ЛАБОРАТОРНАЯ РАБОТА №1

ИССЛЕДОВАНИЕ ИТЕРАТИВНЫХ МЕТОДОВ ЧИСЛЕННОЙ ОПТИМИЗЦИИ

Цель работы

Ознакомление с методами поиска экстремума нелинейной выпуклой функции нескольких переменных методом градиентного спуска и методом имитации отжига.

Описание методов

Метод градиентного спуска.

Задача состоит в отыскании минимума функции двух переменных f(x,y) (следует отметить, что если необходимо найти максимум некоторой функции F(x,y), то эта задача сводится к поиску минимума функции f(x,y) = -F(x,y)).

Большинство численных методов состоит в отыскании некоторой последовательности (x_0,y_0) , (x_1,y_1) ,..., (x_k,y_k) , которая при $k \to \infty$ (или при $k \to k_M$) сходится к точке минимума (x^*,y^*) . Если при этом выполняется $f(x_0,y_0) > f(x_1,y_1) > ... > f(x_k,y_k)$, то есть значения функции монотонно убывают при увеличении k, то такой метод называется методом спуска.

Известно, что вектор градиента функции

$$\overline{\text{grad}} f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

направлен в сторону наибольшего возрастания функции f(x,y). Поэтому в качестве направления движения можно принять противоположное градиенту направление (антиградиент), т.е. координаты точек пересчитываются по формулам

$$x_{k+1} = x_k - \alpha_k \frac{\partial f(x_k, y_k)}{\partial x},$$

$$y_{k+1} = y_k - \alpha_k \frac{\partial f(x_k, y_k)}{\partial y}.$$

Выбор величины α_k , с которой связана длина k-го шага, в общем случае является сложной задачей. Если α_k мало, то движение будет слишком медленным и потребует значительного объема вычислений. Если α_k велико, то существует возможность перескочить точку

минимума и выйти на противоположный склон функции. При этом возможно нарушение требования монотонного убывания последовательности $f(x_k, y_k)$ и появляется опасность зацикливания, то есть колебания последовательности (x_k, y_k) в некоторой окрестности точки минимума (x^*, y^*) без приближения к ней.

Существует несколько различных способов выбора α_k . В данном примере рассматривается разновидность метода с дроблением шага. Для этого задается начальное приближение (x_0, y_0) и начальное значение α_0 (например, $x_0=y_0=0$, $\alpha_0=1$). Вычисление x_1 , y_1 и всех последующих x_{k+1} , y_{k+1} производится по вышеуказанным формулам. При этом если окажется, что $f(x_{k+1}, y_{k+1}) > f(x_k, y_k)$, то величина α_k уменьшается в два раза и вычисление x_{k+1}, y_{k+1} повторяется от точки (x_k, y_k) с новым значением α_k . Если же значение функции убывает, то величина $\alpha_k=\alpha_{k-1}$.

Критерием окончания счета принимается неравенство:

$$\left| \overline{\text{grad}} f(x, y) \right| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} < \varepsilon$$

либо одновременное выполнение двух неравенств

$$\left|\frac{6f}{6x}\right| < \frac{\sigma}{2}, \quad \left|\frac{6f}{6y}\right| < \frac{\sigma}{2}$$

Алгоритм имитации отжига

Алгоритм имитации отжига (Simulated Annealing, SA) предложен в 1953г. Метрополисом (N. C. Metropolis). Алгоритм SA можно считать одним немногих универсальных алгоритмов решения задач оптимизации. Алгоритм вдохновлён механизмом исправления дефектов в кристаллической решётке металла и некоторых других веществ. Указанные выше дефекты в кристаллической решётке обусловлены тем, что некоторые атомы занимают в решётке «неправильные» места. В силу нехватки кинетической энергии при нормальной температуре, указанные атомы не могут преодолеть потенциальный барьер и занять «правильные» положения в решётке. При этом в целом вся система атомов находится в состоянии локального энергетического минимума. Для вывода системы из этого минимума и перевода в состояние глобального энергетического минимума, соответствующего бездефектной кристаллической решётке, нагревают до высокой температуры, а затем медленно охлаждают. При этом «неправильные» атомы могут приобрести энергию, достаточную для преодоления потенциального барьера и занятия «правильных» положений в решётке. Вероятность преодоления потенциального барьера пропорциональна температуре металла, так что по мере его охлаждения вероятность такого перехода стремится к нулю, и кристаллическая решётка стабилизируется (меньшего) В окрестности нового локального

глобального минимума.

Таким образом, положительная роль повышения температуры отжигаемого металла заключается в том, что температурные флюктуации позволяют системе покидать локальные минимумы энергии и смещаться в сторону более глубоких энергетических минимумов.

Применение данной схемы к оптимизации основано на том, что локальное (субоптимальное) решение, найденное в процессе решения задачи оптимизации, также можно рассматривать как дефектное решение. Улучшить это решение (приблизиться к глобальному оптимуму) можно путём его случайных флюктуаций, амплитуда которых уменьшается с ростом номера итераций. Принципиальным в алгоритме SA является то, что, в отличие от большинства других стохастических алгоритмов поисковой оптимизации, он допускает шаги, приводящие к увеличению значений фитнес-функции. Алгоритм SA относится к классу так называемых пороговых стохастических алгоритмов безусловной оптимизации.

Пороговый алгоритм в процессе поиска допускает ухудшение значений фитнес-функции до заданного порога, и этот порог в процессе итераций последовательно снижается до нуля. В алгоритме SA величина представляет собой случайную величину с математическим ожиданием, равным T, которому придается смысл «температуры» отжигаемого металла. Таким образом, в алгоритме SA переход от решения к решению допускается с вероятностью:

$$P(\Delta E, T) = \begin{cases} 1, & \text{если } \Delta E \leq 0 \\ e^{-\Delta E/T}, & \text{если } \Delta E > 0 \end{cases}$$

Последняя формула означает, что если переход от точки к точке приводит к уменьшению значения фитнес-функции, то этот переход осуществляется безусловно. В противном случае переход выполняем с вероятностью, которая убывает с ростом разности и уменьшением «температуры». Скорость сходимости алгоритма SA в значительной мере определяет вид функции уменьшения температуры. Поэтому известно большое число различных рекомендаций по выбору этой функции. Наиболее распространенными являются:

• Больцмановский отжиг

При достаточно больших To и количестве шагов, выбор такого семейства распределений гарантирует нахождение глобального минимума.

Закон Больцмана:

$$T = \frac{T_0}{\ln(1+i)}$$

• Отжиг Коши (быстрый отжиг)

Нет недостатка медленного убывания температуры Больцмановского отжига.

Закон Коши:

$$T = \frac{T_0}{(1+i)}$$

• Линейная зависимость

Линейный закон:

$$T_{i+1} = \alpha T_i$$
.

Порядок выполнения работы

- 1. Составить программу минимизации f(x,y) методом градиентного спуска и алгоритма имитации отжига .
- 2. Задать входные данные согласно номеру варианта.
- 3. Провести вычисления, определить минимальные значения исследуемой функции для обоих методов, визуализировать полученные данные.
- 4. Написать отчет, который должен содержать результаты пунктов 1-3, а также комментарий хода вычислений с объяснениями результатов.

Методические указания

- 1. Для метода градиентного спуска минимизировать исследуемую функцию с точностью до σ =10⁻⁴. В случае застревания в области локального минимума, попробовать доработать алгоритм и добиться достижения глобального минимума.
- 2. Для нахождения минимума функции методом имитации отжига согласно следующему примеру:

Реализовать алгоритм имитации отжига следующим образом:

- 1. Изначально задаются начальная температура (Tmax) и конечная температура (Tmin).
- 2. Случайно выбирается точка x_l на отрезке. Вычисляется значение функции в этой точке $f(x_l)$.
 - 3. Пока $T_i > T_{min}$
 - 1) Случайно выбирается точка x_i на отрезке. Вычисляется значение функции в этой точке $f(x_i)$.
 - 1^*) Точка x_i выбирается исходя из движения в сторону антиградиента от точки x_{i-1} .
 - 2) Определяется ΔE .
 - 3) Если $\Delta E \leq 0$, то осуществляется переход в точку x_i .
 - 4) Если $\Delta E>0$, то переход осуществляется с вероятностью $e^{-\Delta E/T}$.
 - 5) Понижение температуры $T_{i+1} = f(T_i)$
- 3. При исследовании алгоритма реализовать в п 3.1 оба варианта выполнения алгоритма, используя одну функцию понижения температуры из предложенных в теоретической справке. Сделать вывод о применимости алгоритма исходя из полученных экспериментальных данных.

Номер	Вид функции	График
ва-		
рианта		
1	Функция Растригина: $I(x, y) = 0.1x^2 + 0.1y^2 - 4\cos(0.8x) - 4\cos(0.8y) + 8,$ $x, y \in [-16; 16], \min = I(0.0) = 0$	40
2	Функция Растригина овражная с поворотом осей: $I(x, y) = (0.1K_x \cdot A)^2 + (0.1K_y \cdot B)^2 - 4\cos(0.8K_x \cdot A) -$	
	$-4\cos(0.8K_x \cdot B) - 4\cos(0.8K_y \cdot B) + 8,$	AND TO THE REAL PROPERTY OF THE PARTY OF THE
	$-4\cos(0,0Ky B) + 6,$ где $A = x\cos(a) - y\sin(a);$	多類的影響的影響
	$B = x \sin(a) + y \cos(a); a$ – угол поворота,	
	$a = \frac{\pi}{2}$; K_x , K_y — растяжение/сжатие по x , y ;	A A A A A A A A A A A A A A A A A A A
	$K_x = 1.5, K_y = 0.8, x, y \in [-16; 16],$ $\min = I(0.0) = 0$	
3	Функция Griewank: $I(x, y) = \frac{-10}{0,005(x^2 + y^2) - \cos(x) \cdot \cos\left(\frac{y}{\sqrt{2}}\right) + 2} + 10,$	8-
	$x_1, x_2 \in [-16; 16], \min = I(0,0)$	-10-
4	Функция De Jong 2:	100
	$F(x, y) = \frac{-100}{100(x^2 - y) + (1 - x)^2} + 100,$	50
	$x_1, x_2 \in [5; 5], \min = I(1,1) = 0$	4 2 0 2
		f

Номер	Вид функции	График
ва-		
рианта		4-1
5	Функция «Сомбреро»: $F(x,y) = \frac{1 - \sin^2\left(\sqrt{x^2 + y^2}\right)}{1 + 0,001 \cdot (x^2 + y^2)},$ $x_1, x_2 \in \lfloor -10;10 \rfloor, \ \min = I(0,0) = 0$	2-
6	Функция Катковника: $I(x_1, x_2) = 0.5(x_1^2 + x_2^2) \times \left[2 \cdot A + A\cos(1.5x_1)\cos(3.14x_2) + A\cos(\sqrt{5}x_1)\cos(3.5x_2) \right],$ $A = 0.8,$ $x_1, x_2 \in \left[-2.5; \ 2.5 \right], \ \min = I(0.0) = 0$	2
7	$I(x_1, x_2) = 0.5(x_1^2 + x_2^2) \times $ $\times \begin{bmatrix} 2 \cdot A + A\cos(1.5x_1)\cos(3.14x_2) + \\ + A\cos(\sqrt{5}x_1)\cos(3.5x_2) \end{bmatrix}$ $A = 0.8,$ $x_1, x_2 \in [-5; 5], \min = I(0.0) = 0$	40-30-20
8	$I(x_1, x_2) = x_1^2 \sin 2x_1 + x_2^2 \sin 2x_2 - \frac{1}{(5x_1^2 + 5x_2^2 + 0.2)} + 5,$ $x_1, x_2 \in [-4; 4], \min = I(0,0) = 0$	200

Окончание таблицы

Номер ва-	Вид функции	График
рианта		
9	$x^{2} + 0.5\cos(2.2x_{1})\cos(4.8x_{1}x_{2})\cos(3.5x_{2})$,	20 - 10 - 4 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4
10	Мультипликативная потенциальная функция: $I(x_1,x_2) = -z(x_1)z(x_2),$ $z(x) = -\frac{1}{(x-1)^2 + 0.2} - \frac{1}{2(x-2)^2 + 0.15} - \frac{1}{3(x-3)^2 + 0.3},$ $x_1, x_2 \in [0; 4], \min = I(2,2) = -60.8$	