Assignment 2 (Due Apr 19, 5pm)

- (1) (6 marks) (Shamir) Let N = pq where $q \approx 2^{4960}$ and $p \approx 2^{512}$.
 - Give a crude estimate of the bit-security for such RSA modulus using the asymptotic complexity of ECM and NFS. Hypothetically if one founds an ECM-like factoring method that runs in time $L_p(1/4, 1)$. How do we set the p and q to achieve a security level of more than 2^{128} .
 - Suppose a RSA scheme uses CRT for decryption: given ciphertext c, one decrypts m with,

$$m_1 \equiv c^{d_1} \pmod{p}$$

 $m_2 \equiv c^{d_2} \pmod{q}$

where $d_1 \equiv d \pmod{p-1}$ and $d_2 \equiv d \pmod{q-1}$ for the secret key d. It is observed that if the message $0 \leq m < p$, there is no need to compute m_2 since $m = m_1$. Hence this scheme just computes $m_1 \equiv c^{d_1} \pmod{p}$ and return m_1 for the decryption. Show that this scheme is not secure under a chosen-ciphertext attack.

(2) (7 marks) (Floyd, Brent) Given a fixed integer N. Suppose that we are generating a sequence of integers $\{x_0, x_1, x_2, \cdots\}$ in the range $0 \le x_0 < N$ in the following way: let f(x) be any function such that $0 \le x < N$ implies $0 \le f(x) < N$. The sequence is then generated by the iteration $x_{i+1} = f(x_i)$ with some random x_0 such that $0 \le x_0 < N$.

Note the sequence is ultimately periodic and there exist numbers λ and μ such that $x_0, x_1, \dots, x_{\mu+\lambda-1}$ are distinct, but $x_{n+\lambda} = x_n$ for $n \ge \mu$.

- Show that there exists some n > 0 such that $x_n = x_{2n}$, and the smallest such value of n lies in the range $\mu \le n \le \mu + \lambda$. Find a formula that express the smallest such n in terms of μ and λ . In particular, if $\mu \le \lambda$, what is the smallest such value of n? If $\mu > \lambda$, what is the smallest such value of n?
- Let l(n) be the greatest power of 2 that is less than or equal to n. For instance, l(15) = 8 and l(l(n)) = l(n). Show that there exists an n > 0 such that $x_n = x_{l(n)-1}$. Find a formula that express the least such n in terms of μ and λ .
- (3) (7 marks) Given DLP $5^x \equiv 15657 \pmod{16103}$. Note that $16102 = 2 \cdot 83 \cdot 97$. Use the Pohlig-Hellman method to find x, e.g. find $x \pmod{2}$, $x \pmod{83}$ and $x \pmod{97}$ respectively and then use CRT.
 - Use the baby-step giant-step method to find $x \pmod{83}$. Hint: using a table of 10 elements. Please document the table elements and collision.
 - Use the Pollard's two-kangaroo method to find $x \pmod{97}$. A way to define the iterating function is to use a tame sequence $x_{i+1} = x_i \cdot g^{h(x_i)}$ where $x_0 = g^b$ for b = 96 and define $h(x_i) = 4^{x_i \pmod{4}}$. Note the wild kangaroo walks on $y_{i+1} = y_i \cdot g^{h(y_i)}$ with an appropriate y_0 . Please document the footprints of the kangaroos; show where the trap is and the collision. You may need to iterate the functions for about $\sqrt{97} \approx 10$ times.
 - Finally, compute x using CRT.

You will need to use a computer algebra system (that can do modular exponentiation) for this question.