5500 Problem Set 5 Nikko Cleri October 5, 2020

Question I.

In the limit of high energy or low atom density, the number of energy eigenstates with energy $\leq E$ for a monatomic ideal gas with N >> 1 atoms in a volume V is

$$\Sigma(E) = \frac{(2\pi m E)^{\frac{3N}{2}V^N}}{(2\pi\hbar)^{3N} N! (3N/2)!}$$

At this point do not ask exact where $\Sigma(E)$ came from; and if (3N/2)! gives you pause, assume that N is even. Show that in the thermodynamic limit the entropy is

$$S = kN \left[\ln \frac{n_Q(T)}{n} + \frac{5}{2} \right]$$

Here n = N/V is the density of the gas, and the quantum unit of density and the corresponding thermal de Broglie wavelength are

$$n_q(T) = \frac{1}{\lambda^3}; \quad \lambda = \left(\frac{2\pi\hbar^2}{mkT}\right)^{1/2}$$

Even the additive constant turns out to be correct for entropy such that $S \to 0$ as $T \to 0$!

We know that $S = k \ln \Sigma$, so we begin by taking the natural log of the number of energy eigenstates:

$$\Sigma(E) = \frac{(2\pi m E)^{\frac{3N}{2}V^N}}{(2\pi\hbar)^{3N}N!(3N/2)!}$$

$$\ln \Sigma = \ln \left[\frac{(2\pi m E)^{\frac{3N}{2}V^N}}{(2\pi\hbar)^{3N}N!(3N/2)!} \right]$$

$$= \frac{3N}{2}\ln(2mE) + N\ln V - 3N\ln(2\pi\hbar) - \ln(N!) - \ln \left[\left(\frac{3N}{2}\right)! \right]$$

Applying the Stirling approximation gives us

$$\ln \Sigma = \frac{3N}{2} \ln(2mE) + N \ln V - 3N \ln(2\pi\hbar) - N \ln(N) + N - \frac{3N}{2} \ln\left(\frac{3N}{2}\right) + \frac{3N}{2}$$
$$= \frac{3N}{2} \ln(3mNkT) + N \ln V - 3N \ln(2\pi\hbar) - N \ln(N) + N - \frac{3N}{2} \ln\left(\frac{3N}{2}\right) + \frac{3N}{2}$$

Contracting this we get

$$\ln \Sigma = N \left[\frac{(3mkT)^{3/2}V}{(2\pi\hbar)^3 (3/2)^{3/2}N} + 5/2 \right]$$
$$= N \left[\ln \frac{n_Q(T)}{n} + \frac{5}{2} \right]$$

and from here $S = k \ln \Sigma$ gives the desired result.

Question II.

Suppose we have two independent quantum systems 1 and 2, noninteracting and acting on different degrees of freedom. Show, and forever memorize, that the partition function factorizes:

$$Z_{1+2} = Z_1 Z_2$$

The same obviously applies to an arbitrary number of systems.

At a temperature T with energies ϵ_i, ϵ_j we have

$$Z_{1+2} = \sum_{i} \sum_{j} e^{-(\epsilon_i + \epsilon_j)/T}$$
$$= \sum_{i} e^{-\epsilon_i/T} \sum_{j} e^{-\epsilon_j/T}$$
$$= Z_1 Z_2$$

Question III.

The canonical partition function for a classical ideal gas, N atoms in a volume V at temperature T in the limit of high temperature or low density, equals

$$Z_N = \frac{1}{N!} \left(\frac{V}{\lambda^3} \right)^N, \quad \lambda = \left(\frac{2\pi\hbar^2}{mkT} \right)^{1/2}$$

where λ is the same thermal de Broglie wavelength as in P1; don't ask .../ Find the chemical potential.

We can use the Helmholtz free energy where

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{TV}$$

$$F = -T[N \ln Z_1 - \ln N!]$$

$$\mu = -T\left[\ln Z_1 - \frac{\mathrm{d}}{\mathrm{d}N} \ln N!\right]$$

We can finish this using Stirling where

$$\frac{\mathrm{d}}{\mathrm{d}N}\ln N! = \ln N + \frac{1}{2N}$$
$$\mu = T\ln \frac{N}{Z_1}$$

where $Z_1 = V/\lambda^3$

Question IV.

Given the grand partition function \mathcal{Z} , show that the expectation value of particle number and the root-mean square fluctuations of the particle number satisfy

$$N = z \frac{\partial}{\partial z} \ln \mathcal{Z}, \quad (\Delta N)^2 = z \frac{\partial}{\partial z} z \frac{\partial}{\partial z} \ln \mathcal{Z}$$

How do the relative fluctuations, $\Delta N/N$, scale in the thermodynamic limit?

We can take the expectation value of the number operator such that $\langle \hat{N} \rangle = N$

$$N = \frac{1}{\mathcal{Z}} \operatorname{Tr} \left\{ z^N e^{-\beta \hat{H}} \hat{N} \right\}$$

$$= \frac{1}{\mathcal{Z}} \sum_{N} z^N N e^{-\beta E_N}$$

$$z \frac{\partial}{\partial z} \ln \mathcal{Z} = z \frac{\partial}{\partial z} \ln \sum_{N} z^N e^{-\beta E_N}$$

$$= \frac{z}{\mathcal{Z}} \sum_{N} z^{N-1} N e^{-\beta E_N}$$

$$= \frac{1}{\mathcal{Z}} \sum_{N} z^N N e^{-\beta E_N}$$

$$= N$$

We then have

$$(\Delta N)^{2} = z \frac{\partial}{\partial z} z \frac{\partial}{\partial z} \ln \mathcal{Z}$$

$$= z \frac{\partial}{\partial z} N$$

$$= z \frac{\partial}{\partial z} \left(\frac{1}{\mathcal{Z}} \sum_{N} z^{N} N e^{-\beta E_{N}} \right)$$

$$= z \left(-\frac{1}{\mathcal{Z}^{2}} \sum_{N} z^{N-1} N e^{-\beta E_{N}} \sum_{N} z^{N} N e^{-\beta E_{N}} + \frac{1}{\mathcal{Z}} \sum_{N} z^{N-1} N^{2} e^{-\beta E_{N}} \right)$$

$$= \langle N^{2} \rangle - \langle N \rangle^{2}$$

is the variance of N. We know that in the thermodynamic limit the relative fluctuations $\Delta/N \to 1/\sqrt{N} \to 0$.