コンピュータでみる物理,化学,生命の世界

理学部新歓企画『理学部新歓サイエンスカフェ』 2011年4月12日 理学部南館

理学研究科 物質理学専攻(物理系) 森 義治

複雑な物質の物理

水中にあるタンパク質

左の図のような複雑な物質 を理解するためにはどうし たらよいのだろう?

一つの方法はコンピュータを 用いた

シミュレーション!

シミュレーションに用いられるもの

http://www.dell.com/jp/p/inspiron-580/pd

ゲーム機(PS3)

家庭用のパソコン

http://blogs.yahooo.co.jp/home-coming-day/hcd_6/event/public/opening.html

名古屋大学のスーパーコンピュータ

ニュートンの運動方程式

粒子の運動はニュートンの運動方程式で記述できます。 運動方程式は以下のようなものです。

シミュレーションの基本的な考え方

粒子の加速度は次のように書けます。

$$a(t) = \frac{\Delta v}{\Delta t} \quad (\Delta t = 0) \qquad \Delta v = a(t) \Delta t$$

また粒子の速度は次のように書けます。

$$v(t) = \frac{\Delta x}{\Delta t}$$
 $(\Delta t = 0)$ $\Delta x = v(t)\Delta t$

こうすることで、粒子の座標の変化を計算できます。これを繰り返すことによりシミュレーションが実行されます。

バネの運動

粒子がバネから受ける力は以下のような式で表されます。

ニュートンの運動方程式(多数の粒子)

粒子がたくさんあるときの運動方程式も同様です。このときのニュートンの運動方程式は以下のようになります。

単原子理想気体の運動

箱に入ったたくさんの粒子を考えます。理想気体として扱い、力は箱にぶつかったときのみ働くと考えます。

$$\vec{F}_i = 0$$

生体分子のあらわし方(描き方)

すべての原子とその間 の化学結合が描かれて いる

タンパク質の骨格部分 を強調したもの

タンパク質の骨格部分 だけ描いたもの

生体分子のシミュレーション

タンパク質とそのまわりの水を模式的に描いたもの

シミュレーション中で はすべて原子として 扱っている!

