0.1 Der Trägheitssatz von Sylvester

[James Joses Sylvester *1814 †1897]

Satz und Definition 0.1.1. (Trägheitssatz) Sei V ein endlichdimensionaler \mathbb{R} -Vektorraum und $q \in Q(V)$. Dann gibt es genau ein Paar $(r,s) \in \mathbb{N}_0^2$, genannt Sylvester-Signatur mit a derart, dass es eine geordnete Basis \underline{v} von V gibt mit

$$M(q,\underline{v}) = \begin{pmatrix} 1 & & & & \\ & \ddots & & \\ & & 1 \end{pmatrix} r & & \\ & & -1 & \\ & & & \ddots & \\ & & & & -1 \end{pmatrix} s \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Beweis. Existenz. Nach Korollar ?? gibt es eine Basis $\underline{w}=(w_1,...,w_n)$ von V derart, dass $M(q,\underline{w})$ Diagonalgestalt hat. Œ gibt es $r,s\in\mathbb{N}_0$ mit $q(w_1)>0,...,q(w_r)>0,q(w_{r+1})<0,...,q(w_{r+s})<0,q(w_{r+s+1})=...=q(w_n)=0$. Setze nun

$$\underline{v} := \left(\frac{w_1}{\sqrt{q(w_1)}}, ..., \frac{w_r}{\sqrt{q(w_r)}}, \frac{w_{r+1}}{\sqrt{-q(w_{r+1})}} ..., \frac{w_{r+s}}{\sqrt{-q(w_{r+s})}}, w_{r+s+1}, ..., w_n\right).$$

Dann ist $M(q, \underline{v})$ von der gewünschten Gestalt.

Eindeutigkeit. Seien $(r, s), (t, u) \in \mathbb{N}_0^2$ und $\underline{v} = (v_1, ..., v_n), \underline{w} = (w_1, ..., w_n)$ Basen von V mit

Zu zeigen ist (r,s)=(t,u). Setze $b:=b_q$. Dann gilt für $\lambda_1,...,\lambda_n\in K$:

$$\sum_{i=1}^{n} \lambda_{i} v_{i} \in \ker \overrightarrow{b} \iff \overrightarrow{b} \left(\sum_{i=1}^{n} \lambda_{i} v_{i}\right) = 0$$

$$\iff b \left(\sum_{i=1}^{n} \lambda_{i} v_{i}, \cdot\right) = 0$$

$$\iff \forall j \in \{1, ..., n\} : b \left(\sum_{i=1}^{n} \lambda_{i} v_{i}, v_{j}\right) = 0$$

$$\iff \forall j \in \{1, ..., r+s\} : \lambda_{j} = 0.$$

Also span $(v_{r+s+1},...v_n) = \ker \stackrel{\rightarrow}{b}$ und ebenso span $(w_{r+s+1},...w_n) = \ker \stackrel{\rightarrow}{b}$. Es folgt r+s=t+u. Betrachte nun die Untervektorräume

- $U := \operatorname{span}(v_1, ...v_r, v_{r+s+1}, ..., v_n)$ und
- $W := \operatorname{span}(w_{t+1}, ..., w_{t+u}).$

Es gilt $q(v) \ge 0$ für $v \in U$ und q(v) < 0 für $W \setminus \{0\}$. Daher gilt $U \cap W = \{0\}$ und mit der Dimensionsformel $[\to ??]$ für Untervektorräume $n \ge \dim U + \dim W = n - s + u$. Also ist $u \le s$. Genauso zeigt man $s \le u$. Es folgt s = u und daher auch r = t. Somit (r, s) = (t, u).

Satz 0.1.2. Es gelte der Fundamentalsatz der Algebra. Sei V ein endlichdimensionaler \mathbb{R} -Vektorraum und $q \in Q(V)$ mit Sylvestersignatur $(r, s) \in \mathbb{N}_0$.

- (a) Ist $\underline{v} = (v_1, ..., v_n)$ eine Basis und sind $\lambda_1, ...\lambda_n$ die Eigenwerte von $M(q, \underline{v})$ wobei jedes λ_i seiner algebraischen Vielfachheit entsprechend oft aufgeführt ist $[\to ??,??]$, das heißt $\chi_{M(q,v)} = \det(M(q,\underline{v}) XI_n) = (-1)^n \prod_{i=1}^n (X \lambda_i)$, so gilt
 - $r = \#\{i \in \{1, ..., n\} \mid \lambda_i > 0\}$ und
 - $s = \#\{i \in \{1, ..., n\} \mid \lambda_i < 0\}.$
- (b) Ist $\underline{v} = (v_1, ..., v_n)$ eine Basis von $V, D := \begin{pmatrix} d_1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ d_n \end{pmatrix} \in \mathbb{R}^{n \times n}$ eine Diagonalmatrix und $P \in \mathbb{R}^{n \times n}$ invertierbar mit $M(q, \underline{v}) = P^T D P$ oder $M(q, \underline{v}) = P^{-1} D P$, so gilt
 - $r = \#\{i \in \{1, ..., n\} \mid d_i > 0\}$ und
 - $s = \#\{i \in \{1, ..., n\} \mid d_i < 0\}.$
- (c) Sind $l_1,...,l_m\in V^*$ linear unabhängig und $\lambda_1,...,\lambda_n\in\mathbb{R}$ mit $\forall v\in V:q(v)=\sum_{i=1}^m\lambda_il_i^2(v),$ so gilt
 - $r = \#\{i \in \{1, ..., n\} \mid \lambda_i > 0\}$ und

• $s = \#\{i \in \{1, ..., n\} \mid \lambda_i < 0\}.$

Beweis. Wir zeigen zunächst den Fall $M(q, \underline{v}) = P^T D P$ von (b), dann (a), dann den Fall $M(q, \underline{v}) = P^{-1} D P$ von (b) und schließlich (c).

(b) Fall $M(q, \underline{v}) = P^T D P$.

Schritt 1. Œ gelte $P = I_n$.

Begründung. Setze $w_i := \text{vec}_{\underline{v}}(P^{-1}e_i)$ für alle $i \in \{1, ..., n\}$. Dann ist $\underline{w} = \overline{(w_1, ..., w_n)}$ eine Basis von $V \to ??, ??]$ und es gilt $P^{-1} = M(\underline{w}, \underline{v})$ und somit

$$M(q, \underline{w}) \stackrel{??}{=} M(\underline{w}, \underline{v})^T M(q, \underline{w}) M(\underline{w}, \underline{v})$$

$$= (P^{-1})^T P^T D P P^{-1}) (P P^{-1})^T D (P P^{-1})$$

$$\begin{array}{c} 1 \\ \ddots \\ & 1 \\ -1 \\ & \ddots \\ & & 1 \end{array}$$

$$\begin{array}{c} 1 \\ \ddots \\ & & 1 \\ -1 \\ & & \ddots \\ & & & 1 \end{array}$$

Begründung. Vertauschen der Basiselemente und Skalieren änder de Anzahl der positiven bzw. negativen Diagonaleinträge von $M(q, \underline{v})$ nicht.

- (a) Da M(q,v) eine reelle symmetrische Matrix ist, gibt es nach ?? eine orthogonale Matrix $P \in \mathbb{R}^{n \times n}$ und einer Diagonalmatrix $D = \begin{pmatrix} d_1 & 0 \\ 0 & d_n \end{pmatrix} \in \mathbb{R}^{n \times n}$ mit $M(q,\underline{v}) = P^T D P = P^{-1} D P$. Da $M(q,\underline{v})$ und D ähnlich sind, haben sie dasselbe charakteristische Polynom $[\to ??]$, das heißt $\prod_{i=1}^n (X \lambda_i) = \prod_{i=1}^n (X d_i)$. Dann gibt es nach ?? eine Permutation $\sigma \in S_n$ mit $(\lambda_1,...\lambda_n) = (d_{\sigma(1)},...d_{\sigma(n)})$, weshalb in der Behauptung die λ_i durch die d_i ersetzt werden können. Wegen $M(q,\underline{v}) = P^T D P$ folgt dann die Behauptung nach dem bereits bewiesenen Teil von (b).
- (c) Ergänze $l_1, ..., l_m$ zu einer Basis $l_1, ... l_m, l_{m+1}, ..., l_n$ von V^* und setze $\lambda_{m+1} = \overline{...} = \lambda_n = 0$. Wähle eine Basis $\underline{v} = (v_1, ..., v_n)$ von V. Nach ?? ist dann $P := (l_i(v_j))_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$ invertierbar und mit $D := \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix} \in \mathbb{R}^{n \times n}$ gilt $M(q, \underline{v}) = P^T D P$. Nun folgt die Behauptung aus (b).

Definition 0.1.3. Sei $n \in \mathbb{N}_0$ und $A \in \mathbb{SR}^{n \times n}$. Dann definiert man die Sylvester-Signatur der von A als die Sylvester-Signatur der zu A gehörigen quadratischen Form $q_A : \mathbb{R}^n \to \mathbb{R}, x \mapsto x^T A x$.

Bemerkung 0.1.4. Sei V ein \mathbb{R} -Vektorraum mit Basis $\underline{v} = (v_1, ..., v_n)$ und $q \in \mathbb{Q}(V)$. Dann stimmen die Sylvester-Signaturen von q und $M(q,\underline{v})$ natürlich überein, denn setzt man $A := M(q,\underline{v})$, so gilt $M(q_A,\underline{e}) = A = M(q,\underline{v})$ und es liefert zum Beispiel (a) des obigen Satzes das Gewünschte.

Korollar 0.1.5. Sei $n \in \mathbb{N}_0$ und $A \in \mathbb{SR}^{n \times n}$ mit Sylvester-Signatur (r, s).

- (a) Gilt $\chi_A = (-1)^n \prod_{i=1}^n (X \lambda_i)$ mit $\lambda_1, ... \lambda_n \in \mathbb{R}$, so gilt
 - $r = \#\{i \in \{1, ..., n\} \mid \lambda_i > 0\}$ und
 - $s = \#\{i \in \{1, ..., n\} \mid \lambda_i < 0\}.$
- (b) $D:=\begin{pmatrix} d_1 \\ 0 \\ \vdots \\ d_n \end{pmatrix} \in \mathbb{R}^{n\times n}$ eine Diagonalmatrix und $P\in \mathbb{R}^{n\times n}$ invertierbar mit $M(q_A,\underline{v})=P^TDP$ oder $M(q_A,\underline{v})=P^{-1}DP$, so gilt
 - $r = \#\{i \in \{1, ..., n\} \mid d_i > 0\}$ und
 - $s = \#\{i \in \{1, ..., n\} \mid d_i < 0\}.$
- (c) Sind $l_1,...l_m \in (\mathbb{R}^n)^*$ linear unabhängig und $\lambda_1,...,\lambda_n \in \mathbb{R}$ mit $\forall x \in \mathbb{R}^n : x^T A x = \sum_{i=1}^m \lambda_i l_i^2(v)$, so gilt
 - $r = \#\{i \in \{1, ..., n\} \mid \lambda_i > 0\}$ und
 - $s = \#\{i \in \{1, ..., n\} \mid \lambda_i < 0\}.$

0.2 Positiv semidefinite Matrizen

Definition 0.2.1. Sei V ein \mathbb{R} -Vektorraum. Mann nennt $q \in \mathrm{Q}(V)$ $\left\{ \begin{array}{l} \mathrm{positiv} \\ \mathrm{negativ} \end{array} \right\}$ semidefinit (auch: $\left\{ \begin{array}{l} \mathrm{psd} \\ \mathrm{nsd} \end{array} \right\}$), wenn $\forall v \in V : q(v) \left\{ \begin{array}{l} \geq \\ \leq \end{array} \right\}$ 0. Gilt zusätzlich $\forall v \in V : (q(v) = 0)$ 0 $\implies v = 0$), so nennt man $q \in \left\{ \begin{array}{l} \mathrm{positiv} \\ \mathrm{negativ} \end{array} \right\}$ definit (auch: $\left\{ \begin{array}{l} \mathrm{pd} \\ \mathrm{nd} \end{array} \right\}$). Man nenn $b \in \mathrm{SBil}(V)$ psd/nsd/pd/ng, wenn b symmetrisch und q_b psd/nsd/pd/nd ist.

Beispiel 0.2.2. Ein Skalarprodukt auf einem reellen Vektorraum ist per Definition nichts anderes als eine pd Bilinearform $[\rightarrow ??]$.

Definition 0.2.3. Sei $n \in \mathbb{N}_0$ und $A \in \mathbb{R}^{n \times n}$. Es heißt A psd/nsd/pd/nd, wenn die zu gehörige Bilinearform $b_A : \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \to \mathbb{R}$, $(x, y) \mapsto x^T Ay \ [\to ??(a)] \ \text{psd/nsd/pd/nd}$ ist

Bemerkung 0.2.4. Sei $n \in \mathbb{N}_0$ und $A \in \mathbb{R}^{n \times n}$. Dann ist A psd/nsd/pd/nd genau dann, wenn A symmetrisch ist $[\to ???,??]$ und wenn $q_A : \mathbb{R}^n \to \mathbb{R}, x \mapsto x^T Ax \text{ psd/nsd/pd/nd}$ ist.

Bemerkung 0.2.5. Sei V ein \mathbb{R} -Vektorraum mit Basis $\underline{v} = (v_1, ..., v_n)$ und $q \in \mathbb{Q}(V)$. Dann ist $q \operatorname{psd} / \operatorname{nsd} / \operatorname{pd} / \operatorname{nd} \iff M(q, \underline{v}) \operatorname{psd} / \operatorname{nsd} / \operatorname{pd} / \operatorname{nd}$.

Bemerkung 0.2.6. Für reelle quadratische Formen q gilt natürlich q nsd \iff -q psd und q nd \iff -q pd. Analoges gilt für reelle Bilinearformen und Matizen. Daher betrachten wir im Folgenden nur noch die Begriffe psd/pd.

Satz 0.2.7. Sei V ein \mathbb{R} -Vektorraum mit $n = \dim V < \infty$ und $q \in \mathbb{Q}(V)$. Dann sind äquivalent:

- (a) q ist psd.
- (b) Die Sylvester-Signatur ist (r,0) for ein $r \in \mathbb{N}_0$,
- (c) $\exists l_1, ..., l_n \in V^* : \forall v \in V : q(v) = \sum_{i=1}^n l_i^2(v)$.
- (d) $\exists m \in \mathbb{N}_0 : \exists l_1, ..., l_m \in V^* : \forall v \in V : q(v) = \sum_{i=1}^m l_i^2(v).$

Beweis. (a) \implies (b). Dies folgt direkt aus der Definition der Sylvester-Signatur 0.1.1.

- $(b) \implies (c)$. Dies folgt ebenfalls aus der Definition der Sylvester-Signatur mit Lemma ??.
- $(c) \implies (d) \implies (a)$. Diese sind trivial.

Definition 0.2.8. $[\to ???]$ Sei $A \in \mathbb{SR}$. Unter einer Cholesky-Zerlegung [André Louis Cholesky *1875 †1918] von A verstehen wir ein Paar (P, D) von Matrizen $P, D \in \mathbb{R}^{n \times n}$ mit $A = P^T D P$, wobei P von oberere Dreiecksgestalt ist mit lauter Einsen auf der Diagonale und D von Diagonalgestalt ohne negative Einträge.

Definition 0.2.9. Sei K ein kommutativer Ring, $n \in \mathbb{N}_0$ und $A \in K^{n \times n}$. Für jedes $I \subseteq \{1, ..., n\}$ bezeichne $A_I \in K^{(\#I) \times (\#I)}$ die Matrix, die aus A durch Streichen aller Zeichen i und Spalten j mit $i, j \notin I$ entsteht. Wir bezeichnen die Determinanten der n Matrizen $A_{\{1\}}, A_{\{1,2\}}, A_{\{1,2,3\}}, ..., A_{\{1,...,n\}}$ als die Leithauptminoren (auch: führende Hauptminoren) von A und die Determinanten der 2^n-1 Matrizen A_I ($\emptyset \neq I \subseteq \{1,...,n\}$) als die Hauptminoren von A. [Vorsicht: manche deutschsprachige Autoren bezeichnen nur die Leithauptminoren als Hauptminoren und haben keine Bezeichnung für unsere Hauptminoren].

Beispiel 0.2.10. Die Leithauptminoren von $A := \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ sind 1,0,0 und ihre

Hauptminoren sind die Diagonaleinträge 1, 1, -1, die Determinante det $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 0$, det $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = -1$, det $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = -1$ und det(A) = 0.

Satz 0.2.11. Es gelte der Fundamentalsatz der Algebra. Sei $A \in \mathbb{SR}^{n \times n}$. Dann sind äquivalent:

- (a) A ist psd.
- (b) $\forall x \in \mathbb{R}^n : x^T A x \ge 0$.
- (c) Die Sylvester-Signatur von A ist (r,0) für ein $r \in \mathbb{N}_0$.
- (d) Alle Eigenwerte von $A \text{ sind } \geq 0$.
- (e) Alle Koeffizienten von $\det(A + XI_n) = \chi_A(-X) \in \mathbb{R}[X]$ sind ≥ 0 .
- (f) Alle Hauptminoren von $A \text{ sind } \geq 0$.
- (g) A besitzt eine Cholesky-Zerlegung.
- (h) Es gibt eine obere Dreiecksmatrix $[\to??]$ $B \in \mathbb{R}^{n \times n}$ mit $A = B^T B$.
- (i) $\exists B \in \mathbb{R}^{n \times n} : A = B^T B$.
- (j) $\exists m \in \mathbb{N}_0 : \exists B \in \mathbb{R}^{m \times n} : A = B^T B$.

(k)
$$\exists v_1, ..., v_n \in \mathbb{R}^n : A = \begin{pmatrix} \langle v_1, v_1 \rangle & ... & \langle v_1, v_n \rangle \\ \vdots & \ddots & \vdots \\ \langle v_n, v_1 \rangle & ... & \langle v_n, v_n \rangle \end{pmatrix}.$$

(1)
$$\exists m \in \mathbb{N}_0 : \exists v_1, ..., v_n \in \mathbb{R}^m : A = \begin{pmatrix} \langle v_1, v_1 \rangle & \dots & \langle v_1, v_n \rangle \\ \vdots & \ddots & \vdots \\ \langle v_n, v_1 \rangle & \dots & \langle v_n, v_n \rangle \end{pmatrix}.$$

- (m) $\exists v_1, ... v_n \in \mathbb{R}^n : A = \sum_{i=1}^n v_i v_i^T$.
- (n) $\exists m \in \mathbb{N}_0 : \exists v_1, ... v_m \in \mathbb{R}^n : A = \sum_{i=1}^m v_i v_i^T$.

Beweis. $(a) \iff (b)$ ist trivial, da A symmetrisch ist.

 $\underline{(b) \Longleftrightarrow (c)}$ ist klar nach Definition 0.1.1 der Sylvester-Signatur.

 $(c) \iff (d) \text{ folgt aus } 0.1.2(a).$

$(d) \Longleftrightarrow (e)$

- " \Longrightarrow " Sind $\lambda_1, ..., \lambda_n \in \mathbb{R}$ die Eigenwerte von A gezählt mit algebraischer Vielfachheit $[\to ??,??]$, so gilt $\chi_A = \prod_{i=1}^n (\lambda_i X)$ und daher $\chi_A = \prod_{i=1}^n (\lambda_i + X)$. Die Koeffizienten von $\chi_A(-X)$ sind daher Summen von Produkten der λ_i .
- " \Leftarrow " Gelte (e). Sei $\lambda \in \mathbb{R}$ ein Eigenwert von A. Dann $\det(A \lambda I_n) = \chi_A(\lambda) = 0$. Setzt man also $-\lambda$ anstelle von X in das Polynom $0 \neq \det(A + XI_n)$ ein, so erhält man 0. Hat dieses Polynom nur nichtnegativen Koeffizienten, so folgt $-\lambda \leq 0$.

$(e) \Longleftrightarrow (f)$

- " \Longrightarrow " Gelte (e). Sei $\emptyset \neq I \subseteq \{1,...,n\}$. Zu zeigen ist $\det(A_I) \geq 0$. Wegen (b) \iff (e) gilt auch (b). Insbesondere $\forall x \in \mathbb{R}^{\#I} : x^T A_I x \geq 0$. Wieder wegen (b) \iff (e) hat $\det(A_I + X I_{\#I}) \in \mathbb{R}[X]$ keine negativen Koeffizienten. Insbesondere ist der konstante Koeffizient $\det(A_I)$ dieses Polynoms ≥ 0 .
- " \Leftarrow " Schreibt man $\det(A+XI_n)=X^n+a_{n-1}X^{n-1}+...+a_0$ mit $a_0,...,a_{n-1}\in K$, so sieht man mit scharfem Auge direkt an der Definition einer Determinante ??, dass $a_i=\sum_{\substack{I\subseteq\{1,...,n\}\\\#(\{1,...,n\}\setminus I)=i}}\det(A_I)$ für $i\in\{0,...,n-1\}$.
- $\underline{(b)} \Longrightarrow \underline{(g)}$ folgt wie in Bemerkung ?? (c) angekündigt durch Inspektion des Beweises von Satz ??.

we less the state
$$T$$
:
$$\underbrace{(g) \implies (h)}_{} \text{. Ist } A = P^T D P \text{ mit } P = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{n \times n} \text{ und}$$

$$D = \begin{pmatrix} d_1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{n \times n} \text{ mit } d_i \ge 0, \text{ so ist } B := \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} P \in \mathbb{R}^{n \times n}$$

$$\text{und } A = B^T B.$$

- $(h) \implies (i) \implies (j)$ ist trivial.
- $\underline{(j)} \Longrightarrow \underline{(b)}$. Ist $A = B^T B$ mit $B \in \mathbb{R}^{m \times n}$, so gilt $x^T A X = x^T B^T B x = \overline{(Bx)^T B x} = \langle Bx, Bx \rangle \geq 0$ für alle $x \in \mathbb{R}^n$.

Es ist nun die Äquivalenz der Aussagen (a)-(j) gezeigt. Die Äquivalenzen $(i) \iff (k)$ und $(j) \iff (l)$ ergeben sich sofort, indem man die v_i als die Spalten

von
$$B$$
 auffasst, denn für $v_1, ..., v_n \in \mathbb{R}^m$ gilt $\begin{pmatrix} v_1^T \\ \vdots \\ v_n^T \end{pmatrix} \begin{pmatrix} v_1 ... v_n \end{pmatrix} = \begin{pmatrix} \langle v_1, v_1 \rangle & ... & \langle v_1, v_n \rangle \\ \vdots & \ddots & \vdots \\ \langle v_n, v_1 \rangle & ... & \langle v_n, v_n \rangle \end{pmatrix}$.

Die Äquivalenzen $\underline{(i) \iff (m)}$ und $\underline{(j) \iff (n)}$ ergeben sich, indem man die v_i^T als

die Zeilen von B auffasst, denn für $v_1, ..., v_m \in \mathbb{R}^n$ gilt

$$(v_{1} \dots v_{n}) \begin{pmatrix} v_{1}^{T} \\ \vdots \\ v_{n}^{T} \end{pmatrix} = \sum_{i=1}^{m} (0 \dots 0 \underset{i-\text{te Spalte}}{v_{i}} 0 \dots 0) \begin{pmatrix} v_{1}^{T} \\ \vdots \\ v_{n}^{T} \end{pmatrix}$$

$$= \sum_{i=1}^{m} (0 \dots 0 \underset{i-\text{te Spalte}}{v_{i}} 0 \dots 0) \begin{pmatrix} 0 \\ \vdots \\ 0 \\ v_{i}^{T} \leftarrow i\text{-te Zeile} = \sum_{i=1}^{m} v_{i} v_{i}^{T}.$$

$$\vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Satz 0.2.12. $[\to 0.2.7]$ Sei V ein endlichdimensionaler \mathbb{R} -Vektorraum, $n := \dim V$ und $q \in \mathbb{Q}(V)$. Es sind äquivalent:

- (a) q ist pd
- (b) Die Sylvester-Signatur von q ist (n, 0)
- (c) Es gibt eines Basis $l_1, ..., l_n$ von V^* mit $\forall v \in V : q(v) = \sum_{i=1}^n l_i^2(v)$

Beweis. $(a) \implies (b)$ folgt direkt aus der Definition der Sylvester-Signatur 0.1.1.

- $(b) \implies (c)$ folgt ebenfalls aus dieser Definition zusammen mit Lemma ??
- $\underline{(c)} \Longrightarrow \underline{(a)}$ Gelte $\underline{(c)}$ und sei $0 \neq v \in V$. Zu zeigen ist $\underline{q(v)} > 0$. Da die kanonische Auswertung $V \to V^{**}$ $[\to ??]$ injektiv ist, gibt es $l \in V^*$ mit $\underline{l(v)} \neq 0$. Wegen $\underline{l} \in \mathrm{span}(l_1,...,l_n)$ gibt es $\underline{i} \in \{1,...,n\}$ mit $\underline{l_i(v)} \neq 0$. Daraus folgt $\underline{q(v)} \geq l_i^2(v) > 0$.

Satz 0.2.13. Es gelte der Fundamentalsatz der Algebra. Sei $A \in \mathbb{SR}^{n \times n}$. Dann sind äquivalent:

- (a) A ist pd.
- (b) $\forall x \in \mathbb{R}^n : x^T A x > 0$.
- (c) Die Sylvester-Signatur von A ist (n,0) für ein $r \in \mathbb{N}_0$.
- (d) Alle Eigenwerte von $A \sin d > 0$.
- (e) Die Koeffizienten zu den Monomen $1, X, ..., X^{n-1}$ von $\det(A + XI_n) = \chi_A(-X) \in \mathbb{R}[X]$ sind > 0.
- (f) Alle Leithauptminoren von A sind > 0

- (g) Alle Hauptminoren von $A \sin d > 0$.
- (h) A besitzt eine Cholesky-Zerlegung (P,D) derart, dass alle Diagonaleinträge von D positiv sind.

Beweis. Die Äquivalent aller Aussagen mit Ausnahme von (f) zeigt man analog zum Beweis von Satz 0.2.11. Es ist $(g) \Longrightarrow (f)$ trivial. Wir zeigen schließlich $(f) \Longrightarrow (b)$ durch Induktion nach $n \in \mathbb{N}_0$.

 $\underline{n=0}$ Hier ist (b) die leer Aussage, da $\mathbb{R}^n=\mathbb{R}^0=\{0\}.$

 $\overline{n \to n} + 1 \ (n \in \mathbb{N}_0)$ Seien die Leithauptminoren der Matrix $A \in \mathbb{R}^{(n+1)\times(n+1)}$ po-

sitiv. Schreibt man
$$A = \begin{pmatrix} a_1 \\ B & \vdots \\ a_n \\ \hline a_1 \dots a_n & c \end{pmatrix}$$
 mit $B \in \mathbb{SR}^{n \times n}$ und $a_1, \dots, a_n, c \in \mathbb{R}$, so

 $x^T B x > 0$ für alle $x \in \mathbb{R}^n \setminus \{0\}$ (denn insbesondere sind alle Leithauptminoren von

$$B$$
 positiv). Wähle nun $0 \neq v \in \ker \left(\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array}\right)$. Wegen $\ker B = \{0\}$ kann nicht $v \in \mathbb{R}$

span $(e_1,...,e_n)$ gelten, wobei $\underline{e}=(e_1,...,e_{n+1})$ die Standardbasis des \mathbb{R}^{n+1} bezeichnet. Dann ist $\underline{v}:=(e_1,...,e_n,v)$ und es gilt $e_i^TAv=0$ f+r $i\in\{0,...,n\}$. Es folgt,

dass die Darstellungsmatrix
$$M(q_A, \underline{v})$$
 von der Form $M(q_A, \underline{v}) = \begin{pmatrix} & & 0 \\ & B & \vdots \\ & & 0 \\ \hline & 0 \dots 0 & d \end{pmatrix}$

mit $d\in\mathbb{R}$ ist. Wegen $A=M(q_A,\underline{e})\stackrel{\ref{eq:1}}{=} M(\underline{e},\underline{v})^T M(q_A,\underline{v}) M(\underline{e},\underline{v})$ gilt

$$0 < \det A^{??}_{??}(\det M(\underline{e},\underline{v}))^2 \det(M(q_A,\underline{v})) = \underbrace{\det M(\underline{e},\underline{v})}_{>0} \underbrace{(\det B)}_{>0} d$$

und daher d > 0. Nun gilt für alle $x \in \mathbb{R}^n$ und $y \in \mathbb{R}$, dass $\begin{pmatrix} x \\ y \end{pmatrix}^T M(q_A, \underline{v}) \begin{pmatrix} x \\ y \end{pmatrix} = x^T B x + dy^2 > 0$ falls $\begin{pmatrix} x \\ y \end{pmatrix} \neq 0$ und damit q_A positiv definit, das heißt A ist positiv definit.

Bemerkung 0.2.14. Wie man eine Cholesky-Zerlegung einer psd Matrix berechnet, ist aus dem Beweis von ?? wegen Bemerkung ??(c) klar. Ist die Matrix sogar positiv definit, so kann auch der dortige Fall 1 nicht auftreten. Da im dortigen Fall 2 die Wahl der Linearform l_1 zwingend (d.h. eindeutig) ist, sieht man mit Hilfe von ?? leicht, dass die Cholesky-Zerlegung einer pd eindeutig ist.

Die in ?? bewiesene Diagonalisierung quadratischer Formen über beliebigen Körper

mit $0 \neq 2$ kann über dem Körper der reellen Zahlen zu folgender in §11.3 in einer anderen Sprache formulierten Aussage verschärft werden (ßimultane Diagonalisierung").

Satz 0.2.15. Es gelte der Fundamentalsatz de Algebra. Sei V ein endlichdimensionaler \mathbb{R} -Vektorraum und $q_1, q_2 \in \mathrm{Q}(V)$. Ist q_1 pd oder nd, so gibt es eine geordnete Basis \underline{v} von V derart, dass $M(q_1,\underline{v})$ und $M(q_2,\underline{v})$ beide Diagonalgestalt haben.

Beweis. Œ sei q_1 pd. Es ist $b_{q_1} [\rightarrow ??]$ ein Skalarprodukt auf V vermöge dessen V zu einem Vektorraum mit Skalarprodukt wird $[\rightarrow ??]$. Wähle eine ONB \underline{w} von V $[\rightarrow ??,??]$. Wähle $f \in \operatorname{End}(V)$ mit $M(f,\underline{w}) = M(q_2,\underline{w})$ (nämlich $f : \operatorname{vec}_{\underline{w}} \circ f_{M(q_2,\underline{w})} \circ \operatorname{coord}_{\underline{v}}$). Da $M(f,\underline{w})$ symmetrisch (also selbstadjungiert $[\rightarrow ??]$) und \underline{w} eine ONB ist, ist f nach ?? selbstadjungiert. Nach Satz ?? gibt es eine ONB \underline{v} von V, die aus Eigenvektoren von f besteht. Dann ist $M(q_1,\underline{v}) = M(b_{q_1},\underline{v})$ die Einheitsmatrix (da \underline{v} eine ONB ist) und

$$M(q_{2}, \underline{v}) = (\underline{v}, \underline{w})^{T} M(q_{2}, \underline{w}) M(\underline{v}, \underline{w}) = (\underline{v}, \underline{w})^{T} M(f, \underline{w}) M(\underline{v}, \underline{w})$$

$$\stackrel{\underline{v}, \underline{w}}{=} \stackrel{\text{ONB}}{=} (\underline{v}, \underline{w})^{-1} M(f, \underline{w}) M(\underline{v}, \underline{w}) \stackrel{??}{=} M(\underline{w}, \underline{v}) M(f, \underline{w}) M(\underline{v}, \underline{w})$$

$$\stackrel{??}{=} M(f, \underline{v})$$

von Diagonalgestalt.