Advanced Microeconomic Theory

Lecture 5: Applications of Bayesian Games II

Elaborate Information Structures and High-Order Beliefs

Ran Spiegler, UCL

February 2022

Plan of the Lecture

- The ex-ante formulation of Bayesian games
 - Application: Speculative trade
- The role of high-order beliefs: The investment game revisited with two information structures:
 - One humorous
 - The other (supposedly) serious

Ex-Ante Formulation of Bayesian Games

- Ex-ante perspective: Players commit ex-ante to a strategy
- At the ex-ante stage, there are no informational asymmetries.
- Reducing the model to a strategic game with complete

information

Ex-Ante Formulation of Bayesian Games

- The set of player is $N = \{1, ..., n\}$
- For each player $i \in N$, the set of strategies is the set of all functions $s_i : T_i \to A_i$.
- Player i's utility from the strategy profile $(s_1, ..., s_n)$ is

$$U_i(s_1, \dots, s_n) = \sum_{\omega \in \Omega} p(\omega) u_i(s_1(\tau_1(\omega)), \dots, s_n(\tau_n(\omega)), \omega)$$

Ex-Ante Formulation of Bayesian Games

- A profile of strategies $(s_1, ..., s_n)$ is a Nash equilibrium if for every player i, $U_i(s_i, s_{-i}) \ge U_i(s_i', s_{-i})$ for every $s_i' \in S_i$.
 - Tests deviations at a hypothetical planning stage
 - Equivalent to the original, interim definition thanks to the expected-utility assumption
 - Usually hard to work with because of large strategy space
 - Useful for general results about classes of games

Speculative Trade

- Trade motivated purely by differences in beliefs
- Arguably the predominant motive for trade in financial markets
- Can differences in beliefs that give rise to trade be entirely due to informational asymmetries?
- Traders' strategic inferences from their counterparts'
 willingness to trade is an impediment to trade

- Consider a bet $f: \Omega \to \{-1,1\}$.
 - $f(\omega)$ is the amount that player 1 receives from player 2 in state ω .
- A trading game: Each player i chooses an action $a_i \in \{0,1\}$.

$$u_1(a_1, a_2, \omega) = a_1[a_2 f(\omega) - \varepsilon]$$
$$u_2(a_1, a_2, \omega) = a_2[-a_1 f(\omega) - \varepsilon]$$

- $\varepsilon > 0$ is an arbitrarily small transaction cost.

- $a_i = 1$ means agreeing to trade.
- The role of the transaction cost is to break ties.
- An arbitrary information structure $(\Omega, p, T_1, T_2, \tau_1, \tau_2)$
 - The prior p has full support.

- A trivial example: $T_1 = T_2 = \{t\}$: Both traders are uninformed.
- Player *i* will play $a_i = 1$ only if $a_i = 1$, due to transaction cost.
- player 1 will play $a_1 = 1$ only if $\sum_{\omega} p(\omega) f(\omega) > 0$.
- But then player 2 doesn't want to trade!
- The only Nash equilibrium is $a_1 = a_2 = 0$ (no trade).

- Another example: Player 1 knows ω , player 2 is uninformed.
- For trade to take place, we need $a_2 = 1$.
- player 1 will play $a_1 = 1$ if and only if $f(\omega) = 1$.
- But then player 2 earns a negative payoff. He can profitably deviate to $a_2 = 0$.
- The only Nash equilibrium involves no trade.

A "No-Trade Theorem"

Proposition: For any information structure, the unique Nash equilibrium in the induced Bayesian game is for each player i to play $s_i(t_i) = 0$ for every t_i .

- Speculative trade cannot be due to differential information,
 under the assumption that traders play Nash equilibrium.
- An example of a rich literature on "no-trade theorems".

Proof (Using the Ex-ante Formulation)

- When $a_i = 0$ with certainty, $a_j = 0$ is a best-reply for player j regardless of his information, because trade doesn't occur anyway and playing 0 saves the transaction cost.
- Now consider a candidate Nash equilibrium in which each player sometimes plays 1.

- Each player can ensure an ex-ante payoff of 0 by always refusing to trade. This is a lower bound on his equilibrium payoff.
- By assumption, players incur the transaction cost with positive probability in the candidate equilibrium.
- Therefore, each player's ex-ante expected monetary transfer is strictly positive.

Player 1's ex-ante monetary payoff:

$$\sum_{\omega} p(\omega) s_1(\tau_1(\omega)) s_2(\tau_2(\omega)) f(\omega) > 0$$

Player 2's ex-ante monetary payoff:

$$-\sum_{\omega} p(\omega) s_1(\tau_1(\omega)) s_2(\tau_2(\omega)) f(\omega) > 0$$

A contradiction!

Discussion

- Many culprits:
 - The common prior belief
 - Partitional information structures
 - Expected utility maximization
 - Rational expectations
- A common trick in the finance literature: "Noise traders"

High-Order Beliefs

- Information structures can express rich patterns of high-order beliefs ("my information about your information about my information...")
- The state space can have a dimensionality far beyond the payoff-relevant states.
- This richness can be strategically relevant.

The E-Mail Game

Bad state

Good state

- The investment game revisited
- A slight change in the payoff structure
- The probability of the bad state of Nature is q > 0.5.

- Each player sits in front of a computer screen.
- When the state is good (and only then), player 1's computer sends an automatic message to player 2's computer.
- When player 2's computer receives the message, it sends a confirmation to player 1's computer, which sends a reconfirmation, and so forth...
- Each message gets lost with independent probability $\varepsilon > 0$.

- The process terminates with probability one after finitely many rounds. Each player's computer screen displays the number of messages that the computer sent.
 - This number is the player's signal.
 - Players simultaneously take actions after receiving it.
- Ω is the set of all pairs of non-negative integers (t_1, t_2) for which $t_2 \in \{t_1 1, t_1\}$.

$$p(0,0) = q$$

$$p(1,0) = (1 - q)\varepsilon$$

$$p(1,1) = (1 - q)(1 - \varepsilon)\varepsilon$$

$$p(2,1) = (1 - q)(1 - \varepsilon)^{2}\varepsilon$$

$$p(2,2) = (1 - q)(1 - \varepsilon)^{3}\varepsilon$$

$$p(3,2) = (1 - q)(1 - \varepsilon)^{4}\varepsilon$$

- $\tau_i(t_1, t_2) = t_i$ encodes player i's high-order knowledge regarding the state of Nature:
 - $-t_i=1$: The player knows it is good but doesn't know whether player j knows this.
 - $t_i = 2$: he knows the state is good and that player j knows it, but doesn't know whether j knows all this.

•

Almost Common Knowledge

- Small ε ensures that when the state of Nature is good, players are very likely to have a high degree of mutual knowledge of this event.
- However, common knowledge is never attained.
- What would you do if you saw a large number on your computer screen?

Diagrammatic Representation

$$t_1 = 0$$
 $t_1 = 1$ $t_1 = 2$ $t_1 = 3$

$$0,0$$
 $1,0$ $1,1$ $2,1$ $2,2$ $3,2$ $3,3$ $4,3$

$$t_2 = 0$$
 $t_2 = 1$ $t_2 = 2$ $t_2 = 3$

Interlocking information sets

Proposition: The game has a unique Nash equilibrium. For every

player $i = 1,2, s_i(t_i) = NI$ for every $t_i = 0,1,2,...$

• The proof is by induction on the players' interlocking

information sets: $t_1=0$, $t_2=0$, $t_1=1$, $t_2=1$, ...

• At $t_1 = 0$, NI is strictly dominant for player 1.

• At $t_2 = 0$, player 2 assigns probability $\frac{q}{q + (1 - q)\varepsilon} > 0.5$ to the

bad state of Nature.

• The player's expected payoff from *I* is therefore at most

$$\frac{q}{q+(1-q)\varepsilon}\cdot(-1)+\frac{(1-q)\varepsilon}{q+(1-q)\varepsilon}\cdot 1<0.$$

• Therefore, player 2 plays NI at $t_2 = 0$ in any Nash equilibrium.

- We have established that $s_i(t_i=0)=NI$ for both i=1,2 in any Nash equilibrium.
- Now we'll put the inductive argument to work.

- Suppose we proved that players play NI in all information sets in the sequence up to some information set.
- In the diagram, that information set is $t_2 = 2$.

• At $t_1 = 3$, player 1's posterior probability the state (3,2) is

$$\frac{(1-q)(1-\varepsilon)^4\varepsilon}{(1-q)(1-\varepsilon)^4\varepsilon + (1-q)(1-\varepsilon)^5\varepsilon} = \frac{1}{2-\varepsilon} > 0.5$$

Intuition: Given that my last message hasn't been confirmed, which scenario is more likely?

- My original message got lost (probability ε).
- The confirmation got lost (probability $\varepsilon(1-\varepsilon)$).

- Bayes' rule says: The first scenario is strictly more likely.
- Player 1's expected utility from *I* is therefore at most

$$\frac{1}{2-\varepsilon} \cdot u_1(I, a_2(t_2=2), good) + \frac{1-\varepsilon}{2-\varepsilon} \cdot u_1(I, a_2(t_2=3), good)$$

- Bayes' rule says: The first scenario is strictly more likely.
- Player 1's expected utility from *I* is therefore at most

$$\frac{1}{2-\varepsilon} \cdot u_1(I, NI, good) + \frac{1-\varepsilon}{2-\varepsilon} \cdot u_1(I, a_2(t_2=3), good)$$

$$\frac{1}{2-\varepsilon} \cdot (-1) + \frac{1-\varepsilon}{2-\varepsilon} \cdot u_1(I, a_2(t_2 = 3), good)$$

$$\leq \frac{1}{2-\varepsilon} \cdot (-1) + \frac{1-\varepsilon}{2-\varepsilon} \cdot 1 < 0$$

- Therefore, player 1's best-reply at $t_1=3$ in any Nash equilibrium is NI.
- Recall that we used $t_1 = 3$ for purely illustrative purposes.

- The same argument works for any information set $t_i > 0$.
- It follows that both players always play NI in Nash equilibrium.
 This completes the proof.

Discussion

- An example of "finite layers of strategic reasoning" paradoxes
- The difference between the states (1,1), (2,1), (2,2), ... is in the players' high-order beliefs.
- The inductive proof is fundamentally iterative elimination of strictly dominated strategies.
 - The Nash equilibrium is the unique rationalizable outcome.

- The information structure of the E-mail game makes the players' high-order beliefs explicit.
- However, it is "artificial" not something that a selfrespecting applied economist would assume...
- But very similar effects arise under more "respectable" information structures!

I NI
I
$$\theta,\theta$$
 θ -1,0
NI $0,\theta$ -1 $0,0$

- An example by Carlsson & can Demme (1993)
- θ is the state of Nature that indicates investment quality.
- Customary assumption: θ is distributed according to an "improper" uniform prior over $(-\infty, \infty)$.

I NI
I
$$\theta,\theta$$
 θ -1,0
NI $0,\theta$ -1 $0,0$

- Player i's signal is $t_i = \theta + \varepsilon_i$, where ε_i is independently drawn according to $N(0, \sigma^2)$.
- $\omega = (\theta, \varepsilon_1, \varepsilon_2)$; $\tau_i(\theta, \varepsilon_1, \varepsilon_2) = \theta + \varepsilon_i$

- When $\sigma^2 = 0$, θ is common knowledge.
 - $-\theta > 1$ $\implies I$ is a strictly dominant action.
 - $-\theta < 0$ $\Rightarrow NI$ is a strictly dominant action.
 - $-\theta \in [0,1]$ $\Rightarrow (I,I)$ and (NI,NI) are Nash equilibria.

Proposition: When $\sigma^2 > 0$, there is an essentially unique Nash equilibrium. Each player i plays I whenever $t_i > 0.5$, and he plays NI whenever $t_i < 0.5$.

Discussion

- Slight incomplete-information perturbation of the complete information game leads to equilibrium selection.
 - Efficient coordination with near certainty when $\theta > 0.5$
 - Inefficient coordination when near certainty when $\theta < 0.5$
- Striking difference between the common knowledge and "almost common knowledge" environments

Why is it an Equilibrium?

- Suppose σ^2 is vanishing.
- At $t_i = 0.5$, player *i* believes $\theta \approx 0.5$.
- He also assigns probability 0.5 to $a_j = I$ because of his knowledge of player j's cut-off strategy.
- Therefore, he is indifferent between the two actions.
- When we raise (lower) t_i , the incentive to play I becomes stronger (weaker).

- Recall $\theta = t_i \varepsilon_i$, $t_i = t_i \varepsilon_i + \varepsilon_i$.
- Therefore, conditional on observing t_i , player i's posterior implies $\theta \sim N(t_i, \sigma^2)$ and $t_i \sim N(t_i, 2\sigma^2)$.
- When $t_i < 0$, $E(\theta|t_i) < 0$, and therefore NI is strictly dominant for player i.
 - \implies In any Nash equilibrium, $a_i = NI$ when $t_i < 0$.

- Now suppose that $t_i > 0$ but close to zero.
- By the previous argument, player i's posterior probability that

 $t_i < 0$ – and hence $a_i = NI$ – is close to 0.5.

- Given that $E(\theta|t_i)$ is close to zero, NI is a best reply for i.
- And so in any Nash equilibrium, $a_i=NI$ also when t_i is positive but close to zero.

- The last argument was based on player i's second-order belief
 - i.e., his belief regarding player j's signal.
- We continue in this iterative manner, further expanding the range of signal realizations for which NI is a best reply for i.
- This iterative argument mirrors the inductive proof in the Email game.

Idea of the Proof

- The limit of this iterative argument is that in any Nash equilibrium, player i plays NI whenever $t_i < 0.5$.
- An analogous argument applies to the other side (starting with I being dominant when $t_i > 1$).
- When σ is small, players can be almost certain that investment is efficient and nevertheless they coordinate on the bad outcome because of lack of common knowledge.

Summary

- Despite the apparent gap between the whimsical E-mail game and the "applied look" of the last example, the gametheoretic analysis is very similar.
- But while the equilibrium in the E-mail game looks
 paradoxical, the cutoff strategies in the last example look
 natural.

Summary

 In Game Theory, there is a fine line between the applied and the paradoxical.

An appropriate motto to conclude with...

THANK YOU!