Математическая логика и теория алгоритмов

Сергей Григорян

9 октября 2024 г.

Содержание

1	Лекция 5	3
	1.1 Логический вывод	4
2	Лекция 6	6

1 Лекция 5

Пропозициональные ф-лы:

- Всегда = 1 Тавтологии Выполнимые
- М. Б. = 0 и = 1 Опровержимые Выполнимые
- Всегда = 0 Опровержимые Противоречия

"Важные" тавтологии (Логические законы):

1) Закон непротиворечия:

$$\neg (A \land \neg A)$$

2) Закон двойного отрицания:

$$\neg \neg A \leftrightarrow A$$

3) Закон исключённого третьего:

$$A \vee \neg A$$

<u>Пример</u>. Неконструктивное док-во с использованием закона исключённого третьего:

Теорема 1.1. $\exists x,y \colon x \notin Q, y \notin Q, x^y \in Q$

Доказательство. Рассм. выр-е: $(\sqrt{2})^{\sqrt{2}}$:

- 1) Оно $\in Q \Rightarrow$ нашли пример
- 2) Оно $\notin Q \Rightarrow x = (\sqrt{2})^{\sqrt{2}}, y = \sqrt{2}$:

$$x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^2 = 2$$

4) Контрапозиция:

$$(A \to B) \leftrightarrow (\neg B \to \neg A)$$

5) Законы Де Моргана:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$

$$\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$$

Задача о выполнимости условий: даны ф-лы $\phi_1,\phi_2,\dots,\phi_n$

Вопрос: могут ли они все быть одновременно истинны?

Это эквив. вопросу о выполнимости:

$$\phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_n$$

Пример. Превращение мат. задачи в задачу выполнимости: 1976ε . - з-ча 4 красок решена комп. перебором. Вершина графа $v\mapsto 2$ бита. (p_v,q_v) - (область на карте) u,v - соседний области \Rightarrow условие на отличие цветов:

$$(p_u \neq p_v) \vee (q_u \neq q_v)$$

1.1 Логический вывод

Определение 1.1. Логический вывод - п-ть формул, в кот. каждая фла либо является аксиомой, либо получается из более ранних по одному из правилу вывода.

Замечание.

$$(A o (B o C))$$
 - сл-ие из 2 посылок

Схемы аскиом (Аксиомы - рез-т подстановки конкретных ф-л вместо A,B,C)

- 1) $A \to (B \to A)$
- $2) \quad (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- 3) $(A \wedge B) \rightarrow A$
- 4) $(A \wedge B) \rightarrow B$
- 5) $A \to (B \to (A \land B))$

6)
$$A \rightarrow (A \vee B)$$

7)
$$B \to (A \vee B)$$

8)
$$(A \to C) \to ((B \to C) \to ((A \lor B) \to C))$$
 - "Разбор случаев"

9)
$$\neg A \rightarrow (A \rightarrow B)$$

10)
$$(A \to B) \to ((A \to \neg B) \to \neg A)$$
 - "Рассуждение от противного"

11)
$$A \vee \neg A$$

Правило вывода: modus ponens:

$$\frac{A \qquad A \to B}{B}$$

Теорема 1.2 (О корректности). A - выводима $\Rightarrow A$ - тавтология Доказательство. Акс. 1-11 - тавтологии.

$$\begin{cases} A \text{ - тавтология} \\ A \to B \text{ - тавтология} \end{cases} \Rightarrow B \text{ - тавтология}$$

Теорема 1.3 (О полноте). A - тавтология $\Rightarrow A$ - выводима

Обозначение.

 $\vdash A$ - A выводима

 $\models A$ - A тавтология

Пример. $\vdash (A \lor B) \to (B \lor A)$

1)
$$A \rightarrow (B \lor A)$$
 - $a\kappa c$. 7

2)
$$B \to (B \lor A)$$
 - $a\kappa c.$ 6

3)
$$(A \rightarrow (B \lor A)) \rightarrow ((B \rightarrow (B \lor A)) \rightarrow ((A \lor B) \rightarrow (B \lor A)))$$
 - arc. 8

4)
$$(B \to (B \lor A)) \to ((A \lor B) \to (B \lor A))$$
 - modus ponens 1, 3

5)
$$(A \lor B) \to (B \lor A)$$
 - modus ponens 2, 4

Пример. $\vdash (A \to A)$ - Закон тождества.

1)
$$A \rightarrow ((A \rightarrow A) \rightarrow A) - a\kappa c.$$
 1

2)
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$
 - arc. 2

3)
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$
 - modus ponens 1, 2

4)
$$A \rightarrow (A \rightarrow A)$$
 - $a\kappa c.$ 1

5) $A \rightarrow A$ - modus ponens 4, 3

2 Лекция 6

Определение 2.1. Вывод - п-ть ϕ_1,\dots,ϕ_n , т. ч. $\forall i$:

- ϕ_i аксиома
- ϕ_i получается по правилам МР из $\phi_i, \phi_k, j < i, k < i.$ Это значит, что $\phi_k = \phi_j \to \phi_i$

Ф-ла **выводима** ($\vdash \phi$), если ϕ встреч-ся в нек-ром выводе.

Теорема 2.1. ϕ - тавтология \Rightarrow ($\vdash \phi$)

Пример.

$$(\neg A \lor B) \to (A \to B)$$

1)
$$\neg A \rightarrow (A \rightarrow B) \ aксиома \ 9$$

2)
$$B \rightarrow (A \rightarrow B) \text{ - аксиома 9}$$

3)
$$(\neg A \to (A \to B)) \to ((B \to (A \to B)) \to ((A \lor B) \to (A \to B)))$$

4)
$$(B \to (A \to B)) \to ((\neg A \lor B) \to (A \to B)) - MP 1, 3$$

$$(\neg A \lor B) \to (A \to B)$$

Определение 2.2. Вывод из мн-ва посылок Γ - это п-ть $\phi_1, \phi_2, \dots, \phi_n$ при этом ϕ_i может быть либо аксиомой, либо эл-т Γ , либо получается по m. p.

<u>Лемма</u> 2.2 (О дедукции).

$$\Gamma \vdash A \to B \iff \Gamma \cup \{A\} \vdash B$$

Пример (Силлогизм).

$$\vdash (A \to B) \to ((B \to C) \to (A \to C)) \iff$$

$$\iff \{A \to B\} \vdash (B \to C) \to (A \to C)$$

$$\iff \{A \to B, B \to C\} \vdash (A \to C)$$

$$\iff \{A, A \to B, B \to C\} \vdash C$$

- 1) A посылка
- 2) $A \rightarrow B$ посылка
- 3) B no MP 1, 2
- 4) $B \to C$ посылка
- 5) C MP 3. 4

Доказательство. \Rightarrow) Если вывели $A \to B$, то из $\Gamma \cup \{A\}$ можно вывести B по MP

 \Leftarrow) Пусть $\Gamma \cup \{A\} \vdash B$. Тогда сущю вывод $\phi_1, \dots, \phi_n = B$ из $\Gamma \cup \{A\}$

Каждый ϕ_i - либо акс., либо $\in \Gamma$, либо = A, либо вывод-ся по MP. Мы докажем по инд-ции, что $\Gamma \vdash A \to \phi_i$:

- 1) ϕ_i akc.
 - 1) ϕ
 - 2) $\phi_i \to (A \to \phi_i)$ A1

3)
$$A \rightarrow \phi_i$$
, MP 1, 2.

- 2) $\phi_i \in \Gamma$, аналогичен (1)
- 3) $\phi_i = A$. На прошлой лекции выводили $\vdash A \to A$ без Γ
- 4) ϕ_i по MP: $\exists j, k, < i$:

$$\phi_k = (\phi_i \to \phi_i)$$

По инд-ции: $\Gamma \vdash A \to \phi_j, \Gamma \vdash A \to \phi_k$, т. е. $\Gamma \vdash A \to (\phi_j \to \phi_i)$:

$$(A \to (\phi_j \to \phi_i)) \to ((A \to \phi_j) \to (A \to \phi_i))$$
 - A2
 $(A \to \phi_j) \to (A \to \phi_i)$ - MP
 $(A \to \phi_i)$ - MP

Пример.

$$\vdash (A \land B) \to (B \land A)$$
$$A \land B \vdash B \land A$$

- 1) $A \wedge B$ посылка
- 2) $(A \wedge B) \rightarrow B a\kappa c.$ 4
- 3) B MP 1, 2
- 4) $(A \wedge B) \rightarrow A a\kappa c. 3$
- 5) A MP 1, 4
- 6) $(B \rightarrow (A \rightarrow (B \land A)))$ arc. 5
- 7) $A \rightarrow (B \wedge A)$ MP 3, 6
- 8) $B \wedge A$ MP 5, 7

<u>Лемма</u> 2.3 (Правила введения и разбиения конъюнкции).

$$\Gamma \cup \{A \land B\} \vdash C$$

$$\iff \Gamma \cup \{A, B\} \vdash C$$

Также:

$$\Gamma \vdash A \land B \iff \begin{cases} \Gamma \vdash A \\ \Gamma \vdash B \end{cases}$$

Пример.

$$(A \to \neg A) \to \neg A$$

Вывод:

1-5)
$$A \rightarrow A$$

6)
$$(A \rightarrow A) \rightarrow ((A \rightarrow \neg A) \rightarrow \neg A) - A10$$

7)
$$(A \rightarrow \neg A) \rightarrow \neg A - MP 5.6$$

Пример.

$$\vdash A \to \neg \neg A$$

$$\iff A \vdash \neg \neg A$$

$$\vdash \neg A \to (A \to B) \iff$$

$$\neg A \vdash A \to B \iff \neg A, A \vdash B \iff A \vdash \neg A \to B$$

$$\vdash A \to (\neg A \to B)$$

$$A \vdash \neg \neg A$$

1)
$$A \to (\neg A \to B)$$

- 2) А посылка
- 3) $\neg A \rightarrow B$, $mp\ 2$, 1
- 4) $A \rightarrow (\neg A \rightarrow \neg B)$
- 5) $\neg A \rightarrow \neg B$, MP 2, 4

6)
$$(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow \neg \neg A) - A10$$

7)
$$(\neg A \rightarrow \neg B) \rightarrow \neg \neg A - MP 3, 6$$

Лемма 2.4 (Правило рассуждения от противного).

$$\begin{array}{c|c} \Gamma, A \vdash B & \Gamma, A \vdash \neg B \\ \hline \Gamma \vdash \neg A & \end{array}$$

Доказательство.

$$\begin{cases} \Gamma, A \vdash B \iff \Gamma \vdash A \to B \\ \Gamma, A \vdash \neg B \iff \Gamma \vdash A \to \neg B \end{cases} \iff \Gamma \vdash \neg A, \text{ A10} + \text{MP x2}$$

Пример (Закон контрапозиции).

Пример (Закон Де Моргана).

$$\vdash (\neg A \lor \neg B) \to \neg (A \land B)$$

$$\iff (\neg A \lor \neg B) \vdash A \land B$$

- 1) $(A \wedge B) \rightarrow A a\kappa c. 3$
- 2) $\neg A \rightarrow \neg (A \land B)$ закон контрапозиции.
- 3) $(A \wedge B) \rightarrow B a\kappa c.$ 4
- 4) $\neg B \rightarrow \neg (A \land B)$ контрапозиция
- 5) $(\neg A \rightarrow \neg (A \land B)) \rightarrow ((\neg B \rightarrow \neg (A \land B)) \rightarrow ((\neg A \lor \neg B) \rightarrow \neg (A \land B)))$
- 6) MP 2x

<u>Лемма</u> **2.5** (Правило контрапозиции). $\frac{\Gamma, A \vdash B}{\Gamma, \neg B \vdash \neg A}$

<u>Лемма</u> **2.6** (Правило разбора случаев).

$$\frac{\Gamma, A \vdash C}{\Gamma, A \lor B \vdash C} \Gamma, B \vdash C$$

<u>Лемма</u> 2.7 (Правило исчерп. разбора случаев).

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash B} \qquad \frac{\Gamma, \neg A \vdash B}{\Gamma}$$