Optimized Sailing Trajectories: Team SailTrim

Joseph Skinner, Lucas Hartlage, Ramess Rogers

Mast Sensor Package

Boom Sensor Package

System Overview

Bluetooth: Network Config

IPE 129 – Capstone Design

- Three Bluetooth modules, one phone
 - HC-05's (BT 2.0): 1 Slaves, 1 Master
 - SH-HC-08 (BLE): 1 Slave

Bluetooth: Serial UART

- Max's serial.c modified to support UART2 as well
- Our serialcomm.c built on this to support NMEA use

Also used to configure
 HC-05 and SH-HC-08
 modules w/ AT commands

Bluetooth: Data Format

Our custom NMEA based packet:

```
$GNOST,(filtered?),(lat),(long),(wind speed),(wind dir),(gps speed),(gps direction),(boom angle),(compass heading),(timestamp),*(checksum)\r\n
```

Example Custom Packet:

\$GNOST,1,3658.0442,-12200.2109,3.31,13.00,0.30,261.81,2.10,213,204 122*57

Uses same parser as the GPS data

Bluetooth 4.0 vs 2.0

- Bluetooth 4.0 (BLE) required by iOS
- BLE sends at a much lower frequency than 2.0
- To maintain high speed processing, BT 2.0 used between sensor packages, while BLE is used to talk to phone app

RESULTS: 12Hz communication between packages

1Hz communication to phone

GPS: Hardware

 BerryGPS-IMUv3 has CAM-M8 (uBlox)

Uses a serial UART connection

3.3v	5v
SDA (I2C)	GND
SCL (I2C)	RX_GPS
	TX_GPS

GPS: Data Parsing

- Information sent with NMEA data format
- Various packets send wide range of info, we pick and choose what parts we care about

Example:

\$GPRMC,123519,A,4807.38,N,01131.000,E,022.4,230394,003.1,W*6A

\$HEADER,hh:mm:ss,status,lat,N/S,long,E/W,speed,angle,date,mag. var.,

*checksum

Anemometer and Wind Vane

- Davis 7911
 - O Wind vane wind direction
 - Anemometer wind speed

Wind Vane Circuit

 uC impedance caused disturbance to linearity

 Linear uC readings with small deadzone (345°-10°)

Davis 7911 Circuit

- Fit function excludes deadzone
- Wind vane mounted to have dead zone aligned with dead down wind
- Accuracy ± 1° within (7° -349°)

Anemometer: Data Collection

Square wave signal with falling edge triggers

- Input Capture
 - o 40 MHz PCBCLK, 1:256 prescalar, 32 bit timer
- Rollover period of 7.6 hrs

Required mapping of freq/period to speed

Boom Angle Sensor System Ideation

- Translate rotation of boom into readable signal
- Mount circuit on mast
- Boom offset from hinge by 2 inches
- Boom pitch range=(-30°, 15°)

Boom Angle Sensor Library, Calibration

- Inverse fit function:3.96*x + -75.4
- Pot dead band: (0°->24°),
 (210°->270°)
- Place dead band outside of active zone (120 deg)

Boom Angle Sensor Calibration (Cont.)

- Least squares error: 0.999
- Piecewise fit function to improve accuracy inside active zone
- Total angle range: ~270
- Centering offset: 111
- New fit function:270-(0.242*x + 24)-111

Boom Angle Sensor Mechanical System

- Hinge joint in linkage to compensate for offset
- Slider and bracket to adjust pot position
- Platform to hold box
- Mount to connect to mast
- Parts drafted in Solidworks, easy to transfer to .stl for 3D printing and rapid prototyping

Mechanical System: Boom Slider

Front View: facing T-section

Top View: slot added for pot turner

- Horizontal link slides into boom slot 0.5 in
- Issues with binding: slider was too long
- Shorten and taper T-section
- Lubricate to reduce friction

Side View

Mechanical System: Pot Turner

- New pot had different cross-section
- Piece slides on top of pot, fastened to boom slider

Side View: hole for screw

Bottom View: indented to sink onto pot

Mechanical System: Pot Slider

Top View: hole re-tapped on left side

- Slider moves in bracket, allow user to put pot under hinge
- Set screw to lock good position
- Tolerances too tight, sanded piece down, lubricate
- Set screw hole placed at side, screw interferes with position of pot

Front View

Boom Angle Sensor Measurements

Few measurements in RS
 Quest manual, collect
 them in person at harbor

 Wrap tape along arc length of mast, mark and measure

-Mast has airfoil shape, difficult to obtain arc length

CAD Mast Draft, Developments

- First drafts did not match shape of mast
- Use modeling clay to wrap around mast and hold shape, create fiberglass mount

-First Draft of Mast Mount

Mast Mount: Final Developments

Top View

Side/Inside View

- Used cross-section of mast to revise mast mount
- Duct tape in curved section to protect mast
- Hex holes for nuts, screws
- Slots in platform to tie box down

Mast Mount: Final Developments (cont.)

Bottom View

Front View

IMU Attitude Estimation/Issues

- IMU Used: MPU9250
- Motion of boat affects wind vane, anemometer data
- Find roll and pitch, remove their effect
- Initially used closed-loop controller: integrate gyro rates, correct w/ accel and mag, get angles from DCM
- Switched to accel-based attitude estimation, low-pass filtering

IMU Attitude Estimation/Issues (Cont.)

- Axes of accel and mag not aligned
- Tumble device, collect data, find scale factors, null shifts, misalignment matrix
- Left-handed coord frame, not right-handed
- Fix: make z neg. for accel and gyro, x and z neg. for mag

Results

Data Collection

- GPS Location, Heading, Speed
- Apparent Wind Speed & Direction

Post Processing (mimic phone processing)

- Wind Vector Triad
- Polar Speed Plots

GPS Plotting

GPS/Anemometer: Data Run

GPS Speed vs Wind Speed

- Initial Results:
 - max error: 2.74 knots
 - avg error: 1.06 knots
- Python Script to minimize error
- Good Agreement
 - o max error: 1.96 knots
 - avg error: 0.38 knots
- Current Fit
 - o 2.46 Hz per 1 knot

Triad of Wind Vectors

B+T=A or T=A-B

[1]

Measured Wind

• The wind vector measured by our sensors is a combination of true wind and motion-induced wind

Boat Wind

 Using GPS speed and track, we have access to a vector of wind induced by the motion of the boat

True Wind Results

Polar Speeds of Points of Sail

- Point Of Sail boat's direction relative to true wind direction
- Velocity Made Good speed of boat upwind or downwind

Polar Speed Plot Examples

Polar Speed Analysis

- Wind Speeds grouped around Δ threshold
- Corresponding speeds plotted vs POS headings

Polar Speed Results

 Chosen group of data based on wind speed conditions and likeness to common polar plot form

Corresponding True WindSpeed = 10.48 kt

Polar Speed Results

10.5 kt Results:

- SOG max = 5.1kts at Beam
 Reach 95°
- VMG Upwind 2.75 kts at 41°
- VMG Downwind 3.63 kts at 159°

Future Work

- Refine IMU roll/pitch data correction
- Obtain reliable tilt-compensated magnetic heading
- Review and refine mobile application's optimal trajectory methods
- Condense sensor packages into marketable product

Questions?

References

- 1. http://www.ockam.com/2013/05/15/true-wind/
- 2. https://www.nauticed.org/sailing-blog/sailboat-speed-versus-sailing-angle/
- 3. https://www.nauticed.org/sailing-blog/how-do-polar-plots-work-on-a-sailboat/

