《离散数学》期末考试题(1)参考答案

- 一、1. 1,3,5,7,11,13,17,19.
 - 2. 平行.
 - 3. 010, 100, 101, 110, 111.
 - 4. 2.
 - 5. 3.
- \equiv , 1(B); 2(A); 3(D); 4(C); 5(A).
- \equiv , $1(\sqrt{})$; $2(\times)$; $3(\times)$; $4(\sqrt{})$; $5(\sqrt{})$.

四 、 (1) 证 任 意 $(x_1, y_1), (x_2, y_2) \in \mathbf{R} \times \mathbf{R}$,若 $f(x_1, y_1) = f(x_2, y_2)$, 则 $(x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2), \quad \text{进而 } x_1 + y_1 = x_2 + y_2 \perp x_1 - y_1 = x_2 - y_2, \quad \text{于是}$ $x_1 = x_2 \perp y_1 = y_2, \quad \text{从而 } f \neq \text{Lehh}.$

任意 $(p,q) \in \mathbf{R} \times \mathbf{R}$, 取 $\begin{cases} x = \frac{p+q}{2} \\ y = \frac{p-q}{2} \end{cases}$, 通过计算易知 f(x,y) = (p,q), 因此f是满射. 故

f是双射.

(2) **解** 由上面的证明知,
$$f$$
存在逆函数且 $f^{-1}(x,y) = \left(\frac{x+y}{2}, \frac{x-y}{2}\right)$.

又
$$(f^{-1} \circ f)(x,y) = f(\frac{x+y}{2}, \frac{x-y}{2}) = (x,y)$$
,即 $f^{-1} \circ f = I_{\mathbf{R} \times \mathbf{R}}$,而

$$(f \circ f)(x,y) = f(x+y,x+y) = ((x+y)+(x-y),(x+y)-(x-y)) = (2x,2y).$$

五、 \mathbf{R} R 的传递闭包 t(R)的关系图如下:

于是,有 $t(R) = \{(1,3), (3,1), (2,3), (4,3), (4,5), (6,5), (1,1), (3,3), (2,1), (4,1)\}.$ 六、解 首先写出命题公式 $A = (p \to (q \to r)) \leftrightarrow (r \to (q \to p))$ 的真值表如下:

p	q	r	$p \to (q \to r)$	$r \to (q \to p)$	A
1	1	1	1	1	1
1	1	0	0	1	0
1	0	1	1	1	1
1	0	0	1	1	1
0	1	1	1	0	0
0	1	0	1	1	1
0	0	1	1	1	1
0	0	0	1	1	1

从真值表可得命题公式 A 的主析取范式为:

$$A = (p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor$$

$$(\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r).$$

命题公式 A 的主合取范式为:

$$A = (p \vee \neg q \vee \neg r) \wedge (\neg p \vee \neg q \vee r).$$

七、证 对于任意 $x,y \in \mathbb{Z}_m$,显然 $x +_m y \in \mathbb{Z}_m$,即 \mathbb{Z}_m 关于 $+_m$ 运算封闭.

对于任意 $x, y, z \in \mathbb{Z}_m$, 由于

$$(x+y)+z=x+(y+z),$$

即 Z_m 关于 $+_m$ 是可结合的.

由于 $0 \in Z_m$ 且对于任意 $x \in Z_m$,有 $x +_m 0 = 0 +_m x = x$,因此,0 是 Z_m 关于 $+_m$ 的 幺元.

由于 $0 \in \mathbb{Z}_m$ 是幺元,所以其关于 $+_m$ 运算的逆元为 0. 对于任意 $0 \neq x \in \mathbb{Z}_m$,由于

$$m-x\in Z_m$$
 且 $x+_m(m-x)=(m-x)+_mx=0$,于是 $m-x$ 是 Z_m 关于 $+_m$ 的逆元.

故(Zm,+m)是群.

八、**解** 对于 2, 3, 5, 7, 8, 先组合两个最小的权 2+3=5, 得 5, 5, 7, 8; 在所得到的序列中再组合 5+5=10, 重新排列后为 7, 8, 10; 再组合 7+8=15, 得 10, 15; 最后组合 10+15=25.

所求的最优2叉树树如下:

