Wirtschaftswissenschaftliche Fakultät der Universität Zürich Professur für Mathematik der Wirtschaftswissenschaften Übungen zur Vorlesung Mathematik II

Serie 5 ab 18.03.2019 FS 2019

Es werden die Aufgaben 2 (1)&(2), 4(a),(d),(f)&(g), 6 und 9 in den Tutorien besprochen.

Aufgabe 1 (Zeilenstufenform, explizite Form)

(a)	Beurteilen S	Sie iewei	ils die Auss	sage: Die fol	lgende Matrix	x liegt in Za	eilenstufenforn	n vor."

- $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
- \square wahr \square falsch
- $(2) \qquad \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- \square wahr \square falsch
- $(3) \qquad \begin{pmatrix} 1 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 9 & 8 & 7 \end{pmatrix}$
- \square wahr \square falsch
- $\begin{pmatrix}
 1 & 0 & 3 & 4 \\
 0 & 9 & 8 & 7 \\
 0 & 0 & 1 & 4
 \end{pmatrix}$
- \square wahr \square falsch
- (b) Geben Sie die führenden Elemente der Matrizen aus Aufgabe (a) an.
- (c) Beurteilen Sie jeweils die Aussage: "Die folgende Matrix liegt in expliziter Form vor."
 - $(1) \qquad \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
- \square wahr \square falsch
- $(2) \qquad \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- \square wahr \square falsch
- $\begin{pmatrix}
 1 & 0 & 3 & 4 \\
 0 & 0 & 0 & 0 \\
 0 & 9 & 8 & 7
 \end{pmatrix}$
- \square wahr \square falsch
- $\begin{pmatrix}
 1 & 0 & 3 & 4 \\
 0 & 9 & 8 & 7 \\
 0 & 0 & 1 & 4
 \end{pmatrix}$
- \square wahr \square falsch
- (d) Sind die Vektoren $(1,0,0)^T$, $(0,9,0)^T$ und $(3,8,1)^T$ linear unabhängig?
- (e) Sind die Vektoren (1,2,0) und (0,0,1) linear unabhängig?

Aufgabe 2 (Gleichungssysteme)

Beurteilen Sie jeweils die Aussage: "Das folgende Gleichungssystem ist ein lineares Gleichungssystem."

(1) $3x + 4y = 7 \\ ln(8)x + y = 9$

 \square wahr \square falsch

(2) $\ln(x) + 4y = 7$ $\ln(8)x + y = 9$

 \square wahr \square falsch

(3) $3x^2 + 4y = 7 \\ 8x + y = 9$

 \square wahr \square falsch

 \square wahr \square falsch

Aufgabe 3 (Die Koeffizientenmatrix eines LGS)

Bestimmen Sie für folgende lineare Gleichungssysteme die erweiterte Koeffizientenmatrix.

(a)

 $3x_1 + 4x_2 = 7$ $8x_1 + x_2 = 9.$

(b)

 $3x_1 + 4x_2 = 7$ $\ln(8)x_1 + x_2 = 9.$

(c)

 $x_1 + 2x_3 = 1$ $x_2 - x_3 = 3$ $x_1 = 2$.

(d)

$$3x_1 + 4x_2 - 4x_3 = 7$$
$$x_1 + e^2 x_2 = 9$$
$$\pi x_1 + x_2 + 4x_4 = -\frac{1}{2}.$$

(e)

$$3x_1 + 4x_2 - 4x_3 = 7$$

$$\pi x_1 + x_2 + 4x_4 = -\frac{1}{2}$$

$$\ln(8)x_1 + x_2 = 9$$

$$x_3 = 9.$$

(f)

$$3x_1 + 4x_2 - 4x_3 = 7$$

$$\pi x_1 + x_2 + 4x_4 = -\frac{1}{2}$$

$$\ln(8)x_1 + x_2 = 9$$

$$3 = 9.$$

(g)

$$3x_1 + 4x_2 - 4x_3 = 7$$

$$\pi x_1 + x_2 = -\frac{1}{2}$$

$$\ln(8)x_1 + x_3 = 9$$

$$x_1 + x_2 + x_3 = -9.$$

Aufgabe 4 (Lösen von LGS in expliziter Form)

Gegeben sind die linearen Gleichungssysteme (a)-(h) in expliziter Form. Stellen Sie für die Gleichungssysteme (a)-(h) die erweiterte Koeffizientenmatrix auf und bestimmen Sie jeweils die Lösungsmenge des LGS.

(a)
$$x_1 + 3x_3 = 1 x_2 + 2x_3 = 2 2 = 2$$

(b)
$$x_1 + x_4 = 1$$

 $x_2 - x_4 = 2$
 $x_3 + 4x_4 = -2$

(c)
$$x_1 + 3x_3 = 1 x_2 + 2x_3 = 2 0 = 2$$

(d)
$$x_1 = 1$$

 $x_2 = 2$
 $x_3 = -2$

(e)
$$x_1 + 4x_3 = 5$$

 $x_2 - x_3 = 2$

(f)
$$x_1 -4x_3 + x_4 + 2x_5 = 0$$

 $x_2 + 3x_3 + 2x_4 - 7x_5 = 0$

(g)
$$x_1 + x_4 = 1$$

 $x_2 - x_4 - 3x_5 = 0$
 $x_3 + 4x_4 + \pi x_5 = -2$

(h)
$$x_1 + 3x_5 - x_6 + 2x_7 = 0 -4x_5 + 7x_6 + 9x_7 = 0 x_3 + 9x_5 + 3x_6 + 4x_7 = 0 x_4 + 2x_5 + 8x_6 - 6x_7 = 0$$

(i) Entscheiden Sie, welche der Gleichungssysteme (a)-(h) äquivalent sind.

Aufgabe 5 (Von der Lösungsmenge zum LGS)

Finden Sie zu jeder der folgenden Mengen ein LGS, das diese als Lösungsmenge besitzt.

$$\mathbb{L} = \left\{ t_1 \begin{pmatrix} 2 \\ 3 \\ 1 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 1 \\ 7 \\ 0 \\ 1 \end{pmatrix} \middle| t_1, t_2 \in \mathbb{R} \right\}$$

(b)
$$\mathbb{L} = \left\{ t_1 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_3 \begin{pmatrix} 3 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + t_4 \begin{pmatrix} -7 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \middle| t_1, t_2, t_3, t_4 \in \mathbb{R} \right\}$$

(c)
$$\mathbb{L} = \left\{ \begin{pmatrix} 2 \\ 0 \\ 7 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 7 \end{pmatrix} \middle| t \in \mathbb{R} \right\}$$

Aufgabe 6 (LGS, Eliminationsverfahren)

In einer Klausur war das folgende lineare Gleichungssystem zu lösen:

$$x_1$$
 + $2x_3$ = 1
 $2x_1$ + $4x_2$ + $6x_3$ = 4
 x_1 + $4x_2$ + $3x_3$ = 8.

Studentin A löste die Aufgabe indem sie in jedem Tableau nur eine Umformung machte. Der Student B versuchte mehrere Umformungen im gleichen Tableau zu machen, um Zeit zu sparen. Sie erhielten folgende Ergebnisse:

Studentin A											
	x_1	x_2	<i>x</i> ₃	b							
1	1	0	2	1							
2	2	4	6	4							
3	1	4	3	8							
4	1	0	2	1		G 1					
5	0	4	2	2	2 - 21	Student B					
6	1	4	3	8			x_1	x_2	x_3	b	
7	1	0	2	1		1	1	0	2	1	
8	0	4	2	2		2	2	4	6	4	
9	0	4	1	7	6 - 4	3	1	4	3	8	
10	1	0	2	1		4	1	0	2	1	
(1)	0	4	2	2		5	0	4	2	2	2 - 2
12	0	0	-1	5	9 - 8	6	0	4	1	7	\bigcirc \bigcirc \bigcirc \bigcirc
(13)	1	0	2	1		7	1	0	2	1	
(14)	0	1	0.5	0.5	$\frac{1}{4}$ $\frac{1}{1}$	8	0	0	1	-5	\bigcirc \bigcirc \bigcirc \bigcirc
	0	0	-1	5		9	0	0	-1	5	6 - 5
16)	1	0	2	1		10	1	0	0	11	9 - 28
(17)	0	1	0	3	(14) + 0.5(15)	(11)	0	0	1	-5	
18	0	0	-1	5			0	0	0	0	9+8
19	1	0	0	11	(16) + 2(18)						
20	0	1	0	3							
21)	0	0	-1	5							
22	1	0	0	11							
23	0	1	0	3							
24	0	0	1	-5	$(-1)_{21}$						

Studentin A erhielt die Lösungsmenge $\mathbb{L}_A = \{(11,3,-5)^T\}$. Student B erhielt aus dem Endtableau die Gleichungen $x_1 = 11, x_3 = -5$ und mit $x_2 = t$ die Lösungsmenge $\mathbb{L}_B = \{(11,0,-5)^T + t(0,1,0)^T \mid t \in \mathbb{R}\}$.

- (a) Zeigen Sie, dass der Vektor der Lösungsmenge \mathbb{L}_A eine Lösung des LGS ist und geben Sie einen Vektor aus \mathbb{L}_B an, der keine Lösung des LGS darstellt.
- (b) In welchen Zeilen hat Student B einen Fehler gemacht?
- (c) Wie kann Studentin A den angegebenen Lösungsweg abkürzen, ohne den Fehler des Studenten B zu begehen?

Aufgabe 7 (Ein kleines Algebra-Rätsel)

Gesucht sind diejenigen Zahlen, welche, eingetragen in die Kästchen, die horizontalen und vertikalen Gleichungen gleichzeitig lösen:

- (a) Stellen Sie ein lineares Gleichungssystem auf, um die 4 Unbekannten zu finden.
- (b) Lösen Sie dieses Gleichungssystem nur mit Hilfe elementarer Zeilenumformungen.

Aufgabe 8 (Investment Planung)

Ein Fondsmanager muss ein Kapital von CHF 200'000 anlegen. Bei den drei ihm zur Verfügung stehenden Fonds wird eine jährliche Rendite von 10% für Fonds 1, 7% für Fonds 2 bzw. 8% für Fonds 3 erwartet. Das Kapital soll dabei einen jährlichen Ertrag von CHF 16'000 erzielen. Ausserdem soll genau ein Drittel, der insgesamt in die Fonds 2 und 3 fliessenden Geldmenge, in den ersten Fonds investiert werden. Wie kann unter diesen Umständen das Kapital auf die drei Fonds verteilt werden, um die gestellten Forderungen einzuhalten?

Aufgabe 9 (Elementare Zeilenumformungen)

Bringen Sie folgende lineare Gleichungssysteme mit Hilfe von elementaren Zeilenumformungen in explizite Form und bestimmen Sie anschliessend deren Lösungsmengen:

(a)

$$3x_1 + 4x_2 = 7$$
$$8x_1 + 2x_2 = 9$$

(b)

$$x_1 + 3x_2 + 4x_3 = 8$$

 $2x_1 + 9x_2 + 14x_3 = 25$
 $5x_1 + 12x_2 + 18x_3 = 39$

(c)

$$x_1 + 2x_3 = 1$$
$$x_1 = 2$$
$$x_2 - x_3 = 3$$

(d)

$$x_1 + x_2 + x_3 = 5$$

 $2x_1 + 3x_2 + 5x_3 = 8$
 $3x_1 - 2x_2 - x_3 = 3$

(e)
$$4x_1 + x_2 - 4x_4 = 24$$

$$-4x_1 - x_2 + x_3 = -23$$

$$4x_1 + 3x_2 = 26$$

(f) Bestimmen Sie zu jedem der LGS die Lösungsmenge des zugehörigen homogenen LGS.

Aufgabe 10 (Eliminationsverfahren)

Ermitteln Sie mit Hilfe des Eliminationsverfahrens die Lösungsmenge der folgenden Gleichungssysteme:

-3

-1

-11

-7

 $3x_4$

 $4x_{4}$

 $8x_4$

(f) Bestimmen Sie zu jedem der LGS aus den Teilaufgaben (a)-(e) die Lösungsmenge des zugehörigen homogenen LGS.