CS 4390: HW 3

Written by Zach Leach, NetID: zcl190002

Draft February 20, 2024

1 Data Rate Problem

It is desired to send a sequence of computer screen images over optical fiber. The screen is 3840×2160 pixels, each pixel being 24 bits. There are 60 screen images per second. What data rate is needed?

$$Data Rate = \frac{Number of bits}{Bits per second}$$

There are 24 bits $(3840 \times 2160) = 199,065,600$ bits per image. Transmitting 60 images per second gives a data rate of data rate is $60 \cdot 199,065,600 = 1.194 \cdot 10^{10}$ bits per second.

2 FDM Multiplexing Problem

Ten signals, each requiring 4000 Hz, are multiplexed onto a single channel using FDM. What is the minimum bandwidth required for the multiplexed channel? Assume that the guard bands are 400 Hz wide.

Bandwidth = $[\# \text{ of channels} \cdot \text{channel bandwidth}] + [(\# \text{ of channels} - 1) \cdot \text{guard band width}]$

The minimum bandwidth required is $[10 \cdot 4000 \text{Hz}] + [(9) \cdot 400 \text{Hz}] = 43,600 \text{ Hz}$.

3 Analog Sampling Data Rate Problem

A 3-kHz (analog) signal is sampled every 1 msec. What is the (minimum) data rate of a digital channel required to carry this signal? Assume that the quantization uses 256 levels.

Minimum Data Rate =
$$2 \times \text{Bandwidth} \times \log_2(\# \text{ of Q-Levels})$$

The minimum data rate is $2 \times (3 \cdot 10^3) \times \log_2(256) = 48,000$ bits per second.