Complex Analysis

Paolo Bettelini

Contents

1	De Moivre's Theorem	
2	Nth Roots of Units	
3	Riemann Spheres	
4	Subsets of the complex plane	
	4.1 Open Disk	
	4.2 Closed Disk	
	4.3 Circle	
	4.4 Interior point	
	4.5 Boundary point	
	4.6 Exterior point	
	4.7 Accumulation points	
	4.8 Open sets	
	4.9 Closed sets	
	4.10 Bounded Set	
	4.11 Connected Set	

1 De Moivre's Theorem

Using the property of exponentiation $(a^b)^c = a^{bc}$, we can see that $(e^{i\theta})^n = e^{in\theta}$. Using Euler's formula we can deduce that

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta), \quad n \in \mathbb{Z}$$

2 Nth Roots of Units

We can extend De Moivre's Theorem for the integers powers or any complex number, rather than the ones on the unit circle (r = 1).

$$(r(\cos(\theta) + i\sin(\theta)))^n = r^n(\cos(n\theta) + i\sin(n\theta)), \quad n \in \mathbb{Z}$$

The nth roots of 1 are the solutions to

$$x^n = 1$$

for a given n. We might write 1 as a complex number

$$x^n = \cos(0) + i\sin(0)$$

Comparing this to our extended De Moivre's theorem

$$\cos(0) + i\sin(0) = r^n \left(\cos(n\theta) + i\sin(n\theta)\right)$$

We can see that

$$r^n = 1$$

$$n\theta = 0$$

As long as $n \neq 0$

$$r = 1$$

$$\theta = 0$$

By plugging these values into

$$x^{n} = (r(\cos(\theta) + i\sin(\theta)))^{n}$$

we get that x = 1.

However we could also write 1 as

$$\cos(2k\pi) + i\sin(2k\pi), \quad k \in \mathbb{Z}$$

We would then get that

$$r^n = 1$$
$$n\theta = 2k\pi$$

When solving for x again we get

$$x^{n} = (r(\cos(\theta) + i\sin(\theta)))^{n}$$
$$= \left(\cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right)\right)^{n}$$

concluding that

$$x = \cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right)$$

This gives us a solution for each k, however the solutions are redundant for $k \geq n$. In fact, the roots of unity of n are n distinct solutions (points on the unit circle).

The roots of units have the same angle $\alpha = \frac{2\pi}{n}$ between each other. The first root of unit counter-clockwise is denoted ζ_n because each subsequent costs a power of ζ_n . In this case, ζ_7 .

3 Riemann Spheres

A Riemann sphere is a unit sphere used to represent the complex plane using stereographic projection.

The Riemann sphere lays on the complex plane. A complex number is represented by the intersection between the sphere and a ray starting from the topmost point of the sphere and intersecting with the given complex number on the complex plane.

4 Subsets of the complex plane

4.1 Open Disk

An open disk $D_{\delta}(z_0)$ is the set of points with distance less than δ from z_0

$$D_{\delta}(z_0) = \{ z \in \mathbb{C} \mid |z - z_0| < \delta \}$$

4.2 Closed Disk

A closed open disk $D_{\delta}(z_0)$ is the set of points with distance less than or equal to δ from z_0

$$\overline{D_{\delta}(z_0)} = \{ z \in \mathbb{C} \mid |z - z_0| \le \delta \}$$

4.3 Circle

A circle $C_{\delta}(z_0)$ is the set of points with distance equal to δ from z_0

$$C_{\delta}(z_0) = \{ z \in \mathbb{C} \mid |z - z_0| = \delta \}$$

4.4 Interior point

z is an interior point of Ω iff there is an open disk at z whose point are in Ω

$$\exists D_{r>0}(z) \subset \Omega$$

4.5 Boundary point

z is a boundary point of Ω iff every open disk at z contains points both in Ω and not in Ω .

4.6 Exterior point

z is an exterior point of Ω iff it is not a boundary point of an interior point.

4.7 Accumulation points

z is an accumulation point or limit point of Ω if any $D_{\delta}(z)\setminus\{z\}$ always contains points of Ω . In order to always contain points of Ω , Ω must have an infinite amount of points, since δ can be as little as we want.

4.8 Open sets

A set Ω is called open iff all points in Ω are interior points of Ω .

4.9 Closed sets

A set Ω is closed if every accumulation point of Ω is in Ω .

4.10 Bounded Set

A set Ω is bounded iff

$$\exists M > 0 \mid \Omega \subset D_M(0)$$

In other words there must exist an M > 0 such that $\forall z \in \Omega : |z| < M$

4.11 Connected Set

An open set Ω is connected iff it cannot be written as $\Omega = \Omega_1 \cup \Omega_2$ where $\Omega_1 \cap \Omega_2 = \emptyset$. In other words any two points in Ω must be connectable by a continuous curve where all the points of the curve are also in Ω .