COG250H1: Introduction to Cognitive Science

Fall 2018

Lecture 2: Categorization (Part 1)

Lecturer: Anderson Todd Scribes: Ousmane Amadou

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 An Overview of Cognitive Science (CogSci)

2.1.1 Motivation

Key writing points: (1) Black box approach (2) Examples of cogsci in real life (Machine learning, Stock Crash,) (3) Literacy As machine learning is picking up (quickly), also hitting a problem that many of these problems are "black boxes" (not understanding how it actually works, or how it works under the hood)

2.1.2 Theoretical Constucts and Plausibility

Key writing points: (1) Metaphors and multi aptness (2) Convergence of evidence (works for multiple streams of evidence) example:

2.1.3 What is CogSci?

Cogsci seeks to develop a common language for describing **cognitive phenomena** that can be understood through multiple disciplines.

There are three models of cognitive science:

1. Generic Nominalism

- The weakest definition of CogSci
- In this vision, CogSci is not it's own discipline. Instead, it is a generic term describing the study of mind in CogSci's subdisciplines.
- This vision is generally not accepted in third generation cognitive science

2. Interdisciplinary Ecclecticsm

- A stonger definition than generic nominalism, not the strongest
- This approach is characterized by drawing from CogSci's sub disciplines to analyze the mind. Instead of holding to a single paradigm or framework of thought, IE seeks to integrate knowledge from all the sub disciplines to gain insight into the mind.
- Analogy: Interfaith dialgoue

- This model, however, is very unstable. Typically this model either devolves into generic nominalism or evolves into synoptic integration.
- 3. Synoptic Integration
 - The strongest definition of CogSci.
 - CogSci, under this model, is a unique discipline. Doing CogSci is deliberate.

2.2 Naturalistic Imperative

The Naturalistic Imperative is a term coined by John Vervaeke. To understand the naturalistic imperative it is useful to look at previous scientific revolutions

- Generic step of the algorithm is to swap a basic variable with a non basic variable. For now assume that we have selected basic variable x_p and non-basic variable x_q to swap
- x_p can be swapped with x_q if and only if $Y_{pq} \neq 0$ because if Y_{pq} is equal to 0 then column vector Y_q can be represented as linear combination of m -1 basis vectors i.e.

$$Y_q = \sum_{i=1}^m y_{iq} * I_i$$

and hence Y_q cannot be included in basic solution

• Now make q^{th} column as $\begin{bmatrix} 0 & \dots & 0 & 1_p & 0 & \dots & 0 \end{bmatrix}$ where 1_p signifies 1 at p^{th} position. For that divide p_{th} row of matrix $\begin{bmatrix} I & Y \end{bmatrix}$ and matrix $\begin{bmatrix} Y(0) \end{bmatrix}$ by Y_{pq} and apply the row operation $R_i \Rightarrow R_i - Y_{iq} * R_p$

2.3 Determining the Leaving Variable p

ullet While applying row transformation of $\left[egin{array}{c} I & Y \end{array}
ight]$ rows of $\left[egin{array}{c} I \end{array}
ight]$ also changes and are given by

$$Y_{i0}' = Y_{i0} - Y_{iq} * Y_{p0}/Y_{i0}$$

Condition $Y_{i0}' \geq 0$ must satisfy otherwise x_q would not be a BFS.

• So choose p such that

$$p \in S = \underset{i}{argmin} \{Y_{i0}/Y_{iq} | Y_{iq} \ge 0\}$$

• If number of elements in S is > 1 then the would become degenerate. Since non-degeneracy is assumed

$$p = \underset{i}{argmin} \{Y_{i0}/Y_{iq} | Y_{iq} \ge 0\}$$

2.4 Determining the Entering Variable q

• We Know that

$$\begin{bmatrix} I & Y \end{bmatrix} \begin{bmatrix} x_B \\ x_{NB} \end{bmatrix} = \begin{bmatrix} Y(0) \end{bmatrix}$$
$$x_B = Y_0 - Yx_{NB}$$
$$Where \begin{bmatrix} x_B \\ x_{NB} \end{bmatrix} \ge 0$$

• Initial Cost:

$$c^{T} \begin{bmatrix} x_{B} \\ x_{NB} \end{bmatrix} = c_{B}^{T} x_{B} + c_{NB}^{T} x_{NB}$$
$$= c_{B}^{T} x_{B}$$
$$= c_{B}^{T} Y_{0}$$

since $x_{NB} = 0$ and $I * x_B + Y * x_{NB} = Y_0$

• Now cost is

$$c^{T} \begin{bmatrix} x_B \\ x_{NB} \end{bmatrix} = c_B^{T} x_B + c_{NB}^{T} x_{NB}$$
$$= c_B^{T} (Y_0 - Y x_{NB}) + c_{NB}^{T} x_{NB}$$
$$= c_B^{T} Y_0 + (c_{NB-Y^T c_B})^{T} x_{NB}$$

- Now we can choose q such for which $(c_{NB} Y^T c_B)_q < 0$
- Formalizing the above concept

$$\begin{bmatrix} 1 & 0 & \dots & 0 & Y_{1,m+1} & Y_{1,m+2} & \dots & Y_{1,n} \\ 0 & 1 & \dots & 0 & Y_{2,m+1} & Y_{2,m+2} & \dots & Y_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & Y_{m,m+1} & Y_{m,m+2} & \dots & Y_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} y_{10} \\ \vdots \\ x_m \\ \vdots \\ x_n \end{bmatrix}$$

and

$$(c_{NB} - Y^T c_B)^T x_{NB} = \sum_{j=m+1}^n (c_j - Z_j) * x_j$$

$$Where \ Z_j = \sum_{i=1}^m (Y_{i,j} * c_i)$$

• To determine the entering variable choose j such that $(c_j - Z_j) < 0$

2.4.1 Theorem 8.1.

Given a non-degenerate Basic Feasible Solution with objective value Z'. Suppose $c_j - Z_j' < 0$ for some j there is a feasible solution with objective value < Z'. Also if variable x_j can be substituted for a variable in the basis for a new BFS, we get new BFS with value $Z_0 < 0$. If this cannot be done then the solution is unbounded.

2.5 Optimality condition

The Basic Feasible Solution is optimal if

$$\forall, \quad c_j - Z_j \ge 0$$

2.6 Some Points to Ponder

• f there does not exist p to replace then we have founded the recession direction and the cost can be reduced to $-\infty$

• In the worst case the Simplex Algorithm might visit all the extreme points. Example - Klee Minty cube

2.7 Duality

Every linear programming problem, referred to as a primal problem, can be converted into a dual problem, which provides an upper bound to the optimal value of the primal problem. The primal problem is:

$$\begin{aligned} \min_{x} c^{T}x \\ Ax &= b \\ x &\geq 0 \\ Where \ A \in R^{m \times n}, \ Rank(A) &= m \end{aligned}$$

with the corresponding symmetric dual problem,

$$\begin{aligned} \max_y \, b^T y \\ A^T y &\leq c \\ Where \ A &\in R^{m \times n}, \ Rank(A) = m \end{aligned}$$