Relatório - Projeto 1

Aprendizagem Profunda

Brian A. Nunes - IST1105399 Mariana Serrão - IST1105045

December 23, 2022

1 Questão 1

1.1 Exercício 1

a)

Gráfico 1: Acurácia com Perceptron por epoch

b)

Gráfico 2: Acurácia com Logistic Regression por epoch

1.2 Exercício 2

a) *Perceptons* isoladamente conseguem traçar retas em planos, o que já é uma boa ferramenta para a tomada de decisões com um computador, mas no que se refere a XOR's os *perceptrons* falham em entregar resultado satisfatório, entretanto com a utilização de camadas de neurônios que se alimentam é possível contornar esse problema. Nesta tarefa, em específico, a compreensão de imagens é demasiada complexa para que um simples neurônio consiga fazer uma boa distinção entre os caracteres escritos, já com a utilização de uma rede neuronal é possível alcançar níveis muito mais elevados de precisão.

b) Vide código.

2 Questão 2

2.1 Exercício 1

Gráfico 3: Validation Acuracy por epoch com Learning Rate igual a 0.001

Gráfico 4: Trainig Loss por epoch com Learning Rate igual a 0.001

Gráfico 5: Validation Acuracy por epoch com Learning Rate igual a 0.01

Gráfico 6: Training Loss por epoch com Learning Rate igual a 0.01

Gráfico 7: Validation Acuracy por epoch com Learning Rate igual a 0.1

Gráfico 8: Trainig Loss por epoch com Learning Rate igual a 0.1

Learning Rate	0.001	0.01	0.1
Final Training Loss	1.7097	1.6483	1.6415
Final Validation Accuracy	0.795	0.8062	0.7947
Final Test Accuracy	0.6504	0.6641	0.6331

Tabela 1: Performance por $Learning\ Rate$

Como é possível ver na Tabela 1, a melhor configuração atingida foi com um *Learning Rate* igual a 0.01. As acurácias de validação e teste desse modelo foram, respectivamente: 0.8062 e 0.6641

2.2 Exercício 2

Para ajustar os hiperparâmetros, o modelo foi iniciado de acordo com os padrões definidos no enunciado. Em seguida, foram feitos testes com cada um dos *Learning Rates* propostos paras as função de ativação *relu* e *tanh*.

ReLU

Learning Rate	0.001	0.01	0.1
Final Training Loss	0.7879	0.3513	0.2166
Final Validation Accuracy	0.8656	0.9389	0.9435
Final Test Accuracy	0.7449	0.8593	0.8701

Tabela 2: Performance por Learning Rate, utilizando função de ativação relu

Tanh

Learning Rate	0.001	0.01	0.1
Final Training Loss	0.6124	0.4162	0.2808
Final Validation Accuracy	0.8305	0.9128	0.9318
Final Test Accuracy	0.702	0.8289	0.8514

Tabela 3: Performance por Learning Rate, utilizando função de ativação tanh

Já que a função *relu* apresentou uma performance melhor que a *tanh* para todos os *Learning Rates* testados, foram feitos testes mais extensivos utilizando-a como função de ativação. Nas Tabelas 4, 5 e 6 estão os resultados do modelo utilizando diferentes valores de *Dropout Probability*; variando também o Learning Rate.

Learning Rate = 0.001

Dropout Probability	0.3	0.5
Final Training Loss	0.7879	0.863
Final Validation Accuracy	0.8656	0.8601
Final Test Accuracy	0.7449	0.7317

Tabela 4: Performance por ${\it Dropout\ Probability},$ utilizando função de ativação ${\it relu}$

Pode-se observar nas Tabelas 4 a 6 que, novamente, a performance com *Learning Rate* igual a 0.1 se manteve superior às demais. Dessa forma, os seguintes testes foram realizados com LR fixo, variando o tamanho das *hidden layers* e a *dropout probability* (Tabelas 7 e 8).

Learning Rate = 0.01

Dropout Probability	0.3	0.5
Final Training Loss	0.3513	0.443
Final Validation Accuracy	0.9389	0.9312
Final Test Accuracy	0.8593	0.8407

Tabela 5: Performance por *Dropout Probability*, utilizando função de ativação *relu*

Learning Rate = 0.1

Dropout Probability	0.3	0.5
Final Training Loss	0.2166	0.3676
Final Validation Accuracy	0.9435	0.9352
Final Test Accuracy	0.8701	0.8472

Tabela 6: Performance por Dropout Probability, utilizando função de ativação relu

Dropout Probability = 0.3

Hidden Size	100	200
Final Training Loss	0.2166	0.1315
Final Validation Accuracy	0.9435	0.9564
Final Test Accuracy	0.8701	0.8966

Tabela 7: Performance por Hidden Size, utilizando função de ativação relu

Dropout Probability = 0.5

Hidden Size	100	200
Final Training Loss	0.3676	0.2299
Final Validation Accuracy	0.9352	0.9514
Final Test Accuracy	0.8472	0.8818

Tabela 8: Performance por Hidden Size, utilizando função de ativação relu

Adicionalmente, foram feitos testes menos extensos utilizando a função de ativação *tanh*, que apresentou menor acurácia. A pesquisa foi feita utilizando seu *Learning Rate* de melhor performance: 0.1, variando *Dropout Probability* e em seguida *Hidden Size*. (Tabelas 9 e 10)

Como esperado, o modelo com função de ativação *tanh* manteve-se com performance inferior ao com *relu*. Assim, a melhor configuração atingida teve os seguintes hyperparâmetros: Learning Rate = 0.1, Dropout Probability = 0.3, Hidden Size = 200 e Activation Function = ReLU. Este modelo resultou em uma acurácia de validação igual a 0.9564 e uma acurácia de teste igual a 0.8966.

Learning Rate = 0.1

Dropout Probability	0.3	0.5
Final Training Loss	0.2808	0.419
Final Validation Accuracy	0.9318	0.9056
Final Test Accuracy	0.8514	0.8178

Tabela 9: Performance por *Dropout Probability*, utilizando função de ativação *tanh*

Dropout Probability = 0.3

Dropout Probability	100	200
Final Training Loss	0.2808	0.2007
Final Validation Accuracy	0.9318	0.9463
Final Test Accuracy	0.8514	0.8755

Tabela 10: Performance por *Dropout Probability*, utilizando função de ativação *tanh*

Gráfico 9: Validation Acuracy por epoch com Single Layer Feed-Foward Neural Network

Gráfico 10: Trainig Loss por epoch com Single Layer Feed-Foward Neural Network

2.3 Exercício 3

Neste exercício, foram criados dois novos modelos, com os hiperparâmetros *default* do Exercício 2, contendo duas e três *layers*. Entretanto, o melhor resultado manteve-se o do modelo do exercício anterior, com apenas uma *layer*.

A performace dos modelos com 2 e 3 *layers* com os hiperparâmetros *default* do Exercício 2, estão na tabela 11. Adicionalmente foram traçados seus gráficos de *training loss* e *validation accuracy* por *epoch*.

Layers	2	3
Final Training Loss	0.5700	0.9068
Final Validation Accuracy	0.8925	0.8136
Final Test Accuracy	0.7817	0.6816

Tabela 11: Performance por quantidade de layers

Gráfico 11: Validation Accuracy por epoch com Double Layer Feed-Foward Neural Network

Gráfico 12: Trainig Loss por epoch com Double Layer Feed-Foward Neural Network

Gráfico 13: Validation Accuracy por epoch com Triple Layer Feed-Foward Neural Network

Gráfico 14: Trainig Loss por epoch com Triple Layer Feed-Foward Neural Network

3 Responsabilidades

O projeto foi produzido em conjunto, sendo assim, todo o trabalho foi revisado e feito e/ou auxiliado pelos dois membros. Em mais detalhes, Brian foi responsável, em maior parte, pela primeira questão, enquanto Mariana pela segunda, mas ambos estiveram presente no desenvolvimento de todo o trabalho. Já para a terceira questão, que a dupla considerou a mais difícil, o trabalho foi feito juntos não havendo participação maior ou menor de nenhuma parte. No que se refere ao relatório, Brian foi responsável pela estruturação do documento em

LaTex, e preenchimento das partes referentes a primeira questão, por fim, Mariana o finalizou preenchendo as partes referentes a segunda e terceira questão.