

b)
$$C = \frac{6048 \cdot 10^{11}}{2163 \cdot 10^{11}} = 0.00277$$

C) 36 down.
 $36^{8} = 2 \cdot 8211 \cdot 10^{2}$
 $2 \cdot 8211 \cdot 10^{2} = 32 \cdot 6716 \cdot 0005 > 16 \text{ downs on onwarge}$
 $C \cdot 6048 \cdot 10^{11} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604 \cdot 10^{12} = 0.21444$
 $C \cdot 7 \cdot 604$

5. 70%.
$$C/C++$$
 $C=^nGage and we know a C/C++$

60%. Forthan $F=^n$ // Forthan?"

50%. Booth

 $F(C)=0,T$
 $F(F)=0,G$
 $F(A)=G(F)=1-F(F)=0,G$
 $F(A)=G(F)=0,F$
 $F(C)=0,F$
 F

