SB025	SB025				
Biology 1	Biologi 1				
Semester 1	Semester 1				
Session 2023/2024	Sesi 2023/2024				
2 hours	2 jam				
Name	No Matrik				
Tutorial Class	Tutorial lecturer's name				
Tutoriai Class	Tutoriai iccturer s name				

KOLEJ MATRIKULASI PAHANG KEMENTERIAN PENDIDIKAN MALAYSIA

PAHANG MATRICULATION COLLEGE MINISTRY OF EDUCATION MALAYSIA

D'PUNCAK

2 JAM 2 HOURS

JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

Questions	Marks
1	
2	
3	
4	
5	
6	
7	
Total	

Kertas soalan ini mengandungi 9 halaman bercetak. *This booklet consists of 9 printed pages.*

1. **FIGURE 1** shows the stages in cell division.

a)	Name the structure \mathbf{M} and \mathbf{N} .	[2 marks]
	M:	
	N:	
b)	Arrange the correct sequence of stage A to E beginning the earliest stage.	[1 mark]
c)	Briefly explain the difference between stage D and anaphase I.	[2 marks]
d)	The chromosome number of <i>Drosophila</i> sp. is 8.	
	(i) How many chromosome does the <i>Drosophila</i> sp. inherit from e	each parent?
		[1 mark]
	(ii) How many chromosome found in gamete of <i>Drosophila</i> sp.?	
		[1 mark]

seed ar	A dihybrid cross between two pea plants with phenotype round seeds and yellow colour known genotype was cross with pea plant of double recessive genotype for wrinkled and green colour where R represents the gene for round seeds and Y represents the gene low colour. The cross produced the following results:
	72 plant with round and yellow seed 75 plant with round and green seed 78 plants with wrinkled and yellow seed 81 plants with wrinkled and green seed
a)	Using the symbols given, draw a genetic diagram to explain this cross. [3 marks]
b)	State how can many possible alleles combination produced in dihybrid inheritance? [1 mark]
c)	Suggest the two parental genotype that can produce only round and green plant. [2 mark]
d)	If the gene is linked without crossing over, what is the expected number of individuals of each phenotype in F_1 generation? [1 mark]
e)	A test cross is a genetic cross used to determine the genotype of an individual showing a dominant phenotype. Explain the determination of genotype in dominant round (R) and yellow (Y) seed in garden pea plant (<i>Pisum sativum</i>) using test cross. [6 marks]

3.	In population, the ability of tongue rolling is controlled by dominant allele T individual in that population are able to roll their tongue.	7. 56% of
i)	What is the frequency of T allele in population?	[2 marks]
ii)	What is the frequency and amount of individual with TT, Tt and tt genotype the population consists of 500 people.	s if [3 marks]
iii)	If all non-rolling tongue individual are killed, what is the frequency of non-rongue individual in the next generation.	olling [2 marks]

4. **FIGURE 2** shows the process of protein synthesis in animal cell.

FIGURE 2

a) What is the anticodon sequence for X? [1 mark]

b) State the enzyme that catalyses the binding of P? [1 mark]

c) Give ONE reason why M is not used directly by R for synthesis of protein. [1 mark]

d) Briefly describe what happen to N before enter cytoplasm. [4 marks]

	7 3 chowe a ke	aryotype of an i	ndividual			
FIGURE	A S SHOWS & R	n yorype or an n	larviduar.	ą Ř	9552	
	3 1 3	V Re		9.6	8 8	
	# # # # # #	'	7 P 44 10	8 8 8 8	11 U	
	28 1	14 15	₫ Ğ	6 6 17	5 5	
) š	20 e à	Å Å	i ×		
		FIG	URE 3			
	type of chron	nosomal mutatio	on shown in I	FIGURI	E 3.	[1
State the						
	e the genetic	disorder shown	in FIGURE	3.		[1

6.

	iii)	Briefly describe how the genetic disease shown in FIGURE 3 may be produced if
		the mutation occurs in the mother during meiosis II of oogenesis. [2 marks]
c)	If in	ndividual with karyotype above get married, what are the probability for this couple
	to h	have offspring with the same genetic disease? [1 mark]
d)		ladelphia chromosome is produced due to reciprocal translocation between omosome number 22 and chromosome number 9. Briefly explain how this
	mut	ration occurs and its effect. [5 marks]
	FIC	GURE 4 shows the initial process of insulin production using gene technology.
		A C U G C T MRNA
		↓
		Process A
		1

FIGURE 4

G

Strand Y

Process B

(a) State the source of mRNA used for insulin production. [1 mark]

(b) State the enzymes that are involved in process **A** and process **B**. State their function. [2 marks]

	Enzyme	Function
Process A		
Process B		

(c)	Wh	at is s	tand \mathbf{Y}'	? State t	the bene	fit of str	and Y	comp	ared to	mRN	Α.	[2 marks
(d)	Stat	te the	conseq	uence if	î human	insulin o	canno	t be pro	oduced	using	gene t	echnology [2 marks
(e)	Brid	efly d	escribe	the step	os involv	ved in Po	olyme	rase C	hain R	eaction	n (PCF	R). [6 marks]

7. (a) **FIGURE 5A** shows a secondary oocyte in fallopian tube.

FIGURE 5A

(1) S	State structure \mathbf{X} and cell \mathbf{Z} .	[2 marks]
-		
(ii)	Briefly explain what happen to structure Y once the secondary oocyte	is fertilized. [2 marks]
(iii)) What happen if there is no functional enzymes in granule \mathbf{Y} ?	[1 mark]

(b) **FIGURE 5B** shows hormonal control during parturition.

Hormone W

FIGURE 5B

(i)	Name hormone W	[1 mark]

(ii) During parturition, the mother is in emotional and physical stress and hormone **T** secreted. State hormone **T** and Effect **J**. [2 marks]

c)	Describe the structure of secondary oocyte.	[6 marks]

d) **FIGURE 6** below shows human growth curve. Describe the difference in growth between male and female during phase **C**. [2 marks]

FIGURE 6