

Chengdu Ebyte Electronic Technology Co.,Ltd

Wireless Modem

User Manual

E108-D01 定位模块用户手册

All rights to interpret and modify this manual belong to Chengdu Ebyte Electronic Technology Co., Ltd.

目录

第一章	产品概述	1
第二章	快速入门	2
	2.1 使用前准备	2
	2.2 使用演示	2
第三章	技术指标	5
	3.1 通用规格参数	5
	3.2 GPS 性能	6
	3.3 机械尺寸图	7
	3.4 引脚与指示灯定义	7
	3.5 安装方式	8
第四章	Modbus 寄存器	9
	4.1 通讯协议	9
	4.2 寄存器描述说明	9
	4.3 寄存器表	9
第五章	Modbus RTU 使用	11
	5.1 保持寄存器	11
	5.2 读取保持寄存器指令	11
	5.2.1 读取版本号	11
	5.2.2 读取设备地址(广播)	
	5.2.3 读取设备波特率	12
	5.2.4 读取奇偶校验	
	5.2.5 读取定位数据(RMC)	
	5.3 写保持寄存器指令	13
	5.3.1 修改设备地址 (广播)	
	5.3.2 修改波特率	
	5.3.3 修改奇偶校验位	14
修订历	史	. 15
关于我们	î1	15

第一章 产品概述

产品简介

E108-D01 是一款支持多种定位制式的定位终端(GPS、北斗、GLONASS、伽利略等),响应快速、定位精准。

设备通过 Modbus RTU 协议输出定位信息,支持输出符合 NMEA0183 协议的 RMC-ASCII 字符串和单独寄存器分别存储(经度、经度方向、纬度、纬度方向等), 串口波特率最高可达 115200bps,可通过 Modbus RTU 协议轻松修改,方便快捷。

功能特点

- 支持 BDS/GPS/GLONASS/GALILEO/QZSS/SBAS 卫星导航系统的单系统定位,以及任意组合的多系统联合定位;
- 可配置多种串口波特率(1200-115200bps);
- 支持标准 Modbus RTU 协议读取定位信息;
- 多种定位信息输出格式;
- 通过寄存器、指示灯输出天线定位状态;
- 串口支持 TVS、过流保护;
- 工业级设计,支持工作温度可达-40~85℃;
- 支持宽电压输入 DC 5-36V;
- 定位精度可达 2.5 米(CEP50);
- 支持导轨式、定位孔安装;

第二章 快速入门

2.1 使用前准备

以获取设备输出的 REC 定位信息为例。 为了测试 E108-D1 定位模块,需要以下硬件:

- PC 一台;
- E108-D1 定位模块;
- 有源 GPS 天线 (SMA, 内螺纹、内针);
- USB 转 RS-485 串口线一条;

串口调试工具准备,可在亿佰特官网(www.ebyte.com)对应产品的"相关下载"获取"XCOM"串口调试工具:

2.2 使用演示

准备好上述软硬件后就可以通过 Modbus RTU 指令查询设备定位信息以及 UTC 时间,正确连接设备电源与串口,连接天线后并将天线移至空旷处,如下图所示:

Serial Connect

选择正确串口号,并调整波特率参数为9600-8N1,发送16进制数据"0x010300C800110438",可收到设备响应数据,如下图所示,若无法收到响应数据检查串口是否连接正确,串口参数配置是否正确,是否发送16进制数据,若配置正确可以使用出厂按键恢复出厂参数后再次测试。

数据解析表

序号	原始值 (HEX)	描述	转换规则	转换后
1	0x00 00	定位有效性	0x00: 无效	有效
1	0.000 00	是世月	0x01: 有效	H W
2	0x07 e6	年	HEX→DEC	2022 年
3	0x00 04	月	HEX→DEC	4 月
4	0x00 16	日	HEX→DEC	22 日
5	0x00 01	时	HEX→DEC	1 点
6	0x00 34	分	HEX→DEC	34 分
7	0x00 31	秒	HEX→DEC	31 秒
8	0x00 45	经度方向	低位有效,HEX→ASCII	E(东经)
9	0x42 cf de 84	经度	32 位浮点数,大端-大端	103.93460083007812
10	0x00 4e	纬度方向	低位有效,HEX→ASCII	N(北纬)
11	0x4e f6 2a a7	纬度	32 位浮点数,大端-大端	30.77082633972168
12	0x00 00 00 00	对地速度	32 位浮点数,大端-大端	0
13	0x00 00 00 00	对地航向	32 位浮点数,大端-大端	0

【注】: 时间为 UTC 时间, 转化为北京时间需要加 8 小时。

第三章 技术指标

3.1 通用规格参数

序号	项目	规格		
1	电源电压	5V~36V DC		
2	串口规格	标准 RS-485 接口		
3	波特率范围	4800-115200bps		
4	通讯协议	Modbus RTU		
5	支持的定位系统	BDS/GPS/GLONASS/GALILEO/QZSS/SBAS		
6	用户配置	通过 Modbus RTU 修改寄存器,重启生效		
7	天线接口	SMA (外螺纹内孔)		
8	尺寸大小	96.5mm*50mm*31.4mm		
9	平均重量	63± 5g		
10	工作温度	-40~+85℃,工业级		
11	工作湿度	10%~90%, 相对湿度, 无冷凝		

3.2 GPS 性能

类别	指标项	典型值	单位
	冷启动	27.5	S
定位时间	热启动	<1	S
(测试条件1)	重新捕获	<1	S
(例以东汗 1)	A-GNSS	<10	S
	冷启动	-148	dBm
灵敏度	热启动	-162	dBm
火	重新捕获	-164	dBm
(例 风余针 2)	跟踪	-166	dBm
	水平定位精度	2.5	m
精度	高度定位精度	3.5	m
(测试条件3)	速度定位精度	0.1	m/s
(例似东汗 3)	授时精度	30	ns
功耗	捕获电流	30	mA
(测试条件4)	跟踪电流	20	mA
工作温度		-35℃85℃	
存储温度		-55℃100℃	
湿度		5%95%RH(无凝露)	

【注】: 以上结果为 GPS/北斗双模工作模式

[测试条件 1]:接收卫星个数大于 6, 所有卫星信号强度为-130dBm, 测试 10 次取平均值, 定位误差于 10 米。

[测试条件 2]: 外接 LNA 噪声系数 0.8, 接收卫星个数大于 6, 五分钟之内锁定或者不失锁条件下的接收信号强度值。

[测试条件 3]: 开阔没有遮挡环境, 连续 24 小时开机测试, 50%CEP。

[测试条件 4]: 接收卫星个数大于 6, 所有卫星信号强度为-130dBm。

3.3 机械尺寸图

3.4 引脚与指示灯定义

序号	标识名称	功能说明			
1	出厂按键	长按 5-10s 有效,恢复设备地址与波特率参数为出厂参数;			
1	山) 按键	出厂参数:设备地址为1,串口参数9600/8/无校验/1			
2	ANT	SMA 天线接口,需使用 GPS 有源天线			
2	RXD	按巫化二亿 U DC405 总化控度数据时间框			
3	指示灯	接受指示灯,从 RS485 总线接收数据时闪烁			

4	TXD 指示灯	发送指示灯,向 RS485 总线发送数据时闪烁
5	PPS 秒脉冲指示灯	定位无效时常亮; 定位有效后, 每秒闪烁一次
6	PWR 指示灯	电源指示灯,上电常亮
7	DC_IN	电源接口,5~36V DC 母座(内针直径 2.0mm, 孔径 6.4mm)
8	电源接口	3.81mm 凤凰端子电源输入正极(上),电源输入负极(下),5~36V DC,不可与插座同时供电
9	RS-485 接口	RS485 总线的 B (上), RS485 总线的 A(下)

3.5 安装方式

设备采用导轨、定位孔安装方式。

导轨式安装

定位孔安装

第四章 Modbus 寄存器

4.1 通讯协议

GPS/北斗定位模块协议层为标准 Modbus 通信协议,符合国家标准 GBT 19582.1-2008 《基于 Modbus 协议的工业自动化网络规范》,采用 Modbus RTU 通讯协议,通过接收、解析数据总线上的帧数据,根据解析结果返回数据。

帧格式如下:

Modbus RTU请求

4.2 寄存器描述说明

下表描述了10进制寄存器的具体含义和操作使用的功能码。

寄存器	读取功能码 (HEX)	写入功能码 (HEX)	通道举例
[1 区]离散输入寄存器	02		10001,表示 DI1 寄存器地址
[0 区]开关量输出寄存器	01	05 0F	00001,表示 DO1 寄存器地址
[3 区]输入寄存器	04	——	30001,表示3区地址1
[4区]保持寄存器	03	06 10	40001,表示 4 区地址 1

【注】本设备只会使用 4 区(即保持寄存器)寄存器地址,

4.3 寄存器表

	寄存器地址				
寄存器功能	(十进制)	(16 进制)	数据格式	数据范围/备注	
版本号	40001	0001	Int16	低字节有效,其中高 4 位代表主版本号,低 4 位代表次版本号。0x0010 代表 1.0 版本。版本号只读。	

	I		I	
设备地址	40002	0002	Int16	1-255, 默认 1, 支持广播地址(0x00)读取与修 改。
				波特率代码:
				0x0000: 1200bps, 0x0001: 2400bps,
波特率	40003	0003	Int16	0x0002: 4800bps, 0x0003: 9600bps,
W13 +	10003	0003	Intro	0x0004: 19200bps, 0x0005: 38400bps,
				0x0006: 57600bps, 0x0007: 115200bps,
				0x0000: 570000ps, 0x0007: 1152000ps, 0x0000: 五校验, 0x0001: 奇校验,
4- 1- Ar 4-	40004	0004	T +16	
校验方式	40004	0004	Int16	0x0002: 偶校验,
				配置其他参数不生效;
RMC-定位数据	40005	0005	String	存储 70 字节 RMC- NMEA0183 协议数据,采用
, , , , , , , , , , , , , , , , , , , ,			(70Btye)	ASCII 编码,解码顺序采用 AB;
				保留;
定位状态	40200	00C8	Int16	0: 定位无效, 1: 定位有效, 只读;
年	40201	00C9	Int16	2022 代表 2022 年,只读;
月	40202	00CA	Int16	数值范围 1~12,分别代表 1 月到 12 月,只读;
7,	.0202	00011	11110	XEISE 1 // // // // // // // // // // // //
日	40203	00CB	Int16	数值范围 1~31,分别代表 1号到 31号,只读;
时	40204	00CC	Int16	数值范围 0~23,分别代表 0 点到 23 点,只读;
分	40205	00CD	Int16	数值范围 0~59, 分别代表 0分到 59分, 只读;
秒	40206	00CE	W.H.T. C. TO A BUNG TO THE	
<i>₹</i> У	40206	00CE	Int16	数值范围 0~59,分别代表 0 秒到 59 秒,只读;
 经度方向	40207	00CF	Int16	0x45(ASCII: E)代表东经,
红汉万円	40207	0001	IIItTO	0x57(ASCII: W)代表西经,只读;
经度	40208	0000	Float	单位为度,小数点后 5 位小数,只读
红皮	40208	00D0	(4Byte)	举例: 103.93416°, 字序: 大端, 字节序: 大端;
佐南之台	40210	0052	T -16	0x4E(ASCII: N)代表北纬,只读
	纬度方向 40210 00D2 Int16		Int16	0x53(ASCII: S)代表南纬
let riv	40511		Float	单位为度,小数点后 5 位小数,只读
	纬度 40211 00D3 (4Byt		(4Byte)	举例: 30.77056, 字序: 大端, 字节序: 大端;
-1111	105:-	0.0= -	Float	X D. V. 44. 19.4. 2-2. 19.00 2-4-2-2. 19.00
对地速度	40213	00D5	(4Byte)	单位为节,只读,字序: 大端, 字节序: 大端;
→ 1.1d 40 . / .	405:-	0.0	Float	XD.V & FIX 22 100 2242 100
对地航向	40215	00D7	(4Byte)	单位为度,只读,字序:大端,字节序:大端;
	1	I	\ J/	

【注】单精度浮点采用的是标准 IEEE754 格式,共 32 位(4 字节)。默认单精度浮点大小端模式为 ABCD (高字节在前,低字节在后),例如: 0x3FF1EB85 代表 1.89 (保留 2 位小数)。

第五章 Modbus RTU 使用

【注】以下演示指令设备地址为1,如使用其他地址则地址位与校验不同。

5.1 保持寄存器

E108-D01 设备所使用的寄存器都为保持寄存器,而写入保持寄存器的功能码有 0x06 (写单个保持寄存器),读取保持寄存器使用 0x03 (读取保持寄存器)

0x03 码读取指令格式(以读取版本为例):

设备地址	功能码	首地址	读取数量	校验码 CRC
01	03	00 01	00 01	D5 CA

返回格式 (以读取版本为例):

设备地址	功能码	数据长度	读取数量	校验码 CRC
01	03	02	00 10	B9 88

0x06 码配置指令格式(配置设备地址为例):

设备地址	功能码	首地址	值	校验码 CRC
01	03	00 02	00 01	25 CA

返回格式(配置设备地址为例):与指令格式相同;

5.2 读取保持寄存器指令

5.2.1 读取版本号

命令帧: 01 03 00 01 00 01 D5 CA

地址 功能码 0x01 0x03		寄存器起始地址	寄存器个数	CRC 校验
		0x00 0x01	0x00 0x01	0xD5 0xCA

响应帧: 01 03 02 00 10 B9 88

地址	功能码	数据长度	数据	CRC 校验
0x01	0x03	0x02	0x00 0x10	0xB9 0x88

说明:

返回数据中版本号为 0x0010,表示版本号为 V1.0。

5.2.2 读取设备地址(广播)

【注】该命令为地址的通用读命令,使用广播命令,为了避免与系统中其他设备的冲突,读取时保证总线上只连接要读取设备。

命令帧: 00 03 00 02 00 01 24 1B

		地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
--	--	----	-----	---------	-------	--------

0000 0000 0000 0000 0000 0000 0000 0000		0x00	0x03	0x00 0x02	0x00 0x01	0x24 0x1B
---	--	------	------	-----------	-----------	-----------

响应帧: 00 03 02 00 01 44 44

地址	功能码	数据长度	数据	CRC 校验	
0x00	0x03	0x02	0x00 0x01	0x44 0x44	

说明:

该命令为地址的通用读命令,使用广播命令,为了避免与系统中其他设备的冲突,读取时保证总线上只连接要读取设备。

5.2.3 读取设备波特率

命令帧: 01 03 00 03 00 01 74 0A

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x03	0x00 0x03	0x00 0x01	0x74 0x0A

响应帧: 01 03 02 00 03 F8 45

地址	功能码	数据长度	数据	CRC 校验
0x01	0x03	0x02	0x00 0x03	0xF8 0x45

说明:

返回波特率为 0x03, 代表 9600 bps, 其余波特率代码见 "Modbus 寄存器表"说明。

5.2.4 读取奇偶校验

命令帧: 01 03 00 04 00 01 C5 C8

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x03	0x00 0x04	0x00 0x01	0xC5 0xC8

响应帧: 01 03 02 00 00 B8 44

地址 功能码		数据长度	数据	CRC 校验
0x01	0x03	0x02	0x00 0x00	0xB8 0x44

说明:返回校验位为 0x00,代表无奇偶校验,其余校验代码见"Modbus寄存器表"说明。

5.2.5 读取定位数据(RMC)

命令帧: 01 03 00 05 00 23 14 12

	地址	功能码	寄存器起始地址	寄存器个数	CRC 校验				
	0x01	0x03	0x00 0x05	0x00 0x23	0x14 0x12				
, .	. At the								

响应帧:

地址	功能码	数据长度	数据	CRC 校验
0x01	0x03	0x46	70 字节数据	2 字节校验

定位数据 (RMC)解析

读取定位数据(RMC)返回的 70 字节数据符合 NMEA0183 协议,ASCII 显示如下: \$GNRMC,083429.00,A,3046.26769,N,10356.04948,E,000.00,089.80,190422*21

字段	符号	含义	取值范围	举例	备注
1	\$				
2	GNRMC				RMC 协议头, GNRMC 表示联合定 位
3	hhmmss.ss	UTC 时间	时时分分秒秒. 秒秒	072905.00	北京东八区需要+8
4	A	定位状态	A/V		A-有效,V-无效
5	ddmm.mmmmm	纬度	度度分分. 分 分分分分	3640.46260	计算要转为度: 36 度 + 40.46260 分。 40.46260/60=0.67438 度,所以为 36.67438 度
6	a	纬度方向	N/S		N-北纬,S-南纬
7	ddmm.mmmmm	经度	度度分分. 分 分分分分	3640.46260	计算要转为度: 36 度 + 40.46260 分。 40.46260/60=0.67438 度,所以为 36.67438
8	a	经度方向	E/W		E-东经,W-西经
9	xxx.xx-xxx.xx	对地速度	节	123.2	对地速率,单位节, 范围 000.00~999.99 节,前导数位不足则 零
10	xxx.xx-xxx.xx	对地航向	度	000.0~359.9	地面航向 (000.00~359.99 度, 以真北为参考基准), 前导数位不足则零
11	xxxxxx	日期	日月年	190422	2022年4月19日
13	*	语句结束符			
14	24	校验和		之间的数据(不包异或运算,用十六	2括这两个字符)按字 进制数值表示

5.3 写保持寄存器指令

5.3.1 修改设备地址(广播)

【注】该命令为地址的通用写命令,使用广播命令,为了避免与系统中其他设备的冲突,读取

时保证总线上只连接要配置的设备。

命令帧: 00 06 00 02 00 01 E8 1B

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x00	0x06	0x00 0x02	0x00 0x01	0xE8 0x1B

响应帧: 00 06 00 02 00 01 E8 1B

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x06	0x00 0x02	0x00 0x01	0xE8 0x1B

说明:

该条命令用于设置设备地址,使用 0x00 作为广播地址,将设备地址修改为 0x01。

5.3.2 修改波特率

命令帧: 01 06 00 03 00 03 39 CB

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x06	0x00 0x03	0x00 0x03	0x39 0xCB

响应帧: 01 06 00 03 00 03 39 CB

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x06	0x00 0x03	0x00 0x03	0x39 0xCB

说明:

该条命令用于设置设备的波特率为 9600。

设备出厂时默认为 9600 波特率无校验,用户可根据实际需求设置波特率与校验方式。

5.3.3 修改奇偶校验位

命令帧: 01 06 00 06 00 04 09 CB

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x06	0x00 0x06	0x00 0x04	0x09 0xCB

响应帧: 01 06 00 06 00 04 09 CB

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x06	0x00 0x06	0x00 0x04	0x09 0xCB

说明:

该条命令用于设置设备的校验位为奇校验。

最终解释权归成都亿佰特电子科技有限公司所有

修订历史

版本	修订日期	修订说明	维护人
1.0	2022-05-5	初始版本	LC
1.1	2022-05-22	内容修订	XXN
1.2	2022-05-31	内容修订	XXN
1.3	2023-03-13	内容修订	LT

关于我们

销售热线: 4000-330-990 公司电话: 028-61399028 技术支持: support@cdebyte.com 官方网站: www.ebyte.com

公司地址: 四川省成都市高新西区西区大道 199 号 B5 栋

