Машинное обучение

Лекция 3 Линейная классификация

Михаил Гущин

mhushchyn@hse.ru

На прошлой лекции

Модель линейной регрессии:

$$\hat{y} = Xw$$

Функция потерь MSE с регуляризацией:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 + \alpha R(w)$$

ightharpoonup Мы хотим минимизировать L:

$$L \to \min_{w}$$

Градиентный спуск:

$$w^{(k+1)} = w^{(k)} - \eta \nabla L(w^{(k)})$$

Линейная классификация

Задача

Есть объекты двух классов

Нужно разделить объекты по классам некоторой гиперплоскостью

Эту гиперплоскость будем называть линейным классификатором

Гиперплоскость

Скалярное произведение

$$\vec{a} \cdot \vec{c} = |\vec{a}| \cdot |\vec{c}| \cdot \cos \varphi$$

$$\vec{a}\{x_1; y_1\}$$

$$\vec{c}\{x_2; y_2\}$$

$$\vec{a} \cdot \vec{c} = x_1 \cdot x_2 + y_1 \cdot y_2$$

Если векторы перпендикулярны, то скалярное произведение этих векторов равно 0.

$$\vec{a} \cdot \vec{c} = 0$$

Нормальный вектор к плоскости

- ▶ Возьмем такие x_A , $x_B \in \{x: w_{12}^T x + w_0 = 0\}$ на гиперплоскости
- Тогда:

$$w_{12}^T x_A + w_0 = 0$$
$$w_{12}^T x_B + w_0 = 0$$

Найдем разность:

$$w_{12}^T(x_A - x_B) = 0$$

▶ Поскольку скалярное произведение равно 0, а $(x_A - x_B)$ лежат на гиперплоскости, то вектор w_{12} ортогонален к гиперплоскости

Расстояние до плоскости

• Расстояние от вектора x_D до плоскости $w_{12}^T x + w_0 = 0$ равно:

$$\frac{w_{12}^T x_D + w_0}{\|w_{12}\|} \sim Xw$$

ightharpoonup Докажем это. Пусть $x_D=t+h$, где t лежит в плоскости, а h - ортогонален ей. Тогда,

$$w_{12}^{T}t + w_0 = 0$$

$$w_{12}^{T}x_D + w_0 = w_{12}^{T}(t+h) + w_0 = w_{12}^{T}h$$

Откуда получаем:

$$h = \frac{w_{12}^T x_D + w_0}{\|w_{12}\|}$$

Гиперплоскость

Векторная форма

- ▶ Пусть дан набор из n точек: $\{x_i, y_i\}_{i=1}^n$, где
 - $x_i = (x_{i1}, x_{i2}, ..., x_{id})^T$ вектор из d признаков объекта;
 - $-y_i = \{-1, +1\}$ метка класса объекта.
- Модель линейной классификации:

$$\hat{y}_i = sign\left(w_0 + \sum_{j=1}^d w_j x_{ij}\right)$$

- w_j веса модели;
- $-\hat{y}_i$ прогноз для объекта;
- Ошибка прогноза модели для объекта: $\hat{y}_i \neq y_i$

Матричная форма

Модель линейной классификации:

$$\hat{y} = sign(Xw)$$

$$- X = \begin{pmatrix} \mathbf{1} \ x_{11} & \cdots & x_{1d} \\ \vdots & \ddots & \vdots \\ \mathbf{1} \ x_{n1} & \cdots & x_{nd} \end{pmatrix}$$
 - матрица признаков объектов;

- $w = (w_0, w_1, ..., w_d)^T$ вектор (d+1) весов модели;
- $-\hat{y}=(\hat{y}_1,\hat{y}_2,...,\hat{y}_n)^T$ вектор прогнозов модели для (n) объектов;

• Вектор ошибок прогнозов модели: $\hat{y}_i \neq y_i$

Обучение классификатора

Функция потерь

Функция потерь (Loss function) для классификации:

$$L = \frac{1}{n} \sum_{i=1}^{n} [\hat{y}_i \neq y_i]$$

- ightharpoonup Значение L доля неправильных ответов
- ightharpoonup Мы хотим минимизировать L:

$$L \to \min_{w}$$

Функция потерь

- Дискретная относительно весов модели
- Нет производной (0, либо не определена)
- Не можем использовать градиентный спуск
- Много глобальных минимумов (несколько способов разделить объекты на классы)

Повтор

Модель линейной классификации:

$$\hat{y} = sign(Xw)$$

Функция потерь, доля неправильных ответов:

$$L = \frac{1}{n} \sum_{i=1}^{n} [\hat{y}_i \neq y_i]$$

ightharpoonup Мы хотим минимизировать L:

$$L \to \min_{w}$$

Решение: пока не знаем [©]

Отступы

Гиперплоскость

Отступ

► Отступ (margin) *M*:

$$z = Xw$$

$$M = yz$$

- Знак отступа говорит о корректности прогноза
 - $M_i > 0$ верный прогноз
 - $M_i < 0$ неправильный прогноз
- Абсолютная величина степень уверенности классификатора
- ightharpoonup Чем ближе M к 0, тем ближе объект к границе классов

Отступ

Новая функция потерь

Функция потерь (Loss function) для классификации:

$$L = \frac{1}{n} \sum_{i=1}^{n} [M_i < 0]$$

- ightharpoonup Значение L доля неправильных ответов
- ightharpoonup Мы хотим минимизировать L:

$$L \to \min_{w}$$

Верхние оценки

Задача

Есть функция потерь для классификации:

$$L = \frac{1}{n} \sum_{i=1}^{n} [M_i < 0]$$

- Не можем использовать для градиентного спуска
- > Хотим заменить ее на гладкую функцию

Верхние оценки

Есть функция потерь для одного произвольного объекта:

$$L(M_i) = [M_i < 0]$$

lacktriangle Хотим найти такую $ilde{L}(M)$, что

$$L(M_i) \leq \tilde{L}(M_i)$$

Тогда верхняя оценка выглядит так:

$$L = \frac{1}{n} \sum_{i=1}^{n} [M_i < 0] \le \frac{1}{n} \sum_{i=1}^{n} \tilde{L}(M_i) \to \min_{w}$$

Примеры

- $\tilde{L}(M) = \log(1 + e^{-M})$ логистическая функция потерь (рассмотрим подробно далее)
- $\tilde{L}(M) = \max(0, 1 M)$ кусочно-линейная функция потерь
- $\tilde{L}(M) = \max(0, -M)$ кусочно-линейная функция потерь
- $\tilde{L}(M) = e^{-M}$ экспоненциальная функция потерь
- $\tilde{L}(M) = 2(1 + e^{M})^{-1}$ сигмоидная функция потерь

Примеры

Логистическая регрессия

Задача

Есть объекты двух классов

Нужно разделить объекты по классам некоторой гиперплоскостью

Эту гиперплоскость будем называть линейным классификатором

Матричная форма

- ▶ Пусть дан набор из n точек: $\{x_i, y_i\}_{i=1}^n$, где
 - $x_i = (x_{i1}, x_{i2}, ..., x_{id})^T$ вектор из d признаков объекта;
 - $-y_i = \{0, 1\}$ метка класса объекта.
- ▶ Модель логистической регрессии:

$$\hat{y}_i = \sigma(Xw)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

 \hat{y}_i - **вероятность класса 1** для объекта;

Сигмоида

Функция потерь

Функция потерь для логистической регрессии (log-loss):

$$L = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i))$$

ightharpoonup Мы хотим минимизировать L:

$$L \to \min_{w}$$

Пример

Задание

Покажите, что при $y_i = \{0, 1\}$ функция потерь

$$L = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i))$$

эквивалентна функции потерь

$$L = \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-M_i})$$

при $y_i = \{-1, +1\}$

Повтор

Модель логистической регрессии:

$$\hat{y} = \sigma(Xw)$$

Функция потерь log-loss:

$$L = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i))$$

ightharpoonup Мы хотим минимизировать L:

$$L \to \min_{w}$$

Градиентный спуск:

$$w^{(k+1)} = w^{(k)} - \eta \nabla L(w^{(k)})$$

Вероятностная интерпретация

Логистическая регрессия

Вероятность класса 1:

$$p(y = \mathbf{1}|x_i) = \sigma(x_i^T w) = \hat{y}_i$$

Вероятность класса 0:

$$p(y = \mathbf{0}|x_i) = 1 - \sigma(x_i^T w)$$

Правдоподобие

- ▶ Пусть дан набор из n точек: $\{x_i, y_i\}_{i=1}^n$, где
 - $x_i = (x_{i1}, x_{i2}, ..., x_{id})^T$ вектор из d признаков объекта;
 - $-y_i = \{0, 1\}$ метка класса объекта.

Тогда правдоподобие:

Likelihood =
$$\prod_{i=1}^{n} p(y = 1|x_i)^{[y_i=1]} p(y = 0|x_i)^{[y_i=0]} \to \max_{w}$$

Логарифм правдоподобия

Правдоподобие:

Likelihood =
$$\prod_{i=1}^{n} p(y = 1|x_i)^{[y_i=1]} p(y = 0|x_i)^{[y_i=0]}$$

Логарифм прадоподобия:

Log Likelihood =
$$\sum_{i=1}^{n} y_i \log(p(y = 1|x_i)) + (1 - y_i) \log(p(y = 0|x_i)) =$$
$$= \sum_{i=1}^{n} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) = -nL$$

Заключение

Резюме

Модель логистической регрессии:

$$\hat{y} = \sigma(Xw)$$

Функция потерь log-loss:

$$L = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i))$$

ightharpoonup Мы хотим минимизировать L:

$$L \to \min_{w}$$

Градиентный спуск:

$$w^{(k+1)} = w^{(k)} - \eta \nabla L(w^{(k)})$$

Вопросы

- Запишите формулу для линейной модели классификации. Что такое отступ? Как обучаются линейные классификаторы и для чего нужны верхние оценки пороговой функции потерь?
- Как в логистической регрессии выполняются предсказания для новых объектов? Запишите логистическую функцию потерь. Как она связана с методом максимума правдоподобия?