MATB42: Assignment #6

1. Let
$$\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$
. Calculate $\int_{\gamma} \omega$ where

- (a) γ is the boundary of the triangle with vertices (in order) (0,1), (2,3) and (2,1).
- (b) γ is the boundary curve of the region $\left\{ (x,y) \in \mathbb{R}^2 \middle| \frac{(x-2)^2}{9} + \frac{(y+1)^2}{4} \le 1 \right\}$ oriented in a counter clockwise direction
- (c) γ is the graph of the polar equation $r = 3 + 2\sin\theta$ oriented in the clockwise direction.

2. Let $\omega = (y^2 + z \ln 3) \ dx + (2xy + \sin z) \ dy + (y\cos z + (x+1)\ln 3) \ dz$. Determine if ω is exact. If it is, use the algorithm given in class to find the potential function g.

3. Evaluate the double integral $\int_{-1}^{1} 1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 3x^2y^2dy \ dx$, by first finding an equivalent line integral.

4. Let R be a region in \mathbb{R}^2 and let γ be a counterclockwise parametrization of ∂R . Let $\mathbf{F} = (F_1, F - 2)$ be a C^1 vector field defined throughout R and on ∂R and let \mathbf{n} be the outward pointing unit normal ector to γ . Use Green's theorem to give a double integral over R which is equivalent to $\int_{\gamma} \mathbf{F} \cdot \mathbf{n} \, ds$.

- 5. Give a parametrization for each of the following surfaces, use a computer algebra sustem to plot the surface and find a unit vector normal to the surface.
 - (a) The piece of the cylinder $y^2 + z^2 = 1$ between x = -1 and x = 3.
 - (b) The piece of the plane z = x + y + 5 which lies over the unit disk $x^2 + y^2 \le 1$.
 - (c) The piece of the sphere $x^2 + y^2 + z^2 = 4$ which lies above the plane z = 1.
 - (d) The piece of the plane x+y+z=1 which lies above the parallelogram: $0 \le y-x \le 1, 0 \le y+x \le 1$.
- 6. Let S be the surface given parameterically by $\Phi(u, v) = (u^2, 3v, u^2 + v)$ where $(u, v) \in D$, the interior of a triangle with vertices (0,0), (3,0) and (3,3).
 - (a) Find the surface area of S.
 - (b) Find the equation of the tangent plane to S at the point (4,9,7).

- 8. A paraboloid of revolution S is parameterized by $\Phi(u,v) = u\cos v, u\sin v, u^2, 0 \le u \le 2, 0 \le v \le 2\pi$.
 - (a) Find an equation in x, y and z describing the surface.
 - (b) What are the geometric meanings of the parameters u and v?
 - (c) Find a unit vector orthogonal to the surface of $\Phi(u, v)$.
 - (d) Find the equation for the tangent plane at $\Phi(u_0, v_0) = (1, 1, 2)$ and express your answer in the following two ways:
 - i. parameterized by u and v; and
 - ii. in terms of x, y and z.
 - (e) Find the area of S.
 - (cf. page 424, #16)

- 9. Let a differentiable function $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$ define a parametrized surface.
 - (a) Assuming $\phi_u \times \phi_v \neq 0$, show that the range of the linear transformation $D\Phi(u_0, v_0)$ is the plane spanned by ϕ_u and ϕ_v . [Here ϕ_u and ϕ_v are evaluated at (u_0, v_0) .]
 - (b) Show that $\mathbf{w} \perp (\phi_u \times \phi_v)$ if and only if \mathbf{w} is in the range of $D\mathbf{\Phi}(u_0, v_0)$.
 - (c) Show that the tangent plane as defined in terms of $\phi_u \times \phi_v(u_0, v_0)$ is the same as the "parametrized plane"

$$(u,v) \mapsto \mathbf{\Phi}(u_0,v_0) + D\mathbf{\Phi}(u_0,v_0) \begin{bmatrix} u - u_0 \\ v - v_0 \end{bmatrix}$$

(cf. page 383 #20)