Lecture 19: PCAR PCA regression, instead of regressing anto XNXP we can regress Y onto Znxq (if get P, this is basically some "smort")
variable selection Steps for PCAR cols of X  $(0) \text{ mean center} \times$   $\chi_{c} = \left[ \chi_{1} - \text{mean}(\chi_{1}) \times_{2} - \text{mean}(\chi_{2}) - - - \right]$ Do PCA:  $X_c = UDV^T$   $Z = X_c V_g$ Ant g cols 2) regress Y onto Z typically want to include intercept,  $D = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ 

res. coef: B=(DTD)DTY. ER

What about prediction on new data? X test & RMXP For train,  $\hat{Y} = D\hat{\beta}^{P(R)}$ ad do the some processing steps to X test 0) Center test dater  $X = \left[ \begin{array}{c} X_1 - \text{mean}(X_1) & X_2 - \text{mean}(X_2) & \cdots \end{array} \right]$ (1) apply PCA Z test = X test V2 2) Yest = Ztest a pcR

Comparison 
$$W/Ridge$$

$$\begin{array}{ll}
\text{Cridge} \\
\text{Sirgylar} \\
\text{Cridge}
\end{array} = (X^TX + \lambda I)X^TY$$

$$\begin{array}{ll}
\text{Vide} \\
\text{Sirgylar}
\end{array}$$

$$\begin{array}{ll}
\text{Vecs. of} \\
\text{Van}
\end{array}$$

$$\begin{array}{ll}
\text{Vecs. of} \\
\text{Van}
\end{array}$$

$$\begin{array}{ll}
\text{Cridge} \\
\text{Sirgylar}
\end{array}$$

$$\begin{array}{ll}
\text{Vecs. of} \\
\text{Sirgylar}
\end{array}$$

 $= \sum_{j=1}^{10} \Delta_j U_j U_j^T Y \quad \text{who } \Delta_j = \frac{G_j}{G_j^2}$ projtake weighted avg. w/ weights 1 rain = ZB 2(272)-ZTY = Up Dg (Dg Ug Ug Dg) Dg Ug Y = Poce Lility



| Back to insupervised learning                                            |
|--------------------------------------------------------------------------|
| Back to insupervised learning  Supervised problems: interested in p(x,y) |
| unsupervised problems: interested in p(x)                                |
| PCA: find a subspace where p(x) is concentrated                          |
| Clustering! wont to find high<br>density regions of p(x)                 |
| cluster (.l. find "dusters")  in av data                                 |
| (x, x) cluster 2                                                         |
| Goal: automatically find cluster                                         |
| lo do dustering we need some measure of                                  |
| either similarity or dissimilarity                                       |
| among observations                                                       |
| O .                                                                      |
| f I have Nobservations I need a matrix D (NXN)                           |

Called the dissim. mtx where Dii = dissim. botun obs. i and i'. Can create dissim w/ dec. trans. of
a sim. metric Most/all clustering algos only need D, not a data mtx X Properties of D (dias elements are) (1) Pii = 0(2) Dii/= (non-neg) (3) D = DT (symmetric) EX. If I have a data mtx X NXP I can calc. "attribute -bused" dissims  $D_{ii'} = d(\chi_i, \chi_{i'}) = \sum_{j=1}^{i} d_j(\chi_i, \chi_{i'})$ 1 L meas. fer var J

'careful u/ Scale Numeric  $\leq \chi$ ,  $d_j(\chi_{i'},\chi_{i'}) = (\chi_{ij} - \chi_{i',j})^2$ L'euclidean Ex. Categorical  $d_i(x_i, x_{i'}) = 1(x_i = x_{i'j})$