Stat 230. HW 6.

- 2. Lecture 13, Q7.
- 7 An equivalent form of ridge coefficient Using the Woodbury formula to show that

$$(X^{\mathrm{T}}X + \lambda I_p)^{-1}X^{\mathrm{T}}Y = X^{\mathrm{T}}(XX^{\mathrm{T}} + \lambda I_n)^{-1}Y.$$

The left-hand side involves inverting a $p \times p$ matrix, and it is more useful when p < n; the right-hand side involves inverting an $n \times n$ matrix, so it is more useful when p > n.

By Wood bury formula:

$$(\lambda T_{P} + \chi^{\mathsf{T}} \chi)^{-1} = \frac{1}{\lambda} \cdot T_{P} - \frac{1}{\lambda} T_{P} \cdot \chi^{\mathsf{T}} (T_{n} + \chi \cdot \frac{1}{\lambda} T_{P} \cdot \chi^{\mathsf{T}})^{-1} \chi \cdot \frac{1}{\lambda} T_{P}$$

$$= \frac{1}{\lambda} T_{P} - \frac{1}{\lambda^{2}} \cdot \chi^{\mathsf{T}} (T_{n} + \frac{1}{\lambda} \chi \cdot \chi^{\mathsf{T}})^{-1} \chi$$

Left =
$$\frac{1}{2}X^{T}Y - \frac{1}{2}X^{T}(I_{n} + \frac{1}{2}XX^{T})^{-1}XX^{T}Y$$

= $X^{T}(\frac{1}{2}I_{n} - \frac{1}{2}(XX^{T} + \lambda I_{n})^{-1}XX^{T})Y$

By Woodbury formula again. (from right to left)

$$= (\lambda I_n + I_n \cdot \frac{1}{2} I_n \cdot \lambda \cdot XX^T)^{-1}$$

$$= (\lambda I_n + XX^T)^{-1}$$

Hence Left = XT (> In + XXT) - Y = Right.

3. Lecture 14. Q1. Prove Lemma 1.

Lemma 1. Given b_0 and λ ,

$$\arg\min_{b\in R} \frac{1}{2} (b - b_0)^2 + \lambda |b| = \operatorname{sign}(b_0) (|b_0| - \lambda)_+$$

$$= \begin{cases} b_0 - \lambda, & \text{if } b_0 \ge \lambda, \\ 0 & \text{if } -\lambda \le b_0 \le \lambda, \\ b_0 + \lambda & \text{if } b_0 \le -\lambda, \end{cases}$$

where $sign(\cdot)$ is the sign of a real number and $(\cdot)_+ = max(\cdot, 0)$ is the positive part of a real number.

Let
$$f(b) = \frac{1}{2}(b-b_0)^2 + \lambda |b|$$

$$= (\frac{1}{2}b^2 + (-b_0 + \lambda)b + \frac{1}{2}b_0) \text{ if } b \ge 0$$

$$= (\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0) \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{1}{2}b^2 + (-b_0 - \lambda)b + \frac{1}{2}b_0 \text{ if } b < 0$$

$$\frac{\partial^2 f(b)}{\partial b^2} = 1 > 0$$

Hence when $b \ge 0$. and $b = \lambda \ge 0$. $b = b = \lambda$ minimize f(b)when b<0 and b+x<0 b=b+x minimize f(b)when bo->≤0 and bo+>≥0. b=0 minimize f(b)

That is, argmin
$$\frac{1}{2}(b-bo)^2 + \lambda |b| = \text{sign}(bo)(|bo|-\lambda)_+$$

5. Lecture 15. (21. Prove (1)

With two binary covariates $F_1, F_2 \in \{0, 1\}^n$, we can fit an OLS:

$$Y = \hat{\beta}_0 + \hat{\beta}_1 F_1 + \hat{\beta}_2 F_2 + \hat{\beta}_{12} F_1 \circ F_2 + \hat{\varepsilon},$$

where $F_1 \circ F_2$ denotes the component-wise product between the vectors F_1 and F_2 . We can show that

$$\hat{\beta}_{12} = (\bar{y}_{11} - \bar{y}_{10}) - (\bar{y}_{01} - \bar{y}_{00}),\tag{1}$$

Suppose
$$f_{ii} = f_{si} = 1$$
 and there are Ω_{ii} observations $y_{ii,i} = \hat{\beta}_0 + \hat{\beta}_i + \hat{\beta}_s + \hat{\beta}_{is} + \hat{\Sigma}_{ii,i}$

$$\frac{1}{y_{11}} = \left(\sum_{i=1}^{n_{11}} y_{1i}\right) / n_{11} = \hat{\beta_0} + \hat{\beta_1} + \hat{\beta_2} + \hat{\beta_{12}} + \left(\sum_{i=1}^{n_{11}} \hat{\xi_{11}}\right) / n_{11}$$

$$\overline{y}_{01} = \widehat{\beta}_{0} + \widehat{\beta}_{2}$$

$$\Rightarrow (\overline{y_{11}} - \overline{y_{10}}) - (\overline{y_{01}} - \overline{y_{00}}) = \hat{\beta_{12}}$$

6. Lecture 16, 66.

6 FWL Theorem in WLS Consider the WLS with weights w_i 's. Show that $\hat{\beta}_{w,2}$ in the long WLS fit

$$Y = X_1 \hat{\beta}_{w,1} + X_2 \hat{\beta}_{w,2} + \hat{\varepsilon}_w$$

equals the coefficient of $\tilde{X}_{w,2}$ in the WLS fit of \tilde{Y}_w on $\tilde{X}_{w,2}$, where $\tilde{X}_{w,2}$ are the residual vectors from the column-wise WLS of X_2 on X_1 , and \tilde{Y}_w is the residual vector from the WLS of Y on X_1 .

Suppose
$$Y = (X_1, X_2) \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \xi$$
, $Cov(\xi) = 3^2 w^{-1} = 3^2 \cdot diag(w_1, \dots, w_n)$

Let
$$Z_1 = W^{\frac{1}{2}} X_1$$
, $Z_2 = W^{\frac{1}{2}} X_2$, $Z_3 = W^{\frac{1}{2}} Y$

Hence
$$Z_3 = (Z_1, Z_2) \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \xi_2$$
, and $Cov(\xi_2) = 3^2 In$

And
$$\hat{\beta}^{ols}$$
 of this new model equals $\hat{\beta}^{wls}$ of the original model.

where
$$\widehat{Z} = (I_n - H_1) Z_2$$
, $\widehat{Z}_3 = (I_n - H_1) Z_3$,
 $H_1 = Z_1 (Z_1^T Z_1)^{-1} Z_1^T$

Hence
$$\widehat{Z}_2 = W^{\frac{1}{2}} \cdot \widehat{X}_{W_{12}}$$
 $\widehat{Z}_3 = W^{\frac{1}{2}} \cdot \widehat{Y}_{W}$.

$$\hat{\beta} = (\hat{Z}_{1}^{T} W^{-\frac{1}{2}} W W^{-\frac{1}{2}} \hat{Z}_{2}^{T})^{-1} \cdot \hat{Z}_{2}^{T} W^{-\frac{1}{2}} W W^{-\frac{1}{2}} \hat{Z}_{2}^{T}$$

$$= (\hat{Z}_{1}^{T} \hat{Z}_{2}^{T})^{-1} (\hat{Z}_{2}^{T} \hat{Z}_{2}^{T})$$

7. Lecture 16 07.

7 EHW robust covariance estimator in WLS We have shown in Section 1 that the coefficients from WLS are identical to those from OLS with transformed variables. Further show that the HCO version of EHW covariance estimators are also identical.

Suppose
$$Y = XB + \epsilon$$
, $Cov(\epsilon) = 3^2 \cdot W^{-1} = 5^2 \cdot diag(w_1^{-1}, \dots, w_{n-1}^{-1})$

Let
$$\widehat{Y} = W^{\frac{1}{2}} Y$$
, $\widehat{X} = W^{\frac{1}{2}} X$.

$$\widetilde{Y} = \widetilde{X} \beta + \widetilde{\mathcal{E}}, \quad \operatorname{Cov}(\widetilde{\mathcal{E}}) = 3^{2} \operatorname{In} \qquad \widetilde{\mathcal{E}} = W^{\frac{1}{2}} \mathcal{E}$$

Because
$$Cov(\widetilde{\Sigma}) = W^{\frac{1}{2}}(ov(\Sigma)W^{\frac{1}{2}})$$

$$V = (\widehat{X}^{\mathsf{T}}\widehat{X})^{\mathsf{T}}(\widehat{X}^{\mathsf{T}}\widehat{X}\widehat{X})(\widehat{X}^{\mathsf{T}}\widehat{X})^{\mathsf{T}}$$

$$= (X^{\mathsf{T}} \mathsf{W} \mathsf{X})^{-1} (X^{\mathsf{T}} \mathsf{W}^{\frac{1}{2}} \cdot \mathsf{Cov} (\widetilde{\mathsf{Z}}) \cdot \mathsf{W}^{\frac{1}{2}} \mathsf{X}) (X^{\mathsf{T}} \mathsf{W} \mathsf{X})^{-1}$$

=
$$(X^T W X)^{-1} (X^T W Cov(E) W X) (X^T W X)^{-1}$$

$$= \mathcal{L}_{\mathbf{Z}}(X_{\perp}MX)_{-1}(X_{\perp}MX)(X_{\perp}MX)_{-1}$$

$$= 3^{2}(X^{T}\omega X)^{-1}$$

Under HCD version.
$$\hat{S} = \text{diag}(\hat{\Sigma}_{i}^{2}) = W^{\frac{1}{2}} \text{diag}(\hat{\Sigma}_{i}^{3}) W^{\frac{1}{2}}$$

Hence
$$\hat{V} = (X^T W X)^{-1} (X^T W \operatorname{diag}(\hat{\Sigma}_i^2) W X) (X^T W X)^{-1}$$

$$= \eta^{-1} \left(n^{-1} \sum_{i=1}^{n} w_{i} \chi_{i} \chi_{i}^{T} \right)^{-1} \left(n^{-1} \sum_{i=1}^{n} w_{i}^{2} \hat{\xi}_{i}^{2} \chi_{i}^{2} \chi_{i}^{T} \right) \left(n^{-1} \sum_{i=1}^{n} w_{i} \chi_{i} \chi_{i}^{T} \right)^{-1}$$

Still identical.

	8.	Le	ctur	e i	7.	QE	5 .	Pre	ve	Th	eore	2m	١.							
Ass	sume				1															
$y_i \sim \text{Bernoulli}(q),$															(4)					
and	l									(1										
					$x_i \mid$	$y_i =$	$1 \sim N$	$\mathbb{I}(\mu_1,\Sigma)$	Ξ), :	$x_i \mid y_i$	=0	- N(μ	$_{2},\Sigma).$						(5)	
We can verify that $y_i \mid x_i$ follows a logit model as shown in the theorem below.																				
\mathbf{Th}	Theorem 1. Under (4) and (5), we have logit $\{\operatorname{pr}(y_i = 1 \mid x_i)\} = \alpha + x_i^{T}\beta$, where																			
	$\alpha = \log \frac{q}{1 - q} - \frac{1}{2} \left(\mu_1^T \Sigma^{-1} \mu_1 - \mu_0^T \Sigma^{-1} \mu_0 \right), \beta = \Sigma^{-1} \left(\mu_1 - \mu_0 \right).$																			
Bu	, ,	3au	es T	Tho	orew															
•	,	•					((.)	ת) (IA :	-17									
ŀ	⁾ (4:	i=1	χi)=	丁x	: ¥i=	1 (1	(i)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	18)	-1)	_								
		٥		1/	fx ex	_Β ζ	1 /	j χ; (`X:- /	とう) ムンT	- 	(X:	- Ц.	۲ ر							
	=	3.	1/2	TC)K Z		Γ [·	7 ,) T	~· /)		0>-			()	(v	,, \T	-		. ,
		8.1	27C)K 2	EI ex) 	子(Xi	-µJ	Ί'(Xi- <i>J</i> U	1)	+ (1-	8)	(27C)K		イーさ	(X-,	M»),	2 '()	(- _/ Uz) (
									l											
=	= -	1-4	1-	<u>g</u> .	exp	ξ <u>-</u> ί	- (11	77	U	- L	ιΤΣ	٦×-	- χ ^τ	Σ٦μ	l ₁ – N	2 ^T 2	— ⊣µ,	, + ,		
		1	(B	47	1 -	۷ ()						-	- /				+ X T		(1-7)
-			1			_									•	me l	- /\	' '	ر -	~")
]+	exf	(-((∝+	Xi ^T B)))														
la	ith	0	(=	log	<u>q</u> 1- q		7	- (X	がる	21	u	- Us	ΤΣ	·-1 L	12)					
V	-,,,,			0	`							, , ,								
		ŧ)=	Z	٦ (,	U1-	· M	2)												
_	1		(D	((1)-		., \		~	Τ, 🗸	P										
=>	100	jit	4	(A)=	=1 X	ر (ا	_=	W-	ΥXi	P										

分区 hw 的第 6 页