UNIVERSITY OF TWENTE.

Formal Methods & Tools.

Binary Decision Diagrams for Reachability Analysis

Jaco van de Pol 24 April 2018, SofSci

Goal and Topics

Goal of Theory Lectures:

- Model Checking: verify properties of concurrent systems automatically based on enumerative methods
- ► Main problem: size of the state space (large graph)
- ► Focus on Algorithms and Data structures for Model Checking

Goal and Topics

Goal of Theory Lectures:

- Model Checking: verify properties of concurrent systems automatically based on enumerative methods
- ► Main problem: size of the state space (large graph)
- ► Focus on Algorithms and Data structures for Model Checking

Planning of the Theory Block

- ► 24/4: Binary Decision Diagrams (concise representation)
- ▶ 1/5: CTL model checking (Computation Tree Logic)
- ▶ 8/5: LTL model checking (Linear Time Logic)
- ► 15/5: High-Performance Model Checking (LTSmin tool)

Practical Assignment

The practical assignment is carried out in self-formed pairs.

Provided (in C or C++):

- ▶ BDD package, in particular Sylvan
- ► Parser for Petri Nets from MCC competition

Assignment, including a competition:

- Build a symbolic reachability checker (intermediate)
- 2 Build a symbolic CTL (LTL) model checker (end goal)

Practical Assignment

The practical assignment is carried out in self-formed pairs.

Provided (in C or C++):

- ► BDD package, in particular Sylvan
- ► Parser for Petri Nets from MCC competition

Assignment, including a competition:

- Build a symbolic reachability checker (intermediate)
- 2 Build a symbolic CTL (LTL) model checker (end goal)

Planning Practical Assignment

- ► Kickoff Practical Assignment (2 weeks)
- ▶ 26/4, 3/5 and 17/5: Practical sessions on by Jeroen Meijer

Introduction

Papers/Tutorials (online available)

- ► H.R. Andersen, *An Introduction to Binary Decision Diagrams* (obligatory: Section 1-5)
- ► R.E. Bryant, Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams (classical, recommended)

Material for Today

Papers/Tutorials (online available)

- ► H.R. Andersen, *An Introduction to Binary Decision Diagrams* (obligatory: Section 1-5)
- ► R.E. Bryant, Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams (classical, recommended)

Books (if you want to read more)

- ► Clarke, Grumberg, Peled, Model Checking, Chapters 5, 6
- ▶ Baier, Katoen, Principles of Model Checking, Chapter 6.7

Material for Today

Papers/Tutorials (online available)

- ► H.R. Andersen, *An Introduction to Binary Decision Diagrams* (obligatory: Section 1-5)
- ► R.E. Bryant, Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams (classical, recommended)

Books (if you want to read more)

- ► Clarke, Grumberg, Peled, *Model Checking*, Chapters 5, 6
- ▶ Baier, Katoen, *Principles of Model Checking*, Chapter 6.7

Tools

- ► BDD-packages: BuDDy, CuDD, Java(B)DD, Sylvan
- ► Sylvan: https://github.com/utwente-fmt/sylvan
- ► LTSmin: http://fmt.cs.utwente.nl/tools/ltsmin/ and https://github.com/utwente-fmt/ltsmin

Table of Contents

Introduction

- Overview
- Reachability Analysis fight state space explosion
- Breadth First Search: explicit or set-based
- 2 Binary Decision Diagrams a data structure for sets
 - What are BDDs?
 - Implementation
- 3 Using BDDs in Breadth First Search
 - Encoding of Kripke structures
 - Next-state by Relational Product
 - Partitioning of next-state

Reachability Problems

The Reachability Problem

- ▶ Given a graph G = (V, R), initial states $I \subseteq V$ and goal/error states $F \subseteq V$, check if there is a path from I to F in G.
- Typically, the graph is given implicitly, as a program/specification

Reachability Problems

The Reachability Problem

- ▶ Given a graph G = (V, R), initial states $I \subseteq V$ and goal/error states $F \subseteq V$, check if there is a path from I to F in G.
- Typically, the graph is given implicitly, as a program/specification

Examples

- ► Find assertion violations in multi-core software
- ► Find safety risks in Railway Interlockings
- ► Find solutions to games/puzzles, e.g. Sokoban

Reasons for State Space Explosion

Concurrency

- ► System of *n* components, each can be in *m* states
- ▶ The total state space may consist of m^n states.
- Example: Railway safety systems (signals, points, tracks)

Reasons for State Space Explosion

Concurrency

- ► System of *n* components, each can be in *m* states
- ▶ The total state space may consist of m^n states.
- ► Example: Railway safety systems (signals, points, tracks)

Data variables

- ► Given *n* different variables, each may take *m* values
- ▶ Potential number of different state vectors: mⁿ
- ► Example: model checking software, rather than models

Reasons for State Space Explosion

Concurrency

- ► System of *n* components, each can be in *m* states
- ▶ The total state space may consist of m^n states.
- ► Example: Railway safety systems (signals, points, tracks)

Data variables

- ► Given *n* different variables, each may take *m* values
- ▶ Potential number of different state vectors: mⁿ
- Example: model checking software, rather than models

How to handle $> 10^{100}$ states??

- ► No way to explicitly enumerate that many states
- ► Partial Order Reduction: Skip certain states systematically
- ► Symbolic model checking: Treat sets of states simultaneously

LTSmin Toolset (University of Twente)

LTSmin unique selling points

- Multiple languages, Multiple engines, Generic reductions
- ► Analysis: bisimulation reduction, LTL and CTL* model checking, mu-calculus

Table of Contents

Introduction

- Overview
- Reachability Analysis fight state space explosion
- Breadth First Search: explicit or set-based
- 2 Binary Decision Diagrams a data structure for sets
 - What are BDDs?
 - Implementation
- 3 Using BDDs in Breadth First Search
 - Encoding of Kripke structures
 - Next-state by Relational Product
 - Partitioning of next-state

Breadth First Search, example

- ► Eventually all states will be visited
- ► Shortest path will be detected

Breadth First Search

Explicit-state BFS

```
1: check that init ∉ Error
 2: Queue := [init]
 3: Visited := {init}
    while Queue \neq [] do
       pick s from front of Queue
 5:
       for all t with s \rightarrow t do
 6:
 7:
         if t \notin Visited then
            check that t \notin Error
 8:
 9:
            put t to the end of Queue
            add t to Visited
10:
        end if
11:
12: end for
13: end while
```

Breadth First Search

Explicit-state BFS

```
1: check that init ∉ Error
 2: Queue := [init]
 3: Visited := {init}
 4: while Queue \neq [] do
      pick s from front of Queue
 5:
 6: for all t with s \rightarrow t do
 7:
         if t \notin Visited then
 8:
            check that t \notin Error
 9:
            put t to the end of Queue
            add t to Visited
10:
11: end if
12: end for
13: end while
```

Set-based BFS (variant 1)

```
1: Vis := Cur := {init}

2: while Cur ≠ Ø do

3: check Cur ∩ Error = Ø

4: Cur := Next(Cur, →) \ Vis

5: Vis := Vis ∪ Cur

6: end while
```

Breadth First Search

Explicit-state BFS

```
1: check that init ∉ Error
 2: Queue := [init]
 3: Visited := {init}
 4: while Queue \neq [] do
     pick s from front of Queue
 5:
 6: for all t with s \rightarrow t do
 7:
        if t \notin Visited then
 8;
           check that t \notin Error
 9:
            put t to the end of Queue
            add t to Visited
10:
11: end if
12: end for
13: end while
```

Set operations: \cap , \cup , \overline{S} , =, Next

Set-based BFS (variant 1)

```
1: Vis := Cur := \{init\}

2: while Cur \neq \emptyset do

3: check Cur \cap Error = \emptyset

4: Cur := Next(Cur, \rightarrow) \setminus Vis

5: Vis := Vis \cup Cur
```

Set-based BFS (variant 2)

```
1: V_{\text{old}} := \emptyset

2: V_{\text{new}} := \{\text{init}\}

3: while V_{\text{old}} \neq V_{\text{new}} do

4: V_{\text{old}} := V_{\text{new}}
```

5:
$$V_{\mathsf{new}} := V_{\mathsf{old}} \cup \mathsf{Next}(V_{\mathsf{old}}, \rightarrow)$$

6: end while

6: end while

Table of Contents

Introduction

- Overview
- Reachability Analysis fight state space explosion
- Breadth First Search: explicit or set-based
- 2 Binary Decision Diagrams a data structure for sets
 - What are BDDs?
 - Implementation
 - Using BDDs in Breadth First Search
 - Encoding of Kripke structures
 - Next-state by Relational Product
 - Partitioning of next-state

Binary Decision Diagrams

Binary Decision Diagram

- ► A Binary Decision Diagram is a directed acyclic graph
- ► Its internal nodes are ordered, binary (called low, high)
- ▶ Its internal nodes are labeled by variables
- ▶ Its leaves are labeled by 0 or 1

Example

Binary Decision Diagrams

Binary Decision Diagram

- ► A Binary Decision Diagram is a directed acyclic graph
- ▶ Its internal nodes are ordered, binary (called low, high)
- ▶ Its internal nodes are labeled by variables
- ▶ Its leaves are labeled by 0 or 1

Example

Conventions

- ► Internal nodes are drawn as circles
- ► High edges are drawn solid
- ► Low edges are drawn dashed
- ▶ Leaves are drawn as boxes, with 0 or 1
- ▶ "If X is true, then high, else low branch"
- ► Formula on the left:

Binary Decision Diagrams

Binary Decision Diagram

- ► A Binary Decision Diagram is a directed acyclic graph
- ▶ Its internal nodes are ordered, binary (called low, high)
- ▶ Its internal nodes are labeled by variables
- ▶ Its leaves are labeled by 0 or 1

Example

Conventions

- ► Internal nodes are drawn as circles
- ► High edges are drawn solid
- ► Low edges are drawn dashed
- ▶ Leaves are drawn as boxes, with 0 or 1
- ▶ "If X is true, then high, else low branch"
- ▶ Formula on the left: $X \Leftrightarrow Y$

How to interpret a BDD?

Boolean Functions

- ▶ Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be Boolean variables
- lacktriangle A valuation is a function $\mathcal{X} \to \{0,1\}$
- ► A BDD represents a set of valuations
 - ▶ all valuations that lead from the root to leaf 1 are in the set
 - valuations that lead from the root to leaf 0 are not in the set
- ▶ Equivalently, a BDD represents a function $\{0,1\}^n \to \{0,1\}$

How to interpret a BDD?

Boolean Functions

- ▶ Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be Boolean variables
- ▶ A valuation is a function $\mathcal{X} \rightarrow \{0,1\}$
- ► A BDD represents a set of valuations
 - ▶ all valuations that lead from the root to leaf 1 are in the set
 - valuations that lead from the root to leaf 0 are not in the set
- ▶ Equivalently, a BDD represents a function $\{0,1\}^n \to \{0,1\}$

Hint

You can read the BDD

- ▶ If X then B_1 else B_2 . Notation: $X \to B_1, B_2$
- ▶ $(X \wedge B_1) \vee (\neg X \wedge B_2)$ (aka Shannon's expansion).

Examples

Basic Boolean Connectives

Examples

Basic Boolean Connectives

Examples

Basic Boolean Connectives

Propositional logic formulas

- ▶ Apparently, BDDs form an alternative to proposition logic.
- ▶ Recall negation ¬ and the binary connectives: \land , \lor , \Rightarrow , \Leftrightarrow
- ► How many binary operators are possible? ... sufficient?
- ▶ Introduce a ternary operator: $x \rightarrow s, t$; sufficient basis!

Three times: $(x \wedge y) \vee z$

Three times: $(x \wedge y) \vee z$

Three times: $(x \land y) \lor z$

Three times: $(x \wedge y) \vee z$

Reduced BDDs:

- ▶ no duplicate nodes
- ▶ no redundant tests

Three times: $(x \wedge y) \vee z$

Reduced BDDs:

- ► no duplicate nodes
- ▶ no redundant tests

Ordered BDDs:

- ► The order of the vars is fixed
- ► The order impacts BDD size

Reduced Ordered BDDs

(ROBDD = OBDD)

Reduced BDDs

A BDD is called reduced iff:

- No duplicate leafs: There is at most one leaf with label 0 and one with label 1.
- No duplicate nodes: For all nodes v, w, if var(v) = var(w), low(v) = low(w) and high(v) = high(w), then v = w.
- ▶ No redundant tests: For all nodes v, $low(v) \neq high(v)$.

Reduced Ordered BDDs

(ROBDD = OBDD)

Reduced BDDs

A BDD is called reduced iff:

- No duplicate leafs: There is at most one leaf with label 0 and one with label 1.
- No duplicate nodes: For all nodes v, w, if var(v) = var(w), low(v) = low(w) and high(v) = high(w), then v = w.
- ▶ No redundant tests: For all nodes v, $low(v) \neq high(v)$.

Ordered BDDs

A BDD is called ordered iff

- ▶ there exists an ordering $x_1 < x_2 < \cdots < x_n$, such that
- For all nodes v in the BDD, var(v) < var(low(v)) and var(v) < var(high(v))</p>

Simple operations: Restriction and Renaming

- ▶ The operation B[x := c] for $c \in \{0, 1\}$ is called restriction
- ▶ Renaming replaces variable names, as in B[x/x'].

Simple operations: Restriction and Renaming

- ▶ The operation B[x := c] for $c \in \{0, 1\}$ is called restriction
- ▶ Renaming replaces variable names, as in B[x/x'].

Three ways of transforming formulas to OBDDs:

- ► Top down. (insightful; 2^n many recursive calls)
 - Recursively, apply so-called Shannon's expansion:
 - ► Find the smallest variable x in formula P.
 - ▶ Replace P by $x \to P[x := 0], P[x := 1]$; repeat on subterms.

Simple operations: Restriction and Renaming

- ▶ The operation B[x := c] for $c \in \{0, 1\}$ is called restriction
- ▶ Renaming replaces variable names, as in B[x/x'].

Three ways of transforming formulas to OBDDs:

- ► Top down. (insightful; 2^n many recursive calls)
 - Recursively, apply so-called Shannon's expansion:
 - ► Find the smallest variable *x* in formula *P*.
 - ▶ Replace P by $x \to P[x := 0], P[x := 1]$; repeat on subterms.
- ► Stepwise. (nice proof; not very practical)
 - ▶ Replace all Boolean connectives by appropriate $x \rightarrow y, z$
 - Reduce and order the BDD by stepwise transformation

Simple operations: Restriction and Renaming

- ▶ The operation B[x := c] for $c \in \{0, 1\}$ is called restriction
- ▶ Renaming replaces variable names, as in B[x/x'].

Three ways of transforming formulas to OBDDs:

- ► Top down. (insightful; 2^n many recursive calls)
 - ► Recursively, apply so-called Shannon's expansion:
 - ► Find the smallest variable *x* in formula *P*.
 - ▶ Replace P by $x \to P[x := 0], P[x := 1]$; repeat on subterms.
- ► Stepwise. (nice proof; not very practical)
 - ▶ Replace all Boolean connectives by appropriate $x \rightarrow y, z$
 - Reduce and order the BDD by stepwise transformation
- ► Bottom up. (this is what BDD packages do)
 - ► Start with converting subterms to OBDD data structure
 - ► Continue by defining *AND*, *OR*, *NEG* directly on OBDDs

Stepwise transformation from BDD to (R)OBDD

A BDD can (in principle) be transformed to an OBDD by repeated application of the following transformation rules:

Stepwise transformation from BDD to (R)OBDD

A BDD can (in principle) be transformed to an OBDD by repeated application of the following transformation rules:

Stepwise reduction

► Eliminate duplicate nodes:

► Eliminate redundant tests:

Stepwise transformation from BDD to (R)OBDD

A BDD can (in principle) be transformed to an OBDD by repeated application of the following transformation rules:

Stepwise reduction

► Eliminate duplicate nodes:

► Eliminate redundant tests:

Stepwise ordering

▶ Re-order nodes (p < q)

► Eliminate double tests

Variable ordering can make an exponential difference

$$(x_1 \Leftrightarrow y_1) \land (x_2 \Leftrightarrow y_2) \land (x_3 \Leftrightarrow y_3)$$
 (edges to 0 are suppressed)

 $x_1 < x_2 < x_3 < y_1 < y_2 < y_3 \dots x_1 < y_1 < x_2 < y_2 < x_3 < y_3$

Variable ordering can make an exponential difference

$$(x_1 \Leftrightarrow y_1) \land (x_2 \Leftrightarrow y_2) \land (x_3 \Leftrightarrow y_3)$$
 (edges to 0 are suppressed)

 $x_1 < x_2 < x_3 < y_1 < y_2 < y_3 \dots x_1 < y_1 < x_2 < y_2 < x_3 < y_3$ *y*₂ $3.2^{n} - 2$ nodes 3.n + 1 nodes

Existence and Uniqueness

- ▶ For a fixed variable ordering $(\mathcal{X}, <)$,
- every Boolean function can be represented,
- ▶ by a canonical (unique up to isomorphism) OBDD

Theoretical Results

Existence and Uniqueness

- ▶ For a fixed variable ordering $(\mathcal{X}, <)$,
- every Boolean function can be represented,
- ▶ by a canonical (unique up to isomorphism) OBDD

Ordering

- ► The chosen ordering has a huge impact on the OBDD size
- Finding the optimal ordering is NP-hard
- Some functions only admit exponentially large OBDDs
 - ► E.g.: multiplication $P(\vec{x}, \vec{y}, \vec{z})$ such that

$$(x_1 \ldots x_n) * (y_1 \ldots y_n) = (z_1 \ldots z_{2n})$$

needs $\mathcal{O}(2^n)$ OBDD nodes, whatever ordering is chosen

- ▶ In practice, many functions have small OBDD representations
- ► One distinguishes static and dynamic variable reordering

Table of Contents

Introduction

- Overview
- Reachability Analysis fight state space explosion
- Breadth First Search: explicit or set-based
- 2 Binary Decision Diagrams a data structure for sets
 - What are BDDs?
 - Implementation
- 3 Using BDDs in Breadth First Search
 - Encoding of Kripke structures
 - Next-state by Relational Product
 - Partitioning of next-state

OBDD packages

Introduction

Regard OBDD as abstract datatype

- ► Manipulation of OBDDs through pointers / objects
- Basic constructors ensure invariant "Reduced & Ordered"
- Operations on OBDDs implement logical connectives:

OBDD packages

Regard OBDD as abstract datatype

- ► Manipulation of OBDDs through pointers / objects
- ► Basic constructors ensure invariant "Reduced & Ordered"
- Operations on OBDDs implement logical connectives:

```
Illustration
                   (5 < 100 functions in C-interface of BuDDy)
BDD
      bdd_high (BDD r)
BDD
      bdd_not (BDD r)
BDD
      bdd_apply (BDD 1, BDD r, int op)
      bdd_exist (BDD r, BDD var)
BDD
      bdd_relprod (BDD 1, BDD r, BDD var)
BDD
```

OBDD packages

Regard OBDD as abstract datatype

- Manipulation of OBDDs through pointers / objects
- ► Basic constructors ensure invariant "Reduced & Ordered"
- Operations on OBDDs implement logical connectives:

```
Illustration (5 < 100 \text{ functions in C-interface of BuDDy})
```

```
BDD bdd_high (BDD r)
BDD bdd_not (BDD r)
BDD bdd_apply (BDD 1, BDD r, int op)
BDD bdd_exist (BDD r, BDD var)
BDD bdd_relprod (BDD 1, BDD r, BDD var)
```

Implementation (we will work with Sylvan, Tom van Dijk)

- ► Data structures (unique table, operation caches)
- ► Operations are based on a generic Apply-function

Data structure: Unique Table

Keep maximal sharing and avoid redundant tests

- ► This is a hash table, to ensure unicity of all BDD nodes
- ▶ It assigns a unique number to each triple: $N \leftrightarrow \langle var, N_L, N_H \rangle$
- ▶ One can lookup var(N), low(N), high(N) in O(1) time.

Data structure: Unique Table

Keep maximal sharing and avoid redundant tests

- ► This is a hash table, to ensure unicity of all BDD nodes
- ▶ It assigns a unique number to each triple: $N \leftrightarrow \langle var, N_L, N_H \rangle$
- ▶ One can lookup var(N), low(N), high(N) in O(1) time.

$MakeNode(x, N_L, N_H) = N$ (create new nodes)

```
Require: variable x, nodes N_L, N_H

Ensure: a unique node N denoting (\neg x \land N_L) \lor (x \land N_H)

1: if N_L = N_H then

2: N := N_L

3: else if \langle x, N_L, N_r \rangle is in the unique table then

4: N := \text{lookup}(x, N_L, N_H)

5: else
```

6: $N := \text{insert_new_entry}(x, N_L, N_H)$ in the unique table

7: end if

Naive function for conjunction: \land

$\mathsf{ApplyAnd}(\mathit{N}_1,\mathit{N}_2) = \mathit{N}$

Require: BDD nodes N_1 , N_2

Ensure: BDD node *N* representing $N_1 \wedge N_2$

1: **if** $N_1 = 0$, $N_1 = 1$, $N_2 = 0$, or $N_2 = 1$ **then**

2: N := 0, N_2 , 0, N_1 , respectively

3: **else**

Naive function for conjunction: \land

```
ApplyAnd(N_1, N_2) = N
Require: BDD nodes N_1, N_2
Ensure: BDD node N representing N_1 \wedge N_2
 1: if N_1 = 0, N_1 = 1, N_2 = 0, or N_2 = 1 then
 2: N := 0, N_2, 0, N_1, respectively
 3: else
      x_1, l_1, r_1 := var(N_1), low(N_1), high(N_1)
 4:
      x_2, l_2, r_2 := var(N_2), low(N_2), high(N_2)
 5:
 6:
     if x_1 = x_2 then
 7:
         N := MakeNode(x_1, ApplyAnd(l_1, l_2), ApplyAnd(r_1, r_2))
     else if x_1 < x_2 then
 8:
          N := MakeNode(x_1, ApplyAnd(I_1, N_2), ApplyAnd(r_1, N_2))
 9:
     else if x_1 > x_2 then
10:
11:
          N := MakeNode(x_2,ApplyAnd(N_1, I_2),ApplyAnd(N_1, r_2))
12:
       end if
13: end if
```

Problem with naive recursion

Naive Complexity

- ► Consider a BDD with *n* nodes, but a lot of sharing
- ▶ The BDD can have $O(2^n)$ different paths (!)
- ▶ Hence the naive APPLY takes $O(2^n)$ recursive calls

Problem with naive recursion

Naive Complexity

- Consider a BDD with n nodes, but a lot of sharing
- ▶ The BDD can have $O(2^n)$ different paths (!)
- ▶ Hence the naive APPLY takes $O(2^n)$ recursive calls

Solution: Dynamic Programming

- ► Store all intermediate results in an operation cache
 - first check if the result is already in the cache
 - ▶ if not, compute it and put the result in the cache
- ▶ this is a well-known technique: Fibonacci sequence

Problem with naive recursion

Naive Complexity

- ► Consider a BDD with *n* nodes, but a lot of sharing
- ▶ The BDD can have $O(2^n)$ different paths (!)
- ▶ Hence the naive APPLY takes $O(2^n)$ recursive calls

Solution: Dynamic Programming

- ► Store all intermediate results in an operation cache
 - first check if the result is already in the cache
 - ▶ if not, compute it and put the result in the cache
- ▶ this is a well-known technique: Fibonacci sequence

Ultimate Complexity

- ► Given OBDDs A with m nodes and B with n nodes,
- ▶ There can be at most $m \cdot n$ pairs of nodes from A and B.
- ▶ With dynamic programming, APPLY takes $\mathcal{O}(m \cdot n)$ steps.

Data structure: Operation Cache

```
Apply(op, N_1, N_2) = N ..... (recursive cases only)
 1: if (op, N_1, N_2) is in the operation cache then
    N := lookup(op, N_1, N_2)
 3: else
       x_1, l_1, r_1 := var(N_1), low(N_1), high(N_1)
       x_2, l_2, r_2 := var(N_2), low(N_2), high(N_2)
 5:
 6:
      if x_1 = x_2 then
           N := \mathsf{MakeNode}(x_1, \mathsf{Apply}(\mathsf{op}, l_1, l_2), \mathsf{Apply}(\mathsf{op}, r_1, r_2))
 7:
       else if x_1 < x_2 then
 8:
           N := \mathsf{MakeNode}(x_1, \mathsf{Apply}(\mathsf{op}, I_1, N_2), \mathsf{Apply}(\mathsf{op}, r_1, N_2))
 9.
       else if x_1 > x_2 then
10:
11:
           N := MakeNode(x_2,Apply(op,N_1,I_2),Apply(op,N_1,r_2))
        end if
12:
        add (op, N_1, N_2) \mapsto N to the operation cache
13:
14: end if
```

Why is your BDD package better than mine?

Black magic

- ► Variable ordering: sometimes even dynamically reordered
- Garbage collection on the unique table
- ► Operation cache replacement strategy
- ► And even: effect on L2 cache versus main memory

Why is your BDD package better than mine?

Black magic

- ► Variable ordering: sometimes even dynamically reordered
- Garbage collection on the unique table
- ► Operation cache replacement strategy
- ► And even: effect on L2 cache versus main memory

And what about the user?

- Performance depends on how the BDD package is used
- Start with a good initial variable ordering
- ► Think about the order of applying operations

Table of Contents

Introduction

- Overview
- Reachability Analysis fight state space explosion
- Breadth First Search: explicit or set-based
- Binary Decision Diagrams a data structure for sets
 - What are BDDs?
 - Implementation
- 3 Using BDDs in Breadth First Search
 - Encoding of Kripke structures
 - Next-state by Relational Product
 - Partitioning of next-state

Kripke structures

Definition

A Kripke structure is a tuple (S, S_0, R, AP, L) , where

- ▶ S is a set of states
- ▶ $S_0 \subseteq S$ is set of initial states
- ▶ $R \subseteq S \times S$ is a total transition relation on S
 - $\blacktriangleright \ \forall s \in S. \exists t \in S. R(s,t)$
- ► AP is a set of atomic proposition labels
- ▶ $L: S \to \mathcal{P}(AP)$ assigns to each state a set of labels

Kripke structures

Definition

A Kripke structure is a tuple (S, S_0, R, AP, L) , where

- ▶ S is a set of states
- ▶ $S_0 \subseteq S$ is set of initial states
- ▶ $R \subseteq S \times S$ is a total transition relation on S
 - $\blacktriangleright \forall s \in S. \exists t \in S. R(s, t)$
- ► *AP* is a set of atomic proposition labels
- ▶ $L: S \to \mathcal{P}(AP)$ assigns to each state a set of labels

Kripke structures versus transition systems

► Note that here we put the labels on the states, while in process algebra, we put labels on the edges (labeled transition systems)

Example of Kripke Structure

Mutual Exclusion / Critical Section

Example of Kripke Structure

Mutual Exclusion / Critical Section

Parts of the Kripke Structure tuple:

- ▶ States $S = \{s_0, \ldots, s_8\}$; Initial states $S_0 = \{s_0\}$.
- ► $R = \{(s_0, s_1), (s_1, s_2), \ldots\}$
- ► $AP = \{T_1, C_1, T_2, C_2\}$ (trying, critical)
- ► $L(s_0) = \emptyset$; $L(s_4) = \{T_1, T_2\}$; $L(s_7) = \{T_1, C_2\}$, ...

Encoding in Booleans (=bits)

- ► Virtually everything can be encoded in bits (as you know)
- ▶ We would like to preserve structure as much as possible
- ► Here we choose the atomic propositions to encode states (this is often done, but not always possible/necessary)

Encoding in Booleans (=bits)

- ► Virtually everything can be encoded in bits (as you know)
- ▶ We would like to preserve structure as much as possible
- ► Here we choose the atomic propositions to encode states (this is often done, but not always possible/necessary)

Encoding of this example: use variables $\{T_1, T_2, C_1, C_2\}$

Encoding in Booleans (=bits)

- ► Virtually everything can be encoded in bits (as you know)
- ▶ We would like to preserve structure as much as possible
- ► Here we choose the atomic propositions to encode states (this is often done, but not always possible/necessary)

Encoding of this example: use variables $\{T_1, T_2, C_1, C_2\}$

States correspond to formulas: $s_0 = \neg T_1 \land \neg T_2 \land \neg C_1 \land \neg C_2$ $s_4 = T_1 \land T_2 \land \neg C_1 \land \neg C_2$

Encoding in Booleans (=bits)

- ► Virtually everything can be encoded in bits (as you know)
- ▶ We would like to preserve structure as much as possible
- ► Here we choose the atomic propositions to encode states (this is often done, but not always possible/necessary)

Encoding of this example: use variables $\{T_1, T_2, C_1, C_2\}$

- States correspond to formulas: $s_0 = \neg T_1 \land \neg T_2 \land \neg C_1 \land \neg C_2$ $s_4 = T_1 \land T_2 \land \neg C_1 \land \neg C_2$
- Set of states are also formulas: $\{s_1, s_4, s_7\} = T_1$ $\{s_6, s_7, s_8\} = C_2$
- Set of reachable states?

Encoding in Booleans (=bits)

- ► Virtually everything can be encoded in bits (as you know)
- ▶ We would like to preserve structure as much as possible
- ► Here we choose the atomic propositions to encode states (this is often done, but not always possible/necessary)

Encoding of this example: use variables $\{T_1, T_2, C_1, C_2\}$

- ► States correspond to formulas: $s_0 = \neg T_1 \land \neg T_2 \land \neg C_1 \land \neg C_2$ $s_4 = T_1 \land T_2 \land \neg C_1 \land \neg C_2$
- Set of states are also formulas: $\{s_1, s_4, s_7\} = T_1$ $\{s_6, s_7, s_8\} = C_2$
- ▶ Set of reachable states? $\neg (C_1 \land C_2) \dots (details?)$

Encoding of States and Transitions

- ▶ We have encoded sets of states as formulas $P(T_1, T_2, C_1, C_2)$.
- ▶ Transitions relate (T_1, T_2, C_1, C_2) and (T'_1, T'_2, C'_1, C'_2)
- ► Encode transitions as formulas: $Q(T_1, T'_1, T_2, T'_2, C_1, C'_1, C_2, C'_2)$.

Boolean Encoding of Kripke Structure: transitions

Encoding of States and Transitions

- ▶ We have encoded sets of states as formulas $P(T_1, T_2, C_1, C_2)$.
- ▶ Transitions relate (T_1, T_2, C_1, C_2) and (T'_1, T'_2, C'_1, C'_2)
- ► Encode transitions as formulas: $Q(T_1, T'_1, T_2, T'_2, C_1, C'_1, C_2, C'_2)$.

Encoding of transitions:

- Represent transitions by formulas:
 - ▶ Green: $\neg T_2 \land \neg C_2 \land T_2' \land \neg C_2'$
 - ▶ Red: $C_1 \land \neg C_2 \land \neg C'_1 \land \neg T'_1$

Boolean Encoding of Kripke Structure: transitions

Encoding of States and Transitions

- ▶ We have encoded sets of states as formulas $P(T_1, T_2, C_1, C_2)$.
- ► Transitions relate (T_1, T_2, C_1, C_2) and (T'_1, T'_2, C'_1, C'_2)
- ► Encode transitions as formulas: $Q(T_1, T'_1, T_2, T'_2, C_1, C'_1, C_2, C'_2)$.

Encoding of transitions:

- Represent transitions by formulas:
 - ▶ Green: $\neg T_2 \land \neg C_2 \land T_2' \land \neg C_2'$
 - ▶ Red: $C_1 \land \neg C_2 \land \neg C'_1 \land \neg T'_1$
- ► This is not quite true: also ensure other variables don't change:
 - Green: $T_1 = T'_1 \wedge C_1 = C'_1$.
 - Red: $T_2 = T_2' \wedge C_2 = C_2'$.

Table of Contents

Introduction

- Overview
- Reachability Analysis fight state space explosion
- Breadth First Search: explicit or set-based
- 2 Binary Decision Diagrams a data structure for sets
 - What are BDDs?
 - Implementation
- 3 Using BDDs in Breadth First Search
 - Encoding of Kripke structures
 - Next-state by Relational Product
 - Partitioning of next-state

Next-state by Relational Product

Relational Product: the problem

- \triangleright Given: some set of states S, and a relation R
- ▶ Represented by: $P(\vec{x})$ and $Q(\vec{x}, \vec{x'})$.
- ▶ Required: the *R*-successors of *S*, i.e. $\{t \mid \exists s \in S. s R t\}$

Next-state by Relational Product

Relational Product: the problem

- ▶ Given: some set of states S, and a relation R
- ▶ Represented by: $P(\vec{x})$ and $Q(\vec{x}, \vec{x'})$.
- ▶ Required: the *R*-successors of *S*, i.e. $\{t \mid \exists s \in S. s R t\}$

Relational product: the solution

- ► Step 1: Simply take the conjunction: $P(\vec{x}) \wedge Q(\vec{x}, \vec{x'})$
- ► Step 2: Abstract previous states: $\exists \vec{x}. P(\vec{x}) \land Q(\vec{x}, \vec{x'})$
- ► Step 3: Rename back to original state variable names: $(\exists \vec{x}. P(\vec{x}) \land Q(\vec{x}, \vec{x'}))[\vec{x}/\vec{x'}]$

Next-state by Relational Product

Relational Product: the problem

- \triangleright Given: some set of states S, and a relation R
- ▶ Represented by: $P(\vec{x})$ and $Q(\vec{x}, \vec{x'})$.
- ▶ Required: the *R*-successors of *S*, i.e. $\{t \mid \exists s \in S. s R t\}$

Relational product: the solution

- ► Step 1: Simply take the conjunction: $P(\vec{x}) \wedge Q(\vec{x}, \vec{x'})$
- ► Step 2: Abstract previous states: $\exists \vec{x}. P(\vec{x}) \land Q(\vec{x}, \vec{x'})$
- ► Step 3: Rename back to original state variable names: $(\exists \vec{x}. P(\vec{x}) \land Q(\vec{x}, \vec{x'}))[\vec{x}/\vec{x'}]$

What about existential quantification?

- $ightharpoonup \exists x_i. P(\vec{x}) \text{ is simply: } P[x_i := 0] \lor P[x_i := 1]$
- ▶ Note: size can double, so $\exists \vec{x}.P$ can be exponentially big!

We are finished!

Recall Set-BFS (variant 1)

- 1: $Vis := Cur := \{init\}$
- 2: while $Cur \neq \emptyset$ do
- 3: check $Cur \cap Error = \emptyset$
- 4: $Cur := Next(Cur, \rightarrow) \setminus Vis$
- 5: $Vis := Vis \cup Cur$
- 6: end while

Recall Set-BFS (variant 2)

- 1: $V_{\text{old}} := \emptyset$
- 2: $V_{\text{new}} := \{ \text{init} \}$
- 3: while $V_{\text{old}} \neq V_{\text{new}}$ do
- 4: $V_{\text{old}} := V_{\text{new}}$
- 5: $V_{\mathsf{new}} := V_{\mathsf{old}} \cup \mathsf{Next}(V_{\mathsf{old}}, \rightarrow)$
- 6: end while

We are finished!

Recall Set-BFS (variant 1)

- 1: $Vis := Cur := \{init\}$
- 2: while $Cur \neq \emptyset$ do
- 3: check $Cur \cap Error = \emptyset$
- 4: $Cur := Next(Cur, \rightarrow) \setminus Vis$
- 5: $Vis := Vis \cup Cur$
- 6: end while

Recall Set-BFS (variant 2)

- 1: $V_{\text{old}} := \emptyset$
- 2: $V_{\text{new}} := \{ \text{init} \}$
- 3: while $V_{\text{old}} \neq V_{\text{new}}$ do
- 4: $V_{\text{old}} := V_{\text{new}}$
- 5: $V_{\mathsf{new}} := V_{\mathsf{old}} \cup \mathsf{Next}(V_{\mathsf{old}}, \rightarrow)$
- 6: end while

Implementation with BDDs

- ► Vis, Cur: Binary Decision Diagrams (BDDs)
- ► ∩: BDDapplyAnd
- ▶ U: BDDapplyOr
- ▶ Next: BDDRelProd
- \blacktriangleright \neq : pointer comparison (unique representation!)

Table of Contents

Introduction

- Overview
- Reachability Analysis fight state space explosion
- Breadth First Search: explicit or set-based
- 2 Binary Decision Diagrams a data structure for sets
 - What are BDDs?
 - Implementation
- 3 Using BDDs in Breadth First Search
 - Encoding of Kripke structures
 - Next-state by Relational Product
 - Partitioning of next-state

Partitioning of the next-state function

Realistic systems are composed naturally

- ► Each component uses only a subvector of the state variables
- ▶ Each component i has its own (simple) next-state relation R_i

Partitioning of the next-state function

Realistic systems are composed naturally

- ► Each component uses only a subvector of the state variables
- \blacktriangleright Each component *i* has its own (simple) next-state relation R_i

Synchronous systems: conjunctive partitioning

- ▶ In hardware: all components do a step at clock ticks
- ▶ So the relation of the system is: $R_1 \wedge R_2 \wedge \cdots \wedge R_n$.

Partitioning of the next-state function

Realistic systems are composed naturally

- ► Each component uses only a subvector of the state variables
- \blacktriangleright Each component *i* has its own (simple) next-state relation R_i

Synchronous systems: conjunctive partitioning

- ▶ In hardware: all components do a step at clock ticks
- ▶ So the relation of the system is: $R_1 \wedge R_2 \wedge \cdots \wedge R_n$.

A-synchronous systems: disjunctive partitioning

- ► In parallel software: transitions are interleaved, non-determinism
- ▶ So the relation of the system is: $R_1 \vee R_2 \vee \cdots \vee R_n$.
- ▶ (In practice also: "the other variables are unchanged")

Disjunctive Partitioning

- \blacktriangleright Handle all subtransitions R_i separately
- ▶ Never compute the expensive $R = R_1 \lor \cdots \lor R_n$

Disjunctive Partitioning

- \blacktriangleright Handle all subtransitions R_i separately
- ▶ Never compute the expensive $R = R_1 \lor \cdots \lor R_n$

Chaining

- ▶ Apply R_2 on the result of applying R_1 , etc.
- ▶ Basically, compute $(R_2 \circ R_1)^*(S)$ instead of $(R_1 \cup R_n)^*(S)$

Disjunctive Partitioning

- \blacktriangleright Handle all subtransitions R_i separately
- ▶ Never compute the expensive $R = R_1 \lor \cdots \lor R_n$

Chaining

- ▶ Apply R_2 on the result of applying R_1 , etc.
- ▶ Basically, compute $(R_2 \circ R_1)^*(S)$ instead of $(R_1 \cup R_n)^*(S)$

Relational Product

- ► Interweave the EXIST and APPLY operations
- ► Abstract variables as soon as they are introduced by APPLY

Disjunctive Partitioning

- \blacktriangleright Handle all subtransitions R_i separately
- ▶ Never compute the expensive $R = R_1 \lor \cdots \lor R_n$

Chaining

- ▶ Apply R_2 on the result of applying R_1 , etc.
- ▶ Basically, compute $(R_2 \circ R_1)^*(S)$ instead of $(R_1 \cup R_n)^*(S)$

Relational Product

- ► Interweave the EXIST and APPLY operations
- ► Abstract variables as soon as they are introduced by APPLY

Variable Ordering

- \blacktriangleright Keep variables from same component together; also x and x'
- ► Sophisticated: dynamically reorder variables during computation

Symbolic Reachability algorithm, revisited

```
Reachable (I, N, R_i) = V_{\text{new}}
Require: 1, BDD representing initial states
Require: R_i, BDDs, representing subtransitions
Ensure: V_{\text{new}} BDD representing the reachable states from I by R_i
   V_{\text{old}} := \text{BDDempty}
   V_{\text{now}} := I
  while not BDDequal(V_{old}, V_{new}) do
     V_{\text{old}} := V_{\text{new}}
     for i = 1 to N do
         V_{\text{new}} := BDDapply(\lor, V_{\text{new}}, BDDrelprod(V_{\text{new}}, R_i))
     end for
  end while
```

Symbolic Reachability algorithm, revisited

```
Reachable (I, N, R_i) = V_{\text{new}}
Require: 1, BDD representing initial states
Require: R_i, BDDs, representing subtransitions
Ensure: V_{\text{new}} BDD representing the reachable states from I by R_i
   V_{\text{old}} := \text{BDDempty}
   V_{\text{now}} := I
  while not BDDequal(V_{old}, V_{new}) do
     V_{\text{old}} := V_{\text{new}}
     for i = 1 to N do
         V_{\text{new}} := BDDapply(\lor, V_{\text{new}}, BDDrelprod(V_{\text{new}}, R_i))
     end for
  end while
```