ЛЕКЦІЯ 10

ЧИСЕЛЬНЕ РОЗВ'ЯЗУВАННЯ ЗВИЧАЙНИХ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ Однокрокові та багатокрокові методи

ЧИСЕЛЬНИЙ РОЗВ'ЯЗОК ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ

Загальні положення

Будемо розглядати звичайні диференціальні рівняння порядку n, що мають загальний вигляд:

$$F\left(x, y, y', ..., y^{(n-1)}, y^{(n)}\right) = 0.$$
 (1)

Визначення. Порядком диференціального рівняння називають порядок його старшої похідної.

Розв'язати диференціальне рівняння— означає знайти невідому функцію $y=\varphi(x)$, яка перетворює це рівняння у вірну тотожність.

Частковий розв'язок диференціального рівняння

Визначення. Частковим розв'язком рівняння

$$F\left(x, y, y', ..., y^{(n-1)}, y^{(n)}\right) = 0.$$

на інтервалі (a,b) називають будь-яку n раз диференційовну функцію $y=\varphi(x)$, що задовольняє цьому рівнянню, тобто таку, що перетворює рівняння на цьому інтервалі в тотожність.

Процедуру розв'язування диференціального рівняння часто називають інтегруванням рівняння, при цьому інтегрувати доводиться в загальному випадку рівно n раз, і при кожному інтегруванні в розв'язок входить чергова довільна константа.

Загальний розв'язок диференціального рівняння Визначення. Загальним розв'язком (загальним

інтегралом) рівняння
$$F\Big(x,y,y',...,y^{\binom{n-1}{2}},y^{\binom{n}{2}}\Big)=0$$
 називають

таке співвідношення

$$\Phi(x, y, C_1, \dots C_n) = 0$$

з якого може бути отриманий частковий розв'язок

$$y=arphiig(x,y,C_1,C_2,...,C_nig)$$
, де $C_1=const,...,\ C_n=const.$

Розглянемо диференціальне рівняння, яке виражене відносно старшої похідної:

$$y^{(n)} = f(x, y, y', y'', ..., y^{(n-1)})$$

Одержимо загальний розв'язок, виражений відносно невідомої функції

$$y = \varphi(x, y, C_1, C_2, \dots, C_n).$$

Існують два роди задач, пов'язаних з визначенням розв'язків рівняння:

$$y^{(n)} = f\left(x, y, y', \dots, y^{(n-1)}\right).$$
 (1)

- 1. Задача Коші, або задача з початковими даними
- 2. Крайова задача або задача із граничними умовами.

Задача Коші

Знайти той розв'язок y(x) диференціального рівняння, який при $x=x_0$ задовольняє умови:

$$y(x_0) = y_0, \ y'(x_0) = y'_0, ..., y^{(n-1)}(x_0) = y_0^{(n-1)}.$$
 (2)

Характерним для задачі Коші є те, що умови (2) задають в одній точці $x=x_{\scriptscriptstyle 0}$.

Геометрична інтерпретація розв'язків диференціальних рівнянь першого порядку

 $\frac{b}{x}$ — Нехай дано рівняння першого порядку: $F\left(x,y,y'
ight)=0$.

Один з розв'язків даного рівняння $y=arphi\left(x,c
ight)$ називають інтегральною кривою рівняння Γ_c .

Кожна точка в S відповідає значенням $x,\ y$ і $\frac{dy}{dx}$

у вигляді кута нахилу дотичної, які перетворюють $F\!\left(x,y,y'\right) = 0$ у тотожність. Множина дотичних утворює поле напрямків.

Розглянемо сімейство ліній Γ_c , задане рівнянням:

$$\Phi ig(x,y,c ig) = 0$$
, де c — параметр.

Криві сімейства Γ_c – це інтегральні криві, що утворені при різних значеннях константи c.

Ізокліна

Ізокліни - це лінії в площині (x,y) отримані через прирівнювання функції правої частини диференціального рівняння y'=f(x,y) до певної сталої c.

Ізокліни часто використовують для побудови графічного розв'язку звичайних диференціальних рівнянь.

Побудова $f(x,y) = c_i$ при i = 1,2,...,n дає множину ліній (для різних сталих), які мають однаковий градієнт із інтегральними

кривими Γ_{c_i} . Обчисливши цей градієнт для кожної ізокліни, можна візуалізувати <u>поле напрямків</u>; тоді зробити нарис приблизної кривої розв'язку стає порівняно простою задачею

Чисельні методи розв'язування диференціальних рівнянь

Методи розв'язування диференціальних рівнянь:

1. Методи точного інтегрування.

Дозволяють знайти розв'язок у вигляді аналітичної функції.

Недолік. Застосовні для дуже обмеженого класу рівнянь.

2. Методи чисельного інтегрування.

Представляють розв'язок диференціального рівняння у вигляді таблиць значень шуканої функції залежно від значення змінної.

Задача Коші

Для диференціального рівняння

$$y^{(n)} = f\left(x, y, y', \dots, y^{(n-1)}\right).$$

Знайти той розв'язок y(x) диференціального рівняння, який при $x=x_0$ задовольняє умовам:

$$y(x_0) = y_0, \ y'(x_0) = y'_0, ..., y^{(n-1)}(x_0) = y_0^{(n-1)}.$$

Характерним для задачі Коші є те, що умови задаються в одній точці $x=x_{\scriptscriptstyle 0}$.

Визначення однокрокових методів

Однокрокові методи — це методи, що дозволяють одержати наближення

$$y_{n+1}$$
 до значення точного розв'язку $yig(x_{n+1}ig)$

для кожного вузла дискретизації x_{n+1} на основі відомого наближення y_n до точного значення $y\!\left(x_n\right)$ у вузлі x_n .

Загальний вигляд явного однокрокового методу:

$$\mathbf{y}_{n+1} = F(f, x_n, x_{n+1}, \mathbf{y}_n)$$

Загальний вигляд неявного однокрокового методу:

$$\mathbf{y_{n+1}} = F\left(f, x_n, x_{n+1}, y_n, \mathbf{y_{n+1}}\right)$$

Однокроковий метод має порядок точності s, якщо для достатньо гла́дких задач виконується нерівність

$$\left\|y\left(x_{n+1}\right)-y_{n+1}\right\|\leq Ch^{s+1}$$
 , де $C-$ const.

Явний метод Ейлера

Нехай дана задача Коші для рівняння першого порядку:

$$\frac{dy}{dx}=f\!\left(x,y\right)$$
 при $y\!\left|_{x=x_0}=y_0. \to y\!\left(x\right)=y_0+\int\limits_{x_0}^x f\!\left(x,y\right)dx$

На відрізку |a;b| введемо вузли $a = x_0 < x_1 < ... < x_n = b$ й застосуємо метод лівих прямокутників Ньютона-Котеса:

$$y_1 = y_0 + f(x_0, y_0)(x_1 - x_0)$$

$$y_2 = y_1 + f(x_1, y_1)(x_2 - x_1)$$

$$y_n = y_{n-1} + f(x_{n-1}, y_{n-1})(x_n - x_{n-1}) \quad \text{w}$$

На кожному кроці явно можна одержати значення y_i

$$y = \varphi(x,c)$$
 x_0
 x_1

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$$

Метод полягає у виконанні таких дій:

- 1. Підставимо початкову умову $\left(x_0,y_0\right)$ в диференціальне рівняння $dy/dx=f\left(x,y\right)$.
- **2**. Замінимо на відрізку $\left[x_0,x_1
 ight]$ інтегральну криву на дотичну: $y_1=y_0+f\left(x_0,y_0
 ight)\!\left(x_1-x_0
 ight)$. Знайдемо y_1
- 3. Замінимо на відрізку $\left[x_1,x_2\right]$ інтегральну криву на дотичну: $y_2=y_1+f\left(x_1,y_1\right)\!\left(x_2-x_1\right)$. Знайдемо y_2

Похибка методу Ейлера

Нехай точно задане початкове значення інтегральної кривої $y_0=arphi\left(x_0
ight)$. Тоді в точці x_0+h метод Ейлера дає розв'язок: $y\left(x_0+h\right)=y\left(x_0\right)+hf\left(x_0,y\left(x_0\right)\right)$.

Враховуючи, що
$$y'=f\left(x,y\right)$$
, $y\left(x_{0}+h\right)=y\left(x_{0}\right)+hy'\left(x_{0}\right)$. (1)

Розкладання y в ряд Тейлора в околі h буде мати вигляд:

$$y(x_0 + h) = y(x_0) + hy'(x_0) + \frac{1}{2}h^2y''(x_0) + O(h^3).$$
 (2)

Похибку визначають як різницю між (1) і (2).

$$\frac{1}{2}h^2y''(x_0) + O(h^3)$$

Слід зазначити, що точність методу Ейлера відносно невисока. Підвищити точність, звичайно, можна, зменшивши крок обчислень, однак це призведе до ускладнення розрахунків.

Тому на практиці застосовують так званий **уточнений метод Ейлера** або формулу перерахування.

Приклад 1.

Знайти методом Ейлера наближений розв'язок задачі Коші для рівняння $y' = \sin x - \cos y$ при y(0) = 1 на відрізку $\begin{bmatrix} 0;1 \end{bmatrix}$ з кроком h = 0.2.

Розв'язок.

Оскільки y' = f(x, y), то $f(x, y) = \sin x - \cos y$

Етап1. Визначаємо початкову точку з виразу y(0) = 1: $x_0 = 0, \ y_0 = 1.$

Етап2. Визначаємо $f(x_0, y_0)$ з виразу $f(x, y) = \sin x - \cos y$.

$$f(x_0, y_0) = \sin 0 - \cos 1 = 0 - 0.5403 = -0.5403,$$

Етап3.Застосовуємо формулу $y_1 = y_0 + hf\left(x_0, y_0\right)$.

$$hf\left(x_{0},y_{0}\right)=0.2\left(-0.5403\right)=-0.1081,$$

$$y_{1}=y_{0}+hf\left(x_{0},y_{0}\right)=1-0.1081=0.8919.$$

Етап4.Визначаємо $f(x_1, y_1)$ з виразу $f(x, y) = \sin x - \cos y$, де $x_1 = x_0 + h = 0 + 0.2 = 0.2$, використовуємо $y_1 = 0.8919$ $f(x_1, y_1) = \sin 0.2 - \cos 0.8919 = 0.1987 - 0.6279 = -0.4292$ **Етап5.** Застосовуємо формулу $y_2 = y_1 + hf(x_1, y_1)$. $hf(x_1, y_1) = 0.2(-0.4292) = -0.0858,$ $y_2 = y_1 + hf(x_1, y_1) = 0.8919 - 0.0858 = 0.8061.$ **Етап6**.Визначаємо $f(x_2, y_2)$ з виразу $f(x, y) = \sin x - \cos y$, де $x_2 = x_1 + h = 02 + 0.2 = 0.4$, $y_2 = 0.8061$ $f(x_2, y_2) = \sin 0.4 - \cos 0.8061 = 0.3894 - 0.6923 = -0.3029$ **Етап7.** Застосовуємо формулу $y_3 = y_2 + hf(x_2, y_2)$. $hf(x_1, y_1) = 0.2(-0.3029) = -0.0609,$ $y_3 = y_2 + hf(x_2, y_2) = 0.8061 - 0.0609 = 0.7455.$

Аналогічно знаходимо:

x	0	0.2	0.4	0.6	0.8	1
y	1	0.892	0.806	0.746	0.711	0.703

Уточнений метод Ейлера

Суть методу полягає в тому, що у формулі $y_1=y_0+f\left(x_0,y_0\right)h$ замість значення $y_0=f\left(x_0,y_0\right)$ беруть середнє арифметичне значень $f\left(x_0,y_0\right)$ і $f\left(x_1,y_1\right)$. Тоді уточнене значення:

$$y_1^{(1)} = y_0 + f(x_0, y_0)h$$
.

Потім знаходимо значення похідної в точці $\left(x_1,y_1^{(1)}\right)$. Заміняючи $f\left(x_0,y_0\right)$ середнім арифметичним значень $f\left(x_0,y_0\right)$ і $f\left(x_1,y_1^{(1)}\right)$, знаходимо друге уточнене значення y_1 .

$$y_{1}^{\left(2\right)}=y_{0}+\frac{f\left(x_{0},y_{0}\right)+f\left(x_{1},y_{1}^{\left(1\right)}\right)}{2}h.$$

Потім третє:

$$y_1^{(3)} = y_0 + \frac{f(x_0, y_0) + f(x_1, y_1^{(2)})}{2}h$$

і т. д., поки два послідовні уточнені значення не співпадуть в межах заданого ступеня точності.

Тоді це значення беруть за ординату точки m_1 ламаної Ейлера.

Аналогічну операцію проводять для інших значень y.

Приклад 2.

Знайти уточненим методом Ейлера наближений розв'язок задачі Коші для рівняння $y' = \sin x - \cos y$ при y(0) = 1 на відрізку [0;1] з кроком h = 0.2.

Розв'язок.

Етап1.

$$\begin{split} f\left(x_{0},y_{0}\right) &= \sin 0 - \cos 1 = 0 - 0.5403 = -0.5403, \\ y_{1} &= y_{0} + hf\left(x_{0},y_{0}\right). \\ hf\left(x_{0},y_{0}\right) &= 0.2\left(-0.5403\right) = -0.1081, \\ y_{1} &= y_{0} + hf\left(x_{0},y_{0}\right) = 1 - 0.1081 = 0.8919. \end{split}$$

Етап2.

$$\begin{split} f\left(x_{1},y_{1}\right) &= \sin 0.2 - \cos 0.892 = 0.1987 - 0.6279 = -0.4292, \\ y_{1}^{(1)} &= y_{0} + \frac{f\left(x_{0},y_{0}\right) + f\left(x_{1},y_{1}^{(0)}\right)}{2}h = 1 + \frac{-0.5403 - 0.4292}{2}0.2 = 1 - 0.8323 = 0.917 \end{split}$$

$$\begin{split} f\bigg(x_1,y_1^{\left(1\right)}\bigg) &= \sin 0.2 - \cos 0.917 = 0.1987 - 0.6082 = -0.4095, \\ y_1^{\left(2\right)} &= y_0 + \frac{f\big(x_0,y_0\big) + f\Big(x_1,y_1^{\left(1\right)}\big)}{2}h = 1 + \frac{-0.5403 - 0.4095}{2}0.2 = 1 - 0.095 = 0.905 \end{split}$$

$$\begin{split} f\bigg(x_1,y_1^{\left(2\right)}\bigg) &= \sin 0.2 - \cos 0.905 = 0.1987 - 0.6177 = -0.419, \\ y_1^{\left(3\right)} &= y_0 + \frac{f\big(x_0,y_0\big) + f\Big(x_1,y_1^{\left(1\right)}\Big)}{2} h = 1 + \frac{-0.5403 - 0.419}{2} 0.2 = 1 - 0.0959 = 0.904 \\ & \left|0.905 - 0.904\right| = 0.001 \end{split}$$

Етап 3 Точка y_2 та її ітерації $y_2^{(1)}, y_2^{(2)}, y_2^{(3)}$ обчислюються аналогічно до етапу 2.

Етап 4. Використовуючи аналогічну схему обчислюємо точки
$$y_2\left(y_2^{(1)},y_2^{(2)},y_2^{(3)}\right)$$
, $y_3\left(y_3^{(1)},y_3^{(2)},y_3^{(3)}\right)$, $y_4\left(y_4^{(1)},y_4^{(2)},y_4^{(3)}\right)$, $y_5\left(y_5^{(1)},y_5^{(2)},y_5^{(3)}\right)$

Розв'язати приклад методом Ейлера

Розв'язати методом Ейлера диференціальне рівняння y'=x+y при початковій умові $y\left(0\right)=1$ на відрізку $\left[0;0.5\right]$ із кроком 0.1.

1)
$$x_0 = 0$$
, $y_0 = 1$.
 $f(x_0, y_0) = x_0 + y_0 = 1$,
 $hf(x_0, y_0) = h(x_0 + y_0) = 0.1$,
 $y_1 = y_0 + hf(x_0, y_0) = 1 + 0.1 = 1.1$.

2)
$$x_1 = 0.1$$
, $y_1 = 1.1$.
 $f(x_1, y_1) = x_1 + y_1 = 1.2$,
 $hf(x_1, y_1) = h(x_1 + y_1) = 0.12$,
 $y_2 = y_1 + hf(x_1, y_1) = 1.1 + 0.12 = 1.22$.

Виконуючи аналогічні обчислення далі, одержуємо таблицю значень:

i	0	1	2	3	4	5
x_{i}	0.0	0.1	0.2	0.3	0.4	0.5
$\overline{y_i}$	1	1.1	1.22	1.362	1.528	1.721

Застосуємо тепер уточнений метод Ейлера

i	O	1	2	3	4	5
x_i	0.0	0.1	0.2	0.3	0.4	0.5
y_i	1	1.1	1.243	1.400	1.585	1.799

Неявний метод Ейлера

Нехай дана задача Коші для рівняння першого порядку:

$$\dfrac{dy}{dx}=f\left(x,y
ight)$$
 при $y\Big|_{x=x_0}=y_0$. $\to y\Big(x\Big)=y_0+\int\limits_{x_0}^x f\Big(x,y\Big)dx$

На відрізку $\left[a;b\right]$ введемо вузли $a=x_0 < x_1 < ... < x_n = b$ й застосуємо метод правих прямокутників Ньютона-Котеса

$$\begin{cases} y_1 = y_0 + f(x_1, y_1)(x_1 - x_0) \\ y_2 = y_1 + f(x_2, y_2)(x_2 - x_1) \\ y_n = y_{n-1} + f(x_n, y_n)(x_n - x_{n-1}) \end{cases} y = f(x)$$

Для одержання значень $y_1, y_2, ..., y_n$ необхідно розв'язати систему з n рівнянь із n невідомими.

Метод Рунге-Кутта

Метод Рунге-Кутта є більш точним у порівнянні з методом Ейлера.

Суть уточнення полягає в тому, що шуканий розв'язок представляють у вигляді розкладання в ряд Тейлора.

$$y_{i+1} = y_i + y_i'h + y_i''\frac{h^2}{2!} + y_i'''\frac{h^3}{3!} + y_i^{IV}\frac{h^4}{4!} + \dots$$

Якщо в цій формулі обмежитися двома першими доданками, то одержимо формулу методу Ейлера. Метод Рунге-Кутта враховує чотири перші члени розкладання.

$$y_{i+1} = y_i + y_i'h + y_i''\frac{h^2}{2!} + y_i'''\frac{h^3}{3!} = y_i + \Delta y_i$$

У методі Рунге-Кутта прирости Δy_i обчислюють за формулою:

$$\Delta y_i = \frac{1}{6} \left(k_1^{(i)} + 2k_2^{(i)} + 2k_3^{(i)} + k_4^{(i)} \right),$$

де коефіцієнти k_i обчислюють за формулами:

$$\begin{aligned} & \mathbf{k_1^{(i)}} = hf\left(x_i, y_i\right), \\ & \mathbf{k_2^{(i)}} = hf\left(x_i + \frac{h}{2}, y_i + \frac{\mathbf{k_1^{(i)}}}{2}\right), \\ & \mathbf{k_3^{(i)}} = hf\left(x_i + \frac{h}{2}, y_i + \frac{\mathbf{k_2^{(i)}}}{2}\right), \\ & \mathbf{k_4^{(i)}} = hf\left(x_i + h, y_i + \mathbf{k_3^{(i)}}\right). \end{aligned}$$

Приклад. Розв'язати методом Рунге-Кутта диференціальне рівняння y'=x+y при початковій умові $y\left(0\right)=1$ на відрізку $\left[0;0.5\right]$ із кроком 0.1.

Для i=0 обчислимо коефіцієнти k_i .

$$\begin{aligned} k_1^{(0)} &= hf\left(x_0, y_0\right) = 0.1 \left(x_0 + y_0\right) = 0.1 \left(0 + 1\right) = 0.1; \\ k_2^{(0)} &= hf\left(x_0 + \frac{h}{2}; y_0 + \frac{k_1^{(0)}}{2}\right) = 0.1 \left(0.05 + 1.05\right) = 0.11; \\ k_3^{(0)} &= hf\left(x_0 + \frac{h}{2}; y_0 + \frac{k_2^{(0)}}{2}\right) = 0.1 \left(0.05 + 1.055\right) = 0.1105; \\ k_4^{(0)} &= hf\left(x_0 + h; y_0 + k_3^{(0)}\right) = 0.1 \left(0.1 + 1.1105\right) = 0.1211. \end{aligned}$$

$$\Delta y_0 = \frac{1}{6} \left(k_1^{(0)} + 2k_2^{(0)} + 2k_3^{(0)} + k_4^{(0)} \right) =$$

$$= \frac{1}{6} \left(0.1 + 0.22 + 0.221 + 0.1211 \right) = 0.1104$$

$$\begin{split} x_1 &= x_0 + h, \\ y_1 &= y_0 + \Delta y_0 = 1 + 0.1104 = 1.1104, \end{split}$$

Наступні обчислення приводити не будемо, а результати представимо у вигляді таблиці.

i	x_i	k	Δy_i	$y_i^{}$
0	0	1 0.1000 2 0.1100 3 0.1105	0.1104	1
		4 0.1155		
1	0.1	1 0.1210 2 0.1321 3 0.1326	0.1325	1.1104
		4 0.1443	_	
2	0.2	1 0.1443 2 0.1565 3 0.1571 4 0.1700	0.1569	1.2429
3	0.3	1 0.1700 2 0.1835 3 0.1842 4 0.1984	0.1840	1.3998
4	0.4	1 0.1984 2 0.2133 3 0.2140 4 0.2298	0.2138	1.5838
5	0.5		•	1.7976

Визначення багатокрокових методів

Багатокрокові методи — це методи, що дозволяють одержати наближення y_{n+k} до значення точного розв'язку $y\left(x_{n+k}\right)$ для кожного вузла дискретизації x_{n+k} в загальному випадку на основі відомих наближень $y_{n+k-1}, y_{n+k-2}, ..., y_n$ у вузлах $x_{n+k-1}, x_{n+k-2}, ..., x_n$.

Загальний вигляд **явного** k — крокового методу:

$$\mathbf{y}_{n+k} = F(f, x_n, ..., x_{n+k-1}, y_n, ..., y_{n+k-1})$$

Загальний вигляд **неявного** k — крокового методу:

$$\mathbf{y_{n+k}} = F\left(f, x_n, ..., x_{n+k-1}, x_{n+k}, \mathbf{y_n}, ..., \mathbf{y_{n+k-1}}, \mathbf{y_{n+k}}\right)$$

Багатокрокові методи Постановка задачі

- Розв'язати наближено: y' = f(x, y).
- Початкова умова $y(x_0) = y_0$.
- Представити розв'язок у вигляді таблиці значень (x_i,y_i) , де $x_i=x_0+ih$.

Використати особливість багатокрокових методів

Для обчислення y_{i+1}

використовуються результати k попередніх кроків, тобто значення $y_i, ..., y_{i-k+2}, y_{i-k+1}$.

У цьому випадку отримуємо k-кроковий метод.

Явний метод Адамса (метод Адамса-Башфорта)

Нехай відомі розв'язки $\left(x_i,y_i\right)_{i=1}^n$ в перших n вузлах. Тоді на відрізку $\left[n,n+1\right]$ можна записати розв'язок рівняння $y'=f\left(x,y\right)$ у вигляді

$$y_{n+1} = y_n + \int_{x_n}^{x_{n+1}} f(x, y) dx$$

Для чисельного обчислення даного інтеграла використовуємо представлення функції $f\left(x,y\right)$ інтерполяційним поліномом Ньютона з інтерполяцією назад:

$$\begin{split} N_{n-\!1}\!\left(x\!\right) &= \! f\!\left(x_{\!n}\right) + \! f\!\left(x_{\!\!\!\!\!\!n-\!\!\!\!\!1}; x_{\!\!\!\!n}\right) \cdot \! \left(x - x_{\!\!\!\!n}\right) + \! f\!\left(x_{\!\!\!\!\!\!n-\!\!\!\!2}; x_{\!\!\!\!n-\!\!\!\!1}; x_{\!\!\!n}\right) \cdot \! \left(x - x_{\!\!\!\!n}\right) \! \left(x - x_{\!\!\!\!n-\!\!\!\!1}\right) \dots \\ &+ \! f\!\left(x_{\!\!\!\!1}; \dots; x_{\!\!\!\!n}\right) \cdot \! \left(x - x_{\!\!\!\!n}\right) \cdot \dots \cdot \! \left(x - x_{\!\!\!\!1}\right) \end{split}$$

Представимо усічену формулу для m рівновіддалених вузлів:

$$\begin{split} f\left(x\right) &= \mathbf{a_n} + \mathbf{a_{n-1}} \cdot \left(x - x_n\right) + \ldots + \mathbf{a_k} \cdot \left(x - x_n\right) \cdot \ldots \cdot \left(x - x_{n-k+1}\right) + \ldots \\ &+ \mathbf{a_m} \cdot \left(x - x_n\right) \cdot \ldots \cdot \left(x - x_{n-m+1}\right) + R_m\left(x\right), \end{split}$$

де $a_{k}=rac{\Delta^{k}f_{n}}{k!\,h^{k}}$ – коефіцієнти полінома Ньютона,

 $\Delta^k f_n$ — скінченні ліві різниці k — го порядку функції $f\left(x,y\right)$ в точці x_n :

У випадку постійного кроку скінченні різниці для правої частини у вузлі мають вигляд:

$$\Delta f_n = f_n - f_{n-1}$$
, $\Delta^2 f_n = f_n - 2f_{n-1} + f_{n-2}$, $\Delta^3 f_n = f_n - 3f_{n-1} + f_{n-2} - f_{n-3}$, $R_m \left(x \right)$ — похибка інтерполяції.

Підставимо даний поліном замість підінтегральної функції у виразі

$$y_{n+1} = y_n + \int_{x_n}^{x_{n+1}} f(x, y) dx$$

Нехтуючи помилкою інтерполяції, одержимо:

$$y_{n+1} \approx y_n + \sum_{k=0}^{m} \frac{\Delta^k f_n}{k! h^k} \int_{x_n}^{x_{n+1}} (x - x_n) \cdot \dots \cdot (x - x_{n-k+1}) dx$$

Обчислимо значення інтеграла в правій частині даного виразу для декількох k

$$\Delta f_n = f_n - f_{n-1},$$

$$\Delta^2 f_n = f_n - 2f_{n-1} + f_{n-2},$$

$$\Delta^3 f_n = f_n - 3f_{n-1} + f_{n-2} - f_{n-3},$$

При
$$k=0$$
 одержимо $\int\limits_{x_n}^{x_{n+1}}dx=x_{n+1}-x_n=h$,

При
$$k=1$$
одержимо $\int\limits_{x_n}^{x_{n+1}} \left(x-x_n\right) dx = \int\limits_{x_n}^{x_{n+1}} x dx - x_n \int\limits_{x_n}^{x_{n+1}} dx = \frac{h^2}{2}$,

При
$$k=2$$
 одержимо $\int\limits_{x}^{x_{n+1}} {\left({x - x_n } \right)} {\left({x - x_{n - 1} } \right)} dx = rac{{5h^3 }}{6}$,

При
$$k=3$$
 одержимо $\int\limits_x^{x_{n+1}} \! \left(x-x_n\right)\! \left(x-x_{n-1}\right)\! \left(x-x_{n-2}\right)\! dx = \frac{18h^4}{8}$,

Тоді різницеву схему четвертого порядку Адамса можна записати після необхідних перетворень у вигляді

$$y_{i+1} = y_i + h \left| f_i + \frac{1}{2} \Delta f_i + \frac{5}{12} \Delta^2 f_i + \frac{3}{8} \Delta^3 f_i \right|.$$

Кінцеві формули для методу Адамса

Якщо в отриману формулу для методу Адамса

$$y_{i+1} = y_i + h \left[f_i + \frac{1}{2} \Delta f_i + \frac{5}{12} \Delta^2 f_i + \frac{3}{8} \Delta^3 f_i \right].$$

підставити значення скінченних різниць Δf_i , то одержимо остаточні вирази для обчислень за методом Адамса:

$$y_{i+1} = y_i + \frac{h}{24} \left(55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3} \right)$$

Цей метод називають явним методом Адамса четвертого порядку або методом Адамса-Башфорта.

Проблема обчислення початкових точок

Неможливо почати обчислення по одному лише відомому значенню y_0 . Розрахунки можна почати тільки з вузла x_3 , а не x_0 . Значення y_1, y_2, y_3 , необхідні для обчислення y_4 , потрібно одержати у будь-який інший спосіб.

Для цього можна використовувати цей же метод Адамса, але більш низьких порядків.

Розглянемо початкове наближення поліномом Ньютона

$$y_{n+1} \approx y_n + \int_{x_n}^{x_{n+1}} N_0(x) dx.$$

1. При m=0 поліном $N_0\left(x\right)=f\left(x_n,y_n\right)=f_n$ – const . Тому одержуємо метод Ейлера:

$$y_{n+1} = y_n + f(x_n, y_n)(x_{n+1} - x_n)$$

2. При
$$m=1$$
 обчисливши $y_{n+1} \approx y_n + \int\limits_{x_n}^{x_{n+1}} N_1 \Big(x\Big) dx$

одержимо двокроковий метод Адамса:

$$y_{n+1} = y_n + \frac{h}{2} (3f_n - f_{n-1}).$$

3. При m=2 поліном $N_2\left(x\right)$ – квадратичний поліном, що інтерполює функцію по вузлах

$$(x_{n-2}, f_{n-2}), (x_{n-1}, f_{n-1}), (x_n, f_n).$$

Обчисливши $y_{n+1} pprox y_n + \int\limits_{x_n}^{x_{n+1}} N_2 \big(x \big) dx$, одержимо трикроковий

метод Адамса:

$$y_{n+1} = y_n + \frac{h}{12} \left(23f_n - 16f_{n-1} + 5f_{n-2} \right)$$

Неявний метод Адамса (метод Адамса-Мултона)

Розглянемо початкове наближення поліномом Ньютона

$$y_{n+1} pprox y_n + \int\limits_{x_n}^{x_{n+1}} N_{n+1} \left(x
ight) dx$$
 ,

що забезпечує інтерполяцію по $x_{n+1}, x_n, x_{n-1}, ..., x_{n-m}$ точках.

При цьому виникає клас неявних методів, названих методами Адамса-Мултона.

1. Якщо
$$m=0$$
, то $N_{n+1}\big(x\big)$ – лінійна функція, що проходить через точки $\big(x_n,f_n\big)$ і $\big(x_{n+1},f_{n+1}\big)$.

Після інтегрування одержуємо двокроковий метод

Адамса-Мултона:
$$y_{n+1} = y_n + \frac{h}{2} (f_{n+1} + f_n)$$
.

2. Якщо m=1, то $N_{n+1}\big(x\big)$ – квадратний поліном, побудований по точках $\big(x_{n+1},f_{n+1}\big), \big(x_n,f_n\big), \big(x_{n-1},f_{n-1}\big).$

Після інтегрування одержуємо трикроковий метод Адамса-Мултона:

$$y_{n+1} = y_n + \frac{h}{12} (5f_{n+1} + 8f_n - f_{n-1}).$$

3. Якщо m=2 то $N_{n+1} \left(x \right)$ — кубічний поліном, побудований по точках

$$(x_{n+1}, f_{n+1}), (x_n, f_n), (x_{n-1}, f_{n-1}), (x_{n-2}, f_{n-2})$$

Після інтегрування одержуємо чотирикроковий метод Адамса-Мултона:

$$y_{n+1} = y_n + \frac{h}{24} (9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2}).$$

Порівняння методів Адамса і Рунге-Кутта Перевага методу Адамса

При однаковій точності метод Адамса більш економічний, оскільки він вимагає обчислення лише одного значення правої частини на кожному кроці (у методі Рунге-Кутта – чотирьох).

Недоліки методу Адамса

- 1. Неможливо почати обчислення по одному лише відомому значенню y_0 . Розрахунки можна почати тільки з вузла x_3 , а не x_0 . Значення y_1, y_2, y_3 , необхідні для обчислення y_4 , потрібно одержати у будь-який інший спосіб (наприклад, методом Рунге-Кутта), що суттєво ускладнює алгоритм.
- 2. Метод Адамса не дозволяє (без ускладнення формул) змінити крок h у процесі обчислень; цього недоліку позбавлені однокрокові методи.

Методи прогнозу й корекції або методи предиктор-коректор

Загальний алгоритм методів

На кожному кроці вводяться два етапи, що використовують багатокрокові методи:

- 1. За допомогою явного методу (*предиктора*) за відомими значенням функції в попередніх вузлах обчислюють початкове наближення $y_{i+1}^{(0)}$ в новому вузлі.
- 2. Використовуючи неявний метод (коректор), у результаті ітерацій обчислюють наближення $y_{i+1}^{(1)}, y_{i+1}^{(2)}, \dots$

Метод прогнозу і корекції на основі методу Адамса четвертого порядку

Наведемо остаточний вигляд різницевих співвідношень: на етапі предиктора:

$$y_{i+1} = y_i + \frac{h}{24} (55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3}).$$
 (1)

На етапі коректора

$$y_{i+1} = y_i + \frac{h}{24} (9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2}).$$
 (2)

Явна схема (1) використовується на кожному кроці один раз, а за допомогою неявної схеми (2) будується ітераційний процес обчислення y_{i+1} , оскільки це значення входить у праву частину виразу: $f_{i+1} = f\left(x_{i+1}, y_{i+1}\right)$.

Локальна похибка методів Адамса k-го порядку — $O(h^k)$.

Методи Адамса мають кращу, у порівнянні з методами Рунге-Кутта, стійкість.

Формула із другими різницями:

$$y_{i+1}=y_i+q_i+rac{1}{2}\Delta q_{i-1}+rac{5}{12}\Delta^2 q_{i-2}$$
, де $q_i=h\!f\!\left(x_i,y_i
ight)$.

Приклад. Використовуючи метод Адамса із другими різницями, скласти таблицю наближених значень інтеграла диференціального рівняння $y'=1+0.2\cdot y\cdot \sin x-1.5\cdot y^2$, що задовольняє початковим умовам $y\left(0\right)=0$ на відрізку $x\in\left[0,1\right]$; крок h=0.1. Усі обчислення вести із чотирма десятковими знаками. Початковий відрізок визначити методом Рунге-Кутта.

Розв'язок.

1. Визначимо значення $y_1=yig(0.1ig), y_2=yig(0.2ig)$ (початковий відрізок) методом Рунге-Кутта. При цьому значення $y_{i+1}=yig(x_{i+1}ig)$, де $x_{i+1}=x_i+h$, обчислюємо за формулами:

$$\begin{split} y_{i+1} &= y_i + \Delta y_i, \qquad \Delta y_i = \frac{1}{6} \Big(k_1^i + 2 k_2^i + 2 k_3^i + k_4^i \Big), \text{ де} \\ k_1^i &= hf \Big(x_i, y_i \Big), \\ k_2^i &= hf \left(x_i + \frac{h}{2}, y_i + \frac{k_1^i}{2} \right), \\ k_3^i &= hf \left(x_i + \frac{h}{2}, y_i + \frac{k_2^i}{2} \right), \\ k_4^i &= hf \Big(x_i + h, y_i + k_3^i \Big) \,. \end{split}$$

2. Обчислення наступних значень $y_i = y\left(x_i\right)$, де $x_i = x_0 + ih\left(i = 3, 4, ...\right)$, здійснюємо за формулою Адамса з другими різницями

$$y_{i+1}=y_i+q_i+rac{1}{2}\Delta q_{i-1}+rac{5}{12}\Delta^2 q_{i-2}$$
, де $q_i=h\!f\!\left(x_i,y_i
ight)$.

Зведемо в таблицю остаточні значення $y\left(x_i\right)$ та значення скінченних різниць, наявних в обчислювальній формулі. У наступній таблиці представлені результати обчислення значень функції

x_i	$ y_i $	$0.2\sin x_i$	$0.2y_i \sin x_i$	$-1.5y_i^2$	$\left f \left(\boldsymbol{x}_i, \boldsymbol{y}_i \right) \right $
0.3	0.2887	0.0591	0.0171	-0.1250	0.8921
0.4	0.3742	0.0779	0.0292	0.2102	0.8190
0.5	0.4518	0.0959	0.0433	0.3062	0.7371
0.6	0.5210	0.1129	0.0588	0.4071	0.6517
0.7	0.5818	0.1288	0.0749	0.5078	0.5671
0.8	0.6343	0.1435	0.0910	0.6036	0.4874
0.9	0.6792	0.1567	0.1064	0.6920	0.4144

Метод Мілна

Метод типу предиктор-коректор четвертого порядку точності.

Прогнозно-коригуючий метод Мілна використовує пару скінченно-різницевих формул:

формула-предиктор

$$y_{n+1} = y_{n-3} + \frac{4h}{3} (2f_n - f_{n-1} + 2f_{n-2}) + O(h^5),$$

де
$$O(h^5) = \frac{28}{90} h^5 f^{(5)}$$
 – похибка формули прогнозу.

Формула-коректор (формула Симпсона)

$$y_{n+1} = y_{n-1} + \frac{h}{3} (f_{n+1} + 4f_n + f_{n-1}) + O(h^5),$$

де
$$O\!\left(h^{5}\right) = -\frac{1}{90}h^{5}f^{\left(5\right)}$$
— похибка формули корекції.

Метод Хеммінга

Це стійкий метод предиктор-коректор четвертого порядку точності

Формула – предиктор:

$$y_{n+1}=y_{n-3}+\frac{4h}{3}\big(2f_n-f_{n-1}+2f_{n-2}\big)+O\Big(h^5\Big),$$
 де $O\Big(h^5\Big)=\frac{28}{90}h^5f^{(5)}$ — похибка формули прогнозу.
$$y_{n+1}=\frac{1}{8}\Big[9f_n-f_{n-2}+3h\big(f_{n+1}+2f_n-f_{n-1}\big)\Big]+O\Big(h^5\Big)$$
 де $O\Big(h^5\Big)=-\frac{1}{40}h^5f^{(5)}$ — похибка формули корекції.

Особливістю методу Хеммінга є те, що він дозволяє оцінювати похибки, внесені на стадіях прогнозу й корекції, і усувати їх.