

# Spatial Geometry for Robotics

2/4/2024 | Riley Bridges (rlybrdgs)

# What is Spatial Geometry?

- Geometry/math of where things are and how they move in space
- Useful for math and algorithms involving physical things in the real world
- Seems look it should be simple, but actually is a very large field
  - We are just going to scratch the surface of some useful concepts



### Why Does This Matter?

#### Some applications include:

- Pretty much all of robotics
- Computer vision
- Virtual/augmented reality
- Computer graphics/rendering
- Physics simulation
- Video games
- Airplanes and satellites
- Kinematics & dynamics modeling
- Control theory



### Pose

- Position and orientation of an object in space
  - Position: where the object is
  - Orientation: how the object is rotated
- Defined relative to a coordinate frame
  - "Pose of object in frame A"
  - Can attach frame B to object
  - -> "Pose of frame B in frame A"
- Fully describes how an object is placed
- We care about 2D and 3D



Change in position



Change in orientation



Coordinate frames attached to rover



### **Transform**

- Translation and Rotation to move between two coordinate frames
  - "Transform from frame B to frame A"
  - Maps point in frame B -> point in frame A
- Contains same information as pose
- Subtle difference:
  - Pose: frame B in frame A
  - Transform: frame B to frame A
- This can get confusing!
  - Rule of thumb: B in A = B to A





### Pose Representations

#### What is a pose representation?

- Numerical way to define an object's pose
- Necessary to represent pose in software

What do we want from a pose representation? - Talk to your neighbor



### Pose Representations

#### What is a pose representation?

- Numerical way to define an object's pose
- Necessary to represent pose in software

#### What do we want from a pose representation?

- Easy to understand/visualize
- Supports common pose operations
- Common operations are mathematically and computationally nice
  - Simple, easy to implement, fast to compute, numerically stable
- Compact: requires little memory to store



# **Common Pose Operations**

- Composition:  $P_C^A = P_C^B \cdot P_B^A$
- Inverse:  $P_A^B = \left(P_B^A\right)^{-1}$
- Act on a point/vector:  $v_B = T_B^A \cdot v_A$
- Conversion to other representations

$$P_B^A$$
 = pose of frame A in frame B =  $T_B^A$  = transform from frame A to frame B

# Representing Position

- We can just use a 2D or 3D vector:
  - Vector directly represents position
  - Any real vector -> valid, unique position
- Common operations are simple
  - o Composition: vector addition
  - o Action on a point: vector addition
  - Inverse: multiply by -1

$$p_C^A = p_C^B + p_B^A$$

$$p_B = p_B^A + p^A$$

$$p_A^B = -p_B^A$$



### 2D Orientation

#### **Properties**

- 1 degree of freedom: direction object is facing in 2D plane
- Composition order doesn't matter (commutative)

$$R_1 \cdot R_2 = R_2 \cdot R_1$$

#### Representations

- Angle
- 2D rotation matrix
- Unit complex number

# 2D Angle of Rotation

- Angle from reference axis
- Simple and intuitive
- Operations aren't great
  - Angle wrap around
  - Trig functions



### 2D Rotation Matrices

- 2x2 orthonormal matrix
- Each column = axis of rotated frame
- 2D special orthogonal group: SO(2)



# **Unit Complex Number**

- z = a + bi,  $\sqrt{a^2 + b^2} = 1$
- vector on the unit circle in the complex plane
- Operations are nice because of complex multiplication



### 3D Orientation

#### **Properties**

- 3 degrees of freedom: rotation about X, Y, and Z axes
- Composition order does matter (not commutative):

$$R_1 \cdot R_2 \neq R_2 \cdot R_1$$

#### Representations

- Euler Angles
- Rotation Matrix
- Axis Angle/Rotation Vector
- Quaternion



# **Euler Angles**

- Rotation by 3 angles, each about a different axis
- Rotations applied sequentially
- Often called roll (x axis), pitch (y axis), yaw (z axis)



#### **Pros**

- Easy to understand
- Compact

#### Cons

- Many different conventions
- Operations are terrible
- Singularities (gimbal lock)





### 3D Rotation Matrices

- 3x3 orthonormal matrix
- Each column = axis of rotated frame
- 3D Special orthogonal group: **SO(3)**
- Pros
  - somewhat intuitive
  - no singularities
  - Operations are simple
- Cons
  - Less compact
  - Operations are slower







# Axis Angle/Rotation Vectors

- Euler's Theorem: can reach any orientation from a single rotation about some axis
- unit vector representing axis of rotation, multiplied by angle of rotation:

#### Pros

$$\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}^{\top} \cdot \theta$$

- compact
- fairly intuitive
- operations aren't too bad

#### Cons

singularities (theta = 0, v = 0)



### Quaternions

- unit vector on 4d complex hypersphere (yikes!)
- Rough intuition: [x y z] = axis, w = angle
- $\mathbb{S}^3$  group: double coverage of SO(3)

$$\mathbf{q} = \begin{bmatrix} x & y & z & w \end{bmatrix}^{\top}$$
$$= w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

#### Pros

- no singularities
- operations are simple and fast

#### Cons

- very unintuitive
- have to be careful about double cover

# Putting Position and Rotation Back Together

Pose is position and orientation: P = (R, t)

#### **Combined operations**

• Composition: 
$$(R_1, t_1) \cdot (R_2, t_2) = (R_1 \cdot R_2, R_1 \cdot t_2 + t_1)$$

• Act on a point: 
$$(R,t) \cdot v = R \cdot v + t$$

• Inverse: 
$$(R,t)^{-1} = (R^{-1}, -R^{-1}t)$$

We can put this in matrix form...

### Homogeneous Transform Matrices

When using rotation matrices, can represent entire pose with one matrix:

$$M = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

...in the **SE(3)** group

Common operations become matrix operations:

Composition:

$$M_1 \cdot M_2 = M_1 M_2$$
$$M \cdot v = M v$$

Act on a point:

$$M \cdot v = Mv$$

Inverse:

$$M^{-1} = M^{-1}$$
 (matrix inverse)

(matrix multiplication)

### Using This Stuff in Practice

#### What representation should you use?

- Quaternions: common for high performance applications
- Rotation matrices: good for experimentation and less speed critical things
- Or... whatever your library uses

#### What library should you use?

- manif simple, fast, supports C++ and Python... coming soon to mrover-ros!
- Sophus C++ and Python
- <u>smooth</u> C++20 features, autodiff, integration, fancy optimization tools



### Example



- We have:
  - Pose of AR tag in camera frame: SE3 tagInCam
  - O Transform from world frame to camera frame: SE3 worldToCam
- We want to know pose of AR tag in world frame: SE3 tagInWorld ... how do we get it?
  - o Remember operations: composition, inverse
  - $\circ$  B in A = B to A



### Example



- We have:
  - Pose of AR tag in camera frame: SE3 tagInCam
  - o Transform from world frame to camera frame: SE3 worldToCam
- We want to know pose of AR tag in world frame: SE3 tagInWorld ... how do we get it?
  - o Remember operations: composition, inverse
  - $\circ$  B in A = B to A
- Answer:

```
SE3 CamToWorld = WorldToCam.inverse();
SE3 tagInWorld = camToWorld * tagInCam;
```



# **Further Reading**

- Groups, exponential coordinates, screw theory:
   A Mathematical Introduction to Robotic Manipulation
- Lie groups/Lie theory:
   A micro Lie theory for state estimation in robotics
- 3D geometry and transforms:
   <u>Dmitry Berenson's slides</u>
- Various wikipedia pages:
  - https://en.wikipedia.org/wiki/Rodrigues%27 rotation formula
  - https://en.wikipedia.org/wiki/Orientation (geometry)
  - https://en.wikipedia.org/wiki/Euler\_angles
  - https://en.wikipedia.org/wiki/Quaternions and spatial rotation



# 2D Pose Representations: Common Operations



# **Euler Angle Operations**

Composition



# **Rotation Matrix Operations**

