Exercises in the Locale of Reals

March 4, 2022

Considering set

$$U = \{ y \in \mathbb{Q} \mid 0 < y < 1 \}$$

and supposing some experiment t is deemed a success if it falls within U. If additionally there is some uncertainty of the accuracy of the measurement of t that can be defined by a tolerance factor $\varepsilon > 0$ such that

$$t - \varepsilon < T < t + \varepsilon$$

describes the experiment being accepted as successful. Given the set U what value of ε guarantees our experiment t as being successful? For this to be the case $T \in U$, and so 0 < T < 1. From here we can see that

$$t - \varepsilon = 0$$
 and $t + \varepsilon = 1$

and so either $\varepsilon=t$ or $\varepsilon=1-t$ depending on which is more relevant to our experiment.

$$\varepsilon = min\{t, 1-t\}$$

Definition 1. Let $a, r \in \mathbb{Q}$ with r > 0. The open interval of radius r and center a is the set

$$B_r(a) = \{ x \in \mathbb{Q} \mid a - r < x < a + r \}$$

Proposition 2. Let $a, r \in \mathbb{Q}$ with r > 0. If $t \in B_r(a)$, then there exists $\varepsilon > 0$ such that

$$B_{\varepsilon}(t) \subseteq B_r(a)$$

Proof. Generically we write

$$B_{\varepsilon}(t) = \{ x \in \mathbb{Q} \mid t - \varepsilon < x < t + \varepsilon \}$$

and given $t \in B_r(a)$ then

$$a - r + \varepsilon < x < a + r - \varepsilon$$

if we chose $\varepsilon = r/2$

$$a - r/2 < x < a + r/2$$

as

$$B_r(a) = \{ x \in \mathbb{Q} \mid a - r < x < a + r \}$$

and so

$$B_{\varepsilon}(t) \subseteq B_r(a)$$

The above tells us that for any experimental result $t \in B_r(a)$ we can define an accuracy $\varepsilon > 0$ that ensures the experiment was a success. It is key that the sets we are talking about are open. If we defined our experiment with closed intervals $0 \le T \le 1$ then this results in a different situation. We can see this by letting t = 0 and noticing that there exists no $\varepsilon > 0$ that satisfies $t - \varepsilon \ge 0$ and similarly for t = 1 there is no $\varepsilon > 0$ such that $t + \varepsilon \le 1$.

Definition 3. A subset $U \subseteq \mathbb{Q}$ of rational numbers is *open* if for all $t \in U$ there exists an $\varepsilon > 0$ such that

$$B_{\varepsilon}(t) \subseteq U$$

The value of the *open* set of U is that we can say with confidence that a rational value lies within it given some error $\varepsilon > 0$. This is not necessarily so with *non-open* sets, as there are situations (as expressed previously) where we cannot say this for certain.

Theorem 4. The set \mathbb{Q} is open, as is the empty set \emptyset . The intersection of any two open subsets of \mathbb{Q} is also open. In fact, the intersection of any finite number of open sets in \mathbb{Q} is open (with the case of zero open sets yeilding \mathbb{Q}). The union of any collection of open subsets is open (with the emption collection yeilding \emptyset).

Proof. Let $\{O_i\}_{i\in I}$ be a collection of open subsets with I index set and

$$\bigcup_{i\in I}O_i$$

be the union of all *I open subsets*. If

$$x \in \bigcup_{i \in I} O_i$$

then we note that $x \in O_i$, namely x is in some specific *open subset*. As O_i is *open*, then by definition there exists an $\varepsilon > 0$ such that

$$B_{\varepsilon}(x) \subseteq O_i$$

and it follows that

$$B_{\varepsilon}(x) \subseteq \bigcup_{i \in I} O_i$$

. This holds for all sets in $\{O_i\}_{i\in I}$, and so $\bigcup_{i\in I} O_i$ is open.

Alternatively, we can note that the collection of open sets $\{O_i\}_{i\in I}$ is a poset, which we can name L, and has an ordering \subseteq . Now we can say that $\land = \cap$ and $\lor = \cup$.

I'd like to follow this approach, but I think I need to justify that there exists a unique \subseteq -smallest $j \in \{O_i\}_{i \in I}$, to make sure our $O_i \vee O_j$ has a unique solution. Our definition doesn't have any such guarantees.

Proof. The *empty set* \emptyset is *open* as $\forall t \in \emptyset$ results in no elements, and so is *vacuously true*.

$$\bigcup_{i \in \emptyset} O_i = \emptyset$$

Proof. For finite intersections,

$$x \in \bigcap_{i \in I}^n O_i \implies x \in O_n$$

where O_n represents the $smallest\ subset$, then

$$\forall x \in \bigcap_{i \in I}^{n} O_i \exists r : B_r(x) \subseteq O_i$$

if we write $\{r_i\}_{i\in I}$ to be the collection of radii r, we can take

$$\varepsilon := \min\{\{r_i\}_{i \in I}\}\$$

to be the smallest, then for all x

$$B_{\varepsilon}(x) \subseteq \bigcap_{i \in I}^{n} O_{i}$$

, which proves the intersection of any finite number of open sets in $\mathbb Q$ is open.

Proof. If we have no open sets $\{\}_{i\in I}$, then

$$\bigcap_{i \in \emptyset} O_i = \mathbb{Q}$$

These properties of open sets come from Definition 3 of subsets of rational numbers, as we can always provide a smaller ε as needed.

Now if we write $\Omega(\mathbb{Q})$ for the collection of all open subsets of \mathbb{Q} , ordered by inclusion we get a poset $(\Omega(\mathbb{Q}), \leq)$. This has arbitrary joins and finite meets, as per the above definition, and so forms a lattice.