

Trabajo Práctico 3

Marche un telebeam Don Niembraaaaaa..."

Métodos Numéricos Primer Cuatrimestre de 2015

Integrante	LU	Correo electrónico
Gastón Zanitti	058/10	gzanitti@gmail.com
Ricardo Colombo	156/08	ricardogcolombo@gmail.com
Dan Zajdband	144/10	Dan.zajdband@gmail.com
Franco Negri	893/13	franconegri200@gmail.com
Alejandro Albertini	924/12	ale.dc@hotmail.com

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja)

Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar

${\rm \acute{I}ndice}$

1.	Intro	oducción	3
2.	Desa	rrollo	4
	2.1.	Vecinos	4
	2.2.	Interpolación bilineal	4
	2.3.	Interpolación por Splines	6
3. Análisis			
	3.1.	Ventana optima para metodo de Splines	10
	3.2.	Análisis de los metodos	11
	;	3.2.1. $K = 2$	12
	;	3.2.2. $K = 4$	12
	;	3.2.3. $K = 6$	13
	;	3.2.4. $K = 10$	14
	3.3.	Análisis de tiempos	15
1	Conc	dusiones	18

1. Introducción

En el presente trabajo práctico nos encargaremos de analizar el problema de la interpolación de polinomios mediante distintos métodos. Para ello se nos ofrece como marco la necesidad de realizar zoom a distintas imágenes, con el fin de crear un prototipo que permita decidir en tiempo real si una pelota entró o no dentro de un arco de fútbol.

Nuestro objetivo es entonces, dada una imagen de nxm pixeles de tamaño original y un número natural k que denota la cantidad de filas y columnas que se quieren agregar entre cada pixel, encontrar la forma mas óptima de rellenar estos valores.

Presentaremos entonces tres técnicas a detallar con sus respectivas ventajas y desventajas:

- 1. Vecinos
- 2. Interpolacion bilineal
- 3. Interpolacion por splines

Además, con el fin de poder realizar un análisis cuantitavo sobre cada método, consideraremos dos medidas que comparan las imágenes originales contra sus transformadas ofreciendo una noción de error o ruido:

- 1. Error cuadrático medio (ECM)
- 2. Peak to signal noise (PSNR)

Por último, nuestra visión preliminar del problema nos indica que si bien es posible que los tres algoritmos retornen buenos resultados para valores de k relativamente bajos (k=1 y quizas hasta 2) y la versión de vecinos sea mucho más eficiente temporalmente, es probable que esta deje de ser útil muy rápidamente a medida que crece k. Por el contrario, tanto la interpolación bilineal como la interpolación por splines deberian funcionar mejor para valores de k grandes, en el caso de esta última, siendo la que menos ruido introduzca (por la necesidad de que el polinomio sea derivable en cada intersección, suavizando el cambio de uno a otro).

2. Desarrollo

A continuación presentaremos las técnicas mencionadas con su respectivo análisis:

2.1. Vecinos

El primer método que analizaremos será el de vecinos. Este consiste en rellenar los valores de cada una de las columnas nuevas de la imagen replicando su valor más próximo. La principal ventaja de este método es la simpleza de su implementación, que consta únicamente de dos bucles para iterar la matriz original. Característica que además le provee de una eficiencia del orden de $O(n^2)$ siendo n el alto y ancho de la imagen destino.

TP3 1 void vecinos(Matriz *image, Matriz *imageRes, int k)

```
1: for 0 to imageRes\rightarrowrows do
```

- 2: **for** 0 **to** imageRes \rightarrow cols **do**
- 3: $imageRes \rightarrow at(i, j) = image \rightarrow at(round(i/(k+1)), round(j/(k+1)))$
- 4: end for
- 5: end for

Como se menciono anteriormente, a pesar su alta eficiencia temporal comparado con los demás métodos, nuestra intuición nos dice que este va ser el que presente una mayor cantidad de ruido, debido a que simplemente se están replicando los píxeles de las imágenes. Como resultado, teniendo en cuenta que lo único que se logra es 'añadir grosor' a los píxeles, deberían conseguirse imágenes de mayor tamaño pero con una ganancia igual de rápida en los valores de ruido a medida que los valores de k aumentan.

2.2. Interpolación bilineal

El segundo método que analizaremos será el de interpolación bilineal. En este caso, la idea consiste en generar un polinomio entre dos puntos consecutivos de la imagen para, por medio de este, calcular los valores necesarios para la extensión.

Primero realizaremos el cálculo por filas y una vez calculados estos valores, repetiremos el mismo procedimiento por columnas. Sean entonces Q_{11} , Q_{12} , Q_{21} , Q_{22} los cuatro puntos de la imagen original sobre los que queremos interpolar, el objetivo es conseguir un polinomio P que valga lo mismo en cada uno de estos puntos y aproxime los nuevos valores intermedios. Usaremos entonces para esto el polinomio interpolador de Lagrange.

Interpolando entonces en el eje X obtenemos la siguiente formula:

$$f(x,y_1) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21})$$
$$f(x,y_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22})$$

Ahora, realizando el mismo procedimiento pero en el eje Y, obtenemos lo siguiente:

$$f(x,y) \approx \frac{y_2 - y}{y_2 - y_1} f(x, y_1) + \frac{y - y_1}{y_2 - y_1} f(x, y_2)$$

Si notamos, los puntos que acompañan a las bases polinómicas de Lagrange son los mismos que calculamos sobre el eje X, por lo que podemos realizar el remplazo para llegar a una formula cerrada:

$$f(x,y) \approx \frac{y_2 - y}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}) \right) + \frac{y - y_1}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}) \right)$$

Distribuyendo los valores dentro de los paréntesis, obtenemos la ecuación final

$$f(x,y) = \frac{1}{(x_2 - x_1)(y_2 - y_1)} \left(f(Q_{11})(x_2 - x)(y_2 - y) + f(Q_{21})(x - x_1)(y_2 - y) + f(Q_{12})(x_2 - x)(y_2 - y) + f(Q_{22})(x - x_1)(y_2 - y) \right)$$

Notar que se obtiene el mismo polinomio interpolador tanto si se hace primero sobre el eje X y luego sobre el Y, como a la inversa. Ahora, gracias a este polinomio interpolador, podemos conseguir los valores de las posiciones (x, y) que agregamos a nuestra imagen para realizar el zoom.

Para facilitar la lectura y escritura del ejercicio vamos a definir una estructura que se llama punto que dentro de la misma vamos a tener los 3 valores, el primero es el valor en x, el segundo en y y el tercero un valor que sera de la imagen original. En el siguiente codigo las variables q11,q12,q21,q22 son del tipo descripto anteriormente y se utilizan para definir los 4 puntos en los cuales se va a realizar el polinomio interpolador, la matriz A representa la imagen original y la matriz Res representa la imagen extendida.

TP3 2 void bilineal(matriz A, vector Res,int k)

```
1: Para i = 0...CantFilas - 1
       Para j = 0...CantColumnas - 1
         q11 = \langle 0, 0, A_{i,i} \rangle
3:
         q12 = \langle 0, k+1, A_{i,i+1} \rangle
 4:
         q21 = \langle k+1, 0, A_{i+1,j} \rangle
 5:
         q22 = \langle k+1, k+1, A_{i+1, i+1} \rangle
 6:
         Para x=0...k+1
 7:
            Para y=0...k+1
 8:
               valorRes = poliniomioInterpolador(q11,q12,q21,q22,x,y)
9:
               Res_{i*(k+1)+x,j*(k+1)+y} = valorRes
10:
```

Donde polinomio interpolador es la funcion que se encarga de generar el polinomio interpolador en el punto, de la siguiente manera.

TP3 3 void polinomioInterpolador(punto q11,punto q12, punto q21, punto q22, int x, int y)

- 1: denominador = $1/((q22.x-q11.x)^*(q22.y-q11.y))$
- 2: numerador1= q11.valor* (q22.x-res.x)*(q22.y-res.y) + q21.val * (res.x-q11.x)*(q22.y-res.y)
- 3: numerador2= q12.valor* (q22.x-res.x)*(res.y-q11.y) + q22.val * (res.x-q11.x)*(res.y-q11.y)
- 4: retorno ((numerador1+numerador2)*denominador)

Para el caso del polinomio interpolador se le agrego al final 2 lineas de las cuales se satura en caso de ser necesario cuando luego de realizar todas las cuentas el valor que nos queda es mayor a 255, lo fijamos en 255, y cuando el valor es menor a 0 lo fijamos en 0.

En este método, comparado con el anterior que solo replicaba píxeles vecinos, se esta calculando un polinomio para tratar de introducir cierto nivel de suavidad entre los puntos de la imagen original a medida que se recorren los píxeles. Un dato importante a tener en cuenta es que dado que el grado del polinomio aumenta a medida que la cantidad de puntos a interpolar es mayor, decidimos que esta se realice entre solo dos puntos de la imagen original, para ofrecer un mejor desempeño entre puntos, haciendo que el polinomio calculado sea mas operativo y evitando que este oscile demasiado (situación conocida como Fenómeno de Runge¹). Como contrapartida de esta optimización, es necesario recalcular el polinomio interpolador para todo par de puntos entre la imagen pero teniendo en cuenta que no se trabaja con imágenes de una definición desmesurada, es un costo que se puede pagar en detrimento de los beneficios obtenidos.

2.3. Interpolación por Splines

Por último nos centraremos en la interpolación por splines. Este método, similar al anterior, requiere el cálculo de Splines (al igual que antes, por filas y luego por columnas) para obtener los valores de los casilleros a extender. Además, en este caso, dado que la interpolación por medio de splines trata de generar polinomios para un segmento específico de la imagen, realizaremos un analisis sobre el algoritmo de interpolación por splines para tratar de obtener el tamaño de ventana mas optimo. Dado que este algoritmo solo incluye los valores de un recuadro de tamaño específico, creemos que agregar mas valores puntos a considerar por el spline, no presentara beneficio alguno porque se estarian dejando de lado los valores de la imagen externos al punto a calcular (que estrian influyendo sobre un polinomio que intenta interpolar valores posiblemente lejos de los suyos).

Sea $S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$ nuestro polinomio interpolador para cada j intervalo entre 0 y n-1, necesitamos entonces resolver los coeficientes. Utilizamos la construcción de Splines despejando estos ultimos en funcion de c_j para formar el siguiente sistema de ecuaciones Ax = b:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & \cdots & \cdots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & \cdots & \ddots & & \vdots \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & \cdots & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \vdots & \vdots \\ c_n \end{bmatrix}$$

¹https://es.wikipedia.org/wiki/Fenomeno_de_Runge

$$\mathbf{b} = \begin{bmatrix} 0 \\ \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 0 \end{bmatrix}$$

donde $h = x_{j+1} - x_j$. Para nuestra aplicacion h = k y se mantiene fijo, ya que la distancia entre los puntos de la nueva imagen es igual a k. Una vez resuelto este sistema y con los valores de $c_0, ..., c_n$ ya calculados, podemos despejar los coeficientes que necesitabamos en base a las siguientes ecuaciones (que se derivan de las condiciones del mismo spline):

 a_j es el valor del pixel en la posicion j de la imagen original en la fila o columna iterada por el spline

$$b_j = \frac{1}{k}(a_{j+1} - a_j) - \frac{k}{3}(2c_j + c_{j+1})$$
$$d_j = \frac{c_{j+1} - c_j}{3k}$$

El implementacion del algoritmo bicubico consta de dos partes muy similares, ya que primero se recorre la matriz por columnas para realizar el metodo de splines y luego se realiza el metodo por filas para completar la matriz. Definimos para el una clase llamada spline donde almacenaremos los arreglos as, bs,cs y ds, estos contienen los coeficientes del polinomio para la posicion i de la fila o columna en donde estemos calculando los splines.

TP3 4 void bicubico(matriz A, vector Res,int k)

```
1: Para i = 0..CantFilas - 1
      Para j = 0..CantColumnas - 1
 2:
        Splinespline = calcular Spline(CantColumnas, columna_i, k)
3:
      Para j = 0..CantColumnas - 1
4:
        Para l = 0..k + 1
5:
           valor= spline.a[i] + spline.b[i] * l + spline.c[i] * j^2 + spline.d[i] * j^3
 6:
           saturar(valor)
 7:
8:
           Res_{i*(k+1),j*(k+1)+l} = valor
9: Para i = 0..CantColumnas - 1
      Para j = 0..CantFilas - 1
10:
        spline = calcular Spline(CantFilas, fila(j), k)
11:
      Para j = 0..CantFilas - 1
12:
        Para l = 0..k + 1
13:
           valor= spline.a[i] + spline.b[i] * l + spline.c[i] * j^2 + spline.d[i] * j^3
14:
           saturar(valor)
15:
16:
           Res_{i*(k+1)+l,i} = valor
```

La funcion saturar hace que si el valor es mayor a 255 o menor a 0 los fija en esos dos valores respectivamente.

Como mensionamos anteriormente se puede ver que de las lineas 1-8 se realiza el splines por columnas,

luego en las lineas 9-16 se realiza el splines por filas, por lo tanto solo analizaremos el primer bloque (lineas 1-8) para el siguiente es analogo.

En la linea 3 se llama al algoritmo de splines pasandole los n puntos de la imagen con el cual vamos a calcular coeficientes para cada polinomio, una vez obtenido esto se recorren los k puntos entre cada par de pixeles de la imagen resultante y se evalua el polinomio en ese punto, logrando asi el valor de cada punto en la imagen resultante.

TP3 5 spline calcularSpline(int cant,arreglo(int) pixelesOriginales,int k)

```
1: arreglo alfa[cantColumnas]
     2: Para j = 0..Cant - 1
                              alfa_j = (3/k) * (pixelesOriginales_{j+1} - pixelesOriginales_j) - (3/k) * (pixelesOriginales_j - pixelesOriginales_j) - (3/k) * (pixelesOriginales_j) - (3/
                 pixelesOriginales_{i-1})
     4: arreglo(float) ln ,cn , zn
    5: l[0]=1,c[0]=0,z[0]=0
     6: Para i = 0..Cant - 1
                          l_i = 2 * (2 * k) - k * c_{i-1}
                           c_i = k/l_i
                            z_i = alf a_i - (k * z_{i-1})/l_i
10: arreglo(int) as,bs,cs,ds
11: Para i = 0..Cant - 1
12:
                              cs_i = z_i - c_i * cs_{i+1}
                              bs_i = (as_{i+1} - as_i)/k - k * (cs_{i+1} + 2 * cs_i)/3
13:
                               (cs_i + 1] - cs[i])/(3 * k)
15: devolver spline(as,bs,cs,ds)
```

Este algoritimo fue tomado del Burden 9na edicion, en el cual estamos calculando los coeficientes del poliniomio dado un arreglo de elementos que van a ser nuestros puntos.

Este método, que podría considerarse un refinamiento del anterior, introduce la particularidad de que se le pide al polinomio interpolador que las intersecciones de las funciones que interpolan al punto n-1 y n y al n y al n+1, sean derivables. Como resultado, se agrega mucha mas suavidad entre puntos que con la técnica anterior que solo respetaba que las funciones empiecen y terminen en el mismo punto (dando lugar a posibles picos, como en el caso de que dos puntos se interpolen con una recta ascendente y los siguientes con una descendente). Además, esta técnica evita de forma natural la oscilación del polinomio mencionada en el método anterior dado que siempre se toman polinomios por partes. Gracias a esto, cuando se intenta reducir el error de interpolación se puede incrementar el número de partes del polinomio que se usa para construir el spline, en lugar de incrementar su grado.

3. Análisis

A continuación se presenta un análisis comparativo de los tres métodos implementados. Cabe mencionar que, dado que la experimentación requería que ambas imágenes (original y modificada) tengan el mismo tamaño para poder realizar un análisis cuantitativo de los algoritmos mediante las medidas de comparación que se mencionaron en la introducción, decidimos achicar la imagen original mediante un programa de edición de imágenes para luego agrandarla mediante nuestros métodos y poder comparar los resultados obtenidos con la imagen original.

3.1. Ventana optima para metodo de Splines

Nuestro primer analisis se encargara de encontrar un valor optimo para la cantidad de las ventanas utilizadas en el metodo de splines. Para dicho fin, elegimos correr varias instancias del metodo con valores de K crecientes para distintos valores de ventana (4, 8, y 16 para poder comparar los resultados). Se prensentan entonces los resultados obtenidos. Vale la pena destacar que no se muestra informacion respecto al PSNR debido a que presentaba exactamente el mismo comportamiento y no ofrecia informacion extra alguna.

Como habiamos presupuesto en la introducción, agrandar el tamaño de la ventana solo hace que se tengan en cuenta valores para el punto que se quiere calcular que no depende directamente de este.

Como puede verse a continuación, agrandar el tamaño de la ventana, deja de presentar benificio alguno para valores mas altos de K porque los resultados se veulven constantes:

A partir de este punto, el algoritmo de splines utiliza una ventana de tamaño cuatro, dado que es la que presenta mejores resultados. De todos formas, no es cierto que siempre sea preferible una ventana mas chica a una que incluya mas puntos, porque en problemas donde se quieren calcular por ejemplo trayectorias, es deseable considerar mas puntos para tener mas informacion.

3.2. Análisis de los metodos

Empleamos un análisis incremental respecto al valor de los pixeles intermedios introducidos (el valor de k) para poder analizar los distintos metodos de forma escalonada y presentar conclusiones mucho más claras. Dado que nuestros algoritmos solo funcionan cuando los valores de las imágenes son divisibles por k, no deben asumirse una correlación entre los distintos valores de este debido a que las imágenes a analizar no siempre pudieron ser las mismas.

3.2.1. K = 2

Nuestro primer análisis se concentra en el valor mínimo de k para el cual esperabamos que el comportamiento de los tres métodos se mantenga bastante estable. Nuestra intuición proviene de la idea de que todos ellos ofrecian una perdida en la calidad de la imagen bastanta pequeña en relación al zoom pedido. Como podemos apreciar en los gráficos a continuación, nuestra intuición se corresponde con los valores de PSNR, donde los tres métodos se comportan relativamente iguales, sin embargo, nos sorprende ver que para el error cuadrático medio (y para PSNR también, pero en menor medida) la técnica de interpolación Bilineal obtuvo resultados muy destacables (de hecho, casi constantes), incluso frente a la técnica de Splines que esperabamos siempre tenga un mejor rendimiento. La conclusión respecto de este fenómeno se explica al final del artículo.

3.2.2. K = 4

Para este segundo caso, es cierto que como esperabamos, el error cuadrático medio del método de los vecinos se dispara rápidamente mientras que los de interpolación bilineal y splines se mantienen prácticamente iguales. Lo mismo sucede para los valores de PSNR, siendo los del método de vecinos los únicos que disminuyen con una diferencia de casi 5 puntos.

3.2.3. K = 6

Entrando en valores de k mucho más elevados, nuestro análisis empezó a dejar de coincidir con lo que creiamos en un primer momento serían los resultados finales, debido a que el método de Splines no logró sacar una diferencia notoria frente al de interpolación Bilineal, sino que incluso ambos métodos se mantuvieron prácticamente constantes. Al momento de obtener los resultados nos llamaron poderosamente la atención los valores de ECM obtenidos para las tres primeras imágenes, pero luego de hacer un análisis en conjunto de estas, llegamos a la conclusión de que la suba desmesurada en estos valores se debe a la elevada variabilidad de los contrastes en la escena (el interior de un hogar muy decorado, la foto aérea de un barrio, etc).

3.2.4. K = 10

Por último, para valores que ya se consideran altos de k el método de interpolación Bilineal todavía sigue desempeñandose igual o incluso a veces levemente mejor que el de Splines. Esto no solo contradice nuestra intuición, sino que debido a la performance de ambos, estos resultados colocan al método de interpolación como el más apto en relación benenficio/tiempo, muy por encima del de Splines (ambos ya muy por encima del método de vecinos a esta altura).

3.3. Análisis de tiempos

El análisis de tiempo, a diferencia del de los métodos, no ofrecio ninguna respuesta que no hayamos podido intuir durante la codificación de los algoritmos. Es claro que a medida que el método se perfecciona en la búsqueda de resultados más suaves, también aumenta el tiempo necesario de cálculo.

K = 2

Tiempo (1024x1024)

K = 2

Tiempo (256x256)

K = 4

Tiempo (512x512)

K = 6

4. Conclusiones

Como se menciono con anterioridad, nuestra intuicion relacionaba fuertemente a los metodos en cuanto a calidad/desempeño. Como se pudo ver a lo largo del analisis realizado, el metodo de splines nunca logro sacar una diferencia significativa respecto al metodo de interpolacion bilineal. Tambien se puede apreciar como este ultimo tiene un mejor desempeño temporal en todos los casos. Esto coloca a la interpolacion bilineal como la mejor opcion en cuanto a tiempo y calidad, dado que la ganancia por splines es minima respecto al tiempo extra. En un momento (K=2), nos llamo poderosamente la atencion que el metodo bilineal haya obtenido un mejor resultado que el metodo de splines, pero teniendo en cuenta como se terminaron comportando ambos metodos a lo largo de todo el analisis, ahora ya no parece un resultado tan anomalo. Sin embargo, no logramos llegar a una conclusion de porque la diferencia es tan significativa.

En cuanto al metodo de los vecinos, como bien dijimos al principio, se comporta relativamente bien para valores de k minimos, pero enseguida que este crece, el metodo pierde fiabilidad.