Sequence to Sequence (seq2seq) & Attention

Ling 282/482: Deep Learning for Computational Linguistics

C.M. Downey

Fall 2025

seq2seq: Overview

• seq2seq: input a sequence and output a different sequence

- seq2seq: input a sequence and output a different sequence
- Many NLP tasks can be framed as sequence-to-sequence problems

- seq2seq: input a sequence and output a different sequence
- Many NLP tasks can be framed as sequence-to-sequence problems
 - Machine Translation: sequence of source language tokens to sequence of target language tokens

- seq2seq: input a sequence and output a different sequence
- Many NLP tasks can be framed as sequence-to-sequence problems
 - Machine Translation: sequence of source language tokens to sequence of target language tokens
 - Parsing: "Shane talks." → "(S (NP (N Shane)) (VP V talks))"

- seq2seq: input a sequence and output a different sequence
- Many NLP tasks can be framed as sequence-to-sequence problems
 - Machine Translation: sequence of source language tokens to sequence of target language tokens
 - Parsing: "Shane talks." → "(S (NP (N Shane)) (VP V talks))"
 - Semantic as well as syntactic

- seq2seq: input a sequence and output a different sequence
- Many NLP tasks can be framed as sequence-to-sequence problems
 - Machine Translation: sequence of source language tokens to sequence of target language tokens
 - Parsing: "Shane talks." → "(S (NP (N Shane)) (VP V talks))"
 - Semantic as well as syntactic
 - Summarization and Question Answering

- seq2seq: input a sequence and output a different sequence
- Many NLP tasks can be framed as sequence-to-sequence problems
 - Machine Translation: sequence of source language tokens to sequence of target language tokens
 - Parsing: "Shane talks." → "(S (NP (N Shane)) (VP V talks))"
 - Semantic as well as syntactic
 - Summarization and Question Answering
- Not the same as tagging, which assigns a label to each position in a given sequence

Seq2seq vs Tagging

many to many

many to many

Initial hidden state of decoder =

A B C <EOS> W X Y Z <EOS> W X Y Z

encoder decoder

- Two components
 - Encoder
 - Input sequence —> vector representation ("context" vector)
 - Decoder
 - Vector ("context" vector) —> Output sequence

- Two components
 - Encoder
 - Input sequence —> vector representation ("context" vector)
 - Decoder
 - Vector ("context" vector) —> Output sequence
- High-level "API"
 - Encoder/decoder can be different architectures (LSTM, GRU, Transformer, convolutional, ...)

Training an encoder-decoder RNN

Inference / Generation

$$P(y | x) = \prod_{i=1}^{|y|} P(y_i | x, y_{< i})$$

Effectively, a seq2seq model is a
 Conditional Language Model

$$P(y | x) = \prod_{i=1}^{|y|} P(y_i | x, y_{< i})$$

- Effectively, a seq2seq model is a
 Conditional Language Model
- LMs like we have seen, but conditioned on the input

$$P(y | x) = \prod_{i=1}^{|y|} P(y_i | x, y_{< i})$$

- Effectively, a seq2seq model is a
 Conditional Language Model
- LMs like we have seen, but conditioned on the input
- LMs were already conditioned on the output sequence prefix

$$P(y | x) = \prod_{i=1}^{|y|} P(y_i | x, y_{< i})$$

- Effectively, a seq2seq model is a
 Conditional Language Model
- LMs like we have seen, but conditioned on the input
- LMs were already conditioned on the output sequence prefix
- Each step of the output is conditioned on the whole of the input

$$P(y \mid x) = \prod_{i=1}^{|y|} P(y_i \mid x, y_{< i})$$

Source

la verdad, cuya madre es la historia, émula del tiempo, depósito de las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

Reference

truth, whose mother is history, rival of time, storehouse of deeds, witness for the past, example and counsel for the present, and warning for the future.

Candidate 1

truth, whose mother is history, voice of time, deposit of actions, witness for the past, example and warning for the present, and warning for the future

Candidate 2

the truth, which mother is the history, émula of the time, deposition of the shares, witness of the past, example and notice of the present, warning of it for coming

• Ideal: human evaluation (fluency, adequacy, ranking)

Source

la verdad, cuya madre es la historia, émula del tiempo, depósito de las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

Reference

truth, whose mother is history, rival of time, storehouse of deeds, witness for the past, example and counsel for the present, and warning for the future.

Candidate 1

truth, whose mother is history, voice of time, deposit of actions, witness for the past, example and warning for the present, and warning for the future

Candidate 2

the truth, which mother is the history, émula of the time, deposition of the shares, witness of the past, example and notice of the present, warning of it for coming

- Ideal: human evaluation (fluency, adequacy, ranking)
- **BLEU** (BiLingual Evaluation Understudy): roughly, **n-gram overlap** between reference translations and machine translations

Source

la verdad, cuya madre es la historia, émula del tiempo, depósito de las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

Reference

truth, whose mother is history, rival of time, storehouse of deeds, witness for the past, example and counsel for the present, and warning for the future.

Candidate 1

truth, whose mother is history, voice of time, deposit of actions, witness for the past, example and warning for the present, and warning for the future

Candidate 2

the truth, which mother is the history, émula of the time, deposition of the shares, witness of the past, example and notice of the present, warning of it for coming

- Ideal: human evaluation (fluency, adequacy, ranking)
- **BLEU** (BiLingual Evaluation Understudy): roughly, **n-gram overlap** between reference translations and machine translations
 - Con: penalizes synonymous translations

Source

la verdad, cuya madre es la historia, émula del tiempo, depósito de las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

Reference

truth, whose mother is history, rival of time, storehouse of deeds, witness for the past, example and counsel for the present, and warning for the future.

Candidate 1

truth, whose mother is history, voice of time, deposit of actions, witness for the past, example and warning for the present, and warning for the future

Candidate 2

the truth, which mother is the history, émula of the time, deposition of the shares, witness of the past, example and notice of the present, warning of it for coming

- Ideal: human evaluation (fluency, adequacy, ranking)
- **BLEU** (BiLingual Evaluation Understudy): roughly, **n-gram overlap** between reference translations and machine translations
 - Con: penalizes synonymous translations
 - METEOR, BERTScore attempt to alleviate

Source

la verdad, cuya madre es la historia, émula del tiempo, depósito de las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

Reference

truth, whose mother is history, rival of time, storehouse of deeds, witness for the past, example and counsel for the present, and warning for the future.

Candidate 1

truth, whose mother is history, voice of time, deposit of actions, witness for the past, example and warning for the present, and warning for the future

Candidate 2

the truth, which mother is the history, émula of the time, deposition of the shares, witness of the past, example and notice of the present, warning of it for coming

- Ideal: human evaluation (fluency, adequacy, ranking)
- **BLEU** (BiLingual Evaluation Understudy): roughly, **n-gram overlap** between reference translations and machine translations
 - Con: penalizes synonymous translations
 - METEOR, BERTScore attempt to alleviate
 - Low correlation with human ratings

Source

la verdad, cuya madre es la historia, émula del tiempo, depósito de las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

Reference

truth, whose mother is history, rival of time, storehouse of deeds, witness for the past, example and counsel for the present, and warning for the future.

Candidate 1

truth, whose mother is history, voice of time, deposit of actions, witness for the past, example and warning for the present, and warning for the future

Candidate 2

the truth, which mother is the history, émula of the time, deposition of the shares, witness of the past, example and notice of the present, warning of it for coming

- Ideal: human evaluation (fluency, adequacy, ranking)
- BLEU (BiLingual Evaluation Understudy): roughly, n-gram overlap between reference translations and machine translations
 - Con: penalizes synonymous translations
 - METEOR, BERTScore attempt to alleviate
 - Low correlation with human ratings
- chrF++

Source

la verdad, cuya madre es la historia, émula del tiempo, depósito de las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

Reference

truth, whose mother is history, rival of time, storehouse of deeds, witness for the past, example and counsel for the present, and warning for the future.

Candidate 1

truth, whose mother is history, voice of time, deposit of actions, witness for the past, example and warning for the present, and warning for the future

Candidate 2

the truth, which mother is the history, émula of the time, deposition of the shares, witness of the past, example and notice of the present, warning of it for coming

- Ideal: human evaluation (fluency, adequacy, ranking)
- **BLEU** (BiLingual Evaluation Understudy): roughly, **n-gram overlap** between reference translations and machine translations
 - Con: penalizes synonymous translations
 - METEOR, BERTScore attempt to alleviate
 - Low correlation with human ratings
- chrF++
 - Refinement of character-level n-gram F1 score

Source

la verdad, cuya madre es la historia, émula del tiempo, depósito de las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

Reference

truth, whose mother is history, rival of time, storehouse of deeds, witness for the past, example and counsel for the present, and warning for the future.

Candidate 1

truth, whose mother is history, voice of time, deposit of actions, witness for the past, example and warning for the present, and warning for the future

Candidate 2

the truth, which mother is the history, émula of the time, deposition of the shares, witness of the past, example and notice of the present, warning of it for coming

- Ideal: human evaluation (fluency, adequacy, ranking)
- **BLEU** (BiLingual Evaluation Understudy): roughly, **n-gram overlap** between reference translations and machine translations
 - Con: penalizes synonymous translations
 - METEOR, BERTScore attempt to alleviate
 - Low correlation with human ratings
- <u>chrF++</u>
 - Refinement of character-level n-gram F1 score
 - Seems to have better correlations

Source

la verdad, cuya madre es la historia, émula del tiempo, depósito de las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

Reference

truth, whose mother is history, rival of time, storehouse of deeds, witness for the past, example and counsel for the present, and warning for the future.

Candidate 1

truth, whose mother is history, voice of time, deposit of actions, witness for the past, example and warning for the present, and warning for the future

Candidate 2

the truth, which mother is the history, émula of the time, deposition of the shares, witness of the past, example and notice of the present, warning of it for coming

- Ideal: human evaluation (fluency, adequacy, ranking)
- **BLEU** (BiLingual Evaluation Understudy): roughly, **n-gram overlap** between reference translations and machine translations
 - Con: penalizes synonymous translations
 - METEOR, BERTScore attempt to alleviate
 - Low correlation with human ratings
- <u>chrF++</u>
 - Refinement of character-level n-gram F1 score
 - Seems to have better correlations
- In general: still no perfect solution

Source

la verdad, cuya madre es la historia, émula del tiempo, depósito de las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, advertencia de lo por venir.

Reference

truth, whose mother is history, rival of time, storehouse of deeds, witness for the past, example and counsel for the present, and warning for the future.

Candidate 1

truth, whose mother is history, voice of time, deposit of actions, witness for the past, example and warning for the present, and warning for the future

Candidate 2

the truth, which mother is the history, émula of the time, deposition of the shares, witness of the past, example and notice of the present, warning of it for coming

Outstanding Issues in MT

- Evaluation: automated metrics are all flawed
 - "Tangled Up in BLEU"
- Low-resource / unsupervised MT
 - Can we build good translation models in the absence of huge amounts of parallel text?
 - Common technique: backtranslation
 - http://www.statmt.org/wmt20/unsup_and_very_low_res/
 - http://turing.iimas.unam.mx/americasnlp/st.html
 - https://www.aclweb.org/anthology/2020.acl-main.560/

Sequence Alignment

Statistical Machine Translation (90s-2010s)

Statistical Machine Translation (90s-2010s)

Goal: find best translation y (e.g. English) of source sentence x (e.g. French)

$$\underset{y}{\operatorname{arg max}} P(y \mid x)$$

Statistical Machine Translation (90s-2010s)

Goal: find best translation y (e.g. English) of source sentence x (e.g. French)

$$\underset{y}{\operatorname{arg max}} P(y \mid x)$$

Use Bayes' Rule to decompose into two components:

$$\underset{y}{\operatorname{arg max}} P(x \mid y) P(y)$$

- Core translation model: P(xly)
- "Pure" Language Model P(y): produce good / fluent target language text (e.g. English)

Alignment

- Most SMT systems modeled alignment between sequences
 - Correspondence between words/phrases in source and target sentence
 - Useful since languages have very different word orders
- Add alignment as a latent variable:

$$P(x, a \mid y)$$

Ceci n' est pas une pipe

Ceci n' est pas une pipe

This is not a pipe

- Key features for determining alignment
 - Probability of word-pairs aligning (using a lexicon / bilingual dictionary)
 - Probability of a word aligning to a phrase (in general)

- Key features for determining alignment
 - Probability of word-pairs aligning (using a lexicon / bilingual dictionary)
 - Probability of a word aligning to a phrase (in general)
- Engineering hurdles:
 - Huge amounts of hand-crafted features
 - Reliance on human curated resources like dictionaries
 - Most of the above are language-pair-specific, have to be repeated

- Key features for determining alignment
 - Probability of word-pairs aligning (using a lexicon / bilingual dictionary)
 - Probability of a word aligning to a phrase (in general)
- Engineering hurdles:
 - Huge amounts of hand-crafted features
 - Reliance on human curated resources like dictionaries
 - Most of the above are language-pair-specific, have to be repeated
- MT was one of the first major success stories of neural methods in NLP:
 - End-to-end systems, "language-agnostic" models, equal/better performance

Attention

Mooney 2014: "You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#* vector!"

Decoder can only see info in this

Mooney 2014: "You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#* vector!"

W

A

B

C

encoder

Mooney 2014: "You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#* vector!"

decoder

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau

Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal

ABSTRACT

Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder—decoders and encode a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder—decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau

Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal

ABSTRACT

Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder–decoders and encode a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder–decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.

<u>source</u>

 \bullet A Query q pays attention to Values $\{v_k\}$ based on similarity with Keys $\{k_v\}$

- ullet A Query q pays attention to Values $\{v_k\}$ based on similarity with Keys $\{k_v\}$
- Dot-product attention:

$$\alpha_{j} = q \cdot k_{j}$$

$$e_{j} = e^{\alpha_{j}}/\sum_{j} e^{\alpha_{j}}$$

$$c = \sum_{j} e_{j} v_{j}$$

- ullet A Query q pays attention to Values $\{v_k\}$ based on similarity with Keys $\{k_v\}$
- Dot-product attention:

$$\alpha_{j} = q \cdot k_{j}$$

$$e_{j} = e^{\alpha_{j}}/\Sigma_{j}e^{\alpha_{j}}$$

$$c = \Sigma_{j}e_{j}v_{j}$$

 In the previous example: encoder hidden states played both the keys and the values roles

- Incredibly useful (for performance)
 - By "solving" the bottleneck issue

- Incredibly useful (for performance)
 - By "solving" the bottleneck issue
- Aids interpretability (maybe)

- Incredibly useful (for performance)
 - By "solving" the bottleneck issue
- Aids interpretability (maybe)

Badhanau et al 2014

- Incredibly useful (for performance)
 - By "solving" the bottleneck issue
- Aids interpretability (maybe)
- A general technique for combining representations, applications in:
 - NMT, parsing, image/video captioning, more

Badhanau et al 2014

- Incredibly useful (for performance)
 - By "solving" the bottleneck issue
- Aids interpretability (maybe)
- A general technique for combining representations, applications in:
 - NMT, parsing, image/video captioning, more

Vinyals et al 2015

- Incredibly useful (for performance)
 - By "solving" the bottleneck issue
- Aids interpretability (maybe)
- A general technique for combining representations, applications in:
 - NMT, parsing, image/video captioning, more
- Conceptually, let the model learn to align representations
 - "Soft" alignment, just like gates = "soft" masks

Vinyals et al 2015