Math 556 Lectur 30 - Monday 4/12 - Maximum priciple, harmoniz functions, open mapping principle 1 Last time we've seen Cauty's formula => mean value identity, implying the maximum principle: $\frac{T_{hm}}{T_{hm}}$ If f is analytic on $U \supset \overline{B_{r}(z)}$ then f(z) is the average value of f on S'(z,r). Thm: If f is analytic on UCI & nonconstant, then |f| doesn't achieve its maximum open connected anywhere in U. In particular, if f is analytic on U and continuous on U, U conjunct, then the maximum of |f| on U is achieved on the boundary of U. (Rmk: This also implies max principle for Re(f), since left = e Re(f) has no (local) max.). · One nice (non-local) consequere is a contraction principle; the Schwarz Lemma. Thm: $|| f \text{ analytic on } D = \{|z| < 1\}, \text{ and } |f(z)| < 1 \text{ } \forall z \in D \text{ (i.e. } f: D \rightarrow D),}$ and |f(0)| < 1, and $|f(z)| \leq |z| \text{ } \forall z \in D - \{0\}.$ Noreover if equality holds in ether of these then $|f(z)| = e^{i\theta}z$ for some $e^{i\theta} \in S^1$. Pf: With $f(z) = \sum_{n=1}^{\infty} q_n z^n = z F(z)$ where $F(z) = \sum_{n=0}^{\infty} a_{n+1} z^n$ analytic $(f(0)=0 \Rightarrow no constant term)$ For $|z|=r\in(0,1)$, we have $|F(z)|=\left|\frac{f(z)}{z}\right|\leqslant\frac{1}{r}$, here by the maximum principle, $|F(z)|\leqslant\frac{1}{r}$ whenever $|z|\leqslant r$. Taking $r\to 1$, $|F(z)|\leqslant 1$ $\forall z\in D$. Here the bunds on f'(0)=F(0) and f(z)=zF(z). Nonover, if |F|=1 is achieved anywhere inside D then F is constant $=e^{i\theta}$, so $f(z)=e^{i\theta}z\cdot D$ Note: The bound on |f'(0)| is the same as the bound one gets from Canchy's integral formula. The Schwarz lema is a strengthening to pointwise bounds $|f(z)| \le |z|$ globally on the disc. · by composing f with tractional linear transformations, we can get Schwarz-type bounds for all sorts of other situations, eg. if f maps a disc to a half-plane, etc. The is another injurant class of Ruchians which satisfy mean value & max principle: Def: $A C^2$ function $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ is harmonic if $\Delta f = \sum \frac{\partial^2 f}{\partial x_i^2} = 0$. (Physically important! eg. electric & gravitational potentials in vacuum are harmonic,) so is temperature destribution at themal equilibrium; etc.

Real analysis gives general methodo for studying harmonic Ructions, but the case of 2 real variables f(x,y) is closely related to complex analysis. • $u: U \subset C \longrightarrow R$ is harmonic if $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 4 \frac{\partial^2 u}{\partial z \partial \overline{z}} = 0$

[twing:
$$\frac{3^2u}{3x^3y} = \frac{3^2u}{3y^3x}$$
, so $\left(\frac{3}{3x} + i\frac{3}{3y}\right)\left(\frac{3}{3x} - i\frac{3}{3y}\right)u = \frac{3^2u}{3x^2} + \frac{3^2u}{3y^2}\right]$

=3 $\frac{7u}{1}$ If $f = u + iv$ is analytic, hen we have $\frac{3u}{3y} = \frac{3u}{3x} + \frac{3u}{3y}$ and $\frac{3u}{3y} = -\frac{3u}{3x}$, so $\frac{3u}{3y} = \frac{3}{3y} \left(\frac{3u}{3y}\right) - \frac{3}{3y}\left(\frac{3u}{3x}\right) = 0$.

$$\frac{4u}{3y} = \frac{3}{3y}\left(\frac{3u}{3y}\right) + \frac{3}{3y}\left(\frac{3u}{3y}\right) = \frac{3}{3x}\left(\frac{3u}{3y}\right) - \frac{3}{3y}\left(\frac{3u}{3x}\right) = 0$$

What is unique about harmonic function in 2 variable if his we have a convexe:

Thus, If u is harmonic on a simply-consoled open $U \subset C$, then there exists an analytic furthern $f: U \cap C$ if $u = Re(f)$.

i.e. there exists a harmonic $v: U \cap R$ ('harmonic conjugate of u ') st. $u + iv$ is analytic.

Ex: $u = \log |z| = Re(\log z)$ on domain and exclusing eight of u of v with single-valued on C^{*} .

(went powe in lecture)

If: Given u harmonic, let $u = 2\frac{3u}{3z}$ de u de u

Another pair of deep results (which we want prove) are about existence of
Another pair of deep results (which we want prove) are about existence of (3) analytic mappings & harmonic functions:
* The Riemann maying theorem:
Thur, I if UC C is a non-empty simply connected open subset, U & C, her here
Thus, if $U \subset \mathbb{C}$ is a non-empty simply connected open subset, $U \not= \mathbb{C}$, then there exists a biholomorphism φ : $U \cong D = \{ z < 1\}$ is analytic bijection u / analytic invesse.
Ex: can you find explicit biholon's \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
quarter disc half disc (-00,0) x (0,1)
or with disc = half-plane = (R < (0,1)? (see HW).
+ The existence of solutions to Dirichlet's problem (harmonic functions with proceded values at the boundary of a domain) can be thought of as an analogue for harmonic functions
Then, I if UCC is a singly connected bounded open subset with self- nice boundary
and $f \in C^{\circ}(\partial U, \mathbb{R})$ any continuous function (eg. 20 piecetiske smooth
Then, if $U \subset \mathbb{C}$ is a simply connected bounded open subset with suff-nice boundary and $f \in C^{\circ}(\partial U, \mathbb{R})$ any continuous function $\Rightarrow \exists \text{ on eque function } u \in C^{\circ}(\overline{U}, \mathbb{R}) \text{ st. } \begin{cases} u_{ \partial U} = f \\ u \text{ is harmonic inside } U. \end{cases}$
(unique so follows parily from the ever principle
(uniqueess follows easily from the max-principle: $u-v=0$ at ∂U , $u-v$ harmonic = $u-v=0$)
One way to prove this is achally to first establish it for the unit dire, using Fourier series to reduce to higanometric polynomials; $\sum c_n e^{in\theta} \longrightarrow \sum_{n\geq 0} c_n z^n + \sum_{n<0} c_n z^{(n)}$
then use Riemann mapping theorem (+slightly more) to map U=D; u is harmonic iff up is.
with the state of
a Back to analytic for!, there's a stronger local result: the open mapping principle (=> max. principle)
Then. A nonconstant analytic function is an open mapping, ie. U open => f(U) open
in other tens: f analyte at $z_0 \Rightarrow \forall r > 0$, $\exists \epsilon > 0$ st. $f(B_r(z_0)) \supset B_{\epsilon}(f(z_0))$
in other tens: f analyte at $z_0 \Rightarrow \forall r > 0$, $\exists \varepsilon > 0$ st. $f(B_r(z_0)) \supset B_{\varepsilon}(f(z_0))$ non constant $(\Rightarrow f(z) , Re\ f(z),$ can't have local max)
Prop: if $f(z)$ has an isolated zero of $z=z_0$, then \exists analytic function g defined near z_0 , with $g(z_0)=0$, $g'(z_0)\neq 0$, and $n>1$, $f(z)=g(z)^n$.
Pt. lot $y = a da$ of the zero of f is the $f(z) = \sum_{n=1}^{\infty} a_n (z_n z)^n - a_n (z_n z)^n (4 dz)$
It: let n=nder of the zero of f, ie. wite $f(z) = \sum_{k=n}^{\infty} a_k(z-z_0)^k = a_n(z-z_0)^n (1+h(z))$
with $h(z_0) = 0$. $\exists V \ni z_0 \text{ st. } h(z) < 1 \ \forall z \in V$, over V we can define
with $h(z_0) = 0$. $\exists V \ni z_0 \text{ st. } h(z) < 1 \ \forall z \in V$; over V we can define $g(z) = q_0^{1/n}(z - z_0) (1 + h(z))^{1/n}$, where $(1 + h(z))^{1/n} = \exp\left(\frac{1}{n}\log(1 + h(z))\right)$ well define $\frac{1}{n}\log(1 + h(z))$ with $\frac{1}{n}\log(1 + h(z))$ with $\frac{1}{n}\log(1 + h(z))$ with $\frac{1}{n}\log(1 + h(z))$ and $\frac{1}{n}\log(1 + h(z))$ with $\frac{1}{n}\log(1 + h(z))$ and $\frac{1}{n}\log(1 + h(z))$ are $\frac{1}{n}\log(1 + h(z))$.
with $h(z_0) = 0$. $\exists V \ni z_0$ st. $ h(z) < 1$ $\forall z \in V$; over V we can define $g(z) = q_1^{1/n}(z-z_0)(1+h(z))^{1/n}$, where $(1+h(z))^{1/n} = \exp\left(\frac{1}{n}\log(1+h(z))\right)$ well define $\frac{Pf\cdot hm}{B}$: for $z_0 \in U$, write $f(z) - f(z_0) = g(z)^n$ for some $n \ge 1$, $g(z_0) = 0$, $g'(z_0) \ne 0$. By inverse function that, g is a local different z_0 (since $g'(z_0) \ne 0$), here an open mapping
with $h(z_0) = 0$. $\exists V \ni z_0 \text{ st. } h(z) < 1 \ \forall z \in V$; over V we can define $g(z) = q_0^{1/n}(z - z_0) (1 + h(z))^{1/n}$, where $(1 + h(z))^{1/n} = \exp\left(\frac{1}{n}\log(1 + h(z))\right)$ well define $\frac{1}{n}\log(1 + h(z))$ with $\frac{1}{n}\log(1 + h(z))$ with $\frac{1}{n}\log(1 + h(z))$ with $\frac{1}{n}\log(1 + h(z))$ and $\frac{1}{n}\log(1 + h(z))$ with $\frac{1}{n}\log(1 + h(z))$ and $\frac{1}{n}\log(1 + h(z))$ are $\frac{1}{n}\log(1 + h(z))$.

The argument principle: Our proof of open mapping principle archaelly shows: near Zo, f takes (4) every value near $f(z_0)$ in time where is the order of the zero of $f(z) - f(z_0)$ at $z = z_0$. Non generally, we can estimate the number of zeros of f (or #f'(c)) in a domain D: $\frac{\mathcal{D}_{m:}}{\mathcal{D}_{m:}}$ If $f: U \to \mathbb{C}$ is analytic, D bounded domain with $D \subset U$, D = g piecewise smooth, assume f is nonzero at every point of g. Then the number of zeros of finside D, counted with multiplicity = order of each zero, is $n(8,0) = \frac{1}{2\pi i} \int_{8}^{\infty} \frac{f'(z)}{f(z)} dz$. Observe: $\frac{f'(z)}{f(z)} = \frac{d}{dz} (\log f(z))$ - the logarithmic desirative.

(NB: log f is only defd boatly up to +2 it Z, but his doesn't make for the derivative!). Let Z1, - 7 Zk be the zeros of f inside D, with multiplicities m1, ..., m4. (isolated, hence finitely many since D is compact). Then we can write $f(z) = (z-z_1)^{m_1} \dots (z-z_k)^{m_k} g(z)$ where g is analytic and nowhere zero in D (check this makes sense & works near each zi). Properties of log (or calculation) =) $\frac{f'(z)}{f(z)} = \frac{m_1}{z-z_1} + ... + \frac{m_L}{z-z_K} + \frac{g'(z)}{g(z)}.$ Now $\frac{g'(z)}{g(z)}$ is analytic in D (g has no zeroes) so $\int_{\mathcal{S}} \frac{g'(z)}{g(z)} dz = 0$, while $\frac{1}{2\pi i} \int_{\gamma} \frac{m_j}{z-z_j} dz = m_j$ (cauchy formula) $\Rightarrow \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum m_j$. * Topological/geometric interprtation:

New f as a maging $U \rightarrow \mathbb{C}$, it maps the loop $Y \subset U$ to $f_i(Y) = f_i(Y) =$ $n(8,0) = \frac{1}{2\pi i} \int_{8} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{f_{\bullet}(8)} \frac{dw}{w}$ (pullback formula, or more connetely, change of var's in path integral/chan rule) = change in $\frac{1}{2\pi i}$ log(4), ie. $\frac{1}{2\pi}$ arg(w) around f.(7) = winding number of fox would the origin in O. Ex: $f(z) = z^3 - \frac{1}{2}z$ on unit circle: winding number around origin is 3 (3 nots in unit d'sc) Generalization: if $c \notin f(x)$ then $n(x,c) = \frac{1}{2\pi i} \int_{\mathcal{X}} \frac{f'(z)}{f(z)-c} dz = winding number of$ f(x) around $C \in \mathbb{C}$ gives the number of times f(z) = c inside \mathcal{D} (with nulliplicities). This quantity varies continuously with c, & is an integer => locally constant (indo = of c) as long as $c \notin f(x)$. (Note: y is compact, so f(y) as well $\Rightarrow C - f(y)$ is open.

Applying to $\gamma = S'(z,S)$, $n(\gamma,f(z)) > 0$ (isolation of zeros \Rightarrow for S>0 small, $f(z) \notin f(\gamma)$) $\Rightarrow n(\gamma,\omega) > 0$ $\forall \omega \in B_{\varepsilon}(f(z)) \subset C \setminus f(\gamma)$, i.e. $f(B_{\varepsilon}(z)) \supset B_{\varepsilon}(f(z))$. (in fact the whole open connected compared of f(z) in $C \setminus f(s)$).

This give another proof of the open mapping principle.