

Manual de usuario

RIM1360-047

Mini Adquisidor IEC60870-5-104 Serial Streaming Maestro Modbus

Versión: 0010 / 11 de Agosto 2022

Preparo: LC Verifico: -

Contenido

O1 VERSIONES	
OFICINAS TESACOMFABRICANTE	
03 INTRODUCCIÓN 04 MODO DE FUNCIONAMIENTO 05 CONFIGURACIÓN Y DEPURACIÓN	5
CONEXIÓN AL EQUIPOESTABLECIMIENTO DE LA COMUNICACIÓN	
CONFIGURACIÓN GENERAL	
Identificador	
Simcards A / B Puertos Serie	
Configuración Entradas 1	9
MAESTRO MODBUS	
SERVICIO SMS	
ADMINISTRADOR	
DEPURACIÓN	12
Debug del funcionamiento Debug por puerto serie	12
06 CONECTOR RJ45	
07 CONECTOR RS485	21

O1 Versiones

Fecha	Modificaciones	Versión
11/08/2022	Implementación primera versión	1.0

02 Contacto

Twin Dimension® es una marca registrada por el Grupo Tesacom. El grupo Tesacom posee oficinas en Argentina, Perú, Paraguay, Chile

Oficinas Tesacom

- Perú: Calle Simón Bolívar Nro. 472 Dpto. 405, Miraflores, Lima.
- Argentina: MAZA 2140-CABA -BS.AS, Argentina.
- Paraguay: República de Siria 407, Asunción.
- Chile: Av. del Valle Sur 576, Oficina 405, Huechuraba, Santiago de Chile (Región Metropolitana).

Contacto Telefónico:

Página web: http://www.tesacom.net/

Soporte clientes vía E-mail: clientes@tesacom.net info@tesacom.net

Fabricante

Tesam Argentina S.A. Maza 2140 Ciudad Autónoma de Buenos Aires Argentina

03 Introducción

El presente manual sirve de guía para configuración y correcta instalación del equipo *RIM1360-047*, en su versión para serial streaming. Dicha guía sirve para las siguientes versiones del mismo:

- RIM1360-047-HV-EC200A
- RIM1360-047-LV-EC200A
- RIM1360-047-HV-BG95M3
- RIM1360-047-LV-BG95M3

04

Modo de funcionamiento

El equipo *RIM1360-047*, es un dispositivo de conversión de medio que permite conectar por el puerto RS232 y/o el puerto RS485 a un equipo remoto a través de internet mediante conexiones TCP sobre interfaz celular.

También posee 2 entradas digitales y 1 entrada analógica, estas entradas son reportadas en protocolo IEC80670-5-104.

Este equipo cuenta con

- 1 puerto de comunicaciones RS232 con control de flujo
- 1 puerto de comunicaciones RS485
- 2 entradas digitales optoaisladas
- 1 entrada analógica preparada para señales 4/20 mA o sonda de temperatura 1wrie

Se configura en el equipo un destino primario y uno secundario de conexión para conexión, estos destinos pueden ser direcciones IP tanto numéricas como nombre de dominio.

El equipo se conecta y permaneces on-line a uno de estos destinos.

En este estado todo paquete de datos recibido desde el servidor es escrito en el puerto serie correspondiente, y toda trama de datos leída en un puerto serie es enviada hacia el servidor.

Sobre esta misma conexión se establece una conexión con un maestro IEC 60870-5-104 si se mantiene una sesión activa reportando en forma periódica el estado de las entradas analógicas y en forma espontánea los cambios de las entradas digitales.

En caso de no poder enviar estos reportes por no estar activa la sesión IEC, estos datos se almacenan en una memoria no volátil con su correspondiente estampa de tiempo.

Se pueden almacenar

- 4096 datos analógicos
- 1024 eventos digitales

Estos datos almacenados se envían en forma automática una vez restablecida le sesión IEC.

05

Configuración y depuración

Conexión al equipo

Para configurar el equipo se debe utilizar el software de configuración del RIM1360, provisto, se puede descargar del sitio web la última versión disponible.

Una vez abierto se debe seleccionar el puerto serie que se crea al conectar el USB del RIM a la PC.

Establecimiento de la comunicación

La configuración y debug del equipo se encuentra protegida por contraseña, para iniciar el proceso de debug o configuración se debe enviar el password al equipo. El password debe escribirse y presionar el botón *Enviar*, esto procedimiento debe realizarse en la pestaña *Debug*.

Una vez escrito el password se debe poder leer un mensaje del equipo en el cual valida la escritura del mismo y el acceso otorgado con ese password.

Exiten 3 niveles de acceso

- nivel 1:
 - visualización de debug
 - lectura de parámetros de configuración
- nivel 2:
 - visualización de debug
 - lectura y escritura de parámetros de configuración
- nivel 3:
 - visualización de debug
 - lectura y escritura de parámetros de configuración
 - descarga de firmware

Esta conexión establecida tiene un tiempo determinado, pasado el cual al sesión se cierra.

```
-17:56:09.537-ID: 65535, Estado: 4765mV - 0mV - 3946mV - 11646mV- 0 - 4 - 0 - 2

Modem: <<1-2-1-1-1-0000-1-0-0-0-0-0-8376-0-0>>

Hist: 42, 0, 42 - 4095, 1555, 1554 - 0, 0, 0

-17:56:09.098-DEBUG FINALIZADO; TIMEOUT
```

Configuración General

Una vez iniciado el debug/cfg se pueden configurar los parámetros del equipo

Identificador

El equipo posee un identificador único con el cual se conecta con el servidor de aplicaciones.

Este ID se configura en la pestaña *Configuración General*, en el cuadro de edición Configuración

- campo TSD ID: es el id de identificación del equipo contra el servidor de aplicaciones
- campo Time: es el tiempo peridico en el que el equipo reporta el estado de sus variables y estado internos
 - tensión de alimentación
 - tensión de alimentación 5V
 - tensión de alimentación del modem
 - tensión de batería interna
 - temperatura interna
 - valor en mA de la entrada analógica
 - valor en unidades de ingeniería de la entrada analógica

Simcards A / B

En estos recuadros se configura cada una de las simcards, los parámetros a configurar en cada una de ellas son

- Habiltación de esa simcard para su uso
- Selcción de APN
 - si se selecciona se configura la conexión utilizando los datos cargados en
 - APN
 - USER
 - PASSWORD
 - si no se selecciona el modem utiliza el APN público preconfigurado para el prestador, el prestador se determina en base al número de simcard leído
- dirección IP primaria
- puerto TCP primario
- dirección IP secundaria
- puerto TPC secundario

Puertos Serie

Existen 2 puertos serie que pueden ser configurados de los 3 mostrados en el configurador.

Estos puertos serie corresponden

puerto serie 1: no disponible en esta versión deshabilitado

- puerto serie 2: corresponde al puerto RS232 sin control de flujo
- puerto serie 3: corresponde al puerto RS485

En cada uno de estos puertos pueden ser configurados los siguientes parámetros

- funcionalidad
 - Deshabilitado
 - túnel serial
 - túnel serial con optimización para protocolo DNP3
 - maestro ModBus local
- velocidad
- cantidad de bits
- paridad
- bits de parada
- tiempo de espera serial

Configuración Entradas 1

En esta pestaña se configuran las entradas del equipo, tanto analógicas como digitales.

Entradas digitales

En el recuadro *Digital Input* se configuran las dos entradas digitales

Las entradas digitales pueden funcionar

- contador de pulsos
- reporte por nivel

Para que alguna de las entradas funcione como contador de pulsos se debe seleccionar **Si** en el combo **Contador Pulsos** correspondiente a la entrada.

Si se selecciona No la entrada funciona reportando su nivel y sus cambios de estado.

El cuadro de selección **Invertir**, permite invertir el nivel lógico [este es la señal reportada] de la señal respecto al nivel físico presente en la entrada digital.

Existe una lógica configurable que puede modificar la generación de reportes de cambio de estado, para agregarle más funcionalidades a dichas entradas.

Esta lógica consiste en reportar un cambio de estado en forma instantánea (cambio de OFF a ON) y forzar una demora de un tiempo determinado para la generación del reporte en caso de cambio de estado de ON a OFF.

Para generar este comportamiento se debe chequear el cuadro **Latch** y configurar el tiempo **LatchTime**.

En caso de que haya un cambio de estado de OFF a ON antes de que se cumpla el tiempo de Latch, es posible hacer que este tiempo se resetee o no. Para esto se chequea el campo **ResetLatchTime.**

Cliqueando el parámetro **Invertir Lógica** se logra un funcionamiento inverso al anteriormente descrito, el cambio de ON a OFF es reportado en forma inmediata y para reportar el cambio de ON a OFF debe transcurrir el tiempo **latchTime**.

Todos estos procesos se aplican al nivel lógico de la entrada.

Entrada analógica

En el recuadro Analógica 1 se slecciona al funcionalidad de la entrada

- sonda de temperatura
- transmisor 4/20mA

Se configura, también, la conversión de la señal 4/20mA a unidades de ingeniería.

Los parámetros que se configuran son

- cero: valor de ingeniería correspondiente a los 4mA de señal.
- span: valor de ingeniería correspondiente a los 20mA de señal.
- alarma bajo: corresponde al valor, en unidades de ingeniería, que genera una alarma de bajo nivel.
- alarma alto: corresponde al valor, en unidades de ingeniería, que genera una alarma de alto nivel.
- histéresis: valor en unidades de ingeniería que se utiliza para determinar el apagado de la señal de alarma. Este valor se usa para las dos alarmas.

Maestro Modbus

El equipo cuenta con un maestro modbus que puede enviar consultas por cualquiera de sus puertos serie.

Para su correcta configuración, por favor leer el Manual de Servicio MODBUS Master

Servicio SMS

El equipo posee un sistema de envío de alarmas por SMS, estas alarmas están asociadas a los estados de las entradas

- alarma por cambio de estado entrada digital
- alarma por valor alto en entrada analógica
- alarma por valor bajo en entrada analógica

Para su correcta configuración, por favor leer el **Manual de Servicio Mensajeria por SMS.**

Administrador

En la pestaña **Administrador** se puede modificar cada uno de los password y su tiempo de duración para cada uno de los niveles.

Depuración

En la pestaña **Debug** se encuentran 2 cuadros

- izquierda: cuadro de debug de funcionamiento con la información del estado del equipo
- derecha: cuadro de debug del puerto serie con el tráfico por los puertos serie

Debug del funcionamiento

En este cuadro se muestra mensajes del funcionamiento del equipo, cada 3 segundos se envía un reporte de estado

Ejemplo:

```
-17:46:15.307-ID: 65535, Estado: 4746mV - 0mV - 3939mV - 11615mV- 0 - 4 - 0 - 2
Modem: <<1-2-1-1-1-0000-1-0-0-0-0-0-7782-0-0>>
Hist: 42, 0, 42 - 4095, 1555, 1554 - 0, 0, 0
```

En este mensaje se muestra

- la hora interna del equipo
- ID
- tensión interna de 5V
- tensión interna de pila de respaldo
- tensión interna de alimentación del modem
- tensión de entrada
- indexPulse
- estado de alimentación principal
- estado de batería

nivel del debug

Luego se envía un mensaje sobre el estado del modem, este mensaje comienza con la palabra **Modem** y posee la siguiente información

- estado de registración en GSM
- estado de registración en datos
- estado de conexión a servidor.
- estado de conexión a internet
- estado de disponibilidad de red
- estado de simcards detectadas
- cantidad de bytes trasmitidos en puerto serie 1
- cantidad de bytes recibidos en puerto serie 1
- cantidad de bytes trasmitidos en puerto serie 2
- cantidad de bytes recibidos en puerto serie 2
- cantidad de bytes trasmitidos en puerto serie 3
- cantidad de bytes recibidos en puerto serie 3
- duración de la última conexión
- duración de la última desconexión
- longitud del mensaje SMS a enviar

El siguiente mensaje con leyenda *Hist*, da información acerca de los eventos almacenados en el equipo, listos para ser transmitidos

- cantidad de eventos asociadas a eventos digitales
- puntero de lectura
- puntero de escritura
- cantidad de eventos asociadas a valores analógicos
- puntero de lectura
- puntero de escritura
- cantidad de eventos para enviar por SMS
- puntero de lectura
- puntero de escritura

Se muestra en el debug, todo el tráfico de comunicaciones con el modem

Ejemplo:

Modem Send: AT+QISEND=0,4

Modem Received: 4, 3 > Modem Received: 11, 3

SEND OK

-17:49:00.109-TSD bytes enviados 4

-17:49:00.109-Beacon sent 1

Modem Received: 20, 3

+QIURC: "recv",0

Modem Send : AT+QIRD=0 Modem Received : 24, 3

+QIRD: 4

TSD--->Datos: 24, 2, 12, 4, 4

-17:49:01.791-datos recibidos 4-1!!

-17:49:01.791-Beacon Recibido 1

Quitando del buffer: 4 de 4

Debug por puerto serie

Se muestra en este recuadro en detalle, los bytes escritos y leidos en cada uno de lso puertos.

06 Conector RJ45

El equipo presenta un conector RJ45, en el cual están disponibles los puertos serie de comunicación.

En este conector hay disponibles

- 1 puerto RS232 para conectar dispositivo esclavo con control de flujo [serie 2]
- 2 entradas digitales
- 1 entrada analogica

RIM1360-047			
RJ45	descripción	DB9 hembra	entrada
Pin 1	puerto 1 RS232 Tx	pin 2	-
Pin 2	puerto 1 RS232 Rx	pin 3	_
Pin 3	gnd	pin 5	gnd
Pin 4	puerto 1 RS232 RTS	pin 8	_
Pin 5	puerto 1 RS232 CTS	pin 7	-
Pin 6	entrada digital 1	ı	activa 12V
Pin 7	entrada digital 2	-	activa 12V
Pin 8	entrada analógica	-	4/20 mA

Se detalla la conexión a conectores db9 hembra, según estándar

Se da un ejemplo de referencia de conexión de las entradas analógicas al equipo

Tabla de direcciones RIM1360-047				
Dirección	Tipo	Descripción	Unidad	Multiplicador
3.001	contador	pulsos en la entrada Digital 1		
3.002	contador	pulsos en la entrada Digital 2		
200	analógica	tensión de Alimentación del equipo	V	0,001
208	analógica	tensión de alimentación Modem	V	0,001
203	analógica	temperatura interna del equipo	°C	0,01
202	analógica	tensión de batería	V	0,001
1.100	analógica	valor entrada analógica 1 [ingeniería]		
1.104	analógica	valor entrada analógica 1 [mA]	mA	0,001
10.000	digital	conexión al servidor		
10.002	digital	estado entrada digital 1		
10.003	digital	estado entrada digital 2		
10.010	digital	cambio hora interna del equipo		
10.013	digital	reset Equipo		
10.014	digital	battery Status		
10.036	digital	falla Alimentación		
10.038	digital	error Battery		
10.039	digital	low Power		
10.300	digital	alarma Lazo no detectado Al O		
10.316	digital	alarma Nivel Bajo en Al O		
10.332	digital	alarma Nivel Alto en Al O		
11.000	digital	consulta Modbus digital 1		
11.001	digital	consulta Modbus digital 2		
11.002	digital	consulta Modbus digital 3		
11.003	digital	consulta Modbus digital 4		
11.004	digital	consulta Modbus digital 5		
11.005	digital	consulta Modbus digital 6		
11.006	digital	consulta Modbus digital 7		
11.007	digital	consulta Modbus digital 8		
11.008	digital	consulta Modbus digital 9		
11.009	digital	consulta Modbus digital 10		

11.010	digital	consulta Modbus digital 11	
11.011	digital	consulta Modbus digital 12	
11.012	digital	consulta Modbus digital 13	
11.013	digital	consulta Modbus digital 14	
11.014	digital	consulta Modbus digital 15	
11.015	digital	consulta Modbus digital 16	
11.016	digital	consulta Modbus digital 17	
11.017	digital	consulta Modbus digital 18	
11.018	digital	consulta Modbus digital 19	
11.019	digital	consulta Modbus digital 20	
11.020	digital	consulta Modbus digital 21	
11.021	digital	consulta Modbus digital 22	
11.022	digital	consulta Modbus digital 23	
11.023	digital	consulta Modbus digital 24	
11.024	digital	consulta Modbus digital 25	
11.025	digital	consulta Modbus digital 26	
11.026	digital	consulta Modbus digital 27	
11.027	digital	consulta Modbus digital 28	
11.028	digital	consulta Modbus digital 29	
11.029	digital	consulta Modbus digital 30	
11.030	digital	consulta Modbus digital 31	
11.031	digital	consulta Modbus digital 32	
11.032	digital	consulta Modbus digital 33	
11.033	digital	consulta Modbus digital 34	
11.034	digital	consulta Modbus digital 35	
11.035	digital	consulta Modbus digital 36	
11.036	digital	consulta Modbus digital 37	
11.037	digital	consulta Modbus digital 38	
11.038	digital	consulta Modbus digital 39	
11.039	digital	consulta Modbus digital 40	
11.040	digital	consulta Modbus digital 41	
11.041	digital	consulta Modbus digital 42	
11.042	digital	consulta Modbus digital 43	
11.043	digital	consulta Modbus digital 44	
11.044	digital	consulta Modbus digital 45	
11.045	digital	consulta Modbus digital 46	
11.046	digital	consulta Modbus digital 47	
11.047	digital	consulta Modbus digital 48	
11.048	digital	consulta Modbus digital 49	

11.049	digital	consulta Modbus digital 50	
11.050	digital	consulta Modbus digital 51	
11.051	digital	consulta Modbus digital 52	
11.052	digital	consulta Modbus digital 53	
11.053	digital	consulta Modbus digital 54	
11.054	digital	consulta Modbus digital 55	
11.055	digital	consulta Modbus digital 56	
11.056	digital	consulta Modbus digital 57	
11.057	digital	consulta Modbus digital 58	
11.058	digital	consulta Modbus digital 59	
11.059	digital	consulta Modbus digital 60	
11.060	digital	consulta Modbus digital 61	
11.061	digital	consulta Modbus digital 62	
11.062	digital	consulta Modbus digital 63	
11.063	digital	consulta Modbus digital 64	
5.000	analógica	consulta Modbus analógica 1	
5.001	analógica	consulta Modbus analógica 2	
5.002	analógica	consulta Modbus analógica 3	
5.003	analógica	consulta Modbus analógica 4	
5.004	analógica	consulta Modbus analógica 5	
5.005	analógica	consulta Modbus analógica 6	
5.006	analógica	consulta Modbus analógica 7	
5.007	analógica	consulta Modbus analógica 8	
5.008	analógica	consulta Modbus analógica 9	
5.009	analógica	consulta Modbus analógica 10	
5.010	analógica	consulta Modbus analógica 11	
5.011	analógica	consulta Modbus analógica 12	
5.012	analógica	consulta Modbus analógica 13	
5.013	analógica	consulta Modbus analógica 14	
5.014	analógica	consulta Modbus analógica 15	
5.015	analógica	consulta Modbus analógica 16	
5.016	analógica	consulta Modbus analógica 17	
5.017	analógica	consulta Modbus analógica 18	
5.018	analógica	consulta Modbus analógica 19	
5.019	analógica	consulta Modbus analógica 20	
5.020	analógica	consulta Modbus analógica 21	
5.021	analógica	consulta Modbus analógica 22	
5.022	analógica	consulta Modbus analógica 23	
5.023	analógica	consulta Modbus analógica 24	

5.024	analógica	consulta Modbus analógica 25	
5.025	analógica	consulta Modbus analógica 26	
5.026	analógica	consulta Modbus analógica 27	
5.027	analógica	consulta Modbus analógica 28	
5.028	analógica	consulta Modbus analógica 29	
5.029	analógica	consulta Modbus analógica 30	
5.030	analógica	consulta Modbus analógica 31	
5.031	analógica	consulta Modbus analógica 32	
5.032	analógica	consulta Modbus analógica 33	
5.033	analógica	consulta Modbus analógica 34	
5.034	analógica	consulta Modbus analógica 35	
5.035	analógica	consulta Modbus analógica 36	
5.036	analógica	consulta Modbus analógica 37	
5.037	analógica	consulta Modbus analógica 38	
5.038	analógica	consulta Modbus analógica 39	
5.039	analógica	consulta Modbus analógica 40	
5.040	analógica	consulta Modbus analógica 41	
5.041	analógica	consulta Modbus analógica 42	
5.042	analógica	consulta Modbus analógica 43	
5.043	analógica	consulta Modbus analógica 48	
5.044	analógica	consulta Modbus analógica 45	
5.045	analógica	consulta Modbus analógica 46	
5.046	analógica	consulta Modbus analógica 47	
5.047	analógica	consulta Modbus analógica 48	

08 Conector RS485

El equipo posee en su frente una bornera extraíble de 2 vías, de separación 3.81mm que permite conectar un puerto serie RS485 [serie 3].

Puerto RS485		
Pin 1	RS485 Borne B[-]	
Pin 2	RS485 Borne A[+]	

TwinDimension