

Podstawy Techniki

Mikroprocesorowej

wykład 2: procesor z siwą bródką
i może coś jeszcze

Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl

"Kompjuter - eta jest'" i klasyfikacja

- jednostka centralna procesor
- pamięć operacyjna
- urządzenia wejścia-wyjścia
- magistrale
- von Neumann (!)
- SISD Single Instruction Single Data
- SIMD Single Instruction Multiple Data
- MISD Multiple Instruction Single Data
- MIMD Multiple Instruction Multiple Data

Komputer - jak drużynowy

- są wśród nas wszędzie!
- ogólnego przeznaczenia
- specjalizowane, dedykowane

To ja - INTEL się nazywam (8051)

- Jednostka centralna:
 - 8 bitów, 111 rozkazów (CISC): 49 1 bajt, 45 2 bajty, 17 3 bajty)
 - 1 lub 2 cykle maszynowe, 4 cykle mnożenie i dzielenie
- Zegar: wewnętrzny rezonator kwarcowy max 12 MHz cykl maszynowy 1 μs
- Wewnętrzna pamięć programu ROM 4KW (4096) 8-bit
 - może być i 8KW
- Wewnętrzna pamięć danych RAM 128B, zewnętrzna do 64KW
 - może być i 256B
- CTC: 2 16-bit liczniki, sterowane wewnętrznie lub zewnętrznie, 4 tryby pracy
 - może być licznik bonusowy!
- PS: nadawanie i odbiór niezależne, 4 tryby
- PR: 4 sztuki, po 8 linii, na nich też funkcje specjalne spoczywają
- Przerwania 2-poziomowe, obsługują integralne elementy dodatkowe
- Żadne tam DMA!

A tak ładnie wyglądam bez pokrywy

Chcę oglądać twoje nogi - nogi - nogi

- P0 i port i magistrala danych oraz adresowa młodsza
- P1 i port i sterowanie T2
- P2 i port i magistrala adresowa starsza
- P3 i port i obsługa PS, T0, T1, INT0, INT1, WR, RD
- PSEN Program Store Enable
 odczyt z zewnętrznej pamięci programu
- ALE Address Latch Enable P0 adres czy też dane
- RST/VPD reset zerem, zasilanie w low-power
- EA External Access pobranie wszystkich rozkazów z zewnętrznej pamięci progrąmu
- XTAL oscylator kwarcowy
- Ucc zasilanie
- Uss masa

A teraz gala rejestrowa!

A ALU mam bardzo sprytne!

- Dodawanie z przeniesieniem, odejmowanie z pożyczką:
 - akumulator jeden składnik obsługuje
 - drugi składnik wewnętrzna pamięć danych, argument bezpośredni
 - wynik w akumulatorze uwaga na PSW
- Mnożenie i dzielenie 8-bit bez znaku:
 - akumulator A i B: mnożna/mnożnik, dzielna/dzielnik
 - wynik mnożenie B i A, dzielenie A wynik, B reszta
- Inkrementacja/dekrementacja akumulatora i komórki pamięci wewnętrznej
- Korekcja BCD wyniku w akumulatorze
- AND, OR, XOR argumenty jak w arytmetyce
- NOT akumulatora
- P parzystość
- OV overflow

(hex):

(hex): D0

D7

(MSB)

CY

D6

AC F0

D5**D4**

RS1

D3

RS0

D2

OV

(LSB)

PSW

RSO RS1 - bank rejestrów

- AC przeniesienie połówkowe
- CY przeniesienie
- F0 znacznik programowy ogólnego przeznaczenia

SpecRejestry

Adres (hex)	Oznaczenie	Nazwa
E0*	ACC	Akumulator
F0*	В	Rejestr B
D0*	PSW	Słowo stanu programu
81	SP	Wskaźnik stosu
83 82	DPH DPL	bity 8-15 wskaźnik danych bity 0-7 DPTR
80*	P0	Port 0
90*	P1	Port 1
A0*	P2	Port 2
B0*	P3	Port 3
B8*	IP	Słowo sterujące do ustawiania priorytetów przerwań
A8*	IE	Słowo sterujące pracą systemu przerwań
88*	TCON	Słowo sterujące i kontrolne układu czasowo-licznikowego i systemu przerwań
89	TMOD	Słowo sterujące do ustawiania trybu pracy liczników w układzie czasowo-licznikowym
8C	TH0	bity 8–15 \ 16-bitowy
8A	TL0	bity 0−7 ∫ licznik T0
8D	TH1	bity 8–15 \ 16-bitowy
8B	TL1	bity 0−7 ∫ licznik T1
C8*	T2CON	Słowo sterujące licznika 2
CD	TH2	bity 8–15 \ 16-bitowy
CC	TL2	bity 0−7 ∫ licznik T2
СВ	RLDH	bity 8-15 Slowo ładowane
CA	RLDL	bity 0-7 ∫ do licznika T2
98*	SCON	Słowo sterujące portu szeregowego
99	SBUF	Bufor portu szeregowego
97	PCON	Słowo sterujące zasilania

A tak ładnie rozkaz przetwarzam

$$S1 \longrightarrow S2 \longrightarrow S3 \longrightarrow S4 \longrightarrow S5 \longrightarrow S6$$

- S1 rozkazu pobranie,
- S2 rozkazu dekodowanie,
- S3 adresu efektywnego wyznaczanie,
- S4 argumentów ładowanie,
- S5 egzekucja,
- S6 rezultatów pamiętanie,
- Osoby dramatu:
- Procesor: vždy siempre!
- Pamięć: S1, S3, S4, S6.

Faza S3 = tryby adresowania

- Rejestrowy (bezpośredni):
 - argumenty i wyniki w rejestrach procesora
 - szybki: S3 wskazanie rejestru, S4 szczątkowe
- Rejestrowy (pośredni):
 - zawartość rejestru adresuje pamięć (układy I/O)
 - wolniejszy niż poprzedni
- Bezpośredni:
 - adres po rozkazie pokazuje gdzie argumenty
 - S3 proste w realizacji, S4 długo trwa
- Natychmiastowy:
 - argumenty razem z rozkazem błyskawica
 - S3, S4 nie istnieje, czasem i S6 brak, argumenty szczątkowe
- Bazowo-indeksowy:
 - nie jest do końca nowy, ale jest złożony!

To umiem (1)

Mnemonik Operacja szesnast-/cykle kowy (hex) Przesłania MOV A,Rr $A \leftarrow Rr$ E8-EF 1/1 MOV A,ad $A \leftarrow (ad)$ **E5** 2/1 MOV A,@Ri $A \leftarrow (Ri)$ E6,E7 1/1 MOV A, #n $A \leftarrow n$ 74 2/1 MOV Rr.A $Rr \leftarrow A$ F8-FF 1/1 MOV Rr,ad $Rr \leftarrow (ad)$ A8-AF2/2 78 - 7FMOV Rr, #n $Rr \leftarrow n$ 2/1 MOV ad,A $(ad) \leftarrow A$ F5 2/1 MOV ad,Rr $(ad) \leftarrow Rr$ 88 - 8F2/2 MOV ad1,ad2 $(ad1) \leftarrow (ad2)$ 85 3/2 MOV ad,@Ri $(ad) \leftarrow (Ri)$ 86,87 2/2 MOV ad, #n 75 $(ad) \leftarrow n$ 3/2

 $(Ri) \leftarrow A$

 $(Ri) \leftarrow n$

 $A \leftrightarrow Rr$

 $A \leftrightarrow (ad)$

 $A \leftrightarrow (Ri)$

 $A \leftarrow (Ri)$

 $(Ri) \leftarrow A$

 $(Ri) \leftarrow (ad)$

DPTR ← nn

 $A_{3-0} \leftrightarrow (Ri)_{3-0}$

 $A \leftarrow (DPTR)$

 $(DPTR) \leftarrow A$

 $A \leftarrow (A + PC)$

 $A \leftarrow (A + DPTR)$

MOV @Ri,A

MOV @Riad

XCH A,Rr

XCH A,ad

XCH A,@Ri

XCHD A,@Ri

MOVX A,@Ri

MOVX @Ri,A

MOVX A,@DPTR

MOVX @DPTR.A

MOVC A,@A+DPTR

 $MOVC A_{,}@A + PC$

MOV @Ri, #n

MOV DPTR, #nn

Kod

F6,F7

A6,A7

76,77

90

C8-CF

C5

C6,C7

D6,D7

E2,E3

F2,F3

E0

F₀

93

83

Bajty/

1/1

2/2

2/1

3/2

1/1

2/1

1/1

1/1

1/2

1/2

1/2

1/2

1/2

1/2

To umiem (2)

Operacje arytmetyc	zno-logiczne		
ADD A,Rr	$A \leftarrow A + Rr$	28-2F	1/1
ADD A,ad	$A \leftarrow A + (ad)$	25	2/1
ADD A,@Ri	$A \leftarrow A + (Ri)$	26,27	1/1
ADD A, #n	$A \leftarrow A + n$	24	2/1
ADDC A,Rr	$A \leftarrow A + Rr + CY$	38-3F	1/1
ADDC A,ad	$A \leftarrow A + (ad) + CY$	35	2/1
ADDC A,@Ri	$A \leftarrow A + (Ri) + CY$	36,37	1/1
ADDC A, #n	$A \leftarrow A + n + CY$	34	2/1
SUBB A,Rr	$A \leftarrow A - Rr - CY$	98-9F	1/1

To umiem (3)

Mnemonik	Operacja	Kod szesnast- kowy (hex)	Bajty/ /cykle
SUBB A,ad	$A \leftarrow A - (ad) - CY$	95	2/1
SUBB A,@Ri	$A \leftarrow A - (Ri) - CY$	96,97	1/1
SUBB A,#n	$A \leftarrow 3A - n - CY$	94	2/1
INC A	$A \leftarrow A + 1$	04	1/1
INC Rr	$Rr \leftarrow Rr + 1$	08-0F	1/1
INC ad	$(ad) \leftarrow (ad) + 1$	05	2/1
INC @Ri	$(Ri) \leftarrow (Ri) + 1$	06,07	1/1
INC DPTR	$DPTR \leftarrow DPTR + 1$	A 3	1/2
DEC A	$A \leftarrow A - 1$	14	1/1
DEC Rr	$Rr \leftarrow Rr - 1$	18-1F	1/1
DEC ad	$(ad) \leftarrow (ad) - 1$	15	2/1
DEC @Ri	$(Ri) \leftarrow (Ri) - 1$	16,17	1/1
MUL AB	$B.A \leftarrow A \times B$	A 4	1/4
DIV AB	$A \leftarrow [A/B]$	84	1/4
DA A	Korekcja dzies. A	D4	1/1
ANL A,Rr	$A \leftarrow A \wedge Rr$	58-5F	1/1
ANL A,ad	$A \leftarrow A \land (ad)$	55	2/1
ANL A,@Ri	$A \leftarrow A \wedge (Ri)$	56,57	1/1
ANL A, #n	$A \leftarrow A \wedge n$	54	2/1
ANL ad,A	$(ad) \leftarrow (ad) \wedge A$	52	2/1
ANL ad, #n	$(ad) \leftarrow (ad) \wedge n$	53	3/2
ORL A,Rr	$A \leftarrow A \vee Rr$	48-4F	1/1
ORL A,ad	$A \leftarrow A \lor (ad)$	45	2/1
ORL A,@Ri	$A \leftarrow A \lor (Ri)$	46,47	1/1
ORL A, #n	$A \leftarrow A \lor n$	44	2/1
ORL ad,A	$(ad) \leftarrow (ad) \lor A$	42	2/1
ORL ad, #n	$(ad) \leftarrow (ad) \lor n$	43	3/2
XRL A,Rr	$A \leftarrow A \oplus Rr$	68-6F	1/1
XRL A,ad	$A \leftarrow A \oplus (ad)$	65	2/1
XRL A,@Ri	$A \leftarrow A \oplus (Ri)$	66,67	1/1
XRL A, #n	$A \leftarrow A \oplus n$	64	2/1
XRL ad,A	$(ad) \leftarrow (ad) \oplus A$	62	2/1
XRL ad, #n	$(ad) \leftarrow (ad) \oplus n$	63	3/2
CLR A	A ← 0	E4	1/1
CPL A	$A \leftarrow \overline{A}$	F4	1/1
SWAP A	A ₃₋₀ ↔ A ₇₋₄	C4	1/1
RL A	7 ← A 0 ←	23	1/1
RLC A	CY ≠ 7←A 0	33	1/1

To umiem (4)

Mnemonik	Operacja	Kod szesnast- kowy (hex)	Bajty/ /cykle
RR A	7 A → 0	03	1/1
RRC A	$\begin{array}{c c} \hline \hline$	13	1/1
Operacje na bi	tach		
CLR C	$CY \leftarrow 0$	C3	1/1
CLR bit	(bit) \leftarrow 0	C2	2/1
SETB C	$CY \leftarrow 1$	D3	1/1
SETB bit	(bit) ← 1	D2	2/1
CPL C	$CY \leftarrow \overline{CY}$	В3	1/1
CPL bit	$(bit) \leftarrow (\overline{bit})$	B 2	2/1
ANL C,bit	$CY \leftarrow CY \land (bit)$	82	2/2
ANL C,/bit	$CY \leftarrow CY \land (\overline{bit})$	B 0	2/2
ORL C,bit	$CY \leftarrow CY \lor (bit)$	72	2/2
ORL C,/bit	$CY \leftarrow CY \lor (bit)$	A 0	2/2
MOV C,bit	$CY \leftarrow (bit)$	A2	2/1
MOV bit,C	(bit) ← CY	92	2/2

To umie procesor z siwą bródką (5)

~			
Skoki	1	TO7K97V	sterujące
DWOWI		IUZKazy	swithjac

AJMP adr11	PC10-0 ← adr11	01,21	2/2
		41,61	
		81, A 1	
		C1,E1	
LJMP adr16	PC ← adr16	02	3/2
SJMP d	$PC \leftarrow PC + d$	80	2/2
JMP $@A + DPTR$	$PC \leftarrow A + DPTR$	73	1/2
JC d	Gdy $CY = 1$ to	40	2/2
	$PC \leftarrow PC + d$		
JNC d	Gdy CY = 0 to	50	2/2
	$PC \leftarrow PC + d$		
JZ d	Gdy A = 0 to	60	2/2
	$PC \leftarrow PC + d$		
JNZ d	Gdy $A \neq 0$ to	70	2/2
	$PC \leftarrow PC + d$		
JB bit,d	Gdy (bit) = 1 to	20	3/2
	$PC \leftarrow PC + d$		
JNB bit,d	Gdy (bit) = 0 to	30	3/2
	$PC \leftarrow PC + d$		

To umie procesor z siwą bródką (6)

Operacja	Kod szesnast- kowy (hex)	Bajty/ /cykle
Gdy (bit) = 1 to	10	3/2
Gdy A = (ad) to	B 5	3/2
	B 4	3/2
•	B8-BF	3/2
• ` '	B6,B 7	3/2
	D8-DF	2/2
	Do Di	2/2
(AND SECOND FOR SECOND	D5	3/2
` ' ` '	23	3/2
Nic nie rób	00	1/1
	Gdy (bit) = 1 to PC \leftarrow PC + d (bit) \leftarrow 0 Gdy A = (ad) to PC \leftarrow PC + d Gdy A = n to PC \leftarrow PC + d Gdy Rr = n to PC \leftarrow PC + d Gdy (Ri) = n to PC \leftarrow PC + d Rr \leftarrow Rr - 1 i gdy Rr \neq 0 to PC \leftarrow PC + d (ad) \leftarrow (ad) - 1 i gdy (ad) \neq 0 to PC \leftarrow PC + d	Operacja szesnast- kowy (hex) Gdy (bit) = 1 to 10 PC \leftarrow PC + d (bit) \leftarrow 0 Gdy A = (ad) to B5 PC \leftarrow PC + d Gdy A = n to B4 PC \leftarrow PC + d Gdy Rr = n to B8-BF PC \leftarrow PC + d Gdy (Ri) = n to B6,B7 PC \leftarrow PC + d Rr \leftarrow Rr - 1 D8-DF i gdy Rr \neq 0 to PC \leftarrow PC + d (ad) \leftarrow (ad) - 1 D5 i gdy (ad) \neq 0 to PC \leftarrow PC + d

To umie procesor z siwą bródką (7)

Podprogramy i	pperacje na stosie		
ACALL adr11	$SP \leftarrow SP + 1$	11,31	2/2
	$(SP) \leftarrow PC_{7-0}$	51,71	
	$SP \leftarrow SP + 1$	91, B 1	
	$(SP) \leftarrow PC_{15-8}$	D1,F1	
	PC10-0 ← adr11		
LCALL adr16	$SP \leftarrow SP + 1$	12	3/2
	$(SP) \leftarrow PC_{7-0}$		
	$SP \leftarrow SP + 1$		
	$(SP) \leftarrow PC_{15-8}$		
	$PC \leftarrow adr16$		
RET	$PC_{15-8} \leftarrow (SP)$	22	1/2
	$SP \leftarrow SP - 1$		
	$PC_{7-0} \leftarrow (SP)$		
	$SP \leftarrow SP-1$		
RETI	$PC_{15-8} \leftarrow (SP)$	32	1/2
	$SP \leftarrow SP - 1$		
	$PC_{7-0} \leftarrow (SP)$		
	$SP \leftarrow SP - 1$		
PUSH ad	$SP \leftarrow SP + 1$	C0	2/2
	$(SP) \leftarrow (ad)$		
POP ad	$(ad) \leftarrow (SP)$	$\mathbf{D0}$	2/2
	$SP \leftarrow SP - 1$		-

To umie procesor z siwą bródką (8)

	Znaczniki				Znaczniki			Znaczniki			
Rozkaz	CY	AC	OV	Rozkaz	CY	AC	OV	Rozkaz	CY	AC	ov
ADD	‡	1	‡	RRC	1	_	_	ANL C,bit	1	_	_
ADDC	‡	‡	‡	RLC	‡	_	-	ANL C,/bit	‡	_	_
SUBB	‡	‡	1	CJNE	‡		-	ORL C,bit	1	_	_
MUL	0	_	1	SETB C	1		_	ORL C,/bit	‡	-	_
DIV	0	_	1	CLR C	0		_	MOV C,bit	‡	_	_
DA	 \$		-	CPL C	1		_				