第一章 高等数学

1.1 极限与连续

- 1. * 设函数 $f(x) = \cos(\sin x), g(x) = \sin(\cos x)$ 当 $x \in \left(0, \frac{\pi}{2}\right)$ 时 ()
 - A.f(x) 单调递增,g(x) 单调递减
- B.f(x) 单调递减,g(x) 单调递增
- C.f(x), g(x) 均单调递减
- D.f(x), g(x) 均单调递增
- 2. ** 讨论函数 $f(x) = \lim_{x \to \infty} \frac{x^{n+2} x^{-n}}{x^n + x^{-n}}$ 的连续性
- 3. ** 设 f(x) 在 [a,b] 上连续, 且 a < c < d < b 证明: 在 (a,b) 内必定存在一点 ξ 使得 $mf(c) + nf(d) = (m+n)f(\xi)$, 其中 m,n 为任意给定的自然数
- 4. ** 设 $x_1 = \sqrt{a}(a > 0), x_{n+1} = \sqrt{a + x_n}$ 证明 $\lim_{n \to \infty} x_n$ 存在, 并求出其值.
- 5. $\star \star \star$ 设 $x_1 = a \ge 0, y_1 = b \ge 0, a \le b, x_{n+1} = \sqrt{x_n y_n}, y_{n+1} = \frac{x_n + y_n}{2} (n = 1, 2, ...)$ 证明 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$
- 6. ** 设 $\{x_n\}$ 为数列,则下列数据结论正确的是()
 - ① 若 $\{\arctan x_n\}$ 收敛, 则 $\{x_n\}$ 收敛
 - ② 若 $\{\arctan x_n\}$ 单调,则 $\{x_n\}$ 收敛
 - ③ 若 $x_n \in [-1,1]$, 且 $\{x_n\}$ 收敛, 则 $\{\arctan x_n\}$ 收敛
 - ④ 若 $x_n \in [-1,1]$, 且 $\{x_n\}$ 单调, 则 $\{\arctan x_n\}$ 收敛
 - A. @ B. @ @ C. @ @ D. @ @
- 7. * 极限 $\lim_{x\to 0} \frac{(\cos x e^{x^2})\sin x^2}{\frac{x^2}{2} + 1 \sqrt{1 + x^2}} = \underline{\hspace{1cm}}$
- 8. * 读 $a_n = \frac{3}{2} \int_0^{\frac{n}{n+1}} x^{n-1} \sqrt{1+x^n} dx$,则 $\lim_{n \to \infty} na_n = _____$

9. ** 设
$$\lim_{x \to 0} \left\{ a[x] + \frac{\ln\left(1 + e^{\frac{2}{x}}\right)}{\ln\left(1 + e^{\frac{1}{x}}\right)} \right\} = b \ \text{则} \ a = ____, b = _____$$

10. * 设
$$x_1 = 1, x_2 = 2, x_{n+2} = \frac{1}{2}(x_n + x_{n+1}), 求 \lim_{n \to \infty} x_n$$

- 11. *** 设 f(x) 在 [0,1] 上连续, 且 f(0) = f(1) 证明
 - (I) 至少存在一点 $\xi \in (0,1)$ 使得 $f(\xi) = f(\xi + \frac{1}{2})$
 - (II) 至少存在一点 $\xi \in (0,1)$ 使得 $f(\xi) = f(\xi + \frac{1}{n}) (n \ge 2, n \in \mathbb{N})$
- 12. * * **(2011. 数一)

(I) 证明
$$\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n}$$

(II) 证明极限
$$\lim_{n\to\infty} \left(1+\frac{1}{2}+\ldots+\frac{1}{n}-\ln n\right)$$
 存在

一元函数微分学/积分学(除证明题)/多元函数微分学

- 1. *设 $f'_x(x_0, y_0), f'_y(x_0, y_0)$ 均存在,则下列结论正确的是()
 - $A.\lim_{\substack{x \to x_0 \ y \to y_0}} f(x,y)$ 存在
 - B.f(x,y) 在 (x_0,y_0) 处连续

 - $C.\lim_{x\to x_0} f(x,y_0)$ 存在 D.f(x,y) 在去心邻域 (x_0,y_0) 内有定义
- 2. * 设 $z = (1 + xy)^y$, 则 $dz|_{1,1} =$ ____

3. ** 设
$$\begin{cases} y = f(x,t) \\ F(x,y,t) = 0 \end{cases}$$
 f,F 有一阶连续偏导数,则 $\frac{\mathrm{d}y}{\mathrm{d}x} = \underline{\qquad}$

- 4. ** 设 y = f(x,t), t = t(x,t) 由方程 G(x,y,t) = 0 确定, f,G 可微, 则 $\frac{dy}{dx} =$ _____
- 5. *设z = z(x,y)有方程 $e^{2yz} + x + y^2 + z = \frac{7}{4}$ 确定,则 $dz|_{\frac{1}{2},\frac{1}{2}} =$ _____
- 6. \star 曲面 $z=x^2+y^2-1$ 在点 P(2,1,4) 处的且平面方程为 ___ 法线方程 ___
- 7. * 求 $f(x,y) = (1 + e^y) \cos x ye^y$ 的极值
- 8. ** 求双曲线 xy = 4 与直线 2x + y = 1 之间的最短距离

空间解析几何/多元函数积分学 1.3

1. * 设向量 $\vec{a} = (1,2,1), \vec{b} = (-1,0,2), \vec{c} = (0,k,-3)$ 共面,则 k =____

1.4 常微分方程 3

2. ** 设非零向量 $\vec{\alpha}$, $\vec{\beta}$ 满足 $\vec{\alpha} - \vec{\beta}$ 于 $\vec{\alpha} + \vec{\beta}$ 的模相等, 则必有()

$$\mathbf{A}.\vec{\alpha}-\vec{\beta}=\vec{\alpha}+\vec{\beta}$$
 $\mathbf{B}.\vec{\alpha}=\vec{\beta}$ $\mathbf{C}.\vec{\alpha}\times\vec{\beta}=\vec{0}$ $\mathbf{D}.\vec{\alpha}\cdot\vec{\beta}=0$ 3. ** 直线 $L_1:$
$$\begin{cases} x-1=0 \\ y=z \end{cases}$$
 与 $L_2:$
$$\begin{cases} x+2y=0 \\ z+2=0 \end{cases}$$
 的距离 $d=\underline{\qquad}$

- 4. ** 设 α , β 均为单位向量, 其夹角为 $\frac{\pi}{6}$ 则 α + 2β 与 3α + β 为邻边的平行四边形的面积为
- 5. ** 设 α, β 是非零常向量, 夹角为 $\frac{\pi}{3}$, 且 $|\beta| = 2$ 求 $\lim_{x \to 0} \frac{|\alpha + x\beta| |\alpha|}{x} =$ ____
- 6. * 求平行于平面 x + y + z = 9 且与球面 $x^2 + y^2 + z^2 = 4$ 相切的平面方程.
- 7. * 设平面 π 过直线 L : $\begin{cases} x + 5y + z = 0 \\ x z + 4 = 0 \end{cases}$ 且与平面 π_1 : x 4y 8z + 12 = 0 的夹角为 $\frac{\pi}{4}$ 求平面 π 的方程
- 8. * 求与直线 $L_1: x+2=3-y=z+1$ 与 $L_2: \frac{x+4}{2}=y=\frac{z-4}{3}$ 都垂直相交的直线方程
- 9. * 求直线 $L_1: \frac{x-3}{2} = y = \frac{z-1}{0}$ 与 $L_2: \frac{x+1}{1} = \frac{y-2}{0} = z$ 的公垂线方程

10. ** 求直线
$$L: \frac{x-1}{3} = \frac{y-2}{4} = \frac{z+1}{1}$$
 绕直线 $\begin{cases} x=2 \\ y=3 \end{cases}$ 旋转一周所得到的曲面方程

1.4 常微分方程

1.5 无穷级数

1.6 证明题