

AD-A082 063 NATIONAL AVIATION FACILITIES EXPERIMENTAL CENTER ATL--ETC F/G 14/2
NAFEC RANGE INSTRUMENTATION SYSTEMS, (U)
FEB 80 V J LUCIANI
UNCLASSIFIED FAA-NA-79-32

NL

10F2
AD-
A082 063

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963

Report No. FAA-NA-79-32

ADA082063

(D)
LEVEL

NAFEC RANGE INSTRUMENTATION SYSTEMS

V.J. LUCIANI

FEBRUARY 1980

NAFEC REPORT

Document is available to the U.S. public through
the National Technical Information Service,
Springfield, Virginia 22161.

U. S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
National Aviation Facilities Experimental Center
Atlantic City, New Jersey 08405

100% FILE COPY

80 3 17 221

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

1. Report No. FAA-NA-79-32	2. Government Accession No.	3. Recipient's Catalog No. (12) 103	
4. Title and Subtitle (6) NAFEC RANGE INSTRUMENTATION SYSTEMS		5. Report Date. Feb. 1980	
7. Author(s) (10) V. J. Luciani	6. Performing Organization Code ANA-750		
8. Performing Organization Report No. FAA-NA-79-32		10. Work Unit No. (TRAIS)	
9. Performing Organization Name and Address Federal Aviation Administration National Aviation Facilities Experimental Center Atlantic City, New Jersey 08405		11. Contract or Grant No. 999-775-000	
12. Sponsoring Agency Name and Address U.S. Department of Transportation Federal Aviation Administration System Research & Development Service Washington, D. C. 20590		13. Type of Report and Period Covered NAFEC	
14. Sponsoring Agency Code ANA-700			
15. Supplementary Notes			
16. Abstract This report documents the inventory of National Aviation Facilities Experimental Center (NAFEC) range instrumentation systems used to provide reference position measurements and recording in support of NAFEC and other-user projects. Each system is described briefly to include system specifications, a summary of estimated errors, sample data listings, and how the data are processed.			
17. Key Words Range Laser Instrumentation Radar Measurements Air-Air TACAN Positioning Systems Phototeodolite	18. Distribution Statement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 89	22. Price

240550 pt

METRIC CONVERSION FACTORS

Approximate Conversions to Metric Measures

Approximate Conversions from Metric Measures					
Symbol	When You Know	Multiply by	To Find	Symbol	
<u>LENGTH</u>				<u>LENGTH</u>	
in	inches	2.5	centimeters	mm	inches
ft	feet	30	centimeters	cm	inches
yd	yards	0.9	meters	m	feet
mi	miles	1.6	kilometers	km	yards
					miles
<u>AREA</u>				<u>AREA</u>	
in ²	square inches	6.5	square centimeters	cm ²	square inches
ft ²	square feet	0.09	square meters	m ²	in ²
yd ²	square yards	0.8	square meters	m ²	ft ²
mi ²	square miles	2.6	square kilometers	km ²	yd ²
	acres	0.4	hectares	ha	mi ²

卷之三

Approximate Conversions from Metric Measures		Symbol	When You Know	Multiply by	To Find	inches in ft yd mi	in ² sq yd ² mi ²			
		LENGTH		AREA						
mm	0.04	millimeters	0.04	square centimeters	0.16	square inches	square inches			
cm	0.4	centimeters	0.4	square centimeters	1.2	square yards	square yards			
m	3.3	meters	3.3	square meters	0.4	square miles	square miles			
km	1.1	meters	1.1	hectares (10,000 m ²)	2.5	acres	acres			
	0.6	kilometers	0.6							

MASS (weight)
13
5

MASS (weight)	ounces	28	grams	9	kg	9	grams	0.036	ounces	11 oz	
	pounds	0.45	kilograms	kg	tonnes	t	kilograms	2.2	pounds	lb	
	short tons	0.9	tonnes	t	(1000 kg)	(1000 kg)	tonnes	1.1	short tons	lb	
VOLUME											
teaspoons	5	milliliters	milliliters	ml	ml	ml	milliliters	0.03	fluid ounces	fl oz	
tablespoons	15	milliliters	milliliters	ml	ml	ml	milliliters	2.1	pints	pt	
fluid ounces	30	liters	liters	l	l	l	liters	1.06	quarts	qt	
cups	0.24	cubic meters	cubic meters	m ³	m ³	m ³	cubic meters	0.26	gallons	gal	
pints	0.47	cubic yards	cubic yards	yd ³	yd ³	yd ³	cubic yards	35	cubic feet	ft ³	
quarts	0.95	cubic meters	cubic meters	m ³	m ³	m ³	cubic meters	1.3	cubic yards	yd ³	

TEMPÉRATURE (varacil)

TEMPERATURE (exact)		TEMPERATURE (exact)		TEMPERATURE (exact)	
°F	cubic yards	yd ³	cubic meters	m ³	°C
Fahrenheit temperature			Celsius temperature		
5/9 (after subtracting 32)			9/5 (then add 32)		

* 1 in = 2.54 reactive. For other exact conversions and more detailed tables, see NBS Msc. Publ. 286, Units of Weights and Measures, Price \$2.25, SD Catalog No. C1310286.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
List of Facilities	1
Range Capability	1
Grid Coordinates	3
NAFEC Computer	3
Central Timing System	5
PHOTOTHEODOLITE SYSTEM	7
Real-Time Processor	7
Data Flow	7
System Accuracy	13
Error Definition	19
Film Data Vs. Magnetic Tape Data	19
EXTENDED AREA INSTRUMENTATION RADAR	21
Data Flow	21
System Accuracy	29
LASER TRACKER	35
Operation	35
Data Processing Subsystem	43
Data Flow	45
System Accuracy	48
Safety	50
NIKE/HERCULES RADARS	51
Modifications	51
Computer Van	57
Test Tower	57
Software	62
System Accuracy	62
AIR-TO-AIR RANGING AND BEARING SYSTEM	67
System Description	67
Operation	67
System Accuracy	71
Future Improvements	72
Data	73

Accession For	
NTIS GRA&I <input type="checkbox"/>	
DDC TAB <input type="checkbox"/>	
Unannounced <input type="checkbox"/>	
Justification _____	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Avail and/or special
A	

TABLE OF CONTENTS (Continued)

	Page
RANGE CONTROL CENTRAL FACILITY	80
Timing	80
Communications	80
Planned	84
APPENDIX	

LIST OF ILLUSTRATIONS

Figure		Page
1	NAFEC Range Map	2
2	NAFEC Central Computer	4
3	Central Timing System	6
4	Phototheodolite Tower	8
5	Phototheodolite Instrument	9
6	Real-Time Display and Recording System	10
7	Phototheodolite Data Flow	11
8	Photographic Film Sample	14
9	Sample Phototheodolite Data Listing	15
10	Range Error Curve	17
11	Range Error Curve, Close In	18
12	EAIR Facility	22
13	Plotter/Recorder	23
14	Radar Console	24
15	EAIR Diagram	25
16	EAIR System Data Flow	26
17	Sample EAIR Data Listing	28
18	EAIR Range Error	29
19	Laser Van (Side)	36
20	Laser Van	37
21	Van Interior	38

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
22	Van Interior	39
23	Optical Package	40
24	Retroreflector	41
25	Control Console	44
26	Laser System Data Flow	46
27	Sample Laser Data Listing	47
28	Nike/Hercules Radar Van	52
29	NAFEC Radar Range	53
30	Nike/Hercules Diagram	54
31	MTR Console	55
32	TTR Console	56
33	GA Computer	58
34	Terminals	59
35	Graphics	60
36	RF Test Tower	61
37	Sample Nike/Hercules Data Listing	63
38	Air-Air Digital Ranging and Bearing Equipment	68
39	Digital System Block Diagram	69
40	Air-Air, Inverse Mode	70
41	Air-Air System Data Flow	74
42	Sample Production Format Data Listing	75
43	Sample Special Format Data Listing	77
44	Sample Statistical Summary Listing	78

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
45	NAFEC Time Code	83
46	IRIG-B Format	83
47	Enhanced Measurements Instrumentation Complex	85
48		85
49		85
50		85
51		85
52		85
53		85
54		85
55		85
56		85
57		85
58		85
59		85
60		85
61		85
62		85
63		85
64		85
65		85
66		85
67		85
68		85
69		85
70		85
71		85
72		85
73		85
74		85
75		85
76		85
77		85
78		85
79		85
80		85
81		85
82		85
83		85
84		85
85		85
86		85
87		85
88		85
89		85
90		85
91		85
92		85
93		85
94		85
95		85
96		85
97		85
98		85
99		85
100		85
101		85
102		85
103		85
104		85
105		85
106		85
107		85
108		85
109		85
110		85
111		85
112		85
113		85
114		85
115		85
116		85
117		85
118		85
119		85
120		85
121		85
122		85
123		85
124		85
125		85
126		85
127		85
128		85
129		85
130		85
131		85
132		85
133		85
134		85
135		85
136		85
137		85
138		85
139		85
140		85
141		85
142		85
143		85
144		85
145		85
146		85
147		85
148		85
149		85
150		85
151		85
152		85
153		85
154		85
155		85
156		85
157		85
158		85
159		85
160		85
161		85
162		85
163		85
164		85
165		85
166		85
167		85
168		85
169		85
170		85
171		85
172		85
173		85
174		85
175		85
176		85
177		85
178		85
179		85
180		85
181		85
182		85
183		85
184		85
185		85
186		85
187		85
188		85
189		85
190		85
191		85
192		85
193		85
194		85
195		85
196		85
197		85
198		85
199		85
200		85
201		85
202		85
203		85
204		85
205		85
206		85
207		85
208		85
209		85
210		85
211		85
212		85
213		85
214		85
215		85
216		85
217		85
218		85
219		85
220		85
221		85
222		85
223		85
224		85
225		85
226		85
227		85
228		85
229		85
230		85
231		85
232		85
233		85
234		85
235		85
236		85
237		85
238		85
239		85
240		85
241		85
242		85
243		85
244		85
245		85
246		85
247		85
248		85
249		85
250		85
251		85
252		85
253		85
254		85
255		85
256		85
257		85
258		85
259		85
260		85
261		85
262		85
263		85
264		85
265		85
266		85
267		85
268		85
269		85
270		85
271		85
272		85
273		85
274		85
275		85
276		85
277		85
278		85
279		85
280		85
281		85
282		85
283		85
284		85
285		85
286		85
287		85
288		85
289		85
290		85
291		85
292		85
293		85
294		85
295		85
296		85
297		85
298		85
299		85
300		85
301		85
302		85
303		85
304		85
305		85
306		85
307		85
308		85
309		85
310		85
311		85
312		85
313		85
314		85
315		85
316		85
317		85
318		85
319		85
320		85
321		85
322		85
323		85
324		85
325		85
326		85
327		85
328		85
329		85
330		85
331		85
332		85
333		85
334		85
335		85
336		85
337		85
338		85
339		85
340		85
341		85
342		85
343		85
344		85
345		85
346		85
347		85
348		85
349		85
350		85
351		85
352		85
353		85
354		85
355		85
356		85
357		85
358		85
359		85
360		85
361		85
362		85
363		85
364		85
365		85
366		85
367		85
368		85
369		85
370		85
371		85
372		85
373		85
374		85
375		85
376		85
377		85
378		85
379		85
380		85
381		85
382		85
383		85
384		85
385		85
386		85
387		85
388		85
389		85
390		85
391		85
392		85
393		85
394		85
395		85
396		85
397		85
398		85
399		85
400		85
401		85
402		85
403		85
404		85
405		85
406		85
407		85
408		85
409		85
410		85
411		85
412		85
413		85
414		85
415		85
416		85
417		85
418		85
419		85
420		85
421		85
422		85
423		85
424		85
425		85
426		85
427		85
428		85
429		85
430		85
431		85
432		85
433		85
434		85
435		85
436		85
437		85
438		85
439		85
440		85
441		85
442		85
443		85
444		85
445		85
446		85
447		85
448		85
449		85
450		85
451		85
452		85
453		85
454		85
455		85
456		85
457		85
458		85
459		85
460		85
461		85
462		85
463		85
464		85
465		85
466		85
467		85
468		85
469		85
470		85
471		85
472		85
473		85
474		85
475		85
476		85
477		85
478		85
479		85
480		85
481		85
482		85
483		85
484		85
485		85
486		85
487		85
488		85
489		85
490		85
491		85
492		85
493		85
494		85
495		85
496		85
497		85
498		85
499		85
500		85
501		85
502		85
503		85
504		85
505		85
506		85
507		85
508		85
509		85
510		85
511		85
512		85
513		85
514		85
515		85
516		85
517		85
518		85
519		85
520		85
521		85
522		85
523		85
524		85
525		85
526		85
527		85
528		85
529		85
530		85
531		85
532		85
533		85
534		85
535		85
536		85
537		85
538		85
539		85
540		85
541		85
542		85
543		85
544		85
545		85
546		85
547		85
548		85
549		85
550		85
551		85
552		85
553		85
554		85
555		85
556		85
557		85
558		85
559		85

LIST OF TABLES

Table	Page
1 $K = B_i e_j$	16
2 Phototheodolite Specifications	20
3 EAIR Summary Statistics	30
4 EAIR Vs. Phototheodolite, Raw Differences	31
5 EAIR Specification	32
6 Laser Specifications	49
7 Nike/Hercules Specifications	66
8 TACAN (AN/ARN-84V) Specifications	79
9 Range Control Specifications	81

INTRODUCTION

This document provides potential users of the NAFEC range instrumentation facilities with information on the functions, capabilities, and applications of these facilities.

LIST OF FACILITIES.

NAFEC's range instrumentation complex includes the following facilities:

1. A three-station phototheodolite system; an optical instrumentation complex that measures and records aircraft azimuth/elevation data for conversion into aircraft space position.
2. A laser tracking system; a mobile facility that uses a laser beam to measure and record aircraft slant range, azimuth, and elevation angles for conversion into aircraft space position.
3. An Extended Area Instrumentation Radar (EAIR); a C-band instrumentation radar system that measures and records aircraft position in slant range, azimuth, and elevation angles.
4. A Nike/Hercules modified radar system; includes two X-band missile and target tracking radars converted into instrumentation radars to provide aircraft position measurement and recording from each radar of slant range, azimuth, and elevation angles.
5. An air-to-air ranging and bearing system; utilizes digitized Tactical Air Navigation Aid (TACAN) sets to provide measurement and recording of slant range between two aircraft, and the relative bearing to aircraft when equipped with a TACAN rotating antenna.
6. Range Control; provides communications, control, and coordination of National Aviation Facilities Experimental Center (NAFEC) flight tests that use any of the range instrumentation facilities; central point for receiving and processing data from each phototheodolite site; provides central timing to all facilities and users.

Physical locations of these facilities are shown on the NAFEC range map, (figure 1).

RANGE CAPABILITY.

Each of the above range facilities has specific coverage characteristics that are pertinent to the type of flight test program it supports. For example, flight test programs that are related to landing systems in which test data are acquired on approaches would use the phototheodolite system for reference data. The phototheodolite system coverage is dependent upon visibility

FIGURE 1. NAFE

NAFEC RANGE MAP

conditions to provide aircraft tracking from touchdown to a maximum of 10 to 15 nmi.

For similar flight test programs where data further from touchdown are required, the laser can be used. Laser coverage typically extends from touchdown to a maximum distance of 25 nmi, again subject to weather conditions because the laser principle is one of transmitting and reflecting a light beam.

In navigation system projects where data may be required at locations 25 nmi or more from NAFEC, the EAIR or Nike/Hercules radars are used. Depending upon aircraft altitude, coverage from these radars can be obtained out to a maximum distance of 200 nmi.

Although multitarget tracking is available with the three radars, the air-air ranging system is an onboard device that provides slant range between two or more aircraft. This system is particularly useful as reference for project tests such as collision avoidance flights where separation distance is of prime concern.

GRID COORDINATES.

NAFEC makes use of a special grid system for the phototheodolite system. Its theoretical origin is a point located on the airfield as shown in figure 1. The axes of the NAFEC grid are aligned parallel to runway 13-31, the main NAFEC runway.

In contrast, the EAIR and Nike/Hercules radars are True North oriented in geodetic coordinates. The displacement from NAFEC zero (+Y) to True North is 62.01297°.

Coordinate conversion, translation of origin and rotation of axes, can be performed real-time for display of aircraft trajectory/position. For postflight processing and analysis, data are recorded at each facility for processing through the NAFEC central computer complex, a Honeywell Model 66/60 computer. Merge of independent project data and instrumentation facility data is also handled on the 66/60 computer.

NAFEC COMPUTER.

Instrumentation data tapes are processed on NAFEC's Honeywell Level 66 Series 60 computer (figure 2), which offers: local and remote job entry in which any program that can be entered locally can also be entered from a remote input/output terminal; time sharing to give users at remote locations full batch-processing service and time-sharing capabilities; direct program access to provide terminal access to a program in execution; and interactive remote job entry to let remote users create a batch program, to enter or debug it, to inspect its output, and to converse with it.

Hardware inventory on the 66/60 includes: 15 tape drives, of which 12 are 9-track and three are 7-track; card punch, card reader, and two 1,200-lines-

FIGURE 2. NAFEC CENTRAL COMPUTER

per-minute (1pm) printers; 8 disk drives (mass storage); and 72 remote terminals including "smart" terminals which have graphic cathode ray tube (CRT) display, dual processors, and memory to function either interactively with the 66/60 or independently as a functional minicomputer. Graphic display terminals permit online design, modification, enhancement, or debugging of data plots, with light pens or cursors available to operate on specific data points. A Cal Comp pen-plotting system is used to make graphical displays of data.

Total memory for the 66/60 computer is 256k, 36-bit words, of which 128k are in central memory, and 128k in the control unit.

CENTRAL TIMING SYSTEM.

NAFEC's central time system (figure 3) is located at Range Control Center, from which a master time code is distributed real-time in the form of time-of-day code pulses and control pulses to all range instrumentation facilities and to any other facilities, including aircraft, requiring time correlation of data.

Real-time code pulses are distributed via landlines, VHF radio link, and leased telephone lines to locations external to NAFEC. Distribution of the time code is accomplished at the Supervisor's Console in Range Control Center.

79-32-3

FIGURE 3. CENTRAL TIMING SYSTEM

PHOTOTHEODOLITE SYSTEM

NAFEC's phototheodolite complex consists of a three-station photo-optical instrumentation complex that is used to accurately determine reference position in the airport area. Data outputs of each phototheodolite station are transmitted to the Range Control Facility where they are processed, displayed, and recorded.

Each of the phototheodolite stations is located on a specially constructed tower platform. A typical station is shown in figure 4. Figure 5 is a view of the phototheodolite instrument, a Contraves Model C.

During tracking, two operators man each instrument, one to control the azimuth drive and the other to control the elevation drive. The dome is slaved to the azimuth drive so that it rotates with the instrument.

Each phototheodolite measures azimuth and elevation angles to the target under track. Angle encoders digitize data that are transmitted to Range Control via landline.

REAL-TIME PROCESSOR.

At Range Control a real-time display and recording system, shown in figure 6, accepts the angular and time data at its inherent rate of 20 times per second and performs the following functions.

1. A computer-format recorder records the raw data in format suitable for processing on the Honeywell 66/60 computer.
2. A coordinate conversion program accepts the angular/time data from any selected pair of phototheodolites and converts the angular data into rectangular coordinates of XYZ and time.
3. Outputs of the coordinate conversion program are applied to a plotting board via a digital-analog converter which supplies the voltages that drive the plotter arms. Two pens are available to permit plotting any of two trajectories, XY, XZ, or YZ, simultaneously.
4. Raw data are also recorded on a separate tape for use as a backup record in case the online tape is damaged during further processing.

DATA FLOW.

Typical processing of phototheodolite data in support of NAFEC projects is shown on the data flow chart of figure 7. The following description is numerically keyed to this diagram.

NAFEC phototheodolite stations (1) are identified by number as P8, P29, and P36.

FIGURE 4. PHOTOTHEODOLITE TOWER

79-32-5

FIGURE 5. PHOTOTHEODOLITE INSTRUMENT

FIGURE 6. REAL-TIME DISPLAY AND RECORDING SYSTEM

FIGURE 7. PHOTOTHEODOLITE DATA FLOW

79-32-7

Basic phototheodolite data with NAFEC central time (2) for correlation with other project data, can be recorded on 35-millimeter (mm) film (3) at each site, and digital data are transmitted via landlines to Range Control where they are applied as inputs to the system's real-time processor (4). At Range Control, the angular inputs of azimuth and elevation (and time) from each phototheodolite are converted to cartesian coordinates and applied to an XY/XZ analog plotter (5) of aircraft trajectory, and to an XYZ/time printer (6). Because the processor also provides translation of origin and rotation of axes, the real-time output can sometimes satisfy needs of less complex projects directly.

For those projects requiring additional data processing, the processor also provides recording of phototheodolite data on a computer format tape (7) which is forwarded to the 66/60 NAFEC computer complex for postflight processing.

Phototheodolite production programs are available to process film data (8) and magnetic tape data (9). Input to the film data program is from punched cards (10) stored in a disc file (11).

Within the production program for magnetic tape, real-time data are initially subjected to quality checks in which first differences of the raw elevation and azimuth numbers are tested in an outlier routine. Points that exceed preestablished values in first differences can be removed in a second quality check routine, and interpolated values may be substituted or bad values can be deleted. A new, corrected raw data tape is then regenerated.

The production program for magnetic tape data can provide translation of origin, rotation of axes, smoothing of the computed XYZ values, selection of data rate, and various optional printouts. The magnetic tape data are subjected to two processings on the same computer pass. One, known as the Bodwell solution, selects the two preferred stations (if more than two were used in tracking), and computes an initial estimate of target position. The second pass, referred to as the Davis solution, uses the initial target position estimate, and refines these estimates by minimizing estimated errors in computing target coordinates in XYZ.

Optional printouts (12) from the magnetic tape programs are; (a) XYZ, RAE (range, azimuth, elevation), (b) XYZ LLH (latitude, longitude, height), (c) raw azimuth/elevation data from each site, and (d) velocity and acceleration computations.

The film data program also provides translation, rotation, and printout of XYZ, RAE.

Each phototheodolite production program can produce a binary tape printout of film data in XYZ (13), or magnetic tape data in XYZ, RAE, LLH (14). These binary tapes can be used as input to phototheodolite Library Programs (15), or as input to specially tailored Project Programs (16).

The Library Program can provide an output binary tape (17) as input to the Project Program, a plotter tape (18), which is plotted on the 66/60 digital plotter (19) or optional printouts. Printouts at this level frequently satisfy project needs.

Other inputs to the Project Program are typically various project data collected manually (20) and reduced to cards (21) for storage on a disc file (22), or project data collected on magnetic tape (23). This program merges phototheodolite data with project data to provide comparative differences of key parameters such as angular differences in, for example, a localizer, glidepath, or VOR bearing. These differences are then generally operated on to produce a statistical summary of project system errors which, along with plots, are the final output upon which project reports are based.

A sample phototheodolite film record is shown in figure 8 and a sample of XYZ, RAE output data in figure 9.

SYSTEM ACCURACY.

The accuracy with which phototheodolites can measure and derive space position data is a function of target location with respect to the baseline of the two stations used to compute a given point. Constant factors that enter into the computation of position error include the baseline length, and the value of maximum angular error which depends on whether magnetic tape data or film records are processed.

The basic phototheodolite distance error equation is from report RE-173, "Precision of Line-of-Sight Intersection Using Two Theodolites," by J. W. Fecker, Inc., dated March 2, 1959.

The error equation is:

$$E = (B)(e)(d)$$

where:

E = maximum potential distance error, in feet,
B = baseline distance, in feet,
e = maximum estimated angular error, in radians,
d = location error factor, dimensionless.

Values of B for the NAFEC phototheodolites are:

$$\begin{aligned} B_1 \text{ (P29/P36)} &= 6,468 \text{ feet} \\ B_2 \text{ (P36/P8)} &= 10,084 \text{ feet} \\ B_3 \text{ (P29/P8)} &= 11,816 \text{ feet.} \end{aligned}$$

Values of e, established from controlled measurements are:

$$\begin{aligned} e_1 &= 4.83 \times 10^{-5} \text{ radians based on rigid quality control of film records,} \\ e_2 &= 9.66 \times 10^{-5} \text{ radians based on standard film reading procedures,} \\ e_3 &= 43.49 \times 10^{-5} \text{ radians based on using magnetic tape data.} \end{aligned}$$

FIGURE 8. PHOTOGRAPHIC FILM SAMPLE

RAAFNAFEC PHOTOTHEODOLITE DATA USING NAFFEC CARTESIAN AND SPHERICAL COORDINATE SYSTEMS						PAGE NO.
SITES USED	P29	P36	P8	DATE 6 14 78	R 327 F 079 P8 29 3c	RUN NO.
TIME	X (FT.)	Y (FT.)	Z (FT.)	SLANT RANGE (FT.)	AZIMUTH ANGLE DEGREES	ELEVATION ANGLE DEGREES
HRS MIN SEC						
9 21 54.00	6838.5	-42.7	1222.4	6946.8	90.4	10.1
9 21 54.10	6850.0	-41.9	1225.8	6958.9	90.4	10.1
9 21 54.20	6861.4	-41.7	1229.9	6970.8	90.3	10.2
9 21 54.30	6873.2	-41.8	1233.6	6983.1	90.3	10.2
9 21 54.40	6885.6	-41.4	1237.2	6996.0	90.3	10.2
9 21 54.50	6896.8	-40.8	1240.5	7007.6	90.3	10.2
9 21 54.60	6908.4	-41.3	1244.1	7019.6	90.3	10.2
9 21 54.70	6919.4	-40.7	1248.5	7031.3	90.3	10.2
9 21 54.80	6931.3	-41.0	1251.0	7044.0	90.3	10.2
9 21 54.90	6942.9	-40.3	1254.3	7055.4	90.3	10.2
9 21 55.00	6954.7	-39.8	1257.6	7067.6	90.3	10.2
9 21 55.10	6965.6	-39.6	1260.3	7078.9	90.3	10.3
9 21 55.20	6977.3	-39.2	1264.4	7091.1	90.3	10.3
9 21 55.30	6988.9	-38.6	1268.4	7103.1	90.3	10.3
9 21 55.40	7000.4	-39.1	1271.5	7115.0	90.3	10.3
9 21 55.50	7011.9	-39.6	1275.4	7127.0	90.3	10.3
9 21 55.60	7023.6	-39.3	1278.6	7139.1	90.3	10.3
9 21 55.70	7035.2	-38.9	1282.6	7151.3	90.3	10.3
9 21 55.80	7047.3	-39.3	1285.1	7163.6	90.3	10.3
9 21 55.90	7057.6	-38.4	1289.0	7174.6	90.3	10.4
9 21 56.00	7069.2	-38.5	1293.0	7186.6	90.3	10.4
9 21 56.10	7081.7	-38.5	1295.9	7199.4	90.3	10.4
9 21 56.20	7093.9	-37.8	1299.2	7212.0	90.3	10.4
9 21 56.30	7105.5	-37.9	1302.6	7224.0	90.3	10.4
9 21 56.40	7117.2	-36.2	1305.8	7236.1	90.3	10.4
9 21 56.50	7129.8	-37.4	1309.4	7249.1	90.3	10.4
9 21 56.60	7140.6	-36.2	1313.1	7260.5	90.3	10.4
9 21 56.70	7152.5	-36.5	1316.0	7272.7	90.3	10.4
9 21 56.80	7164.1	-36.3	1320.1	7284.8	90.3	10.4
9 21 56.90	7175.7	-37.2	1323.5	7296.8	90.3	10.4
9 21 57.00	7187.5	-36.5	1326.6	7308.9	90.3	10.5
9 21 57.10	7199.1	-36.4	1330.0	7321.0	90.3	10.5
9 21 57.20	7211.0	-35.8	1333.6	7333.4	90.3	10.5
9 21 57.30	7223.3	-33.0	1336.4	7346.0	90.3	10.5
9 21 57.40	7235.0	-35.4	1340.2	7358.2	90.3	10.5
9 21 57.50	7247.1	-35.3	1343.2	7360.6	90.3	10.5
9 21 57.60	7258.8	-34.7	1347.0	7382.8	90.3	10.5
9 21 57.70	7270.3	-34.6	1350.8	7394.8	90.3	10.5
9 21 57.80	7281.1	-33.0	1354.4	7406.0	90.3	10.5
9 21 57.90	7292.3	-33.0	1357.3	7417.6	90.3	10.5
9 21 58.00	7303.5	-31.9	1360.7	7429.2	90.3	10.6
9 21 58.10	7316.2	-31.8	1363.9	7442.3	90.2	10.6
9 21 58.20	7327.1	-31.4	1367.4	7453.7	90.2	10.6
9 21 58.30	7339.8	-31.1	1370.3	7466.7	90.2	10.6
9 21 58.40	7352.0	-31.6	1373.0	7479.1	90.2	10.6
9 21 58.50	7362.8	-31.1	1376.7	7490.4	90.2	10.6
9 21 58.60	7374.4	-30.8	1380.1	7502.5	90.2	10.6
9 21 58.70	7386.0	-30.4	1383.4	7514.5	90.2	10.6
9 21 58.80	7398.6	-30.8	1385.9	7527.4	90.2	10.6
9 21 58.90	7409.5	-30.2	1389.1	7538.7	90.2	10.6

79-32-9

FIGURE 9. SAMPLE PHOTOTHEODOLITE DATA LISTING

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

Since terms B and e are constant for any given measurements, they are more readily applied as a constant, as given in the following table:

TABLE 1. $K = B_{iej}$.

	B_1 (29/36)	B_2 (8/36)	B_3 (8/29)
e_1 (Film-qual.)	0.31	0.49	0.57
e_2 (Film-std.)	0.62	0.97	1.14
e_3 (Real-time)	2.81	4.38	5.14

The error equation then simplifies to:

$$E = Kd.$$

Quick application of this equation can be done using either of the charts (figures 10 or 11) on which curves of d are plotted for given target X, Y coordinates in terms of baseline distances. Figure 11 is an expanded version of figure 10, and is used to compute errors for points close in.

To use these charts, assume, for example;

- (1) use of phototheodolite pair P8 and P36,
- (2) use of magnetic tape data,
- (3) target at point P, figure 10.

Although, in this example, target location is specified on the chart, it is normally necessary to establish target X, Y coordinates normalized to the selected baseline. For example, P8/P36 baseline has a length of 10,084 feet, therefore the target, P, which is four baselines distant in X and Y, would have coordinates, X = 40,336 feet, Y = 40,336 feet.

Having established the location of the target on the chart, simply read its d-value; in this case, d = 90.

$E = Kd = (4.38)(90) = 394$ feet, for a target approximately 9.4 nmi from the baseline's midpoint. (This approximate target distance, 9.4 nmi, is simply estimated from the chart using $B = 10,084$ feet.)

For the same target location and same phototheodolite pair, but using rigid quality-controlled film reading:

$$E = (0.49)(90) = 44 \text{ feet.}$$

From this, it is obvious that the more accurate data are obtained using film records, since film reading corrects for operator tracking error. The penalty, however, is in the film reading process which, for any substantial amount of data, may result in delays of several weeks.

FIGURE 10. RANGE ERROR CURVE

FIGURE 11. RANGE ERROR CURVE, CLOSE IN

Consider a point P (figure 11), where the target is close in, approximately 1.4 nmi from the baseline's midpoint. Using the same phototheodolite pair as in the previous example,

$$E = (4.38)(2) = 8.8 \text{ feet with magnetic tape data, and}$$

$$E = (0.49)(2) = 0.98 \text{ feet using quality film reading.}$$

It is to be emphasized that E is defined as the "maximum potential error," it is not necessarily the actual error that is obtained from each and every point measurement and computation of target position. This will be further described later. At this point, however, the charts are adequate in providing a quick estimate of maximum potential error for given baseline, data processing, and target location.

ERROR DEFINITION.

An expanded analysis of phototheodolite system error is given in the appendix.

FILM DATA VS. MAGNETIC TAPE DATA.

Tests of phototheodolite film data versus real-time magnetic tape data were conducted in 1973 and reported in FAA-RD-74-207, "Microwave Landing System Phase II Tracker Error Study." Phototheodolite system specifications are given in table 2. In this report, 10 runs were flown, with phototheodolites P8, P29, and P36 tracking. Film data, reduced using the standard film reading procedures, were compared with magnetic tape data.

A total of 2,612 samples of data were evaluated ranging from approximately 7,000 to 15,000 feet distant. The mean and standard deviation statistics of the differences in terms of MLS XYZ coordinates were as follows:

mean (ft)	ΔX	ΔY	ΔZ
std. dev. (ft)	3.42	1.54	1.12

where Δ denotes magnetic tape data minus film data.

TABLE 2. PHOTOTHEODOLITE SPECIFICATIONS

<u>LEADING PARTICULAR</u>	<u>CHARACTERISTIC</u>
Phototheodolite Instrument	Contraves Model C
Maximum Range	15 nautical miles (nominal)
Photographic Film Size	35 millimeter
Azimuth or Elevation Tracking Velocity	33° per second
Azimuth or Elevation Tracking Acceleration	60° per second
Azimuth Range	360°
Elevation Range	-5° to 90°
Data Sampling Rates	5 or 20 frames per second
Photographic film data	5 samples per second
Plotting board	20 samples per second
Computer format tape	5 sets of coordinates per second
Tabulator	5 sets of coordinates per second
Real-time tabulator	
Raw Data Recorder	
Type	Ampex Model FR 1100
Tape size	1/2 inch
Number of channels	7
Recording speed	7.5 inches per second
Recording time for a 2,400-foot roll of tape	1 hour
Computer Format Recorder	
Type	Ampex Model FR 1100
Tape size	1/2 inch
Channels	7
Recording speed	20.8 inches per second
Recording time for a 2,400-foot roll of tape	20 minutes
Coordinate Conversion Computer	
Full-Scale Output	
X or Y	100,000 feet
Z	25,000 feet
Plotting Board	
Size	30 inches by 30 inches
Area mode scales (maximum range)	
X-Y	100,000 feet 50,000 feet 25,000 feet 10,000 feet
Z	0 to 20,000 feet 0 to 10,000 feet 0 to 5,000 feet
Encoders	
Azimuth elevation	15 bits LSB = 40 arc-seconds

EXTENDED AREA INSTRUMENTATION RADAR

The Model 661 EAIR is a precision C-band instrumentation radar system designed to measure, record, and display aircraft coordinates in slant range, azimuth, and elevation angles. Maximum tracking distance of the EAIR is 100 nmi in primary (skin) mode, and 190 nmi in secondary (beacon) mode, while minimum tracking distance is 1 nmi. Digital output data consisting of slant range, azimuth angle, and elevation angle are recorded on magnetic tape. Analog data in XY or XH (H = height above earth) coordinates are recorded real-time on a 30-inch plotter.

Photographs of the facility are shown in figures 12, 13, and 14. A diagram of the basic system is shown in figure 15.

The antenna is a 14-foot parabolic reflector with a beam width of 0.9° and selectable polarization, either linear or circular. The antenna can rotate through 360° horizontally, and from -1 1/2° through 90° in the vertical plane.

A 26 1/2-foot rigid foamed plastic radome protects the antenna and its pedestal from the elements. The antenna, azimuth, and elevation axes are driven by gearless direct current (d.c.) torque motors which drive direct-coupled, 17-bit digital data takeoffs.

Digital signals are applied to a digital data converter and magnetic tape recorder which also includes a NAFEC central time unit. The data are organized into a suitable format which is recorded on magnetic tape for subsequent processing on the NAFEC central computer.

The EAIR features: automatic tracking once the aircraft is acquired, which enables the radar antenna and range system to automatically follow aircraft movements; an aided range-tracking feature that enables a range gate to be set at aircraft velocity to facilitate angle lock-on or tracking during poor signal conditions; and raster scanning to assist in target acquisition. The EAIR also has the capability of providing or receiving synchronizing and slaving information to or from other radars or from phototheodolites.

DATA FLOW.

The EAIR (figure 16) (1) contains a tracking and recording system that includes an analog computer and digital data processor. Aircraft trajectory display of XY or XH coordinates is provided on a 30-inch x 30-inch plotter (2) which has continuously adjustable range scales from 6,000 to 400,000 yards. NAFEC central time (3) provides timing signals to the plotter and raw data tape (4).

The raw data tape contains time and raw radar measurements in slant range, azimuth, and elevation angles, plus quality bits for program check of time accuracy, designation whether the radar is in manual track or automatic

FIGURE 12. EAIR FACILITY

79-32-15

FIGURE 13. PLOTTER/RECODER

FIGURE 14.
RADAR CONSOLE

FIGURE 15. FAIR DIAGRAM

79-32-17

FIGURE 16. EAIR SYSTEM DATA FLOW

track, and other manually inserted information. Data recording rate is 10 samples per second.

EAIR raw data tapes are processed on the NAFEC computer using the EAIR production program. Header cards (5) or keyboard entries register identification information such as project title and number, tape number, and options instructions. Origin translation and rotation are entered as an option (6). The program accepts geodetic or cartesian coordinates of a new origin or orientation of axes.

Regardless of options selected, the program will always test EAIR quality bits (7), and will flag the absence of any quality bit by automatic insertion of a negative sign on each associated time word in which the quality bit is missing. These quality bits dropout when EAIR loses target track, when tracking manually, or when the time word is bad.

Printout rate is optionally selected (8) from a maximum rate of 10 samples per second to a minimum rate of one sample per minute.

Processed data from the EAIR program may be opted for a binary coded decimal (BCD) printout (9), a binary tape (10), or both.

Optional listings of processed EAIR data in the BCD printout are for the following groupings of target position coordinates: slant range, azimuth, elevation angles (11), XYZ and height (12); or slant range, azimuth and elevation angles, latitude, longitude, and height (13). Any or all of these options may be selected in a given program run. BCD printout of data (sample shown in figure 17) may satisfy project requirements with no further processing of data.

EAIR data quality is checked via a first-differences test (14) of consecutive range, azimuth, and elevation values. These first differences are compared with preestablished values, and values outside these limits are flagged and printed out separately.

Binary options permit data records in the following groupings: slant range, azimuth, and elevation (15), XYZ (16), or latitude, longitude, and height (17). Each tape also carries time of day.

Project system data, recorded on project instrumentation (18) in analog converted to digital, or on digital recording (19) are typically merged (20) with the EAIR binary tape. This merge program produces such outputs as comparative differences in azimuth (perhaps for comparison with project very high frequency omnirange (VOR) bearing measurements), or range (typically for comparison with distance measuring equipment (DME) measurements).

Differences are treated statistically for a summarized printout (9), or a plotter tape (21) is generated to permit construction of plots on the NAFEC computer's digital plotter (22). Printouts and plots serve as basis from which the accuracies of project systems are determined. Plots frequently are incorporated in final reports (23).

PAGE - 24

AAA-NAFFC EAI#78 -----
PROCESSED 11/29/78 RUN# 2 OF TAPE#185
TAP DATE 4/23/78

79-32-19

FIGURE 17. SAMPLE FAIR DATA LISTING

SYSTEM ACCURACY.

A limited test of system accuracy was conducted and reported in report FAA-NA-73-94, entitled, "Accuracy Test of NAFEC Instrumentation Radar." This report showed raw range errors to be 161 feet, which, corrected for propagation, reduced to 96 feet, of which there was an uncertainty of 27 feet in the photographic reference positioning system used in the test to establish true position.

Reference position data for this test were collected using a Type K-38 aerial camera, with 36-inch focal length and 9 x 18 negative. Terrain photographs were taken of prominent structures; in this case, tall buildings in central Philadelphia. Since vertical objects in photographs taken at altitude tend to lean away from the aircraft's plumb point at the instant the photo was taken, tracing several such leaning lines resulted in a crossing point on the film which established plumb point. Detailed maps were then used to read aircraft position in geodetic coordinates, which were recomputed in the radar parameters of slant range and azimuth. From time-correlated EAIR measurements, comparisons of slant range and azimuth provided the results shown in table 3.

The previously referenced report, "Microwave Landing System Phase II Tracker Error Study," notes the following EAIR data characteristics: "There existed very large bias and low-frequency differences between EAIR and phototeleodolite position data...there is a variation of range error with distance from the EAIR location."

Table 4 lists summary statistics of EAIR beacon data versus phototheodolites resulting from the MLS flight test program. Figure 18 is a plot of data from runs in this test. It shows an oscillation in slant range error that was found to be both repeatable and predictable. The MLS program established an error equation to offset the cyclic error, which is described in this report. In general, however, the means and standard deviations of range error were comparable to those obtained in the previously described 1966 EAIR test.

EAIR system specifications are given in table 5.

79-32-20

FIGURE 18. EAIR RANGE ERROR

TABLE 3. EAIR SUMMARY STATISTICS

<u>SKIN TRACK</u>	<u>AZIMUTH (DEGREES)</u>			<u>RANGE (FEET)</u>		
<u>TIME</u>	<u>PHOTO (P)</u>	<u>EAIR (E)</u>	<u>AZ (P-E)</u>	<u>PHOTO (P)</u>	<u>EAIR (E)</u>	<u>R (P-E)</u>
1001:5012	319.125	319.142	-.017	241,721	241,806	- 85
1024:22.1	319.290	319.271	+.019	241,830	241,926	- 96
1031:41.7	319.136	319.153	-.017	242,558	242,766	-208
1038:44.8	319.187	319.175	+.012	242,246	242,310	- 64
1045:05.0	319.168	319.208	-.040	241,579	241,668	- 89
1052:04.5	319.250	319.249	+.001	242,136	242,214	- 78
1057:21.9	319.082	319.098	-.016	242,166	242,310	-144
1109:11.2	319.058	319.084	-.026	242,321	242,466	-145
1121:07.8	319.128	319.158	-.030	241,937	242,082	-145
1127:15.7	319.306	319.309	-.003	241,633	241,710	- 77
	$\bar{X} = -0.012$			$\bar{X} = -113$		
	$s = 0.019$			$s = 45$		
	$N = 10$			$N = 10$		
<u>BEACON TRACK</u>						
1354:46.4	319.090	319.098	-.008	242,135	242,298	-163
1407:17.0	319.105	319.109	-.004	242,026	242,196	-170
1412:38.7	319.250	319.221	+.029	242,040	242,166	-126
1417:43.1	319.055	319.065	-.010	242,279	242,484	-205
1423:44.4	319.266	319.246	+.020	242,011	242,172	-161
1428:28.2	319.054	319.073	-.019	242,361	242,514	-153
1434:38.4	319.164	319.139	+.025	242,579	242,742	-163
1439:55.5	319.075	319.095	-.020	242,252	242,430	-178
1445:37.5	319.172	319.112	+.060	242,520	242,682	-162
1457:26.5	319.313	319.296	+.017	241,745	241,854	-109
1502:01.6	319.101	319.109	-.008	242,287	242,384	- 97
1509:00.3	319.161	319.164	-.003	242,679	242,838	-159
1513:54.8	319.060	319.073	-.013	242,320	242,514	-194
1525:04.4	319.055	319.051	+.004	242,322	242,538	-216
	$\bar{X} = 0.005$			$\bar{X} = -161$		
	$s = 0.023$			$s = 33$		
	$N = 14$			$N = 14$		

$$\bar{X} = \frac{\sum X}{N} = \text{mean}$$

$$s = \sqrt{\frac{\sum (X - \bar{X})^2}{N-1}} = \text{standard deviation}$$

TABLE 4. EAIR VS. PHOTOTHEODOLITE, RAW DIFFERENCES

Run No. (all on 9/27/73)	Distance		Range Difference		Azimuth Difference (milliradians)		Elevation Differences (milliradians)	
	Partition- SMLS (ft)	Start	Stop	X	s	X	s	X
3	24990.	21994.	102.45	23.02	0.24	0.42	-0.51	0.18
	21994.	19117.	136.97	24.41	0.43	0.77	-0.58	0.24
	18987.	15857.	128.18	21.27	0.90	1.03	-0.68	0.42
	15989.	12816.	87.20	10.11	1.77	1.20	-0.77	0.70
	12995.	9887.	124.55	21.18	3.03	1.97	1.79	4.39
4	33994.	30584.	135.15	20.33	0.02	0.48	-0.44	0.26
	30999.	27561.	101.12	24.61	0.18	0.34	-0.37	0.14
	27988.	24680.	144.65	19.89	0.23	0.41	-0.37	0.21
	24988.	21380.	114.37	16.28	0.18	0.51	-0.47	0.24
	21983.	18102.	147.76	21.28	0.45	0.61	-0.60	0.20
	19018.	15879.	130.14	33.79	1.56	7.96	-0.62	0.42
	15986.	12364.	91.22	9.19	2.35	1.73	-0.95	0.54
	12981.	9684.	121.91	19.28	3.48	3.38	2.49	4.59
5	36983.	33609.	88.77	21.00	0.03	0.45	-0.39	0.20
	33981.	30716.	123.91	28.48	-0.07	0.35	-0.38	0.13
	30985.	27812.	94.80	22.06	0.16	0.38	-0.45	0.16
	27995.	24948.	138.69	16.39	0.32	0.40	-0.41	0.15
	24993.	21914.	115.77	14.83	0.30	0.56	-0.41	0.25
	21989.	18932.	146.27	21.39	0.50	0.82	-0.64	0.23
	18990.	15859.	127.61	23.37	0.86	0.82	-0.56	0.19
	16000.	12884.	86.22	6.33	2.16	0.94	-0.69	0.43
	12999.	9798.	118.42	19.40	2.53	3.00	1.76	4.06

TABLE 5. EAIR SPECIFICATION

<u>LEADING PARTICULAR</u>	<u>CHARACTERISTIC</u>
Radar	
Transmitter	
Frequency	C-Band, 5450 to 5825 megacycles
Magnetron	Tunable, type 7156
Peak Power Output	1/4 megawatt (double or triple pulse capability)
Pulse Repetition Frequency	410 pulses per second
Pulse Duration	0.8 microsecond
Antenna	
Reflector	14-foot parabolic
Scanner Polarization (Remote Selectable)	Linear vertical Linear horizontal Right-hand circular Left-hand circular
Gain	45 dB
Side Lobe Level	At least -22 dB referred to peak of main lobe
Static Beamwidth	0.9
Crossover	80%
Dynamic Beamwidth	1.39 at 80% crossover
Nutation Rate	1,800 rpm
Antenna Positioning	
Elevation (El)	-1 1/2 and -181 1/2
Azimuth (Az)	Continuous 360
Limit Settings (Elevation)	-3 and 183 (beginning of energy absorption--absolute limits -8 and 188)
Electrical	-1 1/2 and -181 1/2. With excess speed, auxiliary limits at 7 and 173
Modes-Manual incl. raster	Manually positioned synchros and followups
Remote	Controlled by one speed synchro information from remote source
Automatic	Controlled by radar error signal generated by 30-cycle conical scan. Double integration of error signal to provide tracking with negligible velocity error and acceleration constant depending on smoothing setting. Separate selection of modes for azimuth and elevation possible for test or operations.
Az and El accuracy	0.2 milliradian (0.011°)

TABLE 5. EAIR SPECIFICATIONS (Continued)

<u>LEADING PARTICULAR</u>	<u>CHARACTERISTIC</u>
Receiver System	
Amplifier	Tunnel Diode
Minimum Discernible Signal	-104 decibels per 1 milliwatt (dBm)
Noise Figure	Less than 5.0 dB
AGC Dynamic Range	Minimum of 65 dB with 25 dB inserted manually for total of 90 dB
Beacon Delay	Continously variable 0-600 yards delay of tracking gate
General	Dual local oscillators permit simultaneous radar and beacon track- ing, radar automatic frequency control (AFC) circuit referenced to transmitted frequency, beacon AFC circuit references to received signal
Range System	
Master Timing	81.946 kHz crystal-controlled oscil- lator (one in use, one standby). Temperature stability of crystals is better than 0.1 part/million/degree centigrade. Crystals are mounted in ovens having temperature stability of $\pm 1^\circ$ centigrade
Range Calibration Accuracy	2 yards
Automatic Range Tracking Rate	10,000 yards/second
Manual Range Tracking Slew Rate	40,000 yards/second
Tracking Accuracy Range	With 12 dB signal-to-noise ratio, RMS error will not exceed 20 yards, exclusive of beacon or propagation errors at 3,000 yard/second range rate. Will track at range rates up to 10,000 yard/second with less than 50 yards range error.
Angle	Acceleration lags are defined by the acceleration constants. RMS tracking at signal-to-noise ratio of 18 dB will be about 0.15 mil RMS for low acceleration conditions. The radar will perform automatic tracking at rates up to 50 per second.
Maximum Range Skin Track	100 nautical miles
Beacon Track	190 nautical miles
Maximum Tracking Rate	5,000 miles per hour

TABLE 5. EAIR SPECIFICATIONS (Continued)

<u>LEADING PARTICULAR</u>	<u>CHARACTERISTIC</u>
Plotting Board Size	30 x 30 inches
Time Mark Intervals from Range Control Central	1 PPS and 1 PP10S
Map Scales	Continuously adjustable from 200 yards/inch to 40,000 yards/inch
Polar-to-Cartesian Coordinate Converter	
Maximum Range	400,000 yards
Parallax Adjustments	
X and Y	0-50,000 yards
H	0-10,000 yards
Earth Curvature Correction Outputs (X, Y and H)	Provided for both range and height d.c. voltage to plotting boards
Digital Data Converter Magnetic Tape Data	
Range Word	18-bit natural binary represents 400,000 yards of range to a resolution of 2 yards
Azimuth and Elevation Word	17-bit natural binary represents 360 of angle to a resolution of better than 10 seconds of arc
Time Word	24-bit BCD represents hours, minutes, seconds, to a resolution of 0.1 second.
Auxiliary Word	27-bit front-panel switch selectable
Computer Format Recorder	
Type	Kennedy Digital Tape Recorder
Magnetic Tape Running Time (Full Reel)	Approximately 6 hours
Tape Width	1/2 inch
Recording Rate	75 inches per second
Number of Tracks	7
Sampling Rate	10 samples per second (1 word consists of 20 samples)

LASER TRACKER

The precision automated tracking system is a mobile facility which uses an invisible laser beam to illuminate and automatically track cooperative targets. A retroreflector (figure 24) is required on the target aircraft.

The equipment, including very high frequency (VHF) communications and telemetry is mounted in a van for mobile operation as shown in figures 19 through 22. Power requirements are 208 volts, 3-phase, 60 hertz (Hz), at 45 kilowatts (kW).

The laser system consists of a target tracking subsystem that maintains automatic target track, and a data processing subsystem that processes, displays, and records tracking data.

The tracking subsystem contains:

- Laser transmitter
- Laser power supply
- Laser receiver
- Optical automatic gain control (AGC) system
- System control
- Range computer
- Optical mount and servo system
- Video optical sighting subsystem.

OPERATION.

The laser transmitter and optical receiver are mounted on an elevation-over-azimuth tracking mount as shown in figure 23. The transmitter emits short bursts of infrared laser energy in a very narrow beam. These pulses strike an optical reflector (figure 24) mounted on the target aircraft, return to a receiving telescope, and are processed by the receiver to produce azimuth and elevation pointing error signals. These error signals are used to drive servo motors that move the optical mount in azimuth and elevation to maintain automatic target tracking. Range is obtained by measuring the time interval between transmitted and received optical pulses. Range, azimuth, and elevation in digital format are supplied to the data processing subsystem.

The laser transmitter consists of a laser resonator which generates the laser beam. The laser beam from the transmitter passes through the following optical elements:

1. An optical AGC attenuator assembly which can insert up to 60 decibels (dB) of attenuation into the beam path,
2. Beam-collimating optics which expand the laser beam diameter to approximately 1 inch, and

FIGURE 19. LASER VAN (SIDE)

FIGURE 20. LASER VAN

FIGURE 21. VAN INTERIOR

FIGURE 22. VAN INTERIOR

79-32-25

FIGURE 23. OPTICAL PACKAGE

79-32-26

FIGURE 24. RETROREFLECTOR

3. Prisms which direct the collimated laser beam to the center of the receiving telescope and align the beam coaxial with the telescope optical axis.

The laser resonator is basically an oscillator that operates at the wavelength of 1.064 microns in the near-infrared region of the optical spectrum.

Target returns are captured by a conventional 8-inch diameter Schmidt-Cassegrain telescope which has an effective focal length of 66 inches and an aperture of f/8.25. The telescope's optical output is directed to a 4-quadrant photodetector. When the telescope axis is pointed precisely at the tracked target, all quadrants of the photodetector receive equal portions of the target return image, and the detector outputs are equal. When the target is slightly off axis, the detector outputs are unequal and are a function of the magnitude and direction of the pointing error. Outputs of the photodetector are processed to develop error signals to the optical mount servo system.

A narrow-band optical bandpass filter, centered at the laser beam wavelength and positioned between the telescope output and the quadrant photodetector, discriminates against ambient visible light sufficiently to reduce sky background noise at the photodetector below the inherent noise level of the detector.

An optical AGC system operates a filter wheel in conjunction with transmitter optical attenuators to maintain constant average optical signal levels at the quadrant photodetector.

Range measurement is made by an interval counter that starts when the laser fires and stops upon receipt of a target return pulse. The range computer is initialized each time the laser is fired, and the interval counter starts approximately 200 microseconds (μ s) later. If no target return pulse is received, the interval counter will count to overflow, causing a signal which the computer uses to disregard that data sample.

Range to the tracked target is measured and displayed with a resolution of 1 foot. The range word is in 18-bit parallel binary format and is supplied to the data processing subsystem at a 100-per-second sample rate.

The optical mount is mounted on a three-legged pedestal that is bolted to the trailer frame for transport. When tracking, the pedestal is mechanically isolated from the trailer. For leveling purposes, the mount is equipped with levels that have a resolution of five arc-seconds.

Video-optical sighting equipment allows targets of interest to be acquired visually, after which the system switches to an autotrack mode. The video portion of the target acquisition uses a television camera that is mounted below the receiving telescope and aligned with the tracking optical axis. The optical portion of the target acquisition equipment consists of a remote

acquisition aid which is basically a six-power telescope, with an 8° field of view, mounted on a small elevation-over-azimuth pedestal.

Single-speed torque synchro transmitters send azimuth and elevation pointing angles to the computer interface unit where they are converted to digital format. The computer software program generates drive commands to the optical mount to move the mount to the azimuth and elevation angles of the acquisition aid to acquire a target sighted in the telescope.

DATA PROCESSING SUBSYSTEM.

This system contains:

- central processing unit
- extended arithmetic unit
- magnetic core memory
- alphanumeric terminal
- magnetic tape units
- magnetic disk drive
- paper tape reader/punch
- card reader
- line printer
- teletypewriter
- graphic terminal
- XY plotter.

During a tracking mission, the data processing subsystem operates online to exercise control over the tracking subsystem while formatting tracking data for recording and display.

The data processing subsystem contains a Digital Equipment Corp. PDP-11/35 processor and associated peripherals. A unibus interconnects peripherals to the central processing unit and to each other for data transfer and control.

The alphanumeric terminal in the control console (figure 25) is the primary interface between the operator and the data processing subsystem. It consists of a keyboard and a 10-inch CRT. During pre-mission initialization, the terminal functions as a normal teletypewriter to enter various mission parameters. After a tracking mission, track data recorded on magnetic tape may be dumped onto the display for rapid visual editing.

Magnetic tape units consist of one nine-track tape and two seven-track units, with all three tape drives sharing the same controller interface. Although the nine-track unit is designated the "master" and the others "slave," each transport is equally accessible to the computer.

The magnetic disk subsystem is capable of holding over 1.2 million words of random access storage space. This large storage capability allows all system programs, compilers, assemblers, etc., to be online and rapidly transferred

FIGURE 25. CONTROL CONSOLE

to core for execution. Magnetic core memory provides space for storing 32K words.

DATA FLOW.

In figure 26, the laser facility (1) receives NAFEC central time from a time code generator (2) synchronized to NAFEC time. Prior to a flight mission, target board calibration data (3) are measured and recorded, and a rate of data recording (4) is selected (between 1 and 100 samples per second; usually 10 per second).

The raw data tape (5) of range, azimuth, elevation, time, and 15 quality bits is delivered to the computer complex for processing. Initially, control cards are prepared (6) which permit insertion of title for printout, date, run numbers, coordinates of selected origin, data rate in and out, form of output data, whether binary tape is required and other options.

Target board calibration data (7) are used to calculate elevation encoder bias and tilt in direction and magnitude, which is applied to all elevation measurements, and the azimuth offset of the laser heading with respect to selected coordinates.

Quality bits (8) are tested, processed, and printed; these bits contain information on azimuth-elevation limits of the optical mount, radiated power level, and indicators for signal presence, automatic track or manual, computer responsible, remote acquisition, range overflow, acquisition data, laser transmitter on/off, and provision for a manually inserted event mark on the tape.

Azimuth and elevation error corrections signals (9) determined by the quadrant detector are digitized, recorded, and applied to azimuth and elevation measurements.

Translation and rotation of origin (10) is accomplished from input coordinates of the new origin, and data rates for data in and data out is established (11).

BCD tapes provide listings of range, azimuth, elevation, azimuth error correction, elevation error correction, and quality bits in a raw data tape (12), and for range, azimuth, elevation, XYZ and quality bits in the standard output tape (13) which are listed on the printer (14). A sample printout of laser data are shown in figure 27.

Binary tapes provide data in format common to the EAIR and phototheodolite binary tape formats. Presently, data in range, azimuth, elevation (15), in XYZ (16), or geodetic coordinates (17) are available.

The binary tape (18) is used generally in a merge program (19) with data from a project system (20) which produces a project tape (21). The merge program

FIGURE 26. LASER SYSTEM DATA FLOW

FAA / NAAFE C LASER DATA WITH SPHERICAL AND CARTESIAN COORDINATES				A/C NO. 900	FLIGHT NO. 400	RUN NO. 3
DEC. 20, 1978 LASER DATA				DATE 12 20 78	FLAGS	
TIME	X FT.	Y FT.	Z FT.	SLANT RANGE	AZIMUTH ANGLE	ELEVATION ANGLE
HRS MIN SEC				DEG.	DEG.	DEG.
13 34 39.857	67263.1	-34607.9	2532.2	75686.7	117.227	1.921
13 34 39.857	67275.3	-34575.4	2555.6	75683.3	117.200	1.935
13 34 40.057	67302.7	-34514.2	2548.4	75679.4	117.150	1.930
13 34 40.057	67307.2	-34694.9	2541.4	75674.4	117.135	1.925
13 34 40.257	67330.4	-34447.3	2532.6	75673.1	117.095	1.918
13 34 40.257	67335.2	-34222.0	2527.2	75662.7	117.076	1.914
13 34 40.257	67323.3	-3426.4	2541.9	75657.6	117.043	1.927
13 34 40.557	67322.7	-3419.9	2543.7	75654.1	117.019	1.920
13 34 40.657	67329.4	-34389.7	2541.6	75666.3	117.057	1.925
13 34 40.857	67369.2	-34294.3	2535.8	75638.2	116.918	1.921
13 34 40.957	67388.2	-34250.2	2538.9	75635.2	116.942	1.924
13 34 41.057	67374.8	-34249.5	2528.3	75622.6	116.966	1.916
13 34 41.157	67401.0	-34193.8	2538.2	75621.1	116.900	1.913
13 34 41.257	67393.6	-34182.8	2542.8	75609.7	116.855	1.927
13 34 41.357	67405.3	-34146.0	2547.5	75603.7	116.866	1.931
13 34 41.457	67397.7	-34143.1	2547.3	75597.6	116.856	1.931
13 34 41.557	67398.6	-34125.4	2543.5	75588.3	116.854	1.928
13 34 41.657	67398.2	-34126.5	2528.3	75582.6	116.846	1.928
13 34 41.757	67414.2	-34113.1	2543.3	75584.4	116.846	1.928
13 34 41.857	67437.3	-34059.0	2541.0	75572.2	116.804	1.927
13 34 41.957	67448.2	-33993.3	2548.9	75563.4	116.751	1.933
13 34 42.057	67436.0	-33970.1	2537.8	75562.2	116.732	1.920
13 34 42.157	67436.0	-33940.2	2544.4	75538.3	116.716	1.930
13 34 42.257	67449.7	-33906.7	2534.0	75535.1	116.699	1.922
13 34 42.357	67458.2	-33851.1	2535.3	75582.4	116.686	1.928
13 34 42.457	67456.2	-33846.5	2541.0	75572.2	116.655	1.927
13 34 42.557	67470.1	-33809.3	2548.9	75563.4	116.655	1.933
13 34 42.657	67452.5	-33871.9	2530.5	75492.0	116.623	1.920
13 34 42.757	67454.7	-33795.4	2533.6	75489.6	116.611	1.930
13 34 42.857	67471.1	-33743.0	2538.2	75481.2	116.571	1.922
13 34 42.957	67478.2	-33704.1	2535.3	7526.1	116.674	1.924
13 34 43.057	67497.3	-33552.0	2536.4	75514.0	116.645	1.925
13 34 43.157	67477.4	-33665.4	2549.6	75550.1	116.655	1.935
13 34 43.257	67497.2	-33605.8	2543.0	75435.3	116.623	1.921
13 34 43.357	67469.8	-33616.4	2532.7	75432.0	116.698	1.923
13 34 43.457	67500.1	-33551.7	2533.6	75421.4	116.430	1.925
13 34 43.557	67508.0	-33516.5	2538.2	75433.1	116.404	1.929
13 34 43.657	67498.2	-33508.4	2527.6	75404.3	116.499	1.923
13 34 43.757	67500.9	-33476.1	2528.8	75388.5	116.378	1.922
13 34 43.857	67488.8	-33468.5	2538.4	75374.5	116.377	1.920
13 34 43.957	67516.0	-33401.9	2529.5	75369.0	116.323	1.923
13 34 44.057	67516.5	-33352.2	2542.4	75356.8	116.302	1.925
13 34 44.157	67503.4	-33316.5	2525.0	75341.8	116.303	1.921
13 34 44.257	67527.5	-33308.4	2527.9	75335.8	116.252	1.923
13 34 44.357	67531.1	-33275.6	2524.1	75327.5	116.232	1.920
13 34 44.457	67509.2	-33279.8	2530.3	75309.0	116.262	1.925
13 34 44.557	67505.5	-33261.6	2526.4	75297.5	116.231	1.923
13 34 44.657	67513.4	-33214.7	2537.5	75284.2	116.196	1.932
13 34 44.757	67528.6	-33162.6	2533.6	75274.8	116.155	1.929
13 34 44.857	67527.9	-33136.1	2528.0	75266.2	116.137	1.925
13 34 45.057	67510.6	-33105.5	2523.5	75233.2	116.122	1.922

FIGURE 27. SAMPLE LASER DATA LISTING

commonly provides for plots of comparative data (23) upon which reports (24) are based.

SYSTEM ACCURACY.

A flight test on November 15, 1978, with laser and EAIR, acquired data that was used in a report, "Statistical Analysis Support for Airborne Separation Assurance Support Systems" (Contract DOT-FA74-NA-1027, Task 13). The data were evaluated for a statistical estimate of the standard deviation of laser errors in azimuth, elevation, and range. The estimates of error obtained were:

Azimuth: 0.0086°
Elevation: 0.0128°
Range: 2.6 feet (at 6 nmi).

Several reflectors are in use at NAFEC to provide calibration of the laser. These target board data are measured and recorded prior to and immediately following each flight test period.

Elevation data from the target board measurements are processed in the computer program for comparison with the survey values, thereby establishing tilt error which is used by the program to compute and apply corrections to target elevation data.

Range bias as determined from the comparison of measured and survey values permit adjustment, if necessary, of range bias at the facility. Additionally, there is a propagation correction to range measurements that can be made at the facility in which range is corrected proportional to distance of the target.

Analysis of target board data for several periods yields standard deviation of:

Azimuth: 0.0070°
Elevation: 0.0135° , (the 0.011° elevation error bit was later found to be not functioning at the time. Corrected target board data with the 0.011° bit included was found to provide an error figure of 0.0013° elevation) and the system specification of standard deviation in range is given as:

1 - 5 nmi: 1 foot
5 -10 nmi: 2 feet
10-25 nmi: 5 feet

These figures suggest excellent correlation between static target board data and dynamic tracking data, and support the contention that target board data prior to and following flight test periods have a high probability of being representative of tracking data from that flight.

Laser specifications are given in table 6.

TABLE 6. LASER SPECIFICATIONS

<u>LEADING PARTICULAR</u>	<u>CHARACTERISTIC</u>
COVERAGE	
Azimuth:	540°
Elevation:	-5° to +105° (dynamic specifications apply for -5° to elevation)
Range:	25 nautical miles through touchdown and rollout (dependent on visibility conditions)
SYSTEM ACCURACY	
Azimuth:	+20 arc seconds at all ranges including touchdown and rollout
Elevation:	+20 arc seconds at all ranges including touchdown and rollout
Range:	+1 foot for target ranges out to 5 nmi +2 foot for target ranges 5 to 10 nmi +5 foot for target ranges at 25 nmi
MAXIMUM ANGULAR RATE IN AUTOMATIC MODE	
Azimuth:	500 mrad/seconds
Elevation:	50 mrad/seconds
MAXIMUM ANGULAR ACCELERATION IN AUTOMATIC MODE	
Azimuth:	80 mrad/sec ²
Elevation:	80 mrad/sec ²
DATA SAMPLE RATE	
100, 50, 20, 10 samples per second (switch selectable)	
DATA ENCODERS	
Azimuth:	18 bits
Elevation:	18 bits
Range:	18 bits
*Az Error:	8 bits
*El Error:	8 bits
ENVIRONMENTAL CONDITIONS (OPERATING)	
Ambient temperature 0° F to 110° F	
Relative humidity 0 to 100%	
Wind 0 to 50 knots	
*These are derived from a detector, which provides voltage analogs of azimuth and elevation tracking errors on the target return. These error signals are digitized.	

SAFETY.

Operational safety of the laser tracker involves several precautions. To assure personnel safety during operation, the laser and personnel are housed in a steel, windowless trailer. Goggles are required outside the trailer unless the laser power supply is turned off. When the power supply is off, a steel shutter automatically swings in front of the laser exit port.

The laser is equipped with a computer-controlled eyesafe system that switches mechanical attenuators into the laser output beam to keep the laser transmitted power at the target to an eyesafe level. In addition, there is a fail-safe circuit that shuts down the laser in case of attenuator or computer program failure.

NIKE/HERCULES RADARS

The original Nike/Hercules system was designed to track targets and to launch and track missiles using highly accurate radars. The system contained two X-band radars, one designated a target tracking radar (TTR) and one designated a missile tracking radar (MTR) (figure 28). These acronyms, TTR and MTR, are continued in use with the converted system.

In its original function, all data in the Nike/Hercules system were processed in analog form, including the use of an analog guidance computer. The basic radar, however, was highly functional. In particular, the pedestals provided the excellent precision for pin-point tracking that deemed the system an excellent candidate for conversion to a modern digital instrumentation radar system.

MODIFICATIONS.

Modification work performed on the NAFEC-acquired Nike/Hercules system consisted mainly of converting range, azimuth, and elevation data to digital form for recording and display, and the introduction of microprocessors to process data and to perform the interface operations between radar and operator.

In addition, a second van was added to the system--a computer van that houses the data handling system which includes a General Automation digital computer and various peripheral devices to process, display, and record radar data.

The MTR/TTR radar van is shown in figure 28. The precision radar pedestal is shown in figure 29. A diagram of the modified system configuration is shown in figure 30.

Each radar, MTR and TTR, has television camera coverage from their respective pedestals. Television monitoring provides target acquisition aid and is useful in monitoring target progress when the aircraft is within visual range.

Each pedestal contains its respective magnetron transmitter and RF section of its receiver. In addition, the pedestals also house the modification equipment that include the angle encoders for azimuth and elevation data, and a tilt meter that is used to provide calibration data on pedestal elevation leveling. New, coaxial magnetrons were installed with each radar.

Within the radar van are located the radar set group, the missile radar control console (figure 31), and the target radar control console (figure 32).

79-32-30

FIGURE 28. NIKE/HERCULES RADAR VAN

79-32-31

FIGURE 29. NAEFFC RADAR RANGE

FIGURE 30. NIKE/HERCULES DIAGRAM

FIGURE 31. MTR CONSOLE

FIGURE 32. TTR CONSOLE

79-32-34

Digitized range, azimuth, and elevation data from either or both radars are processed through the computer interface, which also receives time-of-day signals from an added time code-generator.

A nine-track tape drive in the radar van records raw data as a backup source, should any malfunction occur in processing or recording data in the computer van.

COMPUTER VAN.

The data handling equipment within the computer van (photos, figures 33, 34, and 35) contains a digital computer which interconnects with the radar trackers. The data handling equipment receives target data from either or both radars, records these data, performs specific functions with the data, (such as filtering, velocity calculations, and target track), records selected processed data, and prepares data for output to graphics, plotter displays, or magnetic tape drives.

Hardware components of the computer van include:

- General automation SPC 16/65 digital computer
- floating point processor
- two nine-track tape drives
- one seven-track tape drive
- Hazeltine alphanumeric CRT and keyboard
- two Hughes graphic CRT displays and keyboards
- two Calcomp Model 563 plotters
- card reader
- line printer, 200 LPM
- paper tape reader/punch
- four digital/analog converters

The Hazeltine keyboard is used to interact with the computer. Two Hughes terminals direct processing of data from the respective radar, MTR or TTR.

Software allows the operator to dynamically interface with the system real-time.

TEST TOWER.

A radiofrequency (RF) test tower (figure 36) located approximately 600 feet from the radar antennas, is used to provide signal sources for adjusting each radar's transmitting and receiving frequencies, and to establish receiver sensitivities.

The tower position is surveyed with respect to the radars, as is the feed horn on top of the tower. Target boards extending either side of the feed horn

79-32-35

FIGURE 33. GA COMPUTER

FIGURE 34. TERMINALS

79-32-36

FIGURE 35. GRAPHICS

FIGURE 36. RF TEST TOWER

permit alignment of each radar's optical system with the respective radar axis, to permit vertical calibration of the radar antennas.

A corner reflector, located atop a tower approximately 2 nmi distant, provides a means to measure and record azimuth calibration data for comparison with surveyed values. The passive reflector will be replaced by an active frequency-shift reflector to assure calibration against a stable, pin-point source.

SOFTWARE.

System software for the Nike/Hercules radar data is currently under active development. Present capability in software is limited to printout of data (as per sample, figure 37), translation of origin, rotation of axes, coordinate conversion, and generation of a binary tape.

Future software capability will provide for automated test of data for bad points, potential for reconstruction of problem data, self-test capability, statistical summary printout of data for quality check, application of calibration data to correct coordinates of target measurements, and filtering of data.

SYSTEM ACCURACY.

Errors in radar position measurement are of three types:

radar dependent
target dependent
propagation dependent

Target-dependent errors are generally due to velocity, acceleration, scintillation and glint. Propagation dependent errors are due to multipath and refraction.

The theoretical error budget considers only those errors attributable to the radar itself.

The theoretical error budget for the MTR and TTR is as follows:

		<u>MTR</u>	<u>TTR</u>
Azimuth	Random	0.15 mrad	0.15 mrad
	Bias	0.25 mrad	0.25 mrad
Elevation	Random	0.15 mrad	0.15 mrad
	Bias	0.25 mrad	0.25 mrad
Range	Random	3.0 meters	3.0 meters
	Bias	6.0 meters	6.0 meters

DATE -	RUN -	1	TRACK	VALID	MTR AZ	RANGE	TRACK	VALID	AGC	MTR AZ	RANGE	TRACK	VALID	AGC	MTR AZ	RANGE	TRACK	VALID	EL	RANGE	EL
11	36 34.9	A	T	4.16	-1 3.60	8.47	130664.78	A	T	7.64	-13.59	8.46	130684.34						8.46	130713.54	
	36 35.0	A	T	4.16	-1 3.58	8.46	130697.54	A	T	7.64	-13.57	8.46	130723.15						8.46	130772.51	
	36 35.1	A	T	4.17	-1 3.57	8.46	130721.70	A	T	7.65	-13.56	8.46	130802.02						8.46	130834.82	
	36 35.2	A	T	4.15	-1 3.55	8.46	130753.60	A	T	7.65	-13.54	8.45	130864.31						8.45	130893.87	
	36 35.3	A	T	4.15	-1 3.53	8.46	130786.16	A	T	7.66	-13.52	8.45	130923.10						8.45	131044.96	
	36 35.4	A	T	4.14	-1 3.52	8.46	130815.79	A	T	7.65	-13.51	8.44	131058.47						8.44	131106.81	
	36 35.5	A	T	4.14	-1 3.50	8.46	130845.35	A	T	7.65	-13.49	8.44	131127.96						8.44	131157.32	
	36 35.6	A	T	4.14	-1 3.48	8.45	130875.03	A	T	7.64	-13.48	8.44	131186.58						8.44	131215.16	
	36 35.7	A	T	4.13	-1 3.47	8.45	130904.35	A	T	7.62	-13.46	8.45	131242.06						8.45	131266.58	
	36 35.8	A	T	4.12	-1 3.45	8.45	130933.97	A	T	7.61	-13.44	8.45	131285.53						8.44	131316.45	
	36 35.9	A	T	4.12	-1 3.44	8.45	130963.43	A	T	7.61	-13.43	8.44	131346.99						8.44	131375.27	
	36 36.0	A	T	4.11	-1 3.42	8.45	130996.43	A	T	7.60	-13.41	8.44	131398.00						8.44	131428.00	
	36 36.1	A	T	4.09	-1 3.40	8.44	131025.87	A	T	7.59	-13.39	8.44	131458.04						8.44	131492.04	
	36 36.2	A	T	4.09	-1 3.39	8.44	131058.15	A	T	7.58	-13.38	8.44	131527.32						8.44	131567.32	
	36 36.3	A	T	4.06	-1 3.37	8.44	131088.24	A	T	7.56	-13.36	8.43	131557.32						8.43	131586.58	
	36 36.4	A	T	4.04	-1 3.35	8.44	131117.80	A	T	7.54	-13.34	8.43	131615.45						8.43	131645.81	
	36 36.5	A	T	4.02	-1 3.34	8.43	131150.85	A	T	7.52	-13.33	8.42	131695.00						8.42	131725.91	
	36 36.6	A	T	4.00	-1 3.32	8.43	131180.05	A	T	7.51	-13.31	8.42	131758.04						8.42	131788.04	
	36 36.7	A	T	3.99	-1 3.31	8.43	131209.45	A	T	7.50	-13.30	8.42	131827.04						8.42	131857.04	
	36 36.8	A	T	3.96	-1 3.29	8.43	131242.34	A	T	7.48	-13.28	8.41	131886.58						8.41	131915.16	
	36 36.9	A	T	3.96	-1 3.27	8.43	131272.17	A	T	7.46	-13.27	8.41	131944.96						8.41	131974.96	
	36 37.0	A	T	3.94	-1 3.26	8.42	131301.52	A	T	7.46	-13.25	8.41	132014.12						8.41	132043.37	
	36 37.1	A	T	3.93	-1 3.24	8.42	131331.22	A	T	7.47	-13.23	8.40	132073.02						8.40	132103.02	
	36 37.2	A	T	3.92	-1 3.23	8.42	131360.54	A	T	7.46	-13.22	8.40	132075.02						8.40	132105.02	
	36 37.3	A	T	3.93	-1 3.21	8.42	131389.96	A	T	7.48	-13.20	8.40	132135.02						8.40	132165.02	
	36 37.4	A	T	3.92	-1 3.19	8.42	131419.78	A	T	7.48	-13.19	8.40	132195.02						8.40	132225.02	
	36 37.5	A	T	3.91	-1 3.18	8.42	131452.40	A	T	7.48	-13.17	8.40	132255.02						8.40	132285.02	
	36 37.6	A	T	3.91	-1 3.16	8.41	131477.71	A	T	7.50	-13.15	8.39	132315.81						8.39	132345.81	
	36 37.7	A	T	3.91	-1 3.15	8.41	131511.75	A	T	7.53	-13.14	8.39	132375.27						8.39	132405.27	
	36 37.8	A	T	3.90	-1 3.13	8.41	131541.46	A	T	7.54	-13.12	8.39	132434.19						8.39	132464.19	
	36 37.9	A	T	3.90	-1 3.11	8.41	131573.93	A	T	7.54	-13.10	8.39	132504.04						8.39	132534.04	
	36 38.0	A	T	3.90	-1 3.10	8.41	131603.32	A	T	7.55	-13.09	8.39	132564.92						8.39	132594.92	
	36 38.1	A	T	3.91	-1 3.08	8.40	131633.23	A	T	7.54	-13.07	8.39	132634.92						8.39	132664.92	
	36 38.2	A	T	3.91	-1 3.06	8.40	131662.73	A	T	7.55	-13.05	8.38	132714.92						8.38	132744.92	
	36 38.3	A	T	3.91	-1 3.05	8.40	131692.25	A	T	7.55	-13.04	8.38	132774.92						8.38	132804.92	
	36 38.4	A	T	3.92	-1 3.03	8.40	131725.03	A	T	7.56	-13.02	8.38	132834.92						8.38	132864.92	
	36 38.5	A	T	3.94	-1 3.01	8.40	131758.02	A	T	7.57	-13.01	8.38	132894.92						8.38	132924.92	
	36 38.6	A	T	3.95	-1 3.00	8.40	131787.16	A	T	7.57	-12.99	8.38	132954.92						8.38	132984.92	
	36 38.7	A	T	3.91	-1 2.98	8.39	131817.16	A	T	7.57	-12.98	8.37	133024.92						8.37	133054.92	
	36 38.8	A	T	3.91	-1 2.97	8.39	131846.76	A	T	7.57	-12.96	8.37	133084.92						8.37	133114.92	
	36 38.9	A	T	3.91	-1 2.95	8.39	131876.22	A	T	7.57	-12.95	8.37	133144.92						8.37	133174.92	
	36 39.0	A	T	3.92	-1 2.94	8.39	131910.87	A	T	7.57	-12.93	8.37	133204.92						8.37	133234.92	
	36 39.1	A	T	3.97	-1 2.92	8.38	131935.29	A	T	7.59	-12.91	8.37	133274.92						8.37	133304.92	
	36 39.2	A	T	3.99	-1 2.90	8.38	131967.74	A	T	7.61	-12.90	8.37	133334.92						8.37	133364.92	
	36 39.3	A	T	3.98	-1 2.89	8.38	131997.45	A	T	7.62	-12.88	8.36	133404.12						8.36	133434.12	
	36 39.4	A	T	3.99	-1 2.87	8.38	132030.35	A	T	7.62	-12.87	8.36	133474.92						8.36	133504.92	
	36 39.5	A	T	4.01	-1 2.86	8.38	132056.50	A	T	7.61	-12.85	8.36	133534.92						8.36	133564.92	
	36 39.6	A	T	4.02	-1 2.84	8.38	132089.47	A	T	7.61	-12.84	8.36	133604.92						8.36	133634.92	
	36 39.7	A	T	4.04	-1 2.82	8.37	132122.06	A	T	7.61	-12.82	8.36	133674.92						8.36	133704.92	
	36 39.8	A	T	4.05	-1 2.81	8.37	132151.86	A	T	7.61	-12.81	8.36	133734.92						8.36	133764.92	

FIGURE 37. SAMPLE NIKE/HERCULES DATA LISTING

The term bias error means the residue of systematic errors after all corrections have been applied to the measurement.

The range bias was determined from differences in tracker-computed range and known survey range when fully locked on to a beacon installed at a known survey point. The random range error was measured at the known survey point and, in all cases, was less than the theoretical value (6.0 meters, 1 sigma).

The elevation angle bias was determined from the difference in optical measurements of elevation angle and known elevation of the Nike-Hercules Radar System RF Test Stand. The random elevation error was measured at the RF Test Stand and in all cases was less than the theoretical value (0.15 milliradians (mrad), 1 sigma).

The azimuth angle bias was determined from differences between optical measurements of azimuth angle and the known azimuth of a well defined reflective target (the Atlantic City Racetrack Tower). The random azimuth error was measured at the RF Test Stand and in all cases was less than the specified value (0.15 mrad, 1 sigma).

The elevation and azimuth bias angles determined above were verified by sighting on several selected stars and converting the error in time of predicted passage to angular bias errors. In all sighting cases the resultant error was less than the theoretical bias error (0.25 mrad, 1 sigma) for both the MTR and TTR.

The reduction of measurements to fall within these error bounds is dependent on the following:

1. Correction for RF bias in azimuth and elevation antennas
2. Correction for platform tilt
3. Correction for refraction
4. Correction for beacon delay and length of transmission line used between beacon and antenna.

Actual flight data collected on June 18, 1979, were reduced to obtain the following summary statistics for differences between MTR and TTR measurements. Both radars were tracking the same aircraft. About 15 minutes of data were selected from two flight patterns, providing:

490 differences from a radial pattern of 12 to 13.4 nmi range at 90° azimuth and 5,000 feet altitude, and

8,630 differences from a 6-nmi orbital pattern at 5,000 feet altitude.

<u>Standard Deviation</u>	<u>Azimuth (mrad)</u>	<u>Elevation (mrad)</u>	<u>Range (meters)</u>
(MTR-TTR)	0.134	0.134	3.25
all data			
MTR or TTR	0.10	0.10	3.0 MTR
Predicted	0.15	0.15	3.0

Mean

(MTR-TTR) radial	0.08	-0.34	1.3
(MTR-TTR) orbit	0.11	-0.36	4.9
MTR or TTR		(indeterminate)	
Predicted Bias	0.25	0.25	6.0

The standard deviation of random azimuth or elevation errors is 0.10 mrad for the MTR or TTR, which is that given in the Nike/Hercules specifications. The theoretical error budget for radar dependent errors only is 0.15 mrad.

The standard deviation of random range errors is 3.0 meters for the MTR and 1.1 meters for the TTR based on a ratio of about 3 to 1 established from RF tower measurements. The theoretical error budget is 3.0 meters.

Mean errors in azimuth, elevation, and range for the MTR or TTR are indeterminate; they cannot be estimated from MTR-TTR differences alone. The irreducible bias for either radar is 0.25 mrad in angle and 6.0 meters in range.

Reduction of the above flight data did not include corrections for RF bias in azimuth and elevation antennas for platform tilt.

Nike/Hercules specifications are given in table 7.

TABLE 7. NIKE/HERCULES SPECIFICATIONS

<u>LEADING PARTICULAR</u>	<u>CHARACTERISTIC</u>
Antenna	Vertical, linear
Reflector	Cassegrainian parabolic reflector, pencil pattern, diameter 7' 9".
Azimuth Limits of Operation	360° continuous
Elevation Limits of Operation	-5° to 90°, continuous
Gain	42 dB
Beamwidth	1.1°
Side Lobes	17 dB down
Null Depth	30 dB down
Leveling	Precision orthogonal
Transmitter	Tunable magnetron
Frequency Range	8.5 GHz to 9.6 GHz
Peak Power	250 kW
Pulse Coding	Two pulses, adjustable spacing from 0.5 ms to 5.09 ms
PRF	320 or 1,000 pps, selectable
Pulse Duration	0.25 μs
Range Limits	200 nmi
Range Precision	1 meter
Angle Precision	0.0057°
Receiver	
Noise Figure	8.5 dB
Dynamic Range	110 dB
Bandwidth	10 MHz
Intermediate Frequency (IF)	60 MHz
Modes of Operation	Manual, aided, automatic
Maximum Tracking Rates	
Range	
Aided	2,000 meters/second
Auto	2,600 meters/second
Slew	18,000 meters/second
Angle	
Aided	420 mils/second
Auto/Slew	700 mils/second
Digital Data	
Range	18 bits
Least Significant Bit	1 meter
Angle	18 bits
Least Significant Bit	0.0014°
Range Tracker	Type II Serve loop, leading edge/ centroid tracking, selectable.

AIR-TO-AIR RANGING AND BEARING SYSTEM

The NAFEC air-to-air ranging and bearing system shown in figure 38 uses digital TACAN navigational sets (models AN/ARN-84(V)) to measure slant range to cooperating aircraft. Air-to-air bearing is also available when one of the aircraft contains a special airborne rotating TACAN antenna.

SYSTEM DESCRIPTION.

Air-to-ground TACAN is an air navigational system that provides aircraft with continuous ranging and bearing information to or from a ground station. It has 252 two-way operating channels in the portion of the spectrum between 962 MHz and 1213 MHz, and each channel uses two separate frequencies 63 MHz apart for their transmit/receive functions.

In air-to-air TACAN, ranging between two aircraft is made possible by the addition of a transponding function to the airborne equipment, and by a transposition of paired frequencies per channel so that neither aircraft in the air-air link communicate with any ground station, but only with each other. Both ends of the air-air link can display range information.

Air-to-air bearing is made possible primarily through installation of a special airborne TACAN rotating antenna, such as the mechanical scan type in use at NAFEC and as shown in figure 38. State-of-the-art development of airborne rotating antennas is now primarily aimed at development of electronic scan capability.

Three AN/ARN-84(V) TACAN sets are in use at NAFEC, two in digital racks as shown in the photograph, and one in what is commonly referred to as the "analog" rack; that is, it does not contain a formatter or recorder. It is to provide a cooperative signal for either digital rack.

OPERATION.

A block diagram of the digital system is shown in figure 39.

The AN/ARN-84(V) navigational set is a combination transmitter, receiver, decoder, digital computer, and digital-to-analog converter that can perform the normal air-ground functions as well as provide the necessary features for use in the air-to-air mode.

Functions of the TACAN sets are controlled from the control head to permit selection of channel (up to 126), operating mode (receive, transmit/receive, air-air, and beacon), bearing mode selection (normal/inverse), X or Y submode selection, and built-in test.

FIGURE 38. AIR-AIR DIGITAL RANGING AND BEARING EQUIPMENT

FIGURE 39. DIGITAL SYSTEM BLOCK DIAGRAM

79-32-41

The selection of X or Y mode is not generally pertinent to operation in the air-air mode; it is a feature developed to permit additional ground stations within given areas, by providing discrete pulse characteristics.

Bearing mode selection is a pertinent air-to-air feature. In the inverse mode, the aircraft equipped with the rotating antenna obtains a reading to any other set transmitting an adequate pulse rate, while operating in the air-to-air mode. In effect, this feature permits installation of the analog rack at any remote site, from which an aircraft with digital rack may fly precise patterns controlled by the displayed range and bearing to that site. The rotating antenna presently in use at NAFEC is installed on Gulfstream N-47.

The rotating antenna is driven by the antenna drive unit, which provides precise 15-Hz driving signals to a synchronous motor in the rotating antenna. A reflecting element attached to a rotating drum rotates at a very precise 15 revolutions per second, which produces a 15-Hz cardioid radiation pattern in space that, when recovered, is a sinusoidally varying train of pulse amplitudes. Recovery of the 15-Hz component of the transmitted pulses along with a reference pulse, enables determination of relative bearing from one aircraft to another (figure 40).

79-32-42

FIGURE 40. AIR-AIR, INVERSE MODE

The NAFEC installation does not use magnetic north signals for zero, but is aligned longitudinally to the aircraft so that dead-ahead is always zero degrees. In that manner, the equipped aircraft always knows the bearing of the other aircraft with respect to its present heading.

Controls at the formatter allow: (1) selection of data rates from one sample per second up to 10 samples per second, (2) thumbwheel switches to insert and record run numbers, and (3) numeric displays of range and bearing.

Up to three additional displays can be attached at other areas of the aircraft: in the cockpit, for example, to provide pilots with precise guidance to ground stations either air-air (with the analog rack) or air-ground; or the position of other aircraft involved in project flight tests. Resolution of the displays is to two decimal places in range (in nautical miles) and one decimal place in bearing (in degrees).

A six-switch module located on a flexible cable permits users to record event times by placing a mark on the tape at the instant a switch is placed on. Switch position status is displayed on the printed data listing, showing time within 0.1 second of operating the switch.

Each digital rack also has the capability to record up to eight channels of analog data.

Several minor hardware improvements have been added to the digital racks over a period of time based on operating experience. For example, there is an automatic antenna changeover capability for switching between upper and lower aircraft antennas when signal level drops suddenly, as in a banking maneuver. AGC from the receiver provides a transfer signal to actuate the antenna relay, although a defeat switch allows users to restrict operation to either selected antenna.

An AGC display was added to permit operators an input to assess signal conditions in flight. AGC and antenna status are recorded on the analog channels.

A test box permits access to 30 key signals from both the TACAN set and the antenna drive unit. Certain of these signals are reliable indicators of system performance in flight and provide the operator with a quick basis for deciding the need of in-flight action to improve data quality.

SYSTEM ACCURACY.

An accuracy test of the system was conducted and reported on in June 1977, in report No. FAA-RD-77-59, "Accuracy Test of an Air-to-Air Ranging and Bearing System." Range errors were obtained from comparison with phototheodolite data, while bearing measurements were compared against a periscopic sextant installed on the N-47 aircraft. (Relative bearing between two aircraft is extremely complex in the determination and cannot be done from ground-based systems, therefore the periscopic sextant.)

Bearing error was measured in two tests; first, a static test on the ground working against the analog system located approximately 0.7 nmi distant. Measurements were made on the ramp. Aircraft heading was changed to enable measurement at six different headings. Reference bearing measurements made with the sextant as compared to the TACAN-displayed bearing measurements were:

Mean Difference: 1.2°
Standard Deviation: 2.0°

These numbers compared quite favorably with design specifications, in view of the fact that TACAN utilizes a 15-Hz/135-Hz coarse/fine scheme for precision, whereas the N-47 antenna has only the coarse 15-Hz capability.

From controlled measurements, the average error of measure contributed by the sextant was estimated at 0.7° .

In a following flight test for bearing errors, two aircraft were positioned at several relative headings with respect to each other. Data were collected for periods in which the aircraft remained at the same nominal heading, since operation of the sextant under changing conditions of heading was impractical.

Combined differences from all headings resulted in:

Mean Difference: 0.8°
Standard Deviation: 2.4° .

In the range difference test, phototheodolite position data from two paired solutions were reduced to comparable slant range measurements on a flight in which the two aircraft maintained separations of 3 and 5 nmi. (NAFEC then had four phototheodolite stations in operation.) From a sample size of over 6,000 consecutive measurements, the statistics were:

Mean Difference: 6 feet
Standard Deviation: 100 feet.

Application of an optional smoothing filter to TACAN data reduced the standard deviation of differences to 60 feet. Modifications to the TACAN sets are expected to further reduce variability to less than 30 feet.

FUTURE IMPROVEMENTS.

Under contract to the manufacturer of the AN/ARN-84(V) sets, several modifications are designed to:

1. Track through interfering signals by implementation of a range-gated automatic gain modification.

2. Provide reduction in range resolution to 0.00315 nmi (19 feet) and bearing resolution to 0.125°.

3. Reduce range jitter through reduction in servo bandwidth (while retaining range rate tracking capability in excess of 1,000 knots).

4. Increase pulse rate to 2,700 pulses per second (pps) to permit full 15-Hz/135-Hz capability in the air-to-air mode.

DATA.

Two formats are available for the output data, as indicated in the data flow chart of figure 41. One of these, the standard listing, is commonly handed off as project data. The other format listing is designed as an aid to system performance analysis, properly interpreted.

An example of the standard listing report is shown in figure 42. The heading title is supplied by the program user to identify the output. Run number is the value recorded on tape from a two-digit switch located on the system formatter panel.

Print interval is the selected output time interval, and this value may be greater than the data sampling interval which is normally set during data collection at 0.1 seconds (10/second sample rate). Optional interval printout reduces the size of output paper in scanning long runs.

When smoothing is selected, the range and bearing data printed in the report are values derived by smoothing the input data. The time constant of the smoothing filter is obtained from a value inputted to the filter and is approximately equal to the product of the input value and the sampling interval. If no smoothing is desired, the input value is placed to zero.

Data smoothing is accomplished by maintaining a position and rate estimate for range and bearing in which these estimates are corrected after each measurement. To avoid discrediting excessive data due to the filter's time constant, the estimate is coasted over invalid data for a time interval up to twice the filter input value. Further, the estimated rate is reset to zero whenever it exceeds program limits currently set to 2,400 knots or 30°/second velocities, which limits the effects of transients. Invalid data are registered on the printout with an asterisk preceding the invalid point, either range or bearing.

FIGURE 41. AIR-AIR SYSTEM DATA FLOW

AIR-AIR RANGING AND BEARING, SARASOTA TEST 12/18/78

RUN	FILE	PRINT	INTERVAL	0.10 SMOOTHING K 5																
				TIME	TACAN RANGE	TACAN BEARING	S W I T C H	RANGE	BEARING	RE- CHANGE	CHANGE	CORD	1	2	3	4	5	6	7	8
18	32	58.6	11.8804	9.69	9.71	1.1	1	1	1	-0.0065	0.02	391	2.496	0.013	0.580	0.122	0.050	0.159	0.444	0.966
18	32	58.7	11.8778	9.71	9.72	1.1	1	1	1	-0.0056	0.02	391	2.537	0.013	0.580	0.126	0.050	0.160	0.444	0.967
18	32	58.8	11.8721	9.72	9.73	1.1	1	1	1	-0.0027	0.02	391	2.510	0.013	0.581	0.129	0.053	0.161	0.444	0.957
18	32	58.9	11.8699	9.74	9.74	1.1	1	1	1	-0.0022	0.01	391	2.508	0.013	0.581	0.121	0.049	0.159	0.442	0.958
18	32	59.0	11.8744	9.74	9.71	1.1	1	1	1	-0.0045	-0.03	391	2.462	0.013	0.580	0.127	0.050	0.160	0.442	0.958
18	32	59.1	11.8763	9.72	9.72	1.1	1	1	1	-0.0019	0.01	391	2.481	0.013	0.579	0.127	-0.051	0.161	0.443	0.962
18	32	59.2	11.8778	9.73	9.73	1.1	1	1	1	-0.0045	0.01	391	2.491	0.013	0.580	0.131	0.053	0.161	0.444	0.966
18	32	59.3	11.8680	9.79	9.79	1.1	1	1	1	-0.0038	-0.05	391	2.523	0.013	0.581	0.133	-0.055	0.162	0.446	0.963
18	32	59.4	11.8669	9.83	9.83	1.1	1	1	1	-0.0011	0.05	391	2.513	0.013	0.581	0.161	0.053	0.162	0.443	0.956
18	32	59.5	11.8598	9.87	9.87	1.1	1	1	1	-0.0071	0.04	391	2.498	0.013	0.580	0.128	0.055	0.162	0.443	0.956
18	32	59.6	11.8557	9.86	9.86	1.1	1	1	1	-0.0040	-0.01	391	2.451	0.013	0.580	0.127	-0.051	0.161	0.441	0.957
18	32	59.7	11.8503	9.85	9.85	1.1	1	1	1	-0.0055	-0.01	391	2.448	0.013	0.580	0.127	-0.050	0.160	0.441	0.961
18	32	59.8	11.8677	9.89	9.89	1.1	1	1	1	-0.0026	0.03	391	2.469	0.013	0.580	0.127	-0.049	0.159	0.441	0.958
18	32	59.9	11.8635	9.92	9.92	1.1	1	1	1	-0.0042	-0.03	391	2.503	0.013	0.580	0.123	-0.058	0.158	0.440	0.952
18	33	0.0	11.8620	9.99	9.99	1.1	1	1	1	-0.0015	0.07	391	2.514	0.013	0.581	0.128	0.051	0.159	0.438	0.947
18	33	0.1	11.8367	10.04	10.04	1.1	1	1	1	-0.0053	0.06	391	2.505	0.013	0.580	0.127	0.051	0.160	0.438	0.952
18	33	0.2	11.8321	10.09	10.09	1.1	1	1	1	-0.0045	0.05	391	2.479	0.013	0.581	0.127	-0.050	0.159	0.440	0.958
18	33	0.3	11.8283	10.14	10.14	1.1	1	1	1	-0.0038	0.04	391	2.505	0.013	0.580	0.127	-0.051	0.160	0.443	0.969
18	33	0.4	11.8272	10.17	10.17	1.1	1	1	1	-0.0011	0.04	391	2.508	0.013	0.581	0.125	-0.050	0.159	0.444	0.968
18	33	0.5	11.8159	10.20	10.20	1.1	1	1	1	-0.0113	0.03	391	2.554	0.013	0.580	0.125	-0.049	0.160	0.444	0.968
18	33	0.6	11.8166	10.23	10.23	1.1	1	1	1	-0.0007	0.03	391	2.535	0.012	0.580	0.123	-0.048	0.158	0.443	0.960
18	33	0.7	11.8132	10.25	10.25	1.1	1	1	1	-0.0034	0.02	391	2.516	0.013	0.581	0.123	-0.049	0.159	0.442	0.961
18	33	0.8	11.8103	10.27	10.27	1.1	1	1	1	-0.0029	0.02	391	2.495	0.013	0.580	0.126	-0.050	0.160	0.443	0.963
18	33	0.9	11.8079	10.28	10.28	1.1	1	1	1	-0.0024	0.02	391	2.499	0.012	0.580	0.125	-0.049	0.159	0.443	0.969
18	33	1.0	11.8081	10.34	10.34	1.1	1	1	1	-0.0001	0.05	392	2.510	0.012	0.580	0.126	0.050	0.160	0.444	0.972
18	33	1.1	11.8059	10.38	10.38	1.1	1	1	1	-0.0003	0.05	392	2.534	0.012	0.580	0.126	0.050	0.159	0.444	0.968
18	33	1.2	11.8024	10.42	10.42	1.1	1	1	1	-0.0059	0.04	392	2.567	0.013	0.580	0.126	0.050	0.160	0.446	0.969
18	33	1.3	11.7995	10.46	10.46	1.1	1	1	1	-0.0030	0.03	392	2.562	0.013	0.581	0.134	0.056	0.164	0.448	0.968
18	33	1.4	11.7949	10.44	10.44	1.1	1	1	1	-0.0045	-0.01	392	2.552	0.013	0.581	0.132	-0.055	0.165	0.449	0.971
18	33	1.5	11.7932	10.43	10.43	1.1	1	1	1	-0.0018	-0.01	392	2.519	0.013	0.580	0.132	-0.054	0.165	0.449	0.972
18	33	1.6	11.7959	10.46	10.46	1.1	1	1	1	-0.0028	0.03	392	2.552	0.013	0.580	0.125	0.051	0.164	0.449	0.984
18	33	1.7	11.7922	10.49	10.49	1.1	1	1	1	-0.0037	0.03	392	2.569	0.013	0.581	0.127	0.051	0.162	0.452	0.984
18	33	1.8	11.7828	10.55	10.55	1.1	1	1	1	-0.0094	0.06	392	2.612	0.013	0.580	0.126	0.050	0.162	0.451	0.983
18	33	1.9	11.7767	10.60	10.60	1.1	1	1	1	-0.0081	0.05	392	2.614	0.013	0.581	0.125	0.059	0.161	0.449	0.979
18	33	2.0	11.7657	10.65	10.65	1.1	1	1	1	-0.0090	0.05	392	2.606	0.013	0.581	0.128	0.053	0.164	0.451	0.980
18	33	2.1	11.7662	10.69	10.69	1.1	1	1	1	-0.0015	0.04	392	2.597	0.013	0.571	0.125	0.051	0.164	0.453	0.987
18	33	2.2	11.7589	10.68	10.68	1.1	1	1	1	-0.0053	-0.01	392	2.571	0.012	0.579	0.123	0.051	0.164	0.453	0.994
18	33	2.3	11.7503	10.67	10.67	1.1	1	1	1	-0.0087	-0.01	392	2.584	0.012	0.580	0.125	0.050	0.164	0.455	0.998
18	33	2.4	11.7429	10.62	10.62	1.1	1	1	1	-0.0074	-0.05	392	2.589	0.012	0.580	0.125	0.051	0.162	0.455	0.996
18	33	2.5	11.7345	10.57	10.57	1.1	1	1	1	-0.0084	-0.04	392	2.621	0.013	0.580	0.133	0.057	0.167	0.459	0.995
18	33	2.6	11.7315	10.58	10.58	1.1	1	1	1	-0.0030	0.00	392	2.600	0.012	0.580	0.128	0.054	0.165	0.457	0.984
18	33	2.7	11.7269	10.62	10.62	1.1	1	1	1	-0.0045	0.04	392	2.578	0.013	0.580	0.129	0.054	0.166	0.455	0.985
18	33	2.8	11.7190	10.70	10.70	1.1	1	1	1	-0.0080	0.08	392	2.541	0.012	0.580	0.128	0.054	0.166	0.454	0.985
18	33	2.9	11.7143	10.77	10.77	1.1	1	1	1	-0.0047	0.07	392	2.527	0.012	0.579	0.129	0.055	0.166	0.454	0.988
18	33	3.0	11.7083	10.78	10.78	1.1	1	1	1	-0.0060	0.02	392	2.529	0.012	0.579	0.132	0.055	0.166	0.454	0.985
18	33	3.1	11.7032	10.80	10.80	1.1	1	1	1	-0.0051	0.01	392	2.531	0.012	0.580	0.128	0.054	0.164	0.452	0.980
18	33	3.2	11.6969	10.81	10.81	1.1	1	1	1	-0.0063	0.01	392	2.563	0.013	0.579	0.126	0.051	0.162	0.451	0.974
18	33	3.3	11.6915	10.86	10.86	1.1	1	1	1	-0.0053	-0.03	392	2.536	0.013	0.581	0.127	0.053	0.161	0.448	0.966
18	33	3.4	11.6850	10.90	10.90	1.1	1	1	1	-0.0066	0.04	392	2.525	0.013	0.580	0.128	0.054	0.164	0.447	0.967
18	33	3.5	11.6836	10.94	10.94	1.1	1	1	1	-0.0014	0.04	392	2.482	0.012	0.580	0.128	0.053	0.162	0.447	0.968

FIGURE 42. SAMPLE PRODUCTION FORMAT DATA LISTING

A first-difference change in range and bearing between consecutive samples is also printed as an aid in quality review of data. Velocity data are more sensitive to change than position data, therefore a scan of first differences (velocity at the interval rate) provides an insight into data variability.

On the remainder of the standard format is a status list of the six sense switches, record number of data, and printout of any analog channels uses.

A special format may be substituted for the standard format, an example of which is shown in figure 43. In this, the first and second differences of range and bearing are printed along with the estimated velocity relative to the cooperating aircraft, and the differences between raw and smoothed range and bearing data.

Immediately following data listings in the special format are statistical summary pages for each run (figure 44). These statistics, not intended for general use, include standard deviations of raw data, mean and standard deviations of differences between raw and smoothed data, root mean square (RMS) error of smoothed data, a reduction factor as a ratio of smoothed standard deviation to raw standard deviation, and moving averages of this reduction factor. Properly interpreted, these statistics provide the basis upon which data quality can be quickly and readily assessed. Since a single input filter constant cannot accommodate all rates of changes experienced in a given test flight, there is the potential within the software for determining a moving smoothing factor based on these computations of data variability.

A binary output tape is provided for use as input to other computer programs in a form that is easier to process than the data on the raw data tape. This binary tape is a nine-track, 800 bits per inch (bpi) tape written with an unformatted Fortran write statement. The binary format presents the time word, range in nautical mile, and bearing in degrees. If either range or bearing are invalid in a given sample, that value of range or bearing is made negative as an indication to users to omit that value.

System specifications are given in table 8.

AIR AIR RANGING AND REARING, SARASOTA TEST 12/19/78
AIR-IN-AIR RANGE AND REARING SYSTEM

RUN	2	FILF	1	K	S	TIME	RANGE (NM)	REARING	DEFL 1 (R)	DEFL 2 (R)	REC. (B)	DEL 1 (B)	DEL 2 (B)	SWITCH	RRATE DEG/S	ANALOG	RO-RK	BO-BK
18	32	58.6	11.48704	9.59	-0.0045	-0.0013	9.71	-0.0054	0.0010	0.00	0.10	0.00	0.00	111111	-112.8	0.2134	-0.0179	0.12
18	32	58.7	11.48743	9.82	-0.0045	-0.0013	9.71	-0.0027	0.0020	0.00	0.11	0.00	0.00	111111	-116.8	0.2134	-0.0123	0.09
18	32	58.9	11.48721	9.77	-0.0045	-0.0013	9.74	-0.0027	0.0020	0.00	0.11	0.00	0.00	111111	-115.8	0.2104	-0.0029	0.05
18	32	58.9	11.48699	9.74	-0.0045	-0.0013	9.74	-0.0027	0.0020	0.00	0.11	0.00	0.00	111111	-114.2	0.2079	-0.0134	0.03
18	32	59.0	11.48744	9.71	-0.0045	-0.0013	9.71	-0.0067	0.0067	0.00	0.09	0.00	0.00	111111	-101.7	0.2134	-0.0381	-0.41
18	32	59.1	11.48753	9.72	-0.0045	-0.0013	9.72	-0.0025	0.0020	0.00	0.05	0.00	0.00	111111	-93.9	0.2134	-0.0387	-0.06
18	32	59.2	11.48718	9.73	-0.0045	-0.0013	9.73	-0.0019	0.0019	0.00	0.01	0.00	0.00	111111	-96.9	0.09	2.4908	0.03
18	32	59.3	11.48693	9.79	-0.0039	-0.0007	9.79	-0.0016	0.0005	0.00	0.01	0.00	0.00	111111	-98.8	0.11	2.5226	0.43
18	32	59.4	11.48653	9.88	-0.0039	-0.0007	9.88	-0.0027	0.0020	0.00	0.01	0.00	0.00	111111	-90.5	0.13	2.5134	0.05
18	32	59.5	11.48598	9.87	-0.0039	-0.0007	9.87	-0.0050	0.0040	0.00	0.01	0.00	0.00	111111	-103.4	0.14	2.4982	0.26
18	32	59.6	11.48557	9.86	-0.0039	-0.0007	9.86	-0.0040	0.0031	0.00	0.01	0.00	0.00	111111	-105.3	0.13	2.4505	0.13
18	32	59.7	11.48503	9.85	-0.0039	-0.0007	9.85	-0.0025	0.0015	0.00	0.01	0.00	0.00	111111	-109.5	0.12	2.4481	0.21
18	32	59.8	11.48477	9.99	-0.0056	-0.0026	9.99	-0.0025	0.0029	0.00	0.03	0.00	0.00	111111	-108.7	0.13	2.4649	0.21
18	32	59.9	11.48435	9.92	-0.0042	-0.0016	9.92	-0.0016	0.0003	0.00	0.01	0.00	0.00	111111	-110.7	0.14	2.5031	0.16
18	33	0.0	11.48420	9.99	-0.0039	-0.0007	9.99	-0.0039	0.0039	0.00	0.01	0.00	0.00	111111	-108.0	0.16	2.5134	0.08
18	33	0.1	11.48357	10.24	-0.0053	-0.0027	10.24	-0.0039	0.0039	0.00	0.01	0.00	0.00	111111	-111.9	0.18	2.5055	0.41
18	33	0.2	11.48321	10.09	-0.0045	-0.0008	10.09	-0.0034	0.0034	0.00	0.01	0.00	0.00	111111	-114.2	0.20	2.4786	0.31
18	33	0.3	11.48283	10.14	-0.0038	-0.0007	10.14	-0.0038	0.0038	0.00	0.01	0.00	0.00	111111	-115.3	0.21	2.5055	0.23
18	33	0.4	11.48272	10.17	-0.0031	-0.0007	10.17	-0.0027	0.0027	0.00	0.01	0.00	0.00	111111	-111.9	0.21	2.5079	0.03
18	33	0.5	11.48159	10.20	-0.0113	-0.0010	10.20	-0.0010	0.0003	0.00	0.01	0.00	0.00	111111	-125.3	0.22	2.5543	0.09
18	33	0.6	11.48166	10.23	-0.0007	-0.0010	10.23	-0.0010	0.0003	0.00	0.01	0.00	0.00	111111	-118.5	0.22	2.5158	0.04
18	33	0.7	11.48132	10.25	-0.0041	-0.0010	10.25	-0.0034	0.0034	0.00	0.01	0.00	0.00	111111	-118.7	0.22	2.5162	0.07
18	33	0.8	11.48103	10.27	-0.0022	-0.0006	10.27	-0.0022	0.0006	0.00	0.01	0.00	0.00	111111	-118.0	0.22	2.4945	0.04
18	33	0.9	11.48079	10.28	-0.0024	-0.0005	10.28	-0.0024	0.0005	0.00	0.01	0.00	0.00	111111	-116.5	0.22	2.4994	0.02
18	33	1.0	11.48081	10.24	-0.0021	-0.0005	10.24	-0.0021	0.0005	0.00	0.01	0.00	0.00	111111	-110.9	0.23	2.5079	0.13
18	33	1.1	11.48083	10.28	-0.0023	-0.0001	10.28	-0.0023	0.0001	0.00	0.01	0.00	0.00	111111	-105.4	0.24	2.5335	0.09
18	33	1.2	11.48024	10.42	-0.0059	-0.0062	10.42	-0.0059	0.0062	0.00	0.01	0.00	0.00	111111	-110.3	0.25	2.5065	0.15
18	33	1.3	11.48095	10.46	-0.0030	-0.0030	10.46	-0.0030	0.0030	0.00	0.01	0.00	0.00	111111	-113.1	0.24	2.5134	0.15
18	33	1.4	11.48049	10.44	-0.0016	-0.0016	10.44	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-121.2	0.25	2.6117	0.07
18	33	1.5	11.48032	10.43	-0.0018	-0.0028	10.43	-0.0018	0.0028	0.00	0.01	0.00	0.00	111111	-112.6	0.25	2.5519	0.04
18	33	1.6	11.48084	10.44	-0.0021	-0.0021	10.44	-0.0021	0.0021	0.00	0.01	0.00	0.00	111111	-110.4	0.22	2.5589	0.16
18	33	1.7	11.48053	10.49	-0.0045	-0.0045	10.49	-0.0045	0.0045	0.00	0.01	0.00	0.00	111111	-105.4	0.23	2.5104	0.32
18	33	1.8	11.48022	10.49	-0.0037	-0.0037	10.49	-0.0037	0.0037	0.00	0.01	0.00	0.00	111111	-102.3	0.22	2.5536	0.17
18	33	1.9	11.48029	10.55	-0.0024	-0.0057	10.55	-0.0024	0.0057	0.00	0.01	0.00	0.00	111111	-113.1	0.25	2.5665	0.15
18	33	2.0	11.48047	10.60	-0.0031	-0.0031	10.60	-0.0031	0.0031	0.00	0.01	0.00	0.00	111111	-118.0	0.24	2.5134	0.04
18	33	2.1	11.48074	10.55	-0.0020	-0.0020	10.55	-0.0020	0.0020	0.00	0.01	0.00	0.00	111111	-121.2	0.25	2.6142	0.30
18	33	2.2	11.48057	10.55	-0.0016	-0.0016	10.55	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-110.2	0.25	2.5617	0.07
18	33	2.3	11.48049	10.55	-0.0016	-0.0016	10.55	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-118.7	0.25	2.5134	0.04
18	33	2.4	11.48057	10.55	-0.0016	-0.0016	10.55	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-113.1	0.25	2.5005	0.04
18	33	2.5	11.48042	10.62	-0.0015	-0.0015	10.62	-0.0015	0.0015	0.00	0.01	0.00	0.00	111111	-126.9	0.27	2.5134	0.39
18	33	2.6	11.48059	10.70	-0.0034	-0.0034	10.70	-0.0034	0.0034	0.00	0.01	0.00	0.00	111111	-129.8	0.25	2.5134	0.08
18	33	2.7	11.48032	10.67	-0.0027	-0.0027	10.67	-0.0027	0.0027	0.00	0.01	0.00	0.00	111111	-102.3	0.22	2.5590	0.08
18	33	2.8	11.48029	10.62	-0.0024	-0.0024	10.62	-0.0024	0.0024	0.00	0.01	0.00	0.00	111111	-114.0	0.20	2.5885	0.12
18	33	2.9	11.48045	10.57	-0.0024	-0.0024	10.57	-0.0024	0.0024	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	3.0	11.48035	10.57	-0.0020	-0.0020	10.57	-0.0020	0.0020	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	3.1	11.48032	10.59	-0.0020	-0.0020	10.59	-0.0020	0.0020	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	3.2	11.48032	10.57	-0.0016	-0.0016	10.57	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	3.3	11.48032	10.55	-0.0016	-0.0016	10.55	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	3.4	11.48030	10.50	-0.0016	-0.0016	10.50	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	3.5	11.48033	10.49	-0.0016	-0.0016	10.49	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	3.6	11.48033	10.49	-0.0016	-0.0016	10.49	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	3.7	11.48033	10.49	-0.0016	-0.0016	10.49	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	3.8	11.48033	10.49	-0.0016	-0.0016	10.49	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	3.9	11.48033	10.49	-0.0016	-0.0016	10.49	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	4.0	11.48033	10.49	-0.0016	-0.0016	10.49	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	4.1	11.48033	10.49	-0.0016	-0.0016	10.49	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19
18	33	4.2	11.48033	10.49	-0.0016	-0.0016	10.49	-0.0016	0.0016	0.00	0.01	0.00	0.00	111111	-117.9	0.23	2.6215	0.19</td

RUN 2 FILE 1 X 5

RECORD NUMBER	F A N S			DATA			SPEED		
	S-0	S-0-X	X-0-X	RMS-E-K	RMS-F-K	RMS-F-X	RMS-E-X	RMS-F-Y	RMS-E-Y
386	0.226	0.033	-0.007	0.221	0.915	0.754	0.574	0.289	0.375
387	0.221	0.039	-0.005	0.033	1.527	1.527	1.527	0.705	1.075
398	0.212	0.021	0.005	0.718	1.482	1.289	1.289	0.473	1.175
349	0.217	0.021	-0.004	0.024	0.723	0.723	0.723	0.305	0.820
390	0.217	0.015	-0.002	0.009	0.505	0.505	0.505	0.201	0.820
391	0.220	0.016	-0.001	0.012	0.607	0.607	0.607	0.258	0.559
392	0.219	0.017	-0.001	0.203	0.708	0.414	0.515	0.250	0.559
393	0.211	0.014	-0.001	0.003	0.680	0.570	0.570	0.200	0.570
394	0.221	0.021	-0.002	0.702	1.707	1.341	1.481	0.497	0.705
395	0.202	0.028	0.003	0.601	0.024	1.705	0.705	0.200	0.705
396	0.202	0.016	-0.004	0.004	0.213	0.356	0.356	0.140	0.340
397	0.220	0.017	0.001	0.011	0.520	0.847	0.847	0.200	0.847
398	0.201	0.021	-0.001	0.001	0.080	0.515	0.515	0.140	0.340
399	0.225	0.007	-0.007	0.052	0.086	0.309	0.309	0.140	0.309
400	0.227	0.024	-0.005	0.113	0.497	0.891	0.891	0.200	0.891
401	0.216	0.027	-0.002	0.005	0.310	0.764	0.764	0.140	0.340
402	0.196	0.016	-0.003	0.003	0.213	0.340	0.340	0.140	0.340
403	0.198	0.028	-0.003	0.015	0.536	1.152	1.152	0.200	1.152
404	0.221	0.016	-0.003	0.114	0.637	0.462	0.462	0.140	0.340
405	0.224	0.024	-0.002	0.114	0.547	0.547	0.547	0.200	0.547
406	0.227	0.017	-0.002	0.019	0.701	0.509	0.509	0.200	0.509
407	0.226	0.021	-0.001	0.116	0.526	0.585	0.585	0.200	0.585
408	0.222	0.017	-0.001	0.010	0.518	0.629	0.629	0.200	0.629
409	0.215	0.013	0.001	0.008	0.393	0.492	0.492	0.140	0.492
410	0.215	0.017	0.007	0.009	0.647	0.589	0.589	0.200	0.589
411	0.219	0.022	-0.007	0.019	0.560	0.603	0.603	0.200	0.603
412	0.222	0.018	-0.001	0.013	0.532	0.585	0.585	0.200	0.585
413	0.219	0.014	-0.001	0.010	0.517	0.586	0.586	0.200	0.586
414	0.220	0.021	-0.002	0.008	0.393	0.492	0.492	0.200	0.492
415	0.223	0.021	-0.001	0.012	0.428	0.476	0.476	0.200	0.476
416	0.219	0.015	-0.001	0.011	0.526	0.505	0.505	0.200	0.505
417	0.213	0.018	-0.004	0.014	1.109	0.745	0.745	0.200	0.745
418	0.217	0.015	-0.003	0.007	0.437	0.714	0.714	0.200	0.714
419	0.221	0.028	-0.007	0.004	0.707	0.505	0.505	0.200	0.505
420	0.220	0.017	-0.001	0.011	0.552	0.400	0.400	0.200	0.400
421	0.225	0.013	-0.002	0.011	0.691	0.494	0.494	0.200	0.494
422	0.220	0.016	-0.001	0.012	0.621	0.621	0.621	0.200	0.621
423	0.225	0.020	-0.001	0.014	0.564	0.625	0.625	0.200	0.625
424	0.217	0.016	-0.001	0.005	0.321	0.502	0.502	0.200	0.502
425	0.216	0.020	-0.001	0.011	0.716	0.534	0.534	0.200	0.534
426	0.215	0.014	-0.002	0.004	0.274	0.437	0.437	0.200	0.437
427	0.216	0.016	-0.001	0.018	0.479	0.400	0.400	0.200	0.400
428	0.227	0.022	-0.001	0.008	0.607	0.453	0.453	0.200	0.453
429	0.219	0.015	-0.002	0.010	0.555	0.555	0.555	0.200	0.555
430	0.212	0.013	-0.001	0.005	0.422	0.531	0.531	0.200	0.531
431	0.218	0.021	-0.001	0.004	0.701	0.305	0.305	0.200	0.305
432	0.220	0.020	-0.003	0.004	0.184	0.269	0.269	0.200	0.269
433	0.223	0.020	-0.002	0.018	0.782	0.388	0.388	0.200	0.388
434	0.225	0.017	-0.002	0.012	0.607	0.456	0.456	0.200	0.456
435	0.219	0.018	-0.002	0.002	0.305	0.527	0.527	0.200	0.527
436	0.222	0.013	-0.001	0.013	0.584	0.460	0.460	0.200	0.460
437	0.214	0.012	-0.002	0.006	0.445	0.475	0.475	0.200	0.475
438	0.220	0.012	-0.001	0.010	0.691	0.466	0.466	0.200	0.466
439	0.225	0.023	-0.001	0.012	0.612	0.466	0.466	0.200	0.466

910

RUN	RECORD NUMBER	A E A R I N G				D A T A			
		S-0	S-0,K	X-0,K	RMS-E-K	RDEF-E-K	SRED		
386	0.15	0.41	-0.08	0.39	2.62	2.32			
387	0.73	1.24	0.05	1.20	3.67	2.93			
388	2.10	3.34	0.03	3.52	5.23	2			
389	0.11	0.27	-0.05	0.25	2.38	3.15			
390	0.09	0.29	0.06	0.27	2.44	2.73			
391	0.09	0.21	-0.06	0.19	2.28	2.36			
392	0.17	0.31	0.15	1.74	2.15	2			
393	0.08	0.21	-0.06	0.20	2.43	2.15			
394	0.08	0.16	0.05	1.82	2.20	2			
395	0.19	0.24	0.18	2.37	2.27	2			
396	0.09	0.24	-0.03	0.22	2.61	2.27			
397	0.09	0.13	0.01	0.12	1.42	2.27			
398	0.09	0.10	0.04	0.07	0.78	1.74			
399	0.07	0.07	-0.06	0.02	1.17	2			
400	0.08	0.12	-0.04	0.10	0.75	3			
401	0.07	0.12	0.02	0.09	1.30	1.12			
402	0.07	0.24	-0.08	0.24	3.27	1.90			
403	0.07	0.15	0.10	0.17	2.38	2.31			
404	0.15	0.45	-0.01	0.42	2.93	2.85			
405	0.07	0.17	0.04	0.16	2.25	2.52			
406	0.16	0.53	-0.07	0.51	3.19	2.79			
407	0.11	0.35	0.00	0.13	2.80	2.78			
408	0.08	0.19	-0.02	0.18	2.17	2.17			
409	0.09	0.20	0.02	0.18	2.13	2.47			
410	0.09	0.17	0.01	0.15	1.77	2.02			
411	0.08	0.18	-0.06	0.16	2.06	1.99			
412	0.09	0.17	-0.04	0.15	1.69	1.94			
413	0.07	0.12	0.02	0.10	1.30	1.71			
414	0.07	0.16	0.03	0.15	2.21	1.76			
415	0.07	0.17	-0.03	0.10	1.49	1.70			
416	0.06	0.13	0.00	0.11	1.75	1.82			
417	0.14	0.14	-0.02	0.12	1.54	1.59			
418	0.04	0.08	-0.00	0.07	1.65	1.55			
419	1.14	0.07	0.05	0.08	1.93	1.71			
420	0.08	0.13	-0.06	0.11	1.39	1.66			
421	0.07	0.12	0.01	0.10	1.26	1.56			
422	0.05	0.09	-0.01	0.07	1.41	1.39			
423	0.07	0.05	0.03	0.05	2.06	1.61			
424	0.06	0.15	-0.06	0.15	2.31	1.93			
425	0.07	0.13	0.05	0.10	1.17	2.25			
426	0.08	0.15	0.04	0.14	1.70	1.95			
427	0.06	0.15	-0.03	0.15	2.42	1.99			
428	0.06	0.13	0.01	0.12	1.94	2.25			
429	0.08	0.18	-0.03	0.18	1.93	2.10			
430	0.06	0.09	0.01	0.05	1.16	1.07			
431	0.06	0.12	0.05	0.12	2.75	1.92			
432	0.06	0.32	-0.33	0.22	5.10	2.97			
433	0.06	0.19	0.01	0.13	2.91	3.59			
434	0.09	0.26	0.10	0.26	3.03	3.58			
435	0.09	0.52	-0.19	0.36	3.90	3.31			
436	0.08	0.23	0.07	0.27	3.20	3.41			
437	0.10	0.35	-0.06	0.34	3.51	3.57			
438	0.10	0.40	0.04	0.41	3.95	3.56			
439	0.15	0.61	0.02	1.02	6.79	6.75			

FIGURE 44. SAMPLE STATISTICAL SUMMARY LISTING

TABLE 8. TACAN (AN/ARN-84V) SPECIFICATIONS

<u>LEADING PARTICULAR</u>	<u>CHARACTERISTICS</u>
Frequency Range	1025 MHz to 1150 MHz, transmit 962 MHz to 1213 MHz, receive
Channels	1 to 126, air-ground or air-air
Modes	X mode or Y mode, selectable
Power Output	1.5 kW minimum, 4 kW maximum
Input Power	115 V a.c., 400 Hz, 28 V d.c.
Receiver Sensitivity	-98 dBm
Maximum Range	200 nmi
Aircraft Limits	Ranging between maximum of five aircraft
Bearing Limits	Rotating antenna for 15 Hz modulation on N-47. Any number aircraft may receive inverse bearings
Pulse Characteristics	
Rise Time	2.5 <u>±</u> 0.1 μ s
Pulse Pair Spacing	
X Mode	12 μ s
Y Mode	36 μ s
Transponder Delay	50 μ s <u>±</u> 0.1 μ s
Air-Air Delay	62 μ s <u>±</u> 0.1 μ s
Pulse Repetition Rate	
Search	142 to 150 pulse pairs/second
Track	22 to 30 pulse pairs/second
Digital resolution	
Range	20 feet
Bearing	0.125°
System Error	
Range	30 feet
Bearing	0.5°

RANGE CONTROL CENTRAL FACILITY

The Range Control facility integrates the collection, processing, and recording of all phototheodolite data and, additionally, serves as focal point in coordinating the activities of test flights using other range instrumentation facilities (table 9). Range Control provides the central timing equipment that is distributed to all other facilities, including remote sites and aircraft systems; provides the equipment for air-ground communications between range facilities and test aircraft; contains the phototheodolite real-time display and recording system, and a General Automation computer with 120-column printer.

TIMING.

The time-code generators of the central timing system produce real-time codes consisting of sequences of serial pulses in BCD d.c. level shift and modulated code representations of time. These codes are in both IRIG-B and a special-format NAFEC time code.

The NAFEC code is produced in units, or frames, each of which consists of 10 decades. Figure 45 illustrates the NAFEC time code. Eight of the ten decades are used to provide real-time code; the tenth decade contains frame marker pulses. Available from rates are at 20/second, 10/second, 5/second, 1/second, and 1/ten seconds.

The IRIG-B format is illustrated in figure 46.

UHF frequency modulation (FM) transmitters are used to transmit control pulses and real-time code to airborne terminal timing units in the aircraft. Both NAFEC time and IRIG-B are transmitted to several project sites at NAFEC.

COMMUNICATIONS.

Direct communications circuits connect the supervisor's console with the other range facilities, with the NAFEC tower, and with test aircraft. Hard-wire patching of the timing and communications signals is used to set up communication circuits from the operator's console to the phototheodolite towers to enable direct control of phototheodolite tracking activities.

Various VHF/UHF transmitter-receiver equipments are available. These assigned communications frequencies are also available to test personnel at remote locations via telephone circuits. This feature permits project personnel to monitor and participate in test activities without the need for direct installation of communications equipment at the ground site.

Several types of airborne timing units are used in project equipment. These are synchronized to a portable time-code generator that serves as master to the project system time code generator(s). The portable unit is normally

TABLE 9. RANGE CONTROL SPECIFICATIONS

<u>LEADING PARTICULAR</u>	<u>CHARACTERISTIC</u>
Timing Code Generator	
Real-Time Code	1 frame per 10 seconds 1 frame per second 5 frames per second 10 frames per second 20 frames per second
Control Pulse Rates	1,000 pulses per second 20 pulses per second 10 pulses per second 5 pulses per second 1 pulse per second 1 pulse per 10 seconds 1 pulse per 30 seconds 1 pulse per 60 seconds 1 pulse per 120 seconds
IRIG-B	Modulated and d.c. level slow code
Multiplex Signal	
Serial Real-Time Code	1 frame per 10 seconds 1 frame per second
Parallel Real-Time Code	1 frame per second 5 frames per second, or 10 frames per second
Control Tones	2 kilocycles 4 kilocycles
Airborne Terminal Timing Unit, Slave Type	
Frequency	410.65 megacycles
Number of Units	7
Airborne Terminal Timing Unit, Synchronized Type	
Real-Time Code Rates	1 frame per 10 seconds
Serial	1 frame per second
Parallel	1 frame per second, 5 frames per second, or 10 frames per second
Control Pulse Rates	100 pulses per second 20 pulses per second 10 pulses per second 5 pulses per second 1 pulse per second 1 pulse per 10 seconds

TABLE 9. RANGE CONTROL SPECIFICATIONS (Continued)

<u>LEADING PARTICULAR</u>	<u>CHARACTERISTIC</u>
Real-Time Code Rates	
Bipolar	10 frames per second 1 frame per second 1 frame per 10 seconds 1 frame per minute
Unipolar	10 frames per second 1 frame per second 1 frame per 10 seconds 1 frame per minute
Control Pulse Rates	10 pulses per second 1 pulse per second 1 pulse per 10 seconds 1 pulse per 30 seconds 1 pulse per minute

FIGURE 45. NAFEC TIME CODE

FIGURE 46. IRIG-B FORMAT

synchronized to the master time code from Range Control at various field locations where the central time is available via landline. In this manner, reliable time synchronization to within milliseconds becomes practical. An RF timing line is available for project systems.

PLANNED.

The ultimate Range Control Central Facility at NAFEC will be designed to serve as central point for all data collection activities from all range facilities. It is planned that all data will be processed via Range Control, either via landline or telemetry, to include both range instrumentation and project data.

The control of both data sources will permit real-time processing and evaluation so that performance estimates may be established during the test, thereby affording more effective systems use by enabling real-time decisions of project system performance.

Various real-time data management and display devices will be incorporated in the ultimate system, to include: data computations and printout, generation of plots of either raw data or project data versus reference instrumentation data, television displays, "smart" terminal for interaction with the NAFEC computer during test activities, and various other improvements. Figure 47 suggests the goals toward which future development of the enhanced measurements instrumentation complex will be directed.

FIGURE 47. ENHANCED MEASUREMENTS INSTRUMENTATION COMPLEX

AD-A082 063 NATIONAL AVIATION FACILITIES EXPERIMENTAL CENTER ATL--ETC F/G 14/2
NAFEC RANGE INSTRUMENTATION SYSTEMS, (U)
FEB 80 V J LUCIANI
UNCLASSIFIED FAA-NA-79-32

NL

2 OF 2
AD
A082063

END
DATE
FILED
4-80
DTIC

APPENDIX
PHOTOTHEODOLITE ERROR DEFINITION

The prime factor in phototheodolite system accuracy is the location of the target with respect to the baseline bisector; which is why d is called the "location" error factor. Lengthy derivations of d , as given in the Fecker report, are based on the premise that, for small values of e , quadrilateral QSRT (figure A-1) can be treated as a parallelogram.

This parallelogram is formed by the intersection of the lines of angular uncertainty from each phototheodolite, and encompasses at its center, the true target position, P.

From the Fecker algorithms, two values of d are given:

$$d_1 = \frac{\sqrt{[y^2 + (1+x)^2][y^2 + (1-x)^2]}}{2y} \quad (1)$$

and

$$d_2 = d_1 \sqrt{x^2 + y^2} \quad (2)$$

where:

$$x = \frac{X}{B/2} \text{ and } y = \frac{Y}{B/2} \quad (3)$$

in which X, Y are target coordinates with respect to the midpoint of the selected baseline.

If d has two values, d_1 and d_2 , then E must have two values. These two values of E are displayed in figure A-1 as lines QP and SP. By definition, however, E will be the larger of the two values computed and will be computed using the larger of d_1 or d_2 . For example, whenever the target is located outside an area prescribed by a circle whose diameter is the baseline distance, d_2 will be found to be larger than d_1 . In figure A-1, the error so computed will be the line SP.

It is appropriate to note that SP is a longitudinal error, in the same direction as a line from the baseline's midpoint to the target. (If the target is on the baseline bisector, the error computed using d_2 is along the Y axis.)

Line QP, on the other hand, is computed using d_1 and is a lateral error. Should lateral error be a more important measurement than longitudinal error, then the computation of E should use d_1 rather than d_2 . But to repeat a

79-32-12

FIGURE A-1. ERROR GEOMETRY

A-2

previous statement, E, in the chart, is defined as the maximum potential error and will always use the larger of d_1 , d_2 .

Within a circle whose diameter is the baseline distance, d_1 will always be larger than d_2 . In consequence, the lateral error, close in, will always exceed the longitudinal error; i.e., line QP of figure A-1 will be larger than line SP.

The charts of figures 10 and 11 show only the larger of d_1 or d_2 , regardless whether the target is within or outside the baseline-diameter circle. However, to investigate each dimension of error, the following description redefines E in terms of both longitudinal and lateral errors. In this, E_1 is the maximum potential lateral error found by using d_1 ; E_2 is the maximum potential longitudinal error found by using d_2 .

The terms d_1 and d_2 can be expressed more meaningfully. Referring to figure A-2:

$$R_1 = \sqrt{Y^2 + (B/2 + X)^2} = B/2 \sqrt{y^2 + (1 + x)^2} = A_1(B/2), \quad (4)$$

$$R_2 = \sqrt{Y^2 + (B/2 - X)^2} = B/2 \sqrt{y^2 + (1 - x)^2} = A_2(B/2). \quad (5)$$

The area of the triangle with sides B, R_1 , R_2 is

$$\text{area} = R_1 R_2 \sin\theta/2, \quad (6)$$

and

$$\text{area} = BY/2. \quad (7)$$

Setting these equal,

$$\frac{R_1 R_2 \sin\theta}{2} = \frac{BY}{2}. \quad (8)$$

Substituting for R_1 , R_2 , and Y, from equations (3), (4), and (5), equation (8) yields

$$\frac{(A_1 B/2)(A_2 B/2) \sin\theta}{2} = \frac{B[y(B/2)]}{2} \quad (9)$$

or

$$\frac{A_1 A_2 \sin\theta}{2} = y \quad (10)$$

Increasing numbers will be included in subsequent drawings, but the target will not change. The bar width

and every other dimension involved will be increased accordingly. The bar width

and target size will also increase. The target will be located at the center of the bar. The target will be rotated 45 degrees clockwise relative to the horizontal axis. The target will be located at the center of the bar. The target will be rotated 45 degrees clockwise relative to the horizontal axis. The target will be located at the center of the bar. The target will be rotated 45 degrees clockwise relative to the horizontal axis. The target will be located at the center of the bar. The target will be rotated 45 degrees clockwise relative to the horizontal axis. The target will be located at the center of the bar. The target will be rotated 45 degrees clockwise relative to the horizontal axis.

79-32-13

FIGURE A-2. TARGET LOCATION GEOMETRY

and

$$\frac{A_1 A_2}{2y} = \frac{1}{\sin\theta}. \quad (11)$$

But from equations (1), (4), and (5), $A_1 A_2 / 2y = d_1$,

$$\text{hence, } d_1 = \frac{1}{\sin\theta}. \quad (12)$$

$$\text{and } E_1 = Bed_1 = \frac{Be}{\sin\theta} \quad (13)$$

Similarly expressing d_2 ,

$$d_2 = d_1 \sqrt{x^2 + y^2} = d_1 \sqrt{\frac{x^2 + y^2}{(B/2)^2}} \quad (14)$$

but

$$R = \sqrt{x^2 + y^2} \quad (15)$$

then

$$d_2 = d_1 \left(\frac{R}{B/2} \right) = \frac{1}{\sin\theta} \times \frac{R}{B/2} = \frac{2R}{BS\sin\theta} \quad (16)$$

for which

$$E_2 = Bed_2 = \frac{2Re}{\sin\theta}. \quad (17)$$

While less convenient for computations, pertinent qualifications inherent to phototheodolite tracking errors stem from equations (13) and (17).

1. E_1 is in the nature of a lateral error; E_2 a longitudinal error.
2. Error is inversely proportional to $\sin\theta$. Maximizing $\sin\theta$ minimizes error. At the intersection of the baseline bisector and baseline-diameter circle, $\sin\theta$ equals unity. Angle θ is a function of target location with respect to the baseline.

3. For points within the baseline-diameter circle, E_1 will be greater than E_2 ; lateral error will be greater than longitudinal error.

4. For points outside the baseline-diameter circle, E_2 will be greater than E_1 ; longitudinal error will be greater than lateral error.

For simplicity, the development of E has assumed the target to be in a horizontal plane through the phototheodolites. What has been said for the horizontal plane applies for targets in an inclined plane. Except for close-in tracking at high altitudes, however, the value of E will not materially change from that obtained in the horizontal plane.

From the discussion given on system errors, it should be recognized that there is no single answer to the question of how accurate the phototheodolite system is. The question must be qualified by various considerations, most important of which is that of specifying target tracking area.

