Aula 36

Teorema (Peano): Seja $\Omega \subset \mathbb{R} \times \mathbb{R}^n$ um conjunto aberto e $\mathbf{f}: \Omega \to \mathbb{R}^n$ uma função contínua. Então, dado $(t_0, \mathbf{y}_0) \in \Omega$, existe solução do problema de valor inicial para a equação diferencial ordinária de primeira ordem

$$\frac{d\mathbf{y}}{dt} = \mathbf{f}(t, \mathbf{y}), \qquad \mathbf{y}(t_0) = \mathbf{y}_0.$$

Teorema de Picard-Lindelöf

Existência e Unicidade de Soluções de Problemas de Valor Inicial para EDOs

Definição: Seja $\Omega \subset \mathbb{R} \times \mathbb{R}^n$ um conjunto aberto, $\mathbf{f}: \Omega \to \mathbb{R}^n$ uma função contínua e $(t_0, \mathbf{y}_0) \in \Omega$. Chamam-se **iterações de Picard** do problema de valor inicial para a equação diferencial ordinária de primeira ordem

$$\frac{d\mathbf{y}}{dt} = \mathbf{f}(t, \mathbf{y}), \qquad \mathbf{y}(t_0) = \mathbf{y}_0,$$

à sucessão de funções definida recursivamente a partir de $\mathbf{y_0}(t) = \mathbf{y}_0$ e, para $k \geq 1$, por

$$\frac{d\mathbf{y_k}}{dt}(t) = \mathbf{f}(t, \mathbf{y_{k-1}}(t)), \qquad \mathbf{y_k}(t_0) = \mathbf{y_0},$$

ou, equivalentemente

$$\mathbf{y_k}(t) = \mathbf{y_0} + \int_{t_0}^t \mathbf{f}(s, \mathbf{y_{k-1}}(s)) ds.$$

Proposição: Seja $\Omega \subset \mathbb{R} \times \mathbb{R}^n$ um conjunto aberto, $\mathbf{f}: \Omega \to \mathbb{R}^n$ uma função contínua e $(t_0, \mathbf{y}_0) \in \Omega$. Então existe solução de classe $C^1(I)$ do problema de valor inicial para a equação diferencial ordinária de primeira ordem

$$\frac{d\mathbf{y}}{dt} = \mathbf{f}(t, \mathbf{y}), \qquad \mathbf{y}(t_0) = \mathbf{y}_0,$$

se e só se existe uma solução contínua ${\cal C}(I)$ da equação integral

$$\mathbf{y}(t) = \mathbf{y}_0 + \int_{t_0}^t \mathbf{f}(s, \mathbf{y}(s)) ds.$$