1 Basic of Fourier Transform

If f(x) = f(x+T) then f(x) can be written as

$$f(x) = \sum_{-\infty}^{+\infty} c_k e^{\frac{2\pi i k x}{T}}$$

because

$$e^{\frac{2\pi ikx}{T}} = e^{\frac{2\pi ik(x+T)}{T}}$$

Based on orthogonality,

$$c_k = \frac{1}{T} \int_0^T f(x) e^{-i\frac{2\pi kx}{T}} dx$$

The above is the Fourier transform in continuous case, in discrete case If $x = n\Delta t$, where n = 1...N, and $T = N\Delta t$,

$$c_k = \frac{1}{N\Delta t} \sum_{n=1}^{N} f(n\Delta t) e^{-i2\pi k \frac{1}{N\Delta t} n\Delta t} d(n\Delta t) = \frac{1}{N} \sum_{n=1}^{N} f(n) e^{-i2\pi k \frac{n}{N}}$$

This is the discrete Fourier transform.

$$\Delta f = \frac{1}{T} = \frac{1}{N\Delta t} = \frac{F_s}{N}$$

Where F_s , N are the sample frequency and number of samples.

Properties

- 1) To be eligible, f(x) has to be a period function with time T. This leads to uniform sampling theorem used in signal processing. The uniform sampling theorem states w
- 2) If f(x) is real, which means $f(x) = f^*(x)$.

$$\sum_{-\infty}^{+\infty} c_k e^{2\pi i \frac{1}{T} kx} = \sum_{-\infty}^{+\infty} c_k^* e^{-2\pi i \frac{1}{T} kx} = \sum_{-\infty}^{+\infty} c_{-k} e^{2\pi i \frac{1}{T} kx}$$

 $\operatorname{so} c_k = c_{-k}^*, ||c_k|| = ||c_{-k}||.$

3) $c_k = c_{k+N}$. So when a signal contains frequency component no larger than B, in other words, the bandwidth of the signal is 2B(-B(to)B), then in order to capture the whole bandwidth of the signal, $N\Delta f > 2B$. This leads to Nyquist sampling theorem $F_s > 2B(bandwidth)$.

2 Fast Fourier Transform

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi k \frac{n}{N}}$$

let

$$u_k = e^{-i2\pi k \frac{n}{N}}$$

then we have the basis orthogonality

$$u_{k1}^T u_{k2} = N\delta_{k_1, k_2}$$

We recognize we can write X_k with even index terms and odd index terms

 $X_k = \text{ Even index parts } + \text{ Odd index parts}$

$$= \sum_{m=0}^{N/2-1} x_{2m} e^{-\frac{2\pi i}{N} 2mk} + \sum_{m=0}^{N/2-1} x_{2m+1} e^{-\frac{2\pi i}{N} (2m+1)k}$$
$$= \sum_{m=0}^{N/2-1} x_{2m} e^{-\frac{2\pi i}{N/2} mk}$$

(We can view this as Fourier Transform of N/2 even indexed points, where k is 0,1N/2) $+\,e^{-\frac{2\pi i}{N}k}$

$$\sum_{m=0}^{N/2-1} x_{2m+1} e^{-\frac{2\pi i}{N/2}mk}$$

(We can view this as Fourier Transform of N/2 odd indexed points, where k is 0.1N/2) (Since each part is a Fourier transform of N/2 points, k has to be smaller than N/2)

$$= E_k + e^{-\frac{2\pi i}{N}k} O_k$$

As noted, the above derivation is for k < N/2, a very similar derivation for N/2 <= k < N leads to

$$X_{k+N/2} = E_k - e^{-\frac{2\pi i}{N}k} O_k$$

Now we have divided the FFT of N points to two FFT with N/2 points Keep going till we reach the size to one, then combine together recursively.