Math-UA.233: Theory of Probability Lecture 13

Tim Austin

tim@cims.nyu.edu
cims.nyu.edu/~tim

Recap of some previous facts about RVs

If X is a RV for some experiment, then there are events that can be described in terms of X. They have the form

$$\{X \in A\} = \{X \text{ takes a value in } A\},$$

where A is a chosen set of real numbers.

If X is discrete with possible values x_1, x_2, \ldots , then we can find the probability using the PMF of X:

$$P(X \in A) = \sum_{i \text{ such that } x_i \in A} p_X(x_i).$$

For more general RVs we can't use the PMF this way.

For the general case, the only tool we've met so far is the CDF

$$F_X(a) = P(X \leqslant a), \quad a \in \mathbb{R}.$$

We can deduce many other probabilities from the CDF, by describing more general events in terms of the events $\{X \le a\}$.

Example

$$P(2.5 < X \le 7.5) = F(7.5) - F(2.5)$$

and

$$P(1 < X \le 2 \text{ or } 3 < X \le 4) = [F(4) - F(3)] + [F(2) - F(1)].$$

Example (Adapted from Ross E.g. 5.7b)

Let X be a RV whose CDF is

$$F(x) = \begin{cases} 0 & \text{if } x \leq -1 \\ (1+x)/2 & \text{if } -1 < x < 1 \\ 1 & \text{if } x \geq 1. \end{cases}$$

Find $P(X^2 > 1/4)$.

MATHEMATICAL REMARK

Can we really obtain the probability

$$P(X \in A)$$

for any subset $A \subseteq \mathbb{R}$ using only the CDF together with the axioms of probability?

Actually, NO, not always.

For some RVs and some crazy choices of *A*, it is *theoretically impossible* to even make sense of these probability values.

MATHEMATICAL REMARK, contd.

The fix: restrict to certain 'nice' sets *A*, called *measurable sets*, for which everything works OK.

Mathematically, this means that the function

$$P'(A) = P(X \in A)$$

is not a set function defined on the whole collection

$$\{\text{subsets of }\mathbb{R}\},$$

but only on the subcollection of measurable sets.

Defining and studying such sets and set functions is a deep and difficult subject called *measure theory* — no more about that here.

Happily, all the sets we ever meet in practice are measurable.

Continuous random variables (Ross, Chapter 5)

Sometimes we want to model a 'random quantity' which can take an uncountable (that is, 'un-listable') set of possible values.

Examples:

- Time that the next train arrives at a station,
- The lifetime of a transistor.

For both of these, it would be natural to use an RV that can take any value in $[0, \infty)$.

So discrete RVs aren't enough to handle these examples. We now introduce another special class, this time based on the use of calculus.

Definition

A RV X is **continuous** if there is an integrable function f on the real line such that

$$P(a \leqslant X \leqslant b) = \int_a^b f(x) \, dx$$

for any real numbers a < b, or with $a = -\infty$ or $b = +\infty$.

Then f is the **probability density function** or '**PDF**' of X.

(This assumption may not tell us about $P(X \in A)$ for arbitrary sets A, as discussed above. But we're not going to worry about that.)

In particular, the CDF of X is given by

$$F(a) = \int_{-\infty}^{a} f(x) \, dx.$$

That is, *X* is continuous if its CDF is the definite integral of another function, the PDF. Note: this definite integral is a continuous function of *a*, and this is why they're called 'continuous' RVs (roughly; conventions vary a bit).

Therefore, by the Fund. Thm. of Calculus (see Ross p179):

$$F'(a) = \frac{d}{da} \int_{-\infty}^{a} f(x) dx = f(a)$$

(if f is continuous at a).

So the CDF and the PDF are related by differentiation/integration. Each determines the other.

INTUITION: consider a very short interval [x, x + dx] near the point x. Then the probability that X lands in this interval is

$$P(x \leqslant X \leqslant x + dx) = \int_{x}^{x+dx} f(y) dy \approx f(x) dx$$

(assuming f is continuous at x).

So f(x) is NOT a probability. It is the 'density' of the probability $P(x \le X \le x + dx)$ relative to the length of the interval dx.

CONSEQUENCE:

$$f(x) \geqslant 0$$
 for all x ,

because $P(x \le X \le x + dx) \ge 0$ and dx > 0.

BUT, f(x) can be bigger than 1, because $P(x \le X \le x + dx)$ can be large *relative to dx*.

Two more basic consequences of the definition (Ross pp176-7):

We must have

$$\int_{-\infty}^{\infty} f(x) dx = P(-\infty < X < \infty) = P(S) = 1.$$

If f doesn't satisfy this, then it cannot be the PDF of a RV.

For any fixed $a \in \mathbb{R}$ we have

$$P(X=a)=P(a\leqslant X\leqslant a)=\int_a^a f(x)\,dx=0.$$

CONSEQUENCE: a RV *cannot* be both continuous and discrete!

Example (Ross E.g. 5.1a)

Let X be a continuous RV whose PDF is

$$f(x) = \begin{cases} C(4x - 2x^2) & \text{for } 0 < x < 2 \\ 0 & \text{otherwise} \end{cases}$$

for some real number C.

- (a) What is the value of C?
- (b) Find P(X > 1).

Example (Ross E.g. 5.1b)

The lifetime (in hours) of a device is a continuous RV X whose PDF is

$$f(x) = \begin{cases} \lambda e^{-x/100} & \text{if } x \geqslant 0 \\ 0 & \text{if } x < 0 \end{cases}$$

for some real parameter λ . What is the probability that

- (a) it will last between 50 and 150 hours?
- (b) it will function for less than 100 hours?

THE RULE OF THUMB

The theory of continuous RVs is a lot like the theory of discrete RVs if you keep in mind the analogy

(for discrete RVs)
$$p(x) \leftrightarrow f(x) dx$$
 (for continuous RVs)

(where p is a PMF and f is a PDF).

It's important to keep track of that 'dx' on the right-hand side: f is a density, not a probability.

As a result, expressions involving *sums* for discrete RVs turn into *integrals* for continuous RVs. First example:

$$\sum_{\substack{x \text{discrete}}} p(x) = 1 = \underbrace{\int_{-\infty}^{\infty} f(x) \, dx}_{\text{continuous}}$$

Uniform RVs (Ross Sec 5.3)

These are the simplest continuous RVs, but still very important.

Definition

Given real numbers c < d, a RV X is **uniform over** (c, d) (or just '**Unif**(c, d)') if it is continuous and

$$f(x) = \begin{cases} \frac{1}{d-c} & \text{if } c \leqslant x \leqslant d \\ 0 & \text{otherwise} \end{cases}$$

NOTE: it's enough to say that f has to be constant inside (c, d) and zero outside. Then the constant is forced to equal 1/(d-c) by the condition $\int_{-\infty}^{\infty} f(x) \, dx = 1$.

Basic consequences (Ross p184):

If $c \le a < b \le d$ then

$$P(a \leqslant X \leqslant b) = \frac{b-a}{d-c}.$$

The CDF is given by

$$F(a) = \int_{-\infty}^{a} f(x) dx = \begin{cases} 0 & \text{if } a \leq c \\ \frac{a-c}{d-c} & \text{if } c < a < d \\ 1 & \text{if } a \geqslant d. \end{cases}$$

Example (Ross E.g. 5.3b)

Let X be Unif(0,10), and find (a) P(X < 3) and (b) P(3 < X < 8).

Example (Ross E.g. 5.3c)

Buses arrive at a stop every 15 minutes starting at 7am. A passenger arrives at a random time which is uniformly distributed between 7 and 7:30am. Find the probability that she waits

- (a) less than 5 minutes for a bus,
- (b) more than 10 minutes for a bus.

Expectation and Variance of Continuous RVs (Ross Sec 5.2)

Recall that if Y is a discrete RV with PMF p, then we defined

$$E[Y] = \sum_{y} yp(y).$$

We make the analogous definition for continuous RVs.

Remember the rule of thumb: replace p(y) with f(x)dx, and replace the *sum* with an *integral*.

Definition (Ross p178)

If X is a continuous RV with PDF f, then its **expectation** (or **expected value** or **mean**) is the number

$$E[X] = \int_{-\infty}^{\infty} x f(x) \, dx$$

(provided the improper integral $\int_{-\infty}^{\infty} |x| f(x) dx$ is well-defined and finite).

Example (Ross E.g. 5.2a)

Find E[X] when the PDF of X is

$$f(x) = \begin{cases} 2x & \text{if } 0 \leqslant x \leqslant 1 \\ 0 & \text{otherwise.} \end{cases}$$

The theory of expectation for continuous RVs is analogous to the theory for discrete RVs.

Recall that if X is any RV, and $g: \mathbb{R} \longrightarrow \mathbb{R}$ is a function, then we can form the new RV g(X).

Unfortunately, if X is continuous, it can happen that g(X) is *not* continuous. Even if it is, it can be tricky to find the PDF of g(X) in terms of that of X. But we can always use the following.

Theorem (LOTUS for continuous RVs; Ross Prop 2.1)

If X is continuous with PDF f, and $g : \mathbb{R} \longrightarrow \mathbb{R}$, then

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) dx$$

(provided the integral is well-defined).

See Ross p181 for a proof (with a lot of cheating).

Example (Ross E.g. 5.2b)

Let X be Unif (0,1). Find $E[e^X]$.

You can do this either by first finding the PDF of e^X (more on that next time), or by using LOTUS (much quicker).

Example (Ross E.g. 5.2c)

A stick of length 1 is split into two pieces at a random point which is uniformly distributed along its length. A red dot is marked on the stick at distance p from one end. Find the expected length of the piece which has the red dot.