1950 ± 15

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

LASS 11 $K^- p \rightarrow \Lambda K \overline{K} \pi \pi$

Created: 5/30/2017 17:21

f₂(1950) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1944±12 OUR AVERAG	GE Error include:	s scale	e factor o	of 1.5. See the ideogram below.
1930 ± 25	$^{ m 1}$ binon	05	GAMS	33 $\pi^- p \rightarrow \eta \eta n$
2010 ± 25	ANISOVICH	001	SPEC	
1940 ± 50	BAI	00A	BES	$J/\psi \rightarrow \gamma (\pi^+\pi^-\pi^+\pi^-)$
1980 ± 22	² BARBERIS	00 C		450 $pp \rightarrow pp4\pi$
1940 ± 22	³ BARBERIS	00 C		$450 pp \rightarrow pp2\pi 2\pi^0$
1980 ± 50	ANISOVICH	99 B	SPEC	1.35–1.94 $p\overline{p} \rightarrow \eta \eta \pi^0$
1960 ± 30	BARBERIS	97 B	OMEG	$450 pp \rightarrow pp2(\pi^{+}\pi^{-})$
1918 ± 12	ANTINORI	95	OMEG	300,450 $pp \to pp2(\pi^+\pi^-)$
• • We do not use the following data for averages, fits, limits, etc. • •				
$2038 {+ 13 + 12 \atop - 11 - 73}$	⁴ UEHARA	09	BELL	10.6 $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$
$1980 \pm \ 2 \pm 14$	ABE	04		10.6 $e^+e^- \rightarrow e^+e^-K^+K^-$
1867 ± 46	⁵ AMSLER	02	CBAR	$0.9 \overline{\rho} \rho \rightarrow \pi^0 \eta \eta, \pi^0 \pi^0 \pi^0$
\sim 1990	⁶ OAKDEN	94	RVUE	$0.361.55 \ \overline{p}p \rightarrow \pi\pi$

WEIGHTED AVERAGE 1944±12 (Error scaled by 1.5)

⁷ ASTON

 $f_2(1950)$ mass (MeV)

 $^{^{1}}$ First solution, PWA is ambiguous.

² Decaying into $\pi^+\pi^-2\pi^0$.

f₂(1950) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
472± 18 OUR AVERA	GE			
450± 50	⁸ BINON	05	GAMS	33 $\pi^- p \rightarrow \eta \eta n$
495 ± 35	ANISOVICH	001	SPEC	
380^{+120}_{-90}	BAI	00A	BES	$J/\psi \rightarrow \gamma(\pi^+\pi^-\pi^+\pi^-)$
520± 50	⁹ BARBERIS	00 C		450 $pp \rightarrow pp4\pi$
485 ± 55	¹⁰ BARBERIS	00C		450 $pp \rightarrow pp4\pi$
500 ± 100	ANISOVICH	99 B	SPEC	1.35–1.94 $p\overline{p} \rightarrow \eta \eta \pi^0$
460± 40	BARBERIS	97 B	OMEG	450 $pp \to pp2(\pi^{+}\pi^{-})$
390 ± 60	ANTINORI	95	OMEG	300,450 $pp \rightarrow pp2(\pi^{+}\pi^{-})$

• • • We do not use the following data for averages, fits, limits, etc. • •

f₂(1950) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$K^*(892)\overline{K}^*(892)$	seen
Γ_2	$\pi\pi$	
Γ_3	$\pi^+\pi^-$	seen
Γ_4	$\pi^0\pi^0$	seen
Γ_5	$4\pi \atop \pi^{+}\pi^{-}\pi^{+}\pi^{-}$	seen
Γ_6	$\pi^+\pi^-\pi^+\pi^-$	

Created: 5/30/2017 17:21

³ Decaying into $2(\pi^+\pi^-)$.

⁴ Taking into account $f_4(2050)$.

⁵ T-matrix pole.

⁶ From solution B of amplitude analysis of data on $\overline{p}p \to \pi\pi$. See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant.

⁷ Cannot determine spin to be 2.

⁸ First solution, PWA is ambiguous.

 $^{^{9}}$ Decaying into $\pi^{+}\pi^{-}2\pi^{0}$.

¹⁰ Decaying into $2(\pi^+\pi^-)$.

¹¹ Taking into account $f_{\Delta}(2050)$.

¹² T-matrix pole.

¹³ From solution B of amplitude analysis of data on $\overline{p}p \to \pi\pi$. See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant

¹⁴ Cannot determine spin to be 2.

$\Gamma_7 = a_2(1320)\pi$		
$\Gamma_8 \qquad f_2(1270)\pi\pi$ $\Gamma_9 \qquad \eta\eta$		
Γ ₉ ηη Γ ₁₀ ΚΚ	seen seen	
$\Gamma_{11}^{10} \gamma \gamma$	seen	
$\Gamma_{12} p \overline{p}$	seen	
	$f_2(1950) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$	
$\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)/\Gamma_{\rm t}$	$\Gamma_{ m total}$	/Г
VALUE (eV)	DOCUMENT ID TECN COMMENT	
• • • We do not use the	e following data for averages, fits, limits, etc. • •	
$122 \pm 4 \pm 26$	15 ABE 04 BELL 10.6 $e^+e^- \to e^+e^- K^+ K$	_
¹⁵ Assuming spin 2.		
$\Gamma(\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\rm to}$		/Γ
VALUE	DOCUMENT ID TECN COMMENT	
	e following data for averages, fits, limits, etc. • • •	Ω
$162 + 69 + 1137 \\ -42 - 204$	16 UEHARA 09 BELL 10.6 $e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{0}\pi^{0}$.0
¹⁶ Taking into account	$f_4(2050)$.	
	f ₂ (1950) BRANCHING RATIOS	
= / 1 (th (2 2 2)		
$\Gamma(K^*(892)\overline{K}^*(892))$	// T_{total} DOCUMENT ID TECN CHG COMMENT	/ I
seen	ASTON 91 LASS 0 11 $K^-p \rightarrow \Lambda K \overline{K} \pi$	
	,	π
F/_ (1220_\ _\ /F	F	
$\Gamma(a_2(1320)\pi)/\Gamma_{\text{total}}$		
VALUE	DOCUMENT ID TECN COMMENT e following data for averages, fits, limits, etc. • •	
VALUE	DOCUMENT ID TECN COMMENT	/ Г
value • • • We do not use the not seen not seen	e following data for averages, fits, limits, etc. • • • BARBERIS 00B 450 $pp \rightarrow p_f \eta \pi^+ \pi^- p_s$ BARBERIS 00C 450 $pp \rightarrow p_f 4\pi p_s$	/ Г
• • • We do not use the not seen	e following data for averages, fits, limits, etc. \bullet \bullet BARBERIS 00B 450 $pp \rightarrow p_f \eta \pi^+ \pi^- p_g$	/ Г
value • • • We do not use the not seen not seen	e following data for averages, fits, limits, etc. • • • BARBERIS 00B 450 $pp \rightarrow p_f \eta \pi^+ \pi^- p_s$ BARBERIS 00C 450 $pp \rightarrow p_f 4\pi p_s$	/Γ —
value • • • We do not use the not seen not seen possibly seen $\Gamma(\eta\eta)/\Gamma(4\pi)$ value	e following data for averages, fits, limits, etc. • • • BARBERIS 00B 450 $pp \rightarrow p_f \eta \pi^+ \pi^- p_g$ BARBERIS 00C 450 $pp \rightarrow p_f 4\pi p_g$ BARBERIS 97B OMEG 450 $pp \rightarrow pp2(\pi^+ \pi^-)$	/Γ —
value • • • We do not use the not seen not seen possibly seen $\Gamma(\eta\eta)/\Gamma(4\pi)$ value • • • We do not use the	e following data for averages, fits, limits, etc. • • • BARBERIS 00B 450 $pp \rightarrow p_f \eta \pi^+ \pi^- p_g$ BARBERIS 00C 450 $pp \rightarrow p_f 4\pi p_g$ BARBERIS 97B OMEG 450 $pp \rightarrow pp2(\pi^+ \pi^-)$ Fig. 10 CL% DOCUMENT ID COMMENT Technology to the following data for averages, fits, limits, etc. • • •	/Γ —
value • • • We do not use the not seen not seen possibly seen $\Gamma(\eta\eta)/\Gamma(4\pi)$ value • • • We do not use the $<5.0 \times 10^{-3}$	e following data for averages, fits, limits, etc. • • • BARBERIS 00B 450 $pp \rightarrow p_f \eta \pi^+ \pi^- p_s$ BARBERIS 00C 450 $pp \rightarrow p_f 4\pi p_s$ BARBERIS 97B OMEG 450 $pp \rightarrow pp2(\pi^+ \pi^-)$ Fg/ CL% DOCUMENT ID COMMENT e following data for averages, fits, limits, etc. • • • 90 BARBERIS 00E 450 $pp \rightarrow pf \eta \eta p_s$	/Γ — - -
value • • • We do not use the not seen not seen possibly seen $\Gamma(\eta\eta)/\Gamma(4\pi)$ value • • • We do not use the $<5.0 \times 10^{-3}$ $\Gamma(\eta\eta)/\Gamma(\pi^+\pi^-)$	e following data for averages, fits, limits, etc. • • • BARBERIS 00B 450 $pp \rightarrow p_f \eta \pi^+ \pi^- p_s$ BARBERIS 00C 450 $pp \rightarrow p_f 4\pi p_s$ BARBERIS 97B OMEG 450 $pp \rightarrow pp2(\pi^+ \pi^-)$ Fg/ CL% DOCUMENT ID COMMENT e following data for averages, fits, limits, etc. • • • 90 BARBERIS 00E 450 $pp \rightarrow pf \eta \eta p_s$	/Γ — - -
value • • • We do not use the not seen not seen possibly seen $\Gamma(\eta\eta)/\Gamma(4\pi)$ value • • • We do not use the $<5.0 \times 10^{-3}$	e following data for averages, fits, limits, etc. • • • BARBERIS 00B $450 pp \rightarrow p_f \eta \pi^+ \pi^- p_s$ BARBERIS 00C $450 pp \rightarrow p_f 4\pi p_s$ BARBERIS 97B OMEG $450 pp \rightarrow pp2(\pi^+ \pi^-)$ Fg/ CL% DOCUMENT ID COMMENT e following data for averages, fits, limits, etc. • • • 90 BARBERIS 00E $450 pp \rightarrow pf \eta \eta p_s$ Fg/ DOCUMENT ID TECN COMMENT	/Γ
value • • • We do not use the not seen not seen possibly seen $\Gamma(\eta\eta)/\Gamma(4\pi)$ value • • • We do not use the $<5.0 \times 10^{-3}$ $\Gamma(\eta\eta)/\Gamma(\pi^+\pi^-)$ value	e following data for averages, fits, limits, etc. • • • BARBERIS 00B 450 $pp \rightarrow p_f \eta \pi^+ \pi^- p_s$ BARBERIS 00C 450 $pp \rightarrow p_f 4\pi p_s$ BARBERIS 97B OMEG 450 $pp \rightarrow pp2(\pi^+ \pi^-)$ Fg/ CL% DOCUMENT ID COMMENT e following data for averages, fits, limits, etc. • • • 90 BARBERIS 00E 450 $pp \rightarrow pf \eta \eta p_s$	/Γ
value • • • We do not use the not seen not seen possibly seen $\Gamma(\eta\eta)/\Gamma(4\pi)$ value • • • We do not use the $<5.0 \times 10^{-3}$ $\Gamma(\eta\eta)/\Gamma(\pi^+\pi^-)$ value 0.14±0.05	e following data for averages, fits, limits, etc. • • • • • • BARBERIS 00B $450~pp \rightarrow p_f \eta \pi^+ \pi^- p_g BARBERIS 00C 450~pp \rightarrow p_f 4\pi p_g BARBERIS 97B OMEG 450~pp \rightarrow pp2(\pi^+ \pi^-)$ E following data for averages, fits, limits, etc. • • • • 90 BARBERIS 00E 450 $pp \rightarrow p_f \eta \eta p_g$ $\frac{CL\%}{90} \frac{DOCUMENT~ID}{BARBERIS} \frac{COMMENT}{DOE 450~pp \rightarrow p_f \eta \eta p_g}$ Fightally $\frac{DOCUMENT~ID}{AMSLER} \frac{TECN}{DOCUMENT~ID} \frac{COMMENT}{AMSLER} \frac{TECN}{DOCUMENT~ID} \frac{COMMENT}{DOCUMENT~ID} \frac{TECN}{DOCUMENT~ID} \frac{COMMENT}{DOCUMENT~ID} \frac{TECN}{DOCUMENT~ID} \frac{TECN}{DOCUMENT$	/Γ
value • • • We do not use the not seen not seen possibly seen $\Gamma(\eta\eta)/\Gamma(4\pi)$ value • • • We do not use the $<5.0 \times 10^{-3}$ $\Gamma(\eta\eta)/\Gamma(\pi^+\pi^-)$ value 0.14±0.05 $\Gamma(\rho\overline{\rho})/\Gamma_{\text{total}}$	e following data for averages, fits, limits, etc. • • • • • BARBERIS 00B $450~pp \rightarrow p_f \eta \pi^+ \pi^- p_g BARBERIS 00C 450~pp \rightarrow p_f 4\pi p_g BARBERIS 97B OMEG 450~pp \rightarrow pp2(\pi^+ \pi^-)$ E following data for averages, fits, limits, etc. • • • • 90 BARBERIS 00E 450 $pp \rightarrow p_f \eta \eta p_g$ $\frac{CL\%}{90} \frac{DOCUMENT~ID}{BARBERIS} \frac{COMMENT}{DOE 450~pp \rightarrow p_f \eta \eta p_g}$ Fighting data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	/Γ

f₂(1950) REFERENCES

ALEXANDER UEHARA BINON	10 09 05	PR D82 092002 PR D79 052009 PAN 68 960	J.P. Alexander <i>et al.</i> S. Uehara <i>et al.</i> F. Binon <i>et al.</i>	(CLEO Collab.) (BELLE Collab.)
	00	Translated from YAF 68		
ABE	04	EPJ C32 323	K. Abe <i>et al.</i>	(BELLE Collab.)
AMSLER	02	EPJ C23 29	C. Amsler <i>et al.</i>	
ANISOVICH	00J	PL B491 47	A.V. Anisovich et al.	
BAI	00A	PL B472 207	J.Z. Bai <i>et al.</i>	(BES Collab.)
BARBERIS	00B	PL B471 435	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BARBERIS	00C	PL B471 440	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BARBERIS	00E	PL B479 59	D. Barberis et al.	(WA 102 Collab.)
ANISOVICH	99B	PL B449 154	A.V. Anisovich et al.	
BARBERIS	97B	PL B413 217	D. Barberis <i>et al.</i>	(WA 102 Collab.)
KLOET	96	PR D53 6120	W.M. Kloet, F. Myhrer	`(RUTG, NORD)
ANTINORI	95	PL B353 589	F. Antinori <i>et al.</i>	(ATHU, BARI, BIRM+) JP
OAKDEN	94	NP A574 731	M.N. Oakden, M.R. Pennington	` (DURH)
ASTON	91	NPBPS B21 5	D. Aston et al.	(LASS Collab.)

Created: 5/30/2017 17:21