Universidad San Francisco de Quito Economía Computacional I Problem Set 3 y 4

Puntaje total: 100 puntos.

Problem Set 3

Considera una economía de generaciones traslapadas en la que los hogares generan utilidad a través del consumo y están expuestos a shocks idiosincráticos y restricciones de crédito. Cada año nace una generación de masa constante, y el tamaño de todas las generaciones está normalizado a 1.

Hogares. Viven máximo $J + J_r$ años, y su tiempo de vida es estocástico, de tal manera que enfrentan una probabilidad s_t de sobrevivir hasta la edad j condicional en haber vivido hasta la edad j-1. Además, durante los primeros J años proveen h unidades de tiempo a la firma de manera inelástica, a partir de la edad J+1 la jubilación es obligatoria. Cada agente busca maximizar el flujo de utilidad que obtendrá a lo largo de su vida traído a valor presente:

$$E_1 \sum_{j=1}^{J+J_r} \beta^{j-1} \left(\prod_{t=1}^{j} s_t \right) u(c_j),$$

donde β es el factor de descuento y c_j es el consumo a la edad j. Asume que u(c) es

$$u(c) = \frac{c^{1-\eta}}{1-\eta},$$

donde η es el coeficiente de aversión al riesgo. La productividad de cada trabajador responde a dos tipos de shocks. El primero es un shock deterministico que depende de la edad ε_j , y el segundo es un shock idiosincrático y estocástico z_j que sigue un proceso AR(1) en logaritmos

$$\log z_{i+1} = \rho \log z_i + \epsilon_{i+1},$$

donde ϵ_{j+1} sigue una distribución normal con media cero y varianza σ_z^2 . Por lo tanto, el ingreso laboral del hogar que trabaja es $wz_j\varepsilon_jh$. Además, los agentes nacen sin riqueza $k_1=0$ y no dejan herencias basadas en altruismo. La única herencia es la que procede de muertes accidentales, las cuales son confiscadas por el gobierno y distribuidas de manera lump-sum entre todos los vivos. Además, todos los agentes enfrentan un límite de crédito tal que $k_j>0$ para todo j. La restricción presupuestaria del agente que trabaja es

$$c_j + k_{j+1} = (1+r)k_j + (1-\tau)wz_j\varepsilon_j h + G,$$

mientras que para el retirado viene dada por

$$c_j + k_{j+1} = (1+r)k_j + b + G,$$

donde b corresponde a una transferencia para todos los jubilados que se financia con el impuesto al ingreso laboral de los trabajadores y G es la transferencia que todos los hogares reciben de las herencias accidentales.

Firma representativa. La firma representativa produce el bien de consumo utilizando trabajo efectivo N y capital K. El trabajo efectivo recibe un salario w y el capital se contrata a una tasa r y se deprecia a una tasa δ . La producción viene dada por

$$Y = N^{1-\alpha}K^{\alpha}.$$

Gobierno. El gobierno utiliza la recaudación del impuesto sobre el ingreso laboral para financiar la transferencia a la población retirada. En particular, la restricción presupuestaria del gobierno es

$$\tau w N = b \sum_{j=T+1}^{J+J_r} \mu_j,$$

donde μ_j es la proporción de la población total de edad j. La transferencia b se determina en equilibrio. Además, las transferencias accidentales vienen dadas por

$$G = \sum_{j=1}^{J+J_r} (1 - s_{j+1}) \mu_j k_{j+1}.$$

- (i) Escribe el problema que resuelve el hogar en forma recursiva. Encuentra la ecuación de Euler y analiza cómo afecta la probabilidad de sobrevivencia a la sustitución intertemporal de consumo.
- (ii) Plantea el problema de optimización de beneficio de la firma y encuentra las ecuaciones que determinan el precio de los factores de producción.
- (iii) Plantea formalmente la definición del equilibrio estacionario de esta economía.
- (iv) Escribe un pseudo-código para la solución numérica del problema del hogar.
- (v) Escribe un pseudo-código para la soluión numérica del equilibrio general.

Problem Set 4

Resuelve numéricamente el modelo descrito en el Problem Set 1. Para ello, considera la siguiente calibración. Asume que el hogar trabaja durante J=40 años y máximo vive por 60 años $J+J_r=60$. La edad 1 en el modelo corresponde a la edad de 20 en la vida real. La productividad condicionada en la edad y la probabilidad de supervivencia están en las siguientes tablas:

Age	Prod								
20	1.0000	30	1.6952	40	1.9606	50	1.9777	60	1.9007
21	1.0719	31	1.7217	41	1.9623	51	1.9700	61	1.8354
22	1.1438	32	1.7438	42	1.9640	52	1.9623	62	1.7701
23	1.2158	33	1.7748	43	1.9658	53	1.9546	63	1.7048
24	1.2842	34	1.8014	44	1.9675	54	1.9469	64	1.6396
25	1.3527	35	1.8279	45	1.9692	55	1.9392		
26	1.4212	36	1.8545	46	1.9709	56	1.9315		
27	1.4897	37	1.8810	47	1.9726	57	1.9238		
28	1.5582	38	1.9075	48	1.9743	58	1.9161		
29	1.6267	39	1.9341	49	1.9760	59	1.9084		

Cuadro 1: Age-specific Productivities

Age	Prob	Age	Prob	Age	Prob	Age	Prob
20	0.9991	30	0.9989	40	0.9979	50	0.9957
21	0.9991	31	0.9988	41	0.9977	51	0.9953
22	0.9990	32	0.9988	42	0.9976	52	0.9949
23	0.9990	33	0.9987	43	0.9974	53	0.9944
24	0.9990	34	0.9986	44	0.9972	54	0.9939
25	0.9990	35	0.9985	45	0.9970	55	0.9934
26	0.9991	36	0.9984	46	0.9968	56	0.9928
27	0.9995	37	0.9983	47	0.9965	57	0.9921
28	0.9985	38	0.9982	48	0.9963	58	0.9913
29	0.9990	39	0.9981	49	0.9960	59	0.9905
60	0.9896	70	0.9743	80	0.9385	90	0.8413
61	0.9886	71	0.9722	81	0.9321	91	0.8267
62	0.9874	72	0.9699	82	0.9251	92	0.8111
63	0.9861	73	0.9674	83	0.9174	93	0.7946
64	0.9846	74	0.9647	84	0.9091	94	0.7772
65	0.9829	75	0.9616	85	0.9001	95	0.7596
66	0.9812	76	0.9580	86	0.8902	96	0.7420
67	0.9794	77	0.9540	87	0.8794	97	0.7244
68	0.9778	78	0.9494	88	0.8676	98	0.7077
69	0.9762	79	0.9442	89	0.8550	99	0.6913

Cuadro 2: Survival Probabilities

La tasa de descuento es $\beta=1{,}011$ y el coeficiente de aversión al riesgo $\eta=1{,}5$. En cuanto a la producción tenemos $\alpha=0{,}36$, $\delta=0{,}06$ y $h=0{,}30$. Respecto al proceso que sigue el shock idiosincrático de productividad, $\rho=0{,}96$ y $\sigma_z=0{,}045$. Además, la dotación de la primera generación z_1 sigue una distribución log-normal con $\sigma_{z_1}=0{,}38$ y media $\bar{z}_1=1$. Finalmente, $\tau=0{,}12$.

- (i) Utilizando esta calibración, resuelve el modelo numéricamente utilizando EGM para el problema del hogar, y un método de root-finding para resolver el equilibrio general. Simula la distribución endógena utilizando simulación de Montecarlo (simula, al menos 1000 hogares de edad j = 1). Construye una tabla reportando r^* , w^* , b^* , C^* , K^* y N^* .
- (ii) Grafica las policy functions del consumo a los 25 años (edad del modelo) de los hogares evaluadas en el nivel de productividad productividad promedio de esa edad, dos desviaciones estándard por arriba del promedio y dos desviaciones estándard por debajo del promedio. Además, grafica la distribución de k y c por edad. Explica las formas de estas distribuciones en base a las predicciones generales del modelo de generaciones traslapadas.
- (iii) Utilizando las distribuciones simuladas, calcula los coeficientes de Gini para la riqueza k, el ingreso laboral $wz_j\varepsilon_jh$ y el consumo c. Además, para cada una de estas variables grafica las curvas de Lorenz. Puedes utilizar rutinas ya escritas en Matlab para resolver esta pregunta.
- (iv) Ahora supón que el gobierno decide cobrar un impuesto $\tau_k = 0.25$ sobre el ingreso de capital de los hogares, y luego redistribuye esta recaudación lump-sum entre todos los vivos. Escribe esta restricción presupuestaria adicional para el gobierno y reescribe las restricciones presupuestarias de los hogares.
- (v) Resuelve otra vez el modelo manteniendo la misma calibración inicial y calcula las variaciones porcentuales de los agregados que calculaste en (i) y los Ginis de (iii). Además, compara cómo cambian las curvas de Lorenz que graficaste en (iii). Explica los mecanismos que están detrás de estos resultados.