Soutenance à mi-parcours: Cryptanalyse algébrique avec oracle

Christopher Goyet

THALES Communications

Équipe SALSA/LIP6/UPMC

Introduction

Cryptanalyse:

- évalue la sécurité des cryptosystèmes
- basée sur un problème sous-jacent supposé "difficile"

Exemple cryptographie asymétrique

Cryptosystème RSA:

• basé sur un problème de théorie des nombres : calculer la racine e-ème modulo N=pq

Attaque générale : factorisation de N

- Meilleur complexité reste : $O(e^{c\ln(x)^{\alpha}})$, $0 < \alpha < 1$
- Dernier record 2010 : $N \approx 2^{768}$

Exemple: chiffrement par bloc

Exemple: AES

Exemple: chiffrement par bloc

Une approche différente

Au lieu de chercher à résoudre des problèmes difficiles en général... Quels contextes \Rightarrow problèmes faciles ?

RSA : exemple de problème difficile devenant facile dans un contexte particulier

 $\begin{tabular}{ll} \begin{tabular}{ll} \begi$

RSA : exemple de problème difficile devenant facile dans un contexte particulier

- **1** 1985, Rivest, Shamir : LSB de p connu \Rightarrow factorisation N=pq temps polynomial
- 2 1996, Coppersmith : ${\sf MSB} \ {\sf de} \ p \ {\sf connu} \ \Rightarrow {\sf factorisation} \ N = pq \ {\sf temps} \ {\sf polynomial}$

RSA : exemple de problème difficile devenant facile dans un contexte particulier

- $\begin{tabular}{ll} \bf 1985, Rivest, Shamir: \\ {\it LSB de p connu} \Rightarrow {\it factorisation} \ N=pq \ {\it temps polynomial} \\ \end{tabular}$
- 2 1996, Coppersmith : ${\sf MSB} \ {\sf de} \ p \ {\sf connu} \Rightarrow {\sf factorisation} \ N = pq \ {\sf temps} \ {\sf polynomial}$
- $\ \ \,$ 1998, Boneh, Durfee, Frankel : fraction exposant secret connu \Rightarrow factorisation N=pq temps polynomial
- 4 ...

Attaque par canaux auxiliaires

Implémentation d'algorithmes cryptographiques (carte à puce, FPGA, ...) vulnérabilités physiques

"A correct implementation of a strong protocol is not necessarily secure" (Kocher, 1999)

Une approche différente

Au lieu de chercher à résoudre des problèmes difficiles en général... Quels contextes \Rightarrow problèmes faciles ?

→ information supplémentaire

Une approche différente

Au lieu de chercher à résoudre des problèmes difficiles en général... Quels contextes \Rightarrow problèmes faciles?

→ information supplémentaire

Modélisation:

Cryptanalyse avec Oracle

- Comment ? → permet d'accélérer attaques
- Quoi? Combien? → temps polynomial

Attaque algébrique par canaux auxiliaires

Conférence internationale :

COSADE 2011

Analysis of the Algebraic Side Channel Attack

Autre exposé :

Article détaillé prochainement soumis à un journal

Attaque algébrique par canaux auxiliaires (ASCA)

Nouveau type d'attaque récemment proposé par Renauld, Standaert et Veyrat-Charvillon (CHES 2009, Inscrypt2009)

Idée principale

- Phase Online : mesures de fuites physiques
- 2 Phase Offline : attaque algébrique : modélisation + résolution

Attaque algébrique par canaux auxiliaires

Avantages

- moins d'observations qu'une DPA classique
- étape de résolution apparemment très rapide (avec SAT-solver)
- peut fonctionner avec contre-mesures par masquage

Attaque algébrique par canaux auxiliaires

Avantages

- moins d'observations qu'une DPA classique
- étape de résolution apparemment très rapide (avec SAT-solver)
- peut fonctionner avec contre-mesures par masquage

Cependant, l'efficacité dépend de

- l'appareil ciblé et la qualité des traces
- du modèle de fuite
- de la quantité d'information disponible
- du système d'équations (modélisation)
- des heuristiques utilisées par le SAT-solver
- ...

→ résultats des expériences très difficiles à expliquer et à prédire

État de l'art

- Algebraic Side-Channel Attacks
 Renauld, Standaert, Inscrypt 2009
- Algebraic Side-Channel Attacks on the AES: Why Time also Matters in DPA
 - Renauld, Standaert, Veyrat-Charvillon, CHES 2009
- Blind Differential Cryptanalysis for Enhanced Power Attacks Handschuh, Preneel, Selected Areas in Cryptography 2006
- Multi-Linear cryptanalysis in Power Analysis Attacks Roche, Tavernier, 2009

Analyse de la phase algébrique

Dans le but d'expliquer l'efficacité de l'étape de résolution

Objectifs

- impact du modèle d'oracle? HW dans notre cas
- combien requêtes à oracle nécessaires?
- certaines réponses plus intéressantes?
- quelles parties du chiffrement cibler?

Nécessite méthode de résolution plus stable et prévisible qu'avec SAT-solver sans heuristiques \Longrightarrow Bases Gröbner

Objectif : analyse de la phase algébrique

Modèle d'Oracle :

- poids de Hamming sur 8-bits à chaque étape
- supposés sans erreur

PRESENT	${\sf PRESENT} + {\sf Oracle}$
$SAT ext{-}Solver = \infty \ lacksquare$	SAT-Solver $\simeq 1$ s \checkmark
	(CHES 2009)
Base Gröbner $= \infty$ X	Gröbner basis (F4) ≃ 20min ✔
	(our work)

$$\infty:>$$
3jours
$$\mathsf{SAT-Solver} = \mathsf{Heuristiques} \Rightarrow \mathsf{analyse}$$
 Gröbner basis $=$ Résolution Algébrique \Rightarrow analyse théorique confirmée par expériences

Étude locale

- boîtes-S fournissent la résistance aux attaques algébriques
- seules parties non-linéaires
- représentés par systèmes d'équations de haut degré

Principal critère = **Immunité Algébrique** des boîtes-S

Immunité Algébrique (Ars, Carlet, Courtois, ...)

Principal critère attaques algébriques = **Immunité Algébrique**

Notations: soient

- $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$ une *n*-bits boîte-S.
- X_1, \ldots, X_n et Y_1, \ldots, Y_n respectivement ces bits d'entrées et de sorties.
- $F_i(X_1, \dots, X_n)$, 1 < i < n les fonctions définissant sorties de S

Definition de l'Immunité Algébrique

Soit $I_S = \langle \{Y_i - F_i(X_1, \dots, X_n), X_i^2 - X_i, Y_i^2 - Y_i, i \in \{1 \dots n\} \} \rangle$. Alors **l'Immunité Algébrique** de S est défini par

$$AI(S) = \min\{deg(P), P \in I_S \setminus \{0\}\}\$$

Le nombre de telles relations de bas degré est aussi un invariant important

Immunité Algébrique (Ars, Carlet, Courtois, ...)

Comment calculer **l'Immunité Algébrique** pour une boîte-S donnée S? Il suffit de calculer une base de Gröbner avec l'ordre DRL de

$$I_S = \langle \{Y_i - F_i(X_1, \dots, X_n), X_i^2 - X_i, Y_i^2 - Y_i, i \in \{1 \dots n\}\} \rangle$$

En effet, on a

Proposition

La base de Gröbner réduite G_S de I_S pour n'importe quel ordre du degré contient une base linéaire des relations de plus bas degré S (i.e. les polynômes $P \in I_S$ tels que deg(P) = AI(S).

Exemple de la boîte-S de l'AES

L'Immunité algébrique de la fonction inverse sur \mathbb{F}_{28} (e.g. AES S-box) est égale à 2. En effet, elle peut être représentée par 39 équations quadratiques sur \mathbb{F}_2 (Courtois 2002)

Une nouvelle notion d'Immunité Algébrique

$ASCA \Rightarrow considérer$ informations supplémentaires

Notations

Pour toute valeur possible ℓ retournée par l'oracle, on note

- $E_{\ell}(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ équations données par l'oracle représentant l'information ℓ
- $I_{\ell} = \langle E_{\ell}(X_1, \dots, X_n, Y_1, \dots, Y_n) \cup \{Y_i F_i(X_1, \dots, X_n), Y_i \} \rangle$ $X_i^2 - X_i, Y_i^2 - Y_i, i \in \{1 \dots n\}\}$

Définition d'Immunité Algébrique avec Oracle

Le plus petit degré des relations dans I_{ℓ} est appelé **Immunité Algébrique** avec Oracle de la boîte S. Il est noté $AI(S, \ell)$ et le nombre de telles relations est noté $\#AI(S,\ell)$.

Exemple du poids de Hamming (HW)

Hypothèse: Oracle renvoit

- HW de l'entrée de S
- HW de la sortie de S
- $\bullet \ \ell = (w_{in}, w_{out})$
- \Rightarrow l'idéal I_{ℓ} contient au moins 2 polynômes linéaires indépendants :

$$X_1 + \dots + X_n + (w_{in} \mod 2) \in I_{\ell}$$

$$Y_1 + \dots + Y_n + (w_{out} \mod 2) \in I_{\ell}$$

Propositions

 \forall boîte S, et $\forall \ell \in \{0,...,n\}^2$

$$AI_{HW}(S,\ell) = 1$$
$$#AI_{HW}(S,\ell) \ge 2$$

La boîte-S est-elle linéarisée pour autant?

Exemple HW $(\ell = (w_{in}, w_{out}))$

 \Rightarrow l'idéal I_ℓ contient au moins 2 polynômes linéaires indépendants :

$$X_1 + \dots + X_n + (w_{in} \mod 2) \in I_{\ell}$$

$$Y_1 + \dots + Y_n + (w_{out} \mod 2) \in I_{\ell}$$

ne nous aident pas beaucoup pour résoudre notre système :

- pas de relations linéaires entre l'entrée et la sortie
- étape de substitution reste donc non linéaire

Mais, nous savons maintenant que cette information supplémentaire peut apporter des équations linéaires!!

Y en a-t-il d'autres de plus intéressantes?

Exemple HW ($\ell = (w_{in}, w_{out})$)

Exemple trivial : $w_{in} = 0$

 \forall boîte S, si $w_{in}=0$ alors $X_1=X_2=\cdots=X_n=0$ et les Y_i sont donnés par

$$Y_1, \ldots, Y_n = S(0, \ldots, 0) = y_1, \ldots, y_n$$

 $\#AI_{HW}(S,\ell)=2n$ est maximal dans ce cas et la boîte correspondante est entièrement décrite par des relations linéaires

Exemple HW $(\ell = (w_{in}, w_{out}))$

Exemple trivial : $w_{in} = 0$

 \forall boîte S, si $w_{in}=0$ alors $X_1=X_2=\cdots=X_n=0$ et les Y_i sont donnés par

$$Y_1, \ldots, Y_n = S(0, \ldots, 0) = y_1, \ldots, y_n$$

 $\#AI_{HW}(S,\ell)=2n$ est maximal dans ce cas et la boîte correspondante est entièrement décrite par des relations linéaires

Exemple de PRESENT : $\#AI_{HW}(S,(w_{in},w_{out}))$

$w_{in}w_{out}$	0	1	2	3	4	5	6	7	8
0					16				
1					9				
2			15	15	8	13	15		
3			9	5	9	5	9		
4	16	15	14	2	11	3	12	13	16
5		13	13	2	7	10	11	13	
6		15	12	15	7	15	14		
7			13		13				
8			16						

Suivant la réponse de l'oracle, beaucoup d'équations linéaires peuvent apparaître

Autre invariant

Définition

 \forall boîte S, \forall valeur $\ell = (w_{in}, w_{out})$, nous définissons

$$N_S(\ell) = \#V(I_\ell)$$

- simple à décrire, lecture directe
- utile pour caractérisation

Autre invariant

Définition

 \forall boîte S, \forall valeur $\ell = (w_{in}, w_{out})$, nous définissons

$$N_S(\ell) = \#V(I_\ell)$$

- simple à décrire, lecture directe
- utile pour caractérisation

Proposition

Soit n la taille de S. Si $AI(S, \ell) = 1$ et $N_S(\ell)$ est non nul alors

$$\#AI(S,\ell) \ge 2n + 1 - N_S(\ell)$$

 $N_S(\ell)$ petit \rightsquigarrow beaucoup de relations linéaires

Boîte-S de PRESENT

Hypothèse : bus 8-bits et oracle poids de Hamming

$w_{in}w_{out}$	0	1	2	3	4	5	6	7	8
0					16				
1					9				
2			15	15	8	13	15		
3			9	5	9	5	9		
4	16	15	14	2	11	3	12	13	16
5		13	13	2	7	10	11	13	
6		15	12	15	7	15	14		
7			13		13				
8			16						

FIGURE: $\#AI_{HW}(S, w_{in}, w_{out})$

$w_{in}w_{out}$	0	1	2	3	4	5	6	7	8
0					1				
1					8				
2			2	2	18	4	2		
3			8	12	8	20	8		
4	1	2	3	24	7	22	6	4	1
5		4	4	16	12	8	8	4	
6		2	6	2	12	2	4		
7			4		4				
8			1						

FIGURE: $N_S(w_{in}, w_{out})$

Observations

- $\begin{array}{c} \bullet \ \ \text{confirme que} \\ N_S \ \ \text{petit} \Rightarrow \#AI \\ \ \ \text{grand} \end{array}$
- permet de trier les réponses par importance
- la plupart donnant beaucoup de relations linéaires : $\mathbb{E}(\#AI_{HW}) = 7.9$

Boîte-S de PRESENT

Hypothèse : bus 8-bits et oracle poids de Hamming

$w_{in}w_{out}$	0	1	2	3	4	5	6	7	8
0					16				
1					9				
2			15	15	8	13	15		
3			9	5	9	5	9		
4	16	15	14	2	11	3	12	13	16
5		13	13	2	7	10	11	13	
6		15	12	15	7	15	14		
7			13		13				
8			16						

FIGURE: $\#AI_{HW}(S, w_{in}, w_{out})$

$w_{in}w_{out}$	0	1	2	3	4	5	6	7	8
0					1				
1					8				
2			2	2	18	4	2		
3			8	12	8	20	8		
4	1	2	3	24	7	22	6	4	1
5		4	4	16	12	8	8	4	
6		2	6	2	12	2	4		
7			4		4				
8			1						

FIGURE: $N_S(w_{in}, w_{out})$

Observations

- $\begin{array}{c} \bullet \ \ \text{confirme que} \\ N_S \ \ \text{petit} \Rightarrow \#AI \\ \ \ \text{grand} \end{array}$
- permet de trier les réponses par importance
- la plupart donnant beaucoup de relations linéaires : $\mathbb{E}(\#AI_{HW}) = 7.9$

Stratégie de résolution efficace

Calcul direct par base de Gröbner \rightsquigarrow X

```
plaintext
addRoundKey
                                                                                                   + s_1 s_3 + s_2 + s_4 + k_4 + 1
                                                                                              s_1s_2 + s_1s_3 + s_1s_4 + \dots
                                                                                              s_{121}s_{122} + s_{121}s_{123} + s_{121}s_{124} + \dots
           sBoxLayer
            pLayer
                                                                                              s_1s_2 + s_1s_3 + s_1s_4 + \dots
                                                                                              s_{121}s_{122} + s_{121}s_{123} + s_{121}s_{124} + \dots
           sBoxLayer
            pLayer
addRoundKey
                                                                                              s_3y_{124} + y_{121}y_{124} + y_{121} + \dots
y_{124}k_{122} + y_{124}k_{123} + y_{124} + k_{121} + \dots
           ciphertext
```

Résultats :

Calculs successifs de bases de Gröbner (F4)

- → meilleur contrôle sur le degré
- \rightarrow stratégie de résolution efficace $\simeq 20$ min \checkmark
- → implémenté en magma

Raisons du succès

Explication de la réussite de l'attaque lorsque :

- chiffrement par blocs très simple : PRESENT
- Oracle donne tous les poids de Hamming sur 8-bits à tous les tours
- supposés sans erreurs

Raisons:

- $AI_{HW} = 1$
- $\mathbb{E}(\#AI_{HW}) = 7.9$
- $\mathbb{P}(\#AI_{HW} \ge 8) \approx \frac{1}{2} \rightsquigarrow \text{distribution uniforme}$
- $\Rightarrow \mathbb{E}(\text{ couche de substitution entière }) \approx 64$

- informations supplémentaires sur 3 ou 4 tours seulement?
- sans le clair ni le chiffré?

Raisons du succès

Explication de la réussite de l'attaque lorsque :

- chiffrement par blocs très simple : PRESENT
- Oracle donne tous les poids de Hamming sur 8-bits à tous les tours
- supposés sans erreurs

Raisons:

- $AI_{HW} = 1$
- $\mathbb{E}(\#AI_{HW}) = 7.9$
- $\mathbb{P}(\#AI_{HW} \ge 8) \approx \frac{1}{2} \rightsquigarrow \text{distribution uniforme}$
- $\Rightarrow \mathbb{E}(\text{ couche de substitution entière }) \approx 64$

Attaque efficace sous hypothèses plus faibles suivantes :

- informations supplémentaires sur 3 ou 4 tours seulement?
- sans le clair ni le chiffré?

Peu d'informations consécutives ou clair/chiffré inconnus

Retour à l'étude locale des boîtes-S :

 $N_S(\ell)$ petit \Rightarrow forte linéarisation

 $N_S(\ell)$ très petit $(\leq 6) \Rightarrow$ bits d'entrée/sortie fixés!!

→ bits d'autres sous-clefs facilement déduits à travers le keyschedule

Boîtes-S plus résistantes?

Nécessaires :

- peu de bits fixés
- faible linéarisation

 \rightsquigarrow maximiser N_S pour tout poids de Hamming

Choix de la classe : N_S pour tout poids de Hamming

$$N_S(w_{in}, w_{out}) = \#(HW^{-1}(w_{in}) \cap S^{-1}(HW^{-1}(w_{out})))$$

Alors S doit vérifier

$$HW^{-1}(w_{in}) = S^{-1}(HW^{-1}(w_{out}))$$

et donc

$$w_{in} = w_{out}$$
 ou $w_{in} = n - w_{out}$

Boîtes-S plus résistantes?

Exemple d'un telle boîte-S sur 4-bits :

x	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
S(x)	0	В	5	С	Ε	6	9	8	7	5	3	1	Α	2	4	F

HW(x)	HW(S(x))					
0	0					
1	3					
2	2					
3	1					
4	4					

→ meilleur résistance confirmée par les expériences

Caractérisation (Carlet):

$$S(x) = \pi(x) + f(HW(x))(1, ..., 1)$$

- $\pi(x) = \text{permutation stable sur HW constant}$
- $f = \text{fonction booléenne t.q. } \forall x \in \{0, \dots, n\}, f(x) = f(n-x)$

Cependant, nonlinéarité(S) $\simeq 0 \Rightarrow$ très faible contre cryptanalyse linéaire

Expériences

Expériences contre PRESENT et AES

Analyse confirmée par expériences :

GB

- rejette réponses grand N_S
- rejette réponses petit N_S
- sur tours non consécutifs

Expériences

Expériences contre PRESENT et AES

Analyse confirmée par expériences : GB SAT-solver rejette réponses grand N_S rejette réponses petit N_S sur tours non consécutifs

Analyse est valide avec bases Gröbner et SAT-solver

Premier bilan

- Bonne compréhension de l'influence des informations supplémentaires
 - Nouvelle notion d'immunité algébrique
 - Résultats des expériences expliqués
 - ► Tri par importance des informations supplémentaires

Perspectives

- Autres classes boîtes-S résistantes contre ASCA et autres cryptanalyses classiques
- Gérer les erreurs

Autre modèle d'oracle apportant moins d'information?

⇒ même analyse sur Distance Hamming

Boîtes-S de PRESENT

Hypothèses: bus 8-bits et oracle renvoyant DISTANCE Hamming

Définition:

$$d = HD(x, S(x)) = HW(x \oplus S(x))$$

HD modèle:

- $AI_{HD}(d) = 1$
- $\#AI_{HD}(d) \ge 1$
- $\mathbb{E}(\#AI_{HD}) = 2,3$
- $\mathbb{P}(\#AI_{HD}=1)\approx \frac{7}{10}$

d	0	1	2	3	4	5	6	7	8
$N_S(d)$	0	0	16	56	81	64	30	8	1
$\#AI_{HD}(S,d)$	0	0	10	3	1	1	1	9	16
Bits fixés	0	0	0	0	0	0	0	0	16

FIGURE: HD avec boîtes-S de PRESENT

Beaucoup moins que dans le modèle HW

- → systèmes non linéarisés (ou très peu), pas de bits fixés
- → prévoit résolution beaucoup plus difficile → confirmé par expériences

Attaque algébrique par collisions et par fautes

- Algebraic Methods in Side-Channel Collision Attacks and Practical Collision Detection
 Bogdanov, Kizhvatov, Pyshkin, Indocrypt 2008
- ...
- A Differential Fault Attack Technique against SPN Structures, with Application to the AES and KHAZAD Piret, Quisquater, CHES 2003
- Piret and Quisquater's DFA on AES Revisited Giraud, Thillard, eprint 2010

Attaque algébrique par collisions ou par fautes

ldée : généraliser en attaques algébriques avec oracle

- méthode systématique exploiter les informations supplémentaires
- réduisant au minimum le nombre de fautes/collisions nécessaires
- étendre à d'autres tours
- modèles de fautes plus complexes (plusieurs fautes, ...)

Modélisation

Attaque algébrique par collisions ou par fautes

Expériences contre AES

Résultats :

- Attaque DFA Piret et Quisquater tour 7
 ✓
- Collisions tours extrêmes
- même nombre nécessaires
- autres tours X

→ pas d'améliorations notables

Attaque algébrique par collisions ou par fautes

Expériences contre AES

Résultats :

- Attaque DFA Piret et Quisquater tour 7
 ✓
- Collisions tours extrêmes
- même nombre nécessaires
- autres tours X

→ pas d'améliorations notables

Perspectives:

- 4 Autres cryptosystèmes : DES (Courtois, 2010), ...
- 2 Autres modèles de fautes (Kim, 2011)
- 6 Généralisation par méthodes algébriques

Conclusion - Perspectives

Conclusion - Perspectives

Conclusion

- Analyse des attaques ASCA
- Généralisation algébrique des attaques par fautes et par collisions

Perspectives

- Oracle en cryptographie asymétrique
- Travail en cours sur (EC)DSA avec information implicite
- Attaques basées sur méthodes de Coppersmith et LLL