

MIF 05 Réseaux TD2 - 2020

TD2 - Adressage et Routage

1 Exercice - Informations de configuration

A et B sont deux utilisateurs de la même entreprise. L'utilisateur A a pour adresse 143.27.102.101 et lit dans le fichier de configuration de son poste (commande ifconfig par exemple) : masque de sous-réseau (subnet) : 255.255.192.0 et adresse routeur par défaut : 143.27.105.1.

Questions:

- 1. Quelle est l'adresse du sous-réseau (subnet) auquel appartient A? Quelle est l'adresse de diffusion sur ce sous-réseau?
- 2. L'utilisateur B a pour adresse 143.27.172.101 et lit de même : masque de sous-réseau (subnet) : 255.255.192.0. B est-il sur le même sous-réseau que A? Peut-il utiliser la même adresse de routeur par défaut que A?

2 Exercice - Plan d'adressage

Une société veut se raccorder à Internet. Pour cela, elle demande une adresse réseau de classe B (partie hôte codée sur 16 bits) afin de contrôler ses 2 853 machines installées en France.

Questions:

- 1. Une adresse réseau de classe B sera-t-elle suffisante?
- 2. L'organisme chargé de l'affectation des adresses réseau lui alloue plusieurs adresses de classe C (partie hôte codée sur 8 bits) consécutives au lieu d'une adresse de classe B. Combien d'adresses de classe C faut-il allouer à cette société pour qu'elle puisse gérer tous ses terminaux installés?
- 3. Finalement, la société a pu obtenir une adresse réseau de classe B. L'administrateur du réseau choisit de découper le réseau pour refléter la structure de la société, c'est-à-dire qu'il crée autant de sous-réseaux que la société compte de services différents. L'administrateur a donc prévu 12 sous-réseaux, numérotés de 0 à 11. Proposez le masque de sous-réseau utilisé dans l'un des services de la société.
- 4. Combien reste-t-il de bits pour identifier les machines de chaque service? Combien de machines peut-on identifier dans chaque service?
- 5. L'adresse réseau de la société est : 139.47.0.0. Indiquez l'adresse réseau du 10ème sous-réseau (c'est-à-dire du no 9).
- 6. Pour ce sous-réseau, donnez l'adresse IP complète de la machine ayant comme identifiant de machine (partie hôte) 7.48.
- 7. Donnez les adresses réseau et les adresses de diffusion du sous-réseau no 11.

MIF 05 Réseaux TD2 - 2020

3 Exercice - Routage par états de liens

Dans cet exercice on s'intéresse aux protocoles de routage par états de liens. Ces protocoles de routage reposent sur l'algorithme de Dijkstra (présenté ci-dessous) pour découvrir les plus courts chemins dans une topologie donnée.

```
Notations
c(X,Y): coût du lien entre X et Y (fixé à \infty si pas de lien entre X et Y)
D(V): coût du chemin de la source à la destination V (estimation courante)
p(V) : nœ ud précédent la destination le long du chemin vers V
{\tt N} : ensemble des nœ uds pour lesquels le plus court chemin est connu
*** Algorithme de Dijkstra ***
Initialisation (on choisit le nœ ud A comme racine)
N=\{A\}
Pour tous les nœ uds V
  Si V est adjacent à A
    Alors D(V)=c(A,V) et p(V) = A
  Sinon D(V) = \infty
Boucle
  Trouver W à l'extérieur de N tel que D(W) soit minimum
  Aiouter W à N
  Mettre à jour D(V) pour tout V adjacent à W (et à l'extérieur de N) :
      D(V) = min(D(V), D(W) + c(W,V))
      W = (V)q
Jusqu'à ce que tous les nœ uds soient dans N
```

Questions:

1. Quelle étape indispensable doit précéder le calcul des plus courts chemins dans un protocole de routage par états de lien?

On suppose que l'étape précédente a été correctement effectuée. Chaque nœud a donc une connaissance complète de la topologie du réseau (liens entre les nœuds avec leur coût). La Table 1 synthétise ces informations.

- 2. Identifier dans ce tableau les informations envoyés par le nœud F sur son voisinage lors de l'étape d'innondation. Indiquer les voisins (nœuds adjacents) du nœud F.
- 3. Calculer les plus courts chemins pour le nœud F. En cas d'ambiguïté, on appliquera les règles suivantes :
 - une nouvelle route remplacera une route antérieure si et seulement si son coût est strictement inférieur (en cas d'égalité, on conserve la route courante):
 - si plusieurs nœuds avec des chemins de coûts identiques sont candidats pour aller dans N, on suivra l'ordre alphabétique.
- 4. Représenter l'arbre des plus courts chemins pour le nœud F et sa table de routage.
- 5. Cet arbre et cette table sont ils uniques?
- 6. Calculer le coût en terme d'opérations pour exécuter l'algorithme de Dijsktra sur un nœud.

MIF 05 Réseaux TD2 - 2020

	A	В	С	D	Е	F	G	Н	Ι	J	K	L	Μ	N
A	0	3	1	-	-	-	-	-	-	-	-	-	-	-
В	3	0	1	-	1	5	_	-	1	-	-	-	-	-
$^{\rm C}$	1	1	0	2	-	1	-	-	-	-	-	-	-	-
D	-	-	2	0	1	-	2	-	-	-	-	-	1	-
\mathbf{E}	-	1	-	1	0	1	1	3	-	-	-	-	-	-
F	-	5	1	-	1	0	-	-	-	-	-	-	-	-
G	-	-	-	2	1	-	0	1	-	-	-	-	3	-
Η	-	-	-	-	3	-	1	0	2	1	-	3	-	-
I	-	1	-	-	-	-	-	2	0	3	-	-	-	-
J	-	-	-	-	-	-	-	1	3	0	3	-	-	-
K	-	-	-	-	-	-	-	-	-	3	0	1	-	-
L	-	-	-	-	-	-	_	3	-	-	1	0	-	1
M	-	-	-	1	-	-	3	-	-	-	-	-	0	2
N	-	-	-	-	-	-	-	-	-	-	-	1	2	0

Table 1 – Coûts des liens entre les nœuds.

4 Exercice - Routage par vecteur de distance

On considère un réseau donné pour lequel les coûts des liens sont donnés en Table 2. À partir des vecteurs de distance initiaux des nœuds (avant échange entre nœuds voisins) donnés en Table 3, mettre à jour les vecteurs de distance après les événements suivants :

- 1. Après $A \to B$ (A a envoyé son vecteur à B)
- 2. Après $A \to C$ (on conserve les changements des questions précédentes)
- 3. Après $C \to D$
- 4. Après $D \to B$
- 5. Après ces 4 échanges, est-ce que chaque nœud a son vecteur de distance qui a convergé vers sa valeur finale?

	Α	В	\mathbf{C}	D	\mathbf{E}	F
A	0	8	3	-	-	-
В	8	0	-	2	-	-
С	3	-	0	2	6	-
A B C D	-	2	1	0	-	2
Ε	-	-		-	0	-
F	-	-	-	2	-	0

Table 2 – Coûts des liens entre les nœuds.

MIF 05 Réseaux TD2 - 2020

N	œud	Α
T N	œua	A

Dst	Coût	Proch
В	8	В
С	3	С

Nœud D

Dst	Coût	Proch
В	2	В
$^{\rm C}$	1	С
F	2	F

Nœud B

Dst	Coût	Proch
Α	8	A
D	2	D

Nœud E

Dst	Coût	Proch
С	6	С

Nœud C

Dst	Coût	Proch
A	3	A
D	1	D
Е	6	E

Nœud F

Dst	Coût	Proch
D	2	D

Table 3 – Vecteurs de distance initiaux.