Self-Concordant Analysis of Generalized Linear Bandits with Forgetting

Yoan Russac *,1,2 , Louis Faury *,3 , Olivier Cappé 1,2 , Aurélien Garivier 1,4

¹Inria, CNRS, ²ENS, Université PSL, ³Criteo AI Lab, LTCI Télécom Paris, ⁴UMPA, ENS Lyon, * Equal Contribution

Motivations

- Non-stationary environments: ubiquitous in real-world applications.
- Generalized Linear Models: broader rewards models of considerable practical relevance (binary,categorical).
- → Extension of forgetting strategies designed for linear bandits to Generalized Linear Models.

Preliminaries

At time t, **time-dependent finite set of arbitrary actions** $\mathcal{A}_t = \{A_{t,1}, \dots, A_{t,K_t}\}$, where $A_{t,k} \in \mathbb{R}^d$. After selection of $a_t \in \mathcal{A}_t$ observation of a reward following:

 $\mathbb{E}[r_{t+1}|a_t] = \mu(a_t^{\mathsf{T}}\theta_t^{\star}), \text{ with } \mu \text{ the inverse link function,}$

Dynamic Regret:

$$R_T = \sum_{t=1}^{T} \max_{a \in \mathcal{A}_t} \mu(a^{\mathsf{T}} \theta_t^{\star}) - \mu(a_t^{\mathsf{T}} \theta_t^{\star})$$

Maximum likelihood estimator: Solution of the convex program:

$$\hat{\theta}_t = \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} - \sum_{s=1}^{t-1} w_{s,t} \log \mathbb{P}_{\theta}(r_{s+1}|a_s) + \frac{\lambda}{2} \|\theta\|_2^2$$
 (1)

Forgetting policies: if $w_{s,t} = \gamma^{t-1-s}$ discounted policy and if $w_{s,t} = \mathbb{1}(t-s \le \tau)$ sliding window policy.

Assumptions

- Bounded actions and parameters: $\forall t \ge 1, \forall a \in \mathcal{A}_t, \|a\|_2 \le 1, \|\theta_t^{\star}\|_2 \le S$.
- Bounded rewards: $\forall t \ge 1, 0 \le r_t \le m$.
- Non-Stationarity: θ_t^* can change in an arbitrary fashion up to Γ_T times.
- Self-Concordance:

$$|\ddot{\mu}| \leq \dot{\mu}$$

• For the inverse link fuction:

 $c_{\mu} := \inf_{\theta: \|\theta\|_2 \le S, a: \|a\|_2 \le 1} \dot{\mu}(a^{\top}\theta) > 0$ $\wedge 1/c_{\mu}$ can be exponentially large in S!

Challenges and Approach

- 1) c_{μ} limitation of the practical interest of Generalized Linear Bandits algorithms. \hookrightarrow Reducing **dependency in the** c_{μ} **in non-stationary environments** \hookrightarrow Extension of a Berstein-like inequality of [1] to **weighted self-normalized martingales**.
- 2) MLE not necessarily bounded, existing algorithms require a complicated projection step or a prohibitively long burn-in phase.
- → **Finer characterization of the MLE** using self-concordance assumption. Algorithm relying solely on this estimator **without any projection**

Concentration Result

To solve 1), switching from a global analysis featuring $V_t = \sum_{s=1}^t w_{s,t}^2 a_s a_s^\top + \lambda I_d$ to a local analysis through $H_t(\theta) = \sum_{s=1}^t w_{s,t}^2 \dot{\mu}(a_s^\top \theta) a_s a_s^\top + \lambda I_d$.

→ How to handle the weights with a local analysis?

Theorem 1.

Let $\widetilde{H}_t = \sum_{s=1}^{t-1} w_s^2 \dot{\mu}(a_s^{\mathsf{T}} \theta_s^{\star}) a_s a_s^{\mathsf{T}} + \lambda_{t-1} I_d$, $\epsilon_{s+1} = r_{s+1} - \mu(a_s^{\mathsf{T}} \theta_s^{\star})$ and $S_t = \sum_{s=1}^{t-1} w_s \epsilon_{s+1} a_s$, then for any $\delta \in (0,1]$,

$$P\left(\|S_t\|_{\widetilde{H}_t^{-1}} \leq \mathcal{O}\left(\sqrt{d\log\left(\frac{t}{\delta}\right)}\right)\right) \geq 1 - \delta.$$

 \hookrightarrow High probability upper-bound independent of c_u thanks to the local analysis!

Self-Concordance and MLE

Using a Taylor expansion and the **self-concordance assumption**, the authors in [1] uses:

$$\forall x, \quad \mu(x^{\top}\theta_t) \ge \mu(x^{\top}\theta^*) + \frac{|x^{\top}(\theta^* - \theta_t)|}{1 + 2S} \dot{\mu}(x^{\top}\theta^*)$$

Here, tighter bound to solve 2),

$$\forall x, \quad \mu(x^{\top}\hat{\theta}_t) \ge \mu(x^{\top}\theta^*) + \frac{|x^{\top}(\theta^* - \hat{\theta}_t)|}{1 + |x^{\top}(\theta^* - \hat{\theta}_t)|} \dot{\mu}(x^{\top}\theta^*)$$

Comparison with Existing Works

Algorithm	Setting	Projection	Regret Upper Bound
GLM-UCB [2]	Stationary GLM	Non-convex	$\widetilde{\mathscr{O}}\left(\boldsymbol{c_{\mu}^{-1}}\cdot\boldsymbol{d}\cdot\sqrt{T}\right)$
LogUCB1 [1]	Stationary Logistic	Non-convex	$\widetilde{\mathcal{O}}\left(\mathbf{c}_{\boldsymbol{\mu}}^{-1/2}\cdot d\cdot\sqrt{T}\right)$
D-GLUCB [3]	Non-Stationary GLM	Non-convex	$\widetilde{\mathcal{O}}\left(\boldsymbol{c}_{\boldsymbol{\mu}}^{-1}\cdot\boldsymbol{d}\cdot\sqrt{T}\right)$ $\widetilde{\mathcal{O}}\left(\boldsymbol{c}_{\boldsymbol{\mu}}^{-1/2}\cdot\boldsymbol{d}\cdot\sqrt{T}\right)$ $\widetilde{\mathcal{O}}\left(\boldsymbol{c}_{\boldsymbol{\mu}}^{-1}\cdot\boldsymbol{d}^{2/3}\cdot\Gamma_{T}^{1/3}\cdot\boldsymbol{T}^{2/3}\right)$
SC-D-GLUCB	Non-Stationary GLM + Gap Assumption	No projection	$\widetilde{\mathcal{O}}\left(\boldsymbol{c_{\mu}^{-1/2}}\cdot\boldsymbol{d}\cdot\sqrt{\Gamma_{T}T}\right)$
SC-D-GLUCB	Non-Stationary GLM	No projection	$\widetilde{\mathcal{O}}\left(\boldsymbol{c_{u}^{-1/3}}\cdot d^{2/3}\cdot\Gamma_{T}^{1/3}\cdot T^{2/3}\right)$

Tab. 1: Comparison of regret guarantees for different algorithms in the GLM setting

Regret Upper Bound

Theorem 2. Setting $\gamma = 1 - (c_{\mu}^{1/2} \Gamma_T / (dT))^{2/3}$ and $\lambda = d \log(T)$ leads to,

$$R_T = \mathcal{O}\left(c_{\mu}^{-1/3} d^{2/3} \Gamma_T^{1/3} T^{2/3}\right)$$

Adding an assumption on the gap, i.e. assuming that for all t and all suboptimal $a \in \mathcal{A}_t$, $\mu(a_{t,\star}^{\top}\theta_t^{\star}) - \mu(a^{\top}\theta^{\star}) > \Delta$ and setting $\gamma = 1 - \sqrt{\frac{c_{\mu}\Gamma_T}{d^2T}}$ leads to,

$$R_T = \mathcal{O}\left(\Delta^{-1} c_{\mu}^{-1/2} d\sqrt{\Gamma_T T}\right)$$

Algorithm

Algorithm 1: SC-SW-GLUCB

Input: Probability δ , dimension d, regularization λ , upper bound for parameters S, sliding window length τ .

Initialization: $V = \lambda / c_{\mu} I_d$, $\hat{\theta} = 0_{\mathbb{R}^d}$

for $t \ge 1$ do

Receive \mathcal{A}_t , compute $\hat{\theta}_t$ according to Eq. (1) and β_t according to Eq. (??)

Play action $a_t = \operatorname{argmax}_{a \in \mathcal{A}_t} \mu(a^{\top} \hat{\theta}_t) + \frac{\beta_t^0}{\sqrt{c_u}} ||a||_{V_t^{-1}}$

Receive reward r_{t+1}

Updating phase:

if $t < \tau$ then

 $V_{t+1} \leftarrow a_t a_t^{\top} + V_t$

else

 $V_{t+1} \leftarrow a_t a_t^\top - a_{t-\tau} a_{t-\tau}^\top + V_t$

Experiments in Abruptly Changing Environments

Fig. 1: Regret of the different algorithms in a 2D abruptly changing environment averaged on 200 independent experiments and the 25% associated quantiles. (*left*) $c_u^{-1} = 400$, (*right*) $c_u^{-1} = 1000$

References

- [1] L. Faury, M. Abeille, C. Calauzènes, and O. Fercoq. Improved optimistic algorithms for logistic bandits. In *International Conference on Machine Learning*, pages 3052–3060. PMLR, 2020.
- [2] S. Filippi, O. Cappé, A. Garivier, and C. Szepesvári. Parametric bandits: the generalized linear case. In *Proceedings of the 23rd International Conference on Neural Information Processing Systems-Volume 1*, pages 586–594, 2010.
- [3] Y. Russac, O. Cappé, and A. Garivier. Algorithms for non-stationary generalized linear bandits. *arXiv preprint* arXiv:2003.10113, 2020.