Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 6 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

trivial;)

Aufgabe 2

(i) Homomorphismus:

$$h: \mathbb{N} \to \mathbb{Z}$$
$$n \mapsto n$$

Beweis für Richtigkeit des Homomorphismus:

Konstanten:

$$h(0^{\mathcal{N}}) = 0^{\mathcal{N}} = 0$$

$$h(1^{\mathcal{N}}) = 1^{\mathcal{N}} = 1$$

Operatoren:

Sei $n_1, n_2 \in \mathbb{N}$:

$$h(+^{\mathcal{N}}(n_1, n_2)) = h(n_1 + n_2) = n_1 + n_2 = h(n_1) + h(n_2) = +^{\mathcal{Z}}(h(n_1), h(n_2))$$

$$h(\cdot^{\mathcal{N}}(n_1, n_2)) = h(n_1 \cdot n_2) = n_1 \cdot n_2 = h(n_1) \cdot h(n_2) = \cdot^{\mathcal{Z}}(h(n_1), h(n_2))$$

Somit ist h ein gültiger Homomorphismus von N nach Z.

(i)
Nach der Definition des Homomorphismus, müssen die Konstantensymbole wieder auf sich abgebildet werden. Somit gilt:

$$h(0^{\mathcal{N}}) = 0^{\mathcal{Z}} = 0$$

$$h(1^{\mathcal{N}}) = 1^{\mathcal{Z}} = 1$$

Des Weiteren gilt nach der Def. des Homomorphismus:

$$h(+^{N}(z_1, z_2)) = +^{Z}(h(z_1), h(z_2)) \text{ mit } z_1, z_2 \in \mathbb{Z}$$

Da h(1) = 1 gilt, muss auch folgendes gelten:

$$h(+^{N}(1,1)) = +^{Z}(h(1), h(1))$$

 $\Rightarrow h(2) = +^{Z}(1,1) = 2$

Ebenso gilt:

$$h(+^{N}(1,2)) = +^{Z}(h(1),h(2))$$

 $\Rightarrow h(3) = +^{Z}(1,2) = 3$

Das kann man jetzt für alle Zahlen von 0 bis ∞ fortführen, sodass jedes $n \in \mathbb{Z}$ mit $n \geq 0$ auf n abgebildet wird. Folglich bleiben aber keine Zahlen mehr "übrig", auf die die negativen Zahlen aus \mathbb{Z} abgebildet werden könnten. Ein Homomorphismus ist also nicht möglich von \mathbb{Z} nach \mathbb{N} .

1

Aufgabe 3

Damit $\mathfrak{B}_{h(A)}\subseteq\mathfrak{B}$ gilt, müssen folgende Bedingungen erfüllt sein:

- (i) Das Bild von $h(A) \subseteq B$
- (ii) Für alle Operatoren $op_{h(A)}^{\mathfrak{B}}$ der Substruktur $\mathfrak{B}_{h(A)}$, muss gelten, dass sie abgeschlossen bzgl. des Bildes von h(A) sind.

Beweis für (i):

Der Homomorphismus h ist als Funktion folgendermaßen definiert:

$$h: A \rightarrow B$$

Daraus folgt sofort, dass $h(A) \subseteq B$ ist.

Beweis für (ii):

Da h ein Homomorphismus von A nach B ist, muss gelten mit n als Stelligkeit des Operators:

$$(*) \forall a_1 \forall a_2 ... \forall a_n \ h(op^{\mathfrak{A}}(a_1, a_2, ..., a_n)) = op^{\mathfrak{B}}(h(a_1), h(a_2), ..., h(a_n)) = op^{\mathfrak{B}}_{h(A)}(h(a_1), h(a_2), ..., h(a_n))$$

Wären die Operatoren nicht abgeschlossen bzgl. des Bildes von h, dann würde folgendes gelten:

$$\exists a_1 \ \exists a_2 ... \exists a_n \ (op_{h(A)}^{\mathfrak{B}}(h(a_1), h(a_2), ..., h(a_n))) \notin h(A)$$

Nach (*) gilt aber:

$$\forall a_1 \ \forall a_2... \forall a_n \ (h(op^{\mathfrak{A}}(a_1, a_2, ..., a_n)) = op^{\mathfrak{B}}_{h(A)}(h(a_1), h(a_2), ..., h(a_n)))$$
 mit

$$h(op^{\mathfrak{A}}(a_1,a_2,...,a_n))\in h(A)\Leftrightarrow op^{\mathfrak{B}}_{h(A)}(h(a_1),h(a_2),...,h(a_n))\in h(A)$$

was ein Widerspruch zur Annahme darstellt.

Folglich müssen die Operatoren abgeschlossen sein.

Da (i) und (ii) gilt, induziert das Bild h(A) in $\mathfrak B$ ein Substruktur $\mathfrak B_{h(A)}\subseteq \mathfrak B$

Aufgabe 4

Struktur:

$$\mathcal{N} = (\mathbb{N}, <^{\mathbb{N}})$$

$$n_1 <^{\mathcal{N}} n_2$$
 gdw. $(n_1 \mod 2 < n_2 \mod 2)$ oder $(n_1 = n_2 \mod n_1 < n_2)$

Damit \mathcal{N} und \mathcal{M} isomorph sind, muss es eine Bijektion zwischen $\{0,1\} \times \mathbb{N}$ und \mathbb{N} geben.

Isomorphismus:

$$b: \mathbb{N} \to \{0,1\} \times \mathbb{N}$$

$$n \to (n \bmod 2, \lfloor \frac{n}{2} \rfloor)$$

Beweis der Richtigkeit von b:

Damit b eine Bijektion ist, muss b und seine Inverse die Eigenschaften einer Funktion erfüllen, nämlich Linkstotalität und Injektivität.

b ist offensichtlich linkstotal. b ist auch injektiv, da Folgendes gilt:

Seien $n_1, n_2 \in \mathbb{N}$ mit $n_1 \neq n_2$:

$$b(n_1) = (n_1 \mod 2, n_1) \neq (n_2 \mod 2, n_2) = b(n_2)$$

gilt wegen $n_1 \neq n_2$.

Die Inverse von b:

$$b^{-1}: \{0,1\} \times \mathbb{N} \to \mathbb{N}$$

$$(k,n) \rightarrow \begin{cases} 2 \cdot n, & k = 0 \\ 2 \cdot n + 1, & sonst \end{cases}$$

 b^{-1} ist offensichtlich linkstotal.

 b^{-1} ist auch injektiv, da Folgendes gilt:

Seien $(k_1, n_1), (k_2, n_2) \in \{0, 1\} \times \mathbb{N}$ mit $(k_1, n_1) \neq (k_2, n_2)$:

Fall 1
$$k_1 = 0 \neq 1 = k_2$$
: $b^{-1}(k_1, n_1) = 2 \cdot n_1 \neq 2 \cdot n_2 + 1 = b^{-1}(k_1, n_2)$

Fall 2
$$k_1 = 1 \neq 0 = k_2$$
: analog zu Fall 1

Fall 3
$$n_1 \neq n_2$$
 und: $b^{-1}(k_1, n_1) = 2 \cdot n_1 \neq 2 \cdot n_2 = b^{-1}(k_2, n_2)$ $k_1 = k_2 = 0$

Fall 4
$$n_1 \neq n_2$$
 und: $b^{-1}(k_1, n_1) = 2 \cdot n_1 + 1 \neq 2 \cdot n_2 + 1 = b^{-1}(k_2, n_2)$ $k_1 = k_2 = 1$

Die Inverse b^{-1} ist also injektiv.

b ist damit eine Bijektion.

Des Weiteren muss b die Anforderungen an einen Isomorphismus erfüllen:

Konstanten:

Es gibt keine Konstanten, also ist hier nichts zu beweisen.

2-stelliges Relationssymbol <:

$$\forall a_1 \forall a_2 \ ((a_1, a_2) \in <^N \\ \Leftrightarrow (a_1 \bmod 2 < a_2 \bmod 2) \lor (a_1 = a_2 \land a_1 < a_2) \\ \Leftrightarrow (b(a_1), b(a_2)) \in <^M)$$

Damit wurde bewiesen, dass b ein korrekter Isomorphismus zwischen ${\mathcal N}$ und ${\mathcal M}$ ist.