CB N°10 - PROBABILITES - SUJET 1

EXERCICE 1

On lance un dé équilibré jusqu'à l'obtention d'un 6.

Quelle est la probabilité que tous les chiffres obtenus soient pairs?

EXERCICE 2

Un concierge dispose de n clés. Pour ouvrir une porte, il les essaie une à une, sans jamais essayer la même, jusqu'à obtenir la bonne.

Pour $k \in [1, n]$, on note A_k l'événement : "la porte s'ouvre au k-ème essai".

En remarquant que, pour $k \in [1, n]$, $\mathbb{P}(A_k) = \mathbb{P}(A_k \cap \overline{A_{k-1}} \cap \cdots \cap \overline{A_1})$, déterminer $\mathbb{P}(A_k)$ à l'aide de la formule des probabilités composées, que l'on énoncera clairement.

EXERCICE 3

Une boîte A contient deux jetons portant le numéro 0, et une boîte B contient deux jetons portant le numéro 1.

On tire au hasard un jeton dans chaque boîte et on les échange. On recommence cette opération n fois. On s'intéresse à la somme des numéros des jetons contenus dans la boîte A après n tirages.

On introduit les événements :

 A_n : "la somme des numéros des jetons de la boîte A après n tirages est 0".

 B_n : "la somme des numéros des jetons de la boîte A après n tirages est 1".

 C_n : "la somme des numéros des jetons de la boîte A après n tirages est 2".

On note $a_n = \mathbb{P}(A_n), b_n = \mathbb{P}(B_n)$ et $c_n = \mathbb{P}(C_n)$.

- **1.** Déterminer a_0, b_0, c_0, a_1, b_1 et c_1 .
- **2.** Exprimer a_{n+1}, b_{n+1} et c_{n+1} en fonction de a_n, b_n et c_n , à l'aide de la formule des probabilités totales, que l'on énoncera clairement.
- **3.** Vérifier que $b_{n+2} = \frac{1}{2}b_{n+1} + \frac{1}{2}b_n$.

En déduire les valeurs de b_n puis de a_n et c_n , ainsi que leurs limites quand n tend vers $+\infty$.

EXERCICE 4

La probabilité qu'une personne soit allergique au vaccin Pfizer est de 10^{-3} . On s'intéresse à un échantillon de 1000 de personnes. On appelle X la variable aléatoire qui donne le nombres de personnes allergiques dans l'échantillon.

- 1. Déterminer la loi de X (en justifiant).
- 2. En utilisant une approximation que l'on justifiera, calculer la probabilité qu'au moins 2 personnes soient allergiques dans l'échantillon.

EXERCICE 5

La police contrôle la circulation en période de confinement suivant une loi de Poisson de paramètre λ . Chaque individu a une probabilité p de ne pas être en règle avec la réglementation, indépendamment des autres personnes.

Déterminer la loi de la variable aléatoire qui donne le nombre de personnes reconnues en infraction.

Spé PT B CB10 - 2020-2021

CB N°10 - PROBABILITES - SUJET 2

EXERCICE 1

On lance un dé équilibré jusqu'à l'obtention d'un 1.

Quelle est la probabilité que tous les chiffres obtenus soient impairs?

EXERCICE 2

Une urne contient n boules rouges, et n boules blanches numérotées. On tire les boules 2 par 2 (simultanément) jusqu'à vider l'urne.

Pour $k \in [1, n]$, on note A_k l'événement : "on obtient une boule de chaque couleur au k-ème tirage".

- **1.** Expliciter $\mathbb{P}(A_1)$, et pour $k \in [1, n-1]$, $\mathbb{P}(A_{k+1}|A_1 \cap \cdots \cap A_k)$.
- 2. A l'aide de la formule des probabilités composées, que l'on énoncera clairement, déterminer la probabilité que l'on tire une boule de chaque couleur à chaque tirage.

EXERCICE 3

Une urne A contient deux boules rouges et une urne B contient deux boules noires.

On tire au hasard une boule dans chaque urne et on les échange. On recommence cette opération n fois.

On s'intéresse à la couleur des boules contenues dans la boîte A après n tirages.

On introduit les événements :

 A_n : "Après n tirages, les deux boules de l'urne A sont rouges".

 B_n : "Après n tirages, les deux boules de l'urne A sont noires".

 C_n : "Après n tirages, l'urne A contient une boule de chaque couleur".

On note $a_n = \mathbb{P}(A_n), b_n = \mathbb{P}(B_n)$ et $c_n = \mathbb{P}(C_n)$.

- **1.** Déterminer a_0, b_0, c_0, a_1, b_1 et c_1 .
- **2.** Exprimer a_{n+1}, b_{n+1} et c_{n+1} en fonction de a_n, b_n et c_n , à l'aide de la formule des probabilités totale, que l'on énoncera clairement.
- **3.** Vérifier que $c_{n+2} = \frac{1}{2}c_{n+1} + \frac{1}{2}c_n$.

En déduire les valeurs de c_n puis de a_n et b_n , ainsi que leurs limites quand n tend vers $+\infty$.

EXERCICE 4

La probabilité qu'une personne soit allergique au vaccin Astra Zeneca est de $2 \cdot 10^{-3}$. On s'intéresse à un échantillon de 1000 de personnes. On appelle X la variable aléatoire qui donne le nombres de personnes allergiques dans l'échantillon.

- 1. Déterminer la loi de X (en justifiant).
- 2. En utilisant une approximation que l'on justifiera, calculer la probabilité qu'au moins 2 personnes soient allergiques dans l'échantillon.

EXERCICE 5

La police contrôle la circulation en période de confinement suivant une loi de Poisson de paramètre λ . Chaque individu a une probabilité p de ne pas être en règle avec la réglementation, indépendamment des autres personnes.

Déterminer la loi de la variable aléatoire qui donne le nombre de personnes reconnues en infraction.

Spé PT B CB10 - 2020-2021