##Importing libraries

In [5]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns

In [12]: ds=pd.read_csv(r"C:\Users\SWATHI\Downloads\archive (2).zip")
ds

##getting dataset for prediction

Out[12]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

303 rows × 14 columns

In [13]: df=pd.read_csv("heart.csv")
df

#we can also get the dataset like this

Out[13]:

		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

303 rows × 14 columns

In [14]: df.head()

Out[14]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [33]: df.info()

##for getting the info about dataset like datatypes, null value.

Column Non-Null Count Dtype 0 303 non-null int64 age 1 303 non-null int64 sex 2 303 non-null int64 ср 3 trestbps 303 non-null int64 4 chol 303 non-null int64 5 fbs 303 non-null int64 6 restecg 303 non-null int64 7 thalach 303 non-null int64 8 exang 303 non-null int64 9 oldpeak 303 non-null float64 10 slope 303 non-null int64 11 ca 303 non-null int64 thal 12 303 non-null int64 target 303 non-null int64 dtypes: float64(1), int64(13) memory usage: 33.3 KB In [15]: df.describe() trestbps chol fbs restecg thalach oldpeak age sex ср exand count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 3 1.039604 54.366337 0.683168 0.966997 131.623762 246.264026 0.148515 0.528053 149.646865 0.326733 mean std 9.082101 0.466011 1.032052 17.538143 51.830751 0.356198 0.525860 22.905161 0.469794 1.161075 min 29.000000 0.000000 0.000000 94.000000 126.000000 0.000000 0.000000 71.000000 0.000000 0.000000 25% 47.500000 0.000000 0.000000 120.000000 211.000000 0.000000 0.000000 133.500000 0.000000 0.000000 50% 55.000000 1.000000 1.000000 130.000000 240.000000 0.000000 1.000000 153.000000 0.000000 0.800000 75% 61.000000 1.000000 2.000000 140.000000 274.500000 0.000000 1.000000 166.000000 1.000000 1.600000 1.000000 2.000000 202.000000 max 77.000000 1.000000 3.000000 200.000000 564.000000 1.000000 6.200000 In [16]: df.sum() ##for getting the sum of the columns 16473.0 Out[16]: age 207.0 sex 293.0 ср trestbps 39882.0 74618.0 chol fbs 45.0 160.0 restecq thalach 45343.0 99.0 exang oldpeak 315.0 424.0 slope ca 221.0 thal 701.0 target 165.0 dtype: float64 In [17]: df.isnull() ##for checking the null values Out[17]: trestbps chol fbs restecg thalach exang oldpeak slope ca thal target age sex ср 0 False 2 False 298 False 299 False 300 False 301 False 302 False False

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns):

```
In [18]: df.isna().sum()
                                                             ##for getting the count of null values
Out[18]: age
                     0
         sex
                     0
                     0
         ср
         trestbps
                     0
         chol
                     0
         fbs
                     0
                     0
         restecg
                     0
         thalach
         exang
                     0
         oldpeak
                     0
                     0
         slope
         ca
                     0
         thal
                     0
         target
                     0
         dtype: int64
In [19]: sns.countplot(x='target', data=df) ##for getting the plotting of the dataset here 0 is not having heart attack
```

Out[19]: <Axes: xlabel='target', ylabel='count'>

In [20]: df.hist(figsize=(12,12)) #getting the histograms of dataset and also checking the given data is categorical o plt.show()

In [21]: df2= pd.get_dummies(df, columns=['sex','cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal']) #creating dummy

In [25]: df2

Out[25]:		age	trestbps	chol	thalach	oldpeak	target	sex_0	sex_1	ср_0	cp_1	 slope_2	ca_0	ca_1	ca_2	ca_3	ca_4	thal
	0	63	145	233	150	2.3	1	False	True	False	False	 False	True	False	False	False	False	Fals
	1	37	130	250	187	3.5	1	False	True	False	False	 False	True	False	False	False	False	Fals
	2	41	130	204	172	1.4	1	True	False	False	True	 True	True	False	False	False	False	Fals
	3	56	120	236	178	8.0	1	False	True	False	True	 True	True	False	False	False	False	Fals
	4	57	120	354	163	0.6	1	True	False	True	False	 True	True	False	False	False	False	Fals
	298	57	140	241	123	0.2	0	True	False	True	False	 False	True	False	False	False	False	Fals
	299	45	110	264	132	1.2	0	False	True	False	False	 False	True	False	False	False	False	Fals
	300	68	144	193	141	3.4	0	False	True	True	False	 False	False	False	True	False	False	Fals
	301	57	130	131	115	1.2	0	False	True	True	False	 False	False	True	False	False	False	Fals
	302	57	130	236	174	0.0	0	True	False	False	True	 False	False	True	False	False	False	Fals

303 rows × 31 columns

```
In [23]: x=df2[cols]
           y=df2.target
           У
Out[23]: 0
           1
                    1
           2
                   1
           3
                   1
           4
                   1
           298
                   0
           299
                   0
           300
                   0
           301
                   0
           302
                   0
           Name: target, Length: 303, dtype: int64
In [45]: from sklearn.model selection import train test split
                                                                               #Splitting data into training and testing sets
           x_train,x_test,y_train,y_test=train_test_split(x , y ,test_size=0.25,random_state=42)
In [46]: x train.shape
Out[46]: (227, 10)
In [47]: x_test.shape
Out[47]: (76, 10)
In [48]: from sklearn.preprocessing import StandardScaler
                                                                                                  ##feature Scaling
           sc=StandardScaler()
           x_train = sc.fit_transform(x_train)
           x_test = sc.transform(x_test)
In [49]: x_train
Out[49]: array([[-0.91139737, 2.34216018, -0.6815542 , ..., 1.07791686,
                     -1.04046567, -0.13392991],
                    [-0.91139737, -0.42695628, 1.46723474, ..., -0.92771533,
                      0.96110812, -0.13392991],
                    [\ 1.09721625,\ -0.42695628,\ -0.6815542\ ,\ \dots,\ -0.92771533,
                      0.96110812, -0.13392991],
                    [-0.91139737, -0.42695628, -0.6815542, \ldots, 1.07791686,
                      -1.04046567, -0.13392991],
                    [ 1.09721625, -0.42695628, -0.6815542 , ..., 1.07791686,
                     -1.04046567, -0.13392991],
                    \hbox{$[\,\hbox{-0.91139737},$} \quad \hbox{$2.34216018,} \quad \hbox{$-0.6815542,} \quad \dots, \quad \hbox{$-0.92771533,}
                      0.96110812, -0.13392991]])
In [50]: x_test
Out[50]: array([[ 1.09721625, -0.42695628, -0.6815542 , 1.16826465, 0.55847168,
                      0.382707 , -0.382707 , 1.07791686 , -1.04046567 , -0.13392991],
                   [-0.91139737, -0.42695628, -0.6815542 , 2.34508328, 0.78298125, 0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991], [-0.91139737, -0.42695628, 1.46723474, 1.16826465, -2.24789797,
                     -2.61296502, 2.61296502, -0.92771533, 0.96110812, -0.13392991],
                     \hbox{ [ 1.09721625, -0.42695628, -0.6815542 , 0.22680976, 3.04678611, } \\
                    0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991], [-0.91139737, -0.42695628, 1.46723474, -1.18537259, 0.35267124,
                     -2.61296502, 2.61296502, 1.07791686, -1.04046567, -0.13392991],
                   [-0.91139737, -0.42695628, 1.46723474, 1.16826465, -1.46211447, 0.382707, -0.382707, -0.92771533, 0.96110812, -0.13392991], [1.09721625, -0.42695628, -0.6815542, 0.46217348, -0.05892964,
                      0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991],
                     \hbox{ [ 1.09721625, -0.42695628, -0.6815542 , 4.11031121, 0.78298125, } \\
                    -2.61296502, 2.61296502, 1.07791686, -1.04046567, -0.13392991], [ 1.09721625, -0.42695628, -0.6815542 , -0.47928142, 0.74556299,
                      0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991],
                    [-0.91139737, \ -0.42695628, \ 1.46723474, \ -0.30275862, \ 0.50234429,
                     0.382707 \quad , \quad -0.382707 \quad , \quad -0.92771533 \, , \quad 0.96110812 \, , \quad -0.13392991 ] \, , \\
                    [-0.91139737, -0.42695628, -0.6815542 , 2.81581073, 0.4462169 , 0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991],
                    [-0.91139737, 2.34216018, -0.6815542 , -0.59696328, 1.4752191 ,
                      0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
                     [ \ 1.09721625 \, , \ -0.42695628 \, , \ -0.6815542 \ , \ -1.18537259 \, , \ -1.4808236 \ , \\
                     0.382707 \quad , \quad -0.382707 \quad , \quad -0.92771533 \, , \quad 0.96110812 \, , \quad -0.13392991 ] \, , \\
                    \hbox{$[-0.91139737,} \hbox{$-0.42695628,} \hbox{$1.46723474,} \hbox{$0.57985534,} \hbox{$-0.20860269,}
```

```
 0.382707 \quad , \quad -0.382707 \quad , \quad 1.07791686 \, , \quad -1.04046567 \, , \quad -0.13392991 ] \, , \\
\hbox{$[\, \hbox{-0.91139737}\,, \quad 2.34216018\,, \ \hbox{-0.6815542} \ , \ \hbox{-0.71464514}\,, \ \hbox{-0.67633097}\,,}
0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991], [ 1.09721625, -0.42695628, -0.6815542 , -0.59696328, -1.08793185,
   0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
[ 1.09721625, -0.42695628, -0.6815542 , 0.57985534, 1.21329127, 0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991], [ 1.09721625, -0.42695628, -0.6815542 , 0.46217348, -1.49953273,
0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991], [-0.91139737, -0.42695628, -0.6815542 , 2.34508328, -0.35827574, 0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991], [ 1.09721625, -0.42695628, -0.6815542 , -0.00855397, 0.6894356 ,
   -2.61296502, 2.61296502, 1.07791686, -1.04046567, -0.13392991],
 0.382707 \quad , \quad -0.382707 \quad , \quad -0.92771533 \, , \quad 0.96110812 \, , \quad -0.13392991 ] \, , \\
\hbox{[-0.91139737, -0.42695628, 1.46723474, -0.71464514, -0.07763877,}\\
0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991], [ 1.09721625, -0.42695628, -0.6815542 , 1.28594652, -0.43311226,
   0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
[-0.91139737, -0.42695628, -0.6815542 , 1.75667397, 0.50234429, 0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991], [ 1.09721625, -0.42695628, -0.6815542 , 0.57985534, 0.27783472,
0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991], [1.09721625, -0.42695628, -0.6815542 , 2.05087862, 0.80169039, -2.61296502, 2.61296502, 1.07791686, -1.04046567, -0.13392991], [1.09721625, -0.42695628, -0.6815542 , -1.18537259, 0.1468708 ,
     0.382707 \quad , \quad -0.382707 \quad , \quad 1.07791686 \, , \quad -1.04046567 \, , \quad -0.13392991 ] \, , \\
[ 1.09721625, -0.42695628, -0.6815542 , -0.12623583, 0.31525298, 0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
 [ \ 1.09721625 , \ -0.42695628 , \ -0.6815542 \ , \ \ 0.57985534 , \ -0.73245836 , \\
0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991], [ 1.09721625, -0.42695628, -0.6815542 , -0.59696328, 0.3900895 , 0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991], [ 1.09721625, -0.42695628, -0.6815542 , -1.53841818, -0.71374923,
    0.382707 \quad , \quad -0.382707 \quad , \quad 1.07791686 \, , \quad -1.04046567 \, , \quad -0.13392991 ] \, , \\
[-0.91139737, -0.42695628, -0.6815542 , 1.16826465, -0.37698487, 0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
 \hbox{ [ 1.09721625, -0.42695628, -0.6815542 , -0.00855397, 0.1468708 , } \\
0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991], [-0.91139737, -0.42695628, 1.46723474, -0.30275862, -0.02151138, -2.61296502, 2.61296502, 1.07791686, -1.04046567, -0.13392991], [-0.91139737, -0.42695628, 1.46723474, -0.36159955, 0.16557993,
  -2.61296502, 2.61296502, -0.92771533, 0.96110812, -0.13392991],
[-0.91139737, -0.42695628, -0.6815542 , 0.57985534, -0.88213141, 0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
 \hbox{ [ 1.09721625, -0.42695628, -0.6815542 , -0.89116793, 0.25912559, } \\
0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991], [-0.91139737, -0.42695628, 1.46723474, 0.46217348, -0.43311226, 0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
\hbox{$[-0.91139737,}\quad 2.34216018,\ -0.6815542\ ,\quad 0.57985534,\ -0.47053052,
0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991], [-0.91139737, 2.34216018, -0.6815542 , -0.12623583, -0.71374923, -2.61296502, 2.61296502, 1.07791686, -1.04046567, -0.13392991], [-0.91139737, -0.42695628, 1.46723474, -0.00855397, -0.60149444,
   0.382707 \quad , \quad -0.382707 \quad , \quad 1.07791686 \, , \quad -1.04046567 \, , \quad -0.13392991 ] \, ,
[-0.91139737, 2.34216018, -0.6815542 , -0.59696328, 0.31525298, 0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
-2.61296502, 2.61296502, 1.07791686, -1.04046567, -0.13392991], [ 1.09721625, -0.42695628, -0.6815542 , -0.12623583, -0.78858575, -2.61296502, 2.61296502, -0.92771533, 0.96110812, -0.13392991],
\hbox{$[\,\hbox{-0.91139737},$}\quad \hbox{$2.34216018,}\quad \hbox{$-0.6815542,}\quad \hbox{$-0.12623583,}\quad \hbox{$-0.76987662,}
  -2.61296502, \quad 2.61296502, \quad -0.92771533, \quad 0.96110812, \quad -0.13392991]\,,
[ 1.09721625, -0.42695628, -0.6815542 , 2.34508328, -0.395694 , -2.61296502, 2.61296502, 1.07791686, -1.04046567, -0.13392991],
 [ \  \  1.09721625, \  \  -0.42695628, \  \  -0.6815542 \  \  , \  \  \  1.75667397, \quad 0.80169039, \\
   0.382707 , -0.382707 , 1.07791686 , -1.04046567 , -0.13392991],
[ 1.09721625, -0.42695628, -0.6815542 , -0.00855397,  0.18428906, -2.61296502,  2.61296502,  1.07791686, -1.04046567, -0.13392991],
[ 1.09721625, -0.42695628, -0.6815542 , 0.69753721, 1.17587301,
    0.382707 \quad , \quad -0.382707 \quad , \quad 1.07791686 \, , \quad -1.04046567 \, , \quad -0.13392991 ] \, , \\
[-0.91139737, 2.34216018, -0.6815542, 0.28565069, -0.80729488, 0.382707, -0.382707, -0.92771533, 0.96110812, -0.13392991],
\hbox{[-0.91139737, -0.42695628, 1.46723474, -1.65610004, 1.34425518,}
    0.382707 \quad , \quad -0.382707 \quad , \quad -0.92771533 \, , \quad 0.96110812 \, , \quad -0.13392991 ] \, , \\
[ 1.09721625, -0.42695628, -0.6815542 , -0.30275862, 1.00749083, 0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991],
[ 1.09721625, -0.42695628, -0.6815542 , 1.75667397, -1.53695099,
0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991],

[-0.91139737, -0.42695628, 1.46723474, 0.57985534, 0.1468708,

0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991],
```

```
[-0.91139737, -0.42695628, 1.46723474, -0.0673949, -0.9382588]
                                       0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
                                   [ 1.09721625, -0.42695628, -0.6815542 , 0.81521907, -0.99438619, -2.61296502, 2.61296502, -0.92771533, 0.96110812, -0.13392991],
                                   [ 1.09721625, -0.42695628, -0.6815542 , 0.87406
                                                                                                                                             , 0.67072647.
                                       0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991],
                                   [ 1.09721625, -0.42695628, -0.6815542 , 1.16826465, -0.05892964, 0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991],
                                   \hbox{$[\, \text{-0.91139737}\,, \quad 2.34216018\,, \, \text{-0.6815542} \ , \, \text{-0.59696328}\,, \quad 0.91394517\,,}
                                       0.382707 \quad , \quad -0.382707 \quad , \quad -0.92771533 \, , \quad 0.96110812 \, , \quad -0.13392991 ] \, ,
                                    \hbox{ [ 1.09721625, -0.42695628, -0.6815542 , 1.16826465, 0.4462169 , } \\
                                       0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991],
                                   \hbox{$[\, \text{-0.91139737, -0.42695628, 1.46723474, 1.16826465, -0.28343921,}\\
                                       0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
                                   [-0.91139737, 2.34216018, -0.6815542 , 0.28565069, 0.07203428, 0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991],
                                    [ \ 1.09721625 , \ -0.42695628 , \ -0.6815542 \ , \ -0.77348607 , \ -0.30214835 , \\
                                     -2.61296502, 2.61296502, -0.92771533, 0.96110812, -0.13392991],
                                    \hbox{ [ 1.09721625, -0.42695628, -0.6815542 , -0.12623583, 1.06361822, } \\
                                        0.382707 \quad , \quad -0.382707 \quad , \quad 1.07791686 \, , \quad -1.04046567 \, , \quad -0.13392991 ] \, , \\
                                   \hbox{$[\,\hbox{-0.91139737},$}\quad\hbox{$2.34216018,$}\quad\hbox{$-0.6815542,$}\quad\hbox{$0.10912789,$}\quad\hbox{$0.78298125,}
                                     \hbox{-2.61296502,} \quad \hbox{2.61296502,} \quad \hbox{1.07791686,} \quad \hbox{-1.04046567,} \quad \hbox{-0.13392991],}
                                  [-0.91139737, 2.34216018, -0.6815542, 0.57985534, 0.89523604, 0.382707, -0.382707, 1.07791686, -1.04046567, -0.13392991], [-0.91139737, -0.42695628, 1.46723474, 0.57985534, 1.66231041, 0.2022737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202737, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0.202727, -0
                                        0.382707 \quad , \quad -0.382707 \quad , \quad -0.92771533 \, , \quad 0.96110812 \, , \quad -0.13392991 ] \, , \\
                                   [-0.91139737, 2.34216018, -0.6815542 , -1.47957725, -0.90084054, 0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
                                    [ \  \  1.09721625 , \  \  -0.42695628 , \  \  -0.6815542 \  \  , \quad 0.57985534 , \  \  -0.37698487 , \\
                                        0.382707 \quad , \quad -0.382707 \quad , \quad -0.92771533 \, , \quad 0.96110812 \, , \quad -0.13392991 ] \, , \\
                                   [ 1.09721625, -0.42695628, -0.6815542 , 1.16826465, -0.04022051, 0.382707 , -0.382707 , -0.92771533, 0.96110812, -0.13392991],
                                    [ \ 1.09721625 , \ -0.42695628 , \ -0.6815542 \ , \ -0.47928142 , \ -0.45182139 , \\
                                        0.382707 \quad , \quad -0.382707 \quad , \quad 1.07791686 \, , \quad -1.04046567 \, , \quad -0.13392991 ] \, , \\
                                   [ 1.09721625, -0.42695628, -0.6815542 , 0.87406 , -0.6389127 , 0.382707 , -0.382707 , 1.07791686, -1.04046567, -0.13392991],
                                   [-0.91139737, 2.34216018, -0.6815542, -0.00855397, 0.29654385,
                                        0.382707 \quad , \quad -0.382707 \quad , \quad -0.92771533 \, , \quad 0.96110812 \, , \quad -0.13392991]]) 
In [41]: from sklearn.neighbors import KNeighborsClassifier
                                                                                                                                             ##Selecting the model
                    classifier= KNeighborsClassifier()
                    classifier.fit(x train, y train)
                    yp=classifier.predict(x_test)
Out[41]: array([0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0,
                                   0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1,
                                   1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0,
                                  0, 1, 0, 1, 1, 0, 0, 0, 0, 1], dtype=int64)
In [52]: from sklearn.metrics import confusion matrix
                                                                                                                                        ##getting confusion matrix using seaborn plots
                    cm=confusion_matrix(y_test,yp)
                    sns.heatmap(cm, annot= True)
                                                                                                                                                  - 25
                                                 29
```

Out[52]: <Axes: >

αv

In [54]: from sklearn.metrics import accuracy score ##Checking the accuracy score accuracy_score(y_test,yp)

Out[54]: 0.75

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js