Question 4

If x < y - 1 or x = y + 1, player Row wins.

if x > y+1 or x = y-1, player Col wins.

If x = y no one wins.

This encourages both Row and Col to pick small numbers, but they can't be too small.

When n = 2

Row

	1	2
1	0	-1
2	1	0

From these numbers, the optimal strategy is to always play 2, since you can't lose to the other player, either both people will lose, or you'll win.

When n = 3

Row

	1	2	3
1	0	-1	1
2	1	0	-1
3	-1	1	0

For n=3, there's no optimal single strategy. If you only play a single number, Col will win every time. If you only play two of the numbers, Col will win 2/3 the time. The smallest optimal strategy is to randomize equally between all three options.

When n > 3

Row

	1	2	3	4
1	0	-1	1	1
2	1	0	-1	1
3	-1	1	0	-1
4	-1	-1	1	0

Beyond, n = 3, there is no benefit to picking x>3 since it's heavily skewed in the favor of the other player. Thus, you want to randomize between 1-3 equally.