Discrete Mathematics Exercise 7

Qiu Yihang, 2020/10/13-18

1. Proof:

Firstly, we prove that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

For any $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$, we know from the definition of power set and union that $x \in \mathcal{P}(A)$ and $x \in \mathcal{P}(B)$, i.e. $x \subseteq A$ and $x \subseteq B$.

It's plain to see that $x \subseteq A \cap B$, i.e. $x \in \mathcal{P}(A \cap B)$.

Thus, for any $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$, $x \in \mathcal{P}(A \cap B)$.

In other words, $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Now we prove $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.

For any $x \in \mathcal{P}(A \cap B)$, we know from the definition of power set and union that $x \subseteq A \cap B$, i.e. $x \subseteq A$ and $x \subseteq B$. Thus, $x \in \mathcal{P}(A)$ and $x \in \mathcal{P}(B)$, i.e. $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

Therefore, for any $x \in \mathcal{P}(A \cap B)$, $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

In other words, $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.

Since $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$ and $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$, we know $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

QED

2. Proof:

Firstly, we prove that $A \times \bigcup B \subseteq \bigcup \{A \times X \mid X \in B\}$.

For any $z \in A \times \bigcup B$, $\exists a \in A, b \in \bigcup B$ such that z = (a, b).

From $b \in \bigcup B$, we know $\exists X \in B$ such that $b \in X$, i.e. $z \in A \times X$.

Therefore, for any $z \in A \times \bigcup B$, $z \in \bigcup \{A \times X \mid X \in B\}$.

In other words, $A \times \bigcup B \subseteq \bigcup \{A \times X \mid X \in B\}$.

Now we prove $A \times \bigcup B \supseteq \bigcup \{A \times X \mid X \in B\}$.

For any $z \in \bigcup \{A \times X \mid X \in B\}$, $\exists a \in A, X \in B, b \in X$ such that z = (a, b).

From $X \in B$, $b \in X$, we know $b \in \bigcup B$.

Therefore, for any $z \in \bigcup \{A \times X \mid X \in B\}, z \in A \times \bigcup B$.

In other words, $A \times \bigcup B \supseteq \bigcup \{A \times X \mid X \in B\}$.

Since $A \times \bigcup B \subseteq \bigcup \{A \times X \mid X \in B\}$ and $A \times \bigcup B \supseteq \bigcup \{A \times X \mid X \in B\}$,

we know that $A \times \bigcup B = \bigcup \{A \times X \mid X \in B\}.$

QED

3. Proof:

Enter a new proof context, introduce an arbitrary x.

 $\mathrm{ZF} \vdash x \in \mathcal{C} \cap (A \cup B) \leftrightarrow x \in \mathcal{C} \wedge (x \in A \vee x \in B).$

 $ZF \vdash x \in C \cap (A \cup B) \leftrightarrow (x \in C \land x \in A) \lor (x \in C \land x \in B).$

$$ZF \vdash x \in C \cap (A \cup B) \leftrightarrow x \in (C \cap A) \cup (C \cap B).$$

Exit the proof context.

Using its conclusion, we can prove $ZF \vdash \forall x (x \in C \cap (A \cup B) \leftrightarrow x \in (C \cap A) \cup (C \cap B))$.

Then we can prove $ZF \vdash C \cap (A \cup B) = (C \cap A) \cup (C \cap B)$.

QED

4. Proof:

Assume there exists two empty sets \emptyset_1 and \emptyset_2 .

$$ZF \vdash \forall x (\neg x \in \emptyset_1) \land \forall x (\neg x \in \emptyset_2) \rightarrow \forall x (\neg x \in \emptyset_1 \land \neg x \in \emptyset_2).$$

$$\mathsf{ZF} \vdash \forall x (\neg x \in \emptyset_1) \land \forall x (\neg x \in \emptyset_2) \rightarrow \forall x \big((\neg x \in \emptyset_1 \land \neg x \in \emptyset_2) \lor (x \in \emptyset_1 \land x \in \emptyset_2) \big).$$

$$\mathsf{ZF} \vdash \ \forall x (\neg x \in \emptyset_1) \land \forall x (\neg x \in \emptyset_2) \rightarrow \forall x (x \in \emptyset_1 \leftrightarrow x \in \emptyset_2).$$

Then using the axiom of extensionality,

$$\mathsf{ZF} \vdash \ \forall x (\neg x \in \emptyset_1) \land \forall x (\neg x \in \emptyset_2) \to \emptyset_1 = \emptyset_2.$$

QED

5. a) **Proof:** Since $\forall x (\neg(x \subseteq \emptyset \land \neg x = \emptyset))$,

we know
$$\forall x (x \subseteq \emptyset \land \neg x = \emptyset \to \exists y (y \in x \land \forall z (z \in x \to y \in z \lor y = z))),$$

$$0 = \{\} = \emptyset \text{ is } \in \text{-well-ordered.}$$

$$QED$$

b) Proof:

When n is \in -well-ordered,

$$\forall x \big(x \subseteq n \land \neg x = \emptyset \to \exists y \big(y \in x \land \forall z (z \in x \to y \in z \lor y = z) \big) \big).$$
 ①

For any $x \subseteq n \cup \{n\} \land \neg x = \emptyset$, there exists two cases:

1) $x \subseteq n \land \neg x = \emptyset$

From ① we know $\exists y (y \in x \land \forall z (z \in x \rightarrow y \in z \lor y = z)).$

2) $\exists x', x' \subseteq n \land \neg x' = \emptyset$ such that $x = x' \cup \{n\}$.

From ① we know
$$\exists y (y \in x' \land \forall z (z \in x' \to y \in z \lor y = z))$$
.
Since $y \in x'$, $y \in x$.

For any
$$z$$
, $z \in x \Rightarrow (\exists w (w \in x') \land (w \in z) \land (y \in w \lor y = w)) \Rightarrow y \in z \lor y = z$.
Thus, $\exists y (y \in x \land \forall z (z \in x \rightarrow y \in z \lor y = z))$.

In conclusion, for any $x \subseteq n \cup \{n\} \land \neg x = \emptyset \to \exists y (y \in x \land \forall z (z \in x \to y \in z \lor y = z)).$

Therefore,
$$\forall x \ (x \subseteq n \cup \{n\} \land \neg x = \emptyset \rightarrow \exists y (y \in x \land \forall z (z \in x \rightarrow y \in z \lor y = z)))$$
.

In other words, when n is \in -well-ordered, $n \cup \{n\}$ is \in -well-ordered.

QED

6. Proof:

Since $\forall x \ (\mathbf{Inductive}(x) \to u \subseteq x) \text{ and } \mathbf{Inductive}(v), \ u \subseteq v.$

Similarly, since $\forall x \ ($ **Inductive** $(x) \rightarrow v \subseteq x)$ and **Inductive** $(u), v \subseteq u$.

From $u \subseteq v$ and $v \subseteq u$, we know u = v.

7. Proof:

Since u and v are two inductive sets,

$$\emptyset \in u \land \forall x (x \in u \rightarrow x \cup \{x\} \in u)$$
 and $\emptyset \in v \land \forall x (x \in v \rightarrow x \cup \{x\} \in v)$.

 $\emptyset \in u$ and $\emptyset \in v \Rightarrow \emptyset \in u \cap v$.

For any $x \in u \cap v$,

 $x \in u \cap v \Leftrightarrow x \in u \land x \in v \Rightarrow x \cup \{x\} \in u \land x \cup \{x\} \in v \Leftrightarrow x \cup \{x\} \in u \cap v.$

Thus, $\emptyset \in u \cap v \land \forall x \ (x \in u \cap v \rightarrow x \cup \{x\} \in u \cap v)$.

In other words, $u \cap v$ is an inductive set.

QED

8. *a*) *Proof:*

Let $\{x \in u \mid \forall v (v \subseteq u \land \mathbf{Inductive}(v) \rightarrow x \in v)\}$ be X.

According to the definition of inductive sets, we know $\forall v \ (\text{Inductive}(v) \rightarrow \emptyset \in v)$.

Therefore, $\forall v \ (v \subseteq u \land \mathbf{Inductive}(v) \to \emptyset \in v)$, i.e. $\emptyset \in X$.

Now we prove for any $y \in X$, $y \cup \{y\} \in X$.

Since $y \in X$, i.e. $\forall v \ (v \subseteq u \land \mathbf{Inductive}(v) \to y \in v)$, also considering that $\forall v \ (t \in v \land \mathbf{Inductive}(v)) \to (t \cup \{t\} \in w)$, we know $\forall v \ (v \subseteq u \land \mathbf{Inductive}(v) \to y \cup \{y\} \in v)$.

In other words, $y \cup \{y\} \in X$.

Since $(\emptyset \in X) \land \forall y (y \in X \rightarrow y \cup \{y\} \in X)$, X is an inductive set.

QED

b) Proof:

Let $\{x \in u \mid \forall v (v \subseteq u \land \mathbf{Inductive}(v) \rightarrow x \in v)\}$ be X.

We prove X is the smallest inductive subset of u by contradiction.

Assume the smallest inductive subset of u is Y and $X \neq Y$.

We know from the definition of X that $\forall x (x \in X \to x \in Y)$, i.e. $X \subseteq Y$.

Since $X \neq Y$, X is a proper subset of Y and is therefore a proper subset of u. Given that **Inductive**(X), X is an inductive proper subset of Y and u, which is contrast to the definition of Y (because Y is the smallest inductive subset of u).

Thus, X is the smallest inductive subset of u.

QED

9. Proof:

From the conclusion of 7, we know that

Inductive
$$(u_1) \land$$
Inductive $(u_2) \rightarrow$ **Inductive** $(u_1 \cap u_2).$ ①

We can construct a set X such that $\forall x (Inductive(x) \rightarrow x \in X)$.

Thus, there exists $A = \bigcap \{x \in X \mid \mathbf{Inductive}(x)\}.$

Using \bigcirc , we know that A is an inductive set.

Then we prove A is the smallest inductive set of all inductive sets.

For any $u \in X$, $\exists y = \{x \in u \mid \forall v (v \subseteq u \land \mathbf{Inductive}(v) \to x \in v)\}.$

From the conclusion of 8, we know that **Inductive**(y) holds, i.e. $y \in X$, $A \subseteq y$.

Now we prove A = y by contradiction.

Assume $A \neq y$.

Then A is a proper set of y.

From the conclusion of 8 we know y is the smallest inductive subset of u.

Given **Inductive**(A) $\land A \subseteq y \land A \neq y$,

we know that $\exists A \exists x \ (x \in y) \land \neg (A \subseteq u \land \mathbf{Inductive}(A) \to x \in A)$,

which is a *contradiction* since $y = \{x \in u \mid \forall v (v \subseteq u \land \mathbf{Inductive}(v) \rightarrow x \in v)\}.$

So, A = y, i.e. for any $u \in X$, A is the smallest inductive subset of u.

Thus, $\forall u \ (u \in X \to A \subseteq u)$.

Therefore, A is the smallest inductive set of any inductive set u.

In other words, there exists at least one "smallest inductive set".

QED

10.*a*) *Proof:*

Since $0 \in X$ and $0 \in \mathbb{N}$ (according to the definition of \mathbb{N}), $0 \in \mathbb{N} \cap X$.

For any $y \in \mathbb{N} \cap X$,

 $y \in \mathbb{N} \cap X \Leftrightarrow y \in \mathbb{N} \land y \in X \Rightarrow y \cup \{y\} \in \mathbb{N} \land y \cup \{y\} \in X \Leftrightarrow y \cup \{y\} \in \mathbb{N} \cap X.$

(since for any $y \in \mathbb{N}$, $y \in X$ implies $y \cup \{y\} \in X$)

In other words, $\mathbb{N} \cap X$ is inductive.

QED

b) Proof:

For any $n \in \mathbb{N}$, $n = 0 \lor \exists x (x \in \mathbb{N} \land n = x \cup \{x\})$.

Thus, to prove that for any $n \in \mathbb{N}$, $n \in X$ holds, we only need to prove that $0 \in \mathbb{N}$ and for any $x \in \mathbb{N}$, $x \cup \{x\} \in X$ (since $x \cup \{x\} \in \mathbb{N}$ holds).

Firstly, we know that $0 \in \mathbb{N} \cap X$. Thus, for $0 \in \mathbb{N}$, $0 \in X$.

Assume $x \in \mathbb{N}$ and $x \in X$ holds.

Since for any $n \in \mathbb{N}$, $n \in X$ implies $n \cup \{n\} \in X$, we know $x \cup \{x\} \in X$.

Therefore, for any $x \in \mathbb{N}$, $x \cup \{x\} \in X$.

Thereby, for any $n \in \mathbb{N}$, $n \in X$ always holds.

QED