Inference and overdispersion

Data

A concerned parent asks us to investigate crime rates on college campuses. We have access to data on 81 different colleges and universities in the US, including the following variables:

- type: college (C) or university (U)
- nv: the number of violent crimes for that institution in the given year
- enroll1000: the number of enrolled students, in thousands
- region: region of the US C = Central, MW = Midwest, NE = Northeast, SE = Southeast, SW = Southwest, and W = West)

Model

$$Crimes_i \sim Poisson(\lambda_i)$$

$$egin{aligned} \log(\lambda_i) &= eta_0 + eta_1 M W_i + eta_2 N E_i + eta_3 S E_i + eta_4 S W_i + eta_5 W_i \ &+ \log(Enrollment_i) \end{aligned}$$

Inference

$$egin{aligned} \log(\lambda_i) &= eta_0 + eta_1 M W_i + eta_2 N E_i + eta_3 S E_i + eta_4 S W_i + eta_5 W_i \ &+ \log(Enrollment_i) \end{aligned}$$

Our concerned parent wants to know whether the crime rate on campuses is different in different regions.

What hypotheses would we test to answer this question?

Likelihood ratio test

Full model:

$$egin{aligned} \log(\lambda_i) &= eta_0 + eta_1 M W_i + eta_2 N E_i + eta_3 S E_i + eta_4 S W_i + eta_5 W_i \ &+ \log(Enrollment_i) \end{aligned}$$

Reduced model:

$$\log(\lambda_i) = \beta_0 + \log(Enrollment_i)$$

Likelihood ratio test

What is my test statistic?

Likelihood ratio test

```
m2 <- glm(nv ~ region, offset = log(enroll1000),</pre>
           data = crimes, family = poisson)
summary(m2)
## Null deviance: 491.00 on 80 degrees of freedom
## Residual deviance: 433.14 on 75 degrees of freedom
G = 491 - 433.14 = 57.86
pchisq(57.86, df=5, lower.tail=F)
## [1] 3.361742e-11
```

Inference

$$egin{aligned} \log(\lambda_i) &= eta_0 + eta_1 M W_i + eta_2 N E_i + eta_3 S E_i + eta_4 S W_i + eta_5 W_i \ &+ \log(Enrollment_i) \end{aligned}$$

Now our concerned parent wants to know about the difference between Western and Central schools. They would like a "reasonable range" of values for the difference between the regions.

How would we construct a "reasonable range" of values for this difference?

Confidence intervals

$$egin{aligned} \log(\lambda_i) &= eta_0 + eta_1 M W_i + eta_2 N E_i + eta_3 S E_i + eta_4 S W_i + eta_5 W_i \ &+ \log(Enrollment_i) \end{aligned}$$

Confidence interval for β_5 :

Computing z^*

Example: for a 95% confidence interval, $z^{st}=1.96$

```
qnorm(0.025, lower.tail=F)
```

```
## [1] 1.959964
```

Example: for a 99% confidence interval, $z^* = 2.58$:

```
qnorm(0.005, lower.tail=F)
```

```
## [1] 2.575829
```

Confidence intervals

```
##
             Estimate Std. Error z value Pr(>|z|)
                        0.12403 - 10.517
  (Intercept)
             -1.30445
                                       < 2e-16 ***
  regionMW
          0.09754
                        0.17752 0.549 0.58270
  regionNE 0.76268
                        0.15292 4.987 6.12e-07 ***
  regionSE 0.87237
                        0.15313 5.697 1.22e-08 ***
## regionSW 0.50708
                        0.18507 2.740 0.00615 **
## regionW
            0.20934
                        0.18605 1.125 0.26053
. . .
```

95% confidence interval for β_5 :

https://sta214-f22.github.io/class_activities/ca_lecture_19.html

$$Articles_i \sim Poisson(\lambda_i) \ \log(\lambda_i) = eta_0 + eta_1 Female_i + eta_2 Married_i + eta_3 Kids_i + \ eta_4 Prestige_i + eta_5 Mentor_i \$$

Do I need an offset for this model?

$$Articles_i \sim Poisson(\lambda_i) \ \log(\lambda_i) = eta_0 + eta_1 Female_i + eta_2 Married_i + eta_3 Kids_i + \ eta_4 Prestige_i + eta_5 Mentor_i \$$

We are interested in the relationship between prestige and the number of articles published, after accounting for other factors. What confidence interval should we make?

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.304617 0.102981 2.958 0.0031 **
## femWomen -0.224594 0.054613 -4.112 3.92e-05 ***
## marMarried 0.155243 0.061374 2.529 0.0114 *
## kid5 -0.184883 0.040127 -4.607 4.08e-06 ***
## phd 0.012823 0.026397 0.486 0.6271
## ment 0.025543 0.002006 12.733 < 2e-16 ***
```

How do I construct a confidence interval for $\exp\{\beta_4\}$?

Checking assumptions

- But, we haven't checked assumptions yet!
- Let's check the Poisson assumption

Checking assumptions

Does a Poisson distribution seem reasonable, given this plot?

Checking assumptions

Checking the mean/variance condition:

```
mean(articles$art)

## [1] 1.692896

var(articles$art)

## [1] 3.709742
```

Does it look like the mean and variance could be the same?

Overdispersion

Overdispersion occurs when the response Y has higher variance than we would expect if Y followed a Poisson distribution.

What problems do you think it causes to assume the mean and variance are the same, when they are not?

Formal checks for overdispersion

First, we need a formal measure of dispersion (relation between mean and variance):

$$\phi = \frac{\text{Variance}}{\text{Mean}}$$

What should ϕ be if there is no overdispersion?

Hypothesis test for overdispersion

$$\phi = rac{ ext{Variance}}{ ext{Mean}}$$

 $H_0: \phi=1$ (no overdispersion)

 $H_A: \phi > 1$ (overdispersion)

Now we need to estimate ϕ ...

Pearson residuals and estimated dispersion

The *Pearson residual* for observation i is defined as

$$e_{(P)i} = rac{Y_i - \widehat{\lambda}_i}{\sqrt{\widehat{\lambda}_i}}$$

$$\widehat{\phi} = rac{\sum\limits_{i=1}^n e_{(P)i}^2}{n-p}$$

+ p = number of parameters in model

Example: estimating dispersion parameter in R

```
## [1] 1.828984
```

Back to the hypothesis test

$$\phi = \frac{\text{Variance}}{\text{Mean}}$$

 $H_0: \phi=1$ (no overdispersion)

 $H_A: \phi > 1$ (overdispersion)

$$\widehat{\phi}=1.829$$

Now what?

Calculating a p-value

```
library(AER)
dispersiontest(m1)
```

```
##
## Overdispersion test
##
## data: m1
## z = 5.7825, p-value = 3.681e-09
## alternative hypothesis: true dispersion is greater than
## sample estimates:
## dispersion
## 1.82454
```

So there is strong evidence for overdispersion in the data.

Handling overdispersion

Overdispersion is a problem because our standard errors (for confidence intervals and hypothesis tests) are too low.

If we think there is overdispersion, what should we do?

Adjusting the standard error

- lacktriangle In our data, $\widehat{\phi}=1.829$
- This means our variance is 1.829 times bigger than it should be
- lacktriangledown So our standard error is $\sqrt{1.829}=1.352$ times bigger than it should be

New confidence interval for β_4 :

$$0.0128 \pm 1.96 \cdot \sqrt{1.829} \cdot 0.0264 = (-0.0572, 0.0828)$$

Adjusting the standard error in R

```
m2 <- glm(art ~ ., data = articles,</pre>
             family = quasipoisson)
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.304617 0.139273 2.187 0.028983 *
## femWomen -0.224594 0.073860 -3.041 0.002427 **
## marMarried 0.155243 0.083003 1.870 0.061759 .
## kid5
       -0.184883 0.054268 -3.407 0.000686 ***
## phd
       0.012823 0.035700 0.359 0.719544
       0.025543 0.002713 9.415 < 2e-16 ***
## ment
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 1.829006)
. . .
```

lacktriangledown Allowing ϕ to be different from 1 means we are using a *quasi-likelihood* (in this case, a *quasi-Poisson*)

Adjusting the standard error in R

Poisson:

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.304617 0.102981 2.958 0.0031 **
## femWomen -0.224594 0.054613 -4.112 3.92e-05 ***
## marMarried 0.155243 0.061374 2.529 0.0114 *
## kid5 -0.184883 0.040127 -4.607 4.08e-06 ***
```

Quasi-Poisson:

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.304617 0.139273 2.187 0.028983 *
## femWomen -0.224594 0.073860 -3.041 0.002427 **
## marMarried 0.155243 0.083003 1.870 0.061759 .
## kid5 -0.184883 0.054268 -3.407 0.000686 ***
29/29
```