Lecture Notes for 3/20/2025

5.3 Coordinatization (Continued)

$$M_B^{-1} \cdot V = [V]_B$$

5.4 Four fundamental subspaces

Continue from 5.3: Consider the basis

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right\}$$

for \mathbb{R}^3 . Since this is also a basis, we can also write $\mathbf{v} = \begin{bmatrix} 2 \\ -4 \\ -2 \end{bmatrix}$ as a (unique)

linear combination of the vectors $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right\}$:

$$\underbrace{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}}_{x_1} + \underbrace{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}}_{x_2} + \underbrace{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}}_{x_3} = \begin{bmatrix} 2 \\ -4 \\ -2 \end{bmatrix}$$

The matrix form of this equation system is $M_{\mathcal{B}}\mathbf{x} = \mathbf{v}$, where

$$M_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 2 \\ -4 \\ -2 \end{bmatrix}.$$

The matrix $M_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$ is invertible: $M_{\mathcal{B}}^{-1} = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$, so

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -4 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}_{\mathbf{B}}$$

We call this vector the *coordinate vector* of $\mathbf{v} = \begin{bmatrix} 2 \\ -4 \\ -2 \end{bmatrix}$ under the basis \mathcal{B} and denote it by $[\mathbf{v}]_{\mathcal{B}}$:

$$[\mathbf{v}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1}\mathbf{v} = \begin{bmatrix} 2\\ -3\\ 1 \end{bmatrix}$$

Now let us find
$$[\mathbf{u}]_{\mathcal{B}}$$
 for $\mathbf{u} = \begin{bmatrix} -4\\0\\6 \end{bmatrix}$ and $[\mathbf{w}]_{\mathcal{B}}$ for $\mathbf{w} = \begin{bmatrix} 1\\-1\\3 \end{bmatrix}$:
$$[\mathbf{u}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1}\mathbf{u} = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0\\0 & 1 & 1\\0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -4\\0\\6 \end{bmatrix} = \begin{bmatrix} -8\\4\\6 \end{bmatrix} = \begin{bmatrix} -4\\3\\3 \end{bmatrix}$$

$$[\mathbf{w}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1}\mathbf{w} = \underbrace{\frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}}_{\mathbf{W}} =$$

We can generalize this concept to an arbitrary basis of \mathbb{R}^n :

Let $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ be a basis of \mathbb{R}^n with the vectors in it given a fixed order as shown. Keep in mind each \mathbf{u}_j in the basis is an $n \times 1$ column matrix. Since \mathcal{B} is a basis, it is a spanning set of \mathbb{R}^n hence every vector \mathbf{v} in \mathbb{R}^n can be written as a linear combination of the vectors $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$:

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_n\mathbf{u}_n = \mathbf{v}.$$

We shall call the vector $\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ the *coordinate* vector of ${\bf v}$ with respect to the

basis \mathcal{B} and will use the notation $[\mathbf{v}]_{\mathcal{B}}$ for it.

Note that to find the coordinate vector $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ of \mathbf{v} means to solve the

equation

$$c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots c_n\mathbf{u}_n=\mathbf{v},$$

which has the matrix form $M_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}} = \mathbf{v}$, where $M_{\mathcal{B}}$ is the matrix with \mathbf{u}_1 , \mathbf{u}_2 ,

...,
$$\mathbf{u}_n$$
 as its columns (in that order) and $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$. $M_{\mathcal{B}}$ is invertible (why?), so

$$[\mathbf{v}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1} \mathbf{v}.$$

Keep in mind that $M_{\mathcal{B}}$ is the matrix with the vectors in \mathcal{B} as its columns, which is why we denote it by $M_{\mathcal{B}}$.

Example 1. Let $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \begin{bmatrix} -3 \\ 5 \end{bmatrix} \right\}$ be a basis of \mathbb{R}^2 . Find $M_{\mathcal{B}}$ and $M_{\mathcal{B}}^{-1}$, then use that to find $[\mathbf{v}]_{\mathcal{B}}$ where $\mathbf{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$.

$$M_{B} = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix}, \quad M_{B}^{-1} = \frac{1}{10 - 9} \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$$

$$\begin{bmatrix} v \end{bmatrix}_{\mathcal{B}} = M_{\mathcal{B}}^{-1} v = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 17 \\ 11 \end{bmatrix}$$

Example 2. Repeat Example 1 for
$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$.

$$M_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \\ 0 & 2 & -1 \end{bmatrix}$$
, and $M_{\mathcal{B}}^{-1} = \frac{1}{5} \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 2 \\ 4 & 2 & -1 \end{bmatrix}$

$$[V]_{B} = \frac{1}{5} \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 2 \\ 4 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 \\ 7 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} \\ \frac{1}{4} \\ \frac{1}{5} \end{bmatrix}$$

Quiz Question 1. Repeat the last example with the same basis \mathcal{B} , but we are looking for the coordinate vector $[\mathbf{u}]_{\mathcal{B}}$ for a different vector $\mathbf{u} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$.

A.
$$[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} 2\\0\\3 \end{bmatrix}$$
; B. $[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} 5\\10\\5 \end{bmatrix}$; C. $[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} 5\\2\\5 \end{bmatrix}$; D. $[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$

$$M_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \\ 0 & 2 & -1 \end{bmatrix}, M_{\mathcal{B}}^{-1} = \frac{1}{5} \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 2 \\ 4 & 2 & -1 \end{bmatrix}$$

We see the advantage of this approach from this quiz question: once we find the inverse matrix $M_{\mathcal{B}}^{-1}$ (which we only need to do it one time), finding the coordinate vector of any vector \mathbf{u} in the future is just a simple matrix multiplication:

$$[\mathbf{u}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1}\mathbf{u}$$

In our textbook, the inverse matrix $M_{\mathcal{B}}^{-1}$ is denoted by another notation $P_{\mathcal{B}}$ and is referred to as the *transition matrix* from the standard basis \mathcal{E} to the basis \mathcal{B} .

The geometric meaning of basis change is to change from the rectangular coordinate system (grid) to one that may no longer be rectangular. See the example 5.1: Understanding coordinate systems in the book.

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} v \end{bmatrix}_{B} \xrightarrow{?} \begin{bmatrix} v \end{bmatrix}_{B}$$

In the above, we know the coordinate vector of a vector ${\bf u}$ relative to the standard basis \mathcal{E} and the formula $[\mathbf{u}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1}\mathbf{u}$ allows us to obtain the coordinate vector $[\mathbf{u}]_{\mathcal{B}}$ of \mathbf{u} relative to \mathcal{B} . Sometimes, however, we already know the coordinate vector $[\mathbf{u}]_{\mathcal{B}}$ of \mathbf{u} relative to \mathcal{B} to begin with, and we need to switch to yet another basis $\mathcal{C} = \{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ so we need to find $[\mathbf{u}]_{\mathcal{C}}$. How do we do that?

 $[\mathbf{u}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1}\mathbf{u}$, $[\mathbf{u}]_{\mathcal{C}} = M_{\mathcal{C}}^{-1}\mathbf{u}$, so $\mathbf{u} = M_{\mathcal{B}}[\mathbf{u}]_{\mathcal{B}}$ and $[\mathbf{u}]_{\mathcal{C}} = M_{\mathcal{C}}^{-1}M_{\mathcal{B}}[\mathbf{u}]_{\mathcal{B}}$: we know $[\mathbf{u}]_{\mathcal{B}}$ to begin with, and we know $M_{\mathcal{B}}$ and $M_{\mathcal{C}}$ (matrices obtained by using vectors in $\mathcal B$ and $\mathcal C$ as columns), so this only involves finding the inverse of $M_{\mathcal C}$ followed by a matrix multiplication. $M_{\mathcal{C}}^{-1}M_{\mathcal{B}}=P_{\mathcal{B}\to\mathcal{C}}$ is called the change of coordinates matrix. It may help to remember that if we are changing from basis \mathcal{B} to basis \mathcal{C} , then in the basis change formula, $M_{\mathcal{C}}^{-1}$ is the inverse of the matrix formed by the vectors in the basis we are changing to.

Example. Given that $\mathcal{B} = \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \}$ and $\mathcal{C} = \{ \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \begin{bmatrix} -3 \\ 5 \end{bmatrix} \}$ are both bases of \mathbb{R}^2 . Find the change of coordinates matrix from basis \mathcal{B} to basis \mathcal{C} .

The matrix is

$$M_{c}^{-1}M_{B} = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 13 \\ 3 & 8 \end{bmatrix}$$
So if we have $[\mathbf{u}]_{B} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, then $[\mathbf{u}]_{C} = \begin{bmatrix} 5 & 13 \\ 3 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} -34 \\ -21 \end{bmatrix}$

$$\mathbf{F} \begin{bmatrix} \mathbf{v} \mathbf{J}_{B} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad \mathbf{hen} \begin{bmatrix} \mathbf{v} \mathbf{J}_{C} = \begin{bmatrix} 5 & 13 \\ 3 & 8 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 26 \\ 16 \end{bmatrix}$$

$$\mathbf{F} \begin{bmatrix} \mathbf{v} \mathbf{J}_{C} = \begin{bmatrix} 5 & 13 \\ 3 & 8 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 26 \\ 16 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \quad \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}$$

$$\mathbf{F} \mathbf{Ind} \quad \mathbf{Coordinate} \quad \mathbf{Charge} \quad \mathbf{Matrix}.$$

Quiz Question 2. Given that $\mathcal{B} = \{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}\}$ and $\mathcal{C} = \{\begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\}$ are both bases of \mathbb{R}^2 . Find the change of coordinates matrix from \mathcal{B} to \mathcal{C} .

Let us now consider the same question, but for general vector spaces.

Here, finding $[\mathbf{v}]_{\mathcal{B}}$ is just solving the equation $\mathbf{v} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_k\mathbf{v}_k$ where $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$. We can write down a basis change formula as before: $[\mathbf{v}]_{\mathcal{B}} = M_{\mathcal{B}}^{-1}\mathbf{v}$ with the understanding that all the vectors here are the coordinate vectors under a standard basis.

Example. Find the transition matrix from the standard basis $\{1, x, x^2\}$ of \mathcal{P}_2 to the basis $\underline{\mathcal{B}} = \{1 - x, x + x^2, 2x - x^2\}$. Using it to find the coordinate vector for the vector $\mathbf{v} = 1 + 9x + x^2$ under $\underline{\mathcal{B}}$.

$$M_{\mathcal{B}} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}, M_{\mathcal{B}}^{-1} = \frac{1}{3} \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix}.$$

$$I + \mathbf{q} \times \mathbf{q} \times \mathbf{q}$$
So
$$[\mathbf{v}]_{\mathcal{B}} = \frac{1}{3} \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}.$$

$$I \cdot (\mathbf{i} - \mathbf{x})$$

$$+ \mathbf{q} \cdot (\mathbf{x} + \mathbf{x}^2)$$

$$+ \mathbf{q} \cdot (\mathbf{x} + \mathbf{x}^2)$$

Quiz Question 3. Find the transition matrix from the standard basis $\{1, x\}$ of \mathcal{P}_1 to the basis $\mathcal{B} = \{2 + 3x, 1 + 2x\}$.

A.
$$\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
 B. $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$ C. $\begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$ D. $\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$ $\mathcal{M}_{\mathcal{B}}^{-1} = ?$

Section 5.4.

Let $A_{m\times n}$ be the matrix whose columns are $\mathbf{v}_1, ..., \mathbf{v}_n$. Then we call the span of $\mathbf{v}_1, ..., \mathbf{v}_n$ the column space of A and write it as $\operatorname{col}(A)$. This is just a different name for $\mathrm{Span}(\mathbf{v}_1,...,\mathbf{v}_n)$. Furthermore, a linear combination

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n$$

can be written as $A\mathbf{x}$ with $A = (\mathbf{v}_1 \ \mathbf{v}_2 \ ... \mathbf{v}_n)$ and $\mathbf{x} = \begin{bmatrix} x_2 \\ \vdots \\ \vdots \end{bmatrix}$

 $\dim(\operatorname{col}(A))$ is also defined as the rank of A and written as $\operatorname{rank}(A)$.

We can find rank(A) by using row operations to find an echelon form of A and then count the number of pivots. Another vector space is the null space of A, denoted by null(A), which is the set containing all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. The dimension of null(A) equals the number of free variables. Thus $\dim(\operatorname{col}(A)) + \dim(\operatorname{null}(A)) = n$ (the number of columns in A).

Similarly we can define the row space of A, which is the span of the columns of A^T , and the <u>left null space of A</u> which is the solution set of the equation $A^T \mathbf{x} = \mathbf{0}$. $\dim(\operatorname{col}(A^T)) + \dim(\operatorname{null}(A^T)) = m$. Additionally, we have

 $\dim(\operatorname{col}(A)) = \dim(\operatorname{col}(A^T))$ (or $\operatorname{rank}(A) = \operatorname{rank}(A^T)$).

rank (A) = rank(AT)

Example. If the matrix A reduced to the echelon form $\begin{bmatrix} 1 & 1 & 3 & -1 & 4 \\ 0 & 0 & 2 & 7 & -3 \\ 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$ If $\dim(\operatorname{col}(A^T))$ dim($\operatorname{col}(A^T)$) d find $\dim(\operatorname{col}(A))$, $\dim(\operatorname{col}(A^T))$, $\dim(\operatorname{null}(A))$, $\dim(\operatorname{null}(A^T))$

$$A \sim \begin{cases} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & 2 \end{cases} \qquad \begin{cases} x_2 = 0 - x_3 + 3x_5 \\ x_3 = 1 \cdot x_3 + 0 \cdot x_5 \\ x_4 = 0 \cdot x_3 - 2 \cdot x_5 \end{cases}$$

$$\chi_1 = -2\chi_3 - \chi_5$$

$$\chi_2 = 0 - \chi_3 + 3 \chi_c$$

$$x_3 = \frac{1 \cdot x_3}{1 \cdot x_3} + 0 \cdot x_6$$

$$x_y = 0 \cdot x_x - 2 \cdot x_0$$

$$x_5 = o \cdot x_3 + l \cdot x_5$$

$$\begin{array}{c}
10 \\
\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{array}{c}
\chi_3 \\
0 \\
0 \\
0
\end{array} + \begin{array}{c}
\chi_2 \\
0 \\
-2 \\
1
\end{array}$$

$$dim(nul((A)) = 2$$

Quiz Question 4. Given that A has size 7×5 and that the rank of A is 3, then what is the dimension of null(A) and what is the dimension of $\text{null}(A^T)$?

B.
$$\dim(\text{null}(A)) = 3$$
 and $\dim(\text{null}(A^T)) = 5$;

C.
$$\dim(\text{null}(A)) = 5$$
 and $\dim(\text{null}(A^T)) = 7$;

D.
$$\dim(\text{null}(A)) = 2$$
 and $\dim(\text{null}(A^T)) = 2$.

$$[v]_{C} = M_{C}^{C} M_{B} \cdot [v]_{B}$$

$$\begin{bmatrix} 2 & 1 \\ +1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 \\ +1 & -2 \end{bmatrix} \qquad \begin{bmatrix} -5 & \pi \\ \pi & 5 \end{bmatrix}$$