

# **Type 2 Tag Operation**

**Technical Specification** 

Version 1.2

2014-03-27

[T2TOP]

NFC Forum<sup>™</sup>

#### RESTRICTIONS ON USE

This specification is copyright © 2007-2014 by the NFC Forum, and was made available pursuant to a license agreement entered into between the recipient (Licensee) and NFC Forum, Inc. (Licensor) and may be used only by Licensee, and in compliance with the terms of that license agreement (License). If you are not the Licensee, you may read this Specification, but are not authorized to implement or make any other use of this specification. However, you may obtain a copy of this Specification and implementation rights at the following page of Licensor's website: <a href="http://nfc-forum.org/our-work/specifications-and-application-documents/specification-application-license/">http://nfc-forum.org/our-work/specifications-and-application-documents/specification-application-license/</a> after entering into and agreeing to such license terms as Licensor is then requiring. On the date that this specification was downloaded by Licensee, the non-implementation terms of that license were as follows:

#### 1. LICENSE GRANT.

Licensor hereby grants Licensee the right, without charge, to copy (for internal purposes only, except with respect to the elements listed on Exhibit A) and share this Specification with Licensee's members, employees and (to the extent related to Licensees' use of this Specification) consultants. This license grant does not include the right to sublicense, modify or create derivative works based upon any portion of the Specification, except for the elements listed in Exhibit A.

#### 2. NO WARRANTIES.

THE SPECIFICATION IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL LICENSOR, ITS MEMBERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE SPECIFICATION.

#### 3. THIRD PARTY RIGHTS.

Without limiting the generality of Section 2 above, LICENSOR ASSUMES NO RESPONSIBILITY TO COMPILE, CONFIRM, UPDATE OR MAKE PUBLIC ANY THIRD PARTY ASSERTIONS OF PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS THAT MIGHT NOW OR IN THE FUTURE BE INFRINGED BY AN IMPLEMENTATION OF THE SPECIFICATION IN ITS CURRENT, OR IN ANY FUTURE FORM. IF ANY SUCH RIGHTS ARE DESCRIBED ON THE SPECIFICATION, LICENSOR TAKES NO POSITION AS TO THE VALIDITY OR INVALIDITY OF SUCH ASSERTIONS, OR THAT ALL SUCH ASSERTIONS THAT HAVE OR MAY BE MADE ARE SO LISTED.

#### 4. TERMINATION OF LICENSE.

In the event of a breach of this Agreement by Licensee or any of its employees or members, Licensor shall give Licensee written notice and an opportunity to cure. If the breach is not cured within thirty (30) days after written notice, or if the breach is of a nature that cannot be cured, then Licensor may immediately or thereafter terminate the licenses granted in this Agreement.

#### 5. MISCELLANEOUS.

All notices required under this Agreement shall be in writing, and shall be deemed effective five days from deposit in the mails. Notices and correspondence to the NFC Forum address as it appears below. This Agreement shall be construed and interpreted under the internal laws of the United States and the Commonwealth of Massachusetts, without giving effect to its principles of conflict of law.

NFC Forum, Inc. 401 Edgewater Place, Suite 600 Wakefield, MA, USA 01880

# **Contents**

| 1 | Intro | oductio             | on                                     | 1  |
|---|-------|---------------------|----------------------------------------|----|
|   | 1.1   | Object              | tives                                  | 1  |
|   | 1.2   |                     | cable Documents or References          |    |
|   | 1.3   |                     | nistration                             |    |
|   | 1.4   | Name                | and Logo Usage                         | 2  |
|   | 1.5   | Intelle             | ectual Property                        | 2  |
|   | 1.6   |                     | al Word Usage                          |    |
|   | 1.7   |                     | ention and Notations                   |    |
|   |       | 1.7.1               | Representation of Numbers              | 2  |
|   | 1.8   | Abbre               | viations                               |    |
|   | 1.9   |                     | ary                                    |    |
| 2 | Mon   | nory Si             | tructure and Management                | 1  |
| _ | 2.1   |                     | Memory Structure                       |    |
|   | 2.1   | 2.1.1               | Internal Bytes                         |    |
|   |       | 2.1.1               | Static Lock bytes                      |    |
|   |       | 2.1.2               | Capability Container                   |    |
|   |       | 2.1.3               | Data Area for Static Memory Structure  |    |
|   | 2.2   |                     | nic Memory Structure                   |    |
|   | 2.2   | 2.2.1               | · · · · · · · · · · · · · · · · · · ·  |    |
|   |       | 2.2.1               | Reserved Bytes                         |    |
|   |       | 2.2.3               | Data Area for Dynamic Memory Structure |    |
|   | 2.3   |                     | blocks                                 |    |
|   | 2.3   | 2.3.1               | NULL TLV                               |    |
|   |       | 2.3.1               | Lock Control TLV                       |    |
|   |       | 2.3.2               | Memory Control TLV                     |    |
|   |       | 2.3.4               | NDEF Message TLV                       |    |
|   |       | 2.3.4               | Proprietary TLV                        |    |
|   |       | 2.3.6               | Terminator TLV                         |    |
|   |       |                     |                                        |    |
| 3 | RF I  | nterfac             | ce                                     | 14 |
| 4 | Fran  | nina / <sup>-</sup> | Transmission Handling                  | 15 |
|   |       |                     |                                        |    |
| 5 |       |                     | Set                                    | _  |
|   | 5.1   |                     | )                                      |    |
|   | 5.2   |                     | E                                      |    |
|   | 5.3   |                     | OR SELECT                              |    |
|   | 5.4   |                     | and NACK                               |    |
|   | 5.5   | Timin               | g Requirements                         | 20 |
| 6 | NDE   | F Dete              | ection and Access                      | 22 |
|   | 6.1   | NDEF                | F Management                           | 22 |
|   |       | 6.1.1               | Version Treating                       |    |
|   | 6.2   | NDEF                | Storage                                |    |
|   | 6.3   |                     | Cycle                                  |    |
|   |       | 6.3.1               | INITIALIZED State                      |    |
|   |       | 6.3.2               | READ/WRITE State                       |    |
|   |       | 6.3.3               | READ-ONLY State                        |    |
|   | 6.4   | Comm                | nand Sequence Description              |    |
|   |       | 6.4.1               | NDEF Detection Procedure               |    |

|                                 | 6.4.2 NDEF Read Procedure                                                                                                                                                                                                  |               |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                 | 6.4.3 NDEF Write Procedure                                                                                                                                                                                                 |               |
|                                 | 8                                                                                                                                                                                                                          |               |
|                                 | . Exhibit A                                                                                                                                                                                                                |               |
| В.                              | 8. Type 2 Tag Platform timings                                                                                                                                                                                             | 32            |
| C.                              | . Memory Structure Examples                                                                                                                                                                                                |               |
|                                 | C.1 Example of Static Memory Structure                                                                                                                                                                                     |               |
|                                 | C.2 Example of Dynamic Memory Structure                                                                                                                                                                                    |               |
| D.                              | D. Examples of Command Flow                                                                                                                                                                                                |               |
|                                 | D.1 Static Memory Structure Examples D.2 Detection of NDEF Message                                                                                                                                                         |               |
|                                 | D.2.1 Positive Detection of NDEF Message                                                                                                                                                                                   |               |
|                                 | D.2.2 Negative Detection of NDEF Message                                                                                                                                                                                   |               |
|                                 | <ul><li>D.3 Read of an NDEF message from the Data Area</li><li>D.4 Write of an NDEF message in the Data Area</li></ul>                                                                                                     |               |
|                                 | D.5 Dynamic Memory Structure Examples                                                                                                                                                                                      |               |
|                                 | D.6 Detection of NDEF Message                                                                                                                                                                                              |               |
|                                 | D.7 Positive Detection of NDEF Message                                                                                                                                                                                     |               |
|                                 | <ul><li>D.8 Negative Detection of NDEF Message</li><li>D.9 Read of an NDEF message from the Data Area</li></ul>                                                                                                            |               |
|                                 | D.10 Write of an NDEF message in the Data Area                                                                                                                                                                             |               |
| E.                              | . Type 2 Tag Platform State Machine                                                                                                                                                                                        |               |
| F.                              | . Revision History                                                                                                                                                                                                         | 52            |
|                                 | igures                                                                                                                                                                                                                     |               |
|                                 |                                                                                                                                                                                                                            | ٠,            |
| _                               | igure 1: Static Memory Structure                                                                                                                                                                                           |               |
| _                               |                                                                                                                                                                                                                            |               |
|                                 | igure 2: Example of Dynamic Memory Structure                                                                                                                                                                               |               |
| Fig                             | igure 2: Example of Dynamic Memory Structureigure 3: Length Field Formats                                                                                                                                                  |               |
| _                               |                                                                                                                                                                                                                            | 9             |
| Fig                             | igure 3: Length Field Formats                                                                                                                                                                                              | 9             |
| Fig<br>Fig                      | igure 3: Length Field Formatsigure 4: Life Cycle with State Changes (transitions)                                                                                                                                          | 9<br>29<br>33 |
| Fig<br>Fig<br>Fig               | igure 3: Length Field Formatsigure 4: Life Cycle with State Changes (transitions)igure 5: Example of Static Memory Structure                                                                                               |               |
| Fig<br>Fig<br>Fig<br>Fig        | igure 3: Length Field Formats  igure 4: Life Cycle with State Changes (transitions)  igure 5: Example of Static Memory Structure  igure 6: Example of Dynamic Memory Structure  igure 7: Type 2 Tag Platform State Machine |               |
| Fig<br>Fig<br>Fig<br>Fig        | igure 3: Length Field Formats igure 4: Life Cycle with State Changes (transitions) igure 5: Example of Static Memory Structure igure 6: Example of Dynamic Memory Structure                                                |               |
| Fig<br>Fig<br>Fig<br>Fig        | igure 3: Length Field Formats  igure 4: Life Cycle with State Changes (transitions)  igure 5: Example of Static Memory Structure  igure 6: Example of Dynamic Memory Structure  igure 7: Type 2 Tag Platform State Machine |               |
| Fig<br>Fig<br>Fig<br>Tal        | igure 3: Length Field Formats                                                                                                                                                                                              |               |
| Fig<br>Fig<br>Fig<br>Tal        | igure 3: Length Field Formats                                                                                                                                                                                              |               |
| Fig<br>Fig<br>Fig<br>Tal<br>Tal | igure 3: Length Field Formats                                                                                                                                                                                              |               |
| Fig Fig Fig Tal Tal Tal         | igure 3: Length Field Formats                                                                                                                                                                                              |               |

| Table 7: ACK Response Format                                              | . 20 |
|---------------------------------------------------------------------------|------|
| Table 8: NACK Response Format                                             | . 20 |
| Table 9: Example of coding of the CC bytes of block 3                     | . 23 |
| Table 10: Handling of the mapping document version numbers                | . 24 |
| Table 11: Type 2 Tag Platform Poll Mode and Listen Mode Parameter Values  | . 32 |
| Table 12: Type 2 Tag Platform State Machine                               | . 47 |
| Table 13: Revision History                                                | . 52 |
|                                                                           |      |
| Requirements                                                              |      |
| Descriptions 1: Listen Mode - ACTIVE_A and ACTIVE_A* States               | . 49 |
| Descriptions 2: Listen Mode – CARD_EMULATOR_2 and CARD_EMULATOR_2* States | . 49 |
| Descriptions 3: Listen Mode – SECTOR_SELECT and SECTOR_SELECT* States     | . 50 |

### 1 Introduction

This specification is part of the NFC Forum documentation about tag types that an NFC Forum Device needs to support in reader/writer mode.

This specification documents how an NFC Forum Device SHALL operate an NFC Forum Type 2 Tag Platform. This is not a specification of the NFC Forum Type 2 Tag Platform itself.

## 1.1 Objectives

The purpose of this specification is to document the requirements and to specify, with a set of rules and guidelines, the NFC Forum Device operation and management of the Type 2 Tag Platform.

This specification assumes that the Collision Detection and Device Activation activities have been performed as documented in [DIGITAL], [ACTIVITY], and [ANALOG].

This specification also defines the data mapping and how the NFC Forum Device detects, reads, and writes NDEF data into the Type 2 Tag Platform in order to achieve and maintain interchangeability and interoperability.

The Type 2 Tag Operation specifies how to read and write one NDEF Message TLV only.

## 1.2 Applicable Documents or References

[ACTIVITY] NFC Activity Specification,

NFC Forum

[ANALOG] NFC Analog,

NFC Forum

[DIGITAL] NFC Digital Protocol,

NFC Forum

[NDEF] NFC Data Exchange Format,

NFC Forum

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels, RFC 2119,

S. Bradner, March 1997.

Internet Engineering Task Force

#### 1.3 Administration

The NFC Forum Type 2 Tag Operation is an open specification supported by the Near Field Communication Forum, Inc., located at:

401 Edgewater Place, Suite 600

Wakefield, MA, 01880

Tel.: +1 781-876-8955 Fax: +1 781-610-9864

http://www.nfc-forum.org/

The NFC Forum, Inc. maintains this specification. Comments, errors, and other feedback can be submitted at http://nfc-forum.org/our-work/specifications-and-application-documents/feedback-on-technical-specifications/.

## 1.4 Name and Logo Usage

The Near Field Communication Forum's policy regarding the use of the trademarks *NFC Forum* and the NFC Forum logo is as follows:

- Any company MAY claim compatibility with NFC Forum specifications, whether a member of the NFC Forum or not.
- Permission to use the NFC Forum logos is automatically granted to designated members only
  as stipulated on the most recent Membership Privileges document, during the period of time
  for which their membership dues are paid.
- Member's distributors and sales representatives MAY use the NFC Forum logo in promoting member's products sold under the name of the member.
- The logo SHALL be printed in black or in color as illustrated on the Logo Page that is
  available from the NFC Forum at the address above. The aspect ratio of the logo SHALL be
  maintained, but the size MAY be varied. Nothing MAY be added to or deleted from the
  logos.
- Since the NFC Forum name is a trademark of the Near Field Communication Forum, the following statement SHALL be included in all published literature and advertising material in which the name or logo appears:

NFC Forum and the NFC Forum logo are trademarks of the Near Field Communication Forum.

## 1.5 Intellectual Property

The Type 2 Tag Operation Specification conforms to the Intellectual Property guidelines specified in the NFC Forum's *Intellectual Property Rights Policy* (<a href="http://nfc-forum.org/wp-content/uploads/2013/11/NFC-Forum-IPR-Policy.pdf">http://nfc-forum.org/wp-content/uploads/2013/11/NFC-Forum-Rules of Procedure (<a href="http://nfc-forum.org/wp-content/uploads/2013/11/NFC-Forum-Rules-of-Procedure.pdf">http://nfc-forum.org/wp-content/uploads/2013/11/NFC-Forum-Rules-of-Procedure.pdf</a>).

## 1.6 Special Word Usage

The key words "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT" and "MAY" in this document with the exception of the RESTRICTION ON USE section are to be interpreted as described in [RFC2119].

#### 1.7 Convention and Notations

#### 1.7.1 Representation of Numbers

The following conventions and notations apply in this document unless otherwise stated.

• Binary numbers are represented by strings of digits 0 and 1 shown with the most significant bit (msb) left and the least significant bit (lsb) right, "b" is added at the end.

Example: 11110101b

Hexadecimal numbers are represented using the numbers 0 - 9 and the characters A - F, an
 "h" is added at the end. The most significant byte (MSB) is shown on the left, the least
 significant byte (LSB) on the right.

Example: F5h

• Decimal numbers are represented as is (without any trailing character).

Example: 245

#### 1.8 Abbreviations

The abbreviations as used in this document are defined in Table 1.

**Table 1: Abbreviations** 

| Abbreviation | Description              |
|--------------|--------------------------|
| CC           | Capability Container     |
| lsb          | least significant bit    |
| LSB          | Least Significant Byte   |
| msb          | most significant bit     |
| MSB          | Most Significant Byte    |
| NDEF         | NFC Data Exchange Format |
| PAT          | Passive ACK Timeout      |
| RF           | Radio Frequency          |
| RFU          | Reserved for Future Use  |

## 1.9 Glossary

Mandatory NDEF Message TLV, first NDEF Message TLV

NDEF Message TLV detected by the NDEF detection procedure

NFC Forum Device

A device that supports the following modus operandi: Initiator, Target and Reader/Writer. It may also support Card Emulator.

NFC-Forum-Compliant Device

In this document, the NFC-Forum-Compliant device is always using the Reader/Writer modus operandi (for more information, see [DIGITAL]).

Type 2 Tag Platform

A legacy platform supporting a subset of a Technology (also called Technology Subset). Type 2 Tag Platform uses a particular subset of NFC – Type A technology including anticollision (for more information, see [DIGITAL]).

## 2 Memory Structure and Management

Type 2 Tag Platform is based on a particular memory chip with a certain memory size and space for data. The following sections describe the details of such memory chip and, in particular, its memory structure and management.

The memory structure (or layout) depends on the memory size of the tag:

- A static memory structure is used for tags with memory size equal to 64 bytes
- A dynamic memory structure is used by tags with memory size bigger than 64 bytes

The memory structure is divided in blocks containing 4 bytes each (see Figure 1 and Figure 2). Each block is numbered from 0 to 15 for static memory structure or from 0 to k for dynamic memory structure. The number associated with a block is also called "block number". The 4 bytes inside each block are numbered from 0 to 3. For each block, byte 0 is the MSB and byte 3 is the LSB. Regarding the whole memory structure, Byte 0 of block 0 indicates the MSB, and the LSB is indicated either by Byte 3 of block 15 for static memory structure or byte 3 of block k for dynamic memory structure.

The blocks are grouped in sectors. A sector is defined as 256 contiguous blocks (1024 bytes or 1KB).

In this document, the bit and byte ordering when defining packets and messages follows the bigendian byte order.

The next two sections describe in details the two memory structures (also called "layouts").

## 2.1 Static Memory Structure

This memory structure is used by Type 2 Tag Platform with a physical memory size equal to 64 bytes. Figure 1 shows the memory layout of such tag. It is composed of different fields:

- Internal: Reserved bytes for manufacturing usage (see Section 2.1.1)
- Lock: Static lock bytes (see Section 2.1.2) to switch the tag from READ/WRITE state to READ-ONLY state (see Section 6.3)
- CC: Capability Container bytes (see Section 2.1.3)
- Data: Bytes used to store information (see Section 2.1.4)

| Byte Number     | 0         | 1         | 2         | 3         | Block |
|-----------------|-----------|-----------|-----------|-----------|-------|
| UID / Internal  | Internal0 | Internal1 | Internal2 | Internal3 | 0     |
| Serial Number   | Internal4 | Internal5 | Internal6 | Internal7 | 1     |
| Internal / Lock | Internal8 | Internal9 | Lock0     | Lock1     | 2     |
| CC              | CC0       | CC1       | CC2       | CC3       | 3     |
| Data            | Data0     | Data1     | Data2     | Data3     | 4     |
| Data            | Data4     | Data5     | Data6     | Data7     | 5     |
| Data            | Data8     | Data9     | Data10    | Data11    | 6     |
| Data            |           |           |           |           |       |
| Data            |           |           |           |           | 15    |

**Figure 1: Static Memory Structure** 

#### 2.1.1 Internal Bytes

These bytes are reserved for manufacturing use.

[RQ\_T2T\_MEM\_001] The NFC Forum Device SHALL NOT use internal bytes to store information data.

#### 2.1.2 Static Lock bytes

The bits of byte 2 and 3 of block 2 represent the field-programmable read-only locking mechanism called "static lock bytes". Depending on the value of the bits of the static lock bytes, two configurations are possible:

- All bits are set to 0b, and the CC area and the data area of the tag can be read and written.
- All bits are set to 1b, and the CC area and the data area of the tag can only be read.

The locking bits are set to 1b via a standard write command to block 2 (BNo = 2). For more details, see Section 5.2.

[RQ\_T2T\_MEM\_002] To set all static lock bits to 1b, the NFC Forum Device SHALL set Bytes Lock0 and Lock1 to FFh using the WRITE command to change the value of Block 2. Bytes internal8 and Internal9 of Block2 can be set to any value.

This process is irreversible: if one bit of the lock bytes is set to 1b, it cannot be changed back to 0b.

#### 2.1.3 Capability Container

The Capability Container (CC) manages the information of the Type 2 Tag Platform. The four bytes of block 3 contain the CC. See Section 6.1 for a detailed description of the CC.

#### 2.1.4 Data Area for Static Memory Structure

Block 4 to 15 is the available data area for information storage.

[RQ\_T2T\_MEM\_003] The NFC Forum Device SHALL write the data area consecutively in order starting from byte 0 of block 4 up to byte 3 of block 15. For static memory structure, the data area size is equal to 48 bytes (see also the CC description in Section 6.1).

## 2.2 Dynamic Memory Structure

This memory structure (or layout) is applied to Type 2 Tag Platform with a memory size bigger than 64 bytes. Figure 2 shows an example of memory layout of such tag. It is composed of different fields:

- Internal: Bytes for manufacturing usage as defined in Section 2.1.1
- Reserved: Reserved bytes (see Section 2.2.1)
- Lock: Static and dynamic lock bytes (see Section 2.2.2) to switch the tag from READ/WRITE state to READ-ONLY state (see Section 6.3)
- CC: Capability Container bytes (see Section 2.1.3)
- Data: Bytes used to store information (see Section 2.2.3)

| Byte Number     | 0         | 1         | 2         | 3         | Block |
|-----------------|-----------|-----------|-----------|-----------|-------|
| UID / Internal  | Internal0 | Internal1 | Internal2 | Internal3 | 0     |
| Serial Number   | Internal4 | Internal5 | Internal6 | Internal7 | 1     |
| Internal / Lock | Internal8 | Internal9 | Lock0     | Lock1     | 2     |
| CC              | CC0       | CC1       | CC2       | CC3       | 3     |
| Data            | Data0     | Data1     | Data2     | Data3     | 4     |
| Data            | Data4     | Data5     | Data6     | Data7     | 5     |
| Data            | Data8     | Data9     | Data10    | Data11    | 6     |
| Data            |           |           |           |           | 1     |
| Data            |           |           |           |           | 1     |
| Data            |           |           |           |           |       |
| Data            |           |           |           |           |       |
| Data            |           |           |           |           | n     |
| Lock / Reserved |           |           |           |           |       |
| Lock / Reserved |           |           |           |           |       |
| Lock / Reserved |           |           |           |           | k     |

Figure 2: Example of Dynamic Memory Structure

NOTE For a more detailed example, see Appendix C.2.

In Figure 2, each block is numbered from 0 to k. The block n indicates the last block of the data area. Blocks from n+1 to k contain reserved or lock bytes.

NOTE Dynamic lock bytes and reserved bytes might be located at any byte address in between or at the end of the data areas starting from block 16. A more detailed example of dynamic memory structure is shown in Appendix C.2.

Compared to the static memory structure, the dynamic memory structure might contain optional configuration information to describe details of dynamic lock bits and to identify reserved memory areas in the data area using the Lock Control TLV and the Memory Control TLV (see Section 2.3).

A more detailed example of Dynamic Memory Layout can be found in Appendix C.2. This example includes also Memory Control TLV, Lock Control TLV and Dynamic Lock Bytes.

### 2.2.1 Reserved Bytes

The reserved bytes belong to reserved memory areas.

[RQ\_T2T\_MEM\_004] The NFC Forum Device SHALL ignore and jump over the reserved bytes during read and write operations. Reserved bytes are identified by one or more Memory Control TLV blocks (see Section 2.3.3).

### 2.2.2 Static and Dynamic Lock Bits

A tag with a dynamic memory structure contains two kinds of lock bits:

- Static lock bits as specified in Section 2.1.2
- Dynamic lock bits described below in this section

The dynamic lock bits are called "dynamic" because their position(s) inside the tag can change. This is in contrast to the static lock bytes because their position is fixed (see Section 2.1.2).

Lock areas are only needed on Type 2 Tag Platform that allows the transition from READ/WRITE state to READ-ONLY state (see Section 6.4.4).

[RQ\_T2T\_MEM\_005] The NFC Forum Device SHALL ignore and jump over the bytes that belong to lock areas during read operations of NFC Forum data inside Type 2 Tag Platform in READ-ONLY state (see Section 6.3).

The default settings of the dynamic lock bits are:

- The position of the dynamic lock bits starts from the first byte after the data area (see Section 2.2.3 and Figure 2). The bytes that contain the dynamic lock bits are called "dynamic lock bytes".
- The number of dynamic lock bits is equal to data area size minus 48 (in bytes) divided by 8. If the division result is not an integer, the number of lock bytes is equal to the closest integer that is bigger than the division result. That is:

$$NumberOfDynamicLockBits = \lceil (DataAreaSize - 48)/8 \rceil$$

The number of dynamic lock bytes is equal to:

$$NumberOfDynamicLockBytes = \lceil (DataAreaSize - 48)/64 \rceil$$

[RQ\_T2T\_MEM\_006] When the number of the dynamic lock bits is not a multiple of 8, the last dynamic lock byte is partially filled with these bits. In this byte, the dynamic lock bits are located starting from the lsb to the msb. The part of the byte that does not contain dynamic lock bits is filled with reserved bits that the NFC Forum Device SHALL always set to 0b.

[RQ\_T2T\_MEM\_007] The NFC Forum Device SHALL overrule the default settings of the dynamic lock bits when one or more Lock Control TLV blocks are present (see Section 2.3). The NFC Forum Device SHALL calculate the position and the number of the dynamic lock bits from the information contained in the Lock Control TLV.

Type 2 Tag Platforms that are delivered in READ-ONLY state can indicate the lock areas as reserved memory areas. This allows you to use one Memory Control TLV (see Section 2.3) to indicate contiguous and alternating lock areas, and reserved areas.

Depending on the values of the static and dynamic lock bits, two configurations are possible:

- All bits are set to 0b, and the CC area and the data area of the tag can be read and written.
- All bits are set to 1b, and the CC area and the data area of the tag can be only read.

To set to 1b static lock bits, see Section 2.1.2.

[RQ\_T2T\_MEM\_008] The NFC Forum Device SHALL set the dynamic locking bits to 1b via a standard WRITE command (see Section 5.2).

[RQ\_T2T\_MEM\_009] Because the WRITE command is a block-wise command, the NFC Forum Device SHALL set to 1b only the bits that belong to the dynamic lock bits of the block.

If a block contains one or more dynamic lock bytes and one or more non-lock bytes, the NFC Forum Device MAY first send a READ command (see Section 5.1) and then a WRITE command on the same block. From the response of the READ command, the values of the non-lock bytes are retrieved. The NFC Forum Device MAY use these values in the WRITE command to avoid changing the value of the non-lock bytes and to set the dynamic lock bits to 1b.

The setting of the static and dynamic lock bits is irreversible: if one bit lock bit is set to 1b, it cannot be changed back to 0b.

#### 2.2.3 Data Area for Dynamic Memory Structure

[RQ\_T2T\_MEM\_010, RQ\_T2T\_MEM\_011] The data area for dynamic memory structure is contained from block 4 up to the last block of the memory, including the 48 bytes of the static memory structure (see Section 2.1) and excluding dynamic lock bytes and reserved bytes. The data area is the only memory area where the NFC Forum Device SHALL read and write the TLV blocks (see Section 2.3).

[RQ\_T2T\_MEM\_012] The NFC Forum Device SHALL write the data area sequentially starting from byte 0 of block 4 to byte 3 of block k, jumping over dynamic lock bytes and reserved bytes. The data area size in bytes is equal to:  $4 \cdot (k-3) - DynamicLockBytes - ReservedBytes$ 

The previous calculation includes the data area of the static memory structure equal to 48 bytes (see Section 2.1) and supposes that the first block is numbered starting from 0 (i.e., block 0). The value k indicates the overall number of blocks that belong to one or more sectors is reduced by 1. E.g., a dynamic memory structure composed of 2 sectors has 512 blocks; hence, k is equal to 511. For dynamic memory structure, k is bigger than 15 (i.e., k>15).

Compared to the static memory structure, the dynamic memory structure adds a number of data area bytes equal to:  $4 \cdot (k-3) - DynamicLockBytes - ReservedBytes - 48$ 

The memory starting from block 16 contains all dynamic lock bytes, all reserved bytes (see also NOTE on page 7), and all data area bytes added by the dynamic memory structure.

#### 2.3 TLV blocks

A TLV block consists of one to three fields:

- [RQ\_T2T\_MEM\_013] *T* (tag field or T field) identifies the type of the TLV block (see Table 2) and consists of a single byte encoding a number from 00h to FFh. The tag values 04h to FCh and FFh are reserved for future use by the NFC Forum.
- [RQ\_T2T\_MEM\_014, RQ\_T2T\_MEM\_015] *L* (length field or L field) provides the size in bytes of the value field. It has two different formats composed of one or three bytes. The NFC Forum Device SHALL understand both length field structures. Figure 3 shows the two different length field structures. However, depending on the tag field value, the length field MAY not be present.
  - One byte format: The NFC Forum Device SHALL use the one byte format to code the length of the value field between 00h and FEh bytes. The NFC Forum Device SHALL interpret this byte as a cardinal if the value is between 00h and FEh. If it contains FFh, the NFC Forum Device SHALL interpret the value as flag that specifies that the length field is composed of more than one byte.
  - Three consecutive bytes format: The NFC Forum Device SHALL use this format to code the length of the value field between 00FFh and FFFEh bytes. The first byte is assumed to be a flag equal to FFh indicating that two more bytes are present. The NFC Forum Device SHALL interpret those two bytes as a word. The NFC Forum Device SHALL interpret this word as a cardinal if the value is between 00FFh and FFFEh. The value FFFFh is reserved for future use (RFU).



**Figure 3: Length Field Formats** 

• [RQ\_T2T\_MEM\_016, RQ\_T2T\_MEM\_017] *V* (value field or V field) indicates the value field. If the length field is equal to 00h or there is no length field, the value field is not present (i.e., the TLV block is empty). If the length field is there and it indicates a length of N bigger than zero (N>0), the value field consists of N consecutive bytes.

Table 2 lists the TLV blocks specified by this document that are described in the following sections.

Table 2: Defined TLV blocks

| TLV block name     | Tag Field Value | Short Description                                                                    |
|--------------------|-----------------|--------------------------------------------------------------------------------------|
| NULL TLV           | 00h             | Might be used for padding of memory areas and the NFC Forum Device SHALL ignore this |
| Lock Control TLV   | 01h             | Defines details of the lock bits                                                     |
| Memory Control TLV | 02h             | Identifies reserved memory areas                                                     |
| NDEF Message TLV   | 03h             | Contains an NDEF message (see [NDEF])                                                |
| Proprietary TLV    | FDh             | Tag proprietary information                                                          |
| Terminator TLV     | FEh             | Last TLV block in the data area                                                      |

[RQ\_T2T\_MEM\_018, RQ\_T2T\_MEM\_019] The NFC Forum Device SHALL write the TLV blocks in a specific order inside the data area (see Section 2.1.4 and Section 2.2.3) following the rules below:

- NDEF Message TLVs and Proprietary TLVs are present after all Lock Control TLVs and Memory Control TLVs.
- If present, the Terminator TLV is the last TLV block on the Type 2 Tag Platform.

NULL TLV and Terminator TLV are the only TLV blocks that are 1 byte long (i.e., composed of only the Tag field, see Section 2.3.1 and Section 2.3.2).

[RQ\_T2T\_MEM\_020] NFC Forum Devices SHALL ignore and jump over those TLV blocks that make use of reserved tag field values. To jump over a TLV block with reserved tag field values, the NFC Forum Device SHALL read the length field to understand the length of the value field.

NOTE Future definitions of TLV blocks composed of only the tag field are not backward compatible with this NFC Forum specification.

#### 2.3.1 NULL TLV

[RQ\_T2T\_MEM\_032] The Null TLV can be used for padding of the data area. A Type 2 Tag Platform contains zero, one, or more NULL TLVs. The NFC Forum Device SHALL ignore and jump over this TLV block. NULL TLV is composed of a 1 byte tag field. The encoding of the tag field of the NULL TLV is:

- T is equal to 00h (see Table 2).
- L is not present.
- V is not present.

#### 2.3.2 Lock Control TLV

[RQ\_T2T\_MEM\_021] The Lock Control TLV can be present inside the Type 2 Tag Platform. An NFC Forum Device SHALL be able to read and process it.

The Lock Control TLV provides control information about the lock areas where the dynamic lock bytes are located (see Section 2.2.2). Each Lock Control TLV indicates a single lock area. More lock areas are indicated using more Lock Control TLV blocks.

[RQ\_T2T\_MEM\_022] Below the encoding of the 3 TLV fields of the Lock Control TLV are shown:

- T is equal to 01h (see Table 2).
- L is equal to 03h.
- V is composed of 3 bytes that uniquely identify the position and the size of the lock area, and the number of bytes locked by each bit of the dynamic lock bytes. The 3 bytes are encoded:
  - Position, MSB. Codes the position inside the tag of the lock area. The position byte consists of 2 parts (to calculate the bytes address from the position byte, see the formula later in this section.
    - Pages Addr. Most significant nibble (4 bits), coded as number of pages (0h=0...Fh=15)
    - ByteOffset. Least significant nibble, coded as number of bytes (0h=0...Fh=15)
  - Size. Middle byte, coded as number of bits (01h=1...FFh=255, 00h=256). It indicates the size in bits of the lock area (i.e., the number of dynamic lock bits). If the number of dynamic lock bits is not a multiple of 8, they are stored inside the dynamic lock bytes as explained in the description of the default setting of the dynamic lock bits (see Section 2.2.2).
  - Page control, LSB. Provides general control information: the size in bytes of a page and the number of bytes that each dynamic lock bit is able to lock. Page control byte is split up into two nibbles of 4 bits each:

[RQ\_T2T\_MEM\_024] BytesPerPage: Least significant nibble, coded as 2<sup>n</sup> (0h=RFU, 1h=1...Fh=15). It indicates the number of bytes per page.

[RQ\_T2T\_MEM\_025] BytesLockedPerLockBit: Most significant nibble, coded as 2<sup>n</sup> (0h=RFU, 1h=1...Fh=15). It indicates the number of bytes that each dynamic lock bit is able to lock.

[RQ\_T2T\_MEM\_023] The NFC Forum Device SHALL calculate the byte address (ByteAddr) of the beginning of the lock area as follows:

$$ByteAddr = PageAddr \cdot 2^{BytesPerPage} + ByteOffset$$

ByteAddr is calculated from the beginning of the overall memory tag; Byte 0 of Block 0 is indicated by ByteAddr equal to 0.

ByteAddr is used to read and write the relative lock area using the appropriate READ and WRITE commands (see Section 5). The page definition has nothing to do with the block definition used by READ and WRITE commands.

An example of use of the BytesLockedPerLockBit is if the memory area locked by a single dynamic lock bit is 8 bytes, the BytesLockedPerLockBit is equal to 3 (i.e., 2<sup>BytesLockedPerLockBit</sup>=2<sup>3</sup>=8 bytes).

NOTE The Lock Control TLV might be skipped if a Type 2 Tag Platform is in READ-ONLY state (see Section 6.3). Lock Control TLV blocks can be replaced by Memory Control TLV, indicating the same memory areas for Type 2 Tag Platform in READ-ONLY state (see Section 2.3.3).

#### 2.3.3 Memory Control TLV

[RQ\_T2T\_MEM\_026] The Memory Control TLV can be present inside the Type 2 Tag Platform and an NFC Forum Device SHALL be able to read and process it. It provides control information about the reserved areas where the reserved bytes are located (see Section 2.2.1) and the size of the reserved bytes.

If the Type 2 Tag Platform is delivered by the vendors in READ-ONLY state (see Section 6.3), the NFC Forum Device MAY use the Memory Control TLV to indicate control information for reserved and lock areas. Contiguous and alternating lock and reserved areas MAY be indicated by a single Memory Control TLV.

[RQ\_T2T\_MEM\_027] The encoding of the 3 TLV fields of Memory Control TLV is:

- T is equal to 02h (see Table 2).
- L is equal to 03h.
- V uniquely identifies the position and the size of the reserved area and is composed of three votes. The 3 bytes are encoded:
  - Position, MSB. It codes the position inside the tag of the reserved area. The Position byte consists of 2 parts (to calculate the bytes address from the position byte, see the formula below):
    - PagesAddr. Most significant nibble, coded as number of pages (0h=0...Fh=15)
    - ByteOffset. Least significant nibble, coded as number of bytes (0h=0...Fh=15)
  - Size. Middle byte, coded as number of bytes (1h=1, FFh=255, 0h=256). It indicates the size in bytes of the reserved area.
  - Partial Page Control, LSB. Provides the size in bytes of a page. It is split up into two nibbles of 4 bits each:
    - [RQ\_T2T\_MEM\_029] BytesPerPage nibble: Least significant nibble, coded as 2<sup>n</sup> (0h=RFU, 1h=1...Fh=15). It indicates the number of bytes per page.
    - Most significant nibble is RFU.

[RQ\_T2T\_MEM\_028] The NFC Forum Device SHALL calculate the byte address (ByteAddr) of each reserved area as follows:

$$ByteAddr = PageAddr \cdot 2^{BytesPerPage} + ByteOffset$$

The ByteAddr is calculated from the beginning of the overall memory tag; Byte 0 of Block 0 is indicated by ByteAddr equal to 0.

The page definition has nothing to do with the block definition used by READ and WRITE commands (see Section 5).

#### 2.3.4 NDEF Message TLV

NDEF Message TLV is always present inside the Type 2 Tag Platform. It stores the NDEF message inside the Value field.

[RQ\_T2T\_MEM\_030] The NFC Forum Device SHALL be able to read and process the first (or mandatory) NDEF message (see Section 6.4.1); further NDEF Message TLV blocks can be present. The mandatory and always present NDEF Message TLV provides the starting point when writing the NDEF Message into the Type 2 Tag. That is, an NDEF Message cannot be written before the NDEF Message TLV, which avoids corrupting the possible Memory and Lock Control TLVs (see Section 6.4.3).

[RQ\_T2T\_MEM\_031] The encoding of the 3 TLV fields of NDEF Message TLV is:

- T is equal to 03h (see Table 2).
- L is equal to the size in bytes of the stored NDEF message.
- V stores the NDEF message (see [NDEF]).

An empty NDEF Message TLV is defined as an NDEF Message TLV with L field equal to 00h and no V field (i.e., no NDEF message is present in the V field). See [NDEF]).

### 2.3.5 Proprietary TLV

The Proprietary TLV contains proprietary information. A Type 2 Tag Platform contains zero, one, or more Proprietary TLVs. The NFC Forum Device MAY ignore the data contained in this TLV block. The encoding of the 3 TLV fields of Proprietary TLV is:

- T is equal to FDh (see Table 2).
- L is equal to the size in bytes of the proprietary data in the Value field.
- V contains any proprietary data.

#### 2.3.6 Terminator TLV

[RQ\_T2T\_MEM\_033] The Terminator TLV can be present inside the Type 2 Tag Platform, and an NFC Forum Device SHALL be able to read and process it. The Terminator TLV is the last TLV block in the data area. Terminator TLV is composed of a 1 byte tag field. The encoding of the tag fields of the Terminator TLV is:

- T is equal to FEh (see Table 2).
- L is not present.
- V is not present.

# 3 RF Interface

The RF interface of the NFC Forum Device is defined in [ANALOG].

[RQ\_T2T\_RFI\_001] The NFC Forum Device SHALL comply with the RF interface as defined in the relevant clauses of [ANALOG].

## 4 Framing / Transmission Handling

This section describes the framing (also called packet structures) and the transmission handling of the NFC Forum Device.

[RQ\_T2T\_FTH\_001] The NFC Forum Device SHALL comply with the sequence format, the bit level coding, the frame format, the data and payload format, and the command set related to the Type 2 Tag Platform as defined in [DIGITAL], including the activation sequence of the Type 2 Tag Platform as defined in [ACTIVITY].

The Type 2 Tag platform Commands and Responses are to be transmitted according to the rules defined for half-duplex protocols in Section 9 of [DIGITAL].

[RQ\_T2T\_FTH\_001\_1] The Type 2 Tag platform Command Set usage SHALL be compliant with the requirements defined for half-duplex protocols in Section 9 of [DIGITAL].

[RQ\_T2T\_FTH\_001\_2] The NFC Forum Device SHALL comply with the commands and responses defined in Section 5.

### 5 Command Set

Payload exchanged between NFC Forum Devices consists of Commands and Responses. Table 3 lists the Commands that are available to the NFC Forum Device in Poll Mode for communication with an NFC Forum Device in Listen Mode configured for the Type 2 Tag platform. For each Command, the corresponding Response from the NFC Forum Device in Listen Mode is indicated.

**Table 3: Command Set** 

| Poll Mode (Command)   | Listen Mode (Response)                            |
|-----------------------|---------------------------------------------------|
| READ Command          | READ Response, NACK Response                      |
| WRITE Command         | ACK Response, NACK Response                       |
| SECTOR SELECT Command | ACK Response, NACK Response, Passive ACK Response |

#### **5.1 READ**

[RQ\_T2T\_CSE\_001] The NFC Forum Device SHALL comply with the READ Command described in this section.

Table 4 describes the READ commands and the relative responses.

Table 4: READ

| Length<br>Byte Number |               | 1 byte<br>Byte 1         | 1 byte<br>Byte 2  |
|-----------------------|---------------|--------------------------|-------------------|
| Command               | READ Command  | Code:<br>30h             | BNo:<br>00h - FFh |
| Length<br>Byte Number |               | 16 bytes<br>Byte 1 – 16  |                   |
| Response              | READ Response | 16 bytes payload         | -                 |
|                       | NACK Response | See Section 5.4 (4 bits) | -                 |

[RQ\_T2T\_CSE\_001\_1] The NFC Forum Device SHALL be ready to receive a READ Response with a payload composed of 16 bytes or a NACK response.

[RQ\_T2T\_CSE\_001\_2] When a NACK Response is received by the NFC Forum Device, this SHALL be treated as Protocol Error.

The READ command has command code 30h and needs the block number (BNo) as a parameter. The block number is explained in Section 2. The Type 2 Tag Platform responds to a READ command by sending 16 bytes, starting from the block number defined in the READ command (e.g., if BNo is equal to 03h, then blocks 3, 4, 5, and 6 are returned). The memory organization of the Type 2 Tag Platform is described in Section 2. In case of error, the Type 2 Tag Platform sends a NACK response.

[RQ\_T2T\_CSE\_002] The READ command is unable to select the sector (see Section 2.2). The READ command reads blocks that belong to the currently selected sector. To select a different sector, the SECTOR SELECT command is used. To calculate the block number (BNo) from the byte address (ByteAddr, see Section 2.3.1 and Section 2.3.3), the NFC Forum Device SHALL use the expression  $BNo = \lfloor ByteAddr/4 \rfloor$ . If the formula gives as a result BNo bigger than 255, the block indicated by BNo does not belong to sector 0 (default sector). In this case, the NFC Forum Device SHALL use the SECTOR SELECT command first to switch to the correct sector (SecNo) equal to  $SecNo = \lfloor BNo/256 \rfloor$ . Then the NFC Forum Device SHALL use the READ command with the adapted block number (BNo') instead of BNo. The NFC Forum Device SHALL calculate BNo' from the formula  $BNo' = BNo \mod 256$ . With Mod, the module operation gives the remainder of the division ByteAddr/256.

#### 5.2 WRITE

[RQ\_T2T\_CSE\_004] The NFC Forum Device SHALL comply with the WRITE Command described in this section.

Table 5 describes the WRITE commands and the relative responses ACK Response and NACK Response.

Length 1 byte 1 byte 4 bytes Byte Number Byte 1 Byte 2 Byte 3 - 6 WRITE Command Command Code: BNo: Data 00h - FFhA2h 4 bits Length Byte Number Response **ACK** Response See Section 5.4 **NACK Response** See Section 5.4

**Table 5: WRITE** 

[RQ\_T2T\_CSE\_004\_1] When an ACK Response is received, the WRITE Command SHALL be treated as being successful.

[RQ\_T2T\_CSE\_004\_2] A NACK Response SHALL be treated as Protocol Error.

The WRITE command has the command code A2h followed by the block number (BNo) parameter.

[RQ\_T2T\_CSE\_005] The NFC Forum Device SHALL use the WRITE command for programming data. This MAY be the CC bytes (see Section 6.1), the lock bytes, or the data area bytes (see Section 2).

[RQ\_T2T\_CSE\_006] The NFC Forum Device SHALL use the WRITE command block-wise, programming 4 bytes at once.

If the WRITE command is executed successfully by the Type 2 Tag Platform, the ACK response is sent back. In case of error, the Type 2 Tag Platform sends a NACK response.

[RQ\_T2T\_CSE\_007] The WRITE operation is block-wise (i.e., it always writes the 4 bytes of the whole block). The NFC Forum Device SHALL write the new byte values and overwrite with the same values the bytes that remain unchanged. The NFC Forum Device MAY read the block first (i.e., READ operation), if the values of the bytes that remain unchanged are not known in advance.

The WRITE command is unable to select the sector (see Section 2.2). The WRITE command writes blocks that belong to the currently selected sector. To select a different sector, the SECTOR SELECT command is used.

[RQ\_T2T\_CSE\_008] To calculate the block number (BNo) from the byte address (ByteAddr, see Section 2.3.1 and Section 2.3.3) the NFC Forum Device SHALL use the following expression  $BNo = \lfloor ByteAddr/4 \rfloor$ . If the formula gives as a result BNo bigger than 255, the block indicated by BNo does not belong to sector 0 (default sector). In this case, the NFC Forum Device SHALL use the SECTOR SELECT command first to switch to the correct sector (SecNo) equal to  $SecNo = \lfloor BNo/256 \rfloor$ . Then the NFC Forum Device SHALL use the WRITE command with the adapted block number (BNo') instead of BNo. To calculate BNo', the NFC Forum Device SHALL use the formula  $BNo' = BNo \mod 256$ . With Mod, the module operation gives the remainder of the division ByteAddr/256.

#### 5.3 SECTOR SELECT

The NFC Forum Device SHALL comply with the SECTOR SELECT Command described in this section.

NOTE The SECTOR SELECT Command applies only to a Type 2 Tag Platform with memory bigger than 1KB.

Table 6 describes the SECTOR SELECT command divided into 2 command packets and the relative responses ACK Response, passive ACK Response, and NACK Response.

1 byte 1 byte Length Byte 1 Byte 2 Byte Number Command SECTOR SELECT Code: FFh Packet 1 Command Packet 1 C2h 4 bits Length Byte Number See Section 5.4 Response ACK Response See Section 5.4 NACK Response

**Table 6: SECTOR SELECT Command** 

| Length<br>Byte Number |                                       | 1 byte<br>Byte 1                   | 3 bytes<br>Byte 2 – 4 |
|-----------------------|---------------------------------------|------------------------------------|-----------------------|
| Command<br>Packet 2   | SECTOR SELECT<br>Command Packet 2     | SecNo:<br>00h-FEh,<br>FFh is RFU   | RFU                   |
| Length<br>Byte Number |                                       | 4 bits<br>-                        |                       |
| Response              | Passive ACK Response<br>NACK Response | See Section 5.4<br>See Section 5.4 | -                     |

[RQ\_T2T\_CSE\_013] The NFC Forum Device SHALL use the SECTOR SELECT command to address physical memory bigger than 1 KB (>1024 bytes).

Using SECTOR SELECT, it is possible to select a specific memory sector. The size of each sector is 1Kbyte.

The SECTOR SELECT command is divided into two packets called Command Packet 1 and Command Packet 2.

In response to the SECTOR SELECT Command Packet 1, the NFC Forum Device returns an ACK or NACK response. The format of the ACK Response is shown in Section 5.4. The format of the NACK Response is shown in Section 5.4. If the Poll Frame contains a SECTOR SELECT Command Packet 2, then **FDT**<sub>ALISTEN,MAX</sub> is equal to **PAT**<sub>T2T,SL,MAX</sub>.

[RQ\_T2T\_CSE\_013\_1] When a SECTOR SELECT Command Packet 1 has been sent by the NFC Forum Device and an ACK Response is received, the SECTOR SELECT Command Packet 1 SHALL be treated as being successful.

[RQ\_T2T\_CSE\_013\_2] A NACK Response SHALL be treated as Protocol Error.

[RQ\_T2T\_CSE\_015] The Command Packet 1 contains the 1 byte command code (equal to C2h), the 1 byte parameter (equal to FFh), and the 2 bytes CRC. The NFC Forum Device SHALL send the SECTOR SELECT Command Packet 1 first. A Device implementing a Type 2 Tag Platform with memory smaller than 1KB treats a SECTOR SELECT Command Packet 1 as OTHER, as described in Appendix E. A Device implementing a Type 2 Tag Platform with memory bigger than 1KB answers with an ACK to a SECTOR SELECT Command Packet 1. After receiving an ACK, the NFC Forum Device SHALL send the SECTOR SELECT Command Packet 2. This is four bytes with CRC and parity packet.

In response to the SECTOR SELECT Command Packet 2, the NFC Forum Device returns a Passive ACK Response, The Passive ACK Response is defined here below.

[RQ\_T2T\_CSE\_015\_1] When a SECTOR SELECT Command Packet 2 has been sent by the NFC Forum Device, and no response is received within **PAT**<sub>T2T,SL,MAX</sub> after the SECTOR SELECT Command Packet 2, then the SECTOR SELECT Command Packet 2 SHALL be treated as being successful (i.e., **FDT**<sub>A,LISTEN,MAX</sub> equals **PAT**<sub>T2T,SL,MAX</sub>).

[RQ\_T2T\_CSE\_015\_2] When a SECTOR SELECT Command Packet 2 has been sent by the NFC Forum Device, and a response is received within **PAT**<sub>T2T,SL,MAX</sub> after the SECTOR SELECT Command Packet 2, then the SECTOR SELECT Command Packet 2 SHALL be treated as a Protocol Error.

Refer to Appendix B for the value of **PAT**<sub>T2T,SL,MAX</sub>.

[RQ\_T2T\_CSE\_017] The first byte in the SECTOR SELECT Command Packet 2 is the chosen sector number (SecNo). The following 3 bytes are reserved for future use and set to 00h. If the sector number is inside the addressable data memory, no further packet is sent (passive ACK Response), and the sector is selected accordingly by the Type 2 Tag Platform. A NACK Response is sent by the Type 2 Tag Platform, if the addressable data memory space is exceeded.

The chosen sector stays valid until a protocol infringement occurs or a new sector is addressed. The default sector after power up (and after a protocol infringement) is 00h (called sector 0).

[RQ\_T2T\_CSE\_018] The SECTOR SELECT command can select up to 254 different sectors: the SecNo range is from 00h to FEh and the value FFh SHALL be reserved for future use (RFU).

### 5.4 ACK and NACK

[RQ\_T2T\_CSE\_018\_1] The NFC Forum Device SHALL comply with the ACK Response (see Table 7), Passive ACK Response (see Section 5.3), and NACK Response (see Table 8).

**Table 7: ACK Response Format** 

| b4 | b3 | b2 | b1 | Meaning                             |
|----|----|----|----|-------------------------------------|
| 1  | 0  | 1  | 0  | The ACK Response has a value of Ah. |

**Table 8: NACK Response Format** 

| b4 | b3 | b2 | b1 | Meaning                                             |
|----|----|----|----|-----------------------------------------------------|
| 0  | X  | 0  | X  | The NACK Response has a value of 0h, 1h, 4h, or 5h. |

## 5.5 Timing Requirements

The Type 2 Tag platform uses NFC-A Frame Delay Times see [DIGITAL].

[RQ\_T2T\_CSE\_018\_2] The NFC Forum Device SHALL transmit commands according to NFC-A Technology Frame Delay Time restrictions as defined in [DIGITAL] in Section 6.10.1 and Section 6.10.2 for communication with Type 2 Tag platform.

[RQ\_T2T\_CSE\_018\_3] The NFC Forum Device SHALL accept responses according to NFC-A Technology Frame Delay Time restrictions as defined in [DIGITAL] in Section 6.10.1 and Section 6.10.2 for communication with Type 2 Tag platform.

[RO T2T CSE 018 4] The NFC Forum Device SHALL wait for a Response at least for time:

- **FDT**<sub>T2T.READ.MAX</sub> for the READ Command
- **FDT**<sub>T2T.WRITE.MAX</sub> for the WRITE Command
- **FDT**<sub>T2T.SL.MAX</sub> for the SECTOR SELECT Command Packet 1

[RQ\_T2T\_CSE\_018\_5] If the NFC Forum Device does not receive a Response within **FDT**<sub>T2T,READ/WRITE/SL,MAX</sub> +  $\Delta$ T<sub>T2T,POLL</sub>, then the NFC Forum Device SHALL treat this as a Timeout Error (i.e., **FDT**<sub>A,LISTEN,MAX</sub> equals **FDT**<sub>T2T,READ/WRITE/SL,MAX</sub> +  $\Delta$ T<sub>T2T,POLL</sub>).

[RQ\_T2T\_CSE\_018\_6] Between  $FDT_{T2T,READ/WRITE/SL,MAX}$  and  $FDT_{T2T,READ/WRITE/SL,MAX}$  + $\Delta T_{T2T,POLL}$ , the NFC Forum Device MAY accept the Response or MAY generate a Timeout Error.

Refer to Appendix B for the values of  $FDT_{T2T,READ,MAX}$ ,  $FDT_{T2T,WRITE,MAX}$ ,  $FDT_{T2T,SL,MAX}$ , and  $\Delta T_{T2T,POLL}$ 

NOTE See Section 5.3 for the definition of the passive ACK response and timing for the SECTOR SELECT Command Packet 2.

### 6 NDEF Detection and Access

This section describes how the NFC Forum Device stores and accesses the NFC Forum data in the Type 2 Tag Platform.

## 6.1 NDEF Management

The NFC Forum Device reads the Capability Container (CC) to detect and access the NFC Forum defined data inside the Type 2 Tag Platform. The CC contains NFC Forum management data.

The CC is stored in the block 3 of the static or dynamic memory structure (see Section 2). The CC bytes can be written using the WRITE command (see Section 5.2). The 4 data bytes of the WRITE command and the current contents of the 4 CC bytes are bit-wise "OR-ed" and the result is the new contents of the CC bytes. This process is irreversible. If a bit is set to 1b, it cannot be changed back to 0b again.

[RQ\_T2T\_NDA\_001] The NFC Forum Device SHALL NOT use the CC to store any application related data.

[RQ\_T2T\_NDA\_002, RQ\_T2T\_NDA\_003] The NFC Forum Device SHALL interpret the CC bytes of block 3 as follows:

- 1. Byte 0 is equal to E1h (magic number) to indicate that NFC Forum defined data is stored in the data area (see Section 2).
- 1. Byte 1 is the version number of this document supported by the Type 2 Tag Platform (see Section 6.1.1). The most significant nibble (i.e., the 4 most significant bits) indicates the major version number and the least significant nibble (the 4 least significant bits) indicates the minor version number. The version number of this specification has major version number equal to 1h and minor version number equal to 0h (i.e., the version is v1.0 and Byte 1 is equal to 10h).
- 2. Byte 2 indicates the memory size of the data area of the Type 2 Tag Platform. The value of byte 2 multiplied by 8 is equal to the data area size measured in bytes. For example:
  - 48 bytes are indicated by byte 2 value equal to 06h
  - 128 bytes are indicated by byte 2 value equal to 10h
  - 2040 bytes are indicated by byte 2 value equal to FFh
- 3. Byte 3 indicates the read and write access capability of the data area and CC area of the Type 2 Tag Platform.
  - The most significant nibble (the 4 most significant bits) indicates the read access condition:
    - The value 0h indicates read access granted without any security.
    - The values from 1h to 7h and Fh are reserved for future use.
    - The values from 8h to Eh are proprietary.
  - The least significant nibble (the 4 least significant bits) indicates the write access condition:
    - The value 0h indicates write access granted without any security.
    - The values from 1h to 7h are reserved for future use.

- The values from 8h to Eh are proprietary.
- The value Fh indicates no write access granted at all.

Table 9 shows an example of coding of the CC bytes. The example is related to a Type 2 Tag Platform:

- With NFC Forum defined data (byte 0 = E1h)
- Supporting version 1.0 (major number 1h, minor number 0h) of the mapping document (byte 1 = 10h)
- With 128 bytes of the data area size (byte 2 = 10h)
- With read and write access granted without any security (byte 3 = 00h)

Table 9: Example of coding of the CC bytes of block 3

| Byte 0 | Byte 1 | Byte 2 | Byte 3 |
|--------|--------|--------|--------|
| E1h    | 10h    | 10h    | 00h    |

### 6.1.1 Version Treating

The Byte 1 of the CC contains the version of the applied mapping document to the Type 2 Tag Platform. The mapping document version is indicated with two numbers: major number version and minor version number.

[RQ\_T2T\_NDA\_004] The handling of the different mapping document version numbers applied to the Type 2 Tag Platform (called T2VNo) and the one implemented in the NFC Forum Device (called NFCDevVNo) is explained in the four cases of Table 10.

Table 10: Handling of the mapping document version numbers

| No | Version Number Case                                                                                          | Handling                                                                                                                                                                                                                                                                                                                                                                     |
|----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Major NFCDevVNo is equal<br>to major T2VNo, and<br>minor NFCDevVNo is bigger<br>than or equal to minor T2VNo | The NFC Forum Device SHALL access the Type 2 Tag Platform and SHALL use all features of the applied mapping document to this Type 2 Tag Platform.                                                                                                                                                                                                                            |
| 2  | If major NFCDevVNo is equal to major T2VNo, and minor NFCDevVNo is lower than minor T2VNo                    | Possibly not all features of the Type 2 Tag Platform can be accessed. The NFC Forum Device SHALL use all its features and SHALL access this Type 2 Tag Platform.                                                                                                                                                                                                             |
| 3  | If major NFCDevVNo is smaller than major T2VNo                                                               | Incompatible data format. The NFC Forum Device cannot understand the Type 2 Tag Platform data. The NFC Forum Device SHALL reject this Type 2 Tag Platform.                                                                                                                                                                                                                   |
| 4  | If major NFCDevVNo is bigger than major T2VNo                                                                | The NFC Forum Device might implement the support for previous versions of this specification in addition to its main version. In case the NFC Forum Device has the support from previous version, it SHALL access the Type 2 Tag Platform. On the contrary, in case the NFC Forum Device has not the support from previous version, it SHALL reject the Type 2 Tag Platform. |

**NOTE** 

Future versions of this specification have to define the allowed actions to an NFC Forum Tag with a version number lower than the version number of the NFC Forum Device (e.g., whether it is allowed to upgrade the tag to the new version).

## 6.2 NDEF Storage

The data format of the NDEF message is defined in [NDEF]. The NDEF message is stored inside the value field of the NDEF Message TLV (see Section 2.3.4) in the data area of the Type 2 Tag Platform (see Section 2). In the following section, the NDEF Message TLV is always the NDEF Message TLV detected by the NDEF detection procedure (see Section 6.4.1).

## 6.3 Life Cycle

An NFC Forum Device MAY detect a Type 2 Tag Platform in different states. The state is reflected by the content of the Type 2 Tag Platform. Every state has its own valid operations.

The state transitions are only relevant for NFC Forum Devices, which are capable of writing Type 2 Tag Platform.

[RQ\_T2T\_NDA\_005] The Type 2 Tag Platform can be in one of the following states: INITIALIZED, READ/WRITE, or READ-ONLY.

[RQ\_T2T\_NDA\_006] If the Type 2 Tag Platform is not in a valid state according to the specification of the NFC Forum, the NFC Forum Device SHALL ignore the Type 2 Tag Platform and its data.

The reasons might be:

- Misconfigured CC area
- Not allowed NDEF Read Procedure (see Section 6.4.2), if Type 2 tag is in READ/WRITE or READ-ONLY state
- Not allowed NDEF Write Procedure (see Section 6.4.3), if Type 2 tag is in INITIALIZED or READ/WRITE state
- Mismatch between overall TLV blocks length and actual length of the data area
- Invalid TLV block

#### 6.3.1 INITIALIZED State

In this state the NFC Forum Device MAY modify the content of the NFC Forum defined data (i.e., NDEF Message TLV in the Type 2 Tag Platform).

[RQ\_T2T\_NDA\_007] The NFC Forum Device SHALL detect a Type 2 Tag Platform in INITIALIZED state when all of the following are true:

- The CC area is set as described in Section 6.1 with byte 3 equal to 00h (read/write access granted)
- The data area contains an NDEF Message TLV
- The length field of NDEF Message TLV is equal to 00h

#### 6.3.2 READ/WRITE State

In this state, the NFC Forum Device MAY modify the content of the NFC Forum defined data (i.e., NDEF Message TLV in the Type 2 Tag Platform).

[RQ\_T2T\_NDA\_008] The NFC Forum Device SHALL detect a Type 2 Tag Platform in READ/WRITE state when all of the following are true:

- The CC area is set as described in Section 6.1 with byte 3 equal to 00h (read/write access granted)
- The data area contains an NDEF Message TLV
- The length field of NDEF Message TLV is different from zero and equal to the actual length of the NDEF message in the value field

#### 6.3.3 READ-ONLY State

In this state, the CC and the whole data area are set to read-only.

[RQ\_T2T\_NDA\_009] The NFC Forum Device SHALL detect a Type 2 Tag Platform in READ-ONLY state when all of the following are true:

- The CC area is set as described in Section 6.1 with byte 3 equal to 0Fh (only read access granted)
- The data area contains an NDEF Message TLV
- The length field of NDEF Message TLV SHALL be different from zero and equal to the actual length of the NDEF message in the value field

NOTE To detect the READ-ONLY state, the lock bits are not checked.

## 6.4 Command Sequence Description

In this section, several procedures are described to manage NFC Forum defined data (e.g., NDEF Message TLV that contains an NDEF message). The different state changes or transitions between the states of the Type 2 Tag Platform are shown in detail.

#### 6.4.1 NDEF Detection Procedure

[RQ\_T2T\_NDA\_010] The NFC Forum Device SHALL use the NDEF detection procedure to detect the presence of an NDEF message (see [NDEF]) inside a Type 2 Tag Platform.

The NDEF Message TLV that is found by the NDEF detection procedure is also called "mandatory NDEF Message TLV" or "first NDEF Message TLV".

The detection procedure is based on the control of byte 0 and 1 of the CC, and the presence of an NDEF Message TLV that MAY contain an NDEF message.

[RQ\_T2T\_NDA\_011] The NDEF detection procedure is:

- 1. Read the CC (block 3) using the READ command specified in Section 5.1.
- 2. If byte 0 is equal to E1h, byte 1 describes the right version number (see Section 6.1.1), and the most significant nibble of byte 3 in block 3 is equal to 0h, then go to item 3. Otherwise, no NDEF data is detected in the Type 2 Tag Platform.
- 3. Read the data area sequentially using the READ command specified in Section 5.1, starting from block 4 and search for NDEF Message TLV. Stop the searching as soon as a first NDEF Message TLV is found. If no NDEF message TLV is detected in the Type 2 Tag Platform, the tag is not in a valid state.
- 4. If NDEF Message TLV is found:
  - If the length field is different from zero, the NDEF message (see [NDEF]) is detected in the Type 2 Tag Platform.
  - If the length field is equal to zero, no NDEF Message is detected. The tag might be in an INITIALIZED state.

[RQ\_T2T\_NDA\_013] If the data to be read exceeds one or more sectors, the NFC Forum Device SHALL use the SECTOR SELECT command (see Section 5.3).

[RQ\_T2T\_NDA\_012] During the NDEF detection procedure, the NFC Forum Device SHALL ignore and jump over reserved memory areas or dynamic lock bit areas indicated by Memory Control TLVs or Lock Control TLVs.

NOTE The NDEF detection procedure does not relate to a valid NDEF message (see [NDEF]). It reads the length of the store NDEF data and does not parse the NDEF data itself.

#### 6.4.2 NDEF Read Procedure

The NDEF read procedure makes use of the READ command.

[RQ\_T2T\_NDA\_014] The NFC Forum Device SHALL use the NDEF read procedure to read the NDEF message after having detected the NDEF message using the NDEF detection procedure (see Section 6.4.1).

[RQ\_T2T\_NDA\_015] If the NDEF detection procedure does not detect the presence of the NDEF message inside the value field of the first NDEF Message TLV, the NFC Forum Device SHALL NOT use the NDEF read procedure.

[RQ\_T2T\_NDA\_016] The NDEF read procedure uses one or more READ commands (see Section 5.1) to retrieve the whole NDEF message from NDEF Message TLV. The length of the NDEF message is provided from the length field of NDEF Message TLV (see Section 2.3.4).

[RQ\_T2T\_NDA\_018] If the data to be read exceeds one or more sectors, the NFC Forum Device SHALL use the SECTOR SELECT command (see Section 5.3).

[RQ\_T2T\_NDA\_017] During the NDEF read procedure, the NFC Forum Device SHALL ignore and jump over reserved memory areas or dynamic lock bit areas indicated by Memory Control TLVs or Lock Control TLVs.

#### 6.4.3 NDEF Write Procedure

[RQ\_T2T\_NDA\_019] The NFC Forum Device SHALL use the NDEF write procedure to write NFC Forum defined data (i.e., the NDEF message inside the first NDEF Message TLV of the Type 2 Tag Platform).

The NDEF write procedure uses the READ and WRITE commands (see Section 5.1 and Section 5.2), and the NDEF detection procedure (see Section 6.4.1).

[RQ\_T2T\_NDA\_020] The NFC Forum Device SHALL only write the NDEF message into Type 2 Tag Platform in INITIALIZED or READ/WRITE state.

[RQ\_T2T\_NDA\_021] During the NDEF write procedure, the NFC Forum Device SHALL ignore and jump over reserved memory areas or dynamic lock bit areas indicated by Memory Control TLVs or Lock Control TLVs.

[RQ\_T2T\_NDA\_022] The NDEF write procedure is:

- 1. Check if the Type 2 Tag Platform is in INITIALIZED or READ/WRITE state, and use the NDEF detection procedure.
- 2. If the Type 2 Tag Platform is in INITIALIZED or READ/WRITE state, the first NDEF Message TLV is found (with or without NDEF message in it; see Section 6.4.1), and the available memory size for NDEF Message TLV is big enough to contain the NDEF message, the operations below are allowed to be done in the following order using one or more WRITE commands (see Section 5.2):
  - a. The length field of the found NDEF Message TLV is set to one byte long and the value of the length field is set to 00h.
  - b. The new NDEF message is written in the memory area starting from: the 2nd byte after the tag field of the found NDEF Message TLV if the new NDEF Message length is less than 255 bytes, or fourth bytes after the tag field of the found NDEF Message TLV if the new NDEF Message length is bigger than 254 bytes.
  - c. The 1 or 3 bytes of the length field of the found NDEF Message TLV is updated with the length of the new NDEF message.
    - Otherwise, if no NDEF Message TLV is found, if the Type 2 Tag Platform is not in INITIALIZED or READ/WRITE state, or if not enough memory space is available in the Type 2 Tag Platform, the NDEF message is not written in the Type 2 Tag Platform.

3. The Terminator TLV is written in the next byte after the first NDEF Message TLV using the WRITE command (see Section 5.2), if the NDEF Message TLV block does not end at the last byte of the available data area. The Terminator TLV is not written if NDEF Message TLV block ends at the last byte of the available data area.

Concerning operation item 2b above, the writing of the value field of the found NDEF Message TLV leaves 1 or 3 bytes for the length field (see Section 2.3) that are needed by operation item 2c to store the length of the NDEF message.

In case the last byte of the NDEF Message TLV is not written in Byte 3 of a block (that means it is written in Byte 0, 1 or 2), the Terminator TLV is written together with the last remaining byte(s) of the NDEF Message TLV using the same WRITE command.

For the WRITE command, the reading of not completely updated blocks is needed first (see Section 5.2).

[RQ\_T2T\_NDA\_023] If the data to be read or written exceeds one or more sectors, the NFC Forum Device SHALL use the SECTOR SELECT command (see Section 5.3).

NOTE The NDEF write procedure overwrites the first NDEF Message TLV and makes unusable the TLV blocks that were stored after it.

#### 6.4.4 State Changes

This section describes the possible state changes (also called transitions) performed by the NFC Forum Device. Figure 4 shows the states and the transitions between them. The transitions are valid for static and dynamic memory structure. The possible transitions used by the NFC Forum Device for the Type 2 Tag Platform are:

- Transition from INITIALIZED to READ/WRITE
- Transition from INITIALIZED to READ-ONLY
- Transition from READ/WRITE to READ-ONLY

[RQ\_T2T\_NDA\_024] The NFC Forum Device SHALL be able to perform the three transitions for static and dynamic memory structure.

NOTE A Type 2 Tag Platform might be issued in any valid state. So, a Type 2 Tag Platform might be issued in INITIALIZED state, READ/WRITE state, or even in READ-ONLY state that has a predefined NDEF message stored on it.



Figure 4: Life Cycle with State Changes (transitions)

#### 6.4.4.1 Transitions from INITIALIZED to READ/WRITE

[RQ\_T2T\_NDA\_025] To perform the transition from INITIALIZED to READ/WRITE, the NFC Forum Device SHALL use the NDEF write procedure (see Section 6.4.3) to replace the empty NDEF Message TLV with a non-empty NDEF Message TLV (length field different from zero).

The NFC Forum Device MAY perform the transition only if the Type 2 Tag Platform is in INITIALIZED state; otherwise, it SHALL NOT perform it.

The transition from READ/WRITE to INITIALIZED is not defined. To delete or remove the NDEF message in NDEF Message TLV, the NFC Forum Device MAY write an empty NDEF message (see Appendix D).

#### 6.4.4.2 Transitions from READ/WRITE to READ-ONLY

[RQ\_T2T\_NDA\_026] To perform the transition from READ/WRITE to READ-ONLY, the NFC Forum Device SHALL set Byte 3 of the CC to 0Fh and all lock bits to 1b (including static and possible dynamic lock bits). To set bits and bytes, the NFC Forum Device MAY use one or more WRITE commands.

[RQ\_T2T\_NDA\_027] The NFC Forum Device MAY perform the transition only if the Type 2 Tag Platform is in READ/WRITE state; otherwise, it SHALL NOT perform it.

[RQ\_T2T\_NDA\_028] If the Type 2 Tag Platform has a dynamic memory structure as indicated by the CC byte 2 value bigger than 06h (see Section 6.1), the NFC Forum Device SHALL do the following operations to set to 1b the dynamic lock bits:

- 1. Check if any Lock Control TLV(s) is present in the data area.
- 2. If one or more Lock Control TLVs are present, set the dynamic lock bits identified by these Lock Control TLVs to 1b.
- 3. If no Lock Control TLV is present, set the dynamic lock bits identified by the default setting of the dynamic lock bits to 1b (see Section 2.2.2).

[RQ\_T2T\_NDA\_029] For the WRITE command, the reading of not completely updated blocks SHALL be done by the NFC Forum Device first (see Section 5.2).

[RQ\_T2T\_NDA\_030] If the data to be read or written exceeds one or more sectors, the NFC Forum Device SHALL use the SECTOR SELECT command (see Section 5.3).

### 6.4.4.3 Transition from INITIALIZED to READ-ONLY

[RQ\_T2T\_NDA\_031] To perform the transition from INITIALIZED to READ-ONLY, the NFC Forum Device SHALL execute the following steps:

- 1. The transition from INITIALIZED to READ/WRITE (see Section 6.4.4.1)
- 2. The transition from READ/WRITE to READ-ONLY (see Section 6.4.4.2)

The NFC Forum Device MAY perform the transition only if the Type 2 Tag Platform is in INITIALIZED state; otherwise, it SHALL NOT perform it.

# A. Exhibit A

Exhibit A is left blank intentionally.

# B. Type 2 Tag Platform timings

Table 11: Type 2 Tag Platform Poll Mode and Listen Mode Parameter Values

| Parameter                    | Poll Mode Va | alue | Listen l | Units |    |
|------------------------------|--------------|------|----------|-------|----|
|                              | Min          | Max  | Min      | Max   |    |
| FDT <sub>T2T,READ,MAX</sub>  | 5            |      | 4        | 1.75  | ms |
| FDT <sub>T2T,WRITE,MAX</sub> | 10           |      |          | 9.5   | ms |
| FDT <sub>T2T,SL,MAX</sub>    | 1            |      | (        | ).95  | ms |
| $\Delta T_{T2T,POLL}$        | 20           |      |          |       | ms |
| PAT <sub>T2T,SL,MAX</sub>    | 1.00         |      | (        | ).95  | ms |

## C. Memory Structure Examples

This appendix shows two examples of memory structure: one for the static memory structure and one for the dynamic memory structure.

#### C.1 Example of Static Memory Structure

This section describes an example of static memory structure with 16 blocks. See Figure 5 for an example.

| Byte Number     | 0                         | 1                         | 2                       | 3           | Block |
|-----------------|---------------------------|---------------------------|-------------------------|-------------|-------|
| UID / Internal  | Internal0                 | Internal1                 | Internal2               | Internal3   | 0     |
| Serial Number   | Internal4                 | Internal5                 | Internal6               | Internal7   | 1     |
| Internal / Lock | Internal8                 | Internal9                 | Lock0 = 00h             | Lock1 = 00h | 2     |
| CC              | CC0 = E1h                 | CC1 = 10h                 | CC2 = 06h               | CC3 = 00h   | 3     |
| Data            | NDEFMessage<br>TLV0 = 03h | NDEFMessage<br>TLV1 = 00h | TerminatorTLV0<br>= FEh | Data3       | 4     |
| Data            | Data4                     | Data5                     | Data6                   | Data7       | 5     |
| Data            | Data8                     | Data9                     | Data10                  | Data11      | 6     |
| Data            |                           |                           |                         |             |       |
| Data            |                           |                           | Data46                  | Data47      | 15    |

Figure 5: Example of Static Memory Structure

If the Type 2 Tag Platform is in the INITIALIZED state, the overall memory is set as follows:

- All lock bits are set to 0b: Lock0 = 00h and Lock1 = 00h
- The CC is set following Section 6.1:
  - CC0 = E1h indicates that NDEF data is present inside the tag.
  - CC1 = 10h indicates support for version 1.0 (major number 1h, minor number 0h) of the mapping document (i.e., the version of this specification).
  - CC2 = 06h indicates 48 bytes of memory size assigned to the data area, dynamic lock bytes, and reserved bytes.
  - CC3 = 00h indicates read and write access granted without any security.

- The data area contains 2 TLV blocks in the following order:
  - NDEF Message TLV: empty TLV block
    - T = 03h
    - L = 00h
    - V = (not present)
  - Terminator TLV:
    - T = FEh
    - L = (not present)
    - V = (not present)

# C.2 Example of Dynamic Memory Structure

This section describes an example of dynamic memory structure with 32 blocks (k = 31) and 4 blocks of reserved data at the end of the physical memory. See Figure 6 for an example.

| Byte Number                              | 0                           | 1                           | 2                           | 3                           | Block |
|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------|
| UID / Internal                           | Internal0                   | Internal1                   | Internal2                   | Internal3                   | 0     |
| Serial Number                            | Internal4                   | Internal5                   | Internal6                   | Internal7                   | 1     |
| Internal / Lock                          | Internal8                   | Internal9                   | Lock0 = 00h                 | Lock1 = 00h                 | 2     |
| CC                                       | CC0 = E1h                   | CC1 = 10h                   | CC2 = 0Ch                   | CC3 = 00h                   | 3     |
| Lock Control TLV                         | LockControlTLV0<br>= 01h    | LockControlTLV1<br>= 03h    | LockControlTLV2<br>= E0h    | LockControlTLV3<br>= 06h    | 4     |
| Lock Control TLV /<br>Memory Control TLV | LockControlTLV4<br>= 33h    | MemoryControl<br>TLV0 = 02h | MemoryControl<br>TLV1 = 03h | MemoryControl<br>TLV2 = E1h | 5     |
| Memory Control TLV /<br>NDEF Message TLV | MemoryControl<br>TLV3 = 0Fh | MemoryControl<br>TLV4 = 03h | NDEFMessage<br>TLV0 = 03h   | NDEFMessage<br>TLV1 = 00h   | 6     |
| Terminator TLV / Data                    | TerminatorTLV0<br>= FEh     | Data13                      | Data14                      |                             | 7     |
| Data                                     |                             |                             |                             |                             |       |
| Data                                     |                             |                             |                             |                             |       |
| Data                                     |                             |                             |                             |                             |       |
| Data                                     |                             | Data93                      | Data94                      | Data95                      | 27    |
| Lock / Reserved                          | Lock2 = 00h                 | Reserved0                   | Reserved1                   | Reserved2                   | 28    |
| Reserved                                 | Reserved3                   | Reserved4                   | Reserved5                   | Reserved6                   | 29    |
| Reserved                                 | Reserved7                   | Reserved8                   | Reserved9                   | Reserved10                  | 30    |
| Reserved                                 | Reserved11                  | Reserved12                  | Reserved13                  | Reserved14                  | 31    |

Figure 6: Example of Dynamic Memory Structure

If the tag is in the INITIALIZED state, the main memory area is set as follows:

- All lock bits are set to 0b: Lock0 = Lock1 = Lock2 = 00h
- The CC is set following Section 6.1:
  - CC0 = E1h indicates that NDEF data is present inside the tag.
  - CC1 = 10h indicates support for version 1.0 (major number 1h, minor number 0h) of the mapping document.
  - CC2 = 0Ch indicates 96 bytes of memory size assigned to the data area.
  - CC3 = 00h indicates read and write access granted without any security.
- The data area contains 4 TLV blocks in the following order:
  - Lock Control TLV:
    - T = 0.1h
    - L = 03h
    - V = E00633h indicates that each lock bit locks 1 page, each page is 8 bytes, and the lock area is 1 byte long at the byte address:

 $ByteAddr = PageAddr * 2^{BytesPerPage} + ByteOffset = 14 * 2^3 + 0 = 112 \ where:$ 

- Position = E0h contains PageAddr = Eh and ByteOffset = 0h
- Size = 06h
- PageControl = 33h contains BytesPerPage =  $3h (2^3 = 8 \text{ bytes})$  and BytesLockedPerLockBit =  $3h (2^3 = 8 \text{ bytes})$ .
- Memory Control TLV:
  - T = 02h
  - L = 03h
  - V = E10F03h indicates that the reserved area is 15 bytes long at the byte address:

ByteAddr = PageAddr\* $2^{\text{BytesPerPage}}$  + ByteOffset =  $14 * 2^3 + 1 = 113$  where:

- Position = E1h contains PageAddr = Eh and ByteOffset = 1h
- Size = 0Fh
- PageControl = 03h contains BytesPerPage = 3h and most significant nibble = 0h (RFU, ignored)
- NDEF Message TLV: empty TLV block
  - T = 03h
  - L = 00h
  - V = (not present)

- Terminator TLV:
  - T = FEh
  - L = (not present)
  - V = (not present)

The Lock Control TLV MAY be skipped using the default values for the dynamic lock area (see Section 2.2.2). Also, the Memory Control TLV can be skipped after the data area and after the dynamic lock area (see Figure 6 block 28-31).

## D. Examples of Command Flow

This section provides some examples of the command flow in order to show how a typical interaction can be performed. It is assumed that the Type 2 Tag Platform is in INITIALIZED or in READ/WRITE state. This example does not cover any checks of the NDEF message.

The commands and the responses are written in hexadecimal form with a space between each byte (e.g., 30 F3 AB 9C) without the "h" character at the end. The left-most byte is the first byte sent and the right-most byte is the last byte sent. Special acronyms like CRC0, CRC1, Data3, and Data11... are written to indicate a group of data or bytes with a specific meaning indicated later on in the description of the command or of the response.

#### **D.1 Static Memory Structure Examples**

The two examples in the following two sections are based on static memory structure (see Section 2.1).

### D.2 Detection of NDEF Message

To detect the NDEF message, the NDEF detection procedure is applied (see Section 6.4.1). Two examples are given with a positive and a negative detection of NDEF message.

#### D.2.1 Positive Detection of NDEF Message

A READ command is issued to read blocks 3 to 6 (BNo = 3-6) of the static memory structure where the CC and NDEF Message TLV are located.

Command: 30 03 CRC0 CRC1

- The meanings of the bytes are:
  - 30h indicates the READ command.
  - 03h indicates to start to read from the block number (BNo).
  - CRC0 and CRC1 are the CRC bytes.

Response: E1 10 06 00 03 03 D0 00 00 FE Data6 ... Data11 CRC0 CRC1

- The meanings of the bytes are (note that only the first four bytes belong to block 3 and to the CC):
  - E1h = CC0 indicates that NDEF data is present inside the tag.
  - 10h = CC1 indicates support for version 1.0 (major number 1h, minor number 0h) of the mapping document.
  - 06h = CC2 indicates 48 bytes of memory size assigned to the data area.
  - 00h = CC3 indicates read and write access granted without any security.
  - 03h indicates that an NDEF Message TLV is present.
  - 03h indicates that the value field of NDEF Message TLV is present (length equal to zero) and contains 3 byes.
  - 0D0000h is an empty NDEF message (see Appendix C).
  - FEh indicates that the Terminator TLV is present.

- Data6...Data11 data area bytes contain not meaningful information and are ignored during reading operations.
- CRC0 and CRC1 are the CRC bytes.

The NDEF message is detected inside the Type 2 Tag Platform because the L field of NDEF Message TLV is different from 00h. The NDEF detection procedure does not parse the V field of NDEF Message TLV, but it checks the L field if it is different from 00h.

#### D.2.2 Negative Detection of NDEF Message

This example follows the example in Figure 5.

A READ command to read blocks 3 to 6 (BNo = 3-6) of the static memory structure where the CC and NDEF Message TLV are located.

Command: 30 03 CRC0 CRC1

- The meanings of the bytes are:
  - 30h indicates the READ command.
  - 03h indicates to start to read from the block number (BNo).
  - CRC0 and CRC1 are the CRC bytes.

Response: E1 10 06 00 03 00 FE Data3 ... Data11 CRC0 CRC1

- The meanings of the bytes are (note that only the first four bytes belong to block 3 and to the CC):
  - E1h = CC0 indicates that NDEF data is present inside the tag.
  - 10h = CC1 indicates support the version 1.0 (major number 1h, minor number 0h) of the mapping document.
  - 06h = CC2 indicates 48 bytes of memory size assigned to the data area.
  - 00h = CC3 indicates read and write access granted without any security.
  - 03h indicates that an NDEF Message TLV is present.
  - 00h indicates that the value field of NDEF Message TLV is not present (length equal to zero).
  - FEh indicates that the Terminator TLV is present.
  - Data3...Data11 data area bytes contain not meaningful information. They are ignored during reading operations.
  - CRC0 and CRC1 are the CRC bytes.

The NDEF message is not detected inside the Type 2 Tag Platform because the L field of NDEF Message TLV is equal to 00h (i.e., not NDEF message is present in the V field of NDEF Message TLV).

#### D.3 Read of an NDEF message from the Data Area

After finishing the NDEF detection procedure, the reading of the NDEF message is completed using the NDEF read procedure (see Section 6.4.2), starting from the first block where the V field of NDEF Message TLV begins. In the example in Section D.2.1, the READ command can start from block 4 (BNo = 4).

#### D.4 Write of an NDEF message in the Data Area

To write an NDEF Message TLV in the data area, the NDEF WRITE procedure is used (see Section 6.4.3).

The Type 2 Tag Platform is supposed to be in INITIALIZED state.

In the example below, an empty NDEF message D00000h is written inside an NDEF Message TLV.

In this example, the writing of NDEF Message TLV starts from the first block of the data area block 4 (BNo = 4) where the first NDEF Message TLV was found (see Figure 5). The Terminator TLV is written in the byte after NDEF Message TLV.

These four commands are sent in the following order:

- 1. A READ command is sent to get the values of byte 0 and 1 of block 6. A READ command is needed at the beginning because the writing of NDEF Message TLV requires WRITE commands that partially write a block.
- 2. A WRITE command is sent to set the length field (or L field) of NDEF Message TLV (see Section 6.4.3) to 00h. At the same time, this command writes the first two bytes of value field D000h.
- 3. A WRITE command is sent to write the last byte of the value field of NDEF Message TLV (00h) and the Terminator TLV (FEh).
- 4. A WRITE command is sent to set the length field (or L field) of NDEF Message TLV (see Section 6.4.3) to 03h.

The NDEF message can be written because a previous NDEF Message TLV is found and the memory space can contain NDEF Message D00000h. The available data area size for NDEF Message TLV is equal to 48 bytes because the beginning of the found NDEF Message TLV is at the first byte of the data area (Byte 0 of block 4) and the overall data area size is equal to 48 bytes (Byte 2 of the CC, CC2). 48 bytes are big enough to store NDEF Message TLV equal to 5 bytes: 1 byte T field, 1 byte L field, and 3 bytes V field (NDEF message D00000h).

Command: 30 04 CRC0 CRC1

- The meanings of the bytes are:
  - 30h indicates the READ command.
  - 04h indicates to start to read from block number 4 (BNo = 4).
  - CRC0 and CRC1 are the CRC bytes.

Response: 03 00 FE Data3 ... Data15 CRC0 CRC1

- The meanings of the bytes are (note that only the first four bytes belong to block 4 and to the CC):
  - 03h indicates that an NDEF Message TLV is present (T field).
  - 00h indicates that the value field of NDEF Message TLV is not present (length equal to zero).
  - FEh indicates that the Terminator TLV is present.
  - Data3...Data16 data area bytes contain not meaningful information. They are ignored during reading operations.
  - CRC0 and CRC1 are the CRC bytes.

The first WRITE command sets the length field (or L field) of NDEF Message TLV (see Section 6.4.3) to 00h. At the same time, this command writes the first two bytes of value field D000h.

Command: A2 04 03 00 D0 00 CRC0 CRC1

- The meanings of the bytes are:
  - A2h indicates the WRITE command.
  - 04h indicates to write the block 4 (BNo = 4).
  - 03h is the T field of NDEF Message TLV, the byte value previously read to be not modified.
  - 00h is the L field of NDEF Message TLV; this byte will be modified later on as described by the NDEF write procedure (see Section 6.4.3).
  - D0h is the first byte of the V field of NDEF Message TLV, the byte that was meant to be changed by this WRITE command.
  - 00 is the second byte of the V field of NDEF Message TLV, the byte that was meant to be changed by this WRITE command.
  - CRC0 and CRC1 are the CRC bytes.

Response: Ah

• This is the 4 bits ACK packet.

The second WRITE command writes the last byte of the value field of NDEF Message TLV (00h) and the Terminator TLV (FEh).

Command: A2 05 00 FE Data6 Data7 CRC0 CRC1

- The meanings of the bytes are:
  - A2h indicates the WRITE command.
  - 05h indicates to write block 5 (BNo = 5).
  - 00h is the third byte of the V field of NDEF Message TLV.
  - FEh is the T field of the Terminator TLV.
  - Data6 is the byte value previously read to be not modified.

- Data7 is the byte value previously read to be not modified.
- CRC0 and CRC1 are the CRC bytes.

Response 2: Ah

• This is the 4 bits ACK packet.

The third WRITE command sets the length field (or L field) of NDEF Message TLV (see Section 6.4.3) to 03h.

Command: A2 04 03 03 D0 00 CRC0 CRC1

- The meanings of the bytes are:
  - A2h indicates the WRITE command.
  - 04h indicates to write block 4 (BNo = 4).
  - 03h is the T field of NDEF Message TLV, the byte value previously read to be not modified.
  - 03h is the L field of NDEF Message TLV, the only byte that was meant to be changed by this WRITE command.
  - D0h is the first byte of the V field of NDEF Message TLV, the byte not to be modified.
  - 00 is the second byte of the V field of NDEF Message TLV, the byte not to be modified.
  - CRC0 and CRC1 are the CRC bytes.

Response: Ah

• This is the 4 bits ACK packet.

### D.5 Dynamic Memory Structure Examples

The two examples in the following two sections are based on dynamic memory structure (see Section 2.2).

## D.6 Detection of NDEF Message

To detect the NDEF message, the NDEF detection procedure is applied (see Section 6.4.1). Two examples are given with one positive detection and one negative detection of NDEF message.

### D.7 Positive Detection of NDEF Message

A READ command is used to read blocks 3 to 6 (BNo = 3-6) of the static memory structure where the CC and TLV blocks are located.

Command: 30 03 CRC0 CRC1

- The meanings of the bytes are:
  - 30h indicates the READ command.
  - 03h indicates to start to read from the block number (BNo).
  - CRC0 and CRC1 are the CRC bytes.

Response: E1 10 0C 00 01 03 C0 01 31 02 03 C1 0F 30 03 03 CRC0 CRC1

- The meanings of the bytes are (note that only the first four bytes belong to block 3 and to the CC):
  - E1h = CC0 indicates that NDEF data is present inside the tag.
  - 10h = CC1 indicates to support the version 1.0 (major number 1h, minor number 0h) of the mapping document.
  - 0Ch = CC2 indicates 96 bytes of memory size assigned to the data area.
  - 00h = CC3 indicates read and write access granted without any security.
  - 0103C00131h indicates a Lock Control TLV.
  - 0203C10F30h indicates a Memory Control TLV.
  - 03h indicates that an NDEF Message TLV is present.
  - 03h indicates that the value field of NDEF Message TLV is present (the length of the value field is equal to 3 bytes).
  - CRC0 and CRC1 are the CRC bytes.

The NDEF message is detected inside the Type 2 Tag Platform because the L field of NDEF Message TLV is different from 00h. The NDEF detection procedure does not parse the V field of NDEF Message TLV, but it checks the L field if it is different from 00h.

### D.8 Negative Detection of NDEF Message

This example follows the example in Figure 6.

A READ command is used to read blocks 3 to 6 (BNo = 3-6) of the static memory structure where the CC and TLV blocks are located.

Command: 30 03 CRC0 CRC1

- The meanings of the bytes are:
  - 30h indicates the READ command.
  - 03h indicates to start to read from the block number (BNo).
  - CRC0 and CRC1 are the CRC bytes.

Response: E1 10 0C 00 01 03 C0 01 31 02 03 C1 0F 30 03 00 CRC0 CRC1

- The meanings of the bytes are (note that only the first four bytes belong to block 3 and to the CC):
  - E1h = CC0 indicate that NDEF data is present inside the tag.
  - 10h = CC1 indicates support for version 1.0 (major number 1h, minor number 0h) of the mapping document.
  - 0Ch = CC2 indicates 96 bytes of memory size assigned to the data area.
  - 00h = CC3 indicates read and write access granted without any security.
  - 0103C00131h indicates a Lock Control TLV.
  - 0203C10F30h indicates a Memory Control TLV.
  - 03h indicates that an NDEF Message TLV is present.

- 00h indicates that the value field of NDEF Message TLV is not present (length equal to zero).
- CRC0 and CRC1 are the CRC bytes.

The NDEF message is not detected inside the Type 2 Tag Platform because the L field of NDEF Message TLV is equal to 00h (i.e., not NDEF message is present in the V field of NDEF Message TLV).

#### D.9 Read of an NDEF message from the Data Area

The example in Section D.7 that describes a positive detection of an NDEF Message is used by this section to read the NDEF message.

After finishing the NDEF detection procedure, the reading of the NDEF message is completed using the NDEF read procedure (see Section 6.4.2) starting from the first block where the V field of NDEF Message TLV begins. In the example of Section D.7, the READ command starts from block 7 (BNo = 7). The read NDEF message might be 0D0000h (Empty NDEF message, see Appendix C). The details of the READ command are not shown.

### D.10 Write of an NDEF message in the Data Area

This example follows the example in Figure 6.

To write an NDEF Message TLV in the data area, the NDEF WRITE procedure is used (see Section 6.4.3).

In the example below, an empty NDEF message D00000h is written inside an NDEF Message TI V

The Type 2 Tag Platform is supposed to be in INITIALIZED state. A Terminator TLV is inserted after NDEF Message TLV. Looking at Figure 6, NDEF Message TLV is found in Byte 2 of block 6.

These four commands are sent in the following order:

- 1. A READ command is sent to get the values of byte 0 and 1 of block 6. A READ command is needed at the beginning because the writing of NDEF Message TLV requires WRITE commands that partially write a block.
- 2. A WRITE command is sent to set the length field (or L field) of NDEF Message TLV (see Section 6.4.3) to 00h.
- 3. A WRITE command is sent to write the value field of NDEF Message TLV (i.e., D00000h), and the 1 byte Terminator TLV (i.e., FEh).
- 4. A WRITE command is sent to set the length field (or L field) of NDEF Message TLV (see Section 6.4.3) to 03h.

The NDEF message can be written because a previous NDEF Message TLV was found and the memory space can contain NDEF message D00000H. The available data area size is equal to 96 bytes (Byte 2 of the CC, CC2). The beginning of the found NDEF Message TLV is at the 11th byte of the data area (Byte 2 of block 6) and the first 10 bytes of the data area are occupied by Lock Control TLV and Memory Control TLV. 86 bytes are big enough to store NDEF Message TLV equal to 5 bytes: 1 byte T field, 1 byte L field, and 3 bytes V field (i.e., NDEF message D000000h).

Command: 30 06 CRC0 CRC1

- The meanings of the bytes are:
  - 30h indicates the READ command.
  - 06h indicates to start to read from the block number (BNo = 6).
  - CRC0 and CRC1 are the CRC bytes.

Response: 0F 30 03 00 FE Data13...Data23 CRC0 CRC1

- The meanings of the bytes are (note that only the first four bytes belong to block 3 and to the CC):
  - 0Fh byte 0 of block 6.
  - 30h byte 1 of block 6.
  - 03h indicates that an NDEF Message TLV is present (T field).
  - 00h indicates that the value field of NDEF Message TLV is not present (length equal to zero).
  - FEh indicates that the Terminator TLV is present.
  - Data13...Data23 data area bytes contain not meaningful information. They are ignored during reading operations.
  - CRC0 and CRC1 are the CRC bytes.

The first WRITE command sets the length field (or L field) of NDEF Message TLV (see Section 6.4.3) to 00h.

Command: A2 06 0F 30 03 00 CRC0 CRC1

- The meanings of the bytes are:
  - A2h indicates the WRITE command.
  - 06h indicates to write the block 6 (BNo = 6).
  - 0Fh byte 0 of block 6 was read before and is not changed by the WRITE command.
  - 30h byte 1 of block 6 was read before and is not changed by the WRITE command.
  - 03h, the T field of NDEF Message TLV, was read before and is not changed by the WRITE command.
  - 00h is the L field of NDEF Message TLV.
  - CRC0 and CRC1 are the CRC bytes.

Response: Ah

• This is the 4 bits ACK packet.

The second WRITE command writes the value field of NDEF Message TLV (i.e., D00000h), and the 1 byte Terminator TLV (i.e., FEh).

Command: A2 07 D0 00 00 FE CRC0 CRC1

- The meanings of the bytes are:
  - A2h indicates the WRITE command.
  - 07h indicates to write the next block 7 (BNo = 7).
  - D00000h is the V field of NDEF Message TLV.
  - FEh is the T field of the Terminator TLV.
  - CRC0 and CRC1 are the CRC bytes.

Response: Ah

• This is the 4 bits ACK packet.

The third WRITE command sets the length field (or L field) of NDEF Message TLV (see Section 6.4.3) to 03h.

Command: A2 06 0F 30 03 03 CRC0 CRC1

- The meanings of the bytes are:
  - A2h indicates the WRITE command.
  - 06h indicates to write the block 6 (BNo = 6).
  - 0Fh byte 0 of block 6 was read before and not changed.
  - 30h byte 1 of block 6 was read before and not changed.
  - 03h is the T field of NDEF Message TLV, was read before and not changed.
  - 03h is the L field of NDEF Message TLV.
  - CRC0 and CRC1 are the CRC bytes.

Response: Ah

• This is the 4 bits ACK packet.

# E. Type 2 Tag Platform State Machine

This informative section describes the Listen Mode state machine of a device implementing Type 2 Tag Platform. The state diagram presented in table 8 is intended to be read in conjunction with the overall Listen Mode state machine of the NFC Forum Device as described in [ACTIVITY]. State transitions shown in [ACTIVITY], but not described in this section, are the same as specified in Section 5 of [ACTIVITY].

**Table 12: Type 2 Tag Platform State Machine** 

| Begin State  End State | NO_REMOTE_FIELD            | IDLE                         | READY-A                      | READY-A'                     | READY.A"        | ACTIVE_A                                | CARD_EMULATION_2                        | SECTOR_SELECT                           | SLEEP_A | READY_A* | READY_A** | READY_A''* | ACTIVE_A*         | CARD_EMULATION_2* | SECTOR_SELECT* |
|------------------------|----------------------------|------------------------------|------------------------------|------------------------------|-----------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------|----------|-----------|------------|-------------------|-------------------|----------------|
| POWER-                 | OTHER                      |                              |                              |                              |                 |                                         |                                         |                                         |         |          |           |            |                   |                   |                |
| IDLE                   | Remote<br>Field<br>Present | OTHER                        | OTHER                        | OTHER                        | OTHER           | OTHER                                   | OTHER                                   | OTHER                                   |         |          |           |            |                   |                   |                |
| READY-A                |                            | SENS_RE<br>Q,<br>ALL_<br>REQ | SDD_<br>REQ CL1              |                              |                 |                                         |                                         |                                         |         |          |           |            |                   |                   |                |
| READY-A'               |                            |                              | SEL_<br>REQ CL1 <sup>1</sup> | SDD_<br>REQ CL2              |                 |                                         |                                         |                                         |         |          |           |            |                   |                   |                |
| READY-A"               |                            |                              |                              | SEL_<br>REQ CL2 <sup>2</sup> | SDD_<br>REQ CL3 |                                         |                                         |                                         |         |          |           |            |                   |                   |                |
| ACTIVE_A               |                            |                              | SEL_<br>REQ CL1 <sup>3</sup> | SEL_<br>REQ CL2 <sup>4</sup> | SEL_<br>REQ CL3 |                                         |                                         |                                         |         |          |           |            |                   |                   |                |
| CARD_EMULATION_2       |                            |                              |                              |                              |                 | READ,<br>WRITE                          | READ,<br>WRITE                          | SECTOR<br>SELECT<br>Command<br>Packet 2 |         |          |           |            |                   |                   |                |
| SECTOR_SELECT          |                            |                              |                              |                              |                 | SECTOR<br>SELECT<br>Command<br>Packet 1 | SECTOR<br>SELECT<br>Command<br>Packet 1 |                                         |         |          |           |            |                   |                   |                |
| SLEEP_A                |                            |                              |                              |                              |                 | SLP_REQ                                 | SLP_REQ                                 |                                         | OTHER   | OTHER    | OTHER     | OTHER      | OTHER,<br>SLP_REQ | OTHER,<br>SLP_REQ | OTHER          |

Double or triple size NFCID1
 Triple size NFCID1
 Single size NFCID1
 Double size NFCID1

Type 2 Tag Platform State Machine

| Begin State  End State | NO_REMOTE_FIELD | IOLE | READY.A | READY-A' | READY.A" | ACTIVE_A | CARD_EMULATION_2 | SECTOR_SELECT | SLEEP_A | READY_A*                     | READY_A**                    | READY_A"*       | ACTIVE_A*                                | CARD_EMULATION_2*                        | SECTOR_SELECT*                           |
|------------------------|-----------------|------|---------|----------|----------|----------|------------------|---------------|---------|------------------------------|------------------------------|-----------------|------------------------------------------|------------------------------------------|------------------------------------------|
| READY_A*               |                 |      |         |          |          |          |                  |               | ALL_REQ | SDD_<br>REQ CL1              |                              |                 |                                          |                                          |                                          |
| READY_A'*              |                 |      |         |          |          |          |                  |               |         | SEL_<br>REQ CL1 <sup>5</sup> | SDD_<br>REQ CL2              |                 |                                          |                                          |                                          |
| READY_A''*             |                 |      |         |          |          |          |                  |               |         |                              | SEL_<br>REQ CL2 <sup>6</sup> | SDD_<br>REQ CL3 |                                          |                                          |                                          |
| ACTIVE_A*              |                 |      |         |          |          |          |                  |               |         | SEL_<br>REQ CL1 <sup>7</sup> | SEL_<br>REQ CL2 <sup>8</sup> | SEL_<br>REQ CL3 |                                          |                                          |                                          |
| CARD_EMULATION_2*      |                 |      |         |          |          |          |                  |               |         |                              |                              |                 | READ,<br>WRITE                           | READ,<br>WRITE                           | SECTOR<br>SELECT<br>Command<br>Packett 2 |
| SECTOR_SELECT*         |                 |      |         |          |          |          |                  |               |         |                              |                              |                 | SECTOR<br>SELECT<br>Command<br>Packett 1 | SECTOR<br>SELECT<br>Command<br>Packett 1 |                                          |

Double or triple size NFCID1
 Triple size NFCID1
 Single size NFCID1
 Double size NFCID1

The following descriptions apply to the **ACTIVE\_A** and **ACTIVE\_A\*** States. In these states, a device implementing Type 2 Tag Platform listens to Valid Commands according to Section 5.

#### Descriptions 1: Listen Mode - ACTIVE\_A and ACTIVE\_A\* States

#### **Listen Mode**

Upon receipt of a Valid READ Command or WRITE Command as specified in Section 5, a device implementing Type 2 Tag Platform sends the Response as specified in Section 5.

When in ACTIVE\_A State, a device implementing Type 2 Tag Platform enters the CARD\_EMULATOR\_2 State.

When in ACTIVE\_A\* State, a device implementing Type 2 Tag Platform enters the CARD EMULATOR 2\* State.

In case of OTHER, a device implementing Type 2 Tag Platform refrains from sending a Response or responds with a NACK as defined in Section 5.5.

When in the ACTIVE\_A State, a device implementing Type 2 Tag Platform returns to the IDLE State.

When in the ACTIVE\_A\* State, a device implementing Type 2 Tag Platform returns to the SLEEP A State

Upon receipt of a Valid SLP\_REQ Command, a device implementing Type 2 Tag Platform enters the SLEEP\_A State.

Upon receipt of a Valid SECTOR SELECT Command Packet 1 as specified in Section 5, a device implementing Type 2 Tag Platform sends the Response as specified in Section 5.

When in ACTIVE\_A State, a device implementing Type 2 Tag Platform enters the SECTOR SELECT State.

When in ACTIVE\_A\* State, a device implementing Type 2 Tag Platform enters the SECTOR\_SELECT\* State.

NOTE While in ACTIVE\_A or ACTIVE\_A\* State, a device implementing Type 2 Tag
Platform with a memory smaller than 1kByte will treat a Valid SECTOR SELECT
Command Packet 1 as OTHER.

The following descriptions apply to CARD\_EMULATOR\_2 and CARD\_EMULATOR\_2\* States. In these states, a device implementing Type 2 Tag Platform listens to Valid Commands according to Section 5.

Descriptions 2: Listen Mode - CARD\_EMULATOR\_2 and CARD\_EMULATOR\_2\* States

#### **Listen Mode**

Upon receipt of a Valid READ Command or WRITE Command as specified in Section 5, a device implementing Type 2 Tag Platform sends the Response as specified in Section 5 and stays in the CARD\_EMULATOR\_2 or CARD\_EMULATOR\_2\* State.

#### **Listen Mode**

In case of OTHER, a device implementing Type 2 Tag Platform refrains from sending a Response or responds with a NACK as defined in Section 5.5.

When in the CARD\_EMULATOR\_2 State, a device implementing Type 2 Tag Platform returns to the IDLE State.

When in the CARD\_EMULATOR\_2\* State, a device implementing Type 2 Tag Platform returns to the SLEEP A State

Upon receipt of a Valid SLP\_REQ Command, a device implementing Type 2 Tag Platform enters the SLEEP A State.

Upon receipt of a Valid SECTOR SELECT Command Packet 1 as specified in Section5, a device implementing Type 2 Tag Platform sends the Response as specified in Section 5.

When in CARD\_EMULATOR\_2 State, a device implementing Type 2 Tag Platform enters the SECTOR\_SELECT State.

When in CARD\_EMULATOR\_2\* State, a device implementing Type 2 Tag Platform enters the SECTOR SELECT\* State.

NOTE While in CARD\_EMULATOR\_2 or CARD\_EMULATOR\_2\* State, a device implementing Type 2 Tag Platform with a memory smaller than 1kByte will treat a Valid SECTOR SELECT Command Packet 1 as OTHER.

The following descriptions apply to the **SECTOR\_SELECT** and **SECTOR\_SELECT\*** States. In these states, a device implementing Type 2 Tag Platform listens to Valid Commands according to Section 5.

Descriptions 3: Listen Mode - SECTOR\_SELECT and SECTOR\_SELECT\* States

#### Listen Mode

Upon receipt of a Valid SECTOR SELECT Command Packet 2 as specified in Section 5, a device implementing Type 2 Tag Platform sends the Response as specified in Section 5.

When in SECTOR\_SELECT State, a device implementing Type 2 Tag Platform enters the CARD\_EMULATOR\_2 State.

When in SECTOR\_SELECT\* State, a device implementing Type 2 Tag Platform enters the CARD\_EMULATOR\_2\* State.

In case of OTHER, a device implementing Type 2 Tag Platform refrains from sending a Response.

When in the **SECTOR\_SELECT** State, a device implementing Type 2 Tag Platform returns to the **IDLE** State.

When in the **SECTOR\_SELECT\*** State, a device implementing Type 2 Tag Platform returns to the **SLEEP\_A** State.

NOTE Additional proprietary Commands are allowed in the CARD\_EMULATOR\_2 or CARD\_EMULATOR\_2\* State.



Figure 7: Type 2 Tag Platform State Machine

# F. Revision History

The following table outlines the revision history of Type 2 Tag Operation.

**Table 13: Revision History** 

| Document Name        | Revision and Release Date    | Status | Change Notice                                                                                                                                                                                                                        | Supersedes                   |
|----------------------|------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Type 2 Tag Operation | Version 1.0,<br>July 2007    | Final  | None                                                                                                                                                                                                                                 |                              |
| Type 2 Tag Operation | Version 1.1,<br>January 2011 | Final  | Editorial changes:<br>added requirement<br>numbering; added<br>Appendix E;<br>corrected<br>Appendices C and<br>D; aligned with<br>[DIGITAL].                                                                                         | Version 1.0,<br>July 2007    |
| Type 2 Tag Operation | Version 1.1,<br>May 2011     | Final  | Editorial updates                                                                                                                                                                                                                    | Version 1.0,<br>January 2011 |
| Type 2 Tag Operation | Version 1.2,<br>March 2014   | Final  | Aligned wording with [DIGITAL] v1.1 and included some sections which were previously in the [DIGITAL] specification: 5.5 and Appendix B (Timings requirements), added numerous requirements in Section 5 also copied from [DIGITAL]. | Version 1.1,<br>May 2011     |