$\mathbf{Ru21} ext{-}\mathbf{11} ext{-}\mathbf{T1}$ — Куда упадет шарик

1?? Чему равно расстояние до точки падения на дно для лодки, движущейся в озере той же глубины, что и река?

В системе отсчета, связанной с водой, скорость лодки v одинаковая, независимо от направления движения, поэтому расстояние l, которое проходит шарик до места падения, всегда одно и то же. Время движения шарика в воде τ также одинаковое во всех случаях. В системе отсчета, связанной с землей, расстояния, которые проходит шарик, равны

$$l_1 = l + u\tau$$

$$l_2 = u\tau - l,$$

где u - скорость течения. Отсюда

Ответ:

$$l = \frac{(l_1 - l_2)}{2}$$

2?? Во сколько раз скорость лодки больше скорости течения?

При этом также $u\tau=\frac{(l_1+l_2)}{2}$. При движении по траектории перпендикулярной течению реки расстояние l_3 определяется по теореме косинусов

$$l_3^2 = l^2 - 2lu\tau \cdot \cos\alpha + (u\tau)^2,$$

где α - угол между направлением вектора скорости лодки относительно воды и перпендикуляром к направлению течения реки. Учитывая, что $cos\alpha = \frac{u}{v}$, получаем

$$l_3^2 = \frac{(l_1 - l_2)^2}{4} - 2\frac{(l_1 - l_2)}{2} \cdot \frac{(l_1 + l_2)}{2} \cdot \frac{u}{v} + \frac{(l_1 + l_2)^2}{4}$$

Отсюда

Ответ:

$$\frac{v}{u} = \frac{l_1^2 - l_2^2}{l_1^2 + l_2^2 - 2l_3^2}$$