A. Informacje o zespole realizującym ćwiczenie

Nazwa przedmiotu:	Automatyka pojazdowa
Nazwa ćwiczenia:	Systemy informacji i rozrywki
Data ćwiczenia:	2022-05-25
Czas ćwiczenia:	15:00 – 16:30
Zespół realizujący ćwiczenie:	Jakub SzczypekBłażej SzczurJulita Wójcik

B. Sformułowanie problemu

Celem laboratorium jest opracowanie aplikacji, za pomocą której będzie możliwe sterowanie zestawem wskaźników w samochodzie. Zestaw wskaźników będący przedmiotem ćwiczenia jest w samochodzie podłączony do magistrali CAN, po której komunikuje się on z pozostałymi układami. Zestawy wskaźnika we współczesnych samochodach można traktować jako elementy rozproszonego systemu informacji i rozrywki. Sterowanie zestawem odbywa się z komputera PC wraz z interfejsem CAN oraz oprogramowaniem MATLAB. Zbudowanie modelu symulacyjnego należy wykonać z poziomu środowiska MATLAB, wykorzystując odpowiednie bloczki i bibliotekę oraz załączając odpowiednią bazę .dbc zawierającą definicje sygnałów.

C. Sposób rozwiązania problemu

Model w Simulinku zbudowano z wykorzystaniem bloczków z biblioteki *Vehicle Network Toolbox*. Do wysyłania ramek na magistralę wykorzystano bloczki: CAN Pack i CAN Transmit. Pierwszy bloczek posłużył do tworzenia ramki CAN na podstawie przypisanych wartości do sygnałów, a drugi do wybrania urządzenia, na który ramka ma być wysłana. Niezbędnym krokiem było dołączenie bazy danych zawierającej informacje o ramkach CAN, która umożliwiła wybranie interesującej ramki z listy wiadomości. Manipulowanie wartościami pozwoliło na obserwację wskaźników na desce rozdzielczej. Fragment układu przedstawiono na Rysunku 1.

Rysunek 1. Fragment kodu umożlwiający sterowanie zestawem wskaźników

D. Wyniki

Manipulowanie wartościami sygnałów pozwoliło na aktywację odpowiednich wskaźników. Wybraną konfigurację wskaźników przedstawiono na rysunku 2.

Rysunek 2. Aktywacja wybranych wskaźników

E. Wnioski

- Zapoznano się ze specyfiką działania zestawu wskaźników deski rozdzielczej
- Ćwiczenie pozwoliło na zapoznanie się i praktyczne zastosowanie bloczków z biblioteki Vehicle Network Toolbox
- Wizualizacja konkretnych elementów była dużym ułatwieniem pracy, a możliwość zobaczenia efektu pracy była dodatkowym atutem zadania
- Wykonanie laboratorium zwiększyło świadomość pracy nad plikami DBC i odczytywaniem z nich potrzebnych informacji