Comparing more than two observations

CLUSTER ANALYSIS IN R

Dmitriy Gorenshteyn

Lead Data Scientist, Memorial Sloan Kettering Cancer Center

The closest observation to a pair

	1	2	3
2	11.7		
3	16.8	18.0	
4	10.0	20.6	15.8

- Is 2 is closest to group 1,4?
- Is 3 is closest to group 1,4?

Linkage criteria: complete

	1	2	3
2	11.7		
3	16.8	18.0	
4	10.0	20.6	15.8

- Is 2 is closest to group 1,4?
 - \circ max(D(2,1), D(2,4)) = **20.6**
- Is 3 is closest to group 1,4?
 - \circ max(D(3,1), D(3,4)) = **16.8**

Hierarchical clustering

Complete Linkage: maximum distance between two sets

Linkage criteria

Complete Linkage: maximum distance between two sets

Single Linkage: minimum distance between two sets

Average Linkage: average distance between two sets

Let's practice!

CLUSTER ANALYSIS IN R

Capturing K clusters

CLUSTER ANALYSIS IN R

Dmitriy Gorenshteyn

Lead Data Scientist, Memorial Sloan Kettering Cancer Center

Hierarchical clustering in R

```
print(players)
     X
   <dbl> <dbl>
 -2 -3
  8 6
          -8
   -12 8
    -15
dist_players <- dist(players, method = 'euclidean')</pre>
hc_players <- hclust(dist_players, method = 'complete')</pre>
```

Extracting K clusters

```
cluster_assignments <- cutree(hc_players, k = 2)</pre>
print(cluster_assignments)
[1] 1 1 1 1 2 2
library(dplyr)
players_clustered <- mutate(players, cluster = cluster_assignments)</pre>
print(players_clustered)
          y cluster
 <dbl> <dbl> <int>
  -2 -3 1
 7 -8 1
  -12 8
  -15 0
```


Visualizing K Clusters

```
library(ggplot2)
ggplot(players_clustered, aes(x = x, y = y, color = facto
    geom_point()
```


Let's practice!

CLUSTER ANALYSIS IN R

Visualizing the dendrogram

CLUSTER ANALYSIS IN R

Dmitriy Gorenshteyn

Lead Data Scientist, Memorial Sloan Kettering Cancer Center

Building the dendrogram

0

Cluster Dendrogram

hclust (*, "complete")

Building the dendrogram

Cluster Dendrogram

hclust (*, "complete")

Building the dendrogram

Cluster Dendrogram

hclust (*, "complete")

Cluster Dendrogram

Cluster Dendrogram

Cluster Dendrogram

Cluster Dendrogram

Cluster Dendrogram

Plotting the dendrogram

plot(hc_players)

Cluster Dendrogram

Let's practice!

CLUSTER ANALYSIS IN R

Cutting the tree

CLUSTER ANALYSIS IN R

Dmitriy Gorenshteyn

Lead Data Scientist, Memorial Sloan Kettering Cancer Center

Cluster Dendrogram

hclust (*, "complete")

Cluster Dendrogram

Cluster Dendrogram

hclust (*, "complete")

Coloring the dendrogram - height

```
library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, h = 15)
plot(dend_colored)</pre>
```


Coloring the dendrogram - height

```
library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, h = 15)
plot(dend_colored)</pre>
```


Coloring the dendrogram - height

```
library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, h = 10)
plot(dend_colored)</pre>
```


Coloring the dendrogram - K

```
library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, k = 2)
plot(dend_colored)</pre>
```


cutree() using height

```
cluster_assignments <- cutree(hc_players, h = 15)</pre>
print(cluster_assignments)
[1] 1 1 1 1 2 2
library(dplyr)
players_clustered <- mutate(players, cluster = cluster_assignments)</pre>
print(players_clustered)
          y cluster
 <dbl> <dbl> <int>
  -2 -3
  7 -8 1
  -12 8
   -15 0
```

Let's practice!

CLUSTER ANALYSIS IN R

Making sense of the clusters

CLUSTER ANALYSIS IN R

Dmitriy Gorenshteyn

Lead Data Scientist, Memorial Sloan Kettering Cancer Center

Wholesale dataset

- 45 observations
- 3 features:
 - Milk Spending
 - Grocery Spending
 - Frozen Food Spending

Wholesale dataset

```
print(customers_spend)
   Milk Grocery Frozen
  11103
         12469
                902
               909
   2013 6550
3
   1897 5234
               417
   1304 3643
                3045
5
   3199
          6986
                1455
```


Exploring more than 2 dimensions

- Plot 2 dimensions at a time
- Visualize using PCA
- Summary statistics by feature

Segment the customers

CLUSTER ANALYSIS IN R

