Imagerie Biomédicale :

visite guidée des problématiques de traitement de signal et d'images à travers des applications

Philippe CIUCIU†

† SHFJ/CEA, Orsay, ciuciu@shfj.cea.fr http://www.madic.org/people/ciuciu

ESIEA, Paris — 28 novembre 2005

Imagerie biomédicale

Principaux contributeurs à ce cours

Par ordre d'importance décroissante

- Irène Buvat, (CR CNRS INSERM U678, CHU Pitié Salpétrière) buvat@imed.jussieu.fr
- Marc Allain, (MCF Insitut Fresnel, Univ. Provence III)
 marc.allain@fresnel.fr
- Claude Comtat, (SHFJ/CEA) comtat@shfj.cea.fr
- Vincent Lebon, (SHFJ/CEA) lebon@shfj.cea.fr
- Charles Soussen, (MCF CRAN Nancy)
 charles.soussen@cran.uhp-nancy.fr

Plan du cours

- Cours 1. Introduction: imagerie morphologique vs fonctionnelle
- Cours 2. Visite guidée en imagerie fonctionnelle nucléaire (ionisante)
- Cours 3. Reconstruction 3D en PET/SPECT
- Cours 4. Quantification en PET/SPECT
- Cours 5 Reconstruction 2D/3D en tomographie à rayons X (CT, scanner)
- Cours 6. Principes et applications en Imagerie par résonance magnétique (IRM)
- Cours 7. Recalage d'images monomodale, multimodales, ...
- Cours 8. Analyse statistique des données d'IRM fonctionnelle

Philippe Ciuciu

Cours III.

Cours III. Reconstruction en scanner et tomographie à rayons X

Cours II. Reconstruction en tomographie à rayons X

- A. Tomographie à rayons X pour résoudre un problème de santé publique
- B. Tomographie à rayon X : principe physique, procédé de mesures
- C. Méthodes reconstruction en tomographie axiale
 - C.1. Méthodes analytiques
 - C.2. Méthodes algébriques
 - C.3. Approches pénalisées
- D. Tomodensitométrie 3D
 - D.1 Tomographie axiale « 2,5D »
 - D.2 Tomographie hélicoïdale 3D

Ouvrages majeurs [HERMAN 1980, KAK et SLANEY 1987, 2001]

Articles [Natterer 1999]

Thèses utilisées [Soussen 2000, Allain 2002] (remerciements chaleureux!)

I. Projet de prothèse personnalisée du genou

.

A. Arthrite Rhumatoïde / Arthrose

Problème de santé publique : + 16 millions de cas aux États-Unis.

Une solution possible : la pose d'une prothèse articulaire...

La prothèse standard

+ 200 000 implantations par année aux États-Unis...

Partie fémorale

- Chirurgie lourde
- viabilité < 15 ans,
- au + une révision.

Prothèse implantée.

Philippe Ciuciu

I. Projet de prothèse personnalisée du genou

La prothèse personnalisée

- chirurgie mineure,
- demi-prothèse,
- révisions multiples.

MAIS... nécessite de connaître la surface du fémur avec précision (≤ 1 mm).

B. Tomographie à rayon X : motivation et principe physique

- imagerie 2D (coupes) et 3D,
- large disponibilité clinique,
- fort contraste os / tissus mous.

Coupe axiale

Faisceau de rayons X tournant autour du patient

Philippe Ciuciu

B.1 Principe de la tomographie à rayons X

5

Principe physique

- **Taisceau** à rayons X pour la tomographie clinique ($\approx 120 keV$)
 - Diffraction/Diffusion (effet Compton)
 - Absorption (effet photoélectrique)
 - \Rightarrow décroissance exponentielle du faisceau X (source supposée monochromatique)
- Modélisation par la Loi de Beer-Lambert :

$$N_D = N_0 \exp\left(-\int_{\boldsymbol{\xi} \in \mathcal{L}} f(\xi_1, \xi_2) \,\mathrm{d}\boldsymbol{\xi}\right)$$

 ${\cal L}$: rayon de projection,

 $f(\xi)$: distribution d'atténuation des photons X,

 N_0 : intensité de la source émettrice (ou nombre de photons émis/sec. par la source)

 N_D : nombre de photons reçus par le détecteur

Procédé de mesure en tomographie axiale

Principe : « illuminer » une section infiniment mince de l'objet sous un angle d'incidence θ :

Philippe Ciuciu

B.2 Principe de la tomographie axiale

Configurations de projections

 \blacksquare Projections coniques : $p(\alpha, \beta)$

 $t=r\sin{lpha}$, $\theta=\beta+lpha-rac{\pi}{2}$, (r=distance source/centre repère)

Mode conique (fan beam)

Visualisation des données radiographiques : sinogramme

Objet réel

Projections suivant le repère (t, θ)

B.2 Principe de la tomographie axiale

Transformée de Radon (TR) ou à rayons X :

Soit \mathcal{S} la sphère unité dans \mathbb{R}^2 . $\forall \phi = [\cos \theta, \sin \theta]^{\mathrm{t}} \in \mathcal{S}$, on introduit Φ^{\perp} la direction orthogonale à ϕ , décrite par $\phi^{\perp} = [-\sin \theta, \cos \theta]$. Pour $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction intégrable, la transformée de Radon $g: \mathbb{R} \times \mathcal{S} \to \mathbb{R}$ s'écrit de manière équivalente :

$$g(t, \phi) = \int_{\Phi^{\perp}} f(\boldsymbol{\xi} + t\phi) d\boldsymbol{\xi},$$

$$= \int_{\mathbb{R}^2} \delta(t - \boldsymbol{\xi}_1 \cos \theta + \boldsymbol{\xi}_2 \sin \theta) f(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

$$= \int_{\mathcal{L}_{t,\theta}} f(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) dl = p_{\theta}(t)$$

ullet Formulation fonctionnelle : $g=\mathcal{R}f$

Remarque : cette définition s'étend aux fonctions $f: \mathbb{R}^N \to \mathbb{R}$. Dans ce cas la TR se définit en intégrant selon tous les hyperplans de dimension N-1.

a

Transformées de Fourier

Version 2D

Pour une fonction $f: \mathbb{R}^2 \to \mathbb{R}$, sa TF notée $\mathring{f}(\nu_1, \nu_2)$ est en général à valeurs complexe et définie par :

$$\mathring{f}(\boldsymbol{\nu}) = (2\pi)^{-1} \int_{\mathbb{R}^2} f(\boldsymbol{\xi}) e^{-i\langle \boldsymbol{\xi}, \boldsymbol{\nu} \rangle} d\boldsymbol{\xi}, \quad \text{ou } \boldsymbol{\nu} = [\nu_1, \nu_2]^t \in \mathbb{R}^2$$

Sous forme fonctionnelle, on notera $\mathring{f}=\mathcal{F}_2f$, avec \mathcal{F}_2 opérateur de Fourier 2D.

Version utile pour la TR $p: \mathbb{R} \times \mathcal{S} \to \mathbb{R}$

Philippe Ciuciu

Reconstruction tomographique axiale 2D

11/60

Problème de reconstruction 2D

Problème : Reconstruire (a) à partir de (c) c'est-à-dire d'un *nombre fini* Ks d'angles de projection, chaque projection étant elle-même échantillonnée sur M=2L-1 points :

$$p_{\theta_k}(t_l)=[\mathcal{R}f](t_l,\theta_k)\quad\text{avec }l=-L-1,,\,\ldots,\,L,\quad k=1:K,$$
 où $\theta_k=k\pi/K$, $t_l=l\rho/L$

C. Méthodes de reconstruction en tomographie axiale 2D

Questions:

Comment reconstruire $f(\xi_1, \xi_2)$ à partir de $p_{\theta_k}(t_l)$?

Comment construire une approximation « pertinente » de $f(\xi_1,\xi_2)$ à partir des projection $p_{\theta_k}(t_l)$?

C.1 Approches analytiques

- 2 Synthèse de Fourier
- 2 Rétroprojection convoluée ou filtrée

C.2 Discrétisation de la Transformée de Radon

- Solution inverse généralisée
- 4 Approches algébriques itératives (ART,BICAV, ...)

C.3 Approches pénalisées

 $Reconstruction\ tomographique\ axiale\ 2D$

13/60

Synthèse de Fourier

Théorème coupe projection : $\forall \theta \in [0, 2\pi], \ \forall \nu \geqslant 0,$

$$\mathring{p}_{\theta}(\nu) = \mathring{f}(\nu\cos\theta, \nu\sin\theta) \Longleftrightarrow [\mathcal{F}_1 p_{\theta}](\nu) = [\mathcal{F}_2 f](\nu\cos\theta, \nu\sin\theta)$$

Remplissage du domaine de Fourier :

Synthèse de Fourier : estimation de $f(\xi)$ à partir de l'observation partielle de sa TF.

$$\mathring{f}(\nu_i \cos \theta_k, \nu_i \sin \theta_k), \ 1 \leqslant i \leqslant r, \ 1 \leqslant k \leqslant K \implies \mathring{f}(\xi), \ \forall \xi \in \mathbb{R}^2.$$

Théorème coupe projection

15/60

Synthèse de Fourier

Algorithme coupe projection : $\forall \theta \in [0, 2\pi], \ \forall \nu \geqslant 0, \ \mathring{p}_{\theta}(\nu) = \mathring{f}(\nu \cos \theta, \nu \sin \theta)$

- 1. Fixer N fréquences $\nu_i\geqslant 0$;
- 2. $\forall k$, calculer la TF 1D $\mathring{p}_{\theta_k}(\nu_i)$ de la k-ème projection en les fréquences ν_i ;
- 3. Déduire les estimées $\hat{f}(\boldsymbol{\xi})$ des valeurs de $f(\boldsymbol{\xi})$.
 - \Rightarrow Problème d'interpolation fréquentielle (erreurs d'interpolation de \mathring{f})
 - Répartition non uniforme des fréquences dans le plan de Fourier
- \implies Estimation $\hat{f}(\boldsymbol{\xi})$ sur une grille discrète

Synthèse de Fourier

Hypothèse : $f(\xi)$ est une fonction de support compact.

- 1. Ω : bande passante définissant la résolution de la reconstruction
- 2. Fréquence d'échantillonnage $\nu_e=2\pi L/\rho$ vérifiant Shannon : $\nu_e\geqslant 2\Omega$
- 3. TFD fournit L points fréquentiels distincts par projection. En posant $\nu_r = r \nu_e/2L$

$$\mathring{p}_{\theta_p}(\nu_r) = (2\pi)^{-1/2} \frac{\rho}{L} \sum_{l=1-L}^{L} p_{\theta_p}(t_l) e^{-i2\pi l \nu_r / \nu_e}, \quad r = 0, \dots, L-1.$$

- 4. Théorème coupe-projection $\left\{\mathring{p}_{\theta_p}(\nu_r)\right\}_{p=1}^P$ fournit $2L \times P$ valeurs $\left\{\mathring{f}(\nu_r \phi_p)\right\}_{r,p}$ qui échantillonnent radialement le domaine de Fourier
- 5. Interpolation sur une grille cartésienne :

$$\left\{\mathring{f}(\nu_r \pmb{\phi}_p)\right\}_{r,p} \leadsto \left\{\widehat{f}(j,k)\right\}_{(j,k) \in I} \quad \text{avec} \quad I = \left\{(u,v) \in \mathbb{Z}^2 : \max(|u|,|v|) \leqslant L\right\}$$

6. Calcul d'une approximation de f sur une grille cartésienne par TF2D inverse (\mathcal{F}_2^{-1}) :

$$f(\xi_1, \xi_2) \approx \frac{\pi}{2\rho} \sum_{(j,k)\in I} \hat{f}s(j,k) e^{i\pi(ju+kv)/L}$$

 $Reconstruction\ tomographique\ axiale\ 2D$

17/60

Approche analytique : difficultés méthodologiques

Inversion analytique de la transformée de Radon

[Joan Radon, 1917]

$$f(\xi_1, \xi_2) = \frac{1}{2\pi} \int_0^{\pi} \int_0^{\infty} \frac{1}{t - \xi_1 \cos \theta - \xi_2 \sin \theta} \frac{\partial p_{\theta}(t)}{\partial t} dt d\theta$$

- Problème mal posé [Natterer 1986, Nashed 1981] :
- ullet Unicité de f n'est pas garantie pour tout nombre fini de projections

$$\operatorname{Ker} \left[\mathcal{R} \right] = \mathcal{F}^{-1} \left\{ \Omega^c = \left\{ \boldsymbol{\nu} \in \mathbb{R}^2 : |\boldsymbol{\nu}| > K/\rho \right\} \right\} \neq \{0\}!$$

- ullet Stabilité de f n'est pas garantie face aux perturbations sur g
- Méthodes de type rétroprojections filtrées (solutions non régularisées)

Opérateur de rétroprojection

Opérateur de projection : p=R f.

Opérateur de rétroprojection : $g = \mathcal{R}^{\sharp}p$: intégration angulaire des projections.

$$\forall M \in \mathbb{R}^2, \ \left[\mathcal{R}^{\sharp} p\right](M) = \int_0^{2\pi} p_{\theta} \left(\boldsymbol{w}_{\theta}^t \boldsymbol{O} \boldsymbol{M}\right) \, \mathrm{d}\theta.$$

Reconstruction tomographique axiale 2D

19/60

Inversion de la transformée de Radon

Formule d'inversion analytique : écriture convolutive

$$f = rac{1}{4\pi} \, \mathcal{R}^\sharp \, ig(\mathcal{I} \star \mathcal{R} f ig) \,\, \mathsf{avec} \,\,\, \mathring{\mathcal{I}}(
u) = |
u|$$

- ⇒ Algorithme de rétroprojection filtrée.
 - 1. Calculer les TF 1D des données, soit $\mathring{p}_{\theta_1}(\nu),\,\ldots,\,\mathring{p}_{\theta_K}(\nu)$ avec $\mathring{p}_{\theta_k}(\nu)=[\mathcal{F}_1\mathcal{R}_{\theta_k}f](\nu)$;
 - 2. Calculer $\mathcal{F}_1^{-1}ig(|
 u|\,\mathring{p}_{ heta_1}(
 u)ig),\,\ldots,\,\mathcal{F}_1^{-1}ig(|
 u|\,\mathring{p}_{ heta_K}(
 u)ig)$;
 - 3. Rétroprojeter l'estimée de $\mathcal{I}\star\mathcal{R}f$.

Remarques :

- Pas d'interpolation fréquentielle.
- Mise en œuvre en temps réel : traitement séquentiel des données, suivant l'ordre d'acquisition aux angles $\theta_1, \ldots, \theta_K$.

Réglage du compromis biais-variance de la RPF

Fantôme de Shepp et Logan : 151 projections, 175 rayons

Bruit blanc gaussien $\sigma_{=}0,008$; ν_{c} : fréquence de coupure du filtre dans la RPC

Reconstruction tomographique axiale 2D

21/60

Discrétisation de la transformée de Radon

Expansion en série [HERMAN 1980]

$$f(\boldsymbol{\xi}) \approx f_N(\boldsymbol{\xi}) = \sum_{n=1}^N f_n b_n(\boldsymbol{\xi}), \forall n = 1: N, b_n : \mathbb{R}^2 \to \mathbb{R}$$

Résolution d'un problème d'inversion numérique

$$\forall (l,k) \in \{-L+1, \dots, L\} \times \{1, \dots, K\},$$

$$p_{\theta_k}(t_l) = \int_{\mathbb{R}^2} \delta(t_l - \langle \boldsymbol{\xi}, \boldsymbol{\theta}_p \rangle) f_N(\boldsymbol{\xi}) \, d\boldsymbol{\xi} = \sum_{n=1}^N f_n \int_{\mathbb{R}^2} \delta(t_l - \langle \boldsymbol{\xi}, \boldsymbol{\theta}_p \rangle) b_n(\boldsymbol{\xi}) \, d\boldsymbol{\xi}$$

$$\boldsymbol{f} = [f_1, \dots, f_N]^{\mathrm{t}} \in \mathbb{R}^N$$

$$\boldsymbol{p} = [p_{\theta_1}(t_{-L+1}), \dots, p_{\theta_1}(t_L), p_{\theta_2}(t_{-L+1}), \dots, p_{\theta_K}(t_L)] \in \mathbb{R}^M, M = 2L \times K$$

$$\Rightarrow \boldsymbol{p} = \boldsymbol{R} \boldsymbol{f}$$

Posons
$$m = 2L(p-1) + l + L$$
, alors : $\mathbf{R}_{mn} = \int_{\mathbb{R}^2} \delta(t_l - \langle \boldsymbol{\xi}, \boldsymbol{\theta}_p \rangle) b_n(\boldsymbol{\xi}) \, d\boldsymbol{\xi}$ \Rightarrow Contribution de b_n dans rayon l de la projection p

Modélisation discrète des mesures

- **Discrétisation** du domaine en N pixels f_1, \ldots, f_N .
- lacktriangle Opérateur de projection discret $\forall\,(l,k)\in\{-L+1,\,\ldots,\,L\} imes\{1,\,\ldots,\,K\}\,,$

$$m = 2L(p-1) + l + L, \quad p_{\theta_k}(t_l) = p_m = \sum_{1 \le n \le N} R_{mn}(t_l, \theta_k) f_n.$$

Reconstruction tomographique axiale 2D

23/60

(b) Faisceau « carré bande »

(c) Faisceau « cylindrique bande »

Modèles (b)-(c) à fonction de faisceau ψ : $R_{mn} = \int_{\mathbb{R}^2} \psi(t_l - \langle \boldsymbol{\xi}, \boldsymbol{\theta}_p \rangle) b_n(\boldsymbol{\xi}) \, \mathrm{d}\boldsymbol{\xi}$

Projection et rétroprojection discrètes

Une projection : $p_{\theta_k}(t_l) = p_m = \sum_{1 \leqslant n \leqslant N} R_{mn}(t_l, \theta_k) \ f_n$.

Opérateur de projection : $\boldsymbol{p} = \boldsymbol{R}\boldsymbol{f}, \ \boldsymbol{R} = \{R_{mn}\}, \ m=1,\ldots,M, \ n=1,\ldots,N.$

Une rétroprojection : $\tilde{g}_n = \sum_{1 \leqslant m \leqslant M} R_{mn}(t_l, \theta_k) \; p_m$.

Opérateur de rétroprojection : $\widetilde{m{g}} = m{R}^t m{p}$.

- Remarques :
 - K images projection de taille 2L $(M=2L\times K)$ \Rightarrow $\mathbf{R}=\begin{bmatrix} \frac{\mathbf{R}_1}{\mathbf{R}_2}\\ \hline \vdots\\ \hline \mathbf{R}_K \end{bmatrix}$.
 - -R est une matrice creuse.

Reconstruction tomographique axiale 2D

25/60

Méthodes algébriques de reconstruction

Modélisation des données radiographiques :

$$oldsymbol{y} = oldsymbol{p} + oldsymbol{arepsilon} = oldsymbol{R} oldsymbol{f} + oldsymbol{arepsilon} \quad ext{avec} \quad oldsymbol{arepsilon} \sim \, \mathcal{N}(oldsymbol{0}, \sigma_b^2 oldsymbol{I}_M)$$

arepsilon : erreurs de modélisation, de discrétisation, et bruit d'instrumentation

- Deux types d'approches
 - ullet Solutions réalisables du système y=Rf

Ens. convexe des solutions : $S = \left\{ oldsymbol{f} \in \mathbb{R}^N \, | \, oldsymbol{y} - oldsymbol{R} oldsymbol{f} = oldsymbol{0}
ight\}$

⇒ Méthode numérique type POCS (*Projected on Convex Subsets*)

En pratique, $\boldsymbol{y} \not\in \operatorname{Im} \left[\boldsymbol{R} \right] \Longrightarrow S = \emptyset$! (système inconsistant)

ullet Inversion au sens des moindres carrés : résoudre $\min_{oldsymbol{f}} \left\| oldsymbol{y} - oldsymbol{R} oldsymbol{f}
ight\|^2$

⇒ Solution inverse généralisée

Schémas itératif type POCS

- Algebraic Reconstruction Technique (ART) [GORDON et coll. 1970]
- ullet Principe : trouver f tel que Rf=y par projections successives

$$m{f}^{(k;m)} = m{f}^{(k;m-1)} + \lambda^{(k)} rac{y_m - m{r}_m^{ ext{t}} m{f}^{(k;m)}}{\left\|m{r}_m
ight\|^2} m{r}_m,$$

avec $m{r}_m^{\mathrm{t}}:m^{\mathrm{i\`{e}me}}$ ligne de $m{R},m=1:M, m{f}^{(k+1)}=m{f}^{(k,M)}$ et $\lambda^{(k)} o 1$

■ Component Averaging (CAV) [CENSOR et coll. 2001]

Remise à jour simultanée : $m{f}^{(k)} = m{f}^{(k-1)} + \lambda^{(k)} m{R}^{\mathrm{t}} m{W} (m{y} - m{R} m{f}^{(k-1)})$

 \Rightarrow Algorithme du gradient à pas $\lambda^{(k)}$ appliqué à

$$J(m{f}) = \left\|m{W}^{-1/2}(m{y} - m{R}m{f})
ight\|^2, \quad m{W}:$$
 matrice diagonale carrée

Reconstruction tomographique axiale 2D

27/60

Block Iterative Component Averaging (BICAV)

[Censor et coll. 2001, Censor et Elfving 2001]

• Partitions des données (projections bruitées)

$$j=1:J,B_j\subset\mathbb{N}_M^*=\{1,\,\ldots,\,M\}$$
 de cardinal $\mathrm{Card}\,[B_j]=M_j$ tels que $orall\, m\in\mathbb{N}_M^*, \exists j_0\in\mathbb{N}_J^*, m\in B_{j_0}\Longrightarrow oldsymbol{R}_j^{\mathrm{t}}=\left(oldsymbol{r}_j^1\mid\cdots\midoldsymbol{r}_j^{M_j}
ight)\in\mathbb{R}^{N imes M_j}$

ullet Mise à jour complète des inconnues en utilisant cycliquement J blocs de données

$$\forall k \in \mathbb{N}, \quad \boldsymbol{f}^{(k;0)} = \boldsymbol{f}^{(k-1)}$$

$$\forall j \in \mathbb{N}_{J}^{*}, \quad \boldsymbol{f}^{(k;j)} = \boldsymbol{f}^{(k;j-1)} + \lambda^{(k)} \boldsymbol{R}_{j}^{t} \boldsymbol{W}_{j}^{-1} \left(\boldsymbol{y}_{j} - \boldsymbol{R}_{j} \boldsymbol{f}^{(k;j-1)} \right)$$

$$\boldsymbol{W}_{j} = \operatorname{diag} \left[\left\| \boldsymbol{S}^{1/2} \boldsymbol{a}_{m}^{1} \right\|^{2}, \ldots, \left\| \boldsymbol{S}^{1/2} \boldsymbol{a}_{m}^{M_{j}} \right\|^{2} \right] \in \mathbb{R}^{M_{j} \times M_{j}}, \quad \boldsymbol{S} = \operatorname{diag}_{n=1:N} \left[\sum_{l=1}^{N} \mathbf{1}_{(\boldsymbol{R}_{j})_{n,l}^{t} \neq 0} \right]$$

ullet Itération complète : k o k+1 après J mises à jour : $m{f}^{(k+1)} = m{f}^{(k,J)}$

Analyse de convergence

■ Cas consistant : convergence assurée pour BICAV et ART [Censor et coll. 2001]

si
$$\forall k, 0 < \epsilon_1 < \lambda^{(k)} < \epsilon_2 < 2$$

- Vitesse de convergence fonction
 - du choix de $\lambda^{(k)}$ pour toute méthode
 - du choix de l'ordre des projections dans BICAV
- **Cas inconsistant** [CENSOR et coll. 2001]
 - comportement asymptotyique cyclique pour ART
 - ullet CAV comme gradient à pas fixe : cv si $oldsymbol{f}^{(0)} \in \operatorname{Ker} \left[oldsymbol{R}
 ight]^{\perp}$
- Coût d'implantation
 - R très creuse (<1% des éléments $R_{mn} \neq 0$!)
 - Coût part itération comparable à une RPC

Reconstruction tomographique axiale 2D

29/60

Comparaison des solutions algébriques

Données synthétiques bruitées

fantôme

Comparaison des solutions algébriques

Mesure de l'erreur relative

Reconstruction tomographique axiale 2D

31/60

Inversion au sens des « moindres carrés »

- lacksquare Recherche d'une solution au sein de $S_{ ext{MC}} = ig\{ m{f} \in \mathbb{R}^N, \min_{m{f}} ig\| m{y} m{R}m{f} ig\|^2 ig\}$
 - ullet En dimension finie, $S_{
 m MC}$ est fermé, convexe [ROCKAFELLAR 1970] :

$$\widehat{f} \in S_{\mathrm{MC}} \iff \mathbf{R}^{\mathrm{t}} \mathbf{y} = \mathbf{R}^{\mathrm{t}} \mathbf{R} \widehat{\mathbf{f}}$$

$$\operatorname{Ker} \left[\mathbf{R} \right] \neq \{ \mathbf{0} \} \Longrightarrow \operatorname{Im} \left[\mathbf{R}^{\mathrm{t}} \mathbf{R} \right] = r < N$$

- ullet Grand nombre de pixels $N \implies$ problème sous déterminé.
- Unicité de la solution de norme minimale : $\exists ! m{f}^\dagger \in \mathbb{R}^N \, | \, m{f}^\dagger = rg \min_{m{f} \in S_{\mathrm{MC}}} ig\| m{f} ig\|^2$
 - ullet $f^{\dagger} \in \operatorname{Ker}\left[oldsymbol{R}
 ight]^{\perp}$ et s'écrit à l'aide de la décomposition en valeurs singulières (SVD)
 - $\bullet \ \{ \boldsymbol{u}_n \}_{m=1}^M, \ \{ \boldsymbol{v}_n \}_{n=1}^N \ \text{bases orthonormées de } \mathbb{R}^M, \ \mathbb{R}^N, \ \{ \sigma_j > 0 \searrow \}_{i=j}^r :$ $\boldsymbol{R} \boldsymbol{v}_j = \sigma_j \boldsymbol{u}_j \quad \boldsymbol{R}^{\mathrm{t}} \boldsymbol{u}_j = \sigma_j \boldsymbol{v}_j \quad \Rightarrow \quad \boldsymbol{R}^{\mathrm{t}} \boldsymbol{R} \boldsymbol{v}_j = \sigma_i^2 \boldsymbol{v}_j, \quad \boldsymbol{R} \boldsymbol{R}^{\mathrm{t}} \boldsymbol{u}_j = \sigma_i^2 \boldsymbol{u}_j$

Comparaisons de solutions inverses généralisées

Peu de projections, angles limités \implies N

- \Rightarrow Mauvais conditionnement de R.
- \Rightarrow Solution f^{\dagger} instable numériquement.

(a) Objet réel

(b) 64 projections

(c) 16 projections sur $[0,\pi]$

(d) 8 projections sur $[0, \pi/2]$

 $Reconstruction\ tomographique\ axiale\ 2D$

33/60

Interprétation des approches algébriques

- Solutions non régularisées
- **Extensions pénalisées possibles** [HERMAN et LENT 1976]
- ullet Approche « spatiale » : minimiser $\|oldsymbol{p}-oldsymbol{R}oldsymbol{f}\|^2 + \lambda \mathcal{P}(oldsymbol{f})$
- ullet Approche « fréquentielle » : minimiser $\left\| \mathring{m{p}} \mathring{m{R}} \mathring{m{f}}
 ight\|^2 + \lambda \mathcal{P}(\mathring{m{f}})$

Approche pénalisée : formulation générique

Moindres carrés pénalisés :

définir $J(f; \lambda) = \|\mathcal{H}(f) - y\|^2 + \lambda \mathcal{P}(f)$ rechercher $\widehat{f}_{\lambda} \in \{f \in X : \min J(f; \lambda)\}$

 \mathcal{H} : modèle physique (opérateur de projection, flou, etc);

 \mathcal{P} : fonction de pénalisation (régularisation);

 \widehat{f}_{λ} , y et λ : image reconstruite, observations, et paramètres libres;

X : contraintes séparables (ex. $X=\{0,\cdots,256\}$, \mathbb{R}^N , ou \mathbb{R}^N_+) .

Construction de $\mathcal{H}(\cdot)$?

Choix de $\mathcal{P}(\cdot)$?

Taille du problème numérique, convexité, (hyper)paramètres.

Philippe Ciuciu

III. Vers une approche pénalisée en tomographie

35

Pénalisation par modèle « $\ell_2\ell_1$ » (i/ii)

Objectif

- rendre l'inversion robuste.
- favoriser certains comportements dans l'image.

En imagerie médicale, on souhaiterait

« favoriser les images localement douces + bords francs ».

Pénaliser les \neq entre pixels voisins

Pénalisation par modèle « $\ell_2\ell_1$ » (ii/ii)

$$\mathcal{P}(\boldsymbol{f}\,;\,s) = \sum_{c\in\mathcal{C}} \phi(\delta_c\,;\,s), \qquad \delta_c = \boldsymbol{d}_{\mathrm{c}}^{\mathrm{t}}\boldsymbol{f}$$

 $\boldsymbol{d}_{\mathrm{c}}$: différence entre elts $c^{\mathrm{\`{e}me}}$ paire pixels voisins

Compromis efficacité / complexité pb. optimisation

Philippe Ciuciu

 $Reconstruction\ tomographique\ axiale\ 2D$

37/60

Reconstructions 2D par approche pénalisée

Comparaison des fonctions potentiels

$$\mathcal{J}(\boldsymbol{f};\lambda) = \|\boldsymbol{y} - \boldsymbol{R}\boldsymbol{f}\|^2 + \lambda \sum_{i \sim j} \phi(f_i - f_j),$$

Objet réel
$$f^{\star}$$

 \widehat{f}_2

 $\widehat{m{f}}_{21}$

 $\widehat{m{f}}_{20}$

$$\phi_2(t) = t^2$$
, $\phi_{21}(t) = \sqrt{x^2 + T^2} - T$, $\phi_{20}(t) = \min(t^2, T^2)$

.

Reconstructions 2D par différentes méthodes

régularisation quadratique

Philippe Ciuciu

Reconstruction tomographique axiale 2D

39/60

Comparaisons de solutions pénalisées $\ell_2\ell_1$

Fantôme de Shepp et Logan: 151 projections, 175 rayons

Effet d'une excursion angulaire incomplète

 \blacksquare angle de projection $\theta \in [0, 5\pi/6]$; $\epsilon \sim \mathcal{N}(0, \sigma = 0, 001)$

 $III.\ Vers\ une\ approche\ p\'enalis\'ee\ en\ tomographie$

41

Synthèse: Un modèle d'observation axial [Ka87]

$$p = Rf$$

Opérateur R: T. de Radon d'une distribution « pixelisé »

- linéaire, creux, de grande taille, mal conditionné;
- prise en compte de l'épaisseur, rayons divergents...

Inversion en tomographie axiale (i/ii)

Reconstruction = problème inverse mal posé Information additionnelle nécessaire pour déterminer une solution unique et robuste

Philippe Ciuciu

III. Vers une approche pénalisée en tomographie

43

Inversion en tomographie axiale (ii)

Efficacité de la \mathcal{RPC} ?

- Sensible au contexte de mise en œuvre,
- Régularisation par suppression des HF.,
- ▲ Clinique (cadre favorable → dose élevée!!)
- ▼ Métrologique (suppression des hautes fréquences!!)

Tomographie 3D 44/60

D. Tomodensitométrie 3D

- Coupe par coupe, scanners multi-barettes ($512 \times 512 \times 800$ voxels).
- Coupe par coupe + interpolation (continuité inter-coupe).
- Reconstruction 3D directe (Imagerie médicale & CND).
- Modalité : tomographie hélicoïdale.

 $Reconstruction\ tomographique\ 2,5D$

45/60

D.1 Reconstruction « 2,5D »

- lacksquare Acquisition de radiographies 2D suivant les plans $(z=z_1),\,\ldots,\,(z=z_T).$
- \blacksquare T reconstructions 2D de $f(x, y, z_1), \ldots, f(x, y, z_T)$:

$$\widehat{\boldsymbol{f}}_t = \arg\min\{\|\boldsymbol{y}_t - \boldsymbol{R}_t \boldsymbol{f}_t\|^2 + \lambda \sum_{i \sim j} \phi(f_{i,t} - f_{j,t})\}.$$

 \blacksquare Continuité inter-coupes : reconstruction simultanée de $f(x,y,z_1),\,\ldots,\,f(x,y,z_T)$

$$\widehat{\boldsymbol{f}} = \arg\min \left\{ \sum_{t=1}^{T} \|\boldsymbol{y}_t - \boldsymbol{R}_t \boldsymbol{f}_t\|^2 + \lambda \sum_{i \sim j} \phi(f_{i,t} - f_{j,t}) + \lambda \sum_{i} \phi(f_{i,t+1} - f_{i,t}) \right\}.$$

Algorithme par blocs, estimations successives de $\widehat{f}_1, \widehat{f}_2, , \, \dots, \, \widehat{f}_T$

D.2 Tomographie hélicoïdale

Intérêts d'un échantillonnage hélicoïdal (milieu années 80)

- Mouvement continu de la table d'examen : suppression des « stop » & « go »
- Réduction du temps d'acquisition ⇒ diminution de la dose de rayons X
- Imager des structures dynamiques : coeur, thorax
- Réduction des artéfacts de mouvement
- Distribution de dose adiministrée au patient plus uniforme
- ⇒ Examen moins invasif/ionisant

Inconvénients

- Diminution du Rapport Signal sur Bruit (RSB)
- Artéfacts de reconstruction : perte de séparabilité
- \Rightarrow Reconstruction d'un volume 3D \neq suite de reconstructions 2D

 $Reconstruction\ tomographique\ h\'elico\"idale$

47/60

 $\bar{\varphi}=\omega t$, pas d'hélice : $P\Longrightarrow \xi_{3}=rac{ar{arphi}}{2\pi}P$, $arphi=ar{arphi}\left[2\pi
ight]$

Discrétisation du volume d'intérêt \Rightarrow angles de projection $\left\{\bar{\varphi}^i\right\}_{i=1}^T$ fixés (T plans)

Technique de reconstruction standard

- Création d'un jeu de données consistantes [Crawford et King 1990]
 - Définition d'une série de plans axiaux de reconstruction (PR)
 - Pour chaque PR, création d'un nouveau jeu de projection par interpolation
 - ⇒ Emploi d'une fonction d'interpolation et de la RPC
- Choix de la fonction interpolatrice
 - Interpolation *linéaire full-scan* (LI-360°)
 - \clubsuit Projection du PR = somme pondérée de 2 vues distantes de 2π
 - Interpolation linéaire half-scan (LI-180°)
 - \clubsuit Projections d'angles opposés (différence de π) identiques
 - Autres choix pour filtrer le volume reconstruit [HU et SHEN 1998]

 $Reconstruction\ tomographique\ h\'elico\"idale$

49/60

Procédé usuel d'interpolation

- Objectif : recréer un jeu « axial consistant » de projections
 - ullet Pseudo-projection axiale d'angle $arphi=ar{arphi}\left[2\pi
 ight]$: $\widetilde{m{p}}_{arphi}=\gammam{p}_{arphi_1}+ar{\gamma}m{p}_{arphi_2}$, $ar{\gamma}=1-\gamma$.
 - ullet Interpolation LI-360° : $arphi_1=ar{arphi}_0+\Deltaarphi$, $arphi_2=arphi_1-2\pi$, $\Deltaarphi=ar{arphi}-arphi$
 - ullet Interpolation LI-180 $^\circ$: $arphi_1=ar{arphi}_0+\Deltaarphi$, $arphi_2=arphi_1-\pi$

Technique de reconstruction standard

Modélisation paramétrique 3D

$$f(\boldsymbol{\xi}) = f(\xi_1, \xi_2, \xi_3) \approx \sum_{n=1}^{N} f_n b_n(\xi_1, \xi_2, \xi_3)$$

- ullet Choix des b_n : indicatrice de voxels rectangulaires ou cylindriques
- ullet Reconstruction 3D : Estimation de $oldsymbol{f} = \left\{ oldsymbol{f}_t \in \mathbb{R}^L
 ight\}_{t=1}^T$

Minimisation d'un critère péanlisé 3D

Recherche d'une solution $m{f_{\lambda}} \in \left\{ m{f} \in X \subset \mathbb{R}^{N} : \min Jc(m{f}; m{\lambda}) \right\}$

$$\mathcal{J}(\boldsymbol{f}; \boldsymbol{\lambda}) = \|\mathcal{H}(\boldsymbol{f}) - \boldsymbol{y}_h\|^2 + \alpha \mathcal{P}(\boldsymbol{f}; s)$$

avec
$$\pmb{\lambda}=(lpha\geqslant 0,s)$$
, $\pmb{y}_h=\pmb{p}_h+\pmb{\epsilon}=\mathcal{H}(\pmb{f})+\pmb{\epsilon}$

 $oldsymbol{p}_h \in \mathbb{R}^M$: projections acquises en mode hélicoïdal

 \Rightarrow Nécessité de spécifier un modèle pour l'opérateur de projection ${\mathcal H}$

Reconstruction tomographique hélicoïdale

51/60

Construction d'un modèle d'observation hélicoïdale

$$egin{aligned} oldsymbol{p}_t = oldsymbol{H}_t \left(egin{array}{cc} oldsymbol{f}_t \ oldsymbol{f}_{t+1} \end{array}
ight) \end{aligned} ext{avec} oldsymbol{H}_t = \left(egin{array}{cc} \gamma_t^1 oldsymbol{R}_t^1 & ar{\gamma}_t^1 oldsymbol{R}_t^1 \ dots & dots \ \gamma_t^{N_t} oldsymbol{R}_t^{N_t} & ar{\gamma}_t^1 oldsymbol{R}_t^{N_t} \end{array}
ight),$$

 γ_t^j : proportion faisceau dans plan de voxels $m{f}_t$ lors de la projection d'angle $arphi_t^j$,

 $oldsymbol{R}_t^j$: opérateur de projection axial d'angle $arphi_t^j$

Modèle global d'observation hélicoïdale

$$m{p}_h = \mathcal{H}(m{f}) = \mathbf{H}m{f} \quad m{p}_h = \left(egin{array}{c} m{p}_1 \ dots \ m{p}_T \end{array}
ight)$$

$$\mathbf{H} = \left(egin{array}{cccc} oldsymbol{H}_1 & oldsymbol{0} & \cdots & oldsymbol{0} \ oldsymbol{0} & oldsymbol{H}_2 & \ddots & dots \ dots & \ddots & \ddots & dots \ oldsymbol{0} & \cdots & oldsymbol{0} & oldsymbol{H}_T \end{array}
ight) \in \mathbb{R}^{M imes N}$$

Remarques

- Modèle intrinsèquement 3D (recouvrement entre blocs contigus)
- ullet H_t sans structure paramétrique particulière
- Stockage de H rapidement délicat ($\approx 10^{15}$ éléments non nuls)

Reconstruction tomographique hélicoïdale

53/60

Forme paramétrée du modèle H

Inversion par MCP \Rightarrow Accès aux éléments de ${
m H}$ Couramment 10¹⁵ éléments!!

Hypothèse: pas de l'hélice P = Ke (e : épaisseur d'un plan de voxel)

H — échantillonnage qq.

$$egin{bmatrix} oldsymbol{H}_1 & \mathbf{0} & \dots & \mathbf{0} \ \mathbf{0} & oldsymbol{H}_2 & & dots \ & dots & & \mathbf{0} \ \mathbf{0} & \dots & \mathbf{0} & oldsymbol{H}_{arphi} \end{bmatrix}$$

• Creuse et quasi bloc-circulante.

 $m{H}_r$ regroupe K matrices $\{m{H}_t\}_{t=1}^K$ définissant la projection sur un tour

- « P invariance » H décrit par un ensemble réduit de paramètres,
 - nécessite simplement d'ajuster le volume d'intérêt.

Tests sur données synthétiques (i/iii)

fantôme de 40 coupes de 127×127 pixels (> 640000 variables)

 $Reconstruction\ tomographique\ h\'elico\"idale$

55/60

Tests sur données synthétiques (ii/iii)

Projections bruitées (additif gaussien centré, RSB \approx 30dB)

57

Tests sur données synthétiques (iii/iii)

« SSP » : / résolution dans l'axe du tomographe.

LI-360

 $III.\ Vers\ une\ approche\ p\'enalis\'ee\ en\ tomographie$

Approximation du modèle d'observation

Objectif : réduire le coût des reconstructions hélicoïdales pénalisées.

Moyen : estimer approximativement les T plans successifs.

 $\underline{m{H}}_t$ regroupe $\{m{H}_{t-1}, m{H}_t\}$.

Obtenu en minimisant $J_t(\underline{\boldsymbol{x}}_t) = \|\underline{\boldsymbol{y}}_t - \underline{\boldsymbol{H}}_t\underline{\boldsymbol{x}}_t\|^2 + \alpha \mathcal{P}(\underline{\boldsymbol{x}}_t).$

En résumé...

Approche pénalisée en tomographie hélicoïdale

- Construction d'un modèle d'observation
- Utilisation d'une forme paramétrée
- Conception d'une version « rapide » (diagnostic)

(A) Performances sur données synthétiques

- Amélioration significative de qualité (robustesse, diminution des artefacts, gain de résolution)
- Bons résultats pour la version « rapide »
- \(\) dose administrée au patient (diagnostic)

(►) Coût d'implantation élevé

Philippe Ciuciu

Reconstruction tomographique hélicoïdale

59/60

Inversion en tomographie hélicoïdale (i/ii)

Inversion en tomographie hélicoïdale (ii/ii)

Interpolation $+ \mathcal{RPC} \Rightarrow \mathbf{v}$ précision...

- problème 2D séparable (▲ mise en œuvre),
- interpolation \Rightarrow a priori continuité spatiale,
- sensibilité vis-à-vis de la \mathcal{RPC} (angles limités).

Bibliographie 61

Bibliographie 62

[Allain 2002] M. Allain (2002), Approche pénalisée en tomographie hélicoïdale. Application à la conception d'une prothèse personnalisée du genou, thèse de doctorat, Université de Paris–Sud, Orsay.

- [CENSOR et Elfving 2001] Y. CENSOR et T. Elfving (2001), « Block-Iterative Algorithms with Diagonally Scaled Oblique Projections for the Linear Feasibility », Accepté dans SIAM Journal on Matrix Analysis and Applications.
- [CENSOR et coll. 2001] Y. CENSOR, D. GORDON et R. GORDON (2001), « BICAV : a blockiterative parallel algorithm for sparse systems with pixel-related weighting », *IEEE Transactions on Medical Imaging*, **20**, pages 1050–1060.
- [CRAWFORD et KING 1990] C. R. CRAWFORD et K. F. KING (1990), « Computed tomography scanning with simultaneous patient translation », *Med. Phys.*, 17, 6, pages 967–982.
- [GORDON et coll. 1970] R. GORDON, R. BENDER et G. T. HERMAN (1970), « Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography », Journal of Theoretical Biology, 29, pages 471–481.
- [HERMAN 1980] G. T. HERMAN (1980), Image reconstruction from projections. The fundamentals of computerized tomography, Academic Press, New York, ny, USA.
- [HERMAN et LENT 1976] G. T. HERMAN et A. LENT (1976), « A Computer Implementation of a Bayesian Analysis of Image Reconstruction », Information and Control, 31, pages 364–384.
- [Hu et Shen 1998] H. Hu et Y. Shen (1998), « Helical CT Reconstruction with Longitudinal Filtration », **25**, 11, pages 2130–2138.
- [2001] J. Idier, éditeur (2001), Approche bayésienne pour les problèmes inverses, Traité IC2, Série traitement du signal et de l'image, Hermès, Paris.
- [KAK et Slaney 1987] A. C. Kak et M. Slaney (1987), Principles of Computerized Tomographic Imaging, ieee Press, New York, ny, USA.
- [Nashed 1981] M. Z. Nashed (1981), « Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory », *IEEE Transactions on Antennas and Propagation*, **29**, pages 220–231.
- [NATTERER 1986] F. NATTERER (1986), The mathematics of computerized tomography, John Wiley.
- [NATTERER 1999] F. NATTERER (1999), « Numerical Methods in Tomography », dans *Acta Numerica*, volume 8, Cambridge University Press.
- [ROCKAFELLAR 1970] R. T. ROCKAFELLAR (1970), Convex Analysis, Princeton Univ. Press.
- [Soussen 2000] C. Soussen (2000), Reconstruction 3D d'un objet compact en tomographie, thèse de doctorat, Université de Paris–Sud, Orsay.