CS161 Discussion 3

Shirley Chen. Sajad Darabi 04/19/2019

Search Problem

- Before an agent can start searching for solutions, a goal must be identified and a well-defined problem must be formulated
- Search problem formulation
 - Initial State
 - A state space
 - Actions: a set of possible actions
 - Successor function (transition model): $F(s_t, a_t) = s_{t+1}$
 - Goal test: determine if solution is achieved.
 - A solution: a sequence of actions (a path) that transform the initial state to a goal state

How to evaluate search algorithms

- completeness
- optimality
- time complexity
- space complexity

Complexity depends on

- *b*: the branching factor in the state space
- *d*: the depth of the shallowest solution.

Uninformed Search

- BFS
- Uniform-cost search
- DFS, Depth-Limited Search
- Iterative Deepening

BFS

- BFS
 - Expands <u>shallowest</u> nodes first
 - Complete
 - Optimal for unit step costs
 - Time complexity (exponential): # of generated nodes $b + b^2 + \cdots + b^d = O(b^d)$
 - Space complexity (exponential): $O(b^d)$
 - Explored $1 + b + b^2 + \dots + b^{d-1} = O(b^{d-1})$
 - Fringe $O(b^d)$

Uniform-cost Search

- Expands the node with lowest path cost
- Optimal in general
 - Infinite loop if there is a path with an infinite sequence of zero-cost actions
- Complete
 - (If all step cost > a small positive constant ϵ)

Uniform-Cost Search

- Time Complexity (Worst Case)
 - *C*: cost of optimal solution
 - Every action costs at least ϵ
 - Time complexity: $O(b^{C/\epsilon})$
 - When all step costs are equal: $O(b^d)$
- Space Complexity (Worst Case)
 - Fringe: priority queue (priority: cumulative cost)
 - Worst case: roughly the last tier, $O(b^{C/\epsilon})$

Uniform-Cost Search

- Uniform-cost search and BFS
 - BFS stops after a goal node is generated
 - Uniform-cost Search keeps going after a goal node has been generated

Uniform-Cost Search - Example

Use uniform-cost search

- Give the generated (partial) search tree
- Show in what order we expand nodes
- Return the optimal solution (path)

Think:

When does search terminate?

DFS and Depth-Limited Search

- DFS
 - Neither optimal or complete
 - Time complexity $O(b^m)$ (m: maximum depth)
 - Space complexity O(bm) Fringe: path and siblings along the path
- ullet Depth-Limited search: add a depth bound l
 - Complete; Not optimal
 - Time complexity $O(b^l)$
 - Space complexity O(bl)

DFS

Iterative Deepening Search

- Depth-first search. Increase depth limits until a goal is found
- Complete; Optimal for unit step costs
- Space complexity of DFS: O(bd) (d: depth of the shallowest solution)
- Time complexity comparable to BFS
 - (Analysis: see lecture slides)

Iterative Deepening

 $Limit = 0 \qquad \triangle$

$$Limit = 3$$

Bidirectional Search

- Run two simultaneous searches (BFS/Iterative Deepening)
 - One forward from the initial state
 - The other backward from the goal
- Replacing Goal test: Check whether the frontiers of the two searches intersect
 - The first found solution may not be optimal
 - Additional search is required to make sure there isn't short-cut across the gap! (Will show later)

Bidirectional Search (cont'd)

- What if we have multiple goal states?
 - For explicitly listed goal states: construct a new dummy goal state
 - Dummy goal state's immediate predecessors are all the actual goal states
 - For abstract description (e.g. "no queen attacks another queen")
 - Bidirectional search is difficult to use
- Time complexity & Space Complexity (Using two BFS)
 - $O(b^{d/2})$

Exercise - Word Ladder

- Input:
 - beginWord
 - endWord (endWord != beginWord)
 - A dictionary
- Transformation:
 - wordA -> wordB (e.g. "hit"-> "hot")
 - Only one letter can be changed at a time.
 - wordB must be in dictionary
- Question:
 - Transform beginWord to endWord
 - How many transformations we need at least?
 - Return -1 if no such sequence
- How do you solve it?

Exercise – Word Ladder

Example

- beginWord = "hit"
- endWord = "cog",
- dictionary = ["hot","dot","dog","lot","log","cog"]
- Output: 4
 - "hit" -> "hot" -> "dot" -> "cog"

Exercise – Word Ladder

- Single BFS
- Bidirectional BFS

Bidirectional Search (cont'd)

We mentioned

- The first found solution may not be optimal
 - Additional search is required to make sure there isn't short-cut across the gap!

- When does this happen?
 - What if "hot" and "log" are connected in the word ladder example?

Comparison

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time	$\operatorname{Yes}^a O(b^d)$	$\operatorname{Yes}^{a,b} O(b^{1+\lfloor C^*/\epsilon floor})$	No $O(b^m)$	$N_{O} O(b^{\ell})$	$\operatorname{Yes}^a O(b^d)$	$\operatorname{Yes}^{a,d} O(b^{d/2})$
Space Optimal?	$O(b^d)$ Yes c	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$ Yes	O(bm) No	$O(b\ell)$ No	O(bd) Yes ^c	$O(b^{d/2})$ Yes c,d

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs b for positive b; b optimal if step costs are all identical; b if both directions use breadth-first search.