Transformaciones lineales

1.1 Notación F, V, W.

- F denota R o C.
- *V* y *W* denota espacios vectoriales sobre **F**.

1.A El espacio vectorial de las Transformaciones lineales

Definición y ejemplos de Transformaciones lineales

1.2 Definición Transformación lineal.

Una **transformación lineal** de V en W es una función $T:V\to W$ con las siguientes propiedades:

• Aditividad

$$T(u+v) = Tu + Tv$$
 para todo $u, v \in V$;

• Homogeneidad

$$T(\lambda v) = \lambda(Tv)$$
 para todo $\lambda \in \mathbf{F}$ y todo $v \in V$.

1.3 Notación $\mathcal{L}(V, W)$

El conjunto de todas las transformaciones lineales de V en W se denota por $\mathcal{L}(V, W)$.

1.4 Teorema Transformaciones lineales y bases del dominio.

Suponga que v_1, \ldots, v_n es una base de V y $w_1, \ldots, w_n \in W$. Entonces, existe una única transformación lineal $T: V \to W$ tal que

$$T(v_i) = w_i$$

para cada $j = 1, \ldots, n$.

Demostración.- Primero demostremos la existencia de una transformación lineal T, con la propiedad deseada. Defina $T:V\to W$ por

$$T(c_1v_1+\cdots+c_nv_n)=c_1w_1+\cdots+c_nw_n.$$

donde c_1, \ldots, c_n son elementos arbitrarios de **F**. La lista v_1, \ldots, v_n es una base de V, y por lo tanto, la ecuación anterior de hecho define una función T para V en W (porque cada elemento de V puede ser escrito de manera única en la forma c_1v_1, \ldots, c_nv_n). Para cada j, tomando $c_j = 1$ y las otras c's igual a 0 demostramos la existencia de $T(v_j) = w_j$.

Si $u, v \in V$ con $u = a_1v_1, \dots, a_nv_n$ y $v = c_1v_1, \dots, c_nv_n$, entonces

$$T(v+u) = T[(a_1+c_1)v_1 + \dots + (a_n+a_n)v_n]$$

$$= (a_1+c_1)w_1 + \dots + (a_n+c_n)w_n$$

$$= (a_1w_1 + \dots + a_nw_n) + (c_1w_1 + \dots + c_nw_n)$$

$$= T(u) + T(v).$$

Similarmente, si $\lambda \in \mathbf{F}$ y $v = c_1v_1 + \cdots + c_nv_n$, entonces

$$T(\lambda v) = T(\lambda c_1 v_1 + \dots + \lambda c_n v_n)$$

$$= \lambda c_1 w_1 + \dots + \lambda c_n w_n$$

$$= \lambda (c_1 w_1 + \dots + c_n w_n)$$

$$= \lambda T(v).$$

Así, T es una transformación lineal para V en W.

Para probar que es único, suponga que $T \in \mathcal{L}(V,W)$ y que $T(v_j) = w_j$ para j = 1,...,n. Sea $c_1,...,c_n \in \mathbf{F}$. La Homogeneidad de T implica que $T(c_jv_j) = c_jw_j$ para j = 1,...,n. La Aditividad de T implica que

$$T(c_1v_1+\cdots+c_nv_n)=c_1w_1+\cdots+c_nw_n.$$

Por lo tanto, T se determina de forma única en span (v_1, \ldots, v_n) para la ecuación de arriba. Porque v_1, \ldots, v_n es una base de V, esto implica que T es determinado únicamente en V.

Operaciones algebraicas en $\mathcal{L}(V,W)$

1.5 Definición Adición y multiplicación escalar en $\mathcal{L}(V, W)$

Suponga que $S,T \in \mathcal{L}(V,W)$ y $\lambda \in \mathbf{F}$. La **suma** S+T y el **producto** λT son transformaciones lineales para V en W definida por

$$(S+T)(v) = S(v) + T(v)$$
 y $(\lambda T)(v) = \lambda (Tv)$

para todo $v \in V$.