PM_{2.5} Concentration Profile around A SALSCS/AMSA: A Numerical Study under Different Ambient Conditions

Qingfeng Cao, Lian Shen, Sheng-Chieh (Shawn) Chen, David Y.H. Pui

October 6th, 2017

52nd Review Meeting, Center for Filtration Research Donaldson Company, Inc., Bloomington, Minnesota

Outline

- Introduction;
- Model description;
- In a quiescent atmosphere;
- Under uniform ambient wind speeds;
- Summary and future work.

Introduction

- Picture showing dimensions and geometry of AMSA in the numerical model;
- Polluted air flows in through the inlet at the top;
- Clean air is delivered through the outlet at the base;
- To calculate the PM_{2.5} concentration profiles around AMSA;
 - Under different idealized ambient conditions.
 - ✓ Using numerical method.
- Objective: Conduct numerical simulations to determine the PM_{2.5} concentration profiles around AMSA.

Model Description

- Reynolds number larger than 10⁶, indicating a turbulent flow field.
- 3D incompressible Reynolds-Averaged Navier Stokes (RANS) equations.
- k-ε 2-equation turbulent model for Reynold stress closure.
- Assuming mixture of polluted ambient air and clean air from AMSA.
- Ambient PM_{2.5} concentration 100 μg/m³; clean air 0 μg/m³.
- Physical air properties are set under -1.5 °C (29.3 °F).
- Species transport equation is solved for polluted ambient air.
- In a quiescent atmosphere.
 - ✓ Transient model
- Or under different uniform ambient velocities.
 - √ Steady-state model

Numerical Results for AMSA under Quiescent Atmosphere

PM_{2.5} Concentration Contours in Quiescent Atmosphere

Below are the contours of PM_{2.5} concentration in a vertical plane at different flow rates.

Above are the horizontal contours at 1.5-m plane above the ground.

University of Minnesota

PM_{2.5} Concentration Profiles in Quiescent Atmosphere

- Figure showing the PM_{2.5}
 concentration vs. distance for 4 different system flowrates.
- Simulation time long enough so that the concentration profiles reach steady state inside the radius of 500 m.
- ✓ Lower flowrate achieves lower PM_{2.5} concentration.
- If we can create more circulation within the first 150 m, concentration can be further reduced.

An Explanation of the Conclusion

Clean air concentration defined as

$$C_{clean\;air} = rac{Volume\;of\;clean\;air\;delivered\;by\;SALSCS}{Volume\;of\;atmospheric\;air\;covered\;by\;SALSCS\;clean\;air}$$

- If we increase the flowrate, both the numbers in numerator and denominator will be increased.
- Volume of clean air is related to flow rate and time.
- Volume of the denominator depends the penetration velocity of clean air in the atmosphere.
- Detailed explanation can be referred to

Q. Cao, L. Shen, S.-C. Chen, D.Y.H. Pui. CFD Analysis on PM2.5 Concentration Profiles Around A SALSCS/AMSA under Idealized Ambient Conditions. (2018). (In Preparation).

Numerical Results for AMSA under Uniform Ambient Velocity

AMSA under Uniform Ambient Wind Speeds

Streamlines colored by velocity at system flowrate of 2000 m³/s.

- Downstream vortex are generated.
- It expands as wind speed decreases.

PM_{2.5} Concentration Contours under Ambient Wind Speed of 4 km/h

- Contours of PM_{2.5}
 concentration at
 ambient wind speed
 of 2.48 mph (4km/h).
- Clean air bubble appears at upstream of AMSA.
- A higher flowrate gives a larger cleaning area.
- But local PM_{2.5} concentration may not be lower.

Center for F

Effect of System Flowrate on PM_{2.5} Concentration with Wind Speed of 2 km/h

 Figure showing the effect of flowrate on PM_{2.5} concentration at a uniform wind speed of 2 km/h.

- Upwind: sharper concentration gradient between 75 - 200 m indicating the edge of clean air bubble.
- Downwind: smoother concentration gradient.
- As flowrate decreases, PM_{2.5} concentration becomes lower close to AMSA, and higher at the locations far away.

Effect of Ambient Wind Speeds on PM_{2.5} Concentration Profiles

- Figure showing the effect of ambient velocity on PM_{2.5} concentration at two flowrates.
- As ambient velocity increases, the upwind clean air bubble has a smaller volume, but the PM_{2.5} concentration is lower close to AMSA.
- At downwind location, a higher ambient velocity also decreases the PM_{2.5} concentration close to AMSA, but far away from AMSA, the concentration becomes higher.
- ✓ In general, the upwind location is cleaner than the downwind, because of the accumulation of clean air inside the upwind bubble.

Summary

- Numerical simulations have been conducted to study the PM_{2.5} concentration profiles of AMSA under different ambient conditions.
- A higher system flowrate benefits a larger area but doesn't decrease the local PM_{2.5} concentration significantly.
- Under a quiescent atmosphere, a lower system flowrate gives lower PM_{2.5} concentration.
- With uniform ambient wind speeds, a clean air bubble is generated at the upwind location, contributing to a lower PM_{2.5} concentration than the downwind.
- At a constant system flowrate, a lower clean air flow velocity helps to achieve a lower local PM_{2.5} concentration.
- Under real urban conditions, the PM_{2.5} concentration profile results may be different.

Future Work

To study PM_{2.5} concentration profiles under real urban conditions.

AMSA Green Community

- There are 20 apartment buildings, each has 25 stories (75 m tall) and 4 units on a floor.
- Each undenasr225 marea in chudiogrpublic utilities.

AMSA inside a Green Community

Two circles of buildings are installed around AMSA.

- Three community configurations are tested.
 - ✓ Config #1: 20 inner-circle buildings;
 - ✓ Config #2: 10 inner-circle buildings;
 - ✓ Config #3: zero inner-circle buildings;

Contours of PM_{2.5} Concentration: A Comparison

Geometry and Dimensions

A cluster of AMSA green community

Computational domain

- The AMSA has a tower of 25 m in height. The tower has a dimension of 10 m.
- The base of the system has a horizontal dimension of 25×25 m² with a height of 4 m.
- The office and apartment buildings are 20 m and 75 m tall, respectively.
- There are 20 apartment buildings for each community. The number of office buildings will be 20, 10 or 0 in our simulation.
- By employing periodic boundary conditions at the horizontal boundaries of the computational domain, we can simulate the flow pattern for the green community which is among a cluster of many communities.

PM_{2.5} Concentration Profile around A SALSCS/AMSA: A Numerical Study under Different Ambient Conditions

Thank You

Qingfeng Cao, Lian Shen, Sheng-Chieh (Shawn) Chen, David Y.H. Pui
October 6th, 2017

