Minimal HW

Problem 1: Well-known Logarithmic Formulas

$$egin{split} log_2(rac{8\sqrt{2}}{16}) + log_2(32) - 2log_2(4) \ log_2(rac{1\sqrt{2}}{2}) + 5 - 4 &
ightarrow log_2(2^{-1}2^{1/2}) + 1 \end{split}$$

Answer: -1/2 + 1 = 1/2

Problem 2: Well-Known Logarithmic Formulas

$$log_3(x-1) + log_3(x+1) = 2$$
 solve for x

$$log_3(x-1)(x+1) = 2 o log_3(x^2-1) = 2$$

$$log_3(x^2-1)=2 o x^2-1=3^2$$

Answer: $x^2=9+1 \rightarrow x=\sqrt{10}$

Problem 3: Compound Interest Exercises

$$A = P(1 + \frac{r}{n})^{nt}$$

$$20000 \geq 10000 (1 + \frac{0.06}{4})^{4t}$$

$$ln(2) \geq ln(1+rac{0.06}{4})^{4t}
ightarrow ln(2) \geq 4t imes ln(1+rac{0.06}{4})$$

Answer: $0.693 \geq 4t \times 0.0149 \rightarrow t \leq 11.6$ years

Problem 4: Radioactive Decay Exercises

$$N(t) = N_0 e^{-kt}$$

$$N(t_{1/2})=rac{N_0}{2}$$

$$rac{N_0}{2} = N_0 e^{-kt_{1/2}}$$

$$rac{1}{2}=e^{-k5} o ln(2^{-1})=ln(e^{-k5})$$

Answer: $-ln(2) = -5k
ightarrow k = rac{ln(2)}{5} pprox 0.138$ per year.

Problem 5: Radioactive Decay Exercises

$$N(3) = 70 o 70 = 100e^{-3k}$$

$$0.7 = e^{-3k}
ightarrow ln(0.7) = -3k$$

$$-0.35=-3k
ightarrow kpprox 0,12$$

Find
$$N(20) - t$$
?

$$20 = 100 \times e^{-0.12 \times t}$$

$$ln(0.2) = -0.12 \times t \rightarrow -1.6 = -0.12 \times t$$

Answer: t = 13.41 hours.

Problem 6: Geometric

Find
$$\hat{u}=rac{\overrightarrow{AB}}{|AB|}$$
 for $A(1,2,3)$ to point $B(4,6,9)$

$$\overrightarrow{AB} = \langle 4 - 1|6 - 2|9 - 3 \rangle$$

$$|AB| = \sqrt{(9-3)^2 + (6-2)^2 + (4-1)^2} = \sqrt{36+16+9} = \sqrt{61}$$

Answer: $\hat{u}=\langle rac{3}{\sqrt{61}}|rac{4}{\sqrt{61}}|rac{6}{\sqrt{61}}
angle$

Problem 7: Matrix Form

Answers:

$$egin{aligned} \hat{u} &= 7\hat{i} - 2\hat{j} + 4\hat{k}
ightarrow \hat{v} = egin{bmatrix} 7 \ -2 \ 4 \end{bmatrix} \ |\hat{u}| &= \sqrt{7^2 + (-2)^2 + 4^2} = \sqrt{49 + 4 + 16} = \sqrt{69} \end{aligned}$$

Problem 8: Adding and Scaling Vectors

$$3\overrightarrow{a}-2\overrightarrow{b}
ightarrow\langle 3 imes 2|3 imes -1|3 imes 3
angle -\langle 2 imes -1|2 imes 4|2 imes 2
angle$$

Answer: $\langle 8|-11|5
angle$

Problem 9: Dot product

$$cos heta = rac{\overrightarrow{p} \cdot \overrightarrow{q}}{|\overrightarrow{p}| imes |\overrightarrow{q}|}$$

Answer:
$$cos\theta=rac{4-10+18}{\sqrt{1+2^2+3^2} imes\sqrt{4^2+(-5)^2+6^2}}=rac{12}{\sqrt{14}\sqrt{77}}$$

Problem 10: Dot product Application

cos heta = 0 if vectors are orthogonal where $\overrightarrow{p} \cdot \overrightarrow{q}$ is 0 as well.

$$cos\theta = rac{-16 - 4 - 64}{\sqrt{4 + 1 + 16}\sqrt{64 + 16 + 256}} = rac{-84}{\sqrt{21}\sqrt{336}}$$

Answer: the following vectors are not orthogonal.

Problem 11: Adding and Subtracting Matrices

$$A = \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 & 5 \\ -2 & 1 \end{bmatrix}$$

$$2A - 3B \rightarrow \begin{bmatrix} 2 \times 2 - 3 \times 4 & -1 \times 2 - 3 \times 5 \\ 2 \times 0 - 3 \times -2 & 3 \times 2 - 1 \times 3 \end{bmatrix}$$

$$\mathbf{Answer:} \begin{bmatrix} -8 & -17 \\ 6 & 3 \end{bmatrix}$$

Problem 12: Multiplying Matrices

$$C=egin{bmatrix}1&2\3&4\end{bmatrix}$$
 and $D=egin{bmatrix}5&6\7&8\end{bmatrix}$ $E=CD o egin{bmatrix}1 imes5+2 imes7&1 imes6+2 imes8\3 imes5+4 imes7&3 imes6+4 imes8\end{bmatrix}$ Answer: $E=egin{bmatrix}19&22\43&50\end{bmatrix}$

Problem 13: Row Operations

$$\begin{cases} x+y+z=6\\ 2x-y+3z=14 & \text{use Gaussian elimination to solve the system}\\ -3x+2y-2z=-10 \end{cases}$$

$$\begin{bmatrix} 1&1&1&6\\ 2&-1&3&|&14\\ -3&2&-2&|&-10 \end{bmatrix}$$

eliminate
$$x$$
 using first row where $r2=r2-2r1$ and $r3=r3+3r1$

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & -3 & 1 & | & 2 \\ 0 & 5 & 1 & | & 8 \end{bmatrix}$$

eliminate y using second row where r2=r2+3r1

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & -3 & 1 & | & 20 \\ 0 & 0 & 8/3 & | & 8 \end{bmatrix}$$

Answers:

solve for
$$z o 8/3z=8 o z=3$$
 solve for $y o -3y+3=20 o y=-17/3$ solve for $x o x-17/3+3=6 o x=26/3$

Problem 14: Reduced Row Echelon Form

$$B = egin{bmatrix} 1 & 2 & -1 & 0 \ 0 & 1 & 3 & 5 \ 0 & 0 & 1 & -1 \end{bmatrix}$$

First eliminate 1 where r1=r1+r3

$$B = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Eliminate 3 where r2=r2-3r3

$$B = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Eliminate 2 where r1=r1-2r2

Answer:
$$B = egin{bmatrix} 1 & 0 & 0 & -17 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Problem 15: Matrix Inverse and RREF Relationship

$$A = egin{bmatrix} 2 & 1 \ 5 & 3 \end{bmatrix}$$
 find A^{-1}

 $I = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$ where there is a need to transform A into identity matrix

$$r1=r1/2 o A=egin{bmatrix}1&1/2\5&3\end{bmatrix}$$
 and $I=egin{bmatrix}1/2&0\0&1\end{bmatrix}$

$$r2=r2-5r1
ightarrow A=egin{bmatrix}1&1/2\0&1/2\end{bmatrix}$$
 and $I=egin{bmatrix}1/2&0\-5/2&1\end{bmatrix}$

$$r2=r2/(1/2)
ightarrow egin{bmatrix} 1 & 1/2 \ 0 & 1 \end{bmatrix}$$
 and $I=egin{bmatrix} 1/2 & 0 \ -5 & 2 \end{bmatrix}$

$$r1=r1-(1/2)r2
ightarrowegin{bmatrix}1&0\0&1\end{bmatrix}$$
 and $I=egin{bmatrix}1/2&0\-5&2\end{bmatrix}$

Answer:
$$\begin{bmatrix} 1/2 & 0 \\ -5 & 2 \end{bmatrix}$$