- 1. Sia E l'insieme delle matrici 20×20 che hanno almeno 399 elementi uguali a π . Rispondere alle domande seguenti, motivando la risposta:
 - i. Quali valori può assumere il determinante di una matrice di questo insieme?
 - ii. L'insieme E contiene una matrice incompleta associata a un sistema impossibile?
 - iii. Sia $A \in E$. Si può essere certi che A sia la matrice canonicamente associata a un prodotto interno definito su $\mathbb{R}^{20} \times \mathbb{R}^{20}$?
 - iv. Trovare un numero reale che sia autovalore di ogni matrice dell'insieme E.
 - v. Sia B la matrice di E con tutti gli elementi uguali a π . Determinare un autovettore non nullo di B.
- 2. Si consideri l'endomorfismo f di \mathbb{R}^3 canonicamente associato alla matrice

$$\left(\begin{array}{ccc} 7 & 3 & 2 \\ -10 & -4 & -4 \\ 2 & -1 & 1 \end{array}\right).$$

- i. Stabilire se f è diagonalizzabile.
- ii. Siano U e V due autospazi di f a scelta del candidato. Si scriva una rapprestazione cartesiana di U+V.
- iii. Sia $S = \{(1,3,1); (0,k,3)\}$. Discutere la dimensione di f(Span(S)) al variare di $k \in \mathbb{R}$.
- **3.** Nello spazio euclideo tridimensionale, si considerino i punti P(-4, 1, 1), Q(1, 0, 0) e R(4, 0, -1).
 - i. Determinare l'equazione del piano π che contiene i tre punti assegnati.
 - ii. Determinare l'equazione della retta r che passa per R e per il punto S(3,k,0).
 - iii. Determinare, se possibile, k in modo che r sia perpendicolare a $\pi.$