RAPPORT DE TRAVAUX PRATIQUES

Intégration numérique et interpolation

I. Introduction

L'intégration numérique permet d'estimer la valeur d'une intégrale lorsque sa primitive n'est pas facilement calculable.

Dans ce travail, nous étudions et comparons plusieurs méthodes d'intégration numérique:

- La méthode des rectangles
- La méthode du trapèze
- La méthode de Simpson ainsi que deux approches plus avancées fondées sur l'interpolation:
- Le polynôme de Lagrange
- La spline quadratique

Toutes ces méthodes sont appliquées à la fonction test: $f(x) = 1 + x^2$ sur [0, 2].

II. Théorie

1. Méthodes de Newton-Cotes classiques

a. Méthode des rectangles (à gauche)

On approxime la fonction f(x) par une constante sur chaque sousintervalle:

 $I_rect = h \Sigma f(x_i)$

b. Méthode du trapèze

On suppose que f(x) varie linéairement entre deux points consécutifs:

$$I_{trap} = (h/2) [f(a) + 2\Sigma f(x_i) + f(b)]$$

c. Méthode de Simpson (composée)

On approxime f(x) par un polynôme quadratique sur chaque paire d'intervalles:

$$I_simp = (h/3) [f(a) + 4\Sigma f_odd + 2\Sigma f_even + f(b)]$$

2. Interpolation et intégration de Lagrange

Le polynôme d'interpolation de Lagrange est défini par:

$$P_n(x) = \sum f_i L_i(x)$$
 avec $L_i(x) = \prod (x - x_j)/(x_i - x_j)$

L'intégrale de f(x) est alors approchée par:

$$I_L = \sum f_i \int L_i(x) dx$$

3. Spline quadratique

Une spline quadratique est un polynôme du second degré ajusté par morceaux:

$$S_i(x) = a_i (x - x_i)^2 + z_i (x - x_i) + y_i$$

III. Exemple numérique

$$f(x) = 1 + x^2 \text{ sur } [0, 2], \text{ avec } m = 4 \rightarrow h = 0.5$$

Valeur exacte: $I = \int_0^2 (1 + x^2) dx = 14/3 \approx 4.6667$

Méthode	Résultat
Rectangles	3.75
Trapèzes	4.75
Simpson	4.6667
Lagrange	4.6667
Spline quadratique	4.6667

V. Conclusion

Ce travail a permis de comprendre la théorie et la mise en œuvre des

méthodes d'intégration numérique,

d'établir le lien entre les formules de Newton-Cotes et l'interpolation de Lagrange,

et de valider expérimentalement la précision des différentes méthodes.

Pour une fonction quadratique telle que $f(x) = 1 + x^2$,

Simpson, Lagrange et Spline donnent une intégration exacte,

tandis que les autres approches restent de bonnes approximations.