Application of the Lottery Ticket Hypothesis in NLP and Early Pruning

Intermission

Source: https://www.mdpi.com/applsci/applsci-09-03169/article_deploy/html/images/applsci-09-03169-g001-550.jpg

Source: https://www.bonaccorso.eu/wp-content/uploads/2016/07/28019400581_e1eb13ccc8_b.jpg

Prof. Dr.-Ing. Ralf Steinmetz KOM - Multimedia Communications Lab

Tim Unverzagt

Structure

Introduction

Motivation

Related Work

Task Definition

Progress

Remaining Work

Structure

Introduction

Motivation

Related Work

Context of the thesis

Task Definition

Progress

Remaining Work

Content of the thesis

Context of Deep Learning

Mot

 Good reasons to initialize & train neural networks with many parameters

- Most networks can be reduced after training while maintaining performance
 - "Pruning"

Context of Deep Learning

Mot

 Good reasons to initialize & train neural networks with many parameters

- Most networks can be reduced after training while maintaining performance
 - "Pruning"

- Main Question:
 - "How important are the pruned weights during training?"

Hypothesis

Sheer number of subnetworks results in subnetworks with favorable initialization

Extraction of "lottery-ticket" after the full network is trained

Pruning weights based on magnitude finds a lottery ticket

- Mot
- Rel

- Sheer number of subnetworks results in subnetworks with favorable initialization
- Extraction of "lottery-ticket" after the full network is trained
 - Pruning weights based on magnitude finds a lottery ticket
 - Train a subnetwork with initial parameters
 - Similar performance ==> "lottery ticket"

Motivation

Task

Rem

Motivation

Time & Memory

- Speedup during execution just as regular pruning
 - But remarkable compression rate: up to ~50x
- Decrease in memory usage during execution
- Possible speedup during development
 - There might be a way to identify lottery tickets early

Motivation

Time & Memory

- Speedup during execution just as regular pruning
 - But remarkable compression rate: up to ~50x
- Decrease in memory usage during execution
- Possible speedup during development
 - There might be a way to identify lottery tickets early

Theory of Neural Networks

- "Lottery-tickets" contain weights necessary for training
- Identification of "lottery-tickets" might explain importance of weights

Related Work

Task

Fully Connected Neural Network

Source: https://hackernoon.com/hn-images/1*Kdnux0Kw1yQ4D8dq__mYCA.png

Convolution in Neural Networks

Mot

Rel

Task

Pro

Rem

Convolutional Neural Network Architecture (Lenet-5)

Source: https://api.intechopen.com/media/chapter/58989/media/F4.png

Language Models

Mot

Rel

Task

Rem

Source: https://samyzaf.com/ML/nlp/w ord2vec2.png

Language Models

Mot

Rel

Task

Pro

Rem

Source: https://samyzaf.com/ML/nlp/w ord2vec2.png

Related Work – CNN in NLP

"Convolutional Neural Networks for Sentence Classification"

- 2014
- Task:
 - Varying Classifications
- Datasets:
 - Movie reviews
 - SST-1, SST-2
 - Subjectivity dataset
 - TREC question dataset
 - Customer reviews
 - **MPQA**

Related Work – CNN in NLP

"Convolutional Neural Networks for Sentence Classification"

Mot

Rel

Task

Pro

Rem

Task

Task

https://www.mdpi.com/applsci-09-03169/article_deploy/html/images/applsci-09-03169-g001-550.jpg

"Learning both Weights and Connections for Efficient Neural Networks" Figure.3

Related Work – Pruning

"Learning both Weights and Connections for efficient Neural Networks"

- 2015 | Song Han et. al.
- Task:
 - Image Classification (ImageNet)
- Architectures:
 - LeNet (300-100-FC, 5-CNN)
 - AlexNet
 - VGG-16
- Compression:
 - 9x to 13x

Related Work – Pruning

"ThiNet: A Filter Level Pruning Method for Deep Neural **Network Compression**"

- 2017 | Jian-Hao Luo et. al.
- Task:
 - Image Classification (ImageNet)
- Architectures:
 - VGG-16
 - ResNet-50
- Compression:
 - Up to ~17x

Related Work – Pruning

"The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks"

- 2019 | J. Frankle & M. Carbin
- Task:
 - Image Classification (MNIST)
- Architectures:
 - Lenet-FCN (300-100-FCN)
 - Simple CNN (Conv-2, Conv-4, Conv-6)
 - VGG-19
 - ResNet-18
- Compression: ~20x to ~50x

Related Work – Early Pruning

"Really should we pruning after model be totally trained? Pruning based on a small amount of training"

- 2019 | Yue Li et. Al.
- Task:
 - Image Classification (MNIST, CIFAR-10)
- Architectures:
 - **Unspecified CNN**
 - **VGG-19**
- Compression --- Training Speed-Up:
 - ~10x --- 10x

"Rethinking the Value of Network Pruning"

2018 | Anonymous Author

Observations:

- Randomizing weights does not worsen a pruned network
- Weights are not essential to the quality of pruned network
- Pruning at its core is about finding suitable network architectures

"Network Architecture Search: A Survey"

2019 | Thomas Elsken et. al.

Categorization of NAS-Algorithms:

- Search Space:
 - Space of possible architectures
- Search Strategy:
 - Policy while traversing the space
- Performance Estimation Strategy:
 - Without knowledge of the "full" network

"Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask"

- 2019 | Hattie Zhou et. al.
- Alteration of the Search Strategy (based on Magnitude):
 - large final (original strategy)
 - small final
 - large initial
 - small initial
 - large init & large final
 - small initial & small final
 - magnitude increase
 - movement
 - random (baseline strategy)

"Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask"

- 2019 | Hattie Zhou et. al.
- Alteration of the Search Strategy (based on Magnitude):
 - large final (original strategy)
 - small final
 - large initial
 - small initial
 - large init & large final
 - small initial & small final
 - magnitude increase
 - movement
 - random (baseline strategy)

"Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask"

- 2019 | Hattie Zhou et. al.
- Alteration of the Search Strategy (based on Magnitude):
 - large final (original strategy)
 - small final
 - large initial
 - small initial
 - large init & large final
 - small initial & small final
 - magnitude increase
 - movement
 - random (baseline strategy)

large final & same sign

Structure

Introduction

Motivation

Related Work

Context of the thesis

Task Definition

Progress

Remaining Work

Content of the thesis

Task I

Reproduction

- No source-code available
 - ⇒ Produce own source-code
- Verify source-code by running experiments from the paper
 - Lenet-FCN
 - CNN-4
 - VGG-18

Task II

Transfer to NLP

 $\|$

- Original context for the paper
 - Task: Image Classification
 - Dataset: "MNIST"
 - Model: Varying FCN and CNN
- Find comparable context in NLP
 - Task: Topic Classification
 - Dataset: "Reuters-21578"
 - Model: TBD
- Check if the Lottery-Ticket-Hypothesis holds

Task III

Early Retrieval of Lottery Tickets

- Original method
 - Keep all weights with large final weights
 - Reset weights to original initial value
 - Retrain network
 - Repeat (Optional)
- Adaptation
 - "Select" weights earlier ~ develop early stopping criteria
 - Keep weights based on other metrics (Optional)

Progress – Python-project

Progress – Backend

Progress – Experiments

Lenet-FCN-MNIST

- Validation-Accuracy
 - 20% pruned weights

Produced by the author

Progress – Experiments

Lenet-FCN-MNIST

Training-Accuracy

Mot

Rel

Task

Rem

Progress – Background

https://www.kdnuggets.com/images/precision-recall-relevant-selected.jpg

Progress – Experiments

Lenet-FCN-MNIST

Validation-Recall

Mot

Rel

Task

Rem

Progress – Experiments

Int

Lenet-FCN-MNIST

Validation-Precision

Mot

Rel

Task

Rem

Produced by the author

Remaining Work

Remaining parts of the framework

- Custom Convolutional Layer
- Support for iterative Pruning

More experiments

- MNIST / CNN-4
- MNIST / VGG-18
- Reuters / TBD
- MNIST / Lenet-FCN / Early Pruning

Thank you for your attention! Questions?

