

# Experimental Evaluation of Machine Learning based Wireless Communication Algorithms

#### Karthik Sukumar

Professur für Methoden der Signalverarbeitung 07. Sep 2020



#### Introduction



- · Channel Estimation is vital for any Wireless systems
- Required to revert the channel propogation effects

#### Introduction



- · Channel Estimation is vital for any Wireless systems
- Required to revert the channel propogation effects
- For perfect Channel estimation, pilot symbols are to be placed on all sub carriers

#### Introduction



- · Channel Estimation is vital for any Wireless systems
- Required to revert the channel propogation effects
- For perfect Channel estimation, pilot symbols are to be placed on all sub carriers
- Current reseach for potential solutions include
  - Model based channel estimation
  - Machine learning based algorithms to find the channel



· Setup a MIMO Test Jig

<sup>&</sup>lt;sup>1</sup> Jonas Maas. "Invertible Neural Networks for MIMO Detection". BA thesis. Technical University of Munich, 2020.



- Setup a MIMO Test Jig
- Collect real world experimental Tx-Rx data from the MIMO Setup

<sup>&</sup>lt;sup>1</sup> Jonas Maas. "Invertible Neural Networks for MIMO Detection". BA thesis. Technical University of Munich, 2020.



- Setup a MIMO Test Jig
- Collect real world experimental Tx-Rx data from the MIMO Setup
- Use the data to train a Inverted Neural Network <sup>1</sup> as shown below



Figure: ML Model for learning the network

<sup>&</sup>lt;sup>1</sup> Jonas Maas. "Invertible Neural Networks for MIMO Detection". BA thesis. Technical University of Munich, 2020.



- Software Defined Radio USRP
- Possible Options for a MIMO Setup
- LTE Fundamentals
- Chosen Experimental Setup
- Results
- · Conclusions and future work

#### Software Defined Radio - USRP



| USRP2940<br>40MHz           |  |  |
|-----------------------------|--|--|
| 40MH-                       |  |  |
| 40101112                    |  |  |
| 50MHz-2200MHz               |  |  |
| Kintex-7 410T               |  |  |
| 2                           |  |  |
| 2                           |  |  |
| MXIe, Ethernet              |  |  |
| Internal Crystal            |  |  |
| 14 (For Rx)/16 (For Tx) bit |  |  |
| 2.5 ppm                     |  |  |
| 20dBm                       |  |  |
| 200MHz                      |  |  |
|                             |  |  |

Table: USRP2940 SDR Product details

#### Software Defined Radio - USRP





Figure: Insides of USRP2940



1. Standalone USRP



- Standalone USRP
  - √ Minimum Hardware required
  - Modular as long as we could use PCIe expanders
  - Needs the Octoclock a Clock distribution accessory
  - Transceivers not synchronised



- Standalone USRP
  - √ Minimum Hardware required
  - Modular as long as we could use PCIe expanders
  - Needs the Octoclock a Clock distribution accessory
  - Transceivers not synchronised
- 2. MIMO Application Framework



- Standalone USRP
  - √ Minimum Hardware required
  - Modular as long as we could use PCIe expanders
  - Needs the Octoclock a Clock distribution accessory
  - Transceivers not synchronised
- 2. MIMO Application Framework
  - ✓ Modular MIMO setup
  - supports upto 128 Antennas on the BS
  - **X** Expensive! >€100.000 for a minimum working setup
  - Needs many additional HW components



- Standalone USRP
  - √ Minimum Hardware required
  - Modular as long as we could use PCIe expanders
  - Needs the Octoclock a Clock distribution accessory
  - Transceivers not synchronised
- 2. MIMO Application Framework
  - ✓ Modular MIMO setup
  - supports upto 128 Antennas on the BS
  - **X** Expensive! >€100.000 for a minimum working setup
  - Needs many additional HW components
- 3. LTE Application Framework



- Standalone USRP
  - √ Minimum Hardware required
  - ✓ Modular as long as we could use PCIe expanders
  - Needs the Octoclock a Clock distribution accessory
  - Transceivers not synchronised
- 2. MIMO Application Framework
  - ✓ Modular MIMO setup
  - supports upto 128 Antennas on the BS
  - **X** Expensive! >€100.000 for a minimum working setup
  - X Needs many additional HW components
- 3. LTE Application Framework
  - ✓ Only 2 USRPs and a Host are required
  - Limited to 2x2 MIMO setup





$$y(t) = cos(\omega t) + j * sin(\omega t)$$



Figure: Setup of the USRPs in loopback Configuration





Figure: The left waveforms are the TX waveforms and the right waveforms are the RX waveforms. It can be seen that the received IQ waveforms are unsynchronised and clearly have a phase shift





Figure: USRP 2940 Internal Components

#### Option 2 - MIMO Application Framework



- Multi-User MIMO Single BS with up to 128 Antennas and up to 12 single antenna Mobile Stations (MS)
- Single-user MIMO transmission between one BS with up to 128 antennas and one MS with up to 12 antennas
- Scalable number of antennas (multi-antenna MS: between 2 and 12; BS: between 2 and 128).
- Modulation Schemes QPSK to 256 QAM
- Automatic gain control (AGC) at the BS and MS

### Option 2 - MIMO Application Framework



- Multi-User MIMO Single BS with up to 128 Antennas and up to 12 single antenna Mobile Stations (MS)
- Single-user MIMO transmission between one BS with up to 128 antennas and one MS with up to 12 antennas
- Scalable number of antennas (multi-antenna MS: between 2 and 12; BS: between 2 and 128).
- Modulation Schemes QPSK to 256 QAM
- · Automatic gain control (AGC) at the BS and MS
- FPGA based real time signal processing such as
  - Modulation
  - Over-the-air synchronization
  - MIMO equalization
  - MIMO precoding
- Fully reconfigurable LTE like radio frame structure
- Bi Directional TDD and FDD functionality transmission of 20MHz bandwidth





| Part Number | Description                   |
|-------------|-------------------------------|
| USRP-2940   | SDR                           |
| PXIe-7976   | FPGA Module for FlexRIO       |
| CDA-2990    | Clock Distribution Device     |
| CPS-8910    | Switch Device for PCI Express |
| PXIe-6674T  | Synchronization Module        |
| PXIe-1085   | Chassis                       |
| PXIe-8135   | Controller                    |

Table: Additional Hardware for required for MIMO AFW to function

|                                                              | 128-antenna BS<br>8 subsystems | 64-antenna BS<br>4 subsystems | 32-antenna BS<br>2 subsystems | 16-antenna BS<br>1 subsystems | 8-antenna BS<br>1 subsystems |
|--------------------------------------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|
| USRP-29xx SDR<br>Reconfigurable Device                       | 64                             | 32                            | 16                            | 8                             | 6                            |
| PXIe-1085 Chassis<br>(18-Slot, 24 GB/sSystem Bandwidth (BW)) | 1                              | 1                             | 1                             | 1                             | 1                            |
| PXIe-8135 Controller                                         | 1                              | 1                             | 1                             | 1                             | 1                            |
| PXIe-7976 FPGA Module for FlexRIO                            | 5                              | 3                             | 2                             | 2                             | 2                            |
| PXIe-6674T Synchronization                                   | 1                              | 1                             | 1                             | 1                             | 1                            |
| CDA-2990 Clock Distribution Device                           | 8                              | 5                             | 3                             | 1                             | 1                            |
| CPS-8910 Switch Device for PCI Express                       | 8                              | 4                             | 2                             | 1                             | 1                            |

Table: MIMO Configurations and HW requirements

## Option 2 - MIMO Application Framework





Figure: MIMO AFW

## Option 3 - LTE Application Framework MIMO Extension



- Based on a LTE Application Framework, an LTE Release 10 implementation
- Developed by NI to demonstrate a functioning 2x2 MIMO System
- Provides a Downlink ONLY 2x2 LTE Setup
- · Upto 64 QAM modulation
- FPGA based realtime signal processing
- 3 different Equalisation algorithms
  - Matched Filter
  - Zero Forcing
  - MMSE



- · OFDMA based physical layer
- Frame based communication scheme of 10ms per Frame



- OFDMA based physical layer
- Frame based communication scheme of 10ms per Frame
- · Each frame subdivided into 10 Subframes



- OFDMA based physical layer
- Frame based communication scheme of 10ms per Frame
- · Each frame subdivided into 10 Subframes
- Each subframe has 14 Symbols



- · OFDMA based physical layer
- Frame based communication scheme of 10ms per Frame
- Each frame subdivided into 10 Subframes
- Each subframe has 14 Symbols
- Contain many different signals
  - Primary Synchronisation Signal (PSS) -QPSK
  - Secondary Synchronisation Signal (SSS) BPSK
  - Cell Specific Reference Signal (CRS) QPSK



- · OFDMA based physical layer
- Frame based communication scheme of 10ms per Frame
- Each frame subdivided into 10 Subframes
- Each subframe has 14 Symbols
- Contain many different signals
  - Primary Synchronisation Signal (PSS) -QPSK
  - Secondary Synchronisation Signal (SSS) BPSK
  - Cell Specific Reference Signal (CRS) QPSK



- · OFDMA based physical layer
- Frame based communication scheme of 10ms per Frame
- Each frame subdivided into 10 Subframes
- Each subframe has 14 Symbols
- Contain many different signals
  - Primary Synchronisation Signal (PSS) -QPSK
  - Secondary Synchronisation Signal (SSS) BPSK
  - Cell Specific Reference Signal (CRS) QPSK





Figure: Cell Reference Signal layout for multi antenna configurations of 1,2 and 4 antenna systems in LTE

## Experimental Setup - FPGA



## Experimental Setup - CRS Data Transmission





(a) Channel Estimation Interpolation over Frequency



(b) Channel Estimation Zero order hold over time

Figure: Illustration of channel estimation interpolation over time and frequency

## Experimental Setup - CRS Data Transmission









(b) Channel Estimation Zero order hold over time

Figure: Illustration of channel estimation interpolation over time and frequency

- The RF Front end phase offset correction is applied to all the subcarriers and time symbols
- Fixed transmit pattern as defined by standard

## Experimental Setup - Wideband Noise Calculation



# Demo



#### Results - Data Loss

Microsoft Windows [Version 10.0.18363.1016]



(c) 2019 Microsoft Corporation. Alle Rechte vorbehalten. C:\Users\ge69mog>cd Downloads\iperf-2.0.9-win64\iperf-2.0.9-win64 C:\Users\ge69mog\Downloads\iperf-2.0.9-win64\iperf-2.0.9-win64>iperf.exe-s-u -B 127.0.0.1 -i 1 -p 60000 Server listening on UDP port 60000 Binding to local address 127.0.0.1 Receiving 1470 byte datagrams UDP buffer size: 208 KByte (default) 3] local 127.0.0.1 port 60000 connected with 127.0.0.1 port 49721 Bandwidth Jitter Lost/Total Datagrams [ ID] Interval Transfer 3] 0.0- 1.0 sec 996 KBytes 8.16 Mbits/sec 2.017 ms 166/ 860 (19%) 3] 0.00-1.00 sec 50 datagrams received out-of-order 31 1.0 - 2.0 sec 904 KBytes 7.41 Mbits/sec 2.426 ms 227/ 857 (26%) 31 1.00-2.00 sec 70 datagrams received out-of-order 31 2.0 - 3.0 sec 902 KBytes 7.39 Mbits/sec 2.148 ms 219/ 847 (26%) 31 2.00-3.00 sec 61 datagrams received out-of-order 31 3.0 - 4.0 sec 916 KBytes 7.50 Mbits/sec 1.904 ms 222/ 860 (26%) 31 3.00-4.00 sec 69 datagrams received out-of-order 31 4.0 - 5.0 sec 871 KBytes 7.14 Mbits/sec 4.137 ms 206/ 813 (25%) 31 4.00-5.00 sec 56 datagrams received out-of-order 31 5.0 - 6.0 sec 953 KBytes 7.81 Mbits/sec 4.710 ms 226/ 890 (25%) 31 5.00-6.00 sec 86 datagrams received out-of-order 31 6.0 - 7.0 sec 828 KBytes 6.79 Mbits/sec 2.786 ms 253/ 830 (30%) 31 6.00-7.00 sec 84 datagrams received out-of-order 31 7.0- 8.0 sec 843 KBytes 6.90 Mbits/sec 4.467 ms 250/ 837 (30%) 31 7.00-8.00 sec 90 datagrams received out-of-order 31 8.0 - 9.0 sec 970 KBytes 7.95 Mbits/sec 1.648 ms 200/ 876 (23%)

31 0.0-10.0 sec 8.86 MBytes 7.43 Mbits/sec 2.888 ms 2183/ 8505 (26%)

31 8.00-9.00 sec 61 datagrams received out-of-order

31 0.00-10.00 sec 689 datagrams received out-of-order

### Results - CRS Data Transmission





Figure: Illustration of the CRS signals and channel estimation coefficients used as the (x,y) pair

- A sequence of 8342 time symbols for the 200 CRS carriers were recorded
- Final matrix size of  $200 \times 8342$

### Results - INN Detection





(a) XY plot of the real parts of the input signals  $x_1$  and  $x_2$  with noise



(b) XY plot of the real parts of the INN Estimated signals  $\hat{x_1}$  and  $\hat{x_2}$ 

Figure: Detection accuracy of 22% from the INN

### Conclusion



### References I



### A Slide with a different header



Some text, possibly **bold** or highlighted.

- · Bullet points
- Second point
  - Sub-bullet

### A Slide with a different header



Some text, possibly **bold** or highlighted.

- · Bullet points
- Second point
  - Sub-bullet
- 1. First
- 2. Second
- 3. Third



Technische Universität München

## Frame with highlight boxes and alternative header

### Important Result<sup>1</sup>

The following holds:2

$$E = mc^2$$

<sup>&</sup>lt;sup>1</sup> This is a footnote in a block title.

<sup>&</sup>lt;sup>2</sup>This is a footnote in a block body.



## Frame with highlight boxes and alternative header

### Important Result<sup>1</sup>

The following holds:2

$$E = mc^2$$



Can also be used without a title. Three color types are available: block (blue), alertblock (red), and exampleblock (green). Spacing may need some manual adjustment if formulas are included at the top or bottom of blocks.

<sup>&</sup>lt;sup>1</sup> This is a footnote in a block title.

<sup>&</sup>lt;sup>2</sup>This is a footnote in a block body.

- We consider some simple formulas, e.g. max(0,1) = 1
- Complicated formula:  $h_J(y) = \sum_{K \subset N} \int_{\mathbb{R}} g_K(x,y) f_J(x) dx$
- This looks slightly weired since math fonts are smaller than text fonts.

However, this does not really affect equations.

$$h_J(y) = \sum_{K \subset N} \int_{\mathbb{R}} g_K(x, y) f_J(x) dx$$



No title on this frame.2

### Example Block

Spacing around blocks is minimal (if option frameblock is used). Extra spaces, e.g. vskip or vspace, should be used.

Text below block.

<sup>&</sup>lt;sup>2</sup>Smith et al., 2100: "Title of a paper that will be written in the future", IEEE Trans Inf. Theory

### **TUM Colors**



#### In diagrams and plots only use the following colors:

- · Black, White
- Yellow, RGB 255/180/000
- Orange, RGB 255/128/000
- Red, RGB 229/052/024
- Dark Red, RGB 202/033/063
- Blue, RGB 000/153/255
- Light Blue, RGB 065/190/255
- Green, RGB 145/172/107
- Light Green, RGB 181/202/130

### Final Slide



Add some vertical space.

Increase spacing between bullet points:

- More information can be found in the beamer user guide
- Use pdflatex to compile the source
- Have fun creating your slides!