Homework 5: due 17:00, Friday, 6 January 2017

(1) Prove that the following problem is undecidable.

Input: A TM description |M|.

Task: Output True, if M accepts the empty string ϵ . Otherwise, output False.

Or equivalently, prove that the language $L = \{ \lfloor M \rfloor \mid M \text{ accepts } \epsilon \}$ is undecidable.

- (2) Prove that the class **NP** is closed under union and intersection. That is,
 - if $L_1, L_2 \in \mathbf{NP}$, then $L_1 \cup L_2 \in \mathbf{NP}$,
 - if $L_1, L_2 \in \mathbf{NP}$, then $L_1 \cap L_2 \in \mathbf{NP}$.
- (3) Prove that if $\Sigma^* L \in \mathbf{coNP}$, then $L \in \mathbf{NP}$. Likewise, if $L \in \mathbf{coNP}$, then $\Sigma^* - L \in \mathbf{NP}$.
- (4) Prove that if $NP \subseteq coNP$, then $coNP \subseteq NP$, and hence, NP = coNP.
- (5) Prove that if $SAT \in \mathbf{coNP}$, then $\mathbf{NP} \subseteq \mathbf{coNP}$, and hence, $\mathbf{NP} = \mathbf{coNP}$. Hint: Use the fact that SAT is \mathbf{NP} -hard.