1 Лекция от 17 апреля 2006 года

1.1 Статистическая эргодическая теорема

Пусть M - пространство с счетно-аддитивной мерой μ , причем $\mu(M) < \infty$, пусть $T \colon M \to M$ - преобразование пространства на себя, сохраняющее меру, то есть $\mu(A) = \mu(TA)$ для любого измеримого множества A. Теорема Пуанкаре о возвращении утверждает, что если мы в M выберем измеримое множество A положительной меры, то для почти всех точек из A выполняется свойство: если мы рассмотрим орбиту Tx,\ldots,T^nx , то она будет бесконечно много раз пересекать множество A. Хотелось бы уточнить это утверждение, охарактеризовав частоту попадания орбиты в эту область. В 1932 году была опубликована эргодическая теорема Джона фон Неймана, но мы сформулируем сначала более сильный результат, опубликованный в 1931 году Бирхгофом. Исторически сложилось так, что более сильный результат был опубликован раньше.

Итак, рассмотрим числовые функции $f: M \to \mathbb{R}$. Надо, чтобы функции были согласованы с мерой. Рассмотрим класс функций, интегрируемых в смысле меры Лебега, то есть таких, для которых существует интеграл $\int_M f(x) \, d\mu$ в смысле Лебега. Как мы знаем, класс интегрируемых по Лебегу функций обозначается через L_1 . Рассмотрим теорему Бирхгофа. Все известные доказательства довольно сложные, доказывать не будем. Бирхгоф рассматривает следующее выражение

 $f(x)+f(Tx)+...+f(T^{n-1}x)$

И утверждается, что для почти всех x существует предел при $n \to \infty$. При этом, предел зависит от x, то есть получаем функцию $\overline{f}(x)$. Что можно сказать о предельной функции:

- 1) $\overline{f}(x)$ определена почти всюду, интегрируема.
- 2) $\overline{f}(x)$ инвариантна относительно преобразования T то есть она постоянна на орбите : $\overline{f}(Tx)=\overline{f}(x)$ для почти всех x.
- 3) Выполнено следующее равенство: $\int_{M} \frac{d^{2}}{f}(x) d\mu = \int_{M} f(x) d\mu$.

Замечание: Можно рассмотреть последовательность для каждого фиксированного x: $f(T^nx)$. Если $f \neq const$, то в типичном случае эта последовательность расходится. В качестве f возьмем характеристическую функцию области A. Возьмем точку $x \in A$. Как правило, если $T \neq id$, то мы выходим из этой области, по теореме Пуанкаре о возвращении точка будет бесконечное число раз возвращаться в эту область. В типичной ситуации последовательность состоит из 0 и 1, причем 0 бесконечно много и 1 бесконечно много, то есть предела в обычном смысле нет. Вместо обычной сходимости надо брать сходимость по Чезаро, то есть рассматривать последовательность средних арифметичесих. Бирхгоф доказал, что эта последовательность суммируема методом Чезаро. Причем она сходится к интегрируемой функции. Бирхгоф доказал свою теорему для случая характеристических функций измеримых областей. А указанный выше вид этой теореме придал Хинчин.

Задача: (она показывает, насколько Бирхгоф усилил теорему Пуанкаре о возвращении.) Если f - характеристическая функция области A, $\mu(A)>0$, тогда для почти всех $x\in A\colon f(\mathbb{T}^nx)\to \overline{f}(x)$. Задача заключается в том, чтобы показать, что $\overline{f}(x)>0$ почти всюду. Таким образом, можно говорить о частоте попадания точки $x\in A$. Точка движется под действием итераций, $\frac{f(x)+f(Tx)+...+f(T^{n-1}x)}{n}$ - средняя частота попадания точки, когда мы отсчитываем итерации от 0 до n, то есть получаем долю времени, когда мы находимся в этой области. При этом, средняя частота стремится к предельной частоте, предлагается доказать, что для почти всех x эта предельная частота строго положительна.

Где можно прочитать доказательство теоремы Бирхгофа - Хинчина?

- 1. Халмош, Лекции по эргодической теории, там разобран дискретный случай.
- 2. Немыцкий, Степанов, Качественная теория дифференциальных уравнений, непрерывный случай.

1.2 Теорема Фон Неймана

Рассмотрим теперь функции из L_2 , введем некоторый оператор, который функции f(x) ставит в соответствие другую функцию g(x) по следующему правилу: $f(x) \mapsto g(x) = f(Tx)$, будем обозначать: g = Uf. Ясно, что это линейный оператор, переводит интегрируемые функции в интегрируемые. $U \colon L_1 \to L_1$. Функция f(Tx) - интегрируемая, т.к. T сохраняет меру, интеграл по мере получается один и тот же. Кроме того, U сохраняет норму в этом пространстве. $\|f\|_1 = \int_M |f| \, d\mu$, $\|f(x)\|_1 = \|f(Tx)\|_1 \Rightarrow \|f\|_1 = \|Uf\|_1$. Таким образом, U - унитарный оператор, его называют оператором Купмана. Его обычно рассматривают в L_2 . По тем же соображениям U сохраняет норму в L_2 . В L_2 есть скалярное произведение: $(f,g)_2 = \int_M f\overline{g} \, d\mu$, где $f,g \in L_2$. Интеграл от произведения функций из L_2 существует, fg тоже является интегрируемой функцией, т.к. $fg = \frac{1}{4}(f+g)^2 - \frac{1}{4}(f-g)^2$. $(Uf,Uf) = (f,f) \forall f \in L_2$.

Theorem (Фон Нейман): Возьмем произвольную функцию $f \in L_2$, пусть U - оператор Купмана, рассмотрим следующую величину: $A_n f = \frac{f(x) + Uf + \ldots + U^{n-1}f}{n}$. Эта величина сходится в среднеквадратичном смысле к функции $\overline{f}(x)$, при этом $U\overline{f} = \overline{f}$ для почти всех x (то есть эта функция является инвариантной относительно оператора). То есть $\|A_n f - \overline{f}\|_2 \to 0, n \to \infty$.

Доказательство.

Доказательство проводится в несколько шагов.

1ый шаг.

Пусть f сама инвариантна относительно U , то есть f=Uf , тогда все тривиально. 20й шаг.

Пусть f представима в виде g-Ug, где $g\in L_2$. Тогда теорема тоже верна. Действительно, рассмотрим сумму: $\frac{g-Ug+Ug-U^2g+...+U^{n-1}g-U^ng}{n}$, все промежуточные слагаемые сократятся, кроме первого и последнего. Рассмотрим $\|\frac{g-U^ng}{n}\|_2 = \frac{\|g-U^ng\|}{n} \le \frac{2\|g\|}{n} \to 0$ при $n\to\infty$.

Зий шаг.

Рассмотрим множество элементов $\Lambda = \{f \in L_2 | f = g - Ug\}$ - это линейное подпространство. Рассмотрим случай, когда $f \in \overline{\Lambda}$, это означает, что существует последовательность $\{f_k\} \in \Lambda$ такая, что : $f_k \to f$ по норме L_2 . Нам надо доказать, что $\|A_n f\| \to 0$. Представим: $\|A_n f\| = \|A_n (f - f_k) + A_n f_k\|$. k возьмем достаточно большим, чтобы f и f_k мало отличались друг от друга, то есть $\|f - f_k\| < \varepsilon$. Так как $f_k \in \Lambda \Rightarrow A_n f_k \to 0, n \to \infty$, так как f, f_k отличаются мало, то и $A_n (f - f_k)$ мало, следовательно, $\|A_n f\| \to 0, n \to \infty$.

4ый шаг.

Если $f \in L_2$, то $f = f_1 + f_2$, где $f_1 \in \overline{\Lambda}, Uf_2 = f_2$ - не меняются при действии оператора U. Докажем, что справедливо такое представление, тогда все будет доказано в силу предыдущих пунктов. L_2 - гильбертово пространство, его можно разложить в прямую сумму двух пространств $\overline{\Lambda}$ и $\overline{\Lambda}^\perp$, надо показать, что $\overline{\Lambda}^\perp$ - это неподвижные элементы при действии оператора Купмана. Рассмотрим $\forall g\colon (g-Ug,h)=0$ - опишем множество векторов, ортогональных произвольному элементу из Λ . Хотим доказать, что Uh=h. $(g,h)-(Ug,h)=0 \Rightarrow (g,h)-(g,U^*h)=0 \Rightarrow (g,h-U^*h)=0 \forall g. \Rightarrow h-U^*h=0$ Так как оператор U унитарный, то $UU^*=E$, домножим на U слева, получим:Uh-h=0, что и требовалось. Доказательство закончено. \square