Geometria simplética

Contents

1	Aula 11.1 Origem da geometria simplética1.2 Formalismo hamiltoniano (simplificado)1.3 Evolução temporal (equações de Hamilton)1.4 Álgebra linear simplética	2 2 2 3 5
2	Aula 22.1Subespaços de evs	6 6 7
3	Aula 3	10
4	Aula 4	10
5	Aula 5 5.1 Forma tautológica no fibrado cotangente	10 10
6	Aula 66.1 Colchete de Poisson6.2 Teorema de Darboux	13 13 15
7	Aula 77.1 Subvariedades	17 17 17 18 18
8	Aula 88.1 Alguns exemplos de subvariedades lagrangianas	19 19 20
9	Aula 9 9.1 Aplica ção ao teorema de Darboux	22 22 24 25 26
10	Monitoria 2	26
11	Aula 10	26
12	Aula 11	31

1 Aula 1

Além do material do curso, uso bastante Lee, Intro. to Smooth Manifolds, e Tong, Lectures on Classical Mechanics.

1.1 Origem da geometria simplética

- Formulação da geométrica da mecânica (séc XIX).
- Versão moderna, 1960-70.
- Diferentes descripções da mecânica clásica:
 - Newtoniano: F = ma, ecuação diferencial ordinária de segunda ordem.
 - Lagrangiano: princípio gravitacional (Eq. E-L). Following Tong, these equations are:
 - Hamiltoniano.

1.2 Formalismo hamiltoniano (simplificado)

This happened in the 1880's (according to Tong).

- Espaço de base $\mathbb{R}^2 = \{(p,q)\}$ (conjunto de estados)
- Função Hamiltoniana $H \in C^{\infty}(\mathbb{R}^{2m})$.
- Campo Hamiltoniano: $X_H \in \mathfrak{X}(\mathbb{R}^{2n})$.

$$X_H = \begin{pmatrix} \frac{\partial H}{\partial p_i} \\ -\frac{\partial H}{\partial q_i} \end{pmatrix} = \begin{pmatrix} 0 & | Id_n \\ -Id_n & | 0 \end{pmatrix}$$

Which coincides with Lee's formula

$$\begin{split} \dot{x}^i(t) &= \frac{\partial H}{\partial y^i}(x(t),y(t)),\\ \dot{y}^i(t) &= -\frac{\partial H}{\partial x^i}(x(t),y(t)) \end{split}$$

where Lee defined the *Hamiltonian vector field* as the *analogue of the gradient with* respect to the symplectic form, that is, satisfying $\omega(X_H, Y) = dH(Y)$ for any vector field Y.

Also look at Tong's formulation:

$$\begin{split} \dot{p}_i &= -\frac{\partial H}{\partial q_i} \\ \dot{q}_i &= \frac{\partial H}{\partial p_i} \\ -\frac{\partial L}{\partial t} &= \frac{\partial H}{\partial t} \end{split}$$

where L is the Lagrangian and the Hamiltonian function H is obtained as the Legendre transform of the Langrangian. Tong shows how the Hamiltonian formalism allows to replace the $n\ 2^{nd}$ order differential equations by $2n\ 1^{st}$ order differential equations for q_i and p_i .

In practice, for solving problems, this isn't particularly helful. But, as we shall see, conceptually it's very useful!

At least for me, it looks like a first insight on why symplectic geometry lives on even-dimensional spaces.

1.3 Evolução temporal (equações de Hamilton)

Curvas integrais

$$c(t) = (q_i(t), p_i(t))$$

de X_H, ie.

$$c'(t) = X_H(c(t)) \iff \begin{cases} \dot{q}_i &= \frac{\partial H}{\partial p_i} \\ \dot{p}_i &= \frac{\partial H}{\partial q_i} \end{cases}$$

que são as Equações de Hamilton (de novo).

Exemplo. Partícula de massa m em $\mathbb{R}^3 = \{q_1, q_2, q_3\}$ sujeita a campo de força conservativa

$$\begin{aligned} F &= -\nabla V, \quad V \in C^{\infty}(\mathbb{R}^3 \\ q(t) &= (q_1, q_2, q_3) \end{aligned}$$

Equação de Newton:

$$m\ddot{q}=\partial V(q)\iff m\ddot{q}_{\mathfrak{i}}=\frac{\partial V}{\partial \mathfrak{q}_{\mathfrak{i}}}(q), \qquad \mathfrak{i}=1,2,3.$$

Ponto de vista Hamiltoniano:

- Espaçode fase $\mathbb{R}^5 = \{(q_i, p_i)\}.$
- Hamiltoniano: $H(p,q) = \frac{1}{2m} \sum_i p_i^2 + V(q)$
- Equações de Hamilton

$$\begin{cases} \dot{q}_{\mathfrak{i}} = p_{\mathfrak{i}}/m \iff p_{\mathfrak{i}} = m\dot{q}_{\mathfrak{i}} \\ \dot{p}_{\mathfrak{i}} = -\frac{\partial V}{\partial q_{\mathfrak{i}}} \end{cases}$$

$$H \in C^{\infty}(\mathbb{R}^{2n}) \xrightarrow{} \nabla H \xrightarrow{-J_0 \nabla H} X_H$$

where $J_0 = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$. So it looks like another way of obtaining (defining?) the Hamiltonian vector field is to take the gradient of H and then applying J_0 . So it would be nice to see eventually that this is the same as Lee's definition of "symplectic gradient" so to say.

Compondo ∇H e X_H : taxa de variação de H ao longo dos fluxos. Mas: o que é a composição de dois campos vetoriais? Tal vez é a derivada exterior de H, dH em lugar do gradiente de H.

• Fluxo gradiente

$$\begin{split} c'(t) &= \nabla H(c(t)) \\ \frac{d}{dt} H(c(t)) &= \langle \nabla H(c(t)), c'(t) \rangle = \| \nabla H(c(t)) \|^2 \end{split}$$

 ∇ H aponta na direção que H variação.

• Fluxo hamiltoniano

$$\begin{split} c'(t) &= X_H(c(t)) \\ \frac{d}{dt} H(c(t)) &= \langle \nabla H(c(t)), c'(t) \rangle \\ &= \langle \nabla H(c(t)), -J_0 \nabla H(c(t)) \rangle \\ &= 0 \end{split}$$

?, $H \in C^{\infty}(\mathbb{R}^{2n})$, $H \rightsquigarrow dH \in \Omega^{1}(\mathbb{R}^{2n})$.

• *Gradiente*. $\nabla H(x) \in T_x \mathbb{R}^{2n} = \mathbb{R}^{2n}$ é único.

$$g_0(\nabla H(x), \cdot) = \langle \nabla H(x), \cdot \rangle = dH(x)$$

onde g₀ é a métrica Euclidiana. De outra forma,

$$g_0^{\flat}: \mathbb{R}^{2n} \xrightarrow{\sim} (\mathbb{R}^{2n})^*$$
$$u \mapsto g_0(u, \cdot)$$

assim,

$$\nabla H(x) \stackrel{\sim}{\to} dH(x).$$

Analogamente, $X_H(x) \in \mathbb{R}^{2n}$ é único tal que?

$$\Omega_0(X_H(x), \cdot) = dH(x), \qquad \Omega_0(u, v) = -dJ_0V,$$

ou:

$$\Omega_0^{\flat}: \mathbb{R}^{2n} \xrightarrow{\sim} (\mathbb{R}^{2n})^*$$
$$X_{\mathsf{H}}(x) \longleftrightarrow d\mathsf{H}(x)$$

Observação. Note que Ω_q define uma 2-forma (c...?) em $\mathbb{R}^{2n} = \{(q_i, p_i)\}$.

$$\omega_0 = \sum_{i=1}^n dq_i \wedge dp_i \in \Omega_2(\mathbb{R}^{2n}),$$

 X_H é único tal que $i_{X_H}\omega_0=dH$. So this was Lee's definition $\ddot{\smile}$.

Definição (temporária). Uma *variedade simplética* é (M, ω) , $\omega \in \Omega^2(M)$ localmente isomorfa a $(\mathbb{R}^{2n}, \sum_i dq_i \wedge dp_i)$.

[Dessenho mostrando que o pullback da carta coordenada leva ω em $\sum_i dq_i \wedge dp_i$.

Teorema (de Darboux, em Lee). Let (M, ω) be a 2n-dimensional symplectic manifold. For any $p \in M$ there are smooth coordinates $(x^1, \ldots, x^n, y^1, \ldots, y^n)$ centered at p in which ω has the coordinate representation $\omega = \sum_{i=1}^n dx^i \wedge dy^i$.

And Lee does a proof using the theory of time-dependant flows.

1.4 Álgebra linear simplética

V espaço vetorial real, $\Omega: V \times V \to \mathbb{R}$ forma bilinea ansimétrica, i.e. $\Omega \in \Lambda^2 V^*$.

Definição. Ω é não degenerada se $\Omega(\mathfrak{u}, \mathfrak{v}) = 0 \forall \mathfrak{v} \iff \mathfrak{u} = 0.$

Following Lee, this can also be stated as: for each nonzero $v \in V$ there exists $w \in V$ such that $\omega(v,w) \neq 0$; and it is equivalent to the linear map $v \mapsto \omega(v,\cdot) \in V^*$ being invertible, and also that in terms of some (hence every) basis, the matrix (ω_{ij}) representing ω is nonsingular.

Ou seja, se

$$\ker \Omega := \{ u \in V | \Omega(u, v) = 0 \ \forall v \}$$

então Ω é não degenerada se e somente se $ker(\Omega) = \{0\}$.

 $\Omega \in \Lambda^2 V^*$ é não degenerada é chamada simplética. (V,Ω) é um *espaço vectorial simplético*.

Observação.

1. $\{e_1,..,e_n\}$ base de V, Ω é representado por uma matriz antisimétrica

$$A = (A_{ij}),$$
 $A_{ij} = \Omega(e_i, e_j),$ $\Omega(u, v) = u^t A, v.$

2. Ω é não degenerada se e somente se $det(A) \neq 0$.

Note que

$$\det A = \det A^{t} = \det(-A) = (-1)^{\dim V} \det(A)$$

implica que
$$\det A \neq 0 \implies m = \dim V = 2n$$

3. $\Omega \in \Lambda^2 V^*$. Defina

$$\Omega^{\flat}: V \longrightarrow V^*$$
$$\mathfrak{u} \longmapsto \Omega(\mathfrak{u}, \cdot)$$

note que $\ker \Omega = \ker(\Omega^{\flat})$, assim Ω é não degenerada se e somente se Ω^{\flat} é isomorfismo.

2 Aula 2

2.1 Subespaços de evs

Sejam (V, Ω) evs e $V \subseteq V$ subespaço.

Definição.

$$W^{\Omega} := \{ \mathbf{u} \in |\Omega(\mathbf{u}, w) = 0 \ \forall w \in W \}$$

Considere a restrição de Ω à W:

$$i: W \hookrightarrow V$$
 $i^*\Omega(\Omega|_W \in \Lambda_2 W^*,$

então

$$\ker(\Omega|_{W}) = \{ w \in W | \Omega(w, w') = 0 \ \forall w' \in W \} = W \cap W^{\Omega}$$

Casos de interesse:

- Isotrópico: $W \subseteq W^{\Omega}$ ($\iff \Omega|_W \equiv 0$).
- Coisotrópico: $W^{\Omega} \subseteq W$.
- Lagrangiano: $W = W^{\Omega}$.
- *Simplético*: $W \cap W^{\Omega} = \{0\}$ ($\Omega|_W$ é não degenerado (=simplético)).

Lema. $\dim W + \dim W^{\Omega} = \dim V$.

Demostração.

$$\begin{split} \Omega^1: V &\stackrel{\sim}{\to} V^* \\ \mathfrak{u} &\longmapsto \Omega(\mathfrak{u}, \cdot) \end{split}$$

Note que $W^{\Omega} \mapsto \operatorname{Ann}(W)$, assim

$$\dim W + \dim \operatorname{Ann}(W)' = \dim V$$

Observação.

• $W \subseteq V$ subespaço simplético se e somente se $V = W \oplus W^{\Omega}$.

- W isotrópico \implies dim $W \leqslant \frac{\dim V}{2}$.
- W coisotrópico \implies dim $W \geqslant \frac{\dim V}{2}$.
- W Lagrangiano se dim $W = \frac{\dim V}{2}$.

De fato, W é Lagrangiano se e somente se W é isotrópico e dim $W = \frac{\dim V}{2}$.

Exercício.

- $(W^{\Omega})^{\Omega} = \Omega$ (W isotrópico se e somente se W^{Ω}).
- $\bullet \ (W_1 \cap W_2)^{\Omega} = W_1^{\Omega} + W_2^{\Omega}.$

Exemplo.

- Subespaços de dimensão 1 são isotrópicos (subespaços de codimensão 1 são coisotrópicos).
- $V = V \oplus W^*$, onde V tem a forma Ω_{can} ? e W e W^* são Lagrangianos.
- \mathbb{R}^{2n} , $\{e_1, \dots, e_n, f_1, \dots, f_n\}$ base simplética, então span $\{e_i, f_i\}$ é simplético, e span $\{e_1, \dots, e_k\}$ é isotrópico (se k = n é Lagrangiano).
- (V_1, Ω_1) e (V_2, Ω_2) evs's, $T: V_1 \to V_2$ isometría linear, $graf(T) := \{(\mathfrak{u}, T\mathfrak{u}) : \mathfrak{u} \in V_1\} \subseteq V_1 \times V_2$. T é simplectomorfismo se e somente se graf(T) é um subespaço Lagrangiano em $V_1 \times V_2$.
- dim graf(T) = dim $V_1 = \frac{1}{2} \dim(V_1 \times V_2)$.
- $\bullet \ \Omega_{V_1 \times \bar{V_2}}((u,\mathsf{T} u),(\nu,\mathsf{T} \nu)) = \Omega(u,\nu) \underbrace{\Omega_2(\mathsf{T} u,\mathsf{T} \nu)}_{=\mathsf{T}^*\Omega_2(u,\nu)} (=0 \iff \Omega_1 = \mathsf{T}^*\Omega_2).$

Teorema (Existência das bases simpléticas). Para cualquer (V, Ω) evs existe uma base simplética.

Demostração. Seja $e_1 \in V \setminus \{0\}$. Como Ω é não degenerada, existe $f_1 \in V$ tal que $\Omega(e_1, f_1) = 1$. Considere $W_1 = \text{span}\{e_1, f_1\}$. Então $\Omega|_{W_1}$ é não degenerado (ie. W_1 é simplético), o que acontece se e somente se $V = W_1 \oplus W_1^{\Omega}$. Assim, existem $e_2 \neq 0$ in W_1^{Ω} e $f_2 \in W_1^{\Omega}$ tal que $\Omega(e_2, f_2) = 1$, etc. . $(V = W_1 \oplus W_2 \oplus \ldots \oplus W_n)$. O conjunto $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ é uma base simplética. □

Exercício. V ev de dimensão 2n e $\Omega \in \Lambda^2 V^*$ é não degenerada se e somente se $\Omega^n = \Omega \wedge ... \wedge \Omega \in \Lambda^{2n} V^* \neq 0$.

2.2 Equivalência entre ev's simpléticos

 (V,Ω) e (V',Ω') são *equivalentes* se existe um *simplectomorfismo* linear $\phi:V\stackrel{\sim}{\to}V'$ (isometría linear) tal que

$$\phi^*\Omega'=\Omega\in\Lambda^2V^*$$

onde

$$\varphi^*\Omega'(\mathfrak{u},\mathfrak{v}) = \Omega'(\varphi(\mathfrak{u}),\varphi(\mathfrak{v}).$$

Dado (V, Ω) evs, definimos

$$Sp(V) := \{T \in GL(V) | T^*\Omega = \Omega \}$$

Exemplo.

1. $V = \mathbb{R}^{2n}$, $\Omega_0(u,v) = -u^T J_0 v$ onde $J_0 = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$, com base canônica $\{e_1,\ldots,e_n,f_1,\ldots,f_n\}$. Temos

$$\begin{cases} \Omega_0(e_i, e_j) = 0\\ \Omega_0(e_i, f_j) = \delta_{ij}\\ \Omega_0(f_i, f_j) = 0 \end{cases}$$
 (1)

Definição. Uma base de (V, Ω) satisfazendo eq. (1) é chamada *base simplética*.

Following Lee, Example. 22.2, the condition may be that $\Omega = \sum_{i=1}^n \alpha^i \wedge \beta^i$ where α^i and β^i are just the dual basis covectors of the base $\{A_1,\ldots,A_n,B_1,\ldots,B_n\}$ of V.

Observação. Escolher/Achar uma base simplética é equivalente à escolher/achar um simplectomorfismo

$$(V,\Omega) \stackrel{\sim}{\to} (\mathbb{R}^{2n},\Omega_0)$$

2. W espaço vetorial sobre \mathbb{R} , sejam $V = W \oplus W^*$, $w, w \in W$ e $\alpha, \alpha \in W^*$

$$\Omega_{?}((w,\alpha),(w',\alpha')) := \alpha'(w) - \alpha(w')$$

é não degenerada e anti-simétrica. Assim,

$$(W \oplus W^*, \Omega_2)$$

é um espaço vetorial simplético.

Observação. Se $\{e_1, \dots, e_n\}$ é uma base simplética de W e $\{f_1, \dots f_n\}$ é a base dual de W^* , então

$$(W \oplus W^*, \Omega_? \cong (\mathbb{R}^{2n}, \Omega_0).$$

Note que ainda que dado

$$A: W \xrightarrow{\sim} W$$

automorfismo?,

$$\mathsf{T}_\mathsf{A} := \begin{pmatrix} \mathsf{A} & \mathsf{0} \\ \mathsf{0} & (\mathsf{A}^*)^{-1} \end{pmatrix} : \mathsf{W} \oplus \mathsf{W}^* \to \mathsf{W} \oplus \mathsf{W}^*$$

é simplectomorfismo, $(T_A = A \oplus (A^*)^{-1})$.

Moral: $GL(W) \hookrightarrow Sp(W \oplus W^*)$

$$EV \xrightarrow{\text{funtor}} EVS$$

$$A \circlearrowleft W \longmapsto W \oplus W^* \circlearrowleft \mathsf{T}_A$$

3. V ev sobre \mathbb{C} , dim $\mathbb{C} = \mathfrak{n}$, com produto interno hermitiano

$$h:V\times V\to \mathbb{C}$$

i.e. satisfazendo

- (a) $h(u, \lambda v) = \lambda h(u, v) \ \forall \lambda \in \mathbb{C}$,
- (b) $h(u,v) = \overline{h(v,w)}$,
- (c) $h(u, u) > 0 \ \forall u \neq 0$,

pode ser escrito como

$$h(u,v) = g(u,v) + i\Omega(u,v)$$

Agora considere V como espaço vetorial sobre $\mathbb R$ (de dimensão 2n).

Exercício.

- g é produto interno positivo definido.
- Ω é antisimétrica, não degenerada (simplética).
- Ache uma base de V (dica: extensão de base ortonormal de h...)
- $U(n) \subset SP(V, \Omega)$.
- 4. Produto direto: (V_1, Ω_1) , (V_2, Ω_2) espaços vetoriais.

Tem a forma simplética é o pullback:

$$\Omega := \pi_1^* \Omega_1 + \pi_2^* \Omega_2$$

ou seja,

$$\Omega((u_1, u_2), (v_1, v_2)) := \Omega_1(u_1, v_1) + \Omega_2(u_2, v_2),$$

que é não degenerado e antsimétrico também.

Notação: se (V,Ω) é um espaço vetorial simplético, denotamos por $(V,-\Omega):=\bar{V}$, que também é um evs.

- 3 Aula 3
- 4 Aula 4

5 Aula 5

Lembranza da última aula:

- 1. Definição de variedade simplética.
- 2. Pelo menos dois exemplos.
- 3. Forma de volume/orientabilidade.
- 4. Campos simpléticos/campos hamiltonianos.
- 5. Obstrução cohomológica de para estrutura simplética.

Hoje: Fibrados cotangentes.

5.1 Forma tautológica no fibrado cotangente

Seja Q uma variedade e M := T*Q o fibrado cotangente.

Lembrando Se Q é uma variedade, $x \in Q$. O *espaço tangente* em x são derivações ou clases de equivalencia de curvas... base local do espa ço tangente ∂_{x_i} ... base dual disso é base do espaço cotangente nesse ponto... o fibrado cotangente $\bigsqcup_{x \in Q} \mathsf{T}_x^* Q$ é variedade suave.

O fibrado cotangente possui uma 1-forma tautológica definida assim:

Definição. $\alpha \in \Omega^1(M)$, onde $M := T^*Q$, dada por

$$\alpha_{\mathfrak{p}}(X) = \mathfrak{p}(\pi_{*}(X))$$

ou seja, como X é tangente ao fibrado cotangente, ele está anclado a algum covetor, assim a gente pode evaluar ele no covector. Também pode ser pensado como o pullback de um covector em Q baixo a projeção cotangente usual.

Definição (Monitoria).

$$T^*M = \{(p, \xi) | \xi : T_pM \to \mathbb{R} \text{ linear} \}$$

$$\downarrow^{\pi}$$

$$M$$

A *forma tautologica* é λ dada por

$$\lambda_{(p,\xi)}(v) \in \mathbb{R}$$
, $v \in T_{(p,\xi)(T*M)}$

é igual a

$$\xi(d\pi_{(q,\xi)(\nu)})$$

ussando o mapa

$$T_{(p,\xi)}(T^*M) \stackrel{d\pi_{(p,\xi)}}{\longrightarrow} T_pM$$

Em coordenadas locais $(x_1, ..., x_n, y_1, ..., y_n)$ do espaço cotangente, temos que

$$\lambda = \sum_{i=1}^{n} A_i dx_i + \sum_{i=1}^{n} B_i dy_i$$

Avaliando λ nos vectores canónicos $\frac{\partial}{\partial x_j}\Big|_{(p,\xi)}$ e $\frac{\partial}{\partial y_j}$ notamos que $A_i = \xi\left(\frac{\partial}{\partial x_j}\right)$ pois a diferencial de π faz as B_i ser zero.

Exercício.

1. A 1-forma tautológica $\alpha \in \Omega^1(T^*Q)$ é a única 1-forma satisfazendo

$$\forall \mu \in \Omega^1(Q), \qquad \mu^*\alpha = \mu$$

onde pensamos a μ do lado izquerdo como um mapa $\mu: Q \to T^*Q$, ie. uma seç ão do fibrado cotangente, e do lado direito simplesmente como uma 1-corma em Q.

$$\omega_{can} = -d\alpha$$

Observação.

- $d\omega_{can} = -d^2\alpha = 0$.
- Formalmente $\omega = \sum_{i=1}^{n} dx_i \wedge d\xi_i$

Assim, temos uma variedade simplética canónica associada a toda variedade, (T^*Q, ω_{can}) .

Observação.

• Dado $B \in \Omega^2(Q)$ com dB = 0, a forma

$$\omega_{\rm B}\omega_{\rm can} + \pi^*{\rm B}$$

é simplética e o termo π^*B se chama de *magnético*.

• Se Q é Riemanniana com métrica g temos o mapa induzido

$$g^{\sharp}: TQ \longrightarrow T^*Q$$
 $u \longmapsto g(u, \cdot)$

Assim, o pullback the ω_{can} é uma forma simplética em TQ.

Al ém disso, a métrica nos fornece de uma função Hamiltoniana dada por $H \in C^{\infty}(TQ)$, $H(\nu) = \frac{1}{2}g(\nu,\nu) = \frac{1}{2}\|\nu\|^2$.

Veremos que o fluxo Hamiltoniano de H em (TQ, ω) é fluxo geodésico em Q.

Tem dois generalizações naturais:

- $\bar{H}(v) = \frac{1}{2}g(u,v) + V(x)$ com V ∈ $C^{\infty}(Q)$, mecânica clásica.
- $H(v) = \frac{1}{2}g(v, v)$ com respeito a ω_B .

Pergunta (Projeto?). Existência de órbitas periódicas em níveis de energia?

Definição. O *levantamiento cotangente* de um difeomorfismo (na mesma direção do difeomorfismo) é $\varphi: Q_1 \xrightarrow{\sim} Q_2$ é $\hat{\varphi} = ((T\varphi)^*)^{-1}$.

Pergunta. Preserva a forma canónica?

Proposicição. Sim. $\hat{\phi}: T^*Q_1 \to T^*Q_2$ satisfaz $\hat{\phi}^*\alpha_2 = \alpha_1$ onde α_i é a forma tautológica, para i=1,2. Isso implica que $\hat{\phi}^*\omega_2 = \omega_1$.

Isso implica que temos um funtor $Q \leadsto T^*Q$ que se chama de *funtor cotagente* e permite levar problemas de geometria diferencial para a geometria simpl ética.

Demostração.

$$T^*Q_1 \xrightarrow{\phi} T^*Q_2$$

$$\downarrow^{\pi_1} \qquad \downarrow^{\pi_2}$$

$$Q_1 \xrightarrow{\phi} Q_2$$

A clave dessa prova é que o diagrama commuta, assim pode se-trocar um termo $\pi_2 \circ \hat{\phi}$ por $\phi \circ \pi_1$.

O funtor que produzimos $Dif(Q) \hookrightarrow Simp(T^*Q \text{ não e fiel (surjetivo), ie. existem simplectomorfismos no fibrado cotangente que não vem de difeomorfismos na variedade.$

Observação. Dada uma 1-forma $A \in \Omega^1$. Pode se-produzir um mapa no cotangente simplesmente trasladando por A:

$$T_A: T^*Q \longrightarrow T^*Q$$
$$(x, \xi) \longmapsto (x, \xi + A_x)$$

que não pode ser um levantamento porque se projecta na identidade!

Exercício. T_A é um simplectomofrismo \iff dA = 0.

Mas, como sabemos quais simplectomorfismos no cotangente são sim levantamentos de difeomorfismos na variedade?

Exercício. Seja $F: T^*Q \to T^*Q$ um simplectomorfismo. Quando $F = \hat{\phi}$ é levantamento de algum $\phi: Q \xrightarrow{\sim} Q$. Pois, isso acontece \iff F preserva a forma tautológica, ie. $F^*\alpha = \alpha$.

Observação. Levantamento cotangente de campos de vetores. Começa com um campo $X \in \mathfrak{X}(Q)$, integra para obter um fluxo φ_t , que é uma família de difeomorfismos na variedada, você sabe levantar isso com o funtor obtendo outro fluxo (porque levantamento de fluxo é fluxo) $\hat{\varphi}_t$, e diferenciando obtém $\hat{X} \in \mathfrak{X}(T^*Q)$.

Observação. Para cualquer fibrado vetorial $E \to M$, podemos ver a seções $\Gamma(E)$ como um subconjunto das fun ções suaves na variedade $C^{\infty}(E)$ —são as funções lineares nas fibras. Aí tem um modo natural de definir para cualquer campo vetorial $X \in \Gamma(TQ) \subseteq C^{\infty}(T^*Q)$ uma função, $H_X(p) = p(X_{\pi(p)} = \alpha(\hat{X})$.

Proposicição. \hat{X} = campo Hamiltoniano de H_X .

6 Aula 6

Hoje: Colchete de Poisson, Darboux.

6.1 Colchete de Poisson

M variedade, $\omega \in \Omega^2(M)$ não degenerada (quase-simplética). Podemos fazer

$$w^{\flat}: TM \longrightarrow T^*M$$

 $x \longmapsto i_X \omega$

So that

$$f \in C^{\infty}(M) \leadsto X_f \in \mathfrak{X}(M)$$

e

$$i_{X_{\mathfrak{f}}}\omega=df.$$

Definição. f, $g \in C^{\infty}(M)$.

$$\begin{aligned} \{\cdot,\cdot\} : C^{\infty}(M) \times C^{\infty}(M) &\longrightarrow C^{\infty}(M) \\ \{f,g\} &= \omega(X_g,X_f) = dg(X_f) = \mathcal{L}_{X_f}g = -\mathcal{L}_{X_g}f \end{aligned}$$

Proposicição (Exercício). $d\omega = 0 \iff \{\cdot, \cdot\}$ satisfaz identidade de Jacobi. $\implies (M, \omega)$ simplética, $\{\cdot, \cdot\}$ é colchete de Lie em $C^{\infty}(M)$ e isso se chama de um *colchete de Poisson em* (M, ω) .

Exercício. $\{f, gh\} = \{f, g\}h + \{f, h\}g$.

Exemplo. \mathbb{R}^{2n} .

Definição. $f, g \in C^{\infty}(M)$ estão em *involução* se $\{f, g\} = 0$. ie. X_g é tangente aos níveis f = const (e vice versa).

Observação. Nesse caso, a derivada de q ao longo das curvas integrais de X_f é zero.

Motivação (M, ω) simplética, $H \in C^{\infty}(M)$ queremos integrar X_H (ie. resolver $c'(t) = X_H(c(t))$). Suponha que existe $f \in C^{\infty}(M)$ com $\{f, H\} = 0$, chamada *integral primeira*. ie. f é constante ao longo do fluxo Hamiltoniano.

No século XIX, quando Poisson vivia, a ideia era que se temos um número sufieiente de integrais primeiras "independentes", podemos "integrar" X_H. (Aqui "integrar" significa dar uma solução a equação diferencial do fluxo Hamiltoniano).

Em 1810, Poisson deu a fórmula

$$\{f,g\} = \sum_{i,j} \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i}.$$

Teorema (Poisson). $\{f, H\} = 0 = \{g, H\} \implies \{\{f, g\}, H\} = 0.$

Teorema (Jacobi).

$${H, {f,g}} + {g,{H,f}} + {f,{g,H}} = 0$$

1880 Lie usou essa identidade no seu trabalho de transformações (álgebras de Lie).

Versão moderna (sec. XX) de integrabilidade Veremos adiante...

Teorema (Arnold-Liouville). (M, ω) de dimensão 2n e seu Hamiltoniano $H = f_1$ que é a primeira de uma sequencia de $n = \dim M/2$ funções independentes (as derivadas são linearmente independentes) $f_2, \ldots, f_n \in C^{\infty}(M)$ tais que $\{f_i, f_j\} = 0$ e que (f_1, \ldots, f_n) : $M \to \mathbb{R}^n$ é uma submersão. Então

$$N = \{(f_1, \dots, f_n) = cte\} \cong \mathbb{T}^n$$

se compacto e conexo. Além disso, a dinâmica de X_H em \mathbb{T}^n é quase periódica (=é um fluxo linear no toro, que pode ser racional ou irracional).

Observação (Projeto?). Qué acontece com essa dinâmica no toro se perturbamos o sistema? O problema de dois corpos é completamente integravel. Por exemplo, a dinâmica da Terra e o Sol pode se-resolver, mas o problema adicionando a Lua é o problema de 3 corpos, que ninguém sabe cómo resolver. Aqui a Lua é uma perturbação.

Teorema KAM, quanto mais irracional é o fluxo, mais robusto é o toro, mais inestável.

Em fim, tudo isso para motivar os colchetes de Poisson.

6.2 Teorema de Darboux

 (M, ω) variedade simplética com o colchete $\{\cdot, \cdot\}$.

Observação.

1. ω está completamente determinada por $\{\cdot,\cdot\}$, ie. se duas estruturas simpléticas dão lugar ao mesmo colchete de Poisson, elas são iguais.Por que?

$$\omega^{\sharp}: T^*M \longrightarrow TM$$

está dada em cada ponto por

$$(\omega^{\sharp})_{ij} = \{x_i, x_i\}$$

por definição.

2. A estrutura simplética canónica $\omega_0 = \sum_i dp_i \wedge dp_i$ em \mathbb{R}^{2n} está determinada (é a única tal que) por

$$\{q_i, q_j\} = 0 = \{p_i, p_j\}, \qquad \{p_i, q_j\} = \delta_{ij}.$$

É como se tivesse uma base simplética boa em todos os pontos...

Teorema (Darboux). (M, ω) simplética, ent...åo ao redor de todo ponto $x \in M$ existem coordenadas locais $(q_1, \ldots, q_n, p_1, \ldots, p_n)$ tais que $\omega = \sum_{i=1}^n dq_i \wedge dp_i$, ou, equivalentemente vale

$$\{q_i, q_j\} = 0 = \{p_i, p_j\}, \qquad \{p_i, q_j\} = \delta_{ij}.$$

Tem um lema que va a provar essencialmente tudo.

Lema (Primeiro paso da indução). Ao redor de qualquer ponto $x \in M$ existem coordenadas $(q, p, y_1, ..., y_{2n-2}$ tais que

$$1 = \{p, q\}, \quad \{p, y_j\} = 0 = \{q, y_j\}, \quad \{y_i, y_j\} = \varphi_{ij}(y).$$

Ou seja, a matriz da forma é

$$\begin{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} & 0 & 0 & \dots & 0 \\ 0 & & & & \\ 0 & & & A(y) & & \\ 0 & & & & \end{pmatrix}$$

ou seja, temos uma expresão

$$\omega = dq \wedge dp + \omega_N$$

onde ω_N é dada por A(y) e é simplética.

*Demostração do Lema***Paso 1** Seja p uma função tal que $X_p(x) \neq 0$. Pelo teorema de fluxo tabular (retificação) existe uma função q tal que $X_p = \frac{\partial}{\partial q}$, de modo que $\{p,q\} = dq(X_p) = 1$ e $dp(X_q) = -1$.

Paso 2 Enão X_p e X_q são linearmente independentes, pois $1 = \{p, q\} = \omega(X_p, X_q) \neq 0$, o que aconteceria por antisimetria se são linearmente dependentes. Além disso, comutam, pois

$$\begin{bmatrix} X_p, X_q \end{bmatrix} \overset{\text{aula pasada?}}{=} X_{\{p,q\}=1} = 0.$$

Agora usamos a generalização do teorema do fluxo tabular: se X_1, \ldots, X_k são campos linearmente independentes e que comutam, então existem coordenadas (x_1, \ldots, x_n) dais que $X_i = \frac{\partial}{\partial x_i}$. (Teo. função inversa.) Assim, existem coordenadas locais y_1, \ldots, y_{2n} tais que

$$X_q = \frac{\partial}{\partial y_{2n-1}}, \qquad X_p = \frac{\partial}{\partial y_{2n}}.$$

Logo

$$dy_j(X_q) = 0 = dy_j(X_p)$$

para
$$j = 1, ..., 2n - 2$$
.

Paso 3 As diferenciais

$$dq, dp, dy_1, \ldots, dy_{2n-2}$$

são linearmente independentes, pois se

$$adq + bdp + \sum_{i} c_{ij}y_i = 0$$

pois as y_i já são LI, e avaliando em X_i obtemos a = 0, e no X_q que b = 0.

Temos um sistema de coordenadas $(q, p, y_1, ..., y_{2n-2})$ ao redor de x tal que as condições do teorema salvo a última se cumplem. Agora veamos que $\{y_i, y_j\}$ não depende de p, q.

Paso 4 Só lembrar que

$$X_{q} = -\frac{\partial}{\partial p}, \qquad X_{q} = \frac{\partial}{\partial q}$$

assim

$$\frac{\partial}{\partial p}\{y_i,y_j\} = -\{q,\{y_i,y_j\}\} = 0$$

onde a segunda igualdade é jacobi. Fim.

Demostração do Teo. Darboux. Segue do lema por indução

Definição. Uma estrutura de Poisson em uma variedade M é

$$\{\cdot,\cdot\}: C^{\infty}(M) \times C^{\infty}(M) \longrightarrow C^{\infty}(M)$$

 \mathbb{R} -bilinear, antisimétrica, Jacobi e Leibniz, ie. $\{f, gh\} = \{f, g\}h + \{f, h\}g$.

Exemplo.

• (M, ω) simpl ética com $\{f, g\} = \omega(X_g, X_f)$.

7 Aula 7

Na aula passada vimos:

- Colchetes de Poisson.
- Teorema de Darboux. Prova: demostrar que tem relações que caractetizam a forma de maneira única.
- É possível descrever estruturas cimpléticas en termos de colchete de Poisson.: Variedades de Poisson. Issto é axiomatizar as propriedades básicas do colchete de Poisson. Esses objetos podem ser entendidos como foleações simpléticas.

7.1 Subvariedades

Seja (M, ω) simplética e $N \stackrel{i}{\hookrightarrow} (M, \omega)$. Então temos

$$\omega_N = i^* \omega \in \Omega^2(N)$$

que é fechada porque o pullback comuta com derivada exterior.

$$ker(\omega_N) = \{X \in TN : \omega(X, Y) = 0 \ \forall Y \in TN\}$$
$$= TN \cap TN^{\omega} \subseteq TN$$

7.2 Pausa para distribuições

P variedade.

Definição. Uma distribuição (generalizada) em P é

$$P \ni x \longmapsto D_x \subseteq T_x P$$
 subespaço

e o posto da distribuição em $x := \dim D_x$.

A distribuição é *suave* se para todo $x_0 \in P$, $\forall v \in D_{x_0}$ existe um campo vetorial $X \in \mathfrak{X}(P)$ que extende a v e está contido na distribiução no sentido de que $X_x \subseteq D_x \forall x$ e $X_{x_0} = v$.

Exemplo. Núncleo de 2-formas é um exemplo de distribuição, mas não é suave em geral.

Definição. Uma distribuição suave $D \subseteq TP$ é dita *integravel* se $\forall x \in P$ existe uma subvariedade $S \ni x$, $TS = D|_S$

No caso de uma dsitribuição (suave) integrável, por todo ponto passa uma subvariedade integral conexa maximal chamadas *folhas*.

Observação.

 Distribuição suave, de posto constante é a mesma coisa que um subfibrado vetorial D ⊆ TP. Nesse caso, Teorema (Frobenius). D é integrável se e somente se é involutivo, ou seja

$$[\Gamma(D), \Gamma(D)] \subseteq \Gamma(D).$$

Demostração. Note que ⇒ é trivial porque se tem uma variedade que realiza a distribuição, o colchete de Lie sempre vai ser outro campo vetorial tangente. □

- Suponha que $D=\ker(\omega)$ com $\omega\in\Omega^2(P)$ é suave \iff D tem posto constante. Aquí \iff é fácil.
- Se $d\omega = 0 \implies D = \ker \omega$ é involutivo.

Conclusão Se ω é uma 2-forma fechada e D = ker ω tem posto constante, da lugar a uma folheação (regular=folhas de mesma dimensão) em P.

7.3 Voltando

Definição. N é dita

- *isotrópica* quando $T_x N \subseteq T_X N^\omega \iff \omega_N = 0 \iff \ker \omega_N = TN$.
- *coisotrópica* quando $T_x N^{\omega} \subseteq T_x N$.
- *lagrangiana* quando $T_x N = T_x N^{\omega} \iff i^* \omega = \omega_N = 0$ e dim $N = \dim M/2$.
- *simplética* $T_x N \cap (T_x N)^{\omega} = \{0\} \ \forall x \in \mathbb{N} \iff \omega_N \text{ é simplética.}$
- posto constante $T_xN \cap T_xN^\omega \subseteq T_xN \ \forall N$ tem posto constante.

Exemplo.

- curvas são isotrópicas.
- hipersuperficies são coisotrópicas.
- Veremos vários exeplos de subespaços lagrangianos.

7.3.1 Sobre subvariedades coisotrópicas

Isto também vale para subvariedades de posto constante.

Vamos ver uma versão geométrica de um exerício da lista 1, onde pegabamos o quociente de um espaço vetorial por el núcleo de uma forma para obter um espaço vetorial simplético.

Exercício. Suponha que as folhas da folheação são fibras de uma sobmersão

$$\begin{array}{c} N & \longleftarrow & (M,\omega) \\ \downarrow q \\ \downarrow & \\ B = N/\sim \end{array}$$

então existe uma forma simplética $\bar{w} \in \Omega^2(B)$ tal que $q^*\bar{w} = w_N$.

Exemplo. O fluxo hamiltoniano do oscilador harmónico $H(p,q) = \frac{1}{2} \sum_i q_i^2 + p_i^2$ com c = 1/2 da $\mathbb{C}P^{n-1}$

Exercício. $\psi: M \to \mathbb{R}^k$, $\psi = (\psi_1, \dots, \psi_k)$. $N = \psi^{-1}(c)$ para c valor regular.

- N coisotrópico $\iff \{\psi_i, \psi_j\}|_{N} = 0.$
- N simplético $\iff (\{\psi_i, \psi_j\}|_N)_{ij}$ é invertível.

8 Aula 8

Lembre:

• Subvariedades lagrangianas, (co-)isotrópicas, simpléticas. Aprofundamos nas coisotrópicas (posto constante), como as hipersuprficies ou conjuntos de nível, que tem uma folheação, e com condições de regularidade pode passar para o espaço quociente, que é simplético, como CPⁿ.

8.1 Alguns exemplos de subvariedades lagrangianas

Exemplo. Dois variedades simpléticas e um difeomorfismo entre elas. Então ϕ é simplectomorfismo se e só se seu gráfico é lagrangiano. Talvez isso pode ser ussado para pensar em simplectomorfismos em um objeto cuantico.

Observação. Considere

$$\epsilon: M_1 \longrightarrow M_1 \times M_2$$
$$x \longmapsto (x, \phi x)$$

então o grafo de φ é lagrangiano $\iff \omega_1 - \varphi^* \omega_2$.

Exemplo (no fibrado cotangente).

- A seção zero $Q \hookrightarrow T^*Q$ é nos mostra que Q é uma subvariedade lagrangiana.
- A fibra (cotangente) de um ponto também é uma subvariedade lagrangiana de T*Q.
- Logo, o espaço de fibras?
- Pegue uma subvariedade da base $S \subset Q$. Considera o *fibrado conormal* N*S, ν_S^* . É o dual do fibrado tangente. É o anulador de TS, $\{(x, \xi) \in T^*Q : x \in S, \xi|_{TxS} = 0\}$. Note que é um subfibrado do fibrado cotangente.

Os dois exemplos anteriores são S = Q e $S = \{x\}$ da seguinte prop:

Proposicição. $N*S \hookrightarrow T*Q$ é (um subfibrado) uma subvariedade lagrangiana.

Demostração. Ussando coordenadas adaptadas e a forma tautológica do T*Q, damos coordenadas N*Q da forma $(x_1,\ldots,x_k,\xi_{k+1},\ldots,\xi_n)$ e assim o pullback da forma tautológica é zero porque ele evalua os covectores ξ_{grande} em vectores $x_{pequeno}$.

Exemplo. Uma forma μ vista como seção do fibrado cotangente pode ser pensada como um mergulho de Q em T*Q.

Proposicição. Essa subvariedade é lagrangiana \iff d $\mu = 0$.

8.2 Método de Moser

Upshot. Moser's trick is a thing that gives you a diffeomorphism that pulls back ω_2 to ω_1 .

Dadas dois formas simpléticas numa variedade, como podemos achar um simplectomorfismo entre elas? A ideia do método é assim:

- Step 1 Interpolar as dois formas mediante uma familia contínua ω_t de formas simpléticas.
- **Step 2** Buscar uma (isotopía) família de difeomorfismos φ_t com φ_0 = id e tal que $\varphi_t^* \omega_t$ = ω_0 . Com isso a gente procura levar o problema para uma EDO.
- **Step 3** Os fluxos são isotopías com uma relação de comutatividade. Eles correspondem com campos vetoriais. As isotopías em geral estão em correspondência com *campos de vetores não autónomos*.

Definição. Uma família suave de difeomorfismos $\{\phi_t\}$ com $\phi_0 = id$ é chamada *isotopía*. Suave significa que $(t,x) \mapsto \phi_t$ é suave.

Exemplo. Fluxos (complets) são isotopías tq $\phi_s \circ \phi_t = \phi_{s+t}$.

Definição. Um *campo de vetor* t*-dependente* ou *não autónomo* é família suave de campos $X_t \in \mathfrak{X}(M)$. De novo, suave é que $(t, x) \mapsto X_t(x)$ é suave.

isotopía ↔ campos t-dependentes

A diferenciação sempre é simples né? Fixa um ponto e varia o tempo, obtém uma curva.

$$\varphi_t\mapsto X_t(\phi_t(x)=\frac{d}{d\tau}|_{t=\tau}\phi_\tau(x).$$

A recíproca é mais difícil. A ideia e extender a variedade á $M \times \mathbb{R}$, e considerar $\overline{X}(x,t) = (X_t(x), \frac{d}{dt})$. Esse depende do tempo, assim podemos achar um fluxo φ_t de \overline{X}_t . Aqui se deve extender o fluxo ussando bump functions, assim a gente tem que φ_t está definido para toda t.

Note que $\phi_t(x,s)=(G_t,t+s)$ para alguma função G na variedade. Podemos achar uma inversa dela assim:

$$(x,s) = \phi_{-t}(\phi_t(x,s)) = G_{-t}(G_t(x,s),t+s),s)$$

ie. a inversa de

$$x \mapsto G_t(x, s)$$

$$y \mapsto G_{-t}(y, s + t)$$

Logo,

$$\phi_t(x) = G_t(x, 0)$$

é uma isotopía e como a derivada do fluxo

$$\frac{d}{dt}\varphi_t(x,0) = \overline{X}(G_t(x,0),t) \implies \frac{d}{dt}G_t(x,0) = X_t(x,0)).$$

E é isso. Temos a correspondencia.

Voltando ao método de Moser, para achar $\phi^*\omega_1=\omega_0$, pegamos uma isotopía que puxa ω_t em ω_0 , e queremos diferenciar a isotopía. No caso de um fluxo, trata-se da derivada de Lie por definição.

Lema. $\{\phi_t\}$ isotopía em M, $\{X_t\}$ campo autónomo. Sejam $\eta\in\Omega^k(M)$, $\beta_t\in\Omega^k(M)$. Então vale:

$$\frac{d}{dt}(\phi_t^*\varepsilon) = \phi_t^*(\mathcal{L}_{X_t}\eta$$

onde estamos pegando a derivada num tempo t fixo. Daí veremos que pela regra da cadeia segue que

$$\frac{d}{dt}(\phi_t^*\beta_t) = \phi^*(\pounds_{X_t}\beta_t + \frac{d}{dt}\beta_t$$

Demostração. a. Considere os seguintes operadores em Ω^{\bullet} :

$$Q_1(\eta) = \frac{d}{dt} \phi_t^* \eta, \qquad Q_2(\eta) = \phi_t^* \mathcal{L}_{X_t} \eta$$

Daí note que esses operadores comutam com a derivada exterior, são Leibniz respeito ao producto cunha e coincidem em funções . Daí segue que $Q_1=Q_2$.

b. A regra da cadeia diz que para uma função F(a, b),

$$\frac{d}{dt}F(t,t) = \frac{\partial}{\partial \alpha}F(t,t) + \frac{\partial}{\partial b}F(t,t)$$

e olha para $\phi_a^*\beta_b$ como a F. Sustiuindo e ussando a., o resultado segue.

Uma aplicação disso é

Teorema (de estabilidade de Moser). M compacta, $\{\omega_t\}$ formas simpléticas, $t \in [0,1]$. Se as formas são todas cohomologas então elas são simplectomorfas, i.e. $[\omega_t] = [\omega_0] \implies \exists \varphi_t \ tq \ \varphi_t^* \omega_t = \omega_0$. Ou, de outra forma, se existe uma família suave de formas β_t tais que

$$\omega_{\rm t} = \omega_0 + {\rm d}\beta_{\rm t}$$

então existe uma isotopía $\{\phi_t\}$ tal que $\phi_t^* \omega_t = \omega_0$.

Demostração. Note que não é imediato que as clases de cohomologia nos dem uma familía suave, mas é equivalente sim (usando decomposição de Hodge? Tem algo mais simples?). O método é achar um campo de vetores autónomo resolvendo

$$i_{X_t}\omega_t=-\frac{d}{dt}\beta_t$$

pois dela segue que

$$\pounds_{X_t} \omega_t = -d \left(\frac{d}{dt} \beta_t \right)$$

E daí a segunda afirmação do lema.

9 Aula 9

Lembre: Método de Moser.

A prova foi:

Demostração. Calcule

$$\frac{d}{dt}\phi_t^*\omega_t = 0$$

isso implica que

$$\mathcal{L}_{X_t} \omega_t = -d \left(\frac{d}{dt} \beta_t \right)$$

e isso que

$$i_{X_t}\omega_t=-\frac{d}{dt}\beta_t$$

Com isso conseguimos associar uma isotopía a um campo t-dependente (integração).

9.1 Aplica ção ao teorema de Darboux

Lema. X_t campo de vetores t-dependente, $t \in \mathbb{R}$. Suponha que

$$X_t|_{x_0} = 0 \quad \forall t.$$

Então existe uma vizinhança $U\ni x_0$ e uma familia $\phi_t:U\to M$ de

- (Inclusão) $\phi_0 = id$.
- $\frac{d}{dt} \varphi_t(x) = X_t(\varphi_t(x))$
- $\varphi_t(x_0) = x_0$
- $\bullet \ \phi_t: U \stackrel{\text{difeo}}{\longrightarrow} \phi_t(U).$

Demostração. Variação do caso M compacto

$$ar{X}(x,t) := \left(X_t(x), rac{d}{dt}\right) \quad \text{em } M \times \mathbb{R}$$
 $ar{X}(x_0,t) = \left(0, rac{d}{dt}\right)$

assim existe uma curva integral $\gamma(t)=(x_0,t)$ de \bar{X} por $(x_0,0)$ está definida para toda $t\in\mathbb{R}.$

Por EDO, existe uma vizinhança W de $(x_0, 0)$ em $M \times \mathbb{R}$ onde o fluxo de \bar{X} existe $\forall t \in [0, 1]$.

Tome
$$U = \bigcap_{w \in M \times \{0\}}$$
.

Valem a fórmula para $\frac{d}{dt}(\phi_t^*\omega_t)$...

Teorema (Darboux). (M, ω) simplética, dim M = 2n. Para todo $x \in M$ existe uma vizinhança $U \ni x$, aberto $0 \in V \subseteq \mathbb{R}^{2n}$ e um difeomorfismo

$$\varphi: V \subseteq \mathbb{R}^{2n} \longrightarrow U \subseteq M$$
$$0 \longmapsto x$$

tal que

$$\varphi^*\omega = \sum_i dq_i \wedge dp_i.$$

[Desenho de carta coordenada]

 $\textit{Demostração}.\$ Podemos assumir que M é bola aberta de \mathbb{R}^{2n} com estrutura sumplética ω aribtrária.

Para usar o método de Moser, definamos

$$\omega_1 = \omega$$

$$\omega_0 = \sum_i dq_i \wedge dp_i$$

Podemos assumir que na origem

$$\omega_1|_{x=0}=\omega_0|_{x=0} \qquad T_0\mathbb{R}^{2n}=\mathbb{R}^{2n}$$

simplesmente porque qualquer dois formas simpléticas são equivalentes num espaço vetorial simpletico usando uma mudança de coordenadas.

• Podemos assumir pelo Lema de Poincaré que

$$\omega_1 - \omega_0 = d\beta$$
, $\beta|_0 = 0$

supondo pela mesma razão que antes que $\beta|_0 = 0$.

•
$$\omega_t = (1-t)\omega_0 + t\omega_1 \iff \omega_t = \omega_0 + td\beta$$

Precisamos checar que ω_t são não degeneradas numa vizinhança de 0.

Note que em x=0, $\omega_t|_{x=0}=\omega_0|_{x=0}=\omega_1|_{x=0}$, assim $\omega_t|_{x=0}$ é não degenerada para toda t, mas precisamos de uma vizinhança, não só um ponto.

Lema. Se tem uma família $\omega_t|_{x_0}$ é simplética $\forall t, t \in [0, 1]$, então existe uma vizinhança de x_0 onde ω_t é não degenerada $\forall t \in [0, 1]$.

Demostração. Considere

$$(x, s) \rightarrow det(\omega_s(x)) = determinante da matriz que representa a forma$$

essa função é não zero em zero, assim para cada t existe uma vizinhança onde ela não é zero. Logo, pela compacidade de [0,1], \exists uma vizinhança $B \ni x_0$ onde $det(\omega_s(x))$ não se anula $\forall s \in [0,1]$.

Então já temos essa vizinhança que precisavamos.

Defina X_t como a solução da equação de Moser:

$$i_{X_t}\omega_t = -\beta.$$

Como
$$\beta|_0 = 0 \implies X_t|_{x=0} = 0 \implies \exists \varphi_t, t \in [0,1].$$

Pelo lema 1, existe uma vizinhança $V \ni 0$ e

$$\varphi_t : V \longrightarrow B$$

$$\varphi_t^* \omega_t = \omega_0$$

tome
$$t = 1$$
, $0 \in U = \phi_1(V)$.

Com esse mesmo método a gente consegue provar uma generalização do teorema de Darboux.

9.2 Teorema de Darboux generalizado (Weinstein)

Teorema. Q $\stackrel{i}{\hookrightarrow}$ M subvariedade (mergulhada) e ω_0 , ω_1 em M simpléticas. Suponha que

$$\omega_0|_x = \omega_1|_x \qquad \forall x \in Q$$

então existem vizinhanças U_0 e U_1 de Q em M e um difeomorfismo

$$\phi: U_0 \stackrel{\sim}{\longrightarrow} U_1$$

tal que

$$\phi^*\omega_1=\omega_0$$

e que
$$\varphi(x) = x \ \forall x \in Q$$

Observação. O teorema de Darboux é quando Q é um ponto só!

Observação. A condição $\omega_0|_x=\omega_1|_x$ significa que ω_0 e ω_1 coincidem em todo o espaço tangente a M nos pontos de Q, não é que o pullback em Q coincide. Tem mais vetores no espaço tangente a M.

Vamos precisar de um Lema de Poincaré relativo.

Lema. $Q \hookrightarrow M$ subvariedade. Seja $\eta \in \Omega^k(M)$, $d\eta = 0$, $i^*\eta = 0$. Então existe uma vizinhança U de Q em M, $\beta \in \Omega^k(U)$ tal que

$$\eta = d\beta$$
$$\beta|_{x} = 0, \quad \forall x \in Q$$

$$(\beta|_{\mathsf{T}_x\mathsf{M}}=0\ \forall x\in \mathsf{Q}).$$

A ideia aqui é simplesmente que podemos achar uma vizinhança de Q que se contrae a Q (retrato por deformação?)

Demostração. Em fim, pelo lema, para $η = ω_1 - ω_0$, i*η = 0. Compare com a demostração anterior, β se anulava no 0, agora η se anula em toda Q (é uma versão paramétrica disso).

 $Q \hookrightarrow M$ tem vizinhança U onde $\exists \beta \in \Omega^1(U)$,

$$\omega_1 - \omega_0 = d\beta$$
, $\beta|_x = 0$

- Seja $\omega_t = (1 t)\omega_0 + t\omega_1 = \omega_0 + td\beta$.
- $\forall t \in [0,1], x \in Q, \omega_t|_x = \omega_0|_x = \omega_1|_x$.

Pelo lema 2, x tem vizinhança em M onde ω_t é simplética $\forall t \in [0,1]$.

Tomando a união das vizinhanças, temos vizinhança de Q onde ω_t simplético $\forall t \in [0, 1]$.

Método

- Define X_t por $i_{X_t}\omega = -\beta$. Isso implica que $\frac{d}{dt}\phi_t^*\omega_t = 0$.
- Como $\beta|_x = 0$, então $\forall x \in Q$, $X_t|_x = 0 \ \forall x \in Q$.
- Pelo lema 1, $\exists U_0$ onde φ_t está definido $\forall t \in [0,1]$.
- E mais $X_t|_Q = 0 \implies \phi_t|_Q = id_Q$.
- Tome $\phi = \phi_1 e U_1 = \phi_1(U_0)$.

9.2.1 Sobre o Lema de Poincaré relativo

O principal ingrediente é teorema da vizinhança tubular.

Lembre:

Teorema (Vizinhança tubular). $Q \hookrightarrow M$ subvariedade mergulhada. Existe uma vizinhança $Q \subseteq U \subseteq M$ para qual existe $\pi : U \to Q$ tal que

$$\begin{split} \pi \circ i &= id_Q \\ i \circ \pi &\simeq id_U, \quad \text{(homotopía suave)} \end{split}$$

Daí, o lema de Poincaré segue a existencia de um operador de homotopía.

Em geral, quando temos uma homotopía

$$F: M \times [0,1] \longrightarrow N$$

$$F_0: M \to N$$

$$F_1: M \to N$$

exsite um operador

$$H: \Omega^k(M) \to \Omega^{k-1}(M)$$

tal que

$$F_1^*\eta - F_0^*\eta = d(H\eta) - Hd\eta$$

Note que no caso de formas fechadas, o termo da direita se anula e a gente prova a invariança homotópica da cohomologia. No nosso caso, o operador de homotopía nos da $\eta = dH\eta j$ á que $d\eta$ se anula em Q.

9.2.2 Vizinhança tubular

Teorema. Existe uma vizinhança U_0 de Q em NQ e uma vizinhança U_1 de Q em M tais que

- a. $U_0 \cap (NQ)_x$ é convexo $\forall x \in Q$.
- b. Existe um difeomorfismo $\phi: U_0 \xrightarrow{\sim} U_1$ tal que $\phi(x) = x$, e $d\phi|_x: T_x(NQ) \xrightarrow{id} TM|_x$

Demostração. Idea: aplicação exponencial.

10 Monitoria 2

Proposicição. $\phi: M^{2n} \to \mathbb{R}^k$ suave, $c \in \mathbb{R}^k$ valor regular.

$$N := \phi^{-1}(c)$$
 coisotrópica $\iff \{\phi_i, \phi_i\}|_{N} = 0$

11 Aula 10

Lembre

- Darboux generalizado: duas formas numa subvariedade que coinciden nos pontos da subvariedade, existem vizinhanças da subvariedade simplectomorfas.
- A prova disso: usa método de Moser. Para usar o método de Moser:

Lema (Poincaré relativo). $Q \xrightarrow{i} M$. $\eta \in \Omega^k(M)$ fechada e tal que $i^*\eta = 0$. Então existe vizinhança $U \supset Q$ e $\beta \in \Omega^{k-1}(U)$ tal que $\eta = d\beta$ e $\beta|_Q = 0$.

(O lema de Poincaré usual é quando Q é um ponto)

Demostração do lema de Poincaré. Aí tem que mergulhar Q no fibrado tangente NQ que é um fibrado que não precisa de métrica para ser definido. Porém, na prova a gente intruduiz uma métrica em Q e identifica NQ com $T^{\perp}Q$. Daí usando a aplicação exponencial conseguimos ver que Q é um retrato por deformação de uma vizinhança dele no M—a exponencial é a ponte de NQ [a Q.

Isso da uma homotopía

$$\begin{aligned} F_t : U_0 &\longrightarrow U_0 \\ (x, \nu) &\longmapsto (x, t\nu) \\ F_0 &= i \circ \pi \\ F_1 &= id_{U_0} \end{aligned}$$

Daí é só pegar o operador de homotopía

$$\mathcal{H}: \Omega^k(\mathsf{U}_0) \to \Omega^{k-1}(\mathsf{U}_0)$$

que é tal que

$$F_1^*\eta=F_0^*\eta=\mathcal{H}(d\eta)+d(\mathcal{H}\eta)$$

Afirmação. O operador de homotopía é

$$H(\eta) = \int_0^1 I_t^* i_{\frac{\partial}{\partial t}}(F^* \eta) dt$$

onde

$$F: [0,1] \times U_0 \longrightarrow U_0$$

$$(t,y) \longmapsto F_t(y)$$

e

$$I_t: U_0 \longrightarrow [0,1] \times U_0$$
$$y \longmapsto (t,y)$$

de forma que

$$F_{\mathsf{t}} = F \circ I_{\mathsf{t}}$$

Notação Seja

$$\tau_t : \mathbb{R} \times U_0 \longrightarrow \mathbb{R} \times U -$$
$$(x,y) \longmapsto (s+t,y)$$

de forma que

$$I_t = \tau_t \circ I_0, \quad F_t = F \circ I_t = F \circ \tau_t \circ I_0$$

e a conta que a gente faiz é

$$\begin{split} \frac{d}{dt}F_t^*\eta &= I_0^*\frac{d}{dt}\tau_t^*(F^*\eta) \\ &= I_0^*\tau_t^*\big(\mathcal{L}_{\frac{\partial}{\partial t}}F_\eta^* \\ &\stackrel{Cartan}{=} I_0^*\tau_t^*\left(di_{\frac{\partial}{\partial t}}F_\eta^* + i_{\frac{\partial}{\partial t}}d(F^*\eta\right) \\ &= d\left(I_t^*i_{\frac{\partial}{\partial t}}F_\eta^* + I_t^ki_{\frac{\partial}{\partial t}}F^*(d\eta)\right) \end{split}$$

e aí integramos para obter

$$F_1^*\eta - F_0^*\eta = d(H\eta) + H(d\eta)$$

Se $d\eta=0, i^*\eta=0, \implies \eta=d(H\eta).$ Defina $\beta=H\eta.$ Como $F_t(x,0)=(x,0) \ \forall x\in Q,$ assim

 $\frac{\partial}{\partial t} F_t(x,0) = 0 \implies \mathfrak{i}_{\frac{\partial}{\partial t}} dF_t|_{x \in Q} = 0$

e por fim

$$\beta|_{x}=0.$$

Para esse teorema pode imaginar que cada vizinhança de Q é uma variedade diferente. Mas então a condição de que as dois formas s ão iguais encima de Q já não faz sentido. Precisamos de um isomorfismo simplético entre esses espaços tangentes.

Teorema (Teorema de Darboux generalizado Versão 2.0).

(arrows reversed)Suponha que temos um isomorfismo de fibrados simplécticos

e tal que $d\phi|_{TQ}$: $TQ \rightarrow TQ$ e id_TQ .

Então φ estende a um simplectomorfismo

$$U_0 \subset M_0 \xrightarrow{\phi} U_1 \subset M_1$$

(arrows backwards) tal que

$$d\pi|_{O} = \varphi : TM_0|_{O} \rightarrow TM_1|_{O}$$

Isto é, a derivada do simplectomofismo (entre as vizinhanças de M_1 e M_2) que obtemos estende o isomorfismo simpléticos dos fibrados tangentes.

Demostração. Podemos reduzir ao caso anterior! Basta achar um difeomorfismo $\psi: U_0 \to U_1$ tal que $\psi|_Q = id_Q$ e que $d\psi|_Q = \varphi$. Nesse caso, ω_0 e $\psi^*\omega_1$ são dois formas em U_0 que coincidem sobre $TM_1|_Q$. Vamo lá

Tome dois complementos

$$E_0$$
, $TM_0|_Q = TQ \oplus E_0$
 E_1 , $TM_1|_Q = T_Q \oplus E_1$

Então como φ preserva T_Q , ele também preserva os complementos, é só algebra linear. Isto é, φ se restringe a um isomorfismo

$$\bar{\Phi}: \mathsf{E}_0 \to \mathsf{E}_1$$

Note que

$$\bar{\Phi}|_{Q}: \mathsf{TE}_{0} \cong \mathsf{T}Q \oplus \mathsf{E}_{0} \to \mathsf{TE}_{1} \cong \mathsf{T}Q \oplus \mathsf{E}_{1}$$

Aqui estamos pegando a derivada do isomorfismo nos fibrados. O importante e que como ele é linear, sua derivada é ele mesmo (só que aí aparecem muitas identificações):

$$d\bar{\phi}|_{O} = id \oplus \bar{\phi} = \phi$$

Agora pegamos vizinhanças tubulares de Q, $V_0 \subset E_0$ e $V_1 \subset E_1$ e usando a exponancial como antes podemos contraer

$$\begin{array}{ccc} V_0 & \xrightarrow{& \varphi} & V_1 \\ & \downarrow^{\varphi_0 = exp} & \downarrow^{\varphi_1} \\ U_0 \subset M_0 & \xrightarrow{-\psi} & U_1 \subseteq M_1 \end{array}$$

e todo comuta:

$$\psi = \varphi_1 \circ \bar{\varphi} \circ \varphi^{-1} : U_0 \stackrel{\cong}{\longrightarrow} U_1$$

e por fim

$$d\psi|_Q=id\circ d\bar{\varphi}\,id=\varphi$$

Agora um caso particular:

(arrows reversed they are inclusions) onde Q está metida no fibrado cotangente como a seção zero.

Teorema (das vizinhanças Lagrangianas de Weinstein). (As subvariedades Lagrangianas estão definidas "intrinsecamente", pois existe uma vizinhança delas que é simplectomorfa a ela como subvariedade no tangente dela)

Existem vizinhanças $U_0 \supseteq \mathcal{L}$ em $T^*\mathcal{L}$ e $U_1 \supset eq \mathcal{L}$ em M e um simplectomorfismo

$$\phi: U_0 \to U_1$$

Demostração. Só precisamos de um φ como no Darboux 2, i.e.,

$$\phi: TM|_{\mathcal{L}} \longrightarrow T(T^*\mathcal{L})|_{\mathcal{L}}$$

tal que

$$\phi|_{\mathsf{T}\mathscr{L}}:\mathsf{T}\mathscr{L}\to\mathsf{T}\mathscr{L}=\mathsf{id}_{\mathsf{T}\mathscr{L}}$$

Lema. Suponha que $\mathcal{L}\hookrightarrow (M,\omega)$ é Lagrangiana. Considere $TM|_{\mathcal{L}}$ um fibrado vectorial simplético. Então

- 1. Existe um subfibrado lagrangiano $E \subseteq TM|_{\mathcal{L}}$ tal que $TM|_{\mathcal{L}} = T\mathcal{L} \oplus E$.
- 2. Existe um isomorfismo

onde no espaço $T\mathcal{L} \oplus (T\mathcal{L})^*$ é

$$\nu((X, \alpha), (Y, \beta)) = \beta(X) - \alpha(Y)$$

Lembrando um exercício da lista 1 (de álebra linear) que diz que um subespaço Lagrangiano é nos da uma descomposição do espaço usando o seu dual.

Demostração do Lem**Step 1** Todo espaço simplético induiz uma estrutura complexa compatível. Se L é lagrangiano, JL também e o espaço vetorial (acho que isso coincide com o complemento ortogonal na métrica compatível). Isso vale para fibrados vetorias.

Step 2 Note que

$$E \longrightarrow (T\mathcal{L})^*$$
$$u \longmapsto \omega(\cdot, u)$$

é um isomorfismo. Isso é super elementar de algebra linear.

Tome

$$(TM|_{\mathcal{L}}, \omega) \longrightarrow (T\mathcal{L} \oplus T\mathcal{L}^*, \nu)$$
$$(x, u) \longmapsto (X, \omega(\cdot, u)$$

que é que acontece? Então,

$$\begin{split} \nu(T(X,u),T(Y,\nu) &= \nu((X,\omega(\cdot,u)),(Y,\omega(\cdot,\nu)) \\ &= \omega(X,u) - \omega(Y,u) \\ &= \omega((X,u),(Y,u)) \end{split}$$

Daí, o lema queda provado simplesmente notando que

(diagonal arrows reversed).

12 Aula 11