LaPIS Diagnostic Test Workbook - Mathematics

Name : Tarun C A

Class: 7

Section : A

School : AKV Public School

Login ID : AKV116

Tarun C A's Performance Report

Score: 14/40 Percentage: 35.0%

Tarun C A's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princ	ipal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	
LCM	Finding LCM	

......

Hi, here in this video you will learn **Types of Angles**

Question: 1

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is ____°.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

Answer:

The angle formed between West and East is ____° and it is called _____ angle.

The angle formed between North and East is ____° and it is called _____ angle.

The angle formed between East and South is ____° and it is called _____ angle.

Question: 3

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is $___^{\circ}$

The measurement of right angle is _____°.

Straight angle + Right angle = $___$ + $___$ = $___$

It is called as _____ angle.

Hi, here in this video you will learn LCM

Question: 4

Fill the hexagon with factors and multiples of 10.

.....

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are	and multiples of 10 are
Find the LCM of 50, 100.	
Answer:	
Complete the division using least commo	n multiple.
	50 , 100
L	
The LCM of 50, 100 is 2 x 2 x x	
Question: 6	
Every number is the multiple of	
Answer:	
Let's find the first ten multiple of random	n numbers,
Multip	$ext{ole of } 1 = \underline{\qquad}$
-	$ext{ole of } 2 = \underline{\qquad}$
	e of 13 =
Multiple	e of $20 = $
Here, is the common factor of ev	rery number.

Mensuration

Topics to be Improved		
Area	Area of rectangle	

.....

Hi, here in this video you will learn Area

Question: 7

Find which of the shaded portion in the given shape represent it's area.

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 8

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = ______.

The area of garden = $\underline{\qquad}$ x $\underline{\qquad}$ = $\underline{\qquad}$ cm^2

Question: 9

Shade the possible dimension of the door whose area is 500 m^2

Answer:	A	ns	w	er	•
---------	---	----	---	----	---

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25\text{m} \times 25\text{m}$			
$25\text{m} \times 20\text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

	Topics to be Improved				
Arithmetic mean, mode and median	' Moan Modian and Modo				
Hi, here in this video you	will learn Mean, Median, Mod				
Question: 10					
Find the mode of the following	data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5,	65, 45, 67, 24, 19 and 98.			
Answer:					
Arranging the data in ascendin	g order: (frequently / rarely) in g order: timber of times. Then, mode of the given				
Question: 11					
Which shape contains median of	of the given data 3, 5, 6, 2, 7, 9, 6, 4 and	1			
1	5 6	9			
Answer:					
ascending or descending order.	first/central/last) value of a data when the				
	is and it is the				
Question: 12					

Marks scored	100	90	80	70
Number of students	$oxed{4}$	5	2	1

 $Mean = \underline{\hspace{1cm}} , \, Median = \underline{\hspace{1cm}} \text{ and } Mode = \underline{\hspace{1cm}} .$

$\underline{Answer:}$		
Mean =	of all observation number of observation	

Here s sum of all observation = $___$, number of observation = $__$ Therefore, mean = ______

Arrange the data in ascending order : _____

Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.

Geometry

Topics to be Improved			
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles		
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle		
Transversal angle made by transversal	Basics of Transversal angle		
Faces vertex and edges			
Right angle triangle and pythagoras property Basics of Pythagoras property			
Related angles Basic of angles			

Hi, here in this video you will learn Criteria of congruence
Question: 13
Circle the groups that contain congruent images.
Answer:
Two geometrical shapes are said to be congruent if they are
(identical/non-identical) in shapes and size. Example: Square and Rectangle are (congruent/not congruent).
Question: 14
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $___$ (SSS/ASA/SAS) criteria .
Answer:

Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size.

1. In SSS Congruence criteria - (2/3/5) sides of the triangle are (equal/5)

Criteria for congruence of triangles are SSS, _____ and ____.

not equal) to the three corresponding sides of the other triangle.

- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 15

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ____ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 16

Find the greatest distance to reach C from A in the given diagram.

4			~~	
\boldsymbol{A}	ns	w	er	:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

 $\overline{\text{Side AC}} = \underline{\qquad}$

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 17

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is _____ than the other side of the triangle.

Example: In triangle XYZ,

Question: 18

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

......

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be _____ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = ____ ___ = ____

 Therefore, the length of the third side is greater than _____

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn Basics of Transversal angle

Question: 19

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are ____

.....

Question: 20

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question:	21
-----------	----

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Basics of 3D model

${\it Q}$	uestion:	22

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Question: 23	
Question. 20	

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the numb	er of vertex,	edges and faces	in a cube.
Cube have	vertices, _	edges ar	id faces.

Question: 24

How many vertices, edges and faces does dices have?

Answer:			
The shape of dice is			
Dices have vertices, e	dges and	faces.	
Hi, here in this video you will l	earn Pyth a	agoras proper	ty property
Question: 25			
In a right angled triangle, square of the legs.	.e		$_{-}$ = sum of the squares of the
Answer:			
Pythagoras theorem is only applicable Longest side of the triangle is(hypotenuse/ legs).	(hypo	otenuse/legs) and	
Pythagoras theorem states that			
Question: 26			
Find the hypotenuse of the triangle Al	BC if base is 1	12 m and altitude i	is 5 m.
Answer:			
n			
Pythagoras theorem states that square	e of the	= sum c	of the squares of its
Given: Base =, Altitude = Base and altitude are	·	legs) of the triang	le.

By Pythagoras theorem,	$(_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$: ($(1)^2 + (1)^2$)	2
	_				

Therefore, hypotenuse of the triangle is _____.

Question: 27

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = $\underline{\hspace{1cm}}$, length of diagonal = $\underline{\hspace{1cm}}$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Related Angles

Question: 28

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A ______ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is _____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ and it is called _____ angles.

Question: 29

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC =$ ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
 Therefore,
$$\angle DBE = \underline{\hspace{1cm}}$$

Question: 30

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to _____.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ ______, and its complement angle is ______.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Number system

Topics to be Improved			
Operations on rational numbers, Subtraction of rational numbers			
Fractions	Division of fraction, Multiplication of fractions		
Decimals	Multiplication and division of decimals		
Law of Exponents	Law of Exponents		
Positive and negative rational numbers	Identification of positive rational numbers		
Introduction to rational numbers	Basics of rational numbers		
Exponents	Solving exponents		

Hi, here in this video you will learn **Operation on rational numbers**

Question: 31

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \boxed{\square}$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 32

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the $___$ (same/reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 33

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____.

Hi, here in this video you will learn Division on fractions

Question: 34

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

 $\underline{Answer:}$

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction.

Here, 5 is	, 2 is	and 7 is		
To convert mixed frac	ction into imprope	er fraction, $\frac{\text{(Whole} \times _)}{\text{(Whole} \times _)}$		$\underline{umerator}$
	₅ 2 ₌ (×) +	=	
	3 	×) +		
Question: 35				
Solve: $\frac{1}{3} \div \frac{14}{3}$				
$\underline{Answer:}$				
To divide a fraction by reciprocal) of the divi			•	(same /
reciprocary or the divi				
	$\frac{1}{3} \div$	$\frac{14}{3} = \underline{1} \times \square$	= 📙	
Question: 36				
Find the half of the f	raction $\frac{12}{40}$.			
$\underline{Answer:}$				
To find half of a num	ber, divide the nu	mber by		
	12 .	12		
	$\frac{1}{40} \div -$	$=\frac{12}{40} \times \boxed{}$		
Then the answer is _				
Hi. here in this v	rideo vou will le	earn Basics of de	ecimals	
,	J			
$\underline{Question:~37}$				
Shade 0.4 part of the	given shape.			
Answer:				
There are bo 0.4 can be expressed		tion		
o.i can be expressed	ub 111 11 aC	01011		

	s fraction represents we need to shade bo	-	
Solve	re the following.		
(i)	0.4×1.2		
(ii)	0.48×1.2		
Ans	swer:		
(i)	The number of digits after Total digits after decimal p	decimal point in point in the prod	is no decimal point is n 0.4 is and 1.2 is duct of two numbers is eft and place the decimal point, the result is
(ii)	The number of digits after Total digits after decimal p	decimal point in point in the prod	e is no decimal point is n 0.48 is and 1.2 is duct of two numbers is eft and place the decimal point, the result is
Que	estion: $39 \qquad \dots \dots$		
	box of chocolate costs Rs.20 colates?	0.10. What is the	e cost of 15 chocolates, if a box contains 10
Ans	swer:		
	box contains chocol n cost of one chocolate =		
(i)) Total digits after decimal p	point in decimal	number =
(ii)) Divide the two numbers as	suming there is	no decimal point.
		$\frac{201}{15}$	<u>0</u> =
(iii)) Place the decimal point aft division.	er digit	is counting from the right in the quotient after
	n the cost of one chocolate is cost of 15 chocolates = cost		e × = x =

Hi,	here	in	this	video	you	will	learn	Law	of	exponents
,					./					

Question: 40

 $(x)^0$ is equal to ______.

Answer:

__ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

......

In
$$(x)^0$$
 base = _____
Power = _____

Any number or variable with power zero is equal to _____ Therefore, $(x)^0$ equal to ______.

Question: 41

i. $a^m \times a^n =$ ______ ii. $a^m \div a^n = \underline{\hspace{1cm}}$

Answer:

Multiplication of two numbers with same base with different power, their exponents are _____ (added/ subtracted)

Division of two numbers with same base with different power, their exponents are _____ (added/ subtracted).

.....

Question: 42

Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$

$$a+n+x$$
 bmy 1 $ab+mn+xy$ 0 anx $b+m+y$

Answer:

Any number with power zero is equal to______(One/ Zero).

Any number with power one is equal to ______ (same/ different) number.

Hi, here in this video you will learn Operation on rational numbers

Question: 43

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{1}{3}$$

Question: 44

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box $A = \underline{\hspace{1cm}}$

Shaded part of box A in fraction = $_$

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$

Question: 45

Find the missing values in the given figure.

$$= \begin{array}{c} & & \\ & \\ \end{array}$$

Answer:

Given: $1 = \frac{7}{10} + $	
Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} = 1$	
Therefore result is	

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 46

Segregate positive and negative rational number.

Answer:

- If both the numerator and the denominator of a rational number are ___ (positive/negative), then it is positive rational number.
- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

.....

......

Question: 47

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \Box$ and this _____ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 48

The product of a positive rational number and a negative rational number is _____ rational number. (Positive/ Negative/ neither positive nor negative)

Examples for positive rational numbers: _____ Examples for negative rational numbers: _____ Positive rational number \times Negative rational number = ____ \times ___ = ___ and this is

_____ rational number

Hi, here in this video you will learn Basics of rational numbers

Question: 49

The numbers in the diagram represents_____

......

Answer:

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as ______ numbers.

Question: 50

Shade the correct form of rational numbers.

......

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______ (integer/ not a integer),

denominator is equ	al to	(zero/ one	e/ any integer o	other than zero).
Question: 51					
Circle the number $\frac{-5}{-8}$ $\frac{-3}{2}$					
Answer:					
Rational number ca(int	•	d as, whe teger),denominate			
other than zero). Here,	is/are ratio	onal number and .		is/are not a ra	ational number.
Hi, here in this	s video you v	will learn Exp	onents and	power	
Question: 52					
Find the exponenti	al form of 100	0.			
Answer:					
to get the desired r Exponents is also of	esult.	,	·	nber should be	multiplied by itself
		0 can be written to the power of		×	
Question: 53 Find the value of (
Answer:	,				
		e) tells us how ma	ny times a nun	nber should be	multiplied by itself
		tential form $(-2)^3$ $-2)^3 = \underline{\qquad} \times \underline{\qquad}$			
Question: 54					
(i) Tenth power	of 100 is ($((10)^{100} \text{ or } (100)^{10}$).		
(ii) k is raised to	the power of 5	$5 \text{ is } \underline{\qquad} ((k)^5 \text{ or } ($	$(5)^k$).		

Answer:

Exponential form = (Base)

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Multiplication on fractions

Question: 55

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as ____ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 56

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

.....

.....

Answer:

Total number of students = _____

Fraction of students who are girls = _____

$\underline{Question \hbox{. } 57}$

Solve : $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction.

Here, 2 is ______, 7 is ______ and 4 is _____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2 \frac{7}{4} \times \frac{2}{3} = \boxed{\square} \times \frac{2}{3} = \boxed{\square}$$

Comparing Quantities

Topics to be Improved					
Percentage	Basic of percentage				
Simple interest	Calculation of simple interest				
Equivalent ratios	Basic of proportion				

Hi,	here	in	this	video	vou	will	learn	Basics	\mathbf{of}	percenta	age
,			0	. 10100	,,		1000111			P	~

Question:	<i>58</i>
-----------	-----------

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{ }{ }$$

Question:~59	
--------------	--

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for ______ marks. He got _____ marks.

75 % can be written in fraction form _____

Then the mark scored by Arun = Total mark \times 75% = ____ \times ___ = ____

Question: 60

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.

$\underline{Answer:}$

There are _____ apples in a basket. Number of rotten apples are _____.

Fraction for	$^{\circ}$ rm of rotten apples in a basket $=$		_	
Convert it in	to a percent= x	_% =	=	CU 8:-1C
Hi, here in	n this video you will learn Si	imp	le Interest	
$Question: \ ($	<u>61</u>	percent= x% =		
Match the fol	llowing.			
	Column A		Column B	
i	Principle(P)	a	Interest calculated based on thi	S
ii	Amount (A)	b	Total sum you borrow	
iii	Rate (R)	c	· ·	
iv	Time period (T)	d	Total sum with interest	
Total sum yo Number of ye <i>Question:</i> (ou borrow is known as Total sum	with	n interest is	interest she
If Amount an	nd principle is given, then formula	for c	ealculating interest is	
Question:	<i>63</i>			
The simple ir	nterest on Rs.5000 for 3 years is R	s.135	60. Find the rate of interest.	
Answer:				
	, Time period = $_$, Principal =	·
	est = $\frac{x \ 100}{\text{Principal x}}$ values in the formula,			

Two equivalent ratio which are proportion, it can be written as a: b:: c: d
or $\underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ (in fraction).
First and fourth term are called and second and third term are called
In proportion, product of extreme terms is (equal to/ not equal to) product of middle
terms.
Therefore, $a \times d = \underline{\hspace{1cm}}$,
then a — and c —

Algebra

	Topics to be Improved				
Terms of an expression	Identification of terms in an expression				
Monomials, binomials, trinomials and polynomials	Types of algebraic expression				
subtraction of algebraic expressions	subtraction of algebraic expressions				
Basics of simple equation	Solving of simple equation				

Hi, here in this video you will learn Terms of an expression

Question: 67

Separate the variables and constants for all the terms given in the box

......

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

Question: 68

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression $12a$ is/are
The terms in the expression $4xy$ is/are
The terms in the expression $12a + b + 1$ is/are
The terms in the expression $7m + 0$ is/are
<i>Question:</i> 69
Shade the outline of circle that contains the term of the given expression.
$6m^2-7mn+nl$
(m^2) $(7mn)$ $(6m^2)$ $(-7mn)$ (mn) (mn)
Answer:
In algebraic expression, (variables/ terms) are connected together with operations
of addition. Here,, are the terms of the given expression.
Hi, here in this video you will learn Types of expression
Question: 70
There are terms in the expression $7x + 3y + m + 5$.
Answer:
In algebraic expression, (variables/ terms) are connected together with operations
of addition.
The terms in the expression are,, and Therefore, there are terms in the expression.
Question: 71
Classify the following expression into monomial, binomial and polynomial.
1. $7m + n + 2$
2. $8x^2 + 0$
3. 7xy + 4m
Answer:
1. The terms in expression $8x^2 + 0$ are Here, expression has term and it is a
2. The terms in expression $7xy + 4m$ are Here, expression has term and it is a
, supression mass ———— commented to be with the comment of th

_	pression $7m + n + 2$ are has term and it is			
Question: 72				
$5m^2 + m + 0$ is a	expression	. (Monomial/	Binomial/Trinomial)	
Answer:				
The terms in expression Here, the expression has	expression.			
Hi, here in this vie	deo you will learn	Subtraction	on on expression	
Question: 73				
Find the sum of two ex	expressions $a + b + c \epsilon$	and $b + c + d$		
$\underline{Answer:}$				
The given two expressi The two terms will get The sum of two expres The answer is	added only if they ar	e(Lik	xe/ Unlike) terms.	
$Question: 74 \dots$				
		School A	School B	
	Number of boys	100b	250b	
	Number of girls	150g	200g	
	Number of teachers	25t	45t	
(i) Total number of	boys in school A and	B is		
(ii) Total number of	students in school B i	s		
(iii) How many more	teachers are there in s	school B than	school A?	
$\underline{Answer:}$				
Number of boys	in school A = in school B = boys in school A and	-•	+ =	

(ii) Number of boys in school B= ______, Number of girls in school B= _____. Total number of students in school B is _____ + ___ = ____.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$.

Question: 75

Solve the following:

$$\begin{array}{c}
 13x + \underline{\hspace{1cm}} \\
 (+) \ 12x + 10y \\
 \underline{\hspace{1cm}} + 25y
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
 \end{array}$$

.....

 Hi , here in this video you will learn $\operatorname{\mathbf{Solving}}$ an $\operatorname{\mathbf{equation}}$

Question: 76

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____. Substituting the value in the expression = $5(__) + 5 = __ + __ = __$.

Question: 77

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

 $7 \boxed{ } + 3 = -4$

 $\underline{Answer:}$

The given equation is 7—+3 =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 78

Arrange the terms in the descending order when the value of x is 2. 2x $5x \times 1$ x+3 2x-4 $\frac{1}{2}x$

Answer:

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: $__$, $__$, $__$, $__$, $__$. Their respective algebraic terms are $__$, $__$, $__$, $__$, $__$.