Nom:	NI ata	/20
Prénom:	Note:	/ 20

· Contrôle de connaissances 21

Forces centrales et chimie (13')

/8 $\boxed{1}$ Soit un point M soumis à une unique force centrale \overrightarrow{F} . Démontrer que son moment cinétique se conserve, justifier que son mouvement est plan et démontrer la loi des aires à l'aide d'un schéma. Pas besoin d'introduire la constante des aires

- /2 2 Démontrer la relation de HENDERSON.
- /6 3 On mélange $V_0 = 50\,\mathrm{mL}$ d'une solution d'acide éthanoïque de p $K_{A,1} = 4,74$ à $c_0 = 0,10\,\mathrm{mol\cdot L^{-1}}$, et le même volume d'une solution de nitrite de sodium (Na⁺; NO₂⁻) de p $K_{A,2} = 3,2$ à la même concentration. Déterminer l'avancement puis le pH.

Équation		-	+ =	= -	H
Initial	x = 0				
Final	$x_f =$				

/4 4 On ajoute $n = 10^{-5}$ mol d'ions Cl⁻ dans $V_0 = 10$ mL de nitrate d'argent (Ag⁺,NO₃⁻) à $c_0 = 10^{-3}$ mol·L⁻¹. On donne p K_s (AgCl) = 9,8. Obtient-on un précipité de chlorure d'argent AgCl?

Lycée Pothier 1/1 MPSI3 – 2023/2024