

Prüfbericht-Nr.: Auftrags-Nr.: 17051492 005 164042267 Seite 1 von 23 Test Report No.: Order No .: Page 1 of 23 Kunden-Referenz-Nr.: Auftragsdatum: N/A 30.07.2015 Client Reference No.: Order date: Auftraggeber: Lightcomm Technology Co., Ltd. RM1708-10, 17/F, PROSPERITY CENTRE, 25 CHONG YIP STREET, KWUN TONG, HONG KONG Client: Prüfgegenstand: 7" Wi-Fi Android™ Tablet Test item: Bezeichnung / Typ-Nr.: DL718M. DL718M-B. DL-718M-G. DL718M-P. DL718M-R. MID721-L Identification / Type No.: Auftrags-Inhalt: **FCC Certification** Order content: CFR Title 47 Part 2 Subpart J Section 2.1093 Prüfgrundlage: Test specification: ANSI/IEEE C95.1-1992 IEEE 1528-2003 FCC OET Bulletin 65 Supplement C (Edition 01-01) Wareneingangsdatum: 06.08.2015 Date of receipt: Prüfmuster-Nr.: A000243804-001 Test sample No.: Prüfzeitraum: 10.08.2015 - 11.08.2015 Testing period: Ort der Prüfung: Shenzhen EMTEK Co., Ltd. Place of testing: Prüfiaboratorium: TÜV Rheinland (Shenzhen) Co., Ltd. Testing laboratory. Prüferaebnis*: **Pass** Test result*: kontrolliert von I reviewed by: geprüft von / tested by: 26.05.2015 Owen Tian/Senior Project Manager 28.08.2015 Sam Lin/Technical Certicie Datum Name / Stellung Unterschrift Datum Name / Stellung Unterschrift Name / Position Signature Date Name / Position Signature Date Sonstiges I Other. Zustand des Prüfgegenstandes bei Anlieferung: Prüfmuster vollständig und unbeschädigt Test item complete and undamaged Condition of the test item at delivery. * Legende: 1 = sehr gut 3 = befriedigend 4 = ausreichend 5 = mangelhaft F(ail) = entspricht nicht o.g. Prüfgrundlage(n) N/A = nicht anwendbar N/T = nicht getestet P(ass) = entspricht o.g. Prüfgrundlage(n) 3 = satisfactory 4 = sufficientLegend: 1 = very good 2 = aood5 = poorP(ass) = passed a.m. test specification(s) F(ail) = failed a.m. test specification(s) N/A = not applicable N/T = not tested

 Prüfbericht - Nr.:
 17051492 005
 Seite 2 von 23

 Test Report No.
 Page 2 of 23

STATEMENT OF COMPLIANCE

TEST ITEM	SPECIFICATION	RESULT
Specific Absorption Rate - Wi-Fi 802.11 b/g/n - 2.4GHz Band	OET Bulletin 65 Supplement C (Edition 01-01): Evaluating compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields	PASS
Specific Absorption Rate - Wi-Fi 802.11 a - 5.2GHz Band	OET Bulletin 65 Supplement C (Edition 01-01): Evaluating compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields	PASS
Specific Absorption Rate - Wi-Fi 802.11 a - 5.8GHz Band	OET Bulletin 65 Supplement C (Edition 01-01): Evaluating compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields	PASS
Specific Absorption Rate – Bluetooth BDR - 2.4GHz Band	OET Bulletin 65 Supplement C (Edition 01-01): Evaluating compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields	PASS

This device complies with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/kg) specified in CFR Title 47 Part 2 Subpart J Section 2.1093 and ANSI/IEEE C95.1-1992.

This device has been testd in accordance with the measurement methods and procedure specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (edition 01-01).

Refer to the maximum results of Specific Absorption Rate (SAR) durning testing as below.

FREQUENCY BAND	EXPOSURE POSITION		HIGHEST REPORTED SAR VALUE (W/KG)
802.11 b/g/n - 2.4GHz Band	Body	DTS	1.280
802.11 a - 5.8GHz Band	Body	סוט	1.348
802.11 a - 5.2GHz Band	Body	NII	0.714

 Prüfbericht - Nr.:
 17051492 005
 Seite 3 von 23

 Test Report No.
 Page 3 of 23

Contents

1.	GENERAL REMARKS	4
1.1	COMPLEMENTARY MATERIALS	4
2.	TEST SITES	4
2.1	TEST FACILITIES	4
2.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS	5
3.	GENERAL PRODUCT INFORMATION	6
3.1	PRODUCT FUNCTION AND INTENDED USE	6
3.2	RATINGS AND SYSTEM DETAILS	6
3.3	INDEPENDENT OPERATION MODES	8
3.4	SUBMITTED DOCUMENTS	8
4.	TEST SET-UP AND OPERATION MODES	9
4.1	PRINCIPLE OF CONFIGURATION SELECTION	9
5 .	TISSUE SIMULATING LIQUID INGREDIENTS	10
5.1	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK	10
5.2	EXPOSURE POSITIONS CONSIDERATION	12
5.3	PHANTOM DESCRIPTION	13
5.4	SCANNING PROCEDURE	14
5.5	TEST OPERATION AND TEST SOFTWARE	15
5.6	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	15
6.	TEST RESULTS	16
6.1	HUAMAN EXPOSURE TO RADIOFREQUENCY ELECTROMAGNETIC FIELDS	16
6.2 <i>6.2.</i>	MEASUREMENT UNCERTAINTY	20
	PHOTOGRAPHS OF THE TEST SET-UP	
7.	FRUIUGRAPHS OF THE TEST SET-UP	21
8.	LIST OF TABLES	23
9.	LIST OF PHOTOGRAPHS	23

Products

 Prüfbericht - Nr.:
 17051492 005

 Test Report No.
 Seite 4 von 23

 Page 4 of 23

1. General Remarks

1.1 Complementary Materials

All attachments are integral parts of this test report. This applies especially to the following appendix:

Appendix A: System Performance Check Appendix B: Test Plots of SAR Measurement

Appendix C: Calibration Certificate

2. Test Sites

2.1 Test Facilities

Shenzhen EMTEK Co., Ltd.

Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, P.R. China

The tests at the test site have been conducted under the supervision of a TÜV engineer.

 Prüfbericht - Nr.:
 17051492 005
 Seite 5 von 23

 Test Report No.
 Page 5 of 23

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal Date	Cal. Interval
Signal Generator	Agilent	N5181A	MY50145187	2015-05-16	1year
RF Power Meter. Dual Channel	BOONTON	4232A	10539	2015-05-16	1year
Power Sensor	BOONTON	51011EMC	34236/34238	2015-05-16	1year
Wideband Radio Communication Tester	R&S	CMW500	1201.0002K50 -140822zk	2015-05-16	1year
E-Field Probe	SPEAG	EX3DV4	3801	2015-07-10	1year
DAE	SPEAG	DAE4	918	2015-06-23	1year
Validation Kit 5GHz	SPEAG	D5GHzV2	1169	2014-01-13	2year
Validation Kit 2450MHz	SPEAG	D2450V2	927	2014-01-13	2year

 Prüfbericht - Nr.:
 17051492 005
 Seite 6 von 23

 Test Report No.
 Page 6 of 23

3. General Product Information

3.1 Product Function and Intended Use

The EUTs are 7" tablet with Wi-Fi, Bluetooth & GPS function. These models are identical except the model name and color. For details refer to the User Manual and Circuit Diagram.

3.2 Ratings and System Details

Table 2: Technical Specification

Device type:	Portable device	Portable device							
EUT Name:	7" Wi-Fi Android	7" Wi-Fi Android™ Tablet							
Type Identification:	DL718M, DL718	DL718M, DL718M-B, DL-718M-G, DL718M-P, DL718M-R, MID721-L							
Serial Number	A000243804-00	1							
FCC ID:	XMF-MID721								
Operating mode(s) / WiFi:	IEEE 802.11b	IEEE 802.11b							
Test modulation	DSSS (DBPSK, DQPSK), CCK)	OFDM (DBPSK, DQPSK)	OFDM (BPSK, QPSK, 16-QAM, 64-QAM)	OFDM (BPSK, QPSK, 16-QAM, 64-QAM)	OFDM (BPSK, QPSK, 16-QAM, 64-QAM)				
Transmit Frequency Range (MHz):	2412 - 2472	2412 - 2472	2422 - 2462	5180 - 5240, 5745 - 5825					
Maximum tune-up average output power (dBm):	16	15.5	15.5	15	14.5				
Operating mode(s) / Bluetooth:	Bluetooth 4.0			•					
Test modulation	GFSK, π/4DQPS	SK, 8DPSK for BDF	R & EDR mode, GFS	K for LE mode					
Transmit Frequency Range (MHz):	2402-2480								
Maximum tune-up average output power (dBm):	6.5	6.5							
Hardware version:	MID721-MT8127	'-86V VER1.1							
Software version:	3.10.72 lius@mie	d-compiler #1 tue A	ug 25 21:13:24 CTS	S 2015					
Antenna type:	Integrated anten	Integrated antenna							
Battery options:	DC 3.7V								

 Prüfbericht - Nr.:
 17051492 005
 Seite 7 von 23

 Test Report No.
 Page 7 of 23

Table 3: List of WLAN Channel of 802.11b/g/n mode

802	.11b	802.11g		802.11n (HT20)		802.11n (HT40)	
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)
1	2412	1	2412	1	2412	3	2422
2	2417	2	2417	2	2417	4	2427
3	2422	3	2422	3	2422	5	2432
4	2427	4	2427	4	2427	6	2437
5	2432	5	2432	5	2432	7	2442
6	2437	6	2437	6	2437	8	2447
7	2442	7	2442	7	2442	9	2452
8	2447	8	2447	8	2447	10	2457
9	2452	9	2452	9	2452	11	2462
10	2457	10	2457	10	2457		
11	2462	11	2462	11	2462		

Table 4: List of WLAN Channel of 802.11a mode

802.11a						
Channel Number	Frequency (MHz)					
36	5180					
40	5200					
44	5220					
48	5240					
149	5745					
153	5765					
157	5785					
161	5805					
165	5825					

Table 5: List of Bluetooth Channel

Bluetooth (E	BDR & EDR)	Bluetoo	th (LE)
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)
0	2402	0	2402
39	2441	19	2440
78	2480	39	2480

Products

Prüfbericht - Nr.: 17051492 005 Seite 8 von 23 Page 8 of 23 Test Report No.

3.3 Independent Operation Modes

The basic operation modes are:

- A. On, transmitting
 - 1. 802.11b
 - a) CH1
 - b) CH6
 - c) CH11
 - 2. 802.11g
 - a) CH1
 - b) CH6
 - c) CH11
 - 3. 802.11n (HT20)
 - a) CH1
 - b) CH6
 - c) CH11
 - 4. 802.11n (HT40)
 - a) CH3
 - b) CH7
 - c) CH11
 - 5. 802.11a
 - a) CH40

 - b) CH44
 - c) CH149
 - d) CH157
 - e) CH165
 - 6. Bluetooth BDR
 - a) CH0
 - b) CH39
 - c) CH78
- B. Off

3.4 Submitted Documents

- Bill of Material
- Constructional Drawing
- PCB Layout
- Photo Document

- Circuit Diagram
- Instruction Manual
- Rating Label

 Prüfbericht - Nr.:
 17051492 005
 Seite 9 von 23

 Test Report No.
 Page 9 of 23

4. Test Set-up and Operation Modes

4.1 Principle of Configuration Selection

The EUT is commanded to operate at maximum transmitting power. The EUT shall use its internal transmitter. The antenna, battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

Table 6: Configuration of EUT

	Frequency		Default	Test Cha	Power Control	
Operation mode	Range (MHz)	Modulation	Low	Middle	High	Level
802.11b/g/n(HT20)	2412-2462	DSSS, OFDM	CH1	CH6	CH11	Test software
802.11n(HT40)	2422-2462	OFDM	CH3	CH7	CH11	was used to
802.11a	5180-5240	OFDM	CH40		CH44	configure the
002.11a	5745-5825	OFDM	CH149	CH157	CH165	EUT to transmit
Bluetooth (BDR & EDR)	2402-2480	FHSS	CH0	CH39	CH78	at maximum
Bluetooth (LE)	2402-2480	GFSK	CH0	CH19	CH39	output power

Products Products

 Prüfbericht - Nr.:
 17051492 005
 Seite 10 von 23

 Test Report No.
 Page 10 of 23

5. Tissue Simulating Liquid Ingredients

The liquid is consisted of Water, Salt, Glycol and DGBE. The liquid has previously been proven to be suited for worst-case. The following table shows the detail solution.

Table 7: Composition of Tissue Simulating Liquid

MIXTURE%(Weight)	FREQUENCY (Body) 2450MHz
Water	73.2
Glycol	26.7
Salt	0.1
Dielectric Parameters Target Value	f=2450MHz ε=52.70 σ=1.95

MIXTURE%(Weight)	FREQUENCY (Body) 5GHz
Water	75.68
DGBE	4.42
Triton X-100	19.47
Salt	0.43
Dielectric Parameters Target Value	f=5200MHz ε=49.00 σ =5.30
	f=5300MHz ε=48.90 σ =5.42
	f=5500MHz ε=48.60 σ =5.65
	f=5600MHz ε=48.50 σ =5.77
	f=5800MHz ε =48.20 σ =6.00

5.1 Specific Absorption Rate (SAR) System Check

Dielectric parameters of the tissue simulating liquid were verified prior to the SAR evaluation using the dielectric proble kit and the network analyzer.

A system check measurement was made following the determination of the dielectric parameters of the tissue simulating liquid, using the dipole validation kit. A power level of 250 mW for 2.4GHz band or 100mW for 5GHz band as supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the following table.

Products

 Prüfbericht - Nr.:
 17051492 005
 Seite 11 von 23

 Test Report No.
 Page 11 of 23

Table 8: System Check Results of Tissue Simulating Liquid

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
2450	Body	22.6	1.999	52.351	1.95	52.70	2.51	-0.66	±5	2015-8-10
5200	Body	22.8	5.279	49.196	5.30	49.00	-0.40	0.40	±5	2015-8-11
5800	Body	22.8	6.141	47.955	6.00	48.20	2.35	-0.51	±5	2015-8-11

Table 9: System Validation

Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2450	Body	250	927	3970	1418	12.84	50.40	51.36	1.90
5200	Body	100	1169	3970	1418	7.59	73.80	75.9	2.85
5800	Body	100	1169	3970	1418	7.32	74.30	73.2	-1.48

 Prüfbericht - Nr.:
 17051492 005
 Seite 12 von 23

 Test Report No.
 Page 12 of 23

5.2 Exposure Positions Consideration

 Prüfbericht - Nr.:
 17051492 005
 Seite 13 von 23

 Test Report No.
 Page 13 of 23

5.3 Phantom Description

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Shell Thickness 2±0.2 mm

Filling Volume Approx. 30 liters

Dimensions 190×600×0 mm (H x L x W)

Picture of ELI Phantom

Products Products

 Prüfbericht - Nr.:
 17051492 005
 Seite 14 von 23

 Test Report No.
 Page 14 of 23

5.4 Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5%.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- · boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic

Products

 Prüfbericht - Nr.:
 17051492 005
 Seite 15 von 23

 Test Report No.
 Page 15 of 23

Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

5.5 Test Operation and Test Software

Test operation refers to test setup in chapter 5.

A communication link is set up with the test mode software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode.

802.11b/g/n operating modes are tested independently according to the service requirements in each frquency band.802.11b/g/n modes are tested on channel 1, 6, 11. However, if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

802.11a is tested for UNII operations on channel 40 and 44 in 5.18 - 5.24GHz band. Also 5.8GHz band is also available for §15.247, hence channels 149, 157 and 165 should be tested instead of the UNII channels.

SAR is not required for 802.11g/n when the maximum average output power is less than ¼ dB higher than that measured on the corresponding 802.11b channels.

Each channel should be tested at the lowest data rate, and repeated SAR measurement is required only when the measured SAR is \geq 0.8 W/kg.

For each frequency band testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than ¼ dB higher than those measured at the lowest data rate.

5.6 Special Accessories and Auxiliary Equipment

None.

Products

Prüfbericht - Nr.: 17051492 005 Seite 16 von 23 Page 16 of 23 Test Report No.

6. Test Results

6.1 Huaman Exposure to Radiofrequency Electromagnetic **Fields**

RESULT: Passed

Date of testing : 2015-08-10 to 2015-08-11

Test standard : CFR Title 47 Part 2 Subpart J Section 2.1093

ANSI/IEEE C95.1-1992

IEEE 1528-2003

FCC OET Bulletin 65 Suppplement C (Edition 01-01)

FCC KDB Publication : KDB 447498 D01 v05r01

> KDB 248227 D01 v01r02 KDB 616217 D04 v01r01 KDB 865664 D01 v01r01

Limits : 1.6W/kg

Test setup

Operation mode : A.1, A.3, A.4, A.5, A.6

Operation mode

Ambient temperature **: 23**℃ Relative humidity 50% Atmospheric pressure : 101.0kPa

Table 10: Conducted Power of 802.11b

			Averag	e power (dBm)				Duty Cycle %
Channel	Frequency (MHz)		D	ata Rate		Power Setting	Tune-Up Limit	99.64
		1Mbps	2Mbps	5.5Mbps	11Mbps			Max
CH 1	2412	15.08	15.25	15.14	15.24	17	16	
CH 6	2437	15.28	15.19	15.32	15.4	17	16	15.61
CH 11	2462	15.31	15.61	15.56	15.47	17	16	

Table 11: Conducted Power of 802.11g

					Average p	ower (dBm)						Duty Cycle %
Channel	Frequency (MHz)	Data Rate						Power Setting	Tune-Up Limit	97.49		
		6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps			Max
CH 1	2412	12.96	13.39	13.36	13.7	13.19	13.31	13.93	13.42	17	14	
CH 6	2437	14.95	15.05	15.3	15.25	15.13	15.21	14.98	15.06	17	15.5	15.3
CH 11	2462	13.37	12.99	13.49	13.47	13.54	13.29	13.91	13.92	17	14	

Test Report No.

Prüfbericht - Nr.: 17051492 005

Seite 17 von 23Page 17 of 23

Table 12: Conducted Power of 802.11n (HT20)

					Average p	ower (dBm)						Duty Cycle %
Channel	Frequency (MHz)		Data Rate								Tune-Up Limit	97.49
		6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps			Max
CH 1	2412	12.96	13.39	13.36	13.7	13.19	13.31	13.93	13.42	17	14	
CH 6	2437	14.95	15.05	15.3	15.25	15.13	15.21	14.98	15.06	17	15.5	15.3
CH 11	2462	13.37	12.99	13.49	13.47	13.54	13.29	13.91	13.92	17	14	

Table 13: Conducted Power of 802.11n (HT40)

					Average p	ower (dBm)						Duty Cycle %
Channel	Frequency (MHz)				MCS	Power Setting	Tune-up Limit	94.92				
		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7			Max
CH 3	2422	11.21	11.05	11.04	11.09	11.15	11.12	11.39	11.13	16.5	12	
CH 6	2437	14.44	14.37	14.37	14.47	14.49	13.34	13.12	13.36	16.5	15	14.49
CH 9	2452	11.42	11.03	11.57	11.11	11.48	10.99	11.36	11.28	16.5	12	

Table 14: Conducted Power of 802.11a

					Average	Power (dBm	1)					Duty Cycle %
Channel	Frequency (MHz)		Data Rate							Power Setting	Tune-up Limit	97.5
		6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps			Max
CH 36	5180	14.11	14.15	14.17	14.23	14.06	14.19	14.43	14.42	17	15	
CH 40	5200	13.94	14.06	13.99	14.10	13.52	13.79	13.92	14.01	17	15	14.43
CH 44	5220	13.39	13.43	13.60	13.72	13.68	13.55	13.64	13.71	17	15	14.43
CH 48	5240	13.00	12.95	12.99	13.01	13.11	12.89	12.97	13.02	17	14	
CH 149	5745	11.69	11.71	11.67	11.80	11.59	11.70	11.67	11.83	16	12.5	12.15
CH 165	5825	12.01	12.15	11.02	11.97	12.00	11.86	12.03	11.79	16	12.5	12.15

Table 15: Conducted Power of Bluetooth (BDR & EDR)

Channel	Frequency		Bluetooth Average power (dBm)		Tune-up
Chame	(MHz)	1Mbps	1Mbps 2Mbps		Limit
CH 00	2402	5.69	4.82	4.80	
CH 39	2441	6.12	5.25	5.25	6.5
CH 78	2480	6.00	5.17	5.20	

Products

 Prüfbericht - Nr.:
 17051492 005
 Seite 18 von 23

 Test Report No.
 Page 18 of 23

Table 16: Conducted Power of Bluetooth (LE)

Channel	Frequency	Bluetooth Average power (dBm)	Tune-up
Chamile	(MHz)	GFSK	Limit
CH 00	2402	-2.14	
CH 19	2440	-1.84	-1
CH 39	2480	-1.75	

Products

 Prüfbericht - Nr.:
 17051492 005
 Seite 19 von 23

 Test Report No.
 Page 19 of 23

Table 17: Test result of SAR Values

Table I		ot i Coui	<u> </u>	57 (1)													
Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Powe r Setti ng	configure	Average Power (dBm)	Tune-Up Limit (dBm)	Tune- up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)	Date	Note
WLAN2.4G	802.11b	Bottom Face	0	11	2462	17	1Mbps	15.31	16.00	1.172	99.64	1.004	-0.06	1.04	1.224	2015-08-10	
WLAN2.4G	802.11b	Edge 3	0	11	2462	17	1Mbps	15.31	16.00	1.172	99.64	1.004	0.09	1.06	1.247	2015-08-10	
WLAN2.4G	802.11b	Edge 4	0	11	2462	17	1Mbps	15.31	16.00	1.172	99.64	1.004	-0.03	0.138	0.162	2015-08-10	
WLAN2.4G	802.11b	Bottom Face	0	1	2412	17	1Mbps	15.08	16.00	1.236	99.64	1.004	-0.02	0.957	1.188	2015-08-10	
WLAN2.4G	802.11b	Bottom Face	0	6	2437	17	1Mbps	15.28	16.00	1.180	99.64	1.004	-0.06	0.976	1.157	2015-08-10	
WLAN2.4G	802.11b	Edge 3	0	1	2412	17	1Mbps	15.08	16.00	1.236	99.64	1.004	-0.04	1.01	1.253	2015-08-10	
WLAN2.4G	802.11b	Edge 3	0	6	2437	17	1Mbps	15.28	16.00	1.180	99.64	1.004	-0.1	1.08	1.280	2015-08-10	
WLAN2.4G	802.11b	Edge 3	0	6	2437	17	1Mbps	15.28	16.00	1.180	99.64	1.004	-0.05	1.02	1.209	2015-08-10	Repeat SAR
WLAN5G Band 1	802.11a	Bottom Face	0	36	5180	17	6Mbps	14.11	14.50	1.094	97.5	1.026	-0.06	0.636	0.714	2015-08-11	
WLAN5G Band 1	802.11a	Edge 3	0	36	5180	17	6Mbps	14.11	14.50	1.094	97.5	1.026	0.12	0.345	0.387	2015-08-11	
WLAN5G Band 1	802.11a	Edge 4	0	36	5180	17	6Mbps	14.11	14.50	1.094	97.5	1.026	-0.01	0.203	0.228	2015-08-11	
WLAN5G Band 4	802.11a	Bottom Face	0	165	5825	16	6Mbps	12.01	12.50	1.119	97.5	1.026	-0.05	0.992	1.139	2015-08-11	
WLAN5G Band 4	802.11a	Edge 3	0	165	5825	16	6Mbps	12.01	12.50	1.119	97.5	1.026	0.04	0.441	0.507	2015-08-11	
WLAN5G Band 4	802.11a	Edge 4	0	165	5825	16	6Mbps	12.01	12.50	1.119	97.5	1.026	-0.05	0.357	0.410	2015-08-11	
WLAN5G Band 4	802.11a	Bottom Face	0	149	5745	16	6Mbps	11.69	12.50	1.205	97.5	1.026	-0.05	1.09	1.348	2015-08-11	
WLAN5G Band 4	802.11a	Bottom Face	0	149	5745	16	6Mbps	11.69	12.50	1.205	97.5	1.026	-0.04	1.08	1.335	2015-08-11	Repeat SAR

Refer to attached Appendix B for details of test results.

 Prüfbericht - Nr.:
 17051492 005
 Seite 20 von 23

 Test Report No.
 Page 20 of 23

6.2 Measurement Uncertainty

6.2.1 Measurement uncertainty evaluation

This measurement uncertainty budget is suggested by IEEE P1528. The breakdown of the individual uncertainties is as follows:

Table 18: Measurement Uncertainties

No.	Description	Туре	Uncertainty Value (%)	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Meas	urement system					1				
1	Probe calibration	В	5.5	N	1	1	1	5.5	5.5	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Test	sample related									
14	Test sample positioning	Α	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	Α	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
	tom and set-up					•				
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	80
19	Liquid conductivity (meas.)	Α	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	Α	1.6	N	1	0.6	0.49	1.0	0.8	521
uncer	pined standard rtainty		$u_{c}' = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$							257
	nded uncertainty fidence interval of 95%)	$u_e = 2u_c$						18.5	18.2	\

Test Report No.

Prüfbericht - Nr.: 17051492 005

Seite 21 von 23Page 21 of 23

7. Photographs of the Test Set-Up

Photograph 1: Set-up for Bottom Face

Photograph 2: Set-up for Edge 3

Products

 Prüfbericht - Nr.:
 17051492 005
 Seite 22 von 23

 Test Report No.
 Page 22 of 23

Photograph 3: Set-up for Edge 4

Products

 Prüfbericht - Nr.:
 17051492 005
 Seite 23 von 23

 Test Report No.
 Page 23 of 23

$\mathbf{\circ}$	- 4		T -	I - I	
×	ICT	Δ T	Ta	n	IDC
U.	 ıσι	VI.	10	v	163

Table 1: List of Test and Measurement Equipment	5
Table 2: Technical Specification	
Table 3: List of WLAN Channel of 802.11b/g/n mode	7
Table 4: List of WLAN Channel of 802.11a mode	7
Table 5: List of Bluetooth Channel	7
Table 6: Configuration of EUT	
Table 7: Composition of Tissue Simulating Liquid	10
Table 8: System Check Results of Tissue Simulating Liquid	11
Table 9: System Validation	11
Table 10: Conducted Power of 802.11b	
Table 11: Conducted Power of 802.11g	
Table 12: Conducted Power of 802.11n (HT20)	
Table 13: Conducted Power of 802.11n (HT40)	
Table 14: Conducted Power of 802.11a	
Table 15: Conducted Power of Bluetooth (BDR & EDR)	
Table 16: Conducted Power of Bluetooth (LE)	
Table 17: Test result of SAR Values	
Table 18: Measurement Uncertainties	20
O List of Photographs	
9. List of Photographs	
Photograph 1: Set-up for Bottom Face	21
Photograph 2: Set-up for Edge 3	
Photograph 3: Set-up for Edge 4	

17051492 005

Produkte

Products

Page 1 of 3

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 10.08.2015

SystemPerformanceCheck-D2450V2-MSL-150810

DUT: Dipole 2450 MHz D2450V2 SN:927

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL 2450 150810

Medium parameters used: f = 2450 MHz; $\sigma = 1.999 \text{ S/m}$; $\varepsilon_r = 52.351$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequency at 2450MHz/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Area Scan (41x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 17.2 W/kg

System Performance Check at Frequency at 2450MHz/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 94.505 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 12.84 W/kg; SAR(10 g) = 5.91 W/kg

Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg

17051492 005

Produkte

Products Page 2 of 3

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 11.08.2015

SystemPerformanceCheck-D5GHzV2-5200MHz-MSL-150811

DUT: Dipole D5GHzV2 SN:1169

Communication System: UID 0, CW (0); Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: MSL_5G_150811

Medium parameters used: f = 5200 MHz; $\sigma = 5.279$ S/m; $\varepsilon_r = 49.196$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY Configuration:

• Probe: EX3DV4 - SN3970; ConvF(5.08, 5.08, 5.08); Calibrated: 10.07.2015;

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequency at 5200MHz/d=10mm, Pin=100mW, dist=2.0mm (EX-Probe)/Area Scan (91x91x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.1 W/kg

System Performance Check at Frequency at 5200MHz/d=10mm, Pin=100mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm

Reference Value = 63.9 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 29.0 W/kg

SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.19 W/kgMaximum value of SAR (measured) = 16.3 W/kg

0 dB = 16.3 W/kg = 12.12 dBW/kg

17051492 005

Produkte

Products Page 3 of 3

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 11.08.2015

SystemPerformanceCheck-D5GHzV2-5800MHz-MSL-150811

DUT: Dipole D5GHzV2 SN:1169

Communication System: UID 0, CW (0); Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: MSL 5G 150811

Medium parameters used: f = 5800 MHz; $\sigma = 6.141 \text{ S/m}$; $\varepsilon_r = 47.955$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(4.69, 4.69, 4.69); Calibrated: 10.07.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequency at 5800MHz/d=10mm, Pin=100mW, dist=2.0mm (EX-Probe)/Area Scan (91x91x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 15.8 W/kg

System Performance Check at Frequency at 5800MHz/d=10mm, Pin=100mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm

Reference Value = 57.6 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 7.32 W/kg; SAR(10 g) = 2.05 W/kgMaximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.10 dBW/kg

17051492 005

Produkte

Products

Page 1 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 10.08.2015

01-WLAN2.4GHz-802.11b 1Mbps-Bottom Face-0cm-Ch11

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450 150810

Medium parameters used: f = 2462 MHz; $\sigma = 2.016$ S/m; $\epsilon_r = 52.306$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.4 ℃; Liquid Temperature: 22.6 ℃

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch11/Area Scan (111x181x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.66 W/kg

Configuration/Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 1.062 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 2.43 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.442 W/kg

Maximum value of SAR (measured) = 1.67 W/kg

0 dB = 1.67 W/kg = 2.23 dBW/kg

17051492 005

Produkte

Products

Page 2 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 10.08.2015

02-WLAN2.4GHz-802.11b 1Mbps-Edge 3-0cm-Ch11

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL 2450 150810

Medium parameters used: f = 2462 MHz; σ = 2.016 S/m; ϵ_r = 52.306; ρ = 1000 kg/m³

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch11/Area Scan (41x111x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.76 W/kg

Configuration/Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.982 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 2.60 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.407 W/kg

Maximum value of SAR (measured) = 1.78 W/kg

0 dB = 1.78 W/kg = 2.50 dBW/kg

17051492 005

Produkte

Products

Page 3 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 10.08.2015

03-WLAN2.4GHz-802.11b 1Mbps-Edge 4-0cm-Ch11

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450_150810

Medium parameters used: f = 2462 MHz; $\sigma = 2.016$ S/m; $\epsilon_r = 52.306$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

• Probe: EX3DV4 - SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch11/Area Scan (41x181x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.205 W/kg

Configuration/Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

z=5mm

Reference Value = 5.338 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.287 W/kg

SAR(1 g) = 0.138 W/kg; SAR(10 g) = 0.066 W/kg

Maximum value of SAR (measured) = 0.213 W/kg

0 dB = 0.213 W/kg = -6.72 dBW/kg

17051492 005

Produkte

Products

Page 4 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 10.08.2015

04-WLAN2.4GHz-802.11b 1Mbps-Bottom Face-0cm-Ch1

Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL 2450 150810

Medium parameters used: f = 2412 MHz; $\sigma = 1.946$ S/m; $\epsilon_r = 52.449$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

• Probe: EX3DV4 - SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch1/Area Scan (111x71x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.54 W/kg

Configuration/Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 0.892 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.19 W/kg

SAR(1 g) = 0.957 W/kg; SAR(10 g) = 0.412 W/kg

Maximum value of SAR (measured) = 1.55 W/kg

0 dB = 1.55 W/kg = 1.90 dBW/kg

17051492 005

Produkte

Products

Page 5 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 10.08.2015

05-WLAN2.4GHz-802.11b 1Mbps-Bottom Face-0cm-Ch6

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450_150810

Medium parameters used: f = 2437 MHz; $\sigma = 1.98$ S/m; $\varepsilon_r = 52.399$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch6/Area Scan (111x71x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.61 W/kg

Configuration/Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 0.867 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 2.26 W/kg

SAR(1 g) = 0.976 W/kg; SAR(10 g) = 0.418 W/kg

Maximum value of SAR (measured) = 1.59 W/kg

0 dB = 1.59 W/kg = 2.01 dBW/kg

17051492 005

Produkte

Products

Page 6 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 10.08.2015

06-WLAN2.4GHz-802.11b 1Mbps-Edge 3-0cm-Ch1

Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL_2450_150810

Medium parameters used: f = 2412 MHz; σ = 1.946 S/m; ϵ_r = 52.449; ρ = 1000 kg/m³

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

• Probe: EX3DV4 - SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1418; Calibrated: 23.06.2015

• Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch1/Area Scan (41x111x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.70 W/kg

Configuration/Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 22.967 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 2.46 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.395 W/kg

Maximum value of SAR (measured) = 1.71 W/kg

0 dB = 1.71 W/kg = 2.33 dBW/kg

17051492 005

Produkte

Products Page 7 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 10.08.2015

07-WLAN2.4GHz-802.11b 1Mbps-Edge 3-0cm-Ch6

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL 2450 150810

Medium parameters used: f = 2437 MHz; $\sigma = 1.98$ S/m; $\varepsilon_r = 52.399$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

• Probe: EX3DV4 - SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch6/Area Scan (41x111x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.79 W/kg

Configuration/Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 23.030 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 2.65 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.417 W/kg

Maximum value of SAR (measured) = 1.83 W/kg

0 dB = 1.83 W/kg = 2.62 dBW/kg

17051492 005

Produkte

Products Page 8 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 10.08.2015

08-WLAN2.4GHz-802.11b 1Mbps-Edge 3-0cm-Ch6-Repeat SAR

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450_150810

Medium parameters used: f = 2437 MHz; $\sigma = 1.98$ S/m; $\varepsilon_r = 52.399$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch6/Area Scan (41x111x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.66 W/kg

Configuration/Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 21.906 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 2.52 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.396 W/kg

Maximum value of SAR (measured) = 1.72 W/kg

0 dB = 1.72 W/kg = 2.36 dBW/kg

17051492 005

Produkte

Products

Page 9 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 11.08.2015

14-WLAN5GHz Band 1-802.11a 6Mbps-Bottom Face-0cm-Ch36

Communication System: UID 0, WIFI (0); Frequency: 5180 MHz; Duty Cycle: 1:1

Medium: MSL 5G 150811

Medium parameters used: f = 5180 MHz; $\sigma = 5.261$ S/m; $\epsilon_r = 49.301$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY Configuration:

• Probe: EX3DV4 - SN3970; ConvF(5.08, 5.08, 5.08); Calibrated: 10.07.2015;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1418; Calibrated: 23.06.2015

• Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch36/Area Scan (131x61x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.21 W/kg

Configuration/Ch36/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 0.845 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.02 W/kg

SAR(1 g) = 0.636 W/kg; SAR(10 g) = 0.195 W/kg

Maximum value of SAR (measured) = 1.70 W/kg

Configuration/Ch36/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 0.845 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 0.444 W/kg; SAR(10 g) = 0.132 W/kg

Maximum value of SAR (measured) = 1.25 W/kg

0 dB = 1.25 W/kg = 0.97 dBW/kg

17051492 005

Produkte

Products

Page 10 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 11.08.2015

15-WLAN5GHz Band 1-802.11a 6Mbps-Edge 3-0cm-Ch36

Communication System: UID 0, WIFI (0); Frequency: 5180 MHz; Duty Cycle: 1:1

Medium: MSL 5G 150811

Medium parameters used: f = 5180 MHz; $\sigma = 5.261 \text{ S/m}$; $\varepsilon_r = 49.301$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY Configuration:

• Probe: EX3DV4 - SN3970; ConvF(5.08, 5.08, 5.08); Calibrated: 10.07.2015;

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch36/Area Scan (41x131x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.727 W/kg

Configuration/Ch36/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 7.487 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.59 W/kg

SAR(1 g) = 0.345 W/kg; SAR(10 g) = 0.108 W/kg

Maximum value of SAR (measured) = 0.853 W/kg

Configuration/Ch36/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 7.487 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.326 W/kg; SAR(10 g) = 0.108 W/kgMaximum value of SAR (measured) = 0.784 W/kg

0 dB = 0.784 W/kg = -1.06 dBW/kg

17051492 005

Produkte

Products

Page 11 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 11.08.2015

16-WLAN5GHz Band 1-802.11a 6Mbps-Edge 4-0cm-Ch36

Communication System: UID 0, WIFI (0); Frequency: 5180 MHz; Duty Cycle: 1:1

Medium: MSL_5G_150811

Medium parameters used: f = 5180 MHz; $\sigma = 5.261 \text{ S/m}$; $\varepsilon_r = 49.301$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(5.08, 5.08, 5.08); Calibrated: 10.07.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch36/Area Scan (41x211x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.394 W/kg

Configuration/Ch36/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 2.218 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.938 W/kg

SAR(1 g) = 0.203 W/kg; SAR(10 g) = 0.074 W/kg

Maximum value of SAR (measured) = 0.505 W/kg

0 dB = 0.505 W/kg = -2.97 dBW/kg

17051492 005

Produkte

Products

Page 12 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 11.08.2015

09-WLAN5GHz Band 4-802.11a 6Mbps-Bottom Face-0cm-Ch165

Communication System: UID 0, WIFI (0); Frequency: 5825 MHz; Duty Cycle: 1:1

Medium: MSL_5G_150811

Medium parameters used: f = 5825 MHz; $\sigma = 6.219$ S/m; $\varepsilon_r = 48.029$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(4.69, 4.69, 4.69); Calibrated: 10.07.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch165/Area Scan (131x91x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.98 W/kg

Configuration/Ch165/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 1.444 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 5.18 W/kg

SAR(1 g) = 0.992 W/kg; SAR(10 g) = 0.304 W/kg

Maximum value of SAR (measured) = 2.67 W/kg

0 dB = 2.67 W/kg = 4.27 dBW/kg

17051492 005

Produkte

Products

Page 13 of 16

Date/Time: 11.08.2015 Test Laboratory: Shenzhen EMTEK Co.,Ltd.

10-WLAN5GHz Band 4-802.11a 6Mbps-Edge 3-0cm-Ch165

Communication System: UID 0, WIFI (0); Frequency: 5825 MHz; Duty Cycle: 1:1

Medium: MSL_5G_150811

Medium parameters used: f = 5825 MHz; $\sigma = 6.219$ S/m; $\varepsilon_r = 48.029$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(4.69, 4.69, 4.69); Calibrated: 10.07.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch165/Area Scan (41x131x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.808 W/kg

Configuration/Ch165/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 7.570 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.18 W/kg

SAR(1 g) = 0.340 W/kg; SAR(10 g) = 0.117 W/kg

Maximum value of SAR (measured) = 0.975 W/kg

Configuration/Ch165/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 7.570 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.84 W/kg

SAR(1 g) = 0.441 W/kg; SAR(10 g) = 0.144 W/kg

Maximum value of SAR (measured) = 1.16 W/kg

0 dB = 1.16 W/kg = 0.64 dBW/kg

17051492 005

Produkte

Products

Page 14 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 11.08.2015

11-WLAN5GHz Band 4-802.11a 6Mbps-Edge 4-0cm-Ch165

Communication System: UID 0, WIFI (0); Frequency: 5825 MHz; Duty Cycle: 1:1

Medium: MSL_5G_150811

Medium parameters used: f = 5825 MHz; $\sigma = 6.219$ S/m; $\varepsilon_r = 48.029$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(4.69, 4.69, 4.69); Calibrated: 10.07.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch165/Area Scan (41x211x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.705 W/kg

Configuration/Ch165/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 2.719 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.92 W/kg

SAR(1 g) = 0.357 W/kg; SAR(10 g) = 0.133 W/kg

Maximum value of SAR (measured) = 0.912 W/kg

0 dB = 0.912 W/kg = -0.40 dBW/kg

17051492 005

Produkte

Products

Page 15 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 11.08.2015

12-WLAN5GHz Band 4-802.11a 6Mbps-Bottom Face-0cm-Ch149

Communication System: UID 0, WIFI (0); Frequency: 5745 MHz; Duty Cycle: 1:1

Medium: MSL_5G_150811

Medium parameters used: f = 5745 MHz; $\sigma = 6.042$ S/m; $\varepsilon_r = 48.318$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(4.69, 4.69, 4.69); Calibrated: 10.07.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch149/Area Scan (131x61x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.28 W/kg

Configuration/Ch149/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 1.328 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 5.58 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.333 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

17051492 005

Produkte

Products

Page 16 of 16

Test Laboratory: Shenzhen EMTEK Co.,Ltd. Date/Time: 11.08.2015

13-WLAN5GHz Band 4-802.11a 6Mbps-Bottom Face-0cm-Ch149-Repeat SAR

Communication System: UID 0, WIFI (0); Frequency: 5745 MHz; Duty Cycle: 1:1

Medium: MSL_5G_150811

Medium parameters used: f = 5745 MHz; $\sigma = 6.042$ S/m; $\varepsilon_r = 48.318$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(4.69, 4.69, 4.69); Calibrated: 10.07.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: EL1 v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch149/Area Scan (131x61x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.28 W/kg

Configuration/Ch149/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 1.067 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 5.50 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.332 W/kgMaximum value of SAR (measured) = 2.86 W/kg

0 dB = 2.86 W/kg = 4.56 dBW/kg

17048716 005

Produkte

Products

Page 1 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

MRT-CERT (Auden)

Certificate No: D5GHzV2-1169_Jan14

Accreditation No.: SCS 108

C

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1169

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

January 07, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe EX3DV4	SN: 3503	30-Dec-13 (No. EX3-3503_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:

Name

Function

Signature

Approved by:

Jeton Kastrati

Katja Pokovic

Laboratory Technician

Technical Manager

Issued: January 8, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D5GHzV2-1169_Jan14

Page 1 of 16

17048716 005

Produkte

Products

Page 2 of 41

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1169 Jan14

17048716 005

Produkte

Products

Page 3 of 41

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.7	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom V5.0		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)	
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	(2 disodisi)	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.43 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.00 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

17048716 005

Produkte

Products

Page 4 of 41

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.0 W / kg ± 19.9 % (k≔2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.75 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

17048716 005

Produkte

Products

Page 5 of 41

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	5.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

17048716 005

Produkte

Products

Page 6 of 41

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.38 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 19.5 % (k=2)

17048716 005

Produkte

Products

Page 7 of 41

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		pr = 44 year

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR tor nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.92 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

17048716 005

Produkte

Products

Page 8 of 41

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 19.5 % (k=2)

17048716 005

Produkte

Products

Page 9 of 41

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.7 Ω - 8.2 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	49.5 Ω - 5.8 jΩ
Return Loss	- 24.7 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	52.7 Ω - 3.3 jΩ
Return Loss	- 27.6 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.7 Ω - 2.7 jΩ
Return Loss	- 25.8 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.7 Ω - 4.4 jΩ	
Return Loss	- 23.4 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.6 Ω - 7.5 jΩ
Return Loss	- 22.5 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	49.7 Ω - 4.7 jΩ
Return Loss	- 26.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	53.2 Ω - 2.2 jΩ
Return Loss	- 28.5 dB

17048716 005

Produkte

Products Page 10 of 41

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	55.2 Ω - 1.6 jΩ
Return Loss	- 25.8 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.9 Ω - 2.9 jΩ
Return Loss	- 24.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,207 ns
	1.20/10

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 09, 2013

17048716 005

Produkte

Products

Page 11 of 41

DASY5 Validation Report for Head TSL

Date: 07.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1169

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.43$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.54$ S/m; $\varepsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 1000$ kg/m³ 4.75 S/m; ε_r = 35.1; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.84 S/m; ε_r = 35; ρ = 1000 kg/m^3 , Medium parameters used: f = 5800 MHz; $\sigma = 5.05 \text{ S/m}$; $\epsilon_r = 34.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2013, ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.584 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 8 W/kg; SAR(10 g) = 2.3 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.034 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.4 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.164 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.5 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

17048716 005

Produkte Products

Page 12 of 41

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.543 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 33.9 W/kg

SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.43 W/kgMaximum value of SAR (measured) = 20.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.517 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.32 W/kg

Maximum value of SAR (measured) = 19.9 W/kg

0 dB = 19.9 W/kg = 12.99 dBW/kg

Products

Page 13 of 41

Impedance Measurement Plot for Head TSL

17048716 005

Produkte

Products

Page 14 of 41

DASY5 Validation Report for Body TSL

Date: 07.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1169

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.38$ S/m; $\epsilon_r = 47.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.52$ S/m; $\epsilon_r = 47$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.92$ S/m; $\epsilon_r = 46.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.8$ S/m; $\epsilon_r = 46.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.2$ S/m; $\epsilon_r = 46.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.52, 4.52, 4.52); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.646 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.747 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.868 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.7 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

Produkte

Products

Page 15 of 41

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.036 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 34.4 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.22 W/kgMaximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.673 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.0 W/kg

SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.07 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

0 dB = 18.7 W/kg = 12.72 dBW/kg

Produkte Products

Page 16 of 41

Impedance Measurement Plot for Body TSL

17048716 005

Produkte

Products

Page 17 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

MRT-CERT (Auden)

Certificate No: D2450V2-927_Jan14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 927

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 13, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14	
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14	
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14	
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14	
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14	
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14	
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14	

Name israe El-Naouq Function

Laboratory Technician

Calibrated by:

Approved by:

Katja Pokovic

Technical Manager

Issued: January 13, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-927_Jan14

Page 1 of 8

17048716 005

Produkte

Products

Page 18 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL _

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

17048716 005

Produkte

Products

Page 19 of 41

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

<u> </u>	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	The second secon
SAR measured	250 mW input power	6.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 16.5 % (k=2)

17048716 005

Produkte

Products

Page 20 of 41

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.2 Ω + 2.9 jΩ
Return Loss	∙ 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.4 Ω + 4.7 jΩ
Return Loss	- 26.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.158 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2013

Certificate No: D2450V2-927_Jan14

Produkte

Products

Page 21 of 41

DASY5 Validation Report for Head TSL

Date: 13.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 927

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ S/m; $\varepsilon_r = 39.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12,2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.22 W/kgMaximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg

17048716 005

Produkte

Products

Page 22 of 41

Impedance Measurement Plot for Head TSL

17048716 005

Produkte Products

Page 23 of 41

DASY5 Validation Report for Body TSL

Date: 13.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 927

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2$ S/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/JEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.560 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.89 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 12.25 dBW/kg

Appendix C **17048716 005**

Produkte

Products

Page 24 of 41

Impedance Measurement Plot for Body TSL

17048716 005

Produkte

Products

Page 25 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Auden Client

Certificate No: EX3-3801_Jun14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3801

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

June 18, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15	
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15	
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15	
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15	
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15	
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14	
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14	

Jeton Kastrati Calibrated by:

Signature Laboratory Technician

Approved by:

Katia Pokovic

Technical Manager

Function

Issued: June 18, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3801_Jun14

Page 1 of 11

17048716 005

Produkte

Products

Page 26 of 41

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

С

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no
 uncertainty required).

Appendix C **17048716 005**

Produkte

Products

Page 27 of 41

EX3DV4 - SN:3801

June 18, 2014

Probe EX3DV4

SN:3801

Manufactured: Calibrated:

April 5, 2011 June 18, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

17048716 005

Produkte

Products

Page 28 of 41

June 18, 2014 EX3DV4-SN:3801

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k≂2)
Norm (µV/(V/m) ²) ^A	0.53	0.60	0.53	± 10.1 %
DCP (mV) ⁸	100.2	98.4	100.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1,0	0.00	128.0	±2.7 %
		Y	0.0	0.0	1.0		134.4	
		Z	0.0	0.0	1.0		146.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^e Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

17048716 005

Produkte

Products

Page 29 of 41

EX3DV4-- SN:3801

June 18, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.44	9.44	9.44	0.35	1.00	± 12.0 %
835	41.5	0.90	9.15	9.15	9.15	0.80	0.64	± 12.0 %
900	41.5	0.97	8.92	8.92	8.92	0.50	0.79	± 12.0 %
1450	40.5	1.20	7.90	7.90	7.90	0.41	1.02	± 12.0 %
1750	40.1	1.37	7.82	7.82	7.82	0.80	0.58	± 12.0 %
1900	40.0	1.40	7.51	7.51	7.51	0.76	0.59	± 12.0 %
2000	40.0	1,40	7.55	7.55	7.55	0.80	0.57	± 12.0 %
2300	39.5	1.67	7.25	7.25	7.25	0.44	0.75	± 12.0 %
2450	39.2	1.80	6.85	6.85	6.85	0.53	0.70	± 12.0 %
2600	39.0	1.96	6.76	6.76	6.76	0.63	0.66	± 12.0 %
5200	36.0	4.66	4.96	4.96	4.96	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.74	4.74	4.74	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.73	4.73	4.73	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.54	4.54	4.54	0.35	1.80	± 13.1 %
5800	35.3	5.27	4.45	4.45	4.45	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**At frequencies below 3 GHz, the validity of tissue parameters (i: and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (i: and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Appendix C 17048716 005

Produkte

Products

Page 30 of 41

June 18, 2014 EX3DV4- SN:3801

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.11	9.11	9.11	0.65	0.75	± 12.0 %
835	55.2	0.97	9.12	9.12	9.12	0.80	0.66	± 12.0 %
900	55.0	1.05	8.91	8.91	8.91	0.80	0.67	± 12.0 %
1450	54.0	1.30	7.97	7.97	7.97	0.54	0.76	± 12.0 %
1750	53.4	1.49	7.62	7.62	7.62	0.63	0.71	± 12.0 %
1900	53.3	1.52	7.29	7.29	7.29	0.60	0.71	± 12.0 %
2000	53.3	1.52	7.47	7.47	7.47	0.37	0.90	± 12.0 %
2300	52.9	1.81	7.18	7.18	7.18	0.80	0.60	± 12.0 %
2450	52.7	1.95	6.90	6.90	6.90	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.74	6.74	6.74	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.17	4.17	4.17	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.03	4.03	4.03	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.93	3.93	3.93	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.84	3.84	3.84	0.45	1.90	± 13.1 %
5800	48.2	6.00	3.94	3.94	3.94	0.50	1.90	± 13.1 %

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3801_Jun14

17048716 005

Produkte **Products**

Page 31 of 41

EX3DV4~ SN:3801

June 18, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Produkte

Products

Page 32 of 41

EX3DV4- \$N:3801

June 18, 2014

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Appendix C **17048716 005**

Produkte

Products

Page 33 of 41

EX3DV4-- SN:3801

June 18, 2014

Uncertainty of Linearity Assessment: \pm 0.6% (k=2)

17048716 005

Produkte

Products Page 34 of 41

EX3DV4- SN:3801 June 18, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (\phi, \text{ 9}), f = 900 MHz

Produkte Products

Page 35 of 41

EX3DV4- SN:3801

June 18, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-53.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix C **17048716 005**

Produkte

Products

Page 36 of 41

Schmid & Partner Engineering AG

s p e a q

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

17048716 005

Produkte

Products

Page 37 of 41

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE4-918_Dec14 Auden Client

CALIBRATION CERTIFICATE

DAE4 - SD 000 D04 BK - SN: 918 Object

QA CAL-06.v28 Calibration procedure(s)

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: December 29, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-14 (No:15573)	Oct-15
	i		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-14 (in house check)	In house check: Jan-15
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-14 (in house check)	In house check: Jan-15

Calibrated by:

Eric Hainfeld

Function

Technician

Approved by:

Fin Bomholt

Deputy Technical Manager

Issued: December 29, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: DAE4-918_Dec14

Page 1 of 5

17048716 005

Produkte

Products

Page 38 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-918_Dec14

17048716 005

Produkte

Products

Page 39 of 41

DC Voltage Measurement

A/D - Converter Resolution nominal High Range: 1LSB =

 $6.1 \mu V$,

Low Range: 1LSB = 61nV , full range = -100...+300 mV full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.263 ± 0.02% (k=2)	404.441 ± 0.02% (k=2)	403.975 ± 0.02% (k=2)
Low Range	3.99223 ± 1.50% (k=2)	3.98766 ± 1.50% (k=2)	3.99058 ± 1.50% (k=2)

Connector Angle

		201 5 0 1 4 0
1	Connector Angle to be used in DASY system	321.5°±1°
	Connected Angle to be deca in Street of the	

17048716 005

Produkte Products

Page 40 of 41

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	200032.31	-4.38	-0.00
Channel X	+ Input	20003.84	-0.13	-0.00
Channel X	- Input	-20004.78	1.10	-0.01
Channel Y	+ Input	200032.27	-4.06	-0.00
Channel Y	+ Input	20002.00	-1.87	-0.01
Channel Y	- Input	-20006.00	0.05	-0.00
Channel Z	+ Input	200034.27	-2.10	-0.00
Channel Z	+ Input	20002.22	-1.48	-0.01
Channel Z	- Input	-20008.25	-2.23	0.01

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2000.31	0.03	0.00
Channel X	+ input	200.99	0.68	0.34
Channel X	- Input	-198.48	1.20	-0.60
Channel Y	+ Input	2000.13	0.00	0.00
Channel Y	+ Input	199.66	-0.39	-0.20
Channel Y	- Input	-199.91	-0.16	0.08
Channel Z	+ Input	1999.95	-0.05	-0.00
Channel Z	+ Input	198.93	-1.21	-0.60
Channel Z	- Input	-201.20	-1.44	0.72

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	5.38	3.39
	- 200	-1.40	-3.69
Channel Y	200	11.47	11.14
	- 200	-12.53	-12.38
Channel Z	200	-14.52	-14.40
	- 200	11.50	11.86

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	_	-0.57	-5.19
Channel Y	200	8.22	*	0.42
Channel Z	200	9.83	6.01	-

Certificate No: DAE4-918_Dec14

17048716 005

Produkte

Products

Page 41 of 41

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)	
Channel X	15962	16466	
Channel Y	16023	17247	
Channel Z	15984	16328	

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.60	-2.24	1.43	0.75
Channel Y	1.14	-0.87	2.02	0.43
Channel Z	-0.52	-1.84	0.61	0.42

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)		
Supply (+ Vcc)	+7.9		
Supply (- Vcc)	-7.6		

9. Power Consumption (Typical values for information)

Tower Consumption (Typical values for information)				
Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	0.01	-8	-9	