机器学习概论实验报告

PB20111699 吴骏东

2022.10.30

在本次的实验中,我们需要自己实现支持向量机这一机器学习基本任务模型。本文将从算法原理、 代码实现、性能分析等方面展开。如果对于其中部分内容有疑问或者有其他改进意见,欢迎提出 issue 或直接联系作者。

原理分析

支持向量机

支持向量机(support vector machines, SVM)所解决的是二分类目标中确定最大间隔超平面的问题。

如上图所示,对于二分类样本集合 $D\in(R^n\times\{-1,1\})^m$,假设超平面能够将所有训练样本正确分类,即对于 $\forall(x_i,\,y_i)\in D$,有 $y_i(w^Tx_i+b)>0$ 。我们定义超平面关于样本点 $(x_i,\,y_i)$ 的几何间隔为

$$\gamma_i = y_i d_i = y_i \left(rac{w^T \cdot x_i + b}{||w||}
ight)$$

我们希望寻找一个最优的超平面,使得所有样本点到该超平面距离"最大"。则支持向量机的优化问题可以表示为

$$egin{aligned} \max_{w,b} \gamma \ ext{s.t. } \gamma_i \geq \gamma, i = 1, 2, \cdots, m \end{aligned}$$

不失一般性,令 $w=\frac{w}{||w||\gamma},\;b=\frac{b}{||w||\gamma},\;$ 则上面的问题等价于

$$\max_{w,b} \gamma \ ext{s.t.} \ y_i(wx_i+b) \geq 1, \ i=1,2,\cdots,m$$

由于 $\max \gamma \Leftrightarrow \max \frac{1}{||w||} \Leftrightarrow \min \frac{1}{2} ||w||^2$,所以最终我们可以将 SVM 的最大分割超平面问题转化为如下问题

$$\min_{w,b}rac{1}{2}||w||^2$$
 s.t. $y_i(wx_i+b)\geq 1,\ i=1,2,\cdots,m$

软间隔 SVM

支持向量机在线性可分数据集中表现优秀,算法效率高且准确度好。但实际生活中的数据集往往是线性不可分的,并伴随有一定的噪声与空缺。 SVM 对于这部分异常数据是异常敏感的:如果支持向量的选择偏离了数据集的原始特征,则 SVM 的分类结果会出现极大的误差。

因此,对于这部分问题,如果强制要求所有的样本点都满足硬间隔,可能会导致出现过拟合的问题,甚至会使决策边界发生变化。为了解决支持向量机的这一局限性,我们引入了软间隔支持向量机。

软间隔支持向量机是为了解决线性不可分问题而设计的,它允许支持向量机在一些样本上不满足约束条件(被错误分类)。为此,我们引入如下的优化目标:

$$\min_{w,b} rac{1}{2} ||w||^2 + \gamma \sum_{i=1}^m \ell_{0/1} (y_i(w^T x_i + b) - 1)$$

其中 γ 为正则化参数, $\ell_{0/1}$ 是 0/1 损失函数

$$l_{0/1}(z) \left\{ egin{array}{ll} 1, & if \ z < 0; \ 0, & otherwise. \end{array}
ight.$$

这个想法是自然的:在最小化超平面间隔的同时,我们尽可能让样本被错误分类的情况少发生。但由于 $\ell_{0/1}$ 非凸、不连续,本实验中我们采用 Hinge 损失函数进行替代

$$\ell_{Hinge}(z) = max(0, 1-z)$$

干是得到了最终的优化目标

$$\min_{w,b} rac{1}{2} {||w||}^2 + \gamma \sum_{i=1}^m \ell_{Hinge} (y_i(w^T x_i + b) - 1)$$

在本实验中,我们将采用软间隔支持向量机的两种不同求解方式,分别进行对应的实现。读者可以 在后文中发现两种实现的异同之处。

代码实现

基于梯度下降的软间隔 SVM 求解

理论推导

假设数据集 X 大小满足 $X \in \mathbb{R}^{m \times n}$, 我们引入

$$\hat{w} = egin{pmatrix} w \ b \end{pmatrix} \in \mathbb{R}^{(n+1) imes 1}, \; \hat{X} = (X \mid 1) \in \mathbb{R}^{m imes (n+1)}$$
,则

 $\sum_{i=1}^m y_i(w^Tx_i+b)=\sum_{i=1}^m y_i(\hat{w}^T\hat{x_i})=y\cdot(\hat{X}\hat{w})$ 。接下来,我们引入 $\xi_i=\max(0,1-y_i\hat{w}^T\hat{x}_i)$,并记

$$\hat{y}=(\hat{y_i}), \ where \ \hat{y_i}=\left\{egin{aligned} 0, \ ext{if} \ \xi_i=0 \ y_i, \ ext{if} \ \xi_i
eq 0 \end{aligned}
ight.$$

于是目标问题可以化为

$$egin{aligned} L &= rac{1}{2} \hat{w}^T \hat{w} + \gamma \sum_{i=1}^m \xi_i \ &\Rightarrow
abla L &= \hat{w} - \gamma \hat{X}^T \hat{y} \ w_{new} &= w_{old} - lr imes
abla L \end{aligned}$$

上面的矩阵梯度可能有一些复杂,读者在证明时应格外注意。

代码说明

核心部分的训练代码如下,基本上是对照上面的公式进行转述。

```
m, n = X.shape
self.w = np.zeros((n + 1, 1))
temp_1 = np.ones((m, 1))
X_hat:np.ndarray = np.c_[X, temp_1]
temp_0 = np.zeros((m, 1))
loss_list = []
y_diag = np.diag(y.reshape(-1))
for times in range(max_times):
    xi = array_max(temp_0, 1 - (y_diag @ X_hat @ self.w))
    loss = 0.5 * (self.w.T @ self.w)[0][0] + gamma * (xi.sum())
   y_bar = array_find0(xi , y)
    delta_1 = self.w - gamma * (X_hat.T @ y_bar)
    if times >= 2 and abs(loss_list[-1] - loss) < tol:</pre>
        loss_list.append(loss)
        break
    self.w = self.w - lr * delta_1
    loss_list.append(loss)
```

其中, array_find0 函数为向量函数, 采用如下的实现

```
def find_zero(a, b):
    return 0 if a == 0 else b

def array_find0(a:np.ndarray, b:np.ndarray) -> np.ndarray:
    func_ = np.frompyfunc(find_zero, 2, 1)
    return(func_(a, b))
```

该函数可以对两个输入向量的每一维进行操作,并得到一个新的向量。

基于 SMO 的软间隔 SVM 对偶问题求解

训练一个支持向量机需要解决一个非常大的二次规划优化(QP)问题。SMO 算法将这个大的 QP 问题分解为一系列可能的最小的 QP 问题,并进行求解。算法的基本思想是:如果所有变量的解都满足最优化问题的 KKT 条件,则已经得到该最优化问题的解。否则,我们可以选择两个变量,同时固定其他变量,仅针对这两个变量构建一个 QP 问题。这样,我们通过求解两个变量的 QP 问题,能让结果不断靠近原有 QP 问题的解,并且双变量 QP 问题有着对应的解析方法。

那么应当如何选择两个变量、进行现有参数的更新呢?

SVM 对偶问题

回到我们的原始问题上:

$$\min_{w,b} rac{1}{2} ||w||^2$$
 s.t. $y_i(wx_i+b) \geq 1, \ i=1,2,\cdots,m$

采用拉格朗日乘子法,构造拉格朗日函数如下

$$L(w,b,lpha)=rac{1}{2}||w||^2-\sum_{i=1}^mlpha_i(y_i(wx_i+b)-1)$$

其中 $\alpha_i \geq 0$ 为拉格朗日乘子。令 $\frac{\partial L}{\partial w} = 0, \; \frac{\partial L}{\partial b} = 0, \;$ 我们可以得到

$$w = \sum_{i=1}^m lpha_i y_i x_i \ \sum_{i=1}^m lpha_i y_i = 0$$

代回拉格朗日函数,消去 w 和 b, 我们得到

$$L(w,b,lpha) = -rac{1}{2}\sum_{i=1}^m\sum_{j=1}^mlpha_ilpha_jy_iy_j(x_i^Tx_j) + \sum_{i=1}^mlpha_i$$

由此可知, SVM 问题的对偶问题为

$$egin{aligned} \max & -rac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m}lpha_{i}lpha_{j}y_{i}y_{j}(x_{i}^{T}x_{j}) + \sum_{i=1}^{m}lpha_{i} \ & ext{s.t.} \ \sum_{i=1}^{m}lpha_{i}y_{i} = 0 \ &lpha_{i} \geq 0, i = 1, 2, \cdots, m \end{aligned}$$

启发式变量选择法

SMO 算法在每个子问题中需要选择两个变量进行优化,并且其中至少一个变量是违反 KKT 条件的。本实验中, KKT 条件为

$$\left\{egin{aligned} lpha_i &\geq 0 \ y_i(w^Tx_i+b)-1 &\geq 0 \ lpha_i(y_i(w^Tx_i+b)-1) &\geq 0 \end{aligned}
ight.$$

我们可以先找出违反 KKT 条件最为 "严重" 的一系列变量,按照一定顺序存入 [index_1_list]。随后,对于 [index_1_list] 中的每个变量 α_i ,遍历所有 α_j , $j \neq i$ 使得 $|E_1 - E_2|$ 达到最大。如果不存在这样的 α_j ,则顺延至下一个 α_i 。直到 $\Delta \ell < tol$ 或所有 α_i 均满足 KKT 条件为止。

以下是寻找第一个变量的代码实现。我们优先寻找满足 $0<\alpha_i<\gamma$ 的违反 KKT 变量,为此将其违反程度 x10 之后存入暂存列表。这样一轮遍历之后,我们即可得到一个有序列表,对应着违反程度最为严重的一系列变量。

```
for i in range(m):
    alpha_i = self.alpha[i, :][0]
    err_i = self.err[i, :][0]
    if (0 < alpha_i < gamma and abs(err_i - 1) > epslion):
        val = (abs(err_i) - epslion) * 10
        # 注意这里,我们优先考虑这种情况,因此乘上了一个权重系数
        i_list.append((val, i))
    elif alpha_i == 0 and err_i < 1 - epslion:
        val = - err_i + 1 - epslion
        i_list.append((val, i))
    elif alpha_i >= gamma and err_i > 1 + epslion:
        val = err_i - 1 - epslion
        i_list.append((val, i))
```

对于第二个变量 α_j ,我们只需要根据 E_i 的正负进行判断。若 $E_i < 0$,则选择最大的 E_j ,否则选择最小的 E_j 即可。

```
err_dict = []
 err_list = []
for i in self.err.tolist():
    err_list.append(i[0])
    for index, value in enumerate(err_list):
        err_dict.append((value, index))
        err_dict.sort(key=takefirst)
        k = 0
        if e1 > 0:
            while k < m:
                a2 = err_dict[k][1]
                if a1 != a2 and self._update_alpha(a1, a2, gamma, min_delta):
                 k += 1
        else:
            while k < m:
                a2 = err\_dict[-1 - k][1]
                if a1 != a2 and self._update_alpha(a1, a2, gamma, min_delta):
                    break
                k += 1
```

双变量二次规划问题求解

该部分内容参考了 这篇 文章。

不妨假定我们已经选定 $\alpha_1,\ \alpha_2$ 为目标变量,其余变量保持固定。并设问题的原始可行解为 $\alpha_1^{old},\ \alpha_2^{old},\ \Omega_2^{old}$, 双变量二次规划问题的最优解为 $\alpha_1^{new},\ \alpha_2^{new}$,且沿着约束方向未裁剪的 α_2 最优解为 $\alpha_2^{uncut-new}$ 。由于约束条件 $\sum_{i=1}^m \alpha_i y_i = 0$ 以及 $0 \le \alpha_i \le \gamma$ 的存在,我们应有 $low \le \alpha_2^{uncut-new} \le high$ 。其中

$$low = egin{cases} \max(0, \ lpha_2^{old} - lpha_1^{old}), & y_1 = y_2 \ \max(0, \ lpha_1^{old} + lpha_2^{old} - \gamma), & y_1
eq y_2 \end{cases} \ high = egin{cases} \min(\gamma, \ \gamma + lpha_2^{old} - lpha_1^{old}), & y_1 = y_2 \ \min(\gamma, \ lpha_1^{old} + lpha_2^{old}), & y_1
eq y_2 \end{cases}$$

可以证明, 双变量二次规划问题沿着约束方向未经剪辑的解为

$$lpha_2^{uncut-new} = lpha_2^{old} + rac{y_2(E_1-E_2)}{\eta}$$

其中

$$E_i = \sum_{i=1}^m lpha_i y_i x_i x^T + b - y_i$$

代表第 i 个样本的预测误差; 而

$$\eta = x_1 x_1^T + x_2 x_2^T - 2 x_1 x_2^T = \left| \left| x_1 - x_2 \right| \right|^2$$

为常数。

经过剪辑后的解为

$$lpha_{2}^{new} = \left\{ egin{align*} H, & lpha_{2}^{uncut-new} > H \ lpha_{2}^{uncut-new}, & L \leq lpha_{2}^{uncut-new} \leq H \ L, & lpha_{2}^{uncut-new} < L \end{array}
ight.$$

再代回约束式可得

$$lpha_1^{new} = lpha_1^{old} + y_1 y_2 (lpha_2^{old} - lpha_2^{new})$$

为了提升效率所做的优化

由于 SMO 算法需要对 α 进行大量的遍历与比较,难以进行矩阵化表述,所以针对代码的效率优化是很必要的。为了减少参数计算与传递,SVM2 类中引入了如下内容作为类的成员

```
def __init__(self, X:np.ndarray, y:np.ndarray):
    m, _ = X.shape
    self.X = X
    self.y = y
    self.K = self.X @ self.X.T # 细节: 提前计算了所有的 x_i^T*x_j

self.alpha = np.zeros((m, 1))
    self.b = np.random.uniform(low=0.0, high=1.0, size=1)
    self.err = np.zeros((m, 1))
    self._update_e()
```

为了便于计算,我们引入了如下的私有方法

```
def _cut(self, low, high, a2_uncut)
# 将得到的 alpha2_new 进行裁剪

def _update_alpha(self, a1_index, a2_index, gamma, min_delta)
# 更新 alpha 的值, 若成功更新则返回 True; 如果不满足设定的条件则不会更新, 并返回 False

def _update_b(self, a1_index, a2_index, a1_new, a2_new, gamma)
# 根据 alpha_new, alpha_old 更新 b 的值

def _update_e(self):
# 更新误差 E 的值
   alpha_y = self.alpha * self.y
   self.err = self.K @ alpha_y + self.b - self.y
```

得益于提前将数据存储为类的成员,所有的函数传参时仅需要传入变量的 index,最小化函数的空间占用与耗时。

除此以外,在更新 α 时,若 $|\alpha_{old}-\alpha_{new}|<\min_{delta}$ 则不进行更新;在裁剪过程中,若 L > H 则不进行更新。这样可以保证迭代的速度不至于过慢。

模型评价

模型 1: 基于梯度下降的软间隔 SVM 求解

由于该模型大部分的计算过程均为矩阵运算,所以计算效率会很高。我们采用大样本数据集进行验证。

极端大样本单次验证

数据大小: 20000 × 50, 错标率 0.06。训练时间: 2min35s; 模型准确率: 90.7%

注意到损失函数曲线先是迅速下降,随后迅速上升,并逐渐在一个范围内波动。这是由于样本之中的部分误差数据引起的。为了保证训练效果,我们可以人为设置迭代次数的上界,让训练在反常上升之前即结束。

大样本单次验证

数据大小: 10000 × 20, 错标率 0.036。训练时间: 2.1s; 模型准确率: 95.1%。

参数: gamma = 0.005, lr = 0.002, tol=1e-4, max_times=100

此时的损失曲线十分正常, 训练也很快就收敛了。

大样本平均验证

数据大小: 10000×20 , 重复次数: 100次。样本平均错标率为 0.036634,模型平均准确率为 0.9553700000000002,用时 45.7s。

模型 2: 基于 SMO 的软间隔 SVM 对偶问题求解

由于该模型的计算大部分为循环实现,且涉及启发式搜索部分,所以运算速度相对较低。我们采用小样本数据集进行验证。此外, SMO 对参数敏感,**针对不同大小的数据需要更改相应的参数,否则准确率与耗时水平都会下降**。

小样本单次验证

数据大小: 200 × 10, 错标率 0.02。训练时间: 0.5s; 模型准确率: 95%。

参数: gamma = 0.1, tol = 1e-3, max_times=800, epslion=0.2

损失函数值随迭代次数增加逐渐上升,符合我们的预期。然而 SMO 算法的迭代次数与训练时间都远远大于梯度下降算法。

小样本平均验证

数据大小: 200×10 ,重复次数: 50次。样本平均错标率为 0.0364,模型平均准确率为 0.91333,总用时 1min13s。

模型比较

每次随机生成 50 组小样本,分别对梯度下降、SMO、sklearn.svm 三个模型进行准确率、计算时间(仅考虑模型训练与预测时间)的综合比较,结果如下

样本大小	错标率	梯度下降 准确率	梯度下降 用时	SMO 准 确率	SMO 用 时	sklearn 准确率	sklearn 用时
50 imes 5	0.05560	0.91066	0.00146	0.90666	0.01875	0.90266	0.00062
100 imes 10	0.04140	0.89199	0.00187	0.89199	0.04968	0.89399	0.00062
200 imes 10	0.03930	0.91866	0.00343	0.91066	0.23750	0.91766	0.00156
500 imes 10	0.02062	0.92720	0.02593	0.93600	6.37437	0.94013	0.02062
1000 imes 10	0.03630	0.92919	0.06968	0.94120	49.47437	0.94660	0.05406

可以发现,梯度下降的速度与 sklearn 基本差不多,而 SMO 算法在数据规模增大的时候会急速变慢,这是大量循环与判断导致的。在准确率方面,梯度下降的准确率相对弱于 SMO 和 sklearn,且随着样本规模增大,三者准确率都有所上升。

SMO 算法的效率不尽人意。或许我们可以优化一下变量选择的策略,例如对 α_j 采用随机选择,或者限定 α_j 的选择次数等。本实验中不再进行调整。

附录

SMO 算法的一些参考参数

数据大小	γ	tol	max_times	ϵ
50 imes 5	0.04	1e-4	500	0.45
100 imes 10	0.04	1e-4	500	0.45
200 imes 10	0.05	1e-4	2000	0.45
500 imes 10	0.05	1e-4	5000	0.25
1000 imes 10	0.05	1e-4	5000	0.25

一些辅助功能函数

```
def random_Split_data(X: np.ndarray, y:np.ndarray, rate = 0.7, random_seed: int = -1)
# 根据设定的比例进行数据集随机划分

def show(times, loss, color = '#4169E1', start=0, end=2000)
# 画图函数, 范围[start, end]
# 需要 import matplotlib.pyplot as plt

def model_cmp(y_pre:np.ndarray, y_test:np.ndarray)
# 准确率比较函数

def model_accuracy_ave(model:str = '1', dim = 20, num = 10000, devide_rate = 0.7, total_time = 50, ifsilent = True)
# 单模型多次训练平均效果评价函数

def model_accuracy_cmp(dim = 20, num = 10000, devide_rate = 0.7,
```

total_time = 50, ifsilent = True)

多模型多次训练效果横向评价函数