Termodynamik - Slafs Aron Granberg, Daniel Kempe, Mårten Wiman

 $pV = \frac{2}{2}U$

Utvidgning

 $\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T [Pa^{-1}]$ Isobar volymutvidgningskoefficient $\alpha_V = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p [\mathrm{K}^{-1}]$ Relativa volymändringen $\frac{dV}{V} = -\kappa \cdot dp + \alpha_V \cdot dT$

Kinetisk gasteori

m = massan per partikel [kg]Molara massan $M = mN_A$ $\nu R = Nk_B$ $n = \frac{N}{V}$ $v_p = \sqrt{2} \cdot \sqrt{\frac{k_B T}{m}}$ $\langle v \rangle = \sqrt{\frac{8}{\pi}} \cdot \sqrt{\frac{k_B T}{m}}$ $\begin{aligned} v_{rms} &= \sqrt{\langle v^2 \rangle} = \sqrt{3} \cdot \sqrt{\frac{k_B T}{m}} \\ \langle E_k \rangle &= \frac{3k_B T}{2} \end{aligned}$ Ekvipartitionsprincipen $U = Nk_BT \cdot \frac{1}{2} \cdot (\#\text{frihetsgrader}) [J]$ Energi i enatomig gas $U = N \frac{m \langle v^2 \rangle}{2} = \frac{3}{2} N k_B T$ [J] Notera $N k_B T = p V$

Medelfri väg $l = \frac{k_B T}{\sqrt{2\pi} d^2 p} = \frac{1}{n\sigma\sqrt{2}}$ Där d = partikelns diameter $\nu^* = \frac{p}{\sqrt{2\pi m k_B T}} = \frac{1}{4} n \langle v \rangle \, [\text{s}^{-1} \, \text{m}^{-2}]$ Maxwell-Boltzmanns hastighetsfördelning $n(v) = \mathbf{K} \cdot v^2 \cdot e^{-\frac{mv^2}{2k_BT}}$ om $\int n(v) = \frac{N}{V}$, dvs om normaliserat $K = 4\pi n \left(\frac{m}{2\pi k_B T} \right)^{\frac{3}{2}}$

Värme

Energi för att förändra temp. $\Delta Q = mc\Delta T$ [J] Molar isokor värmekapacitet ideal gas $C_V = \frac{1}{\nu} \frac{dU}{dT} [\text{J mol}^{-1} \text{K}^{-1}]$ Enatomig ideal gas har $C_V = \frac{3}{5}\ddot{R}$ Molar isobar värmekapacitet ideal gas $C_p = C_V + R \, [\text{J mol}^{-1} \, \text{K}^{-1}]$ Molar värmekapacitet fast kropp $C_m = 3R \, [\text{J mol}^{-1} \, \text{K}^{-1}]$

Adiabatiska processer

 C_n = isobara molara värmekapaciteten C_V = isokora molara värmekapaciteten $\gamma = \frac{C_p}{C_V} = \frac{c_p}{c_V}$

$pV^{\gamma} = \text{konst.}$ $Tv^{(1-\gamma)/\gamma} = \text{konst.}$ $TV^{\gamma-1} = \text{konst.}$ Adiabatiskt arbete på en gas $W = -\int_{0}^{1} p dV = \frac{p_1 V_1 - p_2 V_2}{1 - \gamma}$

Matematik

Sfär: $A = 4\pi r^2$; $V = \frac{4\pi r^3}{2}$

Värmetransport

 $\lambda = V$ ärmekonduktivitet $\alpha = V$ ärmeövergångskoefficient $U = \frac{\lambda}{d} [W K^{-1} m^{-2}]$ Konvektion $U = \alpha \; [\mathrm{W} \, \mathrm{K}^{-1} \, \mathrm{m}^{-2}]$ Värmemotstånd $\frac{1}{U} = \sum \frac{1}{U_i}$ Värmeflöde $\Phi = UA (T_i - T_u)$ Kom ihåg: Vid jämvikt är värmeflödet konstant, och i t.ex en vägg är värmeflödet konstant genom hela väggen.

Första huvudsatsen

Arbete på en gas dW = -pdVEnergiutbyte med omgivningen dQ = dU + pdVDerivatan av inre energi dU = dQ + dW = dQ - pdV

$$\begin{split} dU &= \nu C_V dT \\ \text{Arbete på en gas} \\ W &= -\int_1^2 p dV \\ \text{Isotermt kompressionsarbete på en gas} \\ W_T &= -\nu RT \ln \left(\frac{V_2}{V_1}\right) \\ \text{Isobart kompressionsarbete på en gas} \\ W_p &= -p_2(V_2 - V_1) \\ \text{Isokort arbete på en gas} \\ W_V &= 0 \end{split}$$

Vid isokor process

Andra huvudsatsen

Tillförs dQ reversibelt till ett system så är Reversibel process i slutet system $\Delta S = 0$ Irreversibel process i slutet system $\Delta S > 0$

$\Delta S = \nu C_V \cdot \ln \frac{T_2}{T_1} + \nu R \cdot \ln \frac{V_2}{V_1}$ Övrigt om entropi $T = 0 \Rightarrow S = 0$

W= antal möjliga mikroskopiska tillstånd $S = k_B \ln W$ Om ${\cal S}_A$ är entropi för system A och ${\cal S}_B$

entropi för system B så har S_A och S_B sett som ett enda system entropin $S_{A\cup B} = S_A + S_B$

Entalpi

$$\begin{split} H &= U + pV \\ dH &= dU + pdV + Vdp \\ \text{Fria energin (Helmholtz funktion)} \\ F &= U - TS \\ dF &= dU - TdS - SdT \\ \text{Fria entalpin (Gibbs funktion)} \\ G &= F + pV \\ \text{ska vi kunna detta?} \\ dG &= -SdT + Vdp + \mu N \end{split}$$

Vid isoterm process så är dW = dF

Vid fasövergång är H ej kontinuerlig (med avseende på temperatur), G är kontinuerlig men dess derivata är inte det H = G + TS

Carnotprocesser

 $T_H \geq T_C$

Var noga med tecken

 Q_H Värme som reservoaren vid T_H avger Q_C Värme som reservoaren vid T_C avger W Arbete som tillförs processen

Notera tecken $-W=Q_H+Q_C$ (termer kan vara negativa) $|W| = |Q_H| - |Q_C|$

 $\eta = \frac{Q_H - Q_C}{Q_H} = \frac{T_H - T_C}{T_H}$

Konstanter

Massenhet	u	$1.66054 \cdot 10^{-27}$	kg
Avogadros	N_A	$6.02214 \cdot 10^{23}$	mol^{-1}
Boltzmanns	k_B	$1.38065 \cdot 10^{-23}$	$\rm JK^{-1}$
Gaskonstanten	R	8.3145	$J \text{ mol}^{-1} \text{ K}^{-1}$
Stefan-Boltzmanns	σ	$5.6704 \cdot 10^{-8}$	${ m W}{ m m}^{-2}{ m K}^{-4}$
Plancks	h	$6.62607 \cdot 10^{-34}$	Js
Ljushastigheten	c	$299\ 792\ 458$	${ m ms}^{-1}$

Vettiga värden

0		
Arbete vid sömn	1	$\rm Wkg^{-1}$
Lätt arbete utvecklar vid 25% eff.	55-75	W
Energibehov människa (3000 kcal)	12	MJd^{-1}
Jordens radie	$6.4 \cdot 10^{6}$	m
Månens radie	$1.7 \cdot 10^{6}$	m
Sveriges area	$4.5 \cdot 10^{11}$	m^2
Värmekapacitet c _{luft}	1.007	$kJ kg^{-1} K^{-1}$
Energidensitet Li-ion batteri	0.3 - 0.9	${ m MJkg^{-1}}$
Energidensitet trä	16	${ m MJkg^{-1}}$
Energidensitet kol	24	${ m MJkg^{-1}}$
Energidensitet fett	37	${ m MJkg^{-1}}$
Energidensitet bensin	44	${ m MJkg^{-1}}$
Energidensitet uran	$8.1 \cdot 10^{7}$	${ m MJkg^{-1}}$
Sveriges elkonsumption	$1.5 \cdot 10^{10}$	W
Världens elkonsumption	$2.1 \cdot 10^{12}$	W
Sveriges energikonsumption	$7.4 \cdot 10^{10}$	W
Världens energikonsumption	$1.5 \cdot 10^{13}$	W

Kemi

Atom	Atomnum	mer	Substans	C_V/R	$\ddot{\mathrm{A}}\mathrm{mne}$	γ
Kol		6	He	1.52	Luft	1.4
Kväve		7	H_2	2.44	H_2	1.4
Svre		8	N_2	2.49	CO_2	1.3
Neon		10	O_2	2.51	H_2O	1.3
Glöm	inte bort	att	CO	2.53		
molekyler är flera atomer						

Ämne	Densitet	$[\mathrm{kg}\mathrm{m}^{-3}]$
Kol		1050
Vatten		1000
Järn		7844
Luft		1.275
Helium		0.1785
Väte		0.0899
Nysnö		60
Packad snö		400
Is		850

 $b_0 = bN_A; a_0 = aN_A^2; v = \frac{V}{V}$

Tillståndsekvationer för gaser

 $M = \text{molara massan [kg mol}^{-1}]; m = \text{totala massan i systemet [kg]}$ $\rho = \frac{m}{V}; p = \frac{\rho RT}{M} = \frac{Nk_BT}{V} = \frac{\nu RT}{V}; \nu = \frac{m}{M}$ $b \approx \text{molekylens volym}; a \approx \text{växelverkan mellan partiklar}$ $p = \frac{Nk_BT}{V - Nb} - a\left(\frac{N}{V}\right)^2$ Van der Waals tillståndsekvation

$$\left(p + \frac{a_0}{v^2}\right) \cdot (v - b_0) = RT$$

Van der Waals tillståndsekvation

Kirchoffs lag

Strålning

 $\varepsilon = \text{emissivitet}; \alpha = \text{absorptionsfaktor}$ $\rho = \text{reflexionsfaktor}; \tau = \text{transmissionsfaktor}$ $\nu = \text{frekvens} = \frac{c}{5}$ Svartkropp $\Rightarrow \varepsilon = 1$ $\sigma = \frac{2\pi^5 k_B^4}{15c^2 h^3}$ $\varepsilon(\nu) + \rho(\nu) + \tau(\nu) = 1$ $\varepsilon(\nu) = \alpha(\nu)$

 $\varphi = \varepsilon \sigma T^4 \, [W/m^2]$ Strålningstäthet $\Phi = A\varepsilon\sigma T^4 \text{ [W]}$ Strålningsintensitet $\frac{h\nu_{max}}{k_{P}T} = 2.821$ Wiens förskjutningslag frekvens $\lambda_{max}T = 2.898 \cdot 10^{-3} \text{m K}$ Wiens förskjutningslag våglängd

 $u(\nu, T) = \frac{8\pi h \nu^3}{c^3} \cdot \frac{1}{c^{\frac{h\nu}{k_B T}} - 1} [\text{J s m}^{-3}]$ Planck-fördelningen

 $U(T) = V \frac{\pi^5}{15} \cdot \frac{8h}{c^3} \left(\frac{k_B T}{h}\right)^4 [J]$ Total energi hålrumsstrålning

 $\varphi = \frac{1}{4V}U(T)c = \sigma T^4$ Strålningstäthet hålrumsstrålning $E = h\nu = \frac{hc}{\lambda}$ [J] Fotonenergi