Question number	Answer	Notes	Marks
12 (a)	A - arrangement W; B cannot be correct as arrangement X would give a downwards force C and D cannot be correct because at the position of the wire, the magnetic field is zero, so there cannot be a magnetic force on the wire		1
(b) (i)	substitution into "W = mg"; evaluation; e.g. W = 0.0065 × 10 W = 65 (mN)	ignore POT for this mark accept use of g = 9.8(1) m/s² giving 63.7 or 63.8 (mN)	2
(ii)	resultant force is difference between weight and magnetic force; resultant force = 31 mN; substitution in "F=ma"; re-arrangement; evaluation; $e.g.$ resultant force = $65 - 34 = 31$ mN resultant force = $31 \times 10^{-3} = 6.5 \times 10^{-3} \times a$ a = $31 \times 10^{-3} / 6.5 \times 10^{-3}$ a = 4.8 (m/s ²)	allow ecf from (b)(i) POT error gives 1 mark penalty 5.2(3) scores 3 MAX (no evidence of resultant idea) allow 4.76(9) (m/s²) use of g = 9.81 m/s² gives	5
(iii)	 EITHER increase the current; by increasing the voltage of power supply; OR increase the magnetic field strength; by using stronger magnets/moving the poles closer together; 	4.57 (m/s²) ignore unqualified reference to increasing the turns/creating a coil	2
(iv)	use a.c. rather than d.c.; since a.c. current has alternating/changing current direction;		2