

Film Cooling Effectiveness of Gas Turbine Blades Using Pressure Sensitive Paint

Samuel Burns, Department of Mechanical Engineering

Mentor: Dr. Lesley Wright

Graduate Supervisors: Anthony Salinas and Izzet Sahin

 $T_f(x,y)$

Motivation

Gas Turbine engine efficiency and performance

- Increase through enabling the turbine blades to withstand higher temperatures (Temperatures can exceed 3500°F [1]) using Film Cooling.
- Analyze the effectiveness to determine how well the coolant stays attached to the blade.

Film Cooling

- Coolant is passed through the turbine blades and ejects out of several strategically placed holes along the blades profile.
- The coolant sticks to the blade, creating a barrier between the high temperature gas and the blade surface.

<u>Results</u>

Lateral Averages of captured data using Nitrogen, Density Ratio(DR) = 1.0, as coolant.

DR = 1.0
S = 0.18 (100 RPM)
60 FPS

DR = 1.0
S = 0.36 (200 RPM)
60 FPS

DR = 1.0
S = 0.36 (200 RPM)
60 FPS

O.5

M = 0.5, 7/18/19 Trial
M = 0

Detailed Distribution Plots showing the film cooling effectiveness along the tested surface.

100RPM, 60 FPS

Desire a Film Temperature that is as close to the temperature of the

Approach/Methods

Verification of Cascade Wind Tunnel functionality

- Ensured the tunnel could obtain the desired mainstream velocity, measured with a pitot-static tube and digital manometer.
- The wake generator, used to simulate the rotation within the turbine, was verified to reach the desired RPM with a digital tachometer.
- Through several rotameters the desired volumetric flow conditions for the coolant were obtained.

Data Collection Through Pressure Sensitive Paint (PSP) and High-Speed Camera

- UV light excites paint causing it to fluoresce.
- The more oxygen present, the dimmer the fluorescence.
- Using gasses of different densities than air, like Nitrogen, a temperature difference between the coolant and mainstream is simulated.
- Nitrogen is used as the coolant gas. It is passed through the blade causing the amount of oxygen around the holes to decrease thus causing the PSP to fluoresce.
- Capture 200 images of the blade with a high-speed camera at various conditions (Black, reference, Air and Coolant).

Analysis of Data Using MATLAB

- Process the image sets into average intensity sets across the 200 images.
- Process the intensities into detailed distribution plots and lateral average plots which depict the film cooling effectiveness in the desired region.

0 5 10 15 20

X/D

0 5 10 15 20

X/D

Conclusion and Future Work

Coolant to ensure the surface stays intact.

- The wake generator rods were found to skew the data.
 - For each case around 1200 images was captured, of which at least 200 images did not have the rods.
- The data was found to be higher, on average, to that of Rallabandi et al. [2]. However, the data shows similar trends and are within an acceptable range.
 - Looking further into other similar experiments which appear to show trends comparable to the data collected.
- Overall effectiveness remains high in regions immediately surrounding ejection holes and tapers off in the downstream direction.
- There is an optimal blowing ratio to obtain max effectiveness as it decreases with larger blowing ratios.

Future Work

 With knowledge that the process functions as expected testing is now ready for a Fast Response PSP and studying a time resolved effectiveness.

References

0 5 10 15 20

X/D

[1] J.-C. Han, S. Dutta and S. V. Ekkad, Gas Turbine Heat Transfer and Cooling Technology, New York, NY: Taylor & Francis, 2000.

[2] A. P. Rallabandi, S.-J. Li and J.-C. Han, "Unsteady Wake and Coolant," ASME, p. 10, 2012.

Acknowledgements

This work is in collaboration with:

Dr. Lesley Wright¹, Anthony Salinas¹ and Izzet Sahin¹

¹Department of Mechanical engineering, Texas A&M University

0 5 10 15 20

X/D