- Graph kann ohne Definitionslücken nahtlos gezeichnet werden
- Nullstellensatz
 - Sei $f:[a;b]->\mathbb{R}$ stetig auf [a;b] und f(a)*f(b)<0
 - * $\exists x \in [a;b]: f(x) = 0$
 - * kann mittels [[Intervallschachtelung]] bestimmt werden
- Zwischenwertsatz
 - Sei f:[a;b]-> \mathbb{R} stetig auf [a;b]
 - * f nimmt jeden Wert zwischen f(a) und f(b) an
 - Beweis:
 - * Sei y ein Wert zwischen f(a) und f(b) ==> f(a)-y und f(b)-y haben verschiedene Vorzeichen
 - * h(x) = f(x) y ==> Nullstellensatz
 - * $\exists x \in [a;b]$: h(x) = 0 ==> f(x) = y
- Sei $f:[a;b]->\mathbb{R}$ stetig und monoton wachsend/fallend
 - -f:[a;b]->[f(a);f(b)] ist bijektiv
 - $-f^{-1}:[f(a);f(b)]->[a;b]$ ist stetig

Grenzwertkriterium

- Sei f: $I \rightarrow \mathbb{R}$ eine reelle Funktion:
- f ist stetig in $x0 \in I$, wenn
 - für jede Folge x
n aus I mit $x_0 = \lim x_n$ auch $f(x_0) = \lim f(x_n) = f(\lim x_n)$ gilt.
- $\bullet\,$ f ist stetig auf I, wenn f
 stetig in jedem Punkt x
E I

ε - δ -Kriterium

- Sei f: $I \rightarrow \mathbb{R}$ eine reelle Funktion:
- f ist stetig in $x0 \in I$, wenn

- $\ \forall \epsilon {>} 0 \ \exists \delta {>} 0 \ \forall x {\in} I {:} \ |x {-} \ x 0| < \delta = => |f(x) {-} \ f(x0)| < \epsilon$
- Vorgehensweise
 - -|f(x)-f(x0)| ersetzen mit Formel hinter Funktion

- umformen/abschätzen sodass |x x0| separater Term ist
- Ausdruck in der Form λ * |x x0| < ϵ ensteht ==> |x x0| < $\lambda\epsilon$ = δ
- Wenn |x x0| < $\lambda\epsilon,$ dann gilt |f(x) f(x0)| < ϵ

Spezielle Funktionen

- Potenzreihen, rationale Funktionen und Polynomfunktionen sind immer stetig
- p, q sind Polynome ==> $r(x) = \frac{p(x)}{q(x)}$ ist eine rationale Funktion
 - r ist stetig auf Definitionsbereich D = $\{x \in \mathbb{R} \mid q(x) \neq 0\}$
 - rationale Funktionen sind stetig, wenn Nenner $\neq 0$

Eigenschaften stetiger Funktionen

- \bullet Sei I ein abgeschlossenes, beschränktes Intervall und f: I-> $\!\mathbb{R}$ stetig auf I
 - \exists M>0 ==> \forall x \in I: $|f(x)| \leq$ M ==> f ist beschränkt
 - $\exists xmin,xmax \in I \ \forall x \in I: |f(xmin)| \le f(x) |f(xmax)|$
 - * es gibt kleinste, obere und größte, untere Schranke
 - nicht abgeschlossen: $f:]0;1] -> \mathbb{R}, f(x) = \frac{1}{x}$
 - $* x_m ax = 1$
 - * $x_m in$ existiert nicht!
 - $f(0) = \frac{1}{0} = > Error$

[[Funktionen]] [[Supremum und Infimum]]