BAB IV HASIL DAN PEMBAHASAN

Pengujian merupakan langkah yang digunakan untuk mengetahui sejauh mana kesesuian antara desain dan simulasi *prototype* dengan kenyataan pada penerapan sistem yang telah di buat, apakah sudah sesuai dengan yang diharapkan atau tidak. Pengujian juga berguna untuk mengetahui tingkat kinerja dari penerapan sistem tersebut. Setelah dilakukan pengujian, maka hendaknya melakukan ujian ukuran atau analisa terhadap apa yng diuji terhadap apa yang diuji untuk mengetahui keberhasilan dari penerapan sistem yang dibuat

4.1 IMPLEMENTASI

Hasil dari implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama. Pembahasan lebih terperinci mengenai tahapan implementasi/ penerapan sistem tersebut sebagai berikut

4.1.1 KONFIGURASI PERANGKAT MIKROTIK

Perangkat yang di gunakan sebagai manajemen *bandwidth* adalah RB450Gx4 yang memiliki spesifikasi *processor* IPQ-4019 716MHz 4 Core, *RAM* 1GB, *ROM*/penyimpanan 512 MB, 5 port ethernet gigabit, serta dengan lisensi level 5. Konfigurasinya menggunakan Winbox 3.17 yaitu sebagai berikut:

a. Mengkoneksikan ke Mikrotik RouterBoard

Gambar 4.1 Koneksi ke Mikrotik

Pada gambar 4.1 agar terkoneksi dengan Mikrotik RouterBoard maka pada *Connect To:* diisi dengan *MAC Address* atau *IP Address* dari Mikroti RouterBoard, pada gambar tersbut menggunakan *MAC Address.* Pada baris *Login:* diisi dengan *username* dan *default username*nya adalah admin. Pada baris *Password:* diisi dengan *password* sesuai konfigurasi, *default*nya tidak menggunakan *password.* Setelah semua bagian tersebut diisi klik *Connect*, maka akan muncul tampilan seperti berikut:

Gambar 4.2 Masuk ke Mikrotik melalui WinBox

b. Konfigurasi (HTB) simple queue mode parent

Membuat *Parent queue* untuk menjadi total *bandwidth* untuk *client* seperti berikut:

Gambar 4.3 konfigurasi parent queue

Pada gambar 4.3 berada pada menu *queue* lalu di bagian *simple queue* klik tombol add di bagian *target* diisi dengan *ethernet/IP address*, di bagian target *Upload* dan *download* diisi dengan total *bandwidth* yang akan di gunakan oleh seluruh *client*

c. Konfigurasi (HTB) simple queue mode child

Membuat *Child queue* untuk menjadi total *bandwidth* untuk *client* seperti berikut:

Gambar 4.4 konfigurasi child queue

Pada tahap ini yang di lakukan adakah mengkonfigurasi *bandwidth* untuk *client*, Pada gambar 4.4 bagian *name* diisi dengan nama NIM atau nama dosen, pada bagian *target* diisi dengan *IP address client*, di bagian target *upload* dan *download* di isi dengan *bandwidth* yang akan di berikan untuk *client*. lalu konfigurasi *child queue* agar bisa terhubung dengan *parent queue* di menu *advanced* seperti berikut:

Gambar 4.5 konfigurasi panel advanced child queue

Sesuai gambar 4.5 pada target *upload* dan *download* diisi dengan jaminan *bandwidth client* yang telah di tentukan, supaya *client* pada

jam sibuk *bandwidth* masih terbagi dengan merata , di bagian *parent* pilih nama *queue list* yang telah di konfigurasi sebagai *parent queue*.

4.1.2 HASIL PERCOBAAN

Hasil percobaan dari penerapan metode HTB dapat dibuktikan melalui data yang terdapat di *queues list*. Pada queues list tersimpan track dari *traffic* penggunaan *bandwidth* yang berjalan di dalam jaringan, seperti yang terlihat pada Gambar 4.1. Gambar 4.2 dan 4.3 merupakan speed test ketika metode HTB belum diterapkan.

#	Name	Target	Download Max	Download Limit	Parent	Total Dow	Download
3	∄hs- <rumah></rumah>	ether3	unlimited	unlimited	none	7.7 MiB	2.1 kbps
4	∄ joko	172.19.0.2	: 40M	unlimited	none	14.7 MiB	20.1 Mbps
5	singgih	172.19.0.3	: 40M	unlimited	none	18.8 MiB	2.2 Mbps
6	akbar	172.19.0.4	: 40M	unlimited	none	15.6 MiB	2.0 Mbps
7		172.19.0.5	: 40M	unlimited	none	16.0 MiB	2.0 Mbps
8		172.19.0.6	: 30M	unlimited	none	12.9 MiB	19.3 Mbps
9	₫ STI201601302	172.19.0.7	: 30M	unlimited	none	12.7 MiB	1681.4 k
10	₫ STI201601303	172.19.0.8	: 30M	unlimited	none	18.2 MiB	2.0 Mbps
11	₫ STI201601304	172.19.0.9	: 30M	unlimited	none	16.2 MiB	2.5 Mbps
12		172.19.0.10	: 30M	unlimited	none		2.5 Mbps
13	₫ STI201601306	172.19.0.11	: 30M	unlimited	none	15.9 MiB	2.0 Mbps
14	₫ STI201601307	172.19.0.12	: 30M	unlimited	none	19.2 MiB	2.7 Mbps
15	₫ STI201601308	172.19.0.13	: 30M	unlimited	none	13.3 MiB	2.0 Mbps
16	₫ STI201601309	172.19.0.14	: 30M	unlimited	none	14.8 MiB	2.7 Mbps
17	₫ STI201601310	172.19.0.15	: 30M	unlimited	none	12.4 MiB	2.8 Mbps
18	₫ STI201601311	172.19.0.16	: 30M	unlimited	none	12.2 MiB	2.1 Mbps
19	₫ STI201601312	172.19.0.17	: 30M	unlimited	none	10.4 MiB	2.0 Mbps
20	₫ STI201601313	172.19.0.18	: 30M	unlimited	none	11.4 MiB	2.6 Mbps
21	₫ STI201601314	172.19.0.19	: 30M	unlimited	none	12.6 MiB	2.9 Mbps
22		172.19.0.20	: 30M	unlimited	none	11.8 MiB	3.0 Mbps
23	₫ STI201601316	172.19.0.21	: 30M	unlimited	none	17.3 MiB	2.9 Mbps
24	₫ test-dsn1	172.19.0.22	: 40M	unlimited	none	14.0 MiB	2.4 Mbps
25	₫ test-dsn2	172.19.0.23	: 40M	unlimited	none	18.8 MiB	1518.9 k
26	₫ test-dsn3	172.19.0.24	: 40M	unlimited	none	17.5 MiB	2.3 Mbps
27	₫ test-dsn4	172.19.0.25	: 40M	unlimited	none		2.3 Mbps
28	₫ test-dsn5	172.19.0.26	: 40M	unlimited	none	19.1 MiB	2.9 Mbps
29	₫ test-dsn6	172.19.0.27	: 40M	unlimited	none	17.9 MiB	3.2 Mbps

Gambar 4.1 Traffict List Queue sebelum HTB

203.142.82.1 - BIZNET NETWORKS, ID (400 km)

Gambar 4.2 Speedtest sebelum penerapan HTB Client dosen

Gambar 4.3 Speedtest sebelum penerapan HTB Client Mahasiswa

Pada *Client* dosen terdapat lonjakan yang tinggi sedangkan *client* mahasiswa tidak mendapatkan *bandwith* yang merata seperti *client* dosen. Pada Gambar 4.1 *traffic* di *queue list* sebelum penerapan metode HTB. Terlihat banyak perbedaan yang diambil oleh *client* dosen dan mahasiswa, Gambar 4.2 dan Gambar 4.3. Setelah penerapan HTB terdapat besaran selisih kecepatan *download* yang hampir merata di setiap *client* nya. Data tersebut dapat dilihat pada Gambar 4.4. Pada gambar 4.5 dan gambar 4.6 merupakan *traffic* di *queue list* setelah menerapkan metode HTB.

Name A		Download Max	Download Limit	Parent	Total Dow	Download
## HTB_total	172.19.0.0/24	! 100M	unlimited	none	6.6 GiB	95.8 Mbps
HTB_dosen	172.19.0.2,	· 50M	unlimited	HTB_total	3508.3 MiB	51.3 Mbps
🖺 joko	172.19.0.2	: 40M	5M	HTB_dosen	120.2 MiB	5.1 Mbps
🖺 singgih	172.19.0.3	: 40M	5M	HTB_dosen	318.8 MiB	4.2 Mbps
akbar	172.19.0.4	: 40M	5M	HTB_dosen	345.3 MiB	4.0 Mbps
khusnul	172.19.0.5	: 40M	5M	HTB_dosen	319.8 MiB	4.3 Mbps
test-dsn1	172.19.0.22	: 40M	5M	HTB_dosen	341.2 MiB	4.8 Mbps
test-dsn2	172.19.0.23	: 40M	5M	HTB_dosen	344.7 MiB	4.9 Mbps
test-dsn3	172.19.0.24	: 40M	5M	HTB_dosen	350.4 MiB	4.7 Mbps
₫ test-dsn4	172.19.0.25	: 40M	5M	HTB_dosen	344.3 MiB	4.8 Mbps
test-dsn5	172.19.0.26	: 40M	5M	HTB_dosen	341.0 MiB	4.7 Mbps
test-dsn6	172.19.0.27	: 40M	5M	HTB_dosen	340.9 MiB	5.0 Mbps
test-dsn7	172.19.0.28	: 40M	5M	HTB_dosen	341.7 MiB	4.9 Mbps
# HTB_mhs	172.19.0.6,	: 40M	unlimited	HTB_total	3214.0 MiB	44.4 Mbps
STI201601301	172.19.0.6	: 30M	3M	HTB_mhs	46.4 MiB	2.2 Mbps
STI201601302	172.19.0.7	: 30M	3M	HTB_mhs	218.8 MiB	2.7 Mbps
	172.19.0.8	: 30M	3M	HTB_mhs	208.6 MiB	2.2 Mbps
STI201601304	172.19.0.9	: 30M	3M	HTB_mhs	205.5 MiB	3.0 Mbps
	172.19.0.10	: 30M	3M	HTB_mhs	216.3 MiB	2.8 Mbps
	172.19.0.11	: 30M	3M	HTB_mhs	216.5 MiB	2.5 Mbps
	172.19.0.12	: 30M	3M	HTB_mhs	205.3 MiB	2.8 Mbps
	172.19.0.13	: 30M	3M	HTB_mhs	214.6 MiB	3.0 Mbps
	172.19.0.14	: 30M	3M	HTB_mhs	207.0 MiB	3.0 Mbps
	172.19.0.15	: 30M	3M	HTB_mhs	204.4 MiB	2.6 Mbps
	172.19.0.16	: 30M	3M	HTB_mhs	213.3 MiB	3.0 Mbps
	172.19.0.17	: 30M	3M	HTB_mhs	215.4 MiB	3.1 Mbps
	172.19.0.18	: 30M	3M	HTB_mhs	205.0 MiB	2.8 Mbps
	172.19.0.19	: 30M	3M	HTB_mhs	214.0 MiB	2.5 Mbps
	172.19.0.20	: 30M	3M	HTB_mhs	217.0 MiB	2.9 Mbps
	172.19.0.21	: 30M	3M	HTB_mhs	205.8 MiB	2.8 Mbps

Gambar 4.4 Traffic List Queue sesudah HTB

LibreSpeed

203.142.82.1 - BIZNET NETWORKS, ID (400 km)

Gambar 4.5 SpeedTest setelah penerapan HTB client dosen

Ping Jitter 40.0 ms 20.9 ms Download Upload 3.31 0.00

203.142.82.1 - BIZNET NETWORKS, ID (400 km)

Mbps

Mbps

Gambar 4.6 SpeedTest setelah penerapan HTB client mahasiswa

4.2 PEMBAHASAN DARI HASIL PENGAMATAN IMPLEMENTASI MANAJEMEN BANDWIDTH WIRELESS LAN BERBASIS MIKROTIK DENGAN METODE SIMPLE QUEUE DAN HIRARCHICAL TOKEN BUCKET (HTB) DI STMIK WIDYA UTAMA

Dari percobaan diatas didapatkan beberapa data manajemen *bandwidth*, sehingga dapat disimpulkan bahwa *bandwidth* dapat terbagi rata di setiap *client* seperti yang terlihat pada gambar 4.7. Dengan penjelasan sebagai berikut:

- 1. Antar PC terdapat selisih sedikit di *bandwidth* yang disebabkan oleh dialihkannya sisa *bandwidth* dari setiap *client*, karena alokasi *bandwidth maximum* yang bisa didapatkan *client* tidak lebih dari *Maximum Information Rate* (MIR)
- 2. Minimal bandwidth / jaminan bandwidth yang didapatkan oleh client ketika traffic jaringan sedang buruk adalah sebesar 10 mbps dan 5 mbps sesuai yang diambil oleh client, service tersebut biasa disebut dengan Committed Information Rate (CIR), jadi seburuk apapun jaringan maka client tidak akan mendapat bandwidth di bawah CIR . Gambar 4.8 dan Gambar 4.9 adalah jaminan bandwith untuk client dosen dan mahasiswa.

Gambar 4.7 Traffic Queue Terbagi Rata

Gambar 4.8 Jaminan Bandwidth client mahasiswa

Gambar 4.9 Jaminan Bandwidth client dosen

#	Name	Target	Download Max	. I Download Limit	Parent	Total Dow	Download
3	∄ hs- <rumah></rumah>	ether3	unlimited	unlimited	none	7.7 MiB	2.1 kbps
4	₫joko	172.19.0.2	: 40M	unlimited	none	14.7 MiB	20.1 Mbps
5	singgih	172.19.0.3	: 40M	unlimited	none	18.8 MiB	2.2 Mbps
6	akbar akbar	172.19.0.4	: 40M	unlimited	none	15.6 MiB	2.0 Mbps
7	khusnul	172.19.0.5	: 40M	unlimited	none	16.0 MiB	2.0 Mbps
8	STI201601301	172.19.0.6	: 30M	unlimited	none	12.9 MiB	19.3 Mbps
9		172.19.0.7	: 30M	unlimited	none	12.7 MiB	1681.4 k
10	₫ STI201601303	172.19.0.8	: 30M	unlimited	none	18.2 MiB	2.0 Mbps
11	₫ STI201601304	172.19.0.9	: 30M	unlimited	none	16.2 MiB	2.5 Mbps
12	STI201601305	172.19.0.10	: 30M	unlimited	none	18.4 MiB	2.5 Mbps
13	STI201601306	172.19.0.11	: 30M	unlimited	none	15.9 MiB	2.0 Mbps
14	STI201601307	172.19.0.12	: 30M	unlimited	none	19.2 MiB	2.7 Mbps
15	■ STI201601308	172.19.0.13	: 30M	unlimited	none	13.3 MiB	2.0 Mbps
16	■ STI201601309	172.19.0.14	: 30M	unlimited	none	14.8 MiB	2.7 Mbps
17	≘ STI201601310	172.19.0.15	: 30M	unlimited	none	12.4 MiB	2.8 Mbps
18	■ STI201601311	172.19.0.16	: 30M	unlimited	none	12.2 MiB	2.1 Mbps
19	STI201601312	172.19.0.17	: 30M	unlimited	none	10.4 MiB	2.0 Mbps
20	≘ STI201601313	172.19.0.18	: 30M	unlimited	none	11.4 MiB	2.6 Mbps
21	STI201601314	172.19.0.19	: 30M	unlimited	none	12.6 MiB	2.9 Mbps
22	≘ STI201601315	172.19.0.20	: 30M	unlimited	none	11.8 MiB	3.0 Mbps
23	STI201601316	172.19.0.21	: 30M	unlimited	none	17.3 MiB	2.9 Mbps
24	₫ test-dsn1	172.19.0.22	: 40M	unlimited	none	14.0 MiB	2.4 Mbps
25	₫ test-dsn2	172.19.0.23	: 40M	unlimited	none	18.8 MiB	1518.9 k
26	₫ test-dsn3	172.19.0.24	: 40M	unlimited	none	17.5 MiB	2.3 Mbps
27	₫ test-dsn4	172.19.0.25	: 40M	unlimited	none		2.3 Mbps
28	₫ test-dsn5	172.19.0.26	: 40M	unlimited	none	19.1 MiB	2.9 Mbps
29	atest-dsn6	172.19.0.27	: 40M	unlimited	none		3.2 Mbps

Gambar 4.10 Traffict Queue Sebelum Penerapan HTB

Name	Target /	Download Max	Download Limit	. Parent	Total Dow	Download
☐ HTB_total	172.19.0.0/24	: 100M	unlimited	none	6.6 GiB	95.8 Mbps
# HTB_dosen	172.19.0.2,	- 50M	unlimited	HTB_total	3508.3 MiB	51.3 Mbps
≘ joko	172.19.0.2	: 40M	5M	HTB_dosen	120.2 MiB	5.1 Mbps
singgih	172.19.0.3	: 40M	5M	HTB_dosen	318.8 MiB	4.2 Mbps
akbar	172.19.0.4	: 40M	5M	HTB_dosen	345.3 MiB	4.0 Mbps
khusnul	172.19.0.5	: 40M	: 5M	HTB_dosen	319.8 MiB	4.3 Mbps
test-dsn1	172.19.0.22	: 40M	5M	HTB_dosen	341.2 MiB	4.8 Mbps
test-dsn2	172.19.0.23	: 40M	5M	HTB_dosen	344.7 MiB	4.9 Mbps
test-dsn3	172.19.0.24	: 40M	5M	HTB_dosen	350.4 MiB	4.7 Mbps
test-dsn4	172.19.0.25	: 40M	: 5M	HTB_dosen	344.3 MiB	4.8 Mbps
test-dsn5	172.19.0.26	: 40M	: 5M	HTB_dosen	341.0 MiB	4.7 Mbps
test-dsn6	172.19.0.27	: 40M	: 5M	HTB_dosen	340.9 MiB	5.0 Mbps
test-dsn7	172.19.0.28	: 40M	5M	HTB dosen	341.7 MiB	4.9 Mbps
# HTB mhs	172.19.0.6,	: 40M	unlimited	HTB total	3214.0 MiB	44.4 Mbps
STI201601301	172.19.0.6	: 30M	: 3M	HTB_mhs	46.4 MiB	2.2 Mbps
	172.19.0.7	: 30M	: 3M	HTB_mhs	218.8 MiB	2.7 Mbps
	172.19.0.8	: 30M	. 3M	HTB_mhs	208.6 MiB	2.2 Mbps
	172.19.0.9	: 30M	: 3M	HTB_mhs	205.5 MiB	3.0 Mbps
	172.19.0.10	: 30M	: 3M	HTB_mhs	216.3 MiB	2.8 Mbps
STI201601306	172.19.0.11	: 30M	: 3M	HTB_mhs	216.5 MiB	2.5 Mbps
STI201601307	172.19.0.12	: 30M	: 3M	HTB_mhs	205.3 MiB	2.8 Mbps
	172.19.0.13	: 30M	: 3M	HTB_mhs	214.6 MiB	3.0 Mbps
STI201601309	172.19.0.14	: 30M	: 3M	HTB_mhs	207.0 MiB	3.0 Mbps
STI201601310	172.19.0.15	: 30M	: 3M	HTB mhs	204.4 MiB	2.6 Mbps
■ STI201601311	172.19.0.16	: 30M	: 3M	HTB_mhs	213.3 MiB	3.0 Mbps
■ STI201601312	172.19.0.17	. 30M	: 3M	HTB mhs	215.4 MiB	3.1 Mbps
STI201601313	172.19.0.18	: 30M	: 3M	HTB_mhs	205.0 MiB	2.8 Mbps
STI201601314	172.19.0.19	: 30M	: 3M	HTB_mhs	214.0 MiB	2.5 Mbps
STI201601315	172.19.0.20	: 30M	: 3M	HTB_mhs	217.0 MiB	2.9 Mbps
	172.19.0.21	. 30M	. 3M	HTB_mhs	205.8 MiB	2.8 Mbps

Gambar 4.11 Traffict Queue Sesudah Penerapan HTB

Sebelum penerapan HTB terdapat beberapa *client* yang status kecepatan internetnya ada yang melonjak dan ada yang tidak mendapatkan *bandwith* Gambar 4.10. Pada saat *client* men*download* paket data seperti digunakan untuk *download file* maupun digunakan untuk *streaming*. Sebagai

network engineer diwajibkan untuk memanajemen *bandwidth* sehingga *client* dapat terbagi walaupun tidak signifikan Gambar 4.11.

Gambar 4.12 Grafik Download hasil sesudah dan sebelum penerapan HTB

Pada Gambar 4.12 terlihat perbandingan grafik download sebelum dan sesudah penerapan HTB. Data yang dianalisa adalah bandwidth Download, dikarenakan mayoritas client mengunduh paket untuk streaming maupun browsing. Sedangkan client upload tidak terlalu sering digunakan dikarenakan client tidak melakukan upload paket. Jadi dari hasil penelitian diatas dapat disimpulkan bahwa penggunaan metode HTB untuk manajemen bandwidth pada jaringan internet sangat berpengaruh terhadap stabilitas koneksi yang di dapat. Pada traffic di atas garis vertikal merupakan satuan besaran bandwidth sementara garis horizontal merupakan urutan device atau PC. Secara keseluruhan hasil dari penerapan metode HTB sudah disimpulkan dalam satu grafik (Gambar 4.11), yang mana dalam grafik tersebut warna merah mewakili kondisi ketika jaringan belum diterapkan metode HTB sementara warna hijau mewakili kondisi sesudah diterapkannya metode HTB. Pada data grafik tersebut dapat dilihat bahwa kondisi sebelum diterapkannya metode HTB traffic jaringan sangat tidak stabil dan tidak berimbang, hal tersebut terlihat dari tingginya jarak nilai yang tercantum pada warna biru dan pola yang tidak teratur. Berbanding terbalik dengan warna merah yang selisih nilainya cenderung rata dan terpola.

4.3 PEMBAHASAN PENGEMBANGAN NETWORK DEVELOPMENT LIFE CYCLE (NDLC)

1. Analisa

Dalam implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama di perlukan komponen-komponen yang telah di bahas pada bab III dengan banyaknya *client* yang terhubung ke jaringan tersebut *bandwidth* untuk setiap *client* cenderung rata dan terpola

2. Desain

desain dalam penerapan HTB menggunakan topologi jaringan yaitu topologi hybrid dengan perancangan sementara menggunakan aplikasi *Microsoft visio* 2019.

3. Simulasi Prototipe

Simulasi prototipe di lakukan untuk menemukan kesalahan dan memperbaiki serta penyempurnaan dari kekurangan penerapan sistem manajemen bandwidth memanfaat kan fitur simple queue pada Mikrotik di STMIK Widya Utama Purwokerto. Simulasi prototipe dilakukan untuk melihat kinerja awal dari penelitian yang akan dilakukan sebagai bahan pertimbangan awal dari penelitian yang akan di lakukan dan sebelum di terapkan

4. Implementasi

Implementasi/ penerapan sistem HTB memanfaat fitur *simple queue* pada Mikrotik di STMIK Widya Utama Purwokerto di lakukan seperti:

- a. Pembangunan jaringan HTB (hierarchical token bucket) di lokasi/ruang yang akan digunakan
- b. Instalasi Router Mikrotik
- c. Konfigurasi Mikrotik sebagai perangkat manajemen bandwidth

5. Pengamatan

pengamatan penerapan sistem HTB (hierarchical token bucket) menggunakan simple queue pada mikrotik di STMIK Widya Utama Purwokerto di lakukan agar jaringan komputer dan komunikasi dapat berjalan dengan keinginan dan tujuan awal pada tahap analisi, untuk mengetahui kekurangan dan kesalahan yang perlu diperbaiki dalam penerapan sistem ini

6. Pengelolaan

pengelolaan dilakukan untuk menjaga keawetan dari penerapan sistem HTB (hierarchical token bucket) menggunakan simple queue pada mikrotik di STMIK Widya Utama Purwokerto serta untuk mengembangkanya

4.4 HASIL UJI PRODUK

Hasil uji produk yaitu nilai pengujian dari tim penguji, daftar tim penguko tersbut adalah sebagai berikut :

NO	NAMA	INSTANSI
1	Joko Purnomo, M.kom	Dosen STMIK Widya Utama
2	Singgih Briandoko, M.kom	Dosen STMIK Widya Utama
3	M. Akbar Setiawan, M.kom	Dosen STMIK Widya Utama
4	Sulistiyasni, M.kom	Dosen STMIK Widya Utama
5	Riana Safitri, M.kom	Dosen STMIK Widya Utama

Tabel 4.1 Daftar Penguji Produk

Hasil Uji Produk kemudian ditabulasikan yang dapat dilihat pada tabel ,hasil dari analisis deskriptif dapat dilihat pada tabel berikut :

Descriptive Statistics

	N	Mean		Std. Deviation
	Statistic	Statistic	Std.	Statistic
			Error	
X1	20	3.2500	.20359	.91047
X2	20	3.0500	.13524	.60481
X3	20	3.3000	.16384	.73270
X4	20	3.1500	.18173	.81273
X5	20	3.2500	.17584	.78640
X6	20	3.1000	.17622	.78807
X7	20	2.8500	.18173	.81273
X8	20	3.0000	.19194	.85840
X9	20	3.3000	.16384	.73270
X10	20	3.5500	.16975	.75915
X11	20	2.9000	.26057	1.16529
X12	20	2.7500	.25000	1.11803
X13	20	2.8000	.25752	1.15166
X14	20	3.0000	.16222	.72548
X15	20	3.2000	.22478	1.00525
Valid N	20			
(listwise)				

Tabel 4.2 Nilai Atribut Uji Produk

4.5 PEMBAHASAN UJI PRODUK

Nilai uji produk memiliki batas uji produk 75, jika nilai uji produk ≥75 maka produk dinyatakan berhasil, tetapi jika nilai uji produk ≤ 75 maka produk dinyatakan gagal. Berdasarkan table 4.2 di peroleh hasil sebagai berikut :

Rata-rata nilai 6 atribut pada uji produk = 47.0000

Nilai Uji Produk = (RNU6A/N Max 6A) x 100

Nilai Uji Produk = (47.0000/60) x 100 = 86.6666

Maka dapat disimpulkan bahwa Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama Mendapat nilai di atas batas nilai kelulusan yang telah di tentukan yaitu 75% dan Hasil Uji produk adalah 86.6%.

4.6 HASIL UJI VALIDASI

Hasil dari pelaksanaan uji manfaat adalah data respon dari responden terhadap kemanfaatan hasil penelitian menggunakan alat bantu kuesioner yang berisi 10 item pertanyaan yang mewakili 4 aspek yaitu *useability, Learnability, Efficiency,* dan *Acceptability.* Jawaban dari reponden untuk menguji manfaat kemudian ditabulasikan dalam sebuah table yang terlampir dalam laporan. Setelah itu membuat uji manfaat.sav yang digunakan untuk menganalisis jawaban reponden. Item pertanyaan pada kuesioner yang telah dijawab akan di uji dengan uji *validitas* dan *reliabilitas*

Tabel 4.3 Validitas Static

Daftar Pertanyaan	Mean	Std. Deviation	N
Apakah anda setuju bahwa Implementasi manajemen bandwidth berbasis mikrotik dengan metode simple queue dan hirarchical token bucket (htb) dapat digunakan untuk STMIK widya utama?	3.25	.910	20
Apakah anda setuju bahwa bandwidth yang ditawarkan sesuai dengan kebutuhan?	3.05	.604	20
Apakah anda setuju Implementasi manajemen bandwidth berbasis mikrotik dengan metode simple queue dan hirarchical token bucket (htb) di STMIK Widya Utama di prioritaskan	3.30	.732	20

untuk pelayanan jaringan lokal maupun internet ?			
Apakah anda setuju Implementasi manajemen bandwidth berbasis mikrotik dengan metode simple queue dan hirarchical token bucket (htb) di STMIK Widya Utama mudah di pasang?	3.15	.812	20
Apakah anda setuju Implementasi manajemen bandwidth berbasis mikrotik dengan metode simple queue dan hirarchical token bucket (htb) di STMIK Widya Utama dapat di akses melalui perangkay yang memiliki fitur wifi bila pengguna membutuhkan?	3.25	.786	20
Apakah anda setuju bahwa pembagian bandwidth menggunakan Implementasi manajemen bandwidth berbasis mikrotik dengan metode simple queue dan hirarchical token bucket (htb) di STMIK Widya Utama mudah dipahami?	3.10	.788	20
Apakah anda setuju bahwa Implementasi manajemen	2.85	.812	20

bandwidth berbasis mikrotik			
dengan metode simple			
queue dan hirarchical token			
bucket (htb) di STMIK			
Widya Utama mudah			
dipahami oleh masyarakat?			
Apakah anda setuju bahwa			
Implementasi manajemen			
bandwidth berbasis mikrotik			
dengan metode simple			
queue dan hirarchical token	3.00	.858	20
bucket (htb) di STMIK			
Widya Utama mudah			
dioperasikan oleh			
masyarakat ?			
Apakah anda setuju bahwa			
Implementasi manajemen			
bandwidth berbasis mikrotik			
dengan metode simple			
queue dan hirarchical token	3.30	.732	20
bucket (htb) di STMIK			
Widya Utama menggunakan			
konsep network development			
life cycle (NDLC)			
Apakah anda setuju bahwa			
Implementasi manajemen			
bandwidth berbasis mikrotik			
dengan metode simple	3.55	.759	20
queue dan hirarchical token			
bucket (htb) di STMIK			
Widya Utama bisa di			

kembangkan dan dipelajari lagi ?			
Apakah anda setuju bahwa Implementasi manajemen bandwidth berbasis mikrotik dengan metode simple queue dan hirarchical token bucket (htb) di STMIK Widya Utama memberikan efisiensi dalam proses pembagian bandwidth?	2.90	1.16	20
Apakah anda setuju bahwa Implementasi manajemen bandwidth berbasis mikrotik dengan metode simple queue dan hirarchical token bucket (htb) di STMIK Widya Utama lebih efisien untuk mengontrol bandwidth ?	2.75	1.11	20
Apakah anda setuju bahwa Implementasi manajemen bandwidth berbasis mikrotik dengan metode simple queue dan hirarchical token bucket (htb) di STMIK Widya Utama lebih efisien untuk mengurangi dampak pembagian bandwidth yang tidak stabil?	2.80	1.11	20

Apakah anda setuju bahwa penggunaan Implementasi manajemen bandwidth berbasis mikrotik dengan metode simple queue dan hirarchical token bucket (htb) di STMIK Widya Utama dapat diterima oleh masyarakat?	3.00	.725	20
Apakah anda setuju bahwa penggunaan Implementasi manajemen bandwidth berbasis mikrotik dengan metode simple queue dan hirarchical token bucket (htb) di STMIK Widya Utama dapat diterima untuk memberikan bandwidth dan mengontrol traffic koneksi internet?	3.20	1.00	20

Hasil uji validitas diatas menunjukan bahwa kelima belas pertanyaan mempunyai korelasi di atas 0.75, sehingga dapat di nyatakan bahwa lima belas pertanyaan tersebut dinyatakan valid.

Tabel 4.4 Hasil reliability statictic

Reliability Statistics

Reliability Gtatistics			
Cronbach's Alpha	N of Items		
.939	15		

Hasil dari Uji *reliability statictic* menunjukan nilai *Cronbach's Alpha* di atas 0.75 yaitu 0.93 untuk ujimanfaat, sehingga dapat di nyatakan lima belas item pertanyaan pada kuesioner dinyatakn reliabel.

Tabel 4.5 Respon Responden terhadap item pertanyaan X1

			X1		
		Freque	Perce	Valid	Cumulative
		ncy	nt	Percent	Percent
Va	1. 00	2	10.0	10.0	10.0
	3. 00	9	45.0	45.0	55.0
lid	4. 00	9	45.0	45.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.5, presentase terbesar untuk pertanyaan, Apakah anda setuju bahwa Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) dapat digunakan untuk STMIK widya utama?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 47% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama. Grafik dari respon terhadap pertanyaan X1 dapat dilihat pada gambar berikut.

Gambar 4.13 Pie Responden Tabel 4.5

Tabel 4.6 Respon Responden terhadap item pertanyaan X2

			X2		
		Freque	Perce	Valid	Cumulative
		ncy	nt	Percent	Percent
Va lid	1. 00	1	5.0	5.0	5.0
	3. 00	16	80.0	80.0	85.0
	4. 00	3	15.0	15.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.6, presentase terbesar untuk pertanyaan, Apakah anda setuju bahwa *bandwidth* yang ditawarkan sesuai dengan kebutuhan?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 80% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama. Grafik dari respon terhadap pertanyaan X2 dapat dilihat pada gambar berikut.

Gambar 4.14 Pie Responden Tabel 4.6

Tabel 4.7 Respon Responden terhadap item pertanyaan X3

			Х3		
		Freque ncy	Perce nt	Valid Percent	Cumulative Percent
:	1. 00	1	5.0	5.0	5.0
	3. 00	11	55.0	55.0	60.0
lid	4. 00	8	40.0	40.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.7 , presentase terbesar untuk pertanyaan , Apakah anda setuju Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama di prioritaskan untuk pelayanan jaringan lokal maupun internet? ,

Sebagai item pertanyaan uji manfaat , di peroleh skor sebesar 55% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama . Grafik dari respon terhadap pertanyaan X3 dapat dilihat pada gambar berikut.

Gambar 4.15 Pie Responden Tabel 4.7

Tabel 4.8 Respon Responden terhadap item pertanyaan X4

			X4		
		Freque	Perce	Valid	Cumulative
		ncy	nt	Percent	Percent
	1. 00	1	5.0	5.0	5.0
	2. 00	2	10.0	10.0	15.0
Va lid	3. 00	10	50.0	50.0	65.0
	4. 00	7	35.0	35.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.8, presentase terbesar untuk pertanyaan, Apakah anda setuju Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama mudah di pasang?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 50% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama. Grafik dari respon terhadap pertanyaan X4 dapat dilihat pada gambar berikut.

Gambar 4.16 Pie Responden Tabel 4.8

Tabel 4.9 Respon Responden terhadap item pertanyaan X5

			X5		
		Freque	Perce	Valid	Cumulative
		ncy	nt	Percent	Percent
	1. 00	1	5.0	5.0	5.0
	2. 00	1	5.0	5.0	10.0
Va lid	3. 00	10	50.0	50.0	60.0
	4. 00	8	40.0	40.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.9 , presentase terbesar untuk pertanyaan , Apakah anda setuju Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama dapat di akses melalui perangkat yang memiliki fitur wifi bila pengguna membutuhkan? , Sebagai item pertanyaan uji manfaat , di peroleh skor sebesar 50% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama . Grafik dari respon terhadap pertanyaan X5 dapat dilihat pada gambar berikut.

Gambar 4.17 Pie Responden Tabel 4.9

Tabel 4.10 Respon Responden terhadap item pertanyaan X6

			X6		
		Freque ncy	Perce nt	Valid Percent	Cumulative Percent
	1. 00	1	5.0	5.0	5.0
	2. 00	2	10.0	10.0	15.0
Va lid	3. 00	11	55.0	55.0	70.0
	4. 00	6	30.0	30.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.10, presentase terbesar untuk pertanyaan, Apakah anda setuju bahwa pembagian *bandwidth* menggunakan Implementasi manajemen *bandwidth* berbasis mikrotik dengan *metode simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama mudah dipahami?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 55% setuju

bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama . Grafik dari respon terhadap pertanyaan X6 dapat dilihat pada gambar berikut.

Gambar 4.18 Pie Responden Tabel 4.10

Tabel 4.11 Respon Responden terhadap item pertanyaan X7

			Х7		
		Freque	Perce	Valid	Cumulative
		ncy	nt	Percent	Percent
	1. 00	1	5.0	5.0	5.0
	2. 00	5	25.0	25.0	30.0
Va lid	3. 00	10	50.0	50.0	80.0
	4. 00	4	20.0	20.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.13, presentase terbesar untuk pertanyaan, Apakah anda setuju bahwa Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama mudah dipahami oleh masyarakat?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 50% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama. Grafik dari respon terhadap pertanyaan X7 dapat dilihat pada gambar berikut.

Gambar 4.19 Pie Responden Tabel 4.11

Tabel 4.12 Respon Responden terhadap item pertanyaan X8

	X8							
		Freque	Perce	Valid	Cumulative			
		ncy	nt	Percent	Percent			
	1. 00	2	10.0	10.0	10.0			
	2. 00	1	5.0	5.0	15.0			
Va lid	3. 00	12	60.0	60.0	75.0			
	4. 00	5	25.0	25.0	100.0			
	To tal	20	100.0	100.0				

Berdasarkan Tabel 4.12, presentase terbesar untuk pertanyaan, Apakah anda setuju bahwa Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket (htb) di STMIK Widya* Utama mudah dioperasikan oleh masyarakat?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 60% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama. Grafik dari respon terhadap pertanyaan X8 dapat dilihat pada gambar berikut.

Gambar 4.20 Pie Responden Tabel 4.12

Tabel 4.13 Respon Responden terhadap item pertanyaan X9

			Х9		
		Freque	Perce	Valid	Cumulative
		ncy	nt	Percent	Percent
Va	1. 00	1	5.0	5.0	5.0
	3. 00	11	55.0	55.0	60.0
lid	4. 00	8	40.0	40.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.13, presentase terbesar untuk pertanyaan, Apakah anda setuju bahwa Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama menggunakan konsep *network development life cycle* (NDLC)?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 55% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket*

(HTB) di stmik widya utama . Grafik dari respon terhadap pertanyaan X9 dapat dilihat pada gambar berikut.

Gambar 4.21 Pie Responden Tabel 4.13

Tabel 4.14 Respon Responden terhadap item pertanyaan X10

	X10									
		Freque	Perce	Valid	Cumulative					
		ncy	nt	Percent	Percent					
3.	1. 00	1	5.0	5.0	5.0					
	3. 00	6	30.0	30.0	35.0					
lid	4. 00	13	65.0	65.0	100.0					
	To tal	20	100.0	100.0						

Berdasarkan Tabel 4.14, presentase terbesar untuk pertanyaan, Apakah anda setuju bahwa Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama bisa di kembangkan dan dipelajari lagi ?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 65% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan

metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama . Grafik dari respon terhadap pertanyaan A10 dapat dilihat pada gambar berikut.

Gambar 4.22 Pie Responden Tabel 4.14

Tabel 4.15 Respon Responden terhadap item pertanyaan X11

			X11		
		Freque	Perce	Valid	Cumulative
		ncy	nt	Percent	Percent
	1. 00	4	20.0	20.0	20.0
	2. 00	2	10.0	10.0	30.0
Va lid	3. 00	6	40.0	40.0	60.0
	4. 00	8	45.0	45.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.15 , presentase terbesar untuk pertanyaan , Apakah anda setuju bahwa Implementasi manajemen *bandwidth* berbasis mikrotik

dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama memberikan efisiensi dalam proses pembagian *bandwidth*?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 45% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama. Grafik dari respon terhadap pertanyaan A10 dapat dilihat pada gambar berikut.

Gambar 4.23 Pie Responden Tabel 4.15

Tabel 4.16 Respon Responden terhadap item pertanyaan X12

			X12		
		Freque ncy	Perce nt	Valid Percent	Cumulative Percent
	1. 00	4	20.0	20.0	20.0
	2. 00	3	15.0	15.0	35.0
Va lid	3. 00	7	40.0	40.0	70.0
	4. 00	6	35.0	35.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.18, presentase terbesar untuk pertanyaan, Apakah anda setuju bahwa Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama lebih efisien untuk mengontrol *bandwidth*?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 40% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama. Grafik dari respon terhadap pertanyaan A10 dapat dilihat pada gambar berikut.

Gambar 4.24 Pie Responden Tabel 4.16

Tabel 4.17 Respon Responden terhadap item pertanyaan X13

			X13		
		Freque	Perce	Valid	Cumulative
		ncy	nt	Percent	Percent
	1. 00	4	20.0	20.0	20.0
	2. 00	3	15.0	15.0	35.0
Va lid	3. 00	6	35.0	35.0	65.0
	4. 00	7	35.0	35.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.17, presentase terbesar untuk pertanyaan, Apakah anda setuju bahwa Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama lebih efisien untuk mengurangi dampak pembagian *bandwidth* yang tidak stabil?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 35% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama. Grafik dari respon terhadap pertanyaan A10 dapat dilihat pada gambar berikut.

Gambar 4.25 Pie Responden Tabel 4.17

Tabel 4.18 Respon Responden terhadap item pertanyaan X14

			X14		
		Freque	Perce	Valid Percent	Cumulative Percent
		ncy	nt	Percent	Percent
	1. 00	1	5.0	5.0	5.0
	2. 00	2	10.0	10.0	15.0
Va lid	3. 00	13	65.0	65.0	80.0
	4. 00	4	20.0	20.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.18, presentase terbesar untuk pertanyaan, Apakah anda setuju bahwa penggunaan Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama dapat diterima oleh masyarakat?, Sebagai item pertanyaan uji manfaat, di peroleh skor sebesar 65% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan *hierarchical token bucket* (HTB) di stmik widya utama. Grafik dari respon terhadap pertanyaan A10 dapat dilihat pada gambar berikut.

Gambar 4.26 Pie Responden Tabel 4.18

Tabel 4.19 Respon Responden terhadap item pertanyaan X15

			X15		
		Freque	Perce	Valid	Cumulative
		ncy	nt	Percent	Percent
	1. 00	2	10.0	10.0	10.0
	2. 00	2	10.0	10.0	20.0
Va lid	3. 00	6	30.0	30.0	50.0
	4. 00	10	50.0	50.0	100.0
	To tal	20	100.0	100.0	

Berdasarkan Tabel 4.19 , presentase terbesar untuk pertanyaan , Apakah anda setuju bahwa penggunaan Implementasi manajemen *bandwidth* berbasis mikrotik dengan *metode simple queue* dan *hirarchical token bucket (htb)* di STMIK Widya Utama dapat diterima untuk memberikan *bandwidth* dan mengontrol *traffic* koneksi internet ? , Sebagai item pertanyaan uji manfaat , di peroleh skor sebesar 65% setuju bahwa penerapan implementasi manajemen *bandwidth* berbasis mikrotik dengan menggunakan metode *simple queue* dan

hierarchical token bucket (HTB) di stmik widya utama . Grafik dari respon terhadap pertanyaan A10 dapat dilihat pada gambar berikut.

Gambar 4.27 Pie Responden Tabel 4.19

Hasil jawaban reponden ke 1 dapat disimpulkan menggunakan table rangkuman hasil uji manfaat ke 1 dengan kriteria setuju dan sangat setuju.

Keterangan X1-10 = Pertanyaan 1 sampai 15 pada kusioner uji manfaat

1 = Sangat tidak setuju

2 = Tidak Setuju

3 = Setuju

4 = Sangat Setuju

Tabel 4.20 Uji Manfaat (%)

Pertanyaan	X1		X2		X3		X4		X5			Doto roto				
Kriteria	S	SS	Jml	S	SS	Jml	S	SS	Jml	S	SS	Jml	S	SS	Jml	Rata-rata
Ussability	45	45	90	80	15	95	55	40	95	50	30	80	50	40	90	90
Pertanyaan	X6		X7		X8		X9		X10			Determine				
Kriteria	S	SS	Jml	S	SS	Jml	S	SS	Jml	S	SS	Jml	S	SS	Jml	Rata-rata
Learnability	55	30	85	50	20	70	60	25	85	55	40	95	30	65	95	86
Pertanyaan	X11		X12		X13							Rata-rata				
Kriteria	S	SS	Jml	S	SS	Jml	S	SS	Jml							Nata-tata
Efficiency	40	45	85	40	35	75	35	35	70							76.66666667
Pertanyaan	X1		X2										Rata-rata			
Kriteria	S	SS	Jml	S	SS	Jml										Nata-tata
Acceptability	65	20	85	30	50	80										82.5

Tabel 4.23 Rangkuman Hasil Uji Manfaat (%)

Ussability	Learnability	Efficiency	Acceptability
(%)	(%)	(%)	(%)
90	86	76.6	82.5

Sebagian besar responden memandang bahwa Implementasi manajemen bandwidth berbasis mikrotik dengan metode simple queue dan hirarchical token bucket (HTB) di STMIK Widya Utama sangat Ussability karena mudah di pahami warga kampus dan membantu dalam pengelolaan jaringan secara terpusat

4.7 Pembahasan

Berdasarkan Tabel 4.18 di peroleh respon dari responden terhadap setiap pertanyaan dengan kriteria *Ussability, Learnability, Efficiency, Acceptability* masing-masing skor ≥75% dengan kata lain dapat disimpulkan bahwa Implementasi manajemen *bandwidth* berbasis mikrotik dengan metode *simple queue* dan *hirarchical token bucket* (htb) di STMIK Widya Utama bermanfaat bagi warga kampus untuk menstabilkan koneksi jaringan lokal maupun internet dengan menggunakan *simple queue* dan *hirarchical token bucket* (HTB) serta

membantu admin jaringan mengontrol dan memonitoring jaringan yang ada di STMIK Widya Utama Purwokerto secara terpusat

4.8 KESIMPULAN

Hasil dari sepuluh item pertanyaan dengan kriteria *Ussability*, *Learnability*, *Efficiency*, *Acceptability* ≥75% pada kuesioner dinyatakan nilai Uji Manfaat menunjukan nilai *Ussability* 90%, *Learnability* 86%, *Efficiency* 76.6%, *Acceptability* 82.5% sehingga dapat dinyatakan Uji manfaat **LULUS**

BAB V

KESIMPULAN DAN SARAN

5.1 KESIMPULAN

Kesimpulan dari pembahasan tentang penerapan dan kasus manajemen bandwidth dengan menggunakan metode HTB adalah bahwa penerapan manajemen jaringan khususnya bandwidth merupakan hal yang sangat penting untuk dilakukan, karena bandwidth merupakan salah satu komponen utama. Tanpa adanya manajemen bandwidth yang baik maka bisa dipastikan pelayanan dari jaringan tersebut tidak akan maksimal.Dengan menerapkan HTB kondisi traffic jaringan sebelumnya sangat tidak stabil dan tidak berimbang, Dalam penelitian OoS pada waktu pagi hari lebih banyak pengguna dibandingkan pada malam hari, Pada saat menggunkan metode HTB lebih baik karena pembagian bandwidth merata dan keseluru user, dan Faktor-faktor yang mempengaruhi QoS pada STMIK Widya Utama Purwokerto adalah redaman, distorsi dan juga kapasitas bandwidth yang tersedia juga mempengaruhi kinerja QoS setelah diterapkan metode HTB.

5.2 SARAN

- 1. Peningkatan jenis layanan dari internet di *user* sebaiknya ditambah, tidak hanya untuk internet saja mungkin kedepannya bisa di tambahkan dengan iptv ataupun layanan lainya yang dapat menunjang pengoptimalan layanan.
- 2. Monitoring *traffic* jaringan sebaiknya dilakukan sebaik mungkin, mengingat kedepannya tidak menutup kemungkinan client akan semakin bertambah.
- 3. Peningkatan kualitas internet dari ISP dapat ditingkatkan levelnya, hal tersebut beralasan karena semakin kedepannya tuntutan client akan semakin tinggi seiring perkembangan teknologi yang semakin berkembang.

DAFTAR PUSTAKA

- [1]. Farid Hakim Tri Hartomo, dan Muhammad Nugraha Jatun (2018) Manajemen Bandwidth Menggunakan Metode Hierarchical token bucket (HTB) di Farid.net
- [2]. Yudi Irawan Chandra dan Kosdiana Rancang (2018) Bangun Jaringan Komputer Nirkabel Dan Hotspot Menggunakan Router Mikrotik Rb850gx2 (Studi Kasus Di STMIK Jakarta STI&K)
- [3]. Angga Alvendra Pratama, Boko Susilo, Muhammad Donni Lesmana Siahaan, Melva Sari Panjaitan, dan Andysah Putera Utama Siahaan (2016) "MikroTik Bandwidth Management to Gain the Users Prosperity Prevalent"
- [4]. Ketut Gede Widia Pratama Putra, Gede Saindra Santyadiputra, Made Windu Antara Kesiman (2020) "PENERAPAN MANAJEMEN BANDWIDTH MENGGUNAKAN METODE

 HIERARCHICAL TOKEN BUCKET PADA LAYANAN HOTSPOT MIKROTIK UNDIKSHA"
- [5]. Pengertian Mikrotik https://www.dosenpendidikan.co.id/mikrotik-adalah/. Diakses pada tanggal 12 April 2020
- [6]. Memahami Winbox dan Fungsinya https://www.wirelessmode.net/yuk-memahami-winbox-dan-fungsinya.html . Diakses pada tanggal 12 April 2020
- [7]. Konsep Router https://teddyonblcklaten.wordpress.com/2017/06/22/konsep-router/. Diakses pada tanggal 12 April 2020
- [8]. Makalah Jaringan Mikrotik https://darisirfanatmaja.blogspot.com/2016/12/makalah-jaringan-mikrotik.html. Diakses pada tanggal 13 April 2020
- [9]. Wi-Fi https://id.wikipedia.org/wiki/Wi-Fi. Diakses pada tanggal 13 April 2020
- [10]. Pengertian Wireless Access Point dan Wireless Client https://rafiichsanuliqbal.blogspot.com/2015/08/pengertian-wireless-access-point-dan.html . Diakses pada tanggal 13 April 2020

- [11]. Pengertian, Layanan dan Parameter *Quality of Servise* (Qos) https://www.kajianpustaka.com/2019/05/pengertian-layanan-dan-parameter-quality-of-service-qos.html. Diakses pada tanggal 13 April 2020
- [12]. Simple queue, HTB, Queue tree https://mqodrisyr.wordpress.com/2019/02/26/simple-queue-htb-queue-tree/. Diakses pada tanggal 13 April 2020
- [13]. Pengertian *Latensi* di dalam jaringan https://azuharu.net/pengertian-latency/ . Di akses pada tanggal 13 April 2020
- [14]. ISP adalah https://www.dosenpendidikan.co.id/isp-adalah/ Diakses pada tanggal 13 April 2020
- [15]. Angga Alvendra Pratama, Boko Susilo, Funny Farady Coastera (2018) "MANAJEMEN *BANDWIDTH* DENGAN *QUEUETREE* PADA RT/RW-NET MENGGUNAKAN MIKROTIK"
- [16]. Makalah Tentang Jaringan Komputer http://www.makalah.co.id/2016/10/makalah-tentang-jaringan-komputer.html
 . Diakses pada tanggal 13 April 2020
- [17]. Pengertian LAN, MAN, dan WAN https://allabout2017.wordpress.com/pengertian-lan-man-dan-wan/. Diakses pada tanggal 13 April 2020
- [18]. Pertian *Client Server :* kelebiah , Kekurangan dan cara kerja https://www.mastekno.com/id/pengertian-jaringan-client-server/ Diakses pada tanggal 13 April 2020
- [19]. Pengertian Jaringan Peer to Peer Beserta Kelebihan dan Kekuranganya https://www.nesabamedia.com/pengertian-jaringan-peer-to-peer/. Diakses pada tanggal 13 April 2020
- [20]. Imam Riadi, Wahyu Prio Wicaksono (2011) "Implementasi Quality of ServiceMenggunakan Metode Hierarchical Token Bucket"
- [21]. Pengertian, Jenis, Fungsi, Cara kerja, Kelebihan & Kekuranganya Lengkap "https://seputarilmu.com/2019/06/hub-adalah.html". Diakses tanggal 13 April 2020
- [22]. Topologi jaringan "https://id.wikipedia.org/wiki/Topologi_jaringan" Diakses pada tanggal 13 April 2020

- [23]. Alamat IP "https://id.wikipedia.org/wiki/Alamat_IP" Diakses pada tanggal 13 April 2020
- [24]. Modem "https://id.wikipedia.org/wiki/Modem" .Diakses pada tanggal 13 April 2020
- [25]. Biznet Network "https://id.wikipedia.org/wiki/Biznet_Networks". Diakses pada tanggal 13 April 2020
- [26]. Isa, I.G.T., Hartawan, G.P. 2017. Perancangan Aplikasi Koperasi Simpan Pinjam Berbasis Web (Studi Kasus Koperasi Mitra Setia). Jurnal Ilmiah Ilmu Ekonomi. 5 (10): 139-151.
- [27]. Erhaneli., Irawan, O. 2015. Prediksi Perkembangan Beban Listrik Sektor Rumah Tangga Di Kabupaten Sijunjung Tahun 2013-2022 Dengan Simulasi SPSS. Jurnal Momentum. 17 (2): 14-25