DIRECTED ENERGY WEAPONS

and

ACTIVE PROTECTION SYSTEMS

John E Anderson Director, Eye Mirror, LLC

	Report Docum	entation Page
Report Date 14052001	Report Type N/A	Dates Covered (from to)
Title and Subtitle		Contract Number
Directed Energy Weapons Systems	and Active Protection	Grant Number
		Program Element Number
Author(s) Anderson, John E.		Project Number
		Task Number
		Work Unit Number
Performing Organization Name(s) and Address(es) Eye Mirror, LLC		Performing Organization Report Number
Sponsoring/Monitoring Agency Name(s) and Address(es) NDIA (National Defense Industrial Association 2111 Wilson Blvd., Ste. 400 Arlington, VA 22201-3061		Sponsor/Monitor's Acronym(s)
		Sponsor/Monitor's Report Number(s)
Distribution/Availability Approved for public releas		
Supplementary Notes Proceedings from Armame May 2001 sponsored by N.		siles & Rockets Symposium & Exhibition, 14-16
Abstract		
Subject Terms		
Report Classification unclassified		Classification of this page unclassified
Classification of Abstract unclassified	t	Limitation of Abstract UU
Number of Pages 15		'

1. Principle of operation

Geometric optics:-

Paraboloid mirror focuses point source

Pair of surfaces direct area or volume source

Not diffraction limited!

2. Single stage

Defining mirror chosen (typically spherical)

Defining rays chosen (collimated, focussed or whatever)

Defined mirror's shape is a solution to a differential equation

Further rays partially directed

Angular input aperture allows area or volume source

Out-of-plane rays

Reflective and/or refractive surfaces

3. Multiple stages in series

Stage multiplication ~ 1 / angular input aperture squared

100.000	
142.2	
145	
θ_1	
	142.2

160

62

$$0.5(\theta_2 + \theta_1) - \beta$$
 129.5 133.1 100.017 $2\theta_2 - 2\theta_1$ 30 4.4 0.068

4. Beam adjustment and rotation

Moveable 3rd stage defined mirror

Axial movement focuses beam

Transverse movement corrects atmospheric distortion

40ms search to find target

High agility

5. Main advantages

Blackbody radiation - 1.5 MW_e arc lamps (spatially but not temporally coherent) Power increases as wavelength decreases (0.2 - 1.4 µm)

Wein's displacement law :- $\lambda_m T = constant$

Stefan - Boltzmann law :- $P_{tot} = \sigma T^4$

Wide waveband - No Stimulated Raman Scattering

No lenses, lasing medium or inhomogeneities to distort beam

Power ≈ mirror size ≈ cooling

6. Dynamic kill on a continuous basis

Optimum range cusp

Effects of lower wavelengths:-

Smaller spots

Higher power

Poor reflectivity

Reduced dynamic kill threshold

More absorption and scattering

7. Typical applications

Combat aircraft

- 0.6m turret

 $3.5 \mathrm{MW_e} / 1.4 \mathrm{MW}_{\mathrm{opt}}$

 $3.5 MW_e / 1.4 MW_{opt}$

- 0.5m pod

 $15\mathrm{MW}_\mathrm{e}$ / $6\mathrm{MW}_\mathrm{opt}$

- 0.5m pod with APU & HPG

- 0.6m turret

Transport aircraft

 $3.5 \mathrm{MW_e}/1.4 \mathrm{MW}_{\mathrm{opt}}$

15h (137 / Ch (137

 $15\mathrm{MW}_{\mathrm{e}}$ / $6\mathrm{MW}_{\mathrm{opt}}$

 $200\mathrm{MW}_\mathrm{e}$ / $80\mathrm{MW}_\mathrm{opt}$

V - 3.6m turret

240MW_e / 100MW_{opt} 1000MW_{opt}

Airborne DEW

Space based DEW

Future Combat System - 0.75m flush turret

- 2m diamond turning

- 4.5m diamond turning

8. Active protection

All types of platform

All types of target

Rate of fire exceeds all but LAA - typical 200ms engagement

Protection of accompanying forces:- APCs, dismounted infantry

Relation to countermeasures & jamming

9. Combat aircraft

BASIC 1600 lbs

3.5 MWe iron rotor homopolar generator

Two 24in diameter DEW turrets

4 UV+ fire control sensor turrets

12 MWIR sensors

OPTIONAL

24in diameter pod for longer range DEWs

ALTERNATIVE POWER SUPPLY

136 kW APU + 11 MJ IED HPG

10. Number of Targets Engaged

1st DEW n((R-r)/v+0.1)

2nd DEW n(R-r)/v

5 for missiles 3.3 for hittiles n pulses/sec

R metres effective range

metres minimum range

v metres/sec relative velocity

Turret

IRGMs head - on	1st DEW	2nd DE
Clear at sea level	9	S
Median haze at sea level	2	2
Pod		
Head - on	1st DEW	2nd DE
Clear/Radar guided missiles	11	
Median Haze/Beam-riding hittiles	ttiles 3	2

11. All Types of Target

IRGMs

Active, semi-active and passive radar guided missiles

Beam-riding or command guidance hittiles

Aircraft

HAA

LAA (All shells or selected)

KE long-rod penetrators

12. Relation to Countermeasures

DEW as jammer at very long range

Counter to imaging IR seekers distinguishing flares

Vulnerability of launch operation in beam-riding system

No point in weight penalty for stealth

ARMs vulnerable to DEWs using comercial sources

Shoulder fired DEWs with chemical rounds

13. Radar Jaming

Invulnerable stand forward jamming platform

3.5 MW_e available

Barrage jamming over a wider waveband counters LPI

Room for high power jammers in same pod

"Moving" chaff by illumination

Escorting cruise missiles using DEWs and jammers