Generalized Twin Goldbach Primes

Oscar Riveros

Abstract

Clojure & JSR-331 - Puzzles is a set of problems of finite CONSTRAINT LOGIC PROGRAMMING of FINITE DOMAINS, in this document are specifically addressed in Clojure & JSR-331 API The Java Constraint Programming. Itself is a personal investigation, non-profit, is only shared to the public for what it is, a personal study of the issue being raised.

Keywords: Clojure, JSR-331, Primes, Goldbach, Twin

February 25, 2013

Definition 1. We say that 2n is a Generalized Twin-Goldbach number if it can be written by a sum of two primes, say p and q but also between the latter must be the following relationship q = 2k + p, where 2k (an even number) is the coefficient 2k - Twin.

Theorem 1. Let t_i^k , t_j^l two Generalized Twin-Goldbach numbers of the families k and l respectively then $t_i^k = p_i + q_i = p_i + p_i + k = 2p_i + k$ and $t_j^l = 2p_j + l$ then $t_j^l - t_i^k = 2(p_j - p_i) + k - l$ for all i, j, l, k.

Problem 1. Create an algorithm that computes all *Generalized Twin-Goldbach* numbers in an interval, and also let it record and 2k - Twin coefficient 2k v/s *Generalized Twin-Goldbach* number.

Algorithm 1.

Preprint submitted to Elsevier

```
(int-array primes)))
(defn make-primes-list
 [prefix | max|

(let [?list '()]

(for [i (range | )]

(cond ?list (.variable problem (str prefix i) (get-primes-domain max))))))
(defn solution - twing - goldbach
  (let [primes (get-primes-domain top)
       length 2
   (defn math)
  [\ n\,e\,x\,t-s\,o\,l\,u\,t\,i\,o\,n\ ]
  (let [p (.getValue next-solution "q0")]
       q (.getValue next-solution "q1")
       n \ (.getValue \ next-solution \ "n")]
    (def num-solutions (+ num-solutions 1))
   :append true)]
(.write wrtr (str n "," p "," q "\n")))))
(def\ problem\ (ProblemFactory/newProblem\ (str\ "Goldbach's \ Conjecture: \ t="twin)))
  (def num-solutions 0)
  (solve-math\ problem\ solution-twing-goldbach\ math)
  (with-open [wrtr (clojure.java.io/writer
                      (str^{-\prime\prime}/Google_{\downarrow}Drive/tmp/Goldbach/goldbach-twin.txt^{\prime\prime})
     :append true)]
(.write wrtr (str twin "," num-solutions "\n"))))
```

Note 1. In the repository project, there is a zip file with ~ 1000 files with all solutions. (https://github.com/maxtuno/Clojure—JSR-331—Puzzles)

```
Conclusion\ 1.
```

 $\begin{array}{ccc} 2k & N^{\underline{o}} & \text{of} \\ Twin & Generalized \\ Twin-Goldbach \\ number & (1000) \end{array}$

2	24
4	26
6	46
8	24
10	32
12	47
14	28
16	24
18	43
20	31

22	25
24	46
26	25
28	25
30	59
32	22
34	26
36	47
38	23
40	31
42	52
44	$\frac{32}{24}$
46	23
48	43
50	28
52	24
54	41
56	28
58	19
60	56
62	20
64	$\frac{20}{21}$
66	48
68	21
70	33
72	39
74	21
76	23
78	41
80	26
82	23
84	47
86	21
88	21
90	53
92	21
94	$\frac{21}{22}$
-	
96	38
98	24
100	24
102	40
104	23
106	19
108	37
110	25
112	22

114	37
116	20
118	21
120	49
122	18
124	21
126	45
128	19
130	24
132	39
134	19
136	20
138	35
140	28
142	17
144	36
146	20
148	18
150	47
152	19
154	24
156	39
158	18
160	26
162	35
164	16
166	18
168	41
170	24
172	18
174	38
176	20
178	18
180	42
182	21
184	17
186	36
188	19
190	25
192	33
194	19
196	20
198	34
200	20
202	16
204	37
201	01

206	17
208	20
210	50
212	14
214	15
216	35
218	18
220	26
222	33
224	20
226	19
228	34
230	22
232	17
234	35
236	15
238	21
240	43
	4.0
242	14
244	16
246	34
248	16
250	24
252	35
254	17
256	15
258	30
260	24
262	14
264	35
266	22
268	14
270	41
272	15
	1.4
274	14
276	31
278	14
280	23
282	27
284	17
286	18
288	27
290	21
292	16
294	34
	17
296	1 (

298	12
300	39
302	13
304	14
306	33
308	20
310	19
312	28
314	15
316	16
318	26
320	18
322	17
324	28
326	18
328	16
330	41
332	14
334	13
336	36
338	14
340	18
342	30
344	15
346	16
348	29
350	24
352	14
354	24
356	16
358	13
360	37
362	$\frac{15}{17}$
364	$\frac{17}{28}$
366	15
368 370	20
372	$\frac{20}{27}$
374	16
376	17
378	30
380	18
382	14
384	27
386	13
388	12
300	14

0.00	0.77
390	37
392	15
394	13
396	
	28
398	13
400	15
402	27
404	14
406	17
408	27
410	16
412	14
414	27
416	14
418	15
420	39
422	11
424	13
426	26
428	14
430	16
432	24
434	15
436	15
438	23
440	17
442	13
444	23
446	12
448	14
450	$\overline{32}$
452	11
454	13
456	22
458	12
460	17
462	26
464	13
466	10
468	25
470	14
472	9
474	20
476	13
478	11
480	28
-	

```
482
         13
484
         12
486
         21
488
         11
490
         16
492
         21
494
         14
496
         13
         19
498
500
         14
502
         11
504
         26
506
         11
508
         8
         29
510
512
         12
514
         9
516
         22
518
         14
520
         14
522
         15
524
         12
526
         10
528
         23
530
         13
532
         9
534
         25
536
         10
538
         11
540
         24
542
         12
544
         11
         25
546
         9
548
550
         14
552
         21
         12
554
556
         10
558
         19
560
         18
562
         10
564
         21
566
         10
568
         8
         25
570
572
         12
```

```
574
         11
576
         21
578
         11
580
         14
582
         18
584
         11
586
         8
588
         21
590
         15
592
         7
         22
594
596
         11
598
         8
         21
600
602
         13
604
         10
606
         18
608
         9
610
         10
612
         18
614
         9
616
         10
618
         13
620
         12
622
         8
624
         16
626
         8
628
         6
         24
630
632
         8
         9
634
636
         16
638
         11
640
         10
642
         14
644
         9
         9
646
648
         16
650
         11
652
         5
654
         15
656
         10
658
         8
660
         20
662
         8
664
         8
```

```
666\\668
           13
8
670
           10
672
           18
           8
674
676
           5
678
           13
680
           11
682
           7
684
           12
686
           9
           7
688
690
           17
692
           6
5
694
696 \\ 698
           13
10
700
           8
702
           12
704
           7
706
           5
708
           12
710
           8
712
           6
714
           15
716
           10
718
           5
720
           16
722
           10
724
           6
726 \\ 728
           15
           9
730 \\ 732
           9
          12
734 \\ 736
           5
7
           11
9
738
740
742
           5
744
           11
746
           7
748
           6
750
           16
           6
8
752
754
756
           14
```

```
758 \\ 760
              6
              7
762
              8
764
              6
766
              7
768
770
772
774
              12
              9
              3
              11
776
              6
778
              7
780 \\ 782
              15
              6
784 \\ 786
              8
              11
788
790
              \frac{4}{7}
792
              11
794
              6
796
              5
798
              11
              6
5
800
802
804
              10
806
              7
808
              6
810
              11
812
814
816
              5
              5
              12
\begin{array}{c} 818 \\ 820 \end{array}
              6
7
822
              8
824
              6
826 \\ 828
              5
7
830\\832
              4
              3
834
              8
836
              6
838
              3
840
              11
842
              3
844
              5
846
              9
848
              5
```

850	6
852	7
854	
	5
856	3
858	6
860	5
862	2
864	6
866	4
868	4
870	7
872	3
874	4
876	7
878	5
880	3
882	4
884	2
	3
886	1
888	5
890	3
892	2
894	4
896	3
898	3
900	7
902	
	2
904	4
906	5
908	3
910	4
912	4
914	2
916	$\overline{4}$
918	4
920	1
922	3
924	5
926	2
928	2
930	4
932	1
934	4
936	4
938	2
	$\frac{2}{2}$
940	2

942	2
944	2
946	1
948	3
950	2
952	1
954	2
956	1
958	2
960	3
962	1
964	3
966	2
968	1
970	2
972	2
974	1
976	1
978	1
980	1
982	0
984	1
986	1
988	1
990	0
992	0
994	0
996	0
998	0