APPROVED	O.G. FIG.		
BY	CLASS	SUBCLASS	
DF FTSMAN			

Title: Heat Spreading Layers for Vertical Cavity
Surface Emitting Lasers
Aventor: Larry A. Coldren et al.
Serial No.: 09/934,791

Page 1 of 4

1/4

FIG. 2

	THERMAL CONDUCTIVITY [W/K-CM]	MOB [CM '	ILITY ² /V-s]
•		ELECTRON	HOLE
InP	0.68	4600	150
AlAsSb	0.04	80	
AlGaAsSb	0.03	700	
GaAs	0.45	<i>8500</i>	400

APPROVED	O.G. FIG.		
BY	CLASS	SUBCLASS	
DRAFTSMAN			

Title: Heat Spreading Layers for Vertical Cavity
Surface Emitting Lasers ntor: Larry A. Coldren et al.

Serial No.: 09/934,791

Page 2 of 4

2/4

FIG. 4

APPROVED	O.G. FIG.		
BY	CLASS	SUBCLASS	
DRÁFTSMAN			

Title: Heat Spreading Layers for Vertical Cavity urface Emitting Lasers Inventor: Larry A. Coldren et al. Serial No.: 09/934,791

Page 3 of 4

3/4

FIG. 6

APPROVED O.G. FIG. BY CLASS SUBCLASS DRAFTSMAN	Title: Heat Spreading Layers for Vertical Cavity Surface Emitting Lasers Inventor: Larry A. Coldren et al. Serial No.: 09/934,791 Page 4 of 4	
	4/4)
	8 7 15 μm AIR POST 25 μm AIR POST 6	
VOLTAGE [V]	5 4 INTRACAVITY CONTACT: 8 μm APERTURE	FIG. 7
· .	2 12 μm APERTURE	
· ·	0 0 5 CURRENT [mA] 10 15	
THERMAL IMPEDANCE [°C/mW]	AIR POST INTRACAVITY CONTACT APERTURE DIAMETER [mm]	FIG. 8
MPERATURE RISE [°C]	AIR POST 25°C 250 AIR POST INTRACAVITY CONTACT	FIG. 9

4 6
CURRENT [mA]