Correlations in rapidity

Adam Bzdak

AGH University of Science and Technology, Kraków

Outline

- wounded source emission function
- forward-backward correlations
- longitudinal fluctuations and correlations
- transverse-momentum multiplicity correlations
- conclusions

PHOBOS d+Au

$$\frac{dN}{d\eta} = w_L F(\eta) + w_R F(-\eta)$$

 $w_{L,R}$ — number of left- and right-going constituents

$$F(\eta) = \frac{1}{2} \left[\frac{N(\eta) + N(-\eta)}{w_L + w_R} + \frac{N(\eta) - N(-\eta)}{w_L - w_R} \right]$$

wounded constituent emission function

$$N(\eta) \equiv \frac{dN}{d\eta}$$

Wounded nucleon and quark emission functions

$$\sqrt{s} = 200 \text{ GeV}$$

close to $\eta = 0$, $F(\eta) \sim \eta$

To be checked in p+Au and He3+Au

Antisimetrization of $N(\eta)$

homework for PHENIX

Forward-backward multiplicity correlations

$$b = \frac{\langle n_B n_F \rangle - \langle n_B \rangle^2}{\langle n_B^2 \rangle - \langle n_B \rangle^2}$$

b = 1, maximum correlation

b = 0, no correlation

b = -1, maximum anticorrelation

Forward-backward multiplicity correlation Good in e^+e^- and maybe proton-proton collisions. Difficult in A+A.

p+p is **not** symmetric in rapidity, it is more like p+A The shape of the fireball fluctuates in rapidity

New source of rapidity correlations

$$\rho_{\text{event}}(y) = \langle \rho(y) \rangle \left[1 + a_0 + a_1 \frac{y}{Y} + \cdots \right]$$

single particle distribution in an event (neglecting

statistical fluctuations)

average single particle distribution

- a_0 is rapidity independent fluctuation of fireball as a whole multiplicity distribution
- a_1 is an event-by-event rapidity asymmetry e.g. asymmetry in the number of left- and right-going constituents (nucleons, quarks,

Y - measurement is from -Y to Y

diquarks, etc.) in p+p, p+A and A+A

A.Bialas, AB, K.Zalewski, PLB 710 (2012) 332

Long (and short) range rapidity correlations

$$\rho_{\text{event}}(y) = \langle \rho(y) \rangle \left[1 + \sum_{i=0}^{n} a_i T_i(y/Y) \right]$$
orthogonal polynomials

$$\frac{C_2(y_1, y_2)}{\langle \rho(y_1) \rangle \langle \rho(y_2) \rangle} = \sum_{i,k} \langle a_i a_k \rangle T_i(y_1/Y) T_k(y_2/Y)$$

$$\frac{C_2(y_1, y_2)}{\langle \rho(y_1) \rangle \langle \rho(y_2) \rangle} \sim \langle a_0^2 \rangle + \langle a_1^2 \rangle \frac{y_1 y_2}{Y^2} + \cdots$$

The ATLAS Collaboration

Abstract

Two-particle pseudorapidity correlations are measured in $\sqrt{s_{\rm NN}} = 2.76$ TeV Pb+Pb, $\sqrt{s_{\rm NN}} = 5.02$ TeV p+Pb, and $\sqrt{s} = 13$ TeV pp collisions at the LHC, with total integrated luminosities of approximately 7 μ b⁻¹, 28 nb⁻¹, and 65 nb⁻¹, respectively. The correlation function $C_N(\eta_1, \eta_2)$ is measured as a function of event multiplicity using charged particles in the pseudorapidity range $|\eta|$ < 2.4. The correlation function contains a significant shortrange component, which is estimated and subtracted. After removal of the short-range component, the shape of the correlation function is described approximately by $1 + \langle a_1^2 \rangle \eta_1 \eta_2$ in all collision systems over the full multiplicity range. The values of $\sqrt{\langle a_1^2 \rangle}$ are consistent between the opposite-charge pairs and same-charge pairs, and for the three collision systems at similar multiplicity. The values of $\sqrt{\langle a_1^2 \rangle}$ and the magnitude of the short-range component both follow a power-law dependence on the event multiplicity. The η distribution of the short-range component, after symmetrizing the proton and lead directions in p+Pbcollisions, is found to be smaller than that in pp collisions with comparable multiplicity.

 a_1 as a function of the number of produced particles in $|\eta| < 2.5$ and $p_t > 0.2$ GeV.

Particle sources and their fluctuations seem to be similar in peripheral Pb+Pb, min-bias p+Pb and very central p+p.

PYTHIA and EPOS vs p+p data

taken from
Jiangyong Jia (QM17)

Related papers:

J.Jia, S.Radhakrishnan, M.Zhou, PRC 93, 044905 (2016)

P.Bożek, W.Broniowski, A.Olszewski, PRC 92 (2015) 5, 054913

A.Monnai, B.Schenke, PLB 752 (2016) 317

B.Schenke, S.Schlichting, PRC 94, 044907 (2016)

P.Bożek, W.Broniowski, PRC 93, 064910 (2016)

R.He, J.Qian, L.Huo, 1702.03137

W.Ke, J.Moreland, J.Bernhard, S.Bass, 1610.08490

For example the genuine 4 and 6-particle correlation functions

$$\frac{C_4(y_1, \dots, y_4)}{\langle \rho(y_1) \rangle \dots \langle \rho(y_4) \rangle} = \dots + \left[\langle a_1^4 \rangle - 3 \langle a_1^2 \rangle^2 \right] \frac{y_1 y_2 y_3 y_4}{Y^4} + \dots$$

$$\frac{C_6}{\langle \rho \rangle \dots \langle \rho \rangle} = \dots + \left[\langle a_1^6 \rangle - 15 \langle a_1^2 \rangle \langle a_1^4 \rangle - 10 \langle a_1^3 \rangle^2 + 30 \langle a_1^2 \rangle^3 \right]$$

$$\frac{y_1 y_2 y_3 y_4 y_5 y_6}{Y^6} + \dots$$

I denote these coefficients by $\langle a_1^4 \rangle_{[4]}$ and $\langle a_1^6 \rangle_{[6]}$

CGC application

AB, K. Dusling, PRC 93, 031901 (2016)

$$Q_1^2 = Q_{o,1}^2 e^{+\lambda y}$$
$$Q_2^2 = Q_{o,2}^2 e^{-\lambda y}$$

$$\frac{dN}{dy} \propto S_{\perp} \operatorname{Min}[Q_1^2, Q_2^2] \left(2 + \ln \frac{\operatorname{Max}[Q_1^2, Q_2^2]}{\operatorname{Min}[Q_1^2, Q_2^2]} \right)$$

$$P[\rho] = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{\rho^2}{2\sigma^2}\right] \text{ where } \rho \equiv \log\left(\frac{Q^2}{\bar{Q}^2}\right)$$

See also:

L.McLerran, M.Praszalowicz, Annals Phys. 372 (2016) 215 L.McLerran, P.Tribedy, NPA 945 (2016) 216

$$\langle a_1^n \rangle = \frac{\left[\lambda \sigma \sqrt{\pi} \exp\left(\frac{\sigma^2(n-2)}{4}\right)\right]^n}{\sqrt{\pi}} \frac{n! U\left(\frac{1+n}{2}; \frac{1}{2}; \frac{n^2 \sigma^2}{4}\right)}{\left[\sqrt{\pi} (\sigma^2 - 2) \operatorname{Erfc}\left(\frac{\sigma}{2}\right) - 2\sigma \exp\left(-\frac{\sigma^2}{4}\right)\right]^n}$$

U – confluent hypergeometric functionErfc – complementary error function

Similar technique for $p_t - p_t$ correlations

$$P_t(y) = \frac{1}{N} \sum\nolimits_{i=1}^{N} p_t^{(i)}, \qquad \text{average } p_t$$
 in an event

$$\frac{P_t(y)}{\langle P_t(y) \rangle} = 1 + b_0 + b_1 y + \dots,$$

$$\frac{C_{[P,P]}(y_1, y_2)}{\langle P_t(y_1) \rangle \langle P_t(y_2) \rangle} = \langle b_0^2 \rangle + \underline{\langle b_1^2 \rangle} y_1 y_2 + \dots,$$

$$C_{[P,P]}(y_1,y_2) \equiv \langle P_t(y_1)P_t(y_2)\rangle - \langle P_t(y_1)\rangle \langle P_t(y_2)\rangle$$
.

or more interesting $N - p_t$ correlations

P.Bozek, AB, V.Skokov, PLB 728 (2014) 662 K.Deja, K.Kutak, PRD 95 (2017), 114027 F.Duraes, A.Giannini, V.Goncalves, F.Navarra, PRC 94, 024917 (2016) [different CGC conclusion]

Rapidity $N - p_t$ correlations

$$C_{[N,P]}(y_1,y_2) \equiv \langle N(y_1)P_t(y_2)\rangle - \langle N(y_1)\rangle \langle P_t(y_2)\rangle,$$

$$\frac{C_{[N,P]}(y_1, y_2)}{\langle N(y_1)\rangle \langle P_t(y_2)\rangle} = \langle a_0 b_0 \rangle + \underline{\langle a_1 b_1 \rangle} y_1 y_2 + \dots$$

In general

$$\frac{C_{[N,P]}(y_1, y_2)}{\langle N(y_1)\rangle \langle P_t(y_2)\rangle} = \sum_{i,k} \langle a_i b_i \rangle T_i(y_1) T_k(y_2),$$

Conclusions

Universality of wounded source emission function?

Consistent with forward-backward rapidity correlation

New source of long-range rapidity correlations and ATLAS data

Transverse-momentum multiplicity correlations

It would be great to have $\langle a_1^2 \rangle$, $\langle b_1^2 \rangle$ and $\langle a_1 b_1 \rangle$ in p+p, p+Pb and Pb+Pb collisions

Backup

$\langle p_T \rangle$ versus η on proton side

Fireball shape in rapidity can fluctuate

here $dN/dy \equiv \rho_{\text{event}}(y)$

So let's expand in the orthogonal polynomials

wounded nucleon model

wounded quark model

Contribution from fluctuation in the number of left and right going nucleons (quarks) at a given number of produced particles $N_{\rm ch}$

$$\langle a_1^2 \rangle = \frac{b^2}{a^2} \frac{\langle (w_L - w_R)^2 \rangle}{\langle w_L + w_R \rangle^2}$$
 symmetric A+A coll.

wounded nucleon model

$$\langle a_1^2 \rangle \approx 4 \frac{b^2}{a^2} \frac{\langle w_R^2 \rangle - \langle w_R \rangle^2}{(1 + \langle w_R \rangle)^4}$$

and slightly more complicated for the wounded quark model

wounded quark model

Multi-particle correlation functions

$$C_2(y_1, y_2) = \rho_2(y_1, y_2) - \rho(y_1)\rho(y_2)$$

$$\rho_3(y_1, y_2, y_3) = \rho(y_1)\rho(y_2)\rho(y_3) + \rho(y_1)C_2(y_2, y_3) + \rho(y_2)C_2(y_1, y_3) + \rho(y_3)C_2(y_1, y_2) + C_3(y_1, y_2, y_3),$$

$$\rho_4(y_1, y_2, y_3, y_4) = \rho(y_1)\rho(y_2)\rho(y_3)\rho(y_4) + \rho(y_1)\rho(y_2)C_2(y_3, y_4) + \rho(y_1)\rho(y_3)C_2(y_2, y_4) + \rho(y_1)\rho(y_4)C_2(y_2, y_3) + \rho(y_2)\rho(y_3)C_2(y_1, y_4) + \rho(y_2)\rho(y_4)C_2(y_1, y_3) + \rho(y_3)\rho(y_4)C_2(y_1, y_2) + \rho(y_1)C_3(y_2, y_3, y_4) + \rho(y_2)C_3(y_1, y_3, y_4) + \rho(y_3)C_3(y_1, y_2, y_4) + \rho(y_4)C_3(y_1, y_2, y_3) + C_2(y_1, y_2)C_2(y_3, y_4) + C_2(y_1, y_3)C_2(y_2, y_4) + C_2(y_1, y_4)C_2(y_2, y_3) + C_4(y_1, y_2, y_3, y_4).$$

$$\rho_5 = \rho \rho \rho \rho \rho + \underbrace{\rho C_4}_{5} + \underbrace{\rho \rho C_3}_{10} + \underbrace{\rho \rho \rho C_2}_{10} + \underbrace{\rho C_2 C_2}_{15} + \underbrace{C_2 C_3}_{10} + C_5$$

$$\rho_{6} = \rho\rho\rho\rho\rho\rho + \underbrace{\rho C_{5}}_{6} + \underbrace{\rho\rho C_{4}}_{15} + \underbrace{\rho\rho\rho C_{3}}_{20} + \underbrace{\rho\rho\rho\rho C_{2}}_{15} + \underbrace{\rho C_{2}C_{3}}_{60} + \underbrace{\rho\rho C_{2}C_{2}}_{45} + \underbrace{C_{2}C_{4}}_{15} + \underbrace{C_{3}C_{4}}_{15} + \underbrace{C_{2}C_{2}C_{2}}_{15} + \underbrace{C_{4}C_{2}C_{2}}_{15} + \underbrace{C_{5}C_{4}}_{15} + \underbrace{C_{5}C_{5}C_{5}}_{15} + \underbrace{C_{5}C_{5}C_{5}}_{$$

Wounded nucleon (quark, quark-diquark) model

A.Bialas, M.Bleszynski, W.Czyz, NPB 111 (1976) 461 A.Bialas, W.Czyz, APPB 36 (2005) 905 A.Bialas, AB, PRC 77 (2008) 034908

Proton as a set of domains in which Q_s fluctuate independently

Superposition of independent log-normal distributions can be approximated by log-normal

$$\sigma^2 = \ln\left[\frac{1}{N_{\rm d}} \left(e^{\sigma_{\rm d}^2} - 1\right) + 1\right]$$

 $\sigma^2 pprox rac{\sigma_{
m d}^2}{N_{
m d}}$

$$\sigma^2 = \frac{N_{\rm ch}^{\rm mb}}{N_{\rm ch}} \sigma_{\rm mb}^2$$

 N_d - number of domains

 σ_d - log-normal width of a domain

 σ - effective width from all domains

mb – minimum bias

We conclude that $\sigma \sim 0.5-1$

$$P[\rho] = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{\rho^2}{2\sigma^2}\right] \text{ where } \rho \equiv \log\left(\frac{Q^2}{\bar{Q}^2}\right)$$

Tails of multiplicity distributions are effected

Figure 6: Multiplicity dependence on pseudo-rapidity η for the fluctuating case with $\sigma = 1.55$. Left plot corresponds to ATLAS whereas the right one to ALICE. Different curves correspond to the centrality classes defined in Tables 1 and 2.

CGC in asymmetric systems, two scales

Better control of finite multiplicity effects from convolution LS proton anticorrelation for $\Delta y \sim 0$. Weak beam energy dependence.

b is difficult to study in A+A collisions because of impact parameter fluctuations

large number of particles in B and F

small number of particles in B and F