USEFUL FORMULAE

Set Theory:

- Commutative Property of Union AUB = BUA
- **Commutative Property of Intersection** $A \cap B = B \cap A$
- (3) Associative Property of Union $AU^{-}(BUC) = (AUB)UC$
- (4) Associative Property of Intersection $A \cap (B \cap C) = (A \cap B) \cap C$
- (5) Distributive Property of Union Over Intersection $A U (B \cap C) = (AUB) \cap (AUC)$
- (6) Distributive Property of Intersection Over Union $A \cap (BUC) = (A \cap B) \cup (A \cap C)$
- (7) De Morgan's Laws.
 - (i) $(AUB)' = A' \cap B'$
 - (ii) $(A \cap B)' = A'UB'$
- (8) Total Number of Subsets = 2^n Where n ---- Number of Elements in Set
- (9) Distributive property of Cartesian product over Union If A, B and C are any three Sets then
- (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (LEFT DISTRIBUTIVITY)
- (b) $(BUC) \times A = (B \times A) U (C \times A)$ (RIGHT DISTRIBUTIVITY)
- (10) Distributive property of Cartesian product over Intersection:
- $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (LEFT DISTRIBUTIVITY)

Symbols and formulae

- $(B \cap C) \times A = (B \times A) \cap (C \times A)$ (RIGHT DISTRIBUTIVITY)
- (11) Distributive property of the Cartesian product over Complement:

If A, B and C are any three Sets, then

- (a) $(A B) \times C = (A \times C) (B \times C)$
- (b) $C \times (A B) = (C \times A) (C \times B)$

Important Laws:

for any set A

(i) AUA = A

(ii) $A \cap A = A$

Identity Laws:

for any Set A

(i) AUA' = U

(ii) $A \cap A' = \emptyset$

(iii) (A')' = A

(iv) $U' = \phi$ and $\phi' = U$

Standard Fundamental Algebraic Formulac:

- (1) $(a + b)^2 = a^2 + 2ab + b^2$
- $(a b)^2 = a^2 2ab + b^2$
- (3) $a^2 b^2 = (a b) (a + b)$
- $(a + b)^2 (a b)^2 = 4ab$
- $(a + b)^2 + (a b)^2 = 2 (a^2 + b^2)$
- $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$
- $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

$$= a^3 + b^3 + 3ab (a + b)$$

(8)
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$= a^3 - b^3 - 3ab (a - b)$$

(9)
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

(10)
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$(11) \ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)$$

$$(12) \ a^2 + b^2 + c^2 - ab - bc - ac$$

(12)
$$a^2 + b^2 + c^2 - ab - bc - ac = \left(\frac{a - b}{\sqrt{2}}\right)^2 + \left(\frac{b - c}{\sqrt{2}}\right)^2 + \left(\frac{c - a}{\sqrt{2}}\right)^2$$

Mathematics XI

Real And Complex Number: let Z = a + ib be a complex number. Complex number can be written in the form of an order pair Z = (a, b)

Properties of Complex number:

Equality:

$$(a, b) = (c, d)$$
 iff $a = c, b = d$

(ii) Addition:

$$(a, b) + (c, d) = (a + c, b + d)$$

(iii) Subtraction:

$$(a, b) - (c, d) = (a - c, b - d)$$

(iv) Multiplication:

$$(a, b). (c, d) = (ac - bd, ad + bc)$$

(v) Division:

$$\frac{(a, b)}{(c, d)} = \left(\frac{ac + bd}{c^2 + d^2}, \frac{bc - ad}{c^2 + d^2}\right)$$

(vi) Multiplicative Inverse of (a, b):

$$(a, b) = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

Modulus and Conjugate of Complex Number:

If Z = x + iy be a Complex number then $\overline{Z} = x - iy$ be a conjugate of Complex number and $|Z| = \sqrt{x^2 + y^2}$ be a modulus of a complex number.

Properties of Modulus and Conjugate of Complex Numbers:

$$(1) \quad \overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}$$

$$(2) \quad \overline{Z_1 \cdot Z_2} = \overline{Z_1} \cdot \overline{Z_2}$$

$$(3) \quad Z \cdot \overline{Z} = |Z|^2$$

- Symbols and formulae $(4) |Z_1 \cdot Z_2| = |Z_1| \cdot |Z_2|$
- $(5) \quad \left| \frac{Z_1}{Z_2} \right| = \frac{|Z_1|}{|Z_2|}$
- (6) $\overline{(\overline{Z})} = Z$
- $Z + \overline{Z}$ is purely real.
- $Z \overline{Z}$ is purely imaginary

*
$$x = \frac{Z + \overline{Z}}{2}$$
 and $y = \frac{Z - \overline{Z}}{2i}$ are called conjugates

The triangle Inequality:

$$|Z_1| - |Z_2| \le |Z_1 + Z_2| \le |Z_1| + |Z_2|$$

Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Cube Roots of Unity:

(i)
$$i = \sqrt{-1} \Rightarrow i^2 = -1$$
 (ii) $1 + \omega + \omega^2 = 0$ (iii) $\omega^3 = 1$

Nature of the Roots of a Quadratic Equation:

- (1) If D = 0 then the roots are equal
- (2) If D > 0 then the roots are real and unequal
- (3) If D < 0 then the roots are complex and unequal
- If D is a perfect square then the roots are rational and unequal.

Where $D = b^2 - 4ac$ is called **DISCRIMINANT**.

Roots of a Quadratic Equation:

general form of a quadratic equation.

$$ax^2 + bx + c = 0$$

(1) Sum of Roots =
$$\alpha + \beta = -\frac{b}{a}$$

Product of Roots = $\alpha\beta = \frac{c}{a}$

To form a quadratic equation when its roots are given:

 x^2 – (sum of the roots) x + (products of roots) = 0

Properties of Matrix Operation:

for any three matrices A, B and C

- Commutative property w.r to Addition A + B = B + A
- Associative property w. r to Addition

$$A + (B + C) = (A + B) + C$$

- Distributive property of multiplication of matrices over Addition. A (B + C) = AB + AC
- Distributive property of multiplication of matrices over Subtraction. A (B - C) = AB - AC
- Associative property of matrices w.r to multiplication A(BC) = (AB)C
- AI = IA = A where A and I are of the Same Order.
- K(AB) = (KA)B = A(KB), where K is a Scalar.

Properties of Transposed Matrix:

If two matrices A and B are Conformable for addition and multiplication then,

- $(1) \quad (A \pm B)^t = A^t \pm B^t$
- $(KA)^t = KA^t$; where K is a Scalar
- $(3) \quad (AB)^t = R^t A^t$
- $(4) \quad (A^t)^t = A$

Inverse of Matrix A:

$$A^{-1} = \frac{1}{|A|} Adj$$
 of A.

Sequence and Series:

nth term of Arithmetic Sequence:

$$T_{i} = a + (n - 1) d$$

Symbols and formulae

(a)
$$S_n = \frac{n}{2} \{ 2a + (n-1) d \}$$
 (b) $S_n = \frac{n}{2} (a + \ell)$

(3) Arithmetic Mean:

A.
$$M = \frac{a+b}{2}$$
 (When two numbers are given).

n - Arithmetic means b/w a & b:

(4) nth term of Geometric Sequence:

$$T_n = ar^{n-1}$$

(5) Geometric Series:

(a)
$$S_n = \frac{a(1-r^n)}{1-r}$$
; $r < 1$ (b) $S_n = \frac{a(r^n-1)}{r-1}$; $r > 1$

(c)
$$S_n = \frac{a - r\ell}{1 - r}$$
; $r < 1$ (d) $S_n = \frac{r\ell - a}{r - 1}$; $r > 1$

(we use this formula when first and last terms are given)

Geometric Mean:

$$G.M = \pm \sqrt{ab}$$
 (when two numbers are given)

n - Geometric means b/w a & b:

a = first term, b = last term.

$$r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$
 (Common ratio)

$$G_1 = ar = a \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

Mathematics XI

$$G_2 = ar^2 = a\left(\frac{b}{a}\right)^{\frac{2}{n+1}}$$

$$G_3 = ar^3 = a\left(\frac{b}{a}\right)^{\frac{3}{n+1}}$$

$$G_n = ar^n = a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$$

(7) Infinite Geometric Series:

$$S_{\infty} = \frac{a}{1-r} \qquad ; \quad r < 1$$

(8) Harmonic Sequence:

(a)
$$T_n = \frac{ab}{b + (n-1)(a-b)}$$
 (b) $\begin{vmatrix} \frac{1}{x} & \frac{1}{y} & \frac{1}{z} \\ P & q & r \\ 1 & 1 & 1 \end{vmatrix} = 0$

where $T_p = x$, $T_q = y$, $T_r = z$

(9) Harmonic Mean:

$$H.M = \frac{2ab}{a+b}$$

n – Harmonic means b/w a & b:

$$H_1 = \frac{(n+1)ab}{a+nb}$$
 , $H_2 = \frac{(n+1)ab}{2a+(n-1)b}$
 $H_3 = \frac{(n+1)ab}{a+(n-2)b}$, $H_4 = \frac{(n+1)ab}{a+(n-2)b}$

(10) Arithmetico - Geometric Series:

$$T_n = \{ a + (n-1) d \} r^{n-1}$$

(11) Relations between Arithmetic, Geometric And Harmonic Means:

(a) A.M > G.M > H.M

(b) $A.M \times H.M = (G.M)^2$

Combination and Permutation:

(1) Factorial Notation:

$$n! = n \times (n-1) \times (n-2) \times \dots \times 3 \times 2 \times 1$$

 $0! = 1$ and $1! = 1$

(2) Permutation of "i" different Objects taken "r" at a time:

$$^{n}P_{r} = \frac{n!}{(n-r)!}$$

(3) Permutation when repetition is allowed:

$$^{n}P_{r} = n$$

(4) <u>Permutation of "n" Objects when they are not all different:</u>

$$P = \frac{n!}{n_1! \times n_2! \times \dots \times n_K!}$$

(5) <u>Circular Permutation:</u>

$$P = (n-1)!$$

Combination:

$$^{n}C_{r} = \frac{n!}{(n-r)!}$$

(11) Complementary Combination:

(i)
$${}^{n}C_{r} = {}^{n}C_{n-r}$$

(ii)
$$^{n+1}C_r = {^n}C_{r-1} + {^n}C_r$$
 (Pascal's Rule)

(iii)
$${}^{n}C_{r} \times r! = {}^{n}P_{r}$$
 (iv) ${}^{n}C_{r} = 1$

(iv)
$${}^{n}C_{-} = 1$$

(vi)
$${}^{n}C_1 = n$$

(vii)
$$^{n-1}C_r + ^{n-1}C_{r-1} = {}^{n}C_r$$
 (viii) $\bar{}^{n}C_{n-1} = n$

(12) Division into Section or parcels:

$$^{r+c}C_r = \frac{(r+s)!}{r! s!}$$

Probability Theory:

Probability of an event A:

$$P(A) = \frac{n(A)}{n(S)}$$

where $0 \le p(A) \le 1$ also p(S) = 1 and $p(\phi) = 0$

(2) Probability of the Complement of an event A:

$$P(A') = 1 - P(A)$$

26

Mathematics XI

Addition law for Mutually exclusive events:

P(AUB) = P(A) + P(B)

Addition law for Not-Mutually exclusive events:

 $P(AUB) = P(A) + P(B) - P(A \cap B)$

Multiplication law of Independent events:

 $P(A \cap B) = P(A) \cdot P(B)$

Multiplication law for Dependent events:

 $P(A \cap B) = P(A) \cdot P(B/A)$

Conditional Probability of A given B:

$$P(A/B) = \frac{p(A \cap B)}{P(B)}$$

Mathematical Induction:

The sum of the first n Natural numbers:

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
; $\forall n \in \mathbb{N}$

(or)
$$\sum n = \frac{n(n+1)}{2}$$

(2) The sum of the squares of the first n Natural numbers:

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}; n \in \mathbb{N}$$

(or)
$$\sum n^2 = \frac{n(n+1)(2n+1)}{6}$$

(3) The sum of the cubes of the first n Natural numbers:

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2} (n+1)^{2}}{4}; n \in \mathbb{N}$$

(or)
$$\sum n^3 =$$

$$\sum n^3 = \left[\frac{n(n+1)}{2} \right]$$

Symbols and formulae Binomial Theorem:

27

(1) $(a + b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \frac{n(n-1)(n-2)}{3!}$

(2) General term in the expansion of (a + b)ⁿ:

 $T_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$

(3) The Middle term in the expansion of $(a + b)^n$:

Case # 1 (If n = even)
Middle term =
$$\left(\frac{n+2}{2}\right)$$
 th term

Case # 2 (If
$$n = odd$$

Middle term =
$$\left(\frac{n+1}{2}\right)$$
 th term

Middle term =
$$\left(\frac{n+3}{2}\right)$$
 th term

$$T_{r+1} = \frac{n(n-1)(n-2)....(n-r+1)}{r!} x^r$$

Trigonometry:

(Trigonometric Ratios)

(1)
$$\sin \theta = \frac{\text{Perpendicular}}{\text{Hypotenuse}}$$
 (4) $\csc \theta = \frac{\text{Hypotenuse}}{\text{perpendicular}}$

(2)
$$\cos\theta = \frac{\text{Base}}{\text{Hypotenuse}}$$

(5)
$$Sec\theta = \frac{Hypotenuse}{Base}$$

(3)
$$\tan\theta = \frac{\text{Perpendicular}}{\text{Base}}$$

(2)
$$\cos\theta = \frac{\text{Base}}{\text{Hypotenuse}}$$
 (5) $\sec\theta = \frac{\text{Hypotenuse}}{\text{Base}}$ (3) $\tan\theta = \frac{\text{Perpendicular}}{\text{Base}}$ (6) $\cot\theta = \frac{\text{Base}}{\text{Perpendicular}}$

Reciprocal Relations Between The Trigonometric Ratios:

(1)
$$\sin\theta = \frac{1}{\operatorname{Cosec}\theta}$$

$$(5) \quad \tan\theta = \frac{1}{\cot\theta}$$

(2)
$$\operatorname{Cosec}\theta = \frac{1}{\operatorname{Sin}\theta}$$

(6)
$$\cot \theta = \frac{1}{\tan \theta}$$

https://stbmathematics.blogspot.com/

28

Mathematics XI

(3)
$$\cos\theta = \frac{1}{\sec\theta}$$

(7)
$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

(4)
$$\operatorname{Sec}\theta = \frac{1}{\operatorname{Cos}\theta}$$

(8)
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Relation Between ARC Length and Central Angle:

$$S = r\theta$$

Conversion From Degree To Radian:

$$\hat{l} = \frac{\pi}{180}$$
 radians ≈ 0.0174 rad

Conversion From Radian To Degree:

$$1 \text{ rad} = \frac{180}{\pi} \text{ degree} \approx 57. \ 3$$

Values of Trigonometric Ratios:

Values of Trigonometric Address.									
- Ө °	0°	30°	45°	60°	90°	120°	180°	270°	360°
Rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$\frac{3\pi}{2}$	2π
Sinθ	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0	-1	0
Cosθ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	-1	0	1
Tanθ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	-√3	0	∞.	0
Cosec0	∞ .	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	$\frac{2}{\sqrt{3}}$	∞.	-1	တ
Secθ	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	ø	-2	-1	∞	1
Cote		√ 3	l _e :	$\frac{1}{\sqrt{3}}$.	· O	$-\frac{1}{\sqrt{3}}$	~ ~	12,0	

Trigonometric Identities:

(1)
$$\sin^2\theta + \cos^2\theta = 1$$

$$(2) \quad 1 + \tan^2\theta = \operatorname{Sec}^2\theta$$

(3)
$$1 + \cot^2\theta = \csc^2\theta$$

Symbols and formulae

29

Distance between given two points:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $d = ? (x_2, y_2)$

Mid-point Formula:

$$C(x,y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$(x_1, y_1) \qquad (x_2, y_2)$$

Fundamental Law:

$$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

Deduction From the Fundamental Law:

(1)
$$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

(2)
$$Sin (\alpha + \beta) = Sin \alpha Cos \beta \div Cos \alpha Sin \beta$$

(3)
$$\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

(4)
$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

(5)
$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

(6)
$$\operatorname{Cot}(\alpha + \beta) = \frac{\operatorname{Cot} \alpha \operatorname{Cot} \beta - 1}{\operatorname{Cot} \alpha + \operatorname{Cot} \beta}$$

(7)
$$\operatorname{Cot}(\alpha - \beta) = \frac{\operatorname{Cot}\alpha \operatorname{Cot}\beta + \frac{1}{2}}{\operatorname{Cot}\alpha - \operatorname{Cot}\beta}$$

Product to Sum Formulae:

(1)
$$\operatorname{Sin}\alpha \operatorname{Cos}\beta = \frac{1}{2} \left[\operatorname{Sin} (\alpha + \beta) + \operatorname{Sin} (\alpha - \beta) \right]$$

(2)
$$\cos \alpha \sin \beta = \frac{1}{2} [\sin (\alpha + \beta) - \sin (\alpha - \beta)]$$

(3)
$$\cos\alpha \cos\beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$$

(4)
$$\operatorname{Sin}\alpha \operatorname{Sin}\beta = \frac{-1}{2} [\operatorname{Cos}(\alpha + \beta) - \operatorname{Cos}(\alpha - \beta)]$$

Sum to Product Formulae:

(1)
$$\operatorname{SinU} + \operatorname{SinV} = 2 \operatorname{Sin} \left(\frac{U+V}{2} \right) \operatorname{Cos} \left(\frac{U-V}{2} \right)$$

(2)
$$\operatorname{SinU} - \operatorname{SinV} = 2 \operatorname{Cos} \left(\frac{U+V}{2} \right) \operatorname{Sin} \left(\frac{U-V}{2} \right)$$

(3)
$$\cos U + \cos V = 2\cos\left(\frac{U+V}{2}\right)\cos\left(\frac{U-V}{2}\right)$$

(4)
$$\cos U - \cos V = -2\sin\left(\frac{U+V}{2}\right)\sin\left(\frac{U-V}{2}\right)$$

Trigonometric Functions With Negative Angle:

- $Sin(-\theta) = -Sin\theta$
- $Cos(-\theta) = Cos\theta$
- $tan(-\theta) = -tan\theta$
- $\cot(-\theta) = -\cot\theta$

Trigonometric Ratios of Allied Angles:

The angles associated with basic angles of measure θ to a right angle or its multiple are called allied angles. So the angles of measures $90^{\circ} \pm \theta$, $180^{\circ} \pm \theta$, $270^{\circ} \pm \theta$, $360^{\circ} \pm \theta$ are known as allied angles.

(1)
$$\sin (90^{\circ} + \theta) = \cos \theta$$

(2)
$$\sin (90^{\circ} - \theta) = \cos \theta$$

(3)
$$Cos(90^{\circ} + \theta) = -Sin\theta$$

(4)
$$\cos (90^{\circ} - \theta) = \sin \theta$$

(5)
$$\tan (90^\circ + \theta) = -\cot \theta$$

(6)
$$\tan (90^{\circ} - \theta) = \cot \theta$$

(7) Cot
$$(90^{\circ} + \theta) = -\tan\theta$$

(8) Cot
$$(90^{\circ} - \theta) = \tan \theta$$

(1)
$$\sin(180^{\circ} + \theta) = -\sin\theta$$

(2)
$$\operatorname{Sin}(180^{\circ} - \theta) = \operatorname{Sin}\theta$$

(3)
$$Cos(180^{\circ} + \theta) = -Cos\theta$$

(4)
$$\cos(180^{\circ} - \theta) = -\cos\theta$$

(5)
$$\tan (180^\circ + \theta) = \tan \theta$$

(5)
$$\tan (180^\circ + \theta) = \tan \theta$$

(6)
$$\tan (180^\circ - \theta) = -\tan \theta$$

(7) Cot
$$(180^{\circ} + \theta) = \text{Cot}\theta$$

(8) Cot
$$(180^{\circ} - \theta) = -\text{Cot}\theta$$

Symbols and formulae

 $Sin (360^{\circ} + \theta) = Sin \theta$

(1)
$$\sin (270^{\circ} + \theta) = -\cos \theta$$

(2) $\sin (270^{\circ} - \theta) = -\cos \theta$

(3)
$$\cos(270^\circ + \theta) = \sin\theta$$

(4)
$$\cos (270^{\circ} - \theta) = -\sin \theta$$

(5)
$$\tan (270^\circ + \theta) = -\cot \theta$$

(6)
$$\tan (270^\circ - \theta) = \cot \theta$$

(7) Cot
$$(270^{\circ} + \theta) = -\tan\theta$$

$$(7)$$
 Col $(270^{\circ} + 6) = -tan($

 $Cot (270^{\circ} - \theta) = tan\theta$

(2)
$$\sin (360^{\circ} - \theta) = -\sin \theta$$

(3) $\cos (360^{\circ} + \theta) = \cos \theta$

(4)
$$\cos (360^{\circ} - \theta) = \cos \theta$$

(5)
$$\tan (360^\circ + \theta) = \tan \theta$$

(6)
$$\tan (360^\circ - \theta) = -\tan \theta$$

(7)
$$\operatorname{Cot} (360^{\circ} + \theta) = \operatorname{Cot} \theta$$

(8)
$$\operatorname{Cot} (360^{\circ} - \theta) = -\operatorname{Cot} \theta$$

Double Angle Formulae:

(1)
$$\sin 2\theta = 2\sin\theta \cos\theta$$

(2)
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

 $\cos 2\theta = 2\cos^2 \theta - 1$

$$\cos 2\theta = 2\cos^2\theta - 1$$
$$\cos 2\theta = 1 - 2\sin^2\theta$$

$$i - \tan^2 \theta$$

$$\cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

(3)
$$\sin 2\theta = \frac{2\tan \theta}{1 + \tan^2 \theta}$$

$$(4) \quad \tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

(2) $\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$

Half Angle Formulae:

(1)
$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

(3)
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$

Triple Angle Formulae:

(1)
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

(2)
$$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$$

(3)
$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$

Sine Law:

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

Cosine Law:

$$\frac{a^2 = b^2 + c^2 - 2b\cos\alpha}{b^2 = a^2 + c^2 - 2a\cos\beta}$$
$$\frac{c^2 = a^2 + b^2 - 2ab\cos\gamma}{c^2 = a^2 + b^2 - 2ab\cos\gamma}$$

	$\frac{\tan\frac{\alpha-\beta}{2}}{\tan\frac{\alpha+\beta}{2}} = \frac{a-b}{a+b}$
<u>v:</u>	$\frac{\tan\frac{\beta-\gamma}{2}}{\tan\frac{\beta+\gamma}{2}} = \frac{b-c}{b+c}$
	$\frac{\tan\frac{\gamma-\alpha}{2}}{\tan\frac{\gamma+\alpha}{2}} = \frac{c-a}{c+a}$

Half Angle Formulae:

Tangent Lav

The Sine of Half the angle in terms of the Sides:

In any triangle ABC

(1)
$$\operatorname{Sin} \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

(2) $\operatorname{Sin} \frac{\beta}{2} = \sqrt{\frac{(s-c)(s-a)}{ac}}$

where
$$S = \frac{a+b+c}{2}$$

(2)
$$\sin \frac{\beta}{2} = \sqrt{\frac{(s-c)(s-a)}{ac}}$$

(3)
$$\operatorname{Sin} \frac{\ddot{2}}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$$

The Cosine of Half the angle in terms of the sides:

In any triangle ABC

(1)
$$\cos \frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}}$$

(2)
$$\cos \frac{\beta}{2} = \sqrt{\frac{s(s-b)}{ac}}$$

(3)
$$\cos \frac{\gamma}{2} = \sqrt{\frac{s(s-c)}{ab}}$$

(c) The tangent of Half the angle in term of the sides:
(a)
$$\tan \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$
 (d) $\cot \frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$

$$\frac{s(s-b)}{s(s-b)}$$

(c)
$$\tan \frac{\gamma}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$$
 (f) $\cot \frac{\gamma}{2} = \sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$

<u>Case # 1</u> Area of triangle in terms of the measures of two sides and their included angle:

(1)
$$\triangle ABC = \frac{1}{2}bc Sin\alpha$$

(2)
$$\triangle ABC = \frac{1}{2} \text{ ac Sin} \beta$$

(3)
$$\triangle ABC = \frac{1}{2} ab Siny$$

Case # 2 Area of triangle in terms of the measures of one side

(1)
$$\triangle ABC = \frac{1}{2} a^2 \frac{Sin\gamma Sin\beta}{Sin\alpha}$$

(2)
$$\triangle ABC = \frac{1}{2}b^2 \frac{\sin\alpha \sin\gamma}{\sin\beta}$$

(3)
$$\triangle ABC = \frac{1}{2}c^2 \frac{\sin\alpha \sin\beta}{\sin\gamma}$$

Case #3 Area of triangle in terms of the measures of its sides:

$$\triangle = \sqrt{s(s-a)(s-b)(s-c)} \qquad \therefore S = \frac{a+b+c}{2}$$

Half Angle Formulae:

(We use these formulae when three sides of triangle are given and we have to find the three angles.)

(1)
$$\tan \frac{\alpha}{2} = \frac{r}{s-a}$$

(3)
$$\tan \frac{\gamma}{2} = \frac{\Gamma}{s - c}$$

$$\overline{s-b}$$

(1)
$$\tan \frac{\alpha}{2} = \frac{r}{s-a}$$

(2) $\tan \frac{\beta}{2} = \frac{r}{s-b}$
(3) $\tan \frac{\gamma}{2} = \frac{r}{s-c}$
where $r^2 = \frac{(S-a)(S-b)(S-c)}{S}$
 $S = \frac{a+b+c}{2}$

Circles Connected with a Given Triangles:

(1) Circum Radius

$$R = \frac{abc}{4 \triangle}$$

(2) <u>In – Radius:</u>

$$r = \frac{\blacktriangle}{s}$$

(3) Radii of e-circle:

$$r_1 = \frac{\blacktriangle}{s - a}$$

$$r_2 = \frac{\blacktriangle}{s - b}$$

$$r_3 = \frac{\blacktriangle}{s - c}$$

Inverse Trigonometric Functions Formulae:

(1)
$$\tan^{-1} a + \tan^{-1} b = \tan^{-1} \left(\frac{a+b}{1-ab} \right)$$

(2)
$$\tan^{-1} a - \tan^{-1} b = \tan^{-1} \left(\frac{a - b}{1 + ab} \right)$$

Note: If in any Δ a = b = c then it is called an equilateral Δ . The area is $\frac{\sqrt{3}}{4}$ (side)².

Note: (1)
$$\sin\theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$

(2)
$$1 - \cos \theta = 2 \sin^2 \frac{\theta}{2}$$

$$(3) \quad 1 + \cos\theta = 2 \cos^2 \frac{\theta}{2}$$