June 9, 2009

- The rendition of service by a duly licensed professional by virtue of his technical education, training, experience and competence.
 - a. Professional practice
 - b. Professional service
 - c. Legal practice and service
 - d. Professional consultation
- 2. A code is defined as:
 - a. a fundamental belief that usually encompasses several rules
 - b. a system of non-statutory, nonmandatory rules on personal conduct
 - c. an oath taken by an individual in a ceremony
 - d. a guide for conduct and action in a certain situation
- 3. A rule is defined as:
 - a. a fundamental belief that usually encompasses several rules
 - a system of non-statutory, nonmandatory rules on personal conduct
 - c. an oath taken by an individual in a ceremony
 - d. a guide for conduct and action in a certain situation
- 4. A canon is defined as:
 - a. a fundamental belief that usually encompasses several rules
 - a system of non-statutory, nonmandatory rules on personal conduct
 - c. an oath taken by an individual in a ceremony
 - d. a guide for conduct and action in a certain situation
- 5. Refers to a statement or an oath, often religious in nature, agreed by an individual in ceremonies.
 - a. canon
 - b. code
 - c. creed
 - d. rule

- 6. The tort law is concerned with .
 - a. imprisonment
 - b. fine
 - c. compensation for injury
 - d. punishment
- A civil wrong committed by one person causing damage to another person of his property, emotional well-being, or reputation.
 - a. consequential damage
 - b. fraud
 - c. punitive damage
 - d. tort
- 8. The condition in a contract between two parties, that only the parties to a contract may sue under it and that any third party names in that contract or who benefit from that contract cannot sue or be sued under that contract.
 - a. doctrine of contract
 - b. party policy of contract
 - c. equity of contract
 - d. privity of contract
- A non-performance that results in the injured party receiving something substantially less than or different from what the contract is intended.
 - a. willful breach
 - b. material breach
 - c. unintentional breach
 - d. intentional breach
- 10. Another term for "punitive damages".
 - a. liquidated damages
 - b. exemplary damages
 - c. compensatory damages
 - d. nominal damages
- 11. One possible cause for an abrupt frequency variation in one self-excited transmitter oscillator circuit resulting to poor frequency stability to hold a constant oscillation.
 - a. poor soldered connection
 - b. heating of capacitor in an oscillator
 - c. DC and RF AC heating of resistors which cause change in values

June 9, 2009

- Aging, which causes change in the condition of the characteristics of parts
- 12. A device that diverts high transient voltage to the ground and away from the equipment being protected.
 - a. alpeth
 - b. anchor
 - c. alarm
 - d. arrester
- 13. The maximum number of lines for any building other than a one- or two-storey residential building to be required a service entrance facility under the ECE building code.
 - a. two lines
 - b. five lines
 - c. three lines
 - d. not required
- 14. Refers to the terminal where riser cable pairs are terminated to serve a portion or an entire floor of a building.
 - a. Floor Terminal distribution area
 - b. Raceway terminal
 - c. Floor distribution terminal
 - d. Riser Terminal
- 15. Part of the housing system in the ECE code that is a circular opening through the floor structure to allow the passage of a cable or wire.
 - a. Insert
 - b. Sleeve
 - c. Raceway
 - d. Slot
- 16. In cable facilities for a building communications service, this is referred to as the physical cable within a building or series of buildings which may include both main cable pairs and house cable pairs but not station wiring cable.
 - a. entrance cable
 - b. floor distribution cable
 - c. house cable
 - d. building cable
- 17. A telephone company's cable entering a building from telephone cable feeder to the main, cross-connecting a point within the building.

- a. Telephone cable
- b. Entrance cable
- c. Connecting cable
- d. Building cable
- 18. This is a non-combustible tubing which encases the riser cable between an enclosed type metallic terminal cabinets or boxes.
 - a. Raceway
 - b. Riser shaft
 - c. Riser conduit
 - d. Entrance cable
- A series of closets connected by slots or short conduit sleeves between floors or open shaft of the building.
 - a. Service fitting
 - b. Raceway
 - c. Riser conduit
 - d. Riser shaft
- 20. This is referred to as a linkage by wire, radio, satellite, or other means, of two or more telecommunications carrier or operators with one another for the purpose of allowing or enabling the subscriber of one carrier or operator to access or reach the subscribers of other carriers or operators.
 - a. interconnection
 - b. toll patching
 - c. gateway
 - d. outside plant sharing
- 21. One of the major components required under the global maritime distress and safety system is the:
 - a. provision of Morse Code
 - b. provision of Radiotelegraph Operator
 - c. provision of facsimile
 - d. provision of radio personnel
- 22. Which one of the following is NOT the major components required on board ship under the global maritime distress and safety system?
 - a. On board radio facilities
 - b. Radio operator telegraphy onboard
 - c. Shore base facilities
 - d. Radio personnel onboard
- 23. At what position does a maritime ship main antenna have, when it is open circuited and

June 9, 2009

that auxiliary antenna is/are connected to the main receiver?

- a. AA
- b. Emergency transmitter
- c. Direction finder
- d. Ground
- 24. What position of maritime ship main antenna have, when the radio watch is secured or when the ship is in electrical storm?
 - a. AA
 - b. Main transmitter
 - c. Grounded
 - d. HF
- 25. What are the two legislative functions of the International Telecommunications Union in its international conference issues on orbital resources?
 - a. Assign frequencies and organized conferences
 - Allocates frequency bands for the services and determine the principle of distribution of the orbit/spectrum resources distribution and assignment of frequencies
 - c. Determine principles of spectrum distribution and assignment of frequencies
 - d. Conduct conferences and allocation of orbital slots
- 26. A person or entity intending to register as VoIP service provider is required to post a performance bond of
 - a. 1 million
 - b. 3 million
 - c. 5 million
 - d. 10 million
- 27. One of the mnemonic management tool used is the SMEAC. What does the acronym SMEAC stands for?
 - a. Situation, Mission, Execution, Administration, Coordination
 - b. Situation, Mission, Execution, Application, Communication
 - c. Situation, Mission, Execution, Administration, Communication
 - d. Strategy, Mission, Execution, Administration, Communication

- 28. In the management tool, SMEAC, where A stands for administration, which question is appropriate for the to manager ask?
 - a. What do we need to get it done?
 - b. What are we aiming to do?
 - c. How are we going to do it?
 - d. What is the operation environment?
- 29. In project management, what is usually the first step underlying in the process of performing a project?
 - a. Select appropriate performance measures.
 - b. Define the goals of the project and their relative importance.
 - c. Identify a need for a product or service.
 - d. Develop a technological concept.
- 30. In the process of performing a project, after the need for a product or service is identified, what is usually the next step?
 - a. Define the goals of the project and relative importance.
 - b. Develop a budget.
 - c. Develop schedule.
 - d. Develop the technological concept.
- 31. What is usually the last step in the process of performing a project?
 - Select appropriate performance measures
 - b. Implement the plan
 - c. Monitor and control the project.
 - d. Evaluate project success.
- 32. To consider the consequence of uncertainty on project management, laws on project management are developed. One of which is "A careless planned project will take ____ times longer to complete than expected".
 - a. Three
 - b. Four
 - c. Two
 - d. Two and a half
- 33. In the typical functional organization hierarchy, the chief engineer is under the
 - a. finance manager
 - b. manufacturing manager
 - c. general manager
 - d. marketing manager

June 9, 2009

- 34. A diagram of the organization's official positions and formal lines of authority.
 - a. Organizational chart
 - b. Authority chart
 - c. Policy chart
 - d. Control chart
- 35. What is defined as the process of identifying and choosing alternative courses of action in a manner appropriate to the demands of the situations?
 - a. Sampling Theory
 - b. Alternative Analysis
 - c. Problem-solving
 - d. Decision-Making
- 36. What refers to the activity of incorporating the technical know how with the ability to organize and coordinate workforce, materials, equipment and all other resources including money?
 - a. Engineering Management
 - b. Engineering Technology
 - c. Technical Management
 - d. General Management
- 37. In a telephone switchboard, 100 pairs of cable can be made of either enameled wire or tinned wire. There will be 400 soldered connections. The cost of soldering a connection on the enameled wire will be P 1.65, while on the tinned wire, it will be P 1.15. A 100-pair cable made of enameled wire costs P 0.55 per linear foot and the one that is made of tinned wire costs P 0.75 per linear foot. Determine the length of the cable run, in feet, so that the cost of each installation would be the same.
 - a. 1,000 ft
 - b. 1,040 ft
 - c. 1,100 ft
 - d. 1,120 ft
- 38. A leading shoe manufacturer produces a pair of Lebron James signature shoes at a labor cost of P 900.00 a pair, at a material cost of P 800.00 a pair. The fixed charge on the business is P 5,000,000.00 a month and the variable cost is P 400.00 a pair. Royalty to Lebron James is P 1,000.00 per pair of shoes sold. If the shoes sell at P 5,000.00 a pair, how many pairs must be produced each month for the manufacturer to break-even?

- a. 2,590
- b. 2,632
- c. 2,712
- d. 2,890
- 39. Felicito wishes to bequeath to his son, Rey, the amount of P20,000 10 years from now. What amount should he invest now if it will earn interest of 8% compounded annually during the first 5 years and 12% compounded quarterly during the next 5 years.
 - a) P7,635.45
 - b) 7,653.45
 - c) 7,365.45
 - d) 7,536.45
- 40. Efren deposits P10,000 in a fund for his son when he starts college to provide him with a fixed income at the end of each month during his 5 years studying an engineering course. Find the monthly income of the boy if the money is invested at 12% compounded monthly.
 - a) P222.44
 - b) P224.24
 - c) P242.42
 - d) P422.22
- 41. Alfredo has a debt of P50,000. It is to be amortized by means of 20 uniform quarterly payments with an interest of 8% compounded quarterly. Determine periodic payment if first payment is made 15 months after loan is granted.
 - a. P3,093.90
 - b. P3,903.30
 - c. 3,309.90
 - d. 3,930.30
 - e. 9,330.30
- 42. The product of mass and its velocity.
 - a) Momentum
 - b) Impulse
 - c) Power
 - d) Energy
- 43. Internal force that acts against distortion.
 - a. Stress
 - b. Strain
 - c. Shear
 - d. Elasticity
- 44. The capacity to satisfy human wants.

	a.	Luxuries		51. Find the e	longation in a 3m long steel bar
	b.	Discount		by subject	ting it to 50 Mpa stress. E=200
	C.	Utility		Gpa	
	d.	Necessity		a.	1mm
				b.	0.5 mm
45.	What is th	ne effective rate correspond	ding to	C.	0.75 mm
	16% comp	oounded daily if one year is		d.	1.75 mm
	considere	d at360 days?			
	a.	17.84%		52. A material	I has a modulus of elasticity of 200
	b.	16.78%		Gpa. Find	the minimum cross sectional area
	C.	17.35%		of the said	d material so as not to elongate by
	d.	13.75%		more than	5 mm for every 2 m length when
				subjected	to a 10 kN tensile force.
46.	It is a mea	sure of the resistance that a	a	a.	20 mm ²
	body's ma	ss and distribution of its ma	SS	b.	10 mm ²
		axis of rotation. This proper		C.	30 mm ²
	known as			d.	40 mm ²
	a. ¯	Moment of inertia			
	b.	Friction		53. The recipr	ocal of Bulk modulus of any fluid
	C.	Torsion		is called	
	d.	Angular acceleration		a.	Volume stress
		G		b.	Compressibility
47.	A man in a	a hot-air balloon drops an ag	pple at		Shape elasticity
		f 150 meters. If the balloon i		d.	Volume strain
	•	5 m/s, find the highest point			
		y the apple.		54. A stone is	thrown outward, at an angle of 30
		141.15 m			orizontal into the river from the cliff
	b.	171.15 m		that is 120	meters above the water level at a
	C.	151.15 m		velocity of	36 km/hr. At what height above
	d.	161.15 m		the water	level will the stone start to fall?
				a.	121.27 m
48.	The recipr	ocal of bulk modulus of any	fluid	b.	131.274 m
	is called _	·		C.	141.274 m
	a.	Volume stress		d.	161.274 m
	b.	Compressibility			
	C.	Shape elasticity		55. During ins	stallation, a section of an antenna
	d.	Volume strain		tower was	lifted to a height of 5 meters with
					400 kg moving through a distance
49.	The prope	rty by virtue of which a body	/	of 20 meter	ers by use of a pulley mounted on
	tends to re	eturn to its original size and	shape	a frame. If	f the efficiency of a machine
	after a def	ormation and when the defo	orming	equals the	e output over the input multiplied
	forces hav	e been removed.	-	by 100%,	what is the efficiency of the
	a.	Elasticity		pulley> the	e tower section weighs 1000 kg.
	b.	Malleability		a.	62.5%
	C.	Ductility		b.	52.5%
	d.	Plasticity		C.	72.5%
		•		d.	82.5%
50.	It is the ab	oility of a material to be elong	gated		
		Plasticity		56. The SI un	it of magnetic flux density equal to
		Flexibility			r per square meter is the
	C.	Elasticity			Gauss
	d.	Malleability		b)	Oersted

b) Oersted c) Maxwell d) Tesla

a) SWR

b) Slugs

c) Dynes

d) Ergs

a) 10 b) 15

c) 5

d) 2

a) 3.704 b) 7.304

c) 3.407

d) 1.852

a) 32 ft/sec

b) 18 ft/sec

What was Tarzan's maximum velocity?

second.

mass of

MOCK BOARD EXAMINATION IN GENERAL ENGINEERING AND APPLIED SCIENCES (D) June 9, 2009 c) 16 ft/sec 57. The ratio of reflected light to the incident d) 12 ft/sec light on a surface is called ____ 63. Pegasus, the most trusted horse of Zeus, b) Reflectance exerts one Horse Power to pull his "Chariot c) Reflectivity of Fire" at a force equivalent to 300 d) Irradiance Newtons. The chariot's speed in meters per second is 58. In the FPS system, a mass that moves with a) 250 an acceleration of one foot per second b) 0.25 squared when a force of one pound acts on c) 25 it is expressed in terms of _____. d) 2.5 a) Poundal 64. is a unit of pressure or stress resulting from a force of one Newton acting uniformly over an area of one square meter. a) Pascal 59. A car's brake system exerts 3000 Newtons. It will take seconds before the car b) Torr stops from a velocity of 30 meters per c) Stoke d) Poise 65. The "The Long March" rocket used in launching the Philippine satellite "Aguila" whose expanding gases leaves the rocket at 3 kilometers per second sulting from 60. A mothballed nuclear power plant at oxidation of solid propellants at a rate of 30 Chernobyll operates at an output of 100 kilograms per second. The thrust force megawatts daily. This reactor required a developed by the launcher rocket is about ____ Newtons. kilograms of nuclear fuel. a) $9x10^8$ a) 0.96 x 10⁻⁵ b) 9.6×10^{-5} b) 9x10⁹ c) 0.0096 x 10⁻⁵ c) $9x10^3$ d) 9.6 x 10⁻⁵ d) 9x10⁴ 66. A unit of distance used in astronomy 61. A Landing Ship (LST) BRP LANAO DEL equivalent to 3.08572 x 10¹³ kilometers. NORTE of the Philippine Navy used during the "Battle of Leyte GulP' Golden a) Light -year Anniversary was drifting at a speed of two b) Parsec knots away from the shoreline. The ship's c) Furlong drift speed in kilometers per hour is_ d) Fathom 67. A member of the Philippine Navy Seals under the PN Special Warfare Group searching for survivors of the ill-fated vessel, MIV Dona Paz, directs a beam of light at the surface of the sea at an angle of 62. While chasing Cheetah and Jane, Tarzan was swinging in the vines somewhere in the incidence of 40 degrees. Assuming a remote jungles of Africa at a maximum refractive index of 1.33 for water, the angle height of seven (7) feet and a minimum of refraction is degrees. height of three (3) feet above the ground. a) 58.75

b) 49.75

c) 39.75

d) 29.75

June 9, 2009

	June 9, 2009	(40)6 November - The tare of the cooler to
68 is a unit of length equal to 1,650,763.73 wavelengths of the light radiated by the isotope Kryl atom, as measured in vacuum. A a. Barn	e orange-red oton-86	(10) ⁶ Newtons. The top of the cube is displaced 0.03 centimeters with respect to the bottom. Its shear modulus is Gigapascals. a) 44
		b) 33
b. Meter		c) 11
c. Fathom		d) 22
d. Furlong		
	74	4. A unit of heat which is equal to 1.055 joule
69 factor is mathematical expre		is the
known as the present value of the		is the a. BTU
a. Present Worth	io armany.	b. Calorie
b. Load		c. Therm
c. Power		d. Torr
d. Demand		
		5. In measuring pressure, 1 millimeter of
70 is the distribution of the init	tial cost by	mercury is equivalent to a unit called
periodic changes to operation as	s in	a) Pascal
depreciation or the reduction of		b) Psi
either periodic or irregular preari	•	c) Torr
program.	angea	d) Therm
a) Annuity		d) Them
	76	A 60 gram bullet moving with a aroad of
b) Perpetuity	76	6. A 60 gram bullet moving with a speed of
c) Capital Recovery		500 meters per second strikes a 5 kilogram
d) Amortization		block moving in the same direction with a
		speed of 30 meters per second. The
71. During the 1989 "military exercise	e", an F-16	resultant speed of the bullet and the block is
jet fighter on "persuasion flight" v	while	meters/second, assuming the bullet to
horizontally flying at a low altitud	le of 1	be embedded in the block.
kilometer above the ground slow		a) 53.6
720 km/hour and drops a bomb		b) 63.5
suspected lair of rebel soldiers.		c) 35.6
•		
the acute angle (in degrees) bet		d) 65.3
vertical and the line joining the a		
target at the instant when the bo	mb was 77	7. A ball rebounds vertically from a horizontal
released at Libis, Quezon City.		floor to a height of 20 meters. On the next
a) 70.73		rebound, it reaches a height of 14 meters.
b) 29.33		The coefficient of restitution between the
c) 39.23		ball and the floor was
d) 70.37		a. 0.483
a) 10.01		
72. A 20 kilogram mortar projectile h	200.0	b. 0.837
		c. 19.8
velocity of 600 meters per secon		d. 16.565
acquired the velocity in a mortar		
meters long. The average force	against the 78	3. How much heat energy will be required to
shell as it was fired was Ki	loNewtons.	heat 100 grams of copper from 10°C to 100
a) 2400		^o C if its specific heat is 385 Joule / kg- ^o K?
b) 3600		a) 4.37 kJoule
c) 1200		b) 3.47 kJoule
d) 600		c) 7.34 kJoule
4, 555		d) 4.73 kJoule
		u) 4.73 KJUUIC

73. An aluminum cube, 10 centimeters on a side, is subjected to a shearing force of

79. What is the pressure if one found of air at

una 0. 2000

		June 9, 2009			
		a and 200°F is heated to 800°F while		a.	15
		g the volume constant?		b.	17
		34.6 psia		C.	14
		28.6 psia		d.	16
		51.2 psia 102.8 psia	97 Eoro	o that	tends to pull apart is
	u)	102.0 psia	calle		terius to puil apart is
QΛ	The al	pility of solid matter to combine with	Calle	u a)	_· Compression
00.		atoms.		b)	Tension
		Ductility		c)	Torsion
		Malleability		d)	Distortion
	c)	Diffusion		u)	Distortion
	,	Cohesion	88 Whe	n stres	ss equals strain, the body is
	u)	Conesion	OO. VVIIC	11 30 63	ss equals strain, the body is
81.	The ar	avitational constant of attraction has		—. а)	Distorted
		erical value of		b)	Elastic
		96.6 x 10 ⁻¹¹		c)	Rigid
		1.45 x 10 ⁻¹¹		ď)	Fixed
		6.67×10^{-11}		,	
		9.8	89. The	point v	which indicates the sales volume
				•	e enterprise will be able to pay
82.	The do	omain of coefficient of friction is			end is
	a.	Less than zero		a)	Break-even Point
	b.	Between zero and 1 exclusive		b)	Break-even Cost
	C.	Between 0 and 1 inclusive		c)	Unhealthy Point
	d.	Greater than 1		ď)	Inflection Point
83.		rce that keeps a body moving in a	pay t	to a wi	ount which a willing buyer will lling seller for the property when
	a.	Centrifugal	neith		one is tinder compulsion to
	b.	Inertia	•	or to se	
	C.	Centripetal			e Value
	d.	Kinetic Energy			ket Value
				. Utili	
84.		T train 5 m above the ground crosses et at a speed of 20 m/s at the instant	С	l. Fair	^r Value
	that a	car running at a speed of 8 m/s is	91. It is t	he val	ue assigned to the property for
		y below the train. Find the rate at			e of establishing rates.
	which	the train and the car are separating		a.	Scrap Value
	one se	econd later.		b.	Franchise Value
	a)	20.98 in/s		C.	Rate Base Value
	b)	20.89 m/s		d.	Salvage Value
	c)	20.78 in/s			-
	d)	20.87 m/s	92. A fla	t circul	ar coil with 100 turns has a
					centimeters. If an 4 ampere
85.		sis for Bemoulli's law for fluid flow is	coil,	the ma	nade to pass at the center of the agnetic field developed at the
		Conservation of mass	cent	er is	Tesla.
		Fourier Law	a. 5.02		
		Conservation of Energy	b. 5.02	_	
	d.	Sturm-Liouville Theory	c. 5.02		
			d. 5.02	x 10 ⁻⁹	
86.		d term of an AP is 4 and the 9th term	00 '		
	ıs - 14	. Find the sum of the first six terms.	93. Jenn	iter Bu	ılak. while playing "jackstone",

MOCK BOARD EXAMINATION IN GENERAL ENGINEERING AND APPLIED SCIENCES (D) $_{\mbox{\scriptsize June 9, 2009}}$

	accidentally drops the rubber ball from a window about 63 centimeters high. Each	d. Muon
	time the ball hits the flat ground, it rebounds	97 is a particle that exhibits a strong
	to two thirds (2/3) of the previous height	nuclear force.
	from which it fell. The total distance traveled	a) Lepton
	by the ball before coming to rest is	b) Muon
	centimeters.	c) Hadron
	a) 315	d) Pion
	b) 513	4) 11011
	c) 135	98. Don Fausto wants to make 14% nominal
	d) 153	interest compounded semi-annually on - a
	u) 100	bond investment. How much should he be
QΛ	A pound of force is equivalent to	willing to pay now for 12%, P 10,000 bond
	Newtons.	that will mature in ten (10) years and pays
	a) 2.25	interest semi-annually?
	b) 4.45	a) P 8,940.50
	c) 3.45	b) p 2,584.19
	d) 5.44	c) P 3,118.05
	u) 5.44	d) P 867.82
05	The vector operator on a vector function	u) F 007.02
	that, for a three-dimensional function, is	99 is the value of the equipment with use
	equal to the sum of the vector cross product	over a period of time, it could mean the
	·	difference
	of the unit vectors and partial derivatives in	in value between a new asset and the used
	each of the component directions.	
	a) Curlb) D' Alembertian	asset currently in service. a) Loss
	,	,
	c) Poynting Vector	b) Depreciation
	d) Argand's Gradient	c) Gain
00	la avalentale a la a	d) Sunk Cost
96.	In nuclear physics, a / an is a	100. The approlitudes of a contain way of a great
	particle of antimatter corresponding to a	100. The amplitudes of a certain waveform are:
Ċ	given particle in every respect except that	11, 23 and 25. The value of the root mean
	charge and certain other discrete properties	square is
	change sign.	a. 24
	a. Antiparticle	b. 25
	b. Hadron	c. 26
	c. Lepton	d. 27

ANSWERS:	52. A
1. A	y _{actual} ≤ 5 mm
2. C	y = PL/AE
3. D	(10000N)(2000mm)/A(200000Mpa)
4. A	≤ 5mm
5. C	$A \ge 20 \text{ mm}^2$
6. C	
7. D	Thus, $A_{minimum} = 20 \text{ mm}^2$
8. D	53. B
9. B	54. A
10. B	55. A
11. A	Output = 1000kg (5)
12. D	= 500 kg.m
13. C	input = 400kg.(20) = 8000 kg.m
14. D	efficiency = 5000/8000 x 100%
14. D 15. B	efficiency = 62.5%
16. D	56. D Tesla
17. B	57. B Reflectance
18. C	58. B Slugs
19. D	59. A 10
20. A	Impulse = Momentum; 3000(t) =
21. B	1000(30) or $t = 10$ seconds
21. B 22. B	60. D 9.6 x 10 ⁻⁵
23. C	According to Einstein's energy
24. C	equation: $E = m(c)^2$ or $m = E/(c)^2$ and
24. C 25. B	1 watt = 1 joule/ sec
26. C	$m = [(100 \times 10^6 \text{ Joule /sec/day})]$
26. C 27. C	(86400 sec/day)] / [3 x 108 m/sec ²]
27. C 28. A	$m = 9.6 \times 10^{-5}$ kilograms
29. C	61. A 3.704
30. A	62. C 16 ft/sec
31. D	By law of conservation of energy:
32. A	Potential Energy = Kinetic Energy
33. C	$(\underline{m})(\underline{g})(\underline{\Delta}\underline{h}) = (1/2) (\underline{m})(\underline{v})^2 \text{ or } \underline{v} = (1/2)(\underline{s})(\underline{h}) = (1/2)(2)(\underline{s})(\underline{h})$
34. A	$\sqrt{(2)(g)(h)} = \sqrt{(2)(32)(4)} = 16$ feet
35. D	/second
36. A	63. D 2.5
37. A	1 HP = 746 watts or joule/ sec;
38. B	* Power = Work / Time = [Force x
39. D	Distance] / (Time) = Force x Velocity;
40. A	64. A Pascal 65. D 9x10 ⁴
41. C	
42. A	Force = (Mass)(Acceleration) =
43. B	(Mass) (Velocity) / (Time) Thrust Force = (30 kg/sec)(3 x 10 ^{3m} /
44. C	sec) = 9 x 10 ⁴ Newtons
45. C	66. B Parsec
46. A	NOTE: 1 light-year = 9.46055 x 10 ¹²
47. D	kilometers
48. B	67. A 58.75
49. A	By Snell's Law: (n_1) (Sin θ_1) = (n_2)
50. A	(Sin θ_2)
51. C	1.33 Sin40° = (1) Sin θ_2 ; or Sin θ_2
y = PL/AE = SL/E	0.855 ; Therefore: θ_2 = Arcsin 0.855 =
= (50Mpa)(3)/(200000Mpa)	58.75 degrees
= 0.00075 m	68. C Fathom
= 0.75 mm	69. A Present Worth
	55. 7. 1.1555.1. Profit

 70. D Amortization 71. A 70.73 Let α = Angle of Depression, x = Horizontal Displacement; y = Altitude. The bomb falls with vertical acceleration g = 9.8 m/sec² and at the same time moves horizontally at v = 720 km/hr or 200 m/sec. 	Heat Required = (Mass)(Specific Heat)(Temperature Change) $Q = (0.1 \text{ kg})(385 \text{ J/kg-}^{\circ}\text{K})(100\text{-}10) = 3.47 \text{ kiloJoule}$ 79. B $P_1 T_2 = P_2 T_1$ $P_2 = (P_1)(T_2) 1(T_1) =$
* Consider the vertical motion alone. Let t = time for the bomb to hit the ground. Then: $y = \frac{(1/2) (g) (t)^2 \cdot 1000}{(1/2) \cdot 1000} = \frac{(1/2) \cdot (9.8)(t)^2}{(1000) \cdot (4.9)} = \frac{100}{7} = \frac{14.3}{1000}$ seconds. * Consider the horizontal motion alone. The horizontal distance x covered by the bomb in 14.3 seconds is $x = (200 \text{ m/sec})(14.3 \text{ sec}) = 2860$	[(15)(1260)]/660 = 28.6 Psia 80. D 81. C 82. B 83. C 84. A 85. C 86. A The series is defined by the
meters. Since Tan α = (x/y) = (2860) / (1000) = 2.86, then α = 70.7 degrees 72. C 1200 The work expended by the powder on the shell in the mortar equals the Kinetic energy of the moving shell. Since W = (F)(s) = (1/2)(m)(v) ² then (F)(3) = (1/2)(20)(600) ² or F = 1200 kilonewtons. 73. B 33 Shearing Stress = Tangential Force / Face Area = 10^6 N / $(0.1\text{m})^2$ = 10^8 Pascals Shearing Strain = Displacement / Altitude = 0.03 cm / 10 cm = 0.003 Shearing Modulus = Stress / Strain = 10^8 Pascal /0.003 = 33 x 10^9 Pascals 74. C Therm 75. C Torr 76. C 35.6 Momentum Before Impact = Momentum After Impact (0.06 kg)(sample space: $S = (10, 7, 4, 1, -2, -5, -11, -14)$; with $d = 3$; The summations is $\sum x = 10+7+4+l-2-5 = 15$ 87. B 88. B 89. C 90. B 91. C 92. A According to Biot-Savart's Law; $B = [(\mu \circ)(N)(l)] / [(2)(R)]$ $B = [(4\pi \times 10^{-7} \text{ Henry /meter}) (100)$ Turns) (4 Amperes)] / [(2)(5x10 ⁻² meters)] $B = 5.02 \times 10^3 \text{ Tesla}$ 93. A Let D = Total distance traveled and $a = 63$; $a_1 = (2/3) (63) = 42$; $a_2 = (2/3) (42) = 28$, etc. * The succeeding distances traveled will be twice the value of a geometric progression with a
500 m/sec) + (5 kg)(30 m/sec) = (0.06 5)(v); or V= 180 / 5.06 = 35.6 meters / sec 77. B 0.837 METHOD 1: $u_1 = \sqrt{(2)(g)(h)} = \sqrt{(2)(9.8)(20)} = 19.8$ m/sec and $v_1 = (2)(9.8)(14) = 16.6$ m/sec * The coefficient of restitution is given by the equation: $e = (v_2 - v_1) / (u_1 - u_2) = [0 - (-16.6)] / [19.8 - 0] = 0.838$ METHOD 2: $e = (h_2) / (h_1) = \sqrt{(14)} / (20) = 0.837$ 78. B 3.47 kJoule	common ratio of 2/3. * Therefore, the total distance traveled is D = 63 + 2 [(a ₁) / (1 - r)] = 63 + 2{(42) / [1 - (2/3)]} = 63 + 252 = 315 centimeters. 94. B 95. A 96. A 97. C NOTE: * A Lepton is a particle that does not exhibit a strong nuclear force. * A Muon is a particle having a mass of 207 electron masses. It is formed in the decay of a π^+ meson or π

June 9, 2009

```
meson and can either be positive or negative.

* A \pi-Meson or Pion is a particle that can be positive, negative or
```

that can be positive, negative or neutral. A π^+ meson or a π meson has a mass 273 electron masses. A neutral π -meson has a mass of 264 electron masses.

* A Neutrino is a neutral particle of almost zero rest mass that is emitted in beta and in π^+ or π^- meson decays.

```
meson decays.

98. A

n = 2; R = (0.12 / 2)(P10,000) = P600 and I = 0.14 / 2 = 0.07.

Therefore:

P = \{600\}\{[(1.07)^{20} - 1] / [(0.07)(1.07)^{20}]\} + [10,000 / (1.07)^{20}]

P = P = 8,940.60

99. B

100. B
```

RMS = $\sqrt{(11)^2 + (23)^2 + (35)^2}$ /

(3) = 25