

Functions Ex 2.5 Q4

Given that

$$A = \{1, 2, 3, 4\}, B = \{3, 5, 7, 9\}, C = \{7, 23, 47, 79\}$$

 $f:A\to B$ and $g:B\to C$ are two functions defined by f(x)=2x+1 and $g(x)=x^2-2$

Now.

$$g \circ f(x) = g(f(x)) = g(2x + 1) = (2x + 1)^2 - 2$$

Now,

$$f: A \rightarrow B$$
 given by $f(x) = 2x + 1$

Clearly f in one-one and onto, $\ \ \ \ f$ in bijective

$$\Rightarrow$$
 f^{-1} exist

$$\therefore \quad f^{-1} = \left\{ \left(3,1\right), \left(5,2\right), \left(7,3\right), \left(9,7_1\right) \right\}$$

Again, $g: B \to C$ given by $g(x) = x^2 - 2$

Clearly g in one-one and onto $\Rightarrow g^{-1}$ exists

$$g^{-1} = \{(7,3), (23,5), (47,7), (79,9)\}$$

$$f \circ^{-1} g^{-1} = \{(7,1), (23,2), (47,3), (79,4)\} \dots (A)$$

Now,
$$g \circ f(x) = 4x^2 + 4x - 1$$

Clearly gof in one-one and onto $\Rightarrow \left(g\circ f\right)^{-1}$ exists.

Hence,

$$(g \circ f)^{-1} = \{(7,1), (23,2), (47,3), (79,4)\} \dots (B)$$

From (A) & (B) we have
$$g \circ f^{-1} = f \circ^{-1} g^{-1}$$

Functions Ex 2.5 Q5

Given that $f: Q \rightarrow Q$ defined by f(x) = 3x + 5.

To prove that f is invertible, we need to prove that f is one – one and onto.

Let $(x,y) \in Q$ be such that, f(x) = f(y)

$$\Rightarrow 3x + 5 = 3y + 5$$

$$\Rightarrow x = y$$

So, f is an injection.

Let y be an arbitrary element of Q such that f(x) = y.

$$\Rightarrow 3x + 5 = y$$

$$\Rightarrow$$
 3 $x = y - 5$

$$\Rightarrow x = \frac{y - 5}{3}$$

Thus, for any $y \in Q$ there exists $x = \frac{y-5}{3} \in Q$ such that

$$f(x) = f\left(\frac{y-5}{3}\right) = 3\frac{y-5}{3} + 5 = y$$

Thus, $f:Q \rightarrow Q$ is a bijection and hence invertible.

Let f^{-1} denotes the inverse of f.

Thus,
$$f \circ f^{-1}(x) = x$$
 for all $x \in Q$

$$\Rightarrow f[f^{-1}(x)] = x \text{ for all } x \in Q.$$

$$\Rightarrow$$
 3f⁻¹(x) + 5 = x for all x \in Q.

$$\Rightarrow f^{-1}(x) = \frac{x-5}{3} \text{ for all } x \in Q$$

Functions Ex 2.5 Q6

 $f: \mathbf{R} \to \mathbf{R}$ is given by, f(x) = 4x + 3One-one:

Let
$$f(x) = f(y)$$
.

$$\Rightarrow 4x + 3 = 4y + 3$$

$$\Rightarrow 4x = 4y$$

$$\Rightarrow x = y$$

Therefore f is a one-one function.

Onto:

For $y \in \mathbf{R}$, let y = 4x + 3.

$$\Rightarrow x = \frac{y-3}{4} \in \mathbf{R}$$

Therefore, for any $y \in \mathbf{R}$, there exists $x = \frac{y-3}{4} \in \mathbf{R}$ such that

$$f(x) = f\left(\frac{y-3}{4}\right) = 4\left(\frac{y-3}{4}\right) + 3 = y.$$

Therefore, f is onto.

Thus, f is one-one and onto and therefore, f^{-1} exists.

Let us define $g: \mathbf{R} \to \mathbf{R}$ by $g(x) = \frac{x-3}{4}$

Now,
$$(g \circ f)(x) = g(f(x)) = g(4x+3) = \frac{(4x+3)-3}{4} = x$$

$$(f \circ g)(y) = f(g(y)) = f(\frac{y-3}{4}) = 4(\frac{y-3}{4}) + 3 = y-3+3 = y$$

Therefore, $gof = fog = I_R$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \frac{y-3}{4}$$
.

Functions Ex 2.5 Q7

 $f: \mathbf{R}_+ \to [4, \infty)$ is given as $f(x) = x^2 + 4$.

One-one:

Let
$$f(x) = f(y)$$
.

$$\Rightarrow x^2 + 4 = y^2 + 4$$

$$\Rightarrow x^2 = y^2$$

$$\Rightarrow x = y$$

$$[as x = y \in \mathbf{R}_+]$$

Therefore, f is a one-one function.

Onto:

For
$$y \in [4, \infty)$$
, let $y = x^2 + 4$.

$$\Rightarrow x^2 = y - 4 \ge 0$$

$$[as y \ge 4]$$

$$\Rightarrow x = \sqrt{y-4} \ge 0$$

Therefore, for any $y \in \mathbf{R}$, there exists $x = \sqrt{y-4} \in \mathbf{R}$ such that

$$f(x) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = y - 4 + 4 = y$$

Therefore, f is onto.

Thus, f is one-one and onto and therefore, f^{-1} exists.

Let us define $g: [4, \infty) \to \mathbf{R}_+$ by,

$$g(y) = \sqrt{y-4}$$

Now,
$$g \circ f(x) = g(f(x)) = g(x^2 + 4) = \sqrt{(x^2 + 4) - 4} = \sqrt{x^2} = x$$

And,
$$f \circ g(y) = f(g(y)) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = (y-4) + 4 = y$$

Therefore, $gof = fog = I_R$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \sqrt{y-4}$$
.

********* END *******