Problem Set VIII: Monte-Carlo Tree Search

Aim The purpose of this workshop is to help you get a better understanding of Monte-Carlo Tree Search for solving MDPs in an online manner.

Tasks

In this workshop, you will consider the example from the lectures of the agent that moves in a 2D grid world.

1. The agent is at cell (2,1), in which 2 is the x-coordinate and 1 the y-coordinate (both start from 0). It samples the following 10 iterations of MCTS, where E (East) goes right and W (West) goes left:

Iteration	Trace	
1	N	simulate = 0
2	E	simulate = 0
3	$N \to succ$	simulate = 0
4	$N \to slip(E)$	simulate = -1
5	$E \to succ$	simulate = -1
6	$N \to succ \to E$	simulate = 1
7	$E \to slip(N)$	simulate = 0
8	$E \to slip(N) \to E$	simulate = 1
9	$N \to succ \to E \to succ$	simulate = 1
10	W	simulate=1

Here, $N \to succ$ means that we select N then select that the outcome of N was successful, and $N \to slip(E)$ means that we select N and the outcome was unsuccessful: the agent went east.

Draw the MCTS tree for this. Label the lines on the tree with the actions & outcomes and label the nodes with the backpropagated information.

- 2. Based on your tree, calculate which action should be returned.
- 3. Based on your tree, which of action, North, South, East, or West, will be the chosen one by a UCT? Show your work. Assume that $C_p = \frac{1}{2}$.