G PAVAN KUMAR

21BCE9495

VIT-AP UNIVERSITY

```
import numpy as np
import pandas as pd

loading datset
```

df=pd.read_csv("/content/penguins_size.csv")

df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mas
0	Adelie	Torgersen	39.1	18.7	181.0	375
1	Adelie	Torgersen	39.5	17.4	186.0	380
2	Adelie	Torgersen	40.3	18.0	195.0	325
3	Adelie	Torgersen	NaN	NaN	NaN	1
4	Adelie	Torgersen	36.7	19.3	193.0	345

```
df.shape (344, 7)
```

```
df.isnull().sum()

species 0
island 0
culmen_length_mm 2
culmen_depth_mm 2
flipper_length_mm 2
body_mass_g 2
sex 10
dtype: int64
```

Handling missing values

replace null values

```
MALE
     FEMALE
               165
                 1
     Name: sex, dtype: int64
df['sex'] = df['sex'].str.replace('.', 'MALE')
     <ipython-input-43-a5ac3d0c6a82>:1: FutureWarning: The default value of regex will change from True to False in a future version. Ir
       df['sex'] = df['sex'].str.replace('.', 'MALE')
df.sex.value_counts()
     MALE
             165
     FEMALE
     Name: sex, dtype: int64
df.isnull().sum()
     species
                          0
     island
                          0
     culmen_length_mm
                          0
     culmen_depth_mm
     flipper_length_mm
body_mass_g
                          0
                          0
                          0
     sex
     dtype: int64
df.head()
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	Adelie	Torgersen	39.10000	18.70000	181.000000	3750.000000	MALE	ıl.
1	Adelie	Torgersen	39.50000	17.40000	186.000000	3800.000000	FEMALE	
2	Adelie	Torgersen	40.30000	18.00000	195.000000	3250.000000	FEMALE	
3	Adelie	Torgersen	43.92193	17.15117	200.915205	4201.754386	MALE	
4	Adelie	Torgersen	36.70000	19.30000	193.000000	3450.000000	FEMALE	

describing statistics

df.describe()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	=
count	344.000000	344.000000	344.000000	344.000000	11.
mean	43.921930	17.151170	200.915205	4201.754386	
std	5.443643	1.969027	14.020657	799.613058	
min	32.100000	13.100000	172.000000	2700.000000	
25%	39.275000	15.600000	190.000000	3550.000000	
50%	44.250000	17.300000	197.000000	4050.000000	
75%	48.500000	18.700000	213.000000	4750.000000	
max	59.600000	21.500000	231.000000	6300.000000	

univariate analysis

```
{\tt import\ matplotlib.pyplot\ as\ plt}
```

```
plt.title("Histogram Analysis of island attribute")
plt.hist(df["island"])
plt.show()
```


plt.pie(df.island.value_counts(),[0,0.1,0.1],labels=['Torgersen','Biscoe','Dream'],autopct='%1.01f%%',shadow=True,colors=['yellow','purp
plt.title('island')
plt.show()

plt.pie(df.sex.value_counts(),[0,0.1],labels=['MALE','FEMALE'],autopct='%1.01f%%',shadow=True,colors=['yellow','blue'])
plt.title('sex')
plt.show()

import seaborn as sns

sns.distplot(df["culmen_length_mm"])
plt.show()

<ipython-input-53-9c96b21500a0>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.boxplot(df.culmen_depth_mm)

sns.barplot(x=df.island.value_counts().index,y=df.island.value_counts())
plt.show()

sns.barplot(x=df.sex.value_counts().index,y=df.sex.value_counts())
plt.show()

Bi variate analysis

 $\verb|sns.lineplot(x=df.culmen_length_mm,y=df.culmen_depth_mm)|\\$

<Axes: xlabel='culmen_length_mm', ylabel='culmen_depth_mm'>

<Axes: xlabel='culmen_length_mm', ylabel='culmen_depth_mm'>

 $\verb|sns.scatterplot(x=df.culmen_length_mm,y=df.culmen_depth_mm)|\\$

<Axes: xlabel='culmen_length_mm', ylabel='culmen_depth_mm'>

<Axes: xlabel='culmen_length_mm', ylabel='culmen_depth_mm'>

Multivariate analysis

sns.pairplot(df)

<ipython-input-59-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
 df.corr()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	
culmen_length_mm	1.000000	-0.235053	0.656181	0.595110	ılı
culmen_depth_mm	-0.235053	1.000000	-0.583851	-0.471916	
flipper_length_mm	0.656181	-0.583851	1.000000	0.871202	
body_mass_g	0.595110	-0.471916	0.871202	1.000000	
3000	<u>. </u>	0 80 00	6 6 9 3		

sns.heatmap(df.corr(),annot=True,cmap="Blues")

<ipython-input-60-86807cfe395e>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
 sns.heatmap(df.corr(),annot=True,cmap="Blues")

outliers checking

sns.boxplot(df.culmen_depth_mm)

sns.boxplot(df.culmen_length_mm)

sns.boxplot(df. flipper_length_mm)

sns.boxplot(df.body_mass_g)

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

df.species=le.fit_transform(df.species)

df.island=le.fit_transform(df.island)

df.sex=le.fit_transform(df.sex)

df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	\blacksquare
0	0	2	39.10000	18.70000	181.000000	3750.000000	1	ıl.
1	0	2	39.50000	17.40000	186.000000	3800.000000	0	
2	0	2	40.30000	18.00000	195.000000	3250.000000	0	
3	0	2	43.92193	17.15117	200.915205	4201.754386	1	
4	0	2	36.70000	19.30000	193.000000	3450.000000	0	

correlation of independent variables

df.corr()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass
species	1.000000	-0.635659	0.728674	-0.741335	0.851160	0.7477
island	-0.635659	1.000000	-0.351461	0.567506	-0.562328	-0.5580
culmen_length_mm	0.728674	-0.351461	1.000000	-0.235053	0.656181	0.5951
culmen_depth_mm	-0.741335	0.567506	-0.235053	1.000000	-0.583851	-0.4719
flipper_length_mm	0.851160	-0.562328	0.656181	-0.583851	1.000000	0.8712
body_mass_g	0.747726	-0.558045	0.595110	-0.471916	0.871202	1.0000
sex	0.010240	0.002893	0.322338	0.354374	0.243556	0.4082

Split the data into dependent and independent variables

x=df.drop(columns=["species"],axis=1)

x.head()

y=df.species
y.head()

0 0 1 0

2030

4 0 Name: species, dtype: int64

normalizing (scaling data)

from sklearn.preprocessing import MinMaxScaler
scale=MinMaxScaler()

X_scaled=pd.DataFrame(scale.fit_transform(x),columns=x.columns)
X_scaled.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	1.0	0.254545	0.666667	0.152542	0.291667	1.0	ıl.
1	1.0	0.269091	0.511905	0.237288	0.305556	0.0	
2	1.0	0.298182	0.583333	0.389831	0.152778	0.0	
3	1.0	0.429888	0.482282	0.490088	0.417154	1.0	
4	1.0	0.167273	0.738095	0.355932	0.208333	0.0	

train test splitting

 $from \ sklearn.model_selection \ import \ train_test_split \\ x_train,x_test,y_train,y_test=train_test_split(X_scaled,y,test_size=0.2,random_state=0) \\$

check the training and testing data shape

x_train.shape

(275, 6)

x_test.shape

(69, 6)

y_train.shape

(275,)

y_test.shape

(69,)

✓ 0s completed at 20:26

• ×