Introduction to Kahler Geometry

Manvendra Somvanshi May 10, 2023

Contents

1	Manifo	ls	2
	1.1	Basic Definitions	2
	1.2	angent Space	2

1 Manifolds

1.1 Basic Definitions

Definition 1.1 A topological manifold M of dimension n is a Hausdorff topological space with an open covering \mathcal{U} such that for all $U \in \mathcal{U}$ there exists a homeomorphism $\phi_U : U \to \tilde{U} \subset \mathbb{R}^n$.

Definition 1.2 The set $\{\phi_U \mid U \in \mathcal{U}\}$ as defined above is called an atlas. Each element of an atlas is called a chart.

Definition 1.3 A topological manifold M is said to be smooth if for any two $U,V\in \mathscr{U}$ with $U\cap V\neq \varnothing$ the map $\phi_{UV}:=\phi_U\circ\phi_V^{-1}:\phi_V(U\cap V)\to\phi_U(U\cap V)$ is a diffeomorphism. The atlas is said to be orientable if the Jacobian determinant of ϕ_{UV} is everywhere positive. An oriented manifold is a smooth manifold with an oriented atlas.

DEFINITION 1.4 Let M be a smooth manifold. A continuous function $f: M \to \mathbb{R}$ is said to be smooth if at every $x \in M$ there is some $U \in \mathcal{U}$ containing x such that

$$f_U = f \circ \phi_U^{-1}$$

is smooth.

The smoothness of a function is well defined since if f_U is smooth then f_V is also smooth where V is another open set containing x. This is becasue

$$f_V = f \circ \phi_V^{-1} = f \circ \phi_U^{-1} \circ \phi_U \circ \phi_V^{-1} = f_U \circ \phi_{UV}.$$

Definition 1.6 Let M,N be smooth manifolds with atlas $\{\phi_U\}_{U\in\mathscr{U}}$ and $\{\psi_V\}_{V\in\mathscr{V}}$. A continuous map $f:M\to N$ is said to be smooth if $\psi_V\circ f\circ\phi_U^{-1}$ is a smooth map in the usual sense for all $U\in\mathscr{U}$ and $V\in\mathscr{V}$. If the map is invertible and the inverse is smooth then it is called a diffeomorphism.

Definition 1.7 A local coordinate system around $x \in M$ is a diffeomorphism from an open neighborhood around x to an open set in \mathbb{R}^n .

Unless otherwise stated all manifolds will be assumed to be connected.

1.2 Tangent Space

DEFINITION 1.8 If $f: U \to \mathbb{R}^m$ is a smooth function on \mathbb{R}^n then its differential at any point $x \in U$ is a linear map $\mathrm{d} f_x : \mathbb{R}^n \to \mathbb{R}^m$ whose matrix in the standard basis is given by

$$\mathrm{d}f_x = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} \Big|_{x} & \frac{\partial f_1}{\partial x_2} \Big|_{x} & \cdots & \frac{\partial f_1}{\partial x_n} \Big|_{x} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} \Big|_{x} & \frac{\partial f_m}{\partial x_2} \Big|_{x} & \cdots & \frac{\partial f_m}{\partial x_n} \Big|_{x} \end{pmatrix}$$

PROPOSITION 1.9 (Chain Rule) Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$. The $f: U \to \mathbb{R}^n$ and $g: V \to \mathbb{R}^k$ be smooth maps. Then for every $x \in U \cap f^{-1}(V)$ we have

$$d(g \circ f)_x = dg_{f(x)} \circ df_x$$

proof by Rudin. Let y = f(x), $A = df_x$ and $B = dg_{f(x)}$. By definition of the derivative

$$u(h) = f(x+h) - f(x) - Ah$$

$$v(k) = g(y+k) - g(y) - Bk$$

where $|u(h)/h|, |v(k)/k| \to 0$ as $|h|, |k| \to 0$ respectively. Let k = f(x+h) - f(x), then

$$|k| = |u(h) + Ah| \le \left(\left|\frac{u(h)}{h}\right| + ||A||\right)|h|$$

where ||A|| is the operator norm. Substituting this we get

$$v(u(h) + Ah) = g(f(x+h)) - g(f(x)) - B(u(h) + Ah)$$

= $g \circ f(x+h) - g \circ f(x) - BAh - Bu(h)$

hence

$$\left| \frac{g \circ h(x+h) - g \circ f(x) - BAh}{h} \right| = \left| \frac{v(k) + Bu(h)}{h} \right|$$

$$\leq \left| \frac{v(k)}{h} \right| + \|B\| \left| \frac{u(h)}{h} \right|$$

$$= \left| \frac{v(k)}{k} \right| \left(\left| \frac{u(h)}{h} \right| + \|A\| \right) + \|B\| \left| \frac{u(h)}{h} \right|$$

$$\to 0, \text{ as } |h| \to 0$$

Thus the derivatie of $g \circ f$ is BA which was what we had to prove.

DEFINITION 1.10 Let $x \in M$ and define $\mathscr{I}_x = \{U \in \mathscr{U} \mid x \in U\}$. Let \sim_x be a relation on $\mathscr{I}_x \times \mathbb{R}^n$ defined as

$$(U, u) \sim_x (V, v) \iff u = (\mathrm{d}\phi_{UV})_{\phi_V(x)}(v)$$

Proposition 1.11 The relation \sim_x is an equivalence relation.

Proof. It is reflexive since

$$\phi_{UU} = \mathrm{id} \implies \mathrm{d}\phi_{UU} = I_n \implies (\mathrm{d}\phi_{UU})_{\phi_U(x)}u = I_nu = u.$$

Symmetry can be proved using the fact that $df_x^{-1} = (df_x)^{-1}$ (which follows from the chain rule), and transitivity also follows from the chain rule.

Consider the space $\mathscr{I}_x \times \mathbb{R}^n/\sim_x$. Consider any two elements [(U,u)] and [(V,v)]. Think of u,v as vectors in \mathbb{R}^n and $(\mathrm{d}\phi_{UV})_{\phi_V(x)}$ as an invertible linear transformation on \mathbb{R}^n . In a sense the equivalence relation defined above is saying that if the two vectors u,v are related by the change of basis generated by $(\mathrm{d}\phi_{UV})_{\phi_V(x)}$ then $(U,u)\sim_x (V,v)$. Given any [(V,v)] and a $U\in\mathscr{I}_x$ one can find a u', given by $u'=(\mathrm{d}\phi_{UV})_{\phi_V(x)}v$, such that [(V,v)]=[(U,u')]. This motivates a natural definition of addition on the space $\mathscr{I}_x\times\mathbb{R}^n/\sim_x$ in the following way:

$$[(U,u)] + [(V,v)] = [(U,u+u')],$$

where u' is as defined above. This addition is well defined since

$$\phi_{UW} = \phi_{UV} \circ \phi_{VW}$$
.

So if we have $(W, w) \in [(V, v)]$ then

$$(\mathrm{d}\phi_{WU})_{\phi_W(x)}w = (\mathrm{d}\phi_{UV})_{\phi_{VW}(\phi_W(x))}(\mathrm{d}\phi_{VW})_{\phi_W(x)}w$$
$$= (\mathrm{d}\phi_{UV})_{\phi_V(x)}v = u'.$$

Also the commutativity follows from the fact that

$$u + u' = (\mathrm{d}\phi_{UV})_{\phi_V(x)} \left((\mathrm{d}\phi_{VU})_{\phi_U(x)} u + v \right).$$

Associativity can also be similarly verified. Similarly in a natural fashion one can define scalar multiplication in the following way:

$$a[(U,u)] = [(U,au)], a \in \mathbb{R}.$$

Proposition 1.12 The space $\mathscr{I}_x \times \mathbb{R}^n / \sim_x$ is an n-dimensional vector space.

Proof. The vector space part should be clear from the above discussion. The zero vector is [(U,0)] (it's unique cause $(d\phi_{UV})_{\phi_V(x)}$ is a linear transformation). Consider any [(U,u)]. Then $u=\sum_{i=1}^n a_i e_i$, where e_i are the standard basis on \mathbb{R}^n . Thus it follows that

$$[(U,u)] = \sum_{i=1}^{n} a_i [(U,e_i)].$$

Thus the vectors $\{[(U,e_i)]\}$ span the vector space. This is a linearly independent set since

$$\sum_{i=1}^{n} a_i[(U, e_i)] = [(U, 0)]$$

$$\implies [(U, \sum_{i=1}^{n} a_i e_i)] = [(U, 0)]$$

$$\implies \sum_{i=1}^{n} a_i e_i) = 0 \implies a_i = 0 \ \forall i.$$

Thus $\mathscr{I}_x \times \mathbb{R}^n / \sim_x$ is an *n* dimensional vector space.

Notation 1.13 From here on represent the vector space $\mathscr{I}_x \times \mathbb{R}^n / \sim_x$ by $T_x M$ and the vectors as X, Y, \cdots . This space is called the tangent space and the vectors in the space are called tangent vectors at x.

PROPOSITION 1.14 Given any $X \in T_xM$ and $U \in \mathscr{I}_x$ then there is a unique u such that X = [(U, u)].

Proof. Suppose X = [(U, u)] = [(U, u')]. Hence

$$u' = (\mathrm{d}\phi_{UU})_{\phi_U(x)} u = I_n u = u.$$

Thus *u* is unique.

 \bigcirc We think of X as an abstract tangent vector at x and u as it's concrete representation in the chart ϕ_U .

DEFINITION 1.16 Define the tangent bundle as the disjoint union $TM = \bigsqcup_{x \in M} T_x M$. Later on we will see that the tangent bundle is a vector bundle, and moreover a smooth manifold of dimension 2n.