Answers to Assignment 1.

- 1. If $\{x_1, \dots, x_q\} = \mathbb{F}_q$, then $(\frac{q}{1}(x-\alpha i)) + 1$ is a degree q polynomial that has no not in \mathbb{F}_q .
 - Jim W=t. If k>n-t, then any k-dimensional subspace of f_q^n must have nontoinal intersection with W.

 If k=1, then $q^n-q^t=\frac{q^t(q^{n-t}-1)}{q-1}$ is the required number. $=|f_q^n-W/f_q^n|$

In general if Wy is a k-diml subspace with WillWidos Choose a basis B1 of W1. Let B1= (U1, ..., Uk). Then un can be chosen in 9ⁿ-9^t ways. rez can be chosen in qn-qth ways. 15, v, v,>1 There are $(9^{k-1})(9^{k}-9)$... $(9^{k}-9^{k-1})$ different bases of W_1 . : no. is $(9^{n}-9^{t})...(9^{n}-9^{t+(k-1)})$ $(q^{k}-1) \cdot \cdots (q^{k}-q^{k-1})$

3 (a) Since $GL_n(\mathbb{F}_p)$ acts transitively on all bases of \mathbb{F}_p^n , $|GL_n(\mathbb{F}_p)| = (\cancel{\times} \text{ bases}) \cdot (|\text{stab}|_{\text{base}})$ any $\lim_{n \to \infty} (\frac{n}{p-p}) \cdot (\frac{n}{p$

(b) $(p^{n}-1)\cdots(p^{n}-p^{n-1}) = p \cdot p \cdot p \cdot p^{n} \cdot p^{n-1} \cdot (p^{n}-1) \cdot p^{n-1} \cdot \cdots \cdot (p-1)$ $= p^{\frac{n \cdot (n-1)}{2}} \cdot N$ $= p^{\frac{n \cdot (n-1)}{2}} \cdot N$ $\Rightarrow b\omega + (N_{1}p) = 1.$

.. × p-Sylow subgroup is prin-1)

(c) [1 * x x] = upper triangular matrices with 1 on the diagonal is a subgp. 2 of GLn(IFp) is an example.

This is the most interesting question! Note that X'+X+1 is irreducible over H2. because it has no not be (xtx+1) \(\times \times \times \times \times \) only imed. poly of deg2 in \(\tilde{\text{L}}_2[x] \) 1/y, X+X+1 is reducible over #2.

1. It has no root (only have to check 0 k1)

2. (x3+ax+bx+c)(x3+dx7+ex+f)=x+x+1 => c=f=1. a+d=03 a=d - coeff of x5 either e=0 or b=0 - coeff of X These are enough to give contradiction)

3. $(X^4 + aX^2 + bX^2 + cX + 1)(X^2 + x + 1) + x^6 + x + 1$ for any $a,b,c \in \{0,1\}$ Hence if \propto is a voot of $\times^6_{t} \times 11$ then $\deg[F_2(x):F_2] = 6$. $F_2(4) = F_{64}$ If 7 is a root of $X^4 \times + 1$, then F2 (1)= F6 F6 = F4. $F_{2}(d) = |F_{64}|$ $F_{16} = |F_{2}(V)|$ $F_{16} = |F_{2}(V)|$

Hence degree of irreducible poly of B over F64 is two, and its coefficients are from IF4 = {0,1, B, B+13, where B is rost of x2+X+1.

then,
$$\beta^2 = \alpha^{10} + \alpha^{10}$$

and $+b(=1 - \omega eff + x is 1$ $b+d+\alpha c=0 - coeff + x^2 + s = 0$. Solve this to get: $x^4+x+1=(x^2+x+\beta)(x^2+x+(\beta+1))!!!$