

CSD1251/CSD1250 Homework 5

Due: 12th February 2023, 2359 HRS

For each question, key in **the** correct option into the homework into the "Homework 5" option in the "29 January to 4 February" section in our meta course page on Moodle. Starred(*) questions are slightly more difficult.

Question 1

Differentiate $f(x) = e^{\sin^2(x^2)}$.

$$\sin^2(x^2)$$

(b)
$$2\sin(x^2)e^{\sin^2(x^2)}$$

(a)
$$e^{\sin^2(x^2)}$$
 (b) $2\sin(x^2)e^{\sin^2(x^2)}$ (c) $2\sin(x^2)\cos(x^2)e^{\sin^2(x^2)}$

(d)
$$2x\sin(2x^2)e^{\sin^2(x^2)}$$
 (e) None of the above

Question 2

Find an equation of the tangent line to the function $f(x) = 10xe^{-x^2}$ at the point (0,0).

(a)
$$y = 0$$

(b)
$$y = 10$$

(a)
$$y = 0$$
 (b) $y = 10$ (c) $y = 10x$

(d)
$$y = 10x + 10$$

(d) y = 10x + 10 (e) None of the above

Question 3

Find an equation of the tangent line to the graph of $y^2 = x^3 + 3x^2$ at the point (1, -2).

(a)
$$y = -\frac{9}{4}x + \frac{1}{4}$$

(a)
$$y = -\frac{9}{4}x + \frac{1}{4}$$
 (b) $y = -\frac{9}{4}x + \frac{13}{4}$ (c) $y = -\frac{9}{4}x - 2$

(c)
$$y = -\frac{9}{4}x - 2$$

(d)
$$y = -\frac{9}{4}x - \frac{5}{4}$$
 (e) None of the above

Question 4

Find $\frac{dy}{dx}$ for the following equation.

$$\cos(x^2 + 2y) + xe^{y^2} = 1$$

(a)
$$\frac{2x\sin(x^2 + 2y)}{2xye^{y^2} - 2\sin(x^2 + 2y)}$$

(a)
$$\frac{2x\sin(x^2+2y)}{2xye^{y^2}-2\sin(x^2+2y)}$$
 (b)
$$\frac{2x\sin(x^2+2y)-e^{y^2}}{2xye^{y^2}-2\sin(x^2+2y)}$$

(c)
$$\frac{-e^{y^2}}{2xye^{y^2} - 2\sin(x^2 + 2y)}$$
 (d) $\frac{2x\sin(x^2 + 2y) - e^{y^2}}{xe^{y^2} - 2\sin(x^2 + 2y)}$ (e) None of the above

(d)
$$\frac{2x\sin(x^2+2y) - e^{y^2}}{xe^{y^2} - 2\sin(x^2+2y)}$$

Question 5

There is only one critical point c of the function $f(x) = x^2 + x$. Find c.

- (a) 0 (b) 1 (c) $-\frac{1}{2}$ (d) -1 (e) None of the above

Question 6

For the function f in Question 5, find **an** interval where f is increasing.

- (a) $(-1,\infty)$ (b) $(-\infty,0)$ (c) (0,1) (d) $(-2,\infty)$ (e) None of the above

Question 7

For the function f in Question 5, find **an** interval where f is decreasing.

- (a) $(1, \infty)$ (b) $(-\infty, -1)$ (c) (0, 1) (d) $(0, \infty)$
- (e) None of the above