Groups

Sets Definition

In mathematics, a **set** is defined as a well-defined collection of objects.

Sets are named and represented using capital letters. In the set theory, the elements that a set comprises can be any kind of thing: people, letters of the alphabet, numbers, shapes, variables, etc.

- Set of natural numbers, N = {1, 2, 3, ...}
- Set of whole numbers, W = {0, 1, 2, 3, ...}
- Set of integers, $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

Groups - Set of elements + some binary operation

aroups better eterricines some binary operation					
{G, .} Lobinary		<u>Domain</u> → Integers Gr > {1,2,4,}			
	SI No	Example	Property/Axiom	Generic Form	
Ai	1	1+4 = 5 EG 3+7 = 10 E G	Closure	a.6 EGL aEG& 6EG	
(A2)	2	1+(2+4) = 1+6=7 (1+2)+4 = 3+4=7	Associativity	a.(6.0) = (a.6).c	
Á3	3 ·	5+0=5 :destrity (0+0=10	Identity	a.e = e.a=a	
(A4)	4	5+(-5) = 0 inverse	Inverse	a.a'=a'.a=e	
	5	4+5 = 9 5+4=9	Commutative	a.6 = 6.0 g Access	

Groups

A group G, sometimes denoted by $\{G, \cdot\}$, is a set of elements with a binary operation denoted by \cdot that associates to each ordered pair (a, b) of elements in G an element $(a \cdot b)$ in G, such that the following axioms are obeyed:¹

- (A1) Closure: If a and b belong to G, then $a \cdot b$ is also in G.
- (A2) Associative: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all a, b, c in G.
- (A3) Identity element: There is an element e in G such that

 $a \cdot e = e \cdot a = a$ for all a in G.

(A4) Inverse element: For each a in G, there is an element a' in G

such that $a \cdot a' = a' \cdot a = e$.

If a group has a finite number of elements, it is referred to as a **finite group**, and the **order** of the group is equal to the number of elements in the group. Otherwise, the group is an **infinite group**.

Abelian Group

A group is said to be **abelian** if it satisfies the following additional condition:

(A5) Commutative: $a \cdot b = b \cdot a$ for all a, b in G.

A group G is **cyclic** if every element of G is a power a^k (k is an integer) of a fixed element $a \in G$. The element a is said to **generate** the group G or to be a **generator** of G. A cyclic group is always abelian and may be finite or infinite.

Rings - Set of elements + two binary operation 🕟

- Clasure - Associative - 9 dentity - Inverse

{R		+	X
	,		

_	SI No	Example	Property/Axiom	Generic Form
	1	2 ER; 3 E R 2 x 3 = 6 E R	Clos ure	axber
	2	2×(3×4) = (2×3)×4	Associative	(ax 6) x c = ax (6x c)
	3	$2 \times (3 + 4) =$ $(2 \times 3) + (2 \times 4)$	Distributive	Cx(b+c) = cax6)+(axc)
	4	2×4 = 4×2	Commutative	ax6 = 6xa
	5	$10 \times \frac{1}{4} = 10$ $\frac{1}{4} = 10$	Identity	axe =a
	6	0x6=0=)a=0000	No Zerovisors	

A ring R, sometimes denoted by $\{R, +, \times\}$, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, c in R the following axioms are obeyed. (A1–A5) R is an abelian group with respect to addition; that is, R satisfies axioms

A1 through A5. For the case of an additive group, we denote the identity element as 0 and the inverse of
$$a$$
 as $-a$.

(M1) Closure under multiplication: If a and b belong to R , then ab is also in R .

√ (M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R. (M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in R. (a + b)c = ac + bc for all a, b, c in R.

In essence, a ring is a set of elements in which we can do addition, subtraction [a - b = a + (-b)], and multiplication without leaving the set.

A ring is said to be **commutative** if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.

Next, we define an **integral domain**, which is a commutative ring that obeys

If a, b in R and ab = 0, then either a = 0

Integral domain

Al-A4 - Group Al-A5 - Abelian group

Al-AS+ y > Ring

AI-AST & Integral MI-MG & Mamain

the following axioms. There is an element 1 in R such that (M5) Multiplicative identity: a1 = 1a = a for all a in R.

or b = 0.

(M6) No zero divisors:

Fields - Set of elements + two binary operation

 $\{F, +, x\}$

Ring

SI No	Example	Property/Axiom	Generic Form
1	8 x 1/8 = 1 Lye	multiplicative inverse	$axa^{-1} = e$

A field F, sometimes denoted by $\{F, +, \times\}$, is a set of elements with two binary operations, called *addition* and *multiplication*, such that for all a, b, c in F the following axioms are obeyed.

(M7) Multiplicative inverse: For each a in F, except 0, there is an element a^{-1} in F such that $aa^{-1} = (a^{-1})a = 1$.

In essence, a field is a set of elements in which we can do addition, subtraction, multiplication, and division without leaving the set. Division is defined with the following rule: $a/b = a(b^{-1})$.

In gaining insight into fields, the following alternate characterization may be useful. A **field** F, denoted by $\{F, +\}$, is a set of elements with two binary operations, called *addition* and *multiplication*, such that the following conditions hold:

- **1.** F forms an abelian group with respect to addition. $\sqrt{}$
- 2. The nonzero elements of F form an abelian group with respect to multiplication.
- 3. The distributive law holds. That is, for all a, b, c in F,

$$a(b+c) = ab + ac.$$

$$(a+b)c = ac + bc$$

Groups, Rings and Fields

Figure 5.2 Properties of Groups, Rings, and Fields

