Math 347 HW 9

Dylan Chiu

April 29, 2022

Exercise 3.6.31.

Show that a subset of \mathbb{R} is compact if and only if it is closed and bounded.

Proof. <= is proved in Theorem 3.6.27 (Heine-Borel)

We now prove =>. If $S=\emptyset$ the proof is trivial. $S^C=\mathbb{R}$ is obviously open and S is vacuously bounded. Then let $S\subseteq\mathbb{R}$ be a non empty compact set. First we show that S is bounded. Pick some point $x\in S$ and consider $A=\bigcup_{i\in\mathbb{N}}B_i(x)$. A is an open cover of S. Since S is compact we can pick a finite subcover $A'=\bigcup_{i=1}^n B_i(x)$. Then S is bounded above by x+n and bounded below by x-n.

Now we show that S is closed or equivalently, S^c is open. Pick some point $a \in S^c$. We can construct an open cover of S as follows. Define $r_b = \frac{|a-b|}{2}$ for a point $b \in S$. Now $\bigcup_{b \in S} B_{r_b}(b)$ is an open cover of S. By compactness of S we can pick a finite subcover. Consider the set $A = \{r_b | B_{r_b}(b) \in \text{our finite subcover}\}$ and $r = \min(A)$. This is justified since S is finite. Then S is a neighborhood of S that is completely contained in S. Since S was chosen arbitrartily S is open S is closed.

Exercise 3.6.32.

A subset of R is compact if and only if it is sequentially compact.

Proof. => Suppose $S \subseteq \mathbb{R}$ is a compact set. By exercise 3.6.31, S is closed and bounded. Let $(a_k)_{k \in \mathbb{N}}$ be a sequence in S. By lemma 3.6.10, $(a_k)_{k \in \mathbb{R}}$ has a convergent subsequence we call (a_{k_n}) . We aim to show that (a_{k_n}) converges to an element in S. Let a be the limit of (a_{k_n}) . Then the definition of convergence states $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t } \forall n \geq N | a_{k_n} - a | < \epsilon$ Then a is an accumulation point of S. But S is closed iff S contains all of its accumulation points. Thus S contains a and (a_{k_n}) converges to $a \in S$

 \leq Suppose $S \subseteq \mathbb{R}$ is a sequentially compact set i.e every sequence in S has a subsequence that converges to an element in S. Assume S is not bounded to derive a contradiction. Pick some element $a_1 \in S$. Since S is not bounded $\exists a_2 \in S, |a_2 - a_1| > 2$. Continue selecting a sequence $(a_n)_{n \in \mathbb{N}}$ such that $|a_n - a_{n-1}| > n$ Then there is a convergent subsequence $(a_{n_k}) \to a$. Since (a_{n_k}) is convergent, it is also Cauchy. $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t } \forall n, m \geq N, |a_{n_k} - a_{m_k}| < \epsilon$ But this is a contradiction since $|a_{n_k} - a_{m_k}|$ is unbounded.

Now we show that S is closed. Assume not to derive a contradiction. Then S does not contain all of its acculumation points. Let x be an accumulation point of S that is not in S. Then $\forall \epsilon > 0$, $B_{\epsilon}(x) \setminus \{x\} \cap S \neq \emptyset$ Pick a sequence (a_k) as follows. $a_1 = p \in B_1(x) \setminus \{x\} \cap S$. Then pick $a_2 = p \in B_{1/2}(x) \setminus \{x, a_1\} \cap S$ Continuing inductively we select a sequence (a_k) that has a subsequence $(a_k) \to a \in S^c$. Every convergent subsequence has the same limit, therefore (a_k) does not have a subsequence that converges in S. But this contradicts our assumption that S is sequentially compact. Thus S must be closed.

Problem 3

Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Suppose $(a_k)_{k \in \mathbb{N}} \to a$. Prove $(f(a_k)) \to f(a)$.

Proof. Fix $\epsilon > 0$. Then by definition of continuity

$$\exists \delta > 0 \text{ s.t } a_k \in B_{\delta}(a) \implies f(a_k) \in B_{\epsilon}(f(a))$$

 $(a_n) \to a \text{ means}$

$$\forall \delta > 0, \exists N \in \mathbb{N} \text{ s.t } \forall n \geq N, a_n \in B_{\delta}(a)$$

Using continuity, $\exists N \in \mathbb{N}$ s.t $\forall n \geq N, f(a_n) \in B_{\epsilon}(f(a))$. But this is simply the definition of $(f(a_n)) \to f(a)$.

Problem 4

Let (X, d) be a metric space. Prove that the open ball $B_r(x_0) := \{x \in X : d(x, x_0) < r\}$ is indeed open.

Proof. Let x_1 be a point in $B_r(x_0)$. Let $\phi =$

$$\begin{cases} d(x_0, x_1) & d(x_0, x_1) \le r/2 \\ r - d(x_0, x_1) & d(x_0, x_1) > r/2 \end{cases}$$

Case 1: $d(x_0, x_1) \le r/2$. Let $x \in B_{\phi}(x_1)$.

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x) < r/2 + r/2 = r$$

Case 2: $d(x, x_0) > r/2$. Let $x \in B_{\phi}(x_1)$.

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x) < d(x_0, x_1) + r - d(x_0, x_1) = r$$

In both cases $B_{\phi}(x_1) \subseteq B_r(x_0)$

Exercise 4.2.8.

Let p be a real number such that $p \ge 1$. For $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, we define

$$||x||_p = (\sum_{j=1}^n |x_j|^p)^{1/p}$$

$$d_n(x,y) = ||x - y||$$

Prove that d_p is a metric on \mathbb{R}^n .

Proof. d_p is clearly positive definite due to the |*| in the summation.

 d_p is symmetric by commutativity of \mathbb{R}

Now we show triangle inequality.

$$||x+y||_p^p = \sum_i |x_i+y_i|^p \leq \sum_i |x_i+y_i|^{p-1} |x_i| + \sum_i |x_i+y_i|^{p-1} |y_i|$$

Now we apply Holder's inequality to both summations individually.

$$\leq \left(\sum |x_i + y_i|^{(p-1)*\frac{1}{(1-1/p)}}\right)^{1-1/p} \left(\sum |x_i|^p\right)^{1/p} + \left(\sum |x_i + y_i|^{(p-1)*\frac{1}{(1-1/p)}}\right)^{1-1/p} \left(\sum |y_i|^p\right)^{1/p} \\
\leq \left(\sum |x_i + y_i|^p\right)^{1-1/p} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |y_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |y_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |y_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |y_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |y_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |y_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |y_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |y_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |y_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |y_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |y_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |x_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |x_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |x_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |x_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |x_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |x_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |x_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\left(\sum |x_i|^p\right)^{1/p} + \left(\sum |x_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\sum |x_i|^p\right)^{1/p} + \left(\sum |x_i|^p\right)^{1/p}\right) \\
\leq \left(\sum |x_i + y_i|^p\right)^{p-1} \left(\sum |x_i|^p\right)^{1/p} + \left(\sum |x_i|^p\right)^{1/p}$$

$$||x+y||_p \le (\sum |x_i|^p)^{1/p} + (\sum |y_i|^p)^{1/p}$$