

ATK-PAJ7620 手势识别模块 用户手册

用户手册

修订历史

版本	日期	原因
V1.00	2017/12/4	第一次发布

ATK-PAJ7620U2 手势识别模块用户手册

高性能手势识别

模块

目录

1	. 特性参数	. 3
	2. 使用说明	
	2.1 模块引脚说明	4
	2.2 PAJ7620 简介	5
	2.3 手势操作说明	6
	2.4 模块常用寄存器简介	7
	2.5 ATK-PAJ7620 模块例程实验	11
	2.6 模块使用注意事项	12
3.	结构尺寸	12
1	甘仙	13

模块

1.特性参数

ATK-PAJ7620_V1.2(V1.2 是版本号,下面均以 ATK-PAJ7620 表示该产品)是 ALIENTEK 推出的一款高性能手势识别传感器模块。该模块采用原相科技(Pixart)公司的 PAJ7620U2 芯片,芯片内部集成了光学数组式传感器,以使复杂的手势和光标模式输出,自带九种手势识别,支持上、下、左、右、前、后、顺时针旋转、逆时针旋转和挥动的手势动作识别,以及支持物体接近检测等功能。

ATK-PAJ7620 模块具有: 体积小、灵敏度高、支持中断输出、兼容 3.3V/5V 系统、使用方便等特点。

ATK-PAJ7620 模块各项参数如表 1.1 和表 1.2 所示。

项目	说明
接口特性	3.3V/5V
通讯接口	IIC 接口
通讯速率	400Khz(Max)
工作环境光	<100K Lux
有效探测距离	5~15cm
手势识别种类	9种(上、下、左、右、前、后、顺时针、逆时针、挥动)
工作温度	-20℃-70□
存储温度	-40°C-85°C
模块尺寸	16mm*16mm

表 1.1 ATK-PAJ7620 手势识别传感器模块基本特性

项目	说明
电源电压	3.3V/5V
IO 口电平 ¹	3.3V LVTTL
功耗	3~10ma

表 1.2 ATK-PAJ7620 手势识别传感器模块电器特性

注 1: 模块 IO 电压是 3.3V,不过我们做了 3.3\5V 兼容性处理(串 120R 电阻)所以可以直接连接 3.3V

和 5V 的 MCU 使用。

模块

2. 使用说明

2.1 模块引脚说明

ATK-PAJ7620 手势识别传感器模块通过 1*6 的排针(2.54mm 间距)同外部连接,模块可以与 ALIENTEK 战舰 STM32F103 V3、精英 STM32F103、探索者 STM32F407、阿波罗 STM32F429/767 开发板直接对接(插 ATK-MODULE 接口),而 ALIENTEK MiniSTM32F103 开发板则可以通过杜邦线连接模块进行测试。所有 ALIENTEK STM32 开发板都提供有相应 例程,用户可以直接在这些开发板上,对模块进行测试。

ATK-PAJ7620 手势识别传感器模块外观如图 2.1.1 所示:

图 2.1.1ATK-PAJ7620 手势识别传感器模块实物图

ATK-PAJ7620 模块原理图如图 2.1.2 所示:

图 2.1.2 ATK-PAJ7620 手势识别传感器模块原理图

从图 2.1.2 可以看出,模块自带了两个 3.3V 超低压差稳压芯片,给 PAJ7620 芯片供电,因此外部供电为 5V。模块通过 P1 排针与外部连接,引出了 VCC、GND、IIC_SDA、IIC_SCL、IIC_INT 信号,其中,IIC_SCL、IIC_SDA、IIC_INT 带了 4.7K 上拉电阻,外部可以不用再加上拉电阻了。

模块

ATK-PAJ7620 手势识别传感器模块通过一个 1*6 的排针 (P1) 同外部电路连接,各引脚的详细描述如表 2.1.1 所示:

序号	名称	说明		
1	VCC	3.3V/5V 电源输入		
2	GND	地线		
3	IIC_SCL	IIC 通信时钟线		
4	IIC_SDA	IIC 通信数据线		
5	IIC_INT	中断输出引脚		
6	NC	未		

表 2.1.1 ATK-VL53L0X 激光测距传感器模块引脚说明

模块通过 IIC 接口与外部进行通信,上电时,默认的 IIC 从机地址为: 0X73 (使用时需 左移一位)。

2.2 PAJ7620 简介

PAJ7620 是原相科技(PixArt)公司推出的一款光学数组式传感器,内置光源和环境光抑制滤波器集成的 LED,镜头和手势感测器在一个小的立方体模组,能在黑暗或低光环境下工作。同时传感器内置手势识别,支持 9 个手势类型和输出的手势中断和结果。并且内置还提供接近检测功能,可用于感测物体接近或离开。

PAJ7620 的特点包括:

- ①IIC接口,支持高达 400Khz 通信速率。
- ②内置 9 个手势类型(上、下、左、右、前、后、顺时针旋转、逆时针旋转、挥动), 支持输出中断。
- ③支持接近检测功能,检测物体体积大小和亮度。
- ④待机功耗电流 15uA。
- ⑤抗灯光干扰

PAJ7620 的模块功能框图如图 2.2.1 所示:

图 2.2.1 PAJ7620 功能框图

其中,I2C_SCL 和 I2C_SDA 是连接 MCU 的 IIC 接口,MCU 通过这个 IIC 接口来控制 PAJ7620,在图 2.2.1 框图可以看到,PAJ7620 内部自带 LED 驱动器,传感器感应阵列、目标信息提取阵列和手势识别阵列。PAJ7620 工作时通过内部 LED 驱动器,驱动红外 LED 向外发射红外线信号,当传感器阵列在有效的距离中探测到物体时,目标信息提取阵列会对探测目标进行特征原始数据的获取,获取的数据会存在寄存器中,同时手势识别阵列会对原始数据进行识别处理,最后将手势结果存到寄存器中,用户可根据 I2C 接口对原始数据和手势识别的结果进行读取。

用户手册 www.alientek.com

模块

2.3 手势操作说明

PAJ7620 内部自带了 9 个手势识别,分别是"上"、"下"、"左"、"右"、"前"、"后"、"顺时针旋转"、"逆时针旋转"、"挥动"。使用时传感器的开窗口位置需朝上,如图 2.3.1 所示:

图 2.3.1 传感器朝向位置 (开窗口向上)

手在传感器的上方,保持与传感器的垂直距离,做出图 2.3.2(1)和(2)所示的手势,可以分别得出"上"、"下"、"左"、"右"、"顺时针旋转"、"逆时针旋转"、"挥动"的识别结果。

图 2.3.2 (1) "上"、"下"、"左"、"右" 手势

逆时针旋转

图 2.3.2 (2) "顺时针旋转"、"逆时针旋转"、"挥动"手势 手在传感器的上方,与传感器的垂直方向上距离有相对的变化,做出图 2.3.2(3)所示的

模块

手势,可以得出"前"、"后"的识别结果。

图 2.3.2 (3) "前"、"后"手势

2.4 模块常用寄存器简介

PAJ7620 内部总共有上百个寄存器,但官方的也只是对部分的寄存器进行讲解,这里我们仅介绍 PAJ7620 常用的几个寄存器。其他的请大家参考: PAJ7620 芯片手册。

这里我们先提及下,在 PAJ7620 的内部有两个 BANK 寄存器区域,分别是 BANK0 和 BANK1。不同的区域用于访问不同的功能寄存器,但想访问其中的 BANK 区域下的寄存器, 需在访问前发送控制指令进入该寄存器区域,具体控制指令如表 2.4.1 所示:

BANK 区域	地址	数值
BANK0	0xEF	0x00
BANK1	0xEF	0x01

表 2.4.1 控制指令

从表可以看到,进入 BANK0 区域往传感器 0xEF 地址写 0x00 数值,而 BANK1 区域往传感器 0xEF 地址写 0x01 数值。

首先,我们介绍下 BANK1 下的 PAJ7620 使能工作寄存器,该寄存器地址为 0X72,寄存器描述如图 2.4.2 所示:

	Register Bank 1, ADDR 0x72, Enable/Disable PAJ7620U2					
NAME Reserved En:						
BIT #	[7:1]	[0]				
ACCESS	Write as 0	R/W				
DEPARTE	0	0				
DEFAULT	0x00					

NAME	FUNCTION/OPERATION
Enable	1: Enable PAJ7620U2 0: Disable PAJ7620U2

图 2.4.2 使能工作寄存器

该寄存器用于使能 PAJ7620 工作,这里我们只关心 bit0 位,设置为 1,则使能 PAJ7620 工作,设置为 0,则失能 PAJ7620 工作。

模块

接下来我们介绍下 BANKO 下的挂起管理寄存器,该寄存器地址为 0X03,各位描述如图 2.4.3 所示:

	Register Bank 0, ADDR 0x03, I ² C Suspend Command				
NAME	Reserved	Suspend			
BIT #	[7:1]	[0]			
ACCESS	Write as 0	W			
DEFAULT	0	1			
DEFAULT	0x01				

NAME	FUNCTION/OPERATION
	Write 1: Enter suspend state (wake up by writing I2C slave ID (default: 0x73), Refer to topic "I2C Bus Timing Characteristics and Protocol"

图 2.4.3 挂起管理寄存器各位描述

其中, Suspend bit0 位用来控制挂起, 要 PAJ7620 进入挂起状态,并非设置该位为 1 就可以,手册上有具体说明如何进入和退出挂起,如图 2.4.4 所示:

To enter the suspend state, first disable the PAJ7620U2 by writing Register Bank 1, ADDR 0x72 with 0x00 then process the I²C suspend command by writing Register Bank 0, ADDR 0x03 with 0x01.

To exit the suspend state, first process the I²C wake-up command by writing the slave ID (Refer to topic "I²C Bus Timing Characteristics and Protocol") then enable the PAJ7620U2 by writing Register Bank 1, ADDR 0x72 with 0x01.

图 2.4.4 进入和退出挂起过程

进入挂起前, 先配置 BANK1 的 PAJ7620 使能工作寄存器 0X72 为 0X00, 失能 PAJ7620 工作, 然后再往 BANK0 的挂起管理寄存器 0X03 写 0X01, 才真正的挂起 PAJ7620。而退出挂起唤醒工作,则需执行 3 个步骤:

(1) 往 PAJ7620 发送写命令,以触发唤醒,命令格式如图 2.4.5 所示:

图 2.4.5 唤醒命令格式

唤醒命令格式就是 I2C 通讯的命令格式,从图可以看到,在发送写命令后不用等待 PAJ7629U2 的应答,直接发送停止就可以了。

- (2) 发送完唤醒命令后,需等待大于 700us 的时间,然后读取 PAJ7620 的 0X00 寄存器,判断是否为 0X20 数值,若不是则继续执行步骤 1 继续唤醒。直到读取 0X00 寄存器值为 0X20,则唤醒成功。
- (3) 唤醒成功后(由于在挂起时,把 PAJ7620 给关闭了)往 BANK1 的使能工作寄存器 0X72 写 0X01,使能 PAJ7620 工作。

按照上面的三个步骤,就可以让 PAJ7620 从挂起到唤醒工作了。这里需注意一下, PAJ7620 首次上电,传感器也是工作在挂起状态,同样也需唤醒其工作。

接着我们看下 BANK0 下的手势检测输出中断使能寄存器 1,该寄存器地址为 0X41,各位描述如图 2.4.6 所示:

模块

		Register Bank 0, ADDR 0x41, Gesture Detection Interrupt Flag Mask						
NAME	Counter-Clockwise Mask	Clockwise Mask	Backward Mask	Forward Mask	Right Mask	Left Mask	Down Mask	Up Mask
BIT #	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
ACCESS	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DEEALILT	1	1	1	1	1	1	1	1
DEFAULT					0xFF			

NAME	FUNCTION/OPERATION
Counter Clockwise Mask	Counter clockwise gesture will generate an interrupt Counter clockwise gesture will not generate an interrupt
Clockwise Mask	Clockwise gesture will generate an interrupt Clockwise gesture will not generate an interrupt
Backward Mask	Backward gesture will generate an interrupt Backward gesture will not generate an interrupt
Forward Mask	Forward gesture will generate an interrupt Forward gesture will not generate an interrupt
Left Mask	Left gesture will generate an interrupt Left gesture will not generate an interrupt
Right Mask	Right gesture will generate an interrupt Right gesture will not generate an interrupt
Down Mask	Down gesture will generate an interrupt Down gesture will not generate an interrupt
Up Mask 1: Up gesture will generate an interrupt 0: Up gesture will not generate an interrupt	

图 2.4.6 手势检测输出中断使能寄存器 1

该寄存器作用于手势识别,bit0~bit7 位用于使能不同手势识别结果的中断输出,默认值为 0XFF,其中 bit0 位为"上"、bit1 位为"下"、bit2 位为"左"、bit3 位为"右"、bit4 位为"前"、bit5 位为"后"、bit6 位为"顺时针旋转"、而 bit7 位为"逆时针旋转"。对应位设置为 1,则开启当检测到对应的手势识别时,会输出对应手势识别结果中断。若对应位设置为 0,则关闭手势识别结果中断。

接着我们看下 BANK0 下的手势检测输出中断使能寄存器 2,该寄存器地址为 0X42,各位描述如图 2.4.7 所示:

	Register Bank 0, ADDR 0x42, Gesture Detection Interrupt Flag Mask		
NAME	Reserved	Wave Mask	
BIT#	[7:1]	[0]	
ACCESS	Write as 0000000	R/W	
DEEALUT	1111111	1	
DEFAULT	0xFF		

NAME	FUNCTION/OPERATION		
Wave Mask	Wave gesture will generate an interrupt Wave gesture will not generate an interrupt		
	o. There gestate will not generate an interrupt		

图 2.4.7 手势检测输出中断使能寄存器 2

该寄存器也是作用于手势识别,其中只有 bit0 位有作用,bit1-bit7 为保留位,寄存器默 认值为 0XFF。bit0 为用于使能手势识别"挥动"的输出中断,当 bit0 位设置为 1 时,则使能"挥动"手势识别输出中断,设置 0,则关闭输出中断。

接着我们看下 BANK0 的手势识别中断标志寄存器 1,该地址为 0X43,各位描述如图 2.4.8 所示:

模块

	Register Bank 0, ADDR 0x43, Gesture Detection Interrupt Flag							
NAME	Counter Clockwise	Clockwise	Backward	Forward	Right	Left	Down	Up
BIT#	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
ACCESS	R	R	R	R	R	R	R	R
DEFAULT				•				

NAME	FUNCTION/OPERATION
Counter Clockwise	Counter clockwise gesture be detected No Counter clockwise gesture be detected
Clockwise	Clockwise gesture be detected No Clockwise gesture be detected
Backward	Backward gesture be detected No Backward gesture be detected
Forward	Forward gesture be detected No Forward gesture be detected
Right	Right gesture be detected No Right gesture be detected
Left	Left gesture be detected No Left gesture be detected
Down	Down gesture be detected No Down gesture be detected
Up	Up gesture be detected No Up gesture be detected

图 2.3.5 手势识别中断标志寄存器 1

该寄存器作用于手势识别,实现手势识别输出结果的中断标志。当 BANK0 寄存器 0X41 使能了对应手势中断位后,当 PAJ7620 检测到内置的手势,则对应的寄存器手势标志会置1,读取标志可清除对应的中断标志位。用户根据读取对应的状态,可知道当前手势识别的结果。

接着我们看下 BANK0 的手势识别中断标志寄存器 2, 该地址为 0X44, 各位描述如图 2.4.9 所示:

	Register Bank 0, ADDR 0x44, Gesture Detection Interrupt Flag	
NAME	Reserved	Wave
BIT#	[7:1]	[0]
ACCESS	R	R
DEFAULT	•	
	•	

NAME	FUNCTION/OPERATION
Wave	1: Wave gesture be detected
wave	0: Wave gesture be detected

图 2.4.9 手势识别中断标志寄存器 2

该寄存器是承接着 0X43 寄存器,同样也是作用于手势识别,实现手势识别输出结果的中断标志,其中只有 bit0 位有作用,bit1-bit7 为保留位。当 BANK0 寄存器 0X42 使能了"挥动"手势中断位后,PAJ7620 检测到"挥动"的手势,则对应的寄存器手势标志会置 1,读取标志可清除对应的中断标志位。用户根据读取对应的状态,可知道当前手势识别的结果。

接下来我们看下 BANK0 的检测物体亮度寄存器,该地址为 0XB0,寄存器描述如图 2.4.10 所示:

模块

Register Bank 0, ADDR 0xB0, Object Brightness, Report object brightness			
ADDR 0xB0			
NAME ObjectAvgY[8:1]			
BIT # [7:0]			
ACCESS R			
DEFAULT	•		

NAME	FUNCTION/OPERATION		
ObjectAvgY	Report Object Brightness (Max. value 255).		

图 2.4.10 检测物体亮度寄存器

该寄存器实现获取检测物体亮度值。在接近检测下,当物体在 PAJ7620 的有效检测距离内,读取该寄存器能获得物体的亮度,亮度值为 0~255。

接下来我们看下 BANK0 的检测物体体积大小寄存器,地址为 0XB2 和 0XB1,寄存器描述如图 2.4.11 所示:

Register Bank 0, ADDR 0xB1, ADDR 0xB2, Object Size					
ADDRESS	ADDR 0xB2 ADDR 0xB1				
NAME	ObjectSize[11:8]	ObjectSize[7:0]			
BIT #	[3:0]	[7:0]			
ACCESS	R	R			
DEFAULT					

NAME	FUNCTION/OPERATION		
ObjectSize	Report Object Size (Max. value 900).		

图 2.4.11 检测物体体积大小寄存器

物体的体积大小值由两个寄存器值组合而成,分别是 0XB2 寄存器的低四位值和 0XB1 寄存器八位值。在接近检测下,当物体在 PAJ7620 的有效检测距离内,读取这两个寄存器能获得物体体积大小,体积值为 0~900。

以上就是常用的寄存器,在手册上提供关于 PAJ7620 上电后初始化的数组、手势识别初始化数组,接近检测的初始化数组,以及工作运行的流程,大家可以对其数组的数值和工作流程进行分析。关于更多的寄存器和 PAJ7620 介绍,请看 PAJ7620 芯片手册。

2.5 ATK-PAJ7620 模块例程实验

利用 ATK-PAJ7620 手势识别传感器模块在 ALIENTEK 开发板上实现手势识别测试 (9个手势识别) 和接近检测测试 (物体体积大小和亮度), 具体请看对应开发板的配套例程说明。工作运行流程如图 2.5.1 所示:

图 2.5.1 例程工作运行流程图

2.6 模块使用注意事项

模块属于光学器件,保存时需要注意防尘防潮。在使用时,需保持传感器表面的清洁度,以免导致测量不准。

3. 结构尺寸

ATK-PAJ7620U 手势识别传感器模块尺寸结构如图 3.1 所示:

图 3.1 ATK-PAJ7620 手势识别传感器模块尺寸结构图

模块

4. 其他

1、购买地址:

官方店铺 1: https://openedv.taobao.com 官方店铺 2: https://eboard.taobao.com

2、资料下载

模块资料下载地址: http://www.openedv.com/thread-233690-1-1.html

3、技术支持

公司网址: <u>www.alientek.com</u> 技术论坛: <u>www.openedv.com</u> 联系电话: 020-38271790

