迭代方法	迭代矩阵 G
收敛充分条件	
Jacobi 迭代	$D^{-1}(L+U)$
1.4 弱对角占优且不可约	
2.A 对称正定,且 $2D-A$ 正定	
G-S 迭代	$(D-L)^{-1}U$
1.A 弱对角占优且不可约	
2.A 对称正定	
SOR 迭代	$(D - \omega L)^{-1}((1 - \omega)D + \omega U)$
$1.A$ 严格对角占优且 $0 < \omega \le 1$	
$2.A$ 弱对角占优且不可约,且 $0<\omega\leq 1$	
$3.A$ 对称正定,且 $0 < \omega < 2$	
注:由于 $\rho(G_{SOR}) \geq 1 - \omega $,所以 SOR 方法收敛的必要条件是 $0 < \omega < 2$	
SSOR 迭代	$(D - \omega U)^{-1}[(1 - \omega)D + \omega L](D - \omega L)^{-1}[(1 - \omega)D + \omega U]$
A 对称正定,且 $0 < \omega < 2$	
	$(D - \gamma L)^{-1}[(1 - \omega)D + (\omega - \gamma)L + \omega U]$
Richardson 方法	$I - \omega A$
充要条件: A 对称正定,且 $0 < \omega < \frac{2}{\lambda_1}$	
注: 方法的最优参数 $\omega_* = arg \min_{\omega} \rho(G_R) = \frac{2}{\lambda_1 + \lambda_n}$	
JOR 方法	$I - \omega D^{-1}A$
A 对称正定,且 $0 < \omega < \frac{2}{\rho(D^{-1}A)}$	
ADI 方法	$(\alpha I - A_1)^{-1}(\alpha I - A_1)(\alpha I + A_1)^{-1}(\alpha I - A_2)$
注: $A = A_1 + A_2$	
A_1 和 A_2 中有一个是对称正定,另一个是对称半正定,且 $\alpha > 0$	
HSS 方法	$(\alpha I + S)^{-1}(\alpha I - H)(\alpha I + H)^{-1}(\alpha I - S)$
注: $H = \frac{A+A^T}{2}, S = \frac{A-A^T}{2}$	
A 正定且 $\alpha > 0$	