Exercices d'analyse, feuille 1

Licence d'Informatique

2^{ème} année, semestre 3

1 Nombres réels

Exercice 1. Montrer que $x := 0, \underline{732}...$ est un nombre rationnel, et le déterminer.

Exercice 2. Déterminer le réel

$$y := 0, \underline{1}... + 0, \underline{2}... + 0, \underline{3}... + 0, \underline{4}... + 0, \underline{5}... + 0, \underline{6}... + 0, \underline{7}... + 0, \underline{8}... + 0, \underline{9}...$$

Exercice 3. On va montrer la propriété suivante : «une écriture décimale $\langle d_m \dots d_0, d_{-1} \dots \rangle$ correspond à un nombre rationnel si, et seulement si, ses décimales sont périodiques à partir d'un certain rang».

- 1. Soit $x \in \mathbb{R}$ admettant un développement décimal périodique à partir d'un certain rang. Prouver qu'il est rationnel. *Indication*: traiter d'abord le cas $x = \langle 0, d_{-1} \dots d_{-k} d_{-1} \dots d_{-k} \dots \rangle$ en calculant $10^k x \langle d_{-1} \dots d_{-k} \rangle$.
- 2. Prouver la réciproque. *Indication* : considérer les divisions euclidiennes successives permettant de déterminer les décimales de $\frac{p}{q}$, et en particulier le reste de ces divisions.

Exercice 4. Trouver l'écriture décimale de $\frac{3}{7}$ et $\frac{410}{333}$.

Exercice 5. On pose $x = \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}}$. Trouver α et β tels que α vérifie l'équation :

$$x^3 = \alpha x + \beta.$$

Résoudre cette équation et en déduire que x = 4.

Exercice 6. On considère le réel $a := \sqrt{2} + \sqrt{3}$.

- 1. Calculer a^2 , a^3 et a^4 .
- 2. En déduire un polynôme annulateur de a.
- 3. Trouver le polynôme minimal de *a*.

2 Inégalités

Exercice 7. Soient deux nombres réels a et b vérifiant : -1 < a < 4 et -3 < b < -1. Donner un encadrement de a - b et de $\frac{a}{b}$.

3 Parties entières et fractionnaire

Exercice 8. Tout entier naturel non nul n s'écrit de manière unique sous la forme

$$n = \left\langle a_p a_{p-1} \cdots a_1 a_0 \right\rangle_{10}$$

avec $a_j \in \{0,...,9\}$ et $a_p \neq 0$, où p est un entier naturel. Déterminer p en fonction de n.

Exercice 9. Soit $x \in \mathbb{R}_{\geq 0}$ et $\langle d_m \dots d_0, d_{-1} \dots \rangle$ son écriture décimale propre. Exprimer d_j en fonction des nombres $\left(x10^{-j}\right)_{i < m}$.

Exercice 10. Montrer pour tout réel x l'égalité $\lfloor x+1 \rfloor = \lfloor x \rfloor + 1$.

4 Bornes supérieures / inférieures

Exercice 11. Déterminer les bornes inférieure et supérieure des ensembles suivants, et préciser si ce sont des minimums / maximums :

- 1. **N** et **O**
- 2. $\left\{\frac{1}{n}: n \in \mathbb{N}_{>0}\right\}$ et $\left\{\frac{1}{n}: n \in \mathbb{Z}_{\neq 0}\right\}$
- 3. $\{n^2 2n + 1 : n \in \mathbb{Z}\}\$ et $\{n^2 + n + 1 : n \in \mathbb{Z}\}\$

4. $\{\cos(2x+1) : x \in \mathbb{R}\}$

5.
$$\left\{ \frac{(-1)^n}{n} + \frac{2}{n^3} : n \in \mathbb{N}_{>0} \right\} \text{ et } \left\{ (-1)^n + \frac{1}{n^2} : n \in \mathbb{N}_{>0} \right\}$$

6.
$$\{x \in \mathbb{R} : x^2 > x + 1\}, \{x \in \mathbb{R} : x^2 < x + 1\} \text{ et } \{x \in \mathbb{R} : x^2 > x - 1\}$$

7.
$$\left\{\frac{x^n}{|x^n-1|}:x\in\mathbb{R}\setminus\{-1,1\}\right\}$$
à $n\in\mathbb{N}_{>0}$ fixé

Exercice 12. Déterminer, s'ils existent, le maximum, le minimum ainsi que les bornes supérieures et inférieures de l'ensemble $A := \{(-1)^n \frac{n}{n+1} : n \in \mathbb{N}\}.$

Exercice 13.

- 1. Montrer l'encadrement, pour tous $m, n \in \mathbb{N}_{>0}$: $0 < \frac{mn}{(m+n)^2} \le \frac{1}{4}$.
- 2. En déduire que l'ensemble $A:=\left\{\frac{mn}{(m+n)^2}:m,n\in\mathbb{N}_{>0}\right\}$ admet des bornes supérieure et inférieure finies, à déterminer.

Exercice 14. Soit $f : [0,1] \rightarrow [0,1]$ une fonction croissante. On considère l'ensemble :

$$E = \{x \in [0, 1] : x \le f(x)\}.$$

- 1. Montrer que *E* admet une borne supérieure que l'on note *a*.
- 2. Montrer que f(a) est un majorant de E.
- 3. En déduire que $f(a) \in E$.
- 4. Montrer que f(a) = a.

Exercice 15. Soient A et B deux parties bornées (non vides) de \mathbb{R} . On note $A + B := \{a + b : a \in A, b \in B\} \subset \mathbb{R}$.

- 1. Montrer que $\sup A + \sup B$ est un majorant de A + B.
- 2. Établir finalement que $\sup (A + B) = \sup A + \sup B$.

5 Convexité

Exercice 16. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction monotone. Montrer que pour tout $c \in \mathbb{R}$ l'ensemble $\{x \in \mathbb{R} : f(x) = c\}$ est un intervalle.

Exercice 17. Soit \mathcal{P} une propriété exprimée sur un intervalle ouvert $I \subset \mathbb{R}$, ainsi que les ensembles $V \subset I$ sur lequel \mathcal{P} est vraie :

$$V := \{x \in I : \mathcal{P}(x)\}$$

et son complémentaire $F := I \setminus V$. On suppose que les propriétés suivantes sont vérifiées simultanément :

- (V) pour tout $x \in V$ il existe un intervalle ouvert $J \subset V$ qui contient x,
- (F) pour tout $x \in F$ il existe un intervalle ouvert $J \subset F$ qui contient x.
 - 1. Démontrer que V et F sont convexes.
 - 2. En déduire que ou bien V = I, ou bien F = I. C'est-à-dire : \mathcal{P} est toujours vraie ou toujours fausse.

6 Problème

Exercice 18. On souhaite prouver qu'il y a strictement plus d'éléments dans [0,1] que dans \mathbb{N} , autrement dit que \mathbb{R} n'est pas dénombrable. La preuve se fait par contradiction en supposant l'existence d'une surjection $\varphi: \mathbb{N} \to [0,1]$ et en utilisant le «procédé diagonal de Cantor». Pour $n \in \mathbb{N}$ on écrit $\varphi(n) = \langle 0, d_{-1,n}d_{-2,n} \dots \rangle$ avec $d_{j,n} \in \{0,1,\dots,9\}$.

1. On construit l'écriture décimale infinie $x := \langle 0, d_{-1}d_{-2}... \rangle$ avec

$$d_{-j} := \begin{cases} 1 & \text{si } d_{-j,j} \neq 1 \\ 2 & \text{sinon.} \end{cases}$$

Montrer que $x \in [0,1[$ et que x n'est pas décimal.

2. Prouver

$$(\forall n \in \mathbb{N})$$
 $x \neq \varphi(n)$

en étudiant la $n^{\text{ième}}$ décimale de x et $\varphi(n)$.

3. Conclure.