

Homework 9

Directions: Answer the following questions. You are encouraged to work together, join the discussion sessions, use discord, and ask me questions!

- 1. Let $\{f_n\}$ be a sequence of measurable functions with respect to μ .
 - a) Prove that if $1 \le p < \infty$ and a > 0 then

$$\mu(\lbrace x: |f(x)| \ge a\rbrace) \le \frac{\int |f|^p \ d\mu}{a^p}.$$

This is known as Chebyshev's inequality.

- b) If f_n converges to f in L^p , then it converges in measure.
- 2. Suppose $|f_n| \leq g \in L^1$ and $f_n \to f$ in measure. It can be shown than if $f_n \geq 0$ and $f_n \to f$ in measure, that

$$\int f \le \liminf \int f_n.$$

Use this variant of Fatou's lemma to prove the following.

a) Show that

$$\int f = \lim_{n \to \infty} \int f_n$$

- b) Show that $f_n \to f$ in L^1 .
- 3. Suppose that f_n and f are measureable functions such that for each $\epsilon > 0$, we have

$$\sum_{n=1}^{\infty} \mu(\left\{x : |f_n(x) - f(x)| > \epsilon\right\}) < \infty.$$

Prove that $f_n \to f$ a.e.