MATEMATICKÉ KYVADLO

ONDREJ KUREŠ, MAREK MIKLOŠ, LADISLAV TRNKA

ABSTRACT. TADY BUDE ABSTRAKT

Contents

1. Úvod	1	3.1.	Zachování energie	2
Pohybová rovnice	1	3.2.	Metody	2
2. Perioda oscilací	1	3.3.	Perioda kyvadla	6
2.1. Eliptický integrál	1			
3. Numerické řešení	2			

1. Úvod

Matematické kyvadlo je nejjednodušším typem kyvadla. Máme hmotný bod o hmotnosti m zavěšený na provázku délky l zanedbatelné hmotnosti. Tření a odpor vzduchu nezapočítáváme. Tíhové pole považujeme za homogenní s tíhovým zrychlením g.

Pohybová rovnice. Teď se podíváme na pohybovou rovnici. Hmotný bod se pohybuje po kružnici o poloměru l a jeho pohyb popisujeme aktuálním úhlem $\varphi(t)$, který měří výchylku z dolní rovnovážné polohy. Pro zrychlení platí $a = l\varepsilon = l\dot{\omega} = l\ddot{\varphi}$ a pro vratnou sílu platí $F = -mg\sin\varphi$. Teď použijeme 2. Newtonův zákon: F = ma.

$$ma = ml\ddot{arphi} = F = -mg\sin{arphi}$$

Můžeme pokrátit m z naší rovnice a vydělíme celou rovnici l. Pak vše převedeme na jednu stranu. Dostáváme pohybovou rovnici matematického kyvadla.

$$|\ddot{\varphi} + \frac{g}{l}\sin\varphi = 0 |$$
 (1.1)

Vidíme, že naše rovnice je nelineární diferenciální rovnice druhého řádu. Pokud budeme brát v úvahu jen malé výchylky z rovnovážné polohy, můžeme rovnici linearizovat.

$$\ddot{\varphi} + \frac{g}{\iota} \varphi = 0 \tag{1.2}$$

Využili jsme Taylorova rozvoje $\sin \varphi$:

$$\sin \varphi = \varphi - \frac{\varphi^3}{6} + \frac{\varphi^5}{120} + O\left(\varphi^6\right)$$

Kde jsme vzali jen první člen, neboť nás zajímají jen malé výchylky.

2. Perioda oscilací

2.1. Eliptický integrál. Eliptický integrál nám poskytuje exaktní řešení nelinearizované rovnice (1.1). Když rovnici (1.1) vynásobíme $\frac{d\varphi}{dt}$ tak dostaneme

$$\frac{d\varphi}{dt}\left(\ddot{\varphi} + \frac{g}{l}\sin\varphi\right) = \frac{d}{dt}\left(\frac{1}{2}\dot{\varphi}^2 - \frac{g}{l}\cos\varphi\right) = 0$$

Dostáváme první integrál pohybu pohybové rovnice (1.1)

$$\frac{1}{2}\dot{\varphi}^2 - \frac{g}{l}\cos\varphi = C \tag{2.1}$$

Protože chceme, aby kyvadlo mělo na počátku nulovou rychlost ($\dot{\varphi} = 0$, pro $\varphi = \varphi_0$, kde φ_0 je počáteční úhel), můžeme dopočítat konstantu C, což nám dává $C = -\frac{g}{7}\cos\varphi_0$. Tak získáváme

$$\dot{\varphi} = \frac{d\varphi}{dt} = \sqrt{\frac{2g}{l}} \sqrt{\cos\varphi - \cos\varphi_0}.$$
 (2.2)

Využijeme větu o derivaci inverzní funkce na (2.2) a vynásobíme ji $d\varphi$

$$dt = \frac{d\varphi}{\sqrt{\frac{2g}{l}}\sqrt{\cos\varphi - \cos\varphi_0}}. (2.3)$$

Budeme integrovat od $\varphi = 0$ do $\varphi = \varphi_0$. Tento interval odpovídá čtvrtině periody.

$$\frac{T}{4} = \int_0^{\varphi_0} \frac{d\varphi}{\sqrt{\frac{2g}{l}\sqrt{\cos\varphi - \cos\varphi_0}}}.$$
 (2.4)

Pomocí substituce $\cos \varphi = 1 - 2 \sin^2 \theta \ (\theta = \frac{\varphi}{2})$ a dalších úprav, získáváme

$$T = 4\sqrt{\frac{l}{g}} \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}},$$
 (2.5)

kde $k = \sin \frac{\varphi_0}{2}$. Uděláme Taylorův rozvoj $\frac{1}{\sqrt{1-k^2\sin^2\theta}}$, abychom si usnadnili práci s integrálem.

$$\frac{1}{\sqrt{1 - k^2 \sin^2 \theta}} \approx 1 + \frac{1}{8} \varphi_0^2 \sin^2 \theta + \frac{1}{384} \varphi_0^4 \left(9 \sin^4 \theta - 4 \sin^2 \theta\right) \tag{2.6}$$

 $Te\Breve{d}$ už jen(2.6)vložíme do (2.5)a dostaneme

$$T = 4\sqrt{\frac{l}{g}} \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} \approx 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{1}{16} \varphi_0^2 + \frac{11}{3072} \varphi_0^4 \right). \tag{2.7}$$

3. Numerické řešení

V předchozích kapitolách jsme dospěli k rovnici (1.1). Vzhledem k jednotě značení v této sekci ji přepišme jako:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \frac{g}{l}\sin y = 0,\tag{3.1}$$

kde y(t) je výchylka (orientovaný úhel) kyvadla v čase t. Pokusme se nyní tuto rovnici řešit pomocí numerických metod. K tomu využijeme prostředí $Mathematica.^1$ Pro jednoduchost předpokládejme délku kyvadla l=1 m, hmotnost m=1 kg, tíhové zrychlení jako $g=9.81~{\rm m\,s^{-2}}$, počáteční výchylku $y(0)=y_0=1$ rad a čas $1~{\rm s} \le t \le 10~{\rm s}$, po který budeme sledovat pohyb matematického kyvadla.

```
g = 9.81;

l = 1;

poc = 1;

time = {t, 0, 10};
```

Listing 1. Konstanty

3.1. Zachování energie. Hmotný bod na závěsu vychýlíme z rovnovážné polohy o úhel $y_0 = 1$ rad a pustíme bez udělení počáteční rychlosti y'(0) = 0. Dále zanedbávejme odpor prostředí apod. Kyvadlo se začne periodicky pohybovat s periodou T. Náš systém zachovává mechanickou energii:

$$E = \frac{1}{2}m[y'(t)]^2 - \frac{g}{l}m\cos(y(t)), \tag{3.2}$$

která na počátku pohybu byla rovna:

$$E = E_0 = -\frac{g}{l} m \cos(y_0). \tag{3.3}$$

Tedy v průběhu numerického řešení bychom očekávali splnění rovnice:

$$-\frac{g}{l}\cos(y_0) = \frac{1}{2}[y'(t)]^2 - \frac{g}{l}\cos(y(t))$$
(3.4)

a to v každém čase t. Při hodnocení numerických metod je pro nás výhodné znázornit trajektorii $(y(t), y'(t))^2$ řešení ve fázovém prostoru. Pokud fázovým portrétem bude uzavřená křivka, naše numerické řešení zachovává celkovou energii systému.

3.2. **Metody.** Na příkladech numerických řešení rovnice (3.1) si ukážeme úskalí používání numerických metod při konfrontaci se zachováním periodicity a při zachování energie apod.

Automatická metoda zvolená softwarem: Podívejme se na řešení s automatickým výběrem metody v příkazu NDSolve:

Na obrázku (1) vidíme periodicitu řešení. Z (2) a (3) plyne, že řešení poměrně zachovává energii s přesností 10⁻⁵.

 $^{^{1}}$ všechny přiložené kódy jsou napsané v Mathematica 12.02

 $^{^2}$ respektive trajektori (q(t), p(t)), kde q je zobecněná souřadnice a p je kanonická hybnost, ale v našem případě q(t) = y(t) a p(t) = y'(t), při uvážení m = 1

FIGURE 1. Časová závislost výchylky na čase

FIGURE 2. Fázový prostor

FIGURE 3. Zachování energie - rovnice (3.4)

Explicitní Eulerova metoda: Tato metoda je nejjednodušší a zároveň, jak si ukážeme, nejméně vhodná pro numerické řešení rovnice (3.1). Proto si ji pro ilustraci rozeberme trochu podrobněji. Mějme rovnoměrné (ekvidistantní) dělení $\{t_n\}$ intervalu (0,10):

$$t_n = nh, n \in \mathbb{N}_{\mathbb{O}},$$

kde h je velikost kroku. Dále aproximujme $y(t_n) \approx y_n$. Pak explicitní Eulerova metoda (jednokroková) pro rovnici³ y'(t) = f(t, y(t)) se dá vyjádřit jako⁴:

$$y_{n+1} = y_n + hf(t_n, y_n).$$

Pro demonstraci získání "špatného" výsledku použijme:

```
NDSolve[{y''[t]+g/l*Sin[y[t]] == 0,y[0] == poc,y'[0] == 0},y, time, Method -> "
ExplicitEuler", StartingStepSize -> 0.1, MaxStepSize -> 0.1, MaxSteps -> 100]
```

LISTING 2. Eulerova metoda

Výsledné numerické řešení naprosto ztrácí periodicitu - obrázek (4) a nezachovává energii (5), (6) - systém energii v čase získává.

FIGURE 4. Eulerova metoda - časová závislost výchylky na čase

FIGURE 5. Eulerova metoda - fázový prostor

Metody snažící se zachovat celkovou energii: Nyní použijeme sofistikovanější metody založené na Runge-Kuttových metodách. Pro ilustraci napišme explicitní Runge-Kuttovu metodu 4. řádu (zachováme značení jako výše) pro rovnici y'(t) = f(t, y(t)):

$$K_{1} = f(t_{n}, y_{n}),$$

$$K_{2} = f\left(t_{n} + \frac{h}{2}, y_{n} + h\frac{K_{1}}{2}\right),$$

$$K_{3} = f\left(t_{n} + \frac{h}{2}, y_{n} + h\frac{K_{2}}{2}\right),$$

$$K_{4} = f(t_{n} + h, y_{n} + hK_{3}),$$

$$y_{n+1} = y_{n} + \frac{1}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4}).$$

Konkrétně použijeme metodu SymplecticPartitionedRungeKutta, která ovšem vyžaduje přejít do Hamiltonova formalismu:

 $^{^3}$ předpokládáme existenci řešení

 $^{^4\}mathbf{v}$ našem případě ODR 2. řádu bychom převedli na soustavu ODR 1. řádu

Figure 6. Eulerova metoda - energie

```
H = p[t]^2/2 - g/1 *Cos[q[t]];
eqs = {p'[t] == -D[H, q[t]], q'[t] == D[H, p[t]]};
ics = {p[0] == 0, q[0] == poc};
vars = {q[t], p[t]};
```

LISTING 3. Hamiltonův formalismus

Máme časově nezávislý hamiltonián - zachovává se v čase (integrál pohybu):

$$H = \frac{p^2}{2m} - \frac{g}{l}m\cos(q). \tag{3.5}$$

Implementace metody:

```
NDSolve[{eqs, ics}, vars, time, Method ->{"SymplecticPartitionedRungeKutta","
DifferenceOrder" -> 4, "PositionVariables" -> {q[t]}}];
```

Pro porovnání zkusme ještě jiný přístup pomocí Projection:

```
NDSolve[{y''[t] + g/l *Sin[y[t]] == 0, y[0] == poc,y'[0] == 0}, y, time, Method -> {"
Projection", Method -> "ExplicitRungeKutta", "Invariants" -> -g/l *Cos[poc]}];
```

V tabulce (7) je porovnání všech použitých metod (vyjma Eulerovy metody). Nejlépe z použitých metod vychází SymplecticRungeKutta, která zachovává energii s přesností přibližně 10^{-6} . Automaticky vybraná metoda při příkazu NDSolve zachovává energii asi s přesností 10^{-5} . Posledně zmíněná metoda Projection zachovává energii s přesností okolo 10^{-3} tedy s menší přesností než první dvě metody.

Čas	NDSolve	SymplecticRungeKutta	Projection	
0	-5.300365621	-5.300365621	-5.300365621	
1	-5.300365503	-5.300365669	-5.300364618	
2	-5.300365607	-5.300365639	-5.300365847	
3	-5.300365352	-5.300365644	-5.300351305	
4	-5.300365507	-5.300365646	-5.300348124	
5	-5.300365437	-5.300365575	-5.300357624	
6	-5.300365525	-5.300365688	-5.300343897	
7	-5.300366032	-5.300365495	-5.300362859	
8	-5.300366084	-5.300365652	-5.300399387	
9	-5.300365929	-5.300365615	-5.300377653	
10	-5.300365649	-5.300365559	-5.300365623	

FIGURE 7. Porovnání metod podle energií v čase

3.3. Perioda kyvadla. Periodu matematického kyvadla T určíme jako čtyřnásobek času, za který hmotný bod z počáteční výchylky proběhne rovnovážnou polohu. K jeho stanovení využijeme metod ukázaných výše, přímou integraci eliptického integrálu a aproximaci odvozenou v prvních kapitolách:

$$T = 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{y_0^2}{16} + \frac{11y_0^2}{3072} \right). \tag{3.6}$$

Pro porovnání budeme periodu určovat při různých počátečních výchylkách y_0 .

Počáteční	NDSolve	Symplectic	Eulerova	Aproximace	Přímou
výchylka		RungeKutta	metoda	periody	integrací
0.001	2.00605	2.00607	2.06809	2.00607	2.00607
0.301	2.01749	2.01749	2.08132	2.01749	2.01749
0.601	2.05231	2.05231	2.12202	2.05229	2.05231
0.901	2.11285	2.11285	2.19407	2.11258	2.11285
1.201	2.20344	2.20344	2.30382	2.20186	2.20344
1.501	2.33149	2.33149	2.45399	2.32501	2.33149

FIGURE 8. Velikost periody T pro různé metody v závislosti na počáteční výchylce y_0

FIGURE 9. Velikost periody T pro různé metody v závislosti na počáteční výchylce y_0

Z obrázku (9) a z tabulky (8) je patrné, že Eulerova metoda se výrazně odlišuje od zbylých. Metody NDSolve a SymplecticPartitionedRungeKutta jsou velmi přesné, překvapivě aproximace periody (3.6) je také poměrně přesná, ale při vyšších počátečních výchylkách ztrácí na přesnosti.