Chapter 3

Derivatives

3.1 Definition of Derivatives

The slope of the secant line through P and Q is _____

If Q approaches P or, equivalently, h tend to 0, then the secant line get progressively closer to the tangent line. Therefore the slope of the tangent line at the point (x, f(x)) is

Definition 3.1. The derivative of the function f with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided that the limit exists.

- If f'(a) exists, we say that f is differentiable at x = a or f has a derivative at x = a.
- If f is differentiable at all points in its domain, we say that f is a differentiable function.
- Some common alternative notations for the derivative are

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x).$$

• To indicate the value of a derivative at a specified number x = a, we use the notation

$$f'(a) = y'(a) = \frac{dy}{dx}\Big|_{x=a} = \frac{df}{dx}\Big|_{x=a} = \frac{d}{dx}f(x)\Big|_{x=a}$$

From

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

if we write x = a + h, then h = x - a and h approaches 0 if and only if x approaches a. Therefore, an equivalent definition of f'(a) is as follows:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

From the definition of f'(a), we see that f'(a) is the slope of tangent line to the curve y = f(x) at the point x = a or (a, f(a)). Then

the equation of the tangent line to the curve y = f(x) at the point (a, f(a)) is

$$y - f(a) = f'(a)(x - a)$$

Example 3.1. Let $f(x) = x^2$.

- (a) Find f'(x).
- (b) Find f'(2).
- (c) Find an equation of the tangent line to the curve $f(x) = x^2$ at the point x = 2.

Example 3.2. Define
$$f(x) = \begin{cases} x^2 & \text{if } x \leq 1, \\ \frac{x}{2} & \text{if } x > 1. \end{cases}$$

Is f differentiable at x = 1?

Theorem 3.1. Differentiability Implies Continuity

If f is differentiable at x = a, then f is continuous at x = a.

The statement in Theorem 3.1 is equivalent to

If f is not continuous at x = a, then f is not differntiable at x = a.

Example 3.3. Let
$$f(x) = \begin{cases} x^2 & \text{if } x \le 1, \\ \frac{x}{2} & \text{if } x > 1. \end{cases}$$

We see that

$$\lim_{x \to 1^{-}} f(x) = \underline{\hspace{1cm}}$$

and

$$\lim_{x \to 1^{-}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 1^{+}} f(x) = \underline{\qquad}$$

which implies that $\lim_{x\to 1} f(x)$ _____

Then f is not continuous at x = 1.

By Theorem 3.1, we conclude that f is not differentiable at x = 1.

CAUTION The converse of Theorem 3.1 is not generally true. A function need not have a derivative at a point where it is continuous. For example, the function f(x) = |x| is continuous at x = 0 but it is not differentiable at x = 0. Let's explore further. For f(x) = |x|,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x}.$$

This limit does not exist because

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = -1 \text{ and } \lim_{x \to 0^{+}} \frac{|x|}{x} = 1.$$

Exercise 3.1

1. Let

$$f(x) = \begin{cases} \sqrt{x} & \text{if } 0 < x \le 1, \\ \frac{x+1}{2} & \text{if } x > 1. \end{cases}$$

Is f differentiable at x = 1?

2. Let

$$f(x) = \begin{cases} x^2 & \text{if } x \le 1, \\ 2x - 1 & \text{if } 1 < x \le 2, \\ \sqrt{x + 4} & \text{if } x > 2. \end{cases}$$

Find f'(1) and f'(2).

3.2 Differentiation Rules and Differentiation Formulas

Basic Differentiation Rules

Let u and v be differentiable functions of x and let c be a constant. Then

1. Constant Rule:
$$\frac{d}{dx}(c) = 0$$

2. Constant Multiple Rule:
$$\frac{d}{dx}(cu) = c\frac{du}{dx}$$

3. Sum/Difference Rule:
$$\frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{du}{dx}$$

4. Product Rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

5. Quotient Rule:
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Example 3.4. Let f and g be differentiable at the point x = 1 where

$$f(1) = 2, f'(1) = 1, g(1) = 1$$
 and $g'(1) = 4$.

Evaluate the following derivative.

1.
$$\left. \frac{d}{dx} (6f(x) - g(x)) \right|_{x=1}$$

$$2. \left. \frac{d}{dx} (f(x)g(x)) \right|_{x=1}$$

3.
$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) \Big|_{x=1}$$

Differentiation Formulas

1. $\frac{d}{dx}(x^n) = nx^{n-1}, n$ is a real number

$$2. \ \frac{d}{dx}(a^x) = a^x \ln a$$

$$3. \ \frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

$$4. \ \frac{d}{dx}(e^x) = e^x$$

$$5. \ \frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$6. \ \frac{d}{dx}(\sin x) = \cos x$$

7.
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$8. \ \frac{d}{dx}(\cos x) = -\sin x$$

9.
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

$$10. \ \frac{d}{dx}(\tan x) = \sec^2 x$$

11.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

12.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

13.
$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

14.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

15.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$

16.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

17.
$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x|\sqrt{x^2-1}}$$

Example 3.5. Find the derivatives of the following functions.

1.
$$y = 2\sqrt{x} - \frac{1}{x^2} + x^{\pi} + 3^{\pi}$$

Solution

$$2. \ y = \sin x \cos x$$

Solution

3.
$$y = \frac{x^2}{1 + e^x}$$

The Chain Rule

The Chain rule is used to differentiate composite functions such as $y = \cos(x^2)$ and $y = \sqrt{x^3 + 1}$.

Recall the composite of f and g, denoted $f \circ g$, is defined by

$$(f \circ g)(x) = f(g(x)).$$

We refer to g as the inside function and f as the outside function.

We regard the composite as f(u), where u = g(x).

For example,

- $y = \cos(x^2)$ is the function $y = \cos u$ where $u = x^2$.
- $y = \sqrt{x^3 + 1}$ is the function $y = \sqrt{u}$ where $u = x^3 + 1$.

Theorem 3.2. The Chain Rule

If f and g are differentiable, then $(f \circ g)(x) = f(g(x))$ is differentiable and

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

Suppose that u = g(x) and

$$y = f(u) = f(g(x)).$$

Then, by the Chain Rule,

$$\frac{dy}{dx} = f'(u)g'(x) = \frac{df}{du} \cdot \frac{du}{dx}$$

or

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Example 3.6. Calculate $\frac{dy}{dx}$ for

1.
$$y = \sqrt{x^3 + 1}$$

Solution

$$2. \ y = e^{\sin x}$$

Solution

$$3. \ y = \ln(\ln x)$$

Solution

$$4. \ y = \cos(\ln x)$$

Solution

5.
$$y = \tan(\sin x)$$

Example 3.7. Calculate $\frac{dy}{dx}$ for the following functions.

$$1. \ y = \sin(\cos(2x - 5))$$

Solution

2.
$$y = \tan^2(4x^3 - 1)$$

Exercise 3.2

Find the derivative, $\frac{dy}{dx}$, of the following functions.

1.
$$y = x^{58} + \frac{58}{x} + (58)^x + \ln 58 + e^{58}$$

2.
$$y = 3x^4 - \frac{4x^3}{3} + \frac{x^2}{2} + 3x - 9$$

3.
$$y = 2\sqrt{x} - \frac{2}{\sqrt{x}} + \frac{1}{3x^2} - \frac{5}{2x} + 2^{\pi}$$

$$4. \ y = \frac{\csc x + \pi^2}{5}$$

$$5. \ y = e^x \sin x$$

6.
$$y = \frac{\cos x}{x^2 + 5}$$

7.
$$y = \frac{2x-1}{x^2-1}$$

$$8. \ \ y = \frac{x \ln x}{1 + \ln x}$$

9.
$$y = (x + \sec x)^5$$

10.
$$y = \frac{1}{(2x+3)^5}$$

$$11. \ y = \tan^2 x$$

12.
$$y = \sin(x^2)$$

13.
$$y = \tan^{-1}(\ln x)$$

14.
$$y = \ln(\sqrt{x}) + \sqrt{\ln x}$$

15.
$$y = \log_3(x^2 \sin x + x)$$

16.
$$y = (\ln 3)^x + x^{\ln 3}$$

$$17. \ y = \cos(\sin(x^2))$$

18.
$$y = \tan(\cos(\sin(x^2)))$$

19.
$$y = \sin^2\left(\sqrt{\log_2 x}\right)$$

$$20. \ y = x \left(\sin(\ln x) + \cos(\ln x) \right)$$

21.
$$y = \cos(x^4) + \cos^4 x$$

$$22. \ y = x \sin^{-1} x + \sqrt{1 - x^2}$$

23.
$$y = \frac{1}{\ln x} + \ln \left(\frac{1}{x}\right)$$

$$24. \ y = \frac{\sin(\sqrt{x})}{1 + \cos(\sqrt{x})}$$

25.
$$y = \tan(x \sin x)$$

$$26. \ y = \ln(\ln(\ln x))$$

27.
$$y = \tan^2(\sin^{-1}\sqrt{x})$$

$$28. \ y = \sin(\cos(\sin x))$$

29.
$$y = \sqrt{1 + \sqrt{1 + \sqrt{x}}}$$

3.3 Higher Order Derivatives

If f is differentiable, then f' can be found. And if f' is differentiable, then the derivative of f' is called **second order derivative of** f and denote by f''. The 3rd, 4th, ..., nth order derivative of f are defined similarly.

$$y' = f'(x) = \frac{dy}{dx}$$

$$y'' = f''(x) = \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$

$$y''' = f'''(x) = \frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2}\right)$$

$$y^{(4)} = f^{(4)}(x) = \frac{d^4y}{dx^4} = \frac{d}{dx} \left(\frac{d^3y}{dx^3}\right)$$

$$\vdots$$

$$y^{(n)} = f^{(n)}(x) = \frac{d^ny}{dx^n} = \frac{d}{dx} \left(\frac{d^{n-1}y}{dx^{n-1}}\right)$$

Example 3.8. Given $f(x) = x^4 + 4x^3 + 2x^2 + 12x + 1$. Find $f'(x), f''(x), f'''(x), f^{(4)}(x)$ and $f^{(5)}(x)$.

Example 3.9. Given $f(x) = \ln(2x + 3)$. Find $f^{(n)}(x)$.

Example 3.10. Find $\frac{d^n y}{dx^n}$ if $y = \sin x$.

Exercise 3.3

Find $f^{(n)}(x)$ of the following functions.

1.
$$f(x) = \frac{1}{2x+1}$$

2.
$$f(x) = e^{-x}$$

3.
$$f(x) = \ln(1 - x)$$

$$4. \ f(x) = \cos x$$

$$5. \ f(x) = \sin(2x)$$

3.4 Derivatives of Implicit Functions

Most of the functions we have dealt with so far have been described by an equation of the form y = f(x) that expresses y explicitly in terms of the variable x. We have learned rules for differentiating functions defined in this way. Suppose that y is determined instead by an equation such as

$$x^{2} + y^{2} - 25 = 0$$
, $y^{2} - x = 0$, $x^{3} + y^{3} - 9xy = 0$.

These equations define an implicit relation between the variables x and y in the form F(x,y) = 0. These kind of functions is called **implicit function**.

How to find
$$\frac{dy}{dx}$$
 of implicit function $F(x,y) = 0$?

- 1. Differentiate both sides of the equation F(x,y) = 0 with respect to x, treating y as a function of x and using the Chain Rule. We obtain the equation containing $\frac{dy}{dx}$.
- 2. Move the terms containing $\frac{dy}{dx}$ to the left-hand side and the remainder terms to the right-hand side of the equation.
- 3. Solve the equation to get $\frac{dy}{dx}$.

Example 3.11. Given
$$x^2 + y^2 = 1$$
. Compute $\frac{dy}{dx}$.

Example 3.12. Find $\frac{dy}{dx}$ if $\ln y = e^y \sin x$.

Solution

Example 3.13. Given
$$\ln\left(\frac{y}{x}\right) + e^{2x} = \tan(xy)$$
. Find $\frac{dy}{dx}$.

The equation of the tangent line to the curve F(x,y) = 0 at the point (x_0,y_0) is

$$y - y_0 = \frac{dy}{dx}\Big|_{(x_0, y_0)} (x - x_0).$$

Example 3.14. Given $3x^2 - 2xy + y^2 = 1$.

- 1. Find $\frac{dy}{dx}$ and $\frac{dy}{dx}\Big|_{(0,1)}$.
- 2. Find an equation of the tangent line of the graph of $3x^2 2xy + y^2 = 1$ at the point (0, 1).

Solution 1.

98

2.

The slope of the tangent line of the graph of $3x^2 - 2xy + y^2 = 1$ at the point (0,1) is

Then the equation of the tangent line of the graph of $3x^2 - 2xy + y^2 = 1$ at the point (0,1) is

Logarithmic Differentiation

We now consider the derivative of explicit functions of the form

$$y = f(x)^{g(x)}$$

for f(x) > 0. It is not possible to use differentiation formulas to find the derivative of this kind of functions. However, it can be done by the following steps:

1. Take natural logarithm both sides of the equation to get implicit function of the form

$$ln y = g(x) \ln(f(x)).$$

2. Use implicit differentiation to get $\frac{dy}{dx}$.

Example 3.15. Given $y = x^x$, x > 0. Find $\frac{dy}{dx}$.

Example 3.16. Given $y = (\sin x)^{\tan^{-1} x}$. Compute $\frac{dy}{dx}$.

Solution

Example 3.17. Given $x^y = y^x$ where x, y > 1. Find $\frac{dy}{dx}$.

Example 3.18. Given
$$y = \sqrt[3]{\frac{(x^2+1)^3(2x+3)}{(x^2+5)^2}}$$
. Compute $\frac{dy}{dx}$.

Exercise 3.4

Find $\frac{dy}{dx}$ of the following functions.

1.
$$xy + y^2 = x^2y^2 - 1$$

$$2. \ \frac{x}{y} + \frac{y}{x} = 3$$

$$3. \ln(xy) = e^{x+y}$$

4.
$$x \ln(y^2) + y \ln x = 1$$

$$5. \cos y = \ln(x+y)$$

6.
$$e^{xy} = \sqrt{x^2 + y^2}$$

7.
$$\tan y = 3x^2 + \tan(x+y)$$

8.
$$e^x \cos y = xe^y$$

9.
$$y^x = xy$$
, $y > 0$

10.
$$x^{\tan(x-y)} = e^{x+y}$$

11.
$$y = (4x+1)^{\cos(3x)}$$

12.
$$y = (2 + \sin x)^{\cos x}$$

13.
$$y = (2\sin x + 3\cos x)^{x^3}$$

14.
$$y = x^{x^x}, x > 1$$

15.
$$y = \frac{(x^2+1)\sqrt{3x+4}}{\sqrt[5]{(2x-3)(x^2-4)}}$$

16.
$$y = (x+1)(x+2)(x+3)(x+4)(x+5)$$

3.5 Derivatives of Parametric Equations

Definition 3.2. Parametric Curve

If x and y are given as functions

$$x = f(t), \quad y = g(t)$$

over an interval of t-values, then the set of points (x,y) = (f(t),g(t)) defined by these equations is a **parametric curve**. The equations are **parametric equations** for the curve.

Parametric Formula for $\frac{dy}{dx}$

Let x = f(t) and y = g(t) be differentiable at t and y be also a differentiable function of x. Then the derivatives $\frac{dy}{dt}$, $\frac{dx}{dt}$, and $\frac{dy}{dx}$ are related by the Chain Rule:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}.$$

If $\frac{dx}{dt} \neq 0$, then

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

Parametric Formula for $\frac{d^2y}{dx^2}$

If the equations x = f(t), y = g(t) define y as a twice-differentiable function of x, then at any point where $\frac{dx}{dt} \neq 0$,

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{dy'}{dx} = \frac{\frac{dy'}{dt}}{\frac{dx}{dt}} = \frac{\frac{d\left(\frac{dy}{dx}\right)}{dt}}{\frac{dx}{dt}}.$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

Example 3.19. Given x = 2t + 1 and $y = \sqrt{t}$. Find $\frac{dy}{dx}$.

Solution

Example 3.20. Find $\frac{d^2y}{dx^2}$ where $x = t + \cos t$ and $y = \sin t$.

Example 3.21. Given

$$x = \cos t$$
 and $y = \sin t$ where $0 \le t \le \pi$.

- 1. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- 2. Find an equation of the tangent line to the curve at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Solution 1.

2.

Exercise 3.5

Find $\frac{dy}{dx}$ of the following parametric equations.

1.
$$x = t^2$$
, $y = t^3 + 1$

2.
$$x = \ln(\cos t), \quad y = \sec t, \ t \in [0, 1]$$

3.
$$x = 2\cos t$$
, $y = 6\sin t$, $t \ge 0$

4.
$$x = 3t - 4\sin(\pi t)$$
, $y = t^2 + t\cos(\pi t)$, $0 \le t \le 4$

5.
$$x = te^{-t}$$
, $y = 2t^2 + 1$

6.
$$x = 2t^3 + 1$$
, $y = t^2 \cos t$

Find $\frac{d^2y}{dx^2}$ of the following parametric equations.

7.
$$x = t^2$$
, $y = t^3$

8.
$$x = 2\cos t$$
, $y = 2\sin t$

9.
$$x = e^{-t}$$
, $y = t^3 + t + 1$

10.
$$x = 3t^2 + 4t$$
, $y = \sin(2t)$

11. Given

$$x = \ln(\tan t)$$
 and $y = \sec^2 t$ where $0 < t < 1$.

11.1) Find
$$\frac{dy}{dx}$$
.

11.2) Find
$$\frac{d^2y}{dx^2}$$
.

11.3) Find an equation of the tangent line to the curve at the point $t = \frac{\pi}{4}$.