Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

WS 2010/11

Blatt 14

Aufgabe 1. Sei p eine Primzahl und $a = a_0 + a_1p + a_2p^2 + \cdots \in \widehat{\mathbb{Z}}_p$ mit $a_n \in \{0, \ldots, p-1\}.$

- (a) Zeigen Sie: Sind die a_n periodisch, so ist $a \in \mathbb{Q}$.
- (b) Berechnen Sie $1 + 2 \cdot 3 + 3^2 + 2 \cdot 3^3 + 3^4 + \dots \in \widehat{\mathbb{Z}}_3$.
- (c) Zeigen Sie: Jede Zahl $m \in \mathbb{Z}$ mit $p \nmid m$ ist Teiler von $p^n 1$ für ein $n \in \mathbb{N}$.
- (d) Bestimmen Sie die $a \in \widehat{\mathbb{Z}}_p$, für welche die a_n periodisch sind.
- (e) Zeigen Sie: a liegt genau dann in \mathbb{Z}_p , wenn eine Zahl $k \in \mathbb{N}$ existiert, so daß die a_n für $n \ge k$ periodisch sind.
- (f) Berechnen Sie $\frac{3}{4}$ als Reihe in \mathbb{Z}_5 .
- (g) Sei $a \in \widehat{\mathbb{Z}}_5$ mit $a^2 = -1$ (Skript S. 87). Zeigen Sie, daß die Reihenglieder a_n nicht periodisch sind.

Aufgabe 2. Sei k ein Körper, R := k[x], und K = k(x) der Quotientenkörper von R. Ferner sei k[[x]] der Ring der formalen Potenzreihen $\sum_{n=0}^{\infty} a_n x^n$ mit $a_n \in k$. Addition und Multiplikation sind wie bei konvergenten Potenzreihen definiert. Zeigen Sie:

- (a) $k[[x]] \cong \lim_{n \to \infty} R/(x^n)$.
- (b) Für $a_0 \neq 0$ ist $\sum_{n=0}^{\infty} a_n x^n$ in k[[x]] invertierbar. Berechnen Sie $(1+x)^{-1}$ in k[[x]].
- (c) Die Elemente des Quotientenkörpers k((x)) von k[[x]] können als Reihen der Form $\sum_{n=-k}^{\infty} a_n x^n$ für ein $k \in \mathbb{N}$ aufgefaßt werden.
- (d) k[[x]] ist ein diskreter Bewertungsbereich mit Primelement x. Geben Sie die zugehörige diskrete Bewertung $v: k((x)) \to \mathbb{Z} \cup \{\infty\}$ explizit an.
- (e) Für $\lambda \in k$ und $a \in K^{\times}$ sei $v_{\lambda}(a) \in \mathbb{Z}$ die Vielfachheit von λ als Nullstelle von a (als rationale Funktion; Pole werden negativ gezählt). Dann ist $v_{\lambda} \colon K^{\times} \to \mathbb{Z}$ eine diskrete Bewertung von K.
- (f) Jedes Element $a \in K^{\times}$ kann in der Form $a = \frac{a_0 + a_1 x + \cdots a_r x^r}{b_0 + b_1 x + \cdots b_s x^s}$ mit $n \in \mathbb{Z}$, $a_i, b_i \in k$ und $a_r, b_s \neq 0$ geschrieben werden, und v(a) := s r definiert eine diskrete Bewertung $v \colon K^{\times} \to \mathbb{Z}$.