Progress Presentation

AI CONTENT MODERATION SYSTEM

LEELA SAI RAPARLA, NIKHIL VISHWANATH, RISHABH NAIR, PRINCE RUSWEKA RWABONGOYA

2 in 3 People Often Encounter Hate Speech Online

Share of people who have encountered hate speech online and where they think it is most prevalent (in %)*

Where do you think hate speech/disinformation is most widespread?**

- * Includes hate speech or incitement to violence found online on social networks, the "comments" section of articles or online instant messaging
- ** Respondents could select up to two answers

8,000 respondents (18+ y/o) surveyed across 16 countries between Aug. 22-Sep. 25, 2023

Source: Ipsos

Motivation/ Objective

THE OBJECTIVE OF THIS PROJECT IS TO DEVELOP AN AI-POWERED CONTENT MODERATION SYSTEM THAT ACCURATELY CLASSIFIES TEXT INTO TWO CATEGORIES: HATE SPEECH AND NOT HATE SPEECH.

Kaggle Hate Speech Data Set

- 3 Categories
 - Hate Speech
 - Expresses hate towards a specific group
 - o Offensive Language
 - Profane or abusive language
 - Does not target a particular group
 - Neutral Content
 - Non-offensive language

Detail	etail Compact Column						7 of 7 colur	
F	# hate_speech	=	# offensive_language =	# neither =	# cl	ass =	≜ tweet string	
9	0	7	0 9	0 8	0	2	24783 unique value	
	0		0	3	2		"@rugbysocklad: lads! Nice gear http://t.co/Thn 1M" these scall lads n trainers would get	
	0		3	0	1		"@rugbysocklad: yeah bro! http://t.co/9yI 6c" fuck yeah s scally lad in h gear	
	0		3	0	1		"@rugbysocklad: Helping out a m http://t.co/eMN Oj" I love scal play. Fuck yeah	
	0		2	1	1		"@rugbysocklad: being Lads! http://t.co/f3U OF" fuck yeah. love scally lad action. Hot tr.	

Data Visualizations

- •The dataset is imbalanced, with most tweets labeled as offensive language (class 1).
- •Hate speech (class 0) is less frequent.
- •Neutral content (class 2) is the least common category.

Data Preprocessing

Removing URLs, mentions, hashtags, special characters, and common stopwords.

```
import re
basic_stopwords = set([
    "a", "an", "the", "and", "or", "but", "if", "while", "with", "without", "about",
    "against", "between", "into", "through", "during", "before", "after", "above", "below",
    "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again", "further",
    "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both",
    "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only",
    "own", "same", "so", "than", "too", "very"
1)
# Define a function to clean the tweet text without nltk stopwords
def clean text(text):
    text = text.lower() # Convert to lowercase
    text = re.sub(r'http\S+|www\S+', '', text) # Remove URLs
    text = re.sub(r'@\w+', '', text) # Remove mentions
    text = re.sub(r'#\w+', '', text) # Remove hashtags
    text = re.sub(r'[^a-z\s]', '', text) # Remove special characters and numbers
    text = ' '.join([word for word in text.split() if word not in basic stopwords]) # Remove basic stopwords
```

AI Model: Naïve Bayes

```
MultinomialNB()
```

```
y_pred = model.predict(X_test_vectors)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100}%")
```

Accuracy: 84.94956287827841%

https://www.geeksforgeeks.org/multinomial-naive-bayes/

Ethical Implications

Bias detection

- Potential disproportionate flagging in language of certain communities/groups
 - Mitigation strategy: bias audit (evaluation of the data set to identify biases) + threshold adjustments (modifying classification threshold based on attributes like race/gender)
- False positive/negatives + incorrect flagging of non-hateful tweets
 - Lead to false censorship of non-hateful tweets / hateful tweets can bypass moderation (disguised language)
 - Mitigation strategy: human-in-the loop review (human involvement in the AI system to accurately review AI content flags/decisions)
- o Reflection: Accuracy vs. Inclusivity
 - Strict moderation → less hate speech, over censorship
 - Lenient moderation → free speech, risk of harmful content bypassing

https://www.titanml.co/glossary/human-in-the-loop

Potential Improvements to Model

https://www.scientificamerican.com/article/humans-absorb-bias-from-ai-and-keep-it-after-they-stop-using-the-algorithm/

- Diverse & Balanced Data Ensure training data represents different dialects, cultures, and contexts.
- Context-Aware Features Use n-grams and word embeddings to capture meaning beyond single words.
- Hybrid Model Approach Combine Naïve Bayes with deep learning (e.g., BERT, LSTMs) for better accuracy.
- Bias Detection & Fairness Checks Regularly audit model predictions to ensure fair treatment across groups.
- Human-Al Collaboration Use Al to flag content, but let human moderators review complex cases.

Plan to Finish Project

- Data Collection & Preprocessing Choose a dataset, clean the text, and convert it into numerical features using CountVectorizer or TfidfVectorizer.
- Model Training & Evaluation Train a Naïve Bayes, split the data, and evaluate using accuracy, precision, recall, and F1-score.
- Bias & Ethical Analysis Examine whether the model disproportionately flags certain groups, analyze dataset fairness, and propose improvements.
- Visualization & Reporting Create performance visualizations and summarize findings in a report
- Presentation Preparation Develop slides with key insights on model performance, bias, and ethical considerations for the final presentation

Thank You

Any Questions?