message	
0x0B	Discard-request	A request to discard the packet	

Password Authentication Protocol (PAP)

- 2-Way Handshake
- Password transmitted in clear text

Password Authentication Protocol (PAP)

- 2-Way Handshake
- Password transmitted in clear text

...what were they thinking??? Never transfer passwords in clear text

Communication Scenario

•Alice and Bob want to communicate

36

Threat: Eavesdropping

- •Alice and Bob want to communicate
- •Eve is eavesdropping (intercept, delete, add messages)

PAP Transfer

•Eve captures Alice's username & password

Playback Attack

Alice

Eve

•Eve pretends to be Alice by using sending out the capture message

PAP Packets

PAP packets

Flag Address Control Protocol Payload (and padding) FCS Flag

C023₁₆

- 3-Way Handshake
 - 1. A creates challenge ⇒ challenge value
 - 2. B processes challenge value with password ⇒ response
 - 3. A compares response with own calculation \Rightarrow accepts or rejects response

CHAP Packets

* Figure is courtesy of B. Forouzan

Chap Exchange

Chap Exchange

CS2031 Telecommunications II

password & compares

Chap Replay

I've seen this already

- Eve can capture both messages
 - but will not see the password
 - or be able to use replay attack

PPP Components

LCP: 0xC021

AP: 0xC023 and 0xC223

NCP: 0x8021 and

Data: 0x0021 and

LCP: Link Control Protocol

AP: Authentication Protocol

NCP: Network Control Protocol

PPP – Encapsulation

flag	addr	ctrl	protocol	data	CRC	flag
7E	FF	03				7E
1	1	1	2	<= 1500	2	1

0021 IP datagram

C021 link control data

8021 network control data

Network Control Protocol (NCP)

PPP negotiates Network Layer information

- Consists of specific protocols for network layer protocols
 - IP Control Protocol (IPCP)
 - IPX Control Protocol (IPXCP)

May include IP Header compression

IPCP Packet in PPP Packet

Code	IPCP Packet
01	Configure Request
02	Configure ACK
03	Configure NAK
04	Configure Reject
05	Terminate-request
06	Terminate-ack
07	Code-reject

UNIVERSITY

PPP frame carries IP Packet as payload

Connection Setup & Authentication

51

Data Transfer & Termination

PPP in OSI Stack

- PPP doesn't implement:
 - error correction/recovery (but error detection)
 - flow control
 - ordered delivery
 - multipoint links
 - ⇒ all relegated to higher layers!

PPP

- Connection Establishment & Termination
- Format Negotiation
- Authentication

PPP - Why???

* Figure is courtesy of A. Tanenbaum

PPP – As Foundation for IP

..

VPNs

ADSL Routers

HTML Use Case

PPP in the HTML Use Case

school of Computer Science & Statistics

school of | Computer Science & Statistics

Link Layer

Assignment Clarifications

- Implement 2 out of 3 approaches; either
 - Stop&Wait and Go-Back-N

or

Stop&Wait and Selective Repeat

- Receivers are reactive
 - ACKs are never retransmitted

