# Verifying Parameterized Networks Specified by Vertex-Replacement Graph Grammars

Neven Villani, Radu Iosif, Arnaud Sangnier

Univ. Grenoble Alpes, Verimag

2025-05-21; NETYS (Rabat)

### Context

- Parameterized structured networks
- Non-homogeneous
- Binary rendezvous
- Locally finite memory
- Safety properties



- Parameterized structured networks
- Non-homogeneous
- Binary rendezvous
- Locally finite memory
- Safety properties



- Parameterized structured networks
- Non-homogeneous
- Binary rendezvous
- Locally finite memory
- Safety properties



- Parameterized structured networks
- Non-homogeneous
- Binary rendezvous
- Locally finite memory
- Safety properties



$$\#q_1^b > 1 \land \#q_1^c > 1$$
 reachable?



















Hyperedge Replacement (sparse only) e.g., us, VDS 2025 + CAV 2025





Context



Hyperedge Replacement (sparse only) e.g., us, VDS 2025 + CAV 2025

Vertex Replacement (incl. some dense)

Contribution

Context

A translation from VR to HR architectures.

#### Contribution

Context

**Adapting** a translation from VR to HR architectures **to the case of systems**, and studying which safety properties are preserved.

B. Courcelle, Structural Properties of Context-Free Sets of Graphs Generated by Vertex Replacement, *Information and Computation*, 1995









### Encoding of Networks

#### **Processes and systems**

- process types  $p_1, p_2, ...$  = Petri nets (PN) with observable transitions



- process types  $p_1, p_2, ...$  = Petri nets (PN) with observable transitions
- · system: graph with
  - vertices labeled by a process type
  - edges labeled by pairs of observable transitions





- process types  $p_1, p_2, ...$  = Petri nets (PN) with observable transitions
- system: graph with
  - vertices labeled by a process type
  - edges labeled by pairs of observable transitions





- process types  $p_1, p_2, ...$  = Petri nets (PN) with observable transitions
- · system: graph with
  - vertices labeled by a process type
  - edges labeled by pairs of observable transitions





- process types  $p_1, p_2, ...$  = Petri nets (PN) with observable transitions
- · system: graph with
  - vertices labeled by a process type
  - edges labeled by pairs of observable transitions





- process types  $p_1, p_2, ...$  = Petri nets (PN) with observable transitions
- · system: graph with
  - vertices labeled by a process type
  - edges labeled by pairs of observable transitions





 $\#q^p$  total number of tokens in place q of processes of type p.

- $\alpha$  any arithmetic formula on  $\{\#q^p \mid q, p\}$
- arphi reachability/coverability/sequence/etc on lpha
- → interpreted over the firing sequences of the PN

### HR & VR

Given by a term in HR/VR.

Context-free grammars generate infinite families of terms, thus infinite families of architectures.

#### HR: Single edge

$$ec{e}_{\pi,\pi'} = egin{pmatrix} \pi & e \ \pi' \end{pmatrix}$$

#### HR: Single edge

$$ec{e}_{\pi,\pi'} = egin{pmatrix} \pi \\ e \\ \pi' \end{pmatrix}$$

#### **VR: All-pairs edges**

$$\mathsf{add}_{\pi,\pi'}^{\textcolor{red}{e}} \left( \begin{array}{cccc} \pi & \pi & \pi \\ \bullet & \bullet & \bullet \\ \pi' & \pi' \end{array} \right) = \left( \begin{array}{cccc} \pi & \pi & \pi \\ \bullet & \bullet & \bullet \\ \pi' & \pi' \end{array} \right)$$

**VR** 

#### HR





## Routing

































### **Stuttering**









$$s_1s_1s_1s_1s_1s_2s_2s_2s_2s_2$$

- Stuttering-invariant properties are preserved
  - (un)reachability, (un)coverability
  - mutual exclusion
  - reachability in a specific order
- Linear transformation
  - ▶  $|T| \cdot \text{cw} \cdot \Theta(n)$  router nodes
  - sparse graph

- Lose properties sensitive to stuttering
  - $\rightarrow \text{next-step} (s_1s_2 \text{ vs } s_1s_1s_1s_1s_1s_2)$
  - deadlock ( $s_1 \perp \text{ vs } s_1 s_1 s_1 s_1 \perp$ )
  - ▶ related: LTL \ X
- Increased trace length
  - $\rightarrow$   $\times$   $\Theta(n)$  worst-case
  - $\times \Theta(\lg n)$  average-case
- Loss of parallelism
  - finite throughput





**VR** 

$$\overset{(t,t')}{\longrightarrow}$$

HR

$$\overset{e^*}{\leadsto}\overset{(t,t')}{\longrightarrow}\overset{e^*}{\hookleftarrow}$$

$$\xrightarrow{H}$$

$$p \bullet \pi$$

$$p \bullet \pi$$

$$p \bullet \pi$$



concrete vertices
 path of routers
 representative

## **Edge creation**

$$p \\ \bullet \pi$$

$$p$$
 $\bullet \pi$ 

$$p \\ \bullet \pi$$







$$H(\theta)$$

## **Edge creation**



$$\mathsf{add}_{\pi,\pi'}^{ extstyle (t,t')}( heta)$$





$$H(\theta)$$

## **Edge creation**



$$\mathsf{add}_{\pi,\pi'}^{(oldsymbol{t},oldsymbol{t}')}( heta)$$



$$H( heta)\parallel\overrightarrow{(t,t')}_{\overline{\pi},\overline{\pi}'}$$

# Conclusion

#### Conclusion

- Translation of systems from VR to HR
- Preserves stuttering-invariant properties
- Enables applying semi-algorithms for HR to dense families