Package 'APCtools'

January 14, 2023

Title Routines for Descriptive and Model-Based APC Analysis

Version 1.0.4

Maintainer Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Description Age-Period-Cohort (APC) analyses are used to differentiate relevant drivers for long-term developments.

The 'APCtools' package offers visualization techniques and general routines to simplify the workflow of an APC analysis.

Sophisticated functions are available both for descriptive and regression model-based analyses. For the former, we use density (or ridgeline) matrices and (hexagonally binned) heatmaps as innovative visualization

techniques building on the concept of Lexis diagrams.

Model-based analyses build on the separation of the temporal dimensions based on generalized additive models,

where a tensor product interaction surface (usually between age and period) is utilized to represent the third dimension (usually cohort) on its diagonal.

Such tensor product surfaces can also be estimated while accounting for further covariates in the regression model.

See Weigert et al. (2021) <doi:10.1177/1354816620987198> for methodological details.

License MIT + file LICENSE

URL https://bauer-alex.github.io/APCtools/

BugReports https://github.com/bauer-alex/APCtools/issues

Encoding UTF-8
LazyData true
RoxygenNote 7.2.1

Imports ggpubr, checkmate, knitr, ggplot2, colorspace, dplyr, mgcv, scales, tidyr, stringr

Suggests testthat (>= 3.0.0), rmarkdown, covr

VignetteBuilder knitr Depends R (>= 3.5) Config/testthat/edition 3 NeedsCompilation no 2 calc_density

Author Alexander Bauer [aut, cre] (https://orcid.org/0000-0003-3495-5131), Maximilian Weigert [aut] (https://orcid.org/0000-0003-4400-134X), Hawre Jalal [aut] (https://orcid.org/0000-0002-8224-6834)

Repository CRAN

Date/Publication 2023-01-13 23:30:02 UTC

R topics documented:

calc_density	2
capitalize_firstLetter	3
compute_xCoordinate	4
compute_yCoordinate	4
create_APCsummary	4
create_groupVariable	6
create_highlightDiagonalData	6
create_modelSummary	7
create_oneAPCsummaryTable	8
drug_deaths	
ensure_segmentsInPlotRange	10
extract_summary_linearEffects	10
get_plotGAMobject	11
gg_addReferenceLines	
gg_highlightDiagonals	12
plot_1Dsmooth	
plot_APCheatmap	14
plot_APChexamap	16
plot_density	19
plot_densityMatrix	20
plot_density_categorical	23
plot_density_metric	
plot_jointMarginalAPCeffects	
plot_linearEffects	27
plot_marginalAPCeffects	28
plot_partialAPCeffects	
plot_variable	31
travel	32
	2.4

calc_density

Index

Internal helper to calculate the (group-specific) density of a variable

capitalize_firstLetter 3

Description

Internal helper function that is called in plot_density to calculate the density of a metric variable. If plot_density is called from within plot_densityMatrix (i.e., when some of the columns c("age_group", "period_group", "cohort_group") are part of the dataset, the density is computed individually for all respective APC groups.

Usage

```
calc_density(dat, y_var, weights_var = NULL, ...)
```

Arguments

dat Dataset with columns period and age and the main variable specified through

argument y_var.

y_var Character name of the main variable to be plotted.

weights_var Optional character name of a weights variable used to project the results in the

sample to some population.

... Additional arguments passed to density.

Value

Dataset with the calculated densities.

```
capitalize_firstLetter
```

Internal function to capitalize the first letter of a character

Description

Internal helper function to capitalize the first letter of a character value. The use case is to create a plot label like 'Age' from a variable name like 'age'.

Usage

```
capitalize_firstLetter(char)
```

Arguments

char

Character value whose first letter should be capitalized

Internal helper to tilt the x-axis for the hexamap plot

Description

Internal helper function to be called in plot_APChexamap, to tilt the x-axis for the hexamap plot.

Usage

```
compute_xCoordinate(period_vec)
```

Arguments

period_vec

Numeric vector of period values.

compute_yCoordinate

Internal helper to tilt the x-axis for the hexamap plot

Description

Internal helper function to be called in plot_APChexamap, to tilt the x-axis for the hexamap plot.

Usage

```
compute_yCoordinate(period_vec, age_vec)
```

Arguments

period_vec Numeric vector of period values. age_vec Numeric vector of age values.

create_APCsummary

Create a summary table for multiple estimated GAM models

Description

Create a table to summarize the overall effect strengths of the age, period and cohort effects for models fitted with gam or bam. The output format can be adjusted by passing arguments to kable via the . . . argument.

Usage

```
create_APCsummary(model_list, dat, digits = 2, apc_range = NULL, ...)
```

create_APCsummary 5

Arguments

model_list	A list of regression models estimated with gam or bam. If the list is named, the names are used as labels. Can also be a single model object instead of a list.
dat	Dataset with columns period and age. If y_var is specified, the dataset must contain the respective column. If model is specified, the dataset must have been used for model estimation with gam or bam.
digits	Number of digits for numeric columns. Defaults to 2.
apc_range	Optional list with one or multiple elements with names "age", "period", "cohort" to filter the data. Each element should contain a numeric vector of values for the respective variable that should be kept in the data. All other values are deleted before producing the table.
	Optional additional arguments passed to kable.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Value

Table created with kable.

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

Description

Internal helper function to create a group variable based on the categorization of either age, period or cohort. To be called from within plot_densityMatrix.

Usage

```
create_groupVariable(dat, APC_var, groups_list)
```

Arguments

dat Dataset with a column "age", "period" or "cohort", dependent on the speci-

 $fied \ \mathsf{APC_var}.$

APC_var One of c("age", "period", "cohort").

groups_list A list with each element specifying the borders of one row or column in the

density matrix. E.g., if the period should be visualized in decade columns from 1980 to 2009, specify groups_list = list(c(1980,1989), c(1990,1999), c(2000,2009)). The list can be named to specify labels for the categories.

Value

Vector for the grouping that can be added as additional column to the data.

create_highlightDiagonalData

Internal helper to create a dataset for ggplot2 to highlight diagonals

Description

Internal helper function to create a dataset for ggplot2 that can be used to highlight specific diagonals in a density matrix.

Usage

```
create_highlightDiagonalData(dat, highlight_diagonals)
```

Arguments

dat

Dataset with columns period and age and the main variable specified through argument y_var.

highlight_diagonals

Optional internal parameter which is only specified when plot_density is called from within plot_densityMatrix. See plot_densityMatrix for details.

create_modelSummary

Create model summary tables for multiple estimated GAM models

Description

Create publication-ready summary tables of all linear and nonlinear effects for models fitted with gam or bam. The output format of the tables can be adjusted by passing arguments to kable via the ... argument.

Usage

```
create_modelSummary(
  model_list,
  digits = 2,
  method_expTransform = "simple",
   ...
)
```

Arguments

```
model_list list of APC models
digits number of displayed digits
method_expTransform
```

One of c("simple", "delta"), stating if standard errors and confidence interval limits should be transformed by a simple exp transformation or using the delta method. The delta method can be unstable in situations and lead to negative confidence interval limits. Only used when the model was estimated with a log or logit link.

... additional arguments to kable

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effects.

The table for linear coefficients includes the estimated coefficient (coef), the corresponding standard error (se), lower and upper limits of 95% confidence intervals (CI_lower, CI_upper) and the p-values for all coefficients apart from the intercept.

The table for nonlinear coefficients include the estimated degrees of freedom (edf) and the p-value for each estimate.

Value

List of tables created with kable.

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

create_oneAPCsummaryTable

Internal helper to create a summary table for one estimated GAM model

Description

Internal helper function to be called in create_APCsummary. This function creates the summary table for one model estimated with gam or bam.

Usage

```
create_oneAPCsummaryTable(model, dat, apc_range = NULL)
```

Arguments

model	Optional regression model estimated with gam or bam to estimate a smoothed APC surface. Only used if y_var is not specified.
dat	Dataset with columns period and age. If y_var is specified, the dataset must contain the respective column. If model is specified, the dataset must have been used for model estimation with gam or bam.
apc_range	Optional list with one or multiple elements with names "age", "period", "cohort" to filter the data. Each element should contain a numeric vector of values for the respective variable that should be kept in the data. All other values are deleted.

Value

data.frame containing aggregated information on the individual effects.

drug_deaths 9

drug_deaths

Drug deaths of white men in the United States

Description

Dataset on the number of unintentional drug overdose deaths in the United States for each age group between 1999 and 2019, retrieved from the CDC WONDER Online Database. The data only cover white men.

Usage

data(drug_deaths)

Format

A dataframe containing

period Calendar year

age Age group.

deaths Number of observed unintentional drug overdose deaths in the respective age group and calendar year.

population Number of white men in the respective age group and calendar year in the U.S. population.

mortality_rate Drug overdose mortality rate for the respective age group and calendar year, reported as the number of deaths per 100,000 people. Calculated as 100000 * deaths / population.

Details

The data were exported from the CDC WONDER Online Database (see link in references down below), based on the following settings:

- Group by Year and by Single-Year Ages
- Demographics: Gender Male; Ethnicity White
- Cause of death: *Drug / Alcohol Induced Causes*. Then select the more specific category *Drug poisonings (overdose) Unintentional (X40-X44)*.

References

Jalal, H., & Burke, D. S. (2020). Hexamaps for Age-Period-Cohort Data Visualization and Implementation in R. *Epidemiology* (*Cambridge*, *Mass.*), 31(6), e47. doi:10.1097/EDE.000000000001236.

Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999-2019 on CDC WONDER Online Database, released in 2020. Data are from the Multiple Cause of Death Files, 1999-2019, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed at wonder.cdc.gov/ucdicd10.html on 6 December 2021.

ensure_segmentsInPlotRange

Internal helper for gg_addReferenceLines to keep diagonal lines in the plot range

Description

Internal helper function to be called from within gg_addReferenceLines. This function takes the dataset prepared for adding diagonal reference lines in the plot, checks if some diagonals exceed the plot limits, cuts them accordingly, if necessary, and again returns the corrected dataset.

Usage

```
ensure_segmentsInPlotRange(dat_segments, plot_dat)
```

Arguments

dat_segments Dataset containing information on the diagonal reference lines.

plot_dat Dataset used for creating the heatmap.

extract_summary_linearEffects

Internal helper to extract summary of linear effects in a gam model

Description

Internal helper function to create a data. frame containing the linear effects summary of a model fitted with gam or bam.

Usage

```
extract_summary_linearEffects(model, method_expTransform = "simple")
```

Arguments

model Model fitted with gam or bam. method_expTransform

One of c("simple", "delta"), stating if standard errors and confidence interval limits should be transformed by a simple exp transformation or using the delta method. The delta method can be unstable in situations and lead to negative confidence interval limits. Only used when the model was estimated with a log or logit link.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect, see argument method_expTransform.

get_plotGAMobject 11

get_plotGAMobject	Extract returned values of plot.gam() while suppressing creation of the plot
-------------------	--

Description

Internal helper function to extract the values returned of plot.gam while suppressing creation of the plot.

Usage

```
get_plotGAMobject(model)
```

Arguments

model

GAM model fitted with gam or bam.

Description

Internal helper function to add reference lines in an APC heatmap (vertically, horizontally or diagonally). The function takes an existing list of ggplot objects, adds the specified reference lines in each plot and returns the edited ggplot list again. To be called from within plot_APCheatmap.

Usage

```
gg_addReferenceLines(
   gg_list,
   dimensions,
   plot_dat,
   markLines_list,
   markLines_displayLabels
)
```

Arguments

gg_list	Existing list of ggplot objects where the reference lines should be marked in each individual ggplot.
dimensions	Character vector specifying the two APC dimensions that should be visualized along the x-axis and y-axis. Defaults to c("period", "age").
plot_dat	Dataset used for creating the heatmap.

12 plot_1Dsmooth

markLines_list Optional list that can be used to highlight the borders of specific age groups, time intervals or cohorts. Each element must be a numeric vector of values where horizontal, vertical or diagonal lines should be drawn (depends on which APC dimension is displayed on which axis). The list can maximally have three elements and must have names out of c("age", "period", "cohort").

markLines_displayLabels

Optional character vector defining for which dimensions the lines defined through markLines_list should be marked by a respective label. The vector should be a subset of c("age", "period", "cohort"), or NULL to suppress all labels. Defaults to c("age", "period", "cohort").

Description

Internal helper function to highlight diagonals in a density matrix. The function takes an existing ggplot object, adds the diagonal highlighting and returns the edited ggplot object again.

Usage

```
gg_highlightDiagonals(gg, dat, dat_highlightDiagonals)
```

Arguments

gg Existing ggplot object to which the diagonal highlighting should be added.

dat Dataset with columns period and age and the main variable specified through

argument y_var.

dat_highlightDiagonals

Dataset created by create_highlightDiagonalData to highlight specific di-

agonals in a density matrix.

plot_1Dsmooth

Plot 1D smooth effects for gam models

Description

Plots 1D smooth effects for a GAM model fitted with gam or bam.

plot_1Dsmooth 13

Usage

```
plot_1Dsmooth(
  model,
  plot_ci = TRUE,
  select,
  alpha = 0.05,
  ylim = NULL,
  method_expTransform = "simple",
  return_plotData = FALSE
)
```

Arguments

model GAM model fitted with gam or bam.

select Index of smooth term to be plotted.

alpha (1-alpha) CIs are calculated. The default 0.05 leads to 95% CIs.

ylim Optional limits of the y-axis.

method_expTransform

One of c("simple", "delta"), stating if standard errors and confidence interval limits should be transformed by a simple exp transformation or using the delta method. The delta method can be unstable in situations and lead to negative confidence interval limits. Only used when the model was estimated with a log or logit link.

return_plotData

If TRUE, the dataset prepared for plotting is returned. Defaults to FALSE.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect, see argument method_expTransform.

Value

ggplot object

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

14 plot_APCheatmap

```
plot_1Dsmooth(model, select = 2)
```

plot_APCheatmap

Heatmap of an APC surface

Description

Plot the heatmap of an APC structure. The function can be used in two ways: Either to plot the observed mean structure of a metric variable, by specifying dat and the variable y_var, or by specifying dat and the model object, to plot some mean structure represented by an estimated two-dimensional tensor product surface. The model must be estimated with gam or bam.

Usage

```
plot_APCheatmap(
   dat,
   y_var = NULL,
   model = NULL,
   dimensions = c("period", "age"),
   apc_range = NULL,
   bin_heatmap = TRUE,
   bin_heatmapGrid_list = NULL,
   markLines_list = NULL,
   markLines_displayLabels = c("age", "period", "cohort"),
   y_var_logScale = FALSE,
   plot_CI = TRUE,
   legend_limits = NULL
)
```

Arguments

dat	Dataset with columns period and age. If y_var is specified, the dataset must contain the respective column. If model is specified, the dataset must have been used for model estimation with gam or bam.
y_var	Optional character name of a metric variable to be plotted.
mode1	Optional regression model estimated with gam or bam to estimate a smoothed APC surface. Only used if y_var is not specified.
dimensions	Character vector specifying the two APC dimensions that should be visualized along the x-axis and y-axis. Defaults to c("period", "age").
apc_range	Optional list with one or multiple elements with names "age", "period", "cohort" to filter the data. Each element should contain a numeric vector of values for the respective variable that should be kept in the data. All other values are deleted.

plot_APCheatmap 15

bin_heatmap, bin_heatmapGrid_list

bin_heatmap indicates if the heatmap surface should be binned. Defaults to TRUE. If TRUE, the binning grid borders are defined by bin_heatmapGrid_list.

This is a list with each element a numeric vector and a name out of c("age", "period", "cohort"). Can maximally have three elements. Defaults to NULL, where the heatmap is binned in 5 year steps along the x-axis and the y-axis.

markLines_list Optional list that can be used to highlight the borders of specific age groups, time intervals or cohorts. Each element must be a numeric vector of values where horizontal, vertical or diagonal lines should be drawn (depends on which APC dimension is displayed on which axis). The list can maximally have three elements and must have names out of c("age", "period", "cohort").

markLines_displayLabels

Optional character vector defining for which dimensions the lines defined through markLines_list should be marked by a respective label. The vector should be a subset of c("age", "period", "cohort"), or NULL to suppress all labels. Defaults to c("age", "period", "cohort").

y_var_logScale Indicator if y_var should be log10 transformed. Only used if y_var is specified. Defaults to FALSE.

plot_CI Indicator if the confidence intervals should be plotted. Only used if y_var is not specified. Defaults to TRUE.

legend_limits Optional numeric vector passed as argument limits to scale_fill_gradient2.

Details

See also plot_APChexamap to plot a hexagonal heatmap with adapted axes.

If the plot is created based on the model object and the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Value

Plot grid created with ggarrange (if plot_CI is TRUE) or a ggplot2 object (if plot_CI is FALSE).

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigert@stat.uni-muenchen.de>, Weigert@stat.uni-muenchen.de>, Weigert@stat.uni-muen

References

Weigert, M., Bauer, A., Gernert, J., Karl, M., Nalmpatian, A., Küchenhoff, H., and Schmude, J. (2021). Semiparametric APC analysis of destination choice patterns: Using generalized additive models to quantify the impact of age, period, and cohort on travel distances. *Tourism Economics*. doi:10.1177/1354816620987198.

See Also

plot_APChexamap

16 plot_APChexamap

Examples

```
library(APCtools)
library(mgcv)
data(travel)
# variant A: plot observed mean structures
# observed heatmap
plot_APCheatmap(dat = travel, y_var = "mainTrip_distance",
                bin_heatmap = FALSE, y_var_logScale = TRUE)
# with binning
plot_APCheatmap(dat = travel, y_var = "mainTrip_distance",
                bin_heatmap = TRUE, y_var_logScale = TRUE)
# variant B: plot some smoothed, estimated mean structure
model <- gam(mainTrip_distance ~ te(age, period) + residence_region +</pre>
             household_size + s(household_income), data = travel)
# plot the smooth tensor product surface
plot_APCheatmap(dat = travel, model = model, bin_heatmap = FALSE, plot_CI = FALSE)
# ... same plot including the confidence intervals
plot_APCheatmap(dat = travel, model = model, bin_heatmap = FALSE)
# the APC dimensions can be flexibly assigned to the x-axis and y-axis
plot_APCheatmap(dat = travel, model = model, dimensions = c("age","cohort"),
                bin_heatmap = FALSE, plot_CI = FALSE)
# add some reference lines
plot_APCheatmap(dat = travel, model = model, bin_heatmap = FALSE, plot_CI = FALSE,
                markLines_list = list(cohort = c(1910, 1939, 1955, 1980)))
# default binning of the tensor product surface in 5-year-blocks
plot_APCheatmap(dat = travel, model = model, plot_CI = FALSE)
# manual binning
manual_binning <- list(period = seq(min(travel$period, na.rm = TRUE) - 1,</pre>
                                    max(travel\period, na.rm = TRUE), by = 5),
                       cohort = seq(min(travel$period - travel$age, na.rm = TRUE) - 1,
                                 max(travel$period - travel$age, na.rm = TRUE), by = 10))
plot_APCheatmap(dat = travel, model = model, plot_CI = FALSE,
                bin_heatmapGrid_list = manual_binning)
```

plot_APChexamap 17

Description

Plot the heatmap of an APC structure using a hexagon-based plot with adapted axes. In this way, the one temporal dimension that is represented by the diagonal structure is visually not underrepresented compared to the other two dimensions on the x-axis and y-axis.

The function can be used in two ways: Either to plot the observed mean structure of a metric variable, by specifying dat and the variable y_var, or by specifying dat and the model object, to plot some mean structure represented by an estimated two-dimensional tensor product surface. The model must be estimated with gam or bam.

Usage

```
plot_APChexamap(
  dat,
 y_var = NULL,
 model = NULL,
  apc_range = NULL,
  y_var_logScale = FALSE,
  obs_interval = 1,
  iso_interval = 5,
  color_vec = NULL,
  color_range = NULL,
  line_width = 0.5,
  line_color = gray(0.5),
  label_size = 0.5,
  label_color = "black",
  legend_title = NULL
)
```

Arguments

dat	Dataset with columns period and age. If y_var is specified, the dataset must contain the respective column. If model is specified, the dataset must have been used for model estimation with gam or bam.
y_var	Optional character name of a metric variable to be plotted.
model	Optional regression model estimated with gam or bam to estimate a smoothed APC surface. Only used if y_var is not specified.
apc_range	Optional list with one or multiple elements with names "age", "period", "cohort" to filter the data. Each element should contain a numeric vector of values for the respective variable that should be kept in the data. All other values are deleted.
y_var_logScale	Indicator if y_var should be log10 transformed. Only used if y_var is specified. Defaults to FALSE.
obs_interval	Numeric specifying the interval width based on which the data is spaced. Only used if y_var is specified. Defaults to 1, i.e. observations each year.
iso_interval	Numeric specifying the interval width between the isolines along each axis. Defaults to 5.
color_vec	Optional character vector of color names, specifying the color continuum.

18 plot_APChexamap

color_range	Optional numeric vector with two elements, specifying the ends of the color scale in the legend.
line_width	Line width of the isolines. Defaults to 0.5.
line_color	Character color name for the isolines. Defaults to gray.
label_size	Size of the labels along the axes. Defaults to 0.5.
label_color	Character color name for the labels along the axes.
legend_title	Optional character title for the legend.

Details

See also plot_APCheatmap to plot a regular heatmap.

If the plot is created based on the model object and the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Value

Creates a plot with base R functions (not ggplot2).

Author(s)

Hawre Jalal <h jalal@pitt.edu>, Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

References

Jalal, H., Burke, D. (2020). Hexamaps for Age–Period–Cohort Data Visualization and Implementation in R. *Epidemiology*, 31 (6), e47-e49. doi: 10.1097/EDE.000000000001236.

See Also

```
plot_APCheatmap
```

Examples

plot_density 19

```
data = drug_deaths)
plot_APChexamap(dat = drug_deaths, model = model)
```

plot_density

Plot the density of one metric or categorical variable

Description

Create a density plot or a boxplot of one metric variable or a barplot of one categorical variable, based on a specific subset of the data.

Usage

```
plot_density(
   dat,
   y_var,
   plot_type = "density",
   apc_range = NULL,
   highlight_diagonals = NULL,
   y_var_cat_breaks = NULL,
   y_var_cat_labels = NULL,
   weights_var = NULL,
   log_scale = FALSE,
   xlab = NULL,
   ylab = NULL,
   legend_title = NULL,
   ...
)
```

Arguments

dat Dataset with columns period and age and the main variable specified through

argument y_var.

y_var Character name of the main variable to be plotted.

plot_type One of c("density", "boxplot"). Only used if the y_var column is metric.

apc_range Optional list with one or multiple elements with names "age", "period", "cohort"

to filter the data. Each element should contain a numeric vector of values for the respective variable that should be kept in the data. All other values are deleted.

highlight_diagonals

Optional internal parameter which is only specified when plot_density is called from within plot_densityMatrix. See plot_densityMatrix for details.

```
y_var_cat_breaks
```

Optional numeric vector of breaks to categorize y_var based on calling function cut. Only used to highlight the categories based on different colors. And only used if the y_var column is numeric.

20 plot_densityMatrix

```
Optional character vector for the names of the categories that were defined based on y_var_cat_breaks. The length of this vector must be one shorter than length(y_var_cat_breaks). Only used if the y_var column is numeric.

weights_var Optional character name of a weights variable used to project the results in the sample to some population.

log_scale Indicator if the main variable should be log10 transformed. Only used if the y_var column is numeric. Defaults to FALSE.

xlab, ylab, legend_title Optional plot annotations.

Additional arguments passed to density.
```

Details

If plot_density is called internally from within plot_densityMatrix (i.e., if the dataset contains some of the columns c("age_group", "period_group", "cohort_group")), this function will calculate the metric densities individually for these groups.

Value

ggplot object

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigert@stat.uni-muenchen.de>, Maximilian.weigert@stat.uni-muenchen.de>, Maximilian.de>, Maximilian.weigert@stat.uni-muenchen.de>, Maximilian.de>, Maximilian.de>, Maximilian.de>, Maximilian.de>, Maximilian

Examples

```
library(APCtools)
data(travel)

plot_density(dat = travel, y_var = "mainTrip_distance")

plot_density(dat = travel, y_var = "mainTrip_distance")
```

Description

This function creates a matrix of individual density plots (i.e., a *ridgeline matrix*) or boxplots (for metric variables) or of individual barplots (for categorical variables). The age, period or cohort information can each either be plotted on the x-axis or the y-axis.

plot_densityMatrix 21

Usage

```
plot_densityMatrix(
   dat,
   y_var,
   dimensions = c("period", "age"),
   age_groups = NULL,
   period_groups = NULL,
   cohort_groups = NULL,
   plot_type = "density",
   highlight_diagonals = NULL,
   y_var_cat_breaks = NULL,
   y_var_cat_labels = NULL,
   weights_var = NULL,
   log_scale = FALSE,
   legend_title = NULL,
   ...
)
```

Arguments

dat

Dataset with columns period and age and the main variable specified through argument y_var.

y_var

Character name of the main variable to be plotted.

dimensions

Character vector specifying the two APC dimensions that should be visualized along the x-axis and y-axis. Defaults to c("period", "age").

age_groups, period_groups, cohort_groups

Each a list. Either containing purely scalar values or with each element specifying the two borders of one row or column in the density matrix. E.g., if the period should be visualized in decade columns from 1980 to 2009, specify period_groups = list(c(1980,1989), c(1990,1999), c(2000,2009)). The list can be named to specify labels for the categories. Only the two arguments must be passed that were specified by the dimensions argument.

plot_type

One of c("density","boxplot"). Only used if the y_var column is metric.

highlight_diagonals

Optional list to define diagonals in the density that should be highlighted with different colors. Each list element should be a numeric vector stating the index of the diagonals (counted from the top left) that should be highlighted in the same color. If the list is named, the names are used as legend labels.

y_var_cat_breaks

Optional numeric vector of breaks to categorize y_var based on calling function cut. Only used to highlight the categories based on different colors. And only used if the y_var column is numeric.

```
y_var_cat_labels
```

Optional character vector for the names of the categories that were defined based on y_var_cat_breaks. The length of this vector must be one shorter than length(y_var_cat_breaks). Only used if the y_var column is numeric.

22 plot_densityMatrix

weights_var	Optional character name of a weights variable used to project the results in the sample to some population.
log_scale	Indicator if the main variable should be log10 transformed. Only used if the y_var column is numeric. Defaults to FALSE.
legend_title	Optional plot annotation.
	Additional arguments passed to plot_density.

Value

ggplot object

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigert@stat.uni-muenchen.de>

References

Weigert, M., Bauer, A., Gernert, J., Karl, M., Nalmpatian, A., Küchenhoff, H., and Schmude, J. (2021). Semiparametric APC analysis of destination choice patterns: Using generalized additive models to quantify the impact of age, period, and cohort on travel distances. *Tourism Economics*. doi:10.1177/1354816620987198.

Examples

```
library(APCtools)
# define categorizations for the main trip distance
dist_cat_breaks <- c(1,500,1000,2000,6000,100000)
dist_cat_labels <- c("< 500 km", "500 - 1,000 km", "1,000 - 2,000 km",
                    "2,000 - 6,000 km", "> 6,000 km")
             <- list(c(80,89),c(70,79),c(60,69),c(50,59),c(40,49),c(30,39),c(20,29))
age_groups
period_groups <- list(c(1970,1979),c(1980,1989),c(1990,1999),c(2000,2009),c(2010,2019))
cohort\_groups < -list(c(1980,1989),c(1970,1979),c(1960,1969),c(1950,1959),c(1940,1949),
                     c(1930,1939),c(1920,1929))
plot_densityMatrix(dat
                                   = travel,
                                  = "mainTrip_distance",
                  age_groups
                                = age_groups,
                  period_groups
                                  = period_groups,
                  log_scale
                                   = TRUE)
# highlight two cohorts
plot_densityMatrix(dat
                                      = travel,
                                      = "mainTrip_distance",
                  y_var
                  age_groups
                                     = age_groups,
                  period_groups
                                     = period_groups,
                  highlight_diagonals = list(8, 10),
                  log_scale
                                     = TRUE)
```

```
# also mark different distance categories
plot_densityMatrix(dat = travel,
                                = "mainTrip_distance",
                  y_var
                  age_groups = age_groups,
                  period_groups = period_groups,
                  log_scale = TRUE,
                  y_var_cat_breaks = dist_cat_breaks,
                  y_var_cat_labels = dist_cat_labels,
                  highlight_diagonals = list(8, 10),
                                = "Distance category")
                  legend_title
# flexibly assign the APC dimensions to the x-axis and y-axis
                        = travel,
plot_densityMatrix(dat
                                  = "mainTrip_distance",
                  y_var
                  y_var = "main!rip_distance",
dimensions = c("period", "cohort"),
period_groups = period_groups,
                  cohort_groups = cohort_groups,
                  log_scale = TRUE,
                  y_var_cat_breaks = dist_cat_breaks,
                  y_var_cat_labels = dist_cat_labels,
                  legend_title = "Distance category")
# use boxplots instead of densities
                         = travel,
plot_densityMatrix(dat
                              = "mainTrip_distance",
                  y_var
                  plot_type = "boxplot",
                  age_groups = age_groups,
                  period_groups = period_groups,
                  log_scale
                              = TRUE,
                  highlight_diagonals = list(8, 10))
# plot categorical variables instead of metric ones
plot_densityMatrix(dat
                                    = travel,
                                    = "household_size",
                  y_var
                  age_groups
                                    = age_groups,
                  period_groups = period_groups,
                  highlight_diagonals = list(8, 10))
```

```
plot_density_categorical
```

Internal helper to plot a categorical density

Description

Internal helper function to plot one categorical density, to be called from within plot_density.

24 plot_density_metric

Usage

```
plot_density_categorical(
  dat,
  y_var,
  dat_highlightDiagonals = NULL,
  weights_var = NULL,
  xlab = NULL,
  ylab = NULL
)
```

Arguments

Description

Internal helper function to plot one metric density, to be called from within plot_density.

Usage

```
plot_density_metric(
   dat,
   y_var,
   plot_type = "density",
   dat_highlightDiagonals = NULL,
   y_var_cat_breaks = NULL,
   y_var_cat_labels = NULL,
   weights_var = NULL,
   log_scale = FALSE,
   xlab = NULL,
   ylab = NULL,
   legend_title = NULL,
   ...
)
```

Arguments

dat Dataset with columns period and age and the main variable specified through

argument y_var.

y_var Character name of the main variable to be plotted.

plot_type One of c("density", "boxplot"). Only used if the y_var column is metric.

dat_highlightDiagonals

Optional dataset created by create_highlightDiagonalData to highlight specific diagonals in a density matrix.

y_var_cat_breaks

Optional numeric vector of breaks to categorize y_var based on calling function cut. Only used to highlight the categories based on different colors. And only used if the y_var column is numeric.

y_var_cat_labels

Optional character vector for the names of the categories that were defined based on y_var_cat_breaks. The length of this vector must be one shorter than length(y_var_cat_breaks). Only used if the y_var column is numeric.

weights_var Optional character name of a weights variable used to project the results in the

sample to some population.

log_scale Indicator if the main variable should be log10 transformed. Only used if the

y_var column is numeric. Defaults to FALSE.

xlab, ylab, legend_title

Optional plot annotations.

... Additional arguments passed to density.

plot_jointMarginalAPCeffects

Joint plot to compare the marginal APC effects of multiple models

Description

This function creates a joint plot of the marginal APC effects of multiple estimated models. It creates a plot with one pane per age, period and cohort effect, each containing one lines for each estimated model.

Usage

```
plot_jointMarginalAPCeffects(
  model_list,
  dat,
  vlines_list = NULL,
  ylab = NULL,
  ylim = NULL
)
```

Arguments

model_list	A list of regression models estimated with gam or bam. If the list is named, the names are used as labels. Can also be a single model object instead of a list.
dat	Dataset with columns period and age. If y_var is specified, the dataset must contain the respective column. If model is specified, the dataset must have been used for model estimation with gam or bam.
vlines_list	Optional list that can be used to highlight the borders of specific age groups, time intervals or cohorts. Each element must be a numeric vector of values on the x-axis where vertical lines should be drawn. The list can maximally have three elements and must have names out of c("age", "period", "cohort".
ylab, ylim	Optional ggplot2 styling arguments.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Since the plot output created by the function is no ggplot2 object, but an object created with ggpubr::ggarrange, the overall theme of the plot cannot be changed by adding the theme in the form of 'plot_jointMarginalAPCeffects(...) + theme_minimal(...)'. Instead, you can call theme_set(theme_minimal(...)) as an individual call before calling plot_jointMarginalAPCeffects(...). The latter function will then use this global plotting theme.

Value

Plot grid created with ggarrange.

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigert@stat.uni-muenchen.de>, Maximilian.weigert@stat.uni-muenchen.de>, Maximilian.de>, Maximilian.weigert@stat.uni-muenchen.de>, Maximilian.de>, Maximilian.de>, Maximilian.de>, Maximilian.de>, Maximilian

Examples

plot_linearEffects 27

plot_linearEffects

Plot linear effects of a gam in an effect plot

Description

Create an effect plot of linear effects of a model fitted with gam or bam.

Usage

```
plot_linearEffects(
  model,
  variables = NULL,
  return_plotData = FALSE,
  refCat = FALSE,
  ...
)
```

Arguments

model Model fitted with gam or bam.

variables Optional character vector of variable names specifying which effects should be

plotted. The order of the vector corresponds to the order in the effect plot. If the argument is not specified, all linear effects are plotted according to the order of

their appearance in the model output.

return_plotData

If TRUE, the dataset prepared for plotting is returned. Defaults to FALSE.

refCat If TRUE, reference categories are added to the output for categorical covariates.

Defaults to FALSE.

... Additional arguments passed to extract_summary_linearEffects.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Value

ggplot object

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

```
library(APCtools)
library(mgcv)
data(travel)
model <- gam(mainTrip_distance ~ te(age, period) + residence_region +</pre>
             household_size + s(household_income), data = travel)
plot_linearEffects(model)
```

plot_marginalAPCeffects

Plot of marginal APC effects based on an estimated GAM model

Description

Plot the marginal effect of age, period or cohort, based on an APC model estimated as a semiparametric additive regression model with gam or bam. This function is a simple wrapper to plot_partialAPCeffects, called with argument hide_partialEffects = TRUE.

Usage

```
plot_marginalAPCeffects(
 model,
  dat,
  variable = "age",
 vlines_vec = NULL,
  return_plotData = FALSE
)
```

Arguments

model	Optional regression model estimated with gam or bam to estimate a smoothed
	APC surface. Only used if y var is not specified

APC surface. Only used if y_var is not specified.

dat Dataset with columns period and age. If y_var is specified, the dataset must

contain the respective column. If model is specified, the dataset must have been

used for model estimation with gam or bam.

variable One of c("age", "period", "cohort"), specifying the temporal dimension for

which the partial effect plots should be created.

Optional numeric vector of values on the x-axis where vertical lines should be vlines_vec

drawn. Can be used to highlight the borders of specific age groups, time intervals

or cohorts.

return_plotData

If TRUE, a list of the datasets prepared for plotting is returned instead of the ggplot object. The list contains one dataset each for the overall effect (= evaluations of the APC surface to plot the partial effects) and for each marginal APC effect (no matter the specified value of the argument variable). Defaults to FALSE.

Value

ggplot object

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigert@stat.uni-m

References

Weigert, M., Bauer, A., Gernert, J., Karl, M., Nalmpatian, A., Küchenhoff, H., and Schmude, J. (2021). Semiparametric APC analysis of destination choice patterns: Using generalized additive models to quantify the impact of age, period, and cohort on travel distances. *Tourism Economics*. doi:10.1177/1354816620987198.

Examples

```
plot_partialAPCeffects
```

Partial APC plots based on an estimated GAM model

Description

Create the partial APC plots based on an APC model estimated as a semiparametric additive regression model with gam or bam.

Usage

```
plot_partialAPCeffects(
  model,
  dat,
  variable = "age",
  hide_partialEffects = FALSE,
```

```
vlines_vec = NULL,
return_plotData = FALSE
)
```

Arguments

model Optional regression model estimated with gam or bam to estimate a smoothed

APC surface. Only used if y_var is not specified.

dat Dataset with columns period and age. If y_var is specified, the dataset must

contain the respective column. If model is specified, the dataset must have been

used for model estimation with gam or bam.

variable One of c("age", "period", "cohort"), specifying the temporal dimension for

which the partial effect plots should be created.

hide_partialEffects

If TRUE, only the marginal effect will be plotted. Defaults to FALSE.

vlines_vec Optional numeric vector of values on the x-axis where vertical lines should be

drawn. Can be used to highlight the borders of specific age groups, time intervals

or cohorts.

return_plotData

If TRUE, a list of the datasets prepared for plotting is returned instead of the ggplot object. The list contains one dataset each for the overall effect (= evaluations of the APC surface to plot the partial effects) and for each marginal APC effect (no matter the specified value of the argument variable). Defaults to FALSE.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Value

ggplot object (if hide_partialEffects is TRUE) or a plot grid created with ggarrange (if FALSE).

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigert@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigertwo.de>, Maximilian weigertwo.de>, Maximilian

References

Weigert, M., Bauer, A., Gernert, J., Karl, M., Nalmpatian, A., Küchenhoff, H., and Schmude, J. (2021). Semiparametric APC analysis of destination choice patterns: Using generalized additive models to quantify the impact of age, period, and cohort on travel distances. *Tourism Economics*. doi:10.1177/1354816620987198.

plot_variable 31

Examples

plot_variable

Distribution plot of one variable against one APC dimension

Description

Plot the distribution of one variable in the data against age, period or cohort. Creates a bar plot for categorical variables (see argument geomBar_position) and boxplots or a line plot of median values for metric variables (see plot_type).

Usage

```
plot_variable(
  dat,
  y_var,
  apc_dimension = "period",
  log_scale = FALSE,
  plot_type = "boxplot",
  geomBar_position = "fill",
  legend_title = NULL,
  ylab = NULL,
  ylim = NULL
)
```

Arguments

dat	Dataset containing columns age and period.
y_var	Character name of the variable to plot.
apc_dimension	One of c("age", "period", "cohort"). Defaults to "period".
log_scale	Indicator if the visualized variable should be log10 transformed. Only used if the variable is numeric. Defaults to FALSE.
plot_type	One of c("boxplot", "line", "line-points"), specifying if boxplots or a line plot of median values should be drawn for metric variables. "line-points" adds points to the line plot where observations are available.

32 travel

geomBar_position

Value passed to geom_bar as position argument. Only used if the visualized variable is categorical. Defaults to "fill".

legend_title Optional character title for the legend which is drawn for categorical variables.

ylab, ylim Optional arguments for styling the ggplot.

Value

ggplot object

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

travel

Data from the German Reiseanalyse survey

Description

This dataset from the Reiseanalyse survey comprises travel information on German travelers between 1971 and 2018. Data were collected in a yearly repeated cross-sectional survey of German pleasure travels, based on a sample representative for the (West) German citizens (until 2009) or for all German-speaking residents (starting 2010). Travelers from former East Germany are only included since 1990. Note that the sample only contains trips with at least five days of trip length. For details see Weigert et al. (2021).

Usage

```
data(travel)
```

travel 33

Format

A dataframe containing

period Year in which the respondent traveled.

age Age of the respondent.

sampling_weight Individual weight of each respondent to account for a not perfectly representative sample and project the sample results to the population of German citizens (until 2009) or of German-speaking residents (starting 2010). Only available since 1974.

german_citizenship Indicator if the respondent is German citizen or not. Only available since 2010. Until 2009, all respondents were German citizens.

residence_region Indicator if the respondent's main residence is in a federal state in the former area of West Germany or in the former area of East Germany.

household size Categorized size of the respondent's household.

household income Joint income (in €) of the respondent's household.

mainTrip_duration Categorized trip length of the respondent's *main trip*. The main trip is the trip which the respondent stated was his/her most important trip in the respective year.

mainTrip_distance Distance (in km) between the center of the respondent's federal state and the center of the country of destination, for the *main trip*. The main trip is the trip which the respondent stated was his/her most important trip in the respective year.

Details

The data are a 10% random sample of all respondents who undertook at least one trip in the respective year, between 1971 and 2018. We thank the Forschungsgemeinschaft Urlaub und Reisen e.V. for allowing us to publish this sample.

References

Weigert, M., Bauer, A., Gernert, J., Karl, M., Nalmpatian, A., Küchenhoff, H., and Schmude, J. (2021). Semiparametric APC analysis of destination choice patterns: Using generalized additive models to quantify the impact of age, period, and cohort on travel distances. *Tourism Economics*. doi:10.1177/1354816620987198.

Forschungsgemeinschaft Urlaub und Reisen e.V. (FUR) (2020b) Survey of tourist demand in Germany for holiday travel and short breaks. Available at: https://reiseanalyse.de/wp-content/uploads/2022/11/RA2020_First-results_EN.pdf (accessed 13 January 2023).

Index

```
* datasets
                                                  plot_jointMarginalAPCeffects, 25
    drug_deaths, 9
                                                  plot_linearEffects, 27
    travel, 32
                                                  \verb|plot_marginalAPC| effects, 28|
                                                  plot_partialAPCeffects, 28, 29
bam, 4, 5, 7, 8, 10–14, 17, 26–30
                                                  plot_variable, 31
calc_density, 2
                                                  scale_fill_gradient2, 15
capitalize_firstLetter, 3
                                                  travel, 32
compute_xCoordinate, 4
compute_yCoordinate, 4
create_APCsummary, 4, 8
create_groupVariable, 6
create_highlightDiagonalData, 6, 12, 24,
         25
create_modelSummary, 7
{\tt create\_oneAPCsummaryTable}, {\tt 8}
cut, 19, 21, 25
density, 3, 20, 25
drug_deaths, 9
ensure_segmentsInPlotRange, 10
extract_summary_linearEffects, 10, 27
gam, 4, 5, 7, 8, 10–14, 17, 26–30
geom_bar, 32
get_plotGAMobject, 11
gg_addReferenceLines, 10, 11
gg_highlightDiagonals, 12
ggarrange, 15, 26, 30
kable, 4, 5, 7
plot.gam, 11
plot_1Dsmooth, 12
plot_APCheatmap, 11, 14, 18
plot_APChexamap, 4, 15, 16
plot_density, 3, 19, 22-24
plot_density_categorical, 23
plot_density_metric, 24
plot_densityMatrix, 3, 6, 19, 20, 20
```