

COPIE INTERNE 21/08/2025

Dr COLLIGNON FREDERIC CHIREC-DELTA

BOULEVARD DU TRIOMPHE 201 1160 AUDERGHEM

Prescripteur: Dr COLLIGNON FREDERIC

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

> **Directrice de Service** Pr Myriam Remmelink

Equipe Médicale
Dr Nicolas de Saint Aubain
Pr Nicky D'Haene
Dr Maria Gomez Galdon
Dr Chirine Khaled
Pr Denis Larsimont
Pr Laetitia Lebrun
Dr Calliope Maris
Pr Jean-Christophe Noël
Dr Anne-Laure Trépant
Dr Marie Van Eycken
Pr Laurine Verset

Consultant (e) s
Dr Sarah Bouri
Dr Xavier Catteau
Dr Roland de Wind
Dr Marie-Lucie Racu
Dr Valérie Segers
Dr Anne Theunis
Dr Marie-Paule Van Craynest

Secrétariat Médical T. +32 (0)2 541 73 23 +32 (0)2 555 33 35

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction T. +32 (0)2 555 31 15 Mme Kathia El Yassini Kathia.elyassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be

PATIENT:

ID:

Réf. Externe : 25CU026447 EXAMEN : 25EM01962

Prélevé le 13/05/2025 à 13/05/2025

Reçu le 19/05/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE VARIANTS DANS 39 GENES IMPLIQUES DANS LES GLIOMES ET RECHERCHE DE CO-DELETION 1p19q

(CLINICAL GLIOMA PANEL V2)

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I. Renseignements anatomopathologiques

N° du prélèvement : 25CU026447 1

Date du prélèvement : 13/05/25

Origine du prélèvement : CurePath

Type de prélèvement : Gliome de haut grade

II. Evaluation de l'échantillon

- % de cellules tumorales : 70%

- Qualité du séquençage : Optimale (coverage moyen > 1000x)

Les exons à considérer comme non contributifs sont détaillés dans le tableau ci-dessous (point III).

- Commentaires : /

III. Méthodologie (effectué par : NADN, NIDH)

- Extraction ADN à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.
- Détection par « Next Generation Sequencing » (sur Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) de variants dans 39 gènes liés aux tumeurs cérébrales :

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
ACVR1	NM_001105	6-11	7
ATRX	NM_00489	1-35 (whole CDS)	5, 9, 11, 15, 16, 28, 29
BRAF	NM_004333	7, 10, 11, 12, 15	
CDK4	NM_000075	1-8 (whole CDS)	7
CDK6	NM 001259	2-8 (whole CDS)	
CDKN2A	NM_000077	1-3 (whole CDS)	1
CDKN2B	NM_004936 et NM_078487	1-2 (whole CDS)	
EGFR	NM_005228	1-28 (whole CDS)	
FGFR1	NM_23110	12, 14-16	
FGFR2	NM_000141	5-7, 9-10, 12, 14	
FGFR3	NM_00142	7, 9, 10, 13-16	
H3F3A (=H3.3)	NM_002107	2	
H3F3B	NM 005324	2-4 (whole CDS)	
HIST1H3B (=H3C2)	NM_003537	1	
HIST1H3C (=H3C3)	NM_003531	1	
HRAS	NM_005343	2-4 (whole CDS)	
IDH1	NM_005896	4	
IDH2	NM_002168	4	
KRAS	NM_033360	2-4 (whole CDS)	
MDM2	NM 002392	1-11 (whole CDS)	1

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
MDM4	NM_002393	2-11 (whole CDS)	2
MYCN	NM_1293228	2-3 (whole CDS)	2
NF1	NM_001042492	1-58 (whole CDS)	7, 13, 15, 33
NF2	NM_00268	1-16 (whole CDS)	
NRAS	NM 002524	2-4 (whole CDS)	
PDGFRA	NM_006206	5-12, 14-15, 18, 21-23	
PIK3CA	NM 006218	1-20 (whole CDS)	
PIK3R1	NM_181523	2-16 (whole CDS)	11
POLD1	NM_001256849	1-27 (whole CDS)	22
POLE	NM_006231	1-49 (whole CDS)	
PPM1D	NM_003620	1-6 (whole CDS)	1
PRKCA	NM-002737	1-17 (whole CDS)	
PTEN	NM 00314	1-9 (whole CDS)	
PTPN11	NM_02834	1-15 (whole CDS)	
RB1	NM_00321	1-27 (whole CDS)	1, 2, 4, 15, 16, 19, 20, 21, 22
TERT	NM_001193376	Promoteur	
TP53	NM_00546	1-11 (whole CDS)	4, 9
TSC1	NM_000368	3-23 (whole CDS)	
TSC2	NM 000548	2-42 (whole CDS)	14, 31, 34

^{*} Un coverage < 250x induit une perte de sensibilité et de spécificité de la méthode.

- Sensibilité : Seuls les variants avec une fréquence supérieure à 5% et un variant coverage >30x (sauf promoteur de TERT : variant coverage >20x) sont rapportés.
- Détection par « Next Generation Sequencing » (Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) d'une perte d'hétérozygotie (LOH) 1p et 19q, sur base de 30 SNP sur le chromosome 1 et 25 SNP sur le chromosome 19. Sensibilité : la technique utilisée détecte la LOH 1p et 19q si l'échantillon contient > 40% de cellules tumorales.

IV. Résultats

a. Liste des variants détectés :

Variants pathogéniques ou présumés pathogéniques :

Gène	Exon	Variant	Coverage	% d'ADN muté			
Variants avec impact clinique potentiel							
TERT	Promoteur	chr5:1295228C>T (C228T)	339	82%			
PTEN	5	p.H123P	1733	78%			
Variants avec impact clinique indéterminé							
TP53	Site d'épissage en amont de l'exon 5	c.376-1G>A	1118	42%			

Variants de significations biologiques et cliniques indéterminées :

/

b. Statut 1p19q:

Qualité de l'échantillon : optimale

Résultat : Profil atypique : perte d'hétérozygotie (LOH) des chromosomes 1 et 19 complets.

V. Discussion

Les mutations au niveau du promoteur de TERT sont fréquentes dans les oligodendrogliomes et les glioblastomes. Leur impact pronostique est controversé.

Les mutations du gène PTEN sont décrites dans 20 à 35% des glioblastomes. Leur impact pronostique est débattu. Bien que la FDA ait approuvé le capivasertib (pan-AKT inhibiteur) en combinaison avec le fulvestrant pour le traitement des patients avec un cancer du sein ER+/HER2- avec une mutation oncogénique du gène PTEN, leur utilité clinique pour les patients avec un autre type de cancer est indéterminée.

oncokb.org cbioportal.org Smith JS., et al., J Natl Cancer I. 2001;93(16):1246-56 Xu J. et al., Translational oncology. 2014;7(2):196-205

Les mutations du gène TP53 sont fréquentes dans les glioblastomes. Leur impact clinique est indéterminé.

VI. Conclusion : (NADN le 03/06/2025)

Absence de variant détecté dans les gènes IDH1 et IDH2. Présence du variant présumé pathogénique C228T dans le promoteur du gène TERT. Présence du variant présumé pathogénique H123P du gène PTEN. Présence du variant présumé pathogénique c.376-1G>A du gène TP53.

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HUB :

https://www.hubruxelles.be/sites/default/files/2024-03-04_demande%20analyse%20anapath%20cytologie%20v3.pdf https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11%20Demande%20de%20biologie%20mol%C3%A9culaire-IPD%20v1.doc

Dr N D'HAENE

Pr SALMON ISABELLE