E355 Engineering Economics Spring 2022 Homework #6

"I pledge my honor that I have abided by the Stevens Honor System"

By: Alexander Gaskins, Daniel Goldberg, and Samuel Gavrilov

6.1 The Hoboken Hospital is considering the replacement of an old diagnostic machine. The purchase cost of a new equipment will be \$160,000 and will have lower maintenance costs per year compared with the older one. The current machine can be sold for \$90,000 now. The salvage value and maintenance costs per year are listed below for both alternatives. Assume a 3-year useful life and the MARR is 10%.

	Old Machine				New Machine			
EOY	Salvage Value		Maintenance Costs		Salvage Value		Maintenance Costs	
0	\$	90,000	\$	-	\$	160,000	\$	-
1	\$	75,000	\$	15,000	\$	145,000	\$	12,000
2	\$	50,000	\$	18,000	\$	125,000	\$	15,000
3	\$	25,000	\$	22,000	\$	105,000	\$	19,000

a) Calculate the Marginal Cost of the Old machine (Defender). Which replacement analysis technique will you use and why? [4.5 points]

EOY	S Value at EOY	Loss in Market Value	Interest Rate	Interest in Year N	Maint. Cost	Total Marginal Cost
0	\$90,000	-	-	-	-	-
1	\$75,000	\$15,000	10%	\$9,000	\$15,000	\$39,000
2	\$50,000	\$25,000	10%	\$7,500	\$18,000	\$50,500
3	\$25,000	\$25,000	10%	\$5,000	\$22,000	\$52,000

Technique 1 will be used, as the total marginal cost is **strictly** increasing.

b) Find the EUACs of the Capital Recovery for new machine (Challenger). [4.5 points]

EOY	S Value ay EOY	P-S	(A/P,10%,N)	S*i	CR EUAC
0	\$160,000	-	-	-	-
1	\$145,000	\$15,000	1.1	\$14,500	\$31,000
2	\$125,000	\$35,000	0.5762	\$12,500	\$32,667
3	\$105,000	\$55,000	0.4021	\$10,500	\$32,615.50

$$EUAC = (P - S) * (\frac{A}{P}, 10\%, N) + S * i$$

$$EUAC_1 = (160000 - 145000) * (\frac{A}{P}, 10\%, 1) + (145000 * 0.10) = (15000) * (1.1) + 14500$$

 $EUAC_1 = \$31,000$

$$EUAC_2 = (160000 - 125000) * (\frac{A}{P}, 10\%, 2) + (125000 * 0.10) = (35000) * (0.5762) + 12500$$

 $EUAC_2 = \$32, 667$

$$EUAC_3 = (160000 - 105000) * (\frac{A}{P}, 10\%, 3) + (105000 * 0.10) = (55000) * (0.4021) + 10500$$

 $EUAC_3 = $32,615.50$

c) Find the EUACs of Maintenance Cost for new machine (Challenger). [9 points]

$$EUAC_{MC_1} = (12000) * (\frac{A}{F}, 10\%, 1) = $12,000$$

$$EUAC_{MC_2} = (15000 + 12000 * (\frac{F}{P}, 10\%, 1)) * (\frac{A}{F}, 10\%, 2) = $13,428.84$$

$$EUAC_{MC_3} = (19000 + 15000 * (\frac{F}{P}, 10\%, 1) + 12000 * (\frac{F}{P}, 10\%, 2)) * (\frac{A}{F}, 10\%, 3) = \$15, 111.04$$

d) Find the Total EUACs of the two alternatives [3 points]

Defender:

$$EUAC = (P - S) * (\frac{A}{P}, 10\%, N) + S * i$$

$$EUAC_1 = (90000 - 75000) * (\frac{A}{P}, 10\%, 1) + (75000 * 0.10) = (15000) * (1.1) + 7500$$

 $EUAC_1 = $24,000$

$$EUAC_{MC_1} = (15000) * (\frac{A}{F}, 10\%, 1) = $15,000$$

$$EUAC_2 = (90000 - 50000) * (\frac{A}{P}, 10\%, 2) + (50000 * 0.10) = (40000) * (0.5762) + 5000$$

$$EUAC_2 = \$28,048$$

$$EUAC_{MC_2} = (18000 + 15000 * (\frac{F}{P}, 10\%, 1)) * (\frac{A}{F}, 10\%, 2) = $16,428.90$$

$$EUAC_3 = (90000 - 25000) * (\frac{A}{P}, 10\%, 3) + (25000 * 0.10) = (65000) * (0.4021) + 2500$$

 $EUAC_3 = $28,636.50$

$$EUAC_{MC_3} = (22000 + 18000 * (\frac{F}{P}, 10\%, 1) + 15000 * (\frac{F}{P}, 10\%, 2)) * (\frac{A}{F}, 10\%, 3) = \$18, 110.90$$

		– Defender —		— — — — Challenger — — — —		
EOY	CR EUAC	MC EUAC	Total	CR EUAC	MC EUAC	Total
0	-	-	-	-	-	-
1	\$24,000	\$15,000	\$39,000	\$31,000	\$12,000	\$43,000
2	\$28,048	\$16,428.90	\$44,476.90	\$32,667	\$13,428.84	\$46,095.84
3	\$28,636.50	\$18,110.90	\$46,747.40	\$32,615.50	\$15,111.05	\$47,726.55

e) When (Economic Life) should the old machine be replaced? Why? [1 point]

The economic life is where the EUAC is smallest. Since the EUAC is smallest at year 1, the old machine should be replaced immediately.

6.2 Crocobert Inc., a local brewery, is evaluating whether to buy a new fermenter. The initial cost of the new machine is \$15,000, and the interest rate is 12%. The machine's end-of-year salvage values over the next 5 years are presented in the table below.

a) Calculate the marginal cost for the machine. [4 points]

EOY	Salvage Value at EOY	Loss in Market Value	Interest Rate	Interest	Marginal Costs
0	\$15,000	-	1	-	-
1	\$13,000	\$2,000	12%	\$1,800	\$3,800
2	\$10,000	\$3,000	12%	\$1,560	\$4,560
3	\$8,000	\$2,000	12%	\$1,200	\$3,200
4	\$6,800	\$1,200	12%	\$960	\$2,160
5	\$5,100	\$1,700	12%	\$816	\$2,516

b) What is the economic life of the machine? Why? [1 point + 1 point]

Economic life can be found by finding the year where the machine has the lowest EUAC

$$EUAC_1 = 3800(\frac{P}{F}, 12\%, 1) \times (\frac{A}{P}, 12\%, 1) = \$3,800$$

$$EUAC_2 = (3800(\frac{P}{F}, 12\%, 1) + 4560(\frac{P}{F}, 12\%, 2)) \times (\frac{A}{P}, 12\%, 2)$$

$$EUAC_2 = (7028.25) \times (0.5917) = $4,158.62$$

$$EUAC_3 = (7028.25 + 3200(\frac{P}{F}, 12\%, 3)) \times (\frac{A}{P}, 12\%, 3)$$

$$EUAC_3 = (9306.01) \times (0.4163) = \$3,874.09$$

$$EUAC_4 = (9306.01 + 2160(\frac{P}{F}, 12\%, 4)) \times (\frac{A}{P}, 12\%, 4)$$

$$EUAC_4 = (10678.69) \times (0.3292) = \$3,515.43$$

$$EUAC_5 = (10678.69 + 2516(\frac{P}{F}, 12\%, 5)) \times (\frac{A}{P}, 12\%, 5)$$

 $EUAC_{5} = (12106.27) \times (0.2774) = $3,358.28 \leftarrow$ The economic life ends after 5 years