MATH1061 Cheatsheet (Linear Algebra)

Abyan Majid

○ GitHub

1 Complex numbers

1.1 Imaginary unit

Imaginary unit
$$i = \sqrt{-1}$$

1.2 Cartesian, polar, exponential forms

Name	Form	
Cartesian	z = a + bi	
Polar	$r(\cos\theta + i\sin\theta)$	
	often abbreviated as: r cis θ	
Exponential	$re^{i\theta}$	

1.3 Complex conjugate

Complex conjugate	
Complex conjugate of $z = a + bi$ is $\overline{z} = a - bi$	

Complex conjugate properties		
Property	Definition	
Conjugate of a Sum	$\overline{z+w} = \overline{z} + \overline{w}$	
Conjugate of a Product	$\overline{zw} = \overline{z} \times \overline{w}$	
Conjugate of a Power	$\overline{z^n} = (\overline{z})^n$	

1.4 Modulus of a complex number

Modulus
The modulus of a complex number $z = a + bi$ is $ z = \sqrt{a^2 + b^2} = \sqrt{z\overline{z}}$

Modulus properties		
Property	Definition	
Multiplicative Property of Moduli	zw = z w	
Division Property of Moduli	$\left \frac{z}{w}\right = \frac{ z }{ w }$	
Triangle Inequality	$ z+w \le z + w $	
Reverse Triangle Inequality	$ z-w \ge z - w $	

$1.5\quad Addition,\, subtraction,\, multiplication,\, division$

Operation	$\mathbf{let}\ z = a + bi\ \mathbf{and}\ w = c + di$
Addition	z + w = (a+c) + (b+d)i
Subtraction	z - w = (a - c) + (b - d)i
Multiplication	$z \times w = (a+bi)(c+di)$
	$z \times w = ac + adi + bci + bdi^2$
	$z \times w = (ac - bd) + (ad + bc)i$
Division	$z \div w = \frac{z}{w} \times \frac{\overline{w}}{\overline{w}}$
	$z \div w = \frac{z}{w} \times \frac{w}{\overline{w}}$ $z \div w = \frac{a+bi}{c+di} \times \frac{c-di}{c-di}$