Quiz Questions: Number Theory

- 1. The multiplicative inverse of 3 modulo 7 is?
 - a. -1
 - b. -2
 - c. -3
 - d. -4

Explanation: -2*3 modulo 7 = -6 modulo 7 = 1 modulo 7

- 2. If a, b are positive integers such that a > b then
 - a. a > lcm(a, b) > b
 - b. a > b > lcm(a, b)
 - c. $lcm(a, b) \ge a > b$
 - d. none of the mentioned

Explanation: lcm(a, b) is always larger equal a, b. lcm(a, b) = a > b if b|a, and lcm(a, b) > a > b otherwise.

- 3. A number greater than 32 would require a minimum of how may bits in binary representation?
 - a. 5
 - b. 6
 - c. 4
 - d. 10

Explanation: The binary representation of $32 = 2^5 = (100000)_2$, which has 6 bits. Any larger number has at least as many bits.

- 4. Suppose that a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find the integer c with $0 \le c \le 12$ such that $c \equiv 2a + 3b \pmod{13}$.
 - a. 9
 - b. 35
 - c. 8
 - d. 12

Explanation: $2*4 \mod 13 = 8 \mod 13$, $3*9 \mod 13 = 27 \mod 13 = 1 \mod 13$, $(8+1) \mod 13 = 9 \mod 13$

- 5. LCM(a, b) is equal to
 - a. $\frac{ab}{GCD(a,b)}$
 - b. $\frac{a+b}{GCD(a,b)}$
 - c. $\frac{GCD(a,b)}{ab}$
 - c. ab
 - d. none of the mentioned

Explanation: $ab = \gcd(a, b) * lcm(a, b)$, therefore $lcm(a, b) = \frac{ab}{\gcd(a, b)}$

- 6. $(1010111011)_2$ to its octal expansion.
 - a. 1273
 - b. 1752
 - c. 1276

d. 1656

Explanation: we can write the number as $(001\ 010\ 111\ 011)_2$ where $(011)_2 = 3_8$, $(111)_2 = 3_8$ $(7)_8, (010)_2 = (2)_8, (001)_2 = (1)_8$

- 7. What is the prime factorization of 10!?
 - a. 25.36.52.7
 - b. 26 · 34 · 52 · 7²
 - c. 27 · 33 · 52 · 7² d. 28 · 34 · 5² · 7

Explanation: Factors of 2: 2 has 1 factor 2, 4 has 2 factors 2, 6 has 1 factor 2, 8 has 3 factors 2, 10 has 1 factor 2, Total :8 factors of 2. 4 factors of 3 from 3,6,9, 2 factors of 5 from 5, 10, 1 factor 7 from 7

- Which of the following is correct?
 - a. $6 \mod 13 = 19$
 - b. $6 \equiv 13 \pmod{19}$
 - c. $6 \mod 13 = 19 \mod 13$
 - d. $6 \pmod{13} \equiv 19 \pmod{13}$

Explanation:

 $6 \bmod 13 = 6 \neq 19$

 $6 \equiv 13 \pmod{19}$ is not true

 $6 \mod 13 = 6 = 19 \mod 13$

 $6 \pmod{13} \equiv 19 \pmod{13}$ this notation is not defined