TEAM ID:PNT2022TMID43571

Import the necessary packages

import matplotlib.pyplot as plt

from keras.utils import np_utils

from tensorflow.keras.datasets import mnist

Load the data

```
(X_train, y_train), (X_test, y_test) = mnist.load_data()
```

Data Analysis

```
print(X_train.shape)
print(X_test.shape)
(60000, 28, 28)
```

X_train[0]

(10000, 28, 28)

- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 18, 18, 18, 126, 136, 175, 26, 166, 255, 247, 127, 0, 0, 0, 0],

- 0, 0, 0, 0, 0, 0],

- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 241, 225, 160, 108, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39, 148, 229, 253, 253, 253, 250, 182, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 114, 221, 253, 253, 253, 253, 253, 201, 78, 0, 0, 0, 0, 0, 0, 0, 0],

y_train[0]

5

plt.imshow(X_train[0])

Data Pre-Processing

X_train = X_train.reshape(60000, 28, 28, 1).astype('float32')

X_test = X_test.reshape(10000, 28, 28, 1).astype('float32')

number_of_classes = 10

Y_train = np_utils.to_categorical(y_train, number_of_classes)

Y_test = np_utils.to_categorical(y_test, number_of_classes)

Y_train[0]

array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.], dtype=float32)