Dimitrios Roussis Nikos Episkopos

Learning Neural Templates for Text Generation - S. Wiseman, S. M. Shieber, A. M. Rush (2018)

Data Science & Information Technologies

Database Systems

Spring 2020

Instructor: Georgia Koutrika

Table-to-text generation

Core task of Natural Language Generation (NLG) which involves the generation of textual descriptions $y_{1:T} = y_1, ..., y_T$ from knowledge bases which contain a collection of records $x = \{r_1, \dots, r_i\}.$

George Mikell (born **Jurgis Mikelaitis**; 4 April 1929) is a Lithuanian-Australian actor and writer best known for his performances in <u>The Guns of Navarone</u> (1961) and <u>The Great Escape</u> (1963).

Contributions of the paper

- Encoder-decoder architectures are the SOTA in table-to-text generation. However, they lack: (1) interpretability and (2) controllability.
- Proposition: interpretable and controllable neural generation systems.
- The paper focuses on learning template-like structures for conditional text generation.
- Utilizes a neural hidden semi-markov model (HSMM) as a decoder.

Hidden Markov and semi-Markov models

A **hidden Markov model** (HMM) assumes that the hidden states of an unobservable process X can be learned by observing a dependent process Y. The emission probability is used in a single time step *t*.

A **hidden semi-Markov model** (HSMM) is a HMM in which emission probabilities may last multiple time-steps.

The HSMM utilized in this research:

- Takes into account the length of a sequence and whether it should continue generating text or not.
- Makes use of a Recurrent Neural Network (RNN) for continuous emissions.

Neural HSMM decoder

Transition distribution $P(z_{t+1} | z_t, x)$

- K × K matrix of probabilities, where each row sums to 1.
- Apply row-wise softmax to get the desired probabilities.

Training

- 1. Maximize the log marginal-likelihood of the observed Y given X
- Use the backward-algorithm of HMM to parameterize the emission distributions of RNNs
- 3. Associate text-segments with the discrete labels that frequently generate them, for guided generation
- Collect the most common sequences of hidden states to use them for targeted generation

WikiBio dataset, benchmarks and metrics

WikiBio dataset [Lebret et al., 2016]:

> 728,321 biographies from the English Wikipedia, with ~ 400k word types

Models compared in benchmarks:

- Autoregressive and non-autoregressive HSMM
- Kneser-Ney (KN) language model [Heafield et al., 2013]
- 2 variants of a feed-forward neural language model [Lebret et al., 2016]
- Seq2seq [Liu et al., 2018]; SOTA at the time (encoder-decoder architecture)

3 comparison **metrics**:

- BLEU [Papineni et al., 2002]
- NIST [Belz & Reiter, 2006]
- ROUGE-4 [Lin & Och, 2004]

E2E dataset, benchmarks and metrics

E2E dataset [Novikova et al., 2017]:

> ~ 50K records with 945 distinct word types; knowledge base of restaurants

Models compared in benchmarks:

- Autoregressive and non-autoregressive HSMM
- SUB, a non-parametric template-like baseline

The system from [Dusek and Jurcicek, 2016] (an encoder-decoder

followed by a reranker)

5 comparison **metrics**:

- BLEU, NIST, ROUGE (like before)
- CIDEr [Vedantam et al., 2015]
- METEOR [Banerjee & Lavie, 2005]

Flat MR	NL reference
name[Loch Fyne], eatType[restaurant], food[French],	Loch Fyne is a family-friendly restaurant providing wine and cheese at a low cost.
priceRange[less than £20], familyFriendly[yes]	Loch Fyne is a French family friendly restaurant catering to a budget of below £20.
	Loch Fyne is a French restaurant with a family setting and perfect on the wallet.

Results on WikiBio dataset

Test set	BLEU	NIST	ROUGE-4
Template KN*	19.8	5.19	10.7
NNLM (field)*	33.4	7.52	23.9
NNLM (field & word)*	34.7	7.98	25.8
NTemp**	34.2	7.94	35.9
NTemp+AR**	34.8	7.59	38.6
Seq2seq***	43.65	-	40.32

* from
[Lebret et al., 2016]

** from [Wiseman et al., 2018], our paper

*** from
[Liu et al., 2018]

Results on E2E dataset

Test set	BLEU	NIST	ROUGE	CIDEr	METEOR
D&J*	65.93	8.59	68.50	2.23	44.83
SUB	43.78	6.88	54.64	1.39	37.35
NTemp	55.17	7.14	65.70	1.70	41.91
NTemp+AR	59.80	7.56	65.01	1.95	38.75

^{*} from [Dusek and Jurcicek, 2016]

Qualitative evaluation

- Controllable diversity (manipulate template while leaving database constant)
 Choice of template: affects word-ordering and the mentioned fields.
- Interpretable states (capture the variation in information within the dataset)
 A discrete state corresponds to a particular piece of information.
 For example, nationalities, occupations, etc. share the same hidden state.

<u>Average purity:</u> Percentage of state's words that come from the most frequent record type that the state represents.

Average Purity	NTemp	NTemp+AR
E2E	89.2	85.4
WikiBio	43.2	39.9

Research and Implementation Plan

- (a) Implement models (b) reproduce results
- (c) perform qualitative evaluation

Implementation details and resources

Tools: Python, Bash, Anaconda

Source code of implemented models from:

HSMM: https://github.com/harvardnlp/neural-template-gen

Dursek & Jurcicek: https://github.com/UFAL-DSG/tgen

Kneser-Ney: https://kheafield.com/code/kenlm/

Seq2seq: https://github.com/tyliupku/wiki2bio

Datasets from:

WikiBio: https://github.com/DavidGrangier/wikipedia-biography-dataset

E2E: http://www.macs.hw.ac.uk/InteractionLab/E2E/

Possible research paths and alternatives

HSMM parameters:

- The authors determine the number of K (hidden states) based on BLEU performance on held-out validation data.
- How can we intuitively determine the most appropriate metric for the dataset/task? Can we choose the parameters based on it?

Implementation:

- Model implemented using Python 2.7 (deprecated) and PyTorch 0.3.1 (released in Feb 2018).
- Will porting the model to Python 3.8 and TensorFlow 2.2.0 yield any performance improvements and/or other advantages?

Datasets:

Can we use the new and cleaned E2E dataset?

References

- Wiseman, S., Shieber, S.M. and Rush, A.M., 2018. Learning neural templates for text generation. arXiv preprint arXiv:1808.10122.
- Lebret, R., Grangier, D. and Auli, M., 2016. Neural text generation from structured data with application to the biography domain. *arXiv* preprint arXiv:1603.07771.
- Novikova, J., Dušek, O. and Rieser, V., 2017. The E2E dataset: New challenges for end-to-end generation. arXiv preprint arXiv:1706.09254.
- Papineni, K., Roukos, S., Ward, T. and Zhu, W.J., 2002, July. BLEU: a method for automatic evaluation of machine translation. In *Proceedings of the 40th annual meeting on association for computational linguistics* (pp. 311-318). Association for Computational Linguistics.
- Lin, C.Y. and Och, F.J., 2004, June. Looking for a few good metrics: ROUGE and its evaluation. In Ntcir Workshop.
- Belz, A. and Reiter, E., 2006, April. Comparing automatic and human evaluation of NLG systems. In 11th Conference of the European Chapter of the Association for Computational Linguistics.
- Vedantam, R., Lawrence Zitnick, C. and Parikh, D., 2015. Cider: Consensus-based image description evaluation. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 4566-4575).
- Banerjee, S. and Lavie, A., 2005, June. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In *Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization* (pp. 65-72).
- Dušek, O. and Jurčíček, F., 2016. Sequence-to-sequence generation for spoken dialogue via deep syntax trees and strings. arXiv preprint arXiv:1606.05491.
- Liu, T., Wang, K., Sha, L., Chang, B. and Sui, Z., 2018, April. Table-to-text generation by structure-aware seq2seq learning. In *Thirty-Second AAAI Conference on Artificial Intelligence*.
- Heafield, K., Pouzyrevsky, I., Clark, J.H. and Koehn, P., 2013, August. Scalable modified Kneser-Ney language model estimation. In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)* (pp. 690-696).