Создание матриц средствами LaTeX

Белорукова Елизавета, ИВТ, 3 курс, 1 подгруппа $17~{\rm декабр} \ 2019~{\rm г}.$

Пример 1. Умножение матрицы на число

Дано

Матрица
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

Число k=2.

Найти:

Произведение матрицы на число: $A \times k = B$ B-?

Решение:

Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число.

Таким образом, произведение матрицы A на число k есть новая матрица:

$$B = 2 \times A = 2 \times \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{pmatrix}$$

Ответ:
$$B = \begin{pmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{pmatrix}$$

Пример 2. Умножение матриц

Дано:

Матрица
$$A = \begin{pmatrix} 2 & 3 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$
 Матрица $B = \begin{pmatrix} 2 & 3 \\ -1 & 1 \\ 3 & -2 \end{pmatrix}$

Найти

Произведение матриц: $A \times B = C$ C-?

Решение:

Каждый элемент матрицы $C=A\times B$, расположенный в i-й строке и j-м столбце, равен сумме произведений элементов i-й строкик матрицы A на соответствующие элементы j-го столбца матрицы B. Строки матрицы A умножаем на столбцы матрицы B и получаем:

$$C = A \times B = \begin{pmatrix} 2 & 3 & 1 \\ -1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 2 & 1 \\ -1 & 1 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 2 \times 2 + 3 \times (-1) + 1 \times 3 & 2 \times 1 + 3 \times 1 + 1 \times (-2) \\ -1 \times 2 + 0 \times (-1) + 1 \times 3 & -1 \times 1 + 0 \times 1 + 1 \times (-2) \end{pmatrix}$$

$$C = A \times B = \begin{pmatrix} 4 & 3 \\ 1 & -3 \end{pmatrix}$$

Ответ: $C = \begin{pmatrix} 4 & 3 \\ 1 & -3 \end{pmatrix}$

Otbet:
$$C = \begin{pmatrix} 4 & 3 \\ 1 & -3 \end{pmatrix}$$

Пример 3. Транспонирование матрицы

Матрица
$$A = \begin{pmatrix} 7 & 8 & 9 \\ 1 & 2 & 3 \end{pmatrix}$$

Найти матрицу транспонированную данной.

$$A^T-?$$

Решение:

Траспонированние матрицы A заключается в замене строк этой матрицы ее столбцами с сохранением их номеров. Полученная матрица обозначается через A^T

$$A = \begin{pmatrix} 7 & 8 & 9 \\ 1 & 2 & 3 \end{pmatrix} \Rightarrow A^T = \begin{pmatrix} 7 & 1 \\ 8 & 2 \\ 9 & 3 \end{pmatrix}$$

Ответ:
$$A^T = \begin{pmatrix} 7 & 1 \\ 8 & 2 \\ 9 & 3 \end{pmatrix}$$

Пример 4. Обратная матрица

Дано:

Матрица
$$A = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$$

Найти:

Найти обратную матрицу для матрицы A.

$$A^{-1}-?$$

Решение:

Находим det A и проверяем $det A \neq 0$:

находим
$$det A$$
 и проверяем $det A \neq \det A = \begin{vmatrix} 2 & -1 \\ 3 & 1 \end{vmatrix} = 2 \times 1 - 3 \times (-1) = 5$

$$det A = 5 \neq 0.$$

 \mathbf{A}^V из алгебраических дополнений A_{ij} : $A^V = \begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix}$. Транспонируем матрицу A^V :

$$(A^V)^T = \begin{pmatrix} 1 & 1 \\ -3 & 2 \end{pmatrix}$$

Гранспонируем матрипу
$$A$$
:
$$(A^V)^T = \begin{pmatrix} 1 & 1 \\ -3 & 2 \end{pmatrix}$$
 Каждый элемент, полученной матрицы, делим на $detA$:
$$A^{-1} = \frac{1}{detA} (A^V)^T = \frac{1}{5} \times \begin{pmatrix} 1 & 1 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} & \frac{1}{5} \\ -\frac{3}{5} & \frac{2}{5} \end{pmatrix}$$

Ответ:
$$A^{-1} = \begin{pmatrix} \frac{1}{5} & \frac{1}{5} \\ -\frac{3}{5} & \frac{2}{5} \end{pmatrix}$$