

BSC ENGINEERING SECOND SEMESTER EXAMINATIONS: 2015/2016

SCHOOL OF ENGINEERING FPEN 306: CHEMICAL REACTION ENGINEERING (2 CREDITS)

INSTRUCTIONS:

ANSWER SEVEN (7) QUESTIONS – ALL QUESTIONS IN SECTION A AND TWO (2) QUESTIONS IN SECTION B

Graph sheets required

TIME ALLOWED: TWO (2) HOURS

SECTION A

- 1. Define the following as used in chemical reaction engineering applications
 - i. Elementary reaction
 - ii. Order of a reaction
 - iii. Homogeneous reaction
 - iv. Non-elementary reaction
 - v. Molecularity of a reaction
 - 2. Describe in detail the dependent factors of the rate equation. For each factor show how it relates to the rate equation.
 - 3. Describe the following ideal reactors noting their distinguishing features:
 - i. batch reactor,
 - ii. plug flow reactor and
 - iii. mixed flow reactor.
 - 4. Consider an irreversible bimolecular second order type reaction taking place in a simple batch reactor. Develop the rate equation for this reaction in terms of conversion and find an expression for the reaction time.
 - 5. Describe the two main methods of analysis of kinetic data giving their advantages and disadvantages.

EXAMINER: DR. H. MENSAH-BROWN Page 1 of 2

The gas phase decomposition of phosphine with stoichiometry

$$4PH_3(g) = P_4(g) + 6H_2(g)$$

proceeds at 650°C according to a first-order rate equation.

$$-r_{PH_3} = (10/hr)C_{PH_3}$$

The reaction is homogeneous and takes place in a plug flow reactor operating at 650° C and 0.460 MPa and can produce 80% conversion of a feed consisting of 108 mol/hr of pure phosphine. Determine the expansion factor of the reaction and size of the plug flow reactor used. Assume the universal gas constant $R = 8.314 \text{ Pa.m}^3/\text{mol.K}$

7. An elementary liquid-phase reversible reaction, A + 2B = R; with rate constants k_1 and k_2 for the forward and backward reactions respectively has the following rate equation:

$$-r_A = -\frac{1}{2}r_B = (25 \, liter^2/mol^2. \, min)C_A C_B^2 - (3min^{-1})C_R, \qquad \left[\frac{mol}{liter. \, min}\right]$$

The reaction take places in a 10-liter steady-state mixed flow reactor. Two feed streams, one containing 2.8 mol A/liter and the other containing 1.6 mol B/liter, are introduced at equal volumetric flow rates into the reactor, and 75% conversion of limiting component is desired. Draw a schematic diagram of the reactor.

- i. Determine the performance equation of the reactor.
- ii. Determine the flow rate of each stream?
- 8. Laboratory measurements made prior to the design of chemical reactors for a reaction at 149°C and 10 atmospheres (1013 kPa) provided the following data:

X _A	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.85
$-r_A$ (mol/dm ³ .s) x 10 ⁻³	5.3	5.2	5.0	4.5	4.0	3.3	2.5	1.8	1.25	1.0

A gas mixture consisting of 50% A and 50% inerts enters the reactor at a flow rate of 10 dm³/s.

- i. Calculate the entering concentration C_{AO} and entering molar flow rate F_{AO}
- ii. Calculate the sizes of two continuous stirred tank reactors (CSTRs) connected in series if the intermediate and final products have conversions of 40% and 80% respectively.

Assume the ideal gas constant $R = 0.082 \text{ dm}^3.\text{atm/mol.K}$