Chapter5-Synchronous Sequential Logic

Lecture3- Design JK and T Flip-Flops using D Flip-flops

Fall 2021

Objectives

- Construct JK and T Flip-flops using D Flip-flops
- Derive Characteristic tables, Characteristic equations, and State equations

Fall 2021

Other Flip Flops

- D flip-flop is the basic flip-flop and other types of flip flops can be constructed by using the D flip flop and external logic. The other most widely used flip-flops in the design of digital systems are:
 - > JK flip flop
 - > T (Toggle) flip flop
- There are three basic operations that can be performed with a flipflop: Set it to 1, Reset it to 0, or complement its output.
- Synchronized with a clock signal, the JK flip performs all these three operations.

5

JK Flip Flop

- The JK flip flop has two inputs J and K, and two outputs Q and Q'. It performs four basic operations:
 - \triangleright set it to 1 i.e Q=1
 - reset it to 0 i.e Q=0
 - \triangleright complement the output i.e Q(t+1)=Q'(t)
 - \triangleright No change i.e Q(t+1)=Q(t)
- The J input sets the flip flop to 1.
- The K input resets the flip flop to 0.
- When both J and K are enabled, the output is complemented.
- When J and K are both 0, the data most recently stored is held.

JK Flip Flop Logic

(a) Circuit diagram

(b) Graphic symbol

Fig. 5-12 JK Flip-Flop

Analysis of the JK Circuit

The circuit applied to the D input is

$$D = JQ' + K'Q$$

- ightharpoonup If J = 1 and K = 0, D = Q + Q' = 1, set to 1
- \rightarrow If J = 0 and K = 1, D = 0, reset to 0
- \rightarrow If J = K = 1, D = Q', complements the output
- \triangleright If J = K = 0, D = Q, leaving the output unchanged
- The characteristics table of the JK flip-flop is shown below

JK Flip-Flop					
J	K	Q(t+1)			
1	0 1 0 1	Q(t) 0 1 Q'(t)	No change Reset Set Complement		

- The characteristics table defines the next state Q(t+1) of a flip-flop in terms of its present state Q(t) and flip-flop inputs.
- The characteristics equation of the flip-flop is

$$Q(t+1) = J(t)Q'(t) + K'(t)Q(t)$$

T Flip Flop

- The T (Toggle) flip flop is a complementing flip flop and can be obtained from a JK flip flop when inputs J and K are tied together.
- Because of its complementing property T flip-flop is extensively used in the design of counters.
- The T flip flop can be obtained from a D flip flop by using an XOR as the input for D.
 - \triangleright The expression for D input is D = T \oplus Q = TQ' + T'Q
 - \triangleright When T = 0, (j = k = 0) then D = Q and there is no change in the output
 - \triangleright When T = 1, (j = k = 1) then D = Q' and the output complements

T Flip Flop Logic Diagram

Fig. 5-13 T Flip-Flop

T Flip Flop Characteristic Table

The following characteristic table for T flip-flop shows:

When T=0; the flip-flop preserves previously stored value i.e No Change

When T=1; the flip-flop toggles

T Flip-Flop					
Т	Q(t+1)				
0	Q(t) Q'(t)	No change Complement			

Standard Graphic Symbols of Latches and Flip-Flops

Characteristic Tables of Flip-Flops

	(a) <i>JK</i> Flip-Flop				(b) SR Flip-Flop				
J	K	Q (t 1 1)	Operation	s	R	Q (t 1 1)	Operation		
0	0	Q(t)	No change	0	0	Q(t)	No change		
0	1	0	Reset	0	1	0	Reset		
1	0	1	Set	1	0	1	Set		
1	1	$\overline{Q}(t)$	Complement	1	1	?	Undefined		
(c) D Flip-Flop				(d) T Flip-Flop					
D		Q (t 1 1)	Operation	T		Q (t 1 1)	Operation		
0		0	Reset	0		Q(t)	No change		
1		1	Set	1		$\overline{Q}(t)$	Complement		

Characteristic Equations of Flip-Flops

• The D flip flop can be expressed as:

$$\triangleright$$
 Q(t + 1) = D

The JK flip flop can be expressed as:

$$ightharpoonup Q(t + 1) = JQ' + K'Q$$

The T flip flop can be expressed as:

$$\triangleright$$
 Q(t + 1) = TQ' + T'Q

The SR flip flop can be expressed as:

$$\triangleright$$
 Q(t + 1) = S+R'Q

State Diagrams of All Flip-Flops

Flip-Flop Excitation Tables

(a) <i>JK</i> Flip-Flop				(b) <i>SR</i> Flip-Flop				
Q (t)	Q(t + 1)	J	к	Q (t)	Q (Q (t + 1) S		
0	0	0	X	0	0	0	X	
0	1	1	X	0	1	1	O	
1	0	X	1	1	0	0	1	
1	1	X	0	1	1	X	0	
(0	e) <i>D</i> Flip-Flop				(d)	<i>T</i> Flip-Flo	р	
Q (t)	Q(t + 1)	D			Q (t)	Q (t +	1) T	
0	0	0			0	0	0	
0	1	1			0	1	1	
1	0	0			1	0	1	
1	1	1			1	1	0	

Fall 2021

16

The End