STAT448 - Advanced Data Analysis Homework 2

Name: Xinyan Yang

Exercise 1 Solution:

(a).

Table of agegrp by response						
agegrp	res	sponse				
Frequency Expected	no yes Tota					
older	225 197.99	253 280.01	478			
younger	434 461.01	679 651.99	1113			
Total	659	932	1591			

According to the contingency table above, we can find that the counts of the response "yes" are greater than the counts of the "no" no matter in older group or younger group.

However, the younger group are more likely to answer "yes" since the "yes" counts are largely greater than the "no" counts for the younger group while the "yes" counts only slightly greater than the "no" counts for the older group.

(b)

Statistics for Table of agegrp by response

Jer - mete ej ngeger			
Statistic	DF	Value	Prob
Chi-Square	1	8.9916	0.0027
Likelihood Ratio Chi-Square	1	8.9394	0.0028
Continuity Adj. Chi-Square	1	8.6618	0.0032
Mantel-Haenszel Chi-Square	1	8.9860	0.0027
Phi Coefficient		0.0752	
Contingency Coefficient		0.0750	
Cramer's V		0.0752	

According to the association test results, since the expected frequency for each cell are all greater than 5, we can use the Chi-Square association test. The P value is 0.0027, therefore under the significance level of 5%, we should reject the null hypothesis and conclude that *the agegroup and the response is not independent*, there exists some association between them.

Exercise 2 Solution:

(a)

Table of Greater100 by South						
Greater100		South				
Frequency Expected	no yes Total					
no	20 21.766	13 11.234	33			
yes	11 9.234	3 4.766	14			
Total	31	16	47			

From the contingency table above, we can find that within the group with crime rates greater than 100 crimes per million population, the *no-south cell has apparently more counts than the yes-south cell*. And the real count of yes-south cell is smaller than the expected frequency of this cell while the real count of no-south cell is greater than the expected frequency.

(b)

Statistics for Table of Greater 100 by South

Simistics for Tubic of Greme 100 by South							
Statistic	DF	Value	Prob				
Chi-Square	1	1.4130	0.2346				
Likelihood Ratio Chi-Square	1	1.4841	0.2231				
Continuity Adj. Chi-Square	1	0.7261	0.3941				
Mantel-Haenszel Chi-Square	1	1.3829	0.2396				
Phi Coefficient		-0.1734					
Contingency Coefficient		0.1708					
Cramer's V		-0.1734					
WARNING: 25% of the cells have expected counts less than 5. Chi-Square may not be a valid test.							

Fisher's Exact Test				
Cell (1,1) Frequency (F)	20			
Left-sided Pr <= F	0.1988			
Right-sided Pr >= F	0.9400			
Table Probability (P)	0.1388			
Two-sided Pr <= P	0.3211			

Conclusion: Since the expected frequency for the crime rates greater than 100 in the south is smaller than 5, we should *use the Fisher's Exact Test* to perform the association test. The P-value of this test is largely greater than 0.05, therefore we should accept the null hypothesis under the significance of 5% *and conclude that the crime rates greater than 100 and whether the state is in south is independent*.

(c)

Table of South by Greater100						
South		Greater100				
Frequency	no yes Total					
no	20	11	31			
yes	13	3	16			
Total	33	14	47			

Column 2 Risk Estimates							
	Risk	ASE	(Asymptotic) 95% Confidence Limits		(Exact Confiden	e) 95% ce Limits	
Row 1	0.3548	0.0859	0.1864	0.5233	0.1923	0.5463	
Row 2	0.1875	0.0976	0.0000	0.3787	0.0405	0.4565	
Total	0.2979	0.0667	0.1671	0.4286	0.1734	0.4489	
Difference	0.1673	0.1300	-0.0875	0.4222			
Difference is (Row 1 - Row 2)							

With respect to the tables above, the row is whether the state is in south and the column is whether the crime rates are greater than 100. To see if Southern states have a significantly higher probability of crime rates greater than 100 than other states do, we only have to see the risk estimates of column 2 on the rows. Since the risk difference confidence interval contains 0, we cannot reject the null hypothesis and conclude that there is no significant difference between the crime rates greater than 100 of southern states and that of non-southern states.

Exercise 3 Solution:

(a)

Table of mcvgrp by drinkgroup							
mevgrp			drink	group			
Frequency Expected	1	2	3	4	5	Total	
0	65 48.835	23 21.704	41 36.73	10 27.965	5 8.7652	144	
1	52 68.165	29 30.296	47 51.27	57 39.035	16 12.235	201	
Total	117	52	88	67	21	345	

Statistics for Table of mcvgrp by drinkgroup

Statistic	DF	Value	Prob
Chi-Square	4	32.7546	<.0001
Likelihood Ratio Chi-Square	4	35.5619	<.0001
Mantel-Haenszel Chi-Square	1	24.7026	<.0001
Phi Coefficient		0.3081	
Contingency Coefficient		0.2945	
Cramer's V		0.3081	

From the test results above, we should choose the Chi-Square Test since the expected frequencies are all greater than 5. The P-value of Chi-Square test is <0.0001 so that we should reject the null hypothesis under the significance level of 5% and conclude that the mcv and drinkgroup is not independent, which means that they have some association.

(b)

Dependent Variable: mcv

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	733.176652	183.294163	10.26	<.0001
Error	340	6073.055232	17.861927		
Corrected Total	344	6806.231884			

R-Square	Coeff Var	Root MSE	mcv Mean
0.107721	4.687627	4.226337	90.15942

Source	DF	Anova SS	Mean Square	F Value	Pr > F
drinkgroup	4	733.1766522	183.2941630	10.26	<.0001

Levene's Test for Homogeneity of mcv Variance ANOVA of Squared Deviations from Group Means					
Source	Source DF Sum of Squares Mean Square				Pr > F
drinkgroup	4	1940.3	485.1	0.33	0.8587
Error	340	501897	1476.2		

From the one-way ANOVA model result above, we can notice that the P-Value for the model is <0.001, therefore we reject the null hypothesis at the significance level of 5% and think the model is statically significant, which means that the model is useful.

The R-Square for the model is 0.107722, therefore about 10.77% of the variation can be described by the model.

According to the hov test result, since the p-value= 0.8687 is not significant, we cannot reject the null hypothesis, which means that the equal variance assumption can be trusted.

(c)

Two model results both indicate that there are some association between the mcv and drinkgroup. They give the same conclusion.

Tukey's Studentized Range (HSD) Test for mcv

Alpha	0.05
Error Degrees of Freedom	340
Error Mean Square	17.86193
Critical Value of Studentized Range	3.87844

Comparisons significant at the 0.05 level are indicated by ***.						
drinkgroup Comparison	Difference Between Means		Simultaneous 95% Confidence Limits			
5 - 4	0.0014	-2.8973	2.9001			
5 - 2	2.5046	-0.4922	5.5014			
5 - 3	2.8079	-0.0070	5.6228			
5 - 1	3.7460	0.9991	6.4929	***		
4 - 5	-0.0014	-2.9001	2.8973			
4 - 2	2.5032	0.3611	4.6453	***		
4 - 3	2.8065	0.9272	4.6858	***		
4 - 1	3.7446	1.9688	5.5204	***		
2 - 5	-2.5046	-5.5014	0.4922			
2 - 4	-2.5032	-4.6453	-0.3611	***		
2 - 3	0.3033	-1.7240	2.3307			
2 - 1	1.2415	-0.6903	3.1732			
3 - 5	-2.8079	-5.6228	0.0070			
3 - 4	-2.8065	-4.6858	-0.9272	***		
3 - 2	-0.3033	-2.3307	1.7240			
3 - 1	0.9381	-0.6974	2.5736			
1 - 5	-3.7460	-6.4929	-0.9991	***		
1 - 4	-3.7446	-5.5204	-1.9688	***		
1 - 2	-1.2415	-3.1732	0.6903			
1 - 3	-0.9381	-2.5736	0.6974			

From the tukey's test results, we can find that the mcv of group 4 is significantly greater than the group 1, 2 and 3 and the mcv of group 5 is significantly greater than group 1.

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	4945.6283	1236.4071	3.79	0.0050
Error	340	110857.5021	326.0515		
Corrected Total	344	115803.1304			

R-Square	Coeff Var	Root MSE	alkphos Mean
0.042707	25.84372	18.05690	69.86957

Source	DF	Anova SS	Mean Square	F Value	Pr > F
drinkgroup	4	4945.628301	1236.407075	3.79	0.0050

Levene's Test for Homogeneity of alkphos Variance ANOVA of Squared Deviations from Group Means					
Source	DF	F Value	Pr > F		
drinkgroup	4	1065624	266406	0.96	0.4293
Error	340	94305238	277368		

From the one-way ANOVA model result above, we can notice that the P-Value for the model is 0.005, therefore we reject the null hypothesis at the significance level of 5% and think the model is statically significant, which means that the model is useful.

The R-Square for the model is 0.042707, therefore about 4.27% of the variation can be described by the model.

According to the hov test result, since the p-value= 0.4293 is not significant, we cannot reject the null hypothesis, which means that the equal variance assumption can be trusted.

Alpha	0.05
Error Degrees of Freedom	340
Error Mean Square	326.0515
Critical Value of Studentized Range	3.87844

Comparisons significant at the 0.05 level are indicated by ***.							
drinkgroup Comparison	Difference Between Means	Simultand Confiden					
5 - 1	12.573	0.837	24.309	***			
5 - 4	13.721	1.337	26.106	***			
5 - 2	15.218	2.414	28.022	***			
5 - 3	16.629	4.602	28.656	***			
1 - 5	-12.573	-24.309	-0.837	***			
1 - 4	1.149	-6.438	8.736				
1 - 2	2.645	-5.608	10.899				
1 - 3	4.056	-2.931	11.044				
4 - 5	-13.721	-26.106	-1.337	***			
4 - 1	-1.149	-8.736	6.438				
4 - 2	1.497	-7.656	10.649				
4 - 3	2.907	-5.122	10.937				
2 - 5	-15.218	-28.022	-2.414	***			
2 - 1	-2.645	-10.899	5.608				
2 - 4	-1.497	-10.649	7.656				
2 - 3	1.411	-7.251	10.073				
3 - 5	-16.629	-28.656	-4.602	***			
3 - 1	-4.056	-11.044	2.931				
3 - 4	-2.907	-10.937	5.122				
3 - 2	-1.411	-10.073	7.251				

According to the Tukey's test results for alkphos across different groups, we can find that the alkphos mean of group 5 is significantly higher than that of the other 4 groups, which is different from the mcv case.