This document serves as a memento for the preparation of (technical) reports. Never copy & paste directly any title or wording from this document.

General remarks

Suitable fonts for reporting are Verdana (10 pt size), Arial (10 pt), Times New Roman (12 pt) or Calibri (11 pt); normal margins and line spacing.

Write in active mode and avoid emotionally-branded or subjective formulations such as "... we see ..." or "... we believe that ...".

REPORT STRUCTURE

Foreword

- i) Table of Contents
- ii) List of figures
- iii) List of tables
- iv) Liste of abbreviations
- v) List of symbols (e.g., $g = \text{gravity constant } 9.81 \text{ } [m/s^2])$
- vi) Executive summary (abstract): summary of the report, including the most important findings and conclusions

Main document

1. Introduction

- describe the background and framework of the project
- if necessary: geographical location (scale and orientation of the maps!) and project environment
- describe objectives, attributions and averages to be used (here: in a superficial way)
- develop a checklist and timeline (through the definition of benchmarks)
- describe the structure of the document

2. Literature review & state of the art

- description of documents developed in the past (data)
- scientific literature & methods
- existing software & algorithms
- if applied study: presentation of sites (put pictures and plans, describe any site visit, if exhaustive: put in appendix)
- presentation of parameters (values) characteristic of the current or general conditions (e.g., bed slope, flow)

3. Methods

- process overview
- development of variants / scenarios for the solution of the problem (according to objectives, if necessary: draft plans)
- (calculation) methods

SSc Reporting 2020-05-06

- basic equations
- validity domain
- solution modes
- if applicable: presentation of software
 - all software beyond MS Office or Matlab (numerical models, Python or R packages)
 - software used should result from literature review
 - show basic equations and methodology
 - describe the application of the software (potential screenshots in the appendix)
- **Key element**: methods & hypothesis made within this project to analyze results

4. Results

- presentation of experiments / variants / scenarios (technical plans, designs CAD if necessary: extended tables and figures in the appendix)
- presentation of the results of the technical calculations for all variants and parameters (e.g., in tabular form and, if necessary, also as an appendix)
- if applicable: presentation of the results based on the software used (if necessary: also in the appendix)
- if applicable: presentation of financial calculations

5. Discussion

- comparison (analysis) of results
- proposal of a favorable solutions according to technical (and financial) results
- uncertainty & sensitivity analysis: identification of parameters that have a major influence and verification if results/observations are significant
- summary and detailed description of favorable solutions

6. Conclusions

- comprehensive and concise (not extensive!) summary of methods, calculations, variants and scenarios developed
- path that led to the choice of a favorable solution (conciseness!)
- recommendations during the calculations, project analysis and sensitivity analysis
- epilogue / future work (1 3 sentences maximum)

Acknowledgments

Appendix

References:

EXAMPLE JOURNAL: Schleiss, A. J., Peter, A., Fäh, R., et Scheidegger, C. (2008). Dynamische Lebensräume und Hochwasserschutz - Forschungsprojekt « Integrales Flussgebietsmanagement ». *Wasser Energie Luft*, 100(3):187–194.

EXAMPLE BOOK: Yalin, M. S. (1977). *Mechanics of sediment transport*, vol. 2. Pergamon press, Oxford and New York.

SSc Reporting 2020-05-06