Review of Calc I

Linits

- Estimate with table or graph

- The value a function "should" take at a

point, regardless of what it actually does take.

$$f(2) = 1.5$$
 $f(3) = 1.5$

$$\lim_{x \to 2} f(x) = 1.5$$

$$\lim_{x \to 3} f(x) = 2$$

f is continuous if $\lim_{x \to a} f(x) = f(a)$ for all a

The previous f is continuous at 2, but not at 3.

Polynomials, sin, and cos all are continuous.

Think of continuity as being able to draw the graph of a function without picking up your pen

not confinious

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x).$$

$$\lim_{x \to a} (f(x)g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x)g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} g(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)) = \left(\lim_{x \to a} f(x)\right).$$

$$\lim_{x \to a} (f(x) + g(x)$$

Comeans only approach from the left

Derivatives

The derivative of a function f is a function f', where f'(x) is the slope of the tangent line to the graph of f at x.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The derivative measures rate of change.

Classic example: if s(t) is position at time t, then s'(t) is velocity at time t, and s''(t) = (s'(t))' is acceleration at time t.

f differentiable => f is continuous

You need to be continuous to have a chance
at being differentiable.

Also write & [f(r)] to mean f'(x)

$$\frac{d}{dx} \left[cf \right] = c \frac{d}{dx} \left[f \right]$$

$$(f+g)'=f'+g'$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$\frac{1}{2}\left[f(g(x))\right] = f'(g(x))g'(x)$$

$$E_{X}: \stackrel{q}{\Rightarrow} \left[Sin(x^3) \right] = \stackrel{q}{\Rightarrow} \left[Sin(x) \right]_{X^3} \stackrel{q}{\Rightarrow} \left[x^3 \right]$$

=
$$\cos(x^3) 3x^2 = 3x^2 \cos(x^3)$$

$$\frac{d}{dx} \left[\sin(x) \right] = \cos(x)$$

$$\frac{d}{dx} \left[\cos(x) \right] = -\sin(x)$$

$$\frac{d}{dx} \left[f^{-1}(x) \right] = \frac{1}{f'(f(x))}$$

$$\frac{d}{dx} \left[b^{\times} \right] = b^{\times} \ln(b)$$

$$\frac{d}{dx} \left[e^{\times} \right] = e^{\times} \qquad (b)$$

$$\frac{d}{dx} \left[\ln(x) \right] = \frac{1}{x}$$

Optimizing functions (i.e. finding extrema)

A critical point
$$x = a$$
 is a point where

 $f'(a)$ is zero or undefined.

f''' measures concavity of f V = concave up O concave down

Plug critical points into f'' to determine if they're maxima or minima: if $f''(a) \ge 0$, the function is concave down of a, and so a is a local maximom.

Inflection point: f"(a) = 0

L'Hôpital: if
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\frac{\infty}{\infty}$,

Hen
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$
.

$$Ex: \lim_{x \to \infty} \frac{x}{x^2} = \frac{\infty}{\infty}$$
, so $\lim_{x \to \infty} \frac{x}{x^2} = \lim_{x \to \infty} \frac{1}{2x} = 0$

We'll find the area under this curre
by taking better and better approximations
and then taking a limit. This will involve
adding a lot of small areas, so we
need tools for dealing with soms.

Def: Sigma notation. We write $\sum_{i=1}^{n} a_i$ to mean a_i + a_2 + a_3 + ... + a_n , and we read it as "sum from i=1 to n of a_i ".

i is called the index rariable (you can use any variable, not just i)

 $\frac{5}{\sum_{i=2}^{5} 3} = 3 + 3 + 3 + 3 + 3 = 12$ 0 = 0 = 0 0

$$\frac{1}{\sum (i-2)} = (-2-2) + (-1-2) + (0-2) + (1-2)$$

$$i=-2$$

$$= -4 - 3 - 2 - 1 = -10$$

$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} = \frac{5}{25} + \frac{1}{12}$$

(3)
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

$$(1+2)+(3+4)+(5+6)=(1+3+5)+(2+4+6)$$

$$E_{x}: \sum_{i=-5}^{4} i = \sum_{i=1}^{4} i + \sum_{i=1}^{4} i = (-5-4-3-2-1+0) + i = -5$$

$$(1+2+3+4) = -15+10=-5$$

$$k = 0$$

$$\frac{P_{rop}: \quad D}{\sum_{i=1}^{n} i = \frac{n(n+1)}{2}}$$

$$\frac{1}{3} \sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$Ex$$
. $|^2 + 2^2 + 3^2 + \cdots + |00|^2 = \sum_{i=1}^{100} i^2$

$$= \frac{100(101)(201)}{6} = 338350$$

$$E_X: 10^3 + 11^3 + 12^3 + \dots + 30^3$$

Were not starting at 1, 50 we can't

 $\frac{30}{\sum_{i=1}^{30}} = \frac{9}{\sum_{i=1}^{30}} = \frac{30}{\sum_{i=1}^{30}} =$

 $\frac{30^{2}(31)^{2}}{4} = \frac{a^{2}(10^{2})}{4} + \frac{30}{i=10}$

 $2|6225 = 2025 + \sum_{i=10}^{30} i^3$

 $\sum_{i=10}^{30} i^3 = 2|6|225 - 2025 = 2|4|200.$

Def: A partition of the interval [a,b] is a set $\{x_0, x_1, \dots, x_n\}$ such that $x_0 < x_1 < x_2 < \dots < x_n$ and $x_0 = a$ and $x_n = b$.

The partition is regular if all the x_i are the same distance from one another.

Ex: A partition of [2,5] is $\{2,2.1,2.9,3,4,5\}$.

A regular partition of [2,5] is {2,2.2, 2.4, 2.6, ..., 4.8,5}.

Def: Let f be a nonnegative function on

[a,b] and {xo, xi, ..., xn} a regular partition

of [a,b]. Let A be the area under the

graph of f on [a,b]. The left-endpoint

approximation of A is $L_n = \sum_{i=1}^n f(x_{i-1}) \Delta x$, where Δx is the distance between the x_i .

Note: this is a sum of rectangles. The width is Δx and the height is $f(x_{i-1})$.

Similarly, the right-endpoint approximation of A is $R_n = \sum_{i=1}^n f(x_i) \Delta x$,

Ex:

Ls is the sum of the areas of the purple rectangles.

Rs is the sum of the areas of the purple rectangles.

Ex: (on pute
$$R_2$$
, R_4 , and R_8 for $f(x) = x^2$ on $[0,2]$.

Comment: Is n gets bigger, this approximation

gets better. To make this work, we

need something slightly more general

than In or Rn.

Def: Let f be a nonnegative function on [a,b]. Let {xo,xi,--,xn} be a

regular partition of [a,b]. A Riemann sum of f on [a,b] with this partition is $\sum_{i=1}^{n} f(x_i^*) \Delta x$, where x_i^* is any x between x_{i-1} and x_i . (The idea is that x_i^* can be any point in the subinterval, not just the left or right endpoint.)

Def: Let f be as before. The opper sun

of f is the Riemann sum when every

xi* is chosen to maximize f on its

subinterval. The lower sum is the same,

but where the xi* are chosen to minimize

f.

upper sun:
$$\left(\frac{\pi}{6}, \frac{1}{2}\right) + \left(\frac{\pi}{6}, \frac{\sqrt{3}}{2}\right) + \left(\frac{\pi}{6}, \frac{1}{2}\right) + \left(\frac{\pi}{6}, \frac{\sqrt{3}}{2}\right) + \left(\frac{\pi}{6}, \frac{1}{2}\right)$$

$$= \frac{\pi}{6} \left(\frac{1}{2} + \frac{\sqrt{3}}{2} + 1 + 1 + \frac{\sqrt{3}}{2} + \frac{1}{2}\right)$$

$$= \frac{\pi}{6} \left(3 + \sqrt{3}\right)$$

lower sum =
$$\frac{\pi}{6} \left(\frac{1}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + \frac{1}{2} \right)$$

= $\frac{\pi}{6} \left(1 + \sqrt{3} \right)$

So, the area A under the graph of sin(x) on [0,T] satisfies $\frac{T}{6}(1+\sqrt{3}) \leq A \leq \frac{T}{6}(3+\sqrt{3})$

Thm: The grea A under the graph of f on [a,b] is $A = \lim_{n \to \infty} \left(\frac{n}{\sum_{i=1}^{n} f(x_i^*)} \Delta x \right)$

Def: let f be a nonnegative function on [a,b]. The definite integral of f on [a,b] is the area under the graph of f on [a,b], denoted $\int_{a}^{a} f(x) dx$, if the limit lim (\(\sum_{i=1}^{\infty} f(\times_i*) \D \times) \exists. If so, we say f is integrable on [a,b]. We call a and b the limits of integration and we read of f(x) dx as "integral from on to b of f(x) dx" (or "of f")

Thm: Continuous functions are integrable.

Comment: Right now, we have two ways to calculate an integral: use geometry if the function is simple, or we can use the limit def directly. This is similar to when you first learned about derivatives: for very simple functions like lines, you know the derivative already, and there is a limit def. There are a bunch of properties that make derivatives easier, and we'll have those for integrals eventually.

Ex: Find |x| dx.

$$\int_{-3}^{1} |x| dx = \frac{9}{2} + \frac{1}{2} = \frac{10}{2} = 5.$$

Ex: Evaluate
$$\int_0^2 t^2 dt$$

First, get a regular partition of [0,2] with a subintervals.

The width of each subinterval is $\frac{2}{n}$.

The ith subinterval is $\left[\frac{2}{n}(i-1), \frac{2}{n}i\right]$

Can pick xi* to be any point in that interval - let's pick the right endpoint in.

So, $\int_{0}^{2} x^{2} dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(\frac{2}{n}i) \frac{2}{n}$

$$=\lim_{n\to\infty}\sum_{i=1}^{n}\left(\frac{2}{n}i\right)^{2}\frac{2}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \frac{4}{n^2} i^2 \frac{2}{n}$$

$$=\lim_{n\to\infty}\frac{8}{n^3}\sum_{i=1}^n i^2$$

$$=\lim_{n\to\infty}\frac{8}{n^3}\left(\frac{n(n+1)(2n+1)}{6}\right)$$

$$= \lim_{n \to \infty} \left(\frac{3}{n^3} \cdot \frac{2n^3 + n^2 + 2n^2 + n}{6} \right)$$

$$= \lim_{N \to \infty} \left(\frac{2 \cdot 8}{6} + \frac{8 \cdot 3}{6n} + \frac{8}{6n^2} \right)$$

$$= \frac{2 \cdot 8}{6}$$