Lesson 4. Solving Optimization Models with a Computer

1 What are GMPL, GLPK, and GUSEK?

- GMPL is a programming language for optimization models
 - GMPL is also called **MathProg**
 - o GMPL is very similar to AMPL, a popular commercial optimization modeling language
- GLPK is a software package that solves various types of optimization models, including linear programs
- GUSEK is an application that lets easily you write models in GMPL and solve them with GLPK

2 Some useful pointers

- On the course website:
 - A link to the GLPK Wikibook
 - The official GMPL language reference manual
 - GMPL exercise submission form
- Google can be your friend
 - o Searching for "AMPL" can be useful as well

3 Installing GUSEK

• Download zip file from here:

http://sourceforge.net/projects/gusek/files/latest/download

- Unzip the file to any folder: Right-click the file, then select Extract All...
- To run GUSEK, open the folder, double-click on gusek.exe

4 Modeling and solving Farmer Jones's problem with GMPL

• Recall the linear program for Farmer Jones's problem:

C = number of chocolate cakes to bake

V = number of vanilla cakes to bake

maximize
$$3C + 4V$$

subject to $4C + 2V \le 32$
 $4C + 6V \le 48$
 $C \ge 0$
 $V \ge 0$

- Let's write GMPL code for this linear program
 - o Start a new file (if one isn't open already)
 - Type in the following GMPL code

```
# Define decision variables and variable bounds
var C >= 0;
var V >= 0;

# Objective function
maximize total_profit: 3*C + 4*V;

# General constraints
subject to eggs: 4*C + 2*V <= 32;
subject to flour: 4*C + 6*V <= 48;
end;</pre>
```

- Save as farmer jones.mod
 - ⋄ .mod is the usual extension for GMPL code
- Next, let's solve the linear program
 - o Make sure Tools Generate Output File on Go is checked
 - o Select Tools Go
 - If all is well, a window with the output file (farmerjones.out) will appear on the left, and a log will appear on the right
 - If not, a log will appear on the right with error messages in purple Click on the error messages to see the relevant part of your code
- In the output file:
 - o Status tells you if the model has an optimal solution, is unbounded, or is infeasible
 - o Objective tells you the optimal value, if it exists
 - o The table with Column name and Activity tells you the optimal solution
- Some GMPL tips:
 - You can write comments (code that will be ignored when run) like this:

```
# This is a comment.
/* This is also a comment. */
```

- o Objective functions and constraints require unique names
 - ♦ Use something short and descriptive; no spaces allowed
- End every statement with a semi-colon!
- In Lesson 3, we showed that if the profit margin for vanilla cakes a satisfies $-2 \le -\frac{3}{a} \le -\frac{2}{3}$, then the current optimal solution remains optimal
- Try solving the model for Farmer Jones's problem with different profit margins for vanilla cakes
- Does our sensitivity analysis from Lesson 3 match up with what you see?