Foundations of DataScience

Assignment 1

1	ANIRUDH A	2018B4A70936H
2	VISHAL KUMAR NK	2019A4PS0693H
3	SHIVANI THIRUNAGARI	2019A4PS0754H

Table of Contents

Title	Page No.
4. Cover nega	4
Cover page Table of contents	1
2. Table of contents	2
3. Objectives of the Assignment	3
4. Data-Preprocessing	3
5. Description of the Model	3
Gradient Descent Algorithm	3
7. Stochastic Gradient Descent Algorithm	5
8. Regularisation	5
 Ridge Regularisation 	6
 Lasso Regularisation 	6
9. Errors without regularisation	
Gradient Descent Algorithm	7
Stochastic Gradient Descent Algorithm	7
10. Errors with Regularisation for the polynomial	of degree 9
Gradient Descent Algorithm with ridge reg	•
 Stochastic Descent Algorithm with ridge re 	
 Gradient Descent Algorithm with Lasso re 	<u> </u>
•	
Stochastic Descent Algorithm with Lasso Surface Plate	- 3
11. Surface Plots	21
12. Comments on overfitting	27
13. Comparison models built in part (a), part (b)	23

Objectives of the Assignment:

- 1. To implement Gradient-Descent algorithm and Stochastic Descent algorithm for polynomials of degree 0-9.
- 2. Implementation of regularisation using ridge regression and lasso regression for a polynomial of degree 9.
- 3. Visualization of surface plots for all the polynomial degrees.

Data-Preprocessing:

For pre-processing, the data was shuffled initially, and then normalised using min-max normalisation. Then the data was split into training and testing portions of 70:30 proportion.

Description of the Model:

Our method is about developing 10 different models of degrees from 0 to 9. Each model of degree d contains all polynomial combinations of the features with degree less than or equal to d as independent variables. The dataset contains 2 features, Strength and Temperature which are used to predict the pressure. The assumption of Strength as x1 and temperature as x2 has been considered. For a model of degree 1, we have three different terms in our feature matrix, for a model of degree 2, we have 6 different terms. The resulting model would be:

For a polynomial of degree 1: y = w0 + w1x1 + w2x2

For a polynomial of degree 2:

$$y = w0 + w1x1 + w2x2 + w3x1^2 + w4x1x2 + w5x2^2$$

For a polynomial of degree n:

$$y = w0 + \Sigma \Sigma W k(x1)^{i} (x2)^{j}$$
 where $i + j \le n, i, j$ belongs to $(0,n)$,

To generate the feature matrix, we have defined a function named featureVector with input parameters degree and the training data. This processes the featureVector taking the degree as input by using a nested-for loop using the principle that the sum of powers of the features x1, x2 will be less than or equal to that of the degree d. This helped us generate the featureVector as required for each degree of the polynomial.

Gradient Descent Algorithm:

Gradient Descent is an iterative approach used in optimization to predict the values of the coefficients of the features in order to minimize the cost function. By taking steps of sizes proportional to the negative gradient, the gradient descent iteratively finds the optimal value. This in fact is the global minimum since a convex function is being considered.

the implementation of this algorithm, define function. we а gradientDescent(deg,eta), where deg stands for degree of the polynomial, eta is the learning rate, which has a while loop that runs till there convergence of the error values. The error values are computed using the function compute cost(). We initialised the W, cost from previous iteration, error from this iteration. At each iteration of the loop, we calculate the predicted y by taking the dot product of the feature Vector with respect to the degree given and current model. We then calculate the derivative by finding the dot product of the feature Vector and the difference between the predicted y and the actual. The equations are vectorised to save computation time. Then we update our model(W) by subtracting the derivative found and the learning rate in each iteration of the current model. This is in accordance with the gradient descent algorithm.

After every 50 iterations, we make a note of the cost corresponding to the 50th iteration, and print them. We utilised these arrays to plot the required graphs after every 50ths iteration.

In order to obtain the models of degrees 0-9, we added a for-loop which gives the input of degree deg to the above mentioned gradientDescent() function. It plots the graphs for no. of iterations v/s cost for degrees 0-9.

Stochastic Gradient Descent Algorithm:

As the name suggests, there is some stochasticity involved in this algorithm and is almost the same as how gradient descent works. Here, we take any random set of values in each iteration to evaluate the gradient and find the global optimum. This algorithm shows a faster convergence than the normal Gradient Descent algorithm, thus helping in saving time to train the data.

In our model, we have defined the function Stochastic_GD(). We set the number of iterations to 2000 and inside the while-loop, we generate a random value of "i" in the range (number of rows) which selects a training data sample randomly. Here, we use the derivation value based on only this one observation and calculate the cost of each iteration. Then at a step of 50 iterations, we print the error to obtain its minimum value and plot the required graphs.

In addition to this, for the ridge and lasso forms of the Stochastic Gradient Descent algorithm, we have calculated the RMSE separately for training and testing data and plotted it against log lambda.

Finally, we incorporated a loop that gives the models for polynomials from degrees 0 to 9, along with their training and testing errors, RMSE, and minimum errors.

Fig: Comparison of Gradient Descent and Stochastic Gradient Descent algorithms.

REGULARIZATION:

Regularization is a technique to obtain different models of a set of data by changing the values of a parameter called "lambda".

Ridge regularization:

In the ridge regularization technique, the cost function gets modified by adding a square of the absolute value of the coefficients whole multiplied by lambda. Different values of lambda give us different models. The cost function **without regularisation** is:

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2$$

The **cost function with ridge regularisation** is as follows:

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} w_j^2$$

Thus, we have defined a new cost function called cost_function_ridge() that evaluates this cost and functions called gradientDescent_ridge() and Stochastic_GD_ridge() for the model. The regularization parameter lambda has been incorporated into the function to modify it accordingly (as d/dx(lambda * (w ** 2) = 2 * lambda * w).

Again, after every 50 iterations, we print out the error values and plot the respective graphs. A plot of log(lambda) vs RMSE has also been shown.

Lasso Regularization:

When the term added to the error function is lambda times the sum of absolute values of the coefficients, the regularization is known as lasso regularization. We use different values of lambda to get different models. The cost function using lasso regularization is:

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |w_j|$$

A function canned cost_function_lasso() has been defined to evaluate this cost and functions called gradientDescent_lasso() and Stochastic_GD_lasso() have been defined for the models.

The models have also been updated by adding lambda to the derivative(as d/dx(lambda*abs(w)) = lambda).20 different values of lambda have been used to obtain the different models and RMSE for training and testing has been calculated

accordingly. At a step of 50 iterations, the relevant error values are printed and graphs have been plotted accordingly. A plot of log(lambda) vs RMSE has also been shown.

Errors: Without Regularisation

(a) Gradient Descent

Degree of the polynomial	Minimum Training Error	Minimum Testing Error
0	66.123709285827	30.16854042476644
1	13.934476949748674	6.603623992313004
2	15.923729583766763	7.497449964102895
3	15.8131670343265	7.325443698852643
4	15.004249176538965	7.020358370894085
5	14.788130681679464	6.970498463852234
6	14.838305223907017	7.027752353628535
7	15.026731673159844	7.130305854345865
8	15.269975209673264	7.239002932405782
9	15.488068604155732	7.318209202503303

Conclusion: For polynomial regression using gradient descent, the minimum training and testing error can be observed for a polynomial of degree 1. Hence, a linear polynomial best fits the model considering a learning rate of 0.1.

(b) Stochastic Gradient Descent

	Minimum Training Error	Minimum Testing Error
polynomial		

0	172.49577394231972	68.87068590149865
1	505.5911585695828	202.02435222053836
2	1014.2494176270469	405.27239778460444
3	1744.750570541063	696.8266506430223
4	2656.345692944137	1060.8236235596203
5	3840.921899039334	1533.536072399309
6	5209.762445168131	2080.200727712149
7	6821.695159972138	2723.8676409864975
8	8617.624574971656	3440.208864367946
9	10719.874652655957	4280.705715149436

Conclusion: For polynomial regression using stochastic gradient descent, the minimum training and testing error can be observed for a polynomial of degree 0. However, this is a case of underfitting the model and hence regularization is required.

Hence, minimum training and testing errors have been tabulated for polynomials of degree 0-9 using gradient descent and stochastic gradient descent.

Errors: With Regularization

In this section, we tabulate the minimum training and testing errors along with the RMSE values for 20 different values of lambda taken from the range 0 to 0.1. A polynomial of degree 9 has been considered.

(a) Gradient Descent with Ridge Regularisation

Penalty (Lambda) RMSE training	RMSE testing	Minimum Training Error	Minimum Testing Error
--------------------------------	--------------	------------------------------	--------------------------

0.	0.0029598229	0.3576048186	0.2956569659	0.1260036542
	41240777	5054716	605091	3793083
0.00526316	0.0019093735	0.3684403634	0.0001506000	1.0401124771
	02703186	332047	1484298665	370023
0.01052632	0.0019703225	0.3650944312	0.0024166652	0.5237960626
	973550977	9325453	773281398	876018
0.01578947	0.0019555148	0.3661007692	0.0018000993	0.6460885226
	08122437	4320234	817877764	40739
0.02105263	0.0019722150	0.3657992721	0.0029511220	0.5964863922
	063530485	107745	958116867	354798
0.02631579	0.0019655294	0.3658934322	0.0033878592	0.6156981691
	92154176	3881976	948978726	8168
0.03157895	0.0019691840	0.3658681359	0.0041832490	0.6092338384
	98542376,	30915	17209606	659439
0.03684211	0.0019722150	0.3658789246	0.0048117521	0.6126445409
	063530485	4305294	48001734	642288
0.04210526	0.0019754587	0.3658788130	0.0055133328	0.6122990868
	93790997	8386744	46471726	465671
0.04736842	0.0019786621	0.3658819921	0.0061805865	0.6133883123
	926774876	5254397	869152595	980713
0.05263158	0.0019819016	0.3658841757	0.0068607134	0.6139302338
	686619404	4806503	51772674	734418
0.05789474	0.0019851539	0.3658866583	0.0075335430	0.6146808109
	377191297	597918	48285398	633879
0.06315789	0.0019884258	0.3658890490	0.0081905255	0.6153516029
	92378603	3751834	76160615	894314
0.06842105	0.0019917152	0.3658914658	0.0088379160	0.6160526456
	96886712	514681	37052584	461533
0.07368421	0.0019950226	0.3658938731	0.0094835269	0.6167419612
	772641414	467393	78979806	337254
0.07894737	0.0019983477	0.3658962816	0.0101268976	0.6174355633
	24542667	9242516	45738252	067768
0.08421053	0.0020016903	0.3658986882	0.0107684029	0.6181273435
	82781046	382593	671625	303892
0.08947368	0.0020050505	0.3659010937	0.0114080291	0.6188196321
	199608873	674944	126534	533176

0.09473684	0.0020084280	0.3659034979	0.0120458945	0.6195115405
	27543965	84992	47349233	700207
0.1	0.0020118227	0.3659059009	0.0126820463	0.6202034079
	903673353	816345	541897	488877

Conclusion: For ridge regression using gradient descent, the minimum RMSE training error can be observed for a lambda value of 0.00526316. Hence, among the 20 chosen values, this best fits the model considering a learning rate of 0.1.

(b) Stochastic Gradient Descent with Ridge Regularisation

Penalty (Lambda)	RMSE training	RMSE testing	Minimum Training Error	Minimum Testing Error
---------------------	------------------	-----------------	------------------------------	--------------------------

0.	0.3232768691	0.5801618925	60.352782907	83.305485840
	952058	605911	21532	92301
0.05263158	0.5133023860	0.5732109503	152.18456478	81.351462000
	872065	410885	337836	13483
0.10526316	0.5056077355	0.5721498239	147.68611240	81.077859416
	131638	61949	596823	21476
0.15789474	0.5063686973	0.5733167911	148.16170303	81.437358078
	676841	728955	757212	46046
0.21052632	0.5076226090	0.5730342057	148.91832215	81.380118620
	082823	181997	845494	204
0.26315789	0.5060418874	0.5722979712	148.02392630	81.201084576
	375047	831239	097566	47581
0.31578947	0.5049006014	0.5718727135	147.38206377	81.105101405
	115437	462962	600548	39554
0.36842105	0.5067399172	0.5731709484	148.47485513	81.495249197
	613061	527802	676614	31253
0.42105263	0.5072243742	0.5728080092	148.79343827	81.423202821
	868127	852189	509572	36674
0.47368421	0.50777921 4 5	0.5731058607	149.13266978	81.524279577
	670067	398886	55303	21714
0.52631579	0.5079321256	0.5730464811	149.25196862	81.534442290
	243928	495236	393378	1432
0.57894737	0.5096470545	0.5739806918	150.27569721	81.815601837
	723275	233357	241758	17255
0.63157895	0.5104660022	0.5738804368	150.77903553	81.810097318
	976055	60377	550217	29869
0.68421053	0.5098592990	0.5734221587	150.42945063	81.698724831
	69625	205475	15116	54745
0.73684211	0.5098501851	0.5734914730	150.44701769	81.731005914
	38831	858356	433834	86116
0.78947368	0.5121651060	0.5749189128	151.82301822	82.156891179
	743913	282666	626334	9266
0.84210526	0.5116635764	0.5736843882	151.54761883	81.830023770
	025407	813348	86171	77828
0.89473684	0.5127273896	0.5749415800	152.16667018	82.195113419
	03675	875519	61574	56066

0.94736842	0.5102028772	0.5727993065	150.75497420	81.632209354
	773332	560243	038852	53127
1.	0.5109688868	0.5742375677	151.18856307	82.031797981
	212708	28231	683987	51098

Conclusion: For ridge regression using stochastic gradient descent, the minimum RMSE training error can be observed for a lambda value of 0.31578947. Hence, among the 20 chosen values, this best fits the model considering a learning rate of 0.1.

(c) Gradient Descent with Lasso Regularisation

Penalty	RMSE	RMSE	Minimum	Minimum
(Lambda)	training	testing	Training	Testing Error

			Error	
0.	0.0030626439	0.3457596849	9.8487775424	0.5379739187
	77942353	1936665	07888e-05	199286
0.00526316	0.0018366181	0.3760434190	0.0025832194	0.6388867396
	083689377	2425015	81021006	987381
0.01052632	0.0019920770	0.3640118303	0.0055670366	0.6017961255
	49222626	4140117	465625405	796137
0.01578947	0.0019237002	0.3685367756	0.0080330520	0.6191812931
	315991177	8395765	45218604	499923
0.02105263	0.0019449803	0.3667907306	0.0107985341	0.6161682937
	282015718	991781	47236865	58994
0.02631579	0.0019345989	0.3674544695	0.0133809508	0.6209441953
	732409054	968518	86727 4 51	384277
0.03157895	0.0019385686	0.3671969170	0.0160280599	0.6227396919
	68056153	4425356	41361732	229335
0.03684211	0.0019392957	0.3672923418	0.0186202494	0.6256472499
	886821467	2214276	8476774	945015
0.04210526	0.0019434752	0.3672526395	0.0212155047	0.6281111009
	073149173	8019383	09511602	565452
0.04736842	0.0019485449	0.3672647019	0.0238135837	0.6307488429
	437108041	5362226	76360534	435586
0.05263158	0.0019554636	0.3672569512	0.0264230611	0.6333324180
	527468155	785462	63295913	441312
0.05789474	0.0019638452	0.3672568011	0.0290459898	0.6359545055
	919350886	6480713	1339794	940562
0.06315789	0.0019738102	0.3672537514	0.0316667882	0.6385648116
	829525 44 5	0648203	6007826	758342
0.06842105	0.0019852820	0.3672518241	0.0342943133	0.6411854897
	636579284	3378665	7952899	415419
0.07368421	0.0019982546	0.3672494785	0.0369472898	0.6438301707
	56945496	423012	1596327	915508
0.07894737	0.0020126914	0.3672473049	0.0396157689	0.6464908575
	79534199	267678	3489343	933642
0.08421053	0.0020285641	0.3672450771	0.0422885696	0.6491556213
	312360234	2345367	0197177	627605

0.08947368	0.0020458381	0.3672428817	0.0449863136	0.6518453703
	097653096	895564	2023679	706788
0.09473684	0.0020644786	0.3672406857	0.0476914389	0.6545424328
	482884895	1834345	7295541	269744
0.1	0.0020844489	0.3672385016	0.0504033688	0.6572462739
	29944153	347565	5151298	876614

Conclusion: For lasso regression using gradient descent, the minimum RMSE training error can be observed for a lambda value of 0.00526316. Hence, among the 20 chosen values, this best fits the model considering a learning rate of 0.1.

(d) Stochastic Gradient with Lasso Regularisation

Penalty (Lambda) RMSI training	_	Minimum Training Error	Minimum Testing Error
--------------------------------	---	------------------------------	--------------------------

0.	0.3235592392	0.5803662019	60.458810708	83.364169762
	6517616	220462	75387	52178
0.00263158	0.5126226503	0.5724393996	151.83505203	81.187334914
	275542	735007	72166	62798
0.00526316	0.5083369546	0.5742787645	149.38749288	81.786353409
	323548	689261	898376	62273
0.00789474	0.5130456540	0.5756781051	152.23726567	82.252923267
	204075	740151	062573	29101
0.01052632	0.5166281490	0.5771072609	154.43593406	82.729067601
	541821	331792	06776	37305
0.01315789	0.5206975855	0.5788364899	156.93384097	83.285879688
	628655	324561	9512	6147
0.01578947	0.5243869239	0.5797738050	159.21166859	83.608793600
	295973	902412	157248	62474
0.01842105	0.5272919615	0.5809425061	161.02642836	83.998135498
	968767	700967	31437	70642
0.02105263	0.5298319976	0.5817851714	162.63852399	84.297096783
	487207	035112	33143	4184
0.02368421	0.5353958071	0.5847247445	166.08311806	85.173590672
	816015	283491	380135	17849
0.02631579	0.5397340608	0.5855632400	168.82708819	85.466602898
	160104	812566	88225	87699
0.02894737	0.5438205394	0.5875041399	171.33562468	86.057121289
	533024	208681	079967	88652
0.03157895	0.5462263556	0.5878547426	172.96920954	86.220750680
	633338	013558	330903	71929
0.03421053	0.5510436297	0.5906514322	176.03542972	87.052438907
	913769	700394	38667	52412
0.03684211	0.5560987053	0.5921169035	179.28252203	87.520839017
	700288	045885	953446	44456
0.03947368	0.5606629329	0.5940231556	182.27418284	88.099384988
	049276	331397	211404	06912
0.04210526	0.5635170907	0.5947093607	184.00310044	88.372000782
	325913	485944	71282	83331
0.04473684	0.5653364922	0.5952999646	185.41761761	88.591314810
	766713	097221	63358	08075

0.04736842	0.5716043803	0.5990165218	189.57467840	89.695344474
	44485	52 4 75	04326	11218
0.05	0.5746684597	0.5986349064	191.53741533	89.648228340
	675228	360172	107453	73384

Conclusion: For lasso regression using stochastic gradient descent, the minimum RMSE training error can be observed for a lambda value of close to 0. Hence, among the 20 chosen values, this best fits the model considering a learning rate of 0.1.

Surface Plots

In this section, surface plots have been drawn for polynomial regression with degrees 0-9 based on the gradient descent algorithm.

Degree 0 Degree 1

How does overfitting work?

For the model described above, we can clearly see that the model covers more data points as the number of degrees of the polynomial increases. For the zeroth-degree polynomial, the model looks flat but as the number of the degrees increases, the model tries to fit more data points in order to reduce the training error but this results in an increase in testing error. This is called overfitting and mainly happens when we have a large number of features but less number of data points.

Compare between the best model obtained in part a) and the best model obtained in part b).

Gradient Descent: -

Without regularization, the testing error values for gradient descent algorithm are in the range of 6.5 to 7.5. However, after regularization, the testing error values (in both ridge and lasso regressions) can be seen to be in the range of 0.5-0.7. Hence, the model based on regularization proves to have a better predictive ability.

Stochastic Gradient Descent: -

Without regularization, the testing error values for stochastic gradient descent algorithm are above 1000. However, after regularization, the testing error values (in both ridge and lasso regressions) can be seen to be around 80. Hence, the model based on regularization proves to have a better predictive ability.

Conclusion: -

The models built using regularization better predict the values of pressure given the values of strength and temperature applied to a certain piece of plastic. Regularization decreases the training and testing error, thereby building a more reliable model.