Theorem(Perron) Let $A \in M_{n \times n}(\mathbb{R}), A > 0$.

- 1. $\rho(A) > 0, \exists v \in \mathbb{R}^n, v > 0, Av = \rho(A)v.$
- 2. If $\mu \in \mathbb{C}$ is an eigenvalue, $\mu \neq \rho(A)$, then $|\mu| < \rho(A)$.
- 3. The $\rho(A)$ -eigenspace has a dimension of 1.
- 4. $\rho(A)$ is a single root of Char_A.

Proof (1)(2): Done.

- (3) Suppose $v,v'\in\mathbb{R}, Av=\rho(A)v, Av'=\rho(A)v'$ and v>0. We show that $v'\in\mathbb{R}v$ by contradiction: If not, we may choose some $\varepsilon>0$, s.t. $v-\varepsilon v'\geq 0, \exists i$ s.t. $(v-\varepsilon v')_i>0$. Now $v-\varepsilon v'=\rho(A)^{-1}\underbrace{A\ v-\varepsilon v'}_{>0\ \geq 0,\neq 0}>0$, which contradicts the assumption that $v-\varepsilon v'>0$.
- (4) Use our knowledge of direct sum and characteristic polynomials.

The case n=1 is trivial, so we may assume that $n \ge 2$. Fix v > 0, $Av = \rho(A)v$. Since transposition doesn't change eigenvalues, $\rho(A) = \rho(A^T) \Longrightarrow \exists u \in \mathbb{R}^n, u > 0, A^Tu = \rho(A)u$.

 $\langle u \rangle = \mathbb{R}u$, and $\langle u \rangle^{\perp}$ is A-invariant since $u^T A x = (A^T u)^T x = \rho(A) u x = 0$. From $u \neq 0$ we know that $\dim \langle u \rangle^{\perp} = n - 1$, and that $v \notin \langle u \rangle^{\perp}$ since v, u > 0. Hence by comparing dimensions we reach

$$\mathbb{R}^n = \langle v \rangle \oplus \langle u \rangle^{\perp},$$

both summands A-invariant.

Recall that under such conditions,

$$\operatorname{Char}_A = \underbrace{\operatorname{Char}_{A|_{\langle v \rangle}}}_{X - \rho(A)} \operatorname{Char}_{A|_{\langle u \rangle^{\perp}}}.$$

If $(X-\rho(A))^2 \mid \operatorname{Char}_A$, then $X-\rho(A) \mid \operatorname{Char}_{A|_{\langle u \rangle^{\perp}}}$, which infers $\operatorname{Char}_{A_{\langle u \rangle^{\perp}}}(\rho(A)) = 0$. Hence we can get a $\rho(A)$ -eigenvalue v' in $\langle u \rangle^{\perp}, v' \notin \mathbb{R}v$, contradicting (3).

§ Complex inner product / Hermitian inner product

Recall Real IPS = \mathbb{R} -vector space V + symm. bilinear form (|) : $V \times V \to \mathbb{R}$, positive definite.

Idea complex IPS = \mathbb{C} -vector space V + some form (|) : $V \times V \to \mathbb{C}$, positive definite.

The bilinear form we used in real IPS won't work here. To make our previous idea actually work, we introduce a new kind of "linear map":

Definition Let $T: V \to W$ be a map between \mathbb{C} -vector spaces. If

$$T(v_1+v_2)=Tv_1+Tv_2,$$

$$T(zv)=\overline{z}Tv, \qquad z\in\mathbb{C},$$

then we say T is **semi-linear**. By definition T is \mathbb{R} -linear.

 $\begin{array}{ll} \textbf{Definition} & \text{Complex IPS} = \mathbb{C}\text{-vector space } V + \text{map } (|): V \times V \rightarrow \mathbb{C}, \text{linear in } v_2, \text{semi-linear in } v_1, \overline{(v_2|v_1)} = (v_1|v_2), \text{positive definite.} \end{array}$

In many textbooks: linear in v_1 , semi-linear in v_2 .

Construction Given a \mathbb{C} -vs. V. Consider the same set V and the same $+: V \times V \to V$, but with

$$\bigcirc: \mathbb{C} \times V \to V$$
$$(z, v) \mapsto \overline{z}v$$

 $\Longrightarrow (V, +, \odot)$ is a \mathbb{C} -vs. Denote it as \overline{V} .

Observation

- 1. $\overline{V} = V$ since conjugating two times returns the original complex number.
- 2. Given V_1, V_2 , define $V_1 \oplus V_2 = \{(v_1, v_2) | v_1 \in V_1, v_2 \in V_2\}$, then $\overline{V_1} \oplus \overline{V_2} = \overline{V_1 \oplus V_2}$.
- 3. $\overline{\mathbb{C}} \simeq \mathbb{C}$ by $z \mapsto \overline{z} \implies \overline{\mathbb{C}^n} \simeq \mathbb{C}^n$ by $(z_i) \mapsto (\overline{z_i})$.
- 4. Semi-linear map $V \to W \Longrightarrow \text{linear map } \overline{V} \to W \text{ or } V \to \overline{W}$. Thus $\text{Hom}(\overline{V},W) = \text{Hom}(V,\overline{W})$ as sets (but not as \mathbb{C} -vs. !)
- 5. $\overline{\operatorname{Hom}(V_1, V_2)} = \operatorname{Hom}(\overline{V_1}, \overline{V_2})$ as \mathbb{C} -vs.

 $\begin{array}{ll} \textbf{Proof} & \text{Linear map } V_1 \to V_2 = \text{linear map } \overline{V_1} \to \overline{V_2}, \text{ i.e. } \operatorname{Hom}(V_1,V_2) = \operatorname{Hom}\left(\overline{V_1},\overline{V_2}\right) \text{ as sets.} \\ \operatorname{Let} T \in \operatorname{Hom}(V_1,V_2), z \in \mathbb{C}, \end{array}$

$$\underbrace{(zT)}_{\mathrm{Hom}(V_1,V_2)}(v_1) = z\underbrace{Tv_1}_{V_2} = \underbrace{\overline{z} \odot Tv_1}_{\overline{V_2}} = \underbrace{(\overline{z}T)}_{\mathrm{Hom}\left(\overline{V_1},\overline{V_2}\right)}(v_1)$$

 $\Longrightarrow \overline{\mathrm{Hom}(V_1,V_2)} = \mathrm{Hom}\left(\overline{V_1},\overline{V_2}\right)$ as $\mathbb C$ -vector spaces. \blacksquare

Recall The dual space of V is $\text{Hom}(V,\mathbb{C}) =: V^{\vee}$. Take $W = \mathbb{C}$ to get

$$\overline{V}^\vee = \operatorname{Hom} \left(\overline{V}, \mathbb{C} \right) = \overline{\operatorname{Hom} \left(V, \overline{\mathbb{C}} \right)} \simeq \overline{\operatorname{Hom} (V, \mathbb{C})} \simeq \overline{V^\vee},$$

given by $\lambda \leftrightarrow \overline{\lambda} : w \to \overline{\lambda(w)}$.

Definition Let V, W, X be \mathbb{C} -vs, $B: V \times W \to X$. We say map B is **sesquilinear** if B is semi-linear in V and linear in W. All sesquilinear maps $V \times W \to X$ form a \mathbb{C} -vs. by

$$(B_1+B_2)(v,w) = B_1(v,w) + B_2(v,w), \qquad (zB)(v,w) = zB(v,w).$$

Proof by checking directly or note that sesquilinear map $V \times W \to X$ = bilinear map $\overline{V} \times W \to X$.

Special case: $X = \mathbb{C}$ to get **sesquilinear forms**.

Definition Let $B: V \times W \to \mathbb{C}$ be sesquilinear.

- Left radical of $B := \{v \in V \mid B(v, \cdot) = 0\},\$
- Right radical of $B := \{ w \in W \mid B(\cdot, w) = 0 \}.$

They are subspaces of V, W respectively.

When dim V, dim $W < \infty$, if left radical = $\{0\}$ = right radical, then we say B is **non-degenerate**.

Fact Assume dim $< \infty$. If non-degenerate $B: V \times W \to \mathbb{C}$, sesquilinear, then dim $V = \dim W$. When dim $V = \dim W < \infty$, B non-degenerate \iff left radical = $\{0\} \iff$ right radical = $\{0\}$.

Proof Copy the arguments for bilinear case, or note that sesquilinear $B:V\times W\to \mathbb{C}$ = bilinear $\overline{V}\times W\to \mathbb{C}$, and the notion of radicals remain the same. Now everything reduces to the known case of bilinear forms.

This method also implies that: if B is non-degenerate, then $\varphi:W\simeq \overline{V}^\vee,w\mapsto B(\cdot,w)$ and $\psi:\overline{V}\simeq W^\vee$, both isomorphisms of $\mathbb C$ -vs.

Sesquilinear forms and matrices

Take $V = \mathbb{C}^m$, $W = \mathbb{C}^n$ (spaces of column vectors).

Proposition

1.

$$\begin{split} M_{m\times n}(\mathbb{C}) &\simeq \{\text{sesquilinear forms } \mathbb{C}^m \times \mathbb{C}^n \to \mathbb{C}\} \\ A &\mapsto B(v,w) = v^\dagger A w \end{split}$$

where $C^{\dagger} = \overline{C^T}$ for some matrix C.

2.

$$B\left(\sum_i x_i e_i, \sum_j y_j e_j\right) = \sum_{i,j} a_{ij} \overline{x_i} y_j.$$

3. B non-degenerate \iff A invertible.

Proof

 $\text{RHS} = \left\{ \text{bilinear forms } \overline{\mathbb{C}^m} \times \mathbb{C}^n \to \mathbb{C} \right\} \simeq \left\{ \text{bilinear forms } \mathbb{C}^m \times \mathbb{C}^n \to \mathbb{C} \right\} \simeq M_{m \times n}(\mathbb{C}). \text{ The description of } B\left(\sum_i x_i e_i, \sum_j y_j e_j\right) \text{ follows in the same way by expanding}$

$$B\left(\sum_i x_i e_i, \sum_j y_j e_j\right) = (\overline{x_1} \ \dots \ \overline{x_m}) A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

As for the relation between non-degenerate and invertible, can direct check or reduce to the bilinear case. ■

Remark If you insist sesquilinear forms are semi-linear in w, then must take

$$B(v,w) = v^T A \overline{w} = \sum_{ij} a_{ij} x_i \overline{y_j}.$$

Definition Let V be a \mathbb{C} -vs., $\varepsilon \in \{\pm 1\}$, $B: V \times V \to \mathbb{C}$, sesquilinear. We say B is ε -Hermitian if $\overline{B(w,v)} = \varepsilon B(v,w)$, $\forall v,w \in V$. Specifically, $\varepsilon = 1$ is called **Hermitian**, and $\varepsilon = -1$ is called **skew/anti-Hermitian**.

Note that if $V = \mathbb{C}^n$, and $B \leftrightarrow A \in M_{n \times n}(\mathbb{C})$, then

$$\underbrace{(v,w) \mapsto \overline{B(w,v)}}_{\text{corresponds to } A^\dagger} = \underbrace{\overline{w^\dagger A v}}_{\in \mathbb{C}} = \left(w^\dagger A v\right)^\dagger = v^\dagger A^\dagger w$$

So B is ε -Hermitian $\longleftrightarrow A$ is ε -Hermitian in the sense $A^{\dagger} = \varepsilon A$.