Suraj Pawar

+1 (206) 931 9902 - supawar@okstate.edu - linkedin.com/in/surajp92 - github.com/surajp92

SUMMARY

- Accomplished AI researcher with 25+ peer-reviewed <u>publications</u> and 1000+ citations, experienced in translating research innovations into product applications. Recognized for extraordinary ability in sciences through EB1A visa approval.
- Pioneered large-scale deep learning models using CNNs, LSTMs, neural operators, and transformer-based architectures, achieving 1000X computational speed-ups for scientific problems.
- Lead developer of <u>CFD-Julia</u> (400+ GitHub users), an open-source library for solving PDEs in CFD, and <u>PAR-RL</u>, a scalable deep reinforcement learning framework for scientific environments and scaled it up to 512 nodes on ALCF's supercomputers.

EDUCATION

Oklahoma State University

Doctor of Philosophy in Mechanical Engineering

Virginia Polytechnic Institute and State University

Master of Science in Mechanical Engineering

TECHNICAL SKILLS

Programming Languages: Python, C/C++, Julia, Fortran, MPI, MATLAB, CUDA

Libraries: PyTorch, TensorFlow, MLFlow, DVC, Huggingface, Ray, PySpark, Sklearn, NumPy, SciPy, Pandas, Optuna

DevOps Tools: Git, Singularity, Docker, Azure, AWS, Vscode, Linux, Jupyter, Colab, Streamlit **ML Architectures:** CNN, LSTM, GANs, Transformers, Diffusion model, VAE, GNN, LLMs, SAM

WORK EXPERIENCE

AI Researcher, Shell Global Solutions Inc, Texas, USA

August 2022 - Present

Stillwater, Oklahoma, USA

January 2019 - August 2022

Blacksburg, Virginia, USA

August 2016 - December 2018

Responsible for developing AI solutions for advancing Shell's energy transition strategy as part of the digital innovation team.

- Spearheaded the development of large-scale **neural operator** models for PDE-based numerical simulations, achieving a remarkable 1000X computational speed-up with an R2 correlation coefficient exceeding 93%. Link
- Collaborated with multi-disciplinary teams for **performance optimization**, incorporating techniques such as distributed data parallel (DDP), efficient data pipelines, and gradient checkpointing, reducing training time by 30% and GPU usage by 20%.
- Developed **large foundation model** based on **vision transformer** for seismic data segmentation, resulting in a 7% improvement in the dice score coefficient and enhancing geological interpretation capabilities.
- Created novel **latent diffusion model** for the reconstruction of wind fields from sparse measurements and for weather forecasting, aiding Shell's wind and trading businesses to accelerate decision-making.
- Developed cVAE model solve seismic inversion problem leading to a quick turnaround in the exploration stage.
- Led the creation of an end-to-end machine learning solution from data pre-processing pipeline to model serving, resulting in a carbon capture storage site screening tool for probabilistic risk assessment.
- Authored technical papers and presented findings at international conferences, contributing to Shell's reputation as an industry leader in applied AI research. Mentored interns and junior data scientists, advancing a culture of innovation and continuous learning.

Graduate Research Assistant, CFD Lab, Oklahoma, USA

January 2019 - August 2022

Led scientific ML research for Earth system modeling, achieving significant contributions and technological advancements.

- Proposed an **equivariant CNN** model for turbulence closure modeling by incorporating physical symmetries as constraints, achieving a 32% reduction in loss and improved correlation compared to a CNN, along with stable deployment. Link
- Integrated **Kalman filtering** and **transformer neural operator** to learn closure models for large eddy simulation of turbulent flows, reducing run time by 40% in the a posteriori deployment. <u>Link</u>
- Engineered a novel **probabilistic surrogate model** using **deep-ensembles** for turbulent flow reconstruction tasks, improving prediction accuracy by up to 20% and reducing uncertainty by up to 10%. <u>Link</u>
- Implemented a **nonintrusive ROM** framework using an **LSTM** network for data-driven autoregressive forecasting of geophysical flows, achieving a 100X computational speedup in the data assimilation loop. <u>Link</u>
- Developed a multi-objective evolutionary strategy algorithm for hyperparameter optimization and automatic pruning of CNNs used in surrogate modeling of geophysical flows, reducing the model's computational complexity by 50%.

AI Research Intern, National Renewable Energy Laboratory, Colorado, USA

May 2021 - August 2021

- Designed a **multi-fidelity physics-informed neural network** framework for wake modeling of a wind turbine, attaining a maximum relative percentage error for the kinetic energy flux of less than 1%. <u>Link</u>
- Worked with a cross-functional team of engineers and data scientists to integrate the model into NREL's wind farm optimization toolkit.

AI Research Intern, Argonne National Laboratory, Illinois, Chicago

May 2020 - August 2020

- Led the development of a **distributed reinforcement learning** library for scientific simulation on supercomputers, contributing to a 30% computational acceleration in the convergence of steady-state CFD simulation. <u>Link</u>
- Deployed and analyzed the scalability of the Ray library coupled with OpenFoam on 512 nodes with 8 CPUs each.