Centro Federal de Educação Tecnológica de Minas Gerais Departamento de Computação BACHAREL EM ENGENHARIA DE COMPUTAÇÃO

Laboratório de Controle Digital de Sistemas Dinâmicos

Controle da Orientação de Um Satélite Espacial

Aluno: Jônatas R. Tonholo

Professor: Tales Argolo Jesus

Belo Horizonte

julho de 2015

Sumário

1 Resumo	3
2 Resultados	3
Satélite Espacial	3
Modelos Matemáticos do sistema	4
Taxa de Amostragem	4
Função de Transferência Pulsada	5
Critério de Routh-Hurwitz	6
Lugar das Raízes	7
Projeto Controlador Kp	8
Para T = 0.11 seg	8
Para T = 0.222 seg	9
Projeto Controladores Dead-Beat, Dahlin e Por Alocação de Polos	10
Dead-Beat	10
Para T = 0.11 seg	10
Para T = 0.222 seg	11
Controlador Dahlin	12
Para T = 0.11 seg	12
Para T = 0.222 seg	13
Controlador Por Alocação de Polos	14
Para T = 0.11 seg	14
Para T = 0.222 seg	15
Representação em Espaço de Estados	16
Referências	16

1 Resumo

A partir da função de transferência de um Satélite Espacial, obtida em *R. C. Dorf and R. H. Bishop. Sistemas de Controle Modernos, pg 226, Exercício PP5.4*, obteve-se a equação diferencial que modela o problema e suas respectivas variáveis de estados. Foi definida uma taxa de amostragem a fim de implementar estratégias de controle digital e para encontrar a função de transferência pulsada.

Foram feitas análises de estabilidade através do lugar das raízes e por meio do critério de Routh-Hurwitz. A partir daí, foram projetados os controladores Proporcional com erro em estado estacionário menor ou igual a 5% para tempo de amostragem de 10% da constante de tempo do sistema em malha aberta, um Proporcional com erro de 6% para tempo de amostragem de 20% da constante de tempo do sistema em malha aberta. Com estes dois tempos de amostragem em mãos, foram elaborados os controladores Dead-Beat, Dahlin e por alocação de polos, e os resultados foram comparados através de gráficos.

2 Resultados

Satélite Espacial

A *figura 1* apresenta o SLIT de segunda ordem escolhido como objeto de estudo neste trabalho.

Figura 1 - Satélite Espacial

Esta imagem foi obtida em *R. C. Dorf and R. H. Bishop. Sistemas de Controle Modernos, pg 226, Exercício PP5.4,* exercício que propões o seguinte sistema de controle para reajustar a orientação do satélite, conforme mostra a *figura 2*

Figura 2 - Controle de um satélite Espacial

Modelos Matemáticos do sistema

O controlador sugerido pelo livro, representado por $G_c(s)$ (*equação i*) foi ignorado e em seu lugar foram introduzidos os controladores propostos neste trabalho.

$$G(s) = \frac{10}{(s+1)(s+9)} \quad (i)$$

A partir da **equação i** obteve-se **equação ii** que é a função de transferência expandida do sistema

$$G(s) = \frac{Y(s)}{T(s)} = \frac{10}{s^2 + 10s + 9}$$
 (ii)

Multiplicando cruzado e aplicando Laplace inversa, obteve-se a *equação iii* que é a equação diferencial que modela o problema de posição do satélite espacial

$$\ddot{y}(t) + 10\dot{y}(t) + 9y(t) = 10\tau(t)$$
 (iii)

Identificamos que a **saída do sistema é o ângulo de posição** e a **entrada do sistema é um determinado torque aplicado no satélite**. Deste modo, alteramos a **equação iii** para **equação iv** apenas para condizer com as variáveis de entrada e saída.

$$\ddot{\theta}(t) + 10\dot{\theta}(t) + 9\theta(t) = 10\tau(t) \quad (iv)$$

Taxa de Amostragem

A resposta ao degrau do sistema em malha aberta é apresentada pela figura 3.

Figura 3- Resposta de G(s) à um degrau unitário

A constante de tempo τ é obtida através da análise da *figura 3*, onde a amplitude máxima é de 1.2, e o sistema leva aproximadamente 1,1 segundo para atingir 63% desta amplitude.

Através da análise da *equação i*, pode-se observar que o polo mais lento (s_1 =-1) nos dá uma constante de tempo de 1 segundo, o que condiz com o comportamento do gráfico da *figura 3*.

Portanto, a constante de tempo adotada está representada pela equação v

$$\tau = 1.1 seg (v)$$

Assumindo este valor, obteve-se duas taxas de amostragens, uma considerando 10% de τ e outra 20%.

$$T_{10\%\tau} = ,11 seg (vi)$$

$$T_{20\%\tau} = ,222 \, seg \, (vii)$$

Função de Transferência Pulsada

A *figura 4* apresenta o sistema pulsado, onde G(z) é obtida utilizando uma taxa de amostragem T, definida nas *equações vi e vii* e é dada pela *equaçõo viii*

Figura 4 - Sistema pulsado em malha aberta em S e sua representação em Z

$$G(z) = G_{zoh}(z)G_n(z)$$
 (viii)

Utilizando o Matlab, chegamos às *equações ix e x* que representam G(z) para $T_{10\%\tau}$ e $T_{20\%\tau}$

$$G_{\mathrm{T}_{10\%\tau}}(z) = \frac{(z+0.6944)}{(z-0.8958)(z-0.3716)} \quad (ix)$$

$$G_{\text{T}_{20\%\tau}}(z) = \frac{(z+0.4845)}{(z-0.8009)(z-0.1356)} (x)$$

As *figuras 5 e 6* apresentam a resposta ao degrau das duas funções de transferência, respectivamente

Figura 5 - Resposta de $G_{T=10\%}(z)$ ao degrau unitário

Figura 6 - Resposta de $G_{T=20\%}(z)$ ao degrau unitário

Analisando-se os dois gráficos, observa-se que o gráfico da *figura 5* é mais rico em informações, pois possui maior amostragem, o que era de se esperar.

Critério de Routh-Hurwitz

Aplicando a Transformação de Tustin nas *equações ix e x* chegamos nas equações *xi e xii*

$$G_{\mathrm{T}_{10\%\tau}}(w) = \frac{-0.005045w^2 - 0.4168w + 9.247}{w^2 + 9.329w + 8.322} \quad (xi)$$

$$G_{\text{T}_{20\%\tau}}(w) = \frac{-0.03246w^2 - 0.5498w + 7.588}{w^2 + 7.853w + 6.829} \quad (xii)$$

Aplicando o critério de Routh-Hurwitz em *xi e xii* obtemos os dois quadros representados pelas *figuras 7 e 8* , respectivamente:

W^2	1	8.322
W^1	9.329	0
\mathbf{w}^0	8.322	

Figura 7 - critério de Routh-Hurwitz para T = 0.11 seg

w ²	1	6.829
w ¹	7.853	0
\mathbf{w}^0	6.829	

Figura 8 - critério de Routh-Hurwitz para T = 0.222 seg

Em ambos os casos observou-se que não houve troca de sinal na coluna 1, portanto o sistema só possui polos com parte real negativa em S e significa que possui polos dentro do raio unitário em Z, i.e., estável.

A equação xiii nos dá condições de encontrar a região de estabilidade

$$T(w) = \frac{k_p G(w)}{1 + k_p G(w)} \quad (xiii)$$

O que interessa é que o denominador seja positivo. Com isso, obtivemos as regiões de estabilidade para as duas taxas de amostragem, representadas pelas *equações xiv e xv*

$$Estabilidade_{T=0.11} \rightarrow 0 < K_p < 22.2824 \ (xiv)$$

$$Estabilidade_{T=0.222} \rightarrow 0 < K_p < 14.2834 \, (xv)$$

Lugar das Raízes

Utilizando a ferramenta *rlocus* do Matlab®, comprovou-se os dados obtidos utilizando o critério RH através do lugar das raízes de ambos os sistemas. As *figuras 9 e 10* apresentam o lugar das raízes para os dois tempos de amostragem.

Figura 9 - Lugar das Raízes para T = 0.11 seg

Figura 10 - Lugar das Raízes para T = 0.222 seg

Em ambos os casos, foram apresentados polos dentro do círculo de raio unitário, i.e., estabilidade, o que confirma os resultados obtidos utilizando o critério RH. Além disto, pode-se comprovar a região de estabilidade, local onde o Lugar das Raízes intercepta o círculo de raio unitário.

Projeto Controlador Kp

Neste trabalho, foi proposto que se projetasse um controlador Proporcional que leve o erro de posição em estado estacionário a ser menor que 5%, se possível. Foram analisadas para as duas taxas de amostragens. A *equação xvi* nos permite calcular o erro de posição em estado estacionário

$$e_{ss} = \lim_{z \to 1} \frac{z}{1 + K_n G(z)} = 0.05$$
 (xvi)

Para T = 0.11 seg

Através da *equação xvi* obteve-se um Kp = 17.2133, que está dentro da faixa de estabilidade apresentada pela *equação xiv*. Portanto, é possível projetar um controlador Kp que satisfaça os requisitos. A *equação xvii* nos dá a função de transferência de malha fechada do sistema controlado por Kp em questão.

$$G_{mf}(z) = \frac{z + 0.6944}{(z - 0.2643 + j0.8810)(z - 0.2643 - j0.8810)} \quad (xvii)$$

A *figura 11* nos dá os gráficos da referência, da saída, do erro e do sinal de controle

Figura 11 - gráficos da referência, da saída, do erro e do sinal de controle

Como era de se esperar, este Kp gerou par de polos complexos conjugados, que resultou na oscilação, e o sistema obteve um erro em estado estacionário de 5%, como previsto.

Para T = 0.222 seg

Através da *equação xvi* obteve-se um Kp = 17.1171, que está fora da faixa de estabilidade apresentada pela *equação xv*. Portanto, não é possível projetar um controlador Kp que satisfaça os requisitos. Entretanto, pode-se utilizar um Kp = 14,2, que nos dará um erro de 5,96%, que é o erro mínimo para este sistema. A *equação xviii* nos dá a função de transferência de malha fechada do sistema controlado por Kp em questão.

$$G_{mf}(z) = \frac{z - 0.4845}{(z + 0.4462 + j0.8920)(z + 0.4462 - j0.8920)} \quad (xviii)$$

A figura 12 nos dá os gráficos da referência, da saída, do erro e do sinal de controle

Figura 12 - gráficos da referência, da saída, do erro e do sinal de controle

Como era de se esperar, este Kp gerou par de polos complexos conjugados, que resultou na oscilação, e o sistema obteve um erro em estado estacionário de 5.96%, como previsto.

Projeto Controladores Dead-Beat, Dahlin e Por Alocação de Polos Dead-Beat

A equação xix nos dá o controlador Dead-Beat.

$$D(z) = \frac{1}{G(z)} \frac{z^{-k}}{1 - z^{-k}}, k \ge 1 \quad (xix)$$

Como o sistema não possui tempo morto, k=1.

Para T = 0.11 seg

Através da *equação xix* chegamos ao valor do controlador D(z), apresentado pela *equação xx:*

$$D(z) = \frac{23.296(z - 0.8958)(z - 0.3716)}{(z + 0.6944)(z - 1)} \quad (xx)$$

A *equação xxi* nos dá a função de transferência de Malha fechada com o controlador D(z):

$$M(z) = \frac{1}{z} \quad (xxi)$$

A figura 13 nos dá os gráficos da referência, da saída, do erro e do sinal de controle

Figura 13 - gráficos da referência, da saída, do erro e do sinal de controle

Para T = 0.222 seg

Através da *equação xix* chegamos ao valor do controlador D(z), apresentado pela *equação xxii*:

$$D(z) = \frac{7.7693(z - 0.8009)(z - 0.1356)}{(z + 0.4845)(z - 1)} \quad (xxii)$$

A $\it equação~xxii~$ nos dá a função de transferência de Malha fechada com o controlador D(z):

$$M(z) = \frac{(z - 0.8009)(z - 0.4845)(z + 0.1356)}{z(z - 0.1356)(z - 0.4845)(z + 0.8009)}$$
 (xxiii)

A figura 14 nos dá os gráficos da referência, da saída, do erro e do sinal de controle

Figura 14 - gráficos da referência, da saída, do erro e do sinal de controle

Controlador Dahlin

A equação xxiv nos dá o controlador Dahlin.

$$D(z) = \frac{1}{G(z)} \frac{1 - e^{-\frac{T}{\tau_d}}}{(1 - e^{-\frac{T}{\tau_d}})z^{-k}} z^{-k}, k \ge 1 \quad (xxiv)$$

Como o sistema não possui tempo morto, k=1. Escolheu-se \u03c4=0,1111.

Para T = 0.11 seg

Através da *equação xxiv* chegamos ao valor do controlador D(z), apresentado pela *equação* xxv:

$$D(z) = \frac{14.64(z - 0.8958)(z - 0.3716)}{(z + 0.6944)(z - 1)} \quad (xxv)$$

A *equação xxv* nos dá a função de transferência de Malha fechada com o controlador D(z):

$$M(z) = \frac{0.62846}{(z - 0.3715)} \quad (xxv)$$

A figura 15 nos dá os gráficos da referência, da saída, do erro e do sinal de controle

Figura 15 - gráficos da referência, da saída, do erro e do sinal de controle

Para T = 0.222 seg

Através da *equação xxiv* chegamos ao valor do controlador D(z), apresentado pela *equação xxvi:*

$$D(z) = \frac{6.7113(z - 0.8009)(z - 0.1356)}{(z + 0.4845)(z - 1)} \quad (xxvi)$$

A $\it equação~xxvii~$ nos dá a função de transferência de Malha fechada com o controlador D(z):

$$M(z) = \frac{0.86442}{(z - 0.1356)} \quad (xxvii)$$

A figura 16 nos dá os gráficos da referência, da saída, do erro e do sinal de controle

Figura 16 - gráficos da referência, da saída, do erro e do sinal de controle

Controlador Por Alocação de Polos

Para T = 0.11 seg

Visando melhorar a resposta do sistema em malha fechada, analisando os polos de G(z) apresentado na *equação ix*, projetou-se um controlador D(z) tal que anulasse os dois polos, e colocasse um polo integrador e um polo rápido. A *equação xxviii* nos dá o controlador:

$$D(z) = \frac{(z - 0.8958)(z - 0.3716)}{(z - 0.504)(z - 1)} \quad (xxviii)$$

A $\it equação~xxix~$ nos dá a função de transferência de Malha fechada com o controlador D(z):

$$M(z) = \frac{0.042926(z - 0.8958)(z - 0.3716)(z + 0.6944)}{(z - 0.3716)(z - 0.8957)(z^2 - 1.461z + 0.5338)} (xxix)$$

A *figura 17* nos dá os gráficos da referência, da saída, do erro e do sinal de controle

Figura 17 - gráficos da referência, da saída, do erro e do sinal de controle

Para T = 0.222 seg

Visando melhorar a resposta do sistema em malha fechada, analisando os polos de G(z) apresentado na *equação x*, projetou-se um controlador D(z) tal que anulasse os dois polos, e colocasse um polo integrador e um polo rápido. A *equação xxx* nos dá o controlador:

$$D(z) = \frac{(z - 0.8009)(z - 0.1356)}{(z - 0.504)(z - 1)} \quad (xxx)$$

A *equação xxxi* nos dá a função de transferência de Malha fechada com o controlador D(z):

$$M(z) = \frac{0.1288(z - 0.1356)(z - 0.4845)(z + 0.8009)}{(z - 0.1356)(z - 0.8009)(z^2 - 1.375z + 0.5664)}$$
(xxxi)

A figura 18 nos dá os gráficos da referência, da saída, do erro e do sinal de controle

Figura 18 - gráficos da referência, da saída, do erro e do sinal de controle

Representação em Espaço de Estados

$$\begin{aligned} \dot{\theta_1}_{\dot{\theta_2}} &= \begin{bmatrix} -10 & -9 \\ 1 & 0 \end{bmatrix} \frac{\theta_1}{\theta_2} + \frac{1}{0} r(t) \\ y(t) &= 0 \quad 10 \frac{\theta_1}{\theta_2} \end{aligned}$$

Referências

- [1] R. C. Dorf and R. H. Bishop. Sistemas de Controle Modernos. LTC Editora, Rio de Janeiro, 2001.
- [2] K. Ogata. Engenharia de Controle Moderno. Prentice Hall do Brasil, S.P., 1998.
- [3] Pedro Dinis Gaspar, António Espírito Santo, J. A. M. Felippe de Souza, APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox, Edição Abril 2002