CHEMICAL PROCESS CALCULATIONS

(Introduction to processes and process variables)

Lecture #3: August 11, 2022

Processes & Process Variables

- Process: operation to achieve desired product
 - input feed, output product, process streams
 - design flowchart
 - operation daily activities
 - analysis intensification
 - troubleshooting problem identification
 - debottlenecking scale up
 - turndown scale down
- Understanding composition, process condition
 - process variables

Process Variables

- Density / specific volume
- Specific gravity (SG)
 - reference fluid water at 4.0 °C (1000 kg/m³)
- Mass & volume flow rate
- Chemical composition
 - moles & molecular weight
 - mass and mole fractions, & average molecular weight
 - concentration
 - parts per million (ppm) and parts per billion (ppb)

- Gram-mole (g-mole or mol) amount of species whose mass in grams is numerically equal to its molecular weight
 - kg/kmol, g/mol, and lb_m/lb-mole
- Same conversion factors for molar units that are used to convert masses from one unit to another

$$100 \text{ g CO}_2 \times \frac{1 \text{ mol CO}_2}{44 \text{ g CO}_2} = 2.273 \text{ m} \Omega \text{ CO}_2$$

$$2.273 \text{ m} \Omega \times \frac{1 \text{ Ub-m} \Omega}{453.6 \text{ m} \Omega} = 5.011 \times 10 \text{ Ub. mol}$$

2.273 mol
$$CO_2 \times \frac{1 \text{ mol } C}{1 \text{ mol } CO_2} = 2.273 \text{ mol } C$$

2.273 mol $CO_2 \times \frac{1 \text{ mol } O_2}{1 \text{ mol } CO_2} = 2.273 \text{ mol } O_2$

2.273 mol $CO_2 \times \frac{2 \text{ mol } O}{1 \text{ mol } CO_2} = 4.546 \text{ mol } O$

4.546 mol $O_1 \times \frac{16.0 \text{ g } O}{1 \text{ mol } O_2} = 72.7 \text{ g } O$

2.273 mol $O_2 \times \frac{32.0 \text{ g } O_2}{1 \text{ mol } O_2} = 72.7 \text{ g } O_2$

100.09 $CO_2 \times \frac{32.0 \text{ g } O_2}{14.0 \text{ g } CO_2} = 72.7 \text{ g } O_2$

 molecular weight can be used to relate the mass flow rate to the corresponding molar flow rate

$$\frac{100 \text{ kg GO2}}{h} \times \frac{1 \text{ kml CO2}}{44.0 \text{ kg CO2}} = 2.27 \text{ kml CO2}$$

- dalton (Da) ⇒ molecular weight and the size of molecules for biochemical species
- The mass of a carbon-12 atom = 12 daltons
- The mass of a water molecule = 18 daltons

- Mass fraction (x)
 - mass of a species / total mass of mixture
- Mole fraction (y)
 - moles of a species / total moles of mixture

 $R_A = 0.15$ for 175 kg solution $R_B = 0.20$ mass of $A = 175 \times 0.15$ kg = 26 kg A

for the oblution flow rate of 1000 ml /min moter flow rate of B = 200 ml B/min

Mass & Molar Composition

Component	Mass Fraction	Mass (g)	Molecular Weight	Moles	Mole Fraction
i	$x_i (g_i/g)$	$m_i = x_i m_{\text{total}}$	M_i (g/mol)	$n_i = m_i/M_i$	$y_i = n_i = n_{\text{total}}$
O ₂	0.16	16	32	0.50	0.15
CO	0.04	4	28	0.14	0.04
CO ₂	0.17	17	44	0.39	0.12
N_2	0.63	63	28	2.25	0.69
Total	1.00	100		3.28	1.00

Average Molecular Weight

Ratio of mixture mass and number of moles of all species

$$\overline{M} = y_1 M_1 + y_2 M_2 + \ldots = \sum y_i M_i$$

$$\frac{1}{\overline{M}} = \frac{x_1}{M_1} + \frac{x_2}{M_2} + \ldots = \sum \frac{x_i}{M_i}$$

Molar composition: 79% N_2 & 21% O_2 Mass composition: 76.7% N_2 & 23.3% O_2

$$\overline{M} = y_{N_2} M_{N_2} + y_{O_2} M_{O_2}$$

$$= 0 \cdot 79 \times 28 + 0 \cdot 21 \times 32$$

$$= 29 \frac{kg}{kmol}$$

Average Molecular Weight

Ratio of mixture mass and number of moles of all species

$$\overline{M} = y_1 M_1 + y_2 M_2 + \dots = \sum y_i M_i$$

$$\frac{1}{\overline{M}} = \frac{x_1}{M_1} + \frac{x_2}{M_2} + \dots = \sum \frac{x_i}{M_i}$$

Molar composition: 79% N_2 & 21% O_2 Mass Composition: 76.7% N_2 & 23.3% O_2

$$\frac{1}{\overline{M}} = \left(\frac{0 \cdot 767}{28} + \frac{0 \cdot 233}{32}\right) \frac{mol}{g}$$

$$= 0.035 \frac{mol}{g}$$

$$\Rightarrow \overline{M} = 29 \frac{g}{mol}$$

Concentration

- Mass and Molar concentration
 - mass and number of moles per unit volume of the mixture
 - molarity molar concentration of the solute in gram-moles solute/liter solution
 - parts per million (ppm) and parts per billion (ppb)
 - parts (grams, moles) of the species per million or billion parts
 - used for trace species
 - ppm = $y \times 10^6$
 - ppb = $y \times 10^9$

Pressure

- Absolute pressure: zero for vacuum
- Gauge pressure: pressure relative to atmospheric pressure
- Absolute pressure = Gauge pressure +
 Atmospheric pressure