- Black Box Characterized by Transfer Function that Maps Single input Bit x to Output Bit f(x)
- Transformation Performed by Black Box Could be Any of the Four Possible Boolean Functions of One Variable (pick a pair of f(0) and f(1)):

$$f(0) = 0$$
 $f(0) = 1$ $f(1) = 0$ $f(1) = 0$

 Problem Posed by Professor David Deutsch is to Distinguish if:

$$f(0) = f(1)$$
 OR $f(0) \neq f(1)$

Deutsch's Problem

• Four cases for f(x):

• What are the transfer matrices for f(x)?

$$\left[\begin{array}{cc}0&0\\1&1\end{array}\right]$$

Unbalanced: f(0) = f(1)

$$\begin{bmatrix} 0 & & & & \\ & & & \\ 1 & & & & \end{bmatrix}$$

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Balanced:

$$f(0) \neq f(1)$$

Deutsch's Problem

- Assume Comparison of Function Evaluation takes no Time:
- Classical Approaches:

Quantum Approach:

- f(x) is "embedded" inside \mathbf{U}_f "gate" or operator but the actual f(x) embedded is unknown:
- · Denoted by:

• There are four Different \mathbf{U}_f gates, but it is unknown which is present

Synthesis of U_f Operators

• Use the following notation:

$$f_0 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} f_1 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \quad f_{01} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad f_{\mathbf{I}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Truth tables for U_f:

x	y	f_0	$y \oplus f_0$	f_1	$y \oplus f_1$	f_{01}	$y \oplus f_{01}$	f_{I}	$y \oplus f_{\mathbf{I}}$
0	0	0	0	1	1	1	1	0	0
0	1	0	1	1	0	1	0	0	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	1	0	0	1	1	0

	x	y	f_0	$y \oplus f_0$	f_1	$y \oplus f_1$	f_{01}	$y \oplus f_{01}$	$f_{ m I}$	$y \oplus f_{\mathbf{I}}$
	0	0	0	0	1	1	1	1	0	0
	0	1	0	1	1	0	1	0	0	1
	1	0	0	0	1	1	0	0	1	1
•	1	1	0	1	1	0	0	1	1	0

$$\mathbf{U}_{f0} = \begin{array}{ccccc} 00 & & 1 & 0 & 0 & 0 \\ 01 & & 0 & 1 & 0 & 0 \\ 10 & & 11 & & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}$$

Synthesis of \mathbf{U}_{f0}

$$\mathbf{U}_{f0} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \otimes \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

x	y	f_0	$y \oplus f_0$	f_1	$y \oplus f_1$	f_{01}	$y \oplus f_{01}$	$f_{ m I}$	$y \oplus f_{\mathbf{I}}$
0	0	0	0	1	1	1	1	0	0
0	1	0	1	1	0	1	0	0	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	1	0	0	1	1	0

$$\mathbf{U}_{f1} = \begin{array}{cccc} 00 & & & & & 0 \\ 01 & & & & 10 \\ & 10 & & & 11 \end{array} \quad \begin{array}{cccccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}$$

Synthesis of \mathbf{U}_{fl}

$$\mathbf{U}_{f1} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \otimes \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

x	y	f_0	$y \oplus f_0$	f_1	$y \oplus f_1$	f_{01}	$y \oplus f_{01}$	$f_{ m I}$	$y \oplus f_{\mathbf{I}}$
0	0	0	0	1	1	1	1	0	0
0	1	0	1	1	0	1	0	0	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	1	0	0	1	1	0

$$\mathbf{U}_{,\Pi} = \begin{array}{cccc} 00 & & & 1 & 0 & 0 & 0 \\ 01 & & & 0 & 1 & 0 & 0 \\ 10 & & 10 & & 0 & 0 & 1 \\ & & 11 & & 0 & 0 & 1 & 0 \end{array}$$

Synthesis of $\mathbf{U}_{f\mathbf{I}}$

$$|x\rangle \longrightarrow |x\rangle$$

$$\longrightarrow |y \oplus f(x)\rangle$$

$$\mathbf{U}_{\pi} = \begin{bmatrix} 00 & 01 & 10 & 11 \\ 00 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Controlled-NOT Gate

Synthesis of U_{f01} (cont)

$$\mathbf{U}_{f01} = \left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \left(\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \right) \left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$

$$\mathbf{U}_{f01} = \left(\left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right] \right) \left(\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right] \right) \left(\left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right] \right)$$

$$\mathbf{U}_{f01} = \left(\left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right] \right) \left(\left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right] \right)$$

Synthesis of U_{f01} (cont)

$$\mathbf{U}_{f01} = \left(\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \right) \left(\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right)$$

$$\mathbf{U}_{f01} = \left(\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right)$$

Quantum Algorithm

- Initialize Qubits to known state
- To exploit parallelism, place initialized qubits into a state of superposition
- Apply a series of evolutions of the quantum state of the system. This is accomplished by applying a series of quantum unitary operations to the quantum state
- Measure the quantum state forcing it to collapse into an eigenket
- For deterministic output, the observable must be SHARP

Deutsch's Problem

 Initially Place the Input Qubits into the Following States of Superposition:

$$|x\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$$
 $|y\rangle = (|0\rangle - |1\rangle)/\sqrt{2}$

• This is Accomplished via a Hadamard Transform (or the use of 2 Hadamard Gates):

- Must "Force" Output to Desired Basis State for a Deterministic Circuit/Algorithm to Result
- Accomplished by Placing an Additional Hadamard Gate at Output

 We Analyze this Quantum System (Circuit/ Algorithm) Stage-by-Stage

Deutsch's Problem

• Transfer Matrix of First Stage:

$$|\xi_{1}\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle) = [(|0\rangle + |1\rangle) / \sqrt{2}][(|0\rangle - |1\rangle) / \sqrt{2}]$$

Deutsch's Problem

Note that:

$$|y \oplus f(x)\rangle$$

• and,

$$|y\rangle = (|0\rangle - |1\rangle) / \sqrt{2}$$

• thus,

$$|y \oplus f(x)\rangle = |(|0\rangle - |1\rangle) / \sqrt{2} \oplus f(x)\rangle$$
$$= |(|0\rangle \oplus f(x) - |1\rangle \oplus f(x)) / \sqrt{2}\rangle$$

using the fact:

$$|0 \oplus f(x)\rangle = |f(x)\rangle$$

$$|y \oplus f(x)\rangle = (|f(x)\rangle - |1 \oplus f(x)\rangle) / \sqrt{2}$$

In Problem Statement we Know that:

$$f(x) = 1$$
 OR $f(x) = 0$

thus:

$$|1 \oplus f(x)\rangle = \begin{cases} |0\rangle, & f(x) = 1\\ |1\rangle, & f(x) = 0 \end{cases}$$

· yielding,

$$|y \oplus f(x)\rangle = (|f(x)\rangle - |1 \oplus f(x)\rangle) / \sqrt{2}$$
$$|y \oplus f(x)\rangle = \begin{cases} (|0\rangle - |1\rangle) / \sqrt{2}, & f(x) = 0 \\ -(|0\rangle - |1\rangle) / \sqrt{2}, & f(x) = 1 \end{cases}$$

$$|y \oplus f(x)\rangle = (-1)^{f(x)}(|0\rangle - |1\rangle)/\sqrt{2}$$

Deutsch's Problem

• When f(0)=f(1)=0:

$$\begin{aligned} |\xi_{2}\rangle = &|x, y \oplus f(x)\rangle = |x\rangle \otimes |y \oplus f(x)\rangle \\ |x\rangle = &\mathbf{H} |0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\ |y \oplus f(x)\rangle = &\frac{|f(x)\rangle - |1 \oplus f(x)\rangle}{\sqrt{2}} \end{aligned}$$

• Since f(x)=0:

$$|y \oplus f(x)\rangle = \frac{|f(x)\rangle - |1 \oplus f(x)\rangle}{\sqrt{2}} = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$|\xi_{2}\rangle = |x\rangle \otimes |y \oplus f(x)\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$$

$$|\xi_{2}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}$$

Deutsch's Problem

• Since f(x)=0:

$$|\xi_2\rangle = \frac{1}{2} \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix} = \frac{1}{2} \left(|00\rangle - |01\rangle + |10\rangle - |11\rangle \right)$$

$$\mid \xi_2 \rangle = \frac{1}{2} \left(\mid 00 \rangle - \mid 11 \rangle \right) = \left(\frac{\mid 0 \rangle + \mid 1 \rangle}{\sqrt{2}} \right) \left(\frac{\mid 0 \rangle - \mid 1 \rangle}{\sqrt{2}} \right)$$

• When f(0)=f(1):

$$|\xi_2\rangle = \begin{cases} \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & f(0) = f(1) = 0\\ -\left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & f(0) = f(1) = 1 \end{cases}$$

Obtained using similar derivation as that for f(x)=0

Deutsch's Problem

• When f(0)=f(1):

$$|\xi_{2}\rangle = \begin{cases} \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}^{T}, & f(0) = f(1) = 0 \\ -\frac{1}{2} \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}^{T}, & f(0) = f(1) = 1 \end{cases}$$

• When $f(0) \neq f(1)$:

$$|\xi_{2}\rangle = \begin{cases} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & f(0) = 0 \text{ and } f(1) = 1\\ -\left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & f(0) = 1 \text{ and } f(1) = 0 \end{cases}$$

Deutsch's Problem

• When $f(0) \neq f(1)$:

$$|\xi_2\rangle = \begin{cases} \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}^T, & f(0) = 0 \text{ and } f(1) = 1 \\ -\frac{1}{2} \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}^T, & f(0) = 1 \text{ and } f(1) = 0 \end{cases}$$

• Combining the case where f(0)=f(1) and $f(0)\neq f(1)$:

$$|\xi_{2}\rangle = \begin{cases} \pm \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & f(0) = f(1) \\ \pm \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & f(0) \neq f(1) \end{cases}$$

Deutsch's Problem

• Combining the case where f(0)=f(1) and $f(0)\neq f(1)$:

$$|\xi_{2}\rangle = \begin{cases} \pm \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}^{T}, & f(0) = f(1) \\ \pm \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}^{T}, & f(0) \neq f(1) \end{cases}$$

• Transfer Matrix for the Final Stage:

$$\mathbf{H} \otimes \mathbf{I} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

Deutsch's Problem

• When f(0)=f(1):

$$\mid \xi_{3} \rangle = \pm \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} = \pm \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} = \pm \mid 0 \rangle \frac{\mid 0 \rangle - \mid 1 \rangle}{\sqrt{2}}$$

• When $f(0) \neq f(1)$:

$$\mid \xi_{3} \rangle = \pm \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \pm \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} = \pm \mid 1 \rangle \frac{\mid 0 \rangle - \mid 1 \rangle}{\sqrt{2}}$$

Deutsch's Problem

- Measuring First Output Qubit of Circuit Yields Answer to Problem
- For f(0)=f(1): $|\xi_3\rangle = \pm |0\rangle \frac{|0\rangle |1\rangle}{\sqrt{2}} = \pm \frac{|00\rangle |01\rangle}{\sqrt{2}}$
- For $f(0) \neq f(1)$: $|\xi_3\rangle = \pm |1\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \pm \frac{|10\rangle - |11\rangle}{\sqrt{2}}$

- For f(0)=f(1), Measuring First Output Qubit is Equally likely to give one of the two basis vectors $|00\rangle$ or $|01\rangle$:
- For $f(0)\neq f(1)$, Measuring First Output Qubit is Equally likely to give one of the two basis vectors $|10\rangle$ or $|11\rangle$:

Deutsch's Problem

- Measuring First Output Qubit Yields the Answer
- First Output = $|0\rangle$ means f(0)=f(1)
- First Output = $|1\rangle$ means $f(0)\neq f(1)$
- Can Rewrite as:

$$|\xi_3\rangle = \pm |f(0) \oplus f(1)\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

Generalized Deutsch's Problem

 Original Deutsch Problem dealt with identification of one of four possible single bit functions:

$$\{0,1\} \rightarrow \{0,1\}$$

This Problem is Generalized for Functions of the Form:

$$\{0,1\}^n \rightarrow \{0,1\}$$

 The Quantum Solution of this Generalized Problem is Called the Deutsch-Jozsa Algorithm

Deutsch-Jozsa Agorithm

 Functions of this form can be classified as balanced or unbalanced

$$\{0,1\}^n \to \{0,1\}$$

- Balanced functions are those that Output a "1" for half the input terms and a "0" for the other half
- Unbalanced Functions Output a Constant "1" or "0" Regardless of the input terms
- For a Function whose domain consists of n bitstrings, there are 2 Unbalanced Functions
- For a Function whose domain consists of n bitstrings, there are N Unbalanced Functions

Number of Balanced Functions

- For a Function whose domain consists of *n* bitstrings, there are *N* Unbalanced Functions
- *N* can be Computed using the binomial coefficient:

$$N = \left(\begin{array}{c} 2^n \\ 2^{n-1} \end{array}\right)$$

- This is a "special" coefficient known as the "central binomial coefficient"
- The central binomial coefficient is of the following form and obeys the identity: $\begin{pmatrix} 2x \\ x \end{pmatrix} = \frac{(2x)!}{(x!)^2}$

Number of Balanced Functions

- Using the property of the central binomial coefficient: $N = \begin{pmatrix} 2^n \\ 2^{n-1} \end{pmatrix} = \frac{2^n!}{(n!)^2}$
- The sequence of central binomial coefficients is: 1,2,6,20,70,252,924,3432,12870,48620,...
- Some properties are the generating function:

$$\frac{1}{\sqrt{1-4x}} = 1 + 2x + 6x^2 + 20x^3 + 70x^4 + 252x^5 + \dots$$

Behavior in the limit (using Stirling's formula):

$$\lim_{n \to \infty} \begin{pmatrix} 2^n \\ 2^{n-1} \end{pmatrix} = \frac{2^{n+1}}{\sqrt{\pi 2^{n-1}}}$$

Deutsch-Jozsa Agorithm

- \mathbf{U}_f is Sometimes Called the "Oracle"
- The Oracle has a function embedded in it that is either balanced or unbalanced (constant)
- Note this does not include all possible functions!

Deutsch-Jozsa Agorithm

- This is NOT a particularly useful algorithm
- It is a good example to show how an exponential problem (in terms of Turing computation) can be accomplished in constant time with a quantum computer