

Departamento de Matemática, Universidade de Aveiro

Cálculo I - Segundo Semestre — Exame da Época Normal - 2ª Chamada

14 de Junho de 2007

Duração: 2h30m

Justifique todas as respostas e indique os cálculos efectuados.

65 Pontos 1. Considere a função f definida por

$$f(x) = \begin{cases} \ln(2-x) & \text{se } x < 1\\ \arctan(x-1) & \text{se } x \ge 1 \end{cases}$$

- (a) Estude f quanto à continuidade em x = 1.
- (b) Prove que a função f não é diferenciável em x=1.
- (c) A função f é integrável em [3,5]? Justifique.
- (d) Determine a função inversa da restrição de f ao intervalo $[1, +\infty[$.

30 Pontos

- 2. Considere a função F definida em \mathbb{R} por $F(x) = \int_0^{x^2} t \ln(1 + e^t) dt$.
 - (a) Calcule F'(x), para todo o $x \in \mathbb{R}$.
 - (b) Estude a função F quanto à monotonia e existência de extremos locais.

35 Pontos

- 3. Considere a função f definida por $f(x) = \frac{e^{-x}}{x}$.
 - (a) Usando o Teorema de Lagrange mostre que existe $c \in]1,2[$ para o qual $f'(c)=\frac{1-2e}{2e^2}.$
 - (b) Considere $g(x)=x^2f(x)$. Determine a natureza do integral impróprio $\int_1^{+\infty}g(x)\,dx$ e, em caso de convergência, indique o seu valor.

20 Pontos 4. Calcule o valor da área da região do plano situada entre os gráficos das funções f e g definidas, respectivamente, por

$$f(x) = \frac{4 + \sin^2 x}{1 + 4x^2}$$
 e $g(x) = \frac{\sin^2 x}{1 + 4x^2}$

e pelas rectas de equações x = 0 e $x = \frac{1}{2}$.

50 Pontos 5. Calcule os seguintes integrais indefinidos:

(a)
$$\int \frac{x^2}{\sqrt{9-x^2}} \, dx$$

(b)
$$\int \frac{x+3}{x^2(x-1)} \, dx$$