

CHEMISTRY

Retroalimentación

Tomo 1

¿Diga, cuántos carbonos impuros naturales se tienen en la siguiente relación?

Indicar la suma de carbonos primarios , secundarios, terciarios y cuaternarios del siguiente compuesto:

$$CH_2 - CH_3$$

|
 $CH_3 - CH - C - CH_2 - CH_2 - CH_2 - CH_3$

|
 $CH_3 - CH_3 - CH_3 - CH_3 - CH_3$

$$\Sigma de \ carbonos = 5 + 4 + 1 + 1 = 11$$

El número de enlaces sigma (σ) y enlaces pi (π) respectivamente del siguiente compuesto:

Tipo	σ	π
Cantidad	21	3

La siguiente fórmula contiene átomos de carbono con hibridación:

Tipo de hibridación	Orbitales que se hibridan	Tipos de enlace Simple, doble, triple	Tipos de hidrocarburos	Geometria	Ángulos de enlace
Sp ³	S, Px, Py, Pz	C-C simple	alcanos	orbital hibrido	109.5°
Sp²	S, Px, Py	C =C	alqueno	B	120°
Sp	S, Px	C≡ C triple	alquino	Be	180°

Hibridación	sp^3	sp^2	sp
Cantidad	2	3	2

¿Qué fórmula global tiene el 4,4,8,11-tetrametildodeceno

Resolución

Es un hidrocarburo alqueno

$$C_nH_{2n}$$

#átomos de carbono=4(1)+12=16

$$C_nH_{2n}$$

$$C_{16}H_{2(16)}$$

$$C_{16}H_{32}$$

Respecto a los alcanos ¿Qué afirmaciones son verdaderas?

- I. Son hidrocarburos saturados . $oldsymbol{V}$
- II. Tienen hibridación sp^3 V
- III. Se conocen como parafinas. \overline{V}
- IV. Tienen isomería geométrica. F

Rpta: I, II, III

- I. Un compuesto saturado es un compuesto químico que tiene una cadena de átomos de carbono unidos entre sí por enlaces simples y tiene átomos de hidrógeno ocupando las valencias libres de los otros átomos de carbono. Los alcanos son un ejemplo de compuestos saturados.
- II. Dentro de las propiedades físicas ya mencionadas podemos decir que el C de alcanos al estar saturado presenta hibridación sp^3 , ya que se une a 4 átomos diferentes o H, necesitando una orbital s y 3 p, dando lugar a 4 orbitales híbridas sp^3 .
- III. Parafina es el nombre común de un grupo de hidrocarburos alcanos.
- IV. A diferencia de los alquenos, que forman doble enlace, permitiendo una equidad de interacción entre los carbonos que conforman la cadena principal, bien sea en configuración cis o trans; los alcanos que presentan enlaces simples no hace posible la formación de isómeros dado que las interacciones tienden a ser irregulares entre ellos.

Nombrar la siguiente estructura: $CH_3 - (CH_2)_6 - CH(CH_3) - C(CH_3)_3$

Resolución

Descomponiendo el hidrocarburo ramificado:

2,2,3 - tri metil decano

El nombre de:

$$CH_{3} \qquad CH_{3}$$

$$| \qquad |$$

$$CH \equiv C - CH - CH_{3} - CH$$

$$| \qquad |$$

$$CH_{3}$$

Resolución

$$\begin{array}{c|c} \textbf{Metil} & \textbf{Metil} \\ \hline \textbf{CH}_3 & \textbf{CH}_3 \\ \hline \textbf{1} & \textbf{2} & \textbf{3} \\ \textbf{CH} & \equiv \textbf{C} - \textbf{CH} - \textbf{CH}_3 - \textbf{CH} \\ \hline \textbf{6} \\ \textbf{CH}_3 \\ \hline \end{array}$$

3,5 -di metil hex -1 -ino

Nombre la estructura mostrada:

$$CH_{2} - CH_{3}$$
 $CH_{3} - C - CH_{2} - CH - CH_{2} - CH_{3}$
 $CH_{3} - C - CH_{2} - CH - CH_{2} - CH_{3}$
 $CH_{3} - CH_{2} - CH_{3}$

Resolución

5 etil -3,3 -dimetil heptano

Nombre la siguiente estructura:

