Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

ЛАБОРАТОРНА РОБОТА № 2

з дисципліни «Методи наукових досліджень» на тему «ПРОВЕДЕННЯ ДВОФАКТОРНОГО ЕКСПЕРИМЕТНУ З ВИКОРИСТАННЯМ ЛІНІЙНОГО РІВНЯННЯ РЕГРЕСІЇ»

ВИКОНАЛА:

студентка 2 курсу

групи IB-91

Сайко С. А.

Залікова – 9126

ПЕРЕВІРИВ:

ас. Регіда П. Г.

Mema: провести двофакторний експеримент, перевірити однорідність дисперсії за критерієм Романовського, отримати коефіцієнти рівняння регресії, провести натуралізацію рівняння регресії.

Завдання:

- 1. Записати лінійне рівняння регресії.
- 2. Обрати тип двофакторного експерименту і скласти матрицю планування для нього з використанням додаткового нульового фактору (xo=1).
- 3. Провести експеримент в усіх точках повного факторного простору (знайти значення функції відгуку у). Значення функції відгуку задати випадковим чином у відповідності до варіанту у діапазоні $y_{min} \div y_{max}$ $y_{max} = (30 N_{\text{варіанту}}) \cdot 10$, $y_{min} = (20 N_{\text{варіанту}}) \cdot 10$.

Варіанти обираються по номеру в списку в журналі викладача.

№ варіанту	\mathbf{x}_1		\mathbf{x}_2	
	min	max	min	max
124	-20	15	-15	35

Програмний код:

```
avrg y = []
dsprsn_y = []
sgm uv = []
dvtn = 0
rmnvsk value = 0
         i.append((randint(y min, y max)))
mx1, mx2, my = sum(x1) / 3, sum(x2) / 3, sum(avrg_y) / 3
a1 = sum([i ** 2 for i in x1]) / 3
a2 = sum([x1[i] * x2[i] for i in range(3)]) / 3
all = sum([x1[i] * avrg_y[i] for i in range(3)]) / 3
a22 = sum([x2[i] * avrg_y[i] for i in range(3)]) / 3
determinant = det([[1, mx1, mx2], [mx1, a1, a2], [mx2, a2, a3]])
b0 = det([[my, mx1, mx2], [a11, a1, a2], [a22, a2, a3]]) / determinant
b1 = det([[1, my, mx2], [mx1, a11, a2], [mx2, a22, a3]]) / determinant
delta x1 = abs(x1 max - x1 min) / 2
delta_x2 = abs(x2_max - x2_min) / 2
x 10 = (x1 max + x1 min) / 2
a0 = b0 - b1 * (x 10 / delta x1) - b2 * (x 20 / delta x2)
a1 = b1 / delta x1
a2 = b2 / delta x2
```

```
plan table = PrettyTable()
plan table.field names = ['N', 'X1', 'X2', *[f"Y{i}" for i in range(1, m +
naturalize checking table = PrettyTable()
naturalize checking table.field names= ['№', 'NX1', 'NX2', 'Середній Y',
print(f"y = {round(b0, 4)} + {round(b1, 4)}*x1 + {round(b2, 4)}*x2")
```

Результат роботи програми:

```
| № | X1 | X2 | Y1 | Y2 | Y3 | Y4 | Y5 |
| 1 | -1 | -1 | -1017 | -965 | -991 | -969 | -1018 |
| 2 | -1 | 1 | -955 | -1000 | -1030 | -995 | -1035 |
| 3 | 1 | -1 | -942 | -946 | -1029 | -1036 | -1006 |
| № | Середній Y | Дисперсія Y | F_uv | σ_uv | R_uv
             | 512.0 | 1.6133 | 0.968 | 0.0179 |
| 1 | -992.0
                826.0
| 2 | -1003.0
                         | 1.9653 | 1.1792 | 0.1002 |
             1623.36
3 -991.8
                         | 3.1706 | 1.9024 | 0.5045 |
v = -997.4 + 0.1*x1 + -5.5*x2
| № | X1 | X2 | Середній Y | Експеременталльне |
| 1 | -1 | -1 | -992.0 |
                            -992.0
2 | -1 | 1 | -1003.0
                           -1003.0
| 3 | 1 | -1 | -991.8 |
                          -991.8
y = -995.1857 + 0.0057*nx1 + -0.22*nx2
| № | NX1 | NX2 | Середній Y | Експерементальне |
                    -992.0
| 1 | -20 | -15 |
                                     -992.0
2 | -20 | 35 | -1003.0
                                    -1003.0
                   -991.8
| 3 | 15 | -15 |
                                     -991.8
Відхилення: 1.7888543819998317
Критерій Романовського: 2.13
```

Висновок:

Під час виконання даної лабораторної роботи, я провела двофакторний експеримент, перевірила однорідність дисперсії за критерієм Романовського, отримала коефіцієнти рівняння регресії, провела натуралізацію рівняння регресії. Коефіцієнти знайдені правильно, що підтверджують результати, наведені вище. Мета лабораторної роботи досягнута.

Відповіді на контрольні питання:

1. Що таке регресійні поліноми і де вони застосовуються?

Регресійні поліноми – це апроксимуючі поліноми, за допомогою яких ми можемо описати функцію. Застосовуються в теорії планування експерименту.

2. Визначення однорідності дисперсії.

Однорідність дисперсії означає, що серед усіх дисперсій немає такої, яка б значно перевищували інші.

3. Що називається повним факторним експериментом?

ПФЕ (Повний факторний експеримент) — називається такий експеримент, при реалізації якого визначається значення параметра оптимізації при всіх можливих поєднаннях рівнів варіювання факторів.