PC 2 (Modèle statistique)

1 TCL pour la médiane (Emprunté à la PC1)

Soit $(X_1, X_2, \ldots, X_{2n+1})$ un échantillon de 2n+1 v.a. i.i.d. uniformes sur [0, 1], on note Y_n la médiane de l'échantillon. On s'attend à ce que (Y_n) tende vers 1/2, nous allons montrer que $(Y_n - 1/2)$ a des fluctuations gaussiennes.

1. Se convaincre que Y_n a pour densité

$$(2n+1)\binom{2n}{n}x^n(1-x)^n\mathbf{1}_{x\in[0,1]}.$$

2. Déterminer la densité g_n de

$$Z_n = 2\sqrt{2n}\left(Y_n - 1/2\right)$$

et en déduire que Z_n converge en loi vers une $\mathcal{N}(0,1)$. On rappelle la formule de Stirling : $n! \sim n^n e^{-n} \sqrt{2\pi n}$.

(On pourra utiliser le Théorème de Scheffé : si chaque Z_n a pour densité g_n et que la suite (g_n) converge simplement vers une densité g, alors (Z_n) converge en loi vers la loi de densité g.)

3. Comment généraliser ce résultat et cette preuve à des variables continues non-uniformes?

2 Modèle exponentiel

Une grande partie des modèles utilisés dans les exemples élémentaires sont des modèles exponentiels (modèle gaussien, log-normal, exponentiel, gamma, Bernouilli, Poisson, etc). Nous allons étudier quelques propriétés de ces modèles. On appelle modèle exponentiel une famille de lois $\{\mathbb{P}_{\theta}, \ \theta \in \Theta\}$ ayant une densité par rapport à une mesure μ σ -finie sur \mathbb{R} ou \mathbb{N} de la forme

$$p_{\theta}(x) = c(\theta) \exp(m(\theta)f(x) + h(x))$$
.

On supposera que Θ est un intervalle ouvert de \mathbb{R} , $m(\theta) = \theta$ et $c(\cdot) \in C^2$, $c(\theta) > 0$ pour tout $\theta \in \Theta$. On notera X une variable aléatoire de loi \mathbb{P}_{θ} et on admettra que

$$\frac{d^i}{d\theta^i} \int \exp(\theta f(x) + h(x)) \,\mu(dx) = \int f(x)^i \exp(\theta f(x) + h(x)) \,\mu(dx) < +\infty, \quad \text{pour } i = 1, 2.$$

- 1. Montrez que $\varphi(\theta) := \mathbb{E}_{\theta} (f(X)) = -\frac{d}{d\theta} \log(c(\theta))$.
- 2. Montrez que $\operatorname{Var}_{\theta}(f(X)) = \varphi'(\theta) = -\frac{d^2}{d\theta^2} \log(c(\theta))$.
- 3. On dispose d'un n-échantillon X_1, \ldots, X_n de loi \mathbb{P}_{θ} . On note $\hat{\theta}_n$ l'estimateur obtenu en résolvant $\varphi(\hat{\theta}_n) = \frac{1}{n} \sum_{i=1}^n f(X_i)$. En supposant $\operatorname{Var}_{\theta}(f(X)) > 0$, montrez que

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \stackrel{\text{loi}}{\to} \mathcal{N}\left(0, \frac{1}{\operatorname{Var}_{\theta}\left(f(X)\right)}\right).$$

3 Estimation par la méthode plug-in

Soit X_1, \ldots, X_n des variables aléatoires réelles i.i.d. de fonction de répartition F, soit a < b deux réels et soit $\theta = F(b) - F(a)$.

- 1. Déterminer l'estimateur plug-in $\widehat{\theta}$ de θ .
- 2. Déterminer l'estimateur plug-in de la variance de $\hat{\theta}$ et en déduire un intervalle de confiance asymptotique pour θ de niveau $1-\alpha$.

4 Stabilisation de la variance

On dispose d'un échantillon X_1, \ldots, X_n i.i.d. de loi de Bernoulli de paramètre $0 < \theta < 1$.

- 1. On note \bar{X}_n la moyenne empirique des X_i . Que disent la loi des grands nombres et le TCL?
- 2. Cherchez une fonction g telle que $\sqrt{n}(g(\bar{X}_n) g(\theta))$ converge en loi vers Z de loi $\mathcal{N}(0,1)$.
- 3. On note z_{α} le quantile d'ordre $1 \alpha/2$ de la loi normale standard. En déduire un intervalle $\hat{I}_{n,\alpha}$ fonction de z_{α}, n, \bar{X}_n tel que $\lim_{n\to\infty} \mathbb{P}(\theta \in \hat{I}_{n,\alpha}) = 1 \alpha$.

5 Modèle d'autorégression

On considère l'observation $Z=(X_1,\ldots,X_n)$, où les X_i sont issus du processus d'autorégression :

$$X_i = \theta X_{i-1} + \xi_i, \quad i = 1, \dots, n, \qquad X_0 = 0,$$

avec les ξ_i i.i.d. de loi normale $\mathcal{N}(0, \sigma^2)$ et $\theta \in \mathbb{R}$. Écrire le modèle statistique engendré par l'observation Z.

6 Survie

Un système fonctionne en utilisant deux machines de types différents. Les durées de vie X_1 et X_2 des deux machines suivent des lois exponentielles de paramètres λ_1 et λ_2 . Les variables aléatoires X_1 et X_2 sont supposées indépendantes.

1. Montrer que une variable aléatoire X suit la loi exponentielle $\mathcal{E}(\lambda)$ si et seulement si

$$\forall x > 0: \ \mathbb{P}(X > x) = \exp(-\lambda x).$$

- 2. Calculer la probabilité pour que le système ne tombe pas en panne avant la date t. En déduire la loi de la durée de vie Z du système. Calculer la probabilité pour que la panne du système soit due à une défaillance de la machine 1.
- 3. Soit I=1 si la panne du système est due à une défaillance de la machine 1, I=0 sinon. Calculer $\mathbb{P}(Z>t;I=\delta)$, pour tout $t\geq 0$ et $\delta\in\{0,1\}$. En déduire que Z et I sont indépendantes.
- 4. On dispose de n systèmes identiques et fonctionnant indépendamment les uns des autres dont on observe les durées de vie Z_1, \ldots, Z_n .
 - (a) Ecrire le modèle statistique correspondant. Les paramètres λ_1 et λ_2 sont-ils identifiables?
 - (b) Supposons maintenant que l'on observe à la fois les durées de vie des systèmes Z_1, \ldots, Z_n et les causes de la défaillance correspondantes $I_1, \ldots, I_n, I_i \in \{0, 1\}$. Écrire le modèle statistique dans ce cas. Les paramètres λ_1 et λ_2 sont-ils identifiables?

7 Problème bonus : Quantile central

Exercice 1. Pour tout $\alpha > 0$, on appelle loi Gamma(α) la loi sur \mathbb{R}^+ de densité

$$g_{\alpha}(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x}$$
, où $\Gamma(\alpha) \triangleq \int_0^{\infty} x^{\alpha - 1} e^{-x} dx$.

Pour a, b > 0, on appelle loi Beta(a, b) la loi sur [0, 1] de densité

$$h_{a,b}(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}.$$

1. Soit s et t > 0 et soit X et Y deux variables indépendantes de loi Gamma(s) et Gamma(t), respectivement. On pose

$$U = X + Y$$
$$V = X/(X + Y)$$

Montrer que U et V sont indépendantes et que U est distribuée suivant une loi Gamma(s+t) et V suivant une loi Beta(s,t). [Indication: on pourra considérer la densité jointe de (U,V) sans se préoccuper des constantes de normalisation.]

2. Soit $\{Z_n\}_{n\geq 0}$ une suite de variables aléatoires telles que, pour tout $n\geq 0$, Z_n est de loi Gamma(n). Montrer que

$$\sqrt{n}\left(\frac{Z_n}{n}-1\right) \Rightarrow_d \mathcal{N}(0,1)$$
.

3. Soient $p \in (0,1)$ et $\{k_n\}$ une suite monotone croissante d'entiers vérifiant

$$\sqrt{n}\left(\frac{k_n}{n} - p\right) \to 0. \tag{1}$$

Soient $\{X_n\}_{n\geq 0}$ et $\{Y_n\}_{n\geq 0}$ deux suites indépendantes telles que $X_n \sim \operatorname{Gamma}(k_n)$ et $Y_n \sim \operatorname{Gamma}(n-k_n)$. On pose

$$V_n = \frac{X_n}{X_n + Y_n} \ .$$

Montrer que

$$\sqrt{n}(V_n-p) \Rightarrow_d \mathcal{N}(0,p(1-p))$$
.

[Indication: on pourra, dans un premier temps, considérer le comportement asymptotique du couple $\frac{1}{n}(X_n, Y_n) - (p, 1-p)$.]

4. Conclure.

Exercice 2. Soit f une densité de probabilité portée par un intervalle (non nécessairement borné) $(a,b) \subset \mathbb{R}$. On suppose que f est continue et ne s'annulle pas sur (a,b). On note $F(x) = \int_{-\infty}^{x} f(u) du$ la fonction de répartition associée. Cette fonction de répartition est alors strictement monotone sur $x \in [a,b]$ et définit une bijection de $[a,b] \to [0,1]$. On note F^{-1} la fonction réciproque de F de $[0,1] \to [a,b]$. De plus, par continuité de f, F est continuement dérivable sur (a,b) de dérivée f et il s'en suit que F^{-1} est dérivable sur (0,1).

1. Soit U une variable uniforme sur [0,1], $U \sim \text{Unif}([0,1])$. Montrer que la variable X définie par $X = F^{-1}(U)$ a pour densité f. Réciproquement, montrer que si X est une loi de densité f, alors U = F(X) est une loi uniforme sur [0,1].

2. Soient g une densité et Y_1, \ldots, Y_n, n v.a. i.i.d. de densité g. On note $(Y_{(1)}, \ldots, Y_{(n)})$ la statistique d'ordre de l'échantillon, $Y_{(1)} < Y_{(2)} < \cdots < Y_{(n)}$. Montrer que $Y_{(k)}$ a pour densité

$$g_{Y_{(k)}}(y) = \frac{n!}{(k-1)!(n-k)!} G(y)^{k-1} [1 - G(y)]^{n-k} g(y) ,$$

où G est la fonction de répartition associée à g. [Indication : on pourra montrer successivement $g_{Y_{(k)}}(y) = n! \mathbb{P}(Y_1 < \cdots < Y_{k-1} < y < Y_{k+1} < \cdots < Y_n) g(y)$ puis $\mathbb{P}(\max(Y_1, \dots, Y_{k-1}) < y) = (k-1)! \mathbb{P}(Y_1 < \cdots < Y_{k-1} < y)$ et $\mathbb{P}(y < \min(Y_{k+1}, \dots, Y_n)) = (n-k)! \mathbb{P}(y < Y_{k+1} < \cdots < Y_n)$.]

- 3. Quelle est la loi de $Y_{(k)}$ si $g = \mathbb{1}_{[0,1]}$ est la densité de la loi uniforme sur [0,1]?
- 4. Soit $p \in (0,1)$. On note x_p le quantile d'ordre p, i.e. $x_p = F^{-1}(p)$. Montrer que

$$\sqrt{n}(X_{(k_n)} - x_p) \Rightarrow_d \mathcal{N}\left(0, \frac{p(1-p)}{f^2(x_p)}\right) .$$

- 5. Soit X_1, \ldots, X_n une suite de v.a. i.i.d. normales de moyenne μ et de variance σ^2 . Montrer que la médiane est un estimateur consistant et asymptotiquement normal de la moyenne. Déterminer la variance asymptotique de cet estimateur. Cet estimateur doit-il être préféré à la moyenne empirique?
- 6. Reprendre la question précédente avec X_1, \ldots, X_n suite de v.a. i.i.d. distribuées suivant une loi de Laplace de densité $f_{\mu}(x) = \frac{1}{2} e^{-|x-\mu|}$. Commenter.