DART: Directed Automated Random Testing

Contents

- Abstract
- 1. Introduction
- 2. DART Overview
 - 2.1. An Introduction to DART
 - 2.2. Execution Model
 - 2.3. Test Driver and Instrumented Program
 - 2.4. Example
 - 2.5. Advantages of the DART approach
- Question

Abstract

DART: Directed Automated Random Testing

Main Techniques

- Automated Extraction of the interface of a program with its external environment using static source-code parsing
- Automatic generation of a test driver for this interface that performs random testing to simulate the most general environment the program can operate in
- Dynamic analysis of how the program behaves under random testing and automatic generation of new test inputs to direct systematically the execution along alternative program paths

Abstract

Main Strength

- Performed completely automatically on any program that compiles
 - No need: test driver, harness code
- Detects standard errors
 - Program crashes
 - Assertion violations
 - Non-termination

1. Introduction

Testing

- The primary way to check the correctness of software
- Cost: Software failure > Software Test

Unit Testing

- Detect errors in the component's logic
- Check all corner cases
- Provide 100% code coverage
- But,
 - Hard and expensive to perform
 - Need to write test driver/harness code to simulate the environment of the component
 - Often either performed very poorly or skipped
- Subsequent phases of testing(feature, integration and system testing)
 - Not to check the corner cases where bugs causing reliability issues are typically hidden

- DART: Directed Automated Random Testing
 - Automate unit testing of software

Main Techniques

- Automated Extraction of the interface of a program with its external environment using static source-code parsing
- Automatic generation of a test driver for this interface that performs random testing to simulate the most general environment the program can operate in
- Dynamic analysis of how the program behaves under random testing and automatic generation of new test inputs to direct systematically the execution along alternative program paths

Main Strength

- Performed completely automatically on any program that compiles
 - No need: test driver, harness code
- Detects standard errors
 - Program crashes
 - Assertion violations
 - Non-termination
- Preliminary experiments to unit test examples
 - Needham-Schroeder's security protocol
 - oSIP library

- The idea of extracting automatically interfaces of software components via static analysis
 - Model-checking purposes
 - Reverse engineering
 - Compositional verification
- Combine automatic interface extraction with random testing and dynamic test generation
 - DART
 - Test management tools

Random testing

- Simple and well-known technique
- Can be remarkably effective at finding software bugs
- Usually provide low code coverage
 - If (x ~)-then branch of the conditional statement
 - Has only one chance to be exercised out of 2³² if x is a 32bit integer(randomly initialized input)

DART

- Makes random testing automatic by combining it with automatic interface extraction
- Makes it much More effective in finding errors thanks to the use of dynamic test generation to drive the program along alternative conditional branches

Code Inspection

- The way to check correctness during the software development cycle
- Static source-code analysis for building automatic code-inspection tools
 - Prefix/Prefast
 - MC
 - Klocwork
 - Polyspace
 - lint (static checker)
 - Generate an overly large number of warnings and false alarms
 - Rarely used by programmers on a regular basis

- Main challenge faced by the new generation of static analyzers
 - To do a better job in dealing with false alarms, which arise from the inherent imprecision of static analysis
 - Report only high-confidence warnings(at the risk of missing some actual bugs)
 - Report all of them(at the risk of overwhelming the user)
 - Static analysis still need significant human intervention

DART

Based on dynamic analysis and fully automated

2. DART Overview

- Integration of random testing and dynamic test generation
 - Using Symbolic reasoning

2.1 An Introduction to DART

- Function h: defective
 - Abort statement for some value of its input vector(parameter x or y or both)
- Typical of random testing
 - Difficult to generate input values that will drive the program through all its different execution path

DART

- Dynamically gather knowledge about the execution of the program
 - Directed search
- Start with random input
- Calculate during each execution an input vector for the next execution
 - This vector contains values that are the solution of symbolic constraints gathered from predicates in branch statements during the previous execution
- The new input vector attempts to force the execution of the program through a new path
- Repeating this process, a directed search attempts to force the program to sweep through all its feasible execution paths

2.1 An Introduction to DART - cont.

- Path Constraint: an equivalence class of input vectors, all input vectors that drive the program through the path that was just executed
 - To force the program through a different equivalence class (with Equivalence Partitioning)
 - Negating the last predicate of the current path constraint

2.2 Execution Model

- Under test(concretely, executing the actual program P)
- Random input / Path constraints
- Symbolically(on values at memory locations expressed in terms of input parameters)
 - *M*: memory (domain)(mapping from memory addresses m)
 - *m*: memory address (codomain(range))
 - +: update

•
$$\mathcal{M}' = \mathcal{M} + [m \rightarrow v] = \mathcal{M}'(m) = v$$

- e: set of addresses m
- P: program
 - Defines
 - \vec{M}_0 : a sequence of input addresses
 - the addresses of the input parameters of *P*
- $-\vec{I}$: input vector
 - the initial value of \vec{M}_0 and hence \mathcal{M}
 - associates a value to each input parameter

2.2 Execution Model - cont.

- *l*: statement of address(other than abort or halt)
 - Initial address l₀
- S: mapped memory address
- c: constance
- *(e', e''): a dyadic term denoting multiplication
- ≤(e', e''): a term denoting comparison
- $\neg (e')$: a monadic term denoting negation
- *e': a monadic term denoting pointer dereference
- $evaluate_concrete(e, \mathcal{M})$: evaluates expression e in context \mathcal{M} and return a 32-bit value for e
- statement_at(l, M): the next statement to be executed

2.2 Execution Model - cont.

- *Program execution w*
 - C: the set of conditional statements
 - A: the set of assignment statements in P
 - finite sequence in Execs := (AUC)*(abort | halt)
 - $\alpha_1 \mathbf{c}_1 \alpha_2 \mathbf{c}_2 \dots \mathbf{c}_k \alpha_{k+1} \mathbf{s}$, where $\alpha_i \in \mathbf{A} \cdot (\text{for } 1 \le i \le k+1)$, $\mathbf{c}_i \in \mathbf{C} \cdot (\text{for } 1 \le i \le k)$, and $\mathbf{s} \in \{\text{ abort, halt}\}$.
- **Execs**(P): the set of such executions generated by all possible \vec{I}
 - Node: each statement
 - Form: Execution tree
 - Assignment nodes have one successor
 - Conditional nodes have one or two successors
 - Leaves are labeled abort or halt

The goal of DART

- To explore all paths in the execution tree **Execs**(*P*)
- Assume
 - The theory of integer linear constraints
 - How we handle the transition from constraints within the theory to those that are outside

Symbolic evaluation

- a symbolic memory S that maps memory addresses to expressions
 - S: mapping that maps each $m \in M_0$ to itself
- When an expression falls outside the theory, DART simply falls back on the concrete value of the expression
- Flag for track completeness
 - all_linear
 - *all_locs_definite*
 - Initial value: 1
 - Falls back on the concrete value: 0

```
evaluate\_symbolic (e, \mathcal{M}, \mathcal{S}) =
   match e:
                  //the symbolic variable named m
      case m:
         if m \in \operatorname{domain} \mathcal{S} then return \mathcal{S}(m)
         else return \mathcal{M}(m)
      case *(e', e''): //multiplication
         let f' = evaluate\_symbolic(e', \mathcal{M}, \mathcal{S});
         let f"= evaluate\_symbolic(e'', \mathcal{M}, \mathcal{S});
         if not one of f' or f'' is a constant c then
            all linear = 0
            return evaluate_concrete(e, \mathcal{M})
         if both f' and f'' are constants then
            return evaluate\_concrete(e, \mathcal{M})
         if f' is a constant c then
            return *(f',c)
         else return *(c, f'')
      case *e': //pointer dereference
         let f'= evaluate\_symbolic(e', \mathcal{M}, \mathcal{S});
         if f' is a constant c then
            if *c \in \operatorname{domain} \mathcal{S} then return \mathcal{S}(*c)
            else return \mathcal{M}(*c)
         else all\_locs\_definite = 0
            return evaluate_concrete(e, \mathcal{M})
      etc.
```

Figure 1. Symbolic evaluation

Execution Tree

- Run repeatedly
- Each run(except the first) is executed with the help of a record of the conditional statements executed in the previous run
- Each conditional
 - Record a branch value
 - 1: the then branch is taken
 - 0: the else branch is taken
 - Record done value
 - 0: only one branch of the conditional has executed in prior runs
 - With the same history up to the branch point
 - 1: otherwise
- Stack: Store information associated with each conditional statement of the last execution path
 - List variable
 - kept in a file between executions
 - i+1th conditional execution
 - For i, 0 ≤ i < |stack|, stack[i] = (stack[i].branch, stack[i].done)

Test_Driver

- Combines random testing(the repeat loop) with directed search(the while loop)
- If the instrumented_program throws an exception, then a bug has been found
- completeness flags
 - all_linear
 - all_locs_definite
 - Each holds unless a "bad" situation
 - If completeness flags are still hold, then program terminated
 - Found all paths
 - If just one of the completeness flags have been turned off, then the outer loop continues forever

```
run_DART () =
    all_linear, all_locs_definite, forcing_ok = 1, 1, 1

repeat
    stack = \langle \rangle; \vec{I} = [] ; directed = 1

while (directed) do
    try (directed, stack, \vec{I}) =
        instrumented_program(stack, \vec{I})
    catch any exception \rightarrow
    if (forcing_ok)
        print "Bug found"
        exit()
    else forcing_ok = 1

until all_linear \land all_locs_definite

Figure 2. Test driver
```

- Instrument_program
 - Executes as the original program
 - With interleaved gathering of symbolic constraints
 - $\mathbf{s} = statement_at(l, \mathcal{M})$
 - Each conditional statement
 - Checks by calling compare_and_update_stack
 - ^: list concatenation
 - then: path_constraint^(c)
 - else: path_constraint^(neg(c))
 - loop invariant
 - stack[|stack|-1].done = 0(initial)
 - 1: If the execution proceeds according to all the branches in stack as checked by compare_and_update_stack

```
instrumented\_program(stack, I) =
  // Random initialization of uninitialized input parameters in \vec{M}_0
  for each input x with \vec{I}[x] undefined do
      \vec{I}[x] = random()
  Initialize memory \mathcal{M} from \vec{M}_0 and \vec{I}
  // Set up symbolic memory and prepare execution
  \mathcal{S} = [m \mapsto m \mid m \in M_0].
  \ell = \ell_0 // Initial program counter in P
  k = 0 // Number of conditionals executed
  // Now invoke P intertwined with symbolic calculations
  s = statement\_at(\ell,\mathcal{M})
  while (s \notin \{abort, halt\}) do
     match (s)
         case (m \leftarrow e):
            S = S + [m \mapsto evaluate\_symbolic(e, \mathcal{M}, S)]
            v = evaluate\_concrete(e, \mathcal{M})
            \mathcal{M} = \mathcal{M} + [m \mapsto v]; \ell = \ell + 1
         case (if (e) then goto \ell'):
            b = evaluate\_concrete(e, \mathcal{M})
            c = evaluate\_symbolic(e, \mathcal{M}, \mathcal{S})
            if b then
              path\_constraint = path\_constraint \land \langle c \rangle
              stack = compare\_and\_update\_stack(1, k, stack)
              \ell = \ell'
            else
              path\_constraint = path\_constraint \land \langle neg(c) \rangle
              stack = compare\_and\_update\_stack(0, k, stack)
              \ell = \ell + 1
            k = k + 1
      s = statement\_at(\ell, \mathcal{M}) // End of while loop
  if (s==abort) then
      raise an exception
   else // s==halt
      return solve_path_constraint(k,path_constraint,stack)
```

Figure 3. Instrumented_program

- Compare_and_update_stack
 - Checks whether the current execution path matches the one predicted at the end of the previous execution and represented in stack passed between runs
 - flag forcing_ok == 1(initial)
 - 0
- If prediction of the outcome of a conditional is not fulfilled
- Restart run_DART with a new random input vector
- all linear \land all locs definite \Rightarrow forcing ok
- Solve_path_constraint
 - When the original program halts, new input values are generated
 - To attempt to force the next run to execute the last unexplored branch of a conditional along the stack
 - $\vec{l} + \vec{l}'$: If such a branch exists and if the path constraint that may lead to its execution has a solution \vec{l}' , this solution is used to update the mapping \vec{l} to be used for the next run

```
 \begin{aligned} & compare\_and\_update\_stack(branch,k,stack) = \\ & \textbf{if } k < |stack| \textbf{ then} \\ & \textbf{if } stack[k].branch \neq branch \textbf{ then} \\ & forcing\_ok = 0 \\ & \textbf{raise} \textbf{ an exception} \\ & \textbf{else if } k = |stack| - 1 \textbf{ then} \\ & stack[k].branch = branch \\ & stack[k].done = 1 \\ & \textbf{else } stack = stack \triangleq \langle (branch, 0) \rangle \\ & \textbf{return } stack \end{aligned}
```

Figure 4. Compare_and_update_stack

```
solve\_path\_constraint(k_{try}.path\_constraint,stack) = \\ let \ j \ be the smallest number such that \\ for all \ h \ with \ -1 \le j < h < k_{try}, stack[h].done = 1 \\ \textbf{if } j = -1 \ \textbf{then} \\ \textbf{return } (0, \_, \_) \ // \ This \ directed \ search \ is \ over \\ \textbf{else} \\ path\_constraint[j] = neg(path\_constraint[j]) \\ stack[j].branch = \neg stack[j].branch \\ \textbf{if } (path\_constraint[0, \ldots, j] \ has \ a \ solution \ \vec{I'}) \ \textbf{then} \\ \textbf{return } (1, stack[0..j], \ \vec{I} + \vec{I'}) \\ \textbf{else} \\ solve\_path\_constraint(j.path\_constraint,stack)
```

Figure 5. Solve_path_constraint

• THEOREM 1

- a) If *run_DART* prints out "Bug found" for *P*, then there is some input to *P* that leads to an abort
- b) If *run_DART* terminates without printing "Bug found," then there is no input that leads to an abort statement in P, and all paths in **Execs**(P) have been exercised
- c) Otherwise, *run_DART* will run forever

Proofs

- (a) and (c) are immediate
- (b)
 - Any potential incompleteness in DART's directed search detected and recorded by setting at least one of the two flags to 0.
 - all linear
 - all_locs_definite
- Difference between DART and static_analysis_based approaches
 - DART is guaranteed to be sound even when using an incomplete or wrong theory

2.4 Example

First Run

- Initial concrete memory: $\mathcal{M} = [m_x \rightarrow 123456, m_y \rightarrow 654321]$
- Initial symbolic memory: $S = [m_x \rightarrow m_x, m_y \rightarrow m_y]$
- Path constraint: $\langle m_x = m_y \rangle$
 - halt: $\langle \neg (m_x = m_y) \rangle$
- k = 1, stack = $\langle (0, 0) \rangle$, S = [m_x → m_x, m_y → m_y, m_z → m_y], \mathcal{M} = [m_x → 123456, m_y → 654321, m_z → 654321]
 - Solve $\langle m_x = m_y \rangle$
 - $\langle m_x \rightarrow 0, m_y \rightarrow 0 \rangle$
- Update input vector $\vec{l} + \vec{l}'$ is then $\langle 0, 0 \rangle$
- The branch bit in stack has been flipped

```
int f(int x, int y) {
   int z;
   z = y;
   if (x == z)
       if (y == x + 10)
        abort();
   return 0;
}
```

2.4 Example - cont.

- Second Run
 - run_DART
 - (directed, stack, I)=(1, \langle(1, 0)\rangle, \langle 0, 0\rangle)
 - compare_and_update_stack
 - Check that the actually executed branch of the outer if statement is now then branch
 - The else branch of the inner if statement is executed
 - Path constraint
 - $\langle m_x = m_y, m_y = m_x + 10 \rangle$
 - run_DART driver calls solve_path_constraint
 - (k_{try}, path_constraint, stack)=(2, (m_x=m_y, m_y=m_x+10), ((1,1),(0,0)))
 - This path constraint has no solution and the first conditional has already been covered (stack[0].done = 1)
 - solve_path_constraint returns (0, _, _)
 - All completeness flags are still set
 - run_DART terminates

```
int f(int x, int y) {
   int z;
   z = y;
   if (x == z)
       if (y == x + 10)
        abort();
   return 0;
}
```

2.5 Advantages of the DART approach

- Dynamic analysis often has an advantage over static analysis when reasoning about dynamic data
 - Ex. If two pointers point to the same memory location (<code> struct foo)
 - DART simply checks whether their values are equal and does not require alias analysis
 - Static analysis will typically not be able to report with high certainty that abort() is reachable
 - Standard alias analysis is not able to guarantee that a—>c has been overwritten
 - DART finds a precise execution leading to the abort very easily by simply generating an input satisfying the linear constraint a -> c == 0

DART

- Concrete + symbolic execution
 - Concolic
 - First, any execution leading to an error detected by DART is trivially sound
 - Second, it allows us to alleviate the limitations of the constraint solver/ theorem prover
- Find the only reachable abort statement in the above example(<code> foobar) with high probability.

```
struct foo { int i; char c; }
bar (struct foo *a) {
   if (a->c == 0) {
     *((char *)a + sizeof(int)) = 1;
     if (a->c != 0)
        abort();
   }
}

<code> struct foo
```

```
1 foobar(int x, int y){
2   if (x*x*x > 0){
3     if (x>0 && y==10)
4        abort();
5   } else {
6     if (x>0 && y==20)
7        abort();
8   }
9 }

<code> foobar
```

Question

Static Dynamic

WhiteBox
BlackBox
BlackBox

- What is DART's testing technique?
 - White box(symbolic execution, branch coverage) input a branch to the stack
 - Black box(Random Testing(concrete execution), Equivalence Partitioning)
 - If so, does it include Boundary Value Analysis?
 - Test drive: dynamic test
 - Directed search
- Figure 3, Why there is no forcing_ok flag after 'if(s==abort)then'?
- Bug log