2015/2016

CONTROLE N°1: Eléments de correction.

Exercice 1.

- La fonction f est continue sur $[a, +\infty[$, donc intégrable sur tout intervalle fermé et borné inclus dans $[a, +\infty[$. Ceci signifie que f est localement intégrable sur cet intervalle.
- L'intégrale $\int_a^{+\infty} f(x) dx$ est impropre (ou généralisée) car l'intervalle d'intégration est infini.
- La limite $l \neq 0$, (et f étant positive) il existe un réel ε tel que : $0 < \varepsilon < l$. Il existe également un réel $X_0 > a$ tel que $\forall x > X_0 > a$; $x^{\alpha}f(x) \geq \varepsilon \Rightarrow f(x) \geq \frac{\varepsilon}{x^{\alpha}}$. Or l'intégrale $\int_{X_0}^{+\infty} \frac{\varepsilon}{x^{\alpha}} dx$ est une intégrale de type Riemann, divergente, car $\alpha \leq 1$. Par le critère de comparaison des fonctions positives, l'intégrale $\int_{X_0}^{+\infty} f(x) \, dx$ est aussi divergente. Comme elle est de même nature que $\int_a^{+\infty} f(x) \, dx$ (puisque $\int_a^{X_0} f(x) \, dx$ n'est pas impropre) on en déduit que $\int_a^{+\infty} f(x) \, dx$ est divergente. La fonction f n'est donc pas intégrable sur l'intervalle $[a, +\infty[$.
- La fonction $f(x) = \frac{e^{\pi x}(2+\sin x)}{\sqrt{x}}$ est définie, continue, positive sur $[1, +\infty[$.

$$\lim_{x \to \infty} \sqrt{x} \, f(x) = +\infty$$

On peut donc appliquer ce qui précède avec $\alpha=1/2\leq 1$ tel que $\lim_{x\to\infty}x^{\alpha}f(x)=l\neq 0$

L'intégrale $\int_1^{+\infty} \frac{e^{\pi x}(2+\sin x)}{\sqrt{x}} dx$ est donc divergente.

Exercice 2.

La fonction $f(t) = \frac{t^3}{1+t^4} \sin t$ est définie, continue sur $[0, +\infty[$. Elle est donc localement intégrable sur cet intervalle. Il y a donc un seul problème à examiner : en $+\infty$.

Soit X > 0, considérons $F(X) = \int_0^X \frac{t^3}{1+t^4} \sin t \, dt$. Une intégration par parties, en posant :

$$u = \frac{t^3}{1 + t^4} \quad ; \quad dv = \sin t \, dt$$

permet d'obtenir:

$$F(X) = \left[-\frac{t^3}{1+t^4} \cos t \right]_0^X + \int_0^X \frac{3t^2 - t^6}{(1+t^4)^2} \cos t \, dt$$

Posons

$$F_1(X) = \left[-\frac{t^3}{1 + t^4} \cos t \right]_0^X = -\frac{X^3}{1 + X^4} \cos X$$

$$F_2(X) = \int_0^X \frac{3t^2 - t^6}{(1 + t^4)^2} \cos t \, dt$$

On montre facilement que F_1 a une limite finie (nulle) en $+\infty$, et que F_2 est absolument convergente au voisinage de l'infini, puisque au $\left|\frac{3t^2-t^6}{(1+t^4)^2}\right| |\cos t| \leq \frac{3t^2+t^6}{(1+t^4)^2} \approx \frac{t^6}{t^8} = \frac{1}{t^2}$.

L'intégrale ${\cal I}_2$ et donc convergente.

Exercice 3.

Cf TD.