

Josh, Daniel, and Kenny

*Utilization of machine learning and training data to predict crypto price.

Selected Models

- *Linear regression
- *Dense/Dropout/LSTM
- *Sequential
- *MinMaxScaler
- *Train_test_split

Data Prep

*Upload the "BTC-USD.csv" file into Jupyter, then store in a Pandas DataFrame

*BTC data from 2019-01-01 to 2021-01-01 via yfinance API

Plot of BTC daily returns and volatility

#Neural Network Model

Plot of Original vs Prediction BTC Price


```
model= Sequential()
#LSTM layers, recurrent layers to memorize important info to feed data back to neur
model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(Dropout(0.2))
model.add(Dropout(0.2))
model.add(Dropout(0.2))
model.add(Dropout(0.2))
model.add(Dense(units=1))

#compile model via .compile and train model via .fit
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(x train, y train, epochs=25, batch size=32)
```

Results and Conclusions

*Results were achieved

*Machine learning is difficult

