# **CS 161: Computer Security**

Lecture 6

September 17, 2015

#### Where we are

- How did NSA break SSL?
- Basic number theory
- RSA
- Digital certificates
- Shamir secret sharing
- Rabin signatures
- Secure hashing
- Elliptic curve cryptography
- Pseudo-random number generation
- SSL protocol

#### This lecture

- Elliptic curve cryptography
- Pseudo random number generation

### Review: Elliptic curves

- Weierstrass equations
- $\bullet \ y^2 = x^3 + Ax + B$





$$y^2 = x^3 - 6x + 5$$

# Review: EC operation: $\oplus$



$$C = A \oplus B$$

### **Review: Addition rules**

$$\bullet$$
  $P \oplus \mathcal{O} = P$ 

$$\bullet (x,y) \oplus (x,-y) = \mathcal{O}$$

• 
$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P \neq Q \\ \frac{3x_1^2 + A}{2y_1} & \text{if } P = Q \end{cases}$$

$$\bullet \ P \oplus Q = (x_3, y_3)$$

• 
$$x_3 = (\lambda^2 - x_1 - x_2)$$
 &  $y_3 = \lambda(x_1 - x_3) - y_1$ 

### Review: Scalar multiplication

- $\bullet$   $0P = \mathcal{O}$
- 1P = P
- $2P = P \oplus P$
- $3P = P \oplus P \oplus P$
- $4P = P \oplus P \oplus P \oplus P$
- ...

### Elliptic curves mod p

- We take our elliptic curves mod p
  - o p is prime
- Example  $y^2 = x^3 + 3x + 8 \mod 13$   $\sqrt{1} = \{1,12\}, \sqrt{3} = \{4,9\}, \sqrt{4} = \{2,11\},$  $\sqrt{9} = \{3,10\}, \sqrt{10} = \{6,7\}, \sqrt{12} = \{5,8\}$

Points on curve

 $\mathcal{O}$ , (1,5), (1,8), (2,3), (2,10), (9,6), (9,7), (12,2), (12,11)

## **Adding two points**

- Everything is mod 13
- $y^2 = x^3 + 3x + 8 \mod 13$
- P = (9,7) Q = (1,8)  $P \oplus Q = ?$
- $\lambda = \frac{y_2 y_1}{x_2 x_1} = \frac{8 7}{1 9} = \frac{1}{-8} = \frac{1}{5} = 1 \cdot 5^{-1} = 8$
- $x_3 = \lambda^2 x_1 x_2 = 64 9 1 = 54 = 2$
- $y_3 = \lambda(x_1 x_3) y_1 = 8(9 2) 7 = 49 = 10$
- $P \oplus Q = (9,7) \oplus (1,8) = (2,10)$

### **Adding two points**

- Everything is mod 13
- $y^2 = x^3 + 3x + 8 \mod 13$
- P = (9,7)  $2P = P \oplus P = ?$

$$\lambda = \frac{3x^2 + A}{2y} = \frac{3 \cdot 9^2 + 3}{2 \cdot 7} = \frac{246}{14} = \frac{12}{1} = 12$$

• 
$$x_3 = \lambda^2 - x_1 - x_2 = 144 - 9 - 9 = 126 = 9$$

• 
$$y_3 = \lambda(x_1 - x_3) - y_1 = 12(9 - 9) - 7 = -7 = 6$$

• 
$$2P = P \oplus P = (9,7) \oplus (9,7) = (9,6)$$

### **Addition table**

•  $y^2 = x^3 + 3x + 8 \mod 13$ 

|         | O       | (1,5)   | (1,8)   | (2,3)   | (2,10)  | (9,6)   | (9,7)   | (12,2)  | (12,11) |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0       | 0       | (1,5)   | (1,8)   | (2,3)   | (2,10)  | (9,6)   | (9,7)   | (12,2)  | (12,11) |
| (1,5)   | (1,5)   | (2,10)  | O       | (1,8)   | (9,7)   | (2,3)   | (12,2)  | (12,11) | (9,6)   |
| (1,8)   | (1,8)   | 0       | (2,3)   | (9,6)   | (1,5)   | (12,11) | (2,10)  | (9,7)   | (12,2)  |
| (2,3)   | (2,3)   | (1,8)   | (9,6)   | (12,11) | O       | (12,2)  | (1,5)   | (2,10)  | (9,7)   |
| (2,10)  | (2,10)  | (9,7)   | (1,5)   | 0       | (12,2)  | (1,8)   | (12,11) | (9,6)   | (2,3)   |
| (9,6)   | (9,6)   | (2,3)   | (12,11) | (12,2)  | (1,8)   | (9,7)   | 0       | (1,5)   | (2,10)  |
| (9,7)   | (9,7)   | (12,2)  | (2,10)  | (1,5)   | (12,11) | 0       | (9,6)   | (2,3)   | (1,8)   |
| (12,2)  | (12,2)  | (12,11) | (9,7)   | (2,10)  | (9,6)   | (1,5)   | (2,3)   | (1,8)   | O       |
| (12,11) | (12,11) | (9,6)   | (12,2)  | (9,7)   | (2,3)   | (2,10)  | (1,8)   | 0       | (1,5)   |

## How many points in an EC mod p?

- $\bullet \ y^2 = x^3 + Ax + B \bmod p$
- Needs to be a square (true about 50% of time)
- Has two square roots (unless it is zero rare)
- p possible values of x
- O is also a point

Number of points about

$$50\% \cdot 2 \cdot p + 1 = p + 1$$

#### Hasse's theorem

- # of points in an elliptic curve mod  $p=p+1-t_p$  where  $t_p$  satisfies  $\left|t_p\right| \leq 2\sqrt{p}$
- $t_p$  is called "trace of Frobenius"
- Consider E:  $y^2 = x^3 + 4x + 6 \mod p$

| p  | #E | $t_p$ | $2\sqrt{p}$ |
|----|----|-------|-------------|
| 3  | 4  | 0     | 3.46        |
| 5  | 8  | -2    | 4.47        |
| 7  | 11 | -3    | 5.29        |
| 11 | 16 | -4    | 6.63        |
| 13 | 14 | 0     | 7.21        |
| 17 | 15 | 3     | 8.25        |

### Discrete logarithm problem

- Fix a prime p and a generator  $g \in \mathbb{Z}_p$
- Discrete logarithm problem:

Given  $a \in \mathbb{Z}_p$ , find k such that  $g^k \equiv a \pmod{p}$ 

- Fix an elliptic curve E mod p and a point P
- Discrete logarithm problem:

Given  $Q \in E$ , find k such that kP = Q

## Best algorithms for discrete log

Discrete log mod p

$$e^{((c+o(1))(\log p)^{1/3}(\log\log p)^{2/3})}$$

• Discrete log over elliptic curve mod p  $\sqrt{p}$ 

• Elliptic curves make things much harder

## Diffie-Hellman key exchange



**Alice** 

Bob

BOB

prime 
$$p$$
, generator  $g \in \mathbb{Z}_p$ 



$$(g^B)^A \mod p$$

 $(g^A)^B \mod p$ 

### Diffie-Hellman key exchange



**Alice** 

Bob

BOB

Elliptic Curve 
$$E \mod p, P \in E$$



$$n_A(n_BP)$$

 $n_B(n_A P)$ 

## Elgamal cryptosystem

- Referee
  - prime p, generator g
- Bob
  - o random  $x \in \{1, 2, ..., (p-2)\}$
  - $y = g^x \pmod{p}$
  - o public key (p, g, y); secret key x
- Alice
  - o message *M*, random k ∈ {1, 2, ..., (p 2)}
  - o  $a = g^k$ ;  $b = My^k \pmod{p}$
  - o transmits  $\langle a, b \rangle$
- Bob
  - o  $b(a^x)^{-1} = My^k(g^{kx})^{-1} = M(g^x)^k g^{-xk} = M \pmod{p}$

## Elgamal cryptosystem

- Referee
  - o elliptic curve  $E \mod p, P \in E$
- Bob
  - Picks random x
  - o Q = xP
  - o public key (E, P, Q); secret key x
- Alice
  - o message  $M \in E$ , random k
  - o A = kP;  $B = M \oplus kQ$
  - o transmits  $\langle A, B \rangle$
- Bob
  - o  $B \oplus (-x)A = M \oplus kQ \oplus (-x)kP = M \oplus xkP \oplus (-x)kP = M$

### **Next lecture**

- Psuedo-random number generation
- SSL