

Dr. rer. nat. Johannes Riesterer

Normen

$$||x||_1 := |x_1| + |x_2| + \dots + |x_n|$$

$$||x||_2 := \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$||x||_{\infty} := \max_i |x_i|$$

Normen

$$x, y \in \mathbb{R}^{n}, \ a \in \mathbb{R}$$
$$||\cdot||: \mathbb{R}^{n} \to \mathbb{R}$$
$$||x|| = 0 \Leftrightarrow x = 0$$
$$||x + y|| \le ||x|| + ||y||$$
$$||a \cdot x|| = |a| \cdot ||x||$$

Normen sind äquivalent

Alle normen auf dem \mathbb{R}^n lassen sich gegeneinander abschätzen.

Normen

Man kann skalierte Kugeln der verschiedenen Normen ineinander schachteln....

Skalarprodukt

$$x, y, z \in \mathbb{R}^n, \ a, b \in \mathbb{R}$$
 $<\cdot, \cdot>: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$
 $< x + y, z > = < x, z > + < y, z >$
 $< x, y + z > = < x, y > + < x, z >$
 $< a \cdot x, b \cdot y > = a \cdot b \cdot < x, y >$

Skalarprodukt

$$< x, y>_2 = x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots + x_n \cdot y_n$$

Skalarprodukt

$$||x||_2 = \sqrt{\langle x, x \rangle_2}$$

Skalarprodukt

$$\langle x, y \rangle = \cos(\varphi) \cdot ||x|| \cdot ||y||$$

Abstand

$$d(x,y) := ||x - y||$$

Abstand

$$d(x,y) = 0 \Leftrightarrow x = y$$

$$d(x,y) > 0 \Leftrightarrow x \neq y$$

$$d(x,z) \le d(x,y) + d(y,z)$$

Lineare Abbildung

Eine Abbildung $I: \mathbb{R}^n \to \mathbb{R}^m$ heißt linear, falls für alle $a, b\mathbb{R}$ und $x, y \in \mathbb{R}^n$

$$I(a \cdot x + b \cdot y) = a \cdot I(x) + b \cdot I(y)$$

gilt.

Lineare Abbildungen sind beschränkt

Für eine lineare Abbildung $I:\mathbb{R}^n \to \mathbb{R}^m$ gibt es eine Konstante $c\in \mathbb{R}$ mit

$$||I(x)|| \le c||x||$$

gilt.

Beweis

CLICK HERE FOR VIDEO

