

Reinforcement Learning: An Introduction

强化学习导论第二版习题解答

作者: 吕昀琏 组织: UESTC

时间: March 24, 2020

目录

1	介绍	1
	1.1	强化学习
	1.2	例子
	1.3	强化学习的要素
	1.4	局限和范围
	1.5	拓展例子: 井字游戏 1
	1.6	总结
	1.7	强化学习的早期历史 2
第	一部	分 表格解决方法
2	多臂	赌博机 4
	2.1	k 臂赌博机问题
	2.2	动作值方法
	2.3	10 臂试验
	2.4	渐增实现
	2.5	非平稳问题
	2.6	乐观初始值

第一章 介绍

- 1.1 强化学习
- 1.2 例子
- 1.3 强化学习的要素
- 1.4 局限和范围
- 1.5 拓展例子: 井字游戏
- ▲ **练习 1.1**: *Self-Play* 假设上面描述的强化学习算法不是与随机对手对战,而是与自身对战,双方都在学习。你认为在这种情况下会发生什么?它会学习一个不同的策略来选择动作吗?

解 当与自身对战时:

- 比起固定的对手,与自身对战将学习不同的策略,因为在这种情况下,对手也会有 所变化。
- 由于对手也在不断变化,因此可能无法学习最佳策略。
- 可能卡在循环中。因为与自身博弈,自身策略和对手策略都在优化。
- 策略可以保持静态, 因为就平均而言, 通过每次迭代它们处于平局。
- ▲ **练习 1.2**: Symmetries 许多井字游戏的位置看起来不同,但由于对称性实际上是一样的。我们如何修改上述学习过程来利用这一点?这种变化会在哪些方面改善学习过程?现在再想想。假设对手没有利用对称性。那样的话,我们应该吗?那么,对称相等的位置必然具有相同的值,这是真的吗?

解 我们可以将状态标记为对称的唯一状态,这样我们的搜索空间更小,这样我们就可以更好地估计最佳玩法。

如果我们面对的对手在比赛时没有考虑对称性,那么我们也不应将状态标记为相同。 因为对手也是环境的一部分,而环境给出的这些状态并不一致。

△ 练习 1.3: Greedy Play 假设强化学习玩家是贪婪的,也就是说,他总是做出让他达到最佳位置的移动。它会比不贪婪的玩家学得更好或更差吗?可能会发生什么问题? □ 解贪婪的玩家不会探索,因此通常会比非贪婪的玩家表现更差。

如果贪婪的玩家对状态的价值有一个完美的估计,那它将更好。

△ **练习 1.4**: Learning from Exploration 假设学习更新发生在所有移动之后,包括探索移动。 如果随时间逐步减小步长参数(而不是探索的趋势),则状态值将收敛到一组不同的概率。 当我们从或者不从探索性动作中学习时对应的两组概率是什么(概念上)? 假设我们

1.6 总结

确实在继续进行探索移动,那么哪一组概率可能更好学习?哪个会带来更多胜利? □ 解如果我们不从探索性动作中学习,那么所学到的状态概率将是随机的,因为我们不会更新在给定状态下采取给定动作时会发生的情况。

如果我们从探索性动作中进行学习,那么我们的极限概率应该是状态和动作选择的期望分布。

显然,由于玩家更好地理解了正在玩的"游戏",因此对概率密度的更全面的了解应该会带来更好的玩法。

▲ 练习 1.5: Other Improvements 你还能想出其他方法来提高强化学习玩家吗? 你能想出更好的办法来解决所提出的井字游戏问题吗?

解一种可能的方法是持有已保存的玩法库。例如,当在一组已知状态中,始终执行库中所对应的移动。这有点像国际象棋游戏,其中有很多"开场"位置被专家玩家认为是好的。这可以加快整个学习过程,或至少改善强化学习玩家的初期发挥。

由于井字游戏是如此简单,我们可以使用递归解决此问题,并计算所有可能的对手移动,并在每一步中选择能最大化我们获胜机会的移动。

1.6 总结

1.7 强化学习的早期历史

第一部分 表格解决方法

第二章 多臂赌博机

2.1 k 臂赌博机问题

2.2 动作值方法

练习 2.1 在 ε-greedy 动作选择中,对于两个动作和 $\varepsilon = 0.5$ 的情况,选择贪婪动作的概率 是多少?

解 设动作集合中总共具有 n 个动作。在 ε -greedy 方法中,agent 有 ε 的概率机会从动作集合中随机选择,有 $1-\varepsilon$ 的概率机会选择贪婪动作。已知 $\varepsilon=0.5$ 和 n=2,那么选择贪婪动作的概率为:

$$\frac{1}{n} \times \varepsilon + (1 - \varepsilon) = \frac{1}{2} \times 0.5 + (1 - 0.5) = 0.75$$

2.3 10 臂试验

练习 2.2: Bandit example 考虑一个具有 k = 4 个动作的 k 臂赌博机问题,分别表示为 1、 2、3 和 4。考虑对该问题应用赌博机算法,该算法使用 ε -greedy 动作选择,样本平均动作值估计和对于所有 a, $Q_1(a) = 0$ 。假设动作和奖励的初始序列为 $A_1 = 1$, $R_1 = -1$, $A_2 = 2$, $R_2 = 1$, $A_3 = 2$, $R_3 = -2$, $A_4 = 2$, $R_4 = 2$, $R_5 = 3$, $R_5 = 0$ 。在某些时间步上, ε 情况可能已经发生,导致随机选择一个动作。这肯定发生在哪些时间步?在哪些时间步这可能已经发生?

解 根据题意列出每一步的动作值,已选择的动作,和选择该动作的原因如下:

时间步	动作值	已选择的动作	选择原因	原因说明
1	0 0 0 0	1	贪婪或随机	所有动作值相等,都为0
2	-1 0 0 0	2	贪婪或随机	2、3、4的动作值相等
3	-1 1 0 0	2	贪婪	2的动作值最大
4	-1 -1/2 0 0	2	随机	2的动作值最小
5	-1 1/3 0 0	3	随机	2的动作值最大

由表可知, ε 情况肯定在 A_4 和 A_5 发生, 可能在 A_1 和 A_2 发生。

▲ 练习 2.3 在图 2.2 所示的比较中,就累积奖励和选择最佳动作的概率而言,哪种方法在长期内表现最好?它会好多少?量化地表达你的答案。

2.4 渐增实现 - 5-

 $\mathbf{m} \varepsilon = 0.01$ 将有更好的表现,因为在两种情况下,当 $t \to \infty$ 时,我们都有 $Q_t \to q_*$ 。因此,在这种情况下,总奖励和选择最佳行动的可能性将比 $\varepsilon = 0.1$ 大 10 倍。

2.4 渐增实现

2.5 非平稳问题

练习 2.4 如果步长参数 α_n 不恒定,则估计值 Q_n 是先前接收的奖励的加权平均值,其权重与 (2.6) 给出的权重不同。就步长参数的序列而言,对于一般情况,类似于 (2.6),每个先前奖励的权重是多少?

解 推导过程与 (2.6) 类似:

$$Q_{n+1} = Q_n + \alpha_n [R_n - Q_n]$$

$$= \alpha_n R_n + (1 - \alpha_n) Q_n$$

$$= \alpha_n R_n + (1 - \alpha_n) [\alpha_{n-1} R_{n-1} + (1 - \alpha_{n-1}) Q_{n-1}]$$

$$= \alpha_n R_n + (1 - \alpha_n) \alpha_{n-1} R_{n-1} + (1 - \alpha_n) (1 - \alpha_{n-1}) Q_{n-1}$$

$$= \alpha_n R_n + (1 - \alpha_n) \alpha_{n-1} R_{n-1} + (1 - \alpha_n) (1 - \alpha_{n-1}) \alpha_{n-2} R_{n-2} + \dots + (1 - \alpha_n) (1 - \alpha_{n-1}) (1 - \alpha_{n-2}) \dots (1 - \alpha_2) (1 - \alpha_1) Q_1$$

$$= \left(\prod_{i=1}^n (1 - \alpha_i) \right) Q_1 + \sum_{i=1}^n \alpha_i R_i \prod_{k=i+1}^n (1 - \alpha_k)$$

练习 2.5(编程)设计并进行实验,以证明样本平均方法对于解决非平稳问题的困难。使用 10 臂试验的修改版本,其中起初所有 $q_*(a)$ 均相等,然后进行独立的随机游走(比如在每一步对所有 $q_*(a)$ 加上均值为零且标准差为 0.01 的正态分布增量)。绘制类似图**??**所示的图,为使用样本平均值进行增量计算的动作值方法,和另一使用恒定步长参数 $\alpha=0.1$ 的动作值方法去准备图。使用 $\varepsilon=0.1$ 和更长的运行时间,比如 10,000 步。 \square **解** 见 exercise-programming/exercise2.5.py。

2.6 乐观初始值

△ 练习 2.6: Mysterious Spikes 图 2.3 中显示的结果应该是相当可靠的,因为它们是 2000 多个单独的、随机选择的 10 臂赌博机任务的平均值。那么,为什么乐观方法的曲线的早期部分会有振荡和尖峰呢?换句话说,是什么让这种方法在特定的早期步骤上表现得更好或更差呢?

解 在步骤 10 之后的某个时刻, agent 将找到最优值。然后它将贪婪地选择此值。小步长参数(相对于初始值5较小)意味着最优值的估计值将朝着其真实值缓慢收敛。

该真实值可能小于 5。这意味着,由于步长较小,其中一个次优动作的值仍接近 5。 因此,在某个时刻,agent 又开始次优动作。

▲ 练习 2.7: Unbiased Constant-Step-Size Trick 在本章的大部分内容中,我们使用样本平均来估计动作值,因为样本平均不会产生恒定步长所产生的初始偏差(参见导致(2.6)的

2.6 乐观初始值 -6-

分析)。然而,样本平均并不是一个完全令人满意的解决方案,因为它们在非平稳问题上的表现可能很差。是否有可能避免固定步长的偏差,同时保持它们在非平稳问题上的优势?一种方法是使用步长为

$$\beta_n \doteq \alpha/\bar{o}_n,\tag{2.1}$$

来处理特定动作的第 n 次奖励,其中 $\alpha > 0$ 是常规的恒定步长,而 \bar{o}_n 是从 0 开始的跟踪:

$$\bar{o}_n \doteq \bar{o}_{n-1} + \alpha (1 - \bar{o}_{n-1}), \quad \forall \exists \exists n \geq 0, \quad \bar{o}_0 \doteq 0.$$
 (2.2)

进行类似(2.6)中的分析,表明Q值是没有初始偏差的指数近期加权平均。

解 考虑练习 2.4 的答案。由于 $\beta_1 = 1$,因此对于 k > 1, Q_k 与 Q_1 无关。现在有迹象表明,随着我们往前看,剩余总和中的权重会降低。即

$$\omega_i = \beta_i \prod_{k=i+1}^n (1 - \beta_k)$$

对于固定的n随i而增加。为此、观测到

$$\frac{\omega_{i+1}}{\omega_i} = \frac{\beta_{i+1}}{\beta_i (1 - \beta_{i+1})} = \frac{1}{1 - \alpha} > 1$$

如果假定 $\alpha < 1$ 时。如果 $\alpha = 1$,那么对于 $\forall t$, $\beta_t = 1$ 。