Lista 1 - MAT0317/MAT5741 Topologia 2023

Instruções para a entrega:

- Os exercícios 3 e 18 devem ser entregues em grupos de 3 a 5 pessoas até o dia 31 de março.
- A entrega pode ser feita na aula, na monitoria ou no endereço de e-mail felipemarques@usp.br.
- Caso decida entregar após a monitoria do dia 29 de março, entregue por e-mail.
- O documento deve conter o nome e o número usp dos componentes do grupo. Caso decida entregar por e-mail, utilize "Lista 1 Topologia" como assunto.

Exercício 1. Sejam Y um conjunto infinito, $x_0 \notin Y$ e $X = Y \cup \{x_0\}$. Mostre que $\tau = \mathcal{P}(Y) \cup \{X\}$ é uma topologia sobre X.

Exercício 2. Seja X um conjunto não vazio. Prove que a intersecção arbitrária e não vazia de topologias sobre X é também uma topologia sobre X. Vale o mesmo se considerarmos uniões?

Exercício 3. Seja $\langle X, \tau \rangle$ um espaço topológico e $Y \subseteq X$.

- a. Prove que $\tau_Y = \{Y \cap U : U \in \tau\}$ é uma topologia sobre Y.

 Obs: Dizemos que $\langle Y, \tau_Y \rangle$ é um subespaço de X e que τ_Y é a topologia induzida por X em Y.
- b. Prove que $F \subseteq Y$ é fechado em Y com sua topologia de subespaço se, e somente se, existe um fechado K de X tal que $F = K \cap Y$.
- c. Seja $Z \subseteq Y$. Prove que as topologias induzidas por X em Z e por Y em Z coincidem.
- d. Considere \mathbb{R} com sua topologia usual. Descreva a topologia induzida por \mathbb{R} em \mathbb{Z} .

Exercício 4. Sejam X um espaço topológico e $Y \subseteq X$ fechado em X. Suponha que Y seja discreto com sua topologia de subespaço. Prove que todo subconjunto de Y é fechado em X.

Exercício 5. Sejam
$$\tau_1 = \{ \{ m \in \mathbb{N} : m < n \} : n \in \mathbb{N} \} \cup \{ \mathbb{N} \} \text{ e } \tau_2 = \{ A \subseteq \mathbb{N} : 0 \in A \} \cup \{ \emptyset \}.$$

- a. Prove que τ_1 e τ_2 são topologias sobre $\mathbb N$ e compare-as com respeito à inclusão.
- b. Prove que se \mathcal{B} é uma base de abertos para (\mathbb{N}, τ_1) , então \mathcal{B} contém $\tau_1 \setminus \{\emptyset, \mathbb{N}\}$.
- c. Encontre uma base de abertos \mathcal{B} de (\mathbb{N}, τ_2) que esteja contida em qualquer outra base de abertos de (\mathbb{N}, τ_2)
- d. Fixe $n \in \mathbb{N} \setminus \{0\}$. Determine o fecho de $\{0\}$ e de $\{n\}$ com respeito a cada uma das topologias τ_1 e τ_2 .

Exercício 6.

- a. Mostre que o conjunto dos intervalos [a,b) é uma base para uma topologia sobre \mathbb{R} .
- b. Seja X o conjunto de todas as funções $f:[0,1]\to [0,1]$. Para cada $S\subseteq [0,1]$, defina

$$B_S := \{ f \in X : f(x) = 0 \text{ para todo } x \in S \}.$$

Prove que $\{B_S : S \subseteq [0,1]\}$ é uma base para uma topologia sobre X.

Exercício 7. Sejam X um conjunto não vazio e $x_0 \in X$.

- a. Mostre que $\mathcal{B} = \{\{x\} : x \in X \setminus \{x_0\}\} \cup \{X\}$ é uma base para uma topologia em X.
- b. Seja τ a topologia gerada por \mathcal{B} . Descreva, para cada $x \in X$, a família

$$\mathcal{V}_x = \{ V \subseteq X : V \text{ \'e uma vizinhança de } x \text{ em } (X, \tau) \}.$$

c. Existe algum $D \subseteq X$ que seja denso em X?

Exercício 8. Sejam X um conjunto não vazio, τ uma topologia sobre X e \mathcal{D} o conjunto de todos os subconjuntos densos de X.

- a. Prove que τ é a topologia discreta se, e somente, se $\mathcal{D} = \{X\}$.
- b. Prove que τ é a topologia caótica se, e somente se, $\mathcal{D} = \mathcal{P}(X) \setminus \{\emptyset\}$.

Exercício 9. Sejam X um espaço topológico e D_1 , $D_2 \subseteq X$ densos em X. Suponha que D_1 é aberto em X. Prove que $D_1 \cap D_2$ é denso em X. O resultado continua válido removendo a hipótese de que D_1 é aberto?

Exercício 10. Seja (X, d) um espaço métrico e τ a topologia sobre X induzida por d. Prove que para todo $x \in X$ e $\varepsilon > 0$,

$$\overline{B_d(x,\varepsilon)} \subseteq B_d[x,\varepsilon],$$

onde $B_d[x,\varepsilon] := \{y \in X : d(x,y) \le \varepsilon\}$. Vale a inclusão contrária?

Exercício 11. Seja $S \subseteq \mathbb{R}$ um subgrupo com respeito à soma, isto é, $S \neq \emptyset$ e $x+y, -x \in S$ sempre que $x, y \in S$. Mostre que, na topologia usual de \mathbb{R} , S é denso em \mathbb{R} ou $\overline{S} = S$.

Dica: Considere $a := \inf\{x \in S : x > 0\}.$

Exercício 12. Seja X um espaço topológico.

- a. Prove que $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$ para todos $A, B \subseteq X$.
- b. Suponha que $\overline{A \cap B} = \overline{A} \cap \overline{B}$ para todos $A, B \subseteq X$. Prove que X é discreto.

Exercício 13. Sejam X um espaço topológico e $Y \subseteq X$. Mostre que:

- a. \overline{Y} é a união de Y com o conjunto dos seus pontos de acumulação.
- b. Y é fechado em X se, e somente se, todo ponto de acumulação de Y pertence a Y.
- c. Y é fechado em X e discreto com sua topologia de subespaço se, e somente se, Y não admite nenhum ponto de acumulação.
- d. Se Y é fechado em X e discreto com sua topologia de subespaço, então todo subconjunto $Z \subseteq Y$ é fechado em X e discreto com sua topologia de subespaço induzida por X.

Exercício 14. Seja X um espaço topológico que satisfaz o segundo axioma de enumerabilidade. Prove que, se $A \subseteq X$ é não-enumerável, então existe $x \in A$ que é ponto de acumulação de A.

Exercício 15. Seja

$$\tau = \{ U \subseteq \mathbb{R} : \ \forall \ x \in U \cap \mathbb{Q} \ \exists \ \varepsilon > 0 \ \text{tal que} \ | x - \varepsilon, x + \varepsilon [\subseteq U \}.$$

Mostre que τ é uma topologia sobre \mathbb{R} que contém a topologia usual de \mathbb{R} e que não verifica o segundo axioma de enumerabilidade.

Exercício 16. Mostre que se $\langle X, \tau \rangle$ é um espaço topológico separável, então

$$\{x \in X : \{x\} \in \tau\}$$

é enumerável.

Exercício 17. Sejam X um espaço topológico e $D \subseteq X$ denso em X.

- a. Prove que se $A \subseteq X$ é aberto em X, então $A \cap D$ é denso em A com sua topologia de subespaço induzida por X.
- b. Use o item anterior para concluir que se X é separável, então todo subespaço aberto de X é separável.
- c. Mostre que a hipótese de que A é aberto não pode ser removida no item anterior Dica: Plano de Niemytski.

Exercício 18. Seja X um espaço topológico, \mathcal{B} uma base de abertos para X e $Y \subseteq X$.

- a. Prove que se X satisfaz o segundo axioma de enumerabilidade, então Y também o satisfaz com sua topologia de subespaço induzida por X.
- b. É verdade que se X satisfaz o primeiro axioma de enumerabilidade, então Y também o satisfaz?
- c. Mostre que $(\mathbb{R} \setminus \mathbb{Q})^2 \subseteq \mathbb{R}^2$ é separável.

Exercício 19. Seja (X, d) um espaço métrico.

- a. Prove que X satisfaz o primeiro axioma de enumerabilidade.
- b. Prove que se X é separável, então X satisfaz o segundo axioma de enumerabilidade.

O seguinte exercício exige um pouco de teoria dos números e pode ser considerado como um extra.

Exercício 20 (Furstenberg's topological proof of the infinitude of primes). Para cada $a, b \in \mathbb{N}$, seja

$$a + b\mathbb{N} := \{a + bk : k \in \mathbb{N}\} = \{a, a + b, a + 2b, \ldots\}.$$

- a. Mostre que $\mathcal{B} = \{B_{a,b}: a,b,\in\mathbb{N}, b\neq 0, a< b\}$ é uma base de abertos para uma topologia sobre \mathbb{N}
- b. Mostre que, nessa topologia, os elementos de \mathcal{B} são também fechados.

Dica: Mostre que o complementar de $B_{a,b}$ é uma união de abertos. Aritmética modular pode facilitar essa tarefa.

- c. Mostre que, nessa topologia, todo aberto não vazio é infinito.
- d. Escreva $\mathbb{N}\setminus\{1\}$ como uma união de fechados.

Dica: Use o Teorema Fundamental da Aritmética

e. Use os três itens anteriores para concluir que existem infinitos primos.