项目进度管理(PERT/CPM)

- 1.AON/AOA型网络图
- 2.时间计算
- 3.时间成本平衡

绘制网络图

□ 网络图的绘制主要是依据项目工作关系表, 通过网络图的形式将项目工作关系表达出 来,主要有两种方式:

- 单代号网络计划图
- 双代号网络计划图

几种工作关系的表达(1)

□ A工作是B工作的紧前工作,或B是A的紧后工作

示例

口单代号网络计划

示 例

□双代号网络计划

几种工作关系的表达(2)

□多个紧前紧后工作情况

几种工作关系的表达(3) ——虚工作的引入

假设A工作完成之后C工作可以开始,A、B两工作完成之后D工作才可以开始,如何表达?

几种工作关系的表达(3)

——搭接关系的表达

□ 搭接关系一般用单代号网络表示

单代号网络图逻辑关系表达方法

工作关系描述	图示
A工作是B工作的 紧前工作	(A) B
D工作是B工作、C 工作的紧后工作	B D
B工作是D工作、C 工作的紧前工作	B D C
A工作是C工作的紧 前工作,C、D工作 是B的紧后工作	A C D

单代号网络图中节点的表达方法

 工作编号

 工作名称

 持续时间

单代号网络计划时间参数的标注形式

单代号网络计划时间参数的标注形式

- a)单代号网络计划时间参数的圆圈标注形式
- b) 单代号网络计划时间参数的矩阵形式标注

双代号网络图逻辑关系表达方法

序号	工作之间的逻辑关系	表示方法
1	A、B、C平行进行	A B C
2	A完成后, D才能开始; A、B均完成后, B才能开始; A、B、 C均完成后, F才能开始	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

双代号网络图逻辑关系表达方法

3	A、B均完成后,D才能开始; A、B、C均能开始; A、B、C均完成后,E才能开始; D、E完成后,F才能开始	
4	A结束后,B、C、D 才能开始;B、C完成 后,E才能开始	$\begin{array}{c c} & B \\ & C \\ & C \\ & D \\ & D \\ & \end{array}$

双代号网络图逻辑关系表达方法

网络图绘制案例讨论

—某软件系统开发网络图绘制

序号	工作名称	紧前工作
1	问题界定	
2	研究现有系统	1
3	确定用户需求	1
4	逻辑系统设计	3
5	实体系统设计	2
6	系统开发	4,5
7	系统测试	6
8	转换数据库	4,5
9	系统转换	7,8

网络图绘制案例讨论(续)

- □ 假设上述工作关系中,存在如下搭接关系:
 - "3.确定用户需求"工作开始4天之后,"4.逻辑系统设计"工作才可以开始。
 - "7.系统测试"工作完成6天之后"9.系统转换"工作 才可以完成。

在网络图中如何表示上述信息呢?

网络图绘制的基本原则

$\overline{}$	正确表达项目各工作间的逻辑关系
	不允许当现循环回路
	线节点之间严禁出现带双向箭头或无箭头的连
	严禁出现无箭头节点或无箭尾节点的箭线
	网络图中,只能有一个起始节点和终止节点
	网络图中不允许出现中断的线路
	箭线应避免交叉,不能避免时,采用过桥法
	箭线采用直线或折线,避免采用圆弧线
	非时间坐标网络图,箭线的长短与所表示工作的持续时间无关
	箭线方向应从左向右趋势,顺着项目进展方向
	双代号网络图中节点必须编号,不能重复,新尾节点标号小于箭
	头节点标号,标号可采用连续或非连续编号的方式
	网络图要条理清楚、布局合理、结构整齐
	大型复杂项目网络图可分成几部分画在几张图纸上,分断处选择
	箭头与节点较少的位置,且要重复标出被切断处的节点标号

案例讨论一绘制网络图

序号	工作代号	工作名称 紧前工作		延续时间
1	A	拆开 一		2
2	В	准备清洗材料	准备清洗材料	
3	С	电器检查	A	2
4	D	仪表检查	仪表检查 A	
5	E	机械检查	A	2
6	F	机械清洗组装	B,E	4
7	· 文 10 10 10	· · · · · · · · · · · · · · · · · · ·		2
8	H	仪表校准	D	

公路桥项目工序一览表

紧前工序	工序编号	工序名称	工序所需要时间
	, , ,, ,	, , , , ,	, , , , , , , , , , , , , , , , , , ,
	A	#1桥墩和路面开挖	5
A	В	#2桥墩和路面开挖	5
G	C	#1桥墩回填	5
С, Н	D	#2桥墩回填	5
A	Е	#1桥墩打桩	4
B, E	F	#2桥墩打桩	5
Е	G	#1墩身砼	21
F, G	Н	#2墩身砼	21
G	G'	#1墩顶二期砼与支承板	$\tilde{\zeta}$ 28
Н	Н'	#2墩顶二期砼与支承板	$\tilde{\zeta}$ 28
C, G', H'	I	安装钢梁	3
I	J	桥面砼	26
D, J	K	栏杆、油漆、等装饰	18

网络图

确定工作时间的主要方法

③单一时间估计法:

估计一个最可能工作实现时间,对应 于CPM网络

④三个时间估计法:

估计工作执行的三个时间,乐观时间o、 悲观时间P、最大可能估计时间m,对应于 PERT网络

期望时间 $\mu = (o+4m+P)/6$

PERT的三种计算方法

期望时间 $\mu = (o+4m+P)/6$

$$\sigma^2 = \left(\frac{p-o}{6}\right)^2$$

表8.4 科信建筑公司项目中每一个活动的均值和方差

活动	乐观估计时间o	最大可能时间m	悲观估计时间p	均值 μ = (o+4m+P)/6	
A	1	2	3	2	1/9
В	2	3. 5	8	4	1
С	6	9	18	10	4
D	4	5. 5	10	6	1
Е	1	4.5	5	4	4/9
F	4	4	10	5	1
G	5	6. 5	11	7	1
Н	5	8	17	9	4
Ι	3	7.5	9	7	1
J	3	9	9	8	1
K	4	4	4	4	0
L	1	5. 5	7	5	1
M	1	2	3	2	1/9
N	5	5. 5	9	6	4/9

CPM与PERT

- □ 共同点:
 - 作业间关系属肯定型的网络计划技术
- □ 主要不同点:
 - CPM在作业时间(工期)上只有一个估计值,而PERT在作业时间(工期)上有三个估计值(最乐观、最可能、最悲观)。
- □ CPM主要适用于先前具有一定经验的项目, PERT主要适用于具有不确定因素的研发类项目

示 例

□ 某一工作在正常情况下的工作时间是15天, 在最有利的情况下工作时间是9天,在最不利 的情况下其工作时间是18天,那么该工作的 最可能完成时间是多少呢?

正常工作时间:

 $t=(9+4\times15+18)/6=14.5$ 天

网络计划时间参数计算

- □最早开始时间ES
- □最早结束时间EF
- □ 最迟开始时间LS
- □最迟结束时间LF
- □总时差TF
- □自由时差FF

最早时间参数计算

- □ 最早开始时间ES ES=MAX{紧前工作的EF}
- □ 最早结束时间EF EF=ES+工作延续时间t

最早时间参数计算示例

□最早开始时间ES、最早结束时间EF

a) 以节点表示活动形式

b) 以箭头表示活动形式

最早参数时间计算示例

时间计算

最迟时间参数计算

- □ 最迟结束时间LF LF=MIN{紧后工作的LS}
- □ 最迟开始时间LS LS=LF—工作延续时间t

最迟时间参数计算

a) 用节点表示活动形式

b) 用箭头表示活动形式

最迟参数时间计算示例

最迟参数计算(练习)

总时差与自由时差

- □ 总时差是作业的LF与EF之差,是不影响整个 工期作业可机动的时间,一旦某作业占用了 一些时差,相关作业总时差就减少
- □ 总时差为零的作业是关键作业, 总时差小于 零说明不能如期完工
- □ 自由时差是一道作业不影响后续作业最早开工,作业可机动使用的时间

自由时差=后续作业ES -紧前作业ES -D

总时差计算示意图

总时差(不影响总工期,本工作的机动时间)

自由时差计算示意图

自由时差(共享)工作延续时间

本工作最早开始

紧后工作最早开始

时差(机动时间)计算

□总时差的计算 总时差=LF—EF 总时差=LS—ES 或 □ 自由时差

自由时差=min{ES(紧后工作)}

—max{LF(紧前工作)}

享

—工作时间

或 自由时差=min{ES(紧后工作)}

—ES —工作时间

共享

独

总机动时间计算(练习)

时间计算(答案)

项目主体工程工作列表

工作序号	紧后工作	工作时间	
А	B、C	6	
В	D、E	8	1。画双代号网络图 2。画单代号网络图 并计算时间参数, 标出关键路径。计 算计划工期。
С	E、F	6	
D	G	6	
E	G、H	9	
F	Н	4	
G	I	5	
Н	1	3	
	_	3	

单标号网络图

双标号网络图

