CHEM202 Organic Chemistry

Nick Green

nick.green@otago.ac.nz, 3n11

Module 1: Spectroscopy and Characterisation

Lecture 4: 1H NMR Spectroscopy II

The structure of benzene came to Kekulé in a dream, of a snake eating its tail

Recap: Shielding and deshielding

Nomenclature used when describing chemical shift

high frequency deshielded

low frequency shielded

increasing chemical shift (δ , ppm)

What influences shielding?

Inductive effects
Anisotropic effects
Mesomeric effects
H-bonding

Chemical shift is characteristic of structure

Anisotropic effects

- shielding effects that are highly spatially dependent arising from the circulation of electrons
- in aliphatic systems it accounts for;
- a) the general observation that an increase in branching leads to an increase in chemical shift ie $\delta CH > \delta CH_2 > \delta CH_3$
- b) in ring systems eg cyclohexane δ H equatorial $> \delta$ H axial

Anisotropy means that the electron distribution (and effect on the magnetic field) is not the same in each direction about, for example, a carbon atom.

Hence, protons in different directions relative to that carbon atom experience different shielding effects.

Pi bond anisotropy (electronic)

Pi bond anisotropy (magnetic)

delocalized

Anisotropic effects are most prominent in unsaturated systems, which possess pi electrons.

Pi electrons are more readily polarisable than sigma electrons in saturated systems.

 $\delta = 2-3 \text{ ppm}$

 $\delta = 5-7 \text{ ppm}$

Magnetic induction in π -electron systems

• In alkyne bonds the electrons circulate about the $C \equiv C$.

Note that outside the charge circulation the local field helps the applied field.

• In alkene bonds electrons circulate perpendicular to the C=C.

The greater the charge circulation the stronger B_{local} .

 δ for benzene 7.3 ppm δ for C=CH₂ 5 ppm

Mesomeric Effects (Resonance)

In unsaturated systems the electron density may be influenced by the presence of groups which induce mesomeric effects

Examples methoxybenzene (anisole) + M effect methylbenzoate - M effect

Note ortho and para: 1,3relationships between donor and acceptor

OMe

OMe

Mesomeric effects influence electron distribution and hence chemical shifts.

– indicates an increase in electron density, and hence increased shielding whereas + indicates a decrease in density and hence deshielding of the protons.

Estimation of ¹H NMR chemical shifts in substituted benzenes

$$R \longrightarrow {}^{o} \qquad \qquad \delta_{H} = 7.27 + \sum z_{i} \qquad \qquad (Equation 3)$$

Substituent constants z for **Equation 3**:

		\mathbb{R}^{l}	Zortho	Zmeta	Zpara
		—Н	0.00	0.00	0.00
С		— Ме	-0.20	-0.12	-0.22
		—Et	-0.14	-0.06	-0.17
		—Pr ⁱ	-0.13	-0.08	-0.18
		—Bu ^t	0.02	-0.08	-0.21
		-CH ₂ NH ₂ or -CH ₂ OH	-0.07	-0.07	-0.07
		-CH ₂ Cl	0.00	0.00	0.00
		-CF ₃	0.32	0.14	0.20
		-CCl ₃	0.64	0.13	0.10
		-CH=CH ₂	0.06	-0.03	-0.10
		—Ph	0.37	0.20	0.10
		-СНО	0.56	0.22	0.29
		—COMe	0.62	0.14	0.21
		-CONH ₂	0.61	0.10	0.17
		−CO ₂ H	0.85	0.18	0.27
		−CO ₂ Me	0.71	0.10	0.21
		-COC1	0.84	0.22	0.36
		—CC	0.15	-0.02	-0.01
	,	-CN	0.36	0.18	0.28
N		-NH ₂	-0.75	-0.25	-0.65
		-NMe ₂	-0.66	-0.18	-0.67
		-NHAc	0.12	-0.07	-0.28
		-NO ₂	0.95	0.26	0.38

Compelling evidence of ring currents

6H -1.9 δ Highly Shielded 12H 8.2 δ Highly Deshielded

H-bonding (D-H----A)

- H-bonds, usually involve OH, NH or SH groups have an electron withdrawing effect on the proton involved and may move such protons to higher frequencies (ie deshielding influence)
- H-bonding may be inter- or intra-molecular
- intermolecular H-bonding which is generally weaker than intra-molecular
- intermolecular H-bonding is concentration dependent. Hence, chemical shift can be, and vary between samples
- the origin of the deshielding is unclear. Probably the acceptor (A) draws the hydrogen away from the electron density of the D-H bond, so reducing the immediate electron density around it.

Concentration effects

H-bonding shifts in ethanol

Hydrogen bond donors needs acceptors

¹H Chemical Shifts of Methanol in Selected Solvents

Solvent	CDCl ₃	CD ₃ CO CD ₃	CD ₃ SO CD ₃	CD ₃ C≡ N
CH₃–O–H	3.40	3.31	3.16	3.28
CH₃ O–H	1.10	3.12	4.01	2.16

What can you say about the relative hydrogen bond acceptor ability of chloroform, acetone, and acetonitrile?

Bottom line: hydrogen bonded protons are fickle and variable to analyse by NMR, this variation can be useful and diagnostic, or confusing.

¹H NMR of butanal

Chemical shift is characteristic of structure

¹H NMR of propanol

Typical proton chemical shift ranges for various chemical environments.

Refer to Lab Manual, Appendix 12 (p82) for detailed chemical shift data