ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ

Вступ

Передумови для виникнення теорії диференціальних рівнянь склалися в 2-й половині XVIIст..

Актуальні на той час так звані «обернені задачі на дотичні», тобто пошук кривих за відомими властивостями їх дотичних, були одними з перших, що зводилися до розв'язання диференціальних рівнянь.

Приклад 1 (Р.Декарт 1639р.)

Нехай на площині з прямокутною системою координат потрібно знайти криву, в кожній точці якої кутовий коефіцієнт дотичної пропорційний ординаті точки дотику, з заданим коефіцієнтом пропорційності \boldsymbol{k} .

Якщо таку криву шукати у вигляді графіка деякої диференційованої функції y = y(x), $x \in \Re$, то враховуючи геометричний зміст похідної, умову задачі можна подати у вигляді співвідношення

$$\frac{dy}{dx} = ky,$$

яке являє собою найпростіше але важливе диференціальне рівняння. Легко переконатися (підстановкою), що його задовольняє будь-яка функція вигляду

$$y=Ce^{kx},$$

де ${\it C}$ - довільна дійсна константа.

3 метою показати необхідність вивчення теорії диференціальних рівнянь, проілюструємо декілька прикладів з різних галузей, що призв зводять природнім шляхом до математичного запису постановки задачі у вигляді диференціальних рівнянь.

Приклад2. Модель економічної динаміки.

Введемо наступні позначення

x(t) - обсяг основних фондів (капіталу), з розрахунку на одного працівника в момент часу t,

 $\mu = const > 0$ та $\nu = const > 0$ - норми амортизації капіталу та темпи росту чисельності робочої сили, відповідно,

c(t) - обсяг споживання з розрахунку одного працівника в момент часу t,

f(x) - виробнича функція, яка є характеристикою продуктивності праці й має певні властивості (опуклість, монотонність...)

Тоді в наведених позначеннях математична модель економічної динаміки (в найпростішому вигляді) буде записана через наступне диференціальне рівняння

$$\frac{dx}{dt} = f(x(t)) - (\mu + \nu)x(t) - c(t)$$

Приклад 3. Модель розвитку одновидової популяції.

Введемо до розгляду величину

 $oldsymbol{x}(oldsymbol{t})$ - величина (кількість, маса популяції) в момент часу $oldsymbol{t}$.

Ідеалізуючи процес будемо вважати, що x(t) неперервно змінюється в часі.

Гіпотеза Т.Мальтуса (1798р.):

За малий проміжок часу $[t,t+\Delta t]$ кількість новонароджених особин становить $ax(t)\Delta t$, а кількість померлих - $bx(t)\Delta t$.

Тут a та b – коефіцієнти народжуваності , та смертності відповідно.

Тоді загальна зміна величини популяції за вказаний проміжок часу виражається формулою

$$x(t + \Delta t) - x(t) = (a - b)x(t)\Delta t + o(\Delta t), \ \Delta t \to 0$$

Покладемо k=a-b, поділимо обидві частини цієї рівності на Δt й перейдемо до границі при $\Delta t \to 0$.

Отримаємо вже знайоме диференціальне рівняння

$$\frac{dx}{dt} = kx$$

Розв'язком якого є функція $x = Ce^{kt}$, де C - довільна дійсна константа.

Якщо відомо, що величина популяції в момент часу t_0 становить x_0 , значення довільної сталої обчислимо з початкової умови $Ce^{kt_0}=x_0$ та отримаємо залежність

$$x = x_0 e^{k(t - t_0)},$$

яка є розв'язком задачі Коші з початковими даними (t_0, x_0) .

Зауваження.

Коефіцієнт k можна знайти й у випадку якщо a та b невідомі, але визначивши значення $x_1 = x(t_1)$ в деякий момент t_1 .

Тоді з умови

$$x_1 = x_0 e^{k(t_1 - t_0)}$$

матимемо

$$k = (t_1 - t_0)^{-1} \ln(x_1 / x_0).$$

Цікавий факт, що коли за такою методикою обчислили коефіцієнт \boldsymbol{k} , користуючись даними про населення Землі в 1961р. та 1971р., то отримали залежність

$$x = 3.06 \cdot 10^9 \cdot e^{0.02(t-1961)}$$

яка непогано узгоджується з оцінками приросту населення земної кулі в період між 1700 та 1960рр. У цей час воно реально подвоювалося кожні **35** років.

Отримана нами формула дає подвоєння за 34.6 року!

Наведемо декілька основних визначень теорії диференціальних рівнянь, що будуть використовуватися надалі.

Визначення. Рівняння, що містять похідні від шуканої функції та можуть містити шукану функцію та незалежну змінну, називаються диференціальними рівняннями.

Визначення. Якщо в диференціальному рівнянні невідомі функції є функціями однієї змінної

$$F(x, y, y', y'', ..., y^{(n)}) = 0,$$

то диференціальне рівняння називається звичайним.

Визначення. Порядком диференціального рівняння називається максимальний порядок похідної від невідомої функції, що входить в диференціальне рівняння.

Наприклад,

$$y=xy'+y'^3$$
 - д.р. 1-го порядку, $\dfrac{d^2y}{dt^2}+y(t)-\cos x(t)=0$ - д.р. 2-го порядку, $y^{IV}-4y'''+2y-y=xe^x$ - д.р. 4-го порядку,

Визначення. Якщо невідома функція, що входить в диференціальне рівняння, є функцією двох або більшої кількості незалежних змінних

$$F(x,y,z,\frac{\partial z}{\partial x},\frac{\partial z}{\partial y},\ldots,\frac{\partial^k z}{\partial x^l,\partial y^{k-l}},\ldots,\frac{\partial^n z}{\partial y^n})=0,$$

то диференціальне рівняння називається рівнянням в частинних похідних.

Наприклад,

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, \qquad \frac{\partial u(x,t)}{\partial t} + u(x,t) \frac{\partial^2 u(x,t)}{\partial x^2} = 0,$$
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f(x,y,z)$$

Визначення. Розв'язком диференціального рівняння називається функція, що має необхідну ступінь гладкості, і яка при підстановці в диференціальне рівняння обертає його в тотожність.

Наприклад,

функція $y = \cos 2x$ є розв'язком д.р. другого порядку y'' + 4y = 0.

Розв'язками цього рівняння також будуть $y = \sin 2x$, $y = 3\cos 2x - \sin 2x$, І взагалі всі функції вигляду

$$y = C_1 \cos 2x + C_2 \sin 2x$$
, де C_1 , C_2 - довільні сталі.

З геометричної точки зору розв'язку диференціального рівняння в декартовій системі координат відповідає деяка крива, яку називають **інтегральною кривою**.

Сукупність інтегральних кривих, що залежить від довільних сталих, називають сім'єю інтегральних кривих.

Наприклад,

Розв'язки рівняння y''(x) = 2 утворюють двопараметричну сім'ю парабол $y(x) = x^2 + C_1 x + C_2$, кожна з яких э інтегральною кривою.

Визначення. Процес знаходження розв'язку диференціального рівняння називається **інтегруванням** диференціального рівняння.

Якщо при цьому всі розв'язки вдається виразити через елементарні функції, то кажуть, що рівняння зінтегроване в **скінченному вигляді**, якщо ж розв'язки виражаються через інтеграли від елементарних функцій, то кажуть про розв'язок у **квадратурах**.

1. Диференціальні рівняння першого порядку.

Рівняння першого порядку, що *розв'язане відносно похідної*, має вигляд

$$\frac{dy}{dx} = f(x, y).$$

Диференціальне рівняння становить зв'язок між координатами точки (x, y)

та кутовим коефіцієнтом дотичної $\frac{dy}{dx}$ до графіку розв'язку в цій же точці.

Якщо знати x та y, то можна обчислити f(x,y) тобто $\frac{dy}{dx}$.

Таким чином, диференціальне рівняння визначає **поле напрямків**, і задача інтегрування рівнянь зводиться до знаходження кривих, що звуться **інтегральними кривими**, напрям дотичних до яких в кожній точці співпадає з напрямом поля.

1.1. Існування та єдиність розв'язків диференціальних рівнянь першого порядку. Неперервна залежність та диференційованість

Теорема (про існування та єдиність розв'язку задачі Коші).

Нехай у диференціальному рівнянні $\frac{dy}{dx} = f(x,y)$ функція f(x,y) визначена в прямокутнику

$$D = \{(x, y) : |x_0 - a \le x \le x_0 + a, \ y_0 - b \le y \le y_0 + b\}.$$

і задовольняє умовам:

- 1) f(x, y) неперервна по x та y в D;
- 2) f(x,y) задовольняє умові Ліпшиця по змінній y, тобто

$$|f(x, y_1) - f(x, y_2)| \le N|y_1 - y_2|, N = const.$$

Тоді існує єдиний розв'язок y = y(x) диференціального рівняння, який визначений при $x_0 - h \le x \le x_0 + h$, і задовольняє умові

$$y(x_0) = y_0,$$

де
$$h < \min\{a, b/M, 1/N\}, M = \max_{x,y \in D} |f(x,y)|.$$

Зауваження. Умову Ліпшиця $|f(x,y_1)-f(x,y_2)| \le N|y_1-y_2|$ можна замінити іншою, більш грубою, але легше перевіряємою умовою існування обмеженої по модулю частинної похідної $f_y'(x,y)$ в області D.

Дійсно,

$$|f(x, y_1) - f(x, y_2)| = |f_y(x, \xi)||y_1 - y_2| \le N|y_1 - y_2|,$$

де
$$\xi \in [y_1, y_2], N = \max_{(x,y) \in D} |f'_y(x,y)|.$$

Використовуючи доведену теорему про існування та єдиність розв'язку задачі Коші розглянемо ряд теорем, що описують якісну поведінку розв'язків.

Теорема (про неперервну залежність розв'язків від параметру).

Якщо права частина диференціального рівняння $\frac{dy}{dx} = f(x, y, \mu)$

неперервна по μ при $\mu \in [\mu_1, \mu_2]$ і при кожному фіксованому μ задовольняє умовам теореми існування й єдиності, причому стала Ліпшиця N не залежить від μ ,

то розв'язок $y = y(x, \mu)$, що задовольняє початковій умові $y(x_0) = y_0$, неперервно залежить від μ .

Теорема (про неперервну залежність від початкових умов).

Нехай виконані умови теореми про існування та єдиність розв'язків рівняння $\frac{dy}{dx} = f(x,y)$

з початковими умовами $y(x_0) = y_0$.

Тоді, розв'язки $y = y(x_0, y_0; x)$, що записані у формі Коші, неперервно залежать від початкових умов.

Теорема (про диференційованість розв'язків).

Якщо в околі точки (x_0,y_0) функція f(x,y) має неперервні змішані похідні до k -го порядку,

то розв'язок y(x) рівняння $\frac{dy}{dx} = f(x,y)$ з початковими умовами $y(x_0) = y_0$ в деякому околі точки (x_0,y_0) буде (k+1)-раз неперервно-диференційований.

1.2. Рівняння зі змінними, що розділяються

1.2.1. Загальна теорія

Рівняння вигляду

$$\frac{dy}{dx} = f(x)g(y),$$

або більш загального вигляду

$$f_1(x)f_2(y)dx + g_1(x)g_2(y)dy = 0$$

називаються рівняннями зі змінними, що розділяються.

Розділимо його на $f_2(y)g_1(x)$ і одержимо

$$\frac{f_1(x)}{g_1(x)}dx + \frac{g_2(y)}{f_2(y)}dy = 0.$$

Взявши інтеграли, отримаємо

$$\int \frac{f_1(x)}{g_1(x)} dx + \int \frac{g_2(y)}{f_2(y)} dy = C,$$

або

$$\Phi(x,y) = C.$$

Визначення. Кінцеве рівняння $\Phi(x,y) = 0$, що визначає розв'язок y(x) диференціального рівняння як неявну функцію від x, називається *першим інтегралом* розглянутого рівняння.

Визначення. Рівняння $\Phi(x,y) = C$, що визначає всі без винятку розв'язки даного диференціального рівняння, називається *загальним інтегралом*.

Бувають випадки (в основному), що невизначені інтеграли $\int \frac{f_1(x)}{g_1(x)} dx$ або $\int \frac{g_2(y)}{f_2(y)} dy$ не можна записати в елементарних функціях. Незважаючи на це, задача інтегрування вважається виконаною. Кажуть, що диференціальне рівняння *розв'язане в квадратурах*.

Можливо, що загальний інтеграл $\Phi(x,y) = C$ розв'язується відносно y: y = y(x,C). Тоді, завдяки вибору C, можна одержати всі розв'язки.

Визначення. Залежність y = y(x, C), що тотожно задовольняє вихідному диференціальному рівнянню, де C довільна стала, називається *загальним розв'язком* диференціального рівняння.

Геометрично загальний розв'язок являє собою сім'ю кривих, що не перетинаються, які заповнюють деяку область. Іноді треба виділити одну криву сім'ї, що проходить через задану точку $M(x_0, y_0)$.

Визначення. Знаходження розв'язку y = y(x), що проходить через задану точку $M(x_0, y_0)$, називається *розв'язком задачі Коші*.

Визначення. Розв'язок, який записаний у вигляді $y = y(x, x_0, y_0)$ і задовольняє умов $y(x_0, x_0, y_0) = y_0$, називається розв'язком у формі Коші.

Вправи

Рівняння зі змінними, що розділяються можуть бути записані у вигляді

$$y' = f(x)g(y)$$
 and $f_1(x)f_2(y)dx + g_1(x)g_2(y)dy = 0$.

Для розв'язків такого рівняння необхідно обидві частини помножити або розділити на такий вираз, щоб в одну частину входило тільки \boldsymbol{x} , а в другу - тільки \boldsymbol{y} . Тоді обидві частини рівняння можна проінтегрувати. Якщо ділити на вираз, що містить x та y, може бути загублений розв'язок, що обертає цей вираз в нуль.

Приклад 1. Розв'язати рівняння

$$x^2y^2y'+y=1.$$

Розв'язок.

Підставивши $y' = \frac{dy}{dx}$ в задане рівняння, отримаємо $x^2y^2\frac{dy}{dx} = -y + 1$.

$$x^2y^2\frac{dy}{dx} = -y + 1.$$

Помножимо обидві частини рівняння на dx і розділимо на $x^2(y-1)$. Перевіримо, що y=1 при цьому є розв'язком, а x = 0 цим розв'язком не ϵ :

$$\frac{y^2}{y-1}dy = -\frac{dx}{x^2}.$$

Проінтегрируємо обидві частини рівняння:

$$\int \frac{y^2}{y-1} dy = -\int \frac{dx}{x^2};$$
 $\int \frac{y^2}{y^2} + y + \ln|y-1| = \frac{1}{x} + C.$