Nucleosynthesis Calculations for Nuclear Astrophysics

NuGrid Summer School 09/18/2018 Ondrea Clarkson

Single Zone

• What it is:

- Single zone refers to the the representation of a single region in either Τ, ρ space or mass/radius for a given stellar environment.
- In this single-zone, the abundance of each isotope is evolved at each time step (fully-implicit).

Applications of single zone networks:

- Approximate nucleosynthesis for a given environment and starting abundance.
- Impact/sensitivity studies (if you have T, ρ or a trajectory you do not need the stellar model).

MNRAS 474, L37–L41 (2018) Advance Access publication 2017 November 23

doi:10.1093/mnrasl/slx190

Pop III *i*-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars

O. Clarkson, 1,2* † F. Herwig 1,2 † and M. Pignatari 2,3 †

Accepted 2017 November 21. Received 2017 November 20; in original form 2017 October 8

ABSTRACT

We have investigated a highly energetic H-ingestion event during shell He burning leading to H-burning luminosities of $\log (L_H/L_{\odot}) \sim 13$ in a 45 M_{\odot} Pop III massive stellar model. In order to track the nucleosynthesis which may occur in such an event, we run a series of single-zone nucleosynthesis models for typical conditions found in the stellar evolution model. Such nucleosynthesis conditions may lead to i-process neutron densities of up to ~10¹³ cm⁻³. The resulting simulation abundance pattern, where Mg comes from He burning and Ca from the i process, agrees with the general observed pattern of the most iron-poor star currently known, SMSS J031300.36-670839.3. However, Na is also efficiently produced in these i-process conditions, and the prediction exceeds observations by ~ 2.5 dex. While this probably rules out this model for SMSS J031300.36-670839.3, the typical i-process signature of combined He burning and i process of higher than solar [Na/Mg], [Mg/Al], and low [Ca/Mg] is reproducing abundance features of the two next most iron-poor stars HE 1017-5240 and HE 1327-2326 very well. The i process does not reach Fe which would have to come from a low level of additional enrichment. i process in hyper-metal-poor or Pop III massive stars may be able to explain certain abundance patterns observed in some of the most metal-poor CEMP-no stars.

Department of Physics & Astronomy, University of Victoria, PO Box 3055, Victoria, BC V8W 3P6, Canada

² Joint Institute for Nuclear Astrophysics, Center for the Evolution of the Elements, Michigan State University, 640 South Shaw Lane, East Lansing, MI 48824, USA

³E.A. Milne Centre for Astrophysics, University of Hull, Hull, HU6 7RX, UK

 Kippenhahn diagram illustrating locations of single zone runs

• T, ρ and duration of single zone runs

Run ID	Burning phase	T (10 ⁸ K)	ρ (g cm ⁻³)	Δt (yr)
OZ.c-H	Core H	1.25	93.33	2.21 × 10 ⁴
OZ.s-He	Shell He	2.6	330	1.28×10^{2}
OZ.s-He:+a	Shell He	2.95	487.1	4.45×10^{2}
OZ.i-p:t1,2,3	H-ingest.	2.0	191	$1,2,5 \times 10^{-2}$
OZ.i-p:+	H-ingest.	2.41	315.4	3.44×10^{-2}