Сборник распространенных вопросов, примеров и контрпримеров по курсу математического анализа 1 семестра

Коллектив 1 курса ФБМФ 2020-2021 $27~{\rm декабр} \ 2020~{\rm r}.$

Содержание

- 1. Введение. Числовые последовательности
 - 1.1 Действительные числа. Грани числовых множеств
 - 1.2 Предел числовой последовательности
 - 1.3 Частичные пределы
- 2. Предел функции. Непрерывность
 - 2.1 Предел функции
 - 2.2 Непрерывность в точке
 - 2.3 Непрерывность на множестве
 - 2.4 Непрерывность элементарных функций, замечательные пределы
- 3. Производная, свойства функций
 - 3.1 Производная
 - 3.2 Высшие производные
 - 3.3 Теоремы о среднем
 - 3.4 Правило Лопиталя
 - 3.5 Исследование функций. Графики
 - 3.6 Равномерная непрерывность
 - 3.7 Элементы дифференциальной геометрии

1 Введение. Числовые последовательности

1.1 Действительные числа

Аксиома Архимеда $\forall a > 0 \forall b > 0 \exists n \in N : an > b$

Множество R называется множеством вещественных чисел, а его элементы — вещественными числами, если выполнен комплекс условий, называемый аксиоматикой вещественных чисел.

1. Какие аксиомы действительных чисел выполняются на множестве рациональных чисел?

Все, кроме аксиомы непрерывности.

2. Докажите выполнение аксиом сложения для \mathbb{Q} .

2. Докажите выполнение аксиом 1.
$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd} = \frac{c}{d} + \frac{a}{b}$$
 2. $(\frac{a}{b} + \frac{f}{c}) + \frac{d}{e} = \frac{ace+fde+dbc}{bce} = \frac{a}{b} + (\frac{f}{c} + \frac{d}{e})$ 3. $\frac{a}{b} + 0 = 0$

4.
$$\frac{a}{b} + -\frac{a}{b} = \frac{0}{b} = 0$$

3. Докажите выполнение аксиом умножения для Q.

5.
$$\frac{a}{b} * \frac{c}{d} = \frac{ac}{bd} = \frac{c}{d} * \frac{a}{b}$$
6. $(\frac{a}{b} * \frac{c}{d}) * \frac{e}{f} = \frac{ace}{bdf} = \frac{a}{b} * (\frac{c}{d} * \frac{e}{d})$
7. $\frac{a}{b} * 1 = \frac{a}{b}$
8. $\frac{a}{b} * \frac{b}{a} = \frac{ab}{ab} = 1$

4. Докажите выполнение аксиом связи сложения и умножения для \mathbb{Q} . 9. $\frac{a}{b}*(\frac{c}{d}+\frac{e}{f})=\frac{a}{b}*\frac{cf+ed}{df}=\frac{acf+aed}{dbf}=\frac{acf}{dbf}+\frac{aed}{dbf}=\frac{a}{b}*\frac{c}{d}+\frac{a}{b}*\frac{e}{f}$

5. Докажите выполнение аксиом порядка для Q.

Аксиомы порядка очевидны, кроме аксиомы линейной упорядоченности (a < b и $b < c \Rightarrow a < c$).

13.
$$\frac{a}{b} < \frac{c}{d}$$
 и $\frac{c}{d} < \frac{e}{f} \Rightarrow ad < bc$ и $cf < de \Rightarrow adf < bcf < deb \Rightarrow af < eb \Rightarrow \frac{a}{b} < \frac{e}{f}$

14. Связь сложения и порядка - очевидна.

15. Связь умножения и порядка: берем $\frac{a}{b}$ и $\frac{c}{d}$, разбираем, когда каждое a и b>0или < 0, а затем проделываем то же самое с c и d.

6. (Аксиома Архимеда) Дано действительное чило х. Всегда ли для него существует натуральное число n такое, что n > x?

Да, всегда. Докажем от противного. Пусть есть такое x, что для всех $n \in N : n < x$, тогда у N существует конечный супремум, тогда для числа -1 есть такое n, что n > M - 1 (по определению супремума), но тогда n + 1 > (M - 1) + 1 = M, но n + 1натуральное, большее супремума N - противоречие.

7. Есть ли у множества из всех элементов вида $\frac{p}{q}$, где p и q натуральные числа, наибольший и наименьший элемент? Чему равны его верхняя и нижняя границы?

Наибольшего и наименьшего элементов нет, верхняя граница $+\infty$, нижняя 0.

Предположим, что у множества есть наибольший элемент, он равен $\frac{p}{q}$, но мы знаем, что $\frac{p+1}{q}$ больше (т. к. при домножении их обоих на q, p+1 будет больше, чем p), а он тоже в нашем множестве - противоречие.

Если наименьший $\frac{p}{q}$, то $\frac{p}{q+1}$ меньше, т. к. при домножении их на $q*\frac{q+1}{p}$, слева будет q+1, а справа q — противоречие.

Пусть множество ограничено сверху конечным числом M (M>0, т. к. в множестве есть элемент $\frac{1}{1}$), но у нас есть элемент $\frac{1}{1}$ и все элементы вида $\frac{1}{1}*n \Rightarrow$ по аксиоме Архимеда есть элемент, больший M.

Пусть множество ограничено сверху числом M, но не 0 (тогда $\frac{1}{M} > 0$ т. к. все члены множества положительные), тогда возьмем число $\frac{1}{M}$, у нас есть элемент $\frac{p}{a}$, больший $\frac{1}{M} \Rightarrow \frac{1}{p/q} = \frac{q}{p}$ будет меньше M - противоречие.

1.2 Предел последовательности

1. Может ли, если $\{a_n\}$ и $\{b_n\}$ расходятся, а) $\{a_n+b_n\}$, б) $\{a_n\cdot_n\}$ сходиться?

Да, например,
$$\{a_n\} = (-1)^n$$
, $\{b_n\} = (-1)^{n+1}$. Тогда

a)
$$\{a_n + b_n\} = (-1)^n + (-1)^{n+1} = (-1)^n - (-1)^n = 0$$

$$\lim \left\{ a_n + b_n \right\} = 0$$

6)
$$\{a_n \cdot b_n\} = (-1)^n \cdot (-1)^{n+1} = (-1)^{2n+1} = -1$$

$$\lim \left\{ a_n \cdot b_n \right\} = -1$$

2. Сформулируйте "позитивное" определение понятия расходимости последовательности.

$$\forall a \in \mathbb{R} \quad \exists \varepsilon_0 > 0 : \forall n_0 \in \mathbb{N} \quad \exists n \in \mathbb{N} \quad n \geqslant n_0 : \quad |a_n - a| \geqslant \varepsilon_0$$

3. Докажите, что если $\lim_{n\to\infty}x_n=a$, то $\lim_{n\to\infty}|x_n|=|a|$.

Так как
$$||x_n| - |a|| \geqslant |x_n - a|$$
:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad ||x_n| - |a_n|| \leqslant |x_n - a| < \varepsilon$$

$$\Rightarrow \lim_{n\to\infty} |x_n| = |a_n|$$

4. Докажите, что последовательность $\{a_n\}: a_n = \begin{cases} 1, & \text{если n нечет.} \\ 0, & \text{если n чет.} \end{cases}$ не имеет ни конечного, ни бесконечного предела.

Предположим, что она сходится и $\lim a_n = 0$.

Тогла пля
$$\varepsilon = \frac{1}{2}$$
 $\exists N \in \mathbb{N} : |a| - a| < \frac{1}{2}$

Или
$$a_n - \frac{1}{2} < a^2 < a_n + \frac{1}{2}$$
.

Предположим, что она сходится и
$$\lim a_n = 0$$
.
 Тогда для $\varepsilon = \frac{1}{2} \quad \exists N \in \mathbb{N} : |a_n - a| < \frac{1}{2}$.
 Или $a_n - \frac{1}{2} < a < a_n + \frac{1}{2}$.
 n - чет. $-\frac{1}{2} < a < \frac{1}{2}$ \Rightarrow противоречие, значит, поселедовательность расхолся.

Допустим, $\{a_n\}$ имеет бесконечный предел.

Тогда
$$\lim_{n\to\infty} |a_n| = +\infty$$

$$\forall M \quad \exists N_M \quad \forall n > N_M : \quad |a_n| > M$$

Пусть M=2. $\{a_n\}$ принимает значения только 0 или 1 $\forall n$. Раз $|a_n|>M$, то должно быть 0 > 2 и 1 > 2. Но это неверно, значит, предела нет.

5. Как связаны свойства последовательности быть бесконечно большой и неограниченной?

Бесконечно большая последоватеьность является неограниченной, обратное невер-HO.

6. Доказать, что если последовательность x_n сходится, то последовательность средних арифметических ее членов $y_n = \frac{x_1 + x_2 + ... + x_n}{n}$ сходится и ее предел равен пределу x_n .

Пусть $\lim_{n\to\infty} x_n = a$. Это значит, что

$$\exists n_0 \in \mathbb{N} \quad \forall n > n_0 \quad y_n - a = \frac{x_1 + \ldots + x_n}{n} - a = \frac{x_1 + \ldots + x_{n_0} - n_0 a}{n} + \frac{\left(x_{n_0 + 1} - a\right) + \ldots + \left(x_n - a\right)}{n}$$
 Зафиксируем произвольное $\varepsilon > 0$. Тогда по определению предела $\exists n_0 \quad \forall n > 0$

 $n_0:|x_n-a|<\frac{\varepsilon}{2}$

Число $x_1+x_2+\ldots+x_{n_0}-n_0a$ фиксировано, а $\lim_{n\to\infty}\frac{1}{n}=0$, поэтому $\lim_{n\to\infty}\frac{x_1+\ldots+x_n-n_0a}{n}=0$

$$\Rightarrow \exists m_0 \quad \forall n > m_0 : \frac{x_1 + \dots + x_{m_0} - m_0 a}{n} < \frac{\varepsilon}{2}$$

Пусть
$$N = \max(n_0, m_0)$$
. Тогда $\forall n > N$:

Пусть
$$N = \max(n_0, m_0)$$
. Тогда $\forall n > N$:
$$|y_n - a| = \frac{|x_1 + \ldots + x_N - Na|}{n} + \frac{|x_{N+1} - a| + |\ldots + |x_n - a|}{n} < \frac{\varepsilon}{2} + \frac{n - N}{n} \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$= > \lim_{n \to \infty} y_n = a$$

7. Приведите пример неограниченной последовательности, которая не

является бесконечной большой.
$$a_n = \left\{ \begin{array}{ll} n, & n-\text{ нечет.} \\ 0, & n-\text{ чет.} \end{array} \right.$$

8. Верно ли, что если $\forall na_n < b_n$, то их пределы равны? (a < b?)

Нет, например, если $\forall n \quad a_n = 0, \quad b_n = \frac{1}{n}$

Тогда $\forall na_n < b_n, \lim_{n \to \infty} a_n = 0, \quad \lim_{n \to \infty} b_n = 0 \quad 0 < 0$ - неверно.

9. Докажите, что $\lim_{n\to+\infty}\frac{a^n}{n!}=0$.

$$0 < \left| \frac{a^u}{n!} \right| = \left| \frac{a}{r} \right| \cdot \left| \frac{a}{2} \right| \cdot \ldots \cdot \left| \frac{a}{m} \right| \cdot \left| \frac{a}{m+1} \right| \cdot \ldots \cdot \left| \frac{a}{n} \right| < \frac{|a|^m}{m!} \left(\frac{|a|}{m+1} \right)^{n-m} < \varepsilon$$

Для $\forall \varepsilon > 0$ и m+1 > |a|, если п достаточно велико.

10. Сформулировать

а) последовательность не бесконечно малая.

$$\exists \varepsilon > 0 \quad \forall N \quad \exists n \geqslant N \quad |b_n| \geqslant \varepsilon$$

б) последовательность не бесконечно большая.

$$\exists \varepsilon > 0 \quad \forall N \quad \exists n \geqslant N : \quad |b_n| \leqslant \frac{1}{\varepsilon}$$

в) последовательность неограничена

$$\forall c > 0 \quad \exists n \quad |x_n| > c$$

11. Существует последовательность у которой

а) нет ни одного частичного предела?

Да.
$$x_n = n$$

б) бесконечно много частичных пределов?

Да.
$$\{x_n\} = \{1, 1, 2, 1, 2, 3, \dots, 1, \dots, n-1, n\}$$

в) множество частичных пределов совпадает с множеством рациональных чисел?

Да. Аналогично предыдущему, но с \mathbb{Q} , так как оно счетное.

12. Верно ли, что почти все члены последовательности положительны, если $\lim a_n > 0$?

Да, из леммы об отделимости.

Пусть
$$\varepsilon = \frac{a}{2}, \qquad a = \lim a_n$$

$$\exists N \in \mathbb{N} \quad \forall \overline{n} > N \ |a_n - a| < \frac{a}{2}$$

$$\frac{a}{2} < a < \frac{3a}{2}$$

 $\bar{\text{T}}$.к. $\frac{a}{2} > \bar{0}$, то все члены, начиная с N положительны.

13. Пример последовательности, у которой два частичных предела.

 $(-1)^n$, частичные пределы 1 и -1.

14. а) Пример последовательности ограниченной, но не имеющей ни наибольшего, ни наименьшего члена.

$$a_n = \begin{cases} \text{arctg } n, & n - \text{ четное} \\ -\text{arctg } n, & n - \text{ нечетное} \end{cases}$$

б) существует ли такая сходящаяся последовательность?

Нет, так как у сходящейся последовательности есть единственная предельная точка, тогда при достаточно малом ε вне нее находится конечное число членов, среди которых можно выбрать наибольший или наименьший, не совпадающий с пределом.

15. Если $\lim_{n\to\infty} x_n = 1$, то может ли последовательность содержать

а) члены больше 1000?

Да, например, $x_n = 1 + \frac{1000}{n}$.

б) отрицательные числа?

Да, например, $\{x_n\} = \{-2, -1, 0, 1, 1, 1...\}$

в) только отрицательные числа?

Нет, так как если 1 - предельная точка, то в ее окрестности бесконечное число членов. Пусть $\varepsilon < 1$, тогда в ε -окрестности 0 членов.

16. Если $\exists \lim (x_n + y_n)$, то $\exists \lim x_n, \lim y_n$?

Нет, например, $x_n = (-1)^n$, $y_n = (-1)^{n+1}$, они расходятся, но $\lim (x_n + y_n) = 0$.

17. Можно ли утверждать, что если x_n бесконечно малая, а y_n произвольное, то $\lim (x_n \cdot y_n) = 0$?

Hет, например, $x_n = \frac{1}{n} \Rightarrow \lim x_n = 0, y_n = n$

Тогда $\lim (x_n \cdot y_n) = \lim_{n \to \infty} \left(\frac{1}{n} \cdot n\right) = 1.$ 18. Доказать, что $\lim_{n \to \infty} \frac{5^n}{n^n} = 0.$

Для $\forall n \geqslant 15$ верно $\frac{5}{n} \leqslant \frac{1}{3}$, поэтому $0 < \left(\frac{5}{n}\right)^n < \left(\frac{1}{3}\right)^n$ при $n \geqslant 15$. Следовательно, по теореме о зажатой последовательности $\lim \frac{5^n}{n^n} = 0$.

19. Может ли иметь конечный предел неограниченная последовательность?

Нет, если последовательность имеет предел, то она ограничена (нестрогое определение ааааа, но может и зайдет, можно контрпример, можно как дальше).

Рассмотрим неограниченную сверху последовательность.

Есть предел: $\forall \varepsilon > 0 \quad \exists N_1 \quad \forall n > N_1 \quad \varepsilon - a < x_n < \varepsilon + a$

Heorp: $\forall \varepsilon + a > 0 \quad \exists N_2 \quad x_{N_2} > \varepsilon + a$

Вот и противоречие.

20. Может ли иметь предел немонотонная последовательность?

Да, например,
$$x_n = \frac{(-1)^n}{n}$$
 $X_1 = -1, \quad X_2 = \frac{1}{2}, \quad x_3 = -\frac{1}{3}$

 $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$

21. Доказать, что если
$$|q|<1$$
, то $\lim nq^n=0$. $\ln q^n=\frac{n}{\left|\frac{1}{q}\right|^n}=n/b^n, b>1$ далее см.22

22. Доказать, что
$$\lim_{n\to\infty}\frac{n^k}{a^n}=0, a>0$$
. Пусть $m\in\mathbb{Z}, \quad m\geqslant k$. Тогда: $0<\frac{n^k}{a^n}\leqslant\frac{n^m}{a^n}=\left(\frac{n}{\sqrt[m]{a^n}}\right)^m=\left(\frac{n}{b^n}\right)^m$, где $b=\sqrt[m]{a}>1$, то $0<\frac{n}{b^n}=\frac{n}{(1+(b-1))^n}=\frac{n}{1+n(b-1)+\frac{n(n-1)}{2}(b-1)^2+...(b-1)^n}<\frac{2n}{n(n-1)(b-1)^2}\to 0$

По теореме о зажатой последовательности, получаем $\left(\frac{n}{h^n}\right)^m \to 0$ при $n \to \infty$.

23. Верно ли утверждение теоремы Кантора, если заменить отрезки на интервалы?

Нет, например, возьмем стягивающуюся последовательность интервалов $\{(0,\frac{1}{n})\}$ $(\frac{1}{n}-0\to 0)$, но при этом у них нет общей точки.

24. Доказать, что $\lim_{n\to\infty} \sqrt[n]{a} = 1, a > 1$.

Обозначим $\sqrt[n]{a} - 1 = \alpha_n$, тогда $\alpha_n > 0$ и $a = (1 + \alpha_n)^n \geqslant n\alpha_n$ (по неравенству Бернулли) $\forall n \quad 0 < \alpha_n \leqslant \frac{a}{n}$. Значит $\lim \alpha_n = 0$, а $\lim \sqrt[n]{a} = \lim (1 + \alpha_n) = 1$.

1.3 Частичные пределы

- 1. Пример последовательности не имеющей ни одной сходящейся к числу подпоследовательности: $x_n = n$
- 2. Геометрическая интерпретация предельной точки.

Определение: Точка $p \in R$ является предельной точкой последовательности, если любая окрестность этой точки содержит бесконечное число членов последовательности. То есть существует подпоследовательность пределом которой является эта точка.

- 3. Придумайте последовательность, у которой а)все предельные точки ей принадлежат, b)существует предельная точка,ей не принадлежащая, с)существует предельная точка, принадлежащая последовательности и предельная точка, ей не принадлежащая.
 - (a) $x_n = (-1)^n$ последовательность, предельные точки которой принадлежат ей (-1,1)
 - (b) $x_n = 1 + \frac{1}{n}$ последовательность, предельная точка которой ей не принадлежит (1 - предельная точка)

(c)

$$\begin{cases} x_n = 1, n = 2k, k \in \mathbb{N} \\ x_n = \frac{1}{n}, n = 2k + 1, k \in \mathbb{N} \end{cases}$$

 x_n - последовательность, у которой 2 предельные точки 0 и 1. 1 — принадлежит её окрестности, 0 — нет.

4. Привести пример неограниченной последовательности, имеющей сходящуюся к числу подпоследовательность

$$\begin{cases} x_n = n, n = 2k, k \in \mathbb{N} \\ x_n = \frac{1}{n}, n = 2k + 1, k \in \mathbb{N} \end{cases}$$

 x_n - неограниченная последовательность, имеющая подпоследовательность, сходящуюся к 0.

5. Привести пример расходящейся последовательности, имеющей только один частичный предел

$$\begin{cases} x_n = n, n = 2k, k \in \mathbb{N} \\ x_n = 1, n = 2k + 1, k \in \mathbb{N} \end{cases}$$

 x_n - расходящаяся последовательность, имеющая только один частичный предел равный 1.

6. Доказать, что множество частичных пределов последовательности замкнуто

Замкнутое множество — множество, содержащее все свои граничные точки.

Пусть L - множество частичных пределов $\{a_n\}$. Пусть A точка из дополнения $L \to A$ не является частичным пределом. Докажем, что дополнение к L — открытое. $\exists U_{\epsilon}(A)$, содержащая конечное число членов $\{a_n\}$. $U_{\epsilon}(A)$ - открытое множество \to

 $\forall x \in U_{\epsilon}(A) \; \exists U_{\delta}(x) \subset U_{\epsilon}(A)$. Но тогда в $U_{\delta}(x)$ лишь конечное число членов $\{a_n\} \to x$ не является частичным пределом $\{a_n\} \to x \in$ дополнению $L \to U_{\epsilon}(A)$ с дополнения $L \to$ дополнение L открыто $\to L$ замкнуто **ч.т.д.**

7. Указать последовательность такую, что любое рациональное число из интервала (0,1) было бы её частичным пределом. Обязаны ли тогда у неё быть ещё какие-то пределы?

Представим каждое рациональное число интервала в виде $\frac{a}{b}$. Пронумеруем каждое такое число, сначала поставим числа для которых $\frac{a}{b}=3$, потом те для которых $\frac{a}{b}=4$, и так далее, до $\frac{a}{b}=k$. Для каждого k количество $\frac{a}{b}$ конечно, $a\in[1;k-1],b\in[1,k-1]$ Получившееся множество чисел и есть наша последовательность.

Покажем, что у такой последовательности частичными пределами будут и все действительные числа этого интервала. Действительно, в сколь угодно малой окрестности любого действительного числа лежит бесконечное число рациональных чисел. А значит, для каждой окрестности можно выбрать рациональное число, лежащее в ней и причём в нашей последовательности имеющее больший номер чем все выбранные до этого. Таким образом и будет построена подпоследовательность, сходящаяся к любому наперёд заданному действительному числу.

2 Предел функции. Непрерывность

2.1 Предел функции

Определение. \exists f: E \rightarrow R, E \subset R, b - предел функции, a - предельная точка E \Leftrightarrow 1) по Коши: $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0$: $\forall x 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon$

2) по Гейне: $\forall \{x_n\} \subset E \setminus \{a\}, x_n \to a \Rightarrow f(x_n) \to b$

Теорема. Определения по Коши и по Гейне эквивалентны.

1. Известно свойство о пределе композиции функций. Заметим, что если $f(\mathbf{x}) = \mathbf{b}$, то данное свойство неверно. Приведем пример:

$$f, g: R \to R$$
$$f(\mathbf{x}) = 0$$

$$D(x) = \begin{cases} 1, & y \neq 0 \\ 0, & y = 0 \end{cases}$$

Тогда $\forall x \in R \quad g \circ f(x) = 1$, следовательно $\lim_{x \to 0} g \circ f(x) = 1$

Теперь посчитаем предел по свойству о пределе композиции функций:

 $\lim_{x\to 0} f(x) = 0$ и $\lim_{y\to 0} g(y) = 0$, откуда следует что $\lim_{x\to 0} g\circ f(x) = 0$. Получили противоречие.

2. Пусть f и g функции, которые не имеют предела в точке x_o . Верно ли что $f\circ g(x)(g+f)(x)$ также не имеют предела? Ответ: нет

Приведем контрпримеры:

а) Пусть $f(x) = x - \frac{1}{x}$, а $g(x) = x + \frac{1}{x}$, f+g=2x.

В точке x_o f и g не имеют пределов, а (g+f)(x) предел имеет.

6)
$$f(x) = D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

a

$$g(x) = D(x) = \begin{cases} 0, & x \in \mathbb{Q} \\ 1, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

3. Пусть f имеет предел, а g не имеет. Правда, что (g+f)(x) и $f \circ g(x)$ не имеют предел, а $\lim_{x\to x_o} f(x) \neq 0$ и g не имеет предел? Если (f+g)(x) имеет предел, тогда введем вспомагательную функцию h(x)=(f+g)(x)

Так как g(x) = h(x) - f(x) и g(x) не имеет предела, то получаем, что разность двух сходящихся функций есть расходящаяся функция, а это неверно по свойствам предела функции.

Аналогично для произведения:

$$h(x) = (f \circ g(x)) = f(x) \cdot g(x)$$

Так как $g(x) = \frac{h(x)}{f(x)}$ и g(x) не имеет предела, то получаем, что отношение двух сходящихся функций есть расходящаяся функция, а это неверно по свойствам предела функции.

4. Найти предел функции $f=\frac{x-1}{x}$. С одной стороны $\lim_{x\to\infty}\frac{x-1}{x}=\lim_{x\to\infty}(1-\frac{1}{x})$

 $\overset{x}{\mathrm{C}}$ другой стороны $\lim_{x \to \infty} \frac{x-1}{x} = \lim_{x \to \infty} (x-1) \cdot 0 = 0$

Какой же ответ верный?

1, так как переход $\lim_{x\to\infty}(x-1)\cdot 0$ неверен, ведь предел $\infty\cdot 0$ не определен.

2.2 Непрерывность в точке

Теоретическая справка.

Определение. Функция f(x) является непрерывной в точке x_0 , если выполнено:

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Определение по Коши. f(x) непрерывна в точке $x_0 \Leftrightarrow \forall \ \varepsilon > 0 \ \exists \delta_{\varepsilon} = (0, \delta_0]$: $\forall x \in \stackrel{\circ}{U_{\delta}}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(x_0)$.

Определение по Гейне. f(x) непрерывна в точке $x_0 \Leftrightarrow \forall \{x_n\} \in \overset{\circ}{U_{\delta_0}}(x_0)$: $x_n \to x_0 \hookrightarrow f(x_n) \to f(x_0)$.

Разрывы функции и их виды. Существует три вида разрыва: устранимый, разрыв I и II рода.

а) Устранимый разрыв.

$$\exists f(x_0+0) = \exists f(x_0-0) \in \mathbb{R}$$

Например:

$$f(x) = \begin{cases} x+1, & x \neq 2\\ 4, & x \neq 2 \end{cases}$$

б) Разрыв І-го рода.

$$\exists f(x_0+0) \neq \exists f(x_0-0) \in \mathbb{R}$$

Например:

$$f(x) = sign(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

в) Разрыв II-го рода.

$$f(x) = \frac{1}{x}$$
 или $f(x) = sin(\frac{1}{x})$

Задачи.

№ 1. Исследовать на непрерывность функцию $f(x) = \frac{x^2}{x}$ и указать ее трочки разрыва.

 \Box Функция f(x) равна x при $x\neq 0$ и не определена при x=0. Так как $\forall a\lim_{x\to a}x=a,$ то при $a\neq 0\lim_{x\to a}f(x)=a=f(a),$ и, следовательно, f(x) непрерывна в любой точке $a\neq 0$. В точке x=0 f(x) имеет устранимый разрыв,поскольку $\lim_{x\to 0}f(x)=\lim_{x\to 0}x=0.$

№ 2. Исследовать на непрерывность функцию $f(x) = e^{-\frac{1}{x}}$ и указать ее трочки разрыва.

Функция $f(x)=e^{-\frac{1}{x}}$ элементарная, поскольку является суперпозицией функций y(x)=-x и $f=e^y$. Функция f(x) определена при всех x, кроме x=0; следовательно, она непрерывна в любой точке $x\neq 0$. Так как f(x) определена во всей окрестности точки x=0, но не определена в этой точке, то x=0 - точка разрыва. Вычислим f(0+0) и f(0-0), пользуясь определением одностороннего предела функции по Гейне. Рассмотрим произвольную бесконечно малую последовательность $\{x_n\}$ такую, что $\forall n\in\mathbb{N}$ \hookrightarrow $x_n>0$. Поскольку $\lim_{x\to\infty}-\frac{1}{x_n}=-\infty$, имеем $\lim_{n\to\infty}e^{-\frac{1}{x_n}}=0$. Следовательно $\lim_{x\to 0+0}e^{-\frac{1}{x}}=0$. Рассмотрим теперь произвольную бесконечно малую последовательность $\{x_n'\}$: \forall $n\in\mathbb{N}$ \hookrightarrow $x_n'<0$. Так как $\lim_{x\to\infty}-\frac{1}{x_n'}=+\infty$, то $\lim_{n\to\infty}e^{-\frac{1}{x_n'}}=+\infty$. Поэтому $\lim_{x\to 0-0}e^{-\frac{1}{x}}=+\infty$, т.е. $f(0-0)=-\infty$, значит, точка x=0 является точкой разрыва II рода.

№ 3. Исследовать на непрерывность функцию f(x) и указать ее трочки разрыва.

$$f(x) = \begin{cases} -x, & x \le -1\\ \frac{2}{x-1}, & x > 0 \end{cases}$$

 \square Найдем односторонние пределы в точках x=-1 и x=1. Имеем: f(-1-0)=-1, f(-1+0)=1, $f(1-0)=-\infty$, $f(1+0)=+\infty$.

Отсюда точка x = -1 - разрыв I рода, а x = 1 - разрыв II рода.

№ 4. Исследовать на непрерывность функцию $f(x) = \frac{2x-1}{2x^2+3x-2}$ и указать ее трочки разрыва.

 $\square f(x) = \frac{2x-1}{2x^2+3x-2} = \frac{2x-1}{(2x-1)(x+2)} = \frac{1}{x+2}$, при $x \neq \frac{1}{2}$. Найдем односторонние пределы в точках x = -2 и $x = \frac{1}{2}$.

Имеем: $f(\frac{1}{2}-0) = \frac{2}{5}$, $f(\frac{1}{2}+0) = \frac{2}{5}$, $f(-2-0) = -\infty$, $f(-2+0) = +\infty$.

Отсюда точка $x=\frac{1}{2}$ - устранимый разрыв , а x=-2 - разрыв II рода.

 $extbf{N} ullet$ 4. Докажите, что $\forall x_0 \in \mathbb{X}, m \in \mathbb{Z} \iff f(x) = x^m$ - непрерывна.

- \square Рассмотрим три случая для m: m > 0, m = 0, m < 0.
- 1) m > 0. Докажем по индукции:
 - а) Для m = 1 : f(x) = x непрерывна.

 - б) Пусть выполняется для $m=k: f(x)=x^k$ непрерывна. в) Тогда для $m=k=1: f(x)=x^{k+1}=x^k\times x$. Поскольку x^k и x непрерывны, то $x^k \times x$ тоже непрерывна. Значит наше предположение верное.
- 2) m = 0: f(x) = 1 непрерывна.

3) m < 0. Тогда: $f(x) = x^m = \frac{1}{x^{|m|}}$. Поскольку x^m непрерывна, то и $\frac{1}{x^{|m|}}$ непрерывна, но $x \neq 0$.

№ 5. Докажите, что $\forall x_0 \in \mathbb{R} f(x)$ -функция Дирихле, не непрерывна.

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R}/\mathbb{Q} \end{cases}$$

1) Пусть $x_0 \in \mathbb{Q}$:

$$\exists \varepsilon = 1 \forall \delta > 0 \exists x_{\delta} \in U_{\delta}(x_0) : |f(x_{\delta}) - f(x_0)| \varepsilon = 1 \quad (f(x_{\delta}) = 0, f(x_0) = 1)$$

2) Пусть $x_0 \in \mathbb{R}/\mathbb{Q}$:

$$\exists \varepsilon = 1 \forall \delta > 0 \exists x_{\delta} \in U_{\delta}(x_0) : |f(x_{\delta}) - f(x_0)| \varepsilon = 1 \quad (f(x_{\delta}) = 1, f(x_0) = 0$$

Приведите пример.

№ 1. Привидите пример всюду разрывной функции, абсолютное значение которой есть всюду непрерывная функция:

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ -1, & x \in \mathbb{I} \end{cases}$$

№ 2. Привидите пример функции, непрерывной лишь в одной точке:

$$f(x) = \begin{cases} x, & x \in \mathbb{Q} \\ -x, & x \in \mathbb{I} \end{cases}$$

Единственной точкой непрерывности этой функции является 0.

№ 3. Привидите пример функции, непрерывной в иррациональных и разрывной в в рационалных точках: если $x \in \mathbb{Q}, x = \frac{m}{n}, am, n \in \mathbb{Z}$, то:

$$f(x) = \begin{cases} \frac{1}{n}, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{I} \end{cases}$$

Единственной точкой непрерывности этой функции является 0.

Верно ли.

№ 1. Существует ли функция, непрерывная во всех рациональных точках и разрывной во всех иррациональных.

Ответ: НЕТ.

(здесь могло быть ваше доказательство)

№ 2. Верна ли теорема о непрерывности сложной функции в общем случае? Ответ: HET.

Пусть: $\lim_{x \to x_0} f(x) = y_0$, $\lim_{y \to y_0} g(y) = A$, тогда $\lim_{x \to x_0} g(f(x)) = A$ - верно (нет, вот контрпример) ? :

Контрпример:

$$f(x) \equiv 0$$

$$g(y) = \begin{cases} 1, & y = 0 \\ 0, & y \neq 0 \end{cases}$$

$$f(x) = 0$$
, $x_0 = a$, $f(x_0) = y$, получаем:

$$lim_{y\to y_0}g(y) = 0$$
 и $lim_{x\to x_0}g(f(x)) = 1$

а в теореме эти два предела равны.

2.3 Непрерывность на множестве

- 1. Привести пример непрерывной на интервале функции:
 - 1) неограниченной на этом интервале;
 - 2) ограниченной на нём, но не достигающем своей точной верхней и нижней грани
 - 1) Рассмотрим функцию $y=\frac{1}{x}$: она непрерывна на интервале T=(0;1), но при любом m>0 найдётся $x\in T:\frac{1}{x}>m,$ следовательно, y неограниченна на данном интервале;
 - 2) Рассмотрим функцию y = x на том же интервале; $\sup y(x) = 1$; $\inf y(x) = 0$; но они не достигаются.
- 2. Доказать, что если функция определена и непрерывна на отрезке, то множество её значений отрезок. А также привести пример разрывной функции, множество значений которой отрезок (т.е. показать, что обратное неверно)

Пусть I - данный отрезок. Из теоремы Вейерштрасса имеем ограниченность множества значений и достижение точных верхней и нижней граней данного множества. Применив теорему о промежуточном значении непрерывной на отрезке функции, получаем, что

 $\forall y_1, y_2 \in f(I) \ \forall y' \in (y_1; y_2) \ \exists c \in I : f(c) = y' \ (\text{берём } y_2 > y_1), \text{ т.е. } f(I)$ является промежутком по определению, причём ограниченным и с входящими крайними точками, т.е f(I) - либо отрезок, либо точка.

Рассмотрим функцию

$$y = \begin{cases} x & \text{при -1} \le x \le 0 \\ x-1 & \text{при -1} \le x \le 10 \end{cases}$$

Её множество значений - отрезок [-1; 9]; но функция разрывна в x = 0.

3. Привести пример непрерывной функции, которая принимает значения, равные 1 и 3, но не принимает значение 2

14

Рассмотрим функцию y=x на множестве $E=\{2\}\cup\{3\}$; обе точки данного множества изолированные, следовательно, так как функция в них определена, то она непрерывна в них, а, следовательно, у непрерывна на E, но у не принимает значения 2 на E.

 $y = \begin{cases} \sin(\frac{1}{x}) & \text{при -1} < \mathbf{x} \le 0 \\ 0 & \text{при } \mathbf{x} = 0 \end{cases}$

2) Допустим, что это не так, тогда существует точка h из данного отрезка, где левый предел функции неравен правому. Пусть для определённости f(h) равно правому

пределу, тогда если левый предел равен $b \neq f(h)$, то существует интервал с крайними точками b и f(h); из определения левого предела имеем существование такого δ , что вышеуказанный интервал не является подмножеством множества значений функции на $(x-\delta;x)$; тогда взяв $q=x-\frac{\delta}{2}$ имеем для отрезка [q;h] существование $C\in (b;f(h))$ $(f(x-\delta;x)\cap (b;f(h)))$, тогда $\in (b;f(h))$ (для определённости f(h)>b) и не входит в $f(x-\delta;x)$, откуда следует, что $\nexists p\in [q;h]: f(p)=C$ - имеем противоречие с условием, откуда следует ложность предположения.

4. Докажите, что если f(x) - непрерывная функция, то |f(x)| есть также непрерывная функция. Верно ли обратное утверждение?

Рассмотрим произвольную точку а. Зафиксируем $\varepsilon > 0$; тогда найдём: $\delta > 0$: $\forall x \in E : ((x \in B_\delta(a)) \to (|f(x) - f(a)| < \varepsilon))$; тогда, так как $||f(x)| - |f(a)|| \le |f(x) - f(a)| < \varepsilon$, то |f(x)| равномерно непрерывна в любой точке а по определению.

Обратное неверно, так как функция

$$y = \begin{cases} 1 & \text{при x} > 1 \\ -1 & \text{при x} \ge 1 \end{cases}$$

разрывна в x = 1, а |y(x)| непрерывна там.

5. Если функция не имеет нулей, то можно ли утверждать, что она знакопостоянна?

Нет, например,

$$y = \begin{cases} 1 & \text{при } \mathbf{x} > 1 \\ -1 & \text{при } \mathbf{x} \ge 1 \end{cases}$$

не имеет нулей, но и знакопостоянной не является.

6. В каком случае все значения непрерывной на [a;b] функции рациональны (иррациональны)?

В случаях y = C, где C принадлежит либо R, либо R Q.

7. Привести пример непрерывной функции, обратная к которой разрывна.

Рассмотрим функцию

$$y = egin{cases} \mathbf{x} & \text{при -1} \leq \mathbf{x} < 0 \\ \mathbf{x} - 1 & \text{при -1} \leq \mathbf{x} < 2 \end{cases}$$

Данная функция непрерывна на $E = [-1; 0) \cup [1; 2]$; в силу биективности отображения имеем обратную функцию:

$$y = egin{cases} \mathbf{y} & \text{при -1} \leq \mathbf{x} < \mathbf{0} \\ \mathbf{y} - \mathbf{1} & \text{при } \mathbf{0} \leq \mathbf{x} < \mathbf{1} \end{cases}$$

разрывна в y = 0.

8. **Может ли разрывная функция иметь обратную?** Да, см. решение 8.

2.4 Непрерывность элементарных функций. Замечательные пределы

2.4.1 Экспонента

Определение экспоненты:

$$\forall x \in \mathbb{R}, \exp : \mathbb{R} \to \mathbb{R}$$

$$\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$

1. Исследуйте последовательность $e_n = \left(1 + \frac{1}{n}\right)^n$ на монотонность.

Достаточно доказать, что для любого натурального п отношение e_{n+1}/e_n больше либо равно 1. Обозначим $(1+\frac{1}{n+1})$ через a, а $(1+\frac{1}{n})$ - через b. Заметим, что эти числа положительны.

Докажем такой факт:

$$a, b > 0, n \in N : \frac{a^{n+1}}{b^n} \geqslant (n+1)a - nb.$$
 (1)

Поделим обе стороны неравенства на b и вопользуемся неравенством Бернулли.

$$\frac{a^{n+1}}{6^{n+1}} = \left(\frac{a}{b}\right)^{n+1} = \left(1 + \left(\frac{a}{b} - 1\right)\right)^{n+1} \geqslant 1 + (n+1) \cdot \left(\frac{a}{b} - 1\right) =$$

$$= (n+1) \cdot \frac{a}{6} - n = \frac{(n+1)a - nb}{b}$$

Вернемся к изначальной последовательности. Используя свежедоказанный факт 1,

$$\frac{e_{n+1}}{e_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n} = \frac{a^{n+1}}{b^n} \geqslant (n+1)a - nb =$$

$$= (n+1)\left(1 + \frac{1}{n+1}\right) - n\cdot\left(1 + \frac{1}{n}\right) = 1$$

2. Исследуйте последовательность $E_n = \left(1 + \frac{1}{n}\right)^{n+1}$ на монотонность.

Опять же, достаточно доказать, что для любого натурального n отношение E_{n+1}/E_n меньше либо равно 1. Так как мы собираемся использовать все тот же факт 1, то сделаем следующий трюк: заменим числа в числителе и знаменателе на их обратные (x на $\frac{1}{x}$. Обозначим $\frac{n+1}{n+2}$ через a и и $\frac{n}{n+1}$ через b. Далее

$$\frac{\frac{1}{E_{n+1}}}{\frac{1}{E_n}} = \frac{\left(\frac{n+1}{n+2}\right)^{n+2}}{\left(\frac{n}{n+1}\right)^{n+1}} = \frac{a^{n+2}}{b^{n+1}} \geqslant (n+2) \cdot a - (n+1) \cdot b =$$

$$= (n+2) \left(\frac{n+1}{n+2}\right) - (n+1) \left(\frac{n}{n+1}\right) = 1$$

3. Исследуйте последовательность $e_n = \left(1 + \frac{1}{n+1}\right)^n$ на монотонность.

$$\frac{\left(1+\frac{1}{n+1}\right)^n}{\left(1+\frac{1}{n}\right)^{n-1}} = \frac{\left(1+\frac{1}{n+1}\right)^{n+1} \cdot \left(1+\frac{1}{n}\right)}{\left(1+\frac{1}{n}\right)^n \cdot \left(1+\frac{1}{n+1}\right)}$$
$$\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^n} \ge 1 \text{см. пункт } 1$$
$$\frac{1+\frac{1}{n}}{1+\frac{1}{n+1}} = \frac{n(n+2)}{(n+1)(n+1)} = \frac{n^2+2n+1}{n^2+2n} > 1$$

Значит и отношение n-го члена к предыдущему больше 1.

4. Покажите, что последовательности e_n и E_n имеют одинаковые пределы.

Заметим, что $E_n/e_n=(1+1/n)>1$, поэтому $e_n< E_n$ для любого $n\in N$. Следовательно, последовательности e_n и E_n монотонны и ограничены, поэтому по теореме Вейерштрассе имеют пределы. Далее

$$\frac{\lim_{n\to\infty} E_n}{\lim_{n\to\infty} e_n} = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right) = 1$$

5. Найдите предел $\lim_{n\to\infty}\left(1-\frac{1}{n}\right)^n$

$$\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = \lim_{n \to \infty} \left(\frac{n-1}{n}\right)^n = \frac{1}{\lim_{n \to \infty} \left(\frac{n}{n-1}\right)^n} = \frac{1}{\lim_{n \to \infty} \left(\left(1 + \frac{1}{n-1}\right)^{n-1} \cdot \left(1 + \frac{1}{n-1}\right)\right)} = \frac{1}{e}$$

6. Докажите, что exp(x) > 0.

$$a_n(x) = \left(1 + \frac{x}{n}\right)^n \geqslant a_m(x) = \text{const} > 0,$$

Тогда и

$$\exp(x) \geqslant a_m(x) > 0$$

7. Докажите, что $\exp(x+y) = \exp(x) \cdot \exp(y)$.

$$(1 + \frac{x}{n})^n \cdot (1 + \frac{y}{n})^n = (1 + \frac{x+y}{n} + \frac{xy}{n^2})^n = (1 + \frac{x+y}{n})^n (1 + \frac{xy}{n})^n = (1 + \frac{x+y}{n})^n (1 + \frac{\alpha_n}{n})^n$$

$$\alpha_n = \frac{xy}{n(n+x+y)} \to 0, \quad \exists n_0 \in \mathbb{N}, \forall n \geqslant n_0 \quad |\alpha_n| < 1$$

Значит, используя неравенство Бернулли,

$$1 + \alpha_n \leqslant \left(1 + \frac{\alpha_n}{n}\right)^n \leqslant \frac{1}{\left(1 - \frac{\alpha_n}{n}\right)^n} \leqslant \frac{1}{1 - \alpha_n}$$

Последняя часть неравенства выше берется отсюда:

$$\left(1 + \frac{\alpha_n}{n}\right)^n \left(1 - \frac{\alpha_n}{n}\right)^n = \left(1 - \frac{\alpha_n^2}{n^2}\right)^n \leqslant 1$$

$$\Rightarrow 1 + \alpha_n \leqslant \left(1 + \frac{\alpha_n}{n}\right)^n \leqslant \frac{1}{1 - \alpha_n}$$

При $n \to \infty$,

$$1 \leqslant 1 \leqslant 1$$

Значит,

$$\left(1 + \frac{x_n}{n}\right)^n \left(1 + \frac{y_n}{n}\right)^n = \left(1 + \frac{x+y}{n}\right)^n \left(1 + \frac{\alpha_n}{n}\right)^n$$

Переходя к $n \to \infty$,

$$\exp(x) \cdot \exp(y) = \exp(x+y) \cdot 1$$

8.Докажите, что
$$\begin{cases} \exp(x) \geqslant 1 + x, \forall x \in \mathbb{R} \\ \exp(x) \geqslant \frac{1}{1-x}, x < 1 \end{cases}$$

$$8.1) \ a_n(x) = \left(1 + \frac{x}{n}\right)^n, \exists N : \frac{x}{N} \geqslant -1$$

Тогда $\forall n \geqslant N$

$$\Rightarrow a_n(x) = \left(1 + \frac{x}{n}\right)^n \geqslant 1 + x$$

Переходя к $n \to \infty$,

$$\exp(x) \geqslant 1 + x$$

8.2)
$$\exp(-x) = \frac{1}{\exp(x)} \ge 1 - x$$

 $\exp(x) \le \frac{1}{1 - x}, x < 1 \quad (\exp(x) > 0)$

9. Докажите, что функция $\exp(x)$ непрерывна.

$$1)x = 0: \quad 1 + x \leqslant \exp(x) \leqslant \frac{1}{1-x}, \forall x < 1$$
$$x \to 0: \quad 1 \leqslant 1 \leqslant 1$$
$$2) \ a \neq 0 \quad \exp(a+x) = \exp(a) \exp(x) \Rightarrow$$
$$\lim_{t \to a} \exp(t) = \lim_{x \to 0} \exp(a+x) = \exp a \cdot 1 \Rightarrow$$
$$\Rightarrow \exp(x)$$
непрерывна на \mathbb{R}

10. Докажите, что функция $\exp(x)$ строго возрастает. x,y - действительные числа

$$\exp(y) - \exp(x) = \exp(x)(\exp(y - x) - 1) > 0$$

11. Докажите, что функция $\exp(x)$ отображает \mathbb{R} в $(0; +\infty)$.

Если покажем, что $\sup(f(I)) = +\infty$, $\inf(f(I)) = 0$, где I - произвольный промежуток, принадлежащий \mathbb{R} , то из непрерывности экспоненты будет следовать, что это отображение в нужный нам промежуток $(0; +\infty)$.

Поскольку f(I) строго возрастает, то

$$\sup(f(I)) = \lim_{x \to +\infty} \exp(x) \geqslant \lim_{x \to +\infty} (1+x) = +\infty$$

$$\inf(f(I)) = \lim_{x \to -\infty} \exp(x) = \lim_{x \to +\infty} \exp(x) = \lim_{x \to +\infty} \frac{1}{\exp(x)} = 0$$

2.4.2 Показательные функции

Определение: натуральный логарифмом назовем функцию $ln:(0;+\infty)\to\mathbb{R}$ - обратная экспоненте.

Определение: показательная функция с основанием a>0: $f:x\to a^x$, где $a^x=exp(xlna)$.

Определение: степенная функция $\forall x > 0, \alpha \in \mathbb{R}, f: x \to x^{\alpha}, x^{\alpha} = \exp(\alpha \ln x)$

1. Докажите, что $\lim_{n\to\infty} a^{\frac{1}{n}} = 1$.

Рассмотрим случай a>1. Обозначим $b_n=a^{1/n}-1$. Тогда $b_n>0$ и в силу неравенства Бернулли $a=(1+b_n)^n\geqslant 1+nb_n>nb_n$, следовательно, $b_n< a/n\to 0$, а значит, $a^{1/n}\to 1$.

Случай $a\in(0;1)$ сводится к предыдущему: так как $\frac{1}{a}>1$, то $(\frac{1}{a})^{1/n}\to 1$ и $a^{1/n} = 1/(\frac{1}{a})^{1/n}$ при $n \to \infty$.

2. Докажите, что $\log_a b = \frac{\ln b}{\ln a}$. Для каких a, b это имеет смысл?.

Имеет смысл для $\forall a \in (0,1) \cup (1,+\infty) \forall b > 0.$

Поскольку $f(x) = \log_a x$ - обратная к функции $g(x) = a^x$, то $a^{\lg g_a b} = b_1 e^{\ln a} =$ $a, e^{\ln b} = b$. Следовательно,

$$e^{\ln a \log_a b} = (e^{\ln a})^{\log_a b} = a^{\log_a b} = b = e^{\ln b}$$

Отсюда и обратимости функции e^x следует, что $\ln a \log_a b = \ln b$, т.е. $\log_a b = \frac{\ln b}{\ln a}$. **3.** Докажите, что $\log_a x$ непрерывно на $\forall a > 0 \quad (0;1) \cup (1;+\infty)$.

2.4.3 Замечательные пределы

1. Чему равен предел $\lim_{x\to 0} \frac{\operatorname{sh}(x)}{x}$?

$$\lim_{x \to 0} \frac{e^x - e^{-x}}{2x} = \lim_{x \to 0} \frac{e^{2x} - 1}{e^x \cdot 2x}$$

Подставляя значение экспоненты через замечательный предел $\lim_{x\to 0} (1+x)^{1/x} =$ e (можем так делать, потому и там, и там x стеремится к нулю), получим,

$$\frac{(1+x)^2 - 1}{e^x \cdot 2x} = \frac{x^2 + 2x}{e^x \cdot 2x} = \frac{x^x 2}{e^x \cdot 2}$$

При $x \to 0$ знаменатель стремится к $e^0 * 2 = 2$, числитель - 0 + 2 = 0. В итоге,

$$\lim_{x \to 0} \frac{\operatorname{sh}(x)}{x} = 1$$

2. Чему равен предел $\lim_{x\to 0} \frac{\operatorname{th}(x)}{x}$?. Все обоснования допустимости аналогичны утверждениям предыдущего вопроса.

$$\frac{e^x - e^{-x}}{(e^x + e^{-x})x} = \frac{(e^{2x} - 1)}{(e^{2x} + 1)x} = \frac{((1+x)^2 - 1)}{((1+x)^2 + 1)x} =$$
$$= \frac{x^2 + 2x}{x^3 + 2x^2 + 2x} = \frac{x + 2}{x^2 + 2x + 2} \longrightarrow^{x \to 0} \frac{0 + 2}{0 + 0 + 2} = 1$$

3 Производная. Свойства функций

3.1Производная

Введение.В некоторых примерах термин "производная" будет применяться и к бесконечным пределам $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = +\infty$, $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = -\infty$ Но термин "дифференцируемая функция" используется только если функция имеет конечную производную в каждой своей точке. Бесконечно дифференцируемая функция имеет конечную производную любого порядка в каждой своей точке.

В приведённых примерах по умолчанию считаем, что область определения и множество значений функций являются подмножествами R (конечные действительные числа).

Теорема(Дарбу). Если функция f дифференцируема на [а, b], то для любого числа s, лежащего между f'(a) и f'(b), найдется такое $c \in (a,b)$, что f'(c) = s. Иными словами, производная обязана принимать все промежуточные значения между её значениями на концах отрезка, где функция дифференцируема.

1) Поэтому, например, функция sign(x), и вообще всякая функция с разрывом в виде скачка, не является производной никакой функции, т.к. не принимает нигде значений (-1,0) и (0,1) между 1 и -1.

Рис. 1: Функция.

2)Однако производная всё же может иметь разрывы, например, существенные, т.е. когда отсутствует хотя бы один из односторонних пределов в точке. При этом всё равно выполняется теорема Дарбу.

Пример дифференцируемой всюду функции с разрывной производной:

$$f(x) \equiv \begin{cases} x^2 \sin \frac{1}{x}, & \text{если} \quad x \neq 0 \\ 0, & \text{если} \quad x = 0 \end{cases}$$

Рис. 2: Функция.

Её производная:

$$f'(x) = \begin{cases} 2x \sin\frac{1}{x} - \cos\frac{1}{x}, & \text{если} \quad x \neq 0 \\ 0, & \text{если} \quad x = 0 \end{cases}$$

разрывна в точке х=0, но определена в любой точке.

Рис. 3: Производная.

3) Функция с разрывом I рода может всюду иметь производную, например, функция sign(x), но теперь производная принимает значение $+\infty$ в x=0, значит sign(x) уже не дифференцируема в этой точке.

Если
$$f(x) = \operatorname{sign} x$$
, то $f'(0) = \lim_{x \to 0} \frac{\operatorname{sign} x - \operatorname{sign} 0}{x - 0} = \lim_{x \to 0} \frac{1}{|x|} = +\infty$.

$$f'(x) = \begin{cases} 0, & \text{если} \quad x \neq 0 \\ +\infty, & \text{если} \quad x = 0 \end{cases}$$

Рис. 4: Функция.

Например, функция $f(x) = \begin{cases} x, & x \leq 2 \\ x+1, & x>2 \end{cases}$ имеет похожий разрыв, но не имеет производной в x=2, т.к. левая производная=1 а правая= $+\infty$ в точке x=2.

4)Приведите пример дифференцируемой функции, производная которой не сохраняет знака ни в какой односторонней окрестности экстремума.

Обыкновенно функция в некоторой односторонней окрестности экстремума монотонна и имеет производную с постоянным знаком, например, $y=\cos(x)$ монотонно возрастает на интервале $(-\pi,0)$, и производная положительна на нём.

Однако есть функция
$$f(x)=\left\{ egin{array}{ll} x^2(2+\sin{1\over x}), & x
eq 0 \\ 0, & x=0 \end{array} \right.$$

Она зажата между $x^2 \le x^2(2+\sin\frac{1}{x}) \le 3x^2$ - двумя функциями, имеющими глобальный минимум в точке $x=0\Rightarrow f(x)$ тоже имеет глобальный минимум в этой точке.

Однако её производная $f'(x) = \begin{cases} 2x(2+\sin\frac{1}{x}) - \cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ в любой окрестности нуля принимает разные знаки. В этом можно убедиться, взяв последовательность Гейне $x_n = \frac{1}{\pi n}, x_n \to 0$, при этом $f'(x_n) = \frac{4}{\pi n} - (-1)^n$, т.е. при достаточно больших п $f'(x_n) \sim (-1)^n$, т.е. не сохраняет знак.

Рис. 5: Функция.

Рис. 6: Производная.

5)Приведите пример дифференцируемой функции, производная которой положительна в некоторой точке, но сама функция не монотонна ни в какой окрестности этой точки.

Обычно функция монотонна в некоторой окрестности точки, где её производная положительна. Например, в точке $x_0=5$ производная функции $f=x^2, f'=2x_0=10$, и функция монотонно возрастает в окрестности $x_0=5$.

Ho есть функция
$$f(x)\equiv\left\{ egin{array}{ll} x+2x^2\sin{1\over x}, & {
m если} & x
eq 0 \\ 0, & {
m если} & x=0 \end{array}
ight.$$

Её производная:
$$f'(x) = \begin{cases} 1 + 4x \sin \frac{1}{x} - 2\cos \frac{1}{x}, & \text{если } x \neq 0 \\ 1, & \text{если } x = 0 \end{cases}$$
 Имеет как положительные, так и отрипательные значения в

Имеет как положительные, так и отрицательные значения в любой окрестности нуля (второе слагаемое стремится к нулю при $x \to 0$), значит, функция не монотонна в любой окрестности нуля.

В точке x=0 производная $f'(0)=\lim_{x\to 0}\frac{x+2x^2\sin(1/x)-0}{x-0}=1$ для левой и правой производной, значит, производная положительна в x=0 и равна единице.

Рис. 7: Функция.

Рис. 8: Производная.

 $6) \Phi$ ункция, производная которой конечна, но не ограничена на замкнутом интервале.

Рассмотрим функцию
$$f(x)\equiv\left\{ egin{array}{ll} x^2\sin\frac{1}{x^2}, & \text{если} & x\neq 0 \\ 0, & \text{если} & x=0 \end{array} \right.$$

Рис. 9: Функция.

её производная $f'(x) = \begin{cases} 2x \sin\frac{1}{x^2} - \frac{2}{x}\cos\frac{1}{x^2}, & \text{если} \quad x \neq 0 \\ 0, & \text{если} \quad x = 0 \end{cases}$ не ограничена на интервале, например, (-1,1), т.е. принимает сколь угодно большие значения, и при этом не бесконечно большая, так как не стремится к бесконечности при $x \to 0$, а достигает конечных значений и начинает убывать, если возрастала, и наоборот.

Рис. 10: Производная.

7)Приведите пример бесконечно дифференцируемой в ${\bf x}{=}{\bf 0}$ функции, положительной при x>0 и равной нулю при ${\bf x}\le 0$.

Функция $f(x) \equiv \begin{cases} e^{-1/x^2}, & \text{если} \quad x>0 \\ 0, & \text{если} \quad x\leqslant 0, \end{cases}$ бесконечно дифференцируема в любой точке, в том числе и в точке $\mathbf{x}{=}0$, где функция задаётся по-разному справа и слева, но при этом левые и правые производные любого порядка равны и равны нулю.

Рис. 11: Функция.

8)Приведите пример бесконечно дифференцируемой функции такой, что $\lim_{x\to\infty}f(x)=0,$ но $\lim_{x\to\infty}f'(x)\neq0$

что $\lim_{x\to\infty} f(x)=0$, но $\lim_{x\to\infty} f'(x)\neq 0$ Функция $f(x)=\frac{\sin(x^2)}{x}$ стремится к нулю при $x\to\infty$.

Рис. 12: Функция.

А производная $f'(x)=2cos(x^2)-\frac{sin(x^2)}{x}\sim 2cos(x^2)$ не стремится к нулю при $x\to\infty$.

Рис. 13: Производная.

9)Ещё немного простых примеров.

Функция y=|x| имеет строгий экстремум (минимум) в точке x=0, но не имеет в ней производной, т.е. в точках экстремума необязательно должна существавать производная, равная нулю.

Теорема. Дифференцируемая в точке функция непрерывна в этой точке, обратное не всегда верно. Например, эта же функция y=|x| непрерывна в точке x=0, но не дифференцируема в ней, так как левая производная равна -1, а правая равна 1.

Теорема (следствие 1 из теоремы Лагранжа). Если производная функции на промежутке $\geq (>)$ 0, то функция нестрого (строго) возрастает. Обратное верно, но только в случае, если функция строго возрастает, её производная не обязана быть строго больше нуля, т.е. $y' \geq 0$ в общем случае.

Пример - функция $y=x^3.$ Она строго возрастает на всей области определения, но производная $y'=3x^2$ равна нулю в точке x=0.

Задачи из конспекта Редкозубовой по производным.

Достаточные условия экстремума. Пусть функция f определена на интервале (α, β) и $a \in (\alpha, \beta)$. Пусть f дифференцируема на $(\alpha, \beta) \setminus \{a\}$ и непрерывна в точке a. 1) Если $f' \geqslant 0$ на (α, a) и $f' \leqslant 0$ на (a, β) , то a- точка локального максимума f (строгого, если неравенства для производной строгие). 2) Если $f' \leqslant 0$ на (α, a) и $f' \geqslant 0$ на (a, β) , то a- точка локального минимума f (строгого, если неравенства для производной строгие).

Задача. Покажите, что для функции $f(x) = x^2 \left(2 + \sin \frac{1}{x}\right)$ при $x \neq 0, f(0) = 0$, точка x = 0 является точкой строгого минимума, однако условия следствия 1 не выполняются.

Этот случай разобран в примере 4. Функция зажата между x^2 и $3x^2$, имеющими строгий минимум в x=0, и поэтому сама имеет в этой точке строгий минимум f(x)=0, но производная функции меняет знак в любой окрестности x=0.

Задача. Покажите на примерах, что все условия теоремы Ролля существенны. Ну это вроде несложно и было в задании по матану по-моему. И вообще это теоремы о среднем, а не производная. Нужно придумать функции, у которых не выполняются определённые условия, и при этом теорема Ролля тоже не выполняется. Ладно, вот тут есть.

Теорема. Доказательство неравенств с помощью производных. Пусть функции f, g непрерывны на [a,b) и дифференцируемы на $(a,b), f(a) \leq g(a)$ и $f'(x) \leq g'(x)(<)$ для всех $x \in (a,b)$. Тогда $f(x) \leq g(x)(<)$ для всех $x \in (a,b)$.

g'(x)(<) для всех $x\in (a,b)$. Тогда $f(x)\leqslant g(x)(<)$ для всех $x\in (a,b)$. Задача. Покажем, что $e^x>1+x+\frac{x^2}{2!}+\ldots+\frac{x^n}{n!}$ при всех $x>0, n\in\mathbb{N}$ При n=1 неравенство $e^x>1+x$ выполняется (свойство экспоненты). Пусть неравенство верно для n. Рассмотрим функции $g(x)=e^x$ и $f(x)=1+x+\ldots+\frac{x^{n+1}}{(n+1)!}$. Тогда g(0)=f(0)=1 и по предположению индукции g'(x)>f'(x) при всех x>0, так как производные этих функций при n+1 и будут равны им же самим при n. Следовательно, по теореме выше g(x)>f(x) при всех x>0, и неравенство при n+1 установлено. Доказано методом математической индукции.

Задача. Докажите, что если функция f имеет конечные односторонние производные в точке a (необязательно равные), то f непрерывна в этой точке.

Доказательство. По определению производной

$$f'_{-}(a) = \lim_{x \to a-0} \frac{f(x) - f(a)}{x - a}$$

Это предельное равенство означает, что выраженге под знаком предела можно представить в внде

$$\frac{f(x) - f(a)}{x - a} = f'_{-}(a) + \alpha(x)$$

где $\alpha(x)$ - бесконечно малая функция при $x \to a$. Тогда

$$f(x) - f(a) = (f'_{-}(x) + \alpha(x))(x - a)$$

Следовательно, $f(x) \to f(a)$ при $x \to a$ слева. Аналогично $f(x) \to f(a)$ при $x \to a$ справа.

Значит, раз функция стремится с обеих сторон к своему значению в точке а, то она непрерывна в этой точке, ч.т.д.

Задача. Доказать 3 следствие из теоремы Лагранжа о разрывах производной. Пусть функция f(x) дифференцируема на интервале (a,b), за исключением, быть может, точки $x_0 \in (a,b)$, и непрерывна в точке x_0 . Тогда если существует конечный или бесконечный

$$\lim_{x \to x_0 - 0} f'(x) = A$$

то в точке x_0 существует левая производная, причем

$$f'_{-}(x_0) = A$$

Аналогично, если существует

$$\lim_{x \to x_0 + 0} f'(x) = B$$

ТО

$$f'_{+}(x_0) = B$$

Доказательство. Пусть приращение Δx таково, что $\Delta x \neq 0$ и точка $x_0 + \Delta x$ принадлежит интервалу (a,b). Так как функция удовлетворяет условиям теоремы Лагранжа, то имеет место равенство $f\left(x_0 + \Delta x\right) - f\left(x_0\right) = \Delta x f'(\xi)$, которое можно записать в виде $\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'\left(x_0 + \theta \Delta x\right)$, $0 < \theta < 1$.

в виде $\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0 + \theta \Delta x)$, $0 < \theta < 1$. Если существует предел левой производной, то есть $\lim_{x \to x_0 = 0} f'(x) = \lim_{\Delta x \to -0} f'(x_0 + \Delta x) = A$, то правая часть равенства с θ имеет предел, равный A, а поэтому существует предел в левой части этого равенства, и справедливо равенство $f'_-(x_0) = A$. Аналогично, из соотношения $\lim_{x \to x_0 + 0} f'(x) = B$ следует равенство $f'_+(x_0) = B$, ч.т.д.

Из этого следует, что у производной дифференцируемой на промежутке функции не может быть разрывов типа скачок , так как левые и правые производные равны A=B в каждой точке, где функция дифференцируема. Однако у производной могут быть разрывы II рода, см. пример 2).

Экзотические задачи из 7 семинара Антона Скубачевского. Остальные задачи из семинара, наверное, все умеют решать, намучавшись с контрольными. Можете почитать оригинал, т.к. здесь могут быть опечатки.

Пример1.Взять производную.

в)
$$y = \ln |\sin x|$$
 Для начала отметим, что $(|x|)' = \operatorname{sign} x$, где $\operatorname{sign} x = \begin{cases} -1, x < 0 \\ 0, x = 0 \\ 1, x > 0 \end{cases}$

sign штука не страшная, а даже крайне простая, сильно упрощающая жизнь, не стоит ее бояться, ей нало пользоваться. По правилу дифференцирования сложной функции, $(|\sin x|)' = \text{sign}(\sin x)\cos x$ Далее следует добавить, что signx обладает

замечательным свойством: он убивает модуль: $|x| \operatorname{sign} x = x$, ну и $|\sin x| \operatorname{sign}(\sin x) = \sin x$ Производная исходной функции:

$$y' = (\ln|\sin x|)' = \frac{\operatorname{sign}(\sin x)\cos x}{|\sin x|} = \frac{\cos x}{\sin x} = \operatorname{ctg} x$$

Пример 3. Исследовать на существование производной: $f(x) = |\pi - x| \sin x$.

У синуса существует производная в каждой точке, у $|\pi - x|$ - во всех точках, кроме $x = \pi$. Значит у f(x), являющейся их произведением, также существуют производные по крайней мере во всех точках, кроме π . Наличие производной в точке π исследуем с помощью односторонних производных.

$$f'_{+}(\pi) = \lim_{x \to \pi + 0} \frac{f(x) - f(\pi)}{x - \pi} = \lim_{x \to \pi + 0} \frac{|\pi - x| \sin x - 0}{x - \pi} = \lim_{x \to \pi + 0} \frac{(x - \pi) \sin x}{x - \pi} = \lim_{x \to \pi + 0} \sin x = 0$$

$$f'_{-}(\pi) = \lim_{x \to \pi - 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to \pi - 0} \frac{|\pi - x| \sin x - 0}{x - \pi} = \lim_{x \to \pi - 0} \frac{(\pi - x) \sin x}{x - \pi} = \lim_{x \to \pi - 0} (-\sin x) = 0$$

Односторонние производные равны, значит, в точке $x=\pi$ существует производная и она равна 0.

Мы получили, что у данной функции существуют производные в каждой точке.

Пример 4. Исследовать на существование производной: $f(x) = \mid \pi - \mid x \mid \cos x$

Исследуем только в точке $x=\pi,$ в остальных все аналогично предыдущему примеру.

$$f'_{+}(\pi) = \lim_{x \to \pi + 0} \frac{f(x) - f(\pi)}{x - \pi} = \lim_{x \to \pi + 0} \frac{|\pi - x| \cos x - 0}{x - \pi} = \lim_{x \to \pi + 0} \frac{(x - \pi) \cos x}{x - \pi} = \lim_{x \to \pi + 0} \cos x = -1$$

$$f'_{-}(\pi) = \lim_{x \to \pi - 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to \pi - 0} \frac{|\pi - x| \cos x - 0}{x - \pi} = \lim_{x \to \pi - 0} \frac{(\pi - x) \cos x}{x - \pi} = \lim_{x \to \pi - 0} (-\cos x) = 1$$

Значит, в точке π не существует производной у этой функции, т.к. односторонние производные не равны.

Пример 11(гигантская задача, читайте если у вас много времени). Функцию $f(x) = \left\{ \begin{array}{l} |x|^\alpha \sin\frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{array} \right.$

исследовать на непрерывность, дифференцируемость и непрерывную дифференцируемость при всех α .

Решение:во-первых, очевидно, что при всех альфа при всех $x \neq 0$ наша функция непрерывно дифференцируема как композиция непрерывно дифференцируемых функций (ну и, следовательно, дифференцируема и, следовательно, непрерывна).

Значит нам нужно исследовать поведение функции только в точке 0.

1) Исследуем на непрерывность в нуле. То есть по определению непрерывности нужно найти альфа, при которых $\lim_{x\to 0} f(x) = f(0) = 0$ Очевидно, что при $\alpha > 0$ этот предел равен нулю, т.к. $0 \le \lim_{x\to 0} |f(x)| \le \lim_{x\to 0} |x|^{\alpha} = 0$ при $\alpha > 0$, следовательно, по теореме о двух милиционерах, предел есть и равен нулю.

Теперь осталось доказать отсутствие непрерывности при $\alpha \leq 0$,то есть что $\neq \lim_{x\to 0} f(x)$ (ну или что этот предел не равен f(0)). Мы докажем, что его не существует, пользуясь определением предела по Гейне. Нужно доказать, что $\exists x'_n, x''_n$:

$$\lim_{n \to \infty} f\left(x_n'\right) \neq \lim_{n \to \infty} f\left(x_n''\right)$$

Возьмем $x_n' = \frac{1}{2\pi n}$ и $x_n'' = \frac{1}{\pi/2 + 2\pi n}$, обе $\to 0$ при $n \to \infty$.

$$\sin(x'_n) = 0$$

$$\sin(x''_n) = 1$$

$$\lim_{n \to \infty} f(x'_n) = 0$$

$$\lim_{n \to \infty} f(x''_n) = \begin{cases} 1, \alpha = 0 \\ \infty, \alpha < 0 \end{cases}$$

Следовательно, предела нет в нуле по определению Гейне. Итак, функция непрерывна в нуле при $\alpha>0$, а в остальных точках при всех α

2) Дифференцируемость: в случае таких странно заданных функций следует действовать по определению:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} |x|^{\alpha - 1} \sin \frac{1}{x} \operatorname{sign} x = 0$$
 при $\alpha > 1$

т.к. $\sin\frac{1}{x}$ - функция ограниченная, а $|x|^{\alpha-1}$ - бесконечно малая. $\operatorname{sign} x$ взялся при делении модуля икса на икс, т.к. $(|x|=x\operatorname{sign} x)$. Итак, мы доказали, что при $\alpha>1$ функция дифференцируема в нуле (ну и значит в каждой точке, т.к. в остальных точках, как мы уже заметили, она дифференцируема).

Но из этого не следует, что при $\alpha \leq 1$ функция не дифференцируемая в нуле. Это надо показать. Т.е. надо показать, что $\underset{x\to 0}{\sharp} \lim_{x\to 0} |x|^{\alpha-1} \sin\frac{1}{x} \operatorname{sign}\ x$ при $\alpha \leq 1$. Показывается отсутствие предела обычно с помощью определения по Гейне: возьмем 2 последовательности $x_n' = \frac{1}{2\pi n}$ и $x_n'' = \frac{1}{\pi/2 + 2\pi n}$, обе $\to 0$ при $n \to \infty$ Тогда при таких последовательностях:

$$\lim_{n\to\infty} |x_n'|^{\alpha-1} \sin \frac{1}{x_n'} \operatorname{sign} x_n' = 0$$
, т.к. $\sin(2\pi n) = 0$ $\lim_{n\to\infty} |x_n''|^{\alpha-1} \sin \frac{1}{x_n''} \operatorname{sign} x_n'' = \lim_{n\to\infty} |x_n''|^{\alpha-1} \operatorname{sign} x_n'' \neq 0$

T.K.

$$\sin(\pi/2 + 2\pi n) = 1; \lim_{n \to \infty} |x_n''|^{\alpha - 1} = \begin{cases} 1, \alpha = 1 \\ \infty, \alpha < 1 \end{cases}$$

Т.о., мы получили, что по определению предела функции по Гейне не существует предела $\lim_{n\to\infty} g(x)$ при $\alpha \leq 1$, где $g(x) = |x|^{\alpha-1} \sin\frac{1}{x} \operatorname{sign} x$, т.к $\exists x_n', x_n''$:

$$\lim_{n \to \infty} g\left(x_n'\right) \neq \lim_{n \to \infty} g\left(x_n''\right)$$

(Один равен нулю, а второй единице или бесконечности).

Резюме исследования на дифференцируемость: при $\alpha>1$ функция дифференцируема во всех точках. При $\alpha\leq 1$ функция дифференцируема во всех точках кроме x=0.

3). Исследуем на непрерывную дифференцируемость в точке x=0. Для этого возьмем производную и исследуем производную на непрерывность в нуле (напомню, что непрерывная дифференцируемость - непрерывность производной как функции).

$$f'(x) = \alpha x^{\alpha - 1} \sin \frac{1}{x} \operatorname{sign} x - |x|^{\alpha} x^{-2} \cos \frac{1}{x} = \alpha x^{\alpha - 1} \sin \frac{1}{x} \operatorname{sign} x - |x|^{\alpha - 2} \cos \frac{1}{x}$$

Аналогично предыдушим двум пунктам убеждаемся, что производная будет непрерывна в нуле при $\alpha>2$:

$$0 \le \lim_{x \to 0} |f'(x)| \le \lim_{x \to 0} \left(\alpha |x|^{\alpha - 1} + |x|^{\alpha - 2} \right) = 0, \alpha > 2$$

(Тут использовалось, что модуль суммы меньше суммы модулей.)

Далее убеждаемся с помощью определения предела по Гейне в том, что при $\alpha \leq 2$ производная не будет непрерывна. Аналогично берем те же последовательности. Задача решена.

3.2 Высшие производные

1. Может ли в точке x_0 существовать первая производная, но не существовать вторая?

Да, примеры:

$$f = \begin{cases} x^2, & \text{если } x \geqslant 0 \\ -x^2, & \text{если } x < 0 \end{cases}$$

$$f'_+(0) = 2x = 0, \quad f'_-(0) = 2x = 0$$

$$f' = \begin{cases} 2x, & \text{если } x > 0 \\ 0, & \text{если } x = 0 \\ -2x, & \text{если } x < 0 \end{cases}$$

$$f''_+(0) = \lim_{x \to 0+} \frac{2x - 0}{x - 0} = 2, \quad f''_-(0) = \lim_{x \to 0-} \frac{-2x - 0}{x + 0} = -2$$

$$f''_+(0) \neq f''_-(0) \Rightarrow f$$
 не существует в $x_0 = 0$

Аналогичные примеры:

$$f(x) = \begin{cases} ln(1+x) - x, & \text{если } x \geqslant 0 \\ 1 - cos(x), & \text{если } x < 0 \end{cases}$$

$$f(x) = \begin{cases} x^2, & \text{если } x \in R \\ -x^2, & \text{если } x \in R/Q \end{cases}$$

В последнем примере f' существует только в $x_0 = 0$, не существует в окрестности (т.к. f разрывна везде, кроме 0)

2. Может ли в точке x_0 существовать вторая производная, если не существует первая?

По определению вторая производная f'' = (f')По определению g' в $x_0 \in R$. $\exists U_\delta(x_0) \subset D_g$, т.е. по определению для существования второй производной необходимо $\exists \delta : f'$ определена $U_\delta(x_0)$, т.е. f' определена в x_0 , т.е. $f'(x_0)$ существует

- 3. Известно, что существует n-ая производная в точке x_0 существует. Что можно сказать о существовании производных меньшего порядка в точке x_0 и в окрестности этой точки?
- (n) производная по определению $f^{(n)}=(f^{(n-1)})'.$ По определению первой производной g' $\exists U_{\delta}(x_0)\subset D_g\Rightarrow f^{(n-1)}$ определена (существует) в $U_{\delta}(x_0).$

$$\forall x \in U_{\delta}(x_0) \exists f^{(n-1)}$$
, т.е. $\forall x \in U_{\delta}(x_0) \exists U_{\varepsilon(x)}(x)$, в которой определена $f^{(n-2)}$

$$A = \bigcup_{x \in U_{\delta}(x_0)} U_{\varepsilon(x)}(x) \supset U_{\delta}(x_0)$$

Таким образом $f^{(n-2)}$ определена в $U_{\delta}(x_0)$. Совершим переход от n-1 к n-2. Таким образом $\forall k \in {0,...,n-1}$ $f^{(k)}$ определена в $U_{\delta}(x_0)$, $(\delta>0)$

4. У какой функции и в чём именно проявляется отсутствие инвариантности дифференциала второго порядка?

Если рассмотреть сложную функцию z(y(x)), то

$$d^{2}(z(y)) = z''(y)(dy)^{2}$$
$$d\widetilde{z}(x) - ?$$

$$d\widetilde{z}(x) = z_9'(y(x))dy$$

$$d^2\widetilde{z}(x)=d(d\widetilde{z}(x))=d(z'(y(x))dy)=d(z'(y(x)))dy+z'(y(x))d^2y=z"(y(x))(dy)^2+z'(y(x))d^2y$$
 Если бы y была независимой переменной то $d^2y=0$, но т.к. $y=y(x)$, то $d^2y\neq 0$ в общем случае, т.е. d^2z не инвариантен относительно замены переменной

3.3 Теоремы о среднем

- 1. Выяснить, будет ли всегда существовать такая точка $\xi \in (a,b)$, что $f'(\xi)=0,$ если f удовлетворяет всем условиям т. Ролля, кроме одного из следующих:
 - f непрерывна на отрезке [a, b] Нет, не всегда. Контрпример:

$$f(x) = \begin{cases} 1, & x = 0, \\ \frac{1}{x}, & x \in (0, 1] \end{cases}$$

$$ot \exists \xi \in (0,1): \ f'(\xi) = 0, \text{ t.k.} \\ f'(\xi) = -\frac{1}{x^2} \neq 0 \ \forall x \in (0,1)$$

• f имеет во всех точках интервала (a,b) конечную или определенного знака бесконечную производную. Нет, не всегда. Контрпример:

$$f(x) = |x| \quad \forall x \in [-1, 1]$$

f(-1) = f(1) = 1 и f(x) непрерывна на (-1,1)Но в $\forall x \neq 0 \hookrightarrow f'(x) = \pm 1$, а в нуле функция не дифференцируема, поэтому $\not\exists \xi: f'(\xi) = 0$ $\bullet \ f(a) = f(b)$

Нет, не всегда. Контрпример:

$$f(x) = x \quad \forall x \in [0, 1]$$
$$f(x)$$

непрерывна на [0,1] и дифференцируема на (0,1) Но $\forall x \in (0,1) \hookrightarrow f'(x) = 1 \Rightarrow \mathbb{Z} \xi \in (0,1) : f'(\xi) = 0$

2.Доказать, что если функция f удовлетворяет условиям т. Ролля на отрезке [a,b] и не является постоянной, то на этом отрезке существуют такие точки ξ_1 и ξ_2 , что $f'(\xi_1)>0$ и $f'(\xi_2)<0$

Пусть не существует таких точек ξ_1 и ξ_2 , тогда $f'(x) = 0 \ \forall x \in [a,b]$ - а значит f(x) = const по следствию из теоремы Лагранжа о среднем - получаем противоречие с условием.

Пусть теперь существует только ξ_1 , но не существует ξ_2 , тогда $f'(x) \ge 0 \forall x \in [a,b] \Rightarrow f(x)$ нестрого возрастает на $[a,b] \Rightarrow f(a) \not= f(b)$, что противоречит условию теоремы Ролля (аналогично для нестрогого убывания).

 $3. \Pi$ усть $f:(a,b) \to \mathbb{R}$ дифференцируема и $\lim_{x \to a+0} f(x) = \lim_{x \to b-0} f(x) = +\infty$. Существует ли $\xi \in (a,b)$ такое, что $f'(\xi) = 0$?

Т.к. $\lim_{x\to a+0} f(x) = \lim_{x\to b-0} f(x) = +\infty$, то можем выбрать такие точки c и d из отрезка [a,b], что f(c)=f(d) (действительно, в некоторой окрестности c и d имеем любые значения функции на некоторой окрестности плюс бесконечности). Тогда, применяя т. Ролля для функции f(x) на отрезке [c,d], получаем, что $\exists \xi \ in(c,d): f'(\xi)=0$

4. Доказать, что все корни многочленов Лежандра действительные, простые и лежат на интервале (-1, 1)

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n (x^2 - 1)^n}{dx^n}$$

Рассмотрим многочлен $Q_{2n}=(x^2-1)^n$. Они меет степень 2n и его корнями являются $x_1=-1$ и $x_2=1$, причём каждый корень имеет кратность n. Поэтому если n>1, то производная Q_{2n}' также имеет x_1 и x_2 своими корнями, но уже кратности n-1.

По теореме Ролля у производной $Q_{2n}'(x)$ существует ещё по крайней мере один корень x_3 , лежащий между x_1 и x_2 . Поскольку сумма кратностей всех действительных корней многочлена не превышает его степени, а степень многочлена $Q_{2n}'(x)$ равна 2n-1, то кратность корня x_3 равна единице, и других корней кроме x_1, x_2 и x_3 у многочлена $Q_{2n}'(x)$ нет.

Продолжая этот процесс, по индукции получим что производная $Q_{2n}^{(n-1)}(x)$ имеет n+1 простых корней x_i . Для удобства занумеруем их в порядке возрастания: $-1=x_1 < x_2 < ... < x_{n+1}=1$.

По теореме Ролля на каждом отрезке $[x_i, x_{i+1}]$ лежит хотя бы один корень производной многочлена $Q_n^{(n-1)}(x)$, т.е. корень многочлена Лежандра, т.к.:

$$[Q_{2n}^{(n-1)}(x)] = Q_{2n}^{n}(x) = 2^{n} n! P_n(x)$$

Таким образом, многочлен Лежандра имеет на интервале (-1;1)n различных корней, а т.к. его степень равна n, то все они простые и других корней, действительных или комплексных, у него нет.

5. Показать, что разность между синусами двух углов не превышает по абсолютной величине разности между этими углами, взятыми в радианной мере. 31

Рассмотрим $f(x) = \sin(x)$. Проверим выполнение условий т. Лагранжа на $[\alpha, \beta]$ $f(x) = \sin(x)$ непрерывна на $[\alpha, \beta]$ и дифференцируема на (α, β) .

Поэтому
$$\exists \xi \in (\alpha, \beta) : f(\beta) - f(\alpha) = f'(\xi) \cdot (\beta - \alpha)$$

 $f'(x) = \cos(x)$

T.e. $\sin \beta - \sin \alpha = \cos \xi \cdot (\beta - \alpha)$

Т.к. $\cos \xi \le 1$, то $\sin \beta - \sin \alpha = \cos \xi \cdot (\beta - \alpha) \le \beta - \alpha$, ч.т.д.

6.Справедлива ли теорема Коши о среднем для функций $f(x)=x^2$ и $g(x)=x^3$ на отрезке [-1;1]? Какое условие не выполняется для этих функций?

Перечислим условия теоремы Коши:

- f(x), g(x) непрерывны на отрезке выполняется
- f(x), g(x) имеют во всех внутренних точках конечные производные выполняется
- $g'(x) \neq 0 \forall x \in [-1; 1]$ неверно, $g'(x) = 3x^2$ обращается в ноль в точке x = 0

И действительно,

$$\frac{1^2 - (-1)^2}{1^3 - (-1)^3} = \frac{0}{-2} = \frac{2x}{3x^2}$$

Уравнение 0 = 2/3x не имеет решений, а значит теорема Коши не выполняется.

3.4 Правило Лопиталя

1. Можно ли использовать в данном случае правило Лопиталя? Существует ли предел?

$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}$$

 $f(x) = x^2 \sin \frac{1}{x}, g(x) = \sin x$ определены и дифференцируемы в некоторой окрестности точки $x_0 = 0$; $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = 0$. Существует ли $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$?

$$\lim_{x \to 0} \frac{2x \sin \frac{1}{x} + x^2 \cos \frac{1}{x} \cdot \left(-\frac{1}{x^2}\right)}{\cos x} = \lim_{x \to 0} \frac{2x \sin \frac{1}{x} - \cos \frac{1}{x}}{\cos x} \not\exists$$

Докажем это по Гейне: выберем $\{x_n = \frac{1}{\pi + 2\pi n}\}$, $\{y_n = \frac{1}{2\pi n}\}$ - посл-ти Гейне в точке $x_0 = 0$, и для них получим:

$$\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} \frac{\frac{2}{\pi + 2\pi n} \cdot \sin(\pi + 2\pi n) - \cos(\pi + 2\pi n)}{\cos \frac{1}{\pi + 2\pi n}} = \lim_{n \to +\infty} \frac{1}{1} = 1$$

$$\lim_{n \to +\infty} f(y_n) = \lim_{n \to +\infty} \frac{\frac{2}{2\pi n} \cdot \sin(2\pi n) - \cos(2\pi n)}{\cos \frac{1}{2\pi n}} = \lim_{n \to +\infty} \frac{-1}{1} = -1$$

Получаем отсутствие предела по Гейне, а значит правило Лопиталя применить нельзя. Но предел всё же можно посчитать следующим образом:

$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = \lim_{x \to 0} \frac{x}{\sin x} \cdot \lim_{x \to 0} x \sin \frac{1}{x} = 1 \cdot 0 = 0$$

(первый множитель - 1 замечательный предел, второй легко доказать из ограниченности синуса)

2. Справедливо ли утверждение: если предел отношения производных существует, то предел отношения самих функций равен пределу отношения производных?

Утверждение верно только если получается неопределённость вида $\frac{0}{0}$ или $\frac{\infty}{\infty}$. В противном случае легко привести контрпример: рассмотрим $\lim_{x\to 0} \frac{\sin x + \cos x}{x+2}$. Очевидно, этот предел просто равен $\frac{1}{2}$, т.к. функция непрерывна в этой точке. При этом предел отношения производных:

$$\lim_{x \to 0} \frac{\cos x - \sin x}{1} = \frac{1}{1} = 1 \neq \frac{1}{2}$$

- 3. Вычислите пределы, используя правило Лопиталя.
- ullet $\lim_{x \to +\infty} rac{x^n}{a^x}, a > 1$ здесь нужно применить правило Лопиталя n раз.

$$\lim_{x \to +\infty} \frac{x^n}{a^x} = \lim_{x \to +\infty} \frac{nx^{n-1}}{a^x \ln a} = \dots = \lim_{x \to +\infty} \frac{n!}{a^x \ln^n a} = 0$$

• $\lim_{x\to+0}$

$$\lim_{x \to +0} x^x = \lim_{x \to +0} e^{x \ln x} = e^{\lim_{x \to +0} x \ln x}$$

$$\lim_{x \to +0} x \ln x = \lim_{x \to +0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to +0} -\frac{\frac{1}{x}}{\frac{1}{x^2}} = -\lim_{x \to +0} x = 0$$

 $e^0 = 1$, поэтому искомый предел равен единице.

• $\lim_{x\to 0} \left(\frac{1}{x^2} - \operatorname{ctg}^2 x\right) = \lim_{x\to 0} \frac{\sin^2 x - x^2 \cos^2 x}{x^2 \sin^2 x}$. Заметим, что:

$$\frac{\sin^2 x - x^2 \cos^2 x}{x^2 \sin^2 x} = \frac{\sin x - x \cos x}{x^2 \sin x} \cdot \frac{\sin x + x \cos x}{\sin x}$$

$$\lim_{x \to 0} \frac{\sin x + x \cos x}{\sin x} = \lim_{x \to 0} \frac{2 \cos x - x \sin x}{\cos x} = \lim_{x \to 0} (2 - \frac{x \sin x}{\cos x}) = 2$$

$$\lim_{x \to 0} \frac{\sin x - x \cos x}{x^2 \sin x} = \lim_{x \to 0} \frac{\cos x - \cos x + x \sin x}{2x \sin x + x^2 \cos x} = \lim_{x \to 0} \frac{x \sin x}{2x \sin x + x^2 \cos x} = \lim_{x \to 0} \frac{1}{2 + \frac{x \cos x}{\sin x}} = \frac{1}{3}$$

Таким образом, $\lim_{x\to 0} (\frac{1}{x^2} - \operatorname{ctg}^2 x) = \frac{2}{3}$

3.5 Исследование функций. Графики

1. Пусть x_0 - точка строгого локального максимума функции f. Верно ли, что $\exists \delta > 0$: на $(x_0 - \delta, x_0]$ f возрастает, а на $[x_0, x_0 - \delta)$ убывает?

Нет. Заметим, что в условии ничего не говорится про непрерывность f. Для не непрерывной легко строится пример:

2. Будет ли верно утверждение 1., если функция f непрерывна?

Нет, даже с таким ограничением можно привести контрпример - непрерывную функцию f, не сохраняющую знак f' ни в одной окрестности экстремума

33

$$f(x) = \begin{cases} x^2(2 + \sin\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

 $x^2 \leqslant x^2(2+\sin\frac{1}{x}) \leqslant 3x^2 \Longrightarrow x=0$ - строгий минимум

$$f'(x) = 4x + 2x\sin\frac{1}{x} - x^2\cos\frac{1}{x} \cdot \frac{1}{x^2} = 4x + 2\sin\frac{1}{x} - \cos\frac{1}{x}$$

Рассмотрим последовательность $x_n = \frac{1}{\pi n}$; $n \in \mathbb{Z} \setminus \{0; \pm 1\}$

$$f'(x_n) = \frac{4}{\pi n} + 0 - (-1)^n$$

При n = 2 f' < 0; при n не 2 f' > 0.

В любой полуокрестности $[0, \delta)$ найдутся как "четные"так и "нечетные"члены x_n . Значит, ни в одной полуокрестности 0 f' не сохраняет свой знак, т.е. функция (т.к. она ещё и дифф. в окрестности) не сохраняет характер монотонности

3. Верно ли, что если функция f выпукла в некоторой окрестности точки x_0 , то она непрерывна в точке x_0 .

Да. Не умаляя общности, считаем, что f выпукла вниз в $U_{\epsilon}(x_0)$, $\epsilon > 0$.

Рассмотрим
$$x \in (x_0, x_0 + \frac{\epsilon}{2}); \Delta x = x - x_0; \Delta f = f(x) - f(x_0); x_1 = x - \frac{\epsilon}{2}; x_2 = x + \frac{\epsilon}{2}$$

Тогда из выпуклости f(x) лежит выше прямой, проходящей через $(x_1, f(x_1))$ и $(x_0, f(x_0))$ и ниже прямой, проходящей через $(x_0, f(x_0))$ и $(x_2, f(x_2))$.

$$k_1 \cdot x \leqslant f(x) \leqslant k_2 \cdot x$$

 $f(x_0) = k_1 \cdot x_0 = k_2 \cdot x_0$, т.к. обе прямые проходят через $(x_0, f(x_0))$.

$$k_1 \cdot \Delta x \leqslant f(x) - f(x_0) \leqslant k_2 \cdot \Delta x$$

При $\Delta x \ 0 + 0$, т.е. $x \ x_0 + 0$, получаем, что $f(x) \ f(x_0)$.

Т.е. функция непрерывна в x_0 справа. Аналогично, можно доказать, что f непрерывна в x_0 слева \Rightarrow непрерывна в x_0 .

Из доказанного факта следует, что выпуклая на интервале функция непрерывна на нем.

4. Будут ли сумма и произведение двух выпуклых вверх (вниз) функций выпуклы?

Для суммы функций утверждение верно по определению.

fвыпукла вверх: $\forall x_1,x_2 \in I, x_1 \neq x_2; \, \forall t \in (0,1): g((1-t)x_1+tx_2) \geqslant (1-t)g(x_1)+tg(x_2)$

 $\forall x_1, x_2 \in I, x_1 \neq x_2; \forall t \in (0,1): (f+g)((1-t)x_1+tx_2) \geqslant (f+g)(x_1) \cdot (1-t) + t(f+g)(x_2)$

Для произведения функций выпуклость может не сохраняться.

Пример: $\sqrt[3]{x}$ на $(-\infty;0)$ выпукла вниз, а $\sqrt[3]{x} \cdot \sqrt[3]{x} = \sqrt[3]{x^2}$ выпукла вверх на $(-\infty;0)$.

5. Можно ли утверждать, что если x_0 - точка, которая разделяет интервалы выпуклости функции $f(x), x_0$ - точка перегиба.

Нет, т.к. помимо условия разделения интервалов разной выпуклости для точки перегиба должны выполняться непрерывность f в этой точке и существование производной в ней.

Примеры:

$$f(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

В $x_0 = 0$ функция меняет направление выпуклости, но не непрерывна \Longrightarrow не (.) перегиба.

$$f(x) = \begin{cases} \sqrt{x}, 0 \le x < 1\\ 2 - \sqrt{x}, x \ge 1 \end{cases}$$

В $x_0 = 1$ меняется выпуклость функции, но производной не существует \Longrightarrow не является точкой перегиба.

6. Доказать, что у любой дважды дифференцируемой функции между двумя точками экстремума лежит хотя бы одна такая точка перегиба.

В точках экстремума x_1, x_2 (т.к. функция дифференцируема) $f'(x_1) = f'(x_2) = 0$.

Значит, по следствию из теоремы Коши $\exists \xi_1, \xi_2 \colon (f'(\xi_1))' > 0$, т.е. $(f''(\xi_1))' > 0$, а $(f'(\xi_2))' < 0$, т.е. $(f''(\xi_2))' < 0$. Значит, функция меняет характер выпуклости.

Т.к. функция дифференцируема дважды и непрерывна, то (.) смены характера выпуклости - точка перегиба.

7. Доказать, что если функция f(x) непрерывна на (a,b) и f'(x)>0 на (a,b) всюду, кроме конечного числа точек, то f(x) возрастает на (a,b).

Пусть
$$\exists c \in (a,b): f'(c) < 0.$$

Тогда по теореме Дарбу для $\forall s \in (f'(c), 0) \exists c_s : f'(c_s) = s$.

Значит, таких c_s бесконечно много (т.к. s бесконечно много). Значит, на всем (a,b) f'(x) > 0, кроме конечного числа точек, где f'(x) = 0. Т.е. на всем (a,b) f(x) возрастает, но, возможно, нестрого.

Пусть $\exists x_1, x_2 \in (a, b), x_1 \neq x_2$, но $f(x_1) = f(x_2)$. Т.к. на (x_1, x_2) функция нестрого возрастает, то тогда она постоянна на (x_1, x_2) , т.е. в бесконечном числе точек f'(x) = 0. Противоречие.

Значит, f действительно строго возрастает на (a,b).

3.6 Равномерная непрерывность

1. Привести пример непрерывной функции, не являющейся равномерно непрерывной

Функция $f = x^2$ непрерывна на ${\bf R}$, но не равномерно непрерывна на ${\bf R}$.

Функция g = sin(1/x) непрерывна на $\mathbf{R} \setminus \{0\}$, но не равномерно непрерывна на нем (можно брать $x = 1/(\pi/2 + 2\pi n), x' = 1/(3\pi/2 + 2\pi n)$, модуль разности значений функции в этих точках всегда равен 2, а такие точки могут быть сколь угодно близки).

2. Равномерно непрерывные функции, произведение которых таковым не является

x и sin(x) равномерно непрерывны на \mathbf{R} , так как их производные ограничены, но xsin(x) не является равномерно непрерывной на \mathbf{R} .

3. Предложите способ приближения непрерывной на отрезке функции кусочно-линейной функцией

Подсказка: исходная функция на отрезке является и равномерно непрерывной. Значит, можно разбить отрезок на маленькие отрезочки, в которых значения функции не слишком сильно отличаются. Концы отрезочков будут узлами нашей кусочнолинейной функции.

4. Найти модуль непрерывности функции $f:[0;+\infty)\to \mathbf{R},$ заданной формулой $f(x)=\sqrt{x}.$ Является ли функция f равномерно непрерывной на своей области определения?

Заметим, что для фиксированного δ максимум модуля разности значений функции достигается при $x=0, x'=\delta$, так как на $(0;+\infty)$ производная строгомонотонно убывает, в нуле обращается в $+\infty$. Но разность значений функции для таких точек есть $\sqrt{\delta}$. Таким образом, модуль непрерывности стремится к нулю при стремлении к нулю δ . Отсюда сразу следует равномерная непрерывность данной функции на всей области определения.

3.7 Элементы дифференциальной геометрии

1. Распространяется ли теорема Лагранжа на вектор-функции: $\vec{a}(b) - \vec{a}(a) = \vec{a'}(c)(b-a)$?

Hет, например $\vec{a}(t) = (cost, sint)$ на $[0, 2\pi]$.

2. Почему для непростых или для незамкнутых кривых не введено понятие ориентации?

Потому что при обходе кривой может сначала встретиться $\vec{a}(t_1)$, потом $\vec{a}(t_2)$, потом снова $\vec{a}(t_1)$. И тогда не понятно, какая точка какой предшествует.

3. Задайте нижнюю полуокружность двумя разными вектор-функциями

$$r(\phi) = (\cos\phi, \sin\phi), \phi \in [-\pi, 0], \, \rho(\phi) = (x, -\sqrt{1-x^2}), x \in [-1, 1].$$

4. Может ли измениться ориентация кривой при ее допустимой параметризации?

Нет, так как новый параметр есть строго возрастающая функция старого.

5. Пусть простые кривые G_1 и G_2 совпадают. $G_1=\{\vec{r_1}(t):t\in[t_1,t_2]\},G_2=\{\vec{r_2}(s):s\in[s_1,s_2]\},\vec{r_1}(t_1)=\vec{r_2}(s_1),\vec{r_1}(t_2)=\vec{r_2}(s_2)$. Обязательно ли $\vec{r_2}$ является допустимой параметризацией G_1 , а $\vec{r_1}$ является допустимой параметризацией G_2 ?

Да, можно рассмотреть отображения $t(s) = t_1 + (t_2 - t_1)(s - s_1)/(s_2 - s_1), s(t) = s_1 + (s_2 - s_1)(t - t_1)/(t_2 - t_1).$

6. Приведите пример не непрерывно дифференцируемой, но спрямляемой кривой

Например, график y = |x|.

7. Как известно, для натуральной параметризации s(t) верно $s'(t_0) = |\vec{r'}(t_0)|$. А почему для $|\vec{r}(t_0)|'$ это неверно?

Рассмотрим кривую-окружность с центром в начале координат. Так как радиусвектор имеет постоянную длину, то $|\vec{r'}(t_0)| = 0$. Однако s'(t) нулю не равна.

8. Пусть задающая плоскую кривую вектор-функция $\vec{r}(t), t \in [a,b]$ непрерывна на [a,b] и дифференцируема на (a,b). Обязательно ли на (a,b) найдется такое c, что $\vec{r}(b) - \vec{r}(a) \mid\mid \vec{r'}(c)$?

Походу да, можно попробовать применить теорему Коши для x(t) и y(t), но возникает проблема, что x'(t) или y'(t) могут быть иногда равны нулю. Но на самом деле теорему Коши можно сформулировать как (x(b)-x(a))y'(c)=(y(b)-y(a))x'(c). Если перенести, например, правую часть влево, то получится равное нулю псевдовекторное произведение $\vec{r}(b)-\vec{r}(a)$ и $\vec{r'}(c)$, то есть их параллельность.

8. Пусть задающая пространственную кривую вектор-функция $\vec{r}(t), t \in [a,b]$ непрерывна на [a,b] и дифференцируема на (a,b). Обязательно ли на (a,b) найдется такое c, что $\vec{r}(b) - \vec{r}(a) \mid \mid \vec{r'}(c)$?

Вот тут ответ точно НЕТ, так как можно в качестве примера привести виновую линию, у которой начальная и конечная точки лежат, например, на оси Z, но касательная нигде этой оси не параллельна.

9. Пусть $\vec{r}:[a,b]\to {\bf R}^2$ дифференцируема на [a,b] и $|\vec{r}(t)|=const$ на [a,b]. Обязательно ли $\vec{r'}(t)$ ортогонален $\vec{r(t)}$ при всех $t\in [a,b]$?

$$|\vec{r}(t)| = \sqrt{(\vec{r}(t), \vec{r}(t))}.|\vec{r}(t)| = const <=> (\vec{r}(t), \vec{r}(t)) = const => (\vec{r}(t), \vec{r}(t))' = 0 => \vec{r'}(t)\vec{r}(t) + \vec{r}(t)\vec{r}'(t) = 0 <=> 2\vec{r'}(t)\vec{r}(t) = 0 <=> \vec{r'}(t)\vec{r}(t) = 0 <=> \vec{r'}(t)$$
 при всех $t \in [a, b]$.