- Let us now move to a more involved example.
- We start with the definition of an (α, β, n, d) -expander.
- A bipartite graph $G = (V_1 \cup V_2, E)$ on n nodes is an (α, β, n, d) expander if
- 1) Every vertex in V₁ has degree at most d.
- 2) For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- Ideally, d should be small and β as large as possible.

- Let us now move to a more involved example.
- We start with the definition of an (α, β, n, d) expander.
- A bipartite graph G = (V₁ U V₂, E) on n nodes is an (α, β, n, d) expander if
- 1) Every vertex in V₁ has degree at most d.
- 2) For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- To build such a graph in a deterministic manner is not easy.
- Simple randomized construction with d = 18, α = 1/3, and β = 2

- A bipartite graph G = (V₁ U V₂, E) on n nodes is an (α, β, n, d) expander if
 - 1) Every vertex in V₁ has degree at most d.
- 2) For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- Simple randomized construction with d = 18, α = 1/3, and β = 2.
- We will actually not use these values until the very end of the proof.

- A bipartite graph G = (V₁ U V₂, E) on n nodes is an (α, β, n, d) expander if
- 1) Every vertex in V₁ has degree at most d.
- 2) For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- Let each vertex v in V₁ choose d neighbors in V₂ by sampling independently and uniformly at random.
- We can even sample with replacement.
- In other words, the same choice can be made more than once.
- We will still consider only one copy of any multiple choices.

- A bipartite graph G = (V₁ U V₂, E) on n nodes is an (α, β, n, d) expander if
 - 1) Every vertex in V₁ has degree at most d.
- Let each vertex v in V₁ choose d neighbors in V₂ by sampling independently and uniformly at random.
- By this construction, each vertex in V₁ has degree at most d.
- Next, we show the second condition.

- Condition 2: For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- Let $|V_1| = |V_2| = n$.
- Let each vertex v in V₁ choose d neighbors in V₂ by sampling independently and uniformly at random.
- Fix a parameter s that is at most αn .
- Consider any subset S of V_1 with |S| = s.
- Let T be any subset of V_2 of size β s.
- Consider the event that all the neighbors of vertices in S are in T.
- This event occurs with probability at most (βs/n)^{ds}.

- Condition 2: For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- Let $|V_1| = |V_2| = n$. Let each vertex v in V_1 choose d neighbors in V_2 by sampling independently and uar.
- Consider any subset S of V_1 with |S| = s.
- Let T be any subset of V_2 of size β s.
- Consider the event that all the neighbors of vertices in S are in T.
- This event occurs with probability at most $(\beta s/n)^{ds}$.
- We have to now look at all possible S and all possible T.

- Condition 2: For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- Consider the event that all the ds neighbors of vertices in S of size s are in T.
- This event occurs with probability at most $(\beta s/n)^{ds}$.
- Let us use Boole's inequality to upper bound the probability of the event that for some S all its neighbors are in T.
- We have to now look at all possible S and all possible T.
- There are nC_s ways to choose S and ${}^nC_{\beta s}$ ways to choose T.

- Condition 2: For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- This event occurs with probability at most $(\beta s/n)^{ds}$.
- There are ${\overset{n}{C}_s}$ ways to choose S and ${\overset{n}{C}_{\beta s}}$ ways to choose T.
- The probability that for some S all its neighbors are in T is now upper bounded by nC_s . ${}^nC_{\beta s}$. $(\beta s/n)^{ds}$.
- To simplify, let us use the inequality that for any n and k, ${}^{11}C_k$ is at most $(en/k)^k$.

- Condition 2: For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- The probability that for some S all its neighbors are in T is now upper bounded by C_s . $C_{\beta s}$. $(\beta s/n)^{ds}$.
- To simplify, let us use the inequality that for any n and k, ${}^{n}C_{k}$ is at most $(en/k)^{k}$.
- The probability is at most (en/s)^s . (en/ β s)^{β s} . (β s/n)^{ds}.
- Simplifying we get, $[(s/n)^{d-\beta-1} e^{1+\beta} \beta^{d-\beta}]^{S}$.
- Use that s is at most α n, for $\alpha = 1/3$ to simplify to:

- Condition 2: For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- The probability that for some S all its neighbors are in T is now upper bounded by C_s . C_{bs} . $(\beta s/n)^{ds}$.
- The probability is at most $(en/s)^s$. $(en/\beta s)^{\beta s}$. $(\beta s/n)^{ds}$.
- Simplifying we get, $[(s/n)^{d-\beta-1} e^{1+\beta} \beta^{d-\beta}]^s$.
- Use that s is at most α n, for α = 1/3 to simplify the above to $\left[(\beta/3)^d \ (3e)^{1+\beta} \right]^S.$
- Use d = 18 and β = 2 to simplify to $[(2/3)^{18} (3e)^3]^s$.

- Condition 2: For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- The probability that for some S all its neighbors are in T is at most $(en/s)^s$. $(en/\beta s)^{\beta s}$. $(\beta s/n)^{ds}$.
- Use that s is at most α n, for α = 1/3 to simplify the above to $\left[(\beta/3)^d \ (3e)^{1+\beta} \right]^S.$
- Use d = 18 and β = 2 to simplify to $[(2/3)^{18} (3e)^3]^5$.
- Notice that the term in [] is at most 1/2. So, the entire probability is at most (1/2)^s.

- Condition 2: For any subset S of vertices from V_1 such that |S| is at most αn , there are at least $\beta |S|$ neighbors in V_2 .
- The probability that for some S all its neighbors are in T is at

most
$$[(2/3)^{18} (3e)^3]^S$$
.

- Notice that the term in [] is at most 1/2. So, the entire probability is at most (1/2)^s.
- We used a specific s. But, we need to show the result for all s between 1 to αn .
- Apply Boole's inequality again to get that

$$\Sigma_{s>0}$$
 Pr(for some S all its neighbors are in T)

$$\leq \sum_{s>0} (1/2)^s < 1$$

- Consider the following claim.
- There is a bipartite graph G = (L, R, E) such that
 - |L| = n• $|R| = 2^{\log^{-n}}$
 - Every subset of n/2 vertices of L has at least 2^{log n} n neighbors in R.
 - No vertex of R has more than 12log² n neighbors.
- We want to use the technique of proof by existence to show the above claim.

- There is a bipartite graph G = (L, R, E) such that
 - |L| = n, $|R| = 2^{\log^2 n}$. Every subset of n/2 vertices of L has at least $2^{\log^2 n} n$ neighbors in R. No vertex of R has more than $12\log^2 n$ neighbors.
 - Let every vertex of L choose d neighbors in R independently and uniformly at random.
 - Choices are made with replacement.
 - Multiple edges are dropped in favor of one edge.

- There is a bipartite graph G = (L, R, E) such that
 - |L| = n, $|R| = 2^{\log^2 n}$. Every subset of n/2 vertices of L has at least $2^{\log^2 n} n$ neighbors in R. No vertex of R has more than $12\log^2 n$ neighbors.
 - Let every vertex of L choose d neighbors in R independently and uniformly at random.
 - Let us now estimate the degree of any vertex of R.
 - Let |R| = r.
 - We can think of the degree of a vertex v in R as the expectation of the random variable X that indicates how many vertices in L choose v as a neighbor.
 - Each neighbor in L makes d choices, so we have nd choices in all.

- There is a bipartite graph G = (L, R, E) such that
 - |L| = n, $|R| = 2^{\log^2 n}$. Every subset of n/2 vertices of L has at least $2^{\log^2 n} n$ neighbors in R. No vertex of R has more than $12\log^2 n$ neighbors.
 - Let every vertex of L choose d neighbors in R independently and uniformly at random.
 - Let |R| = r.
 - We can think of the degree of a vertex v in R as the expectation of the random variable X that indicates how many vertices in L choose v as a neighbor.
 - Each neighbor in L makes d choices, so we have nd choices in all.
 - Let Xi be a random variable if the ith choice is v.

- Let |R| = r.
- We can think of the degree of a vertex v in R as the expectation of the random variable X that indicates how many vertices in L choose v as a neighbor.
- Each neighbor in L makes d choices, so we have nd choices in all.
- Let Xi be a random variable if the ith choice is v.
- E[Xi] = 1/r.
- $X = \Sigma Xi$ and so $E[X] = \Sigma E[Xi] = nd/r$.
- Pick $d = r.2log^2 n / n$ so that $E[X] = 2log^2 n$.
- Now apply Chernoff bounds on X for the event $X >= 12\log^2 n$.
- Use Boole's inequality to bound the probability of the bad event for every v in R.

- There is a bipartite graph G = (L, R, E) such that
 - |L| = n, $|R| = 2^{\log^2 n}$. Every subset of n/2 vertices of L has at least $2^{\log^2 n} n$ neighbors in R.
 - Let every vertex of L choose d neighbors in R independently and uniformly at random.
 - We now move to property 1.
 - Let S be any subset of size n/2 from L.
 - Let T be any subset of R of size $2^{\log^2 n} n$.
 - Consider the event that all the neighbors of S are in T.
 - This happens with a probability of $[(2^{\log^2 n} n)/r]^{nd/2}$.

- There is a bipartite graph G = (L, R, E) such that
 - |L| = n, $|R| = 2^{\log^2 n}$. Every subset of n/2 vertices of L has at least $2^{\log^2 n} n$ neighbors in R.
 - Let S be any subset of size n/2 from L.
 - Let T be any subset of R of size $2^{\log^2 n} n$.
 - Consider the event that all the neighbors of S are in T.
 - This happens with a probability of $[(r n)/r]^{nd/2}$.
 - Now, consider all possible choices of S and T. The probability that for any S all its neighbors are in some T is upper bounded by: ${}^{n}C_{n/2} \cdot {}^{r}C_{r-n} \cdot [(r-n)/r]^{nd/2}$.
 - We will now show that the above probability is at most 1.

- Now, consider all possible choices of S and T. The probability that for any S all its neighbors are in some T is upper bounded by: ${}^{n}C_{n/2}$. ${}^{r}C_{r-n}$. $[(r-n)/r]^{nd/2}$.
 - We will now show that the above probability is at most 1.
 - Use the (in)equalities
 - ${}^{n}C_{n-k} = {}^{n}C_{k}$ for k between 0 and n.
 - 'c_k is at most (en/k)^k.
 - (1+x) is at most e^x for any real number x.
 - The required probability is
 - $(2e)^{n/2}$. $(er/n)^n$. $(e)^{-n^2d/2r}$.
 - Recall that $d = 2log^2 n \cdot r/n$.

- Now, consider all possible choices of S and T. The probability that for any S all its neighbors are in some T is upper bounded by: ${}^{n}C_{n/2}$. ${}^{r}C_{r-n}$. $[(r-n)/r]^{nd/2}$.
 - We will now show that the above probability is at most 1.
 - Use the (in) equalities
 - ${}^{n}C_{n-k} = {}^{n}C_{k}$ for k between 0 and n.
 - 'c_k is at most (en/k)^k.
 - (1+x) is at most e^x for any real number x.
 - The required probability is
 - $(2e)^{n/2}$. $(er/n)^n$. $(e)^{-n^2d/2r}$.
 - Recall that $d = 2\log^2 n$. r/n and $\log r = \log^2 n$ to simplify.