1 Modèles d'Aubry-André 1D

Le modèle d'Aubry-André offre une alternative au modèle d'Anderson pour l'étude de la localisation, en remplaçant le désordre aléatoire par un potentiel quasi-périodique. Ce cadre permet d'observer une transition de phase bien définie entre états étendus, localisés, et critiques, selon un paramètre de couplage λ . Cette section explore l'Hamiltonien du modèle, son équation de Schrödinger, et la dualité mathématique (dualité d'Aubry) qui en permet l'analyse exacte.

FIGURE 1 – Modèle d'Aubry-André 1D avec potentiel quasi-périodique $\epsilon_n = \lambda \cos(2\pi\beta n + \phi)$

1.1 Hamiltonien 1D d'Aubry-André

L'Hamiltonien d'Aubry-André sur une chaîne 1D de N sites est :

$$H = -t \sum_{n=1}^{N-1} \left(\left| n \right\rangle \left\langle n+1 \right| + \left| n+1 \right\rangle \left\langle n \right| \right) + \lambda \sum_{n=1}^{N} \cos(2\pi \beta n + \phi) \left| n \right\rangle \left\langle n \right|$$

où:

- t > 0: amplitude de saut entre sites voisins (on prend t = 1 pour simplifier les calculs);
- $\lambda \geq 0$: amplitude du potentiel quasi-périodique;
- $\beta \in \mathbb{R} \setminus \mathbb{Q}$: nombre irrationnel, typiquement $\beta = \frac{\sqrt{5}-1}{2}$ (nombre d'or conjugué);
- $\phi \in [0, 2\pi)$: phase du potentiel;
- n = 1, ..., N: indice de site le long de la chaîne.

Le potentiel $\lambda \cos(2\pi\beta n + \phi)$ est dit *quasi-périodique*, car la présence du facteur irrationnel β empêche toute périodicité exacte, contrairement à un cristal parfait.

1.2 Transition Analytique et Tractabilité

Le modèle d'Aubry-André présente une transition de phase à $\lambda=2t$, où les états passent d'étendus ($\lambda<2t$) à localisés ($\lambda>2t$), avec des états critiques au point $\lambda=2t$. Cette transition est analytique, grâce à la dualité Aubry, qui permet une solution exacte via la transformée de Fourier. En 1D, le modèle est particulièrement tractable car : - Le potentiel quasi-périodique simplifie les calculs par rapport au désordre aléatoire. - La dualité relie le modèle à son espace réciproque, facilitant l'analyse des exposants de Lyapunov.

1.3 Équation de Schrödinger et Matrice de Transfert

L'équation de Schrödinger $H\psi=E\psi$ donne :

$$-\psi_{n+1} - \psi_{n-1} + \lambda \cos(2\pi\beta n + \phi)\psi_n = E\psi_n$$

avec t = 1. Cette équation de récurrence peut être écrite sous forme matricielle :

$$\begin{pmatrix} \psi_{n+1} \\ \psi_n \end{pmatrix} = \begin{pmatrix} E - \lambda \cos(2\pi\beta n + \phi) & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \psi_n \\ \psi_{n-1} \end{pmatrix} = T_n \begin{pmatrix} \psi_n \\ \psi_{n-1} \end{pmatrix}$$

La matrice de transfert T_n propage l'état d'un site à l'autre. Pour N sites :

$$\begin{pmatrix} \psi_{N+1} \\ \psi_N \end{pmatrix} = M_N \begin{pmatrix} \psi_1 \\ \psi_0 \end{pmatrix}$$
, $M_N = \prod_{n=1}^N T_n$

Pour lier les états aux extrémités (gauche et droite), on impose des conditions aux limites (par exemple, ouvertes : $\psi_0 = \psi_{N+1} = 0$) ou analyse la croissance exponentielle via l'exposant de Lyapunov :

$$\lambda = \lim_{N o \infty} rac{1}{N} \mathbb{E} \left[\ln \left\| M_N \left(egin{matrix} \psi_1 \\ \psi_0 \end{matrix}
ight)
ight\|
ight]$$

1.4 Dualité Aubry et Localisation à $\lambda = 2t$

La dualité Aubry relie le modèle dans l'espace réel à son équivalent dans l'espace réciproque. Effectuons une transformée de Fourier discrète :

$$ilde{\psi}_k = rac{1}{\sqrt{N}} \sum_{n=1}^N e^{-i2\pi eta k n} \psi_n$$

L'Hamiltonien dans l'espace dual devient :

$$\tilde{H} = -t \sum_{k} (|k\rangle \langle k+1| + |k+1\rangle \langle k|) + \frac{\lambda}{2} \sum_{k} \cos(2\pi n + \phi) |k\rangle \langle k|$$

L'équation de Schrödinger duale est :

$$-\tilde{\psi}_{k+1} - \tilde{\psi}_{k-1} + \frac{\lambda}{2}\cos(2\pi n + \phi)\tilde{\psi}_k = \frac{E}{t}\tilde{\psi}_k$$

Au point autodual $\lambda=2t$, les Hamiltoniens réel et dual sont identiques (à une échelle près), indiquant un état critique. Pour $\lambda=2t$, l'exposant de Lyapunov est :

$$\lambda = \max\left(0, \ln\left(\frac{\lambda}{2t}\right)\right) = 0$$

impliquant $\xi = \infty$, mais les états sont critiques, ni étendus ni localisés, avec une structure multifractale.

La formule de Jitomirskaya donne l'exposant de Lyapunov exact :

$$\lambda(E) = \ln \left| \frac{\lambda}{2t} \right|, \quad \text{pour } |E| < |\lambda - 2t|$$

Pour $\lambda > 2t$, $\lambda > 0$, confirmant la localisation.

1.5 Inverse Participation Ratio (IPR)

L'indice de participation inverse (IPR), défini par

$$IPR = \sum_{n} |\psi_n|^4$$

quantifie le degré de localisation des états propres (voir section $\ref{eq:configuration}$). Son comportement dépend du paramètre λ , selon les régimes suivants :

— **Régime étendu** ($\lambda < 2t$): les états sont délocalisés, avec $|\psi_n|^2 \sim \frac{1}{N}$. Par conséquent,

$${\rm IPR} \sim \frac{1}{N} \longrightarrow 0 \quad {\rm lorsque} \; N \rightarrow \infty$$

— **Point critique** ($\lambda=2t$): les états présentent une structure multifractale. L'IPR suit alors une loi de puissance :

IPR
$$\sim N^{-\alpha}$$
, avec $0 < \alpha < 1$

où l'exposant α dépend du paramètre β .

— **Régime localisé** ($\lambda > 2t$): les états sont fortement localisés, avec $|\psi_n|^2 \approx 1$ sur un seul site. Ainsi,

IPR
$$\sim 1$$

1.6 Résumé des Résultats 1D

- $\lambda < 2t$: États étendus, $\lambda = 0$, $\xi = \infty$, IPR $\sim \frac{1}{N}$.
- $\lambda=2t$: États critiques, $\lambda=0$, IPR $\sim N^{-\alpha}$, multifractalité.
- $\lambda > 2t$: États localisés, $\lambda = \ln\left(\frac{\lambda}{2t}\right)$, $\xi = \frac{1}{\lambda}$, IPR ~ 1 .

1.7 Statistique des Niveaux et Multifractalité

La statistique des niveaux d'énergie fournit une signature du caractère étendu, critique ou localisé des états propres (voir section $\ref{eq:condition}$). En particulier, la distribution des espacements normalisés P(s) évolue selon le régime :

— **Régime étendu** ($\lambda < 2t$) : le spectre est quasi-régulier, les niveaux sont fortement corrélés, et la distribution est très piquée autour de s=1 :

$$P(s) \approx \delta(s-1)$$

- **Point critique** ($\lambda=2t$): les états sont multifractals et la distribution présente un comportement intermédiaire entre Wigner-Dyson et Poisson, reflétant des corrélations non triviales entre les niveaux.
- **Régime localisé** ($\lambda > 2t$) : les niveaux sont statistiquement indépendants, ce qui donne une distribution de Poisson :

$$P(s) = e^{-s}$$

Pour $\lambda > 2t$, considérons une matrice généralisée H de taille $N \times N$:

$$H_{n,n} = \lambda \cos(2\pi\beta n + \phi), \quad H_{n,n+1} = H_{n+1,n} = -1$$

Les valeurs propres E_k sont localisées, avec des espacements aléatoires suivant $P(s)=e^{-s}$.

La multifractalité des états critiques ($\lambda=2t$) est analysée via les moments généralisés :

$$Z_q = \sum_n |\psi_n|^{2q}$$

La dimension multifractale \mathcal{D}_q est définie par :

$$Z_q \sim N^{-(q-1)D_q}$$

Pour $\lambda=2t,$ $D_q<1,$ reflétant une structure fractale. Par exemple, pour l'IPR (q=2) :

IPR =
$$Z_2 \sim N^{-D_2}$$
, $D_2 \approx 0.5$ pour β typique