I. SIMULATION OF IONS IN A PENNING TRAP

Ions are confined radially by a magnetic field ${\bf B}$, with an ideal quadrupolar trapping potential of V_T . The potential and field near the centre of the trap is approximated as

$$\Phi_T(x,y,z) = V_T(\gamma' - \frac{\alpha'}{2l^2}(x^2 + y^2 - 2z^2)) \qquad \mathbf{E} = -\nabla\Phi_T(x,y,z) = \frac{\alpha}{l^2}(-x\mathbf{i} - y\mathbf{j} + 2z\mathbf{k})$$
(1)

where $\gamma' = 1/3$ and $\alpha' = 2.77373$ are geometric factors for the cubic trap, and l is the edge length[1]. The force experienced by an ion in the trap is

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \tag{2}$$

Charges and mass are simulated in atomic units, lengths in nm and time in ns.

A. Integration scheme

The code uses the Boris integrator[2] as formulated in Birdsall and Langdon[3]. This is a modified leapfrog scheme in which positions are calculated at times ..., n-1, n, n+1, ... and velocities at times ..., $n^{-1/2}$, $n^{+1/2}$,

$$\mathbf{v}^{-} = \mathbf{v}^{n-1/2} + \frac{q\mathbf{E}}{m} \frac{\Delta t}{2} \tag{3}$$

$$\mathbf{v}' = \mathbf{v}^{-} + \mathbf{v}^{-} \times \mathbf{t}$$

$$\mathbf{t} = \frac{q\mathbf{B}}{m} \frac{\Delta t}{2}$$

$$\mathbf{v}^{+} = \mathbf{v}^{-} + \mathbf{v}' \times \mathbf{s}$$

$$\mathbf{s} = \frac{2\mathbf{t}}{1 + t^{2}}$$

$$(5)$$

$$\mathbf{v}^{+} = \mathbf{v}^{-} + \mathbf{v}' \times \mathbf{s} \qquad \qquad \mathbf{s} = \frac{2\mathbf{t}}{1 + t^{2}} \tag{5}$$

$$\mathbf{v}^{n+1/2} = \mathbf{v}^+ + \frac{q\mathbf{E}}{m} \frac{\Delta t}{2} \tag{6}$$

B. Ion motion

The cyclotron frequency ω_c is predicted by $\omega_c=\frac{qB}{m}[1]$. To achieve 1% phase error in simulated cyclotron frequency requires $\Omega\Delta t\lesssim 0.3[3]$, [4]. The cyclotron radius r is predicted by $r=\frac{mv}{|q|B}$ and is measured for a single particle simulation by the distance between maxima in the x dimension.

The electric field gives rise to a magnetron motion of a lower frequency ω_z . In a quadrupolar trapping potential of V_T , the modified cyclotron frequency ω_{+} is predicted by

$$\omega_{+} = \frac{\omega_{c}}{2} + \sqrt{\frac{\omega_{c}^{2}}{4} - \frac{\omega_{z}^{2}}{2}} \qquad \qquad \omega_{z} = \left(\frac{2\alpha q V_{T}}{m l^{2}}\right)^{1/2} \tag{7}$$

The modified cyclotron frequency is measured by peaks in the Fourier transform of the induced current time signal.

C. Induced current

FTICR-MS measures the current induced between detector plates on opposite walls of the cube parallel to the magnetic field. In the simulation, current is induced by the movement of the 'image' $\mathbf{E}_{image}(\mathbf{r})$ associated with each ion, that is, the difference in the electric field generated by the ion at each of the two detector plates[1].

$$I = \sum_{i=1}^{N} q_i \mathbf{v}_i \cdot \mathbf{E}_{image}(\mathbf{r}_i) \qquad \qquad \mathbf{E}_{image}(\mathbf{r}) = -\frac{\beta'}{l} r_j \qquad \qquad \beta' = 0.72167$$
 (8)

D. Simulation results

TABLE I REPLICATING: HAN AND SHIN[5]. INPUT, PREDICTED AND MEASURED SIMULATION PARAMETERS

$B = 0.7646T, V_T = 1.0V, l = 0.047$											
			predicted		measured		error: timestep				
species	charge	mass	v_0 (m/s)	$\omega_+/2\Pi$ (Hz)	r (mm)	$\omega'_+/2\Pi$ (Hz)	r' (mm)	Δt (ns)	$\epsilon : \Delta t$	ϵ : Δt / 10	ϵ : Δt * 10
HCO+	1	29.0182	10^{4}	394,022	3.933	403,800	3.933	118			
CH ₃ CO ⁺	1	43.04462	10^{4}	262,028	5.835	272,360	5.835	175			

TABLE II REPLICATING: LEACH ET AL.[6]. INPUT, PREDICTED AND MEASURED SIMULATION PARAMETERS

$B = 7.0T, V_T = 1.0V, l = 0.0508$											
				predicted		measured		error: timestep			
species	charge	mass	v_0 (m/s)	$\omega_+/2\Pi$ (Hz)	r (mm)	$\omega'_+/2\Pi$ (Hz)	r' (mm)	Δt (ns)	$\epsilon : \Delta t$	ϵ : Δt / 10	$\epsilon : \Delta t * 10$
Cs ⁺	1	132.9054	2.7×10^{3}	807,826	5.313	807,656	5.319	59			
$Xx^+(\frac{m}{q}=150)$	1	150.0	2.7×10^{3}	715,652	5.996	715,781	5.997	67			

TABLE III CONVERSION FACTORS

property	unit	SI unit
mass	amu	$1.660538921 \times 10^{-27} kg$
charge	e	$1.60217653 \times 10^{-19}C$

REFERENCES

- [1] S. Guan and A. G. Marshall, "Ion traps for Fourier transform ion cyclotron resonance mass spectrometry: principles and design of geometric and electric configurations," Int. J. Mass Spectrometry and Ion Processes, vol. 146/147, pp. 261-296, 1995.
- [2] J. Boris, "Relativistic plasma simulation-optimization of a hybrid code," in Proc. 4th Conf. Num. Sim. Plasmas, 1970, pp. 3-67.
- [3] C. Birdsall and A. Langdon, Plasma Physics via Computer Simulation. McGraw-Hill, New York, 1985.
- [4] L. Patacchini and I. Hutchinson, "Explicit time-reversible orbit integration in Particle In Cell codes with static homogeneous magnetic field," J. Comp.
- Phys., vol. 228, p. 2604, 2009, 10.1016/j.jcp.2008.12.021.
 S.-J. Han and S. Shin, "Space-charge effects on Fourier transform ion cyclotron resonance signals: Experimental observations and three-dimensional trajectory simulations," J. Am. Soc. Mass Spectrometry, vol. 8, pp. 319–326, Mar 1997.
- [6] F. Leach, A. Kharchenko, R. Heeren, E. Nikolaev, and I. Amster, "Comparison of particle-in-cell simulations with experimentally observed frequency shifts between ions of the same mass-to-charge in Fourier transform ion cyclotron resonance mass spectrometry," J. Am. Soc. Mass Spectrometry, vol. 21, pp. 203-208, Oct 2009, 10.1016/j.jasms.2009.10.001.