Fisica II

Riassunto da: " - Mazzoldi, Nigro, Voci"

Corso di Laurea in Fisica - Corso A Università degli studi di Torino, Torino Settembre 2024

Indice

1 Elettrostatica			2	
	1.1	Camp	o elettrico	2
		1.1.1	Campo Elettico	2
			Linee di campo	2
		1.1.2	Tensione, forza elettromotrice e energia potenziale	2

Chapter 1

Elettrostatica

1.1 Campo elettrico

1.1.1 Campo Elettico

Linee di campo

1.1.2 Tensione, forza elettromotrice e energia potenziale

$$dW = \vec{F} \cdot d\vec{s} = q\vec{E} \cdot d\vec{s} = qE\cos\vartheta ds$$

$$W(C_1) = \int_{C_1} q\vec{E} \cdot d\vec{s}$$

il valore

$$\frac{W(C_1)}{q} = \int_{C_1} \vec{E} \cdot d\vec{s}$$

prende il nome di **tensione elettrica** tra A e B lungo la traiettoria C_1 .

$$W = \oint q\vec{E} \cdot d\vec{s}$$

Se il campo è conservativo possiamo dare la definizione di energia potenziale

$$\Delta U = -W_{AB} = -\int_A^B q \vec{E} \cdot d\vec{s}$$

e di differenza di potenziale

$$\Delta V = \frac{\Delta U}{q} = -\int_{A}^{B} \vec{E} \cdot d\vec{s}$$