3-VisionAIAPI 基础接口类实验

本文件夹中的所有实验均为本讲中接口使用类的实验,旨在帮助用户快速熟悉本讲各种接口以便于后续实验开发。

序号	实验名称	简介	文件地址	版本
1	双目摄像机系统的标定实	通过运行 BinocularCameraCalib4.py, 演示改变棋	0.BinocularCameraCalib\Readme.pdf	免费版
	验	盘.的位置和姿态,用于双目摄像机系统的标定。你		
		可以存储图像和校准相机。		
2	自动生成 AI 训练书数据	文件夹内有两个例程 python 脚本,分别生成图像	1.GenObjectDataSet\Readme.pdf	免费版
	集实验	数据集以及点云数据集,图像数据集是以 VOC 格		
		式输出, 因此 VOC 转到具体训练框架也很方便, 点		
		云数据集以 kitti 数据集格式, 图像数据集生成例程		
		(ExampleImg.py) 与 点 云 数 据 生 成 例 程		
		(ExamplePointCloud.py)都是以静态目标位置,具体		
		到目标怎么运动,由用户规划其运动轨迹以及控制		
		姿态, 平台早期有一个 单 目 标 生 成 数 据 集		
		的 例 程 PX4PSP\RflySimAPIs\PythonVisionAPI\3-		
		VisionAlDemos\4-GenVisionDataSet, 随机给的目标		
		位姿可以做参考,多目标的最好规划每个目标的运		
		动轨迹以及控制姿态等。		
3	理论上推导 UE4 相机的	在指定分辨率和视场角的情况下,可以快速计算焦	2.CameraCalcDemo\Readme.pdf	免费版
	理想模型实验	距 和内参矩阵、以及根据相机位置解算外参矩阵。		
4	理论上推导 UE4 相机的	在指定分辨率和视场角的情况下, 可以快速计算焦	3.CameraCalcDemo2\Readme.pdf	免费版

	理想模型实验	距 和内参矩阵、以及根据相机位置解算外参矩阵。		
5	获取相机、物体、靶标中心	通过调用平台接口获取相机、物体、靶标中心精确三	4.GetRelativePosDemo\Readme.pdf	免费版
	精确三维位置方法实验	维位置。		
6	自动生成 YOLO 数据集	运行 get_dateset.py 文件即可自动生成 YOLO 格	5.GenVisionDataSet\Readme.pdf	免费版
	实验	式的数据集。再运行 maketxt.py 对生成数据分成训		
		练集和测试集。对已有数据集进行划分运行		
		maketxt.py 文件即可对已有数据集进行划分,但是		
		需要将其中的一些地址更改为所要划分的数据集地		
		址。		
7	双目摄像机系统的标定实	通过运行 BinocularCameraCalib4.py, 演示改变棋	0.BinocularCameraCalib\Readme.pdf	免费版
	验	盘.的位置和姿态,用于双目摄像机系统的标定。你		
		可以存储图像和校准相机。		
8	自动生成 AI 训练书数据	文件夹内有两个例程 python 脚本,分别生成图像	1.GenObjectDataSet\Readme.pdf	免费版
	集实验	数据集以及点云数据集,图像数据集是以 VOC 格		
		式输出, 因此 VOC 转到具体训练框架也很方便, 点		
		云数据集以 kitti 数据集格式, 图像数据集生成例程		
		(ExampleImg.py) 与点云数据生成例程		
		(ExamplePointCloud.py)都是以静态目标位置,具体		
		到目标怎么运动,由用户规划其运动轨迹以及控制		
		姿态, 平台早期有一个 单 目 标 生 成 数 据 集		
		的 例 程 PX4PSP\RflySimAPIs\PythonVisionAPI\3-		
		VisionAlDemos\4-GenVisionDataSet, 随机给的目标		
		位姿可以做参考,多目标的最好规划每个目标的运		
		动轨迹以及控制姿态等。		
9	理论上推导 UE4 相机的	在指定分辨率和视场角的情况下,可以快速计算焦	2.CameraCalcDemo\Readme.pdf	免费版
	理想模型实验	距 和内参矩阵、以及根据相机位置解算外参矩阵。		

10	理论上推导 UE4 相机的	在指定分辨率和视场角的情况下,可以快速计算焦	3.CameraCalcDemo2\Readme.pdf	免费版
	理想模型实验	距 和内参矩阵、以及根据相机位置解算外参矩阵。		
11	获取相机、物体、靶标中心	通过调用平台接口获取相机、物体、靶标中心精确三	4.GetRelativePosDemo\Readme.pdf	免费版
	精确三维位置方法实验	维位置。		
12	自动生成 YOLO 数据集	运行 get_dateset.py 文件即可自动生成 YOLO 格	5.GenVisionDataSet\Readme.pdf	免费版
	实验	式的数据集。再运行 maketxt.py 对生成数据分成训		
		练集和测试集。对已有数据集进行划分运行		
		maketxt.py 文件即可对已有数据集进行划分,但是		
		需要将其中的一些地址更改为所要划分的数据集地		
		址。		

所有文件列表

序号	实验名称	简介	文件地址	版本
1	基础接口类实验	本文件夹中的所有实验均为本讲中接口使用类的	Readme.pdf	免费版
		实验,旨在帮助用户快速熟悉本讲各种接口以便于		
		后续实验开发。		
2	双目摄像机系统的标定实	通过运行 BinocularCameraCalib4.py,演示改变棋	0.BinocularCameraCalib\Readme.pdf	免费版
	验	盘.的位置和姿态,用于双目摄像机系统的标定。你		
		可以存储图像和校准相机。		
3	自动生成 AI 训练书数据	文件夹内有两个例程 python 脚本,分别生成图像	1.GenObjectDataSet\Readme.pdf	免费版
	集实验	数据集以及点云数据集,图像数据集是以 VOC 格		
		式输出,因此 VOC 转到具体训练框架也很方便,		
		点云数据集以 kitti 数据集格式,图像数据集生成		
		例程 (ExampleImg.py) 与点云数据生成例程		
		(ExamplePointCloud.py)都是以静态目标位置, 具体		
		到目标怎么运动,由用户规划其运动轨迹以及控制		
		姿态, 平台早期有一个 单 目 标 生 成 数 据 集		
		的 例 程 PX4PSP\RflySimAPIs\PythonVisionAPI\3-		
		VisionAlDemos\4-GenVisionDataSet,随机给的目		
		标位姿可以做参考,多目标的最好规划每个目标的		
		运动轨迹以及控制姿态等。		
4	理论上推导 UE4 相机的	在指定分辨率和视场角的情况下,可以快速计算焦	2.CameraCalcDemo\Readme.pdf	免费版
	理想模型实验	距 和内参矩阵、以及根据相机位置解算外参矩阵。		
5	理论上推导 UE4 相机的	在指定分辨率和视场角的情况下,可以快速计算焦	3.CameraCalcDemo2\Readme.pdf	免费版

	理想模型实验	距 和内参矩阵、以及根据相机位置解算外参矩阵。		
6	获取相机、物体、靶标中心	通过调用平台接口获取相机、物体、靶标中心精确	4.GetRelativePosDemo\Readme.pdf	免费版
	精确三维位置方法实验	三维位置。		
7	自动生成 YOLO 数据集	运行 get_dateset.py 文件即可自动生成 YOLO 格	5.GenVisionDataSet\Readme.pdf	免费版
	实验	式的数据集。再运行 maketxt.py 对生成数据分成		
		训练集和测试集。对已有数据集进行划分运行		
		maketxt.py 文件即可对已有数据集进行划分,但是		
		需要将其中的一些地址更改为所要划分的数据集		
		地址。		
8	双目摄像机系统的标定实	通过运行 BinocularCameraCalib4.py,演示改变棋	0.BinocularCameraCalib\Readme.pdf	免费版
	验	盘.的位置和姿态,用于双目摄像机系统的标定。你		
		可以存储图像和校准相机。		
9	自动生成 AI 训练书数据	文件夹内有两个例程 python 脚本,分别生成图像	1.GenObjectDataSet\Readme.pdf	免费版
	集实验	数据集以及点云数据集,图像数据集是以 VOC 格		
		式输出,因此 VOC 转到具体训练框架也很方便,		
		点云数据集以 kitti 数据集格式,图像数据集生成		
		例程 (ExampleImg.py) 与点云数据生成例程		
		(ExamplePointCloud.py)都是以静态目标位置,具体		
		到目标怎么运动,由用户规划其运动轨迹以及控制		
		姿态, 平台早期有一个 单 目 标 生 成 数 据 集		
		的 例 程 PX4PSP\RflySimAPIs\PythonVisionAPI\3-		
		VisionAlDemos\4-GenVisionDataSet,随机给的目		
		标位姿可以做参考,多目标的最好规划每个目标的		
		运动轨迹以及控制姿态等。		
10	理论上推导 UE4 相机的	在指定分辨率和视场角的情况下,可以快速计算焦	2.CameraCalcDemo\Readme.pdf	免费版
	理想模型实验	距 和内参矩阵、以及根据相机位置解算外参矩阵。		

11	理论上推导 UE4 相机的	在指定分辨率和视场角的情况下,可以快速计算焦	3.CameraCalcDemo2\Readme.pdf	免费版
	理想模型实验	距 和内参矩阵、以及根据相机位置解算外参矩阵。		
12	获取相机、物体、靶标中心	通过调用平台接口获取相机、物体、靶标中心精确	4.GetRelativePosDemo\Readme.pdf	免费版
	精确三维位置方法实验	三维位置。		
13	自动生成 YOLO 数据集	运行 get_dateset.py 文件即可自动生成 YOLO 格	5.GenVisionDataSet\Readme.pdf	免费版
	实验	式的数据集。再运行 maketxt.py 对生成数据分成		
		训练集和测试集。对已有数据集进行划分运行		
		maketxt.py 文件即可对已有数据集进行划分,但是		
		需要将其中的一些地址更改为所要划分的数据集		
		地址。		

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。