

模型评测

Allen·Huang

模型的比较

- ·一次训练过程中模型的比较
- ·多次训练的模型的比较
- ·不同算法的模型的比较

评测集

- ·评测集不混入训练集中训练
- ·评测集只能代表片面的数据评测
- ·评测集需要数量和数据分布方面的扩充

正样本与负样本

- ·通常我们需要判定概率为1的类型的样本叫做正样本
- ·通常我们需要判定概率为0的类型的样本叫做负样本
- ·扩展到多分类

二分类评测指标

- ·Classification Accuracy
- ·Confusion Matrix
- ·ROC Curve
- ·Area under Curve
- ·F1 Score
- ·PR Curve
- ·AP Score

Accuracy 准确率

准确率/正确率:

通常是指在所有的预测中,与正确答案相等的比例是多少

无论正样本还是负样本

$$Accuracy = \frac{Number\ of\ Correct\ predictions}{Total\ number\ of\ predictions\ made}$$

Accuracy 准确率

缺陷:

当数据训练集和评测集的数据比例不平衡的时候,难以准确衡量模型的好坏

在训练集中,当A类型有98%的数据量,B类型有2%的数据量的时候,那么我们的模型可以轻松达到98%的准确率,如果将所有的训练结果都记做A

当评测集中60%的数据是A,40%的数据是B的时候,测试的准确率就会降到60%

Confuse Matrix混淆矩阵

n代表总体的测试样本数

第一行是实际负样本数

第二行是实际正样本数

第一列是预测负样本数量

第四列是预测正样本数量

所以对于二分类我们有4种预测后的结果

真负, 假负, 真正, 假正

n=165	Predicted: NO	Predicted: YES	
Actual:			
NO	50	10	
Actual:			
YES	5	100	

Confusion Matrix

Confuse Matrix混淆矩阵

TP:真正

TN:真负

FN:假负

FP:假正

		预测	
		1	0
实际	1	True Positive (TP)	False Negative (FN)
	0	False Positive (FP)	True Negative(TN)

Confuse Matrix

事实上, Accuracy=(TP+TN)/n

事实上,后面的很多指标也可以用混淆矩阵中的数据来进行组合

Precision 和 Recall

Precision 查准率:

Precision=TP/(TP+FP)

就预测y=1这件事情的正确率是多少?

就预测y=1这件事情的误报率是多少? 1-Precison

Precision 和 Recall

Recall 查全率:

Recall=TP/(TP+FN)

对于所有y=1的数据有多少真的被报出来了?

对于所有y=1的数据有多少的漏报率? 1-Recall

一个小例子

- 金融诈骗2分类问题(1:诈骗,0:不诈骗)
- P-100 N-100
- Thres=0.5 当大于等于0.5的时候认为1,当小于0.5认为是0
- 预测出来TP-80 FP-20 ---报出100个样本
- Precision? 0.8
- Recall? 0.8
- 如果Thres=0.9,大于等于0.9的时候认为是1,小于0.9认为是0
- Precison和Recall的变化
- [0.2,0.1,0.35,0.7,0.98......,0.23]---200个预测的样本
- 当Thres=0.9的时候报出的样本数量变多了还是变少了?

Precision 和 Recall

右图为评估+GroundTruth表		Class	Score	Inst#	Class	Score		
通过调整不同的阈值		p	.9	11	p	.4		
score>?则预测为p		p	.8	12	n	.39		
		n	.7	13	p	.38		
得到一系列的数字		p	.6	14	n	.37		
阈值越低,Recall越高,Precision越低	5	p	.55	15	n	.36		
		p	.54	16	n	.35		
阈值越高, Recall越低,Precison越高								

PR曲线

Thres=0.9 P=1,R=0.1

Thres=0.8 P=1,R=0.2

Thres=0.7 P=0.6,R=0.3

. . .

Thres=0.1 P=0.5,R=1.0

对于PR曲线越靠近右上越好

ROC曲线

Recall=TP/(TP+FN)

TPR=Recall=TP/(TP+FN),真正例率,Recall

FPR=1-FRecall=FP/(FP+TN),

假正例率,1-FRecall,误召率

AUC=该条曲线的面积(利用微分进行计算)

对比ROC和PR

- ·ROC永远是单调曲线
- ·正负样本失衡的时候,PR变化大而

ROC可以保持不变

- ·在混入了更多的错误的时候也引入了 更多的正确
- ·在Recall稳定提升的过程中,可能错误的判断如洪水般涌入,将正确率淹没

多分类评测

每一类当做是二分类来进行评测

计算Micro/Macro的PR、ROC

计算mAP

Micro

$$\label{eq:micro-Precision} \begin{split} \textit{Micro-Precision} &= \frac{\textit{TruePositives1} + \textit{TruePositives2}}{\textit{TruePositives1} + \textit{FalsePositives1} + \textit{TruePositives2} + \textit{FalsePositives2}} \\ \textit{Micro-Recall} &= \frac{\textit{TruePositives1} + \textit{TruePositives2}}{\textit{TruePositives1} + \textit{FalseNegatives1} + \textit{TruePositives2} + \textit{FalseNegatives2}} \end{split}$$

$$Micro - F - Score = 2.\frac{Micro - Precision . Micro - Recall}{Micro - Precision + Micro - Recall}$$

Macro

$$\begin{aligned} \mathit{Macro-Precision} &= \frac{\mathit{Pecision1} + \mathit{Precision2}}{2} \\ \mathit{Macro-Recall} &= \frac{\mathit{Recall1} + \mathit{Recall2}}{2} \\ \end{aligned}$$

$$Macro - F - Score = 2.\frac{Macro - Precision . Macro - Recall}{Macro - Precision + Macro - Recall}$$