Lab00-Proof

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* If there is any problem, please contact TA Haolin Zhou. * Name: Log Creative Student ID: Email: logcreative-lzl@sjtu.edu.cn

1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! - 1 and prove by contradiction)

Proof. Since n > 2,

$$n! > n! - 1 > 2n - 1 > 2n - n = n > 2$$

Then there exists a prime factor p for the positive integer n! - 1. We consider this prime factor $p \le n! - 1 < n!$ and prove it to be the specified prime satisfying p > n as well.

Prove by contradiction. Assume the constrcted prime $p \leq n$. As $n! = \prod_{i=1}^{n} i$ contains all the integer factors less than or equal to n,

$$p \mid n!$$

However, it is constructed that

$$p | n! - 1$$

so that

$$p = 1$$

because $-1 \not\equiv 0 \pmod{p} \Rightarrow n! - 1 \not\equiv n! \pmod{p}$ when p > 1. This contradicts the fact that p is a prime and the assumption does not hold.

As a result, The requested prime p satisfying n is found and the proposition holds.

2. Use the minimal counterexample principle to prove that for any integer $n \geq 7$, there exists integers $i_n \geq 0$ and $j_n \geq 0$, such that $n = i_n \times 2 + j_n \times 3$.

Proof. Construct the minimal counterexample set. It is to be proved that $\emptyset = S \subset A = \{n \in \mathbb{N} \mid n \geq 7\}$ of the numbers $n \in A$ for which $\forall i \geq 0, j \geq 0, n \neq i \times 2 + j \times 2$. **Prove by contradiction.** Assume $S \neq \emptyset$, then S has a least element followed by well-ordering principle. Let $m \in S$ be the least element.

It is observed that $7 = 2 \times 2 + 1 \times 3, 8 = 4 \times 2, 9 = 3 \times 3$, which results in $m \ge 9$. Consider the number $m - 2 \ge 7$. If $m - 2 \notin S$, $\exists i_{m-2}, j_{m-2} \in \mathbb{N}$ such that

$$m - 2 = i_{m-2} \times 2 + j_{m-2} \times 3$$

which leads to

$$m = (i_{m-2} + 1) \times 2 + j_{m-2} \times 3$$

and let $i_m \leftarrow i_{m-2} + 1, j_m \leftarrow j_{m-2}$ so that $i_m, j_m \in \mathbb{N}$ are constructed to satisfy $m = i_m \times 2 + j_m \times 3$, i.e., $m \notin S$, which could not be true as m is the element in S as provided.

Then, $m-2 \in S$. However, $7 \le m-2 < m$ contradicts m is the least number in S. So the assumption fails to hold and $S = \emptyset$.

3. Suppose the function f be defined on the natural numbers recursively as follows: f(0) = 0, f(1) = 1, and f(n) = 5f(n-1) - 6f(n-2), for $n \ge 2$. Use the strong principle of mathematical induction to prove that for all $n \in \mathbb{N}$, $f(n) = 3^n - 2^n$.

Proof. Prove by strong principle of mathematical induction. To show that $n \in \mathbb{N}$, $P(n): f(n) = 3^n - 2^n$ holds.

Basic step. As defined,

$$f(0) = 0 = 3^{0} - 2^{0}$$
$$f(1) = 1 = 3^{1} - 2^{1}$$

leads to P(0) and P(1) are correct.

Induction hypothesis. $k \geq 2$, and P(n) holds for every $0 \leq n \leq k$.

Statements to be shown in induction step. P(k+1) holds.

Proof of induction step. As it is defined that f(n) = 5f(n-1) - 6f(n-2) for $n \ge 2$,

$$f(k+1) = 5f(k) - 6f(k-1)$$

$$= 5(3^{k} - 2^{k}) - 6(3^{k-1} - 2^{k-1})$$

$$= (15 - 6) \times 3^{k-1} - (10 - 6) \times 2^{k-1}$$

$$= 3^{k+1} - 2^{k+1}$$

Therefore, P(k+1) holds.

By the strong principle of mathematical induction, $\forall n \in \mathbb{N}, f(n) = 3^n - 2^n$.

4. An *n*-team basketball tournament consists of some set of $n \geq 2$ teams. Team p beats team q iff q does not beat p, for all teams $p \neq q$. A sequence of distinct teams $p_1, p_2, ..., p_k$, such that team p_i beats team p_{i+1} for $1 \leq i < k$ is called a ranking of these teams. If also team p_k beats team p_1 , the ranking is called a k-cycle.

Prove by mathematical induction that in every tournament, either there is a *champion* team that beats every other team, or there is a 3-cycle.

Proof.

Definition 1 (beat). Denote $p \leftarrow q$ iff p beats team q; denote $q \rightarrow p$ iff q does not beat p.

Lemma 1 (ranking). There is always a ranking p_1, p_2, \dots, p_n for n-team tournament, where $n \geq 2$.

Proof of Lemma 1. Construct the ranking sequence by **mathematical induction** and inserting. To show that $n \in \{n \in \mathbb{N} \mid n \geq 2\}$, it is correct that Q(n): there is always a ranking for the n-team.

Basic step. When n=2,

$$p_1 \leftarrow p_2$$
 p_1, p_2 is a ranking or $p_2 \leftarrow p_1$ p_2, p_1 is a ranking

which shows Q(2) holds.

Induction hypothesis. $k \geq 3$, Q(k) holds.

Statements to be shown in induction step. Q(k+1) holds.

Proof of induction step. Consider inserting p_{k+1} into the remaining k-team ranking $p_1 \leftarrow p_2 \leftarrow \cdots \leftarrow p_k$. Begin inserting from p_1 , if $p_{k+1} \leftarrow p_1$, then $p_{k+1} \leftarrow p_1 \leftarrow p_2 \leftarrow \cdots \leftarrow p_k$ is the new ranking. Otherwise $p_1 \leftarrow p_{k+1}$, compare p_2 with p_{k+1} , if $p_{k+1} \leftarrow p_2$, then $p_1 \leftarrow p_{k+1} \leftarrow p_2 \leftarrow \cdots \leftarrow p_k$ is the new ranking and so on. The inserting algorithm could be interpreted as follows:

Algorithm 1: Construct New Ranking by Inserting

Input: A k-team ranking p_1, p_2, \dots, p_k , a new team p_{k+1}

Output: New (k+1)-team ranking

- 1 if $p_{k+1} \leftarrow p_1$ then
- $\mathbf{2} \quad \boxed{\mathbf{return} \ p_{k+1} \leftarrow p_1 \leftarrow p_2 \leftarrow \cdots \leftarrow p_k;}$
- \mathbf{s} for i=2 to k do
- 4 | if $p_{k+1} \leftarrow p_i$ then
- 5 \[\bigcup_{\text{return }}^{1 \text{ return }} p_1 \leftleftleftharpoonup \leftleftharpoonup p_{k+1} \leftleftharpoonup p_k;
- 6 return $p_1 \leftarrow p_2 \leftarrow \cdots \leftarrow p_k \leftarrow p_{k+1}$;

By such, we construct the new ranking and Q(k+1) holds.

By the principle of mathematical induction, the Lemma 1 holds.

Lemma 2 (champion). If there is a champion team among the ranking $p_1 \leftarrow p_2 \leftarrow \cdots \leftarrow p_n$, the champion team must be the head one, namely p_1 .

Proof of Lemma 2. Prove by contradiction. Assume the *champion* team is p_i other than p_1 , i.e., $2 \le i \le k$. Then there always exists a no-beating senario:

$$p_{i-1} \leftarrow p_i$$

which contradicts the definition of beating. The assumption fails to hold and the Lemma 2 is correct. $\hfill\Box$

Back to the original problem. According to Lemma 1, there always exists a ranking for n-team tournament:

$$p_1 \leftarrow p_2 \leftarrow \cdots \leftarrow p_n$$

Case 1: A *champion* team. If there is a *champion* team, it must be p_1 according to Lemma 2.

Case 2: A 3-cycle. Otherwise, no one could be the champion, which indicates that there exists p_m such that

$$p_1 \to p_m$$

where $3 \le m \le n$ because if m = 2, the following statements are contradictory:

$$p_1 \to p_2$$
 (assumption)
 $p_1 \leftarrow p_2$ (ranking)

By recusively investigating p_{m-1} , a 3-cycle could be constructed. If $p_{m-1} \to p_1$, then there is a 3-cycle p_1, p_{m-1}, p_m shown as follows:

$$p_1 \leftarrow \cdots \leftarrow p_{m-1} \leftarrow p_m \leftarrow \cdots p_n$$

Otherwise, investigate p_{m-2} and attempt to constrict the 3-cycle p_{m-2}, p_{m-1}, p_1 . Until p_3 is under investigating and now p_1, p_2, p_3 must be a 3-cycle.

$$p_1 \leftarrow p_2 \leftarrow p_3 \leftarrow \cdots \leftarrow p_n$$

The procedure above could be summarized by the following algorithm.

```
Algorithm 2: Construct 3-cycle by Shrinking the Range
Input: A k-team ranking p_1, p_2, \cdots, p_k, a winner p_m that p_1 \to p_m
Output: A 3-cycle

1 for j = m to 3 do
2 | if p_{j-1} \to p_1 then
3 | return p_1, p_{j-1}, p_j;
4 return p_1, p_2, p_3;
```

As a result, there must be a 3-cycle in this case.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.