ST5215 Advanced Statistical Theory, Lecture 15

HUANG Dongming

National University of Singapore

8 Oct 2020

1/23

Overview

Last time

- Fisher's Information
- Cramér-Rao Lower Bound

Today

- Convergence modes
- Stochastic orders

Convergence modes

In statistics, we often need to assess the quality of an estimator by its asymptotic convergence rate

- A good estimator should become closer to the true quantity as we collect more and more data
- ullet e.g., \overline{X} gets closer to μ if n increases
- In math language, \overline{X} converges to μ "in some sense"
- How to define "convergence" properly?

There are at least four popular definitions of "convergence" in probability

- almost sure convergence (or convergence with probability 1)
- convergence in probablity
- \odot convergence in L^p
- onvergence in distribution (also called weak convergence)

Almost sure convergence

Definition

We say a sequence of random elements X_1, X_2, \ldots converges almost surely to a random element X, denoted by $X_n \stackrel{a.s.}{\to} X$ if

$$P\left(\lim_{n\to\infty}X_n=X\right)=1. \tag{1}$$

• Notation: $P(\lim_{n\to\infty} X_n = X)$ is a shorthand of the following

$$P\left(\left\{\omega\in\Omega: \lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right) \tag{2}$$

4/23

- Note that is a type of pointwise convergence, but allow an exceptional set of probability zero
- Note that we assume a common probability space (Ω, \mathcal{F}, P) for X, X_1, \ldots

How to show almost sure convergence in practice?

• Useful equivalence: (Lemma 1.4 in JS) $X_n \xrightarrow{a. s.} X$ if and only if for every $\epsilon > 0$,

$$\lim_{n\to\infty} P\left(\bigcup_{m=n}^{\infty} \{|X_m - X| > \epsilon\}\right) = 0$$

Borel-Cantelli lemma

Definition (Infinitely often)

- Let $\{A_n\}_{n=1}^{\infty}$ be an infinite sequence of events
- For an outcome $\omega \in \Omega$, we say the events in the sequence $\{A_n\}_{n=1}^{\infty}$ happen "infinitely often" if A_n happens for an infinite number of indices n.
- $\{A_n \ i.o.\} = \{\omega \in \Omega : \omega \in A_n \ \text{for an infinite number of indices } n\}$ is the collection of outcomes that make the events in the sequence $\{A_n\}_{n=1}^{\infty}$ happen infinitely often.

If $\{A_n \ i.o.\}$ happens, then infinitely many of $\{A_n\}_{n=1}^{\infty}$ happen

$$\{A_n \ i.o.\} = \bigcap_{n \ge 1} \bigcup_{j > n} A_j \equiv \limsup_{n \to \infty} A_n \tag{3}$$

This also shows that $\{A_n i.o.\}$ is measurable

Lemma (First Borel-Cantelli)

For a sequence of events $\{A_n\}_{n=1}^{\infty}$, if $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(A_n \ i.o.) = 0$.

- Intuition: because $\sum_{n=1}^{\infty} P(A_n) < \infty$, $P(A_n)$ must be very small for large n, and we cannot find a sufficiently number of ω that make infinitely many A_n happen
- By the continuity of measures, $P(A_n \ i.o.) = \lim_n P(\bigcup_{i>n} A_i)$
- By the subadditivity of measures, $P(\bigcup_{j \ge n} A_j) \le \sum_{j \ge n} P(A_j)$
- But $\sum_{n=1}^{\infty} P(A_n) < \infty$ implies $\sum_{j \ge n} P(A_j) \to 0$ as $n \to \infty$.

Lemma (Second Borel-Cantelli)

For a sequence of pairwisely independent events
$$\{A_n\}_{n=1}^{\infty}$$
, if $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(A_n \ i.o.) = 1$.

- This results is useful to show a sequence happens infinitely often
- A weaker version assumes that the events A_n 's are independent, whose proof is simple:

$$P(\bigcup_{n\geq 1} \bigcap_{j\geq n} A_j^c) = \lim_n P(\bigcap_{j\geq n} A_j^c) = \lim_n P(\bigcap_{n\leq j\leq m} A_j^c)$$

$$= \lim_n \lim_m \prod_{m \leq j\leq m} P(A_j^c)$$

$$= \lim_n \lim_m \prod_{m \leq j\leq m} [1 - P(A_j)]$$

$$(\because 1 - t \leq e^{-t}) \leq \lim_n \lim_m \prod_{m \leq j\leq m} \exp[-P(A_j)]$$

$$= \lim_n \lim_m \exp[-\sum_{n\leq j\leq m} P(A_j)] = 0$$

Theorem

Let X and X_1, X_2, \ldots are defined on a common probability space. For a constant $\epsilon > 0$, define the sequence of events $\{A_n(\epsilon)\}_{n=1}^{\infty}$ to be $A_n(\epsilon) = \{\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon\}$. If $\sum_{n=1}^{\infty} P\{A_n(\epsilon)\} < \infty$ for all $\epsilon > 0$, then $X_n \stackrel{a.s.}{\to} X$.

- According to the first Borel-Cantelli lemma, $P(A_n(1/k) i.o.) = 0$, for any $k \in \mathcal{N}$
- Therefore

$$0 = P\left(\bigcup_{k \ge 1} \bigcap_{n \ge 1} \bigcup_{j \ge n} A_j(1/k)\right) \tag{4}$$

• For any ω not in the event in the last display, we have that for all $k \in \mathcal{N}$, there exists some $n \in \mathcal{N}$ such that for all $j \geq n$, $|X_j(\omega) - X(\omega)| \leq \frac{1}{k}$; in other words, $X_n(\omega) \to X(\omega)$

Convergence in L^p

- In statistics, we expect the mean squared error (MSE) of a good estimator to become small as *n* increases
- More generally, we can consider convergence in L^p for p > 0
- L^p -norm of X: $(E|X|^p)^{1/p}$ (for $p \ge 1$)

Definition

A sequene $\{X_n\}_{n=1}^{\infty}$ of random variables converges to a random variable X in the L^p sense for some p>0 if $E|X|^p<\infty$ and $E|X_n|^p<\infty$, and

$$\lim_{n\to\infty} E|X_n - X|^p = 0. (5)$$

- Denoted by $X_n \stackrel{L^p}{\to} X$
- This is not a pointwise convergence
- For L^2 , it is also called convergence in mean square
- By Lyapunov's inequality, if 0 < q < p, convergence in L^p sense implies convergence in L^q sense

Convergence in probability

Definition

A sequene $\{X_n\}_{n=1}^{\infty}$ of random variables converges to a random variable X in probability if for all $\epsilon > 0$,

$$\lim_{n\to\infty} P(|X_n - X| > \epsilon) = 0, \tag{6}$$

denoted by $X_n \stackrel{P}{\to} X$.

- Convergence in probability is weaker than almost sure convergence
- But it is not that weak: If $X_n \overset{P}{\to} X$, then there is a subsequence $\left\{X_{n_j}, j=1,2,\ldots\right\}$ such that $X_{n_i} \overset{\text{a.s.}}{\to} X$ as $j \to \infty$

Convergence in distribution

• In statistics, we often need to show that the centralized sample mean of i.i.d. sample $\sqrt{n}(\overline{X}-EX_i)$ is approximately distributed as $N(0, \operatorname{Var}(X_i))$ if n is large

Definition

A sequene $\{X_n\}_{n=1}^{\infty}$ of random variables converges to a random variable X in distribution (or in law or weakly), if

$$\lim_{n \to \infty} F_n(x) = F(x) \tag{7}$$

for every $x \in \mathcal{R}$ at which F is continuous, where F_n and F are CDF of X_n and X, respectively. Denoted by $X_n \stackrel{D}{\to} X$ or $F_n \Rightarrow F$

Suppose $\{X_n\}_{n=1}^{\infty}$ is a sequence of i.i.d. sample from $N(\mu, \sigma^2)$. Consider $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$.

- Show that $rac{\sqrt{n}(ar{X}_n-\mu)}{\sigma}\stackrel{D}{ o} Z$, where $Z\sim \mathit{N}(0,1)$
- Prove $\bar{X}_n \stackrel{*}{\to} \mu$ where * could be P, L_2 , or a.s.

Relations between Convergence Modes

We have the following relations between different modes of convergence

Other relations

- If $X_n \stackrel{D}{\to} c$ for a constant c, then $X_n \stackrel{P}{\to} c$. In general, convergence in distribution does not imply convergence in probability
- If $X_n \overset{\mathsf{P}}{\to} X$, then there is a subsequence $\left\{X_{n_j}, j=1,2,\ldots\right\}$ such that $X_{n_j} \overset{\mathsf{a.s.}}{\to} X$ as $j \to \infty$
- Suppose that $X_n \stackrel{\mathrm{D}}{\to} X$. Then, for any r > 0

$$\lim_{n\to\infty} E|X_n|^r = E|X|^r < \infty$$

if and only if $\{|X_n|^r\}$ is uniformly integrable in the sense that

$$\lim_{t\to\infty}\sup_{n}E\left(\left|X_{n}\right|^{r}I_{\left\{\left|X_{n}\right|>t\right\}}\right)=0$$

H.D. (NUS)

ST5215. Lecture 15

Find examples to show why the converse of each of the relationship in the diagram on last slide is false.

- Note that $X_n \stackrel{\mathrm{D}}{\to} X$ is a weak mode, since it does not even require $\{X_n\}$ and X to be defined on the same probability space
- However, we can construct a duplicate of $(X, X_1, ...,)$ such that the a.s. convergence holds

Theorem (Skorohod's theorem)

If $X_n \stackrel{D}{\to} X$, then there are random vectors Y, Y_1, Y_2, \ldots defined on a common probability space such that

$$P_{Y_n}=P_{X_n}, n=1,2,\ldots,\ P_Y=P_X$$
, and $Y_n\stackrel{a.s.}{
ightarrow} Y$

- This result is useful because $Y_n \stackrel{\text{a.s.}}{\to} Y$ is a strong statement
- Proof in Theorem 25.6 in Probability and Measure by P. Billingsley
- The high-level idea is simple:
 - **1** Let $\Omega = (0,1)$, $\mathcal{F} = \mathcal{B} \cap \Omega$, and P is the Lebesgue on Ω
 - ② The *inverse* of a CDF F is defined as $F^-(\omega) = \inf\{x \in \mathcal{R} : \omega \leq F(x)\}$
 - **3** Define $Y(\omega) = F_X^-(\omega)$ and $Y_n(\omega) = F_{X_n}^-(\omega)$
 - We can show $Y_n \stackrel{\mathcal{D}}{=} X_n$ and $Y \stackrel{\mathcal{D}}{=} X$
 - **5** We can show that $Y_n(\omega) \to Y(\omega)$ for almost every $\omega \in \Omega$

Stochastic order

In calculus, for two sequences of real numbers, $\{a_n\}$ and $\{b_n\}$

- $a_n = O(b_n)$ iff $|a_n| \le c|b_n|$ for a constant c and all n
- $a_n = o(b_n)$ iff $a_n/b_n \to 0$ as $n \to \infty$

For two sequences of random variables, $\{X_n\}$ and $\{Y_n\}$, we have similar notations

- $X_n = O_{a.s.}(Y_n)$ iff $P\{|X_n| = O(|Y_n|)\} = 1$
 - ▶ in other words, there is a subset $A \subset \Omega$ such that P(A) = 1, and for each $\omega \in A$, there exists a constant c (depending on ω), and for all n, $|X_n(\omega)| \le c|Y_n(\omega)|$
- $X_n = o_{a.s.}(Y_n)$ iff $X_n/Y_n \stackrel{a.s.}{\to} 0$
- $X_n = O_P(Y_n)$ iff, for any $\epsilon > 0$, there exist a constant $C_{\epsilon} > 0$ and $n_0 \in \mathcal{N}$ such that

$$\sup_{n\geq n_0} P(\{\omega\in\Omega: |X_n(\omega)|\geq C_\epsilon |Y_n(\omega)|\})<\epsilon \tag{8}$$

- ▶ If $X_n = O_P(1)$, we say $\{X_n\}$ is bounded in probability
- $X_n = o_P(Y_n)$ iff $X_n/Y_n \stackrel{P}{\to} 0$

Some properties

- if $X_n = O_P(Y_n)$ and $Y_n = O_P(Z_n)$, then $X_n = O_P(Z_n)$
- if $X_n = O_P(Z_n)$, then $X_n Y_n = O_P(Y_n Z_n)$
- if $X_n = O_P(Z_n)$ and $Y_n = O_P(Z_n)$, then $X_n + Y_n = O_P(Z_n)$

The above properties also hold for $O_{a.s.}$

- If $X_n \stackrel{D}{\to} X$ for a random variable, then $X_n = O_P(1)$
- If $E|X_n|=O(a_n)$, then $X_n=O_P(a_n)$; If $E|X_n|=o(a_n)$, then $X_n=o_P(a_n)$:use Markov's inequality $P(|X|>a)\leq E|X|/a$

Tutorial

Assume the conditions in Cramér-Rao lower bound hold and $\Theta \subset \mathcal{R}$.

① Suppose T is an estimator of $g(\theta)$ with bias $b(\theta)$ and b is differentiable. Prove

$$Var(T) \ge \frac{(g'(\theta) + b'(\theta))^2}{I(\theta)}$$
 (9)

② Show that for any fixed θ , there exists a random variable T such that $ET = g'(\theta)$ and Var(T) attains the Cramér-Rao lower bound if and only if

$$T = \left[\frac{g'(\theta)}{I(\theta)}\right]^2 \frac{\partial}{\partial \theta} \log f_{\theta}(X) + g(\theta) \tag{10}$$

3 Show that there exists an unbiased estimator T(X) of $g(\theta)$ such that Var(T) attains the Cramér-Rao lower bound if and only if

$$f_{\theta}(X) = \exp[\eta(\theta)T(x) - \xi(\theta)]h(x), \tag{11}$$

where $\xi(\theta)$ and $\eta(\theta)$ are differentiable functions such that $\xi'(\theta) = g(\theta)\eta'(\theta)$ and $I(\theta) = \eta'(\theta)g'(\theta)$

Suppose T is an estimator of $g(\theta)$ with bias $b(\theta)$ and b is differentiable. Prove

$$Var(T) \ge \frac{\left(g'(\theta) + b'(\theta)\right)^2}{I(\theta)} \tag{13}$$

Solution:

- By definition of bias, we have $ET(X) = g(\theta) + b(\theta)$ for any θ
- We basically follow the same proof of the C-R lower bound until the second last step, where we replace $\frac{\partial}{\partial \theta} E[T] = g'(\theta)$ by

$$\frac{\partial}{\partial \theta} E[T] = g'(\theta) + b'(\theta) \tag{12}$$

Show that for any fixed θ , there exists a random variable T such that $ET = g(\theta)$ and Var(T) attains the Cramér-Rao lower bound if and only if

$$T = \left[\frac{g'(\theta)}{I(\theta)}\right] \frac{\partial}{\partial \theta} \log f_{\theta}(X) + g(\theta), \text{ a.s.}$$
 (14)

Solution:

"⇐":

- Under the regularity condition, $E \frac{\partial}{\partial \theta} \log f_{\theta}(X) = 0$
- $ET = g(\theta)$ and $Var(T) = \left[\frac{g'(\theta)}{I(\theta)}\right]^2 Var\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right) = \left[\frac{g'(\theta)}{I(\theta)}\right]^2 I(\theta)$, which equals to the C-R lower bound

"⇒":

- ullet Follows the proof of C-R lower bound but with T(X) replaced by T
- The covariance inequality becomes an equation $\Leftrightarrow T$ and $\frac{\partial}{\partial \theta} \log f_{\theta}(X)$ are linearly dependent
- Since $I(\theta) = \operatorname{Var}(\frac{\partial}{\partial \theta} \log f_{\theta}(X)) > 0$, we conclude that $T = a \frac{\partial}{\partial \theta} \log f_{\theta}(X) + b$, a.s., for some constants a and b
- Solve a and b using $ET = g(\theta)$ and $Var(T) = g'(\theta)^2/I(\theta)$

Show that there exists an unbiased estimator T(X) of $g(\theta)$ such that Var(T) attains the Cramér-Rao lower bound if and only if

$$f_{\theta}(X) = \exp[\eta(\theta)T(x) - \xi(\theta)]h(x), \tag{16}$$

where $\xi(\theta)$ and $\eta(\theta)$ are differentiable functions such that $\xi'(\theta) = g(\theta)\eta'(\theta)$ and $I(\theta) = \eta'(\theta)g'(\theta)$

Proof: "⇒":

We use the result in Exercise 2 to conclude that

$$T(x) = \left[\frac{g'(\theta)}{I(\theta)}\right] \frac{\partial}{\partial \theta} \log f_{\theta}(x) + g(\theta)$$
 (15)

- For any fixed x, view the last display as an ordinary differential equation about $\log f_{\theta}(x)$ a function of θ
- The solution is $\log f_{\theta}(x) = c(x) + T(x) \int_{\theta_0}^{\theta} \frac{I(\theta)}{g'(\theta)} d\theta \int_{\theta_0}^{\theta} \frac{I(\theta)}{g'(\theta)} g(\theta) d\theta$, where θ_0 is a fixed point in a neighborhood of θ
- Let $\xi(\theta) = \int_{\theta_0}^{\theta} \frac{I(\theta)}{g'(\theta)} g(\theta) d\theta$; $\eta(\theta) = \int_{\theta_0}^{\theta} \frac{I(\theta)}{g'(\theta)} d\theta$; and $h(x) = \exp[c(x)]$

Exercise 3 (Cont.)

"⇐":

- From Exercise 1 in Tutorial 9, we have $ET(X) = \frac{\xi'(\theta)}{\eta'(\theta)}$. So $ET(X) = g(\theta)$
- From that exercise, we also have

$$\operatorname{Var}(T(X)) = \frac{\xi''(\theta)}{[\eta'(\theta)]^2} - \frac{\xi'(\theta)\eta''(\theta)}{[\eta'(\theta)]^3}$$
(17)

• The C-R lower bound is $\frac{g'(\theta)^2}{I(\theta)} = \frac{g'(\theta)^2}{\eta'(\theta)g'(\theta)} = \frac{1}{\eta'} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{\xi'}{\eta'}\right)$, which equals to the RHS of the last display