D
Let the ith layer has Ti neurons.
$\sum_{N=1}^{N} \gamma_N = 3b \cdot \gamma_N \ge 2 \cdot \forall N = 1 \cdot \cdot \cdot \cdot \wedge$
Total weights number
= 10 (M1-1)+ X1(M-1)+ XN.1
= 1071+7182+ 8N.1 - (10+71+ 9N-1)
= 109,+9,7,+, MN.1 - (10+36-MN)
$= (10\%1+\%1\%2+\cdots\%1.2)-46$
For each neuron to any layer > at least has 4 weights (product of neuron number of preceding & back layers).
7 7= 7= == = = 2 leads to minimum weights
(10.2.4.18)-4b=46 (minimum)
#

According to question D. Total neights number = (1091+9172+ +71/2)-46 and \$\frac{1}{2} \partial n = 36. \partial 2 \frac{1}{2} \cdot N = 12 \cdot N Assume | hidden layer: 10.36+36'2-46=386. Assume 2 hidden layer: let 91= 7 72=36-X 10x+ x(36-8)+ (36-x)-2-46=-93+44x+26=-(x-22)2+510 When x=22 has max \$10 Assume 23 hidden layer. > < 570 weights > maximum possible number of weights = 570.

$$|\mathcal{S}| = ||\chi_{n} - WV^{T}\chi_{n}||^{2}$$

$$= (\chi_{n} - WV^{T}\chi_{n})^{T} (\chi_{n} - WV^{T}\chi_{n})$$

$$= (\chi_{n} - \chi_{n}WV^{T})(\chi_{n} - WW^{T}\chi_{n})$$

$$= \chi_{n}\chi_{n} - 2\chi_{n}WV^{T}\chi_{n} + \chi_{n}WW^{T}\chi_{n}$$

$$= \chi_{n}\chi_{n} - 2(W^{T}\chi_{n})^{2} + (W^{T}\chi_{n})^{2} (W^{T}w)$$

$$(W^{T}\chi_{n} = \chi_{n}W = k, kis a constant)$$

$$V_{werr_{n}}(w) = \frac{\chi_{n}W_{n}}{2w} - 4(W^{T}\chi_{n})\frac{\chi_{n}W_{n}}{2w}$$

$$+ 2(W^{T}\chi_{n})\frac{\chi_{n}W_{n}}{2w}(W^{T}w) + (W^{T}\chi_{n})^{2}\frac{\chi_{n}W_{n}}{2w}$$

$$= -4(W^{T}\chi_{n})\chi_{n} + 2(W^{T}\chi_{n})(W^{T}w)\chi_{n} + 2(W^{T}\chi_{n})^{2}w$$

$$\begin{aligned}
& \text{Ein}(\omega) = \frac{1}{N} \sum_{n=1}^{N} \| \chi_{n} - \omega_{n} \nabla (\chi_{n} + \varepsilon_{n}) \|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} \| \chi_{n} - \omega_{n} \nabla (\chi_{n} + \varepsilon_{n}) \|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} | |\chi_{n} - \omega_{n} \nabla \chi_{n} - \omega_{n} \nabla \varepsilon_{n}|^{2} \quad (\text{let } k_{n} = \chi_{n} - \omega_{n} \nabla \chi_{n}) \\
&= \frac{1}{N} \sum_{n=1}^{N} | |\chi_{n} - \omega_{n} \nabla \chi_{n} - \omega_{n} \nabla \varepsilon_{n}|^{2} \quad (\text{let } k_{n} = \chi_{n} - \omega_{n} \nabla \chi_{n}) \\
&= \frac{1}{N} \sum_{n=1}^{N} | |\chi_{n} - \omega_{n} \nabla \zeta_{n} - \varepsilon_{n} \nabla \zeta_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} | |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n} - \varepsilon_{n} \nabla \zeta_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} - \varepsilon_{n} \nabla \zeta_{n}|^{2} \\
&= \frac{1}{N} \sum_{n=1}^{N} |\chi_{n} -$$

The loss of basic autoencoder:
$$\sum_{i=1}^{d} (g_i(x) - \chi_i)^2$$
.

Let $M = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$ represent the vector of hidden layer.

 $M_{ij} = W_{ij}^{(1)} = W_{ji}^{(2)}$.

 $g_i(x) = \sum_{i=1}^{d} W_{ini}^{(2)} h_{in} = \sum_{i=1}^{d} U_{in} h_{in}$
 $= \sum_{i=1}^{d} U_{ini} t_{anh} \left(\sum_{i=1}^{d} W_{ini} \chi_{ini} \right)$
 $= \sum_{i=1}^{d} U_{ini} t_{anh} \left(\sum_{i=1}^{d} W_{ini} \chi_{ini} \right)$
 $= \sum_{i=1}^{d} \left(\left(\sum_{i=1}^{d} W_{ini} t_{anh} \right) \sum_{i=1}^{d} U_{ini} \chi_{ini} \right) - \chi_i^2$
 $= \sum_{i=1}^{d} \left(\left(\sum_{i=1}^{d} W_{ini} t_{anh} \right) \sum_{i=1}^{d} U_{ini} \chi_{ini} \right) - \chi_i^2$

$$\frac{\partial g_{n}(x)}{\partial W_{ij}^{(1)}} = \frac{\partial (W_{jn}^{(2)} h_{ij})}{\partial W_{ij}^{(1)}} = W_{jn}^{(2)} \delta_{j} \chi_{i}$$

$$= U_{nj} \delta_{j} \chi_{i}$$

$$= U_{nj} \delta_{j} \chi_{i}$$

$$= U_{nj} \delta_{j} \chi_{i}$$

$$= U_{nj} \delta_{j} \chi_{i}$$

$$= \int_{0}^{\infty} \frac{\partial W_{j}^{(2)}}{\partial W_{j}^{(2)}} = \int_{0}^{\infty} \frac{\partial W_{j}^{(2)}}{\partial W_{j}^{(2)}}$$

Insportnesis $g_{LIN}(x) = \hat{s}_{1}g_{1}(w^{T}x + b)$ $w = X_{1} - X_{2}$ and hyperplane $w^{T}x_{1}b = 0$ passes through mid-point of $x_{1} + 2x_{2} = 0$ $(x_{1} - X_{2}) = (x_{1} + x_{2}) + b = 0$ $b = -\frac{1}{2}(\|x_{1}\|^{2} - \|x_{2}\|^{2})$ $f_{1}(x_{2} - \|x_{2}\|^{2}) = \hat{s}_{1}g_{1}(\|x_{1} - \|x_{2}\|^{2})$ $f_{2}(x_{1} - \|x_{2}\|^{2}) = \hat{s}_{1}g_{1}(\|x_{1} - \|x_{2}\|^{2})$

$$\begin{aligned}
& \mathcal{G}_{RBFNET} = sign\left(\beta_{+}exp(H|x-M_{-}||^{2}) + \beta_{-}exp(-H|x-M_{-}||^{2})\right) \\
& = sign\left(exp\left(H|x-M_{-}||^{2} - H|x-M_{+}||^{2}\right) + \frac{\beta_{-}}{\beta_{+}}\right) \\
& = sign\left(exp\left(H|x-M_{-}||^{2} - H|x-M_{+}||^{2}\right) + \frac{\beta_{-}}{\beta_{+}}\right) \\
& = (x-M_{-})^{T}(x-M_{-}) - (x-M_{+})^{T}(x-M_{+}) \\
& = (x^{T}x - 2\mu^{T}x + M^{T}M_{-}) - (x^{T}x - 2\mu^{T}x + \mu^{T}M_{+}) \\
& = sign\left(H|x-M_{-}||^{2} + H^{T}M_{-}\right) - H^{T}M_{+} - H^{T}$$

$$V_{N} = | V_{N} = | ... N \text{ offer initialization.}$$

$$V_{M} = | V_{N} = | ... N \text{ offer initialization.}$$

$$V_{M} = | V_{M} = | ... N \text{ offer initialization.}$$

$$V_{M} = | V_{M} = | ... N \text{ offer initialization.}$$

$$| V_{M} = | V_{M}$$

When k = 1, the prediction is obtained by the data itself. so the Ein is 0 as a result, and we can see that while k is increasing, the E in rate is increasing, too.

As we can see in this picture, when k= 1, the prediction is obtained by the nearest data in the training data, and it's not sufficient; so when k gets bigger, the E out rate are smaller because the hypothesis consider more data around the testing data.

Problem 13

When gamma is small, the data far from the target can influence it largely, so the Error is high as a result, and when gamma gets bigger, the hypothesis tends to obtain prediction from the nearest data, so the error is low.

As we can see, when we chose a proper size for gamma (in this case = 1), can obtain the best performance.

Problem 15

While k value gets bigger, the Ein is decreasing, it's obivious becase the average distance to nearest center is decreased.

The variance is increasing while k gets bigger, it's probably because the more centers can be learned, the more possilbe solution for convergence, which leads to larger variance.

Provider extreme case:
$$N = 3 \Delta \log_2 \Delta$$

$$\frac{N^2 + 1}{N^2} = \frac{(3 \Delta \log_2 \Delta)^{\Delta} + 1}{3^2 \Delta \log_2 \Delta} = \frac{(3 \Delta \log_2 \Delta)^{\Delta} + 1}{\Delta^{3\Delta}}$$

$$= \left(\frac{3 \Delta \log_2 \Delta}{\Delta^2}\right)^{\Delta} + \frac{1}{\Delta^{3\Delta}} = \left(\frac{3}{\Delta}\right) \left(\frac{\log_2 \Delta}{\Delta}\right)^{\Delta} + \frac{1}{\Delta^{3\Delta}}$$
let $f(\Delta) = \left(\frac{3\log_2 \Delta}{\Delta^2}\right)^{\Delta} + \frac{1}{\Delta^{3\Delta}} = \left(\frac{3}{\Delta}\right) \left(\frac{\log_2 \Delta}{\Delta}\right)^{\Delta} + \frac{1}{\Delta^{3\Delta}}$
when $\Delta = 2$. $f(2) = \frac{9}{16} + \frac{1}{14} = \frac{31}{164} = 1$
when $\Delta > 2$. $f(\Delta) < f(2) < 1$. $\left(\frac{3}{\Delta}, \frac{\log_2 \Delta}{\Delta}, \frac{1}{\log_2 \Delta}\right)$ are decreasing.

In the solution of the second of the seco