Maximum likelihood estimation (of the parameters of class conditional probability)

Problem formulation

- To design an optimal Bayesian classifier we need priors $P(\omega_j)$ and class-conditional probabilities $P(\mathbf{x}|\omega_j)$
- In practice, they are usually not available
- Available is some (hopefully representative) data
- Problem: how to design a classifier using this training data?
- lacksquare Priors are easier to estimate $P(\omega_i)$
- lacksquare Specific problem: estimation of class-conditional probabilities $P(\mathbf{x}|a)$
- Simplification: estimation of the parameters of a function of known type, e.g. μ_i and Σ_i of normal density

Purpose of MLE

Assume a data set $\mathcal{D} = \{X_1, X_2, ..., X_n\}$ of *n* feature vectors from class ω

Assume that $p(\mathbf{x}|\omega)$ has a known parametric form, such as $p(\mathbf{x}|\omega) \sim N(\mu, \Sigma)$

Denote by θ the parameters of the distribution, e.g. $\theta = [\mu, \Sigma]$

Hence, we know the form of $p(\mathbf{x} | \theta)$

but we do not know the values of the parameters $\, heta$

The purpose of MLE is to estimate the values of the parameters θ using the observed data $\mathcal{D} = \{x_1, x_2, ..., x_n\}$

A hyper-ellipsoidal cluster formed by points drawn from a population which has normal density. What are the parameters of this normal density?

from Duda, Hart, Stork (2001) Pattern classification

The maximum likelihood estimate $\hat{\theta}$ is the value of θ that maximizes $p(x_1, x_2, ..., x_n | \theta)$

For analytical purposes, we use the logarithm of the likelihood, called log-likelihood

$$l(\theta) = \ln p(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \mid \theta)$$

The solution is the value $\hat{\theta}$ of the argument that maximizes the log-likelihood:

$$\hat{\theta} = \arg\max_{\theta} l(\theta)$$

What to do?

The events x_i , i = 1 ... n, are statistically independent, i.e.

$$p(x_1, x_2, ..., x_n | \theta) = \prod_{k=1}^{n} p(x_k | \theta)$$

or

$$l(\theta) = \sum_{k=1}^{n} \ln p(\mathbf{x}_k \mid \theta)$$

Denote by $\nabla_{\theta} = \begin{vmatrix} \frac{\sigma}{\partial \theta_1} \\ \dots \\ \frac{\partial}{\partial \theta_n} \end{vmatrix}$ the gradient operator.

What to do?

The gradient of the log-likelihood is:

$$\nabla_{\theta} l = \sum_{k=1}^{n} \nabla_{\theta} \ln p(\mathbf{x}_{k} \mid \theta)$$

A set of necessary conditions for $\hat{\theta}$ can be formulated as:

$$\nabla_{\theta} l = 0$$

Solve this (system of) equation(s)!

(The solutions of this equation can be *global*, *local* maxima or minima, or saddle points. Don't forget to check that it is a maximum!)

Example

Model: Gaussian with fixed variance

Estimated parameter: mean

from Duda, Flart, Stork (2001) Pattern classification

ML Estimation for normal distribution – unknown mean μ

Recall that:
$$\ln p(\mathbf{x}_k \mid \mu) = -\frac{1}{2} \ln[(2\pi)^d \mid \Sigma \mid] - \frac{1}{2} (\mathbf{x}_k - \mu)^t \Sigma^{-1} (\mathbf{x}_k - \mu)$$

It follows:
$$\nabla_{\mu} \ln p(\mathbf{x}_k \mid \mu) = \Sigma^{-1}(\mathbf{x}_k - \mu)$$

Solve:
$$\sum_{k=1}^{n} \Sigma^{-1}(x_k - \mu) = 0$$

$$\Rightarrow \hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
 In plain text: the best estimate of the mean of a distribution is the mean of the sample!

This kind of pedantic, algebra-filled and ultimately unsurprising fact is exactly the reason people throw down their "Statistics" book and pick up their "Agent Based Evolutionary Data Mining Using The Neuro-Fuzzy Transform" book. (from slides on MLE by Andrew W. Moore)

ML Estimation for normal distribution – unknown μ and Σ

In the univariate case, $\theta_1 = \mu$; $\theta_2 = \sigma^2$

$$\ln p(\mathbf{x}_{k} | \theta) = -\frac{1}{2} \ln 2\pi \theta_{2} - \frac{1}{2\theta_{2}} (\mathbf{x}_{k} - \theta_{1})^{2}$$

The gradient is:

$$\nabla_{\theta} l = \nabla_{\theta} \ln p(\mathbf{x}_k \mid \theta) = \begin{vmatrix} \frac{1}{\theta_2} (x_k - \theta_1) \\ -\frac{1}{2\theta_2} + \frac{(x_k - \theta_1)^2}{2\theta_2^2} \end{vmatrix}$$

Imposing
$$\nabla_{\theta} l = 0$$
:
$$\sum_{k=1}^{n} \frac{1}{\hat{\theta}_{2}} (x_{k} - \hat{\theta}_{1}) = 0$$
$$-\sum_{k=1}^{n} \frac{1}{\hat{\theta}_{2}} + \sum_{i=1}^{n} \frac{(x_{k} - \hat{\theta}_{1})^{2}}{\hat{\theta}_{2}^{2}} = 0$$

Substituting $\hat{\mu} = \hat{\theta}_1$, $\hat{\sigma}^2 = \hat{\theta}_2$ and rearranging:

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\mu})^2$$

MLE for normal distribution - multidimensional case

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x^{(k)}$$

$$\hat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (x^{(k)} - \hat{\mu})(x^{(k)} - \hat{\mu})^{t}$$

$$\hat{\Sigma}_{ij} = \frac{1}{n} \sum_{k=1}^{n} (x_{i}^{(k)} - \hat{\mu}_{i})(x_{j}^{(k)} - \hat{\mu}_{j})$$

where $\mathcal{X}_i^{(k)}$ is the *i*-th feature of the k-th feature vector $\mathbf{X}^{(k)}$ and $\hat{\boldsymbol{\mu}}_i$ is the *i*-th feature of the mean $\hat{\boldsymbol{\mu}}$ of all *n* feature vectors

ML Estimation

The ML estimate for the variance σ^2 is *biased*, i.e. the expected value over all possible (random!) data sets of size n is not equal to the true variance:

$$\varepsilon \left[\frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_k - \overline{\mathbf{x}})^2 \right] = \frac{n-1}{n} \sigma^2 \neq \sigma^2$$

... but it is *asymptotically unbiased* (for large *n*)

ML Estimation

An unbiased estimator for Σ is the *sample covariance matrix*:

$$C = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \hat{\mu})(x_k - \hat{\mu})^t$$

An asymptotically (i.e. large n) unbiased estimator for Σ is:

$$C = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\mu})(x_k - \hat{\mu})^t$$

Gaussian MLE in action

Using n=392 cars from the "MPG" UCI dataset supplied by Ross Quinlan

Bivariate MLE in action

Multivariate MLE

	mean	cov						
mpg	23.4459	60.9181	-10.3529	-657.585	-233.858	-5517.44	9.11551	16.6915
cylinders	5.47194	-10.3529	2.9097	169.722	55.3482	1300.42	-2.37505	-2.17193
displacement	194.412	-657.585	169.722	10950.4	3614.03	82929.1	-156.994	-142.572
horsepower	104.469	-233.858	55.3482	3614.03	1481.57	28265.6	-73.187	-59.0364
weight	2977.58	-5517.44	1300.42	82929.1	28265.6	721485	-976.815	-967.228
acceleration	15.5413	9.11551	-2.37505	-156.994	-73.187	-976.815	7.61133	2.95046
modelyear	75.9796	16.6915	-2.17193	-142.572	-59.0364	-967.228	2.95046	13.5699

Covariance matrices are not exciting to look at