Conformal Transformation

Conformal Transformation:

Consider the function of complex variable w = f(z),

which transforms set of points $z_0, z_1, z_2, ..., z_n$ from z-plane to the set of points $w_0, w_1, w_2, ..., w_n$ in the w-plane, by using relation w = f(z).

i.e.
$$w_0 = f(z_0)$$
, $w_1 = f(z_1)$, $w_2 = f(z_2)$, $w_n = f(z_n)$.

First, we examine the linkage between the analyticity of a complex function w = f(z) and the conformality of a mapping.

Definition:

A mapping is said to be conformal at a point if it preserves the angle of intersection between a pair of smooth arcs through that point. i.e. The angle between any two intersecting arcs in the *z*-plane is equal to the angle between the images of the arcs in the *w*-plane under a linear mapping.

#Refer: https://www.slideshare.net/mariolabestia/afirstcourseincomplexanalysis [Page No. 390, Chapter 7].

Theorem on Conformal Mapping:

If f(z) is an analytic function in a domain D containing z_0 , and if $f'(z_0) \neq 0$, then w = f(z) is a conformal mapping at z_0 .

- i.e. If w = f(z) is analytic function, then the translation w = f(z) is conformal at all points of the z-plane where $f'(z) \neq 0$.
- If $f'(z_0) = 0$ then the mapping w = f(z) will not be a Conformal Transformation, since the angle preservation property will not be satisfied for the curves intersecting at $z = z_0$.

Exercise:

Find all points where the mapping $f(z) = \sin z$ is conformal.

Theorem on Conformal Mapping:

Ex. Find all points where the mapping $f(z) = \sin z$ is conformal.

Solution: The function $f(z) = \sin z$ is analytic function, & we have $f'(z) = \cos z$.

we found that $\cos z = 0$ if and only if $z = \frac{(2n+1)\pi}{2}$, $n = 0, \pm 1, \pm 2, ...$, and so each of these points is a critical point of f(z).

Therefore, by Theorem on Conformal mapping,

 $w = \sin z$ is a conformal mapping at z for all $z = \frac{(2n+1)\pi}{2}$, $n = 0, \pm 1, \pm 2, ...$

Furthermore, $w = \sin z$ is not a conformal mapping at z

if
$$z = \frac{(2n+1)\pi}{2}$$
, $n = 0, \pm 1, \pm 2, \dots$

1. Translation:

Consider the transformation w = z + hwhere w = u + iv, z = x + iy, $h = h_1 + ih_2$ w = z + h $\Rightarrow u + iv = (x + iy) + (h_1 + ih_2)$ $\Rightarrow u + iv = (x + h_1) + i(y + h_2)$ $\Rightarrow u = x + h_1$ & $v = y + h_2$

Geometrically: For all points (x, y) in the z-plane will be translated in w-plane by preserving its original shape, size and orientation.

Under the transformation w = z + h rectangles or circles in z-plane will be mapped onto rectangles or circles in w-plane respectively.

2. Rotation & Magnification:

Consider the transformation w = czwhere $z = x + iy = re^{i\theta}$, $c = c_1 + ic_2 = ae^{i\alpha}$ where $|z| = r = \sqrt{x^2 + y^2} \& Amp(z) = \tan \theta = \frac{y}{x}$, $|c| = a = \sqrt{c_1^2 + c_2^2}$ & $Amp(c) = \tan \alpha = \frac{c_2}{c}$ $\Rightarrow |w| = |cz| = |c||z| = ar$ w = cz $\Rightarrow Amp(w) = Amp(cz) = \alpha + \theta$ $\Rightarrow Amp(w) = Amp(c) + Amp(z)$

Geometrically: For all points (x, y) in the z-plane will be translated in w-plane by magnifying its shape by amount a and rotation of z-plane through an angle α .

3. Inversion:

Consider the transformation
$$w = \frac{1}{z}$$

where $w = u + iv = \rho e^{i\phi}$, $z = x + iy = re^{i\theta}$
where $|z| = r = \sqrt{x^2 + y^2}$
& $Amp(z) = \tan \theta = \frac{y}{x}$
 $w = \frac{1}{z}$ $\Rightarrow \rho e^{i\phi} = \frac{1}{re^{i\theta}} = \frac{1}{r} e^{-i\theta}$
 $\Rightarrow \rho = \frac{1}{r}$ & $\phi = -\theta$

Geometrically: Let point $P(r, \theta)$ in the z-plane and P will be translated to point $Q(\frac{1}{r}, -\theta)$ in w-plane.

This transformation $w = \frac{1}{z}$ is an inversion of z with respect to the unit circle |z| = 1 and then the reflection of this inverse along X-axis (Real axis).

4. Bilinear Transformation:

Consider the linear transformation

$$w = \frac{az+b}{cz+d} \dots (1)$$

where a, b, c and d are complex numbers and $ad - bc \neq 0$

is called a bilinear transformation (or linear fractional transformation). It is so named because it takes the form of the ratio of two linear functions.

- Bilinear transformation is a combination of three basictrasformations:
 - i) Translation
 - ii) Magnification & Rotation
 - iii) Inversion
- Bilinear transformation maps Circle onto Circle.
- The cross ratio is constant.

Refer: https://www.slideshare.net/mariolabestia/afirstcourseincomplexanalysis [Page No. 400, Chapter 7].

Bilinear Transformation:

Suppose we have four coefficients in the bilinear transformation, but only three of them are independent. There exists a unique bilinear transformation that maps three distinct points z_1, z_2, z_3 in the z-plane onto three distinct points w_1, w_2, w_3 in the w-plane, we assume that the six points are all finite.

Since
$$z_j$$
 is mapped to w_j , where $j=1,2,3$, it follows that $w_j=\frac{az_j+b}{cz_i+d}$, $j=1,2,3$

From eq. (1),

and

$$w - w_j = \frac{(ad - bc)(z - z_j)}{(cz + d)(cz_j + d)}, \qquad j = 1, 2$$

$$w_3 - w_j = \frac{(ad - bc)(z_3 - z_j)}{(cz_3 + d)(cz_j + d)}, \qquad j = 1, 2$$

Bilinear Transformation:

we obtain the following formula for the required bilinear

transformation:

$$\frac{w - w_1}{w - w_2} / \frac{w_3 - w_1}{w_3 - w_2} = \frac{\frac{z - z_1}{z - z_2}}{\frac{z_3 - z_1}{z_3 - z_2}}$$

$$\Rightarrow \frac{(w-w_1)(w_3-w_2)}{(w-w_2)(w_3-w_1)} = \frac{(z-z_1)(z_3-z_2)}{(z-z_2)(z_3-z_1)} \dots \dots (2)$$

Here we substitute the values of z_1 , z_2 , z_3 and w_1 , w_2 , w_3 in eq.(2) To find the relation between w and z or vice-versa.

#Refer https://www.slideshare.net/JITENDRASUWASIYA/complex-analysis-by-cambridge (Page No. 377).

Bilinear Transformation:

What happens when some of these points are not finite?

For example, when $z_1 \to \infty$, the right-hand side of eq. (2) is then replaced by

$$\lim_{z_1 \to \infty} \frac{(z - z_1)(z_3 - z_2)}{(z - z_2)(z_3 - z_1)} = \frac{z_3 - z_2}{z - z_2}$$

This technique can be applied to other limiting cases, like $z_2 \to \infty$, $w_1 \to \infty$, etc., to find the corresponding reduced form of the bilinear transformation formula.

#Refer https://www.slideshare.net/JITENDRASUWASIYA/complex-analysis-by-cambridge (Page No. 377).

Find the bilinear transformation that carries the points -1, ∞ , i onto the points (a) i, 1, 1 + i; (b) ∞ , i, 1.

Solution:

Let
$$z_1 = -1, z_2 = \infty, z_3 = i$$

a) Let $w_1 = i, w_2 = 1, w_3 = 1 + i$
 \therefore from eq.(2) and as $z_2 \to \infty$, we get,

$$\frac{(w - w_1)(w_3 - w_2)}{(w - w_2)(w_3 - w_1)} = \lim_{\substack{z_2 \to \infty \\ z_2 \to \infty}} \frac{(z - z_1)(z_3 - z_2)}{(z - z_2)(z_3 - z_1)}$$

$$\Rightarrow \frac{(w - i)(1 + i - 1)}{(w - 1)(1 + i - i)} = \frac{(z - z_1)}{(z_3 - z_1)}$$

$$\Rightarrow \frac{(w - i)(i)}{(w - 1)(1)} = \frac{(z + 1)}{(1 + i)}$$

Rearranging the terms, we obtain $w = \frac{z+2+i}{z+2-i}$.

Find the bilinear transformation that carries the points -1, ∞ , i onto the points (a) i, 1, 1 + i; (b) ∞ , i, 1.

Solution:

Let
$$z_1 = -1$$
, $z_2 = \infty$, $z_3 = i$
b) Let $w_1 = \infty$, $w_2 = i$, $w_3 = 1$
 \therefore from eq.(2) and as $w_1 \to \infty \& z_2 \to \infty$, we get,

$$\lim_{w_1 \to \infty} \frac{(w - w_1)(w_3 - w_2)}{(w - w_2)(w_3 - w_1)} = \lim_{z_2 \to \infty} \frac{(z - z_1)(z_3 - z_2)}{(z - z_2)(z_3 - z_1)}$$

$$\Rightarrow \frac{(w_3 - w_2)}{(w - w_2)} = \frac{(z - z_1)}{(z_3 - z_1)}$$

$$\Rightarrow \frac{(1 - i)}{(w - i)} = \frac{(z + 1)}{(1 + i)}$$

Rearranging the terms, we obtain $w = \frac{iz+2+i}{z+1}$.

Find the map of the straight line y = x under the transformation

$$w=\frac{z-1}{z+1}$$

Solution:

Let
$$w = \frac{z-1}{z+1}$$
 $\Rightarrow zw + w = z - 1$
 $\Rightarrow z(w-1) = -1 - w = -(1+w)$
 $\Rightarrow z = -\frac{1+w}{w-1} = \frac{1+w}{1-w}$
 $\Rightarrow z = x + iy = \frac{1+w}{1-w} = \frac{(1+u)+iv}{(1-u)-iv}$
 $\Rightarrow z = x + iy = \frac{(1+u)+iv}{(1-u)-iv} \times \frac{(1-u)+iv}{(1-u)+iv}$
 $\Rightarrow x + iy = \frac{(1-u^2-v^2)+i[v(1-u)+v(1+u)]}{(1-u)^2+v^2}$

Find the map of the straight line y = x under the transformation

$$w=\frac{z-1}{z+1}$$

Solution:

$$\Rightarrow x + iy = \frac{(1 - u^2 - v^2) + i[v(1 - u) + v(1 + u)]}{(1 - u)^2 + v^2}$$
$$\Rightarrow x = \frac{(1 - u^2 - v^2)}{(1 - u)^2 + v^2}, \quad y = \frac{[v(1 - u) + v(1 + u)]}{(1 - u)^2 + v^2}$$

Hence map of y = x is

$$\Rightarrow x = \frac{(1 - u^2 - v^2)}{(1 - u)^2 + v^2} = \frac{[v(1 - u) + v(1 + u)]}{(1 - u)^2 + v^2} = y$$

$$\Rightarrow 1 - u^2 - v^2 = 2v$$

$$\Rightarrow u^2 + v^2 + 2v = 1 \Rightarrow u^2 + (v + 1)^2 = 2$$

Which is a circle in w-plane with centre (0, -1) and radius $=\sqrt{2}$.

Exercise:

- Ex.1) Find the bilinear transformation which sends the points 1, i, 1 i from z-plane into the points i, 0, -i of the w-plane.
- Ex.2) Find the bilinear transformation which sends the points -i, 0, 2 + i from z-plane into the points 0, -2i, 4 of the w-plane.
- Ex.3) Find the bilinear transformation which sends the points 1, 0, i from z-plane into the points ∞ , -2, $-\frac{1}{2}(1+i)$ of the w-plane.
- Ex.4) Show that under the transformation $w = z + \frac{4}{z}$, the circle |z| = 2 is mapped onto the straight line, but the circle |z| = 3 is mapped on to the ellipse.