Лабораторная работа 1

по архитектуре компьютеров

Екатерины Алексеевны Козловой

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	18
Список литературы		19

Список иллюстраций

4.1	Установка виртуальной машины и настройка ос	12
4.2	Обнавление и повышение комфорта	12
4.3	Удаление SELinux	13
4.4	Добавление гостевого диска	13
4.5	Монтаж диска, установка драйверов	14
4.6	Настройка раскладки клавиатуры	14
4.7	Имя пользователя и хоста	15
4.8	Расширения для pandoc	15
4.9	Поиск по dmesg	16
4.10	Поиск по dmesg	16
4.11	Поиск по dmesg	17

Список таблиц

3.1 Описание некоторых каталогов файловой системы GNU Linux . . . 7

1 Цель работы

Цель данной лабораторной работы-приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. После установки: обновление, повышение комфорта работы, автоматическое обновление, отключение SELinux
- 4. Установка драйверов для VirtualBox
- 5. Настройка раскладки клавиатуры
- 6. Устанвока имени пользователя и названия хоста
- 7. Устанвока программного обеспечения для создания документации
- 8. Домашнее задание
- 9. Контрольные вопросы

3 Теоретическое введение

Здесь описываются теоретические аспекты, связанные с выполнением работы. Например, в табл. 3.1 приведено краткое описание стандартных каталогов Unix.

Таблица 3.1: Описание некоторых каталогов файловой системы GNU Linux

Имя ка-				
талога	Описание каталога			
/	Корневая директория, содержащая всю файловую			
/bin	Основные системные утилиты, необходимые как в			
	однопользовательском режиме, так и при обычной работе всем			
	пользователям			
/etc	Общесистемные конфигурационные файлы и файлы конфигурации			
	установленных программ			
/home	Содержит домашние директории пользователей, которые, в свою			
	очередь, содержат персональные настройки и данные пользователя			
/media	Точки монтирования для сменных носителей			
/root	Домашняя директория пользователя root			
/tmp	Временные файлы			
/usr	Вторичная иерархия для данных пользователя			

Более подробно об Unix см. в [1–6].

4 Выполнение лабораторной работы

1. Создание виртуальной машины

У меня уже была установлена (через установщик с официального сайта, файл exe) и настроена виртуальная машина VirtualBox.

2. Установка операционной системы

На моей виртуальной машине стояла операционная система fedora linux, я загрузила iso образ файла версии для 64 битной системы и настроила 80 гб на жёсткий диск, 5000 мб памяти на неё саму, а также разрешение на 128 мб.

(рис. 4.1)

3. После установки: обновление, повышение комфорта работы, автоматическое обновление, отключение SELinux

Я запустила команды от роли супер-пользователя для обновления пакетов (dnf -y update), потом запустила команду установки tmux для повышения комфорта работы, подключила автоматическое обновление, запустила таймер и отключила SELinux. После этого я перезагрузила машину и приступила к выполнению следующего пункта.

(рис. 4.2) (рис. 4.3)

4. Установка драйверов для VirtualBox

Устанавливала драйвера я тоже с роли супер-пользователя, установила пакет dkms, подключила образ диска дополнительной гостевой ос и подмонтировала диск. Драйвера я устанавливала через команду /media/VBoxLinuxAdditions.run, а после также перезагрузила виртуальную машину.

(рис. 4.4) (рис. 4.5)

5. Настройка раскладки клавиатуры

Для настройки раскладки клавиатуры я запустила tmux, переключилась на роль супер-пользователя и отредактирвоала по инструкции конфигурационный файл (использовала встроенный редактор mc). Перезагрузила машину.

(рис. 4.6)

6. Установка имени пользователя и названия хоста

У меня было выполнено соглашение по наименованию, но я всё-равно поменяла имя хоста по инструкции через hostnamectl set-hostname username.

(рис. 4.7)

7. Установка программного обеспечения для создания документации

В роли супер-пользователя мне нужно было установить pandoc и texlive. У меня уже были они установлены, но я доустановила необходимые расширения для pandoc.

(рис. 4.8)

8. Домашнее задание

Через команду dmesg можно проанализировать последовательность загрузки системы, а через grep можно сделать поиск. Таким образом, выполнив команду dmesg | grep -i "что ищем", я нашла: версию ядра, частоту процессора, модель процессора, объём доступной оперативной памяти, тип обнаружения гипервизора,

тип файловой системы корневого раздела и последовательность монтирования файловых систем.

(рис. 4.9) (рис. 4.10)

(рис. 4.11)

9. Ответы на контрольные вопросы:

1) Какую информацию содержит учётная запись пользователя? Имя пользователя, зашифрованный пароль пользователя, идентификационный номер пользователя, идентификационный номер группы пользователя, домашний каталог пользователя, командный интерпретатор пользователя.

2) Укажите команды терминала и приведите примеры: – для получения справки по команде; – для перемещения по файловой системе; – для просмотра содержимого каталога; – для определения объёма каталога; – для создания / удаления каталогов / файлов; – для задания определённых прав на файл / каталог; – для просмотра истории команд.

а) для получения справки по команде: man

b) для перемещения по файловой системе: cd

с) для просмотра содержимого каталога: ls

d) для определения объёма каталога: du

e) для создания каталогов: mkdir

f) для создания файлов: touch

g) для удаления каталогов: rm

h) для удаления файлов: rm -r

i) для задания определённых прав на файл / каталог: chmod + x

j) для просмотра истории команд: history

3) Что такое файловая система? Приведите примеры с краткой характеристикой. Файловая система — это часть операционной системы, назначение

которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совместное использование файлов несколькими пользователями и процессами. Примеры файловых систем: • Ext2, Ext3, Ext4 или Extended Filesystem – стандартная файловая система для Linux. • JFS или Journaled File System была разработана в IBM для AIX UNIX и использовалась в качестве альтернативы для файловых систем ext. Она используется там, где необходима высокая стабильность и минимальное потребление ресурсов. • ReiserFS – была разработана намного позже, но в качестве альтернативы ext3 с улучшенной производительностью и расширенными возможностями. • XFS – это высокопроизводительная файловая система. Преимущества: высокая скорость работы с большими файлами, отложенное выделение места, увеличение разделов на лету и незначительный размер служебной информации.

- 4) Как посмотреть, какие файловые системы подмонтированы в ОС? С помощью команды mount.
- 5) Как удалить зависший процесс? С помощью команды kill.

Описываются проведённые действия, в качестве иллюстрации даётся ссылка на иллюстрацию .

Рис. 4.1: Установка виртуальной машины и настройка ос

Рис. 4.2: Обнавление и повышение комфорта

Рис. 4.3: Удаление SELinux

Рис. 4.4: Добавление гостевого диска

Рис. 4.5: Монтаж диска, установка драйверов

Рис. 4.6: Настройка раскладки клавиатуры

```
\oplus
                                                                                Q ≡
                                  eakozlova@fedora:~ — tmux
[eakozlova@fedora ~]$ sudo -i
[sudo] password for eakozlova:
[root@fedora ~]# adduser -G wheel username
[root@fedora ~]# adduser ~G wheel eakozlova
adduser: user 'eakozlova' already exists
[root@fedora ~]# hostnamectl set-hostname eakozlova
[root@fedora ~]# hostnamectl
 Static hostname: eakozlova
        Icon name: computer-vm
         Chassis: vm =
      Machine ID: 793473e3e475404bbbc19210aef51ec2
Boot ID: 9f5f65d54a524668b0c00cc537abeaad
  Virtualization: oracle
Operating System: Fedora Linux 36 (Workstation Edition)
     CPE OS Name: cpe:/o:fedoraproject:fedora:36
           Kernel: Linux 6.1.11-100.fc36.x86_64
    Architecture: x86-64
 Hardware Vendor: innotek GmbH
Hardware Model: VirtualBox
[root@fedora ~]#
   6:bash
                                                                    "fedora" 20:38 15-Feb-23
```

Рис. 4.7: Имя пользователя и хоста

```
±
                                       eakozlova@fedora:~ — tmux
                                                                                          Q ≡
   Downloading pandoc_fignos-2.4.0-py3-none-any.whl (21 kB)
Collecting pandoc-eqnos
  Downloading pandoc_eqnos-2.5.0-py3-none-any.whl (20 kB)
Collecting pandoc-tablenos
  Downloading pandoc_tablenos=2.3.0-py3-none-any.whl (21 kB)
Collecting pandoc-secnos
  Downloading pandoc_secnos-2.2.2-py3-none-any.whl (18 kB)
Collecting pandoc-xnos<3.0,>=2.5.0
  Downloading pandoc_xnos-2.5.0-py3-none-any.whl (31 kB)
Collecting psutil<6,>=4.1.0
Downloading psutil=5.9.4-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.
manylinux_2_17_x86_64.manylinux2014_x86_64.whl (280 kB)
                                                  | 280 kB 272 kB/s
Collecting pandocfilters<2,>=1.4.2
Downloading pandocfilters-1.5.0-py2.py3-none-any.whl (8.7 kB)
Installing collected packages: psutil, pandocfilters, pandoc-xnos, pandoc-tablen
os, pandoc-secnos, pandoc-fignos, pandoc-eqnos
Successfully installed pandoc-eqnos-2.5.0 pandoc-fignos-2.4.0 pandoc-secnos-2.2.
2 pandoc-tablenos-2.3.0 pandoc-xnos-2.5.0 pandocfilters-1.5.0 psutil-5.9.4
WARNING: Running pip as the Toot' user can result in broken permissions and cor
flicting behaviour with the system package manager. It is recommended to use a v
irtual environment instead: https://pip.pypa.io/warnings/venv
 [root@fedora ~]#
                                                                            "fedora" 28:46 15-Feb
```

Рис. 4.8: Расширения для pandoc

```
Q ≣
                                                       eakozlova@fedora:~
[eakozlova@eakozlova ~]$ dmesg | grep -i Linux version
grep: version: No such file or directory
[eakozlova@eakozlova ~]$ dmesg | grep -i version
[ 0.000000] Linux version 6.1.11-100.fc36.x86_64 (mockbuild@bkernel02.iad2.fe
doraproject.org) (gcc (GCC) 12.2.1 20221121 (Red Hat 12.2.1-4), GNU ld v
.37-37.fc36) #1 SMP PREEMPT_DYNAMIC Thu Feb 9 20:36:30 UTC 2023
       0.054151] IOAPIC[0]: apic_id 1, version 32, address 0xfec00000, GSI 0.315792] acpiphp: ACPI Hot Plug PCI Controller Driver version: 0.5 0.541596] libata version 3.00 loaded.
                                                                           m 32, address 0xfec00000, GSI 0-23
        1.565334] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 2
45)
        1.569437] shpchp: Standard Hot Plug PCI Controller Driver version: 0.4
       1.574812] ahci 0000:00:0d.0: version 3.0
1.577406] ata_piix 0000:00:01.1: version 2.13
1.643064] device-mapper: uevent: version 1.0.3
        1.688713] AVX2 version of gd[1_enc/dec engaged.
        1.681114] registered taskstats version 1
2.981179] fuse: init (API version 7.37)
        4.327086] vboxguest: Successfully loaded version 7.0.6 r155176
4.327137] vboxguest: Successfully loaded version 7.0.6 r155176 (interface 0
x00810804)
      4.848141] vmwgfx 0000:00:02.0: [drm] Running on SVGA version 2.
16.207899] 17:35:27.064969 main OS Version: #1 SMP PREEHPT_DYNAMIC Thu F
eb 9 20:36:30 UTC 2023
```

Рис. 4.9: Поиск по dmesg

```
Q ≡
                                                     eakozlova@fedora:~
       1.643064] device-mapper: uevent:
                                                                           1.0.3
       1.688713] AVX2 version of gcm_enc/dec engaged.
1.688114] registered taskstats version 1
2.981179] fuse: init (API version 7.37)
       4.327086] vboxguest: Successfully loaded version 7.0.6 r155176
4.327137] vboxguest: Successfully loaded version 7.0.6 r155176 (interface 0
      4.848141] vmwgfx 0000:00:02.0: [drm] Running on SVGA v
                                                                                 m: #1 SMP PREEMPT_DYNAMIC Thu F
      16.207899] 17:35:27.864969 main
eb 9 20:36:30 UTC 2023
     29.445188] vboxvideo: loading version 7.0.6 r155176
31.275601] 17:35:42.128355 main OS Version: #1 SMP PREEHPT_DYNAMIC Thu F
eb 9 20:36:30 UTC 2023
[eakozlova@eakozlova ~]$ dmesg | grep -i mhz processor
grep: processor: No such file or directory
[eakozlova@eakozlova ~]$ dmesg | grep −i processor
     kozlova@eakozlova ~js umesg ; a.a.
0.000012] tsc: Detected 2591.998 MHz processor
- Tetal of 1 processors activated (5183.99 BogoHIPS)
[ 0.313293] smpboot: Total of 1 processors activated (5183.99 BogoHIPS)
[ 0.374866] ACPI: Added _OSI(Processor Device)
[ 0.374868] ACPI: Added _OSI(Processor Aggregator Device)
[eakozlova@eakozlova ~]$ dmesg | grep =i cpu0
[ 0.312572] smpboot: CPU0: Intel(R) Core(TH) i3=10110U CPU @ 2.10GHz (family:
 0x6, model: 0x8e, stepping: 0xc)
[eakozlova@eakozlova ~]$
```

Рис. 4.10: Поиск по dmesg

```
eakozlova@fedora:~ Q = x

[ 0.054216] PM: hibernation: Registered nosave memory: [mem 0xfee01000-0xfffb ffff]
[ 0.054217] PM: hibernation: Registered nosave memory: [mem 0xfee01000-0xfffb ffff]
[ 0.122034] Memory: 4857596K/5101112K available (16393K kernel code, 3265K rw data, 12468K rodata, 3032K init, 4596K bss, 243256K reserved, 0K cma=reserved)
[ 0.210709] Freeing SHP alternatives memory: 44K
[ 0.313573] x86/mm: Memory block size: 128HB
[ 1.552096] Freeing initrd memory: 32404K
[ 1.574102] Non-volatile memory driver v1.3
[ 2.041907] Freeing unused decrypted memory: 2036K
[ 2.04238] Freeing unused kernel image (initmem) memory: 3032K
[ 2.045881] Freeing unused kernel image (text/rodata gap) memory: 1866K
[ 4.848215] vmwgfx 0000:00:02.0: [drm] Legacy memory limits: VRAM = 131072 kB
, FIFO = 2048 kB, surface = 393216 kB
[ 4.848239] vmwgfx 0000:00:02.0: [drm] Haximum display memory size is 131072 kiB
[ 8.968998] systemd[1]: Listening on systemd-oomd.socket - Userspace Out-Of-M smory (00H) Killer Socket.
[eakozlova@eakozlova ~]$ dmesg | grep =i hypervisor
[ 0.000000] hypervisor detected: KVM
[ 0.172419] SRBDS: Unknown: Dependent on hypervisor status
[eakozlova@eakozlova ~]$
```

Рис. 4.11: Поиск по dmesg

5 Выводы

Я приобрела практические навыки установки и настройки виртуальной машины с базовыми сервисами.

Список литературы

- 1. GNU Bash Manual [Электронный ресурс]. Free Software Foundation, 2016. URL: https://www.gnu.org/software/bash/manual/.
- 2. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005. 354 c.
- 3. Zarrelli G. Mastering Bash. Packt Publishing, 2017. 502 c.
- 4. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 c.
- 5. Таненбаум Э. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. 874 с.
- 6. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120 с.