

5	 (True or False) Sub-pixel motion estimation is used in applications where a faster and hence less accurate estimation of motion is needed. 	1 point
	○ True	
	False	
6	• Refer to the RGB cube shown in the video lecture for this problem. Color magenta can be obtained by 1:1 mixing red and blue; yellow can be obtained by 1:1 mixing red and green; cyan can be obtained by 1:1 mixing blue and green. If magenta, yellow, and cyan are mixed at 1:1:1 proportion, what is the resulting color?	1 point
	O red	
	O green	
	Oblue	
	O white	
	black	
7	(True or False) Intensity in HSI color space is exactly the same as the Y-channel in YCbCr color space, as both represent the "brightness" of an image.	1 point
	○ True	
	False	
8.	In the next two problems you will perform block matching motion estimation between two consecutive video frames. Follow the instructions below to complete this problem.	1 point
	(1) Download the two video frames from <u>frame 1</u> and <u>frame 2</u> . The frames/images are of height 288 and width 352.	
	(2) Load the frame with file name "frame_1.jpg" into a 288×352 MATLAB array using function "imread", and then convert the array type from 8-bit integer to real number using function "double" or "cast" (note that the range of intensity values after conversion is between 0 and 255). Denote by I_1 the converted MATLAB array. Repeat this step for the frame with file name "frame_2.jpg" and denote the resulting MATLAB array by I_2 . In this problem, I_2 corresponds to the current frame, and I_1 corresponds to the previous frame (i.e., the reference frame).	
	(3) Consider the 32×32 target block in I_2 that has its upper-left corner at $(65,81)$ and lower-right corner at $(96,112)$. Note this is MATLAB coordinate convention, i.e., the first number between the parenthesis is the row index extending from 1 to 288 and the second number is the column index extending from 1 to 352 . This target block is therefore a 32×32 sub-array of I_2 .	
	(4) Denote the target block by B_{target} . Motion estimation via block matching searches for the 32×32 sub-array of I_1 that is "most similar" to B_{target} . Recall in the video lectures we have introduced various forms of matching criteria, e.g., correlation coefficient, mean-squared-error (MSE), mean-absolute-error (MAE), etc.	
	In this problem, we use MAE as the matching criterion. Given two blocks B_1 and B_2 both of size $M\times N$, the MAE is defined as $MAE(B_1,B_2)=\frac{1}{M\times N}\sum_{i=1}^M\sum_{j=1}^N B_1(i,j)-B_2(i,j) $. To find the block in I_1 that is most similar to B_{target} in the MAE sense, you will need to scan through all the 32×32 blocks in I_1 , compute the MAE between each of these blocks and B_{target} , and find the one that yields the smallest value of MAE.	
	Note in practice motion search is only performed over a certain region of the reference frame, but for the sake of simplicity, we perform motion search over the entire reference frame I_1 in this problem and the next. When you find the matched block in I_1 , enter the sum of the x and y coordinates of the upper-left corner of the matched block in MATLAB convention. For example, if the matched block has the upper-left corner located at $(10,20)$ then you must enter 30.	
	146	
ln	the previous question, what was the corresponding MAE value (up to two decimal points)?	1 point

9.

22.98