1 分区间 1

先给出对于可积函数的一些直观想象.

在闭区间上有界的函数, 如果只有有限个不连续点, 这个函数是可积的. 事实上可数个间断点, 即间断点能写成一列 $\{x_n\}$, 那么这个函数是可积的. 可以证明, 改变这些点, 或者说改变任意有限个点, 函数的积分值不变. 这条性质是 Lesbegue 定理的直观解释.

第1节 分区间

定理 1.1. 积分第一中值定理

设 $f,g\in C[a,b], m\leq f(x)\leq M, g(x)$ 在 [a,b] 上不变号, 则存在 $\xi\in [a,b]$,使得

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx$$

作业之中已经证明过此处 $\xi \in [a,b]$, 可以加强为 $\xi \in (a,b)$

定理 1.2. 积分第二中值定理

设 $f, g \in C[a, b], g(x)$ 在 [a, b] 上单调, 则存在 $\xi \in [a, b]$, 使得

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx + g(b) \int_{\xi}^{b} f(x)dx$$

如果 g(x) 在 [a,b] 上单调递增, 且 $g(x) \geq 0$, 则 $\xi \in [a,b]$, 使得

$$\int_{a}^{b} f(x)g(x)dx = g(b) \int_{\xi}^{b} f(x)dx$$

如果 g(x) 在 [a,b] 上单调递减, 且 $g(x) \ge 0$, 则 $\xi \in [a,b]$, 使得

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx$$

事实上这里的 $\xi \in [a,b]$ 也可以加强为 $\xi \in (a,b)$

这里同学或许会有点困惑,既然 ξ 范围都可以加强,那为什么不直接给出加强后命题的证明呢,反正他的适用性也更强. 这是因为如果把条件中的 $f,g\in C[a,b]$ 减弱为 $f,g\in R[a,b]$,那么这个定理就只能给出 $\xi\in [a,b]$.

对函数的定积分是一个数,更准确的描述是,与积分变量无关的数.如果被积函数带有参数,那么就会得到一个以参数做自变量的数列或者函数,如

1 分区间 2

$$a_n = \int_0^1 x^n (1-x)^n dx, \quad f(x) = \int_a^b e^{x \sin t} dt$$

我们要利用积分中值定理来研究这些数列和函数的极限,常见的一个手段 是**分区间**. 找到一个极小的区间,这部分的积分值占据了函数的绝大部分.

例 1.3. 证明:
$$\lim_{n\to\infty}\int_0^{\pi/2}\sin^n xdx=0$$
. 请指出一下做法的不严谨之处.

证明. 由积分第一中值定理, 存在 $\xi \in (0, \pi/2)$, 使得

$$\int_0^{\pi/2} \sin^n x dx = \sin^n \xi \int_0^{\pi/2} dx = \sin^n \xi \frac{\pi}{2}$$

由 $\sin \xi \leq 1$, 令 $n \to \infty$, 得证.

例 1.4. 设
$$f(x) \in C[0,1]$$
, 求证: $\lim_{n \to \infty} n \int_0^1 x^n f(x) dx = f(1)$.

证明. $\forall \varepsilon > 0$, 由 $\lim x \to 1^- f(x) = f(1)$, 存在 $\delta > 0$, 当 $1 - x < \delta$ 时, 有 $|f(x) - f(1)| < \varepsilon.$ 又由 $f(x) \in C[0,1]$, 故 f(x) 在 [0,1] 上有界, 设 $|f(x)| \le M$. $\left| n \int_0^{1-\delta} x^n (f(x) - f(1)) \, dx \right| \le n \int_0^1 x^n |f(x) - f(1)| \, dx$ $= n \int_0^{1-\delta} x^n |f(x) - f(1)| \, dx + n \int_{1-\delta}^1 x^n |f(x) - f(1)| \, dx$ $\le 2Mn \frac{(1-\delta)^{n+1}}{n+1} + \frac{\varepsilon}{2} \cdot \frac{n}{n+1} \le 2M(1-\delta)^{n+1} + \frac{\varepsilon}{2}$

此处 ε, M 的选取与 n 无关, 故 $\lim_{n \to \infty} 2M(1-\delta)^{n+1} = 0$, 故 $\exists N, \forall n > N$, 有 $2M(1-\delta)^{n+1} < \frac{\varepsilon}{2}$, 从而 $\left| n \int_0^1 x^n (f(x) - f(1)) \, dx \right| < 2M(1-\delta)^{n+1} + \frac{\varepsilon}{2} < \varepsilon$.

例 1.5. 设
$$f(x) \in D[0,1]$$
, 求证: $I = \lim_{n \to \infty} n \left[n \int_0^1 x^n f(x) dx - f(1) \right] = -f(1) - f'(1)$.

证明. 设 $I_1 = \lim_{n \to \infty} n^2 \int_0^1 x^n (f(x) - f(1)) dx$, $I_2 = \lim_{n \to \infty} \frac{n}{n+1} f(1)$, 有 $I = I_1 - I_2$.

$$\forall \varepsilon > 0$$
,由 $\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = f'(1)$,存在 $\delta > 0$,当 $1 - \delta < x < 1$ 时,有

$$\left| \frac{f(x) - f(1)}{x - 1} - f'(1) \right| < \varepsilon, \ \mathbb{R}^{J} \begin{cases} f(x) - f(1) < (x - 1)(f'(1) + \varepsilon) \\ f(x) - f(1) > (x - 1)(f'(1) - \varepsilon) \end{cases}$$

2 微分方程 3

记
$$I_3 = n^2 \int_0^{1-\delta} x^n (f(x) - f(1)) dx$$
, $I_4 = n^2 \int_{1-\delta}^1 x^n (f(x) - f(1)) dx$, 有

$$|I_3| \le 2Mn^2 \int_0^{1-\delta} x^n \, dx = 2Mn^2 \frac{(1-\delta)^{n+1}}{n+1} \le 2Mn(1-\delta)^{n+1} \to 0 \, (n \to \infty)$$

$$|I_4 + f'(1)| \le n^2 \int_{1-\delta}^1 x^n \varepsilon(1-x) \, dx \to \varepsilon \, (n \to \infty)$$

故存在 $N, \forall n > N$,有 $|I_3| < \varepsilon, |I_4 + f'(1)| < 2\varepsilon$,从而 $|I_1 - f'(1)| < 3\varepsilon$,即 证 $I_1 = -f'(1)$.又 $I_2 = -f(1)$,故 $I = I_1 - I_2 = -f'(1) - f(1)$.

练习 1.6. 设 $f(x) \in C[0,1], f(x) \leqslant 1$ 且 f(x) = 1 当且仅当 $x = x_0$,设 $0 < a \leqslant x_0 \leqslant b < 1, a \neq b$,求证: $\lim_{n \to \infty} \frac{\int_a^b f^n(x) dx}{\int_0^1 f^n(x) dx} = 1$.

练习 1.7. 设 f(x), g(x) 在 [a,b] 上连续非负,且 f(x) 不恒为 0,g(x) 恒正,记 $I_n = \int_a^b f^n(x)g(x)dx$,求证: $\lim_{n\to\infty} \frac{I_{n+1}}{I_n}$ 存在,且极限为 $\max_{[a,b]} f(x)$.

第 2 节 微分方程

2.1 微分方程的解是一族函数

微分方程 $F(x, y, y', \dots, y^{(n)}) = 0$ 求解的结果通常形如 $y = y(x, C_1, C_2, \dots, C_n)$, 其中 C_1, C_2, \dots, C_n 是待定常数. 这里的常数个数与微分方程的阶数有关.

有的同学在理解时,会认为求解微分方程和解方程一样,是固定了 x 后,解出 y 的值,这也是被 abuse of notation 误导了. 上面的 y = y(x,C) 如果写成 y = f(x,C),那应该更好理解微分方程的解是一族函数,而不是一个具体的数.

注记 2.1. 此处称 y = f(x,C) 为一族函数的原因是,对于不同的 C,得到的函数是不同的.可以这么说,如果看 C 与 x 的关系,发现 C 是与 x 无关的数,所以可以称为常数.如果看 C 与 y = f(x,C) 中 y 的关系,每一个 C 决定了一个f(x,C),从而 C 可以称作这一函数族的参数.

2.2 解微分方程的除 x 的合理性

例 2.2.
$$xdx + ydy = 0$$
 与 $\frac{dx}{dy} = -\frac{y}{x}$ 是同一个微分方程吗?

上面的例题的结果促使我们将一阶微分方程写成将 x,y 视为等价的形式,即

$$P(x,y)dx + Q(x,y)dy = 0$$

定理 2.3. 《常微分方程》柳彬 P106 推论 3.1 不要求掌握

设函数 $f(x,y)=-\dfrac{P(x,y)}{Q(x,y)}$ 在区域 G 上连续,且满足局部 Lipschitz 条件,则对于任意一点 $P_0(x_0,y_0)\in G$,存在唯一的解 $y=\varphi(x)$,经过 P_0 ,且这个解作为 G 中的曲线可以延伸至边界,

注记. 局部 *Lipschitz* 条件是指, 存在一个邻域 $U(P_0)$, 存在常数 L, 使得对于任意的 $(x,y_1),(x,y_2)\in U(P_0)$, 有 $|f(x,y_1)-f(x,y_2)|\leqslant L|y_1-y_2|$.

这个定理说明了只要我 P(x,y),Q(x,y) 的性质优良 (在 B1 中可以不加验证的认为足够优良),那么方程 $\frac{dy}{dx} = -\frac{P(x,y)}{Q(x,y)}$ 的解是存在唯一的,而且这个解用连续性补上边界的缺失之后,就是 P(x,y)dx + Q(x,y)dy = 0 的解.

例 2.4. \dot{x} $(x^2 + 3y^2)dx - 2xydy = 0$ 的解.

2.3 微分方程解中的常数

例 2.5. 指出下列微分方程解法中的不妥之处.

已知
$$y'' \sin^2 x = 2y$$
 有一个特解 $y_1 = \cot x$, 求通解.
$$y_2(x) = \cot x \int \tan^2 x e^{-\int 0} dx = C_1 \cot x (\int \sec^2 dx - \int 1 dx) = C_1 \cot x (\tan x + C_3) - C_1 \cot x (x + C_4) = (C_5 x + C_6) \cot x + C_7 + C_8 x.$$

例 2.6. 例 2.4 中,有 $\ln(1+u^2) = \ln|x| + C_0$ 后取指数时,为什么直接就把绝对值去掉了?

第 3 节 积分不等式

这部分常见于考试的压轴, 常见的方法是有必要掌握的.

3.1 命题方式

对
$$\int_0^1 (a+bx^2-f(x))^2 dx \ge 0$$
,展开得到
$$\int_0^1 (a^2+b^2x^4+f^2(x)-2af(x)-2bx^2f(x))+2abx^2 dx \ge 0$$
 记 $A=\int_0^1 f^2(x)dx, B=\int_0^1 x^2f(x)dx, C=\int_0^1 x^2f(x)dx$,则有
$$a^2+\frac{2}{3}ab+\frac{1}{5}b^2+A-2bB-2aC\ge 0$$

$$A\ge 2bB+2aC-a^2-\frac{2}{3}ab-\frac{1}{5}b^2:=g(a,b)$$

g(a,b) 是一个关于 a,b 的二次函数, 这里涉及了一些多元微积分的知识, 我们不加证明的认为, 当 g(a,b) 取得最大值时, g(a,b) 对 a,b 的偏导数为 b0. 即

$$2C - 2a - \frac{2}{3}b = 0, 2B - \frac{2}{5}b - \frac{2}{3}a = 0$$

解得的 a,b 带回原不等式,得到形如 $C \ge \lambda_1 A^2 + \lambda_2 AB + \lambda_3 B^2$ 的不等式. 最后得出某个形如 $\int_0^1 f^2(x) dx \ge \lambda \int_0^1 f(x) dx \int_0^1 x^2 f(x) dx$ 的不等式. 把这个形式作为题目丢给你. 然而你做题的时候不是这么分析的,你大概

把这个形式作为题目丢给你. 然而你做题的时候不是这么分析的, 你大概顺着用 Cauchy-Schwarz 不等式的方法, 写出 $\int_0^1 f^2(x)dx \int_0^1 (ax^2+b)^2 dx \ge \left(\int_0^1 f(x)(ax^2+b)dx\right)^2$.

这种题一是难在那个核心的 $\int (F(a,b,x))^2 dx \ge 0$ 是如何有关于 f(x) 的, 二这种题还会与微分中值, 泰勒展开, 其他不等式等等结合起来. 这里我列出尽可能多的积分不等式的证明技巧.

3.2 拼凑法

拼凑法的常见思路大致有如下几种

- 拼凑转化为判别式 $\Delta = b^2 4ac \le 0$.
- 如果 $m \le f(x) \le M$, 拼凑 (f(x) m)(M f(x)) > 0
- 拼凑 Cauchy-Schwarz 不等式

例 3.1. Cauchy-Schwarz

设 $f(x), g(x) \in C[a, b]$, 证明:

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} \leqslant \int_{a}^{b} f^{2}(x)dx \int_{a}^{b} g^{2}(x)dx$$

例 3.2. 设 f(x) 在区间 [a,b] 上连续且单增, 证明:

$$\int_{a}^{b} x f(x) dx \leqslant \frac{a+b}{2} \int_{a}^{b} f(x) dx$$

例 3.3. 求最小的 k 使得

$$\int_0^1 f^2(x)dx \leqslant k \left(\int_0^1 f(x)dx\right)^2$$

对所有满足 $1 \leq f(x) \leq 2$ 的可积函数都成立.

3.3 利用微分中值定理

例 3.4. 设 f(x) 在 [0,1] 上具有二阶连续导数, f(0) = f(1) = 0, 证明:

$$\int_0^1 |f''(x)| dx \geqslant 4 \max |f(x)|$$

例 3.5. 设 f(x) 在 [0,1] 上连续可微, 且 $f(0) = f(1) = 0, |f'(x)| \leq M$, 证明:

$$\int_0^1 |f(x)| dx \leqslant \frac{M}{4}$$

例 3.6. 设 f(x) 在 [a,b] 上有连续的导函数, 且 $f(\frac{a+b}{2}) = 0$, 证明:

$$\int_a^b |f(x)f'(x)| dx \leqslant \frac{b-a}{4} \int_a^b |f'(x)|^2 dx$$

例 3.7. 设函数 f(x) 在 [a,b] 上可微, $|f'(x)| \leq M$, $\int_a^b f(x)dx = 0$, 证明:

$$\left| \int_{a}^{x} f(t)dt \right| \leqslant \frac{M}{8} (b-a)^{2}$$

7

3.4 练习

练习 3.8. 设 f(x) 在 [0,1] 上单调递减,证明:对任意的 $\alpha \in (0,1)$,有

$$\int_0^{\alpha} f(x)dx \geqslant \alpha \int_0^1 f(x)dx$$

练习 3.9. 设 f(x) 在 [0,1] 上连续可微, 证明:

$$\max_{[0,1]} |f(x)| \le \int_0^1 |f'(x)| dx + \int_0^1 |f(x)| dx$$

练习 3.10. 设 f(x) 在 [a,b] 上连续可微, 证明:

$$\max_{[a,b]} f(x) \leqslant \int_a^b |f'(x)| dx + \frac{1}{b-a} \int_a^b |f(x)| dx$$

练习 3.11. 设 f(x) 在 [a,b] 上连续可微, f(a)=0, 证明:

$$\int_a^b f^2(x)dx \leqslant \frac{(b-a)^2}{2} \int_a^b f'^2(x)dx$$

练习 3.12. 设 f(x) 在 [0,1] 上连续, $0 \le f(x) \le 1$, 证明:

$$2\int_0^1 x f(x) dx \geqslant \left(\int_0^1 f(x) dx\right)^2$$

练习 3.13. 设 f(x) 在 [0,1] 上可微, 且 f(0) = 0, $f'(x) \ge 0$, 对于 $0 < \alpha < \beta < 1$, 求证:

$$\int_{0}^{1} f(x)dx \geqslant \frac{1-\alpha}{\beta-\alpha} \int_{\alpha}^{\beta} f(x)dx$$

练习 3.14. 设 f(x) 在 [0,1] 上连续可微,f(0) + f(1) = 0, 证明:

$$\left| \int_0^1 f(x) dx \right| \leqslant \frac{1}{2} \int_0^1 |f'(x)| dx$$