IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

20.10.2025

Hoy...

Funciones: imagen y preimagen, inyectivas, sobreyectivas, biyectivas, composición, función inversa.

Definición

Una relación f de A en B as una función si para todo $a \in A$ existe un único elemento $b \in B$ tal que $(a,b) \in f$.

Definición

Definición

Una relación f de A en B us una función si para todo $a \in A$ existe un único elemento $b \in B$ tal que $(a,b) \in f$.

Terminología:

- ► $f: A \rightarrow B \iff$ "f una función de A en B"
- $(a,b) \in f \iff afb \iff b = f(a)$
- b es el valor o el imágen de a en f.
- ▶ $id_A = \{(a, a) \mid a \in A\}: A \rightarrow A$ la función identidad.

Sean $A = \{1, 2, 3\}, B = \{3, 4, 5\}.$

Sean
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}.$$

 $\blacktriangleright \{(1,3),(2,4)\}: A \to B$?

$$\{(1,3),(2,\underline{4}),(3,3),(2,\underline{5})\} \colon A \to B?$$

Sean $A = \{1, 2, 3\}, B = \{3, 4, 5\}.$

 $\blacktriangleright \{(1,3),(2,4)\}: A \to B?$

 $\{(1,3),(2,4),(3,3),(2,5)\} \colon A \to B?$

• $\{(1,4),(2,4),(3,4)\}: A \to B$?

Sean
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}.$$

$$\blacktriangleright$$
 {(1,3),(2,4)}: $A \rightarrow B$?

$$\{(1,3),(2,4),(3,3),(2,5)\} \colon A \to B?$$

$$\{(1,4),(2,4),(3,4)\}: A \to B?$$

•
$$\{(1,4),(2,3),(3,\underline{2})\}: A \to B?$$

Definición

Sean A y B dos conjuntos y $f: A \rightarrow B$. Entonces,

- ▶ si $X \subseteq A$, él imagen de X es el conjunto $f(X) = \{b \in \{ B | \exists x \in X | b = f(x) \}$
- ▶ si $Y \subseteq B$, él preimagen de Y es el conjunto $f^{-1}(Y) = \{a \in A \mid f(a) \in Y\}.$
- ▶ si $b \in B$, denotamos $f^{-1}(b) = f^{-1}(\{b\})$.

Ejercicios con imagen y preimagen

Ejercicio

Sea $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^2$ para todo $x \in \mathbb{Z}$. Definir $f(\{1, 2, 3, 4\})$ y $f^{-1}(\{1, 2, 3, 4\})$.

Ejercicio

Sea $f: \mathbb{N} \to \mathbb{N}$ tal que f(x) es el mínimo número primo mayor que x^2 , para todo $x \in \mathbb{N}$. f(3) = 11 f(4) = 12 f(5) = 29

Imagen y \cap , \cup

Ejercicio

Sea $f: A \rightarrow B$ y $X_1, X_2 \subseteq A$. ¿Verdadero o falso?

- a) $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$
- b) $f(X_1 \cap X_2) = f(X_1) \cap f(X_2)$

Preimagen y \cap , \cup

Ejercicio

Sea $f: A \rightarrow B$ y $Y_1, Y_2 \subseteq B$. ¿Verdadero o falso?

a)
$$f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$$

b)
$$f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$$

Funciones inyectivas y sobreyectivas

Definición

Una función $f: A \rightarrow B$ se llama

- ▶ inyectiva si no existen $a_1, a_2 \in A, a_1 \neq a_2$ tal que $f(a_1) = f(a_2)$
- **sobreyectiva** si f(A) = B.
- biyectiva si es inyectiva y sobreyectiva.

	¿inyectiva?	¿sobreyectiva?
$f: \mathbb{N} \to \mathbb{N}, f(x) = x + 1$		
$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f((x,y)) = xy$		

Composición

Definición

Sean $f: A \rightarrow B$, $g: B \rightarrow C$. Entonces, la composición de f y g es la función

$$g \circ f : A \to C$$
, $g \circ f(a) = g(f(a)) \ \forall a \in A$.

Composición

Definición

Sean $f: A \rightarrow B$, $g: B \rightarrow C$. Entonces, la composición de f y g es la función

$$g \circ f : A \to C$$
, $g \circ f(a) = g(f(a)) \ \forall a \in A$.

Ejemplo:
$$A = \{1, 2, 3\}, B = \{4, 5, 6\}, C = \{7, 8\}$$

$$f = \{(1,5), (2,5), (3,4)\}, \qquad g = \{(4,8), (5,7), (6,7)\}$$

$$g \circ f =$$

Composición de funciones inyectivas

Proposición

Sean $f:A\to B,g:B\to C$ dos funciones inyectivas. Entonces, $g\circ f$ es inyectiva.

Composición de funciones sobreyectivas

Proposición

Sean $f: A \to B, g: B \to C$ dos funciones sobreyectivas. Entonces, $g \circ f$ es sobreyectiva.

Función inversa

Definición

Sea $f: A \to B$. Entonces, $g: B \to A$ es la función inversa de f si $g \circ f = id_A$ y $f \circ g = id_B$.

Teorema

- a) Una función $f: A \rightarrow B$ es biyectiva si y sólo si tiene una función inversa;
- b) Si una función $f: A \rightarrow B$ es biyectiva, entonces su función inversa es única y también es biyectiva.

Inyectiva vs. sobreyectiva

Proposición

Sean A, B dos conjuntos no vacios. Entonces, existe una función $f:A\to B$ inyectiva si y sólo si existe una función $g:B\to A$ sobreyectiva.

Principio de palomar

Informalmente: si n+1 palomas se distribuyen en n palomares, entonces al menos habrá un palomar con más de una paloma.

Teorema (Principio de palomar)

Para todo $n \in \mathbb{N}$, no existe una

 $f: \{0,1,\ldots,n\} o \{0,1,\ldots,n-1\}$ inyectiva

Ejemplo principio palomar

Ejercicio

Demuestra que en cualquier grupo de personas siempre habrá dos personas que hayan dado el mismo número de apretones de mano dentro del grupo.

iGracias!