Интеграл Лебега. Семинар 24.05.2020

Задача 1

Функция Дирихле D(x)=0, если $x\in\mathbb{R}\setminus\mathbf{Q}$, D(x)=1, если $x\in\mathbf{Q}$, является измеримой на [0,1]. Это простая измеримая функция. По определению

$$\int_{[0,1]} D(x) d\mu = \mu([0,1] \cap \mathbf{Q}).$$

Множество **Q**-счетно. Любое счетное подмножество в [0,1] имеет меру нуль. Поэтому $\mu([0,1]\cap \mathbf{Q})=0,\ \int_{[0,1]}D(x)d\mu=0.$

Интересно отметить, что D(x) не интегрируема по Риману, поскольку при любом разбиении Υ отрезка [0,1] калибра $\delta(\Upsilon)>0$, верхний интеграл Дарбу $W(\Upsilon)=1$, нижний интеграл Дарбу $w(\Upsilon)=0$. Разность $W(\Upsilon)-w(\Upsilon)=1$ не является бесконечно-малой при $\delta(\Upsilon)\to 0+$.

Задача 2

Произвольная измеримая функция является пределом равномерно сходящейся последовательности простых измеримых функций (гл.5, параграф 5, раздел 1, Теорема 2). Определим $f_n(x) = \frac{m}{n}$, если $\frac{m}{n} \leq f(x) < \frac{m+1}{n}$, $m \in \mathbb{Z}, n \in \mathbb{N}$. Функция $f_n(x)$ простая и последовательность $f_n(x)$ равномерно при $n \to \infty$ сходится к f(x). Пусть $0 \leq g(x) \leq f(x)$, причем обе функции измеримые, а функция f(x)-интегрируема. Докажем, что g(x)-интегрируема.

Рассмотрим последовательности $g_n(x)$, $f_n(x)$ простых функций, которые равномерно аппроксимируют функции g(x), f(x). Поскольку выполнено неравенство $0 \le g(x) \le f(x)$, то выполнено неравенство $0 \le g_n(x) \le f_n(x)$. По определению интеграла от простых функций, $\int_X g_n(x) d\mu = \sum_m \frac{m}{n} \mu(A_{n,m})$, где $A_{n,m} \subset X$ -измеримое множество точек, для которых $g_n(x) = \frac{m}{n}$, $x \in A_{n,m}$. Аналогично, $\int_X f_n(x) d\mu = \sum_k \frac{k}{n} \mu(B_{n,k})$, где $B_{n,k} \subset X$ -измеримое множество точек, для которых $f_n(x) = \frac{k}{n}$, $x \in B_{n,k}$.

Обозначим $C_{n,m,k} \subset X$ измеримое подмножество $A_{n,m} \cap B_{n,k} = C_{n,m,k}$ По построению при любом фиксированном n, если $(m,k) \neq (m',k')$, то получим: $C_{n,m,k} \cap C_{n,m',k'} = \emptyset$. Поэтому $\int_X g_n(x) d\mu \sum_{m,k} \frac{m}{n} \mu(C_{n,m,k}), \quad \int_X g_n(x) d\mu \sum_{k,m} \frac{k}{n} \mu(C_{n,k,m}).$ Справедливо неравенство: $0 \leq \frac{m}{n} \mu(C_{n,m,k}) \leq \frac{k}{n} \mu(C_{n,k,m}),$ поскольку $g(x) \leq f(x)$ и $\frac{m}{n} \leq g(x) < \frac{m+1}{n}, \frac{k}{n} \leq f(x) < \frac{k+1}{n},$ $x \in C_{n,m,k}$. Ряд $F_n = \sum_{k,m} \frac{m}{n} \mu(C_{n,k,m}) = \sum_m \frac{m}{n} \mu(A_{n,m}),$ при $n \to +\infty$ сходится к $\int_X f(x) d\mu$. Ряд $G_n = \sum_{k,m} \frac{k}{n} \mu(C_{n,k,m}) = \sum_k \frac{k}{n} \mu(C_{n,k})$ сходится (из-за равномерности аппроксимации этот ряд удовлетворяет критерию Коши с тем же значением $N = N(\varepsilon)$, что и ряд $\sum_m \frac{m}{n} \mu(A_{n,m})$. Пользуясь переходом к пределу в двойном неравенстве, заключаем, что

$$0 \le \int_X g(x)d\mu \le \int_X f(x)d\mu. \quad \Box$$

Задача 3

В задаче 2 при каждом n рассмотрим для простых функций неравенство: $g_n(x) \leq f_n(x)$ и напишем $\tilde{g}_n = g_n(x) \leq f_n(x)$: поскольку $\tilde{g}(x) = min(f(x), g(x))$ получится $\tilde{g}_n(x) = min(g_n(x), f_n(x)) = g_n(x)$.

Задача 4

Неравенство Чебышева. Пусть $\varphi(x) \ge 0, x \in A, c > 0$, тогда

$$\mu\{x: x \in A, \varphi(x) \ge c\} \le \frac{1}{c} \int_A \varphi(x) d\mu.$$

Доказали на лекции (гл. V, параграф 5, раздел 4).

Применяют в теории вероятностей. Пусть функция $p(x)dx = d\mu$ -вероятностная мера, т.е. $p(x) \ge 0$,

$$\int_{\mathbb{R}} d\mu = 1.$$

Пусть существует второй момент $\int_{\mathbb{R}} x^2 d\mu = M\xi^2$, где ξ -случайная величина с плотностью $d\mu$. Тогда $\mu\{x \in \mathbb{R} : x^2 \ge \varepsilon^2\} = P(\xi^2 \ge \varepsilon^2) = P(|\xi| \ge \varepsilon) \le \frac{M\xi^2}{\varepsilon^2}$. Здесь $P(|\xi| \ge \varepsilon) = \int_A d\mu$, $A = (-\infty, -\varepsilon) \cup (+\varepsilon, +\infty)$, $\varphi(x) = x^2$, $M\xi^2 = \int_{\mathbb{R}} x^2 d\mu$.