- 1. Which of the following equations represents the plane passing through (-5, 2, 3) and orthogonal to the line (2 + t, -7t, -11 + 2t)?
 - (a) -5(x-1) + 2(y+7) + 3(z-2) = 0
 - (b) x 7y + 2z = -13
 - (c) x 7y + 2z = -3
 - (d) x + y + z = 1
- 2. An equation of the tangent line to the curve $c(t) = (t^2 1, \cos(t^2), t^4)$ at the point $(\pi - 1, -1, \pi^2)$ is:
 - (a) $(2\sqrt{\pi}t \pi 1, -2t, 4\pi\sqrt{\pi}t 3\pi^2)$
 - (b) $(2\sqrt{\pi}t + \pi 1, -2t, 4\pi\sqrt{\pi}t + \pi^2)$
 - (c) $(2\sqrt{\pi}t \pi 1, -1, 4\pi\sqrt{\pi}t 3\pi^2)$
 - (d) $(2\sqrt{\pi}t + \pi, -1, 4\pi\sqrt{\pi}t + \pi^2)$
- 3. Match the following functions with their level curves f(x,y) = k, $k = 1, 2, 3, 4, \dots$
 - (1) $f(x,y) = (x^2 + y^2)^{1/2}$
- (i) unequally spaced concentric circles
- (ii) unequally spaced lines
- (2) f(x,y) = 4 3x + 2y(3) $f(x,y) = 2x^2 + 2y^2$
- (iii) concentric ellipses
- (4) $f(x,y) = x^2 + 2y^2 + 1$
- (iv) equally spaced concentric circles
- (a) 1-(iv), 2-(ii), 3-(i), 4-(iii)
- (b) 1-(i), 2-(ii), 3-(iv), 4-(iii)
- (c) 1-(iii), 2-(ii), 3-(i), 4-(i)
- (d) 1-(ii), 2-(ii), 3-(iv), 4-(iii)
- 4. An equation of the tangent plane to the surface $x^2 + y^2 + xy \sin z 3 = 0$ at the point $(1, -2, \frac{\pi}{2})$ is:
 - (a) $y + z = 1 + \frac{\pi}{12}$
 - (b) $3y + 2z = 6 + \frac{\pi}{2}$
 - (c) y = -2
 - (d) 3y = 2
- 5. Consider the functions $f(u,v) = e^{uv}$ and g(x,y) = (x+y,x-y). The derivative matrix of $f \circ g$ at (x, y) = (1, 1) is equal to:
 - (a) $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
 - (b) [0 1]
 - (c) $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$
 - (d) [2 -2]

- 6. The directional derivative of $f(x, y, z) = \frac{1}{x^2 + y^2 + z^2}$ at the point (2, 3, 1) in the direction of $\mathbf{v} = 2 \mathbf{i} + \mathbf{j} 2 \mathbf{k}$ is:
 - (a) $-\frac{5}{21\cdot14}$
 - (b) $\frac{5}{21\cdot14}$
 - (c) $-\frac{5}{7\cdot14}$
 - (d) $\frac{5}{7.14}$
- 7. The length of the curve $c(t) = t \mathbf{i} + \ln t \mathbf{j} + 2\sqrt{2t} \mathbf{k}$ for $1 \le t \le 2$ is:
 - (a) $2 + \ln 2$
 - (b) $\frac{19}{2} + \frac{\ln^3 8}{2}$
 - (c) $1 + \ln 2$
 - (d) 2
- 8. Which of the following implies the vector field $F = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$ is not a gradient?
 - (a) $\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$, $\frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}$ and $\frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}$
 - (b) $\nabla \times F = 0$
 - (c) $\int_{C_1} F \cdot d\mathbf{s} = \int_{C_2} F \cdot d\mathbf{s}$, where C_1 and C_2 are any two curves with common start point and common end point.
 - (d) $\int_C F \cdot d\mathbf{s} = 1$, where C is a closed curve.
- 9. The volume of the solid below the surface $z=(xy)^2\cos(x^3)$ and above the region R in the xy-plane given by $R=[0,\sqrt[3]{\frac{\pi}{4}}]\times[0,1]$ is equal to:
 - (a) $\frac{\sqrt{2}}{18}$
 - (b) $\frac{1}{18}$
 - (c) $\frac{\sqrt{2}}{6}$
 - (d) $\frac{\sqrt{2}}{12}$
- 10. The value of the integral $\int_0^4 \int_{y/2}^2 e^{x^3} y \ dx \ dy$ is:
 - (a) $-\frac{2}{3}(e^8+1)$
 - (b) $\frac{2}{3}(e^8-1)$
 - (c) $\frac{2}{3}e^{64}$
 - (d) $\frac{2}{3}e^{64} \frac{2}{3}$
- 11. The value of the integral $\int \int_D \cos(x^2 + y^2) dx dy$, where D is the region defined by $x^2 + y^2 \le 1$, is:
 - (a) cannot be evaluated
 - (b) $\pi \sin 1$
 - (c) $2\pi \sin 1$
 - (d) π
- 12. The value of the integral $\int \int \int_W \sqrt{x^2 + y^2 + z^2} \ dx \ dy \ dz$, where W is the solid bounded by $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 9$, is:
 - (a) 65π
 - (b) $5\pi^2$
 - (c) $\frac{76}{3}\pi$
 - (d) 10π

- 13. The work done by the force field $F(x, y, z) = x \mathbf{i} + y \mathbf{j}$ when a particle is moved along the path $(3t^2, t, 1)$ from (12, 2, 1) to (3, 1, 1) is equal to:
 - (a) 69
 - (b) 70
 - (c) -70
 - (d) -69
- 14. Consider the surface given by $(3\cos\theta\sin\phi, 2\sin\theta\sin\phi, \cos\phi)$, $\theta \in [0, 2\pi]$ and $\phi \in [0, \pi]$. An equation for the tangent plane to this surface at the point $(\frac{3}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$ is given by:
 - (a) $x + y = -\frac{4}{\sqrt{2}}$
 - (b) $x + \frac{3}{2}y + z = 3\sqrt{2}$
 - (c) $x + 3z = 3\sqrt{2}$
 - (d) y = 0
- 15. The area of the cone $z^2=x^2+y^2$ lying in the region of space defined by $x\geq 0,\,y\geq 0$ and $0\leq z\leq 1$ is:
 - (a) $\frac{\sqrt{2}\pi}{2}$
 - (b) $\frac{\sqrt{2}\pi}{4}$
 - (c) $\frac{\pi}{4}$
 - (d) $\sqrt{2}$
- 16. The surface integral $\int \int_S F \cdot d\mathbf{S}$, where $F = \mathbf{i} + \mathbf{j} + z(x^2 + y^2)^2 \mathbf{k}$ and S is the surface $x^2 + y^2 = 1$, $0 \le z \le 1$, is equal to:
 - (a) π
 - (b) $\frac{14}{45}$
 - (c) 0
 - (d) 2π
- 17. The value of $\int_C (2x^3 y^3)dx + (x^3 + y^3)dy$, where C is the positively oriented unit circle centered at the origin, is:
 - (a) $\frac{3\pi}{2}$
 - (b) 0
 - (c) $\frac{1}{2}$
 - (d) π
- 18. Let D be a region in the plane and ∂D the positively oriented boundary of D. Which of the following expressions does not represent the area of D?
 - (a) $\int_{\partial D} (y^2 1) dx + (xy^2) dy$
 - (b) $\int_{\partial D} (\frac{y^3}{3} y) dx + (xy^2) dy$
 - (c) $\int_{\partial D} x \ dx + (x+y)dy$
 - (d) $\int_{\partial D} x \ dy$
- 19. The value of $\int \int_S (\nabla \times F) \cdot d\mathbf{S}$, where S is $x^2 + y^2 + z^2 = 9$, $z \ge 0$ with normal in the positive z direction and $F = x\mathbf{i}$, is:
 - (a) 0
 - (b) $9\pi + \frac{9}{2}$
 - (c) 9π
 - (d) 18π

- 20. The flux of $F = 3xy^2\mathbf{i} + 3x^2y\mathbf{j} + z^3\mathbf{k}$ out of the sphere $x^2 + y^2 + z^2 = 1$ is equal to:

 - (a) $\frac{6\pi}{5}$ (b) $\frac{12\pi}{5}$ (c) $\frac{4\pi}{3}$

 - (d) 0