

Метод моментов, примеры. Состоятельность оценок, полученных методом моментов.

Метод тионештов

Ои заключается в спедующем:

- · Λωδού μοινουτ εργγαίνου βερυπινών Χη (nyorь vanp.k-νώ) является Функучей от Θ. (neuzbectuoro naparerpa pacnpageneura)
- » longa и в мотеет оказаться функцией от теоретического k-ого момента.
- Виразин в и теоретический монеит заненим выборогиин.

- Amoruth: $\vec{X} \in F_0$, $\theta \in \mathbb{R}$ raye here $g(y) = y^{\pm}$ 1. Busdipaen nparyo fylkywo g(y) Takyw, wordin E $g(X_i)$ cywecholan. $u m(\theta) = \mathbb{E}_{q}(X_1)$ Sura ospatiena
 - 2. Bupancaer $\Theta : \Theta = m^{-1}(Eg(X_1))$
 - 3. Daneusen uctumum moment butoporture : $\theta^* = m^{-1} \left(\overline{g(x)} \right)$

 0^* - 0.M.M. - Oyeuta nerogon moneurol

Then Equation 1)
$$\vec{X} \in U_{[0,\theta]}$$
, $\theta \neq 0$
 $\theta = \theta$, $\theta = 0$

o Eg(X₁) = EX₁^k =
$$\int_{0}^{\infty} t^{k} dt = \int_{0}^{\infty} \int_{0}^{\infty} t^{k} dt = \int_{0}^{\infty} \int_{0}$$

2)
$$\vec{X} \in \Pi_{\lambda}$$

 $g(y) = g$ $Eg(X_1) = EX_1 = \lambda$
 $\chi \times = X$

$$\circ g(y) = g$$
 $\mathbb{E} X_1 = \frac{1}{\alpha}$

o
$$\alpha^* = \frac{1}{X}$$
 5) Veckey: $\mathbb{E}(\frac{1}{X}) = n \mathbb{E}(\frac{1}{X_1 + \dots + X_n}) = n \cdot \frac{d}{n-1}$

$$0 \quad d^* = \frac{1}{X} \quad \text{olderwy:} \quad \mathbb{E}\left(\frac{1}{X}\right) = n \cdot \mathbb{E}\left(\frac{1}{X_1 + \dots + X_N}\right) = n \cdot \frac{d}{N-1}$$

$$X_i \in \Gamma_{\alpha_1}, \quad \Rightarrow \sum_{i} X_i \in \Gamma_{\alpha_i}, \qquad Y_{\alpha_i} X_i = \frac{d^2 + d^2 - 1}{\Gamma(\lambda)} \cdot \frac{e^{-dt}}{2} \cdot \frac{1}{2} = \frac{d}{dt}$$

$$\mathbb{E}\left(\frac{1}{X}\right) = \int_0^1 \frac{1}{1 \cdot t^{n-1}} \cdot \frac{d^n e^{-\alpha t}}{dt} dt = \frac{d^n}{\Gamma(n)} \int_0^1 \frac{1}{t^{n-2}} \cdot \frac{e^{-dt}}{dt} dt = \frac{d}{\Gamma(n)} \int_0^1 \frac{1}{t^{n-2}} \cdot \frac{e^{-dt}}{dt} dt = \frac{d}$$

Пеорена о состоятельности ОММ.

Tyers $\mathbb{D}_q(X_n) < \infty$, m(t) - oparuna u venpepulua. Torqa $\Theta^* = m^{-1}(\overline{q(x)})$ coeto ятельиа Doranaterialo: $g(X) + Eg(X_1)$ $\Theta^* = m^{-1}(q(X)) + m^{-1}(\mathbb{F}q(X_n)) = \Theta$

Hepabeugbo Vencena

Ecru g(u) - bunyanas bung (), 70 Eq(x) = g(EX) ecru Tipuren pabencibo gacturaetics (=) [g - numerinas opyniques X∈ I_c

Пример использув метод моментов, оценить параметр θ равномерного распределения на отрезке: а) $[-\theta;\;\theta],\;\theta>0;\;\delta)$ $[\theta;\;\theta+1].$

a) $[-\theta; \ \theta], \ \theta > 0; \ \delta) \ [\theta; \ \theta + 1].$

Исследовать полученные оценки на несмещенность и состоятельность.

$$5) \text{ I £X,} = \frac{(0+1)^2 - 6^2}{2} = \frac{20+1}{2}$$

I.
$$0+\frac{1}{2}=\overline{X}$$

$$\underline{\mathbb{II}}$$
. $\theta^* = \overline{X} - \frac{1}{2}$

Cocr:
$$0^* \rightarrow EX, -\frac{1}{2} = 0 + \frac{1}{2} - \frac{1}{2} = 0$$

Hechey:
$$EQ^* = \overline{E}(\overline{X} - \frac{1}{2}) = \overline{E}X_1 - \frac{1}{2} = \overline{Q}$$

miro

miro