

Project: MSS54 Module:

Page 1 of 4

MSS54

after-spray

12:43 12:43	Department	Date	name	Filename
editor	EE-32	April 1, 2013	E. Steger	4.05

Project: MSS54 Module:

Page 2 of 4

1. TRIGGERING CONDITIONS FOR THE RE-SPRAYER	3
2. RE-INJECTION CALCULATION	3
2.1. After-injection calculation with B_DYN_SOFT	3
2.2. Post-injection calculation for B_DYN_HARD	4
3. VARIABLES AND CONSTANTS	4

12:43 12:43	Department	Date	name	Filename
editor	EE-32	April 1, 2013	E. Steger	4.05

Project: MSS54 Module:

Page 3 of 4

1. TRIGGERING CONDITIONS FOR THE RE-SPRAYER

The determination of a post-injection occurs segment-synchronously.

The following conditions must be met in order for a follow-up injection to be triggered:

Full load or partial load •

max. speed threshold must not be exceeded

 $(n40 < K_DKBA_NMAX)$

- min. change in the relative opening cross-section must be given (aq_rel_delta > KL_DKBA_AQ_REL)
- no partially fired operation (IB_SKS_TIEINGRIFF)

A relative filling change over a segment is calculated from the equivalent characteristic map **KF_RF_N_AQ_REL** over speed and relative opening cross section:

This relative filling change is another threshold that must be exceeded in order for a follow-up injection to be triggered

=> rf_delta > KL_DKBA_TRIGGER(n)

2nd RE-INJECTION CALCULATION

If all trigger conditions are met, rf_delta is converted into a dkba_ti_roh:

rf_ti_const = K_RF_HUBVOLUMEN * K_RF_LUFTDICHTE * K_HFM_TI_RATE 60

2.1. POST-INJECTION CALCULATION WITH B_DYN_SOFT

Now a distinction is made as to whether the current state is a soft reinsertion.

The post-spray offset to be output is then calculated as follows:

dkba_tmot is calculated from $\ensuremath{\text{KL_DKBA_TMOT(tmot)}}$.

12:43 12:43	Department	Date	name	Filename
editor	EE-32	April 1, 2013	E. Steger	4.05

Page 4 of 4

Project: MSS54 Module:

2.2. POST-INJECTION CALCULATION FOR B_DYN_HARD

The post-spray offset to be output is bre a hard re-insertion like calculated as follows:

 $dkba_ti = dkba_ti_roh \qquad \qquad dkba_tmot \qquad * KF_DKBA_HARD_RF_N(rf_roh,n)$

 $dkba_tmot \ is \ calculated \ from \ \textbf{KL_DKBA_TMOT(tmot)} \ .$

An old value is only overwritten if the new post-injection value is greater. dkba_ti is deleted after the post-injection has been triggered in the output function.

3. VARIABLES AND CONSTANTS

rf dolto	-	relative filling change
dkba_tmot	-	TMOT factor
	-	AQ REL threshold
aq_rel_delta	ms	_
ti_dkba1	/	Intermediate sprayer - MCS representation
dkba_ti	ms/segment	intermediate spray to be dispensed
dkba_ti_roh	ms/segment	raw value of the intermediate sprayer
K_DKBA_NMAX	10 (/)	speed threshold for after-injection
KL_DKBA_TRIGGER	KL=f(n)	load threshold for triggering
KL_DKBA_TMOT	KL=f(tmot)	factor as f(engine temperature)
KL_DKBA_AQ_REL	KL=f(aq_rel)	change in the relative opening cross-section
KF_RF_N_AQ_REL	KF=f(n,aq_rel) relat	
KF_DKBA_SOFT_RF_N	KF=f(rf,n)	map for soft intermediate injection
LKF_DKBA_HARD_RF_N	KF_f(rf,n)	map for hard intermediate injections

12:43 12:43	Department	Date	name	Filename
editor	EE-32	April 1, 2013	E. Steger	4.05