Fisica Appunti universitari

Luca Casadei

21 febbraio 2024

Indice

1	Introduzione e cenni di ripasso	9
	1.1 Derivata	
2	Cinematica	
4		
	2.1 Moto rettilineo	
	2.1.1 Velocità	
3	Dinamica	

Capitolo 1

Introduzione e cenni di ripasso

1.1 Derivata

Dato un punto nello spazio si può costruire qualsiasi retta che passa per quel punto nello spazio $x_0, f(x_0)$ scrivibile come equazione della retta per un punto $y - f(x_0) = m(x - x_0)$ dove m rappresenta il coefficiente angolare della retta, dove $m = \tan(\theta)$, che è la retta tangente alla curva in un determinato punto, equivalente a 0

Capitolo 2

Cinematica

Questo capitolo parla del moto dei corpi.

Punto: Se consideriamo un punto, ci interessano le sue coordinate X, Y, Znello spazia, ciascuna coordinata è una funzione nel tempo: X(t), Y(t), Z(t)per ogni istante t il punto si troverà in una certa posizione. Questo è rappresentabile anche attraverso un vettore, che ha anch'esso 3 dimensioni.

Misura: Le coordinate rappresentano una distanza da un'origine nello spa-Nel sistema di riferimento viene rappresentata una curva in forma parametrica.

2.1 Moto rettilineo

Nel moto rettilineo ho una retta che ha un verso (orientata) e il punto si muove su questa retta, determiniamo con X(t) la posizione del punto sulla retta, definito da una sola coordinata spaziale. Questa funzione è detta legge oraria.

2.1.1Velocità

Se il corpo si sta spostando per come lo osservo, prendendo due istanti diversi t_1, t_2 il corpo è in posizioni diverse X_1, X_2 , possiamo definire la velocità media come: $V_m = \frac{\Delta_x}{\Delta_t} = \frac{X_2 - X_1}{t_2 - t_1}$. Questa si basa su dei Δ macroscopici, se t_2 si avvicina a t_1 , il Δ diventa

sempre minore e il limite rappresenta effettivamente la derivata.

Inoltre essa è la pendenza della retta secante a quella che rappresenta il movimento, se riduco t_2 fino ad arrivare a t_1 ottengo la **velocità istantanea**. Vediamo quindi come arrivare a questa velocità: se consideriamo il coefficiente angolare $m_{sec} = \frac{f(x_0+h)-f(x_0)}{x_0+h-x_0} \Rightarrow \frac{(x_0+h)-f(x_0)}{h}$ come si può notare questo è il rapporto incrementale che dobbiamo utilizzare per ottenere questa volta la velocità istantanea (quindi in un istante), che è rappresentata dal coefficiente angolare della retta tangente al punto dell'istante di nostro interesse, procediamo quindi con: $m_{tg} = \lim_{h\to 0} \left(\frac{f(x_0+h)-f(x_0)}{h}\right) = \frac{df}{dx}(x_0) = \lim_{\Delta t\to 0} \left(\frac{\Delta x}{\Delta t}\right) = v_{ist}$ come si può vedere ho ottenuto la derivata, con la quale posso calcolare la velocità in un certo istante.

Classificazione delle velocità in base al grafico della funzione

- No moto: Se la funzione è costante, la retta è parallela all'asse delle ascisse e non abbiamo quindi alcun movimento.
- Velocità costante: Se la funzione è una retta e non presenta curve (velocità costante), la sua derivata è semplicemente la retta tangente di tutti i suoi punti, la cui pendenza è 0. In questo caso $v_0 = v$ costante.
- Velocità non costante: Nel caso in cui la velocità cambia nel tempo (ad esempio se cresce sempre all'aumentare del tempo), allora si avrà una curva e non una retta, cosa che invece abbiamo se si tratta di moto uniformemente accelerato.

Possiamo notare che matematicamente per arrivare alla velocità considerando le 3 coordinate di un punto è che: $X = A + B(t) + C(t^2) \Rightarrow v = B + C(t)$.

Ricavare la legge oraria dalla velocità

Ovviamente si può ricavare X(t) facendo l'integrale di v(t), che è il contrario della derivata, con qualche accorgimento. Devo infatti prestare particolarmente attenzione al fatto che l'integrale da fare è quello definito, quindi descritto da un intervallo.

Possiamo effettuare la seguente trasformazione:

$$\frac{dx}{dt} = v(t) \Rightarrow
dx = v(t)dt \Rightarrow
\int_{x_0}^x (dx') = \int_{t_0}^t (v(t')dt') \Rightarrow
x - x_0 = \int_{t_0}^t (v(t')dt') \Rightarrow
x = x_0 + \int_{t_0}^t (v_0(dt')) \Rightarrow x(t) = x_0 + v_0(t - t_0)$$

Quando abbiamo un movimento di un corpo e dobbiamo sapere la sua posizione a seguito di una certa velocità, dobbiamo sapere da dov'è partito, quindi un'istante di tempo che ci dica dove sia all'inizio, per questo nella formula compare x_0 , dato che l'integrale è definito questo è il punto come consideriamo come quello di partenza, che tipicamente prendiamo come 0. Passare invece dalla legge oraria alla velocità non richiede nessun parametro aggiuntivo.

Capitolo 3

Dinamica

Perché un corpo si muove in un determinato modo?