6.002 电路与电子学

阻抗模型

复习

■正弦波稳态分析(SSS) 阅读 14.1, 14.2 节

- ■注意电路的稳态,只须关心 v_P随 v_P的
- ■注意正弦曲线。
- ■正弦波稳态(SSS) 阅读 14.1, 14.2 节

阅读: 课件的 14.3 节

复习

 V_P 包含了我们需要的所有信息 $|V_P|$ 输出余弦的幅值 $\angle V_P$ 相角

3

复习

$$\mathbf{v}_O = |V_p| \cos(\omega t + \angle V_p)$$

$$\frac{V_p}{V_i} = \frac{1}{1 + j\omega RC} = H(j\omega)$$

是否有一个更简单的获得 V_P 的方法呢?

$$V_p = \frac{V_i}{1 + j\omega RC}$$

分子分母同时除以 $j\omega C$.

$$V_{p} = V_{i} \frac{\frac{1}{j\omega C}}{\frac{1}{j\omega C} + R}$$

看起来象是分压器关系

$$V_p = V_i \frac{Z_C}{Z_C + R}$$

让我们进一步研究

阻抗模型

是否有一个更简单的获得V_P的方法呢?

阻抗模型

换句话说

对 $V_c e^{j\omega t}$ 形式的驱动, V_c 复数的模和 I_c 复数的模之间的代数关系式满足欧姆定律。

重新回到 RC 电路的例子

阻抗模型

$$V_{c} = \frac{\frac{1}{j\omega C}}{\frac{1}{j\omega C} + R} V_{i} = \frac{Z_{C}}{Z_{C} + Z_{R}} V_{i}$$

$$V_c = \frac{1}{1 + j\omega RC} V_i$$
 完成!

我们所有的老朋友都可以拿来用了! KCL 定律, KVL 定律, 叠加定理······

6.002 2000 年秋 第十七讲

另一个例子,请回忆 RLC 串联电路:

记住,我们只研究稳态正弦波的响应

我们下一讲将更详细的研究这个式子以及其它函数式。

大图

大图

大图

不用判定电路元件,复杂的数学运算化简

回到

$$\frac{V_r}{V_i} = \frac{j\omega RC}{1 + j\omega RC - \omega^2 LC} \quad V_i \stackrel{L}{\longleftarrow} \quad C \stackrel{L}{\longleftarrow} V_r \stackrel{L$$

让我们研究这个传递函数

$$\frac{V_r}{V_i} = \frac{j\omega RC}{1 + j\omega RC - \omega^2 LC}$$

$$= \frac{j\omega RC}{(1 - \omega^2 LC) + j\omega RC} \cdot \frac{(1 - \omega^2 LC) - j\omega RC}{(1 - \omega^2 LC) - j\omega RC}$$

$$\left|\frac{V_r}{V_i}\right| = \frac{\omega RC}{\sqrt{(1 - \omega^2 LC)^2 + (\omega RC)^2}}$$

可以看出

Low
$$\omega$$
: $\approx \omega RC$
High ω : $\approx \frac{R}{\omega L}$
 $\omega \sqrt{LC} = 1$: ≈ 1

6.002 2000 年秋 第十七讲

图上看,

$$\left| \frac{V_r}{V_i} \right| = \frac{\omega RC}{\sqrt{\left(1 - \omega^2 LC\right)^2 + \left(\omega RC\right)^2}}$$

Low ω : $\approx \omega RC$

High ω : $\approx \frac{R}{\omega L}$ $\omega \sqrt{LC} = 1: \approx 1$

$$\omega \sqrt{LC} = 1: \approx 1$$

请尽快记住这个画传递函数的技巧 更多讲解 请见下周……

6.002 2000 年秋 第十七讲