

HCF4054B

4 SEGMENT LIQUID CRYSTAL DISPLAY DRIVER WITH STROBED LATCH FUNCTION

- QUIESCENT CURRENT SPECIF. UP TO 20V
- OPERATION OF LIQUID CRYSTALS WITH CMOS CIRCUITS PROVIDES ULTRA LOW POWER DISPLAYS
- EQUIVALENT AC OUTPUT DRIVE FOR LIQUID CRYSTAL DISPLAYS - NO EXTERNAL CAPACITOR REQUIRED
- VOLTAGE DOUBLING ACROSS DISPLAY [(V_{DD} - V_{EE}) = 18V] RESULTS IN EFFECTIVE 36V (p-p) DRIVE ACROSS SELECTED DISPLAY SEGMENTS
- LOW OR HIGH OUTPUT LEVEL DC DRIVE FOR OTHER TYPES OF DISPLAYS
- ONE CHIP LOGIC LEVEL CONVERSION FOR DIFFERENT INPUT AND OUTPUT LEVEL SWINGS
- FULL DECODING OF ALL INPUT COMBINATIONS: "0 9, L, H, P, A" AND BLANK POSITIONS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

HCF4054B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages.

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4054BEY	
SOP	HCF4054BM1	HCF4054M013TR

HCF4054B provides level shifting similar to HCF4055B and HCF4056B, independently strobed latches, and common DF control on 4 signal lines. This device is intended to provide drive signal compatibility with HCF4055B and HCF4056B 7-segment decoder types for the decimal point, colon, polarity, and similar display lines. A level-shifted high amplitude DF output can be obtained from any HCF4054B output line by connecting the corresponding input and strobe lines to a low and high levels. HCF4054B may also be utilized for logic level "up conversion" or "down conversion" respectively. For example, input signal swings (VDD to VSS) from +5V to 0V

PIN CONNECTION

September 2002 1/11

can be converted to output signal swings (V_{DD} to V_{EE}) of +5V to -5V. The level shifted function permits the use of different input and output signal swings. The input swings from a low level of V_{SS} to a high level of V_{DD} , while the outputs swings from a low level of V_{EE} to the same high level of V_{DD} . Thus, the input and output swings can be

IINPUT EQUIVALENT CIRCUIT

selected independently of each other over a 3 to 18V range. V_{SS} may be connected to V_{EE} when no level-shift function is required. Data is transferred from input to output by placing a high voltage level at the strobe input. A low voltage level at the strobe input latches the data input and the corresponding output segments remain selected (or non selected) while the strobe is low.

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
6, 5, 4, 3	OUT1 to OUT4	Outputs
9, 11, 13, 15	IN1 to IN4	Inputs
10, 12, 14, 1	STROBE1 STROBE4	Strobe Input
2	DISPLAY FREQ. IN	Display Frequency Input
7	V _{EE}	Negative Supply Voltage
8	V_{SS}	Negative Supply Voltage
16	V_{DD}	Positive Supply Voltage

TRUTH TABLE

DF	IN	STROBE	OUT
L	L	Н	L
Н	L	Н	Н
L	Н	Н	Н
Н	Н	Н	L
Х	X	L	*

X = Don't Care.

(*) Depends upon the input mode previously applied when ST=1.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

		Test Condition					Value							
Symbol	Parameter	V _{EE}	Vı	٧o	V _{SS}	V _{DD}	T,	_A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	(V)	(V)	(V) (V)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
IL	Quiescent Current	-5	0/5		0	5		0.04	5		150		150	
		0	0/10		0	10		0.04	10		300		300	μΑ
		0	0/15		0	15		0.04	20		600		600	μΛ
		0	0/20		0	20		0.08	100		3000		3000	
V_{OH}	High Level Output	0	0/5		0	5	4.95			4.95		4.95		
	Voltage	0	0/10		0	10	9.95			9.95		9.95		V
		0	0/15		0	15	14.95			14.95		14.95		
V_{OL}	Low Level Output	0	5/0		0	5		0.05			0.05		0.05	
	Voltage	0	10/0		0	10		0.05			0.05		0.05	V
		0	15/0		0	15		0.05			0.05		0.05	
V_{IH}	High Level Input	-5		0.5/4.5	0	5	3.5			3.5		3.5		
	Voltage	0		1/9	0	10	7			7		7		V
		0		1.5/18.5	0	15	11			11		11		
V_{IL}	Low Level Input	5		0.5/4.5	0	5			1.5		1.5		1.5	
	Voltage	0		9/1	0	10			3		3		3	V
		0		1.5/18.5	0	15			4		4		4	
I _{OH}	Output Drive	-5	0/5	4.5	0	5	-0.38	-0.9		-0.28		-0.28		
	Current	0	0/10	9.5	0	10	-0.38	-0.9		-0.28		-0.28		mΑ
		0	0/15	13.5	0	15	-1.27	-3		-0.95		-0.95		
I _{OL}	Output Sink	-5	0/5	0.4	0	5	1.1	2.6		0.82		0.82		
	Current	0	0/10	0.5	0	10	1.1	2.6		0.82		0.82		mΑ
		0	0/15	1.5	0	15	2.9	6.8		2.17		2.17		
lı	Input Leakage Current (any input)	0	0/18		0	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
C _I	Input Capacitance (any input)							5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 K\Omega$, $t_{f} = t_{f} = 20 ns$)

Symbol Parar		Test Condition			ondition	Value (*)			Unit
	Parameter	V _{EE} (V)	V _{SS} (V)	V _{DD} (V)		Min.	Тур.	Max.	
t _{PHL} t _{PLH}	Propagation Delay	-5	0	5			400	800	
	Time (any Input to	0	0	10			340	680	ns
	any Output)	0	0	15			250	500	
t _{THL} t _{TLH} Transition Time (any Output)	-5	0	5			100	200		
	(any Output)	0	0	10			100	200	ns
		0	0	15			75	150	
t _{setup}	Data Setup Time	-5	0	5			220	110	
		0	0	10			100	50	ns
		0	0	15			70	35	
t _W	Strobe Pulse Width	-5	0	5			220	110	
	0	0	10			100	50	ns	
		0	0	15			70	35	

^(*) Typical temperature coefficient for all V_{DD} value is 0.3 %/°C.

TYPICAL APPLICATIONS

Display Driver Circuit.

Display Driver Waveform..

Digital (0 to +5V) to Bidirectional Analog Control (+5V to -5V) Level Shifter.

Typical 3½ Digit Crystal Display : (V_{DD} = +5V, V_{SS} = 0V, V_{EE} = -10V, DF_N = 30Hz Square)

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200KΩ R_T = Z_{OUT} of pulse generator (typically 50Ω)

WAVEFORM: DATA SETUP TIME AND STROBE PULSE DURATION (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.		mm.		inch				
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
еЗ		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

SO-16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)	•			
D	9.8		10	0.385		0.393		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S		•	8° (ı	max.)	•	1		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.