Binomial Coefficients

Contents

Warm-Up

Binomial Coefficients

Warm-Up

Rational and Irrational Numbers Revisited

Remark 4.50

Let $d \in \mathbb{N}$, $x, y \in \mathbb{Z}$, and p be a prime number.

- 2 If $d \mid xy$, then these exist $d_1, d_2 \in \mathbb{N}$ such that $d_1 \mid x$, $d_2 \mid y$, and $d = d_1d_2$.

The proofs of these facts require complete induction.

3 Let
$$d \in \mathbb{N}$$
, $d_1, d_2, \dots, d_n \in \mathbb{Z}$.

If $d \mid \chi_1 \chi_2 \cdots \chi_n$, then there exist product of n numbers, $d_1, d_2, \cdots, d_n \in \mathbb{N}$ such that $d_1 \mid \chi_1, d_2 \mid \chi_2, \cdots, d_n \mid \chi_n$ and $d = d_1 d_2 \cdots d_n$.

Rational and Irrational Numbers Revisited (cont')

SOFEIT (assigned)

Context: 12 is invational. How about IC?

 $y^3 = c$

Example 4.52

- **1** Let x be a rational number such that $x^2 = c$, where c is a whole number. Then x is an integer.
- 2 Let c be a whole number which is not a perfect square. Then \sqrt{c} is irrational.

Proof of Ω Since λ is a national number, we can pick two numbers $A \in \mathbb{Z}$ and $b \in \mathbb{N}$ such that $\lambda = a/b$. By $\overline{\text{Fact } \Omega}$, suppose that the fraction a/b is written in lowest terms. Then $(a/b)^2 = c$, so $a^2/b^2 = c$, so $a^2 = b^2c$, so $a^2 = (bc)b$. Since bc is an integer, b divides a^2 . Then by Rink. 4.50, we can pick $b_1, b_2 \in \mathbb{N}$ such that $b_1 \mid a$, $b_2 \mid a$, and $b = b_1b_2$

But then $|b_1|$ a and $|b_1|$ b. But Since a/b is in lowest terms, if must be the case that $|b_1| = 1$. Similarly, $|b_2| = 1$. So $|b| = |b_1| b_2 = |\cdot| = 1$. It follows that |a| = |a|/b = |a|/a = a. Since a is an integer,

Proof of @ Read the proof.

80 is ob.

ĺ

Binomial Coefficients

Pascal's Triangle

A(1,3) A_{1,3}

Pascal's Triangle and Binomial Coefficients

Recall. For all $n \in \omega$ and all $k \in \{0, ..., n\}$, the binomial coefficient $\binom{n}{k}$ denotes the k-th number on the n-th row of Pascal's triangle.

Key features

- **1** $\binom{0}{0} = 1$.
- **2** Boundary conditions: For each $n \in \mathbb{N}$,

$$\binom{n}{0} = \binom{n}{n} = 1.$$

3 Recurrence relation: For each $n \in \omega$ and all $k \in \{1, ..., n\}$,

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}.$$

Why n choose k?

All 2-element subsets of the 4-element set $\{1, 2, 3, 4\}$ are

$$\underbrace{\{1,2\},\{1,3\},\{2,3\}}_{\text{ones without 4}},\ \underbrace{\{1,\underline{4}\},\{2,\underline{4}\},\{3,\underline{4}\}}_{\text{ones with 4}}.$$

Note that

- the number of subsets without 4 is $3 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
- the number of subsets with 4 is $3 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

Thus the total number of 2-element subsets of the 4-element set is

$$6 = 3 + 3 = {3 \choose 2} + {3 \choose 1} = {4 \choose 2}$$
recurrence relation.

Why n choose k? (cont')

In general, one can count the number of k-element subsets of the

$$(n+1)$$
-element set

$$\{(1,2,\ldots,n,n+1\}$$

in an analogous fashion:

- ullet the number of subsets without n+1 is
- $\binom{n}{k}$.

(R-1) last spot avail spots occupied

• the number of subsets with
$$n+1$$
 is $\binom{n}{k-1}$.

Thus the total number of k-element subsets of the (n + 1)-element set is

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

Why *n* choose *k*? (cont')

The idea above is key to a proof by induction of the following theorem.

Number of Subsets (cf. S14E03)

For each $n \in \omega$, for each $k \in \{0, ..., n\}$, the number of k-element subsets of an n-element set is $\binom{n}{k}$.

Why Binomial Coefficients?

Consider the expansion of $(a + b)^2$:

$$(a+b)^{2} = (a+b)(a+b)$$

$$= (a+b)a + (a+b)b$$

$$= a^{2} + ba$$

$$+ ab + b^{2}$$

$$= a^{2} + 2ab + b^{2}. \qquad = {2 \choose 0} a^{2} b^{0} + {2 \choose 1} a^{1} b^{1} + {2 \choose 2} a^{0} b^{2}$$

Note that the coefficients of a^2 , ab, and b^2 are

respectively, which are precisely the numbers on row 2 of Pascal's triangle:

$$\binom{2}{0}$$
, $\binom{2}{1}$, $\binom{2}{2}$.

Binomial Expansion

Expansion of $(a + b)^3$

Work out the expansion of $(a+b)^3$ and compare the coefficients with the numbers in row 3 of Pascal's triangle.

$$(a+b)^{3} = (a+b)^{2}(a+b)$$

$$= (a+b)^{2}a + (a+b)^{2}b$$

$$= (a^{2} + 2ab + b^{2})a + (a^{2} + 2ab + b^{2})b$$

$$= a^{3} + 2a^{2}b + b^{2}a$$

$$a^{2}b + 2ab^{2} + b^{3}$$

$$= a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$= (\frac{3}{0})a^{3}b^{0} + (\frac{3}{1})a^{2}b^{1} + (\frac{2}{2})a^{1}b^{2} + (\frac{3}{3})a^{0}b^{3}$$

Binomial Expansion (cont')

Expansion of $(a + b)^4$

Work out the expansion of $(a+b)^3$ and compare the coefficients with the numbers in row 3 of Pascal's triangle.

The Binomial Theorem

The examples above suggest the following general result.

The Binomial Theorem (S05E11)

For each $n \in \omega$ and all $a, b \in \mathbb{R}$,

$$(a+b)^n = \binom{n}{0} a^{n \choose 0} \begin{pmatrix} n \\ 1 \end{pmatrix} a^{n-1} b^{1} + \dots + \binom{n}{n-1} db^{n-1} + \binom{n}{n} b^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}.$$

• Convention: For each $x \in \mathbb{R}$, $x^0 = 1$.