# COMBINATORICS

(1) Arrangement -> Permutation
(2) Selection / Chaoring -> Combination Q) In how many ways we can solve 2 Qs? [T/F] 0, Q2 2 Q1 ST, F3 Q2 {T,F3 TF FT

# India and Pakistan play a 3-match series. How many results are possible? Note that we consider (Ind, Ind, Pak) different from (Ind, Pak, Ind) etc.



# In a bowl-out, for a specific ball you have to choose a bowler and a wicket keeper. Suppose you have 5 bowlers and 3 wicket keepers. How many ways can you select for a ball?



#### There are 3 ways to move from Chennai to Bangalore.

There are 4 ways to move from Bangalore to Delhi.

What are the total ways of moving from Chennai to Delhi?



Plane

# There are 3 ways to move from Chennai to Bangalore, and 4 ways to move from Bangalore to Delhi. There are 2 ways to move from Chennai to Hyderabad, and 3 ways to move from Hyderabad to Delhi. In how many ways can we move from Chennai to Delhi?



#### Menu has following items:

Burgers: 3 Pizza: 3 Drinks: 3 Sandwiches: 5 Fruits: 7

B1

#### You can buy one of the following combos:

2%



- 1 Burger & 1 Sandwich
- 1 Fruit & 1 drink
- OR 1 Pizza





### How many ways can we have combos?







39

Remutation. Arrangement of object

(i,i) \( \frac{1}{2} \)

Order matters

a, 5 \( \frac{1}{2} \)

And the same of object

(i,j) \( \frac{1}{2} \)

(i,j) \( \frac{1}{2} \)

(i,j) \( \frac{1}{2} \)

(i,j) \( \frac{1}{2} \) Combination

Selection of object (i,j)=(j,i)

- Order doesn't matter a,b = b,a

without refision? What is the number of ways of ARRANGING three characters A, B, C? 43 users have participated A 3 12% 2% 53% 16% Е 16% 9 3x2x1 = 31 x(n-1)x(n-1-1) - - -CAB 51 - 5 x 4 x 3 x 2 x 1



SABCY SARCY (ABCY

#### What is the number of ways of ARRANGING four characters A, B, C, D



#### Given 5 different characters, in how many ways can we arrange them in 2 places?



$$\frac{5}{A} = 20$$
ABCDE BCDE

$$\frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1}$$
:

$$N\rho_{k} = \frac{N!}{(N-k)!}$$

#### There are 4 players P1, P2, P3, and P4 who can play in the top-order positions of 1, 2, and 3. How many arrangements of top-order can we make from 3 of these 4 players?

|   | 36 users have participated |     |
|---|----------------------------|-----|
| Α | 12                         | 8%  |
| В | 16                         | 6%  |
| С | 9                          | 0%  |
| D | 4                          | 25% |
| E | 24                         | 61% |
| F | 48                         | 0%  |

| Roh        | it, Vinat     | Sehwag     | Sadyn,     |
|------------|---------------|------------|------------|
| P1, P2, P3 | P1, P2, P4    | P1, P3, P4 | P2, P3, P4 |
| P1, P3, P2 | P1, P4, P2    | P1, P4, P3 | P2, P4, P3 |
| P2, P1, P3 | P2, P1, P4    | P3, P1, P4 | P3, P2, P4 |
| P2, P3, P1 | P2, P4, P1    | P3, P4, P1 | P3, P4, P2 |
| P3, P1, P2 | P4, P1, P2    | P4, P1, P3 | P4, P2, P3 |
| P3, P2, P1 | P4, P2, P1    | P4, P3, P1 | P4, P3, P2 |
| P1 P2 P3   | PIP2 Ry       | P, Py P3   | P3 P4 P2   |
| 6          | 6             | 6          | 6          |
| S          | $\mathcal{O}$ | <b>6</b>   | -          |

$$\frac{4}{3} = \frac{41}{(4-3)!_0} = \frac{41}{1!_0} = \frac{24}{3! \times 4} = \frac{6 \times 4}{20} = \frac{31 \times 4}{3! \times 4} = \frac{31}{20}$$

$$\frac{4-3}{3!_0} = \frac{41}{1!_0} = \frac{41}{3!_0} = \frac{31}{3!_0} \times \frac{4}{3!_0} = \frac{4}{3!_0} \times \frac{4}{3!_0} = \frac{31}{3!_0} \times \frac{4}{3!_0} = \frac{31}{3$$

arrangement in 
$$\chi$$
 Combination = Total arrangement   
3 State  $\Rightarrow$  Combination =  $\frac{N\rho_3}{3!}$ 

$$NC_3 = \frac{NP_3}{3!} = \frac{N1_0}{3!(N-3)!}$$

$$N_{C_K} = \frac{N'_{o}}{k!_{o}(N-k)!_{o}}$$

Total Arrangement = 6

Arrangement with slots x Combination = Total

k! x NC

k NP

k

 $\mathcal{N}_{\mathcal{K}} = \frac{\mathcal{N}_{\mathcal{K}}}{\mathcal{K}_{\mathcal{S}}} = \frac{\mathcal{N}_{\mathcal{S}}}{\mathcal{K}_{\mathcal{S}}(\mathcal{N}-\mathcal{K})!} = \frac{\mathcal{N}_{\mathcal{S}}}{\mathcal{K}_{\mathcal{S}}(\mathcal{N}-\mathcal{K})!}$ 

We don't cau about order.

Showroom A Maruti Showroom has 3 colours in their "Baleno" model and 3 colours in the "Swift" model. In

# how many ways can they place it such that Baleno and Swift are kept in alternate slots?

