Group 3: ML Assignment 5

Objective

To predict which customer is more likely to purchase the newly introduced telecom plan.

Data Dictionary

- CustomerID: Unique customer ID
- PlanTaken: Whether the customer has purchased the plan or not (0: No, 1: Yes)
- Age: Age of customer
- TypeofContact: How customer was contacted (Company Invited or Self Inquiry)
- **CityTier:** City tier depends on the development of a city, population, facilities, and living standards. The categories are ordered i.e. Tier 1 > Tier 2 > Tier 3
- Occupation: Occupation of customer
- Gender: Gender of customer
- NumberOfPersons: Total number of persons planning to take the plan with the customer (since these are Friends and Family plans)
- PreferredServiceStar: Preferred service rating by customer
- MaritalStatus: Marital status of customer
- NumberOfUpgrades: Average number of upgrades in a year by customer
- **iPhone:** The customer has an iphone or not (0: No, 1: Yes)
- **PhoneContract:** Whether the customers has a contracted phone or not (0: No, 1: Yes)
- NumberOfChildren: Total number of children planning to take the plan with the customer
- **Designation:** Designation of the customer in the current organization
- MonthlyIncome: Gross monthly income of the customer
- PitchSatisfactionScore: Sales pitch satisfaction score
- PlanPitched: Plan pitched by the salesperson
- **NumberOfFollowups:** Total number of follow-ups has been done by the salesperson after the sales pitch
- **DurationOfPitch:** Duration of the pitch by a salesperson to the customer

Tasks:

- EDA
- Data Cleaning
- Data Visualization
- Feature Engineering & Data Preprocessing
- Model Building & Evaluation
- Model Tuning 3 rounds

Note:

Use Logistic Regression w/ Regularization and SVM techniques

- Compare the Logistic Regression technique you use for this problem with SVM techniques and interpret/explain the differences.
- Your models should be tested on at least 1000 randomly selected data points

Let's start coding!

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OrdinalEncoder, StandardScaler
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, recall_score, precision_score, roc_curv
from imblearn.over_sampling import SMOTE
import warnings
warnings.filterwarnings('ignore')
```

Read the dataset

memory usage: 763.9+ KB

```
df path = '~/code/loyalist-college/sem-1/ml-1/assignment-5/Telecom.xlsx'
df = pd.read_excel(df_path, sheet_name="Telecom")
df.info()
df.describe()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4888 entries, 0 to 4887
Data columns (total 20 columns):
 #
   Column
                              Non-Null Count Dtype
--- -----
                               -----
                               4888 non-null
    CustomerID
 0
                                                 int64
                               4888 non-null int64
 1
     PlanTaken
                               4662 non-null float64
 2
    Age
                            4662 non-null float6
4863 non-null object
     TypeofContact
                            4888 non-null int64
4637 non-null float64
4888 non-null object
     CityTier
     DurationOfPitch
 5
 6
     Occupation
 7
     Gender
                              4888 non-null object
    NumberOfPersons 4888 non-null int64
NumberOfFollowups 4843 non-null float64
PlanPitched 4888 non-null object
 8
 9
 10 PlanPitched
 11 PreferredServiceStar 4862 non-null float64
 12 MaritalStatus 4888 non-null
13 NumberOfUpgrades 4748 non-null
                               4888 non-null
                                                object
                                                float64
 14 iPhone
                               4888 non-null int64
 15 PitchSatisfactionScore 4888 non-null int64
 16 PhoneContract
                             4888 non-null
                                                int64
 17 NumberOfChildren 4822 non-null
18 Designation 4888 non-null
                                                float64
                                                object
 19 MonthlyIncome
                               4655 non-null
                                                float64
dtypes: float64(7), int64(7), object(6)
```

Out[2]:		CustomerID	PlanTaken	Age	CityTier	DurationOfPitch	Number Of Persons
	count	4888.000000	4888.000000	4662.000000	4888.000000	4637.000000	4888.000000
	mean	202443.500000	0.188216	37.622265	1.654255	15.490835	2.905074
	std	1411.188388	0.390925	9.316387	0.916583	8.519643	0.724891
	min	200000.000000	0.000000	18.000000	1.000000	5.000000	1.000000
	25%	201221.750000	0.000000	31.000000	1.000000	9.000000	2.000000
	50%	202443.500000	0.000000	36.000000	1.000000	13.000000	3.000000
	75%	203665.250000	0.000000	44.000000	3.000000	20.000000	3.000000
	max	204887.000000	1.000000	61.000000	3.000000	127.000000	5.000000

Feature Engineering

Remove duplicates

In [3]:	df df.dr	op_duplicat	ces()						
Out[3]:		CustomerID	PlanTaken	Age	TypeofContact	CityTier	DurationOfPitch	Occupation	Gende
	0	200000	1	41.0	Self Enquiry	3	6.0	Salaried	Female
	1	200001	0	49.0	Company Invited	1	14.0	Salaried	Male
	2	200002	1	37.0	Self Enquiry	1	8.0	Free Lancer	Male
	3	200003	0	33.0	Company Invited	1	9.0	Salaried	Female
	4	200004	0	NaN	Self Enquiry	1	8.0	Small Business	Male
	•••								
	4883	204883	1	49.0	Self Enquiry	3	9.0	Small Business	Male
	4884	204884	1	28.0	Company Invited	1	31.0	Salaried	Male
1	4885	204885	1	52.0	Self Enquiry	3	17.0	Salaried	Female
	4886	204886	1	19.0	Self Enquiry	3	16.0	Small Business	Male
	4887	204887	1	36.0	Self Enquiry	1	14.0	Salaried	Male
4	4888 r	ows × 20 col	umns						•

```
In [4]: df = df.drop(df[df["Occupation"] == 'Free Lancer'].index)
```

Select features

- Select independent features as X
- Select dependent feature for y

```
In [5]: def select_features_for_model(df):
            X = df.drop("PlanTaken", axis=1)
            y = df["PlanTaken"]
            X.info()
            return X, y
        X, y = select_features_for_model(df)
        <class 'pandas.core.frame.DataFrame'>
        Index: 4886 entries, 0 to 4887
        Data columns (total 19 columns):
            Column
                                      Non-Null Count Dtype
         0
            CustomerID
                                      4886 non-null int64
         1
                                      4660 non-null float64
                                    4861 non-null object
             TypeofContact
                                      4886 non-null int64
         3
             CityTier
                                   4635 non-null
             DurationOfPitch
                                                      float64
                                      4886 non-null
         5
             Occupation  
                                                      object
             Gender
                                    4886 non-null
                                                      object
                                   4886 non-null int64
4841 non-null float64
             NumberOfPersons
         7
             NumberOfFollowups
         8
                                     4886 non-null
         9
             PlanPitched
                                                      object
         10 PreferredServiceStar
                                     4860 non-null float64
         11 MaritalStatus 4886 non-null
                                                      object
         12 NumberOfUpgrades 4746 non-null float64
         13 iPhone
                                      4886 non-null int64
         14 PitchSatisfactionScore 4886 non-null int64
         15 PhoneContract 4886 non-null
16 NumberOfChildren 4820 non-null
17 Designation 4886 non-null
18 MonthlyIncome 4653 non-null
                                                       int64
                                                      float64
                                                      object
         18 MonthlyIncome
                                     4653 non-null
                                                      float64
        dtypes: float64(7), int64(6), object(6)
        memory usage: 763.4+ KB
```

Split Train & Test

Data Cleaning

Gender

```
In [7]: # Checking the unique values of gender in X_train
X_train['Gender'].unique()
```

```
Out[7]: array(['Male', 'Female', 'Fe Male'], dtype=object)
In [8]:
        X_train['Gender'].value_counts()
         Gender
Out[8]:
         Male
                    2334
                    1452
         Female
         Fe Male
                    122
         Name: count, dtype: int64
 In [9]: # Correcting the Fe Male gender as Female
         def clean_Gender(df):
             df['Gender'] = df['Gender'].map({'Male': 'Male', 'Female':'Female', 'Fe Male':
             return df
         # Clean Train
         X_train = clean_Gender(X_train)
         # Clean Test
         X test = clean Gender(X test)
In [10]: X_train['Gender'].value_counts()
         Gender
Out[10]:
         Male
                   2334
                   1574
         Female
         Name: count, dtype: int64
         MaritalStatus
In [11]: X_train['MaritalStatus'].value_counts()
         MaritalStatus
Out[11]:
         Married
                      1895
         Divorced
                       751
                       717
         Single
                       545
         Unmarried
         Name: count, dtype: int64
In [12]: # Merging Unmarried to Single
         def clean_MaritalStatus(df):
             df['MaritalStatus'] = df['MaritalStatus'].map({'Married': 'Married',
                                                            'Divorced':'Divorced',
                                                            'Single': 'Single',
                                                            'Unmarried': 'Single'})
             return df
         # Clean Train
         X_train = clean_MaritalStatus(X_train)
         # Clean Test
         X_test = clean_MaritalStatus(X_test)
In [13]: X_train['MaritalStatus'].value_counts()
         MaritalStatus
Out[13]:
         Married
                     1895
         Single
                     1262
         Divorced
                      751
         Name: count, dtype: int64
```

Impute missing values

```
In [14]: X_train.isnull().sum()
         CustomerID
                                      0
Out[14]:
                                    176
         Age
         TypeofContact
                                     19
         CityTier
                                     a
         DurationOfPitch
                                    211
         Occupation
                                      0
         Gender
                                      a
         NumberOfPersons
                                     0
         NumberOfFollowups
                                     37
         PlanPitched
                                     a
         PreferredServiceStar
                                     20
         MaritalStatus
                                     0
         NumberOfUpgrades
                                    122
         iPhone
                                      0
         PitchSatisfactionScore
                                     0
         PhoneContract
                                     0
         NumberOfChildren
                                     54
         Designation
                                     0
         MonthlyIncome
                                    182
         dtype: int64
In [15]: def impute_features(df):
              numeric_cols = ['DurationOfPitch', 'MonthlyIncome', 'Age', 'NumberOfUpgrades',
             mean_values = df[numeric_cols].mean()
             df[numeric cols] = df[numeric cols].fillna(mean values)
             categorical_cols = ['TypeofContact']
             df[categorical_cols] = df[categorical_cols].fillna(df[categorical_cols].mode().
             return df
         X train = impute features(X train)
         X_train.isnull().sum()
         X_test = impute_features(X_test)
```

Handling Outliers

• Income can be dependent on Occupation and Designation, therefore removing the outliers based on them

```
In [16]: def handle_outliers(df):
    numeric_columns = df.select_dtypes(include=['float64', 'int64']).columns

# Calculateing IQR
Q1 = df[numeric_columns].quantile(0.25)
Q3 = df[numeric_columns].quantile(0.75)
IQR = Q3 - Q1

# Outlier threshold - 1.5 times IQR
threshold = 1.5

# Finding the outliers using the threshold value
```

```
outliers = np.logical_or(df[numeric_columns] < (Q1 - threshold * IQR), df[numer
    # Total outliers in each numerical columns
    outliers_count = outliers.sum(axis=0)
    columns to replace with median = ['DurationOfPitch', 'NumberOfUpgrades']
    df[columns_to_replace_with_median] = np.where(outliers[columns_to_replace_with_
    # Set income thresholds based on the 95th percentile of MonthlyIncome for each
    thresholds_by_designation = df.groupby('Designation')['MonthlyIncome'].quantile
    # Replace outliers based on IQR for each designation and occupation
    for (designation, occupation), group in df.groupby(['Designation', 'Occupation'
        # Use the threshold corresponding to the designation
        income threshold = thresholds by designation.get(designation, 0)
        Q1 = group['MonthlyIncome'].quantile(0.25)
        Q3 = group['MonthlyIncome'].quantile(0.75)
        IQR = Q3 - Q1
        lower bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR
        # Replace outliers with the threshold value
        df.loc[(df['Designation'] == designation) & (df['Occupation'] == occupation'
               ((df['MonthlyIncome'] < lower_bound) | (df['MonthlyIncome'] > upper_
               'MonthlyIncome'] = income threshold
    return df
X_train = handle_outliers(X_train)
```

Encoding

PlanPitched - Ordinal encoding

```
In [17]: X train['PlanPitched'].unique()
         array(['Basic', 'Deluxe', 'Super Deluxe', 'Standard', 'King'],
Out[17]:
               dtype=object)
In [18]: def encode PlanPitched(df):
             # Define the custom order
             custom_order_PlanPitched = ['Basic', 'Standard', 'Deluxe', 'Super Deluxe', 'Kir
             # Initialize the OrdinalEncoder with the custom order
             encoder = OrdinalEncoder(categories=[custom_order_PlanPitched])
             # Fit and transform the labels
             df['PlanPitched'] = encoder.fit transform(df['PlanPitched'].values.reshape(-1,1
             return df
         # Encoding on Train
         X_train = encode_PlanPitched(X_train)
         # Encoding on Test
         X test = encode PlanPitched(X test)
```

Encode other categorical features

Scale data

Helpers

Helper to display model metrics and AUC under ROC curve

```
In [21]: def show_auc_under_roc(y_test, y_pred, y_prob):
             # Compute the false positive rate, true positive rate, and thresholds
             fpr, tpr, thresholds = roc_curve(y_test, y_prob)
             accuracy = accuracy_score(y_test, y_pred)
             auc_score = auc(fpr, tpr)
             print("Accuracy: ", accuracy)
             print("Precision:", precision_score(y_test, y_pred, average="weighted"))
             print("Recall:", recall_score(y_test, y_pred, average="weighted"))
             plt.figure()
             plt.plot(fpr, tpr, label='ROC curve (AUC = %0.2f)' % auc_score)
             plt.plot([0, 1], [0, 1], 'k--')
             plt.xlim([0.0, 1.0])
             plt.ylim([0.0, 1.05])
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.title('Receiver Operating Characteristic')
             plt.legend(loc='lower right')
             plt.show()
```

Helper to display confusion matrix

```
In [22]: def show_confusion_matrix(y_test, y_pred):
    cm = confusion_matrix(y_test, y_pred)

# Create a heatmap of the confusion matrix
```

```
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")

# Add labels, title, and ticks to the plot
plt.xlabel("Predicted")
plt.ylabel("True")
plt.title("Confusion Matrix for PlanTaken")
plt.xticks(ticks=[0, 1])
plt.yticks(ticks=[0, 1])

# Show the plot
plt.show()
```

Logistic Regression

Round 1 - Logistic Regression

Accuracy: 0.8149284253578732 Precision: 0.8017120699317434 Recall: 0.8149284253578732

Round 2 - Logistic Regression with Regularization & SMOTE sampling

Accuracy: 0.7525562372188139 Precision: 0.8117865062015687 Recall: 0.7525562372188139

Round 3 - Logistic Regression with Regularization & hyperparameter tuning & solver & SMOTE sampling

```
lr_model = LogisticRegression(penalty="12", C=13, solver="lbfgs")
lr_model.fit(X_train_resampled, y_train_resampled)

y_pred = lr_model.predict(X_test)
y_prob = lr_model.predict_proba(X_test)[:, 1]

show_auc_under_roc(y_test, y_pred, y_prob)
show_confusion_matrix(y_test, y_pred)

build_logistic_regression_model_with_regularization_and_tuning(X_train, X_test, y_t
```

Accuracy: 0.7525562372188139 Precision: 0.8117865062015687 Recall: 0.7525562372188139

SVM

Round 1 - SVM

```
In [26]:
    def build_svm_model(X_train, X_test, y_train, y_test):
        svm_model = SVC(kernel='linear', probability=True)
        svm_model.fit(X_train, y_train)

# Make predictions on the test set
        y_pred = svm_model.predict(X_test)
        cm = confusion_matrix(y_test, y_pred)

y_prob = svm_model.predict_proba(X_test)[:, 1]

show_auc_under_roc(y_test, y_pred, y_prob)
        show_confusion_matrix(y_test, y_pred)

build_svm_model(X_train, X_test, y_train, y_test)
```

Accuracy: 0.7770961145194274 Precision: 0.603878371201191 Recall: 0.7770961145194274

Conclusion - From the 0 values for false positive and true positive we see that the model is not learning using the "Linear" kernel

Round 2 - SVM with Regulariztion & rbf kernel

Accuracy: 0.9314928425357873 Precision: 0.9320768554095445 Recall: 0.9314928425357873

Round 3 - SVM with rbf kernel & Regularization & smote sampling

Accuracy: 0.9233128834355828 Precision: 0.9219368292162193 Recall: 0.9233128834355828

False Positive Rate

In [29]: X_train.shape
Out[29]: (3908, 29)

Comparison between Logistic regression and Support vector machine.

• Time complexity

	Logistic_regression	SVM
Training time complexity	O(Iterations*m*n) M = size of training dataset n = number of feature Iterations = 3 m = 3908 n = 29 O(3*3908*29) = O(339996)	O(m^2*n) iteration = 3 m = 3908 n = 29 O(442901456)
Predictive time complexity	O(n) where n = number of feature O(29)	O(n) where n = number of feature O(29)

- If you compare Logistic regression and svm. Logistic regression takes less execution time than SVM.So, in case of execution time, logistic regression better than support vector machine .
- In case of multiple features classification support vector machine is better over logistic regression. SVM perform better in multiple dimensions (with respect to planes) over multiple features.
- Logistic regression accuracy = 0.75
- SVM accuracy = 0.92
- From above accuracy we can conclude two things SVM performed well with outliers and svm perform well with multiple features classification
- In case of Training time complexity(execution time) Logistic regression is better.
- In case of Predictive time complexity approx both perform same.