Time, Clocks, and the Ordering of Events in a Distributed System Leslie Lamport

Yuncong Zhang

April 23, 2020

Outline

Total Ordering of Events

Mutual Exclusion

Physical Clock

What does it mean by "a happens before b" in distributed system?

Figure: Events and Messages in Processes

What does it mean by "a happens before b" in distributed system?

► In one process, earlier events happens before later events

Figure: Events and Messages in Processes

What does it mean by "a happens before b" in distributed system?

- ► In one process, earlier events happens before later events
- Sending message happens before receiving message

Figure: Events and Messages in Processes

What does it mean by "a happens before b" in distributed system?

- ► In one process, earlier events happens before later events
- Sending message happens before receiving message
- ▶ If a happens before b, and b happens before c, then a happens before c

Figure: Events and Messages in Processes

Denote by $a \rightarrow b$ if a happens before b.

Figure: Events and Messages in Processes

Denote by $a \rightarrow b$ if a happens before b.

ightharpoonup "ightharpoonup" defines a partial order.

Figure: Events and Messages in Processes

Denote by $a \rightarrow b$ if a happens before b.

- "→" defines a partial order.
- ▶ If a
 ightharpoonup b and b
 ightharpoonup a then a and b are concurrent

Figure: Events and Messages in Processes

Denote by $a \rightarrow b$ if a happens before b.

- "→" defines a partial order.
- If a → b and b → a then a and b are concurrent
- a → b is equivalent to saying one can go from a to b in the diagram by moving forward in time along process and message lines.

Figure: Events and Messages in Processes

Example: $p_1
ightarrow r_4$

Figure: Events and Messages in Processes

Example: $p_1 \rightarrow r_4$

 $ightharpoonup p_1
ightarrow q_2$

Figure: Events and Messages in Processes

Example: $p_1 \rightarrow r_4$

- $ightharpoonup p_1
 ightarrow q_2$
- $ightharpoonup q_2
 ightarrow q_4$

Figure: Events and Messages in Processes

Example: $p_1 \rightarrow r_4$

- $ightharpoonup p_1
 ightarrow q_2$
- $ightharpoonup q_2
 ightarrow q_4$
- $ightharpoonup q_4
 ightharpoonup r_3$

Figure: Events and Messages in Processes

Example: $p_1 \rightarrow r_4$

- $ightharpoonup p_1
 ightarrow q_2$
- $ightharpoonup q_2
 ightarrow q_4$
- $ightharpoonup q_4
 ightarrow r_3$
- $ightharpoonup r_3
 ightharpoonup r_4$

Figure: Events and Messages in Processes

Logical clock is an assignment of numbers on events

Figure: Logical Clock

Logical clock is an assignment of numbers on events

► Clock C_i assigns number $C_i\langle a\rangle$ to event a in process P_i

Figure: Logical Clock

Logical clock is an assignment of numbers on events

- ► Clock C_i assigns number $C_i\langle a \rangle$ to event a in process P_i
- ▶ Clock C for the entire system defined by $C\langle a\rangle = C_i\langle a\rangle$ if a is in process P_i

Figure: Logical Clock

Clock Condition

For any events a, b: if $a \rightarrow b$ then $C\langle a \rangle < C\langle b \rangle$

Remark

The converse is not true:

$$C\langle a
angle < C\langle b
angle$$
 does not imply $a o b$

Figure: Logical Clock

Implement the logical clock:

Figure: Logical Clock

Implement the logical clock:

► Each process *P_i* increments *C_i* between successive events

Figure: Logical Clock

Implement the logical clock:

- ► Each process *P_i* increments *C_i* between successive events
- ▶ If event a is sending message m from P_i , then m contains timestamp $T_m = C_i \langle a \rangle$

Figure: Logical Clock

Implement the logical clock:

- ► Each process *P_i* increments *C_i* between successive events
- ▶ If event a is sending message m from P_i , then m contains timestamp $T_m = C_i \langle a \rangle$
- ➤ On receiving message m, P_j sets C_j to be greater than both T_m and previous event

Figure: Logical Clock

Process Q receives message p_1 , updates clock to 2

Figure: Logical Clock

Process P receives message q_1 , updates clock to 2

Figure: Logical Clock

Proceeds until Q sends a message to R at event q_4 with timestamp 4

Figure: Logical Clock

Process R receives the message with timestamp 4, and updates clock to 5

Figure: Logical Clock

Process Q sends message to P with timestamp 5

Figure: Logical Clock

Process P updates clock on receiving message with timestamp 5. Clocks of processes Q and R are not affected by messages.

Figure: Logical Clock

Total Ordering

With the logical clock, we can now define a total order "⇒" for all events.

Figure: Logical Clock

Total Ordering

With the logical clock, we can now define a total order "⇒" for all events.

► Define a total order ≺ over the processes

Figure: Logical Clock

Total Ordering

With the logical clock, we can now define a total order "⇒" for all events.

- ▶ Define a total order ≺ over the processes
- For events a in P_i and b in P_j , $a \Rightarrow b$ if and only if either
 - $C_i\langle a\rangle < C_i\langle b\rangle$ or;
 - $C_i\langle a\rangle = C_j\langle b\rangle$ and $P_i \prec P_j$

Figure: Logical Clock

Consider a system composed of a fixed collection of processes which share a single resource. Only one process can use the resource at a time.

- ► (I) A process which has been granted the resource must release it before it can be granted to another process.
- (II) Different requests for the resource must be granted in the order in which they are made.
- ▶ (III) If every process which is granted the resource eventually releases it, then every request is eventually granted.

To simplify the implementation, some assumptions are needed to avoid extra details.

To simplify the implementation, some assumptions are needed to avoid extra details.

▶ For any P_i and P_j , the messages sent from P_i to P_j are received in order

To simplify the implementation, some assumptions are needed to avoid extra details.

- ► For any P_i and P_j , the messages sent from P_i to P_j are received in order
- Every message is eventually received

To simplify the implementation, some assumptions are needed to avoid extra details.

- For any P_i and P_j, the messages sent from P_i to P_j are received in order
- Every message is eventually received
- ▶ A process can send messages directly to every other process

Each process maintains its own request queue.

Each process maintains its own request queue.

▶ If process P_i wants the resource, it sends a message $\langle T_m : P_i | requests | resource \rangle$ to every other process, and puts the message on its request queue, where T_m is the message timestamp

Each process maintains its own request queue.

- ▶ If process P_i wants the resource, it sends a message $\langle T_m : P_i | requests | resource \rangle$ to every other process, and puts the message on its request queue, where T_m is the message timestamp
- ▶ When process P_j receives $\langle T_m : P_i \text{ requests resource} \rangle$, it puts the message on its request queue, and sends an acknowledgement message to P_i

Releasing the resource works in similar way.

Releasing the resource works in similar way.

▶ If process P_i wants to release the resource, it sends a message $\langle T_m : P_i | releases | resource \rangle$ to every other process, and removes any $\langle T_m : P_i | requests | resource \rangle$ from its request queue

Releasing the resource works in similar way.

- ▶ If process P_i wants to release the resource, it sends a message $\langle T_m : P_i | releases | resource \rangle$ to every other process, and removes any $\langle T_m : P_i | requests | resource \rangle$ from its request queue
- ▶ When process P_j receives $\langle T_m : P_i \text{ releases resource} \rangle$, it removes any $\langle T_m : P_i \text{ requests resource} \rangle$ from its request queue

 P_i is granted the resource if the following conditions hold.

 P_i is granted the resource if the following conditions hold.

► There is a ⟨T_m : P_i requests resource⟩ in its request queue ordered before any other messages inside the queue by relation "⇒"

 P_i is granted the resource if the following conditions hold.

- ► There is a ⟨T_m : P_i requests resource⟩ in its request queue ordered before any other messages inside the queue by relation "⇒"
- ► *P_i* received the acknowledgements from every other process

The above protocol satisfies conditions (I)(II) and (III).

The above protocol satisfies conditions (I)(II) and (III).

- ▶ Conditions I and II: When $\langle T_m : P_i \text{ requests resource} \rangle$ is sent, no request ordered after this request will be granted before this request is released, because they either:
 - Are not acknowledged by P_i
 - ▶ Received $\langle T_m : P_i \text{ requests resource} \rangle$ which is ordered before them in their queues

The above protocol satisfies conditions (I)(II) and (III).

- ▶ Conditions I and II: When $\langle T_m : P_i \text{ requests resource} \rangle$ is sent, no request ordered after this request will be granted before this request is released, because they either:
 - Are not acknowledged by P_i
 - ▶ Received $\langle T_m : P_i \text{ requests resource} \rangle$ which is ordered before them in their queues
- ▶ Condition III: If all the requests before ⟨T_m : P_i requests resource⟩ are released, this request will be ordered before any other requests in P_i's queue

Let t denote the physical time, and $C_i(t)$ be the value of clock C_i .

Let t denote the physical time, and $C_i(t)$ be the value of clock C_i .

 C_i(t) is continuous and differentiable function of t except for jump discontinuities

Let t denote the physical time, and $C_i(t)$ be the value of clock C_i .

- C_i(t) is continuous and differentiable function of t except for jump discontinuities
- ▶ $dC_i(t)/dt$ is the rate of the clock at t, assumed that $|dC_i(t)/dt 1| < \kappa \ll 1$

Let t denote the physical time, and $C_i(t)$ be the value of clock C_i .

- C_i(t) is continuous and differentiable function of t except for jump discontinuities
- ▶ $dC_i(t)/dt$ is the rate of the clock at t, assumed that $|dC_i(t)/dt-1|<\kappa\ll 1$

We need a protocol to make sure that all the $C_i(t)$'s are synced, i.e. for all i, j:

$$|C_i(t) - C_j(t)| < \varepsilon$$

We need a protocol to make sure that all the $C_i(t)$'s are synced, i.e. for all i, j:

$$|C_i(t) - C_j(t)| < \varepsilon$$

We need some assumptions and notations before describing the protocol.

We need a protocol to make sure that all the $C_i(t)$'s are synced, i.e. for all i,j:

$$|C_i(t) - C_j(t)| < \varepsilon$$

We need some assumptions and notations before describing the protocol.

If a message m is sent at time t, received at time t', the total delay is $\nu_m = t' - t$, which is not known to the receiver

We need a protocol to make sure that all the $C_i(t)$'s are synced, i.e. for all i,j:

$$|C_i(t) - C_j(t)| < \varepsilon$$

We need some assumptions and notations before describing the protocol.

- If a message m is sent at time t, received at time t', the total delay is $\nu_m = t' t$, which is not known to the receiver
- ▶ We assume that the receiving process knows some minimum delay $\mu_m \leq \nu_m$

We need a protocol to make sure that all the $C_i(t)$'s are synced, i.e. for all i,j:

$$|C_i(t) - C_j(t)| < \varepsilon$$

We need some assumptions and notations before describing the protocol.

- If a message m is sent at time t, received at time t', the total delay is $\nu_m = t' t$, which is not known to the receiver
- We assume that the receiving process knows some minimum delay $\mu_m \leq \nu_m$
- ▶ Denote by $\xi_m = \nu_m \mu_m$ the *unpredictable delay*

The protocol executes as follows.

The protocol executes as follows.

▶ If P_i does not receive message at time t, then P_i does not modify C_i , and $dC_i(t)/dt \approx 1$

The protocol executes as follows.

- ▶ If P_i does not receive message at time t, then P_i does not modify C_i , and $dC_i(t)/dt \approx 1$
- ▶ When P_i sends a message m, it appends timestamp $T_m = C_i(t)$ in the message

The protocol executes as follows.

- ▶ If P_i does not receive message at time t, then P_i does not modify C_i , and $dC_i(t)/dt \approx 1$
- When P_i sends a message m, it appends timestamp $T_m = C_i(t)$ in the message
- ▶ If at time t', P_i receives a message m with timestamp T_m , P_i resets $C_i(t')$ to $\max(C_i(t'), T_m + \mu_m)$

Theorem

Assume a strongly connected graph of processes with diameter d follows the above protocol. Assume that for any message m, $\mu_m \leq \mu$ for some constant μ , and that for all $t \geq t_0$:

- 1. $|dC_i(t)/dt 1| \leq \kappa \ll 1$
- 2. every τ seconds a message m with $\xi_m < \xi$ is sent over every arc, where τ and ξ are constants

Then for all i,j: $|C_i(t) - C_j(t)| < \varepsilon$ where $\varepsilon \approx d(2\kappa \tau + \xi)$ for all $t \gtrsim t_0 + \tau d$ and $\mu + \xi \ll \tau$

Proof Sketch

Proof Sketch

1. Prove that for any i, j and any t, t_1 with $t_1 \ge t_0$ and $t \ge t_1 + d(\tau + \nu)$:

$$C_i(t) \geq C_j(t_1) + (1-\kappa)(t-t_1) - d\xi$$

Proof Sketch

1. Prove that for any i, j and any t, t_1 with $t_1 \ge t_0$ and $t \ge t_1 + d(\tau + \nu)$:

$$C_i(t) \ge C_j(t_1) + (1 - \kappa)(t - t_1) - d\xi$$

2. Prove that for any t, t_x with $t \ge t_x \ge t_0 + \mu/(1-\kappa)$ there is a process P_q and a time t_1 with $t_x - \mu/(1-\kappa) \le t_1 \le t_x$ such that for all i:

$$C_i(t) \leq C_q(t_1) + (1+\kappa)(t-t_1)$$

Proof Sketch

1. Prove that for any i, j and any t, t_1 with $t_1 \ge t_0$ and $t \ge t_1 + d(\tau + \nu)$:

$$C_i(t) \geq C_j(t_1) + (1 - \kappa)(t - t_1) - d\xi$$

2. Prove that for any t, t_x with $t \ge t_x \ge t_0 + \mu/(1-\kappa)$ there is a process P_q and a time t_1 with $t_x - \mu/(1-\kappa) \le t_1 \le t_x$ such that for all i:

$$C_i(t) \leq C_q(t_1) + (1+\kappa)(t-t_1)$$

3. Prove that for all i, j:

$$|C_i(t) - C_i(t)| \lesssim d(2\kappa \tau + \xi)$$

for all $t \gtrsim t_0 + d\tau$

Step 1

1. Define C_i^t to be a clock set equal to C_i at time t and runs at the same rate as C_i , but is never reset. Then we have for any $t' \geq t$, $C_i^t(t') \leq C_i(t')$

Step 1

- 1. Define C_i^t to be a clock set equal to C_i at time t and runs at the same rate as C_i , but is never reset. Then we have for any $t' \geq t$, $C_i^t(t') \leq C_i(t')$
- 2. Suppose P_1 at time t_1 sends a message to P_2 which is received at t_2 , then for any $t \ge t_2$

$$C_2^{t_2}(t) \geq C_1(t_1) + (1-\kappa)(t-t_1) - \xi$$

Step 1

- 1. Define C_i^t to be a clock set equal to C_i at time t and runs at the same rate as C_i , but is never reset. Then we have for any $t' \geq t$, $C_i^t(t') \leq C_i(t')$
- 2. Suppose P_1 at time t_1 sends a message to P_2 which is received at t_2 , then for any $t \ge t_2$

$$C_2^{t_2}(t) \geq C_1(t_1) + (1-\kappa)(t-t_1) - \xi$$

3. For any P and P', there is a sequence $P=P_0,P_1,\cdots,P_{n+1}=P',\ n\leq d$, for each pair of $P_i,P_{i+1},$ assume P_i receives a message at t_i , sends a message to P_{i+1} at t_i' , and P_{i+1} receives message at t_{i+1} , we can find $t_i'-t_i\leq \tau,\ t_{i+1}-t_i'\leq \nu.$ Then we have

$$C_{n+1}(t) \geq C_{n+1}^{t_{n+1}}(t) \geq C_1(t_1) + (1-\kappa)(t-t_1) - n\xi$$

Step 2

1. Assign a clock C_m to each message m sent at t and received at t', with $C_m(t)=t$ and constant rate $dC_m/dt=\mu_m/(t'-t)$

Step 2

- 1. Assign a clock C_m to each message m sent at t and received at t', with $C_m(t) = t$ and constant rate $dC_m/dt = \mu_m/(t'-t)$
- 2. For any time $t_x \ge t_0 + \mu/(1-\kappa)$, let C_x be the clock with largest value at t_x . Consider two cases:

Step 2

- 1. Assign a clock C_m to each message m sent at t and received at t', with $C_m(t) = t$ and constant rate $dC_m/dt = \mu_m/(t'-t)$
- 2. For any time $t_x \ge t_0 + \mu/(1-\kappa)$, let C_x be the clock with largest value at t_x . Consider two cases:
 - 2.1 C_x is C_q for some process P_q , then for any i and $t \ge t_x$

$$C_i(t) \leq C_q(t_x) + (1+\kappa)(t-t_x)$$

Step 2

- 1. Assign a clock C_m to each message m sent at t and received at t', with $C_m(t) = t$ and constant rate $dC_m/dt = \mu_m/(t'-t)$
- 2. For any time $t_x \ge t_0 + \mu/(1-\kappa)$, let C_x be the clock with largest value at t_x . Consider two cases:
 - 2.1 C_x is C_q for some process P_q , then for any i and $t \ge t_x$

$$C_i(t) \leq C_q(t_x) + (1+\kappa)(t-t_x)$$

2.2 C_x is C_m for some message m sent at t_1 by process P_q , then $t_x \le t_1 + \mu/(1-\kappa)$, and for any i and $t \ge t_1$

$$C_i(t) \leq C_q(t_1) + (1+\kappa)(t-t_1)$$

Step 2

- 1. Assign a clock C_m to each message m sent at t and received at t', with $C_m(t) = t$ and constant rate $dC_m/dt = \mu_m/(t'-t)$
- 2. For any time $t_x \ge t_0 + \mu/(1-\kappa)$, let C_x be the clock with largest value at t_x . Consider two cases:
 - 2.1 C_x is C_q for some process P_q , then for any i and $t \geq t_x$

$$C_i(t) \leq C_q(t_x) + (1+\kappa)(t-t_x)$$

2.2 C_x is C_m for some message m sent at t_1 by process P_q , then $t_x \le t_1 + \mu/(1-\kappa)$, and for any i and $t \ge t_1$

$$C_i(t) \leq C_q(t_1) + (1+\kappa)(t-t_1)$$

3. Let $t_1 = t_x$ in first case, then we have t_1 such that $t_x - \mu/(1 - \kappa) \le t_1 \le t_x$, and there exists process P_q such that for all $t \ge t_x$ and for all i the above equation holds.

Step 3

1. Now we conclude that there always exists process P_q and time t_1 such that

$$C_q(t_1) + (1-\kappa)(t-t_1) - d\xi \le C_i(t) \le C_q(t_1) + (1+\kappa)(t-t_1)$$

Step 3

1. Now we conclude that there always exists process P_q and time t_1 such that

$$C_q(t_1) + (1-\kappa)(t-t_1) - d\xi \le C_i(t) \le C_q(t_1) + (1+\kappa)(t-t_1)$$

2. Let $t = t_x + d(\tau + \nu)$, update the above bounds

$$C_q(t_1) + (t - t_1) - \kappa d(\tau + \nu) - d\xi \le C_i(t)$$

 $\le C_q(t_1) + (t - t_1) + \kappa [d(\tau + \nu) + \mu/(1 - \kappa)]$

Step 3

1. Now we conclude that there always exists process P_q and time t_1 such that

$$C_q(t_1) + (1-\kappa)(t-t_1) - d\xi \le C_i(t) \le C_q(t_1) + (1+\kappa)(t-t_1)$$

2. Let $t = t_x + d(\tau + \nu)$, update the above bounds

$$C_q(t_1) + (t - t_1) - \kappa d(\tau + \nu) - d\xi \le C_i(t)$$

 $\le C_q(t_1) + (t - t_1) + \kappa [d(\tau + \nu) + \mu/(1 - \kappa)]$

3. By $\mu \leq \nu \ll \tau$ and $\kappa \ll 1$, and the fact that the above holds for all i

$$|C_i(t) - C_i(t)| \lesssim d(2\kappa \tau + \xi)$$

Q&A