0.1 Gemometry, projections ‡

Let a P (or \mathcal{P}) plane of equation $\vec{p} \cdot \vec{x} + c = 0$. We can note $|\vec{p}|$ the standard of p, i.e. $|\vec{p}| = \sqrt{\vec{p} \cdot \vec{p}}$.

- 1. Starting with the simple case c = 0, and the sub-case $\vec{p} = (0, 0, 2)$ (in 3 dimensions, to fix the ideas), give a formula to calculate the projected \vec{a}' of a point \vec{a} on the P plane. Hint: first see what this P plane is, then see how to hack the coordinates of a to project them on this plane.
- 2. Generalize for any p (always with c=0, i.e. a plane passing through the origin of the system of coordinates). Hint: there is not so much reasoning to do, just convince yourself intuitively (drawings are allowed).
- 3. Generalize for any c. Remember that c is interpreted as the distance between the plane and the origin of the marker, i.e. the length of the OO' vector, if O is the origin of the marker and O' its projected on the plane.

0.2 Solution - Exo 0.1 - Gemometry, Projections ‡

Let a P (or \mathcal{P}) plane of equation $\vec{p} \cdot \vec{x} + c = 0$. We can note $|\vec{p}|$ the standard of p, i.e. $|\vec{p}| = \sqrt{\vec{p} \cdot \vec{p}}$.

- 1. Starting with the simple case c=0, and the sub-case $\vec{p}=(0,0,2)$ (in 3 dimensions, to fix the ideas), give a formula to calculate the projected \vec{a}' of a point \vec{a} on the P plane. Hint: first see what this P plane is, then see how to hack the coordinates of a to project them on this plane.
 - **Solution:** The plane is the plane z=0. Remember to remove the z component (3rd component) from the a vector. This component is obtained by $\vec{a} \cdot \vec{p}$, except that we must normalize \vec{p} , i.e. divide it by its norm: $\vec{a} \cdot \frac{\vec{p}}{|\vec{p}|}$. So you have to subtract that from \vec{a} . The formula is: $\vec{a}' = \vec{a} \frac{\vec{a} \cdot \vec{p}}{|\vec{p}|} \frac{\vec{p}}{|\vec{p}|}$
- 2. Generalize for any p (always with c = 0, i.e. a plane passing through the origin of the system of coordinates). Hint: there is not so much reasoning to do, just convince yourself intuitively (drawings are allowed).

Solution: The formula is the same: $\vec{a}' = \vec{a} - \frac{\vec{a} \cdot \vec{p}}{|\vec{p}|} \frac{\vec{p}}{|\vec{p}|}$

3. Generalize for any c. Remember that c is interpreted as the distance between the plane and the origin of the marker, i.e. the length of the OO' vector, if O is the origin of the marker and O' its projected on the plane.

Solution: For any a point, with the previous formula, we will project on the plane parallel to P which passes through O. So we need to shift the solution by an amount $\overrightarrow{OO'}$. With a picture, positionning \vec{p} on O, we see that $OO' = |OO'|\frac{\vec{p}}{|\vec{p}|} = c.\frac{\vec{p}}{|\vec{p}|}$. The general formula is therefore $\vec{a}' = \vec{a} - \frac{\vec{a} \cdot \vec{p}}{|\vec{p}|} \frac{\vec{p}}{|\vec{p}|} + c.\frac{\vec{p}}{|\vec{p}|}$. If we assume that \vec{p} is normalized (i.e. $|\vec{p}| = 1$), it is prettier: $\vec{a}' = \vec{a} - (\vec{a} \cdot \vec{p})\vec{p} + c\vec{p}$ We see that a \vec{a} point belonging to P would have projected itself, because it would check $\vec{p} \cdot \vec{a} + c = 0$, and so the last 2 terms cancel each other out, and we have $\vec{a}' = \vec{a}$ (which is logical).

Note: this equation is valid in any size $d \in \mathbb{N}$! Nice, isn't it?