Лекция 3

Линейна зависимост и линейна независимост на вектори

3.1 Пространство от решенията на хомогенна система от линейни уравнения

Множеството от всички вектори x от \mathbb{R}^n , които са решения на дадена хомогенна система A от линейни уравнения ще наричаме *пространство от решенията* на системата A.

Твърдение 2.2 от предишната лекция показва, че пространството от решения на една хомогенна система изпълнява трите условия, формулирани в следващото твърдение.

Твърдение 3.1. Нека $U \subset \mathbb{R}^n$ е пространството от решения на хомогенна система от m линейни уравнения за n неизвестни. Тогава

- a) U съдържа нулевия вектор $\mathbf{0}$;
- б) ако U съдържа векторите ${m x}$ и ${m y}$, то U съдържа тяхната сума ${m x}+{m y}$;
- в) ако U съдържа вектора x, то U съдържа вектора λx за всяко реално число λ .

Всяка хомогенна система от линейни уравнения има тривиалното решение x=0. Следващата проста, но много важна, лема ни дава достатъчно условие за съществуването на нетривиално решение $x\neq 0$ на дадена хомогенна система от линейни уравнения.

Лема 3.2 (Основна лема за хомогенни системи). Ако броят на уравненията в една хомогенна линейна система е по-малък от броят на неизвестните, то системата има решение $x \neq 0$.

Доказателство. Можем да предполагаме без ограничение на общността, че системата е в ешелонна форма. Тогава броят на редовете на матрицата от коефициенти на системата е по-малък от броя на неизвестните. Следователно

броят r на ненулевите редове в матрицата от коефициенти на системата е също по-малък от броя n на неизвестните. Тъй общото решение на системата зависи от n-r>0 параметъра (виж Твърдение 1.3), системата има безброй решения. В частност системата има решение $x\neq 0$.

3.2 Линейни подпространства на \mathbb{R}^n . Линейна обвивка на множество от вектори

Определение 3.1 (Линейно подпространство). Едно подмножество U на \mathbb{R}^n е *линейно подпространство* на \mathbb{R}^n , когато изпълнява следните условия:

- а) U съдържа нулевия вектор $\mathbf{0}$;
- б) ако U съдържа векторите x и y, то U съдържа тяхната сума x + y;
- в) ако U съдържа вектора ${m x}$, то U съдържа вектора ${m \lambda} {m x}$ за всяко реално число ${m \lambda}$.

Според Твърдение 3.1,

пространството U от решения на една хомогенна система от m линейни уравнения за n неизвестни е линейно подпространство на \mathbb{R}^n .

Определение 3.2 (Линейна комбинация на вектори). Нека $\lambda_1, \lambda_2, \dots, \lambda_k$ са реални числа, а x_1, x_2, \dots, x_k са вектори от \mathbb{R}^n . Векторът

$$\boldsymbol{x} = \lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \dots + \lambda_k \boldsymbol{x}_k$$

се нарича линейна комбинация на векторите x_1,x_2,\ldots,x_k , с коефициенти $\lambda_1,\lambda_2,\ldots,\lambda_k$.

Пример 3.1. Нека векторите a_1, \ldots, a_k от \mathbb{R}^n са фундаментална система от решения на една хомогенна линейна система A. Тогава всяко решение на системата A е линейна комбинация на векторите a_1, \ldots, a_k .

Твърдение 3.3. Нека U е линейно подпространство на \mathbb{R}^n . Ако U съдържа векторите x_1, x_2, \ldots, x_k , то U съдържа всяка тяхна линейна комбинация $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_k x_k$.

Доказателство. Нека $\lambda_1,\dots,\lambda_k$ са реални числа, а x_1,x_2,\dots,x_k са вектори от линейното подпространство U. Тогава от Определение 3.1 в) следва, че U съдържа векторите $\lambda_1 x_1,\lambda_2 x_2,\dots,\lambda_k x_k$. Да забележим, че ако U съдържа вектора $\lambda_1 x_1 + \dots + \lambda_l x_l$, то от Определение 3.1 б) следва, че U съдържа също вектора $\lambda_1 x_1 + \dots + \lambda_{l+1} x_{l+1} = (\lambda_1 x_1 + \dots + \lambda_l x_l) + \lambda_{l+1} x_{l+1}$, който е сума на два вектора от U. Сега получаваме последователно, че U съдържа следните вектори

$$\lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2,$$
 $\lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \lambda_3 \boldsymbol{x}_3,$
 \vdots
 $\lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \dots + \lambda_k \boldsymbol{x}_k.$

което трябваше да се докаже.

Определение 3.3 (Линейна обвивка на множество от вектори). Линейната обвивка на векторите x_1, x_2, \ldots, x_k от \mathbb{R}^n е множеството от всички техни линейни комбинации. Линейната обвивка на векторите x_1, x_2, \ldots, x_k от \mathbb{R}^n се означава с $l(x_1, x_2, \ldots, x_k)$.

 $\it 3абележка.$ Линейната обвивка $\it l(x_1,x_2,\ldots,x_k)$ на векторите $\it x_1,x_2,\ldots,x_k$ съдържа всеки от тях, защото

Забележка. Ако векторите x_1, x_2, \ldots, x_k се съдържат в някое линейно подпространство U на \mathbb{R}^n , то тяхната линейна обвивка $l(x_1, x_2, \ldots, x_k)$ също се съдържа в U. Наистина Твърдение 3.3 показва, че линейното подпространство U съдържа всяка линейна комбинация на векторите x_1, x_2, \ldots, x_k . Следователно U съдържа цялото множество $l(x_1, x_2, \ldots, x_k)$.

Пример 3.2. Линейната обвивка l(x) на един вектор $x \neq 0$ се състои от всички вектори y, които са колинеарни с вектора x.

Пример 3.3. Нека x_1, x_2 са два вектора, които не са колинеарни. Тогава линейната обвивка $l(x_1, x_2)$ се състои от всички вектори y, които са компланарни с векторите x_1, x_2 .

Пример 3.4. Нека векторите a_1, \ldots, a_k от \mathbb{R}^n са фундаментална система от решения на една хомогенна линейна система A. Тогава множеството $l(a_1, \ldots, a_k)$ съвпада с пространството от решения на системата A, защото всяко решение на A е линейна комбинация на решенията a_1, \ldots, a_k .

Пример 3.5. Нека e_1, e_2, \ldots, e_n са следните вектори от \mathbb{R}^n :

$$\begin{array}{rcl} {m e}_1 & = & (1,0,\ldots,0), \\ {m e}_2 & = & (0,1,\ldots,0), \\ & & & & \\ {m e}_n & = & (0,0,\ldots,1). \end{array}$$

В този случай, множеството $l(e_1, e_2, \dots, e_n)$ съвпада с цялото пространство \mathbb{R}^n . Наистина, нека $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ е произволен вектор от \mathbb{R}^n . Тогава

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

$$= (x_1, 0, \dots, 0) + (0, x_2, \dots, 0) + \dots + (0, 0, \dots, x_n)$$

$$= x_1(1, 0, \dots, 0) + x_2(0, 1, \dots, 0) + \dots + x_n(0, 0, \dots, 1)$$

$$= x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n.$$

Следователно всеки вектор x от \mathbb{R}^n е линейна комбинация на векторите e_1,e_2,\ldots,e_n , т.е. $l(e_1,e_2,\ldots,e_n)=\mathbb{R}^n$.

Твърдение 3.4. Нека x_1, x_2, \ldots, x_k са вектори от \mathbb{R}^n . Тогава линейната обвивка $l(x_1, x_2, \ldots, x_k)$ на векторите x_1, x_2, \ldots, x_k е линейно подпространство на \mathbb{R}^n .

Доказателство. Да проверим, че множеството $l(x_1, x_2, ..., x_k)$ изпълнява условия а), б) и в) на Определение 3.1.

а) множеството $l(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_k)$ съдържа нулевия вектор $\boldsymbol{0}$:

$$\mathbf{0} = 0 \cdot \boldsymbol{x}_1 + 0 \cdot \boldsymbol{x}_2 + \dots + 0 \cdot \boldsymbol{x}_k.$$

б) ако $l(\pmb{x}_1,\pmb{x}_2,\dots,\pmb{x}_k)$ съдържа векторите \pmb{x} и \pmb{y} , то $l(\pmb{x}_1,\pmb{x}_2,\dots,\pmb{x}_k)$ съдържа тяхната сума $\pmb{x}+\pmb{y}$:

Ако $l(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_k)$ съдържа векторите \boldsymbol{x} и \boldsymbol{y} , то

$$\mathbf{x} = \lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 + \dots + \lambda_k \mathbf{x}_k,$$

$$\mathbf{y} = \mu_1 \mathbf{x}_1 + \mu_2 \mathbf{x}_2 + \dots + \mu_k \mathbf{x}_k,$$

където $\lambda_1, \lambda_2, \dots, \lambda_k$ и $\mu_1, \mu_2, \dots, \mu_k$ са реални числа. Тогава

$$x + y = (\lambda_1 + \mu_1)x_1 + (\lambda_2 + \mu_2)x_2 + \dots + (\lambda_k + \mu_k)x_k.$$

Тъй като x+y е линейна комбинация на векторите x_1,x_2,\ldots,x_k , то $l(x_1,x_2,\ldots,x_k)$ съдържа сумата x+y на векторите x и y.

в) ако $l(\pmb{x}_1, \pmb{x}_2, \dots, \pmb{x}_k)$ съдържа вектора \pmb{x} , то $l(\pmb{x}_1, \pmb{x}_2, \dots, \pmb{x}_k)$ съдържа вектора $\lambda \pmb{x}$ за всяко реално число λ :

Ако $l(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_k)$ съдържа вектора \boldsymbol{x} , то

$$\boldsymbol{x} = \lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \dots + \lambda_k \boldsymbol{x}_k,$$

където $\lambda_1,\lambda_2,\ldots,\lambda_k$ са реални числа. Нека λ е реално число. Тогава

$$\lambda \mathbf{x} = (\lambda \lambda_1) \mathbf{x}_1 + (\lambda \lambda_2) \mathbf{x}_2 + \dots + (\lambda \lambda_k) \mathbf{x}_k.$$

Тъй като λx е линейна комбинация на векторите x_1, x_2, \dots, x_k , то $l(x_1, x_2, \dots, x_k)$ съдържа вектора λx .

Тъй като множеството $l(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_k)$ изпълнява условия а), б) и в) на Определение 3.1, то е линейно подпространство на \mathbb{R}^n .

3.3 Линейна зависими и линейно независими вектори

Определение 3.4 (Линейно независими вектори). Нека x_1, x_2, \ldots, x_k са вектори от \mathbb{R}^n . Казваме, че x_1, \ldots, x_k са линейно независими вектори, ако

$$\lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \dots + \lambda_k \boldsymbol{x}_k = \boldsymbol{0},$$

само когато $\lambda_1 = \lambda_2 = \ldots = \lambda_k = 0.$

Определение 3.5 (Линейно зависими вектори). Нека x_1, x_2, \ldots, x_k са вектори от \mathbb{R}^n . Казваме, че x_1, \ldots, x_k са линейно зависими вектори, ако съществуват числа $\lambda_1, \lambda_2, \ldots, \lambda_k$, не всички от които са равни на 0, такива че

$$\lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \dots + \lambda_k \boldsymbol{x}_k = \boldsymbol{0}.$$

Пример 3.6. Нека e_1, e_2, \dots, e_n са векторите от \mathbb{R}^n , които разгледахме в Пример 3.5:

$$\begin{array}{lll} {m e}_1 &=& (1,0,\ldots,0), \\ {m e}_2 &=& (0,1,\ldots,0), \\ &\ldots &\ldots &\ldots \\ {m e}_n &=& (0,0,\ldots,1). \end{array}$$

Да забележим първо, че $\lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_n e_n = (\lambda_1, \lambda_2, \ldots, \lambda_k)$. Ако $\lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_n e_k = \mathbf{0}$, то $(\lambda_1, \lambda_2, \ldots, \lambda_n) = \mathbf{0}$, откъдето получаваме $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$. Следователно $\lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_n e_k = \mathbf{0}$, само когато $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$, т.е. векторите e_1, e_2, \ldots, e_n са линейно независими.

Пример 3.7. Векторите $x_1=(1,0), x_2=(0,1)$ и $x_3=(2,1)$ от \mathbb{R}^2 са линейно зависими: $2x_1+x_2+(-1)x_3=\mathbf{0}$.

Пример 3.8. Нека a_1, a_2, \ldots, a_k е фундаментална система решения на хомогенна система от линейни уравнения A. Тогава векторите a_1, a_2, \ldots, a_k са линейно независими. Наистина от равенствата

$$\mathbf{0} = \lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \dots + \lambda_k \mathbf{a}_k,$$

$$\mathbf{0} = 0 \cdot \mathbf{a}_1 + 0 \cdot \mathbf{a}_2 + \dots + 0 \cdot \mathbf{a}_k,$$

следва, че $\lambda_1 = \lambda_2 = \ldots = \lambda_k = 0$, защото нулевото решение на A трябва да се изразява по единствен начин чрез решенията $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$.

Лема 3.5 (Основна лема на ЛА). Нека векторите a_1, a_2, \ldots, a_n се съдържат в линейната обвивка на векторите b_1, b_2, \ldots, b_m . Ако n > m, векторите a_1, a_2, \ldots, a_n са линейно зависими.

Доказателство. Тъй като векторите a_1, a_2, \ldots, a_n се съдържат в линейната обвивка на векторите b_1, b_2, \ldots, b_m , то всеки от векторите a_1, a_2, \ldots, a_n е линейна комбинация на векторите b_1, b_2, \ldots, b_m :

(Векторите a_1, a_2, \ldots, a_n са записани вертикално.)

Тогава

Сега е ясно, че за всеки вектор $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$, който е решение на хомогенната система от линейни уравнения

(3.1)
$$\begin{vmatrix} a_{11}\lambda_1 + a_{12}\lambda_2 + \dots + a_{1n}\lambda_n = 0 \\ a_{21}\lambda_1 + a_{22}\lambda_2 + \dots + a_{2n}\lambda_n = 0 \\ \dots \\ a_{m1}\lambda_1 + a_{m2}\lambda_2 + \dots + a_{mn}\lambda_n = 0 \end{vmatrix},$$

е в сила $\lambda_1 \boldsymbol{a}_1 + \lambda_2 \boldsymbol{a}_2 + \dots + \lambda_n \boldsymbol{a}_n = \boldsymbol{0}$. Тъй като n > m, то според основната лема за хомогенни системи (Лема 3.2), системата (3.1) има решение $\boldsymbol{\lambda} \neq \boldsymbol{0}$. Следователно векторите $\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n$ са линейно зависими, което трябваше да се докаже.

Както видяхме в Пример 3.5, линейното пространство \mathbb{R}^n съвпада с линейната обвивка на векторите

$$\begin{array}{lll} {\boldsymbol{e}}_1 &=& (1,0,\ldots,0), \\ {\boldsymbol{e}}_2 &=& (0,1,\ldots,0), \\ & & & \\ & & & \\ & & & \\ {\boldsymbol{e}}_n &=& (0,0,\ldots,1), \end{array}$$

които са n на брой. Сега от Лема 3.5 непосредствено следва важното

Твърдение 3.6. Ако k > n, всеки k вектора в \mathbb{R}^n са линейно зависими.

В частност, всеки n+1 вектора в \mathbb{R}^n са линейно зависими.