Lecture 1: Course logistics, introduction, bias-variance tradeoff

STATS 202: Data Mining and Analysis

Linh Tran

tranlm@stanford.edu

Department of Statistics Stanford University

June 26, 2023

Syllabus

- ► **Topics:** Intro to statistical learning and methods for analyzing large amounts of data
- ► Prereqs: STATS 60, MATH 51, CS 105
- ► **Grades:** 3 components
 - ► 4 homework assignments (50pts each)
 - ▶ Due by 4:30pm PDT of due date. Accepted up to 2-days late w/ 20% penalty after 1st day (2 total free late days)
 - ► Submit via Gradescope (code: ZZXX28)
 - ► Midterm on Monday, July 19 (100pts)
 - ► Final exam on Saturday, August 19 (200pts)
 - Final project (200pts)
 - Submissions due on Monday, August 14 at 12:00AM (i.e. Sunday night)
 - Write-up due on Wednesday, August 16
 - ► We take max(Final exam, Final project)

Class material

Programming

While the course textbook uses \mathbf{R} (upcoming Python), you are free to choose between R and Python. Some thoughts:

- ► R (style guide)
 - Good visualizations
 - More detailed result outputs
 - Embraced by statistician community
 - ► Follow Hadley Wickham's Style Guide
- ► Python (style guide)
 - Good scalability
 - More detailed debugging logs
 - Embraced by ML community
 - ► Follow *PEP 8 style guide*

10% of your assignment grade is based upon the organization + style + readability of your code

Course Information

- ► Class website: stats-202.github.io
- ► **Videos:** In-person lectures will be recorded/uploaded to *Canvas*.
- ► Textbook: An Introduction to Statistical Learning
 - ► Supplemental Textbook: The Elements of Statistical Learning
- ► Email policy: Please use *Piazza* (code: 2023202) for most questions. Homeworks and Exams should be submitted via *Gradescope* (code: ZZXX28).
- ▶ Office hours: Please refer to this Google calendar.

Motivation

Companies are paying lots of money for statistical models.

- ► Netflix
- ► Heritage Provider Network
- ► Department of Homeland Security
- ► Zillow
- ► Etc...

Netflix

Popularized prediction challenges by organizing an open, blind contest to improve its recommendation system.

- ► Prize: \$1 million
- ► Features: User ratings (1 to 5 stars) on previously watched films
- ▶ Outcome: User ratings (1 to 5 stars) for unwatched films

Heritage Provider Network

Ran for two years, with six milestone prizes during that span.

- ► **Prize:** \$3 million (\$500K)
- ▶ Features: Anonymized patient data over a 48 month period
- Outcome: How many days a patient will spend in a hospital in the next year

Department of Homeland Security

Improving the algorithms used by TSA to detect potential threats from body scans.

► Prize: \$1 million

► Features: Body scan images

Outcome: Whether a given body zone has a threat present

OpenAl

Creator of ChatGPT (https://chat.openai.com)

► Compensation: \$900K for Senior Engineers

► Features: Input text

Outcome: Desired responses

Common scenario: I have a data set. What do I do? **Common approaches:**

- ► Fit a linear model and look at p-values
- ► Fit a non-parametric model and get predictions
- Calculate summary statistics and form a story around the answers

Common scenario: I have a data set. What do I do? Common approaches:

- Fit a linear model and look at p-values
- Fit a non-parametric model and get predictions
- Calculate summary statistics and form a story around the answers

Can result in significantly different answers!

Ideally, we want $\Psi(P_0)$.

Example: P_0 is Gaussian, while \hat{P}_n is Laplace

Applied example

The World War II planes.

Applied example

- ▶ Let $O = (X_1, X_2, Y)$ be our data
 - e.g. X's are (horizontal/vertical) location of holes. Y is indicator that plane returned home.
- Generally want to estimate $\mathbb{P}_0[X_1, X_2 | Y = 0]$
- ► Two big issues:
 - 1. Need to condition on planes we don't observe
 - 2. Need to make assumption about the distribution of holes

Supervised vs unsupervised learning

Supervised: We have a clearly defined outcome of interest.

► Pro: More clearly defined

► Con: May take more resources to gather

Unsupervised: We don't have a clearly defined outcome of interest.

Pro: Typically readily available

Con: May be a more abstract problem

Unsupervised learning

Typically start with a data matrix, e.g.

id	weight	height	# children	education level	gender	profession	my life story
1							
2							
3							

*n.b. The data may also be unstructured (e.g. text, pixels, etc).

Unsupervised learning

id	weight	height	# children	education level	gender	profession	my life story
1							
2							
3							

Two primary categories:

- 1. Quantitative:
 - Numerical
 - Ordinal
- 2. Qualitative:
 - Categorical
 - ► Free form

Unsupervised learning

Goal: Learn the overall structure of our data. e.g.

- ► Clustering: learn meaningful groupings of the data
 - e.g. k-means, Expectation Maximization, etc.
- Correlation: learn meaningful relationships between variables or units
 - e.g. concordance, Pearson's, etc.
- Dimension reduction: learn compression of data for downstream tasks
 - ▶ e.g. PCA, LDA, auto-encoding, etc.

We learn these using our data.

Supervised learning

Typically start with a data matrix with an outcome, e.g.

id	weight	height	# children	education level	gender	profession	my life story	outcome
1								
2								
3								

Outcome can be quantitative or qualitative.

Supervised learning

Goal: We learn a mapping from input variables to output variables.

- ▶ If quantitative, then we refer to this as Regression
 - e.g. $\mathbb{E}_0[Y|X_1, X_2, ..., X_p]$
- ▶ If qualitative, then we refer to this as Classification
 - e.g. $\mathbb{P}_0[Y = y | X_1, X_2, ..., X_p]$

In both cases, we're interested in learning some function,

$$f_0(X_1, X_2, ..., X_p)$$
 (1)

We estimate f_0 using our data.

Supervised learning

Motivation: Why learn f_0 ?

Prediction

- ▶ Useful when we can readily get $X_1, X_2, ..., X_p$, but not Y.
- Allows us to predict what Y likely is.
- ► Example: Predict stock prices next month using data from last year.

Inference

- ▶ Allows us to understand how differences in $X_1, X_2, ..., X_p$ might affect Y.
- ► Example: What is the influence of genetic variations on the incidence of heart disease.

Learning f_0

How do we estimate f_0 ? Two classes of methods:

Parametric models: We assume that f_0 takes a specific form. For example, a linear form:

$$f_0(X_1, X_2, ..., X_p) = X_1\beta_1 + X_2\beta_2 + ... + X_p\beta_p$$
 (2)

Non-parametric models: We don't make any assumptions on the form of f_0 , but we restrict how "wiggly" or "rough" the function can be. For example, using loess.

Visualization

Non-parametric models tend to be larger than parametric models.

Recall: A statistical model is simply a set of probability distributions that you allow your data to follow.

Parametric vs non-parametric fit

Non-parametric models tend to be more flexible.

Question: Why don't we just always use non-parametric models?

Question: Why don't we just always use non-parametric models?

1. Interpretability: parametric models are simpler to interpret

Question: Why don't we just always use non-parametric models?

- 1. Interpretability: parametric models are simpler to interpret
- Convenience: less computation, more reproducibility, better behavior

Question: Why don't we just always use non-parametric models?

- 1. Interpretability: parametric models are simpler to interpret
- Convenience: less computation, more reproducibility, better behavior
- 3. Overfitting: non-parametric models tend to overfit (aka. high variance)

Training data: (x_i, y_i) : i = 1, 2, ..., n

Goal: Estimate f_0 with our data, resulting in \hat{f}_n

Typically: we get \hat{f}_n by minimizing a prediction error

► Assumes $(x_i, y_i) \stackrel{iid}{\sim} P_0$

Training data: (x_i, y_i) : i = 1, 2, ..., n

Goal: Estimate f_0 with our data, resulting in \hat{f}_n

Typically: we get \hat{f}_n by minimizing a prediction error

► Assumes $(x_i, y_i) \stackrel{iid}{\sim} P_0$

Standard prediction error functions:

► Classification: Cross-entropy

$$CE(\hat{f}_n) = \mathbb{E}_0[-\mathbf{y}_i \cdot \log \hat{\mathbf{f}}_n(x_i)]$$
 (3)

Training data: (x_i, y_i) : i = 1, 2, ..., n

Goal: Estimate f_0 with our data, resulting in \hat{f}_n

Typically: we get \hat{f}_n by minimizing a prediction error

Assumes $(x_i, y_i) \stackrel{iid}{\sim} P_0$

Standard prediction error functions:

► Classification: Cross-entropy

$$CE(\hat{f}_n) = \mathbb{E}_0[-\mathbf{y}_i \cdot \log \hat{\mathbf{f}}_n(x_i)]$$
 (3)

Regression: Mean squared error

$$MSE(\hat{f}_n) = \mathbb{E}_0[y_i - \hat{f}_n(x_i)]^2 \tag{4}$$

Cross entropy:

$$CE(\hat{f}_n) = \mathbb{E}_0[-\mathbf{y}_i \cdot \log \hat{\mathbf{f}}_n(x_i)]$$
 (5)

n.b. We can't directly calculate this, since P_0 is unknown.

Cross entropy:

$$CE(\hat{\mathbf{f}}_n) = \mathbb{E}_0[-\mathbf{y}_i \cdot \log \hat{\mathbf{f}}_n(\mathbf{x}_i)]$$
 (5)

n.b. We can't directly calculate this, since P_0 is unknown.

But:

We do have P_n , i.e. our training data (x_i, y_i) : i = 1, 2, ..., n.

Cross entropy:

$$CE(\hat{f}_n) = \mathbb{E}_0[-\mathbf{y}_i \cdot \log \hat{\mathbf{f}}_n(x_i)]$$
 (5)

n.b. We can't directly calculate this, since P_0 is unknown.

But:

We do have P_n , i.e. our training data (x_i, y_i) : i = 1, 2, ..., n.

Estimating cross entropy

$$\widehat{CE}(\widehat{f}_n) = \mathbb{E}_n[-\mathbf{y}_i \cdot \log \widehat{\mathbf{f}}_n(x_i)]$$
 (6)

$$= \frac{1}{n} \sum_{i=1}^{n} -\mathbf{y}_{i} \cdot \log \hat{\mathbf{f}}_{n}(x_{i})$$
 (7)

Similarly:

We estimate the mean squared error using our data.

Estimating mean squared error

$$\widehat{MSE}(\hat{f}_n) = \mathbb{E}_n[y_i - \hat{f}_n(x_i)]^2$$
 (8)

$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_n(x_i))^2$$
 (9)

There are two common problems with prediction errors:

- 1. A high prediction error could mean underfitting.
 - ▶ e.g. You could have the wrong functional form

There are two common problems with prediction errors:

- 1. A high prediction error could mean underfitting.
 - e.g. You could have the wrong functional form
- 2. A low prediction error could mean overfitting.
 - e.g. You made your model too flexible

Underfitting

1. A high prediction error could mean underfitting.

True function f_0 .

Observed data and estimated function \hat{f}_n .

Overfitting

2. A low prediction error could mean overfitting.

True function, f_0 .

Observed data and estimated function \hat{f}_n .

How to tell if we've under/overfit:

Evaluate on data not used in training (i.e. from your test set).

Given our test data (x_i', y_i') : i = 1, 2, ..., m, we can calculate a more accurate prediction error, e.g.:

$$\widehat{MSE}(\hat{f}_n) = \mathbb{E}_n^{\text{test}}[y_i' - \hat{f}_n(x_i')]^2$$
 (10)

$$= \frac{1}{m} \sum_{i=1}^{m} (y_i' - \hat{f}_n(x_i'))^2$$
 (11)

How to tell if we've under/overfit:

- ► So, now we have two prediction error estimates, e.g.:
 - 1. $\widehat{MSE}^{train}(\hat{f}_n)$ from our training data
 - 2. $\widehat{MSE}^{test}(\hat{f}_n)$ from our test data

If $\widehat{MSE}^{train}(\hat{f}_n) << \widehat{MSE}^{test}(\hat{f}_n)$, then we've likely overfit on our training data.

How to tell if we've under/overfit:

Estimates \hat{f}_n of f_0 .

 \widehat{MSE} for each \hat{f}_n .

How to tell if we've under/overfit (with an almost linear f_0):

Estimates \hat{f}_n of f_0 .

 \widehat{MSE} for each \hat{f}_n .

Low flexibility models work well.

How to tell if we've under/overfit (with low noise):

Estimates \hat{f}_n of f_0 .

 \widehat{MSE} for each \hat{f}_n .

High flexibility models work well.

Let x_0 be a fixed point, $y_0 = f_0(x_0) + \epsilon$, and \hat{f}_n be an estimate of f_0 from $(x_i, y_i) : i = 1, 2, ..., n$.

The MSE at x_0 can be decomposed as

$$MSE(x_0) = \mathbb{E}_0[y_0 - \hat{f}_n(x_0)]^2$$

$$= Var(\hat{f}_n(x_0)) + Bias(\hat{f}_n(x_0))^2 + Var(\epsilon_0)(13)$$

$$MSE(x_0) = Var(\hat{f}_n(x_0)) + Bias(\hat{f}_n(x_0))^2 + Var(\epsilon_0)$$

$\mathsf{Var}(\epsilon_0)$

Noise from the data distribution, i.e. irreducible error.

True function, f_0 and observed data.

$$MSE(x_0) = Var(\hat{f}_n(x_0)) + Bias(\hat{f}_n(x_0))^2 + Var(\epsilon_0)$$

$Var(\hat{f}_n(x_0))$

The variance of $\hat{f}_n(x_0)$ (i.e. the estimate of y). How much the estimate \hat{f}_n at x_0 changes with new data.

Observed data and estimate \hat{f}_n .

$$MSE(x_0) = Var(\hat{f}_n(x_0)) + Bias(\hat{f}_n(x_0))^2 + Var(\epsilon_0)$$

$Var(\hat{f}_n(x_0))$

The variance of $\hat{f}_n(x_0)$ (i.e. the estimate of y). How much the estimate \hat{f}_n at x_0 changes with new data.

$$MSE(x_0) = Var(\hat{f}_n(x_0)) + Bias(\hat{f}_n(x_0))^2 + Var(\epsilon_0)$$

Bias $(\hat{f}_n(x_0))^2$

The square of the expected difference, $\mathbb{E}^2[\hat{f}_n(x_0) - f_0(x_0)]$. How far the average prediction \hat{f}_n is from f_0 at x_0 .

$$MSE(x_0) = Var(\hat{f}_n(x_0)) + Bias(\hat{f}_n(x_0))^2 + Var(\epsilon_0)$$

Implications:

- ► The MSE is always non-negative.
- ► Each element on the right side is always non-negative.
- Consequently, lowering one element (beyond some point) typically increases another.

Bias variance trade-off

More flexibility ←⇒ Higher variance ←⇒ Lower bias

Bias variance trade-off

More flexibility ←⇒ Higher variance ←⇒ Lower bias

Classification

In classification, the output takes values in a discrete set (c.f. continuous values in regression).

Example

If we're trying to predict the brand of a car (based on input features), the function f_0 outputs the (conditional) probabilities of each car brand (e.g. Ford, Toyota, Mercedes, etc.), e.g.

$$\mathbb{P}_0[Y=y|X_1,X_2,...,X_p]:y\in\{\mathit{Ford},\mathit{Toyota},\mathit{Mercedes},\mathit{etc.}\}$$

Comparisons

Regression:
$$f_0 = \mathbb{E}_0[Y|X_1, X_2, ..., X_p]$$

- ▶ A scalar value, i.e. $f_0 \in \mathbb{R}$
- $ightharpoonup \hat{f}_n$ therefore gives us estimates of y

Classification:
$$f_0 = \mathbb{P}_0[Y = y | X_1, X_2, ..., X_p]$$

- ▶ A vectored value, i.e. $f_0 = [p_1, p_2, ..., p_K] : p_j \in [0, 1], \sum_K p_j = 1$
- ▶ n.b. In a binary setting this simplies to a scalar, i.e. $f_0 = p_1 : p_1 = \mathbb{P}_0[Y = 1|X_1, X_2, ..., X_p] \in [0, 1]$
- $ightharpoonup \hat{f}_n$ therefore gives us predictions of each class

Bayes classifier

- f₀ gives us a probability of the observation belonging to each class.
- ► To select a class, we can just pick the element in $f_0 = [p_1, p_2, ..., p_K]$ that's the largest
 - ► Called the Bayes Classifier
- As a classifier, produces the lowest error rate

Bayes error rate

$$1 - \mathbb{E}_0 \left[\max_{y} \mathbb{P}_0[Y = y | X_1, X_2, ..., X_p] \right]$$
 (15)

Analogous to the irreducible error described previously

Bayes classifier

Example: Classifying in 2 classes with 2 features.

The Bayes error rate is 0.1304.

Bayes classifier

Note: $C(\mathbf{x}) = \arg \max_{\mathbf{y}} f_0(\mathbf{y})$ may seem easier to estimate

 \triangleright Can still be hard, depending on the distribution f_0 , e.g.

Bayes error = 0.0

Bayes error = 0.3

References

- [1] ISL. Chapters 1-2.
- [2] ESL. Chapters 1-2.