Real Analysis. Assignment 2. Due: Fri 3/10 13:00

Exercise 1. Some inequalities involving p-norms.

Let $1 \leq p < q$ be fixed, and consider the *p*-norm and *q*-norm on \mathbb{R}^n , $||x||_p := (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}$. We also define $||x||_{\infty} := \max_i |x_i|$.

Without loss of generality assume $x_1 \geqslant x_2 \geqslant \cdots \geqslant x_n \geqslant 0$.

- (a1) Show that $||x||_{\infty} \leq ||x||_{p} \leq n^{\frac{1}{p}} ||x||_{\infty}$.
- (a2) Use (a2) to show that for any $x \in \mathbb{R}^n$ (in any dimension), $\lim_{p \to \infty} ||x||_p = ||x||_{\infty}$.
- (b1) Solve the constrained optimization problem: find the maximum and minimum of the function

$$f(x_1, x_2, \dots, x_n) = ||x||_q^q = x_1^q + x_2^q + \dots + x_n^q$$

under the constraint $g(x_1, x_2, \dots, x_n) = ||x||_p^p = x_1^p + x_2^p + \dots + x_n^p = A \text{ (and } x_1 \geqslant x_2 \geqslant \dots \geqslant x_n \geqslant 0).$

(b2) By fixing $A = ||x||_p^p$, show that for any $x \in \mathbb{R}^n$ and $1 \leq p < q$,

$$||x||_q \leqslant ||x||_p \leqslant n^{\frac{1}{p} - \frac{1}{q}} ||x||_q.$$

(Remark: (a1) is also consistent with (b2) if we allow $q = \infty$ and define $1/\infty = 0$.)

- (b3) Use (b2) to write down some inequalities involving $||x||_1$ and $||x||_2$.
- (c) Show that a subset U is open in $(\mathbb{R}^n, d_p = \| \bullet \bullet \|_p)$ if and only if it is open in (\mathbb{R}^n, d_q) .

Exercise 2. Fun geometric example.

Let $A \subset \mathbb{R}^2$ be $A = (\{x^2 + y^2 < 1\} \cap \{y \ge 0\}) \cup \{(\pm 2, 0), (0, 1), (\pm 2\sqrt{2}, 2\sqrt{2})\}$. In separate pictures, sketch A, int(A), \overline{A} , ∂A .

Exercise 3. Using basic definitions of open and closed sets.

Let (M, d) be a metric space, and let r > 0.

- (a) Show that the (open) ball $B_r(x_0) = \{y \in M : d(y, x_0) < r\}$ is indeed open. Your first line should be, "Let $x \in B_r(x_0)$ ". Next, find a radius $\delta > 0$, and show that $B_\delta(x) \subset B_r(x_0)$.
- (b) Show that the (closed) ball $\overline{B_r}(x_0) = \{y \in M : d(y, x_0) \leq r\}$ is indeed closed. Your first line should be, "Consider a sequence of points $\{x_n\}$ in $\overline{B_r}(x_0)$, converging to $x \in M$." Next, show that x is also in the closed ball. WARNING: similar to HW1, do not assume that d is a "continuous function".

Exercise 4. Space of continuous functions.

[In this problem, use everything you know in single variable calculus.] Let $M = C^0([a,b])$ denote the space of all continuous functions $f:[a,b] \to \mathbb{R}$. Define the supremum norm by $||f||_{\infty} := \sup_{x \in [a,b]} |f(x)|$, and define the uniform metric d by $d(f,g) = ||f-g||_{\infty} = \sup_{x \in [a,b]} |f(x)-g(x)|$. $(M = C^0([a,b]), d)$ is indeed a metric space [optional: verify this].

- (a) Show that the sequence of functions $\{f_k(x) = x(1-x)^n + x\}_{k=1}^{\infty}$ converges in $(C^0([0,1]), d)$. Hint: as $n \to \infty$, what does the function look like? Guess a limit function f(x), and then estimate $d(f_k, f)$.
- (b) Consider the set of positive continuous functions, $U = \{f \in C^0([a,b]): f(t) > 0 \forall t \in [a,b]\}$. Explain why for each $f \in U$, $\inf_{t \in [a,b]} f(t) > 0$, and use this to prove that U is open in (M,d).
- (c) Consider the set of continuous functions with zero endpoint values, $F = \{f \in C^0([a, b]): f(a) = 0, f(b) = 0\}$. Show that F is closed in (M, d).

1