Моя лента Все потоки Разработка Администрирование Дизайн Менеджмент Маркетинг Научпс

timyrik20 29 июля 2013 в 00:00

Знай сложности алгоритмов

Автор оригинала: Eric Rowell

Алгоритмы Перевод

Эта статья рассказывает о времени выполнения и о расходе памяти большинства алгоритмов прошлом, когда я готовился к прохождению собеседования я потратил много времени иссле, информации о лучшем, среднем и худшем случае работы алгоритмов поиска и сортировки, ч собеседовании не поставил меня в тупик. За последние несколько лет я проходил интервью в Силиконовой долины, а также в некоторых крупных компаниях таких как Yahoo, eBay, LinkedIr готовился к интервью, я подумал: «Почему никто не создал хорошую шпаргалку по асимптоть Чтобы сохранить ваше время я создал такую шпаргалку. Наслаждайтесь!

Поиск

Алгоритм	Структура данных	Времен
		В среднем
Поиск в глубину (DFS)	Граф с V вершинами и E ребрами	-
Поиск в ширину (BFS)	Граф с V вершинами и E ребрами	-
Бинарный поиск	Отсортированный массив из n элементов	O(log(n))
Линейный поиск	Массив	O(n)
Кратчайшее расстояние по алгоритму Дейкстры используя двоичную кучу как очередь с приоритетом	Граф с V вершинами и E ребрами	O((V + E) log V
Кратчайшее расстояние по алгоритму Дейкстры используя массив как очередь с приоритетом	Граф с V вершинами и E ребрами	O(V ^2)
Кратчайшее расстояние используя алгоритм Беллмана—Форда	Граф с V вершинами и E ребрами	O(V E)

Сортировка

Алгоритм	Структура данных	Временная сложность		ость
		Лучшее	В среднем	В худшем
Быстрая сортировка	Массив	O(n log(n))	O(n log(n))	O(n^2)
Сортировка слиянием	Массив	O(n log(n))	O(n log(n))	O(n log(n))
Пирамидальная сортировка	Массив	O(n log(n))	O(n log(n))	O(n log(n))
Пузырьковая сортировка	Массив	O(n)	O(n^2)	O(n^2)
Сортировка вставками	Массив	O(n)	O(n^2)	O(n^2)
Сортировка выбором	Массив	O(n^2)	O(n^2)	O(n^2)
Блочная сортировка	Массив	O(n+k)	O(n+k)	O(n^2)
Поразрядная сортировка	Массив	O(nk)	O(nk)	O(nk)

Структуры данных

Структура данных	Временная сложность						
данных	В среднем				В худ	дшем	
	Индексация	Поиск	Вставка	Удаление	Индексация	Поиск	Вставка
Обычный массив	O(1)	O(n)	-	-	O(1)	O(n)	-
Динамический массив	O(1)	O(n)	O(n)	O(n)	O(1)	O(n)	O(n)
Односвязный список	O(n)	O(n)	0(1)	O(1)	O(n)	O(n)	O(1)
Двусвязный список	O(n)	O(n)	0(1)	0(1)	O(n)	O(n)	0(1)
Список с пропусками	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)	O(n)	O(n)
Хеш таблица	-	0(1)	0(1)	0(1)	-	O(n)	O(n)
Бинарное дерево поиска	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)	O(n)	O(n)
Декартово дерево	-	O(log(n))	O(log(n))	O(log(n))	-	O(n)	O(n)
Б-дерево	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n)
Красно-черное дерево	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n)
Расширяющееся дерево	-	O(log(n))	O(log(n))	O(log(n))	-	O(log(n))	O(log(n)
АВЛ-дерево	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n)

Кучи

Куча	Временная сложность			я сложность
	Преобразование к куче	Поиск максимума	Извлечение максимума	Увеличить ключ
Связный список (отсортированный)	-	O(1)	O(1)	O(n)
Связный список (не отсортированный)	-	O(n)	O(n)	0(1)
Бинарная куча	O(n)	O(1)	O(log(n))	O(log(n))
Биномиальная куча	-	O(log(n))	O(log(n))	O(log(n))
Фибоначчева куча	-	O(1)	O(log(n))	O(1)*

Представление графов

Пусть дан граф с |V| вершинами и |E| ребрами, тогда

Способ представления	Память	Добавление вершины	Добавление ребра	Удаление вершины
Список смежности	O(E + V)	O(1)	O(1)	O(E + V)
Список инцидентности	O(E + V)	O(1)	O(1)	O(E)
Матрица смежности	O(V ^2)	O(V ^2)	O(1)	O(V ^2)
Матрица инцидентности	O(V E)	O(V E)	O(V E)	O(V E)

Нотация асимптотического роста

Обозначение	Граница	Рост
(Тета) Ө	Нижняя и верхняя границы, точная оценка	Равно
(О - большое) О	Верхняя граница, точная оценка неизвестна	Меньше или равно
(о - малое) о	Верхняя граница, не точная оценка	Меньше
(Омега - большое) Ω	Нижняя граница, точная оценка неизвестна	Больше или равно
(Омега - малое) ω	Нижняя граница, не точная оценка	Больше

1. (О — большое) — верхняя граница, в то время как (Омега — большое) — нижняя границ так и (Омега — большое), поэтому она является точной оценкой (она должна быть огран примеру, алгоритм требующий Ω (n logn) требует не менее n logn времени, но верхняя граница примеру, алгоритм требующий Ω (n logn) требует не менее n logn времени, но верхняя граница примеру, алгоритм требующий Ω (n logn) требует не менее n logn времени, но верхняя граница примеру.

требующий Θ (n logn) предпочтительнее потому, что он требует не менее n logn (Ω (n log logn)).

- 2. $f(x) = \Theta(g(n))$ означает, что f растет так же как и g когда n стремится к бесконечности. Друг асимптотически пропорциональна скорости роста g(n).
- 3. f(x)=O(g(n)). Здесь темпы роста не быстрее, чем g(n). О большое является наиболее поле наихудший случай.

Короче говоря, если алгоритм имеет сложность _ тогда его эффективность _

Алгоритм	Эффективность
o(n)	<n< td=""></n<>
O(n)	≤n
Θ(n)	= n
Ω(n)	≥n
ω(n)	> n

График роста О — большое

