

BM40A1500 DATA STRUCTURES AND ALGORITHMS

GRAPHS 1

2024

WHY GRAPHS ARE IMPORTANT?

- Many problems can be formulated as graphs:
 - Finding shortest routes through road network
 - Computer network traffic routing
 - Electrical grids optimization
 - Matching and allocation (e.g., job tasks, restaurant tables)
 - Bipartite graph
 - Artificial intelligence in computer games
- Graph theory has been studied for decades resulting in a large number of algorithms.
 - * These can be used for a large pool of problems.

TERMINOLOGY

- Vertices (or nodes) and edges
- Weighted graph
 - Each edge has a weight or distance
- ❖Path and cycle
- Directed and undirected graph
- Acyclic graph and directed acyclic graph
- Complete graph
 - ❖ A graph containing all possible edges
- Clique
 - Subgraph that is complete
- Connected component

IMPLEMENTING GRAPH

Adjancency matrix

- A 2-dimensional array where each row and each column corresponds to a vertex in the graph.
- A given row and column in the matrix corresponds to an edge from the vertex corresponding to the row to the vertex corresponding to the column.

Adjancency list

- An (array-based) list to represent the vertices of the graph.
- Each vertex is in turn represented by a list of the vertices that are neighbors.


```
adj_matrix = [
    [0, 0, 7, 0, 9, 0],
    [0, 0, 0, 0, 0, 0],
    [0, 5, 0, 1, 0, 2],
    [6, 0, 0, 0, 0, 2],
    [0, 0, 0, 0, 0, 1],
    [0, 6, 0, 0, 0, 0]
# each pair = (neighbour, weight)
adj list = [
    [(2, 7), (4, 9)],
    [],
    [(1, 5), (3, 1), (5, 2)], \# 2
    [(0, 6), (5, 2)],
    [(5, 1)],
    [(1, 6)]
```


GRAPH TRAVERSALS

Depth-First Search

- * Follow one branch through the graph to its conclusion, then back up and follow another branch, and so on.
- Flag vertices as visited to avoid visiting the same vertex twice (graph might contain loops).
- Can be implemented recursively.
- Alternative approach is to use stack

```
procedure DFS(start)
    S.push(start)
    while S is not empty
    V = S.pop
    if not visited[V]
        print(V)
        visited[V] = True
    for all neighbours of V
        if not visited(neighbuor)
            S.push(neighbour)
```


GRAPH TRAVERSALS

- ❖Breadth-First Search
 - Examine all vertices connected to the start vertex before visiting vertices further away.
 - Flag vertices as visited to avoid visiting the same vertex twice.
 - ❖ An alternative approach is to use queue.

```
procedure BFS(start)
   Q.enqueue(start)
   while Q is not empty
    V = Q.dequeue
    if not visited[V]
        print(V)
        visited[V] = True
    for all neighbours of V
        if not visited(neighbour)
        Q.enqueue(neighbour)
```


SHORTEST-PATHS PROBLEM: DIJKSTRA ALGORITHM

- Single-source shortest paths
 - The shortest distances from the starting vertex to all other nodes.
- Dijkstra algorithm
 - 1. Process the vertices one by one.
 - For each vertex, go trough its neighbors and all update the distances to the starting vertex.
 - Is the distance via the current node shorter the shortest distance found earlier?
 - 3. Mark the current vertex as visited.
 - Once a vertex is marked as visited, its distance is no longer updated.
 - 4. Move to the unvisited vertex with the shortest distance from the starting vertex.
 - 5. Repeat the process until all vertices have been visited.

