Breast Cancer: Wisconsin

Jose Tamez

2023-04-26

Contents

151 47

```
0.1 Modeling . . . .
  library(survival)
library(FRESA.CAD)
## Loading required package: Rcpp
## Loading required package: stringr
## Loading required package: miscTools
## Loading required package: Hmisc
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
      format.pval, units
##
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
      cov, smooth, var
source("~/GitHub/FRESA.CAD/R/RRPlot.R")
source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R")
op <- par(no.readonly = TRUE)
pander::panderOptions('digits', 3)
#pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
layout(matrix(1:1, nrow=1))
dataBreast <- read.csv("~/GitHub/RISKPLOTS/DATA/wpbc.data", header=FALSE)</pre>
table(dataBreast$V2)
##
##
```

```
rownames(dataBreast) <- dataBreast$V1
dataBreast$V1 <- NULL
dataBreast$status <- 1*(dataBreast$V2=="R")
dataBreast$V2 <- NULL
dataBreast$time <- dataBreast$V3
dataBreast$V3 <- NULL
dataBreast <- sapply(dataBreast,as.numeric)

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion
dataBreast <- as.data.frame(dataBreast[complete.cases(dataBreast),])
table(dataBreast$status)

##
##
##
##
##
##
##</pre>
```

0.1 Modeling

148 46

```
ml <- BSWiMS.model(Surv(time, status)~1, data=dataBreast)</pre>
```

```
[+++++]
sm <- summary(ml)
pander::pander(sm$coefficients)</pre>
```

Table 1: Table continues below

	Estimate	lower	HR	upper	u.Accuracy	r.Accuracy
V26	8.07e-03	1	1.01	1.01	0.593	0.237
V27	4.13e-04	1	1.00	1.00	0.608	0.237
V24	7.71e-03	1	1.01	1.01	0.598	0.634
V7	1.03e-07	1	1.00	1.00	0.588	0.237
V35	8.65e-06	1	1.00	1.00	0.727	0.237
V34	9.13e-03	1	1.01	1.02	0.634	0.598

Table 2: Table continues below

	full.Accuracy	u.AUC	r.AUC	full.AUC	IDI	NRI	z.IDI
V26	0.593	0.598	0.500	0.598	0.0626	0.393	2.77
V27	0.608	0.608	0.500	0.608	0.0563	0.434	2.76
V24	0.603	0.609	0.618	0.613	0.0532	0.323	2.62
V7	0.588	0.595	0.500	0.595	0.0487	0.380	2.30
V35	0.727	0.641	0.500	0.641	0.0289	0.565	2.28
V34	0.603	0.618	0.609	0.613	0.0233	0.411	2.13

	z.NRI	Delta.AUC	Frequency
V26	2.38	0.09827	1
V27	2.63	0.10840	1
V24	1.94	-0.00529	1
V7	2.30	0.09489	1

	z.NRI	Delta.AUC	Frequency
V35	3.50	0.14116	1
V34	2.47	0.00338	1

0.2 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

0.2.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

```
index <- predict(ml,dataBreast)
timeinterval <- 2*mean(subset(dataBreast,status==1)$time)

h0 <- sum(dataBreast$status & dataBreast$time <= timeinterval)
h0 <- h0/sum((dataBreast$time > timeinterval) | (dataBreast$status==1))
pander::pander(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")
```

Table 4: Initial Parameters

h0	timeinterval
0.323	51.1

Cumulative vs. Observed: Raw Train: Breast Cancer

Decision Curve Analysis: Raw Train: Breast Cancer

Relative Risk: Raw Train: Breast Cancer

ROC: Raw Train: Breast Cancer

Time vs. Events: Raw Train: Breast Cancer

Kaplan-Meier: Raw Train: Breast Cancer

As we can see the Observed probability as well as the Time vs. Events are not calibrated.

0.2.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$0ERatio), caption="0/E Ratio")

Table 5: O/E Ratio

est	lower	upper
0.843	0.617	1.12

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 6: O/E Ratio

mean	50%	2.5%	97.5%
1	1	0.956	1.06

pander::pander(t(rrAnalysisTrain\$OAcum95ci),caption="0/Acum Ratio")

Table 7: O/Acum Ratio

mean	50%	2.5%	97.5%
0.776	0.776	0.769	0.783

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.677	0.679	0.595	0.751

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 9: ROC AUC

est	lower	upper
0.635	0.543	0.727

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 10: Sensitivity

est	lower	upper
0.261	0.143	0.411

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 11: Specificity

est	lower	upper
0.899	0.838	0.942

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 12: Probability Thresholds

(90%
0	.419

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 13: Risk Ratio

est	lower	upper
1.88	1.1	3.2

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 14: Logrank test Chisq = 11.670372 on 1 degrees of freedom, p = 0.000635

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	167	34	41.11	1.23	11.7
class=1	27	12	4.89	10.33	11.7