DIT UNIVERSITY DEHRADUN

B.TECH (All) MID TERM EXAMINATION, ODD SEM 2022-23 (SEM I)

Roll No.

Subject Name: Engg. Mathematics I

Time: 2 Hours Total Marks: 50

Note: All questions are compulsory. No student is allowed to leave the examination hall before the completion of the exam.

Q.1) Attempt all Parts:

- (a) Evaluate the limit: $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$.
- **(b)** Evaluate n^{th} derivative of the function $sin^2(2x)$.
- (c) Find all the asymptotes of the curve $(2x + 3)y = (x 1)^2$.
- (d) Determine first order partial derivatives $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ of the function $u=y^2e^{x/y}$ at the point (2, 4).

[4 x 2.5= 10]

Q.2) Attempt all Parts:

- (a) Find the value of k for which $f(x) = \begin{cases} 2kx 1 & when \ x \le 3 \\ x^2 + k & when \ x > 3 \end{cases}$ is continuous at x = 3.
- (b) Find points of inflection and intervals in which curve is concave upward or concave downward for the function $y = x^4 2x^3$.
- (c) Find n^{th} derivative i.e. y_n for the function $y = x^2 \log(x)$.
- (d) For the function $u(x,y) = \frac{x^3 + y^3}{x + y}$ determine the value of $\frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.

[4 x 2.5= 10]

Q.3) Attempt any Two Parts:

- (a) If $\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$, show that $x^2y_{n+2}(x) + (2n+1)xy_{n+1}(x) + 2n^2y_n(x) = 0$.
- **(b)** Expand $f(x) = log_e x$ in powers of (x 1) upto degree 5 and hence evaluate $log_e(1.1)$.
- (c) If $z = y f(x^2 y^2)$ show that $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = \frac{xz}{y}$.

 $[2 \times 5 = 10]$

Q.4) Attempt any Two Parts:

- (a) Examine the continuity of the function $f(x) = \begin{cases} 1 + x^2 & when \ x \le 2 \\ 3x 1 & when \ x > 2 \end{cases}$ at x = 2.
- **(b)** Obtain the Taylor's series expansion of the maximum order for the function $f(x,y) = 2x^2 + y^2 3x 6y + 12$ about the point (2,1).

(c) If
$$u(x,y,z)=z \log(y)+y \log(z)+xyz$$

where $x=\sin(t), y=t^2+1, z=\cos^{-1}(t)$ then evaluate $\frac{du}{dt}$ at $t=0$.

[2 x 5= 10]

Q.5) Attempt any Two Parts:

- (a) Evaluate the limit: $\lim_{x\to 0} \left[\frac{\pi}{4x} \frac{\pi}{2x(e^{\pi x} + 1)} \right]$.
- **(b)** If $u = tan^{-1} \left(\frac{x^3 + y^3}{x y} \right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.
- (c) For the function $y = \frac{x}{x^2 + 1}$, determine following:
 - (i) Critical points and interval of increasing and decreasing.
 - (ii) Point of maxima and minima.

[2 x 5= 10]

----END OF PAPER ----