TD 5.2 - Suites réelles

Entraînements

Exercice 1. Étudier la monotonie des suites définies par

1.
$$\forall n \in \mathbb{N}, \ u_n = \left(\sum_{k=0}^n \frac{1}{2^k}\right) - n$$
 4. $\forall n \in \mathbb{N}, \ u_n = \sum_{k=0}^{2n} \frac{(-1)^k}{k+1}$ 5. $\forall n \in \mathbb{N}, \ u_n = n + 2(-1)^n$

4.
$$\forall n \in \mathbb{N}, \ u_n = \sum_{k=0}^{2n} \frac{(-1)^k}{k+1}$$

$$2. \ \forall n \in \mathbb{N}, \ u_n = \frac{n!}{2^{n+1}}$$

5.
$$\forall n \in \mathbb{N}, \ u_n = n + 2(-1)^n$$

3.
$$\forall n \in \mathbb{N}^{\star}, \ u_n = \frac{\ln(n)}{n}$$

6.
$$\forall n \in \mathbb{N}, \ u_n = \sum_{k=2}^n \frac{1}{k \ln(k)}$$

Exercice 2. Étudier le comportement en $+\infty$ des suites suivantes :

1.
$$u_n = \frac{n}{\cos\left(\frac{1}{n}\right)}$$

7.
$$u_n = \frac{1}{n^2} \sum_{k=1}^n k$$

13.
$$u_n = \ln(2^n + n)$$

14. $u_n = n^{\frac{1}{n}}$

2.
$$u_n = \sqrt{n+1} - \sqrt{n}$$

8.
$$u_n = \frac{3^n - 4^n}{3^n + 4^n}$$

15.
$$u_n = (\ln n)^n$$

2.
$$u_n = \sqrt{n+1} - \sqrt{n}$$

3. $u_n = \ln(n+1) - \ln(n^2)$
8. $u_n = \frac{3^n - 4^n}{3^n + 4^n}$
9. $u_n = \frac{\sin n}{n}$

$$9. \ u_n = \frac{\sin n}{n}$$

16.
$$u_n = \frac{n^3 + 2^n}{3^n}$$

$$4. \ u_n = \left(1 + \frac{2}{n}\right)^n$$

$$\begin{array}{ccc} 3. & a_n & -\frac{1}{n} & \\ & & & 1 + (-1) \end{array}$$

17.
$$u_n = (n^2 + n + 1)^{\frac{1}{n}}$$

5.
$$u_n = \frac{2^n + n}{2^n}$$

10.
$$u_n = \frac{1 + (-1)^n}{n}$$

18.
$$u_n = \frac{1}{a^n} \sum_{k=1}^n b^k$$

6.
$$u_n = \frac{n + (-1)^n}{n - \ln(n^3)}$$

11.
$$u_n = n^2 - n \cos n + 2$$

12. $u_n = \frac{n! + (n+1)!}{(n+2)!}$

$$19. \ u_n = n^2 \left(\cos \left(\frac{1}{n^2} \right) - 1 \right)$$

Exercice 3. Calculer les limites des suites suivantes.

1.
$$u_n = e^{n^2 + n + 1}$$

2.
$$u_n = e^{2n} - e^n$$

$$\frac{-e^n}{-n^2+n+1}$$

$$7. \ u_n = \ln\left(\frac{e^n + n^2}{2n+1}\right)$$

$$11. \ u_n = \frac{e^{\sqrt{n}}}{n^2}$$

3.
$$u_n = \frac{e^n + n^2 + n + 1}{e^{2n} + 1}$$

1.
$$u_n = e^{n^2 + n + 1}$$

2. $u_n = e^{2n} - e^n$
3. $u_n = \frac{e^n + n^2 + n + 1}{e^{2n} + 1}$
4. $u_n = \frac{n}{n - 1} e^{\frac{1}{n}}$
5. $u_n = e^{n^2 - e^{n + 1}}$
6. $u_n = e^{n^2 - e^{n + 1}}$
7. $u_n = \ln\left(\frac{e^n + n^2}{2n + 1}\right)$
8. $u_n = \ln\left(\frac{2 - n}{n + 4}\right)$
9. $u_n = \frac{2^n}{n^2 + 1}$
11. $u_n = \frac{e^{\sqrt{n}}}{n^2}$
12. $u_n = e^n - n^{\frac{2}{3}}$
13. $u_n = e^{\frac{1}{n - 2}}$
14. $u_n = (2n - 1)$
15. $u_n = \frac{\ln(n^2 + 1)}{n}$

12.
$$u_n = e^n - n^{\frac{2}{3}}$$

4.
$$u_n = \frac{n}{n-1}e^{\frac{1}{n}}$$

9.
$$u_n = \frac{2^n}{n^2 + 1}$$

13.
$$u_n = e^{n/2}$$

14. $u_n = (2n-1)e^{\frac{1}{n-2}}$

5.
$$u_n = e^n - e^{n+1}$$
6. $u_n = \ln\left(\frac{e^n + 1}{e^n - 1}\right)$

$$10. \ u_n = \left(\frac{1}{2}\right)^n \ln n$$

15.
$$u_n = \frac{\ln(n^2 + 1)}{n}$$

Type DS

Exercice 4. Suites homographiques.

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$u_0 = 0 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{5u_n - 2}{u_n + 2} \quad \text{ et } \quad \forall n \in \mathbb{N}, \ v_n = \frac{u_n - 2}{u_n - 1}.$$

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que pour tout $n\geq 3, u_n>1$.
- 2. En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ est bien définie sur \mathbb{N} .
- 3. Montrer que $(v_n)_{n\in\mathbb{N}}$ est géométrique.
- 4. En déduire l'expression explicite de $(v_n)_{n\in\mathbb{N}}$ puis de $(u_n)_{n\in\mathbb{N}}$.
- 5. Etudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 5. Soit une suite $(u_n)_{n\in\mathbb{N}}$ qui vérifie la relation de récurrence

$$\left\{ \begin{array}{l} u_0 \in \mathbb{R} \\ \\ \forall n \in \mathbb{N}, \ u_{n+1} = -u_n^2 + 2u_n \end{array} \right.$$

- 1. Calculer $1 u_{n+1}$ en fonction de $1 u_n$.
- 2. Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$, si elle existe, en fonction du premier terme u_0 .

Exercice 6. On définit deux suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ par

$$u_1 = 1$$
 $v_1 = 12$ $\forall n \in \mathbb{N}^*, \ u_{n+1} = \frac{u_n + 2v_n}{3}$ $v_{n+1} = \frac{u_n + 3v_n}{4}.$

- 1. On pose, pour tout $n \in \mathbb{N}^*$, $w_n = v_n u_n$. Donner l'expression de $(w_n)_{n \in \mathbb{N}^*}$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.
- 3. On pose pour tout $n \in \mathbb{N}^*$, $t_n = 3u_n + 8v_n$. Donner l'expression de $(t_n)_{n \in \mathbb{N}^*}$ et en déduire la limite de $(u_n)_{n \in \mathbb{N}^*}$ et $(v_n)_{n \in \mathbb{N}^*}$.

Exercice 7. Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites telles que $a_0=0,\,b_0=1$ et pour tout $n\in\mathbb{N}$

$$a_{n+1} = -2a_n + b_n$$
 et $b_{n+1} = 3a_n$.

- 1. Démontrer que la suite $(a_n + b_n)_{n \in \mathbb{N}}$ est constante.
- 2. Pour tout $n \in \mathbb{N}$, exprimer a_n en fonction de n.
- 3. Pour tout $n \in \mathbb{N}$, déterminer b_n en fonction de n.

Exercice 8. Soit $(a,b) \in \mathbb{R}^2$ tels que 0 < a < b. On pose $u_0 = a, v_0 = b$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = \sqrt{u_n v_n}, \quad v_{n+1} = \frac{u_n + v_n}{2}.$$

- 1. INFO Ecrire une fonction Python qui prend en argument un entier n et deux flottants (a,b) et retourne la valeur de u_n .
- 2. Montrer que pour tout $(x,y) \in (\mathbb{R}_+)^2$ on a

$$\sqrt{xy} \le \frac{x+y}{2}$$

- 3. Montrer que : $\forall n \in \mathbb{N}, 0 \leq u_n \leq v_n$.
- 4. Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante et $(v_n)_{n\in\mathbb{N}}$ et décroissante.
- 5. Montrer que pour tout $(x,y) \in (\mathbb{R}_+)^2$ tel que $x \geq y > 0$ on a

$$\frac{x+y}{2} - \sqrt{xy} \le \frac{1}{2}(x-y)$$

- 6. Montrer que : $\forall n \in \mathbb{N}, v_n u_n \leq \frac{1}{2^n}(v_0 u_0).$
- 7. En déduire que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent vers la même limite.
- 8. INFO On note ℓ la limite commune des deux suites. Ecrire une fonction Python qui prend en argument un flottant eps et retourne la valeur de ℓ à eps prés.