

GLOBAL BIFURCATION OF A NONLOCAL EQUATION

MA3911 - Master's thesis presentation

Jonas Pedersen Vean

January 19, 2023

Contents

Introduction

Local bifurcation

A priori estimates, touching lemmata, and the nodal property theorem

Global bifurcation

Introduction

Some historical background, heavily abridged:

- ▶ John Scott Russell and the observed "wave of translation", 1834 [15]
- ➤ The Korteweg-de Vries (KdV) equation, used to model waves of small amplitude and long wavelength in a shallow regime, was introduced by Joseph V. Boussinesq in 1871 [4, 12] and proven to have solitary solutions by Diederik Korteweg and Gustav de Vries in 1895 [13]
- ▶ A modification to the KdV equation to full dispersion was proposed by Gerald B. Whitham in 1967 [16] and was suggested, among other properties, to exhibit *wave peaking* (as in e.g. Stokes' conjecture [2])
- Whitham's conjecture of a highest wave to the Whitham equation became of great interest in the following decades

Introduction (Cont.)

The Whitham equation and conjecture

In steady variables the Whitham equation reads as

$$-\mu\varphi + L\varphi + \varphi^2 = 0$$

where L is the Fourier multiplier associated with the Whitham kernel.

The Whitham conjecture can be roughly stated as "the steady wave of greatest height with wave speed μ is cusped with height $\frac{\mu}{2}$ and 1/2-Hölder regularity at the crest"

Introduction (Cont.)

Selected summary - development of the Whitham conjecture proof

Built on the theoretical foundations due to E. N. Dancer [7], B. Buffoni and J. F. Tolland [5], to name a few.

- 2009: Travelling waves for the Whitham equation, Ehrnström and Kalisch [9]
- 2013: Global bifurcation of the Whitham equation, Ehrnström and Kalisch [8]
- ➤ 2015 (Announced, Oberwolfach): *On Whitham's conjecture*, Ehrnström and Wahlén [10], published 2019

The equation at hand

We consider the dispersive, nonlinear PDE given by

$$u_t + Lu_x + N(u, u)_x = 0,$$

where in particular we will consider $L=\Lambda^s$ and $N(u,u)=u\,\Lambda^r u$ for the Bessel potential operator acting as a Fourier multiplier $\mathscr{F}(\Lambda^t\varphi)(\xi)=(1+\xi^2)^{\frac{t}{2}}\mathscr{F}\varphi(\xi)$. Furthermore we will mainly look at r,s<0. Our equation therefore looks like

$$u_t + (\Lambda^s u)_x + (u \Lambda^r u)_x = 0. (1)$$

Note that for r=0 we recover the fractional Korteweg–de Vries (fKdV) equation as studied by e.g. Ørke [14], Afram [1], etc. The bilinear nonlinearity in this case makes for a prototype example of a *Coifman–Meyer type* nonlinearity, see [6].

Steady version, assumptions

We impose the travelling wave ansatz $\varphi(x-\mu t)=u(t,x)$ for $\mu\geq 0$ and integrate the previous equation to obtain

$$-\mu\varphi + \Lambda^s\varphi + \varphi\,\Lambda^r\varphi = B$$

for some integration constant B. We *artificially* set B=0 (since we lack a commuting Galilean transformation), which brings us to the bifurcation problem given by

$$F(\mu,\varphi) = -\mu\varphi + \Lambda^s\varphi + \varphi\,\Lambda^r\varphi = 0.$$

We will look for solutions that are P-periodic, even and bounded under the ad hoc assumption $\Lambda^r \varphi < \mu$.

The map F

Let $\mathscr{C}^t_{\mathrm{even}}(\mathbb{S}_P)$ denote the space of even, P-periodic functions of Hölder–Zygmund class.

We collect some properties of the map F as in the bifurcation problem.

- **1.** $F(\mu, \cdot)$ maps even, periodic functions to even and periodic functions (well-definiteness).
- **2.** The map $F: \mathbb{R} \times \mathscr{C}^t_{\text{even}}(\mathbb{S}_P) \to \mathscr{C}^t_{\text{even}}(\mathbb{S}_P)$ is real-analytic in both arguments (see e.g. Grigis–Sjöstrand [11])

Kernel of linearization for subcritical wave speeds

Proposition

The kernel of the Fréchet derivative $\partial_{\varphi}F[(\mu^*,0)]=\Lambda^s(\cdot)-\mu^*\operatorname{Id}$ is one-dimensional for $0<\mu^*<1$, and furthermore is spanned by

$$\varphi^* = \cos\left(2\pi \cdot / P\right)$$

for $\mu^* = \mu_{P,1}$. Additionally, we have that the transversality condition holds

$$\partial_{\mu,\varphi}^2 F[(\mu^*,0)](1,\varphi^*) \not\in \operatorname{ran}(\partial_{\varphi} F[(\mu^*,0)]).$$

Further properties of the linearization

Lemma (Fredholmness)

Let r, s < 0. The Fréchet derivative

$$\partial_{\varphi} F[(\mu, \varphi)] = (\Lambda^r \varphi - \mu) \operatorname{Id} + \varphi \Lambda^r(\cdot) + \Lambda^s(\cdot)$$

is a Fredholm operator of index zero when $\varphi \in \mathscr{C}^t_{\mathrm{even}}(\mathbb{S}_P)$ satisfies $\Lambda^r \varphi < \mu$.

The proof relies on a corollary of the Fredholm alternative [5, Theorem 2.7.6] concerning compact perturbations of homeomorphisms. The operator Λ^s is invertible between appropriate Hölder–Zygmund spaces, hence a homeomorphism. It is shown that $\varphi \Lambda^r(\cdot)$ is compact on $\mathscr{C}^t_{\text{even}}(\mathbb{S}_P)$.

Existence of a local bifurcation curve

Theorem (Crandall-Rabinowitz, [5, Theorem 8.3.1])

Let $F: \mathbb{R} \times \mathscr{C}^{(\cdot)}_{\mathrm{even}}(\mathbb{S}_P) \to \mathscr{C}^{(\cdot)}_{\mathrm{even}}(\mathbb{S}_P)$ be real analytic. Suppose furthermore that

- (i) $\partial_{\varphi} F[(\mu^*,0)]$ is a Fredholm operator of index zero,
- (ii) $\ker(\partial_{\varphi}F[(\mu^*,0)])$ is one-dimensional and furthermore is given by

$$\ker(\partial_{\varphi}F[(\mu^*,0)]) = \{\varphi \in \mathscr{C}_{\operatorname{even}}^{(\cdot)}(\mathbb{S}_P) \mid \varphi = t\varphi^* \text{ for some } t \in \mathbb{R}\}$$

for a given
$$0 \neq \varphi^* \in \mathscr{C}^{(\cdot)}_{\mathrm{even}}(\mathbb{S}_P)$$
,

(iii) the transversality condition holds:

$$\partial_{\mu,\varphi}^2 F[(\mu^*,0)](1,\varphi^*) \not\in \operatorname{ran}(\partial_{\varphi} F[(\mu^*,0)]).$$

Given (i)-(iii), then $(\mu^*, 0)$ is a bifurcation point. (Continued on next slide)

Existence of a local bifurcation curve (Cont.)

There exists $\varepsilon > 0$ and a local branch of solutions to $F(\mu, \varphi) = 0$ given by

$$\{(\mu, \varphi) = (\mu(t), t \chi(t)) \mid t \in \mathbb{R}, |t| < \varepsilon\} \subset \mathbb{R} \times \mathscr{C}_{\text{even}}^{(\cdot)}(\mathbb{S}_P)$$
 (2)

such that $\mu(0)=\mu^*$, $\chi(0)=\varphi^*$, μ and χ are both analytic on $(-\varepsilon,\varepsilon)$. In addition to this branch of solutions, there exists an open set $V\subset\mathbb{R}\times\mathscr{C}^{(\cdot)}_{\mathrm{even}}(\mathbb{S}_P)$ such that $(\mu^*,0)\in V$ and

$$\{(\mu,\varphi)\in V\mid F(\mu,\varphi)=0, \varphi\neq 0\}=\{\mu(s), t\,\chi(t))\mid 0<|t|<\varepsilon\}.$$

The preceding setup works assuming r, s < 0 and $0 < \mu^* < 1$.

Bifurcation formulae

Denote $m_t(\xi)=(1+\xi^2)^{\frac{t}{2}}$. If $\mu^*=\mu_{P,k}=m_s(2\pi k/P)$, then the local bifurcation curve $(\mu(t),\varphi(t))$ takes the expansions

$$\mu(t) = \sum_{n=0}^{\infty} \mu_{2n} t^{2n}, \quad \varphi(t) = \sum_{n=0}^{\infty} \varphi_n t^n$$

where $\mu_0=\mu^*$, and the first two terms of the φ -series read as

$$\varphi_1 = \cos(\frac{2\pi k}{P}x),$$

$$\varphi_2 = -\frac{m_r(\frac{2\pi k}{P})}{2(m_s(0) - m_s(\frac{2\pi k}{P}))} - \frac{m_r(\frac{2\pi k}{P})}{2(m_s(\frac{4\pi k}{P}) - m_s(\frac{2\pi k}{P}))}\cos(\frac{4\pi k}{P}x).$$

These are found by comparing orders (essentially Lyapunov–Schmidt reduction).

Super-, sub- and transcritical bifurcations

From the parametrized curve $(\mu(t), \varphi(t))$ as in the previous slide one can show

$$\mu_2 = \frac{m_{2r}(\xi) + m_r(\xi)}{2(m_s(\xi) - m_s(0))} + \frac{m_r(\xi)(m_r(\xi) + m_r(2\xi))(\xi)}{4(m_s(\xi) - m_s(2\xi))}$$

with which one can prove that there exists $P_1 < P_2$ for which

$$\mu_{P < kP_1,k}''(0) > 0, \quad \mu_{P > kP_2,k}''(0) < 0$$

with super- and subcritical bifurcations respectively. At $\mu=1$ we obtain a transcritical bifurcation intersecting the lines of constant solutions.

A priori estimates

Recall that we call φ_1 a *supersolution* of our equation given that

$$-\mu\varphi_1 + \Lambda^s\varphi_1 + \varphi_1\Lambda^r\varphi_1 \le 0,$$

and likewise we call φ_2 a *subsolution* given that

$$-\mu\varphi_2 + \Lambda^s\varphi_2 + \varphi_2\Lambda^r\varphi_2 \ge 0.$$

Lemma (A priori estimates)

Let I_{μ} be the closed interval with endpoints $\mu-1$ and 0. Then supersolutions φ_1 and subsolutions φ_2 both satisfy

$$\inf \varphi_1 \in I_\mu$$
 and $\sup \varphi_2 \not\in \operatorname{int}(I_\mu)$.

Furthermore, if φ is a solution, then either $\mu - 1 \le \inf \varphi \le 0 \le \sup \varphi$ or $\varphi \equiv \mu - 1$ for $\mu < 1$, or either $0 \le \inf \varphi \le \mu - 1 \le \sup \varphi$ or $\varphi \equiv 0$ for $\mu \ge 1$.

Due to the nonlocal nonlinearity we split into 8 separate cases for ease of control, like for instance for the infimum of the supersolution φ_1

$$\mu - \Lambda^r \varphi_1 \le 0, \quad \inf \varphi_1 \ge 0$$

where the left estimate is to be interpreted pointwise and not uniformly. In any case we have to make use of estimates like

$$\Lambda^t \varphi \le \sup \varphi, \quad \Lambda^t \varphi \ge \inf \varphi.$$

In the case above we use this to achieve the form

$$(\inf \varphi_1 - (\mu - 1))\inf \varphi_1 \le 0 \tag{3}$$

from the supersolution equation, and thus draw conclusions.

Monotonicity properties for the Bessel potential operator

Lemma (Strict monotonicity)

Let t < 0. If two bounded and continuous functions f and g satisfy $f \geq g$, then $\Lambda^t f > \Lambda^t g$ holds everywhere.

Lemma (Parity preservation under Λ^t , odd monotonicity)

The operator Λ^t for t<0 is a parity-preserving operator for any period P>0 (including the case $P=\infty$) and furthermore satisfies $\Lambda^t f(x)>0$ for $x\in (-P/2,0)$ where f is P-periodic, odd and continuous with $f \gtrsim 0$.

Touching lemma

Lemma (Touching lemma)

Let r,s<0. Let φ_1,φ_2 be continuous, bounded solutions to our equation with $\varphi_1\geq \varphi_2$ and $\Lambda^r\varphi_1\leq \mu$. Then either

- (i) $\varphi_1 = \varphi_2$, or
- (ii) $\varphi_1 > \varphi_2$ when $\Lambda^r \varphi_1 + \Lambda^r \varphi_2 < 2\mu$ for r = s, or
- (iii) $\varphi_1(x_0) > \varphi_2(x_0)$ when $\Lambda^r \varphi_1 + \Lambda^r \varphi_2 < 2\mu$ whenever $\varphi_1(x_0) \ge 0$ for $r \ne s$.

Note that in the case r=0 one has the bound $\varphi_1>\varphi_2$ when $\varphi_1+\varphi_2<\mu$ and $\varphi_1\geqslant\varphi_2$, which is strikingly different and much easier to prove.

Proof of the touching lemma

We take the differences of the equations for the solutions φ_1, φ_2 and cleverly rewrite to obtain

$$(2\mu - (\Lambda^r \varphi_1 + \Lambda^r \varphi_2))(\varphi_1 - \varphi_2) = 2\Lambda^s(\varphi_1 - \varphi_2) + (\varphi_1 + \varphi_2)\Lambda^r(\varphi_1 - \varphi_2).$$

Need to prove that the left-hand side is strictly positive, which is only a problem when both φ_1, φ_2 are both pointwise negative.

Note that by strict monotonicity we have $\Lambda^t(\varphi_1 - \varphi_2) > 0$ for $t \in \{r, s\}$.

In the case r=s we can simply bound $\varphi_1+\varphi_2\geq 2(\mu-1)>-2$ when $\mu>0$, and for the case $r\neq s$ one can only achieve a partial result.

Touching lemma for derivatives

Lemma (Touching lemma for derivatives)

Let r,s<0. Let φ_1,φ_2 be even and continuously differentiable solutions to our equation, where we impose $\varphi_1\geq \varphi_2$ and $\varphi_1' \geqslant \varphi_2' \geq 0$ on (-P/2,0). Then

- (i) $\varphi_1'>\varphi_2'$ when $\Lambda^r\varphi_1+\Lambda^r\varphi_2<2\mu$ in (-P/2,0) for r=s,
- (ii) $\varphi_1'(x_0) > \varphi_2'(x_0)$ when $\Lambda^r \varphi_1 + \Lambda^r \varphi_2 < 2\mu$ in (-P/2, 0) whenever $\varphi_1(x_0) \ge 0$ for $r \ne s$.

The proof now relies on the strict positivity of

$$(2\mu - 2\Lambda^s - (\Lambda^r \varphi_1 + \Lambda^r \varphi_2))(\varphi_1' - \varphi_2') = 2\varphi_1 \Lambda^r \varphi_1' - 2\varphi_2 \Lambda^r \varphi_2' + (\varphi_1' + \varphi_2')(\Lambda^r \varphi_1 - \Lambda^r \varphi_2)$$

which is proven similarly as for the other touching lemma.

Properties of the kernel

Note that $\Lambda^t \varphi = K^t * \varphi$ in the convolutional sense.

Corollary

Let -1 < t < 0. Then the kernel K^t on $\mathbb R$ has unit integral, is smooth on $\mathbb R \setminus \{0\}$, is even and positive, and there exist positive constants C_t and $\tilde C_t$ such that

$$\begin{cases} K^{t}(x) \lesssim_{t} e^{-|x|} & |x| \ge 1, \\ K^{t}(x) = C_{t}|x|^{-t-1} + H^{t}(x) & |x| < 1, \end{cases}$$
(4)

where the regular part H^t satisfies $H^t(x) = \tilde{C}_t + O(|x|^{-t+1})$ with derivatives satisfying

$$|D_x H^t(x)| = O(|x|^{-t}), \quad |D_x^2 H^t(x)| = O(|x|^{-t-1}).$$
 (5)

Furthermore, if $0 < |x| \ll 1$ we have $D_x K^t(x) \gtrsim_t |x|^{-t-2}$.

Nodal property theorem

Theorem (Nodal property theorem)

Let $P \in (0,\infty]$ and r,s < 0. Then a P-periodic, non-constant and even solution $\varphi \in C^1(\mathbb{R})$ to our equation that is non-decreasing on (-P/2,0) satisfies

$$\varphi' > 0$$
 and $\Lambda^r \varphi < \mu$ on $(-P/2, 0)$

for any period P when r=s, and whenever $x\in (\tilde{x}_{r,s},0)$ where $\tilde{x}_{r,s}$ has $0>\varphi(\tilde{x}_{r,s})$ and $|\varphi(\tilde{x}_{r,s})|$ small in the case $r\neq s$. Furthermore, for a solution φ as above one necessarily has $\mu>0$. Moreover, if $\varphi\in C^2(\mathbb{R})$ and r=s with -1< s<0, then $\Lambda^r\varphi<\mu$ holds everywhere and

$$\varphi''(0) < 0.$$

Furthermore, for finite periods $P < \infty$ one has $\varphi''(\pm P/2) > 0$ when r = s.

On the proof of the nodal property theorem

In the r = s case it is sufficient to note that

$$(\mu - \Lambda^r \varphi) \varphi' = \Lambda^s \varphi' + \varphi \Lambda^r \varphi' > \Lambda^s \varphi' - \Lambda^r \varphi'.$$

The convexity estimates follow from integral estimates using properties of the periodized kernels K_P^s and K_P^r along with a priori estimates as for the touching lemma with derivatives. For illustration, one would arrive at

$$(\mu - \Lambda^r \varphi(0)) \varphi''(0) = -\lim_{\varepsilon \searrow 0} \int_{\varepsilon}^{P/2} (D_y K_P^s(y) + \varphi(0) D_y K_P^r(y)) \varphi'(y) \, \mathrm{d}y < 0$$

at the very end of the proof for the $\varphi''(0) < 0$ estimate.

The periodized kernel

We can periodize the kernel K^t by

$$K_P^t(x) = \sum_{n \in \mathbb{Z}} K^t(x + nP).$$

So for P-periodic φ we write $\Lambda^t \varphi = K_P^t * \varphi$.

Corollary

The periodized kernel K_P^t is even, P-periodic and strictly increasing on (-P/2,0).

Using the periodization one can prove the following result:

Proposition

Let r, s < 0. If $\mu = 1$, then the corresponding integrable and even solution $\varphi \in L^1(\mathbb{S}_P)$ for any $P \in (0, \infty]$ has to be the zero solution.

Regularity result

Theorem (Regularity)

Let $\varphi \in L^{\infty}(\mathbb{R})$ be an even solution to our steady equation and let r, s < 0. Then:

- (i) If $\Lambda^r \varphi < \mu$ uniformly on all of \mathbb{R} , then $\varphi \in C^{\infty}(\mathbb{R})$,
- (ii) φ is smooth on any open set where $\Lambda^r \varphi < \mu$.

The proof of (i) is based off the paralinearization theorem of Bahouri *et al.* [3, Theorem 2.87] using the following maps for $r \le s$ and $r \ge s$ respectively

$$[u \mapsto u \, (\mu - \Lambda^{r-s} u)^{-1}] \circ [\varphi \mapsto \Lambda^s \varphi] \colon B_{p,q}^t(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \hookrightarrow B_{p,q}^{t-s}(\mathbb{R}),$$

$$[u \mapsto \Lambda^{s-r} u (\mu - u)^{-1}] \circ [\varphi \mapsto \Lambda^r \varphi] \colon B_{p,q}^t(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \hookrightarrow B_{p,q}^{t-r}(\mathbb{R}).$$

Degeneracy result

A surprising and striking result, effectively guaranteeing the nonexistence of highest waves.

Theorem

Let r,s<0. Assume that φ is an even, continuous solution to our steady equation that is nondecreasing on (-P/2,0) with $\Lambda^r \varphi < \mu$ on (-P/2,0) and $\Lambda^r \varphi(0) = \mu$. Then φ is identically equal to zero, and moreover μ has to be zero.

The proof is done by contradiction by assuming the solution is not constant. In particular, we only use the strict monotonicity of Λ^t and the local smoothness result of the regularity theorem, so no need for the sharpness of r=s.

Preamble to global bifurcation theorem

We define the set U by

$$U = \{ (\mu, \varphi) \in \mathbb{R} \times \mathscr{C}_{\text{even}}^{\alpha}(\mathbb{S}_P) \mid \Lambda^r \varphi < \mu \},$$

and the solution set S as

$$S = \{(\mu, \varphi) \in U \mid F(\mu, \varphi) = 0\}.$$

We state the final result missing for the global bifurcation theorem.

Lemma (Compactness)

Let r, s < 0. Then bounded and closed sets of S are compact in $\mathbb{R}_{\geq 0} \times \mathscr{C}^{\alpha}_{\text{even}}(\mathbb{S}_P)$.

Global bifurcation theorem

Theorem (Global bifurcation, [5, Theorem 3.5.1])

Let r,s<0. Whenever $\mu_{P,1}^{(j)}(0)\neq 0$ for some $j\in\mathbb{N}$ for $\mu_{P,1}(t)$ as in the map $t\mapsto (\mu_{P,1}(t),\varphi_{P,1}(t))$ of solutions per our local bifurcation formulae, then these solution curves extend to continuous, global curves of solutions $\mathfrak{R}_P\colon\mathbb{R}_{\geq 0}\to S$, which are locally, real-analytically reparametrizable around every t>0. Furthermore, one of the following alternatives are true:

- (i) $\|(\mu_{P,1}(t), \varphi_{P,1}(t))\|_{\mathbb{R}\times C^{\alpha}(\mathbb{S}_P)} \to \infty$ as $t\to\infty$.
- (ii) $\operatorname{dist}(\mathfrak{R}_P, \partial U) = 0$.
- (iii) The map $t \mapsto (\mu_{P,1}(t), \varphi_{P,1}(t))$ is T-periodic for some finite T > 0.

Bifurcation in a cone

Define the closed cone

$$\mathcal{K} = \{ \varphi \in \mathscr{C}^{\alpha}_{\mathsf{even}}(\mathbb{S}_P) \mid \varphi \text{ nondecreasing on } (-P/2, 0) \}$$

which we use in the sense of global bifurcations in cones as in Buffoni–Tolland [5, Theorem 9.2.2] to establish the following result

Theorem

Let -1 < r = s < 0. Then Item (iii) in the global bifurcation theorem cannot occur, hence excluding loop branches.

The proof relies, in particular, on the nodal property theorem, degeneracy of integrable solutions with $\mu=1$, and the regularity theorem.

Conclusion

We have established local bifurcation formulas, touching lemmata, a nodal property theorem, and have used these to extend local bifurcation curves to global continua of smooth, non-degenerative P-periodic solutions (μ,φ) of $-\mu\varphi + \Lambda^s\varphi + \varphi\Lambda^r\varphi = 0$ whenever -1 < r = s < 0.

References I

- [1] O. O. Afram, *On steady solutions of a generalized Whitham equation*, Trans. R. Norw. Soc. Sci. Lett., vol. 3, pp. 5–29, 2021.
- [2] C. J. Amick, L. E. Fraenkel, and J. F. Toland, *On the Stokes conjecture for the wave of extreme form*, Acta Mathematica, vol. 148, no. 1, pp. 193–214, 1982.
- [3] H. Bahouri, J.-Y. Chemin, and R. Danchin, *Fourier analysis and nonlinear partial differential equations* (Grundlehren der mathematischen Wissenschaften). Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, vol. 343, isbn: 978-3-642-16829-1 978-3-642-16830-7. doi: 10.1007/978-3-642-16830-7. [Online]. Available: http://link.springer.com/10.1007/978-3-642-16830-7 (visited on 07/06/2022).

References II

- [4] J. V. Boussinesq, *Théorie de l'intemescence liquide, applelée onde solitaire ou de translation, se propageant dans un canal rectangulaire*, Comptes Rendus de l'Academie des Sciences, vol. 72, pp. 755–759, 1871.
- [5] B. Buffoni and J. F. Toland, *Analytic theory of global bifurcation An Introduction* (Princeton Series in Applied Mathematics), First edition. Princeton University Press, 2003.
- [6] R. R. Coifman and Y. Meyer, *Au delà des opérateurs pseudo-différentiels*, Société mathématique de France, 1987.
- [7] E. N. Dancer, *Bifurcation theory for analytic operators*, Proceedings of the Royal Society of London, vol. XXVI, pp. 359–384, 1973.
- [8] M. Ehrnström and H. Kalisch, *Global bifurcation of the Whitham equation*, Math. Model. Nat. Phenom., vol. 8, no. 5, pp. 13–30, 2013.

References III

- [9] M. Ehrnström and H. Kalisch, *Travelling waves for the Whitham equation*, Differential and Integral Equations, vol. 22, no. 11/12, pp. 1193–1210, 2009.
- [10] M. Ehrnström and E. Wahlén, On Whitham's conjecture of highest cusped wave for a nonlocal dispersive equation, Annales de L'Institut Henri Poincaré Section (C) Non Linear Analysis, vol. 36, no. 6, pp. 1603–1637, Sep. 2019.
- [11] A. Grigis and J. Sjöstrand, *Microlocal analysis for differential operators: an introduction*, eng. Cambridge: Cambridge University Press, 1994, OCLC: 852896200, isbn: 978-1-107-08856-6.

References IV

- [12] E. M. de Jager, On the origin of the Korteweg-de Vries equation, Dec. 2011. [Online]. Available: http://arxiv.org/abs/math/0602661 (visited on 09/23/2022).
- [13] D. Korteweg and G. de Vries, *On the Change of Form of Long Waves Advancing in a Rectangular Canal and a New Type of Long Stationary Waves*, Philosophical Magazine, vol. 39, pp. 422–443, 1895.
- [14] M. C. Ørke, Highest waves for fractional Korteweg–De Vries and Degasperis–Procesi equations, arXiv:2201.13159 [math], Jan. 2022. [Online]. Available: http://arxiv.org/abs/2201.13159 (visited on 09/29/2022).

References V

- [15] J. S. Russell, *Report on waves*, Report of the fourteenth meeting of the British Association for the Advancement of Science, pp. 311–390, 1834, plates XLVII-LVII.
- [16] G. B. Whitham, *Variational methods and applications to water waves*, Proceedings of the Royal Society of London, A, vol. 299, pp. 6–25, 1967.

