SUPERVISED AND UNSUPERVISED LEARNING

MACHINE LEARNING

Goals of ML:

- Learning from data
- Establishing relationships between mutliple features.
- Extracting statistical patterns
- Reasoning under uncertainity

Just like the BRAIN!

MACHINE LEARNING

Application Areas:

- Statistics
- Engineering
- Computer Science
- Cognitive Science

• • •

MACHINE LEARNING

Types of ML:

- Supervised Learning: Find the class labels or value of the new input, given the dataset.
- Reinforcement learning: Learn to act in a way that maximizes the future rewards (or minimizes a cost function)
- In game theory: Learn to act in a way that maximized the future rewards, in an environment that contains other machines.
- Unsupervised Learning: contains neither targert outputs or reward from its environment.

	INPUTS					OUTPUT
	Gender	Married	Job	Age	Salary	Trust
Customer 1	Male	No	Teacher	43	1500	good
Customer 2	Female	No	Lawyer	55	2500	good
Customer 3	Male	Yes	Doctor	26	1700	bad
	•••	•••		•••	•••	•••
Customer n	Male	Yes	Lawyer	35	1600	???
Customer n+1	Female	No	Doctor	30	1400	???
Customer n+2	Male	Yes	Retired	60	2000	???

Instances are n-dimensional points in space, and the features of the instances correspond to the dimensions of that space.

- Features can be:
 - continuous
 - categorical
 - binary
- Training set: The output of each data point is known.
- Training Algorithms...
- Test set: The output of each data point is estimated.
- Output can be:
 - a class label
 - a real number

(UNSUPERVISED LEARNING)

- No supervised target outputs
- No rewards from the environment
- No feedback

SO?

- Build representations of the inputs
- Find patterns in the inputs
- Decision making
- Predict future inputs

(UNSUPERVISED LEARNING)

- Extract information from unlabelled data.
- Learn a probabilistic model of the data.

This can be useful for:

- Outlier detection
- Classification
- Data compression
- Bayes Rule:

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

(To have beliefs about the world, we trust the statistics.)

- Dataset Collection
- Feature Selection
- Algorithm Selection
- Training

COLLECTING THE DATASET

Brute-force method: Measuring everything available in the hope that the relevant & informative features can be isolated.

- (-) contains a lot of noisy data
- (-) missing features
- (-) requires significant data pre-processing
- (+) simple

OR: An expert decides which features to measure and use.

COLLECTING THE DATASET

Possible problems in a dataset:

- handling the missing data
- outlier (noise) detection
- instance selection (in the case of large datasets)
- feature subset selection (in the case of redundant features and high dimensionality)
- feature construction/transformation

ALGORITHM SELECTION

Performance of the algorithm is determined by the **prediction accuracy**, given by:

% correct prediction

% all predictions

3 ways to calculate it:

- 2/3 training & 1/3 estimating performance
- Cross validation (training set is divided into mutually exclusive and equal sized subsets, and error rates of the subsets are averaged.)
- **Leave-one-out** validation is a special case of cross validation. (Every subset has only 1 instance.)

Unstability: Small changes in the training set result in large changes.

SUPERVISED LEARNING: LOGIC BASED ALGORITHMS:

DECISION TREES

Decision trees are trees that classify instances by sorting them based on feature values.

at1	at2	at3	at4	Class
a1	a2	a3	a4	Yes
a1	a2	a3	b 4	Yes
al	b2	a3	a4	Yes
a1	b2	b3	b4	No
al	c 2	a3	a4	Yes
a1	c2	a3	b 4	No
b1	b2	b 3	b4	No
c1	b2	b3	b4	No

Table 2. Training Set

Figure 2. A decision tree

SUPERVISED LEARNING: LOGIC BASED ALGORITHMS:

DECISION TREES

The feature that best divides the training data would be the root node of the tree

To avoid overfitting:

- i) Stop the training before perfect fitting
- ii) Prune the induced decision tree. The tree with fewest number of leaves is preferred.

Zheng (2000) created at-least *M of-N features*. *An instance is true if at least M of its* conditions is true, otherwise it is false.

PERCEPTRON BASED ALGORITHMS

- * Dataset:
- x_1 to x_n are the input feature values.
- w_1 to w_n are the connection weights / **prediction vector**.
- * Perceptron computes the weighted sum: $\sum (x_i * w_i)$
- * Sum < treshold => 1
 Sum < treshold => 0
- * Run the algorithm repeatedly over the training set, until it finds a **prediction vector** that is correct on all the training set.

PERCEPTRON BASED ALGORITHMS

- * Can only classify linearly separable sets of instances.
- * Binary => In the case of multiclass problems, the problem must be reduced to a set of multiple binary classification problems.
- * Anytime online! (Can produce a useful answer regardless of how long they run.)
- * Superior time complexity when dealing with irrelevant features.

INSTANCE-BASED LEARNING

K-NN Algorithm:

Assign the same label according to the nearest neighbours (if K>1, do majority voting)

It is a Lazy-learning algorithm! Which means:

- No generalization process until classification is performed
- Require *less* computation time during the *training phase* than eager-learning algorithm(such as decision trees, neural and Bayes nets) but *more* computation time during the *classification process*.

INSTANCE-BASED LEARNING

K-NN Algorithm:

Different Distance Metrics to compare feature vectors:

Minkowsky:
$$D(x,y) = \left(\sum_{i=1}^{m} |x_i - y_i|^r\right)^{1/r}$$

Manhattan:
$$D(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

Chebychev:
$$D(x,y) = \max_{i=1}^{m} |x_i - y_i|$$

Euclidean:
$$D(x,y) = \left(\sum_{i=1}^{m} |x_i - y_i|^2\right)^{1/2}$$

Camberra:
$$D(x,y) = \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i + y_i|}$$

Kendall's Rank Correlation:

$$D(x,y) = 1 - \frac{2}{m(m-1)} \sum_{i=j}^{m} \sum_{j=1}^{i-1} sign(x_i - x_j) sign(y_i - y_j)$$

Table 3. Approaches to define the distance between instances (x and y)

INSTANCE-BASED LEARNING

K-NN Algorithm:

- i) they have large storage requirements
- ii) they are sensitive to the choice of the distance metric
- iii) hard to choose the best k

SUPPORT VECTOR MACHINES

An optimization problem:

Find a hyperplane that separate the sample space which:

- 1) Maximizes the separation of the classes
- 2) Maximize the distance of the hyperplane to the closest samples on each side

SUPPORT VECTOR MACHINES

A separation with a higher margin is preferred for generalization purposes.

SUPPORT VECTOR MACHINES

If the training data is not Linearly Separable:

Kernel Trick is applied to map the input space to a higher dimensional space where the data is now Linearly separable

Some popular kernels are the following:

(1)
$$K(x, y) = (x \cdot y + 1)^{P}$$
,

(2)
$$K(x,y) = e^{-\|x-y\|^2/2\sigma^2}$$

(3)
$$K(x, y) = \tanh(\kappa x \cdot y - \delta)^P$$

- Extract information from unlabelled data.
- Learn a probabilistic model of the data.

This can be useful for:

- Outlier detection
- Classification
- Data compression
- Bayes Rule:

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

(To have beliefs about the world, we trust the statistics.)

LATENT VARIABLE MODELS

Logic Based Algorithms
Perceptron Based Techniques
Statistical Learning Algorithms
Instance Based Learning
Support Vector Machines