

A Family of Provably Correct Algorithms for Exact Triangle Counting

Matthew Lee, Tze Meng Low

Correctness 2017

Motivation

Graphs are everywhere

https://en.wikipedia.org/wiki/Bioinformatics http://www.mkbergman.com/968/a-new-best-friend-gephi-for-large-scale-networks/ https://www.cs.umd.edu/research/projects/16672

Correctness in HPC

$$C = AA^T + C$$

FLAME

- Formal Linear Algebra Methods Environment
- Main components
 - 8-step algorithm derivation methodology
 - Requires loop invariants as input
 - Produces both algorithm and proof of correctness
 - Index-free APIs for implementing derived algorithms
- libFLAME
 - Formally derived common LAPACK functionality
 - High performance

Key Idea: Find Loop Invariants for Graph Algorithms

Specifying the problem

Number of triangles in a graph

$$\Delta = \frac{1}{6}\Gamma(A^3) \quad A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{TR}^T & A_{BR} \end{pmatrix}$$

$$\Delta = \frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^T A_{TL} A_{TR}) + \frac{1}{2}\Gamma(A_{TR} A_{BR} A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)$$

Partitioned Matrix Expression (PME)

Partitioned Matrix Expression (PME)

$$\Delta = \boxed{\frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^T A_{TL} A_{TR}) + \frac{1}{2}\Gamma(A_{TR} A_{BR} A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)}$$

Different Types of Triangles

$$\Delta = \frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^T A_{TL} A_{TR}) + \frac{1}{2}\Gamma(A_{TR} A_{BR} A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)$$

Category I

Category II

Category IV

Finding Loop Invariants

 Assertion that must be true at start and end of every iteration

Finding Loop Invariants

 Assertion that must be true at start and end of every iteration

Loop Invariant:
of triangles that
have been computed

Loop Invariants from PME

$$\Delta = \frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^TA_{TL}A_{TR}) + \frac{1}{2}\Gamma(A_{TR}A_{BR}A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)$$

$$\Delta = \frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^T A_{TL} A_{TR}) + \frac{1}{2}\Gamma(A_{TR} A_{BR} A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)$$

$$\Delta = \frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^T A_{TL} A_{TR}) + \frac{1}{2}\Gamma(A_{TR} A_{BR} A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)$$

$$\Delta = \frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^T A_{TL} A_{TR}) + \frac{1}{2}\Gamma(A_{TR} A_{BR} A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)$$

$$\Delta = \frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^T A_{TL} A_{TR}) + \frac{1}{2}\Gamma(A_{TR} A_{BR} A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)$$

$$\Delta = \frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^T A_{TL} A_{TR}) + \frac{1}{2}\Gamma(A_{TR} A_{BR} A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)$$

$$\Delta = \frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^T A_{TL} A_{TR}) + \frac{1}{2}\Gamma(A_{TR} A_{BR} A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)$$

$$\Delta = \frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^T A_{TL} A_{TR}) + \frac{1}{2}\Gamma(A_{TR} A_{BR} A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)$$

$$\Delta = \frac{1}{6}\Gamma(A_{TL}^3) + \frac{1}{2}\Gamma(A_{TR}^T A_{TL} A_{TR}) + \frac{1}{2}\Gamma(A_{TR} A_{BR} A_{TR}^T) + \frac{1}{6}\Gamma(A_{BR}^3)$$

Algorithm:
$$\tilde{\Delta} := \frac{1}{6}\Gamma(\hat{A}^3)$$
 $A \to \left(\begin{array}{c|c|c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \\ \hline \end{array}\right)$

where A_{TL} is a 0×0 matrix

while $m(A_{TL}) < m(A)$ do

$$\left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \\ \hline \end{array}\right) \to \left(\begin{array}{c|c} A_{00} & a_{01} & A_{02} \\ \hline a_{01}^T & \alpha_{11} & a_{12}^T \\ \hline A_{02}^T & a_{12} & A_{22} \\ \hline \end{array}\right)$$

where α_{11} is a 1×1 matrix

Algorithm 1

Algorithm 2

 $\Delta := \Delta + \frac{1}{2}a_{01}^TA_{00}a_{01}$
 $\Delta := \Delta + a_{01}^TA_{02}a_{21}$

Algorithm 3

Algorithm 4

$$\Delta := \Delta + \frac{1}{2}a_{12}^TA_{02}a_{12}$$

$$\Delta := \Delta + \frac{1}{2}a_{12}^TA_{02}a_{21}$$

$$\Delta := \Delta - a_{01}^TA_{02}a_{21}$$

$$\left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \\ \end{array}\right) \leftarrow \left(\begin{array}{c|c} A_{00} & a_{01} & A_{02} \\ \hline a_{01}^T & \alpha_{11} & a_{12}^T \\ \hline A_{02}^T & a_{12} & A_{22} \\ \end{array}\right)$$
endwhile

Algorithm:
$$\dot{t} := \frac{1}{6}\Gamma(A^3)$$
 $A \to \left(\begin{array}{c|c|c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{array}\right)$

where A_{BR} is a 0×0 matrix

while $m(A_{TL}) < m(A)$ do

$$\left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{array}\right) \to \left(\begin{array}{c|c} A_{00} & a_{01} & A_{02} \\ \hline a_{01}^T & \alpha_{11} & a_{12}^T \\ \hline A_{02}^T & a_{12} & A_{22} \end{array}\right)$$

where α_{11} is a 1×1 matrix

Algorithm 5 Algorithm 6

 $\Delta := \Delta + \frac{1}{2}a_{01}^T A_{00}a_{01} \quad \Delta := \Delta + a_{01}^T A_{02}a_{21}$

Algorithm 7 Algorithm 8

 $\Delta := \Delta + \frac{1}{2}a_{12}^T A_{22}a_{12} \quad \Delta := \Delta + \frac{1}{2}a_{12}^T A_{22}a_{12}$
 $\Delta := \Delta - a_{01}^T A_{02}a_{21}$

$$\left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c} A_{00} & a_{01} & A_{02} \\ \hline a_{01}^T & \alpha_{11} & a_{21}^T \\ \hline A_{02}^T & a_{21} & A_{22} \end{array}\right)$$

endwhile

Algorithm: $\tilde{\Delta} := \frac{1}{6}\Gamma(\hat{A}^3)$				
$A ightharpoonup \left(egin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				
while $m(A_{TL}) < m(A)$ denoted by $\left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} - & - & - \\ \hline - & - & - \end{array}\right)$				
where α_{11} is a 1×1 n Algorithm 1	Algorithm 2			
$\Delta := \Delta + rac{1}{2} a_{01}^T A_{00} a_{01}$ $ \hline $	$\Delta := \Delta + a_{01}^{2}A_{02}a_{21}$ Algorithm 4			
$egin{array}{l} \Delta := \Delta + rac{1}{2} a_{01}^T A_{00} a_{01} \ \Delta := \Delta + rac{1}{2} a_{12}^T A_{22} a_{12} \ \Delta := \Delta - a_{01}^T A_{02} a_{21} \end{array}$	$\Delta := \Delta + rac{1}{2} a_{12}^T A_{22} a_{12}$			
$\begin{pmatrix} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} -1 & -1 \\ \hline -1 & -1 \end{pmatrix}$ endwhile	$egin{array}{ c c c c c c c c c c c c c c c c c c c$			

Algorithm: $\tilde{\Delta} := \frac{1}{6}\Gamma(\hat{A}^3)$					
$A o \left(egin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{array} ight)$					
(111)	(111 210)				
where A_{TL} is a 0×0 r					
while $m(A_{TL}) < m(A)$ d	4				
$\begin{pmatrix} A_{TL} & A_{TR} \end{pmatrix} $	$\begin{bmatrix} A_{00} & a_{01} & A_{02} \\ a^T & a_{01} & a^T \end{bmatrix}$				
$\left(\begin{array}{c c} A_{TR}^T & A_{BR} \end{array} \right) \stackrel{ ightarrow}{ ightarrow} \left(- \right)$	$\frac{a_{01}}{A^T}$ $\frac{\alpha_{11}}{\alpha_{12}}$				
$egin{pmatrix} A_{TL} & A_{TR} \ A_{TR} & A_{BR} \end{pmatrix} ightarrow egin{pmatrix} A_{00} & a_{01} & A_{02} \ \hline a_{01}^T & a_{11} & a_{12}^T \ \hline A_{02}^T & a_{12} & A_{22} \end{pmatrix} \ ext{where} lpha_{11} ext{ is a } 1 imes 1 ext{ matrix} $					
Algorithm 1	Algorithm 2				
12.801101111 2	B				
$\Delta := \Delta + rac{1}{2} a_{01}^T A_{00} a_{01}$	$\Delta := \Delta + a_{01}^T A_{02} a_{21}$				
Algorithm 3	Algorithm 4				
$\Delta := \Delta + rac{1}{2} a_{01}^T A_{00} a_{01}$	$\Delta := \Delta + rac12 a_{12}^T A_{22} a_{12}$				
$\Delta := \Delta + rac{1}{2} a_{01}^T A_{00} a_{01} \ \Delta := \Delta + rac{1}{2} a_{12}^T A_{22} a_{12} \ $					
$\Delta := \Delta + rac{2}{2} rac{a_{12}a_{12}a_{12}}{A_{02}a_{21}}$					
	A_{00} a_{01} A_{02}				
$\begin{pmatrix} A_{TL} & A_{TR} \\ & & & \end{pmatrix} \leftarrow \begin{pmatrix} - & & & \\ & & & & \end{pmatrix}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} \\ \hline \end{array}\right)$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$				
endwhile	02 12 22 /				

Algorithm: $\tilde{\Delta} := \frac{1}{6}\Gamma(\hat{A}^3)$				
$A o \left(egin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{RR} \end{array} \right)$				
(I R BIL)				
while $m(A_{TL}) < m(A)$ de	where A_{TL} is a 0×0 matrix			
$\left(\begin{array}{c c}A_{TL}&A_{TR}\end{array}\right) \rightarrow \left(\begin{array}{c c}\bullet\end{array}\right)$	$\frac{a_{01}^T}{a_{01}^T} = \frac{\alpha_{11}}{a_{12}^T}$			
$\left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} \hline \\ \hline \end{array}\right)$	$\frac{a_{01}}{A_{02}^T} \left(\begin{array}{c c} a_{11} & a_{12} \\ \hline A_{22} & A_{22} \end{array} \right)$			
where α_{11} is a 1×1 matrix				
Algorithm 1	Algorithm 2			
$\Delta := \Delta + rac{1}{2} a_{01}^T A_{00} a_{01}$	$\Delta := \Delta + a_{01}^T A_{02} a_{21}$			
Algorithm 3	Algorithm 4			
$egin{array}{l} \Delta := \Delta + rac{1}{2} a_{01}^T A_{00} a_{01} \ \Delta := \Delta + rac{1}{2} a_{12}^T A_{22} a_{12} \ \Delta := \Delta - a_{01}^T A_{02} a_{21} \end{array}$	$\Delta := \Delta + rac{1}{2} a_{12}^T A_{22} a_{12}$			
$\left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} \hline \end{array}\right)$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$			
endwhile				

Algorithm: $\tilde{\Delta} := \frac{1}{6}\Gamma(\hat{A}^3)$					
$A o \left(egin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{RR} \end{array} \right)$					
(InDit)	(I R BIL)				
where A_{TL} is a 0×0 r					
while $m(A_{TL}) < m(A)$ d					
$\begin{pmatrix} A_{TL} & A_{TR} \end{pmatrix}$	A_{00} a_{01} A_{02}				
$\left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{array}\right) \to \left(\begin{array}{c c} \\ \hline \end{array}\right)$	$\begin{bmatrix} a_{01} & \alpha_{11} & a_{12} \\ A^T & a_{12} & A_{22} \end{bmatrix}$				
where α_{11} is a 1×1 matrix					
Algorithm 1	Algorithm 2				
1118011111111	11.601111111 =				
$\Delta := \Delta + rac{1}{2} a_{01}^T A_{00} a_{01}$	$\Delta := \Delta + a_{01}^T A_{02} a_{21}$				
A1	Almanial man				
Algorithm 3	Algorithm 4				
$\Delta := \Delta + rac{1}{2} a_{01}^T A_{00} a_{01}$	$\Delta := \Delta + rac{1}{2}a_{12}^TA_{22}a_{12}$				
$\Delta := \Delta + rac{1}{2} a_{12}^T A_{22} a_{12} \ igg $					
$\Delta := \Delta - ilde{a}_{01}^T A_{02} a_{21}$					
$\begin{pmatrix} A_{TL} & A_{TR} \end{pmatrix} \leftarrow \begin{pmatrix} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{pmatrix} A_{TL} & A_{TR} \\ A_{TR}^T & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ \hline a_{01}^T & \alpha_{11} & a_{12}^T \\ \hline A_{02}^T & a_{12} & A_{22} \end{pmatrix}$					
endwhile					

Algorithm: $\tilde{\Delta} := \frac{1}{6}\Gamma(\hat{A}^3)$					
$A ightharpoonup \left(egin{array}{c c} A_{TL} & A_{TR} \ \hline A_{TR} & A_{BR} \end{array} ight)$					
while $m(A_{TL}) < m(A)$ de	where A_{TL} is a 0×0 matrix while $m(A_{TL}) < m(A)$ do				
$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{array}\right) \to \left(\begin{array}{c c} \hline \end{array}\right) $					
where α_{11} is a 1×1 matrix					
Algorithm 1	Algorithm 2				
$\Delta := \Delta + rac{1}{2} a_{01}^T A_{00} a_{01}$	$\Delta := \Delta + a_{01}^T A_{02} a_{21}$				
Algorithm 3	Algorithm 4				
$egin{array}{l} \Delta := \Delta + rac{1}{2} a_{01}^T A_{00} a_{01} \ \Delta := \Delta + rac{1}{2} a_{12}^T A_{22} a_{12} \ \Delta := \Delta - a_{01}^T A_{02} a_{21} \end{array}$	$\Delta := \Delta + rac{1}{2} a_{12}^T A_{22} a_{12}$				
$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{array} \right) \leftarrow \left(\begin{array}{c c c} A_{00} & a_{01} & A_{02} \\ \hline a_{01}^T & \alpha_{11} & a_{12}^T \\ \hline A_{02}^T & a_{12} & A_{22} \end{array} \right) $ endwhile					

FLAME API

• Index-free API for implementing derived algorithms

$$\begin{pmatrix} A_{TL} & A_{TR} \\ \hline A_{TR}^T & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ \hline a_{01}^T & \alpha_{11} & a_{12}^T \\ \hline A_{02}^T & a_{12} & A_{22} \end{pmatrix}$$

where α_{11} is a 1×1 matrix

Separation of implementation and algorithm concerns

Extension to the FLAME API

- Existing API supports only dense matrices
- Introduced
 - Support for sparse matrices (CSR)
 - Additional function, dist_to_nonzero_column
 - Conceptually treat sparse matrices as dense
 - Each "dense" block has only one non zero column
 - Returns blocking parameter to the next non zero

Datasets

- Datasets
 - Graph Challenge website
 - Stanford Large Network Dataset (SNAP)
 - Directed graphs were made undirected

Dataset	Nodes	Edges	Triangles
soc-Epinions1	75,879	508,837	1,624,481
Amazon0601	403,394	3,387,388	3,986,507
loc-gowalla	196,591	950,327	2,273,138
Cit-Patents	3,774,768	16,518,948	7,515,023
Com-Friendster	65,608,366	1,806,067,135	4,173,724,142

Performance

Execution Time (s)

Sequential Performance on Intel i7 E5-2667 v 3 Haswell , 3.2GHz

Summary

- A family of formally derived algorithms for computing triangles in a graph
- First extension of the FLAME methodology beyond DLA
- API to support CSR format
- To do:
 - Analyze graph features that determine performance of algorithm
 - Reduce overhead of indexing functions

Questions?

Acknowledgement

This research was supported in part by NSF Award ACI 1550486. Any opinions, findings conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.