EE 240B – Spring 2019

Advanced Analog Integrated Circuits Lecture 4: Gain-Bandwidth Design

Ali Niknejad Dept. of EECS

Preliminaries

This will be the first in a series of design methodologies we will develop

- To keep the discussion manageable, will generally assume that only a couple of specifications are critical
- And that all other specs will "automatically" be met
- In practice, can inspect specs and technology capabilities to figure out which constraints are really active, and utilize the appropriate methodology

Will largely ignore biasing details for now

But will patch this later

CS Amplifier Design Methodology

Input specifications:

- Minimum small signal gain A_v
- Minimum 3dB bandwidth ω_{bw}
- Fixed capacitive load C_L
- Supply voltage V_{dd}
- Goal: minimize power
- What are our design variables?
 W,L, V*(VGS)

Small Signal Model and Analysis

EE 240B

Power and g_m

a Pich
$$V^{+} \rightarrow I_{p} = \frac{g_{m}V^{*}}{2}$$

$$P = V_{DD} \cdot I_{D}$$

$$= \frac{g_{m} V_{DD} V^{*}}{2}$$

$$\omega_{\mu} = \frac{g_{m}}{c_{L}} = A_{V} \cdot \omega_{o}$$

$$P = A_{V} \omega_{o} (V_{ob} V^{*}) C_{L}$$

EE 240B

First Pass Methodology

Pick
$$V^{4}$$
, L Lmin --- Lmck

 $I_{D} = 2mV^{*}$
 $V^{4} \longrightarrow V_{anx}$
 $V^{*} \longrightarrow V_{GS} \longrightarrow J_{1}$
 $V_{GS} & W \longrightarrow Lut/BAG$
 $V_{GS} & W \longrightarrow CRAPHS$

Side Discussion: Digital vs. Analog Power

$$P_{digital} = \alpha_{0 \to 1} C_L V_{DD}^{2} f_{clk} \qquad P_{analog} = \frac{1}{2} C_L V_{DD} V^* A_{\nu} \omega_{bw}$$

 What needs to be true for analog to be lower power than digital?

$$A_{\nu} \simeq 2$$
 $C_{L} \sim C_{L}$
 $W_{B\nu} \simeq 2\pi f_{CEK}$

Relate Drain Cap to Gate Cap

$$Cgs = \frac{2}{3} W \cdot L \cdot Cox = \frac{2}{3} U \cdot L \cdot \frac{Cox}{tox} dW$$

$$Cdd = Cgd + Cdb$$

$$= W \cdot L \cdot Cox + Cdb$$

$$Cdb = W \cdot L \cdot \frac{5}{3} \cdot$$

What about Interconnect Par.

EE 240B Lecture 1

g_m vs. GBW revisited (1)

· Neglected Cad

$$A_{V} \cdot W_{o} = \frac{9n}{C_{L} + C_{dd}}$$

g_m vs. GBW revisited (2)

$$\frac{g_{m}}{C_{qq}} = \omega_{T} \qquad C_{dd} = \frac{f c_{qq}}{g_{m}}$$

$$C_{dd} = \frac{f g_{m}}{\omega_{T}}$$

$$\frac{g_{m}}{C_{L} + C_{dd}} = A_{V} \cdot \omega_{o} = \frac{g_{m}}{C_{L} + \frac{f g_{m}}{\omega_{T}(y^{m})}}$$

$$Solve for g_{m}$$

g_m vs. GBW revisited (3)

$$g_{m} = A_{V} \omega_{o} C_{L} + \frac{y}{A_{V} \omega_{o}} - g_{m}$$

$$G_{m} \left(1 - \frac{tA_{V} \omega_{o}}{\omega_{T}}\right) = A_{V} \omega_{o} C_{L}$$

$$g_{m} = \frac{A_{V} \omega_{o} C_{L}}{1 - \frac{tA_{V} \omega_{o}}{\omega_{T}}}$$

$$1 - \frac{tA_{V} \omega_{o}}{\omega_{T}}$$

Direct Implication

$$I_D = \frac{1}{2} \left(\frac{A_V \omega_{bw} V^* C_L}{1 - A_V \omega_{bw} / (\omega_T / \gamma)} \right)$$

 For a given V*, there is a maximum GBW you can achieve

No matter how much power you spend, cannot exceed this limit (with this topology)

Methodology Take 2

(1) Pich
$$V^*$$
, L

(2) Compute $g_m = \frac{A_V U_0 C_L}{1 - \frac{V A_V U_0}{WT(V^*)}}$

(3) Find $V_{GS} \& W$

(4) $R_L = \frac{1}{U_0 C_L}$

(5) Adjust V^* , L

Methodology Take 2`

(1) Pich L

$$I_{7} = \frac{1}{2} g_{n} V^{*} = \frac{1}{2} \frac{A_{v} \omega_{o} C_{L}}{I - \frac{v}{A_{v} \omega_{o}}} v^{*}$$
(2) win $\left(\frac{V^{*}}{I - \frac{v}{A_{v} \omega_{o}}}\right) - Sweep V^{*}$
(3) $V^{*} \rightarrow V_{GS} \rightarrow V$
(4) Set $R_{L} = \frac{A_{v}}{g_{m}}$

What about r_o?

$$A_{V} = 9m \left(\frac{r_{0} || R_{L}}{r_{0} + R_{L}} \right)$$

$$A_{V} = 9m \frac{r_{0} R_{L}}{r_{0} + R_{L}} = \frac{a_{0} R_{L}}{\frac{q_{0}}{3m} + R_{L}}$$

$$A_{V} \left(\frac{a_{0}}{9m} + R_{L} \right) = \frac{q_{0}}{A_{V}}$$

$$R_{L} \left(\frac{a_{0}}{A_{V}} - 1 \right) = \frac{a_{0}}{9m}$$

$$R_{L} = \frac{a_{0}/9m}{\frac{q_{0}}{A_{V}} - 1} = \frac{A_{V}/9m}{1 - \frac{A_{V}}{a_{0}}}$$

$$V_{PS} \in A_{V}$$

$$V_{PS} \in A_{V}$$

EE 240B

Lecture 1

Bias Point

$$V_{DS} = V_{DO} - I_D R_L$$

$$= V_{DD} - \frac{9mV^*}{2} R_L$$

$$= V_{DD} - \frac{9mV^*}{2} \frac{Av}{2k}$$

$$= V_{DD} - \frac{Av}{2k}$$

$$V_{DS} = V_{DD} - \frac{V^*Av}{2(1 - Av/a_0)}$$

$$C_{o} = f(V_{DS})$$

$$pich \quad a_{o}(mid) \longrightarrow V_{DS} \longrightarrow a_{o}(V_{DS}) \longrightarrow V_{DS} \longrightarrow a_{o}(V_{DS}) \longrightarrow V_{DS} \longrightarrow a_{o}(V_{DS}) \longrightarrow V_{DS} \longrightarrow a_{o}(V_{DS}) \longrightarrow$$