PATENT CLAIMS

1. (Currently Amended) A heat resistant aluminium alloy for heat exchangers, wherein

characterized in that the aluminium alloy comprises the following proportions of alloy components in weight percent:

$$0.3 \% \le Si \le 1 \%,$$
 $Fe \le 0.5 \%,$
 $0.3 \% \le Cu \le 0.7 \%,$
 $1.1 \% \le Mn \le 1.8 \%,$
 $0.15 \% \le Mg \le 0.6 \%,$
 $0.01 \% \le Cr \le 0.3 \%,$
 $Zn \le 0.10 \%,$
 $Ti \le 0.3 \%,$

unavoidable impurities separately representing a maximum of 0.1 %, together a maximum of 0.15 %, and the remainder being aluminium.

2. (Currently Amended) The aluminium alloy for heat exchangers according to claim 1,

wherein

characterized in that the aluminium alloy comprises the following proportions of alloy components in weight percent:

$$0.15 \% \le Mg \le 0.3 \%$$

$$Zn \le 0.05 \%$$

$$0.01 \% \le Ti \le 0.3 \%.$$

3. The aluminium alloy according to <u>claim 1</u> one of <u>claims-1 or 2</u>, wherein

characterized in that the aluminium alloy comprises the following proportions of the alloy components Si, Fe, Mn in weight percent:

 $0.5 \% \le \text{Si} \le 0.8 \%$, $\text{Fe} \le 0.35 \%$, $1.1 \% \le \text{Mn} \le 1.5 \%$.

4. (Currently Amended) A method for producing an aluminium strip or aluminium sheet for heat exchangers from a heat resistant aluminium alloy according to claim 1 one of claims 1 to 3,

wherein

characterized in that a rolling ingot is cast in a continuous casting process, the rolling ingot is preheated at 400 to 500° C prior to hot rolling, the rolling ingot is rolled to a hot strip, with the hot strip temperature being 250 to 380° C and the hot strip thickness being 3 to 10 mm at the end of the hot rolling and the hot strip is cold rolled to final thickness.

- 5. (Currently Amended) The method for producing an aluminium strip or aluminium sheet for heat exchangers according to claim 4, wherein characterized in that the rolling ingot is homogenized prior to the preheating.
- 6. (Currently Amended) The method for producing an aluminium strip or aluminium sheet for heat exchangers according to claim 4 one of claims 4 or 5, wherein characterized in that the hot strip is intermediately annealed at a temperature of 300 to 450° C.

7. (Currently Amended) The method for producing an aluminium strip or aluminium sheet for heat exchangers according to claim 4 one of claims 4 to 6, wherein characterized in that, during the cold rolling, the aluminium strip is

intermediately annealed at a temperature of 300 to 450° C prior to reaching the final thickness.

- 8. (Currently Amended) The method for producing an aluminium strip or aluminium sheet for heat exchangers according to claim 4 one of claims 4 or 7, wherein characterized in that subsequent to the cold rolling, a phase annealing step to the final state takes place at a temperature of 250 to 400° C.
- 9. (Currently Amended) The method for producing an aluminium strip or aluminium sheet for heat exchangers according to claim 4 one of claims 4 or 8, wherein characterized in that prior to the preheating, the rolling ingot is provided on one or two sides with plates made of another alloy.
- 10. (Currently Amended) The method for producing an aluminium strip or aluminium sheet for heat exchangers according to claim 9,

 wherein

 characterized in that the plates are comprised of a solder alloy and as solder alloy there is used an aluminium solder, in particular an aluminium alloy comprising 6 to 13 weight percent Si, preferably an AlSi7.5 alloy or AlSi10 alloy.
- 11. (Currently Amended) The method for producing an aluminium strip or aluminium sheet for heat exchangers according to claim 4 one of claims 4 or 10, wherein

characterized in that the hot strip is cold rolled to a final thickness of 0.1 to 2.0 mm.

- 12. (Currently Amended) Aluminium strip or aluminium sheet comprised of an aluminium alloy according to <u>claim 1</u> one of <u>claims 1 to 3</u> produced according to a method according to claim 4 to 11.
- 13. (Currently Amended) The aluminium strip or aluminium sheet according to claim 12,

wherein

characterized in that the aluminium strip is a tube strip, a tube plate strip, a side part strip or a disk strip for producing a heat exchanger.

14. (Currently Amended) The aluminium strip or aluminium sheet according to claim 13,

wherein

eharacterized in that the tube strip has a final thickness of 0.15 to 0.6 mm, preferably 0.15 to 0.4 mm, the tube plate strip a final thickness of 0.8 to 2.5 mm, preferably 0.8 to 1.5 mm or the side part strip a final thickness of 0.8 to 1.8 mm, preferably 0.8 to 1.2 mm or the disk strip a final thickness of 0.3 to 1.0 mm, preferably 0.3 to 0.5 mm.