Bayesian inference for stochastic differential mixed effects models - initial steps

Gavin Whitaker

2nd May 2012

Supervisors: RJB and AG

Outline

hd Consider an Itô process $\{ {m X}_t, t \geq 0 \}$ satisfying

$$d\boldsymbol{X}_{t} = \boldsymbol{\alpha}(\boldsymbol{X}_{t}, \boldsymbol{\theta})dt + \sqrt{\boldsymbol{\beta}(\boldsymbol{X}_{t}, \boldsymbol{\theta})}d\boldsymbol{W}_{t}$$

- ullet $oldsymbol{X}_t$ is the value of the process at time t
- $oldsymbol{\circ} \ lpha(oldsymbol{X}_t,oldsymbol{ heta})$ is the drift
- $oldsymbol{eta}(oldsymbol{X}_t,oldsymbol{ heta})$ is the diffusion coefficient
- $oldsymbol{W}_t$ is standard Brownian motion
- ullet $oldsymbol{X}_0$ is the vector of initial conditions

hd Consider an Itô process $\{ {m X}_t, t \geq 0 \}$ satisfying

$$d\boldsymbol{X}_{t} = \boldsymbol{\alpha}(\boldsymbol{X}_{t}, \boldsymbol{\theta})dt + \sqrt{\boldsymbol{\beta}(\boldsymbol{X}_{t}, \boldsymbol{\theta})}d\boldsymbol{W}_{t}$$

- ullet $oldsymbol{X}_t$ is the value of the process at time t
- $oldsymbol{lpha}(oldsymbol{X}_t,oldsymbol{ heta})$ is the drift
- $oldsymbol{eta}(oldsymbol{X}_t,oldsymbol{ heta})$ is the diffusion coefficient
- $oldsymbol{W}_t$ is standard Brownian motion
- ullet $oldsymbol{X}_0$ is the vector of initial conditions
- Seek a numerical solution via (for example) the Euler-Maruyama approximation

$$\Delta \boldsymbol{X}_t \equiv \boldsymbol{X}_{t+\Delta t} - \boldsymbol{X}_t = \boldsymbol{\alpha}(\boldsymbol{X}_t, \boldsymbol{\theta}) \Delta t + \sqrt{\boldsymbol{\beta}(\boldsymbol{X}_t, \boldsymbol{\theta})} \Delta \boldsymbol{W}_t$$

where $\Delta oldsymbol{W}_t \sim N(oldsymbol{0}, oldsymbol{I} \Delta t)$

CIR Model

$$dX_t = (\theta_1 - \theta_2 X_t)dt + \theta_3 \sqrt{X_t} dW_t$$

CIR Model

Figure: Numerical solution for CIR model, $\theta_1=1$, $\theta_2=0.1$, $X_0=15$

Aphid Growth Model

- ▷ Also known as plant lice, or greenfly
- Some species of ants "farm" aphids, for the honeydew they release. These "dairying ants", "milk" the aphids by stroking them

Aphid Growth Model

$$\begin{pmatrix} dN_t \\ dC_t \end{pmatrix} = \begin{pmatrix} \lambda N_t - \mu N_t C_t \\ \lambda N_t \end{pmatrix} dt + \begin{pmatrix} \lambda N_t + \mu N_t C_t & \lambda N_t \\ \lambda N_t & \lambda N_t \end{pmatrix}^{\frac{1}{2}} d\boldsymbol{W}_t$$

- $\, \triangleright \, N_t$ is the aphid population size at time t
- $hd C_t$ is the cumulative population at time t
- ➤ This model is an SDE approximation to an underlying stochastic kinetic model
- ightarrow Birth rate of λN_t and a death rate of $\mu N_t C_t$

Aphid Growth Model

Figure: Numerical solution for Aphid model, $\lambda=1.75$, $\mu=0.001$

Mixed Effects SDE Models

- ▶ What if experimental units are not identical?
- ightharpoonup Suppose the units have common parameters $oldsymbol{ heta}$ but different parameters $oldsymbol{b}^i$
- ightharpoonup We treat the $oldsymbol{b}^i$ as random effects with a population profile

Mixed Effects SDE Models

- ▶ What if experimental units are not identical?
- hd Suppose the units have common parameters $oldsymbol{ heta}$ but different parameters $oldsymbol{b}^i$
- ightharpoonup We treat the $oldsymbol{b}^i$ as random effects with a population profile
- This gives us a stochastic differential mixed-effects model for the experimental units:

$$d\boldsymbol{X}_{t}^{i} = \boldsymbol{\alpha}(\boldsymbol{X}_{t}^{i}, \boldsymbol{\theta}, \boldsymbol{b}^{i})dt + \sqrt{\boldsymbol{\beta}(\boldsymbol{X}_{t}^{i}, \boldsymbol{\theta}, \boldsymbol{b}^{i})}d\boldsymbol{W}_{t}^{i}, \quad i = 1, \dots, M$$

- ightharpoonup Differences between units are down to different realisations of the Brownian motion paths $m{W}_t^i$ and the random effects $m{b}^i$
- Allows us to split the total variation between within- and between-individual components

- ▶ Problematic due to the intractability of the transition density characterising the process
- ▷ In other words, we typically can't solve an SDE analytically
- So we could just work with the Euler approximation
- \triangleright Given data d at equidistant times t_0, t_1, \ldots, t_n , the Euler approximation may be unsatisfactory for $\Delta t = t_{i+1} t_i$

ightharpoonup Introduce a partition of $[t_i, t_{i+1}]$ as

$$t_i = \tau_{im} < \tau_{im+1} < \dots < \tau_{(i+1)m} = t_{i+1}$$

where

$$\Delta \tau \equiv \tau_{im+1} - \tau_{im} = \frac{t_{i+1} - t_i}{m}$$

- ightarrow Apply Euler approximation over each interval of width Δau
- \triangleright Introduces m-1 latent values between every pair of observations

$$egin{array}{lll}
ightarrow & oldsymbol{d} &= (oldsymbol{x}_{t_0}, oldsymbol{x}_{t_1}, \ldots, oldsymbol{x}_{t_n}) \
ightarrow & oldsymbol{x} &= (oldsymbol{x}_{ au_1}, oldsymbol{x}_{ au_2}, \ldots, oldsymbol{x}_{ au_{m-1}}, oldsymbol{x}_{ au_{m+1}}, \ldots, \ldots, oldsymbol{x}_{ au_{m-1}}) \ &= ext{latent path} \
ightarrow & (oldsymbol{x}, oldsymbol{d}) &= (oldsymbol{x}_{ au_0}, oldsymbol{x}_{ au_1}, \ldots, oldsymbol{x}_{ au_m}, oldsymbol{x}_{ au_{m+1}}, \ldots, \ldots, oldsymbol{x}_{ au_{nm}}) \ &= ext{augmented path} \end{array}$$

Formulate joint posterior for parameters and latent data as

where

$$\pi(\boldsymbol{x}_{\tau_{i+1}}|\boldsymbol{x}_{\tau_i},\boldsymbol{\theta}) = \phi\left(\boldsymbol{x}_{\tau_{i+1}}\,;\,\boldsymbol{x}_{\tau_i} + \boldsymbol{\alpha}(\boldsymbol{x}_{\tau_i}\,,\,\boldsymbol{\theta})\Delta t, \boldsymbol{\beta}(\boldsymbol{x}_{\tau_i},\boldsymbol{\theta})\Delta t\right)$$

and $\phi(\cdot\,;\, \pmb{\mu}, \pmb{\Sigma})$ denotes the Gaussian density with mean $\pmb{\mu}$ and variance $\pmb{\Sigma}$

Formulate joint posterior for parameters and latent data as

where

$$\pi(\boldsymbol{x}_{\tau_{i+1}}|\boldsymbol{x}_{\tau_i},\boldsymbol{\theta}) = \phi\left(\boldsymbol{x}_{\tau_{i+1}}\,;\,\boldsymbol{x}_{\tau_i} + \boldsymbol{\alpha}(\boldsymbol{x}_{\tau_i}\,,\,\boldsymbol{\theta})\Delta t, \boldsymbol{\beta}(\boldsymbol{x}_{\tau_i},\boldsymbol{\theta})\Delta t\right)$$

and $\phi(\cdot\,;\, \pmb{\mu}, \pmb{\Sigma})$ denotes the Gaussian density with mean $\pmb{\mu}$ and variance $\pmb{\Sigma}$

A Gibbs sampling approach

- - $\bullet \; \theta | x, d$
 - ullet $oldsymbol{x}|oldsymbol{ heta},oldsymbol{d}$

A Gibbs sampling approach

- - $\bullet \; \theta | x, d$
 - $ullet x | oldsymbol{ heta}, oldsymbol{d}$
- ightharpoonup The last step can be done (for example) in blocks of length m-1 between observations
- Metropolis within Gibbs updates may be needed
- \triangleright Problem: the mixing is poor for large m

Consider the SDE

$$d\boldsymbol{X}_t = \frac{1}{\sqrt{\theta}} d\boldsymbol{W}_t$$

- ho Suppose that we have observations $X_0=x_0=0$ and $X_1=x_1$
- \triangleright Set $\tau_i = i/m$ for $i = 0, 1, \dots, m$ so that

$$(x,d) = x_0, x_{\frac{1}{m}}, x_{\frac{2}{m}}, ..., x_{\frac{m-1}{m}}, x_1$$

Consider the SDE

$$d\boldsymbol{X}_t = \frac{1}{\sqrt{\theta}} d\boldsymbol{W}_t$$

- \triangleright Suppose that we have observations $X_0=x_0=0$ and $X_1=x_1$
- \triangleright Set $\tau_i = i/m$ for $i = 0, 1, \dots, m$ so that

$$(\boldsymbol{x},\boldsymbol{d}) = \underset{\text{obs}}{x_0}, \underbrace{x_{\frac{1}{m}}, x_{\frac{2}{m}}, ..., x_{\frac{m-1}{m}}, x_1}_{\text{path (bridge)}}, x_1$$

Consider the SDE

$$d\boldsymbol{X}_t = \frac{1}{\sqrt{\theta}} d\boldsymbol{W}_t$$

- \triangleright Suppose that we have observations $X_0=x_0=0$ and $X_1=x_1$
- \triangleright Set $\tau_i = i/m$ for $i = 0, 1, \dots, m$ so that

$$(\boldsymbol{x}, \boldsymbol{d}) = x_0, \underbrace{x_{\frac{1}{m}}, x_{\frac{2}{m}}, ..., x_{\frac{m-1}{m}}, x_1}_{\text{path (bridge)}}, x_1$$

□ Under the Euler approximation

$$X_{\frac{i}{m}}|x_{\frac{(i-1)}{m}}, \theta \sim N\left(x_{\frac{(i-1)}{m}}, \frac{1}{m\theta}\right)$$

▶ Hence

$$\pi(\boldsymbol{x}, \boldsymbol{d}|\theta) \propto \prod_{i=1}^{m} \frac{\sqrt{m\theta}}{\sqrt{2\pi}} \exp\left\{-\frac{m\theta\left(x_{\frac{i}{m}} - x_{\frac{(i-1)}{m}}\right)^{2}}{2}\right\}$$
$$\propto \theta^{m/2} \exp\left\{-\frac{1}{2}m\theta\sum_{i=1}^{m} \left(x_{\frac{i}{m}} - x_{\frac{(i-1)}{m}}\right)^{2}\right\}$$

> Hence

$$\pi(\boldsymbol{x}, \boldsymbol{d}|\theta) \propto \prod_{i=1}^{m} \frac{\sqrt{m\theta}}{\sqrt{2\pi}} \exp\left\{-\frac{m\theta\left(x_{\frac{i}{m}} - x_{\frac{(i-1)}{m}}\right)^{2}}{2}\right\}$$
$$\propto \theta^{m/2} \exp\left\{-\frac{1}{2}m\theta\sum_{i=1}^{m} \left(x_{\frac{i}{m}} - x_{\frac{(i-1)}{m}}\right)^{2}\right\}$$

- ightharpoonup Take prior $heta \sim \mathsf{Exp}(1)$
- \triangleright The full conditional for θ is

$$\pi(\theta|\boldsymbol{x},\boldsymbol{d}) \propto \pi(\theta)\pi(\boldsymbol{x},\boldsymbol{d}|\theta)$$

$$\propto \theta^{m/2} \exp\left\{-\frac{1}{2}m\theta \sum_{i=1}^{m} \left(x_{\frac{i}{m}} - x_{\frac{(i-1)}{m}}\right)^{2} - \theta\right\}$$

$$\propto \theta^{m/2} \exp\left\{-\theta \left(\frac{m\Sigma_{X}}{2} + 1\right)\right\}$$

where

$$\Sigma_X = \sum_{i=1}^m \left(x_{\frac{i}{m}} - x_{\frac{(i-1)}{m}} \right)^2$$

$$\propto \theta^{m/2} \exp\left\{-\frac{1}{2}m\theta \sum_{i=1}^{m} \left(x_{\frac{i}{m}} - x_{\frac{(i-1)}{m}}\right)^{2} - \theta\right\}$$

$$\propto \theta^{m/2} \exp\left\{-\theta \left(\frac{m\Sigma_{X}}{2} + 1\right)\right\}$$

where

$$\Sigma_X = \sum_{i=1}^m \left(x_{\frac{i}{m}} - x_{\frac{(i-1)}{m}} \right)^2$$

$$\theta | \boldsymbol{x}, \boldsymbol{d} \sim \Gamma \left(\frac{m}{2} + 1, \frac{m \Sigma_X}{2} + 1 \right)$$

 \triangleright Under the linear Gaussian structure of the simple SDE, the full conditional $x|\theta,d$ can be sampled using

$$X_{\frac{i}{m}}|x_1, \theta = \frac{ix_1}{m} + \frac{1}{\sqrt{\theta}}Z_{\frac{i}{m}}, \quad i = 1, 2, ..., m$$

where $\{Z_t, 0 \le t \le 1\}$ is a standard Brownian bidge, that is a standard Brownian motion conditioned to hit 0 at time 0, at time 1

Simulated data

- ightharpoonup Take $x_0 = 0$, $\theta = 1$
- \triangleright Simulate x_1 using Euler scheme
- ightharpoonup Get $x_1 = -0.6947 \Rightarrow d = (0, -0.6947)$

Simulated data

- ightharpoonup Take $x_0=0$, $\theta=1$
- \triangleright Simulate x_1 using Euler scheme
- ightharpoonup Get $x_1 = -0.6947 \Rightarrow d = (0, -0.6947)$

MCMC scheme

We perform a run of 1000 iterations of the scheme with no thin. Initialise with $\theta^{(0)}=1$, the prior mean

- Step 1 Update the discretised Brownian bridge which hits x_1 at t=1
- Step 2 Draw θ from its full conditional distribution,

$$\theta | \boldsymbol{x}, \boldsymbol{d} \sim \Gamma \left(\frac{m}{2} + 1, \frac{m \Sigma_X}{2} + 1 \right)$$

Toy model – Results

Figure: Trace plots for $\log(\frac{1}{\theta})$

Toy model – Results

Figure: Auto-correlation plots for $\log(\frac{1}{\theta})$

Toy model – Results

- \triangleright Mixing gets even worse for larger m
- ➤ Try and quantify the mixing time by considering the parameter update

Recall that

$$X_{\frac{i}{m}}|x_1, \theta = \frac{ix_1}{m} + \frac{1}{\sqrt{\theta}}Z_{\frac{i}{m}}, \quad i = 1, 2, ..., m$$

Recall that

$$X_{\frac{i}{m}}|x_1, \theta = \frac{ix_1}{m} + \frac{1}{\sqrt{\theta}}Z_{\frac{i}{m}}, \quad i = 1, 2, ..., m$$

▶ Now

$$\Sigma_{X} = \sum_{i=1}^{m} \left(\frac{i}{m} x_{1} + \frac{1}{\sqrt{\theta}} Z_{\frac{i}{m}} - \left[\frac{(i-1)}{m} x_{1} + \frac{1}{\sqrt{\theta}} Z_{\frac{(i-1)}{m}} \right] \right)^{2}$$

$$= \sum_{i=1}^{m} \left(\frac{1}{\sqrt{\theta}} \left[Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right] + \frac{i}{m} x_{1} - \frac{(i-1)}{m} x_{1} \right)^{2}$$

$$= \sum_{i=1}^{m} \left(\frac{1}{\sqrt{\theta}} \left[Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right] + \frac{x_{1}}{m} \right)^{2}$$

Expanding out

$$\Sigma_{X} = \sum_{i=1}^{m} \left(\frac{1}{\theta} \left[Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right]^{2} + \frac{x_{1}^{2}}{m^{2}} + \frac{2}{\sqrt{\theta}} \frac{x_{1}}{m} \left[Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right] \right)$$

$$= \frac{1}{\theta} \Sigma_{Z} + \frac{x_{1}^{2}}{m} + \frac{2}{\sqrt{\theta}} \frac{x_{1}}{m} \sum_{i=1}^{m} \left[Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right]$$

▶ Now

$$\sum_{i=1}^{m} \left[Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right] = \left(Z_{\frac{1}{m}} - Z_{0} \right) + \left(Z_{\frac{2}{m}} - Z_{\frac{1}{m}} \right) + \dots$$

$$\dots + \left(Z_{\frac{(m-1)}{m}} - Z_{\frac{(m-2)}{m}} \right) + \left(Z_{1} - Z_{\frac{(m-1)}{m}} \right)$$

Expanding out

$$\Sigma_{X} = \sum_{i=1}^{m} \left(\frac{1}{\theta} \left[Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right]^{2} + \frac{x_{1}^{2}}{m^{2}} + \frac{2}{\sqrt{\theta}} \frac{x_{1}}{m} \left[Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right] \right)$$

$$= \frac{1}{\theta} \Sigma_{Z} + \frac{x_{1}^{2}}{m} + \frac{2}{\sqrt{\theta}} \frac{x_{1}}{m} \sum_{i=1}^{m} \left[Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right]$$

▶ Now

$$\sum_{i=1}^{m} \left[Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right] = \left(Z_{\frac{i}{m}} - Z_{0} \right) + \left(Z_{\frac{2}{m}} - Z_{\frac{1}{m}} \right) + \left(Z_{1} - Z_{\frac{(p-1)}{m}} \right) + \left(Z_{1} - Z_{\frac{(p-1)}{m}} \right)$$

$$\Sigma_X = \frac{1}{\theta} \Sigma_Z + \frac{x_1^2}{m} + \frac{2}{\sqrt{\theta}} \frac{x_1}{m} [Z_1 - Z_0]$$

But $Z_0 = Z_1 = 0$ since Z is a standard Brownian bridge

So

$$\Sigma_X = \frac{1}{\theta} \Sigma_Z + \frac{x_1^2}{m} + \frac{2}{\sqrt{\theta}} \frac{x_1}{m} \left[Z_1 - Z_0 \right]$$

But $Z_0 = Z_1 = 0$ since Z is a standard Brownian bridge

▶ Thus

$$\Sigma_X = \frac{1}{\theta} \Sigma_Z + \frac{x_1^2}{m}$$

where

$$\Sigma_Z = \sum_{i=1}^m \left(Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right)^2$$

⊳ So

$$\Sigma_X = \frac{1}{\theta} \Sigma_Z + \frac{x_1^2}{m} + \frac{2}{\sqrt{\theta}} \frac{x_1}{m} \left[Z_1 - Z_0 \right]$$

But $Z_0 = Z_1 = 0$ since Z is a standard Brownian bridge

▶ Thus

$$\Sigma_X = \frac{1}{\theta} \Sigma_Z + \frac{x_1^2}{m}$$

where

$$\Sigma_Z = \sum_{i=1}^m \left(Z_{\frac{i}{m}} - Z_{\frac{(i-1)}{m}} \right)^2$$

Using properties of Gaussian random variables we have

$$\Sigma_Z \sim \frac{\chi_{m-1}^2}{m}$$

▶ Now

$$\theta | \boldsymbol{x}, \boldsymbol{d} \sim \Gamma \left(\frac{m}{2} + 1, \frac{m \Sigma_X}{2} + 1 \right)$$

ightarrow If $H \sim \Gamma\left(\frac{m}{2}+1,1\right)$ then

$$\begin{array}{rcl} \theta_{\mathsf{new}} & = & \frac{H}{\frac{m\Sigma_X}{2} + 1} \\ & = & \frac{H}{\frac{m}{2} \left(\frac{x_1^2}{m} + \frac{\chi_{m-1}^2}{m\theta_{\mathsf{old}}}\right) + 1} \end{array}$$

▶ Now

$$\theta | \boldsymbol{x}, \boldsymbol{d} \sim \Gamma \left(\frac{m}{2} + 1, \frac{m \Sigma_X}{2} + 1 \right)$$

 $\,\rhd\,$ If $H\sim\Gamma\left(\frac{m}{2}+1,1\right)$ then

$$\theta_{\text{new}} = \frac{H}{\frac{m\Sigma_X}{2} + 1}$$

$$= \frac{H}{\frac{x_1^2}{2} + \frac{\chi_{m-1}^2}{2\theta_{\text{old}}} + 1}$$

- \triangleright For large m, approximate H and χ^2_{m-1} with Normal random variables
- ightharpoonup Roberts and Stramer then use a suitable Taylor expansion of the expression for $\theta_{\rm new}$ to give

$$\theta_{\mathsf{new}} \approx \theta_{\mathsf{old}} \left\{ 1 + \left(\frac{2}{m}\right)^{\frac{1}{2}} \left(W_1 - W_2\right) - \frac{2 + x_1^2}{m} \theta_{\mathsf{old}} + \frac{W_2^2}{m} \right\}$$

where W_1 and W_2 are independent N(0,1) random variables

- \triangleright For large m, approximate H and χ^2_{m-1} with Normal random variables
- ightharpoonup Roberts and Stramer then use a suitable Taylor expansion of the expression for $\theta_{\sf new}$ to give

$$\theta_{\mathsf{new}} \approx \theta_{\mathsf{old}} \left\{ 1 + \left(\frac{2}{m}\right)^{\frac{1}{2}} \left(W_1 - W_2\right) - \frac{2 + x_1^2}{m} \theta_{\mathsf{old}} + \frac{W_2^2}{m} \right\}$$

where W_1 and W_2 are independent N(0,1) random variables

$$\ \, \rhd \ \, \theta_{\mathsf{new}} = \theta_{\mathsf{old}} \left\{ 1 + O(m^{-1}) \right\}$$

- \triangleright For large m, approximate H and χ^2_{m-1} with Normal random variables
- \triangleright Roberts and Stramer then use a suitable Taylor expansion of the expression for θ_{new} to give

$$\theta_{\mathsf{new}} \approx \theta_{\mathsf{old}} \left\{ 1 + \left(\frac{2}{m}\right)^{\frac{1}{2}} \left(W_1 - W_2\right) - \frac{2 + x_1^2}{m} \theta_{\mathsf{old}} + \frac{W_2^2}{m} \right\}$$

where W_1 and W_2 are independent N(0,1) random variables

$$\ \, \rhd \ \, \theta_{\mathsf{new}} = \theta_{\mathsf{old}} \left\{ 1 + O(m^{-1}) \right\}$$

 \Rightarrow Mixing time is O(m)

Future work

- Construct MCMC schemes for arbitrary nonlinear diffusion processes
 - Naive schemes with a block update for the path
 - "Better" schemes that use a reparameterisation
 - Joint update of path and parameters (pMCMC)
- > Application to mixed effects SDEs
 - Aphid model, real data examples

References

- Roberts. G. O. and Stramer. O.
 On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm.
 Biometrika, 88 (3) 603-621, 2001
- Gillespie, C. S. and Golightly, A.
 Bayesian inference for generalized stochastic population growth models with application to aphids.
 JRSS Series C, Applied Statistics, 59(2):341-357, 2010