Università degli Studi Roma Tre Anno Accademico 2008/2009 AL1 - Algebra 1

Esempio di esonero

Giovedì 6 Novembre 2008

- domande/osservazioni: dibiagio@mat.uniroma1.it
- 1. Siano A, B, C tre insiemi. Dimostrare che:
 - (a) $A \setminus ((A \cap B) \cup (A \cap C)) = (A \setminus B) \cap (A \setminus C);$
 - (b) $A \setminus (A \setminus (A \setminus (A \setminus B))) = A \cap B$.
 - (a) Per una legge di De Morgan $A \setminus ((A \cap B) \cup (A \cap C)) = (A \setminus (A \cap B)) \cap (A \setminus (A \cap C))$. Dalla definizione di differenza insiemistica segue poi che $A \setminus (A \cap B) = A \setminus B$ e $A \setminus (A \cap C) = A \setminus C$, da cui la tesi.
 - (b) È facile dimostrare che, dati due insiemi $X, Y, X \setminus (X \setminus Y) = X \cap Y$. Perciò $A \setminus (A \setminus (A \setminus A \setminus B)) = A \setminus (A \setminus (A \cap B)) = A \cap (A \cap B) = A \cap B$.
- 2. Siano X,Y insiemi e $f:X\to Y$ una funzione. Si definisca $f^*:\mathcal{P}(Y)\to \mathcal{P}(X)$ così: per ogni $B\subseteq Y, f^*(B):=f^{-1}(B)\subseteq X$. Si dimostri che f è biiettiva se e solo se f^* è biiettiva.

Premettiamo una semplice osservazione: in generale, se $g:W\to Z$ è una funzione biiettiva tra due insiemi, allora l'immagine inversa tramite g di un insieme $J\subset Z$ è uguale all'immagine di J tramite g^{-1} .

Iniziamo col supporre f biiettiva. Per il teorema 1.30 del libro questo implica che esiste ed è unica l'inversa di f, f^{-1} . Si consideri $(f^{-1})^*$: $\mathcal{P}(X) \to \mathcal{P}(Y)$. In virtù dell'osservazione e per il fatto che $(f^{-1})^{-1} = f$ si ha che $\forall B \in \mathcal{P}(Y)$, $(f^{-1})^*(f^*(B)) = f(f^{-1}(B)) = (f \circ f^{-1})(B) = id_Y(B) = B$. Analogamente $\forall A \in \mathcal{P}(X)$, $f^*((f^{-1})^*(A)) = id_X(A) = A$. Quindi $(f^{-1})^* \circ f^* = id_{\mathcal{P}(Y)}$ e $f^* \circ (f^{-1})^* = id_{\mathcal{P}(X)}$. Quindi f^* è invertibile e perciò biiettiva.

Sia ora f^* biiettiva. Dimostriamo che in questo caso f è iniettiva: siano $a, b \in X$ tali che f(a) = f(b). Essendo f^* suriettiva, allora $\exists B \subseteq Y$ t.c. $\{a\} = f^*(B)$. Però, siccome f(a) = f(b), allora $b \in f^*(B)$, quindi $b \in \{a\}$ da cui b = a. Dimostriamo ora che f è suriettiva: se per assurdo non lo fosse, allora esisterebbe $y \in Y$ t.c. $y \notin f(X)$. Ma allora $X = f^*(Y) = f^*(Y \setminus \{y\})$, il che contraddice l'iniettività di f^* .

3. I numeri di Fibonacci sono definiti induttivamente come: $f_1 := 1$, $f_2 := 1$, $f_{n+1} := f_n + f_{n-1}$. Si dimostri per induzione che per ogni $n \ge 1$, f_{4n} è divisibile per 3.

Per n=1 (base dell'induzione) l'asserto è verificato: $f_4=f_3+f_2=f_2+f_1+f_2=3$. Supponiamo quindi l'asserto vero per n e dimostriamolo per n+1: $f_{4(n+1)}=f_{4n+4}=f_{4n+3}+f_{4n+2}=f_{4n+2}+f_{4n+1}+f_{4n+2}=2f_{4n+1}+2f_{4n}+f_{4n+1}=3f_{4n+1}+2f_{4n}$ che è divisibile per 3 per l'ipotesi induttiva.

4. Si consideri

$$f: \mathbb{Q} \to \mathbb{Q}, x \mapsto ax + b,$$

dove a,b sono numeri fissati in \mathbb{Q} . Si dimostri per induzione che vale una delle seguenti formule:

- (a) $f^n(x) = b(a^n + 1) ab + a^n x$;
- (b) $f^n(x) = b(a^n 1) + a^n x$;
- (c) $f^n(x) = b + ab + a^2b + a^nx$;
- (d) $f^n(x) = a^n x + b \frac{a^n 1}{a 1}$

Si stabiliscano poi eventuali condizioni su a, b in modo che f^n sia biiettiva per ogni $n \ge 1$.

La formula giusta è la (d), come si può verificare facendo qualche esempio. Dimostriamola per induzione. Per n=1 si ha f(x)=ax+b, e quindi la formula è verificata. Supponiamola allora vera per n e dimostriamola per n+1: $f^{n+1}(x)=f(f^n(x))=f(a^nx+b\frac{a^n-1}{a-1})=a(a^nx+b\frac{a^n-1}{a-1})+b=a^{n+1}x+b(a\frac{a^n-1}{a-1}+1)=a^{n+1}x+b\frac{a^{n+1}-1}{a-1}.$

Dato che la composizione di applicazioni iniettive (suriettive) è iniettiva (suriettiva) e che, viceversa, in generale date $h: X \to Y$ e $k: Y \to Z$ si ha $k \circ h$ iniettiva $\Rightarrow h$ iniettiva e $k \circ h$ suriettiva $\Rightarrow k$ suriettiva allora f^n è biiettiva $\Leftrightarrow f$ è biiettiva. Se a = 0 f non è biiettiva. Se $a \neq 0$ allora f ammette $g: \mathbb{Q} \to \mathbb{Q}, \ y \mapsto \frac{y-b}{a}$ come inversa, e quindi f è biiettiva.

5. Trovare esplicitamente una biiezione tra \mathbb{N} e $\mathbb{N} \times \{0,1\}$. Se A è un insieme finito non vuoto si dica, giustificando la risposta, se è possibile trovare una biiezione tra A e $A \times \{0,1\}$.

Un esempio di biiezione è il seguente: $f: \mathbb{N} \times \{0,1\} \to \mathbb{N}, \ (n,i) \mapsto 2n+i$. f è biiettiva, dato che $g: \mathbb{N} \to \mathbb{N} \times \{0,1\}, \ n \mapsto \left(\left[\frac{n}{2}\right], \frac{-(-1)^n+1}{2}\right)$ (dove $[\cdot]$ è la parte intera inferiore) ne è l'inversa.

Nel caso di A insieme finito non vuoto si ha $|A \times \{0,1\}| = 2|A| > |A|$. Perciò, per il principio di Dirichlet, non è possibile trovare una biiezione tra A e $A \times \{0,1\}$.

6. Su $\mathbb{R} \setminus \{0\}$ si definisca una relazione R in questo modo: $aRb :\Leftrightarrow ab$ è un quadrato in \mathbb{R} (cioè $\exists c \in \mathbb{R}$ t.c. $ab = c^2$). Si dimostri che R è una relazione d'equivalenza e si descriva esplicitamente $(\mathbb{R} \setminus \{0\})/R$.

 $\forall r \in \mathbb{R} \setminus \{0\}$, essendo r^2 un quadrato in \mathbb{R} , rRr. Inoltre, siccome vale la proprietà commutativa per il prodotto, allora $\forall a,b \in \mathbb{R} \setminus \{0\}$ se aRb allora bRa. Infine $\forall a,b,h \in \mathbb{R} \setminus \{0\}$ tali che $ab = c^2, \exists c \in \mathbb{R}, bh = d^2, \exists d \in \mathbb{R}$ si ha $ab^2h = (cd)^2$ che implica $ah = (\frac{cd}{b})^2$ con $\frac{cd}{b} \in \mathbb{R}$. Perciò $aRb, bRh \Rightarrow aRh$. Siccome abbiamo visto che R verifica le proprietà riflessiva, simmetrica e transitiva allora R è una relazione d'equivalenza.

Siccome $r \in \mathbb{R}$ è un quadrato in \mathbb{R} se, e solo se, $r \geq 0$, allora, dati $a,b \in \mathbb{R} \setminus \{0\}$, $aRb \Leftrightarrow a,b$ hanno lo stesso segno. Quindi $(\mathbb{R} \setminus \{0\})/R = \{[1]_R, [-1]_R\}$, dove $[1]_R = \mathbb{R}_{>0}$ e $[-1]_R = \mathbb{R}_{<0}$.

2

7. Dimostrare che, $\forall n \in \mathbb{N}_+$,

$$\sum_{\substack{k=0\\k \text{ dispari}}}^{n} \binom{n}{k} = \sum_{\substack{k=0\\k \text{ pari}}}^{n} \binom{n}{k}$$

.

Lo dimostreremo in due modi.

Primo modo:
$$0 = (-1+1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k$$
, perciò $\sum_{\substack{k=0\\k \text{ dispari}}}^n \binom{n}{k} = \sum_{\substack{k=0\\k \text{ pari}}}^n \binom{n}{k}$.

Secondo modo: procederemo brutalmente per induzione. Per n=1 si ha $1=\binom{1}{1}=\binom{1}{0}=1$, quindi la formula è verificata. Prima di procedere col passo induttivo, introduciamo delle notazioni: $\delta_n:=\left\{\begin{array}{cc} 1 & \text{se } n \text{ è dispari} \\ 0 & \text{se } n \text{ è pari} \end{array}\right.$

e $\epsilon_n := \begin{cases} 1 & \text{se } n \text{ è pari} \\ 0 & \text{se } n \text{ è dispari} \end{cases}$. Supponiamo ora la formula vera per $n \ge 1$ e dimostriamola per n + 1: $\sum_{\substack{k=0 \\ k \text{ dispari}}}^{n+1} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=0 \\ k \text{ dispari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=0 \\ k \text{ dispari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=0 \\ k \text{ dispari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=0 \\ k \text{ dispari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=0 \\ k \text{ dispari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=0 \\ k \text{ dispari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=0 \\ k \text{ dispari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=0 \\ k \text{ pari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=0 \\ k \text{ pari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=0 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=0 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=0 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n}{k} + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n+1} \binom{n}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n+1} \binom{n}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n+1} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n+1} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n+1} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n+1} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n+1} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n+1} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n+1} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n+1} \binom{n+1}{k} = \epsilon_n + \sum_{\substack{k=1 \\ k \text{ pari}}}^{n+1} \binom{n$

8. Sull'insieme $\mathbb{Z} \times \mathbb{Z}$ si consideri la relazione R così definita: (a,b)R(c,d): \Leftrightarrow a|c,d|b (si ricordi che $\forall x,y \in \mathbb{Z}$, x|y vuol dire che $\exists z \in \mathbb{Z}$ t.c. xz=y). Si dica, giustificando le risposte, se R gode delle proprietà riflessiva, simmetrica, antisimmetrica, transitiva, totale e se R è una relazione d'equivalenza o di ordine. Infine si descriva esplicitamente l'insieme $\{(a,b) \in \mathbb{Z} \times \mathbb{Z} \text{ t.c. } (a,b)R(2,7)\}$.

R verifica la proprietà riflessiva: $a|a,b|b\Rightarrow (a,b)R(a,b)$. R non verifica la proprietà simmetrica: ad esempio (1,5)R(5,1) ma (5,1)R(1,5). R non verifica la proprietà antisimmetrica: ad esempio (1,1)R(-1,-1) e (-1,-1)R(1,1) ma $(-1,-1)\neq (1,1)$. R verifica la proprietà transitiva: se (a,b)R(c,d) e (c,d)R(e,f) allora $a|c,c|e\Rightarrow a|e$, e $d|b,f|d\Rightarrow f|b$ perciò (a,b)R(e,f). Siccome R non gode né della proprietà simmetrica né della proprietà antisimmetrica allora R non è né una relazione d'equivalenza né una relazione d'ordine.

 $(a,b)R(2,7) \Leftrightarrow a|2 \text{ e } 7|b, \text{ perciò } \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \text{ t.c. } (a,b)R(2,7)\} = \{(1,7h) \text{ t.c. } h \in \mathbb{Z}\} \cup \{(-1,7h) \text{ t.c. } h \in \mathbb{Z}\} \cup \{(-2,7h) \text{ t.c. } h \in \mathbb{Z}\}$.

- 9. Su $A = \mathcal{P}(\{1,2,3,4,5\})$ si consideri la relazione d'ordine data dall'inclusione \subseteq . Sia $B = \{\{1\},\{1\},\{1,2\},\{1,3\},\{1,2,3\},\{1,3,5\},\{1,2,3,4\}\} \subseteq A$.
 - (a) Calcolare $|A| \in |B|$.

- (b) B ha massimo? B ha minimo?
- (c) Elencare, se vi sono, tutti gli elementi massimali e tutti gli elementi minimali di B.
- (d) Fare un esempio di un maggiorante $x \in A$ di B tale che $x \notin B$ e un esempio di un minorante $x \in A$ di B tale che $x \notin B$.
- (e) Trovare l'estremo superiore e l'estremo inferiore di B in A.
- (f) (B, \subseteq) è totalmente ordinato?
- (a) $|A| = 2^5 = 32, |B| = 6.$
- (b) B non ha massimo: per motivi di cardinalità potrebbe esserlo solo $\{1,2,3,4\}$, ma $\{1,3,5\} \not\subseteq \{1,2,3,4\}$. B ha minimo: $\{1\}$ è contenuto in tutti gli elementi di B.
- (c) Essendo $\{1\}$ il minimo esso è anche l'unico elemento minimale di B. Gli elementi massimali sono $\{1, 2, 3, 4\}$ e $\{1, 3, 5\}$.
- (d) Maggiorante: $x = \{1, 2, 3, 4, 5\}$. Minorante: $x = \emptyset$.
- (e) Essendo $\{1\}$ il minimo esso è anche l'estremo inferiore. L'unico elemento x di A che contiente sia $\{1,3,5\}$ che $\{1,2,3,4\}$ è $x=\{1,2,3,4,5\}$. Inoltre $x=\{1,2,3,4,5\}$ contiente tutti gli altri elementi di A, perciò $x=\{1,2,3,4,5\}$ è l'estremo superiore di B in A.
- (f) No, dato che, ad esempio, $\{1,3,5\}$ e $\{1,2,3,4\}$ non sono confrontabili.