

(MATNA1902) Lineáris algebra

Dr. Facskó Gábor, PhD tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Ürfizikai és Ürtechnikai Ösztály, 1121. Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.ttl.ntp.hu.

2025. április 3.

Sajátérték, sajátvektor, sajátaltér I

- ▶ <u>Definíció:</u> Legyen V egy vektortér $\mathbb R$ felett. Legyen $\varphi:V\to V$ lineáris leképezés. Ha az $\mathbf a\in V$ nemnulla vektorra és $\lambda\in\mathbb R$ -re $\varphi(\mathbf a)=\lambda\mathbf a$ teljesül, akkor azt mondjuk, hogy $\mathbf a$ sajátvektora φ -nek és λ az $\mathbf a$ -hoz tartozó sajátértéke φ -nek.
- Definíció: Legyen $L_{\lambda} = \{ \mathbf{a} \in V : \varphi(\mathbf{a}) = \lambda \mathbf{a} \}$ a λ-hoz tartozó sajátvektorok és a nullvektor halmaza. A L_{λ} alteret alkot, ezért a λ-hoz tartozó sajátaltérnek nevezzük.
- ▶ <u>Definíció:</u> (A sajátértékek meghatározása) Az $A \in \mathcal{M}_{n \times n}$ -e mátrix karakterisztikus polinomja alatt az

f(x) =
$$|A - xE_n|$$
 =
$$\begin{vmatrix} a_{11} - x & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - x & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - x \end{vmatrix}$$

n-edfokú polinomot értjük.

Sajátérték, sajátvektor, sajátaltér II

- Definíció: Legyen φ az \mathbb{R}^n -en ható lineáris transzformáció és legyen $A \in \mathcal{M}_{n \times n}$ a φ mátrixa a kanonikus bázisra vonatkozóan. Ekkor φ karakterisztikus polinomja alatt az A mátrix karakterisztikus polinomját értjük.
- Definíció: A $\lambda \in \mathbb{R}$ számot a φ lineáris transzformáció karakterisztikus gyökének nevezzük, ha λ gyöke a φ karakterisztikus polinomjának.
- ullet Tétel: A λ pontosan akkor sajátértéke arphi-nek, ha karakterisztikus gyöke arphi-nek.
- Állítás: (A sajátvektorok alterei). Ha az **A** mátrixnak λ egy sajátértéke, akkor a λ -hoz tartozó sajátvektorok a nullvektorral együtt alteret alkotnak, mely megegyezik **A** λ **I** nullterével.
- Definíció: (Sajátaltér). A négyzetes **A** mátrix λ sajátértékhez tartozó sajátvektorai és a nullvektor által alkotott alteret a λ sajátértékhez tartozó sajátaltérnek nevezzük.

Vége

Köszönöm a figyelmüket!