Úvod do rozpoznávání, obrazové příznaky

doc. Ing. Josef Chaloupka, Ph.D.

Jaké příznaky?

Koruna, dvojkoruna (třídy pro rozpoznávání (psy, kočky, králíci...))

Praktické zkušenosti ukazují, že:

- "kvalita" příznaků významně ovlivňuje úspěšnost rozpoznávání
- "za určitých podmínek" lze s více příznaky dosáhnout lepších výsledků
- větší počet příznaků ovšem přináší více výpočtů, delší časy

Jak najít vhodné příznaky?

- obecná a exaktní odpověď neexistuje
- vychází se většinou z intuice a z dostupnosti různých metod
- často se raději volí větší počet příznaků (a z nich se pak případně analyticky vybírají ty nejdůležitější)

Požadavky na příznaky:

- praktičnost dostupnost a použitelnost při klasifikaci
- reprezentativnost příznaky musí dobře reprezentovat objekty jednotlivých tříd
- diskriminativnost musí umožnit co nejlepší rozlišení mezi třídami
- nekorelovanost příznaky by mezi sebou měly mít co nejmenší vazbu

Příklad: rozměr, objem, hmotnost – mohou být u některých předmětů značně korelované příznaky (přičemž každý další již nenese žádnou novou informaci)

Jednoduché příznaky pro rozpoznávání obrazů

- Velikost: počet obrazových elementů (pixelů), které oblast obsahuje, skutečná velikost objektu >>> pokud je znám převod pixel na m
- Eulerovo číslo (genus): z počtu souvislých oblasti S a počtu děr N, nemění se při použití geometrických transformací obrazu

$$E = S - N$$

Projekce:

3

Jednoduché příznaky pro rozpoznávání obrazů

Nekompaktnost:

nekompaktnost = (délka hranice oblasti)² velikost

kompaktní objekt nekompaktní objekt

Jednoduché příznaky pro rozpoznávání obrazů

Řetězové kódy

	~	
4		2
	3	

1	2	3
8	*	4
7	6	5

4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 2, 2, 2, 2

4, 6, 8, 2

4, 4, 5, 7, 8, 7, 6, 2, 2, 2, 2

4, 6, 8, 2

Cíl: Z většího počtu příznaků vybrat pouze ty nejvýznamnější z hlediska rozpoznávání.

Účel: Snížit zátěž (výpočetní, časovou) vlastního klasifikačního procesu.

Příklady:

Lze vystačit pouze s příznakem x1, příznak x2 je v této úloze redundantní

Lze transformovat obrazový prostor a v něm počet příznaků redukovat

Principy redukce počtu příznaků:

- transformace a výběr nových příznaků extrakce příznaků
- výběr příznaků podle individuální či skupinové významnosti –
 selekce příznaků

Metody založené na transformaci obrazového prostoru

- vycházejí z Karhunen-Loevova rozvoje

<u>Idea:</u>

a) původní *n*-rozměrné příznakové vektory x převést na *m*-rozměrné vektory y pomocí vhodné lineární transformace T.

y=Tx
$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} T_{11} & \cdots & T_{1n} \\ \vdots & \vdots & \vdots \\ T_{m1} & \cdots & T_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 T je matice $n \times m$

interpretace: původní vektory x se promítají na y v prostoru s nižší dimenzí

b) T se hledá tak, aby vzdálenost |y - x| (měřená na všech obrazech trénovací množiny) byla minimální – Karhunen-Loevův rozvoj

Redukce počtu příznaků - PCA

Redukce počtu příznaků - PCA

Př. 9 známých obrázků o velikosti 64 x 64 pixelů, 1 neznámý, postup: Trénovací část

- Obrázky převedeny na šedotónové, z obrázku vytvořen vektor o délce 4096 seřazení sloupců (nebo řádků) matice obrazu za sebe
- 2) Ze známých obrázků (vektorů) vytvořena matice Wp velikost 4096 x 9
- 3) Z řádků matice Wp spočítán průměrný vektor wp délka 4096
- 4) Vytvoření matice W od sloupců Wp odečten wp
- 5) Vytvoření kovarianční matice C = W^T* W velikost 9 x 9
- 6) Z matice C spočítány vlastní čísla a jím náležející vlastní vektory
- 7) Z vlastních vektorů vytvořena matice Ep vlastní vektory seřazeny podle velikosti (od největšího k nejmenšímu) vlastního čísla velikost 9 x 9
- 8) Vytvoření matice (vlastní prostor EigenSpace) E = W * Ep velikost 4096 x 9
- 9) Projekce známých vektorů do vlastního prostoru PI = E^T * W

Testovací část

- 1) Převedení neznámého obrázku do stupně šedi a vytvoření vektoru wpu
- 2) Vektor wu = wpu wp
- 3) Projekce neznámého vektoru PT = E^{T} * wu
- 4) Porovnání známých příznakových vektorů PI(i) a neznámého PT např. dle minimální vzdálenosti

Metody založené na transformaci obrazového prostoru

Poznámky:

- 1) Existuje několik variant výše uvedené metody
- a) s využitím autokorelační matice (preferuje vliv umístění obrazů v prostoru)
- b) s využitím disperzní matice (preferuje vliv rozptylů)
- c) s nebo bez respektování rozložení jednotlivých tříd
- 2) Metoda je dobře teoreticky rozpracována, avšak často jen pro speciální případy
- 3) Metoda je výpočetně náročná, a to jak ve fázi trénování (výpočet transformace), tak i při vlastním rozpoznávání (přepočítávání příznakových vektorů).
- 4) Nové příznaky jsou jen těžko interpretovatelné.
- 5) Při snižování počtu příznaků se nebere v úvahu vlastní proces rozpoznávání

Rozpoznávání objektů – minimální vzdálenost

V městských blocích

$$d_B(\mathbf{s}_r,\mathbf{s}_i) = \sum_{m=1}^{M} |\mathbf{s}_r(m) - \mathbf{s}_i(m)|$$

Euklidova vzdálenost

$$d_E(s_r, s_i) = \sqrt{\sum_{m=1}^{M} (s_r(m) - s_i(m))^2}$$

Kosinová vzdálenost

$$d_{C}(s_{r}, s_{i}) = \frac{\sum_{m=1}^{M} s_{r}(m) s_{i}(m)}{\sqrt{\sum_{m=1}^{M} s_{r}(m)^{2} \sum_{m=1}^{M} s_{i}(m)^{2}}}$$

Mahalanobisova vzdálenost

$$d_M(\mathbf{s}_r, \mathbf{s}_i) = -\sum_{m=1}^M \frac{1}{\sqrt{\lambda_i}} \mathbf{s}_r(m) \mathbf{s}_i(m)$$

Rozpoznávání objektů – minimální vzdálenost

Pravidlo nejbližšího souseda - NN (Nearest Neighbour) neznámý vzorek se zařadí do té třídy, k jejímuž představiteli má <u>nejmenší vzdálenost</u>

Pravidlo k nejbližších sousedů - kNN (k Nearest Neighbours) neznámý vzorek se zařadí do té třídy, jejíž představitelé jsou nejvíce zastoupeny v uspořádané k-tici nejbližších sousedů

Reprezentace pomocí etalonů:

Každá třída je reprezentována **etalonem** - vzorkem třídy, který ji nejlépe reprezentuje ve smyslu minimální vzdálenosti.

Etalon je buď skutečným prvkem třídy, nebo může vzniknout výpočtem, např. průměrováním, z příznakových vektorů třídy.

Při klasifikaci se měří vzdálenosti $|\mathbf{x} - \mathbf{e_r}|$ a vybere se $\mathsf{T_r}$, aby $|\mathbf{x} - \mathbf{e_r}| = \min_{s=1,2..R} |\mathbf{x} - \mathbf{e_s}|$

Rozpoznávání objektů – minimální vzdálenost

Dynamické borcení času: DTW - Dynamic time warping

Rozpoznávání objektů – Metoda diskriminačních funkcí

vychází z předpokladu, že obrazový prostor lze rozdělit na disjunktní části pomocí

rozdělujících nadploch:

v E2 rozdělující křivky

v E3 rozdělující plochy

Rozdělující nadplochy lze určit pomocí diskriminačních funkcí $g_1, \dots g_R$,

přičemž g_r je vybrána tak, aby pro všechna platilo $g_r(x) > g_s(x)$ $s = 1,...R, s \neq r$

Rozdělující plocha mezi třídami T_r a T_s je dána rovnicí: $g_r(x) - g_s(x) = 0$

Rozpoznávání objektů – metoda max. pravděpodo.

(též nazývaná metoda minimální chyby)

Princip: každá třída je reprezentována

a) apriorní pravděpodobností třídy pravděpodobností výskytu prvků této třídy $P(T_r)$

musí platit
$$\sum_{r=1}^{R} P(T_r) = 1$$

b) podmíněnou hustotou pravděpodobností $p(\mathbf{x} \mid T_r)$ udává rozložení pravděpodobnosti vektoru příznaků x pro třídu T_r

<u>Trénování:</u> pro každou třídu se na trénovací množině určí (odhadnou) výše uvedené pravděpodobnosti

Rozpoznávání: aplikace Bayesova pravidla $P(T_r \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid T_r)P(T_r)}{p(\mathbf{x})}$ $P(T_r \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid T_r)P(T_r)}{p(\mathbf{x})}$ $P(T_r \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid T_r)P(T_r)}{p(\mathbf{x})}$ $P(\mathbf{x}) = \frac{p(\mathbf{x} \mid T_r)P(T_r)}{p(\mathbf{x})}$ absolutní pravd. hustota rozložení vektoru příznaků i=1 (nezávisle na třídě)

Rozpoznávání objektů – metoda max. pravděpodo.

c) Metoda maximální pravděpodobnosti – příklad

V útulku se nachází 70% psů a 30% koček. 20% koček a 10% psů je černých. Z dálky kamerou snímáme černé zvíře – jaká je pravděpodobnost, že to je pes?

apriorní pravděpodobnost:

třída - psy P(T₁) = 70%, kočky P(T₂) = 30%
$$\sum_{r=1}^{R} P(T_r) = 1$$

podmíněnou hustotou pravděpodobností

náhodně vybraný pes je černý p(
$$\mathbf{x} \mid T_1$$
) = 10% náhodně vybraná kočka je černá p($\mathbf{x} \mid T_2$) = 20%

náhodně vybrané zvíře je černé $p(\mathbf{x}) = 0.7 \times 0.1 + 0.3 \times 0.2 = 0.13$

pozorované černé zvíře je pes p $(T_1 | \mathbf{x}) = (0.1 \times 0.7) / 0.13 = 54\%$

pozorované černé zvíře je kočka p $(T_2 \mid \mathbf{x}) = (0.2 \times 0.3) / 0.13 = 46\%$

Viola-Jonesův detektor (VJD) obličeje využívá příznaky podobné
 Haarovým bázovým funkcím a klasifikátor založený na AdaBoost algoritmu

příznak - suma hodnot obrazových bodů nacházející se pod bílou oblastí 2D funkce mínus suma hodnot obrazových bodů pod černou oblastí funkce, zjednodušení: **Integrální obraz**

$$fi(x_1, y_1)$$
 $fi(x_2, y_2)$
 $fi(x_3, y_3)$ $fi(x_4, y_4)$

- suma byla spočítána ze čtyř hodnot na základě využití dvou operací sčítání a jedné operace odčítání: (fi(x1, y1) + fi(x4, y4)) (fi(x3, y3) + fi(x2, y2))
- Pro příznak typu A (obr. 2.8) by poté bylo potřeba použít 6 hodnot z integrálního obrazu, pro příznak B by to bylo 8 a 9 pro příznak typu C

Algoritmus AdaBoost

Algoritmus AdaBoost

- Trénovací data:
- 5000 obličejů o rozměrech 24x24
- Trénování je výpočetně náročné
- V detekční fázi velmi rychlé,>200 FPS pro 640x480.

Viola, Jones (2001): Robust Real-time Object Detection

Využití dynamiky chování rozpoznaných objektů

horizontální rozšíření rtů h: oblast rtů o:

$$h = \max_{y=0..N-1} \sum_{x=0}^{M-1} f(x,y)$$

$$o = \sum_{y=0}^{N-1} \sum_{x=0}^{M-1} f(x,y)$$
Vertikální rozšíření rtů v : zaokrouhlení rtů r :

$$v = \max_{x=0..M-1} \sum_{y=0}^{N-1} f(x,y)$$

$$o = \sum_{y=0}^{N-1} \sum_{x=0}^{M-1} f(x, y)$$

$$r = \frac{v}{h}$$

Využití dynamiky chování rozpoznaných objektů

2D Diskrétní kosinová transformace:

$$F(u,v) = \frac{2c(u)c(v)}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} f(m,n) \cos\left(\frac{2m+1}{2N}u\pi\right) \cos\left(\frac{2n+1}{2N}v\pi\right) \quad c(k) = \begin{cases} \frac{1}{\sqrt{2}} & pro \ k = 0\\ \frac{1}{\sqrt{2}} & pro \ k > 0 \end{cases}$$

N nejvyšších hodnot energie: $E(u,v) = F(u,v)^2$

Využití dynamiky chování rozpoznaných objektů

Normalizace příznakového vektoru:

Výpočet dynamických příznaků:

$$x'[n] = x[n] - x[n-1]$$
 <<< rychlost
 $x''[n] = x'[n] - x'[n-1]$ <<< zrychlení

N = 23; YES = 9; NO = 14; MULTIPLE = 1; ADD = 4 ACC = YES / N = (9 / 23) * 100 = 39%?

Accuracy, Precision, Recall, F1

		Klasifikátor	
		Positive	Negative
Realita	Positive	True P.	False P.
	Negative	False N.	True N.

Accuracy = _	TP + TN	= 8 / 20 = 0,4
-	TP+TN+FP+FN	

Precision =
$$\frac{TP}{TP + FP}$$
 = 4 / 5 = 0,8

Recall =
$$\underline{TP}$$
 = 4 / 6 = 0,67
TP + FN

F1 =
$$\underline{2 \cdot Precision \cdot Recall} = 2.0,8.0,67 / (0,8+0,67) = 0,73$$

Precision + Recall

Accuracy - Kolik klasifikací bylo pravdivých

Precision - Kolik pozitivních klasifikací bylo pravdivých

Recall - Jak dobře klasifikátor dokáže najít všechny pozitivní předpovědi.

F1 – Jak je klasifikátor efektivní. Precision nebo Recall >>> 0, F1 >>> 0

Accuracy, Precision, Recall, F1

TP = 4; $TN = 0$; $FP = 0$; $FN = 0$
Acc = 1; P = 1; R = 1; F1 = 1

		Klasifikátor	
		Positive	Negative
Realita	Positive	True P.	False P.
lita	Negative	False N.	True N.
		Klasifikátor	
		Obličej	No
Realita	Obličej	True P.	False P.
	No	False N.	True N.

TP = 0; TN = 0; FP = 4; FN = 0

TP = 0; TN = 1; FP = 0; FN = 0Acc = 1; P = 0; R = 0; F1 = 0

OK! ???

Intersection over Union (IoU)

$$10U = 0.8$$

IoU = 0.4

T = 0,5 IF IoU < T >>> FP ELSE >>> TP mAP@IoU=0,5

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

mean je průměr přes jednotlivé AP

pro různé T u IoU

COCO challenge: 10x IoU 0.5:0.05:0.95

$$mAP = \frac{1}{N} \sum_{i=1}^{N} AP_i$$

mean Average Precision (mAP)

Average Precision např. pro IoU 0,5 se vypočítá jako plocha pod křivkou Precision –Recall, kde měníme práh spolehlivosti (související s IoU) od 0 do 1

Precision - Recall curve

