# Werkstoffe der Elektrotechnik von Prof. Dr.-Ing. Amann Formelsammlung

Von David Lenz Sebastian Bachmann Annemarie Turnwald

Bei Fragen und Anregungen: LenzDav@googlemail.com

# 1. Aufbau der Materie

#### 1.1 Wellen

Kreisfrequenz:  $\omega = 2\pi f$  Wellenlänge:  $\lambda = \frac{c}{f}$ Energie:  $E = mc^2 = \hbar \omega = \frac{hc}{\lambda}$   $\begin{bmatrix} [E] = Nm = J = 6, 24 \cdot 10^{18} \text{ eV} \end{bmatrix}$  $m_{ph} = \frac{\hbar \omega}{c^2} \rightarrow p_{ph} = m_{ph}c = \frac{\hbar \omega}{c} = \frac{h}{\lambda} = \hbar k$  mit Wellenzahl  $k = \frac{2\pi}{\lambda}$ Masse/Impuls:

### Schrödingergleichung

(allgemein) 
$$-j\hbar \frac{\partial \Psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \triangle \Psi(\vec{r},t) + V \cdot \Psi(\vec{r},t)$$
(zeitunabhängig) 
$$-\frac{\hbar^2}{2m} \triangle \Psi(\vec{r}) + V(\vec{r}) \Psi(\vec{r}) = E\Psi(\vec{r})$$

### 1-dimensionaler Potentialtopf



Ansatz für DGL:  

$$\Psi(x) = C_1 \sin(kx) + C_2 \cos(kx)$$

$$mit k = \sqrt{\frac{2m_0 E}{\hbar^2}}$$

$$E = \frac{\hbar^2 \pi^2}{2m_0 \cdot a^2} n^2$$

$$\Psi(0) = \Psi(a) = 0$$

$$\int_{0}^{a} \left| \Psi(x) \right|^{2} dx = 1$$

### 1-dimensionaler Potentialtopf



#### Ansatz für DGL:

$$\Psi(x) = C_1 \sin(kx) + C_2 \cos(kx)$$

mit 
$$k = \sqrt{\frac{2m_0 E}{\hbar^2}}$$
 für II

und 
$$k = \sqrt{\frac{2m_0(E - V_0)}{\hbar^2}}$$
 für I/III

$$\Psi_{I}(0) = \Psi_{II}(0); \ \Psi_{II}(a) = \Psi_{III}(a)$$

$$\int_{-\infty}^{\infty} \left| \Psi(x) \right|^2 dx = 1$$

### 3-dimensionaler Potentialtopf



os(kx) 
$$E = \frac{\hbar^2}{2m_0} (k_x^2 + k_y^2 + k_z^2) = \frac{\hbar^2 \pi^2}{2m_0 a^2} (n^2 + m^2 + l^2)$$

und 
$$k = \sqrt{\frac{2m_0(E - V_0)}{\hbar^2}}$$
 für I/III

Randbedingungen

 $\Psi_I(0) = \Psi_{II}(0); \ \Psi_{II}(a) = \Psi_{III}(a)$ 

$$\psi_{nml}(x, y, z) = \sqrt{\frac{8}{a^3}} \sin\left(\frac{n\pi}{a}x\right).$$

$$\sin\left(\frac{m\pi}{a}y\right) \sin\left(\frac{l\pi}{a}z\right)$$

#### Das Periodensystem 1.2

 $n = 1, 2, ... (\triangleq K, L, ... - Schale)$ *Hauptquantenzahl:* 

 $l = 0,...,n-1 (\triangleq s, p, d, f - Zuständen)$ Nebenquantenzahl:

m = -l, -l+1, ..., l-1, lMagnetische Quantenzahl:

 $s=\pm\frac{1}{2}$ Spinquantenzahl:

Entartungsgrad: Wieviele Kombinationen der Quantenzahlen gibt es, die den gleichen Energiegehalt besitzen?  $2n^2$ 

## Pauli Prinzip:

Alle Elektronen unterscheiden sich in mindestens einer Quantenzahl

## Hundschen Regeln:

1. Hundsche Regel:

Schale wird so aufgefüllt, dass  $|S| = |\sum s_i|$  mit  $s = \pm \frac{1}{2}$ 

maximal wird

2. Hundsche Regel: Quantenzahl |L| maximal

3. Hundsche Regel:

Schale weniger als halbvoll:

- Bahndrehimpuls und Spin antiparallel
- Gesamtdrehimpuls J: |J| = ||L| |S||

Schale mehr als halbvoll:

- Bahndrehimpuls und Spin parallel
- Gesamtdrehimpuls J: |J| = |L| + |S|

| Ø | 7s_ | <b>₹</b> 7p_     |     |                  |
|---|-----|------------------|-----|------------------|
| Р | 65  | / <del>p</del>   | 6d  |                  |
| 0 | 5s. | / <del>5</del>   | 56  | )5f              |
| Ν | 45  | / <del>d</del> / | 4d/ | ) <del>≱</del> / |
| М | 35  | / <del>%</del>   | 3d  | )                |
| L | 25  | ) <mark>%</mark> |     | )                |
| K | 15  | )                |     |                  |
|   | s   | р                | d   | f                |

Abbildung 1 Systematik für die Besetzung der Orbitale

| s: | 2 Elektronen  |
|----|---------------|
| p: | 6 Elektronen  |
| d: | 10 Elektronen |
| f: | 14 Elektronen |

Bsp.: Vanadium:  $V=[Ar]3d^34s^2$ :

| m= | -2 | -1 | 0 | 1 | 2 |
|----|----|----|---|---|---|
| s= | 1  | 1  | 1 |   |   |

$$m = 0$$
 $s = \uparrow$ 

$$S = 3 \cdot \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = \frac{3}{2}$$
$$|J| = ||L| - |S|| = 3 - \frac{3}{2} = \frac{3}{2}$$

$$L = -2 - 1 + 0 + 0 + 0 = -3$$

## Volle Schalen liefern keinen Beitrag zu S,L und J

Elektrische Bindungsenergie:  $E_{el} = \int_{\infty}^{r_0} \frac{q_1 q_2}{4\pi\varepsilon_0 r^2} dr = -\frac{q_1 q_2}{4\pi\varepsilon_0 r_0}$  |  $r_0$ : Abstand (Atomradien  $r_1 + r_2$ )  $q_1, q_2$ : Ladung der Ionen

Bindungsenergie: elektrische Bindungsenergie  $\pm$  Ionisierungsenergien

#### 1.3 Gase

Gasgleichung für ideale Gase:  $pV = n \cdot R \cdot T$ 

 $N = \frac{n \cdot N_A}{V} = \frac{\rho}{A_c} N_A = \frac{p}{k_B T}$   $\sqrt{v^2}$ : mittleres Geschwindigkeitsquadrat Teilchendichte:

 $p = \frac{1}{2} Nm\overline{v^2}$ Druck:

p: Druck *T*: absolute Temperatur

V: Volumen m: Masse ρ: Dichte

n: Anzahl der Mole

 $[n] = cm^{-3}, [p] = Nm^{-2} = Pa = 10^{-5} bar$ 

 $\frac{1}{2}m\overline{v^2} = \frac{f}{2}k_BT$  mit f: Anzahl der Freiheitsgrade (=3 für einatomige Gase)

#### **Konstanten**

 $R = 8,31 \frac{J}{mol \cdot K}$  Boltzmannkonstante  $k_B = 1,381 \cdot 10^{-23} \frac{J}{K}$   $N_A = 6,022 \cdot 10^{23} \, mol^{-1}$ Gaskonstante

Avogadro-Konstante

 $R = k_{\scriptscriptstyle R} N_{\scriptscriptstyle A}$ Zusammenhang:

#### 1.4 Kristallstrukturen



sc:  

$$P = \frac{1}{6}\pi \approx 0,52$$
fcc:  

$$P = \frac{\sqrt{2}}{6}\pi \approx 0,74$$
bcc:  

$$P = \frac{\sqrt{3}}{8}\pi \approx 0,68$$

$$r = \frac{\sqrt{3}}{4}a_0$$

Packungsdichte: 
$$P = \frac{Volumen(Atome)}{Volumen(EZ)} = \frac{n\frac{4}{3}\pi r^3}{V_{EZ}}$$

n: Anzahl der Atome pro Einheitszelle (Achtung: Atome, die von angrenzenden Zellen auch verwendet werden, dementsprechend gewichten!) r: Atomradius

## Mischkristallbildung durch Leerstellendiffusion

 $S = -D \frac{\partial N}{\partial x}$ *Teilchenstromdichte* 

 $D = D_0 e^{-\frac{E_A}{k_B T}}$ Diffusionskoeffizient mit  $E_A$ : Aktivierungsenergie für

Leerstellendiffusion  $x_D = \sqrt{D \cdot t}$ Mittlere Eindringtiefe

# 2. Mechanische Eigenschaften der Festkörper

Dichte: 
$$\rho = \frac{m}{V} = \frac{mP}{\frac{4}{3}\pi r^3} = \frac{mN}{a_0^3}$$

 $\varepsilon = \frac{\Delta l}{l}$ Dehnung:

 $\sigma = \frac{F}{\Lambda} = \varepsilon \cdot E$ Spannung:

Elastizitätsmodul:  $E = -\frac{1}{r} \frac{dF}{dr}$ 

m: Masse

V: Volumen

P: Packungsdichte

 $a_0$ : Gitterkonstante

N: Anzahl der Atome in

der Elementarzelle

$$[\rho] = \frac{kg}{m^3} = \frac{g}{cm^3}$$
$$[\sigma] = [E] = \frac{N}{m^2}$$

# 3. Thermische Eigenschaften der Festkörper

#### spezifische Wärme 3.1

 $C = \frac{\partial U}{\partial T} = 3Nk_B$ Wärmekapazität:

Spezifische Wärme:  $c = \frac{1}{m}C = \frac{1}{m}\frac{\Delta U}{\Delta T} = \frac{c_m}{A} \cdot 10^3$ 

 $c_m = 3R + \frac{6RT}{T_F} = 3R\left(1 + 2\frac{T}{T_F}\right)$ Molwärme:

Beitrag der Atome Beitrag der Elektronen

(spezifische Wärme pro 1 mol)

 $T_F = \frac{E_F}{k_{\odot}}$ : Fermitemperatur

#### *Innere Energie:* $U = 3Nk_{\scriptscriptstyle R}T$

#### 3.2 Thermische Ausdehnung

*Längenausdehnung:*  $\Delta l = \alpha l_0 \Delta T$ 

*Volumenausdehnung:*  $\Delta V = \beta V_0 \Delta T \approx 3\alpha V_0 \Delta T$ 

α: Längenausdehnungskoeff.

 $\beta \approx 3\alpha$ : Volumenausdehnungskoeff.

#### Wärmeleitung 3.3

 $\begin{array}{c} \textit{Transportierte W\"{a}rmemenge:} \frac{\Delta Q}{A} = -\lambda \, grad \, \big( T \big) \cdot \Delta t \\ \textit{W\"{a}rmemenge:} \qquad \qquad Q = CT \\ \end{aligned} \\ \begin{array}{c} \dot{Q} = -\lambda \, grad \, \big( T \big) A = C\dot{T} \\ \\ \dot{Q} = -\lambda \, grad \, \big( T \big) A = C\dot{T} \\ \end{aligned} \\ \begin{array}{c} \dot{Q} = W \\ \\ \dot{Q} = W \\ \end{aligned} \\ \end{aligned} \\ \begin{array}{c} \dot{Q} = -\lambda \, grad \, \big( T \big) A = C\dot{T} \\ \end{aligned} \\ \begin{array}{c} \dot{Q} = W \\ \\ \dot{Q} = W \\ \end{aligned} \\ \end{aligned} \\ \begin{array}{c} \dot{Q} = W \\ \end{aligned} \\$ 

 $I = \dot{Q} = G \cdot \Delta T$  mit Wärmeleitwert  $G = \lambda \frac{A}{I}$ Wärmestrom:

Wärmeleitfähigkeit:

Bsp: Stab mit homogener Wärmeleitung 
$$grad\left(T\left(x\right)\right) = grad\left(\frac{T_1 - T_2}{l}x + T_1\right) = \frac{T_1 - T_2}{l}$$
 
$$I = G \cdot \Delta T = \lambda \frac{A}{l} \cdot \left(T_2 - T_1\right)$$



## 3.4 spezifische Wärme der Elektronen

Zustandsdichte: 
$$D(E) = \frac{1}{V} \frac{dZ}{dE} = \left(\frac{2m}{\hbar^2}\right)^{3/2} \frac{1}{2\pi^2} \sqrt{E}$$

$$= 1,0622 \cdot 10^{56}$$

Fermiverteilung:  $f(E,T) = \frac{1}{e^{(E-E_F)/(k_BT)} + 1}$ 

gibt die Wahrscheinlichkeit, dass ein Elektron bei der

W(E)

Temperatur T die Energie E besitzt, an.

 $E_F$  ist die Fermi-Temperatur

Boltzmannnäherung:  $f(E,T) \approx e^{-\frac{E-E_F}{k_BT}}$ 



0.8 0.6 0.4 0.2 0.5 1 1.5 2 E<sub>f</sub>

Abbildung 2: Fermiverteilung für T=0K

Abbildung 3: Fermiverteilung für T=1200K

Die Fermiverteilung ist nur sehr schwach temperaturabhängig, darum kann meist mit der Fermiverteilung für T=0K gerechnet werden.

Elektronendichte: 
$$n = \int_{0}^{\infty} D(E) f(T, E) dE$$

$$f \text{ ür T=0K:} \qquad n = \int_{0}^{E_F} D(E) \cdot 1 dE + \int_{E_F}^{\infty} D(E) \cdot 0 dE = \int_{0}^{E_F} \left(\frac{2m}{\hbar^2}\right)^{3/2} \frac{1}{2\pi^2} \sqrt{E} dE$$

$$\Rightarrow n = \left(\frac{2m}{\hbar^2}\right)^{3/2} \frac{1}{3\pi^2} E_F^{3/2}$$

$$\Leftrightarrow E_F = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$$

# 4. Ladungstransport in Festkörpern

 $E(k) = \frac{\hbar^2 k^2}{2m}$ Energie von freien Elektronen:

Geschwindigkeit:

 $m^* = \frac{\hbar^2}{\underline{d^2 E(k)}}$ effektive Masse:

# 5. Elektrische Eigenschaften der Metalle

Elektr. Leitfähigkeit:

 $\sigma = \frac{-en\Delta p_x}{m^* E_x} = \frac{e^2 \tau}{m^*} n$  n: Teilchendichte \tau: Streuzeit zwischen zwei Stößen

 $\frac{1}{\tau} = \frac{1}{\tau_{ph}} + \frac{1}{\tau_{i}}$ Streuung an Fremdatomen (Verunreinigung)  $\left( \sim T^{\frac{3}{2}} \right)$ Streuung durch Gitterschwingungen (Phononen)  $\left( \sim T^{-\frac{3}{2}} \right)$ Streuwahrscheinlichkeit:

freie Weglänge d. Elektr.:  $l = v_F \tau$  mit  $v_F = \sqrt{\frac{2E_F}{m_0}}$ : Fermigeschwindigkeit

Spezifischer Widerstand:  $\rho = \frac{1}{\sigma}$ *Mattiessen'sche Regel:* 

 $ho_{{\scriptscriptstyle ph}}$  ist temperaturabhängig (Je höher T, desto stärker schwingen die Atome)  $\rho_i$  ist temperaturunabhängig  $\Rightarrow \rho(0K) = \rho_i$  und  $\rho(300K) = \rho_{ph}(300K) + \rho_i$ *Ver-n-fachen der Störstellen:*  $\rho_i = n\rho_i$ 

## Thermoelektrische Effekte

Seebeck-Effekt: Hat man bei einem Leiter an beiden Enden eine unterschiedliche Temperatur, stellt sich aufgrund unterschiedlicher effektiver Geschwindigkeiten und unterschiedlichen Trägerdichten n der Elektronen ein Diffusionsstrom j ein. Dieser Strom hat ein elektrisches Feld E zwischen den Enden des Leiters zur Folge:

hat ein elektrisches Feld E zwischen den Enden des Leiters zur Folge:
$$E_x = S \frac{dT}{dx} \text{ mit dem Seebeckkoeffizient } S = -\frac{e}{\sigma} \frac{d}{dT} (D_n n)$$

$$\Rightarrow \Delta U = S \cdot \Delta T$$

$$\begin{bmatrix} S \\ \end{bmatrix} = \frac{\mu V}{K} \end{bmatrix}$$

Peltier-Effekt: Ein eingeprägter Strom wird benutzt, um thermische Energie/Wärme zu transportieren.

 $W = \Pi \cdot i = S \cdot T \cdot i$  mit Peltierkonstante  $\Pi = ST$ Wärmestromdichte:

**Supraleitung:** kritische Feldstärke:  $H_C(T) = H_{C,0K} \left( 1 - \left( \frac{T}{T_C} \right)^2 \right)$  mit  $T_C$ : kritische T.  $\Rightarrow$  kritischer Strom:  $I_C = 2\pi \cdot r \cdot H_C$  r: Radius des Leiter

# 6. Halbleiter



Fermienergie bei n-Dotierung Fermienergie im intrinsischen(undotierten) Fall Fermienergie bei p-Dotierung

| Leitungsband                                                                                    | Valenzband                                                                          |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Besetzungswahrscheinlichkeit für Elektr.                                                        | Besetzungswahrscheinlichkeit für Löcher:                                            |
| f(E,T) (Fermiverteilung siehe 3.4)                                                              | 1-f(E,T)                                                                            |
| Elektronendichte:                                                                               | Löcherdichte:                                                                       |
| $n = \int_{E_I}^{\infty} D_L(E) \cdot f(E,T) dE$                                                | $p = \int_{-\infty}^{E_V} D_V(E) \cdot \left[1 - f(E, T)\right] dE$                 |
| Zustandsdichte:                                                                                 | Zustandsdichte:                                                                     |
| $D_{L}(E) = M_{L} \frac{\left(2m_{n}^{*}\right)^{3/2}}{2\pi^{2}h^{3}} \sqrt{E - E_{L}}$         | $D_{V}(E) = \frac{\left(2m_{p}^{*}\right)^{3/2}}{2\pi^{2}\hbar^{3}}\sqrt{E_{V}-E}$  |
| Äquivalente Zustandsdichte:                                                                     | Äquivalente Zustandsdichte:                                                         |
| $N_L^* = 2M_L \left[ \frac{m_n^* k_B T}{2\pi \hbar^2} \right]^{3/2}  (M_L \text{ ist meist 1})$ | $N_V^* = 2 \left[ \frac{m_p^* k_B T}{2\pi \hbar^2} \right]^{3/2}$                   |
| $\Rightarrow n = N_L^* \cdot e^{-\frac{E_L - E_F}{k_B T}} $ (mit Boltzmannnäherung)             | $\Rightarrow p = N_V^* \cdot e^{-\frac{E_F - E_V}{k_B T}} $ (mit Boltzmannnäherung) |

Intrinsische Elektronen-/Löcherdichte:  $n_i = p_i = \sqrt{N_L^* N_V^*} e^{-\frac{E_g}{2k_B T}}$ 

Zusammenhang der Teilchendichten:  $n \cdot p = n_i^2$ 

Fermienergie:  $E_F = \frac{E_V + E_L}{2} + \frac{k_B T}{2} \ln \left( \frac{N_V^*}{N_L^*} \right)$ 

Thermodynamisches Gleichgewicht:  $n + N_A^- = p + N_D^+$ 

 $N_A^-$ : Anzahl der Akzeptoren (=0 bei n-dot);  $N_A^- = N_A$  vollständige  $N_D^+$ : Anzahl der Donatoren (=0 bei p-dot);  $N_D^+ = N_D$  Ionisation

$$\left[ N_{A}^{-} \right] = \left[ N_{d}^{+} \right] = \left[ n \right] = \left[ p \right] = cm^{-3}$$

8 6.2.2008

## Ladungsträgereigenschaften

Leitfähigkeit:

*Ladungsträgerbeweglichkeit:*  $\mu = \frac{e\tau}{m^*}$ 

 $\vec{v} = \pm \mu \cdot \vec{E}$  (negatives VZ  $\rightarrow$ Elektronen, positives VZ Löcher → Löcher)

# 7. Dielektrische Eigenschaften von Festkörpern

### Permittivität

Dielektrische Verschiebung:  $\overrightarrow{D} = \varepsilon \overrightarrow{E} = \varepsilon_0 \varepsilon_1 \overrightarrow{E} = \varepsilon_0 (1 + \gamma) \overrightarrow{E} = \varepsilon_0 \overrightarrow{E} + \overrightarrow{P}$ 

Frequenzabhängige Permittivität:

Komplexe relative Permittivität:  $\varepsilon_r = \varepsilon' - j\varepsilon'' = |\varepsilon_r| e^{-j\delta}$ 

Für 
$$0 < \omega < 2\pi \cdot 10^{10} Hz$$

$$\begin{cases}
\varepsilon' = \varepsilon_{\infty} + \frac{\varepsilon_{stat} - \varepsilon_{\infty}}{1 + \omega^{2} \tau^{2}} & \varepsilon_{stat} = \varepsilon (\omega = 0) \\
\varepsilon''(\omega) = \frac{\varepsilon_{stat} - \varepsilon_{\infty}}{1 + \omega^{2} \tau^{2}} \omega \tau & \varepsilon_{\infty} = \varepsilon (\omega \approx 2\pi \cdot 10^{10} Hz)
\end{cases}$$

$$tan \delta = \frac{\varepsilon''}{\varepsilon'} = \frac{\omega \tau}{1 + \frac{\varepsilon_{\infty}}{\varepsilon_{stat} - \varepsilon_{\infty}} \left(1 + (\omega \tau)^{2}\right)}$$

*Verlustfaktor:* 

Restleitfähigkeit des Dielektrikums:

Relaxationszeit:

 $\sigma_{\text{Rest}} = \varepsilon \, "\cdot \varepsilon_0 \cdot \omega$   $\tau = \sqrt{\frac{\varepsilon_{\text{stat}}}{\varepsilon_{\text{co}}}} \cdot \frac{1}{2\pi f_g} = \frac{1}{2\pi f_r} \qquad f_g : \tan \delta \big|_{f = f_g} \text{ maximal}$   $f_r : \varepsilon \, "\big|_{f = f_g} \text{ maximal}$ 



- Im technisch relevanten Bereich (f<100GHz) nur Ausfall der Orientierungspolarisation
- Wenn Polarisationsart nicht vorhanden, dann ε' im zugehörigen Bereich konstant und  $\varepsilon$ " =0

### **Polarisation**

 $\vec{P} = N \cdot \vec{p} = N \varepsilon_0 \alpha \vec{E_a}$   $\vec{E_a}$ : außen anliegendes Feld

N: Atomdichte
α: Polarisierbarkeit des Atoms  $\overrightarrow{E}$ : außen anliegendes Feld

Polarisation:

Claudius-Mosotti-Gleichung 
$$\frac{\alpha N}{2} = \frac{\varepsilon_r - 1}{\varepsilon_r} < \varepsilon_r$$

$$\frac{\alpha N}{3} = \frac{\varepsilon_r - 1}{\varepsilon_r + 2} \Leftrightarrow \varepsilon_r = 1 + \frac{\alpha N}{1 - \frac{\alpha N}{3}}$$
 Lorentz-Feld (kann oft vernachlässigt werden)

#### Elektronische Polarisation

Elektronenhülle verschiebt sich auf Grund eines anliegenden elektrischen Feldes

→ induziertes Dipolmoment

tritt immer auf

*Polarisierbarkeit:*  $\alpha = 4\pi R^3$ 

 $[P] = \frac{As}{m^2}$  $[\alpha] = m^3$ 

#### Ionische Polarisation

Positive und negative Ionen werden durch ein äußeres elektrisches Feld gegeneinander verschoben -> Dipolmoment:  $p = \Delta r \cdot q$   $\Delta r$ : zusätzlicher Abstand der Ionen

 $\Delta r$  berechnen:

$$F_r = \frac{\partial U}{\partial r} \text{ mit Potential U}$$

$$F_r(r_0) = 0$$

$$F_{r}(r_{0} + \Delta r) = -F_{el} \xrightarrow{\text{Taylorreihe von } F_{r}} F_{r}(r_{0}) + \frac{\partial F_{r}}{\partial r} \bigg|_{r=r_{0}} \cdot \Delta r = -qE \Leftrightarrow \Delta r = -\frac{qE}{\frac{\partial F_{r}}{\partial r}}$$

## <u>Orientierungspolarisation</u>

Permanente Dipole richten sich im äußeren elektrischen Feld (teilweise) aus

Polarisation:  $P = N \cdot p \cdot \overline{\cos \theta}$ 

 $\theta$ : Winkel zwischen p und anliegendem Feld E  $r_0$ : Abstand zweier Ionen

*Dipolmoment:*  $p = r_0 \cdot a$ 

q: Ladung der Ionen

Langevin-Funktion:  $\overline{\cos \theta} = L(v) = \coth v - \frac{1}{v}$  mit  $v = \frac{E \cdot p}{k_B T}$ 

 $f\ddot{u}r\ gro\beta e\ v$ :  $\coth v \to 1 \Longrightarrow L(v) = 1$ 

für kleine v:  $\coth v \approx \frac{1}{v} + \frac{v}{3} (+...) \Rightarrow L(v) = \frac{v}{3}$ 

10 6.2.2008

# 8. Magnetische Eigenschaften von Festkörpern

 $\vec{B} = \mu \vec{H} = \mu_r \mu_0 \vec{H}$ Magentische Flussdichte:

 $\vec{\mathbf{B}} = \mu_0 \vec{\mathbf{H}} + \vec{\mathbf{J}} = \mu_0 (\vec{\mathbf{H}} + \vec{\mathbf{M}})$ 

*Magentische Suszeptibilität*:  $\chi^m = \mu_r - 1 = \frac{1}{\mu_o} \frac{J}{H} = \frac{M}{H}$ 

Erscheinungsformen des Magnetismus:

 $\mu_r < 1$  und  $\chi^m < 0$ : Diamagnetismus

 $\mu_r > 1$  und  $\chi^m > 0$ : Paramagnetismus

 $\mu_r >> 1$  und  $\chi^m >> 1$ : Ferromagnetismus

B: magn. Flussdichte/Induktion

H: magnetische Feldstärke

M: Magnetisierung

J: magnetische Polarisation

 $\mu_r$ : relative Permeabilität

$$\mu_0 = 4\pi \cdot 10^{-7} \, \frac{Vs}{Am}$$

 $\left[\overrightarrow{\mathbf{B}}\right] = \left[\overrightarrow{\mathbf{J}}\right] = \frac{\mathbf{V}\mathbf{s}}{\mathbf{m}^2} = \mathbf{T}$ 

$$\left[\overrightarrow{H}\right] = \left[\overrightarrow{M}\right] = \frac{A}{m}$$

# 8.1 Elementare Magnetische Dipolmomente

 $\vec{L} = \vec{r} \times m_0 \vec{v} = m_0 r^2 \vec{\omega}$ Mechanischer Drehimpuls:

 $\vec{m} = -e \frac{\vec{\omega}}{2\pi} \cdot \pi r^2 = -\frac{e}{2m_0} \cdot \vec{L}$ Magnetisches Moment:

r: Radius

m<sub>0</sub>: Masse des Elektron

ω: Kreisfrequenz

S, L, J: siehe Punkt 1.2

 $g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$   $\vec{L} = \frac{kg \cdot m^2}{s} = VAs^2$ Gyromagnetisches Verhältnis:

Beträge einsetzen für L.J. S

# 8.2 Diamagnetismus

Der Diamagnetismus tritt immer auf, wird aber vom Para- und Ferromagnetismus überlagert und ist temperaturunabhängig.

Diamagnetische Suszeptibilität:

$$\chi_{\text{dia}}^{\text{m}} = \frac{\vec{M}}{\vec{H}} = N \frac{\vec{m}}{\vec{H}} = -\frac{N}{6m_0} \cdot Z^* \cdot e^2 \cdot \overline{r^2} \cdot \mu_0$$

N: Atomdichte

 $\overline{r^2}$ : Erwartungswert des effektiven Bahnradius

Z\*: effektive Kernladungszahl (Anzahl der Elektronen auf der äußeren Schale abzüglich den Leitungselektronen)

## 8.3 Paramagnetismus

Tritt auf bei Molekülen bzw. Atomen mit magnetischem Dipolmoment, d.h. wenn die Elektronenschalen nicht abgeschlossen sind und ist temperaturabhängig.

Paramagnetische Magnetisierung:

$$M_{para} = \frac{Ng^{2}J(J+1)\mu_{B}^{2}\mu_{0}H}{3k_{B}T}$$

 $\mu_B = 9,27 \cdot 10^{-24} \, Am^2$ Bohr'sche Magneton

Paramagnetische Suszeptibilität:

$$\begin{split} \chi_{\text{para}}^{\text{m}} &= \frac{C}{T} \\ \text{mit} \qquad C &= \frac{N \mu_0 g^2 J(J+1) \mu_B^2}{3 k_{_{\rm B}}} \end{split}$$

*Magnetisches Dipolmoment:* 

$$\boldsymbol{M}_z = -\boldsymbol{g} \cdot \boldsymbol{\mu}_B \cdot \boldsymbol{J}$$

Betrag des Dipolmoments:

$$\mid \vec{M} \mid = \underbrace{g \cdot \sqrt{J(J+1)}}_{} \cdot \mu_{\scriptscriptstyle B}$$

Effektive Magnetonenzahl

# 8.4 Leitungselektronen

Paramagnetische Suszeptibilität:

$$\left. \begin{array}{l} \chi_{para}^{m} = \frac{3}{2} \cdot n \cdot \frac{\mu_{0} \mu_{B}^{2}}{k_{B} T_{F}} \\ \chi_{dia}^{m} = -\frac{1}{3} \chi_{para}^{m} \end{array} \right\} \quad \chi^{m} = \chi_{para}^{m} + \chi_{dia}^{m} = \frac{n \mu_{B}^{2}}{k_{B} T_{F}} \mu_{0}$$

Diamagnetische Suszeptibilität:

$$\chi_{dia}^{m}=-\frac{1}{3}\chi_{para}^{m}$$

$$\chi^{m} = \chi^{m}_{para} + \chi^{m}_{dia} = \frac{n\mu_{B}^{2}}{k_{B}T_{F}} \mu_{C}$$

Fermienergie:

$$E_F = k_B T_F = \frac{\hbar^2}{2m_a} (3\pi^2 n)^{\frac{2}{3}}$$

# 8.5 Ferromagnetismus

Ferromagnetismus tritt nur bis zur Curie-Temperatur auf. Danach Paramagnetismus!

Curie-Weiss-Gesetz:

$$\chi^{m} = \frac{C}{T - \Theta}$$

 $\chi^{m} = \frac{C}{T - \Theta}$  (\Theta = paramagnetische Curie-Temperatur)

Hystereseverluste:



 $B_S$ : Sättigung

 $B_R$ : Remanente Flussdichte (Restmagnetisierung auch wenn kein äußeres H-Feld mehr anliegt)

 $H_C$ : koerzitive Feldstärke (benötigt um Magnetisierung zu beseitigen)

*Verlustdichte:*  $w_V = \oint BdH$ 

# Wichtige Konstanten:

| $Avogadrokonstante N_A$                          | $6,022 \cdot 10^{23}  mol^{-1}$      | Normaltemp. $T_0$ | 300K                        |
|--------------------------------------------------|--------------------------------------|-------------------|-----------------------------|
| $Boltzmannkonstante k_B$                         | $1,3807 \cdot 10^{-23} J/K$          | Planckkonst. h    | $6,6261 \cdot 10^{-34} Js$  |
|                                                  | / K                                  | $\hbar$           | $1,05457 \cdot 10^{-34} Js$ |
| Bohr'sches Magneton $\mu_{\scriptscriptstyle B}$ | $9,27 \cdot 10^{-24} Am^2$           |                   |                             |
| Elektrische Feldkonst. $arepsilon_0$             | $8,8542 \cdot 10^{-12} \frac{C}{Vm}$ |                   |                             |
| Elektron Ruhemasse m <sub>e</sub>                | $9,1094\cdot10^{-31}kg$              |                   |                             |
| Elementarladung e                                | $1,6022 \cdot 10^{-19} C$            |                   |                             |
| Gaskonstante R                                   | $8,3145 \frac{J}{K \cdot mol}$       |                   |                             |
| Magnetische Feldkonst. $\mu_0$                   | $4\pi \cdot 10^{-7} Vs/Am$           |                   |                             |
| $Normaldruck p_0$                                | 1013 mbar                            |                   |                             |

13 6.2.2008

Merck KGaA, 64271 Darmstadt,

