PROJECT REPORT

IOT BASED GAS LEAKAGE MONITORING ALTERTING SYSTEM FOR INDUSTRIES

TEAM ID: PNT2022TMID49709

TEAM LEAD: SUBAITHA G

TEAM MEMBER 1: GAYATHRI G
TEAM MEMBER 2: SAKTHI PRIYA R
TEAM MEMBER 3: TAMIL SELVI P

1 INTRODUCTION

1.1 OVERVIEW

The Internet of Things is a developing theme of specialized, social, and monetary centrality. Customer items, tough goods, cars and trucks, modern and utility segments, sensors, and other regular articles are being joined with Internet availability and amazing information systematic capacities that guarantee to change the manner in which wework, live, and play. The expansive scale usage of IoT gadgets guarantees to change numerous parts of the manner in which we live. For shoppers, new IoT items like Internet-empowered machines, home mechanization parts, and vitality the executive's gadgets are pushing us toward a dream of the "savvy home", offering greater security and vitality effectiveness. The Internet of Things (IoT) is an essential theme in innovation industry, strategy, and designing circles. IoT frameworks like arranged vehicles, savvy traffic frameworks, and sensors implanted in streets and scaffolds draw us nearer to "brilliant urban areas", which help limit clogand vitality utilization. IoT innovation offers the likelihood tochangehorticulture, industry, and vitality creation and dissemination by expanding the accessibility of International Journal of Scientific Researchin Science and Technology data along the esteemchain of generation utilizing arranged sensors.

Block diagram:

Technical Architecture:

Structural Architecture:

Literature Survey:

Title/Author name	Year	Technique	Findings
Gas leakage monitoring andalerting system E. Jebamalar Leavline1 , D. Asir AntonyGnanaSingh2 , B. Abinaya3 H. Deepika4	2017	Gas sensor	The sensor used to monitor indoor natural gas on the basis and will sound the alarmif the gas exceedsthe limit
Gas leakage monitoring andalerting system Rohan Chandra Pandey1 , Manish Verma2 , Lumesh Kumar Sahu3	2017	Air pollution monitoring gassensor andraspberry pi	It's necessary to detect the components of theair. It usedin smoke detector
Gas leakage monitoring andalerting system Pranay Meshram1, StutiMendhekar2, Renuka Gadge3, Nancy shukla4, Shivani Kanaskar5	2019	Android app, Gas leakage, IoT,LPG, Sensors	If gas is detects, the red lightwill light up the buzzer will activate then the system sends a notification massage

Gas leakage detection andalerting system R. Sudha, S. ArunPrasad.	2022	Node MCU, smartphone, gassensor	It's open-source platform based on ESP8266 it can connect object and let data transfer using Wi-Fi protocols
Gas leakage monitoring andalerting system using Arduino Ayesha siddika, ImamHossain	2018	Gas sensor,GSM module, microcontroller	It's a device that uses GSM mobile telephone technology to provide a wireless data linkto network
Gas pipe leakage detectionand altering system using IoT Pala Mahesh Kumar, SumanMishra	2019	Raspberry pi, LPG Sensor	MQ sensors are used to detect the concentration ofgasand it's Also used in gasdetecting equipment
Gas leakage monitoring system using MQ 5 sensor Muhammad Ahmad baballe, Usman Yusuf, magashi, munzali surajo	2018	MQ 5 sensor, Arduino,detection system	Arduino is a microcontrollerboard based on the Atmega328p

Reference:

- ➤ 2013.Arun Raj, Athira Viswanathan, Athul T S, "LPG Gas MonitoringSystem", International Journal of Innovative Technology andResearch, Volume 3, Issue 2, February 2015, Pg − 1957 to 1960.
- ➤ S Shyamaladevi, V. G. Rajaramya, P. Rajasekar, P. SebastinAshok, "ARM7 based automated high-performance systemfor LPGrefill booking & leakage detection", Journal of VLSI Design and Signal Processing", Volume 3, Issue 2, 2014.
- ➤ S. Sharma, V. N. Mishra, R. Dwivedi, R. Das, "Classification gases/odours using Dynamic Response of Thick FilmGas SensorArray", IEEE Conference on Sensors Journal, 2013.
- ➤ Ankit Sood, Babalu Sonkar, Atul Ranjan, Mr. Ameer Faisal, "Microcontroller Based LPG Gas Leakage Detector Using GSMModule", International Journal of Electrical and Electronics Research, Volume 3, Issue2, AprilJune 2015.
- ➤ Rajeev B. Ahuja, Jayant K. Dash, Prabhat Shrivastava, "A comparative analysis of liquefied petroleum gas (LPG) and kerosene related burns", Burns, Volume 37, Issue 8, December 2011.
- ➤ Shivalingesh B. M, Ramesh C, Mahesh S. R, Pooja R, Preethi K. Mane, Kumuda S, "LPG Detection, Measurement and Booking System", IJRSI, Volume 1, Issue 4, November 2014.

Problem Statement:

Gas Leaks from equipment can become dangerous. Conductingroutine leak detection inspections to a facility can help prevent unexpected incidents. By Installing gas leakage detection systemtoprevent these unexpected incidents.

l am	I am worker who was working in an industries.	
I am trying to	I want to device which will detect gas leakage in industries.	
But	There is no device to detect gas leakage and alerting system in industries.	
Because	There is no installation of gas leakage detecting device to identify gas leakage.	
Which makes me feel	Which will makes me to feel confusion.	

Example:

Problem Statement (PS)	(Customer)	I'm trying to	But	Because	Which makes me feel
PS-1	worker	detect leakage in gas	it is difficult to identify leakage in gas	there is no device for identifying gas leakage.	confusion
PS-2	Chemical Engineer	to detect gas leakage with detail of temperature	it is difficult to identify leakage in	there is no device for identifying gas leakage.	frustration

Ideation and Proposed solution:

Empathy map canvas:

Ideation and Brainstorming:

Proposed Solution:

S. No	Parameter	Description
1.	Problem Statement (Problem to be solved)	People using LPG in their life, so this is to ensure the safe usage of LPG usage in homes.
2.	Idea / Solution description	*Detection of gas leakage *Automatic shut Off Valve *Alerting thecustomer through text Notification
3.	Novelty / Uniqueness	The use of DC motor helps to close the nob immediately if gas leakage is sensed notification will automatically alert the customer through GSM module notification. Hence, we can avoid explosion in industries/house.
4.	Social Impact / Customer Satisfaction	Customers can be live freely withoutthe worry of gas leakage.
5.	Business Model (Revenue Model)	*Low Budget *Easy to fix *Quick actionof an incident *No worries of anyleakage explosion
6.	Scalability of the Solution	After Sending Notification Automatic Alarms to be fixedin the House/Industries if any gas leakage occurs.

Problem Solution fit:

Requirement Analysis:

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story/ Sub-Task)
FR-1	User Registration	Registration through OTP
		Registration throughGmail
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User Dashboard	Can access the dashboard

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	To determine thetype of Gas leak in the
		industries
NFR-2	Security	Manage the safetyand security of the
		customer
NFR-3	Reliability	The system is more reliable because of
		itsQuick response and system security.
NFR-4	Performance	Because of the system efficiency
		theSystem Performance are high
NFR-5	Availability	Low availability sometimes because ofthe
		Slow network connection.
NFR-6	Scalability	Only the User can be accessing the data.

Project Design:

Data Flow Diagram:

Techincal Architecture:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	Mobile App	IOT Platform
2.	Application Logic-1	Mobile App to identify theGas leak	Python
3.	Application Logic-2	Gets the location of the leakage data fromdatabase	IBM Watson IoT API Call data
4.	Application Logic-3	Converts the Data intoa text Notification andalert	IBM Watson Assistant
5.	Database	Incident location and kind of leakage	MySQL
6.	Cloud Database	Call the data IBM Cloud is used anduserlogincredentials	IBM DB2, IBM Cloudant
7.	File Storage	App code and IoT credentials are stored andAPIkeys	IBM Block Storage
8.	External API-1	To get the status of location of gas leak	IBM box status API
9.	External API-2	To get the login credentials in IBM DB2	Username andPassword API
10.	Machine Learning Model	To convert theGas leak location and toalert for averting Incident	Notification alert
11.	Infrastructure (Server/ Cloud)	To hostthe server and application	Cloud Foundry, Node Red

Table-2: Application Characteristics:

S.N Ch	aracteristi O	Description	Technology
1.	Open-Source Frameworks	To develop the application interface, we use IOT Device	IOT Device
2.	Security Implementations	To secure the userslogin credentials andpersonal information	IBM Watson IOT platform
3.	Scalable Architecture	To scale the application database	IBM Auto scaling
4.	Availability	To make use the application anddataare available 24/7	IBM Cloud loadbalancer
5.	Performance	To increase the performan ce the application in hosted in the high-performance instance	IBM instance

User Stories:

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through OTP	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering Login Id & password		High	Sprint-1
	Dashboard					

Project planning and Scheduling:

Step 1: Creating IBM Watson and Node red.

Step 2: Connecting the flow with IBM modules with node red package.

Step 3: By using Python we have connecting with Ibm aunthenication keys.

Testing:

Test case 1:

Industries at normal temperature, it is not alerted.

Test case 2:

Due to gas leakage in industries, this circuit model is alerting through Alarm. It will be monitor and rectify by workers inindustries

```
#include <LiquidCrystal.h>
```

```
LiquidCrystal lcd(5,6,8,9,10,11);
```

```
int redled = 2;
int greenled = 3;
int buzzer = 4;
int sensor = A0;
int sensorThresh = 180;
void setup()
{
pinMode(redled, OUTPUT);
pinMode(greenled,OUTPUT);
pinMode(buzzer,OUTPUT);
pinMode(sensor,INPUT);
Serial.begin(9600);
```

```
lcd.begin(16,2);
}
void loop()
int analogValue = analogRead(sensor);
Serial.print(analogValue);
if(analogValue>sensorThresh)
digitalWrite(redled,HIGH);
digitalWrite(greenled,LOW);
tone(buzzer,1000,10000);
lcd.clear();
lcd.setCursor(0,1);
lcd.print("Alert");
delay(1000);
lcd.clear();
lcd.setCursor(0,1);
lcd.print("Evacuvate");
delay(1000);
}
else
{
digitalWrite(greenled,HIGH);
digitalWrite(redled,LOW);
noTone(buzzer);
lcd.clear();
lcd.setCursor(0,0);
lcd.print("SAFE");
delay(100);
lcd.clear();
lcd.setCursor(0,1);
lcd.print("All Clear");
delay(1000);
}
}
```

List of components:

Name	Quantity	Component
GAS1	1	Gas Sensor
PIEZO1	1	Piezo
M1	1	DC Motor
S2	1	Pushbutton
D1	1	Red LED
Rpot2	1	250 kΩ Potentiometer
R1,R3	2	1 kΩ Resistor
R2	1	330 Ω Resistor
U2	1	LCD 16 x 2
U3	1	Arduino Uno R3

Arduino UNO R3:

Arduino Uno R3 is one kind of ATmega328P basedmicrocontroller board. It includes the whole thing required toholdupthe microcontroller; just attach it to a PC with the help of a USBcable, and give the supply using AC-DC adapter or a battery to get started. Theterm Uno means "one" in the language of "Italian" and was selectedformarking the release of Arduino's IDE 1.0 software. The R3 ArduinoUnoisthe 3rd as well as most recent modification of the Arduino Uno. Arduinoboard and IDE software are the reference versions of Arduinoandcurrently progressed to new releases.

Breadboard:

A breadboard is a widely used tool to design and test circuit. Youdo not need to solder wires and components to make a circuit whileusing a bread board. It is easier to mount components &reusethem. Since, components are not soldered you can change your circuit designat any point without any hassle.

LED:

LED (Light Emitting Diode) is an optoelectronic device whichworkson the principle of electro-luminance. Electro-luminance is the property of the material to convert electrical energy into light energy andlater it radiates this light energy. In the same way, the semiconductor in LED emits light under the influence of electric field

Resistor:

A passive electrical component with two terminals that are usedforeither limiting or regulating the flow of electric current in electrical circuits.

Gas Sensor:

A gas sensor is a device which detects the presence or concentration of gases in the atmosphere. Based on the concentration of the gas thesensor produces a corresponding potential difference by changingtheresistance of the material inside the sensor, which can be measured asoutput voltage. Based on this voltage value the type and concentration of the gas can be estimated.

LCD 16*2: 16×2:

LCD is one kind of electronic device used to displaythemessage and data. The term LCD full form is Liquid Crystal Display. The display is named 16×2 LCD because it has 16 Columns and 2 Rows. it can be displayed (16×2=32) 32 characters in total and each character will be described of 5×8 Pixel Dots.

Circuit Diagram:

Advantage and Disadvantage:

Advantage:

- ☆ This project helpful for detecting gas leakage in Industries
- ☆ Component and Equipment are more efficient
- ☆ Lower power consumption and reliable.
- ☆ It is also used in house for LPG gas leakage

Disadvantage:

- ★ Location cannot be identify where gas leaking because thereareseveral areas contain gas cylinder.
- ☆ It is sensitivity depends on Humidity and Temperature.
- ☆ Without Internet, This will not run and work
- ☆ Installation is difficult.

Conclusion:

After this project performance, can conclude that detection the LPG gas leakage is incredible in the project system. Applicable usefully in the industrial and domestic purpose. In danger situations we are abletosave the life by using this system. An alert is indicated by

theGSMmodule. A sensor node senses gas like CO2, oxygen, propane. Theestimated range of transmission and consumption of power is obtained. The simple procedures and Arduino UNO Micro controller area usedtobuild the sensor.