$$\begin{array}{l}
\sqrt{2} \\
\sqrt$$

4.
$$\frac{dl}{dk} = \sum_{j=0}^{N} 1(y^{(j)} = k) \sum_{i=1}^{N} \frac{1}{G_i G_i^{(j)}} (X_i G_i^{(j)} - M_{pii}) = 0$$

$$\Rightarrow \hat{u}_{ik} = \frac{1}{\sum_{j} 1(y^{(j)} = K)} \sum_{j} X_{i}^{(j)} 1(y^{(j)} = K)$$

$$\frac{d\ell}{d(6i^2)} = \frac{d\ell}{dz} = \frac{\sum_{j=0}^{N} \mathbb{1}(y^{(j)} = K) \cdot \frac{1}{2} \cdot \sum_{i=1}^{N} \left[\frac{(x_i^{(j)} - u_k^{(ij)})^2 - Z}{Z^2} \right] \quad \text{where } Z = 6i^{(j)^2}$$

$$= > \hat{G}_{ik}^{2} = \frac{1}{\sum_{j=1}^{2} (y^{(j)} = K)} \sum_{j=1}^{2} (X_{i}^{(j)} - u_{ki}^{(j)})^{2} \mathbf{1} (y^{(j)} = K)$$

Q2.1

- 2. I use the more method of decreasing K by I until breaking the tie. This is a simple but effecient method, since a tie is impossible when K=I. This method can pursue the largest K without tie.
- 3. The optimal K I got is 3

 A verage accuracy across folds is 0.865/4

 Train classification accuracy is 0.8865/

 Test accuracy is 0.86975

2.0 plotting the original figure of mean

2.2

1.

- 2. The average conditional likelihood of train data is -0.124624436669 The average conditional likelihood of test data is -0.196673203255
- 3. The accuracy of the model on train data is 0.9814285714285714

 The accuracy of the model on test data is 0.97275

2.3

3.

5. Since we use $P(y = C|\mathbf{x}) \propto P(y = C)P(\mathbf{x}|y = C)$, we ignore the P(x). The calculated conditional likelihood is smaller than the true value of P(y = c |x).

The average conditional likelihood of train data is -30.7898021047 The average conditional likelihood of test data is -30.7369008592

6. The accuracy of the model on train data is 0.7741428571428571 The accuracy of the model on test data is 0.76425

2.4 Model Comparison

Algorithms	KNN(K=3)	Conditional Gaussian	Naïve Bayes
Accuracy of train	<mark>0.98657</mark>	0.98143	0.77414
Accuracy of test	0.96975	0.97275	0.76425

From the table above, we see Naïve Bayes perform the worst in the analytics, KNN and Conditional Gaussian almost have the same good performance while Conditional Gaussian has a better performance on the prediction of the dataset. In our problem, the features are not purely independent, which cause Naïve Bayes to achieve just 77% accuracy in this problem. This matches my expectation!