Rank-192 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_0^2 X_1 + X_0^2 X_2 + X_0 X_1^2 = 0$$

(0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) The point rank of the equation over GF(2) is 192

General information

Number of lines	5
Number of points	11
Number of singular points	1
Number of Eckardt points	0
Number of double points	0
Number of single points	10
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{5}
Type of lines on points	$5, 1^{10}$

Singular Points

The surface has 1 singular points:

0:
$$P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_6 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_6 = \mathbf{Pl}(0, 0, 0, 0, 1, 0)_9$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_5$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{13} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{13} = \mathbf{Pl}(0, 0, 0, 1, 1, 0)_{15}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \mathbf{Pl}(0, 1, 0, 0, 1, 0)_{11}$$

$$\ell_{4} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \mathbf{Pl}(0, 1, 0, 1, 1, 0)_{17}$$

Rank of lines: (6, 30, 13, 20, 27)

Rank of points on Klein quadric: (9, 5, 15, 11, 17)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 10 single points:

The single points on the surface are:

0 : $P_0 = (1,0,0,0)$ lies on line ℓ_0

1: $P_1 = (0, 1, 0, 0)$ lies on line ℓ_1

2: $P_4 = (1, 1, 1, 1)$ lies on line ℓ_4

3 : $P_5 = (1,1,0,0)$ lies on line ℓ_2

4: $P_6 = (1, 0, 1, 0)$ lies on line ℓ_3

5 : $P_8 = (1, 1, 1, 0)$ lies on line ℓ_4

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

$$\begin{array}{c|c} 01234 \\ \hline 001111 \\ 110111 \\ 211011 \\ 311101 \\ 411110 \end{array}$$

6: $P_9 = (1, 0, 0, 1)$ lies on line ℓ_0

7: $P_{10} = (0, 1, 0, 1)$ lies on line ℓ_1

8: $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_2

9: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_3

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_3	P_3	P_3	P_3

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3
in point	P_3	P_3	P_3	P_3

The surface has 11 points:

The points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$

 $4: P_5 = (1, 1, 0, 0)$

 $8: P_{10} = (0, 1, 0, 1)$

 $1: P_1 = (0, 1, 0, 0)$ $2: P_3 = (0, 0, 0, 1)$ $3: P_4 = (1, 1, 1, 1)$

9: $P_{11} = (1, 1, 0, 1)$ 10: $P_{13} = (1, 0, 1, 1)$

 $5: P_6 = (1, 0, 1, 0)$ $6: P_8 = (1, 1, 1, 0)$ $7: P_9 = (1, 0, 0, 1)$