

Министерство Науки и Высшего Образования Российской Федерации

Национальный Исследовательский Институт Высшая Школа Экономики

Факультет Компьютерных Наук

Школа Анализа Данных и Искусственного Интеллекта

РЕФЕРИРОВАНИЕ ТЕКСТА НА РУССКОМ ЯЗЫКЕ

Компьютерная лингвистика и анализ текстов

Студент $M.\mathcal{A}.$ $Kup\partial uh$

Преподаватель E.И. Большакова

СОДЕРЖАНИЕ

ВЕДЕНИЕ	3
1 ХОД РАБОТЫ	4
1.1 Реализация извлекающего алгоритма	4
1.2 Реализация генерирующих алгоритмов	4
РЕЗУЛЬТАТЫ	5
ЗАКЛЮЧЕНИЕ	6
СПИСОК ИСТОЧНИКОВ	7

ВВЕДЕНИЕ

Автоматическое реферирование текста является одной из основопологающих задач обработки ествественного языка наряду с машинным переводом и распознаванием сущностей. Способы решения этой задачи делятся на две категории: извлекающие и генерирующие. Целью данной работы было провести сравнение этих подходов к решению задачи аннотирования текста. Извлекающие подходы были представлены алгоритмом TextRank, а генерирующие подходы — моделями с трасформерной архитектурой FRED-T5-Summarize, а также rut5-base с параметрами отрегулированными для решения задачи реферирования текстов на русском языке.

1 ХОД РАБОТЫ

Для сравнения двузх рахличных подходов было решено использовать специализированный датасет, предолженный Ахметгареевой А и др. [1]. Он состоит из 197 тыс. текстов в части предназначенной для обучения и 258 текстов поверенных вручную в части для тестов.

1.1 Реализация извлекающего алгоритма

Алгоритм TextRank является модификацией алгоритма PageRank, предложенного Google в 1998 году. В данной работе используется вариант данного алогоритма для извлечения предложений. Он основан на построении графа при помощи алгоритма PageRank, в котором вершинами являются предложения в тексте и извлечении n вершин с наибольшим значением внутренней метрики. В рамках данной работы был написан скрипт на языке Python с его реализацией.

Для построения графа необходима матрица сходств предложений в реферируемом тексте. Она была получена как набор попарных косинусных расстояний между суммами эмбеддингов отдельных токенов. Эмбеддинги и токенизатор были взяты из библотеки SpaCy.

1.2 Реализация генерирующих алгоритмов

Был написан скрипт на языке Python, который

РЕЗУЛЬТАТЫ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСТОЧНИКОВ

1. Akhmetgareeva A., Kuleshov I., Leschuk V., Abramov A., Fenogenova A., Towards Russian Summarization: can architecture solve data limitations problems? // https://sberlabs.com/publications?publication=1600 (2024).