Homework 2

Mohamat Eirban Ali September 7, 2019

```
# Homework 2
#load library
library('ggplot2')
library('tidyverse')
## -- Attaching packages ------ tidyverse 1.2.1 --
## v tibble 2.1.3 v purr 0.2.5

## v tidyr 0.8.1 v dplyr 0.8.3

## v readr 1.1.1 v stringr 1.3.1

## v tibble 2.1.3 v forcats 0.3.0
## Warning: package 'tibble' was built under R version 3.5.3
## Warning: package 'dplyr' was built under R version 3.5.3
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library('naniar')
## Warning: package 'naniar' was built under R version 3.5.3
library('gridExtra')
## Warning: package 'gridExtra' was built under R version 3.5.3
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
library('Amelia')
## Warning: package 'Amelia' was built under R version 3.5.3
## Loading required package: Rcpp
## Warning: package 'Rcpp' was built under R version 3.5.3
```

```
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.5, built: 2018-05-07)
## ## Copyright (C) 2005-2019 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library('VIM')
## Warning: package 'VIM' was built under R version 3.5.3
## Loading required package: colorspace
## Loading required package: grid
## Loading required package: data.table
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
## The following object is masked from 'package:purrr':
##
##
       transpose
## VIM is ready to use.
   Since version 4.0.0 the GUI is in its own package VIMGUI.
##
             Please use the package to use the new (and old) GUI.
##
## Suggestions and bug-reports can be submitted at: https://github.com/alexkowa/VIM/issues
##
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
##
##
       sleep
library('mice')
## Warning: package 'mice' was built under R version 3.5.3
## Loading required package: lattice
## Attaching package: 'mice'
```

```
## The following object is masked from 'package:tidyr':
##
## complete

## The following objects are masked from 'package:base':
##
## cbind, rbind

library('dplyr')
library('ggthemes')
```

Warning: package 'ggthemes' was built under R version 3.5.3

```
#Problem 1
#Problem 1a
# Answering questions from Chapter 3 'R for Data Science'
#3.2.5 Exercise 4
# Answer:
ggplot(mpg, aes(x=cyl, y=hwy)) +
   geom_point()
```



```
# Scatter plot for hwy vs cyl
#3.2.4 Exercise 5
```

```
# Answer:
ggplot(mpg, aes(x=class, y=drv)) +
geom_point()
```



```
# Scatter plot for drv vs class but it is kinda worthless to use this plot to
# analyze data as many of the data are overlapping because both class and drv
# variable are categorical in nature

#3.3.1 Exercise 3
# Answer:
ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy, colour = cty))
```



```
\# ggplot(data = mpg) + geom\_point(mapping = aes(x = displ, y = hwy, shape = cty)) == Error: A continuous ggplot(data = mpg) + geom\_point(mapping = aes(x = displ, y = hwy, size = cty))
```



```
# For both colour and size, the continuous variable relates to it by
# saturation and area size respectively. Instead for categorical variable,
# it both colour and size will have a set outcome for each category instead of a scale.
#3.3.1 Exercise 4
# Answer:
ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy, colour = cty, size = cty))
```



```
# Seems like it does work, as long as both aesthetic corresponds to each other
# to describe the variable.
#3.3.1 Exercise 5
# Answer: Stroke controls the width of the border of certain shapes that
# have border attribute.
#3.5.1 Exercise 4
# Answer: Faceting help us focus the trendline or pattern for each group
# instead of an overall distribution while the colour aesthetic gives us
# an overall pattern of the distribution. If we have a large number of groups,
# colours will not be able discretize them much as they are limited while facets
# will not do well trend comparison between the groups.
#Problem 1b
ggplot(data = mpg) +
 geom_point(alpha=0.2, position='jitter', mapping = aes(x = displ, y = hwy)) +
 facet_wrap(~ drv, nrow = 1) +
 geom_smooth(mapping = aes(x = displ, y = hwy)) +
  geom_smooth(mapping = aes(x = displ, y = hwy), method = 'lm', colour = 'black', se=F) +
  labs(x="Displacement", y="Highway MPG")
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'


```
#Problem 2
#Problem 2a
set.seed(100)
#seed for random generator
df \leftarrow data.frame("a" = rnorm(1:500), "b" = rbinom(1:500, 9, 0.64), "c" = rexp(10,1/25), "d" = rexp(500, 9, 0.64), "c" = rexp(10,1/25), "d" = rexp(1
df2 <- df %>% gather(groupVar, values, a, b, c, d)
head(df2)
##
                        groupVar
                                                                                        values
                                                         a -0.50219235
## 1
## 2
                                                         a 0.13153117
## 3
                                                         a -0.07891709
## 4
                                                         a 0.88678481
## 5
                                                         a 0.11697127
                                                         a 0.31863009
## 6
#Problem 2b
library(ggplot2)
ggplot(df2, aes(x=values, fill = groupVar )) +
         geom_density(alpha=.3) +
         xlim(-25,150) +
         labs(x='Values', y='Density', title = 'Density distribution')
```

Warning: Removed 1 rows containing non-finite values (stat_density).

Density distribution


```
#Problem 3
# Load the housing data, allow for header, and remove the ID column(not relevant)
house <- read.csv("~/DSA -Homework 2/housingData.csv", header=TRUE)
rownames (house) <- house [,1]
house <- house [,-1]
# Then read through the pdf for the housingData variable explanation,
# used the summary function to the overall data
# Find the missing values for each variable to see if they need to be
# removed or kept/imputed
colSums(is.na(house))</pre>
```

##	MSSubClass	MSZoning	LotFrontage	LotArea	<i>J</i>
##	0	0	207	0	938
##	LotShape	${\tt LandContour}$	LotConfig	LandSlope	Neighborhood
##	0	0	0	0	0
##	Condition1	BldgType	HouseStyle	OverallQual	OverallCond
##	0	0	0	0	0
##	YearBuilt	${\tt YearRemodAdd}$	RoofStyle	Exterior1st	Exterior2nd
##	0	0	0	0	0
##	${\tt MasVnrType}$	MasVnrArea	${\tt ExterQual}$	ExterCond	Foundation
##	4	4	0	0	0
##	${\tt BsmtQual}$	${\tt BsmtCond}$	${\tt BsmtExposure}$	${\tt BsmtFinType1}$	BsmtFinSF1
##	31	31	32	31	0
##	${\tt BsmtFinType2}$	BsmtFinSF2	${\tt BsmtUnfSF}$	${\tt TotalBsmtSF}$	Heating
##	32	0	0	0	0

```
HeatingQC
                   CentralAir
                                  Electrical
                                                 X1stFlrSF
                                                               X2ndFlrSF
##
##
                                           1
                                                                        0
               0
                             0
   LowQualFinSF
                     GrLivArea BsmtFullBath BsmtHalfBath
##
                                                                FullBath
##
                                           0
##
       HalfBath BedroomAbvGr KitchenAbvGr
                                               KitchenQual TotRmsAbvGrd
##
                             0
                                           0
                                                          0
##
     Functional
                   Fireplaces
                                FireplaceQu
                                                GarageType
                                                             GarageYrBlt
               0
                             0
                                                        53
##
                                         466
                                                                       53
                                  GarageArea
##
   GarageFinish
                   GarageCars
                                                GarageQual
                                                              GarageCond
##
              53
                                           0
                                                        53
                                                                       53
                             0
##
     PavedDrive
                   WoodDeckSF
                                OpenPorchSF
                                                EncPorchSF
                                                                PoolArea
##
               0
                             0
                                                          0
                                                                        0
##
         PoolQC
                                MiscFeature
                                                   MiscVal
                                                                  MoSold
                         Fence
             998
##
                           805
                                         966
                                                          0
                                                                        0
         YrSold
                     SaleType
##
                                   SalePrice
##
               0
                             0
                                           0
```

```
# Some of the missing variable seem to correlate to the missingness in other
# variable such as
# BsmtQual, BsmtCond, BsmtExposure, BsmtFinType1, BsmtFinType2
# GarageType, GarageYrBlt, GarageFinish, GarageQual, GarageCond,
gg_miss_upset(house, nsets = n_var_miss(house))
```


We can see the link between the missing value from this graph

Sale Price as a function of Lot Size

Sale Price as a function of Lot Size


```
# We can similarity in MSZoning and Building Type, a good hypothesis
# would be that the building type depends on the MS Zone

# Data Visualization 2
ggplot(house, aes(x=LotArea, fill=MSSubClass)) +
   geom_histogram(bins=5) +
   theme_solarized() +
   labs(x=' Lot Area size', y= 'Sold units', title = 'Distribution of sold unit based on their Lot Size'
```



```
# To observe if there is any potential link to buying trend with the Lot Size

# Data Visualization 3
ggplot(house) +
  geom_point(alpha =0.5, position = 'jitter', mapping =aes(x=LotArea, y=SalePrice)) +
  facet_wrap(~ MSSubClass, nrow = 4) +
  geom_smooth(mapping= aes(x = LotArea, y = SalePrice)) +
  labs(x= 'Lot Area size', y='Sale Price', title='The relationship between Sale Price and Lot Size for
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

The relationship between Sale Price and Lot Size for each MSSubClass

Lot Area size

```
# Relationship between Lot Size and Selling Price

# Data Visualization 4
ggplot(house, aes(x=MoSold, fill=MSZoning)) +
    geom_histogram(bins=12) +
    facet_wrap(~ YrSold, nrow = 3) +
    labs(x = 'Month Sold', y = 'Total unit sold',title = 'Distribution of sold houses based on months and scale_fill_brewer(direction = -2) +
    theme_dark()
```

Distribution of sold houses based on months and years

Building Type sold


```
# Pie chart showing the distribution of sold houses based on their Building Type

#Problem 4
#Problem 4a
data("freetrade", package="Amelia") # load the data using data command
trade <- freetrade

missmap(trade)</pre>
```


gdp.pc

nsheg

country

signed

polity

intresmi

fiveop

```
# Missing data distribution in the data frame
\#trade[!complete.cases(trade),] ...uncomment if you want to see all missing data rows
colSums(is.na(trade))
##
       year
             country
                        tariff
                                 polity
                                             pop
                                                   gdp.pc intresmi
                                                                      signed
##
                   0
                           58
                                               0
                                                                 13
                                                                           3
               usheg
##
     fiveop
##
         18
\# Summarize the missing data count for each variable
gg_miss_upset(trade, nsets = n_var_miss(trade))
```



```
# Gives a plot of missing variables and if the missing variables
# are related by observations
matrixplot(trade)
```

Warning in data.matrix(x): NAs introduced by coercion

```
# Missing data visualization

j <- as.data.frame(abs(is.na(trade)))
o <- j[,sapply(j, sd) > 0]
cor(o)
```

```
## tariff polity intresmi signed fiveop
## tariff 1.00000000 -0.07793749 -0.01907852 0.09243593 -0.08473587
## polity -0.07793749 1.00000000 -0.03120432 -0.01453710 -0.03731317
## intresmi -0.01907852 -0.03120432 1.00000000 -0.03833091 0.83628170
## signed 0.09243593 -0.01453710 -0.03833091 1.00000000 -0.04583492
## fiveop -0.08473587 -0.03731317 0.83628170 -0.04583492 1.00000000
```

```
# Correlation matrix between all missing data
cor(trade$tariff, o, use = "pairwise.complete.obs")
```

```
## Warning in cor(trade$tariff, o, use = "pairwise.complete.obs"): the
## standard deviation is zero
       tariff
                   polity intresmi
                                         signed
                                                    fiveop
           NA -0.03973145 -0.177108 -0.02975753 -0.2480984
## [1,]
cor(trade$polity, o, use = "pairwise.complete.obs")
## Warning in cor(trade$polity, o, use = "pairwise.complete.obs"): the
## standard deviation is zero
           tariff polity intresmi
                                        signed
## [1,] -0.1318329 NA 0.1454525 -0.01390191 0.1584924
cor(trade$pop, o, use = "pairwise.complete.obs")
##
            tariff
                        polity
                                  intresmi
                                               signed
                                                          fiveop
## [1,] -0.05703336 -0.04336596 -0.01135788 -0.0352636 0.03343194
cor(trade$gdp.pc, o, use = "pairwise.complete.obs")
##
            tariff
                     polity intresmi
                                             signed
                                                        fiveop
## [1,] -0.08485325 0.0762219 0.06430122 -0.02368099 0.08859163
cor(trade$intresmi, o, use = "pairwise.complete.obs")
## Warning in cor(trade$intresmi, o, use = "pairwise.complete.obs"): the
## standard deviation is zero
          tariff
                     polity intresmi
                                           signed
                                                     fiveop
## [1,] 0.1065122 -0.07004969
                                   NA 0.002939237 0.1834332
cor(trade$fiveop, o, use = "pairwise.complete.obs")
## Warning in cor(trade$fiveop, o, use = "pairwise.complete.obs"): the
## standard deviation is zero
                     polity intresmi
##
           tariff
                                           signed fiveop
## [1,] -0.1759771 -0.07895048
                                    NA 0.09070606
cor(trade$usheg, o, use = "pairwise.complete.obs")
##
                       polity intresmi
             tariff
                                             signed
                                                        fiveop
## [1,] -0.007128887 0.03322148 0.5316772 -0.02035588 0.5805495
```

```
# Correlation of missing values and observed variables
# (but only if the observed variables are numeric)
#Problem 4 b
Miss <- rep ("0", nrow(trade ))</pre>
Miss [is.na(trade$tariff) == TRUE] <- "1"
Miss <- as.factor (Miss)
trade <- data.frame(trade ,Miss)</pre>
# Created a logic variable for missing data in tariff variable
tradetest <- select(trade,c(country, Miss))</pre>
# a new dataframe consisting of only tariff and country
chisq.test(table(tradetest$Miss,tradetest$country))
##
## Pearson's Chi-squared test
##
## data: table(tradetest$Miss, tradetest$country)
## X-squared = 23.064, df = 8, p-value = 0.003283
# The p-value is way small (if we were to take a 0.01 significance value),
# then the null hypothesis that the variable tariff and country are
# independent is rejected
tradetest1 <- select(filter(tradetest,country!='Nepal'), c(country,Miss))</pre>
#new dataframe similar to above except rows with 'Nepal' is removed
chisq.test(table(tradetest1$Miss,tradetest1$country))
##
## Pearson's Chi-squared test
##
## data: table(tradetest1$Miss, tradetest1$country)
## X-squared = 15.836, df = 7, p-value = 0.02666
# obvious change in the p-value...in fact higher than 0.01 significance level;
# it is probable that the variable
# tariff and country is not related in this case
tradetest2 <- select(filter(tradetest,country!='Philipines'), c(country,Miss))</pre>
# new data frame with 'Philipines removed instead
chisq.test(table(tradetest2$Miss,tradetest2$country))
##
## Pearson's Chi-squared test
## data: table(tradetest2$Miss, tradetest2$country)
## X-squared = 23.064, df = 8, p-value = 0.003283
# slight change in the p-value as compared to the original chi-square test...
# well smaller than the significane level of 0.01
# In conclusion, the statistical test shows that the variable tariff and country
```

are related because mainly most of the missingualues are populated in
rows of country where it's Nepal
Safe to assume the tariff is not able to be obtained for Nepal due to some challenges

