micron = 0,03937 0,7874 m 2,3627 m 11 = 3,937 m 11 = 0,3937 m mm

PATENT SPECIFICATION

(22) Filed 3 June 1977 (21) Application No. 23696/77

(31) Convention Application No. 694951

(32) Filed 11 June 1976

(31) Convention Application No. 752855

(32) Filed 21 Dec. 1976 in

(33) United States of America (US)

(44) Complete Specification published 18 March 1981

(51) INT CL3 C23C 9/00

(52) Index at acceptance

5

10

15

20

25

30

35

40

45

C7F 1A 1B2 2A 2F 2G 2U 3E 4F 4K

1 586 501

(11)

(54) IMPROVEMENTS IN METAL COATING

ALLOY SURFACES COMPANY, INC., a Corporation organised and existing under the laws of the State of Delaware, United States of America, of Wilmington, State of Delaware, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

The present invention relates to the chemical vapour diffusion coating of metals to increase their resistance to corrosion and other chemical attacks.

Preliminary diffusion aluminizing of ferrous metals greatly improves the corrosion resistance provided by top coatings. Where the dimensional accuracy of a work-piece is of a high order, such as on the root of a rotor blade that is to be securely received in a socket, it is frequently impractical to permit aluminizing of that root because the added aluminium increases the root's dimensions. Such masking problems arise more frequently with the superalloy components in the hot section of a turbine engine, where aluminizing is more widely practised.

The invention provides a method for localized chemical vapour diffusion coating of metal into a portion of the surface of metal workpiece, which method comprises applying to the workpiece at least one adherent chemical-vapourdeposition-delineating layer that delineates the area of a surface to be diffusion coated, the layer being applied as a slurry of chemical-vapour-diffusion-delineating powder in a solution of a heat-fugitive resin binder in a solvent which is methyl chloroform or methylene chloride permitting the solvent to evaporate to set the layer, and then subjecting the thus-coated workpiece to chemical vapour diffusion coating, e.g. aluminizing. coating, e.g. aluminizing.

The term "chemical-vapour-deposition-delineating layer" as used herein includes both a layer which is applied to prevent diffusion coating in the area to which the said layer is applied and, in an alternative embodiment, a layer which contains the metal with which the said portion of the workpiece surface is to be diffusion-coated, whereby the area of the surface covered by the layer becomes diffusion coated with the said metal, during the diffusion coating process.

The layer is preferably covered by another layer which forms a brittle sheath Hulle OFLOSE.

during the diffusion coating process. The sheath-forming layer or one or more of the strata which constitute this layer, preferably have Cr_2O_3 , nickel or mixtures of these two, as particles that become coherently united. Neither of these materials contaminate superalloy or stainless steel workpieces inasmuch as only chromium or nickel can be introduced into the work-pieces from these sources, and these two metals are already present in the work-piece. Chromium and nickel are also not considered contaminants for low alloy steels, particularly those ferrous alloys containing at least 1% chromium.

The Cr₂O₃ and nickel particles are so actively effective that they can be diluted with as much as twice their weight of alumina or other inert filler, without losing their sheath-forming ability. While they can be used in undiluted form, it is preferred to dilute these aluminizable ingredients with some filler, at least about half as much filler as active material, by weight. Such dilution diminishes the amount of material that can consume the aluminizing aluminium, and also reduces the masking cost. Moreover, undiluted coatings of Cr2O3 and resin tend to crack on

For best masking of those aluminizing diffusions that are conducted at drying.

20

15

5

10

25

30

35

40

45

2	1,586,501	2
	extremely high temperatures, e.g. 1900°F or higher, it is helpful to have a three-layer masking combination in which the workpiece contacting layer is of the depletion-reducing type, the next layer of the masking type, and the outermost layer of the sheath forming type.	
5	EXAMPLE 1 A number of hot section first stage jet engine blades made of B-1900 nickel-base superalloy had their roots dipped in the following mixture:	5.
10	Powdered Ni ₃ Al having 20 to 100 micron particle size Powdered chromium having 20 to 100 micron particle size Powdered alumina having 20 to 100 micron particle size Poly(ethylmethacrylate) Methyl chloroform 111 g. 3.4 g. 111 g. 9 g. 123 g.	10
15	The resin was first dissolved in the methyl chloroform, and the remaining ingredients then added with stirring to form a uniform slurry that did not settle very rapidly.	15
20	A single dip coating treatment with the suspension at room temperature, about 60 to about 80°F, deposited a layer weighing about 130 milligrams per square centimeter after the methyl chloroform solvent had been permitted to evaporate. Only a fraction of a minute was needed to complete such a coating, and it was found to be helpful to repeat the dip several times until the combined coatings weigh about 500 milligrams per square centimeter. Dipping a previously dipped coating in the dispersion does not remove any significant portion of the previous coating, particularly if the previous coating has been permitted to dry at room temperature for about 1/2 minute.	20
	After three or more dips as above, the thus-coated blades were dipped in the following coating mixture: Powdered nickel, 20 to 100 micron particle size 175 g.	•
30	Powdered ficker, 20 to 100 micron particle size 175 g. Powdered alumina, 20 to 100 micron particle size 175 g. Poly(ethylmethacrylate) 4.7 g. Methyl chloroform 62.1 g.	30
35	This dipping was repeated two more times, with intervening dryings at least about 1/2 minute long each, to build up an adherent chemical-vapour-deposition-diffusion-delineating layer, weighing about 500 milligrams per square centimeter. In this layer, the nickel functions as a chemical-vapour-diffusion-limiting powder, and the alumina as a diluent. The blades were then promptly inserted in a pre-fired diffusion aluminizing pack having the following composition in parts by weight.	35
40	Powdered aluminium, 20 to 60 micron particle size Powdered chromium, about 10 micron particle size Powdered alumina, 20 to 60 micron particle size Powdered NH ₄ Cl 10 40 50 0.3	40
45	into which additional NH ₄ Cl was blended to bring its concentration to the 0.3% value and make up for pre-firing volatilization. All of the blades were completely covered by the pack, and the mass was held in a diffusion coating retort. Diffusion coating was then carried out with a 6 hour hold at 1875°F in the manner described in U.S Patent No. 3,785,854. The blades were then removed from the cooled retort and carried a hard shell-like sheath or crust where the roots had been covered with	45
50	the masking dips. These crusts were quite adherent and coherent, so that the aluminizing pack was not materially contaminated by the masking layers, and could be reused for additional aluminizing without further precautions. The crusts are fairly brittle and can be readily removed from the blades by	50
55	light blows of a hammer or even a wood club, or by blasting with an air-propelled stream of nickel shot. The crust fragments are discarded leaving the blade roots showing no aluminizing, and the balance of the blades with a 3 mil aluminized case. The shell or crust formation is due to the fact that the nickel powder in the outermost masking layer undergoes so much aluminizing that these powder particles grow together. The dilution of the nickel with as much as four-thirds its weight of inert material such as alumina does not prevent such growing together.	55

3 1,586,501 and neither is it prevented by the presence of the resin in the dipped masking composition. Such resin is completely driven off during the initial portion of the diffusion coating heat, but the relatively small amount of such resin would not significantly affect the results even if it were to survive the diffusion heat or were 5 carbonized by that heat. 5 The diluted Ni₃Al in the lower layers of masking does not aluminize sufficiently to cause shell or crust formation, even though those layers also contain a small amount of chromium that by itself would form a shell. Any metalcontaining layer in contact with a workpiece should contain at least 25% inert non-10 metal such as the alumina, or kaolin, to assure that the metal or the layer does not 10 sinter to the workpiece, and such dilution also keeps the Ni₃Al from forming a shell On the other hand, other aluminizable powders that are essentially inert to the workpiece but form shells, can be used in place of or in addition to the nickel powder in the shell-forming layers. Cr₂O₃ is another such shell-forming material, 15 . 15 apparently undergoing some conversion to aluminized metallic chromium. Being less expensive than nickel, Cr_2O_3 is particularly desirable for use where masking expenses are to be minimized. Mixtures of nickel and Cr_2O_3 can be used with an effectiveness corresponding to that of each individually and indeed a small amount, such as 5%, of Ni₃Al can be mixed with the nickel or the Cr₂O₃ without detracting 20 20 significantly from the results. All diluents can be omitted from the shell-forming layers, if desired, but this makes it more important to be sure that at least the minimum effective amount of shell-forming layer is applied. In undiluted condition only about 100 milligrams per square centimeter of nickel or Cr₂O₃ is needed, and the presence of the resin adds 25 25 so little to the shell-forming layer that it has no significant effect on the amount of shell-forming layer needed. Layers deposited from undiluted Cr₂O₃ suspended in a resin solution, tend to crack on drying, whereas there is no such cracking when the Cr₂O₃ is diluted with at least about 1/4 its weight of Al₂O₃ or other diluent.

The resin in the outer layers acts to keep the masking layers from rubbing off 30 30 onto or into the diffusion coating pack during the packing. After the first dip or two to apply resin-containing masking layers, some or all subsequent dips can be effected in resin-free suspensions of the coating materials in a solvent that dissolves the resin in the previously applied layers. Inasmuch as coating suspensions entirely free of resin are more difficult to maintain uniform, a 35 35 little resin or other viscosity-increasing material can be added to such dispersions to reduce the settling rate of the dispersed powders. It is also helpful to use a combination of shell-forming masking layers in which some are of the type that depend on the presence of nickel powder, and others are of the type that depend on the presence of Cr₂O₃ powder. Thus it is particularly 40 40 desirable for aluminizings that are effected at about 2000°F or higher, for the shellforming combination of layers to have the lowermost such layers based on Cr2O3 and built up to at least about 300 milligrams per square centimeter, while the uppermost are based on nickel powder and are also built up to at least about 300 45 milligrams per square centimeter. 45 While other resins can be used to make the masking layers, the acrylic resins are preferred and poly(ethylmethacrylate) is particularly preferred because it gives such good dip coatings and clean products. Methyl chloroform is a desirable and preferred solvent because it has the desired solvent action combined with good evaporation characteristics and low use hazard. Some acrylic compolymers are not 50 50 sufficiently soluble in methyl chloroforms, and for such polymers, methylene chloride is used as the solvent. The composition of the depletion-reducing masking mixture (the lower layer in Example 1) can vary in the manner described in U.S. Patent 3,801,357. Thus the aluminide can be nickel or cobalt aluminide containing between 1/3 and 3/4 atom 55 55 of aluminium for every atom of nickel or cobalt, the inert particles can range from about 1/4 to about 2/3 of this mixture by weight, and the chromium content can range from about 1/4 to about 3% of this mixture by weight. The foregoing masking is very effective to prevent the aluminizing of the 60 masked surfaces. It also serves to mask against chromizing. 60 EXAMPLE 2 A pack having the following composition was used for the chromizing of a

PWA 1455 workpiece by embedding the workpiece in the following pack, all

percentages being by weight.

	Powdered chromium Powdered nickel Powdered aluminum Powdered alumina Powdered alumina 1.2% 2.4% 96.03%	
5 ·	All of the powders were minus 325 mesh, their particle sizes ranging from about 20 to about 50 microns, and the mixture well homogenized with repeated siftings, then further mixed with 1/2% NH ₄ Cl and 1/2% MgCl ₂ and placed in a chromized steel retort. The packed retort was then covered by an outer retort as	5
10	described and illustrated in Patent 3,785,854, care being taken that the outer retort has no leaks and is well sealed. The atmosphere in the outer retort was displaced by a stream of argon introduced through an inlet conduit opening near the bottom of the interior of the outer retort and exited through an outlet conduit opening near the top of the interior of the outer retort. Heating of the retort was initiated and the	10
15	flow of argon maintained through the entire heating process at a rate that assured essentially no entrance of air or moisture into the interior of the retorts. Where the outer retort has no leaks, an argon flow of about 5 standard cubic feet per hour is adequate.	15
20	The pack was held at 1900 to 1950°F for 30 hours after which heating was terminated and the retorts permitted to cool, the argon stream being maintained. It can be modified by incorporating in it about 0.1% magnesium. In general the above pack can have a chromium content of from about 0.6 to about 2%, a nickel content from about 1/2 to about 3 times the chromium content, and an aluminum content about 1/10 to about 1/3 the chromium content. The argon	20
25	atmosphere can be replaced in whole or in part by helium, neon or other inert gas or mixtures thereof. Other inert diluents like kaolin can be substituted for the alumina in its pack. The residue of the diffusion coating pack used above contains a small amount	. 25
30	of nickel-aluminum-chromium alloy and can be utilized as a chemical vapour diffusion masking mixture in low-temperature aluminizing, that is aluminizing conducted at not over about 1400°F. Thus the used pack can be mixed with 1/5 its weight of a 6% solution of poly(ethylacrylate) and the mixtures applied by dipping over the roots of the blades chromized in Example 1, to build up a coating weighing 500 milligrams per square centimeter. The masked blades are then embedded in the following powder pack, the percentages being by weight:	30
35	Alumina 85% Aluminum-silicon alloy (88% Al) 15%	35
40	to which is added 1/2% NH ₄ Cl. A coating heat in hydrogen with a 30 minute hold at 1350°F deposits a 10 milligram per square centimeter coating over all unmasked surfaces. The blades are then removed from the pack, the masking mixture brushed off, and then heated in hydrogen having a minus 35°F dew point for 4 hours at 1975°F to diffuse the aluminum coatings into the surfaces. They are then rapidly air cooled to below 1000°F, aged for 10 hours at 1600 to 1650°F, and again rapidly air cooled to give blades ready for use with roots only chromized and with their airfoil surfaces	40
45	chromized and then aluminized. A particularly desirable masking technique involves the coating of the portions to be masked with at least one layer of a dispersion of finely divided depletion-reducing masking solid and resin in the solvent evaporating off sufficient solvent to set the coating, applying over the set coating at least one stratum of finely divided	45
50	non-contaminating solid particles that upon aluminizing become coherently held together to form a secure masking sheath. The sheath-forming layer or one or more of the strata, which constitute this	50
55	layer, preferably have Cr ₂ O ₃ , nickel or mixtures of these two, as the particles that become coherently united by the aluminizing. Neither of these materials contaminates superalloy or stainless steel workpieces inasmuch as only chromium or nickel can be introduced into the workpieces from these sources and these two metals are already present in the workpieces. Chromium and nickel are also not considered contaminants for low alloy steels, particularly those ferrous alloys	55
60	containing at least 1% chromium. The Cr ₂ O ₃ and nickel particles are so actively effective that they can be diluted with as much as twice their weight of alumina or other inert filler, without losing their sheath-forming ability. While they can be used in undiluted form, it is	60

In general, the masking layer should contain powdered nickel or powdered

65

65

	1,586,501	8
	example and makes it unnecessary to have the workpiece embedded in a coating pack.	
5	Example 4 (In this Example, during the aluminizing of the exterior of a tube, the interior is simultaneously chromized by the method described and claimed in our copending Application No. 3218/79) (Serial No. 1,586,502).	5
10	A 5-foot length of steam generator high pressure tubing of Croloy alloy (1.9 to 2.6% Cr, 0.97 to 1.13% Mo, 0.15% C, balance essentially iron) having a 3/4 inch bore and a 1/2 inch wall was thoroughly cleaned inside and out, and had its bore filled with a chromizing pack composed of a previously broken-in mixture of 10% chromium powder the particle sizes of which range from about 10 to about 20 microns, and	10 10 % Ketall
15	90% tabular alumina granules having a particle size ranging from about 100 to about 300 microns to which mixture was added 1/2% NH ₄ Cl granules as an activator. The breaking-in	15
15	was effected by a mixture of the foregoing three ingredients in a retort in the absence of a workpiece, to 1800—1850°F for 10 hours under hydrogen. The tube so filled had its ends capped with 1010 steel caps frictionally fitted over the tube ends so as to provide semi-gas-tight covers.	13
20	The outside surface of the tube was then painted with the following layers in	20
	succession, drying the first layer for a few minutes before applying the second. first layer—600 grams of a previously broken-in mixture of 45% Cr, 45% alumina and 10% Al, to which 1/2% NH ₄ Cl is added before as well as after	55% Netal
25	break-in as described in U.S. Patent 3,801,357, suspended in 200 cc of methyl chloroform solution containing 7 weight percent of a copolymer of 70% ethyl and 30% methyl methacrylates, 0.5 weight percent stearic acid and 0.1 weight percent cetyl ether of decaethoxy ethanol. Four applications of this mixture are made with intervening drying to build the	25
30	non volatile coating to 1200 milligrams per square centimeter of tube surface.	30
	second layer—600 grams of a mixture of 68.5% Ni powder and 31.5% Al	
35	powder, dispersed in 150 cc of above methyl chloroform solution. The metals of this slurry were not pre-fired, and only two applications of this slurry was made to provide a non-volatile coating weight of about half that of the first layer.	35
40	The tube so prepared was placed in a tubular retort of a diffusion coating furnace assembly having inlet and outlet connections for a hydrogen-blanketing as in U.S. Patent 3,801,357 and then subjected to a diffusion coating heat of 1800°F for 10 hours. After cooldown at the end of the heat the tube end caps were removed, the pack in the tube bore poured out, and the sheath around the exterior of the tube broken off and removed. The interior of the tube was effectively chromized with a case 1.8 to 2.3 mils thick, and the outside of the tube aluminized	40
45	with a case about 24 mils thick. The chromized case included an outer portion about 0.3 mil thick rich in chromium carbide, and an inner portion of columnar chromized structure. This case is particularly effective in reducing erosion of the internal tube surface by	45
50	rapidly moving high pressure steam. The aluminized outer surface prolongs the life of the tube in a coal—or oil- fired furnace where it is subjected to combustion atmosphere at temperatures as high as about 1000°F. The internal pack is a highly fluent composition that is easily poured into place before the heat, and is readily removed afterwards, using a minimum of mechanical	50
55	poking and the like. Such a pack is particularly desirable for packing of cramped recesses in the interior of workpieces, such as in the narrow bores described above, or in hollow jet engine blades, or the like. Its use is described and claimed in our copending Application No. 3218/79 (Serial No. 1,586,502). Any ferrous base steam boiler tubing is improved by the foregoing diffusion	55
60 [°]	coatings. Plain carbon and low alloy steels will form the chromium carbide stratum with underlying columnar chromized case, and will show very little abrading loss when used with high pressure steam. Such abrasion by the steam causes the steam to carry along with it the abraded particles and they can damage the vanes and blades of turbines driven by the steam. For such pressurized use the boiler tubing should have a wall thickness of at least about 3/16 inch. The external surfaces of boiler tubing are also made more resistant to	60

9	1,586,501	9
	corrosion as a result of the aluminizing or the chromizing described above, even the minor chromizing effected when only the interior of such a tube is packed with the diffusion chromizing mix.	
. 5	As pointed out, the shell-forming layer used to hold a slurry coating in place where there is not much of an aluminizing or chromizing atmosphere, contains non-contaminating materials that sinter together under coating conditions. Thus nickel and aluminum powders smaller than about 500 microns in size and in an	5
	atom proportion from about 1:0.9 to about 1:1.1 are very effective. Chromium can be substituted for the nickel in such a mixture. Because of the non-contaminating	
10	character, a diffusion coating pack will not be ruined in the event a small amount of the masking materials should inadvertently become mixed into it. The foregoing inner and outer coatings can be applied to tubes as long as 40 feet or more in length, whether those tubes be straight or cane-shaped. For such	10
15	long tubes it is desirable to effect the diffusion coating uniformly along the tube lengths, and to this end the diffusion coating temperature along the length of the tube can be closely controlled. Thus a plurality of the tubes each with its bore	15
20	packed and its ends capped can be inserted lengthwise in a tubular open-ended retort sufficiently narrow to make a snug container for the tubes. One or more of the tubes is also fitted with a number of thermocouples on its exterior and distributed along its length. The retort so loaded can then be inserted in a furnace	20
	having a number of gas burner rings spaced along the retort's length, each ring encircling the retort. Only one end of the retort need be open, and that end can be sealed with a head that has a number of passageways. Some of these passageways are used for the passage of thermocouple connection wires, and two can be used as	
25	inlet and outlet respectively, for a bathing gas such as hydrogen. The operation of the burner rings is then adjusted to bring all the thermocouples to the desired temperature. Should there be a temperature variation among the thermocouples, individual burners can be further adjusted. In this way a	25
30	cool thermocouple can have its temperature brought up by turning up the nearest burner or burners, and conversely a hot one can have its temperature reduced by turning down the nearest burner or burners. These control functions can be effected manually or automatically to maintain the temperature of the packed tubes within a range of about 25°F along their entire lengths.	30
35	Cane-shaped tubes can be handled the same way. Also an argon washing atmosphere can be maintained throughout most or all of the diffusion coating of Example 4 without significantly different results. Because of its expense, the flow of argon should be reduced to a very small rate by back pressuring it equivalent to 1 to 2 inches of water. Alternatively, that diffusion can be effected in a glass-sealed	35
40	retort with an autogeneously generated atmosphere. Fluent diffusion coating packs are also helpful for use with the shell-forming masking arrangements described above. Such coating packs do not have to be mechanically worked to loosen them after a coating heat is completed, and there is accordingly less danger of damage to the masking shell. Any of these retort and retort atmosphere arrangements can also be used with	40
45	slurry coatings or conventional packs to aluminize nickel, platinum and other metals for the purpose of improving their catalytic activity as described in U.S. Patent 3,867,184. Part of the metal surface can also be masked as by the sheathforming layer directly applied to those parts. When a nickel surface of high catalytic activity is desired, the nickel is best subjected to diffusion aluminizing in a	45
50	plurality of stages before the leaching. In the first diffusion stage the activity of the inwardly diffusing aluminum is kept low as by using an aluminum diffusion pack containing 10 to 40% aluminum, the balance alumina, with a 0.3% AlCl ₃ energizer added. A diffusion treatment of 1050 to 1100°F for 20 to 30 hours with such a pack causes the formation of the nickel surface of an aluminized case in which	50
55	essentially all its aluminum is in the form of Ni ₂ Al ₃ intermetallic. In a subsequent diffusion aluminizing stage the outer portion of the aluminized case is modified to convert the Ni ₂ Al ₃ to a higher aluminide of nickel. The aluminizing pack of the first stage can be used in a second stage conducted at a lower temperature, as for example from about 880 to about 920°F, for 20 to 30	55
60	hours as an effective technique for converting the aluminide in the outermost portion of the case to higher aluminide. Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that	60
65	within the scope of the appended claims the invention may be practised otherwise than as specifically described.	65

5	WHAT WE CLAIM IS:— 1. A method for localized chemical-vapor-diffusion-coating of metal into a portion of the surface of a metal workpiece, which method comprises applying to the workpiece, at least one adherent chemical-vapor-deposition-delineating layer that delineates the area of the surface to be diffusion coated, the layer being applied as a slurry of chemical-vapor-diffusion-delineating powder in a solution of a heat-fugitive resin binder in a solvent which is methyl care and then subjecting	5
10	chloride permitting the solvent to evaporate to set the layer, and then subjecting the thus-coated workpiece to chemical vapor diffusion coating. 2. A method as claimed in claim 1, wherein the chemical-vapor-deposition-limiting layer prevents diffusion coating of the workpiece in the area to which the	10
15	said layer is applied. 3. A method as claimed in claim 2, wherein the chemical-vapor-diffusion-delineating powder comprises powdered nickel and/or Cr ₂ O ₃ . 4. A method as claimed in claim 2 or claim 3, wherein the said layer comprises an inert diluent.	. 15
20	5. A method as claimed in claim 4, wherein the inert diluent is alumina. 6. A method as claimed in claim 1, wherein the chemical-vapor-deposition-delineating layer contains the metal with which the said portion of the workpiece surface is to be diffusion coated, whereby the area of the surface covered by the layer becomes diffusion coated with the said metal, during the diffusion coating	20
25	process. 7. A method as claimed in Claim 6, wherein the diffusion-delineating powder comprises powdered chromium and/or powdered aluminium. 8. A method as claimed in any one of the preceding claims in which the binder comprises an acrylic resin	25
20	9. A method as claimed in any one of the preceding claims, wherein the sturry includes a quantity of a dispersing aid. 10. A method as claimed in claim 9, wherein the dispersing aid is a long-chain	30
30	hydrocarbon acid. 11. A method as claimed in any one of the preceding claims, wherein a plurality of superposed adherent chemical-vapor-deposition delineating layers are applied to the workpiece.	
35	12. A method as claimed in claim 1 and substantially as hereinbefore described in any one of the Examples.	35

ALLOY SURFACES COMPANY INC., per, Boult, Wade & Tennant, Chartered Patent Agents, 27 Furnival Street, London, EC4A 1PQ.

Printed for Her Majesty's Stationery Office, by the Courier Press, Learnington Spa, 1981 Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.