

Procédés de fabrication par usinage

Physique de la coupe, tournage & fraisage, matériaux, formes et défauts

Dr. S. Soubielle

Dans ce cours, nous allons...

... Définir la physique de coupe en usinage

- ... Mouvements outil / matière et formation du copeau
- ... Sollicitations thermomécaniques sur l'outil
- ... Matières et types d'outils

... Décrire les procédés de tournage et de fraisage

- ... Types de mouvements de l'outil / de la pièce
- ... Types de machines, d'opérations, terminologie
- ... Topologie d'une pièce de tournage / de fraisage
- ... Paramètres d'usinage et qualité d'usinage

... Design et mise en plan de pièces usinées

... Limitations de forme, design vs. coût de fabrication

Principe de l'usinage

Usinage = Fabrication par enlèvement de matière Tournage Fraisage

--> Pièces « de révolution »

--> Pièces « prismatiques »

Principe et cinématique de la coupe

Tournage

Fraisage

Principe de la coupe

Cinématique de la coupe

Matière à usiner → En translation

(trois axes)

Outil de coupe → En translation

(deux axes)

Outil de coupe

→ En rotation

Physique de coupe

Doit être le + grand possible (\preceq contraintes dans l'outil)

Formation du copeau

Mouvement relatif matière / outil

- + Pointe tranchante de l'outil
- → Arrachage de matière (copeau)

Physique des matériaux

Forte contrainte locale (cisaillement)

- → Déformation plastique intense
- → Echauffement local (→ 600-800 °C)

Géométrie de l'outil

- Arête de coupe → Sépare le copeau
- − Face de coupe \rightarrow Écarte le copeau ($\gamma_0 > 0^\circ$)
- − Face de dépouille → Ne doit pas être en contact ! $(\alpha_0 > 0^\circ)$
- Rayon d'outil r_{ε} → Empêche un niveau ∞ de contrainte sur l'outil

Matériaux et types d'outils (1/2)

Sollicitations thermomécaniques sur l'outil

- Contraintes mécaniques de surface (frottements sur la face de coupe)
 - → Très élevées
- Contraintes mécaniques à cœur (pointe d'outil)
 - → Très élevées
- Températures locales
 - → Très élevées

- Résistance à l'abrasion +++
- Limite élastique R_e +++
- Dureté de surface H+++

Matériaux et types d'outils (2/2)

Matière de l'outil de coupe

- Carbures métalliques (cermet)
 - Dureté, limite élastique, et résistance à l'abrasion extrêmement élevées, y compris à haute température
 - → Utilisation très répandue
 - Obtenus par frittage de poudre (WC + Co)
 - Plaquette fixée sur un porte-outil

- Aciers alliés trempés
- Résistance mécanique élevée
- Très bonne tenue à la trempe à hte t°

Liquides de coupes

Fonctions

- Réduire les frottements
 - → Dégagement de chaleur ↓
 - → Frottements ↓
 - → Contraintes mécaniques ↓
 - → Rendement énergétique ↑
- Évacuer les calories
 - → T° locales (outil et pièce) ↓
- Évacuer les copeaux

Types

- Huiles de coupe
- Solutions aqueuses (émulsions)

Usinage « à sec » pratiqué dans certains cas : matières pouvant interagir chimiquement avec le liquide de coupe, matières facilement usinables, ...

Choix des paramètres de coupe (1/3)

Principe

Vitesse relative outil / matière & dim. du copeau → impact sur :

- Contraintes thermomécaniques (vues par la pièce et par l'outil)
- Efforts sur la machine d'usinage
- Puissance nécessaire à la coupe
- Qualité des surfaces usinées

f_z = avance par dent

· Paramètres de coupe

- Vitesse de coupe V_c :

$$V_{\rm c} = d \cdot \pi \cdot N$$

Vitesse d'avance V_f :

$$V_{\rm f} = N \cdot f_{\rm z} \cdot Z$$

Profondeur de passe $a_{\mathfrak{p}}$

Choix des paramètres de coupe (2/3)

Conséquences d'un choix inapproprié de $V_{\rm c}$ / $V_{\rm f}$ / $a_{ m p}$

- → Usure prématurée de l'outil
- → Piètre qualité des surfaces usinées
- → Puissance insuffisante de la machine
- → Défauts de forme des surfaces usinées

Matière à usiner	Vitesse de coupe $V_{\rm c}$ (m/min)	
	Outil ARS	Outil Cermet
Aciers - fontes	15 - 30	60 - 120
Aluminium	75 - 400	150 - 1000
Cuivre - laiton	46 - 60	120 - 160
PA6 - POM – PC	200 - 400	

Usinage des fontes & aciers 4x plus rapide avec outil cermet vs. ARS!

Choix des paramètres de coupe (3/3)

Exercice d'application

On souhaite effectuer l'opération de tournage décrite sur la figure ci-contre. La barre brute est en acier, et l'outil doit avoir une avance par tour de $f_z = 0.3$ mm.

Calculer la vitesse de rotation minimum N_{\min} de la barre brute, et la vitesse d'avance $(V_f)_{\min}$ correspondante.

Brut d'usinage – serrage et forme

Tournage

Maintien du brut dans la machine

Mandrin de serrage à trois mors

Serrage conventionnel

Fraisage

Autres

2 mors

4 mors

Magn.

Brides

Plateau magn.

Brut d'usinage – matière

Métaux (principaux)

Métaux ferreux (aciers & fontes)

Aluminiums

Laitons

Autres

Matières plastiques

Céramiques

Bois

Topologie de la pièce finie

Tournage

Surfaces axisymétriques (y c. face ⊥ axe)

Possibilité de réaliser des filetages et taraudages centrés sur l'axe de révolution

Présence de faces brutes non-axisymétriques

Fraisage (3-axes)

Surfaces planes ou év. courbées, à génératrice rectiligne

Possibilité de réaliser des trous, év. taraudés, d'axe // à celui des génératrices

Machines d'usinage

Tour (2-axes)

Fraiseuse (3-axes)

Par le passé

Machines dites « conventionnelles »

1 seul moteur d'entraı̂nement + synchronisation des vitesses $(V_c, V_f, etc.)$ par réducteurs

(

Machines actuelles

Dites « à commande numérique » (CNC)

Autant de moteurs que d'axes Gestion électronique des vitesses Machines programmables

Opérations de tournage – terminologie

@ EPFL

- Surfaces extérieures
 - chariotage (1), dressage (2), chanfreinage (3), tronçonnage (4), saignée (5), filetage (6)
- Surfaces intérieures
 alésage (7), perçage¹, chanfreinage, chambrage (8), taraudage (9)
- Opération les plus courantes

dressage

alésage

Le terme perçage est dédié aux opérations d'alésage utilisant un forêt ; il se caractérise par un fond de trou conique à 120°

Opérations de fraisage – terminologie

- Fraisage de face / en bout
 - Axe de la fraise ⊥ à la face à usiner
 - Surface générée axialement
- Fraisage de profil / en roulant
 - Axe de la fraise // à la face à usiner
 - Surface générée radialement

Dans la pratique, fraisage combiné de face / de profil

fraisage majoritairement de face

fraisage majoritairement de profil

Focus sur le perçage

Procédé de perçage

- Outil = forêt
- Trou borgne ou débouchant / traversant
- Si borgne → fond de trou conique à 120°
- Peut être obtenu sur un tour ou sur une fraiseuse

Limitations

- Evacuation difficile du copeau (espace confiné)
 - → Nécessité d'effectuer des « débourrages » = sorties périodiques et répétées du forêt pour évacuer le copeau
 - → Eviter les perçages longs : opérations lentes (+ risques de casse)
- Qualité médiocre des surfaces obtenues
 - → Nécessité d'utiliser un alésoir pour obtenir des surfaces de finition

Exercice d'application

Identifier les opérations d'usinage qui ont été mises en œuvre pour chaque position, afin d'obtenir la forme et la dimension spécifiée.

© Construction Mécanique, J.-F. Ferrot, exercice 5.2 (modifié), p. 69

Et si mes pièces sont + compliquées ?

Comment usiner des pièces ayant...

... Des faces planes non ⊥ à l'axe (si pièces de révolution)

... Des surfaces courbes ayant des génératrices non // entre elles

... Des trous dans plusieurs directions

... Etc.

→ Fraiseuse 5-axes

2 axes de rotation en plus des 3 axes de translation

→ Centre d'usinage

À la fois tour et fraiseuse (généralement 5-axes)

La description des opérations successives d'usinage (type, dimensions, outil) s'appelle la « gamme d'usinage »

Arêtes rentrantes et arêtes sortantes

Arêtes rentrantes

Présence d'un rayon d'outil → Congé d'arête sur arêtes rentrantes

Arêtes sortantes

Les arêtes vives à 90° sont coupantes

→ Chanfreins à 45° sur toutes les arêtes vives

Qualités des surfaces usinées

Présence de stries sur les surf. usinées

Images: www.decolletage-legendre.com

Fraisage en roulant → Stries parallèles

Images: www. rochmecanique.fr

Les dimensions des stries dépendent 1) de la forme et du rayon de l'outil, et 2) du paramètre d'avance par tour f_{z}

Exercice d'application

Usinable ou pas usinable ?

-(0)

Est-il possible d'obtenir les formes suivantes (surfaces

oranges) par usinage?

Design et plan d'une pièce d'usinage

Coût d'usinage proportionnel au volume de copeau

→ Il faut minimiser le volume de copeau!

- Ajuster les dimensions extérieures de la pièce au plus près des dimensions du brut
- Séparer une pièce en deux, ou plus (qui seront assemblées) si le volume de copeau est notablement diminué

Cotation d'une pièce usinée

Partout où c'est possible, les cotes posées doivent correspondre aux volumes de matière à enlever (selon la logique d'usinage prévue)

Pièce issue du projet GrowBotHub 2020-2021

Des questions?

