MAT320 Problem Set 4

Due Oct 5, 2023

Please write your homework on paper neatly or type it up in LaTeX, and hand it in at the beginning of class next Thursday.

Royden X.Y.Z refers Problem Z in Royden-Fitzpatrick, found in the collection of problems at the end of section X.Y.

Problem 1. Royden 2.3.11.

Proof. Suppose the σ -algebra A contains (a, ∞) for all a. Then since

$$[a,\infty) = \bigcap_{n=1}^{\infty} (a - 1/n, \infty)$$

it contains $[a, \infty)$ for all a. It also contains the complements of each of these, namely $(-\infty, a)$ and $(-\infty, a]$ for every a. But then it contains $[a, b] = [a, \infty) \cap (-\infty, b]$, $(a, b) = (a, \infty) \cap (-\infty, b)$, $(a, b) = (a, \infty) \cap (-\infty, b)$ and so forth. \square

Problem 2. Royden 2.3.14.

Proof. Suppose E has positive outer measure. By countable subadditivity of outer measure,

$$\mu^*(E) \le \sum_{j=-\infty}^{\infty} \mu^*(E \cap [j, j+1]).$$

Since $\mu^*(E) > 0$, at least one of the $\mu^*(E \cap [j, j+1])$ must be greater than zero.

Problem 3. We say that $f:[a,b]\to\mathbb{R}$ is *Lipshitz* if there is a constant $c\geq 0$ such that for all $u,v\in[a,b]$,

$$|f(u) - f(v)| \le c|u - v|.$$

Show that the image of a set of measure zero under a Lipshitz function has measure zero.

(We will see on October 3 that there is a continuous function $f:[0,1]\to\mathbb{R}$ and a set $C\subset[0,1]$ of measure zero such that f(E) is a measurable set of measure 1.)

Proof. Say $E \subset [a,b]$ is of measure zero. Then for any $\epsilon > 0$ there is a countable collection I_i of open intervals such that $E \subset \bigcup_{i=1}^\infty I_i$ and $\sum_i \ell(I_i) < \epsilon$. I claim that $f(I_i)$ is in some open interval of size $c\ell(I_i)$. If this holds then f(E) is covered by a countable collection of open intervals $I'_j \supset f(I_i)$ such that $\sum_{j=1}^\infty \ell(I'_j) = \sum_{j=1}^\infty c\ell(I_i) < c\epsilon$. Since ϵ was arbitrarily small and c doesn't depend on ϵ this proves the desired claim.

To produce I'_j from I_j , we choose the midpoint $x_j \in I_j$. Then any $x'_j \in I_j$ satisfies $|x'_j - x_j| < \ell(I_j)/2$, so $|f(x'_j) - f(x_j)| < c\ell(I_j)/2$. In other words, $f(I_j)$ is contained in $[f(x_j) - c\ell(I_j)/2, f(x_j) + c\ell(I_j)/2]$, which is the desired claim.

Problem 4. Let $0 < \alpha < 1$. We define a subset $F_{\alpha} \subset [0,1]$, by defining

$$F_{\alpha} = \bigcap_{n=1}^{\infty} F_{\alpha}^{n}$$

where F_{α}^{n} is a union of intervals each of equal length, and $F_{\alpha}^{0} = [0,1]$ and F_{α}^{n} is produced from F_{α}^{n-1} by removing an open interval of length $\alpha/(3^{n})$ from the middle each of the intervals comprising F_{α}^{n-1} . Thus, if

$$F_{\alpha}^{n-1} = \bigcup_{i=1}^{n_k} [x_i - a_i, x_i + a_i],$$

for some real numbers x_i and real numbers $a_i > 0$, then

$$F_{\alpha}^{n} = \bigcup_{i=1}^{n_{k}} ([x_{i} - a_{i}, x_{i} - \alpha/(2 * 3^{n})] \cup [x_{i} + \alpha/(2 * 3^{n}), x_{i} + a_{i}]).$$

Show that F_{α} is closed and uncountable, and compute the measure of F.

Proof. F_{α}^{n} contains F_{1}^{n} , for all n, and so F_{α} contains F_{1} , which is the Cantor set. Since the Cantor set is uncountable, so is F_{α} . It is an infinite intersection of closed sets, so its closed. By induction we show that F_{α}^{n} has 2^{n} intervals of equal length, so we remove 2^{n} intervals from F_{α}^{n} to get F_{α}^{n+1} . Thus the measure of F_{α} is

$$1 - \left(\frac{\alpha}{3} + \frac{2\alpha}{3^2} + \dots\right) = 1 - \frac{\alpha}{3} \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n = 1 - \frac{\alpha}{3(1 - (2/3))} = 1 - \alpha.$$

Problem 5. Let f be a continuous function and let B be a Borel set. Show that $f^{-1}(B)$ is a Borel set.

Proof. Say f is a continuous function $X \to Y$ for some metric spaces X, Y. Let $Borel_X$ be the σ -alegebra of Borel sets and similarly for $Borel_Y$. Let \mathbb{A} be the set of σ algebras A on X such that A contains all open subsets of X.

Then

$$Borel_X = \cap_{A \in \mathbb{A}} A.$$

Given a σ -algebra A on X, we have an associated σ algebra f(A) on X defined by

$$f(A) = \{ E \subset Y | f^{-1}(E) \in A \}.$$

One can verify the axioms of a σ -algebra using the fact that f^{-1} commutes with all set-theoretic operations like union and intersection. We claim that if $A \in \mathbb{A}$ then f(A) contains the open sets of Y: if U is open in Y, then $f^{-1}(U)$ is open in X by continuity, so $f^{-1}(U) \in A$ by the definition of \mathbb{A} , so $U \in f(A)$. This is true for all $A \in \mathbb{A}$; one sees immediately that

$$f(Borel_X) = \cap_{A \in \mathbb{A}} f(A).$$

Writing \mathbb{B} for the set of σ algebras on Y containing the open sets of Y, we have that $f(A) \in \mathbb{B}$ for every $A \in \mathbb{A}$; so

$$f(Borel_X) = \cap_{A \in \mathbb{A}} f(A) \supset \cap_{B \in \mathbb{B}} B = Borel_Y.$$

In other words, if $E \in Borel_Y$ then $E \in f(Borel_X)$, i.e. $f^{-1}(E) \in Borel_X$ — which is what we wanted to show.

Extra credit. Given a subset E of a metric space X, we say that a boundary point of E is a point $x \in X$ such that for all $\epsilon > 0$, $B(x, \epsilon)$ contains some point in E and also some other point in $X \setminus E$. Let ∂E be the set of boundary points of E. (Note that ∂E may or may not contain points of E.)

- Show that if E is closed then $\partial E \subset E$.
- Show that ∂E is always closed.
- Show that $\partial([0,1]\backslash F_{\alpha})$ has measure greater than zero, where F_{α} is defined as above, and we take some α such that $0 < \alpha < 1$.
- *Proof.* A boundary point x of E is clearly a point of closure of E, as the latter is just the condition that $B(x,\epsilon)$ contains points of E for any ϵ . Since closed sets contain all their points of closure this proves the claim.
 - Suppose x is a point of closure of ∂E . Then for any $\epsilon/2$ there is a point y of ∂E in $B(x, \epsilon/2)$. But then there are also points z_0 of E and z_1 of $X \setminus E$ in $B(y, \epsilon/2)$. By the triangle inequality, z_0 and z_1 are both in $B(x, \epsilon)$. This was true for all $\epsilon > 0$. So $x \in \partial E$.
 - Clearly $\partial E = \partial(X \setminus E)$ for any $E \subset X$. So $\partial[0,1] \setminus F_{\alpha}$ is ∂F_{α} ; we show that $\partial F_{\alpha} = F_{\alpha}$ (which is interesting)! Now F_{α} is closed so $\partial F_{\alpha} \subset F_{\alpha}$; so we only need to show that for any $x \in \partial F_{\alpha}$ and any $\epsilon > 0$, there is a point of $[0,1] \setminus F_{\alpha}$ which is in $B(x,\epsilon)$.

To see this we estimate the sizes of each of the 2^k intervals of F_α^k . Each time we at least cut the intervals in two, so they are of size strictly less than $1/2^k$ by induction. So if we choose k such that $1/2^k < \epsilon/2$ then $B(x,\epsilon)$ contains the entire interval of F_α^k containing x; and when producing F_α^{k+1} from F_α^k we remove something from this interval, i.e. $B(x,\alpha)$ intersects $[0,1]\setminus F_\alpha^{k+1}\subset [0,1]\subset F_\alpha$.