Searching in non-deterministic, partially observable and unknown environments

CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016

Soleymani

"Artificial Intelligence: A Modern Approach", 3rd Edition, Chapter 4

Problem types

- Deterministic and fully observable (single-state problem)
 - Agent knows exactly its state even after a sequence of actions
 - Solution is a sequence
- Non-observable or sensor-less (conformant problem)
 - Agent's percepts provide no information at all
 - Solution is a sequence
- Nondeterministic and/or partially observable (contingency problem)
 - Percepts provide new information about current state
 - Solution can be a contingency plan (tree or strategy) and not a sequence
 - Often interleave search and execution
- Unknown state space (exploration problem)

More complex than single-state problem

- Searching with nondeterministic actions
- Searching with partial observations
- Online search & unknown environment

Non-deterministic or partially observable env.

- Perception become useful
 - Partially observable
 - To narrow down the set of possible states for the agent
 - Non-deterministic
 - To show which outcome of the action has occurred
- Future percepts can not be determined in advance
- Solution is a contingency plan
 - A tree composed of nested if-then-else statements
 - What to do depending on what percepts are received
- Now, we focus on an agent design that finds a guaranteed plan before execution (not online search)

Searching with non-deterministic actions

- In non-deterministic environments, the result of an action can vary.
 - Future percepts can specify which outcome has occurred.

- Generalizing the transition function
 - ▶ RESULTS: $S \times A \rightarrow 2^S$ instead of RESULTS: $S \times A \rightarrow S$

- Search tree will be an AND-OR tree.
 - Solution will be a sub-tree containing a contingency plan (nested if-then-else statements)

Erratic vacuum world

- States
 - ▶ {1, 2, ..., 8}
- Actions
 - {Left, Right, Suck}
- Goal
 - {7} or {8}

- 6 6 6 8 6 8 8
- 2
- 3 000
- 4
- 5
- 6
- 7
- 8

- Non-deterministic:
 - When sucking a dirty square, it cleans it and sometimes cleans up dirt in an adjacent square.
 - When sucking a clean square, it sometimes deposits dirt on the carpet.

AND-OR search tree

Solution to AND-OR search tree

- ▶ **Solution** for AND-OR search problem is a **sub-tree** that:
 - specifies one action at each OR node
 - includes every outcome at each AND node
 - has a goal node at every leaf
- Algorithms for searching AND-OR graphs
 - Depth first
 - ▶ BFS, best first, A*, ...

```
function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan or failure OR-SEARCH(problem.INITIAL-STATE, problem, [])
```

function OR-SEARCH(state, problem, path) returns a conditional plan or failure
 if problem.GOAL-TEST(state) then return the empty plan
 if state is on path then return failure
 for each action in problem.ACTIONS(state) do

 $plan \leftarrow \mathsf{AND}\text{-}\mathsf{SEARCH}(\mathsf{RESULTS}(state, action), problem, [state \mid path])$ **if** $plan \neq failure$ **then return** [action | plan]

return failure

function AND-SEARCH(states, problem, path) **returns** a conditional plan, or failure

for each s_i in states do

```
plan_i \leftarrow \mathsf{OR}\text{-}\mathsf{SEARCH}(s_i \ , \ problem, \ path)

if plan_i = failure then return failure
```

return [if s_1 then $plan_1$ else if s_2 then $plan_2$ else ... if s_{n-1} then $plan_{n-1}$ else $plan_n$]

AND-OR-GRAPH-SEARCH

- Cycles arise often in non-deterministic problems
 - Algorithm returns with failure when the current state is identical to one of ancestors
 - If there is a non-cyclic path, the earlier consideration of the state is sufficient
 - ▶ Termination is guaranteed in finite state spaces
 - □ Every path reaches a goal, a dead-end, or a repeated state

Cycles

- Slippery vacuum world: Left and Right actions sometimes fail (leaving the agent in the same location)
 - No acyclic solution

Cycles solution

- Solution?
 - Cyclic plan: keep on trying an action until it works.
 - [Suck, L_1 : Right, if state = 5 then L_1 else Suck]
 - ☐ Or equivalently [Suck, while state = 5 do Right, Suck]

What changes are required in the algorithm to find cyclic solutions?

Searching with partial observations

- The agent does not always know its exact state.
 - Agent is in one of several possible states and thus an action may lead to one of several possible outcomes
- Belief state: agent's current belief about the possible states, given the sequence of actions and observations up to that point.

Searching with unobservable states (Sensor-less or conformant problem)

- Initial state:
 - \blacktriangleright belief = {1, 2, 3, 4, 5, 6, 7, 8}
- Action sequence (conformant plan)
 - [Right, Suck, Left, Suck]

Belief State

- Belief state space (instead of physical state space)
 - It is fully observable

- ▶ Physical problem: N states, $ACTIONS_P$, RESULTS $_P$, GOAL_TEST $_P$, STEP_COST $_P$
- ▶ Sensor-less problem: Up to 2^N states, ACTIONS, RESULTS, GOAL_TEST, STEP_COST

Sensor-less problem formulation (Belief-state space)

- **States**: every possible set of physical states, 2^N
- Initial State: usually the set of all physical states
- Actions: $ACTIONS(b) = \bigcup_{s \in b} ACTIONS_P(s)$
 - Illegal actions?! i.e., $b = \{s_1, s_2\}, ACTIONS_P(s_1) \neq ACTIONS_P(s_2)$
 - Illegal actions have no effect on the env. (union of physical actions)
 - Illegal actions are not legal at all (intersection of physical actions)
- Solution is a sequence of actions (even in non-deterministic environment)

Sensor-less problem formulation (Belief-state space)

- ▶ Transposition model $(b' = PREDICT_P(b, a))$
 - ▶ Deterministic actions: $b' = \{s': s' = RESULTS_P(s, a) \text{ and } s \in b \}$
 - Nondeterministic actions: $b' = \bigcup_{s \in b} RESULTS_P(s, a)$

Sensor-less problem formulation (Belief-state space)

- ▶ Transposition model $(b' = PREDICT_P(b, a))$
 - ▶ Deterministic actions: $b' = \{s': s' = RESULTS_P(s, a) \text{ and } s \in b \}$
 - Nondeterministic actions: $b' = \bigcup_{s \in b} RESULTS_P(s, a)$

- ▶ Goal test: Goal is satisfied when all the physical states in the belief state satisfy $GOAL_TEST_P$.
- Step cost: STEP_COST_P if the cost of an action is the same in all states

Belief-state space for sensor-less deterministic vacuum world

- Total number of possible belief states? 28
- Number of reachable belief states? 12

19

Sensor-less problem: searching

- In general, we can use any standard search algorithm.
- Searching in these spaces is not usually feasible (scalability)
 - Problem I: No. of reachable belief states
 - Pruning (subsets or supersets) can reduce this difficulty.
 - Branching factor and solution depth in the belief-state space and physical state space are not usually such different
 - Problem2 (main difficulty): No. of physical states in each belief state
 - Using a compact state representation (like formal representation)
 - Incremental belief-state search: Search for solutions by considering physical states incrementally (not whole belief space) to quickly detect failure if we reach an unsolvable physical state.

Searching with partial observations

- Similar to sensor-less, <u>after each action</u> the new belief state must be **predicted**
- After each perception the belief state is updated
 - E.g., local sensing vacuum world
 - After each perception, the belief state can contain at most two physical states.
- We must plan for different possible perceptions

Searching with partial observations

A position sensor & local dirt sensor

Transition model (partially observable env.)

Prediction stage: How does the belief state change after doing an action?

$$\hat{b} = PREDICT_P(b, a)$$

- Deterministic actions: $\hat{b} = \{s': s' = RESULTS_P(s, a) \text{ and } s \in b \}$
- Nondeterministic actions: $\hat{b} = \bigcup_{s \in b} RESULTS_P(s, a)$
- Possible Perceptions: What are the possible perceptions in a belief state?

$$POSSIBLE_PERCEPTS(\hat{b}) = \{o: o = PERCEPT(s) \text{ and } s \in \hat{b} \}$$

Update stage: How is the belief state updated after a perception?

$$UPDATE(\hat{b}, o) = \{s: o = PERCEPT(s) \text{ and } s \in \hat{b} \}$$

$$RESULTS(b, a) = \{b_o: b_o = UPDATE(PREDICT(b, a), o) \text{ and } o \in POSSIBLE_PERCEPTS(PREDICT(b, a)) \}$$

AND-OR search tree local sensing vacuum world

- ▶ AND-OR search tree on belief states
- 7 (14D ON Scarch tiec on belief states
- First level

Complete plan

[Suck, Right, if Bstate={6} then Suck else []]

Solving partially observable problems

- AND-OR graph search
- Execute the obtained contingency plan
 - Based on the achieved perception either then-part or else-part of a condition is run
 - Agent's belief state is updated when performing actions and receiving percepts
 - Maintaining the belief state is a core function of any intelligent system

$$b' = UPDATE(PREDICT(b, a), o)$$

Kindergarten vacuum world example Belief state maintenance

- Local sensing
- Any square may be dirty at any time (unless the agent is now cleaning it)

Robot localization example

- Determining current location given a map of the world and a sequence of percepts and actions
- Perception: one sonar sensor in each direction (telling obstacle existence)
 - ▶ E.g., percepts=NW means there are obstacles to the north and west
- Broken navigational system
 - Move action randomly chooses among {Right, Left, Up, Down}

Robot localization example (Cont.)

- b^0 : o squares
- Percept: NSW
- $b^1 = UPDATE(b^o, NSW)$

(red circles)

- Execute action a = Move
- $b_a^1 = PREDICT(b^1, a)$

(red circles)

0	(°)	О	0		0	0	o	0	0		(o)	0	О		0	
		0	0		0			0		0		0				
	0	О	О		0			0	0	0	0	0			0	
0	0		0	0	0		0	(o)	0	0		0	0	0	0	

Robot localization example (Cont.)

- Percept: NS
- $b^2 = UPDATE(b_a^1, NS)$

	0	0	О	О		0	0	О	0	О		0	0	0		0	
			0	0		0			0		0		0				
		0	0	О		0			0	0	О	0	0			0	
	0	О		0	0	0		0	0	О	0		0	0	0	О	

 $UPDATE(PREDICT(UPDATE(b^0, NSW) | Move), NS)$

Online search

- Off-line Search: solution is found before the agent starts acting in the real world
- On-line search: interleaves search and acting
 - Necessary in <u>unknown environments</u>
 - Useful in <u>dynamic and semi-dynamic environments</u>
 - Saves computational resource in <u>non-deterministic domains</u> (focusing only on the contingencies arising during execution)
 - Tradeoff between finding a guaranteed plan (to not get stuck in an undesirable state during execution) and required time for complete planning ahead

Examples

- Robot in a new environment must explore to produce a map
- New born baby
- Autonomous vehicles

Online search problems

- Agent must perform an action to determine its outcome
 - ightharpoonup RESULTS(s, a) is found by actually being in s and doing a
 - ▶ By filling *RESULTS* map table, the map of the environment is found.
- Different levels of ignorance
 - E.g., an explorer robot may not know "laws of physics" about its actions
 - □ [Up, Down] action sequence gets back it to the current location

- May access to a heuristic function
- We assume deterministic & fully observable environment here
 - Also, we assume the agent knows ACTIONS(s), c(s, a, s') that can be used after knowing s' as the outcome, $GOAL_TEST(s)$

Competitive ratio

- Online path cost: total cost of the path that the agent actually travels
- Best cost: cost of the shortest path "if it knew the search space in advance"
- Competitive ratio = Online cost / Best cost
 - Smaller values are more desirable
- Competitive ratio may be infinite
 - Dead-end state: no goal state is reachable from it
 - irreversible actions can lead to a dead-end state

Dead-end

▶ No algorithm can avoid dead-ends in all state spaces

- Simplifying assumption: Safely explorable state space
 - A goal state is achievable from every reachable state

Online search vs. offline search

- Offline search: node expansion is a simulated process rather than exerting a real action
 - Can expand a node somewhere in the state space and immediately expand a node elsewhere
- Online search: can discover successors only for the physical current node
 - Expand nodes in a local order
 - Interleaving search & execution

Online search agents

Online DFS

- Physical backtrack (works only for reversible actions)
 - Goes back to the state from which the agent most recently entered the current state
 - Works only for state spaces with reversible actions

Online local search: hill-climbing

- Random walk instead of random restart
 - Randomly selecting one of available actions (preference to untried actions)
- Adding Memory (Learning Real Time A*): more effective
 - To remember and update the costs of all visited nodes.

```
function ONLINE-DFS(s') returns an action
    inputs: s', a percept that identifies the current state
    persistent: result, a table indexed by state and action, initially empty
               untried, a table that lists for each state the actions not yet tried
                unbacktracked, a table that lists for each state the untried backtracks
                s, a, the previous state and action, initially null
      if GOAL-TEST(s') then return stop
      if s' is a new state (not in tried) then return untried[s'] \leftarrow ACTIONS(s')
      if s is not null then
          result[s,a] \leftarrow s'
          add s to the front of unbacktracked[s']
      if untried[s'] is empty then
           if unbacktracked[s'] is empty then return stop
           else a \leftarrow an action b such that result[s', b] = POP(unbacktracked[s'])
      else a \leftarrow POP(untried[s'])
      s' \leftarrow s
      return a
```