SEQUENCE LISTING

STEWARD, LANCE E FERNANDEZ-SALAS, ESTER HERRINGTON, TODD M AOKI, KEI R <120> Leucine-based motif and clostridial neurotoxins <130> D-2885CIP <150> US 09/620,840 2000-07-21 <151> <160> 23 - <170> PatentIn version 3.1 <210> <211> <212> PRT <213> Artificial <220> <221> MISC FEATURE <222> (1)..(5)<223> Description of Artificial Sequence: fragment having properties substantially similar to that of leucine based sequence x may be any amino acid or derivatives thereof <400> 1 Xaa Asp Xaa Xaa Leu Leu <210> 2 <211> <212> PRT <213> Artificial <220> <221> MISC FEATURE <222> (1)..(5)<223> Description of Artificial Sequence: fragment having properties su bstantially similar to leucine based motif x may be any amino acid or derivatives thereof <400> 2 Xaa Glu Xaa Xaa Xaa Leu Leu 5 <210> 3 <211> 7 <212> PRT

<213> Artificial

```
<220>
 <221> MISC FEATURE
 <222>
        (1)...(5)
 <223> Description of Artificial Sequence: fragment having properties su
        bstantially similar to that of leucine based motif
 <220>
 <221> MISC FEATURE
 <222>
        (1)..(5)
 <223> X may be any amino acid or derivatives thereof
 <400> 3
- Xaa Asp Xaa Xaa Xaa Leu Ile
                 5
 1
 <210>
 <211> 7
 <212> PRT
 <213> Artificial
 <220>
 <221> MISC FEATURE
 <222>
       (1)...(5)
 <223> Description of Artificial Sequence: fragment having properties su
        bstantially similar to that of leucine based motif
 <220>
 <221> MISC FEATURE
 <222>
       (1)..(5)
 <223> X may be any amino acid or derivatives thereof
 <400> 4
. Xaa Asp Xaa Xaa Leu Met
                 5
 <210> 5
 <211> 7
 <212> PRT
 <213> Artificial
 <220>
 <221> MISC FEATURE
 <222>
        (1)...(5)
 <223> Description of Artificial Sequence: fragment having properties su
        bstantially similar to leucine based motif
 <220>
  <221> MISC FEATURE
  <222>
        (1)..(5)
  <223> X may be any amino acid or derivatives thereof
```

Page 2

```
<400> 5
 Xaa Glu Xaa Xaa Xaa Leu Ile
                 5
 <210> 6
 <211> 7
 <212> PRT
 <213> Artificial
 <220>
 <221> MISC_FEATURE
 <222> (1)..(5)
\cdot <223> Description of Unknown Organism: This fragment may have come from
         a rat source.
 <220>
 <221> MISC FEATURE
 <222> (1)..(5)
 <223> X may be any amino acid or derivatives thereof
 <400> 6
 Xaa Glu Xaa Xaa Xaa Leu Met
                 5
 <210> 7
 <211> 7
 <212> PRT
 <213> Unknown
 <220>
       Description of Unknown Organism: This fragment may have come from
         a rat source.
 <400> 7
 Phe Glu Phe Tyr Lys Leu Leu
 <210> 8
 <211> 7
 <212> PRT
 <213> rat
 <400> 8
 Glu Glu Lys Arg Ala Ile Leu
                 5
 <210> 9
 <211> 7
```

```
<212> PRT
 <213> rat
 <400> 9
 Glu Glu Lys Met Ala Ile Leu
 <210> 10
 <211> 7
 <212> PRT
 <213> rat
 <400> 10
- Ser Glu Arg Asp Val Leu Leu
            5
 1
<210> 11
 <211> 7
 <212> PRT
 <213> rat
 <400> 11
 Val Asp Thr Gln Val Leu Leu
                5
 <210> 12
 <211> 7
 <212> PRT
 <213> mouse
 <400> 12
 Ala Glu Val Gln Ala Leu Leu
               5
 <210> 13
 <211> 7
 <212> PRT
 <213> frog
 <400> 13
 Ser Asp Lys Gln Asn Leu Leu
                5
 <210> 14
 <211> 7
 <212> PRT
 <213> chicken
 <400> 14
```

```
Ser Asp Arg Gln Asn Leu Ile
 <210> 15
 <211> 7
 <212> PRT
 <213> sheep
 <400> 15
 Ala Asp Thr Gln Val Leu Met
 <210> 16
. <211> 7
 <212> PRT
 <213> Homo sapiens
 <400> 16
 Ser Asp Lys Gln Thr Leu Leu
                 5
 <210> 17
 <211> 7
 <212> PRT
 <213> Homo sapiens
 <400> 17
 Ser Gln Ile Lys Arg Leu Leu
 <210> 18
 <211> 7
 <212> PRT
<213> Homo sapiens
 <400> 18
 Ala Asp Thr Gln Ala Leu Leu
                 5
 <210> 19
 <211> 437
 <212> PRT
 <213> Clostridium botulinum
 <400> 19
 Pro Phe Val Asn Lys Gln Phe Asn Tyr Lys Asp Pro Val Asn Gly Val
```

Asp Ile Ala Tyr Ile Lys Ile Pro Asn Val Gly Gln Met Gln Pro Val Page 5

25	3
23	J

Lys Ala Phe Lys Ile His Asn Lys Ile Trp Val Ile Pro Glu Arg Asp 35 40 45

20

Thr Phe Thr Asn Pro Glu Glu Gly Asp Leu Asn Pro Pro Pro Glu Ala 50 55 60

Lys Gln Val Pro Val Ser Tyr Tyr Asp Ser Thr Tyr Leu Ser Thr Asp 65 70 75 80

Asn Glu Lys Asp Asn Tyr Leu Lys Gly Val Thr Lys Leu Phe Glu Arg 85 90 95

. Ile Tyr Ser Thr Asp Leu Gly Arg Met Leu Leu Thr Ser Ile Val Arg 100 105 110

Gly Ile Pro Phe Trp Gly Gly Ser Thr Ile Asp Thr Glu Leu Lys Val

Ile Asp Thr Asn Cys Ile Asn Val Ile Gln Pro Asp Gly Ser Tyr Arg 130 135 140

Ser Glu Glu Leu Asn Leu Val Ile Ile Gly Pro Ser Ala Asp Ile Ile 145 150 155 160

Gln Phe Glu Cys Lys Ser Phe Gly His Glu Val Leu Asn Leu Thr Arg 165 170 175

Asn Gly Tyr Gly Ser Thr Gln Tyr Ile Arg Phe Ser Pro Asp Phe Thr 180 185 190

Phe Gly Phe Glu Glu Ser Leu Glu Val Asp Thr Asn Pro Leu Leu Gly 195 200 205

Ala Gly Lys Phe Ala Thr Asp Pro Ala Val Thr Leu Ala His Glu Leu 210 225 220

Ile His Ala Gly His Arg Leu Tyr Gly Ile Ala Ile Asn Pro Asn Arg 225 230 235 240

Val Phe Lys Val Asn Thr Asn Ala Tyr Tyr Glu Met Ser Gly Leu Glu 245 250 255

Val Ser Phe Glu Glu Leu Arg Thr Phe Gly Gly His Asp Ala Lys Phe Page 6

260	265	270
200	200	210

Ile Asp Ser Leu Gln Glu Asn Glu Phe Arg Leu Tyr Tyr Asn Lys 275 280 285

Phe Lys Asp Ile Ala Ser Thr Leu Asn Lys Ala Lys Ser Ile Val Gly 290 295 300

Thr Thr Ala Ser Leu Gln Tyr Met Lys Asn Val Phe Lys Glu Lys Tyr 305 310 315 320

Leu Leu Ser Glu Asp Thr Ser Gly Lys Phe Ser Val Asp Lys Leu Lys 325 330 335

Phe Asp Lys Leu Tyr Lys Met Leu Thr Glu Ile Tyr Thr Glu Asp Asn 340 345 350

Phe Val Lys Phe Phe Lys Val Leu Asn Arg Lys Thr Tyr Leu Asn Phe 355 360 365

Asp Lys Ala Val Phe Lys Ile Asn Ile Val Pro Lys Val Asn Tyr Thr 370 375 380

Ile Tyr Asp Gly Phe Asn Leu Arg Asn Thr Asn Leu Ala Ala Asn Phe 385 390 395 400

Asn Gly Gln Asn Thr Glu Ile Asn Asn Met Asn Phe Thr Lys Leu Lys
405 410 415

Asn Phe Thr Gly Leu Phe Glu Phe Tyr Lys Leu Leu Cys Val Arg Gly 420 425 430

Ile Ile Thr Ser Lys 435

<210> 20

<211> 441

<212> PRT

<213> Clostridium botulinum

<400> 20

Met Pro Val Thr Ile Asn Asn Phe Asn Tyr Asn Asp Pro Ile Asp Asn 1 5 10 15

Asn Asn Ile Ile Met Met Glu Pro Pro Phe Ala Arg Gly Thr Gly Arg 20 25 30

Tyr	Tyr	Lys 35	Ala	Phe	Lys	Ile	Thr 40	Asp	Arg	Ile	Trp	Ile 45	Ile	Pro	Glu
Arg	Tyr 50	Thr	Phe	Gly	Tyr	Lys 55	Pro	Glu	Asp	Phe	Asn 60	Lys	Ser	Ser	Gly
Ile 65	Phe	Asn	Arg	Asp	Val 70	Cys	Glu	Tyr	Tyr	Asp 75	Pro	Asp	Tyr	Leu	Asn 80
Thr	Asn	Asp	Lys	Lys 85	Asn	Ile	Phe	Leu	Gln 90	Thr	Met	Ile	Lys	Leu 95	Phe
Asn	Arg	Ile	Lys 100	Ser	Lys	Pro	Leu	Gly 105	Glu	Lys	Leu	Leu	Glu 110	Met	Ile
Ile	Asn	Gly 115	Ile	Pro	Tyr	Leu	Gly 120	Asp	Arg	Arg	Val	Pro 125	Leu	Glu	Glu
Phe	Asn 130	Thr	Asn	Ile	Ala	Ser 135	Val	Thr	Val	Asn	Lys 140	Leu	Ile	Ser	Asn
Pro 145	Gly	Glu	Val	Glu	Arg 150	Lys	Lys	Gly	Ile	Phe 155	Ala	Asn	Leu	Ile	Ile 160
Phe	Gly	Pro	Gly	Pro 165	Val	Leu	Asn	Glu	Asn 170	Glu	Thr	Ile	Asp	Ile 175	Gly
Ile	Gln	Asn	His 180	Phe	Ala	Ser	Arg	Glu 185	Gly	Phe	Gly	Gly	Ile 190	Met	Gln
Met	Lys	Phe 195	Cys	Pro	Glu	Tyr	Val 200	Ser	Val	Phe	Asn	Asn 205	Val	Gln	Glu
Asn	Lys 210	Gly	Ala	Ser	Ile	Phe 215	Asn	Arg	Arg	Gly	Tyr 220	Phe	Ser	Asp	Pro
Ala 225	Leu	Ile	Leu	Met	His 230	Glu	Leu	Ile	His	Val 235	Leu	His	Gly	Leu	Tyr 240
Gly	Ile	Lys	Val	Asp 245	Asp	Leu	Pro	Ile	Val 250	Pro	Asn	Glu	Lys	Lys 255	Phe
Phe	Met	Gln	Ser 260	Thr	Asp	Ala	Ile	Gln 265	Ala	Glu	Glu	Leu	Tyr 270	Thr	Phe

Gly Gln Asp Pro Ser Ile Ile Thr Pro Ser Thr Asp Lys Ser Ile 280 Tyr Asp Lys Val Leu Gln Asn Phe Arg Gly Ile Val Asp Arg Leu Asn 290 295 Lys Val Leu Val Cys Ile Ser Asp Pro Asn Ile Asn Ile Asn Ile Tyr 305 310 320 Lys Asn Lys Phe Lys Asp Lys Tyr Lys Phe Val Glu Asp Ser Glu Gly 325 Lys Tyr Ser Ile Asp Val Glu Ser Phe Asp Lys Leu Tyr Lys Ser Leu 340 345 350 Met Phe Gly Phe Thr Glu Thr Asn Ile Ala Glu Asn Tyr Lys Ile Lys 355 360 365 Thr Arg Ala Ser Tyr Phe Ser Asp Ser Leu Pro Pro Val Lys Ile Lys 370 375 Asn Leu Leu Asp Asn Glu Ile Tyr Thr Ile Glu Glu Gly Phe Asn Ile 385 390 400 Ser Asp Lys Asp Met Glu Lys Glu Tyr Arg Gly Gln Asn Lys Ala Ile 405 410 Asn Lys Gln Ala Tyr Glu Glu Ile Ser Lys Glu His Leu Ala Val Tyr 420 425 Lys Ile Gln Met Cys Lys Ser Val Lys 435 440 <210> 21 <211> <212> PRT <213> Artificial Sequence <220> <223> Synthetic peptide fragment <400> 21 Lys Ala Phe Lys

```
<210> 22
 <211> 6
 <212> PRT
 <213> Artificial
 <220>
 <223> Synthetic peptide fragment
 <400> 6
 Phe Asp Lys Leu Tyr Lys
 <210> 23
. <211> 4
 <212> PRT
 <213> Artificial
 <220>
 <221> MISC_FEATURE
 <222> (2)..(3)
 <223> Xaa may be any amino acid or derivatives thereof
 <220>
 <221> MISC_FEATURE
 <222>
       (4)...(4)
 <223> Xaa may be any hydrophobic amino acid
 <400> 4
 Tyr Xaa Xaa Xaa
```