# Chapter 3: Estimation of Parameters

Mathematical Statistics

UIC

April 8, 2024

Chapter 3: Estimat

April 8, 2024 1 /

### Statistical Inference

Statistical inference, or "learning", is the process of using data to infer the distribution that generated the data.

### Basic Problem

We observe  $X_1, \ldots, X_n \sim \pi$ . We want to infer (or estimate, or learn)  $\pi$  or some features of  $\pi$  such as its mean.

### Definition 3.1.1

A statistical model is a set of distributions or a set of densities (or PMFs)  $\mathcal{F}$ .

- $lack {f O}$  A parametric model is a set  ${\cal F}$  that can be parameterized by a finite number of parameters.
- ${\bf @}$  A nonparametric model is a set  ${\cal F}$  that cannot be parameterized by a finite set of parameters.

### Overview

- Fundamental Concepts of Modern Statistical Inference
  - Statistical Models
  - Statistical Inference
  - Summary
- 2 The Method of Moments
- 3 The Method of Maximum Likelihood
- 4 Confidence Intervals from MLEs
- 5 Efficiency and the Cramer-Rao Lower Bound

### Example 3.1.2

• If assume the data come from a normal distribution, then the model is

$$\mathcal{F} = \left\{ \pi \left( x | \mu, \sigma^2 \right) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left( -\frac{(x-\mu)^2}{2\sigma^2} \right), \quad \mu, \sigma^2 \in \mathbb{R} \right\},\,$$

which is a two-parameter model. In  $\pi\left(x|\mu,\sigma^2\right)$ , x is a possible value of the random variable, whereas  $\mu$  and  $\sigma^2$  are parameters.

A nonparametric model:

$$\mathcal{F}_{\mathsf{all}} = \{ \mathsf{all} \; \mathsf{PDFs} \; \}$$

We will focus on parametric models. In general, a parametric model takes the form

$$\mathcal{F} = \{ \pi(x|\theta), \quad \theta \in \Theta \}$$

where  $\theta$  is an unknown parameter and  $\Theta$  is the parameter space.

Remark:  $\theta$  can be a vector, for instance,  $\theta = (\mu, \sigma^2)$ 

### Statistical Inference

Given a parametric model,  $\mathcal{F} = \{\pi(x|\theta), \quad \theta \in \Theta\}$ , the problem of inference is then to estimate (to learn) the parameter  $\theta$  from the data.

Almost all problems in statistical inference can be identified as being one of three types: **point estimates**, **confidence intervals**, and **hypothesis testing**.

Three types of statistical inferences:

• Point Estimation refers to providing a single "best guess."

Suppose  $X_1, \ldots, X_n \sim \pi(x|\theta)$ , where  $\pi(x|\theta) \in \mathcal{F}$ . A point estimator  $\hat{\theta}_n$  of a parameter  $\theta$  is some function of  $X_1, \ldots, X_n$ :

$$\hat{\theta}_n = f(X_1, \dots, X_n)$$

Remember:  $\theta$  is fixed but unknown,  $\hat{\theta}_n$  is random since it depends on  $X_1, \dots, X_n$ . We say that  $\hat{\theta}_n$  is **unbiased** if

$$\mathbb{E}\left[\hat{\theta}_n\right] = \theta$$

IIC Chapter 3: Estimation of Parameters

Anril 8 2024 5 / 4

# **Summary**

- ullet A parametric model is a set  ${\cal F}$  that can be parameterized by a finite number of parameters.
  - General parametric model:

$$\mathcal{F} = \{ \pi(x|\theta), \quad \theta \in \Theta \}$$

- ullet A nonparametric model is a set  ${\cal F}$  that cannot be parameterized by a finite set of parameters.
- Almost all problems in statistical inference can be identified as being one of three types:
  - Point Estimates
  - ► Confidence Intervals
  - ► Hypothesis Testing

### Cont'd

• A  $100(1-\alpha)\%$  Confidence Interval for a parameter  $\theta$  is a random interval  $I_n=(a,b)$  where  $a=a(X_1,\ldots,X_n)$  and  $b=b(X_1,\ldots,X_n)$  such that

$$\mathbb{P}\left(\theta \in I_n\right) = 1 - \alpha$$

In words: (a,b) traps  $\theta$  with probability  $1-\alpha$ .  $(1-\alpha)$  is called coverage of the confidence interval. In practice,  $\alpha=0.05$  is often used.

• In **Hypothesis Testing**, we start with some default theory, called a null hypothesis, and then ask if the data provide sufficient evidence to reject the theory. Otherwise, we fail to reject the null hypothesis.

### Example 3.1.3

 $X_1,\ldots,X_n\sim \mathrm{Bernoulli}(p):n$  independent coin flips. To test if the coin is fair, we test the null hypothesis  $H_0:p=1/2$  against the alternative hypothesis  $H_1:p\neq 1/2$  It seems reasonable to reject  $H_0$  if

$$\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{2} \right| \quad \text{is large}$$

Uli

Chapter 3: Estimation of Parameter

April 8, 2024 6 / 48

### Overview

- 1 Fundamental Concepts of Modern Statistical Inference
- 2 The Method of Moments
- 3 The Method of Maximum Likelihood
- 4 Confidence Intervals from MLEs
- 5 Efficiency and the Cramer-Rao Lower Bound

### Method of Moments: Problem Formulation

Suppose that

$$X_1, \ldots, X_n \sim \pi(x|\theta)$$

where  $\theta \in \Theta$ , and we want to estimate  $\theta$  based on the data  $X_1, \ldots, X_n$ . The first method for constructing parametric estimators that we will study is called the method of moments.

- The estimators produced by this method are not optimal, but that are often easy to compute.
- They are also useful as starting values for other methods that require iterative numerical routines.

JIC Chapter 3: Estimation of Parameters

# Method of Moments

### Definition 3.2.1 (Method of Moments Estimator)

The **method of moments estimator**  $\hat{\theta}$  is defined to be the value of  $\theta$  such that

$$\begin{cases}
\mu_1(\theta) = \hat{\mu}_1 \\
\mu_2(\theta) = \hat{\mu}_2 \\
\dots \\
\mu_k(\theta) = \hat{\mu}_k
\end{cases}$$
(1)

- System (1) is a system of k equations with k unknowns:  $\theta_1, \ldots, \theta_k$
- The solutions of this system  $\hat{\theta}$  is the method of moments estimate of the parameter  $\theta$ .

### Method of Moments

Recall that the  $k^{\text{th}}$  moment of a probability distribution  $\pi(x|\theta)$  is

$$\mu_k(\theta) = \mathbb{E}_{\theta} \left[ X^k \right]$$

where  $\mathbb{E}_{\theta}$  denotes expectation with respect to  $\pi(x|\theta)$ , i.e.

$$\mathbb{E}_{\theta}[f(X)] = \int f(x)\pi(x|\theta) \, dx$$

If  $X_1, \ldots, X_n$  are i.i.d from  $\pi(x|\theta)$ , then the  $k^{\text{th}}$  sample moment is defined as

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

We can view  $\hat{\mu}_k$  as an estimate of  $\mu_k$ . Suppose that the parameter  $\theta$  has k components:

$$\theta = (\theta_1, \dots, \theta_k)$$

Chapter 3: Estimation of Parameters April 8, 2024 10 /

## Example 3.2.2 (Bernoulli)

Let  $X_1, \ldots, X_n \sim \operatorname{Bernoulli}(p)$ . Find the method of moments estimate of the parameter p.

Chapter 3: Estimation of Parameters April 8, 2024 11 / 48 UIC Chapter 3: Estimation of Parameters April 8, 2024 12 / 4

# Example 3.2.3 (Normal)

Let  $X_1, \ldots, X_n \sim \mathcal{N}\left(\mu, \sigma^2\right)$ . Find the method of moments estimates of  $\mu$  and  $\sigma^2$ .

Summary

• If  $X_1, \ldots, X_n \sim \pi(x|\theta)$ , then the method of moments estimate  $\hat{\theta}$  of  $\theta = (\theta_1, \ldots, \theta_k)$  is the solution of

$$\begin{cases} \mu_1(\theta) = \hat{\mu}_1 \\ \mu_2(\theta) = \hat{\mu}_2 \\ \vdots \\ \mu_k(\theta) = \hat{\mu}_k \end{cases}$$

where

 $\blacktriangleright \mu_k(\theta)$  is the  $k^{\mathsf{th}}$  moment

$$\mu_k(\theta) = \mathbb{E}_{\theta} \left[ X^k \right]$$

 $ightharpoonup \hat{\mu}_k$  is the  $k^{\text{th}}$  sample moment

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

• The method of moments estimate  $\hat{\theta}$  is a consistent estimate of  $\theta$ .

# Consistency of the MoM estimator

Question: How good is the estimator  $\hat{\theta}$  obtained by the method of moments?

## Definition 3.2.4 (Consistency)

Let  $\hat{\theta}_n$  be an estimate of a parameter  $\theta$  based on a sample of size n. Then  $\hat{\theta}_n$  is said to be consistent if

$$\hat{\theta}_n \stackrel{\mathbb{P}}{\longrightarrow} \theta$$

That is, for any  $\varepsilon > 0$ ,

$$\mathbb{P}\left(\left|\hat{\theta}_n - \theta\right| \ge \varepsilon\right) \to 0 \quad \text{as} \quad n \to \infty$$

### Theorem 3.2.5

The method of moments estimate is consistent.

Chapter 5. Estimation of Admitters

## Overview

- Fundamental Concepts of Modern Statistical Inference
- The Method of Moments
- 3 The Method of Maximum Likelihood
  - The Likelihood Function
  - Maximum Likelihood Estimate (MLE)
  - Properties of MLE
  - Summary
- 4 Confidence Intervals from MLEs
- **6** Efficiency and the Cramer-Rao Lower Bound

The most common method for estimating parameters in a parametric model is the method of maximum likelihood.

Suppose  $X_1, \ldots, X_n$  are i.i.d. from  $\pi(x|\theta)$ .

# Definition 3.3.1 (Likelihood Function)

The likelihood function is defined by

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} \pi \left( X_i | \theta \right)$$

### Important Remarks:

- The likelihood function is just the joint pdf/pmf of the data, except that we treat it as a function of the parameter  $\theta$ .
- Thus,  $\mathcal{L}:\Theta \to [0,\infty)$
- The likelihood function is not a density function: it is not true that  $\mathcal L$  integrates to one, i.e  $\int_{\Theta} \mathcal L(\theta) \ \mathrm d\theta \neq 1$ .

IC

Chapter 3: Estimation of Parameter

pril 8, 2024 17 /

# Example 3.3.3 (Bernoulli)

 $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ . Find the MLE of p.

Answer:

$$\hat{p}_{\mathsf{MLE}} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}_n$$

ullet In this example,  $\hat{p}_{\mathrm{MLE}} = \hat{p}_{\mathrm{MoM}}$ 

### Definition 3.3.2 (The Maximum Likelihood Estimate)

The maximum likelihood estimate (MLE) of  $\theta$ , denoted  $\hat{\theta}_{MLE}$ , is the value of  $\theta$  that maximizes the likelihood  $\mathcal{L}(\theta)$ 

$$\hat{\theta}_{\mathsf{MLE}} = \arg\max_{\theta \in \Theta} \mathcal{L}(\theta)$$

 $\hat{\theta}_{\mathsf{MLE}}$  makes the observed data  $X_1, \dots, X_n$  "most probable" or "most likely"

### Important Remark:

Rather than maximizing the likelihood itself, it is often easier to maximize its natural logarithm (which is equivalent since the log is a monotonic function). The log-likelihood is

$$l(\theta) = \log \mathcal{L}(\theta) = \sum_{i=1}^{n} \log \pi (X_i | \theta)$$

UI

Chapter 3: Estimation of Parameter

April 8 2024 18 / 48

### Example 3.3.4 (Normal)

 $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ . Find the MLEs of  $\mu$  and  $\sigma^2$ .

Answer:

$$\hat{\mu}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}_n \quad \hat{\sigma}_{\text{MLE}}^2 = \frac{1}{n} \sum_{i=1}^{n} \left( X_i - \overline{X}_n \right)^2$$

• Again, in this example, MLEs are the same as the MoM estimates.

Chapter 3: Estimation of Parame

April 8, 2024 19 / 48

Chapter 3: Estimation of Parameter

April 8, 2024 20 / 48

# Properties of MLE

Under certain conditions on the model

$$\mathcal{F} = \{ \pi(x|\theta), \quad \theta \in \Theta \}$$

(under some smoothness conditions of  $\pi$ ), the MLE  $\hat{\theta}_{MLE}$  possesses many attractive properties that make it an appealing choice of estimate.

### Main properties of the MLE:

• MLE is consistent:

$$\hat{\theta}_{\mathsf{MLE}} \stackrel{\mathbb{P}}{\longrightarrow} \theta_0$$

where  $\theta_0$  denotes the true value of  $\theta$ .

- MLE is equivariant: if  $\hat{\theta}_{\mathrm{MLE}}$  is the MLE of  $\theta \Rightarrow f\left(\hat{\theta}_{\mathrm{MLE}}\right)$  is the MLE of  $f(\theta)$ .
- ullet MLE is asymptotically optimal: the MLE has the smallest variance for large sample sizes n.

HIC

hapter 3: Estimation of Paramete

April 8, 2024 21

# Example: when MoM and MLE produce different estimates

# Example 3.3.5 (Uniform)

Let  $X_1, \ldots, X_n \sim U(0, \theta)$ . Find the MoM estimate and MLE of  $\theta$ .

Answer:

$$\hat{\theta}_{\text{MoM}} = 2\overline{X}_n \quad \hat{\theta}_{\text{MLE}} = X_{(n)}$$

• In this example, the MLE and MoM estimate are different.

# Properties of MLE

Main properties of the MLE (cont'd):

• MLE is asymptotically normal:

$$\hat{ heta}_{ ext{MLE}} 
ightarrow \mathcal{N}\left( heta_0, rac{1}{nI\left( heta_0
ight)}
ight)$$

where

$$I(\theta) \stackrel{\mathsf{def}}{=} \mathbb{E}_{\theta} \left[ \left( \frac{\partial}{\partial \theta} \log \pi(X|\theta) \right)^2 \right] = \int \left( \frac{\partial}{\partial \theta} \log \pi(x|\theta) \right)^2 \pi(x|\theta) \, \mathrm{d}x$$

- $ightharpoonup I(\theta)$  is called Fisher Information.
- MLE is asymptotically unbiased:

$$\lim_{n o \infty} \mathbb{E}\left[\hat{ heta}_{\mathsf{MLE}}\,
ight] = heta_0$$

Chapter 3: Estimation of Parameters April 8, 2024 22

# Summary

• The Likelihood Function:

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} \pi(X_i|\theta) \quad X_1, \dots, X_n \sim \pi(x|\theta)$$

• The Maximum Likelihood Estimate:

$$\hat{\theta}_{\mathsf{MLE}} = \arg\max_{\theta \in \Theta} \mathcal{L}(\theta) = \arg\max_{\theta \in \Theta} \log \mathcal{L}(\theta)$$

- MLE is consistent, equivariant, asymptotically optimal, asymptotically normal, and asymptotically unbiased.
- Examples: Bernoulli (p),  $N(\mu, \sigma^2)$ , and  $U(0, \theta)$ .

Chapter 3: Estimation of Parameters April 8, 2024 23 / 48 UIC Chapter 3: Estimation of Parameters April 8, 2024 24 / 48

### Overview

- Fundamental Concepts of Modern Statistical Inference
- 2 The Method of Moments
- 3 The Method of Maximum Likelihood
- 4 Confidence Intervals from MLEs
  - Exact Method
  - Approximate Method
  - Bootstrap Method
  - Summary
  - The Bootstrap Method: Simulation Results
- 5 Efficiency and the Cramer-Rao Lower Bound

Chapter 3: Estimation of Paramete

# Exact Method. Example: Normal distribution $\mathcal{N}\left(\mu, \sigma^2\right)$ Let $X_1, \ldots, X_n \sim \mathcal{N}\left(\mu, \sigma^2\right)$ , then the MLEs for $\mu$ and $\sigma^2$ are (Example 3.3.4):

$$\hat{\mu}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}_n \qquad \qquad \hat{\sigma}_{\text{MLE}}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$$

ullet A confidence interval for  $\mu$  is based on the following fact (Theorem 1.7.29):

$$\frac{\sqrt{n}\left(\overline{X}_n - \mu\right)}{S_n} \sim t_{n-1}$$

where  $S_n^2$  is the sample variance  $S_n^2=\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\overline{X}_n\right)^2=\frac{n}{n-1}\hat{\sigma}_{\rm MLE}^2$ 

### Result

A  $100(1-\alpha)\%$  confidence interval for  $\mu$  is

$$\hat{\mu}_{\text{MLE}} \pm \frac{1}{\sqrt{n-1}} \hat{\sigma}_{\text{MLE}} t_{n-1} (\alpha/2)$$

where  $t_{n-1}(\alpha)$  is the point beyond which the t-distribution with (n-1) degrees of freedom has probability  $\alpha$ .

### Confidence Interval

Recall the definition of a confidence interval (see also Definition 2.4.12 and Theorem 2.4.13):

### Definition 3.4.1 (Confidence Interval)

A  $100(1-\alpha)\%$  confidence interval for a parameter  $\theta$  is a *random* interval calculated from the sample,

$$X_1, \ldots, X_n \sim \pi(x|\theta)$$

which contains  $\theta$  with probability  $1 - \alpha$ .

There are three methods for constructing confidence intervals using MLEs  $\hat{\theta}_{\text{MLE}}$ :

- Exact Method
- Approximate Method
- Bootstrap Method

# Exact Method. Example: Normal distribution $\mathcal{N}\left(\mu,\sigma^2\right)$

• A confidence interval for  $\sigma^2$  is based on the following fact (Theorem 1.7.29):

$$\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2$$

### Result

A  $100(1-\alpha)\%$  confidence interval for  $\sigma^2$  is

$$\left(\frac{n\hat{\sigma}_{\mathrm{MLE}}^2}{\chi_{n-1}^2\left(\frac{\alpha}{2}\right)}, \frac{n\hat{\sigma}_{\mathrm{MLE}}^2}{\chi_{n-1}^2\left(1-\frac{\alpha}{2}\right)}\right)$$

where  $\chi^2_{n-1}(\alpha)$  is the point beyond which the  $\chi^2$ -distribution with (n-1) degrees of freedom has probability  $\alpha$ .

### Remark:

The main drawback of the exact method is that in practice the sampling distributions like  $t_{n-1}$  and  $\chi^2_{n-1}$  in our example are unknown.

# Approximate Method

One of the most important properties of MLE is that it is asymptotically normal:

$$\hat{\theta}_{\mathsf{MLE}} \to \mathcal{N}\left(\theta_0, \frac{1}{nI\left(\theta_0\right)}\right), \quad \text{ as } n \to \infty$$

where  $l(\theta_0)$  is Fisher information

$$I(\theta) = \mathbb{E}_{\theta} \left[ \left( \frac{\partial}{\partial \theta} \log \pi(X|\theta) \right)^2 \right]$$

Since the true value  $heta_0$  is unknown, we will use  $I\left(\hat{ heta}_{\mathrm{MLE}}\right)$  instead of  $I\left( heta_0
ight)$  :

### Result

An approximate  $100(1-\alpha)\%$  confidence interval for  $\theta_0$  is

$$\hat{\theta}_{\mathsf{MLE}} \pm \frac{z_{lpha/2}}{\sqrt{nI\left(\hat{ heta}_{\mathsf{MLE}}
ight)}}$$

where  $z_{\alpha}$  is the point beyond which the standard normal distribution has probability  $\alpha.$ 

UIC

Chapter 3: Estimation of Parameter

April 8, 2024

### Bootstrap Method

Suppose  $\hat{\theta}$  is an estimate of a parameter  $\theta$ , the true unknown value of which is  $\theta_0$ .  $\hat{\theta}$  can be any estimate, not necessarily MLE,

$$X_1, \dots, X_n \sim \pi(x|\theta) \quad \hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$$

Define a new random variable

$$\Delta = \hat{\theta} - \theta_0$$

• Step 1: Assume (for the moment) that the distribution of  $\Delta$  is known. Let  $\overline{\text{(as before)}}\ q_{\alpha}$  be the number such that  $\mathbb{P}\left(\Delta>q_{\alpha}\right)=\alpha$ . Then

$$\mathbb{P}\left(q_{1-\frac{\alpha}{2}} \le \hat{\theta} - \theta_0 \le q_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

And therefore a  $100(1-\alpha)\%$  confidence interval for  $\theta_0$  is

$$\left(\hat{\theta} - q_{\frac{\alpha}{2}}, \hat{\theta} - q_{1-\frac{\alpha}{2}}\right)$$

The problem is that the distribution of  $\Delta$  is unknown and, therefore,  $q_\alpha$  are unknown.

# Approximate Method. Example: Bernoulli (p)

Example 3.4.2 (Bernoulli (p))

Let  $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ . Find an approximate confidence interval for p

Answer:

$$\overline{X}_n \pm z_{\alpha/2} \sqrt{\frac{\overline{X}_n \left(1 - \overline{X}_n\right)}{n}}$$

# Bootstrap Method

• Step 2: Assume that the distribution of  $\Delta$  is not known, but  $\theta_0$  is known. Then we can approximate the distribution of  $\Delta$  as follows:

$$X_{1}^{(1)}, \dots, X_{n}^{(1)} \sim \pi \left( x | \theta_{0} \right) \leadsto \hat{\theta}^{(1)} - \theta_{0} = \Delta^{(1)}$$

$$X_{1}^{(2)}, \dots, X_{n}^{(2)} \sim \pi \left( x | \theta_{0} \right) \leadsto \hat{\theta}^{(2)} - \theta_{0} = \Delta^{(2)}$$

$$\vdots$$

$$X_{1}^{(B)}, \dots, X_{n}^{(B)} \sim \pi \left( x | \theta_{0} \right) \leadsto \hat{\theta}^{(B)} - \theta_{0} = \Delta^{(B)}$$

From these realizations  $\Delta^{(1)},\ldots,\Delta^{(B)}$  of  $\Delta$  we can approximate the distribution of  $\Delta$  by its empirical distribution, and, therefore, we can approximate  $q_{\alpha}$ . The problem is that  $\theta_0$  is not known!

Chapter 3: Estimation of Parameters April 8, 202

# Bootstrap Method

• Step 3: **Bootstrap strategy**: Use  $\hat{\theta}$  instead of  $\theta_0$ .

$$\begin{split} X_1^{(1)}, \dots, X_n^{(1)} \sim \pi \left( x | \hat{\theta} \right) &\leadsto \hat{\theta}^{(1)} - \hat{\theta} \approx \Delta^{(1)} \\ X_1^{(2)}, \dots, X_n^{(2)} \sim \pi \left( x | \hat{\theta} \right) &\leadsto \hat{\theta}^{(2)} - \hat{\theta} \approx \Delta^{(2)} \\ & \vdots \\ X_1^{(B)}, \dots, X_n^{(B)} \sim \pi \left( x | \hat{\theta} \right) &\leadsto \hat{\theta}^{(B)} - \hat{\theta} \approx \Delta^{(B)} \end{split}$$

Distribution of  $\Delta$  is approximated from realizations  $\Delta^{(1)}, \ldots, \Delta^{(B)}$ .

Remark:  $\hat{\theta}^{(i)}$  is the estimate of  $\theta$  that is obtained from  $X_1^{(i)}, \ldots, X_n^{(i)}$  by the same method (for example, MLE) as  $\hat{\theta}$  was obtained from  $X_1, \ldots, X_n$ .

UIC

Chapter 3: Estimation of Parameter

April 8, 2024 33

### Overview

- Fundamental Concepts of Modern Statistical Inference
- The Method of Moments
- The Method of Maximum Likelihood
- Confidence Intervals from MLEs
  - Exact Method
  - Approximate Method
  - Bootstrap Method
  - Summary
  - The Bootstrap Method: Simulation Results
- 5 Efficiency and the Cramer-Rao Lower Bound

# Summary

- Three methods for constructing confidence intervals using MLEs:
- Exact method provides exact confidence intervals, but it's hard to use in practice
  - Example:  $X_1, \ldots, X_n \sim \mathcal{N}\left(\mu, \sigma^2\right)$

$$\mu: \quad \hat{\mu}_{\text{MLE}} \pm \frac{1}{\sqrt{n-1}} \hat{\sigma}_{\text{MLE}}^2 t_{n-1} (\alpha/2)$$
$$\sigma^2: \quad \left(\frac{n\hat{\sigma}_{\text{MLE}}^2}{\chi_{n-1}^2 \left(\frac{\alpha}{2}\right)}, \frac{n\hat{\sigma}_{\text{MLE}}^2}{\chi_{n-1}^2 \left(1 - \frac{\alpha}{2}\right)}\right)$$

• Approximate method provides an approximate confidence interval for  $\theta_0$ , which is constructed using asymptotic properties of MLE:

$$\hat{ heta}_{\mathsf{MLE}} \, \pm rac{z_{lpha/2}}{\sqrt{nI\left(\hat{ heta}_{\mathsf{MLE}}
ight)}}$$

 Bootstrap method provides an approximate confidence interval. Bootstrap is the most popular method in practice since it is easy to implement.

UK

Chapter 3: Estimation of Parameter

April 8 2024 34 / 48

# Example: Gaussian Model

Suppose that:

- $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ , true values:  $\mu = 1$  and  $\sigma = 2$
- Exact Confidence Intervals:

%---- Data:

$$\mu: \quad \hat{\mu}_{\mathrm{MLE}} \pm \frac{1}{\sqrt{n-1}} \hat{\sigma}_{\mathrm{MLE}} t_{n-1}(\alpha/2) \quad \sigma^2: \quad \left(\frac{n \hat{\sigma}_{\mathrm{MLE}}^2}{\chi_{n-1}^2 \left(\frac{\alpha}{2}\right)}, \frac{n \hat{\sigma}_{\mathrm{MLE}}^2}{\chi_{n-1}^2 \left(1 - \frac{\alpha}{2}\right)}\right)$$

```
mu0=1;
                        % true mean
sigma0=2;
                        % true sigma
n=100:
                        % sample size;
X=mu0+sigma0*randn(1,n); % data
%---- MLEs:
mu mle=mean(X);
sigma mle=std(X,1);
%---- Level of Confidence:
alpha=0.05;
                        % 100(1-alpha) CI
%---- Exact Confidence Intervals:
CImu exact=[mu mle-sigma mle*tinv(1-alpha/2,n-1)/sqrt(n-1),
mu mle+sigma mle*tinv(1-alpha/2,n-1)/sqrt(n-1)];
CIsigma exact=[sqrt(n*sigma mle^2/chi2inv(1-alpha/2,n-1)),
sqrt(n*sigma mle^2/chi2inv(alpha/2,n-1))];
%[phat,pci] = mle(X);
```

# Bootstrap

```
%---- Bootstrap Confidence Intervals:
 B=10;
          % number of the bootstrap samples
- for i=1:B
     Z(i,:)=mu mle+sigma mle*randn(1,n); % "bootstrap data"
     mu b(i)=mean(Z(i,:));
                                           % MLE from b-data
     sigma b(i) = std(Z(i,:),1);
                                           % MLE from b-data
     Delta mu(i)=mu b(i)-mu mle;
     Delta sigma(i)=sigma_b(i)-sigma_mle;
 -end
 CImu_bootstrap=[mu_mle-quantile(Delta_mu,1-alpha/2),
     mu_mle-quantile(Delta_mu,alpha/2)];
 CIsigma_bootstrap=[sigma_mle-quantile(Delta_sigma,1-alpha/2),
     sigma_mle-quantile(Delta_sigma,alpha/2)];
```

UIC Chapter 3: Estimation of Parameters

# Confidence Intervals for $\sigma$ when n=100



# Confidence Intervals for $\mu$ when n=100



# Confidence Intervals for $\mu$ when $n=1000\,$



## Confidence Intervals for $\sigma$ when n = 1000



# Measure of Efficiency: Mean Squared Error

In most estimation problems, there are many possible estimates  $\hat{\theta}$  of  $\theta$ . For example, the MoM estimate  $\hat{\theta}_{\text{MoM}}$  or the MLE estimate  $\hat{\theta}_{\text{MLE}}$ .

Question: How would we choose which estimate to use?

Qualitatively, it is reasonable to choose that estimate whose distribution is most highly concentrated about the true parameter value  $\theta_0$ . To make this idea work, we need to define a quantitative measure of such concentration.

### Overview

- 1 Fundamental Concepts of Modern Statistical Inference
- 2 The Method of Moments
- The Method of Maximum Likelihood
- 4 Confidence Intervals from MLEs
- 6 Efficiency and the Cramer-Rao Lower Bound
  - Mean-Squared Error
  - Cramer-Rao Inequality
  - Summary

Chapter 3: Estimation of Parameters April 8, 2024 42 / 48

### Definition 3.5.1 (Mean-squared Error)

The **mean squared error** of  $\hat{\theta}$  as an estimate of  $\theta_0$  is

$$MSE(\hat{\theta}) = \mathbb{E}\left[\left(\hat{\theta} - \theta_0\right)^2\right]$$

• The mean squared error can be also written as follows:

$$MSE(\hat{\theta}) = Var[\hat{\theta}] + \underbrace{\left(\mathbb{E}(\hat{\theta}) - \theta_0\right)^2}_{\text{squared bias}}$$

• If  $\hat{\theta}$  is unbiased, then  $MSE(\hat{\theta}) = Var[\hat{\theta}]$ .

Chapter 3: Estimation of Parameters April 8, 2024 43 / 48 UIC Chapter 3: Estimation of Parameters April 8, 2024 44 / 4

# Cramer-Rao Inequality

• Given two unbiased estimates,  $\hat{\theta}$  and  $\tilde{\theta}$ , the **efficiency** of  $\hat{\theta}$  relative to  $\tilde{\theta}$  is defined to be

$$\operatorname{eff}(\hat{\theta}, \tilde{\theta}) = \frac{\operatorname{Var}(\tilde{\theta})}{\operatorname{Var}(\hat{\theta})}$$

- $\hat{\theta}$  is more efficient than  $\tilde{\theta} \Leftrightarrow \operatorname{eff}(\hat{\theta}, \tilde{\theta}) > 1$
- In general, the mean squared error is a measure of efficiency of an estimate: the smaller  $MSE(\hat{\theta})$ , the better the estimate  $\hat{\theta}$

## Theorem 3.5.2 (Cramer-Rao Inequality)

Let  $X_1, \ldots, X_n$  be i.i.d. from  $\pi(x|\theta)$ . Let  $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$  be any unbiased estimate of a parameter  $\theta$  whose true values is  $\theta_0$ . Then, under smoothness assumptions on  $\pi(x|\theta)$ ,

$$MSE(\hat{\theta}) = Var[\hat{\theta}] \ge \frac{1}{nI(\theta_0)}$$

### Example: Poisson Distribution

Recall: The Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events k occurring in a fixed interval of time if these events occur with a known average rate  $\lambda$  and independently of the time since the last event.

$$\mathbb{P}(X = k | \lambda) = \frac{\lambda^k}{k!} e^{-\lambda} \quad \mathbb{E}[X] = \lambda \quad \text{Var}[X] = \lambda$$

# Example 3.5.4 (Poisson)

Let  $X_1, \ldots, X_n \sim \operatorname{Pois}(\lambda)$ .

- Find the MLE of  $\lambda$
- Show that  $\lambda_{\mathsf{MLE}}$  is efficient.
- The theorem does not exclude the possibility that there is a biased estimator of  $\lambda$  that has a smaller MSE than  $\hat{\lambda}_{MLE}$

Cramer-Rao:

 $|\operatorname{MSE}(\hat{\theta}) = \operatorname{Var}[\hat{\theta}] \ge \frac{1}{nI(\theta_0)}$ 

### Important Remarks:

- $\bullet$   $\hat{\theta}$  can't have arbitrary small MSE
- The Cramer-Rao inequality gives a lower bound on the variance of any unbiased estimate.

### Definition 3.5.3 (Efficient)

An unbiased estimate whose variance achieves this lower bound is said to be efficient.

Recall that MLE is asymptotically Normal:  $\hat{\theta}_{\text{MLE}} \to \mathcal{N}\left(\theta_0, \frac{1}{nI(\theta_0)}\right)$ 

- Therefore, MLE is asymptotically efficient
- However, for a finite sample size n, MLE may not be efficient
- MLEs are not the only asymptotically efficient estimates.

# Summary

• Mean squared error is a measure of efficiency of an estimate

$$\mathrm{MSE}(\hat{\theta}) = \mathbb{E}\left[\left(\hat{\theta} - \theta_0\right)^2\right]$$

• If  $\hat{\theta}$  is unbiased, then

$$MSE(\hat{\theta}) = Var[\hat{\theta}]$$

• Cramer-Rao Inequality:

$$MSE(\hat{\theta}) = Var[\hat{\theta}] \ge \frac{1}{nI(\theta_0)}$$

- An unbiased estimate whose variance achieves this lower bound is said to be efficient
- Any MLE is asymptotically efficient (as  $n \to \infty$ )
- Example: if  $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$ , then  $\hat{\lambda}_{\text{MLE}}$  is efficient