Class 8: Machine Learning Mini Project

Cynthia Lin

In today's mini project we will explore a complete analysis using the unsupervised learning techniques covered in class (clustering and PCA for now).

The data itself comes from the Wisconsin Breast Cancer Diagnostic Data Set FNA breast biopsy data.

 $\#\# \mathrm{Data}$ Import

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

	diagnosis radiu	s_mean	${\tt texture_mean}$	perimeter_mean	area_mea	n
842302	M	17.99	10.38	122.80	1001.	0
842517	M	20.57	17.77	132.90	1326.	0
84300903	M	19.69	21.25	130.00	1203.	0
84348301	M	11.42	20.38	77.58	386.	1
84358402	M	20.29	14.34	135.10	1297.	0
843786	M	12.45	15.70	82.57	477.	1
	smoothness_mean	compa	ctness_mean co	ncavity_mean c	oncave.po	ints_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean f	ractal	_dimension_mea	n radius_se te	xture_se	perimeter_se
842302	0.2419		0.0787	1.0950	0.9053	8.589
842517	0.1812		0.0566	0.5435	0.7339	3.398
84300903	0.2069		0.0599	0.7456	0.7869	4.585
84348301	0.2597		0.0974	4 0.4956	1.1560	3.445
84358402	0.1809		0.0588	0.7572	0.7813	5.438
843786	0.2087		0.0761	.3 0.3345	0.8902	2.217

```
area_se smoothness_se compactness_se concavity_se concave.points_se
842302
          153.40
                       0.006399
                                        0.04904
                                                     0.05373
                                                                         0.01587
           74.08
                       0.005225
                                                     0.01860
                                                                         0.01340
842517
                                        0.01308
84300903
           94.03
                       0.006150
                                        0.04006
                                                     0.03832
                                                                        0.02058
84348301
           27.23
                       0.009110
                                        0.07458
                                                     0.05661
                                                                        0.01867
84358402
           94.44
                       0.011490
                                        0.02461
                                                     0.05688
                                                                         0.01885
843786
           27.19
                       0.007510
                                        0.03345
                                                     0.03672
                                                                         0.01137
         symmetry_se fractal_dimension_se radius_worst texture_worst
842302
             0.03003
                                  0.006193
                                                   25.38
                                                                  17.33
842517
             0.01389
                                  0.003532
                                                   24.99
                                                                  23.41
84300903
             0.02250
                                  0.004571
                                                   23.57
                                                                  25.53
84348301
             0.05963
                                  0.009208
                                                   14.91
                                                                  26.50
                                                                  16.67
84358402
             0.01756
                                  0.005115
                                                   22.54
843786
             0.02165
                                  0.005082
                                                   15.47
                                                                  23.75
         perimeter_worst area_worst smoothness_worst compactness_worst
842302
                  184.60
                              2019.0
                                                0.1622
                                                                   0.6656
842517
                   158.80
                              1956.0
                                                0.1238
                                                                   0.1866
84300903
                   152.50
                              1709.0
                                                0.1444
                                                                   0.4245
84348301
                   98.87
                               567.7
                                                0.2098
                                                                   0.8663
84358402
                   152.20
                              1575.0
                                                0.1374
                                                                   0.2050
                                                                   0.5249
843786
                  103.40
                               741.6
                                                0.1791
         concavity_worst concave.points_worst symmetry_worst
                                         0.2654
842302
                  0.7119
                                                         0.4601
842517
                  0.2416
                                         0.1860
                                                         0.2750
84300903
                  0.4504
                                         0.2430
                                                         0.3613
                  0.6869
                                         0.2575
                                                         0.6638
84348301
84358402
                  0.4000
                                         0.1625
                                                         0.2364
843786
                  0.5355
                                                         0.3985
                                         0.1741
         fractal_dimension_worst
842302
                          0.11890
842517
                          0.08902
84300903
                          0.08758
84348301
                          0.17300
84358402
                          0.07678
843786
                          0.12440
```

Save your input data file into your Project directory

fna.data <- "WisconsinCancer.csv"
head(wisc.df)</pre>

	diagnosis rad	ius_mean	texture_mean	perimeter_mean	area_mean	
842302	M	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	smoothness_mea	an compa	ctness_mean co	ncavity_mean co	oncave.poi	nts_mean
842302	0.1184	10	0.27760	0.3001		0.14710
842517	0.0847	74	0.07864	0.0869		0.07017
84300903	0.1096	30	0.15990	0.1974		0.12790
84348301	0.142	50	0.28390	0.2414		0.10520
84358402	0.1003	30	0.13280	0.1980		0.10430
843786	0.1278	30	0.17000	0.1578		0.08089
	symmetry_mean	fractal	_dimension_mea	n radius_se tex	kture_se pe	erimeter_se
842302	0.2419		0.0787	1 1.0950	0.9053	8.589
842517	0.1812		0.0566	7 0.5435	0.7339	3.398
84300903	0.2069	0.2069		9 0.7456	0.7869	4.585
84348301	0.2597		0.0974	4 0.4956	1.1560	3.445
84358402	0.1809		0.0588	3 0.7572	0.7813	5.438
843786	0.2087		0.0761	3 0.3345	0.8902	2.217
	area_se smooth	ness_se	compactness_s	e concavity_se	concave.po	oints_se
842302	153.40	0.006399	0.0490	4 0.05373		0.01587
842517	74.08	0.005225	0.0130	8 0.01860		0.01340
84300903	94.03	0.006150	0.0400	6 0.03832		0.02058
84348301	27.23	0.009110	0.0745	8 0.05661		0.01867
84358402	94.44	0.011490	0.0246	1 0.05688		0.01885
843786	27.19	0.007510	0.0334	5 0.03672		0.01137
	symmetry_se fr	ractal_d	imension_se ra	dius_worst text	ture_worst	
842302	0.03003		0.006193	25.38	17.33	
842517	0.01389		0.003532	24.99	23.41	
84300903	0.02250		0.004571	23.57	25.53	
84348301	0.05963		0.009208	14.91	26.50	
84358402	0.01756		0.005115	22.54	16.67	
843786	0.02165		0.005082	15.47	23.75	
	perimeter_wors	st area_v	worst smoothne	ss_worst compa	ctness_wor	st

842302	184.60	2019.0		0.1622	0.6656
842517	158.80	1956.0		0.1238	0.1866
84300903	152.50	1709.0		0.1444	0.4245
84348301	98.87	567.7		0.2098	0.8663
84358402	152.20	1575.0		0.1374	0.2050
843786	103.40	741.6		0.1791	0.5249
	concavity_worst	concave.poir	nts_worst	symmetry_worst	
842302	0.7119		0.2654	0.4601	
842517	0.2416		0.1860	0.2750	
84300903	0.4504		0.2430	0.3613	
84348301	0.6869		0.2575	0.6638	
84358402	0.4000		0.1625	0.2364	
843786	0.5355		0.1741	0.3985	
	fractal_dimension	on_worst			
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402		0.07678			
843786		0.12440			

Remove the diagnosis column and keep it in a separate vector for later.

```
diagnosis <- as.factor(wisc.df[,1])
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

	radius_mean te	xture_mean	perimete	er_mean	area_mean	smoothness_mean
842302	17.99	10.38		122.80	1001.0	0.11840
842517	20.57	17.77		132.90	1326.0	0.08474
84300903	19.69	21.25		130.00	1203.0	0.10960
84348301	11.42	20.38		77.58	386.1	0.14250
84358402	20.29	14.34		135.10	1297.0	0.10030
843786	12.45	15.70		82.57	477.1	0.12780
	compactness_mea	an concavit	y_mean o	concave.	points_mea	n symmetry_mean
842302	0.277	60	0.3001		0.1471	.0 0.2419
842517	0.0786	64	0.0869		0.0701	.7 0.1812
84300903	0.1599	90	0.1974		0.1279	0.2069
84348301	0.2839	90	0.2414		0.1052	0.2597
84358402	0.1328	30	0.1980		0.1043	0.1809
843786	0.170	00	0.1578		0.0808	0.2087
	fractal_dimens:	ion_mean ra	adius_se	texture	e_se perime	ter_se area_se

040000	,	07074	4 0050	0.0050	0 500	450 40
842302			1.0950	0.9053	8.589	
842517			0.5435	0.7339	3.398	
84300903			0.7456	0.7869	4.585	
84348301			0.4956	1.1560	3.445	
84358402			0.7572		5.438	
843786			0.3345	0.8902	2.217	
	smoothness_se co	-		•	-	
842302	0.006399	0.049		.05373	0.01	
842517	0.005225	0.013		.01860	0.013	
84300903		0.040		.03832	0.020	
84348301	0.009110	0.074		.05661	0.018	
84358402	0.011490	0.024		.05688	0.018	
843786	0.007510	0.033		.03672	0.013	
	symmetry_se frac					
842302	0.03003		006193	25.38		. 33
842517	0.01389		003532	24.99		
84300903			004571	23.57		
84348301	0.05963	0.0	009208	14.93	1 26	.50
84358402	0.01756	0.0	005115	22.54	16	. 67
843786	0.02165	0.0	005082	15.47	7 23	.75
	<pre>perimeter_worst</pre>	${\tt area_worst}$	smoothne	ss_worst o	compactness_v	vorst
842302	184.60	2019.0		0.1622	0	.6656
842517	158.80	1956.0		0.1238	0	. 1866
84300903	152.50	1709.0		0.1444	0	. 4245
84348301	98.87	567.7		0.2098	0	.8663
84358402	152.20	1575.0		0.1374	0	. 2050
843786	103.40	741.6		0.1791	0	.5249
	<pre>concavity_worst</pre>	concave.po	ints_wors	t symmetry	y_worst	
842302	0.7119		0.265	4	0.4601	
842517	0.2416		0.186	0	0.2750	
84300903	0.4504		0.243	0	0.3613	
84348301	0.6869		0.257	5	0.6638	
84358402	0.4000		0.162	5	0.2364	
843786	0.5355		0.174	1	0.3985	
	fractal_dimension	n_worst				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

##Exploratory data analysis The first step of any data analysis, unsupervised or supervised,

is to familiarize yourself with the data.

Q1. How many observations are in this dataset?

```
nrow(wisc.data)
```

[1] 569

Q2. How many of the obserations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

B M 357 212

Q3. How many vairables/features in the data are suffixed with _mean?

first find the column names

colnames(wisc.data)

```
[1] "radius_mean"
                                "texture_mean"
 [3] "perimeter_mean"
                                "area_mean"
 [5] "smoothness_mean"
                                "compactness_mean"
 [7] "concavity_mean"
                                "concave.points_mean"
 [9] "symmetry_mean"
                                "fractal_dimension_mean"
[11] "radius_se"
                                "texture_se"
[13] "perimeter_se"
                                "area_se"
[15] "smoothness_se"
                                "compactness_se"
[17] "concavity_se"
                                "concave.points_se"
[19] "symmetry_se"
                                "fractal_dimension_se"
[21] "radius_worst"
                                "texture_worst"
[23] "perimeter_worst"
                                "area worst"
[25] "smoothness_worst"
                                "compactness_worst"
[27] "concavity_worst"
                                "concave.points_worst"
[29] "symmetry_worst"
                                "fractal_dimension_worst"
```

Next I need to search within the column names for "_mean" pattern. The grep() function might help here.

```
inds <- grep("_mean", colnames(wisc.data))
length(inds)</pre>
[1] 10
```

Q. How many dimesnions are in this dataset?

```
ncol(wisc.data)
```

[1] 30

Principal Component Analysis

First do we need to scale the data before PCA or not.

```
apply(wisc.data, 2, sd)
```

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
${\tt compactness_mean}$	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
${\tt symmetry_mean}$	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	fractal_dimension_mean
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se
6.170285e-03	3.018606e-02	1.790818e-02
radius_worst	${\tt fractal_dimension_se}$	symmetry_se
4.833242e+00	2.646071e-03	8.266372e-03
area_worst	perimeter_worst	texture_worst
5.693570e+02	3.360254e+01	6.146258e+00
${\tt concavity_worst}$	compactness_worst	${\tt smoothness_worst}$
2.086243e-01	1.573365e-01	2.283243e-02
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
1.806127e-02	6.186747e-02	6.573234e-02

LOOKS LIKE WE NEED TO SCALE.

```
#Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, scale = TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                           PC19
                                                                   PC20
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                                  PC25
                          PC22
                                  PC23
                                         PC24
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion
                       1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

44.27%

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

3 PCs capture 72%

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

7 principal components are required to describe at least 90% of the original variance in the data.

PC plot

we need to make our plot PC1 vs PC2 (aka score plo, PC-plot, etc.). The main result of PCA...

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis)
```


biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

The biplot is difficult to understand as everything is crowded together and overlapping each other. It is impossible to read and decipher what it says or interpret much from this plot.

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

This graph is good because we can see a separation of the malignant and bengign samples. We can also see the clustering.

using ggplot

```
library(ggplot2)
pc <- as.data.frame(wisc.pr$x)
pc$diagnosis <- diagnosis
ggplot(pc, aes(PC1, PC2, col=diagnosis)) + geom_point()</pre>
```


This PCA plot shows a separation of the Malignant from Benign samples. Malignant is blue and red is Benign. Each point is a sample and those with similar characteristics should cluster together.

variance explained

We can get this form the output of the summary() function.

```
summary(wisc.pr)
```

Importance of components:

	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Standard deviation	3.6444	2.3857	1.67867	1.40735	1.28403	1.09880	0.82172
Proportion of Variance	0.4427	0.1897	0.09393	0.06602	0.05496	0.04025	0.02251
Cumulative Proportion	0.4427	0.6324	0.72636	0.79239	0.84734	0.88759	0.91010
	PC8	PCS	PC10	PC11	PC12	PC13	PC14
Standard deviation	0.69037	0.6457	0.59219	0.5421	0.51104	0.49128	0.39624
Proportion of Variance	0.01589	0.0139	0.01169	0.0098	0.00871	0.00805	0.00523
Cumulative Proportion	0.92598	0.9399	0.95157	0.9614	0.97007	0.97812	0.98335
	PC15	PC1	l6 PC1	.7 PC:	18 PC:	L9 PC2	20 PC21
Standard deviation	0.30681	0.2826	0.2437	2 0.2293	39 0.2224	14 0.1765	52 0.1731

```
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                         PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Calculate the variance of each principal component by squaring the sdev component of wisc.pr (ie wisc.pr\$sdev^2) save the result as an object called pr.var.

```
#calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

```
[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357
```

Calculate the variance explained by each principal component by dividing by the total variance explained of all principal components.

#Examine the PC loadings

How much do the original variables contribute to the new PCs that we have calculated? To get at this data we can look at the \$rotation component of the returned PCA object.

head(wisc.pr\$rotation[,1:3])

	PC1	PC2	PC3
radius_mean	-0.2189024	0.23385713	-0.008531243
texture_mean	-0.1037246	0.05970609	0.064549903
perimeter_mean	-0.2275373	0.21518136	-0.009314220
area_mean	-0.2209950	0.23107671	0.028699526
smoothness_mean	-0.1425897	-0.18611302	-0.104291904
compactness_mean	-0.2392854	-0.15189161	-0.074091571

Focus on PC1 >Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

The component of the loading vector for the feature concav.points_mean is

```
wisc.pr$rotation["concave.points_mean",1]
```

[1] -0.2608538

There is a complicated mix of variables that go together to make up PC1 = i.e. there are many of the original variables that together contribute highly to PC1.

```
loadings <- as.data.frame(wisc.pr$rotation)
ggplot(loadings) + aes(PC1, rownames(loadings)) + geom_col()</pre>
```


Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

The minimum number of principal components required to explain 80% of the variance of the data is 3 principal components.

Hierarchal Clustering

The goal of this section is to do hierarchal clustering or the original data.

First we will scale the data, then distance matrix, then helust

```
wisc.hclust <- hclust( dist( scale (wisc.data)))</pre>
```

plot(wisc.hclust)

Cluster Dendrogram

dist(scale(wisc.data))
hclust (*, "complete")

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

plot(wisc.hclust) + abline(h=19.5, col="red", lty=2)

Cluster Dendrogram

dist(scale(wisc.data))
hclust (*, "complete")

integer(0)

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

Cut this tree to yield cluster membership vector with cutree() function.

```
grps <- cutree(wisc.hclust, h=19)</pre>
  table(grps)
grps
           3
177
      7 383
               2
  table(grps, diagnosis)
    diagnosis
            М
grps
      12 165
       2
            5
   3 343
          40
       0
```

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

I like the method where we used ward.D2 gives my favorite results for the same data.dist dataset because it minimizes the amount of variance within the clusters. It also looks more separated and organized in my opinion.

#Combine methods: PCA and HCLUST

My PCA results were interesting as they showed a separation of M and B samples along PC1.

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis)
```


I want to cluster my PCA results - that is use wisc.pr\$x as input to hclust() 'Try clustering in 3 PCs, that is PC1, PC2, PC3 as input

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")</pre>
```

My resulting figure

```
plot(wisc.pr.hclust)
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Lets cut this tree into 2 groups/clsuters

```
grps <- cutree(wisc.pr.hclust, k=2)
table(grps)

grps
1  2
203 366

plot(wisc.pr$x[,1], wisc.pr$x[,2], col=grps)</pre>
```


How well do the two clusters separate the M and B diagsosis

```
table(grps, diagnosis)

diagnosis
grps B M
    1 24 179
    2 333 33

(179 + 333) / nrow(wisc.data)
```

[1] 0.8998243

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

```
d <- dist(wisc.pr$x[,1:7])
wisc.pr.hclust <- hclust(d, method="ward.D2")
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)</pre>
```

```
# Compare to actual diagnoses
table(wisc.pr.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.pr.hclust.clusters B M
1 28 188
2 329 24
```

I think that the newly created model with four clusters separates out the two diagnoses well because it is more concise and clear. I am more able to see the clustering and separation of the malignant and benign groups compared to earlier models.