What makes a good cluster?

• Undirected graph G(V, E):

- Partitioning task:
 - Divide vertices into 2 disjoint groups $A, B = V \setminus A$

- Question:
 - How can we define a "good" cluster in G?

What makes a good cluster?

- What makes a good cluster?
 - Maximize the number of within-cluster connections
 - Minimize the number of between-cluster connections

Graph Cuts

- Express cluster quality as a function of the "edge cut" of the cluster
- Cut: Set of edges with only one node in the

cluster:

$$cut(A) = \sum_{i \in A, j \notin A} w_{ij}$$

Note: This works for weighed and unweighted (set all **w**_{ij}=1) graphs

Cut Score

- Partition quality: Cut score
 - Quality of a cluster is the weight of connections pointing outside the cluster

Degenerate case:

- Problem:
 - Only considers external cluster connections
 - Does not consider internal cluster connectivity

Graph Partitioning Criteria

Criterion: Conductance:

Connectivity of the group to the rest of the network relative to the density of the group

$$\phi(A) = \frac{|\{(i, j) \in E; i \in A, j \notin A\}|}{\min(vol(A), 2m - vol(A))}$$

vol(A): total weight of the edges with at least one endpoint in A: $vol(A) = \sum_{i \in A} d_i$

- Why use this criterion?
 - Produces more balanced partitions

m number
of edges of
the graph
d_i degree
of node i

Example: Conductance Score

