11 - Evolution

Central Claim of Evolution

Organisms descend with modification from their ancestors

Descent

Formation of newer generations

Correlation

 Correlation of strata and faunal succession show that there have been organisms in the past that aren't alive today

Mechanism for Change

We've known for tens of thousands of years that we can cause changes in a species

Artificial Selection

Matching up individuals of a species with particular traits to accentuate that trait

Cultivation

- Example
 - Many vegetables were creating from inbreeding mustard plants
 - Broccoli, brussels sprouts, kale, cabbage, etc

Natural Selection

- Unlike artificial selection, there is no goal in mind
 - Organisms either live to reproduce or die and their traits are weeded out
- Assumes a population of species has natural variation
- Particular individuals have traits that enable them to survive and reproduce more commonly
- These traits spread as they are favored by each new generation

Source of Variation

- Mutations
- When DNA replicates, sometimes copying errors occur and new traits appear
- Mutation

- Beneficial
- Detrimental
- Neutral
- All depends on the environment
- Evolution is the accumulation of these mutations

Importance of Variation

- The spectrum of traits seen in a species
- Variation results in a broad assortment of traits in the population
- It's more likely that, if the environment changes, at least some members of that group will have the needed traits to survive and reproduce

Survival of the Fittest

- Not necessarily big or strong
- Ex. sloths

Modern Genetics

- DNA is a complex molecule that stores genetic information
- It's where our traits come from
- DNA is made up of a handful of chemical letters
- Genes
 - Units of heredity
 - A few hundred to a few million nucleobases in a single gene
 - We have two copies of each gene, one from each parent
 - Different forms of a gene are called "alleles"
 - Chromosomes are made of two strands of DNA that are coiled tightly around a histone
 - 23 pairs of chromosomes in a human cell nucleus

Inheritance

Half chromosome from each parent

Mutations

- Sometimes when DNA copies during cell division, errors occurred
- Can be spontaneous, or caused by chemicals or radiation
- Leads to variation in a species, and to new traits

Patterns of Evolution

Divergent Evolution

- Ancestral species gives rise to many diverse species
- Descendants differ greatly from their ancestors and from each other in many cases

Convergent Evolution

• Development of similar characteristics in distantly-related organisms

Parallel Evolution

- A type of convergent evolution where closely-related organisms gain similar, but independently derived traits
- Placental and Marsupial mammals have a lot of "twins"; or "copycats"

Speciation

- When a new species arises from an ancestral species
- A species is a population of similar organisms that only breed among themselves
- Divergent form of evolution
- A new species is likely to form if a part of a species' population is isolated and forced to adapt to a new set of conditions. Small populations evolve faster

Allopatric Speciation

A physical barrier causes a species to diverge into new species

Peripatric Speciation

• Those on the **periphery** of a population form small subsets and evolve on their own

Parapatric Speciation

- When a species lives across a large area, and fragments into localized populations that stop mixing
- No physical isolation

Sympatric Speciation

Overlapping

Adaptive Radiation

- When many new species arise from a common ancestor
- Ex. finches

Phyletic Gradualism

Slow, continuous changes take place over long time periods

Punctuated Equilibrium

 A species remains unchanged during most of its existence and new species evolve rapidly, perhaps in a few thousand years

Evidence

How Did This All Begin?

Darwin (former creationist) noted fossils slightly differed from modern day analogs

Homologous Structures

 Body features that are shared by a group of organism, that are inferred to be derived from a common ancestor

Vestigial Structures

- Body parts and/or traits that are no longer useful, or have been repurposed
- These are evolutionary remnants from ancient ancestors who used them

Embryology

 The embryos of all vertebrates are, at first, nearly identical, thus suggesting a common ancestor

Camouflage

A bi-product of predator-prey relationships