Graph Traversals

Graph Traversals

- Two standard techniques
 - Depth-First Search (DFS)
 - Breadth-First Search (BFS)
- Also Topological Order

• Connectivity and other graph problems can be solved using graph traversal techniques

Graph Traversals

- Two standard techniques
 - Depth-First Search (DFS)
 - Breadth-First Search (BFS)
- Also Topological Order

- In both BFS and DFS, the nodes of an undirected graph are visited in a systematic manner so that every node is visited exactly once; both traversals can be performed on a directed graph
- Both BFS and DFS consider an embedded tree
 - When a node x is visited, it is labeled as visited, and it is added to the tree
 - If the traversal got to node x from node y, y is viewed as the parent of x, and x a child of y

Depth-First Search

Graph Traversal – Depth-First Search

- 1. Select an unvisited node x, visit it, and treat as the *current node*
- 2. Find an unvisited neighbor of the current node, visit it, and make it the new current node
- 3. If the current node has no unvisited neighbors, backtrack to its parent, then make that parent the new current node
- 4. Repeat steps 3 and 4 until no more nodes can be visited
- If there are still unvisited nodes, repeat from step 1
 - This will (potentially) create a forest of trees

Note: For a binary tree (a directed graph), this is what an in-order traversal does

• Let's take a look at this graph and see what a DFS might look like

Start with 1

Let's take a look at this graph and see what a DFS might look like

• Start with 1, then visit 2

Let's take a look at this graph and see what a DFS might look like

• Start with 1, then visit 2, then visit 5

Let's take a look at this graph and see what a DFS might look like

Start with 1, then visit 2, then visit 5, then visit 8

Let's take a look at this graph and see what a DFS might look like

• Start with 1, then visit 2, then visit 5, then visit 8, then visit 11

Let's take a look at this graph and see what a DFS might look like

• Start with 1, then visit 2, then visit 5, then visit 8, then visit 11, then visit 13

Let's take a look at this graph and see what a DFS might look like

Start with 1, then visit 2, then visit 5, then visit 8, then visit 11, then visit 13, then visit 15

- Start with 1, then visit 2, then visit 5, then visit 8, then visit 11, then visit 13, then visit 15
- Then visit 14, then visit 12, then visit 7, then visit 4, then visit 3

- Start with 1, then visit 2, then visit 5, then visit 8, then visit 11, then visit 13, then visit 15
- Then visit 14, then visit 12, then visit 7, then visit 4, then visit 3
- Backtrack to 7

- Start with 1, then visit 2, then visit 5, then visit 8, then visit 11, then visit 13, then visit 15
- Then visit 14, then visit 12, then visit 7, then visit 4, then visit 3
- Backtrack to 7, then visit 6

- Start with 1, then visit 2, then visit 5, then visit 8, then visit 11, then visit 13, then visit 15
- Then visit 14, then visit 12, then visit 7, then visit 4, then visit 3
- Backtrack to 7, then visit 6, then visit 9

- Start with 1, then visit 2, then visit 5, then visit 8, then visit 11, then visit 13, then visit 15
- Then visit 14, then visit 12, then visit 7, then visit 4, then visit 3
- Backtrack to 7, then visit 6, then visit 9, then visit 10

- Start with 1, then visit 2, then visit 5, then visit 8, then visit 11, then visit 13, then visit 15
- Then visit 14, then visit 12, then visit 7, then visit 4, then visit 3
- Backtrack to 7, then visit 6, then visit 9, then visit 10
- Backtrack all the way out, all nodes have been visited!

Breadth-First Search

Graph Traversal – Breadth-First Search

- 1. Select an unvisited node x, visit it, have it be the root in a BFS tree being formed
 - Its level is called the current level
- 2. Try all one-step extensions of current paths before trying larger extensions
- 3. Repeat step 2 until no more nodes can be visited
- If there are still unvisited nodes, repeat from step 1
 - This will (potentially) create a forest of trees

Given this graph, perform a BFS traversal

• Start at 0, and visit all the nodes 1 edge away

• Start at 0, and visit all the nodes 1 edge away

• Start at 0, and visit all the nodes 1 edge away

• Start at 0, and visit all the nodes 1 edge away

- Start at 0, and visit all the nodes 1 edge away
- Then visit all the nodes 2 edges away

- Start at 0, and visit all the nodes 1 edge away
- Then visit all the nodes 2 edges away

Then 3...

- Start at 0, and visit all the nodes 1 edge away
- Then visit all the nodes 2 edges away

• Then 3... Craph C

Topological Ordering

Topological Ordering

Topological Ordering

- Let G be a directed graph and $V(G) = \{v_1, v_2, ..., v_n\}$, where n > 0
- We assume the graph has no cycles (DAG); because the graph has no cycles
 - There exists a vertex u in G such that u has no predecessor (start)
 - There exists a vertex v in G such that v has no successor (end)
- A *topological ordering* of V(G) is a linear ordering v_j , v_k , ... v_n of the vertices such that if v_j is a predecessor of v_k , $j \neq k$, then v_j precedes v_k , that is, j < k in this linear ordering

Topological Ordering – Algorithm

- Find a vertex that has no predecessor and make it first in the topological ordering
- Next, find the vertex v, all of whose predecessors have been placed in the topological ordering and place v next in the topological ordering
- Implementation details
 - To keep track of the number of vertices of a vertex, use an array (e.g., predecessorCount)
 - Initially predecessorCount[j] is the number of predecessors of the vertex v_j
 - The container (a FIFO queue) used to guide the breadth first traversal is initialized to those vertices v_k , where predecessorCount[k] is 0

Topological Ordering – Pseudocode

```
Count the number of predecessors of each node

For each node with a count of 0, enqueue the node

While queue is not empty

current node = dequeue node

report the node // this prints the nodes in topological order

For each successor of current node

subtract one from its predecessor count

if the predecessor count is 0, enqueue the node
```


predecessorCount

0	1	2	3	4	5	6	7	8	9	10
					2					

topological order

queue

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
0	1	1	3	2	2	1	1	2	0	2

topological order

queue 0 9

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
		1								

topological order

0

queue

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
	0									

topological order

0 9

queue

L

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
		0								

topological order

0 9 1

queue

7 2 5

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
0	0	0	1	1	0	1	0	1	0	1

topological order

0 9 1 7

queue

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
	0									

topological order

0 9 1 7 2

queue

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
0	0	0	1	0	0	0	0	1	0	1

topological order

0 9 1 7 2 5	0	9	1	7	2	5
-------------	---	---	---	---	---	---

queue

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
							0			

topological order

)	9	1	7	2	5	4
		_	•	_		

queue

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	1

topological order

0 9 1 7 2 5 4 6

queue

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	1

topological order

0	9	1	7	2	5	4	6	3

queue

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0

topological order

queue

predecessorCount

0	1	2	3	4	5	6	7	8	9	10
		0								

topological order

queue