

Silicon Institute of Technology

Silicon Hills, Bhubaneswar | An Autonomous Institute |

1st Semester B.Tech Mid Term Examination 2019-2020 BASIC ELECTRONIC ENGINEERING(18ES) T61)

Duration: 01:30

Full Marks: 25

1 Answer All

a In an intrinsic semiconductor, the number of holes

1

- a. Equals the number of free electrons
- b. Is greater than the number of free electrons
- c. Is less than the number of free electrons
- d. None of the above
- b What is the relation between the time period of a waveform and its frequency? For a sinusoidal signal of time period, 1 msec find the frequencies f and ω .

1

c In the circuit shown below, the Zener diode has a breakdown voltage $V_z = 6 \text{ volt}$. Determine the voltage V_0 . Assume the Zener diode to be ideal.

1

d Write the relation between α and β .

1

e What is Q-point in BJT?

1

f Discuss the function of R_C and R_E in voltage divider biasing of BJT CE configuration.

1

g The figure shows a half-wave rectifier. The diode D is ideal. Find the approximate value of average steady-state current (in Amperes) through the diode.

1

² Answer any Two

a Write down some differences between center-tapped and bridge type full wave rectifier with a diagram.

2

[P. T. O.]

c Determine I, V_1 , V_2 , and V_0 for the series dc configuration as shown in the figure.

d The diode in the circuit shown has a $v_{on} = 0.7$ Volts. If $v_i = 5 \sin(\omega t)$ Volts. Sketch the output waveform (v_0) , and determine the minimum and maximum values of v_0 .

2

3 Answer any One

a Draw the fixed bias circuit and write down the expression for $I_{\mbox{\footnotesize{B}}}$, $V_{\mbox{\footnotesize{CE}}}$?

2

b Find out I_B , V_{CE} and V_{CB} for the given circuit?

2

[P. T. O.]

- a A full-wave bridge rectifier is supplied with an input voltage $V_i = 20 \sin \omega t$ and load resistance R_L =400 Ω . Evaluate
- 3

- (i) Im, I d.c., Ims
- (iii) a.c. power input and d.c. power output
- (ii)d.c. output voltage
- (iv)efficiency of rectification
- b A resistance of $2 k\Omega$ is connected in parallel with an ideal diode; this combination is connected in series with another $1 k\Omega$ resistor and this whole circuit is connected with the 25 V supply. Calculate the:-
- 3

- (1) Current drawn by the whole circuit.
- (2) Current flow in the diode connected branch.
- (3) Current flow in the resistance which is parallel with the diode.
- (4) Output voltage i.e. voltage across the output resistance.

c Determine V₀ and I_D for the network given below

5 Answer any Two

a Differentiate between the common emitter and common base configuration with the help of input and output characteristics graph.

3

b With a neat and clean diagram, differentiate between fixed bias circuit and voltage divider biasing circuit. Which one is more stable and why?

3

c Design a voltage divider circuit using a supply 24V, β =110 and an operating point of I_{CQ} =4mA and V_{CEQ} =8V. Choose V_E = (1/8) V_{CC} .

3