If f(x) and g(x) are functions such that f(x) is differentiable at x and g(x) is differentiable at f(x), then the chain rule says that

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x).$$

(b) $(x^2 + x + 1)^{1000}$

Problem 1. Practice the chain rule by differentiating the following functions (no need to simplify):

(a)
$$\sqrt{x^3 + 2x}$$

(c)
$$(x^2 + x + 1)^{1000}$$

(d)
$$(2x^4-1)^2(4x+1)^5$$

 $(4x+1)^5(2(2x^2-1)8x^3)+(2x^4-1)^25(4x+1)^4$

(e)
$$\frac{1-x}{(2x^2+7)^2}$$

 $(2x^2+7)^2(-1)-(1-x)2(2x^2+7)4x$
 $(2x^2+7)^4$

(f)
$$\sqrt{(5x^2+2)^4+3}$$

$$\frac{1}{2} \left(\left(5x^2+2 \right)^4 + 3 \right)^{\frac{1}{2}} \left(4 \left(5x^2+2 \right)^3 \cdot 10 \times \right)$$

$$(g) \left(\frac{10x^2 + 3x}{x^3 - 4x^2 + 1}\right)^{3/2}$$

$$\frac{3}{2} \left(\frac{10x^2 + 3x}{x^3 - 4x^2 + 1}\right)^2 \left(\frac{10x^2 + 3x}{x^3 - 4x^2 + 1}\right)^2 \left(\frac{10x^2 + 3x}{x^3 - 4x^2 + 1}\right)^2$$

(h) Show that
$$\frac{d}{dx}[f(cx)] = cf'(cx)$$
 where f is differentiable, c is a constant.
Let $g(x) = cx$. So, $f(cx) = f(g(x))$. Thus, $\frac{d}{dx}(f(c(x))) = f'(g(x)) \cdot g'(x)$

$$= f'(cx) c$$

(i) If f is differentiable and
$$f(x) > 0$$
 for all x, then show that $\frac{d}{dx} \sqrt{f(x)} = \frac{f'(x)}{2\sqrt{f(x)}}$.

$$\frac{d}{dx} \left(\left(f(x) \right)^{1/2} \right) = \frac{1}{2} f(x) = \frac{f'(x)}{2\sqrt{f(x)}}$$

(j) Write T/F. If false write what the correct statement should be: If f is differentiable, then $\frac{d}{dx} \left[f\left(\frac{1}{x}\right) \right] = f'\left(\frac{1}{x}\right)$.

Problem 2. Let f(x) and g(x) be functions with the following values:

$$f(1) = -3 f'(1) = -\frac{2}{3}$$

$$f(4) = 4 f'(4) = -5$$

$$g(1) = 0 g'(1) = 0$$

$$g(4) = 1 g'(4) = \frac{1}{2}.$$

(a) Calculate h'(4) when $h(x) = (f \circ g)(x)$.

$$h'(x) = f'(\theta(x)) \cdot g'(x)$$

 $h'(4) = f'(\theta(4)) g'(4) = f'(1) \cdot (\frac{1}{2}) = -\frac{2}{3} \cdot \frac{1}{2} = -\frac{1}{3}$

(b) Calculate j'(1) when $j(x) = [f(x)]^3$.

Solution of (1) when
$$f(x) = [f(x)]$$
.

$$f'(x) = 3f(x)^2 \cdot f'(x) \cdot 50, \ j'(1) = 3(f(1))^2 f'(1) = 3(-3)^2 (-\frac{2}{3}) = -18$$

(c) Calculate k'(4) when $k(x) = (g \circ f)(x)$.

Calculate
$$k'(4)$$
 when $k(x) = (g \circ f)(x)$.
 $k'(x) = g'(f(x)) \cdot f'(x)$ so, $k'(4) = g'(f(4)) \cdot f'(4) = g'(4)(-5) = \frac{1}{2} \cdot (-5) = \frac{5}{2}$

Problem 3. The adiabatic law for a gas, the law that governs the behaviour of a gas that is expanding without gaining or losing heat is given by the equation

$$P(t)(V(t))^{\gamma} = k$$

where k, γ are constants, P(t), V(t) are the pressure and volume of the gas respectively at time t. Show that

$$\frac{1}{V}\frac{dV}{dt} = -\frac{1}{\gamma}\frac{1}{P}\frac{dP}{dt}.$$

[We often suppress the notation V(t) to be just V provided that we understand that it is still a function of t; e.g. $rac{df}{dx}$ makes sense but what we actually mean is $rac{d}{dx}(f(x))$. Keep this in mind and do not get confused with notations.

oh,
$$\frac{V^{\gamma-1}}{V^{\gamma}} \frac{dV}{dt} = \frac{-1}{\gamma P} \frac{dP}{dt}$$

oh, $\frac{1}{V} \frac{dV}{dt} = -\frac{1}{\gamma P} \frac{dP}{dt}$