CH5、遞迴關係

遞迴關係與其應用問題

目錄:

5-1 遞迴關係式

一般題目

費氏數列

河内塔

Bits 數

5-2 常系數線性遞迴關係式

齊次解、非齊次解

遞迴(齊次解): 相異根、重根、共軛複根(三角函數)

成本(非齊次):多項式、指數、三角函數根

5-3 轉換法

分數轉指數

根號轉指數

log 轉指數

移項或同乘除

二進位表示法

5-4 生成函數法

 a_n 型、 $a_{n\text{-}1}$ ~ $a_{n\text{-}k}$ 型

5-5 應用問題

河内塔、費氏數列、Ackerman、約瑟夫問題

5-6 特殊型遞迴

卷積的生成函數

二元樹

Stack

Catalan Number

5.1 遞迴關係式

$$a_n = a_{n-1} + a_{n-2} + n$$

$$a_0 = 0$$
, $a_1 = 1$ //Initial Condition/Bounded Conition

$$\Leftrightarrow n=2^k$$

$$a_n = 2a_n/2 + 2 = 2(2a_{n/4} + 2) + 2$$

$$= 2^2 a_{n/(2^{\wedge}2)} + 2^2 + 2$$

$$= 2^3 a_{n/(2^{\wedge}3)} + 2^3 + 2^2 + 2$$

$$= 2^{k\text{-}1} a_{n/[2^{\wedge}(k\text{-}1)]} + 2^{k\text{-}1} + \ldots + 2^2 + 2$$

$$= 2[(2^{k-1})/(2-1)] - 2^{k-1} = 2 \times 2^{k-2} - 2^{k-1} = 2n-2-n/2$$

5.2 常係數線性遞迴

 $c_n a_n + c_{n\text{--}1} a_{n\text{--}1} + \ldots + c_{n\text{--}k} a_{n\text{--k}} \ldots (^*)$

其中 $c_n, ..., c_{k-1}$ 為 Constant ,且 $c_n, ..., c_{n-k} \neq 0$,稱為 k 階常係數線性遞迴當 f(n)=0 ,稱其為 Homogeneous ,反之:Non-homogeneous

一、求齊次解

取 $a_n = A\alpha_n$, 代入(*)

 $c_n A \alpha_n + c_{n\text{-}1} A \alpha_{n\text{-}1} + \ldots + c_{n\text{-}k} A \alpha_{n\text{-}k} = 0$

 $A\alpha_{n-k}(c_n\alpha_k + \ldots + c_{n-k}\alpha_0) = 0$

稱為(*)之特徵方程式,具k個根

Case 1: 相異根

 α 具有相異根 $\alpha_1, ..., \alpha_k$, 則 $a_n = d_1\alpha_1 + ... + a_k\alpha_{kn}$

例(99 清大): $a_n=2a_{n-1}+5a_{n-2}-6a_{n-3}$, $a_0=7$, $a_1=-4$, $a_2=8$

 $x^3-2x^2-5x+6 = (x-1)(x^2-x-6) = (x-1)(x-3)(x+2)$ $a_n = -3^n + 3(-2)^n + 5$

Case 2: 重根

 α 具有 r 個根 $\alpha_1, ..., \alpha_k$, α_i 具有重數 m_i

例(99 中正): $a_n=6a_{n-1}-5a_{n-2}$, $a_0=2$, $a_1=9$

 $\alpha^2 - 6\alpha + 9 = 0 \implies (\alpha - 3)^2 = 0$ $a_n = c_0 3^n + c_1 n 3^n \implies a_n = 2 \times 3^n + 3^n \times n, \ n \ge 0$

Case 3: 共軛複根

 α 具有共軛複根: $\alpha_1=\delta+i\omega \cdot \alpha_2=\delta-i\omega$, $\omega\neq 0$ $a_n=c_1d_1^n+c_2d_2^n=c_1(\delta+i\omega)^n+c_2(\delta-i\omega)^n$

Euler Formula : $e^{i\theta} = \cos\theta + i\sin\theta$

 $e\pi i + 1 = 0$, $\alpha_1 = \delta + i\omega = p\cos\theta + ip\sin\theta = p(\cos\theta + i\sin\theta) = pe^{i\theta}$

 $a_n = c_1 (p e^{i\theta})^n + c_2 (p e^{-i\theta})^n = c_1 p^n e^{in\theta} + c_2 p^n e^{-in\theta}$

 $=c_1p^n[\cos(n\theta)+i\sin(n\theta)]+c_2p^n[\cos(n\theta)+i\sin(n\theta)]$

 $= p^{n}[(c_1+c_2)\cos(n\theta) + i(c_1-c_2)\sin(n\theta)]$

 $= p^{n}[b_{1}cos(n\theta) + b_{2}sin(n\theta)]$

例(98 逢甲): a_n - a_{n-1} + $4a_{n-2}$ = 0, a_1 =2, a_2 =0

 $\alpha^2 - 2\alpha + 4 = 0 \implies \alpha = 1 \pm \sqrt{3}i$ $a_n = 2^n [B_1 \cos(n\pi/3) + B_2 \sin(n\pi/3)] \implies B_1 = 1, B_2 = [\sqrt{3}]/3$ $\implies a_n = 2^n [\cos(n\pi/3) + 1/\sqrt{3}\sin(n\pi/3)], \forall n \ge 1$

二、非齊次, $f(n) \neq 0$ $a_n = a_n^{(h)} + a_n^{(p)}$ 齊次解 特解,與 f(n)有關

Case 1:多項式

若 $f(n)=c_0+c_1n+...+c_mn^m$, $c_m\neq 0$ $a_n^{(p)}=n^r(d_0+d_1n+...+d_mn^m)$, 其中 r 為特徵根 1 之重數

例(99 交大): a_{n} -5 a_{n-1} +6 a_{n-2} = 2n+1, a_{0} =5, a_{1} =6

 $\Rightarrow a_n^{(p)} = (d_0 + d_1 n)$ 代入原式 $(d_0 + d_1 n) - 5[d_0 + d_1 (n-1)] + 6[d_0 + d_1 (n-2)] = 2n+1 \implies d_0 = 4, d_1 = 1, a_n^{(p)} = 4+n$

例(99 清大): a_{n+1} -3 a_n +2 a_{n-1} =3, a_0 =1, a_1 =2

 α^2 -3 α +2, α =1 or 2 $a_n^{(h)} = c_1 + c_2 2^n$ $a_n^{(p)} = n(d_0) \text{ A.A. } \text{ B.A.}$ $d_0(n+1) - 3d_0(n) + 2d_0(n-1) = 3 \implies d_0 = -3$

 $a_n = c_1 + c_2 2^n + (-3)n$ 代入原式可求解

Case 2:指數

若 f(n)= $(c_0+c_1n+...+c_mn^m)\alpha^n$, $c_m \neq 0$ $a_n^{(p)}=n^r(d_0+d_1n+...+d_mn^m)\alpha^r$, 其中 r 為特徵根之重數

例(99 海大): a_n -6 a_{n-1} +9 a_{n-2} = 3 n , a_0 =1, a_1 =2

Case 3: 三角函數 若 $f(n)=c_1p^n\cos(n\theta)$ 或 $c_2p^n\sin(n\theta)$ $a_n^{(p)}=p^n(B_1\cos(n\theta)+B_2\sin(n\theta))$

例(99 成大): a_{n+2} - $a_n = \sin(n\pi/2)$

$$\alpha^{2}-1=0$$
, $\alpha=\pm 1$
 $a_{n}^{(h)}=c_{1}+c_{2}(-1)^{n}$
 $a_{n}^{(p)}=B_{1}cos(n\pi/2)+B_{2}sin(n\pi/2)$ 代入原式
 $\Rightarrow B_{1}=0$, $B_{2}=1/2$
 \Rightarrow 再求得 c_{1} , c_{2} ⇒ 求得 a_{n}

5.3 轉換法

例(99 政大):
$$f(n) = 9f(n/3) + 2n^2$$

例(97 清大): $a_n=a_{n-1}*a_{n-2} \cdot a_0=1$, $a_1=2$

雙邊取
$$\log \Rightarrow \log a_n = \log a_{n-1} + \log a_{n-2}$$

 $\Rightarrow b_n = \log a_n \Rightarrow b_n = b_{n-1} + b_{n-2}$

例(99 輔大): a_n+na_{n-1} = n!, a₂=1

同除
$$n! \Rightarrow a_n/n! + a_{n-1}/(n-1)! = 1$$
 , $\Leftrightarrow b_n = a_n/n!$
 $\Rightarrow b_n + b_{n-1} = 1$, $\alpha = -1$
 $b_n^{(h)} = c_1(-1)n$
 $b_n^{(p)} = d_0$
求得 d_0 c_1 ,可得 a_n

例(99 雲科): $a_n-n/(n-1)a_{n-1}=n^3$, $a_1=1$

同除
$$n: a_n/n - a_{n-1}/(n-1) = n^2$$

例(99 台科):
$$f(n) = 2f(\sqrt{(n)}) + \log_2 n$$
, $f(2)=1$

例(95 海大): $a_n = 2a_{[n/2]}, a_1=1$

例 (96 台科):
$$a_{n+1} = -2a_n - 4b_n$$
, $b_{n+1} = 4a_n + 6b_n$, $a_0 = 1$, $b_0 = 0$

5.4 生成函數法

Note:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \ldots = \sum_0 a_n x^n = \sum_1 a_{n-1} x^{n-1} = \sum_2 a_{n-2} x^{n-2} = \ldots$$

1.
$$a_n \stackrel{\pi}{=} : \sum_1 a_n x^n = A(x) - a_0 = \sum_2 a_n x^n = A(x) - a_0 - a_1 x$$

2.
$$a_{n-1} \stackrel{\mathcal{H}}{=} : \sum_{1} a_{n-1} x^{n} = x A(x), \sum_{2} a_{n-1} x^{n} = x (A(x) - a_{0})$$

3.
$$a_{n-2} \stackrel{\pi}{=} : \sum_2 a_{n-2} x^n = x^2 A(x), \sum_3 a_{n-2} x^n = x^2 (A(x) - a_0)$$

例(92 師大):
$$a_{n+2}$$
- $5a_{n+1}$ + $6a_n$ = 2 \Longrightarrow a_n - $5a_{n-1}$ + $6a_{n-2}$ = 2, ($n \ge 2$), a_0 =3, a_1 =7

$$\Rightarrow A(x) = \sum_{0} a_{n} x^{n}$$

$$\Longrightarrow \sum_{n} a_n x^n - 5\sum_{n} a_{n-1} x^n + 6\sum_{n} a_{n-2} x^n = 2\sum_{n} x^n$$

$$\Rightarrow$$
 [A(x)-a₀-a₁x] - 5x[A(x)-a₀] + 6x²A(x) = 2x²/(1-x)

$$\implies$$
 $[1-5x+6x^2]A(x) = 2x^2/(1-x) + 3 - 8x$

$$\implies$$
 $(1-2x)(1-3x)A(x) = (10x^2-11x+3)/(1-x)$

$$\Rightarrow A(x) = \frac{(10x^2 - 11x + 3)}{[(1-x)(1-2x)(1-3x)]}$$

$$\Rightarrow A(x) = 1/(1-x) + 0/(1-2x) + 2/(1-3x)$$

$$\Longrightarrow A(x) = \sum_0 x^n + 2\sum_0 (3x)^n$$

$$\Rightarrow a_n = x^n \stackrel{.}{\sim} f(x) = 1 + 2 \times 3^n, n \ge 0$$

5.5 應用問題

例(21 個): 和內塔 $a_n = 2a_{n-1} + 1, a_1 = 1$ $\Rightarrow a_n = 2n-1, n \ge 1$

例(98 中正): 1/A 1/M 1/B, 禁 A→B, B→A

 $a_n = 3a_{n-1} + 2 \Longrightarrow a_n = 3^n - 1$

例(24 個): 費氏數列 $a_n = [1/\sqrt{(5)}] \times \{ [(1+\sqrt{(5)/2})]^n - (1-\sqrt{(5)/2})]^n \}$

Note:

 $\lim_{n\to\infty} F_{n+1}/F_n = \lim_{n\to\infty} 1/\sqrt{(5)\alpha_{n+1}}/1/\sqrt{(5)\alpha_n}$, α 稱為 Golden Ratio

Note(變形):

- 1. $a_n = a_{n-1} + a_{n-2}, a_0 = 0, a_1 = 1 \implies a_n = F_n$
- 2. $a_n = a_{n-1} + a_{n-2}$, $a_0=1$, $a_1=1 \implies a_n=F_{n+1}$
- 3. $a_n = a_{n-1} + a_{n-2}$, $a_0=1$, $a_1=2 \implies a_n=F_{n+2}$

例:證:gcd(F_n, F_{n+1})=1?

 $F_{n+1} = F_n + F_{n-1}$ $F_n = F_{n-1} + F_{n-2}$

...

 $F_2 = 1$

 \Longrightarrow $gcd(F_{n+1}, F_n) = 1$

例(99 清大): 證: $F_{n+1} \times F_{n-1} - F_n^2 = 1$?

- 1. n=1, $F_2F_0 F_1^2 = (-1) = (-1)^n$ $\cancel{\pi}\cancel{L}$
- 3. 由數學歸納法得證

例(17個):二元n序列中,不含連續0之序列數為何?

例 (99 台 大): 四元 n 序列中,含偶數個 1 的序列數 a_n ,寫出 a_n 之遞迴?

0
2
3
1

 a_{n-1}

 a_{n-1}

 a_{n-1}

 4^{n-1} - a_{n-1}

 $\implies a_n = 2a_{n-1} + 4^{n-1}, a_1 = 3$

例(98 中正):n 階樓梯,每次可走1,2,3步,問有幾種走法?

 $a_n = a_{n-1} + a_{n-2} + a_{n-3}, a_1 = 1, a_2 = 2, a_3 = 4$

例(8個): 切蛋糕

 $a_n = a_{n-1} + n$, $a_1 = 2$

例(97 政大): $s = \{1, ..., n\}, s$ 中不含連續整數之子集個數為何?

an:s中取不連續整數之方法數

- 1. n 不取
- 2. n 要取

 $a_n = a_{n-1} + a_{n-2}, a_0 = 1, a_1 = 2$

例(8個):請導出亂序 Dn 之遞迴

 $D_n = (n-1)(D_{n-1} + D_{n-2})$

 $D_1=0, D_2=1$

1 2

Dn

D-11

例: Ackerman's Function

A(0, n) = n+1

A(m, n) = A(m-1, 1)

A(m, n) = A(m-1, A(m, n-1))

- 1. $a_n = A(1, n) = A(0, A(1, n-1)) = A(0, an-1) = a_{n-1} + 1$ $a_n = a_{n-1} + 1, a_0 = 2 \implies a_n = n + 2$
- 2. $b_n = A(2, n) = A(1, A(2, n-1)) = A(1, b_{n-1}) = b_{n-1} + 2$ $b_n = b_{n-1} + 2, b_0 = 3 \Longrightarrow b_n = 2n+3$
- 3. A(3, n) = 2n+3-3

5.6 特殊型遞迴

Note:

$$A(x) = \sum_{0} a_{n}x^{n}$$
, $B(x) = \sum_{0} b_{n}x^{n}$, $A(x)\pm B(x) = \sum_{0} (a_{n}\pm b_{n})x^{n}$

$$A(x) \cdot B(x) = a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \dots$$

定義:

$$a_n$$
, b_n 為 2 個數列,定義 $c_n=a_n \otimes b_n=a_0 b_n+a_1 b_{n-1}+\ldots+a_n b_0$ 稱為 a_n 與 b_n 之 Convolution

Note:

1.
$$c_n = a_n \bigotimes b_n \Longrightarrow C(x) = A(x) \bigotimes B(x)$$

2.
$$c_n = a_n \otimes a_n \Longrightarrow a_0 a_n + a_1 a_{n-1} + \dots + a_n a_0 \Longrightarrow C(x) = A(x) \cdot A(x) = A^2(x)$$

例: 求 n 個點的 Binary Order Tree 個數?

 $k=0, a_0a_{n-1}, a_0=1$

 $k=1, a_1a_{n-2}$

$$A(x) = \sum_{0} a_{n}x^{n} = \sum_{1} (a_{0}a_{n-1} + a_{1}a_{n-2} + \dots + a_{n-1}a_{2})x^{n}$$

$$= a_0 a_0 x + (a_0 a_1 + a_1 a_0) x^2 + (a_0 a_2 + a_1 a_1 + a_2 a_0) x^3 + \dots$$

$$\Longrightarrow A(x) - a_0 = xA^2(x)$$

$$\Rightarrow xA^2(x) - A(x) + 1 = 0 \Rightarrow A(x) = [1 \pm \sqrt{(1-4x)}]/2$$

$$(1-4x)^{1/2} \sum_{0} [(1/2)(-1/2)(-3/2)...((2r-3)/2)] / r! (-1)^{r} 4^{r} x^{r}$$

=
$$-\sum_0 1/(2r-1) (2r)!/(r!r!2^r) 2^r x^r = -\sum_0 1/(2r-1) C_r^{2r} x^r$$

$$A(x) = \left[1 - \sqrt{(1 - 4x)}\right] / 2x = 1 + \sum_{0} \left[1/(2r - 1) \times C_r^{2r} x^r\right] / 2x = 1/2 \sum_{0} C_r^{2r} 1/(2r - 1) x^{r-1}$$

:.
$$a_n = 1/2 \ 1/[2(n+1)-1] \ C_{n+1}^{2(n+1)} = 1/(n+1) \ C_n^{2n}$$

稱為 Catalan Number

Note(變形):

1.
$$a_n = a_0 a_{n-1} + a_1 a_{n-2} + \dots a_{n-1} a_0, a_0 = 1$$

 $\implies a_n = c_n$

2.
$$a_n = a_1 a_{n-1} + a_2 a_{n-2} + \dots a_{n-1} a_1, a_1 = 1$$

 $\implies a_n = c_{n-1}$

3.
$$a_n = a_2 a_{n-1} + a_3 a_{n-2} + \dots a_{n-2} a_1, a_1 = 2$$

 $\implies a_n = c_{n-2}$

例 $(7 \oplus (99 \circ \chi): n \oplus y \times x_1, ..., x_n \circ \lambda + x_n \circ \lambda +$

 $(a_k)(a_{n-k})$

$$a_n = a_1 a_{n-1} + a_2 a_{n-2} + \dots + a_{n-1} a_1, \ a_1 = 1$$

 $\implies a_n = c_{n-1} = 1/[(n-1)+1] \ C_{n-1}^{2 \times (n-1)}$

例(99 輔大):

$$R:(x,y)\rightarrow (x+1,y)\rightarrow$$

$$U:(x,y)\rightarrow (x,y+1)$$
 \(\ext{1}\)

(0,0) → (7,3)且任何時間之 R 個數皆不可小於 U 之個數,有幾種方式?

全部 C_3^{10} ; 不合法 C_2^{10} RUU | RURRRRR ⇔ RUU | URUUUUU ⇒ 合法 : C_3^{10} – C_2^{10}

Note:

n 對括號,全部 $C_n{}^{2n}$,不合法: $Cn\text{-}1^{2n}$ \Longrightarrow 合法: $C_n{}^{2n}$ – $C_{n\text{-}1}{}^{2n}$ = 1/(n+1) $C_n{}^{2n}$