1. zápočtová úloha z 01RAD

Jiří Franc

2021-10-21

1. zápočtová úloha z 01RAD

Popis úlohy

V tomto úkolu je cílem provést předzpracování datového souboru, jeho vizualizaci a jednoduchou lineární regresní úlohu, kde budeme modelovat spotřebu automobilu v závislosti na jeho váze. K tomuto účelu poslouží datový souboru auto_mpg_2021rad.txt, který obsahuje 406 pozorování o 9 proměnných. Dataset byl prvně použit americkou statistickou společností v roce 1983 a lze ho též najít na UCI Machine Learning Repository, případně na kaggle.com s několika pracovními sešity.

$\overline{\mathrm{mpg}}$	cylinders	displacement	horsepower	weight	acceleration	model_year o	rigin	car_name
18	8	307	130	3504	12.0	70	1	chevrolet chevelle malibu
15	8	350	165	3693	11.5	70	1	buick skylark 320
18	8	318	150	3436	11.0	70	1	chrysler satellite
16	8	304	150	3433	12.0	70	1	chrysler rebel sst
17	8	302	140	3449	10.5	70	1	ford torino
15	8	429	198	4341	10.0	70	1	ford galaxie 500

Podmínky a body

Úkol i protokol vypracujte samostatně. Pokud na řešení nějaké úlohy budete přesto s někým spolupracovat, radit se, nezapomeňte to u odpovědi na danou otázku uvést. Tato zápočtová úloha obsahuje 10 otázek po 1 bodu. Celkem za 3 zápočtové úlohy bude možné získat 30 bodů, přičemž pro získání zápočtu je potřeba více jak 20 bodů. Další dodatečné body mohu případně individuálně udělit za řešení mini domácích úkolů z jednotlivých hodin.

Odevzdání

Protokol ve formátu pdf odevzdejte prostřednictvím MS Teams, nejpozději do 10. 11. 2021.

Předzpracování dat:

Otázka 01

Zjistěte, zdali data neobsahují chybějící hodnoty (NA). Pokud ano, tak rozhodněte zdali můžete příslušná pozorování z dat odstranit a proč. Které proměnné jsou kvantitativní a které kvalitativní? Jeli možno některé zařadit do obou skupin, pro kterou se rozhodnete? Které proměnné budete brát jako faktorové a proč? Spočtěte základní statistiky pro jednotlivé proměnné.

Otázka 02

Proměnnou mpg nahradte proměnnou spotreba kde bude místo počtu ujetých mil na galon paliva uvedena hodnota počet litrů na 100 Km. Proměnnou cylinders přejmenujte na pocet_valcu. Proměnnou displacement přejmenujte na zdvihovy_objem a převeďte z kubických palců na litry. Proměnnou horsepower přejmenujte na výkon a převeďte na kW. Proměnnou weight přejmenujte na hmotnost a převeďte z liber na kilogramy. Odstraňte proměnnou acceleration. Proměnnou model.year přejmenujte na rok_vyroby a upravte ji tak, aby její hodnoty popisovaly celý rok 19XX. Proměnnou origin přejmenujte na puvod a upravte ji tak, že místo 1 bude USA, místo 2 EUR a místo 3 JAP. Z proměnné car.name vytvořte proměnnou vyrobce podle prvního slova obsaženého v řetězci proměnné car.name.

Vizualizace dat

Otázka 03

Vykreslete scatterploty pro všechny numerické proměnné. Pro proměnné spotreba a hmotnost vykreslete histogramy spolu s jádrovými odhady hustot. Pro proměnné pocet_valcu a rok_vyroby vykreslete krabicové diagramy, kde odezvou bude spotreba. Je z těchto grafů vidět, že některá auta mají jinou, než očekávanou spotřebu? Navrhněte úpravu těchto dvou proměných (případně úpravu datasetu) tak, aby obě proměnné pocet_valcu a rok_vyroby byly faktorové a obsahovaly právě 3 úrovně. Pro takto upravená data vykreslete místo výše zmííněných boxplotů violin ploty.

Otázka 04

Pro kombinace faktorizovaných proměnných pocet_valcu, rok_vyroby a puvod vykreslete spotřebu aut, aby bylo na obrázku vidět, jestli se liší spotřeba u aut pocházejících z různých kontinentů v závislosti na počtu válců, roku výroby a naopak. Zobrazte jen kombinace s relevantním počtem dat.

Otázka 05

Pro auta výrobce Chrysler vykreslete závislost spotřeby na váze automobilu, kde jednotlivé události označíte barvou podle počtu válců a velikost bodů v grafu bude odpovídat objemu motoru.

Jednoduchý lineární model

Otázka 06

Sestavte jednoduchý regresní model (s i bez interceptu), kde vysvětlovaná proměnná bude spotřeba automobilu. Spočtěte pro oba modely R^2 a F statistiky, co nám o modelech říkají. Vyberte jeden z nich a zdůvodněte proč ho preferujete. Na základě zvoleného modelu zjistěte, zdali spotřeba automobilu závisí na hmotnosti automobilu. Pokud ano, o kolik se změní očekávaná spotřeba automobilu pokud se jeho hmotnost zvýší o $1000 \, \mathrm{kg}$?

Otázka 07

Sestavte obdobný model jako v předchozí otázce, ale pouze na základě dat výrobce Chrysler. Liší se tento model od předchozího? Jaký model vykazuje silnější linearní vztah mezi hmotností a spotřebou a proč? O kolik roste spotřeba s rostoucí hmotností pro vozy Chrysler rychleji než pro libovolný automobil? Spočtěte 95% konfidenční intervaly pro regresní koeficienty popisující sklon regresnní přímky v obou modelech a zjistěte, zdali se protínají? Co z toho můžeme vyvozovat? Na základě těchto modelů zjistěte o kolik procent bude mít automobil značky Chrysler a hmotnosti 1,5 tuny vyšší očekávanou spotřebu než průměrný automobil o stejné hmotnosti.

Otázka 08

Vykreslete scatterplot hmotností automobilů a jejich spotřeby. Do tohoto grafu vykreslete regresní přímku modelu s interceptem i bez. Sestrojte navíc lineární model, kde budete uvažovat, že spotřeba závisí na kvadrátu hmotnosti. Příslušnou křivku popisující odhady středních hodnot z tohoto modelu přidejte do obrázku k oboum předchozím modelům. Pro účely predikce spotřeby automobilů, na základě jakých statistik byste mezi těmito modely vybírali, nebo byste se rozhodovali na základě něčeho jiného a proč?

Otázka 09

Pro vámi vybraný finální lineární model popisující vztah mezi hmotností a spotřebou automobilu ověřte předpoklady pro použití metody nejmenších čtverců. Každý předpoklad zmiňte a uveďte jak byste ho validovali pomocí reziduí.

Otázka 10

Přidejte k vysvětlující proměné hmotnost, i proměnnou puvod. Navrhněte aditivní lineární model (případně 3 modely pro každý region zvlášť), ve scatterplotu vykreslete 3 skupiny různými barvami a data proložte třemi odpovídajícími regresními přímkami. Uvažujeme 3 auta o hmotnosti 2 tuny zastupující jednotlivé regiony původu. Sestrojte 90% konfidenční intervaly okolo očekávaných spotřeb a na jejich základě rozhodněte, zdali a jak se očekávané spotřeby budou lišit. Je to porovnávání správné? Zdůvoněte.