Sprawozdanie

Zajęcia: Analiza procesów uczenia Prowadzący: prof. dr hab. Vasyl Martsenyuk

Laboratorium 6

Data: 24.05.2024

Temat: Problemy NLP w uczeniu maszynowym

Wariant: 1

Agnieszka Białecka Informatyka II stopień, stacjonarne, 1 semestr, Gr.1a

1. Cel ćwiczenia

Celem ćwiczenia była analiza tekstów za pomocą list częstotliwości, chmur słów i n-gramów.

- 2. Wstęp teoretyczny
- 3. Przebieg ćwiczenia

Zadanie dotyczy analizy tekstu, w tym listę częstotliwości słów, budowanie chmury słów, kojarzenie, sentiment analysis, emotion analysis, bigramów, grafów powiązań. Warianty zadania są określone tekstem w języku angielskim umieszczonym na portalu en.wikipedia.org

https://en.wikipedia.org/wiki/Machine learning

```
install.packages("tm")
install.packages("Snowballc")
install.packages("wordcloud")
install.packages("RColorBrewer")
install.packages("syuzhet")
install.packages("ggplot2")

library("tm")
library("Snowballc")
library("wordcloud")
library("RColorBrewer")
library("syuzhet")
library("ggplot2")
```

Zdjęcie 1. Wgranie bibliotek

```
text <- readLines("Machine learning.txt", warn=FALSE)
TextDoc <- Corpus(VectorSource(text))</pre>
toSpace <- content_transformer(function(x, pattern) gsub(pattern, " ", x))
TextDoc <- tm_map(TextDoc, toSpace,
TextDoc <- tm_map(TextDoc, toSpace,
TextDoc <- tm_map(TextDoc, toSpace,</pre>
TextDoc <- tm_map(TextDoc, toSpace,
TextDoc <- tm_map(TextDoc, toSpace,
TextDoc <- tm_map(TextDoc, toSpace,
TextDoc <- tm_map(TextDoc, toSpace,
TextDoc <- tm_map(TextDoc, removeNumbers)
TextDoc <- tm_map(TextDoc, removeWords, stopwords("english"))</pre>
TextDoc <- tm_map(TextDoc, removeWords, c("[",
TextDoc <- tm_map(TextDoc, removePunctuation)
TextDoc <- tm_map(TextDoc, stripWhitespace)
TextDoc <- tm_map(TextDoc, stemDocument)
TextDoc <- tm_map(TextDoc, content_transformer(tolower))</pre>
TextDoc_dtm <- TermDocumentMatrix(TextDoc)
dtm_m <- as.matrix(TextDoc_dtm)
dtm_v <- sort(rowSums(dtm_m), decreasing = TRUE)
dtm_d <- data.frame(word = names(dtm_v), freq = dtm_v)
head(dtm_d, 5)
```

Zdjęcie 2. Wgranie tekstu oraz wyczyszczenie tekstu z niepotrzebnych znaków

```
# build text matrix
TextDoc_dtm <- TermDocumentMatrix(TextDoc)
dtm_m <- as.matrix(TextDoc_dtm)
dtm_v <- sort(rowSums(dtm_m), decreasing = TRUE)
dtm_d <- data.frame(word = names(dtm_v), freq = dtm_v)
head(dtm_d, 5)

# plot of most frequent words
barplot(
    dtm_d[1:20, ]$freq,
    las = 2,
    names.arg = dtm_d[1:20, ]$word,
    col = "lightgreen",
    main = "Top 20 most frequent words",
    ylab = "Word frequency"
)</pre>
```

Zdjęcie 3. Rysowane wykresu najczęstszych słów

```
findAssocs(
  TextDoc_dtm,
  terms = c("learn", "machine", "algorithm", "train"),
  corlimit = 0.5
)
findAssocs(
  TextDoc_dtm,
  terms = findFreqTerms(TextDoc_dtm, lowfreq = 20),
  corlimit = 0.5
)

# sentiment analysis
syuzhet_vector <- get_sentiment(text, method = "syuzhet")
bing_vector <- get_sentiment(text, method = "bing")
nrc_vector <- get_sentiment(text, method = "nrc")
rbind(
  sign(head(syuzhet_vector)),
  sign(head(bing_vector)),
  sign(head(nrc_vector))
)</pre>
```

Zdjęcie 4. Kojarzenie słów

```
d <- get_nrc_sentiment(as.vector(dtm_d$word))</pre>
head(d,10)
td <- data.frame(t(d))
td_new <- data.frame(rowSums(td[1:56]))
names(td_new)[1] <- "count"
td_new <- cbind("sentiment" = rownames(td_new), td_new)
rownames(td_new) <- NULL
td_new2 <- td_new[1:8,]
quickplot(
  sentiment,
  data = td_new2,
  weight = count,
  geom = "bar",
  fill = sentiment,
  ylab = "count"
 + ggtitle("Survey sentiments")
barplot(
  sort(colSums(prop.table(d[, 1:8]))),
  horiz = TRUE,
  cex.names = 0.7,
  las = 1,
  main = "Emotions in Text",
xlab = "Percentage"
```

Zdjęcie 5. Klasyfikacja emocji słów

	word	frea
learn	learn	
machin	machin	
data	data	
model	model	
algorithm		81

Zdjęcie 6. Najczęstsze słowa

Top 20 most frequent words

Zdjęcie 7. Wykres 20 najczęstszych słów

Zdjęcie 8. Wykres badania nastrojów

Emotions in Text

Zdjęcie 9. Wykres emocji w tekście

4. Podsumowanie

Przeprowadzone ćwiczenie pozwoliło na dogłębne zapoznanie się z koncepcją analizy tekstu przy pomocy list częstotliwości. W ramach tego ćwiczenia zostały zaimplementowane modele list częstotliwości, chmur słów i n-gramów.