

telekomunikasjon

TFE4101 / TFE4112

Vår 2015

Norges teknisk-naturvitenskapelige universitet Institutt for elektronikk og

Løsningsforslag — Øving 1

1 Ohms lov. Serie- og parallellkobling. (35 poeng)

- a) Hvilke av påstandene under er sanne? (Se bort fra spesialtilfellet der motstandene har lik verdi.)
 - 1. Spenningen over to motstander i serie er lik. Feil. (Med mindre motstandsverdiene er lik.)
 - 2. Strømmen gjennom to motstander i serie er lik. Sann.
 - 3. Spenningen over to motstander i parallell er lik.
 - 4. Strømmen gjennom to motstander i parallell er lik. Feil. (Med mindre motstandsverdiene er lik.)

Figur 1: Krets 1

b) Gitt kretsen i Figur 1: Uttrykk
$$R_1$$
 som funksjon av V_a og I_a .
$$V = R \cdot I \Rightarrow R = \frac{V}{I} \Rightarrow \underbrace{\frac{V_a}{I_a}}_{}$$

c) Gitt kretsen i Figur 1: Finn et uttrykk for effekten, P_{R_1} , omsatt i motstanden R_1 som funksjon av V_a og R_1 .

$$P = V \cdot I \Rightarrow P_{R_1} = V_a \cdot I_a, I = \frac{V}{R} \Rightarrow I_a = \frac{V_a}{R_1}$$

Setter uttrykket for I_a inn i uttrykket for P_{R_1} .

$$P_{R_1} = \frac{V_a^2}{R_1}$$

I resten av oppgaven brukes kresten i Figur 2.

Figur 2: Krets 2

d) Finn et uttrykk for spenningen over R_2 (V_{R_2} på tegningen), som funksjon av V_a , R_1 og R_2 .

Setter opp utrykkene for V_a og V_{R_2} :

$$V_a = I_a(R_1 + R_2), V_{R_2} = I_a R_2$$

Stokker litt om og får:

$$I_a = \frac{V_{R_2}}{R_2} = \frac{V_a}{R_1 + R_2} \Rightarrow V_{R_2} = \frac{V_a R_2}{R_1 + R_2}$$

e) Gitt følgende verdier $V_a = 12V$, $R_1 = 10\Omega$ og $R_2 = 20\Omega$. Hva blir V_{R_2} ?

 $Setter\ verdiene\ inn\ i\ uttrykket\ fra\ forrige\ punkt:$

$$V_{R_2} = \frac{12V \cdot 20\Omega}{(10+20)\Omega} = \underline{8V}$$

f) Vi kobler på motstanden R_3 , slik at den nå er parallellkoblet med motstanden R_2 . Hva vil nå skje med spenningen V_{R_2} ? (Vil den stige, synke, forbli uforandret eller trengs det mer informasjon for å si noe om dette?)

 R_3 kobles i parallell med R_2 . Den totale motstanden i kretsen vil da synke. Dette fører til at strømmen øker. Spenningsfallet over R_1 blir større og spenningen V_{R_2} blir tilsvarende mindre.

 V_{R_2} vil altså synke.

g) Gitt $R_3 = 5\Omega$. Regn ut den nye verdien til V_{R_2} .

Finner utrykket for $R_{R_2||R_3} = R_2 ||R_3|$ og setter dette inn i utrykket for V_{R_2} fra tidligere i oppgaven.

$$\begin{split} \frac{1}{R_{R_2\parallel R_3}} &= \frac{1}{R_2} + \frac{1}{R_3} \Rightarrow R_{R_2\parallel R_3} = \frac{R_2 R_3}{R_2 + R_3} \\ V_{R_2} &= \frac{V_a R_{R_2\parallel R_3}}{R_1 + R_{R_2\parallel R_3}} = \frac{V_a \frac{R_2 R_3}{R_2 + R_3}}{R_1 + \frac{R_2 R_3}{R_2 + R_3}} = \frac{12V \frac{20 \cdot 5}{20 + 5} \Omega}{10\Omega + \frac{20 \cdot 5}{20 + 5} \Omega} = \underline{\frac{3,42V}{20 + 5}} \end{split}$$

2 Kirchoffs strøm- og spenningslov (KCL/KVL) samt effekt. (20 poeng)

- a) Beskriv hver av disse tre grunnleggende lovene innenfor kretsteknikk med en settning:
 - Ohms lov. Spenningen over en motstand er gitt av motstandens verdi multiplisert med strømmen gjennom motstanden.
 - Kirchhoffs spenningslov (KVL) Summen av alle spenninger i en vilkårlig lukket sløyfe er null.
 - Kirchhoffs strømlov (KCL) Summen av alle strømmer i en node er null.
- b) Hva skjer med effekten i en motstand når:
 - spenningen over den halveres? $P = \frac{V^2}{R} \ \text{effekten blir en fjerdedel i forhold til tilfellet med den opprinnelige spenningen.}$
 - strømmen gjennom den dobles? $P=RI^2 \ effekten \ blir \ fire \ ganger \ større \ enn \ tilfellet \ med \ den \ opprinnelige \ strømmen.$
- c) En elektrisk kret er satt sammen av flere motstander, i henholdsvis en seriekobling og en parallellkobling:
 - Den totale motstanden er alltid større enn største motstand i seriekoblingen.
 - Den totale motstanden er alltid mindre enn minste motstand i parallellkoblingen.

3 KVL, KCL og skjemaforståelse. (20 poeng)

Figur 3: strømsløyfe

a) Finn verdien til strøm i_1 - i_6 i Figur 3. Bruker KCL: Summen av strømmer inn i en node er null. $i_1 = 3A, i_2 = 10A, i_3 = 2A, i_4 = -12A, i_5 = -3A, i_6 = 1A,$

Figur 4: Motstandsnettverk

b) Hvilke av motstandsnettverkene i Figur 4 er like?

Det som er viktig å merke seg i denne oppgaven er hvor i kretsen det er knutepunkt og ikke. To ledninger som krysser hverandre uten uthevet sirkel rundt, er ikke koblet, men kun en krysning av to ledninger. Merk i C at de to nederste motstandene er kortslutta, og at kretsen da kun har tre motstander. $A=G,\ B=E,\ C=H,\ F=D.$

Figur 5: Spenningssløyfer

c) Regn ut alle spenningene som ikke er oppgitt i Figur 5. Bruker KVL: Summen av spenninger i en lukket sløyfe er null. $V_1 = 7V, V_4 = 10V, V_6 = 14V$

4 Effekt og ladning. (10 poeng)

a) Et bilbatteri er merket med 12V 70Ah. Hvis du glemmer å slå av lysene på bilen, vil batteriet etter en tid bli utladet. Vi antar at bilen har 4 lyspærer, to til frontlysene og to til baklysene. Hver frontlyspære er på 60W og hver baklyspære er på 20W. Hvor lang tid tar det da før batteriet er utladet?

Total effekt: $2 \cdot 60W + 2 \cdot 20W = 160W$

$$P = VI \Rightarrow I = \frac{P}{V} = \frac{160W}{12V} = \frac{40}{3}A$$

$$t = \frac{70Ah}{\frac{40}{3}A} \approx \frac{21}{\frac{4}{3}h}$$

b) Hvor mange coulomb har batteriet kapasitet til å lagre?

 $1coulumb = 1A \cdot 1s, 1h = 3600s$

$$\Rightarrow 70Ah = 70A \cdot 3600s = 252k coulomb$$

Figur 6: Krets med parallellkobling

[5] Effekt og ladning. (15 poeng)

a) Gitt $V_0 = 10V$, $i_0 = 2A$ og $i_2 = \frac{4}{3}A$. Finn verdien til strømmen i_1 og motstandene R_1 og R_2 i Figur 6.

$$i_1 = i_0 - i_2 = 2A - \frac{4}{3}A = \frac{2}{3}A$$

$$R_1 = \frac{V_0}{i_1} = \frac{10V}{\frac{2}{3}A} = \underline{15\Omega}$$

$$R_2 = \frac{V_0}{i_2} = \frac{10V}{\frac{4}{3}A} = \frac{15}{2}\Omega$$

b) Hvor mye effekt omsettes i hver av motstandene
$$R_1$$
 og R_2 ?
$$P = \frac{V^2}{R} \Rightarrow P_{R_1} = \frac{10^2}{15}W = \underbrace{\frac{100}{15}W}_{\underline{15}\underline{W}} P_{R_2} = \underbrace{\frac{10^2}{\frac{15}{2}}W}_{\underline{2}\underline{M}} = \underbrace{\frac{200}{15}W}_{\underline{M}\underline{M}}$$

c) Vi dobler nå verdien til R_1 og R_2 . Hvordan påvirker dette den totale effekten omsatt i motstandene? (V_0 er fortsatt lik 10V)

$$P = \frac{V^2}{R} \ \ Dobling \ av \ motstandsverdiene \ fører \ til \ halvering \ av \ effekten.$$