

- Motivation and Scope
- Methodology Overview
- Automated Data Acquisition
- Algorithm
- Results
- Conclusions and Future Work

Physical and Environmental Constraints of Camera Systems

Unknown Camera
Configuration Parameters 2

1. Low Resolution and Frame Rate/Motion Blur

3. Non-Optimal Field of View and Perspective Distortion

202404-03 18:16:05 HEE THAPPIU INPU I 5814/Kginja-98/9

Limited Dynamic Range 4.

Environmental Visibility
Limitations / Nighttime / low-light 6.

and adverse weather

5. Network & Compression Artifacts

- Opportunity:
 - Most corridors already have deployable CCTV cameras
 - Video cameras are widely used and information-dense

CCTV: closed circuit television

Algorithmic and Developmental Constraints in ML-Based Detection

Dataset Bias

Training
datasets favor
clear
conditions and
lack diversity.

Domain Generalization

Models perform poorly in real-world deployments.

Sensitivity to Noise

Detection accuracy drops with sensor noise.

Illumination Dependence

Models lack robustness under brightness variation.

Computational Trade-Offs

Robustness requires heavier models, reducing efficiency.

Machine-learning algorithm with advanced preprocessing

Methodology Overview

(e.g., droplets or dust)

- State of the Art Model YOLOv8 provides real-time object detection with high accuracy and speed
- One-Stage Detector: Directly predicts bounding boxes and class probabilities
- Multi-Class Capability: Can detect and classify different vehicle types (cars, trucks)
- Deployment Ready: Lightweight for real-time traffic monitoring.
- Training: Pre-trained on COCO datasets
- Development System: Microsoft Windows 11 \
 AMD Ryzen 5 6600H \ 63.2 GB RAM \ NVIDIA
 GeForce RTX 3050 Laptop GPU

YOLOv8 detection on a highway scene. Multiple vehicle classes labeled with confidence scores.

YOLOV8: You Only Look Once Version 8\ COCO: Common Objects in Context

Automated Data Acquisition

Network & Sites

CCTV on primary gantries across Northern Virginia commuter corridors

24/7 Capture & Sync Continuous RTSP with FFmpeg / Clocks synchronized; Local timestamps embedded in filenames and metadata

Segmentation & Encoding

Stream is cut into 15-minute clips; CUDA for hardware-accelerated decode/encode

Parallel Processing

Multi-location capture workers run in parallel with retry/back; health checks for bitrate, FPS, and latency.

Quality Assurance Automated flags black/blank frames, excessive jitter and drop-frame rates; alerts trigger re-capture

Output

Per-clip stores camera ID, with a consistent path schema: site id/YYYY/MM/DD/HH:MM/

On-frame metadata overlays (date/time, camera ID, mile-marker, direction, elapsed time) parsed per clip for synchronization

Example of low-quality data dropped during the quality check

RTSP: Real-Time Streaming Protocol\ **FFMPEG**: Fast Forward Moving Picture Experts Group

Raw versus enhanced frames, showing improved contrast and clarity.

CLACHE: Contrast Limited Adaptive Histogram Equalization

Duplicate handling

Retain the highestconfidence detection per ID and merge short-lived duplicates.

Temporal buffer

Keep the last 10 centers per ID to smooth noise.

State labeling

Classify each track as approaching, moving away, or stationary.

Inputs

Per-frame detections with ID and box normalized by image size.

Position & direction

Use the bbox center and assign corridor direction from camera orientation.

Motion vector

Compute angle and step size from frame-to-frame center displacement; apply an adaptive threshold to ignore micro-jitter.

Trajectory detection from YOLO tracks. Motion vector analysis estimates each vehicle's position, direction, and state.

→ B

Video Example of Detection and Classification with Enhancement Using Yolo

Evaluation of the Vehicle Detection Algorithm in Rainy Weather After Enhancement

Example of Enhanced Images with Low Brightness and Contrast
Nighttime (left) and Dusk (right)

Comparative Analysis of Manual and Automated Vehicle Counts at Three Locations on I-66 Inside the Beltway (ItB) in VA.

Morning Sessions (top) and Afternoon Sessions (bottom).

Note: Error bars represent variability in vehicle counts.

Auto vs. Truck counts by 15-minute interval, shown for (left) morning and (right) afternoon for I-495 in VA.

End-to-end automation

 \circ Continuous acquisition \rightarrow enhancement \rightarrow YOLOv8 + BoT-SORT \rightarrow trajectory reconstruction

Real-time, GPU-accelerated

CUDA deployment, scalable across corridors

Robust preprocessing and Trajectory identification

- Illumination normalization, denoise/deblur, and glare control improve detector/track stability under adverse conditions
- Ground plane mapping work without predefined ROIs, simplifying field deployment

Portable across cameras

Handles varying orientations, focal lengths, and resolutions with minimal re-tuning

Cost-effective

- Uses existing CCTV
- Reduces manual counts and hardware upgrades
- Minimal retraining for new sites

- Expand beyond basic vehicle classes (car, bus, truck)
 - Light/medium/heavy trucks
- Fine-tune and adjust the model for real-time deployment
- Lane-based traffic analysis based on different classes (Express Lane & GP Lane)

Lane Identification Mask and Overlay. Binary mask and color overlay for visual validation

