Лекция 6

20 march

$\mathbf{0.1}$ Важный частный случай: $X = \mathbb{R}^m, \ Y = \mathbb{R}^n$

Statement. Пусть $x \in U \subset \mathbb{R}^m$, $f: U \to \mathbb{R}^n$, $f(x) = (f_1(x), \dots f_n(x))$. Тогда f дифференцируема в точке x тогда u только тогда, когда $f_1, f_2, \dots f_n$ дифференцируемы в точке x u

$$df(x) = (df_1(x), \dots df_n(x)), \quad \partial f_i(x) \in L(\mathbb{R}^m, \mathbb{R}), \ f_j \colon \mathbb{R}^m \to \mathbb{R}.$$

Доказательство. Пусть $h \in \mathbb{R}^m$. Запишем

$$df(x)h = (df_1(x)h, \dots df_n(x)h).$$

Тогда

$$f(x+h) - f(x) = (f_1(x+h) - f_1(x), \dots f_n(x+h) - f_n(x)).$$

Первое слагаемое равно df(x)h, а правая

Statement. Если n=1, то получаем просто функцию, а не вектор-функцию. Если $f: U \subset \mathbb{R}^m \to \mathbb{R}$ дифференцируема в точке x, то существуют все частные производные u

$$df(x)h = \sum_{j=1}^{m} \frac{\partial f}{\partial x_j}(x)h_j, \quad h = (h_1, \dots h_n)^T.$$

при этом

$$df(x) = \left(\frac{\partial f}{\partial x_1}\right).$$

Statement. Вернемся κ . Пусть $x \in U \subset \mathbb{R}^m$, $f(x) = (f_1(x), \dots f_n(x))$. Тогда f дифференцируема в точке x и существуют частные производные $\frac{\partial f_j}{\partial x_k}(x), \ j=1,\dots m, \ k=1,\dots n$

$$\partial f(x)h = \begin{pmatrix} df_1(x)h \\ \vdots \\ df_n(x)h \end{pmatrix}.$$

Statement. Если есть отображения $f: \mathbb{R}^m \to \mathbb{R}^n, \ g: \mathbb{R}^n \to \mathbb{R}^k, \ u$ они дифференцируемы, то $d(f \circ f)(x) = dg(f(x))df(x)$:

$$\left(\dots \quad \frac{\partial g_i \circ f}{\partial x_l}(x) \quad \dots \right) = \left(\dots \quad \frac{\partial g_i}{\partial y_j}(f(x)) \quad \dots \right) \cdot \left(\dots \quad \frac{\partial f_i}{\partial x_l}(x) \quad \dots \right).$$

Правило цепочки:

$$\frac{\partial (g_i \circ f)}{\partial x_l}(x) = \sum_{i=1}^n \frac{\partial g_i}{\partial y_i}(f(x)) \frac{\partial f_j}{\partial x_l}(x).$$

Statement.

Example 0.1.1 (вычисление частных производных). Пусть $f(x,y) = x^3 + 3xy$.

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 3y.$$

$$\frac{\partial f}{\partial y}(x,y) = 3x.$$

То есть

$$df(x,y)h = \begin{pmatrix} 3x^2 + 3y & 3x \end{pmatrix} \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}.$$

Через градиенты

grad

Statement. Если $f: \mathbb{R}^m \to R$, то частные производные можно определять формулами

$$\frac{\partial f}{\partial x_j}(x) = \lim_{t \to 0} \frac{f(x + te_j) - f(x)}{t}, \qquad e_j = \begin{pmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{pmatrix}^T.$$

(Единица стоит на *i-м* месте.) Это определение можно обобщить. Можно определить производную по направлению.

Definition 1: Производная по вектору

Пусть $f \colon X \to \mathbb{R}, \ v \in X$. Тогда

$$\frac{\partial f}{\partial v}(x) = \lim_{t \to 0} \frac{f(x + tv) - f(x)}{t}$$

— производная по вектору v или вдоль вектора v. Если $\|v\|=1$, то называют производной по направлению v.

Property (Экстремальное свойство градиента). В случае \mathbb{R}^m

$$\frac{\partial f}{\partial v}(x) = \langle \operatorname{grad} f(x), v \rangle,$$

откуда

$$\left| \frac{\partial f}{\partial v}(x) \right| \le |\operatorname{grad} f(x)| |v|.$$

Функция растет быстрее всего в направлении градиента:

$$\max_{|v|=1} \left| \frac{\partial f}{\partial v}(x) \right|.$$

$$\frac{\partial f}{\partial v}(x) = \langle \operatorname{grad} f(x), v \rangle \Longleftrightarrow \frac{\partial f}{\partial v}(x) = df(x)v.$$

$$f(x+tv) - f(x) = df(x)(tv) + o_{t\to 0}(t).$$

Тогда

$$\frac{f(x+tv) - f(x)}{t} = df(x)v + \underbrace{\frac{o(t)}{t}}_{t}.$$

0.2 Теорема о конечном приращении (Лагранжа)

Theorem 0.2.1 (Теорема о конечном приращении). Пусть $f: U \subset X \to Y$ непрерывно на $[x, x+t] \subset U$ и дифференцируемо на (x, x+h). Тогда

$$||f(x+h) - f(x)||_Y \le \sup_{\xi \in (x,x+h)} ||df(\xi)||_{L(X,Y)} \cdot ||h||_X.$$

Доказательство. Обозначим супремум $M = \sup_{\xi \in (x,x+h)} \|df(\xi)\|_{L(X,Y)} = \sup_{\Theta \in (0,1)} \|df(x,+\Theta h)\|_{L(X,Y)}$. Достаточно проверить

$$\forall [\xi', \xi''] \subsetneq (x, x + h) \colon ||f(\xi') - f(\xi'')|| \leqslant M ||\xi' - \xi''||.$$

Предположим противное:

$$\Delta_1 = [\xi_1', \xi_1''] \colon ||f(\xi_1') - f(\xi_1'')|| \geqslant (M + \varepsilon_0) ||\xi_1' - \xi_1''||, \quad \varepsilon_0 > 0.$$

Разделим отрезок пополам: $\Delta_1 = \Delta_1^1 \cup \Delta_1^2 = [\xi_1', \frac{\xi_1' + \xi_1''}{2}] \cup [\frac{\xi_1' + \xi_1''}{2}, \xi_1'']$. На одном из них обязательно выполнено прежнее неравенство.

Так можем построить последовательность $\Delta_1 \supset \Delta_2 \dots$ Пусть $\{\xi_0\} = \cap \Delta_i$. Тогда

$$f(\xi_0 + \delta) - f(\xi_0) = df(\xi_0)\delta + \alpha(\delta), \quad \frac{\|\alpha(\delta)\|}{\|\delta\|} \stackrel{\delta \to 0}{\to} 0.$$

Тогда

$$\exists \varepsilon > 0 \colon \left(\|\delta\| < \varepsilon \Longrightarrow \|f(\xi_0 + \delta) - f(\xi_0)\| \leqslant \left(M + \frac{\varepsilon_0}{2} \right) \|\delta\|, \quad \frac{\alpha(\delta)}{\|\delta\|} \stackrel{\delta \to 0}{\to} 0 \right).$$

То есть с некоторого момента все принадлежат окрестности $\exists N \colon \forall n > N \quad \Delta_n \subset B(\xi_0, \varepsilon)$.

$$||f(\xi'_n) - f(\xi''_m)|| \le + \begin{cases} ||f(\xi'_n) - f(\xi_0)|| \le \left(M + \frac{\varepsilon_0}{2}\right) ||\xi'_n - \xi_0|| \\ ||f(\xi''_n) - f(\xi_0)|| \le \left(M + \frac{\varepsilon_0}{2}\right) ||\xi''_n - \xi_0|| \end{cases} = \left(M + \frac{\varepsilon_0}{2}\right) ||\xi'_n - \xi''_n||.$$

Получаем противоречие, так как с некоторого момента утверждение неверно.

Note. В правой части можно ююю

Note. На прямой теорема Лагранжа дает существование $\xi \in (x, x + \varepsilon)$:

$$|f(x+h) - f(x)| = |f'(\xi)| \cdot |h|.$$

Но для вектор-функции на плоскости это уже может быть не верно.

Note. В \mathbb{R}^n есть доказательства, использующие наличие скалярного произведения.

Corollary. Если f из теоремы и $A \in L(X,Y)$, то

$$||f(x+h) - f(x) - Ah|| \le \sup_{\xi \in (x,x+h)} ||df(\xi - Ah)|| ||h|| = \sup_{v \in (0,1)} ||df(x+vh - Ah)|| ||h||.$$

Это теорема при g(x) = f(x) - Ax.

Corollary. Если K — выпуклый компакт в $X, f \in C^1(K, Y)$, то f — Липшицево на K.

Definition 2

Если $f\colon U\subset X\to Y$ дифференцируемо во всех точках U и $df\colon U\to L(X,Y)$ непрерывно, то говорят, что f непрерывно дифференцируемо на U и пишут $f\in C^1(U,Y)$

Note. $f: U \subset X_1 \times \ldots \times X_m \to Y$ непрерывно дифференцируемо на U тогда и только тогда, когда непрерывны все частные производные.

Theorem 0.2.2 (Признак дифференцируемости). Пусть $f: U \subset X_1 \times ... \times X_m \to Y, \ x \in U$. Предположим, что f имеет все частные дифференциалы в U и они непрерывны в точке x. Тогда f дифференцируема в точке x.

Доказательство. Докажем для m=2. Дифференциал должен выглядеть так: $Lh=\partial_{x_1}f(x)h_1+\partial_{x_2}f(x)h_2$. $x\in U\subset X_1\times X_2$.

Проверим ||f(x+h) - f(x) - Lh|| = o(h) при $h \to 0$.

$$..(x) \leqslant \underbrace{\|f(x_1 + h_1, x_2 + h_2) - f(x_1 + h_1) - \partial_{x_2} f(x_1 x_2) h_1\|}_{\leqslant \sup_{\Theta_2 \in (0,1)} \|\partial_{x_2} f(x_1 + h_1, x_2 + \Theta_2 h_2) - \partial_{x_2} f(x_1, x_2)\| \cdot \|h_2\|} + \underbrace{\|f(x_1 + h_1, x_2) - f(x_1, x_2) - \partial_{x_1} f(x) h_1\|}_{\leqslant \sup_{\Theta_1 \in (0,1)} \|\partial_{x_1} f(x_1 + \Theta_1, x_2) - \partial_{x_1} f(x)\| \cdot \|h_1\|}_{\leqslant \sup_{\Theta_1 \in (0,1)} \|\partial_{x_1} f(x_1 + \Theta_1, x_2) - \partial_{x_1} f(x)\| \cdot \|h_1\|} \leqslant .$$

Заметим, что $\|h_1\| \leqslant \|h\| \wedge \|h_2\| \leqslant \|h\|$. Тогда можем переписать так:

$$\leq \|h\| \cdot \left(\sup_{\Theta_1} + \sup_{\Theta_1}\right).$$

Каждый из этих супремумов стремиться к 0 при $h \to 0$.

Corollary. Непрерывная дифференцируцемость на открытом множестве равносильна непрерывной дифференцируемости всех частных отображений (существованию и непрерывности всех частных дифференциалов).

Theorem 0.2.3 (Теорема о конечном приращении для функций). Пусть $f: U \subset X \to \mathbb{R}$ непрерывна на $[x, x+h] \in U$ и дифференцируема на (x.x+h). Тогда существует такое $\xi \in (x, x+h)$, что

$$f(x+h) - f(x) = df(\xi)h.$$

Corollary. Если U — выпуклое множество и df(x) = 0 для любого x из U, то f(x) = const на U.

Corollary. Если U — открытое связное множество в df(x) = 0 для всех $x \in U$, то f(x) = const на U.