Cisco Unity Connection .NET REST SDK

Contents

Overview	3
Requirements/Special Notes	3
Installing and Using the Library in Your Project	3
Watching the traffic with Fiddler2	4
Using the .NET REST SDK	4
Logging into Connection.	4
The WebCallResult Class	5
Users	5
Creating and Deleting Users	6
Finding and Fetching Single Users	7
Finding and Fetching Lists of Users	8
Updating Users	10
Voice Names	11
PINs and Passwords	12
Private Lists	13
Alternate Extensions	15
Notification Devices	15
Message Waiting Indicators	18
Mailbox Information	19
Class of Service	19
Greetings	20
Transfer Options	20
Menu Entries	20
Phone System	21
Exiting the User Mailbox Conversation	21
Messages	22
Fetching Messages for a User	22
Send a New Message Using Wav File	23
Send a New Message Using Phone (CUTI)	24
Forwarding a Message With Intro	25
Replying to a Message	26
Deleting Messages and the Deleted Items Folder	27
Helper Methods	28

Call Handlers	28
Creating and Deleting Call Handlers	28
Finding and Fetching Call Handlers	29
Updating Call Handlers	30
Voice Names	30
Greetings	31
Transfer Options	34
Menu Entries	35
Determining if a User is an Owner of a Handler	37
Global Users	37
System Contacts	37
Name Lookup Handlers	37
Interview Handlers	38
Public Distribution Lists	38
Creating and Deleting Distribution Lists	39
Finding and Fetching Distribution Lists	39
Updating Distribution List Membership	40
Voice Names	42
Locations	43
Finding All Connection Servers in a Network	43
Finding the Home Server for a Global User	44
Roles and Policies	45
Setting Actions	46
Schedules	49
Languages	52
Time Zones	53
Partitions	53
Finding and Fetching Partitions	54
Creating, Editing and Deleting Partitions	54
Search Spaces	55
Finding and Fetching Search Spaces	55
Creating, Editing and Deleting Search Spaces	55
User Templates	56
Call Handler Templates	56
Class of Service	57
Finding and Fetching Classes of Service	57
Creating, Updating and Deleting Classes of Service	57

Phone Systems and Port Groups	58
Cross Launching CUCA Admin Web Pages	58
Building Portals	59
Step 1 – Authenticating Users for Access to Your Site	59
Step 2 – Define the "Scope" of Users to Choose From	59
Step 3 – Pick an Object to Edit	60
Step 4 – Perform Edit	61
Revision History	61

Overview

The .NET SDK library for the Unity Connection REST interfaces is a set of library code intended to make development of applications using .NET framework easier, faster and less error prone. Not every method available in every REST interface provided off the Unity Connection platform is included as a "wrapped" functionality in the SDK, but the majority of the commonly needed ones are.

This SDK project is targeted first at wrapping the most commonly used items in the **CUPI For Administrators** interfaces. It also includes **CUTI** (recording using the telephone) and **CUMI** (getting/sending messages), however coverage of those interfaces is far less extensive currently. No coverage of **CUNI** (message event notification framework) is provided at this time. A separate SDK project for covering the **CUPI For Users** interfaces is underway.

Requirements/Special Notes

The .NET REST SDK is written and tested against all versions of Unity Connection 8.6 and later. The REST interface is supported in 8.5 builds but is missing some functionality. The unit tests included in the project are tested against 9.1 and later – running the Unit tests against earlier versions will result in some tests failing – this is expected as functionality was added in later versions that will not exist in earlier builds. The SDK does not do version checking for you, if you call a method not supported the server error information that comes back will indicate this.

Use of the SDK is not supported by TAC – in other words if you need assistance with an application you are developing using the SDK, TAC is not going to provide that assistance for you. Support is through development services and the public support forums. Check the www.CiscoUnityTools.com site on the "links" page for current links to get to those forums. "Not supported by TAC" does not mean the SDK is somehow dangerous or risky to use. To be clear it simply wraps the existing supported REST APIs provided with the platform – it does not go outside the bounds of those protocols and applications developed using the SDK are just as safe and supported as those written directly to the API.

Any .NET framework can use these libraries. This means you can, of course, develop desktop and web applications on Windows using C#, VB.NET, Iron Python etc... but you can also use Mono for development of applications on Mac or Linux platforms as well as mobile applications on iOS using MonoTouch or Android using Mono For Android. In fact the "Connection CoPilot" iOS application in the iTunes store was developed with the CUPI For Users SDK wrapper library. This is one of the reasons why the library is provided as a source code project instead of only binaries – you must rebuild the source for other platforms.

The library is build and tested using Visual Studio 2010 and Visual Studio 2012.

Installing and Using the Library in Your Project

The library is provided as a source code project you can download via SubVersion to a public read-only repository. You'll want to check for updates frequently as the project is being actively worked on and tested against regularly. To include the library in your project in Visual Studio 2010 or 2012 you need only to add the project file for the ConnectionCUPIFunctions library into your project.

To add the project right click on your solution node in the solution explorer in Visual Studio. Select "Add" and then "Existing Project" and a file explorer window will appear. Navigate to where you downloaded the library code and select the "ConnectionCUPIFunctions.csproj" file. This will pull the library into your solution and have it build when you rebuild your project. This will result in the "ConnectionCUPIFunctions.dll" ending up in the target BIN output (debug or release) for your project. This is the only file you need to include in your setup for the library.

Once you've included the project you then need to add a reference to it in your project – in your project right click the "references" node in the solution explorer and select "add reference" – in the resulting dialog select "projects" and select the ConnectionCUPIFunctions project and add it. Then you only need to add a "using ConnectionCUPIFunctions;" directive in your project and you're off to the races. The full project includes a couple different project examples such as a

simple CLI application, an ASP project for a web based password reset application and a basic WinForms project demonstrating some of the basic capabilities of the library.

NOTE: Visual Studio has the annoying habit of defaulting to the ".Net Framework 4 Client Profile" as the default for new projects. This will not work for us as the REST SDK requires the full ".Net Framework 4" setting. Be sure your project is configured for this or you'll get build errors.

You can, if you prefer, simply add the DLL to your project directly instead of including the entire project – it's much nicer for debugging and updating the library over time to keep it as a source project. We make an effort to ensure that changes to the library done over time are backwards compatible and won't break your existing projects but this, of course, cannot be guaranteed indefinitely so it's a good idea to keep the version of the library you're working with separately in case you need to stick with an older version temporarily.

Watching the traffic with Fiddler2

I highly recommend you download and install Fiddler2 on your development machine so you can watch the traffic going to and coming from Connection while you're using the library. This library is not intended to be the end-all-be-all of development against Unity Connection and you may want to extend it or do your own library for specialized functions. The best way to see how Connection's REST interface is working is to watch the HTTP traffic going back and forth and one of the best ways to do that is with Fiddler.

For customers that don't want to use the .NET wrapper library for their projects but want to get a jump start on seeing how commands and requests should be formatted and what they return this can be a very fast way of doing that. It's also a fantastic way to see if you're application is being as efficient as it can be or if it's requesting/fetching more data than it needs to for the task at hand – unless you're watching the traffic it can be easy to get sloppy without realizing it. I'll discuss this more later when talking about how and why multiple interfaces are presented for doing essentially the same task (hint: one is more work but more efficient on the wire, one is easier and cleaner but results in more traffic).

Using the .NET REST SDK

This document uses a "task based" approach to demonstrating the use of the library – each major object class (user, call handler, name lookup handler, schedule etc...) has it's section and small code snippets are shown demonstrating the items you'd typically want to do with those objects. This does not attempt to document the entire data schema or get into too much theory. As a developer I know I learn faster with a simple "show me" approach so that's what I endeavor to do here

Logging into Connection.

The SDK is designed to support multiply threaded applications that may be attached to more than one Connection server at a time (for instance a network of Connection clusters). The first thing to note is that ALL HTTP traffic goes out a single static method that has a monitor construct on entry/exit – this means all Connection servers you may be attached to in your application will all wait in line nicely and issue their HTTP request/response pairs in sequence, not in parallel. This avoid conflicts and "cross talk" issues cleanly, however for very heavy traffic applications wanting to talk to many servers at once, it's not ideal. So if you're looking to build a load test framework for REST targeting many servers at once, you will need to dig into your own HTTP library that will handle parallel traffic patterns.

The other thing the SDK handles for you is authentication and cookie management. If you are talking to, say 3 different Connection servers it will manage the authentication cookies for those servers for you. In Connection 10.0 and later this is critical as sending login/pw for each HTTP request will result in failures due to new security features on the platform. In short the ConnectionServer object handles this for you and will "flush" the cookie after 1 minute of inactivity to that server.

So, to log into a remote Connection server from your client, you need to create a ConnectionServer object and keep it around – this is your "handle" to the server which you will use when sending/receiving data to and from Connection. You will want to authenticate with an account that had the administrator role and, optionally, the mailbox delegate role if you want to be working with messages in other user's mailboxes. The attachment logic is all in the class constructor, there are no static methods off the class so you simply need to create a new instance providing the server name, login and password like this:

```
//attach to server -
ConnectionServer connectionServer;

try
{
    //insert your Connection server name/IP address and login information here.
    connectionServer = new ConnectionServer("cuc91.cisco.com", "login", "pw");
}
catch (Exception ex)
{
```

```
//your error handling code here.
}
```

The ConnectionServer instance has a few items off it but the most useful is the version interface that makes it easy to check for which version of Connection you've attached to, like this:

```
//the Connection server class ToString() override spits out the server
//name and version number in the ToString function.
Console.WriteLine("Attached to Connection server: "+connectionServer);
//do a version check -
if (connectionServer.Version.IsVersionAtLeast(8,6,0,0)==false)
{
    Console.WriteLine("You are attached to an 8.5 or earlier server!"");
}
```

At this point you have the details in place for communicating with that Connection server. The remaining samples simply assume the "connectionServer" reference is created and valid so I won't repeat this code chunk over and over again.

The WebCallResult Class

Throughout the library you will see most methods will return an instance of the WebCallResult instead of a simple integer or a bool. There is a method to the madness here – the WebCallResult class holds all the information about what was requested and what came back from the server so diagnosing what went wrong and what, exactly the error details were is much easier. The SDK itself does not have logging built into it, naturally, so it has to return to the calling application as much detailed and useful data as it can so YOU can log it properly in your application. That's the idea.

Further, the class will hold the ObjectId of an object you just created for you as well as providing pre parsed XML node details from the response if it's included. If you fetched a list of users, for instance, with a paging directive (which we'll cover) the total number of objects returned by the fetch is included in the class properties as well so you can easily do a "7 of 24" type list navigation interface for your users. In short this class can make your life one heck of a lot easier for only a little extra overhead on your part. It's worth it, I promise. For instance, this code snippet creates a new user and the results are returned as a WebCallResult instance:

The "ToString()" override for the class includes all details of the request, response, error code etc... in one shot – makes logging out failures a simple process. Notice also that on a success the ObjectId of the newly created user was included you could have called the version of the AddUser method that returned an instance of the UserFull class all filled in with this (and much more) but that involves another fetch to the server and if you're trying to quickly add users that slows things down – nicer to just do a create call and fetch back the ObjectId of the newly created user and move on. More on that later.

Users

Users are, of course, the primary object of interest in most voice message applications. They are tied to a daunting number of other objects in the directory such as a primary call handler, phone system, class of service, alternate extensions, notification devices, private lists etc...easily the largest and most complex object as far as data schema and relationships in the Unity Connection platform. With that in mind we've designed the SDK to simplify finding and using these relationships and data items as possible.

Notably you'll find many "lazy fetch" references hanging off the User class. For instance the "AlternateExtensions()" method will fetch a generic list of all the alternate extensions (both user and system) for a user. The next time you call that same method it will return that pre constructed list for you again without fetching it from the server unless you pass

"true" as a parameter to force it to reread the directory data. Yes, you could just create your own list using static calls off the AlternateExtension class which I cover here, but there's generally no need for that extra work. You'll see this same design pattern for many of the related objects for users – I recommend you leverage them instead of reinventing the wheel

NOTE: these "lazy fetch" items are implemented as methods instead of properties so that they do not fire when, say, a generic list of User objects is bound to a grid for instance. Also, it provides a mechanism for being able to force a refetch of the data from the directory even if it's already been fetched previously.

Creating and Deleting Users

The first thing to note is that the User class is actually TWO classes. A **UserBase** and a **UserFull** class that inherits the functionality of UserBase and adds more properties. The reason for this is that the number of properties on the User class is enormous and Connection's REST interface presents a "short form" version when presenting lists of users and the "full version" when you fetch a single user by ObjectId. This burns a lot of developers that don't realize this and miss the fact that numerous properties they're getting when finding a user by name are not there. This is why. So as a rule you use UserBase when fetching/iterating over lists of users and when you want to fully interrogate them, you get their UserFull instance. The UserBase represents by far the most commonly needed items so having to fetch the full user should not always be necessary. Sounds a little confusing but really it's not – we try and hide much of that complexity from you in the SDK.

The next thing to understand is that most of the class libraries provided have multiple ways to go about creating new objects or finding existing objects. I didn't do this just for fun, there's reasons to use each of them which I'll discuss here while covering creating a new user.

Method 1: Static method with object returned.

Couple things to notice here: Yes, the static method is off UserBase even though the user details returned are UserFull. Since UserFull is derived from UserBase (which defines the AddUser method) Visual Studio will bark that you should be using the base class instead of the derived one. It's just a warning and things will work fine but I like my applications to build as warning free as possible so I stick to the base class reference here.

The one thing to realize here is that this will make a POST to create the new user and, if it succeeds, it will then fetch the entire set of user details with a follow on GET call using the newly created ObjectId for the user and fill in the UserFull instance for you and hand it back. You can then make updates to user properties and sub objects easily using that instance. Convenient if that's what you want but you need to be aware that follow-on GET isn't cheap – watching the transaction in Fiddler2 helps make this clear – there's a lot of data moving back from the server to fill in the UserFull details so if you don't need that object (for instance you're simply making a string of users quickly) you'll want to use the 2nd method.

Method 2: Static method with no object returned:

```
res = UserBase.AddUser(connectionServer, "voicemailusertemplate", "TestAlias", "8001",
    null);
if (res.Success==false)
{
    Console.WriteLine("Failed creating new user:"+res.ToString());
    return;
}
Console.WriteLine("User created="+ res.ReturnedObjectId);
```

Notice that the code samples are nearly identical other than the lack of a UserFull object being created. This is true, however there's another element here. The last "null" parameter there is a mechanism by which you can pass a series of name value pairs for user properties such that you can create the user with more custom data values than are allowed in the static method call alone which accepts only the bare minimum for creating a new user. If you are developing an application that will be adding bulk users as quickly and efficiently as possible you will want to use this so you can provide things like display names, first/last names, billing IDs etc... up front. This will be much faster than creating users, getting objects back, updating those properties on the objects and then saving them (which we'll cover in the update section for users). The following example shows what that would look like:

Couple things to note here: The ConnectionPropertyList class is just a simple name value pair construction that has some nice syntactic sugar for handling different types for you (notice the overloads taking strings, bools and integers – this also works with date values). The names of the properties **ARE case sensitive** here. All property names consistently follow the standard "camel hump" construction – first letter is in capital then the first letter of each word in the identifier is capitalized. Check the UserFull instance using Visual Studio's auto complete function for a reference if you're unsure.

This operation is done in one single HTTP request – there is no subsequent fetch of the user details needed here, so for bulk add operations this method is considerably more efficient.

Finding and Fetching Single Users

Fetching single users in the system is easy provided you know their ObjectId (not likely) or their alias (more likely). If you don't know either of those properties you will need to get a list of users back using search criteria (see the next section). The UserBase class has a static method called "GetUser" that you can use to fill in either a UserBase or a UserFull class with information about the user given their alias. The reason the alias is the only item supported in this construction is because the alias is unique across all users in the directory. The primary extension is not (same extension can appear in multiple partitions) which makes a "single fetch" construction tricky – I relegate such searches to a construction that can return multiple matches and let you sort out which one you want.

The code construction for a single fetch is very easy, but filling out the UserBase or UserFull is very important. The code for doing both kinds of fetches looks like this:

```
UserFull oUserFull;
UserBase oUserBase;

res=UserBase.GetUser(out oUserFull, connectionServer, "", "jlindborg");
if (res.Success)
{
    Console.WriteLine("User found:"+oUserFull.ToString());
}
Console.WriteLine("User not found with that alias.");

res=UserBase.GetUser(out oUserBase, connectionServer, "", "jlindborg");
if (res.Success)
{
    Console.WriteLine("User found:" + oUserBase.ToString());
```

```
}
Console.WriteLine("User not found with that alias.");
```

Not much to it. You can use either the oUserBase or oUserFull for updating properties on the user, finding its primary call handler, switch assignment etc... the oUserBase simply has fewer properties (the more common ones) than the full list found in oUserFull. However, if you can get away with sticking to the common items in the UserBase definition, do so. What you don't see in the simple code above is what's going on in the background to get that data.

In the case of filling out the UserBase class a single HTTP GET request is made: https://cuc91:8443/vmrest/users?query=(Alias%20is%20jlindborg)

And a single response is received with roughly 37 lines of data (I use the term "lines" here liberally as obviously the line breaks are not sent, but you get the idea). By comparison when passing the UserFull as an out parameter, the same GET request is sent and the same 37 lines are received back, but then another GET request is made: https://cuc91:8443/vmrest/users/b083a973-c2a4-4373-aae9-34678ab08d32

And another response is processed, but this time with roughly 150 lines of data. In short roughly 200 lines of data get shuffled across the wire spread over two HTTP requests instead of about 40 with one. Always keep this in mind when developing your applications and decide "Do I really need ALL the user data for this?" and try to "stay skinny" when you can.

Finding and Fetching Lists of Users

Currently the querying capabilities offered by Connection's REST interface are rather limited. Notably compound queries are not supported – so you can't construct a query that says "all users that are in COS=a, primary extension starts with 123 and have first names that start with J". You get one clause to filter by. Please don't shoot the messenger. That said, normally this is enough to work with given the ease of sorting/filtering lists of objects in .NET's generic list classes. It would be nice to do more complex filtering on the server side and not dragging that extra response text over the wire, but such is life.

The list fetching methods for all class objects help you manage paging through lists of objects as well – as a rule you generally want to limit how many objects you fetch at one time – Connection will throttle you if you make requests that take too many cycles to fulfill if you are not economical in your requests when Connection is busy. Clearly it can't let you impact its call processing capabilities simply because you don't want to deal with handling paging. If you fetch 1000 users at a crack and you notice your application "randomly" failing during high traffic times, this is likely your issue. When in doubt, limit yourself to no more than 100 items at a time.

First, how not to do this:

```
//this will get all users on the system. Don't do this unless you're just testing.
res = UserBase.GetUsers(connectionServer, out oUsers);
```

and now how to use paging like you should:

```
//get just the count of users, the oUsers list is empty and there's very little data
//dragged across the wire - the pageNumber=0 is a special command here telling
//Connection that you don't want actual user data, but just the count of users.
res = UserBase.GetUsers(connectionServer, out oUsers, "pageNumber=0");
Console.WriteLine("Total users="+res.TotalObjectCount);
//fetch (up to) the first 5 users in the list
res = UserBase.GetUsers(connectionServer,out oUsers, "pageNumber=1", "rowsPerPage=5");
if (res.Success == false)
{
    Console.WriteLine("Error fetching users:"+res);
    return;
}
//The WebFetchResults class has another benefit: total objects count is included.
//In my server's case the values here are "26" and "5" respectively.
Console.WriteLine("Total objects on server:"+ res.TotalObjectCount);
Console.WriteLine("Objects returned:"+oUsers.Count);
//fetch the 2nd page of results and so on.
res = UserBase.GetUsers(connectionServer, out oUsers, "pageNumber=2",
  "rowsPerPage=5");
```

```
if (res.Success == false)
{
    Console.WriteLine("Error fetching users:" + res);
    return;
}
//fetching an invalid page number does not result in an error - it simply returns
//an empty list of users.
res = UserBase.GetUsers(connectionServer, out oUsers, "pageNumber=30",
  "rowsPerPage=5");
if (res.Success == false)
{
    Console.WriteLine("Error fetching users:" + res);
    return;
}
//The output here is "26" and "0"
Console.WriteLine("Total objects on server:" + res.TotalObjectCount);
Console.WriteLine("Objects returned:" + oUsers.Count);
```

So in short you can fetch the total object count from the server either stand alone (using a page number of 0) or simply use the first batch of users you fetch to get the value – do a little math and you can see how many pages you have to iterate over to provide a nice "6 of 26" type list presentation to your users or the like. There's a simple example of how to do such a presentation in the WinForms example in the "CUPIFastStart" project if you're interested.

Filtering and sorting, as noted, is rather limited. Only a single clause is allowed an only "is" and "startsWith" are supported – so no "Contains", "Between" or other types of similar operators you may be used to. Also note that when sorting and filtering you can only sort on the same clause you filter on – so you can't filter by extension and sort by alias in other words. You can leverage .NET list sorting for lists of manageable size – a UserSort clause is provided for that use which is shown here:

You can sort by Alias, FirstName, LastName, DisplayName, DtmfAccessId (primary extension). Empty strings are sorted later than non empty strings (does not apply to Alias or DtmfAccessId since those cannot be blank).

On with the filtering and server side sorting story. The query and sort clauses can be added to the end of the GetUsers call along with the paging parameters – the SDK takes care of adding these to the URI parameters including escaping out spaces and such. Here are a couple examples of filtering and sorting

```
//simple fetch to get all users named "Jeff" - neither the name itself or the
//query parameters are case sensitive.
res = UserBase.GetUsers(connectionServer, out oUsers, "query=(firstname is jeff)");
//This gets all users that have primary extensions starting with 2
//with proper paging options included - the GET clauses can just keep getting
//stacked in.
res = UserBase.GetUsers(connectionServer, out oUsers, "query=(DtmfAccessId startswith
2)", "sort=(DtmfAccessId asc)", "pageNumber=1", "rowsPerPage=5");
```

If you need to construct a very large list of users on the local client for whatever reason it's best to create a local object such as a Dictionary (.NET has a nice selection of containers to choose from) and use paging to "fill up" your container

with users one page full at a time. A good rule of thumb is to stick to 100 objects at a time when fetching against production servers. In your test environments certainly more can be returned (with a somewhat long delay) but it's not a good idea. To keep the server from throttling your application and your users from twiddling their thumbs wondering if your application is locked up it's a better idea to fill up your local container in pages and provide a nice update status to your user (i.e. "Loading user details, %40") – since you get the total number of users in the first page full you'll know where you're at in the process. On the whole this is the preferred approach to handling large lists of objects in general, but users in particular since they are so large by comparison to other objects in the directory.

Updating Users

As with creating users there are a couple ways to update users in the SDK. The first way leverages the static method for updating users and passing in a property list similar to the option for creating new users and populating the list of user properties you wish to have applied to the user up front. This requires you know the objectId of the user – for instance if you had a list of userObjectIds fetch into a list or that were referenced (for instance as members of a public distribution list) or the like, this method would make sense in scenarios where you'd be bulk applying some properties to all users in that list. Something along these lines:

```
ConnectionPropertyList oProps = new ConnectionPropertyList();
oProps.Add("VoiceNameRequired",true);
oProps.Add("ListInDirectory", false);
oProps.Add("IsVmEnrolled", false);

foreach (string strObjectId in oListOfUserObjectIds)
{
    res = UserBase.UpdateUser(connectionServer, strObjectId, oProps);
    if (res.Success == false)
    {
        Console.WriteLine("User update failed:"+res);
        break;
    }
}
```

Notice that the above code only issues a series of POST commands, one for each user – it never has to do a GET to fill any data. Again, for processing similar changes for large groups of users this will be much more efficient than creating user objects first and then updating them.

Another method leveraging the User class instances instead is to simply make changes to properties off that instance and call the "Update" method directly on that instance. This is not as efficient for large lists of users but is considerably easier to use and maintain and can be very handy in building user interfaces where you can bind form elements directly to properties of a class as it can save you a bunch of time having to code up a "dirty list" of changed properties.

```
//First, fetch a user - we'll grab one by alias here
res = UserBase.GetUser(out oUserBase, connectionServer, "", "jlindborg");
if (res.Success == false)
    Console.WriteLine("Error fetching user:"+res);
    return:
}
//update as many properties as you like
oUserBase.ListInDirectory = false;
oUserBase.DisplayName = "New User Display Name";
oUserBase.VoiceNameRequired = true;
oUserBase.IsVmEnrolled = false;
//Apply the changes to the server. Only changed properties are sent.
res = oUserBase.Update();
if (res.Success == false)
    Console.WriteLine("Error updating user:"+res);
    return;
}
```

The second method is handy for a couple reasons. First, you can make changes right off the instance of the class which makes finding the property you want as easy as searching the InteliSense list Visual Studio provides. This is also handy if you have the user presented with many UI elements they can change on an object – use binding to show the values of the User object, for instance, and allow them to make a single change when they're all done. If they change their mind the class includes a "ClearPendingChanges()" method that flushes the "dirty" property list for you.

Voice Names

Dealing with voice names and greetings for users and call handlers in the REST interfaces in Connection has easily been the item that's caused developers the most grief. With that in mind we've made an effort to make the stream file handling in the SDK as painless as possible. So to set the right tone here, let's see an example of how to set a voice name of a user from a WAV file on the local hard drive. This sample assumes you've already fetched a user instance (either base or full, doesn't matter):

```
res=oUser.SetVoiceName(@"c:\myvoicename.wav", true);
if (res.Success == false)
{
    Console.WriteLine("Failed updating voice name:"+res);
    return;
}
```

That's all there is to it. Note the "true" parameter on there – this is a very powerful capability in the SDK that will rip your WAV file into a raw PCM 16/8/1 recording for you before uploading the WAV file to Connection. If you've worked with Connection's REST interface at all you know it can be pretty fussy about the WAV format and you'll see a lot of "invalid media format" errors coming back. This eliminates that bit of pain which can save you a bunch of time. You're welcome.

And conversely, how do we fetch a voice name from a user on Connection to a local WAV file on my client? Looks almost identical:

```
res = oUser.GetVoiceName(@"c:\voicenameout.wav");
if (res.Success == false)
{
    Console.Write("Failed fetching voice name:"+res);
    return;
}
```

OK, so that covers using WAV files from the local client for voice names – not so scary. What if you want to use the telephone as a recording device instead? This is referred to in Connection as "TRAP" (Telephone Record and Playback). Instead of using your microphone and recording a local file and uploading it, you record a stream file directly on the Connection server via your telephone and then assign that recorded stream file to a user's voice name. In the REST API pantheon this is referred to as "CUTI" for the "Telephone Interface" API. The SDK provides a PhoneRecording class to help you with this interface.

This is pretty easy – you need a phone to use and in our example here we'll assume it's 1003. It's assumed that the Connection server you're attached to can dial it directly, of course. Again, in this example our "oUser" object has already been fetched.

```
//First, establish a call to extension 1003 (your extension presumably)
//This is done in the construction of the class instance.
PhoneRecording oPhone;
try
{
    oPhone = new PhoneRecording(connectionServer, "1003");
catch (Exception Ex)
    Console.WriteLine("Failed to establish phone call:"+Ex);
    return;
}
//now start recording - you'll only hear a beep here that indicates
//you can start talking - press # and the recording will terminate
res=oPhone.RecordStreamFile();
if (res.Success == false)
{
    Console.WriteLine("Error recording stream:"+res);
```

```
return;
}

//for fun, play the currently recorded stream out
res = oPhone.PlayStreamFile();

//Now set that stream as the voice name for your user
res= oUserBase.SetVoiceNameToStreamFile(oPhone.RecordingResourceId);
if (res.Success == false)
{
    Console.WriteLine("Error setting voice name :" + res);
}

//hang up the phone
oPhone.Dispose();
```

Wow. That was pretty easy, right? You'll see this class come up again when we talk about greetings for call handlers later.

PINs and Passwords

Another pain point for folks using the CUPI interface in the field has been managing PIN and Passwords. For clarity "PIN" is a Personal Identification Number and is a password you enter via the phone (numbers only). A Password is alphanumeric string used for logging into GUI clients (i.e. with access to a full keyboard interface). The ResetUserPin and ResetUserPasswords methods are provided as both static and instance methods off the user class (either full or base, it doesn't matter).

```
//use the static class if you have the objectID and don't need to create
//a user object first.
//Reset the Pin of a user that you have the ObjectId for.
res = UserBase.ResetUserPin(connectionServer, strObjectId, "1324523");

//More commonly you're leveraging a user object to update PINs and passwords.
//just reset the password and nothing else
res = oUser.ResetPassword("RainySunday");

//clear the hacked count and unlock the user's account
//Passing a blank PIN means it will be skipped - you cannot set a PIN or a
//Password to blank via the SDK.
//The null values mean leave their corresponding values alone
res = oUser.ResetPin("", false, null ,null ,null , true);
//reset the PIN and unlock the account.
res = oUser.ResetPin("019012", false);
```

It's sometimes also desirable to check the PIN and Password settings for a user. Are they locked out (hacked), is it set to never expire, when was it changed last? This is offered through the Credential class – each user has a PIN and a Password credential associated with them. As usual there is a static method to go about this and a convenient "lazy fetch" option off a user instance. Both are shown here:

```
//use the static class if you have the objectID and don't need to create
//a user object first. Resetting PINs for large numbers of users would be
//quicker using this method for instance.

//Fetch the credentials for a user's PIN
Credential oCredential;
res = Credential.GetCredential(connectionServer,strObjectId,CredentialType.PIN,
    out oCredential);
Console.WriteLine("PIN hacked="+ oCredential.Hacked);
```

```
//As usual you can also fetch this same information off the user instance using
//a lazy fetch mechanism
Console.WriteLine("PIN hacked="+ oUser.Pin().Hacked);
//or for the password
Console.WriteLine("PW last changed="+ oUser.Password().TimeChanged);
```

Private Lists

Each user can have up to 99 private lists (limit is configurable in the user's Class of Service). A private list can contain users, public distribution lists, remote contacts and other private lists. The SDK allow for creating of new lists, recording a voice name for that list, adding and removing members from lists and, of course, reviewing membership and list details. Note that the SDK currently only supports adding users and public lists and private list members. Adding private lists to other private lists is a little strange and isn't plumbed into the library.

The easiest item is reviewing the list details for a user. As you've probably come to expect, there's a lazy fetch method for private lists off the User instance that you can leverage to quickly review the list information and its membership. Here's an example of showing all the lists and each list's membership details for a user you've already fetched:

```
//Dump all private lists and membership details for all private lists
//associated with a user.
foreach (var oList in oUser.PrivateLists())
{
    Console.WriteLine(oList.ToString());
    Console.WriteLine("Memebers:");

    foreach (var oMember in oList.PrivateListMembers())
    {
        Console.WriteLine(" "+oMember.ToString());
    }
}
```

The "ToString" override on the private list object shows the lists name and its number (lists are addressed using their number, from 1 to 99). The "ToString" override on the list member object shows its type (local user, distribution list or private list), their alias and display name.

Of course you can also fetch lists and membership information via static calls as shown here:

```
//fetch all the private lists for a user via static call
List<PrivateList> olists;
res = PrivateList.GetPrivateLists(connectionServer, strUserObjectId,out oLists);

//fetch members of a list via a static call - need the ObjectId of the user that
//owns the list and the objectId of the list itself for this.
List<PrivateListMember> oMembers;
res = PrivateListMember.GetPrivateListMembers(connectionServer, strListObjectId, strUs
erObjectId,out oMembers);
```

To create new lists you use static methods to create a new instance of a list object which you can then edit in much the same way you can users and other objects in the directory. In this example we create a new private list for a user that we've already created a User object for. Note that when you create a new list you have to assign a number to it – this is that id between 1 and 99 (depending on your maximum count allowed). You need to assign the ID to one that's not in use – it's not required that you add them sequentially (i.e. you can have list 1, 7 and 19 if you like) but this makes managing private lists via the API difficult since the user may be making private lists via the web interfaces and you have no control over how "orderly" they are about it. If you add a list that already exists the server will return an error. Similarly if you add a list beyond the number supported you will also get an error. Be sure to check the return values for the WebCallResults at each step (which I'm not doing here for brevity).

```
//get the count of lists - we'll add one after that number
PrivateList oPrivateList;
int iListCount = oUser.PrivateLists().Count;
res = PrivateList.AddPrivateList(connectionServer,oUser.ObjectId,"My new list",
```

```
iListCount+1,out oPrivateList);
if (res.Success == false)
{
    Console.WriteLine("Error adding private list:"+res);
//set the voice name of the private list - heard durring the message
//addressing conversation when the list is selected as a message target.
res=oPrivateList.SetVoiceName(@"c:\myVoiceName.wav");
//Find a public list in the directory and add it to our new list
DistributionList oPublicDl;
res=DistributionList.GetDistributionList(out oPublicDl,connectionServer,"",
  "allvoicemailusers");
res = oPrivateList.AddMemberPublicList(oPublicDl.ObjectId);
//Find a user in the directory and add it to our new list
UserBase oUser;
res = UserBase.GetUser(out oUser, connectionServer, "", "jlindborg");
res = oPrivateList.AddMemberUser(oUser.ObjectId);
```

To remove a member you need to fetch the ObjectId of the PrivateDistributionListMember object first. This sample shows how to fetch a specific private list by number off a user, remove a member from that list and then delete the list entirely:

```
//fetch list #3 for our user (the one we added above).
res = PrivateList.GetPrivateList(out oPrivateList, connectionServer, oUser.ObjectId,
    3);
if (res.Success == false)
{
    Console.WriteLine("Failed fetching list:" + res);
    return;
}
//get a particular member from the list (the user jlindborg) and remove them.
//There is no individual member select opition, you need to get the list and
//find the member you want here;
foreach (var oMember in oPrivateList.PrivateListMembers())
{
    if (oMember.MemberType == PrivateListMemberType.LocalUser &
        oMember.Alias.Equals("jlindborg"))
        res =oPrivateList.RemoveMember(oMember.ObjectId);
        break;
    }
}
//if you want to iterate over the list of members again be sure to use the
//"refetchData" flag to make sure the list is refetched and you're not using
//stale data from an earlier fetch.
oPrivateList.PrivateListMembers(true);
//now delete the list
res=oPrivateList.Delete();
```

Alternate Extensions

Each user in the directory has a primary extension which shows up on their user object instance. This is not optional and every user has one. There can, however, be alternate extensions (both user added and admin added) totaling up to 20 numbers. These are normally for home phones, cell phones and such that allow the user to be automatically logged in when they call to check voice mail from one of those lines or for callers that forward into the Connection voice mail system from one of those numbers to be forwarded to the user's greeting. The SDK has a set of methods for fetching, reviewing and managing these extensions for you.

We'll start with listing the alternate extensions for a user that we've already fetched into an oUser object – as you've come to expect by now this leverages a simple lazy fetch method to get the alternate extensions list off the user directly:

```
List<AlternateExtension> oAlternateExtensions;
//output all alternate extensions - what's returned will depend on the user's COS
//settings - admin added alternate extensions may or may not be included.
foreach (var oTempExt in oUser.AlternateExtensions())
{
    Console.WriteLine(oTempExt.ToString());
}
```

To add and remove an alternate extension uses similar design patterns we've already seen – use the static method to create a new instance as shown here:

```
//Adding an alternate extension can be restricted by the user's class of service so expect
//that this call can fail.
AlternateExtension oAltExt;
res = AlternateExtension.AddAlternateExtension(_connectionServer, oUser.ObjectId, 3,
"1234",out oAltExt);

if (res.Success)
{
    Console.WriteLine(oAltExt.DumpAllProps());
    //delete the alternate extension you just added.
    res = oAltExt.Delete();
}
```

The "DumpAllProps" there is just a handy debug mechanism that drops all the values of any instance of just about all the classes in the SDK – it exports every property in the class and it's corresponding value in a simple name/value pair table format for easy review.

Notice, again, the index number there (3 in this example) – that's the position of the alternate extension, it's up to you to pick the right one to add (one that does not exist) – it may be necessary to iterate over them all to find an open one since the user can certainly create/remove them via the web interface and you cannot assume a contiguous progression of IDs in the list.

Notification Devices

In Connection 9.0 and later there are 6 default notification devices that are associated with all users and that cannot be deleted. Four of these 6 are available via the phone interface to edit (the phone based devices as opposed to the SMTP and HTTP notification devices). Users and administrator can add additional notification devices of any type – there is technically no limit to these. This makes dealing with the administration of these devices a little tricky at times – you can count on those 6 devices (5 in versions prior to 9.0 since HTTP did not exist) but beyond that you have no idea how many may be there and there are no defined "slots" for how many additional devices can be created. So you'll be doing a lot of walking of lists in other words – and fortunately generic lists in .NET are easy to work with in this regard.

As usual we'll start with listing the notification devices out – since devices are always tied to users it's easiest to do this off the User object – you can use the static NotificationDevice class and fetch them that way, of course, but you'll need to pass in the objectId of a user to get them (i.e. you cannot iterate over all notification devices in a system, it must be done by user).

```
//list all devices for a user - this includes their name, type and if they're active
foreach (var oDevice in oUser.NotificationDevices())
```

```
{
    Console.WriteLine(oDevice.ToString());
}
```

Not too tricky. You can also fetch a specific notification device by name like this

```
//fetch a specific device for a user by name
res = oUser.GetNotificationDevice("Home Phone", out oNotificationDevice);
if (res.Success == false)
{
    Console.WriteLine("Failed to find home phone device:" + res);
    return;
}
```

You can also create different types of devices – the SDK supports creating a phone, pager, SMS, SMTP or HTML based devices. Here's a bit of code that shows how to create a new phone based device, fetch it, update it and then delete it.

```
//create a new phone device for a user
NotificationDevice oNotificationDevice;
res = NotificationDevice.AddPhoneDevice(connectionServer, oUser.ObjectId,
  "New Phone Device",oUser.MediaSwitchObjectId, "5551234","NewUrgentVoiceMail",true)
;
if (res.Success == false)
    Console.WriteLine("Failed creating phone device:"+res);
    return;
}
//fetch the notification device we just created using the ReturnedObjectId that came
//back on the WebCallResults class.
res=NotificationDevice.GetNotificationDeivce(connectionServer, oUser.ObjectId,
  res.ReturnedObjectId,out oNotificationDevice);
if (res.Success == false)
{
    Console.WriteLine("Failed to fetch new device:"+res);
    return:
}
//Update some of the notification device details.
oNotificationDevice.DisplayName = "New Display Name";
oNotificationDevice.EventList = "AllMessage";
oNotificationDevice.Active = false;
//apply changes
res = oNotificationDevice.Update();
if (res.Success == false)
{
    Console.WriteLine("Failed to update new device:"+res);
//delete the device we just added
res = oNotificationDevice.Delete();
if (res.Success == false)
{
    Console.WriteLine("Failed to delete device:" + res);
}
```

Couple of things to notice about this code sample. First, when creating a new notification device you must always provide a user's ObjectId, of course, but also a phone system association (media switch objectID) – this is true for all phone and pager based devices since they require a dial out which needs to know which switch definition to go out on. Also notice the event trigger string – this is a comma separated string that you can pass multiple types of messages that will cause the device to trigger. These include and of:

AllMessage, NewFax, NewUrgentFax, NewVoiceMail, NewUrgentVoiceMail, DispatchMessage, UrgentDispatchMessage. Although strange, it won't hurt anything to include, say "AllMessage" and "NewVoiceMail" in the same list even though they are redundant.

Creating an HTML based device (added in Connection 9.0) requires you pass in a Notification Template ID as part of the creation. To this end there is a NotificationTemplate class provided that makes fetching and enumerating the list of templates defined on the system easy for you. The following chunk of code shows how to fetch the list of templates and then create a new HTML notification device for a user:

```
//First, fetch the HTML templates on the server - there are two by default.
//Here we only check if at least one is returned and we blindly use it for brevity.
List<NotificationTemplate> oTemplates;
res = NotificationTemplate.GetNotificationTemplates(connectionServer,
  out oTemplates);
if (res.Success == false || oTemplates.Count<1)</pre>
{
    Console.WriteLine("Failed fetching templates:"+ res);
    return;
}
//Now add the device for our user - the display name needs to be unique here
res = NotificationDevice.AddHtmlDevice(connectionServer, oUserTestDude.ObjectId,
  oTemplates[0].NotificationTemplateID, "New HTTP", "testguy@test.com",
  "NewVoiceMail", true);
if (res.Success == false)
{
    Console.WriteLine("Failed adding device:"+ res);
    return;
}
//you can turn around and fetch the device by name if you like.
NotificationDevice oTest;
res = NotificationDevice.GetNotificationDeivce(connectionServer,
  oUserTestDude.ObjectId, "", "New HTTP", out oTest);
if (res.Success == false)
{
    Console.WriteLine("Failed fetching device"+res);
}
```

A special note to consider when it comes to notification devices about scheduling. By default any new device created will be associated with the default system schedule (all hours). You can assign any notification device to any schedule in the system by assigning a schedule set's ObjectId to the notification devices "ScheduleSetObjectId" property and updating it (see the Schedules section for more). If, however, you wish to assign a custom schedule to a device, the SDK greatly simplifies this rather daunting task for typical scenarios. If you want to create a simple schedule that's active for selected days from the same time to the same time each of those days, you can do this in one line of code (a long line admittedly). If you wish to create more complex schedules with different start/stop times or with "breaks" in the middle of days etc... you'll need to look at the Schedules section for details on how to do that.

In this example we'll update a notification device that's already been loaded to have a new, custom schedule that's active Monday, Wednesday and Friday from 10am to 9pm:

```
//Create a new custom schedule in one call using AddQuickSchedule.
res = ScheduleSet.AddQuickSchedule(connectionServer, "Phone Device Schedule", "",
    oUser.ObjectId, Schedule.GetMinutesFromTimeParts(10, 0),
    Schedule.GetMinutesFromTimeParts(21, 0),
    true, false, true, false, true, false, false);
```

```
if (res.Success == false)
{
    Console.WriteLine("Failed creating schedule:"+res);
    return;
}

//Assign the newly created schedule to the notification device and update
oDevice.ScheduleSetObjectId = res.ReturnedObjectId;

res = oDevice.Update();

if (res.Success == false)
{
    Console.WriteLine("Failed assigning schedule:"+res);
}
```

At this point the notification device that was created earlier is now associated with a custom schedule. To be clear this schedule is stored in the same location as all system schedules but because it's assigned to a user instead of a location (see the <u>Schedules section</u> for more details here) it will not show up in the CUCA web admin interface in the schedules section. As a side note, the "Schedule.GetMinutesFromTimeParts" call is just a simple helper to convert an hour/minute in 24 hour format into minutes-from-midnight which is what the schedule interface needs for start and stop times – you could replace that with just an integer if you wanted to do your own math there.

Message Waiting Indicators

Users can have up to 10 MWI devices defined – although it's very rare to ever see more than 2 other than for some edge case scenarios. With that in mind the SDK does not support finding MWIs by name or the like – you can add, delete and fetch MWIs for users but to find the one you want you'll need to iterate through them. As usual we'll start with a simple example of listing the MWIs for a user that's been fetched already

```
//dump out all MWIs defined for a user - includes the name, extension if it's
//Enabled and if the lamp is on or not.
foreach (var oMwi in oUser.Mwis())
{
    Console.WriteLine(oMwi.ToString());
}
```

And now an example of creating a new MWI device, fetching it, updating it and finally deleting it:

```
//Create a new MWI device and set it active
res = Mwi.AddMwi(connectionServer, oUser.ObjectId, "New MWI", oUser.MediaSwitchObjec
tId, "1234", true);
if (res.Success == false)
{
    Console.WriteLine("Failed adding MWI:"+res);
    return;
}
//fetch the new MWI using the objectId returned on the
//WebCallResults class instance.
Mwi oMwiDevice;
res = Mwi.GetMwiDevice(connectionServer, oUser.ObjectId, res.ReturnedObjectId,
  out oMwiDevice);
if (res.Success == false)
    Console.WriteLine("Failed to fetch new MWI:"+res);
    return;
}
//update some properties on the Mwi device we just added and save it
oMwiDevice.DisplayName = "New Display Name";
```

```
oMwiDevice.IncludeTextMessages = true;
oMwiDevice.MwiExtension = "4321";
oMwiDevice.Active = false;

res = oMwiDevice.Update();
if (res.Success == false)
{
    Console.WriteLine("Failed to update MWI:"+res);
    return;
}

//finally, delete the device we just added
res=oMwiDevice.Delete();
if (res.Success == false)
{
    Console.WriteLine("Failed to delete MWI:"+res);
}
```

Mailbox Information

The MailboxInfo class provides information about the size, mounted state, quota limits and if the deleted items folder is enabled for the user. There's only one way to get this data and that's to create a new instance of the MailboxInfo class using the ObjectId of a user – there are not static methods or "lazy fetch" options off the user for this:

```
//Fetch the mailbox information for a user
MailboxInfo oMailboxInfo;
try
{
    oMailboxInfo = new MailboxInfo(connectionServer, oUser.ObjectId);
}
catch (Exception ex)
{
    Console.WriteLine("Failed fetching mailbox info:"+ex);
    return;
}
Console.WriteLine("Over send limit="+oMailboxInfo.IsSendQuotaExceeded);
Console.WriteLine("Mailbox size={0}, send limit={1}, recieve limit={2}",
    oMailboxInfo.CurrentSizeInBytes, oMailboxInfo.SendQuota,
    oMailboxInfo.ReceiveQuota);
```

This is a read only informational class, there's no updating capabilities at this point.

Class of Service

Every user in the system is associated with one and only one Class of Service that dictates system access in the admin, which phone numbers the user is allowed to enter and limits access to licensed features in Connection. The SDK allows for finding, fetching, reviewing, creating and deleting classes of service. For more on working with Class of Service objects, see the <u>Class of Service section.</u>

As usual let's start with simple fetches of lists of class of services:

```
//get and list all COSes
List<ClassOfService> oCoses;
res =ClassOfService.GetClassesOfService(connectionServer, out oCoses);
foreach (var oCos in oCoses)
{
    Console.WriteLine(oCos.ToString());
}
```

```
//fetch all COSes that have a display name that starts with "voice"
res = ClassOfService.GetClassesOfService(connectionServer, out oCoses,
   "query=(DisplayName startswith voice)");
foreach (var oCos in oCoses)
{
    Console.WriteLine(oCos.ToString());
}
```

The query clause construction is the same as was presented in the user searching section and can include a sort clause and paging. Normally with class of service objects it's not likely there will be so many that paging is a concern – if you have thousands of class of service objects in your design, you're doing it wrong. That said you can certainly construct your application to use such features, they work in the same way here.

There's also a lazy fetch handle for class of service references for users that can be used off an instance of the UserBase or UserFull class:

```
Console.WriteLine("Can send to DL-" + oUser.Cos().CanSendToPublicD1);
```

And you can also find a class of service using its name if you need to. The display names for classes of service must be unique system wide so you can use them for this purpose:

```
ClassOfService oCos;
res = ClassOfService.GetClassOfService(out oCos,connectionServer,"",
    "Voice Mail User COS");
```

Greetings

Greetings for users are managed through the users primary call handler. See the <u>Greetings</u> section for <u>Call Handlers</u> for details on how to use this in the SDK. As with many references on the user you can leverage a simple "lazy fetch" path to get the call handler for a user in one operation:

```
// show the greeting name, play what setting and active/inactive setting
// for all 7 greetings associated with a user.
foreach (var oGreeting in oUser.PrimaryCallHandler().GetGreetings())
{
    Console.WriteLine(oGreeting.ToString());
}
```

Transfer Options

Similar to greetings, the 3 transfer rules for a user are stored on the primary call handler associated with the user. See the <u>Transfer Options section for Call Handlers</u> for details on how to use this in the SDK. Similar to other references, there is a "lazy fetch" option for transfer rules off the primary call handler fetch on the user which can be used like this:

```
//Dumps the transfer details (including active/inactive and action setting)
//for all 3 transfer options associated with a user.
foreach (var oTransfer in oUser.PrimaryCallHandler().GetTransferOptions())
{
    Console.WriteLine(oTransfer.ToString());
}
```

Menu Entries

Similar to greetings and transfer options, the menu entries (mappings for actions taken when callers press 0-9, * or # during the user's greeting) are associated with the user's primary call

handler. See the <u>Menu Entries section for Call Handlers</u> for details on how to use this in the SDK. This can be accessed off a user object (either full or base) using a lazy fetch reference to the user's primary call handler like this:

```
//Dumps the basic configuration for each of the 12 keys in the user's menu
//entries.
foreach (var oMenu in oUserFull.PrimaryCallHandler().GetMenuEntries())
{
    Console.WriteLine(oMenu.ToString());
}
```

Phone System

All objects that can handle calls (users, call handlers, interviewers, name lookup handlers) and many sub objects such as notification devices are assigned to phone systems. Connection can have numerous different phone systems defined at the same time and assigning users and phone notification devices and such to different phone system is how administrators can segment, say, tenants that are sharing a single Connection installation and/or dictate which ports notification dial outs for particular users will be used.

Currently there is no option to create new phone systems or port groups (this is coming in a later version of Connection) so the Phone System is informational (read only). As usual you can list all phone systems via a static method call or leverage simple "lazy fetch" calls off objects like the user to review the details of the phone system they are associated with.

```
//get all phone systems
List<PhoneSystem> oPhoneSystems;
res = PhoneSystem.GetPhoneSystems(connectionServer, out oPhoneSystems);
foreach (var oPhoneSystem in oPhoneSystems)
{
    Console.WriteLine(oPhoneSystem.ToString());
    Console.WriteLine("Details:");
    Console.WriteLine(oPhoneSystem.DumpAllProps("--->"));
}

//Get the phone system details for a particular user
Console.WriteLine(oUser.PhoneSystem().ToString());
```

Exiting the User Mailbox Conversation

So, where does the user go when they hit * to exit out of their inbox conversation? Certainly you can customize the conversation to simply not allow that, and some sites do, but normally the users can exit out and by default they end up going to the Opening Greeting call handler created by setup – mostly because they have to go somewhere and that's as good a place as any. Like many other settings in Connection, the user's exit destination is controlled by the "Action trinity" that lets you set an action, conversation and destination so that you can define the exit action to be anything from hang up immediately (very rude but efficient), launch a special conversation or send the call to another user, call handler, interview handler or name lookup handler. Lots of options and you control it all by editing three properties on the FullUser object:

- ExitAction
- ExitTargetConversation
- ExitTargetHandlerObjectId

This is the same 3 property construction used in many places in Connection to do the same thing – route the call somewhere based on an action. Anything from where to go when a menu entry is pressed to where to go after a greeting finishes playing to how to handle a caller not entering anything in a name lookup handler. Rather than repeat the details of how to use these three properties here and everywhere else I've included a general discussion on how to use the "Action" properties as these are referred to in a consolidated Setting Actions section.

Messages

To access messages for either review or sending on behalf of other users the account you log into Unity Connection with must have the "Mailbox Access Delegate Account" role assigned to it. If you attempt to send a message from a user or review messages for a user with an account that does not have this role, Connection will return "authentication required" errors back.

Fetching Messages for a User

First, let's look at fetching messages for a user – this is similar to fetching users from the directory but has a bit more sugar added to help with filtering, sorting and paging.

The first thing to notice is the paging parameters are passed as simple integers – 1 and 20 in this case. So the page number (0 gets count, 1 is the first page) is first, followed by the number to fetch per page. Just like with items in the directory to total count of messages returned is stored in the WebCallResult class passed back so you can setup "x of y" type paging structures in your UIs easily. If you do not pass these parameters the SDK defaults to 1 and 10 respectively.

Also note that you can set the sort order to sort by oldest first, newest first or urgent first (regardless of read state). The default sort order if nothing is passed in here is newest messages first. The filter options can be compounded by separating with me "or" operators – in the example above it's fetching urgent unread messages. There are a dozen different filters you can apply alone or together. By default it uses the "none" filter to get all messages of all states and types.

There's also the ability to get information about individual messages and fetch attachments (usually WAV files of course) off of them. There's static and instance versions of these but usually you're creating a UserMessage class instance and working with that. This example shows fetching the first 10 messages from a user's inbox, outputting the top level details of each message along with the attachment count and then fetching the first attachment off each message that has at least one and dumping it to a local hard drive location:

```
//Fetch the messages for a user - the default for this method is to fetch
//the first page of results 10 at a time if you pass no additional parameters.
List<UserMessage> oMessages;
res=UserMessage.GetMessages(connectionServer, oUser.ObjectId, out oMessages);
if (res.Success == false)
{
    Console.WriteLine("Failed fetching messages:"+res);
    return;
}
//iterate over all messages fetched returning top level information, attachment
//count and then save the first attachment (if present) into c:\temp\ using
//the GUID of the message.
foreach (var oMessage in oMessages)
{
    Console.WriteLine(oMessage.ToString());
    //get how many attachments are present in the message - usually 1
    int iCount;
    oMessage.GetMessageAttachmentCount(out iCount);
                           Attachment count="+iCount);
    Console.WriteLine("
    //Extract the first message attachment to a local file
    if (iCount > 0)
       //note that the MsgId includes a "0:xxx" tacked onto the beginning which
       //is used for forwarding scenarios - Windows does not like colons in paths
       //so if you want to use this construction you must remove it
```

```
string sFile = string.Format(@"c:\{0}.wav",oMessage.MsgId.Replace(":",""));
res = oMessage.GetMessageAttachment(sFile , 0);

if (res.Success == false)
{
        Console.WriteLine("Failed saving attachment:"+res);
    }
}
```

Most of the time you will be dealing with the inbox messages which is why the SDK defaults to that folder - however you can fetch messages from the deleted items folder and/or the sent items folder as well. The following example shows fetching the first 10 deleted items messages and restoring the first one to the inbox as an unread message - this scenario might be encountered if a user accidentally deleted a message they didn't mean to for instance. Remember that the user's class of service may be configured to not stored deleted messages in the deleted items folder - in which case the folder will always be empty.

```
//get deleted messages for user
List<UserMessage> oMessages;
res = UserMessage.GetMessages(oServer, oUser.ObjectId, out oMessages, 1, 10,
                                 MessageSortOrder.NEWEST FIRST, MessageFilter.None,
                                 MailboxFolder.DeletedItems);
if (res.Success == false)
    Console.WriteLine("Failed to fetch deleted messages:"+res);
}
if (oMessages.Count < 1)</pre>
    Console.WriteLine("No deleted messages found for user");
    return;
}
UserMessage oMessage = oMessages.First();
//mark the message unread.
oMessage.Read = false;
res=oMessage.Update();
if (res.Success == false)
    Console.WriteLine("Failed to update read status of message:"+res);
    return;
}
//restore it to the inbox folder
res = oMessage.Restore();
if (res.Success == false)
{
    Console.WriteLine("Failed to restore deleted message:"+res);
    return;
}
```

Send a New Message Using Wav File

This example shows how to send a new voice message from the mailbox of a user to an SMTP address. The SDK only uses SMTP as destination addresses since this is all that's needed. The API does support other address constructions such as target ObjectId strings accompanied by object type designations, but these are unnecessary in my opinion. All addressable objects in Connection contain a usable SMTPAddress that can be used for addressing and this simplifies the interface quite a bit. The CreateMessage methods both allow for multiple addressing targets that can be either "TO", "CC" or "BCC" address types; however the address itself is always just a plain SMTP string.

All the properties of a message can be included as flags in the call – these include urgent, secure, private, dispatch, read and delivery receipts as well as an optional callerId instance which can be passed as NULL if you don't want to include the caller ID details with the message.

This example flags a message for urgent and private as well as having the "c:\test.wav" file converted into raw PCM before being uploaded as a message attachment.

```
//fetch user with alias of "jlindborg" - we will be sending the message from his
//mailbox.
UserFull oUser;
res = UserBase.GetUser(out oUser, connectionServer, "", "jlindborg");
if (res.Success == false)
    Console.WriteLine("Could not find user in database by alias=jlindborg");
    return;
}
//create a recipient - you must include at least one and can include many.
MessageAddress oRecipient = new MessageAddress();
oRecipient.AddressType = MessageAddressType.TO;
oRecipient.SmtpAddress = "jsmith@lindborglabs.com";
//set the message for urgent and private. Note that the callerId instance can be
//passed as null here if none is desired.
res = UserMessage.CreateMessageLocalWav(connectionServer, oUser.ObjectId,
        "Test Subject", "c:\\test.wav", true, true, false, false, false,
       null, true, oRecipient);
if (res.Success == false)
{
    Console.WriteLine("Error uploading voice message:" + res);
    return:
}
Console.WriteLine("Message sent");
```

Send a New Message Using Phone (CUTI)

As with greetings and voice names you can use CUTI for recording voice messages as well. An alternative version of the CreateMessage method is provided to handle this use of the CUTI interface. The advantage here is that you can record a voice message using the phone as a media device and the media never leaves the Unity Connection server itself. It's created there and "turned into" a voice message attachment right where it stands: no need to produce recorded media locally to the client or upload binary files to the server. Particularly for mobile clients or for applications where media security is a concern this can be a real advantage.

In this example we'll record the message using the phone with CUTI and address it to multiple targets – including both a remote user and CC'ing the message to the sending subscriber.

```
//fetch user with alias of "jlindborg" - we will be sending the message from his
//mailbox.
UserFull oUser;
res = UserBase.GetUser(out oUser, connectionServer, "", "jlindborg");
if (res.Success == false)
{
    Console.WriteLine("Could not find user in database by alias=jlindborg");
    return;
}
//create a recipient
MessageAddress oRecipient = new MessageAddress();
```

```
oRecipient.AddressType = MessageAddressType.TO;
oRecipient.SmtpAddress = "jsmith@lindborglabs.com";
//CC the message to the sender
MessageAddress oCc = new MessageAddress();
oRecipient.AddressType = MessageAddressType.CC;
oRecipient.SmtpAddress = oUser.SmtpAddress;
//use the CUTI interface to leave a message using extension 1001.
PhoneRecording oPhone;
try
{
    oPhone = new PhoneRecording(connectionServer, "1001");
}
catch (Exception ex)
    Console.WriteLine("Failed to connect to phone extension:" + ex);
}
//record the message itself - ends when the user hits #
res = oPhone.RecordStreamFile();
if (res.Success == false)
{
    Console.WriteLine("Failed recording message:" + res);
}
//include caller ID details in the message
CallerId oCallerId = new CallerId();
oCallerId.CallerName = "Jeff Lindborg";
oCallerId.CallerNumber = "2065551234";
//convert the recorded stream into a voice message.
res = UserMessage.CreateMessageResourceId(connectionServer, oUser.ObjectId,
    "my subject",oPhone.RecordingResourceId,
    false, false, false, false, false, oCallerId, oRecipient,oCc);
if (res.Success == false)
    Console.WriteLine("Failed uploading message:"+res);
    return;
}
//hangup
oPhone.Dispose();
Console.WriteLine("Message sent");
```

Forwarding a Message With Intro

The SDK provide methods off the message object for easily forwarding a message with an introduction. You can provide the recording for the introduction either via a WAV file on the local hard drive or using the CUTI interface to record it on the Connection server and reference it there. You can also forward without an introduction by using the wav file call and passing a blank path instead.

This example grabs the first message from a user's inbox and forwards it to another user with an intro using a wav file recorded on the local hard drive.

```
//get inbox messages for user
```

```
List<UserMessage> oMessages;
res = UserMessage.GetMessages(oServer, oUser.ObjectId, out oMessages);
if (res.Success == false)
{
    Console.WriteLine("Failed to fetch deleted messages:"+res);
}
if (oMessages.Count < 1)</pre>
    Console.WriteLine("No deleted messages found for user");
    return;
}
//construct an address for the recipent to forward to
MessageAddress oAddress= new MessageAddress();
oAddress.AddressType = MessageAddressType.CC;
oAddress.SmtpAddress = "jsmith@testdomain.com";
//notice the special construction for handling urgent (priority) and private
//(sensitivity). The SDK uses simple Boolean flags for these however the API uses
//more complex string values - use the enums provided for handling that.
UserMessage oMessage = oMessages.First();
res = oMessage.ForwardMessageLocalWav("FW:" + oMessage.Subject,
      oMessage.Priority.Equals(PriorityType.Urgent.ToString()),
      !oMessage.Sensitivity.Equals(SensitivityType.Normal.ToString()),
      oMessage.Secure, false, false, "c:\\intro.wav", true, oAddress);
if (res.Success == false)
{
    Console.WriteLine("Failed to forward message:"+res);
}
```

Replying to a Message

The SDK provides a way to reply or to reply all to any message. It will allow you to attempt the reply no matter what the senders information, it's up to you to make sure that makes sense. The list of recipients is provided for review off the UserMessage class instance as is the FromSub boolean flag which indicates if the message was sent from a subscriber vs. the outside caller mailbox (which cannot be replied to). The SDK will not stop you from replying to invalid addresses or the like - the mailbox you send the message on behalf of will simply get a NDR message for the failed attempt.

The reply can be constructed using a wav file from the local file on the hard drive or via a stream recorded on the Connection server via CUTI, just as with forwarding or creating a new message. The following chunk of code just does a simply reply to a message - all that's needed for a reply all is to pass the flag as true instead of defaulting to false. In this case we will use the CUTI interface to record a reply using the phone.

```
//get inbox messages for user
List<UserMessage> oMessages;
res = UserMessage.GetMessages(oServer, oUser.ObjectId, out oMessages);
if (res.Success == false)
{
    Console.WriteLine("Failed to fetch deleted messages:"+res);
    return;
}
if (oMessages.Count < 1)
{
    Console.WriteLine("No deleted messages found for user");
    return;
}
//just use the first message in the list</pre>
```

```
UserMessage oMessage = oMessages.First();
//Establish a phone connection
PhoneRecording oPhone;
try
{
    oPhone = new PhoneRecording(oServer, "1002");
}
catch (Exception ex)
    Console.WriteLine("Failed to establish phone connection:"+ex);
    return;
}
//now record a reply over the phone
Console.WriteLine("Record your reply, press # to end.");
res = oPhone.RecordStreamFile();
if (res.Success == false)
{
    Console.WriteLine("Failed to record reply:"+res);
    return;
}
//reply to all recipients
res = oMessage.ReplyWithResourceId("RE:" + oMessage.Subject,
    oPhone.RecordingResourceId,
    oMessage.Priority.Equals(PriorityType.Urgent.ToString()),
    !oMessage.Sensitivity.Equals(SensitivityType.Normal.ToString()),
    oMessage.Secure, false, false, true);
if (res.Success == false)
    Console.WriteLine("Failed to forward message:"+res);
    return;
Console.WriteLine("Reply sent!");
//hang up
oPhone.Dispose();
```

Deleting Messages and the Deleted Items Folder

The UserMessage class has a delete method off it just as many other class definitions do, however the UserMessage version includes a boolean flag that lets you "hard" vs. "soft" delete a message. "Soft" deletes will leave a copy of the message in the deleted items folder provided the user's class of service is configured to do that. A "hard" delete will never put a copy in the deleted items folder regardless of what the class of service is configured to do.

There's also a static method to clear the deleted items folder entirely. The following code chunk shows a message being "hard" deleted and then the deleted items folder being cleared out.

```
//hard delete the message
res = oMessage.Delete(true);
if (res.Success == false)
{
    Console.WriteLine("Failed to delete message:"+res);
}
//clear all messages from the deleted items folder
res =UserMessage.ClearDeletedItemsFolder(oServer, oUser.ObjectId);
if (res.Success == false)
{
```

```
Console.WriteLine("Failed to clear the deleted items folder");
}
```

Helper Methods

Finally there are some helper functions off the UserMessage class that can be useful when dealing with messages – notably the static methods for converting milliseconds from 1970 into local time and vice versa. The details on a message object returned from Connection have the ArrivalTime and ModificationTime stored as longs – this is milliseconds from midnight on 1/1/1970 – it's a common format for storing date/times, particularly in Linux land. You can use the "ConvertFromMillisecondsToTimeDate" method on the static UserMessage class to take that long and convert it either into GMT or into local time on the box you're running on. Similarly you can use the "ConvertFromTimeDateToMilliseconds() to go in the other direction.

Call Handlers

Call handlers come in two flavors: a "system call handler" which are the ones you see in the CUCA web interface in the system call handlers section such as the "opening greeting" and "say goodbye" handlers. Then there are "primary call handlers" which are tied to a user with a mailbox. These have the same functionality but the primary handlers are exposed in the user pages in the CUCA web interface and not on their own. Much of the call processing functionality is in the call handler which is why many of the tasks you do on a user you are actually doing on their associated primary call handler. Understanding this makes the model much easier to grasp.

The key piece to understand is that fetching call handlers will, by default, include all call handlers - both system and primary - which may not always be what you want. When fetching call handlers it's a good idea to filter by name (or at least by non primary flag - which we'll see here in a minute).

Creating and Deleting Call Handlers

First, let's just create a simple system call handler here. You never "create" a primary call handler, they are created automatically when you create a user with a mailbox (admin users do not have call handlers or mailboxes). One wrinkle with system call handlers is when you create one you must pass in the ObjectId (GUID) for a call handler template as part of the creation. With User creation you can use the alias of the template which gets passed on the URI but that's not allowed for display name fields (call handlers do not have an alias, but display name must be unique). So before creating a new handler you must first fetch the template you wish to use. For more details on managing call handler templates, see the Call Handler Template section.

```
//First, we need to fetch a call handler template to work with.
//This is the default template that should be present on any system.
CallHandlerTemplate oTemplate;
res = CallHandlerTemplate.GetCallHandlerTemplate(out oTemplate, connectionServer,
        "", "System Call Handler Template");
if (res.Success == false)
{
    Console.WriteLine("Failed fetching handler template:"+res);
    return;
}
//Create a system call handler with no extension - the name must be
//unique among all handlers on the system or this will fail
CallHandler oHandler;
res = CallHandler.AddCallHandler(connectionServer, oTemplate.ObjectId,
        "My New Handler", "", null, out oHandler);
if (res.Success == false)
    Console.WriteLine("Failed creating handler:"+res);
    return;
}
Console.WriteLine(oHandler.ToString());
```

As with most other objects that support creation you can also pass in a set of parameters to establish values for at the time of creation. Coupled with the ability to create a handler without returning an instance of one (thus skipping the follow-on GET call to the server) you can do bulk creation of call handlers much more efficiently if large numbers of them are needed. The following chunk of code shows how to go about that - each create involves a single POST request to the server and a very small response that contains the ObjectId of the newly created handler and that's all. This assumes we've already fetched the template ahead of time.

Finding and Fetching Call Handlers

First, fetching just a single call handler by name is a common task. As noted the display names for all local call handlers are unique so you can search on their names (not case sensitive) to fetch one like this:

Fetching lists of call handlers works very similar to fetching users - paging support is build in along with the query and sort commands. One wrinkle with call handlers is that it will be returning primary call handlers along with system call handlers in these searches. If you're not filtering by name or DTMFAccessId (extension) you'll want to at least filter using the IsPrimary flag (0 means get only system call handlers which is what you want). And, as ever, always be good boys and girls and leverage paging and keep your fetch size reasonable. Call handlers are not as large as users but it's still a good idea to restrict yourself to no more than 100 at a time when operating in production environments. The following code chunk fetches all system call handlers in the system in 20 handler chunks:

```
List<CallHandler> oHandlers;
int iPageNumber = 1;

do
{
   res = CallHandler.GetCallHandlers(connectionServer, out oHandlers,
        "query=(IsPrimary is 0)","rowsPerPage=20", "pageNumber=" + iPageNumber);
   if (res.Success == false)
   {
        Console.WriteLine("Failed fetching handlers:" + res);
        break;
   }
}
```

```
foreach (var oHandler in oHandlers)
{
        Console.WriteLine(oHandler.ToString());
}
iPageNumber++;
} while (oHandlers != null && oHandlers.Count > 0);
Console.WriteLine("Done!");
```

Notice that when the fetch for a page number that results in no results is called it does not kick an error out, but returns an empty list instead. No results is not considered an error condition in this case. Also, technically the check for "oHandlers != null" is not necessary as it will never be null unless the GetCallHandlers returns a failure and we exit from that path - but old habits die hard when dealing with class instances...

Updating Call Handlers

There are a couple ways to update call handlers as you probably suspect by now. If you've already got an ObjectId of a handler to work with you can skip the unnecessary GET involved with creating a CallHandler object first and pass in a set of properties in a name/value pair construction. This can work well for bulk update scenarios for instance.

```
//construct name/value pair class
ConnectionPropertyList oProps = new ConnectionPropertyList();
oProps.Add("DispatchDelivery",false);
oProps.Add("Language",(int) LanguageCodes.FrenchStandard);
oProps.Add("SendSecureMsg",true);
oProps.Add("MaxMsgLen",60);

//Update an existing handler if you've already got an ObjectId
res = CallHandler.UpdateCallHandler(connectionServer,strHandlerObjectId, oProps);
if (res.Success==false)
{
    Console.WriteLine("Failed updating handler:"+res);
}
```

More commonly however you've already fetched a call handler by name or are iterating through a list of constructed handler instances in a generic list or the like. In that case leveraging the convenient "dirty property" feature in the CallHandler class works well.

```
oHandler.DisplayName = "New display name";
oHandler.Language = (int) LanguageCodes.FrenchStandard;
oHandler.SendSecureMsg = true;
oHandler.MaxMsgLen = 60;
res = oHandler.Update();
if (res.Success == false)
{
    Console.WriteLine("Failed updating handler:" + res);
}
```

Voice Names

Voice names for call handlers are not used as commonly as for users but they do pop up here and there. They get played out in the greetings administration conversation (this allows users to change greetings for system call handlers they are listed as owners for via the phone) and they can also be used when identifying messages from outside callers that were left for particular handlers which can be helpful in disambiguating where they came into your mailbox from.

Similar to users the CallHandler class has some helper functions to make updating voice names for call handlers easier. The following code chunk shows fetching a call handler and updating its voice name from a WAV file on the local hard drive and then turning around and fetching the voice name to another local file:

```
CallHandler oHandler;
res = CallHandler.GetCallHandler(out oHandler, connectionServer, "",
        "Jeffs Call Handler");
if (res.Success == false)
{
    Console.WriteLine("Failed fetching handler:"+res);
    return;
}
//update the handler's voice name off a wav file - convert to PCM 16/8/1 first.
res = oHandler.SetVoiceName(@"c:\VoiceNameIn.wav", true);
if (res.Success==false)
{
    Console.WriteLine("Failed updating voice name:"+res);
}
//now fetch the name to a local wav file
res = oHandler.GetVoiceName(@"c:\VoiceNameOut.wav");
if (res.Success == false)
{
    Console.WriteLine("Failed fetching voice name:"+res);
}
```

As shown for users you can also use the phone for updating voice names for call handlers (or greetings) - review the <u>Updating Voice Names for Users section</u> for a description of how to go about that, the same SetVoiceNameToStreamFile() method used for this.

Greetings

There are 7 greetings for all call handlers in the system, which of course applies to users as well since they are tied to a primary call handler. The greetings included in the collection (in order or precedence) are as follows:

Alternate - if active, always plays

Holiday - if active and the handler's schedule is a holiday, it plays.

Internal - if active and the call is from a known user's extension, it plays

Busy - if active and the call forwarded busy to the handler's extension, it plays.

Off Hours - if active and the schedule of the handler indicates off hours, it plays.

Standard - if no other greetings kick in, it plays. You cannot deactivate this greeting.

Error - special greeting, plays when an invalid option is entered during another greeting. It also cannot be deactivated.

By default only the standard greeting is activate and it'll effectively play all the time.

The greetings interaction is in some way simpler than some other objects - you cannot create or delete a greeting - ever. Each handler gets 7 and only 7 and they cannot be removed. So we only need to worry about fetching them, reviewing them and updating them. Easy. First, let's look at fetching the greetings for a call handler - in this case I'll show both the system call handler and how you'd do it from a user object - after this I'll trust that you can figure out you need to go through the user's "PrimaryCallHandler" reference to get to these functions.

```
//get all greetings for a call handler - this should always get all 7 greetings
foreach (var oGreeting in oHandler.GetGreetings())
{
    //outputs the greeting type, if its enabled and what it's set to play
    Console.WriteLine(oGreeting.ToString());
}
```

```
//For a user it would look like this - just need to use the "lazy fetch" primary
//call handler reference off the user object.
foreach (var oGreeting in oUser.PrimaryCallHandler().GetGreetings())
{
    //outputs the greeting type, if its enabled and what it's set to play
    Console.WriteLine(oGreeting.ToString());
}
```

...and to fetch just a specific greeting if you don't want to iterate through them to find the one you want, it would look like this:

```
Greeting oGreeting;
res = oHandler.GetGreeting("Busy", out oGreeting);
if (res.Success == false)
{
    Console.WriteLine("Failed fetching greeting:"+res);
}
```

Ok, now on to editing greetings. There's two big things you want to do with greetings and dealing with the API for this is very error prone and annoying. The SDK wraps most of the complexity for you and whisks you to a happy place of programming efficiency so you can get on with your life.

The first thing is, of course, updating the greeting recording itself (i.e. what plays to caller when they hear this greeting). One thing to understand, however, is that each greeting can be recorded in separate languages. So you can have a French and English busy greeting that play to callers depending on which language their call it set to. This is very helpful in constructing multiple language auto attendant trees since you only have to make one tree and just record different language greetings for each to handle all those languages. However it's up to you to make sure the language you're uploading is actually installed on the Connection server. Yes, that's correct - you can upload greetings and set languages for them that are not installed on Connection and it'll happily let you do that. And they'll never play. So, when updating greetings in other languages, be sure to review the helpful InstalledLanguage class section for details on how to make sure you're not wasting your time.

So, let's update the busy greeting for a call handler and apply an English and Japanese language greeting to it to show how that's done. I'll assume the check that Connection has the languages installed has already taken place here.

```
//update the recording for the busy greeting and set it to play that custom greeting
//(instead of the system generated greeting or blank for the greeting) in both US
//English and Japanese.
res = oGreeting.SetGreetingWavFile((int)LanguageCodes.EnglishUnitedStates,
       @"WAVFiles\ENUBusyGreeting.wav", true);
if (res.Success == false)
    Console.WriteLine("Error setting ENU Busy greeting recording: " +
       res.ToString());
}
res = oGreeting.SetGreetingWavFile((int)LanguageCodes.Japanese,
       @"WAVFiles\JPNBusyGreeting.wav", true);
if (res.Success == false)
{
    Console.WriteLine("Error setting JPN Busy greeting recording: " +
       res.ToString());
}
oGreeting.PlayWhat = (int)PlayWhatTypes.RecordedGreeting;
res = oGreeting.Update();
```

Don't forget that last step - by default the greeting will play the SystemGreeting which is the canned construction using system prompts - you need to instruct the greeting to play your custom recorded message instead by setting the PlayWhat to the RecordedGreeting type.

You can also use the phone to record a greeting, similar to what was shown for recording a user's voice name earlier. For greetings it would look like this:

```
//use telephone as media device - establish a connection to extension 1003
PhoneRecording oPhone;
try
{
    oPhone = new PhoneRecording(connectionServer, "1003");
}
catch (Exception ex)
    Console.WriteLine("Failed establishing phone call:"+ex);
    return;
//record a new stream
res = oPhone.RecordStreamFile();
//play the stream we just recorded for confirmation
res = oPhone.PlayStreamFile();
//set it's US English recording to the recording we just made
res = oGreeting.SetGreetingRecordingToStreamFile(oPhone.RecordingResourceId,
       oGreeting.CallHandlerObjectId,oGreeting.GreetingType,
        (int)LanguageCodes.EnglishUnitedStates);
```

The next thing you want to update for greetings is if they're active or not. Remember that you can't make the standard or error greetings inactive, so don't bother trying (the server will return an invalid operation error if you do). But if you wish to, say, activate an alternate greeting, how does one go about that? It's not a simple on/off switch because greetings are built to offer an expire-time. So, for instance, you can set the alternate greeting to be active only till next Friday at 5pm and then go inactive. As such the active/inactive state is done through a time/date construction which can be a little twitchy to deal with.

This example shows how to do the simple approach of just enabling a greeting forever and how to make it expire at a particular date instead:

```
//use the helper function to enable the greeting. This call sets it to be enabled
res = oGreeting.UpdateGreetingEnabledStatus(true);
if (res.Success == false)
{
    Console.WriteLine("failed enabling busy greeting:" + res);
}
//to instead make it enabled only for a set time, use this construction
//Set the greeting active till 2/23/2013 at 10:30 pm.
//Important - times are stored in UTC, be sure to convert to UTC instead of passing
your
//system's local time!
DateTime oDateToExpire = new DateTime(2013, 2, 23, 22, 30, 00).ToUniversalTime();
res = oGreeting.UpdateGreetingEnabledStatus(true,oDateToExpire);
if (res.Success == false)
{
    Console.WriteLine("failed enabling busy greeting:" + res);
}
```

The only other thing to do with greetings is to decide what you do with the call after the greeting plays. This involves setting the greeting's AfterGreetingAction, AfterGreetingConversation and AfterGreetingTargetHandlerObjectId values. That's a little more advanced and it's a pattern that's used in many instances on numerous objects (exit action for a user,

menu entry keys, after greeting actions etc...). A fuller explanation of how to manage these three values to make the greeting do or go where you want when it finishes playing is covered in the <u>Setting Actions section</u>.

Transfer Options

Transfer options are a good deal less involved than greetings given they don't involve recorded media. There are only 3 of them to deal with:

Alternate - if active it always determines transfer action.

Off Hours - if active and the schedule the handler is associated with is off hours, it determines what to do with the call.

Standard - if neither other option kicks in, the standard always processes the call. It cannot be disabled.

Transfer options can only really do two things - either try and ring a phone (either doing a release or supervised transfer) or sends the call on to the active greeting rule. As with greetings you cannot create or delete them - only fetch and update. First, let's look at just iterating over the 3 transfer rules for a call handler:

and similar to greetings, you can fetch just an individual transfer option by its type name (not case sensitive):

```
TransferOption oTransfer;
res = oHandler.GetTransferOption("Alternate", out oTransfer);
if (res.Success == false)
{
    Console.WriteLine("Failed fetching transfer option:"+res);
}
```

Also similar to greetings, the alternate and off hours transfer options can be set to expire by a date or by setting the date to null be active forever. The TransferOption class offers a method to handle the details of that for you. In this example we'll first enable the alternate transfer rule forever, then set it to expire on 2/27/2013 at 1:20pm. I'll leave the checks for successful WebCallResult returns out here for readability:

```
//first, enable it forever
res = oTransfer.UpdateTransferOptionEnabledStatus(true);

//now set it to active till 2/27/2013 and 1:20pm - be sure to convert to universal
//time instead of sending the local time from your box.
DateTime oDateToExpire = new DateTime(2013, 2, 27, 13, 20, 00).ToUniversalTime();
res = oTransfer.UpdateTransferOptionEnabledStatus(true, oDateToExpire);

//now disable it - this will fail if you try it on the standard rule.
res = oTransfer.UpdateTransferOptionEnabledStatus(false);
```

and, of course, you'll want to be able to set if it rings a phone, how it rings the phone and what number it dials. It's important to note that the phone number you enter is not checked against the user's restriction tables associated with their Class of Service - you're authenticating as an administrator and making these changes, that's by design. The following

example sets the transfer rule to ring a couple different phones in different ways and then turns off transfers for the rule - again, I'm leaving out error handling in here for brevity.

```
//set the transfer rule to ring the phone for 1234 up to 5 times via supervised
transfer
oTransfer.Action = (int)TransferActionTypes.Transfer;
oTransfer.TransferType = (int)TransferTypes.Supervised;
oTransfer.TransferRings = 5;
oTransfer.Extension = "1234";
res = oTransfer.Update();
//set the transfer rule to ring the handler's primary extension release
//(unsupervised)
//CAUTION if the handler has no extension the extension will be blank - good to
//check for that before doing this - for a user it's not a risk since extensions
//are required for them.
oTransfer.Action = (int)TransferActionTypes.Transfer;
oTransfer.TransferType = (int) TransferTypes.Unsupervised;
oTransfer.UsePrimaryExtension = true;
res = oTransfer.Update();
//set the transfer rule to not ring any phone but go straight to the greeting rule
oTransfer.Action = (int) TransferActionTypes.PlayGreeting;
res = oTransfer.Update();
```

Menu Entries

Every call handler has a set of 12 menu entries, one each for 0-9, @ and # keys. These entries determine what actions are taken when a caller pressing a key during any greeting that is playing for a call handler (or conversely a user tied to a primary call handler, of course). It's important to note that there is only one set of menu entry keys per call handler. More specifically you cannot have different menu entry key mappings that are used when different greetings for the same call handler are played. Some folks assume menu entries are somehow tied to the greetings and that's not the case.

Similar to contact options and greeting rules, you cannot just fetch all menu entries in the system via REST. The menu entries URI includes the ObjectId of the call handler that owns them – so you can just iterate over all the "0" menu entry keys defined for all handlers in the system and check for some mapping you care about. That'd be handy for some scenarios but it's not in the cards for the REST API as it stands.

Also similar to greetings and contacts there is no mechanism to create or delete menu entries as each handler gets a hard coded set of 12 for every call handler created. You can only fetch, examine and update menu entry data. As usual we'll start with the easy one: listing all the menu entries for a call handler we've already fetched:

```
//List all 12 keys for a call handler
foreach (var oKey in oHandler.GetMenuEntries())
{
    //lists the key name, it's action and if it's locked or not
    Console.WriteLine(oKey.ToString());
}
```

You can also fetch an individual menu entry by its key name and then update a property on the key and save it like this:

```
//fetch just a single key by name
MenuEntry oMenuEntry;
res = oHandler.GetMenuEntry("2", out oMenuEntry);
if (res.Success == false)
{
    Console.WriteLine("Failed to fetch menu entry:"+res);
}
//update the locked property to be false
oMenuEntry.Locked = false;
res=oMenuEntry.Update();
if (res.Success == false)
{
```

```
Console.WriteLine("Menu entry update failed:"+res);
}
```

Pretty straight forward and follows the same use patterns we've seen for other types of objects so far. At this point I should probably pause and explain more fully what the behavior is for menu entries since I end up answering this question quite a bit. You'll notice in the above example we "unlocked" the key. What, exactly, does that mean? By default the keys are not locked which means during the greeting if a user hits, say, the "1" key it will stop the greeting and wait for the inter-digit timeout period to see if the user is going to hit more digits (i.e. enter an extension). By default this is 1500 milliseconds, adjustable on a per handler basis. If no further keys are entered, it takes whatever action the key is mapped to (we'll cover that in a bit). If, instead, the key is locked, the action associated with the key is executed right away with no waiting around.

So why would you want to do this? Couple scenarios: First, you can lock all keys and set them to ignore (i.e. do nothing). This means the entire greeting will play and the caller is helpless to interrupt no matter which or how many keys they mash on. If you have a really important message or just really want to annoy your callers, this is a handy technique for that. A trickier scenario involves you wanting to avoid folks "cold dialing" certain users. Say for instance all your valuable engineers (and honestly – who is more valuable than your engineers?) are on extensions starting with 7. In your opening greeting you can lock the 7 key which effectively means no one can just dial any extension starting with 7. You get the idea – locking keys should be reasonably rare but when you need it, it's handy to have it.

So what can you do with a menu entry key? You can set the key to do anything from hang up immediately (very rude but efficient), take a message, jump to the end of the greeting, launch a special conversation such as the "Broadcast message administrator" or send the call to another user, call handler, interview handler or name lookup handler. Lots of options and you control it all by editing three properties on the menu entry:

- Action
- TargetConversation
- TargetHandlerObjectId

This is the same 3 property construction used in many places in Connection to do the same thing – route the call somewhere based on an action. Anything from the user exiting their mailbox conversation to where to go after a greeting finishes playing to how to handle a caller not entering anything in a name lookup handler. Rather than repeat the details of how to use these three properties here and everywhere else I've included a general discussion on how to use the "Action" properties as these are referred to in a consolidated Setting Actions section.

The last thing I want to talk about with respect to menu entries here is transferring to a phone number. There's two ways to approach this. The first is to use the Action trinity to send the caller to a call handler that's configured to ring the phone you want it to dial. This can be useful if you want options for special greetings and supervised transfer options and such. But it's also a little heavy from a system administration standpoint. Sometimes all you want to do is release the call to a phone number and "let it go". There's a short hand way to do that with menu entries directly that does not require the creation of another object in the directory using the alternate contact number. This following code snippet walks through that:

```
//fetch just a single key by name
MenuEntry oMenuEntry;
res = oHandler.GetMenuEntry("2", out oMenuEntry);
if (res.Success == false)
{
    Console.WriteLine("Failed to fetch menu entry:"+res);
    return;
}
//set the key to do a release transfer to x1234
//note that the SDK provides a way to set the supervised transfer options but the
//API currently ignores those options.
oMenuEntry.TransferNumber = "1234";
oMenuEntry.TransferType = (int)TransferTypes.Unsupervised;
oMenuEntry.Action = (int) ActionTypes.TransferToAlternateContactNumber;
res=oMenuEntry.Update();
if (res.Success == false)
{
    Console.WriteLine("Menu entry update failed:"+res);
}
```

Determining if a User is an Owner of a Handler

See the Roles and Policies section for an example of how to check if a user is listed among the owners of a call handler.

Global Users

The GlobalUser class behaves very much like the UserBase class with respect to finding, fetching and iterating users. The primary difference is you don't create, edit or delete global users, you can only find them. The global user collection represents a small amount of data for all users across all Connection servers in your network and is used for addressing purposes for the most part. All users created on all Connection servers replicate around to all other Connection servers and show up in the global users collection eventually.

This can be used when addressing messages to other users on the network for validation or for more complex scenarios such as cross server login or the like. For an example on how to use global users and locations to "hop" to different Connection servers in a digital network to get to the home server for remote servers all over your network, see the Locations topic.

System Contacts

System contacts are user objects that do not have mailboxes on Unity Connection and can be used to route calls to destinations and such without using a seat license (they are free). At the time of this writing the REST API does not support deleting these objects, however you can create and edit them. This example just runs through creating a contact, adding a voice name and updating some properties on it:

```
//create a new system contact using the default system contact template
//created by install
Contact oContact:
res=Contact.AddContact(oServer, "systemcontacttemplate", "Test Contact"
                    "Test", "Contact", "testcontact", null, out oContact);
if (res.Success == false)
    Console.WriteLine("Failed to create new contact:"+res);
}
//add a voice name to the contact from a wav file
res = oContact.SetVoiceName("c:\\voiceName.wav", true);
if (res.Success == false)
{
    Console.WriteLine("Failed to set contact voice name:"+res);
    return;
}
//update some contact properties
oContact.DisplayName = "New display name";
oContact.ListInDirectory = true;
res = oContact.Update();
if (res.Success == false)
    Console.WriteLine("Failed to update contact:"+res);
    return:
}
```

Name Lookup Handlers

Directory handlers (aka Name Lookup Handlers) are used to help callers find a user in your directory by name. They come in two flavors: a TUI version (touch tone spelling) and a VUI version (voice driven). Since I'm often asked, no, you cannot create a name lookup handler that does both at the same time. You can offer an exit destination from VUI handler to get you to a TUI handler and vice version (which is a common scenario) but a VUI handler only accepts mapped keys for exiting (0, * typically) and voice commands, it cannot also accept touchtone spelling.

Name lookup handlers have several exit "actions" defined off of them: no input, no selection (timeout), exit by * key and exit by 0 key (operator). See the <u>Setting Actions</u> section in this document for more details on configuring the action settings and how they work.

The creation, update and delete functions should look fairly familiar - they follow the same static methods and class instance method patterns that most other object classes in the SDK do. This code chunk creates a TUI based name lookup handler, updates a few of its properties and then creates a VUI name lookup handler which it then deletes.

```
//create a new TUI (touch tone) directory handler
DirectoryHandler oDirHandler;
res = DirectoryHandler.AddDirectoryHandler(oServer, "Test TUI Handler", false,
    null,out oDirHandler);
if (res.Success == false)
{
    Console.WriteLine("Failed to create TUI directory handler");
    return;
}
//update directory handler properties
oDirHandler.AutoRoute = false;
oDirHandler.DtmfAccessId = "774123";
res = oDirHandler.Update();
if (res.Success == false)
{
    Console.WriteLine("Failed to update TUI dir handler:"+res);
    return;
}
//create a new VUI (voice driven) directory handler
res = DirectoryHandler.AddDirectoryHandler(oServer, "Test TUI Handler", true,
    null, out oDirHandler);
if (res.Success == false)
    Console.WriteLine("Failed to create TUI directory handler:"+res);
    return;
}
//now delete the handler
res = oDirHandler.Delete();
if (res.Success==false)
{
    Console.WriteLine("Failed to delete name lookup handler:"+res);
}
```

Interview Handlers

Coming after Unity Connection 10.0 release.

Public Distribution Lists

Public distribution lists in Connection are used mostly for message addressing targets – unlike in Unity they do not act as containers for "ownership" assignment for call handlers or the like. They can be tied as a message recipient for a call handler or interviewer or be addressed by a subscriber in after they log in and address a message by name or ID. Distribution lists can also act as a "scope limiter" for name lookup handlers, but that's their only "non message" related function in the system at present.

To be clear, outside callers cannot "dial" a distribution list (I get this question fairly frequently actually). The only way for outside callers to gain access to leaving a message for a list is by assigning the list as the message recipient for a handler and sending the caller to that handler.

Lists can contain users, system contacts and other lists as members. There is no limit to the "depth" of a list tree – however managing list membership when you're dealing with trees dozens deep will be daunting at best.

Creating and Deleting Distribution Lists

For distribution lists there are no templates and all you need to provide is a unique display name and a unique alias. Both the alias and display name need to be unique among all distribution lists or a failure will be returned. An extension is optional and the "AddDistributionList" method does also provide a way to pass in additional parameters similar to other "Add" object constructors in the SDK – here's it's passed as null.

```
//Create a new DL and return a DistributionList object for it
DistributionList oList;
res = DistributionList.AddDistributionList(connectionServer, "New DL", "newdl",
    "1234", null,out oList);

if (res.Success == false)
{
    Console.WriteLine("Error creating list:"+res);
    return;
}

Console.WriteLine("New list creatd:"+oList.ToString());

//Then turn around and delete it
res = oList.Delete();
if (res.Success == false)
{
    Console.WriteLine("Failed deleting list:"+res);
}
```

Note that the extension ("1234" in this case) is entirely optional – this allows users to address to distribution lists by extension if they prefer but it can be passed as blank if addressing by name only is desirable or if the list you're creating will not be used for message addressing by subscribers.

As with other class "Add" methods, you can also pass in a name/value pair list that will be applied at creation time and opt not to fill in a class object with the newly created list's details. If you are creating many distribution lists "in batch" this is how you'll want to go about it. There's only a couple properties on a list you'd want to fiddle with, however. Notably if you wanted the list in another partition or if you wanted to allow system contacts to be included as members you could do that with the following chunk of code:

Finding and Fetching Distribution Lists

Fetching a single distribution list using the alias string follows the same convention other object classes in the SDK do – here's a code chunk of finding a distribution list and updating its display name and extension:

```
//Fetch a single list by alias and update it
DistributionList oList;
```

```
res =DistributionList.GetDistributionList(out oList, connectionServer, "", "newdl");
if (res.Success == false)
{
    Console.WriteLine("Failed finding list:"+res);
    return;
}
oList.DisplayName = "New Display Name";
oList.DtmfAccessId = "81248";
res = oList.Update();
if (res.Success == false)
{
    Console.WriteLine("Failed updating list:"+res);
}
```

Getting a list of distribution lists should also be familiar. Again, as with other list fetching routines it's good to put into place paging practices – although distribution lists are considerably smaller to fetch top level details for than handlers or users, it's still good practice to limit fetches to 100 objects at a time. This code chunk goes through all public lists found in the directory, 25 lists at a time:

Updating Distribution List Membership

Simple updates of lists were show above for the handful of properties you can edit at the top level such as display name and extension. Of more interest, of course, is managing the membership information of a list. We'll show here how to add users and list as members and then remove them. First, let's add a public list as a member to another public list:

```
//Fetch a distribution list and add the "Undeliverable Messages" DL
//as a member of it.
DistributionList oList;
res = DistributionList.GetDistributionList(out oList, connectionServer, "", "newdl");
if (res.Success == false)
```

```
{
    Console.WriteLine("Failed finding list:" + res);
    return;
}
//now fetch the "undeliverable messages" list to add as a member
DistributionList oMemberList;
res = DistributionList.GetDistributionList(out oMemberList, connectionServer, "", "u
ndeliverablemessages");
if (res.Success == false)
    Console.WriteLine("Failed finding member list:"+res);
    return:
}
//add the Undeliverable Messages DL as a member to our new dl
res = oList.AddMemberList(oMemberList.ObjectId);
if (res.Success == false)
{
    Console.WriteLine("Failed adding list as member:"+res);
}
```

Now let's add a user to that same distribution list (won't show fetching the first list again for brevity):

```
//fetch the "operator" user to add as a new member
UserBase oOperator;
res = UserBase.GetUser(out oOperator, connectionServer, "", "operator");
if (res.Success == false)
{
    Console.WriteLine("Failed finding operator:"+res);
    return;
}

//add the operator as a member to our new dl
res = oList.AddMemberUser(oOperator.ObjectId);
if (res.Success == false)
{
    Console.WriteLine("Failed adding operator as member:"+res);
}
```

In both these cases if the list you are adding the list or user as a member already contains that list/user as a member, the call will return an error from the server – be sure to check the error reasons as this will be common. Checking the membership up front is expensive, it's easier to add a member and check the result.

Removing members is a bit more work – there's no easy way to fetch a member by name or alias with a query, you need to iterate over the list's membership to find the specific user or list you wish to remove and removed them by their membership identifier. To be clear, you do not remove a member by the object's identifier (i.e. the ObjectId of the user themselves for instance) but by their membership objectId – which means you have to find the member in the list before you can remove them.

This code chunk iterates through the members looking for a user with an alias of "operator" and removes it if found:

```
//find the operator user and remove them as a member if found.
//first, fetch the members of the list
List<DistributionListMember> oMembers;
res = oList.GetMembersList(out oMembers);
if (res.Success == false)
{
    Console.WriteLine("Failed fetching members:"+res);
```

```
return;
}
//iterate over members looking for the operator user
foreach (var oMember in oMembers)
    if (oMember.MemberType == DistributionListMemberType.LocalUser &&
        oMember.Alias.Equals("operator"))
        res = oList.RemoveMember(oMember.ObjectId);
        if (res.Success)
        {
            Console.WriteLine("Member removed");
        }
        else
        {
            Console.WriteLine("Failed removing member:"+res);
        }
        return;
    }
}
Console.WriteLine("Member not found in list");
```

Voice Names

Voice names for distribution lists get used in the message addressing conversation only – they are played as confirmation when including a list in the address for a message. This code chunk shows how to update and then turn around and fetch the voice name WAV file for a distribution list:

```
//Fetch a distribution list set and then get the voice name
DistributionList oList;
res = DistributionList.GetDistributionList(out oList, connectionServer, "", "newdl")
;
if (res.Success == false)
    Console.WriteLine("Failed finding list:" + res);
    return;
}
res = oList.SetVoiceName(@"c:\VoiceNameIn.wav", true);
if (res.Success == false)
    Console.WriteLine("Failed setting voice name:"+res);
res = oList.GetVoiceName(@"c:\VoiceNameOut.wav");
if (res.Success == false)
{
    Console.WriteLine("Failed getting voice name:" + res);
}
```

There is also the "SetVoiceNameToStreamFile" method exposed which is used when recording the voice name via the CUTI interface (using the phone as a media device). Set the <u>example for setting the voice name for a User</u> for details on how that works.

Locations

All objects created in the Unity Connection database get assigned to a location when they are created. The vast majority of them are assigned to the "primary location" that is created when you install Connection to begin with. This is the location that uniquely identifies a Connection server on a network. Since it's something that needs to be used when creating new objects many times as well as for filters and such, the ConnectionServer class has the "PrimaryLocationObjectId" property built into it for each retrieval – this is implemented as a "lazy fetch" such that it only issues a query to the server once and then stores the value locally after that – this value can never change for a server once installed so there's no worry of it changing out from under you while your application runs.

So, other than it being required as a parameter when creating some types of objects, why do you care? If you're building an application that needs to communicate with a network of Connection servers you care a lot. There are two very interesting things you can do with locations that we'll work through some real world samples here. The first is discovering all the Connection servers in the network armed only with the server name for one of them (assuming the admin credentials are identical on all servers in the network which is a fairly common model). The second, and really the primary driver here, is to find a "global user" and then hop to that user's home Connection server to access or edit their data.

We'll build a simple application that creates ConnectionServer instances for every Connection server on a network: remember, you can communicate with multiple Connection servers in your application safely as the ConnectionServer class is designed to work in a multiply threaded application and "bottleneck" all HTTPS communications through a single static instance – in other words your HTTP data is not going to be stepping on itself sending/receiving to multiple servers even if you're doing it on different threads – they will simply have to politely wait in line for their turn. Once we have all these server instances created we'll move on to using them when "hopping" to home servers for global users you find in the directory.

To review: a small amount of data about users replicates around to all Connection servers in a network. Their name, extension, recorded voice name and some other properties are included in this. It's enough so they can be found in the directory and have messages addressed to them. However to gain access to all the user's data, edit the user, get to their messages etc... you must attach to that user's "home server" – in other words you need to jump to the server that owns the primary location object that user points to. Make sense? OK, let's build a simple example for how to handle finding users in the global directory and quickly doing something with that user on their home server.

Finding All Connection Servers in a Network

Before we can associate global users with their home servers we need to gather up all the Connection servers on the network – this sample goes through the entire process from scratch:

```
//our "anchor" Connection server we'll be attaching to first.
ConnectionServer connectionServer;
try
{
    connectionServer = new ConnectionServer("CUC10a", "CCMAdministrator",
         "ecsbulab");
}
//basic error handling - bark and bail.
catch (Exception ex)
    Console.WriteLine("Could not attach to Connection server: " + ex);
}
//.NET has a wide range of very useful container classes that can be leveraged here
//but the dictionary is simple and fits the bill. We'll use the primary
//locationObjectId value of the servers as their key for fetching the
Dictionary<string, ConnectionServer> oNetworkServers = new Dictionary<string,</pre>
         ConnectionServer>();
//add the first server to the dictionary.
oNetworkServers.Add(connectionServer.PrimaryLocationObjectId,connectionServer);
//now, get all the locations that the server we just attached to knows about - if
//the replication on the network is up to date this should include every server on
//the network.
List<Location> oLocations;
WebCallResult res = Location.GetLocations(connectionServer, out oLocations);
```

```
if (res.Success == false)
    Console.WriteLine("Failure fetching locations:"+res);
}
foreach (var oLocation in oLocations)
    //don't try to add the "anchor" Connection server to the dictionary again
    if (oLocation.ObjectId == connectionServer.PrimaryLocationObjectId)
    {
        continue;
    //locations can point to different destination types - we're only interested in
    //other Unity Connection servers in the network.
    if (oLocation.DestinationType == (int)LocationDestinationTypes.UnityConnection)
    {
        //create a new Connection server instance for this target - this assumes the
       //same admin credentials are being used for all servers of course. The
       //HostAddress contains the IP address of the server in question.
        try
        {
            ConnectionServer oNewServer = new
               ConnectionServer(oLocation.HostAddress, connectionServer.LoginName,
               connectionServer.LoginPw);
            oNetworkServers.Add(oLocation.ObjectId,oNewServer);
        }
        catch (Exception ex)
        {
            Console.WriteLine("Error attaching to server:"+ex);
            return;
        }
    }
}
//at this point we have all the locations on the network tucked into the
//dictionary - for fun list all the servers we found.
Console.WriteLine("Connection servers found:");
foreach (var oServer in oNetworkServers.Values)
{
    Console.WriteLine(oServer.ToString());
}
```

Finding the Home Server for a Global User

Now that we have a list of all the servers, we can easily "jump around" to different servers to get data for any user in the directory we find. A typical scenario would be using the alias or extension to find a user in the global directory and then fetch their details. What you want to do with the user is not really important; this just covers the fetch mechanism. This builds on the example above, I'll just pick up where it left off here:

```
//If the directory replication is working properly all users should be
//represented as a global user on every Connection server in the network.
//So looking for a user by their alias here can be done against our "anchor"
//Connection server no problem.
GlobalUser oGlobalUser;
res =GlobalUser.GetUser(out oGlobalUser, connectionServer, "", "jlindborg");
if (res.Success == false)
{
    Console.WriteLine("Failed fetching user by alias:"+res);
    return;
```

```
}
//fetch the home server using the locationObjectId off the global user object
//and leveraging the simple dictionary of servers we constructed in the above
//example.
ConnectionServer oTempServer;
if (!oNetworkServers.TryGetValue(oGlobalUser.LocationObjectId,out oTempServer))
    Console.WriteLine("Failed fetching Connection server for location="+
        oGlobalUser.LocationObjectId);
    return;
}
//now fetch the details for the user off their home server. The ObjectId of the
//global user will match the objectId of the user in their home server.
UserFull oUserFull;
res = UserBase.GetUser(out oUserFull, oTempServer, oGlobalUser.ObjectId);
if (res.Success == false)
    Console.WriteLine("Failed fetching user details:"+res);
}
//now we have the UserFull isntance for this user - we can get their transfer
//rules, edit their name, get at their messages etc... Easy.
Console.WriteLine("Fetched user:"+oUserFull);
```

See? That's not so bad – In a little more than a page of code you've created an easy way to get at all your users corporate wide with a minimum of fuss and muss. Be sure to tell your boss it was super hard and pad some goof-around time into your schedule.

Roles and Policies

Users in Connection can be assigned to a set of roles that determine access to the administrative interface and/or the ability to do things such as change the greetings for call handlers they are listed as the owner for. There are a static set of roles with fixed names (i.e. you cannot add or remove roles in Connection currently) and users are assigned to roles by creating a policy that maps the user to the role – and in the case of some roles further maps it to an object (such as a call handler) that the role applies to. Yes, this is a little bit ugly to deal with.

Don't fret; the SDK is here to make your life a bit easier. The Policy class has a few static methods that will save you a bunch of time for a couple common tasks. One item you may want to do when authenticating users for access to certain sites or the like is to check which role(s) they are assigned to quickly. This sample shows validating a user's alias and password and then checking to see if that user has the "Audio Text Administrator" role assigned to them.

```
UserBase oTestUser;
//validate the user's alias and password are valid and get the user details
//off the server in one shot
if (!connectionServer.ValidateUser("jlindborg", "ecsbulab", out oTestUser))
{
    Console.WriteLine("Validation failed, exiting");
    return;
}

//get the list of role names (if any) the user is assigned to
List<string> oRoleNames;

res = Policy.GetRoleNamesForUser(connectionServer, oTestUser.ObjectId, out oRoleNames);

if (res.Success == false)
{
```

```
Console.WriteLine("Failed fetching roles for user:"+res);
    return;
}

//check to see if the user has the "Audio Text Administrator" role assigned. This
is case
//sensitive.
if (oRoleNames.Contains("Audio Text Administrator"))
{
    Console.WriteLine("User has the audio text administrator role!");
}
else
{
    Console.WriteLine("User does not have audio text administrator role.");
}
```

Another task you may want to do here is to check if the user is the owner of a call handler – among other things this dictates if they have the right to update that call handler's greeting from over the phone – this is the "Greeting Administrator" role, however you need to do a little more work to see that they have the role against a particular call handler you're interested in. When you assign a user as an owner of a call handler (a handler can have many owners) then the user is given the Greeting Administrator role for that handler. This code chunk validates a user and checks to see if they're listed as an owner of the opening greeting call handler:

```
UserBase oTestUser;
//validate the user's alias and password are valid and get the user details
//off the server in one shot
if (!connectionServer.ValidateUser("jlindborg", "ecsbulab", out oTestUser))
    Console.WriteLine("Validation failed, exiting");
    return;
}
//fetch the opening greeting call handler
CallHandler oCallHandler;
CallHandler.GetCallHandler(out oCallHandler, connectionServer, "",
        "Opening Greeting");
//we need the ObjectId of the Greeting Administrator role to compare with.
string strRoleObjectId= Role.GetObjectIdFromName(connectionServer,
        "Greeting Administrator");
//get all the policies for our user
List<Policy> oPolicies;
res = Policy.GetPoliciesForUser(connectionServer, oTestUser.ObjectId,
       out oPolicies);
//get a little tricky with LINQ - this determines if the user is listed as
//and owner of the opening greeting call handler
if (oPolicies.Any(oPolicy =>
        oPolicy.RoleObjectId == strRoleObjectId &&
        oPolicy.TargetHandlerObjectId == oCallHandler.ObjectId))
{
    Console.WriteLine("User is an owner for the call handler");
}
else
{
    Console.WriteLine("User is not an owner for the call handler");
}
```

Setting Actions

Actions are a set of values on many objects in various places in the database that define what to do with a user on the phone in the Connection conversation. For instance after leaving a message there is an "action" that lets you decide

where the caller goes after the message is send – hang up on them (rude!), send them to the opening greeting, send them to the "say goodbye" call handler etc...

Since this comes up in so many places in the Connection database scheme, I'm going to discuss the meaning and use of the three properties related to "action" options here instead of repeating it all over the place. You'll have to apply the information here to the specific area in question which means the property names may be a little different. For instance UserFull has 3 properties for where to go when users exit their mailbox conversation called ExitAction, ExitTargetConversation and ExitTargetHandlerObjectId. The DirectoryHandler class actually has 4 separate sets of action properties for "Exit", "NoSelection", "NoInput" and "Zero" used as prefixes. They all work identically regardless of naming convention. I believe your grasp of transitive relationships is up to the challenge this bit of documentation simplification requires.

One of the common design patterns in the Connection database schema is the use of the "Action trinity" which allows for the definition of what to do with a call by defining three properties:

- Action. Integer that enumerates 9 types of actions you can do with a call.
- TargetConversation. If the action is "2" which means "goto", you have to indicate the conversation name that will "talk to" the caller. I'll explain this in a bit, it's not as confusing as it sounds.
- TargetHandlerObjectId. Again, if the action is "2" for "goto" in addition to the conversation you need to load a call handler, interview handler or name lookup handler. These are the only objects in Connection that can handle processing calls. You can't for instance, route a call to a schedule or a public distribution list.

As noted above the naming conention for these three properties will vary slightly depending on which object and action you're working with but they all work identically.

The leadoff hitter in this trinity is the Action value. It can be one of 9 different values:

- 0. **Ignore**. Only applies to menu entries.
- Hang up. Pretty self-explanatory I hope.
- 2. Goto. Send the call to another destination including a special conversation.
- 3. Play the Error Greeting. Can only be used with menu entries and greeting rules. Usual option to map.
- 4. Take a message. Can be used on menu entries and greeting rules.
- 5. Skip greeting. Only applies to menu entries.
- 6. Restart greeting. Only applies to menu entries.
- 7. Transfer to alternate contact number. Only applies to menu entries.
- 8. Route from next routing rule. Special option that sends the call back to the inbound call routing rule and it "picks up where it left off" in processing the rules. This can be used for processing inbound calls that play a special message for everyone and then go back to processing the call rules as normal for scenarios like "snow day" messages and other system alert type setups.

You'll of course notice that several of the actions are only used in the menu entry key object. "Skip greeting" doesn't make much sense when exiting the subscriber mailbox conversation for instance. Note, however, that typically you won't get an error back from the REST API call if you set an action that doesn't make sense so long as the value is legal (i.e. an integer). So if you set the exit action for a user to "3" it returns "OK" and does, in fact, set the action value to 3 – however the behavior of the conversation becomes "undefined" at that point so let's just agree not to do that, ok?

Easily the most used and most powerful option is "2" which is goto. This gets used to launch a special conversation or go to another handler object. We'll cover the first one now – the list of conversation names you can send a call too that do NOT require a handler object destination are:

- SubSystemTransfer. Allows a subscriber to dial a number to transfer to the user must log in first.
- SystemTransfer. Allows the caller to "free dial" a number to transfer to (it must pass a system restriction table first, of course).
- BroadcastMessageAdministrator. Allows a subscriber to manage broadcast messages for the server if their settings allow for it. The user must log in first.
- GreetingsAdministrator. Allows a subscriber to manage greetings for call handlers they are listed as owners
 for. The user must log in first.
- SubSignIn. Goes to the subscriber sign in conversation (user is asked to enter ID and PIN).

The SubSystemTransfer, BroadcastMessageAdministrator and GreetingsAdministrator conversations don't make much sense as options outside the subscriber conversation any longer since the custom key map options allow you to grant those options right off the top level subscriber menu which is much nicer. Since the user has to authenticate anyway it's easier for them to just dial into their mailbox like they always do and choose one of those options off their main menu.

Finally, there's the option for sending the caller to another handler. This requires you set the conversation name to one of these:

- AD. If you want to send the caller to a name lookup handler. "AD" used to stand for "Alpha Directory" many years ago.
- PHTransfer. If you want to send the call to the transfer entry point of a call handler (i.e. if a transfer option is configured to ring a phone it will), use this conversation name. "PH" here used to mean "Phone Handler" long ago before we realized we weren't handling phones, but calls.

- PHGreeting. If you want to send the call to the greetings entry point (i.e. skip any transfer options
 and go right to the greeting), use this conversation name.
- PHInterview. If you want to send the call to an interview handler, use this conversation name.

In addition to setting the conversation name in this case you also must provide the ObjectId of an appropriate handler. By "appropriate" I mean of the correct type. AD goes with a DirectoryHandler ObjectId, PHTransfer and PHGreeting go with a CallHandler ObjectId and PHInterview goes with an InterviewHandler ObjectId. Remember, when transferring a call to a user's greeting remember, you are sending the call to that **user's primary call handler**, not their user objectId. I see this mistake a lot. Don't do that.

NOTE: These Conversation names ARE case sensitive.

So – that's not really that complex. Let's see a few examples here for a couple different objects. First, let's set a user's exit action to go to the greeting for a call handler named "Jeffs Handler". We'll work this one all the way through fetching the user, then the handler then performing the update.

```
//fetch user with alias of "jlindborg" - the exit options are only on UserFull.
UserFull oUserFull;
res = UserBase.GetUser(out oUserFull, connectionServer, "", "jlindborg");
if (res.Success == false)
    Console.WriteLine("Could not find user in database by alias=jlindborg");
    return;
}
//fetch a call handler named "Jeffs Handler"
CallHandler oHandler;
res = CallHandler.GetCallHandler(out oHandler, connectionServer, "",
  "Jeffs Handler");
if (res.Success == false)
{
    Console.WriteLine("Failed to find handler"+res);
    return;
}
//set our user's exit destination to go to the greeting for Jeffs Handler -
//this means it will skip any transfer options if they're configured and go right
//to the active greeting.
oUserFull.ExitAction = (int) ActionTypes.GoTo;
oUserFull.ExitTargetConversation = ConversationNames.PHGreeting.ToString();
oUserFull.ExitTargetHandlerObjectId = oHandler.ObjectId;
res = oUserFull.Update();
if (res.Success == false)
{
    Console.WriteLine("Updating user failed:"+res);
}
```

Not that complicated. Notice the use of the enums provided in the library for making the code more readable. You could just plop a "2" in the ExitAction and that's legal but someone coming along later may not appreciate your magical coding practices – you'll find enums for more limited field values in the library.

Let's do another example. In this case we'll set the "7" menu entry key for a user to go to the sign in conversation.

```
//fetch user with alias of "jlindborg" - the exit options are only on UserFull.
UserFull oUserFull;
res = UserBase.GetUser(out oUserFull, connectionServer, "", "jlindborg");
if (res.Success == false)
{
    Console.WriteLine("Could not find user in database by alias=jlindborg");
```

```
return;
}
//fetch just a single key by name off the user's primary call handler
MenuEntry oMenuEntry;
res = oUserFull.PrimaryCallHandler().GetMenuEntry("7", out oMenuEntry);
if (res.Success == false)
    Console.WriteLine("Failed to fetch menu entry:"+res);
    return;
}
//update the 7 key so that it goes to sign in.
oMenuEntry.Action = (int)ActionTypes.GoTo;
oMenuEntry.TargetConversation = ConversationNames.SubSignIn.ToString();
res = oMenuEntry.Update();
if (res.Success == false)
{
    Console.WriteLine("Failed updating menu entry:"+res);
}
```

Notice that we didn't have to provide a value for the TargetHandlerObjectId in that one since the SignIn conversation doesn't need it. Ok, finally lets set the after message action for a call handler to hang-up.

```
CallHandler oHandler;
res = CallHandler.GetCallHandler(out oHandler, connectionServer, "",
    "Jeffs Handler");

if (res.Success == false)
{
    Console.WriteLine("Failed to fetch handler:"+res);
    return;
}

OHandler.AfterMessageAction = (int)ActionTypes.Hangup;
res = oHandler.Update();

if (res.Success == false)
{
    Console.WriteLine("handler update failed:"+res);
}
```

Again, notice that neither the conversation name or target handler objectld value needed to be provided since the sign in action does not require it. One or both of those only ever needs to be provided if the action is set to "2" for "goto".

Schedules

Schedules in Connection's API are notoriously daunting – both via REST and ODBC. At first blush they can be a little complex but when you break it down they aren't that bad. The SDK makes an effort to try and simplify interacting with them as much as possible.

Before we dig into the API calls, lets break down how schedules work in Connection. There are 3 elements to schedules:

- 1. Schedule Sets.
- Schedules.
- 3. Schedule Details.

The short version is a Schedule Set contains 1 or more Schedules. A schedule contains 0 or more Schedule Details. I know... hang with me, this isn't that bad.

A schedule detail consists of a start time and end time stored as minutes from midnight and a Boolean flag for each day of the week indicating it's active or not. So a single schedule detail can be something like "from 8am to 5pm, Monday through Friday".

A schedule can contain any number of schedule details. A simple schedule will just be one – the "Monday through Friday 8am to 5pm" is an example of that. But what if you wanted something like "8am to 5pm Monday, Wednesday, Friday and 7am to 4pm Tuesday and Thursday"? You'd create two details – one for Monday, Wednesday and Friday and another for Tuesday and Thursday. Combined these two details give you what you want. You'd do the same thing if you wanted Monday through Friday 8am to 12pm and 1pm to 5pm (i.e. closed during lunch). You'd do two different schedule details for that. You can get as complex or crazy as you want to here. Typically 1 or 2 details is all that are needed unless you're getting really funky.

A schedule set can contain 1 or more schedules. Why? Holidays. A schedule can be designated as a "holiday" schedule or not. So typically a Schedule set consists of one regular schedule (with associated details) and one holiday schedule (usually that has details that consist of single, whole day items representing holidays on the company calendar). The holiday schedule isn't required but it's pretty normal.

The one thing to keep in mind is that the item you associate users, call handlers, notification devices etc... that have "schedule" references is actually the ObjectId of the schedule set. You never reference schedules or schedule details externally.

OK? Don't worry – the SDK hides the ugliness of checking to see if a schedule is active or not and creating simple schedules for you.

First, lets start with an easy item – get the schedule set for a user's call handler and see if it's active, inactive or holiday according to the schedule for the current time. These are the only three states a schedule can report itself in which is used for greeting selection. If it's active the standard greeting is played, if inactive the after hours greeting is played (if it's recorded) and if it's a holiday the holiday greeting plays (if it's recorded).

```
ScheduleState oState;
//There's a "lazy fetch" to get the primary handler off the user and another
//lazy fetch off the handler to get the schedule set.
oState = oUser.PrimaryCallHandler().GetScheduleSet().GetScheduleState(DateTime.Now);
//will output "ACTIVE", "INACTIVE" or "HOLIDAY" depending on what the schedule details
//the user is assigned
Console.Writeline("Current schedule state for user="+oState.ToString());
//will output all the schedule detail items for all schedules (both regular and
//holiday) that the user is associated with.
foreach (Schedule oSchedule in oUser.PrimaryCallHandler().
   GetScheduleSet().Schedules())
{
     Console.WriteLine("Schedule Name="+oSchedule.DisplayName);
     foreach (ScheduleDetail oDetail in oSchedule.ScheduleDetails())
         Console.WriteLine("Details in schedule:");
         Console.WriteLine(oDetail.DumpAllProps(" "));
 }
```

So you can see the schedule details being iterated over for a schedule and the schedules being iterated over in a schedule set which, in turn, is associated with the user's primary call handler here. Reasonably straight forward when you get the basic object model down.

So the next task is actually creating a schedule that you can use. There's an example showing how to create a schedule for a notification device assigned to a user in the Notification Device section you can review, but let's see that same simplified one step schedule creation for a system schedule (one that will appear in the schedule section in the CUCA web based administration interface). We'll create a schedule that's active Monday, Wednesday and Friday from 5am to 2pm:

```
//Fetch the primary location for the Connection server we're using
List<Location> oLocations;
res = Location.GetLocations(connectionServer, out oLocations,
    "query=(IsPrimary is 1)");
if (res.Success == false || oLocations.Count != 1)
{
    Console.WriteLine("Failed fetching primary location:"+res);
    return;
```

Note that you can also "steal" the primary location object off just about any other object you've already fetched from the Connection directory as most objects contain a "LocationObjectId" reference which is almost always the primary location object of the server they are created on. But in this example I fetch it "plain" off the Location class.

OK, so that's not so bad. But now what if you want to get really tricky and create some crazy detailed schedule for some reason? Lets say Monday, Wednesday and Friday it's active from 8am to 12pm and from 1pm to 5pm and Tuesday and Thursdays it's active from noon to 5pm. Then we need to break it down and do it by parts:

```
//first, create the schedule set
ScheduleSet oScheduleSet;
res = ScheduleSet.AddScheduleSet(connectionServer, "Test Sched", strLocationObjectId
  , "",out oScheduleSet);
if (res.Success == false)
{
    Console.WriteLine("failed creating schedule set:" + res);
}
//now create a schedule
Schedule oSchedule;
res = Schedule.AddSchedule(connectionServer, "Test Sched", strLocationObjectId, "",
  false, out oSchedule);
if (res.Success == false)
    Console.WriteLine("Failed creating schedule:"+ res);
    return;
}
//now add some details to our schedule
//Monday-Wednesday-Friday before lunch.
res=oSchedule.AddScheduleDetail("MWF 8am-12pm",
  Schedule.GetMinutesFromTimeParts(8,0), Schedule.GetMinutesFromTimeParts(12,0),
  true, false, true, false, true, false, false);
if (res.Success == false)
{
    Console.WriteLine("failed adding detail:"+res);
}
// Monday-Wednesday-Friday after lunch
res = oSchedule.AddScheduleDetail("MWF 1pm-5pm",
  Schedule.GetMinutesFromTimeParts(13,0), Schedule.GetMinutesFromTimeParts(17,0),
  true, false, true, false, true, false, false);
if (res.Success == false)
```

```
Console.WriteLine("failed adding detail:" + res);
}
//Tuesday, Thurs 1 to 5.
res = oSchedule.AddScheduleDetail("TTh 1pm-5pm",
  Schedule.GetMinutesFromTimeParts(13,0), Schedule.GetMinutesFromTimeParts(17,0),
 false, true, false, true, false, false, false);
if (res.Success == false)
{
    Console.WriteLine("failed adding detail:" + res);
}
//Finally, add our schedule to the schedule set
res = oScheduleSet.AddScheduleSetMember(oSchedule.ObjectId);
if (res.Success == false)
{
    Console.WriteLine("Failed adding schedule to set:"+res);
}
```

A bit more work to be sure but really not that bad if you break it down into its parts.

Languages

Dealing with language settings can sometimes be troubling since fetching the installed languages from the server for various types is tedious. The SDK provides a simple InstalledLanguage class that takes care of most of this for you. There are four types of language functions in Connection: TUI, VUI, GUI and TTS. To review nomenclature here:

TUI = Touch tone user interface (phone conversation)

GUI = Graphical user interface (web admin)

VUI = Voice driven user interface (speech recognition - currently only US English)

TTS = Text to Speech engine for reading text.

The following code chunk shows the process of fetching the installed language details from a Connection server and using it in your application to review the languages and check if specific languages are installed for specific functions:

```
//get the installed languages on the server
InstalledLanguage oLanguages;
try
{
    oLanguages = new InstalledLanguage(connectionServer);
}
catch (Exception ex)
{
    Console.WriteLine("failed fetching languages:"+ex);
    return;
}
//dump all installed languages out - includes their ID, description and type.
foreach (var oLang in oLanguages.InstalledLanguages)
{
    Console.WriteLine(oLang.ToString());
}
//check to see if languages are installed - defaults to checking for TUI language
type.
Console.WriteLine("1033 TUI=" + oLanguages.IsLanguageInstalled(1033));
Console.WriteLine("1036 TTS=" +
oLanguages.IsLanguageInstalled(1036, LanguageTypes.TTS));
//if you don't know the language code or you don't like using "magic numbers" you
can use the LanguageCodes enum
```

```
Console.WriteLine("Japanese TUI=" +
oLanguages.IsLanguageInstalled((int)LanguageCodes.Japanese));
```

Time Zones

Time zones can be annoying to have to deal with given they change really more than they should. If you're like me there should be exactly 24 time zones and each locale in the world gets to pick one of them. I don't care which one, go wild, but that's it. This business where there are hundreds of different zones with 15 minute offsets and varying compliance with DST is just insane. But I digress. The SDK provides a TimeZones class that pulls all the timezones defined on the Connection server and provides an easy mechanism to get the details of the time zone users are associated with including daylight savings settings, bias, description and such. This code chunk shows how to create an instance of the TimeZone class and use it to display information about the time zone a user is associated with.

```
TimeZones oZones;
try
{
     oZones = new TimeZones(connectionServer);
}
catch (Exception ex)
    Console.WriteLine("Failed fetching time zones:"+ex);
    return;
}
ConnectionTimeZone oCxnTimeZone;
res =oZones.GetTimeZone(oUserBase.TimeZone, out oCxnTimeZone);
if (res.Success == false)
    Console.WriteLine("Failed to fetch user time zone:"+res);
    return;
}
//dumps out the id, display name and bias of the time zone.
Console.WriteLine(oCxnTimeZone.ToString());
```

Partitions

Partitions and search spaces work together to provide a way to group objects and extensions and allow for things such as overlapping numbering plans, tenant services type object segmentation and the like. A lot of folks can get confused over how they work and why they're used so let's cover the basics here.

All directory objects (i.e. anything that can contain an extension number – users, contacts, call handlers, interviewers, distribution lists, name lookup handlers, locations...) are assigned to a partition. This includes alternate extensions which are separate items – in other words a user can have alternate extensions that are homed in OTHER partitions than the user is assigned to. I know, it seems strange but you may want users in other partitions to be able to dial you by specific numbers.

All extension numbers for all objects in a partition must be unique. In a basic install of Unity Connection there is a single partition and a single search space. All directory objects are assigned to the one partition which is contained in the single search space. Everyone can dial everyone else, there's no overlapping numbers, all is well.

In a larger organization it's typical that everyone has a "short dial" number such as a 4 digit extension. These can typically overlap in the global directory – so there can be two people with the extension "3189". Those user's must be in separate partitions then or it's a conflict. Typically then they will have a 2nd globally unique number (i.e. a 10 digit number). These can all live in a single partition.

For instance you might have a setup like this:

```
"Global Partition"
```

"Chicago Partition"

"San Jose Partition"

"Seattle Partition"

So everyone has their short extension assigned to either Chicago, San Jose or Seattle. Everyone's long unique extension is in the Global partition. Now, what about the search space? Every server could have a single search space that contained all 4 of the partitions (remember, partitions replicate around the network). So in Seattle search space would contain the Global partition and the Seattle partition followed by the San Jose and then the Chicago partition.

Order in the search space is important. If someone in Seattle called into Connection and dialed "3189" it will search the global partition first, not find a match, then go to Seattle's partition and search – it will find me and take it. If there's other "3189" extensions in Chicago and/or San Jose they won't be found – it's a "first match wins" model.

But I can dial anyone in the directory using their 10 digit unique number which gets picked up in the global partition. See? You can get all kinds of complex including 7 digit numbers and the like but at its root the partition and search space objects work together to create an extension grouping mechanism. Not so complex.

There's very few properties on a partition, basically just its name and description – a partition doesn't have any functionality unto itself, it's really just a placeholder to indicate grouping membership.

Finding and Fetching Partitions

```
//All partitions from all servers can be found - they replicate around the
//network like users and locations do.
List<Partition> oPartitions;
WebCallResult res = Partition.GetPartitions(connectionServer, out oPartitions);
if (res.Success == false)
{
    Console.WriteLine("Failed fetching partitions:"+res);
    return;
}
foreach (var oPartition in oPartitions)
{
    Console.WriteLine(oPartition);
}
```

Creating, Editing and Deleting Partitions

The Partition class follows the same design conventions that most of the other object classes do allowing for creating via static methods, updates off instances and such – this code chunk shows creating a new partition (the name must be unique), editing the description and then deleting the partition.

```
Partition oPartition;
WebCallResult res = Partition.AddPartition(connectionServer, out oPartition,
    "New Partition", "New partition");
if (res.Success == false)
    Console.WriteLine("Failed creating partition:"+res);
    return:
}
Console.WriteLine("Partition created:"+res);
//update the description of your new partition
oPartition.Description = "My new description";
res = oPartition.Update();
if (res.Success == false)
{
    Console.WriteLine("Failed updating partition:"+res);
    return;
//delete the partition you just added
```

```
res = oPartition.Delete();
if (res.Success == false)
{
    Console.WriteLine("Failed deleting partition:"+res);
}
```

Search Spaces

Search spaces work with partitions for directory segmentation – see the <u>Partitions</u> section above for a breakdown of how the segmentation mechanism is design.

Like partitions, search spaces don't have much information on them besides names and descriptions – the exception here is that you associate partitions with them. A search space should have at least one partition but can have many. As noted in the partitions section the order of the partition assignment is important since the first match for an extension number is the one selected even if other partitions later in the list also contain that same extension.

Whenever an extension is searched against for any reason there's a search space to dictate the limits of that search. This includes a user signing into their mailbox and addressing a message by extension, a caller dialing an extension number from a call handler greeting or the like.

Call handlers are assigned to one search space, mapped to its "CallSearchSpaceObjectId" property. Users, however, have two(!?). One is used to dictate the scope of the search when the user is addressing messages using extension numbers and there is a separate one for dictating the scope when addressing by speech recognition. Currently these are always mapped to the same search space in the web admin interface but fun fact: you can set them separately in the API. Use your powers only for good.

Finding and Fetching Search Spaces

Like most of the other classes in the SDK, you can fetch the search spaces using static methods, nothing unusual here, hopefully.

```
List<SearchSpace> oSearchSpaces;
WebCallResult res = SearchSpace.GetSearchSpaces(connectionServer, out
oSearchSpaces);
if (res.Success == false)
{
    Console.WriteLine("Failed fetching search spaces:"+res);
    return;
}
Console.WriteLine("Search spaces found:");
foreach (var oSpace in oSearchSpaces)
{
    Console.WriteLine(oSpace);
}
```

Creating, Editing and Deleting Search Spaces

In this code chunk we'll create two new partitions, create a search space and then add those two partitions to it in order. Finally we'll assign the new search space to a user.

```
Partition oPartition2;
res = Partition.AddPartition(connectionServer, out oPartition2,
"Partition2", "Partition2");
if (res.Success == false)
    Console.WriteLine("Failed creating partition:" + res);
    return;
}
//create the new search space
SearchSpace oSearchSpace;
res = SearchSpace.AddSearchSpace(connectionServer, out oSearchSpace, "New
SearchSpace", "New SearchSpace");
if (res.Success == false)
{
    Console.WriteLine("Failed creating search space:"+res);
    return;
}
//Add the partitions in order
res = oSearchSpace.AddSearchSpaceMember(oPartition1.ObjectId, 1);
if (res.Success == false)
    Console.WriteLine("Failed adding partition:"+res);
}
res = oSearchSpace.AddSearchSpaceMember(oPartition2.ObjectId, 2);
if (res.Success == false)
{
    Console.WriteLine("Failed adding partition:" + res);
}
//Now update a user's search space. Its good style to assign both the
//extension search space and name search space limits to be the same since
//this is what the CUCA web admin interface does.
UserFull oUser;
res = UserBase.GetUser(out oUser, connectionServer, "", "jlindborg");
if (res.Success == false)
{
    Console.WriteLine("Failed fetching user:"+res);
    return;
}
oUser.SearchByExtensionSearchSpaceObjectId = oSearchSpace.ObjectId;
oUser.SearchByNameSearchSpaceObjectId = oSearchSpace.ObjectId;
res = oUser.Update();
if (res.Success == false)
{
    Console.WriteLine("Failed updating user:"+res);
}
```

User Templates

Coming after Unity Connection 10.0 release

Call Handler Templates

Coming after Unity Connection 10.0 release

Class of Service

Finding and Fetching Classes of Service

First, we'll just list all the Class of Service objects on the server – normally there's not that many of these so there's no paging construct built into the class. If someone comes up with a system that has thousands of classes of service, we'll come back to that, but first I want to hear why you have some many classes of service!

```
//fetch all the Class of Service objects on the server and list them
List<ClassOfService> oCoses;

res = ClassOfService.GetClassesOfService(connectionServer, out oCoses);

if (res.Success == false)
{
    Console.WriteLine("Failed to fetch Coses:"+res);
    return;
}

foreach (var tmpCos in oCoses)
{
    Console.WriteLine(tmpCos.ToString());
}
```

To fetch a class of service by name, you can just pass in the name to the static class method. Names for classes of service are required to be unique across all classes of service so it's fine to do this. The name is not case sensitive here.

```
ClassOfService oCos;
res = ClassOfService.GetClassOfService(out oCos, connectionServer, "",
    "Voice Mail User COS");
if (res.Success == false)
{
    Console.WriteLine("Failed to find COS:"+res);
}
```

Finally, there are some lazy fetch handles for getting the restriction table definitions for outcalling, transfers and fax numbers you can use. For instance if you wanted to see the restriction table definition for transfer numbers assigned to a particular user, you could do it like this:

```
RestrictionTable oTable = oUser.Cos().TransferRestrictionTable();
Console.WriteLine("Transfer RT="+oTable.ToString());
Console.WriteLine("Restriction patterns:");

foreach (var oPattern in oTable.RestrictionPatterns()) {
        Console.WriteLine(" "+oPattern.ToString());
}
```

Creating, Updating and Deleting Classes of Service

The next code chunk shows how to create a COS, update its properties and then delete it. Note that if you try and delete a class of service that has users associated with it, the delete attempt will fail. You must reassign users associated with a COS first before removing it.

```
ClassOfService oCos;
res = ClassOfService.AddClassOfService(connectionServer, "My Cos", null, out oCos);
if (res.Success == false)
```

```
{
    Console.WriteLine("Failed creating COS:"+res);
    return;
}
//update COS
oCos.CanRecordName = true;
oCos.AccessAdvancedUserFeatures = true;
oCos.DisplayName = "New Display Name";
oCos.MovetoDeleteFolder = true;
res = oCos.Update();
if (res.Success == false)
{
    Console.WriteLine("Failed updating COS:"+res);
    return;
res = oCos.Delete();
if (res.Success == false)
{
    Console.WriteLine("Failed deleting COS:"+res);
}
```

Similar to user creation shown earlier you can create a COS and pass a series of name property values in that will be applied to that COS at creation time instead of first creating the COS and updating it as I've shown here. I pass it as null in this example and update it via the easier instance method since normally you won't be creating large numbers of COSes in batch that would warrant passing the parameters in up front.

Phone Systems and Port Groups

Coming after the Unity Connection 10.0 release.

Cross Launching CUCA Admin Web Pages

Unity Connection provides a lot of administration options for many, many objects in the database via the CUCA web administration interface. Often when building an application you may want to provide a small slice of custom functionality but you don't want to take on rebuilding the entire administration interface for a particular object (good luck with that if you want to go that route). One trick I leverage often in my customer applications is to provide an option to launch the CUCA interface directly to the object in question and let the user leverage the existing CUCA administration options directly. Since only a single frame from the interface is shown you can even get fancy and embed this page into your own interface if you like.

The CUCA admin interface provides for this using a feature called "cross launch". All this entails is a specially constructed URL that identifies the object type and the specific instance of that object you want to show. For instance if you want to show the admin page for a specific user on a server name "CUC91Test" the URL for that would look like this:

https://CUC91Test:8443/cuadmin/user.do?op=read&objectId=b083a973-c2a4-4373-aae9-34678ab08d32

of course the ObjectId there at the end identifies a specific user you want to show. You can then launch that page using a specific browser of just let Windows launch the URL in whatever browser the user has registered for default handling of web pages.

This can save you a ton of time when developing applications and can provide your users with a much nicer and fuller experience using your tools. Since there are a lot of object types and constructing the URLs for them all is a bit tedious I added a helper method for this in the ConnectionServer class that can be used for this. The following code chunk shows how to use it and launch the page in the default browser.

```
//fetch user with alias of "jlindborg"
UserFull oUser;
WebCallResult res = UserBase.GetUser(out oUser, connectionServer, "","jlindborg");
if (res.Success == false)
{
    Console.WriteLine("Could not find user in database by alias=jlindborg");
```

```
return;
}

//launch the user's admin page in CUCA using "cross launch" feature
string strUrl = connectionServer.GetCucaUrlForObject(ConnectionObjectType.User,
    oUser.ObjectId);

//launch in browser registered on the client
System.Diagnostics.Process.Start(strUrl);
```

How easy was that? Just about every object type you can get to in the CUCA administration pages is handled by the construction method so just about anything from routing rules to call handlers, interviewers, distribution lists and users can be accommodated. Sometimes I wish I could turn off the awesome, it can be a burden at times.

Building Portals

A common need is for an application to be doing operations against Unity Connection using CUPI (Administrator rights needed) but allowing non administrators (i.e. end users) to authenticate/identify themselves to gain access to your application. A classic example is building a PIN/Password reset web service that limits which users they can reset PINs for. Say a company has local area admins and you want to allow them to go to a web page, sign in with their login and password from Connection and then be able to reset PINs for users only in their administrative group.

Let's just build the bones of that application here and walk through the steps – there's a simple ASP project showing how to do some of the basics via IIS if you're just getting started with web services (full disclosure: I don't "do pretty" – I'm nothing like a web jockey, it's a very basic example to get you started, nothing more!).

To be real clear, your application is logging into Connection for CUPI (i.e. full administrator) access, but folks using your portal do not need to be administrators – that's the point of the exercise here.

Step 1 - Authenticating Users for Access to Your Site.

The SDK makes this pretty easy. Collect the user name (alias) and the password (not the PIN, this only works for the GUI password for users in Connection – that's important) and you can validate the user and fetch their details in one step:

```
UserBase oUser;
if (connectionServer.ValidateUser("jlindborg", "ecsbulab",out oUser))
{
    Console.WriteLine("User validated:"+oUser.ObjectId);
}
else
{
    Console.WriteLine("User not validated");
}
```

If they failed to authenticate give them the bad news and kick them out – if they pass, open your new PIN reset application.

This works if our "jlindborg" user is a full administrator or just a user, doesn't matter – it validates that the alias is found and the password matches that account and if so, the UserBase object is passed back. It's important to note that there's no equivalent (currently) in the API for validating a user's PIN unfortunately – but for our purposes here the password is the appropriate credential to be using anyway. If you don't pass that last parameter in it does not do the secondary "GET" to fill in the user details – if you're validating a bunch of user credentials for some reason and don't want to DO anything with them, you do it more efficiently that way.

If you want to check for a Unity Connection role assignment for the user before letting them continue, you can check out the Roles and Policies section for an example of how to go about that.

Step 2 - Define the "Scope" of Users to Choose From

So, now that the user has accessed your super-cool PIN reset web site, you need to decide how you are going to determine WHICH users they can reset PINs for. You can simply allow them to reset anyone's PIN but that's probably not what you want since you can just give them the help desk Administrator role in Connection and have them do it through CUCA. More likely you want to be able to limit them to users in their specific administration area.

There's a couple different ways to approach this I've seen in the field:

- Leverage distribution list membership. System administrators create public distribution lists that contain users
 for a particular administration scope (say a single city in a large distributed corporation). Such lists are typically
 created and maintained anyway as regional messaging is a common need (i.e. for facilities related notifications
 and the like). So once the user authenticates grab the list they are associated with and allow them to choose
 any user that's a member of that list.
- 2. Leverage partitions. If each administration area assigns their users (and lists and handlers etc...) to a specific partition for that area this can easily be leveraged. This is a popular choice and efficient. Since partition assignment can be added to templates and separate templates would be used for each administration area it's pretty easy to maintain moving forward as well (distribution list maintenance can be a headache by comparison). Once the user authenticates, get their partition and find all users associated with that partition and this defines the list of users they can reset passwords for.
- 3. Leverage search spaces. Similar to partitions but if you need area admins to reset PINs for users that can span Connection clusters, you'll want to use search spaces instead. Search spaces replicate around and you can have users in multiple clusters assigned to the same search space. Typically admin areas are smaller than that and tend to be local so typically partitions are ok to use. Partitions are easier to work with than search spaces (which can contain many partitions) but either will work fine.
- 4. Use editable fields like "Building", "City", "Department" and such for determining admin group association. This is certainly easy but risky given how easy it is to change or fat-finger a string entry into these fields.
- 5. Provide an external mapping table of aliases/extensions to group membership you call on your own. Many sites already have their own provisioning systems configured with such data and they can simply plug their interfaces into their web portal and go to town. If that's you, carry on!

There are, of course, other methods that can be used such as COS assignment, naming conventions or extension ranges or the like, but I consider them all to be poor ideas on the whole that don't scale well and are difficult to maintain. Partition or search space assignment is what I normally recommend to sites starting with a "greenfield" project since partition objects are small, simple and partitioning is what they're designed to do (it's in the name!). As such, that's what we'll show here.

Step 3 – Pick an Object to Edit

Using the partition assignment method of grouping area users this is just about trivial. One you authenticate your area admin the exercise is to generate a list of users that are assigned to that partition:

```
//fetch user with alias of "jlindborg" - he's our area administrator for the west
//wing of the Lindborg manor.
UserBase oLocalAdmin;
if (!connectionServer.ValidateUser("jlindborg", "ecsbulab", out oLocalAdmin))
{
    Console.WriteLine("Not authorized! Buh, bye!");
    return;
}
//use the partition of the admin to gather a list of users they are allowed
//to reset PINs for. All the users in their partition in other words.
List<UserBase> oAreaUsers;
string strQuery = string.Format("query=(PartitionObjectId is {0})",
oLocalAdmin.PartitionObjectId);
res = UserBase.GetUsers(connectionServer, out oAreaUsers, strQuery);
if (res.Success == false)
    Console.WriteLine("Failed fetching area users:"+res);
    return;
}
```

At this point you have a full list of users the area admin is allowed to work against – you can present them in a grid or a simple drop down or the like. The above implementation assumes a fairly contained set of users an area admin is responsible for. If we're talking about hundreds of users then this design does not work well – you would instead provide a way for the area admin to enter an alias or extension, find the user that had that alias or extension and make sure they were a member of the same partition. This isn't quite as slick as presenting a grid view or something similar but is considerably faster and does not involve dragging loads of data across the wire from Connection to populate a large list or having to deal with paging scenarios.

Step 4 – Perform Edit.

Once the area administrator has selected a user they can act on it's a simple matter of performing the edit you want to allow in your portal – in this case resetting the PIN. You can let them enter a random PIN but for password and PIN reset portals I always prefer designs that generate the PIN or password, reset it and present it to the admin to communicate back to the user either over the phone or via email. A randomly generated 5 digit number or a password consisting of two dictionary word entries (i.e. "SunnyPancake") are much nicer for admins to deal with than having to enter their own. They also don't leave the account vulnerable for a period of time with a trivial password until the user logs in and changes it.

For this run through we'll simply be resetting the PIN to a random 5 digit number, setting it to require the user change it on next login and moving on. We'll just continue the example from above:

```
//lets just say the area admin picked the first user in the list of those
//in his area to reset here.
UserBase oAreaUser = oAreaUsers[0];
//simple 6 digit random number generation - note that the PIN policy at your
//company may have issues with repeated digits or minimum length you need to
//deal with.
Random random = new Random();
int iNewPin = random.Next(100000, 999999);
//Clear any locked flag, set to require reset on next login
res =oAreaUser.ResetPin(iNewPin.ToString(), false, true);
if (res.Success == false)
{
    Console.WriteLine("PIN Reset failed:"+res);
    return;
}
Console.WriteLine("PIN reset to: "+iNewPin);
```

Obviously the above is a very crude CLI example and you'll be dealing with pretty web or GUI desktop applications or the like, but you can see the process here is pretty straight forward for providing limited/specific task access to users without requiring they be granted administrator access in Unity Connection. Anything you can do in CUPI can be offered up, of course, it's up to you to safeguard your site access and be careful with what you offer up to your "limited" administrators.

Revision History

Version 2.0.15 - 3/22/2013

- Updated development guide to add more examples for user messages, filled in the system contacts and name lookup handler sections.
- Moved City, Department and Employeeld fields from the UserFull to UserBase definition.

Version 2.0.14 - 3/15/2013

- Major rework of UserMessage class adding reply, reply all, delete, methods to clear deleted items folder, working on forwarding (not complete yet) as well as the ability to update the read status of messages and the subject line from an instance or static call.
- Updating of internal variable naming conventions
- Code cleanup in HTTPFunctions and ConnectionServer classes to remove unused methods and additional comments.

Version 2.0.13 - 3/12/2013

 Exposed CreateMessage methods for both local WAV file and resourceld for CUTI interfaces off the UserMessage class.

Version 2.0.12 - 3/8/2013

- Added ability to pass in alternate user ObjectId to phone interface's message playback function so administrator logins with mailbox proxy access can use CUTI for playback.
- Added PrimaryLocationObjectId property off the ConnectionServer class.
- Added LocationDestinationTypes enum for code readability.
- Added option to build URL for cross launch of CUCA pages into the ConnectionServer class

Version 2.0.9 - 2/21/2013

- Added "ValidateUser" methods to the ConnectionServer class for easy alias/password validation of users targeted at "portal" type administrative applications.
- Updated Role class to include a quick option to get the ObjectId of a role by its name.

Version 2.0.8 - 2/17/2013

- Updated most object classes to return "true" on a fetch of a list of objects that returns no results along with an empty list instead of "false" and a null reference for ease of use.
- Updated developers guide for public distribution list functions.
- Changed formatting of PDF output on developers guide to align better for margins.

Version 2.0.7 - 2/14/2013

- Added NotificationTemplate class to fetch HTML device templates.
- Updated NotificationDevice class to allow for creation of new HTML notification devices.
- Added ConversationName enum to ConnectionTypes class.
- More updates to dev guide.

Version 2.0.6 - 2/13/2013

- Updated InstalledLanguage class (and test) to be more consistent with the rest of the library
- Updated CallHandler to not return error when no results on a query fetch were returned.
- Updated Schedule and TimeZone classes to support DumpAllProps and a few code comment fixes.
- More dev guide updates

Version 2.0.5 - 2/12/2013

- Added create, delete and update capabilities to the ScheduleSet class.
- Added create, delete and update capabilities to the Schedule class.

Version 2.0.4 - 2/11/2013

- Fixed some items in the sorting mechanism for user objects such that empty first/last/display name elements are sorted correctly.
- Fixed MWI and NotificationDevice classes to set the "Active" property correctly on new object creation
- Updated ToString override for RestrictionPattern to show blocked property for each pattern.
- Updated UserMessage class to include instance methods for fetching attachments and counts.
- Added first draft of developers guide into the project

Version 2.0.2 – 2/10/2013

- Added remaining unit tests for new classes brining the library code coverage up to %90 when tested against Connection 9.1
- Fixed various bugs in wrapped classes as part of the unit testing effort.

Version 2.0.1 - 1/16/2012

- First more or less "full" release of SDK functionality covering CUPI for administrators and the most common CUTI functionality. CUMI coverage is minimal at this point.
- This completely supersedes the 1.x version of the CUPI REST library previously available.

© 2013 Cisco Systems, Inc. -- Company Confidential