ASSIGNMENT 4 NORMALIZATION

1st Normal Form:

Table Name	Primary Key Column Name	1st Normal Form
economic_factors	OVERALL_RANK	N
efw	ISO_CODE3	Υ
forbes_data	Rank	N
forex_reserves	Countries	Υ
global_terrorism	eventID	N
gdp_growth	Country	Υ
global_climate	rw_country_code	Υ
inward_remittance	Inward_Remittance_Flows	Υ
labor_costs	Reference_Area	Υ
outward_remittance	Outward_Remittance_Flows	Υ
ppp_value	Location	Υ

• Each table has a primary key: minimal set of attributes which can uniquely identify a record

Out of all the 11 tables in the dataset, every table has a primary key satisfying this condition. The primary keys in our table are country names, country codes, rankings of countries with respect to various aspects and event IDs.

Table Name	Primary Key Column Name
economic_factors	OVERALL_RANK
efw	ISO_CODE3
forbes_data	Rank
forex_reserves	Countries
global_terrorism	eventID
gdp_growth	Country
global_climate	rw_country_code
inward_remittance	Inward_Remittance_Flows
labor_costs	Reference_Area
outward_remittance	Outward_Remittance_Flows
ppp_value	Location

• The values in each column of a table are atomic (No multi-value attributes allowed).

There are three tables in our dataset which aren't in the first normal form.

The snapshots of the tables before and after they are normalized into 1st Normal form are shown below:

In the global_terrorism table the columns attactype1_txt and targettype1_txt has 5multiple values as shown below:

After normalizing:

attacktype1_txt	targtype1_txt
Bombing	Political
Bombing	Religious Figures
Bombing	Political
Bombing	Religious Figures
Bombing	Political
Bombina	Reliaious Fiaures

Similarly, the table Forbes_data has a multi valued column in Industry and Sector columns as shown below:

Rank	Company	Country/Territory	Sales	Profits	Assets	Market Value	Sector	Industry
665	WPP	United Kingdom	\$16.9 B	\$702 M	\$41.5B	\$9.5 B	Consumer Discretionary	Advertising
1340	Dentsu	Japan	\$9.6 B	\$-742 M	\$34.9 B	\$5.9 B	Consumer Discretionary	Advertising
769	Publicis Groupe	France	\$12.3B	\$941.3 M	\$36.7B	\$7 B	Consumer Discretionary	Advertising
1144	Interpublic Group	United States	\$10.2B	\$668.7 M	\$16.4B	\$6.6 B	Consumer Discretionary	Advertising
1774	Hakuhodo DY Holdings	Japan	\$13.4B	\$379.8 M	\$7.7B	\$4.2B	Consumer Discretionary	Advertising
626	Omnicom Group	United States	\$14.9 B	\$1.3B	\$23.7B	\$12.2B	Consumer Discretionary	Advertising
145	Lockheed Martin	United States	\$61.1B	\$6.2B	\$49.2B	\$109.1B	Industrials	Aerospace & Defense
487	Thales	France	\$20.6 B	\$1.3B	\$35 B	\$16.1B	Industrials	Aerospace & Defense
214	General Dynamics	United States	\$38.8 B	\$3.4B	\$53.7B	\$37.5 B	Industrials	Aerospace & Defense
413	Boeing	United States	\$70.6 B	\$-3.4B	\$143.1B	\$79.6 B	Industrials	Aerospace & Defense
913	Motorola Solutions	United States	\$7.9 B	\$869 M	\$10.6 B	\$24.7B	Industrials	Aerospace & Defense
1341	Bombardier	Canada	\$15.8 B	\$-1.8 B	\$25 B	\$860 M	Industrials	Aerospace & Defense
241	Northrop Grumman	United States	\$34.3 B	\$2.3 B	\$43.2B	\$55.1B	Industrials	Aerospace & Defense

After normalizing into 1st normal form for the table Forbes_data:

Rank	Company	Country/Territory	Sales	Profits	Assets	Market Value	Sector	Industry
626	Omnicom Group	United States	\$14.9 B	\$1.3B	\$23.7B	\$12.2B	Consumer	Advertising
665	WPP	United Kingdom	\$16.9 B	\$702 M	\$41.5B	\$9.5 B	Consumer	Advertising
769	Publicis Groupe	France	\$12.3B	\$941.3 M	\$36.7B	\$7 B	Consumer	Advertising
1144	Interpublic Group	United States	\$10.2B	\$668.7 M	\$16.4B	\$6.6 B	Consumer	Advertising
1340	Dentsu	Japan	\$9.6 B	\$-742 M	\$34.9 B	\$5.9 B	Consumer	Advertising
1774	Hakuhodo DY Holdings	Japan	\$13.4B	\$379.8 M	\$7.7B	\$4.2B	Consumer	Advertising
241	Northrop Grumman	United States	\$34.3 B	\$2.3 B	\$43.2 B	\$55.1B	Industrials	Aerospace
257	Safran	France	\$28.1B	\$2.7B	\$48.1B	\$36.7B	Industrials	Aerospace
389	BAE Systems	United Kingdom	\$23.4B	\$1.9 B	\$34.5 B	\$20.6 B	Industrials	Aerospace
413	Boeing	United States	\$70.6 B	\$-3.4B	\$143.1B	\$79.6 B	Industrials	Aerospace
439	AIRBUS	Netherlands	\$76.2B	\$-2.1B	\$128.4B	\$49.6 B	Industrials	Aerospace
487	Thales	France	\$20.6 B	\$1.3B	\$35 B	\$16.1B	Industrials	Aerospace

And finally for the table economic_factors, the below picture shows the table after normalizing the country name column:

OVERALL RANK	COUNTRY NAME	YEAR	OVERALL SCORE	SIZE OF GOVERNMENT	LEGAL SYSTEMS & PROPERTY RIGHTS	SOUND MONEY	FREEDOM TO TRADE INTERNATIONALLY	REGULATION
2	Singapore	2020	8.48	7.18	8.29	9.62	8.61	8.72
3	Switzerland	2020	8.37	7.52	8.74	9.86	7.63	8.1
4	New Zealand	2020	8.27	6.29	8.72	9.58	8.19	8.57
5	Denmark	2020	8.09	5.24	8.66	9.7	8.42	8.43
6	Australia	2020	8.04	6.09	8.34	9.56	7.92	8.27
7	United States	2020	7.97	6.79	7.56	9.63	7.77	8.11
8	Estonia	2020	7.95	6.29	7.78	9.16	8.33	8.21
9	Mauritius	2020	7.88	7.9	6.94	9.47	7.7	7.39
10	Ireland	2020	7.86	6.17	7.74	9.32	7.96	8.14
11	Armenia	2020	7.84	7.98	6.24	9.55	7.69	7.76
12	Lithuania	2020	7.82	6.6	7.24	9.2	8.33	7.72
12	Japan	2020	7.82	5.65	7.71	9.82	7.78	8.12
14	Canada	2020	7.81	5.82	8.02	9.52	7.75	7.96

• There are no repeating groups: two columns do not store similar information in the same table.

Every table in the database has its own unique columns representing variety of values, satisfying this condition.

2nd Normal Form:

- All requirements for 1st NF must be met.
- No partial dependencies and No Calculated Data

Partial Dependency occurs when a non-prime attribute is functionally dependent on part of a candidate key.

Calculated data is creating new data from your existing data in your table.

Below is an example of Table GDP_growth. This table satisfies the 1st Normal form condition and has no dependencies between any of its columns as each column represents data from different years. The below table also shows no calculated data by the same argument provided above.

Country	2016	2017	2018	2019	2020	2021	2022
South Asia	7.6	6.6	6.4	3.8	-4.8	8.1	6.4
South America	-2.4	0.8	0.5	0	-6.6	7.3	3.6
South Africa	0.7	1.2	1.5	0.3	-6.3	4.9	2.1
Somalia	4.7	2.2	3.7	2.7	-0.3	2.9	1.9
Solomon Islands	5.6	3.1	2.7	1.7	-3.4	-0.2	-4.5
Slovenia	3.2	4.8	4.5	3.5	-4.3	8.2	5.7
Slovak Republic	1.9	3	3.8	2.6	-4.4	3	1.8
Singapore	3.6	4.7	3.7	1.1	-4.1	7.6	3
Sierra Leone	6.4	3.8	3.5	5.3	-2	4.1	2.4
Seychelles	5.4	4.5	3.2	3.1	-7.7	7.9	10.9
Serbia	3.3	2.1	4.5	4.3	-0.9	7.4	3.5
Senegal	6.4	7.4	6.2	4.6	1.3	6.1	4.7
Saudi Arabia	1.7	-0.7	2.5	0.3	-4.1	3.2	7.6

Similarly, the rest of the tables show no partial dependencies with any of their columns and neither do they have any calculated data which might create a dependency on other columns within a table.

Below are a few more evidence from the database for the proof of 2nd Normal Form:

Table global_climate:

rw_country_code	country	cri_rank	cri_score	losses_per_gdprank
AFG	Afghanistan	28	43.33	73
AGO	Angola	50	56	87
ALB	Albania	55	58	41
ARE	United Arab Emirates	127	109.17	133
ARG	Argentina	63	63.67	82
ARM	Armenia	113	98.33	74
ATG	Antigua and Barbuda	135	124.5	135
AUS	Australia	20	35.5	30
AUT	Austria	53	57	42
AZE	Azerbaijan	135	124.5	135
BDI	Burundi	15	33	23
BEL	Belgium	46	52.83	108
BEN	Benin	135	124.5	135
BFA	Burkina Faso	60	61	34
BGD	Bandladesh	35	46.17	61

The above table has a primary key(rw_country_code) and all its columns have atomics values proving it be in 1st Normal Form.

Further analyzing the data, the columns are all unique and represent values about gdp losses and climatic ranks and scores for each country. There is no calculated data in any of the columns for the above table.

Note: rank and scores are not dependent as they depict values for different aspects of climate.

Therefore, the table global_climate is in 2nd Normal Form.

Table outward_remittance:

Outward remittance flows (US\$ million)	2016	2017	2018	2019	2020	2021
Albania	147.15675738801318	106.33098291276124	114.87933694313206	119.6796407694807	124.63037566919685	140.34430970129853
Angola	1176.11031356	961.4152762399999	681.6270154922674	549.0820425510593	576.4714367789888	445.40014382405803
Antigua and Barbuda	54.74292749629629	55.44539011111111	54.17426754814814	47.77273321741111	44.829214246165556	49.01598946069802
Argentina	769.2420579867332	1060.484529955312	1010.3755356443319	694.8990630521067	545.1515252350846	588.5597441915966
Armenia	358.0155071149378	367.4964437645902	341.2568554004423	362.6937850598563	304.365569428434	352.90410845466477
Aruba	98	108.04552036978181	111.65095692643361	112.62759755060499	101.76256721989665	110.6649177238104
Australia	6179.374297708557	6793.253706781762	7267.729293558821	7439.097688915976	4358,562385292666	3804.2128168561417
Austria	4885.123590773506	5369.093592332496	6206.351378910267	6230.833829031395	6203.753775794593	7015.676479004321
Azerbaijan	740.236	603.318	579.5	621.549	731.8779999999999	812.858
Bangladesh	41.21354068927695	46.83824451161324	56.93218462115269	82.79258832592859	94.82781418366169	101.34708991231379
Belarus	123.8	137.8	159.9	185.8999999999998	245.2	242.62724052
Belgium	4564.818715749373	4747.435274462947	5612.494418479864	5336.033787959965	6223.370195498894	7794.416023953816
Bolivia	222.25046434047852	232.927804367505	251.81564331512732	286.4299872677772	215.67993157125693	293.7313824572384

The above table has a primary key(country name(Outward remittance flows)) and all its columns have atomics values proving it be in 1st Normal Form.

Further analyzing the data, the columns are all unique and represent values about the outward remittance flow in USD for each country over the span of the last 5 years represented in different columns. As can be identified from the data present in the above table, there is no calculated data in any of the columns.

Therefore, the table outward remittance is in 2nd Normal Form.

3rd Normal Form

• All requirements for 2nd NF must be met.

As discussed above all the tables satisfy the requirements of 2nd Normal Form and therefore all the tables in the database are in 2nd Normal Form.

• Eliminate fields that do not directly depend on the primary key; that is no transitive dependencies.

Whenever some indirect relationship happens to cause functional dependency, it is known as Transitive Dependency.

There is no table in the database displaying transitive dependency, i.e., there are no fields in any of the tables which don't depend on the primary key. As discussed above each table gives data for each country or ranking of a country or an event occurred in a country, i.e., the primary keys. Therefore every column of information in each table is directly for that particular primary key, meaning the tables have no transitive dependencies making all the tables satisfy the requirements of 3rd Normal Form.

Below are a few examples:

Table outward remittance:

Outward remittance flows (US\$ million)	2016	2017	2018	2019	2020	2021
Albania	147.15675738801318	106.33098291276124	114.87933694313206	119.6796407694807	124.63037566919685	140.34430970129853
Angola	1176.11031356	961.4152762399999	681,6270154922674	549.0820425510593	576,4714367789888	445.40014382405803
Antigua and Barbuda	54.74292749629629	55.44539011111111	54,17426754814814	47.77273321741111	44.829214246165556	49.01598946069802
Argentina	769.2420579867332	1060.484529955312	1010.3755356443319	694.8990630521067	545.1515252350846	588.5597441915966
Armenia	358.0155071149378	367.4964437645902	341.2568554004423	362,6937850598563	304.365569428434	352.90410845466477
Aruba	98	108.04552036978181	111.65095692643361	112.62759755060499	101.76256721989665	110.6649177238104
Australia	6179.374297708557	6793.253706781762	7267.729293558821	7439.097688915976	4358.562385292666	3804.2128168561417
Austria	4885.123590773506	5369.093592332496	6206.351378910267	6230.833829031395	6203.753775794593	7015.676479004321
Azerbaijan	740.236	603.318	579.5	621.549	731.8779999999999	812.858
Bangladesh	41.21354068927695	46.83824451161324	56.93218462115269	82.79258832592859	94.82781418366169	101.34708991231379
Belarus	123.8	137.8	159.9	185.8999999999998	245.2	242.62724052
Belgium	4564.818715749373	4747.435274462947	5612.494418479864	5336.033787959965	6223.370195498894	7794.416023953816
Bolivia	222.25046434047852	232.927804367505	251.81564331512732	286.4299872677772	215.67993157125693	293.7313824572384

Here as seen above, the table has values of outward remittance for the last five years for each country showing that all the columns are linked to the primary key and hence it is in 3rd Normal Form.

Table forex_reserves:

Countries	Reserves, 2021	Global rank
China	3427.93	1
Japan	1405.75	2
Euro area	1196.16	3
Switzerland	1109.82	4
USA	716.15	5
India	638.48	6
Russia	632.24	7
Hong Kong	496.87	8
Saudi Arabia	473.89	9
South Korea	463.28	10
Singapore	425.1	11
Brazil	362.21	12
Germany	295.74	13
Thailand	246.03	14

The above table satisfies the requirements of 2nd Normal Form. Each country and its corresponding data for reserve values and rank, therefore there are no transitive dependencies for any of the columns. Therefore, it is in 3rd normal form.

Table Inward_remittance:

Netherlands	10484.244241405155	11295.433035501575	12933.52969538464	14058.971209794392	13560.994131984284	15242.005032467514
Qatar	11981.868131868132	12759.340659340658	11557.967032967032	11963.736263736266	10112.08791208791	10997.802197802197
Malaysia	10105.146887538314	9393.881493644209	10915.511979301122	11397.960819849792	9089.686975643479	8597.858989020486
United Kingdom	10190.899107285286	9801.235337375241	10410.04112353596	10360.300796885422	9382.380085412888	10083.316857474136
Italy	8677.587198877718	8841.573147745445	9906.85158773809	9577.332780600536	10197.024412197958	12194.999542568547
Canada	5255.722464641915	6482.765219330161	7578.422449323885	8763.218444024726	6784.862776675918	7192.980565442047
Poland	3732	6344	7501	8007	7915	9419
Australia	6179.374297708557	6793.253706781762	7267.729293558821	7439.097688915976	4358.562385292666	3804.2128168561417
India	5622.636934737198	6958.929627681167	6781.570846837902	7531,590149758273	7010.825358501104	8181.397793024899
Austria	4885.123590773506	5369.093592332496	6206.351378910267	6230.833829031395	6203.753775794593	7015.676479004321
Japan	5066.8696850594615	5282.863264345608	6150.517742849173	6827.885453325267	8245.330486376846	6133.373890610373
Belgium	4564.818715749373	4747.435274462947	5612.494418479864	5336.033787959965	6223.370195498894	7794.416023953816
Indonesia	5150.593774537164	5177.356261761918	5148.052050626533	5070.875384270985	4546.939545852018	4343.3832143252475
Thailand	4155.202827766987	4396.7688578478665	4923.627285386763	8912.892000244643	7878.509446599466	7046.351495766055
Czech Republic	1658.6047482293836	2055.5104478686976	2786.2000904471424	3447.0703544776293	3251.663148542569	4069.2206489777536

The above table satisfies the requirements of 2^{nd} Normal Form. Each country and its corresponding data forinward remittance values in USD over the last five years, therefore there are no transitive dependencies for any of the columns. Therefore, it is in 3^{rd} normal form.

Similarly, the rest of the tables in the database all satisfy the requirements of 3rdNormal Form.

Table Name	Primary Key Column Name	1st Normal Form	2nd Normal Form	3rd Normal Form
economic_factors	OVERALL_RANK	Υ	Υ	Υ
efw	ISO_CODE3	Υ	Υ	Υ
forbes_data	Rank	Υ	Υ	Υ
forex_reserves	Countries	Υ	Υ	Υ
global_terrorism	eventID	Υ	Υ	Υ
gdp_growth	Country	Υ	Υ	Υ
global_climate	rw_country_code	Υ	Υ	Υ
inward_remittance	Inward_Remittance_Flows	Υ	Υ	Υ
labor_costs	Reference_Area	Υ	Υ	Υ
outward_remittance	Outward_Remittance_Flows	Υ	Υ	Υ
ppp_value	Location	Υ	Υ	Υ

USE CASES AND VIEWS:

1. Use Case: Find country with particular sector and get the GDP rank associated with it

Description: User views the countries with respect to sector and their associated gdp

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the countries with sector and their gdp

System Responses: the list of countries with sector and gdp are displayed

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view1 AS

SELECT * from((select * from yellow.forbes_data

where Company in ('JPMorgan Chase', 'Agricultural Bank of China', 'Charles Schwab'))A

Inner Join

(select * from yellow.gdp_growth)B

on A.`Country/Territory`=B.Country);

2. Use Case: Find country with top cri rank and their associated PPP value

Description: User views the countries with respect to cri rank and their associated PPP value

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the countries with cri rank and their PPP value

System Responses: the list of countries with cri rank and PPP are displayed

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view2 AS

SELECT * from((select * from yellow.global_climate

where cri_rank=63)A

Inner Join

(select LOCATION, Value from yellow.ppp_value)B

on A.rw_country_code=B.LOCATION) LIMIT 1;

3. Use Case: Find countries with Financial sector and their associated Forex Reserves

Description: User views the countries with Financial sector and their associated Forex

Reserves

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the countries Financial sector and their associated Forex Reserves

System Responses: the list of countries with Financial sector and their associated Forex

Reserves

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

```
CREATE VIEW yellow.view3 AS

SELECT * from((select * from yellow.forbes_data
where Sector in ('Health Care', 'Financials', 'Materials'))A

Inner Join
(select * from yellow.Forex_Reserves)B
on A.`Country/Territory`=B.Countries );
```

4. Use Case: Find countries with cri_rank more than 130 and their associated profits with sector

Description: User views the countries with with cri_rank more than 130 and their associated profits with sector

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the countries with with cri_rank more than 130 and their associated profits with sector

System Responses: the list of countries with with cri_rank more than 130 and their associated profits with sector

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view4 AS

SELECT A.country, A.cri_rank, B.Company, B.Sector, B.Industry, B.Sales, B.Profits from((select * from yellow.global_climate

where cri_rank>130)A

Inner Join

 $(select `Country/Territory`, Company, Sector, Industry, Sales, Profits from yellow.forbes_data) B$

on A.country=B.`Country/Territory`);

5. Use Case: Find companies with rank less than 20 with associated PPP, dollars and sector

Description: User views the companies with rank less than 20 with associated PPP, dollars

and sector

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the companies with rank less than 20 with associated PPP, dollars

and sector

System Responses: the list of companies with rank less than 20 with associated PPP, dollars

and sector

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view5 AS

Select * from

(SELECT country, Value from(

(select rw_country_code, country from yellow.global_climate)A

Inner Join

(select LOCATION, Value from yellow.ppp_value)B

on A.rw_country_code=B.LOCATION))C

Inner Join

(select * from yellow.forbes_data

where 'Rank'<50)D

On C.country=D.`Country/Territory`;

6. Use Case: Find country named United States and itsGDP growth

Description: User views the country named United States and itsGDP growth

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the country named United States and itsGDP growth

System Responses: the list of country named United States and itsGDP growth

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view6 AS

Select * from(

(select * from yellow.gdp_growth)A

Inner join

(select `Country/Territory`,Company, Sector, Industry, Sales, Profits from yellow.forbes_data)B

On A.Country= B.`Country/Territory`)

Where Sector='Energy';

7. **Use Case:** Find countries with sales more than \$150B with profits greater than \$10B get remittance.

Description: User views the countries with sales more than \$150B with profits greater than \$10B get remittance

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the countries with sales more than \$150B with profits greater than \$10B get remittance

System Responses: the list of countries with sales more than \$150B with profits greater than \$10B get remittance

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view7 AS

select * from(

(select `Country/Territory`,Company, Sector, Industry, Sales, Profits from yellow.forbes_data

where Profits>'\$10B')A

Inner Join

(select * from yellow.outward_remittance)B

on A.`Country/Territory` = B.`Outward remittance flows (US\$ million)`);

8. **Use Case:** Find country named Japan get freedom to trade internationally their companies and market value of same

Description: User views the countries named Japan get freedom to trade internationally their companies and market value of same

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the countries named Japan get freedom to trade internationally their companies and market value of same

System Responses: the list of countries named Japan get freedom to trade internationally their companies and market value of same

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view8 AS

```
select * from(
(select `Country/Territory`,Company, Sector, Industry, Sales, Profits from yellow.forbes_data
where Profits>'$10B'
and Industry in ('Regional Banks', 'Recreational Products'))A
Inner Join
(select * from yellow.labor_costs)B
on A.`Country/Territory` = B.`Reference area`);
```

9. **Use Case:** Find countries with financial sector with assets and associated legal systems and property rights with companies

Description: User views the countries with financial sector with assets and associated legal systems and property rights with companies

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the countries with financial sector with assets and associated legal systems and property rights with companies

System Responses: the list of countries with financial sector with assets and associated legal systems and property rights with companies

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

```
CREATE VIEW yellow.view9 AS

select * from(

(select `Country/Territory`,Company, Sector, Industry, Sales, Profits from yellow.forbes_data

where Profits>'$10B'

and Industry in ('Regional Banks', 'Recreational Products'))A

Inner Join

(select * from yellow.economic_factors)B

on A.`Country/Territory` = B.`COUNTRY NAME`);
```

10. **Use Case:** Find countries with sound money more than 1.4 and profits of the companies in the associated country

Description: User views the countries with sound money more than 1.4 and profits of the companies in the associated country

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the countries with sound money more than 1.4 and profits of the companies in the associated country

System Responses: the list of countries with sound money more than 1.4 and profits of the companies in the associated country

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view10 AS

select * from(

 $(select \verb|`Country/Territory\verb|`, Company, Sector, Industry, Sales, Profits from yellow.forbes_data) \\$

where Profits>'\$1.3B')A

Inner Join

(select * from yellow.economic_factors

where REGULATION >=8.3)B

on A. Country/Territory = B. COUNTRY NAME);

11. **Use Case:** Find country named India with outward remittance flow and companies in the country with government size

Description: User views the country named India with outward remittance flow and companies in the country with government size

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the countries named India with outward remittance flow and companies in the country with government size

System Responses: the list of country named India with outward remittance flow and companies in the country with government size

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view11 AS

select * from(

(select * from yellow.outward_remittance)A

Inner Join

(select * from yellow.economic_factors

where REGULATION >=8.3)B

on A. Outward remittance flows (US\$ million) = B. COUNTRY NAME);

12. **Use Case:** Find country named Canada and find PPP for the country and get associated international trade, regulations with profits made in which industry sector

Description: User views the country named Canada and find PPP for the country and get associated international trade, regulations with profits made in which industry sector

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the named Canada and find PPP for the country and get associated international trade, regulations with profits made in which industry sector

System Responses: the list of country named Canada and find PPP for the country and get associated international trade, regulations with profits made in which industry sector

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view12 AS

SELECT Distinct A.country, A.cri_score, A.losses_per_gdp__rank from(

(select * from yellow.global climate

where cri_score>=43.2)A

Inner Join

(select LOCATION, Value from yellow.ppp_value)B

on A.rw_country_code=B.LOCATION);

13 Use Case: Find countries with PPP value greater than 1 and year greater than 2000 with the sector, company and industry parameters associated with that country

Description: User views the countries with PPP value greater than 1 and year greater than 2000 with the sector, company and industry parameters associated with that country

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the named Canada and find PPP for the country and get associated international trade, regulations with profits made in which industry sector

System Responses: the list of country named Canada and find PPP for the country and get associated international trade, regulations with profits made in which industry sector

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view13 AS

SELECT Distinct A.country, A.cri_score, A.losses_per_gdp__rank from(

(select * from yellow.global_climate

where cri_score>=43.2)A

Inner Join

(select LOCATION, Value from yellow.ppp_value)B

on A.rw_country_code=B.LOCATION);

14 Use Case: Find countries with local currency greater than 5 with associated industry, company and sector

Description: User views the countries with local currency greater than 5 with associated

industry, company and sector

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the the countries with local currency greater than 5 with associated industry, company and sector

System Responses: the list of countries with local currency greater than 5 with associated industry, company and sector

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view14 AS

SELECT * from(

(select * from yellow.forbes_data)A

Inner Join

(select * from yellow.labor_costs

where `Local currency`>5)B

on A. Country/Territory = B. Reference area);

15 Use Case: Find country named Italy and company, sector and industry with profits, legal systems & property rights associated with it

Description: User views the country named Italy and company, sector and industry with profits, legal systems & property rights associated with it

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the country named Italy and company, sector and industry with profits, legal systems & property rights associated with it

System Responses: the list of countries named Italy and company, sector and industry with profits, legal systems & property rights associated with it

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view15 AS

SELECT * from(

(select * from yellow.forbes_data)A

Inner Join

(select * from yellow.economic_factors)B

on A. Country/Territory = B. COUNTRY NAME)

Where `Country/Territory` = 'Italy';

16 Use Case: Find country with maximum forex reserves and its gdp data

Description: User views the country with maximum forex reserves and its gdp data

Actor: User

Precondition: User must have access to data

Steps:

Actor action: User views the country with maximum forex reserves and its gdp data

System Responses: the country with maximum forex reserves and its gdp data is populated

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view16 AS

SELECT * from(

(select * from yellow.forex_reserves)A

Inner Join

```
(select * from yellow.gdp_growth)B
on A.`Countries `=B.Country)
order by A.`Global rank ` LIMIT 1;
```

17 Use Case: Select the country with max inward remittance in 2021 and their gdp

Description: User views the countries with max inward remittance in 2021 and their gdp

Actor: User

Precondition: User must have access to data

Steps:

Actor action: countries with max inward remittance in 2021 and their gdp

System Responses: countries with max inward remittance in 2021 and their gdp

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view17 AS

SELECT * from(

(select * from yellow.outward_remittance)A

Inner Join

(select * from yellow.gdp_growth)B

on A. Outward remittance flows (US\$ million) = B.Country)

order by B. 2022 Desc Limit 10;

18 Use Case: View the country with top 10 gdp in 2021 and their corresponding forex reserves

Description: User views the countries with top 10 gdp in 2021 and their corresponding forex

reserves

Actor: User

Precondition: User must have access to data

Steps:

Actor action: countries with top 10 gdp in 2021 and their corresponding forex reserves

System Responses: countries with with top 10 gdp in 2021 and their corresponding forex reserves

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view18 AS

SELECT * from(

(select * from yellow.forex_reserves)A

Inner Join

(select * from yellow.gdp_growth)B

on A. Countries `=B.Country)

WHERE B.Country in ('China', 'India', 'France', 'Germany')

order by B.`2022` DESC LIMIT 5;

19 Use Case: User makes a search for country with lowest labor cost along with their gdp

Description: User views the countries with lowest labor cost along with their gdp

Actor: User

Precondition: User must have access to data

Steps:

Actor action: countries with lowest labor cost along with their gdp

System Responses: with lowest labor cost along with their gdp

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

```
CREATE VIEW yellow.view19 AS
```

SELECT * from(

(select * from yellow.labor_costs)A

Inner Join

(select * from yellow.gdp_growth)B

on A.`Reference area`=B.Country)

order by A.`U.S. dollars` LIMIT 1;

20 Use Case: User makes a search for country with maximum terror attacks their gdp

Description: User views the countries with maximum terror attacks their gdp

Actor: User

Precondition: User must have access to data

Steps:

Actor action: countries with maximum terror attacks their gdp

System Responses: countries with maximum terror attacks their gdp

Post Condition: system displays the list of countries for the condition

Error: No country available

SQL Query:

CREATE VIEW yellow.view20 AS

SELECT * from(

 $(select\ country_txt, Count(eventid)\ Total_attacks\ from\ yellow.global_terrorism$

group by country_txt)A

Inner Join

(select * from yellow.gdp_growth)B

on A.country_txt=B.Country)

order by Total_attacks Desc;