MATH 2135 Linear Algebra

2.A Span and Linear Independence

Alyssa Motas

February 27, 2021

Contents

1	Line	ear Combinations and Span	3
	1.1	List of vectors	3
	1.2	Linear combination	3
		1.2.1 Example	3
	1.3	Span	3
		1.3.1 Example	3
	1.4	Span is the smallest containing subspace	4
	1.5	Definition of spanning	5
	1.6	Definition of finite-dimensional vector space	5
		1.6.1 Example	6
2	Line	ear Independence	6
	2.1	Definition	6
	2.2	Proposition	7
	2.3	Coordinates	7
		2.3.1 Example	8
	2.4	Linear Dependence Lemma	9
	2.5	Replacement lemma	10
	2.6	Theorem	11

1 Linear Combinations and Span

1.1 List of vectors

A "list" is an ordered finite sequence of things. For example, 1, 2, 5, 2, 3 is a list of numbers, and 1, 2, 2, 5, 3 is a different list. There can be repetitions. We usually write lists without parentheses. With lists, we do not usually specify ahead of time how many entries the list has.

1.2 Linear combination

A linear combination of a list v_1, \ldots, v_m of vectors in V is a vector of the form

$$a_1v_1 + \cdots + a_mv_m$$

where $a_1, \ldots, a_m \in \mathbf{F}$.

1.2.1 Example

• (17, -4, 2) is a linear combination of (2, 1, -3), (1, -2, 4) because

$$(17, -4, 2) = 6(2, 1, -3) + 5(1, -2, 4).$$

• (17, -4, 5) is not a linear combination of (2, 1, -3), (1, -2, 4) because there do not exist numbers $a_1, a_2 \in \mathbf{F}$ such that

$$(17, -4, 5) = a_1(2, 1, -3) + a_2(1, -2, 4).$$

1.3 Span

The set of all linear combinations of a list of vectors v_1, \ldots, v_m in V is called the span of v_1, \ldots, v_m , denoted $span(v_1, \ldots, v_m)$. In other words,

$$span(v_1, ..., v_m) = \{a_1v_1 + \cdots + a_mv_m \mid a_1, ..., a_m \in \mathbf{F}\}.$$

The span of the empty list () is defined to be $\{0\}$.

1.3.1 Example

From the previous examples, we have

- $(17, -4, 2) \in span((2, 1, -3), (1, -2, 4));$
- $(17, -4, 5) \notin span((2, 1, -3), (1, -2, 4)).$

1.4 Span is the smallest containing subspace

The span of a list of vectors in V is the smallest subspace of V containing all the vectors in the list.

Remark. What this means is the following:

- (1) $span(v_1, \ldots, v_m)$ is a subspace of V containing v_1, \ldots, v_m .
- (2) If W is any subspace of V containing v_1, \ldots, v_m , then $span(v_1, \ldots, v_m) \subseteq W$

Proof. Let us prove the two remarks above.

- (1) To show that $span(v_1, \ldots, v_m)$ is a subspace, we must prove the three subspace properties.
 - (a) $0 = 0v_1 + \cdots + 0v_m$, so we have $0 \in span(v_1, \dots, v_m)$.
 - (b) To show that it is closed under addition, let $v, w \in span(v_1, \ldots, v_m)$ be arbitrary. We must show that $v + w \in span(v_1, \ldots, v_m)$. By assumption,

$$v = a_1 v_1 + \dots + a_m v_m$$

for some a_1, \ldots, a_m , and

$$w = b_1 v_1 + \cdots + b_m v_m$$

for some b_1, \ldots, b_m . Therefore,

$$v + w = (a_1v_1 + \dots + a_mv_m) + (b_1v_1 + \dots b_mv_m)$$

= $(a_1 + b_1)v_1 + \dots + (a_m + b_m)v_m$.

So the span is closed under addition.

(c) To show that it is closed under scalar multiplication, assume $v \in span(v_1, \ldots, v_m)$ and $k \in F$. We need to show that $kv \in span(v_1, \ldots, v_m)$. There exists a_1, \ldots, a_m such that $v = a_1v_1 + \cdots + a_mv_m$. Then

$$kv = k(a_1v_1 + \dots + a_mv_m)$$

= $(ka_1)v_1 + \dots + (ka_m)v_m$.

Therefore, the span is closed under scalar multiplication.

Next, we show that $span(v_1, \ldots, v_m)$ contains v_1, \ldots, v_m . But

$$v_1 = 1v_1 + 0v_2 + \dots + 0v_m$$

 $v_2 = 0v_1 + 1v_2 + \dots + 0v_m$
:

$$v_m = 0v_1 + 0v_2 + \dots + 1v_m.$$

So each of $v_1, \ldots, v_m \in span(v_1, \ldots, v_m)$.

(2) We must show that $span(v_1, \ldots, v_m)$ is the smallest. So let W be any subspace of V containing v_1, \ldots, v_m . We must show $span(v_1, \ldots, v_m) \subseteq W$.

Take any arbitrary $v \in span(v_1, \ldots, v_m)$. We must show that $v \in W$. There exists a_1, \ldots, a_m such that

$$v = a_1 v_1 + \dots + a_m v_m.$$

Then, $v_1, \ldots, v_m \in W$. But W is a subspace, so it is closed under scalar multiplication.

$$\Rightarrow a_1 v_1, \dots a_m v_m \in W$$
.

Also, W is closed under addition, then

$$a_1v_1 + \dots + a_mv_m \in W$$

 $\Rightarrow v \in W.$

Because $v \in span(v_1, \ldots, v_m)$ was arbitrary, it follows

$$span(v_1,\ldots,v_m)\subseteq W$$

as had to be shown.

1.5 Definition of spanning

If $span(v_1, \ldots, v_m)$ equals V, we say that v_1, \ldots, v_m spans V.

1.6 Definition of finite-dimensional vector space

A vector space is called *finite-dimensional* if some list of vectors in it spans the space. In other words, there exist $k \leq 0, v_1, \ldots, v_k$ such that

$$span(v_1,\ldots,v_k)=V.$$

Otherwise, V is called *infinite-dimensional*.

1.6.1 Example

• Recall that $P_m(F)$ is the vector space of polynomials (with coefficients in F) of degree at most m.

$$P_m(F) = \{a_0 + a_1x + \dots + a_mx^m \mid a_0, \dots + a_m \in F\}.$$

Then $P_m(F)$ is finite-dimensional. It is spanned by the following list of m+1 polynomials: $1, x, x^2, \ldots, x^m$.

• Let P(F) be the set of all polynomials with coefficients in F, regardless of degree. Then P(F) is an infinite-dimensional vector space.

Proof. Assume, for the sake of obtaining a contradiction, that P(F) is finite dimensional. Then P(F) is spanned by a finite list of polynomials, say $P_1, \ldots, P_k \in P(F)$. Let m be the largest degree of any of P_1, \ldots, P_k . Then clearly, any linear combination

$$a_1P_1 + \cdots + a_kP_k$$

also has degree at most m.

So therefore, $x^{m+1} \in P(F)$ is not a linear combination of P_1, \ldots, P_k , contradicting the fact that P_1, \ldots, P_k span P(F).

2 Linear Independence

2.1 Definition

- A list v_1, \ldots, v_m of vectors in V is called *linearly independent* if the only choice of $a_1, \ldots, a_m \in \mathbf{F}$ that makes $a_1v_1 + \cdots + a_mv_m$ equal 0 is $a_1 = \cdots = a_m = 0$.
- The empty list () is also declared to be linearly independent.
- 1. To prove that some v_1, \ldots, v_m are linearly independent, you have to do the following:
 - Take arbitrary a_1, \ldots, a_m
 - Assume $a_1v_1 + \cdots + a_mv_m = 0$
 - Must show $a_1, \ldots, a_m = 0$
- 2. To prove that some v_1, \ldots, v_m are linearly dependent, you have to do the following:
 - Find specific a_1, \ldots, a_m , not all 0, such that $a_1v_1 + \cdots + a_mv_m = 0$.

2.2 Proposition

Suppose v_1, \ldots, v_m are linearly independent, and let $w \in span(v_1, \ldots, v_m)$. Then, there exists a unique list of scalars a_1, \ldots, a_m such that

$$w = a_1 v_1 + \dots + a_m v_m.$$

Proof. Existence. By definition of span, it exists. Uniqueness. Suppose that w in two ways as a linear combination of v_1, \ldots, v_m :

$$w = a_1 v_1 + \dots a_m v_m$$

$$w = b_1 v_1 + \dots + b_m v_m.$$

Then $(w-w)=(a_1v_1+\cdots+a_mv_m)-(b_1v_1+\cdots+b_mv_m)$. By vector space axioms,

$$0 = (a_1 - b_1)v_1 + \dots + (a_m - b_m)v_m.$$

Because v_1, \ldots, v_m are linearly independent, it follows that $a_1 - b_1 = 0, \ldots, a_m - b_m = 0$. Therefore, $a_1 = b_1, \ldots, a_m = b_m$. This proves uniqueness.

2.3 Coordinates

If v_1, \ldots, v_m are linearly independent and $w = a_1v_1 + \cdots + a_mv_m$, we call a_1, \ldots, a_m the *coordinates* of w (with respect to the list v_1, \ldots, v_m).

$$w = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = ae_1 + be_2 + ce_3$$

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

2.3.1 Example

In $P_3(\mathbb{R})$, let $P_1 = x^3 + 1$, $P_2 = x^3 - 2x$, $P_3 = 4x + 2$. Is P_1, P_2, P_3 linearly independent?

To answer the question, we attempt to rpove that they are linearly independent.

Proof. Take arbitrary $a_1, a_2, a_3 \in \mathbb{R}$. Assume $a_1p_1 + a_2p_2 + a_3p_3 = 0$. In other words,

$$a_1(x^3+1) + a_2(x^3-2x) + a_3(4x+2) = 0$$
 (1)

From (1), we can make a system of equations and turn it into a matrix.

$$a_1 + a_2 = 0$$
$$-2a_2 + 4a_3 = 0$$
$$a_1 + 2a_3 = 0$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -2 & 4 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} \simeq \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 2 & 0 \end{bmatrix} \simeq \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The general solution is $a_3 = t$, $a_2 = 2t$, $a_1 = -2t$. Since we failed to show that $a_1, a_2, a_3 = 0$, then P_1, P_2, P_3 are linearly dependent.

For t = 1, we get $a_1 = -2$, $a_2 = 2$, $a_3 = 1$, and we find that $-2P_1 + 2P_2 + 1P_3 = 0$.

2.4 Linear Dependence Lemma

Suppose v_1, \ldots, v_m is a linearly dependent list in V. Then there exists $j \in \{1, 2, \ldots, m\}$ such that the following hold:

- (a) $v_j \in span(v_1, ..., v_{j-1});$
- (b) if the jth term is removed from v_1, \ldots, v_m , the span of the remaining list equals $span(v_1, \ldots, v_m)$.

Proof. By assumption, v_1, \ldots, v_m are linearly dependent. Therefore, there exist scalars $a_1, \ldots, a_m \in F$ such that $a_1v_1 + \cdots + a_mv_m = 0$ but not all of a_1, \ldots, a_m are 0.

Let j be the largest index such that $a_j \neq 0$. Then $a_{j+1}, \ldots, a_m = 0$. From our assumption, we have $a_1v_1 + \cdots + a_jv_j = 0$. We can write

$$a_j v_j = -a_1 v_1 - a_2 v_2 - \dots - a_{j-1} v_{j-1}.$$

But since $a_j \neq 0$, it has a multiplicative inverse.

$$v_j = -\frac{a_1}{a_j}v_1 - \frac{a_2}{a_j}v_2 - \dots - \frac{a_{j-1}}{a_j}v_{j-1}.$$

This proves (a).

For (b), note that

$$span(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_m) \subseteq span(v_1, \ldots, v_m).$$

To show the opposite inclusion, consider some arbitrary $w \in span(v_1, \ldots, v_m)$. We must show $w \in span(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_m)$. By assumption, $w = b_1v_1 + \cdots + b_mv_m$ for such scalars b_1, \ldots, b_m . By combining this equation to (a), we get:

$$w = b_1 v_1 + \dots + b_{j-1} v_{j-1} + b_j v_j + b_{j+1} v_{j+1} + \dots + b_m v_m$$

$$= b_1 v_1 + \dots + b_{j-1} v_{j-1} + b_j \left(-\frac{a_1}{a_j} v_1 - \frac{a_2}{v_j} v_2 - \dots - \frac{a_{j-1}}{a_j} v_{j-1} \right)$$

$$+ b_{j+1} v_{j+1} + \dots + b_m v_m.$$

So $w \in span(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_m)$ as required.

2.5 Replacement lemma

Let V be a finite-dimensional vector space. Consider two lists of vectors:

$$u_1, \ldots, u_m$$
 linearly independent in V

$$w_1, \ldots, w_n$$
 spans V

Then we have

- (a) $m \leq n$.
- (b) It is possible to extend the list u_1, \ldots, u_m with n-m additional vectors from the list w_1, \ldots, w_n such that the resulting list spans V.

Proof. We shall prove by induction.

(1) If w_1, \ldots, w_n spans V, then u_1, w_1, \ldots, w_n also spans V. Also, u_1, w_1, \ldots, w_n is linearly dependent because $u_1 \in V = span(w_1, \ldots, w_n)$, therefore u_1 is a lienar combination of w_1, \ldots, w_n .

By the linear dependence lemma, one of u_1, w_1, \ldots, w_n can be written as a linear combination of preceding vectors.

This cannot be u_1 (by linear independence), so some w_j can be written as a linear combination of preceding vectors.

By linear dependence lemma part (b),

$$span(u_1, w_1, \dots, w_{i-1}, w_{i+1}, \dots, w_n) = V.$$

(2) The list of n vectors from (1) spans V. Add u_2 to the list:

$$u_1, u_2, w_1, \ldots, w_{j-1}, w_{j+1}, \ldots, w_n$$
.

Then this list is linearly dependent. One of the w's is redundant and can be removed, without changing the span.

(3) Add u_3 to the list and it becomes linearly dependent. We remove one of the w's in the list.

:

(m) Add u_m to the list and it becomes linearly dependent. We remove one of the w's. Now we have a spanning list of n vectors of the form

$$u_1, \ldots, u_m,$$

followed by n-m of the original w's.

Then $m \leq n$, because the *n*-vector list starts with u_1, \ldots, u_m . So we have proved (a) and (b).

2.6 Theorem

Every subspace of a finite-dimensional vector space is finite-dimensional.

Proof. Let V be finite-dimensional and let W be a subspace of V. we must show that W is finite dimensional.

- (1) If $W = \{0\}$, then W is finite-dimensional and we are done. Otherwise, there exists at least one non-zero vector in W. Let $v_1 \in W$ be such a non-zero vector. Notice that the list of vectors " v_1 " is linearly independent.
- (2) If $W = span(v_1)$, then W is finite-dimensional and we are done. Otherwise, there exists at least one vector $v_2 \in W$ such that $v_2 \notin span(v_1)$. Notice that the list of vectors v_1, v_2 is linearly independent.
- (3) If $W = span(v_1, v_2)$, then W is finite-dimensional and we are done. Otherwise, there exists at least one vector $v_3 \in W$ such that $v_3 \notin span(v_1, v_2)$. Notice that the list of vectors v_1, v_2, v_3 is linearly independent.

And so on.

(k) If $W = span(v_1, ..., v_{k-1})$, then W is finite-dimensional and we are done. Otherwise, there exists at least one vector $v_k \in W$ such that $v_k \notin span(v_1, ..., v_{k-1})$. Notice that the list of vectors $v_1, ..., v_k$ is linearly independent.

If W were infinite-dimensional, we could repeat this step any number of times, because the "If" part would never be done, so in each step, we'd be doing the "otherwise."

This contradicts the assumption that V is finite-dimensional.

Namely, since V is finite-dimensional, $V = span(w_1, ..., w_n)$ is spanned by some finite list of vectors.

If we repeat the above proceduce n+1 times, we get n+1 linearly independent vectors v_1, \ldots, v_{n+1} .

This contradicts the replacement lemma. Therefore, W is finite-dimensional.

Г