单片机原理及接口技术复习重点

一、重点理解熟记部分

ALE: 地址锁存允许信号,高电平有效,P0口传送的是8位地址,低电平无效时P0口传送的是8位数据;

 \overline{PSEN} : 外部程序存储器的读选通信号。

EA: 高低电平均有意义,接高电平时(相当于外部无效),CPU 只访问内部程序存储器,但当 PC 值大于 0FFFH(4KB)时,自动转向外部程序存储器的访问操作。接低电平时(外部有效),CPU 只访问外部 ROM。

RESET: 高电平有效,单片机进入复位状态。单片机复位状态见下表:

程序计数器 PC		累加器 ACC		寄存器 B		堆栈指示器 SP		I/O 端口 P0~P3	
0000Н		00Н		00H		<mark>07H</mark>		FFH	
数据指针寄存器 DPTR		计数器单元TH1		计数器单元 TL1		计数器单元TH0		计数器单元 TL0	
0000Н		00Н		00Н		00H		00H	
PSW	PSW.7	PSW.6	PSW.5	PSW.4	PSW.3	PSW.2	PSW.1	PSW.0	D0H
状态字	CY	AC	F0	RS1	RS0	OV		P	
TMOD	GATE	C/\overline{T}	M1	M0	GATE	C/\overline{T}	M1	M0	89H
工作模式	计时器 T1		4 种模式		计时器 T0		4 种模式		
TCON	8FH	8EH	8DH	8CH	8BH	8AH	89H	88H	88H
计数器控制	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
IP	BFH	BEH	BDH	ВСН	BBH	BAH	В9Н	B8H	В8Н
中断优先级				PS	PT1	PX1	PT0	PX0	
IE	AFH	AEH	ADH	ACH	ABH	AAH	A9H	A8H	A8H
中断允许	EA			ES	ET1	EX1	ET0	EX0	
SCON	9FH	9EH	9DH	9CH	9BH	9AH	99H	98H	98H
串行口控制	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
PCON									87H
电源控制	SMOD				GF1	GF0	PD	IDL	
SBUF	作为串行口通信时数据缓冲器,只能与累加器 A 进行单工双向数据传送								99H
串行数据	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	
		•	•		•	•			

单片机复位后:

PSW=00H TMOD=00H TCON=OOH IP=XXX0_0000B IE=0XX0_0000B SCON=00H

PCON=0XXX 0000B SBUF=XXXX XXXXB

上面所列出的 21 个寄存器共 23 个寄存器单元是单片机内重要的特殊功寄存器 SFR,其功能 如下:

①状态字寄存器 PSW: 它描述的状态值是对累加器 ACC 里面存放的数据结果而言的,用来表征(ACC)里面 8 位数据的奇偶态(P)、无关位(----)溢出态(OV)、工作寄存器组选择态(RS1 RS0)、用户标志态(F0)、辅助进位态(AC)、进位态(CY)。

②计时器工作模式寄存器 TMOD: 它用来选择定时器并指定定时器的工作方式。

M1_M0 为 00 时,模式 0: THX(8 位)_TLX(低五位) 构成 13 位计数器,溢出标志为 TFX=1,溢出时,13 位计数器回零:

M1_M0 为 01 时,模式 1: THX(8 位)_TLX(8 位)构成 16 位计数器,溢出标志为 TFX=1,溢 出时,16 位计数器回零;

 $M1_M0$ 为 10 时,模式 2: TLX 构成 8 位计数器,THX 保存初值,溢出标志为 TFX=1,溢出时,硬件自动将 THX 的初值加载入 TLX 中;

M1_M0 为 11 时,模式 3: T0 中 TH0 和 TL0 分别构成两个独立 8 位计数器,T1 停止计数。 **③计时器控制寄存器 TCON:** TCON 高 4 位用于计时器,用来控制 T0 和 T1 的启动、停止、及计数状态。T1 溢出标志位(TF1)、T1 启动标志位(TR1)、T0 溢出标志位(TF0)、T0 启动标志位(TR0);

TCON 低四位 IEI, ITI, IEO 和 ITO 位用于中断系统, IE1 外部中断 1 请求标志位、IT1 外部

中断 1 触发方式选择位(当 IT1=0,为低电平触发方式;当 IT1=1,为下降沿触发方式);IE0 外部中断 0 请求标志位、IT0 外部中断 0 触发方式选择位(当 IT0=0,为低电平触发方式;当 IT0=1,为下降沿触发方式),在中断请求的撤除时,对于低电平触发方式的外部中断,应该在 INT1、INT0 引脚上接入响应的电路,即要进行人工撤除中断标志工作,因而,外部中断时,最好将 IT1、IT0 设置为 1,选择下降沿触发方式。一般来说,都是采用"SETB TRX"启动计时器 TX,用"JBC TFX,LOOP_X"进行查询方式下溢出标志的清零。

④中断优先级寄存器 IP: IP 的低五位指定了外部中断 $0-\overline{INT0}$ 、定时器 0 溢出中断、外

部中断 1—*INT*1、定时器 1 溢出中断、串行口中断(8 位数据发送完标志位 TI=1、8 位数据接收完标志位 RI=1 将产生中断,告诉 CPU 发送缓存器 SBUF 已空,可进行下一个数据的发送、接收缓存器 SBUF 已满,CPU 取走数据"MOV A,SBUF"后可进行下一个数据的接收,但是 TI, RI 的清零必须由程序完成)。在 IP 中,指定为高优先级时: PX0=1、PT0=1、PX1=1、PT1=1、PS=1,同级的多个中断请求,CPU 将以查询先后确定其优先顺序,总体顺序为:

(PX0=1)>(PT0=1)>(PX1=1)>(PT1=1)>(PS=1)>>(PX0=0)>(PT0=0)>(PX1=0)>(PT1=0)>(PS=0); **⑤中断允许控制寄存器 IE:** 指定了 CPU 是否响应中断请求的控制位。EA,中断允许总控制位,EA=0,表示 CPU 屏蔽所有中断; EA=1,表示 CPU 开中断,中断是否允许由对应中断控制位决定。EX0,外部中断 0 允许控制位,EX0=0,屏蔽外部中断 0; EX0=1,允许响应外部中断 0— INTO。EX1,外部中断 1 允许控制位,EX1=0,屏蔽外部中断 1: EX1=1,

允许响应外部中断 1— $\overline{INT1}$ 。ETO,计时器 TO 溢出中断允许控制位,ETO=0,屏蔽计时器 O 溢出中断; ET1=1,允许响应计时器 TO 溢出中断。

ES, 串行口中断允许控制位, ES=0, 屏蔽串行口中断; ES=1, 允许响应串行口中断。 深入剖析寄存器工作形式:

IE 指定 CUP 是否允许响应中断,若允许响应中断,IP 指定了中断的优先级,某个中断请求标志位为 1 时,如果是 CPU 允许中断的(即 CPU 对其开中断且其优先级资格能中断当前事件),根据中断类型,程序计数器 PC 将指向中断入口地址单元: 0003H——外部中断 0、000BH——定时器 0 溢出中断、0013H——外部中断 1、001BH——定时器 1 溢出中断、0023H——串行口中断,读取五个入口地址中的一个,进入中断服务子程序,刚进入中断服务子程序时,定时器 0 溢出中断、定时器 1 溢出中断的标志位 TF0、TF1

⑥申行口控制寄存器 SCON: 用于设定串行口的工作模式、接收/发送标志位控制等。 SM0_SM1 为工作模式指定位,00——模式 0: 同步移位寄存器方式,该模式下 RXD 为数据 发送端,TXD 为同步移位脉冲发送端,波特率固定为 $f_{osc}/12: 01$ ——模式 1: 10 位异步接收发送方式,11——模式 3: 11 位异步接收发送方式,模式 1 与模式 3 的波特率都是可由定时器 T1 控制的,设模式 1、模式 3 的波特率为 f_{01}^1 、 f_{11}^3 ,则有下面公式(应理解熟记)

$$f_{01}^{1}$$
、 $f_{11}^{3} = \frac{2^{SMOD}}{32} \times \left(\frac{f_{OSC}}{12 \times \left(\underbrace{256 - X}_{rac{N_0}{N_0 f_0}} \right)} \right)$; 10——模式 2:11 位异步接收发送方式,

其波特率固定,只有两种情况: $f_{osc}/32 \cdot f_{osc}/64$, 计算公式为:

$$f_{10}^2 = \frac{2^{SMOD}}{64} \times f_{OSC}$$
,公式中出现的 SMOD 是电源控制寄存器 PCON 中的波特率倍增位。

SM2 位多机通信控制允许位,高电平有效。REN 为允许接收控制位,REN=1,允许接收数据,REN=0,进制接收数据。TB8、RB8 分别为发送数据信息说明位、接收数据信息说明位,此位由用户指定,比如 TB8=1 代表发送的 8 位数据为地址信息,TB8=0 代表发送的数据为存储信息等,TB8 和 RB8 的位信息由发送/接收数据中的第九位或停止位赋值,不能自动复位,需要由软件进行及时的清零操作。模式 0 和模式 1 下 TB8 位未使用,模式 0 下 RB8 未用(即模式 1 下 RB8 要使用)。TI 为发送数据中断标志,在一帧数据发送结束时有硬件自动置位,使得 TI=1,此中断用于告诉 CPU,发送缓冲器 SBUF 中 8 位数据已空,通知 CPU可以执行"MOV SBUF,A"操作进行下一帧数据的发送;RI 为发送数据中断标志,在一帧数据接收结束时有硬件自动置位,使得 RI=1,此中断用于告诉 CPU,接收缓冲器 SBUF中 8 位数据已满,通知 CPU 可以执行"MOV A,SBUF"操作取走本帧数据,再进行下一帧数据的接收。

⑦电源/波特率控制寄存器 PCON: SMOD 为波特率倍增位。

二、软件指令操作部分

①MOV 赋值指令:源操作数、目的操作数可以为立即数寻址(#0F0H)、直接寻址(ACC)、寄存器寻址(A)、寄存器间接寻址(@DPTR[外部]、@Ri[内部]),变址寻址(MOV A,@A+PC[近程查表指令]、MOV A,@A+DPTR[远程查表指令],其中累加器 A 为变址寄存器,PC、DPTR 为基址寄存器)、相对寻址(SJMP \$[本条指令的起始地址])。

注意: 没有 MOV Rn,Rn、MOV Rn,@Ri 指令;

MOV ACC,P0 类指令在译成机器码时 P0 在前,ACC 在后;

MOV 指令只能访问内部 RAM、MOVX 只能访问外部 RAM、MOVC 指令既能访问内部 ROM 又能访问外部 ROM;

单片机在物理上分为内部 RAM(D 盘)、外部 RAM(X 盘)、内外 ROM(C 盘)等 3 个空间,逻辑上分为内部 RAM、外部 RAM、内部 ROM、外部 ROM 等 4 个空间;

堆栈操作 PUSH (入栈)、POP (出栈)的操作数只能是**直接寻址方式,即只能写 ACC,不能写 A,只能写 02H,不能写 R2**;

②逻辑字节操作: 目的操作数只能为 A 或直接地址,即数据要么保存在累加器 A 中,

要么保存在内部 RAM 可用地址单元中;

逻辑与 ANL、逻辑或 OR、逻辑异或 XOR;整字节交换 XCH A,Rn/directer/@Ri[4 种]、 半字节交换 XCHD A,@Ri[2 种]和 SWAP A[1 种];

循环左移 RL A、循环右移 RR A、带进位循环左移 RLC A、带进位循环右移 RRC A;

长跳转指令 LJMP, 16 位 54KB 空间、绝对跳转指令 AJMP11 位 2KB 空间,且使用此条指令时 PC 的最高位只能为 0、SJMP8 位 256B 空间,"SJMP rel" rel 为-128~127,以人为模型,PC 值从 0000H 一直增大相当于人一直往前走,那么 rel 为负数代表向后转移,即程序转回去执行,rel 为正数代表向前转移,即程序推进执行,在此条指令中,最大负跳转距离为 128,即程序以当前为参考系最多只能返回去 128 步,最大正跳转距离为 127,即程序以当前为参考系最多只能推进 127 步,rel=0 等价于\$;

条件转移指令 JZ、JNZ 判断累加器 A 中结果是否为 0,JC、JNC 判断状态控制寄存器 PSW 中的 CY 位是否为 0;单片机中,内部 RAM 可位寻址的单元位地址范围为 20H~2FH,即有 16×8=128 个可位寻址的存储单元;

JB bit、JNB bit 是针对可位寻址单元中的 bit 位判断是否为 0;

JBC bit 指令非常重要,判断 bit 位是否为 1,为 1 就跳转同时将该 bit 位清零,这条指令用来将查询方式下的计时器溢出标志 TF1、TF0,串行口通信发送/接收信息说明位 TB8/RB8 清零,串行口通信发送/接收中断标志位清零;

CJNE A/Rn/@Ri,#0AAH[必须为立即数],XYZ 类指令,用于 A 与#0AAH 的大小判断,若 A>#0AAH,则 CY=0,若 A<#0AAH,则 CY=1,所以 CJNZ 后通常接一条 JC/JNC 指令;逻辑位操作,注意位符号表示只能为 C 或 bit (可位寻址的存储单元的 bit 位)

③重点程序:

16 位数据的加法、减法操作,外部数据的存取操作、利用计时器查询方式、计数器中断方式、单片机通信 P_{132} 例题

ORG 001BH ;计数器 T1 溢出中断请求入口地址

AJMP M Break ;CPU 响应定时器 T1 溢出中断服务子程序

ORG 002FH ;中断服务子程序首地址

M Break: ;中断服务子程序标号名称为 M Break

 MOV
 TH1,#3CH
 ;计数器 T1 高 8 位 TH1 初值为 3CH

 MOV
 TL1,#0B0H
 ;计数器 T1 低 8 位 TL1 初值为 B0H

CJNE R0,#00H,L High ;判断 R0 是否为 0, 为 0 说明 P1.2 口高电平 400ms 输出完毕

;否则,继续等待 P1.2 口高电平输出

DJNZ R1,Back ;R1 自减 1,表示 P1.2 口输出了一个 100ms 基本周期的低电平

;R1不为0时,转Back中断返回标志RETI,然后继续HERE判断等待

RETI ;R1为0时,说明P1.2口输出了一个完整周期的秒闪目标电平,直接中断返回

;中断返回进入 HERE 判断等待,虽然引起了误差,但这个误差范围在 3us 内

L_High: ;P1.2 口输出 400ms 高电平模块标号名称为 L_High

DJNZ R0,**Back** ;**R0** 自减 1,表示 P1.2 口输出了一个 100ms 基本周期的低电平

;R0 不为 0 时,转 Back 中断返回标志 RETI,然后继续 HERE 判断等待

CPL P1.2 ;R0 为 0 时,P1.2 口立即降为低电平

RETI ;中断返回进入 HERE 判断等待,表示 P1.2 口输出 400ms 高电平完成

.....

Back: ;中断返回标号名称为 Back

RETI ;中断返回指令

·······ORG 009FH ;主程序首地址

MAIN: ;主程序标号名称为 Main

MOV TMOD,#10H ;向工作模式寄存器 TMOD 写入 10H, 指定计数器 T1 在模式 1 下工作

 MOV
 TH1,#3CH
 ;计数器 T1 高 8 位 TH1 初值为 3CH

 MOV
 TL1,#0B0H
 ;计数器 T1 低 8 位 TL1 初值为 B0H

 MOV
 R0,#04H
 ;指定 R0 中保存 P1.2 口高电平输出的 100ms 周期的循环值,为 04H

 MOV
 R1,#06H
 ;指定 R1 中保存 P1.2 口低电平输出的 100ms 周期的循环值,为 06H

MOV IE,#88H ;向中断允许控制寄存器 IE 写入 88H, 仅指定 CPU 开中断、计数器 T1 开中断

SETB P1.2 :初始化 P1.2 口为高电平输出

SETB TR1 启动 T1 计数器

HERE: ;判断等待模块标号名称为 HERE

MOV A,R1 ;将 R1 的当前值赋给 A

ADD A,#00H ;如果 A 为 0,即 R1 当前值为 0 时,用 JZ 指令实现主程序循环

JZ MAIN ;这三步用来判断 R1 是否为 0, R1=0 说明 P1.2 口目标秒闪电平周期输出

完成

JMP HERE ;R1 不为 0,继续 HERE 判断等待

END ;整个程序结束标志

三、接口电路部分:外部电路的扩展

P176 往后面例题速看, 重在理解

A/D 转换器:分辨率=电压最大差值/(2^N), N 为转换的二进制位数