

Chapter 6

CHAPTER 6 NOTES: Conditionals in Python

What are Conditionals?

Conditionals allow you to run certain blocks of code **only when a specific condition is true.**

Think of it as making decisions in code — like a "choose your own adventure" book!

Basic Structure of if Statement

if condition:

Code block runs only if condition is True else:

Code block runs if condition is False

✓ Python uses indentation (spacing) to decide which code belongs where — no
☐ like in C/C++/Java.

Chapter 6

🃤 if-else Ladder

```
if condition1:
    # Executes if condition1 is True
elif condition2:
    # Executes if condition2 is True (only if condition1 is False)
elif condition3:
    # Executes if condition3 is True (if others are False)
else:
    # Executes if NONE of the above conditions are True
```

Only one block is executed in an if-elif-else ladder, whichever matches first.

PExample 1: Basic Age Checker

```
age = int(input("Enter your age: "))

if age > 18:
    print("You are allowed!")
else:
    print("Not allowed.")
```

Example 2: Complex If-Elif-Else Ladder

```
if age > 18 and age < 110:
    print("You are above 18.")
elif age < 0:
    print("Aliens/time travelers not allowed.")
elif age >= 110:
    print("Ghosts not allowed.")
elif age == 0:
    print("Babies not born yet!")
else:
    print("Invalid entry.")
```

Logic Order Matters

Python checks from top to bottom — first condition that is **True** wins, and remaining are skipped.

Туре	Behavior
if	Checks condition and runs block if True
elif	Used after if to add more conditions
else	Runs only if all previous conditions fail
Another if	Starts a new independent check , even if earlier if/Elif passed or failed

Modulo Trick (Even or Odd)

```
if age % 2 == 0:
    print("Even age")
else:
    print("Odd age")
```

This is very useful logic in competitive programming for checking parity.

Important Tips & Gotchas

▼ Do This	X Avoid This	
Use elif for multiple options	Don't write multiple if if only one should run	
Always indent your blocks	Don't forget : colon after conditions	
Use and / or for combining conditions	Don't over-nest unless necessary	
Use input validation when possible	Don't blindly trust input() values	

Logical Operators

Operator	Use	Example
and	Both conditions must be True	if age > 18 and age < 60:
or	At least one must be True	if age < 0 or age > 150:

Chapter 6

Operator	Use	Example
not	Reverses the condition	if not is_logged_in:

Problem 1: Find Greatest of 4 Numbers

```
a, b, c, d = int(input()), int(input()), int(input())
e = [a, b, c, d]
e.sort()
print("The largest Number is:", e[3])
```

Concepts Covered:

- · List usage for simplification
- sort() for finding max
- Alternate (less optimal) approach: using nested if statements
- **\checkmark** Tip: You can also use $\frac{1}{\text{max}(1)}$ for a cleaner solution:

```
print("The largest Number is:", max(a, b, c, d))
```

✓ Problem 2: Pass/Fail Checker

```
# Need at least 33 in each subject and average > 40
if avg > 40 and subject1 > 33 and subject2 > 33 and subject3 > 33:
    print("Passed")
else:
    print("Failed")
```

Concepts Covered:

- Logical and operator
- Arithmetic average
- · Pass criteria validation

Chapter 6 4

★ This mimic real-world grading logic, excellent practical implementation.

Problem 3: Spam Detector in Comment

```
# Check for known spam words if spam1 in comment or spam2 in comment or ...: print("Spam")
```

Concepts Covered:

- Use of in to check substrings
- Logical or operator
- Basic keyword matching (ideal candidate for later AI/NLP extension!)
- ★ Better way (for future): Loop over list of spam keywords:

```
spam_words = ["money", "buy now", "subscribe", "click", "earn money"]
if any(word in comment for word in spam_words):
    print("Spam")
```

Problem 4: Username Length Check

```
if len(username) >= 10:
    print("Greater")
else:
    print("Less")
```

Concepts Covered:

- len() function
- Simple comparison
- Input validation

Problem 5: Username in List

if username in name:
 print("Present")

Chapter 6 5

```
else:
print("Not Present")
```

Concepts Covered:

- in keyword for list lookup
- Membership testing
- ★ This can later help build user validation or access control systems.

Problem 6: Grade Based on Marks

```
if marks > 90:
    print("Ex")
elif marks > 80:
    print("A")
...
else:
    print("F")
```

Concepts Covered:

- if-elif-else ladder
- · Real-world grading system
- Percentage to grade conversion
- ★ Clean logic and great use of conditional ladders.

✓ Problem 7: Is Post Talking About Harry?

```
if "Harry" in post or "harry" in post:
print("Yes")
```

Concepts Covered:

- Case sensitivity
- · Substring check

Chapter 6 6

if "harry" in post.lower(): print("Yes")

Chapter 6 – Full Summary Table

Concept	Explanation	
if , elif , else	Conditional statements used for decision making	
Logical Operators (and , or)	Used to combine multiple conditions	
in operator	Checks membership in strings, lists, etc.	
len() function	Returns length of string or collection	
max(), min()	Can be used to find largest/smallest number	
sort() and list	Used to sort and compare numbers	
Case Sensitivity	"Harry" is not equal to "harry" unless normalized	
Substring detection	if "spam" in comment: is a powerful way to filter messages	
Grade System	Practical use of if-elif-else to assign grades	
Efficient logic	Prefer using max() or lists over multiple if comparisons for clean code	

Chapter 6