Дифференциальные уравнения

November 3, 2020

Contents

1	Дифференциальные уравнения			1
	1.1	Введе	ние. Примеры	1
	1.2	Ур-я 1	l-го порядка. Основные понятия	2
		1.2.1	Ур-я 1-го порядка и его решения	2
		1.2.2	Форма записи ур-й 1-го порядка	2
		1.2.3	Поле направлений и приближенное решение	;
		1.2.4	Задача Коши	

1 Дифференциальные уравнения

Бабушкин Максим Владимирович Send Mail

1.1 Введение. Примеры

 $F(x,y,y',y',y^{(n)})=0$ - дифф. ур-е $\mathit{Примеp}$: Груз m на пружине

$$x(t) = ?$$

$$mg = -k(0 - x_0)$$

$$mg = kx_0$$

$$F_{\sum} = ma$$

$$mg + (-k(x - x_0)) = mx$$

$$kx_0 - kx + kx_0 = mx$$

$$-kx = mx$$

Отв: $x(t) = A \cdot sin(t\sqrt{\frac{k}{m}} + \phi_0) \ A, \phi_0$ - произвольные постоянные

1.2 Ур-я 1-го порядка. Основные понятия

1.2.1 Ур-я 1-го порядка и его решения

F(x,y,y')=0 - дифф. ур-е 1-го порядка (1) Onp. Решением ур-я (1) на (a,b) н-ся функция $\phi\in C(a,b)$ $F(x,\phi(x),\phi(x)')=0$ на (a,b) (a и b м.б. $\infty)$ $\Pi pumep$

$$y' = x$$
$$y = \frac{x^2}{2} + C$$
$$\phi(x) = \frac{x^2}{2}$$
$$\phi(x) = \frac{x^2}{2} + 1$$

^~~~ Частичные решения Onp. Общее решение Мн-во всех решений $y=\frac{x^2}{2}+C$ - общее решение Onp. Общий интеграл соотношение вида F(x,y,C)=0 которое при $\forall C$ - pewenue?

1.2.2 Форма записи ур-й 1-го порядка

 $Onp. \ y' = f(x,y)$ - ур-е разрешенное относительно производной $\Pi p.$

$$y' = -\frac{x}{y}$$
$$y = \sqrt{1 - x^2}$$

Тест ^~~ - решение

 $Onp.\ P(x,y)dx+Q(x,y)dy=0$ ур-е в дифференциалах Onp. Решением ^~~~ н-ся ф-ия $y(x)\in C(a,b)\ P(x,y(x))+Q(x,y(x))y'(x)\equiv 0$ на (a,b) Onp. Параметризованное решение н-ся $\phi,\psi\in C(\alpha,\beta)$

1.
$$|\phi'(t)| + |\psi'(t)| = 0$$

2.
$$P(\phi(t), \psi(t))\phi'(t) + Q(\phi(t), \psi(t))\psi'(t) \equiv 0$$

на (α, β)

1.2.3 Поле направлений и приближенное решение

$$y' = f(x, y)$$

$$f \in C$$

$$G - area$$

$$]\phi - solution \ on \ (a, b)$$

$$\phi'(x) = f(x, \phi(x)) \forall x$$

$$y_0 = \phi(x_0)$$

 $\phi'(\mathbf{x}_0)=\mathbf{f}(\mathbf{x}_0,\,\mathbf{y}_0)\;(1,f(x_0,y_0))$ - коллинеарный вектор Onp. Ломаная Ейлера $y'=f(x,y)\;(x_0,y_0)$ - начальная точка δx - постоянный ???

1.2.4 Задача Коши

Onp. 3. Коши (начальной задачей) для ур-я y'=f(x,y) н-ют задачу отыскания его решения удовлетворяющего начальному условию $y(x_0)=y_0\ (x_0,y_0)$ - начальная точка