QXD0116 - Álgebra Linear

Matrizes - Introdução e propriedades

Universidade Federal do Ceará

Campus Quixadá

André Ribeiro Braga

Definição

Sejam m e n dois números naturais não nulos:

- $m \in \mathbb{N}^*$ e $n \in \mathbb{N}^*$
- $m \ge 1$ e $n \ge 1$

Uma matriz real $m \times n$ é um arranjo retangular com $m \cdot n$ números dispostos em m linhas e n colunas.

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

Exemplo

Tabela com dados referentes à quantidade ideal de calorias em função da idade e peso:

		IDADE		
		25	45	65
PESO	50	2500	2350	1950
	60	2850	2700	2250
	70	3200	3000	2550
	80	3550	3350	2800

$$\mathbf{C} = \begin{bmatrix} 2500 & 2350 & 1950 \\ 2850 & 2700 & 2250 \\ 3200 & 3000 & 2550 \\ 3550 & 3350 & 2800 \end{bmatrix}$$

- tamanho dado por dimensão linha (row) × dimensão coluna (column)
- elementos também chamados entradas ou coeficientes
- dada uma matriz **A**, a_{ij} é um elemento onde:
 - o i é o índice da linha
 - o j é o índice da coluna
 - \circ os índices podem iniciar com valor igual a 0 ou 1
- duas matrizes são iguais se têm mesmo tamanho e as entradas correspondentes são iguais: $\mathbf{A} = \mathbf{B} \Rightarrow a_{ij} = b_{ij} \ \forall \ i,j$

Exemplo

 x_{ij} é o valor do pixel na posição (i,j) de uma imagem monocromática

Matrizes Exemplo

Exemplo

 e_{ij} é o valor do sinal de eco de um radar para o azimute i e um range j

• Matriz nula: aquela onde $a_{ij} = 0 \ \forall i,j$

$$\mathbf{A} = \mathbf{0}_{2 \times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• Matriz linha: possui apenas uma linha, ou seja, m=1

$$\mathbf{A} = \begin{bmatrix} 5.2 & 7.1 & 9.3 \end{bmatrix}$$

• Matriz coluna: possui apenas uma coluna, ou seja, n=1

$$\mathbf{A} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$$

• Matriz quadrada: número de linhas igual ao de colunas (m = n)

$$\mathbf{A} = \begin{bmatrix} 5 & 7 \\ 3 & 0 \end{bmatrix}$$

• Matriz retangular: quantidade diferente de linhas e colunas $(m \neq n)$

$$\mathbf{A} = \begin{bmatrix} 3.7 & 0.2 & 1.9 \\ 5.2 & 7.1 & 9.3 \end{bmatrix}$$

• Matriz diagonal: matriz quadrada onde $a_{ij}=0$ para $i\neq j$

$$\mathbf{A} = \begin{bmatrix} 7.2 & 0 \\ 0 & 4.6 \end{bmatrix}$$

• Matriz identidade: matriz diagonal onde $a_{ij}=1 \ \forall \ i=j$

$$\mathbf{A} = \mathbf{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Matriz triangular inferior: matriz quadrada onde $a_{ij} = 0 \ \forall \ i < j$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 5 & 0 \\ 7 & 8 & 2 \end{bmatrix}$$

• Matriz triangular superior: matriz quadrada onde $a_{ij} = 0 \ \forall \ i > j$

$$\mathbf{A} = \begin{bmatrix} 2 & 7 & 9 \\ 0 & 8 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

• Matriz simétrica: matriz quadrada onde $a_{ij} = a_{ji} \ \forall \ i,j$

$$\mathbf{A} = \begin{bmatrix} 1 & 7 & 8 \\ 7 & 5 & 2 \\ 8 & 2 & 7 \end{bmatrix}$$

Diagonais

- Principal: elementos a_{ij} tais que i = j
- Secundária: elementos a_{ij} tais que i+j=n+1

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Igualdade

Definição

Se \mathbf{A} e \mathbf{B} são matrizes $m \times n$, então $\mathbf{A} = \mathbf{B}$ se, e somente se, seus elementos correspondentes, ou seja:

$$a_{ij} = b_{ij} \ \forall \ 1 \leq i \leq m \ , \ 1 \leq j \leq n$$

Exemplo

Determine os valores de x, y, z e w para que $\mathbf{A} = \mathbf{B}$

$$\mathbf{A} = \begin{bmatrix} x & 2 \\ -1 & y \end{bmatrix}; \mathbf{B} = \begin{bmatrix} 5 & z \\ w & 3 \end{bmatrix}$$

Soma

Definição

Se \mathbf{A} e \mathbf{B} são matrizes $m \times n$, então $\mathbf{C} = \mathbf{A} + \mathbf{B}$ é uma matriz $m \times n$ obtida somando-se os elementos correspondentes

Exemplo

Calcule $\mathbf{C} = \mathbf{A} + \mathbf{B}$ para as matrizes abaixo

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 5 & 4 \end{bmatrix}; \mathbf{B} = \begin{bmatrix} 1 & 3 & 0 \\ -2 & 5 & 3 \end{bmatrix}$$

Produto por escalar

Definição

Se \mathbf{A} é uma matriz $m \times n$ e $\alpha \in \mathbb{R}$ é um valor escalar, então $\mathbf{B} = \alpha \mathbf{A}$ é uma matriz $m \times n$ obtida multiplicando-se os elementos de \mathbf{A} por α , ou seja $b_{ij} = \alpha a_{ij} \ \forall \ i,j$.

Se $\alpha = -1$, então $(-1)\mathbf{A}$ pode ser definida como $-\mathbf{A}$, sendo chamada matriz oposta de \mathbf{A} .

Exemplo

Dadas as matrizes **A** e **B**, calcule α **A** e β **B** onde $\alpha = -2$ e $\beta = 3$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ -1 & 3 \\ 2 & -3 \end{bmatrix}; \mathbf{B} = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 2 & 3 \\ -1 & 3 & 1 \end{bmatrix}$$

Produto matricial

Definição

Seja **A** é uma matriz $m \times p$ e **B** uma matriz $p \times n$ então **C** = **AB** é uma matriz $m \times n$ obtida multiplicando-se cada linha i de **A** por cada coluna j de **B** e somando-se as parcelas

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

WWW.ANDREAMININI.ORG

Produto matricial

Dadas as matrizes A e B, calcule seu produto matricial

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 5 & -4 \\ -3 & 0 & 2 \end{bmatrix}; \mathbf{B} = \begin{bmatrix} 1 & 3 \\ -2 & 2 \\ 2 & -4 \end{bmatrix}$$

Propriedades

•
$$A + B = B + A$$

•
$$(A + B) + C = A + (B + C)$$

•
$$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$$

•
$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

•
$$(A + B) \cdot C = A \cdot C + B \cdot C$$

•
$$\alpha \cdot (\mathbf{B} + \mathbf{C}) = \alpha \cdot \mathbf{B} + \alpha \cdot \mathbf{C}$$

•
$$(\alpha + \beta) \cdot \mathbf{A} = \alpha \cdot \mathbf{A} + \beta \cdot \mathbf{A}$$

•
$$(\alpha \cdot \beta) \cdot \mathbf{A} = \alpha \cdot (\beta \cdot \mathbf{A})$$

•
$$\alpha \cdot (\mathbf{A} \cdot \mathbf{B}) = (\alpha \cdot \mathbf{A}) \cdot \mathbf{B} = \mathbf{A} \cdot (\alpha \cdot \mathbf{B})$$

•
$$A + 0 = A$$

•
$$A - A = 0$$

•
$$0 - A = -A$$

$$\bullet \ \mathbf{A} \cdot \mathbf{0} = \mathbf{0}$$

$$\bullet \ \mathsf{A} \cdot \mathsf{I} = \mathsf{I} \cdot \mathsf{A} = \mathsf{A}$$

•
$$A = B \Longrightarrow A \cdot C = B \cdot C$$

•
$$A = B \iff A \cdot C = B \cdot C$$

• Se
$$A_{2\times 3}$$
 e $B_{3\times 4}$:

$$\circ \exists (\mathbf{A} \cdot \mathbf{B})_{2 \times 4}$$