КИНЕМАТИКА МАТЕРИАЛЬНОЙ ТОЧКИ.

Задача 1. По заданному закону движения найти траекторию материальной точки и нарисовать ее. Найти положение точки в момент времени t=0, направление движения, скорость, ускорение.

(a)
$$x = 3t - 5$$
, $y = 4 - 2t$

(b)
$$x = 2t$$
, $y = 8t^2$

(c)
$$x = 3\sin^2 t$$
, $y = 3\cos^2 t$.

(d)
$$x = 5\sin t^2$$
, $y = 5\cos t^2$.

(e)
$$x = 5\sin 3t$$
, $y = 4\cos 3t$.

(f)
$$x = \operatorname{ch} t$$
, $y = \operatorname{sh} t$.

(g)
$$x = t \sin t$$
, $y = -t \cos t$.

(h)
$$x = a \sin(\omega t + \alpha)$$
, $y = b \cos(\omega t + \beta)$

Задача 2. Нарисовать траекторию точки, закон движения которой задан формулой

(a)
$$\vec{r} = \vec{r_0} + \vec{b} \cdot t$$
;

(b)
$$\vec{r} = \vec{r_0} + \vec{b} \cdot \cos t$$
.

Задача 3. Материальная точка движется с постоянной по величине скоростью таким образом, что ее радиус-вектор удовлетворяет условию:

(a)
$$\left| \vec{r} - \vec{b} \right| = 1$$

(b)
$$|\vec{r} - \vec{b}| = |\vec{r} - \vec{c}|$$

(c)
$$(\vec{r}, \vec{b}) = 0$$

(d)
$$(\vec{r}, \vec{b}) = 1$$

Найти траекторию точки.

Задача 4. Точка M(x,y) движется по кривой $y=x^2$ с постоянной по величине скоростью v . Найти скорость и ускорение точки как функции x.

Задача 5. Кошка сидит на лестнице, прислоненной к стене. Лестница может скользить нижним концом по полу, верхним – по стене. Длина лестницы равна l. Расстояние от кошки до нижнего конца лестницы равно s. Найти траекторию кошки. (рис)

Задача 6. Стержень OA вращается с постоянной угловой скоростью $\omega=10~c^{-1}$. OA=AB=80 см. Найти закон движения и траекторию средней точки M стержня AB, если в начальный момент ползун B находился в крайнем правом положении. Найти закон движения и траекторию ползуна B. Найти скорости и ускорения точек M и B. (рис.)

Задача 7. Найти траекторию точки M стержня AB кривошипно-шатунного механизма, если OA = AB = 60 см, MB = 20 см, $\varphi = 4\pi t$. (рис.)

Задача 8. Точка движется в плоскости так, что величина ее скорости постоянна, а ускорение все время направлено в данную неподвижную точку *O*. Найти траекторию точки.