1 Physikalische Grundlagen

 $P = M \cdot \omega$ $\omega = 2\pi n$

2 Lastganglinien

 T_n : Nennbetriebsdauer T_a Ausnutzungsadauer T_{ben} : Benutzungsdauer P_{max} : Höchstalast $W = \int_0^{T_n} P(t) \; \mathrm{d}t = P_{mittel} T_n = P_n T_a = P_{max} T_{ben}$

3 Wechel-/Drehstromsystem

3.1 Wechselstromsystem

Phasenwinkel $\varphi = \varphi_u - \varphi_i$ Kreisfrequenz: $\omega = 2\pi f$

Physikalische Zeitsignale:
$$\begin{split} u(t) &= \hat{u}\cos(\omega t + \varphi_u) = U\sqrt{2}\cos(\omega t + \varphi_u) \\ i(t) &= \hat{i}\cos(\omega t + \varphi_i) = I\sqrt{2}\cos(\omega t + \varphi_i) \end{split}$$

Komplexes Zeitsignal(Drehzeiger): $\underline{u}(t) = \hat{u} \exp (\mathrm{j}(\omega t + \varphi_u)),$ $u(t) = \Re(u(t))$

Scheitelwert \hat{u} , Effektivwert $U=\sqrt{\frac{1}{T}\int_{t_0}^{t_0+T}u^2(\tau)\;\mathrm{d}\tau}$, bei Sinus $U=\frac{\hat{u}}{\sqrt{2}}$ Effektiver Zeiger: $\underline{U}=U\exp(\mathrm{j}\varphi_u)$

$$U \cdot \sqrt{2} \exp(j\omega t) = u(t)$$

3.2 Komplexe Leistung

$$\begin{split} P &= \frac{1}{T} \int_0^T p(t) \; \mathrm{d}t = \frac{1}{T} \int_0^T u(t) \cdot i(t) \; \mathrm{d}t \\ \text{Wirkleistung} \qquad P &= \Re(\underline{S}) = UI \cdot \cos(\varphi) \qquad [\mathrm{W}] \\ \text{Blindleistung} \qquad Q &= \Im(\underline{S}) = UI \cdot \sin(\varphi) \qquad [\mathrm{Var}] \\ \text{Scheinleistung} \qquad S &= U \cdot I = \sqrt{P^2 + Q^2} \qquad [\mathrm{VA}] \end{split}$$

 $\begin{array}{l} \text{Scheinleistung: } \underline{S} = \underline{U} \cdot \underline{I}^* \\ \|\underline{S}\| = S = \sqrt{P^2 + Q^2} \\ \text{Leistungsfaktor } \lambda = \frac{|P|}{S} = \cos(\varphi) \end{array}$

Scheinleistung schwingt mit doppelter Netzfrequenz! $p(t) = P + S \cdot \cos(2\omega t + \varphi_u + \varphi_i)$ $\tilde{\mathbf{S}} = \mathbf{U} \cdot \mathbf{I}$

$$\begin{split} & \text{Impedanz}(\text{Scheinwiderstand}) \\ & \underline{Z} = R + \mathrm{j}X = \exp(\mathrm{j}\varphi_Z) \\ & Z(j\omega) = R(j\omega) + jX(j\omega) \\ & \text{Impedanz} \quad \text{Resistanz} \quad \text{Reaktanz} \end{split}$$

 $\begin{array}{ccc} & & & & & & & & \\ & & & I^b = \\ \underline{Y} = G + \mathrm{j}B = \exp(\mathrm{j}\varphi_Y) & & Z^b = \\ Y(j\omega) = G(j\omega) + jB(j\omega) & \ddot{u} = \frac{V}{V} \\ \mathrm{Admittan} & \mathrm{Konduktanz} & \mathrm{Suszeptanz} \\ I = Y \cdot U & & & u_r = \\ \end{array}$

$\underline{U} = \underline{Z} \cdot I$ 3.3 Drehstromsystem

Drehoperator:
$$\underline{a} = \exp(j\frac{2}{2}\pi)$$
 $\underline{a}^0 = \underline{a}^3 = 1$ $\underline{a}^* = \underline{a}$

Effektive Leiter-Erdspannungen: $\underline{U}_1,\underline{U}_2,\underline{U}_3$ Effektive Außenleiterspannungen: $\underline{U}_{12},\underline{U}_{23},\underline{U}_{31}$ symmetrischer Betrieb: $U=|U_1|=|U_2|=|U_3|$

Netznennspannung: $U_n = |U_{12}| = |U_{23}| = |U_{32}| = \sqrt{3}U$ Gesamte Leistung: $\underline{S} = \sqrt{3} \cdot \underline{U}_n \cdot \underline{I}^*$ bei symmetrischem Betrieb: $\underline{S} = 3 \cdot \underline{U} \cdot \underline{I}$ bei unsymmetrischem Betrieb:

$$\underline{S} = \underline{U}_1 \cdot \underline{I}_1^{\star} + \underline{U}_2 \cdot \underline{I}_2^{\star} + \underline{U}_3 \cdot \underline{I}_3^{\star}$$

Komplexe Wechselleistung:

$$\underline{\tilde{S}} = \underline{U}_1 \cdot \underline{I}_1 + \underline{U}_2 \cdot \underline{I}_2 + \underline{U}_3 \cdot \underline{I}_3$$

Tatsächlicher Leistungsfluss

$$p(t) = \operatorname{Re} \left\{ \underline{\underline{S}} \right\} + \operatorname{Re} \left\{ \underline{\underline{\tilde{S}}} e^{j2\omega t} \right\}$$

4 Elektrische Energieübertragung

4.1 Drehstromleitung

$$\begin{pmatrix} \underline{\boldsymbol{U}}_1 \\ \underline{\boldsymbol{U}}_2 \\ \underline{\boldsymbol{U}}_3 \end{pmatrix} = \begin{pmatrix} \underline{\boldsymbol{Z}}_d & \underline{\boldsymbol{Z}}_k & \underline{\boldsymbol{Z}}_k \\ \underline{\boldsymbol{Z}}_k & \underline{\boldsymbol{Z}}_d & \underline{\boldsymbol{Z}}_k \\ \underline{\boldsymbol{Z}}_k & \underline{\boldsymbol{Z}}_k & \underline{\boldsymbol{Z}}_d \end{pmatrix} \begin{pmatrix} \underline{\boldsymbol{I}}_1 \\ \underline{\boldsymbol{I}}_2 \\ \underline{\boldsymbol{I}}_3 \end{pmatrix}$$

Im symmetrischen Betrieb kann im einphasigen ESB Z_b als Leitungsimpedanz eingesetzt werden: $\underline{Z}_b = \underline{Z}_d - \underline{Z}_k$

5 Elektrische Maschinen

können als Motoren oder Generatoren benutzt werden. ($\eta>90\%$) Besteht aus Stator(Ständer),Rotor(Läufer), Anker und Welle. n: Drehzahl; M: magn. Moment

5.1 Der Transformator

ü	Übersetzung
$\boldsymbol{\ddot{u}}_r$	Bemessungsübersetzung
U_{r1T} , U_{r2T}	Bemessungsspannungen
S_{rT}	Bemessungsleistung
U_K	Kurzschlussspannung
u_k	bezogene Kurzschlussspannung
u_r	bezogener Wirkspannungsabfall
P_{Cu}	Kupferverluste
P_{Fe}	Eisenverluste
Z_k	Kurzschlussimpedanz

Zur Berechnung wird oft u_r anstelle von u eingesetzt, da ersteres meist unbekannt ist. Die Bemessungsübersetzung findet sich aber auf dem Typeschild

$$\begin{split} & \underline{U}^b = \mathbf{i} \underline{U} \\ & \underline{I}^b = \frac{1}{\mathbf{i}} \underline{I} \\ & \underline{I}^b = \frac{1}{\mathbf{i}} \underline{I} \\ & \underline{Z}^b = \mathbf{i}^2 \underline{Z} \\ &) & \mathbf{i}^2 & \underline{W}_1 \\ &) & \mathbf{i}^2 & \underline{W}_2 \\ & \mathbf{i}_r = \frac{U_{r1T}}{U_{r2T}} \\ & u_k = \frac{U_K}{U_{r1T}} \\ & Z_k = u_k \frac{U_{r1T}^2}{S_{rT}} \\ & u_r = \frac{U_{rT}}{U_{r1T}} \\ & u_r = \frac{U_{rT}}{U_{r1T}} \\ & R_k = P_{Cu} \left(\frac{U_{r1T}}{S_{rT}} \right)^2 \\ & R_k = u_r \frac{U_{r1T}^2}{S_{rT}} \end{split}$$

$$\begin{split} Z_k &= \sqrt{R_k^2 + X_k^2} \\ R_{Fe} &= \frac{U_{P1T}^2}{P_{Fe}} \\ I_{W0} &= \frac{P_{Fe}}{\sqrt{3}U_{r1T}} \\ I_h &= \sqrt{I_{10}^2 - I_{W0}^2} \\ X_h &= \frac{U_{r1T}}{\sqrt{3}I_r} \end{split}$$

5.2 Gleichstrommaschine

p	Polpaarzahl
z	Anzahl der Schaltstufen
λ	Schaltverhältnis
U	Ankerklemmenspannung
U_i	Im Anker induzierte Spannung
K_1 , K_2	Maschinenkonstanten
Φ	magnetischer Fluss durch den Anker
I_A	Ankerstrom
R_A	Widerstand der Ankerwicklungen
I_{F}	Erregerstrom

5.2.1 Grundgleichungen

$$\begin{array}{l} U=U_i+(R_A+R_v)I_A=U_i+RI\\ U_i=K_1\Phi n\\ M=K_2\Phi I_A\\ \Phi=f(I_E)\\ \text{falls verlustfrei: } K_1=2\pi K_2\\ n=\frac{U}{K_1\cdot\Phi}-\frac{K_1\cdot K_2\cdot\phi^2}{K_1\cdot K_2\cdot\phi^2}M \end{array}$$

5.2.2 Anlaufen mit Vorwiderständen

$$\begin{array}{l} R_{A,z-1} = R_A + R_{V1}, \ R_{A,z-1} = R_A + R_{V1} + R_{V2}, \ ..., \\ R_{A,0} = R_A + R_{V1} + ... + R_{Vz} \\ \lambda = \frac{M_{max}}{M_{min}} = \frac{R_{A,Z-1}}{R_{A,Z}} \\ z = \log_{\lambda} \frac{R_{A0}}{R_A} \end{array}$$

5.2.3 Fremderregt

$$n_0 = \frac{U}{K_1 \Phi}$$

$$M_A = \frac{UK_2 \Phi}{R}$$

$$n = n_0 - n_0 \frac{M}{M_A}$$

5.2.4 Reihenschluss

$$\begin{split} M &= \frac{K_2}{K_3} \Phi^2 \\ n &= \frac{U}{\sqrt{2\pi K_1 K_2}} \frac{1}{\sqrt{M}} - \frac{R}{K_1 K_2} \end{split}$$

5.3 Synchronmaschine

Synchrone Reaktanz
$$X_d = \omega \cdot (L_h + L_\sigma)$$
 $X_d \cdot I_w = U_p \sin(\vartheta_M)$ $X_d = x_d \frac{U_r^2}{S_r}$
$$\ddot{\text{Ubereregung}} \qquad \qquad \text{Untereregung}$$

$$\boxed{\text{SMA wirkt wie Kapazität}} \qquad \qquad \text{SMA wirkt wie Induktivität}$$
 gibt induktive Blindleistung ab nimmt induktive Blindleistung auf

5.4 Asynchronmaschine

Bemessungsmoment $M_r=\frac{P_r}{2\pi n_r}$ Kloss'sche Gleichung $M=\frac{2M_k\cdot s\cdot s_k}{s^2+s_k^2}$ Kippmoment M_k ; Betrieb bei ca. $\frac{2}{3}M_k\Rightarrow \vartheta_M<42^\circ$

5.5 Asynchronmaschine

$$\begin{split} s &= \frac{n_0 - n}{n_0} \\ M &= \frac{3}{2\pi n_0} \frac{I^2 R_l}{s} \\ n_0 &= \frac{f}{s} \\ M &= \frac{2M_k}{\frac{s}{s_k} + \frac{s}{s}} \end{split}$$

Anlauf nur möglich falls $M_A < M_{an}$

Feldschwächung: $\Phi_{M} \propto rac{U_{st,r}}{f_{st,r}}$

U kann nicht beliebig erhöht werden \Rightarrow Fluss wird kleiner \Rightarrow Moment wird kleiner.

5.6 elektrische Energieübertragung

Freileiter oder Erdleiter:

- Erdkabel-Isolierung: Papier mit Öl getränkt oder vernetztes PE
- Erdakabel bei gleicher Übertragung etwa 4 7 mal teuerer.
- Störungen bei Freileitern leichter lokalisierbar und behebbar.

Längsimpedanzen (KS) und Queradmittanzen (LL)

$$\begin{array}{cccc} U_n & \text{Leitung} & \text{Leiter} & R & X_b' = \omega L_b' & Y_b = \omega C \\ 30\text{kV} & \text{FL} & \text{Al/St } 95/15 & 0.30 & 0.37 \\ \underline{\underline{U}}_{12} = \Delta U + \mathrm{j} \delta U \\ \text{meist } R << \omega L_b & \Rightarrow \underline{U}_{12} = \omega L_b (I_w + I_b) \end{array}$$

Phasenkonstante
$$\beta=2\pi f \frac{\sqrt{\varepsilon_T}}{c_0} \qquad \beta(FL) \approx \frac{6^{\circ}}{100 km}$$

$$\begin{array}{c|c} \underline{Z}_l & \frac{\underline{-q}}{2} \\ \\ \text{el. lange Leitung} & \mathrm{j}\underline{Z}_w\sin(\beta l) & \frac{\cos(\beta l)-1}{\mathrm{j}\underline{Z}_w\sin(\beta l)} \\ \\ \text{el. kurze Leitung} & \mathrm{j}\omega L_b'I & \frac{\mathrm{j}\omega C_b'l}{2} \end{array}$$

natürlicher Betrieb($\underline{\boldsymbol{Z}}_2 = \underline{\boldsymbol{Z}}_w$): Blindleistungsggw

5.7 Vereinfachte Leitungsbetrachtung

Vernachlässigung von Queradmittanzen \Rightarrow $I_{in} = I_{out}$ Längsspannungsabfall: $\Delta U = R \cdot I_w + \omega L_b I_b$ Querspannungsabfall: $\delta U = \omega L_b I_w - R I_b$ Leitungswinkel: $\vartheta = \varphi_{II1} - \varphi_{II2}$