11. predavanje iz OE

LOSNOVE ELEKTROTEHNIK

POLIFAZNI SUSTAVI

(Pripremio prof.dr.sc. Armin Pavić)

Polifazni sustavi

OSNOVE ELEKTROTEHNIK

Sadržaj:

- Pojam polifaznog napona
- Trofazni napon
- Simetrični trofazni sustav
- Simetrično trošilo u spoju zvijezde i trokuta
- Nesimetrično trošilo s nulvodičem
- Snaga u simetričnom trofaznom sustavu,
- Kompenzacija jalove snage

Pojam polifaznog napona ili struje

- Polifazni napon (struja) = više izmjeničnih napona (struja) jednakih amplituda i frekvencija, međusobno pomaknutih u fazi.
- Dvofazni sustav (fazni pomak 90°) = najjednostavniji primjer
- Značajke: konstantna snaga i rotirajuće magnetsko polje
- * Primjer: Ukupna snaga dvofaznog sustava struja i_1 i i_2 (na dva trošila jednakih otpora R) $i_1 = I_m \sin(\omega t); \quad i_2 = I_m \sin(\omega t + 90^\circ) = I_m \cos(\omega t);$ $p_{uk} = p_1 + p_2 = i_1^2 R + i_2^2 R = I_m^2 [\sin^2(\omega t) + \cos^2(\omega t)] R$ $p_{uk}(t) = I_m^2 R = \text{konst. (!)}$

Ukupna snaga u ovakvom dvofaznom sustavu ista je u svakom času i ne mijenja se s vremenom!

3

Rotirajuće magnetsko polje

Rezultatntno magnetsko polje rotira s kružnom frekvencijom ω dvofaznog napona

Trofazni napon

OSNOVE ELEKTROTEHNIKE

Trofazni napon = 3 napona međusobno pomaknuta u fazi za 120°

$$\dot{U}_1 = U_m \angle 0^\circ
\dot{U}_2 = U_m \angle -120^\circ
\dot{U}_3 = U_m \angle -240^\circ$$

 $u_1 = U_m \sin(\omega t)$ $u_2 = U_m \sin(\omega t - 120^\circ)$

 $u_3 = U_m \sin(\omega t - 240^\circ)$

Svojstvo:

$$\dot{U}_1 + \dot{U}_2 + \dot{U}_3 = 0 \implies u_1(t) + u_2(t) + u_3(t) = 0$$

Ovakav napon nazivamo simetrični trofazni napon

5

Generator trofaznog napona

Načelo djelovanja

3 svitka (faze generatora) s osima prostorno zakrenutim za kut 120°, rotiraju u magnetskom polju (ili svici miruju, a polje rotira - slika desno)

Spojevi faza generatora

- Kako su spojene faze ovoga generatora na slici?
- Što je s naponom ako magnet rotira u suprotnome smjeru?
- Što bi se dogodilo s rotorom da na priključnice generatora dovedemo trofazni napon?

Osnovni pojmovi i oznake u trofaznom sustavu

- ◆ Fazni naponi (U_f) U₁, U₂, U₃ naponi linijskih vodiča prema nulvodiču
- L1, L2, L3 oznake linijskih vodiča (uz ove, normirane oznake, još se mogu naći oznake R, S, T i druge)
 N - oznaka nulvodiča
- Linijske struje (I₁) I₁, I₂, I₃ struje kroz linijske vodiče struja nulvodiča i₀ = i₁ + i₂ + i₃ (KZS)

- lacktriangle Linijski naponi (U_1) U_{12} , U_{23} i U_{31} naponi između linijskih vodiča
- Fazne struje (I_f) (trošila) I_{Z1} , I_{Z2} , I_{Z3} struje kroz faze trošila
- * Uočimo: kod spoja u zvijezdu: $I_1=I_{Z1}$, $I_2=I_{Z2}$, $I_3=I_{Z3}$, tj. linijske struje jednake su faznima $(I_1=I_f)$

Odnos faznih i linijskih napona

 Trofazni generator u spoju zvijezde

- ΣU_f = 0 (simetričan sustav), ali i
- $\Sigma U_l = 0$ (također simetričan sustav!)

 $\dot{\mathbf{U}}_3 + \dot{\mathbf{U}}_2 = -\dot{\mathbf{U}}_1$

Simetrično trošilo u spoju zvijezde

- Spoj s nulvodičem: $(\varphi_0, = \varphi_0)$, pa zbog toga na fazama trošila (\underline{Z}) su fazni naponi (U_1, U_2, U_3)
- Fazne struje trošila: (I_1, I_2, I_3)

$$\dot{I}_1 = \frac{\dot{U}_1}{Z}$$
 $\dot{I}_2 = \frac{\dot{U}_2}{Z}$ $\dot{I}_3 = \frac{\dot{U}_3}{Z}$

 $\dot{I}_1 + \dot{I}_2 + \dot{I}_3 = \frac{1}{Z}(\dot{U}_1 + \dot{U}_2 + \dot{U}_3) = 0 \Rightarrow fazne \ struje \ čine \ simetričan \ sustav$

Linijske struje: u spoju zvijezde linijske struje jednake su faznima

$$I_{\rm l} = I_{\rm f}$$

- Struja nulvodiča (prema KZS): $\dot{l}_0 = \dot{l}_1 + \dot{l}_2 + \dot{l}_3 = 0$
 - Treba li nulvodič kod simetričnog trošila? (provjerite Millmanom)
 - Zašto je u gradskoj elektrodistribucijskoj mreži nulvodič obvezatan?

Nesimetrično trošilo u spoju zvijezde s nulvodičem 💱

- Nulvodič osigurava da je na svakoj fazi trošila fazni napon, pa su
- Struje trošila: $\dot{I}_1 = \frac{\dot{U}_1}{Z_1}$ $\dot{I}_2 = \frac{\dot{U}_2}{Z_2}$ $\dot{I}_3 = \frac{U_3}{Z_3}$
- Struja nulvodiča (prema KZS): $\dot{l}_0 = \dot{l}_1 + \dot{l}_2 + \dot{l}_3$

- Zadatak
 - Odredite struju nulvodiča u spoju na slici, ako je zadano: $U_f = 110 \text{ V}, \ \underline{Z}_1 = \underline{Z}_2 = 110 \angle 0^{\circ} \Omega; \ \underline{Z}_3 = 110 \angle -90^{\circ} \Omega; \ (1,41 \text{ A})$
 - Bi li u slučaju prekida nulvodiča napon između nultočki trošila i generatora (U_{00}) ostao jednak nuli? (Provjera Millmanom).
 - Bi li u slučaju prekida nulvodiča svaka faza trošila i dalje imala isti (fazni) napon? (Provjera Millmanom).

Simetrično trošilo u spoju trokuta

- Faze trošila (Z) spojene su na linijske napone (U_{12}, U_{23}, U_{32}) , koji stvaraju
- Fazne struje trošila: $i_{12} = \frac{\dot{U}_{12}}{7}$ $i_{23} = \frac{\dot{U}_{23}}{7}$ $i_{31} = \frac{\dot{U}_{31}}{7}$ od kojih su sastavljene

- Linijske struje: $\vec{l}_1 = \vec{l}_{12} \vec{l}_{31}$ $\vec{l}_2 = \vec{l}_{23} \vec{l}_{12}$ $\vec{l}_3 = \vec{l}_{31} \vec{l}_{23}$
- Primjer: odrediti fazne i linijske struje ako je zadano: \underline{Z} =72 \angle 30° Ω i U_{12} =380 \angle 0° V.

 $\dot{I}_{12} = \frac{U_{12}}{Z} = 5\angle -30^{\circ} \text{ A}; \, \dot{I}_{23} = \frac{\dot{U}_{23}}{Z} = 5\angle -150^{\circ} \text{ A}; \, \dot{I}_{31} = \frac{\dot{U}_{31}}{Z} = 5\angle 90^{\circ} \text{ A}$ $\dot{l}_1 = \dot{l}_{12} - \dot{l}_{31} = 8,66 \angle -60^{\circ} A; \dot{l}_2 = \dot{l}_{23} - \dot{l}_{12} = 8,66 \angle -180^{\circ} A$ $i_3 = i_{31} - i_{23} = 8,66 \angle 60^{\circ} A$ (vidi dijagram desno)

• Račun i dijagram pokazuju: $I_1 = \sqrt{3} I_f$

Snaga simetričnog trofaznog trošila

OSNOVE ELEKTROTEHNIKE

- Trošilo u spoju zvijezde radna snaga
 Radna snaga jedne faze trošila: P₁=U_f I_f cosφ
 Ukupna radna snaga (triju faza) trošila: P_{uk}=3P₁=3U_f I_f cosφ
 Izraz pomoću linijskih veličina (U_I=√3U_f, I_I=I_f) daje: P_{uk}=√3U_II_I cosφ
- Trošilo u spoju trokuta radna snaga
 Radna snaga jedne faze trošila: P₁=U_fI_f cosφ
 Ukupna radna snaga (triju faza) trošila: P_{uk}=3P₁=3U_fI_f cosφ
 Izraz pomoću linijskih veličina (U_I=U_f, I_I=√3I_f) daje: P_{uk}=√3U_II_I cosφ
- ⇒ bez obzira na spoj, **ukupna radna snaga** trošila računa se istom jednadžbom: $P_{uk} = \sqrt{3} U_l I_l \cos \varphi$
- Na isti način dobiva se za *jalovu snagu*: $Q_{uk} = \sqrt{3} U_l I_l \sin \varphi$
- * Može li se ovdje istim načelom zbrajanja izračunati ukupna prividna snaga kao $S_{uk} = 3U_f I_f = \sqrt{3} U_l I_l$? Zašto?

11

Snaga nesimetričnog trofaznog trošila

OSNOVE ELEKTROTEHNIKE

Kod nesimetričnog trofaznog trošila (i kod spojeva više takvih trošila) ukupna snaga se računa kao u bilo kojoj mreži, tj.

- Ukupna radna snaga = Σ svih radnih snaga (P_{11k} =Σ P_1 = P_1 + P_2 + P_3).
- Ukupna jalova snaga jednaka je razlici ukupne induktivne i ukupne kapacitivne jalove snage $(Q_{uk} = \Sigma Q_L \Sigma Q_C)$.
- Ukupna prividna snaga dobiva se iz trokuta ukupne snage:

$$S_{uk} = \sqrt{P_{uk}^2 + Q_{uk}^2}$$

* Zadatak:

Trošilo s impedancijama \underline{Z}_1 , \underline{Z}_2 i \underline{Z}_3 spojenim u zvijezdu priključeno je na trofaznu mrežu linijskog napona 381 V s nulvodičem. Odredite ukupnu radnu i ukupnu jalovu snagu trošila, struje trošila i nulvodiča te skicirajte vektore svih struja, ako je zadano: \underline{Z}_1 =44 \angle 60° Ω , \underline{Z}_2 =44 \angle -60° Ω , \underline{Z}_3 =44 \angle 0° Ω .

(2200 W; 0 VAr; I₁=I₂=I₃=5 A; I₀=5 A)

Kompenzacija jalove snage simetričnog trošila

- Kompenzacija jalove snage, radi popravljanja faktora snage, obavlja se ovdje istim načelom kao i u jednofaznoj mreži, s tom razlikom da se ovdje (simetrično na sve tri faze) priključuju 3 kompenzacijska kapaciteta, od kojih svaki preuzima po 1/3 ukupne snage.
- Određivanje potrebne kapacitivne jalove snage
 Na temelju poznatog (cosφ) i željenog faktora snage (cosφ') te poznate radne snage P, iz trokuta snage (desno) dobiva se
- Kapacitivna snaga potrebna za kompenzaciju

 $Q_C = Q - Q' = P(\tan \varphi - \tan \varphi')$

iz čega se računaju potrebni (fazni) kompenzacijski kapaciteti ovako:

gdje je: $U=U_f$ za spoj kondenzatora u zvijezdu, a $U=U_I$ za spoj kondenzatora u trokut.

Za koji spoj trebamo manji kapacitet? Na što treba pritom paziti?

15

Zadaci

 Kondenzator kapaciteta 150 μF priključuje se prvo između linijskih vodiča (L1 i L2), a zatim između linijskog vodiča (L1) i nulvodiča (N) mreže

trofaznog napona, frekvencije 50 Hz. Ako se pritom izmjerene struje kroz kondenzator razlikuju za 7,59 A, odredite:

- a) u kojem spoju je izmjerena veća struja?
- b) koliki je linijski napon mreže? (380 V)
- ❖ Kako se promijene linijske struje simetričnog trošila spojenog u trokut, ako faze trošila prespojimo u zvijezdu? (↓3x)
- * Na trofazni napon gradske mreže priključen je elektromotor snage P=6 kW i $\cos \varphi=0.77$. Odredite najmanji kapacitet i način spajanja kondenzatora kojima bismo ukupni faktor snage povećali na $\cos \varphi'=0.86$. Koliki bi trebao biti nazivni napon kondenzatora? (10.4 µF, Δ ; 400 V)
- * *S pomoću izraza za trenutačnu snagu jedne faze trošila: $p_1(t)=U_f I_f \cos \varphi U_f I_f \cos(2\omega t + 2\alpha_u \varphi)$ dokažite da je ukupna trenutačna snaga simetričnog trofaznog trošila konstantna i da je jednaka ukupnoj radnoj snazi trošila. $(p_{uk}(t)=3U_f I_f \cos \varphi = konst.)$