Dairy product Sales Forecasting based on Customer Segmentation, Demographics and Purchase patterns

Analyzing Patterns and Influences in Retail Data

Team Members

PRN No.	Name	Department	Email ID	
122B1F047	Disha Kamalaskar	Information Technology	disha.kamalaskar22@pccoepune.org	
122B1F058	Anushka Korde	Information Technology	anushka.korde22@pccoepune.org	
123B2F149	Revati Keskar	Information Technology	revati.keskar23@pccoepune.org	

Abstract

This case study investigates a data-driven approach to a crucial role in the dairy industry, where daily consumption and perishable products demand accurate inventory management and demand prediction. The constant nature of sales in this sector makes it an ideal domain for forecasting models, as consumer behavior can often be predicted based on historical data, demographic trends, and purchasing patterns. The motivation behind choosing this domain lies in its accessibility—understanding the factors affecting dairy product sales does not require specialized expertise and relies on common knowledge related to everyday consumption habits.

Keywords

- 1. Sales Forecasting
- 2. Customer Segmentation
- 3.Demographics
- 4. Purchasing Patterns,
- 5. Consumer Behavior
- 6.Predictive Analytics

Introduction

By applying machine learning techniques to analyze customer segmentation, demographics, and purchase patterns, businesses can better anticipate demand and optimize their operations. This case study aims to showcase how foundational methods, such as K-means clustering for customer segmentation and linear regression for sales forecasting, can be effectively applied to real-world business scenarios.

Forecasting dairy product sales by analyzing customer segmentation, demographics, and purchasing patterns. By leveraging basic machine learning techniques, K-means clustering is employed to identify customer groups with similar behaviors, while linear regression is used to model sales trends. The study focuses on uncovering patterns in customer data, such as demographic influences on purchase frequency and seasonal variations in demand. The methods used are straightforward, aiming to provide practical insights for inventory and sales management. Designed as an introductory exploration into data science, this case study

demonstrates how even simple analytical techniques can lead to meaningful conclusions and offer value for businesses looking to optimize their sales strategies. The findings emphasize the importance of customer segmentation and trend analysis in better understanding market dynamics within the industry.

Several studies highlight the importance of advanced sales forecasting techniques, providing valuable insights into demand prediction. For instance, **Intelligent Sales Forecasting and Optimization** discusses methods for enhancing product demand prediction and strategic planning. Similarly, **AI-Driven Probabilistic Models for Sales Forecasting** introduces a multi-modal framework, emphasizing the flexibility and adaptability of machine learning in predicting sales for industries like motherboard manufacturing. In addition, **Leveraging Online Consumer Reviews for Sales Forecasting** explores how unstructured data from consumer reviews can improve sales predictions, which suggests a broader application of AI-driven models.

This case study, though basic in its scope, demonstrates how even simple machine learning techniques can yield valuable results for sales Leveraging Online Consumer Reviews for Sales

Literature Review

Effective sales forecasting is critical for dairy product manufacturers and retailers due to the challenges posed by dynamic consumer behavior, seasonal trends, and market fluctuations. Insights from various studies underscore the importance of understanding seasonal variations and time lags in sales data, as these factors significantly impact forecasting accuracy[1]. This is particularly relevant for the dairy industry, where demand can spike during specific seasons or events, necessitating precise forecasting to manage inventory effectively.

The use of models that can handle limited data, such as NPFS (New Product Forecasting Systems), is essential for predicting sales of new dairy products that may lack historical data[2]. Implementing a combination of classic and heuristic forecasting methods can help adapt to changing consumer preferences, improving sales predictions for dairy products over time.

Moreover, empirical methods that prioritize simplicity often yield better results than overly complex models. Tailoring forecasting approaches to account for specific dairy product characteristics can enhance the predictive power of these models[3]. This can involve considering customer segmentation and demographics, which are crucial in understanding consumer purchasing patterns in the dairy market.

Incorporating product descriptions and analyzing consumer feedback into forecasting models has been shown to significantly improve accuracy[4]. For the dairy industry, this means that

understanding how consumers perceive different dairy products—such as taste preferences or nutritional value—can lead to better sales forecasts. A study involving over 10,000 fashion items demonstrated that integrating detailed product features into forecasting models surpasses existing baselines, suggesting a similar approach could benefit the dairy sector[5].

Utilizing all available data modalities, including sales trends, customer demographics, and product reviews, is confirmed to enhance performance[6]. In the context of dairy, this integrated approach can provide insights into customer preferences and market demands, leading to more accurate forecasting outcomes.

Lastly, the PoissonGP model has been shown to outperform multiple baseline models in key forecasting metrics, effectively managing uncertainty[7]. This capability is particularly valuable in the dairy industry, where market fluctuations can create unpredictable demand patterns. By applying such advanced models, dairy manufacturers and retailers can better navigate uncertainties and improve their sales forecasting processes.

Insights on seasonal variations, time lags, and dynamic product interactions are vital for sales forecasting, with NPFS effectively handling limited data for new products [8]. The system combines classic and heuristic forecasting methods, adapting to new data for improved accuracy [9]. Simpler empirical methods often outperform complex models, with tailored approaches yielding better results [10]. Incorporating product descriptions into forecasting models enhances accuracy, as 44% of the terms significantly impact sales forecasts [11]. A study on over 10,000 fashion items showed that the proposed method surpasses existing baselines in new product sales forecasting [12]. Utilizing all data modalities leads to optimal performance, confirmed by an ablation study [13]. The PoissonGP model outperformed 11 baseline models, achieving significant improvements in key metrics and effectively managing uncertainty [14].

[15] This study examines online reviews' impact on sales for new products (electronics, video games) using Amazon.com panel data. It finds review valence and page views boost sales for "search products," while review volume matters more for "experience products." Marketing strategies are advised, though limited to Amazon. [16] This research evaluates how review quality, exposure, and timing affect sales on Amazon. High-quality reviews have the greatest impact early in a product's lifecycle, with diminishing effects over time as other information sources emerge. [17] Introduces New Product Sales Forecasting Procedure (NPSFP) using a decision-support system (NPFS). The system employs classic and heuristic methods (e.g., Exponential Smoothing) to enhance forecasting accuracy for new products.

[18]Examines time-series forecasting methods (e.g., ARMA, Exponential Smoothing) and Causal Factor Forecasting. The ARMAV with Linear Trend model, incorporating sales inputs, provides the highest accuracy.[19] Integrates data science and machine learning (e.g., clustering, regression) to improve e-commerce sales on social web platforms by analyzing customer

Pimpri Chinchwad College of Engineering

behavior and boosting engagement and conversion rates. [20] Uses big data architecture and neural networks to predict online sales based on review characteristics. Reviewer helpfulness and sentiment strength (especially negative) are key predictors.

[21] Employs XGBoost and feature engineering to forecast dairy sales, showing improved accuracy over other models by leveraging historical data and enhancing predictive capabilities.

Sr.no	Title	Author	Methodology	Observations	Advantages	Disadvantages	Keywords
					This model	While Random	
					can be	Forest	
					applied	provides	
				The study	across	accurate	
				notes that the		results, the	
			Use of			time taken for	
			K-means	multiple	industries,	prediction can	
			Clustering	decision trees	making it a	be slow,	
			Algorithm for	in the	flexible tool	especially with	
			current	Random	for various	larger forests	
			product	Forest	sales	or datasets.	
			analysis.	reduces the	prediction	The	
			Random	chances of	tasks.	performance of	
			Forest tree	overfitting,	Random	the model	
			Algorithm For	compared to	Forest is	heavily	
			monitoring	using a single	capable of	depends on the	
		Avinash	product	decision tree.	capturing	quality and	
	An	Kumar	change.	This is	non-linear	quantity of the	
	Intellige	Sharma,	Artificial	important for	relationships	input data, and	
	nt Model	Neha	Neural	producing	in data, which	it may struggle	
	for	Goel,Jati	network(ANN		is essential in		Present scenario
	predictin	n) used for new	models that	complex sales	imbalanced	of product;Future
	g the	Rajput,M	products with	perform well	environments	datasets.	forecast;Predictio
	sales of	ohd.	lesser data	on new,			n;Random Forest
1	product.	Bilal.	availability.	unseen data.			Algorithm

			Affinity		The tool		
			Analysis:		automates the		
					extraction of		
			Helps discover				
			co-occurrence		sales patterns,		
			relationships.	A 000 1	making it		
			Linear	Affinity	easier for		
			Regression:	Analysis	organizations		
				-	to manage	-	
					1	performance	
			forecasting.	fast-selling	inventory and	depends	
			Based on the	and	optimize	heavily on the	
			analysis, the	slow-selling	sales.	quality and	
			tool offers	products.	Provides	completeness	
			strategies like	Logistic	valuable	of input data.	
			recommending	Regression:	insights into	Limitations of	
			products,	Provides	fast-selling	Existing Tools:	
		Dr.Zaina	offering	predictions on	products and	The study	Sales Analytics
		b				notes that tools	Tool
		Pirani,An	adjusting	products will	preferences.	using Big Data	Data Mining
	Analysis	uja		be sold.Linear	=		Affinity Analysis
	and	Marewar,	-			imprecise and	Logistic
	Optimiza	Zainab		_	identifying	prone to data	=
	•	Bhavnag				l*	Linear
	Online	arwala,M		~	products and		Regression
	Sales of			I ⁻ -	_		Merchandise
2	Products				_		Planning
	Model of		The core of	The study	The model is	The model	ERP, CRM,
	the New						direct sales,
	Sales			case from the	_		business
	Planning		involves:		more accurate	I =	intelligence, data
	Optimiza		Addressing the				mining, traveling
	tion and			ations market,			salesman
	Sales				fed into the	l~	problem, sales
		Marko	problem (TSP)	, , ,		ĺ	optimization, call
	Deploym					_	center, decision
	ent ERP			and potential		_	support system,
	Business		- F	_	_		telecommunicati
		and	Accumulating			The system is	
	nce	Zrinka	_			based on the	
3		Lovrić	potentials over				intelligence
			1				

	for	time to	many	services and	that	
	Direct		_	products.	geographical	
1 1	Sales of	optimal sales		*	and sales data	
1 1	the			approach and		
1 1	Products	perious.	especially	decision	consistently	
	and	Creating	remote	support	available and	
	Services				updated, which	
	with	to assist in		sales	may not	
	Tempora	decision-maki		managers	always be the	
	1	ng regarding			case.	
	Characte	sales routes		informed	The lack of	
	ristics	and customer			automatic	
	1180108		the	about	route	
			identification		calculations	
		timing		strategies and		
				customer	l	
				~ ~	more complex	
			1 2	Helps	or larger-scale	
			Over time, the	-	operations	
			3	travel routes		
			becomes	and sales		
			more accurate	· · · · · · · · · · · · · · · · · · ·		
			as it learns			
			from	operational		
			historical data			
		_	Products with	The method	Sales volume	
	A	Cloud Natural	higher	integrates	is estimated	
	Product	Language API	satisfaction,	multiple	from the	
	Recomm	was used to	larger sales	factors (sales,	number of	
	endation	analyze	volumes, and	user	reviews, which	
	Method	sentiment in	longer sales	satisfaction,	may not	
	by	product	periods are	and product	always	
	Analyzin	reviews and	ranked higher	1 - /	accurately	
	g Sales	calculate	in	which results	reflect actual	
	Volume,	satisfaction	recommendati	in a more	sales.	e-commerce,
	Sales	scores.	ons.	well-rounded	Limited	product
	Period, Haoyang	The number	The	product	Personalization	recommendation,
	and User Xia,	of reviews is	experimental	ranking	: The method	sales volume,
	Satisfacti Yuanyua	used as a	results	system.	assumes equal	sales period, user
4	on n Wang	proximate for	showed that	It accounts	weighting of	satisfaction

			sales vol	ume	this method	for real user	all features,	
			while			experiences	which may not	
			timestamp			through	align with	
			reviews		limitations in	1	individual user	
			estimate		reflecting use	l .	preferences,	
			sales perio		preferences,	1 -	leading to	
			Products	are	l [±]	_	suboptimal	
			assigned		users		recommendati	
			_		prioritize	This	ons in some	
					different	approach is		
			factors.	uicsc	factors.	adaptable for		
			iaciois.		lactors.	various		
						product		
						categories		
						and can		
						handle large		
						datasets		
			~					
			Collected			The use of		
			entries wi			Multi-Step		
					highest-sellin	l .		
					g product	1-		
			product			effective		
			and price.			solution for		
			Explorato	-	EC" was the			
				-	least sold.	forecasting.		
			Statistical	•	_	The statistical		
			=			analysis helps		
				_	the	_		
	Time		products		highest-sellin g region.	identify the best-selling		
		Touhidur		•	Model	products,	The dataset is	
	Forecasti		size.		Performance:	1*	restricted to	
		,	Multi-Ste		After training	1 0 1	one	
	-		LSTM	was	1	[package	agricultural	
			used for			sizes,	company and a	Product Sale
			series		20 epochs, the	1 '	1 * *	Forecasting,
			forecastin			better	frame, which	l – – – – – – – – – – – – – – – – – – –
				_	prediction	business	may affect the	=
			-		showed good		generalizabilit	· ·
5	Learning		month.		results.	piaining.	y of the model.	
	Laming	iiiuu	1110111111.		Todatio.		y of the model.	LO 1 1V1

				The	The		
				combination	combination		
				model	model		
				` -	significantly		
				-XGBoost)	improves		
				achieves	prediction		
				better	accuracy.PCA		
				predictive	reduces		
				_	computationa		
				than	l complexity		
				individual	by lowering		
					the number of		
					input		
				helps reduce			
				the	XGBoost		
				complexity of	includes		
				the LSTM	regularization		
				model by	to prevent		
			The sales data	eliminating	overfitting,		
			is	low-correlatio	and PCA		
			preprocessed.P	n features,	helps reduce		
			CA is applied	which	unnecessary		
			to reduce the	prevents	feature noise.		
			dimensionality	overfitting.			
			of the input	The			
			features.	experimental		The	
			The results of	results show		combination of	
			the LSTM and	that the		PCA, LSTM,	
			XGBoost	combination		and XGBoost	
			models are	model		increases the	
	Research	Shasha	combined	reduces the		complexity of	Sales
	on	Mo,	using a linear	Mean			forecasting;XGB
	Commod	-	weighted	Absolute		n.	oost model;
	ity Sales	-	_	Percentage		Training an	LSTM neural
	Forecasti			Error by 8%		-	network;Combin
	ng Based			compared to			ation prediction
	-	Xingyu		traditional		model requires	*
	Combina		determined by			_	PCA (Principal
		Chunling	1	SARIMA and		_	Component
6		Li	method.	Prophet.		power.	Analysis)
	1/10401			1 10p110t.		P 0 11 C1.	1 11141 / 515 /

			ъ .	n .		ъ .	
			Regression	Regression		Regression	
			_	Analysis: can		Analysis and	
			identify	be influenced		K-means	
			relationships	by noisy data.		algorithm are	
			between	Tracking		Sensitive to	
			dependent and	Patterns: This	High	noisy data,	
			independent	technique	accuracy in	which can	
			variables.	performed the	identifying	result in	
			K-Means	best as it	trends and	inaccurate	
			Clustering	effectively	forecasting	predictions.Th	
			helps to	captured	sales.	e model is less	
			forecast	recurring	K-Means	effective	
			demand by	trends in the	Clustering	during	
			identifying	sales data.	segments	unforeseen	
			patterns in	Visualization	customers	events like	Data Mining
	A		customer	helped	into groups		FMCG
	Compari		groups.	1 -	that are useful		(Fast-Moving
	son of		Tracking	findings and		which disrupt	`
	Data		Patterns: This	_	_	_	Goods)
	Mining		technique	clearly.	and inventory		Food Products
	Approac		identifies		management.	P *****	Sales Forecasting
	hes for		trends and		Visualization:		K-Means
	Forecasti		recurring		Makes data		Clustering
	ng Sales	Milan	behaviors in		trends easier		Regression
	-	Doshi,	sales data.		to understand,		Analysis
		Atmiya	Visualization		aiding in		Tracking Patterns
		Universit			decision-maki		Visualization
7	Products		done.				Techniques
/	1 Toducts .	y, muia			ng.		reciniques
				Their insights		1.Traditional	
			1 1	on capturing		qualitative	
			on improving		Compitetor	_	Demand
	Demand		how	variations,	interactions)	heavily on	Planning, Sales
	Planning		motherboard	time lags, and	2.Improved	expert	Forecasting,
	and Sales		manufacturers	dynamic	accuracy.(Hy	opinions.	Time-Series
	Forecasti		predict future	interactions	brid Model)	2.Some	Models,
	ng for		demand and	between	3.Sensitivity	quantitative	Dynamic
	Motherb	СН.	sales using a	products and	analysis :	methods fail to	Interactions,
	oard	Wang	mix of	competitors	The model	capture	Hybrid Models,
	Manufac	and Y.	advanced	as general	allows for	dynamic	Supply Chain
8	turers	Yun	methods. It	principles	sensitivity	interactions.	Analytics.

		combines time-series forecasting (like ARIMA), machine learning models (like Random Forest and Gradient Boosting), and a biological model (Lotka-Volterr a) to capture changes over time.		helping companies	planning.	
New Product Sales Forecasti ng Procedur e 9 (NPSFP)	Ching-C	Data Collection: Gather historical sales data and related information. 2. Parameter Determination: Identify parameters for various forecasting methods. 3. Sales Forecast Calculation: Use selected	new products. 2.It combines both classic and heuristic forecasting methods to enhance accuracy. 3.The system adapts to new data inputs, refining forecasts over	1.Improved forecasting accuracy for new products. 2.Flexibility in applying various methods based on available data. 3.Reduces reliance on	1.Limited historical data can still affect forecast reliability. 2.Complexity in selecting the best method from multiple	Forecasting, Time Series Methods, Heuristic Methods, Forecasting

			a a marta				
			generate				
			forecasts. 4.				
			Subjective				
			Adjustments:				
			Allow				
			experienced				
			managers to				
			adjust				
			forecasts				
			based on				
			market				
			insights. 5.				
			Evaluation:				
			Assess				
			forecast				
			performance				
			using metrics				
			like Mean				
			Absolute				
			Percentage				
			Error (MAPE).				
			1.Evaluates	1.Simpler	1.Provides	1.Performance	
			various	empirical	insights into	varies	
			forecasting	methods often		significantly	
			methods using		effective	by quantile,	
			M5	complex		indicating no	
				_	methods for		
	Probabili		data, including			_	
	stic	Evangelo	empirical and	•	series.	method.	Probabilistic
		_	statistical	,	2.Highlights		forecasting,
	ng	-	techniques.	e varies by			product sales,
	•	1.0	2. Applies the	-		_	M5 competition,
	for		Multiple	no single best	*	extensive	empirical
	Product	Anastasi	-	method for all		parameter	methods,
	Sales:	os	with the Best		methods over	-	stock-control
	Insights		(MCB) test to		complex	complicating	simulation,
	from the		assess		machine	their	quantile
	M5		performance	specific data			regression,
	Competit		across	characteristics	_	3.Results may	
10	ion	opoulos	quantiles.				performance.
	1011	Spouros	1441111100.	7 1010 001101	2.011 0 15 a		r strottimine.

e evaluation across all types of forecasting accuracy and computationa l efficiency. 1.The study 1.The study proposes an finds that proposed explainable AI framework product that combines text mining, to the WaveNet forecasting neural model networks, multiple forecasting improves allowing networks, multiple forecasting regression, and accuracy. Which product description states impact of analyze the description on product y 44% of the phrases affect sales forecasting. 2.The can product descriptions on sales product and significantly descriptions forecasting affect sales forecasting. 2.The can product descriptions influence the four steps: level of sales and how to product sales influence the four steps: level of sales and price four steps: level of sales and price four steps: level of sales and price integration integrati Shengjie ng Ke, with a construction, with mining and the reasons for neural network of of orecasting accuracy. 1.The study provides an explainable approach to sales forecasting, notes that the propoduct descriptions obtainable and provides that the provides an explainable approach to sales in forecasting and proveduct text mining of obtained by why product text mining of obtained by the product descriptions and product descriptions to descriptions and how to product sales improve compared to historical descriptions.					results.	comprehensiv	generalizable	
I.The study proposes an explainable AI framework that combines text mining, to waveNet networks, improves allowing regression, and description on product descripti on affect sales forecasting affect sales forecasting. Impact of product descriptions affect sales forecasting. Interest to analyze the phrases ales forecasting. Interest to analyze the descriptions affect sales forecasting. Interest to analyze the show that descriptions affect and the AI framewo rk by Chen, processing, integrati Re, model BOW vectors of using text should explore mining, waveled the study identifies 28 grows for using text should explore mining, waveled that the companies to obtained by text mining of the back of the product and how to product descriptions and how to product sales and price to thistorical descriptions and price to the product and price to the study sales forecasts. Interest to the study sales forecasts. Interest to the study sales forecasts and price the four steps: Integrati Shengile WaveNet identifies 28 green and the suggests that product mining, waveled the study should explore mining.					i osaits.			
accuracy and computationa lefficiency. 1.The study proposes an explainable AI framework product to sales and accuracy. Which product description on phrases ales affect sales forecasting. affect sales sales sales forecasting. affect sales sales sales forecasts. BOW vectors of using text should explore mining, Wavelet sales and price forecasting sales sales forecasts. BOW vectors of using text should explore mining, Wavelet sales should explore mining, wavelet should explore mining to the explainable approach to explainable ap								
1.The study proposes an explainable AI framework that combines text mining, networks, improves multiple forecasting neural model forecasting networks, improves multiple forecasting accuracy. SHAP model product to analyze the description on phrases descriptions affect on sales sales forecasting. 2.The sudding text mining of product descriptions affect sales forecasting. An explainable text mining of the plant of the plant of the plant of the phrases of the product of the phrases of the plant of the plant of the plant of the plant of the phrases of the product of the product of the product of the phrases of the product of the phrases of the product of the phrases of the product of the pr						_		
I.The study proposes an explainable AI adding framework product that combines text mining, WaveNet neural model forecasting networks, improves allowing networks, multiple forecasting regression, and Which product descripti impact of product on sales ales forecasti gales forecasti gales forecasting. All framework product that the phrases ales forecasti gales forecasti gales forecasti gales forecasti gales forecasting companies to but analyze the descriptions terms used in forecasting on sales forecasti gales forecast gales gales forecast gales forecast gales forecast gales gales gales gales forecast gales gale						-		
1.The study proposes an finds that proposed explainable AI framework product that combines text mining, to the WaveNet forecasting neural model forecasting neural model forecasting forecasting, and Nhich product description on phrases affect sales forecasting affect sales forecasting framework grounderstand on sales product descriptions on sales forecasting framework sales forecasting framework grounderstand why product descriptions terms used in phrases affect sales forecasting. 2.The can product data framework significantly consists of fore sales forecasting framework grounderstand why product descriptions terms used in forecasting impact on and how to product sales improve compared to historical framework grounderstand why product descriptions can influence descriptions impact on and how to product sales improve compared to historical framework grounderstand why product descriptions can influence descriptions improve compared to historical product historical grounderstand waveNet inforecasts. demonstrates 2.The study variables. Sales forecasts that full framework grounderstand why product text mining of product can influence descriptions improve compared to historical grounderstand how to product sales improve compared to descriptions can influence descriptions improve compared to historical grounderstand how to grounderstand how to product sales improve compared to descriptions and price demonstrates 2.The study variables. Sales forecasts that full framework grounderstand which product influence the descriptions influence the four steps: demonstrates 2.The study variables. Sales forecasts demonstrates fulture research descriptions, to descriptions of unining wavelenge mining, wavelenge mining, wavelenge mining, wavelenge mining wavelenge mining descriptions and how to product sales to drive sales. Sales forecasts and price demonstrates to descriptions or descriptions and how to grounders and how to product sales to drive sales. Sales forecasts and price demonstrates to drive sales to drive sales and price d						_		
proposes an explainable AI framework that combines text mining, to the WaveNet networks, improves multiple regression, and descriptions to analyze the descriptions on product product on sales forecasting on sales forecasting. Influence the phrases ales forecasting. Influence the farmework gingificantly consists of farmework gingificantly farmework gingificantly farmework gingificantly farmework gingificantly farmework gingificantly farmework gingificently farmework gingificently farmework gingificently gingificently farmework gingificently gi								
cxplainable AI framework that combines text mining, WaveNet meural networks, improves multiple forecasting regression, and accuracy. Which SHAP model product descriptions to analyze the product description on product descriptions affect on sales forecasting. Allowing notes that the show that descriptions on product description affect on sales forecasting. Allowing notes that the BOW vector understand obtained by why product text mining of descriptions can influence descriptions had a smaller terms used in product descriptions on sales forecasting. Allowing notes that the BOW vector obtained by why product text mining of descriptions can influence descriptions had a smaller terms used in forecasting impact on and how to product sales compared to historical descriptions product sales influence the four steps: level of sales to drive sales. All framewo Shan data forecasts. Ark by Chen, integrati Shengjie ng Ke, model BOW vectors of using text should explore mining, Wavelet mining, Wavelet mining, wavelet mining, wavelet mining, framework significantly descriptions, to distinct and explaina be approach to sales of orecasting. All of the provides an explainable approach to sales forecasting, allowing notes that the BOW vector obtained by why product text mining of descriptions can influence descriptions and how to product sales compared to historical descriptions product sales and price sales. All of the provides an explainable approach to sales and price to drive sales. All of the provides an explainable approach to sales and explainable approach to sales and price to drive sales. All of the provides an explainable approach to sales and price to descriptions and how to product sales to drive sales. All of the provides an explainable approach to sales and price to descriptions and how to grow and how				_	_			
framework that combines text mining, to the forecasting neural networks, improves allowing notes that the multiple forecasting accuracy. Which product description on phrases ales forecasting. on sales forecasting. descriptions descriptions and how to forecasting impact on product and how to forecasting. on sales forecasting. descriptions improve companies to understand why product descriptions ales had a smaller impact on product and how to forecasting impact on product sales companies to understand why product descriptions and influence historical product sales impact on product sales companies to understand why product descriptions and how to forecasting impact on product sales influence the to drive sales. It is study the study variables. Sales forecasting companies to understand descriptions and how to product sales and price to drive sales. It is study the study variables. Sales forecasting companies to understand descriptions and influence to descriptions and how to product sales and price to drive sales. It is study the study variables. Sales forecasting companies to understand descriptions and how to product sales and price to drive sales. It is study the study variables. Sales forecasting companies to understand descriptions and how to product sales and price to drive sales. It is study the study variables. Sales forecasting companies to understand descriptions and how to product sales and price to drive sales. Sales forecasting companies to understand the BOW vector obtained by text mining of product and how to product and how to product sales and price to descriptions and how to product sales and price to drive sales. Shan framework significantly descriptions and how to product sales and pr				1 1		* *		
that combines text mining, WaveNet metworks, improves allowing networks, improves accuracy. Which product descripti impact of product phrases ales forecasting. An explaina ble text mining, waveNet mintegrati networks, improves allowing notes that the model accuracy. Which product descripti impact of product on analyze the phrases ales forecasting. SHAP model 2.The results why product text mining of text mining of text mining of product descriptions approximatel approximatel terms used in on sales forecasting. 2.The can product descriptions improve compared to product historical product sales to drive sales. Shan rk by Chen, integrati Shengjie ng Ke, model BOW vectors of using text should explore mining, Wavelet identifies 28 model BOW vectors of using text should explore mining, Wavelet in the approach to the approach to sales allowing notes that the BOW vector obtained by text mining of product can influence descriptions influence descriptions improve can influence descriptions improve compared to descriptions to drive sales. 2.The study identifies 28 effectiveness future research descriptions, to descriptions, the product identifies 28 effectiveness of using text should explore mining, Wavelet in the product to the product approach to the approach to sales allowing notes that the BOW vector obtained by text mining of product descriptions improve can influence descriptions improve compared to descriptions to drive sales. 2.The study integration improve variables.				_	_			
text mining, WaveNet neural networks, improves allowing notes that the forecasting allowing notes that the gregression, and green to analyze the phrases ales forecasting. Which product description on affect sales forecasting. I.The study notes that the growing notes that t				framework	product	provides an		
WaveNet neural networks, improves allowing notes that the forecasting model networks, improves allowing notes that the forecasting companies to BOW vector understand obtained by why product text mining of descriptions on product descriptions on affect on sales forecasting. In the study allowing notes that the companies to BOW vector understand obtained by why product text mining of descriptions can influence sales had a smaller forecasting impact on product and how to product sales sales forecasting. In the study allowing notes that the companies to BOW vector understand obtained by why product text mining of descriptions sales improve can influence sales impact on product and how to product sales improve compared to historical descriptions product sales to drive sales. In the study integration of the study in				that combines	descriptions	explainable		
neural networks, improves allowing notes that the grogerssion, and accuracy. Which product descripti on phrases ales forecasting. affect sales forecasting. affect sales forecasting. affect sales forecasting. affect sales forecasting. by An explaina ble AI framewo rk by Chen, integrati ng Ke, multiple forecasting companies to obtained by why product text mining of text mining of product descriptions understand obtained by text mining of product can influence descriptions approximatel can influence descriptions impact on forecasting impact on product and how to product sales improve compared to historical product sales to drive sales. Chen, processing, 3. The study identifies 28 effectiveness future research descriptions, terms used in forecasting impact on product sales to drive sales. Chen, processing, 3. The study identifies 28 effectiveness future research descriptions, terms used in forecasting impact on product sales to drive sales. Chen, processing, 3. The study identifies 28 effectiveness future research descriptions, terms used in forecasting impact on product sales to drive sales. Chen, processing, 3. The study identifies 28 effectiveness future research descriptions, terms used in forecasting impact on product sales to drive sales. Chen, processing, 3. The study identifies 28 effectiveness future research descriptions, terms used in forecasting impact on product sales to drive sales. Chen, processing, 3. The study identifies 28 effectiveness future research descriptions, terms used in forecasting impact on product sales to drive sales. Chen, processing, 3. The study identifies 28 effectiveness future research descriptions, terms used in forecasting impact on product sales to drive sales. Chen, processing, 3. The study identifies 28 effectiveness future research descriptions, terms used in forecasting interms used in forecasting impact on product sales to drive sales. Chen, processing, 3. The study identifies 28 effectiveness future research descriptions, and product in the product in th				text mining,	to the	approach to		
networks, multiple forecasting companies to by weeter obtained by why product descriptions on product on sales forecasting. In the phrases ales forecasting. In g? An explaina ble AI framewo Shan rk by Chen, integrati ng Ke, In the product accuracy. In the phrases ales forecasting. In the phrases allowing allowing companies to be accuracy. In the product descriptions and how to product sales improve compared to historical descriptions product sales and price to drive sales. In the phrases allowing accuracy. In the phrases allowing notes that the BOW vector obtained by why product descriptions approduct and how to product sales improve compared to historical descriptions product sales and price to drive sales. In the phrases allowing notes that the BOW vector obtained by why product descriptions approduct and how to product sales improve compared to historical descriptions and price to drive sales. In the phrase allowing notes that the BOW vector obtained by why product descriptions approduct and how to product sales improve compared to descriptions and how to product sales and price variables. In the phrase allowing notes that the BOW vector obtained by why product and how to product sales improve compared to descriptions and how to product sales and price variables. In the phrase allowing notes that the BOW vector obtained by why product and how to product and how to product sales and price variables. In the phrase allowing notes that the BOW vector obtained by why product and how to product and how to product sales and price variables. In the phrase allowing notes that the analysis and product and how to product and how to produc				WaveNet	forecasting	sales		
multiple regression, and SHAP model show that descriptions on product phrases ales forecasting. Ing? An explaina ble AI framewo rk by Chen, results on the study for the show that the show that the show that the show that the results why product to analyze the show that the show th				neural	model	forecasting,	1.The study	
Which product description on phrases ales forecasting. 2.The can product of forecasting ages forecasting and how to product sales and product ages forecasting and how to product sales and product ages forecasting and product ages forecasting and price and product sales and price ages forecasts. In the study ages forecasts and price ages forecasts and ges forecasts. In the study ages forecasts and ges forecasts and ges forecasts and ges forecasts. In the study ages forecast ages and ges forecasts and ges forecasts. In the study ages forecast ages and ges forecast and ges forecas				networks,	improves	allowing	notes that the	
Which product description to analyze the phrases on affect sales forecasting. 2. The results show that descriptions on product descriptions affect sales forecasting. 2. The results show that descriptions descriptions on product descriptions affect sales forecasting. 2. The results show that descriptions descriptions approximatel can influence descriptions had a smaller impact on product sales improve compared to historical product sales consists of influence the todrive sales. 3. The study framework suggests that product identifies 28 great should explore mining, Wavel mining, Wavel mining, Wavel				multiple	forecasting	companies to	BOW vector	
product description on product on sales forecasting. graph and product on sales forecasting on explaina ble AI framewo Shan rk by Chen, integrati ng Ke, product descriptions to approximatel impact of approximatel impact of approximatel terms used in product and how to product and how to product and how to product sales improve compared to product historical product sales and price 2. The study the suggests that product descriptions and how to product sales improve compared to descriptions product sales and price 2. The study the suggests that product descriptions approximatel descriptions and how to product sales improve compared to descriptions and price and product sales and price 2. The study the suggests that product descriptions, the study identifies 28 effectiveness future research descriptions, the should explore mining, Wavelet in the study should explore mining wavelet in the study should e				regression, and	accuracy.	understand	obtained by	
descripti on product of product of descriptions on affect on sales forecasting. Impact of product of descriptions of terms used in forecasting on sales forecasting. Impact of product of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of the forecast of the framework of the suggest of the study of the suggests that product identifies 28 of the suggests that product of using text should explore imining, Waveled in the suggest of using text should explore imining, Waveled in the suggest of using text should explore imining, Waveled in the suggest of the suggest of the suggest of the suggest of using text should explore imining, Waveled in the suggest of the sug		Which		SHAP model	2.The results	why product	text mining of	
descripti on product of product of descriptions on affect on sales forecasting. Impact of product of descriptions of terms used in forecasting on sales forecasting. Impact of product of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of terms used in forecasting impact on product sales of the forecast of the framework of the suggest of the study of the suggests that product identifies 28 of the suggests that product of using text should explore imining, Waveled in the suggest of using text should explore imining, Waveled in the suggest of using text should explore imining, Waveled in the suggest of the suggest of the suggest of the suggest of using text should explore imining, Waveled in the suggest of the sug		product		to analyze the	show that	descriptions	product	
phrases affect on sales forecasting. descriptions improve compared to forecasting and how to forecasting. descriptions improve compared to historical product sales and product sales and product sales to drive sales. The study of sales of forecasts. The study integration on sales forecasts. The study integration on product sales and price descriptions to drive sales. The study of sales of forecasts. The study integration on product sales and price of sales of forecasts. The study integration on product sales and price of sales of sales of forecasts. The study of sales of forecasts of influence the study of sales of forecasts. The study of sales		descripti				can influence	descriptions	
affect sales forecasting. descriptions improve compared to historical product sales compared to historical product sales compared to historical product sales consists of influence the ble AI framework steps: level of sales forecasts. demonstrates to drive sales. The study variables. Shan data forecasts. demonstrates 2. The study descriptions product sales and price variables. 2. The study variables. Sales forecasts the suggests that product integrati Shengjie WaveNet identifies 28 effectiveness future research descriptions, to descriptions, to descriptions, to descriptions product sales and price variables. Sales forecasting. descriptions improve compared to historical product sales and price variables. 2. The study the suggests that product descriptions, to descriptions, to descriptions, to descriptions product sales and price variables.		on		product	y 44% of the	sales	had a smaller	
sales forecasting. 2. The framework explaina ble AI framewo Shan rk by Chen, integrati ng Ke, model forecasting. 2. The can significantly can significantly descriptions to drive sales. level of sales 2. The study descriptions to drive sales. 2. The study descriptions to drive sales. 2. The study demonstrates 2. The study suggests that future research descriptions to descriptions to descriptions and price variables. 2. The study suggests that product future research descriptions to descriptions and price variables. 3. The study suggests that product future research descriptions, t suggests forecasting. 2. The study suggests future research descriptions and price variables. 3. The study suggests future research descriptions, t suggests future research should explore mining, Wavel		phrases		descriptions	terms used in	forecasting	impact on	
forecasti ng? An explaina ble AI framewor Shan rk by Chen, integrati ng Ke, model 2.The can significantly significantly descriptions to drive sales. level of sales 2.The study descriptions to drive sales. 2.The study variables. 2.The study suggests that product sales and price variables. 2.The study suggests that product sales and price variables. Sales forecasti the suggests that product descriptions to drive sales. demonstrates 2.The study suggests that product descriptions, the suggests that product sales variables. Sales forecasti suggests that product descriptions, the suggests that product sales variables.		affect		on sales	product	and how to	product sales	
ng? An explaina ble AI framework consists of ble AI framewo Shan data forecasts. Integrati Shengjie Representation of the processing of the product of the processing of the product of the product of the product of the processing of the product of		sales		forecasting.	descriptions	improve	compared to	
explaina ble AI four steps: level of sales 2.The study variables. 2.The study variables. 2.The study variables. 3.The study integrati 5. Shengjie 6. WaveNet 6. Shengjie		forecasti		2.The	can	product	historical	
explaina ble AI four steps: level of sales 2.The study variables. 2.The study variables. 2.The study variables. 3.The study integrati 5. Shengjie 6. WaveNet 6. Shengjie		ng? An		framework	significantly	descriptions	product sales	
framewo Shan data forecasts. demonstrates 2.The study Sales forecasts suggests that product identifies 28 effectiveness future research descriptions, to model BOW vectors of using text should explore mining, Wavel		explaina		consists of	influence the	to drive sales.	and price	
rk by Chen, processing, integrati ng Ke, processing, and be considered by the suggests that identifies 28 effectiveness future research descriptions, the study identifies 28 effectiveness future research descriptions, the suggests that product identifies 28 effectiveness future research descriptions, the study integration in the suggests that product identifies 28 effectiveness future research descriptions, the study in the suggests that product identifies 28 effectiveness future research descriptions, the study in the suggests that product identifies 28 effectiveness future research descriptions, the study in the suggests that product identifies 28 effectiveness future research descriptions, the study in the suggests that product identifies 28 effectiveness future research descriptions, the study in the suggests that product identifies 28 effectiveness future research descriptions, the study in the suggests that product identifies 28 effectiveness in the study iden		ble AI		four steps:	level of sales	2.The study	variables.	
integrati Shengjie WaveNet identifies 28 effectiveness future research descriptions, t BOW vectors of using text should explore mining, Wavel		framewo	Shan					Sales forecasting,
ng Ke, model BOW vectors of using text should explore mining, Wavel		rk by	Chen,	processing,	3.The study	the	suggests that	product
		integrati	Shengjie	WaveNet	identifies 28	effectiveness	future research	descriptions, text
WaveNet Shuihua construction, with mining and the reasons for neural network		ng	Ke,	model	BOW vectors	of using text	should explore	mining, WaveNet
		WaveNet	Shuihua	construction,	with	mining and	the reasons for	neural networks,
neural Han, multiple significant deep learning this and extend multiple		neural	Han,	multiple	significant	deep learning	this and extend	multiple
network Shivam regression effects on techniques in the research to regression,		network	Shivam	regression	effects on	techniques in	the research to	regression,
models Gupta, analysis, and sales sales consider SHAP mod		models	Gupta,	analysis, and	sales	sales	consider	SHAP model,
		with	_	SHAP model	forecasting	forecasting.	inter-SKU	explainable AI,
multiple Uthayasa interpretation. and adds 3. The factors in the e-commerce,		multiple	Uthayasa	interpretation.	and adds	3.The	factors in the	e-commerce,
regressio nkar 3. The study them to the framework predictor cross-border		1 -	nkar	3.The study			predictor	cross-border
n Sivarajah uses a dataset WaveNet can help variables. trade.	11	n	Sivarajah	uses a dataset	WaveNet	can help	variables.	trade.

			of 100.076	modal to for			
			· ·	model to form	*		
				a new model			
				(Model C).	phrases that		
			cross-border		impact sales		
			e-commerce		forecasting		
			firm and		and optimize		
			extracts		product		
			product		description		
			descriptions		information		
			from the		on		
			e-commerce		e-commerce		
			platform.		platforms.		
			1The authors	1 The outhers	-	1.The	
				conducted a		performance of	
			1 1			the M2TFM	
				comprehensiv	_		
				l	-	model may be	
			d fusion model	_			
			(M2TFM) for	l	signals from	_	
			_	dataset with	=	missing data.	
			sales		images and		
			forecasting.	10,000	attributes.		
				fashion items.			multi-modal
							fusion,
			2.M2TFM	2.The results	2.The model	1 2	transform-based
			integrates	demonstrate	facilitates	which may	fusion model,
			multiple data	that the	cross-modal	lead to	new product
			sources,	proposed	interactions,	difficulties in	sales forecasting,
			including	method is	allowing for a	its	diffusion
			product	more	bidirectional	interpretation	embedding,
	Multi-M		images,	effective than	exchange of	and	transformer
	odal		attributes, text	existing	semantic	explanation.	self-attention
	Transfor	Xiangzhe	descriptions,	state-of-the-ar	information	_	mechanism,
			1 ,	t baselines for			e-commerce
		Jiaxing		new product		3.M2TFM	dataset, ablation
	Model	Shen,	holidays,	sales	modalities.	requires a large	· ·
	for New	-		forecasting.			context
	Product	Wang,	trends.				modeling,
	Sales	Wu Lu,	· · · · · · · · · · · · · · · · · · ·	3.The authors	3 The		seasonality,
		Yuanyi				which can be a	• •
		Chen	3.The model	ablation study	-		preferences.
12	ng	CHUII	J. THE HIGGE	aoianon study	or temporar	chancinge ill	preferences.

			1	to evaluate	a a m t a v v t	mmatical	
			\mathcal{E}			practical	
				the impact of	_	application	
			embedding to		1 *	scenarios.	
				feature types			
			_	on product	l -		
					information		
			modalities into	prediction.	that is crucial		
			a unified		for sales		
			representation	- 1	_		
					4.M2TFM		
			their complex	_	_		
			interactions.		the		
				(text, images,	seasonality		
				attributes,	and evolving		
			4.M2TFM	temporal	consumer		
			uses a	signals, and	preferences		
			transformer	contextual	within		
			self-attention	data) achieves	different		
			mechanism to	the best	product		
			extract	performance.	categories.		
			nuanced				
			signals across				
			modalities to				
			make more				
			accurate new				
			product sales				
			forecasts.				
	A		1.Proposes a	1.Tested on	1.Considers	1.Higher	
		Daifeng		two industrial		computational	
	•	Li,			types of time	-	
	_						Sales forecasting,
	m model		(Stage	Cainiao) and		simpler models	· · · · · · · · · · · · · · · · · · ·
			future-vision-b	· /	2.Models	_	prediction,
			ased multiple	*	future		long short-term
	*	r e	*				memory,
	forecasti		U	`		speed is not	
		Ruo Du,		_	-	_	neural networks,
	Ŭ	Wei Lu,		,	- ,	, ,	prior knowledge,
	Ŭ	-	-	2.Outperform	3.Captures		multivariate time
			for product	_	_	3.May still be	
13			Г-0444				

1	1		1	· d 1 1	I
with	sales	state-of-the-ar		influenced by	
prior	forecasting		non-linear	noisy	
knowled			patterns	information in	
ge		various		sparse time	
		metrics	_	series	
	sub-models to		s domain		
		significant	knowledge to		
	different types				
	of time series	· ·	predictions		
	data		5.Performs		
		CORR	well on both		
	3.Incorporates	metrics	high and low		
	a two-layer	compared to	sales products		
	convolutional	baselines			
	neural network				
	(TLCNN) and	4.Ablation			
	two-stage	studies			
	LSTM	showed the			
	(TSLSTM) to	contributions			
	model future	of different			
	dependencies	components			
	4.Includes a				
	dynamic				
	co-integration				
	(DCI)				
	mechanism to				
	capture linear				
	correlations				
	5.Integrates				
	prior				
	knowledge				
	(PK) about				
	seasonal and				
	promotional				
	influences				

			1.Propose	25				
			PoissonG					
			novel	1, u				
			Bayesian					
			model	that				
			uses	a				
			non-home	-				
				ogene				
			process v					
			Gaussian		1.PoissonGP			
						1,Flexible in		
			for	sales		dealing with		
			prediction		approaches	complex,		
			Prodiction	.1	on synthetic	- 1		
			2.Combir	ies	and	time series		
			Poisson	105	empirical	data		
			intensity	and	datasets	ditti		
			Gaussian			2.Manages		
			process p		2.Performed	distribution		
			P P		well on data			
			3.Uses			by changes in		
			additive			long-run sales	1.Requires	
			property	of	distribution	J	specifying	
			Gaussian		shifts	3.Incorporate	priors and	
			process	prior		s forecast	setting	
			to	make	3.Provided	uncertainty	Gaussian	
			disentang	led	prediction		process	Time series
			prediction		intervals to	4.Provides	components	analysis,
	Bayesian		without		assess	interpretabilit	based on	Gaussian
	non-para		explicitly		uncertainty	y for decision	assumptions or	process,
	metric		decompos	sing		support	prior	Bayesian
	method		time	series	4.Avoided	systems	knowledge	non-parametric
	for		data		error			method, Online
	decision				accumulation	5.Does not		product sales,
	support:	Ziyue	4.Provide	es	caused by	require	2.May be	Forecasting,
	Forecasti	Wu, Xi	prediction	1	separate	explicit	computationall	Decision support
	ng online	Chen,	intervals	in	decompositio	decompositio	y intensive	systems
	product	Zhaoxing	addition	to	n and	n of time	compared to	
14	sales	Gao	point fore	ecasts	prediction	series	simpler models	

				1.7-1 1			
				Volume and	D : 1		
					Provides a		
				online	comprehensiv		
				reviews	e framework		
				significantly		Data collected	
				influence	_	from only one	
				consumer		online retailer	
				purchasing	eWOM in	(Amazon.com)	
			Utilized panel	decisions.	product sales.	, limiting	Consumer
			data of 332			generalizabilit	Reviews
			new products	Negative	Offers	y.	
			from	reviews	insights into		eWOM
			Amazon.com	spread faster	the	Findings may	(Electronic Word
			over nine	and have a	differences	not apply to	of Mouth)
			months.	more	between	other	
				substantial	experience	e-commerce	New Product
			Employed	impact than	and search	platforms or	Sales
			fixed effects	positive	products.	product	
	The		models with	reviews.		categories.	Experience
	Effect of		lagged		Highlights		Products
	Online		variables to	The effect of	the	Potential	
	Consume		assess the	reviews	importance of	biases in	Search Products
	r	Geng	impact of	diminishes	1	consumer	
	Reviews	Cui,	online reviews	over time	_	reviews and	Marketing
	on New	Hon-Kw	on sales.	after a	feedback for	ratings not	Strategies
	Product	ong Lui,		product's	new product	fully	
15	Sales	and Guo		launch.	launches.	"	Negativity Bias
			Data collected	Online	Provides a	Results may	0 0
			from	reviews	comprehensiv		
			Amazon.com's Web Service	influence	e understanding	generalizable	
					_	across different	
			(AWS)		of how online	I -	01:
			_	varying	reviews affect		Online reviews,
	D.	NT TT	books, DVDs,			(e.g., books vs.	Ť
	Do		and videos.	on product		DVDs).	consumer
	Online	Æ Ling	TT/-1: 1 1	_	Highlights	D .	behavior,
	Reviews		Utilized panel		the		reviewer quality,
	Affect	Jie	data to analyze		_		transaction cost
1.6	Product	Jennifer	the dynamics	·	both		economics, panel
16	Sales?	Zhang	of online		quantitative	or length of	data, marketing.

			their impact on sales over time.	quantitative and qualitative information from reviews. The market responds more to	aspects of reviews. Offers insights for marketers on leveraging online reviews	reviews, which may also affect review quality.	
g s s f f	decision- support system for new product sales	hin*, Ao Ieong Ka Ieng, Wu Ling-Lin g, Kung	four-step process: Collect and Analyze Data, Determine Parameters for Forecasting Methods, Calculate Sales Forecast, and Adjust Results Subjectively. It utilizes classic methods (Moving Average, Exponential	demonstrated improved forecasting accuracy compared to traditional methods, particularly in scenarios with limited sales data. Variations caused by seasonality, promotional events, and other external factors were identified and minimized to	forecast accuracy by reducing data noise. Utilizes both classic and heuristic forecasting methods. Provides a structured approach to	forecasting. May still be influenced by unpredictable external factors. Complexity in parameter determination	NPFS, Exponential Smoothing, Moving Average,

Pimpri Chinchwad College of Engineering

			methods (Sales Index, Diffusion Model) to improve forecast accuracy by reducing data variations.	results.			
N	Pata Jining		forecasting models, including Exponential Smoothing, Holt's Linear Method, ARMA, and ARMAV with	accuracy and lowest residual sum of squares (RSS), while	linear trend incorporates both trend and input factors, leading to improved	Smoothing is limited to historical data	Forecast;
m Si I A fo	analysis Jor Sales Yoata	JinYao Yan;	predicting sales data for new consumer electronics	methods like Exponential Smoothing tended to	easy to	for implementatio	Causal Factor

	DATA				Improved		
	SCIENC				customer		
	E AND				experience		
	MACHI				through	Challenges in	
	NE NE			The research	"	logistics and	
	LEARNI				•	•	
		II		identifies key	strategies.	payment	
	NG	Hussain	Tl 1	factors	F. 1 1	security.	
	APPRO	Saleem	_	affecting	Enhanced	D 4 4: 1 C	
	ACH TO		employs data		decision-maki		T.
	IMPRO	Bin	analytics tools,		ng based on		E-commerce,
	VE	Muham	A/B testing,		data-driven	conversions	Data Science,
		mad	and customer		insights.	despite	Machine
		Altaf	behavior	rates,	_	analytics	Learning,
		Hussain	_	emphasizing	Increased	efforts.	Customer
		Nizaman		the	sales		Behavior, A/B
			hypotheses for	_		Dependence	Testing,
	ON	Saleem	improving	understanding		on accurate	Conversion
	SOCIAL	Jamshed	e-commerce	user behavior	optimized	data collection	Rates, Social
19	WEB	Butt	sales.	through data.	processes.	and analysis.	Web.
					Provides		
					insights for		
		Fangfang	Sentiment	Helpful votes	online sellers		
		Hou,				Limited to data	
		Boying	online	pictures	businesses	with review	
		Li, Alain	reviews.	significantly	effectively.	comments	
		Yee-Loo		influence		(only 6,000 out	
	Understa	ng	Neural	sales.	Utilizes big	` • ′	Big data, neural
	nding	Chong,	network		data		network, online
	and	Natalia		Sentiment	architecture	,	reviews, product
		Yannopo	_		applicable to	May not	demands, online
	g Online		*	_	various	account for all	· · · · · · · · · · · · · · · · · · ·
	Product	Martin J.		important	research	variables	reviewer
20	Sales	Liu	characteristics.	_ *	contexts.	affecting sales.	
				1		8 2 3 3 3 3 3 3 3	

				The study		
			The study	employs the		
			employs the	XGBoost	Improved	
			XGBoost	machine	accuracy in	
			machine	learning	sales	
			learning	algorithm for	forecasting.	
			algorithm for	sales		
			sales	forecasting,	Effective	
			forecasting,	utilizing	feature	
			utilizing	feature	ranking for	
			feature	engineering	better model	
			engineering	and data	performance.	
			and data	mining		Sales Forecast,
			mining	techniques to	Utilizes	XGBoost,
	Sales		techniques to	predict sales	advanced	Machine
	Forecasti		predict sales of	of products	machine	Learning
	ng Using	Yiyang	products and	and	learning	Algorithms, Data
21	XGBoost	Niu	commodities.	commodities.	techniques.	Mining.

Conclusion:

In conclusion, this case study demonstrates the value of employing straightforward machine learning techniques for sales forecasting in the dairy industry. By analyzing customer segmentation, demographics, and purchasing patterns, businesses can gain valuable insights into consumer behavior and demand fluctuations. The literature highlights the importance of capturing seasonal variations and dynamic interactions while showcasing the effectiveness of both classic and heuristic forecasting methods. Simplified approaches often yield superior results compared to complex models, underscoring the significance of tailoring methods to specific data characteristics. Furthermore, the incorporation of additional features, such as product descriptions and multiple data modalities, enhances forecasting accuracy, as evidenced by studies across various industries. Ultimately, this exploration

References:

1.A. K. Sharma, N. Goel, J. Rajput and M. Bilal, "An Intelligent Model For Predicting the Sales of a Product," 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 2020. 341-345, doi: pp. 10.1109/Confluence47617.2020.9057880. keywords: {Cloud computing; Data science; Conferences; Forestry; Prediction algorithms; Production; Organizations; Present Scenario of product; Future forecast; Prediction; Random Forest Algorithm \},

- 2.Z. Pirani, A. Marewar, Z. Bhavnagarwala and M. Kamble, "Analysis and optimization of online sales of products," 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 2017, pp. 1-5, doi: 10.1109/ICIIECS.2017.8276165. keywords: {Tools;Data mining;Market research;Organizations;Databases;Clothing;Sales Analytics tool;data mining;affinity analysis;logistic regression;linear regression;merchandise planning},
- 3.M. Velić, I. Padavić and Z. Lovrić, "Model of the new sales planning optimization and sales force deployment ERP business intelligence module for direct sales of the products and services with temporal characteristics," Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces, Cavtat, Croatia, 2012, pp. 91-96, doi: 10.2498/iti.2012.0379. keywords: {Marketing and sales;Cities and towns;Planning;Companies;Telecommunications;Sorting;ERP;CRM;direct sales;business intelligence;data mining;travelling salesman problem;sales optimization;call centre;decision support system;telecommunication sales;customer intelligence},
- 4.H. Xia and Y. Wang, "A Product Recommendation Method by Analyzing Sales Volume, Sales Period, and User Satisfaction," 2024 12th International Conference on Information and Education Technology (ICIET), Yamaguchi, Japan, 2024, pp. 407-411, 10.1109/ICIET60671.2024.10542781. keywords: {Sentiment analysis; Electronic learning; Correlation; Reviews; Education; Electronic commerce; Reliability; e-commerce; product recommendation:sales volume:sales period:user satisfaction}.
- 5.M. T. Rahman, E. Khatun, A. M. Asha and M. Jahangir Alam, "Time Series Forecasting of Agricultural Products Sale Using Deep Learning," 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 2023, pp. 1-6, doi: 10.1109/ICCCNT56998.2023.10307538. keywords: {Deep learning;Machine learning algorithms;Computational modeling;Time series analysis;Companies;Production;Predictive models;Product Sale Forecasting;Agriculture Product;Time Series Models;LSTM},
- 6.S. Mo, L. Zhang, Y. Xiang, X. Lu and C. Li, "Research on commodity sales forecasting based on combination model," 2022 IEEE 2nd International Conference on Data Science and Computer **Application** (ICDSCA), Dalian, China, 2022, 124-128, pp. doi: 10.1109/ICDSCA56264.2022.9988375. keywords: {Solid modeling; Computational modeling: Time series analysis; Neural networks; Predictive models; Market research; Data models;sales forecasting;XGBoost model;LSTM neural network;combination prediction model},
- 7.M. Doshi, "A Comparison of Data Mining Approaches for Forecasting Sales of FMCG Food Products," 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 2023, pp. 1-7, doi:

10.1109/ICCCNT56998.2023.10307432. keywords: {Measurement;Supply chains;Clustering algorithms;Companies;Prediction algorithms;Food products;Data mining;Data Mining;FMCG (Fast Moving Consumer Goods);Food Products;Sales Forecasting;Techniques;K-Means Clustering;Tracking Patterns;visualization techniques;Regression analysis techniques},

8.A two-stage prediction model based on behavior mining in livestream e-commerce Qinping Lin , Ning Jia , Liao Chen , Shiquan Zhong , Yuance Yang , Tong GaoCollege of Management and Economics, Tianjin University, Tianjin, 300072, China

bLaboratory of Computation and Analytics of Complex Management Systems (CACMS), Tianjin University, Tianjin 300072, China cHIAI Co. Ltd., Tianjin 300072, China

9.Integrating human judgement into quantitative forecasting methods: A review Authors: Meysam Arvan, Behnam Fahimnia, Mohsen Reisi, Enno Siemsen Institute of Transport and Logistics Studies, The University of Sydney, Darlington, NSW 2000, Australia B Wisconsin School of Business, University of Wisconsin, 975 University Ave, Madison, Wisconsin 53706, USA

10.M5 accuracy competition: Results, findings, and conclusions

Spyros Makridakis b, Evangelos Spiliotis a, Vassilios Assimakopoulos a 2022, International Journal of Forecasting

11. The value of data, machine learning, and deep learning in restaurant demand forecasting: Insights and lessons learned from a large restaurant chain

Bongsug (Kevin) Chae a, Chwen Sheu a, Eunhye Olivia Park b

Department of Management, College of Business, Kansas State University, 1301 Lovers Lane, Manhattan, KS 66506, United States of America

b Department of Food Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, South Korea

12.Introduction to the special issue on recent advances on digital economy-oriented artificial intelligence

Yu-Lin He, Philippe Fournier-Viger, Sebastian Ventura, Ling Zhang

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518107, China

Big Data Institute, College of Computer Science & Software Engineering, Shenzhen University, Shenzhen, 518060, China

Department of Computer Science and Numerical Analysis, University of Cordoba, Spain School of National Finance, Guangdong University of Finance, Guangzhou, 510521, China

13. Multi-modal transform-based fusion model for new product sales forecasting

Xiangzhen Li, Jiaxing Shen, Dezhi Wang, Wu Lu, Yuanyi Chen

Institute of Digital Finance, Hangzhou City University, Hangzhou, 310015, Zhejiang, China

Pimpri Chinchwad College of Engineering

b Hangzhou City University, Hangzhou, 310015, Zhejiang, China C Lingnan University, 8 Castle Peak Road, Tuen Mun, New Territories, Hong Kong D State Key Laboratory of Public Big Data, Guizhou University, 550025, Guizhou, China

14. The value of data, machine learning, and deep learning in restaurant demand forecasting: Insights and lessons learned from a large restaurant chain

Bongsug (Kevin) Chae a, Chwen Sheu a, Eunhye Olivia Park b

Department of Management, College of Business, Kansas State University, 1301 Lovers Lane, Manhattan, KS 66506, United States of America

b Department of Food Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, South Korea

15.Cui, Geng & Lui, Hon-Kwong & Guo, Xiaoning. (2012). The Effect of Online Consumer Reviews on New Product Sales. International Journal of Electronic Commerce. 17. 39-58. 10.2307/41739503.

16.Hu, Nan & Liu, Ling & Zhang, Jie. (2008). Do Online Reviews Affect Product Sales? The Role of Reviewer Characteristics and Temporal Effects. Information Technology and Management. 9. 201-214. 10.1007/s10799-008-0041-2.

17.Chern Ching-Chin, Ao Ieong Ka Ieng, Wu Ling-Ling, Kung Ling-Chieh, Designing a decision-support system for new product sales forecasting, Expert Systems with Applications, Volume 37, Issue 2, 2010, Pages 1654-1665, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2009.06.087. (https://www.sciencedirect.com/science/article/pii/S0957417409006034)

18.L. Wu, J. Y. Yan and Y. J. Fan, "Data Mining Algorithms and Statistical Analysis for Sales Data Forecast," 2012 Fifth International Joint Conference on Computational Sciences and Optimization, Harbin, China, 2012, pp. 577-581, doi: 10.1109/CSO.2012.132. keywords: {Marketing and sales;Predictive

models;Forecasting;Data models;Mathematical model;Analytical models;Accuracy;Time-Series Forecasting;Causal Factor Forecasting;ARMA;ARMAV},

19.Saleem, Hussain & Muhammad, Khalid & Nizamani, Altaf & Saleem, Samina & Butt, Jamshed. (2021). Data Science and Machine Learning Approach to Improve E-Commerce Sales Performance on Social Web. INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING & TECHNOLOGY. 12. 401-424. 10.34218/IJARET.12.4.2021.040.

20.Fangfang Hou, Boying Li, Alain Yee-Loong Chong, Natalia Yannopoulou & Martin J. Liu (2017) Understanding and predicting what influence online product sales? A neural network

approach, Production Planning & Control, 28:11-12, 964-975, DOI: 10.1080/09537287.2017.1336791

21.Y. Niu, "Walmart Sales Forecasting using XGBoost algorithm and Feature engineering," 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Bangkok, Thailand, 2020, pp. 458-461, doi: 10.1109/ICBASE51474.2020.00103. keywords: {Measurement;Machine learning algorithms;Software algorithms;Machine learning;Predictive models;Prediction algorithms;Data models;Sales Forecast;XGBoost;Machine learning algorithms;Data Mining},