Facultad de Filosofía,

Educación y

Ciencias Humanas

Práctica calificada 1

Curso: Lógica y Argumentación

Sección: 8

Nombre y apellidos: Rosangela Isabel Rojas Jukarima.

Parte II. Tablas de verdad y conceptos semánticos

[8 puntos]

Considera las siguientes reglas extra para el conector ∝ que se añaden a la LC:

Reglas de formación extra

rf5. Si ϕ y ψ son fbf's, entonces $(\phi \# \psi)$ es una fbf.

Reglas de interpretación extra

ri7.
$$U(\phi \# \psi) = V \operatorname{sii} U(\phi) = F \operatorname{y} U(\psi) = V$$

A continuación, desarrolla los siguientes ítems:

A) Crea la tabla de verdad compartida por ϕ y ψ . Debes consignar, como mínimo, todos los valores de los conectores lógicos. (2 puntos)

			φ	ψ	
P	Q	R	$\left(\left(P \supset \neg (R \equiv Q) \right) \# \left((R \lor P) \land \neg Q \right) \right)$	$\left(\left((P \# \neg P) \land (\neg Q \# Q)\right) \land \neg R\right)$	
V	V	٧	NECNE NEC	VFFFFVVFF	
V	٧	F	VVVF F VFF	VFFFVVFV	
٧	F	V	VVVFFVVV	VFFFFFF	
V	F	F	VF F V V VVV	VFFFVFFV	
F	٧	٧	fV F V F V F F	f V V V C V V F F	
F	٧	F	fvvff FFF	f V V V f V V V	
F	F	٧	fVVFFVVV	FVVFVFFF	
F	F	F	f N t N f F F N	FVVFVFFFV	
				4	

- A) Responde las siguientes preguntas (2 puntos c/u):

Tabla para el contraejemplo (de no ser tautológica)

P	Q	R	$(\phi \supset \neg(\neg \psi \land \phi))$
V	F	1	VFFVFVV

Ø	Ψ	(\$ 27 (7 4 A \$))
ナンカイイ・	もくっく	ALTAENA

 $\mathcal{E}\{\neg\psi,\neg(\phi\supset\neg\psi)\}$ es consistente? De serlo, señala un ejemplo.

Respuesta: No, no es consistente. No tiene ambos

valores V. en almenos una fila.

Tabla para el ejemplo (de ser consistente)

P	Q	R	$\neg \psi$	$\neg(\phi \supset \neg\psi)$

4	f	9 4	7(6274)
V	とにった	FV	V V F F F V V V

 \dot{c} (¬ ϕ ∧ ¬ ψ), (ϕ ≡ ψ) \dot{c} ¬(¬ ϕ ⊃ ψ) es válido? De no serlo, señala un iii. contraejemplo.

Respuesta: <u>Sí es valido porque n</u>o se da el caso do premisas verdaderas y conclusión falsa en una Tabla para el contraejemplo (de ser inválido) misma fila de valores.

P	Q	R	$(\neg \phi \land \neg \psi)$	$(\phi \equiv \psi)$	$\neg(\neg\phi\supset\psi)$
-					

9	Ψ	(7917-4)	(∮ ∈ ¥)	<u>¬(</u> ¬ ∮ ⊃ Y)
V	V	+ + + + + + + + + + + + + + + + + + +	VVV	t F V V
V	F	FFV	VFF	E F V F
F	V	VFF	FFV	FVVV
F	F	V V V	FVF	V V F F