Joshua R. Bhagat Smith

PhD Student · Robotics & Artificial Intelligence

2000, 204 NW Monroe Ave Rogers Hall, Corvallis, OR 97331

■ bhagatsj@oregonstate.edu | ★ jbs023.github.io

Education	
Oregon State University	Corvallis, Ol

PHD ROBOTICS AND ARTIFICIAL INTELLIGENCE

Corvallis, OR 2020 - present

• Advisor: Dr. Julie A. Adams

• Dissertation: "Adaptive Workload Estimation using Few-Shot Learning"

University of Arkansas

MS COMPUTER SCIENCE

2015 - 2017

· Advisor: Dr. Michael Gashler

• Thesis: "An investigation of how neural networks learn from the experiences of peers through periodic weight averaging."

University of ArkansasFayetteville, ARBS COMPUTER ENGINEERING2011 - 2015

• Minors in Math, Physics

Professional Experience _____

2020- Graduate Research Assistant, Collaborative Robotics and Intelligent Systems Inst., Human Machine Teaming Lab

2017-2020 Senior Cloud Infrastructure Engineer, HERE Technologies

2015-2017 Graduate Teaching Assistant, Computer Science and Computer Engineer Dept., University of Arkansas

2016 Research Intern, Dynamic Systems and Controls Branch, NASA Langley Research Center

Publications

PUBLISHED

- A. Moore, M. Schubert, T. Fang, **J. Smith**, N. Rymer. "Lidar-derived navigational geofences for low altitude flight operations," in *Proc. AIAA AVIATION FORUM* Virtual Event. 2020.
- A. Moore, M. Schubert, S. Balachandran, M. Consiglio, C. Munoz, **J. Smith**, D. Lewis, P. Schneide. "Inspection of electrical transmission structures with UAV path conformance and lidar-based geofences," in *Proc. of IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)* Singapore. 2018.
- **J. Smith**, M. Gashler. "An investigation of how neural networks learn from the experiences of peers through periodic weight averaging," in *Proc. IEEE International Conference on Machine Learning and Applications (ICMLA)* Cancun, Mexico. 2017.

In Submission

- **J. Bhagat Smith**, P. Baskaran, J.A. Adams. "Decomposing Physical Workload Estimation for Human-Robot Teams" in *Proc. IEEE International Conference on Human-Machine Systems*, 2022.
- P. Baskaran, , **J. Bhagat Smith**, J.A. Adams. "Visual Task Recognition for Human-Robot Teams" in *Proc. IEEE International Conference on Human-Machine Systems*, 2022.
- J. Bhagat Smith, P. Baskaran, J.A. Adams. "Influence of Honeybee Inspired Drifter Agents." PloS one, 2022.

IN PREPARATION

J. Bhagat Smith, P. Baskaran, J.A. Adams. "Guard Agents and Their Impact on Collective Decision Making."

Teaching Experience _____

Spring 2017 Artificial Intelligence, Teaching Assistant
 Fall 2016 Programming Foundations I, Teaching Assistant
 Spring 2016 Computer Organization, Teaching Assistant
 Fall 2015 Programming Foundations I, Teaching Assistant

Research Experience _____

Oregon State University - Robotics

Corvallis, OR

Advisor: Dr. Julie A. Adams Fall. 2020 - Present

- Dissertation: "Adaptive Workload Estimation using Few-Shot Learning"
 - Use few shot learning to adapt workload estimation models to unseen tasks
 - Design & Conduct Human Subject Studies
 - Physiological Data Processing & Analysis
 - Machine Learning & Probabilistic Model Development
- Defense Advanced Research Projects Agency Project: "Resilient Emergent Properties for Autonomous Agent InteRactions"
 - Develop agent-based model for evaluating foreign agents trying to influence collective decision making algorithms.
 - Non-parametric Statistical Modelling
 - Data Analysis
- Office of Navy Research Project: "Transparent Management of Hub-based Colonies using a Graph-based Dynamic Model"
 - Interface design to enable a single human to more effectively control four groups of 200 robots
 - Design & Conduct Human Subject Studies
 - Data Analysis

University of Arkansas - Computer Science

Fayetteville, AR

2015-2017

ADVISORS: DR. MICHAEL GASHLER

Thesis: ""An investigation of how neural networks learn from the experiences of peers through periodic weight averaging."
 Understanding the impact of various network topologies on a federated learning with feed-forward neural networks

NASA Langley Research Center - Dynamic Systems and Controls Branch

Hampton, VA

ADVISORS: DR. ANDREW MOORE

2016

- Project: "Extracting Lidar-based Geofences for UAV Inspection of Electrical Transmission Structures"
 - Develop and evaluate different clustering algorithms for creating geofences for UAVs inspecting electrical power lines.

Mentoring_

Simone Angelo S. Toribio, Research Experience for Undergraduates Student Mentor, Oregon State University

Corvallis, OR

Skills ___

- Programming Languages: Python, C++, Java, C, Scala
- Tools: Pytorch, Tensorflow, Pandas, Git
- Math: Pattern Recognition, Density Estimation, Deep Neural Networks, Statistic Analysis.