全国计算机技术与软件专业技术资格(水平)考试

2009 年上半年 软件设计师 下午试卷

(考试时间 14:00~16:30 共 150 分钟)

请按下述要求正确填写答题纸

- 1.在答题纸的指定位置填写你所在的省、自治区、直辖市、计划单列市的名称。
- 2.在答题纸的指定位置填写准考证号、出生年月日和姓名。
- 3.答题纸上除填写上述内容外只能写解答。
- 4.本试卷共 7 道题, 试题一至试题四是必答题, 试题五至试题六选答 1 道。每 题 15 分, 满分 75 分。
- 5.解答时字迹务必清楚,字迹不清时,将不评分。
- 6. 仿照下面例题,将解答写在答题纸的对应栏内。

例题

2009 年上半年全国计算机技术与软件专业技术资格(水平)考试日期是(1)月(2)日。

因为正确的解答是"5月20日",故在答题纸的对应栏内写上"5"和"20"(参看下表)。

例题	解答栏	
(1)	5	
(2)	20	

2009 年上半年 软件设计师 下午试卷 第1页 (共17页)

试题一至试题四是必答题

试题一

假设某大型商业企业由商品配送中心和连锁超市组成,其中商品配送中心包括采购、财务、配送等部门。为实现高效管理,设计了商品配送中心信息管理系统,其主要 功能描述如下:

- 1. 系统接收由连锁超市提出的供货请求,并将其记录到供货请求记录文件。
- 2. 在接到供货请求后,从商品库存记录文件中进行商品库存信息查询。如果库存满足供货请求,则给配送处理发送配送通知: 否则,向采购部门发出缺货通知。
- 3. 配送处理接到配送通知后,查询供货请求记录文件,更新商品库存记录文件,并向 配送部门发送配送单,在配送货品的同时记录配送信息至商品配送记录文件。
- 4. 采购部门接到缺货通知后,与供货商洽谈,进行商品采购处理,合格商品入库,并记录采购清单至采购清单记录文件、向配送处理发出配送通知,同时通知财务部门给供货商支付货款。

该系统采用结构化方法进行开发,得到待修改的数据流图如下图所示。

【问题1】

使用【说明】中的词语,给出上图中外部实体 E1 至 E4 的名称和数据存储 D1 至 D4 的 2009 年上半年 软件设计师 下午试卷 第 2页 (共 17页)

【问题 2】

以上数据流图中存在四处错误数据流,请指出各自的起点和终点;若将上述四条错误数据流删除,为保证数据流图的正确性,应补充三条数据流,请给出所补充数据流的起点和终点。(起点和终点请采用上述数据流图中的符号或名称)

错误数据流

终点

补充的数据流

起点	终点

试题三

某集团公司拥有多个大型连锁商场,公司需要构建一个数据库系统以方便管理其业 务 运作活动。

【需求分析结果】

1. 商场需要记录的信息包括商场编号(编号唯一),商场名称,地址和联系电话。 某商场信息如下表所本。

商场信息表

商场编号	商场名称	地址	联系电话
PS2101	淮海商场	淮海中路 918 号	021-64158818
PS2902	西大街商场	西大街时代盛典大厦	029-87283220
PS2903	东大街商场	碑林区东大街 239 号	029-87450287
PS2901	长安商场	雁塔区长安中路 38 号	029-85264953

2. 每个商场包含有不同的部门,部门需要记录的信息包括部门编号(集团公司分配), 部门名称,位置分布和联系电话。某商场的部门信息如下表所示。

部门信息表

部门编号	部门名称	位置分布	联系电话
DT002	财务部	商场大楼六层	82504342
DT007	后勤部	商场地下副一层	82504347
DT021	安保部	商场地下副一层	82504358
DT005	人事部	商场大楼六层	82504446
DT001	管理部	商场裙楼三层	82504668

3. 每个部门雇用多名员工处理日常事务,每名员工只能隶属于一个部门(新进员工在培训期不隶属于任何部门)。员工需要记录的信息包括员工编号(集团公司分配), 姓名,岗位,电话号码和工资。员工信息如下表所示。

员工信息表

员工编号	姓名	岗位	电话号码	工资
XA3310	周超	理货员	13609257638	1500.00
SH1075	刘飞	防损员	13477293487	1500.00
XA0048	江雪花	广播员	15234567893	1428.00
BJ3123	张正华	部门主管	13345698432	1876.00

4. 每个部门的员工中有一名是经理,每个经理只能管理一个部门,系统需要记录每个经理的任职时间。

【概念模型设计】

实体联系图

【关系模式设计】

商场(商场编号,商场名称,地址,联系电话)

部门(部门编号,部门名称,位置分布,联系电话,(a))

员工:(员工编号,员工姓名,岗位,电话号码,工资,(b))

经理((c),任职时间)

【问题1】

根据问题描述,补充四个联系,竞善图 2-1 的实体联系图。联系名可用联系 1、联系 2、联系 3 和联系 4 代替,联系的类型分为 1:1、1:n 和 m:n。

【问题 2】

根据实体联系图,将关系模式中的空(a)~(c)补充完整,并分别给出部门、员工和经理关系模式的主键和外键。

【问题3】

为了使商场有紧急事务时能联系到轮休的员工,要求每位员工必须且只能登记一位紧急联系人的姓名和联系电话,不同的员工可以登记相同的紧急联系人。则在图 2-1 中 还需添加的实体是(1),该实体和图 2-1 中的员工存在(2)联系(填写联系类型)。给出该实体的关系模式。

2009 年上半年 软件设计师 下午试卷 第5页 (共17页)

试题三

某银行计划开发一个自动存提款机模拟系统(ATM System).系统通过读卡器(CardReader)读取ATM卡;系统与客户(Customer)的交互由客户控制台(Customer-Console)实现;银行操作员(Operator)可控制系统的启动(System Startup)和停止(System Shutdown);系统通过网络和银行系统(Bank)实现通信。

当读卡器判断用户已将 ATM 卡插入后,创建会话(Session)。会话开始后,读卡器 进行读卡,并要求客户输入个人验证码 (PIN)。系统将卡号和个人验证码信息送到银行系统进行验证。验证通过后,客户可从菜单选择如下事务 (Transaction):

- 1. 从 ATM 卡账户取款 (Withdraw);
- 2. 向 ATM 卡账户存款 (Deposit):
- 3. 进行转账 (Transfer);
- 4. 查询 (Inquire) ATM 卡账户信息。

一次会话可以包含多个事务,每个事务处理也会将卡号和个人验证码信息送到银行系统进行验证。若个人验证码错误,则转个人验证码错误处理(Invalid PIN Process)。每个事务完成后,客户可选择继续上述事务或退卡。选择退卡时,系统弹出 ATM 卡,会话结束。系统采用面向对象方法开发,使用 UML 进行建模。系统的顶层用例图如图 3-1 所示,一次会话的序列图(不考虑验证)如图 3-2 所示。

【问题 1】

根据【说明】中的描述,给出图 3-1 中 A1 和 A2 所对应的参与者,U1 至 U3 所对应的用例,以及该图中空(1)所对应的关系。(U1 至 U3 的可选用例包括: Session、Transaction, Insert Card、Invalid PIN Process 和 Transfer)

【问题2】

根据【说明】中的描述,使用消息名称列表中的英文名称,给出图 3-2 中 6~9 对应的消息。

图 3-1 ATM 系统顶层用例图

2009 年上半年 软件设计师 下午试卷 第7页 (共17页)

可能的消息名称列表

名 称	说 明	名 称	说 明	
cardInserted()	ATM 卡已插入	performTransaction()	执行事务	
performSession()	执行会话	readCard()	读卡	
readPIN()	读取个人验证码	PIN	个人验证码信息	
creat(atm, this, card, pin)	为当前会话创建事务	create(this)	为当前 ATM 创建会话	
card	ATM 卡信息 doAgain		执行下一个事务	
ejectCard()	弹出 ATM 卡			

【问题3】

解释图 3-1 中用例 U3 和用例 Withdraw、Deposit 等四个用例之间的关系及其内涵。

试题四

现需在某城市中选择一个社区建一个大型超市,使该城市的其他社区到该超市的距离总和最小。用图模型表示该城市的地图,其中顶点表示社区,边表示社区间的路线,边上的权重表示该路线的长度。

现设计一个算法来找到该大型超市的最佳位置:即在给定图中选择一个顶点,使该顶点 到其他各顶点的最短路径之和最小。算法首先需要求出每个顶点到其他任一顶点的最短路径, 即需要计算任意两个顶点之间的最短路径;然后对每个顶点,计算其他各顶点到该顶点的最 短路径之和;最后,选择最短路径之和最小的顶点作为建大型超市的最佳位置。

【问题1】

本题采用 Floyd-Warshall 算法求解任意两个顶点之间的最短路径。已知图 G 的顶点集合为 $V=\{1,2,\cdots,n\}$, $W=\{w_{ij}\}_{n^*n}$ 为权重矩阵。设 $d_{ij}^{(k)}$ 为从顶点 i 到顶点 j 的一条最短路径的权重。当 k=0 时,不存在中间顶点,因此 $d_{ij}^{(0)}=w_{ij}$; 当 k>0 时,该最短路径上所有的中间顶点均属于集合 $\{1,2,\cdots,k\}$ 。若中间顶点包括顶点 k ,则 $d_{ij}^{(k)}=d_{ik}^{(k-1)}+d_{kj}^{(k-1)}$;若中间顶点不包括顶点 k ,则 $d_{ij}^{(k)}=d_{ij}^{(k-1)}$ 。于是得到如下递归式。

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & k = 0\\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & k > 0 \end{cases}$$

因为对于任意路径,所有的中间顶点都在集合 $\{1,2,\cdots,n\}$ 内,因此矩阵 $D^{(n)}=\{d_{ij}^{(n)}\}_{n^*n}$ 给出了任意两个顶点之间的最短路径,即对所有 $i,j\in V$, $d_{ij}^{(n)}$ 表示顶点 i 到顶点 j 的最短路径。

```
LOCATE -SHOPPINGMALL(W, n)
1 	 D^{(0)} = W
2 for (1)
       for i = 1 to n
3
           for j = 1 to n
            if d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}
7
              else
                       (3)
8
9 for i = 1 to n
10 \qquad SP[i] = 0
11 for j = 1 to n
       (4)
12
13 min_SP = SP[1]
14 ___(5)___
15 for i = 2 to n
```

【问题 2】

【问题1】中伪代码的时间复杂度为(7)(用0符号表示)。

从下列的 2 道试题(试题五至试题六)中任选 1 道解答。如果解答的试题数超过 1 道,则题号小的 1 道解答有效。

试题五

阅读下列说明和 C 函数代码,将应填入(n)处的字句写在答题纸的对应栏内。

【说明】

对二叉树进行遍历是二叉树的一个基本运算。遍历是指按某种策略访问二叉树的每个节点,且每个节点仅访问一次的过程。函数 InOrder()借助栈实现二叉树的非递归中序遍历运算。

设二叉树采用二叉链表存储, 节点类型定义如下:

在函数 InOrder()中,用栈暂存二叉树中各个节点的指针,并将栈表示为不含头节点的单向链表(简称链栈),其节点类型定义如下:

```
typedef struct StNode{ /*链栈的节点类型*/
BTree elem; /*栈中的元素是指向二叉链表节点的指针*/
struct StNode *link;
}StNode;
```

假设从栈顶到栈底的元素为 e_n 、 e_n 、 e_n ,则不含头节点的链栈示意图如图 5-1 所示。

【问题1】

【C函数】

```
int InOrder(BTree root) /*实现二叉树的非递归中序遍历*/
      BTree ptr;
                            /*ptr 用于指向二叉树中的节点*/
      StNode *q;
                            /*g 暂存链栈中新创建或待删除的节点指针*/
      StNode *stacktop = NULL; /*初始化空栈的栈顶指针 stacktop*/
      ptr = root;
                            /*ptr 指向二叉树的根节点*/
      while ( (1) || stacktop != NULL) {
      while (ptr != NULL) {
        q = (StNode *) malloc(sizeof(StNode));
         if (q == NULL)
   return -1;
     q->elem = ptr;
     (2);
      stacktop = q;
                         /*stacktop 指向新的栈顶*/
     ptr = __(3)__;
                          /*进入左子树*/
  }
      q = stacktop;
                         /*栈顶元素出栈*/
      (4);
      visit(q);
                          /*visit 是访问节点的函数, 其具体定义省略*/
      ptr = __(5)_;
                          /*进入右子树*/
                          /*释放原栈顶元素的节点空间*/
      free(q);
   }
   return 0;
}/*InOrder*/
```

试题六

阅读下列说明和 C++代码,将应填入 (n)处的字句写在答题纸的对应栏内。

【说明】

现欲实现一个图像浏览系统,要求该系统能够显示 BMP、JPEG 和 GIF 三种格式的文件,并且能够在 Windows 和 Linux 两种操作系统上运行。系统首先将 BMP、JPEG 和 GIF 三种格式的文件解析为像素矩阵,然后将像素矩阵显示在屏幕上。系统需具有较好的扩展性以支持新的文件格式和操作系统。为满足上述需求并减少所需生成的子类数目,采用桥接(Bridge)设计模式进行设计,所得类图如下图所示。

采用该设计模式的原因在于:系统解析 BMP、GIF 与 JPEG 文件的代码仅与文件格式相关, 而在屏幕上显示像素矩阵的代码则仅与操作系统相关。

【C++代码】

【问题1】

2009 年上半年 软件设计师 下午试卷 第 13页 (共 17页)

```
class LinuxImp : public ImageImp{
   void doPaint (Matrix m) [ /*调用 Linux 系统的绘制函数绘制像素矩阵*/ ]
class Image (
public:
   void setImp(ImageImp *imp){__(1)__ = imp;}
   virtual void parseFile(string fileName) = 0;
protected:
   __(2) *imp;
class BMP : public Image(
public:
  void parseFile(string fileName)(
     //此处解析 BMP 文件并获得一个像素矩阵对象 m
      3:
class GIF : public Image{
  //此处代码省略
1:
class JPEG : public Image{
   //此处代码省略
1:
void main()(
   //在 Windows 操作系统上查看 demo.bmp 图像文件
   Image *image1 = __(4)_;
   ImageImp *imageImpl = __(5) ;
  (6) ;
    imagel->parseFile("demo.bmp");
```

1

现假设该系统需要支持 10 种格式的图像文件和 5 种操作系统,不考虑类 Matrix, 若采用桥接设计模式则至少需要设计(7) 个类。

试题七

阅读下列说明和 Java 代码,将应填入 (n)处的字句写在答题纸的对应栏内。

【说明】

现欲实现一个图像浏览系统,要求该系统能够显示 BMP、JPEG 和 GIF 三种格式的文件,并且能够在 Windows 和 Linux 两种操作系统上运行。系统首先将 BMP、JPEG 和 GIF 三种格式的文件解析为像素矩阵,然后将像素矩阵显示在屏幕上。系统需具有较好的扩展性以支持新的文件格式和操作系统。为满足上述需求并减少所需生成的子类数目,采用桥接(Bridge)设计模式进行设计,所得类图如下图所示。

采用该设计模式的原因在于:系统解析 BMP、GIF 与 JPEG 文件的代码仅与文件格式相关,而在屏幕上显示像素矩阵的代码则仅与操作系统相关。

【问题1】

【Java 代码】

```
class Matrix{ //各种格式的文件最终都被转化为像素矩阵
      //此处代码省略
   };
   abstract class ImageImp{
     public abstract void doPaint(Matrix m); //显示像素矩阵 m
   1:
   class WinImp extends ImageImp{
      public void doPaint (Matrix m) { / *调用 Windows 系统的绘制函数绘制像
素矩阵*/ }
   };
   class LinuxImp extends ImageImp{
     public void doPaint (Matrix m) {/*调用 Linux 系统的绘制函数绘制像素矩阵*/}
   };
   abstract class Image (
      public void setImp(ImageImp imp) {
         (1) = imp; 
      public abstract void parseFile(String fileName);
      protected (2) imp;
   };
class BMP extends Image{
    public void parseFile(String fileName) {
            //此处解析 BMP 文件并获得一个像素矩阵对象 m
            (3) ;// 显示像素矩阵 m
        }
1:
class GIF extends Image{
//此处代码省略
1;
class JPEG extends Image{
   //此处代码省略
};
public class javaMain{
  public static void main(String[] args) {
        //在 Windows 操作系统上查看 demo.bmp 图像文件
```

```
Image image1 = __(4)__;
ImageImp imageImp1 = __(5)__;
__(6)__;
image1.parseFile("demo.bmp");
}
```