Generate Collection

Print

L5: Entry 5 of 13

File: DWPI

Sep 14, 2000

DERWENT-ACC-NO: 2000-622710

DERWENT-WEEK: 200060

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Fluid flow rate controller for semiconductor device manufacture, has control circuit which controls opening of flow adjustment valve so that flow rate of gas in pipe is made in accord with required flow rate

PATENT-ASSIGNEE: HIRAI KK (HIRAN)

PRIORITY-DATA: 1999JP-0049251 (February 26, 1999)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES I

MAIN-IPC

JP 2000250633 A

September 14, 2000

004

G05D007/06

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

JP2000250633A

February 26, 1999

1999JP-0049251

INT-CL (IPC): $G01 ext{ F } 1/00$; $G01 ext{ F } 1/66$; $G01 ext{ F } 15/02$; $G05 ext{ D } 7/06$

ABSTRACTED-PUB-NO: JP2000250633A

BASIC-ABSTRACT:

NOVELTY - The controller has ultrasonic $\underline{flow\ meter}\ (3)$ to measure $\underline{flow}\ of$ gas in gas pipe (2). Valve drive control circuit (5) controls the opening of $\underline{flow}\ adjustment$ valve (4) which adjusts $\underline{flow}\ of$ gas in the pipe. The circuit controls the valve so that mass $\underline{flow}\ rate$ of measured gas is made in accord with required $\underline{flow\ rate}$.

USE - For controlling <u>flow</u> of material gas, reactive gas supplied to reaction <u>chamber</u> during manufacture of <u>semiconductor</u> device, optical fiber etc.

ADVANTAGE - Flow control of gas by foreign materials e.g. dust is prevented as thin tubes like shunt pipe does not exist. Flow control of high temperature gas is enabled as controller has high heat resistance. Flow control is enabled accurately as pressure loss due to bypass mechanism is reduced.

DESCRIPTION OF DRAWING(S) - The figure shows the schematic \underline{block} diagram of gas \underline{flow} rate controller.

Gas pipe 2

Ultrasonic flow meter 3

Flow adjustment valve 4

Valve drive control circuit 5

ABSTRACTED-PUB-NO: JP2000250633A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.1/2

DERWENT-CLASS: S02 T06

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-250633

(P2000-250633A)

(43)公開日 平成12年9月14日(2000.9.14)

(51) Int.Cl.7		識別記号	FΙ			テーマコート*(参考)	
	7/06	-	G05D	7/06		Z 2F030	
	1/00		G01F	1/00	3	X 2F031	
0022	15/02	101		5/02		2F035	
# G01F	1/66		1/66		101 5H307		
			審査請求	未請求	請求項の数1	OL (全 4 頁)	
(21)出願番号		特顧平 11-49251	(71)出顧人	391055520			
				株式会社	生 平井		
(22)出顧日		平成11年2月26日(1999.2.26)		東京都中	中央区八丁堀17	丁目1番5号	
			(72)発明者	横井 日	4 —		
				東京都中	中央区八丁堀一	丁目1番5号 株式	
				会社平力	中内		
			(72)発明者	車川 ī	E男		
				東京都	中央区八丁堀一	丁目1番5号 株式	
				会社平力	炸内		
			(74)代理人	1000901	70		
				弁理士	横沢 志郎	(外1名)	
						最終頁に続く	

(54)【発明の名称】 液体質量液量コントローラ

(57)【要約】

【課題】 検出部分に目詰まりが生ずることがなく、耐熱性が高く、流量の多い場合においても精度良く流量制御を行うことの可能な流体質量流量コントローラを提案すること。

【解決手段】 流体質量流量コントローラ1は、ガス管2を流れるガスの流量を測定する超音波流量計3と、ガス管2を流れるガスの流量を調整するための流量調整バルブ4と、超音波流量計3によって測定されたガスの質量流量と目標ガスの質量流量を比較して、測定されたガスの質量流量が目標ガスの質量流量に一致するように、流量調整バルブ4の開度を制御するバルブ駆動制御回路5とを有している。熱式流量センサを備えている場合とは異なり、流量検出部分に目詰まりが生ずることがなく、耐熱性も高い。さらに、流量が多い場合でも精度良く流量制御を行うことができ、流量検出部分でガス流の圧損が生ずることもない。

【特許請求の範囲】

【請求項1】 制御対象の流体を流す流体流通管と、この流体流通管を流れる流体の流量を測定する超音波流量計と、流体の密度を知るための圧力センサーおよび温度センサーと、前記流体流通管を流れる流体質量流量を調整するための流量調整バルブと、前記超音波流量計の測定値に基づき、前記流体供給管を流れる流体質量流量が目標流量となるように前記流量調整バルブの開度を制御するバルブ駆動制御手段とを有することを特徴とする流体質量流量コントローラ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光ファイバー製造工程、半導体製造工程等において反応室に供給される材料ガス、反応ガス等の流量を制御するために用いる質量流量コントローラに関するものである。

[0002]

【従来の技術】光ファイバー製造工程、半導体製造工程等においては反応ガス等の流体を一定の質量流量で反応室等に供給する必要があり、このために熱式質量流量コントローラが利用されている。図2には従来の熱式質量流量コントローラの概略構成を示してある。

【0003】この図に示すように、従来の質量流量コントローラ10は、ガス供給管11に配置された熱式質量流量センサ12と、ガス供給管11を開閉する流量調整バルブ13と、このバルブ13の開閉を制御するバルブ駆動制御回路14とを備えており、ガス供給管11を流れるガス流量を検出して、当該ガス質量流量が目標質量流量に一致するように、流量調整バルブ13の開度が調整される。

【0004】ここで、熱式質量流量センサ12は、ガス 供給管11に接続された分流管15に取り付けた2つの 抵抗線の抵抗値が、分流管15を流れるガスの質量流量 に応じて変化する熱移動量を電気的な抵抗変化として検 出するものである。

【0005】ガス供給管11には分流管15への分流比を調整するために、通称バイパスと称する部位16が設けられており、その流量計のフルスケールの大きさによってバイパス16の圧力損失を調整し、フルスケールの大きさが変わっても分流管15へ分流する流量はほぼー 40定としている。

[0006]

【発明が解決しようとする課題】しかしながら、従来の流量コントローラは次のような解決すべき課題がある。すなわち、ガス供給管に細い分流管を接続して、ガス供給管を流れるガス流の一部を流量検出部分に導くようになっている。細い分流管にガスを流す必要があるので、ガス種によってはこのような細管部分に目詰まりが生ずるおそれがある。特に、塵や異物等が混在しているガスの流量を制御する場合にはこのような細管部分に目詰ま 50

りが発生しやすい。

【0007】また、熱式流量センサは、周囲温度変化の影響を避けるため、その動作温度は、周囲温度即ちガス温度よりも通常30℃以上高い温度になっているので、高温のガスの流量制御には向かいないという問題点がある。例えば、熱式質量流量計の場合には摂氏100度程度を越える温度のガスの流量計測には不向きである。このために、例えば、光ファイバーの製造工程における場合のようにガス種によっては反応ガスを得るために、液体材料を摂氏150度程度の高温にして気化させなければならない場合があり、このような高温ガスの流量計測および流量制御を行うことができない。

2

【0008】これに加えて、ガス流量が多い場合、例えば、500リットル/分程度以上のガス流量の場合には、流量制御を精度良く行うことができないという問題点がある。

【0009】本発明の課題は、このような従来の質量流量コントローラの問題点を解消可能な質量流量コントローラを提案することにある。

20 [0010]

【課題を解決するための手段】上記の課題を解決するために、本発明の流体質量流量コントローラは、制御対象の流体を流す流体流通管と、この流体流通管を流れる流体の流量を測定する超音波流量計と、流体の密度を知るための圧力センサーおよび温度センサーと、前記流体流通管を流れる流体流量を調整するための流量調整バルブと、前記超音波流量計の測定値に基づき、前記流体流通管を流れる流体質量流量が目標質量流量となるように前記流量調整バルブの開度を制御するバルブ駆動制御手段30とを有することを特徴としている。

[0011]

【発明の実施の形態】以下に図1を参照して本発明を適 用したガスの質量流量を調整するための流体流量コント ローラの一例を説明する。

【0012】本例の流体質量流量コントローラ1は、ガス管2と、このガス管2を流れるガス流量を測定するための超音波流量計3と、ガス管2を経由して流れるガス流量を調整するための流量調整バルブ4と、ガス管2を流れるガス流量が目標値に一致するように流量調整バルブ4の開度を制御するバルブ駆動制御回路5と、表示・入力部6を有している。

【0013】超音波流量計3は、ガス管2に取り付けた一対の送受波器31、32と、流体の密度を知るために取り付けられたガス流の温度および圧力をそれぞれ測定する温度計33および圧力計34と、これらの送受波器31、32で受信された超音波並びに測定された温度および圧力に基づき、ガス管2を流れるガス質量流量を算出する流量演算回路35とを備えている。

【0014】送受波器31、32は、それぞれから出射 した超音波を受信可能な位置に取り付けられており、本 例では図示のようにガス管内周壁で反射した反射波をそれぞれ受信可能な配置関係となっている。勿論、直接に超音波を送受信できるように一対の送受波器を対峙させた配置としてもよい。

【0015】流量演算回路35では、送受波器31、3 2で受信された超音波に基づき、伝搬速度差法あるいは ドップラー法により、ガス流の流速を算出し、算出した ガス流に基づきガスの体積流量を求める。また、検出さ れた温度および圧力に基づき、流体の密度を算出し、ガ スの体積から、その状態における質量流量に換算してい 10 る。

【0016】バルブ駆動制御回路5は、比較・制御部51と、バルブドライバ52とを備えており、比較・制御部51では、流量演算回路35によって算出されたガスの質量流量と目標とするガスの質量流量を比較して、ガスの質量流量が目標とするガスの質量流量に一致するように、バルブドライバ52を介して流量調整バルブ4の開度を調整する。

【0017】目標とするガスの質量流量は、例えば、表示・入力部6に配置されている流量設定キーあるいは流 20 量設定ダイヤル61を操作することにより設定できるようにしてもよいし、上位のコントローラ (図示せず)から入力するようにしてもよい。この表示・入力部6の表示画面62には測定されたガス質量流量を含む各種の情報が表示される。

【0018】流量調整バルブ4としては、流量が少ない場合には電磁式あるいは圧電式の比例バルブを使用し、流量が多い場合には電磁式を用いたパイロット式バルブあるいは電空式のバルブを用いることが望ましい。

[0019]

【発明の効果】以上説明したように、本発明の流体質量流量コントローラは流体質量流量計として超音波流量計を採用しているので、従来のコントローラのような分流管等の細管部分が存在しない。よって、塵等の異物が混在しているガスの流量制御を行うことが可能になる。また、耐熱性が高いので、高温ガスの流量制御も行うことが可能になる。更には、通称バイパスといわれる機構が存在しないので、圧損が発生することもない。これに加えて、流量が多い場合においても精度良く流量制御を行うことが可能になる。

【図面の簡単な説明】

【図1】本発明を適用した流体流量コントローラの主要 部分の概略構成を示す概略構成図である。

【図2】従来の流量コントローラを示す概略構成図である

【符号の説明】

- 1 流休流量コントローラ
- 2 ガス管
- 20 3 超音波流量計
 - 31、32 送受波器
 - 33 温度計
 - 34 圧力計
 - 35 流量演算回路
 - 4 流量調整バルブ
 - 5 バルブ駆動制御回路
 - 51 比較·制御部
 - 52 バルブドライバ
 - 6 表示·入力部

【図2】

【図1】

フロントページの続き

Fターム(参考) 2F030 CA03 CC11 CD15 CE02 CE04

CE22 CE27 CF05 CF08 CF20

2F031 AC01 AD10 AF10

2F035 DA07 DA09 DA12 DA14

5H307 AA02 BB01 DD01 DD17 EE02

EE07 EE12 FF05 FF12 FF15

GG15 HH04