Índice

¿Qué son los actuadores?	2
Actuadores por tipo de movimiento	
- Actuadores lineales:	
- Actuadores rotativos:	3
Actuadores por fuente de alimentación	3
- Actuadores eléctricos:	3
- Actuadores mecánicos:	4
- Actuadores neumáticos:	4
- Actuadores hidráulicos:	5
- Actuadores magnéticos y térmicos:	5

¿Qué son los actuadores?

Un actuador es un dispositivo que recibe una entrada de energía y la convierte en movimiento o fuerza, y es un componente esencial en muchas tecnologías modernas y campos de la ingeniería. Desde la robótica hasta las energías renovables, los actuadores desempeñan un papel fundamental en el control y la automatización de diversos procesos y sistemas.

Los actuadores pueden clasificarse en función de su tipo de movimiento y por su fuente de energía con la cual realizan su movimiento.

Actuadores por tipo de movimiento.

- Actuadores lineales:

Los actuadores lineales mueven objetos a lo largo de una línea recta, se detienen a una distancia lineal fija y son conocidos por su alta repetibilidad y precisión de posicionamiento.

Estos actuadores se utilizan habitualmente en los sectores de la alimentación, la automoción y la manipulación de materiales, entre otros, para tareas de empuje, tracción, elevación y posicionamiento.

- Actuadores rotativos:

Los actuadores rotativos convierten la energía en movimiento giratorio a través de un eje para controlar la velocidad, la posición y la rotación de los equipos.

Los actuadores rotativos se utilizan en equipos médicos, radares y sistemas de monitorización, robótica, simuladores de vuelo, industria de semiconductores, fabricación de maquinaria especial y defensa.

Actuadores por fuente de alimentación.

- Actuadores eléctricos:

Utilizan energía eléctrica para generar movimiento. Suelen utilizarse en aplicaciones que requieren un control preciso, poco ruido y escaso mantenimiento. Los actuadores eléctricos se utilizan habitualmente en sistemas de automatización, dispositivos médicos y equipos de laboratorio.

ACTUADORES ELÉCTRICOS

- Actuadores mecánicos:

Los actuadores mecánicos utilizan mecanismos físicos como palancas, engranajes o levas para generar movimiento. Los actuadores mecánicos se utilizan habitualmente en aplicaciones en las que el bajo coste, el funcionamiento sencillo y la durabilidad son importantes. Algunos ejemplos son las máquinas de manivela, los sistemas de válvulas manuales y las cerraduras mecánicas.

- Actuadores neumáticos:

Utilizan aire comprimido para generar movimiento. Pueden utilizarse para diversas aplicaciones, como mover piezas de máquinas o controlar posiciones de válvulas. Suelen preferirse para aplicaciones que requieren una gran fuerza, tiempos de respuesta rápidos o entornos a prueba de explosiones.

- Actuadores hidráulicos:

Utilizan la presión de un fluido (diferente del aire) para generar movimiento. Suelen utilizarse para aplicaciones pesadas, como equipos de construcción, maquinaria de fabricación y robots industriales. Los actuadores hidráulicos ofrecen altos niveles de fuerza, durabilidad y fiabilidad.

Actuadores magnéticos y térmicos:

Son dos tipos de actuadores que utilizan cambios magnéticos y de temperatura para generar movimiento, respectivamente. Los actuadores magnéticos utilizan campos magnéticos para generar fuerza. Los actuadores térmicos utilizan la dilatación o contracción de los materiales en respuesta a los cambios de temperatura. Ambos actuadores se utilizan habitualmente en sistemas microelectromecánicos (MEMS) y otras aplicaciones miniaturizadas.

