

DUBLIN CITY UNIVERSITY

SEMESTER 1 IN-CLASS TEST 2016/2017

MODULE: EE458 – Control Systems Analysis

PROGRAMME(S):

ME B.Eng. in Mechatronic Engineering

ECE BEng Electronic & Computer Engineering

EE BEng in Electronic Engineering

YEAR OF STUDY: 4

EXAMINER(S):

Jennifer Bruton (Ext:5034)

Prof. Matilde Santos Penas

Prof. Gerard Parr

TIME ALLOWED: 1 Hour

INSTRUCTIONS: Answer Question 1.

PLEASE DO NOT TURN OVER THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO.

The use of programmable or text storing calculators is expressly forbidden. Please note that where a candidate answers more than the required number of questions, the examiner will mark all questions attempted and then select the highest scoring ones.

INSTRUCTIONS FOR COMPUTER-BASED WORK

IMPORTANT: PLEASE READ THIS SHEET CAREFULLY BEFORE

COMMENCING THIS EXAM.

GENERAL:

- Set up your own directory (called your student ID number) in c:\temp as saving to c:\temp is faster than saving to the USB flash drive.
- All m-files, script files, SIMULINK files, plot files and diary files (with extension txt) must be saved to the network drive Q:\ and to the USB flash drive.
- Save your work regularly. No credit is given for work that has been 'lost'.
- At the end of the exam, it is your responsibility to ensure that all your work has been saved successfully to the network drive Q:\ and to the USB flash drive.

SAVING PLOTS:

- The plot must be generated to your satisfaction in the Figure window. Do not minimize this window.
- Save your plot as type *.fig only. Other formats are not acceptable.
- **N.B.** Make sure that you save your plot to c:\temp\... Make sure that you use a unique name for the plots.

DIARY FILES:

- It is recommended that you use a separate diary file for each part of a question.
- To open/start a diary file, at the MATLAB Command Prompt, type:
 - >> diary c:\temp\IDnum\diary1.txt
 - >> diary on
- To close a diary file, at the MATLAB Command Prompt, type:

>> diary off

USEFUL MATLAB FUNCTIONS:

abs	acos	angle	asin	atan	axis
bandwidth	bode	break	c2d	cd	clear
clf	close	conv	cos	det	eig
else	evalfr	exit	exp	feedback	figure
find	for	function	grid	help	if
imag	impulse	inv	isstable	label	length
log	log10	logspace	lsim	margin	max
mean	min	norm	nyquist	ones	open
ode45	pi	pinv	plot	pole	poly
print	pzmap	quit	rand	rank	real
residue	rlocfind	rlocus	roots	round	semilogx
series	sign	sim	sin	size	sqrt
SS	ssdata	step	subplot	sum	tan
text	tf	tf2ss	tfdata	title	while
who	xlabel	ylabel	zeros	zgrid	zpk
zpkdata	zoom				

• **Please note:** the use of stepinfo(), sisotool(), rltool(), sgrid() or any of their related functions is not allowed as part of this assessment.

[See Appendix for applicable formulae]

Q 1(a) [6 Marks]

A closed-loop control system is described by the block diagram in Figure Q1.

i igaio q i

(i) Use the fact that the closed-loop transfer function (CLTF) is given as:

$$T_{Generic}(s) = \frac{C(s)G(s)}{1 + C(s)G(s)H(s)}$$

for a generic system with G(s) and C(s) in the forward path and H(s) in the feedback path to find the CLTF, T(s) = Y(s)/R(s) for the system in **Figure Q1**.

(ii) Find the sensitivity, in terms of the Laplace variable of the closed-loop transfer function to variations in the gain, k.

Q 1(b) [8 Marks]

- (i) Derive an expression of the reference input error signal, $E_R(s)$, in terms of T(s) and the R(s) signal in **Figure Q1**.
- (ii) Derive an expression of the noise error signal, $E_N(s)$, in terms of the N(s) signal in **Figure Q1**. Arrange this expression in terms of T(s) and N(s).
- (iii) Present the Final Value Theorem formula for the steady-state error. Design the gain, k, to give a steady-state error of **1.8** when r(t) = 5u(t) and n(t) = u(t).

Q 1(c) [3 Marks]

For the system in **Q 1(a)** with the value of k found in **Q 1(b)**, use **MATLAB** commands to:

- (i) predict the steady-state error solely due to a reference input, r(t) = 5u(t)
- (ii) predict the steady-state error solely due to a disturbance input, n(t) = u(t)
- (iii) predict the steady-state output when the inputs of Q 1(b)(iii) are applied

Q 1(d) [8 Marks]

- (i) Use **SIMULINK** with the layout given in **Figure Q1** to simulate the system for the value of k designed in **Q 1(b)** in response to both inputs described in **Q 1(b)(iii)** for 125 seconds; the 's' block should be implemented using the **SIMULINK** d/dt block. The error response signal should be captured with **SIMULINK** blocks.
- (ii) Plot the output response signal and the reference input signal on the same plot and then save this plot.
- (iii) Use **MATLAB** to measure the steady-state error value and the steady-state output value. Do these values match the values designed for in **Q 1(b)(iii)** and predicted in **Q 1c(iii)**? Briefly comment on why they do/do not match.

[End of Question 1]

APPENDIX

Please note: the use of stepinfo(), sisotool(), rltool(), sgrid() or any of their related functions is not allowed as part of this assessment.

Selection of Laplace and Z-Transforms

f(t)	F(s)	F(z),	
	1	T	
1		$\overline{1-z^{-1}}$	
	1	Tz^{-1}	
t	$\frac{\overline{s^2}}{}$	$\overline{(1-z^{-1})^2}$	
	2	$T^2z^{-1}(1+z^{-1})$	
ℓ^2	$\frac{\overline{s^3}}{s^3}$	$\frac{1}{(1-z^{-1})^3}$	
	1	1	
e^{-aT}	$\frac{\overline{s+a}}{s+a}$	$\overline{1 - e^{-aT}z^{-1}}$	
	1	$Te^{-aT}z^{-1}$	
te ^{-aT}	$\overline{(s+a)^2}$	$\frac{1 - e^{-aT}z^{-1}}{Te^{-aT}z^{-1}}$ $\frac{Te^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$	

Transient Performance formulae - 1st order system:

$$s = -a$$

$$\tau = \frac{1}{a}, \quad t_s = \frac{4}{a} \quad t_r = \frac{2.2}{a}$$

Transient Performance formulae - 2nd order under-damped system:

$$s=-\zeta\omega_n\pm j\omega_n\sqrt{1-\zeta^2}$$
% $Overshoot=100e^{rac{-\pi\zeta}{\sqrt{1-\zeta^2}}}$ %, $t_p=rac{\pi}{\omega_n\sqrt{1-\zeta^2}}$
 $t_s=rac{4}{\zeta\omega_n}$, $t_r=rac{\pi- an^{-1}\left(\sqrt{1-\zeta^2}/\zeta
ight)}{\omega_n\sqrt{1-\zeta^2}}$

2nd order under-damped transient performance – frequency domain formulae:

$$\begin{split} \textit{Phase Margin} &= tan^{-1} \left[2\zeta \left\{ \frac{1}{\left(4\zeta^4 + 1 \right)^{1/2} - 2\zeta^2} \right\}^{1/2} \right] \\ \textit{M}_P &= \frac{1}{2\zeta\sqrt{1 - \zeta^2}} \\ \omega_b &= \frac{4}{\zeta t_s} \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}} \\ \omega_b &= \frac{\pi}{t_p \sqrt{1 - \zeta^2}} \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}} \end{split}$$

[End of Appendix]

[End of Examination]