

Department of Computer Science COMSATS University Islamabad, Lahore Campus

M. A. Jinnah Campus, Lahore

Final-Term Examination—FALL 2023

Course Title:	Differential Equations				Course Code:	MTH242	Credit Hours:	3 (3,0)
Course Instructor/s:	Farrukh Shehzad				Programme Name: BS Computer Science			
Semester:	7 th	Batch:	FA20	Section:		Date:	16-01-20	24
Time Allowed:	3 hours				Maximum Marks:		50	
Student's Name:					Reg. No.			LHR
Important Instruct	tions	Guidelin	es:	7				
 Creativity a 	nd thi	nking are	required.					

- Attempt all questions.

(5*10=50)

Question #1

Find the power series solution of Legendre's differential equation

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + p(p+1)y = 0$$

near the ordinary point x=0

Question #2

What is the Wronskian function? Solve the higher-order differential equation

$$\frac{d^2y}{dx^2} - y = \frac{1}{x}$$

by variation of parameters.

Question #3

Solve the heat equation $\frac{\partial u}{\partial t} = c \frac{\partial^2 u}{\partial r^2}$ with boundary conditions u(0,t)=0=u(l,t)

and initial condition u(x,0)=f(x)

Question #4

Solve non-homogenous linear differential equation

$$x\frac{dy}{dx} - 4y = x^6 e^x$$

Question #5

Solve the homogenous higher-order differential equation

$$\frac{d^2y}{dx^2} + xy = 0$$