Самостоятельная работа по геометрии и топологии Вариант 1

1 задача Составьте уравнение цилиндрической поверхности, образующие которой параллельны вектору $\vec{a}(1,2,0)$, а направляющая задана системой:

$$\alpha: \begin{cases} \frac{x^2}{25} + \frac{y^2}{4} + \frac{z^2}{9} = 1\\ x = 0 \end{cases}$$

Алгоритм 1) Пусть $M(x_0, y_0, z_0) \in \alpha$. Если она принадлежит α , то ее ур-ние удолетворяет системе

$$\begin{cases} \frac{x_0^2}{25} + \frac{y_0^2}{4} + \frac{z_0^2}{9} = 1\\ x_0 = 0 \end{cases} => M(0, y_0, z_0)$$

2) Так как это цилиндр, то образующая $1 \parallel \vec{a}, M \in l$. Напишем уравнение образующей.

$$\frac{x-0}{1} = \frac{y-y_0}{2} = \frac{z-z_0}{0}$$

$$\begin{cases} x = \frac{y - y_0}{2} \\ x = \frac{z - z_0}{0} \end{cases} = > \begin{cases} y_0 = y - 2x \\ z_0 = z \end{cases}$$

3) Подставим уравнение данной прямой в уравнение направляющей, получим ответ.

$$\frac{(y-2x)^2}{4} + \frac{z^2}{9} = 1$$

Ответ: $\frac{(y-2x)^2}{4} + \frac{z^2}{9} = 1$

№2. Напишите уравнения прямолинейных образующих однополосного гиперболоида: $100x^2 - 36y^2 + 225z^2 = 900$, проходящих через точку A(3; 2; 0.8).

Решение:

1) Пусть $\vec{l}(a,b,c)$ - направляющий вектор, прямолинейной образующей l, где

1

 $A \in l$

$$l: egin{cases} x = at+3 \ y = bt+2 \ z = ct+0.8 \end{cases}$$
 , Подставляем в уравнение из условия
$$100(at+3)^2 - 36(bt+2)^2 + 225(ct+0.8) - 900 = 0$$

Так как ур-ние должно выполнятся $\forall t$, то тогда должно выполнятся:

$$\begin{array}{ll} t^2| & 100a^2 - 36b^2 + 225c^2 = 0 \\ t^1| & 600at - 144b + 360c = 0 = > \begin{cases} 100a^2 - 36b^2 + 225c^2 = 0 \\ 600at - 144b + 360c = 0 \end{cases}$$

Для направ. вектора $\vec{l}(a,b,c)$ возьмем 2 варианта $\vec{l}(0,b,c)$, $\vec{l}(1,b,c)$ $\vec{l}(0,b,c)$:

$$\begin{cases}
-36b^2 + 225c^2 = 0 \\
-144b + 360c = 0
\end{cases} => b = \frac{360}{144}c = \frac{5}{2}c$$

$$-36 * \frac{25}{4}c^2 + 225c^2 = 0 => 0 * c^2 = 0 => c \in \mathbb{R}$$

При c = 0, b = 0, получается нулевой вектор, поэтому данный вектором будет $\vec{l1}(0,\frac{5}{2}c,c)c\in\mathbb{R}/0$

 $\vec{l}(1,b,c)$:

$$\begin{cases} 100-36b^2+225c^2=0\\ 600-144b+360c=0 \end{cases} => b = \frac{29}{12}, c = -\frac{7}{10} \text{ (Подсчитано на калькуляторе)}$$

$$\vec{l2}(1,\tfrac{29}{12},-\tfrac{7}{10})$$

2) Подставляем значения напр. векторов в 1:

$$l1: egin{cases} x=3 \ y=rac{5}{2}ct+2 \ z=ct+0.8 \end{cases}$$
 , где $c\in\mathbb{R}/0$, $l2: egin{cases} x=t+3 \ y=rac{29}{12}t+2 \ z=rac{-7}{10}t+0.8 \end{cases}$

Что и является ответом.

№3. Напишите уравнения прямолинейных образующих гиперболического параболоида:

$$\frac{y^2}{4} - \frac{z^2}{9} = 10x,$$

параллельных вектору $\vec{a}(2; 10; -15)$.

№4*. №9.905 (1).

905. Даны две точки $F_1,\,F_2,\,$ расстояние между которыми равно 2c>0 и число a>0. Найти фигуры:

1.
$$\Phi_1 = \{M | \rho(M, F_1) + \rho(M, F_2) = 2a, \quad a > c\};$$

2.
$$\Phi_2 = \{M | \rho(M, F_1) - \rho(M, F_2) = 2a, \quad a < c\}.$$

1 задача