

Caging in Time:

A Framework for Robust Object Manipulation under Uncertainties and Limited Perception

Video

Gaotian Wang¹ gw23@rice.edu

Kejia Ren¹ kr43@rice.edu

Andrew S Morgan²

amorgan@theaiinstitute.com

Kaiyu Hang¹

kaiyu.hang@rice.edu

¹Department of Computer Science, Rice University, Houston, TX, 77005, USA ²The Al Institute, Cambridge, MA, 02142, USA

Insights

I. Ideally multiple robots are needed to fully cage an object; II. Only one robot is effectively needed at a time to ensure that the object doesn't escape from the cage; III. Strategically built cage is possible with only one robot in time.

Contributions

- paradigm for robust planning manipulation that can entirely remove the effect of perception uncertainties in an open-loop manner;
- Broadening the traditionally narrowly scoped caging-based manipulation to a more general manipulation framework enabled by strategic robot motions;
- A possibility to precisely manipulate objects without sensing feedback, for the first time, to support robust manipulation where perception is not reliable

Quasi-static Pushing

Geometry-based Cage Potential State Set (PSS)

PSS is propagated to predict all possible motions for strategical actions for caging.

PSS propagation theory framework is built upon **Tangent bundle theory**

Pixel-based **PSS** propagation

Experiment Setup

Cameras were only used for recording and visualizing trajectories

0.9

Dynamic Ball Manipulation

PSS can be defined with any state, and caged by any metrics

Pixel-based **PSS** propagation

Ball Catching

Why Caging in Time?

A line pusher can easily lose control of the object purely open-loop.

In-task Perturbations

Unknown objects are sequentially inserted with random positions inside the current PSS

Ball Balancing (1D)

Ball Catching (Human Toss)

x [m]

Fruits Balancing

Ball Balancing (2D)

With a suitable PSS propagation function, Caging in Time is also capable of robust manipulation for dynamic tasks in an open loop way

Why not Closed-loop?

Perception noise and network delay can significantly impair the performance of closed-loop methods.

Caging in Time Cage size: 20mm

128 CAs