007 - Lagrage's Enclins

Syptose that you wish to auximite the integral $S = \int f(y_1,y_1x) dx$

then this interest is stationary if $\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y} = 0$

But what if X is a fundam of u and y is a fundam of u and $S = \int f(x'(u), x(u), y'(u), y(u), w du$

In this case, $\frac{\partial f}{\partial y} - \frac{d}{du} \frac{\partial f}{\partial y'} = 0 \quad \text{and} \quad \frac{\partial f}{\partial x} - \frac{d}{du} \frac{\partial f}{\partial x'} = 0$

For each variable, x, you get an Eller-Lagrage qualian.

Consider a particle moving in 3-demonsions subject to a conservative force of:

The particle's Easternay is $K = \pm mV = \pm m(V_x^2 + V_y^4 + V_y^4)$ $K = \pm m(\hat{x}^2 + \hat{y}^2 + \hat{z}^4)$

potential energy associated with this force and particle is $\mathcal{U} = -\int_{X} dx + F_{j} dy + F_{k} d\epsilon, \text{ in several } \mathcal{U}(X,Y,\frac{2}{10 \text{ Page No.}})$

d & Understood by me,

İ Date

Invented by

] Date

From Page No.

The Lagrangian (function) is

$$L = K - \mathcal{U} = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \mathcal{U}(x, y, z)$$

Consider the following derivatives:

$$\frac{\partial L}{\partial x} = -\frac{\partial U}{\partial x} = F_x$$

$$\frac{\partial l}{\partial \dot{x}} = m \dot{x} = P_x$$

Similarly the dervatue of L with respect to y and & give Fy and Fz, etc.

Now take,

$$\frac{d}{dt}\left(\frac{d\zeta}{dx}\right) = \frac{d}{dt}\left(\frac{d}{dx}\right) = \frac{d}{dt}\left(\frac{d}{dx}\right$$

Then $\frac{\partial L}{\partial x} = F_X$ and $\frac{\partial}{\partial t} = F_X$

and thus, $\frac{\partial L}{\partial x} = \frac{\partial}{\partial t} \frac{\partial L}{\partial x}$ (and similarly to the other)

This is an Eder-Lagrange equation! And it

S = \(\(\lambda \),
Hamilton's Principle

The actual path which a particle follows between two points

I and 2 ha given time interval to to its is such

that the action integral

 $5 = \int_{L} L dt$

is stationary when taken along the actual path.

Suppose that you wish to use other coordinates besides (x,y, ?).

If it specifies a vigue value of (\$1,92,73) then

7 = 7(q1,q2,q3) and likewise q:= f:(x,y,z),

L = L (\(\xi_1, \xi_2, \xi_3) \xi_1 \(\xi_2, \xi_3) \tau) \alpha \tau

These are called generalized coordinates.

If there are N particles, then there are at most 3N generalised coordinates (3 for each particle).

The Lyrange exertins on

 $\int \frac{\partial \mathcal{L}}{\partial t_i} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial t_i} \quad \left[i = 1 \dots 3N \right]$

Project No Book No		
The system is considered considered for the state of the	onsdrained the the non- function needed to describe particle is less than 3.	se of e the U.
For example, a per	In z=0 plane, $\vec{F} = \langle X, X \rangle$ $X = l \sin \phi$, $y = -l \cos \phi$ $\vec{F} = l \langle \sin \phi, -\cos \phi, o \rangle$	y, D)
$If \vec{r} = \vec{r}(\vec{q}_i, \vec{q}_i) a$	Now only one variable of to describe the position pendulum. I to independent of time	
be independently varied	is the number of coordinates In a small displacement - s in which the system of	- the number
The pendulum constrained however it can be	· A	eas of Seedong
/itnessed & Understood by me, Dat		To Page No