Problem 2.4 Mathematical Notation

Answer:

Consider 0 as a natural number, hence $\mathbb{N} = \{0, 1, 2, 3, \dots \}$

- 1. The set containing all natural numbers, $S = \{x : x \in \mathbb{N}\}$
- 2. The set containing the set of natural numbers, $S = \{\{x\}: x \in \mathbb{N}\}$
- 3. The set containing all square numbers, $S = \{x^2 : x \in \mathbb{N}\}$
- 4. The set containing all even natural numbers,

$$S = \{2x : x \in \mathbb{N}\}, \text{ or } S = \{x : x \in \mathbb{N}, 2 | x\}$$

- 5. The set containing all even square numbers, $S = \{x^2 : x \in \mathbb{N}, 2 | x\}$
- 6. The 3-tuple of 0, 1, and 2, which is triplet,

$$T = \langle x_1, x_2, x_3 \rangle$$
, where $x_i \in \mathbb{N}$, $0 \le x_i \le 2$, $i = 1,2,3$

7. The n-tuple of all numbers from 0 to n-1,

$$T = \langle x_1, x_2, x_3, \dots, x_n \rangle$$
, where $x_i \in \mathbb{N}$, $0 \le x_i \le n - 1$, $i = 1, 2, 3, \dots, n$

- 8. The set of pairs of natural numbers and their squares, $S = \{(x, y) : x \in \mathbb{N}, y = x^2\}$
- 9. The pair of sets of natural numbers and square numbers,

$$P = (x, y)$$
, where $x = \{n: n \in \mathbb{N}\}$, $y = \{n^2: n \in \mathbb{N}\}$

- 10. Algebraic structure $\langle \mathbb{N}, + \rangle$ is monoid, as the identity element $0 \in \mathbb{N}$ [$\forall a \in \mathbb{N}, a + 0 = a$] So, the monoid of natural numbers under addition, $\langle \mathbb{N}, +, 0 \rangle$
- 11. Algebraic structure $\langle \mathbb{N}, + \rangle$ and $\langle \mathbb{N}, * \rangle$ are monoid, as the identity element $0 \in \mathbb{N}$ [$\forall a \in \mathbb{N}, a + 0 = a$] and $1 \in \mathbb{N}$ [$\forall a \in \mathbb{N}, a * 1 = a$] respectively. So, the pair of monoids of the natural numbers under addition and under multiplication, $P = (\langle \mathbb{N}, +, 0 \rangle, \langle \mathbb{N}, *, 1 \rangle)$.
- 12. The set of the monoids of the natural numbers under addition and under multiplication,

$$S = \{\langle \mathbb{N}, +, 0 \rangle, \langle \mathbb{N}, *, 1 \rangle\}$$

13. Given a monoid $\langle U, o, e \rangle$, the set of elements that are not the neutral element,

$$S = \{x: x \in U, x \ o \ e \neq x\}$$

14. Given a monoid $\langle U, o, e \rangle$, the monoid in which the operation is flipped,

 $\langle U, o, e \rangle$ are new monoid, where the identity element $e \in U$ and $\forall a \in U, a \ o \ a^{-1} = e$