(h)
$$\cos x = -\frac{1}{2}$$
.

grad. 2, 3.

 $TI - \frac{T}{3} = \frac{2I}{3}$.

(i) $\log_{x} b = \log_{x}(2x3)$
 $= \log_{x} 2 + \log_{x} 3$
 $= \log_{x} 2 + \log_{x} 3$
 $= 14 \quad x^{0.8} = 3$
 $= 1.4 \quad x^{0.8} =$

$$\lambda (a) (b) \frac{d}{dx} (fanx) = \sec^{2}x (b)$$

$$\frac{d}{dx} (x^{4}+1)^{2} = -2(x^{4}+1) \times 4x$$

$$= -8x^{3} (b)$$

$$(b) x^{2}+y^{2}-8x+6y+9 = 0$$

$$x^{2}-8x+1b+y+6y+9 = -9+16+9$$

$$(c) (c) y = \frac{k}{(x+2)^{2}} (x-4)^{2} + (y+3)^{2} = 16$$

$$(d) \frac{d}{dx} (x+2)^{2} + (x+2)^{2}$$

$$\frac{dy}{dx} = -k(x+2)^{2} \times 1 = (x+2)^{2}$$

$$\frac{dy}{dx} = -k(x+2)^{2} \times 1 = (x+2)^{2}$$

$$\frac{dy}{dx} = -k(x+2)^{2} \times 1 = (x+2)^{2}$$
(ii) If $x=2$, $\frac{dy}{dx} = \frac{1}{4}$

$$-\frac{k}{16} = \frac{1}{4}$$

$$-\frac{k}{16} = \frac{1}{4}$$

$$-\frac{k}{16} = \frac{1}{4}$$

$$\frac{dy}{dx} = -\frac{1}{4}$$

$$\frac{dy}{d$$

$$\frac{2}{2} = \frac{1}{2} \cos(2t-1) dt$$

$$= -\frac{1}{2} \cos(2t-1) + C \qquad (1)$$

$$\frac{1}{2} \int_{0}^{1} 2e^{2x} dx$$

$$= \frac{1}{2} e^{2x} \int_{0}^{1} = \frac{1}{2} (e^{2}-1) \qquad (1)$$
(4) $\log_{10} 16 = x \log_{3} 2$

$$\frac{\log_{10} 16}{\log_{10} 27} = \frac{\log_{10} 2}{\log_{10} 3}$$

$$\log_{10} 2^{x} = \frac{\log_{10} 16 \times \log_{10} 3}{\log_{10} 2 \times \log_{10} 3}$$

$$x \log_{10} 2 = \frac{4}{3} \log_{10} 2$$

$$x = \frac{4}{3} \qquad (2)$$

Section B

Question 3

(a)i) Phas coordinates (5,5)

Chas coordinates (5,10)

: PC = 5 units

ii)
$$d = \frac{\int ax, +by, +c}{\sqrt{a^2+b^2}}$$

$$PE = |4(5) + 3(5) - 10|$$

$$\sqrt{4^2 + 3^2}$$

PE = 5 units

PB is common

PC = PE (from (i) and (i))

LBCP= LBEP= 90° (given PELBE and BCLPC)

: ABCP = ABEP (RHS)

clearly y=10 when y=10

4x+3(10)-10=0

4x=-20

3C = -5

: B has woordinates (-5, 10)

BCPE is also a cyclic quadrilateral

$$|y-10| = |4x+3y-10|$$
 $\sqrt{4^2+3^2}$

$$|y-10| = |4x+3y-10|$$

$$5|y-10| = |4x+3y-10|$$

$$5y-50 = 4x+3y-10$$
 or $-5y+50 = 4x+3y-10$
 $4x-2y+40=0$ $4x+8y-60=0$
 $2x-y+20=0$ $x+2y-15=0$

(b)
$$\sum_{n=3}^{8} (2 \times 3^{n} - 2n) = 2 \times 3^{3} - 2(3) + 2 \times 3^{4} - 2(4) + 2 \times 3^{5} - 2(5) + 2 \times 3^{6} - 2(6)$$

 $+ 2 \times 3^{7} - 2(7) + 2 \times 3^{8} - 2(8)$
 $= 48 + 154 + 476 + 1446 + 4360 + 13106$
 $= 19590$

Question 4

(a) i)
$$\sin 60 = \frac{AP}{8}$$

$$AP = 8\left(\frac{\sqrt{3}}{2}\right)$$

$$QC = \frac{4\sqrt{3}}{\left(\frac{1}{3}\right)}$$

(b) i)
$$P = \frac{4}{52}$$

11)
$$P = \frac{26}{52}$$

red Kings are

(iii)
$$P = \frac{28}{52}$$
 OR $P = \frac{4}{52} + \frac{26}{52} - \frac{2}{5}$

$$\Delta = (-4)^2 - 4(3)(5)$$

$$\Delta = -44$$

(d)
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9} = \lim_{x \to 3} \frac{(x-3)(x-2)}{(x-3)(x+3)}$$

2007 THSC Mathematics: Solutions—Section C

- 5. (a) For the series $486 + 324 + 216 + 144 + \dots$
 - (i) Which term is $\frac{2048}{243}$? (Working must be shown.)

2

Solution:
$$r = \frac{324}{486} = \frac{2}{3}, \quad a = 486.$$

$$u_n = 486 \times (\frac{2}{3})^{n-1} = \frac{2048}{243},$$

$$(\frac{2}{3})^{n-1} = \frac{1024}{59049},$$

$$= (\frac{2}{3})^{10}.$$

$$n - 1 = 10,$$

$$n = 11.$$

- : It is the 11th term.
- (ii) Does this series have a limiting sum? Give a reason for your answer.

Solution: Yes, |r| < 1.

- (b) A polygon has 25 sides, the lengths of which form an arithmetic sequence.
 - (i) Find an expression for the perimeter in terms of the shortest side and the common difference.

 $\lceil 1 \rceil$

3

1

Solution: Put
$$a =$$
 shortest side,
 $d =$ common difference,
then perimeter, $P = \frac{25}{2}(2a + 24d)$,
 $= 25a + 300d$.

(ii) The perimeter of the polygon is 1100 cm and the longest side is 10 times the length of the shortest side. Find the length of the shortest side of the polygon and the common difference of the sequence.

Solution:
$$10a = a + 24d,$$

$$9a = 24d,$$

$$a = \frac{8d}{3} - 1$$

$$1100 = 25a + 300d - 2$$
Sub 1 in 2:
$$1100 = \frac{200d}{3} + 300d,$$

$$3300 = 1100d,$$

$$d = 3,$$

$$a = 8.$$

... The shortest side is 8 cm and the common difference is 3 cm.

(i) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

2

Solution: $\frac{dy}{dx} = -xe^{-x^2/2}.$ $\frac{d^2y}{dx^2} = -e^{-x^2/2} - x\left(-xe^{-x^2/2}\right),$ $= e^{-x^2/2}(x^2 - 1).$

(ii) For what values of x is the curve of $y = e^{-\frac{x^2}{2}}$ concave down?

1

(d) (i) Find the point of intersection of y = 2 and $y = e^x$.

1

Solution: Equating ys, $e^x = 2 \implies x = \ln 2$. \therefore Intersection is at $(\ln 2, 2)$.

(ii) Indicate, by shading on a diagram, the region in the first quadrant bounded by the y-axis, the line y = 2, and the curve $y = e^x$.

1

Solution: $\begin{array}{c}
y \\
2 \\
\hline
0 \\
\ln 2
\end{array}$

(iii) Use Simpson's Rule with 3 function values, to calculate the volume of the solid generated when the region in part (ii) is rotated about the y-axis (answer to 2 d.p.)

2

Solution: Volume = $\pi \int_{1}^{2} x^{2} dy$, $y \mid 1 \mid 1.5 \mid 2$ = $\pi \int_{1}^{2} (\ln y)^{2} dy$, $\approx \pi \times \frac{1}{6} (0 \times 1 + 0.1644 \times 4 + 0.4805 \times 1)$, $\approx 0.60 (2 \text{ dec. pl.})$

1

1

In the diagram PQ = PR, XM = XR and $PQ \parallel MS$. By letting $\angle MRX = \alpha^{\circ}$, show that $MR \perp QR$, giving full reasons.

(XM = XR)Solution: $\triangle XMR$ is isosceles $X\widehat{M}R = M\widehat{R}X = \alpha^{\circ}$ (base \angle s of isosceles $\triangle XMR$) $\triangle PQR$ is isosceles (PQ = PR) $P\widehat{Q}R = Q\widehat{R}P = \beta^{\circ}$ (base \angle s of isosceles $\triangle PQR$) $M\widehat{S}R = P\widehat{Q}R = \beta^{\circ}$ (corresponding $\angle s$, $PQ \parallel MS$) $180^{\circ} = 2\alpha^{\circ} + 2\beta^{\circ}$ $(\angle \text{ sum of } \triangle MSR)$ $\therefore \alpha^{\circ} + \beta^{\circ} = 90^{\circ},$ i.e. $M\widehat{R}S = 90^{\circ}$. $\therefore MR \perp QR.$

(b) The diagram below shows part of the function $f(x) = \frac{-2}{1+x^2}$.

(i) Find the coördinates of point P on the diagram.

Solution: f(0) = -2. $\therefore P(0, -2)$.

(ii) Prove that f(x) is an even function.

Solution: $f(-x) = \frac{-2}{1 + (-x)^2},$ = $\frac{-2}{1 + x^2},$ = f(x). (iii) Copy the diagram into your answer booklet and complete the curve.

1

1

1

1

1

2

(iv) State the range of this function.

Solution: $-2 \le f(x) < 0$.

- (c) The volume V litres, of a tank after t minutes is given by $V = 60 + 4t t^2$.
 - (i) At what time(s) will the tank be empty?

Solution: $V = 60 + 4t - t^2$, P -60 $= 60 + 10t - 6t - t^2$, S 4 = 10(6+t) - t(6+t), F 10, -6 = (10-t)(6+t), = 0 when t = -6, 10.

- \therefore The tank will be empty after 10 minutes (and was empty 6 minutes before observation started, although this is not required by the question).
- (ii) Find an expression for the rate at which the volume is changing.

Solution: $\frac{dV}{dt} = 4 - 2t$.

(iii) Find the maximum volume in the tank.

Solution: $\frac{dV}{dt} = 0 \text{ when } t = 2.$ $\frac{d^2V}{dt^2} = -2.$ $\therefore \text{ Max. volume (when } t = 2) = 60 + 8 - 4,$ = 64 litres.

(iv) Find the rate when t=4 and comment on your answer.

Solution: When t = 4, $\frac{dV}{dt} = 4 - 8 = -4$. This means the tank is emptying at $4 L/\min$.

(i)
$$\frac{dl}{dt} = 5000 \text{ ke}^{kt}$$
$$= k \left[5000 \text{ e}^{kt} \right]$$
$$\frac{dl}{dt} = k l$$

(ii)

$$t=1$$
 $P=5000e^{kt}$
 $P=6500$ $P=5000e^{kt}$
 $P=6500=5000e^{kt}$
 $P=6500=5000e^{kt}$
 $P=6500=5000e^{kt}$
 $P=6500=5000e^{kt}$
 $P=6500=5000e^{kt}$
 $P=6500=5000e^{kt}$

$$t = \frac{1}{0.26} lu3$$

(i)
$$\sin 2\pi c = 2\cos x$$

$$2\cos \left[\sin x - 1\right] = 0$$

$$\mathcal{L} = \frac{T}{2}, \frac{3T}{2}, \qquad \mathcal{L} = \frac{T}{2}$$

$$\mathcal{L} = \frac{\pi}{2}, \frac{3\pi}{2}$$

$$\begin{array}{c} (ii) \\ 2 \\ \hline \\ 0 \\ \hline \\ -1 \\ \hline \\ -2 \\ \hline \end{array}$$

$$= \left[-\frac{1}{2}\cos 2x - 2\sin x\right]^{\frac{3\pi}{2}}$$

$$= \left[\left(-\frac{1}{2} \cos 3\pi - 2 \sin \frac{3\pi}{2} \right) - \left(-\frac{1}{2} \cos \pi - 2 \sin \frac{\pi}{2} \right) \right]$$

$$= \left[-\frac{1}{2}(-1) - 2(-1)\right] + \frac{1}{2}(-1) + 2$$

$$y = x^3(2-x)$$
 (b)

(i)
$$y = 2x^3 - x^4$$
 3
 $\frac{dy}{dx} = 6x^2 - 4x^3 = 0$

$$(0,0) \quad (3/2,27/6)$$

(ii)
$$\frac{d^2y}{dx^2} = 12x - 12x^2$$

X	4	0	7
4"	J	0	+

Change of concaulty

When
$$x=\frac{3}{2}$$
, $y''=-9 < 0$

$$\Rightarrow$$
 Max T.P. at $(\frac{3}{2}, \frac{27}{16})$

(i) Solve simultaneously (or simply substitute pts)

$$\Rightarrow 2-x=x^{2}(2-x)$$

$$(2-x)\left[1-x^3\right]=0$$

$$\int_{y=0}^{\infty} \left(\begin{array}{c} x=1 \\ y=1 \end{array} \right)$$

(ii) grad. tangent at A (1,1)

$$\frac{dy}{dx} = 6x^2 - 4x^3$$

At x=1, grad . = 2

grad tangent at B(2,0)

$$\frac{dy}{dx} = 6x^2 - 4x^3$$

At
$$x=2$$
, grad = -8

(iii)
$$63^{\circ} + A\hat{C}B = 97^{\circ}$$

= 96-64

9 (conto) (b) (1) AB = 240 0. DC = 170 0.

(11. let 70 + 170 0 + 70 < 240 0.

140 4 70 0.

 $0 > \frac{140}{70}$ 0 > 2.

: 2 < 0 \$ TT

(11) Canados
$$f(a) = \sqrt{3}x - 2 \sin x$$
, $0 \le x \le \pi$.

$$f''(a) = \sqrt{3} - 2 \cos x$$
.

Men for marphin $f(a) = \sqrt{3} - 2 \cos x = 0$

$$2 \cos x = \sqrt{3}$$

$$4x = \frac{\sqrt{3}}{4}$$

$$x = \frac{\pi}{6}$$

$$= \frac{\sqrt{3}\pi}{6} - 2 \sin \frac{\pi}{6}$$

$$= \frac{\sqrt{3}\pi}{6} - 2 \sin \frac{\pi}{6}$$

$$= \frac{\sqrt{3}\pi}{6} - 1$$

Jest $f''(\overline{f}) = 2x \sin \frac{\pi}{6}$

$$= 2x \sin \frac{\pi}{6}$$

$$Q_{10} \cdot G_{2} \qquad (1) \qquad L = \sqrt{x^{2} + y^{2}}$$

(11)

A3.

$$a^{\gamma} = x^{2}$$
 $a^{\gamma} = 12x$
 $a^{\gamma} = 12x$
 $a = \sqrt{12}x$
 $a = \sqrt{12}x$
 $a = \sqrt{12}x$

Using. By thay was
$$a^{2} = x^{2} - (6 - x)^{2}$$

$$= x^{2} - (36 - 12x + x^{2})$$

$$a^{2} = 12x - 36.$$

$$a = \sqrt{12x - 36}.$$

$$= 2\sqrt{3x - 9}.$$

By considering areas.

$$2A_{1} + A_{2} + A_{3} = 72.$$

$$2A_{1} + A_{2} + A_{3} = 72.$$

$$A_{2} = 2\sqrt{3x}$$

$$A_{3} = 2\sqrt{3x}$$

$$A_{4} = 2\sqrt{3x}$$

$$A_{5} = 2\sqrt{3x}$$

$$A_{7} = 2\sqrt{3x}$$

$$A_{7} = 2\sqrt{3x}$$

$$A_{8} = 2\sqrt{3x}$$

$$A_{1} = 2\sqrt{3x}$$

$$A_{2} = 2\sqrt{3x}$$

$$A_{3} = 2\sqrt{3x}$$

$$A_{4} = 2\sqrt{3x}$$

$$A_{5} = 2\sqrt{3x}$$

$$A_{7} = 2\sqrt{3x}$$

$$A_{7} = 2\sqrt{3x}$$

$$A_{8} = 2\sqrt{3x}$$

$$A_{1} = 2\sqrt{3x}$$

$$A_{2} = 2\sqrt{3x}$$

$$A_{3} = 2\sqrt{3x}$$

$$A_{4} = 2\sqrt{3x}$$

$$A_{5} = 2\sqrt{3x}$$

$$A_{7} = 2\sqrt{3x}$$

$$A_{7} = 2\sqrt{3x}$$

$$A_{8} = 2\sqrt{3x}$$

$$A_{1} = 2\sqrt{3x}$$

$$A_{2} = 2\sqrt{3x}$$

$$A_{3} = 2\sqrt{3x}$$

$$A_{4} = 2\sqrt{3x}$$

$$A_{5} = 2\sqrt{3x}$$

$$A_{7} = 2\sqrt{3x}$$

$$A_{7} = 2\sqrt{3x}$$

$$A_{7} = 2\sqrt{3x}$$

$$A_{8} = 2\sqrt$$

$$A_{1} = \frac{2y}{2}$$

$$A_{2} = 2\sqrt{3x-9} (b-x)$$

$$= (b-x)\sqrt{3x-9}$$

$$A_{3} = \frac{1}{2} \times b \times [(2-y)$$

$$+ 12 - 2\sqrt{3x-9}$$

$$\therefore xy + 6\sqrt{3x-9} - x\sqrt{3x-9} + 72 - 3y - 6\sqrt{3x-9} = 72.$$

$$\therefore xy - x\sqrt{3x-9} + 72 - 3y = 72.$$

$$y(x-3) = x\sqrt{3}\sqrt{x-9}$$

$$y = \frac{x\sqrt{3}\sqrt{x-3}}{2-3}$$

$$\therefore y = \frac{\sqrt{3}}{\sqrt{x-3}}$$

OR Maing Pythagoras

$$y^{2} = 36 + (y - 2\sqrt{3x-9})^{2}$$

$$y^{2} = 36 + y^{2} - 4y\sqrt{3x-9} + 4(3x-9)$$

$$y^{2} = 36 + y^{2} - 4y\sqrt{3x-9} + 12x - 36$$

$$4y\sqrt{3x-9} = 12x$$

$$y\sqrt{3x-9} = 3x$$

$$y = \frac{3x}{\sqrt{3x-9}}$$

 $y = \sqrt{3}x$ $\sqrt{x-3}$

then.
$$\frac{4}{6} = \frac{x}{2\sqrt{3}x-9}$$

$$\frac{4}{\sqrt{3}\sqrt{x-3}}$$

$$\frac{3x}{\sqrt{3}\sqrt{x-3}}$$

$$\frac{x\sqrt{3}}{\sqrt{3}\sqrt{3}\sqrt{3}}$$

$$\begin{array}{rcl}
(111) & L^{2} &= & \chi^{2} & + & \chi^{2} \\
&= & \chi^{2} & + & (\sqrt{3} - \chi)^{2} \\
&= & \chi^{2} & + & 3\chi^{2} \\
&= & \chi^{2} & (\chi - 3) & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & + & 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & +& 3\chi^{2} \\
&= & \chi^{3} & -& 3\chi^{2} & +& 3\chi^{2} \\
&= & \chi^{3} & -& \chi^{3} & -& \chi^{3} & -& \chi^{3} \\
&= & \chi^{3} & -& \chi^{3} & -& \chi^{3} & -& \chi^{3} \\
&= & \chi^{3} & -& \chi^{3} & -& \chi^{3} & -& \chi^{3} \\
&= & \chi^{3} & -& \chi^{3} & -& \chi^{3} & -& \chi^{3} \\
&= & \chi^{3} & -& \chi^{3} & -& \chi^{3} & -& \chi^{3} \\
&= & \chi^{3} & -& \chi^{3} & -& \chi^{3} & -& \chi^{3} \\
&= & \chi^{3} & -& \chi^{3} & -& \chi^{3} & -& \chi^{3} \\
&= & \chi^{3} & -& \chi^{3} & -& \chi^{3} & -& \chi^{3} \\
&= & \chi^{3} & -& \chi^{3} & -& \chi^{3} & -& \chi^{3} \\
&= & \chi^{3} & -& \chi^{3} & -& \chi^{3} & -& \chi^{3} \\$$

$$\frac{d(h^{2}) = (x-3)^{3}x^{2} - x^{3}}{(x-3)^{2}}$$

$$= \frac{3x^{3} - 9x^{2} - x^{3}}{(x-3)^{2}}$$

$$= \frac{2x^{3} - 9x^{2}}{(x-3)^{2}}$$

Let
$$d(L^{r}) = 0$$
 : $2x^{3} - 9x^{r} = 0$
 $x^{r}(2x - 9) = 0$
 $x = 0, \frac{9}{2}$

Clearly
$$z\neq 0$$
: at $z=\frac{q}{a}$ $L^{2}=\frac{(\frac{q}{2})^{3}}{\frac{q}{L}-3}$

$$=\frac{q^{3}}{\frac{3}{L}\times 8}$$

$$=\frac{3\times q^{2}}{4}$$

Text

1 x	4	42	5	
de 1º	-16	0	25/4	\
And the Control of th	<u> </u>	\$ According to the second seco	1	~

.:. L= 9/3 is a MINIMUM.