Erratum: Nuclear and neutron matter *G*-matrix calculations with a chiral effective field theory potential including effects of three-nucleon interactions [Phys. Rev. C 88, 064005 (2013)]

M. Kohno*

(Received 5 May 2017; revised manuscript received 31 July 2017; published 27 November 2017)

DOI: 10.1103/PhysRevC.96.059903

Several errors were found in the program code for the nuclear-matter calculation reported in the original paper. There also were errors in the spin-orbit and tensor terms of the effective two-nucleon forces derived from the three-nucleon forces (3NFs) of the chiral effective field theory (Ch-EFT). After correcting these errors, the enhancement of the tensor-force component is reduced to be about 15% from the previous value of about 30%.

Although qualitatively important effects of the 3NFs for improving nuclear-matter saturation properties do not change, the saturation curve is modified quantitatively by the corrections. In the original paper, the low-energy constants $c_D = -4.381$ and $c_E = -1.126$ were used, referring to the nuclear-matter calculations with chiral low-momentum interactions by Hebeler *et al.* [1]. The results of the revised nuclear-matter calculation with the same c_D 's and c_E 's are shown in Figs. 2(a), 2(b), and 3(a).

FIG. 2. Revised version of Fig. 2 in the original paper. k_F dependence of partial-wave contributions to the nuclear-matter lowest-order Brueckner theory (LOBT) energy per nucleon for the Ch-EFT interaction for $\Lambda=550$ MeV. The thick and thin curves are with and without the 3NF effects, respectively. The results with $(c_D,c_E)=(-4.381,-1.126)$ are shown in (a) full decomposition and (b) different J's being summed. The results with $(c_D,c_E)=(-2.5,0.25)$ are shown in (c) and (d). Note that the numerical value of the partial-wave contributions in Fig. 2 of the original paper was wrongly multiplied by $\frac{2}{3}k_F^3$.

^{*}kohno@rcnp.osaka-u.ac.jp

FIG. 3. Revised version of Fig. 3 in the original paper. LOBT energies per nucleon in symmetric nuclear matter for the Ch-EFT interaction with and without the 3NF effects. The left panel (a) represents the results with $(c_D, c_E) = (-4.381, -1.126)$. The right panel (b) shows the results with c_D and c_E refitted to obtain a better saturation curve.

To obtain a better saturation curve, the c_D 's and c_E 's have been refitted as shown in Fig. 3(b). The revised version of Fig. 2 in the original paper for partial-wave contributions is given as Figs. 2(c) and 2(d). Table II of the original paper for the spin-isospin decompositions is replaced by Table II in this Erratum. Because neutron-matter energies hardly change by the corrections, Fig. 6 of the original paper for the neutron-matter energy is not revised here.

The correction in the spin-orbit component changes the estimation of the strength of the one-body spin-orbit field in the form of the Scheerbaum factor, whereas the c_D and c_E terms do not contribute to the spin-orbit component. Table I in the original paper should be replaced by Table I, which indicates that the enhancement of the spin-orbit strength due to the 3NF is reduced to be about 20%.

Changes in the G matrices in nuclear matter including the 3NF effects affect the results of the subsequent applications of them to the description of the nucleon-nucleus and nucleus-nucleus scatterings reported in Refs. [2–4]. The corrected results are reported in separate Errata.

The author thanks S. Yoshida for finding errors in the program code and an omission of several terms in density-dependent effective two-body forces derived from the three-nucleon force of Ch-EFT.

APPENDIX A

The expression of the partial-wave expansion of the spin-orbit component of the c_3 term of V_C , Eq. (B14), should be corrected as

$$\delta_{S1} \frac{c_3 g_A^2}{2 f_\pi^4} 3 \frac{\ell(\ell+1) + 2 - J(J+1)}{2\ell+1} \left[\left(m_\pi^2 + \frac{1}{2} (k_1'^2 + k_1^2) \right) \left\{ Q_{W0}^{\ell-1}(k_1', k_1) - Q_{W0}^{\ell+1}(k_1', k_1) - W_{\ell s, 0}^{\ell}(k_1', k_1) \right\} - \delta_{\ell 1} \frac{k_1' k_1}{2} \left[F_0(k_1') + F_0(k_1) - F_1(k_1') - F_1(K_1) \right] + k_1' k_1 \left\{ \frac{\ell-1}{2\ell-1} W_{\ell s, 0}^{\ell-1}(k_1', k_1) + \frac{\ell+2}{2\ell+3} W_{\ell s, 0}^{\ell+1}(k_1', k_1) \right\} \right]. \tag{B14}$$

TABLE I. Revised version of Table I in the original paper. Scheerbaum factor B_S is in units of MeV fm⁵.

	Nu	clear matter	Neutron matter			
$k_F = 1.35 \text{ fm}^{-1}$	$\overline{N^3LO}$	$N^3LO + 3NF$	N ³ LO	$N^3LO + 3NF$		
$B_S (T=0)$	2.5	-4.3				
$B_S(T=1)$	84.6	102.0	84.7	92.8		
$k_F = 1.07 \text{ fm}^{-1}$	N^3LO	$N^3LO + 3NF$	N^3LO	$N^3LO + 3NF$		
$B_S(T=0)$	1.6	-1.7				
$B_S (T=1)$	86.5	99.8	87.0	91.4		

TABLE II. Revised version of Table II in the original paper with c_D and c_E being tuned as in the text. Total energies and spin-isospin channel (1 O, 3 E, 1 E, and 3 O) decompositions for three instances of the cutoff energy Λ (MeV) at $k_F = 1.07, 1.35$, and 1.60 fm⁻¹ for symmetric nuclear matter and at $k_F = 1.35$ and 1.80 fm⁻¹ for pure neutron matter. The corresponding density ρ (fm⁻³), kinetic-energy T, and total potential-energy contribution U also are tabulated. Energies are in units of MeV.

			Symmetric nuclear matter without 3NF						Symmetric nuclear matter with 3NF						
k_F	ρ	Λ	E/A	T	U	¹ O	³ E	¹ E	³ O	E/A	U	¹ O	³ E	¹ E	³ O
1.07	0.083	450	-13.01	14.24	-27.25	1.98	-17.61	-11.13	-0.50	-12.27	-26.52	1.99	-17.71	-10.85	0.05
		550	-11.32	14.24	-25.56	1.99	-16.17	-10.95	-0.43	-10.71	-24.96	2.00	-16.31	-10.72	0.07
		600	-10.57	14.24	-24.81	2.04	-15.38	-11.03	-0.43	-9.92	-24.16	2.04	-15.40	-10.87	0.06
1.35	0.166	450	-19.47	22.67	-42.15	4.67	-27.38	-18.28	-1.16	-15.39	-38.06	4.64	-27.06	-17.16	1.52
		550	-15.81	22.67	-38.49	4.74	-24.10	-18.25	-0.88	-12.55	-35.23	4.71	-24.12	-17.33	1.51
		600	-14.18	22.67	-36.85	4.85	-22.26	-18.60	-0.84	-11.29	-33.97	4.81	-22.26	-17.98	1.46
1.60	0.277	450	-23.87	31.85	-55.72	8.67	-37.55	-25.36	-1.48	-11.58	-43.43	8.49	-36.04	-22.68	6.80
		550	-17.12	31.85	-48.97	9.00	-31.22	-25.85	-0.89	-8.02	-39.87	8.72	-31.11	-23.68	6.21
		600	-14.52	31.85	-46.37	9.13	-27.75	-26.99	-0.75	-6.68	-38.53	8.85	-27.73	-25.49	5.84
			Pure neutron matter without 3NF						Pure neutron matter with 3NF						
1.35	0.083	450	8.25	22.67	-14.43	0.0	0.0	-13.52	-0.91	9.29	-13.39	0.0	0.0	-13.13	-0.25
		550	8.21	22.67	-14.46	0.0	0.0	-13.69	-0.78	9.13	-13.54	0.0	0.0	-13.31	-0.23
		600	8.24	22.67	-14.43	0.0	0.0	-13.68	-0.75	9.09	-13.58	0.0	0.0	-13.32	-0.27
1.80	0.197	450	17.04	40.31	-23.27	0.0	0.0	-22.49	-0.78	24.41	-15.90	0.0	0.0	-19.88	3.98
		550	15.75	40.31	-24.56	0.0	0.0	-24.03	-0.53	21.04	-19.27	0.0	0.0	-22.42	3.15
		600	14.69	40.31	-25.62	0.0	0.0	-25.32	-0.30	20.36	-19.95	0.0	0.0	-22.94	2.99

The spin-orbit component of the c_4 term of V_C , Eq. (A10), is absent in the original paper but present. The expression after the partial-wave expansion is

$$\delta_{S1} \frac{c_4 g_A^2}{2 f_\pi^4} (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \frac{\ell(\ell+1) + 2 - J(J+1)}{2\ell+1} \left[\left(m_\pi^2 + \frac{1}{2} (k_1'^2 + k_1^2) \right) \left\{ Q_{W0}^{\ell-1}(k_1', k_1) - Q_{W0}^{\ell+1}(k_1', k_1) - W_{\ell s, 0}^{\ell}(k_1', k_1) \right\} - \delta_{\ell 1} \frac{k_1' k_1}{2} \left[F_0(k_1') + F_0(k_1) - F_1(k_1') - F_1(K_1) \right] + k_1' k_1 \left\{ \frac{\ell-1}{2\ell-1} W_{\ell s, 0}^{\ell-1}(k_1', k_1) + \frac{\ell+2}{2\ell+3} W_{\ell s, 0}^{\ell+1}(k_1', k_1) \right\} \right]. \tag{A10}$$

APPENDIX B

In the original paper, tensor components in the form of $[[\sigma_1 \times \sigma_2]^2 \times [Y_\ell(\theta_1, \phi_1) \times Y_\ell(\theta_2, \phi_2)]^2]^0$ with $\ell \geqslant 2$ were ignored. Including them, the expression (B16) for the tensor components of the c_4 term of V_C , Eq. (A10) of the original paper, is replaced by

$$\begin{split} &2\frac{c_4g_A^2}{4f_4^4}\frac{2}{3}(S_{12})_{\ell 1J}^{\ell'}(\boldsymbol{\tau}_1\cdot\boldsymbol{\tau}_2)\bigg[\frac{1}{2k_1'k_1}\big[k_1'^2Q_{\ell}(z)+k_1^2Q_{\ell'}(z)-2k_1'k_1Q_{J}(z)\big]\bigg(\frac{1}{2}\rho_0-m_\pi^2[F_0(k_1')+F_0(k_1)]\bigg)\\ &+\frac{k_1'k_1}{2J+1}\big[Q_{W0}^{J+1}(k_1',k_1)-Q_{W0}^{J-1}(k_1',k_1)\big]\\ &+\big[F_0(k_1')-2F_1(k_1')\big]\bigg\{\frac{k_1'^2}{4k_1'k_1}\big(-k_1'^2+k_1^2+m_\pi^2\big)Q_{\ell}(z)-\frac{1}{4}\big(-k_1'^2+k_1^2+m_\pi^2\big)Q_{J}(z)-\frac{1}{2}k_1'^2\delta_{\ell0}+\frac{1}{2}k_1'k_1\delta_{J0}\bigg\}\\ &+\big[F_0(k_1)-2F_1(k_1)\big]\bigg\{\frac{k_1^2}{4k_1'k_1}\big(k_1'^2-k_1^2+m_\pi^2\big)Q_{\ell'}(z)-\frac{1}{4}(k_1'^2-k_1^2+m_\pi^2\big)Q_{J}(z)-\frac{1}{2}k_1^2\delta_{\ell0}+\frac{1}{2}k_1'k_1\delta_{J0}\bigg\}\\ &+\frac{1}{3}F_3(k_1')\bigg\{-\frac{3}{2}k_1'^2\delta_{\ell0}+\frac{3}{2}k_1'k_1\delta_{J0}+\frac{k_1'^2}{4k_1'k_1}\big(-k_1'^2+3k_1^2+3m_\pi^2\big)Q_{\ell}(z)-\frac{1}{4}(k_1'^2+3k_1^2+3m_\pi^2\big)Q_{J}(z)+\frac{1}{2}k_1'k_1Q_{\ell'}(z)\bigg\}\\ &+\frac{1}{3}F_3(k_1)\bigg\{-\frac{3}{2}k_1^2\delta_{\ell0}+\frac{3}{2}k_1'k_1\delta_{J0}+\frac{k_1^2}{4k_1'k_1}\big(-k_1^2+3k_1'^2+3m_\pi^2\big)Q_{\ell'}(z)-\frac{1}{4}(k_1^2+3k_1'^2+3m_\pi^2\big)Q_{J}(z)+\frac{1}{2}k_1'k_1Q_{\ell'}(z)\bigg\}\\ &-\frac{1}{3}F_2(k_1')\frac{k_1'^2}{2k_1'k_1}\bigg\{k_1'^2Q_{\ell}(z)+k_1^2Q_{\ell'}(z)-2k_1'k_1Q_{J}(z)\big\}-\frac{1}{3}F_2(k_1)\frac{k_1^2}{2k_1'k_1}\bigg\{k_1^2Q_{\ell'}(z)+k_1'^2Q_{\ell}(z)-2k_1'k_1Q_{J}(z)\bigg\}\bigg]\\ &+\sqrt{\frac{5}{6}}\frac{(-1)^J}{(\ell',2,\ell)}\big(k_1'^2+k_1^2\big)\Big\{Q_{W1}^{\ell'J}(k_1',k_1)+Q_{W1}^{\ell J}(k_1,k_1')\Big\}(\ell'010|J0)(\ell010|J0)\bigg\{\frac{1}{2}0\frac{2}{\ell'}\frac{1}{J}\bigg\} \end{split}$$

$$\begin{split} &+\frac{\sqrt{2}}{3}\frac{(-1)^{J+1}}{(\ell',2,\ell)}\sum_{j'jk}k'_{i}k_{1}\left[Q_{W1}^{j'k}(k'_{1},k_{1})+Q_{W1}^{jk}(k_{1},k'_{1})\right]\hat{k}(10k0|j'0)(10k0|j0)\left\{\begin{matrix} 1 & 2 & 1 \\ j' & k & j\end{matrix}\right\}\left\{\begin{matrix} i' & j & 2 \\ \ell & \ell' & 1\end{matrix}\right\}(10\ell'0|j'0)(10\ell0|j0) \\ &+\frac{1}{3}\left\{k_{1}^{2}\left\{Q_{X1}^{\ell}(k_{1},k'_{1})+Q_{X1}^{\ell}(k'_{1},k_{1})-\delta_{\ell 0}\frac{1}{2}[F_{0}(k'_{1})+F_{0}(k_{1})]\right\}+k_{1}^{2}(Q_{X1}^{\ell'}\left\{k_{1},k'_{1}\right)+Q_{X1}^{\ell}(k'_{1},k_{1})-\delta_{\ell 0}\frac{1}{2}[F_{0}(k'_{1})+F_{0}(k_{1})]\right\} \\ &-2k'_{1}k_{1}\left\{Q_{X1}^{J}(k_{1},k'_{1})+Q_{X1}^{J}(k'_{1},k_{1})-\delta_{J 0}\frac{1}{2}[F_{0}(k'_{1})+F_{0}(k_{1})]\right\}\right\}\\ &+\sqrt{\frac{35}{3}}\frac{(-1)^{J}}{(\ell',2,\ell)}\sum_{jk}k_{1}^{2}\left[Q_{W1}^{jk}(k'_{1},k_{1})+Q_{W1}^{\ell k}(k_{1},k'_{1})\right]\hat{j}(j010|k0)(10\ell0|k0)\left\{\begin{matrix} 1 & 2 & 1 \\ j & k & \ell\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell & 2 & 2\end{matrix}\right\}(20j0|\ell'0)\\ &+\sqrt{\frac{35}{3}}\frac{(-1)^{J}}{(\ell',2,\ell)}\sum_{jk}k_{1}^{2}\left[Q_{W1}^{jk}(k_{1},k'_{1})+Q_{W1}^{\ell k}(k'_{1},k_{1})\right]\hat{j}(j010|k0)(10\ell'0|k0)\left\{\begin{matrix} 1 & 2 & 1 \\ j & k & \ell'\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell \\ \ell & 2 & 2\end{matrix}\right\}(20j0|\ell'0)\\ &+\sqrt{\frac{35}{2}}\frac{(-1)^{J}}{(\ell',2,\ell)}\sum_{jk}\hat{j}^{2}\hat{j}(10j'0|k0)(10j0|k0)\left\{\begin{matrix} 1 & 2 & 1 \\ j' & k & j\end{matrix}\right\}\left\{\begin{matrix} 1 & j' & \ell' \\ 1 & j & \ell\end{matrix}\right\}\left\{\begin{matrix} 1 & j' & \ell' \\ 1 & j & \ell\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}(20j0|\ell'0)\\ &+\sqrt{\frac{35}{2}}\frac{(-1)^{J}}{(\ell',2,\ell)}\sum_{j'jk}\hat{j}^{2}\hat{j}(10j'0|k0)(10j0|k0)\left\{\begin{matrix} 1 & 2 & 1 \\ j' & k & j\end{matrix}\right\}\left\{\begin{matrix} 1 & j' & \ell' \\ 1 & j & \ell\end{matrix}\right\}\left\{\begin{matrix} 1 & j' & \ell' \\ 1 & j & \ell\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 20j0|\ell'0\right.\\ & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell' \\ \ell' & 2 & 2\end{matrix}\right\}\left\{\begin{matrix} 2 & j & \ell$$

for $\ell' = \ell \pm 2$ ($J = \ell \pm 1$) and

$$\begin{split} &2\frac{c_4g_A^2}{4f_\pi^4}\frac{2}{3}(S_{12})_{\ell 1J}^{\ell'}(\boldsymbol{\tau}_1\cdot\boldsymbol{\tau}_2)\Bigg[\left(\frac{1}{2}\rho_0-m_\pi^2[F_0(k_1')+F_0(k_1)]\right)\bigg\{\frac{k_1^2+k_1^2}{2k_1'k_1}Q_\ell(z)-\frac{1}{2}\frac{2\ell+3}{2\ell+1}Q_{\ell-1}(z)-\frac{1}{2}\frac{2\ell-1}{2\ell+1}Q_{\ell+1}(z)\bigg\}\\ &+k_1'k_1\bigg\{\bigg(\frac{(2\ell+1)^2}{(2\ell-1)(2\ell+3)}-2\bigg)Q_{W0}^{\ell}(k_1',k_1)+\frac{(2\ell+3)(\ell-1)}{(2\ell+1)(2\ell-1)}Q_{W0}^{\ell-2}(k_1',k_1)+\frac{(2\ell-1)(\ell+1)}{(2\ell+1)(2\ell+3)}Q_{W0}^{\ell+2}(k_1',k_1)\bigg\}\\ &+[F_0(k_1')-2F_1(k_1')]\bigg\{-\frac{1}{2}k_1'^2\delta_{\ell 0}+\frac{5}{12}k_1'k_1\delta_{\ell 1}+\frac{k_1'^2}{4k_1'k_1}\Big(-k_1'^2+k_1^2+m_\pi^2\Big)Q_\ell(z)\\ &-\frac{1}{8(2\ell+1)}\Big(-k_1'^2+k_1^2+m_\pi^2\Big)[(2\ell+3)Q_{\ell-1}(z)+(2\ell-1)Q_{\ell+1}(z)]\bigg\}\\ &+\frac{1}{3}F_3(k_1')\bigg\{-\frac{3}{2}k_1'^2\delta_{\ell 0}+\frac{5}{4}k_1'k_1\delta_{\ell 1}+\frac{k_1'^2}{4k_1'k_1}\Big[\Big(-k_1'^2+5k_1^2+3m_\pi^2\Big)Q_\ell(z)\Big]\\ &-\frac{1}{8(2\ell+1)}\Big(k_1'^2+3k_1^2+3m_\pi^2\Big)[(2\ell+3)Q_{\ell-1}(z)+(2\ell-1)Q_{\ell+1}(z)]\bigg\}\\ &+[F_0(k_1)-2F_1(k_1)]\bigg\{-\frac{1}{2}k_1^2\delta_{\ell 0}+\frac{5}{12}k_1'k_1\delta_{\ell 1}+\frac{k_1^2}{4k_1'k_1}\Big(k_1'^2-k_1^2+m_\pi^2\Big)Q_\ell(z)\\ &-\frac{1}{8(2\ell+1)}\Big(k_1'^2-k_1^2+m_\pi^2\Big)[(2\ell+3)Q_{\ell-1}(z)+(2\ell-1)Q_{\ell+1}(z)]\bigg\}+\frac{1}{3}F_3(k_1)\bigg\{-\frac{3}{2}k_1^2\delta_{\ell 0}+\frac{5}{4}k_1'k_1\delta_{\ell 1}\\ &+\frac{k_1^2}{4k_1'k_1}\Big(-k_1^2+5k_1^2+3m_\pi^2\Big)Q_\ell(z)-\frac{1}{8(2\ell+1)}\Big(k_1^2+3k_1'^2+3m_\pi^2\Big)[(2\ell+3)Q_{\ell-1}(z)+(2\ell-1)Q_{\ell+1}(z)]\bigg\}\\ \end{aligned}$$

$$\begin{split} &-\frac{1}{3} \left[k_{1}^{2} F_{2}(k_{1}^{\prime}) + k_{1}^{2} F_{2}(k_{1})\right] \left\{\frac{k_{1}^{\prime 2} + k_{1}^{2}}{2k_{1}^{\prime}k_{1}} \mathcal{Q}_{\ell}(z) - \frac{1}{\ell} [(2\ell + 3)\mathcal{Q}_{\ell-1}(z) + (2\ell - 1)\mathcal{Q}_{\ell+1}(z)]\right\} \\ &+ \frac{1}{3} (k_{1}^{\prime 2} + k_{1}^{2}) \left\{\frac{(2\ell + 3)}{2\ell} \left[\mathcal{Q}_{W1}^{\ell\ell-1}(k_{1}^{\prime},k_{1}) + \mathcal{Q}_{W1}^{\ell\ell-1}(k_{1},k_{1}^{\prime})\right] + \frac{(2\ell - 1)}{2\ell} \left[\mathcal{Q}_{W1}^{\ell\ell-1}(k_{1}^{\prime},k_{1}) + \mathcal{Q}_{W1}^{\ell\ell-1}(k_{1},k_{1}^{\prime})\right]\right\} \\ &+ \frac{\sqrt{2}}{3} \frac{(-1)^{\ell}}{(\ell,2,\ell)} \sum_{j'jk} k'_{1} k_{1} \left\{\mathcal{Q}_{W1}^{j'k}(k_{1}^{\prime},k_{1}) + \mathcal{Q}_{W1}^{j'k}(k_{1},k_{1}^{\prime})\right\} \sqrt{j'} \hat{j}(10j'0)k0)(10j0)k0) \left\{\frac{1}{j'} \frac{2}{k}\right\} \left\{j' \frac{j}{j} \frac{2}{\ell} \left\{10\ell0|j'0\rangle(10\ell0|j0)\right\} \right\} \\ &+ \frac{1}{3} \left\{(k_{1}^{\prime 2} + k_{1}^{\prime 2}) \left(\mathcal{Q}_{X1}^{\ell}(k_{1},k_{1}^{\prime}) + \mathcal{Q}_{X1}^{\ell}(k_{1},k_{1}^{\prime}) - \delta_{\ell 0} \frac{1}{2}|F_{0}(k_{1}^{\prime}) + F_{0}(k_{1})]\right\} + \frac{5}{6} k'_{1}k_{1} \delta_{\ell}[F_{0}(k_{1}^{\prime}) + F_{0}(k_{1})] \right\} \\ &+ \frac{1}{3} \left\{(k_{1}^{\prime 2} + k_{1}^{\prime 2}) \left(\mathcal{Q}_{X1}^{\ell}(k_{1},k_{1}^{\prime}) + \mathcal{Q}_{X1}^{\ell-1}(k_{1}^{\prime},k_{1}) - \delta_{\ell 0} \frac{1}{2}|F_{0}(k_{1}^{\prime}) + F_{0}(k_{1})]\right\} + \frac{5}{6} k'_{1}k_{1} \delta_{\ell}[F_{0}(k_{1}^{\prime}) + F_{0}(k_{1})] \right\} \\ &+ \sqrt{35} \frac{1}{3} \frac{1}{(\ell,2,\ell)} \sum_{j'j} \left\{k_{1}^{\prime 2} \mathcal{Q}_{W1}^{j'j}(k_{1}^{\prime},k_{1}) + k_{1}^{\prime 2} \mathcal{Q}_{W1}^{j'j}(k_{1}^{\prime},k_{1})\right\} \hat{j}'(-1)^{j} (\ell010|j0)(10\ell0|j0) \left\{\frac{1}{j'} - \frac{2}{j} - \frac{1}{\ell}\right\} \left\{2 - \frac{j'}{\ell} - \frac{\ell}{\ell}\right\} (20j'0|\ell0) \right\} \\ &+ \sqrt{\frac{35}{3}} \frac{1}{(\ell,2,\ell)} \sum_{j'j} \left\{k_{1}^{\prime 2} \mathcal{Q}_{W1}^{j'k}(k_{1}^{\prime},k_{1}) + k_{1}^{\prime 2} \mathcal{Q}_{W1}^{j'j}(k_{1}^{\prime},k_{1}^{\prime})\right\} \hat{j}'(10j'0|k0)(10j'0|k0) \left\{\frac{1}{j'} - \frac{2}{j} - \frac{1}{\ell}\right\} \left\{\frac{1}{j'} - \frac{j'}{\ell} - \frac{\ell}{\ell}\right\} (20j'0|\ell0) \right\} \\ &- \sqrt{\frac{35}{2}} \frac{(-1)^{\ell}}{(\ell,2,\ell)} \sum_{j'j} 2k_{1}^{\prime}k_{1} \mathcal{Q}_{W2}^{j'k}(k_{1}^{\prime},k_{1}) + k_{1}^{\prime 2} \mathcal{Q}_{W2}^{j'j}(k_{1}^{\prime},k_{1}) + (2\ell-1)\mathcal{Q}_{W2}^{\ell-1}(k_{1}^{\prime},k_{1}) + 2\ell-1)\mathcal{Q}_{W2}^{\ell-1}(k_{1}^{\prime},k_{1})} \left\{\frac{1}{j'} - \frac{\ell}{\ell}\right\} (10j'0|\ell0)(10j'0)(10\ell0|j0) \\ &- \frac{1}{3} \sqrt{\frac{1}{3}} \frac{1}{(\ell,2,\ell)} \sum_{j'j} 2k_{1}^{\prime}k_{1} \mathcal{Q}_{W2}^{j'j}(k_{1}^{\prime},k_{1}) \sqrt{j'} \hat{j}(j'0j'0j0|20) \left\{\frac{1}{\ell} - \frac{j}{\ell} - \frac{2}{\ell}\right\} (20j'0|\ell0) \\ &+ \sqrt{\frac{1}{3}} \frac{1}{5}$$

for $\ell'=\ell=J\pm 1$. The notation (j_1,j_2,j_3) stands for an abbreviation of a 3-J symbol of $\begin{pmatrix} j_1 & j_2 & j_3 \\ 0 & 0 \end{pmatrix}$. $\hat{\ell}$ and z mean $\hat{\ell}\equiv 2\ell+1$ and $z\equiv \frac{k_1^2+k_1^2+m_\pi^2}{2k_1'k_1}$. Definitions of F_0 , F_1 , Q_{W1}^ℓ , Q_{W2}^ℓ , and $W_{\ell s,0}$ are found in the original paper as Eqs. (A13), (A14), (B1), (B2), and (B10), respectively. $Q_{W1}^{\ell'\ell}$, $Q_{W2}^{\ell'\ell}$, and Q_{X1}^ℓ represent the following integrals involving a second kind of Legendre function Q_ℓ :

$$Q_{W1}^{\ell'\ell}(k_1',k_1) \equiv \frac{1}{(2\pi)^2} \frac{1}{2k_1'} \int_0^{k_F} dk_3 k_3 Q_{\ell'}(x') Q_{\ell}(x), \tag{B1}$$

$$Q_{W2}^{\ell'\ell}(k_1',k_1) \equiv \frac{1}{(2\pi)^2} \frac{1}{2k_1'k_1} \int_0^{k_F} dk_3 k_3^2 Q_{\ell'}(x') Q_{\ell}(x), \tag{B2}$$

$$Q_{X1}^{\ell}(k_1',k_1) \equiv \frac{\ell}{2\ell+1} Q_{W1}^{\ell\ell-1}(k_1,k_1') + \frac{\ell+1}{2\ell+1} Q_{W1}^{\ell\ell+1}(k_1,k_1'), \tag{B10}$$

where $x' \equiv \frac{k_1^2 + k_3^2 + m_\pi^2}{2k_1'k_3}$ and $x \equiv \frac{k_1^2 + k_3^2 + m_\pi^2}{2k_1k_3}$. $Q_{W1}^{\ell\ell}(k_1', k_1)$ is equal to $Q_{W1}^{\ell}(k_1', k_1)$ defined by Eq. (B5) in the original paper.

^[1] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A. Schwenk, Phys. Rev. C 83, 031301(R) (2011).

^[2] K. Minomo, M. Toyokawa, M. Kohno, and M. Yahiro, Phys. Rev. C 90, 051601 (2014).

^[3] M. Toyokawa, M. Yahiro, T. Matsumoto, K. Minomo, K. Ogata, and M. Kohno, Phys. Rev. C 92, 024618 (2015).

^[4] K. Minomo, M. Kohno, and K. Ogata, Phys. Rev. C 93, 014607 (2016).