Ejercicios de Lógica Informática

Jose Emilio Labra Gayo Jesús Arturo Pérez Díaz Ana Isabel Fernández Martínez

Octubre 2003

Introducción

El presente trabajo es una recopilación de los exámenes propuestos para la asignatura de Lógica de Primer Curso en la Escuela Universitaria de Ingeniería Técnica Informática desde el curso 92-93. La principal motivación para su realización es la escasez de libros con ejercicios prácticos en este campo.

Aunque el contenido fundamental de la asignatura no se ha modificado, sí se han producido ligeras variaciones en los temas impartidos. Algunos temas, como las interpretaciones de Herbrand, se han suprimido y otros se han impartido con menor o mayor intensidad. Por esa razón, se ha considerado más apropiado presentar los ejercicios ordenados por la fecha de realización del examen, lo cual permitirá apreciar la evolución de la asignatura.

Los ejercicios propuestos pueden ser de utilidad, no sólo a los alumnos de informática, sino a alumnos de otras carreras o especialidades que deban afrontar temas relacionados.

En la mayoría de las ocasiones, las soluciones se han incluido de una forma escueta, sin mostrar el desarrollo seguido para alcanzarla. Con esta forma de mostrar las soluciones pretendemos incentivar al alumno a que resuelva los ejercicios por sí mismo pero queremos recordar que a la hora de resolver un ejercicio en un examen, lo más importante no es el resultado final, sino el desarrollo seguido. Por otro lado, es posible que algunas de las soluciones ofrecidas no sean únicas o que existan mejores soluciones. En ese sentido, aceptaríamos cualquier sugerencia que permita mejorar la calidad de la presente edición.

Los autores queremos agradecer a los alumnos de la asignatura que nos han realizado sugerencias o comentarios y a todos los alumnos que durante estos años han *disfrutado* (o *padecido*) la asignatura. Sin ellos, el presente material, no existiría.

[Añadido el 13 de Octubre de 1999] En esta nueva versión se han incluido los exámenes realizados durante el curso 98-99 y se han corregido las erratas detectadas el curso pasado. Para mayor información sobre la asignatura, puede consultarse la dirección: http://lsi.uniovi.es/~labra/Logica/Logica.html

[Añadido el 27 de Septiembre de 2000] En esta nueva versión aparecen los exámenes del curso 99-2000. No se realizaron parciales por impartirse, por primera vez, de forma cuatrimestral.

[Añadido el 3 de Octubre de 2001] Siguiendo la tradición, se han incluido los exámenes del curso 2000-2001. En dicho curso se han realizado exámenes parciales en todas las convocatorias. También se ha incorporado como autor el profesor Jesús Arturo Pérez Díaz, el cual ha realizado, principalmente, los exámenes correspondientes al primer parcial.

[Añadido el 30 de Septiembre de 2002] Se han añadido los exámenes del curso 2001-2002. En este curso se han realizado exámenes parciales en todas las convocatorias. Se ha realizado alguna variación en el formato de exámenes utilizando un esquema mixto entre exámenes tipo *test* y *a desarrollar*. En este esquema, los estudiantes deben rellenar unos huecos habilitados al efecto.

[Añadido el 2 de Octubre de 2003] Siguiendo la tradición, se añadieron los exámenes del curso 2002-2003.

[Añadido el 11 de Octubre de 2004] Se han incorporado los exámenes del curso 2003-2004. La principal novedad para el curso 2004-2005 es la incorporación de Daniel Fernández Lanvín como profesor de la asignatura.

Jose Emilio Labra Gayo Oviedo, 11 de Octubre de 2004

Enunciados

Ejercicios de Lógica Informática Jose Emilio Labra Gayo Jesús Arturo Pérez Díaz Ana I. Fernández Martínez

Indice (Enunciados)

INDICE (ENUNCIADOS)	1
ENUNCIADOS	3
Primer Parcial 1992 – 1993	
SEGUNDO PARCIAL 1992-1993	
Bloque 1: Test.	
Bloque 2: Desarrollar	
Junio 1992 – 1993	
Primer Parcial	
Segundo Parcial	
SEPTIEMBRE 1992 –1993	
FEBRERO 1992 – 1993	
PRIMER PARCIAL 1993 - 1994	
SEGUNDO PARCIAL 1993 - 1994	
Bloque 1: Test	
Bloque 2: Desarrollar	
Junio 1993-1994	14
Primer Parcial	14
Segundo Parcial	
Septiembre 1993 - 1994	
Febrero 1993 -1994	
Primer Parcial 1994 - 1995	
Bloque 1: Test	
Bloque 2: Desarrollar	
Segundo Parcial 1994 - 1995	
Bloque 1: Test	
Bloque 2: Desarrollar	
Junio 1994 –1995	
Primer Parcial	
Segundo Parcial	
SEPTIEMBRE 1994 - 1995	
FEBRERO 1994 - 1995	
PRIMER PARCIAL 1995 - 1996	
SEGUNDO PARCIAL 1995 –1996	
Bloque 1: Test	
Bloque 2: Desarrollar	
JUNIO 1995 – 1996	
Primer Parcial	
Segundo Parcial	33
SEPTIEMBRE 1995-1996	
FEBRERO 1995 - 1996	
PRIMER PARCIAL 1996 – 1997	
SEGUNDO PARCIAL 1996 - 1997 Junio 96-97	
Primer Parcial	
Segundo Parcial	
Septiembre 1996 -1997	
FEBRERO 1996 - 1997	
Primer Parcial.	
Segundo Parcial	
Primer Parcial 1997 - 1998.	
SEGUNDO PARCIAL 1997 - 1998	
Junio 1997 – 1998	
Primer Parcial	
Segundo Parcial	
Septiembre 1997 - 1998	
FEBRERO 1997 – 1998	
Primer Parcial 1998 –1999	
SEGUNDO PARCIAL 1998 - 1999	
Junio 1998 – 1999	
Primer Parcial	72

Segundo Parcial	75
SEPTIEMBRE 1998 – 1999	78
Febrero 1999-2000	81
JUNIO 1999-2000	84
Septiembre 1999-2000.	8 <i>6</i>
PRIMER PARCIAL 2000-2001	88
SEGUNDO PARCIAL 2000-2001	
Febrero 2000-2001	94
Primer Parcial	94
Segundo Parcial	95
Junio 2000-2001	
Primer Parcial	98
Segundo Parcial	
SEPTIEMBRE 2000-2001	
Primer Parcial	
Segundo Parcial	103
PRIMER PARCIAL 2001-2002	
SEGUNDO PARCIAL 2001-2002	107
FEBRERO 2001-2002	
Primer Parcial	
Segundo Parcial	
Junio 2001-2002	
Primer Parcial	
Segundo Parcial	
SEPTIEMBRE 2001-2002	
Primer Parcial	
Segundo Parcial	118
PRIMER PARCIAL 2002-2003	120
SEGUNDO PARCIAL 2002-2003	122
Febrero 2002-2003	124
Primer Parcial	
Segundo Parcial	125
Junio 2002-2003	127
Primer Parcial	127
Segundo Parcial	128
SEPTIEMBRE 2002-2003	130
Primer Parcial	130
Segundo Parcial	131
PRIMER PARCIAL 2003-2004	133
SEGUNDO PARCIAL 2003-2004	134
Febrero 2003-2004	135
Primer Parcial	135
Segundo Parcial	136
Junio 2003-2004	138
Primer Parcial	
Segundo Parcial	139
SEPTIEMBRE 2003-2004	141
Primer Parcial	141
Segundo Parcial	142

Enunciados Primer Parcial 1992 – 1993

Enunciados

Primer Parcial 1992 - 1993

- 1.- Una función booleana f(a,b,c) toma el valor 1 cuando a=0 y el número de unos es impar o cuando a=1.
 - a.- Representar f en forma de suma de productos y producto de sumas
 - b.- Simplificar f en ambas formas
- 2.- Dada la función $f(a,b,c,d) = \overline{a} + \overline{b \oplus d} + d(\overline{b}c + \overline{a}b\overline{c}) + \overline{b}c\overline{d}$
 - a.- Obtener la forma canónica en forma de suma de productos
 - b.- Simplificar dicha forma canónica
- 3.- Transformar a Forma Normal Conjuntiva la siguiente fórmula:

$$(((x \rightarrow y) \rightarrow z) \land ((z \rightarrow t) \rightarrow x)) \rightarrow (x \rightarrow t)$$

- 4.-Dadas dos sentencias proposicionales A y B, se cumple que A→B es una tautología. Indicar cuáles de las siguientes opciones son válidas:
 - a. AvB es una tautología
 - b. AAB es una tautología
 - c. ¬A→¬B es una tautología
 - d. $\neg B \rightarrow \neg A$ es una tautología
 - e. A∧¬B es una tautología
 - f. $A \land \neg B$ es satisfacible
 - g. $A \land \neg B$ es insatisfacible
- 5.- Formalizar e indicar cuáles de los siguientes razonamientos son correctos:

"El inspector Lógicus ha encontrado a una persona ahogada en un charco de agua de tres centímetros de profundidad. El inspector Lógicus realiza la siguiente deducción: Si una persona se ahoga en un charco de agua de tres centímetros de profundidad entonces: o estaba inconsciente y boca abajo en el charco o se le estaba quemando el bigote y estaba intentando extinguir la llama. La persona habría quedado inconsciente sólo si hubiese sido drogada, como la persona no tiene síntomas de haber sido drogada. Puede concluirse que se le quemaba el bigote"

"Todos los estudiantes de informática son buenos lógicos. Todos los buenos lógicos se harán ricos. Juan estudia informática, luego Juan se hará rico"

 $6.-Indicar \ si \ el \ conjunto \ \{p \lor r, \ q \lor \neg r \ , \ \neg q \lor \neg r \ , \ \neg p \lor r \ \} es \ satisfacible \ o \ insatisfacible \ mediante \ el \ algoritmo \ de \ resolución.$

[&]quot;Se cumple que Brenda está enamorada de Dylan siempre que Dylan sea amigo de Brandon. Además, si Brenda se enamora de Dylan es debido a que Dylan y Kelly no son novios. Luego el hecho de que Brenda está enamorada de Dylan es necesario para que, o Dylan sea amigo de Brandon o Dylan y Kelly no sean novios."

Enunciados Segundo Parcial 1992-1993

Segundo Parcial 1992-1993

Bloque 1: Test

- 1.-¿Es una f¢rmula ($Q(f(x),y,a) \land \exists y \ Q(a,b,c)$)?
- a.- SI, porque cumple las normas de fórmulas bien formadas.
- b.- NO, porque las variables x e y no están ligadas en Q(f(x),y,a)
- c.- NO, porque el segundo término hace referencia a la existencia de la variable 'y' que no aparece en el término.
- d.- NO, por las dos razones anteriores.
- 2.-¿Es una fórmula de cálculo de predicados $\forall xQ(x,(Q(a,b)))$?
- a.- SI, porque la variable x está ligada.
- b.- NO, porque los argumentos de un predicado no pueden ser constantes.
- c.- NO, porque los argumentos de un predicado no pueden ser predicados.
- d.- SI, porque no tiene funciones y las variables están ligadas.
- 3.-¿Es una fórmula $Q(f(x),g(a,b)) \land \neg f(x)$?
- a.- SI, porque cumple las normas de fórmulas bien formadas.
- b.- NO, porque la variable 'x' no está ligada.
- c.- NO, porque no podemos negar una función (sólo predicados).
- d.- NO, por las dos razones anteriores.
- 4.-¿Es una fórmula $\forall x P(x, \neg x)$?
- a.- SI, porque cumple las normas de fórmulas bien formadas.
- b.- NO, porque ¬x no es un término.
- c.- NO, porque los argumentos de un predicado deben ser constantes o variables.
- d.- NO, por ninguna de las razones anteriores.
- 5.-Dada cualquier fórmula en lógica de predicados, siempre se puede encontrar una fórmula lógicamente equivalente a ella en Forma Normal de Skolem.
- a.- Cierto, aplicando las propiedades distributiva, de De Morgan, etc. y sacando cuantificadores.
- b.- Falso, siempre podremos obtener una fórmula equisatisfacible a la original pero no equivalente.
- c.- Falso, tendríamos que encontrar una fórmula en Forma Normal Prenexa que, en la mayoría de los casos, no sería equivalente a la original.
- d.- Ninguna de las respuestas anteriores es válida.
- 6.-¿Es una variable ligada x en la fórmula $\forall x \exists y P(x,y,z)$?
- a.- SI, ligada por un cuantificador universal.
- b.- NO, porque $\forall x \exists y P(x,y,z)$ no es una fórmula ya que la variable z no está cuantificada.
- c.- NO, es una variable libre.
- d.- Depende del dominio con el que trabajemos.
- 7.-Dada la fórmula $\forall x P(x,y,f(x)) \rightarrow Q(x)$, el dominio de Herbrand es:
- a.- No es una fórmula.
- b.- Finito.
- c.- $\{c, f(c), f(f(c)), ..., f^n(c)\}$
- d.-{ a]
- 8.-Dada la fórmula $\forall x P(x,b) \rightarrow Q(f(x))$, el dominio de Herbrand podría ser:
- a.- { b, f(b) }
- b.- { b, f(c), f(f(c)), ... $f^{n}(c)$ }
- c.- { c, f(c), f(f(c)),... $f^{n}(c)$ }
- d.- Ninguno de los anteriores.
- 9.-Dada la interpretación : Dominio = Personas, A(x) = x fue asesinado", B(x,y) = x arrestó a y", f(x) = asesino de x". Bajo esa interpretación, la fórmula $\forall x \exists y \ (A(x) \to B(y,f(x)))$ es:
- a.- Verdadera ya que si 'x' fue asesinado puede existir un 'y' que arreste al asesino de 'x'.
- b.- Falsa, ya que No siempre que alguien es asesinado se arresta a su asesino.
- c.- Puede ser verdadera o falsa dependiendo de cada caso particular.
- d.- Ninguna de las respuestas anteriores es válida.
- 10.-Dada la interpretación : Dominio = $\{-1, 0, 1\}$ P(x,y,z) es verdad si "z = x + y", f(x) = -x. La fórmula $\exists x$ P(x,f(x),f(f(x))):
- a.- Es falsa ya que no se cumple para ningún elemento del dominio.
- b.- Es Verdadera ya que se cumple para todos los elementos del dominio.
- c.- Es verdadera ya que existe un x (el 0) que cumple P(x,f(x),f(f(x))).
- d.- Ninguna de las respuestas anteriores.
- 11.-Para cualquier fórmula en cálculo de predicados:
- a.- Se pueden encontrar infinitas interpretaciones.
- b.- Se pueden encontrar infinitas interpretaciones que la hagan verdadera o falsa dependiendo de la interpretación escogida.

Enunciados Segundo Parcial 1992-1993

- c.- Ninguna de las respuestas anteriores es correcta.
- d.- Las respuestas (a) y (b) son correctas.
- 12.-Dado el siguiente conjunto de cláusulas: $\{\neg P(x,y,a) \lor Q(a,x)\}$, la base de Herbrand es:
- a.- $\{ \neg P(a,a,a), Q(a,a) \}$
- b.- { P(a,a,a), Q(a,a) }
- c.- { a }
- d.- Ninguna de las anteriores.
- 13.- Dada la interpretación { Dominio= $\{-1, 1\}$, f(x) = -x, $I(x,y) \equiv "x = y"$ } y la fórmula $F = \forall x \neg I(x,f(x))$, La interpretación asociada de Herbrand a I y F es:
- a.- Verdadera.
- b.- { $I(a,f(a)) = \mathbf{F}, I(f(a),f(f(a))) = \mathbf{F}, ..., I(f^n(a), f^{n+1}(a)) = \mathbf{F}$ }
- c.- Falsa
- d.- I(a,f(a)) = F
- 14.-Dadas las expresiones: { P(a,f(y),g(f(y),a)), P(x,u,g(u,a)), P(a,f(y),g(f(a),a)) }, se puede decir que:
- a.- No son unificables.
- b.- No se puede aplicar el algoritmo de unificación a más de dos expresiones.
- c.- El unificador más general es: { x/a, u/f(a), y/a }
- d.- El algoritmo de unificación aplicado a estas expresiones no pararía.
- 15.- Al aplicar el algoritmo de resolución a $\{\neg P(x) \lor Q(a), P(a) \lor \neg Q(x)\}$ se obtiene:
- a.- La cláusula vacía
- b.- Tautología independientemente de los literales por los que se resuelva.
- c.- Depende de la cláusula cabeza que se escoja.
- d.- Ninguna de las respuestas anteriores es válida o todas lo son.
- 16.-Dadas las fórmulas $\forall x \ (\neg P(x,x)), \ \forall x \forall y \forall z \ ((P(x,y) \land P(y,z)) \rightarrow P(x,z)) \ y \ \forall x \exists y P(x,y)$:
- a.- El conjunto formado por ellas es satisfacible.
- b.- Se puede encontrar una interpretación de Herbrand que las haga verdaderas simultáneamente.
- c.- El conjunto formado por ellas es insatisfacible.
- d.- El razonamiento es válido.
- 17.-Sea el razonamiento: "Si un microbio se mueve, hay un monstruo de ojos saltones que lo caza. Bono es un microbio y Bruce un monstruo. Luego Bruce caza a Bono".
- a.- El razonamiento es correcto si consideramos que Bruce tiene los ojos saltones.
- b.- El razonamiento no es correcto aunque Bruce tenga los ojos saltones.
- c.- La validez depende de la interpretación.
- d.- Sería válido si Bono se moviese y Bruce tuviese los ojos saltones.
- 18.-Dada la frase: "Todos los informáticos son aburridos e ignorantes". Una formalización posible, considerando que I(x) = x es informático", A(x) = x es aburrido" y G(x) = x es ignorante" sería:
- a.- $\forall x (\ A(x) \land G(x) \to I(x)\)$ considerando el dominio de las personas.
- b.- $\forall x (A(x) \land G(x) \land I(x))$ considerando el dominio de las personas.
- c.- $\forall x (A(x) \land G(x))$ considerando el dominio de los informáticos.
- d.- Ninguna o más de una de las anteriores.
- 19.-Dada la frase: "Existen informáticos aburridos e ignorantes". Una formalización posible, considerando que $I(x) = "x \ es$ informático", $A(x) = "x \ es$ aburrido" y $G(x) = "x \ es$ ignorante" sería:
- a.- $\exists x \ (\ I(x) \to A(x) \land G(x)\)$ considerando el dominio de las personas.
- b.- $\exists x \ (\ I(x) \land A(x) \land G(x)\)$ considerando el dominio de las personas.
- c.- $\exists x (A(x) \land G(x))$ considerando el dominio de los informáticos.
- d.- Ninguna o más de una de las anteriores valdría.
- 20.-Calcular $\sigma_k(C)$ donde $\sigma_k = \{ x/a, z/f(y) \} y C = \{ P(x,y,a), Q(f(y),f(z),y) \}.$
- a.- No se puede calcular ya que no comienzan por la misma letra de predicado (no son unificables).
- b.- { P(a,y,a), Q(z,f(z),y) }
- c.- { P(a,y,a) , Q(f(y),f(f(y)),y) }
- d.- Ninguno de los anteriores o más de uno de los anteriores.
- 21.-Sea $F = \exists x \forall y \ (P(x,y) \lor \neg Q(x)) \ e \ I \ la interpretación: Dominio={1,2}, P(x,y) = "x > y" \ y \ Q(x) = "x=1"$
- a.- F es insatisfacible.
- b.- F no es verdadera bajo I
- c.- F es verdadera bajo I
- d.- Ninguna de las anteriores o más de una de las anteiores.
- 22.-Dada cualquier fórmula en lógica de predicados, siempre se puede encontrar una fórmula lógicamente equivalente a ella en forma normal conjuntiva
- a.- Cierto, aplicando las propiedades distributiva, de De Morgan, etc.
- b.- Falso, siempre podremos obtener una fórmula equisatisfacible a la original pero no equivalente.
- c.- Falso, tendríamos que encontrar una fórmula en Forma Normal de Skolem antes de pasar a Forma Normal Conjuntiva.
- d.- Ninguna de las respuestas anteriores es v lida.

Enunciados Segundo Parcial 1992-1993

23.-Dada la interpretación : Dominio = Personas, A(x)="x fue asesinado", B(x,y)="x arrestó a y", f(x)="asesino de x". Bajo esa interpretación, la fórmula $\forall x ((\exists y B(y,f(x))) \rightarrow A(x))$ es:

- a.- Verdadera ya que si 'y' arresta al asesino de 'x' entonces 'x' murió asesinado.
- b.- Falsa, ya que No siempre que alguien es asesinado se arresta a su asesino.
- c.- Puede ser verdadera o falsa dependiendo de cada caso particular.
- d.- Ninguna de las respuestas anteriores es válida.

Bloque 2: Desarrollar

1.-Dadas las siguientes definiciones:

F(x,y) es verdad si el factorial de x es y (x! = y) M(x,y,z) es verdad si z es igual a x por y $(z = x \times y)$ P(x) es verdad si x es par.

s(x) es una función que nos devuelve el siguiente de un número (s(x) = x + 1)

- a.- Definir las siguientes reglas en cálculo de predicados. Empleando sólo la constante 0.
 - El factorial de 0 es 1.
 - Para todo número par X existe un número que multiplicado por 2 es igual a X.
- b.- Bajo la interpretación anterior y en el dominio de los números naturales, indicar si las siguientes fórmulas son verdaderas o falsas y porqué.
 - $$\begin{split} -\forall x \forall y \; (M(s(x), x, y) &\rightarrow M(s(y), y, x)) \\ -\forall x \; \forall y \; \forall z \; \{ \; M(\; s(x), \; z, \; y) \land F(x, \; z) \rightarrow F(s(x), \; y) \; \} \end{split}$$
 - $\forall x P(x) \rightarrow P(s(s(x)))$
- 2.-Formalizar el siguiente razonamiento e indicar si es correcto o no utilizando el algoritmo de resolución.
- "Sólo los pajaros o los aviones son capaces de volar. Las personas que viajan en avión son capaces de volar. Federico es una persona que viaja en avión, pero no es un avión. Luego Federico es un pájaro."
- 3.- "Paco Lobatón, se ha perdido. Los dirigentes de TVE-1, escandalizados ante la pérdida, han consultado a las más eminentes autoridades en la materia:
 - Rappel sabe dónde están todos los famosos que tienen dinero.
 - Arguiñano sabe dónde están sus amigos.
 - Carlos Jesús sabe dónde está el Pato Lucas.
 - Arguiñano es amigo de todos los que tienen bigote.
 - Paco Lobatón es famoso y tiene bigote.
 - ¿Quién sabe dónde está Paco Lobatón?"
 - a.- Realizar un programa en Prolog que exprese el conocimiento de la situación expresado en el texto anterior.
 - b.- Indicar cuál sería la pregunta que se debería realizar al sistema Prolog para que éste resuelva el problema.
 - c.- Indicar los pasos que seguiría el Prolog para calcular la solución, y cuál sería ésta.

Enunciados Junio 1992 – 1993

Junio 1992 - 1993

Primer Parcial

- 1.-Un sistema electoral está formado por cuatro miembros de un tribunal (A,B,C y D) donde A es el presidente. Los cuatro miembros votarán SI o NO y el sistema tomará la decisión (SI o NO) por mayoría simple. En caso de empate decidirá el voto del presidente.
 - a.- Diseñar la tabla de verdad de una función lógica f(A,B,C,D) que represente la decisión tomada por el sistema.
 - b.- Simplificar dicha tabla de verdad por el método de Karnaugh en forma de suma de productos y producto de sumas.
 - c.- Suponiendo que en caso de empate el sistema está indefinido, describir la tabla de verdad y simplificar por Karnaugh.
- 2.-Simplificar $f(a,b,c,d) = \sum_{4} (1,5,7,13,14,15) + \sum_{\emptyset} (2,3,8,11,12)$
- 3.-Transformar a Forma Normal Conjuntiva la fórmula: $(((p \leftrightarrow q) \rightarrow (r \rightarrow s)) \land (q \rightarrow \neg (p \land r)))$
- 4.-De las siguientes fórmulas proposicionales, indicar las que sean tautologías, satisfacibles o insatisfacibles:

```
\begin{aligned} &a.\text{-} (p \rightarrow (q \rightarrow p)) \\ &b.\text{-} ((q \lor r) \rightarrow (\neg r \rightarrow q)) \\ &c.\text{-} ((p \land \neg q) \lor (q \land \neg r) \lor (r \land \neg p)) \\ &d.\text{-} ((p \lor q) \land (\neg p \lor r) \land (\neg q \lor r) \land \neg r) \\ &e.\text{-} ((p \rightarrow (q \rightarrow r)) \rightarrow ((p \land \neg q) \lor r)) \end{aligned}
```

- 5.-Formalizar y analizar la validez del siguiente razonamiento mediante resolución:
- "La existencia de una PI-CUADRADA requiere inteligencia, sagacidad y buenos fundamentos. Se producen problemas de autoestima sólo si el reconocimiento implica que cuando se produce una falta de relatividad no existen buenos fundamentos. No hay inteligencia a menos que existan problemas de autoestima. Si hay sagacidad entonces, cuando hay buenas intenciones habrá reconocimiento. Es necesaria la ausencia de buenas intenciones para la relatividad y, puesto que hay buenas intenciones, se puede concluir que NO hay una PI-CUADRADA."

Utilizar: PI=Hay PI-CUADRADA. I=Inteligencia. S=Sagacidad. BF=Buenos fundamentos. A=Problemas de autoestima. RC=Reconocimiento. RV=Relatividad. BI=Buenas intenciones.

Enunciados Junio 1992 – 1993

Segundo Parcial

- 1.-Dada la fórmula F= $\exists y \ \forall x \ \{ \ (P(x,y) \land \neg \ R(x) \) \rightarrow Q(y,x) \ \} \ y$ la interpretación
 - $I=\{Dominio=\{1,2\}, Q(x,y) = "x=y", P(x,y) = \{(1,2),(2,1)\}, R(x) = "x = 1"\}$
 - a.- Calcular el valor de la fórmula para esa interpretación.
 - b.- Calcular el universo y la base de Herbrand de la fórmula.
 - c.- Calcular la interpretación asociada de Herbrand a I y F.
- d.- ¿Cuáles son las diferencias entre los conceptos de: Interpretación, Interpretación de Herbrand e Interpretación asociada de Herbrand?
- 2.-Calcular el unificador más general (si existe) de los siguientes pares de términos e indicar cómo quedarían los términos tras aplicarles el unificador:

```
\begin{array}{lll} a.-h\left(x\,,f(\,a,x)\right) & h\left(\,b,\,y\right) \\ b.-h\left(\,b,\,f(\,g\left(\,a,\,f(\,w,\,c)\right),\,h\left(\,y,\,x\right)\right)) & h(\,x,\,f(\,g\left(\,a,\,x),\,z\right)) \\ c.-f\left(\,a,\,y\right) & f\left(\,a,\,f\left(\,b,\,f(\,c,\,x)\right)\right) \\ d.-h\left(\,b,\,f\left(\,g\left(\,a,\,f\left(\,w,\,c\right)\,\right),\,h\left(\,y,\,x\right)\right)) & h(\,x,\,f\left(\,g\left(a,\,y\right),\,z\right)) \\ e.-f\left(\,a,\,f\left(\,g\left(x\right),\,x\right)\right) & f(\,y,\,f\left(\,g\left(\,h\left(\,y,\,a\right)\,\right),\,z\right)) \end{array}
```

3.-Indicar si los siguientes conjuntos de cláusulas son satisfacibles o no:

```
a.- { P(x,f(y),f(z)) \lor \neg P(x,y,z), P(x,a,x), \neg P(z,f(f(a)),f(w)) } b.- { R(x,g(x)) \lor R(g(x),x), \neg R(u,v) \lor R(v,v), \neg R(z,z) }
```

4.- Formalizar e indicar si el siguiente razonamiento es correcto:

"Todos los tiburones comen a alguna persona. Los peces largos y blancos son tiburones. Existen peces largos y blancos viviendo en aguas profundas. Cualquier persona comida por un pez de agua profunda es buceador. Por tanto: Existen buceadores."

```
Utilizar: T(x)="x es un tiburón". P(x)="x es una persona". C(x,y)="x come a y". LB(x)="x es un pez largo y blanco". AP(x)="x vive en aguas profundas". B(x)="x es buceador".
```

- 5.-"Godofredo estudia lo que estudie Robustiana. Robustiana estudia asignaturas asequibles. Si el profesor de una asignatura es inteligente, la asignatura es asequible. Constancio es profesor de política. Teodoro es profesor de lógica. Raimundo es profesor de filosofía. Teodoro es inteligente. Raimundo es inteligente."
- a.- Expresar el conocimiento anterior mediante sentencias en Prolog.
- b.- Indicar cuál sería la pregunta a realizar para que el sistema nos responda qué es lo que estudia Godofredo. Indicar cuál sería la respuesta del sistema y los pasos que seguiría.
- c.- Razonar si influye el orden en que se escriben las sentencias en las respuestas que se obtienen del Prolog

Utilizar: est(x,y) = x estudia y, aseq(x) = x es asequible, prof(x,y) = x es profesor de y, intel(x) = x es inteligente, god=Godofredo, rob=Robustiana, teo=Teodoro, rai=Raimundo, log=Lógica, pol=Política y fil=Filosofía.

Enunciados Septiembre 1992 –1993

Septiembre 1992 - 1993

- 1.-Demostrar sin utilizar tablas de verdad que: $\overline{x} + \overline{y} + \overline{z} + \overline{x} + y + \overline{x} + z = 1$
- 2.-Simplificar por Karnaugh la función de 6 variables $f(a,b,c,d,e,f) = \sum_{6} (1,2,3,5,6,9,13,32,41)$.
- 3.-Sea la siguiente tabla de verdad:

pqr	F
FFF	V
FFV	V
FVF	F
FVV	V
VFF	F
VFV	F
VVF	V
VVV	V

Construir una fórmula en cálculo de proposiciones cuya tabla de verdad corresponda con la anterior.

Escribir dicha fórmula en Forma Normal Conjuntiva y Forma Normal Disyuntiva.

- 4.-Se tienen las fórmulas: $F_1 = \exists x \exists y P(x,y), F_2 = \exists x \forall y P(x,y), F_3 = \forall x \exists y P(x,y), y F_4 = \forall x \forall y P(x,y); y la interpretación: I={Dominio={1,2}, P(x,y)={(1,1),(2,2)}} }. Indicar Cuál es el valor de verdad de <math>F_1$, F_2 , F_3 y F_4 bajo I
- 5.-Dado un razonamiento P_1 , P_2 , ... $P_n \Rightarrow C$, donde P_i son las premisas y C la conclusión. Indicar qué conjunto de cláusulas debemos introducir en el algoritmo de resolución para probar la validez del razonamiento y porqué.
- 6.-"Si un curso es fácil algunos de sus estudiantes son felices, si un curso tiene un examen final, ninguno de sus estudiantes es feliz. Conclusión: Un curso tiene un examen final sólo si no es fácil". Indicar si el razonamiento anterior es válido utilizando $F(x)="x\ es\ fácil"$, $E(x,y)="x\ estudia\ el\ curso\ y"$. $Z(x)="x\ es\ feliz"\ y\ TF(x)="x\ tiene\ examen\ final"$.
- 7.- a.- Formalizar el siguiente conocimiento utilizando únicamente el predicado "S(X,Y,Z)=Z es la suma de X e Y", la función s(X)=siguiente de X, o sea X+1, la constante 0 y el dominio de los números naturales.

"Todo número sumado con el cero es igual a sí mismo. Si un número Z es igual a la suma de otros dos números, X e Y, entonces el siguiente de ese número será igual a la suma de X más el siguiente de Y."

A partir del conocimiento anterior, indicar si se deducen las siguientes conclusiones:

C1. La suma de 1 y 1 son 2.

C2. La suma de 1 y 1 son 3.

NOTA: Utilizar solamente la constante 0, de esa forma, 1=s(0), 2=s(s(0)), 3=s(s(s(0))),....

b.- Utilizar el predicado " $\operatorname{mult}(X,Y,Z) = Z$ es igual a X multiplicado por Y" además de los predicados del apartado anterior para expresar el conocimiento:

X*0=0

X * Y + X = X * (Y+1) (Nota: Pueden usarse variables auxiliares)

8.-Indicar si la fórmula $F = \neg \exists y \forall z \ (P(z,y) \leftrightarrow \neg \exists x \ (P(z,x) \land P(x,z)))$ es válida.

9.-Sea el siguiente programa en Prolog:

padre(X,Y):-hijo(Y,X).
hijo(X,Y):- padre(Y,X).
hijo(cain, adan).

¿Cuál sería la respuesta del intérprete Prolog ante la pregunta: ? padre(adan, X). ¿Cómo influiría un cambio de orden entre la segunda y la tercera cláusula?

Enunciados Febrero 1992 – 1993

Febrero 1992 – 1993

1.- Simplificar la función lógica $f(a,b,c) = (\bar{a} + \bar{c})(b\bar{a} + c\bar{a}) + (a\bar{c} + \bar{c})b\bar{c}$ aplicando el método de Karnaugh producto de

2.- Simplificar la función de 6 variables $f(a, b, c, d, e, f) = \sum_{6} (2,13,32,33,34,35) + \sum_{6} (3,10,11,36)$ por el método de

3.-Dada la fórmula $F_1 = \exists x \forall y \{ (P(y) \land Q(x, y)) \rightarrow \exists z (P(z) \land Q(z, x)) \}$ y la interpretación I_1 :

Dominio: {2,3,4}

Predicados: P(x) = "x es par", Q(x, y) = "x < y"

- Calcular el valor de F_1 bajo la interpretación I_1 .

4.- Dada la fórmula $F_2 = \forall x \forall y \forall z \forall t \{ [O(f(x, y), z) \land I(x, t) \land N(t) \land O(g(y), t)] \rightarrow N(g(z)) \}$ y la interpretación I_2 definida por: Dominio= $\{V, F\}$

Functiones: $f(x, y) = "x \lor y"$, $g(x) = "\neg x"$

Predicados: $O(x, y) = "x \lor y"$, $I(x, y) = "x \to y"$, $N(x) = "\neg x"$

- ¿Es correcta la definición de la interpretación I_2 ?
- Si se considera que I_2 está bien definida, calcular el valor de F_2 en I_2
- 5.- Formalizar e indicar si los siguientes razonamientos son correctos aplicando resolución:
- a.- "No existen funciones recursivas primitivas que no sean totales. Una función no es recursiva primitiva a menos que sea computable. La función de Ackerman no es recursiva primitiva. Por tanto, se puede concluir que: Es suficiente que la función de Ackerman sea total y computable para que no todas las funciones totales y computables sean recursivas primitivas"

Asignar: R(x)="x es recursiva primitiva, T(x)="x es total", C(x)="x es computable"

b.- "Todo el que estudia lógica aprenderá algo interesante y estará capacitado para cualquier alto cargo. Los alumnos del plan nuevo tienen la suerte de enfrentarse a la asignatura más valiosa de su vida académica: la lógica. Cualquiera puede llegar a ser presidente siempre que esté capacitada para algún alto cargo. Carmela se ha matriculado en el plan nuevo y existen altos cargos. Luego Carmela puede llegar a ser presidente"

E(x,y)="x estudia y"A(x,y)="x aprende y"Asignar: I(x)="x es interesante"L(x)="x es un alto cargo"N(x)="x está en el plan nuevo" C(x,y)="x está capacitado para y" P(x)="x puede llegar a ser presidente"l="lógica" c="Carmela

Enunciados Primer Parcial 1993 - 1994

Primer Parcial 1993 - 1994

1.- Sea el conjunto {0,1,2}, las operaciones binarias *suma* (+), *producto* (•) y la operación unaria *inverso* (¬), definidas de la siguiente forma:

 $x + y = m\acute{a}ximo(x, y)$

 $x \cdot y = m inimo(x, y)$

 $\bar{x} = 2 - x$

- a) Calcular la tabla de verdad de las tres operaciones.
- b) Demostrar que se cumplen las propiedades:
- Existencia de Elemento neutro
- Commutativa
- Asociativa
- 2.- Dado el siguiente circuito combinacional

- a.-Indicar la función booleana que representa y obtener la forma canónica en suma de productos.
- b.-Simplificar en suma de productos.
- c.-Simplificar en producto de sumas.
- 3.- El sistema de alarma de un edificio está compuesto por dos interruptores i_1 , i_2 y dos sensores s_1 , s_2 .
- Los interruptores indican el modo de funcionamiento, si i_1 está activo, el modo será "diurno", si i_2 está activo, el modo será "nocturno". (NOTA: Uno de ellos siempre estará activo y no se permite que estén activos los dos a la vez) La alarma se activará según las condiciones:

Modo diurno: Si todos los sensores están encendidos.

Modo nocturno: Si algún sensor está encendido.

- a.- Diseñar la tabla de verdad.
- b.-Simplificar por karnaugh.
- 4.-Buscar expresiones en FNC y FND correspondientes al siguiente árbol semántico:

- 5.-El inspector Lógicus se enfrentó a un nuevo caso en Palomolandia, tras realizar las investigaciones oportunas se tienen los siguientes datos:
- "Para que Carmen sea la asesina es necesario que las ovejitas no se pierdan. Es necesario que las ovejitas se pierdan para que los pastores visiten el portal. Es suficiente que los reyes no traigan caramelos para que Loreto sea la asesina. Los reyes no traen caramelos a menos que los pastores visiten el portal. O Carmen O Loreto son las asesinas, pero no ambas."

 Formalizar y responder utilizando el método de refutación:

a.- ¿Se puede deducir que Carmen es la asesina?

b.- ¿Se puede deducir que Loreto es la asesina?

c.-¿Son insatisfacibles las premisas?

NOTA: Para la formalización, asignar las letras "*C*,*O*,*P*,*R*,*L*" a las frases por orden de aparición de éstas e indicar la asignación realizada.

Enunciados Segundo Parcial 1993 - 1994

Segundo Parcial 1993 - 1994

Bloque 1: Test

1 La fórmula: $\forall x \ P(x,y) \land \exists z \ Q(z)$:
□Contiene dos variables libres y una ligada.
□Contiene dos variables ligadas y una libre.
□No es una fórmula bien formada porque tiene una variable sin cuantificar.
□Ninguna de las anteriores o más de una de las anteriores.
2 Sea $E = \{P(x, f(y), f(z)), P(y, y, f(f(a)))\}$
$\Box \text{Un umg es: } \left\{ x/y, y/f(y), f(a)/z \right\}$
$\Box \text{Un umg es: } \left\{ x/y, y/f(y), z/f(a) \right\}$
☐ El umg es distinto de los anteriores.
\square E no es unificable.
3 Sea $E = \{P(x, f(y)), P(a, x), P(z, f(a))\}$
$\Box \text{Un umg es: } \{x/a, z/a, y/a\}$
□El algoritmo de unificación no se puede aplicar a más de dos expresiones.
☐ El umg es distinto de los anteriores.
\square <i>E</i> no es unificable.
4 Un sistema de razonamiento es completo si:
□Se pueden deducir todas las fórmulas que son consecuencia lógica de las premisas.
□Cualquier fórmula que se pueda deducir de las premisas es consecuencia lógica de ellas.
□Cumple las dos proposiciones anteriores a la vez.
□Cumple una condición diferente de las anteriores.
5 El siguiente conjunto de cláusulas: $\{\neg P(x) \lor Q(x), P(x) \lor R(x), \neg R(x) \lor \neg Q(x)\}$
Es insatisfacible. Puesto que se puede deducir la cláusula vacía aplicando resolución.
□Es satisfacible. Puesto que se puede deducir la cláusula vacía aplicando resolución.
☐Es insatisfacible. Puesto que no se puede deducir la cláusula vacía aplicando resolución.
□Es satisfacible. Puesto que no se puede deducir la cláusula vacía aplicando resolución.
6 La frase "La elección de una mala regla de computación puede hacer que no se encuentre un camino de éxito existente" es: □Verdadera. Por que se podría perder por una rama infinita.
□ Falsa. El número de ramas de éxito es independiente de la regla de computación. Si se pierde por ramas infinitas es culpa de
la regla de búsqueda y de la estrategia de recorrido del árbol SLD.
□ Verdadera, porque la regla de búsqueda es independiente del número de ramas de éxito.
□Falsa, porque siempre se encontrarán los caminos de éxito, si existen.
7 La estrategia "primero en anchura":
☐Tiene la ventaja de que encuentra todas las soluciones, y la desventaja de que necesita mucha memoria.
□Tiene la ventaja de que necesita poca memoria, y la desventaja de que puede no encontrar alguna solución.
□Es implementada por los sistemas PROLOG convencionales.
□Ninguna de las respuestas anteriores o más de una.
8 Sea $F = \exists x (P(x) \land \forall y (M(y, x) \rightarrow \neg R(y)))$ e <i>I</i> la interpretación: Dominio: {Triángulo, Rectángulo, Pentágono}. Predicados:
$P(x)="x \ tiene \ 5 \ lados", \ M(x,y)="x \ tiene \ menos \ lados \ que \ y" \ y \ R(x)="x \ tiene \ cuatro \ lados", \ entonces:$
\square El valor de F bajo I es Verdadero.
\square El valor de F bajo I es Falso.
\square El valor de F bajo I depende de las figuras geométricas consideradas.
\square El valor de F bajo I no está definido.
9 Considérese la fórmula de la pregunta 8.
\Box La Base de Herbrand sería $\{P(a), M(a, a), \neg R(a)\}$
\Box La Base de Herbrand sería $\{P(a), M(a, a), R(a)\}$
□La Base de Herbrand sería infinita.
□No tiene Base de Herbrand, o la Base de Herbrand es diferente de las propuestas.
10 En la fórmula F de la pregunta 8 con la interpretación I mencionada, la Interpretación asociada de Herbrand a I y a F es:
□Falsa. □Demando del violen que se la esigna e la constante « (evistan, non tento, 2 diferentes)
Depende del valor que se le asigne a la constante a (existen, por tanto, 3 diferentes).
$\Box \text{Tendríamos } 8 = 2^3 \text{ differentes.}$
□Ninguna de las anteriores o más de una de las anteriores.

11.- El teorema de Herbrand dice:

Enunciados Segundo Parcial 1993 - 1994

□"Un conjunto infinito de cláusulas básicas es insatisfacible si y sólo si existe un subconjunto finito de cláusulas básicas insatisfacible". □"Un conjunto de cláusulas es insatisfacible si y sólo si existe un subconjunto de cláusulas básicas insatisfacible". □"Un conjunto de cláusulas es insatisfacible si y sólo si no tiene modelos de Herbrand". 12.- Dada $F = \exists x \forall y P(x, y) \rightarrow \forall y \exists x P(x, y)$. Una fórmula en Forma Clausal equisatisfacible sería: $\square \{ \neg P(x, f(y)) \lor P(f(z), z) \}.$ $\square \{ \neg P(x, f(x)) \lor P(f(z), z) \}.$ $\square \{ \neg P(x, f(x)) \lor P(z, g(x, z)) \}.$ $\square \{ \neg P(x, a) \lor P(a, y) \}$ 13.-Sea $F = \exists x \forall y (N(x) \land N(y) \rightarrow M2(y,x))$ y la interpretación: Dominio: Números reales. Predicados: "N(x) = x es un n'umero". M2(x,y)="y es igual 2 multiplicado por x". El valor de la fórmula bajo esa interpretación es: □Verdadero, porque para todo número natural x existe otro número natural y tal que y es el doble de x. □Falso, Porque no existe un número que sea el doble de todos los naturales. \square Verdadero o Falso, dependiendo de los valores de x. □Ninguna de las anteriores o más de una de las anteriores. 14.-Dado un conjunto finito o infinito de cláusulas básicas, el árbol semántico: □Tiene un número finito de ramas si el conjunto es insatisfacible. □Puede contener ramas infinitas dependiendo de la satisfacibilidad del conjunto. □Es finito si el conjunto es finito e infinito si el conjunto es infinito. □Ninguna de las anteriores o más de una de las anteriores.

Bloque 2: Desarrollar

1.- Dado el siguiente programa:

```
1. - P(x, f(x)) \leftarrow Q(f(f(x))), R(y)
2. - P(x, b) \leftarrow R(f(x))
3. - Q(f(f(x))) \leftarrow R(x)
4. - Q(f(x)) \leftarrow R(x)
5. - R(b)
6. - R(f(a))
```

- a.- Construir el árbol-SLD para el objetivo $\leftarrow P(a,x)$ y la regla de computación "Escoger el Primero"
- b.- Utilizando la estrategia "Primero en Anchura" ¿Cuál sería la substitución de respuesta?.
- c.- Utilizando la estrategia "Primero en Profundidad" ¿Cuál sería la substitución de respuesta?.
- 2.- Formalizar considerando como dominio un conjunto de personas, los predicados: "B(x) = x es un barbero. I(x,y) = x es igual
- a y. A(x,y) = x afeita a y " y la constante "j=Juan"
- a.- "Todos los barberos son afeitados por sí mismos".
- b.- "Sólo hay un barbero".
- c.- "No hay nadie que afeite a un barbero".
- d.- "Algún barbero es afeitado por diferentes personas".
- e.- "Existe un barbero que afeita a todos los que no se afeitan a sí mismos".
- f.- "Juan afeita a los que no se afeitan a sí mismos".
- g.- "Sólo los barberos afeitan a los que no se afeitan a sí mismos".
- h.-"Hay barberos que no afeitan a nadie pero Juan afeita a alguien".
- i.- "Todos son barberos y afeitan a Juan sólo si Juan no se afeita a sí mismo".
- j.- "Los barberos no afeitan a Juan a menos que Juan sea barbero".
- 3.- Formalizar e indicar si es correcto el siguiente razonamiento:
- "Los informáticos son argullosos, por tanto, las cabezas de los informáticos son cabezas de orgullosos"

```
Emplear: I(x) = "x es informático", O(x) = "x es orgulloso", C(x,y) = "x es la cabeza de y".
```

4.-En el Ministerio del Interior se está investigando quién o quiénes son los posibles corruptos. El conocimiento de que se dispone es:

"El sueldo de todo empleado es de 200 ptas. El sueldo de los jefes es de 400 ptas. Carlos odia a todos los que ganen más que él. Todos los que odian a alguien son corruptos. Carlos es un empleado y Luis un jefe. 200 es menor que 400."

```
-Implementar un programa en Prolog que represente el conocimiento anterior utilizando los predicados: sueldo(X,Y) = El \ sueldo \ de \ X \ es \ Y \qquad empleado(X) = X \ es \ empleado \\ jefe(X) = X \ es \ un \ jefe \qquad odia(X,Y) = X \ odia \ a \ Y \\ menor(X,Y) = X \ es \ menor \ que \ Y \qquad corrupto(X) = X \ es \ corrupto
```

-Indicar cuál sería la pregunta para que el sistema respondiese quién es la persona corrupta y los pasos que seguiría el Prolog para dar la respuesta.

Enunciados Junio 1993-1994

Junio 1993-1994

Primer Parcial

1.- Simplificar por Karnaugh en producto de sumas la siguiente función lógica:

$$f(a,b,c,d) = \begin{cases} \overline{(a+b)cd} & \text{si } a=b=1\\ a+\overline{(b\oplus d)} & \text{si } a=\overline{b}\\ \overline{ab}\oplus \overline{ad} & \text{en los demás casos} \end{cases}$$

2.-Simplificar por Karnaugh la función:

$$f(a,b,c,d,e) = \sum_{s} (x_1, x_2, \dots, x_n) + \sum_{\varnothing} (y_1, y_2, \dots, y_n)$$

Donde cada x_i es un múltiplo de 6 y cada y_i es un múltiplo de 9 impar.

3 -

a.-Indicar si los siguientes razonamientos son válidos mediante refutación:

- "Papá pitufo se enfada a no ser que el pitufo Gruñón juegue con los pitufos. Para que el pitufo Gruñón juegue con los pitufos es necesario que éstos no pitufen gansadas. Por tanto: Es suficiente que Papá pitufo no se enfade para que: pitufo Gruñón juegue con los pitufos y éstos pitufen gansadas."
- "Los pitufos pitufan gansadas y Papá pitufo está contento si Pitufo Gruñón juega con ellos y con Gargamel. Papá pitufo está contento sólo si Pitufo Gruñón no juega con Gargamel. Con lo cual: O Pitufo Gruñón no juega con los pitufos, o Pitufo Gruñón no juega con Gargamel."

Nota: Asignar las letras a,b,c,d,... por orden de aparición de las proposiciones.

b.- Dado un razonamiento cuyas premisas son insatisfacibles, ¿qué restricciones es necesario imponer a la conclusión para que el razonamiento sea correcto?

Segundo Parcial

1.- Formalizar e indicar si el siguiente razonamiento es correcto mediante el algoritmo de resolución:

"Sólo los que han aprobado el primer o el segundo parcial realizan el examen en el aula A. Los que no han aprobado ni el primer ni el segundo parcial realizan el examen en el aula B. Los que realizan el examen lo hacen en el aula A o el aula B (pero no en ambas). Por tanto: si Juan realiza el examen en el aula A entonces ha aprobado el primer parcial."

Utilizar:

Predicados: A(x,y)="x aprueba y", R(x,y)="x realiza el examen en el aula y"

Constantes: a= aula A, B= aula B, p1 = Primer parcial, p2=Segundo parcial y j=Juan

2.-Construir un programa en Prolog que represente el siguiente conocimiento:

"Los alumnos aprueban una asignatura cuando estudian dicha asignatura el día antes del examen. Federico estudia una asignatura si hace sol. Antonio estudia una asignatura un día si se queda en casa ese día. Antonio se queda en casa un día si ese día está lloviendo. Si un día hace sol, al día siguiente llueve. El examen de lógica es el viernes y el de física el jueves. El miércoles está soleado."

Utilizar:

aprueba(X,Y)="X aprueba la asignatura y"

estudia(X,Y,Z)="X estudia la asignatura Y el día Z"

examen(X,Y)="El examen de la asignatura X es el día Y"

en_casa(X,Y)="X se queda en casa el día Y"

 $llueve(X)="El\ día\ X\ llueve"$

sol(X) = "El día X hace sol"

sigu(X,Y)="El día X es el siguiente al día Y"

Constantes: "f=federico, a=Antonio, m=miércoles, j=jueves, v=viernes"

Incorporar los hechos: "El siguiente del jueves es el viernes" y "El siguiente del miércoles es el jueves"

- a.- Indicar cuál sería la pregunta para que el intérprete nos conteste quiénes aprobaron alguna asignatura.
- b.- Construir el árbol-SLD para el programa lógico asociado e indicar cuáles son las substituciones de respuesta correcta según se recorra el árbol en profundidad o en anchura?

Enunciados Septiembre 1993 - 1994

Septiembre 1993 - 1994

1.-Dada la siguiente función en lenguaje Pascal:

```
FUNCTION fea (a,b,c,d: Boolean) : Boolean;
VAR e:Boolean;
BEGIN
   IF a AND NOT (c AND d)
   THEN
        fea := a OR b
   ELSE
   BEGIN
        e := (NOT a) AND b AND c;
        IF e THEN fea := TRUE
            ELSE fea := a;
   END;
```

- Indicar cuál es la función lógica f(a,b,c,d) equivalente a 'fea'.
- Simplificar dicha función lógica por suma de productos.
- Simplificar por producto de sumas.
- 2.- Demostrar que en toda función booleana se cumple la siguiente igualdad:

```
f(a,b,c...) = a f(1,b,c...) + \overline{a} f(0,b,c...) = [a + f(0,b,c...)][\overline{a} + f(1,b,c...)]
```

- 3.- Formalizar e indicar si el siguiente razonamientos es correcto:
- "Sólo los que han mentido a su padre inventan historias fantásticas. Algunos de los que han mentido a su padre han sido maltratados. Los grandes escritores inventan historias fantásticas. Por tanto, algunos grandes escritores han sido maltratados." Utilizar:

```
M(x,y)="x ha mentido a y" I(x,y) = "x inventa y" I(x,y) = "x es una historia fantástica" I(x,y) = "x es un gran escritor" I(x,y) = "x es un gran escritor"
```

4.-Dada la interpretación I definida por el dominio $\{0,1,2\}$ y los Predicados:

```
P(x) = x es par, I(x, y) = x es igual a y
```

Indicar cuáles de las siguientes fórmulas son Verdaderas o Falsas bajo I

```
a.- \exists x \forall y (P(x) \land \neg I(x, y)) b.- \forall y \exists x (P(x) \land \neg I(x, y)) c.- \exists x \forall y (P(x) \rightarrow \neg I(x, y)) d.- \forall y \exists x (P(x) \rightarrow \neg I(x, y))
```

- 5.-Representar el siguiente conocimiento mediante un programa en Prolog:
- "Los sombreros de los trabajadores franceses son rojos. Sin embargo, a pesar de que los sombreros de los trabajadores españoles son azules, los sombreros de los emigrantes españoles son rojos. Además, Manolo es un trabajador español. Pedro es un emigrante español y Jean es un trabajador francés.
- a.-Indicar cuál sería la pregunta en Prolog para saber si existe algún español con un sombrero del mismo color que el sombrero de un francés.
- b.-Construir el árbol-SLD e indicar la substitución de respuesta correcta que se alcanza siguiendo la estrategia del Prolog.

```
 \begin{array}{c} \mbox{Utilizar:} \\ \mbox{Predicados:} \\ \mbox{col}(X,Y) = X \mbox{ es de color } Y & \mbox{trab}(X) = X \mbox{ es un trabajador} \\ \mbox{fran}(X) = X \mbox{ es francés} & \mbox{esp}(X) = X \mbox{ es español} \\ \mbox{emi}(X) = X \mbox{ es emigrante} \\ \mbox{Constantes:} & \mbox{r} = \mbox{rojo} & \mbox{a} = \mbox{azul} & \mbox{m} = \mbox{manolo} & \mbox{p} = \mbox{pedro} & \mbox{j} = \mbox{Jean} \\ \mbox{Funciones:} & \mbox{s}(X) = \mbox{Devuelve el sombrero de } X \\ \end{array}
```

Enunciados Febrero 1993 -1994

Febrero 1993 -1994

- 1.- Construir la tabla de verdad de la función $f(a,b,c,d) = \begin{cases} 1 & \text{si } ab\overline{d} + \overline{a}(b \oplus d) = 1 \\ 0 & \text{si } bd(\overline{a} + c) = 1 \\ \text{indefinido} & \text{en los demás casos} \end{cases}$
- a.- Simplificar la función f por suma de productos.
- b.- Simplificar la función f por producto de sumas.
- 2.- Indicar si la siguiente fórmula es válida aplicando el teorema de Herbrand:

$$(\forall x (P(x) \to \neg \exists y Q(x, y)) \land P(a)) \to \neg \exists x Q(a, x)$$

- 3.- Formalizar e indicar si son o no correctos los siguientes razonamientos aplicando resolución lineal:
- a.- "Todos los hombres casados aman a alguna mujer. Juan es un hombre que no ama a nadie. Luego Juan no está casado".
- b.- "Sólo los hombres desgraciados aman a alguna mujer con quien no están casados. Por tanto, si Juan está casado con María y no es desgraciado entonces ama a María".

Utilizar:
$$H(x) = "x \text{ es un hombre"}, \qquad M(x) = "x \text{ es una mujer"},$$

$$C(x,y) = "x \text{ está casado con y"}$$

$$A(x,y) = "x \text{ ama a y"}. \qquad D(x) = "x \text{ es desgraciado"},$$

$$j = Juan \qquad m = María$$

4.a- Construir un programa en prolog que exprese el siguiente conocimiento:

"El cero es un número par.

El siguiente de todo número par es un número impar.

Un número es impar sólo si su siguiente es par"

b.- Construir el árbol SLD e indicar las substituciones de respuesta correcta para cada una de las siguientes preguntas:

¿Es un número impar el dos?

¿Es un número par el dos?

¿Existen números pares consecutivos?

¿Existe un número par mayor que cero?

Utilizar: p(X):-"X es un número par", i(X)= X es un número impar, 0=cero, s(X)=siguiente de X

Enunciados Primer Parcial 1994 - 1995

Primer Parcial 1994 - 1995

Bloque 1: Test

□ Válida.

1 Si un conjunto <i>C</i> de cláusulas es insatisfacible entonces:
☐ El árbol semántico de C es finito y está limitado por nodos de fallo.
Aplicando el algoritmo de resolución unitaria a C se llega siempre a la claúsula vacía.
☐ Aplicando el algoritmo de resolución unitaria a C no se alcanza nunca la claúsula vacía.
□ Ninguna de las anteriores o más de una de las anteriores.
2 La fórmula $((x \to y) \land (y \to (x \lor \neg z))) \to (y \to z)$ se puede transformar en la siguiente fórmula equivalente en Forma
Normal Conjuntiva:
$\square (x \vee \neg y) \wedge (\neg x \vee y \vee z) \wedge (\neg y \vee z)$
$\Box (\neg y \lor z)$
$\square (x \land \neg y) \lor (\neg x \land y \land z) \lor \neg y \lor z$
☐ Ninguna de las anteriores o más de una de las anteriores.
3 Sea $f(a,b,c) = \sum_{3} (0,3,m) + \sum_{\emptyset} (1,6,n)$.
Para que al simplificar f por el método de Karnaugh se obtenga $\bar{a} + \bar{c}$ el valor de m y n debe ser: $\Box m = 2, n = 4$
\square $m=4, n=7$
\square $m=4$, $n=2$
☐ Ninguna de las anteriores o más de una de las anteriores.
4 Tras simplificar por Karnaugh en suma de productos la función $f(a,b,c,d) = (b+c)\overline{d} + \overline{b}\overline{c}d(a\oplus \overline{a})$ se obtiene:
$\Box b\bar{c}d + b\bar{c}d + c\bar{d}$
$\Box bd + b cd + cd$
$\Box bc + \overline{b}\overline{c}d + c\overline{d}$
☐ Ninguna de las anteriores o más de una de las anteriores.
5Tras simplificar por Karnaugh en producto de sumas la función anterior se obtiene:
$\Box (c+d)(b+d)(\overline{b}+\overline{c}+\overline{d})$
$\Box (\overline{b} + d)(\overline{c} + d)(b + c + \overline{d})$ $\Box (\overline{b} + d)(\overline{c} + d)(b + c + \overline{d})$
$\Box (\bar{c} + \bar{d})(\bar{b} + \bar{d})(b + c + d)$ \Box Ninguna de las anteriores o más de una de las anteriores.
6 El conjunto de cláusulas $C = \{p \lor q, p \lor \neg q, \neg p \lor \neg q \lor r, \neg p \lor \neg r\}$ es:
☐ Satisfacible porque se alcanza la cláusula vacía aplicando resolución.
☐ Satisfacible porque no se alcanza la cláusula vacía aplicando resolución.
☐ Insatisfacible porque se alcanza la cláusula vacía aplicando resolución. ☐ Insatisfacible porque no se alcanza la cláusula vacía aplicando resolución.
7 La estrategia de resolución ordenada:
☐ Consiste en una aplicación del algoritmo de resolución a un conjunto ordenado de cláusulas restringiendo en cada momento
la cláusula por la que se resuelve.
☐ Es completa para cualquier conjunto de cláusulas.
☐ Sólo es aplicable a cláusulas Horn.
☐ Ninguna de las anteriores o más de una de las anteriores.
8 La estrategia de resolución de entrada:
☐ Consiste en una aplicación del algoritmo de resolución donde al menos uno de los padres de cada resolvente es una de las
cláusulas del conjunto de entrada.
☐ Es completa para cualquier conjunto de cláusulas.
☐ Sólo es aplicable a cláusulas Horn.
☐ Ninguna de las anteriores o más de una de las anteriores.
9 Un nodo de inferencia:
☐ Indica un paso de resolución de las cláusulas asociadas a sus dos hijos cuyo resolvente es falsificado por él, por sus hijos y,
en ocasiones, por alguno de sus padres. □ Es un nodo del árbol semántico con dos hijos.
☐ Existe necesariamente al construir un árbol semántico para un conjunto de cláusulas.
☐ Ninguna de las anteriores o más de una de las anteriores.
10 La fórmula $((p \land (\neg p \to q)) \to (q \lor r)) \leftrightarrow ((p \land \neg q) \to r)$ es:
· · · · · · · · · · · · · · · · · · ·

Enunciados Primer Parcial 1994 - 199
☐ Satisfacible. ☐ Insatisfacible.
☐ Ninguna de las anteriores o más de una de las anteriores.
11 La fórmula $((p \leftrightarrow q) \land \neg (p \land q \land r)) \rightarrow (\neg q \rightarrow r)$ es:
□ Válida.
☐ Satisfacible.
☐ Insatisfacible.
☐ Ninguna de las anteriores o más de una de las anteriores.
Bloque 2: Desarrollar
1 Indicar si el siguiente razonamiento es correcto o no mediante el algoritmo de resolución lineal :
"No se precisa que Juan se case con María para que María sea de buena familia a menos que Juan se case por interés. Se embargo, Juan se casa con María si María no es de buena familia si y sólo si María es la bella del bosque. No obstante, bas que María sea de buena familia para que sepa preparar comidas exquisitas y, puesto que siempre que María sepa prepara comidas exquisitas, Juan se casa con ella, se puede concluir que: es imprescindible que Juan se case por interés para que María sea la bella del bosque."
Nota: Para la formalización, asignar las letras <i>p</i> , <i>q</i> , <i>r</i> , <i>s</i> , <i>t</i> , a las distintas frases por orden de aparición.
2 Bernardo, Pedro y Miguel fueron arrestados después del robo de una impresora en la sala de ordenadores de la escuela. La
confesiones de los sospechosos fueron:
Bernardo: "Pedro es el culpable y Miguel es inocente"

Responder las siguientes cuestiones:

Pedro: Miguel:

- a.- ¿Es posible que los tres sospechosos hayan dicho la verdad?. Entonces, ¿quién será el culpable?
- b.- Si se supone que todos son culpables, ¿quién mintió?
- c.- ¿Es posible que no haya más que un falso testimonio?, en ese caso, ¿quién mintió y quién es culpable?

"Bernardo no es culpable a menos que Miguel también lo sea"

"Soy inocente pero uno por lo menos de los otros dos es culpable"

- d.- Si se supone que el inocente dice la verdad y el culpable miente, ¿quién es culpable y quién inocente?
- 3.- Sea $f(a_1, a_2, x_1, x_2, x_3) = x_i$

Donde i es el valor decimal de la combinación binaria a_1a_2 (no se permite que i=0)

- a.- Construir la tabla de verdad de la función.
- b.- Simplificar f por producto de sumas.

Enunciados Segundo Parcial 1994 - 1995

Segundo Parcial 1994 - 1995

Bloque 1: Test

1 El conjunto $C = \{f(x), y, P(y)\}$ está formado por:
□Tres expresiones simples.
□Tres expresiones.
☐Tres fórmulas bien formadas.
□Ninguna de las anteriores o más de una de las anteriores.
2 El conjunto $C = \{P(f(x)), \neg P(y)\}$ está formado por:
Dos fórmulas unificables.
Dos fórmulas insatisfacibles.
□Un razonamiento válido.
□Ninguna de las anteriores o más de una de las anteriores.
3 El conjunto $C = \{P(x, f(x)) \lor \neg P(y, x), P(a, a), \neg P(x, f(f(a)))\}$ es:
□Insatisfacible. Puesto que se puede deducir la cláusula vacía aplicando resolución.
□Satisfacible. Puesto que se puede deducir la cláusula vacía aplicando resolución.
☐ Insatisfacible. Puesto que no se puede deducir la cláusula vacía aplicando resolución.
□Satisfacible. Puesto que no se puede deducir la cláusula vacía aplicando resolución.
4 La lógica polivalente:
☐ Trabaja con un conjunto de valores finito.
☐ Rechaza algunos de los axiomas clásicos de la lógica de predicados de primer orden.
☐ Amplía el conjunto de valores manteniendo los axiomas de la lógica de predicados de primer orden.
□ Ninguna de las respuestas anteriores.
5 Dados dos conjuntos borrosos A y B sobre un universo U, la función de pertenencia del conjunto borroso $A \cup B$ debe
cumplir, para todo elemento x del universo U:
$\square \mathbf{m}_{A \cup B}(x) \ge \mathbf{m}_{A}(x) \mathbf{y} \mathbf{m}_{A \cup B}(x) \ge \mathbf{m}_{B}(x)$
$\square \mathbf{m}_{A \cup B}(x) \ge \mathbf{m}_{A}(x) \text{o} \mathbf{m}_{A \cup B}(x) \ge \mathbf{m}_{B}(x)$
$\square \mathbf{m}_{A \cup B}(x) \le \mathbf{m}_{A}(x) \text{y} \mathbf{m}_{A \cup B}(x) \le \mathbf{m}_{B}(x)$
□Ninguna de las anteriores o más de una de las anteriores.
6Sea $C = \{P(a) \lor \neg Q(c), \neg P(b), \neg P(a) \lor P(x), \neg P(x) \lor Q(a) \lor P(x), Q(x)\}$. Si se aplica a C la estrategia de "eliminación de
tautologías" se obtiene:
$\square \left\{ P(a) \vee \neg Q(c), \neg P(b), \neg P(a) \vee P(x), \neg P(x) \vee Q(a) \vee P(x), Q(x) \right\}$
$\Box \{ P(a) \lor \neg Q(c), \neg P(b), \neg P(a) \lor P(x), Q(x) \}$
$\square \left\{ P(a) \vee \neg Q(c), \neg P(b), Q(x) \right\}$
□Ninguna de las anteriores o más de una de las anteriores.
7 Sea $C = \{P(f(a),b) \lor Q(x) \lor \neg R(c), P(a,a) \lor Q(x) \lor \neg R(c), \neg P(x,x), P(x,b) \lor Q(y)\}$. Si se aplica a C la estrategia de
"eliminación de subsunciones" se obtiene:
$\Box \{ P(a,a) \lor Q(x) \lor \neg R(c), \neg P(x,x), P(x,b) \lor Q(y) \}$
$\Box \{ \neg P(x, x), P(x, b) \lor Q(y) \}$
$\Box \left\{ P(f(a), x) \lor Q(x) \lor \neg R(c), P(a, a) \lor Q(x) \lor \neg R(c), \neg P(x, x) \right\}$
□Ninguna de las anteriores o más de una de las anteriores.
8Sea $C = \{f(x, g(f(a, y), z)), f(b, g(f(a, g(x, c)), f(y, x)))\}$, se puede afirmar que:
$\Box C$ es unificable mediante el umg $\{x/b, y/g(b,c), z/f(g(b,c),b)\}$
$\Box C$ es unificable mediante el umg $\{x/b, y/g(x,c), z/f(y,x)\}$
$\Box C$ no es unificable o el umg es distinto de los anteriores.
□No se puede aplicar el algoritmo de unificación a <i>C</i> puesto que no está formado por expresiones simples.

9.- Para que una fórmula de la forma $\forall x \ A(x)$ sea una fórmula bien formada:

- \square Es necesario que la variable x esté libre en A(x).
- \square Es necesario que la variable x esté ligada en A(x).
- \square Es necesario que A(x) sea una fórmula cerrada.
- □Ninguna de las respuestas anteriores o más de una de los anteriores.
- 10.-Sea $F_1 = \exists x \forall y \ T(x,y) \ y \ F_2 = \forall y \exists x \ T(x,y)$, entonces, para cualquier interpretación I:
- \square si $V_I(F_1) = \mathbf{V}$ entonces $V_I(F_2) = \mathbf{V}$
- \square si $V_I(F_2) = \mathbf{V}$ entonces $V_I(F_1) = \mathbf{V}$
- $\square V_I(F_1) = V_I(F_2)$

Enunciados Segundo Parcial 1994 - 1995

□Ninguna de las respuestas anteriores o más de una de las anteriores.

11.-El siguiente razonamiento:

```
\{\forall x (A(x) \to \forall y (H(y) \to \neg R(x, y))), \forall x (A(x) \to \forall y (S(y) \to R(x, y))), \exists y A(y)\} \Rightarrow \forall x (S(x) \to \neg H(x))
```

☐Es correcto porque se alcanza la cláusula vacía aplicando el método de resolución.

□Es correcto porque no se alcanza la cláusula vacía aplicando el método de resolución.

□Es incorrecto porque se alcanza la cláusula vacía aplicando el método de resolución.

Es incorrecto porque no se alcanza la cláusula vacía aplicando el método de resolución

12.- ¿Cuál sería la respuesta del sistema Prolog ante la pregunta ?multiplo(12,3) considerando que se ha cargado en la base de datos la siguiente definición de multiplo?

```
multiplo(X,Y):-X is Z * Y.
```

□La respuesta del sistema sería SI/YES porque existe un Z que al multiplicarlo con 3 da 12.

□El sistema daría error o fallaría porque se intenta evaluar una variable sin instanciar.

□El sistema devolvería la substitución de respuesta Z=4.

□Ninguna de las anteriores o más de una de las anteriores.

Bloque 2: Desarrollar

1.- Dado el siguiente programa lógico:

```
P(x, y) \leftarrow Q(x, f(y))
P(c, y)
Q(x, f(y)) \leftarrow R(x, y)
Q(b, f(a))
R(a, d)
R(x, y) \leftarrow R(y, x)
```

- a.- Construir el árbol-SLD con la estrategia de computación que selecciona el primer literal, siendo el objetivo $\leftarrow P(x,a)$.
- b.- Indicar la substitución de respuesta si la estrategia de búsqueda es primero en profundidad
- c.- Indicar la substitución de respuesta si la estrategia de búsqueda es primero en Anchura
- 2.- Formalizar las siguientes frases considerando como dominio el conjunto de personas y de partidos, utilizando los predicados: "V(x,y) = x votó a y. C(x,y) = x es candidato por el partido y. I(x) = x es un partido de izquierdas. D(x) = x es un partido de derechas" y las constantes: "t=Teodoro y m=Margarita".
- a.- "Algunos candidatos no votaron".
- b.- "Sólo los candidatos de partidos de izquierdas votaron a Teodoro".
- c.- "Todos los candidatos de partidos de derechas votaron a Margarita".
- d.-"Nadie vota a Teodoro a menos que Teodoro vote a algún candidato de derechas"
- e.- "Los candidatos de derechas se votaron a sí mismos"
- f.-"Algún candidato votó a los candidatos votados por Margarita"
- 3.-Escribir las definiciones de los siguientes predicados en Prolog:

```
ultimo(Xs,X):- "X es el último elemento de la lista Xs"
```

Ejemplo:
$$?ultimo([2,3,1,4,5],X)$$
.
 $X=5$

suma(Xs,N):-"N es la suma de los elementos de la lista Xs"

```
Ejemplo: ?suma([2,3,1,4,5],N).
N=15
```

media(Xs,M):-"N es la media de los elementos de la lista Xs"

```
Ejemplo: ?media([2,3,1,4,5],M).
M=3
```

rota(Xs,Ys):-"Ys es la lista resultante al rotar una posición a la izquierda los elementos de Xs"

```
Ejemplo: ?rota([2,3,1,4,5],Ys).

E=[3,1,4,5,2]
```

NOTA: Si se utilizan predicados auxiliares debe incluirse su definición.

Enunciados Junio 1994 –1995

Junio 1994 - 1995

Primer Parcial

1.- Sea
$$f(x_1, x_2, x_3, x_4) = \begin{cases} 1 & \text{si } x_2 + x_4 = 0 \lor x_1 + \overline{x}_2 + \overline{x}_4 = 0 \\ 0 & \text{si } x_1 x_2 x_4 = 1 \end{cases}$$

- Construir la tabla de Verdad de f
- Simplificar f por producto de sumas
- Implementar f con puertas NAND
- Implementar f con puertas NOR
- 2.- Simplificar la función: $f(x, y, z) = \overline{x} + \overline{y} + \overline{z} + \overline{x} + y + \overline{x} + z$
- 3.- Demostrar que el algoritmo de resolución proposicional es consistente.
- 4.- Formalizar e indicar si los siguientes razonamientos son o no correctos mediante el algoritmo de resolución:
- -"No es necesario suministrar medicamentos a los indígenas para que sus hijos sobrevivan a menos que estén en guerra con los suministradores de medicamentos. Por tanto, sus hijos sobreviven siempre que no estén en guerra con los suministradores de medicamentos o se suministre medicamentos a los indígenas"

"La lógica es fácil a no ser que el profesor sea un inútil, sin embargo, la lógica sólo es fácil si los alumnos no tienen miedo a formalizar. Por tanto, si los alumnos tienen miedo a formalizar, el profesor es un inútil."

NOTA: asignar las letras p,q,r,... por orden de aparición

- 5.- Sea C= $\{p \lor \neg q \lor r, p \lor q, \neg r \lor s, \neg s, \neg p\}$
- a.- Indicar si C es válido, satisfacible o insatisfacible.
- b.- Construir el árbol semántico para C indicando:
 - Nodos de fallo
 - Nodos de inferencia
 - Pasos de resolución asociados a cada nodo de inferencia.

NOTA: Para la construcción del árbol semántico:

- Ordenar las letras por orden alfabético (p,q,r,s)
- Numerar los nodos según el recorrido Primero en Anchura
- No desarrollar más ramas de las necesarias

Segundo Parcial

1.- Dado el siguiente programa lógico:

$$P(x,x) \leftarrow Q(x,y)$$

$$Q(x,y) \leftarrow R(x), S(x,y), T(y)$$

$$Q(b,a)$$

$$R(b)$$

$$S(b,c)$$

$$S(x,y) \leftarrow S(y,x)$$

$$T(d)$$

Construir el árbol-SLD para el objetivo $\leftarrow P(x, y)$ utilizando la regla de computación utilizada por los sistemas PROLOG convencionales e Indicar todas las substituciones de respuesta obtenidas al recorrer el árbol mediante las estrategias

- Primero en Profundidad.
- Primero en Anchura.
- 2.- Sea *I* la interpretación siguiente:

Dominio: {juan, pedro, luis}

Predicados: $A(x,y) = \{(juan, juan), (juan, pedro), (pedro, luis)\}$

 $B(x) = \{juan, pedro\}$

Calcular el valor de las siguientes fórmulas bajo *I*:

Enunciados Junio 1994 –1995

a.-
$$\forall x((\exists y A(x, y)) \rightarrow B(x))$$
 b.- $\forall x \exists y (B(x) \rightarrow A(x, y))$ c.- $\exists y \forall x (B(x) \rightarrow A(x, y))$ d.- $\forall x \exists y (B(x) \land A(x, y))$

"Sólo los que se arriman a algún buen árbol son buenos. Juan es bueno. Por tanto, Pedro es un buen árbol sólo si Juan se arrima a Pedro"

Utilizar:

 $B(x)="x \ es \ bueno"$ $A(x)="x \ es \ un \ arbol"$ $R(x,y)="x \ es \ arrima \ a \ y"$ $S(x)="x \ es \ una \ sombra"$ $C(x,y)="x \ cobija \ a \ y"$ j=Juan p=Pedro

- 4.- Implementar los siguientes predicados en lenguaje Prolog
- % escalar(Xs,Ys,E):-E es el producto escalar de los vectores Xs e Ys Ejemplo: ?escalar([1,2,3],[3,2,1],E)

E = 10

X=[4,4,4]

% iguales(Xs,Ys):- Los vectores Xs e Ys son iguales

Ejemplo: ?iguales([1,2,3],[3,2,1]) ?iguales([1,2,3],[1,2,3])

NO SI/YES

% modulo(Xs,M):- M es el módulo del vector Xs

Ejemplo: ?modulo([3,0,4],X)

X=5

NOTA: - Los vectores se representarán como listas de números

- Dados dos vectores $\bar{x} = [x_1, x_2, L, x_n]$ e $\bar{y} = [y_1, y_2, L, y_n]$ se define:
- El producto escalar de \overline{x} e \overline{y} como $\sum\limits_{i=1}^{n}x_{i}\cdot y_{i}$
- -Suma de \bar{x} e \bar{y} como $\bar{x} + \bar{y} = [x_1 + y_1, x_2 + y_2, L, x_n + y_n]$
- $-\bar{x}$ es igual a \bar{y} si $x_i = y_i \quad \forall i = 1..n$
- Módulo de $\overline{x} = \sqrt{\sum_{i=1}^{n} x_i^2}$
- Para calcular la raíz cuadrada, utilizar el predicado interno sqrt (X)
- 5.- Sobre el conjunto de los números reales se establecen los siguientes conjuntos borrosos:

C= "números próximos a cero".

$$\mathbf{m}_{c}(x) = \frac{1}{1 + 4x^2}$$

D= "números grandes".

$$\mathbf{m}_{D}(x) = \begin{cases} 1 & \text{si } x \ge 100\\ \frac{x - 10}{90} & \text{si } 10 \le x < 100\\ 0 & \text{si } x < 10 \end{cases}$$

A partir de dichos conjuntos, calcular el grado de pertenencia del número -1 a los siguientes conjuntos:

- a.- Conjunto de números no muy próximos a cero.
- b.- Conjunto de números grandes no muy próximos a cero.
- c.- Conjunto de números no muy grandes y no muy próximos a cero.
- d.- Conjunto $C \cup D$

^{3.-}Formalizar e indicar si los siguientes razonamientos son correctos:

[&]quot;Quien a buen árbol se arrima, buena sombra le cobija, Juan se arrima a un buen árbol, luego existen sombras buenas"

Enunciados Septiembre 1994 - 1995

Septiembre 1994 - 1995

1.- **Demostrar** que toda función lógica de dos variables f(a,b) se puede transformar en una función lógica equivalente en forma de producto de sumas.

2.- Sea *I* la siguiente interpretación:

Dominio: $D=\{1,2\}$

Predicados: $P(x,y)="x \neq y"$, Q(x)="x>2"

Calcular el valor de las siguientes fórmulas bajo I:

- a.- $\forall x \exists y (P(x, y) \rightarrow Q(x))$
- b.- $\forall x((\exists y P(x, y)) \rightarrow Q(x))$
- c.- $\forall x \exists y (P(x, y) \lor Q(x))$
- d.- $\exists y \forall x (P(x, y) \lor Q(x))$
- 3.-Formalizar e indicar si son o no correctos los siguientes razonamientos mediante resolución:
- a.- "No porque un alumno suspenda una asignatura se puede deducir que ese alumno no haya estudiado dicha asignatura. Además, los alumnos que suspenden una asignatura para la que han estudiado se deprimen. Por tanto, hay alumos deprimidos".
- b.- "Los alumnos deprimidos suspenden alguna asignatura para la que han estudiado. Ningún alumno estudia cuando está deprimido, por tanto: sólo los alumnos que no suspenden no están deprimidos".

```
Utilizar: A(x)="x \ es \ un \ alumno", S(x,y)="x \ suspende la asignatura y"

E(x,y)="x \ estudia \ la \ asignatura y". D(x)="x \ esta \ deprimido
```

4.- En un sistema Prolog se almacena información sobre diferentes enlaces entre ciudades con el formato:

enlace(ciudad1, Ciudad2, Distancia)

Se pide: Escribir la definición de un predicado

ruta(Ciudad1, Ciudad2, DistanciaTotal)

que se cumple si existe una ruta entre Ciudad1 y la Ciudad2 de distancia DistanciaTotal

Ejemplo: La situación de la figura se podría representar con los hechos:

enlace(a,b,3). enlace(a,c,2). enlace(c,d,4). enlace(c,e,5).

Ante la pregunta ?ruta(a,e,D) el sistema debería responder D=7

5.- Sea el siguiente programa en Prolog:

long([],0).

long([X|Xs],L):-long(Xs,L), L is L + 1.

Construir el árbol SLD e indicar la respuesta del sistema PROLOG para la pregunta:

- ?-long([a,b],L).
- 6.- En un automóvil se instala un controlador automático de velocidad mediante lógica borrosa. Para ello se definen los siguientes conjuntos borrosos:
- Conjunto P de "velocidades peligrosas". $\mathbf{m}_P = (0/0, 20/0.1, 40/0.3, 60/0.5, 80/0.7, 100/0.9, 120/1)$
- Conjunto A de "velocidades aconsejadas" $\mathbf{m}_A = (0/0, 20/0.4, 40/0.6, 60/0.8, 80/1, 100/0.6, 120/0.4)$

Calcular las funciones de pertenencia de los siguientes conjuntos borrosos:

- a.- "Velocidades Peligrosas Aconsejadas"
- b.- "Velocidades No Peligrosas Aconsejadas"
- c.- "Velocidades No Peligrosas ó No Aconsejadas"

Indicar cuáles de los anteriores conjuntos están normalizados.

Enunciados Febrero 1994 - 1995

Febrero 1994 - 1995

1.- Formalizar en lógica de proposiciones e indicar si es correcto por resolución el siguiente razonamiento:

"Si un profesor va de guay pero es un capullo, los alumnos no estudian. Los alumnos no estudian a menos que el profesor sea exigente. Basta que el profesor sea exigente para que sea un capullo. Por tanto, es necesario que los alumnos no estudien para que el profesor no vaya de guay y sea un capullo."

- 2.- Formalizar en lógica de predicados las siguientes frases:
 - a.-"Todos los hombres casados aman a alguna mujer"
 - b.-"Sólo los hombres desgraciados aman a alguna mujer con quien no están casados"
 - c.-"Sólo son desgraciados los hombres que aman a alguna mujer con quien están casados"
 - d.-"Alguien se casa con María si la ama."
 - e.-"Algún desgraciado sólo se casa con María cuando no la ama"
 - f.-"Los hombres que aman a una única mujer no son desgraciados"

```
Utilizar: H(x)="x es un hombre", M(x)="x es una mujer", C(x,y)="x está casado con y"
A(x,y)="x ama a y". I(x,y)="x es igual a y" D(x)="x es desgraciado"
j=Juan \qquad m=María
```

- 3.- Estrategia de **eliminación de subsunciones**. Definir e indicar las diferencias entre su aplicación a resolución proposicional y a resolución general.
- 4.- Sea el siguiente programa lógico:

```
P(a,x,x) 
 P(f(x, y), z, f(x, u)) \leftarrow P(y, z, u)
```

Construir el árbol-SLD para el objetivo $\leftarrow P(f(b, f(c, a)), f(a, a), x)$ utilizando la regla de computación de los sistemas Prolog tradicionales e Indicar **todas** las substituciones de respuesta con la estrategia primero en anchura.

5.- Se desea construir una serie de predicados Prolog para trabajar con conjuntos borrosos sobre un universo discreto de n elementos.

Para representar el conjunto borroso A cuya función de pertenencia es:

$$\mathbf{m}_A = (v_1 / x_1, v_2 / x_2, \mathsf{L}, v_n / x_n)$$
 se utilizará la lista:

 $[x_1, x_2, \ldots, x_n]$

Definir los siguientes predicados:

```
1.-no(C1,C2) :- Se cumple si C2 representa el conjunto borroso "no C1"
2.-and(C1,C2,C3) :- Se cumple si C3 representa el conjunto borroso "C1 y C2"
3.-or(C1,C2,C3) :- Se cumple si C3 representa el conjunto borroso "C1 ó C2"
4.-tercio(C1,C2) :- Se cumple si C2 representa el conjunto borroso "C1 ó no C1"
5.-normalizado(C) :- Se cumple si el conjunto borroso C está normalizado
```

NOTA: Utilizar los predicados:

Si se utilizan otros predicados auxiliares distintos de los anteriores, incluir su definición.

Enunciados Primer Parcial 1995 - 1996

Primer Parcial 1995 - 1996

1.- En un álgebra de Boole, cualquier función f de dos variables cumple que: $\Box \ \overline{a} \cdot f(a,b) = \overline{a} \cdot f(0,b) + a \cdot f(1,b)$ $\Box \ \overline{a} \cdot f(a,b) = \overline{a} \cdot f(0,b)$ $\square \ \overline{a} \cdot f(a,b) = \overline{a} \cdot f(1,b)$ ☐ Ninguna de las anteriores o más de una de las anteriores 2.- En un álgebra de Boole, cualquier función booleana f de dos variables cumple que: $\Box f(a,b) = (b + f(a,0))(\overline{b} + f(a,1))$ $\Box f(a,b) = (a + f(1,b))(\overline{a} + f(0,b))$ $\Box f(a,b) = (b + f(0,b))(\overline{b} + f(1,b))$ ☐ Ninguna de las anteriores o más de una de las anteriores 3.- La función $f(a,b,c,d) = \sum (2,3,6,10,\overline{11,12,14}) + \sum (1,4,7,15)$ equivale a: $\Box f(a,b,c,d) = \prod_{4} (0,5,8,9,13) \prod_{\emptyset} (1,4,7,15)$ $f(a,b,c,d) = \prod_{4}^{7} (2,6,7,10,15) \prod_{\emptyset}^{7} (0,8,11,14)$ $f(a,b,c,d) = \prod_{4}^{7} (2,6,7,10,15) \prod_{\emptyset}^{7} (1,4,7,15)$ ☐ Ninguna de las anteriores o más de una de las anteriores 4.- Simplificando la función anterior en suma de productos se obtiene: $\Box c + b\bar{d} + \bar{a}\bar{b}d$ $\Box c + b\bar{c}\bar{d}$ $\Box c + b\bar{d}$ ☐ Ninguna de las anteriores o más de una de las anteriores 5.- Simplificando la función del ejercicio 3 en producto de sumas se obtiene: \Box $(\bar{b} + \bar{c})(b+d)$ $\Box (b+c)(\overline{b}+\overline{d})$ \Box $(c+\overline{d})(b+c)$ ☐ Ninguna de las anteriores o más de una de las anteriores 6.-La fórmula $((p \to q) \land \overline{(q \to r)}) \to (\neg p \to r)$ se puede expresar en Forma Normal Conjuntiva como: $\square (p \vee \neg q) \wedge (q \vee \neg r) \wedge (p \vee r)$ $\square p \vee q \vee r$ $\square (p \land \neg q) \lor (q \land \neg r) \lor p \lor r$ ☐ Ninguna de las anteriores o más de una de las anteriores 7.-La fórmula $(p \to (q \lor r)) \leftrightarrow (q \land \neg r)$ se puede expresar en Forma Normal Disyuntiva como: $\square ((p \land \neg q \land \neg r) \lor (q \land \neg r)) \land (\neg p \lor \neg q \lor r)$ \square $(p \land \neg r) \lor (q \land \neg r)$ $\square (p \land \neg q \land \neg r) \lor (q \land \neg r) \lor (\neg p \land q)$ □ Ninguna de las anteriores o más de una de las anteriores 8.- Sea $f(a,b,c,d) = \sum_{i=0}^{\infty} (7,11,i) + \sum_{i=0}^{\infty} (2,8,10,j,k)$. Para que al simplificar f por el método de Karnaugh se obtenga \bar{b} \bar{d} + cd el valor de m y n debe ser:

- $\Box i = 15, j = 0, k = 3$
- $\Box i = 3, j = 15, k = 0$
- $\Box i = 0, j = 15, k = 3$
- ☐ Ninguna de las anteriores o más de una de las anteriores.
- 9.- En la figura se representa una porción del árbol semántico de un conjunto de cláusulas C donde C_1 , C_m y C_k representan las cláusulas asociadas a los nodos de fallo l, m y k, respectivamente. En dicha situación se cumple que:

\prod La c1	ánsula	C	contiene	necesariamente	e1	literal	n
படகப	ausura	C,	COILLICIT	necesariamente	c_1	mulai	ν

- \square La cláusula C_i contiene necesariamente el literal $\neg p$
- \square La cláusula C_i es siempre resoluble con la cláusula C_m
- ☐ Ninguna de las anteriores o más de una de las anteriores

10.- En el árbol semántico del ejercicio anterior se cumple que:

- \square La cláusula C_m es falsificada en el nodo j
- \Box La cláusula C_{m} contiene los literales $\neg p \ y \ q$
- \square El nodo i es un nodo de inferencia ya que sus dos hijos son nodos de fallo
- ☐ Ninguna de las anteriores o más de una de las anteriores
- 11.- El razonamiento $\{s \lor p \lor \neg q, \neg p \lor q\} \Rightarrow s$ es:
- ☐ Correcto
- ☐ Incorrecto
- ☐ Insatisfacible
- ☐ Ninguna de las anteriores o más de una de las anteriores
- 12.- Aplicando la eliminación de literales puros, el conjunto de cláusulas $\{p \lor \neg q, \neg p \lor r, q \lor r, \neg r \lor \neg s, \neg s\}$ quedaría reducido a:
- $\square \left\{ p \vee \neg q, \neg p \vee r, q \vee r \right\}$
- ☐ Un conjunto sin cláusulas, indicando que el conjunto original es insatisfacible
- ☐ Un conjunto sin cláusulas, indicando que el conjunto original no es insatisfacible
- ☐ Ninguna de las anteriores o más de una de las anteriores

NOTA:

- En cada uno de los 5 siguientes ejercicios, asignar las letras p,q,r,... por orden de aparición a las diferentes proposiciones para formalizar.
- Asignar las letras a las frases afirmativas.
- Es decir, para formalizar: "No está lloviendo", asignar p="está lloviendo" y formalizar como " $\neg p$ "
- 13.- La frase: "No es necesario mantener una política de recorte de gastos a menos que los ciudadanos no sean capaces de financiar las obras públicas, sin embargo, sólo cuando los ciudadanos son capaces de financiar las obras públicas es posible hablar de un Estado de Contingencia" se podría formalizar como:
- $\square (\neg q \rightarrow \neg p) \land (q \rightarrow r)$
- $\square (p \rightarrow \neg q) \land (r \rightarrow q)$
- $\square (\neg p \rightarrow \neg q) \land (q \rightarrow r)$
- ☐ Ninguna de las anteriores o más de una de las anteriores.
- 14.- La frase: "Juan suspende lógica o física, pero no ambas; no obstante si Juan no suspende lógica, tampoco suspende física" se podría formalizar como:
- $\square (p \vee q) \wedge (\neg p \vee \neg q) \wedge (\neg p \rightarrow \neg q)$
- $\square (p \lor q \lor \neg (p \land q)) \land (\neg p \to \neg q)$
- $\square ((\neg p \land q) \lor (p \land \neg q)) \land (q \to p)$
- ☐ Ninguna de las anteriores o más de una de las anteriores.
- 15.- El razonamiento: "La música amansa a las fieras cuando éstas no están sordas. Para que las fieras no estén sordas, es suficiente disponer de suficientes audífonos. Por tanto, disponer de suficientes audífonos es una condición necesaria para que la música no amanse a las fieras" se podría formalizar como:
- $\square \{(p \to \neg q) \land (\neg q \to r)\} \Rightarrow (\neg p \to r)$
- $\square \{(\neg q \to p) \land (r \to \neg q)\} \Rightarrow (\neg p \to r)$
- $\square \{(\neg q \to p) \land (\neg q \to r)\} \Rightarrow (r \to \neg p)$
- ☐ Ninguna de las anteriores o más de una de las anteriores
- 16.- La frase: "El heavy no es violencia salvo cuando intervienen las fuerzas del mal" se podría formalizar como:
- $\square \neg q \rightarrow \neg p$
- $\square q \rightarrow \neg p$
- $\square \neg p \rightarrow q$
- □ Ninguna de las anteriores o más de una de las anteriores
- 17.- La frase: "Pepe no siente las piernas cuando entrevista a Marta si no se pone a cantar" se podría formalizar como:

Enunciados Primer Parcial 1995 - 1996

$\Box (\neg r \to q) \to \neg p$
$\Box \neg r \leftrightarrow (q \rightarrow \neg p)$
$\Box \neg r \rightarrow (q \rightarrow \neg p)$
☐ Ninguna de las anteriores o más de una de las anteriores
18 La estrategia de resolución lineal:
☐ Encuentra la cláusula vacía siempre que el conjunto de cláusulas sea satisfacible
☐ Sólo es completa para cláusulas Horn
☐ Es completa para cualquier conjunto de cláusulas
☐ Ninguna de las anteriores o más de una de las anteriores
19 Sea C un conjunto de cláusulas satisfacible y Q una cláusula, entonces:
\square Si $C \cup \{\neg Q\}$ es insatisfacible, aplicando resolución lineal con $C_0 = Q$ se alcanza la cláusula vacía.
\square Si $C \cup \{Q\}$ es satisfacible, aplicando resolución lineal con $C_0 = \neg Q$ se alcanza la cláusula vacía.
\square Si $C \cup \{Q\}$ es insatisfacible, aplicando resolución lineal con $C_0 = Q$ se alcanza la cláusula vacía.
☐ Ninguna de las anteriores o más de una de las anteriores.
20 Que el algoritmo de resolución proposicional sea completo quiere decir que:
☐ El resolvente de dos cláusulas es consecuencia lógica de ellas
☐ Si se aplica a un conjunto de cláusulas insatisfacible, se alcanza la cláusula vacía
☐ Cuando se aplica a un conjunto de cláusulas y se alcanza la cláusula vacía, ese conjunto es insatisfacible. ☐ Ninguna de las anteriores o más de una de las anteriores.
21 Sea $C = \{p_0, \neg p_0 \lor p_1, \neg p_0 \lor \neg p_1 \lor p_2, \cdots, \neg p_0 \lor \neg p_1 \lor \cdots \lor \neg p_{n-1} \lor p_n\}$, entonces:
$\square \ C \Rightarrow \neg p_{\scriptscriptstyle n}$
$\square \ C \Rightarrow p_n$
☐ C es insatisfacible
☐ Ninguna de las anteriores o más de una de las anteriores.
22 El conjunto $C = \{p \lor \neg q \lor r \lor s, \neg p \lor q \lor \neg r, \neg r \lor s, \neg q \lor r, p \lor \neg s\}$ es:
☐ Satisfacible porque se alcanza la cláusula vacía aplicando resolución.
☐ Insatisfacible porque se alcanza la cláusula vacía aplicando resolución.
☐ Insatisfacible porque no se alcanza la cláusula vacía aplicando resolución. ☐ Satisfacible porque no se alcanza la cláusula vacía aplicando resolución.
23 Indicar qué conjunto de cláusulas se utiliza para demostrar que el siguiente razonamiento es correcto mediante el
algoritmo de resolución: $\{(p \to (q \to r)) \land ((r \land s) \to t) \land ((s \to t) \to w)\} \Rightarrow p \to (q \to w)$
$\Box \left\{ \neg p \lor \neg q \lor r, \neg r \lor \neg s \lor t, s \lor w, \neg t \lor w, p, q, \neg w \right\}$
$\Box \left\{ \neg p \lor \neg q \lor r, \neg r \lor \neg s \lor t, s \lor w, \neg t \lor w, p, q, \neg w \right\}$ $\Box \left\{ \neg p \lor \neg q \lor r, \neg r \lor t, \neg s \lor t, s \lor w, \neg t \lor w, \neg p \lor \neg q \lor w \right\}$
□ Ninguno de los anteriores o más de uno de los anteriores
24 Si se aplica resolución ordenada al conjunto de cláusulas del ejercicio anterior: ☐ NO se obtiene la cláusula vacía con resolución ordenada, pero el razonamiento es correcto porque SÍ se alcanza la cláusula
vacía mediante resolución lineal.
☐ NO se obtiene la cláusula vacía ni con resolución ordenada ni con resolución lineal porque el razonamiento no es correcto. ☐ Se obtiene la cláusula vacía, indicando que el razonamiento es correcto.
☐ Ninguna de las anteriores o más de una de las anteriores.
25 La fórmula $(((p \lor q) \to \neg r) \land (\neg p \to (\neg q \lor r)) \land (\neg r \lor t) \land (t \to (\neg p \lor q \lor s))) \to (\neg p \lor q \lor (r \land s \land t))$ es:
☐ Válida. ☐ Satisfacible.
☐ Insatisfacible

 $\hfill\square$ Ninguna de las anteriores o más de una de las anteriores.

Enunciados Segundo Parcial 1995 –1996

Segundo Parcial 1995 –1996

Bloque 1: Test

1 La abducción:
☐ Es una técnica de construcción de árboles SLD
☐ Es una regla de inferencia no monótona
☐ Es una modalidad de lógica que define el predicado de igualdad
☐ Es una técnica de respiración controlada por un sistema experto programado en Prolog
2 El conjunto { $\forall x(P(x) \to \exists yQ(x,z)), \ \forall x(P(x) \to \exists xQ(x,y)), \ \forall x(P(x) \to \exists yQ(x,\neg P(y)))$ } está formado por:
☐ Tres fórmulas bien formadas
□ Dos fórmulas bien formadas
☐ Una fórmula bien formada
□ Ninguna fórmula bien formada
3 El conjunto $\{\neg f(x), \neg P(x), P(x)\}$ contiene:
☐ Tres términos
□ Dos términos
□ Un término
□ Ningún término
4Mediante un test se mide el cociente de inteligencia de una persona obteniendo los valores $\{60,100,140,180\}$ y se definen los conjuntos borrosos: Inteligentes= $(0/60,0.36/100,0.64/140,1/180)$ y Torpes= $(1/60,0.6/100,0.4//140,0/180)$. A partir de esos valores, el conjunto borroso A= $(1/60,0.36/100,0.64/140,1/180)$ correspondería a las personas:
□ No Inteligentes ó muy torpes
☐ Algo inteligentes ó muy torpes
☐ Inteligentes ó muy torpes
☐ Algo inteligentes y no muy torpes
5 Para cualquier conjunto borroso A sobre un universo U, se cumple que: \square Para todo $x \in U$, $\mathbf{m}_{A \land \neg A}(x) = 0$
\square Para todo $x \in U$, $\mathbf{m}_{A_{A} \to A}(x) = 1$
\square Puede existir un x tal que $\mathbf{m}_{\neg(A \land B)}(x) \neq 1 - \mathbf{m}_{A \land B}(x)$
\square Puede existir un x tal que $\mathbf{m}_{A \wedge \neg A}(x) > 0$
6 A partir de las premisas { $\forall x((P(x) \land \exists yQ(x,y)) \rightarrow \exists zR(z,x)), P(j), \neg \exists xR(x,j)$ } se puede deducir como consecuencia
lógica: $\Box \exists x Q(x, x)$
$\Box \neg \exists x Q(x,x)$
$\Box \exists x \neg Q(x, x)$
☐ Ninguna de las anteriores.
7 A partir de las premisas $\{ \forall x ((\exists y P(x, y)) \rightarrow \neg Q(x, x)), \exists x P(x, x) \}$ se puede deducir como consecuencia lógica:
$\square \exists x Q(x,x)$
$\Box \neg \exists x Q(x, x)$
$\square \exists x \neg Q(x, x)$
□ Ninguna de las anteriores.
8 Dado el siguiente programa Prolog: $q(X):-p(X)$, X1 is X+1, $p(X)$. $p(X):-0$ is X mod 2.
y la pregunta: ?q(2). La respuesta del sistema es:
□ S1/Yes
\square No
□ Frror allevaluar "O is 3 mod 2"
□ Error al evaluar "0 is 3 mod 2" □ Error al evaluar "0 is 2 mod 2"
☐ Error al evaluar "0 is 2 mod 2"
☐ Error al evaluar "0 is 2 mod 2" 9 Dado el programa en Prolog:
☐ Error al evaluar "0 is 2 mod 2" 9 Dado el programa en Prolog: p(b,b).
☐ Error al evaluar "0 is 2 mod 2" 9 Dado el programa en Prolog:

Enunciados Segundo Parcial 1995 –1996

Y el objetivo ?p(b, X), q(X). La substitución de respuesta con la regla de computación "Seleccionar el último" y la
estrategia de búsqueda "Primero en profundidad" es:
$\square \left\{ x/b, y/a, z/b \right\}$
$\square \left\{ x/a \right\}$
$\square \left\{ x/b \right\}$
□ Ninguna, porque el sistema entra en un bucle infinito.
10 Si en el ejercicio anterior se utiliza la estrategia "Primero en Anchura", la substitución de respuesta es:
$\square \left\{ x/b, y/a, z/b \right\}$
$\square \left\{ x/a \right\}$
$\square \left\{ x/b \right\}$
☐ Ninguna, porque el sistema entra en un bucle infinito.
11 Sea la interpretación I = { D={a,b,c},R={(a,a),(a,b),(a,c),(b,c)} } y sean F= $\exists x \forall y R(x,y)$ y G= $\forall x \exists y R(x,y)$ entonces:
$\square V_I(F) = \mathbf{V} \ \mathbf{y} \ V_I(G) = \mathbf{V}$
$\square V_I(F) = \mathbf{V} \ \mathbf{y} \ V_I(G) = \mathbf{F}$
$\square \ V_I(G) = \mathbf{F} \ \mathbf{y} \ V_I(G) = \mathbf{V}$
$\square \ V_I(G) = \mathbf{F} \ y \ V_I(G) = \mathbf{F}$
12La fórmula $(\forall x (P(x) \to Q(x)) \land \neg \exists y Q(y)) \to \neg P(a)$ es:
☐ Insatisfacible
☐ Satisfacible pero no válida
□ Válida
□ No se puede clasificar si es válida, satisfacible o insatisfacible porque en lógica de predicados hay infinitas interpretaciones.
13 Sea $C = \{P(f(x)) \lor \neg Q(a), \neg P(g(x)) \lor R(y), \neg R(y) \lor Q(b)\}$. Tras aplicar la eliminación de cláusulas con litereales puros
queda:
$\square \left\{ \neg P(g(x)) \lor R(y) \right\}$
☐ El mismo conjunto C porque no hay ningún literal puro
☐ Un conjunto sin cláusulas, indicando que C es insatisfacible
☐ Un conjunto sin cláusulas, indicando que C es satisfacible
14 El conjunto C= $\{P(f(x), y, f(z)) \lor \neg P(x, y, z), P(a, x, x), \neg P(f(f(a)), a, f(x))\}$ es:
☐ Satisfacible porque se alcanza la cláusula vacía aplicando resolución
☐ Insatisfacible porque se alcanza la cláusula vacía aplicando resolución
☐ Satisfacible porque no se alcanza la cláusula vacía aplicando resolución
☐ Insatisfacible porque no se alcanza la cláusula vacía aplicando resolución

Enunciados Segundo Parcial 1995 –1996

Bloque 2: Desarrollar

```
1.- Formalizar las siguientes frases en lógica de predicados, utilizando: R(x,y)="x roba a y" y O(x,y)="x odia a y"
a.-"Alguien odia a todos los que le roban"
b.-"Alguien odia sólo a los que le roban"
c.-"Todos roban a quien les odia"
d.-"Los que roban y odian a alguien son odiados por todos"
e.-"Nadie roba a alguien a quien no odia"
2.- Construir los siguientes programas en lenguaje Prolog:
a.- suma (Xs,P,I):-P es la suma de los elementos pares de Xs e I la suma de los elementos impares de Xs.
                                                     Ejemplo: ? suma([1,2,5,2,6],P,I).
                                                             P = 10, I = 6
b.-sumapos(Xs,P,I):-P es la suma de elementos en posiciones pares de Xs e I la suma de elementos en posiciones
impares.
                                                     Ejemplo: ? suma([1,2,5,2,6],P,I).
                                                             P = 4, I = 12
c.-pos(X,Xs,N):- N es la posición de X en Xs
                                                     Ejemplo: ? pos(2,[1,2,5,2,6],N).
                                                             N = 2; ...backtracking
                                                             N = 4;
d.-substpares(Xs,E,Ls):- Ls es igual a Xs después de substituir los elementos pares
de Xs por E
                                                              ? substpares([1,2,5,2,6],0,L).
                                                               L = [1,0,5,0,0]
NOTA: Deben definirse todos los predicados auxiliares.
       Para calcular el resto de la división entera se puede utilizar la función mod.
                                                                           Ejemplo: ? X is 13 mod 7
       X = 6
```

Enunciados Junio 1995 – 1996

Junio 1995 – 1996

Primer Parcial

 $\square (p \vee \neg r) \wedge (p \vee q) \wedge (\neg p \vee \neg q \vee r)$

☐ Ninguna de las anteriores

 $\square \ p \wedge (\neg q \vee r) \wedge (\neg p \vee q \vee r) \wedge (\neg p \vee \neg q \vee \neg r)$

1 A partir del conjunto $\{(p \lor q) \leftrightarrow r, (\neg p \lor r) \rightarrow s\}$ se puede deducir como consecuencia lógica:
$\square s \rightarrow q$
$\square q \rightarrow s$
$\square q \land \neg s$
☐ Ninguna de las anteriores
2 A partir del conjunto $\{(p \land q) \rightarrow (r \land s), \neg q \lor \neg s\}$ se puede deducir como consecuencia lógica:
$\square p \wedge q$
$\square q \rightarrow p$
$\Box \neg p \lor \neg q$
☐ Ninguna de las anteriores
3 Simplificando la función $f(a,b,c,d) = a\overline{(b+c\overline{d})} + a\overline{(b}\overline{c}\overline{d} + a\overline{b} + d + a + b\overline{c}(b+d)$ en suma de productos se obtiene:
\square \overline{a}
$\Box \ a\bar{b}\bar{c} + a\bar{b}d + a\bar{b}c\bar{d} + a\bar{b}\bar{d}$
☐ Ninguna de las anteriores
4Sea $C = \{P_1, P_2,, P_n\}$ un conjunto de cláusulas satisfacible. Si se añade una cláusula R tal que $C \cup R$ sea insatisfacible:
\square El razonamiento $\{P_1, P_2,, P_n\} \Rightarrow R$ es correcto.
☐ Tomando como cláusula cabeza R, se llega a la cláusula vacía mediante resolución lineal.
☐ A partir del conjunto C se sigue como consecuencia lógica cualquier fórmula
☐ Tomando como cláusula cabeza la negación de R se llega a la cláusula vacía mediante resolución lineal
5 Sea f(a,b,c,d) una función lógica que toma valor 1 si a+b=c+d, valor 0 si a+b ≠ c+d y a>c; y que está indefinida en los
demás casos. Donde la operación + equivale a la suma binaria. Al simplificar f(a,b,c,d) en suma de productos se obtiene:
$ \Box \ abcd + a\overline{b} c\overline{d} + a\overline{b} \overline{c}d + \overline{a}bc\overline{d} + \overline{a}b\overline{c}d + \overline{a}\overline{b} \overline{c}\overline{d} $
$\Box \ \overline{a} + a\overline{b} d + c$
$\Box \bar{a} + c + d$
□ Ninguna de las anteriores
6 Al simplificar la función del ejercicio anterior en producto de sumas se obtiene:
$\Box (a+b+\overline{c})(a+\overline{c}+\overline{d})(\overline{a}+\overline{b}+c)(a+b+\overline{d})(b+\overline{c}+\overline{d})(\overline{b}+c+d)(\overline{a}+c+d)$
$\Box (a+b+\overline{c})(a+\overline{c}+\overline{d})$
$\Box (\overline{a} + \overline{b} + c)(\overline{a} + c + d)$
☐ Ninguna de las anteriores
7 El conjunto C= $\{\neg r \lor p \lor q, \neg q \lor r, \neg q \lor p, \neg p \lor q, \neg p\}$ es:
☐ Satisfacible porque se alcanza la cláusula vacía aplicando resolución
☐ Satisfacible porque no se alcanza la cláusula vacía aplicando resolución
☐ Insatisfacible porque se alcanza la cláusula vacía aplicando resolución ☐ Insatisfacible porque no se alcanza la cláusula vacía aplicando resolución
8 Una estrategia de resolución R es completa cuando:
☐ Se aplica a un conjunto de cláusulas Horn y se obtiene la cláusula vacía
☐ Siempre que se aplica R a un conjunto de cláusulas satisfacibles, se alcanza la cláusula vacía
☐ Siempre que se aplica R a un conjunto de cláusulas insatisfacibles, se alcanza la cláusula vacía
□ Se utiliza para cláusulas Horn
9Sea F una fórmula proposicional compuesta por tres proposiciones p,q y r tal que, para toda interpretación I,
$V_{I}(F) = \begin{cases} \mathbf{V} & \text{si } V_{I}(p) = V_{I}(\neg q \lor r) \\ \mathbf{F} & \text{en caso contrario} \end{cases}$
Una expresión equivalente a F en FNC sería:
$\square (\neg p \lor r) \land (\neg p \lor \neg q) \land (p \lor q \lor \neg r)$

Enunciados Junio 1995 – 1996

10 Una expresión equivalente a la fórmula del ejercicio anterior en FND sería $\Box (\neg p \land q \land \neg r) \lor (p \land \neg q) \lor (p \land r)$
$\Box (\neg p \land \neg q \land \neg r) \lor (p \land \neg q) \lor (p \land r)$ $\Box (\neg p \land \neg q \land \neg r) \lor (p \land \neg q) \lor (p \land r)$
$\Box (\neg p \land \neg q \land \neg r) \lor (p \land \neg q) \lor (p \land r)$ $\Box (\neg p \land \neg q \land \neg r) \lor (p \land r)$
☐ Ninguna de las anteriores NOTA: En cada uno de los siguientes ejercicios, asignar las letras p,q,r, por orden de aparición a las diferentes
proposiciones. Asignar las letras a las frases afirmativas, es decir, para formalizar "no está lloviendo", asignar p ="está
<i>lloviendo</i> " y formalizar como ¬p
11"Juan salta por la ventana sólo cuando Pedro entra por la puerta y María y Juan están juntos" se podría formalizar
como:
$\Box (q \wedge r) \to p$
$ \Box p \to (q \land r) $
□ Ninguna de las anteriores
12"Si un Heavy no es violento a menos que le roben la moto entonces para que Juan le rompa las piernas a Pedro es necesario que Pedro le robe la moto a Juan" se podría formalizar como:
$\Box (\neg p \lor q) \to (r \to s)$
$\Box (p \lor q) \lor (r \lor s)$ $\Box (\neg p \to q) \to (s \to r)$
$\Box (\neg p \to q) \to (s \to r)$ $\Box (q \to p) \to (r \to s)$
\square ($q \rightarrow p$) \rightarrow ($r \rightarrow s$) \square Ninguna de las anteriores
13 El razonamiento "Siempre que hay rumor de que no va a haber clase, no la hay, por tanto si no hay clase es que hay
rumor de que no va a haber clase" se podría formalizar como:
$\square \{p \to \neg q\} \Rightarrow \neg q \to p$
$\square \left\{ \neg q \to p \right\} \Rightarrow \neg p \to q$
$\square \left\{ \neg q \to \neg p \right\} \Rightarrow \neg q \to p$
□ Ninguna de las anteriores
14"No es necesario que el río suene para que lleve agua, pero sí suficiente" se podría formalizar como:
$\Box \neg (q \to p) \land (p \to q)$
$\square \ (\neg p \to q) \land (q \to p)$
$\Box \neg (p \to q) \land (q \to p)$
☐ Ninguna de las anteriores
15 El razonamiento "Los caballeros son terribles cuando se preparan sus dietas a base de aminoácidos. Además, diferencia
entre caballos y caballeros es una condición imprescindible para que se preparan las dietas de los caballeros a base de
aminoácidos. Por tanto o se diferencia entre caballos y caballeros o los caballeros no son terribles." se podría formalizar como:
$\square \{(p \to q) \land (q \to r)\} \Rightarrow r \lor \neg p$
$\square \{(q \to p) \land (r \to q)\} \Rightarrow r \lor \neg p$
$\square \{(p \to q) \land (r \to q)\} \Rightarrow r \lor \neg p$
$\Box \{(p \to q) \land (p \to q)\} \Rightarrow r \lor \neg p$ $\Box \{(q \to p) \land (q \to r)\} \Rightarrow r \lor \neg p$
16 El razonamiento "Puesto que los alumnos copian las prácticas a no ser que el profesor lo impida y el profesor no lo
impide a menos que tenga poco trabajo. Se puede deducir que, es suficiente que el profesor no tenga poco trabajo para que los
alumnos copien las prácticas" se podría formalizar
$\square \{(p \to q) \land (r \to q)\} \Rightarrow p \to \neg r$
$\square \{(\neg q \to p) \land (q \to r)\} \Rightarrow \neg r \to p$
$\square \{(p \to q) \land (q \to r)\} \Rightarrow \neg r \to p$
☐ Ninguna de las anteriores
NOTA: Para responder las 4 preguntas siguientes, construir el árbol semántico para el conjunto
$C = \{p \lor \neg q, \neg p \lor q, p \lor \neg r, \neg p \lor \neg r, q \lor \neg r, \neg q \lor r, q \lor r\}$
Seguir las normas:
Tomar las letras por orden alfabético Numerar los nodos según el recorrido en anchura partiendo del raíz como nodo 0
No desarrollar más ramas de las necesarias.
17 Los nodos de fallo son:
□ 3 y 6
□ 4,5,7,8,9 y 10
$\Box 0,1,2,3 \text{ y } 6$

Enunciados Junio 1995 – 1996

□ No tiene
18 Los nodos de inferencia son:
$\square 3y6$
\Box 4,5,7,8,9 y 10 \Box 0,1,2,3 y 6
□ No tiene
19 ¿Es un árbol de fallo?
□ No, porque existe algún nodo que no es de fallo.
□ No, porque tiene nodos de inferencia.□ Sí, porque está limitado por nodos de fallo.
☐ Sí, porque no tiene nodos de inferencia.
20 ¿Puede existir algún nodo de fallo con más de una cláusula asociada?
☐ Sí, por ejemplo, los nodos 3 y 6.
☐ Sí, por ejemplo, el nodo 9. ☐ No, en un árbol semántico nunca puede existir un nodo de fallo con más de una cláusula asociada.
□ No, en un árbol de fallo, cada nodo tiene una única cláusula asociada.
Segundo Parcial
Bloque 1: Test
1La fórmula $\forall x ((P(x) \land Q(x)) \leftrightarrow (Q(x) \rightarrow \neg P(x)))$ es:
□ Insatisfacible
☐ Satisfacible pero no válida
☐ Válida ☐ No se puede clasificar si es válida, satisfacible o insatisfacible porque en lógica de predicados hay infinitas interpretaciones.
2La fórmula $(\forall x(P(x) \to Q(x)) \land Q(a)) \to \neg P(a)$ es:
\square Insatisfacible
☐ Satisfacible pero no válida
□ Válida
☐ No se puede clasificar si es válida, satisfacible o insatisfacible porque en lógica de predicados hay infinitas interpretaciones.
3En la lógica de predicados de orden superior: ☐ Una fórmula puede tomar múltiples valores entre 0 y 1
☐ Se generaliza la lógica de predicados de Primer Orden mediante la definición del predicado de igualdad
☐ Se pueden cuantificar funciones y predicados.
☐ Un predicado puede tener mayor aridad que en la lógica de predicados de Primer Orden
$4\forall x (P(x,y) \to \exists y Q(x,y))$
☐ Es una fórmula bien formada de la lógica de predicados de Orden Superior
☐ Es una fórmula bien formada no cerrada ☐ Es una fórmula bien formada cerrada
☐ No es una fórmula bien formada
5 Para cualquier par de conjuntos borrosos A y B sobre un universo U, se cumple que:
\square Para todo $x \in U$, $\mathbf{m}_{\neg(A \land B)}(x) = 1 - \mathbf{m}_{A \lor B}(x)$
\square Para todo $x \in U$, $\mathbf{m}_{\neg (A \land B)}(x) < \mathbf{m}_{A \land B}(x)$
\square Para todo $x \in U$, $\mathbf{m}_{\neg (A \land B)}(x) = \mathbf{m}_{\neg A \lor \neg B}(x)$
\square Puede existir un x tal que $\mathbf{m}_{\neg (A \wedge B)}(x) \neq 1 - \mathbf{m}_{A \wedge B}(x)$
6 El razonamiento $\{ \forall x \exists y (P(x, y) \lor P(y, x)), \forall x \forall y (P(x, y) \to P(y, y)) \} \Rightarrow \exists x P(x, x) \text{ es:}$
☐ Correcto, porque se alcanza la cláusula vacía aplicando resolución
□ No correcto, porque se alcanza la cláusula vacía aplicando resolución
☐ Correcto, porque no se alcanza la cláusula vacía aplicando resolución ☐ No correcto, porque no se alcanza la cláusula vacía aplicando resolución
□ No correcto, porque no se alcanza la cláusula vacía aplicando resolución 7 El razonamiento $\{ \forall x (P(x) \rightarrow \exists y Q(x, y)), \neg \exists x Q(x, a) \} \Rightarrow \neg \exists x P(x) \text{ es:}$
7 El lazonalmomo $\{\forall x (I(x) \rightarrow \exists y Q(x, y)), \exists \exists x Q(x, u)\} \rightarrow \exists \exists I \{x\} \in S.$

Enunciados Junio 1995 – 1996

 □ No correcto, porque se alcanza la cláusula vacía aplicando resolución □ Correcto, porque no se alcanza la cláusula vacía aplicando resolución □ No correcto, porque no se alcanza la cláusula vacía aplicando resolución
8 Sea $C = \{ \neg Q(x), P(a), P(x) \lor \neg R(x, b), R(x, y) \lor \neg Q(b) \}$. Tras aplicar la eliminación de subsunciones queda:
$\Box \left\{ \neg Q(x), P(a) \right\}$
$\Box \left\{ \neg Q(x), P(a), R(x, y) \lor \neg Q(b) \right\}$
$\Box \left\{ \neg Q(x), P(a), P(x) \lor \neg R(x, b) \right\}$
$\square \left\{ \neg Q(x), P(a), P(x) \lor \neg R(x, b), R(x, y) \lor \neg Q(b) \right\}$
9 Dado el programa:
p(X,Y):-q(X,Z),p(Z,Y).
p(X,X). $q(b,a)$.
Y el objetivo ?p(X,a). La primer substitución de respuesta obtenida por un sistema Prolog convencional sería:
$\square \left\{ x/b, y/b, z/a \right\}$
\square $\{x/a\}$
$\square \left\{ x/b \right\}$
□ Ninguna, porque el sistema entra en un bucle infinito.
10 Si en el ejercicio anterior se utiliza la estrategia "Primero en Anchura", la primer substitución de respuesta es: $\Box \{x/b,y/b,z/a\}$
$\square \{x/B, y/B, 2/a\}$ $\square \{x/a\}$
$\square \left\{ x/b \right\}$
☐ Ninguna, porque el sistema entra en un bucle infinito.
11 Si en el ejercicio 9 se utiliza la regla de computación, "seleccionar el último" y la estrategia de búsqueda "Primero en
Profundidad", la substitución de respuesta sería:
$\square \left\{ x/b, y/b, z/a \right\}$
$\Box \{x/a\}$
□ {x/b} □ Ninguna, porque el sistema entra en un bucle infinito.
INULA: En los signientes elercicios litilizar
NOTA: En los siguientes ejercicios, utilizar: $P(x)="x\ es\ un\ pez\ pequeño",\ G(x)="x\ es\ un\ pez\ grande",\ C(x,y)="x\ come\ a\ y",\ b="Baldomero"$
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como:
P(x)= "x es un pez pequeño", $G(x)=$ "x es un pez grande", $C(x,y)=$ "x come a y", $b=$ "Baldomero"
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como:
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \forall x \exists y (G(x) \rightarrow (P(y) \land C(x,y)))$
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \forall x \exists y (G(x) \rightarrow (P(y) \land C(x,y)))$ $\Box \forall x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \forall x \exists y (G(x) \rightarrow (P(y) \land C(x,y)))$ $\Box \forall x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \text{ Ninguna de las anteriores}$
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \forall x \exists y (G(x) \rightarrow (P(y) \land C(x,y)))$ $\Box \forall x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \forall x \exists y (G(x) \rightarrow (P(y) \land C(x,y)))$ $\Box \forall x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \text{ Ninguna de las anteriores}$ 13 La frase "Algunos peces grandes comen sólo peces pequeños" podría formalizarse como:
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \forall x \exists y (G(x) \rightarrow (P(y) \land C(x,y)))$ $\Box \forall x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \text{ Ninguna de las anteriores}$ 13 La frase "Algunos peces grandes comen sólo peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (C(x,y) \rightarrow P(y)))$ $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \forall x \exists y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \text{ Ninguna de las anteriores}$ 13 La frase "Algunos peces grandes comen sólo peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (C(x,y) \rightarrow P(y)))$ $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x, y)))$ $\Box \forall x \exists y (G(x) \rightarrow (P(y) \land C(x, y)))$ $\Box \text{ Ninguna de las anteriores}$ 13 La frase "Algunos peces grandes comen sólo peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (C(x, y) \rightarrow P(y)))$ $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x, y)))$ $\Box \exists x \forall y (G(x) \land P(y) \rightarrow C(x, y))$ $\Box \exists x \forall y (G(x) \land P(y) \rightarrow C(x, y))$ $\Box \text{ Ninguna de las anteriores}$
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \forall x \exists y (G(x) \rightarrow (P(y) \land C(x,y)))$ $\Box \text{ Ninguna de las anteriores}$ 13 La frase "Algunos peces grandes comen sólo peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (C(x,y) \rightarrow P(y)))$ $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x,y)))$ $\Box \exists x \forall y (G(x) \land P(y) \rightarrow C(x,y))$ $\Box \text{ Ninguna de las anteriores}$ 14 La frase "Algunos peces grandes no comen a Baldomero a menos que Baldomero coma peces pequeños" podría formalizarse como:
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como: $ \exists x \forall y (G(x) \land (P(y) \rightarrow C(x, y))) $ $ \exists x \forall y (G(x) \land (P(y) \land C(x, y))) $ $ \exists x \forall y (G(x) \land (P(y) \rightarrow C(x, y))) $ $ \exists x \exists y (G(x) \land (P(y) \rightarrow C(x, y))) $ $ \exists x \forall y (G(x) \land (C(x, y) \rightarrow P(y))) $ $ \exists x \forall y (G(x) \land (P(y) \rightarrow C(x, y))) $ $ \exists x \forall y (G(x) \land (P(y) \rightarrow C(x, y))) $ $ \exists x \forall y (G(x) \land P(y) \land C(x, y)) $
P(x)="x es un pez pequeño", G(x)="x es un pez grande", C(x,y)="x come a y", b="Baldomero" 12 La frase "Los peces grandes comen algunos peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x, y)))$ $\Box \forall x \exists y (G(x) \rightarrow (P(y) \land C(x, y)))$ $\Box \text{ Ninguna de las anteriores}$ 13 La frase "Algunos peces grandes comen sólo peces pequeños" podría formalizarse como: $\Box \exists x \forall y (G(x) \land (C(x, y) \rightarrow P(y)))$ $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x, y)))$ $\Box \exists x \forall y (G(x) \land (P(y) \rightarrow C(x, y)))$ $\Box \exists x \forall y (G(x) \land P(y) \rightarrow C(x, y))$ $\Box \text{ Ninguna de las anteriores}$ 14 La frase "Algunos peces grandes no comen a Baldomero a menos que Baldomero coma peces pequeños" podría formalizarse como:
$P(x)="x\ es\ un\ pez\ pequeño",\ G(x)="x\ es\ un\ pez\ grande",\ C(x,y)="x\ come\ a\ y",\ b="Baldomero"}$ $12 \text{La}\ frase\ "Los\ peces\ grandes\ comen\ algunos\ peces\ pequeños"\ podr\"ia\ formalizarse\ como:$ $\square\ \exists x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ \forall x\exists y(G(x)\land (P(y)\to C(x,y)))$ $\square\ Ninguna\ de\ las\ anteriores$ $13 \text{La}\ frase\ "Algunos\ peces\ grandes\ comen\ s\'olo\ peces\ peque\~nos"\ podr\"ia\ formalizarse\ como:$ $\square\ \exists x\forall y(G(x)\land (C(x,y)\to P(y)))$ $\square\ \exists x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ \exists x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ Ninguna\ de\ las\ anteriores$ $14 \text{La}\ frase\ "Algunos\ peces\ grandes\ no\ comen\ a\ Baldomero\ a\ menos\ que\ Baldomero\ coma\ peces\ peque\~nos"\ podr\"ia\ formalizarse\ como:$ $\square\ \neg\exists x(G(x)\land C(x,b))\to \forall y(P(y)\to C(b,y))$
$P(x)="x\ es\ un\ pez\ pequeño",\ G(x)="x\ es\ un\ pez\ grande",\ C(x,y)="x\ come\ a\ y",\ b="Baldomero"$ $12 \text{La frase }"Los\ peces\ grandes\ comen\ algunos\ peces\ pequeños"\ podr\(a\) formalizarse\ como:$ $\square\exists x\forall y(G(x)\land(P(y)\to C(x,y)))$ $\square\forall x\exists y(G(x)\land(P(y)\to C(x,y)))$ $\square\forall x\forall y(G(x)\land(P(y)\to C(x,y)))$ $\square\ Ninguna\ de\ las\ anteriores$ $13 \text{La frase }"Algunos\ peces\ grandes\ comen\ s\(o\) lo peces\ peque\(o\) podr\(a\) formalizarse\ como:$ $\square\exists x\forall y(G(x)\land(P(y)\to P(y)))$ $\square\exists x\forall y(G(x)\land(P(y)\to C(x,y)))$ $\square\exists x\forall y(G(x)\land(P(y)\to C(x,y))$ $\square\ Ninguna\ de\ las\ anteriores$ $14 \text{La frase }"Algunos\ peces\ grandes\ no\ comen\ a\ Baldomero\ a\ menos\ que\ Baldomero\ coma\ peces\ peque\(o\) podr\(a\) formalizarse\ como:$ $\square\ \neg\exists x(G(x)\land C(x,b))\to \forall y(P(y)\to C(b,y))$ $\square\ \exists x(P(x)\land C(b,x))\to \exists y(G(y)\land\neg C(y,b))$
$P(x)="x\ es\ un\ pez\ pequeño",\ G(x)="x\ es\ un\ pez\ grande",\ C(x,y)="x\ come\ a\ y",\ b="Baldomero"$ $12 \text{La frase }"Los\ peces\ grandes\ comen\ algunos\ peces\ pequeños"\ podr\"a formalizarse\ como:$ $\square\exists x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\forall x\exists y(G(x)\land (P(y)\to C(x,y)))$ $\square\forall x\exists y(G(x)\land (P(y)\to C(x,y)))$ $\square\ Ninguna\ de\ las\ anteriores$ $13 \text{La frase }"Algunos\ peces\ grandes\ comen\ s\'olo\ peces\ peque\~nos"\ podr'\"a formalizarse\ como:$ $\square\exists x\forall y(G(x)\land (C(x,y)\to P(y)))$ $\square\exists x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\exists x\forall y(G(x)\land P(y)\to C(x,y))$ $\square\ Ninguna\ de\ las\ anteriores$ $14 \text{La\ frase }"Algunos\ peces\ grandes\ no\ comen\ a\ Baldomero\ a\ menos\ que\ Baldomero\ coma\ peces\ peque\~nos"\ podr'\"a formalizarse\ como:$ $\square\ \neg\exists x(G(x)\land C(x,b))\to \forall y(P(y)\to C(b,y))$ $\square\ \exists x(P(x)\land C(b,x))\to \exists y(G(y)\land \neg C(y,b))$ $\square\ \exists x(G(x)\land C(x,b))\to \exists y(P(y)\land C(b,y))$
$P(x)="x\ es\ un\ pez\ pequeño",\ G(x)="x\ es\ un\ pez\ grande",\ C(x,y)="x\ come\ a\ y",\ b="Baldomero"$ $12 \text{La}\ frase\ "Los\ peces\ grandes\ comen\ algunos\ peces\ pequeños"\ podr\(a\ formalizarse\ como:$ $\square\ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ \forall x\exists y(G(x)\land (P(y)\to C(x,y)))$ $\square\ \forall x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ Ninguna\ de\ las\ anteriores$ $13 \text{La}\ frase\ "Algunos\ peces\ grandes\ comen\ s\(o\)log peces\ peque\(nos\)" podr\(a\ formalizarse\ como:$ $\square\ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ x\forall y(G(x)\land P(y)\land C(x,y))$ $\square\ Ninguna\ de\ las\ anteriores$ $14 \text{La}\ frase\ "Algunos\ peces\ grandes\ no\ comen\ a\ Baldomero\ a\ menos\ que\ Baldomero\ coma\ peces\ peque\(nos\)" podr\(a\ formalizarse\ como:$ $\square\ \exists x(G(x)\land C(x,b))\to \forall y(P(y)\to C(b,y))$ $\square\ \exists x(P(x)\land C(b,x))\to \exists y(G(y)\land \neg C(y,b))$ $\square\ x(G(x)\land C(x,b))\to \exists y(P(y)\land C(b,y))$ $\square\ Ninguna\ de\ las\ anteriores$ $15 \text{La}\ frase\ "Es\ necesario\ que\ alg\(u\ n\ pez\ grande\ coma\ a\ Baldomero\ para\ que\ Baldomero\ no\ se\ coma\ a\ s'\ mismo"\ podr'\(a\ formalizarse\ como:$
$P(x)="x\ es\ un\ pez\ pequeño",\ G(x)="x\ es\ un\ pez\ grande",\ C(x,y)="x\ come\ a\ y",\ b="Baldomero"}$ $12 \text{La frase $"Los\ peces\ grandes\ comen\ algunos\ peces\ pequeños" podr\"a formalizarse como:}$ $\square \ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square \ \forall x\exists y(G(x)\land (P(y)\to C(x,y)))$ $\square \ \forall x\exists y(G(x)\land (P(y)\to C(x,y)))$ $\square \ Ninguna\ de\ las\ anteriores$ $13 \text{La frase $"Algunos\ peces\ grandes\ comen\ s\'olo\ peces\ peque\~nos" podr\"a formalizarse como:}$ $\square \ x\forall y(G(x)\land (C(x,y)\to P(y)))$ $\square \ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square \ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square \ xinguna\ de\ las\ anteriores$ $14 \text{La frase $"Algunos\ peces\ grandes\ no\ comen\ a\ Baldomero\ a\ menos\ que\ Baldomero\ coma\ peces\ peque\~nos" podr\"a formalizarse como:}$ $\square \ \neg \exists x(G(x)\land C(x,b))\to \forall y(P(y)\to C(b,y))$ $\square \ \exists x(P(x)\land C(b,x))\to \exists y(G(y)\land \neg C(y,b))$ $\square \ \exists x(G(x)\land C(x,b))\to \exists y(P(y)\land C(b,y))$ $\square \ Ninguna\ de\ las\ anteriores$ $15 \text{La frase $"Es\ necesario\ que\ alg\"un\ pez\ grande\ coma\ a\ Baldomero\ para\ que\ Baldomero\ no\ se\ coma\ a\ s'\"mismo"\ podr'\"a formalizarse como:}$ $\square \ \exists x(G(x)\land C(x,b))\to \neg C(b,b)$
$P(x)="x\ es\ un\ pez\ pequeño",\ G(x)="x\ es\ un\ pez\ grande",\ C(x,y)="x\ come\ a\ y",\ b="Baldomero"$ $12 \text{La}\ frase\ "Los\ peces\ grandes\ comen\ algunos\ peces\ pequeños"\ podr\(a\ formalizarse\ como:$ $\square\ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ \forall x\exists y(G(x)\land (P(y)\to C(x,y)))$ $\square\ \forall x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ Ninguna\ de\ las\ anteriores$ $13 \text{La}\ frase\ "Algunos\ peces\ grandes\ comen\ s\(o\)log peces\ peque\(nos\)" podr\(a\ formalizarse\ como:$ $\square\ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square\ x\forall y(G(x)\land P(y)\land C(x,y))$ $\square\ Ninguna\ de\ las\ anteriores$ $14 \text{La}\ frase\ "Algunos\ peces\ grandes\ no\ comen\ a\ Baldomero\ a\ menos\ que\ Baldomero\ coma\ peces\ peque\(nos\)" podr\(a\ formalizarse\ como:$ $\square\ \exists x(G(x)\land C(x,b))\to \forall y(P(y)\to C(b,y))$ $\square\ \exists x(P(x)\land C(b,x))\to \exists y(G(y)\land \neg C(y,b))$ $\square\ x(G(x)\land C(x,b))\to \exists y(P(y)\land C(b,y))$ $\square\ Ninguna\ de\ las\ anteriores$ $15 \text{La}\ frase\ "Es\ necesario\ que\ alg\(u\ n\ pez\ grande\ coma\ a\ Baldomero\ para\ que\ Baldomero\ no\ se\ coma\ a\ s'\ mismo"\ podr'\(a\ formalizarse\ como:$
$P(x)="x\ es\ un\ pez\ pequeño",\ G(x)="x\ es\ un\ pez\ grande",\ C(x,y)="x\ come\ a\ y",\ b="Baldomero"}$ $12 \text{La frase "$Los\ peces\ grandes\ comen\ algunos\ peces\ pequeños" podr\(a\) formalizarse como:}$ $\square \ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square \ \forall x\exists y(G(x)\land (P(y)\to C(x,y)))$ $\square \ \forall x\exists y(G(x)\land (P(y)\to C(x,y)))$ $\square \ \text{Ninguna\ de\ las\ anteriores}$ $13 \text{La\ frase "$Algunos\ peces\ grandes\ comen\ s\'olo\ peces\ peque\~nos" podr\(a\) formalizarse como:}$ $\square \ x\forall y(G(x)\land (C(x,y)\to P(y)))$ $\square \ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square \ x\forall y(G(x)\land (P(y)\to C(x,y)))$ $\square \ xinguna\ de\ las\ anteriores$ $14 \text{La\ frase "$Algunos\ peces\ grandes\ no\ comen\ a\ Baldomero\ a\ menos\ que\ Baldomero\ coma\ peces\ peque\~nos" podr\(a\) formalizarse como:}$ $\square \ \neg \exists x(G(x)\land C(x,b))\to \forall y(P(y)\to C(b,y))$ $\square \ \exists x(P(x)\land C(b,x))\to \exists y(G(y)\land \neg C(y,b))$ $\square \ \exists x(G(x)\land C(x,b))\to \exists y(P(y)\land C(b,y))$ $\square \ \text{Ninguna\ de\ las\ anteriores}$ $15 \text{La\ frase "$Es\ necesario\ que\ alg\'un\ pez\ grande\ coma\ a\ Baldomero\ para\ que\ Baldomero\ no\ se\ coma\ a\ s\'i\ mismo"\ podr\(a\) formalizarse como:}$ $\square \ \exists x(G(x)\land C(x,b))\to \neg C(b,b)$

Enunciados Junio 1995 – 1996

Bloque 2: Desarrollar

```
1.- Construir los siguientes programas en lenguaje Prolog:
```

a.- toma(Xs,N,Ys): -Ys es la lista formada por los N primeros elementos de Xs

Ejemplo: ? toma([1,2,5,2,6,8],3,V).

$$V = [1,2,5]$$

b.-varia(M,N,V):- V son las variaciones de M elementos tomados de N en N.
$$V_{m,n} = \frac{m!}{(m-n)!}$$

$$V = 20$$

c.-permrep(Xs,P):- Si $Xs=[x_1,x_2,...,x_m]$, entonces P = Permutaciones con repetición de

$$x_1 + x_2 + \ldots + x_m$$
 elementos con repeticiones x_1, x_2, \ldots, x_m

$$PR^{x_1,x_2,...,x_m} = \frac{(x_1 + x_2 + ... + x_m)!}{x_1!x_2!...x_m!}$$

Ejemplo: ? permrep([2,3,1],P).

$$P = 60$$

d.-cambia(Xs,Ys):- Si Xs=[x1,x2,...,xN] entonces YS=[x1+1,x2+2,x3+3,...,xN+N]

Ejemplo: ? cambia([1,2,5,2,6,8],V).

$$V = [2,4,8,6,11,14]$$

Enunciados Septiembre 1995-1996

Septiembre 1995-1996

1.-Simplificar en forma de producto de sumas la función:

$$f(a,b,c,d) = (ab + \overline{b})d + \overline{a}b(c \oplus d)$$

2.- Se representa $a \ge b$ cuando a = a + b

Demostrar que, si $b \ge c$ entonces

- (a) $a+b \ge a+c$
- (b) (b) $a \cdot b \ge a \cdot c$
- 3.- Formalizar y estudiar la validez del siguiente razonamiento:

"Cualquiera que estudie o sea un genio aprueba primero, para poder matricularse de segundo la primera condición es aprobar primero. Puesto que Juan no puede matricularse de segundo, se puede concluir que Juan no estudia"

"Sólo los genios aprueban algo sin estudiar, además, para ser un genio es necesario poder matricularse de algo. Juan no puede matricularse de nada ni estudia, por tanto, Juan no aprueba segundo"

- 4.-Justificar la respuesta que se obtiene al ejecutar las siguientes preguntas en un sistema Prolog:
- (a) ? 5 + 2 is 3 + 4.
- (b) ? 5 + 2 = 3 + 4.
- (c) ? 5 + 2 = = 3 + 4.
- 5.- Implementar los siguientes predicados en Prolog

$$sumat(N,S)$$
:- Se cumple $si\ S = \sum_{i=1}^{n} i^{i}$

resist(Xs,R):- Se cumple si Xs es una lista de la forma
$$[X_1,X_2,...,X_n]$$
 y R es igual a $\frac{1}{\frac{1}{X_1} + \frac{1}{X_2} + ... + \frac{1}{X_n}}$

Enunciados Febrero 1995 - 1996

Febrero 1995 - 1996

1.- Sea
$$f(x, y, z) = \begin{cases} x \oplus \overline{y} & \text{si } x = z \\ \overline{z} & \text{si } x = \overline{y} = \overline{z} \end{cases}$$

- a.- Obtener la expresión canónica en forma de producto de sumas de f(x,y,z)
- b.- Simplificar por el método de Karnaugh en producto de sumas.
- c.- Implementar la expresión anterior mediante puertas NAND
- 2.- Transformar la Fórmula F=(p∧(¬q↔r))→r en FNC
- 3.- Formalizar en lógica de predicados los siguientes razonamientos e indicar si son correctos mediante el algoritmo de resolución:
- a.-"Si un número es menor o igual que un segundo número y ese segundo número es menor o igual que un tercer número entonces, el primer número no es mayor que el tercero. Además, un número "x" es menor o igual que otro "y", si y sólo si "y" es mayor que "x" o "x" es igual a "y". Para cualquier número "x", se puede encontrar otro número "y" tal que "x" es menor o igual que "y". Por tanto: Todo número es menor o igual que sí mismo"

```
Utilizar los números como dominio y los siguientes predicados: A(x,y)="x es menor o igual que y" B(x,y)="x es mayor que y" C(x,y)="x es igual a y"
```

b.-"Juan envió un ramo a todas sus víctimas a pesar de que Pedro envió un ramo sólo a las víctimas de Juan. Pedro es una víctima de Juan. Por tanto nadie envía un ramo a Pedro a menos que Juan le envíe un ramo a Pedro"

```
Utilizar los predicados:
E(x,y)="x envió un ramo a y"
A(x,y)="x es amigo de y"
j=Juan p=Pedro
```

4.- Sea I la interpretación:

Dominio: {juan, pedro, luis}

Predicados: $A(x,y) = \{(juan, juan), (juan, pedro), (pedro, luis)\}$

 $B(x) = \{juan, pedro\}$

Calcular el valor de las siguientes fórmulas bajo I:

```
\begin{split} &a.\text{-} \ \forall x \ (\ (\ \exists y \ A(x,y)\ ) \rightarrow B(x)\ ) \\ &b.\text{-} \ \forall x \exists y \ (\ B(x) \rightarrow A(x,y)\ ) \\ &c.\text{-} \ \exists y \forall x \ (\ B(x) \rightarrow A(x,y)\ ) \\ &d.\text{-} \ \forall x \exists y \ (\ B(x) \land A(x,y)\ ) \end{split}
```

5.- En un programa Prolog se representa un número decimal como una lista de dígitos. Definir las siguientes funciones en Prolog:

Enunciados Primer Parcial 1996 – 1997

Primer Parcial 1996 – 1997

1Para cualquier árbol de fallo, se define m="número de nodos de inferencia" y n="número de nodos de fallo", entonces:
□ n>m □ n=m
□ n y m son independientes
2 Sea $C = \{P_1, P_2, \dots, P_n\}$ un conjunto de cláusulas insatisfacible en lógica de proposiciones, entonces:
$\square P_1 \wedge P_2 \wedge \wedge P_n$ puede ser satisfacible.
$\square P_1 \wedge P_2 \wedge \wedge P_n$ puede ser válida.
\square $P_1 \vee P_2 \vee \vee P_n$ puede ser satisfacible.
\square $P_1 \vee P_2 \vee \vee P_n$ no puede ser satisfacible.
3 La expresión booleana correspondiente a la función implementada en el circuito de la figura es:
$\Box b(a+\overline{a}c)$
$\Box a\bar{b}c + \bar{a}ab$
$\Box bc(\bar{a}+\bar{b})$
$\Box \ a\overline{b}\overline{d} + \overline{a}\overline{b}\overline{d}$
\Box and + and \Box 4 Sea A un álgebra de Boole, para cualquier elemento $x\hat{I}A$, se cumple que:
\Box No existe ningún elemento $y\hat{I}A$ tal que $x + y = 1$, $x \cdot y = 0$
\square Existe un único elemento y $\hat{I}A$ tal que $x + y = 1, x \cdot y = 0$
□ Pueden existir uno o más elementos $y\hat{I}A$ tal que $x + y = 1$, $x \cdot y = 0$
\square Para todo elemento $y\hat{I}A$, $x+y=1$, $x\cdot y=0$
5 Indicar qué cláusula es necesario añadir al conjunto $C=\{p\lor\neg r,\neg p\lor q,\neg q\}$ para que el árbol semántico sea de fallo y contenga únicamente tres nodos de fallo. (NOTA: para construir el árbol semántico, se tomarán las letras p,q y r por orden alfabético)
$\square \neg p$
\square p \vee r
$\square \neg p \lor r$
6 Sea $F = (p \rightarrow q) \leftrightarrow ((\neg q \rightarrow p) \lor r)$, un fórmula equivalente en Forma clausal sería:
$ \Box \{p \lor q \lor r, \neg p \lor q \} $ $ \Box \{p \lor q \lor r, p \lor q \} $
$\Box \{\neg p \lor q, \neg q \lor r, \neg r\}$
NOTA: En cada uno de los 4 siguientes ejercicios, asignar las letras p,q,r, por orden de aparición a las diferentes
proposiciones. Asignar las letras a las frases afirmativas, es decir, para formalizar "no está lloviendo", asignar p="está
lloviendo" y formalizar como ¬p
7 La frase: "A los niños de San Ildefonso no les puede tocar la lotería salvo cuando su director realiza tráfico de
influencias" podría formalizarse como:
$ \Box \neg p \rightarrow q $ $ \Box \neg q \rightarrow p $
$\Box $
□ Ninguna de las anteriores
8 La frase: "Blancanieves no se enrolla con un enanito a menos que dicha acción suponga la existencia de un enfrentamiento
con la Bruja" podría formalizarse como:
$\square \neg p \to (q \to p)$
$\square p \to (p \to q)$
$ \Box \neg p \rightarrow (q \rightarrow r) $ $ \Box \text{ Ninguna de las anteriores} $
- i iniguna de ita antenorea

9.- La frase "La causa de la existencia de inundaciones es que se está produciendo un cambio climático. A pesar de éso, el efecto de la existencia de dichas inundaciones es que las cosechas se pierden" se podría formalizar como:

Enunciados Primer Parcial 1996 – 1997

- $\square (p \to q) \to (p \to r)$
- $\square (p \to q) \land (r \to p)$
- ☐ Ninguna de las anteriores

10.- La frase: "Las tutorías se realizan en el despacho de arriba o en el de abajo (no en ambos), sin embargo, las tutorías se realizan en el despacho de abajo sólo si el de arriba está ocupado." Se podría formalizar como:

- $\square (\neg p \lor q) \land (p \lor \neg q) \land (q \leftrightarrow r)$
- $\square (p \lor q) \land \neg (p \land q) \land (q \to r)$
- ☐ Ninguna de las anteriores
- 11.- A partir de la frase anterior se puede concluir:
- □ "Que es suficiente que las tutorías no se realicen en el despacho de arriba para que el despacho de arriba esté ocupado"
- □ "Que las tutorías se realicen en el despacho de arriba implica que el despacho de arriba no está ocupado"
- □ "Que las tutorías se realizan en el despacho de arriba si el despacho de abajo no está libre"
- ☐ Ninguna de las anteriores

12.- Un circuito combinacional consta de un registro de entrada formado por una palabra de cuatro bits $a_1a_2a_3a_4$ y una salida s. Se desea que s esté en estado 1 cuando: " $a_2 = 1$ y $a_3 = 0$ " ó cuando " $a_1 = a_2 = 1$ y $a_4 = 0$ ". No se admiten combinaciones de entrada capicúas ni que el bit a_4 tenga valor 1 cuando los otros tienen valor 0. Al expresar s en **suma de productos** se obtiene:

- $\square \sum_{4} (4,7,8,12,13) + \sum_{\emptyset} (0,6,9,14,15)$
- $\square \sum_{A} (4,5,12,13,14) + \sum_{\alpha} (0,1,6,9,15)$
- $\square \sum_{4} (2,4,5,8,10,12,13,14,15) + \sum_{0} (0,1,6,9)$
- ☐ Ninguna de las anteriores

13.- Al simplificar la función del ejercicio anterior en **suma de productos** se puede obtener:

- $\Box f(a,b) = ab + \overline{c} \overline{d}$
- $\Box f(a,b) = b\overline{d} + \overline{a}\overline{c}$
- $\Box f(a,b) = ab + \overline{c} + \overline{d}$
- ☐ Ninguna de las anteriores

14.- Tras simplificar la función del ejercicio 2 en **producto de sumas**, se puede obtener:

- $\Box f(a,b) = b(a+\overline{c})$
- $\Box f(a,b) = \overline{a} + \overline{b} + c$
- $\Box f(a,b) = (a+\overline{c}+\overline{d})(b+\overline{c}+\overline{d})$
- ☐ Ninguna de las anteriores

15.- En la tabla de verdad de la figura adjunta, ¿cuál es la expresión equivalente?

abcu	1	
0000	0	
0001	0	
0010	1	
0011	1	
0100	1	
0101	1	
0110	1	
0111	1	
1000	1	
1001	1	
1010	0	
1011	0	
1100	1	
1101	1	
1110	1	
1111	0	
$\square \sum ($	0,4,5,	14,15)
4		

- $\Box (a+b+c+d)(a+\bar{b}+c+d)(a+\bar{b}+c+\bar{d})(\bar{a}+\bar{b}+\bar{c}+d)(\bar{a}+\bar{b}+\bar{c}+\bar{d})$
- $\square (\overline{a} + \overline{b} + \overline{c} + \overline{d})(\overline{a} + b + \overline{c} + \overline{d})(\overline{a} + b + \overline{c} + d)(a + b + c + \overline{d})(a + b + c + d)$

Enunciados Primer Parcial 1996 – 1997

16 Una expresión equivalente a la función: $\overline{a \oplus \overline{bc}} + abc$ sería:
$\Box (a+b)(a+c)$
\square bc
$\Box (\overline{a} + \overline{b})(\overline{a} + \overline{c})$
☐ Ninguna de las anteriores.
17 Sea $C = \{P_1, P_2\}$ un conjunto de dos cláusulas. Suponiendo que C es insatisfacible entonces:
$\square P_1 \rightarrow P_2$ es siempre válida
$\square P_1 \rightarrow P_2$ es siempre insatisfacible
$\square P_1 \rightarrow \neg P_2$ es siempre válida
$\square P_1 \rightarrow \neg P_2$ es siempre insatisfacible
18 Se dice que un sistema axiomático tiene la propiedad de <i>independencia</i> cuando:
☐ No es posible inferir un teorema a partir de otros teoremas.
☐ No es posible inferir un axioma a partir de otros axiomas.
☐ Existe un procedimiento que permite inferir cualquier fórmula que sea correcta.
☐ No es posible inferir una fórmula y su contradicción.
19 El conjunto obtenido tras la aplicación de las estrategias de borrado:
☐ No es lógicamente equivalente pero no se ha alterado la satisfacibilidad del conjunto inicial
☐ Es lógicamente equivalente al inicial
☐ Sólo es aplicable con cláusulas Horn
☐ Es insatisfacible
20 Al aplicar la eliminación de literales puros al conjunto $C = \{p \lor \neg q, \neg p \lor q \lor r, \neg r \lor s\}$ se obtiene:
$\square \ \{ \ p \lor \neg q, \neg p \lor q \lor r \ \}$
\square Un conjunto sin cláusulas indicando que C es satisfacible
\square Un conjunto sin cláusulas indicando que C es insatisfacible
□ La cláusula vacía

Enunciados Segundo Parcial 1996 - 1997

Segundo Parcial 1996 - 1997

X = 2;

```
1.- La base de la programación lógica es:
☐ Declarar las funciones que intervienen en el problema
☐ Declarar las relaciones que se producen en el problema a resolver
☐ Declarar la secuencia de órdenes necesarias para resolver el problema
☐ Declarar los objetos que intervienen en el problema
2.- ¿ Cuál de los siguientes predicados podría utilizarse para calcular la media aritmética de dos números en Prolog?
media(X,Y):-(X + Y) / 2.
media(X,Y,Z):-Z is (X + Y) / 2.
media(X,Y,Z):-Z = (X + Y) / 2.
media(X,Y) = (X + Y) / 2.
3.- Al ejecutar ? [1|[2|[]]] = [X,Y]. Se obtiene:
\square X=1, Y=[2]
\square X =1, Y=2
□ No
☐ Error (expresión incorrecta).
4.- ¿Cuál de las siguientes definiciones de predicado permite dar la vuelta a los elementos de una lista? (Suponer declarado el
\square vuelta([X|Xs]):-append(vuelta(Xs),X).
\square vuelta([X|Xs]):-append(vuelta(Xs),[X]).
\square vuelta([X|Xs],Ys):-vuelta(Xs,Zs), append(Zs,X,Ys).
\square vuelta([X|Xs],Ys):-vuelta(Xs,Zs), append(Zs,[X],Ys).
Para responder a las preguntas, supóngase que se ha compilado el siguiente escrito Prolog.
Si alguno de los siguientes predicados no estuviese bien definido, suponer que su definición se ha suprimido del escrito.
                                                      p(1,X):-q(X,X).
aa([X|Y],Z,[X|T]):-aa(Z,Y,T).
                                                      p(X,3):-r(Y,3).
aa([],X,X).
                                                      q(2,1).
cc(X):-r(Y,Y), X is 2 * Y.
                                                      r(2,2).
                                                      r(2,3).
5.- Al ejecutar: ? aa([1,2],[a,b],V). Se obtiene:
V = [1, 2, a, b]
V = [1,a,2,b]
V = [b, 2, a, 1]
Error, por que no se puede formar una lista de elementos de distinto tipo
6.- Al ejecutar ? p(X,Y). El sistema responde:
X = 1, Y = 3
X = 1, Y = 2
X = 0, Y = 1
Ninguna de las anteriores
7.- Cuando el Sistema Prolog comienza a resolver la pregunta ? p(X,Y). ¿Cuál de los siguientes pasos se ejecuta
primero?
Aplicar una substitución de renombramiento
Calcular el conjunto de discrepancias entre "p(X,Y)" con "p(1,X)"
Unificar "p(X,Y)" con "p(1,X)"
Resolver la cláusula "p(X,Y)" con "p(1,X):-q(X,X)"
8.- Al ejecutar ? p(2, Y). El sistema responde:
Y = 2
Y = 3
Ninguna de las anteriores
9.- Al ejecutar ? p(X,3), r(2,X). El sistema responde (suponiendo que se solicitan todas las respuestas por
backtracking):
X = 2;
       X = 3
       Nο
X = 3;
       X = 2;
       Nο
```

Enunciados Segundo Parcial 1996 - 1997

No
□ Ninguna de las anteriores
10 Al ejecutar: ? cc(4). Se obtiene:
□ Si/Yes
□ No
☐ Error aritmético por intentar evaluar una expresión incorrecta
v El predicado cc no está bien definido
En las siguientes preguntas considérense las siguientes definiciones: $H(x) = "x \ es \ humano"$, $T(x) = "x \ es \ torpe"$, $G(x,y) = "x$
genera a y"
11 La frase: "Sólo los humanos generan algún humano torpe" se podría formalizar como:
$\square \ \forall x \ (\ H(x) \to \exists y \ (\ G(x,y) \land H(y) \land T(y)\)\)$
$\square \ \forall x \ (\ \exists y \ (\ G(x,y) \land H(y) \land T(y)\) \ \rightarrow \ H(x)\)$
$\square \ \forall x \ (\ H(x) \land \exists y \ (\ G(x,y) \ \rightarrow \ H(y) \land T(y)\)\)$
□ Ninguna de las anteriores
12 La frase: "Ningún humano torpe es generado por un torpe" se podría formalizar como:
$\Box \neg \exists x (H(x) \land T(x) \land \forall y (G(y,x) \to T(y)))$
$\square \neg \exists x (H(x) \land T(x) \land \forall y (G(y,x) \land T(y)))$
$\square \ \forall x \ (H(x) \land T(x) \rightarrow \forall y \ (T(y) \rightarrow \neg G(y,x)))$
□ Ninguna de las anteriores
13 La frase: "Todos los humanos torpes generan únicamente torpes" se podría formalizar como:
\square $\forall x (H(x) \land T(x) \rightarrow \forall y (G(x,y) \land T(y)))$
$\square \ \forall x \ (H(x) \land T(x) \rightarrow \exists y \ (G(x,y) \land T(y)))$
$\square \ \forall x \ (H(x) \land T(x) \rightarrow \forall y \ (T(y) \rightarrow G(x,y)))$
$\square \ \forall x \ (H(x) \land T(x) \rightarrow \forall y \ (G(x,y)))$ $\square \ \forall x \ (H(x) \land T(x) \rightarrow \forall y \ (G(x,y) \rightarrow T(y)))$
14 Sea el siguiente programa definido:
1. $p(X,Y) \leftarrow q(Y,X), r(Y)$
$2. p(b,Z) \leftarrow s(a,g(b)), r(Z)$ $2. r(X,Y) \leftarrow r(X,Y), r(Y)$
$3. q(X,Y) \leftarrow p(Y,X), r(X)$
$4. q(a,g(Y)) \leftarrow r(Y)$
$5. s(X,g(Y)) \leftarrow s(Y,a), q(b,Y)$
6. $s(a,g(Y))$
7. r(a)
En el árbol SLD asociado tomando como objetivo $\leftarrow p(X,a)$ y utilizando las mismas reglas de computación y búsqueda que el PROLOG se obtiene:
☐ un único camino de fallo, un único camino de éxito y una rama infinita
☐ infinitos caminos de fallo e infinitos caminos de éxito
☐ un único camino de fallo, más de un camino de éxito y una rama infinita
□ ninguna de las anteriores
15Si se recorre en anchura el árbol anterior, la substitución de respuesta es:
□ nada, se encuentra un camino infinito o un camino de fallo
\Box σ ={ X/b }
$\Box \sigma = \{ X/g(y) \}$
$\Box \sigma = \{ X/g(a) \}$
16Si se intercambian las claúsulas 3 y 4, y se recorre el nuevo árbol SLD en profundidad se obtiene como substitución de
respuesta:
□ nada, se encuentra un camino infinito o un camino de fallo
\Box σ ={ X/g(y) }
$\Box \sigma = \{ X/g(a) \}$
$\Box G = \{X/B\}$
17Todo árbol SLD ☐ tiene al menos un camino de éxito o uno de fallo
☐ no cambia con la regla de computación
☐ tiene todas las substituciones de respuesta.
☐ ninguna de las anteriores
18 La fórmula P(x) ∧ ∃y Q(x,y) ☐ no es una fórmula bien formada
□ no es una formula cerrada
☐ ni es una fórmula bien formada ni es una fórmula cerrada
□ es una fórmula bien formada cerrada

19.- Sea la fórmula $\forall x \ A(x, L(y)) \ y$ la siguiente interpretación:

D="estudiantes de de informática" A(x,y)="x aprueba la asignatura y" L(x)="x está matriculado en la asignatura de lógica"

Enunciados Segundo Parcial 1996 - 1997

□ es la formalización de la frase "Aprueban lógica todos los estudiantes matriculados en ella"
□ no es una fórmula bien formada porque la variable 'y' está libre
☐ es la formalización de la frase "Los estudiantes de informática aprueban lógica"
□ ninguna de las anteriores
20 Pasar la siguiente fórmula a Forma Normal de Skolem: $\forall x [\neg p(x) \rightarrow \exists z \ \forall y (q(x,y) \land r(x,z))]$
$\square \ \forall x \ \forall y [\ (p(x) \lor q(x,y)) \ \land \ (\ p(x) \lor r(x,f(x)))]$
$\square \ \forall x \ \forall y [\ p(x) \lor q(x,y) \lor \ r(x,f(x,y))]$
$\square p(x) \vee q(x,y) \vee r(x,f(x,y))$
$\square \ p(x) \lor q(x,y) \ \land \ p(x) \lor r(x,f(x))$
$21 Tras \ aplicar \ la \ estrategia \ de \ eliminación \ de \ subsunciones \ al \ conjunto \ E=\{P(a,y), P(f(x), \ y) \lor \neg Q(x), P(x,f(x)) \lor R(g(z)), \\ P(x,f(x)) \lor R(y,x) \lor \neg Q(x), P(x,f(x)) \lor R(y,x) \lor \neg Q(x), \\ P(x,f(x)) \lor R(y,x) \lor \neg Q(x), P(x,f(x)) \lor R(y,x) \lor \neg Q(x), \\ P(x,f(x)) \lor R(y,x) \lor \neg Q(x), P(x,f(x)) \lor R(y,x) \lor \neg Q(x), \\ P(x,f(x)) \lor R(y,x) \lor R(y,x)$
$\neg P(a,b)$ }
□ quedan dos claúsulas
□ queda una única claúsula
quedan tres claúsulas
□ ninguna de las anteriores
22 Dado el siguiente conjunto de claúsulas $E=\{P(z,h(z,b)),P(f(a,b),h(f(a,b),b)),\neg P(g(x,y),h(x,y))\}$
☐ es satisfacible porque se llega a la claúsula vacía
☐ es satisfacible porque no se llega a la claúsula vacía
☐ es insatisfacible porque se llega a la claúsula vacía
☐ es insatisfacible porque no se llega a la claúsula vacía
En los 2 siguientes ejercicios, considérese la formalización: $P(x) = "x \ es \ policía" \ y \ I \ (x,y) = "x \ invita \ a \ y", "m = maría"$
23 En una reunión, hay 4 personas: Juan, María, Pedro y Belén. Se sabe que: María ha invitado a Juan y a Belén, Juan ha
invitado a Pedro y Juan y Pedro son policías. Considerando como dominio, las personas de la reunión. Se puede deducir que:
$\square \ \forall x \exists y \ (P(x) \to I \ (y,x))$
$\square \exists y \forall x \ (P(x) \to I(y,x))$
☐ Las dos anteriores
☐ Ninguna de las anteriores
24 A partir del conjunto de fórmulas C={ $\forall x \ (\exists y \ \mathbb{I}(y,x) \to \exists z \ \mathbb{I}(x,z)), \exists x \ \mathbb{I}(x,m)$ }, se puede deducir:
$\square \exists x \ \mathtt{I}(m, x)$
$\square \exists x \neg I(m,x)$
$\square \ \forall x \ \mathtt{I}(m,x)$
$\square \ \forall x \ \neg I(m,x)$
25 En la lógica polivalente, se cumple que:
□ "F∨¬F" es Verdadero para cualquier fórmula F
□ "F∧¬F" es Falso para cualquier fórmula F
☐ Las dos anteriores
☐ Ninguna de las anteriores

Junio 96-97

Primer Parcial

- 1.- Se cumple que, para toda interpretación I, $V_I(X \to Y) = \mathbf{V}$ si y sólo si:
- \square $V_I(X) = \mathbf{V} \circ V_I(Y) = \mathbf{F}$
- \square $V_I(X) = \mathbf{V}$ y $V_I(Y) = \mathbf{F}$
- \square $V_I(X) = \mathbf{F} \circ V_I(Y) = \mathbf{V}$
- \square $V_I(X) = \mathbf{F}$ y $V_I(Y) = \mathbf{V}$
- 2.- En el método de refutación, cuando existen varias alternativas:
- ☐ Es necesario alcanzar una contradicción por cada una de ellas para afirmar que la fórmula es válida
- ☐ Es suficiente encontrar una contradicción en alguna alternativa para afirmar que la fórmula es válida
- ☐ Se puede afirmar que la fórmula es válida en el momento en que no se encuentra una contradicción
- ☐ Se puede afirmar que la fórmula es insatisfacible en el momento en que no se encuentra una contradicción
- 3.- El circuito de la figura representa la función lógica:

- $\Box \quad f(a,b,c) = \left(\overline{b} + a\right)\left(\overline{b} + c\right)$
- \Box f(a,b,c)= $(a+c)\overline{b}$
- \Box f(a,b,c)= $(b+\overline{a})(b+\overline{c})(a+\overline{c})$
- ☐ Ninguna de las anteriores
- 4.- En la demostración de que el algoritmo de resolución proposicional es completo, se parte de:
- ☐ Un conjunto de cláusulas insatisfacible
 - ☐ Un conjunto de cláusulas satisfacible
- ☐ Un conjunto de cláusulas cualquiera, a partir del cual, se alcanza la cláusula vacía
- ☐ Un conjunto de cláusulas cualquiera, a partir del cual, no se alcanza la cláusula vacía
- 5.- Se cumple que:
- □ Si se selecciona una cláusula A, asociada a un hijo de un nodo de inferencia, y otra cláusula B, asociada al otro hijo del nodo de inferencia, entonces A y B son resolubles.
- ☐ Si se seleccionan dos clausulas A y B asociadas a un nodo de inferencia, entonces A y B son resolubles
- ☐ Los nodos de inferencia son, a su vez, nodos de fallo
- □ La cláusula asociada a un nodo de inferencia *n* contiene un subconjunto de los complementos de los literales que aparecen en la rama que va desde la raíz del árbol semántico hasta *n*
- 6.- Supóngase que se tiene un conjunto de cláusulas satisfacible S={C1, C2, ... Cn} y otra cláusula C. Entonces:
- ☐ Si aplicando resolución lineal tomando como cláusula cabeza cualquiera de las cláusulas de S no se alcanza la cláusula vacía, el conjunto S∪ {C} no es satisfacible
- ☐ Si aplicando resolución lineal tomando como cláusula cabeza cualquiera de las cláusulas de S no se alcanza la cláusula vacía, el conjunto ∪ {C} no es insatisfacible
- ☐ Si aplicando resolución lineal tomando como cláusula cabeza C no se alcanza la cláusula vacía, el conjunto S∪ {C} no es satisfacible
- ☐ Si aplicando resolución lineal tomando como cláusula cabeza C no se alcanza la cláusula vacía, el conjunto S∪ {C} no es insatisfacible

Para los siguientes ejercicios utilizar la siguiente función del álgebra de Boole: $f(a,b,c,d) = \begin{cases} a(\overline{b}+\overline{c}+\overline{d}) & \text{si} & a=1 \land b=1 \\ b(\overline{a}+\overline{c}+\overline{d}) & \text{si} & b=1 \end{cases}$

- 7.- La función anterior expresada en forma canónica es:
- $\Box \qquad \qquad \prod_{A} (0) \cdot \prod_{C} (4,5,6,7,12,13,14,15)$
- $\square \qquad \prod_{4}^{4} (1,2,3,8,9,10,11) \prod_{\varnothing} (4,5,6,7,12,13,14,15)$
- $\Box \qquad \qquad \prod_{4} (0,4,5,6,7,12,13,14,15)$

$\Box \qquad \qquad \prod_{4} (1,2,3,8,9,10,11)$
8 La expresión mínima equivalente, en forma de suma de productos es:
$\Box \qquad f(a,b,c,d) = \overline{a} + \overline{b} + \overline{c} + \overline{d}$
$\Box \qquad f(a,b,c,d) = \overline{a}\overline{b}\overline{c}\overline{d}$
$\Box \qquad f(a,b,c,d) = \overline{a}\overline{c}\overline{d}$
$\Box \qquad f(a,b,c,d) = \overline{a} + \overline{c} + \overline{d}$
9 La expresión mínima equivalente, en forma de producto de sumas es:
$\Box f(a,b,c,d) = \overline{a} + \overline{c} + \overline{d}$
$\Box f(a,b,c,d) = acd$
$\Box f(a,b,c,d) = \overline{a} + \overline{b} + \overline{c} + \overline{d}$
$\Box f(a,b,c,d) = abcd$
10 En cualquier álgebra de Boole A, existe un único elemento $a \in A$ que: $\Box a + (\overline{a} \cdot 1) = 1$
$\Box (a+\overline{a})\cdot (a+1)=1$
$\Box a+b=1 \forall b \in A$
$\Box a \cdot b = 1 \forall b \in A$
11 En lógica de proposiciones una fórmula F es saitsfacible si
☐ Alguna interpretación es modelo para ella.
□ Ninguna interpretación es modelo para ella.
☐ Todas las interpretaciones son modelo para ella. ☐ No todas las interpretaciones son modelo para ella.
En las siguientes preguntas utilizar los predicados: <i>sb=hoy es Sábado, nub=hoy está nublado, ex=hoy hay exámen</i>
12 Formalizar la siguiente frase "Para que hoy esté nublado basta que sea Sábado, a no ser que haya exámen, y hoy hay
exámen".
$\square ((sb \land ex) \rightarrow \neg nub) \land ex$
$\square ((sb \land \neg ex) \to nub) \land ex$
$\Box (\neg(sb \to nub) \to ex) \land ex$
$\Box (sb \rightarrow (ex \rightarrow \neg nub)) \land ex$
13 De la frase anterior se puede concluir:
el Sábado no estará nublado
□ el Sábado estará nublado
 □ No se podrá deducir nada porque el conjunto de premisas queda vacío tras aplicar estrategias de borrado □ ninguna de las anteriores
14 La frase "(sb ∨ ex) → ¬ nub" sería una formalización de:
\square "Hoy hay examen a no ser que sea sábado, sólo si no está nublado"
□ "Es suficiente hoy no esté nublado para que haya examen o sea sábado"
🗆 "si no hay examen entonces es sábado, si no está nublado"
□ "si no hay examen entonces es sábado, si no está nublado" □ Ninguna de las anteriores
□ Ninguna de las anteriores 15 $\{P_1, P_2,, P_n\}$ ⇒ Q es un razonamiento correcto si □ En toda interpretación I, cuando $V_I(P_1) = V_I(P_2) = = V_I(P_n) = \mathbf{F}$, entonces $V_I(\neg Q) = \mathbf{F}$
□ Ninguna de las anteriores 15 { $P_1, P_2,, P_n$ } ⇒ Q es un razonamiento correcto si □ En toda interpretación I, cuando $V_I(P_1) = V_I(P_2) = = V_I(P_n) = \mathbf{F}$, entonces $V_I(\neg Q) = \mathbf{F}$ □ En toda interpretación I, cuando $V_I(P_1) = V_I(P_2) = = V_I(P_n) = \mathbf{F}$, entonces $V_I(\neg Q) = \mathbf{V}$ □ En toda interpretación I, cuando $V_I(P_1) = V_I(P_2) = = V_I(P_n) = \mathbf{V}$, entonces $V_I(\neg Q) = \mathbf{F}$ □ En toda interpretación I, cuando $V_I(P_1) = V_I(P_2) = = V_I(P_n) = \mathbf{V}$, entonces $V_I(\neg Q) = \mathbf{V}$ 16 Sea el siguiente conjunto de cláusulas en lógica de proposiciones: $C = \{p \lor \neg p \lor q, \neg q \lor r, \neg r\}$

Segundo Parcial

```
En las siguientes preguntas utilizar los predicados: C(x)=x es Campeón de Liga, S(x, y)=x es seguidor del equipo y,
b=Barcelona, m=Madrid
1.- La frase "No sólo los seguidores del Barcelona están decepcionados si el Madrid gana la liga" se podría formalizar como:
\square \quad \forall x (\neg C(m) \lor (D(x) \land \neg S(x,b)))
\square \exists x (\neg C(m) \lor (\neg D(x) \land S(x,b)))
\square \quad \forall x \ (\neg C(m) \lor (\neg D(x) \land S(x,b)))
 \  \, \square \  \, \exists x \ (\ \neg C(m) \lor \ (\ D(x) \ \land \neg \underline{S(x,b)}\ )\ )
2.- "Tampoco es cierto que los seguidores de los equipos que no hayan ganado la liga están decepcionados" se podría
formalizar como:
\exists x \exists y (S(x,y) \land \neg C(y) \land \neg D(x))
3.- A partir de las dos frases anteriores y, sabiendo que el Madrid ha ganado la liga, ¿Se puede concluir que los seguidores del
Barcelona están decepcionados?
☐ Si, porque se alcanza la cláusula vacía aplicando resolución
☐ Si, porque no se alcanza la cláusula vacía aplicando resolución
☐ No, porque se alcanza la cláusula vacía aplicando resolución
☐ No, porque no se alcanza la cláusula vacía aplicando resolución
4.- El algoritmo de resolución en lógica de predicados
☐ es determinista porque siempre termina
a es determinista porque si una cláusula es consecuencia lógica de las premisas siempre encuentra la cláusula vacía
□ no es determinista porque se alcanza la cláusula vacía cuando el conjunto de cláusulas es insatisfacible
    no es determinista porque puede existir más de una forma de elegir las cláusulas a resolver y los literales sobre los que
    aplicar resolución
5.- Con la formalización anterior, la fórmula F = \forall x(S(x,b) \rightarrow D(x)) \land \forall x(\neg D(x) \rightarrow S(x,m)) podría ser una formalización de la
frase:
    "Los seguidores del barcelona están decepcionados y los del madrid no"
"Sólo los seguidores del barcelona están decepcionados y los que no están decepcionados son seguidores del Madrid"
    "Los seguidores del barcelona están decepcionados, y los que no están decepcionados son seguidores del madrid"
"Sólo los seguidores del Barcelona están decepcionados y los seguidores del Madrid no están decepcionados"
6.- El siguiente conjunto de cláusulas C={ P(x) \lor \neg P(f(y)) \lor R(y), \neg P(y), P(g(x)) \lor R(h(x,y)) }
☐ queda con dos cláusulas tras la eliminación de tautologías
    queda vacío tras aplicar las estrategias de borrado
□ es insatisfacible.
□ ninguna de las anteriores.
NOTA: Para responder las siguientes preguntas, supóngase que se ha compilado el siguiente programa en un sistema Prolog:
        p(X,[],0).
        p(X,[X|Y],N):-p(X,Y,M), N is M+1.
        q(X,X).
        r(X,Y):-q(X,Y).
        r(1,2).
        s(2).
        s(1).
7.- La respuesta del sistema ante la pregunta ? p(0, L, 3). Es:
\Box L = []
\Box L = [0,0,0]
\Box L = [0,1,2]
☐ Ninguna de las anteriores
8.- Si tras obtener la respuesta en la pregunta anterior (en caso de que se obtenga), se solicita otra respuesta, se obtiene:
□ L = []
\square L = [0,0]
\square L = [0,1]
```

□ Ninguna de las anteriores
9 La respuesta del sistema ante la pregunta: ? p(X,[1,1],V). Sería:
$\square X = 1 ; V = 2$
$\square X = 1 ; V = 0$
$\square X = 1 ; V = 1$
☐ Ninguna de las anteriores
10 La respuesta del sistema ante la pregunta: ? q([X,1],[2 Y]). Sería:
$\square X = 2 ; Y = 1$
☐ Error al unificar
☐ Ninguna de las anteriores
11Si el sistema Prolog utilizase la regla de computación "seleccionar el último", la respuesta ante la pregunta: ?
r(X,Y), $s(X)$. Sería:
$\square X = 1 ; Y = 2$
$\square X = 2 ; Y = 2$
$\square X = 1 ; Y = 1$
☐ Ninguna de las anteriores
12 En un arbol de resolución SLD, Aparece el mismo número de caminos de éxito independientemente de que:
☐ se recorra en anchura o en profundidad
☐ se seleccione siempre el primer literal o se seleccione siempre el último literal del objetivo a resolver
☐ se examinen las cláusulas del programa en el orden en que fueron escritas o en orden inverso
☐ se utilice o no el chequeo de ocurrencias
13 Sean las siguientes interpretaciones: I1: { $D_{II} = \{0,1\}$, $P_{II}(x,y) = \text{``}x \cdot y = 0\text{''}\}$ e I2: { $D_{I2} = \{1,2\}$, $P_{I2}(x,y) = \text{``}x \cdot y = 2\text{''}\}$.
Los valores de la fórmula $F = \forall x \exists y \ P(x,y) \leftrightarrow \exists y \forall x \ P(x,y)$ en dichas interpretaciones son:
$\square V_{11}(F) = \mathbf{F} y V_{12}(F) = \mathbf{F}$
$\square V_{11}(F) = F y V_{12}(F) = V$
$\square V_{11}(F) = V y V_{12}(F) = F$
$\square V_{11}(F) = V y V_{12}(F) = V$
14 Bajo las interpretaciones de la pregunta anterior, la fórmula $\forall x \ (\exists y P(x,y) \rightarrow \exists z P(z,x))$ toma los valores:
\square V ₁₁ (F)= F y V ₁₂ (F)= F
$\square V_{11} (F) = F y V_{12} (F) = V$
$\square V_{11}(F) = V y V_{12}(F) = F$
$\square V_{11}(F) = V y V_{12}(F) = V$
15 Sean $\mathbf{s} = \{x/f(x,y), y/z\}$ y $T = P(x,y,z)$, entonces:
\Box s es una substitucuón de renombramiento para T
\square Al calcular $\mathbf{s}(T)$ se obtendría un término infinito
\square No se puede calcular $\mathbf{s}(T)$ por culpa del chequeo de ocurrencias
$\square \mathbf{s}(T) = P(f(x,y),z,z)$
16El razonamiento: $\{ \forall x \forall y \forall z (P(x,y,z) \rightarrow P(x,f(y),f(z)), \forall x P(x,a,x) \} \Rightarrow \exists x \exists y P(x,f(f(a)),f(y)) \}$
☐ Es correcto, por que se alcanza la cláusula vacía aplicando resolución
☐ Es correcto, por que no se alcanza la cláusula vacía aplicando resolución
☐ No es correcto, por que se alcanza la cláusula vacía aplicando resolución
☐ No es correcto, por que no se alcanza la cláusula vacía aplicando resolución
17Suponiendo que se trabaja con conjuntos borrosos normalizados. La función de pertenencia de un conjunto borroso A,
siempre cumple que:
$\square \ \mu_{A} (x) \in \{0,1\}$
$\square \mu_{A}(x) \in [0,1]$
$\square \ \mu_{A} (x) \in (0,1]$
$\square \mu_{A}(x) \in [0,1)$

Enunciados Septiembre 1996 -1997

Septiembre 1996 -1997

En la siguiente pregunta utilizar los predicados: $A(x)="x\ es\ asturiano"$, $M(x)="Hace\ mal\ tiempo\ en\ la\ estación\ x"$, $P(x)="x\ es\ un\ gran\ pecador"$, v="verano", $C(x,y)="x\ impone\ el\ castigo\ y"$, d=Dios, j=Juan

1.- "El mal tiempo en verano es debido a un castigo divino sólo si los asturianos somos grandes pecadores." Se formalizaría como:

```
\begin{array}{ll} C(d,\,M(v)) \ \rightarrow \ \forall x \ (\ A(x) \ \rightarrow \ P(x) \ ) \\ (C(d,\,M(v)) \rightarrow M(v)) \rightarrow \forall x \ (\ A(x) \ \rightarrow \ P(x) \ ) \\ \forall x \ (\ A(x) \ \rightarrow \ P(x) \ ) \ \rightarrow C(d,\,M(v)) \end{array}
```

Ninguna de las anteriores

2.- "No existen grandes pecadores asturianos a menos que Juan sea asturiano" se formalizarse como:

```
\neg \exists x ( A(x) \land P(x) \rightarrow A(j) )
\neg A(j) \rightarrow \exists x (A(x) \land P(x))
```

 $\exists x (A(x) \land P(x)) \rightarrow A(j)$

Ninguna de las anteriores

3.- "Dios impone un castigo sólo a los asturianos y Juan es pecador a no ser que sea asturiano" se formalizaría:

$$\begin{array}{c} \forall x \ (A(x) \rightarrow C(d,x)) \ \land \ (\neg A(j) \rightarrow P(j)) \\ \forall x \ (A(x) \rightarrow C(d,x)) \land \ (A(j) \rightarrow \neg P(j)) \\ \forall x \ (C(d,x) \rightarrow A(x)) \ \land \ (\neg A(j) \rightarrow P(j)) \\ \forall x \ (C(d,x) \rightarrow A(x)) \ \land \ (A(j) \rightarrow \neg P(j)) \end{array}$$

```
\begin{array}{lll} R(x,z) &\leftarrow & Q(x,y) \ , P(x,z) \\ R(x,y) &\leftarrow & Q(y,y) \ , P(z,z) \\ Q(x,z) &\leftarrow & R(x,z) \ , P(x,z) \\ P(x,z) &\leftarrow & Q(x,z) \ , P(x,z) \\ Q(a,a) \end{array}
```

4.- Construyendo el árbol SLD asociado al objetivo $\leftarrow Q(x,y)$ tomando como regla de computación: *Seleccionar el último* se obtiene:

Una única solución

Infinitas soluciones

Más de una solución (pero no infinitas). Las mismas aunque la regla de computación fuese tomar el primero

Más de una solución (pero no infinitas). Distintas si la regla de computación fuese tomar el primero

5.- Sea $f(a,b,c,d) = a\overline{d} + \overline{a}\left(b + \overline{(\overline{b}+d)(b+d)}\right)$ una función booleana. La expresión mínima equivalente sería:

$$f(a,b,c,d) = (\overline{a} + \overline{d})(b + \overline{d})$$
$$f(a,b,c,d) = \overline{a}\overline{d} + b\overline{d}$$
$$f(a,b,c,d) = \overline{a}\overline{d} + ab\overline{d}$$

Ninguna de las anteriores

6.- La expresión canónica equivalente a la del ejercicio anterior es:

$$f(a,b,c,d) = \prod_{4} (0,2,4,6,12)$$

$$f(a,b,d,d) = \prod_{4} (0,2,4,5,6,7,8,10,12,14)$$

$$f(a,b,d,d) = \sum_{4} (0,2,4,5,6,7,8,10,12,14)$$

$$f(a,b,c,d) = \sum_{4} (0,2,4,6,12)$$

7.- ¿En cuál de las siguientes situaciones, una fórmula F es satisfacible?:

Cuando
$$\forall I \ V_I(F) = \mathbf{V}$$

Cuando
$$\exists I$$
 tal que $V_I(F) = \mathbf{F}$

Cuando $\neg \exists I$ tal que $V_I(F) = V$

Cuando $\forall I, V_I(F) = F$

8.- En el árbol antes obtenido, si se recorre según una estrategia primero en anchura se encuentra:

Una solución igual a la que se obtendría recorriéndolo en profundidad

Más de una solución, pero las mismas y en el mismo orden que si se recorriese en profundidad

Una solución distinta de la que se obtendría recorriéndolo en profundidad

Más de una solución, pero distintas o en distinto orden que si se recorriese en profundidad

Enunciados Septiembre 1996 -1997

```
9.- Suponiendo que \{P_1, \dots, P_n\} están en forma clausal y que Q es una fórmula atómica. \{P_1, \dots, P_n\} \Rightarrow Q es un
razonamiento correcto si y solo si:
         La fórmula P_1 \wedge ... \wedge P_n \rightarrow \neg Q es válida
         La fórmula P_1 \wedge ... \wedge P_n \rightarrow \neg Q es insatisfacible
         Se obtiene la cláusula vacía siempre que se utilice resolución lineal y se tome Q como cabeza
         Se obtiene la cláusula vacía siempre que se utilice resolución lineal y se tome ¬Q como cabeza
10.- A partir del siguiente conjunto de premisas \{\neg p \lor \neg q, r \lor \neg q\} se puede deducir:
         \neg(p \lor q)
         p∧q
         \neg(p \land q)
p([],[],0).
p([X|Xs],[Y|Ys],Z):-p(Xs,Ys,R), Z is (X*Y)+R.
s([],[],[]).
s([X|Xs],[Y|Ys],[R|Z]):-s(Xs,Ys,Z), R is X+Y.
q([X|Xs],[Y|Ys],R):-0 is X mod 2, s(Xs,Ys,R).
q([X|Xs],[Y|Ys],R):-1 is X mod 2, p(Xs,Ys,R).
11.- Cuál sería la respuesta del PROLOG con el programa anterior y el objetivo ?q([3,2,1], [2,2,2], R).
         R=7
         R=[4,3]
         Ninguna de las anteriores
12.- Cuál sería la respuesta del PROLOG con el programa anterior y el objetivo ?q([2,2,2], [3,2,1], R).
         R=7
         R=[4,3]
         Ninguna de las anteriores
13.- \forall x (P(x,y) \rightarrow \exists x Q(y,x))
         Es una fórmula bien formada
         Podría ser una fórmula bien formada si se le aplica una substitución de renombramiento
         Podría ser una fórmula bien formada si se cuantifica la variable y
         No es una fórmula bien formada aunque se le apliquen las transformaciones de las otras respuestas
14.- Considérese una interpretación I en la que el dominio son los valores {0,1} de un álgebra de Boole, la operación x+y =
"Operación + del Álgebra de Boole", los predicados x= y y x£y son los predicados de comparación tradicionales. Siendo F1
= \forall x \exists y ((x+y=1) \land (x \le y)) y F2 = \exists x \forall y ((x+y=1) \land (x \le y)), \text{ entonces:}
         V_I(F1) = \mathbf{V} y V_I(F2) = \mathbf{V}
         V_I(F1) = \mathbf{F} y V_I(F2) = \mathbf{V}
         V_I(F1) = \mathbf{V} y V_I(F2) = \mathbf{F}
         V_I(F1) = \mathbf{F} \ y \ V_I(F2) = \mathbf{F}
15.- En lógica proposicional, considérese un conjunto C de cláusulas insatisfacible formado por las letras proposicionales
{p,q,r}. Al construir el árbol semántico desarrollando literales por orden alfabético se obtienen 2 nodos de fallo. ¿Qué debe
cumplir el conjunto C?
         C debe estar formado por dos cláusulas
         C debe contener la cláusula p y la cláusula ¬p
         C debe contener la cláusula \{p \lor q \lor r\} y la cláusula \{\neg p \lor \neg q \lor \neg r\}
         No existe ningún conjunto C que cumple esos requisitos
16.- Considérese un programa en Prolog formado por un único hecho: q(X,f(X)). Cuál sería la respuesta del sistema ante la
pregunta ? q(1,Y).
         Y = f(X)
         Y = f(1)
         No
         Error
```

Enunciados Febrero 1996 - 1997

Febrero 1996 - 1997

Primer Parcial

- **1-** Sea la siguiente función booleana : $f(a,b,c,d) = \begin{cases} \overline{a \oplus b} & \text{si } a = 0 \\ \overline{a} + \overline{b} & \text{si } b = 0 \end{cases}$
- a) Calcular la expresión canónica en forma de suma de productos y producto de sumas ($\Sigma(...)$ y $\Pi(...)$).
- b) Minimizar la expresión aplicando Karnaugh al producto de sumas.
- c) Implementar la solución con puertas lógicas NAND.

2- (2.5 puntos) Dado el razonamiento $\{P_1, P_2, P_3\} \Rightarrow Q$, donde

$$P_1 \equiv \neg p \rightarrow \neg q$$
 $P_2 \equiv \neg r \rightarrow s$

$$P_3 \equiv (\neg q \vee \neg r) \rightarrow t$$

$$Q \equiv \neg t \rightarrow (p \land \neg s)$$

- a) Construir el conjunto de entrada necesario para el algoritmo de resolución (no aplicar estrategias).
- b) Construir el árbol semántico asociado al conjunto obtenido en el apartado (a) y responder:
 - b.1) Número de nodos de fallo del árbol obtenido.
 - b.2) Número de nodos de inferencia del árbol obtenido.
- c) Si se aplican estrategias de borrado al conjunto obtenido en el apartado (a):
 - c.1) ¿Qué estrategias puedes aplicar en este caso?
 - c.2) El conjunto resultante, ¿Es satisfacible, insatisfacible o válido?
- d) ¿Es correcto el razonamiento?

Segundo Parcial

3.- Formalizar e indicar si son correctos los siguientes razonamientos mediante resolución lineal:

"A menos que todo el dinero sea falso, Juan no atraca ningún Banco; sin embargo, basta que parte del dinero no sea falso para que Juan atraque bancos o tiendas. Por tanto, Juan atraca algo sólo si todo el dinero es falso"

Utilizar $A(x,y) = "x \ atraca \ y"$, j=Juan, $B(x)="x \ es \ un \ banco"$, $T(x)="x \ es \ una \ tienda"$, $D(x)="x \ es \ dinero"$, $F(x)="x \ es \ falso"$

4.- En el programa Prolog:

$$p(X,X,a)$$
.
 $p(X,Y,f(Z)) :- p(Y,X,Z)$.

Ante la pregunta ?p(X,a,f(X)).

Construir el árbol SLD e indicar brevemente cuándo se utilizan y qué son los siguientes términos:

Substitución de respuesta

Chequeo de ocurrencias

Substitución de renombramiento

Unificador más general

Expresiones variantes

Composición de substituciones

5.- Construir el predicado cambia(Xs, Ys) en Prolog que dada una lista de números naturales $Xs=[x_1, x_2, ... x_n]$, devuelve la lista

Ys=[y₁,y₂,...,y_n] de forma que
$$y_i = x_i + \sum_{i=1}^{n} x_i$$
 para $i = 1..n$

Construir el árbol de resolución para la pregunta: ? cambia ([1,3,2],Xs).

$$\mathbf{X}\mathbf{s} = [7,9,8]$$

Enunciados Primer Parcial 1997 - 1998

Primer Parcial 1997 - 1998

literales puros?

ena	Dadas las premisas: "Juan juega al fútbol o al hockey, pero no a ambos. No juega al hockey a menos que María esté amorada de él; sin embargo, María está enamorada de Juan sólo si Juan juega al fútbol". Se puede deducir que: "María no está enamorada de Juan" "María está enamorada de Juan" Las dos anteriores Ninguna de las anteriores
2 	Dadas las premisas: $\{p_1, \neg p_1 \lor p_2, \neg p_1 \lor \neg p_2 \lor p_3,, \neg p_n \lor p_{n+1}\}$ (donde n>1) se puede deducir: $\neg p_{n+1}$ Las dos anteriores Ninguna de las anteriores
	La función lógica $f(x_1,x_2,x_3,x_4)$ se activa si se cumple: " $x_i \le x_{i+1}$ para $i=1,2$ " y además " $x_4 \le x_3$ "
	expresión conónica de f en forma de producto de sumas sería:
	$f(x_1,x_2,x_3,x_4) = \Pi_4(1,4,5,8,9,10,11,12,13)$
	$f(x_1,x_2,x_3,x_4) = \Pi_4(1,2,3,4,5,6,7,9,10,11,13)$
	$f(x_1, x_2, x_3, x_4) = \Pi_4(2, 3, 4, 5, 6, 7, 10, 11, 14)$
	Ninguna de las anteriores
4	Al simplificar en forma de producto de sumas la función anterior se obtiene: $f(x_1,x_2,x_3,x_4) = (\bar{x}_1 + x_2)(\bar{x}_2 + x_3)(x_3 + \bar{x}_4)$
	$f(x_1, x_2, x_3, x_4) = (\bar{x}_1 + x_2)(\bar{x}_2 + x_3)(\bar{x}_3 + x_4)$ $f(x_1, x_2, x_3, x_4) = (\bar{x}_1 + x_2)(\bar{x}_2 + x_3)(\bar{x}_3 + x_4)$
	$f(x_1, x_2, x_3, x_4) = (x_1 + \bar{x}_2)(x_2 + \bar{x}_3)(x_3 + x_4)$ $f(x_1, x_2, x_3, x_4) = (x_1 + \bar{x}_2)(x_2 + \bar{x}_3)(\bar{x}_3 + x_4)$
	Ninguna de las anteriores
	¿Cuál de las siguientes expresiones daría como resultado f(a,b,c,d,e) = $a\bar{b}e + \bar{b}ce$ al simplificar por Karnaugh?
	$f(a,b,c,d,e) = \Sigma_5(5,7,17,19) + \Sigma_0(21,23)$ $f(a,b,c,d,e) = \Sigma_5(5,7,17,19) + \Sigma_0(13,15,21,23)$
	Las dos anteriores
	Ninguna de las anteriores
6	Para cualquier conjunto de cláusulas C, si tras aplicar la eliminación de cláusulas con literales puros a C se obtiene D.
	tonces:
	C es equivalente a D
	C es consecuencia lógica de D D es consecuencia lógica de C
	Ninguna de las anteriores
	¿Cuál es el mínimo número de términos indefinidos que debe tener la función $f(a,b,c) = \Sigma_3(0,2) + \Sigma_{\phi}(?)$ para que al simplificar
	obtenga \bar{a} ?
	3
	5 Ninguno de los anteriores
	Dadas las premisas $\{p \lor q, \neg p \lor \neg q\}$. Aplicando resolución de entrada , ¿cuál de las siguientes conclusiones se deriva?
	$\neg(p\leftrightarrow q)$
_	$p \rightarrow \neg q$
	Las dos anteriores
	Ninguna de las anteriores
9	Dadas las funciones $f(a,b,c) = \Sigma_3(2,m) + \Sigma_{\phi}(0,3,7,n)$ y $g(a,b,c) = \overline{b(a+c)} + a\overline{c}$ ¿Cuáles deben ser los valores de m y n para que
	obtenga la misma solución al simplificar f y g por Karnaugh?
	m = 6, n = 4
	m = 4, $n = 6Las dos anteriores$
	Ninguna de las anteriores
	- Indicar qué cláusula es necesario añadir a las premisas del razonamiento: $\{p \rightarrow (s \land \neg r), q \lor p\} \Rightarrow (\neg r) \rightarrow q$ para que el
	onamiento resultante sea correcto.
	$\neg r$
	$\neg s$
	¬q
11	Ninguna, porque el razonamiento ya es correcto - Dado un conjunto de cláusulas Horn formado únicamente por hechos. ¿Es posible aplicar eliminación de cláusulas con
	Dado un conjunto de cidabatas from formado ameamente por nechos. ¿Lo posible apricar enfilmación de cidasalas con

Enunciados, pág. 51

Enunciados	Primer Parcial 1997 - 1998
☐ Sí, y se obtiene un conjunto sin cláusulas indicando que el conjunto original es satisfacible. ☐ Sí, y se obtiene un conjunto sin cláusulas indicando que el conjunto original es insatisfacible. ☐ No, ya que las cláusulas Horn no pueden contener hechos	
☐ No, porque la eliminación de cláusulas con literales puros no es completa	
12 Si se ha demostrado que $a + \overline{a} = 1$, aplicando el teorema de Dualidad también quedaría demostrado):
$\Box \bar{a} + a = 1$	
$\Box \ \overline{a} + a = 0$	
$a*\bar{a}=1$	
$\Box a * \overline{a} = 0$	
13 La salida del siguiente circuito sería:	
$\Box (a+b)(a+b+\overline{c}+d)$	
$\Box \overline{ab} + \overline{ab\bar{c}d}$	
\Box $ab\overline{c}d$	
14 Sea una funcion booleana expresada en forma canónica, y sea 'n' y 'm' el número de términos, re suma de productos y del producto de sumas. Se verifica que:	spectivamente, de la
☐ Si las expresiones son mínimas, n=m	
☐ Si ambas expresiones son canónicas, n=m	
☐ No existe ninguna relación entre n y m	
☐ Ninguna de las anteriores	
15 Sea $\{P_1, P_2,, P_n, \neg Q\}$ un conjunto insatisfacible,. El árbol semántico asociado a la fórmula P_1	$\wedge P_2 \wedge \wedge P_n \to Q,$
verifica que: ☐ Todas las hojas son nodos de fallo, aunque el número de nodos de fallo no es necesariamente 2 ⁿ	
☐ Todas las hojas son nodos de éxito, aunque el número de nodos de éxito no es necesariamente 2 ⁿ	
☐ Tiene exactamente 2 ⁿ nodos de éxito	
☐ Tiene exactamente 2 ⁿ nodos de fallo	
16 Sea C= $\{p\lor \neg q\lor r, p\lor \neg q, \neg p\lor q, \neg p\lor q\lor \neg r, q\lor \neg q\lor \neg s\}$. A la vista del conjunto de claúsulas anterio	or podemos afirmar que:
☐ El conjunto es satisfacible	
☐ La fórmula no es correcta ☐ El razonamiento no es válido	
☐ Ninguna de las anteriores	
17 La fórmula $p \rightarrow [(\neg q \lor s \rightarrow r \land \neg s \land \neg q] \land (s \rightarrow \neg r) \text{ cumple que:}$	
☐ La forma clausal equivalente contiene 2 cláusulas Horn objetivos y una cláusula que no es Horn	
☐ La forma clausal equivalente no tiene claúsulas Horn	
☐ Es una fórmula válida. ☐ Es una fórmula insatisfacible.	
18 El algoritmo de resolución:	
☐ Toma como entrada un conjunto de claúsulas y detecta si es válido.	
☐ Toma como entrada un conjunto de claúsulas y detecta si es insatisfacible.	
☐ Toma como entrada una fórmula en FNC y detecta si es válida.	
☐ Toma como entrada una fórmula en FNC y detecta si es correcta.	
19 Sea C un conjunto de claúsulas insatisfacible. Sabiendo que el árbol semántico asociado tiene 'n'	nodos de fallo es cierto
que: ☐ Existen n/2 nodos de inferencia	
☐ El conjunto tiene 'n' claúsulas	
☐ El número de resolventes necesario para encontrar la cláusula vacía no es superior a n-1	
☐ Ninguna de las anteriores	
NOTA: En los siguientes ejercicios asignar las letras p,q,r por orden de aparición a las diferentes pro	_
20 "No es cierto que me emborracho siempre que salgo; sólo me emborracho si tengo muchas pena	s." se puede formalizar
como:	
$\Box - (a \rightarrow b) \land (b \rightarrow c)$	

- $\Box \neg (q \rightarrow p) \land (p \rightarrow r)$
- $\square \ (\neg q \rightarrow p) \ \land \ (p \rightarrow r)$
- $\square \ (\neg q \rightarrow p) \ \land \ (r \rightarrow p)$
- $\square \neg (q {\rightarrow}\, p) \ \land \ (r {\rightarrow}\, p)$

Enunciados Primer Parcial 1997 - 1998

21 "A no ser que haya reclamaciones, el resultado se hará público el Viernes", se puede formalizar como:
$\square p \rightarrow q$
$\Box \neg p \rightarrow q$
$\square q \rightarrow \neg p$
$\square $
22 La frase "No tiene frío aunque sea invierno; salvo cuando hay que trabajar."
$\square (\neg p \to q) \to \neg r$
$\Box \neg r \rightarrow (\neg p \land q)$
$\square (\neg p \land q) \rightarrow \neg r$
$\Box r \rightarrow (q \rightarrow \neg p)$

Enunciados Segundo Parcial 1997 - 1998

Segundo Parcial 1997 - 1998

1 Calc	ular el valor de la fórmula $\forall x \ (\exists y \ P(x,y)) \lor \neg \ R(x) \) \land \forall x (\ (\forall y \neg \ P(x,y)) \land R(x) \)$ en la interpretación $I = \{D = N^o \}$
	es, $P(x,y)="x$ es múltiplo de $y"$, $R(x)="x$ es par"}.
	V
	F
	Satisfacible
	Insatisfacible
2 Calc	ula la forma normal de Skolen (FNS) equisatisfacible a la siguiente fórmula: $\forall y [P(y) \land \neg \forall x Q(x.y)] \rightarrow \exists x \neg P(x)$
	$\neg P(b) \lor Q(a,b)$
	$\forall x(\neg P(a) \lor Q(x,a))$
	$\forall x(\neg P(b) \lor Q(x,b) \lor \neg P(a))$
	$\forall x ((\neg P(a) \lor Q(x,a)) \land (\neg P(a) \lor \neg P(x)))$
	a signiente fórmula podemos decir: $\forall x (Q(x,a) \rightarrow \exists x P(x,y))$
	Que es una fórmula bien formada cerrada.
	Sería una fórmula bien formada si se cambia la 'y' por una constante
	Que es una fórmula bien formada no cerrada.
	Sería una fórmula bien formada si se suprime el cuantificador $\forall x$
4 Sea ($C = \{ P(x, g(x,c)), P(f(a,u), g(f(a,u), u)), P(f(a,c), y) \}, $ entonces:
	El umg de este conjunto no es único.
	El conjunto no es unificable
	$\{x / f(a,u), u / c, y / g(f(a,c), c)\}$ es umg para el conjunto.
	Ninguna de las anteriores.
	primera discrepancia encontrada en el conjunto anterior es:
*	ı v
	$\{f(a,u), f(a,c)\}$
	$\{x, f(a,u)\}$
	$\{u,c\}$
	$\{x, f(a,u), f(a,c)\}$
6 Dada	as dos expresiones simples:
	El umg es único y, si existe, es una substitución renombramiento.
	El umg no es único.
	El umg no es único y está formado por un conjunto de expresiones simples.
	El umg es único siempre que las expresiones contengan variables distintas entre sí.
7 - El co	onjunto de cláusulas { $P(f(x), h(u,c)), \neg P(y, h(a,c)) \lor R(y,y), \neg R(x, f(x))$ }
7. Li co	Contiene una tautología.
	Es insatisfacible.
	Contiene una cláusula que puede ser subsumida.
	Ninguna de las anteriores.
En las s	iguientes preguntas considérese programa PROLOG:
	q(X):-p(X,Z),q(X).
	q(X):-s(a,X,X).
	p(X,Y):-r(X,Y).
	r(X,Y):-s(X,Y,Y).
	s(a,b,b).
	s(b,b,b).
Y el sig	uiente objetivo: ?q(a).
	construye el árbol SLD según la regla de computación y de búsqueda utilizada por el PROLOG, el número de
	ciones de respuesta obtenidas es:
	Infinitas substituciones de respuesta.
	Ninguna substitución de respuesta.
	Más de una y todas iguales.
	Más de una y todas distintas.
9 Si el	programa se introduce en un sistema PROLOG y se realiza la pregunta ? q(a). El sistema:
	Devuelve "Yes/Sí "
	Devuelve "No"
	Devuelve " $X = a$, $Z = b$ "
	Ninguna de las anteriores
	-
	se invierte el orden en el que aparecen las instrucciones y volvemos a construir el árbol SLD observamos que:
	El nuevo árbol contiene menos caminos de éxito
	El nuevo árbol contiene más caminos de éxito
	Si la regla de computación fuese "seleccionar el último", podríamos construir un árbol idéntico al original.

Enunciados Segundo Parcial 1997 - 1998

```
Si cambiásemos la regla de búsqueda, podríamos construir un árbol idéntico al original.
11.- Si reescribimos la primera instrucción como "q(X) :- p(X, Z)." y calculamos el árbol SLD según las reglas de
computación y búsqueda del PROLOG observamos que:
La substitución de respuesta sería: { X/ a, Z/ b }
No hay caminos de éxito
El sistema no encuentra caminos de éxito
Ninguna de las anteriores
Para responder a las siguientes preguntas, suponer que se ha cargado el siguiente programa en un sistema Prolog:
pr([],1).
                                    vocal(a). vocal(e). vocal(i). vocal(o). vocal(u).
pr([X|Xs],X * Pc) :-
pr(Xs,Pc).
                                    vocales([]).
                                    vocales([X|Xs]):-vocal(X),vocales(Xs).
st([Xs|X],X).
dif([X,Y]) :- X = Y.
12.- Al ejecutar: ? pr([1,2,3],V). se obtiene:
Error aritmético
V = 6
V = 1 * (2 * (3 * 1))
13.-Al ejecutar ? vocales(V).:
       Se obtiene: V = [a]
Se obtiene (solicitando todas las respuestas por backtracking):
                                                                        V = e ;
                                                                        V = i ;
                                                                        V = o ;
                                                                        V = 11
Se obtiene: V = [a,e,i,o,u]
Se obtiene: V = [] y el sistema entra en un bucle infinito si se solicitan todas las respuestas por backtracking
14.-Al ejecutar? st([1,2,3],V).
Se obtiene: V = [3]
Se obtiene: V = [2,3]
Se obtiene: V = 3
Ninguna de las anteriores
15.- Al ejecutar? st(V,[e]), vocales(V), dif(V). Se obtiene (solicitando todas las respuestas por backtracking):
V = [a,e];
        V = [i,e];
        V = [o,e] ;
        V = [u,e]
V = [a,e];
        V = [a,e];
        V = [a,e];
         . . . indefinidamente, hasta que el usuario deje de teclear ;
V = [a,e];
Nada, ya que se produce un error al evaluar o el sistema entra en un bucle infinito
16.- ¿Cuál de las siguientes preguntas se cumple?
        ? 3 + 2 = 2 + 3.
? 3 + 2 is 2 + 3.
? 3 + 2 = 2 + 3.
Ninguna de las anteriores
En la formalización de las siguientes preguntas, utilizar: P(x,y)="x protege a y", D(x,y)="x es dueño de y". a = Antonio.
17.- La frase \forall x (\exists y \ P(x,y) \rightarrow D(x,x)) podría ser la formalización de:
"Todos los que protegen a alguien son dueños de sí mismos"
"Todos los dueños de sí mismos protegen a alguien"
        "Sólo los que protegen a alguien son dueños de sí mismos"
"Alguien es protegido por todos los dueños de sí mismos"
18.- La frase "No hay nadie que proteja a Antonio mientras Antonio no sea dueño de sí mismo" podría formalizarse como:
\exists x P(x,a) \rightarrow D(a,a)
\neg D(a,a) \rightarrow \exists x P(x,a)
D(a,a) \rightarrow \exists x P(x,a)
\neg \exists x P(x,a) \land \neg D(a,a)
```

19.- La frase "Antonio sólo es dueño de los que no son protegidos por sus dueños" se podría formalizar como:

Enunciados Segundo Parcial 1997 - 1998

	$\forall x ((\forall y (D(y,x) \rightarrow \neg P(y,x)) \rightarrow D(a,x))$
	$\forall x ((\forall y (D(y,x) \land \neg P(y,x)) \rightarrow D(a,x))$
	$\forall x (D(a,x) \rightarrow (\forall y (D(y,x) \rightarrow \neg P(y,x)))$
	$\forall x (\ D(a,x) \to (\forall y \ (D(y,x) \land \neg \ P(y,x))\)$
20 De	"Antonio no protege a nadie a menos que todos protejan a Antonio; Antonio es dueño de sí mismo si todos le
protege	n" se deduce:
	$\exists x (D(x,x) \to P(x,x))$
	$\forall x (P(x,x) \rightarrow D(x,x))$
	$\forall x (D(x,x) \rightarrow P(x,x))$
	$\exists x (P(x,x) \to D(x,x))$
	rmalizando y pasando a forma clausal la frase: "Sólo los que protegen algo son dueños de algo" se podría obtener:
	$\neg D(x, y) \lor P(x, f(x))$
	$\neg P(x, y) \lor D(x, f(x))$
	$\neg D(x, f(x)) \lor P(x, y)$
	$\neg P(x, f(x)) \lor D(x, y)$
22 A p	partir de las premisas: "Todos protegen algo de lo que no son dueños, Antonio no es dueño de sí mismo" se puede
deducir.	
	Antonio protege a los dueños de sí mismos
	Antonio se protege a sí mismo
	Antonio no se protege a sí mismo
	Ninguna de las anteriores
23 A p	partir del cociente intelectual, se forman los conjuntos borrosos de personas Bobas y de personas Listas de la siguiente
forma:	
	(0.9/80, 0.7/90, 0.4/100, 0/110) Listas= (0.2/80, 0.6/90, 0.8/100, 1/110). El conjunto C de personas "No bobas y
Listas"	
	C = (0.2 / 80, 0.6 / 90, 0.4 / 100, 0 / 110)
	C = (0.2 / 80, 0.7 / 90, 0.8 / 100, 1 / 110)
	C = (0.1/80, 0.3/90, 0.6/100, 1/110)
	C = (0.8/80, 0.3/90, 0.2/100, 0/110)

Enunciados Junio 1997 – 1998

Junio 1997 – 1998

Primer Parcial

NOTA: Al formalizar, asignar las letras <i>p</i> , <i>q</i> , <i>r</i> , <i>etc</i> . por orden de aparición a las diferentes proposiciones.
1 Formalizar: "McCoyson sólo entra en un bar si no le persigue la ley, sin embargo, basta que McCoyson entre en un bar para
que le persiga la ley"
$\square \qquad (\neg p \to q) \ \land \ (q \to p)$
$\square \qquad (p \to \neg q) \ \land \ (q \to p)$
$\square \qquad (\neg p \to q) \ \land \ (p \to q)$
$\square \qquad (p \to \neg q) \ \land \ (p \to q)$
2 A partir de las premisas anteriores, se deduce que:
O entra en un bar o le persigue la ley, pero no ambos
O entra en un bar o le persigue la ley
□ No entra en un bar
□ No le persigue la ley
3 En Lógica proposicional, cuál de las siguientes frases NO es correcta:
☐ Una interpretación consiste en asignar valores Verdadero ó Falso a todas las letras proposicionales de una fórmula
☐ Si una fórmula es correcta, entonces su valor es independiente de la interpretación seleccionada
☐ Todas las fórmulas insatisfacibles son equivalentes lógicamente
☐ Para poder asegurar que una fórmula proposicional es insatisfacible es necesario chequear las infinitas interpretaciones de
dicha fórmula
4 Dado el siguiente razonamiento, si se construye el conjunto de entrada del algoritmo de resolución podemos decir:
"Basta con que el nivel o la presión aumente para que suene la alarma. Pero la alarma no suena a no ser que haya una
emergencia. Si sabemos que el nivel ha subido y la alarma está sonando, ¿podemos concluir que hay una emergencia?"
☐ Que todas las interpretaciones hacen que el valor de verdad del conjunto sea falso ☐ Que todas las interpretaciones hacen que el valor de verdad del conjunto sea verdadero
☐ Que alguna interpretación hace que el valor de verdad del conjunto sea verdadero y otras interpretaciones hacen que sea
falso
☐ Que alguna interpretación hace el valor de verdad del conjunto verdadero
5 Sea $P_1 \wedge \wedge P_n \rightarrow Q$ la fórmula construída para demostrar la corrección de un razonamiento. Si es correcto podemos decir
que:
☐ El árbol asociado a la fórmula tendrá siempre 2 n nodos, que serán de éxito
☐ La tabla de verdad asociada a la fórmula tiene al menos una fila con valor V
☐ En una prueba por refutación no encontraríamos contradicciones
☐ Ninguna de las anteriores
6 Si en un árbol de fallo no tenemos ningún nodo de inferencia podemos decir que:
☐ La raíz tiene dos hijos que son nodos de éxito necesariamente.
☐ El árbol tiene un único nodo.
☐ La raíz tiene dos hijos que son nodos de fallo necesariamente.
□ No es posible.
7 La estrategia de resolución lineal:
□ No es completa
☐ Sólo es completa con claúsulas Horn
☐ Sólo es completa si tomamos como cláusula inicial la negación de la conclusión
□ Es completa
8 La expresión en forma abreviada de la siguiente tabla de verdad es:
$\begin{array}{c c} \mathbf{abc} & \mathbf{f} \\ \hline 000 & 0 \end{array}$
$\frac{001}{010}$
$ \begin{array}{c cccc} 010 & 1 \\ \hline 011 & 0 \end{array} $
$\frac{011}{100} \frac{0}{0}$
101 1
$ \begin{array}{c c} \hline $
$\Box f(a,b,c) = \prod_{3} (0,3,4,7)$
\Box f(a,b,c)= \sum_{3} (0,3,4,7)
☐ Más de una de las anteriores.

Enunciados Junio 1997 – 1998

□ Ninguna de las anteriores.
9 Sea la siguiente función del Algebra de Boole: $f(a,b,c) = \prod_3 (0,3)$. Su expresión canónica equivalente es:
$\Box (a+b+c)(a+\overline{b}+\overline{c})$
$\Box \ \overline{a} \ \overline{b} \ \overline{c} + \overline{a} \ b \ c$
☐ Más de una de las anteriores. ☐ Ninguna de las anteriores.
10 Sea la función $f(a,b,c,d,e) = \sum_5 (1,5,17) + \sum_f (15,21,31)$. La función resultante tras aplicar Karnaugh es:
$\Box f(a,b,c,d,e) = \overline{a} \cdot \overline{b} \cdot \overline{d} \cdot e + a \cdot \overline{b} \cdot \overline{d} \cdot e$
$\Box f(a,b,c,d,e) = \overline{a} \cdot \overline{b} \cdot \overline{d} \cdot e + a \cdot \overline{b} \cdot \overline{d} \cdot e + b \cdot c \cdot d \cdot e$
$\Box f(a,b,c,d,e) = \overline{b} \cdot \overline{d} \cdot e$
$\Box f(a,b,c,d,e) = \overline{b} \cdot \overline{d} \cdot e + b \cdot c \cdot d \cdot e$
11 El conjunto: $\{p \lor \neg q, r \lor s, \neg s, \neg p \lor q\}$ es:
 □ Satisfacible porque se alcanza la cláusula vacía aplicando resolución □ Satisfacible porque no se alcanza la cláusula vacía aplicando resolución
☐ Insatisfacible porque se alcanza la cláusula vacía aplicando resolución
☐ Insatisfacible porque no se alcanza la cláusula vacía aplicando resolución
12 Tras aplicar eliminación de literales puros al conjunto $C = \{p_0 \lor \neg p_1, p_1 \lor \neg p_2, p_2 \lor \neg p_3, \dots, p_{n-1} \lor \neg p_n, p_0 \lor \neg p_n \}$ se obtiene:
☐ Un conjunto sin cláusulas, indicando que C es insatisfacible
☐ Un conjunto sin cláusulas, indicando que C es satisfacible
El mismo conjunto C, que además es insatisfacible
El mismo conjunto C, que además es satisfacible
13 Al construir el árbol semántico del conjunto $C = \{ \neg p_0, p_0 \lor \neg p_1, p_1 \lor \neg p_2, \dots, p_{n-1} \lor \neg p_n, p_n \}$ tomando literales en orden (p_0, p_1, p_2) se obtiene:
☐ Un solo nodo de inferencia
n nodos de inferencia
n-1 nodos de inferencia
☐ El árbol resultante no es de fallo
Segundo Parcial
En un sistema Prolog se ha cargado el siguiente programa:
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X)$.
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X)$. $r(1,2)$. $r(2,3)$. $r(2,4)$.
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X)$.
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X).$ $r(1,2). r(2,3). r(2,4).$ $q(X,Y):-r(X,Y).$ $q(X,Y):-r(X,Z), p(Z,Y).$ 1 Al ejecutar ? $p([1,[2]], [X Y])$. se obtiene:
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X).$ $r(1,2). r(2,3). r(2,4).$ $q(X,Y):-r(X,Y).$ $q(X,Y):-r(X,Z), p(Z,Y).$ 1 Al ejecutar ? $p([1,[2]], [X Y])$. se obtiene:
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X).$ $r(1,2). r(2,3). r(2,4).$ $q(X,Y):-r(X,Y).$ $q(X,Y):-r(X,Z), p(Z,Y).$ 1 Al ejecutar ? $p([1,[2]], [X Y])$. se obtiene:
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X).$ $r(1,2). r(2,3). r(2,4).$ $q(X,Y):-r(X,Y).$ $q(X,Y):-r(X,Z), p(Z,Y).$ 1 Al ejecutar ? $p([1,[2]], [X Y])$. se obtiene:
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X).$ $r(1,2). r(2,3). r(2,4).$ $q(X,Y):-r(X,Y).$ $q(X,Y):-r(X,Z), p(Z,Y).$ 1 Al ejecutar ? $p([1,[2]], [X Y])$. se obtiene:
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X).$ $r(1,2). r(2,3). r(2,4).$ $q(X,Y):-r(X,Y).$ $q(X,Y):-r(X,Z), p(Z,Y).$ 1 Al ejecutar ? $p([1,[2]], [X Y])$. se obtiene:
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X).$ $r(1,2). r(2,3). r(2,4).$ $q(X,Y):-r(X,Y).$ $q(X,Y):-r(X,Z),p(Z,Y).$ 1 Al ejecutar ? $p([1,[2]],[X Y])$. se obtiene:
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X).$ $r(1,2). r(2,3). r(2,4).$ $q(X,Y):-r(X,Y).$ $q(X,Y):-r(X,Z),p(Z,Y).$ 1 Al ejecutar ? $p([1,[2]],[X Y])$. se obtiene:
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X).$ $r(1,2). r(2,3). r(2,4).$ $q(X,Y):-r(X,Y).$ $q(X,Y):-r(X,Z), p(Z,Y).$ 1 Al ejecutar ? $p([1,[2]], [X Y])$. se obtiene: $ X = 1, Y = [2] $ $X = 1, Y = [2]] $ $X = 1, Y = 2$ $ Error, porque el término [1,[2]] está mal definido$ 2 Al ejecutar ? $p([X,X],[2,Y])$, X is $Y*1$. se obtiene: $ Si/yes $ $No $ $ Error aritmético $ $X = 2, Y = 2$ 3 Si a un sistema PROLOG se la hace la pregunta: ? $p(X,blanco)$ le preguntamos si se cumple que:
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X).$ $r(1,2). r(2,3). r(2,4).$ $q(X,Y):-r(X,Y).$ $q(X,Y):-r(X,Z), p(Z,Y).$ 1 Al ejecutar ? $p([1,[2]], [X Y])$. se obtiene: $X=1, Y=[2]$ $X=1, Y=[2]$ $X=1, Y=[2]$ $X=1, Y=2$ $Error, porque el término [1,[2]] está mal definido$ 2 Al ejecutar ? $p([X,X],[2,Y])$, X is $Y*1$. se obtiene: Si/yes No $Error aritmético X=2, Y=2 3 Si a un sistema PROLOG se la hace la pregunta: ? p(X,blanco) le preguntamos si se cumple que: \frac{1}{6}\exists x \text{ tal que } p(X,blanco)?$
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X) . \\ r(1,2) . r(2,3) . r(2,4) . \\ q(X,Y) : -r(X,Y) . \\ q(X,Y) : -r(X,Z) . p(Z,Y) . \\ \hline 1 Al ejecutar ? p([1,[2]], [X Y]). se obtiene: $
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X) . \\ r(1,2) . r(2,3) . r(2,4) . \\ q(X,Y) : -r(X,Y) . \\ q(X,Y) : -r(X,Z) . p(Z,Y) . \\ \hline 1 Al ejecutar ? p([1,[2]], [X Y]). se obtiene: $
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X).$ $r(1,2). r(2,3). r(2,4).$ $q(X,Y):-r(X,Y).$ $q(X,Y):-r(X,Z), p(Z,Y).$ 1 Al ejecutar ? $p([1,[2]], [X Y])$. se obtiene: $X = 1, Y = [2]$ $X = 1, Y = [[2]]$ $X = 1, Y = 2$ $Fror, porque el término [1,[2]] está mal definido$ 2 Al ejecutar ? $p([X,X],[2,Y]), X$ is $Y*1$. se obtiene: Si/yes No $Error aritmético$ $X = 2, Y = 2$ 3 Si a un sistema PROLOG se la hace la pregunta: ? $p(X,blanco)$ le preguntamos si se cumple que: $\frac{1}{6}\exists x \text{ tal que } p(X,blanco)$? $\frac{1}{6}\forall x, p(X, blanco)$? $\frac{1}{6}\exists x \text{ tal que no } p(X,blanco)$?
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X) . \\ r(1,2) . r(2,3) . r(2,4) . \\ q(X,Y) : -r(X,Y) . \\ q(X,Y) : -r(X,Z) . p(Z,Y) . \\ \hline 1 Al ejecutar ? p([1,[2]], [X Y]). se obtiene: $
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X)$. $r(2,3)$. $r(2,4)$. $q(X,Y)$: $-r(X,Y)$. $q(X,Y)$: $-r(X,Y)$. $q(X,Y)$: $-r(X,Z)$, $p(Z,Y)$. 1 Al ejecutar ? $p([1,[2]], [X Y])$. se obtiene: $X = 1, Y = [2]$ $Y = 1, Y = [2, Y = [2]$ $Y = 1, Y = [2, Y = [2]$ $Y = 1, Y = [$
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X)$. $r(1,2)$. $r(2,3)$. $r(2,4)$. $q(X,Y)$: $-r(X,Y)$. $q(X,Y)$: $-r(X,Y)$. $q(X,Y)$: $-r(X,Z)$, $p(Z,Y)$. 1. Al ejecutar ? $p([1,[2]], [X]Y]$). se obtiene: $\begin{array}{ccccccccccccccccccccccccccccccccccc$
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X)$. $r(1,2)$. $r(2,3)$. $r(2,4)$. $q(X,Y)$: $-r(X,Y)$. $q(X,Y)$: $-r(X,Y)$. $q(X,Y)$: $-r(X,Z)$, $p(Z,Y)$. 1 Al ejecutar ? $p([1,[2]], [X Y])$. se obtiene: $X = 1, Y = [2]$ $X = 1, Y = 2$ Error, porque el término $[1,[2]]$ está mal definido 2 Al ejecutar ? $p([X,X],[2,Y])$, X is Y *1. se obtiene: $X = 1, Y = 2$ $Y $
En un sistema Prolog se ha cargado el siguiente programa: $p(X,X)$. $r(1,2)$. $r(2,3)$. $r(2,4)$. $q(X,Y)$: $-r(X,Y)$. $q(X,Y)$: $-r(X,Y)$. $q(X,Y)$: $-r(X,Z)$, $p(Z,Y)$. 1. Al ejecutar ? $p([1,[2]], [X]Y]$). se obtiene: $\begin{array}{ccccccccccccccccccccccccccccccccccc$

Enunciados Junio 1997 – 1998

```
ncincos([X|Y],N) :- X = 5, ncincos(Y,N).
          ncincos([X|Y],N) :- X = 5, ncincos(Y,N),
N is N + 1.
          ncincos([X|Y],N) :- X = 5, ncincos(Y,N).
ncincos([X|Y],N) := ncincos(Y,N), if (X = 5) then N is N + 1.
          Para las siguientes formalizaciones utilizar los predicados: S(x,y) = "x es seguidor de y", P(x,y) = "x perdona a y", G(x) = "x gana",
H(x)="x es humillante" y la función f(x)="fallos de x"
6.- Formalizar la siguiente frase: "Sólo los seguidores de un equipo le perdonan los fallos, a menos que sean humillantes."
\square \forall x \forall y (P(y,f(x)) \rightarrow S(y,x)) \lor H(f(x))
\square \exists x \exists y (P(x,f(y)) \land \neg S(x,y)) \land H(f(y))
\square \forall x \forall y (P(x,y) \land f(y) \land \neg S(x,y)) \lor (H(x) \land f(y))
\square \exists x \exists y (P(x,y) \land f(y) \land \neg S(x,y)) \land (H(x) \land f(y))
7.- Formalizar la frase: "Los seguidores, siempre que el equipo gana, ganan todos"
\square \forall x \forall y (S(x,y) \land G(y) \rightarrow G(x))
\square \exists x \forall y (S(x,y) \land G(y) \rightarrow G(y))
\square \ \forall \ x \ \forall \ y \ (G(x) \to S(x,y) \land G(y) \ )
\square \forall x \exists y (\neg S(x,y) \lor G(y) \lor G(y))
8.- Calcular la forma clausal de la fórmula: \forall x ((\forall y \neg P(x,f(y))) \rightarrow \exists y (P(y,f(x))))
\square P(x,f (a)) \vee P (b,f (x))
\square P(x,f(f(x))) \vee P(f(x),f(x))
\square P(x,f(y)) \vee P(a,f(x))
9.- En un árbol SLD:
☐ La respuesta encontrada en un recorrido en profundidad es siempre la misma que en la encontrada en un recorrido en
anchura.
☐ El número de éxitos encontrados es el mismo en un recorrido en anchura que en profundidad.
☐ El número de caminos de éxito puede ser distinto según la regla de computación elegida.
☐ El número de caminos de éxito puede ser distinto según la estrategia de búsqueda elegida.
10.- Al aplicar eliminación de subsunciones y literales puros al conjunto: \{P(x,f(x))\lor \neg Q(a,x), P(x,x), \neg P(f(x),x)\lor Q(a,b), q(x,x)\}
\neg P(x,y), Q(x,a) } se obtiene:
\  \  \, \square \, \left\{ \, P(x,f(x)) \lor \neg Q(a,x), \, P(x,x), \, \neg P(x,y), \, Q(x,a) \, \right\}
 \  \, \square \, \left\{ \, P(x,f(x)) \lor \neg Q(a,x), \, P(x,x), \, \neg P(f(x),x) \lor Q(a,b) \, \, , \, \neg P(x,y), \, Q(x,a) \, \, \right\} 
\square { P(x,x), \neg P(x,y), Q(x,a) }
\square { P(x,x), \neg P(x,y) }
11.- En el mundial de fútbol, se cumple que: España ha perdido ante Nigeria, Nigeria ha perdido ante España y Brasil, y Brasil
ha perdido ante España. En la interpretación cuyo dominio D = {España, Brasil, Nigeria} y cuyo predicado "H(x,y) = "x ha
perdido ante y" se cumple:
\square \forall x \exists y H(x,y)
\square \exists x \forall y H(x,y)
☐ Las dos anteriores
☐ Ninguna de las anteriores
12.- Sea \sigma el umg de { P( x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>) , P(f(x<sub>0</sub>,x<sub>0</sub>), f(x<sub>1</sub>,x<sub>1</sub>), f(x<sub>2</sub>,x<sub>2</sub>)) }, ¿Cuántas variables tiene \sigma(Q(x<sub>2</sub>,x<sub>3</sub>)) ?:
\square 12
\Box 4
\square 8
\square 2
13.- A partir de las premisas: "McCoyson sólo es amigo de los que le invitan, Budy invita a McCoyson salvo que esté colgado"
se deduce:
☐ McCoyson es amigo de algún colgado
☐ McCoyson no es amigo de ningún colgado
□ O McCoyson es amigo de algún colgado o no lo es
```

☐ Más de una de las anteriores

Enunciados Septiembre 1997 - 1998

Septiembre 1997 - 1998

Las dos

```
1.- ¿Cuál de las siguientes respuestas es verdadera?
\Box f(a,b,c)=a b c es una forma canónica canónica.
\Box f(a,b,c)=a (b+c) es una forma canónica.
\square La forma canónica de una función f(a,b,c) tiene siempre 2^3=8 variables.
\square La forma canónica de una función f(a,b,c) tiene siempre 2^3=8 términos.
2.- Sea la función f(a,b,c) = \overline{a}\overline{b} + \overline{a}c. La expresión canónica equivalente es:
\Box f(a,b,c) = (\overline{a}+b+\overline{c})(a+\overline{b}+\overline{c})(a+\overline{b}+c)(a+b+\overline{c})(a+b+c)
\Box f(a,b,c) = (\overline{a} + \overline{b} + \overline{c})(\overline{a} + \overline{b} + c)(\overline{a} + b + \overline{c})(\overline{a} + b + c)(\overline{a} + \overline{b} + c)
\Box f(a,b,c) = (\overline{a} + \overline{b} + \overline{c})(\overline{a} + \overline{b} + c)(\overline{a} + b + c)
\label{eq:factor} \Box \ f(a,b,c) = (\overline{a} + \overline{b} + \overline{c})(\overline{a} + b + c)(a + b + \overline{c})(a + b + c)
3.- Sea la función f(a,b,c,d) = \sum_{i=1}^{4} (1,3,12,13,14,15) + \sum_{i=1}^{4} (9,10,11). ¿Cuál es la expresión mínima equivalente?
\Box f(a,b,c,d) = ad + ab\overline{d} + \overline{a}\overline{b}d
\Box f(a,b,c,d) = ab + \overline{a}\overline{b}d
\Box f(a,b,c,d) = ab + \overline{b}d
\Box f(a,b,c,d) = ab+bd+ac
4.- Dado un conjunto C=\{C_1, ..., C_n\} con dos claúsulas C_1, C_2 resolubles cuyo resolvente es R(C_1, C_2), la consistencia de la
regla de resolución nos asegura que:
\square \{C_1, ..., C_n\} \Rightarrow R(C_1, C_2)
\square R(C_1,C_2) \Rightarrow \{C_1,...,C_n\}
\square Si C es insatisfacible, entonces R(C_1,C_2) = \square
\square si R(C_1,C_2) = \square, entonces C es satisfacible.
5.- Señalar la frase correcta:
☐ El algoritmo de resolución es NO determinista porque hay veces que no termina.
☐ Las estrategias de borrado sólo se pueden aplicar "antes" de comenzar el algoritmo de resolución.
☐ Tras aplicar la estrategia de eliminación de literales puros se obtiene un conjunto equisatisfacible pero no siempre
equivalente.
☐ Si al aplicar la eliminación de literales puros obtenemos un conjunto vacío, el conjunto original era insatisfacible.
6.- Considérese la interpretación I=\{D=Números naturales, P(x,y)="x < y" \}. ¿Cuál de las siguientes fórmulas es verdadera en
1?
\exists y \ \forall x \ P(x,y)
\forall x \exists y P(x,y)
Las dos
           Ninguna
Para formalizar los siguientes ejercicios, utilizar:
m="McCoyson", C(x)="x \ es \ cerveza", D(x)="x \ tiene \ dinero", B(x,y)="x \ bebe \ y"
7.- Formalizar: "McCoyson sólo bebe cerveza"
П
           \forall x (C(x) \land B(m,x))
\exists x (C(x) \land B(m,x))
\forall x (B(m,x) \rightarrow C(x))
\forall x (C(x) \rightarrow B(m,x))
8.- Formalizar: "McCoyson no bebe toda la cerveza a menos que tenga dinero"
(\forall x (C(x) \rightarrow B(m,x))) \rightarrow D(m)
(\neg \forall x (B(m,x) \rightarrow C(x))) \rightarrow D(m)
\neg ( \forall x (C(x) \land B(m,x))) \rightarrow D(m)
(\forall x (B(m,x) \to C(x))) \to D(m)
9.- Considerando como premisas las dos frases anteriores, ¿cuál de las siguientes conclusiones haría correcto el razonamiento?
Existe algo que, si se bebe a sí mismo, entonces es una cerveza.
Algunas cervezas se beben a sí mismas
Todos los que no son cerveza tienen dinero
           Si algo se bebe a sí mismo, entonces es una cerveza
10.- ¿Cuál de las siguientes fórmulas es satisfacible?
(\forall x \exists y (Q(x, y) \rightarrow Q(y, x))) \rightarrow \neg \exists z Q(z, z)
(\neg \exists x P(x, x)) \rightarrow \forall x \neg P(x, x)
```

Enunciados Septiembre 1997 - 1998

Ninguna Considérese que en un sistema Prolog se carga el siguiente programa: p(11,22). p(22,33). p(22,44). q(X,Y):-p(X,Y). q(X,Y):-p(X,Z),q(Z,Y).11.- La respuesta del sistema ante la pregunta: ? q(11,44). es: { X / 11, Y / 44, Z / 22 } □ { X / 11, Y / 44 } □ SI □ ио 12.- Solicitando todas las respuestas por backtracking, ante la pregunta: ? p(X,Y), Y is X + 1. el sistema responde: X = 11, Y = 23;X = 22, Y = 34;X = 22, Y = 45;X = 11, Y = 23;No Nο X = 11, Y = 22 + 1;X = 22, Y = 33 + 1;X = 22, Y = 44 + 1;13.- Se desea construir un predicado r(X) en Prolog que se cumpla cuando X es una lista de un número impar de valores 'a' y no se cumpla en caso contrario. El caso básico del predicado r se define como: "r([a])." ¿Cuál de los siguientes podría ser el caso recursivo? r([a|[a]]):-r([Xs]).r([a|[a|Xs]]):-r(Xs).r([a|[a|Xs]]):-r([a|Xs]).r([a|Xs]):-r(Xs). 14.- ¿Cuál de las siguientes reglas se cumple en lógica polivalente? Para cualquier fórmula A, A ∧ Falso = Falso Para cualquier fórmula A, $A \land \neg A = Falso$ Ninguna de las reglas anteriores Las dos reglas anteriores 15-Sea el siguiente programa PROLOG: p(X):-q(a), p(X). p(X):-p(X),q(b). q(b). El árbol SLD asociado al objetivo ?P(X). ☐ Tiene infinitos caminos de éxito. ☐ Tiene un único camino de fallo. ☐ Tiene infinitos caminos de fallo. ☐ Tiene un único camino de éxito. 16.- Sea la siguiente interpretación: D=Números naturales, P(x)="x es primo", I(x,y)="x igual a y", f(x)=x² y sea la fórmula $\forall x \exists y | I(f(P(x)), y) \rightarrow \neg P(y) |.$ □ Bajo esta interpretación, la fórmula es la formalización de "El cuadrado de un número primo no es primo". ☐ Es una fórmula satisfacible. ☐ Es una fórmula mal formada. ☐ Es una fórmula válida. 17.- Indicar cuál de las fórmulas es verdadera en la siguiente interpretación: $\{D=\{3,5,7,9,25,49\}, P(x)="x \ es \ primo",$ $M(x,y)="x es múltiplo de y", I(x,y)="x igual a y", f(x)=x^2$ $\square \forall x \exists y (P(x) \land M(y, x) \land I(y, f(x)))$ $\exists y \forall x (P(x) \rightarrow (M(y, x) \land I(y, f(x)))$ $\exists y \forall x \big(P(x) \land M(y, x) \land I(y, f(x) \big)$ $\square \forall x \exists y (P(x) \rightarrow (M(y, x) \land I(y, f(x)))$ 18.- Se define N(G,P,C) = número de nodos de éxito del árbol SLD construido a partir del programa P con el objetivo G y la regla de computación C. Se cumple que: \square Para cualquier C1 y C2, se cumple que N(G,P,C1) = N(G,P,C2)

 \square Para cualquier G1 y G2, se cumple que N(G1,P,C) = N(G2,P,C)

Enunciados

☐ Para cualquier P1 y P2, se cumple que N(G,P1,C) = N(G,P2,C)

☐ Ninguna de las anteriores

19.- A la vista del siguiente conjunto de claúsulas $C = \{P(x), \neg P(f(x)), Q(x)\}$, podemos decir:

☐ P(x) y $\neg P(f(x))$ no son resolubles.

☐ C contiene una tautología.

☐ C es satisfacible.

☐ El razonamiento $\{P(x), \neg P(f(x))\} \Rightarrow \neg Q(x)$ es correcto.

20.- Para cualquier par de expresiones:

☐ O no existe unificador para ellas o existen infinitos unificadores.

☐ O no existe unificador más general para ellas o existen infinitos unificadores más generales.

☐ Si unifican, podemos asegurar que una tiene una variable y la otra una estructura que contiene dicha variable. ☐ Si no unifican, podemos asegurar que una tiene una variable y la otra una estructura que contiene dicha variable.

Enunciados, pág. 62

Enunciados Febrero 1997 – 1998

Febrero 1997 - 1998

Pregunta 1.- Formalizar en **lógica de proposiciones** el siguiente razonamiento y contestar a las siguientes preguntas: **NOTA:** Asignar los símbolos proposicionales p, q, r ... en el mismo orden en que aparecen las proposiciones en el razonamiento.

"Sólo se entra en el laboratorio si se está autorizado. Si es día laborable y se está en horario de oficina, es suficiente estar autorizado para poder entrar en el laboratorio. Si ,o bien es día no laborable o bien es día laborable pero fuera del horario de oficina, para entrar es necesario estar autorizado e ir acompañado de un guarda de seguridad. Luego, se puede entrar en el laboratorio si es dia laborable y horario de oficina.

Formalización

\mathbf{P}_1	
\mathbf{P}_2	
P_3	
Q	

- b) Escribir la Forma Clausal que debería proporcionarse como entrada al algoritmo de resolución para demostrar la corrección del razonamiento anterior. **No aplicar ninguna simplificación mediante estrategias de borrado.**
- c) Simplifear todo lo posible la expresión anterior aplicando **estrategias de borrado**.
- d) ¿Es un razonamiento correcto? (SI/NO)

Pregunta 2.- Dada la siguiente función, $f(a,b,c,d) = \overline{c \oplus d}$ si a = b

Escribir la forma canónica en forma de suma de productos y producto de sumas

$$f = \sum_{4} (f) f = \prod_{i=1}^{4} (f) f = \prod_{i=1$$

Construir la expresión mínima aplicando el método de Karnaugh

- b.1) Dibujar el mapa de Karanaugh asociado al producto de sumas y los agrupamientos
- b.2) Escribir la expresión mínima en forma de producto de sumas:
- b.3) Implementar la expresión mínima con puertas lógicas NAND.

a –

b –

c –

d -

Pregunta 3.- Para resolver esta pregunta, se tomará la interpretación I que tiene como dominio el conjunto de números naturales (incluido el cero), y las asignaciones 0 = cero,

Enunciados Febrero 1997 – 1998

M(X,Y) ="x es menor que y (X < Y)" E(X,Y) ="x es igual a y (X = Y)"

En dicha interpretación, Formalizar e indicar cuáles de las siguientes frases son verdaderas o falsas:

"Cualquier natural es mayor o igual que sí mismo, aunque no existe ningún natural mayor que todos"

Valor (V/F)?

"Sólo existe un natural menor que todos"

Valor (V/F)?

"Sólo los naturales iguales a sí mismos son menores que cero"

Valor (V/F)?

"Los naturales menores que cero son mayores que sus siguientes"

Valor (V/F)?

Pregunta 4.- Formalizar en lenguaje Prolog el siguiente conocimiento (tomando las mismas letras del ejercicio anterior): "Cualquier natural es menor que su siguiente, además, si un número es menor que otro y éste menor que un tercero, entonces el primer número es menor que el tercero"

Formalizar las siguientes preguntas en Prolog. Para cada pregunta, construir el árbol de resolución e indicar la(s) respuesta(s) del sistema. En caso de encontrar infinitas respuestas, buscar al menos tres.

1 ¿Es menor el cero que el dos?	2 ¿Existe algún número mayor que cero?
Pregunta →	Pregunta →
Arbol:	Arbol:
Respuesta Prolog?	Respuesta Prolog?
Respuesta Flolog:	Respuesta Froiog:
3 ¿Existe algún número menor que sí mismo?	4 ¿Existe algún número mayor que cero y menor que tres?
Pregunta →	Pregunta →
Arbol:	Arbol:
Respuesta Prolog?	Respuesta Prolog?
Trespuesta 11010g.	Teopustu Frong.

Pregunta 5.- Construir los siguientes predicados en Prolog (los naturales se representarán como en los ejercicios anteriores).
a.- suma (X, Y, Z):- Z contiene la suma de X e Y

```
Ejemplo:? suma(s(s(0)), s(s(0)), V).
```

V = s(s(s(s(0))))

Enunciados Febrero 1997 – 1998

```
c.-resta(X, Y, Z) :-Z contiene la diferencia entre X e Y Ejemplo: ? resta(s(s(s(0))), s(0), V). V = s(s(0)) c.-producto(X, Y, Z) :-Z contiene el producto de X e Y Ejemplo: ? producto(s(s(s(0))), s(s(0)), V). V = s(s(s(s(s(s(0)))))) d.-menigs(X,Ys):-Ys contiene la lista de todos los naturales menores o iguales que X Ejemplo: ? menigs(s(s(0)), V). V = [s(s(0)), s(0), 0]
```

Enunciados Primer Parcial 1998 –1999

Primer Parcial 1998 -1999

1.- Dada una función booleana en forma canónica, se puede decir que:

- \square *Tiene al menos 2ⁿ términos canónicos* diferentes.
- \square Tiene a lo sumo 2^n términos canónicos diferentes.
- \square Tiene al menos 2^n variables canónicas diferentes.
- \square Tiene a lo sumo 2^n variables canónicas diferentes.

2. - En el método de Karnaugh, el objetivo de etiquetar casillas adyacentes con términos adyacentes es aplicar la propiedad:

- $\Box f(a,b,c,...) = a \times f(1,b,c,...) + \overline{a} \times f(0,b,c...)$
- $\Box \quad a \times f(a,b,c,..) = a \times f(1,b,c...)$
- \Box $a \times b \times c \times ... + \overline{a} \times b \times c \times ... = b \times c \times ...$
- ☐ Ninguna de las anteriores.

Sean dos bloques conectados como en la figura siguiente:

La entrada al primer bloque, Sumador, son dos números codificados con dos bits, a b para el primero y c d para el segundo. Su salida es la suma de ambos codificada en tres bits, s₁ s₂ s₃. Sobre esta salida se realiza una cierta transformación que da como resultado 0 o 1, según se haya definido este último bloque. Se pedirá el diseño de un único bloque, f(a,b,c,d), que realice una combinación de las

operaciones Sumador y Transf.

f(a,b,c,d)

3.-
$$T(s_1, s_2, s_3) =$$

$$\begin{cases} 0 & si \quad s_1 = s_2 = s_3 = 0 \\ 1 & si \quad s_1 = s_2 = s_3 = 1 \end{cases}.$$

De acuerdo con esta definición de Transf., la función total f(a,b,c,d) mínima equivalente es:

- \Box f(a,b,c,d)=0
- \Box f(a,b,c,d)=1
- \Box f(a,b,c,d)= \overline{a} + \overline{b} + \overline{c} + \overline{d}
- $\exists f(a,b,c,d) = a * b * c * d$

4.-
$$T(s_1, s_2, s_3) = \begin{cases} 1 \text{ si el número de bits } s_i = 1 > \text{número de bits } s_i = 0 \\ 0 \text{ sino} \end{cases}$$

De acuerdo con esta definición de Transf., la función total f(a,b,c,d) mínima equivalente en producto de sumas es:

- \Box (b+d)*(a+c)*(a+b+d)*(b+c+d)
- $\Box (b+d)*(a+\overline{b}+c)*(\overline{b}+c+\overline{d})$
- \Box $(b+d)*(a+c)*(a+\overline{b+c+d})*(\overline{a+b+c+d})$
- \Box (a+c)*(a+b+d)*(b+c+d)*(a+b+c+d)*(a+b+c+d)

5.-
$$T(s_1, s_2, s_3) = \begin{cases} 1 \text{ si el número de bits } s_i = 1 > \text{número de bits } s_i = 0 \\ 0 \text{ sino} \end{cases}$$
.

De acuerdo con esta denición de *Transf.*, la función total f(a,b,c,d) mínima equivalente en suma de productos es:

- \Box ab \overline{c} \overline{d} + a \overline{b} d + ab c + \overline{b} c d + b c \overline{d}
- $\exists ab \overline{c} \overline{d} + \overline{a} \overline{b} c d + a \overline{b} d + a b c + b c \overline{d}$
- \Box ab \overline{d} + a \overline{b} d + ab c + \overline{b} c d + b c \overline{d}
- \Box ab \overline{c} \overline{d} + \overline{a} \overline{b} cd + ab d + ab c + \overline{a} bc \overline{d}

6.- Se desea demostrar por Deducción natural que " $p \land q \Rightarrow \neg \neg p$ ". En el esquema de la demostración han desaparecido las fórmulas. ¿Qué fórmula debería aparecer en la línea 2?

1	??	premisa
2	??	supuesto
3	??	∧ E 1
4	??	∧ I 3,2

5 ?? ¬I 2-4

 $\Box \{\neg p \lor q \lor r, p \lor \neg q, p \lor \neg r, r, \neg p \}$ $\Box \{\neg p \lor q \lor r, p \lor \neg q, p \lor \neg r, \neg r \lor \neg p \}$ $\Box \{\neg p \lor q \lor r, \neg p \lor \neg q, r, \neg r, \neg p \}$ $\Box \{\neg p \lor q \lor r, p \lor \neg q, p \lor \neg r, \neg r, \neg p \}$ Enunciados Primer Parcial 1998 –1999

10	
12	- Aplicando Resolución de Entrada al conjunto anterior.
	Se llega a la cláusula vacía, indicando que el razonamiento es correcto
	No se llega a la cláusula vacía, indicando que el razonamiento no es correcto
	Se llega a la cláusula vacía, indicando que el razonamiento no es correcto
	No se llega a la cláusula vacía, indicando que el razonamiento es correcto
	- Una posible formalización de la frase: "Basta que McCoyson beba 2 cervezas para que cante villancicos. Sin embargo,
сиа	ndo McCoyson tiene que pagarse las cervezas, McCoyson no canta villancicos si bebe 2 cervezas" sería:
	$(p \to q) \land (r \to (p \to \neg q))$
	$(q \to p) \land (r \to (\neg q \to p))$
	$(p \to q) \land (r \to (\neg q \to p))$
	$(q \to p) \land (r \to (p \to \neg q))$
14	- A partir del razonamiento anterior, puede deducirse que:
	McCoyson no tiene que pagarse las cervezas
	McCoyson tiene que pagarse las cervezas
	McCoyson no tiene que pagarse las cervezas a menos que no beba 2 cervezas
	McCoyson tiene que pagarse las cervezas a menos que no beba 2 cervezas
15	- Mediante resolución proposicional, a partir de las premisas $\{p_0 \leftrightarrow p_1, p_1 \leftrightarrow p_2,, p_{n-1} \leftrightarrow p_n\}$ se puede deducir:
	$p_0 \wedge p_n$
	$p_0 \lor p_n$
	Ninguna de las anteriores
	Las dos anteriores
16	-¿Qué premisa se debería añadir al razonamiento: "Es suficiente que no llueva ni haga frío para que los imbéciles bailen
con	no locos,, Por tanto, O llueve o hace frío" . para que sea correcto?
<i>con</i> □	
	no locos,, Por tanto, O llueve o hace frío" . para que sea correcto? Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos.
	no locos,, Por tanto, O llueve o hace frío" . para que sea correcto? Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos.
	no locos,, Por tanto, O llueve o hace frío" . para que sea correcto? Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos.
	no locos,, Por tanto, O llueve o hace frío" . para que sea correcto? Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos.
	no locos,, Por tanto, O llueve o hace frío" . para que sea correcto? Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos.
	no locos,, Por tanto, O llueve o hace frío" . para que sea correcto? Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. - Dado un conjunto C de cláusulas:
	Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible
	Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. - Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible Es suficiente alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible
	Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible Es suficiente alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución Unitaria para que C sea satisfacible
	Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible Es suficiente alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución Unitaria para que C sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución de Entrada para que C no sea satisfacible
	Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible Es suficiente alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución de Entrada para que C no sea satisfacible Si un conjunto C de cláusulas es satisfacible, entonces:
	Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible Es suficiente alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución Unitaria para que C sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Si un conjunto C de cláusulas es satisfacible, entonces: Contiene la cláusula vacía
	Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible Es suficiente alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución Unitaria para que C sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución de Entrada para que C no sea satisfacible Si un conjunto C de cláusulas es satisfacible, entonces: Contiene la cláusula vacía Aplicando resolución lineal, tomando como cláusula inicial la negación de la conclusión, se alcanza la cláusula vacía
	no locos,, Por tanto, O llueve o hace frío" . para que sea correcto? Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible Es suficiente alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución Unitaria para que C sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución de Entrada para que C no sea satisfacible Si un conjunto C de cláusulas es satisfacible, entonces: Contiene la cláusula vacía Aplicando resolución lineal, tomando como cláusula inicial la negación de la conclusión, se alcanza la cláusula vacía No contiene literales puros
	no locos,, Por tanto, O llueve o hace frío". para que sea correcto? Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible Es suficiente alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución Unitaria para que C sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución de Entrada para que C no sea satisfacible Si un conjunto C de cláusulas es satisfacible, entonces: Contiene la cláusula vacía Aplicando resolución lineal, tomando como cláusula inicial la negación de la conclusión, se alcanza la cláusula vacía No contiene literales puros Aplicando resolución lineal, tomando como cláusula inicial cualquiera de las cláusulas, no se alcanza la cláusula vacía Sea A = "{ ¬p ↔ q, ¬ (¬ q ∨ r), p ∨ s } ⇒ s" y B = " { p ∧ q → r ∧ s, ¬ (t ∧ ¬p), t, t ↔ q } ⇒ ¬ r → s ". Se cumple s:
	no locos,, Por tanto, O llueve o hace frío". para que sea correcto? Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible Es suficiente alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución Unitaria para que C sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución de Entrada para que C no sea satisfacible Si un conjunto C de cláusulas es satisfacible, entonces: Contiene la cláusula vacía Aplicando resolución lineal, tomando como cláusula inicial la negación de la conclusión, se alcanza la cláusula vacía No contiene literales puros Aplicando resolución lineal, tomando como cláusula inicial cualquiera de las cláusulas, no se alcanza la cláusula vacía Sea A = "{ ¬p ↔ q, ¬ (¬q ∨ r), p ∨ s } ⇒ s" y B = " { p ∧ q → r ∧ s, ¬ (t ∧ ¬p), t, t ↔ q } ⇒ ¬r → s ". Se cumple s:
	wo locos,, Por tanto, O llueve o hace frío". para que sea correcto? Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible Es suficiente alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución Unitaria para que C sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución de Entrada para que C no sea satisfacible Si un conjunto C de cláusulas es satisfacible, entonces: Contiene la cláusula vacía Aplicando resolución lineal, tomando como cláusula inicial la negación de la conclusión, se alcanza la cláusula vacía No contiene literales puros Aplicando resolución lineal, tomando como cláusula inicial cualquiera de las cláusulas, no se alcanza la cláusula vacía Sea A = "{¬p ↔ q, ¬(¬q ∨ r), p ∨ s} ⇒ s" y B = "{p ∧ q → r ∧ s, ¬(t ∧ ¬p), t, t ↔ q} ⇒ ¬r → s ". Se cumple Sea A = "{¬p ↔ q, ¬(¬q ∨ r), p ∨ s} ⇒ s" y B = "{p ∧ q → r ∧ s, ¬(t ∧ ¬p), t, t ↔ q} ⇒ ¬r → s ". Se cumple A y B son razonamientos correctos A es un razonamiento correcto pero B no lo es
	no locos,, Por tanto, O llueve o hace frío" . para que sea correcto? Hace frío si los imbéciles bailan como locos. No hace frío si los imbéciles bailan como locos. Hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. No hace frío sólo si los imbéciles bailan como locos. Dado un conjunto C de cláusulas: Es suficiente alcanzar la cláusula vacía mediante Resolución de Entrada para que C sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución Unitaria para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución de Entrada para que C no sea satisfacible Es suficiente no alcanzar la cláusula vacía mediante Resolución de Entrada para que C no sea satisfacible Si un conjunto C de cláusulas es satisfacible, entonces: Contiene la cláusula vacía Aplicando resolución lineal, tomando como cláusula inicial la negación de la conclusión, se alcanza la cláusula vacía No contiene literales puros Aplicando resolución lineal, tomando como cláusula inicial cualquiera de las cláusulas, no se alcanza la cláusula vacía Sea A = "{¬p ↔ q, ¬(¬q ∨ r), p ∨ s} ⇒ s" y B = "{p ∧ q → r ∧ s, ¬(t ∧ ¬p), t, t ↔ q} ⇒ ¬r → s ". Se cumple C A y B son razonamientos correctos

Enunciados Segundo Parcial 1998 - 1999

Segundo Parcial 1998 - 1999

```
1.- ¿Cuál de las siguientes instrucciones hay que ejecutar para que al pedir todas las respuestas se produzca la salida
         X = U = a,
         Y = [b]
         V = [b,c]
p([X|Y],[a,b,c])=p([a,b,c],[U|V]).
p([X|Y],[a,b,c])=p([a,b],[U|V]).
p([X|Y],[a,b])=p([a,b,c],[U|V]).
p([X|Y],[a,b])=p([a,b],[U|V]).
En las siguientes preguntas considérese programa PROLOG:
          p(X,[X|Xs],Xs).
            p(X,[Y|Ys],[Y|Zs]):-p(X,Ys,Zs).
Y el siguiente objetivo: ?p(a,L,[1,2]).
2.- Si se construye el árbol SLD aplicando la regla de búsqueda y computación que utiliza el PROLOG, este árbol presenta
1 camino de fallo, un camino de éxito y un camino infinito
1 camino de fallo
1 camino de fallo y uno de éxito
1 camino de fallo y tres de éxito
3.- Si se ejecuta el objetivo y se le piden todas las respuestas al PROLOG se obtiene:
         X=a
         . . . . . . .
no
L=[1,2,a];
         L=[1,a,2];
         L=[a,1,2];
         nο
L=[a,1,2];
         L=[1,a,2];
         L=[1,2,a];
4.- Si se le cambia al PROLOG su regla de búsqueda por la regla 'última claúsula aplicable' y se define como estrategia de
búsqueda el 'recorrido en anchura', la primer respuesta encontrada sería:
No se encuentra ninguna respuesta
L=[1,2,a]
L=[a,1,2]
5.- Al pasar a Forma Normal de Skolem la fórmula \forall x (\neg \exists y (A(x,y) \land B(y)) \rightarrow \exists y (A(y,x) \rightarrow B(y))) se obtiene:
\forall x (\neg A(x,y) \lor \neg B(y) \lor \neg A(f(x),x) \lor B(f(x)))
\forall x (\neg A(x,y) \lor \neg B(y) \lor A(a,x) \lor B(a))
\forall x ([A(x,a) \lor \neg A(b,x) \lor B(b)] \land [B(a) \lor \neg A(b,x) \lor B(b)])
\forall \ x \ (\ [\ A(x,f(x)) \lor \neg\ A\ (g(x),x) \lor B(g(x))\ ] \land [\ B(f(x)) \lor \neg A(g(x),x) \lor B(g(x))\ ]\ )
6.- Si se formaliza la frase 'sólo los números primos son pares y capicúas' utilizando los predicados Pr(x)="x es un número
primo", Par(x)="x es par", C(x)="x es capicúa" y el dominio D={1, 7, 11, 23, 111, 323}, podemos decir que en esa
interpretación la fórmula es
válida
insatisfacible
verdadera
falsa
7.- Se definen las siguientes substituciones \sigma_1 = \{x \mid a, y \mid z, u \mid f(x)\}, \quad \sigma_2 = \{z \mid t, x \mid f(t)\} \quad y \quad \sigma_3 = \{t \mid x\}, \text{ donde } a \text{ es la única}
constante. El resultado de aplicar \sigma_1^{\circ}\sigma_2^{\circ}\sigma_3 (P(f(x,y), g(z),a)) es
P(f(a,x),g(x),a)
P(f(a,a),g(a),a)
P(f(f(x), z), g(t), a)
Ninguna de las anteriores
8.- Dado el siguiente conjunto de claúsulas C = \{P(x, y, v, f(f(x))), P(y, v, f(x), f(f(x)))\} se puede decir que
el umg existe y no es único
el umg existe y es único
no unifica porque falla el chequeo de ocurrencias
no unifica porque se encuentra una discrepancia que contiene dos términos
```

Enunciados Segundo Parcial 1998 - 1999

```
9.- Sabiendo que \{C_1, C_2, \neg C_3\} es un conjunto insatisfacible
\neg C_3 \rightarrow (\neg C_1 \lor \neg C_2) es un razonamiento correcto
\neg C_3 \Rightarrow (\neg C_1 \lor \neg C_2) es una fórmula válida
C_1 \wedge C_2 \rightarrow C_3 es fórmula válida
C_1 \wedge C_2 \rightarrow \neg C_3 es un razonamiento correcto
10.- Sea C = \{ P(f(x), f(y), z) \lor \neg P(x, y, z), \neg P(x, f(f(a)), f(a)) \}  ¿Cuál de las siguientes cláusulas puede añadirse a C para
que sea insatisfacible?
           P(x, a, x)
P(x, f(a), a)
P(x, a, a)
           \neg P(x, a, a)
Para formalizar los siguientes ejercicios, utilizar:
P(x) = "x \text{ es un Pitufo"}, E(x,y,z) = "x \text{ encuentra } y \text{ en el lugar } z", N(x) = "x \text{ es un examen"}, A(x,y) = "x \text{ es acuerda de } y" m(x)
= "madre de x, "t = t\acute{u}"
11.- Formalizar: "Basta que alguien se encuentre un Pitufo en un examen, para que se acuerde de tu madre"
(\exists x \exists y \exists z E(x,y,z) \land P(y) \land N(z)) \rightarrow A(x, m(t))
\exists x \exists y \exists z (E(x,y,z) \land P(y) \land N(z)) \land A(x, m(t)))
\forall x ((\exists y \exists z E(x,y,z) \land P(y) \land N(z)) \rightarrow A(x, m(t)))
\forall x \ \forall y \ \forall z \ (A(x, m(t)) \rightarrow E(x, y, z) \land P(y) \land N(z))
12.- Formalizar: "Cuando te acuerdas de todos los pitufos, no te acuerdas de ninguno"
(\ \forall x\ (\ P(x) \rightarrow A(t,\,x)\ )\ ) \rightarrow \neg\ \exists x\ (\ P(x) \land A(t,\,x)\ )
( \forall x ( A(t, x) \rightarrow P(x) ) ) \rightarrow \neg \exists x ( P(x) \land A(t, x) )
(\ \forall x\ (\ A(t,\,x) \to P(x)\ )\ )\to \forall x\ (\ P(x) \to \neg\ A(t,\,x)\ )
(\forall x (P(x) \rightarrow A(t, x))) \rightarrow \forall x (\neg A(t, x) \rightarrow P(x))
13.- De las premisas "Tu madre se acuerda de tí y tu madre se acuerda de quien se acuerde de tí", se deduce que:
"Tu madre sólo se acuerda de sí misma"
"Tu madre no se acuerda de nadie"
"Tu madre se acuerda de sí misma"
           "Nadie se acuerda de tu madre"
14.- La frase "Sólo los que te encuentran en un examen se acuerdan de algún pitufo", se formalizaría como:
\forall x (\exists y (E(x,t,y) \land N(y)) \rightarrow \exists y (A(x,y) \land P(y)))
\forall x (\exists y (A(x,y) \land P(y)) \rightarrow \exists y (E(x,t,y) \land N(y)))
\forall x \forall y \ (E(x,t,y) \land N(y) \rightarrow A(x,y) \land P(y))
\forall x \forall y \ (\ A(x,y) \land P(y) \to E(x,t,y) \land N(y) \ )
15.- Al aplicar estrategias de borrado al conjunto: C = \{ P(x) \lor Q(x), P(b), \neg P(a) \lor \neg Q(a), \neg Q(x), \neg P(f(x)) \}", se obtiene:
Un conjunto sin cláusulas indicando que C es satisfacible
Un conjunto sin cláusulas indicando que
                                                                  C es insatisfacible
\{ P(x) \lor Q(x), \neg Q(x), \neg P(f(x)) \}
\{ P(b), \neg P(a) \lor \neg Q(a), \neg Q(x), \neg P(f(x)) \}
16.- Para demostrar que: \{\exists xQ(x) \rightarrow \forall xP(x), \neg P(a)\} \Rightarrow \neg Q(a) por deducción natural se utiliza el siguiente esquema:
1.-
           \exists x Q(x) \rightarrow \forall x P(x)
                                            Premisa
2..-
           ?
                                 Premisa
           ?
3.-
                                 Supuesto
4.-
5.-
                                 \rightarrowE 1,4
           ?
                                 ?
6.-
           ?
                                 ?
7.-
8.-
                                 \neg I 3 - 7
La fórmula del paso 6 es P(a)
La fórmula del paso 6 es \exists x P(x)
La fórmula del paso 6 es \exists x Q(x)
La fórmula del paso 6 es \neg P(a)
```

17.- En la demostración anterior, la justificación del paso 7 es:

Enunciados Segundo Parcial 1998 - 1999

	$\forall E 2,6$
	∧I 3,4
	∧I 2,6
	∃I 6
18 Se	desea definir un programa Prolog que toma un número N y genera una lista de números decreciente, de N hasta 1.
	endo definido el caso básico, ¿Cuál sería el caso recursivo?
	<pre>decrec(N,[N Xs]):-M is N - 1, decrec(M,Xs).</pre>
	decrec(N,[N-1 Xs]):-decrec(N-1,Xs).
	<pre>decrec(N,[N Xs]):- decrec(M,Xs), M is N - 1.</pre>
	decrec(N,Xs):-M is N - 1, decrec(M,[N Xs]).
19 En	una lógica multivaluada con 4 valores de verdad, el número de filas de la tabla de verdad asociada a la fórmula A ∧
$B \rightarrow C$	· ·
	2^4
	4^{2}
	4^{3}
	3 4
20 Co	nsidérese el siguiente programa Prolog:
	q(X,Y):-p(X,Z),r(Z,Y).
	p(X,f(X)).
	p(X, f(Y)) : -p(X, Y).
	r(X,X).
Ante la	pregunta ? $ -q(a,f(f(X)))$. El sistema Prolog responde:
	X = a
	X = f(a)
	X = a, Y = f(a), Z = f(f(a))
	No

Junio 1998 - 1999

Primer Parcial.

Bloque 1: Test

Se quiere completar el diseño de un circuito para un concurso de televisión. El circuito final tiene 4 pulsadores y 4 luces como se ve en la figura. Debe iluminarse la luz del concursante que primero ha pulsado su botón. Para ello se cuenta con una parte del circuito ya implementada: un *filtro de pulsaciones* de forma que a su salida sólo activa la línea correspondiente al concursante que primero pulsó su botón, poniendo a cero el resto. Se debe diseñar el circuito combinacional que aparece como segundo bloque.

P1-1	La forma canónica del circuito a implementar es:
	$f(a,b,c,d) = \sum_{4} (1,2,3,4)$
	4
	$f(a,b,a,d) = \sum_{i=1}^{n} (1,2,2,4) + \sum_{i=1}^{n} (0.5,6.7,8.0,10,11,12,12,14,15)$
	$f(a,b,c,d) = \sum_{4} (1,2,3,4) + \sum_{f} (0,5,6,7,8,9,10,11,12,13,14,15)$
	$f_1(a,b,c,d) = \sum_{i=1}^{n} f_i(a,b,c,d)$
	$f_1(a,b,c,d) = \sum_{4} (1)$ $f_2(a,b,c,d) = \sum_{4} (2)$
	$f_3(a,b,c,d) = \sum_{i=1}^{4} (3)$
	$f_4(a,b,c,d) = \sum_{i=1}^{4} (4)$
	4
_	$f_1(a, b, c, d) = \sum (8) + \sum (3,5,6,7,9,10,11,12,13,14,15)$
	$f_2(a,b,c,d) = \sum_{i=1}^{4} (4) + \sum_{i=1}^{4} (3,5,6,7,9,10,11,12,13,14,15)$
	$f_3(a,b,c,d) = \sum_{i=1}^{4} (2) + \sum_{i=1}^{4} (3,5,6,7,9,10,11,12,13,14,15)$
	$f_1(a,b,c,d) = \sum_{4} (8) + \sum_{f} (3,5,6,7,9,10,11,12,13,14,15)$ $f_2(a,b,c,d) = \sum_{4} (4) + \sum_{f} (3,5,6,7,9,10,11,12,13,14,15)$ $f_3(a,b,c,d) = \sum_{4} (2) + \sum_{f} (3,5,6,7,9,10,11,12,13,14,15)$ $f_4(a,b,c,d) = \sum_{4} (1) + \sum_{f} (3,5,6,7,9,10,11,12,13,14,15)$
D1 2	
P1-2	La expresión mínima equivalente: $f(a,b,c,d) = a\overline{b}\overline{c}\overline{d} + \overline{a}b\overline{c}\overline{d} + \overline{a}\overline{b}\overline{c}\overline{d} + \overline{a}\overline{b}\overline{c}\overline{d}$
	$\int (u, b, c, u) - ubcu + ubcu + ubcu$
ш	$f_1(a,b,c,d) = a\overline{b}\overline{c}\overline{d}$
	$f_1(a,b,c,d) = \overline{abcd}$ $f_2(a,b,c,d) = \overline{abcd}$
	$f_3(a,b,c,d) = \overline{ab} c \overline{d}$
	$f_4(a,b,c,d) = \overline{a}\overline{b}\overline{c}d$
	f(a,b,c,d) = a+b+c+d
	$f_1(a,b,c,d) = a$
	$f_2(a,b,c,d) = b$
	$f_3(a,b,c,d) = c$
	$f_4(a,b,c,d) = d$
	Dado el siguiente razonamiento: $\{A_1 \vee B_1, A_2 \vee B_2, \dots, A_n \vee B_n\} \Rightarrow C$. Si se desea chequear si es correcto mediante
_	de verdad, ¿cuántas filas son necesarias?
	n on
	$2^{\rm n}$ $2^{\rm 2n}$

P1-4.- Si se quiere comprobar la corrección del siguiente razonamiento aplicando el algoritmo de resolución se puede decir que $\{p \to (q \land r), \neg s \to \neg r, (\neg q \lor t) \to \neg u, u\} \Rightarrow p$

-	
	la estrategia de resolución ordenada encuentra la cláusula vacía.
	la estrategia de resolución lineal no encuentra la cláusula vacía a pesar de que el razonamiento es correcto.
	aplicando la estrategia de eliminación de literales puros el conjunto de entrada queda vacío: razonamiento no correcto
	aplicando la estrategia de eliminación de literales puros el conjunto de entrada queda vacío: razonamiento correcto.

Para formalizar los siguientes ejercicios utilizar las letras p,q,r,... por orden de aparición a cada frase

P1-5.- Al formalizar la frase: "El programa funciona sólo cuando se introducen números positivos, además, el programa no se cuelga a menos que se introduzcan números negativos" se puede obtener:

```
 \begin{array}{ccc} \square & & & (p \rightarrow q) \land (\neg r \rightarrow s) \\ \square & & (q \rightarrow p) \land (\neg r \rightarrow s) \\ \square & & (p \rightarrow q) \land (\neg s \rightarrow \neg r) \\ \square & & (q \rightarrow p) \land (\neg s \rightarrow \neg r) \\ \end{array}
```

1.-

P1-6.- El razonamiento "El presidenta está contento siempre que el paro vaya bien. Es suficiente que aumente el número de parados para que el paro vaya bien. Por tanto, el presidente no está contento a menos que aumente el número de parados" puede formalizarse como:

 $p \leftrightarrow q$

P1-7.- A partir de las premisas: "Es necesario y suficiente que los enchufes funcionen para que la sala funcione. Sin embargo, basta que la sala no funcione para que el encargado esté de vacaciones" puede deducirse:

El encargado no está de vacaciones cuando los enchufes funcionan El encargado está de vacaciones cuando los enchufes no funcionan

El encargado no está de vacaciones y los enchufes funcionan

☐ El encargado está de vacaciones y los enchufes no funcionan

?

Para demostrar mediante deducción natural el razonamiento { $p \leftrightarrow q, \neg p \rightarrow r$ } $\Rightarrow \neg r \rightarrow q$, se utiliza el siguiente esquema:

	P \	•
2	?	Premisa
3	?	Supuesto
4	???	Supuesto
5	?	Supuesto
6	?	↔ E 1
7	q	→ E 5,6
8	?	?
9	?	?
10	?	???
11	?	?
12	?	?

13.- ? \rightarrow I, 3-12

P1-8.- ¿Cuál sería la fórmula del paso 4?

 $\begin{array}{ccc} \square & \neg q \\ \square & q \\ \square & \neg r \\ \square & \neg (\neg r \rightarrow q) \end{array}$

P1-9.- ¿Cuál sería la justificación del paso 10?

 $\begin{array}{ccc} \square & \leftrightarrow E \ 1 \\ \square & \rightarrow I \ 5-8 \\ \square & \rightarrow E \ 2.9 \\ \square & \rightarrow E \ 6.9 \end{array}$

P1-10	Una función lógica $f(a,b,c)$ toma valor 1 si $a=\overline{b}$ y valor 0 cuando $a=b=c=0$. La expresión canónica en forma de
pro	ducto de sumas será:
	$f(a,b,c)=\Sigma_3(7)\cdot\Sigma_\varnothing(0,1,6)$
	$f(a,b,c) = \prod_{3}(7) \cdot \prod_{\emptyset}(0,1,6)$
	$f(a,b,c) = \prod_{3}(0) \cdot \sum_{\varnothing}(1,6,7)$
	$f(a,b,c) = \prod_3 (0,1,6,7)$
P1-11	Al simplificar en forma de producto de sumas la función anterior se obtiene:
	f(a,b,c)=a+b
	$f(a,b,c) = \overline{a} + \overline{b}$
	f(a,b,c)=a+b+c
	$f(a,b,c) = \overline{a} + \overline{b} + \overline{c}$
P1-12	Suponiendo que el razonamiento $\{p \lor q, ?\} \Rightarrow q \lor r$ es correcto. ¿Cuál sería la premisa que falta?
	$p \lor \neg r$
	$\neg p \lor r$
	$\neg q \lor r$
	$q \lor \neg r$

Segundo Parcial.

Bloque 1: Test

P2-1 Para demostrar que: $\{ \forall x \ P(x,x), (\exists x \ P(a,x)) \rightarrow \forall x \ \forall y \ Q(x,y) \} \Rightarrow \forall y \ \exists x \ (R(x) \rightarrow Q(x,y)) \text{ se utiliza el siguiente}$					
esquema:					
La justificación del paso 4 es:					
\square $\forall I 3$					
□ ∀E 1					
D 3 En la demostración enterior la justificación del peco 0 es:					
P2-2 En la demostración anterior, la justificación del paso 9 es: ☐ ∃I 8					
□ ∃I 8 □ ∀E 6					
\square $\forall I 8$					
$\Box \longrightarrow I 6$					
1 $\forall x P(x,x)$ Premisa					
2 ? Premisa					
3 ? ?					
4 ? ????					
5 ? \rightarrow E 2,4					
6 $\forall y \ Q(a,y)$ $\forall E \ 5$					
7 (b) Nueva					
8 ? Supuesto					
9 ? ???					
10 ? ?					
11 ? ?					
12 ? ?					
P2-3 Si ahora el programa es:					
fact(1,1).					
fact(X,X*Y):-fact(X-1,Y).					
La respuesta del sistema ante el objetivo ?- fact(4, X). es:					
$\square \qquad X = 4 * (3 * (2 * 1))$					
\square X=24.					
☐ Error aritmético o bucle infinito.					
□ No.					
P2-4 Sea la interpretación D= $\{1,3,9\}$, $V(x,y)=x$ es divisible por y , $P(x)=x$ es par. En dicha interpretación, la fórmula que					
resulta de formalizar la frase " $xP(x) \otimes V(x,2)$ ' es:					
□ una fórmula válida □ una fórmula verdadera					
 □ una fórmula verdadera □ una fórmula insatisfacible 					
una fórmula fisatisfación					
P2-5 En la interpretación anterior, ¿cuál de las siguientes frases es verdadera?					
\Box $\exists y \forall x \ V(x,y)$					
$\square \qquad \forall x \exists y V(x,y)$					
Las dos anteriores					
□ Ninguna de las anteriores					
P2-6 Dado el conjunto de cláusulas $C = \{A(x,z,g(x,y,f(x))), A(y,f(x),w) \lor Q(x,f(y)), \neg Q(a,b)\}$					
se puede aplicar eliminación de subsunciones y literales puros					
se puede aplicar eliminación de tautologías y literales puros					
se puede aplicar sólo eliminación de literales puros					
no es puede aplicar ninguna estrategia de borrado En los siguientes ejercicios utilizar: $A(x,y) = "x \ aprueba \ y"$, $F(x,y) = "x \ formaliza \ y"$, $l=Lógica$, $R(x)="x \ es \ una \ frase"$					

P2-7 I	La frase "Los que formalizan algunas frases, aprueban lógica", podría formalizarse como:
	$\forall x ((\exists y (F(x,y) \land R(y))) \rightarrow A(x,l))$
	$\forall x (A(x,l) \rightarrow \exists y (F(x,y) \land R(y)))$
	$\exists y \ \forall x \ (F(x,y) \land R(y) \to A(x,l))$
	$\exists y \ \forall x \ (\ A(x,l) \to (\ F(x,y) \land R(y)\) \)$
P2-8 A	A partir de la premisa "Sólo los que formalizan algunas frases aprueban lógica" puede deducirse:
	Es necesario que alguien apruebe lógica para que existan frases
	Es suficiente que nadie apruebe lógica para que no existan frases
	Es suficiente que no existan frases para que nadie apruebe lógica
	Es suficiente que alguien apruebe lógica para que no existan frases
P2-9 I	La frase "Cualquier frase es formalizada por alguien a no ser que se formalice a sí misma" podría formalizarse como
	$\forall x (R(x) \to (\neg F(x,x) \to \exists y F(y,x)))$
	$\forall x (R(x) \to (\exists y F(y,x) \to \neg F(x,x)))$
	$\exists x (R(x) \land (\exists y F(y,x) \rightarrow \neg F(x,x)))$
	$\forall x (R(x) \to (F(x,x) \to \exists y F(y,x)))$
P2-10	Sea σ = unificador más general de { $P(x,a,y)$, $P(f(v),v,v)$ }. ¿Cuál será el resultado de calcular: $\sigma(Q(x,y))$?
	Q(f(v),v)
	Q(f(a),a)
	$\{x / f(v), v/a, y/v \}$

Bloque 2: Desarrollar

Construir los siguientes programas en lenguaje Prolog.

IMPORTANTE: Si se requiere la utilización de algún predicado auxiliar, debe incluirse su definición.
INPORTANTE: Si se requiere la utilización de algun predicado auxiliar, debe incluirse su definición.
vuelta. Toma una lista y devuelve la lista resultante de tomar los elementos al revés. Por ejemplo, dada la lista [2,1,3,4], devolvería [4,3,1,2]
simplified Towns and lists as also are to lists as simplified Endowing and side lists as [A1, A2, An], and and an A2, A2, A3, A3, A3, A3, A3, A3, A3, A3, A3, A3
simetrica. Toma una lista y chequea que la lista es simetrica. Es decir que si la lista es [A1, A2,An], entonces A1 = An, A2 = An-1,
Por ejemplo, la lista [3,1,4,1,3] es simetrica. La lista [3,1,1,3] también lo es.
test45 . Toma una lista y chequea si la suma del primer elemento y el último es 45. Por ejemplo, la lista [3,4,7,42] cumple el test45.

Enunciados Septiembre 1998 – 1999

Septiembre 1998 – 1999

☐ Ninguna de las anteriores.

1 ¿Cuál de las siguientes respuestas es verdadera? ☐ La expresión mínima de una función booleana de <i>n</i> variables tiene a lo sumo 2 ⁿ términos. ☐ El número de términos de la expresión mínima de una función booleana es siempre menor que el de la expresión canónica equivalente. ☐ Dado un elemento 'a' que pertenece a un álgebra de Boole, existe un único 'x' tal que cumple a+(a*x)=a. ☐ En un álgebra de Boole existe un único elemento 'x' tal que cumple x*x=x.
2 Se quiere tener monitorizado el nivel de líquido del interior de un tanque. Para ello se han instalado cuatro sensores como se muestra en la figura. Cuando el nivel del líquido cubre un sensor, éste permanece a 1. Se pide diseñar una función booleana que, a partir del estado de los sensores, encienda una alarma (1 encendida y 0 apagada) cuando el nivel descienda por debajo del sensor <i>s</i> 2.
La expresión canónica de la función booleana así definida es:
$ \Box f(s_0, s_1, s_2, s_3) = \prod_{4} (0,1,3) $ $ \Box f(s_0, s_1, s_2, s_3) = \sum_{4} (0,8,12) $ s3 s2 s1
$\Box f(s_0, s_1, s_2, s_3) = \sum_{4}^{4} (0.8, 12) + \sum_{\varnothing} (1.2, 3.4, 5.6, 7.9, 10, 11, 13)$
$\Box f(s_0, s_1, s_2, s_3) = \sum_{4} (0,1,3) + \sum_{\emptyset} (2,4,5,6,8,9,10,11,12,13,14)$
3 La expresión mínima equivalente a la función booleana anterior es
$\Box f(s_0, s_1, s_2, s_3) = \overline{s}_2 \times \overline{s}_3$
$\Box f(s_0, s_1, s_2, s_3) = s_0 + \overline{s}_1 + \overline{s}_2$
$\Box \ f(s_0, s_1, s_2, s_3) = \bar{s}_2$
$\Box f(s_0, s_1, s_2, s_3) = \bar{s}_0 \times \bar{s}_1 + s_0 \times s_1$
 4 Dada la siguiente fórmula, indíquese cuál es la respuesta correcta: [(p → q ∨ r) ∧ (q → ¬p) ∧ (s → ¬r) ∧ p] → ¬s □ El número de interpretaciones que hay que evaluar para saber si es válida es igual mediante tablas de verdad y árboles semánticos. □ La fórmula es insatisfacible. □ El árbol semántico asociado tiene todos los nodos etiquetados como falsos. □ El árbol semántico tiene todos los nodos etiquetados como verdaderos. 5 Para formalizar el siguiente razonamiento, asignar por orden alfabético los símbolos proposicionales p, q, r 'Para encontrar algo, no es suficiente con haberlo perdido. No encontrarás a menos que busques. Quien busca, encuentra. Por lo tanto, es necesario buscar para encontrar.' Si se quiere demostrar la corrección del razonamiento aplicando el algoritmo de resolución, el conjunto de cláusulas resultante: □ es {¬p, p} tras aplicar las estrategias de borrado, luego el razonamiento es correcto. □ es vacío tras aplicar las estrategias de borrado, luego el razonamiento no es correcto. □ es vacío tras aplicar las estrategias de borrado, luego el razonamiento no es correcto. □ es vacío tras aplicar las estrategias de borrado, luego el razonamiento no es correcto. □ es vacío tras aplicar las estrategias de borrado, luego el razonamiento no es correcto. □ tiene 5 cláusulas antes de aplicar estrategias de borrado.
6 Dada la siguiente fórmula: $\forall x \exists y \left[\neg \forall z \left(p \left(x, y \right) \lor q \left(x, z \right) \to \neg r \left(y, z \right) \right) \land \exists z \left(\neg p \left(x, y \right) \to \neg q \left(x, z \right) \lor r \left(y, z \right) \right) \right],$
Sea el siguiente programa PROLOG:: $ op(f(X), X*X). \\ op(g(X,Y), X*Y). \\ result(X,Y):-op(X,Y). $
<pre>concat([],Ys,Ys). concat([X Xs], Ys, [X Zs]):-concat(Xs,Ys,Zs).</pre>
test([],[]).
7 Con el programa que aparece en el enunciado, ¿cuál es la salida del PROLOG ante el siguiente objetivo? ? result(g(f(2), g(3,4)), Y).
\square Y = f(2) * g(3,4) \square Y = (2*2) * (3*4) \square Y = 48

Enunciados Septiembre 1998 – 1999

8 Si se cambia la Regla de computación por 'el literal más a la izquierda', ¿cuál es la se result(g(f(2), g(3,4)), Y).	salida ante el mismo objetivo?
$\Box \ \ Y = g(3,4) * f(2)$	
$\Box \ \ Y = (3*4) * (2*2)$	
$\square Y = 48$	
☐ Ninguna de las anteriores.	
9 Para que ante el objetivo? test([f(1), f(2), f(3)],Y). la salida sea Y	7 = [1 * 1.2 * 2.3 * 3].
¿qué instrucción habría que añadir al programa?	11 1/2 2/3 31,
$\Box \operatorname{test}([X Xs],Y) : -\operatorname{concat}(Z1,Z2,Y), \operatorname{result}(X,[Z1]), \operatorname{test}(Xs,Z2,Y)$	2.)
·	
$\Box \operatorname{test}([X Xs],Y) : -\operatorname{concat}(Z1,Z2,Y), \operatorname{result}(X,Z1), \operatorname{test}(Xs,[Z2],Y)$	
$\Box \operatorname{test}([X Xs],Y) :-\operatorname{result}(X,Z1), \operatorname{test}(Xs,Z2), \operatorname{concat}(Z1,Z2,Y)$	
<pre>ltest([X Xs],Y):-result(X,Z1), test(Xs,Z2), concat([Z1],Z2,Y</pre>	
10 Tras añadir la instrucción anterior. Indicar cuáles serían las respuestas del sistema $? test([f(1), g(1,2)], V)$.	ante la pregunta :
\square $V = [1*1,1*2]$	
$\square \qquad V = [1,2]$	
□ No	
☐ Error aritmético	
En los siguientes ejercicios, utilizar:	
A(x,y)="x es adyacente a y (horizontal o verticalmente)"; $O(x)$ ="x es un círcu	ulo": Z(x)="x es una cruz"
11 Indicar cuál de las siguientes fórmulas es verdadera en la situación de la figura 1.	aro , Z(x) x es una eraz
$\Box \ \forall x \ (\ O(x) \to \forall y \ (\ Z(y) \land A(x,y)\)\)$	1 2 3
$\square \forall x (O(x) \rightarrow \exists y (Z(y) \land A(x, y)))$ $\square \exists x (O(x) \rightarrow \forall x (Z(y) \rightarrow A(x, y)))$	"
$\square \exists x (O(x) \land \forall y (Z(y) \to A(x, y)))$	$_{\mathrm{B}}$ \mid \times
$\square \exists x (O(x) \rightarrow \neg \exists y (Z(y) \land A(x, y)))$	C × O Figure 1
	Figura I
12 En una partida de 3 en raya se ha llegado a la situación de la figura 2, en la que se o	
casilla debe ponerse el círculo para que la fórmula $\exists x \ (\ O(x) \land \forall y \ (\ Z(y) \to A(x,y)\)\)$	$\land \exists x (O(x) \land \forall y (O(y) \rightarrow A(x, y)))$
sea verdadera.	
☐ En la casilla A-1	1 2 3
☐ En la casilla B-3	$_{\rm A}$ \times \circ
☐ En la casilla C-1	B X O
☐ En cualquiera de las anteriores	BXO
	c X Figura 2
13 En la situación de la figura 3 se cumple que:	
☐ Sólo los círculos son adyacentes a la casilla B-2	1 2 3
☐ Todos los círculos son adyacentes a la casilla B-2	Γ T T
☐ Las dos anteriores	A O X
☐ Ninguna de las anteriores	$_{\rm B}$ \times $ \circ $
I viligulia de las aliterioles	C O X Figure 3
	Figura 3
14 En la situación de la figura 4 se cumple que:	
☐ Es suficiente que un círculo sea adyacente a la casilla B-2 para que sea adyacente a	1 2 3
alguna cruz.	$_{\rm A}$ $ \times $ $ \times $
☐ Es necesario que un círculo sea adyacente a la casilla B-2 para que sea adyacente a	
alguna cruz.	_
☐ Las dos anteriores	C Sigura 4
☐ Ninguna de las anteriores	

Enunciados Septiembre 1998 – 1999

15 Indicar cuál de las siguientes fórmulas se formalizaría como:		1	$p \rightarrow r$?	
"Todos los adyacentes a alguna cruz son círculos"		2	0	ъ :	
$\square \forall x \forall y \ (A(x,y) \land Z(y) \to O(x))$	ſ	2	?	Premisa	
$\square \ \forall x(\ O(x) \to \exists y\ (A(x,y) \land Z(y)\)\)$		3	?	Supuesto	
$\square \exists y \forall x \ (\ A(x,y) \land Z(y) \to O(x)\)$		3	•	Supuesto	
$\square \ \forall x \exists y \ (\ A(x,y) \land Z(y) \land O(x)\)$		4	p	?	
16 Para demostrar que { $p \rightarrow r, r \rightarrow \neg q$ } $\Rightarrow \neg (p \land q)$ mediante			Р	•	
deducción natural, se utiliza el esquema de la figura 5. Indicar cuál		5	?	?	
sería la justificación del paso 4.					
□ ∧ E 3		6	?	?	
□ →E 2,3					
$\square \neg E3$		7	q	?	
$\square \rightarrow I 2-3$					
17 En la demostración de la figura 5, indicar cuál sería la fórmula		8	?	?	
del paso 6.	l				
□ q □ r		9	?	?	
					∃Figura 5
□ ¬q □ ¬r					
18 Para demostrar por deducción natural que $\{ \forall x \ P(x,x) \} \Rightarrow$		1	?	Premisa]
$\forall x \exists y P(x,y)$ } se utiliza el esquema de la figura 6. Indicar cuál es la					
fórmula del paso 4.		2 (a)		Libre	
$\square \exists y \ P(a,y)$					
\square P(a,a)		3	?	?	
$\square \ \forall x \exists y \ P(x,y)$		4	0	9	
\square P(a,y)		4	?	?	
19 Indicar cuál sería el conjunto de cláusulas que habría que utilizar		5	?	?	
para demostrar que el razonamiento anterior es correcto mediante el		<u> </u>	•	•	Figura 6
algoritmo de resolución.					
$\square \{ P(x, x), \neg P(x, f(x)) \}$					
$\square \{ P(x, x), \neg P(a, y) \}$					
$\square \left\{ P(x, x), P(x, f(x)) \right\}$					
$\square \{ P(x, x), \neg P(y, a) \}$					
20 Sea $\sigma 1 = \{ x/f(y,y), z/g(a) \} y \sigma 2 = \{ y/f(a,a), z/b \}$. Entonces $\sigma 1 \circ G$	σ2 es ig	ual a:			
\square { x / f(f(a, a), f(a, a)), z / g(a), y / f(a,a) }					
$\Box \{ x / f(f(a, a), f(a, a)), z / g(a), y / f(a, a) \}$ \Box \{ x / f(y, y), z / g(a) \}					
\square { x / f(f(a, a), f(a, a)), z / g(a), y / f(a,a) }					

Enunciados Febrero 1999-2000

Febrero 1999-2000

```
En el siguiente ejercicio, para formalizar utilice: A(X,Y) = "X \ aprueba \ el \ examen \ de \ Y", \ G(X,Y) = "X \ gana \ Y", \ E(X) = "X
estudia", S(X) = "X tiene suerte", F(X) = "X esta feliz", l = lógica, t = lotería
Sea el siguiente razonamiento: "Cualquiera que aprueba el examen de lógica y gana la lotería está feliz. Quien estudie o tenga
suerte puede aprobar todos los exámenes. Juan no estudia pero tiene suerte. Quienquiera que tenga suerte gana la lotería. Por
tanto, Juan está feliz.
1.- Las dos primeras frases podrían formalizarse como:
\square \ \forall x \ (A(X,1) \land G(X,t) \to F(X)) \ y \ \forall x \ \forall y (\ E(X) \ v \ S(X) \to A(X,Y) \ ).
\square \ \forall x \ (A(X,1) \land G(X,t) \rightarrow F(X) \ ) \ y \ \forall x \ \exists y \ (E(X) \ v \ S(X) \rightarrow A(X,Y) \ ).
\square \ \forall x \ (F(X) \to A(X, 1) \land G(X, t)) \ y \ \forall x \ \forall y (E(X) \ v \ S(X) \to A(X, Y) \ ).
2.- Si se intenta chequear si el razonamiento es correcto mediante el algoritmo de resolución:
☐ Tras aplicar estrategias de borrado se obtiene un conjunto de 6 cláusulas
☐ Tras aplicar estrategias de borrado se obtiene un conjunto de 5 cláusulas
☐ Tras aplicar estrategias de borrado se obtiene un conjunto de 4 cláusulas
☐ Se obtiene un conjunto de 7 cláusulas sobre el cual no se pueden aplicar estrategias de borrado
3.- El razonamiento es:
☐ Incorrecto porque el algoritmo de resolución entra en un bucle infinito y no encuentra la cláusula vacía
☐ Correcto porque se llega a la cláusula vacía aplicando resolución
☐ Incorrecto porque se llega a una tautología aplicando resolución y no se encuentra la cláusula vacía
□ No es posible detectar si es o no correcto porque el algoritmo de resolución entra en un bucle infinito
Para las siguientes preguntas, considerar el siguiente programa PROLOG:
         ma([],M,M).
         ma([X|Xs],M,Y):-X>=M, ma(Xs,X,Y).
         ma([X|Xs],M,Y):-X < M, ma(Xs,M,Y).
         mo(Ls,N):-ma(Ls,0,N).
         e(1,[X|Xs],X).
4.- Cuál sería la respuesta del sistema ante el objetivo: ? mo([5,-2,10,7],N).
\square N = -2
\square N = 10
\square N = 5
☐ Ninguna de las anteriores
5.- Que línea habría que añadir al programa anterior para que ante el objetivo ? e ( 3 , [a,b,c,d],N). la salida sea N = c.
\Box e(N, [X|Xs], E) :- M \text{ is } N - 1, M > 1, e(M, Xs, E).
\square \in (N,[X|Xs],E):-M=N-1, e(M,Xs,E).
\square e(N,[X|Xs],E):-M is N-1, N>1, e(M,Xs,E).
\square e(N,[X|Xs],E) :- e(N-1,Xs,E).
6.- Sea \sigma = unificador más general de { P(x, f(a), f(z)), P(f(y), y, y) }. ¿Cuál será el resultado de calcular \sigma(R(x, f(y, z))) ?
\square R(f(y),f(f(a),a)).
\square R(f(a),f(f(a),a)).
                                                                                                     \forall x (P(x) \rightarrow Q(x) \text{ Premisa}
                                                                                            1.-
\square R(f(f(a)),f(f(a),a)).
☐ No se puede obtener ningún resultado porque no existe umg (las
                                                                                            2.-
                                                                                                                        Premisa
expresiones no unifican).
                                                                                            3.-
                                                                                                     9
7.- Para demostrar por deducción natural que: \{ \forall x (P(x) \rightarrow Q(x), \neg \exists x \ Q(x) \}
                                                                                                                        Supuesto
\Rightarrow \neg P(a) se ha seguido el esquema de la figura
¿Cuál sería la fórmula de la línea 5?
                                                                                            4.-
                                                                                                                        ∀E 1
\square Q(a)
\square \exists x P(x)
                                                                                            5.-
                                                                                                                        \rightarrowE 3,4
\square P(a)
\square \exists x Q(x)
                                                                                           6.-
                                                                                                     ?
                                                                                                                        ∃I 5
8.- En la demostración anterior, ¿cuál sería la justificación de la línea 7 ?
                                                                                           7.-
                                                                                                     ?
                                                                                                                        ?
□ <sub>^</sub>126
\Box \neg I 6
                                                                                                     ?
                                                                                                                        ?
                                                                                           8.-
\square \neg E 6
\square \rightarrow I 3,4
9.- El razonamiento: \{ \forall x (P(x) \rightarrow Q(x), Q(a) \} \Rightarrow ? P(a) \}
☐ Es un ejemplo de abducción formalizado en lógica modal
☐ Es un ejemplo de inducción formalizado en lógica modal
```

☐ Es un ejemplo de lógica polivalente

☐ Es un ejemplo de inducción formalizado en lógica de orden superior

Enunciados Febrero 1999-2000

En los siguientes ejercicios asignar las letras p,q,r por orden de aparición a las fr	rases n	roposicio	nales		
10 Al formalizar en lógica proposicional: "McCoyson va a clase cuando Borona.		-		sin embargo	hasta
que Boronat lo saque a la pizarra para que McCoyson se beba todas las cervezas			-		, ousie
$\Box (\neg q \rightarrow p) \land (r \rightarrow q)$		J			
$\Box (\neg q \rightarrow p) \land (q \rightarrow r)$					
$\Box (p \to \neg q) \land (q \to r)$					
$\Box (p \to \neg q) \land (r \to q)$					
11 Al formalizar en lógica proposicional: "Sólo cuando Boronat está inspirado, lo	os pro	fesores ti	emblan v	McCovson se	e
troncha" se obtiene:	F		,		-
$\square \neq r \rightarrow p$					
$\Box p \rightarrow q \wedge r$					
$\Box \stackrel{\cdot}{q} \rightarrow \stackrel{\cdot}{(r \rightarrow p)}$					
$\Box p \to (q \to r)$					
En los siguientes ejercicios utilizar: $C(x,y)="x de clase a y"$, $B(x)="x es un borrac$					
12 Al formalizar en logica de Predicados: "Boronat sólo da clase a los borracho.	s cuan	ido nadie	da clase	a Boronat" s	e
obtiene:					
$\square \ \forall x (B(x) \to C(b, x)) \to \neg \exists x C(x, b)$					
$\Box \neg \exists x C(x,b) \to \forall x (B(x) \to C(b,x))$					
$\Box \neg \exists x C(x,b) \to \forall x (C(b,x) \to B(x))$					
$\square \ \forall x (C(b,x) \to B(x)) \to \exists x C(x,b)$					
13 Se desea automatizar el encendido/apagado de un frigorífico en un matadero, para logra					minan
la temperatura como el viento, humedad y grados centígrados, de forma que cuando hace frí humedad serán monitorizados por las variables 'a' y 'b' que se activan en caso de que exista					'c' v 'd
codificarán la temperatura en un número binario siendo 'c' el bit más significativo. Cuando la t	temper	atura no e	s mayor de	un grado devo	olverán
un cero; si es mayor o igual a uno y menor de once el número formado por dichas variables s					
once grados y menor de 21 el valor que tomarán dichas variables será de 2, finalmente a par La salida del interruptor de encendido/apagado del frigorífico f(a,b,c,d) seguirá el siguiente co					
menores a un grado el frigorífico deberá estar apagado; cuando la temperatura es mayor o ig	gual que	e 1 y mend	or de 11 gra	dos y hay hum	nedad c
viento el frigorífico deberá estar apagado y ante la carencia de ambos factores encendido, si					
estar encendido a no ser que haya humedad y viento, en cuyo caso estará apagado. Finalme encendido.	ене а р	arılı de Zi	grados er	ingornico debe	ia esia
Indicar cuál sería la forma canónica que representa f(a,b,c,d)					
$\square \Sigma_4(2,3,6,7,10,11,15)$					
$\square \Sigma_4(1,2,3,6,7,10,11,15)$					
$\square \Sigma_4(1,2,3,7,10,11,15)$					
☐ Ninguna de las anteriores					
14 ¿Cuál sería el resultado de simplificar $f(a,b,c,d)$ en forma de suma de producto	tos?				
$\Box f(a,b,c,d) = \overline{ac + cd + bc + abcd}$					
$\Box f(a,b,c,d) = \overline{ac} + cd + a\overline{bc} + \overline{abd}$					
$\Box f(a,b,c,d) = \overline{ac} + cd + \overline{bc} + \overline{abd}$					
☐ Ninguna de las anteriores					
15 Si la función de salida f(a,b,c,d) se modifica de forma que (a) Cuando la temp	eratur	a sea may	or o igua	l que 1 v mer	or de
11 grados , y no haya humedad o viento el sistema queda indefinido (podrá estar el					
refrigeración que conserve) (b) Si la temperatura es mayor o igual que 11 y menor					
también queda indefinido.	•		·		
¿Cuál será ahora la expresión mínima equivalente en producto de					
sumas?.		1	$a \lor b$	Premisa	
$\Box f(a,b,c,d) = (c+d)(a+c)(b+d)$					
$\Box f(a,b,c,d) = c(\overline{a} + \overline{b} + d)$		2	?	Premisa	
$\Box f(a,b,c,d) = c$		3	?	Supuesto	
☐ Ninguna de las anteriores		3	1	Supuesto	
16 Sea F la fórmula $\forall x \ (P(x) \leftrightarrow (Q(x) \land \exists y R(x,y)))$. Al transformar F en		4	c	?	
forma clausal se obtiene:					
$\square \left\{ \neg P(x) \lor Q(x), \neg P(x) \lor R(x, f(x)), \neg Q(x) \lor \neg R(x, z) \lor P(x) \right\}$		5	?	?	
$\square \left\{ \neg P(x) \lor Q(x), \neg P(x) \lor R(x, f(x)), \neg Q(x) \lor \neg R(x, f(x)) \lor P(x) \right\}$	_			_	
$\square \left\{ \neg P(x) \lor Q(x) \land R(x,f(x)), \neg Q(x) \lor \neg R(x,z) \lor P(x) \right\}$		6	?	→I 3-5	
$\square \left\{ \neg P(x) \lor Q(x), \neg P(x) \lor R(x,a), \neg Q(x) \lor \neg R(x,z) \lor P(x) \right\}$		7	9	Comment	
17 El valor de la fórmula F del ejercicio anterior en la interpretacion cuyo		7	?	Supuesto	
dominio es D= $\{1,2,3\}$, $P(x) = \text{``x es impar''}$, $Q(x) = \text{``x < 3''}$ y $R(x,y) = \text{``x < y''}$		o	h	9	
es:	L	8	b∨c	?	
\square Verdadero para $x = 1$		0	0	0	

Enunciados nág 82

 \square Falso

9.-

Enunciados Febrero 1999-2000

□ Verdadero
□ Correcto
18 ¿Cuál de las siguientes premisas habría que añadir al razonamiento
$\{\exists x P(x), ?? \} \Rightarrow \forall x Q(x,x)$
para que fuese correcto?
$\square \exists x \ (P(x) \to Q(x,x))$
$\square \ \forall x \ (P(x) \to Q(x,x))$
$\square \ \forall x \ (P(x) \to \exists y Q(y,y))$
☐ Ninguna de las anteriores
19 Para demostrar mediante deducción natural que " $\{a \lor b, a \to c\} \Rightarrow b \lor c$ " se utiliza el esquema de la figura. Indicar cuál
sería la fórmula del paso 3.
\square a
$\Box \neg a$
\Box b
$\Box \neg (b \lor c)$
20 Sea f una función de n variables booleanas (siendo n un número par) definida como:
$\int_{C} 1 \text{si } a_1 = a_3 = \dots = a_{n-1} = 1$
$f(a_1, a_2, \dots, a_n) = \begin{cases} 1 & \text{si } a_1 = a_3 = \dots = a_{n-1} = 1 \\ 0 & \text{si } a_1 = a_3 = \dots = a_{n-1} = 0 \end{cases}$
Al simplificar f mediante suma de productos, se obtiene:
$\square \ a_1 + a_3 + \dots + a_{n-1}$
$\square \ a_2 + a_4 + \dots + a_n$
$\square \ a_1$
$\square \ a_n$

Enunciados Junio 1999-2000

Junio 1999-2000

En los siguientes ejercicios asignar las letras p,q,r por ord	en de aparición a las frases proposicionales
	a a las finales, será debido a que no cometerá errores y a que tendrá suerte" se
obtiene: $\Box (p \lor q) \to (\neg r \land s)$	
$\Box (p \lor q) \to (\neg 1 \land 9)$ $\Box (r \land s) \to (p \lor q)$	
$\Box (\neg r \land s) \rightarrow (p \lor q)$	
☐ Ninguna de las anteriores.	
2 Al formalizar: "Si bebes no conduces, salvo que tu acom	pañante conduzca" se obtiene.
$\square (p \rightarrow q) \rightarrow r$	
$\Box \neg r \rightarrow (p \rightarrow \neg q)$	
$\Box \neg r \rightarrow (p \rightarrow q)$ $\Box (p \rightarrow \neg q) \rightarrow \neg r$	
	nados Iván, Jorge, Vanessa y Silvia. Antes de realizar nominaciones se plantean la
posibilidad de realizar pactos. Cada concursante declara lo	
Iván: "Yo no rompo el pacto, pero alguno de los o	
Jorge: "Yo no rompo el pacto, pero si lo rompe Si	
Vanessa: "Para que yo rompa el pacto es necesa Silvia: "Yo voy a romper el pacto, pero alguno de	
Sabiendo que uno de ellos ha mentido, ¿Quién ha roto el pa	
☐ Jorge y Silvia	
□ Iván y Jorge	
☐ Silvia ☐ Todos	
4 El circuito de la figura representa la función lógica:	
$\Box f(a,b,c) = a+b+c$	
$\Box f(a,b,c) = b c$	
$\Box f(a,b,c) = a\bar{b}\bar{c}$	b c
☐ Ninguna de las anteriores.	
5 - Se desea construir el circuito lógico para un detector d	e paridad de números octales. El detector tiene cuatro entradas como lo indica la
figura anexa y se busca la función lógica que genere la salid	
Si el selector se pone en cero entonces la salida o	del detector f(a,b,c,d) deberá de ser 1 cuando el numero especificado por (b,c,d) sea
par (siendo b el <i>bit más significativo</i>).	
Por el contrario, si el selector se pone en uno la impar.	salida del detector deberá de ser 1 cuando el número especificado por (b,c,d) sea
	ar, considérese que la salida del detector queda indefinida para este número.
La función mínima en producto de sumas es:	
$\Box f(a,b,c,d) = (a+d)(a+d)(b+c+d)$	Selectoraab MSB Detector de f(a,b,c,d)
$\Box f(a,b,c,d) = (a+d)(a+c+d)(a+b+d)$	
	Numero Octal c Paridad
$\Box f(a,b,c,d) = (a+d)(a+d)$	
☐ Ninguna de las anteriores.	
	nero par, ¿Cuál será la función mínima en suma de productos?
$\Box f(a,b,c,d) = a d + ad + ab c$	
$\Box f(a,b,c,d) = \overline{a} \overline{d} + ad$	
$\Box f(a,b,c,d) = a d + ad + ab c + ab d$	
$\Box f(a,b,c,d) = \overline{a} \ \overline{d} + ad + \overline{b} \overline{c} \overline{d}$	
7. Dado un programa P, un objetivo O, una regla de comput	tación C y una regla de búsqueda B. Se denota E(X,Y,Z)=nº de caminos de éxito al
ejecutar P con el objetivo X con la regla de computación Y y	
\square E(O,C,B) = E(O,C',B) Para cualquier C' \neq C	
$\Box E(O,C,B) = E(O',C,B) \text{ Para cualquier } O' \neq O$	
□ E(O,C,B) = E(O,C,B') Para cualquier B' ≠ B□ Ninguna de las anteriores.	
-	on la interpretación que a dominio on D-(2,2,4). D(v)-"y on divinible entre 2"
	en la interpretación cuyo dominio es D={2,3,4}, P(x)="x es divisible entre 2",
Q(x)=" $x \le 2$ " y R(x,y)=" $x < y$ " es: Verdadero.	
☐ Falso para 1 <x<4.< td=""><td></td></x<4.<>	
□ Falso.	
☐ Verdadero para x=4.	
9 Calcular $\sigma_k(C)$ donde $\sigma_k = \{x/f(a), y/f(z)\}$ y C={ P(z,f(x), y/f(z)) \ \(\sigma_k(C)\) \(\sigma_k(C)\	$y)$, $Q(f(z),f(x),f(y))$ }
$\square \left\{ P(z, f(a), f(z)), Q(f(z), f(a), f(z)) \right\}$	
$\square \{ P(z, f(f(a)), f(z)), Q(f(z), f(f(a)), f(f(z))) \}$ $\square N_0 := \text{pundo calcular va que no comienzan por la misma}$	latra da pradicada (na can unificablea)
□ No se puede calcular ya que no comienzan por la misma	

Enunciados Junio 1999-2000

10 Al aplicar el algoritmo de resolución, $\{P(x, f(y)) \lor \neg P(x, y), P(x,$	$P(z,a), \neg P(x, f(f(z)))$	$\{(a)\}$ se obt	tiene que el co	onjunto de cláus	ulas:
☐ No es insatisfacible porque no se llega a la cláusula vacía					
☐ Es insatisfacible porque no se llega a la cláusula vacía					
☐ Es insatisfacible porque se llega a la cláusula vacía					
☐ No es insatisfacible porque se llega a la cláusula vacía					
11 El razonamiento					
$\{R(a), \forall x (P(x) \rightarrow R(x) \lor Q(a) \lor P(x)), R(a) \rightarrow \forall y Q(y), \forall x (R(x) \rightarrow R(x))\}$	$(f(x))) \Rightarrow \exists z Q(z) es$	s:			
☐ Incorrecto porque se alcanza la cláusula vacía aplicando el algor	ritmo de resolució	n.			
☐ Correcto porque se alcanza la cláusula vacía aplicando el algorit					
☐ Correcto porque no se alcanza la cláusula vacía aplicando el alg					
☐ Incorrecto porque no se alcanza la cláusula vacía aplicando el alg					
			0 (0 4 (0)	1.0	
12 A partir de los conjuntos borrosos X ={ $0.2 / 0, 0.5 / 1, 0.7 / 2, 0.5 / 1, 0.5 / 1, 0.5 / 1, 0.3 / 2, 0.7 / 3}$	0.3 / 3} e Y = { 0.4	/ 0, 0.6 / 1, 0	0.8 / 2, 1 / 3}, s	se obtiene el cor	njunto
$\Box \ \overline{X} \cup Y$					
$\Box \ \overline{X} \cup \overline{Y}$					
$\square X \cap Y$		1	$\neg \forall x P(x)$	Premisa	
$\Box X \cap \overline{Y}$					
		2	?	Supuesto	Ē
13 Para demostrar que {¬∀xP(x)}⇒∃x¬P(x) se utiliza el esquema	de la figura.				
¿Cuál es la fórmula del paso 4?		3	?	Libre	
□ ¬P(a)					
□ P(a) ′		- 4	?	Supuesto	
$\square \exists x \neg P(x)$		E		·	
		5	?	?	
$\Box \neg \exists x \neg P(x)$		=			
14 En la demostración anterior, ¿Cuál es la fórmula del paso 8?		6	?	?	
$\square \exists x P(x)$					
$\square \forall x P(x)$		7	?	?	
$\square \exists x \neg P(x)$					
		8	?	?	
□ ¬∃x¬P(x)					
Para formalizar los siguientes ejercicios, utilizar: R(x,y)="x rompe y	", <i>p</i> =Pacto,	9	?	?	
a=Ania, A(x,y)="x es amigo de y"					
15 Al formalizar "Sólo los que rompen el pacto no tienen amigos"	co obtiono:	10	?	?	
	se obliene.				
$\Box \ \forall x (R(x,p) \rightarrow \neg \exists y A(x,y))$					
$\square \ \forall x(\neg \exists y A(x,y) \rightarrow R(x,p))$		Ŧ			
$\square \exists x (R(x,p) \land \neg \exists y A(x,y))$					
$\Box \neg \exists x (R(x,p) \rightarrow \exists y A(x,y))$					
16 La formalización de "Los amigos de Ania rompen el pacto, pero	o Ania cála la rom	no cuando n	n tiono amigo	z" oc:	
	o Allia solo lo lolli	ipe cuarido ri	Juene anngo	5 63.	
$\square \ \forall x \ (\ A(x,a) \to R(x,p)\) \land (R(a,p) \to \neg \ \exists y \ A(a,y)\)$					
$\square \ \forall x \ (\ R(x,p) \to A(x,a) \) \land (R(a,p) \to \neg \ \exists y \ A(a,y) \)$					
$\square \ \forall x \ (\ A(x,a) \rightarrow R(x,p)\) \land (\neg \ \exists y \ A(a,y) \rightarrow R(a,p))$					
$\square \ \forall x \ (\ R(x,p) \to A(x,a) \) \land (\neg \ \exists y \ A(a,y) \to R(a,p))$					
	ron puodo doduoi	roo guo:			
17 Tomando como premisas las frases de los 2 ejercicios anterior	res, puede deduci	rse que.			
☐ Ania no tiene amigos					
☐ Ania tiene amigos					
☐ Ania rompe el pacto					
☐ Ninguna de las anteriores					
Para responder las siguientes preguntas utilizar el programa Prolog	de la figura				
	Jo ia ligala				
18 ¿Cuál sería la respuesta del sistema ante la pregunta:					
?- r(f(a),V,f(f(f(a)))).		37.\			
	r(a,X		/:		
$\square V = f(a)$	r(f(X),Y,f(Z)):	-r(X,Y,Z).		
$\square V = f(f(a))$					
$\square V = f(f(a))$ $\square V = f(f(f(a)))$	7				
☐ Ninguna de las anteriores					
19 Suponiendo que se define el caso básico "p(a,0)."					
Con cuál de los siguientes casos recursivos se consigue que al pre	guntar?-p(f(f	(f(a))),V) . la respues	ta sea V=3. ?	
$\square p(f(V),N+1):-p(V,N).$	_		•		
$\square p(f(V), N) := p(V, M), N \text{ is } M + 1.$					
$\square p(V, N) := p(f(V), M), M \text{ is } N + 1.$					
20 Indicar cuál sería la respuesta del sistema ante la pregunta: ?-	-r(f(a),V,V)).				
$\square \qquad V = f(f(a))$					
□ V = a□ Error o bucle infinito por el chequeo de ocurrencias					

Enunciados Septiembre 1999-2000

Septiembre 1999-2000

En los siguientes ejercicios asignar las letras p,q,r por orden de aparición a las	
1 Al formalizar en lógica proposicional: "Haber nacido en un país de América e	s necesario para ser americano, no obstante, se puede obtener
alguna nacionalidad americana por naturalización" se obtiene:	
$\Box (q \to p) \land r$ $\Box (p \to q) \land r$	
$\Box (q \to p) \lor r$	
$\Box (p \rightarrow q) \lor r$	
2 Al formalizar en lógica proposicional: "La inflación se incrementará siempre	que la gasolina suba de precio a no ser que el gobierno tome
medidas para evitarlo" se obtiene:	
$\square \neg r \to (p \to q)$	
\Box r \rightarrow (p \rightarrow q)	
$\Box \neg r \rightarrow (q \rightarrow p)$	
3 Dado el conjunto de expresiones $E = \{ P(a, y, h(g(a))), P(x, h(x), h(x)) \}$ se pu	ede afirmar que:
 ☐ El conjunto E es unificable y tiene umg ☐ El conjunto E no es unificable debido al chequeo de ocurrencias 	
☐ El conjunto E no es unificable porque no se encuentra variable en el conjunto	de discrepancias
☐ El conjunto E es unificable pero carece de umg	
4. Sea F la formula $\forall x \exists y \ (P(x,y) \land \neg Q(f(x)) \rightarrow P(a,y))$. En la interpretación cuy	yo dominio es D={1,2,3}, $P(x,y) = "x > y"$, $Q(x) = "x > 5"$, a=3 y
$f(x) = x^2 \text{ es:}$	
$\Box \text{ Verdadero para } x = 1$	
□ Falso	
□ Verdadero	
□ Correcto	
5. Sea F la formula $\forall x \exists y \forall z \ (P(x,y) \rightarrow Q(x,y,z))$. En la interpretación cuyo domin	nio es D= $\{1,2,3\}$, $P(x,y) = "x < y"$, $Q(x,y,z) = "x < y+z"$
□ Verdadero para $x = 3$ e $y=2$.	
□ Verdadero	
□ Correcto	
☐ Falso 6Sea F la fórmula $\forall x \exists y ((P(x) \lor Q(x)) \leftrightarrow A(y))$. Al transformar F a forma cla	usal as obtions:
\Box { \neg P(x) \lor A(y), \neg Q(x) \lor A(y), \neg A(y) \lor P(x) \lor Q(x) }	usai se obtiene.
$\square \{ \neg \vdash (x) \lor A(y), \neg Q(x) \lor A(y), \neg A(y) \lor \vdash (x) \lor Q(x) \}$ $\square \{ \neg \vdash (x) \land \neg Q(x) \lor A(f(x)), \neg A(f(x)) \lor \vdash (x) \lor Q(x) \}$	
$\square \left\{ \neg P(x) \lor A(f(X)), \neg Q(x) \lor A(f(x)), \neg A(f(x)) \lor P(x) \lor Q(x) \right\}$	
$\square \left\{ \neg P(x) \land \neg Q(x) \lor A(y), \neg A(y) \lor P(x) \lor Q(x) \right\}$	
Se desea crear un circuito comparador de 2 números n ₁ y n ₂ de 2 bits cada	/ > 2 / > 2 G: +0 +0
uno. Para ello el circuito recibirá una entrada (a,b,c,d) que representan los dos	$ n_1/n_2 \ge 2 \lor n_2/n_1 \ge 2$ $Si \ n_1 \ne 0 \land n_2 \ne 0$
números a comparar, siendo 'a' y 'c' el bit más significativo(MSB) para n₁ y n₂	$ n_1 - n_2 \ge 2 \lor n_2 - n_1 \ge 2$ $Si \ n_1 = 0 \lor n_2 = 0$
respectivamente. La salida del circuito f(a,b,c,d) se activará cuando se cumplan las condiciones de la figura:	
cumplantac condiciones de la figura.	
7 ¿Cuál sería la forma canónica de la función f(a,b,c,d) en productos de suma:	?
$\Box P_4(2, 3, 6, 7, 8, 9, 12, 13).$	
$\square P_4(0, 1, 4, 5, 10, 11, 14, 15).$	
$\Box P_4(0, 1, 4, 5).$	
□ Ninguna de las anteriores.	
8 ¿Cuál sería el resultado de simplificar f(a,b,c,d) en forma de suma de produc	tos?
$\Box f(a,b,c,d) = a\overline{c}$	
$\Box f(a,b,c,d) = a\overline{c}\overline{d} + a\overline{c}d + \overline{a}c\overline{d} + \overline{a}c\overline{d}$	
$\Box f(a,b,c,d) = a\overline{c} + \overline{a}c$	
☐ Ninguna de las anteriores.	
9 Dispones de las siguientes puertas lógicas: AND, OR, NAND, NOR, NO(Inve	
de salida f(a,b,c,d) anterior. Si se pide que construir el circuito más óptimo (con	el menor numero de puertas lógicas posibles), entonces se
requiere:	
□ Dos puertas NO, dos puertas AND y una puerta OR.□ Una puerta XOR.	
☐ Una puerta NO y una puerta AND.	
☐ Dos puertas NAND y una puerta OR.	
En los siguientes ejercicios, utilizar: $H(x)="x$ es un hombre", $F(x)="x$ es feliz", M	l(x)="x es una mujer", E(x,y)="x escucha a y".
10 Tras formalizar y pasar a Forma Clausal la frase: "Los hombres felices escu	ıchan a alguna mujer" se obtiene:
$\square \left\{ \neg H(x) \lor \neg F(x) \lor M(f(x)), \neg H(x) \lor \neg F(x) \lor E(x, f(x)) \right\}$	
$\square \left\{ \neg H(x) \lor \neg F(x) \lor M(y), \neg H(x) \lor \neg F(x) \lor E(x, y) \right\}$	
$\square \left\{ \neg H(x) \lor \neg F(x) \lor M(y), E(x, y) \right\}$	
11 La fórmula: $\forall x (M(x) \rightarrow (\exists y (H(y) \land E(y,x))) \rightarrow F(x))$ es una formalizaci	on de la trase:
☐ Sólo son felices las mujeres escuchadas por algún hombre ☐ Las mujeres felices son escuchadas por algún hombre	
☐ Las mujeres son felices cuando son escuchadas por algún hombre	
☐ Las mujeres son felices sólo cuando son escuchadas por algún hombre	
12 La frase: "Los hombres que sólo escuchan a las mujeres son felices" podría	ı formalizarse como:
$\square \ \forall x \ (\ (\ H(x) \land \forall y (\ M(y) \rightarrow E(x,y)\)\) \rightarrow F(x)\)$	

Enunciados Septiembre 1999-2000

□ ∀x (($H(x) \land \forall y (E(x,y) \rightarrow M(y))) \rightarrow F(x))$ $H(x) \land \exists y (E(x,y) \land M(y))) \rightarrow F(x))$ $H(x) \land \forall y (E(x,y) \land M(y))) \rightarrow F(x))$			
13 Dade estrategia ☐ X = a ☐ X = f(a ☐ X = f(f ☐ X = f(q(X,Y),p(Y,X).			
□ No `				udan ana anticolón accorda
obtiene e	el mismo programa y objetivo de la pregunta anterior, pero en un sistema con es es:	trategia en a	ıncnura, ıa p	orimera solucion que se
$\square X = a$ $\square X = f(a)$	9)	1	?	Premisa
$\square X = f(f)$,	2	?	Premisa
□ No 15 Dad	o el conjunto de cláusulas: { $\forall x (\exists y P(x,y) \rightarrow \exists y \ P(y,x)), \exists x \ P(x,x)}$ se puede	-		
deducir:		3 (a)	Q(a)	Supuesto
	$\forall x P(x,x)$ $\forall x \neg P(x,x)$	4	?	?
	$\neg \forall x P(x,x)$	5	?	Supuesto
16 Fn la	$\neg \forall x \neg P(x,x)$ a figura se incluye el esquema de la demostración por deducción natural de	6	?	?
{∀x(P(x)	$\rightarrow \neg Q(x)$), $\exists x \ Q(x)$ } $\Rightarrow \exists x \ \neg P(x)$, indicar cuál es la fórmula que falta en el	7		
paso 6. □ P(a)		7	?	?
□ Q(a) □ ¬ P(a)		8	?	?
$\Box \neg P(a)$ $\Box \neg Q(a)$		9	?	?
	desea construir un predicado p(L,X) en Prolog que, dada una lista L y un p X, se cumpla cuando X es el último elemento de L. La definición sería: p([Xs,X], X).	10	?	?
	p([Xs X], X).			
	p([AS A], A).			
	p([X],X). p([X [Y L]],Z):-p([Y L],Z).			
		1	$p \vee q$?
	p([X],X). p(L,Z):=p([X L],Z).	2	?	Premisa
10 Fol	o figuro do las incluido al acquemo de la democtración por deducción netural	3	?	?
	a figura se ha incluido el esquema de la demostración por deducción natural namiento: $\{p \lor q, p \to \neg r\} \Rightarrow \neg r \lor q$. Indicar cuál sería la fórmula que falta en	4	?	?
	, ⊸i	5	?	?
	q p >-rvq			
	$\begin{array}{c} p \to \neg r \vee q \\ q \to \neg r \vee q \end{array}$	6	?	?
un eleme	oniendo que se ha definido el predicado menor(X,L) que se cumple cuando ento X es menor que todos los elementos de la lista L. Indicar cuál sería la del predicado menores(L1, L2) que se cumple cuando todos los elementos	7 8	? ¬r∨q	?
de la lista	a L1 son menores que todos los elementos de la lista L2			
	<pre>menores([],[L]). menores([X L1],L2):-menor(X,L2), menores(L1,L2).</pre>	9	?	?
	monovog/[] []])	10	?	?
	<pre>menores([],[L]). menores(L1,L2):-menor(X,L2), menores([X L1],L2).</pre>			
	menores([],L).			
_	menores(L1,L2):- menor(X,L2), menores([X L1],L2).			
	<pre>menores([],L). menores([X L1],L2):- menor(X,L2), menores(L1,L2).</pre>			
	car cuál de las siguientes frases no es correcta:		0.0	
	La fórmula $\forall x \exists P(P(x,a) \rightarrow P(a,x))$ no es una fórmula de lógica de predicados d En lógica polivalente la fórmula $p \land \neg p$ es siempre falsa	e primer ord	en	
	En lógica borrosa, un elemento puede pertenecer con un determinado grado de El sistema Prolog convencional no implementa chequeo de ocurrencias	pertenencia	a un conjur	nto
_	2. dictana i rolog donvondionarno implementa direqued de dedirencias			

Enunciados Primer Parcial 2000-2001

Primer Parcial 2000-2001

Timer Larcial 2000-2001			
En los siguientes ejercicios asignar las letras p,q,r por orden de aparición a las frases propo	sicionales		
1 Al formalizar en lógica proposicional: "Ire contigo al cine sólo si vamos a la última funcimpuntual" se obtiene:	ción a no ser q	ueba, ade:	más hay tutorías con do
$\Box \neg r \rightarrow (q \rightarrow p)$			
\Box $(q \to p) \lor \neg r$ 4 La expresión 2^n con n igual al número de variables de una formula F puede representar:	1p∧q-	\rightarrow (r \rightarrow s)	Premisa
\square El número de interpretaciones posibles que puede tener la formula F al construir su tabla de verdad.	2r∧p		Premisa
\square El número de interpretaciones modelo de F si es una tautología. \square a) y b)	3	?	Supuesto
☐ Ninguna de las anteriores.]	•	- Supuesto
5 Para demostrar mediante deducción natural que " $\{p \land q \to (r \to s), r \land p\} \Rightarrow p \to (q \to s)$ " se utiliza el esquema de la figura. Indicar	4	??	?
cuál sería la fórmula del paso 4.	5	?	?
□ p ∧ q □ q			
□р	6	??	?
$\Box \neg (q \rightarrow s)$	7	r	?
6 Considerando la misma figura cual sería la formula en el paso 6.			
\Box p \land q	8	-?	?
\Box r \rightarrow s		9	J 4 0
□ s □ ¬r	9	?	→I 4-8
	10	?	?
 7 Al crear un árbol semántico para la formula (p ∧ q → r ∨ ¬s) → (¬r ∧ q → ¬p), tomando la lista de LP por orden alfabético se pude asegurar: Que la formula es válida porque todos sus nodos son de éxito. Que la formula es satisfacible con 4 nodos de éxito y uno de fallo. Que la formula es satisfacible con 3 nodos de éxito y uno de fallo. Que la formula es válida con 4 nodos de éxito y uno de fallo. Que la formula es válida con 4 nodos de éxito y uno de fallo. Se desea construir un circuito comparador de dos número n1 y n2 de dos bits cada uno. El ci selector de comparación, b y c los bits que corresponden a n1 y d y e los de n2, siendo b y d función de salida f(a,b,c,d,e) estará definida de la siguiente manera: Si el selector = 0 entonces la salida del circuito f(a,b,c,d,e) se activará(con un 1) cuando n1 Si el selector = 1 entonces la salida del circuito f(a,b,c,d,e) se activará(con un 1) cuando n1 8 Indicar cuál sería la forma canónica que representa f(a,b,c,d,e) □ Σ₅(4,8,9,12,13,14,17,18,19,22,23,27) □ Σ₅(0,4,5,8,9,10,12,13,14,15,16,17,18,19,21,22,23,26,27,31) □ Σ₅(0,4,5,8,9,10,12,13,14,15,16,17,18,19,21,22,23,26,27,31) □ Σ₅(0,4,5,8,9,10,12,13,14,15,16,17,18,19,21,22,23,26,27,31) 	los bits mas s \Rightarrow = n2.		
\square $\Sigma_5(4,5,8,9,10,12,13,14,15,16,17,18,19,21,22,23,26,27)$ \square Ninguna de las anteriores			
in iniguna de las anteriores			

Enunciados náo 88

 $\Box \ f(a,b,c,d,e) = \overline{a}\overline{d}\overline{e} + \overline{a}bc + \overline{a}c\overline{d} + \overline{a}b\overline{d} + ade + a\overline{b}\overline{c} + a\overline{b}d + a\overline{b}e + ab\overline{c}d\overline{e}$

 $\Box \ f(a,b,c,d,e) = \overline{a}\overline{d}\overline{e} + \overline{a}bc + \overline{a}c\overline{d} + \overline{a}b\overline{d} + \overline{a}be + ade + a\overline{b}\overline{c} + a\overline{c}e + a\overline{b}d + a\overline{b}e$

9.- ¿Cuál sería el resultado de simplificar f(a,b,c,d,e) en forma de suma de productos?

Enunciados Primer Parcial 2000-2001

 $\Box f(a,b,c,d,e) = \overline{a}\overline{d}\overline{e} + \overline{a}bc + \overline{a}b\overline{d} + ade + a\overline{b}\overline{c} + a\overline{b}d + b\overline{c}d\overline{e} + \overline{b}c\overline{d}e$

 $\Box f(a,b,c,d,e) = \overline{a}\overline{d}\overline{e} + \overline{a}bc + \overline{a}b\overline{d} + ade + a\overline{b}\overline{c} + a\overline{b}d$

10.- Si el circuito cambiará las condiciones de salida suponiendo que no pueden entrar 2 números iguales al comparador, ¿Cuál sería el resultado de simplificar la nueva función f(a,b,c,d,e) en forma de productos de suma?

- $\Box f(a,b,c,d,e) = (\overline{a}+d+e)(\overline{a}+\overline{b}+\overline{c})(\overline{a}+\overline{b}+d)(a+\overline{d}+\overline{e})(a+b+c)(a+b+\overline{d})$
- $\Box f(a,b,c,d,e) = (\overline{a}+d+e)(\overline{a}+\overline{b}+\overline{c})(\overline{a}+\overline{b}+d)(a+\overline{d}+\overline{e})(a+b+c)(a+b+\overline{d})(\overline{b}+c+\overline{d}+e)$
- $\square \ f(a,b,c,d,e) = (\overline{a}+d+e)(\overline{a}+\overline{b}+\overline{c})(\overline{a}+\overline{b}+d)(a+\overline{d}+\overline{e})(a+b+c)(a+b+\overline{d})(\overline{b}+c+\overline{d}+e)(b+\overline{c}+d+\overline{e})$
- ☐ Ninguna de las anteriores
- 11.- El circuito de la figura representa la función lógica:
- $\Box f(a,b,c) = 0$
- $\Box f(a,b,c) = \overline{a} \ \overline{c}$
- $\Box f(a,b,c) = (\overline{a} \ \overline{c})(a \oplus b)$
- ☐ Ninguna de las anteriores.

12.- En la escuela de informática de Oviedo existen 3 guapas chicas llamadas Ana, Noelia y Marta que suelen gustar a la mayoría de los chicos. Para saber a quien prefiere la mayoría se entrevistan a chicos de varios cursos, quienes declaran lo siguiente:

Alumno de primer curso: Me gusta la primera.

Alumno de segundo curso: Si me gusta Ana entonces no me gusta Noelia o no me gusta Marta.

Alumno de tercer curso: O me gusta Ana y Marta o no me gusta ninguna.

Alumno de proyecto de Fin de carrera: Me gusta Ana a no ser que me guste Noelia.

¿Quién(es) es/son la(s) chica(s) más gustada(s) por la mayoría?

- ☐ Ana.
- ☐ Ana y Marta.
- ☐ Todas gustan por igual.
- ☐ Ninguna gusta a la mayoría.
- 13.- Al probar por contradicción si la formula $((p \lor r \to q \land (s \lor r)) \to p \lor q)$ es o no válida obtenemos que:
- ☐ La formula es valida porque en todos los casos se genera contradicción.
- ☐ La formula es insatisfacible.
- ☐ La formula es satisfacible.
- ☐ La formula es una tautología porque en ningún caso se genera contradicción.
- 14.- Si se ha demostrado que a+1= 1, aplicando el teorema de dualidad también quedaría demostrado que:
- $\Box \bar{a} + 1 = 1$
- $\Box \ \bar{a} * 0 = 0$
- □ a*1=a
- □ a*0=0

15.- Cual sería la forma canónica de la función: $f(a,b,c) = \overline{(a \oplus b)} + (a\overline{c}) + a(\overline{b} + \overline{c}) + \overline{abc}$

- $\square \Sigma_4(2,3,5,7)$
- $\square \Sigma_3(3,4,6,7)$
- $\square \Sigma_3(2,3,5,7)$
- ☐ Ninguna de las anteriores.

Enunciados Segundo Parcial 2000-2001

Segundo Parcial 2000-2001

	1 El resultado de la pregunta $?-X = 2$, $X = X * 2$. es:					
	X = 4					
	X = 2					
	Error					
2	Sea $p(x)$ = " x es un perro", $q(x,y)$ = " x quiere a y ". La frase: " $Todos$ los perros quieren a alguien" se podría representar en					
	Prolog como:					
	q(X,f(X)):-p(X).					
	q(X,Y):- $p(X)$. p(X):- $q(X,Y)$.					
	p(X) - q(X, 1). p(X) - q(X, f(X)).					
	la siguiente pregunta se utiliza un árbol binario definido a partir de la constante 'hoja' y de la					
LII	función 'rama(X,I,D)' en la que X es un elemento, e I y D son árboles binarios.					
3	El predicado genera(N,A) toma un número positivo N y devuelve el árbol binario A cuyos nodos					
5	toman valores decrecientes por niveles desde N hasta 1. Por ejemplo, si se le pasa un 3, el árbol					
	generado sería el de la figura. Indicar cuál sería la definición de "genera"					
	genera(0,hoja).					
	genera(N,rama(N,I,D)):- M is N - 1, genera(M,I), genera(M,D).					
	genera(N,rama(N,I,D)):- genera(N-1,I), genera(N-1,D).					
	genera(0,hoja).					
	genera(N,rama(N,I,D)):- N is $N-1$, genera(N,I), genera(N,D).					
	genera(0,hoja).					
	genera(N,I,D):- M is $N-1$, genera(M,rama(N,I,D)).					
4	Suponiendo que el predicado "concat(X,Y,Z)" se cumple cuando Z es la lista resultante de concatenar las listas X e Y.					
	uál de los siguientes predicados permitiría obtener la lista de nodos de un árbol binario (suponer que ya se ha definido el					
	caso básico)?					
	nodos(rama(X,I,D),[X N]):-nodos(I,NI),nodos(D,ND),concat(NI,ND,N).					
	nodos(rama(X,I,D),concat(NI,ND,[X N])):-nodos(I,NI),nodos(D,ND).					
	nodos(X,R):-nodos(rama(X,I,D),M,[X N]),concat(M,N,R).					
	nodos(X,[X N]):-nodos(rama(I),NI),nodos(rama(D),ND),concat(NI,ND,N).					
Par	a implementar un sistema experto de acondicionamiento de automóviles se utilizan los predicados:					
	pn(X,P)="P es la potencia normal de X", sube $(X,C,P)="P$ es el incremento de potencia de X con la					
	característica C".					
	Se sabe que la potencia normal de un R9 es de 90cv, que el incremento de potencia al añadir un compresor es de 25cv					
y a	l añadir un kit de inyeccion es de 10cv. Estos hechos se representan en Prolog como:					
Sa	pn(r9,90). $sube(r9,compresor,25)$. $sube(r9,inyeccion,10)$. desea construir un predicado "potencia(X,L,P)" que indique la potencia P obtenida por un coche con la lista de					
	acterísticas L. Por ejemplo, con los datos anteriores, la pregunta "?-potencia(r9,[compresor,inyeccion],P)." devolvería					
	125.					
	El caso básico sería:					
<i>J</i> .	potencia($X,[],P$):-pn(X,P).					
	potencia(X,[],P).					
	pn(X,P):-potencia(X,[],P).					
	pn(X,P).					
6	El caso recursivo sería:					
	potencia(X,L,P):-potencia(X,[C L],P),sube(X,C,S),P is P + S.					
	potencia(X,[C L],R):-R is $P+S$, $potencia(X,L,P)$, $sube(X,C,S)$.					
	potencia(X,[C L],R):-potencia(X,L,P),sube(X,C,S), R is P + S.					
	potencia(X,[C L],[S M]):-potencia(X,L,M),sube(X,C,S).					
7	En el sistema anterior, la regla: "La potencia de coches con inyección sube 5cv cuando la potencia normal es de 100cv" se					
_	representaría como:					
	sube(X,inyeccion,100):-pn(X,5).					
	pn(X,100):- sube(X,inyeccion,5).					
	sube(X ,inyeccion,5):-pn(X ,100).					
	pn(X,5):- sube(X,inyeccion,100). Dados los predicados $D(x,y)$ =" x da limosna y ", $P(x)$ =" x es y 0 pobre", y 0 y 1 la interpretación I formada por el					
0	zauvo nos premieduos izra, y — a du minustiu a y , fra i— a es pobre , dra — a es pueno — y la interdicioni i formada don el					

8.-Dados los predicados D(x,y) = x da timosna a y^x , P(x) = x es pobre", B(x) = x es bueno" y la interpretación I formada por el dominio $D=\{\text{juan,pedro}\}\$ y las asignaciones: " $B(x)=\{\text{pedro}\}\$, $P(x)=\{\text{pedro,juan}\}\$, $D(x,y)=\{(\text{juan,pedro})\}\$.

Considérese la frase F1="Si juan da limosna a algún pobre, entonces Juan es bueno" y F2=" $\exists x ((D(juan,x) \land P(x)) \rightarrow B(juan))$ ". Se cumple que:

Enunciados Segundo Parcial 2000-2001

9 Se dice que un conjunto borroso A es k-normal si $\exists x$ tal que $\mu_A(x) {\ge} k$. A pa	artir de la po	otencia del motor de un	n coche, se	
define el conjunto borroso M de "coches molones" como: $\mu_M(x)=\{60/0.2,$, 80/0.4, 10	0/0.6, 120/0.8 }. Se cu	mple entonces	
que:				
☐ El conjunto "coches muy molones y no muy molones" es 0.9-normal ☐ El conjunto "coches no muy molones" es 0.9-normal				
☐ El conjunto "coches no muy molones" es 0.9-normal ☐ El conjunto "coches muy molones" es 0.9-normal				
☐ El conjunto "coches may motones" es 0.9-normal				
10 La fórmula definida en lógica de tipos como $\forall x: A (P(x) \lor \exists y: B (Q(x,y) \lor \exists y: B ($	/ O(v x)))	equivale en lógica de r	oredicados a:	
$\square \qquad \forall x (A(x) \to (P(x) \lor \exists y (B(y) \land (Q(x,y) \lor Q(y,x)))))$	· (() ; <u></u>)///	equivare on logica ac p	oreareados a.	
$\square \qquad \forall x (A(x) \land (P(x) \lor \exists y (B(y) \land (Q(x,y) \lor Q(y,x)))))$				
$\square \qquad \forall x (A(x) \land (P(x) \lor \exists y (B(y) \to (Q(x,y) \lor Q(y,x)))))$				
$\square \qquad \forall x (A(x) \to (P(x) \lor \exists y (B(y) \to (Q(x,y) \lor Q(y,x)))))$				
11 La fórmula $\forall x(P(x) \rightarrow \exists y(Q(x,y) \land P(y)))$ equivale en Forma Normal de Sk	colen a:			
$\square \qquad \forall x (\neg P(x) \lor (Q(x,f(x)) \land P(f(x))))$				
En las siguientes preguntas considérese que se ha cargado el siguiente program $p(Y,b)$:- $q(X,Y)$. $q(f(X),X)$.	na Prolog:			
12 En el programa anterior, la respuesta del sistema Prolog ante la				
pregunta: ?-q(Y,f(b)).	1	$\forall x (P(x) \rightarrow \neg Q(x))$	Premisa	
		· · · (1 (i.) / · · · · · · · · · · · · · · · · · ·	110111134	
	2	?	Premisa	
$\square \qquad \text{No}$	3	(a) Q(a)	Supuesto	
13 En el programa anterior, la respuesta del sistema ante la pregunta ?-	J.	(u) Q(u)	Supuesto	
p(a,X). es:	4	?	?	
\square $X = a$	5	?	?	
\square $X = f(a)$.	
\square $X = b$	6	?	?	
No	7	?	?	
14 Se ha demostrado el razonamiento $\{\forall x(P(x) \rightarrow \neg Q(x)), \exists xQ(x)\} \Rightarrow \exists P(x) \Rightarrow P(x) \Rightarrow \exists P(x) \Rightarrow \exists P(x) \Rightarrow \exists P(x) \Rightarrow \exists P(x) \Rightarrow P(x) $		·		
∃x¬P(x) por deducción natural, siguiendo el esquema de la figura. Indicar cuál sería la fórmula del paso 8.	8	?	?	
□ ¬P(a)	9	?	?	
$\square \qquad P(a)$	<i>,</i> .	•	•	
\square $Q(a)$	10	?	?	
\square $\neg Q(a)$				
En el siguiente ejercicio, utilizar: $V(X)$ =" x es una vaca", $L(x)$ =" x está loco",	A(x)=" $x es$	s asturiano", $S(x,y)=$ ".	x sube a y",	
<i>m=Monte.</i>				
15 Al formalizar la segunda premisa del razonamiento:				
"Existen vacas asturianas. No todos los que suben al monte están locos, pero	todos los a	sturianos que suben a	l monte sí lo	
están. Por tanto, algunas vacas asturianas están locas", se obtiene:				
$\Box \qquad \neg \forall x (L(x) \rightarrow S(x,m)) \land \forall x ((S(x,m) \land A(x)) \rightarrow L(x))$				
$\Box \qquad \neg \forall x (S(x,m) \rightarrow L(x)) \land \forall x ((S(x,m) \land A(x)) \rightarrow L(x))$				
16 El razonamiento del ejercicio anterior es: ☐ Correcto, porque se alcanza la cláusula vacía aplicando resolución				
 □ Correcto, porque se alcanza la cláusula vacía aplicando resolución □ Incorrecto, porque se alcanza la cláusula vacía aplicando resolución 				
☐ Correcto, porque no se alcanza la cláusula vacía aplicando resolución				
☐ Incorrecto, porque no se alcanza la cláusula vacía aplicando resolución				
17 Sea $F = \exists x (P(g(x,y)) \land Q(f(x)))$, entonces:				

F es una fórmula bien formada cerrada

Enunciados Segundo Parcial 2000-2001

	F es una fórmula bien formada con una variable libre y otra
ligada	
	F no es una fórmula bien formada
	F está en forma normal de Skolem
18 Se	a I la siguiente interpretación: Dominio ="Substituciones",
U(x)="	x es un unificador", G(x)="x es un unificador más general",
	"substitución formada al componer x con y", I(x,y)="x es igual a
y". Indi	icar cuál de las siguientes fórmulas toma valor verdadero en dicha
interpre	etación:
	$\forall x (G(x) \to \forall y (U(y) \to \exists z I(y, f(x, z))))$
	$\forall x(U(x) \to \forall y (G(y) \to \forall z I(x,f(y,z))))$
	$\forall x (G(x) \to \forall y (U(y) \to \exists z \ I(x, f(y, z))))$
	$\forall x (G(x) \to \forall y (U(y) \to \forall z I(y, f(x, z))))$
19 Se	ha realizado una demostración por deducción natural siguiendo el
esquem	a de la figura de un razonamiento de la forma $\{\forall x (P(x) \lor Q(x)),$
$Fp \} \Rightarrow$	Fq donde Fp y Fq son dos fórmulas distintas entre sí. ¿Cuál es el
valor d	e Fp?
	$\exists x P(x)$
	$\neg \exists x P(x)$
	$\exists x \neg P(x)$
	$\exists x Q(x)$
20 En	el razonamiento anterior, ¿cuál es el valor de Fq?
	$\exists x Q(x)$
	$\exists x P(x)$
	$\neg \exists x P(x)$
	$\exists x \neg P(x)$

1	$\forall x (P(x) \vee Q(x))$	Premisa
2	Fp	Premisa
3	?	Supuesto
4	?	∀E1
5	?	?
6	?	∧I-3,5
7	?	?
8	Fq	F E-7
9	P(a)→Fq	?
10	?	?
11	Fq	?
12	Q(a)→Fq	?
13	Fq	?
14	Fq	?

Enunciados Febrero 2000-2001

Febrero 2000-2001

Primer Parcial

En los siguientes ejercicios asignar las letras p,q,r por orden de aparición a las	frases proposicionales	
1 Al formalizar en lógica proposicional: "Cuando la Psiquiatría se incorpora	e como una especialidad a	le la Veterinaria dejará de haber
vacas locas a menos que dejen de fingir su locura" se obtiene:		
$\square (p \to q) \to \neg r$		
$\Box \neg r \rightarrow (p \rightarrow q)$		
$\Box \neg r \to (q \to p)$		
$\Box \ \ r \to (p \to q)$		
2 Al formalizar en lógica proposicional: "Las vacas sólo se dicen locas si no	actúan normalmente o se	dejan cuidar por el Hombre" se
obtiene.		
$\square \ (\neg q \lor r) \to p$		
$\square \ p \to (q \lor r)$		
$\square \ (\neg q \to p) \lor r$		
$\square p \to (\neg q \lor r)$		
3 Al formalizar en lógica proposicional: "Las vacas enloquecen sólo cuando ti	ienen mucho estrés pero no	es cierto que enloquecen cuando
hace frío" se obtiene.		
$\square (p \to q) \land (r \to \neg p)$		
$\square (p \to q) \land (\neg p \to r)$		
$\square (q \to p) \land (r \to \neg p)$		
$\square (p \to q) \land (\neg s \to r)$		
4 Sean las formulas $A = (\neg p \rightarrow q) \rightarrow r \ y \ B = (r \lor \neg q) \land (r \lor \neg p)$ se puede	1 ()	Duraniaa
decir que:	$1(q \vee \neg r) \leftrightarrow p$	Premisa
□ A y B son válidas.	•	.
☐ A y B son insatisfacibles.	2 ?	Premisa
☐ A y B son equivalentes lógicamente.		_
☐ Ninguna de las anteriores.	3 ?	?
5 Para demostrar mediante deducción natural que		
" $\{(q \lor \neg r) \leftrightarrow p, q \to \neg r, \neg r \to s \} \Rightarrow (p \land \neg r) \to s$ " se utiliza el esquema de	4 ?	?
la figura. Indicar cuál sería la fórmula del paso 7.		
р	5 ?	Supuesto
□ q ∨ ¬r		
	6 ?	?
6 Considerando la misma figura, ¿Cuál sería la justificación del paso 12?.	7 ???	\rightarrow E 4, 6
\Box - E 3,9	-	
$\square \to E 8,11$	8 ?	?
□ ∨ E 7,11,3		
□¬E 8-11		?
L 12 0-11		
	10 ?	?
7 Al crear un árbol semántico para la formula $(\neg p \rightarrow q \lor r) \rightarrow (r \land s \rightarrow \neg p)$.
\vee q), tomando la lista de LP por orden alfabético se puede asegurar:	11 ?	?
☐ Que la formula es válida porque todos sus nodos son de éxito.	11	·
☐ Que la formula es válida con 4 nodos de éxito y uno de fallo.	12 s	???
☐ Que la formula es satisfacible con 4 nodos de éxito y uno de fallo.	12 s	
☐ Que la formula es satisfacible con 3 nodos de éxito y uno de fallo.	12. 9	?
8 Cuál es la forma canónica de $f(a,b,c) = a(\overline{b \times c}) + c\overline{b}$	13:- ?	· ·
$\square \Sigma_4(1,4,5,7)$		
$\square \Sigma_3(1,4,5,7)$		
$\Box \Pi_3(1,4,5,7)$		
□ b) y c) son correctas.		
9 Sea F una formula satisfacible con N variables, al crear su tabla de verdad se	obtiene M interpretaciones	s que son un modelo de F,
entonces podemos asegurar que:		
$\square N \le M \le 2^{N}$ $\square 0 < M \le 2^{N}$		
$\Box 0 < M \le 2$ $\Box 0 \le M \le 2^{N} - 1$		
$\square 0 < M < 2^{-1}$ $\square 0 < M < 2^{N}$		

Una pequeña avioneta de aficionados cuenta con 4 sensores (a,b,c,d) para determinar el nivel de altitud con respecto al suelo. Cada uno de los sensores se encenderá (con un 1) y se mantendrá encendido cuando la avioneta haya descendido por debajo de una altura determinada (obsérvese la figura adjunta). Se desea implementar un circuito que habilite la señal de aterrizaje cuando el avión se encuentre entre los

Febrero 2000-2001 Enunciados

niveles de altura 'b' y 'a', es decir, cuando el avión haya descendido del nivel 'b' pero antes que pase el nivel 'a', ya que en este caso se tendría muy poca altura para iniciar el aterrizaje y la señal de aterrizaje no debe ser habilitada.

10 ¿Cuál es la forma canónica de la función
f(a,b,c,d)?
$\square \ \Sigma_4(7) + \Sigma_0(2,4,5,6,8,9,10,11,12,13,14)$
$\square \ \Sigma_4(7,15) + \Sigma_0(2,4,5,6,8,9,10,11,12,13,14)$
$\square \ \Sigma_4(7) + \Sigma_0(2,4,5,6,8,9,10,11,12,13,14,15)$
$\square \ \Sigma_4(14) + \Sigma_0(1,2,3,4,5,6,7,9,10,11,13)$
11 ¿Cuál sería la mínima expresión de la función
f(a,b,c,d) en productos de suma?
$\Box f(a,b,c,d) = b$
$\Box f(a,b,c,d) = \overline{a} \times b$
$\Box f(a,b,c,d) = \overline{a} \times b \times c \times d$
$\Box f(a,b,c,d) = a \times \overline{b}$

Segundo Parcial

Q(x,y)=	$F = \exists x \forall y (P(x,y) \rightarrow \neg Q(x,y))$ e I la interpretación cuyo dominio es $D = \{a,b,c\}$, $P(x,y) = \{(a,a),(b,b),(c,c)\}$, $\{(a,a),(a,b),(a,c),(b,c)\}$. Para calcular $V_I(F)$ se desarrolla un árbol Y/O . ¿Cuál es el número mínimo de nodos que es
necesari	o evaluar antes de obtener el valor de la fórmula? (tomar los valores del dominio por orden alfabético).
	7
	5
	4
	3
22 En l	lógica modal, se cumple que:
	$\Box P \equiv \Diamond \neg P$
	$\Box P \equiv \neg \Diamond \neg P$
	$\Box P \equiv \neg \Diamond P$
	$\Box P \equiv \Diamond P$

23.- Para demostrar mediante deducción natural que se cumple el razonamiento

 $\{\exists x(P(x) \rightarrow \neg \exists yQ(x,y))\} \Rightarrow \exists x \forall y(Q(x,y) \rightarrow \neg P(x)) \text{ se utiliza el esquema}$ de la figura. Indicar cuál sería la justificación del paso 7.

ш	⊐1 0	
	\rightarrow E2,6	
	∧I 5,6	
	∀E 6	
24 I	En la demosti	ración del ejercicio anterior, ¿Cuál es l
4-1	200 122	

la justificación del paso 12?

 \rightarrow E 11,3 ∃I 11 ∀E11 ∃E 11,3

25.- Se desea construir un predicado "valor(N,V)" en Prolog que tome un número natural representado como 0 y s(X) y devuelva el valor numérico correspondiente. Por ejemplo, ante la pregunta ?valor(s(s(s(0))),V). debería devolver: V=3. Indicar cuál sería la definición:

valor(0,0).
valor(X,V):-valor(s(X),V+1).
valor(0,0).
valor(s(X), V):- $valor(X, V), V$ is $V + 1$.
valor(0,0).
valor(s(X),V+1):-valor(X,V).
valor(0,0).
valor(s(X), V)- $valor(X, N), V is N + 1$

26.-Suponiendo que se toma: $B(x)="x\ es\ bobo"$, $P(x,y)="x\ pega\ a\ y"$. La fórmula $\exists x(B(x)\land \forall y(B(y)\rightarrow P(x,y)))$ sería una formalización de:

Existen bobos que pegan a algún bobo Enunciados Febrero 2000-2001

	Algún bobo pega sólo a los bobos		
	Algún bobo pega a todos los bobos		
	Todos los bobos pegan a algún bobo		
	uiendo con las asignaciones del ejercicio anterior, la frase "Sólo los l	bobos son pegados por algún bol	bo" se
formaliz	aría como:		
	$\forall x (B(x) \to (\exists y (B(y) \land P(y,x))))$		
	$\forall x ((\forall y (B(y) \rightarrow P(y,x))) \rightarrow B(x))$		
	$\forall x ((\exists y (B(y) \land P(y,x))) \rightarrow B(x))$		
	$\forall x (B(x) \to (\forall y (B(y) \to P(y,x)))))$		
28 El r	azonamiento "Todos son bobos y se pegan a sí mismos, todos los qu	e se pegan a sí mismos no son bo	obos, por tanto,
no existe	en los bobos":		
	Es incorrecto porque se alcanza la cláusula vacía aplicando resoluci	ón	
	Es correcto porque se alcanza la cláusula vacía aplicando resolución		
	Es correcto porque no se alcanza la cláusula vacía aplicando resoluc		
	Es incorrecto porque no se alcanza la cláusula vacía aplicando resol		
	define una "enredadera" como una estructura en forma de árbol dond		
uno o do	os hijos "enredaderas". Por ejemplo, la figura adjunta representa una		en Prolog como:
	doble(2,simple(4,doble(6,simple(3,nada),simple(1,nada))), simple(1,nada))), simple(1,nada))		
	cuál sería el programa que calcule la suma de los nodos de una enred	adera.	
	suma(nada,0).		2
	suma(simple(X,H),R):-suma(H,S), R is $S + X$.		
_	suma(doble(X,I,D),R):-suma(I,Si),suma(D,Sd),R is $Si + Sd + X$.		4 5
	suma(nada,0).	· C4 · V	
	suma(X,S):-suma(simple(X,H),Sh), suma(doble(X,I,D),Sd), R is Sh suma(nada,0).	+ Su + A.	6
	suma(simple(X,H),S):-suma(H,S), S is $S + X$.		′ \
	suma(doble(X,I,D),S):-suma(I,S),suma(D,S),S is $S + X$.	3	ì
	suma(nada,0).		
	suma(simple(X,H),R):-R is $S + X$, $suma(H,S)$.		
	suma(doble(X,I,D),R):-R is Si + Sd, suma(I,Si),suma(D,Sd).		
En los si	iguientes ejercicios considérese el siguiente programa Prolog:		
	p(X, [X Y]).		
	$p(X, [Y \mid Z]):-p(X,Z).$		
	q([X,Y]).		
	lista([1,2]).		
30 Al e	ejecutar el objetivo: ?- $p(1,X),p(2,X),q(X)$. se obtiene:		
	X = [1,2]		
	X = [2,1]		
	Bucle infinito		
	No		
31 Ind	icar cuál de las siguientes definiciones permitirían construir un predic	cado subcinjunto(A,B) que compi	ruebe que todos
los elem	entos de la lista A están incluidos en la lista B (observar que se utiliz	za el predicado 'p' del ejercicio a	nterior):
	subconjunto([] ,[]).		
	$subconjunto([X \mid L],M):-p(X,M),subconjunto(L,M).$		
	subconjunto([],[]).		
_	subconjunto($[X \mid L], [X \mid M]$):- $p(X,M)$,subconjunto(L,M).		
	subconjunto([],X).		
_	subconjunto($[X \mid L],M$):- $p(X,M)$,subconjunto(L,M).		
	subconjunto([],X).		
22 7 1	subconjunto([X L],[X M]):-p(X,M),subconjunto(L,M).	1 ?	Premisa
	icar con cuál de las definiciones del predicado "raro" se	0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0
-	que al ejecutar ?- raro(V). se obtiene $V=3$. raro(V):-lista([X Y]), V is $X + Y$.	$2 \forall x(Q(x) \rightarrow \exists y P(x,y))$?
	raro(V):-lista($[X Y]$), V is $X + Y$. raro(V):-lista($[X Y]$), $V = X + Y$.	3 ?	?
	raro(V):-lista([X,Y]), V = X + Y. raro(V):-lista([X,Y]), V is $X + Y$.	4 ?	?
	raro(X+Y):-lista([X Y]).		·
		5 ?	?
	$ω$ el unificador más general de { $P(x_1, x_2, x_3)$,	6 ?	?
	$f(x_1), f(x_2)$ } y $\sigma = \{ x_0 / a, x_1 / b, x_2 / c \}$. Entonces $\omega \cdot \sigma$ es	5. ;	.
igual a: □	$\{ x_1/f(a), x_2/f(b), x_3/f(c) \}$	7 ?	?
	$\{x_1/f(a), x_2/f(b), x_3/f(c)\}\$ $\{x_1/f(a), x_2/f(f(a)), x_3/f(f(f(a))), x_0/a\}$	8 ?	?
	$\{x_1/f(a), x_2/f(f(a)), x_3/f(f(a)), x_0/a\}$		
	$\{x_1/f(a), x_2/f(b), x_3/f(c), x_0/a\}$	9 ?	?

Enunciados não 95

10.-

Enunciados Febrero 2000-2001

34]	En la figura adjunta se presenta el esquema de la demostración por deducción natural del razonamiento:
{ ∀x	$\exists (\exists y P(x,y) \rightarrow \exists y P(y,x)), \ \forall x (Q(x) \rightarrow \exists y P(x,y)) \ \} \Rightarrow \forall x (Q(x) \rightarrow \exists y P(y,x)). \ \text{La fórmula del paso 8 es:}$
	$\exists y P(y,a)$
	$Q(a) \rightarrow \exists y P(a,y)$
	$\exists y P(a,y)$
	$Q(a) \rightarrow \exists y P(y,a)$
35	Dadas las fórmulas F1=" $\forall x \exists y (P(x,y) \rightarrow B(x))$ ", F2=" $\forall x ((\exists y P(x,y)) \rightarrow B(x))$ " y la interpretación la interpretación I:
Dom	$a_{1} = \{1,2\}, B(x) = \{1\}, P(x,y) = x \le y, \text{ se cumple que:}$
□ '	$V_{I}(F1)=F y V_{I}(F2)=V$
□ '	$V_{I}(F1)=V y V_{I}(F2)=F$
□ '	$V_{I}(F1)=V y V_{I}(F2)=V$
□ '	$V_{I}(F1)=F y V_{I}(F2)=F$

Enunciados Junio 2000-2001

Junio 2000-2001

Primer Parcial

 $\square \Sigma_4(6,7,8,9)$

En los siguientes ejercicios asignar las letras p,q,r por orden de ap	parición a las fra	ises propo	osicionales		
1 Al formalizar en lógica proposicional: "Un país va bien si y sólo	o si hay crecimie	ento econ	ómico y no hay in	nflación" se obtiene.	
$\square \ p \leftrightarrow (q \land r)$					
$\square (p \to q \land \neg r) \land (q \land \neg r \to p)$					
$\square p \to q \land \neg r$					
$\square (q \land r \to p) \land (p \to q \land r)$					
2 Al formalizar en lógica proposicional: "En Europa hay inflac	rión y no hay ci	recimient	o económico, por	r tanto, Europa no	va bien" se
obtiene.			•	•	
$\square p \land \neg q \to \neg r$					
$\Box \neg r \to p \land \neg q$					
$\Box p \land q \to r$					
$\square \stackrel{r}{p} \rightarrow \neg r$					
3 Al formalizar en lógica proposicional: "Cuando la economía n	no crece o el ne	tróleo su	he el euro se des	valúa a menos que l	a economía
americana vaya peor" se obtiene.	io crece o ei pe	iioieo sui	be, et euro se de l	vanaa a menos que n	и есопонии
$\Box \neg s \rightarrow (\neg p \lor q \rightarrow r)$					
$\Box (\neg p \lor q \to r) \to s$					
$\Box \neg s \to (r \to \neg p \lor q)$					
4 Sea F ₁ , F ₂ y F ₃ fórmulas con 3 variables diferentes cada una,					
al analizar todas las interpretaciones de sus tablas de verdad se	1 (rv-	$\neg q) \rightarrow s \wedge \neg q$	¬t Premisa		
encuentra que 8 interpretaciones no son un modelo para su	`	I/			
respectiva fórmula F _i , por lo que sería posible encontrar.	2	?	Premisa		
☐ Una fórmula insatisfacible, una satisfacible y una válida.	2.	•	Tremisa		
☐ Una fórmula satisfacible y dos válidas.	3	?	?		
☐ Dos fórmulas satisfacibles y una válida. ☐ Dos fórmulas insatisfacibles y una válida.	3	4	'		
		222		ק	
5 Para demostrar mediante deducción natural que	4	???	?		
$"\{(r \lor \neg q) \to s \land \neg t, (s \lor \neg r) \to q, p \to \neg q \} \Rightarrow \neg (\neg t \land p)" se$					
utiliza el esquema de la figura. Indicar cuál sería la fórmula del	5	?	?		
paso 4.					
	6	$\neg q$?		
$\Box \neg (\neg t \land p)$		-			
\Box r \vee \neg q	7	?	?		
$\square (\neg t \land p)$					
	8	?	?		
6 Considerando la misma figura, ¿Cuál sería la justificación	0	•	•		
del paso 11?.		0	Г.0		
□ ∧ I 6,10	9	?	∧E 8		
$\square \to E 2,10$					
□ ∧ I 6	10	?	?		
□¬I6					
	11	?	???		
7 Al aplicar el método de contradicción a la fórmula (($\neg t \leftrightarrow$	12	?	?		
$q \land \neg r) \land (q \land \neg s \land \neg r \land \neg q)) \rightarrow (p \rightarrow \neg r \lor t))$ para determinar si					
es o no válida se puede concluir.	13:-	?	?	_	
☐ Que la fórmula no es válida sino satisfacible porque en	13.	•	•		
alguna de sus interpretaciones no hay contradicción.					
☐ Que la fórmula es válida porque al menos existe una interpretacion	ón I en la que ha	av contra	dicción.		
☐ Que la fórmula es válida porque en todas las interpretaciones pos					
☐ Que la fórmula es insatisfacible porque en todas las interpretacio			radicción		
	1				
8 Cuál es la forma canónica de $f(a,b,c,d) = (\overline{a}+b+c)$ -	$+(ab\oplus c)+($	a+b+	$(\bar{c}) + \bar{c}d$		
$\square \Pi_4(1,2,3,4,5,6,14,15)$					
$\square \Sigma_4(6,7,9)$					
$\square \Sigma_4(6,7)$ $\square \Sigma_4(6,7)$					
— — 4 \~,·,					

Enunciados Junio 2000-2001

Sea $f_1(a,b,c,d) = \Sigma_4(4,7,12,13,m) + \Sigma_0(0,10,15,n)$ y $f_2(a,b,c,d) = \Sigma_4(0,4,15,n) + \Sigma_0(6,7,10,11,12,13,m)$. Se representa parte de sus funciones en los siguientes mapas respectivamente:

,	ا ام				
a	bcd	00	01	11	10
	00	X	*		*
	01	1	*	1	
	11	1	1	X	*
	10	*			X
			f_1		

`					
a	bcd	00	01	11	10
	00	1	*		*
	01	1	*	X	X
	11	X	X	1	*
	10	*		X	X

 f_2

Los '*' representan los valores por los que se puede sustituir 'm' y 'n'

- 9.- ¿Qué valor debe tomar 'm' y 'n' para que al simplificar ambos mapas se obtenga el mismo resultado?
- \Box m = 5 y n = 14;
- \square m = 5 y n = 1;
- \square m = 8 y n = 5;
- ☐ Ninguna de las anteriores.
- ¿Qué valor debería tener y 'n' en f₂ para que al simplificar la función se pudiera resultado $f_2(a,b,c,d) = \overline{c}d + acd$?
- \Box n = 8 y m = 1
- \square n = 5 y m = 8
- \square n = 8 y m = 14
- \square n= 3 y m=8
- 11.- ¿Qué valor debería tener 'm' para asegurar que al simplificar f_1 se obtendrá $f_1(a,b,c,d) = b\bar{c} + bd$ independientemente del valor que pueda tomar n?
- \square m = 8
- \square m = 5
- \square m = 14
- ☐ Ninguna de las opciones anteriores.

Segundo Parcial

- 1.- Para demostrar $\{\exists x P(x), (\exists y Q(y)) \rightarrow (\forall x \neg P(x)) \} \Rightarrow \exists y \neg Q(y)$ mediante deducción se ha utilizado el esquema de la figura. La justificación del paso 7 es:
- $\forall E 6$
- \rightarrow E5.6
- ∃I 6

En los siguientes ejercicios utilizar: $V(x) = "x \ es \ un \ vikingo"$, $E(x)="x \ es \ español", \ R(x)="x \ es \ rubio", \ I(x,y)="x \ invade \ a \ y".$

- 2.- La frase "Todos los vikingos que invaden a algún español son rubios" se formaliza como:
- $\forall x ((V(x) \land \exists y (E(y) \land I(x,y))) \rightarrow R(x))$
- $\forall x \ (\exists y (E(y) \land I(x,y) \land R(x)) \rightarrow V(x))$
- $\forall x \exists y (V(x) \land E(y) \land I(x,y) \land R(x))$
- $\forall x (R(x) \rightarrow (V(x) \land \exists y (E(y) \land I(x,y))))$
- 3.- La frase "Sólo los vikingos invaden a algún español" se formaliza como:
- П $\forall x (V(x) \rightarrow \exists y (I(x,y) \land E(y)))$

1	∃xP(x)	?
2	?	Premisa
3	?	?
4	?	?
5	?	?
6	?	?
7	?	????
8	?	?
9	?	?
10	?	?
11	?	?

Enunciados Junio 2000-2001

	$\forall x \ (\exists y \ (I(x,y) \land E(y) \) \rightarrow V(x) \)$								
	$\forall x \ (\neg \exists y \ (I(x,y) \land E(y)) \rightarrow V(x))$								
	$\forall x (V(x) \rightarrow \neg \exists y (I(x,y) \land E(y)))$								
4 La fi	4 La frase "No existen vikingos a menos que algún español haya sido invadido por alguien" se formaliza como:								
	$\exists x V(x) \rightarrow \exists y (E(y) \land \exists z I(z,y))$								
	$\neg \exists x V(x) \rightarrow \exists y (E(y) \land \exists z I(z,y))$								
	$\exists y (E(y) \land \exists z I(z,y)) \rightarrow \neg \exists x V(x)$								
$\Box \qquad \neg \exists x V(x) \rightarrow \neg \exists y (E(y) \land \exists z I(z,y))$									
5 La fi	rase "Todos los vikingos son españoles y rubios" se puede formali	lizar c	omo:						
	$\forall x (V(x) \rightarrow (E(x) \land R(x)))$								
	$\forall x (V(x) \to (E(x) \to R(x)))$								
	$\forall x (V(x) \land E(x) \land R(x))$								
	$\forall x ((V(x) \land E(x)) \rightarrow R(x))$								
6 Para	demostrar el razonamiento " $\{\exists x \forall y P(x,y)\} \Rightarrow$								
	¬P(x,y)" por deducción natural, se utiliza el esquema de la		1	?	Premisa				
figura. I	La justificación del paso 6 es:		2	?	?				
	∀E5								
	∃15		3	?	?				
	∧ I 4,5		4	?	?				
	Ninguna, con ese esquema no es posible demostrarlo.		5	?	?				
	7 Se representan los números naturales mediante la codificación			?	·				
	o y se desea construir un predicado que se cumpla cuando		6	?	????				
	mento es un número par. Suponiendo que ya se ha definido		7	?	?				
	básico. ¿Cuál de las siguientes definiciones podría utilizarse								
-	caso recursivo?		8	?	?				
	par(s(X)):-par(X). par(s(s(X))):-par(X).		9	?	?				
	par(s(s(X)))par(X). $par(X):-par(s(X)).$								
	par(X):-par(s(X)). $par(X):-par(s(s(X))).$		10	?	?				
	irbol binario se denomina <i>cuco</i> si todos los nodos son								
	s naturales pares (siguiendo la codificación de Peano). ¿Cuál de la	as sion	ijentes def	iniciones	podría utilizarse para				
	si un árbol binario es <i>cuco</i> ?	5181			pouria unimento para				
	cuco(hoja).								
	cuco(rama(X,I,D)):-par(X),cuco(I),cuco(D).								
	guas (hais)								
	cuco(hoja). cuco(rama(par(X),cuco(I),cuco(D))).								
	cuco(rama(par(A),cuco(1),cuco(D))).								
	cuco(hoja).								
	cuco(I), cuco(D), par(X):-cuco(rama(X,I,D)).								
	cuco(hoja).								
	cuco(X):- $cuco(rama(X,I,D)),par(X)$.								

Enunciados Junio 2000-2001

9 Supo	oniendo que se ha definido el predicado "noCuco(X)" que se cumple cuando "X" no es un árbol cuco.
¿Cuál d	e los siguientes predicados toma una lista de árboles y devuelve el número de árboles cucos?
	cuenta([],0).
	cuenta([X L],N):-cuco(X),cuenta(L,M),N is M+1.
	cuenta([X L],N):-noCuco(X),cuenta(L,N).
	quanta([] (I)
Ц	cuenta([],0).
	cuenta([X L],N):-cuco(X), cuenta(L,N), N is N + 1.
	cuenta([X L],N):-noCuco(X),cuenta(L,N).
	cuenta([],0).
	cuenta(L,N):- $cuco(X)$, $cuenta([X L],N)$, N is $N+1$.
	cuenta(L,N):-noCuco(X), cuenta([X L],N).
_	
	cuenta([],0).
	cuenta(L,N):-cuenta($[X L],M$), cuco(X), N is M + 1.
- I	cuenta(L,N):-cuenta([X L],N), noCuco(X).
	os preguntas siguientes debe construirse el árbol de resolución utilizando la regla de computación y de búsqueda del
sistema	Prolog para el objetivo ?- $p(f(f(a)),X)$. y el programa:
	p(f(X),Y):-q(X),p(X,f(Y)).
	p(f(X),Y):-q(Y),p(X,f(Y)).
	p(X,X).
	q(a).
	a estrategia de búsqueda es "Primero en Profundidad" la primer respuesta encontrada es:
	X = a
	X = f(a)
	X = f(f(a))
	Ninguna de las anteriores
	a estrategia de búsqueda es "Primero en anchura" la primer respuesta encontrada es:
	X = a
	X = f(a)
	X = f(f(a))
	Ninguna de las anteriores
	respuesta de un sistema Prolog ante la pregunta ?- $p(X,f(Y,X)) = p(f(Y),f(a,Z))$. es:
	X = f(Y), Y = a, Z = f(Y)
	X = f(a), Y = a, Z = f(a)
	X = f(Y), Y = a, Z = X
	No
13 Si s	se define el conjunto A = $\{10/0.6, 20/0.5, 30/0.2, 40/0.8, 50/0.4\}$. Entonces A $\land \neg$ A será:
	{10/0.6, 20/0.5, 30/0.8, 40/0.8, 50/0.6}
	{10/0.4, 20/0.5, 30/0.8, 40/0.2, 50/0.6}
	{10/0.6, 20/0.2, 30/0.8, 40/0.2, 50/0.6}
	{10/0.4, 20/0.5, 30/0.2, 40/0.2, 50/0.4}
14 Sea	$1F1 = \forall x(\exists y P(x,y) \rightarrow \exists z P(z,x)) y F2 = \neg \forall x \neg \exists y P(x,y) y \text{ la interpretación I con el dominio D=} \{1,2\} y P(x,y) = "x>y".$
Entonce	
	$V_{I}(F1)=V y V_{I}(F2)=V$
	$V_{I}(F1)=V y V_{I}(F2)=F$
	$V_{I}(F1)=F y V_{I}(F2)=V$
	$V_{I}(F1)=F$ y $V_{I}(F2)=F$
15 A r	partir de las premisas: $\{ \forall x P(f(x)), \forall x (P(x) \leftrightarrow Q(x)) \}$ se puede deducir:
	$\exists x P(x)$
	$\forall x P(x)$
	$\neg \exists x P(x)$
	$\neg \forall x P(x)$
_	IVAL(A)

Septiembre 2000-2001

Primer Parcial

En los siguientes ejercicios asignar las letras p,q,r por orden de apa	arición a las fr	ases prop	osicionales		
1 Al formalizar en lógica proposicional: "Cuando se reúne el grup nadie" se obtiene:	po de los 7 en	itonces lo	s globalifóbicos	atacan sin embargo no mata	n a
$\Box p \rightarrow q \land \neg r$					
$\square \ q \to p \land \neg r$					
$\square q \land \neg r \to p$					
2 Al formalizar en lógica proposicional: "Eres globalifóbico solo s	sí te manifiesta	is en cont	ra de la globaliz	zación a pesar de recibir golpi	zas
por la presiones policíacas" se obtiene.	· ·		Ü		
$\Box p \rightarrow q \rightarrow r$					
$\Box \stackrel{\mathbf{r}}{\mathbf{q}} \rightarrow \neg \mathbf{r} \rightarrow \mathbf{p}$					
$\Box p \rightarrow q \wedge r$					
$\Box q \wedge r \rightarrow p$					
3 Al formalizar en lógica proposicional: "La implantación de la gla	lobalización a	c cuficion:	to para que la d	liforencia de clases se increme	nt.
a no ser que la ONU intervenga en la distribución de la riqueza mun			не рага дне на а	njerencia de clases se increme	nie
	naiai se ooti	CHC.			
$\Box \neg r \to (p \to q)$					
$\Box \neg r \to (q \to p)$					
$\Box r \to (p \to q)$					
$\square \neg r \to (p \land q)$					
4 En un accidente automovilístico existen 3 pasajeros					
desaparecidos (Abel quien conducía, Luis y Karla). Tras las	1p→	q	Premisa		
pesquisas hechas por la guardia civil se puede realizar las					
siguientes hipótesis:	$2s \rightarrow$	r	Premisa		
Vive el conductor.					
 Si vive Abel pero no Luis entonces vive Karla. 	3p v	S	Premisa		
 Vive Abel y vive Luis a no ser que viva Karla. 				_	
Si vive Luis o vive Abel entonces no vive Karla	4	?	Supuesto		
Suponiendo que todas las hipótesis son ciertas,			•		
¿ Quiénes son los sobrevivientes?	5	?	?		
□ Abel.					
☐ Abel y Luis.	6	?	?		
□ Karla.]	
☐ Abel y Karla.	7	??	?		
				_	
5 Para demostrar mediante deducción natural que	8	?	?		
" $\{p \rightarrow q, s \rightarrow r, p \lor s\} \Rightarrow q \lor r$ " se utiliza el esquema de la					
figura. Indicar cuál sería la fórmula del paso 7.	9	?	?		
□ p	7.	•	•		
$\square \neg (p \lor s)$	10	?	?		
$\Box p \rightarrow q \vee r$	10.	•	•		
$\Box p \lor s \to q$	11	?	?	-	
- P · S · A	11	•	•		
6 Considerando la misma figura cual sería la justificación del	12	<i>a.</i>	??		
paso 12.	12	$q \vee r$	11		
□ ¬I 8-10					
$\square \vee E 3, 7, 11$					
□ ∨ I 11					
$\Box \to E \ 2,11$					
L / L 2,11					
7 Sea un árbol semántico creado a partir de una formula $F \operatorname{con} N \operatorname{va}$	omiobles Trees	au maaalu	aión ao an an an anter	en Enadas da ávita y Enadas	da
	arrables. Tras	su resoru	cion se encuentra	an E nodos de exito y F nodos	ue
fallo. Entonces podemos asegurar que: \square E+F = N					
$\Box (E-F) \lor (F-E) = N$					
\square E+F <= 2^N					
\Box E+F < 2*N					
O Dissão distribute and distribute distribut	(mm a) \ (=	<u> </u>	1.1. 4. 1. 1	NIANID/I	1
8 Diseñe el circuito equivalente a la siguiente expresión: $(mnq) \times$	_	_	-		108
considere como una puerta NAND) por NOR y simplifíquelo en sum	na de producto	s, cual es	la expresión mír	nima equivalente.	
\square m(n+q)					
$\frac{\square}{\square} \frac{mn + q}{\square}$					
$\Box mn + q$					

☐ Ninguna de las anteriores En un concurso de TV existen 4 concursantes a quienes se les hacen las mismas preguntas, el primero que obtiene la respuesta presiona el botón que tiene al frente. Existen 4 botones (a,b,c,d) uno para cada concursante. Cuando un concursante presiona un botón, éste genera una entrada con valor de 1. Se desea diseñar un circuito de empate f(a,b,c,d) que reciba como entrada los 4 botones de los concursantes y que detecte cuando 2 personas han presionado un botón a la vez. La salida del circuito se activará (con un 1) cuando 2 botones sean presionados a la vez. Si se presionan 3 o más botones la salida del circuito queda indefinida. 9.- ¿Cuál es la forma canónica de la función f(a,b,c,d) de salida? $\square \Pi_4(3,5,6,9,10,12) + \Pi_0(7,11,13,14,15)$ $\square \Sigma_4(3,5,6,9,10,12) + \Sigma_0(7,11,13,14)$ $\square \Pi_4(7,8,11,13,14,15) + \Pi_0(0,1,2,4)$ $\square \ \Sigma_4(3,5,6,9,10,12) + \Sigma_0(7,11,13,14,15)$ 10¿Cuál es la función de salida f(a,b,c,d) simplificada en productos de suma? \Box f(a,b,c,d) = (a+b)(c+d) $\Box f(a,b,c,d) = (a+b+d)(a+b+c)(b+c+d)(a+c+d)$ $\Box f(a,b,c,d) = (a+b+d)(a+b+c)(\overline{a}+b+c+d)(a+\overline{b}+c+d)$ $\Box f(a,b,c,d) = (a+b+d)(a+b+c)(b+c+d)(a+c+d)(\overline{a}+\overline{b}+\overline{c})(\overline{a}+\overline{c}+\overline{d})$ Segundo Parcial En los tres siguientes ejercicios tomar $A(x)="x \in A"$, $B(x)="x \in B"$, I(x,y)="x = y"1.- Una función $h:A \to B$ se dice que es *invectiva* si a todo par de elementos distintos de A les asocia elementos distintos. Una posible formalización de la propiedad anterior sería: $\forall x \forall y \ (A(x) \land A(y) \rightarrow (I(x,y) \rightarrow I(h(x),h(y))))$ $\forall x \forall y (A(x) \land A(y) \rightarrow (\neg I(x,y) \rightarrow I(h(x),h(y))))$ $\forall x \forall y \ (\ A(x) \land A(y) \rightarrow (\ I(x,y) \rightarrow \neg I(h(x),h(y))\)\)$ $\forall x \forall y \ (\ A(x) \land A(y) \rightarrow (\ I(h(x),h(y)) \rightarrow I(x,y)\)\)$ 2.- Una función $h: A \to B$ se dice que es **sobreyectiva** si todos los elementos de B son asociados a algún elemento de A. Una posible formalización sería: $\forall x (A(x) \rightarrow \exists y (B(y) \land I(y,h(x)))$ $\forall y (B(y) \rightarrow \exists x (A(x) \land I(y,h(x)))$ $\exists x \forall y (A(x) \land B(y) \land I(y,h(x))$ $\exists x \ \forall y \ (\ A(x) \land B(y) \rightarrow I(y,h(x)\)$ 3.- Sean A y B los conjuntos cuyos elementos se representan en la figura adjunta. Se cumple que: $\forall x (A(x) \leftrightarrow B(x))$ $\forall x (A(x) \rightarrow B(x))$ $\forall x (A(x) \land B(x))$ $\forall x (B(x) \rightarrow A(x))$ 4.- Un quadtree es una estructura recursiva en forma de árbol que permite representar cuadrados bidimensionales de forma compacta. Cada nodo tiene dos posibles valores: Una información de color, en este caso, blanco (b) o negro (n) Una estructura "q(SI,SD,II,ID)" cuyos argumentos son 4 quadtrees que representan información de los cuadrantes en que se subdivide la imagen: superior izquierdo (SI), superior derecho (SD), inferior izquierdo (II) e inferior derecho (ID). Por ejemplo, los cuadrados de la figura se representarían como: C1 = q(b,q(b,n,n,b),n,q(b,n,b,n))C2 = q(q(n,b,b,n),b,q(n,b,n,b),n)Los cuadrados C1 y C2 son simétricos respecto al eje vertical. Indicar cuál de los siguientes predicados permite detectar si dos quadtrees cualesquiera son simétricos respecto al eje vertical. sim(b,b). sim(q(A,B,C,D),q(A1,B1,C1,D1)):-sim(A,A1),sim(B,B1),sim(C,C1),sim(D,D1).sim(b,b). sim(n,n). sim(q(A,B,C,D),q(B,A,C,D)):-sim(A),sim(B),sim(C),sim(D).sim(b,b). sim(n,n).

sim(q(A,B,C,D),q(B1,A1,D1,C1)):-sim(A,A1),sim(B,B1),sim(C,C1),sim(D,D1).

sim(b,b). sim(n,n).

sim(q(A,B,C,D),q(D1,C1,B1,A1)):-sim(A,A1),sim(B,B1),sim(C,C1),sim(D,D1).5.- Indicar cuál de los siguientes predicados permite calcular el porcentaje de color negro de un cuadro. A modo de ejemplo, el porcentaje de color negro de los cuadros C1 y C2 del ejercicio anterior es 0,5. pn(n,1). pn(b,0). pn(q(A,B,C,D),N):-pn(A,Na),pn(B,Nb),pn(C,Nc),pn(D,Nd),N is (Na + Nb + Nc + Nd) / 4. pn(n,1). pn(b,0). pn(q(A,B,C,D),N):-pn(A,N),pn(B,N),pn(C,N),pn(D,N),N is N / 4. pn(n,1). pn(b,0). pn(A,Na),pn(B,Nb),pn(C,Nc),pn(D,Nd), N is (Na + Nb + Nc + Nd) / 4 :- pn(q(A,B,C,D),N).pn(n,1). pn(b,0). pn(q(A,B,C,D),N):-pn(A,Na),pn(B,Nb),pn(C,Nc),pn(D,Nd),N is Na + Nb + Nc + Nd, N is N / 4.En los siguientes ejercicios, utilizar: B(x)="x es una batalla", M(x,y)="x es la madre de y" 6.- El razonamiento: "Toda batalla tiene una madre, por tanto, existe una madre de todas las batallas" podría formalizarse como: $\{ \forall x (B(x) \rightarrow \exists y M(y,x)) \} \Rightarrow \exists y \forall x (B(x) \rightarrow M(y,x)) \}$ $\{ \forall x (B(x) \rightarrow \exists y M(y,x)) \} \Rightarrow \exists y \forall x (M(y,x) \rightarrow B(x)) \}$ $\{ \exists y \forall x (B(x) \rightarrow M(y,x)) \} \Rightarrow \exists y \forall x (B(x) \land M(y,x)) \}$ $\{ \forall x (\exists y M(y,x) \rightarrow B(x)) \} \Rightarrow \exists y \forall x (M(y,x) \rightarrow B(x)) \}$ 7.- El razonamiento del ejercicio anterior cumple que: Es correcto porque se alcanza la cláusula vacía aplicando resolución No es correcto porque se alcanza la cláusula vacía aplicando resolución Es correcto porque no se alcanza la cláusula vacía aplicando resolución No es correcto porque no se alcanza la cláusula vacía aplicando resolución 8.- La frase "Sólo las batallas tienen alguna madre" podría formalizarse como: $\forall x ((\exists y M(y,x)) \rightarrow B(x))$ $\forall x(B(x) \rightarrow \exists y M(y,x))$ $\exists y \forall x (M(y,x) \land B(x))$ $\exists y \forall x (M(y,x) \rightarrow B(x))$ 9.- Para demostrar por deducción natural el razonamiento $\{\forall x \ (P(x) \rightarrow \neg Q(x))\}$ 1.- $\forall x (P(x) \rightarrow -Q(x))$), $\exists x \ Q(x) \} \Rightarrow \exists x \neg P(x)$ se ha utilizado el esquema de la figura. Indicar cuál sería la justificación del paso 6. 2-Premisa $\neg I 3$ 3.-? ? \rightarrow E 4,1 \rightarrow E 4.5 ? ? 4.- Λ I 4,2 ? 5.-Para responder los dos ejercicios siguientes, construir el árbol de resolución ? tomando el siguiente programa Prolog: 6.-???? p(f(X),Y):-p(Y,X),q(X). ? ? 7p(b,f(X)). ? q(f(X)). ? 8.y el objetivo ?- p(X,f(a)). ? 9.-10.- Si se recorre en profundidad, la substitución de respuesta es: 10.-X = bX = aX = f(a)11.- Si se recorre en anchura, la substitución de respuesta es: X = bX = a? Q(a) 1.-X = f(a)? 2.-Premisa 12.- Para demostrar mediante deducción natural el razonamiento {Q(a), ? 3- $\neg \exists x Q(x) \} \Rightarrow \forall x P(x)$ se utiliza el esquema de la figura. La fórmula del paso 5 ? ? 4.es:

Enunciados náo 103

????

5.-

2

F

	V
	$\forall x P(x)$
	No es posible demostrarlo con ese esquema
13 Ind	icar cuál de las siguientes frases no es verdadera.
	Un conjunto de expresiones puede tener más de un unificador más general
	El algoritmo de resolución lineal es completo para cláusulas Horn
	El algoritmo de resolución unitaria es completo para cláusulas Horn
	El resultado obtenido al modificar la regla de búsqueda es siempre el mismo
14 En	Prolog, el resultado de la pregunta $?[X Y] = [1+2,3+4]$. es:
	X = 1 + 2, Y = 3 + 4
	X = 3, Y = 7
	X = 3, Y = [7]
	X = 1 + 2, Y = [3 + 4]
15 Sea	A el razonamiento " $\{(\forall x P(x)) \rightarrow Q(a)\} \Rightarrow \forall x \ (P(x) \rightarrow Q(a))$ " y B el razonamiento " $\{\forall x (P(x) \rightarrow Q(x)), \forall x \in P(x) \}$ "
$\forall x Q(x)$	$\Rightarrow \exists x P(x)$ ". Se cumple que:
	A es correcto y B no es correcto.
	A y B son correctos
	A no es correcto y B es correcto
	Ni A ni B son correctos.

Enunciados Primer Parcial 2001-2002

Primer Parcial 2001-2002

 $\square \Pi_3(2,6)$ $\square \Sigma_3(0,1,4,5,7)$

☐ Ninguna de las anteriores.

Εn	los:	signie	ntes e	ierci	cios	asignar	las	letras	n.a	r	nor	orden	de	aparición	a la	s frases	pror	osicion	ales
பா	100	31 g ui Ci	iiios c	ICI CI	CIUS	asignai	ıus	icuas ,	ν , q	, /	DOL	oracii	uc	aparicion	а та	o masco	DIOL	JOSICIOII	arcs

En los signientes ejercicios asignar las letras p,q,r por orden de aparici	ion a las mas	es proposic	cionales		
1 Al formalizar en lógica proposicional: "Cuando David Copperfield				e hizo famoso, sin embo	ırgo
desaparecer las torres gemelas fue suficiente para que Bin Laden fuera	a más famoso	" se obtier	ne:		
$\square (q \to p) \land (r \to s)$					
$\square (p \to q) \land (r \to s)$					
$\square (p \to q) \land (s \to r)$					
$\square (q \to p) \land (s \to r)$					
2 Al formalizar en lógica proposicional: "Bin Laden no permanecero	á en paz, a 1	nenos que	Estados Unidos a	deje de atacar a Afgani	stán
además de no intervenir en los asuntos de paz de los palestinos" se obt		1		, ,,,	
$\Box \neg (q \rightarrow \neg r) \rightarrow p$					
$\Box \neg p \rightarrow (q \land \neg r)$					
$\Box \neg (q \to \neg r) \to \neg p$					
$\Box p \to (q \land \neg r)$					
3 Al formalizar en lógica proposicional: "Los taliban ganarán la guer	rra sólo si na	olean come	lo hicieron contr	ra los rusos no obstanta	, 110
será fácil para los E.U. capturar a Bin Laden a pesar de que cuentan co				a ios rasos, no obsiame	, no
\Box (q \rightarrow p) \land (\neg r \land s)	on armas poc	ierosus	se obtiene.		
$\Box (p \to q) \land (\neg r \land s)$					
$\square (q \to p) \land (\neg s \to \neg r)$					
$\square (p \to q) \land (r \to s)$					
4 D 1 4 P 4 11 12 4 11 1 1 1					
4 Para demostrar mediante deducción natural el razonamiento	1 q	$\mathop{\rightarrow} r \wedge s$	Premisa		
" $\{q \rightarrow r \land s, r \rightarrow p, \neg s \rightarrow q\} \Rightarrow (r \lor \neg s) \rightarrow p$ " se utiliza el esquema					
de la figura. Indicar cuál sería la fórmula del paso 5.	2	?	Premisa		
_ q					
	3	?	?		
□¬s		•	•	1	
<u> </u>	4	?	Cupuesto		
5 Considerando la misma figura cual sería la justificación del	4		Supuesto		
paso 11.					
$\square \to E 2,8$	5	??	?		
□ ∨E 2,4,10					
□ ¬E 5-10	6	?	?		
$\square \rightarrow E 5-10$					
6 Sea C un conjunto de Premisas {P ₁ ,P ₂ } y sea Q una conclusión.		?	?		
Si consideramos $P_1 = \neg p \rightarrow p \land q$, $P_2 = \neg (\neg p \lor \neg q)$ cual debe ser el valor					
de Q para que sea consecuencia lógica de C.	8	r	?		
□¬p		•	•		
□¬q		9	9		
$\Box p \rightarrow q$	9	?	?		
$\Box q \to \neg p$		_			
7 Al crear un árbol semántico para la fórmula $((p \land q) \leftrightarrow (r \lor q))$	10	?	→I 5-9		
\neg s)) \rightarrow (\neg q \rightarrow p), tomando la lista de LP por orden alfabético se					
	11	?	??		
pude asegurar:				,	
☐ Que la formula es válida porque todos sus nodos son de éxito. ☐ Que la formula es satisfacible con 3 nodos de éxito y dos de	12	?	?		
fallo.					
☐ Que la formula es satisfacible con 4 nodos de éxito y uno de					
fallo.					
☐ Que la formula es válida con 3 nodos de éxito y dos de fallo.					
0.0 1.0 1.4 () D ()	1 ("				
8 Sean las fórmulas $A=(p \land \neg q) \leftrightarrow r \ y \ B=(r \lor q \lor \neg p) \land ((\neg p \lor q) \to \neg r) \ s$	se puede affri	mar:			
Que A y B son válidas.					
Que A y B son satisfacibles.					
☐ A y B son equivalentes lógicamente.					
☐ Las respuestas b) y c) son correctas.					
9 Al probar por contradicción si la formula $((p \lor \neg s \lor \neg q) \to (r \land t))$		q) es o no v	válida obtenemos o	que:	
☐ La formula es valida porque en todos los casos se genera contradicció	ón.				
☐ La formula es insatisfacible.					
☐ La formula es satisfacible.					
☐ La formula es una tautología porque en ningún caso se genera contrac	dicción.				
10 Cual sería la forma canónica equivalente de la función: $f(a,b,c)$	$= \overline{h} \times (\overline{a})$	$(\overline{c}) + \overline{h}\overline{c}$			
	$, o \wedge (a)$	0,100			
\square $\Pi_3(1,5)$					

Enunciados

11.- El circuito de la figura representa la función

 $\Box f(a,b,c) = \overline{b}c$

 $\Box f(a,b,c) = ab\overline{c} + \overline{a}c + \overline{b}$

$$\Box f(a,b,c) = ab\overline{c} + \overline{a}c + \overline{b}c$$

$$\Box f(a,b,c) = abc + \overline{a}\overline{b} + \overline{b}\overline{c}$$

En una sala de videojuegos existe una diana

tal y como se muestra en la figura adjunta. Cada pista de la diana genera un '0' de un '1' cuando el jugador participante acierta un disparo en la pista correspondiente. circuito lógico que active una sirena cuando el jugador haya ganado en el juego, recibirá como entrada las salidas de la diana respectivamente y su salida f(a,b,c,d,e) cuando se cumpla alguna de las condiciones siguientes:

Cuando el jugador acierte indistintamente en 4 pistas o bien si acierta en dos de las interiores.

También se activará su salida si el jugador acierta en 3 pistas en donde al menos 1 acertado en una de las dos pistas más interiores

La diana esta diseñada para que dos disparos no puedan acertar en la misma pista, que todos los disparos que el jugador acierte estarán en una pista diferente. El disparos por juego.

electrónica con 5 pistas salida por defecto y Se desea diseñar un para ello el circuito se activará con un '1'

Primer Parcial 2001-2002

lógica:

tres pistas más

disparo haya

por lo que se asegura jugador tiene 5

12.- ¿Cuál sería el resultado de simplificar f(a,b,c,d,e) en forma de suma de productos?

$$\Box f(a,b,c,d,e) = \overline{a}bc + ac + ab + abc + ade + bde$$

$$\Box$$
 $f(a,b,c,d,e) = bc + ac + ab + ade + bde$

$$\Box f(a,b,c,d,e) = bc + ac + ab + ade + \overline{a}bde + abde$$

$$\Box$$
 $f(a,b,c,d,e) = bc + c + b + de + bde$

Suponiendo que las condiciones del problema cambian considerando que el juego de la diana se encargará de que el jugador al menos acierte un disparo(para evitar desilusiones por mala puntería), y sólo se concederán 4 disparos por juego, entonces:

13.- Cuál sería la forma canónica que representa f(a,b,c,d,e)

 $\square \ \Sigma_5(11,12,13,14,15,19,20,21,22,23,24,25,26,27,28,29,30,31) + \Sigma_0(0)$

 \square $\Pi_5(0,13,14,15,21,22,23,24,25,26,27,28,29,30) x <math>\Pi_0(31)$

 \square $\Pi_5(13,14,15,21,22,23,24,25,26,27,28,29,30) x <math>\Pi_0(0,31)$

☐ a) y b) son correctas

14.- Con estas nuevas condiciones, ¿Cuál sería el resultado de simplificar la nueva función f(a,b,c,d,e) en forma de productos de suma?

$$\Box f(a,b,c,d,e) = (a+b)(a+c+d)(a+c+e)(\overline{a}+b+c+e)(\overline{a}+b+c+d)$$

$$\Box f(a,b,c,d,e) = (a+b)(a+c+d)(a+c+e)(b+c+e)(b+c+d)$$

$$\Box f(a,b,c,d,e) = (a+b)(a+c)(b+c+e)(b+c+d)$$

$$\Box f(a,b,c,d,e) = (b)(c+d)(c+e)(b+c+e)(b+c+d)$$

Enunciados Segundo Parcial 2001-2002

Segundo Parcial 2001-2002

En el siguiente ejercicio, utilizar: $M(X)$ =" x es una moto", $P(x)$ =" x es un paquete", $V(x,y)$ =" x viaja en y "
1 La frase "Sólo los paquetes viajan en moto" se puede formalizar como:
$\square \ \forall x (P(x) \rightarrow \exists y (V(x,y) \land M(y)))$
$\square \ \forall x (\ (\exists y (V(x,y) \land M(y))) \to P(x))$
$\Box \forall x (V(x,y) \land M(y) \rightarrow P(x))$
2 La fórmula $\forall x(M(x) \land \forall y(V(x,y) \rightarrow P(y)))$ es una formalización de la frase: \Box Todas las motos viajan en paquetes
☐ Sólo las motos viajan en paquetes
☐ Todos son motos y viajan en paquetes
☐ Todos son motos y viajan sólo en paquetes
3 La frase "Una moto no viaja en un paquete a menos que un paquete viaje en una moto" se puede formalizar como:
$\Box \ \forall x (M(x) \to \exists y (P(y) \land V(x,y)) \to \forall x (P(x) \to \exists y (M(y) \land V(x,y)))$
4 La frase " <i>No hay motos viajando en paquetes</i> " se puede formalizar como:
$\Box \neg \exists x (M(x) \land V(x, P(y)))$
$\square \ \forall x (M(x) \to \forall y (P(y) \to \neg V(x,y)))$
$ \Box \neg \exists x (M(x) \land V(x,y) \land \neg P(y)) $
$\square \exists x (M(x) \land \neg \exists y (P(y) \land V(x,y)))$
5 La frase "Alguna moto viaja en un paquete" se puede formalizar como:
$ \Box \exists x (M(x) \land V(x, P(y))) $ $ \Box \exists x (M(x) \rightarrow V(x, P(x))) $
$\Box \exists x (M(x) \rightarrow \exists y (V(x,y) \land P(y)))$ $\Box \exists x (M(x) \rightarrow \exists y (V(x,y) \land P(y)))$
6 ¿Cuál es el número mínimo de pasos para demostrar el razonamiento $\{\exists x \forall y P(x,y)\} \Rightarrow \exists x P(x,x)$ mediante deducción
natural?
□ 5 □ 6
7 A partir de la temperatura, se definen los conjuntos borrosos <i>Agradable</i> y <i>Frío</i> con las funciones de pertenencia:
$\mu_{\text{Aeradable}} = \{ 0/0, 10/0.7, 20/0.9, 30/0.6, 40/0 \} \text{ y } \mu_{\text{Erfo}} = \{ 0/1, 10/0.8, 20/0.2, 30/0, 40/0 \}$
¿Cuál sería la función de pertenencia al conjunto "no muy agradable y muy frío"?
[{ 0/1, 10/0.64, 20/0.19, 30/0.64, 40/1 }
□ { 0/1, 10/0.64, 20/0.04, 30/0, 40/0 } □ { 0/0, 10/0.49, 20/0.04, 30/0, 40/0 }
$\square \{0.0, 10.0.49, 20.0.04, 30.0, 40.0\}$ $\square \{0.1, 10.0.51, 20.0.04, 30.0, 40.0\}$
8 Sean las fórmulas $F_1 = \forall x (P(x) \rightarrow \exists y Q(x,y))$ y $F_2 = \exists x (P(x) \land \forall y Q(x,y))$ y la interpretación I con dominio $D = \{a,b,c\}$,
$P(x)=\{a,c\}$ y $Q(x,y)="x=y"$. Se cumple que:
\square $V_1(F_1)=\mathbf{F}$ y $V_1(F_2)=\mathbf{F}$
$\square V_{I}(F_{1}) = \mathbf{F} \mathbf{y} V_{I}(F_{2}) = \mathbf{V}$
9 En la interpretación del ejercicio anterior, las fórmulas $F_3 = \forall x (\exists y Q(x,y) \rightarrow P(x))$ y $F_4 = \exists x (P(x) \rightarrow \forall y Q(x,y))$ cumplen:
$ \Box V_1(F_3) = \mathbf{F} \ V_1(F_4) = \mathbf{F} $
$\square V_{I}(F_{3})=F y V_{I}(F_{4})=V$
\square $V_I(F_3)=V$ y $V_I(F_4)=F$
$\square V_{I}(F_{3})=V y V_{I}(F_{4})=V$
En los siguientes ejercicios se utilizará la representación de árboles binarios (Arboles) definida por inducción de la siguiente
forma: - hoja $\hat{m{I}}$ Arboles
- Note 1 Arboles - Si I,D \hat{I} Arboles, entonces rama(X,I,D) \hat{I} Arboles
10 El predicado <i>esta(X,A)</i> que se cumple si el elemento X pertenece al árbol A podría definirse como:
esta(X,rama(X,I,D)).
esta(X,rama(Y,I,D)):-esta(X,I),esta(X,D).
\square esta(X,hoja).

Enunciados Segundo Parcial 2001-2002

	esta(X,rama(Y,I,D)):-esta(X,I),esta(X,D).										
	esta(X,rama(X,I,D)).										
	esta(X,rama(Y,I,D)):-esta(X,I).										
_	esta(X,rama(Y,I,D)):-esta(X,D).										
	esta(X,hoja). esta(X,Y):-esta(X,rama(Y,I,D)).										
11.	1 El predicado <i>nodos</i> (<i>A</i> , <i>N</i>) que se cumple cuando N es el número de nodos del árbol A podría definirse como:										
	nodos(rama(X,I,D),R):-nodos(I,Ni), R is 1 + Ni.										
	nodos(rama(X,I,D),R):-nodos(D,Nd), R is 1 + Nd.										
	nodos(hoja,0). nodos(rama(X,I,D),R):- $nodos(I,Ni),nodos(D,Nd),R$ is $1 + Ni + Nd$.										
	nodos(hoja,0). nodos(rama(X,I,D),R):- $nodos(I,Ni),nodos(D,Nd),R$ is $X + Ni + Nd$.										
	nodos(hoja,0).										
	nodos(rama(X,I,D),1+Ni+Nd):-nodos(I,Ni),nodos(D,Nd).										
12.	- En las siguientes preguntas considerar el siguiente programa Prolog										
	p([X],X).										
	p([X L],Y):-p(L,Y).	1	$\forall x (P(x) \to \exists y Q(x,y))$	Premisa							
ا ب	q([X,X]).	2	?	Premisa							
An⊓	te la pregunta ?-p(V,2),q(V). se obtiene: V=2	3	?	?							
	V=[2,2]	4	?	?							
	V=[2 2] No	5	?	?							
	- Ante la pregunta ?-q([2 V]),p(V,W). se obtiene:										
	V=2, W=2	6	?	???							
	V=[2], W=2	7	?	?							
	No Bucle infinito	8	?	?							
	- Ante la pregunta ?- p([1,2,3],V), W is V + 1. se obtiene:	9	?	?							
	V = 3, W = 4	10	?	?							
	V = 2, W = 3										
	V = 1, W = 2 Error aritmético										
	- En la figura se indica el esquema de la demostración del razonamiento $\{\forall x(P)\}$	OvE(-(x	(x,y) $\exists x \neg \exists y O(x,y)$	$\exists x \neg P(x)$							
	diante deducción natural. ¿Cuál sería la justificación del paso 6?	x) /=yQ	(X,Y) , $\exists X \exists Y Q(X,Y)$	J→⊒X II (X)							
	∀E1										
	∃I 5										
	→E4,5										
	→E3,5	1	1 1 1 1	1							
	- Al demostrar si el razonamiento del ejercicio anterior es correcto mediante el a niente conjunto de cláusulas:	lgoritmo	de resolución se ob	tiene el							
_	$\{\neg P(x) \lor Q(x,y), \neg Q(x,y), P(x)\}$	4	Y(D(-) - O(-))	Durania							
	$\{\neg P(x) \lor Q(x,f(x)), \neg Q(a,y), \neg P(x)\}$	1	$\forall x (P(x) \land Q(x))$	Premisa							
	$\{\neg P(x) \lor Q(x,y), \neg Q(x,y), \neg P(x) \}$	2	?	Premisa							
	$\{\neg P(x) \lor Q(x,f(x)), \neg Q(a,y), P(x)\}$	3	?	?							
	-¿Cuál de las siguientes frases es verdadera? Si el resolvente de dos cláusulas de un conjunto C es la cláusula vacía	4	?	?							
ente	onces C es válido	5	?	?							
	Si F ^C es el conjunto de cláusulas obtenido al transformar F a forma clausal	6	?	???							
у Г П	^C es válido, entonces F es válida Si F ^C es el conjunto de cláusulas obtenido al transformar F a forma clausal	7	?	?							
уF	^C es insatisfacible, entonces F es insatisfacible	8	?	?							
	Todas las anteriores son verdaderas Al ciccutar an Prolog ? $p(Y_1 Y_2) = p(f(Y_0 Y_0) f(Y_1 Y_1)) Y_0 is 2 + 2 so$										
	- Al ejecutar en Prolog ?- $p(X1,X2)=p(f(X0,X0),f(X1,X1))$, X0 is 2 + 2. se iene:	9	?	?							
	X0 = 4 $X1 = f(4,4)$ $X2 = f(f(4,4),f(4,4))$										
	X0 = 2+2 $X1 = f(2+2,2+2)$ $X2 = f(f(2+2,2+2),f(2+2,2+2))$	2+2,2+2)))								
	X0 = 4 $X1 = f(X0,X0)$ $X2 = f(X1,X1)X0 = 2+2$ $X1 = f(X0,X0)$ $X2 = f(X1,X1)$										
	$\Delta U = L + L$ $\Delta I = I(\Delta U, \Delta U) - \Delta L = I(\Delta I, \Delta I)$										

19.- Para demostrar si es correcto el razonamiento

Enunciados Segundo Parcial 2001-2002

$\{\forall x(P(x)\land Q(x)), \exists x\neg P(x)\}\Rightarrow\exists x\neg Q(x)$ mediante deducción natural se utiliza el esquema de la figura. ¿Cuál sería la justificación del paso 6?
□ ∧E5
□ ∧I3,5
\square $\forall E1$
☐ Ninguna. El razonamiento no puede demostrarse con ese esquema.
20 Para estudiar si el razonamiento:
$\{\forall x (P(x) \rightarrow \exists y (Q(x,y) \land R(y))), \exists x \neg R(x)\} \Rightarrow \neg \forall x P(x)$
es correcto mediante el algoritmo de resolución se obtiene un conjunto de cláusulas C. Tras aplicar la estrategia de
eliminación de cláusulas con literales puros se obtiene:
☐ Un conjunto sin cláusulas que indica el razonamiento no es correcto
☐ Un conjunto sin cláusulas que indica el razonamiento es correcto
$\square \left\{ \neg P(x) \lor Q(x, f(x)), \neg P(x) \lor R(f(x)), \neg R(a), P(x) \right\}$
$\square \left\{ \neg P(x) \lor Q(x,y), \neg P(x) \lor R(y), \neg R(x), P(x) \right\}$

Febrero 2001-2002

Primer Parcial

En los siguientes ejercicios asignar las letras p,q,r por orden de ap	_				
1 Al formalizar en lógica proposicional: "David ganará el concur	rso a menos	que .	Rosa no se	equivoque y no	o se ponga nerviosa" se obtiene:
$\Box \neg (q \land r) \rightarrow p$					
$\square p \to (\neg q \land \neg r)$					
$\square (q \lor r) \to p$					
$\square p \to \neg (q \land r)$					
2 Al formalizar en lógica proposicional: "Cuando cantas bien ado	emás de no	sør fø	o tienes n	avores posibili	idades de triunfar" se obtiene
\Box r \rightarrow (p \land \neg q)	emas ae no .	ser je	o, nenes n	iayores posibili	addes de trungar se obtiene.
*					
$\Box (p \land q) \rightarrow r$					
$\Box r \to (p \lor \neg q)$					
$\square (p \land \neg q) \to r)$					
3 Al formalizar en lógica proposicional: "Para ganar eurovisión	es suficiente	e acti	ıar bien si	se cuenta con u	<i>in buen cantante</i> " se obtiene.
$\square \ r \to (q \to p)$					
$\square (q \to p) \to r$					
$\Box r \rightarrow (p \rightarrow q)$					
$\Box (p \rightarrow q) \rightarrow r$					
4 Se tienen dos fórmulas A y B con dos variables					
proposicionales cada una, y una interpretación I _x ={p=V y	1 -	(¬n	v e) ↔ ¬r	Premisa	
q=V}. Se cumple que $V_{Ix}(A) = V_{Ix}(B)$ entonces podemos	1	(P	∨ <i>s)</i> ← 1	Ticinisa	
$q = v_1$. Se cumple que $v_{1x}(r) = v_{1x}(B)$ entonces podemos segurar que:	2		0	ъ :	
\square La interpretación I_x es un modelo para A y B.	2	•	?	Premisa	
☐ Las fórmulas A y B son satisfacibles.					
☐ Las formulas A y B son satisfactories. ☐ Las fórmulas A y B son equivalentes lógicamente.	3	-	?	?	
☐ Ninguna de las anteriores.					
	4		?	?	
5 Para demostrar mediante deducción natural que					7
" $\{(\neg p \lor s) \leftrightarrow \neg r, s \to q, \neg p \to s\} \Rightarrow (p \land \neg r) \to q$ " se utiliza el	5		?	Supuesto	
esquema de la figura. Indicar cuál sería la fórmula del paso 8.] 3	•	•	Supucsio	
□ p				2	
$\square \neg (\neg p \lor s)$	6	•	$\neg r$?	
$\Box \neg p$					
\square s	7	-	?	?	
6 Considerando la misma figura, ¿Cuál sería la justificación	8		???	?	
del paso 12?.					
$\square \to E 2,9$?	?	
$\square \rightarrow E 8,11$)	•	•	•	
□ ∨ E 2,7,11	10		0		
□¬E 8-11	10		?	?	
_ 2011					
	11		?	?	
7 En el concurso de televisión "sálvese quien pueda"					
quedaban 3 concursantes(Rosa, David y Verónica). Según las	12		q	???	
reglas del concurso pueden eliminarse uno o dos concursantes a			1		
	13		?	?	
la vez. Los espectadores han expresado diversas opiniones	13		•	•	
sobre quien(es) serían él/los siguientes en ser eliminados. Las					
declaraciones fueron las siguientes:					
No será eliminado el tercero.	**				
Si eliminan a Rosa además de David entonces no eliminarán a					
No eliminarán a David a menos que eliminen a Rosa y a Veró	nıca.				
• Si eliminan a David o a Vero entonces eliminarán a Rosa.					
Considerando que tres de las declaraciones de los espectadores fuer	ron falsas, ¿	Quié	n(es) será(n) eliminado(s)	?
Rosa					
Rosa y Verónica.					
Rosa y David.					
☐ David y Verónica.					

Limitatos	1 COICIO 2001-2002
\square $\Pi_3(3)$	
$\square \Sigma_3(7)$	
9 Un álgebra de Boole es una estructura de la forma $\{A,+,X,-,0,1\}$ siendo A un conjunto en el que se $(+ y x) y$ unaria $(-) y$ se verifican varios postulados. ¿Cuál de las siguientes propiedades no representa debe cumplir una estructura para tener estructura de Álgebra de Boole? $\Box a + b = b + a$	
$\Box \ a \times (b+c) = (a \times b) + (a \times c)$	
$\Box \ a + \overline{a} = 1$	
$\Box a \times 0 = 0$	
Se desea diseñar un circuito que permita controlar el llenado de un tanque de gas. Para ello el tanque consta de 4 sensores colocados de la forma como lo indica la figura adjunta. El tanque se empezará a llenar de forma constante por la válvula de entrada que se encuentra en la parte superior, es importante considerar que el gas es menos pesado que el aire . Cuando el nivel de gas sobrepasa un sensor este pasa de cero (su estado inicial) a 1. La salida del circuito f(a,b,c,d) se encenderá con un 1, al inicio cuando el gas no haya sobrepasado ningún sensor y después de que el gas haya sobrepasado el nivel del sensor a.	d C D D D D D D D D D D D D D D D D D D
10 ¿Cuál sería la mínima expresión de la función $f(a,b,c,d)$ en suma de productos?	
$\Box f(a,b,c,d) = a + \overline{d}$	
$\Box f(a,b,c,d) = \overline{b}$	
$\Box f(a,b,c,d) = a + \overline{c}\overline{d}$	
$\Box f(a,b,c,d) = \overline{a}\overline{b} + a\overline{b}$	
11 ¿Cuál sería el mínimo número de puertas lógicas NAND de dos entradas que se requiere para dismínima expresión de la función f(a,b,c,d) en productos de suma? ☐ 1 puerta NAND. ☐ 2 puertas NAND. ☐ 3 puertas NAND. ☐ 6 puertas NAND.	señar el circuito correspondiente a la
Segundo Parcial	
En los siguientes ejercicios, utilizar: $D(x,y)="x\ daba\ arroz\ a\ y",\ Z(x)="x\ es\ una\ zorra",\ A(x)="x\ es\ una\ zorra"$	="x es un abad"
21 La frase "Dábale arroz a la zorra el abad" se puede formalizar como:	
$\Box \exists x \exists y (A(x) \land Z(y) \rightarrow D(x,y))$	
$\Box \exists x (D(A(x),Z(x))$ $\Box \exists x \exists y (A(x) \land Z(y) \land D(x,y))$	
$\Box \exists x \exists y (D(x,y) \rightarrow A(x) \land Z(y))$ $\Box \exists x \exists y (D(x,y) \rightarrow A(x) \land Z(y))$	
22 La frase "Todas las zorras daban arroz al abad" podría formalizarse como:	
$\Box \forall x (Z(x) \rightarrow \exists y (A(y) \land D(x,y)))$	
$\Box \forall x (Z(x) \land \exists y (A(y) \land D(x,y)))$	
\Box $\forall x(Z(x) \rightarrow D(x,x))$	
$\Box \forall x(Z(x) \land D(x,x))$	
$\Box \exists x (Z(x) \land D(x,x))$	
	1.6.1
24 La frase "Todos daban arroz a alguien cuando alguien se daba arroz a sí mismo" se pue $\Box \exists x D(x,x) \rightarrow \forall x \exists y D(x,y)$	ede formalizar como:
$\Box \exists x D(x,x) \to \forall x \exists y D(x,y)$ $\Box \exists x D(x,x) \to \exists y \forall x D(x,y)$	
$\Box \forall x \exists y D(x,y) \rightarrow \exists x D(x,x)$	
25 La frase "Algún abad daba arroz a todos los abades" se puede formalizar como:	
$\square \exists x (A(x) \land \forall y (D(x,y) \to A(y)))$	

$\Box \exists x (A(x) \land \forall y (A(y) \to D(x,y)))$ $\Box \forall y \exists x (A(x) \land A(y) \to D(x,y))$										
 □ ∀y∃x(D(x,y) → A(x)∧A(y)) 26 En una interpretación en la que T(x) = "x es un término", A(x)="x es un átomo", F(x)="x es una fórmula bien formada", ¿cuál de las siguientes fórmulas es verdadera? 										
$\forall x(A(x) \rightarrow T(x))$										
$\exists \forall x (T(x) \rightarrow A(x))$										
$ \forall x(F(x) \rightarrow A(x)) $										
27 Sea I la interpretación cuyo dominio es D={0,1}, $f(x)$ ="1 – x ", $P(x,y)$ ="2 $F_1 = \forall x (\exists y P(x,y) \rightarrow P(x,f(x)))$ y $F_2 = \forall x (P(x,f(x)) \rightarrow \exists y P(x,y))$, se cun										
$ \Gamma_1 = \forall x (\exists y F(x,y) \to F(x,I(x))) \text{ y } \Gamma_2 = \forall x (F(x,I(x)) \to \exists y F(x,y)), \text{ se cuil} $ $ \square \forall V_I(F_1) = F \text{ y } \forall V_I(F_2) = F $	npie que.									
$\square \bigvee_{I}(F_1) = F \bigvee_{I}(F_2) = V$										
$\square V_{I}(F_{1})=V y V_{I}(F_{2})=F$										
\square $V_I(F_1)=V$ y $V_I(F_2)=V$										
28 En la interpretación del ejercicio anterior, las fórmulas $F_3 = \forall x \exists y P(y, f(x))$) y $F_4 = \exists$	$y \forall x P(y,f(x))$ cumpl	len:							
$ \Box V_{I}(F_{3})=F y V_{I}(F_{4})=F $ $ \Box V_{I}(F_{3})=F y V_{I}(F_{4})=V $	1	$\forall x (P(x) \leftrightarrow Q(x))$	Premisa							
$\square \bigvee_{I} (F_3) = V \vee \bigvee_{I} (F_4) = F$										
\square $V_I(F_3)=V$ y $V_I(F_4)=V$	2	?	Premisa							
29 Para demostrar el razonamiento $\{\forall x (P(x) \leftrightarrow Q(x)),\$	3	?	?							
$\exists x P(x) \Rightarrow \exists x Q(x)$ se utiliza el esquema de la figura. Indicar cuál	4	?	?							
sería la justificación del paso 6.	5	?	?							
□ ↔E5										
$\Box \rightarrow E 3.5$	6	?	???							
$\square \leftrightarrow I 4$	7	?	?							
$\square \rightarrow E 4,5$	8	?	?							
30 Dado el siguiente programa Prolog										
pp([],[]). pp([X L],[Y M]):-pp(L,M), X is 2 * Y.										
Ante la pregunta ?- pp([2,4],V). se obtiene:										
□ V=[1,2]										
□ V=[4,8] □ Error aritmético										
□ No										
31 Dado el siguiente programa Prolog										
qq([]).										
qq([X [X L]]):-qq(L).										
¿Cuál de las siguientes preguntas devuelve X=1 como primer resultado?										
\square ?- qq([1,X,3]).										
\square ?- qq([1,X,3,X]). \square ?- qq([1,1,3,3]).										
\Box ?- qq([1,X,3,3]).										

32 Dado el siguiente programa Prolog			
rr(f(X,Y),g(Z)):-rr(Y,Z).		,	
rr(a,a).			
Ante la pregunta ?- $rr(f(a,f(b,a)),X)$. se obtiene:			
□ No			
\square $X = a$			
\square $X = g(a)$			
\square $X = g(g(a))$			
33 Dado el siguiente programa Prolog			
ss(X):- $p1(X)$, $p2(X)$.			
p1(a):-p3(a).			
p2(b):-p4(b).			
p3(c).			
p4(c).			
Si se construye el árbol de resolución para el objetivo ?-ss(X ¿cuál sería el tercer objetivo? ☐ ?- p4(b),p1(b). ☐ ?- p1(a),p4(b). ☐ ?- p1(b),p4(b). ☐ ?- p1(a),p4(a).). utilizando como regia de computación serec	.cionur ei ui	imo
34 Indicar cuál de las siguientes frases se cumple:			
☐ En lógica polivalente, el valor de una fórmula no es neces ☐ La lógica modal tiene predefinido el predicado de	sariamente verdadero o falso.		
igualdad.	1 $\forall x (\exists y (P(x,y) \land Q(y)) \rightarrow \exists y (P(y,x) \land R(y))$	Premisa	
☐ La función de pertenencia de la intersección de 2			
conjuntos borrosos se calcula a partir del máximo de las	2 ?	Premisa	,
funciones de pertenencia de dichos conjuntos.	3 ?	?	
☐ En lógica de predicados de orden superior, la función	4 ?	?	de
pertenencia de un conjunto borroso puede ser negativa.	5 ?	?	I
35 En la demostración mediante deducción natural del razonamiento			I
$\{\forall x (\exists y (P(x,y) \land Q(y)) \rightarrow \exists y (P(y,x) \land R(y))),\}$	6 ?	?	I
$\exists x(P(x,x)\land Q(x))\} \Rightarrow \exists xR(x)$	7 ?	?	
se utiliza el esquema de la figura. ¿Cuál es la	8 ?	???	
justificación del paso 8?	9 ?	?	I
□ ∀E 1	10 ?	?	I
□ ∧E7	10 !		ı
$\square \rightarrow E 7,4$	11 ?	?	
□ F I7			
36 Al intentar demostrar si el razonamiento anterior es corre	ecto mediante el algoritmo de resolución. ¿Qué	cláusulas h	abría
que utilizar?			
$\ \square \ \{ \neg P(x,y) \lor \neg Q(y) \lor P(f(x),x) \land R(f(x)), \ P(a,a) \land Q(a), \ \neg R(x) \\$	}		
$\ \square \ \{ \neg P(x,y) \lor \neg Q(y) \lor P(y,x), \ \neg P(x,y) \lor \neg Q(y) \lor R(y), \ P(x,x), \ Q(x), \ P(x,x), \ $	$Q(x), \neg R(x)$ }		
$\ \ \Box \ \{ \neg P(x,y) \lor \neg Q(y) \lor P(f(x),x), \neg P(x,y) \lor \neg Q(y) \lor R(f(x)), P(x,y) \lor \neg Q(y) \lor R(f(x)), P(x,y) \lor \neg Q(y) \lor R(y,y) \lor \neg Q(y) \lor R(y,y) \lor \neg Q(y) \lor R(y,y) \lor \neg Q(y,y) \lor \neg$	$A,a), Q(a), \neg R(x) $		
\square { $\neg P(x,y) \lor \neg Q(y) \lor P(f(x),x)$, $\neg P(x,y) \lor \neg Q(y) \lor R(f(x))$, $P(x,y) \lor \neg Q(y) \lor R(f(x))$	(a,a), Q(a), R(a)		

Junio 2001-2002

Primer Parcial

 $\Box \ f(a,b,c,d) = a\overline{b} + \overline{a}bc$

 $\Box f(a,b,c,d) = a\overline{b}$ $\Box f(a,b,c,d) = \overline{a}bc$

En los signientos giargiaios esigner les letres n.a.r., per orden de eneri	oión a las fra	usas propo	sisionales		
En los siguientes ejercicios asignar las letras p,q,r por orden de aparie			sicionales		
1 Al formalizar en lógica proposicional: "Amar o no amar cuando ser	ronoser s	e obtiene.			
$\Box (r \vee \neg s) \to (p \vee \neg q)$					
$\Box (q \lor \neg q) \to (p \lor \neg p)$ $\Box (p \lor q) \to (r \lor s)$					
☐ (p v ¬p) → (q v ¬q) 2 Al formalizar en lógica proposicional: "Si existes sólo cuando eres	tanaihla ant	on oor tu a	lma no ovieto" so	ohtiona	
	iangibie eni	onces iu a	ima no existe se	obtiene.	
$\Box (q \to p) \to \neg r$					
$\Box (p \to q) \to r$ $\Box (p \to q) \to \neg r$					
$\Box (p \to q) \to \neg r$					
3 Al formalizar en lógica proposicional: "Morir es suficiente pare	a desaparee	ar da asta	mundo a manos	s and amos v porduro	s an los
recuerdos de tus seres amados" se obtiene.	і иезиритес	er de este	e munao a menos	s que ames y peraure.	s en ios
$\Box (\neg r \land s) \rightarrow (p \rightarrow q)$					
$\Box \neg (r \land s) \rightarrow (q \rightarrow p)$					
$\Box (p \to q) \to (r \land s)$					
$\Box \neg (r \land s) \rightarrow (p \rightarrow q)$					
4 Sean F ₁ , F ₂ y F ₃ fórmulas equivalentes lógicamente con 3					
variables cada una, al analizar todas las interpretaciones de sus			.		
tablas de verdad se encuentra que 15 interpretaciones son un	1 ¬r–	$\rightarrow p \lor q$	Premisa		
modelo para su respectiva fórmula F _i , por lo que sería posible			.		
encontrar.	2	?	Premisa		
☐ Una fórmula válida, y dos fórmulas satisfacibles.	_	_	_		
☐ Una fórmula insatisfacible y dos fórmulas válidas.	3	?	?		
☐ Tres fórmulas satisfacibles.				ר	
a) y c) son posibles y por tanto ambas correctas.	4	?	Supuesto		
5 Para demostrar mediante deducción natural que	_	_	_		
" $\{\neg r \rightarrow p \lor q, p \rightarrow \neg s, q \rightarrow p \land \neg s\} \Rightarrow \neg (\neg r \land s)$ " se utiliza el	5	?	?		
esquema de la figura. Indicar cuál sería la fórmula del paso 7. □ q					
$\Box p \land q$	6	$p \lor q$?		
$\Box p \land q$					
	7	???	?		
6 Considerando la misma figura, ¿Cuál sería la justificación	8	?	?		
del paso 11?.					
$\square \to E 3, 7$	9	?	?		
□ ∨ E 6,2,10					
□¬I7-10	10	?	?		
$\square \to E 7, 10$					
	11	?	???		
7 Al crear el árbol semántico para la fórmula $((p \lor \neg q) \to (r \land q))$	12	?	?		
s)) \leftrightarrow (p \rightarrow q) se puede concluir (para la creación de nodos					
seleccione las variables en orden alfabético).	13:-	?	?		
☐ Que la fórmula es válida con 6 nodos de éxito y 4 de fallo.				-	
☐ Que la fórmula es satisfacible con 6 nodos de éxito y 4 de fallo.	14	?	?		
☐ Que la fórmula es satisfacible con 5 nodos de éxito y 4 de					
fallo.					
☐ Que la fórmula es satisfacible con 5 nodos de éxito y 5 de fallo.					
8 Al simplificar a su mínima expresión la función $f(a,b,c,d)$ =	$=\overline{(\overline{a}+b)+a}$	a+b+a	$\frac{\overline{(a \oplus cb)}}{(a \oplus cb)}$		-
•	$(u \mid v) \mid v$	(a i b i C	$C_{j} \cap (u \cup c_{i} \cup c_{i})$		
$\Box f(a,b,c,d) = a\overline{b} + a\overline{b}\overline{c} + \overline{a}bc$					

9 Si se ha demostrado que $a+a=a$, aplicando el teorema de dualidad quedaría demostrado que:
Una alarma antiincendios consta de 4 sensores (a,b,c,d) de humo distribuidos a lo largo de un pasillo en un edificio. Cuando un sensor detecta humo se enciende pasando su estado de cero a uno. Cuando un sensor está encendido la alarma entrará al nivel de alerta, y pasará al nivel de alarma (encendiendo la sirena) cuando encuentre 2 o más sensores contiguos activados. Se desea diseñar el circuito controlador de la salida de la alarma f(a,b,c,d), que tome como entrada la señal de los sensores y active la sirena de la alarma cuando sea necesario.
10 ¿Cuál es la forma canónica de la función $f(a,b,c,d)$? $\Box \Pi_4(5,6,7,11,13,14,15)$ $\Box \Sigma_4(3,5,6,7,11,12,13,14,15)$ $\Box \Sigma_4(3,6,7,11,12,13,14,15)$ $\Box a) y c) son correctas.$
11 ¿Cuál sería la mínima expresión de la función $f(a,b,c,d)$ en productos de suma? $\Box f(a,b,c,d) = (a+c)(b+c)(b+\overline{c}+d)$ $\Box f(a,b,c,d) = (a+\overline{b}+c)(b+c)(b+d)$ $\Box f(a,b,c,d) = (\overline{a}+\overline{c})(\overline{b}+\overline{c})(\overline{b}+\overline{d})$ $\Box f(a,b,c,d) = (a+c)(b+c)(b+d)$

Segundo Parcial

1 En el siguiente ejercicio, utilizar la regla y la estrategia de árbol SLD con el objetivo $?-p(X,f(f(b)))$. y el programa:	busqueda de Prolog para construir los 4 primeros niveles del
p(X,f(Y)):-q(Y,Z),p(X,Z).	
p(a,f(f(Y))).	
q(f(b),a).	
Utilizar regla de computación seleccionar el primero:	
?-p(X,f(f(b))).
Cod 1	
¿Cuál sería la respuesta del sistema?	
Utilizar regla de computación seleccionar el último:	
?-p(X,f(f(b))).
¿Cuál sería la respuesta del sistema?	
2 See E1 - Hu(HuD(n n) 10(n)) E2 - HuHu(D(n n) 10(n)	(a) a Ha intermetación con dominio D=(a h) D(v v)="v + v"
2 Sea F1= $\neg \forall x(\exists y P(x,y) \rightarrow Q(x))$, F2 = $\neg \forall x \exists y (P(x,y) \rightarrow Q(x))$ $Q(x)=\{a\}$.	b) e i la interpretacion con dominio $D=\{a,b\}$, $F(x,y)=x\neq y$,
	V (F2)
$V_{I}(F1) = \underline{\hspace{1cm}}$ Breve justificación:	$V_{I}(F2) = \underline{\hspace{1cm}}$ Breve justificación:
Bieve justificación.	Breve Justineaeron.

En el siguiente ejercicio utilizar: $M(x) = "x \ es \ una \ monjita"$, $D(x) = "x \ está \ descalza"$, $A(x,y) = "x \ admira \ a \ y" \ j = Juan$											
3 Formalizar las frases "Las monjitas descalzas admiran a alguien que está descalzo":											
200 mongram account and a anguitant que com account y											
"Sólo las monjitas están descalzas, sin embargo, nadie se admira a sí mismo"											
"Las monjitas descalzas admiran sólo a las monjitas que no están descalzas"											
* *											
"Todas son monjitas, están descalzas y 1	no admiran a nadie"										
4Demostrar los siguientes razonamient	cos por deducción natural	(si se utilizan cajas, dibujarlas)									
$ \{ \forall x (\exists y P(x,y) \rightarrow Q(x)), P(a,a), \neg \exists x Q(x) \} $	-	$\{ \forall x (P(x) \rightarrow \forall y Q(x,y)), \neg \exists y Q(x,y) \}$	$\{a,y\} \Rightarrow \neg P(a)$								
1. $\forall x(\exists y P(x,y) \rightarrow Q(x))$	Premisa	1. $\forall x (P(x) \rightarrow \forall y Q(x,y))$	Premisa								
2. P(a,a)	Premisa	2. $\neg \exists y Q(a,y)$	Premisa								
3. ¬∃xQ(x)	Premisa	3									
4		4									
5		5									
6		6									
7		7									
8		8									
9		9									
10		10									
5Suponiendo que se dispone de los pre	edicados										
par(X):- se cumple si X es par impar(X):-se cumple si X es impar											
Definir los siguientes predicados en Prol a filtra(L,M):-Se cumple si M contiene	log una lista con los elemento	os impares de la lista L									
Ejemplo:		<u></u> -									
?- filtra([2,3,7,6],V). V = [3,7]											
b sumim(L,S):-Se cumple si S es la sum	na de los elementos impai	res de la lista L									
Ejemplo:											
?- sumim([2,3,7,6],V). V = 10											

Septiembre 2001-2002

Primer Parcial

1	Formalizar	en lógica	proposicional	las siguientes	frases	asignando	las l	letras p,	q, r,	según el	orden de	aparición	de c	ada
fra	Se.													

"Una condición necesaria para que la danza no se resienta es que la bailarina no sea demasiado pesada para su compañero":

"Algún bailarín rompe un tobillo siempre que la bailarina se vuelve loca, además, cuando la bailarina se vuelve loca, todos los bailarines rompen sus tobillos"

"No bailo con la amiga de Pepe a menos que Pepe baile con mi amiga"

"Bailar pegados es bailar, pero Sergio no baila"

2.- Sea f la función:

$$f(a,b,c,d) = \begin{cases} a + \overline{c} & \text{si } a = b \\ \overline{a} + b + \overline{d} & \text{si } a \neq b \text{ y } b = c \end{cases}$$

La tabla de verdad de f de la función es:

abcd	f
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Simplificar por Karnaugh en forma de suma de productos. Escribir los términos y las agrupaciones en la siguiente tabla de Karnaugh:

El resultado sería: _____

3.- Rellenar la siguiente tabla poniendo una X en la casilla que se cumpla:

Fórmula	Válida	Satisfacible	Insatisfacible
$(p \lor q) \to (\neg p \land \neg q)$			
$((p \to q) \land (q \to \neg r)) \to \neg (p$			
∧ r)			
$(p \to q) \land p \land \neg q$			
$(p \lor \neg q) \leftrightarrow (\neg p \lor q)$			

4.-Demostrar los siguientes razonamientos por deducción natural (si se utilizan cajas, dibujarlas)

Premisa

Premisa

{ p —	→ (q ∧	$r), r \rightarrow$	q}=	⇒ (p	\wedge r) \rightarrow s
-------	--------	---------------------	-----	------	-----------------------------

1. $p \rightarrow (q \land r)$

2. $r \rightarrow \neg q$

3. _____

4.

5. _____

6

10

11. _____

12. _____

 $\{\ p \rightarrow (q \vee \neg\ r), \, q \rightarrow s, \, \neg s \rightarrow r\ \} \Rightarrow p \rightarrow s$

1. $p \rightarrow (q \lor \neg r)$

 $2. q \rightarrow s$ Pro

 $3. \neg s \rightarrow r$

 $3. \neg S \rightarrow \Gamma$

4. _____

5

6

0

10

11

12

13. _____

Premisa

Premisa

Premisa

5.-Dada la función

$$f(a,b,c,d) = \sum_{4} (0,4,5,7) + \sum_{\emptyset} (2,3,10,11)$$

Indicar cuál sería la expresión equivalente en forma de productos de sumas:

 $f(a,b,c,d) = \underline{\hspace{1cm}}$

Simplificar por Karnaugh en forma de productos de sumas Escribir los términos y las agrupaciones en la siguiente tabla de Karnaugh:

El resultado sería: _____

1 Formalizar en lógica de predicados las siguientes frases utilizando B(x,y)="x baila con y", P(x,y)="x está pegado a y", s =
"Sergio"

"Los que están pegados a alguien bailan con Sergio" :

"Sólo los que bailan con Sergio están pegados a él"

"Nadie baila con Sergio a menos que Sergio esté pegado a todos"

"Sergio baila con todos sólo si todos bailan con alguien"

2.-Demostrar los siguientes razonamientos por deducción natural (si se utilizan cajas, dibujarlas)

2Demostrar los siguientes razonamie	entos por deducción natura	al (si se utilizan cajas, dibujarlas)	
$\{\forall x (P(x) \rightarrow \exists y Q(x,y)), \forall x P(x)\}$	0 } $\Rightarrow \forall x \exists y Q(x,y)$	$ \{ \exists x (P(x) \lor Q(x)), \forall x (P(x) \to R(x,x)) $	$, \neg \exists x Q(x) \} \Rightarrow \exists x R(x,x)$
1. $\forall x (P(x) \rightarrow \exists y Q(x,y))$	Premisa	1. $\exists x (P(x) \lor Q(x))$	Premisa
2. ∀xP(x)	Premisa	2. $\forall x (P(x) \rightarrow R(x,x))$	Premisa
3		3. ¬∃xQ(x)	Premisa
4		4	
5		5	
6		6	
7		7	
		8	
		9	
		10	
		11	
		12	
		13	
		14	
		15	
		16	
		17	

Enunciados	Septiembre 2001-2002

3 Sea E=P(x,f(x),y,z) , σ_1 = { x / g(a), v Entonces, $\sigma_1 \circ \sigma_2$ =	_		/ g(x), z / b }	
(G G)(F) -				
$\frac{(\sigma_1 \circ \sigma_2)(E) = }{\text{4 Dado el programa siguiente programa}}$ $p(f(X),f(Y)):-p(X,Y).$ $p(X,X).$	Prolog:		?-p(X	Z,f(f(b))).
Construir el árbol SLD para el objetivo: $?-p(X,f(f(b))).$				
Indicar cuál sería la(s) respuesta(s) del sis el orden en que son obtenidas:	stema por			
5 Definir los siguientes predicados en Pr	rolog:			
a "prods" toma dos listas de números y Ej. ?- prods([1,2,3],[4,5,6],V). V = [4,10,18]	_	lista formada por lo	s productos de los e	lementos de cada lista.
b "quita" toma una lista L y devuelve la Ej. ?- quita([1,2,3,4],V). V = [1,2,3]	a lista resultai	nte de quitar el últir	no elemento a L	
6 Rellenar la siguiente tabla poniendo un	na X en la cas	silla correspondiente	e:	
Fórmula	Válida	Satisfacible	Insatisfacible	
$(\forall x (P(x) \to Q(x)) \land P(a)) \to Q(a)$	v anua	Sansiaciole	msaustacture	
$(\forall x (P(x) \to Q(x)) \land P(a)) \to P(a)$				

Entonces, $\mu_{\text{muy A} \land \text{no B}} =$

7.- Si A y B son conjuntos borrosos con las siguientes funciones de pertenencia:

 $\begin{array}{l} \mu_{A}\!=\!\{\;0\:/\:0.5,\:20\:/\:0.2,\:40\:/\:0.7,\:60\:/\:0.6,\:80\:/\:0.7\:\}\\ \mu_{B}\!=\!\{\;0\:/\:0.2,\:20\:/\:0.3,\:40\:/\:0.6,\:60\:/\:0.8,\:80\:/\:0.4\:\} \end{array}$

Enunciados Primer Parcial 2002-2003

Primer Parcial 2002-2003

1 A pa	artir de las premisas { $p_1 \leftrightarrow p_2$, $p_2 \leftrightarrow p_3$ $p_{n-1} \leftrightarrow p_n$, $\neg p_n$ } se puede deducir:			
	p ₁			
	$p_1 \lor p_2 \ldots \lor p_n$			
	$p_1 \wedge p_2 \dots \wedge p_n$			
	$\neg p_1 \lor \neg p_2 \ldots \lor \neg p_n$			
	a figura se representa el esquema de la demostración por deducción natural	1	$p \to \neg r$?
	namiento: { $p \rightarrow \neg r, p \rightarrow (q \rightarrow r)$ } $\Rightarrow p \rightarrow \neg q, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	2	?	Premisa
paso 6 '		3	?	?
	p _q			
	$\neg q$ q	4	?	?
	ч ¬p	5	?	?
	cando el algoritmo de resolución, ¿Cuál de los siguientes razonamientos es	6	?	?
correcto	y y	7	?	?
	$\{p \to \neg q, q \leftrightarrow r\} \Rightarrow p \to r$	8	?	?
	$\{p \to \neg q, q \leftrightarrow r \} \Rightarrow \neg r$	9	?	?
	$\{p \to \neg q, q \leftrightarrow r\} \Rightarrow p \to \neg r$			
	$\{p \to \neg q, q \leftrightarrow r\} \Rightarrow r$	10	?	?
	En los siguientes ejercicios de formalización, asignar las letras p, q, r a las			
	ciones por orden de aparición.			
	rase: "Es necesario adelantar el reloj para llegar a la hora, pero llegar a la hora no	implica un	a vida mej	ior", podría
	zarse como:			
	$(q \to p) \land (q \to r)$ $(q \to p) \land \neg (q \to r)$			
	$(q \to p) \land \neg (q \to 1)$ $(p \to q) \land (q \to r)$			
	$(p \to q) \land \neg (q \to r)$			
	rase: "Estamos calladas solo cuando no nos mira el guaperas que tiene un coche amo	rillo" noc	lría formal	izarse como:
	$p \rightarrow \neg q$	nino pot		Large Como.
	$\neg q \rightarrow p$			
	$p \rightarrow \neg q \wedge r$			
	$\neg q \rightarrow p \wedge r$			
	formalizar y convertir en forma normal conjuntiva la frase: "El ataque se va a produca	ir a no ser	que Georg	ge tome una
_	' se obtiene:			
	$p \lor \neg q$			
	$p \vee q$			
	$\neg p \lor q$			
	¬p∨¬q ormalizar y convertir en forma normal conjuntiva la frase: "Jugamos al póker o al mu	s nara na	a ambos	siampra aua
	s dinero" se obtiene:	s, pero no	a ambos, s	stempre que
	$(\neg p \lor q \lor r) \land (p \lor \neg q \lor r)$			
	$(p \vee \neg r) \wedge (q \vee \neg r) \wedge (\neg p \vee \neg q)$			
	$(p \lor q \lor \neg r) \land (\neg p \lor \neg q)$			
	$(p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$			
	demostrar que el razonamiento "{p \to q \land r, p \lor q \to s } \Rightarrow p \to s " es correcto medi	ante el alg	goritmo de	resolución,
	ería el conjunto de cláusulas que habría que introducir?			
	$\{ \neg p \lor q, \neg p \lor r, \neg p \lor \neg q \lor s, p, \neg s \}$			
	$\{ \neg p \lor q, \neg p \lor r, \neg p \lor s, \neg q \lor s, p, \neg s \}$			
	$\{ \neg p \lor q \land r, \neg p \land \neg q \lor s, \neg p \lor s \}$			
	$ \{ \neg p \lor q, \neg p \lor r, \neg p \lor s, \neg q \lor s, \neg p \lor s \} $	67) 1 7 (5	<5°\ 1.13	
9 Al si	mplificar en producto de sumas la función de 7 variables $f(a,b,c,d,e,f,g) = \prod_{7} (1,3,6)$	$(5/) \cdot \prod_{\varnothing} (5/)$,65) se obti	ene:
	$(\overline{b} + \overline{c} + \overline{d} + \overline{e} + g) \cdot (\overline{a} + \overline{b} + \overline{c} + \overline{d} + e + \overline{f} + g)$			
	$(b+c+d+e+\overline{g})\cdot(a+b+c+d+\overline{e}+f+\overline{g})$			
	$\overline{b} + \overline{c} + \overline{d} + \overline{e} + g$			
	$b+c+d+e+\overline{g}$			
10 ¿Cı	uál de las siguientes fórmulas es insatisfacible?:			
	$(\neg p \to q) \land (\neg p \lor r) \land (\neg q \to r)$			

Enunciados não 122

Enunciados Primer Parcial 2002-2003

 $\Box \qquad (\neg p \to q) \land (\neg p \lor r) \land (r \to \neg q)$ $\Box \qquad ((\neg p \to q) \land (\neg p \lor r)) \to (\neg q \to r)$ $\Box \qquad (\neg p \to q) \land (\neg p \lor r) \land \neg q \land \neg r$

Primer Parcial 2002-2003 Enunciados

11.- Se va a diseñar una alarma digital con 4 sensores (a,b,c,d) dispuestos en forma circular (véase la figura).

La alarma se activa cuando todos los sensores están apagados o cuando hay más de un sensor encendido. El sistema no permite que haya dos sensores juntos encendidos. Indicar cuál sería la expresión en forma de producto de sumas.

$$\Box \ f(a,b,c,d) = \prod (7,11,13,14) \cdot \prod (0,1,2,3,4,8,9,12)$$

$$\Box f(a,b,c,d) = \prod_{1}^{3} (1,2,7,14) \cdot \prod_{1}^{3} (0,4,8,9,12)$$

$$\Box f(a,b,c,d) = \prod_{c} (7,11,13,14) \cdot \prod_{c} (0,1,2,3,4,6,8,9,12)$$

$$\Box f(a,b,c,d) = \prod_{A} (7,11,13,14) \cdot \prod_{\emptyset} (0,1,2,3,4,6,8,9,12)$$
$$\Box f(a,b,c,d) = \prod_{A} (1,2,4,8) \cdot \prod_{\emptyset} (3,6,7,9,11,12,13,14,15)$$

12.- Al simplificar el circuito anterior en producto de sumas se obtiene:

- $\Box (\bar{a}+c)(a+\bar{c})(b+c+\bar{d})(a+\bar{b}+d)$
- $\Box (\overline{a}+c)(a+\overline{c})(b+\overline{d})(\overline{b}+d)(\overline{c}+\overline{d})(\overline{a}+\overline{b})$
- $\Box (\overline{a} + c)(a + \overline{c})(b + \overline{d})(\overline{b} + d)$
- $\Box (a+\bar{c})(\bar{c}+\bar{d})(\bar{a}+\bar{b})$

13.- Para demostrar por deducción natural el razonamiento " $\{p \lor q, q \to \neg r, p \to q\} \Rightarrow \neg r$ " se utiliza el esquema de la figura. ¿Cuál sería la fórmula del paso 5?

- \Box r
- $\Box \neg r$
- \Box p \Box q

14.-En la demostración anterior: ¿Cuál sería la fórmula del paso 9?

- $\Box \neg r$
- □ p
- \square q

15.- Dada la fórmula $((p \to q) \lor (\neg q \to r)) \land (p \to q),$ una fórmula equivalente en FNC es:

- $\square \neg p \lor q$
- $\Box \neg p$
- $\square \neg p \lor q \lor r$
- $\square (\neg p \lor q) \land (\neg p \lor r)$

	1	p∨q	?
	2	$q \to \neg r$	Premisa
	3	$p\toq$?
	4	?	?
	5	???	?
	6	?	?
	7	?	?
	8	?	?
	9	???	?
	10	?	?
	11	¬r	?

Enunciados Segundo Parcial 2002-2003

Segundo Parcial 2002-2003

1El unificador más general de un conjunto de expresiones simples es □ la cláusula vacía cuando el conjunto es insatisfacible □ una fórmula □ una substitución □ único 2Para intentar demostrar si el razonamiento {∀x(∃yP(x,y)→∃yQ(a,y)),¬∃yQ(a,y)}⇒∀y¬P(a,y) mediante el algoritmo de resolución, ¿Cuál es el conjunto de cláusulas que se utilizaría?
$ \Box \{ \neg P(x,y) \lor Q(a,f(x)), \neg Q(a,y), P(a,b) \} \Box \{ \neg P(x,y) \lor Q(a,z), \neg Q(a,y), \neg P(a,y) \} \Box \{ \neg P(x,y) \lor Q(a,f(x)), \neg Q(a,y), \neg P(a,y) \} \Box \{ \neg P(x,y) \lor Q(a,f(x)), \neg Q(a,y), P(a,y) \} $
3Para intentar demostrar si el razonamiento $\{\forall x(P(a,x)\rightarrow \neg Q(x)), \exists xP(a,x)\}\Rightarrow \neg \forall xQ(x) \text{ mediante el algoritmo de resolución, } \mathcal{E}$ Cuál es el conjunto de cláusulas que se utilizaría? $ \Box \{\neg P(a,x) \lor \neg Q(x), P(a,b), \neg Q(x)\} $ $ \Box \{\neg P(a,x) \lor \neg Q(x), P(a,b), Q(x)\} $ $ \Box \{\neg P(a,x) \lor \neg Q(x), P(a,x), Q(x)\} $ $ \Box \{\neg P(a,x) \lor \neg Q(x), P(a,a), \neg Q(a)\} $
En el siguiente ejercicio, utilizar: $H(X)="x$ es un hombre", $C(x)="x$ es un conejo", $M(x,y)="x$ come y "
4 La frase "Sólo los conejos son comidos por alguien" se puede formalizar como: □ ∀x(∃yM(y,x) → C(x)) □ ∀x(∃yM(y,x) ∧ C(x)) □ ∀x(C(x) → ∃yM(y,x)) □ ∀x(C(x) → M(y,x)) 5 La frase "Los hombres comen algo sólo si existen conejos" se puede formalizar como:
6 La frase "Los hombres comen conejos" se puede formalizar como:
7 La frase "Ningún hombre es comido por un conejo" se puede formalizar como:
8 Sea σ_1 ={ x/y, z/a }, σ_2 = { x/z }, σ_3 = { y/a } y σ = { x/a, z/a }, entonces: \square $\sigma = \sigma_1 \cdot \sigma_2$ \square $\sigma = \sigma_2 \cdot \sigma_1$ \square $\sigma = \sigma_1 \cdot \sigma_3$ \square $\sigma = \sigma_3 \cdot \sigma_1$
En el siguiente ejercicio, utilizar: $B(X)="x$ es una ficha blanca", $N(x)="x$ es una ficha negra", $A(x,y)="x$ es adyacente a y (horizontal, vertical o diagonalmente)"
9 ¿En cuál de las situaciones la fórmula ∃x(N(x)∧∀y(B(y)→A(y,x))) es verdadera? □ En la A □ En la B □ En la A y en la B □ En ninguna A B
10 ¿Cuál de las siguientes fórmulas es verdadera en la situación de la figura? $ \Box \exists y(N(y) \land \forall x(B(x) \rightarrow A(x,y))) \\ \Box \exists y(B(y) \land \forall x(N(x) \rightarrow A(x,y))) \\ \Box \forall x(B(x) \rightarrow \exists y(N(y) \land A(x,y))) \\ \Box \forall x(N(x) \rightarrow \exists y(B(y) \land A(x,y))) $

Enunciados Segundo Parcial 2002-2003

11 En un programa en Prolog se parte de una serie de hechos de la forma "paga(X,Y)" que indican que la persona X ha pagado \	√ euros. Por
ejemplo:	

paga(juan,2). paga(luis,7). paga(pepe,10).

Definir los siguientes predicados:

a.- ptas(L,P):- P es la lista con las cantidades que han pagado cada una de las personas de L en pesetas. Suponer que 1€ = 166 ptas.

Ejemplo: ?- ptas([pepe, juan], V).

V = [1660,332]

b.- cobra(L,S):-S es la suma del valor pagado en euros de cada una de las personas de la lista L

Ejemplo: ?-cobra([pepe, juan], V).

V = 12

c.- mezcla(L,M,N):-N es la lista ordenada resultante de combinar los elementos de las listas L y M. Se supone que los elementos de L y M están ordenados.

Ejemplo: ?-mezcla([1,3,7],[2,4,6,8,10],V).

V = [1, 2, 3, 4, 6, 7, 8, 10]

12.-Demostrar por deducción natural los siguientes razonamientos (se incluyen las cajas y los pasos necesarios):

{" x(\$yP(x,y)® \$yQ(a,y)),Ø\$yQ(a,y)}Þ	" yØP(a,y)	{" x(P(a,x)®∅Q(x)), \$xP(a	a,x)}ÞØ" xQ(x)
1. $\forall x(\exists y P(x,y) \rightarrow \exists y Q(a,y))$	Premisa	1. $\forall x (P(a,x) \rightarrow \neg Q(x))$	Premisa
2. ¬∃yQ(a,y)	Premisa	2. ∃xP(a,x)	Premisa
3		3	
4		4	
5		5	
6		6	
7		7	
8		8	
9		9	
10. ∀y¬P(a,y)		10. ¬∀xQ(x)	

Febrero 2002-2003

Primer Parcial

En los siguientes ejercicios asignar las letras <i>p,q,r</i> por orden de aparició	

1 Al formalizar en lógica proposicional: "Nos comemos al que tuvo la idea sólo si tenemos hambre, no obstante es suficiente
que no tengamos comida para que tengamos hambre" se obtiene:
$\Box (p \rightarrow q) \land (q \rightarrow \neg r)$
$\Box (p \rightarrow q) \land (\neg r \rightarrow q)$
$\Box (q \rightarrow p) \land (\neg r \rightarrow q)$
$\square (q \rightarrow p) \land (q \rightarrow \neg r)$
2 Sea el razonamiento: "Los hombres son mortales si Hércoles viaja al Olimpo. Además, Venus puede acostarse con un

hombre cuando los hombres son mortales. Por tanto, Hércules viaja al Olimpo y Venus puede acostarse con un hombre". Formalizarlo e indicar cuál sería el conjunto de cláusulas a utilizar para demostrar si es correcto mediante resolución.

$ \exists \{ \neg p \lor q, p \lor \neg r, \neg q \lor \neg r \} $
$ \exists \{ \neg q \lor p, \neg p \lor r, q, r \} $
$\exists \{-n \lor a \ n \lor -r \ a \ r\}$

3.- Al formalizar: "Es necesario y suficiente que Juan no vaya a la guerra para que su mamá esté tranquila" y transformar en FNC se obtiene.

$\square p \lor q$
$\Box \neg p \lor \neg q$
·
$\square (p \vee \neg q) \wedge (\neg p \vee q)$
$\square (p \lor q) \land (\neg p \lor \neg q)$
4 Al formalizar: "Es necesario cubrir el expediente para
comenzar el trámite a no ser que seas extranjero" se
obtiene.
$\Box \neg r \to (q \to p)$
\Box (q \rightarrow p) \rightarrow \neg r
\square (p \rightarrow q) \rightarrow \neg r
$\Box \neg r \rightarrow (p \rightarrow q)$
5 - Para demostrar mediante deducción natural que

$\square (p \to q) \to \neg r$
$\Box \neg r \rightarrow (p \rightarrow q)$
5 Para demostrar mediante deducción natural que
" $\{p \to (q \to r)\} \Rightarrow (p \to q) \to (p \to r)$ " se utiliza el esquema de
la figura. Indicar cuál sería la justificación del paso 6.

3
$\square \rightarrow$ E 4,5
□∧E5
□ ∧I 4,5
□ \ E 2.5

	1	?	Premisa
	2	?	?
	3	?	?
	4	?	?
	5	?	?
	6	?	???
	7	?	?
_	8	?	?

6.- Para demostrar por deducción natural la corrección del razonamiento $\{p \rightarrow q, \neg q\} \Rightarrow p \rightarrow \neg p$ se utiliza el esquema de la figura. ¿Cuál es la fórmula del paso 6?

$\neg p$
q
q∧¬q
_

1	$p{\rightarrow} q$	Premisa	
2	?	Premisa	
3	?	?	
4	?	?	
5	?	?	
6	???	?	
7	?	?	
8	?	?	

7.- Al simplificar la siguiente función en productos de sumas se obtiene:

$$f(a,b,c,d) = \begin{cases} a+b\cdot\overline{c} & \text{si } a=d\\ a\cdot\overline{c} & \text{si } a=\overline{d} \text{ y } b=1 \end{cases}$$

- $\Box (a+\overline{d})(\overline{c}+d)(b+d)$
- $\Box (\bar{a}+d)(a+b)(a+\bar{d})(a+\bar{c})$
- $\Box (a+\overline{d})(\overline{c}+d)(b+d)(a+\overline{c})$
- $\Box (c+\overline{d})(\overline{a}+d)(\overline{b}+\overline{d})$
- 8.- ¿Cuál de las siguientes expresiones es igual a $a \oplus b$
- $\Box ab + a\bar{b}(b+c)$
- $\Box \overline{ab} + a\overline{b}(b+c)$
- $\Box \ \overline{a}b + a(\overline{b} + c)\overline{b}c$
- $\Box ab + abc + \overline{a}bc + \overline{a}$
- 9.- Sea F = p \rightarrow (q \rightarrow (\neg q \land r)), Para saber si la fórmula es válida un árbol semántico seleccionando las letras proposicionales por alfabético. ¿Cuántos niveles tiene dicho árbol? (Contar como nivel del nodo raíz)
- □ 3
- □ 5 □ 7
- 10.- Dadas las premisas { p \rightarrow (\neg q \land r), \neg q \rightarrow r } ¿Cuál de las podría ser la consecuencia para que el razonamiento sea
- $\square \neg p \lor r$
- \square p $\vee \neg$ r
- \Box r $\rightarrow \neg p$
- $\square \neg p \wedge r$

1	?	Premisa
2	∃xQ(a,x)	?
3	?	?
4	?	?
5	???	?
6	?	?
7	?	?
8	?	?
9	?	?
10	?	???
11	?	?
	Figura 1	

se construye orden primer nivel el

siguientes correcto?

Segundo Parcial

□ ∧I 3,6 □ ∀E 2 □ ∧I 6,7

En los siguientes ejercicios utilizar: I(x)="x tiene ingresos", B(x)="x tiene beneficios", S(x)="x puede sobrevivir", T(x,y)="x tiene y".

 1 La fórmula ∃x(B(x)∧∀y(I(y)→T(y,x))) es una formalización de: □ Todos los ingresos tienen algún beneficio 			
☐ Algún beneficio es tenido por todos los ingresos			
☐ Existen beneficios pero los ingresos no tienen beneficios			
☐ Existen beneficios cuando todos los ingresos tienen beneficios			
2 La fórmula $\forall x(\exists y(T(x,y) \land B(y)) \rightarrow \exists y(T(x,y) \land I(y)))$ es una formalización de:	1	?	Premisa
☐ Los que tienen beneficios tienen ingresos		·	
☐ Los que tienen ingresos tienen beneficios	2	$\forall y (D(y) \cdot O(y))$?
☐ Los que no tienen beneficios tienen ingresos	۷	$\forall x (P(x) \rightarrow Q(x))$	f
☐ Todos tienen beneficios cuando tienen ingresos			
3 "Todos tienen algún ingreso cuando alguien tiene todos los beneficios"	3	?	?
puede formalizarse como:			
$\square \ \forall x \exists y (I(y) \land T(x,y)) \to \exists x \forall y (B(y) \to T(x,y))$	4	?	?
$\square \ \forall x \exists y (I(y) \rightarrow T(x,y)) \rightarrow \exists x \forall y (B(y) \land T(x,y))$			
$\square \exists x \forall y (B(y) \rightarrow T(x,y)) \rightarrow \forall x \exists y (I(y) \land T(x,y))$	5	?	?
$\square \exists x \forall y (B(y) \land T(x,y)) \rightarrow \forall x \exists y (I(y) \land T(x,y))$ $\square \exists x \forall y (B(y) \land T(x,y)) \rightarrow \forall x \exists y (I(y) \rightarrow T(x,y))$			
4 La frase: "Quien no tiene ingresos ni beneficios no puede sobrevivir" se	6	?	?
puede formalizar como:		•	
$\square \exists x (\neg T(x, I(x)) \land \neg T(x, B(x)) \rightarrow \neg S(x))$	7	?	?
$\square \ \forall x(\ S(x) \rightarrow \exists y\ (I(y) \land T(x,y)) \land \exists y(B(y) \land T(x,y)))$	/	•	.
$\square \exists x (\exists (x, y) \land \exists (x, y)) \land \exists (x, y)) \land \exists (x, y)) \land \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists (x, y) \land \neg \exists (x, y) \land \neg \exists (x, y)) \land \neg \exists (x, y) \land \neg \exists$		0	000
$\Box \exists x (\neg \exists y (i(y) \land T(x,y)) \land \neg \exists y (b(y) \land T(x,y)) \land \neg S(x))$ $\Box \forall x (\neg T(x,I(x)) \land \neg T(x,B(x)) \rightarrow \neg S(x))$	8	?	???
$1 \vee X(\neg T(X, X)) \wedge \neg T(X, X) \rightarrow \neg S(X))$ 5 Para demostrar mediante deducción natural el razonamiento:			
	9	?	?
" $\{\forall x(P(x) \rightarrow (\exists yQ(x,y) \rightarrow \exists yR(y,x))), \exists xQ(a,x)\} \Rightarrow \exists x(P(x) \rightarrow \exists yR(y,x))$ " se utiliza el			
esquema de la figura 1. ¿Cuál la fórmula del paso 5?.	10	?	?
□ P(b)			
□ P(a)	11	?	?
$\square \exists x P(x)$		·	·
P(x)		Figura 2	
6 En la demostración anterior, ¿Cuál es la justificación del paso 10?		rigura z	
□ ∧I 4,9			
□ ∃E 9			
□ →E 5,9			
7 Para demostrar mediante deducción natural el razonamiento:			.,
$\{\exists x(P(x) \land \neg Q(x)), \ \forall x(P(x) \rightarrow Q(x))\} \Rightarrow \exists x(P(x) \land R(x)) \text{ se utiliza el esquema de la figuration}$	a 2. ¿Cuál p	odria ser la justifica	ación del paso
8?			

Enunciados não 129

En los siguientes ejercicios puede suponerse que ya se ha definido el predicado "concatena(Xs,Ys,Zs) que se cumple cuando Zs es el resultado de concatenar Xs e Ys.

```
8.- Se desea definir un predicado que selecciona los elementos de posiciones impares en una lista.
         ?- impares([a,b,c,d,e,f],V).
         V = [a,c,e]
¿Cuál sería el caso recursivo?
\square impares([X|[L],[Y|M]):-impares(L,M).
\square impares([X|[Y|L]],[X|M]):-impares(L,M).
\square impares([X|[Y|L]],[X|M]):-impares([Y|L],M).
\square impares([X|[Y|L]],[X|M]):-impares([X|L],M).
9.- Se desea definir un predicado "genera(N,Xs)" que se cumple si N es un número y Xs es una lista de la forma [N,N-
1,...2,1,2,...N-1,N]
Por ejemplo:
         ?- genera(5,V).
V = [5,4,3,2,1,2,3,4,5]
¿Cuál sería el caso básico?
☐ genera(1,[]).
☐ genera(1,[1]).
☐ genera([],[]).
\square genera(1,1).
10.- En el ejercicio anterior, ¿Cuál sería el caso recursivo?
\square genera(N, [N|L1|N]):-N>1, N1 is N – 1, genera(N1, L1).
\square genera(N, M):-N>1, N1 is N – 1, genera(N1,L1), concatena(N, L1, N, M).
\square genera(N, M):-N>1, N1 is N – 1, genera(N1, L1), concatena([N|L1], [N], M).
\square genera(N, [N|L1|N]):-N>1, genera(N - 1, L1).
11.- Se desea definir un predicado "aplana(Xss,Xs)" que tome una lista cuyos elementos son listas de números y devuelve la
lista con todos los números. Por ejemplo:
?- aplana([[1,4], [5,2,3], [8,6], [9], V).
V = [1,4,5,2,3,8,6,9]
Suponiendo que ya se ha definido el caso básico, ¿Cuál sería el case recursivo?
\square aplana([X|L],N):-aplana(L,M),concatena([X],M,N).
\square aplana([X|L],[X|M]):-aplana(L,M).
\square aplana([X|L],N):-aplana(L,M),concatena(X,M,N).
\square aplana([X|L],[X|N]):-aplana(L,M),concatena(X,M,N).
12.- ¿Cuál de las siguientes fórmulas es satisfacible?
\ \Box \ \forall x (P(x) \leftrightarrow \neg Q(x)) \land \exists x P(x) \land \exists x Q(x)
☐ Las dos
□ Ninguna
13.- Dado el siguiente programa Prolog:
         p(X,Y,f(a)):-p(X,X,Y).
         p(X,X,X).
En el programa anterior, la respuesta ante la pregunta ?-p(X,a,f(X)). es:
\square X = f(a)
\square X = f(f(a))
\square X = a
□ No
14.-La respuesta del sistema ante la pregunta ?-p(f(f(a)),a,X). es:
\square X = f(a)
\square X = f(f(a))
\square X = \hat{a}
```

□ No

Junio 2002-2003

Primer Parcial

1.- Demostrar si los siguientes razonamientos son correctos mediante deducción natural (deben dibujarse las cajas necesarias)

$\{ (p \to q) \land r, s \to t, \neg r \lor s \} \Rightarrow q \lor t$	$\{ (p \land q) \rightarrow r, r \rightarrow s, q \land \neg s \} \Rightarrow \neg p$
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	
13	
14	

Para cada razonamiento, indicar el conjunto de cláusulas a utilizar para demostrar si es correcto y los pasos de resolución que llevan a la cláusula vacía:

$ \{ \ (p \to q) \land r, s \to t, \neg r \lor s \ \} \Rightarrow q \lor t $ Cláusulas a utilizar	$\{ (p \land q) \rightarrow r, r \rightarrow s, q \land \neg s \} \Rightarrow \neg p$ Cláusulas a utilizar
Ciausulas a utilizai	Clausulas a utilizai
Pasos de resolución	Pasos de resolución

2.-Formalizar las siguientes frases asignando las letras p,q,r...por orden de aparición a cada frase.

- a.- María juega a fútbol o a baloncesto (pero no a ambos) cuando hace buen tiempo.
- b.- La condición necesaria y suficiente para aprobar lógica es poder pensar con tranquilidad cuando realizas el examen
- c.- En caso de ejecutar el programa en modo depuración, si el contador sobrepasa el límite del array, se detecta y se detiene la ejecución
- d.- Sólo cuando cantas me acongojas, sin embargo, cuando no me acongojas, no cantas

3.-Dada la función:
$$f(a,b,c,d) = \begin{cases} b \oplus c & \text{si } a = 0 \text{ y } d = 0 \\ b + c & \text{si } a = \overline{d} \end{cases}$$

Rellenar la tabla de verdad:

La expresión en forma de producto de sumas es:

$$f(a,b,c,d)=$$

Simplificar por el método de Karnaugh la expresión anterior:

\		

Resultado de la simplificación:

f(a,b,c,d)=

Segundo Parcial

1.-Demostrar si los siguientes razonamientos son correctos mediante deducción natural (deben dibujarse las cajas que sean necesarias)

que sean necesanas)	
$\{ \exists x (P(x) \land Q(x)), \ \forall x (R(x) \rightarrow \neg Q(x)) \} \Rightarrow \exists x \neg R(x)$	$ \{ \forall x \forall y (\neg R(y,x) \rightarrow \neg R(x,y)), \forall x (R(x,x) \rightarrow \neg R(a,x)) \} \Rightarrow \\ \forall x (R(x,x) \rightarrow \neg R(x,a) $
1	
2	1
3	2
	3
4	4
5	
6	5
	6
7	7
8	
9	8
	9
10	10
11	
	11

Para cada razonamiento, indicar el conjunto de cláusulas a utilizar para demostrar si es correcto y los pasos de

resolución que llevan a la cláusula vacía:

$ \{ \exists x (P(x) \land Q(x)), \ \forall x (R(x) \rightarrow \neg Q(x)) \ \} \Rightarrow \exists x \neg R(x) $ Cláusulas a utilizar	$ \{ \ \forall x \forall y (\neg R(y,x) \rightarrow \neg R(x,y)), \ \forall x (R(x,x) \rightarrow \neg R(a,x)) \ \} \Rightarrow \\ \forall x (R(x,x) \rightarrow \neg R(x,a)) $ Cláusulas a utilizar
Pasos de resolución	Pasos de resolución

2Formalizar utilizando las siguientes asignaciones: $S(x,y)="x$ salva $y"$, "c = Cactus", $M(x)="x$ es un mono"
a Cactus sólo salva a los monos
b Nadie salva a un mono pero Cactus salva a todos
c Es necesario que Cactus salve a algún mono para que alguien salve a Cactus
2. Es necesario que edicido sarve a algun mono para que alguien sarve a edicido
d. Ningrún mana calva a Castua a manas que Castua calva a todos
d Ningún mono salva a Cactus a menos que Cactus salve a todos
2. Implementer en Breieg les signientes predicades.
3Implementar en Prolog los siguientes predicados:a longs(L,M):-M es una lista que contiene las longitudes de cada una de las listas de L.
Ejemplo: ?-longs([[a,b],[c,d,e],[f],[g,h]], V).
V = [2,3,1,2]
b repite(N,X,R):-R es una lista formada al repetir N veces el elemento X.
Ejemplo: ?-repite(3,a,V).
V = [a,a,a]
a vanas/LDV. Disa vina lista farmanda al vanatir Ni vanas anda m/mara Ni da la lista l
c repes(L,R):-R es una lista formada al repetir N veces cada número N de la lista L. Ejemplo: ?-repes([3,2,1,2],V).
V = [3,3,3,2,2,1,2,2]

Septiembre 2002-2003

Primer Parcial

1.- La función f(a,b,c,d) se obtiene a partir del circuito de la figura.

En dicho circuito, se sabe que la función g se define como

$$g(a,b) = \begin{cases} 1 & \text{si } a = b \\ 0 & \text{si } a = 0 \text{ y } b = 1 \end{cases}$$

a g
b g
f

La tabla de verdad sería:

<u>a b c d</u>	f
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Simplificar en suma de productos:

Simplificar en producto de sumas:

f(a,b,c,d)=

2.-Demostrar los siguientes razonamientos mediante deducción natural (dibujar las cajas que sean necesarias)

$\{\neg p \lor q, (q \lor r) \to s\} \Rightarrow \neg p \lor s$	$\{\neg p \rightarrow q, r \rightarrow (\neg q \land s)\} \Rightarrow (\neg p \land r) \rightarrow t$
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
	12

3.-Formalizar e indicar si es correcto mediante resolución el siguiente razonamiento (asignar las letras p,q,r... por orden de aparición).

"Juan quiere a Rosa a no ser que Rosa quiera a Juan. Basta que Ana quiera a Juan para que Juan no quiera a Rosa. Por tanto, si Rosa no quiere a Juan pero Ana sí lo quiere, entonces Juan usa calcetines rojos".

quiere a Juan pero Ana si lo quiere, entonces Juan usa calcetines rojos .	
Premisa1:	
Premisa2:	
Conclusión:	
Cláusulas a utilizar en resolución:	
¿Se alcanza la cláusula vacía? (SI/NO)	¿Es correcto? (SI/NO)

4.-Formalizar e indicar si es correcto mediante resolución el siguiente razonamiento (asignar las letras p,q,r... por orden de aparición).

"Es necesario que Juan tenga trabajo para que le den un crédito. Además, Juan tiene trabajo o hace deporte sólo si estudia. Por tanto, si Juan no estudia entonces no le dan un crédito".

no estudia entonces no le dan un credito".	
Premisa1:	
Premisa2:	
Conclusión:	
Cláusulas a utilizar en resolución:	
¿Se alcanza la cláusula vacía? (SI/NO)	¿Es correcto? (SI/NO)

Segundo Parcial

1.-Demostrar si los siguientes razonamientos son correctos mediante deducción natural (deben dibujarse las cajas que sean necesarias)

$ \begin{cases} \forall x (P(a,f(x))), \ \forall x \forall y (P(x,y) \rightarrow P(f(x),f(y))) \ \} \Rightarrow \\ \exists x P(f(a),x) \end{cases} $	$\{ \ \forall x (\ \exists y P(x,y) \rightarrow \exists y P(y,x) \), \ \forall x P(x,f(x)) \ \} \Rightarrow \forall x \exists y P(y,x)$
	1
1	2
2	3
3	4
4	
5	5
6	6
7	7
, · ·	8

Para cada razonamiento, indicar el conjunto de cláusulas a utilizar para demostrar si es correcto y los pasos de resolución que llevan a la cláusula vacía:

	$\{ \forall x (\exists y P(x,y) \rightarrow \exists y P(y,x)), \forall x P(x,f(x)) \} \Rightarrow \forall x \exists y P(y,x)$ Cláusulas a utilizar
Pasos de resolución	Pasos de resolución

2En la especificación de un sistema informático se utilizan los siguientes predicados: $S(x,y)="x$ solicita y ", $R(x)="x$ es un recurso", $P(x)="x$ es un proceso", $O(x)="x$ está ocupado". Formalizar las siguientes frases:	
a Cualquier proceso que solicita un recurso ocupado, está ocupado	
b Sólo los procesos que no están ocupados solicitan recursos	
c Ningún proceso solicita un recurso a menos que existan recursos no ocupados	
d Todos los recursos ocupados son solicitados por algún proceso	
3Se desea implementar en Prolog árboles binarios como el de la figura. Obsérvese que la información se	
almacena en las hojas y que los nodos intermedios no tienen información. Por ejemplo, el árbol de la figura se representaría como:	
rama(hoja(2), rama(rama(hoja(1), hoja(3)), hoja(4))) Definir los siguientes predicados:	_
a suma(A,S):-S es la suma de los nodos del árbol A Ejemplo: ?-suma(rama(hoja(2), rama(rama(hoja(1), hoja(3)), hoja(4))),S). S = 10	
b nodos(A,N):-N es la lista de nodos del árbol A	_
Ejemplo: ?- nodos(rama(hoja(2), rama(rama(hoja(1), hoja(3)), hoja(4))),N). N = [2,1,3,4]	
c cambia(A,B):-B es un árbol con la misma forma que A pero cuyos nodos tienen como información la suma de los	
nodos de A Ejemplo: ?- cambia(rama(hoja(2), rama(rama(hoja(1), hoja(3)), hoja(4))),B). B = rama(hoja(10), rama(rama(hoja(10), hoja(10)), hoja(10)))	

Enunciados Primer Parcial 2003-2004

Primer Parcial 2003-2004

	gura se representa el esquema de la demostración por deduc	cción natural del razor	amient	o: $\{ p \lor q, r \lor q \}$	$\vee \neg p, q \rightarrow r$		
⇒ r, ¿Cuál	sería la fórmula del paso 6 ?						
\Box $\neg p$	$\rightarrow \neg p$						
□ q -	\rightarrow q						
_	\rightarrow p						
□ r –	→ r						
17 En el ra	azonamiento anterior, ¿Cuál sería la justificación del paso 1	2?					
	E6,11		4		0		
	E3, 9		1	$p \lor q$?		
\Box \vee E	2,6,11		2	$r \vee \neg p$	Premisa		
\Box \vee E	1,6,11		3				
	le las siguientes fórmulas es insatisfacible?		J	$q \rightarrow r$			
	$r) \land (\neg p \lor q \lor s) \land p \land (\neg q \lor s \lor t) \land \neg p$		4	?	?		
	$r) \lor (\neg p \land q \land s) \lor p \lor (\neg q \land s \land t) \lor \neg p$		5	?	Sup.		
☐ Las dos				000			
□ Ninguna			6	???	?		
	los siguientes ejercicios de formalización, asignar las letras posiciones por orden de aparición.	p, q,	7	?	Sup.		
	e: "Juan tira una piedra cuando le da la gana pero defiend	le sólo si	8	?	?		
	a", podría formalizarse como:		9	?	?		
	\rightarrow p) \land (q \rightarrow r)		10	?	?		
	\rightarrow p) \land (r \rightarrow q)		10.				
_	\rightarrow q) \land (q \rightarrow r)		11	?	?		
	\rightarrow q) \wedge (r \rightarrow q)		12	?	????		
	e: "Tomaremos algo en la terraza a no ser que se ponga a	llover,	40	2			
	o, jugaremos al parchís" podría formalizarse como:		13	?	?		
	$(q \rightarrow p) \land (q \rightarrow r)$		14	?	?		
_	$\rightarrow \neg p) \land (q \rightarrow r)$						
	$(q \to p) \land (r \to q)$						
	$\rightarrow \neg p) \land (r \rightarrow q)$						
21 Al formalizar y convertir en forma clausal la frase: "No estamos locos, sabemos lo que queremos" se obtiene:							
	$0 \vee q$						
	o, q }						
	0 ^ q }						
	¬p ∨ q }						
22 Al formalizar y convertir en forma normal conjuntiva la frase: "Si es necesario y suficiente que Juan vaya al cine con su							
	que sus padres estén preocupados, entonces yo no entiendo	esta socieaaa se ob	tiene:				
-	$\wedge \neg q) \vee (\neg p \wedge q) \vee \neg r$						
	$\vee \neg r) \wedge (\neg q \vee \neg r)$						
	$(q \vee \neg r) \wedge (q \vee \neg r)$				1 10		
	par hay 4 personas bebiendo una consumición. En el bar hay						
	pector <i>Lógicus</i> le pide a cada persona que escriba en una ta						
y por la otra, su edad. Las tarjetas presentadas son las de la figura. ¿Qué tarjetas habría que dar la vuelta para detectar quién							
incumple la	iey :.						
□ La	1, 2 y 3				_		
	3 y la 4	Zumo de		/highau			
	1, 3 y 4	Naranja 25 años	"	/hiskey	5 años		
	2 y la 4	1 2		3	4		
	•	. 2		J	•		

Enunciados Primer Parcial 2003-2004

24.- Al simplificar en suma de productos la función $f(a_1, a_2, \cdots a_n) = \sum_{i=1}^n (1, 3, 5, \cdots, 2^n - 1)$ se obtiene:

- \Box a
- \Box $a_1 + a_2 + \ldots + a_n$
- \Box a_n

 $a_1a_2...a_n$

25.- Al simplificar en producto de sumas el circuito de la figura se obtiene:

$$\Box \qquad (a+b+\overline{c})(\overline{a}+\overline{b})$$

- $\Box \qquad (a+b)(\overline{a}+\overline{b}+c)$ $\Box \qquad (a+b+c)(\overline{a}+\overline{b})$
- $\Box \qquad \qquad (a+b)(\overline{a}+\overline{b}+\overline{c})$

26.- Un sistema de transmisión de números binarios utiliza cinco bits (a,b,c,d,e) para codificar cada número entre 0 y 7 y utiliza las siguientes reglas:

- Si a = 1 entonces el número se codifica en las variables (b,d,e) y se deja la variable c=0
- Si a = 0 entonces el número se codifica en las variables (c,d,e) y se deja la variable b=1 (obsérvese que hay más de una forma de transmitir el mismo número)

Se desea construir un circuito que detecte si el número transmitido es menor que 4,

¿Cuál sería la expresión canónica en suma de productos?

- $\square \qquad \qquad \sum (0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27)$
- $\square \qquad \sum (8,9,10,11,16,17,18,19)$
- $\square \qquad \sum_{5} (8,9,10,11,16,17,18,19) + \sum_{\emptyset} (0,1,2,3,4,5,6,7,20,21,22,23,28,29,30,31)$

27.- Al simplificar la expresión anterior en suma de productos se obtiene:

- \Box $a\overline{b}\overline{c} + \overline{a}b\overline{c}$
- \Box $a\bar{b} + \bar{a}\bar{c}$
- \Box $\bar{b} + \bar{a}\bar{c}$
- \Box $\bar{a}\bar{b} + \bar{b}\bar{d}$

28.- En la figura se incluye el esquema de la demostración

 $\{ p \lor q, \neg(p \land q) \} \Rightarrow \neg(p \leftrightarrow q),$ ¿Cuál sería la fórmula del paso 12?

- $\begin{array}{ccc} \square & & p \leftrightarrow q \\ \square & & p \leftrightarrow q \\ \square & & \neg (p \land q) \\ \square & & p \land q \end{array}$
- 29.- En la demostración anterior, ¿Cuál sería la fórmula del paso 15?
- $\begin{array}{c|c} & & p \land \neg p \\ \hline \square & & p \land q \land \neg (p \land q) \\ \hline \square & & (p \lor q) \land \neg (p \lor q) \\ \hline \square & & q \land \neg q \\ \end{array}$
- 30.- En el método por contradicción, si se supone que una fórmula es falsa y aparecen varias alternativas...
- ☐ Hay que encontrar contradicción por todas ellas para poder afirmar que la formula es válida.
- \square Hay que encontrar contradicción por todas ellas para poder afirmar que la formula es insatisfacible.
- ☐ Basta con encontrar contradicción por alguna de las alternativas para poder afirmar que la fórmula es válida
- ☐ Basta con encontrar contradicción por alguna de las alternativas para poder afirmar que la fórmula es insatisfacible.

	1	p∨q	?
	2	¬(p∧q)	Premisa
	3	?	?
	4	?	?
	5	?	?
	6	?	?
	7	?	?
	8	?	?
	9	?	?
	10	?	?
	11	?	?
	12	???	?
	13	?	?
	14	?	?
	15	???	?
	16	?	?

Enunciados Primer Parcial 2003-2004

Enunciados Segundo Parcial 2003-2004

Segundo Parcial 2003-2004

1 En la figura se indica el esquema de la demostración del ra $\forall x(\neg \exists y Q(x,y) \rightarrow \neg R(x))$. ¿Cuál sería la fórmula del paso 5?	zonamien	to: $\{ \forall x (\neg P(x) \rightarrow \exists y Q(x)) \}$	$(x,y)), \forall x(R(x) \rightarrow -$	$\neg P(x)) \} \Rightarrow$
$\Box \neg P(a)$				
□ R(a) □ ¬∃yQ(a,y)				
$\square \cap \exists y \otimes (a,y)$ $\square P(a)$	1	?	?	
2 En el ejercicio anterior, ¿Cuál sería la justificación del	1	·	:	paso
12?	2	$\forall x (R(x) \rightarrow \neg P(x))$	Premisa	
□ ¬I 4-11	۷.	VX(IX(X) / II (X))	TTOTHISA	_
□ →I 4-11	3	?	?	
□ ∃E 3,4-11		-		
□ ∀I 4-11 3 Se desea construir un predicado en Prolog que convierta	4	?	?	
números naturales representados mediante 0 ys(X) en				
números decimales. Véase el siguiente ejemplo de llamada:	5	???	?	
? cnv(s(s(s(0))),V).				
V = 3	6	?	?	
¿Cuál sería el caso recursivo?				
$\Box \operatorname{cnv}(X,N):-\operatorname{cnv}(s(X),M), \ N \text{ is } M+1.$ $\Box \operatorname{cnv}(s(X),N+1):-\operatorname{cnv}(X,N).$?	?	
$\Box \operatorname{chv}(s(X), \operatorname{N+1}) \operatorname{chv}(X, \operatorname{N}).$ $\Box \operatorname{cnv}(s(X), \operatorname{N}): - \operatorname{cnv}(X, \operatorname{M}), \operatorname{N} \text{ is } \operatorname{M} + 1.$		•		
$\Box \operatorname{cnv}(s(X),N):-\operatorname{cnv}(X,M), M \text{ is } N-1.$	8	?	?	
4 Indicar cuál debe ser la pregunta para que Prolog		0		
responda:	9	?	?	
X = 2	10	?	?	
Y = []	10	ſ	f	
☐ ?-[X [X Y]] = [2,2] .	11	?	?	
□ ?-[X[[X]] = [2,2] . □ ?-[X[[X Y]] = [2] .	11	:	·	
\square ?-[X [X]] = [2,2].	12	?	???	
5 Se desea construir un predicado inserta(N,X,L1,L2) que		•		se
cumple si L2 es la lista resultante de insertar el elemento X	13	?	?	en la
posición N en la lista L1.		•	·	
Por ejemplo, véase la siguiente llamada:				
?- inserta(3,a,[b,c,d,e],V). V = [b,c,a,d,e]		Figura 1		
v = [الارد,a,u,e] ¿Cuál sería el caso básico?		•		
☐ inserta(0,X,L,[]).				
\square inserta(1,X,L,[X]).				
\square inserta(1,X,L,[X L]).				
\square inserta(1,X,L,[]).				
6 En el ejercicio anterior, ¿Cuál sería el caso recursivo?				
☐ inserta(N, X, [Y L], [Y R]):-N > 1, M is N − 1, inserta(M,X,L,R).				
 □ inserta(N, X, [Y L], [Y R]):-N > 0, inserta(N - 1,X,L,R). □ inserta(N, X, L, [Y R]):-N > 1, M is N - 1, inserta(M,X,L,R). 				
$\square \text{ inserta}(N, X, L, R) : N > 0, M \text{ is } N - 1, \text{ inserta}(M, X, [Y L], [Y R]).$				
En los siguientes ejercicios utilizar: gusta(X,Y) = "a X le gusta Y", ab	(X)="X es	abierto de mente". b	="Billv"	
7 ¿Cómo se representaría en Prolog la frase: "A los que les gusta e				<i>(</i> "?
\square gusta(X,rock):-gusta(X,jazz),ab(X).			•	
\square gusta(X,rock),ab(X):-gusta(X,jazz).				
☐ gusta(X,jazz):-gusta(X,rock),ab(X).				
☐ gusta(X,jazz),ab(X):-gusta(X,rock).				
8 La definición: gusta(billy,X):-gusta(Y,X),gusta(Y,rock).				
gusta(tilly,\times)gusta(\tau,\times),gusta(\tau,\times). Correspondería con la frase:				
☐ "Si a Billy le gusta algo, entonces hay alguien al que le gusta el ro	ock"			
☐ "A Billy le gusta lo que le guste a alguien que le guste el rock"				
☐ "A Billy sólo le gusta lo que les gusta a los que les gusta el rock"				
☐ "Si a alguien le gusta el rock, entonces a Billy también le gusta"				

Enunciados Segundo Parcial 2003-2004

9 ¿Qué relación hay entre las fórmulas $\forall x (P(x) \rightarrow \exists y Q(x,y)) \ y \ \forall x (\neg P(x) \rightarrow \exists x Q(x,y)) \ y \ \forall x (\neg P(x) \rightarrow \exists x Q(x$	x)\vQ(x,f(x))) ?		
☐ Son equivalentes			
☐ Son equisatisfacibles			
□ Son válidas			
☐ Son insatisfacibles			
10Indicar cuántas fórmulas hay en el conjunto: {P(x,∃yQ(x,y)), P(x,Q	$(x)) \rightarrow Q(x), \exists y P(x) \land \exists x P(y), P(x)$.)}	
1 Fórmula			
☐ 2 Fórmulas			
☐ 3 Fórmulas			
4 Fórmulas			
11 El conjunto { $\forall x(P(x) \lor \neg P(x)), \forall x(P(x) \land \neg P(x)), \forall x(P(x) \rightarrow P(x))$ } inc	cluye:		
☐ 2 fórmulas válidas y una insatisfacible			
☐ 2 fórmulas insatisfacibles y una válida			
☐ 3 fórmulas satisfacibles	1 $\forall x(P_1(x) \rightarrow P_2(x))$?	
☐ 2 fórmulas válidas y una satisfacible	$1 \forall X(F_1(X) \rightarrow F_2(X))$:	
12 Dada la fórmula $\forall x (\exists y A(x,y) \land \exists y B(x,y) \rightarrow \exists y (A(x,y) \land B(x,y)) \land y for interpretable in each$			
B(x,y))) y las interpretaciones		•••	
I1 = {D = Números naturales, $A(x,y) = "x < y" y B(x,y) = "x < y" }$ I2 = {D = Personas, $A(x,y) = "y es padre de x" y B(x,y) = "y es padre de x" y es padre de x" $	4) ((5 () 5 ())	0	
madre de x" }	n -1 $\forall x(P_{n-1}(x) \rightarrow P_n(x))$?	
Se cumple que:			
$\square \ V_{11}(F) = V \ y \ V_{12}(F) = V$	n ∃xP₁(x)	Premisa	
$\square \ V_{11}(F) = V \ y \ V_{12}(F) = F $			7
$\square V_{11}(F) = \mathbf{F} \ y \ V_{12}(F) = \mathbf{V}$	n+1	?	
$\square V_{11}(F) = F y V_{12}(F) = F$			
13 En el algoritmo de resolución SLD utilizando la regla de		•••	
computación "Seleccionar el último", se tiene el objetivo:			
?A ₁ ,A _{i-1} ,A _i ,A _{i+1} ,,A _n . Tras seleccionar un literal y la cláusula	3n-1. ???	?	A:-
B₁B _m . se obtiene el umg			
$\square ? \varpi(A_1,A_{i-1},A_i,A_{i+1},,B_1B_m.)$	3n ?	?	
$\square ? \varpi(A_1,A_{i-1},B_1B_m,A_{i+1},,A_n.)$			_
$\square ? \varpi(B_1B_m,A_{i-1},A_i,A_{i+1},,A_n.)$	3n+1 ?	???	
$\square ? \overline{\varpi}(A_1,A_{i-1},A_i,A_{i+1},,A_n.)$			
14 En la demostración mediante deducción natural de:			
$\{\ \forall x(P_1(x) {\rightarrow} P_2(x)),\ \forall x(P_2(x) {\rightarrow} P_3(x)),\ \forall x(P_{n1}(x) {\rightarrow} P_n(x)),\ \exists x \in \{0,1,2,\ldots,n\}$	$P_1(x) \} \Rightarrow \exists x P_n(x)$		
¿Cuál sería la justificación del paso 3n+1?			
□ ∃E 1 - 3n			
□ ∃I 3n			
□ ∃E n, n+1- 3n			
□ ∀I n+1- 3n			
15 ¿Cuál sería la fórmula del paso 3n-1?			
\square $P_{3n}(a)$			
$\square \exists x P_n(x)$			
\square P _n (a)			
$\square P_{n-1}(a) \rightarrow P_n(a)$			

Enunciados Febrero 2003-2004

Febrero 2003-2004

Primer Parcial

1 Rellenar las líneas que faltan en las de	emostraciones por	deducción na	tural:		
$\{ p \rightarrow \neg q , r \lor s \rightarrow q \} \Rightarrow r \rightarrow \neg p$		$\{p\vee q\;,p\to$	$r,\negr\} \Rightarrow p \to s$		
1 p→¬q Prei	misa	1	p v q	Premisa	
2 $r \lor s \rightarrow q$ Pres	misa	2	$p\tor$	Premisa	
3		3	¬r	Premisa	
4		4			
5		5			
6		6			
7		7			
8		8			
9		9 p	ightarrow S		_
10 r → ¬p		•			
2Formalizar el siguiente razonamier Sólo cuando una adquisición no se repasa acontecimientos. Es suficiente que se simplifi esperanza. Por tanto, no aparece un proceso	a con cierta frecuer iquen los acontecimi	ncia, se desari ientos para que	rolla un proceso de de aparezca un proces	omisión de detalles y . o de deformación laten	se simplifican nte y se extinga
Premisa1:					
Premisa2:					
Conclusión:					
¿Cuál es el conjunto de cláusulas a utilizar pa	ra saber si es correc	to mediante re	solución?		
Se alcanza la cláusula vacía?	¿Es Co	rrecto?			

3.-En la figura se representa un circuito que determina el valor de una función f(a,b,c,d). Para ello, la función g se define como: $g(a,b,c) = \begin{cases} a & \text{si } b = 0 \text{ y } c = 0 \\ \overline{a} & \text{si } b = 1 \end{cases}$

Indicar cuál sería la tabla de verdad de la función:

La expresión en forma de *producto de sumas* es:

$$f(a,b,c,d)=$$

Simplificar por el método de Karnaugh la expresión anterior en *producto de sumas*:

Resultado de la simplificación:

$$f(a,b,c,d)=$$

Segundo Parcial

1.- Rellenar las líneas que faltan en las demostraciones por deducción natural:

Enunciados Febrero 2003-2004

1 $\forall x(P(x) \rightarrow \neg \exists yQ(x,y))$	Premisa	1 ¬∃x (P(x)∨Q(x))	Premisa
2 $\exists x(Q(x,a) \land R(x))$	Premisa	2 $\forall x (R(x) \rightarrow P(x))$	Premisa
4		3	
		4	
·		5	
i		6	
		0	
·		7	
		8	
		9	
0		<u> </u>	
11		10	
		11 ∀x¬R(x)	
2			
13			
14 ∃x(R(x)→¬P(x)			

		7
		8
		9
		10
		11 ∀x¬R(x)
n	cor	rectos cada uno de los razonamientos anteriores.
<u>) </u>	COI	$\{ \neg \exists x (P(x) \lor Q(x)), \ \forall x (R(x) \to P(x)) \ \} \Rightarrow \forall x \neg R(x)$ Conjunto de cláusulas:
		Pasos de Resolución:

Pasos de Resolución:

Enunciados Febrero 2003-2004

3Formalizar las siguientes frases utilizando: P(x,y)="x pinta a y", j=Juan, m=María.
a" Juan no pinta nada a menos que María pinte a Juan"
b" Sólo los que pintan a Juan, pintan a María"
c" Todos pintan a alguien pero Juan no pinta nada"
d" Los que pintan algo son pintados por alguien"
4 Constuir los siguientes programas en Prolog:
aduplos(N,L):- L es una lista de la forma [N,N,N-1,N-1,N-2,N-2,,0,0]
Ejemplo:
?-duplos(3,V).
V=[3,3,2,2,1,1,0,0]
bsimples(L,M):-Si L es una lista con todos los elementos duplicados, entonces M es la lista formada al quitar
duplicados.
Ejemplo:
?-simples([3,3,4,4,3,3,1,1],V).
V=[3,4,3,1]
cpsimples(L,P):-Si L es una lista con los elementos duplicados, P es el producto de los elementos de L después de
quitar los duplicados.
Ejemplo:
?-psimples([3,3,4,4,3,3,1,1],V).
V=36

Junio 2003-2004

Primer Parcial

1.- Rellenar la siguiente tabla indicando la expresión canónica y de las siguientes funciones en suma de productos y producto de sumas.

h(a, b, c) = c	$\int f(a,b,c)$	si b = 1 $si b = 0 y c = 1$
n(u, v, c) = 0	g(a,b,c)	$\sin b = 0 \text{ y } c = 1$

	Suma de productos		Producto de sumas	
	Expresión canónica	Expresión simplificada	Expresión canónica	Expresión simplificada
f				
g				
h				

2.- Formalizar las siguientes frases (utilizar las letras p,q,r,... por orden de aparición)

a.-"Nos vamos a un nuevo edificio sólo si las condiciones son dignas. Sin embargo, basta que las condiciones no sean dignas para que nos quieran echar."

b.-"Es necesario que cubran las necesidades de los peces para que los peces no necesiten ayuda cuando se quejan"

2.-Demostrar los siguientes razonamientos mediante deducción natural

$\{ p \to q \lor r, \neg q \to s, p \land s \to \neg r \} \Rightarrow p \to q$	$\{ p \leftrightarrow q, q \to r \} \Rightarrow \neg(p \to r) \to s$
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	12
13	
14	
15	
16	
17	

Segundo Parcial

1.-Demostrar si los siguientes razonamientos son correctos mediante deducción natural (deben dibujarse las cajas que sean necesarias)

necesarias)	$ \{ \ \forall x \forall y (R(x,y) \to R(y,x)), \ \forall x \forall y \forall z \ (R(x,y) \land R(y,z) \to R(x,z)), \\ \forall x \exists y \ R(x,y) \ \} \Rightarrow \forall x \ R(x,x) $
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	12
13	13
	14
	15
	16

Para cada razonamiento, indicar el conjunto de cláusulas a utilizar para demostrar si es correcto y los pasos de resolución que llevan a la cláusula vacía:

$ \{ \forall x \forall y (P(x, y) \to Q(y, x)), \exists x (P(x, a)) \} \Rightarrow \neg \exists x Q(a, x) \to R(a) $	$ \{ \ \forall x \forall y (R(x,y) \to R(y,x)), \ \forall x \forall y \forall z \ (R(x,y) \land R(y,z) \to R(x,z)), \\ \forall x \exists y \ R(x,y) \ \} \Rightarrow \forall x \ R(x,x) $
Cláusulas a utilizar	Cláusulas a utilizar
Pasos de resolución	Pasos de resolución

Enunciados

Junio 2003-2004

2Formalizar e indicar si son correctos los siguientes razonamientos.
Utilizar las siguientes asignaciones: $M(x,y)="x mató a y"$, $P(x,y)="x pagó a y"$, $b="Bruto"$, $c="César"$, $t="Tito"$
a "Bruto mató a César y Tito pagó a Bruto, por tanto, Tito pagó a uno que mató a César"
¿Es correcto?
als conceto.
b "Sólo los que mataron a César fueron pagados por Tito, por tanto, Bruto mató a César sólo si Tito pagó a Bruto"
¿Es correcto?
3Implementar en Prolog el predicado mezcla(L,M,N) que se cumple si N es una lista que contiene los elementos de L en
las posiciones impares y los de M en las pares. Por ejemplo, considerar la pregunta:
?- mezcla([1,2,3],[a,b,c],V).
V=[1,a,2,b,3,c]
Constuir el árbol SLD ante la pregunta:
?- mezcla([1,2],[a,b],V).
Constrict of the CUD and a large country
Constuir el árbol SLD ante la pregunta: ?- mezcla([1,2],V,[1,a,2]).

Septiembre 2003-2004

L2 =

Primer Parcial

1.- En la construcción de un coche de fórmula 1 se ha instalado un sistema que permite detectar el estado de los neumáticos. El

В

sistema incluye 4 sensores (A,B,C y D) en cada uno de los neumáticos según la figura. Los sensores se activan si detectan algún problema en un neumático. El conductor disponde de dos dispositivos luminosos L1 y L2 que se activan según las siguientes condiciones:

- L1 se activa si las 2 ruedas delanteras tienen problemas o si las dos ruedas traseras tienen problemas o si las 2 ruedas delantera y trasera del mismo lado tienen problemas. En los demás
- L2 se activa si una rueda delantera de un lado tiene problemas y la trasera del lado opuesto tiene problemas. Está apagado cuando ninguna de las ruedas tiene problemas. En los demás casos, la activación depende de causas externas y no está especificada.

$\{ p \lor q \to r, s \to \neg r \} \Rightarrow p \to \neg s$	$\{ p \rightarrow q \lor r, \neg(\neg q \rightarrow r) \} \Rightarrow p \rightarrow s$
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
	11
	12
	13
	14
	15
	16
	17
	18

3.-Formalizar e indicar si son correctos por método de resolución los razonamientos (asignar las letras p,q,r... por orden de aparición).

"Llueve sólo cuando hace frío. Además, es suficiente que haya nubes y viento para que llueva. Por tanto hace frío cuando hay nubes o viento"

nubes o viento."	
Premisa1:	
Premisa2:	
Conclusión:	
Cláusulas a utilizar en resolución:	
¿Se alcanza la cláusula vacía? (SI/NO)	¿Es correcto? (SI/NO)
"Es responsable siempre que le dan oportunidades. Rasta que le den oportunid	ades para que desaparezca. Por tanto, no es

"Es responsable siempre que le dan oportunidades. Basta que le den oportunidades para que desaparezca. Por tanto, no es responsable a menos que desaparezca"

Premisa1:		
Premisa2:		

Conclusión:	
Cláusulas a utilizar en resolución:	
¿Se alcanza la cláusula vacía? (SI/NO)	¿Es correcto? (SI/NO)

Segundo Parcial

1.-Demostrar que los siguientes razonamientos son correctos mediante deducción natural (deben dibujarse las cajas que sean necesarias)

$\{ \ \forall x (P(x) \rightarrow \neg \exists y Q(x,y)), \ \exists x Q(x,x) \ \} \Rightarrow \exists x \neg P(x)$	$\{ \neg \forall x P(x) \} \Rightarrow \exists x (\neg P(x) \lor Q(x))$
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11

 $\hbox{2.-Demostrar si son o no correctos los siguientes razonamientos mediante resolución.}$

$ \{ \ \forall x ((P(x) \lor Q(x)) \to \exists y R(x,y) \), \ \exists x P(x), \ \exists x Q(x) \ \} \Rightarrow \exists x \\ R(x,x) $ Cláusulas a utilizar	$ \{ \ \exists y \forall x \ P(y,x,x), \ \forall x \forall y \forall z \ (P(x,y,z) \rightarrow P(f(x), \ y, \ f(z))) \ \} \Rightarrow \\ P(f(f(a)), \ b, \ f(f(b))) $ Cláusulas a utilizar
Pasos de resolución	Pasos de resolución
¿Se alcanza la cláusula vacía? (SI/NO) ¿Es correcto? (SI/NO)	¿Se alcanza la cláusula vacía? (SI/NO) ¿Es correcto? (SI/NO)

3Formalizar las siguientes frases utilizando: $N(x)$ ="x es un neumático", $A(x)$ ="x está alineado", $G(x,y)$ = "x gana y", $P(x)$ ="x es un premio" f="Fernando".
a Para que todos los neumáticos estén alineados es necesario que Fernando gane algún premio
b Fernando no gana ningún premio a menos que algún neumático esté alineado
c Fernando gana todos los premios que no están alineados
d Fernando sólo gana un premio cuando todos sus neumáticos están alineados
4Definir los siguientes predicados en Prolog:
a corta(C,L,M):-M es una lista que contiene todos los elementos de la lista L que son mayores que C Ejemplo: ?- corta(4,[2,5,3,7,8,1],V). V=[5,7,8]
b genera(M,N,L):-L es una lista de la forma [M,M+1,M+2,N]
b genera(M,N,L):-L es una fista de la forma [M,M+1,M+2,N] Ejemplo: ?- genera([2,6,V). V=[2,3,4,5,6]
c listas(L,M):-M es una lista de listas formada a partir de L, donde cada elemento de M se forma como la lista [1,2,X] donde X es el elemento de la lista L de la misma posición. Ejemplo: ?- listas([3,2,5],V). V=[[1,2,3],[1,2],[1,2,3,4,5]]

Soluciones

Ejercicios de Lógica Informática Jose Emilio Labra Gayo Jesús Arturo Pérez Díaz Ana I. Fernández Martínez

Indice (Soluciones)

INDICE (SOLUCIONES)	1
SOLUCIONES	3
Primer Parcial 1992 - 1993	3
SEGUNDO PARCIAL 1992-1993	
Bloque 1: Test.	
Bloque 2: Desarrollar	
JUNIO 1992 - 1993	
Primer Parcial	
Segundo Parcial	5
SEPTIEMBRE 1992 - 1993	
FEBRERO 1992 - 1993	8
PRIMER PARCIAL 1993 - 1994	
SEGUNDO PARCIAL 1993-1994	10
Bloque 1: Test	
Bloque 2: Desarrollar	
JUNIO 1993-1994	
Primer Parcial	
Segundo Parcial	
SEPTIEMBRE 1993- 1994	
FEBRERO 1993- 1994	
PRIMER PARCIAL 1994 – 1995	
Bloque 1: Test	
Bloque 2: Desarrollar	
SEGUNDO PARCIAL 1994 – 1995	
Bloque 1. Test	
Bloque 2. Desarrollar	
Junio 1994 – 1995	
Primer Parcial	
Segundo Parcial	
FEBRERO 1994 – 1995	
PRIMER PARCIAL 1995 – 1996	
SEGUNDO PARCIAL 1995 – 1996	
Bloque 1: Test	
Bloque 2: Desarrollar	
Junio 1995 – 1996	
Primer Parcial.	
Segundo Parcial	
SEPTIEMBRE 1995-1996	
Febrero 1995-1996	
PRIMER PARCIAL 1996 – 1997	
SEGUNDO PARCIAL 1996 – 1997.	
Junio 1996 – 1997	
Primer Parcial	
Segundo Parcial	
SEPTIEMBRE 1996-1997	
Febrero 1996- 1997	
Primer Parcial	32
Segundo Parcial	
PRIMER PARCIAL 1997 – 1998	
SEGUNDO PARCIAL 1997 – 1998	34
Junio 1997 – 1998	35
Primer Parcial	
Segundo Parcial	35
SEPTIEMBRE 1997- 1998	
FEBRERO 1997- 1998	37
PRIMER PARCIAL 1998 – 1999	
SEGUNDO PARCIAL 1998 – 1999	40
Junio 1998 - 1999	
Parcial 1	41

Parcial 2	
SEPTIEMBRE 1998 - 1999	
FEBRERO 1999-2000	
JUNIO 1999-2000	
SEPTIEMBRE 1999-2000	
Primer Parcial 2000-2001	
SEGUNDO PARCIAL 2000-2001	
FEBRERO 2000-2001	
Primer Parcial	
Segundo Parcial	
JUNIO 2000-2001	
Primer Parcial	
Segundo Parcial	
Septiembre 2000-2001	
Primer Parcial	
Segundo Parcial	50
PRIMER PARCIAL 2001-2002	51
SEGUNDO PARCIAL 2001-2002	52
FEBRERO 2001-2002	53
Primer Parcial	53
Segundo Parcial	53
Junio 2001-2002	54
Primer Parcial	54
Segundo Parcial	54
SEPTIEMBRE 2001-2002	
Primer Parcial	
Segundo Parcial	
PRIMER PARCIAL 2002-2003	
SEGUNDO PARCIAL 2002-2003	
FEBRERO 2002-2003	
Primer Parcial	
Segundo Parcial	
JUNIO 2002-2003	
Primer Parcial	
Segundo Parcial	
Septiembre 2002-2003	
Primer Parcial	
Segundo Parcial	
PRIMER PARCIAL 2003-2004.	
SEGUNDO PARCIAL 2003-2004	
FEBRERO 2003-2004	
Primer Parcial	
Segundo parcial	
Junio 2003-2004	
Primer Parcial	
Segundo Parcial	
Septiembre 2003-2004	
Primer Parcial	
Segundo Parcial	
9 - guriuo r argai	٥/

Soluciones Primer Parcial 1992 - 1993

Soluciones

Primer Parcial 1992 - 1993

```
a.- f = \sum (1,2,4,5,6,7) = \prod (4,7)
1.-
          b.- f(a,b,c) = a + bc + bc = (a+b+c)(a+b+c)
2.- f (a,b,c,d) = \sum (2,3,5,9,10,11,12,14) = ab\overline{d} + \overline{b}c + a\overline{b}d + \overline{a}b\overline{c}d
3.- (\neg x \lor y \lor t) \land (\neg x \lor \neg z \lor t)
4.- (a) No, (b) No, (c) No, (d) Sí, (e) No, (f) No, (g) Sí
5.- (a)
          = Dylan es amigo de Brandon
DAB
                                                       DAB→BED
BED
          = Brenda está enamorada de Dylan
                                                       \neg DKN \rightarrow BED
DKN
         = Dylan y Kelly son novios
                                                                                       Correcto
                                                       (DAB \lor \neg DKN) \rightarrow BED
(b)
                                                       PA
PA
          = Hay una persona ahogada en ...
T
          = Estaba inconsciente
                                                       PA \rightarrow ((I \land BA) \lor (QB \land LL))
BA
          = Estaba boca abajo
                                                       I \rightarrow D
QB
          = Se le quemaba el bigote
                                                       \neg D
                                                                                               Correcto
LL
          = Quería extinguir la llama
                                                       QB
D
          = Estaba drogada
(c)
P = Todos los est. de informática son buenos
                                                       P
                                                       Q
lógicos.
                                                       R
Q = Todos los buenos lógicos se harán ricos
R = Juan es un estudiante de informática
                                                                 Incorrecto
S = Juan se hará rico
```

NOTA: Obsérvese que las frases, tomadas como una unidad indivisible, no guardan relación y aunque el razonamiento es intuitivamente correcto, su formalización en lógica proposicional establece que es incorrecto. Este tipo de razonamientos se estudiarán en lógica de predicados (en la que se tienen en cuenta los cuantificadores) y se podrá comprobar que sí es correcto.

 Soluciones Segundo Parcial 1992-1993

Segundo Parcial 1992-1993

```
Bloque 1: Test
1.a
2.c
3.c
4.b
5.b
6.a
7.c
8.d
9.b
10.c
11.a
12.b
13.b
14.c
15.b
16.b
17.b
18.c
19.d, más de una: (b) y (c)
20.c
21.c
22.a
23.a
   Bloque 2: Desarrollar
1.
a.- F(0,s(0))
                \forall x \ (P(x) \rightarrow \exists y \ (M(y, s(s(0)), x) \ ) \ )
b.- Falsa,
                Verdadera,
                                Verdadera
2)
\forall x (CV(x) \rightarrow Pa(x) \lor A(x))
\forall x (Pe(x) \land VA(x) \rightarrow CV(x))
VA(f)
Pe(f)
\neg A(f)
Pa(f)
                                      Correcto
3)
        sabe\_donde\_esta(rappel,X):-famoso(X),tiene\_dinero(X).
        sabe_donde_esta(argui,X):-amigo(argui,X).
        sabe_donde_esta(carlos_jesus, pato_lucas).
        amigo(argui,X):-tiene_bigote(X).
        famoso(paco_lobaton).
        tiene_bigote(paco_lobaton).
Pregunta:
                ? sabe_donde_esta(X,paco_lobaton).
                X = argui
```

Soluciones Junio 1992 - 1993

Junio 1992 - 1993

```
Primer Parcial
```

```
1.- (a) f(a,b,c,d) = \sum_{4}(7,9,10,11,12,13,14,15) = \prod_{4}(7,9,10,11,12,13,14,15)

(b) f(a,b,c,d) = ab + ad + ac + bcd = (a + b)(a + d)(a + c)(b + c + d)

(c) Tres posibles soluciones: f(a,b,c,d) = bd + ac

f(a,b,c,d) = ad + bc

f(a,b,c,d) = ab + cd
```

- 2.- $f(a,b,c,d) = ab + \overline{a}d$
- 3.- $(p \lor q \lor \neg r \lor s) \land (\neg p \lor \neg q \lor \neg r)$
- 4.- (a) Tautología
 - (b) Tautología
 - (c) Satisfacible
 - (d) Insatisfacible
 - (e) Satisfacible

5.-

$$PI \rightarrow I \land S \land BF$$

$$A \rightarrow (RC \rightarrow (\neg RV \rightarrow \neg BF))$$

$$I \rightarrow A$$

$$S \rightarrow (BI \rightarrow RC)$$

$$RV \rightarrow \neg BI$$

$$BI$$

$$PI$$

Correcto

Segundo Parcial

1.- a.- El valor de la fórmula es Verdadero

b.- UH = {a }
BH = {
$$P(a,a)$$
, $R(a)$, $Q(a,a)$ }
c.- Interpretación asociada,

$$a = 1$$
 => { $P(a,a) = F$, $R(a) = V$, $Q(a,a) = V$ },
 $a = 2$ => { $P(a,a) = F$, $R(a) = F$, $Q(a,a) = V$ }

d.- Una interpretación asigna valores en un dominio D cualquiera. Una interpretación de Herbrand asigna valores a los elementos de la base de Herbrand. La interpretación asociada de Herbrand asigna valores a los elementos de la base de Herbrand siguiendo una determinada interpretación a la que está asociada.

```
2.- a.- {x / b, y/ f(a,b) }
b.- No unifican
c.- { y / f(b, f (c, x)) }
d.- {x/b, y / f (w,c), z / h( f(w,c), b) }
e.- {y/a, x / h(a,a), z / h(a,a) }
```

- 3.- (1) $P(x, f(y), f(z)) \lor \neg P(x, y, z)$
 - (2) P(x, a, x)
 - $(3) \qquad \neg P(z, f(f(a)), f(w))$
 - (4) P(x, f(a), f(x)) $R(1,2) \{y/a, z/x\}$
 - (5) P(x, f(f(a)), f(f(x))) $R(1,4) \{y/f(a), z/f(x)\}$
 - (6)

- $R(5,3) \{z/x, w/f(x)\}$
- (1) $R(x, g(x)) \vee R(g(x), x)$
- (2) $\neg R(u, v) \lor R(v, v)$
- $(3) \qquad \neg R(z, z)$
- (4) $\neg R(u, v)$ $R(2,3) \{ z/v \}$
- (5) R(x, g(x)) $R(4,1) \{ u/g(x), v/x \}$
- (6) R(g(x), g(x)) $R(5,2) \{ u/x, v/g(x) \}$
- (7) $R(6,3) \{ z/g(x) \}$

4.-

```
\begin{split} &\forall x (\ T(x) \rightarrow \exists y\ (P(y) \land C(x,y))) \\ &\forall x (\ LB(x) \rightarrow T(x)\ ) \\ &\exists x\ (\ LB(x) \land AP(x)\ ) \\ &\forall x\ (\ (P(x) \land \exists y\ (AP(y) \land C(y,x)\ )\ ) \rightarrow B(x)\ ) \end{split}
```

 $\exists x \ B(x)$ Correcto

```
5.a.- est(god,X):-est(rob,X).
 est(rob,X):-aseq(X).
```

Soluciones Junio 1992 - 1993

c.- El orden en el que se escriben las sentencias Prolog puede hacer que las soluciones se obtengan en diferente orden.

Soluciones Septiembre 1992 - 1993

Septiembre 1992 - 1993

```
\overline{\overline{x} + \overline{y} + z} + \overline{\overline{x} + y} + \overline{x} + z =
1.-
                                                                                            (Aplicando De Morgan, eliminando dobles negaciones)
                x \cdot y \cdot \overline{z} + x \cdot \overline{y} + \overline{x} + z =
                                                                                            (Prop. Distributiva)
                (x+z)(y+z)(\bar{z}+z)+(x+\bar{x})(\bar{y}+\bar{x})=
                                                                                            (x+\overline{x}=1 \ y \ x\cdot 1=x)
                (x+z)(y+z) + \overline{y} + \overline{x} =
                                                                                            (Prop. distributiva)
                (x+z+\overline{y}+\overline{x})(y+z+\overline{y}+\overline{x})=
                                                                                            (x + \overline{x} = 1, x + 1 = 1, 1 \cdot 1 = 1)
```

2.- Existen dos soluciones: $f(a,b,c,d,e,f) = a\overline{b}\overline{c}\overline{d}\overline{e}\overline{f} + \overline{b}\overline{c}\overline{d}\overline{e}f + \overline{a}\overline{b}\overline{e}f + \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}\overline{c}e\overline{f} + \overline{a}\overline{b}\overline{c}\overline{d}f$ $f(a,b,c,d,e,f) = a\overline{b}\,\overline{c}\,\overline{def} + \overline{b}\,\overline{c}\,\overline{def} + \overline{a}\,\overline{b}\,\overline{ef} + \overline{a}\,\overline{b}\,\overline{c} + \overline{a}\,\overline{b}\,\overline{cef} + \overline{a}\,\overline{b}\,\overline{cdef}$

3.- Para realizar este ejercicio es conveniente observar que la lógica de proposiciones tiene estructura de álgebra de Boole, de forma que una fórmula en forma de producto de sumas equivale a forma normal conjuntiva.

```
F = (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (p \lor \neg q \lor r)
```

- 4.- $V_I(F_1)=V$ $V_I(F_2)=\mathbf{F}$
 - $V_{I}(F_{3})=V$
 - $V_I(F_4)=\mathbf{F}$
- 5.- $\{P_1, P_2, \dots P_n\} \Rightarrow C$ es correcto \Leftrightarrow $P_1 \land P_2 \land ... \land P_n \rightarrow C$ es válida \Leftrightarrow $\neg (P_1 \land P_2 \land ... \land P_n \rightarrow C)$ es insatisfacible \Leftrightarrow $P_1 \land P_2 \land ... \land P_n \land \neg C$ es insatisfacible \Leftrightarrow $\{P'_1, P'_2, \dots P'_n, \neg C'\}$ es insatisfacible (F' equivale a F en forma normal conjuntiva)

Por tanto, el conjunto de cláusulas que habrá que introducir en el algoritmo de resolución coincide con las premisas y la negación de la conclusión (tras convertirlas a forma normal conjuntiva)

```
6.-
```

 $\forall x (F(x) \rightarrow \exists y (E(y,x) \land Z(y)))$

 $\forall x (TF(x) \rightarrow \neg \exists y (E(y,x) \land Z(y)))$

 $\forall x (TF(x) \rightarrow \neg F(x))$ Es Correcto

7.-(a)Premisas:

 $\forall x \ S(x,0,x)$ $\forall x \forall y \forall z (S(x, y, z) \rightarrow S(x, s(y), s(z)))$

Conclusión 1: S(s(0), s(0), s(s(0)))Correcto Conclusión 2: S(s(0), s(0), s(s(s(0))))No es Correcto

(b) $\forall x M(x,0,0)$

 $\forall x \forall y \forall z \forall u (M(x, y, u) \land S(u, x, z) \rightarrow M(x, s(y), z))$

8.- No es válida

- (a) El Prolog entraría en un bucle infinito.
- (b) Si se intercambian la segunda y la tercera cláusula, el Prolog respondería X=cain. Y si se solicitan más respuestas por backtracking, continuaría respondiendo X=cain infinitas veces.

Soluciones Febrero 1992 - 1993

Febrero 1992 - 1993

- 1.- $f(a,b,c) = (\overline{a} + \overline{c})(b+c)$
- $2. f(a,b,c,d,e,f) = \begin{cases} \overline{a}\overline{b}cd\overline{e}f + a\overline{b}\overline{c}\overline{d} + \overline{b}\overline{c}\overline{d}e \\ \overline{a}\overline{b}cd\overline{e}f + a\overline{b}\overline{c}\overline{d} + \overline{a}\overline{b}\overline{d}e \end{cases}$
- 3.- Verdadero
- 4.- (a) La interpretación está correctamente definida. La única peculiaridad es que el dominio está formado por valores {**V,F**} pudiendo mezclar funciones y predicados.
 - (b) El valor es Verdadero.

5.- (a)
$$\neg\exists x \ (R(x) \land \neg T(x))$$

$$\forall x \ (R(x) \rightarrow C(x))$$

$$\neg R(a)$$

$$T(a) \land C(a) \rightarrow \neg \forall x \ (T(x) \land C(x) \rightarrow R(x))$$
 Es correcto
$$(b)$$

$$\forall x \ (E(x,l) \rightarrow (\exists y \ (A(x,y) \land I(y)) \land \forall y \ (L(y) \rightarrow C(x,y)))$$

$$\forall x \ (N(x) \rightarrow E(x,l))$$

$$\forall x \ ((\exists y \ (C(x,y) \land L(y)) \rightarrow P(x))$$

$$N(c)$$

$$\exists x \ L(x)$$

$$P(c)$$
 Es correcto

Soluciones Primer Parcial 1993 - 1994

Primer Parcial 1993 - 1994

1.- (a)

-		_		_
	x y	\bar{x}	x+y	$x \cdot y$
	0.0	2	0	0
	0 1	2 2	1	0
	0 2	2	2	0
	10	1	1	0
	1 1	1	1	1
	1 2	1	2	1
	20	0	2	0
	2 1	0	2 2 2 2	1
	2 2	0	2	2

(b) Las demostraciones pueden realizarse siguiendo la tabla de verdad

2.-
$$f(p,q,r) = q + \bar{r}$$

3.-
$$f(i_1, i_2, s_1, s_2) = s_1 s_2 + \begin{cases} \bar{i}_1 s_2 + \bar{i}_1 s_1 \\ \bar{i}_1 s_2 + i_2 s_1 \\ i_2 s_2 + \bar{i}_1 s_1 \\ i_2 s_2 + i_2 s_1 \end{cases}$$

4.- Forma Normal Conjuntiva: $F = \neg p \land (q \lor r)$

Forma Normal Disyuntiva: $F = (\neg p \land q) \lor (\neg p \land r)$

Para realizar este ejercicio, se puede transformar el árbol semántico en una tabla de verdad y, dado que la lógica proposicional tiene estructura de álgebra de Boole, es posible simplificar dicha tabla en forma de suma de productos y producto de sumas y transformar las expresiones correspondientes a Forma Normal Disyuntiva y Conjuntiva.

5.- Las premisas podrían formalizarse como:

$$C \rightarrow \neg O$$

 $P \rightarrow O$
 $\neg R \rightarrow L$
 $R \rightarrow P$
 $(C \lor L) \land \neg (C \land L)$

- (a) Tomando como conclusión C, el razonamiento no es correcto, por tanto, no puede deducirse que Carmen sea la asesina.
- (b) Tomando como conclusión L, el razonamiento sí es correcto, por tanto, sí puede deducirse que Loreto es la asesina
- (c) Las premisas no son insatisfacibles. Si lo fueran, el razonamiento del apdo. (a) habría sido correcto

Soluciones Segundo Parcial 1993-1994

Segundo Parcial 1993-1994

```
Bloque 1: Test
1.b
2.d
3.d
4.a
5.d
6.b
7.a
8.b
9.b
10.b
```

Bloque 2: Desarrollar

1.-

11.a 12.c 13.b 14.d


```
2.-
            (a)
                          \forall x (B(x) \rightarrow A(x,x))
            (b)
                         \exists x \; (B(x) \land \neg \; \exists y \; (\; B(y) \land \neg \; I(y,x) \;) \;)
                         \neg \exists x \exists y \; (\; B(x) \land A(y,x) \; )
            (c)
                         \exists x \; (\; B(x) \land \exists y \exists z \; (A(y,x) \land A(z,x) \land \neg \; I(y,z) \;) \;)
            (d)
            (e)
                         \exists x \ (\ B(x) \land \forall y \ (\neg A(y,y) \to A(x,y) \ )
            (f)
                         \forall x (\neg A(x,x) \rightarrow A(j,x))
                         \forall x \: (\: (\forall y (\neg A(y,y) \to A(x,y)\:)\:) \to B(x)\:)
            (g)
                         \exists x \; (\; B(x) \land \neg \; \exists y \; A(x,y) \;) \land \exists z \; A(j,z)
            (h)
            (i)
                         (\forall x \ (\ B(x) \land A(x,j)\ )\ ) \rightarrow \neg\ A(j,j)
                         (\forall x\ (\ B(x) \to A(x,\!j)\ )\ ) \to B(j)
            (j)
3.-
\forall x (I(x) \rightarrow O(x))
\forall x \ (\ (\exists y \ (\ C(x,y) \land I(y)\ )\ ) \rightarrow (\exists z \ (\ C(x,z) \land O(z)\ )\ )\ ) \ \ \text{Es Correcto}
4.-
             sueldo(X,200):-empleado(X).
             sueldo(X,400):-jefe(X).
             odia(carlos,X):=sueldo(carlos,Y), sueldo(X,Z), menor(Y,Z).
             corrupto(X):-odia(X,Y).
             empleado(carlos).
             jefe(luis).
```

menor(200,400).

Soluciones Segundo Parcial 1993-1994

La pregunta sería:

| ?- corrupto(X). X = carlos Soluciones Junio 1993-1994

Junio 1993-1994

Primer Parcial

```
1.- f(a,b,c,d) = \prod (0,1,2,3,9,11,12,13,14,15) = (a+b)(\overline{a}+\overline{b}) \begin{cases} (\overline{b}+d) \\ (a+d) \end{cases}
```

- 2.- $f(a,b,c,d,e) = \sum (0,6,12,18,24,30) = \overline{ab} \, \overline{c} \, \overline{de} + \overline{ab} \, \overline{c} \, \overline{de} + \overline{ab} \, \overline{c} \, \overline{de} + ab \, \overline{c} \, \overline{$
- - (b) Cualquier razonamiento cuyas premisas son insatisfacibles es correcto. Por tanto, no es necesario imponer ninguna restricción.

Segundo Parcial

1.-

```
 \forall x \ (R(x,a) \to A(x,p) \lor A(x,s) \ ) 
 \forall x \ (\neg A(x,p) \land \neg A(x,s) \to R(x,b) \ ) 
 (R(x,a) \lor R(x,b) ) \land \neg (R(x,a) \land R(x,b) ) 
 R(j,a) \to A(j,p) 
No es Correcto
```

2.aprueba(X,Y):-estudia(X,Y,Z),examen(Y,D),sigu(D,Z).estudia(f,X,D):-sol(D). estudia(a,X,D):-en_casa(a,D). en_casa(a,D):-llueve(D). llueve(D):-sol(D1), sigu(D,D1). examen(logica, viernes). examen(fisica, jueves). sol(miercoles). sigu(viernes, jueves). sigu(jueves,miercoles). ?- aprueba(X,Y). X = f, Y = fisica ; X = a, Y = logica ;no

Soluciones Septiembre 1993- 1994

Septiembre 1993- 1994

no

```
1.- f(a,b,c,d) = \sum (6,7,8,9,10,11,12,13,14,15) = a + b c = \prod (10,11,12,13,14,15) = (a+b)(a+c)
```

2.- Una función booleana toma como argumentos variables booleanas que sólo pueden tomar dos valores, 0 ó 1. La demostración puede realizarse separando ambos casos:

```
 a = 0 \qquad a \cdot f(1,b,c,...) + \overline{a} \cdot f(0,b,c,...) = \qquad \text{Suponiendo que a} = 0   0 \cdot f(1,b,c,...) + \overline{0} \cdot f(0,b,c,...) = \qquad \text{Axiomas: } \overline{0} = 1, 0 \cdot x = 0, 1 \cdot x = x, 0 + x = x   f(0,b,c,...) = \qquad (0 = a)   f(a,b,c,...)
```

La demostración para a=1 se realizará de forma similar.

```
3.-
\forall x \forall y \ (I(x,y) \land HF(y) \rightarrow \exists z \ (P(z,y) \land M(y,z) \ ) \ )
\exists x \exists y \ (M(x,y) \land P(y,x) \land MT(x))
\forall x (GE(x) \rightarrow \exists y (I(x,y) \land HF(y)))
                                                        No es correcto
\exists x (GE(x) \land MT(x))
4.- (a) Falso, (b) Verdadero, (c) Verdadero, (d) Verdadero
5.-
         col(s(X),r):-trab(X), fran(X).
         col(s(X),a):-trab(X), esp(X).
         col(s(X),r):-emi(X), esp(X).
         trab(m).
         esp(m).
         emi(p).
         esp(p).
         trab(j).
         fran(j).
La pregunta sería:
        | ?- esp(X), col(s(X),Y), fran(Z), col(s(Z),Y).
        X = p,
        Y = r,
         Z = j ;
```

Soluciones Febrero 1993- 1994

Febrero 1993-1994

```
1.- f(a,b,c,d) = \sum_{4} (1,3,4,6,12,14) + \sum_{\varnothing} (0,2,8,9,10,11,13) = \overline{d}
```

2.- Probar que la fórmula es válida, equivale a probar que su negación es insatisfacible. Negando la fórmula y pasando a forma clausal, se obtiene:

```
C = \{ \neg P(x) \lor \neg Q(x,y), P(a), Q(x,a) \}
```

Dicho conjunto es insatisfacible si no tiene modelos de Herbrand. Para calcular los modelos de Herbrand, se calcula el Universo de herbrand ($UH = \{a\}$) y el conjunto de instancias básicas será:

$$\{\ \neg P(a) \lor \ \neg Q(a,a),\, P(a),\, Q(a,a)\ \}$$

| ?- p(s(s(0))).

| ?- p(X),p(s(X)). Bucle infinito ...

| ?- p(s(X)).X = s(0)

yes/si

Puesto que dicho conjunto es insatisfacible (puede comprobarse mediante un árbol semántico) el conjunto C será también insatisfacible (teorema de Herbrand) y la fórmula válida.

```
3.-
\forall x ( (H(x) \land \exists y C(x,y)) \rightarrow \exists z (A(x,z) \land M(z)) 
H(j) \land \neg \exists x A(j,x)
\neg \exists x C(j,x)
Es correcto
\forall x ( (\exists y (A(x,y) \land \neg C(x,y) \land M(y)) \rightarrow D(x)) 
C(j,m) \land \neg D(j) \rightarrow A(j,m)
No es correcto
4.-a- p(0).
i(s(X)):-p(X).
p(s(X)):-i(X).
b- |?-i(s(s(0))).
no
```

Soluciones Primer Parcial 1994 – 1995

Primer Parcial 1994 – 1995

Bloque 1: Test

1.a 2.b 3.c 4.b 5.c 6.b 7.d 8.a 9.a 10.d

11.b

Bloque 2: Desarrollar

1.- $(q \to p) \to r$ $(\neg q \leftrightarrow s) \to p \text{ \'o } (\neg q \to p) \leftrightarrow s)$ $q \to t$ $t \to p$ $s \to r$

La segunda premisa puede considerarse ambigüa y admitiría dos formalizaciones

Es correcto (independientemente de la formalización escogida para la 2ª premisa)

- 2.- La solución de este ejercicio pasa por formalizar las sentencias de cada uno de los implicados y realizar una tabla de verdad estudiando las diferentes posibilidades. A partir de dicha tabla, se obtienen las respuestas a las siguientes preguntas:
 - (a) Sí es posible que los tres digan la verdad, en cuyo caso el culpable sería Pedro
 - (b) Mintieron Bernardo y Miguel
 - (d) Sí es posible, y en dicho caso, habría mentido Pedro y los culpables serían Bernardo y Pedro
 - (e) Los culpables serían Bernardo y Miguel y el inocente Pedro

3.- $f(a_1,a_2,x_1,x_2,x_3) = \prod_5 (1,3,5,7,10,11,14,15,20,21,22,23) \prod_{\varnothing} (24,25,26,27,28,29,30,31) = (a_2+x_2)(a_1+x_1)(\overline{a}_1+\overline{a}_2+x_3)$

Soluciones Segundo Parcial 1994 – 1995

Segundo Parcial 1994 – 1995

Bloque 1. Test

- 1. d. Más de una (a y b)
- 2. b
- 3. a
- 4. b
- 5. a
- 6. b
- 7. a
- 8. a
- 9. a
- 10. a
- 11. a
- 12. b

Bloque 2. Desarrollar.

1.- Dado el siguiente programa lógico:

$$P(x, y) \leftarrow Q(x, f(y))$$

$$P(c, y)$$

$$Q(x, f(y)) \leftarrow R(x, y)$$

$$Q(b, f(a))$$

$$R(a, d)$$

$$R(x, y) \leftarrow R(y, x)$$

Y el objetivo $\leftarrow P(x,a)$

- a.- Construir el árbol-SLD con la estrategia de computación que selecciona el 1er. literal.
- b.- Indicar la substitución de respuesta si la estrategia de búsqueda es 1er.o en profundidad
- c.- Indicar la substitución de respuesta si la estrategia de búsqueda es 1er.o en Anchura

Solución:

b.-
$$\{x/d\}$$

c.- $\{x/c\}$

- 2.- Formalizar las siguientes frases considerando como dominio el conjunto de personas y partidos y utilizando los predicados: "V(x,y) = x votó a y. C(x,y) = x es candidato por el partido y. I(x) = x es un partido de izquierdas. D(x) = x es un partido de
- derechas" y las constantes: "t=Teodoro y m=Margarita".

a.- "Algunos candidatos no votaron".

$$\exists x \exists y (C(x, y) \land \neg \exists z V(x, z))$$

b.- "Sólo los candidatos de partidos de izquierdas votaron a Teodoro".

$$\forall x (V(x,t) \rightarrow \exists y (C(x,y) \land I(y)))$$

c.- "Todos los candidatos de partidos de derechas votaron a Margarita".

$$\forall x \forall y ((C(x, y) \land D(y)) \rightarrow V(x, m))$$

d.-"Nadie vota a Teodoro a menos que Teodoro vote a algún candidato de derechas"

$$\exists x V(x,t) \rightarrow \exists y \exists z (V(t,y) \land C(y,z) \land D(z))$$

e.- "Los candidatos de derechas se votaron a sí mismos"

$$\forall x((\exists y(C(x,y) \land D(y))) \rightarrow V(x,x))$$

f.-"Algún candidato votó a los candidatos votados por Margarita"

$$\exists x \exists y (C(x, y) \land \forall z (V(m, z) \land \exists u C(z, u) \rightarrow V(x, z)))$$

3.-Escribir las definiciones de los siguientes predicados en Prolog:

ultimo(Xs,X):- "X es el último elemento de la lista Xs"

Soluciones Segundo Parcial 1994 – 1995

```
ultimo(Xs,X) :- sufijo([X],Xs).
             sufijo(Xs,Xs).
             sufijo([X|Xs],Ys):-sufijo(Xs,Ys).
% Solución 3:
             ultimo(Xs,X) := append(Zs,[X],Xs).
suma(Xs,N):-"N es la suma de los elementos de la lista Xs"
             suma([],0).
             suma([X|Xs],N) :- suma(Xs,N1), N is N1 + X.
media(Xs,M):-"N es la media de los elementos de la lista Xs"
             media(Xs,M):-suma(Xs,S),elementos(Xs,N), M is S / N.
             elementos([],0).
             elementos([X|Xs],N):-elementos(Xs,N1), N is N1 + 1.
rota(Xs,Ys):-"Ys es la lista resultante al rotar una posición a la izquierda los elementos de Xs"
             rota([],[]).
             rota([X|Xs],Ys):-append(Xs,[X],Ys).
             append([],Xs,Xs).
             append([X|Xs],Ys,[X|Zs]):-append(Xs,Ys,Zs).
```

Junio 1994 – 1995. Soluciones

Junio 1994 - 1995.

Primer Parcial

(a)
$$f(x_1, x_2, x_3, x_4) = \sum_{4} (0, 2, 5, 7, 8, 10) + \sum_{\varnothing} (1, 3, 4, 6, 9, 11, 12, 14) =$$

(b) $f(x_1, x_2, x_3, x_4) = \begin{cases} \overline{x_1} + \overline{x_2} \\ \overline{x_1} + \overline{x_4} \end{cases}$

(b)
$$f(x_1, x_2, x_3, x_4) = \begin{cases} \overline{x_1} + \overline{x_2} \\ x_1 + x_4 \end{cases}$$

$$2 - f(x,y,z) = 1$$

3.- < Teoría>

< Razonamiento NO correcto>

<Razonamiento Correcto>

a.- Aplicando resolución, se alcanza la cláusula vacía, por tanto, \mathcal{C} es insatisfacible.

b.-

Los nodos de fallo serían el 2, 5, 7, 8 y 9

El único nodo de inferencia es el nodo 6.

El paso de resolución indicado por el nodo de inferencia 6 se establece entre las cláusulas (~s) y (~r v s) cuyo resolvente sería (~r)

Soluciones Junio 1994 – 1995.

a.-Verdadera

Primero en Profundidad: No se encuentra la cláusula vacía, puesto que se pierde por un camino infinito Primero en Anchura: $\{x/b,y/b\}$

```
b.-Verdadera
        c.-Falsa
        d.-Falsa
\forall x ((\exists y (B(y) \land A(y) \land R(x,y))) \rightarrow \exists z (B(z) \land S(z) \land C(z,x)))
\exists x (B(x) \land A(x) \land R(j,x))
                                                         Razonamiento correcto
\exists x (B(x) \land S(x))
\forall x (B(x) \rightarrow \exists y (B(y) \land R(x, y)))
B(j)
                                                       Razonamiento NO correcto
B(p) \wedge A(p) \rightarrow R(j,p)
% escalar(Xs,Ys,E):-E es el producto escalar de los vectores Xs e Ys
escalar([],[],0).
escalar([X|Xs],Y|Ys],E):-escalar(Xs,Ys,Ec), E is (X*Y) + Ec.
% suma(Xs,Ys,Zs):- Zs es el vector suma de los vectores Xs e Ys
suma([],[],[]).
suma([X|Xs],[Y|Ys],[Z|Zs]):-suma(Xs,Ys,Zs), Z is X + Y.
% iguales(Xs,Ys):- Los vectores Xs e Ys son iguales
iguales([],[]).
iguales([X|Xs],[X|Ys]):-iguales(Xs,Ys).
% modulo(Xs,M):- M es el módulo del vector Xs
                                                Soluciones, Pág. 19
```

Soluciones Junio 1994 – 1995.

modulo(Xs,M):-suma_cuadrados(Xs,Sc), M is sqrt(Sc).
suma_cuadrados([],0).
suma_cuadrados([X|Xs],S):-suma_cuadrados(Xs,Sc),S is (X * X) + Sc.

- 5.- a.- $\mathbf{m}_{\text{no muy C}}(-1) = 1 (\mathbf{m}_{C}(-1))^2 = 1 (0.2)^2 = 1 0.04 = 0.96$
 - b.- $\mathbf{m}_{D \text{ y no muy C}}(-1) = \min(\mathbf{m}_{D}(-1), \mathbf{m}_{\text{no muy C}}(-1)) = \min(0,0.96) = 0$
 - c.- $\textit{\textbf{m}}_{no\; muy\; D\; y\; no\; muy\; C}(-1) = min(\textit{\textbf{m}}_{no\; muy\; D}(-1), \textit{\textbf{m}}_{no\; muy\; C}(-1)) = min(1,0.96) = 0.96$
 - d.- $\boldsymbol{m}_{C \cup \overline{D}}(-1) = \max(\boldsymbol{m}_{C}(-1), \boldsymbol{m}_{\text{no } D}(-1)) = \max(0.2,1) = 1$

Soluciones Septiembre 1994-1995

Septiembre 1994-1995

```
1.- f(a,b) = Teorema  (a+f(0,b))(\overline{a}+f(1,b)) = Teorema  (a+(b+f(0,0))(\overline{b}+f(0,1))+(\overline{a}+(b+f(1,0)(\overline{b}+f(1,1)) = Prop. Distributiva  (a+b+f(0,0))(a+\overline{b}+f(0,1))(\overline{a}+b+f(1,0))(\overline{a}+\overline{b}+f(1,1))
```

Las expresiones, f(0,0), f(0,1), f(1,0) y f(1,1) toman valor 0 ó 1 dependiendo de la función particular. Obsérvese que cuando toman valor 1, el término correspondiente desaparece, mientras que cuando toman valor 0, el término correspondiente, permanece.

```
2.-
                                                         (a) Verdadero
                                                         (b) Falso
                                                         (c) Verdadero
                                                         (d) Falso
 3.-(a)
 \mathcal{O}(\forall x \forall y (A(x) \land S(x,y) \rightarrow \neg E(x,y))
 \forall x \forall y \ (\ A(x) \land S(x,y) \land E(x,y) \rightarrow D(x)
                                                                                                                                                                                                                                                                                            Sí es correcto
\exists x (A(x) \land D(x))
 (b)
 \forall x (A(x) \land D(x) \rightarrow \exists y (S(x,y) \land E(x,y))
  \neg \exists x \ (A(x) \land (D(x) \to \exists y \ E(x,y) \ ))
                                                                                                                                                                                                                                                                                                                 No es correcto
  \forall x (A(x) \land \neg D(x) \rightarrow \neg \exists y S(x,y))
 4.-
 ruta(X,Y,D):-enlace(X,Y,D).
 ruta(X,Y,D):=enlace(X,Z,D1), ruta(Z,Y,D2), D is D1 + D2.
                                                                       \{X/a, Xs / [b]\}
        ? \log([b],L), L is L + 1.
                                                                             \{X/b, Xs / [] \}
          ? long([,],L), L is L + 1, L is L + 1.
                                                        \{L/0\}
   ? 0 is 0 + 1, 0 is 0 + 1.
                                                              - Evalúa 0+1 = 1
- 1 no unifica con 0 => falla
 5.-
                                                                      = (0/0, 20/0.1, 40/0.3, 60/0.5, 80/0.7, 100/0.6, 120/0.4)
  m PÌIA
  \mathbf{m} \mathcal{O}_{P\hat{U}A} = (0/0, 20/0.4, 40/0.6, 60/0.5, 80/0.3, 100/0.1, 120/0)
  \mathbf{m} \, \mathbf{p} \, \mathbf{p} \, \mathbf{v} \, \mathbf{p} \, \mathbf{p} \, \mathbf{v} \, \mathbf{p} \, \mathbf{p} \, \mathbf{p} \, \mathbf{v} \, \mathbf{p} \,
```

Soluciones Febrero 1994 – 1995

Febrero 1994 – 1995

```
1.- \{((p \land q) \rightarrow \neg r) \land (r \rightarrow s) \land (s \rightarrow q)\} \Rightarrow ((\neg p \land q) \rightarrow \neg r)
                                                                       No correcto
2.-
a.-"Todos los hombres casados aman a alguna mujer"
         \forall x((H(x) \land \exists y C(x, y)) \rightarrow \exists z (M(z) \land A(x, z)))
b.-"Sólo los hombres desgraciados aman a alguna mujer con quien no están casados"
         \forall x (\exists y (M(y) \land A(x, y) \land \neg C(x, y)) \rightarrow (H(x) \land D(x)))
c.-"Sólo son desgraciados los hombres que aman a alguna mujer con quien están casados"
         \forall x ((H(x) \land \exists y (M(y) \land A(x, y) \land C(x, y))) \rightarrow D(x))
d.-"Alguien se casa con María si la ama."
         \exists x (A(x,m) \to C(x,m))
e.-"Algún desgraciado sólo se casa con María cuando no la ama"
         \exists x (D(x) \land (C(x,m) \rightarrow \neg A(x,m)))
f.-"Los hombres que aman a una única mujer no son desgraciados"
         \forall x ((H(x) \land \exists y (A(x, y) \land M(y) \land \forall z ((M(z) \land A(x, z)) \rightarrow I(z, y)))) \rightarrow \neg D(x))
4.-Substitución de respuesta: x/f(b, f(c, f(a, a)))
5.-
no([],[]).
no([X|Xs],[Y|Ys]):-Y is 1-X, no(Xs,Ys).
and([],[],[]).
and([X|Xs],[Y|Ys],[Z|Zs]):-minimo(X,Y,Z),and(Xs,Ys,Zs).
or([],[],[]).
or([X|Xs],[Y|Ys],[Z|Zs]):-maximo(X,Y,Z),or(Xs,Ys,Zs).
tercio(C1,C2):-no(C1,NC1),and(C1,NC1,C2).
normalizado(C):-elemento(1,C).
% Otra posibilidad:
                                   normalizado([1|Xs]).
                                   normalizado([X|Xs]):-normalizado(Xs).
minimo(X,Y,X):-menor_o_igual(X,Y).
minimo(X,Y,Y):-mayor(X,Y).
maximo(X,Y,X):-mayor_o_igual(X,Y).
maximo(X,Y,Y):-menor(X,Y).
elemento(X,[X|Xs]).
elemento(X,[Y|Ys]):-elemento(X,Ys).
```

Soluciones Primer Parcial 1995 – 1996

Primer Parcial 1995 - 1996

```
1.b
2.a
3.b
4.c
5.d Más de una (b y c).
6.b
7.b
8.c
9.c
10.d
11.b
12.c
13.b
14.d. Más de una de las anteriores (a y c).
15.b
16.a
17.d. Más de una de las anteriores (a y c).
18.c
19.c
20.b
21.b
22.d
23.a
24.c
```

25.b

Soluciones Segundo Parcial 1995 – 1996

Segundo Parcial 1995 – 1996

```
Bloque 1: Test
1.b
2.c
3.d
4.c
5.c
6.c
7.c
8.b
9.b
10.c
11.b
12.c
13.d
14.b
   Bloque 2: Desarrollar
1.
a.-"Alguien odia a todos los que le roban"
\exists x (\forall y (R(y, x) \rightarrow O(x, y)))
b.-"Alguien odia sólo a los que le roban"
\exists x (\forall y (O(x, y) \rightarrow R(y, x)))
c.-"Todos roban a quien les odia"
\forall x \, \forall y \, (O(y, x) \rightarrow R(x, y))
d.-"Los que roban y odian a alguien son odiados por todos"
\forall x((\exists y(R(x,y) \land O(x,y))) \rightarrow \forall z O(z,x)
e.-"Nadie roba a alguien a quien no odia"
\neg \exists x \exists y (R(x, y) \land \neg O(x, y))
2.-
suma([],0,0).
suma([X|Xs],I,P):-impar(X),suma(Xs,I1,P), I is I1+X.
suma([X|Xs],I,P):-par(X),suma(Xs,I1,P1), P is P1+X.
b. sumapos(Xs,I,P):-sumaposI(Xs,I,P).
pos(X,[X|Xs],1).
pos(X,[Y|Ys],N):-pos(X,Ys,N1), N is N1+1.
substimpares([],E,[]).
substimpares([X|Xs],E,[E|Ys]):-impar(X),substimpares(Xs,E,Ys).
substimpares([X|Xs],E,[E|Ys])\text{:-par}(X), substimpares(Xs,E,Ys).
Predicados auxiliares:
par(x):-X \mod 2 =:=0.
impar(X):-X \mod 2 = \setminus =0.
sumaposI([],0,0).
sumaposI([X|Xs],I,P)\text{:-}sumaposP(Xs,I1,P), I is I1+X.
sumaposP([ ],0,0).
sumaposP([X|Xs],I,P):-sumaposI(Xs,I,P1), P is P1+X.
```

Soluciones Junio 1995 – 1996

Junio 1995 - 1996

Primer Parcial

1.b

2.c

3.b

4.b

5.c

6.c

7.b

8.c

9.b

10.a

11.c

12.a

13.a

14.a

15.d

16.b

17.b

18.a

19.c

20.b

Segundo Parcial

Bloque 1: Test

1.a

2.b

3.c

4.b

5.c

6.a

7.d 8.c

9.c

10.b

11.d

12.b

13.a

14.c 15.b

Bloque 2: Desarrollar

Soluciones Septiembre 1995-1996

Septiembre 1995-1996

```
f(a,b,c,d) = \prod (1,3,5,7,8,11,13,15) = (\overline{a}+d)(b+d)(c+d)(a+\overline{b}+\overline{c}+\overline{d})
1.-
2.-
        a + b + a + c
                                           Prop. commutativa, a + a = a
(a)
        a + b + c
                                           Si b \ge c entonces b + c = c
        a + c
                         \Rightarrow a + b \geq a + c
(b)
                                           Prop. Distributiva
        a \cdot b + a \cdot c
                         =
                                           Si b \ge c entonces b + c = c
        a \cdot (b + c)
        a \cdot c
                         \Rightarrow a · b \geq a · c
3.-
(a)
\forall x (E(x) \lor G(x) \rightarrow A(x,p))
\forall x (M(x,s) \rightarrow A(x,p))
\neg M(j,s)
\neg E(j)
                                        No es Correcto
(b)
\forall x ((\exists y (A(x,y) \land \neg E(x)) \rightarrow G(x))
\forall x (G(x) \rightarrow \exists y M(x,y))
\neg \exists x \ M(j,x) \land \neg E(j)
                                        Sí es Correcto
\neg A(j,s)
4.-
        (a) No, porque evalúa 3+4=7 y no unifica con "5+2"
        (b) No, porque no unifican "3+4" con "5+2"
        (c) Sí, porque evalúa 3 + 4 = 7 y 5 + 2 = 7 y ambos resultados unifican
5.- (a) La solución sencilla sería:
sumat(1,1).
sumat(N,S):-N > 1, potencia(N,N,P), N1 is N - 1, sumat(N1,S1), S is P + S1.
potencia(N,0,1).
potencia(N,M,P):-M > 0, M1 is M - 1, potencia(N,M1,P1), P is P1 * N.
La solución anterior puede mejorarse mediante la utilización de un parámetro acumulador:
sum(N,S) :- sum_(N,S,1).
sum (1,S,S).
sum_{N,S,Sa}:-N > 1, pot(N,N,P), Sn is Sa + P, N1 is N - 1,
                    sum_{N1,S,Sn).
pot(N,M,P) :- pot_(N,M,P,1).
pot_(N,0,P,P).
pot_(N,M,P,Pa):-M > 0, Pn is Pa * N, M1 is M - 1,
                       pot_(N,M1,P,Pn).
(b) Se indica directamente la solución con parámetro acumulador:
resist(Xs,R):=sumaR(Xs,R1), R is 1 / R1.
sumaR(Xs,R):-sumaR_(Xs,R,0).
sumaR_{([],R,R)}.
sumaR_{([X|Xs],R,Ra)}:-Rn is Ra + 1 / X,
                              sumaR_(Xs,R,Rn).
```

Soluciones Febrero 1995-1996

Febrero 1995-1996

```
1.- f(x,y,z) = \prod_3 (2,4,5) \prod_{\varnothing} (1,6) = (x + \overline{y})(y + \overline{z})
2.-\neg p \lor \neg q \lor r
3.-
\forall x \forall y \forall z \: ( \: A(x,y) \land A(y,z) \mathbin{\rightarrow} \neg \: B(x,z) \: )
\forall x \ \forall y \ (\ A(x,y) \leftrightarrow (\ B(y,x) \lor \ C(x,y)\ )\ )
\forall x \exists y A(x,y)
\forall x \ A(x, x)
                                                                                  No es correcto
\forall x \; (\; V(x,y) \mathop{\rightarrow} E(j,x) \;) \land \forall x \; (\; E(p,x) \mathop{\rightarrow} V(y,y) \;)
(\exists x \ E(x, p)) \rightarrow E(j, p)
                                                                                 Es correcto
5.-
capicua(Xs):-reverse(Xs,Xs).
reverse([],[]).
\texttt{reverse}(\texttt{[X|Xs],Ys):-reverse}(\texttt{Xs,Xsr}), \texttt{ concat}(\texttt{Xsr,[X],Ys}).
concat([],Xs,Xs).
concat([X|Xs],Ys,[X|Zs]):-concat(Xs,Ys,Zs).
(b)
numUnos([],0).
numUnos([1|Xs],N):-numUnos(Xs,N1), N is N1 + 1.
numUnos([X|Xs],N):-X=1, numUnos(Xs,N).
```

Soluciones Primer Parcial 1996 – 1997

Primer Parcial 1996 – 1997

1.b

2.c

3.a

4.b

5.b

6.b

7.d

8.b

9.b

10.c

11.a

12.b

13.d

14.a

15.d 16.a

17.c

18.b

19.a

20.b

Soluciones Segundo Parcial 1996 – 1997

Segundo Parcial 1996 – 1997

1.b 2.b

3.b

4.d

5.b

6.d

7.a

8.b

9.a

10.a

11.b

12.c 13.d

14.b 15.b

16.c

17.c

18.b

19.d

20.a

21.d

22.b

23.a 24.a

25.d

Soluciones Junio 1996 – 1997

Junio 1996 - 1997

Primer Parcial

1.c

2.a

3.a

4.a

5.a

6.d

7.a

8.d

9.a

10.c

11.a

12.c

13.d

14.a

15.c 16.c

17.a

Segundo Parcial

1.d

2.d

3.d 4.d

5.c

6.b

7.b

8.d 9.a

10.b

11.b

12.b

13.c

14.d

15.d

16.a 17.b

Soluciones Septiembre 1996-1997

Septiembre 1996-1997

1.d

2.c

3.c

4.a

5.a

6.c

7.a

8.c

9.d

10.d

11.a

12.c

13.d

14.c

15.b

16.b

Soluciones Febrero 1996- 1997

Febrero 1996- 1997

Primer Parcial

```
1.- f(a,b,c,d) = \Pi_4(8,9,10,11) \Pi_{\emptyset}(0,1,2,3) = \overline{b}
```

- 2.- a) conjunto de entrada = $\{p \lor \neg q, r \lor s, q \lor t, r \lor t, \neg t, \neg p \lor s\}$ (si árbol está en orden alfabético)
- a) El razonamiento no es correcto
- b1) Nodos de fallo = 19
- b2) Nodos de inferencia = 6
- c1) Aplicando literales puros queda un conjunto sin cláusulas
- c2) El conjunto resultante es satisfacible

Segundo Parcial

```
3.-
```

```
\{(\exists x(B(x)\land A(j,x))\rightarrow \forall x(D(x)\rightarrow F(x)), (\exists x(D(x)\land \neg F(x)))\rightarrow \exists x((B(x)\lor T(x))\land A(j,x)) \ \} \Rightarrow \exists x(A(j,x))\rightarrow \forall x(D(x)\rightarrow F(x)) \ Forma\ Clausal:
```

```
\{\neg B(x) \lor \neg A(j,x) \lor \neg D(y) \lor F(y), \neg D(x) \lor F(x) \lor B(f(x)) \lor T(f(x)), \neg D(x) \lor F(x) \lor A(j,f(x)), A(j,a), D(b), \neg F(b)\}
```

No correcto (eliminando literales puros, se van todas las cláusulas)

4.-

Respuestas: X = a, <Bucle infinito al realizar backtracking>

Substitución de Respuesta: Composición de todas las sobstituciones entre el objetivo y la cláusula vacía, restringida a las variables del objetivo.

Chequeo de Ocurrencias: Test que comprueba si una variable está incluida en un término en el algoritmo de unificación. Aunque el algoritmo de unificación requiere la realización de chequeo de ocurrencias, los sistemas Prolog no lo implementan en general para ganar eficiencia.

Substitución de Renombramiento: Substitución que toma algunas variables de un término y las cambia por otras variables que no aparecen en dicho término. Se suele utilizar para renombrar cláusulas.

Unificador más general: Unificador *mínimo* entre dos expresiones. Un unificador, es una substitución que, al aplicarla a dos o más expresiones obtiene una única expresión. El unificador más general es la substitución *mínima* en el sentido que cualquier otro unificador puede formarse mediante la composición del unificador más general con otra substitución.

Expresiones variantes: Son dos expresiones tales que se pueden encontrar dos substituciones que conviertan una en la otra y viceversa.

Composición de substituciones: Dadas dos substituciones, la composición de substituciones será una nueva substitución tal que al aplicar dicha substitución a una expresión se obtiene lo mismo que si se aplican las dos substituciones por separado.

Soluciones Primer Parcial 1997 – 1998

Primer Parcial 1997 – 1998

1.d

2.b

3.c

4.a

5.c

6.c

7.d

8.b

9.d

10.b 11.a

12.d

13.c

14.d 15.b

16.a

17.a

18.b

19.c

20.a

21.b

22.b

Soluciones Segundo Parcial 1997 – 1998

Segundo Parcial 1997 – 1998

1.b

2.c

3.d

4.d

5.d

6.b

7.d

8.b

9.d 10.d

11.d

12.c

13.d

14.b

15.a 16.c

17.a

18.a

19.c

20.d

21.a

22.d 23.c

Soluciones Junio 1997 – 1998

Junio 1997 - 1998

Primer Parcial

1.d

2.c

3.d

4.a

5.b

6.b

7.d

8.a 9.d

10.c

11.b

12.b 13.a

Segundo Parcial

1.b

2.d

3.a

4.b

5.a

6.a

7.a

8.b 9.d

10.a

11.a

12.a

13.c

Soluciones Septiembre 1997- 1998

Septiembre 1997- 1998

1.a 2.b

3.c

4.a

5.c

6.b

7.c

8.a

9.a

10.c

11.c

12.c

13.b

14.a

15.c

16.c

17.d

18.a

19.d

20.a

Soluciones Febrero 1997- 1998

Febrero 1997- 1998

Pregunta 1

p	se entra en el laboratorio
q	es personal autorizado
r	es dia laborable
S	es horario de oficina
t	estar acompañado de guarda de seguridad

a) Formalización

P_1	$p \rightarrow q$
P_2	$(r \land s) \to (q \to p)$
P_3	$[\neg r \lor (r \land \neg s)] \rightarrow [p \rightarrow (q \land t)]$
Q	$r \wedge s \rightarrow p$

b) {q
$$\lor \neg p$$
, $\neg r \lor \neg s \lor \neg q \lor p$, $r \lor \neg p \lor q$, $r \lor \neg p \lor t$, $\neg r \lor s \lor \neg p \lor q$, $\neg r \lor s \lor \neg p \lor t$, r , s , $\neg p$ } c) {}

d) NO

Pregunta 2

Dada la siguiente función, $f(a,b,c,d) = \overline{c \oplus d}$ si a = b

a) Escribir la forma canónica en forma de suma de productos y producto de sumas

$$f = \sum_{4} (0.3,12,15) + \sum_{\varnothing} (4.5,6,7,8,9,10,11)$$

$$f = \prod_{4} (1,2,13,14) + \prod_{\varnothing} (4.5,6,7,8,9,10,11)$$

- b) Construir la expresión mínima aplicando el método de Karnaugh
- b.1) Dibujar el mapa de Karanaugh asociado al producto de sumas y los agrupamientos

cd	00	01	11	10
ab				
00		0		0
01	X	X	X	X
11		0		0
10		X		X

- b.2) Escribir la expresión mínima en forma producto de sumas.
- b.3) Implementar la expresión mínima con puertas lógicas NAND.

Pregunta 3.-

"Cualquier natural es mayor o igual que sí mismo, aunque no existe ningún natural mayor que todos" $\forall x \ (M(x,x) \lor E(x,x)) \land \neg \exists x \ \forall y \ M(y,x)$

Febrero 1997- 1998 Soluciones

```
Verdadero
```

```
"Sólo existe un natural menor o igual que todos"
         \exists x ( \forall y (M(x,y) \lor E(x,y)) \land \neg \exists z ( \forall y (M(z,y) \lor E(z,y)) \land \neg E(x,z))
          Verdadero (x=0)
"Sólo los naturales iguales a sí mismos son menores que cero"
          \forall x (M(x,0) \rightarrow E(x,x))
         Verdadero
"Los naturales menores que cero son mayores que sus siguientes"
         \forall x (M(x,0) \rightarrow M(s(x), x))
          Verdadero
```

Pregunta 4.-

```
Conocimiento formalizado:
```

```
m(X,s(X)).
   m(X,Z) :- m(X,Y), m(Y,Z).
¿Es menor el cero que el dos?
```

Pregunta: ? m(0, s(s(0))). Respuesta Si

¿Existe algún número mayor que cero?

Pregunta: ?
$$m(0,X)$$
.
Respuestas $X = s(0)$;
 $X = s(s(0))$;
 $X = s(s(s(0)))$;

¿Existe algún número menor que sí mismo?

Pregunta: ? m(X,X).

Respuesta: Se queda colgado al unificar m(X,X) con m(X,s(X)), ya que Prolog no implementa chequeo de ocurrencias

¿Existe algún número mayor que cero y menor que tres?

```
m(0,X), m(X, s(s(s(0)))).
Pregunta:
Respuestas:
              X = s(0)
              X = s(s(0))
```

Pregunta 5

```
suma( 0
               , Y, Y).
      suma(s(X), Y, s(Z)):-suma(X,Y,Z).
b.
                       resta(X,Y,Z):-suma(Y,Z,X).
      producto(0,Y,0).
c.
      producto(s(X),Y,Z):-producto(X,Y,P), suma(P,Y,Z).
d.
      menigs( 0
                 , [0]).
      menigs(s(X), [s(X)|Xs]):-menores(X,Xs).
```

Soluciones Primer Parcial 1998 – 1999

Primer Parcial 1998 – 1999

1.b

2.c

3.a

4.a

5.c

6.c

7.d

8.b

9.c

10.a

11.a

12.a

13.a

14.c

15.c

16.a

17.b

18.d

19.a

Segundo Parcial 1998 – 1999

- 1. b 2. d 3. d

- 4. d
- 5. d
- 6. c
- 7. a
- 8. c
- 9. c 10. a
- 11. c
- 12. a
- 13. c
- 14. b
- 15. c
- 16. a
- 17. c
- 18. a
- 19. c
- 20. a
- 21. a

Soluciones Junio 1998 - 1999

Junio 1998 - 1999

Parcial 1 P1-1. d P1-2. d P1-3. d P1-4. a P1-5. c P1-6. a P1-7. b P1-8. a P1-9. c P1-10. b P1-11. a P1-12. b Parcial 2 **Bloque 1: Test** P2-1. d P2-2. b P2-3. c P2-4. b P2-5. c P2-6. c P2-7. a P2-8. c P2-9. a P2-10. b

Bloque 2: Desarrollar

```
vuelta ([ ],[ ]).
vuelta ([X|Xs], Ys):-vuelta (Xs,Zs), concat (Zs, [X], Ys).
concat ([ ], X,X).
concat ([X|Xs], Ys, [X|Zs] ):- concat (Xs, Ys, Zs).
```

```
simetrica (Xs):-vuelta (Xs, Xs).
```

```
test45 ([X|Xs] ):-concat (Ys, [Y], Xs), 45 is X+Y.
```

Soluciones Septiembre 1998 - 1999

Septiembre 1998 - 1999

- 2. c 3. c
- 4. d
- 5. a
- 6. d
- 7. a
- 8. d
- 9. d
- 10. a
- 11. b
- 12. b
- 13. b
- 14. c
- 15. a
- 16. a
- 17. c
- 18. a
- 19. b
- 20. a

Soluciones Febrero 1999-2000

Febrero 1999-2000

- 1. b
- 2. b 3. b
- 4. b
- 5. c
- 6. c
- 7. a
- 8. a
- 9. a
- 10. b
- 11. a
- 12. c 13. b
- 14. c 15. c
- 16. a
- 17. b
- 18. d
- 19. a
- 20. c

Soluciones Junio 1999-2000

Junio 1999-2000

- 1. c
- 2. b
- 3. a
- 4. b
- 5. c 6. b
- 7. a
- 8. a
- 9. b 10. c
- 11. b
- 12. b
- 13. a
- 14. b
- 15. b
- 16. a
- 17. d
- 18. b
- 19. b
- 20. d

Soluciones Septiembre 1999-2000

Septiembre 1999-2000

- 1. a
- 2. c
- 3. c
- 4. c
- 5. b
- 6. c
- 7. b 8. c
- 9. b
- 10. a
- 10. a
- 12. b
- 13. a
- 14. a
- 15. d
- 16. d
- 17. c
- 18. c
- 19. d
- 20. b

Soluciones Primer Parcial 2000-2001

Primer Parcial 2000-2001

- 1.-b
- 2.-c 3.-a
- 4.-c
- 5.-b
- 6.-b
- 7.-b
- 8.-b
- 9.-c 10.-a
- 11.-b
- 12.-b
- 13.-с
- 14.-d
- 15.-c

Soluciones Segundo Parcial 2000-2001

Segundo Parcial 2000-2001

1.c

2.a

3.a

4.a

5.a

6.c

7.c

8.c

9.b

10.a 11.a

12.c

13.c

14.a

15.b

16.d

17.b

18.a

19.c

20.a

Soluciones Febrero 2000-2001

Febrero 2000-2001

Primer Parcial

- 1.- b
- 2.- d
- 3.- a
- 4.-c
- 5.- b
- 6.- c
- 7.- c
- 8.- d
- 9.- b
- 10.- a
- 11.- b

- 1.- c
- 2.- b
- 3.- b
- 4.- b
- 5.- d
- 6.- c
- 7.- c
- 8.- b
- 9.- a
- 10.- a
- 11.- c
- 12.- с
- 13.- b
- 14.- a
- 15.- b

Soluciones Junio 2000-2001

Junio 2000-2001

Primer Parcial

- 1.- b
- 2.- a
- 3.- a
- 4.- c
- 5.- d
- 6.- b
- 7.- c
- 8.- d
- 9.- c
- 10.- a
- 11.- b

- 1.- a
- 2.- a
- 3.- b
- 4.- a
- 5.- a
- 6.- a
- 7.- b
- 8.- a
- 9.- a
- 10.- a
- 11.- c
- 12.- b
- 13.- d
- 14.- с
- 15.- a

Soluciones Septiembre 2000-2001

Septiembre 2000-2001

Primer Parcial

- 1.-b
- 2.-c
- 3.-a
- 4.-b
- 5.-c
- 6.-b
- 7.-c
- 8.-b
- 9.-d
- 10.-b

- 1.-d
- 2.-b
- 3.-d
- 4.-c
- 5.-a
- 6.-a
- 7.-d
- 8.-a
- 9.-c
- 10.-a
- 11.-a
- 12.-a
- 13.-d
- 14.-d
- 15.-d

Soluciones Primer Parcial 2001-2002

Primer Parcial 2001-2002

- 1.-b
- 2.-d
- 3.-b
- 4.-c
- 5.-b
- 6.-c
- 7.-c
- 8.-d
- 9.-c
- 10.-a
- 11.-b
- 12.-b
- 13.-c
- 14.-b

Soluciones Segundo Parcial 2001-2002

Segundo Parcial 2001-2002

1.b

2.d

3.a

4.b

5.c

6.c

7.d

8.c

9.b

10.c

11.b 12.b

13.b

14.a 15.c

16.d

17.c

18.a

19.b

20.a

Febrero 2001-2002

Primer Parcial

1.-C

2.-d

3.-a

4.-d

5.-c

6.-c

7.-d

8.-a

9.-d

10.-a 11.-b

Segundo Parcial

1.c

2.a

3.d

4.a

5.b

6.d

7.b 8.d

9.b

10.c

11.d

12.d

13.c

14.a

15.b

16.c

Junio 2001-2002

Primer Parcial

1.-b

2.-c

3.-d

4.-c

5.-a

6.-b

7.-d

8.-c

9.-b

10.-c

11.-d

Segundo Parcial

1.- En el siguiente ejercicio, utilizar la regla y la estrategia de búsqueda de Prolog para construir los 4 primeros niveles del árbol SLD con el objetivo ?-p(X,f(f(b))). y el programa:

```
\begin{aligned} &p(X,f(Y))\text{:-}q(Y,Z),p(X,Z).\\ &p(a,f(f(Y))).\\ &q(f(b),a).\end{aligned}
```

Utilizar regla de computación seleccionar el primero:

¿Cuál sería la respuesta del sistema? X = a

Utilizar regla de computación seleccionar el último:

¿Cuál sería la respuesta del sistema? Ninguna, el sistema entraría en un bucle infinito

2.- Sea $F1 = \neg \forall x (\exists y P(x,y) \rightarrow Q(x))$, $F2 = \neg \forall x \exists y (P(x,y) \rightarrow Q(x))$ e I la interpretación con dominio $D=\{a,b\}$, $P(x,y)="x \neq y"$, $Q(x)=\{a\}$.

$$V_{I}(F1) = Verdadero$$

Breve justificación:

Si se sacan cuantificadores se obtiene $\exists x \exists y (P(x,y) \land \neg Q(x))$

$$y = a$$
 $x = a$
 $y = b$
 $y = a$
 $y = b$

$$V_{I}(F2) = Falso$$

Breve justificación:

Si se sacan cuantificadores se obtiene $\exists x \forall y (P(x,y) \land \neg Q(x))$

En el siguiente ejercicio utilizar: $M(x) = "x \ es \ una \ monjita"$, $D(x) = "x \ est\'a \ descalza"$, $A(x,y) = "x \ admira \ a \ y"$ j = Juan

3.- Formalizar las frases

"Las monjitas descalzas admiran a alguien que está descalzo" :

 $\forall x (M(x) \land D(x) \rightarrow \exists y (A(x,y) \land D(y)))$

"Sólo las monjitas están descalzas, sin embargo, nadie se admira a sí mismo"

 $\forall x(D(x) \rightarrow M(x)) \land \neg \exists x A(x,x)$

"Las monjitas descalzas admiran sólo a las monjitas que no están descalzas"

 $\forall x (\mathsf{M}(x) {\scriptstyle \wedge} \mathsf{D}(x) \to \forall y \; (\mathsf{A}(x,y) \to (\mathsf{M}(y) \; {\scriptstyle \wedge} \; \neg \; \mathsf{D}(y) \;)))$

"Todas son monjitas, están descalzas y no admiran a nadie"

 $\forall x (M(x) \land D(x) \land \neg \exists y \ A(x,y))$

4.-Demostrar los siguientes razonamientos por deducción natural (si se utilizan cajas, dibujarlas)

$ \{ \forall x (\exists y P(x,y) \rightarrow Q(x)), P(a,a), \neg \exists x Q(x) \} \Rightarrow \forall x (P(x) \rightarrow R(x)) $		$\{ \ \forall x (P(x) \rightarrow \forall y Q(x,y)), \ \neg \exists y Q(a,y) \ \} \Rightarrow \neg P(a)$	
1. $\forall x(\exists y P(x,y) \rightarrow Q(x))$	Premisa	1. $\forall x (P(x) \rightarrow \forall y Q(x,y))$	Premisa
2. P(a,a)	Premisa	2. $\neg \exists yQ(a,y)$	Premisa
3. ¬∃xQ(x)	Premisa	3. (a) $P(a) \rightarrow \forall y Q(a,y)$	Sup
$4. \exists y P(a,y) \to Q(a)$	∀E1	4. P(a)	Sup.
5. ∃yP(a,y)	∃I2	5. ∀yQ(a,y)	→E3,4
6. Q(a)	→E4,5	6. Q(a,b)	∀E5
7. ∃xQ(x)	∃I6	7. ∃yQ(a,y)	∃I6
8. $\exists x Q(x) \land \neg \exists x Q(x)$	∧I7,3	8. $\exists y Q(a,y) \land \neg \exists y Q(a,y)$	∧I2,7
9. F	FI,8	9. ¬P(a)	¬I4-8
10. $\forall x (P(x) \rightarrow R(x))$	FE9	10. ¬P(a)	∃E1,3-9

5.-Suponiendo que se dispone de los predicados

par(X):- se cumple si X es par

impar(X):-se cumple si X es impar

Definir los siguientes predicados en Prolog

a.- filtra(L,M):-Se cumple si M contiene una lista con los elementos impares de la lista L Ejemplo:

?- filtra([2,3,7,6],V).

V = [3,7]

filtra([],[]).

filtra([X|L],[X|M]):-impar(X),filtra(L,M).

filtra([X|L],M):-par(X),filtra(L,M)

b.- sumim(L,S):-Se cumple si S es la suma de los elementos impares de la lista L Ejemplo:

?-sumim([2,3,7,6],V).

V = 10

sumim([],0).

sumim([X|L],R):-impar(X),sumim(L,S),R is S + X.

sumim([X|L],R):-par(X),sumim(L,R).

Septiembre 2001-2002

Primer Parcial

1.- Formalizar en lógica proposicional las siguientes frases asignando las letras p, q, r, ... según el orden de aparición de cada frase.

"Una condición necesaria para que la danza no se resienta es que la bailarina no sea demasiado pesada para su compañero"

$$\neg p \rightarrow \neg q$$

"Algún bailarín rompe un tobillo siempre que la bailarina se vuelve loca, además, cuando la bailarina se vuelve loca, todos los bailarines rompen sus tobillos"

$$(q \rightarrow p) \land (q \rightarrow r)$$

"No bailo con la amiga de Pepe a menos que Pepe baile con mi amiga"

$$p \rightarrow q$$

"Bailar pegados es bailar, pero Sergio no baila"

$p \wedge \neg q$

2.- Sea f la función:

$$f(a,b,c,d) = \begin{cases} a + \overline{c} & \text{si } a = b \\ \overline{a} + b + \overline{d} & \text{si } a \neq b \text{ y } b = c \end{cases}$$

La tabla de verdad de f de la función es:

abcd	f
0000	1
0001	1
0010	0
0011	0
0100	Χ
0101	X
0110	1
0111	1
1000	1
1001	0
1010	X
1011	Χ
1100	1
1101	1
1110	1
1111	1

Simplificar por Karnaugh en forma de suma de productos.

Escribir los términos y las agrupaciones en la siguiente tabla de Karnaugh:

El resultado sería: $\begin{cases} b + \overline{a} \cdot \overline{c} + a \cdot \overline{a} \\ b + \overline{a} \cdot \overline{c} + \overline{c} \cdot \overline{a} \end{cases}$

3.- Rellenar la siguiente tabla poniendo una X en la casilla que se cumpla:

Fórmula	Válida	Satisfacible	Insatisfacible
$(p \lor q) \to (\neg p \land \neg q)$		X	
$((p \to q) \land (q \to \neg r)) \to \neg (p$ $\land r)$	Х	Х	
$(p \to q) \land p \land \neg q$			Х
$(p \lor \neg q) \leftrightarrow (\neg p \lor q)$		X	

4.-Demostrar los siguientes razonamientos por deducción natural (si se utilizan cajas, dibujarlas)

$\{ p \to (q \land r), r \to \neg q \} \Longrightarrow (p \land r) \to s$		$\{ p \to (q \lor \neg r), q \to s, \neg s \to r \} \Rightarrow p \to s$	
$1. p \to (q \land r)$	Premisa	1. $p \rightarrow (q \lor \neg r)$	Premisa
$2. r \rightarrow \neg q$	Premisa	$2. q \rightarrow s$	Premisa
3. p ∧ r	Sup.	$3. \neg s \rightarrow r$	Premisa
4. p	∧E3	4. p	Sup.
5. q∧r	→E1,4	5. q∨ ¬r	→E1,4
6. r	∧E5	6. ¬r	Sup.
7. ¬q	→E2,6	7. ¬S	Sup.
8. q	∧E5	8. r	→E3,7
9. q∧¬q	∧I 7,8	9. r∧¬r	∧I-6,8
10. F	F I -9	10. s	<u> </u>
11. S	F E-10	11. ¬r→s	→I 6-10
12. (p∧r)→s	→I 3-11	12. S	∨E2,5,11
		13. p→s	→I 4-13

5.-Dada la función

$$f(a,b,c,d) = \sum_{4} (0,4,5,7) + \sum_{\emptyset} (2,3,10,11)$$

$$f(a,b,c,d) = \sum_{4} (0,4,5,7) + \sum_{\varnothing} (2,3,10,11)$$

Indicar cuál sería la expresión equivalente en forma de productos de sumas:
$$f(a,b,c,d) = \prod_{4} (0,1,2,3,6,7,9,14) \cdot \prod_{\varnothing} (4,5,12,13)$$

Simplificar por Karnaugh en forma de productos de sumas Escribir los términos y las agrupaciones en la siguiente tabla de Karnaugh:

El resultado sería: $f(a,b,c,d) = \bar{a} \cdot (b + \bar{d}) \cdot (\bar{c} + d)$

Segundo Parcial

1.- Formalizar en lógica de predicados las siguientes frases utilizando B(x,y)="x baila con y", P(x,y)="x está pegado a y", s = "Sergio"

"Los que están pegados a alguien bailan con Sergio":

 $\forall x (\exists y P(x,y) \rightarrow B(x,s))$

"Sólo los que bailan con Sergio están pegados a él"

 $\forall x (P(x,s) \rightarrow B(x,s))$

"Nadie baila con Sergio a menos que Sergio esté pegado a todos"

 $\exists x \ B(x,s) \rightarrow \forall x \ P(s,x)$

"Sergio baila con todos sólo si todos bailan con alguien"

 $\forall x \ B(s,x) \rightarrow \forall x \exists y \ B(x,y)$

2.-Demostrar los siguientes razonamientos por deducción natural (si se utilizan cajas, dibujarlas)

2D	$\{\forall x (P(x) \rightarrow \exists y Q(x,y)), \forall x P(x)\} \Rightarrow \forall x \exists y Q(x,y)$		
	1. $\forall x (P(x) \rightarrow \exists y Q(x,y))$	Premisa	
	2. ∀xP(x)	Premisa	
	3. (a)	libre	
	4. P(a)	∀E2	
	5. P(a)→∃yQ(a,y)	∀E1	
	6. ∃yQ(a,y)	→E4,5	
	7. ∀x∃yQ(x,y)	∀I, 3-6	

$\{ \exists x (P(x) \lor Q(x)), \forall x (P(x) \to R(x,x)), \neg \exists x Q(x) \} \Rightarrow \exists x R(x,x)$			
1. $\exists x (P(x) \lor Q(x))$	Pr	emisa	
2. $\forall x (P(x) \rightarrow R(x,x))$	P	remisa	
3. ¬∃xQ(x)	Pr	emisa	
4.(a) P(a) VQ(a)	Sup.		
5. P(a)	Sup.		
6. P(a)→R(a,a)	∀E2		
7. R(a,a)	→E5,6		
8. ∃xR(x,x)	∃I,7		
8. P(a)→∃xR(x,x)	→I ,4-7		
9. Q(a)	Sup.		
10. ∃xQ(x)	3I, 9		
11. ∃xQ(x)∧¬∃Q(x)	∧I , 3,10		
12. F	FI, 11		
13. ∃xR(x,x)	FE, 12		
14. Q(a)→∃xR(x,x)	→I 9-13		
15. ∃xR(x,x)	∨E 4,8,14		
16. ∃xR(x,x)			

```
3.- Sea E=P(x,f(x),y,z) , \sigma_1 = \{ x / g(a), v / f(x), z / g(x) \} y \sigma_2 = \{ x / a, y / g(x), z / b \}
Entonces, \sigma_1 \angle \sigma_2 = \{ x / g(a), v / f(a), z / g(a), y / g(x) \}
(\sigma_1 \angle \sigma_2)(E) = P(g(a),f(g(a)),g(x),g(a))
```

4.- Dado el programa siguiente programa Prolog: p(f(X),f(Y)):-p(X,Y). p(X,X).

Construir el árbol SLD para el objetivo ?-p(X,f(f(b))).

Indicar cuál sería la(s) respuesta(s) del sistema por el orden en que son obtenidas:

```
X = f(f(b));

X = f(f(b));

X = f(f(b));

No
```

- 5.- Definir los siguientes predicados en Prolog:
- a.- "prods" toma dos listas de números y devuelva la lista formada por los productos de los elementos de cada lista.
- Ej. ?- prods([1,2,3],[4,5,6],V).

V = [4,10,18]

```
prods([],[],[]).
prods([X|L],[Y|M],[Z|N]):-Z is X * Y, prods(L,M,N).
```

b.- "quita" toma una lista L y devuelve la lista resultante de quitar el último elemento a L Ej. ?- quita([1,2,3,4],V).

$$V = [1,2,3]$$

6.- Rellenar la siguiente tabla poniendo una X en la casilla correspondiente:

Fórmula	Válida	Satisfacible	Insatisfacible
$(\forall x (P(x) \to Q(x)) \land P(a)) \to Q(a)$	X	X	
$(\forall x (P(x) \to Q(x)) \land Q(a)) \to P(a)$		X	

7.- Si A y B son conjuntos borrosos con las siguientes funciones de pertenencia:

```
\begin{array}{l} \mu_A = \{\ 0 \ / \ 0.5, \ 20 \ / \ 0.2, \ 40 \ / \ 0.7, \ 60 \ / \ 0.6, \ 80 \ / \ 0.7 \ \} \\ \mu_B = \{\ 0 \ / \ 0.2, \ 20 \ / \ 0.3, \ 40 \ / \ 0.6, \ 60 \ / \ 0.8, \ 80 \ / \ 0.4 \ \} \\ \text{Entonces, } \mu_{muy\ A \ \land \ no\ B} = \{\ 0 \ / \ 0.25, \ 20 \ / \ 0.04, \ 40 \ / \ 0.4, \ 60 \ / \ 0.2, \ 80 \ / \ 0.49 \ \} \end{array}
```

Soluciones Primer Parcial 2002-2003

Primer Parcial 2002-2003

1.d

2.c

3.c

4.b

5.a

6.b

7.d

8.b

9.c

10.d

11.c

12.c

13.c

14.b

14.0

15.a

Soluciones Segundo Parcial 2002-2003

Segundo Parcial 2002-2003

1.- c 2.- a 3.- b 4.- a 5.- b 6.- d 7.- c

8.- b 9.- b 10.- c

Soluciones Segundo Parcial 2002-2003

1.- En un programa en Prolog se parte de una serie de hechos de la forma "paga(X,Y)" que indican que la persona X ha pagado Y euros. Por ejemplo:

paga(juan,2).
paga(luis,7).
paga(pepe,10).

Definir los siguientes predicados:

a.- ptas(L,P):- P es la lista con las cantidades que han pagado cada una de las personas de L en pesetas. Suponer que 1€ = 166 ptas.

Ejemplo: ?- ptas([pepe, juan], V).

V = [1660,332]

ptas([],[]). ptas([X|L],[P|M]):-paga(X,Y),P is Y * 166, ptas(L,M).

b.- cobra(L,S):-S es la suma del valor pagado en euros de cada una de las personas de la lista L

Ejemplo: ?-cobra([pepe, juan], V).

V = 12

cobra([],0).

cobra([X|L],R):-paga(X,Y),cobra(L,C),R is Y + C.

c.- mezcla(L,M,N):-N es la lista ordenada resultante de combinar los elementos de las listas L y M. Se supone que los elementos de L y M están ordenados.

Ejemplo: ?-mezcla([1,3,7],[2,4,6,8,10],V).

V = [1,2,3,4,6,7,8,10]

$$\label{eq:mezcla} \begin{split} \text{mezcla} & ([],L,L). \\ \text{mezcla} & (L,[],L). \\ \text{mezcla} & ([X|L],[Y|M],[X|N]):-X < Y, \ \text{mezcla}(L,[Y|M],N). \\ \text{mezcla} & ([X|L],[Y|M],[Y|N]):-X >= Y, \ \text{mezcla}([X|L],M,N). \end{split}$$

2.-Demostrar por deducción natural los siguientes razonamientos (se incluyen las cajas y los pasos necesarios):

{" x(P(a,x)® ØQ(x)), \$xP(a	ı,x)}Þ Ø" xQ(x)	
1. $\forall x (P(a,x) \rightarrow \neg Q(x))$ Premisa		
2. ∃xP(a,x)	Premisa	
3. (b) P(a,b)	Supuesto	
4. P(a,b)→¬Q(b)	∀E1	
5. ¬Q(b)	→E3,4	
6. ∀xQ(x)	Supuesto	
7. Q(b)	∀E6	
8. Q(b) ^¬ Q(b)	∧I5,7	
9. ¬∀xQ(x)	¬I 6-8	
10. ¬∀xQ(x)	∃E2,3-9	

Febrero 2002-2003

Primer Parcial

- 1.- b
- 2.- a
- 3.- d
- 4.- a
- 5.- a
- 6.- d
- 7.- a
- 8.- c
- 9.- b
- 10.- a

Segundo Parcial

- 1.- b
- 2.- a
- 3.- a
- 4.- b
- 5.- b
- 6.- a
- 7.- d
- 8.- b
- 9.- b
- 10.- с
- 11.- c
- 12.- a
- 13.- с
- 14.- d

Junio 2002-2003

Primer Parcial

1.- Demostrar si los siguientes razonamientos son correctos mediante deducción natural (deben dibujarse las cajas necesarias)

$\{ (p \rightarrow q) \land r, s \rightarrow t, \neg r \lor s \} \Rightarrow q \lor t$		$\{ (p \land q) \rightarrow r, r \rightarrow s, q \land \neg s \} \Rightarrow \neg p$	
1 $(p \rightarrow q) \wedge r$	Premisa	1 $(p \land q) \rightarrow r$	Premisa
2 $s \rightarrow t$	Premisa	$2 r \rightarrow s$	Premisa
3 ¬r∨s	Premisa	3 q ∧ ¬ s	Premisa
4 ¬r	Supuesto	4 p	Supuesto
5 r	∧E 1	5 q	∧E 3
6 r∧¬r	∧ I 4,5	6 p ∧ q	∧ I 4,5
7 F	FI 6		→E 1,6
8 q ∨ t	F E 7	8 s	→ E 2,7
$9.\text{-}\neg r \rightarrow q \lor t$	→l4,8	9 ¬s	∧ E 3
10 s	Supuesto	10 s ∧ ¬ s	∧ 1 8,9
11 t	→E2,9	11 ¬ p	¬I 4-10
12 q∨ t	∨I10		
13 $s \rightarrow q \lor t$	→I 10,12		
14 q ∨ t	∨E 3,9,13		

Para cada razonamiento, indicar el conjunto de cláusulas a utilizar para demostrar si es correcto y los pasos de resolución que llevan a la cláusula vacía:

2.-Formalizar las siguientes frases asignando las letras p,q,r...por orden de aparición a cada frase.

a.- María juega a fútbol o a baloncesto (pero no a ambos) cuando hace buen tiempo.

$$r \rightarrow (p \lor q) \land \neg (p \land q)$$

b.- La condición necesaria y suficiente para aprobar lógica es poder pensar con tranquilidad cuando realizas el examen

$$p \leftrightarrow (r \rightarrow q)$$

c.- En caso de ejecutar el programa en modo depuración, si el contador sobrepasa el límite del array, se detecta y se detiene la ejecución

$$p \rightarrow (q \rightarrow r \land s)$$

d.- Sólo cuando cantas me acongojas, sin embargo, cuando no me acongojas, no cantas

$$(p \rightarrow q) \land (\neg q \rightarrow \neg p)$$

3.-Dada la función:
$$f(a,b,c,d) = \begin{cases} b \oplus c & \text{si } a = 0 \text{ y } d = 0 \\ b+c & \text{si } a = \overline{d} \end{cases}$$

Rellenar la tabla de verdad:

abcd	f
0000	0
0001	0
0010	1
0011	1
0100	1
0101	1
0110	0
0111	1
1000	0
1001	X
1010	1
1011	X
1100	1
1101	X
1110	1
1111	X

La expresión en forma de producto de sumas es:

$$f(a,b,c,d) = \prod_{4} (1,7,8,9,14,15) \cdot \prod_{\emptyset} (0,2,4,6)$$

Simplificar por el método de Karnaugh la expresión anterior:

\				
	X			X
	X		0	X
			0	0
		0		

Resultado de la simplificación:

$$f(a,b,c,d) = (a + \overline{b} + \overline{c} + d)(b+c)$$

Segundo Parcial

1.-Demostrar si los siguientes razonamientos son correctos mediante deducción natural (deben dibujarse las cajas que sean necesarias)

que sean necesarias)				
$\{ \exists x (P(x) \land Q(x)), \ \forall x (R(x) \rightarrow \neg Q(x)) \} \Rightarrow \exists x \neg R(x)$		$ \{ \forall x \forall y (\neg R(y,x) \rightarrow \neg R(x,y)), \forall x (R(x,x) \rightarrow \neg R(a,x)) \} \Rightarrow \\ \forall x (R(x,x) \rightarrow \neg R(x,a)) \} \Rightarrow $		
1 ∃x(P(x)∧Q(x))	Premisa			
2 $\forall x (R(x) \rightarrow \neg Q(x))$	Premisa	1 $\forall x \forall y (\neg R(y,x) \rightarrow \neg R(x,y))$	Premisa	
0 (1) D(1) 0(1)	0		Premisa	
3 (a) P(a) ∧ Q(a)	Supuesto	3 (b)	libre	
4 R(a)	Supuesto	3 (b)	libre	
π. π(α)	Capacoto	4 R(b,b)	Supuesto	
5 R(a) → ¬Q(a)	∀E 2			
		$ $ $ $ $ $ 5 R(b,b) $\rightarrow \neg$ R(a,b)	∀E2	
6 ¬Q(a)	→E4,5			
		6 ¬R(a,b)	→E4,5	
7 Q(a)	∧E3		\	
0 0(5)	10.7		∀E1	
8 Q(a) ∧ ¬Q(a)	∧l6,7		∀E7	
9 ¬R(a)	¬I4-8		V = 1	
3. "K(a)	114 0	9 ¬R(b,a)	→E6,8	
10 ∃x¬R(x)	∃I 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. = 0,0	
\	-	10 $R(b,b) \rightarrow \neg R(b,a)$	→l4-9	
11 ∃x¬R(x)	∃E1,3-10			
		11 $\forall x(R(x,x) \rightarrow \neg R(x,a)$	∀I3-10	

Para cada razonamiento, indicar el conjunto de cláusulas a utilizar para demostrar si es correcto y los pasos de resolución que llevan a la cláusula vacía:


```
2.-Formalizar utilizando las siguientes asignaciones: S(x,y)="x salva y", "c = Cactus", M(x)="x es un mono"
 a.- Cactus sólo salva a los monos
            \forall x(S(c,x) \rightarrow M(x))
b.- Nadie salva a un mono pero Cactus salva a todos
            \neg \exists x \exists y (S(x,y) \land M(y)) \land \forall x S(c,x)
 c.- Es necesario que Cactus salve a algún mono para que alguien salve a Cactus
            \exists x S(x,c) \rightarrow \exists y (M(y) \land S(c,y))
 d.- Ningún mono salva a Cactus a menos que Cactus salve a todos
            \exists x (M(x) \land S(x,c)) \rightarrow \forall x S(c,x)
3.- Implementar los siguientes predicados:
a.- longs(L,M):-M es una lista que contiene las longitudes de cada una de las listas de L.
Ejemplo: ?-longs([[a,b],[c,d,e],[f],[g,h]], \ V).
V = [2,3,1,2]
 longs([],[]).
 longs([X|L],[N|R]):-long(X,N),longs(L,R).
 long([],0).
 long([X|L],N):-long(L,R), N is R + 1.
b.- repite(N,X,R):-R es una lista formada al repetir N veces el elemento X.
Ejemplo: ?-repite(3,a,V).
V = [a, a, a]
repite(0,X,[]).
repite(N,X,[X|R]):-N > 0,
              N1 is N - 1,
              repite(N1,X,R).
c.- repes(L,R):-R es una lista formada al repetir N veces cada número N de la lista L.
Ejemplo: ?-repes([3,2,1,2],V).
V = [3,3,3,2,2,1,2,2]
repes([],[]).
repes([N|L],M):-repite(N,N,R),
            repes(L,Rs),
            junta(R,Rs,M).
junta([],L,L).
junta([X|L],M,[X|N]):-junta(L,M,N).
```

Septiembre 2002-2003

Primer Parcial

1.- La función f(a,b,c,d) se obtiene a partir del circuito de la figura.

En dicho circuito, se sabe que la función g se define como

$$g(a,b) = \begin{cases} 1 & \text{si } a = b \\ 0 & \text{si } a = 0 \text{ y } b = 1 \end{cases}$$

La tabla de verdad sería:

abcd	f
0000	1
0001	X
0010	X
0011	1
0100	0
0101	1
0110	X
0111	0
1000	X
1001	X
1010	X
1011	X
1100	1
1101	Χ
1110	Χ
1111	1

 X
 X

 X
 X

 X
 X

 X
 X

Resultado (producto de sumas):

$$f(a,b,c,d) = (a + \overline{b} + \overline{c})(a + \overline{b} + d)$$

2.-Demostrar los siguientes razonamientos mediante deducción natural (dibujar las cajas que sean necesarias)

	$(\lor r) \rightarrow s $ $\Rightarrow \neg p \lor s$		ujar las cajas que sean necesarias) , $r \to (\neg q \land s) \} \Rightarrow (\neg p \land r) \to t$
1 ¬p∨q	Premisa	1 ¬p → q	Premisa
2 $(q \lor r) \rightarrow s$	Premisa	$2.\text{- r} \rightarrow (\neg q \land s)$	Premisa
3 ¬р	Supuesto	3 ¬p ∧ r	Supuesto
4 ¬p∨s	∨l3	4 ¬p	∧E3
$5 \neg p \rightarrow (\neg p \lor s)$	→l3-4	5 q	→E4,1
6 q	Supuesto	6 r	∧E3
7 q ∨ r	√ I7	7 ¬q ∧ s	→E6,2
8 s	→E7,2	8 ¬q	∧E7
9 ¬p ∨ s	∨I8	9 q ∧ ¬q	∧I 5,8
10 q → ¬p ∨ s	→I 6-9	10 F	FI 9
11 ¬p ∨ s	∨E1,5,10	11 t	F E 10
		12 (¬p ∧ r) →	t →I3-11

3.-Formalizar e indicar si es correcto mediante resolución el siguiente razonamiento (asignar las letras p,q,r... por orden de aparición).

"Juan quiere a Rosa a no ser que Rosa quiera a Juan. Basta que Ana quiera a Juan para que Juan no quiera a Rosa. Por tanto, si Rosa no quiere a Juan pero Ana sí lo quiere, entonces Juan usa calcetines rojos".

Premisa1: $\neg q \rightarrow p$

Premisa2: $r \rightarrow \neg p$

Conclusión: $\neg q \land r \rightarrow s$

Cláusulas a utilizar en resolución: $\{q \lor p, \neg r \lor \neg p, \neg q, r, \neg s\}$

¿Se alcanza la cláusula vacía? (SI/NO) Sí

¿Es correcto? (SI/NO) Sí

4.-Formalizar e indicar si es correcto mediante resolución el siguiente razonamiento (asignar las letras p,q,r... por orden de aparición).

"Es necesario que Juan tenga trabajo para que le den un crédito. Además, Juan tiene trabajo o hace deporte sólo si estudia. Por tanto, si Juan no estudia entonces no le dan un crédito".

Premisa1: $q \rightarrow p$

Premisa2: $p \lor r \rightarrow s$

Conclusión: $\neg s \rightarrow \neg q$

Cláusulas a utilizar en resolución: { $\neg q \lor p, \neg p \lor s, \neg r \lor s, \neg s, q$ }

¿Se alcanza la cláusula vacía? (SI/NO) Sí

¿Es correcto? (SI/NO) Sí

Segundo Parcial

1.-Demostrar si los siguientes razonamientos son correctos mediante deducción natural (deben dibujarse las cajas que sean necesarias)

$\{ \forall x (P(a,f(x))), \forall x \forall y (P(x,y) \rightarrow P(f(x),f(y))) \} \Rightarrow \\ \exists x P(f(a),y)$		$ \{ \ \forall x (\ \exists y P(x,y) \rightarrow \exists y P(y,x) \), \ \forall x P(x,f(x)) \ \} \Rightarrow \forall x \exists y P(y,x) $	
$\{ \forall x (P(a,f(x))), \forall x \forall y (P(x,y)) \rightarrow P(x) \}$ $1 \forall x (P(a,f(x)))$ $2 \forall x \forall y (P(x,y) \rightarrow P(f(x),f(y)))$ $3 P(a,f(a))$ $4 \forall y (P(a,y) \rightarrow P(f(a),f(y)))$ $5 P(a,f(a)) \rightarrow P(f(a),f(f(a)))$ $6 P(f(a),f(f(a)))$ $7 \exists x P(f(a),x)$	Premisa Premisa $\forall E1 \{ x/a \}$ $\forall E2 \{ x/a \}$ $\forall E4 \{ y/f(a) \}$ $\rightarrow E3,5$ $\exists I 6$		Premisa Premisa Iibre $\forall E1$ $\forall E2$ $\exists I 5$ $\rightarrow E6,4$ $\forall I3-7$

Para cada razonamiento, indicar el conjunto de cláusulas a utilizar para demostrar si es correcto y los pasos de resolución que llevan a la cláusula vacía:

$ \{ \ \forall x (P(a,f(x))), \ \forall x \forall y (P(x,y) \rightarrow P(f(x),f(y))) \ \} \Rightarrow \\ \exists x P(f(a),x) $ Cláusulas a utilizar $ \{ \ P(a,f(x)), \ \neg P(x,y) \lor P(f(x),f(y)), \ \neg P(f(a),x) \ \} $			
Pasos de resolución		Pasos de resolución	
4. ¬P(a,y)	$R(2,3) \{ x/a, x' / f(y) \}$	4. ¬P(a,y)	R(1,3) { y' / f(a) , x / a }
5. □	$R(1,4) \{ y' / f(x) \}$	5. 🗆	R(2,4) { x / a, y / f(a) }

2.-En la especificación de un sistema informático se utilizan los siguientes predicados: S(x,y)="x solicita y ", R(x)="x es un recurso", P(x)="x es un proceso", O(x)="x está ocupado". Formalizar las siguientes frases:

- a.- Cualquier proceso que solicita un recurso ocupado, está ocupado $\forall x \ (P(x) \land \exists y (S(x,y) \land R(y) \land O(y)) \rightarrow O(x))$
- b.- Sólo los procesos que no están ocupados solicitan recursos $\forall x \ (\exists y (R(y) \land S(x,y)) \rightarrow P(x) \land \neg O(x))$
- c.- Ningún proceso solicita un recurso a menos que existan recursos no ocupados $\exists x(P(x) \land \exists y(S(x,y) \land R(y))) \rightarrow \exists x(R(x) \land \neg O(x))$
- d.- Todos los recursos ocupados son solicitados por algún proceso $\forall x (R(x) \land O(x) \rightarrow \exists y (P(y) \land S(y,x)))$
- 3.-Se desea implementar en Prolog árboles binarios como el de la figura. Obsérvese que la información se almacena en las hojas y que los nodos intermedios no tienen información. Por ejemplo, el árbol de la figura se representaría como:

rama(hoja(2), rama(rama(hoja(1), hoja(3)), hoja(4)))

Definir los siguientes predicados:

a.- suma(A,S):-S es la suma de los nodos del árbol A

Ejemplo: ?-suma(rama(hoja(2), rama(rama(hoja(1), hoja(3)), hoja(4))),S).

S = 10

 $\begin{aligned} & suma(hoja(X),X). \\ & suma(rama(I,D),S):-suma(I,Si),suma(D,Sd), \ S \ is \ Si + Sd. \end{aligned}$

b.- nodos(A,N):-N es la lista de nodos del árbol A

Ejemplo: ?- nodos(rama(hoja(2), rama(rama(hoja(1), hoja(3)), hoja(4))),N).

N = [2,1,3,4]

nodos(hoja(X),[X]).

nodos(rama(I,D),N):-nodos(I,Ni),nodos(D,Nd), concatena(Ni,Nd,N).

concatena([],M,M).

concatena([X|L],M,[X|N]):-concatena(L,M,N).

c.- cambia(A,B):-B es un árbol con la misma forma que A pero cuyos nodos tienen como información la suma de los nodos de A

Ejemplo: ?- cambia(rama(hoja(2), rama(rama(hoja(1), hoja(3)), hoja(4))),B).

B = rama(hoja(10), rama(rama(hoja(10), hoja(10)), hoja(10)))

cambia(A,B):-suma(A,S),cambiaAux(A,B,S).

cambiaAux(hoja(X),hoja(S),S).

cambia Aux (rama (I,D), rama (I1,D1),S) :- cambia Aux (I,I1,S), cambia Aux (D,D1,S).

Soluciones Primer Parcial 2003-2004

Primer Parcial 2003-2004

- 1.-d (ver figura) 2.-c (ver figura) 3.-a

- 4.-b
- 5.-a
- 6.-b
- 7.-a
- 8.-b
- 9.-c
- 10.-a
- 11.-d
- 12.-c
- 13.-d (ver figura)
- 14.-b (ver figura)
- 15.-a

	1	$p \vee q$	Premisa
	2	$r \vee \neg p$	Premisa
	3	$q\tor$	Premisa
	4	р	Sup.
	5	r	Sup.
	6	$r\tor$	→l5
	7	¬р	Sup.
	8	р∧¬р	∧I4,7
	9	F	FI8
	10	r	F E9
	11	$\neg p{\rightarrow} r$	→ I 5
	12	r	∨E2,6,11
-	13	p→r	→l4-12
	14	r	∨E1,3,13

1	$p \vee q$	Premisa
2	¬(p∧q)	Premisa
3	p↔q	Sup.
4	р	Sup.
5	$p{\to}q$	⇔ Е3
6	q	→E4,5
7	p∧q	∧I4,6
8	$p \to p {\scriptstyle \wedge} q$	→I4-7
9	q	Sup.
10	$q {\to} p$	⇔ Е3
11	р	→E9,10
12	p∧q	∧I11,9
13	$q\top{\scriptstyle\wedge}q$	→I9-12
14	p∧q	∨E1,8,13
15	p∧q∧¬(p∧q)	∧l2,14
16	¬ (p↔q)	¬l3-15

Soluciones Segundo Parcial 2003-2004

Segundo Parcial 2003-2004

- 1.- b 2.- b
- 3.- с
- 4.- a
- 5.- c
- 6.- a 7.- a 8.- b

- 9.- b 10.- b
- 11.- a 12.- b 13.- a

- 14.- c 15.- c

Febrero 2003-2004

Primer Parcial

1.- Rellenar las líneas que faltan en las demostraciones por deducción natural:

1 p∨q	Premisa	
$2 p \to r$	Premisa	
3 ¬r	Premisa	
4 p	Supuesto	
5 r	→E4,2	
6 r ∧ ¬r	∧I3,5	
7 F	FI 6	
8 s	F E7	
9 p → s	→l4-8	

2.-Formalizar el siguiente razonamiento asignando las letras p,q,r...por orden de aparición a cada frase.

" Sólo cuando una adquisición no se repasa con cierta frecuencia, se desarrolla un proceso de omisión de detalles y se simplifican los acontecimientos. Es suficiente que se simplifiquen los acontecimientos para que aparezca un proceso de deformación latente y se extinga la esperanza. Por tanto, no aparece un proceso de deformación latente a menos que la adquisición se repase con cierta frecuencia."

Premisa1: q Ù r ® Øp

Premisa2: r ® s Ù t

Conclusión: s ® p

¿Cuál es el conjunto de cláusulas a utilizar para saber si es correcto mediante resolución?

¿Se alcanza la cláusula vacía? No ¿Es Correcto? No

3.-En la figura se representa un circuito que determina el valor de una función f(a,b,c,d). Para ello, la función g se define como: $g(a,b,c) = \begin{cases} a & \text{si } b = 0 \text{ y } c = 0 \\ \overline{a} & \text{si } b = 1 \end{cases}$

Indicar cuál sería la tabla de verdad de la función:

abcd	f
0000	0
0001	Χ
0010	Χ
0011	Χ
0100	0
0101	Χ
0110	1
0111	1
1000	1
1001	Χ
1010	Χ
1011	Χ
1100	1
1101	Χ
1110	0

1111 0

La expresión en forma de producto de sumas es:

$$f(a,b,c,d) = \prod_{4} (2,4,5,6,10,12,13,14)$$

Simplificar por el método de Karnaugh la expresión anterior en producto de sumas:

\				
	0	0		X
	X	X		X
	X	X	0	X
			0	X

Resultado de la simplificación:

$$f(a,b,c,d) = (\overline{a} + \overline{c})(a+c)$$

Segundo parcial

1.- Rellenar las líneas que faltan en las demostraciones por deducción natural:

 $\{\forall x (P(x) {\rightarrow} \neg \exists y Q(x,y)), \exists x (Q(x,a) \land R(x))\} \Rightarrow \exists x (R(x) {\rightarrow} \neg P(x))$ 1.- $\forall x(P(x) \rightarrow \neg \exists yQ(x,y))$ Premisa 2.- $\exists x(Q(x,a) \land R(x))$ Premisa 3.- (b) $Q(b,a) \wedge R(b)$ Libre 4.- R(b) Supuesto 5.- P(b) Supuesto 6.- P(b)→¬ $\exists yQ(b,y)$ ∀E1 7.- ¬∃yQ(b,y) →E5,6 8.- Q(b,a) ∧E3 9.- ∃yQ(b,y) 3I8 10.- $\exists y Q(b,y) \land \neg \exists y Q(b,y)$ ∧l7,9 11.- ¬P(b) ¬I5-10 12.- $R(b) \rightarrow \neg P(b)$ \rightarrow I4-11 13.- $\exists x (R(x) \rightarrow \neg P(x)$ ∃I12

∃E2,3-13

14.- $\exists x(R(x) \rightarrow \neg P(x)$

	1 ¬∃x (P(x)∨Q(x))	Premisa
	2 $\forall x(R(x)\rightarrow P(x))$	Premisa
	3 (a)	Libre
	4 R(a)	Supuesto
	5 R(a)→P(a)	∀E2
	6 P(a)	→E4,5
	7 P(a)∨Q(a)	√l4
	8∃x (P(x)∨Q(x))	∃I5
	9∃x (P(x)∨Q(x))∧¬∃x (P(x)∨Q	(x)) ∧I1,7
L	10 ¬R(a)	¬l4-9
	11 ∀x¬R(x)	∀I3-10

 $\{ \neg \exists x (P(x) \lor Q(x)), \forall x (R(x) \rightarrow P(x)) \} \Rightarrow \forall x \neg R(x) \}$

2.- Utilizar el algoritmo de resolución para comprobar si son correctos cada uno de los razonamientos anteriores.

 $\{\forall x (P(x) \rightarrow \neg \exists y Q(x,y)), \exists x (Q(x,a) \land R(x))\} \Rightarrow \exists x (R(x) \rightarrow \neg P(x))$ $\{ \neg \exists x (P(x) \lor Q(x)), \forall x (R(x) \rightarrow P(x)) \} \Rightarrow \forall x \neg R(x) \}$ Conjunto de cláusulas: Conjunto de cláusulas: $\{\neg P(x) \lor \neg Q(x,y), Q(b,a), R(b), R(x), P(x)\}\$ $\{\,\neg P(x)\;,\,\neg Q(x),\,\neg R(x)\vee P(x),\,R(a)\,\}$ Pasos de Resolución: Pasos de Resolución: 6.- ¬P(b) $R(1,2) \{x/b, y/a\}$ 4.- P(a) $R(2,3) \{x/a\}$ 7.- 🗆 5.- □ $R(1,4) \{x/a\}$ $R(6,5) \{x / b \}$

3.-Formalizar las siguientes frases utilizando: P(x,y)="x pinta a y", j=Juan, m=María.

a.-" Juan no pinta nada a menos que María pinte a Juan"

 $\exists x P(j,x) \to P(m,j)$

b.-" Sólo los que pintan a Juan, pintan a María"

 $\forall x(P(x,x) \rightarrow P(x,j))$

c.-" Todos pintan a alguien pero Juan no pinta nada"

 $\forall x \exists y P(x,y) \land \neg \exists x P(j,x)$

d.-" Los que pintan algo son pintados por alguien"

 $\forall x (\exists y P(x,y) \rightarrow \exists y P(y,x))$

4.- Constuir los siguientes programas en Prolog:

a.-duplos(N,L):- L es una lista de la forma [N,N,N-1,N-1,N-2,N-2,...,0,0]

Ejemplo:

?-duplos(3,V).

V=[3,3,2,2,1,1,0,0]

duplos(0,[0,0]).

duplos(N,[N|[N|L]]):-N > 0, N1 is N - 1, duplos(N1,L).

b.-simples(L,M):-Si L es una lista con todos los elementos duplicados, entonces M es la lista formada al quitar duplicados.

Ejemplo:

?-simples([3,3,4,4,3,3,1,1],V).

V=[3,4,3,1]

simples([],[]).

simples([X|[X|L]],[X|M]):-simples(L,M).

c.-psimples(L,P):-Si L es una lista con los elementos duplicados, P es el producto de los elementos de L después de quitar los duplicados.

Ejemplo:

?-psimples([3,3,4,4,3,3,1,1],V).

V=36

psimples(L,P):-simples(L,S),prod(S,P).

prod([],1).

prod([X|L],R):-prod(L,P),R is X * P.

Junio 2003-2004

Primer Parcial

1.- Rellenar la siguiente tabla indicando la expresión canónica y de las siguientes funciones en suma de productos y producto de sumas.

$$f(a,b,c) = \begin{cases} a \oplus b & \text{si } a = 1\\ \bar{b} & \text{si } c = 1 \end{cases}$$

g
$$h(a,b,c) = \begin{cases} f(a,b,c) & \text{si } b = 1 \\ g(a,b,c) & \text{si } b = 0 \text{ y } c = 1 \end{cases}$$

	Suma de product	cos	Producto de sur	nas
	Expresión canónica	Expresión simplificada	Expresión canónica	Expresión simplificada
f	$\sum_{3} (1,4,5) + \sum_{\emptyset} (0,2)$	\overline{b}	$\prod_{3} (0,1,4) \cdot \prod_{\varnothing} (5,7)$	\bar{b}
g	$\sum_{3} (3,6)$	$ab\overline{c} + \overline{a}bc$	$\prod_{3} (0,2,3,5,6,7)$	$b(\overline{a}+\overline{c})(a+c)$
h	$\sum_{\varnothing} (0,2,4)$	0	$\prod_{\varnothing} (0,1,2,4,6)$	0

2.- Formalizar las siguientes frases (utilizar las letras p,q,r,... por orden de aparición)

a.-"Nos vamos a un nuevo edificio sólo si las condiciones son dignas. Sin embargo, basta que las condiciones no sean dignas para que nos quieran echar."

$$(p \to q) \land (\neg q \to r)$$

b.-"Es necesario que cubran las necesidades de los peces para que los peces no necesiten ayuda cuando se quejan"

(
$$r \rightarrow q$$
) $\rightarrow p$

2.-Demostrar los siguientes razonamientos mediante deducción natural

$\{ p \rightarrow q \lor r, \neg q \rightarrow s, \}$	$p \land s \to \neg r \} \Rightarrow p \to$	q	$\{ p \leftrightarrow q, q \rightarrow r \} =$	$\Rightarrow \neg(p \to r) \to s$
1 $p \rightarrow q \vee r$			1 $p \leftrightarrow q$	Premisa
2 $\neg q \rightarrow s$	Premisa		2 $q \rightarrow r$	Premisa
3 $p \land s \rightarrow \neg r$	Premisa	_	3 ¬(p→r)	Supuesto
4 p	Supuesto		4 p	Supuesto
5 q∨r	→E 4,1		5 p → q	↔E 1
6 q	Supuesto		6 q	→ E4,5
7 $q \rightarrow q$	→I 6		·	
8 r	Supuesto		7 r	→ E 2,6
9 ¬q	Supuesto		8 $p \rightarrow r$	→ I 4,7
10 s	→E 2,9		9 $(p\rightarrow r) \land \neg (p\rightarrow r)$	∧ I 3,8
11 p∧s	∧I 4,10		10 F	F 19
' 12 ¬r	→E 3,11		11 s	F E 10
13 r∧¬r	^I 8,12		12 $\neg(p\rightarrow r) \rightarrow s$	→ I 3,11
14 q	¬E 9-14			
15 $r \rightarrow q$	→I 8,14			
16 q	∨E 5,7,15			
17 $p \rightarrow q$	→I 4,17			

Segundo Parcial

1.-Demostrar si los siguientes razonamientos son correctos mediante deducción natural (deben dibujarse las cajas que sean necesarias)

$\{ \ \forall x \forall y \ (P(x, y) \to Q(y, x)), \exists x (P(x, a)) \ \} \Rightarrow \neg \exists x \ Q(a, y) \}$	$\{\ \forall x \forall y (R(x,y) \to R(y,x)),\ \forall x \forall y \forall z\ (R(x,y) \land R(y,z) \to R(x,z)),$
$x) \rightarrow R(a)$	$\forall x \exists y \ R(x,y) \ \} \Rightarrow \forall x \ R(x,x)$

1 $\forall x \forall y (P(x,y) \rightarrow Q(y,x))$	Premisa
2 ∃xP(x,a)	Premisa
3 P(b,a)	Supuesto
4 $\forall y (P(b,y) \rightarrow Q(y,b))$	∀E1
5 P(b,a)→Q(a,b)	∀E4
6 Q(a,b)	→E3,5
7 ∃xQ(a,x)	∃I 6
8 ¬∃xQ(a,x)	Supuesto
9 ∃xQ(a,x)∧¬∃x(Q(a,x)	_∧ I7,8
10 F	FI9
11R(a)	F E10
12 ¬∃xQ(a,x)→R(a)	→l8-11
13 ¬∃xQ(a,x)→R(a)	∃E2,3-12

1 $\forall x \forall y (R(x,y) \rightarrow R(y,x))$	
2 $\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z))$	z) Premisa
3 ∀x∃yR(x,y)	Premisa
4 (a)	libre
5 ∃yR(a,y)	∀E 3
6 (b) R(a,b)	Supuesto
7 $\forall y (R(a,y) \rightarrow R(y,a))$	∀E1
8 R(a,b)→R(b,a)	∀E 7
9 R(b,a)	→E 6,8
10 $\forall y \forall z (R(a,y) \land R(y,z) \rightarrow R(a,z))$	∀E2
11 $\forall z (R(a,b) \land R(b,z) \rightarrow R(a,z))$	∀E10
12 R(a,b)∧R(b,a)→R(a,a)	∀E11
13 R(a,b)∧R(b,a)	∧l6,9
14 R(a,a)	→E12,13
15 R(a,a)	∃E5,6-14
16 ∀xR(x,x)	∀I 4-15

Para cada razonamiento, indicar el conjunto de cláusulas a utilizar para demostrar si es correcto y los pasos de resolución que llevan a la cláusula vacía:

Pasos de resolución 5 Q(a,b) R(1,2) {x / b, y / a } 6 □ R(3,5) {x / b }	Pasos de resolución 5 R(f(x'),x')

Junio 2003-2004 Soluciones

2.-Formalizar e indicar si son correctos los siguientes razonamientos.

```
Utilizar las siguientes asignaciones: M(x,y)="x mató a y", P(x,y) = "x pagó a y", b="Bruto", c= "César", t= "Tito"
```

```
a.- "Bruto mató a César y Tito pagó a Bruto, por tanto, Tito pagó a uno que mató a César"
\{ M(b,c) \land P(t,b) \} \Rightarrow \exists x (P(t,x) \land M(x,c))
¿Es correcto? SI
b.- "Sólo los que mataron a César fueron pagados por Tito, por tanto, Bruto mató a César sólo si Tito pagó a Bruto"
\{ \forall x (P(t,x) \rightarrow M(x,c)) \} \Rightarrow M(b,c) \rightarrow P(t,b)
¿Es correcto? NO
```

3.-Implementar en Prolog el predicado mezcla(L,M,N) que se cumple si N es una lista que contiene los elementos de L en las posiciones impares y los de M en las pares (se supone que L y M tienen el mismo número de elementos). Por ejemplo, la pregunta:

```
?- mezcla([1,2,3],[a,b,c],V).
```

V=[1,a,2,b,3,c]

```
mezcla([X \mid L], [Y \mid M], [X \mid [Y \mid N]]) :- mezcla(L,M,N).
mezcla([],[],[]).
```

Constuir el árbol SLD ante la pregunta:

```
?-mezcla([1,2],[a,b],V).
        \{ X/1, L/[2], Y/a, M/[b], V/[1|[a|N]] \}
?-mezcla([2],[b],N).
        { X/2, L/[], Y/b, M/[], N/[2|[b|N']] }
?-mezcla([],[],N').
       { N'/[] }
 V = [1|[a|[2|[b|[]]]]] = [1,a,2,b]
```

Constuir el árbol SLD ante la pregunta:

```
?-mezcla([1,2],V,[1,a,2,b]).
        \{ X/1, L/[2], V/[a|M], Y/a, N/[2,b] \}
?-mezcla([2],M,[2,b]).
        \{ X/2, L/[], M/[b|M'], Y/b, N/[] \}
?-mezcla([],[],M').
        { M'/[] }
 V = [a|[b|[]]] = [a,b]
```

Puntuación: Pregunta 1 2 3

Junio 2003-2004

Soluciones

Septiembre 2003-2004

Primer Parcial

1.- En la construcción de un coche de fórmula 1 se ha instalado un sistema que permite detectar el estado de los neumáticos. El sistema incluye 4 sensores (A,B,C y D) en cada uno de los neumáticos según la figura. Los sensores se activan si detectan algún problema en un neumático. El conductor disponde de dos dispositivos luminosos L1 y L2 que se activan según las siguientes condiciones:

- L1 se activa si las 2 ruedas delanteras tienen problemas o si las dos ruedas traseras tienen problemas o si las 2 ruedas delantera y trasera del mismo lado tienen problemas. En los demás casos no se activa.

 L2 se activa si una rueda delantera de un lado tiene problemas y la trasera del lado opuesto tiene problemas. Está apagado cuando ninguna de las ruedas tiene problemas. En los demás casos, la activación depende de causas externas y no está especificada.

Se pide diseñar el circuito correspondiente a L1 y L2 en forma de producto de sumas.

Las tablas de verdad serían:

ABCD	L1	L2
0000	0	0
0001	0	Χ
0010	0	Χ
0011	1	1
0100	0	Χ
0101	1	Χ
0110	0	Χ
0111	1	1
1000	0	Χ
1001	0	Χ
1010	1	Χ
1011	1	1
1100	1	1
1101	1	1
1110	1	1
1111	1	1

Simplificar L1 en producto de sumas:

\			
		0	0
	0	0	0
	0	0	

Resultado L1 (producto de sumas):

$$L1 = (a+d)(b+d)$$

Simplificar L2 en producto de sumas:

Resultado L2 (producto de sumas):

 $L2 = \begin{cases} b+d \\ b+c \\ a+d \\ a+c \end{cases}$

Demostrar los siguientes razonamientos mediante deducción natural (dibujar las cajas que sean necesarias)

Г		razonamientos mediante deducc		•
	$\{ p \lor q \to r,$	$s \to \neg r$ $\Rightarrow p \to \neg s$	$\{ p \to (q \lor r), \neg (\neg q \to$	$r) \} \Rightarrow p \rightarrow s$
	$1.\text{-}\ p \lor q \to r$	Premisa	$1.\text{-} p \to q \vee r$	Premisa
	$2s \rightarrow \neg r$	Premisa	2 ¬(¬q→r)	Premisa
	3 p	Supuesto	3 p	Supuesto
	4 p∨q	∨I3	4 q ∨ r	→E1,3
	5 r	→E1,4	5 ¬q	Supuesto
	6 s	Supuesto	6 q	Supuesto
	7 ¬r	→E2,7	7 q ∧ ¬q	∧I5,6
	8. r∧¬r	<u> </u>	8 F	F I7
	9 ¬s	¬I6-8	9 r	FE8
	10 p → \neg s	→I3-9	$10 q \rightarrow r$	→I6-9
			11 r	Supuesto
			12 r→r	→I11
			13 r	∨E4,10,12
			$14\neg q \rightarrow r$	→I5-13
			$15\neg q \rightarrow r \land \neg (\neg q \rightarrow r)$	∧I14,2
			16 F	F I15
			17 s	F E16
			$18 p \rightarrow s$	→I3-17

^{3.-}Formalizar e indicar si son correctos por método de resolución los razonamientos (asignar las letras p,q,r... por orden de aparición).

Premisa1: $p \rightarrow q$

Premisa2: $(r \land s) \rightarrow p$

[&]quot;Llueve sólo cuando hace frío. Además, es suficiente que haya nubes y viento para que llueva. Por tanto hace frío cuando hay nubes o viento."

Conclusión: $(r \lor s) \to q$

Cláusulas a utilizar en resolución: $\{ \neg p \lor q, \neg r \lor \neg s \lor p, r \lor s, \neg q \}$

¿Se alcanza la cláusula vacía? (SI/NO) NO

¿Es correcto? (SI/NO) NO

"Es responsable siempre que le dan oportunidades. Basta que le den oportunidades para que desaparezca. Por tanto, no es responsable a menos que desaparezca"

Premisa1: $q \rightarrow p$

Premisa2: $q \rightarrow r$

Conclusión: $p \rightarrow r$

Cláusulas a utilizar en resolución: $\{ \neg q \lor p, \neg q \lor r, p, \neg r \}$

¿Se alcanza la cláusula vacía? (SI/NO) NO

¿Es correcto? (SI/NO) NO

Segundo Parcial

1.-Demostrar que los siguientes razonamientos son correctos mediante deducción natural (deben dibujarse las cajas que sean necesarias)

necesarias)		
	$\{ \ \forall x (P(x) \rightarrow \neg \exists y Q(x,y)), \exists x \in A(x,y) \}$	$xQ(x,x) \} \Rightarrow \exists x \neg P(x)$
	1 $\forall x (P(x) \rightarrow \exists y Q(x,y))$	Premisa
١.	$2\exists x Q(x,x)$	Premisa
	3 (a) Q(a,a)	Supuesto
	4 $P(a)$ → $\neg \exists y Q(a,y)$	∀E1
	5 P(a)	Supuesto
	6 ¬∃yQ(a,y)	→E4,5
	7 ∃yQ(a,y)	∃I3
	8 $\exists y Q(a,y) \land \neg \exists y Q(a,y)$	^I6,7
-	9 ¬P(a)	¬I5-8
	10 ∃x¬P(x)	∃19
	11 $\exists x \neg P(x)$	∃E2,3-10

$\{ \neg \forall x P(x) \} \Rightarrow \exists x ($	$\neg P(x) \lor Q(x))$
$1\neg \forall x P(x)$	Premisa
$2\neg\exists x(\neg P(x)\lor Q(x))$	Supuesto
3 (a)	libre
4 ¬P(a)	Supuesto
	∨I4
$6\exists x(\neg P(x)\lor Q(x))$	∃I5
	$X)\vee Q(X))$ $\wedge I2,6$
8 P(a)	¬E4-7
9 ∀xP(x)	∀I3-8
10 $\forall x P(x) \land \neg \forall x P(x)$	∧I1,9
11 $\exists x (\neg P(x) \lor Q(x))$	¬E2-10

2.-Demostrar si son o no correctos los siguientes razonamientos mediante resolución.

$\{ \ \forall x((P(x) \lor Q(x)) \to \exists y R(x,y)), \exists x P(x), \exists x Q(x) \} \Rightarrow \exists x \}$	$\{ \exists y \forall x \ P(y,x,x), \ \forall x \forall y \forall z \ (P(x,y,z) \to P(f(x), y, f(z))) \} \Rightarrow$
R(x,x)	P(f(f(a)), b, f(f(b)))
	Cláusulas a utilizar
Cláusulas a utilizar	
	$\{ P(a,x,x), \neg P(x,y,z) \lor P(f(x),y,f(z)), \neg P(f(f(a)),b,f(f(b))) \}$
$\{ \neg P(x) \lor R(x,f(x)), \neg Q(x) \lor R(x,f(x)), P(a), Q(b), \neg R(x,x) \}$	

Pasos de resolución	Pasos de resolución
< <no alzanca="" cláusula="" la="" se="" vacía="">></no>	1. $P(a,x,x)$ 2. $\neg P(x,y,z) \lor P(f(x),y,f(z))$ 3. $\neg P(f(f(a)),b,f(f(b)))$ 4. $\neg P(f(a),b,f(b))$ 5. $\neg P(a,b,b)$ 6. \square $R(2,3) \{ x/f(a), y/b, z/f(b) \}$ $R(2,4) \{ x/a, y/b, z/b \}$ $R(1,5) \{ x/a \}$
¿Se alcanza la cláusula vacía? (SI/NO NO ¿Es correcto? (SI/NO) NO	¿Se alcanza la cláusula vacía? (SI/NO) SI ¿Es correcto? (SI/NO) SI

3.-Formalizar las siguientes frases utilizando: N(x)="x es un neumático ", A(x)="x está alineado ", G(x,y)="x gana y",

```
P(x)="x es un premio" f="Fernando".
```

a.- Para que todos los neumáticos estén alineados es necesario que Fernando gane algún premio $\exists x (P(x) \land G(f,x)) \rightarrow \forall x (N(x) \rightarrow A(x))$

b.- Fernando no gana ningún premio a menos que algún neumático esté alineado

```
\exists x (P(x) \land G(f,x)) \rightarrow \exists x (N(x) \land A(x))
```

c.- Fernando gana todos los premios que no están alineados

```
\forall x (P(x) \land \neg A(x) \rightarrow G(f,x))
```

d.- Sólo están alineados los neumáticos pero Fernando gana algún premio

```
\forall x(A(x) \rightarrow N(x)) \land \exists x(P(x) \land G(f,x))
```

4.-Definir los siguientes predicados en Prolog:

```
a.- corta(C,L,M):-M es una lista que contiene todos los elementos de la lista L que son mayores que C Ejemplo: ?- corta(4,[2,5,3,7,8,1],V).

V=[5,7,8]
```

```
corta(X,[Y|L],M):-Y < X, corta(X,L,M).

corta(X,[Y|L],[Y|M]):-Y>=X, corta(X,L,M).

corta(X,[],[]).
```

b.- genera(M,N,L):-L es una lista de la forma [M,M+1,M+2,...N]

```
Ejemplo: ?- genera([2,6,V).
```

V=[2,3,4,5,6]

```
\label{eq:genera} $\operatorname{genera}(M,M,[\,]):=M<N, $M1$ is $M+1$, $\operatorname{genera}(M1,N,L)$.}
```

c.- listas(L,M):-M es una lista de listas formada a partir de L, donde cada elemento de M se forma como la lista [1,2,...X] donde X es el elemento de la lista L de la misma posición.

```
Ejemplo: ?- listas([3,2,5],V).
```

V=[[1,2,3],[1,2],[1,2,3,4,5]]

```
listas([],[]). \\ listas([X|L],[M|N]):-genera(1,X,M),listas(L,N).
```