Table S1. Distribution of arrhenotoky, thelytoky and host-plant specialization among the seed-feeding wasps of the *Megastigmus* genus. Data were compiled from reviews of Grissell (1999), Roques & Skrzypczynska (2003), Roques *et al.* (2003) and Auger-Rozenberg *et al.* (2006). Species in bold were specifically studied in this paper. A: arrhenotokous parthenogenesis. T: thelytokous parthenogenesis. * Ratio of males to females; balanced: consideration of similar frequencies of females and males by authors; NA: no specific mention on sex ratio by authors but numbers of males mentioned in samples (thelytoky being associated with "males unknown" or "males are scarce" specific mentions). † These species are currently under description by MAAR and AR.

Host-plant taxon	Species	Reproduction	Sex ratio*	Main host-plant genus	Native area
Gymnosperms					
<u>Cupressaceae</u>	M. chamaecyparidis	A	balanced	Chamaecyparis	Palaearctic
	M. thyoides	A	balanced	Chamaecyparis	Nearctic
	M. atlanticus	A	balanced	Cupressus	Palaearctic
	M. carinus	A	NA	Cupressus	Palaearctic
	M. cupressi	A	NA	Cupressus	Oriental
	M. duclouxiana	A	NA	Cupressus	Palaearctic
	M. watchli	A	0.5-1.7	Cupressus	Palaearctic
	M. amicorum	A	balanced	Juniperus	Palaearctic
	M. bipunctatus	A	balanced	Juniperus	Palaearctic
	M. certus	A	NA	Juniperus	Palaearctic
	M. formosana	A	balanced	Juniperus	East-Asia
	M. fidus	A	balanced	Juniperus	Palaearctic
	M. gravis	A	balanced	Juniperus	Palaearctic
	M. juniperi	A	NA	Juniperus	Palaearctic
	M. pingii	A	NA	Juniperus	East-Asia
	M. procerae	A	NA	Juniperus	Palaearctic
	M. rigidae	A	NA	Juniperus	Palaearctic
	M. sabinae	A	balanced	Juniperus	Palaearctic
	M. somaliensis	A	NA	Juniperus	Afrotropical
	M. thuriferana	A	balanced	Juniperus	Palaearctic
	M. validus	A	balanced	Juniperus	Palaearctic
	M. thuyopsis	A	NA	Thuyopsis	Palaearctic
Pinaceae	M. firmae	A	NA	Abies	Palaearctic
	M. lasiocarpae	A	balanced	Abies	Nearctic
	M. milleri	A	balanced	Abies	Nearctic
	M. pinus	A	0.4-0.5	Abies	Nearctic
	M. rafni	A	0.4	Abies	Nearctic
	M. specularis	A	balanced	Abies	Nearctic
	M. schimitscheki	A	0.4-0.5	Cedrus	Palaearctic
	M. laricis	A	balanced	Larix	Nearctic
	M. atedius	A	0.19-0.66	Picea	Palaearctic
	M. ezomatsuanus	A	0.5	Picea	Palaearctic
	M. likiangensis	A	NA	Picea	East-Asia
	M. strobilobius	Α	0.4-0.6	Picea	Palaearctic

	M. albifrons	A	balanced	Pinus	Nearctic
	M. strobiformis	A	NA	Pinus	Nearctic
	M. pseudotsugae	A	NA	Pseudotsuga	East-Asia
	M. spermotrophus	A	balanced	Pseudotsuga	Nearctic
	M. hoffmeyeri	A	balanced	Tsuga	Nearctic
	M. tsugae	A	balanced	Tsuga	Nearctic
	M. tsugaphilus	A	NA	Tsuga	Palaearctic
	M. borriesi	T	♂<0.1%	Abies	East-Asia
	M. suspectus	T	♂<0.2%	Abies	Palaearcti
	M. pinsapinis	T	♂<0.1%	Cedrus	Palaearcti
	M. pictus	T	♂<1%	Larix	Palaearcti
<u>Taxodiaceae</u>	M. cryptomeriae	A	balanced	Cryptomeria	East-Asia
Angiosperms					
<u>Anacardiaceae</u>	M. thomseni	A	NA	Heeria	Afrotropic
	M. kenyensis [†]	A	NA	Ozoroae	Afrotropic
	M. rhusi	A	NA	Rhus	Afrotropic
	M. transvaalensis	A	0.5	Schinus	Afrotropic
	M. pistaciae	T	♂<0.1%	Pistacia	Palaearcti
<u>Fabaceae</u>	M. albizziae	A	NA	Albizia	Oriental
<u>Hamameliaceae</u>	M. distylii	A	NA	Distylium	Palaearcti
Myrtaceae	M. ophelinii	A	NA	Eucalyptus	Australasi
Proteaceae	M. hakeae [†]	A	NA	Hakea	Australas
Rhamnaceae	M. helinae [†]	A	NA	Helinus	Afrotropic
Rosaceae	M. amelanchieris	Α	NA	Amelanchier	Nearctic
	M. cotoneastri	Α	NA	Cotoneaster	Palaearct
	M. mali	Α	NA	Malus	Palaearct
	M. pourthiaceae	Α	0.6	Photinia	Palaearct
	M. physocarpi	Α	NA	Physocarpus	Nearctic
	M. fangii	Α	NA	Rosa	East-Asia
	M. nigrovariegatus	Α	balanced	Rosa	Nearctic
	M. yunnanensis	A	NA	Rosa	East-Asi
	M. aculeatus	T	♂<4%	Rosa	Palaearct
	M. aculeatus nigroflavus	T	♂<1%	Rosa	Palaearct
	M. rosae	T	♂<1%	Rosa	Palaearct
	M. rosae var. alba	T	♂<1%	Rosa	Palaearct
	M. brevicaudis	T	♂<1%	Sorbus	Palaearcti

Table S2. Primer pairs used for endosymbiont PCR screening in Megastigmus spp.

Primer pair (5'-3')	Target group	Target gene	Annealing	
		(fragment size)	temperature	
			(°C)	
wsp81F TGGTCCAATAAGTGATGAAGAAAC ^a	Wolbachia pipientis	wsp	59	
wsp691R AAAAATTAAACGCTACTCCA ^a		(610 bp)		
Ch-F TACTGTAAGAATAAGCACCGGC ^b	Cardinium sp.	16S rRNA	57	
Ch-R GTGGATCACTTAACGCTTTCG ^b		(~900 bp)	31	
Ars23S-1 CGTTTGATGAATTCATAG TCAAA ^c	Arsenophonus nasoniae	23S rDNA	60	
Ars23S-2 GGTCCTCCAGTTAGTGTTACCCAAC ^c		(650 bp)	60	
27f GAGAGTTTGATCCTGGCTCAG ^d	Rickettsia sp.	16S rRNA	50	
1495r CTACGGCTACCTTGTTACGA ^d	_	(1500 bp)	30	
LCO1490 GGTCAACAAATCATAAAGATATTGG ^e	Arthropods	COI	48	
HCO2198 TAAACTTCAGGGTGACCAAAAAATCA ^e		(658 bp)	40	

^aBraig *et al.* (1998) ^bZchori-Fein and Perlman (2004) ^cThao and Baumann (2004) ^dHagimori *et al.* (2006) ^eFolmer *et al.* (1994)

Figure S1. Phylogenetic placement of *Wolbachia* infecting the seed-specialized wasps *Megastigmus* spp., among other *Wolbachia* strains belonging to A and B supergroups, based on the sequences of each of the four MLST genes used in this study (*coxA*, *gatB*, *ftsZ* and *hcpA*). Bayesian likelihood inference phylogenies are shown, while maximum likelihood analyses gave substantially the same results. *Wolbachia* sequences are labelled with the name of their host. *Wolbachia* of *Brugia malayi* was used as an outgroup. Posterior probability values are indicated at each node. Each tree represents phylogenetic reconstruction based on 34 Wolbachia strains for *coxA* (402 bp), *gatB* (369 bp), *ftsZ* (435 bp) and *hcpA* (444 bp). Three lineages are revealed (green, red and light brown), two belonging to the A supergroup while the position of the *Wolbachia* infecting *M. pistaciae* suggests a recombination event between A and B *Wolbachia* supergroups. Indeed, this strain belongs to the B supergroup based on all sequences genes except for *coxA* for which it is placed in the B supergroup.

Figure S2. Phylogenetic placement of the *Wolbachia* strains infecting the seed-specialized wasps *Megastigmus* spp., among other *Wolbachia* strains belonging to A and B supergroups, based on wsp sequences of 49 strains (530 bp). Bayesian likelihood inference phylogenies are shown, while maximum likelihood analyses gave substantially the same results. *Wolbachia* sequences are labelled with the name of their host. *Wolbachia* of *Brugia malayi* was used as an outgroup. Posterior probability values are indicated at each node.

References

- Braig HR, Zhou W, Dobson SL, O'Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont *Wolbachia pipientis*. *Journal of Bacteriolology*, **180**, 2373–2378.
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoeck R (1994) DNA primers for amplification of mitochondrial cytochrome *c* oxydase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology*, **3**, 294–299.
- Hagimori T, Abe Y, Date S, Miura K (2006) The first finding of a *Rickettsia* bacterium associated with parthenogenesis induction among insects. *Current Microbiology*, **52**, 97–101.
- Thao MLL, Baumann P (2004). Evidence for multiple acquisition of *Arsenophonus* by whitefly species (Sternorrhyncha: Aleyrodidae). *Current Microbiology*, **48**, 140–144.
- Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont *Cardinium* in arthropods. *Molecular Ecology*, **13**, 2009–2016.