PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

COORDENAÇÃO LOCAL DO PROGRAMA DE INICIAÇÃO CIENTÍFICA

RELATÓRIO ANEXO I

1 Resumo

Neste trabalho pretendemos apresentar um resultado de existência e unicidade de solução para um problema envolvendo a equação da onda. Será estudado classes de problemas com dados iniciais regulares. Precisamente, consideraremos os dados iniciais em espaços de funções m vezes continuamente diferenciáveis. Para isso será efetuado levantamento bibliográfico preliminar sobre tópicos de Análise Real e Espaços Métricos. Serão estudados aspectos relativos ao espaço das funções contínuas com métricas apropriadas. O resultado principal será provado via Séries de Fourier.

2 Objetivos

- Complementar a formação do discente, visando um perfil científico.
- Estudar aspectos relativos aos espaços das funções contínuas, e das funções continuamente diferenciáveis, sob o ponto de vista de espaços métricos.
- Provar um teorema que estabeleça condições para a existência de solução para a equação de propagação de ondas acústicas.
- Propiciar que o aluno aprenda aspectos teóricos sobre Análise Real, Espaços Métricos e aplicá-los no estudo da equação da onda.
- Apresentar os resultados finais no Encontro Anual de Iniciação Científica, Tecnológica e Inovação.

3 Cronograma de atividades

Atividades	Set	Out	Nov	Dez	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago
Estuda das referências	X	X	X	X	X	X	X	X				
Escruta do relatório parcial					X	X						
Formulação do resultado							X	X	X	X		
Prova do resultado								X	X	X	X	
Escrita do relatório final										X	X	X

4 Materiais e métodos

5 Descrição dos principais resultados

5.1 Teorema de existência de solução da equação da onda

Nesta subseção, apresentaremos definições bases sobre Equações Diferenciais Parciais (EDP), em específico, a equação da onda e o fundamento teórico necessário para a prova do teorema de existência e unicidade de solução para o problema de valor inicial e de fronteira (PVIF) associado à equação da onda.

Definição 5.1.1. Uma função $f: \mathbb{R} \to \mathbb{R}$ é periódica de período T se, e somente se, f(x+T) = f(x) para todo $x \in \mathbb{R}$.

Definição 5.1.2. Dada uma série de funções $\sum_{n=1}^{\infty} u_n(x)$ onde $u_n(x)$: $I \to \mathbb{R}$ converge pontualmente se, para cada $x_0 \in I$ fixado, a série numérica $\sum_{n=1}^{\infty} u_n(x_0)$ é convergente. Ou seja, dados $\epsilon > 0$ e $x_0 \in I$, existe $N(\epsilon, x_0) \in \mathbb{N}$ tal que

$$\left| \sum_{j=n}^{m} u_j(x_0) \right| < \epsilon \tag{1}$$

para todo $m \ge n \ge N(\epsilon, x_0)$.

Definição 5.1.3. Dada uma série de funções $\sum_{n=1}^{\infty} u_n(x)$ onde $u_n(x)$: $I \to \mathbb{R}$ converge uniformemente se, para cada $\epsilon > 0$, existe $N(\epsilon) \in \mathbb{N}$ (ou seja, independente de $x \in I$) tal que

$$\left| \sum_{j=n}^{m} u_j(x) \right| < \epsilon \tag{2}$$

para todo $m \ge n \ge N(\epsilon)$ e para todo $x \in I$.

Teorema 5.1.1. Teste M de Weierstrass: Seja $\sum_{n=1}^{\infty} u_n(x)$ uma série de funções $u_n: I \to \mathbb{R}$ definidas em um subconjunto I de \mathbb{R} . Suponha que existam constantes M_n tais que

$$|u_n(x)| \le M_n|, \quad \text{para todo } x \in I,$$
 (3)

e que a série numérica $\sum_{n=1}^{\infty} M_n$ convirja. Então a série de funções $\sum_{n=1}^{\infty} u_n(x)$ tem convergência uniforme em I.

Definição 5.1.4. Dada uma função $f: \mathbb{R} \to \mathbb{R}$, periódica, de período 2L, integrável e absolutamente integrável, podemos expressá-la como uma série de Fourier da seguinte forma

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right). \tag{4}$$

Definição 5.1.5. Dada uma função f que possa se expressa como um série de Fourier, os coeficientes a_n e b_n são chamados de coeficientes de Fourier de f e são dados por

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx; \quad n \ge 0$$
 (5)

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx; \quad n \ge 1$$
 (6)

Definição 5.1.6. A equação da onda é dada pelo Problema de Valor Inicial e de Fronteira (PVIF)

$$\begin{cases} u_{tt} = c^2 u_{xx}, & \text{em } \mathbb{R} \\ u(0,t) = u(L,t) = 0, \\ u(x,0) = f(x), & \text{em } 0 \le x \le L \\ u_t(x,0) = g(x), & \text{em } 0 \le x \le L \end{cases}$$
 (7)

Definição 5.1.7. This is the first mydefinition.

Definição 5.1.8. This is the first mydefinition.

5.2 Conjuntos e funções

Definição 5.2.1. This is the first mydefinition.

5.3 Cardinalidade de conjuntos

Definição 5.3.1. Dada um conjunto \mathbb{N} e uma função $s: \mathbb{N} \to \mathbb{N}$, chamamos os elementos desse conjunto de números naturais se, e somente se, s satisfaz os seguintes axiomas (chamados Axiomas de Peano)

- 1. $s: \mathbb{N} \to \mathbb{N}$ é uma função injetora.
- 2. $\mathbb{N}\backslash s(\mathbb{N})$ consta de um só elemento; tal elemento é chamado de "um", com símbolo 1. Ou seja, 1 não é sucessor de nenhum número natural.
- 3. Se $X \subset \mathbb{N}$ é um subconjunto tal que $1 \in \mathbb{N}$ e, para todo $n \in \mathbb{N}$, se $n \in X$, então $s(n) \in X$, então $X = \mathbb{N}$.

Definição 5.3.2. Em \mathbb{N} , definimos a adição de dois números naturais como a operação + sobre um par (m,n) da seguinte forma:

- 1. m+1=s(m)
- 2. m + s(n) = s(m+n), ou seja, m + (n+1) = (m+n) + 1

Definição 5.3.3. Em \mathbb{N} , definimos a multiplicação de dois números naturais como a operação \cdot sobre um par (m, n) da seguinte forma:

- 1. $m \cdot 1 = m$
- $2. m \cdot (n+1) = m \cdot n + m$

Teorema 5.3.1. Sobre as operações de adição e multiplicação de números naturais, temos as seguintes propriedades:

- associatividade: $(m+n) + p = m + (n+p) e(m \cdot n) \cdot p = m \cdot (n \cdot p)$
- comutatividade: m + n = n + m e $m \cdot n = n \cdot m$
- $distributividade: m \cdot (n+p) = m \cdot n + m \cdot p$
- lei do corte: $m + p = n + p \Rightarrow m = n$ e $m \cdot p = n \cdot p \Rightarrow m = n$

Teorema 5.3.2. Princípio da boa-ordenação Todo subconjunto não vazio $A \subset \mathbb{N}$ possui um menor elemento.

Demonstração. DEMONSTRAR

Definição 5.3.4. Definimos como o conjunto de inteiros menores ou iguais a n como $I_n = \{p \in \mathbb{N}; p \leq n\}$.

Definição 5.3.5. Um conjunto X é dito finito se é vazio ou, então, se existe uma função bijetora $f: I_n \to X$. A bijeção f chama-se contagem de X e o número n chama-se número de elementos ou número cardinal de X.

Teorema 5.3.3. Seja X um conjunto finito e $f: X \to X$ uma função. Então, f é injetora se, e somente se, f é sobrejetora.

Demonstração. DEMONSTRAR

Definição 5.3.6. Definir conjunto limitado

Teorema 5.3.4. Um subconjunto X de $\mathbb N$ é finito se, e somente se, X é limitado.

Definição 5.3.7. Um conjunto X é dito infinito se não é finito. Ou seja, X é infinito se, e somente se, não existe uma função bijetora $f: I_n \to X$ para nenhum $n \in \mathbb{N}$.

Teorema 5.3.5. Se X é um conjunto infinito, então existe uma função injetora $f: \mathbb{N} \to X$.

Corolário 1. Um conjunto X é infinito se, e somente se, existe uma bijeção $\psi: X \to Y$ sobre um subconjunto próprio $Y \subset X$.

Definição 5.3.8. Um conjunto X é dito enumerável quando é finito ou quando existe uma bijeção $f: \mathbb{N} \to X$. Neste caso, f chama-se enumeração de X.

Teorema 5.3.6. Todo subconjunto $X \subset \mathbb{N}$ é enumerável.

Demonstração. DEMONSTRAR

Corolário 1. O produto cartesiano de dois conjuntos enumeráveis é enumerável.

- 5.4 Números reais
- 5.5 Sequências e séries
- 5.6 Topologia na reta
- 5.7 Limites de funções