Problem L. Count Order

Time limit 2000 ms Mem limit 1048576 kB

Problem Statement

We have two permutations P and Q of size N (that is, P and Q are both rearrangements of (1, 2, ..., N)).

There are N! possible permutations of size N. Among them, let P and Q be the a-th and b-th lexicographically smallest permutations, respectively. Find |a-b|.

Notes

For two sequences X and Y, X is said to be lexicographically smaller than Y if and only if there exists an integer k such that $X_i = Y_i$ ($1 \le i < k$) and $X_k < Y_k$.

Constraints

- $2 \le N \le 8$
- P and Q are permutations of size N.

Input

Input is given from Standard Input in the following format:

Output

Print |a-b|.

Sample 1

Input	Output
3	3
1 3 2 3 1 2	
3 1 2	

There are 6 permutations of size 3: $(1,\ 2,\ 3), (1,\ 3,\ 2), (2,\ 1,\ 3), (2,\ 3,\ 1), (3,\ 1,\ 2),$ and $(3,\ 2,\ 1)$. Among them, $(1,\ 3,\ 2)$ and $(3,\ 1,\ 2)$ come 2-nd and 5-th in lexicographical order, so the answer is |2-5|=3.

Sample 2

Input	Output
8 7 3 5 4 2 1 6 8 3 8 2 5 4 6 7 1	17517

Sample 3

Input	Output
3	0
1 2 3	
1 2 3 1 2 3	