Understanding Gradient Boost Loss Function

MUKESH KUMAR

Loss Function for Regression

Mean Squared Error (MSE) Loss Function for Regression

The most basic loss function used for regression is **Mean Squared Error (MSE)**:

$$\mathcal{L}(y,\hat{y}) = rac{1}{2}(y-\hat{y})^2$$

- y: actual value
- \hat{y} : predicted value
- We sometimes add $\frac{1}{2}$ for easier gradient calculations.

Gradient Boosting is inspired by **gradient descent** — we want to **minimize the loss** function.

To minimize any function, we move in the direction opposite to the gradient.

• So, we compute:

$$rac{\partial \mathcal{L}}{\partial \hat{y}} = -(y - \hat{y})$$

Why w.r.t. y^?
 Because we are updating our prediction — so we need to know how a small change in prediction affects the loss.

What is a Residual?

• In regression, a **residual** is the difference between the actual and predicted value:

$$residual = y - \hat{y}$$

• This tells us how far off the prediction is.

So What is a Pseudo-Residual?

• In gradient boosting, we generalize this idea: A **pseudo-residual** is:

$$m{r}_i = -rac{\partial \mathcal{L}(y_i, \hat{y}_i)}{\partial \hat{y}_i}$$

• This is the negative gradient of the loss w.r.t. prediction.

So, in MSE (regression):

Term	Formula	Meaning
Loss	$rac{1}{2}(y-\hat{y})^2$	What we want to minimize
Gradient	$-(y-\hat{y})$	How the prediction affects loss
Pseudo-residual	$y-\hat{y}$	The value we fit the next tree to

Loss Function for Classification

Loss Function (Log-Loss)

For binary classification, the log-loss is used as the loss function:

$$L(y, f(x)) = -\left[y \log(f(x)) + (1-y) \log(1-f(x))
ight]$$

Where:

- *y* is the true label (0 or 1).
- f(x) is the predicted probability for the positive class.

Gradient Calculation

The gradient of the log-loss with respect to f(x) (the predicted probability) is:

$$rac{\partial L}{\partial f(x)} = f(x) - y$$

This tells us how much the prediction f(x) should change to reduce the loss.

Residuals

Residuals are the difference between the true label and the predicted value:

$$r_i=y_i-f(x_i)$$

Pseudo-Residuals

The pseudo-residuals are the negative gradient of the loss:

$$r_i^{(t)} = y_i - f(x_i)$$

In each iteration, a new tree is fitted to these pseudo-residuals to adjust the model's predictions.

GB Residuals

For **regression** (MSE), it just *happens* to match the residual:

$$ext{Pseudo-residual} = -rac{\partial L}{\partial \hat{y}} = y - \hat{y}$$

For log-loss (classification):

$$ext{Pseudo-residual} = -rac{\partial L}{\partial \hat{y}} = y - p$$

where $p = \operatorname{sigmoid}(\hat{y})$