MINGZE WANG

210, Jingyuan Building #6, Peking University, Beijing, China, 100084 mingzewang@stu.pku.edu.cn

SHORT BIO

I am a second-year Ph.D student in Computational Mathematics, Peking University. I am very fortunate to be advised by Prof. Weinan E. Prior to that, I received my B.S. degree in Pure and Applied Mathematics from Zhejiang University in 2021.

EDUCATION

Peking University

Beijing, China

 ${\bf Ph.D\ student},\ Computational\ Mathematics$

2021.09 - Present

School of Mathematical Sciences

Advisor: Prof. Weinan E.

Zhejiang University

Hangzhou, China 2017.09 - 2021.06

Bachelor of Science, $Pure\ and\ Applied\ Mathematics$

School of Mathematical Sciences

Academic ranking: 1/111, Comprehensive ranking: 1/111, Major GPA: 4.84/5 (95.5/100).

EXPERIENCE

Moqi Technology Beijing, China

Algorithm Intern 2021.09 - 2022.06

Work on image processing and privacy protection for biometric technology.

Peking University Beijing, China

Teaching assistant: Calculus (A) Fall 2021

Teaching assistant: Calculus (B) Fall 2022; Spring 2022, 2023

RESEARCH INTERESTS

I am broadly interested in theory, algorithm and application of machine learning. I am also interested in nonconvex optimization and image processing. Specifically, my recent research topics are

- Deep learning theory: optimization, generalization, implicit bias and approximation.
- Foundation Models: theory and algorithm.
- Non-convex Optimization: theory and algorithm.

PUBLICATIONS & PREPRINTS

- [1] **Mingze Wang**, Chao Ma. Understanding Multi-phase Optimization Dynamics and Rich Nonlinear Behaviors of ReLU Networks. arXiv preprint arXiv:2305.12467, 2023.
- [2] Mingze Wang, Lei Wu. The Noise Geometry of Stochastic Gradient Descent: A Quantitative and Analytical Characterization. *Under review*, 2023.
- [3] Mingze Wang, Chao Ma. Early Stage Convergence and Global Convergence of Training Mildly Parameterized Neural Networks. *Thirty-sixth Conference on Neural Information Processing Systems* (NeurIPS 2022).
- [4] Lei Wu, **Mingze Wang**, Weijie J. Su. When does SGD favor flat minima? A quantitative characterization via linear stability. *Thirty-sixth Conference on Neural Information Processing Systems* (NeurIPS 2022).
- [5] **Mingze Wang**, Chao Ma. Generalization Error Bounds for Deep Neural Networks Trained by SGD. arXiv preprint arXiv:2206.03299, 2022.

SELECTED TALKS & PRESENTATIONS

Some mathematica	l modeling proble	ems and machine	learning theory	. Schlumberger	(Beijina).	2023.07
	I IIIO GOIIII PIODI	THE WILL THE CITIES	TOURING OFFICE	Deliberation	D Colored).	2020.01

SELECTED AWARDS & HONOURS

PKU Academic Innovation Award (top 1%)	2022.10
Outstanding Graduate of Zhejiang Province (top 5%)	2021.05
Outstanding Graduate of ZJU	2021.05
Chinese National Scholarship (top 1%)	2019.10
First Class Scholarship of ZJU (top 3%)	2019, 2020.10
Zhejiang Provincial Government Scholarship	2018.10
First Prize of Mathematical Contest in Modeling of ZJU (top 1%)	2020.06
Meritourious Award in The Mathematical Contest in Modeling	2020.02
National Second Prize of Chinese Undergraduate Mathematical Contest in Modeling (top 2.5%)	2019.10

SELECTED UNDERGRADUATE TRANSCRIPT

Real Analysis	100	Functional Analysis	100	Partial Differential Equation	100
Scientific Computing	100	Mathematical Analysis (II)	99	Differential Geometry	99
Point Topology	99	Mathematical Physics	97	Complex Analysis	97
Calculus (I)	97	Stochastic Process	96	Foundation of Analysis	96