APPENDIX D

Macro Instructions

Name	Actual Code	Space/Time
Absolute Value: abs Rd, Rs	addu Rd, \$0, Rs bgez Rs, 1 sub Rd, \$0, Rs	3/3
Branch if Equal to Zero: beqz Rs, Label	beq Rs, \$0, Label	1/1
Branch if Greater than or Equal: bge Rs, Rt, Label slt \$at, Rs, Rt 2/2 beq \$at, \$0, Label If Reg.File[Rs] $>=$ Reg.File[Rt] branch to Label Used to compare values represented in the two's complement number system.		
Branch if Greater than or begen Rs, Rt, Label If Reg.File[Rs] >= Reg.File Used to compare addresses (sltu \$at, Rs, Rt beq \$at, \$0, Label e[Rt] branch to Label	2/2
Branch if Greater Than: bgt Rs, Rt, Label If Reg.File[Rs] > Reg.File Used to compare values repr	slt \$at, Rt, Rs bne \$at, \$0, Label [Rt] branch to Label esented in the two's complem	2/2 ent number system.
Branch if Greater Than Unbgtu Rs, Rt, Label If Reg.File[Rs] > Reg.File Used to compare addresses (nsigned: sltu \$at, Rt, Rs bne \$at, \$0, Label [Rt] branch to Label	2/2
Branch if Less Than or Eq ble Rs, Rt, Label If Reg.File[Rs] <= Reg.Fil Used to compare values repr	slt \$at, Rt, Rs beq \$at, \$0, Label	2/2 ent number system.

Branch if Less Than or Equal Unsigned:

bleu Rs, Rt, Label sltu \$at, Rt, Rs 2/2

beq \$at, \$0, Label

If Reg.File[Rs] <= Reg.File[Rt] branch to Label Used to compare addresses (unsigned values).

Branch if Less Than:

blt Rs, Rt, Label slt \$at, Rs, Rt 2/2

bne \$at, \$0, Label

If Reg.File[Rs] < Reg.File[Rt] branch to Label

Used to compare values represented in the two's complement number system

Branch if Less Than Unsigned:

bltu Rs, Rt, Label sltu \$at, Rs, Rt 2/2

bne \$at, \$0, Label

If Reg.File[Rs] < Reg.File[Rt] branch to Label Used to compare addresses (unsigned values).

Branch if Not Equal to Zero:

bnez Rs, Label bne Rs, \$0, Label 1/1

Branch Unconditional

b Label bgez \$0, Label 1/1

Divide:

div Rd, Rs, Rt bne Rt, \$0, ok 4/41

break \$0

ok: div Rs, Rt

mflo Rd

Divide Unsigned:

divu Rd, Rs, Rt bne Rt, \$0, ok 4/41

break \$0

ok: divu Rs, Rt

mflo Rd

Load Address:

la Rd, Label lui \$at, Upper 16-bits of Label 2/2

ori Rd, \$at, Lower 16-bits of Label

Used to initialize pointers.

Load Immediate:

li Rd, value lui \$at, Upper 16-bits of value 2/2

ori Rd, \$at, Lower 16-bits of value

Initialize registers with negative constants and values greater than 32767.

Load Immediate:

li Rd, value ori Rt, \$0, value 1/1

Initialize registers with positive constants less than 32768.

Move:

move Rd, Rs addu Rd, \$0, Rs 1/1

mul Rd, Rs, Rt mult Rs, Rt 2/33

mflo Rd

Multiply (with overflow exception):

mulo Rd, Rs, Rt mult Rs, Rt 7/37

mfhi \$at mflo Rd

sra Rd, Rd, 31 beq \$at, Rd, ok break \$0

ok: mflo Rd

Multiply Unsigned (with overflow exception):

mulou Rd, Rs, Rt multu Rs, Rt 5/35

mfhi \$at

beq \$at, \$0, ok

ok: break \$0

mflo Rd

Negate:

neg Rd, Rs sub Rd, \$0, Rs 1/1

Two's complement negation. An exception is generated when there is an attempt to negate the most negative value: 2,147,483,648.

Negate Unsigned:

negu Rd, Rs subu Rd, \$0, Rs 1/1

Nop:

nop or \$0, \$0, \$0

Used to solve problems with hazards in the pipeline.

Not:

not Rd, Rs nor Rd, Rs, \$0

A bit-wise Boolean complement.

Remainder:

rem Rd, Rs, Rt bne Rt, \$0, 8 4/40

break \$0 div Rs, Rt mfhi Rd **Remainder Unsigned:** remu Rd, Rs, Rt bne Rt, \$0, ok 4/40 break \$0 ok: divu Rs, Rt mfhi Rd **Rotate Left Variable:** rol Rd, Rs, Rt subu \$at, \$0, Rt 4/4 srlv \$at, Rs, \$at sllv Rd, Rs, Rt or Rd, Rd, \$at The lower 5-bits in Rt specifys the shift amount. **Rotate Right Variable:** 4/4 ror Rd, Rs, Rt subu \$at, \$0, Rt sllv \$at, Rs, \$at srlv Rd, Rs, Rt or Rd, Rd, \$at **Rotate Left Constant:** srl \$at, Rs, 32-sa 3/3 rol Rd, Rs, sa sll Rd, Rs, sa or Rd, Rd, \$at **Rotate Right Constant:** ror Rd, Rs, sa sll \$at, Rs, 32-sa 3/3 srl Rd, Rs, sa or Rd, Rd, \$at **Set if Equal:** seg Rd, Rs, Rt 4/4 beg Rt, Rs, yes ori Rd, \$0, 0 beg \$0, \$0, skip yes: ori Rd, \$0, 1 skip: **Set if Greater Than or Equal:** 4/4 sge Rd, Rs, Rt bne Rt, Rs, yes ori Rd, \$0, 1 beg \$0, \$0, skip yes: slt Rd, Rt, Rs skip: Set if Greater Than or Equal Unsigned: Rd, Rs, Rt bne Rt, Rs, yes 4/4 sgeu ori Rd, \$0, 1 beg \$0, \$0, skip yes: sltu Rd, Rt, Rs

skip:

Set if Greater Than:		
sgt Rd, Rs, Rt	slt Rd, Rt, Rs	1/1
Set if Greater Than U	nsigned:	
sgtu Rd, Rs, Rt	sltu Rd, Rt, Rs	1/1
Set if Less Than or Eq	ual:	
sle Rd, Rs, Rt	bne Rt, Rs, yes	4/4
	ori Rd, \$0, 1	
	beq \$0, \$0, skip	
	yes: slt Rd, Rs, Rt	
	skip:	
Set if Less Than or Eq	-	
sleu Rd, Rs, Rt	bne Rt, Rs, yes	4/4
	ori Rd, \$0, 1	
	beq \$0, \$0, skip	
	yes: sltu Rd, Rs, Rt	
	skip:	
Set if Not Equal:	1 D. D	4/4
sne Rd, Rs, Rt	beq Rt, Rs, yes	4/4
	ori Rd, \$0, 1	
	beq \$0, \$0, skip	
	yes: ori Rd, \$0, 0	
II	skip:	
Unaligned Load Halfw		4/4
ulh Rd, 3(Rs)	lb Rd, 4(Rs)	4/4
	lbu \$at, 3(Rs)	
	sll Rd, Rd, 8	
	or Rd, Rd, \$at	
Unaligned Load Halfw	vord•	
ulhu Rd, 3(Rs)	lbu Rd, 4(Rs)	4/4
umu 1(u, o(1(s)	lbu \$at, 3(Rs)	•, •
	sll Rd, Rd, 8	
	or Rd, Rd, \$at	
	or rea, rea, par	
Unaligned Load Word	:	
ulw Rd, 3(Rs	lwl Rd, 6(Rs)	2/2
, (lwr Rd, 3(Rs)	
Unaligned Store Halfv		
ush Rd, 3(Rs)	sb Rd, 3(Rs)	3/3
, , ,	srl \$at, Rd, 8	
	sb \$at, 4(Rs)	
Unaligned Store Word		
usw Rd, 3(Rs)	swl Rd, 6(Rs)	2/2
• •	swr Rd, 3(Rs)	