Regressão

Minicurso Ciência de Dados

Objetivos da Aula

- Entender o conceito de regressão
- Conhecer o algoritmo regressão linear simples
- Aplicar a regressão em um conjunto de dados fictício
- Avaliar o desempenho do modelo

O que é Regressão?

- Uma tarefa de aprendizado supervisionado
- Objetivo: prever o valor de uma variável dependente baseado em variáveis independentes
- Exemplo:
 - Determinar o valor de uma casa com base em número de cômodos, localização e cidade.

Altura (cm)	Massa (kg)
147	43
149	45
152	47
182	72

Vemos uma relação entre massa e altura. Queremos encontrar a reta que melhor explica a relação.

Nossa reta terá a forma:

$$\hat{Y} = B_0 + B_1 X$$

onde, B0 é o coeficiente escalar e B1 é o coeficiente angular da reta.

Mas, como estimá-los?

Usamos o métodos dos mínimos quadrados:

$$B_{1} = \left[\sum (x_{i} - \mu_{x}) (y_{i} - \mu_{y}) \right] / \left[\sum (x_{i} - \mu_{x})^{2} \right]$$

$$B_{0} = \mu_{y} - B_{1} \mu_{x},$$

E se temos mais variáveis?

O método dos mínimos quadrados segue aplicável quando as variáveis são independentes entre si. Nossa resposta para a equação da reta seria uma combinação linear do tipo:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n + \varepsilon$$

Atividade Prática

- Abrir o notebook fornecido
- Executar cada célula
- Observar o ajuste do modelo

