	Teste de Matemática A							
	2023 / 2024							
Teste N.º 3								
Matemática A								
12.º Ano de Escolaridade								
Nome do aluno:	N.º: Turma: _							
Nome de didne.								
Utilize apenas caneta ou esferográfica de t	·							
	aquilo que pretende que não seja classificado.							
É permitido o uso de calculadora.								
Apresente apenas uma resposta para cada								
As cotações dos itens encontram-se no fina	ai do enunciado.							
Na resposta aos itens de escolha múltipla	, selecione a opção correta. Escreva na folha de							
respostas o número do item e a letra que i	dentifica a opção escolhida.							
Na resposta aos restantes itens, apresent	te todos os cálculos que tiver de efetuar e todas							
as justificações necessárias. Quando pa	ra um resultado não é pedida a aproximação,							

apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone:
$$\pi rg$$
 (r – raio da base; g – geratriz)

Área de uma superfície esférica:
$$4\pi r^2$$
 $(r - raio)$

Volume de uma pirâmide:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Volume de um cone:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Volume de uma esfera:
$$\frac{4}{3}\pi r^3$$
 $(r - raio)$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Progressão geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Trigonometria

$$sen(a + b) = sen a cos b + sen b cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \, e^{i\theta}} = \sqrt[n]{\rho} \, e^{i\frac{\theta + 2k\pi}{n}} \quad (k \, \in \, \{0,\dots,n-1\} \, \text{e} \, n \in \, \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1. Em janeiro de 2024 disputa-se, na Alemanha, o Campeonato Europeu de Andebol. Portugal conta com a sua oitava participação neste campeonato, e terceira participação consecutiva. Para o atual campeonato, foram convocados, pelo selecionador nacional, 18 atletas, 11 dos quais jogam em equipas portuguesas. Selecionam-se, ao acaso, quatro jogadores convocados. Indique a probabilidade de serem selecionados, no máximo, três atletas que jogam em equipas estrangeiras.

(A)
$$\frac{605}{612}$$

(B)
$$\frac{7}{612}$$

(C)
$$\frac{77}{612}$$

(D)
$$\frac{535}{612}$$

2. Seja Ω o espaço amostral associado a uma certa experiência aleatória, e sejam A e B dois acontecimentos ($A \subset \Omega$ e $B \subset \Omega$). Sabe-se que:

•
$$P(A \cap B) = P(\overline{A \cup B})$$

•
$$P(A) = 0.34$$

Determine o valor de P(B). Apresente o resultado na forma de dízima.

3. Numa determinada linha do triângulo de Pascal, sabe-se que a soma do sexto elemento com o simétrico do décimo primeiro elemento é igual a 0.

Escolhem-se, ao acaso, sucessivamente e sem reposição, três elementos desta linha.

Sabendo que a soma dos dois primeiros elementos escolhidos é 2, qual é a probabilidade de o produto dos três elementos escolhidos ser igual ao valor do nono elemento?

(A)
$$\frac{1}{7}$$

(B)
$$\frac{1}{8}$$

(C)
$$\frac{1}{16}$$

(D)
$$\frac{1}{18}$$

4. Considere uma função g, de domínio $\mathbb{R}\setminus\{-1\}$, cuja primeira derivada, g', de domínio $\mathbb{R}\setminus\{-1\}$, é dada por $g'(x) = \frac{3x^2 + 6x - 2}{x^2 + 2x + 1}$. Sabe-se que:

•
$$g(-2) = -1$$

•
$$a = \lim_{x \to -2} \frac{-3 - 3g(x)}{x^2 + x - 2}, a \in \mathbb{R}$$

Seja r a reta tangente ao gráfico da função g' no ponto de abcissa a.

Escreva a equação reduzida da reta r.

5. Seja f uma função par, de domínio $\mathbb{R}\setminus\{-4,4\}$, tal que:

•
$$\lim_{x \to -4^-} f(x) = -\infty$$

$$\bullet \quad \lim_{x \to -\infty} \left(f(x) + \frac{3}{2}x - 7 \right) = 0$$

Qual é o valor de $\lim_{x\to 4^+} \frac{x}{f(x)} - \lim_{x\to +\infty} \frac{4xf(x)-8f(x)}{x^2-2x}$?

(B)
$$-4$$

6. Considere a função g, de domínio $\left]-\infty, -\frac{1}{3}\right] \cup [0, \pi[$, definida por:

$$g(x) = \begin{cases} x - \sqrt{9x^2 + 3x} & x \le \frac{1}{3} \\ (2 - 2x)\operatorname{sen} x - (2 + 2x)\cos x & 0 \le x < \pi \end{cases}$$

Resolva os três itens seguintes sem recorrer à calculadora.

6.1. O gráfico de g admite uma assíntota oblíqua quando x tende para $-\infty$. Determine uma equação dessa assíntota.

6.2. Estude a função g quanto à monotonia e a existência os extremos relativos em $[0, \pi[$. Na sua resposta, apresente o(s) intervalo(s) de monotonia da função g em $[0, \pi[$.

6.3. Mostre, recorrendo ao teorema de Bolzano-Cauchy, que existe, pelo menos, um ponto do gráfico de g cuja ordenada é simétrica à abcissa, no intervalo $\left|\frac{\pi}{3}, \frac{3\pi}{4}\right|$.

7. Na figura estão representados, num referencial o.n. Oxy, a circunferência trigonométrica e o pentágono [OABDE].

Sabe-se que:

 o ponto F pertence ao segundo quadrante e à circunferência;

- o ponto F' é simétrico do ponto F em relação à origem do referencial;
- o segmento de reta [ED] é paralelo ao eixo Ox;
- o ponto E pertence ao semieixo negativo Oy e tem mesma ordenada do ponto F'.

Seja $A(\alpha)$ a expressão que dá a área do pentágono $[\mathit{OABDE}]$, em função de α .

7.1. Mostre que
$$A(\alpha) = \frac{4\operatorname{sen}(\alpha) + 3\operatorname{sen}(2\alpha)}{4}$$

7.2. Resolva este item sem recorrer à calculadora, exceto em eventuais cálculos numéricos.

Para uma certa posição do ponto A, sabe-se que $sen(\alpha) = \frac{2\sqrt{2}}{3}$.

Determine, para essa posição do ponto A, o valor exato da área do pentágono [OABDE].

8. Na figura está representada, num referencial o.n. Oxy, parte do gráfico de f", segunda derivada de uma função polinomial f, de domínio \mathbb{R} .

Os zeros de f'' são -2, -1 e 3.

Seja f' a primeira derivada de f.

Qual das afirmações seguintes é verdadeira?

(A) O gráfico de f tem a concavidade voltada para cima em $]-\infty,0].$

- **(B)** f' é decrescente em $]-\infty, -2]$.
- (C) f' é crescente em $[3, +\infty[$.
- **(D)** O gráfico de f tem a concavidade voltada para baixo em [-1,3].
- **9.** Qual é o valor de $\lim_{x \to -1} \frac{4 \operatorname{sen}^2(x+1) \cos^2(x+1)}{x^3 + 4x^2 + 5x + 2}$?
 - (A) $\frac{1}{4}$

(B) 4

(C) $\frac{1}{2}$

(D) 2

10. Seja f a função, de domínio \mathbb{R} , definida por $f(x) = \frac{4 \operatorname{sen}(x)}{2 - \cos(x)}$.

Seja P um ponto do gráfico da função f cuja abcissa pertence ao intervalo $\left[0,\frac{\pi}{2}\right]$.

Sabe-se que, ao adicionarmos 1 unidade à abcissa do ponto P, a sua ordenada passa para o dobro.

Utilizando as capacidades gráficas da sua calculadora, determine a abcissa do ponto P.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação;
- apresente a abcissa do ponto P, arredondada às centésimas.

FIM

COTAÇÕES

Item													
Cotação (em pontos)													
1.	2.	3.	4.	5.	6.1.	6.2.	6.3.	7.1.	7.2.	8.	9.	10.	Pontos
10	18	10	20	10	20	18	18	18	18	10	10	20	200