SE328:Topology

Hyosang Kang¹

 1 Division of Mathematics School of Interdisciplinary Studies DGIST

Week 14

Definition

A retraction of X onto a subset $A \subset X$ is a continuous map $r: X \to A$ such that $r|_A$ is the identity map. If such map r exists, we say that A is a retract of X.

Lemma

If A is a retract of X, then the homomorphism of fundamental groups induced by inclusion $j:A\to X$ is injective.

Theorem

There is no retraction of \mathbf{B}^2 onto \mathbf{S}^2 .

Lemma

Let $h: \mathbf{S}^1 \to X$ be a continuous map. Then the followings are equivalent:

- 1. h is nulhomotopic.
- 2. h extends to a continuous map $h: \mathbf{B}^2 \to X$.
- 3. h_* is the trivial homomorphism of fundamental groups.

Corollary

The inclusion map $j: \mathbf{S}^1 \to \mathbf{R}^2 - \{0\}$ is not nulhomotopic. The identity map $i: \mathbf{S}^1 \to \mathbf{S}^1$ is not nulhomotopic.

Given a nonvanishing vector field on \mathbf{B}^2 , there exists a point of \mathbf{S}^1 where the vector field points directly inward and a point of \mathbf{S}^1 where it points directly outward.

Theorem (Brouwer fixed-point theorem)

If $f: \mathbf{B}^2 \to \mathbf{B}^2$ is continuous, then there exists a point $x \in \mathbf{B}^2$ such that f(x) = x.

Corollary

Let A be a 3×3 matrix of positive real numbers. Then A has a positive real eigenvalue.

There is an $\varepsilon > 0$ such that for every open covering \mathcal{A} of T by sets of diameter less than ε , some point of T belongs to at least three elements of \mathcal{A} .

Theorem

Any polynomial has at least one complex root.

Definition

A map $h: \mathbf{S}^n \to \mathbf{S}^m$ is said to be antipodal-preserving if h(-x) = -h(x) for all $x \in \mathbf{S}^n$.

Theorem

If $h: \mathbf{S}^1 \to \mathbf{S}^1$ is continuous and antipodal-preserving, then h is not nulhomotopic.

There is no continuous antipodal-preserving map $g: \mathbf{S}^2 \to \mathbf{S}^1$.

Theorem (Borsuk-Ulam)

Given a continuous map $f: \mathbf{S}^2 \to \mathbf{R}^2$, there is a point $x \in \mathbf{S}^2$ such that f(x) = f(-x).

Given two bounded polygonal regions in \mathbb{R}^2 , there exists a line in \mathbb{R}^2 that bisects each of them.