سوال يكم

کدام یک از گزینههای زیر زیرفضای برداری $\mathbb{R}^{n \times n}$ هستند.

الف- مجموعه تمام ماتریسهای متقارن

بلي

trace(A) = 0 ب- مجموعه تمام ماتریسهایی با

بلي

ج- مجموعه ماتریسهای وارون پذیر

خىر

 $A - A = \mathbf{0}$ برای مثال

د- مجموعه ماتریسهای بالامثلثی

بلى

سوال دوم

نشان دهید که ماتریسهای به شکل $egin{pmatrix} a & b \ 0 & d \end{pmatrix}$ زیرفضایی از $\mathbb{R}^{2 imes 2}$ هستند.

باید نشان دهیم که جمع این دو نوع ماتریس و ضرب اسکالر بسته است

$$\alpha \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} \alpha a & \alpha b \\ 0 & \alpha d \end{pmatrix}$$
$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} = \begin{pmatrix} a + a' & b + b' \\ 0 & d + d' \end{pmatrix}$$

سوال سوم

ثابت کنید هر زیرمجموعه از فضای \mathbb{R}^n با تعداد اعضای بزرگتر از n یک مجموعه وابسته خطی است.

این بردارها را در ستون های یک ماتریس میچینیم و ماتریس $A_{n \times m}$ داریم که m > n است و در این حالت دستگاه معادلات $Ax = \mathbf{0}$ حتما بیشمار جواب دارد.

$$Ax = A_{*1}x_1 + A_{*2}x_2 + \dots + A_{*m}x_m = \mathbf{0}$$

در نتیجه این بردارها وابسته خطی هستند.

سوال چهارم

نشان دهید هر زیرمجموعه مستقل خطی ماکسیمال از فضای \mathbb{R}^n یک مجموعه مولد برای این فضا نیز است.

اگر مجموعه $x \notin \text{span}(s)$ مولد نباشد کل زیرفضا را تولید نمی کند و یک عضوی است که داخل $x \notin \text{span}(s)$ است و این عضو را به مجموعه مستقل خطی اضافه کنیم یک مجموعه مستقل خطی جدید حاصل می شود که با ماکسیمال بودن در تضاد است.

سوال پنجم

بعد فضای تولید شده توسط مجموعه مولد زیر چیست.

$$S = \left\{ \begin{pmatrix} 1\\2\\-1\\3 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\2 \end{pmatrix}, \begin{pmatrix} 2\\8\\-4\\8 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 3\\3\\0\\6 \end{pmatrix} \right\}$$

$$A = \begin{pmatrix} 1 & 1 & 2 & 1 & 3\\2 & 0 & 8 & 1 & 3\\-1 & 0 & -4 & 1 & 0\\3 & 2 & 8 & 1 & 6 \end{pmatrix} \xrightarrow{\text{yields}} \begin{pmatrix} 1 & 0 & 4 & 0 & 1\\0 & 1 & -2 & 0 & 1\\0 & 0 & 0 & 1 & 1\\0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\operatorname{rank}(A) = 3$$

$$\dim(\operatorname{Col} A) = 3$$

ستونهای پایه ستون اول و دوم و چهارم در ماتریس A هستند.

سوال ششم

پایه را برای فضای ستون، سطر، پوچ و پوچ چپ ماتریسهای زیر بیابید.

الف-

$$A = \begin{pmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{pmatrix} \xrightarrow{\text{yields}} \begin{pmatrix} 1 & 0 & -1 & 5 \\ 0 & 1 & -\frac{5}{2} & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\operatorname{rank}(A) = 2$$

$$\beta_{Col} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}, \beta_{row} = \left\{ (1 \quad 0 \quad -1 \quad 5), \begin{pmatrix} 0 \quad 1 \quad -\frac{5}{2} \quad 3 \end{pmatrix} \right\}$$

$$Ax = \mathbf{0} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_3 \begin{pmatrix} \frac{1}{5} \\ \frac{1}{2} \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -5 \\ -3 \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_{NULL} = \left\{ \begin{pmatrix} \frac{1}{5} \\ \frac{1}{2} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -5 \\ -3 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$\begin{pmatrix} 1 \quad -4 \quad 9 \quad -7 \\ -1 \quad 2 \quad -4 \quad 1 \\ 5 \quad -6 \quad 10 \quad 7 \end{pmatrix}^{\mathsf{T}} \xrightarrow{\text{yields}} \begin{pmatrix} 1 \quad 0 \quad -2 \\ 0 \quad 1 \quad -7 \\ 0 \quad 0 \quad 0 \\ 0 \quad 0 \quad 0 \end{pmatrix}$$

$$A^{\mathsf{T}}x = \mathbf{0} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} 2 \\ 7 \\ 1 \end{pmatrix}$$

$$\beta_{leftNull} = \left\{ \begin{pmatrix} 2 \\ 7 \\ 1 \end{pmatrix} \right\}$$

$$A = \begin{pmatrix} -2 & -3 & 6 & 2 & 5 \\ -2 & 3 & -3 & -3 & -4 \\ 4 & -6 & 6 & 5 & 9 \\ -2 & 3 & 3 & -4 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & -3 & 6 & 2 & 5 \\ -2 & 3 & -3 & -3 & -4 \\ 4 & -6 & 6 & 5 & 9 \\ -2 & 3 & 3 & -4 & 1 \end{pmatrix} \xrightarrow{\text{yields}} \begin{pmatrix} 1 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 0 & -4/3 \\ 0 & 0 & 1 & 0 & 2/3 \end{pmatrix}$$

$$rank(A) = 4$$

$$\beta_{Coll} = \left\{ \begin{pmatrix} -2 \\ -2 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -3 \\ 3 \\ -6 \\ 3 \end{pmatrix}, \begin{pmatrix} 6 \\ -3 \\ 6 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 5 \\ -4 \end{pmatrix} \right\}$$

$$\beta_{row} = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 & -\frac{4}{3} \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 & 0 & \frac{2}{3} \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 & -1 \end{pmatrix} \right\}$$

$$Ax = \mathbf{0} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = x_5 \begin{pmatrix} -1/2 \\ 4/3 \\ -2/3 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_{Null} = \left\{ \begin{pmatrix} -1/2 \\ 4/3 \\ -2/3 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$\begin{pmatrix} -2 & -3 & 6 & 2 & 5 \\ -2 & 3 & -3 & -3 & -4 \\ 4 & -6 & 6 & 5 & 9 \\ -2 & 3 & 3 & -4 & 1 \end{pmatrix}^{\mathsf{T}} \xrightarrow{\text{yields}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A^{\mathsf{T}}x = \mathbf{0} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\beta_{Lnull} = \emptyset$$

موفق باشيد.