

BINOMIAL, POISSON AND NORMAL DISTRIBUTION

Experiment 3

JUNE 30, 2021
BIMAL PARAJULI
20BDS0405

This function gives the probability distribution at each point. > X < seq (0,50, by = 1) > y < dbinon(x,50,0.5)

> proglfile= "dbinom.prg")

> plot (x,y)

> dev.off()

creates a sample of so numbers increment It creates binomial distributes.

Clives the chart a filename.

plots the graph of sample.

Saves the file.

* qbinom ()

This function takes probability value and gives a number whose cumulative value matches probability value.

Eg: How many heads will have a probability of 0-25 will come out when a coin is tossed 51 times.

R-code:-

X < qbinon (0.25, 51, 1/2) print (x).

[1] 23

* thinom()

This function takes the probability value and gives a nun generates required number of random values of a given probability from the given sample.

Eg: Find 8 random values from a sample of 150 with probability of 0.4.

nc- rbinon (8, 150, .4)
print (n)

[17 58 61 59 66 55 60 61 67

Poisson's Distribution in R.

R-00 deg:-

·dpois (x, lambda) # the probability of x success in a period whon expected number of events is lambda.

· ppois (q, lambda) :# the cumulative probability of less than or

ogpois(p, lambda) # returns the value (quantile) at specified cumulative propability (percentile) p.

· npois (n, lambda) # returns n random numbers from the Poisson distribution:

1) What is P(X=4) with lambda 2:6?

>dpois (4, lambda= 2.6)

[1] 0.1414218

2). What is P(X>2) with Lamber 3? >1- Ppois (2,3) [1] 6-57-68099

A random Variable X is sold to possess normal distribution with mean u and variance σ^2 , if its probability of the form, $f(n) = \frac{e^{\frac{(n-u)^2}{2\sigma^2}}}{\sigma \sqrt{2ru}}$ density function can be expressed -00276200

> Dis standard notation is:-X~N(M'Q5).

Standard Normal Distribution

If a random Variable x follows normal distribution with mean it and Vatiana 52, 91's transformation Z=X-11 follows Standard normal distribution (mean 0 and unit variance). $f(z) = \frac{1}{\sqrt{2\pi}} e^{-z/2}, \quad -\infty < z < +\infty.$

The distribution function of standard normal distribution is-F(Z) = 1 2/2 dx

'K has four built in functions to generate normal distributions. They are:

I drown (x, mean, sd)

Calculates the height of probability distribute at each point for given mean and standard deviation.

phosin (x, mean, sd)

Gives the probability of a randomly distributed random number to be less than the value of given number. It is also called "Cumulative Distribution Function".

gnorm (p, moun, sd)

It takes the probability value and gives a number whose cumulative value matches the probability value.

thorm (n, mean, sd)

It generates random mumbers whose distribution is normal. It takes sample size as Input and generates that many random numbers

Poblome :-

1). If a committee has 7 members, find the probability of having more female members than made members given that the probability of having a made or feemale member is equal.

89/

The probability of howing temale member = 0-5. The probability of having made member = 0-5.

To have more female members, the number of females should be greater than or equal to 4.

5-cops:-

>1-pbinon (3,7,05)

[1] 0.5

```
> #probability of having a female member is : 0.5
> #probability of having a male member is : 0.5
>
> #probability of having more female than male is same as having 4 or more females.
> 1-pbinom(3,7,0.5)
[1] 0.5
> #Hence the probability of having more women than men is 0.5
```

- 2). The weekly wages of 1000 workman are normally distributed around a mean of Rs 70 with SD of R&B' Estimate the number of workers whose weekly wages will be:
 - (1) Between \$69 and \$72? (11) Less than \$69 (11) More than \$572.

-codes:-

Iti) Between Ps 69 and Ps 72.

- > (pnorm (72, mean=70, sd=5) pnorm (69, mean=70, sd=5)) * 1000
 - [1] 234.6815
- ># 1 Hence, the number of workers whose wage the between 69 and 7
- ># (11) Less than \$ 69.
- > proof (69, mean = 70, sd=5)) * 1000.
- ># Hence the number of workers whose wave is less than Rg 69 is 421.
- ># (Pii) More than Po 72.
- > (1- priorm(72, mean = 70,5d=5)) \$ 1000 [1]344·5783

```
> #(i)between Rs 69 and Rs 72
> (pnorm(72, mean=70,sd=5) - pnorm(69, mean=70, sd=5))*1000
[1] 234.6815
> #(ii)Less than Rs69.
> (pnorm(69, mean=70, sd=5))*1000
[1] 420.7403
> #The number of Workers whose wages is less than Rs 69 is 421.
> #(iii) More than 72
> (1-pnorm(72, mean=70, sd=5))*1000
[1] 344.5783
> #The number of workers whose wages is More than Rs. 72 is 345
```