| MAXIMUM MARKS | TOTAL DURATION | MAXIMUM TIME FOR ANSWERING |
|---------------|----------------|----------------------------|
| 60            | 80 MINUTES     | 70 MINUTES                 |

| MENTION YOUR | QUESTION BOOKLET DETAILS |               |  |  |  |  |  |
|--------------|--------------------------|---------------|--|--|--|--|--|
| CET NUMBER   | VERSION CODE             | SERIAL NUMBER |  |  |  |  |  |
|              | A - 1                    | 009281        |  |  |  |  |  |

## DO's:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- This Question Booklet is issued to you by the invigilator after the 2<sup>nd</sup> Bell i.e., after 10.30 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

## DON'TS:

- THE TIMING MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED/SPOILED.
- Until the 3<sup>rd</sup> Bell is rung at 10.40 a.m.:
  - Do not remove the seal / staple present on the right hand side of this question booklet.
  - Do not look inside this question booklet.
  - Do not start answering on the OMR answer sheet.

## INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have four different options / choices.
- After the 3<sup>rd</sup> Bell is rung at 10.40 a.m., remove the seal / staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- During the subsequent 70 minutes:
  - Read each question carefully.
  - Choose the correct answer from out of the four available options / choices given under each question.
  - Completely darken/shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the
    question number on the OMR answer sheet.

## CORRECT METHOD OF SHADING THE CIRCLE ON THE OMR SHEET IS SHOWN BELOW:



- Please note that even a minute unintended ink dot on the OMR sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough work AND do not use the OMR answer sheet for the same.
- After the last bell is rung at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating and retaining the top sheet (KEA Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of One year.

| (3) 2 and 6 (4) 5 and 6  2. β-decay means emission of electron from (1) a stable nucleus (2) outermost electron orbit (3) radioactive nucleus , (4) innermost electron orbit  3. An electric heater rated 220 V and 550 W is connected to A.C. mains. The current drawn it is (1) 2.5 A (2) 0.4 A (3) 1.25 A (4) 0.8 A  4. A body of mass 'm' moving along a straight line covers half the distance with a speed 2 ms <sup>-1</sup> . The remaining half of the distance is covered in two equal time intervals wit speed of 3 ms <sup>-1</sup> and 5 ms <sup>-1</sup> respectively. The average speed of the particle for the enjourney is (1) 8/3 ms <sup>-1</sup> (2) 4/3 ms <sup>-1</sup> (3) 16/3 ms <sup>-1</sup> (4) 3/8 ms <sup>-1</sup> 5. The moment of inertia of a circular ring of radius 'r' and mass 'M' about diameter is (1) Mr <sup>2</sup> /4 (2) Mr <sup>2</sup> /2 (3) Mr <sup>2</sup> /12 (4) 2/5 Mr <sup>2</sup> 6. A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is (g = 9.8 ms <sup>-2</sup> ). (1) 0.15 N (2) 0.030 N (3) Zero (4) 0.015 N  Space For Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1)                            | 5 and 7                                                                                          |                                                          | $8000 \times 10^4$ and $48000.50$ are respective 2 and 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. β-decay means emission of electron from  (1) a stable nucleus (2) outermost electron orbit (3) radioactive nucleus (4) innermost electron orbit  3. An electric heater rated 220 V and 550 W is connected to A.C. mains. The current drawn it is  (1) 2.5 A (3) 1.25 A (4) 0.8 A  4. A body of mass 'm' moving along a straight line covers half the distance with a speed 2 ms <sup>-1</sup> . The remaining half of the distance is covered in two equal time intervals with speed of 3 ms <sup>-1</sup> and 5 ms <sup>-1</sup> respectively. The average speed of the particle for the entiporation of 3 ms <sup>-1</sup> (3) 16/3 ms <sup>-1</sup> (4) 3/8 ms <sup>-1</sup> (5) 16/3 ms <sup>-1</sup> (6) 16/3 ms <sup>-1</sup> (7) 16/3 ms <sup>-1</sup> (8) 16/3 ms <sup>-1</sup> (9) 16/3 ms <sup>-1</sup> (10) 16/3 ms <sup>-1</sup> (11) 16/3 ms <sup>-1</sup> (12) 16/3 ms <sup>-1</sup> (13) 16/3 ms <sup>-1</sup> (14) 2/5 Mr <sup>2</sup> (15) 17/4 (16) 18/4 (17) 18/4 (17) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18) 18/4 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3)                            | Section 18                                                                                       | 3.00                                                     | - 1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| β-decay means emission of electron from  (1) a stable nucleus (2) outermost electron orbit (3) radioactive nucleus (4) innermost electron orbit (5) radioactive nucleus (6) innermost electron orbit (7) radioactive nucleus (8) An electric heater rated 220 V and 550 W is connected to A.C. mains. The current drawn it is (1) 2.5 A (3) 1.25 A (4) 0.8 A (5) A body of mass 'm' moving along a straight line covers half the distance with a speed 2 ms <sup>-1</sup> . The remaining half of the distance is covered in two equal time intervals with speed of 3 ms <sup>-1</sup> and 5 ms <sup>-1</sup> respectively. The average speed of the particle for the entiporation is (1) $\frac{8}{3}$ ms <sup>-1</sup> (2) $\frac{4}{3}$ ms <sup>-1</sup> (3) $\frac{16}{3}$ ms <sup>-1</sup> (4) $\frac{3}{8}$ ms <sup>-1</sup> (5) $\frac{16}{3}$ ms <sup>-1</sup> (6) $\frac{16}{3}$ ms <sup>-1</sup> (7) $\frac{16}{3}$ ms <sup>-1</sup> (8) $\frac{16}{3}$ ms <sup>-1</sup> (9) $\frac{16}{3}$ ms <sup>-1</sup> (10) $\frac{16}{3}$ ms <sup>-1</sup> (11) $\frac{16}{3}$ ms <sup>-1</sup> (12) $\frac{16}{3}$ ms <sup>-1</sup> (13) $\frac{16}{3}$ ms <sup>-1</sup> (14) $\frac{3}{8}$ ms <sup>-1</sup> (15) $\frac{16}{3}$ ms <sup>-1</sup> (16) $\frac{16}{3}$ ms <sup>-1</sup> (17) $\frac{16}{3}$ ms <sup>-1</sup> (18) $\frac{16}{3}$ ms <sup>-1</sup> (19) $\frac{16}{3}$ ms <sup>-1</sup> (10) $\frac{16}{3}$ ms <sup>-1</sup> (11) $\frac{16}{3}$ ms <sup>-1</sup> (12) $\frac{16}{3}$ ms <sup>-1</sup> (13) $\frac{16}{3}$ ms <sup>-1</sup> (14) $\frac{3}{8}$ ms <sup>-1</sup> (15) $\frac{16}{3}$ ms <sup>-1</sup> (16) $\frac{16}{3}$ ms <sup>-1</sup> (17) $\frac{16}{3}$ ms <sup>-1</sup> (18) $\frac{16}{3}$ ms <sup>-1</sup> (19) $\frac{16}{3}$ ms <sup>-1</sup> (19) $\frac{16}{3}$ ms <sup>-1</sup> (10) $\frac{16}{3}$ ms <sup>-1</sup> (10) $\frac{16}{3}$ ms <sup>-1</sup> (11) $\frac{16}{3}$ ms <sup>-1</sup> (12) $\frac{16}{3}$ ms <sup>-1</sup> (13) $\frac{16}{3}$ ms <sup>-1</sup> (14) $\frac{3}{8}$ ms <sup>-1</sup> (15) $\frac{16}{3}$ ms <sup>-1</sup> (16) $\frac{16}{3}$ ms <sup>-1</sup> (17) $\frac{16}{3}$ ms <sup>-1</sup> (18) $\frac{16}{3}$ ms <sup>-1</sup> (19) $\frac{16}{3}$ ms <sup>-1</sup> (1 |                                |                                                                                                  | (4)                                                      | 5 and 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (3) radioactive nucleus (4) innermost electron orbit  3. An electric heater rated 220 V and 550 W is connected to A.C. mains. The current drawn it is  (1) 2.5 A (2) 0.4 A (3) 1.25 A (4) 0.8 A  4. A body of mass 'm' moving along a straight line covers half the distance with a speed 2 ms <sup>-1</sup> . The remaining half of the distance is covered in two equal time intervals with speed of 3 ms <sup>-1</sup> and 5 ms <sup>-1</sup> respectively. The average speed of the particle for the entiporate is  (1) $\frac{8}{3}$ ms <sup>-1</sup> (2) $\frac{4}{3}$ ms <sup>-1</sup> (3) $\frac{16}{3}$ ms <sup>-1</sup> (4) $\frac{3}{8}$ ms <sup>-1</sup> The moment of inertia of a circular ring of radius 'r' and mass 'M' about diameter is  (1) $\frac{Mr^2}{4}$ (2) $\frac{Mr^2}{2}$ (3) $\frac{Mr^2}{12}$ (4) $\frac{2}{5}$ Mr <sup>2</sup> A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is (g = 9.8 ms <sup>-2</sup> ).  (1) 0.15 N (2) 0.030 N  (3) Zero (4) 0.015 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ol><li>β-decay r</li></ol>    | neans emission of electron fro                                                                   | om                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. An electric heater rated 220 V and 550 W is connected to A.C. mains. The current drawn it is  (1) $-2.5 \text{ A}$ (3) $1.25 \text{ A}$ (4) $0.8 \text{ A}$ 4. A body of mass 'm' moving along a straight line covers half the distance with a speed $2 \text{ ms}^{-1}$ . The remaining half of the distance is covered in two equal time intervals will speed of 3 ms <sup>-1</sup> and 5 ms <sup>-1</sup> respectively. The average speed of the particle for the entiporney is  (1) $\frac{8}{3} \text{ ms}^{-1}$ (2) $\frac{4}{3} \text{ ms}^{-1}$ (3) $\frac{16}{3} \text{ ms}^{-1}$ (4) $\frac{3}{8} \text{ ms}^{-1}$ The moment of inertia of a circular ring of radius 'r' and mass 'M' about diameter is  (1) $\frac{Mr^2}{4}$ (2) $\frac{Mr^2}{2}$ (3) $\frac{Mr^2}{12}$ (4) $\frac{2}{5} \text{ Mr}^2$ A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (I) WERING                     | a stable nucleus                                                                                 | (2)                                                      | outermost electron orbit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (1) $2.5  \text{A}$ (2) $0.4  \text{A}$ (3) $1.25  \text{A}$ (4) $0.8  \text{A}$ 4. A body of mass 'm' moving along a straight line covers half the distance with a speed $2  \text{ms}^{-1}$ . The remaining half of the distance is covered in two equal time intervals with speed of 3 ms <sup>-1</sup> and 5 ms <sup>-1</sup> respectively. The average speed of the particle for the entiporal power is  (1) $\frac{8}{3}  \text{ms}^{-1}$ (2) $\frac{4}{3}  \text{ms}^{-1}$ (3) $\frac{16}{3}  \text{ms}^{-1}$ (4) $\frac{3}{8}  \text{ms}^{-1}$ 3. The moment of inertia of a circular ring of radius 'r' and mass 'M' about diameter is  (1) $\frac{\text{Mr}^2}{4}$ (2) $\frac{\text{Mr}^2}{2}$ (3) $\frac{\text{Mr}^2}{12}$ (4) $\frac{2}{5}  \text{Mr}^2$ 4. A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposite force of air on the body is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3)                            | radioactive nucleus ,                                                                            | (4)                                                      | innermost electron orbit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4. A body of mass 'm' moving along a straight line covers half the distance with a speed $2 \text{ ms}^{-1}$ . The remaining half of the distance is covered in two equal time intervals with speed of $3 \text{ ms}^{-1}$ and $5 \text{ ms}^{-1}$ respectively. The average speed of the particle for the entipourney is  (1) $\frac{8}{3} \text{ ms}^{-1}$ (2) $\frac{4}{3} \text{ ms}^{-1}$ (3) $\frac{16}{3} \text{ ms}^{-1}$ (4) $\frac{3}{8} \text{ ms}^{-1}$ 3. The moment of inertia of a circular ring of radius 'r' and mass 'M' about diameter is  (1) $\frac{\text{Mr}^2}{4}$ (2) $\frac{\text{Mr}^2}{2}$ (3) $\frac{\text{Mr}^2}{12}$ (4) $\frac{2}{5} \text{ Mr}^2$ 4. A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposite force of air on the body is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1)                            | 2.5 A A A A A A A A A A A A A A A A A A A                                                        | (2)                                                      | 0.4 A 8.49W IN TSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 ms $^{\circ}$ . The remaining half of the distance is covered in two equal time intervals with speed of 3 ms $^{-1}$ and 5 ms $^{-1}$ respectively. The average speed of the particle for the entipourney is  (1) $\frac{8}{3}$ ms $^{-1}$ (2) $\frac{4}{3}$ ms $^{-1}$ (3) $\frac{16}{3}$ ms $^{-1}$ (4) $\frac{3}{8}$ ms $^{-1}$ The moment of inertia of a circular ring of radius $^{\circ}$ r' and mass $^{\circ}$ M' about diameter is  (1) $\frac{Mr^2}{4}$ (2) $\frac{Mr^2}{2}$ (3) $\frac{Mr^2}{12}$ (4) $\frac{2}{5}$ Mr $^2$ A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms $^{-2}$ . The opposite force of air on the body is (g = 9.8 ms $^{-2}$ ).  (1) 0.15 N (2) 0.030 N (3) Zero (4) 0.015 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3)                            | 1.23 A                                                                                           | (4)                                                      | 0.8 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (3) $\frac{16}{3}$ ms <sup>-1</sup> (4) $\frac{3}{8}$ ms <sup>-1</sup> The moment of inertia of a circular ring of radius 'r' and mass 'M' about diameter is  (1) $\frac{Mr^2}{4}$ (2) $\frac{Mr^2}{2}$ (3) $\frac{Mr^2}{12}$ (4) $\frac{2}{5}$ Mr <sup>2</sup> A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is (g = 9.8 ms <sup>-2</sup> ).  (1) 0.15 N (2) 0.030 N (3) Zero (4) 0.015 N  Space For Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | speed of i                     | ne remaining half of the dis<br>3 ms <sup>-1</sup> and 5 ms <sup>-1</sup> respective             | tance is covery. The ave                                 | ered in two equal time intervals with<br>rage speed of the particle for the ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The moment of inertia of a circular ring of radius 'r' and mass 'M' about diameter is  (1) $\frac{Mr^2}{4}$ (2) $\frac{Mr^2}{2}$ (3) $\frac{Mr^2}{12}$ (4) $\frac{2}{5}Mr^2$ A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is (g = 9.8 ms <sup>-2</sup> ).  (1) 0.15 N (2) 0.030 N  (3) Zero (4) 0.015 N  Space For Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                                                                                  | (2)                                                      | 3 ms <sup>-1</sup> is alimost behalf of the balk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The moment of inertia of a circular ring of radius 'r' and mass 'M' about diameter is  (1) $\frac{Mr^2}{4}$ (2) $\frac{Mr^2}{2}$ (3) $\frac{Mr^2}{12}$ (4) $\frac{2}{5}Mr^2$ A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is (g = 9.8 ms <sup>-2</sup> ).  (1) 0.15 N (2) 0.030 N  (3) Zero (4) 0.015 N  Space For Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3)                            | 16 ms-1                                                                                          | ZAN                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (1) $\frac{Mr^2}{4}$ (2) $\frac{Mr^2}{2}$ (3) $\frac{Mr^2}{12}$ (4) $\frac{2}{5}Mr^2$ . A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is (g = 9.8 ms <sup>-2</sup> ).  (1) 0.15 N (2) 0.030 N  (3) Zero (4) 0.015 N  Space For Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VOSTOANACIO                    | A TON ALL MARKET MADE IS THE                                                                     | (4)                                                      | 8 ms .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (1) $\frac{Mr^2}{4}$ (2) $\frac{Mr^2}{2}$ (3) $\frac{Mr^2}{12}$ (4) $\frac{2}{5}Mr^2$ A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is (g = 9.8 ms <sup>-2</sup> ).  (1) 0.15 N (2) 0.030 N  (3) Zero (4) 0.015 N  Space For Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . The mome                     | ent of inertia of a circular ring                                                                | of radius 'r'                                            | and mass 'M' about diameter in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (3) $\frac{Mr^2}{12}$ (4) $\frac{2}{5}Mr^2$ A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is (g = 9.8 ms <sup>-2</sup> ).  (1) 0.15 N (2) 0.030 N  (3) Zero (4) 0.015 N  Space For Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | Mr <sup>2</sup>                                                                                  | Of faulus 1                                              | Mr <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (3) $\frac{Mr^2}{12}$ (4) $\frac{2}{5}Mr^2$ A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is (g = 9.8 ms <sup>-2</sup> ).  (1) 0.15 N (2) 0.030 N  (3) Zero (4) 0.015 N  Space For Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1)                            | 4                                                                                                | (2)                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is (g = 9.8 ms <sup>-2</sup> ).  (1) 0.15 N  (2) 0.030 N  (3) Zero  (4) 0.015 N  Space For Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                                                                                                  |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A body of mass 0.05 kg is observed to fall with an acceleration of 9.5 ms <sup>-2</sup> . The opposit force of air on the body is (g = 9.8 ms <sup>-2</sup> ).  (1) 0.15 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2)                            |                                                                                                  | (1)                                                      | ₹ Mr²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Space For Rough Work and Bird out to residence political and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3)                            | 12                                                                                               | (4)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTRECT METHOD IN SHADON SHADON CHECK CLEON THE CARRY SHEET IS SHAPEN HE AND AND AND AND THE CONTRECT METHOD IN SHAPEN AND AND AND AND AND AND AND AND AND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A body of force of air         | mass 0.05 kg is observed to on the body is ( $g = 9$ 0.15 N                                      | fall with an 0.8 ms <sup>-2</sup> ).                     | acceleration of 9.5 ms <sup>-2</sup> . The opposition 0.030 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A body of force of air         | mass 0.05 kg is observed to on the body is (g = 9 0.15 N Zero                                    | fall with an 0.8 ms <sup>-2</sup> ). (2) (4)             | acceleration of 9.5 ms <sup>-2</sup> . The opposition of 0.030 N 0.015 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A body of force of air (1) (3) | mass 0.05 kg is observed to on the body is (g = 9 0.15 N Zero  Space Fo                          | fall with an 0.8 ms <sup>-2</sup> ). (2) (4) or Rough Wo | acceleration of 9.5 ms <sup>-2</sup> . The opposition of 0.030 N 0.015 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A body of force of air (1) (3) | mass 0.05 kg is observed to on the body is (g = 9 0.15 N Zero                                    | fall with an 0.8 ms <sup>-2</sup> ). (2) (4) or Rough Wo | acceleration of 9.5 ms <sup>-2</sup> . The opposition of 0.030 N 0.015 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A body of force of air (1) (3) | mass 0.05 kg is observed to on the body is (g = 9 0.15 N Zero                                    | fall with an 0.8 ms <sup>-2</sup> ). (2) (4) or Rough Wo | acceleration of 9.5 ms <sup>-2</sup> . The opposition of 0.030 N 0.015 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A body of force of air (1) (3) | mass 0.05 kg is observed to on the body is (g = 9 0.15 N Zero                                    | fall with an 0.8 ms <sup>-2</sup> ). (2) (4) or Rough Wo | acceleration of 9.5 ms <sup>-2</sup> . The opposition of 0.030 N 0.015 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A body of force of air (1) (3) | mass 0.05 kg is observed to on the body is (g = 9 0.15 N Zero                                    | fall with an 0.8 ms <sup>-2</sup> ). (2) (4) or Rough Wo | acceleration of 9.5 ms <sup>-2</sup> . The opposition of 0.030 N 0.015 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A body of force of air (1) (3) | mass 0.05 kg is observed to on the body is (g = 9 0.15 N Zero                                    | fall with an 0.8 ms <sup>-2</sup> ). (2) (4) or Rough Wo | acceleration of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> and the opposition of 9.5 ms <sup>-2</sup> and the opposition of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> and |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A body of force of air (1) (3) | mass 0.05 kg is observed to on the body is (g = 9 0.15 N Zero                                    | fall with an 0.8 ms <sup>-2</sup> ). (2) (4) or Rough Wo | acceleration of 9.5 ms <sup>-2</sup> . The opposition of 0.030 N 0.015 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A body of force of air (1) (3) | mass 0.05 kg is observed to on the body is (g = 9 0.15 N Zero  Space Formula (g = 9 0.15 N Zero) | fall with an 0.8 ms <sup>-2</sup> ). (2) (4) or Rough Wo | acceleration of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A body of force of air (1) (3) | mass 0.05 kg is observed to on the body is (g = 9 0.15 N Zero  Space Fo                          | fall with an 0.8 ms <sup>-2</sup> ). (2) (4) or Rough Wo | acceleration of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A body of force of air (1) (3) | mass 0.05 kg is observed to on the body is (g = 9 0.15 N Zero  Space Formula (g = 9 0.15 N Zero) | fall with an 0.8 ms <sup>-2</sup> ). (2) (4) or Rough Wo | acceleration of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> . The opposition of 9.5 ms <sup>-2</sup> is a second of 9.5 ms <sup>-2</sup> is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|     | called                     | · · · · · · · · · · · · · · · · · · ·            |                                                                           | (2)                         | foams                                               |               |                 |
|-----|----------------------------|--------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------|---------------|-----------------|
|     | (1)                        | Born                                             | readtin (F)                                                               | (4)                         | emulsions                                           |               |                 |
|     | (3)                        | liquid crystal                                   |                                                                           |                             |                                                     |               | Lt., The resis  |
| 8.  | In fog, pho<br>obtained du | ring visible lig                                 | e objects taken wit<br>ght because                                        |                             |                                                     | are more cl   | ear than those  |
|     | (1)                        | scattering of                                    | I-R light is more th                                                      | an visit                    | ne ngm                                              |               |                 |
|     | (2)                        | the intensity                                    | of I-R light from th                                                      | e objec                     | l is iess                                           |               |                 |
|     | (3)                        | scattering of                                    | I-R light is less tha                                                     | n visibi                    | e fight                                             | ion           |                 |
|     | (4)                        | I-R radiation                                    | has lesser wavelen                                                        | gth thai                    | i visible radiai                                    | 11011         |                 |
| 9.  |                            | urrent co-plar                                   | nar forces 1 N, 2 N                                                       | and 3                       | N acting alon                                       | g different   | directions on a |
|     | body                       | oon keen the                                     | body in equilibriur                                                       | n if 1 N                    | and 2 N act a                                       | t right angle | S.              |
|     | (1)                        | can keep the                                     | the body in equilibria                                                    | rium.                       |                                                     |               |                 |
|     | (2)                        | can keep the                                     | body in equilibrium                                                       | n if 1 N                    | and 3 N act a                                       | t an acute ar | ngle.           |
|     | (3)                        | can keep the                                     | body in equilibrium                                                       | n if 2 N                    | and 3 N act a                                       | t right angle | es.             |
|     | (4)                        | can keep the                                     | body in equi                                                              |                             |                                                     |               |                 |
| 10. | Sound way                  | es transfer                                      |                                                                           |                             |                                                     |               |                 |
|     | (1)                        | energy                                           |                                                                           | (2)                         | momentum                                            |               |                 |
|     | (3)                        | both energy                                      | and momentum                                                              | (4)                         | only energy                                         | not momen     | tum             |
|     |                            |                                                  |                                                                           |                             |                                                     |               |                 |
| 11. |                            | 0                                                | 0.15 ms                                                                   |                             |                                                     |               |                 |
|     |                            |                                                  | A -00000-                                                                 | В                           |                                                     |               |                 |
|     |                            | mm                                               | man man man man                                                           | mmm                         | 77                                                  |               |                 |
|     | spring of                  | ngular blocks<br>spring constant<br>was given an | A and B of masses<br>at 10.8 Nm <sup>-1</sup> are printial velocity of 0. | s 2 kg a<br>placed<br>15 ms | and 3 kg respo<br>on a frictionlo<br>in the directi | ess norizoni  | at surface. The |
|     |                            |                                                  | of the spring during                                                      | the mo                      | 0.05 m                                              |               |                 |
|     | (1)                        | 0.02 m<br>0.03 m                                 |                                                                           | (2)                         | 0.05 m<br>0.01 m                                    | 1.22 67       | (8)             |
|     |                            |                                                  | Space For I                                                               | Same V                      | Vonle                                               |               |                 |

- 12. G.P. Thomson experimentally confirmed the existence of matter waves by the phenomena
  - (1) refraction

(2) polarisation

(3) scattering

- (4) diffraction
- 13. The resistance of a wire at 300 K is found to be 0.3  $\Omega$ . If the temperature co-efficient of resistance of wire is  $1.5 \times 10^{-3}$  K<sup>-1</sup>, the temperature at which the resistance becomes  $0.6 \Omega$  is
  - (1) 345 K

(2) 993 K

(3) 690 K

(4) 720 K

14.



The work done by a force acting on a body is as shown in the graph. The total work done in covering an initial distance of 20 m is

(1) 200 J

(2) 400 J

(3) 175 J

- (4) 225 J
- 15. Two luminous point sources separated by a certain distance are at 10 km from an observer. If the aperture of his eye is  $2.5 \times 10^{-3}$  m and the wavelength of light used is 500 nm, the distance of separation between the point sources are just seen to be resolved is
  - (1) 24.4 m

(2) 2.44 m

(3) 1.22 m

(4) 12.2 m

- 16. A door of 1.6 m wide requires a force of 1 N to be applied at the free end to open or close it. The force that is required at a point 0.4 m distant from the hinges for opening or closing the door is
  - (1) 3.6 N

(2) 2.4 N

(3) 4 N

- (4) 1.2 N
- 17. 0.1 m<sup>3</sup> of water at 80 °C is mixed with 0.3 m<sup>3</sup> of water at 60 °C. The final temperature of the mixture is
  - (1) 70 °C

(2) 60 °C

(3) 75°C

- (4) 65 °C
- 18. The spectral series of the hydrogen atom that lies in the visible region of the electromagnetic spectrum
  - (1) Balmer

- (2) Lyman
- (3) Brackett
- (4) Paschen

19.



A graph of pressure versus volume for an ideal gas for different processes is as shown. In the graph curve OC represents

- (1) isothermal process
- (2) isobaric process
- (3) adiabatic process
- (4) isochoric process

20. Which of the following statement does not hold good for thermal radiation?

- (1) The frequency changes when it travels from one medium to another.
  - (2) The speed changes when it travels from one medium to another.
  - (3) They travel in straight line in a given medium.
  - (4) The wavelength changes when it travels from one medium to another.

21.



A planet revolves round the Sun in an elliptical orbit. The linear speed of the planet will be maximum at

(1) B

(2) A

(3) C

(4) D

22.



Horizontal tube of non-uniform cross-section has radii of 0.1 m and 0.05 m respectively at M and N. For a streamline flow of liquid the rate of liquid flow is

- (1) greater at M than at N
- (2) greater at N than at M
- (3) same at M and N
- (4) continuously changes with time

23. A resistor and a capacitor are connected in series with an a.c. source. If the potential drop across the capacitor is 5 V and that across resistor is 12 V, the applied voltage is

(1) 17 V

is ground and in (2) in 5 Value other ad Tuesdays add must

(3) 12 V

(4) 13 V

24. The amount of heat energy radiated by a metal at temperature 'T' is 'E'. When the temperature is increased to 3T, energy radiated is

(1) 9E

(2) 3 E

(3) 27 E

(4) 81 E

25. The angle of minimum deviation for an incident light ray on an equilateral prism is equal to its refracting angle. The refractive index of its material is

(1)  $\sqrt{3}$ 

(2)  $\frac{\sqrt{3}}{2}$ 

(3)  $\frac{3}{2}$ 

(4)  $\frac{1}{\sqrt{2}}$ 

26.

P





In the following combination of logic gates, the outputs of A, B and C are respectively

(1) = 0, 1, 0

(2) 1, 1, 0

(3) 4-1, 0, 1 marchay 1

(4) 0, 1, 1

|  |    |                                                                   |       |         |     |          |         |        | uniformly   |   |     |            |      |    |
|--|----|-------------------------------------------------------------------|-------|---------|-----|----------|---------|--------|-------------|---|-----|------------|------|----|
|  | no | n-absorbing                                                       | mediu | ım. Two | poi | ints P a | nd Q ar | e at a | distance of | m | and | 9 m respec | tive | ly |
|  |    | from the source. The ratio of amplitudes of the waves at P & Q is |       |         |     |          |         |        |             |   |     |            |      |    |

(1)  $\frac{4}{9}$ 

(2)  $\frac{2}{3}$ 

(3)  $\frac{9}{4}$ 

 $(4) \quad \frac{3}{2}$ 

28. A galvanometer of resistance 240  $\Omega$  allows only 4% of the main current after connecting a shunt resistance. The value of the shunt resistance is

(1)  $20 \Omega$ 

(2) 8 Ω

(3)  $5\Omega$ 

(4)  $10 \Omega$ 

29. The phenomena in which proton flips is

(1) lasers

(2) radioactivity

(3) nuclear fusion

(4) nuclear magnetic resonance

**30.**  $y = 3 \sin \pi \left(\frac{t}{2} - \frac{x}{4}\right)$  represents an equation of a progressive wave, where 't' is in second and 'x' is in metre. The distance travelled by the wave in 5 seconds is

(1) 10 m

(2) 5 m

(3) 32 m

(4) 8 m

31. According to the quark model, it is possible to build all the hadrons using

- (1) 3 quarks and 2 antiquarks
- (2) 3 quarks and 3 antiquarks
- (3) 2 quarks and 2 antiquarks
- (4) 2 quarks and 3 antiquarks

- 32. An  $\alpha$ -particle of mass  $6.4 \times 10^{-27}$  kg and charge  $3.2 \times 10^{-19}$  C is situated in a uniform electric field of  $1.6 \times 10^5$  V m<sup>-1</sup>. The velocity of the particle at the end of  $2 \times 10^{-2}$  m path when it starts from rest is
  - (1)  $8 \times 10^5 \text{ ms}^{-1}$

 $16 \times 10^5 \text{ ms}^{-1}$ 

- (3)  $4\sqrt{2} \times 10^5 \text{ ms}^{-1}$
- (4)  $2\sqrt{3} \times 10^5 \text{ ms}^{-1}$
- 33. A cylindrical tube open at both the ends has a fundamental frequency of 390 Hz in air. If 1/4th of the tube is immersed vertically in water the fundamental frequency of air column is
  - (1) 130 Hz

(2) 390 Hz

520 Hz

- 260 Hz (4)
- 34. The surface temperature of the stars is determined using
  - (1) Wein's displacement law (2) Rayleigh-Jeans law
  - (3) Kirchoff's law
- (4) Planck's law

35.



The charge deposited on 4  $\mu F$  capacitor in the circuit is

 $12 \times 10^{-6} \,\mathrm{C}$ (1)

 $24 \times 10^{-6} \,\mathrm{C}$ 

 $36 \times 10^{-6} \, \text{C}$ (3)

 $6 \times 10^{-6} \, \text{C}$ (4)

36. A parallel beam of light is incident on a converging lens parallel to its principal axis. As one moves away from the lens on the other side of the principal axis, the intensity of light

- (1) continuously increases
- (2) continuously decreases
- (3) first increases and then decreases
- (4) first decreases and then increases

37. Continuous emission spectrum is produced by

- (1) Mercury vapour lamp
- (2) Sodium vapour lamp

(3) The Sun

(4) Incandescent electric lamp

38. A coil of 'n' number of turns is wound tightly in the form of a spiral with inner and outer radii 'a' and 'b' respectively. When a current of strength I is passed through the coil, the magnetic field at its centre is

 $(1) \quad \frac{\mu_0 n I}{2(b-a)}$ 

- $(2) \quad \frac{2\mu_0 nI}{b}$
- (3)  $\frac{\mu_0 nI}{2(b-a)} \log_e \frac{b}{a}$

(4)  $\frac{\mu_0 nI}{(b-a)} \log_e \frac{a}{b}$ 

**39.** A ray of light is incident on a plane mirror at an angle of 60°. The angle of deviation produced by the mirror is

(1) 30°

(2) 60°

(3) 90°

(4) 120°

- **40.** The electric potential at any point x, y, z in metres is given by  $V = 3x^2$ . The electric field at a point (2 m, 0, 1 m) is
  - (1)  $-6 \text{ V m}^{-1}$

(2) 6 V m<sup>-1</sup>

(3)  $-12 \text{ V m}^{-1}$ 

- (4) 12 V m<sup>-1</sup>
- **41.** Young's double slit experiment gives interference fringes of width 0.3 mm. A thin glass plate made of material of refractive index 1.5 is kept in the path of light from one of the slits, then the fringe width becomes
  - (1) 0.3 mm

(2) 0.45 mm

(3) 0.15 mm

(4) zero

42.



Near a circular loop of conducting wire as shown in the figure an electron moves along a straight line. The direction of the induced current if any in the loop is

(1) clockwise

(2) anticlockwise

(3) zero

(4) variable

- **43.** Hydrogen atom from excited state comes to the ground state by emitting a photon of wavelength λ. If R is the Rydberg constant, the principal quantum number 'n' of the excited state is
  - (1)  $\sqrt{\frac{\lambda}{\lambda R 1}}$

(2)  $\sqrt{\frac{\lambda R^2}{\lambda R - 1}}$ 

(3)  $\sqrt{\frac{\lambda R}{\lambda - 1}}$ 

- (4)  $\sqrt{\frac{\lambda R}{\lambda R 1}}$
- 44. The magnetic dipole moment of a current loop is independent of
  - (1) number of turns
  - (2) area of the loop
  - (3) current in the loop
  - (4) magnetic field in which it is lying
- 45. In ruby laser, the stimulated emission is due to transition from
  - (1) any higher state to lower state
  - (2) metastable state to ground state
  - (3) any higher state to ground state
  - (4) metastable state to any lower state
- **46.** A direct current I flows along the length of an infinitely long straight thin walled pipe, then the magnetic field
  - (1) is zero only along the axis of the pipe
  - (2) is zero at any point inside the pipe
  - (3) is maximum at the centre and minimum at the edges
  - (4) is uniform throughout the pipe but not zero

| 47. |            |                                                   |                    |    | n in air. If the refractive index of glass is<br>then immersed in water is                                                                  |
|-----|------------|---------------------------------------------------|--------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------|
|     | (1)        | 0.15 m                                            | (2                 | )  | 0.30 m                                                                                                                                      |
|     | (3)        | 0.6 m                                             | (4                 | )  | 0.45 m                                                                                                                                      |
|     |            |                                                   |                    |    |                                                                                                                                             |
| 48. | Two source | es are said to be cohere                          | ent if they produc | ce | waves                                                                                                                                       |
|     | (1)        | of equal wavelength                               |                    |    |                                                                                                                                             |
|     | (2)        | of equal speed                                    |                    |    |                                                                                                                                             |
|     | (3)        | having same shape of                              | f wave front       |    |                                                                                                                                             |
|     | (4)        | having a constant pha                             | ase difference     |    |                                                                                                                                             |
| 49. |            |                                                   |                    |    | form a triangle. Across 3 $\Omega$ resistor a 3 V or is                                                                                     |
|     | (1)        | 1 A                                               | Sent sismoney (2   | )  | 2 A children was all                                                                                                                        |
|     | (3)        | 1.5 A                                             | (4                 | )  | 0.75 A                                                                                                                                      |
| 50. | In a comm  | on emitter amplifier the                          | e input signal is  | ap | plied across                                                                                                                                |
|     | (1)        | emitter - collector                               | (2                 | )  | collector - base                                                                                                                            |
|     | (3)        | base – emitter                                    | (4                 | )  | anywhere                                                                                                                                    |
| 51. |            | active disintegration, than instant of time equal |                    |    | umber of atoms to the number of atoms                                                                                                       |
|     | (1)        | $\frac{1}{e}$                                     | (2                 | )  | e January 7                                                                                                                                 |
|     | (3)        | $e^2$                                             | (4                 | )  | $\frac{1}{e^2} = \frac{1}{e^2} \left( \int_{\mathbb{R}^n} e^{-it} dt \right) = \frac{1}{e^2} \left( \int_{\mathbb{R}^n} e^{-it} dt \right)$ |
|     |            | S                                                 | pace For Rough     | W  | ork                                                                                                                                         |

52. A ray of light is incident on a surface of glass slab at an angle 45°. If the lateral shift produced per unit thickness is  $\frac{1}{\sqrt{3}}$  m, the angle of refraction produced is

$$(1) \quad \tan^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$$

$$(2) \quad \sin^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$$

(3) 
$$\tan^{-1}\left(\sqrt{\frac{2}{\sqrt{3}-1}}\right)$$

(4) 
$$\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

53. Ferromagnetic materials used in a transformer must have

- (1) high permeability and low hysterisis loss
- (2) high permeability and high hysterisis loss
- (3) low permeability and low hysterisis loss
- (4) low permeability and high hysterisis loss

54. According to Newton's Corpuscular Theory, the speed of light is

- (1) lesser in rarer medium
- (2) lesser in denser medium
- (3) independent of the medium
- (4) same in all the media

55. For the constructive interference the path difference between the two interfering waves must be equal to

(1) 2nπ

(2) nλ

 $(3) \quad (2n+1)\frac{\lambda}{2}$ 

(4)  $(2n + 1)\lambda$ 

| The accura | ate measurement of                                                                                                | emf can be obt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ained u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1)        | Voltmeter                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Voltameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (3)        | Potentiometer                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Multimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |                                                                                                                   | ctron gets tripl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n the de-Broglie wavelength a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ssociated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (1)        | $\sqrt{3}$                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{1}{\sqrt{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (3)        | 3                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Which of t | he following is not a                                                                                             | a thermodynan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nic co-c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ordinate ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (1)        | Pressure (P)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (3)        | Temperature (T)                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gas constant (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oletely in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (1)        | steel piece will we                                                                                               | eigh more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (2)        | they have the same                                                                                                | e weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (3)        | aluminium piece v                                                                                                 | vill weigh mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (4)        | the weight of alun                                                                                                | ninium is half t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | he weig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ght of steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The amour  | nt of energy released                                                                                             | when one mic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of matter is annihilated is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (1)        | $9 \times 10^{10} \text{ kWh}$                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3 \times 10^{10} \text{ kWh}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | (1) (3)  The kineti with it channel (1) (3)  Which of t (1) (3)  Two solid water have (1) (2) (3) (4)  The amount | <ul> <li>(1) Voltmeter</li> <li>(3) Potentiometer</li> <li>The kinetic energy of an electivity of an electi</li></ul> | <ul> <li>(1) Voltmeter</li> <li>(3) Potentiometer</li> <li>The kinetic energy of an electron gets triple with it changes by a factor</li> <li>(1) √3</li> <li>(3) 3</li> <li>Which of the following is not a thermodyname (1) Pressure (P)</li> <li>(3) Temperature (T)</li> <li>Two solid pieces, one of steel and the other water have equal weights. When the solid piece (1) steel piece will weigh more (2) they have the same weight (3) aluminium piece will weigh more (4) the weight of aluminium is half to the amount of energy released when one mice.</li> </ul> | <ul> <li>(1) Voltmeter</li> <li>(2)</li> <li>(3) Potentiometer</li> <li>(4)</li> <li>The kinetic energy of an electron gets tripled, the with it changes by a factor</li> <li>(1) √3</li> <li>(2)</li> <li>(3) 3</li> <li>(4)</li> <li>Which of the following is not a thermodynamic cool</li> <li>(1) Pressure (P)</li> <li>(2)</li> <li>(3) Temperature (T)</li> <li>(4)</li> <li>Two solid pieces, one of steel and the other of all water have equal weights. When the solid pieces are</li> <li>(1) steel piece will weigh more</li> <li>(2) they have the same weight</li> <li>(3) aluminium piece will weigh more</li> <li>(4) the weight of aluminium is half the weight</li> <li>The amount of energy released when one microgram</li> </ul> | (3) Potentiometer (4) Multimeter  The kinetic energy of an electron gets tripled, then the de-Broglie wavelength a with it changes by a factor  (1) √3 (2) 1/√3  (3) 3 (4) 1/3  Which of the following is not a thermodynamic co-ordinate?  (1) Pressure (P) (2) Volume (V)  (3) Temperature (T) (4) Gas constant (R)  Two solid pieces, one of steel and the other of aluminium when immersed compared water have equal weights. When the solid pieces are weighed in air  (1) steel piece will weigh more  (2) they have the same weight  (3) aluminium piece will weigh more  (4) the weight of aluminium is half the weight of steel  The amount of energy released when one microgram of matter is annihilated is |

Space For Rough Work

(3)  $0.5 \times 10^5 \text{ kWh}$  (4)  $0.25 \times 10^5 \text{ kWh}$