Demostudo

Por: Natália Bertholdo

Genética III

Roteiro de estudos	2
Conceito de Dominância	3
Ausência de Dominância	3
Pleiotropia	4
Alelos Letais	5
Polialelia	5
Sistema ABO	6
2ª Lei de Mendel	9
Determinação Sexual	12
Lista de Exercícios	13
Gabarito	16

1. Roteiro de estudos

Conteúdo: Dominância, monoibridismo, sistemas ABO, Rh, 2ª Lei de Mendel.

Sugestões para complemento:

https://exercicios.brasilescola.uol.com.br/exercicios-biologia/exercicios-sobresistema-abo.htm (exercícios sobre o sistema ABO)

https://www.youtube.com/watch?v=6-jULS4IUk4 (vídeo de resumo da Segunda Lei de Mendel)

Ações a serem tomadas:

- I. Ter estudado os materiais Genética I e II, realizado os exercícios e propostas. (Demanda conhecimento de citogenética)
- II. Ler o material abaixo
- III. Fazer a lista de exercícios
- IV. Conferir o gabarito
- V. Realizar sugestões acima

2. Conceito de Dominância

Quando se trata da relação entre os alelos, dizemos que temos uma interação entre os dominantes e recessivos. Porém, o dominante não inibe. O conceito de dominância na genética se refere à manifestação de um dos alelos. Cada um dos alelos trabalha sem depender um do outro, e quando a ação de um deles se manifesta no fenótipo, o classificamos como dominante. Não é possível diferenciar fenotípicamente um indivíduo homozigoto dominante de um heterozigoto.

No caso de uma semente de ervilha heterozigota lisa, ambos os alelos fazem seus papéis. Mas no final, o fenótipo liso ocorre porque a ação do alelo R se manifestou ao ponto de deixar a semente lisa.

3. Ausência de Dominância

Carl Correns, em 1900, após as teorias de Mendel, realizou experimentos utilizando a planta **Maravilha** (*Mirabilis jalapa*). Cruzou uma espécie pura vermelha (R1R1) e outra pura branca (R2R2). Tentando descobrir a característica dominante, encontrou apenas um resultado: todas as flores resultantes do cruzamento eram da **cor rosa**.

Essa experiência foi a descoberta da **ausência de dominância**: ocorre quando **não há relação de dominância** e recessividade entre os alelos.

- Dominância Incompleta: no caso das plantas Maravilhas, o cruzamento entre as vermelhas (R1) e as brancas (R2) resultou nas rosas (R1R2), que é um resultado intermediário. Esse tipo de ausência de dominância ocorre quando os heterozigotos apresentam um fenótipo intermediário ao fenótipo dos pais homozigotos.

Ao fazer a **autofecundação** com indivíduos da geração F_1 (rosas), obteve o sequinte resultado:

	R1	R2
R1	R1R1	R1R2
R2	R1R2	R2R2

Duas delas eram rosa (R1R2), uma era vermelha (R1R1) e a outra era branca, ou seja, a proporção fenotípica da dominância incompleta é 1:2:1. A cor intermediária pode ser explicada da seguinte maneira: numa flor com os dois alelos, o R1 é responsável pela enzima que irá produzir o pigmento vermelho. Porém, um só alelo não produz o suficiente para determinar a cor vermelha ser acentuada. Também ocorre com as Galinhas Andaluzas, raízes de rabanete e com a flor Boca-de-leão.

- Codominância: condição na qual o heterozigoto apresenta características determinadas por ambos os alelos, atuando independentemente. Esse tipo de ausência de dominância ocorre na espécie de gado Shorthorn (Figura 1).

Figura 1 - Exemplo de Codominância em gado Shorthorn

Fonte: https://www.minutobiologico.com/2018/11/genetica-codominancias-e-dominancia.html?m=1

A proporção genotípica desse caso também é **1:2:1**. No caso da codominância, os alelos irão expressar-se de maneira **independente.**

4. Pleiotropia

Um par de genes é responsável pela produção de uma proteína que gera mais de um fenótipo. Isso ocorre com os gatos siameses: eles possuem um único par de genes responsável por duas características (o formato dos olhos e a cor dos pelos).

5. Alelos Letais

São aqueles que quando se manifestam, levam à **morte** do indivíduo. **Lucien Cuénot**, no início do século XX, fez experimentos com camundongos. Ao cruzar dois animais amarelos (**dominantes**), obteve uma proporção de **2:1**. Dois nasciam amarelos e um nascia branco, diferente do que Mendel propôs anteriormente. Isso pode ser explicado pela presença de **alelos letais**, ou seja, quando o camundongo possui ambos os alelos dominantes (AA), ele **morria** antes mesmo de nascer. O alelo letal **não se expressa sozinho**, apenas em homozigose. Nos seres humanos, é o caso da **Acondroplasia**, em que o alelo dominante em dose dupla causa a morte do feto, e em heterozigose, causa o nanismo.

A **Anemia Falciforme** é considerada um **alelo recessivo letal**, e o tempo de vida dependerá da estrutura do local (tratamento), já que em vários países a idade pode variar. Os indivíduos **heterozigotos (Ss)** têm uma anemia leve, e estão **protegidos da malária**. Isso porque a doença deixa as hemácias com formato de foice, e quando o parasita consome oxigênio da célula (formato de foice), ativa os leucócitos que destruirão a célula e o parasita.

6. Polialelia

Os alelos múltiplos (polialelia) é uma herança na qual **o gene apresenta três ou mais alelos** para uma característica. Como exemplo, temos a pelagem dos coelhos. O gene possui **quatro alelos** para determinar a cor (Figura 2):

Figura 2- Representação de polialeléia. **Ordem de dominância:** $C > c^{ch} > c^{h} > c$: C (Aguti – selvagem), c^{ch} (Chinchila), c^{h} (Himalaia) e c (albino).

Fonte: https://br.pinterest.com/pin/447123069231797404/

7. Sistema ABO

Um dos casos de **alelos múltiplos**. Existem **quatro** tipos sanguíneos: **A, B, AB e O**, sendo o último, o mais comum (Figura 3). O que define a tipagem sanguínea é a **presença de um carboidrato (aglutinogênio) nas hemácias** (glóbulos vermelhos) .. Quando possuímos um aglutinogênio "**A**", temos um sangue do tipo A. E quando há o carboidrato "**B**", temos o B. Se a hemácia possuir ambos os açúcares, teremos AB, e se não houver a presença de "A" nem "b", temos o tipo O.

Figura 3 – Tipos sanguíneos

Fonte: http://bioanalise.wadeapps.com/post/1456344532-tipos-de-sangue-qual-é-o-seu

No entanto, hemácias com aglutinogênios tipo A, possuem anticorpos para combater o tipo B. Isso porque se um sangue A recebe um sangue B (considerado um "invasor", por ser diferente), terá uma reação do sistema imunológico para combater o "invasor". O sangue B irá aglutinar e formar pequenos coágulos, podendo entupir os vasos sanguíneos .

Assim como o sangue B possui anticorpos para o sangue A. Já o sangue AB, por ter ambos os aglutinogênios, não possui anticorpos. E o sangue O possui para ambos, tanto para A, quanto para B. Os anticorpos recebem o nome de Aglutininas (Figura 4).

Como o sangue AB não possui anticorpos, ele pode receber de qualquer um dos outros tipos. E o sangue O, por não possuir antígeno, pode doar para todos (Figura 5).

Figura 4 – Representação dos anticorpos

Grupo sanguíneo	A	В	AB	0
Hemácia				
Antígenos (aglutinogênios)	antígeno A	ntígeno	antígenos A e B	nenhum
Anticorpos no plasma (aglutininas)	₩ anti-B	☆ anti-A	nenhum	学学 anti-A e anti-B

Figura 5 – Tipos sanguíneo

Fonte:: https://www.coladaweb.com/biologia/sistema-abo

Fonte:: https://www.coladaweb.com/biologia/sistema-abo

A relação de dominância entre esses alelos múltiplos pode ser expressa por:

 $I^a = I^b > i$

Fenótipo	Genótipo
Α	I ^a I ^a ou I ^a i
В	I ^b I ^b ou I ^b i
AB	lal _p
0	ii

SISTEMA MN: três outros tipos sanguíneos foram descobertos, sendo eles MM, NN e MN. Não existem anticorpos no soro dos indivíduos, por isso não há problemas de transfusões sanguíneas. É uma relação de codominância, pois os alelos não exercem função de dominância ($L^m = L^n$)

Se ambos os alelos forem LM, o indivíduo pertencerá ao grupo M. Se for apenas LN, pertencerá a N. Se forem heterozigotos, serão MN.

- Fator Rh: diz respeito à presença de uma proteína na hemácia. Quando há a proteína, classificamos como positivo (Rh +), e quando não há, é negativo (Rh-). A presença é uma característica dominante (RR ou Rr), tal que o Rh só será negativo em caso de homozigose recessiva.

No caso da transfusão sanguínea, o Rh + não pode doar para o Rh-, mas pode receber. Isso porque a presença da proteína pode ser considerada como um "corpo invasor" (Figura 6).

	PODE DOAR PARA	PODE RECEBER DE
A +	A+, AB+	A+, A-, O+, O-
A -	A+, A-, AB+, AB-	A-, O-
B +	B+, AB+	B+, B-, O+, O-
B -	B+, B-, AB+, AB-	B-, O-
AB+	AB+	TODOS OS TIPOS
AB -	AB+, AB-	A-, B-, AB-, O-
0 +	A+,B+, AB+, O+	0+, 0-
0 -	TODOS OS TIPOS	0-

Fonte: https://www.google.com.br/amp/s/www.todamateria.com.br/fator-rh/amp/

Eritroblastose fetal: quando a mãe possui Rh- e carrega um bebê Rh +, ela produzirá anticorpos contra o sangue do bebê, que é aglutinado pelos anticorpos. Já existe uma vacina (imunoglobulina) para neutralizar esses anticorpos, assim a mãe poderá ter outros filhos com Rh positivo.

8. 2ª Lei de Mendel

Após estudar cada característica de maneira singular, Mendel prosseguiu seus estudos para verificar as **relações de dependência**, **ou seja**, **se** a semente de ervilha amarela era exclusivamente lisa ou os alelos agiam independentemente.

Ele cruzou dois tipos de ervilhas puras: amarelas lisas e verdes rugosas **(geração parental).** Obteve 100% de ervilhas amarelas lisas (geração F1). Decidiu plantar uma das sementes e fez a autofecundação.

Obteve como resultado diversos tipos de ervilha. A maioria amarela e lisa, quantidades muito parecidas de amarelas rugosas e verdes lisas, e

pouquíssimas verdes rugosas (Figura 7). Após muitos cruzamentos, chegou à seguinte proporção: **9:3:3:1**

Por conseguir diversas combinações, Mendel percebeu que os fatores (alelos) são independentes uns dos outros (aqueles que estão em cromossomos homólogos diferentes)

Figura 7 – Representação da 2º Lei de Mendel

Fonte: https://www.educamaisbrasil.com.br/enem/biologia/leis-de-mendel

Concluiu a 2ª Lei de Mendel: cada par de alelos segregam-se independentemente do outro par durante a formação dos gametas.

Para resolver problemas da 2ª Lei de Mendel:

 Um casal, ambos heterozigotos para os genes da polidactilia e do albinismo, estão esperando um filho. Qual a chance de a criança nascer polidactilia e albina? Sabendo que a primeira doença é classificada como autossômica dominante e a segunda autossômica recessiva.

Esse tipo de problema pode ser resolvido utilizando a 1ª Lei para cada um dos genes, multiplicando as possibilidades no final. Se ele informa que a polidactilia é dominante, qualquer par que receber o alelo dominante P irá expressar-se. Utilizando o quadrado de Punnet para esse primeiro par:

	Р	р
Р	PP	Рр

р	Рр	pp

Ou seja, a probabilidade da criança ter a doença é ¾. Agora, pensando na outra doença, que é recessiva:

	Α	a
Α	AA	Aa
a	Aa	aa

A chance, dessa vez, é apenas de $\frac{1}{4}$. Agora, utilizando a regra do "e" (polidactilia E albinismo). **Temos:** $3/4 \times 1/4 = 3/16$. Esse é o jeito mais simplificado e rápido, mas também seria possível resolver com o quadrado de Punnet para a 2^a Lei:

	PA	Pa	Ар	ар
PA	PPAA	PPA a	PpAA	РрАа
Pa	PPAa	<u>PPaa</u>	РрАа	<u>Ppaa</u>
Ар	PpAA	PpAa	ppAA	ррАа
ар	РрАа	<u>Ppaa</u>	ррАа	ppaa

Considerando apenas aqueles que possuem a combinação: P_aa, temos destacados em vermelho os pares que resultariam numa criança com ambas as doenças. Ou seja, 3/16.

Cruzamento de três pares de alelos: AaBbCc x AaBbCc

Utilizando o quadro de Punnet separadamente para cada par de alelos:

	Α	а
Α	AA	Aa
а	Aa	aa
	В	b
В	ВВ	Bb
b	Bb	bb
	С	С

С	C C	Сс
С	Сс	СС

X X

Exemplo: Probabilidade de genótipo dominante em todos os pares:

Cada um possui P= ¾. Realizando a multiplicação: ¾ x ¾ x ¾ = 27/64

Cálculo do número de gametas: na separação dos cromossomos homólogos, formam-se combinações. O n° de combinações é definido pela fórmula 2ⁿ, tal que n é o número de pares heterozigotos.

Por exemplo: AaBbCc

N=3

 N° de gametas diferentes: $2^3 = 8$.

genótipo	pares heterozigotos (n)	tipos de gameta (2 ⁿ)
AA bb CC dd EE FF	0	1
Aa bb CC dd EE ff	1	2
AA Bb cc Dd Ee FF	3	8
Aa Bb Cc Dd Ee Ff	6	64

Também se utiliza o método das linhas bifurcadas para saber os gametas e suas proporções (Figura 8).

Figura 8 – Método para determinar número de gametas - Linhas bifurcada

Fonte: https://professoraleonilda.files.wordpress.com/2014/04/3capitulo-3-segunda-lei-de-mendel.pdf

O alelo A bifurca os alelos B e b, formando os gametas AB e Ab. No caso, de um gene em homozigose, não seriam duas retas bifurcadas, mas sim uma só reta, já que o alelo iria produzir um gameta igual nos dois casos: A - b = Ab (x2)

Para descobrir os fenótipos, os genótipos e a frequência que eles aparecem, utiliza-se o quadro de Punnet. Por exemplo: no cruzamento AaBbCc x AaBbCc

	С	С
С	<u>CC</u>	<u>Cc</u>
С	<u>Cc</u>	СС

	Α	a
Α	AA	<u>Aa</u>
a	<u>Aa</u>	aa
	В	b
В	<u>BB</u>	<u>Bb</u>
b	<u>Bb</u>	bb

Probabilidade do fenótipo se dominante: $3 \times 3 \times 3 = 27$ ou 3^3

OBS: genótipo é o conjunto das combinações (AA, Aa, aa) e fenótipo é a característica (dominante ou recessivo)

9. Determinação Sexual

No caso dos humanos são 23 pares de cromossomos responsáveis pelas características genéticas. De todos, um par é responsável pela determinação sexual. Nem todos os animais possuem esses "genes sexuais". No caso dos

répteis e alguns outros animais, os genes estão espalhados pelos cromossomos, e a determinação se dá pelo meio ambiente.

Por exemplo, a temperatura acima de 30° pode gerar tartarugas fêmeas, por conta do desenvolvimento embrionário. Nos outros animais, há outros sistemas para determinação:

Sistema XY: as fêmeas são homogaméticas, possuem os cromossomos X e X, enquanto **machos são heterogaméticos** e possuem cromossomos X e Y. É o sistema dos humanos, por exemplo.

Sistema X0: é um caso do sistema XY, no qual os machos não possuem dois cromossomos, mas sim só um. Por exemplo, se a fêmea XX é diplóide (2n) e apresenta n=20, o macho terá n=19. É o sistema dos gafanhotos e alguns besouros.

Sistema ZW: contrário ao sistema XY, nesse são as fêmeas as que possuem cromossomos diferentes (ZW) e os machos possuem iguais (ZZ). É o sistema das aves, borboletas e alguns peixes.

Sistema Z0: a fêmea possui um cromossomo sexual a menos. É o sistema encontrado nas galinhas domésticas e alguns répteis.

Haplodiploid: casos em que a fêmea é diplóide (2n) e o macho é haplóide (n), como as borboletas, formigas e outros insetos.

Lista de Exercícios

- 1. (Fuvest SP) Numa espécie de planta, a cor das flores é determinada por um par de alelos. Plantas de flores vermelhas cruzadas com plantas de flores brancas produzem plantas de flores cor-de-rosa. Do cruzamento entre plantas de flores cor-de-rosa, resultam plantas com flores:
- a) das três cores, em igual proporção
- b) das três cores, prevalecendo as cor-de-rosa.
- c) das três cores, prevalecendo as vermelhas.
- d) somente vermelhas e brancas, em igual proporção
- 2. (UERJ) Em algumas raças de gado bovino, o cruzamento de indivíduos de pelagem totalmente vermelha com outros de pelagem totalmente branca produz sempre indivíduos malhados, com pelagem de manchas vermelhas e brancas. Admita um grupo de indivíduos malhados, cruzados apenas entre si, que gerou uma prole de 20 indivíduos de

coloração totalmente vermelha, 40 indivíduos com pelagem malhada e 20 indivíduos com coloração inteiramente branca.

O resultado desse cruzamento é exemplo do seguinte fenômeno genético:

- a) epistasia
- b) <u>Pleiotropia</u>
- c) <u>Dominância</u>
- d) <u>codominância</u>
- 3. (UEM PR) Considere uma espécie de vertebrado que apresenta dominância incompleta para um determinado gene codificador do fenótipo da pelagem do animal, e assinale o que for correto.
 - **(01)** Animais homozigotos dominantes, homozigotos recessivos e heterozigotos terão fenótipos de pelagem <u>distintos</u>.
 - **(02)** A proporção fenotípica de pelagem esperada para descendentes do cruzamento de parentais heterozigotos <u>é de 3:1.</u>
 - **(04)** Os gametas produzidos por animais homozigotos com fenótipos de pelagem distintos terão genótipos <u>idênticos</u>
 - **(08)** Nesta espécie de vertebrados, fenótipos de pelagem distintos em animais com genótipos de pelagem distintos ocorrem porque a primeira lei de Mendel não se <u>aplica durante a formação dos gametas desta espécie</u>.
 - **(16)** O cruzamento entre animais homozigotos com fenótipos de pelagem distintos gera descendentes com fenótipos de pelagem iguais entre si e diferentes dos parentais.
- 4. (Mackenzie) A respeito dos grupos sanguíneos, é correto afirmar que:
 - a) Um indivíduo pertencente ao tipo O não tem aglutininas
 - b) <u>Um indivíduo com aglutinina B não pode ser filho de pai que pertença ao grupo O</u>
 - c) <u>Dois indivíduos AB não podem ter filhos que pertencem ao grupo O</u>
 - d) A ausência de aglutinogênios é característica do grupo AB.
- 5. **(PUCRS)** Uma mulher com sangue do tipo A /Rh + / MM é casada com um homem com tipo sanguíneo B / Rh + / NN. Qual das alternativas abaixo indica o tipo sanguíneo de uma criança que não poderia ter sido gerada por esse casal?
 - a) <u>A / Rh + / NN</u>
 - b) <u>A / Rh- / MN</u>
 - c) AB/Rh-/MN
 - d) O/Rh + /MN

6. **(UFLA)** O sistema Rh em seres humanos é controlado por um gene com dois alelos, dos quais o alelo dominante R é responsável pela presença do fator Rh das hemácias, e portanto, fenótipo Rh +.

Com base no heredograma acima, determine os genótipos dos indivíduos 1, 2, 3, 4, 5 e 6.

- a) RR, Rr, Rr, RR, Rr, RR
- b) Rr, Rr, rr, Rr, Rr, rr
- c) Rr, Rr, Rr, rr, RR, Rr
- d) Rr, Rr, RR, Rr, rr
- 7. **(UFU-MG)** Em experimentos envolvendo três características independentes (tri- hibridismo), se for realizado um cruzamento entre indivíduos AaBbCc, a frequência de descendentes AABbcc será igual a:
 - a) 8/64
 - b) <u>1/16</u>
 - c) 1/32
 - d) 3/64
- 8. **(Fuvest)** O cruzamento entre duas linhagens de ervilhas, uma com sementes amarelas e lisas (VvRr) e outra com sementes amarelas e rugosas (Vvrr), originou 800 indivíduos. Quantos indivíduos devem ser esperados para cada um dos fenótipos obtidos?
 - a) amarelas-lisas = 80; amarelas-rugosas = 320; verdes-lisas = 320; verdes-rugosas = 80.
 - b) amarelas-lisas = 100; amarelas-rugosas = 100; verdes-lisas = 300; verdes-rugosas = 300
 - c) amarelas-lisas = 450; amarelas-rugosas = 150; verdes-lisas = 150; verdes-rugosas = 50.
 - d) amarelas-lisas = 300; amarelas-rugosas = 300; verdes-lisas = 100; verdes- rugosas = 100.

- 9. **(PUC-SP)** De acordo com a segunda lei de Mendel, o cruzamento AaBbCc × aabbcc terá chance de produzir descendentes com genótipo AaBbCc igual a:
 - a) ½
 - b) ½
 - c) <u>1/8</u>
 - d) 3/8
- 10. **(PUC-RS 2010)** Para responder à questão, considere as quatro premissas a seguir. Genes transmitidos por cromossomos diferentes. Genes com expressão fenotípica independente. Modo de herança com dominância. Padrão de alelismo. Um cruzamento diíbrido entre dois indivíduos duplo heterozigotos teria como resultado a proporção fenotípica de
 - a) 1:3:3:1
 - b) 1:2:1
 - c) 3:9:3
 - d) 9:3:3:1

Gabarito

- 1. B. Serão duas rosas, uma vermelha e uma branca.
- 2. D. é um caso de codominância.
- 3. 1 + 16.
- 4. C.

	l a	l _p
l a	lala	lalp
Ip	lalp	IpIp

- 5. A. Não seria possível ter uma criança homozigota NN, apenas heterozigota.
- 6. B. Rr, Rr, rr, Rr, Rr, rr
- 7. C. Chance de ser AA: ¼; chance de ser Bb: ½; chance de ser cc:1/4. Multiplicando os três, temos 1/32.
- 8. D. Utilizando o quadro de Punnet, teremos ao todo ¾ amarelas, ou seja, 600. Sendo que metade será lisa a outra metade rugosa, como indica a alternativa.
- 9. C. Cada um possui chance ½, multiplicando 3 vezes, teremos 1/8.
- 10. D. Com o quadro de Punnet, encontramos a proporção de 9:3:3:1 para a fecundação entre heterozigotos.