

Badania Operacyjne wykład 3

Badania Operacyjne – I st. II rok AiR Katedra Automatyki i Robotyki Laboratorium Badań Operacyjnych i Systemowych

Problemy grafowe

Zagadnienia

- Problemy grafowe definicje modeli
 - Zagadnienie komiwojażera (ang. Traveling Salesman)
 - Najdłuższa ścieżka (ang. Longest Path)
 - Pokrycie wierzchołkowe (ang. Vertex Cover)
 - Zbiór dominujący (ang. Dominating Set)
 - Skojarzenie (ang. Matching)
 - Podział grafu (ang. Graph Partitioning)
 - Kolorowanie grafu (ang. Graph Coloring)
 - Izomorfizm grafu (ang. Graph Isomorphism)
 - Zagadnienie przydziału (ang. Assigment Problem)
- Algorytmy dedykowane
 - Algorytmy zachłanne dla TSP

Model matematyczny

- Model matematyczny procesu (którym może być zjawisko fizyczne, proces technologiczny, system ekonomiczny, system produkcji, transportu itd.) składa się z:
- zbioru zmiennych decyzyjnych (zmiennych projektowych, zmiennych "manipulacyjnych") oraz pozostałych parametrów opisujących problem,
- funkcji celu (lub zbioru funkcji celów), będącej matematycznym zapisem kryterium optymalizacyjnego,
- zbioru ograniczeń (warunków ograniczających).

- Model deterministyczny analityczne przedstawienie pojęcia, systemu lub działań, w którym dla danych wielkości wejściowych wyniki są określone jednoznacznie.
- Model niedeterministyczny model, w którym powiązania funkcyjne zależą od wielkości losowych. Dla danych wielkości wejściowych wyniki mogą być jedynie przewidziane zgodnie z zasadami probabilistyki.
- Model wartości oczekiwanych model, w którym wielkościom losowym zostały nadane ich wartości oczekiwane.

- Ze względu na charakter zbioru zmiennych decyzyjnych:
- Model optymalizacji dyskretnej, gdy zbiór zmiennych decyzyjnych jest skończonym zbiorem wartości dyskretnych, np. zgodnych z normami.
- Model optymalizacji ciągłej, bez ograniczenia zakresu zmiennych.

- Ze względu na liczbę funkcji celów (kryteriów optymalizacyjnych):
- Model optymalizacji skalarnej, gdy zadanie wykorzystuje tylko jedną funkcję celu.
- Model optymalizacji wielokryterialnej (wektorowej), z kilkoma funkcjami celu.

- Ze względu na rodzaj funkcji celu oraz ograniczeń:
- Model liniowy, gdy zarówno funkcja celu, jak i wszystkie ograniczenia są funkcjami liniowymi.
- Model nieliniowy, gdy funkcja celu lub chociaż jedno z ograniczeń ma charakter nieliniowy.
- Dyskretny zmienne decyzyjne są dyskretne
- Permutacyjny zmienne decyzyjne są permutacją pewnego zbioru

Model matematyczny

Tworząc model, należy wykorzystywać podejście systemowe.

Budowa modelu obejmuje:

- określenie zmiennych decyzyjnych,
- określenie funkcji celu,
- określenie obszaru dopuszczalnego (obszaru rozwiązań dopuszczalnych).

polega na znalezieniu minimalnego cyklu Hamiltona w grafie ważonym.

Nazwa pochodzi od wędrownego sprzedawcy (komiwojażera), który ma odwiedzić dokładnie jeden raz każde z n miast (gdzie znana jest odległość pomiędzy miastami) i wrócić do miasta początkowego.

Dany jest

- zbiór wierzchołków N={1,...,n}
- macierz odległości (n×n)-wymiarowa A=[a_{i,k}]

Należy znaleźć permutację $\pi = (\pi(1),...,\pi(n))$ elementów zbioru N, która minimalizuje funkcję celu $\phi(\pi)$:

$$\phi(\pi) = \sum_{i=1}^{n-1} a_{\pi(i)\pi(i+1)} + a_{\pi(n)\pi(1)}$$

Cykl Hamiltona

- to taki cykl w grafie, w którym każdy wierzchołek grafu występuje jeden raz. Znalezienie cyklu Hamiltona o minimalnej sumie wag krawędzi jest równoważne rozwiązaniu zagadnienia komiwojażera.
- Grafy zawierające cykl Hamiltona nazywamy hamiltonowskimi.
- Cykl Eulera to taka zamknięta droga w grafie, która przechodzi przez każdą jego krawędź dokładnie jeden raz.
- Grafy zawierające cykl Eulera nazywamy eulerowskimi.
- Symetryczne zagadnienie komiwojażera (STSP) polega na tym, że odległość z miasta A do B oraz z miasta B do A jest zawsze taka sama.
- Asymetryczne zagadnienie komiwojażera (ATSP) odległość z miasta A do B może być inna, niż odległość z miasta B do A.
- Otwarte zagadnienie komiwojażera (OTSP) nie tworzy cyklu, wierzchołek początkowy i końcowy nie jest zadany

Dany jest

- zbiór wierzchołków N={1,...,n}
- lacktriangle macierz odległości $(n \times n)$ wymiarowa $C = [c_{i,j}]$ Należy znaleźć rozwiązanie X, które minimalizuje funkcję celu:

min
$$f(\mathbf{X}) = \sum_{i=1}^{m} \sum_{j=1}^{m} c_{ij} x_{ij}$$
 ogr.
$$\sum_{i=1}^{n} x_{ij} = 1 \quad \text{dla } j = 1, \dots, n$$

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \text{dla } i = 1, \dots, n$$
 cykl Hamiltona gdzie
$$x_{ij} = \{0, 1\}$$

Definicja zadania programowania liniowego całkowitoliczbowego - formalizacja Miller-Tucker-Zemlin (MTZ):

Należy znaleźć rozwiązanie X: $x_{ij} = \begin{cases} 1 & \text{gdy droga zawiera odcinek z } i \text{ do } j \\ 0 & \text{w przeciwnym przypadku (wpp)} \end{cases}$

$$egin{aligned} \min \sum_{i=1}^n \sum_{j
eq i,j=1}^n c_{ij} x_{ij} \colon \ x_{ij} \in \{0,1\} & i,j=1,\dots,n; \ u_i \in \mathbf{Z} & i=2,\dots,n; \ \sum_{i=1,i
eq j}^n x_{ij} = 1 & j=1,\dots,n; \ \sum_{j=1,j
eq i}^n x_{ij} = 1 & i=1,\dots,n; \ u_i - u_j + n x_{ij} \le n-1 & 2 \le i
eq j \le n; \ 0 \le u_i \le n-1 & 2 \le i \le n. \end{aligned}$$

Definicja zadania programowania liniowego całkowitoliczbowego - formalizacja Dantzig-Fulkerson-Johnson (DFJ):

Należy znaleźć rozwiązanie X: $x_{ij} = \begin{cases} 1 & \text{gdy droga zawiera odcinek z } i \text{ do } j \\ 0 & \text{w przeciwnym przypadku (wpp)} \end{cases}$

$$egin{aligned} \min \sum_{i=1}^n \sum_{j
eq i,j=1}^n c_{ij} x_{ij} : \ 0 & \leq x_{ij} & \leq 1 & i,j=1,\dots,n; \ \sum_{i=1,i
eq j}^n x_{ij} & = 1 & j=1,\dots,n; \ \sum_{j=1,j
eq i}^n x_{ij} & = 1 & i=1,\dots,n; \ \sum_{i \in Q} \sum_{j \in Q} x_{ij} & \leq |Q|-1 & orall Q & \subsetneq \{1,\dots,n\}, |Q| & \geq 2 \end{aligned}$$

Algorytmy dla TSP

Algorytmy dokładne – tylko dla instancji o małym rozmiarze:

- Przegląd zupełny
- Programowanie dynamiczne,
- Metoda podziału i ograniczeń alg. Little'a
- Alg. Eastmana relaksacja problemu TSP do AP

Algorytmy przybliżone – rozwiązanie suboptymalne w akceptowanym czasie:

- Alg. najbliższego sąsiada (NN)
- Alg. GTSP, FARIN, MEARIN, ...
- Alg. przeszukiwania losowego
- Alg. Ewolucyjne
- **...**.

TSP – algorytm najbliższego sąsiada (NN)

- Algorytm zachłanny
- Złożoność $o(n^2)$ rozwiązanie nieoptymalny.
- Dolne ograniczenie dla instancji.

Etapy algorytmu:

- 1. Start z dowolnego wierzchołka (wierzchołek aktualny), który markujemy jako odwiedzony (wstawienie do rozwiązania).
- 2. Znajdź krawędź o najmniejszej wadze łączącą wierzchołek aktualny z nieodwiedzonymi wierzchołkami v.
- 3. Przejdź do v (wierzchołek aktualny).
- 4. Oznacz v jako odwiedzony (wstawienie do rozwiązania).
- 5. Jeżeli wszystkie wierzchołki V są odwiedzane: STOP zwróć sekwencję odwiedzonych wierzchołków.
- 6. Idź do kroku 2.

TSP - algorytm NN

Macierz A	1	2	3	4	5
1	∞	5	4	6	6
2	8	∞	5	3	4
3	4	3	∞	3	1
4	8	2	5	∞	6
5	2	2	7	0	∞

Wybrany wierzchołek początkowy - 1 Kolejność odwiedzonych wierzchołków: <1-3-5-4-2-1> Funkcja celu: 4+1+0+2+8=15.

 Repetitive Nearest Neighbour Algorithm – algorytm najbliższego sąsiada uruchamia się dla każdego wierzchołka początkowego i wybiera najlepsze z uzyskanych rozwiązań.

Algorytm zachłanny – G_TSP

G_TSP - ang. greed TSP

Krok 1: Uporządkuj łuki (krawędzie) wg wag w ciąg niemalejący:

$$a_{e_1} \le a_{e_2} \le \dots \le a_{e_n}$$

gdzie : $e_j \in E$ m - liczba łuków, tzn. m = |E|

Krok 2: Dla j=1 do m wykonaj:

dołącz e_j do rozwiązania, jeżeli nie powoduje to powstania podcyklu (podkonturu)

- Złożoność obliczeniowa kroku 1 sortowanie: O(m*log m)
- Złożoność obliczeniowa kroku 2 O(m)
- Dla zagadnienia asymetrycznego A_TSP: m≤(n-1)*n
- Dla zagadnienia symetrycznego S_TSP: $m \le 1/2*(n-1)*n$

TSP - FARIN

- Farthest Insertion Heuristik
- Algorytm zachłanny wstawienia najdalszego wierzchołka
- Złożoność $o(n^2)$ rozwiązanie nieoptymalny.
- Dolne ograniczenie dla instancji.
- Algorytm zaczyna się od rozwiązania (drogi komiwojażera), które składa się z jednego, losowo wybranego węzła.
- Wybierz "najdroższy" wierzchołek v (wierzchołek nieoznaczony najdalszy od aktualnej trasy)
- 3. Wstaw v do rozwiązania w "najtańszym" miejscu sekwencji
- 4. Jeżeli wszystkie wierzchołki V są odwiedzane: STOP zwróć sekwencję odwiedzonych wierzchołków.
- 5. Idź do kroku 2.

TSP - algorytm FARIN

Wybrany wierzchołek	początkowy – 1
---------------------	----------------

Wierzchołek – 4:
$$<1-4-1>=6+8=14$$

Wierzchołek – 5:
$$<1-4-5-1>=6+6+2=14$$

Wierzchołek – 3:
$$<1-3-4-5-1>=4+3+6+2=15$$

Wierzchołek – 2:
$$<1-2-4-3-5-1>=5+5+3+6+2=23$$

Rozwiązanie: <1-4-2-3-5-1>

Funkcja celu: 16

1	2	3	1	5
1	_	9	7	J

A

5

∞	5	4	6	6
8	∞	5	3	4
4	3	∞	3	1
8	2	5	∞	6
2	2	7	0	∞

TSP - NEARIN

- Nearest-Insertion-Heuristik
- Algorytm zachłanny wstawienia najbliższego wierzchołka
- Złożoność $o(n^2)$ rozwiązanie nieoptymalny.
- Dolne ograniczenie dla instancji.
- Algorytm zaczyna się od rozwiązania (drogi komiwojażera), które składa się z jednego, losowo wybranego węzła.
- 2. Wybierz najbliższy wierzchołek v (wierzchołek nieoznaczony najbliższy do wierzchołków rozwiązania)
- 3. Wstaw v do rozwiązania w "najtańszym" miejscu sekwencji
- 4. Jeżeli wszystkie wierzchołki V są odwiedzane: STOP zwróć sekwencję odwiedzonych wierzchołków.
- 5. Idź do kroku 2.
- RANDIN Random Insertion

Heurystyki dla TSP

Algorytm (heurystyka)	Тур	Złożoność obliczeniowa
Nearest-/ Farthest- Neighbor (NN, FN)	Konstrukcyjny	O(n²)
Farthest-Insertion (FARIN)	Konstrukcyjny	O(n²)
Nearest-Insertion (NEARIN)	Konstrukcyjny	O(n²)
Minimum Spanning Tree	Konstrukcyjny	$O(n^2log(n))$
Heurystyka Christofidesa	Konstrukcyjny	O(n³)
K-opt	Poprawy	O(k!) – każdy krok
Suma <i>n</i> najkrótszych krawędzi (LB)	Heurystyki podwójne	$O(n^2log(n))$
Długość minimalnego drzewa rozpinającego (MST + 2-Matching)	Heurystyki podwójne	$O(n^2 log(n))$

Przeszukiwanie zupełne

Pełny przegląd przestrzeni rozwiązań:

- Zagadnienie komiwojażera: TSP
- Zadanie testowe: graf
- Drzewo utworzonych rozwiązań
- cc.ee.ntu.edu.tw/~eda/Course/VLSIDesignAuto/LN/complexityOptimize.pdf

Metoda podziału i ograniczeń

- Porównanie drzewa rozwiązań (podproblemów) dla tego samego zadania testowego zagadnienia TSP
- Znalezione rozwiązanie optymalne: AEDCBFA
- Wartość funkcji celu: 20

Złożoność obliczeniowa

Zagadnienie permutacyjne - metoda pełnego przeglądu – 10¹² rozwiązań przeglądanych w czasie 1 sekundy

N	
6	72*10 ⁻¹¹ s
10	36*10 ⁻⁷ s
12	15*10 ⁻⁵ s
20	24*10 ⁵ s (17 dni)
25	16*10 ¹² s (500 000 lat)
30	27*10 ¹⁹ s (~8.5*10 ¹² lat - 700 *obecny wiek wszechświata)

Dla problem TSP (NP-trudny) algorytm dokładny ma złożoność O(n!), co praktycznie nie pozwala rozwiązywać instancji o rozmiarze n>20 wierzchołków.

Rozszerzenie TSP - problem VRP

Problem marszrutyzacji:

- Vehicle Routing Problem (VRP)
- wyznaczeniu optymalnych tras przewozowych dla pewnej ściśle określonej liczby środków transportu

Model matematyczny problemu VRP

Funkcja celu:

$$\min C = \sum_{r \in R} \sum_{f \in \Psi} \sum_{g \in \Psi} c_{fg} x_{fgr},$$

gdzie:

r – pojazd należący do zbioru jednorodnych (identycznych) pojazdów R,

 $f,\,g$ – wierzchołki pomiędzy, którymi odbywa się przewóz,

 c_{fg} – koszt przewozu pomiędzy wierzchołkami f i g,

 x_{fgr} – zmienna binarna określająca, czy pomiędzy wierzchołkami f i g pojazd r wykonuje przewóz.

Ograniczenia – jedna baza początkowa i końcowa:

$$orall_{r \in R} \sum_{g \in \epsilon} x_{0,g,r} = 1$$
 – dla bazy początkowej,

$$orall_{r \in R} \sum_{f \in \epsilon}^{s \in \epsilon} x_{f,n+1,r} = 1$$
 – dla bazy końcowej,

$$orall_{r \in R} \wedge orall_{f \in \Psi} \sum_{f \in \epsilon} x_{f,z,r} - \sum_{g \in \epsilon} x_{z,g,r} = 0$$
 – dla wierzchołków pośrednich.

Model matematyczny problemu VRP

Ograniczenia – jeden pojazd dla klienta, dostawy nie są dzielone:

$$orall_{f\in\Psi}\sum_{g\in\epsilon}\sum_{r\in R}x_{fgr}=1$$
 – warunek przypisania dokładnie jednego pojazdu, $orall_{f\in\epsilon}\wedgeorall_{g\in\epsilon}\wedgeorall_{r\in R}x_{fgr}\in\{0,1\}$ – warunek niedzielonych dostaw.

Ograniczenia – pojemności poszczególnych środków transportu (problem CVRP):

$$orall_{r \in R} \sum_{f \in \Psi} d_f \sum_{g \in \Psi} x_{fgr} \leqslant m_r,$$
 gdzie: d_f – popyt przypisany do danego klienta, m_r – pojemność pojazdów.

Model matematyczny problemu VRP

Ograniczenia - w problemach z oknami czasowymi:

$$orall_{r \in R} \wedge orall_{f \in \Psi} \wedge orall_{g \in \Psi} \ x_{fgr}(t_{fr} + t_{fg} - t_{gr}) \leqslant 0,$$
 gdzie: t_{fr} – czas rozpoczęcia obsługi klienta $f,$ t_{fg} – czas przejazdu pomiędzy f a $g,$ t_{gr} – czas rozpoczęcia obsługi klienta $g.$

Ograniczenia generują klasy problemów VRP:

Rozszerzenia problemu VRP

- problemy uwzględniające niesymetryczność kosztów przewozu pomiędzy wierzchołkami,
- problemy uwzględniające niehomogeniczność taboru,
- problemy uwzględniające przejazdy drobnicowe (Less Than Truckload),
- problemy uwzględniające ograniczenie maksymalnej długości trasy,
- problemy umożliwiające ustalenie baz (jednej lub kilku), w których pojazdy zaczynają i kończą podróż (Multiple Depot VRP),
- problemy umożliwiające dodanie baz pomocniczych (VRP with Satellite Facilities),
- problemy umożliwiające ustalenie częstotliwości odbioru/dostawy ładunku,
- problemy umożliwiające uwzględnienie okien czasowych (VRP with Time Windows) odbioru/wysłania towaru,

Rozszerzenia problemu VRP

- problemy wiążące problem marszrutyzacji z problemem kontroli zapasów u klientów,
- problemy uwzględniające możliwość obsługi jednego klienta przez kilka pojazdów (Split Delivery VRP),
- problemy w których kosztowa funkcja celu zastąpiona została innymi parametrami (np. czas wykonania zleceń, długość tras, ilość przewiezionego ładunku),
- problemy umożliwiające zdefiniowanie kolejności odwiedzania poszczególnych miejsc oraz opcjonalnego odwiedzania niektórych punktów,
- problemy uwzględniające możliwości zwrotów i wysyłki towarów przez klientów (VRP with Backhauls oraz VRP with Pick-Up and Delivery – problem rozwózkowo-zwózkowy),
- problemy, w których warunki zostały ujęte stochastycznie (Stochastic VRP).

Poszukiwanie najdłuższej ścieżki

- Zagadnienie jest wykorzystywane w metodach programowania sieciowego (CPM, PERT).
- W zarządzaniu projektem problem znalezienia ścieżki krytycznej określa ciąg czynności, których opóźnienie powoduje wydłużenie czasu realizacji całości projektu.
- Przykład: poszukujemy jaki jest minimalny czas produkcji samochodu, gdzie określono zbiór wymaganych czynności, ich następstwo oraz czasy realizacji.

Poszukiwanie najdłuższej ścieżki - cd

Zadania	Oznaczenie	Czas [h]	Poprzednik
Karoseria	А	1	-
Zawieszenie	В	2	Α
Silnik	С	2	В
Skrzynia biegów	D	3	В
Układ kierowniczy	E	2	С
Instalacja elektr.	F	5	D
Koła	G	1	С
Drzwi	Н	1	В
Malowanie	I	2	D
Okna	J	2	F
Wyposażenie w.	К	4	F
Test	L	2	J

Poszukiwanie najdłuższej ścieżki - cd

- Wierzchołki grafu skierowanego oznaczają zadania.
- Wprowadzono dwa dodatkowe wierzchołki s, f początkowy i końcowy.
- Wierzchołki u i v są połączone łukiem jeśli zadanie u musi być ukończone przed rozpoczęciem v.
- Wagi łuków wychodzących z wierzchołka odpowiadają czasowi realizacji zadania.

Harmonogram Gantt'a

16.	Naova zadania	Cz. 9W.	11	1	2	- 3	- 4	15	6.	17	10	10	10	11 12
3	Zadanie 21	10 de	V.	W	17777	merger	trem!	TOTAL	TTTTT	TIC:		-		U2 75%
1	Opracowanie zakrepu eledzy	20	4	7		1	90%		28	J.,		1	15	400
2	Przygotowanie dokumentacji	3.0	4			- 1	-		-14	100				
3	Druk material/or	1 doer	8		м	- 11			-	-	-09	b		
4	ISM 1 - Proygotowane materially scholenome	0.0	1			100		d.		0	40	1-07		
5	Wytyposanie pracouników	1 days	90		-1	-	- 1	014	00		200	Tr		
	ISM 2 - Lista wytypowanych przesenków	0.0	Ą.				4.4	5.03	0	-	-all			
7	Whypowanie transmire	2.0	4	in.	-		00%	40	4		711			
1	IM 3 - Lista treneróe	0.0	Ŋ.	1	711	4	05-02		153	edi -	ш			
	Scholenie zagraniczne trenerów	3 0	4.						-11	10%	εШ.			1 1
10	Egoamin kwalitikacyjny trenerów	1 day	9			161			-	Bh 19	×24			
11	ISM 4 - Certy/fikuty knul/fikuoyine trenerise	0.0	1							1	244	1	130	94 mile
12	Scholenie	2.0	4								**		-,0%	Strong or
13	Egzamin lovalitikacyjny dla pracouników	1 date	1										-	- ch
14	1945 - Certyfikaty krafifikacyjne pracounikó	0.0	4									100	0	€ 01-10.

Pokrycie wierzchołkowe

- Pokrycie wierzchołkowe grafu G to taki podzbiór jego wierzchołków, że każda krawędź G jest incydentna do jakiegoś wierzchołka z tego podzbioru.
- Pokryciem wierzchołkowym grafu G = (V,E) nazywamy taki zbiór V', że: $V' \subseteq V \land (\forall e \in E, \exists v \in V' : v \in e)$
- Problem optymalizacyjny poszukiwanie dla danego grafu pokrycia wierchołkowego o najmniejszy rozmiarze (liczbie wierzchołków)
- Problem decyzyjny czy istnieje w danym grafie pokrycie wierchołkowego o zadanym rozmiarze
- Przykład: CBA ma listę zamieszanych w aferę n polityków. Zna powiązania wzajemne polityków (kto się z kim komunikuje) i chce podsłuchiwać wszystkie ich rozmowy telefoniczne. Jaką minimalną liczbę podsłuchów musi zainstalować?

Pokrycie wierzchołkowe - cd

- Przyporządkowujemy wierzchołek do każdego polityka.
- Dwa wierzchołki łączymy krawędzią, jeśli politycy się znają.
- Krawędź (u,v) jest incydentna z wierzchołkami u oraz v.
- Wierzchołek należy do pokrycia krawędzi, jeśli jest z nią incydentny.
- Zbiór wierzchołków incydentnych z wszystkimi krawędziami nazywany jest pokryciem wierzchołkowym.
- Rozwiązywany problem polega na znalezieniu optymalnego pokrycia wierzchołkowego tzn. o minimalnej wielkości.

Pokrycie wierzchołkowe - cd

Pokrycie wierzchołkowe zabioru:

Najmniejsze pokrycie wierzchołkowe w grafie:

Zbiór dominujący

- **Zbiorem dominującym** grafu G = (V, E) nazywamy taki podzbiór V zbioru wierzchołków V, że każdy wierzchołek, który nie należy do V ma w tym zbiorze co najmniej jednego sąsiada (jest połączony krawędzią z przynajmniej jednym wierzchołkiem z V).
- Zwyczajowo przez γ(G) oznaczamy liczbę wierzchołków w najmniejszym zbiorze dominującym grafu G.
- •Przykład: Należy ostrzec grupę zamieszanych w aferę n osób przed planowana akcją CBA. Znane są powiązania między osobami (kto się z kim komunikuje). Które osoby (możliwie najmniej!) trzeba poinformować, aby za ich pośrednictwem dotrzeć do wszystkich zainteresowanych?

Zbiór dominujący - cd

- Zbiór dominujący (nie totalnie) w grafie:
- Zbiór totalnie dominujący taki zbiór dominujący V', w którym każdy wierzchołek z V' ma co najmniej jednego sąsiada V'
- Najmniejszy zbiór totalnie dominujący, liczba totalnego dominowania – 3:

Zbiór dominujący - cd

- Przyporządkowujemy wierzchołek do każdej z n osób.
- Dwa wierzchołki łączymy krawędzią, jeśli osoby się znają.
- Wierzchołek u jest przyległy (sąsiedni) do wierzchołka v jeśli są połaczone krawędzią (u,v).
- Wierzchołek jest dominujący do siebie i wierzchołków przyległych.
- Zbiór wierzchołków dominujących S jest podzbiorem zbioru wierzchołków takim, że każdy wierzchołek grafu jest dominowany przez wierzchołek z S.
- Rozwiązywany problem polega na znalezieniu optymalnego zbioru dominującego tzn. o minimalnej wielkości.
- Przykład rozwiązania:

Skojarzenie

- Skojarzeniem grafu nazywa się nie zawierający pętli podzbiór M krawędzi grafu E taki, że żadne dwie krawędzie w M nie są sąsiednie, tj. nie spotykają się w jednym wierzchołku.
- Wierzchołki będące końcami krawędzi należących do M są Mnasycone. Wierzchołki nie będące końcami krawędzi należących do M są M-nienasycone.
- Skojarzenie doskonałe to podzbiór M krawędzi grafu G, taki, że każdy wierzchołek G jest M-nasycony.
- Skojarzenie doskonałe jest zawsze skojarzeniem
 największym, tj. takim, że nie istnieje skojarzenie grafu G
 o większej liczbie krawędzi.
- Pary wierzchołków połączone bezpośrednio krawędzią należącą do M są skojarzone przez M.
- M-przemienna ścieżka to ścieżka ułożona naprzemiennie z krawędzi należących i nie należących do M.

Skojarzenie - 1

 Krawędź pokazuje, którego z kawalerów zna panna.

 W tej grupie istnieje skojarzenie doskonałe

Skojarzenie - 2

 Krawędź pokazuje, którego z kawalerów zna panna.

 W tej grupie nie istnieje skojarzenie doskonałe

Skojarzenie - cd

Przykład: zagadnienie kojarzenia małżeństw.

- Twierdzenie o kojarzeniu małżeństw (Philip Hall)- dotyczące istnienia pełnego skojarzenia grafu dwudzielnego
- Mamy dwie grupy dziewcząt P i chłopców Q, oraz pewną sieć znajomości, to znaczy wiemy, których chłopców z tej grupy zna każda z dziewcząt. Kiedy zachodzi sytuacja, w której każdej dziewczynie można przyporządkować jednego kandydata na męża? (kandydaci nie mogą się powtarzać)
- Warunkiem koniecznym i wystarczającym na to, by istniało takie skojarzenie par, jest to, by każda podgrupa dziewcząt, licząca kosób, znała co najmniej k-chłopców.

Skojarzenie - cd

Przykład zastosowania:

Zagadnienia maksymalnego i największego skojarzenia znajdują zastosowanie w wielu innych praktycznych problemach informatycznych, gdzie jednym z przykładów może być optymalny przydział zadań.

- Skojarzenie M nazywamy
 maksymalnym skojarzeniem, jeżeli nie zawiera się w żadnym innym skojarzeniu.
- Skojarzenie M o największej możliwej mocy nazywamy największym skojarzeniem i oznaczamy jako M*.

Zagadnienie podziału grafu

Dany jest

- nieskierowany, ważony graf G=(N,E)
- zbiór liczb $\{b_1, b_2, ..., b_m\}$, gdzie $b_i > 0$ dla i = 1, ..., m

Należy znaleźć podział zbioru N

$$X = (X_1, X_2, ..., X_i, ..., X_m)$$
, $X_i \subset N$ (i=1,...,m),

który maksymalizuje funkcję celu:

$$f(X) = \sum_{i=1}^{m} \sum_{j,k \in X_i} C_{jk} \tag{I}$$

przy ograniczeniach:

$$\bigcup_{i=1}^{m} X_{i} = N \qquad , \quad X_{i} \cap X_{k} = \emptyset \quad \mathsf{dla} \quad i \neq k \tag{II}$$

$$\sum_{j \in X_i} a_j \leq b_i$$
 $i = 1, ..., m$ (III)

gdzie:

- $a_j = (a_{1j}, a_{2j}, ..., a_{ij}, ..., a_{mj})$ waga wierzchołka $j \in N$
- c_{jk} waga krawędzi $jk \in E$
- ullet rozmiar punktu skupienia i
- lacktriangle m liczba punktów skupienia

Zagadnienie podziału grafu -cd

Przykład: grupowanie wyrobów i maszyn w elastycznych systemach wytwarzania

Liniowe rozmieszczenie maszyn w komórce i=1

 b_i – zasób – długość liniowego robota transportowego TR

 a_{ij} – zapotrzebowanie na zasób w komórce i maszyny j

 c_{jk} – wielkość transportu pomiędzy maszynami j oraz k

Celem jest taki podział maszyn między komórkami, który:

- Iub minimalizuje transport między komórkami

Zagadnienie podziału grafu -cd

Realizacja podziału grafu n=6/m=3

Algorytm klastrowania grafu

- Klasyczne wierzchołkowe zagadnienie kolorowanie grafu jest przypisaniem wszystkim wierzchołkom grafu – jednego z kolorów tak, aby żadne z sąsiednich wierzchołków nie miały tego samego koloru.
- Pokolorowanie wierzchołkowe jest poprawne (legalne, dozwolone) wtedy, gdy końcom żadnej krawędzi nie przypisano tego samego koloru.
- Optymalnym pokolorowaniem danego grafu nazywamy legalne pokolorowanie zawierające najmniejszą możliwą liczbę kolorów.
- Liczbą chromatyczną grafu G nazywamy liczbę równą najmniejszej możliwej liczbie kolorów potrzebnych do legalnego pokolorowania wierzchołków grafu G.
- Kolorowanie krawędziowe
- Twierdzenie o 4 barwach dla grafów planarnych (hipoteza -1852 r., dowód z komputerowym sprawdzeniem 1936-ciu przypadków szczególnych - 1976 r.)

Twierdzenie o czterech barwach – dla każdego skończonego grafu planarnego (V,E) istnieje funkcja $k:V \to \{k_1,k_2,k_3,k_4\}$, taka że $\forall_{\{v_1,v_2\}\in E} \ (k(v_1) \neq k(v_2))$, czyli możliwe jest przypisanie każdemu z jego wierzchołków jednej z czterech liczb 1, 2, 3 i 4 w taki sposób, aby żadne sąsiednie wierzchołki nie miały przyporządkowanej tej samej liczby. Jest to jeden z najsłynniejszych problemów matematycznych.

przydziału częstotliwości za pomocą kolorowania grafów

- Przykład: należy pokolorować mapę minimalną liczbą kolorów, tak aby każde dwa sąsiednie państwa miały różny kolor.
- Równoważność zagadnienia dla mapy i dla grafu

Problem NP-trudny – algorytmy przybliżone

Algorytm LF (largest first):

- Uporządkuj wierzchołki grafu malejąco według ich stopni (liczby krawędzi z nich wychodzących).
- Koloruj wierzchołki zachłannie, zgodnie z ustaloną wcześniej kolejnością (zaczynając od wierzchołka o największym stopniu).

Algorytm LF jest algorytmem statycznym, gdyż raz ustalona kolejność wierzchołków nie zmienia się w trakcie jego działania. Najmniejszym dość trudnym grafem jest ścieżka P_6

Algorytm SL (smallest last):

- Znajdź wierzchołek o minimalnym stopniu i usuń go z grafu.
- Powtarzaj krok pierwszy tak długo, aż graf będzie pusty (zapamiętaj kolejność usuwanych wierzchołków).
- Koloruj wierzchołki zachłannie, zgodnie z ustaloną wcześniej kolejnością (zaczynając od wierzchołków usuniętych później)

Alg. SL jest statyczny, jego złożoność wynosi O(n+m),

przydziału częstotliwości za pomocą kolorowania grafów –

Ile kolorów potrzeba, aby pokolorować (nieskończony) graf którego wierzchołkami są wszystkie punkty płaszczyzny euklidesowej a dwa punkty/wierzchołki są połączone krawędzią, jeśli znajdują się w odległości dokładnie 1?

http://www.deltami.edu.pl/temat/matematyka/zastosowania/2014/10/30/O_modelowaniu_przydzialu_czestot/

Izomorfizm grafu

- Grafy G i F nazywamy izomorficznymi, jeżeli istnieje bijekcja zbioru wierzchołków grafu G na zbiór wierzchołków grafu F, która zachowuje strukturę grafu (krawędzie).
- Rozstrzygnięcie, czy grafy G i F są tym samym grafem? (permutacja wierzchołków)

Izomorfizm grafu

- Izomorfizm grafów zachowuje właściwie wszystkie interesujące własności)
- Graf B jest izomorficzny z grafem A. Na rysunku podano bijekcję między wierzchołkami obu grafów.
- Graf C nie jest izomorficzny z grafem A, gdyż usunięcie dwóch zaznaczonych wierzchołków spowoduje, że graf przestanie być spójny. W grafie A takie wierzchołki nie istnieją.

Zagadnienie przydziału - AP

Dany jest

- zbiór zadań $N=\{1,...,n\}$
- zbiór maszyn $M = \{1,...,n\}$
- macierz kosztów przydziału $(n \times n) A = [a_{i,j}]$ Należy znaleźć rozwiązanie X, które minimalizuje funkcję celu:

min
$$f(X) = \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij} x_{ij}$$

ogr. $\sum_{i=1}^{n} x_{ij} = 1$ dla $j = 1, ..., n$
 $\sum_{j=1}^{n} x_{ij} = 1$ dla $i = 1, ..., n$
gdzie $x_{ij} = \{0, 1\}$

Algorytmy dla AP

- Sprawdzenie wszystkich przydziałów n!
- Efektywne algorytmy wielomianowe
- Problem przypisania jest szczególnym przypadkiem problemu transportowego, który jest szczególnym przypadkiem problemu minimalnego przepływu, który z kolei jest szczególnym przypadkiem programowania liniowego.
- Algorytm simpleks
- Metoda węgierska

Przykład zagadnienia

Elastyczny system produkcyjny składający się z n stanowisk roboczych z maszynami rozmieszczonych wokół przenośnika o ruchu okrężnym

Odległość pomiędzy stanowiskami $[d_{i,j}]_{n\times n}$:

$$d_{ij} = \begin{cases} j-i & \text{dla } i \leq j \\ n-i+j & \text{dla } i > j \end{cases}$$

$$\text{dla } i, j = 1, ..., n.$$

Liczba detali, na jednostkę czasu, które po obróbce na maszynie k są poddane dalszemu procesowi technologicznemu – na maszynie $l:[f_{kl}]_{n\times n}$.

Cel - zminimalizowanie sumarycznego czasu transportu detali, poprzez odpowiednie przydzielenie maszyn do stanowisk roboczych.

Przykład zagadnienia

D =	0	1	2	3	4	5
	5	0	1	2	3	4
	4	5	0	1	2	3
	3	4	5	0	1	2
	2	3	4	5	0	1
	1	2	3	4	5	0
						•

$$F = \begin{bmatrix} 0 & 1 & 3 & 4 & 1 & 3 \\ 1 & 0 & 1 & 5 & 1 & 1 \\ 3 & 1 & 0 & 2 & 1 & 1 \\ 4 & 5 & 2 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 2 \\ 3 & 2 & 3 & 1 & 2 & 0 \end{bmatrix}$$

Liczba możliwych przydziałów: 6!=720

$$4 \rightarrow 1$$

$$1 \rightarrow 4$$

$$2 \rightarrow 3$$

$$5 \rightarrow 2$$

$$6 \rightarrow 5$$

$$3 \rightarrow 6$$

$$\pi = (4, 5, 2, 1, 6, 3)$$

$$\sum_{i=1}^{6} \sum_{j=1}^{6} d_{ij} f_{\pi(i)\pi(j)} = 180$$

Model matematyczny zagadnienia

Dane są trzy $n \times n$ wymiarowe rzeczywiste macierze $F=(f_{ij}), D=(d_{kl})$ oraz $B=(b_{ik})$

f_{ij} przepływ (liczba połączeń) pomiędzy zadaniami *i* oraz *j*,
 d_{kl} odległość pomiędzy stanowiskiem *k* oraz *l* b_{ik} koszt związany z przydziałem zadania *i* do maszyny *k* n liczba maszyn oraz zadań, które mają zostać do siebie przyporządkowane

Do każdej maszyny przydzielamy jedno i tylko jedno zadanie oraz każde zadanie jest przydzielone do jednej maszyny

Chcemy zminimalizować całkowity koszt funkcjonowania systemu, związanego np. z kosztami transportu technologicznego (Quadratic Assignmnent Problem postać Koopmansa-Beckmana).

$$\min_{\pi \in S_n} \left\{ \sum_{i=1}^n \sum_{j=1}^n f_{ij} d_{\pi(i)\pi(j)} + \sum_{i=1}^n b_{i\pi(i)} \right\}$$

 $\pi = {\pi(1), ..., \pi(i), ..., \pi(j), ..., \pi(n)}$ permutacja zbioru $N = {1, 2, ..., n}$ S_n - jest zbiorem wszystkich n-elementowych permutacji

Literatura:

- [1] Wojciech Wawrzyniak Rozproszone algorytmy aproksymacyjne w analizie własności grafowych.
- [2] Wikipedia
- [3] Tw. Halla https://eszkola.pl/matematyka/problem-kojarzenia-malzenstw-5604.html

Pytania? Dziękuję za uwagę!