Math 560 Homework (#7, Inference of the Mean)

Problem 1. Given $\bar{x}=9.289221, s=0.8191156$ and n=10 calculate the 92% two-sided C.I. for μ .

Solution. • t^* , a statistic that follows a **t-distribution**, t(n-1=7) for C=92%, is given by

$$qt (0.96, df=7)$$
 >> 2.046011

• Hence the 92% confidence interval for μ is:

$$= \bar{x} \pm t^* \frac{s}{\sqrt{n}}$$

$$= 9.289221 \pm 2.046011(\frac{0.8191156}{\sqrt{8}})$$

$$= (8.696694, 9.881748)$$

Problem 2. StatsVillage.txt is used.

Solution. (a) The following seed is used

set . seed (19891)

(b) Here are the summary statistics for two independent SRSs

Population	Name	n	\bar{x}	s
1	North	15	3474.8	7828.715
2	South	20	7319.15	5318.922

1. Test $H_0: (\mu_1 - \mu_2) = 0$ vs. $H_a: (\mu_1 - \mu_2) < 0$

2. Test statistic:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
$$= \frac{(3474.8 - 7319.15) - 0}{\sqrt{\frac{7828.715^2}{15} + \frac{5318.922^2}{20}}}$$
$$= -1.639167$$