7 Suffizienz und Vollständigkeit

7.1 Wiederholung

Bedingte Verteilungen

Sei (Ω, \mathcal{A}, P) Wahrscheinlichkeitsraum, $X: \Omega \to \mathbb{R}^k$, $Y: \Omega \to \mathbb{R}^s$ Zufallsvektoren.

Stochastik:

Es existiert Übergangswahrscheinlichkeit $P^{Y|X}$ mit

$$P^{(X,Y)} = P^X \otimes P^{Y|X} \quad (1)$$

$$P^{Y|X}: \left\{ \begin{array}{l} \mathbb{R}^k \times \mathcal{B}^s \to \mathbb{R} \\ (x,B) \to P^{Y|X}(x,B) =: P^{Y|X=x}(B) \end{array} \right.$$

mit $\forall x \in \mathbb{R}^k$: $P^{Y|X=x}(\cdot)$ Wahrscheinlichkeitsmaß auf \mathcal{B}^s $\forall B \in \mathcal{B}^s$: $P^{Y|X=\cdot}(B)$ \mathcal{B}^k – messbar

 $P^{Y|X}$ heißt (eine) bedingte Verteilung von Y bei gegebenem X. $P^{Y|X=x}$ heißt (eine) bedingte Verteilung von Y bei gegebenem X=x.

Schreibweise:

$$P(Y \in B|X = x) := P^{Y|X=x}(B)$$

Dann (1) äquivalent zu

$$P^{(X,Y)}(A \times B) = P(X \in A, Y \in B) = \int_A P(Y \in B | X = x) P^X(dx)$$

 $\forall A \in \mathcal{B}^k, B \in \mathcal{B}^s$

Insbesondere:

$$P(Y \in B) = \int P(Y \in B|X = x)P^X(dx)$$

Falls (X,Y) Dichte f(x,y) bezüglich $\lambda \times \nu$ besitzt, so definiert man bedingte Dichte von Y gegeben X=x durch

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

$$f_X(x) := \int f(x,y)\nu(dy) > 0$$

52

Damit:

$$P(Y \in B|X = x) = \int_{B} f_{Y|X}(y|x)\nu(dy)$$

$$\begin{bmatrix}
P(X \in A, Y \in B) & \stackrel{!}{=} & \int_{A} \left[\int_{B} f_{Y|X}(y|x)\nu(dy) \right] f_{X}(x)\lambda(dx) \\
& = & \int_{A} \int_{B} f(x,y)d(\lambda \times \nu)(x,y)
\end{bmatrix}$$

7.2 Definition

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ Wahrscheinlichkeitsraum, $(\mathbb{R}^n, \mathcal{B}^n, \wp)$ statistischer Raum. $X: \Omega \to \mathbb{R}^n$ Zufallsvektor, $T: \mathbb{R}^n \to \mathbb{R}^s$ Statistik.

T heißt suffizient für $\wp :\Leftrightarrow P^{X|T(X)}$ hängt nicht von $P \in \wp$ ab.

"Die bedingte Verteilung von X gegeben T ist bekannt."

Falls $\wp = \{P_{\vartheta} : \vartheta \in \Theta\}$, so T suffizient für $\vartheta : \Leftrightarrow P^{X|T(X)}$ hängt nicht von ϑ ab.

7.3 Bemerkungen

(i) Wegen

$$\underbrace{P(X \in A, X \in B)}_{=\int_{A} P(X \in B|X=x)P^{X}(dx)} = \int_{A} \mathbf{1}_{A \cap B}(x)P^{X}(dx)$$
$$= \int_{A} \mathbf{1}_{B}(x)P^{X}(dx)$$

gilt
$$P^{X|X=x}(B) = \mathbf{1}_B(x)$$

 \Rightarrow X suffizient für \wp

- (ii) T suffizient für $\wp \Leftrightarrow \forall A \in \mathcal{B}^n: P(X \in A|T(X) = t)$ ist unabhängig von \wp für alle t (im Wertebereich von T)
- (iii) Sei g bijektiv, g, g^{-1} messbar. Dann:

T suffizient $\Leftrightarrow g(T)$ suffizient

7.4 Beispiel 53

7.4 Beispiel

 $X = (X_1, \dots, X_n), X_1, \dots, X_n \stackrel{uiv}{\sim} \text{Bin}(1, \vartheta), \ \vartheta \in (0, 1), \ T(x) = \sum_{j=1}^n x_j.$ Sei $t \in \{0, 1, \dots, n\}, \ x \in \{0, 1\}^n.$

$$\begin{split} P_{\vartheta}(X = x | T = t) &= \frac{P_{\vartheta}(X = x, T = t)}{P_{\vartheta}(T(x) = t)} \\ &= \begin{cases} 0, & \sum_{j=1}^{n} x_{j} \neq t \\ \frac{P_{\vartheta}(X = x)}{P_{\vartheta}(T(x) = t)} = \frac{\prod_{j=1}^{n} \vartheta^{x_{j}} (1 - \vartheta)^{1 - x_{j}}}{\binom{n}{t} \vartheta^{t} (1 - \vartheta)^{n - t}} = \frac{1}{\binom{n}{t}}, \sum_{j=1}^{n} x_{j} = t \end{cases} \end{split}$$

Also:

$$P_{\vartheta}^{X|T(X)=t} = U(\{(s_1, \dots, s_n) : s_j \in \{0, 1\} \ \forall j, \sum_{j=1}^n s_j = t\})$$

Insbesondere ist T suffizient für ϑ . ¹⁹ 7.3(ii) \Rightarrow

$$P_{\vartheta}(X \in A) = \int \underbrace{P(X \in A | T = t)}_{\text{unabhängig von } \vartheta} P_{\vartheta}^{T}(dt)$$

Hier:

$$P_{\vartheta}(X=x) = \sum_{t=0}^{n} P(X=x|T=t)P_{\vartheta}(T=t)$$

$$= \sum_{t=0}^{n} \frac{1}{\binom{n}{t}} \mathbf{1} \{ \sum_{j=1}^{n} x_j = t \} \cdot \binom{n}{t} \vartheta^t (1-\vartheta)^{n-t}$$

$$(= \vartheta^{\sum x_j} (1-\vartheta)^{n-\sum x_j})$$

"In Verteilung von T ist alle Information bezüglich ϑ enthalten." \hookrightarrow Datenreduktion **ohne Informationsverlust**

7.5 Faktorisierungssatz

In der Situation von 7.2 existiere σ -endliches Maß μ auf \mathcal{B}^n mit $P \ll \mu$ $\forall P \in \wp$. Dann sind äquivalent:

(i) T(X) ist suffizient für \wp .

 $^{^{19}}P_{\vartheta}^{X|T(X)=t}$ Gleichverteilung (auf Menge)

(ii) $\exists h: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ messbar, $\forall P \in \wp$ existiert $g_P: \mathbb{R}^k \to \mathbb{R}_{\geq 0}$ messbar mit $\frac{dP}{d\mu}(x) = g_P(T(x)) \cdot h(x), \ x \in \mathbb{R}$

Ist speziell $\wp = \{P_{\vartheta} : \vartheta \in \Theta\}, f(x,\vartheta) := \frac{dP_{\vartheta}}{d\mu}(x), g(T(x),\vartheta) = g_{P_{\vartheta}}(T(x)), \text{ so gilt also:}$

T suffizient
$$\Leftrightarrow f(x, \vartheta) = g(T(x), \vartheta) \cdot h(x) \ \forall x \in \mathbb{R}^n$$

Beweis:

z.B. Shao, Mathematische Statistik, S.104-106 oder Pruscha, S. 77-80

7.6 Besispiel (Ordnungsstatistik)

Sei $X = (X_1, \ldots, X_n), X_1, \ldots, X_n$ unabhängig identisch verteilt mit Verteilung $P \in \wp$, \wp die Familie aller Verteilungen auf \mathbb{R} mit Lebesgue-Dichte.

$$T(X_1,\ldots,X_n) := (X_{(1)},\ldots,X_{(n)})$$

geordnete Stichprobe (Ordnungsstatistik).

$$\frac{dP^n}{d\lambda^n}(x) = \prod_{j=1}^n f(x_j) = \underbrace{\prod_{j=1}^n f(x_{(j)}) \cdot \underbrace{1}_{=h(x)}}_{=g_P(T(x))}$$

 $\overset{7.5}{\Rightarrow}$ T suffizient für \wp .

Bemerkung:

Es gilt

$$P^{X|T(x)=(x_{(1)},\dots,x_{(n)})} = U(\{(x_{\pi_1},\dots,x_{\pi_n}): (\pi_1,\dots,\pi_n) \in \mathcal{S}_n\})$$

7.7 Beispiel (Exponentialfamilien)

In der Situation von Satz 6.4 ist $T_{(n)}(X)$ suffizient für ϑ . [Aufgabe 21(b)]

7.8 Satz von Rao-Blackwell

Sei $(\mathfrak{X}, \mathcal{B}, \{P_{\vartheta} : \vartheta \in \Theta \subset \mathbb{R}^s\})$ statistischer Raum, $g : \Theta \to \mathbb{R}, X : \Omega \to \mathfrak{X}, U_g = \{S \mid S : \mathfrak{X} \to \mathbb{R} \text{ messbar}, E_{\vartheta}S = g(\vartheta) \ \forall \vartheta \in \Theta, E_{\vartheta}S^2 < \infty \ \forall \vartheta \in \Theta\}.$ Annahme: $U_g \neq \emptyset$

Sei $T: \mathfrak{X} \to \mathbb{R}^k$ suffizient für ϑ , $S \in U_g$. Sei $\tilde{S}(X) := E[S(X)|T(X)]^{20}$ Dann gilt:

$$\tilde{S} \in U_q \text{ und } \operatorname{Var}_{\vartheta} \tilde{S}(X) \leq \operatorname{Var}_{\vartheta} S(X) \ \forall \vartheta \in \Theta$$

(Verbesserung erwartungstreuer Schätzer durch suffiziente Statistiken)

Beweis:

$$E_{\vartheta}\tilde{S}(X) = E_{\vartheta}E[S(X)|T(X)] = E_{\vartheta}S(X) = g(\vartheta) \ \forall \vartheta \in \Theta$$

$$\operatorname{Var}_{\vartheta} S(X) = E_{\vartheta}[(S(X) - \tilde{S}(X) + \tilde{S}(X) - \underbrace{E_{\vartheta}S(X)})^{2}]$$

$$= \underbrace{E_{\vartheta}(S(X) - \tilde{S}(X))^{2}}_{\geq 0} + \operatorname{Var}_{\vartheta} \tilde{S}(X)$$

$$+ 2E_{\vartheta}[\underbrace{E_{\vartheta}[(S(X) - \tilde{S}(X))(\tilde{S}(X) - g(\vartheta))|T(X)]}_{=(\tilde{S}(X) - g(\vartheta))} \cdot \underbrace{E_{\vartheta}[S(X) - \tilde{S}(X)|T(X)]}_{=\tilde{S}(X) - \tilde{S}(X) = 0}$$

$$> \operatorname{Var}_{\vartheta} \tilde{S}(X)$$

[Beachte: $E_{\vartheta}\tilde{S}(X) = E_{\vartheta}S(X) = g(\vartheta)$; Regel
n bedingter Erwartungswert²¹]

 $^{^{20}}$ Nicht von ϑ abhängig, da T suffizient. (Sonst wäre \tilde{S} kein Schätzer!)

²¹insbesondere einmal ohne Auswirkung Erwartungswert in Erwartungswert eines bedingten Erwartungswertes umgeschrieben

7.9 Beispiel

$$X_1, \dots, X_n \stackrel{uiv}{\sim} U(0, \vartheta), \ \vartheta \in \Theta = (0, \infty), \ X = (X_1, \dots, X_n)$$

$$S(X) = \frac{2}{n} \sum_{j=1}^n X_j$$

$$\Rightarrow E_{\vartheta} S(X) = 2E_{\vartheta} X_1) = \vartheta$$

d.h. S erwartungstreu für ϑ .

$$\operatorname{Var}_{\vartheta} S(X) = \frac{4}{n} \operatorname{Var}_{\vartheta} X_1 = \frac{4}{n} \cdot \frac{\vartheta^2}{12} = \frac{\vartheta^2}{3n}$$
$$T(X) := \max_{1 \le j \le n} X_j$$

Wegen

$$f(x,\vartheta) = \prod_{j=1}^{n} \frac{1}{\vartheta} \mathbf{1}_{(0,\vartheta)}(x_j) = \underbrace{\frac{1}{\vartheta^n} \cdot \mathbf{1}_{(0,\vartheta)}(\max x_j)}_{=q(T(x),\vartheta)} \cdot \underbrace{1}_{=h(x)}$$

ist T(X) suffizient für ϑ .

Wegen

$$P^{X_1|\max X_j} = \frac{1}{n} \delta_{\max X_j} + \frac{n-1}{n} U(0, \max X_j)$$

folgt

$$\begin{split} \tilde{S}(X) &= E[S(X)|\max_{j} X_{j}] \\ &= \frac{2}{n} \sum_{i=1}^{n} E[X_{i}|\max_{j} X_{j}] \\ &= 2E[X_{1}|\max_{j} X_{j}] \\ &= 2(\frac{1}{n} \cdot \max_{j} X_{j} + \frac{n-1}{n} \frac{\max_{j} X_{j}}{2}) \\ &= \frac{n+1}{n} \max_{j} X_{j} \end{split}$$

$$\operatorname{Var}_{\vartheta} \tilde{S}(X) = \ldots = \frac{\vartheta^2}{n(n+2)} < \operatorname{Var}_{\vartheta} S(X) \text{ für } n \geq 2$$

$$\operatorname{Var}_{\vartheta} \tilde{S}(X) = \ldots = \frac{\vartheta^2}{n(n+2)} = \operatorname{Var}_{\vartheta} S(X) \text{ für } n = 1$$

7.10 Definition 57

7.10 Definition

In der Situation von 7.2 heißt $T: \mathbb{R}^n \to \mathbb{R}^k$ vollständig für $P \in \wp$ (bzw. $\vartheta \in \Theta$, falls $\wp = \{P_\vartheta : \vartheta \in \Theta\}$), falls gilt:

Für jede messbare Funktion $\Psi: \mathbb{R}^k \to \mathbb{R}$ mit $E_P[\Psi(T)] = 0 \ \forall P \in \wp$ (bzw. $E_{\vartheta}[\Psi(T)] = 0 \ \forall \vartheta \in \Theta$) folgt $\Psi(T) = 0$ P-f.s. $\forall P \in \wp$ (bzw. P_{ϑ} -f.s. $\forall \vartheta \in \Theta$).

7.11 Beispiel (Fortsetzung von 7.9)

Behauptung:

 $\overline{T(X)} := \max_{i} X_{i}$ vollständig

Beweis:

Sei $\Psi: \mathbb{R} \to \mathbb{R}$ messbar.

$$E_{\vartheta}\Psi(T) = \int_0^{\vartheta} \Psi(t) \cdot \frac{n}{\vartheta} \left(\frac{t}{\vartheta}\right)^{n-1} dt = \frac{n}{\vartheta^n} \underbrace{\int_0^{\vartheta} \Psi(t) \cdot t^{n-1} dt}_{=:G(\vartheta)}$$

$$\begin{split} E_{\vartheta}\Psi(T) &= 0 \ \forall \vartheta > 0 \Rightarrow G(\vartheta) = 0 \ \forall \vartheta > 0 \\ \Rightarrow \Psi(\vartheta) \cdot \vartheta^{n-1} &= 0 \quad \lambda^1|_{[0,\infty)}\text{-f.s.} \\ \Rightarrow \Psi(\vartheta) &= 0 \quad \lambda^1|_{[0,\infty)}\text{-f.s.} \end{split}$$

$$\Rightarrow P_{\vartheta}(\Psi(T) = 0) = 1$$

7.12 Beispiel

In einer strikt k-parametrigen Exponentialfamilie

$$f(x,\vartheta) = C(\vartheta) \cdot e^{\vartheta^T T(x)} h(x)$$

(mit natürlichem Parameterraum) ist die Statistik T vollständig. (Beweis z.B. Shao, S.110 oder Pruscha, S.82)

Beispiel:

Sei $X_1, X_2 \stackrel{uiv}{\sim} \mathcal{N}(\vartheta, 1), \vartheta \in \mathbb{R}$.

 $T(X_1, X_2) = X_1 + X_2$ ist vollständig nach 7.12.

 $S(X_1, X_2) = X_1 - X_2$ dagegen nicht!

 $T \sim \mathcal{N}(2\vartheta, 2) = P_{\vartheta}^T$

$$E_{\vartheta}\Psi(T) = \int_{\mathbb{R}} \Psi(t) \cdot \underbrace{\varphi_{2\vartheta,2}(t)}_{\text{Dichte NV}} dt$$

$$S \sim \mathcal{N}(0,2) = P_{\vartheta}^S, \ \Psi(S) = S$$
:

$$E_{\vartheta}\Psi(S) = \vartheta - \vartheta = 0 \ \forall \vartheta \in \Theta$$

$$\Rightarrow \Psi(S) = X_1 - X_2 = 0 P_{\vartheta}$$
-f.s.

 $\{P_{\vartheta}^T:\vartheta\in\mathbb{R}\}=\{\mathcal{N}(2\vartheta,2):\vartheta\in\mathbb{R}\}$ ist viel "reichhaltiger" als $\{P_{\vartheta}^S:\vartheta\in\mathbb{R}\}=\{\mathcal{N}(0,2)\}!$

7.13 Satz von Lehmann-Scheffé

In der Situation von 7.8 $(U_g \neq \emptyset)$ sei die suffiziente Statistik T auch vollständig für ϑ . Dann existiert ein eindeutig bestimmter erwartungstreuer Schätzer für $g(\vartheta)$ der Gestalt

$$S^*(X) = h(T(X))$$

mit einer messbaren Funktion $h: \mathbb{R}^k \to \mathbb{R}$. Dieser Schätzer ist UMVUE für $g(\vartheta)$.

Beweis:

Sei $S \in U_q$ und $\tilde{S}(X) := E[S(X)|T(X)].$

Faktorisierungssatz des bedingten Erwartungswerts \Rightarrow es existiert h
 messbar mit

$$\tilde{S}(X) = h(T(X))$$

Annahme: $\exists S_* \in U_g$ mit $S_*(X) = h_*(T(X))$ für ein h_*

$$\Rightarrow E_{\vartheta}[\underbrace{(h-h_*)}_{=:\Psi}(T)] = g(\vartheta) - g(\vartheta) = 0 \ \forall \vartheta \in \Theta$$

$$\stackrel{(+)}{\Rightarrow} h = h_* P_{\vartheta}$$
-f.s. $\forall \vartheta \in \Theta$

(+): Vollständigkeit von T $(\Psi=h-h_*=0)$

 $\tilde{S}(X)$ ist UMVUE für $g(\vartheta)$!

[Annahme: S_2 "besser" als \tilde{S}

$$\Rightarrow \tilde{S}_2(X) = E[S_2(X)|T(X)]$$

"mindestens so gut" wie S_2 (Rao-Blackwell); $\tilde{S}_2 = \tilde{S}$ wegen Eindeutigkeit]

7.14 Beispiel (Fortsetzung von 7.11)

 $\frac{n+1}{n}\max_j X_j$ ist UMVUE für $\vartheta,$ falls $X_1,\dots,X_n \overset{uiv}{\sim} U(0,\vartheta),\ \vartheta>0$ unbekannt.

7.15 Beispiel (Anwendungen von Lehmann-Scheffé)

Sei T vollständig und suffizient für ϑ , $\vartheta \in \Theta$. Finde h, so dass $E_{\vartheta}[h(T)] = g(\vartheta) \ \forall \vartheta \in \Theta$. (Lösen!, Raten!) Falls $\operatorname{Var}_{\vartheta}[h(T)] < \infty \Rightarrow h(T) \ \mathrm{UMVUE}$.

Sei
$$X_1, \ldots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \ \vartheta = (\mu, \sigma^2).$$

(i) Aufgabe 20:

$$\operatorname{Var}_{\vartheta}((\bar{X}_n, S_n^2)^T) = \begin{bmatrix} \frac{\sigma^2}{n} & 0\\ 0 & \frac{2\sigma^4}{n-1} \end{bmatrix}$$
$$\frac{2\sigma^4}{n-1} > \operatorname{CR-Schranke} \frac{2\sigma^4}{n}$$

 $\Rightarrow (\bar{X}_n, S_n^2)$ nicht CR-effizient für ϑ

Aber:

$$T(X) = (\sum_i X_i, \sum_i X_i^2)$$

suffizient und vollständig für $\bar{\vartheta} = (\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2})$ (nach 7.12). $\Rightarrow T(X) = (\sum_i X_i, \sum_i X_i^2)$ suffizient und vollständig für $\vartheta = (\mu, \sigma^2)$. Sei $h(T(X)) = (\bar{X}_n, S_n^2)$.

$$\left. \begin{array}{l} E_{\vartheta}[h(T(X))] = \vartheta \ \forall \vartheta \\ \operatorname{Var}_{\vartheta}[h(T(X))] \ \text{existiert} \ \forall \vartheta \end{array} \right\} \Rightarrow (\bar{X}_n, S_n^2) \ \text{ist UMVUE für} \ \vartheta = (\mu, \sigma^2)$$

Bemerkung:

Auch (\bar{X}_n, \bar{S}_n^2) suffizient und vollständig für ϑ nach Bemerkung 7.3(ii) und analoge Aussage für Vollständigkeit.

- (ii) Analog: Der Schätzer aus Aufgabe 9 der Form $\sqrt{c_n S_n^2}$ ist UMVUE für σ .
- (iii) Gesucht: UMVUE für $\frac{\mu}{\sigma}$

$$(T_1(X), T_2(X)) := (\sum_i X_i, \sum_i (X_i - \bar{X}_n)^2)$$

 $T_1(X), T_2(X)$ unabhängig, $\frac{T_1(X)}{\sigma^2} \sim \chi^2_{n-1} = \Gamma(\frac{n-1}{2}, \frac{1}{2})$

$$\Rightarrow E_{\vartheta} T_2^{-\frac{1}{2}} = \frac{1}{\sigma} \cdot \frac{\Gamma(\frac{n}{2} - 1)}{\sqrt{2} \Gamma(\frac{n-1}{2})} \ (n \ge 3)$$

$$\operatorname{Var}_{\vartheta} T_2^{-\frac{1}{2}} < \infty \text{ für } n \geq 4$$

$$\Rightarrow E_{\vartheta}(\frac{T_1}{\sqrt{T_2}}) = E_{\vartheta}T_1 \cdot E_{\vartheta}T_2^{-\frac{1}{2}}$$

$$= \frac{\mu}{\sigma} \cdot \frac{n\Gamma(\frac{n}{2} - 1)}{\sqrt{2}\Gamma(\frac{n-1}{2})}$$

$$=: \frac{\mu}{\sigma}K_n$$

$$\Rightarrow K_n^{-1} \cdot \frac{T_1}{\sqrt{T_2}}$$

ist UMVUE für $\frac{\mu}{\sigma}$ für $n \geq 4.$

 $(n \ge 3)$