Math 172 Assignment 2 Tuesday, January 30, 2018

7.4.10 Assume R is commutative. Prove that if P is a prime ideal of R and P contains no zero divisors, then R is an integral domain.

1

7.4.19 Let R be a finite commutative ring with identity. Prove that every prime ideal of R is a maximal ideal.

READ ONLY 7.5.3 Let F be a field. Prove that F contains a unique smallest subfield F_0 and that F_0 is isomorphic to either \mathbb{Q} or $\mathbb{Z}/p\mathbb{Z}$ for some prime p (F_0 is called the *prime subfield* of F). [See Exercise 26, Section 3.]

8.2.2 Prove that any two nonzero elements of a PID have a least common multiple (cf. Exercise 11, Section 1).

8.2.3 Prove that a quotient of a PID by a prime ideal is again a PID.

9.1.2 Problem 9.1.2 says to repeat problem 9.1.1 under different assumptions. The following is problem 9.1.1 under those assumptions - just be aware that this is not the actual 9.1.2 problem statement.

Let $p(x, y, z) = 2x^2y - 3xy^3z + 4y^2z^5$ and $q(x, y, z) = 7x^2 + 5x^2y^3z^4 - 3x^2z^3$ be polynomials in $\mathbb{Z}/3\mathbb{Z}[x, y, z]$.

- (a) Write each of p and q as a polynomial in x with coefficients in $\mathbb{Z}[y,z]$.
- (b) Find the degree of each p and q.
- (c) Find the degree of p and q in each of the three variables x, y, and z.
- (d) Compute pq and find the degree of pq in each of the three variables x, y, and z.
- (e) Write pq as a polynomial in the variable z with coefficients in $\mathbb{Z}[x,y]$.

9.1.4 Prove that the ideals (x) and (x,y) are prime ideals in $\mathbb{Q}[x,y]$ but only the latter is a maximal ideal.