More Linear (and Logistic) Regression

Linear Regression

Given k predictors $x^{(1)}$, $x^{(2)}$,..., $x^{(k)}$, linear regression uses the following equation to predict the target variable:

$$\hat{f}(\vec{x}) = \beta_0 + \beta_1 x^{(1)} + \beta_2 x^{(2)} + \dots + \beta_k x^{(k)}$$

Here, β_0 , β_1 ,..., β_k are constants that are determined by using the available training data.

	species	bill_length_mm	bill_depth_mm	flipper_length_mm	sex	body_mass_g
0	Adelie	39.1	18.7	181.0	male	3750.0
1	Adelie	39.5	17.4	186.0	female	3800.0
2	Adelie	40.3	18.0	195.0	female	3250.0
3	Adelie	36.7	19.3	193.0	female	3450.0
4	Adelie	39.3	20.6	190.0	male	3650.0

Consider the penguins dataset.

Say we want to build a linear model to predict body_mass_g.

	variable	coefficient
0	intercept	-6063.921135
1	flipper_length_mm	51.036998

Using just flipper length gives these coefficients.

predicted body_mass = $-6064 + 51 \cdot \text{flipper_length}$

What if we want to include the species information?

What if we want to include the species information?

Species is a categorical variable, but we can include it if we make dummy columns. This is also known as one-hot encoding.

What if we want to include the species information?

Species is a categorical variable, but we can include it if we make dummy columns. This is also known as one-hot encoding.

We have 3 species (Adelie, Chinstrap, and Gentoo), so we'll create two new 0/1 columns.

species	
Adelie	
Chinstrap	
Gentoo	

species_Chinstrap	species_Gentoo
0	0
1	0
0	1

	variable	coefficient
0	Intercept	-4414.053317
1	species[T.Chinstrap]	-189.175257
2	species[T.Gentoo]	243.426610
3	flipper_length_mm	42.587075

$$y = -4414 - 189(Chinstrap) + 243 \cdot (Gentoo) + 43 \cdot flipper_length$$

	variable	coefficient
0	Intercept	-4414.053317
1	species[T.Chinstrap]	-189.175257
2	species[T.Gentoo]	243.426610
3	flipper_length_mm	42.587075

$$y = -4414 - 189(Chinstrap) + 243 \cdot (Gentoo) + 43 \cdot flipper_length$$

We have three different parallel lines, one per species.

	variable	coefficient
0	Intercept	-4414.053317
1	species[T.Chinstrap]	-189.175257
2	species[T.Gentoo]	243.426610
3	flipper_length_mm	42.587075

$$y = -4414 - 189(Chinstrap) + 243 \cdot (Gentoo) + 43 \cdot flipper_length$$

We have three different parallel lines, one per species.

Adelie:
$$y = -4414 + 43 \cdot \text{flipper_length}$$

	variable	coefficient
0	Intercept	-4414.053317
1	species[T.Chinstrap]	-189.175257
2	species[T.Gentoo]	243.426610
3	flipper_length_mm	42.587075

$$y = -4414 - 189(Chinstrap) + 243 \cdot (Gentoo) + 43 \cdot flipper_length$$

We have three different parallel lines, one per species.

Adelie: $y = -4414 + 43 \cdot \text{flipper_length}$

Chinstrap: $y = -4603 + 43 \cdot \text{flipper_length}$

	variable	coefficient
0	Intercept	-4414.053317
1	species[T.Chinstrap]	-189.175257
2	species[T.Gentoo]	243.426610
3	flipper_length_mm	42.587075

$$y = -4414 - 189(\text{Chinstrap}) + 243 \cdot (\text{Gentoo}) + 43 \cdot \text{flipper_length}$$

We have three different parallel lines, one per species.

Adelie:
$$y = -4414 + 43 \cdot \text{flipper_length}$$

Chinstrap:
$$y = -4603 + 43 \cdot \text{flipper_length}$$

Gentoo:
$$y = -4171 + 43 \cdot \text{flipper_length}$$

Just adding dummy columns limits us to just changing the intercept but not the slope per species.

Just adding dummy columns limits us to just changing the intercept but not the slope per species.

If we think that perhaps the effect of flipper length should be different per species, we can add **interaction terms**.

Just adding dummy columns limits us to just changing the intercept but not the slope per species.

If we think that perhaps the effect of flipper length should be different per species, we can add **interaction terms**.

We get these by multiplying the value across two variables.

	variable	coefficient
0	Intercept	-2451.661965
1	species[T.Chinstrap]	-871.4 <mark>1</mark> 3842
2	species[T.Gentoo]	-5168.472928
3	flipper_length_mm	32.278610
4	flipper_length_mm:species[T.Chinstrap]	3.733663
5	flipper_length_mm:species[T.Gentoo]	26.166225

Now, we have 3 different lines, one per species:

	variable	coefficient
0	Intercept	-2451.661965
1	species[T.Chinstrap]	-871.4 <mark>1</mark> 3842
2	species[T.Gentoo]	-5168.472928
3	flipper_length_mm	32.278610
4 flipper_leng	th_mm:species[T.Chinstrap]	3.733663
5 flipper_lei	ngth_mm:species[T.Gentoo]	26.166225

Now, we have 3 different lines, one per species:

Adelie: $y = -2452 + 32 \cdot \text{flipper_length}$

	variable	coefficient
0	Intercept	-2451.661965
1	species[T.Chinstrap]	-871.4 <mark>1</mark> 3842
2	species[T.Gentoo]	-5168.472928
3	flipper_length_mm	32.278610
4 f	lipper_length_mm:species[T.Chinstrap]	3.733663
5	flipper_length_mm:species[T.Gentoo]	26.166225

Now, we have 3 different lines, one per species:

Adelie: $y = -2452 + 32 \cdot \text{flipper_length}$

Chinstrap: $y = -3323 + 36 \cdot \text{flipper_length}$

	variable	coefficient
0	Intercept	-2451.661965
1	species[T.Chinstrap]	-871.4 <mark>1</mark> 3842
2	species[T.Gentoo]	-5168.472928
3	flipper_length_mm	32.278610
4	flipper_length_mm:species[T.Chinstrap]	3.733663
5	flipper_length_mm:species[T.Gentoo]	26.166225

Now, we have 3 different lines, one per species:

Adelie:
$$y = -2452 + 32 \cdot \text{flipper_length}$$

Chinstrap:
$$y = -3323 + 36 \cdot \text{flipper_length}$$

Gentoo:
$$y = -7620 + 58 \cdot \text{flipper_length}$$

What if we also include the sex variable?

We'll add it and the interactions with the flipper length.

coefficient	variable	
9.171225	Intercept	0
332.123899	species[T.Chinstrap]	1
-1302.047028	species[T.Gentoo]	2
122,918540	sex[T.male]	3
18.066777	flipper_length_mm	4
-1.942185	flipper_length_mm:species[T.Chinstrap]	5
10.010947	flipper_length_mm:species[T.Gentoo]	6
1.923835	flipper_length_mm:sex[T.male]	7

	variable	coefficient
0	Intercept	9.171225
1	species[T.Chinstrap] 332.12	
2	species[T.Gentoo]	-1302.047028
3	sex[T.male]	122.918540
4	flipper_length_mm	18.066777
5	flipper_length_mm:species[T.Chinstrap]	-1.942185
6	flipper_length_mm:species[T.Gentoo]	10.010947
7	flipper_length_mm:sex[T.male]	1.923835

Now, we have 6 different lines, one per species/sex combination:

	female	male
Adelie	$y = 9 + 18 \cdot (flipper length)$	$y = 132 + 20 \cdot \text{(flipper length)}$
Chinstrap	$y = 341 + 16 \cdot \text{(flipper length)}$	y = 464 + 18 · (flipper length)
Gentoo	$y = -1293 + 28 \cdot \text{(flipper length)}$	$y = -1170 + 30 \cdot \text{(flipper length)}$

Question: Would we ever not want to do this? What are the potential downsides?