Теория Вероятностей

Лекции

2024-2025

2024-09-06	
Введение	2
Основные понятия	2
Классическое определение вероятности	3
2024-09-13	
Геометрическое определение вероятности	3
Св-ва $P(A)$	3
Задача	3
Частотное (статистическое) определение	4
Аксиоматическое определение Колмагорова	4
Свойства $P(A)$	4
Условная вероятность	5

2024-09-06

- Введение -----

Итог = $0.1 \cdot \text{ИД3} + 0.15 \cdot \text{Сем} + 0.25 \cdot \text{KP} + 50 \cdot \Im \text{к}$ з

Нужно набрать 4 — не 3.5

По ИДЗ бывают защиты

На семинарах могут быть самостоятельные

Кибзун, Горяинова, Наумов «ТВ и МС. Базовый курс с примерами к задачам» 2013 или 2014

 ${
m KP}$ на тему «случайные события и случайные величины (одномерные)» примерно после 7-ми занятий, в начале 20-ого модуля

Экз на тему «многомерные случайные величины»

— Основные понятия ———

Опр. Теория Вероятностей: раздел математики, изучающий математические модели массовых случайных явлений

При большом кол-ве событий величина $\frac{m}{n} \to P$ стабилизируется

 $\omega_1,...,\omega_n$ — элементарные случайные события

Опр. Пространство Элементарных Событий (Ω **)**: Совокупность элементарных случайных событий

Опр. Случайное событие: любое $A\subset\Omega$

Опр. Достоверное событие: событие, которое происходит в опыте всегда. Совпадает с Ω

Опр. Невозможное событие: событие, которое не происходит в опыте никогда. Является \emptyset

Операции над множествами/ событиями:

- Произведение событий $A\cdot B$ событие из $A\cap B$
- Сумма событий A+B событие из $A\cup B$
- Разность событий $A \setminus B$
- Противоположное событие $\overline{A} = \Omega \setminus A$

Свойства операций над множествами:

- A + A = A
- $A \cdot A = A$
- $A \cdot \Omega = A$
- $A + \Omega = \Omega$
- A + B = B + A
- $A \cdot B = B \cdot A$
- A + (B + C) = (A + B) + C
- $A \cdot (B \cdot C) = (A \cdot B) \cdot C$
- $\overline{A} = A$
- $\overline{A+B} = \overline{A} \cdot \overline{B}$

Опр. σ **-алгебра событий**: класс подмножеств в \mathcal{A} на пространстве элементарных событий Ω , если:

1. $\Omega \in \mathcal{A}$

2. $A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$

3.
$$\forall A_1,...,A_n,... \in \mathcal{A} \Rightarrow \sum_{i=1}^{\infty} A_i \in \mathcal{A} \land \Pi_{i=1}^{\infty} A_i \in \mathcal{A}$$

— Классическое определение вероятности

Пусть Ω содержит конечное число равновозможных взаимоисключающих исходов, тогда:

Опр. Вероятность (классическое определение) события A:

$$P(A) = \frac{|A|}{|\Omega|},$$

где |A| – мощность события, количество событий, входящих в A

Свойства:

- $P(A) \in [0;1]$
- $P(\Omega) = 1$
- Если $A \cdot B = \emptyset$, то P(A+B) = P(A) + P(B)

2024-09-13

Геометрическое определение вероятности

Рассматриваем подмножества на \mathbb{R}^n , которые имеют конечную меру

Пример эксперимента: попадет ли случайная точка в подмножество

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$

Опр. События несовместны: $A \cdot B = \emptyset$

$$----$$
 Св-ва $P(A)$ $----$

- 1. $P(A) \ge 0 \forall A \subset \Omega$
- 2. $P(\Omega) = 1$
- 3. если A_1 и A_2 несовместны, то $P(A_1+A_2)=P(A_1)+P(A_2)$

x — время прихода Джульеты

y — время прихода Ромео

$$|x - y| < 14$$

$$P(\overline{A}) = \frac{\mu(\overline{A})}{\mu(\Omega)} = \frac{\frac{9}{16}}{1}$$

$$P(A) = 1 - \frac{9}{16} = \frac{7}{16}$$

Частотное (статистическое) определение

Пусть опыт проведен N раз, и событие произошло m_A раз. Тогда **частота** события A: $\nu(A) = \frac{m_A}{N}$

$$P(A) = \lim_{N \to \infty} \frac{m_A}{N}$$

Аксиоматическое определение Колмагорова

Пусть $\mathcal{A}-\sigma$ -алгебра событий на пространстве Ω . Числ функция $P:\mathcal{A}\to\mathbb{R}^1$ — вероятность, если:

- 1. $\forall A \in \mathcal{A}P(A) \geq 0$ аксиома неотрицательности
- 2. $P(\Omega) = 1$ условие нормировки
- 3. если $A_1,...,A_n,...$ попарно несовместны, то $P(\sum_{i=1}^\infty A_i = \sum_{i=1}^\infty P(A_i)$

Число P(A) называется вероятностью соб-я A

Тройка (Ω, \mathcal{A}, P) — вероятностное пространство

— Свойства
$$P(A)$$
 —

 $1. \ P(\overline{A}) = 1 - P(A)$

Док-во:

$$\Omega = A + \overline{A}$$

$$A \cdot \overline{A} = \emptyset$$

$$1 = P(\Omega) = P\Big(A + \overline{A}\Big) = P(A) + P\Big(\overline{A}\Big)$$

- 2. $P(\emptyset) = 1 P(\Omega) = 0$
- 3. $A \subset B \Rightarrow P(A) \leq P(B)$

Док-во:

$$B = A + (B \setminus A)$$

$$P(B) = P(A + (B \setminus A)) = P(A) + \underbrace{P(B \setminus A)}_{\geq 0}$$

4.

$$\forall A: 0 \le P(A) \le 1$$

5. Теорема сложения: $P(A+B) = P(A) + P(B) - P(A \cdot B)$ Док-во:

$$A=A\Omega=AB+A\overline{B}$$

$$B=B\Omega=AB+\overline{A}B$$

$$A+B=\underbrace{AB+A\overline{B}+\overline{A}B}_{\text{попарно несовместны}}$$

$$P(A) = P(AB) + P\left(A\overline{B}\right) \Rightarrow P(A) - P(AB) = P\left(A\overline{B}\right)$$

$$P(B) = P(AB) + P(\overline{A}B) \Rightarrow P(B) - P(AB) = P(\overline{A}B)$$

$$P(A+B) = P(AB) + P\left(\overline{AB}\right) + P\left(\overline{AB}\right) = P(AB) + P(A) - P(AB) + P(B) - P(AB) = P(A) + P(B) - P(AB) = P(AB) + P(B) - P(AB) + P(B) - P(AB) = P(AB) + P(AB)$$

6. Обобщение теоремы сложения:

$$P\left(\underbrace{A_1 + A_2}_{A} + \underbrace{A_3}_{B}\right) = P(A) + P(B) = P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_1A_3) - P(A_2A_3) + P(A_1A_2A_3)$$

$$P\left(\sum_{i} A_i\right) = \sum_{i} P(A_i) - \sum_{i < j} P\left(A_iA_j\right) + \sum_{i < j < k} P\left(A_iA_jA_k\right) - \dots + (-1)^{n+1}P(A_1...A_n)$$

Условная вероятность —

Переходим из Ω в B

Пусть $A, B \in \Omega$ и $P(B) \neq 0$, тогда вероятность A при условии B:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Опр. A и B независимые, если P(A|B) = P(A)

Опр. A и B независимые, если P(AB) = P(A)P(B)