$12n_{0694} \ (K12n_{0694})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 5542348185u^{14} + 12483915678u^{13} + \dots + 193710435976b - 48755007008, \\ &- 57969081u^{14} - 531745184u^{13} + \dots + 22789463056a - 38728287076, \\ u^{15} + 3u^{14} + \dots + 60u - 16 \rangle \\ I_2^u &= \langle u^4 + 2u^3 - u^2 + b - 2u + 2, \ u^4 + 3u^3 + a - 6u - 4, \ u^5 + 4u^4 + 3u^3 - 4u^2 - 4u + 1 \rangle \\ I_3^u &= \langle 13a^3u^2 + 2a^3u + 3a^2u^2 - 9a^3 - 3a^2u + 24u^2a + a^2 + 11au + 14u^2 + 5b - 22a - 4u + 3, \\ &- 2a^3u^2 + a^4 - 2a^3u + 2a^2u^2 - a^3 + 3a^2u - 32u^2a + 4a^2 - 53au + 17u^2 - 38a + 31u + 23, \ u^3 + u^2 - 1 \rangle \\ I_4^u &= \langle b - u, \ 2u^2 + a + u - 1, \ u^3 - u + 1 \rangle \\ I_5^u &= \langle b - 2a + 1, \ 4a^2 - 6a + 1, \ u - 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 37 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layers.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle 5.54 \times 10^9 u^{14} + 1.25 \times 10^{10} u^{13} + \dots + 1.94 \times 10^{11} b - 4.88 \times 10^{10}, -5.80 \times 10^7 u^{14} - 5.32 \times 10^8 u^{13} + \dots + 2.28 \times 10^{10} a - 3.87 \times 10^{10}, u^{15} + 3u^{14} + \dots + 60u - 16 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.00254368u^{14} + 0.0233329u^{13} + \dots + 0.0452708u + 1.69939 \\ -0.0286115u^{14} - 0.0644463u^{13} + \dots - 1.99339u + 0.251690 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0380093u^{14} + 0.0802367u^{13} + \dots + 2.56494u + 0.802099 \\ 0.0511056u^{14} + 0.0966535u^{13} + \dots + 3.44007u - 0.786612 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0455457u^{14} - 0.0977825u^{13} + \dots - 5.28838u + 0.536706 \\ -0.107164u^{14} - 0.218718u^{13} + \dots - 7.08098u + 1.73158 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.00280296u^{14} - 0.0172477u^{13} + \dots - 1.86151u - 0.654871 \\ -0.0399111u^{14} - 0.0794444u^{13} + \dots - 2.27957u + 0.756192 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.00251495u^{14} + 0.0394902u^{13} + \dots + 0.759483u + 1.78965 \\ 0.120131u^{14} + 0.203886u^{13} + \dots + 7.47958u - 1.83534 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.00985312u^{14} - 0.00127324u^{13} + \dots + 1.07235u + 1.36528 \\ 0.102369u^{14} + 0.176801u^{13} + \dots + 5.54963u - 1.50976 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0247410u^{14} + 0.0688107u^{13} + \dots + 1.90500u + 1.26192 \\ -0.0282390u^{14} - 0.0646220u^{13} + \dots - 2.23111u + 0.351338 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{22363926543}{45578926112}u^{14} + \frac{10216429583}{11394731528}u^{13} + \dots + \frac{485831949075}{11394731528}u \frac{73524844069}{2848682882}u^{13} + \dots$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{15} - 3u^{14} + \dots + 60u + 16$
c_3, c_8	$u^{15} + 8u^{14} + \dots - 112u - 64$
c_5, c_6, c_9	$u^{15} + 9u^{12} + \dots + 7u^2 - 1$
c_7, c_{10}, c_{11}	$u^{15} - u^{14} + \dots + u + 1$
c_{12}	$u^{15} - 14u^{14} + \dots + 68u - 8$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{15} - 15y^{14} + \dots + 5232y - 256$
c_3, c_8	$y^{15} - 12y^{14} + \dots + 41728y - 4096$
c_5, c_6, c_9	$y^{15} - 4y^{13} + \dots + 14y - 1$
c_7, c_{10}, c_{11}	$y^{15} + 23y^{14} + \dots - 23y - 1$
c_{12}	$y^{15} - 68y^{14} + \dots + 2576y - 64$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.07635		
a = 1.19704	-10.6859	-41.6000
b = 1.58782		
u = 1.178640 + 0.172680I		
a = 0.627487 - 0.433643I	-1.55215 - 0.88269I	-10.53205 + 2.04290I
b = 0.282219 - 0.202348I		
u = 1.178640 - 0.172680I		
a = 0.627487 + 0.433643I	-1.55215 + 0.88269I	-10.53205 - 2.04290I
b = 0.282219 + 0.202348I		
u = 0.160834 + 0.708843I		
a = 0.014785 + 0.187812I	1.32905 - 2.33965I	-9.51656 + 6.09486I
b = 0.520261 - 0.168254I		
u = 0.160834 - 0.708843I		
a = 0.014785 - 0.187812I	1.32905 + 2.33965I	-9.51656 - 6.09486I
b = 0.520261 + 0.168254I		
u = -1.360170 + 0.309898I		
a = 0.509328 + 0.442124I	-3.48368 + 6.07143I	-13.1701 - 10.7080I
b = 0.714313 + 0.230460I		
u = -1.360170 - 0.309898I		
a = 0.509328 - 0.442124I	-3.48368 - 6.07143I	-13.1701 + 10.7080I
b = 0.714313 - 0.230460I		
u = -0.12171 + 1.44460I		
a = -0.280558 - 0.267780I	9.74508 - 5.81410I	-9.65717 + 3.18656I
b = 2.37166 + 0.47398I		
u = -0.12171 - 1.44460I		
a = -0.280558 + 0.267780I	9.74508 + 5.81410I	-9.65717 - 3.18656I
b = 2.37166 - 0.47398I		
u = -1.42958 + 0.70949I		
a = 1.01628 + 1.25193I	5.6640 + 13.2045I	-12.63072 - 5.98469I
b = 2.03512 - 0.49412I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.42958 - 0.70949I		
a = 1.01628 - 1.25193I	5.6640 - 13.2045I	-12.63072 + 5.98469I
b = 2.03512 + 0.49412I		
u = 0.219796		
a = 1.78361	-0.592779	-16.9910
b = -0.198958		
u = 1.68228 + 0.91262I		
a = 0.793163 - 0.925065I	4.36534 - 2.50283I	-8.50423 + 2.90053I
b = 3.00988 + 0.43262I		
u = 1.68228 - 0.91262I		
a = 0.793163 + 0.925065I	4.36534 + 2.50283I	-8.50423 - 2.90053I
b = 3.00988 - 0.43262I		
u = -2.36403		
a = -1.34162	-19.2116	16.8620
b = -5.25577		

$$I_2^u = \langle u^4 + 2u^3 - u^2 + b - 2u + 2, \ u^4 + 3u^3 + a - 6u - 4, \ u^5 + 4u^4 + 3u^3 - 4u^2 - 4u + 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4} - 3u^{3} + 6u + 4 \\ -u^{4} - 2u^{3} + u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2u^{4} - 5u^{3} + u^{2} + 10u + 7 \\ -4u^{4} - 7u^{3} + 4u^{2} + 7u - 4 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 4u^{4} + 17u^{3} + 17u^{2} - 7u - 12 \\ -2u^{4} - 6u^{3} - 3u^{2} + 3u + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2u^{4} + 8u^{3} + 7u^{2} - 4u - 5 \\ -u^{4} - 3u^{3} - u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{4} + 8u^{3} + 7u^{2} - 4u - 5 \\ -u^{4} - 3u^{3} - u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + 2u^{2} - u - 2 \\ -2u^{4} - 5u^{3} + u^{2} + 6u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 3u^{4} + 7u^{3} - u^{2} - 8u \\ 6u^{4} + 10u^{3} - 5u^{2} - 12u + 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} - 2u^{3} + u^{2} + 5u + 4 \\ -4u^{4} - 7u^{3} + 4u^{2} + 7u - 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-10u^4 33u^3 29u^2 + 3u 6$

Crossings	u-Polynomials at each crossing
c_1, c_2	$u^5 + 4u^4 + 3u^3 - 4u^2 - 4u + 1$
<i>c</i> ₃	$u^5 - 6u^3 + 11u^2 - 6u + 1$
c_4	$u^5 - 4u^4 + 3u^3 + 4u^2 - 4u - 1$
c_5, c_9	$u^5 + u^4 - u^3 - 2u^2 - u + 1$
c_6	$u^5 - u^4 - u^3 + 2u^2 - u - 1$
c_7, c_{10}	$u^5 + u^4 - 2u^3 + u^2 + u - 1$
c ₈	$u^5 - 6u^3 - 11u^2 - 6u - 1$
c_{11}	$u^5 - u^4 - 2u^3 - u^2 + u + 1$
c_{12}	$u^5 + 10u^4 + 34u^3 + 55u^2 + 46u + 17$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^5 - 10y^4 + 33y^3 - 48y^2 + 24y - 1$
c_3, c_8	$y^5 - 12y^4 + 24y^3 - 49y^2 + 14y - 1$
c_5, c_6, c_9	$y^5 - 3y^4 + 3y^3 - 4y^2 + 5y - 1$
c_7, c_{10}, c_{11}	$y^5 - 5y^4 + 4y^3 - 3y^2 + 3y - 1$
c_{12}	$y^5 - 32y^4 + 148y^3 - 237y^2 + 246y - 289$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.935978		
a = 6.38849	-5.47443	-63.3310
b = -1.65940		
u = -1.41748 + 0.38647I		
a = -0.124879 - 0.421155I	-3.56702 + 5.27138I	-13.75047 - 1.28258I
b = -0.807993 - 0.790836I		
u = -1.41748 - 0.38647I		
a = -0.124879 + 0.421155I	-3.56702 - 5.27138I	-13.75047 + 1.28258I
b = -0.807993 + 0.790836I		
u = 0.213816		
a = 5.25148	-4.24110	-7.02780
b = -1.54829		
u = -2.31483		
a = -1.39021	-19.3390	-46.1400
b = -5.17632		

$$III. \\ I_3^u = \langle 13a^3u^2 + 3a^2u^2 + \dots - 22a + 3, -2a^3u^2 + 2a^2u^2 + \dots - 38a + 23, u^3 + u^2 - 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.60000a^{3}u^{2} - 0.600000a^{2}u^{2} + \dots + 4.40000a - 0.600000 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2.60000a^{3}u^{2} - 0.600000a^{2}u^{2} + \dots + 4.40000a - 1.60000 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -a^{3}u^{2} - \frac{3}{5}a^{2}u^{2} + \dots - a - \frac{3}{5} \\ \frac{7}{5}a^{3}u^{2} + \frac{8}{5}a^{2}u^{2} + \dots - \frac{18}{5}a - \frac{17}{5} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{4}{5}a^{2}u^{2} - \frac{2}{5}u^{2} + \dots + \frac{2}{5}a^{2} + \frac{6}{5} \\ \frac{9}{5}a^{3}u^{2} + \frac{2}{5}a^{2}u^{2} + \dots - \frac{11}{5}a + \frac{2}{5} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ 2u^{2} + u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u + 1 \\ 5u^{2} - u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u + 1 \\ 5u^{2} + 2u - 4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{2}{5}a^{3}u^{2} + \frac{7}{5}a^{2}u^{2} + \dots - \frac{13}{5}a - \frac{18}{5} \\ -7.40000a^{3}u^{2} - 2.40000a^{2}u^{2} + \dots + 15.6000a + 1.60000 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -4u 14

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$(u^3 - u^2 + 1)^4$
c_3, c_8	$(u^3 - u^2 + 2u - 1)^4$
c_5, c_6, c_9	$u^{12} - 3u^{11} + \dots - 2u - 59$
c_7, c_{10}, c_{11}	$u^{12} + 3u^{11} + \dots - 314u - 121$
c_{12}	$(u^2 + u - 1)^6$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y^3 - y^2 + 2y - 1)^4$
c_3, c_8	$(y^3 + 3y^2 + 2y - 1)^4$
c_5, c_6, c_9	$y^{12} - y^{11} + \dots + 5424y + 3481$
c_7, c_{10}, c_{11}	$y^{12} + 11y^{11} + \dots - 50196y + 14641$
c_{12}	$(y^2 - 3y + 1)^6$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = -0.037366 - 0.810507I	6.97197 + 2.82812I	-10.49024 - 2.97945I
b = 0.618034		
u = -0.877439 + 0.744862I		
a = -0.127901 - 1.361650I	-0.92371 + 2.82812I	-10.49024 - 2.97945I
b = -1.61803		
u = -0.877439 + 0.744862I		
a = -0.397503 - 0.457922I	-0.92371 + 2.82812I	-10.49024 - 2.97945I
b = -1.61803		
u = -0.877439 + 0.744862I		
a = 0.23805 + 1.50552I	6.97197 + 2.82812I	-10.49024 - 2.97945I
b = 0.618034		
u = -0.877439 - 0.744862I		
a = -0.037366 + 0.810507I	6.97197 - 2.82812I	-10.49024 + 2.97945I
b = 0.618034		
u = -0.877439 - 0.744862I		
a = -0.127901 + 1.361650I	-0.92371 - 2.82812I	-10.49024 + 2.97945I
b = -1.61803		
u = -0.877439 - 0.744862I		
a = -0.397503 + 0.457922I	-0.92371 - 2.82812I	-10.49024 + 2.97945I
b = -1.61803		
u = -0.877439 - 0.744862I		
a = 0.23805 - 1.50552I	6.97197 - 2.82812I	-10.49024 + 2.97945I
b = 0.618034		
u = 0.754878	F 0.01.00	17 0000
a = 0.603863	-5.06130	-17.0200
b = -1.61803		
u = 0.754878	0.09490	17 0000
a = -1.12774 + 4.03110I	2.83439	-17.0200
b = 0.618034		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.754878		
a = -1.12774 - 4.03110I	2.83439	-17.0200
b = 0.618034		
u = 0.754878		
a = 5.30105	-5.06130	-17.0200
b = -1.61803		

IV.
$$I_4^u = \langle b - u, 2u^2 + a + u - 1, u^3 - u + 1 \rangle$$

a₁ =
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^2 - u + 1 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^2 + u - 1 \\ -u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -u + 1 \\ u^2 - u + 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u^2 + 2 \\ u^2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -u^2 + 1 \\ u^2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u^2 + 1 \\ u^2 + u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^2 - u \\ -u^2 + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2u^2 + 5u 14$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{12}	$u^3 - u + 1$
<i>c</i> ₃	$(u+1)^3$
C4	$u^3 - u - 1$
c_5, c_9	$u^3 + 2u^2 + u + 1$
<i>C</i> ₆	$u^3 - 2u^2 + u - 1$
c_{7}, c_{10}	$u^3 - u^2 + 2u - 1$
<i>C</i> ₈	$(u-1)^3$
c_{11}	$u^3 + u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_{12}	$y^3 - 2y^2 + y - 1$
c_3, c_8	$(y-1)^3$
c_5, c_6, c_9	$y^3 - 2y^2 - 3y - 1$
c_7, c_{10}, c_{11}	$y^3 + 3y^2 + 2y - 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.662359 + 0.562280I		
a = 0.09252 - 2.05200I	2.83014 - 0.94271I	-10.44308 + 4.30112I
b = 0.662359 + 0.562280I		
u = 0.662359 - 0.562280I		
a = 0.09252 + 2.05200I	2.83014 + 0.94271I	-10.44308 - 4.30112I
b = 0.662359 - 0.562280I		
u = -1.32472		
a = -1.18504	-8.95014	-17.1140
b = -1.32472		

V.
$$I_5^u = \langle b - 2a + 1, 4a^2 - 6a + 1, u - 1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 2a - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 2a - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2a + \frac{3}{2} \\ -2a \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -3a \\ -6a + 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -3a \\ -6a + 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -0.5 \\ -2a \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -4a \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ 4a \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -4a \end{pmatrix}$$
$$a_{11} = \begin{pmatrix} -a+1 \\ 2a-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{45}{2}a 20$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
c_3, c_8	u^2
C4	$(u+1)^2$
c_{5}, c_{6}	$u^2 - 3u + 1$
	$u^2 + u - 1$
<i>C</i> 9	$u^2 + 3u + 1$
c_{10}, c_{11}, c_{12}	$u^2 - u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^2$
c_3, c_8	y^2
c_5,c_6,c_9	$y^2 - 7y + 1$
c_7, c_{10}, c_{11} c_{12}	$y^2 - 3y + 1$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.30902	-10.5276	9.45290
b = 1.61803		
u = 1.00000		
a = 0.190983	-2.63189	-15.7030
b = -0.618034		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2	$ (u-1)^{2}(u^{3}-u+1)(u^{3}-u^{2}+1)^{4}(u^{5}+4u^{4}+3u^{3}-4u^{2}-4u+1) $ $ \cdot (u^{15}-3u^{14}+\cdots+60u+16) $
c_3	$u^{2}(u+1)^{3}(u^{3}-u^{2}+2u-1)^{4}(u^{5}-6u^{3}+11u^{2}-6u+1)$ $\cdot (u^{15}+8u^{14}+\cdots-112u-64)$
c_4	$(u+1)^{2}(u^{3}-u-1)(u^{3}-u^{2}+1)^{4}(u^{5}-4u^{4}+3u^{3}+4u^{2}-4u-1)$ $\cdot (u^{15}-3u^{14}+\cdots+60u+16)$
c_5	$(u^{2} - 3u + 1)(u^{3} + 2u^{2} + u + 1)(u^{5} + u^{4} - u^{3} - 2u^{2} - u + 1)$ $\cdot (u^{12} - 3u^{11} + \dots - 2u - 59)(u^{15} + 9u^{12} + \dots + 7u^{2} - 1)$
c_6	$(u^{2} - 3u + 1)(u^{3} - 2u^{2} + u - 1)(u^{5} - u^{4} - u^{3} + 2u^{2} - u - 1)$ $\cdot (u^{12} - 3u^{11} + \dots - 2u - 59)(u^{15} + 9u^{12} + \dots + 7u^{2} - 1)$
c_7	$(u^{2} + u - 1)(u^{3} - u^{2} + 2u - 1)(u^{5} + u^{4} - 2u^{3} + u^{2} + u - 1)$ $\cdot (u^{12} + 3u^{11} + \dots - 314u - 121)(u^{15} - u^{14} + \dots + u + 1)$
c_8	
c_9	$(u^{2} + 3u + 1)(u^{3} + 2u^{2} + u + 1)(u^{5} + u^{4} - u^{3} - 2u^{2} - u + 1)$ $\cdot (u^{12} - 3u^{11} + \dots - 2u - 59)(u^{15} + 9u^{12} + \dots + 7u^{2} - 1)$
c_{10}	$(u^{2} - u - 1)(u^{3} - u^{2} + 2u - 1)(u^{5} + u^{4} - 2u^{3} + u^{2} + u - 1)$ $\cdot (u^{12} + 3u^{11} + \dots - 314u - 121)(u^{15} - u^{14} + \dots + u + 1)$
c_{11}	$(u^{2} - u - 1)(u^{3} + u^{2} + 2u + 1)(u^{5} - u^{4} - 2u^{3} - u^{2} + u + 1)$ $\cdot (u^{12} + 3u^{11} + \dots - 314u - 121)(u^{15} - u^{14} + \dots + u + 1)$
c_{12}	$(u^{2} - u - 1)(u^{2} + u - 1)^{6}(u^{3} - u + 1)$ $\cdot (u^{5} + 10u^{4} + \dots + 46u + 17)(u^{15} - 14u^{14} + \dots + 68u - 8)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^{2}(y^{3}-2y^{2}+y-1)(y^{3}-y^{2}+2y-1)^{4}$ $\cdot (y^{5}-10y^{4}+\cdots+24y-1)(y^{15}-15y^{14}+\cdots+5232y-256)$
c_3, c_8	$y^{2}(y-1)^{3}(y^{3}+3y^{2}+2y-1)^{4}(y^{5}-12y^{4}+\cdots+14y-1)$ $\cdot (y^{15}-12y^{14}+\cdots+41728y-4096)$
c_5, c_6, c_9	$(y^{2} - 7y + 1)(y^{3} - 2y^{2} - 3y - 1)(y^{5} - 3y^{4} + 3y^{3} - 4y^{2} + 5y - 1)$ $\cdot (y^{12} - y^{11} + \dots + 5424y + 3481)(y^{15} - 4y^{13} + \dots + 14y - 1)$
c_7, c_{10}, c_{11}	$(y^{2} - 3y + 1)(y^{3} + 3y^{2} + 2y - 1)(y^{5} - 5y^{4} + 4y^{3} - 3y^{2} + 3y - 1)$ $\cdot (y^{12} + 11y^{11} + \dots - 50196y + 14641)(y^{15} + 23y^{14} + \dots - 23y - 1)$
c_{12}	$(y^{2} - 3y + 1)^{7}(y^{3} - 2y^{2} + y - 1)$ $\cdot (y^{5} - 32y^{4} + 148y^{3} - 237y^{2} + 246y - 289)$ $\cdot (y^{15} - 68y^{14} + \dots + 2576y - 64)$