CISC-102

PRACTICE PROBLESM WITH SOLUTIONS

PROBLEMS

(1) Rewrite the following statements using set notation, and then give an example by listing members of sets that match the description. For example: A is a subset of C. Answer: $A \subseteq C$. $A = \{1, 2\}$, $C = \{1, 2, 3\}$.

There are many different solutions to these questions. I have shown several possibilities.

- (a) The element 1 is not a member of (the set) A. $1 \notin A$. $A = \{2, 4\}$.
- (b) The element 5 is a member of B. $5 \in B$. $B = \{5,6\}$
- (c) A is not a subset of D. $A \subseteq D$. $A = \{2, 4\}$ and $D = \{42, 18\}$.
- (d) E and F contain the same elements. E = F. $E = F = \{7\}$. $E \subseteq F$ and $F \subseteq E$.
- (e) A is the set of integers larger than three and less than 12. A = $\{x : x \in \mathbb{Z}, 3 < x < 12\}$. A = $\{4, 5, 6, 7, 8, 9, 10, 11\}$.
- (f) B is the set of even natural numbers less than 15. B = $\{2x : x \in \mathbb{N}, x < 8\}$. B = $\{2,4,6,8,10,12,14\}$.
- (g) C is the set of natural numbers x such that 4+x=3. $C=\{x:x\in\mathbb{N},4+x=3\}.$ $C=\emptyset.$
- (2) $A = \{x : 3x = 6\}$. A = 2, true or false? $A = \{2\}$. $A \neq 2$, so the statement is false.
- (3) Which of the following sets are equal $\{r, s, t\}$, $\{t, s, r\}$, $\{s, r, t\}$, $\{t, r, s\}$. They are all equal. The order in which elements are written in a set is not important, unless ellipses "..." are used to denote a sequence. For example $x = \{1, 2, ..., 10\}$.

1

- (4) Consider the sets $\{4,2\}$, $\{x: x^2 6x + 8 = 0\}$, $\{x: x \in \mathbb{N}, x \text{ is even}, 1 < x < 5\}$. Which one of these sets is equal to $\{4,2\}$? They are all equal.
- (5) Which of the following sets are equal: \emptyset , $\{\emptyset\}$, $\{0\}$. None are equal. $\{\emptyset\}$ is a set within a set. 0 is a number not a set, and definitely not the empty set.
- (6) Explain the difference between $A \subseteq B$, and $A \subset B$, and give example sets that satisfy the two statements.

 $A \subseteq B$ is pronounced as "A is a subset of B" implying that A is a subset of B that may also be equal to A. $A = B = \{1\}$. $A \subset B$ is pronounced "A is a proper subset of B" implying that A is strictly a subset of B, and there is at least one element of B that is not an element of A. $A = \{1\}$, $B = \{1,2\}$.

- (7) Consider the following sets $A = \{1, 2, 3, 4\}$, $B = \{2, 3, 4, 5, 6, 7\}$, $C = \{3, 4\}$, $D = \{4, 5, 6\}$, $E = \{3\}$.
 - (a) Let X be a set such that $X \subseteq A$ and $X \subseteq B$. Which of the sets could be X? For example X could be C, or X could be E. Are there any other sets that could be X?

 X could also be $\{2,3,4\}$.
 - (b) Let $X \not\subseteq D$ and $X \not\subseteq B$. Which of the the sets could be X? Set A is the only set from the list that is not a subset of D and not a subset of B. There are infinitely more possibilities of sets that satisfy these requirements. For example all sets $X_i = \{x : x \in \mathbb{N}, x > 8 + i\}$ for all values of $i \in \mathbb{N}$, represents an infinite collection of sets that are not subsets of B or D.
 - (c) Find the smallest set M that contains all five sets. $\mathbf{M} = \{1, 2, 3, 4, 5, 6, 7\}$
 - (d) Find the largest set N that is a subset of all five sets. $N = \emptyset$
- (8) Is an "element of a set", a special case of a "subset of a set"?

 No, an element of a set is not a subset.
- (9) Phrase the handshake counting problem using set theory notation. How many two element subsets can be chosen from an n element set?

CISC-102 3

(10) List all of the subsets of $\{1, 2, 3\}$.

$$\emptyset$$
, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}.

- (11) Let $A = \{a, b, c, d\}$.
 - (a) List all the subsets of A containing a. $\{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}$
 - (b) List all the subsets of A not containing b \emptyset $\{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}$
 - (c) Is it a coincidence that the previous two answers have exactly the same number of subsets? Explain.

Not a coincidence. Observe that the total number of subsets of A is exactly 16. Since there are 8 subsets of A with an a then it is easy to conclude that the number of subsets of A without an a is also 8. So it follows that the number of subsets of A without a b is 8.

(d) List all the subsets of A containing both a and b.

$${a,b}, {a,b,c}, {a,b,d}, {a,b,c,d}$$

(e) List all the subsets of A containing a but not containing b.

$${a}, {a, c}, {a, d}, {a, c, d}$$

(f) Define an $even \ subset$ of a set, as any subset that has an even number of elements. List all even subsets of A.

$$\emptyset$$
, $\{a,b\}$, $\{a,c\}$, $\{a,d\}$, $\{b,c\}$, $\{b,d\}$, $\{c,d\}$, $\{a,b,c,d\}$

(g) Define an *odd subset* of a set, as any subset that has an odd number of elements. List all odd subsets of A.

$$\{a\},\{b\},\{c\},\{d\},\{a,b,c\},\{a,b,d\},\{a,c,d\},\{b,c,d\}.$$

(h) Is it a coincidence that A has the same number of even as odd subsets? Explain.

Not a coincidence. Observe that the number of even subsets of A is half the total number of subsets of A.