GROUPES

Groupe

On appelle groupe tout ensemble G muni d'une loi de composition interne * vérifiant :

- la loi \star est associative: $\forall x, y, z \in G$: $(x \star y) \star z = x \star (y \star z)$
- G possède un élément neutre: $\exists e \in G$ tel que: $\forall x \in G, \quad x \star e =$ $e \star x = e$
- Tout élément x de G admet un symétrique, c'est-à-dire $\forall x \in G$, $\exists x' \in G \text{ tel que } x \star x' = x' \star x = e$

Si de plus $\forall x,y \in G: x \star y = y \star x$, on dit que la loi \star est commutative, et que le groupe est abélien.

Groupe produit

Soit $(G_1, \star_1), ..., (G_n, \star_n)$ des groupes.

En définissant dans $G = G_1 \times \cdots \times G_n$ la loi \star par: $\forall (x_1, \cdots, x_n), (y_1, \cdots, y_n) \in G$:

$$(x_1, \cdots, x_n) \star (y_1, \cdots, y_n) = (x_1 \star_1 y_1, \cdots, x_n \star_n y_n)$$

Alors (G, \star) est un groupe d'élément neutre $(e_{G_1}, \cdots, e_{G_n})$ et pour tout $(x_1,\cdots,x_n)\in G_1\times\cdots\times G_n$, on a

$$(x_1, \cdots, x_n)^{-1} = (x_1^{-1}, \cdots, x_n^{-1})$$

Un tel groupe est appelé le groupe produit.

Il est abélien si, et seulement, si les G_i le sont

Sous-groupe

Soit (G, .) un groupe. Une partie $H \subset G$ est un sous-groupe de G

$$\iff \begin{cases} H \neq \emptyset; \\ \forall x, y \in H : x.y \in H; & (x+y \in H) \\ \forall x \in H : x^{-1} \in H & (-x \in H) \end{cases}$$

$$\iff \begin{cases} H \neq \emptyset; \\ \forall x, y \in H : x.y^{-1} \in H. & (x-y \in H) \end{cases}$$

Théorème

Un sous-groupe d'un groupe est un groupe.

Les sous-groupes de $(\mathbb{Z},+)$

Soit H un sous groupe de \mathbb{Z} , alors il existe un unique entier $n \in \mathbb{N}$ tel que $H = n\mathbb{Z}$

Sous-groupe engendré

- L'intersection d'une famille non vide de sous-groupes est un sousgroupe
- Soit $S \subset G$. L'ensemble gr(S) intersection de tous les sous-groupes de G contenant S est le plus petit sous-groupe de (G, .), au sens de l'inclusion, contenant S, dit le sous-groupe engendré par S

Exemple

Pour $a \in G$, $gr(a) = \{a^k, k \in \mathbb{Z}\}.$ En notation additive $gr(a) = \{ka, k \in \mathbb{Z}\}\$

MORPHISMES DE GROUPES

Soit (G, .), (G', \star) deux groupes de neutres respectifs e et e'.

Morphismes de groupes

Une application $f: G \longrightarrow G'$ est dite morphisme de groupes si:

$$\forall x, y \in G, \quad f(x.y) = f(x) \star f(y)$$

Si de plus f est bijectif, on dit que f est un isomorphisme de groupes

Opérations de morphismes

- La composée de deux morphismes est un morphisme;
- L'application réciproque d'un isomorphisme est un isomorphisme

Propriétés de morphismes

Soit $f:(G,.)\to (G',\star)$ un morphisme de groupes. Alors $\forall x, y \in G \text{ et } n \in \mathbb{Z}$:

1. f(e) = e'

- 3. $f(xy^{-1}) = f(x) \star f(y)^{-1}$
- 2. $f(x^{-1}) = f(x)^{-1}$
- 4. $f(x^n) = f(x)^n$

Images de sous-groupes

Soit $f:(G,.)\to (G',\star)$ un morphisme de groupes. Alors

- Si H est un sous-groupe de G, alors f(H) est un sous-groupe de G'.
- Si H' est un sous-groupe de G', alors $f^{-1}(H')$ est un sous-groupe de G.

En particulier

- $\operatorname{Ker}(f) = f^{-1}(\{e'\})$, le noyau de f, est un sous-groupe de G.
- $\operatorname{Im}(f) = f(G)$, l'image de f, est un sous-groupe de G'.

Injectivité et surjectivité

Un morphisme de groupe $f:(G,.)\to (G',\star)$ est

- 1. injectif si, et seulement, si $Ker f = \{e_G\}$
- 2. surjective si, et seulement, si Im f = G'

ORDRES

Caractérisation de l'ordre

Un élément $a \in G$ est d'ordre fini s'il existe $k \in \mathbb{Z}^*$ tel que $a^k = e$. Au quel $cas \circ (a) = min\{k \in \mathbb{N}^* \mid a^k = e\}$ est appelé l'ordre de a et aussi l'unique entier n de \mathbb{N}^* tel que l'on ait : $\forall k \in \mathbb{Z}, \quad a^k = e \iff n \mid k$

Ordre des itérés

Si $a \in G$ est d'ordre fini n et $r \in \mathbb{Z}$, alors $\circ (a^r) = \frac{n}{n \wedge r}$

Ordre et cardinal

Si a est d'ordre n, alors

- Le groupe gr(a) est de cardinal n et $gr(a) := \{e, a, \dots, a^{n-1}\}$
- gr(a) est isomorphe à $\left(\mathbb{Z}/_{n.\mathbb{Z}}, + \right)$

GROUPES MONOGÈNE, CYCLIQUE

Groupe monogène, groupe cyclique

- 1. S'il existe $a \in G$ tel que G = gr(a), le groupe est dit monogène.
- 2. Un groupe cyclique est un groupe monogène fini.

Propriété

- 1. Tout groupe monogène est abélien
- 2. Un sous-groupe d'un groupe monogène est monogène
- 3. Un sous-groupe d'un groupe cyclique est cyclique

Classification de groupes monogènes

Soit G = gr(a) un groupe monogène, alors

- Si G est infini, il est isomorphe à $\mathbb Z$
- Si G est d'ordre n, il est isomorphe à $\left(\mathbb{Z}/_{n\mathbb{Z}},+\right)$

Générateurs d'un groupe monogène

Soit G = gr(a) un groupe monogène

- 1. Si G est infini, alors a et a^{-1} sont les seuls générateurs de gr(a)
- 2. Si G est cyclique d'ordre n, alors les générateurs de G sont exactement a^r avec $r \in [0, n-1]$ et $r \wedge n = 1$

Générateurs de $\mathbb{Z}/n\mathbb{Z}$ et de \mathbb{U}_n

Soit $k \in [0, n-1]$ et $\omega = e^{i\frac{2\pi}{n}}$

- \overline{k} engendre $\left(\mathbb{Z}/n\mathbb{Z},+\right) \iff n \land k=1$
- ω^k engendre $(\mathbb{U}_n, \times) \iff n \land k = 1$

Théorème de Lagrange

Théorème de Lagrange

Soit *G* un groupe fini. Alors:

- 1. Tout élément de *G* est d'ordre fini;
- 2. l'ordre de tout élément de *G* divise le cardinal *G*. En particulier: $\forall a \in G$, $a^{\mathbf{Card}_G} = e_G$

Exemple: Groupe d'ordre premier

Soit G un groupe fini d'ordre premier p. Alors G est cyclique.

CONTACT INFORMATION

Web: www.elamdaoui.com

Email: elamdaoui@gmail.com

Phone: 06 62 30 38 81