

Common Sub-expression Elimination

Payman Samadi

Supervisor: Dr. M. Ahmadi

Outline

- Introduction
- Horizontal Common Sub-expression Elimination
- Vertical Common Sub-expression Elimination
- Design Procedure
- Design with Genetic Algorithm
- Example
- Results
- Future Works

Common Sub-expression Elimination

• When a portion of an expression (sub-expression) occurs more than once, it can be calculated once and the result can be used further.

- Sub-expression can be any bit patterns within the CSD coefficients. $(101,10\overline{1},1001)$
 - Horizontal Sub-expression
 - Vertical Sub-expression

Horizontal Sub-expression Elimination

• Sub-expressions can be found and eliminated horizontally:

$$y = (1010101)_x$$

 $y = x + x << 2 + x << 4 + x << 6$
 $y = x + x << 2 + (x + x << 2) << 4$
 $s = x + x << 2 \Rightarrow (101)$
 $y = s + s << 4$

Vertical Sub-expression Elimination

 When coefficients are staked, sub-expressions can be found vertically:

$$y = (100\overline{1}01)x[0]$$
 $y = x[0] - x[0] << 2 + x[0] << 5 + (101001)x[-1] + x[-1] + x[-1] << 3 + x[-1] << 5$

$$s = x[0] + x[-1]$$

$$y = s + s << 5 - x[0] << 2 + x[-1] << 3$$

- Stack Coefficients Vertically
- Creating Graph of Vertices: V_{id}
- Creating Partial Identification Graph: G'_{id}

$$-G'_{id} = (V_{id}, E'_{id}) E'_{id} = E_h + E_v$$

- Creating the Final Edge: $E_{id} = E'_{id} E_{unique}$
- Creating Identification Graph: $G_{id} = (V_{id}, E_{id})$
- Creating the Search graph: S

• Suppose a filter with following coefficients:

$$c_0 = 1010\overline{1}001$$
 $c_1 = 10000101$

• Creating the vertical stack:

c_0	$1010\bar{1}001$
c_1	10000101

• Graph of Vertices: $V_{id} = \{V_1...V_7\}$

$$V_{id} = \left\{ V_1 ... V_7 \right\}$$

\mathbf{c}_0	10101001
c_1	10000101

Vertex	Digit Polarity	Coefficient	digit
(Non-zero digit)			Position
V_1	+1	0	8
V_2	+1	0	6
V_3	-1	0	4
V_4	+1	0	1
V_5	+1	1	8
V_6	+1	1	3
V_7	+1	1	1

• Partial ID Graph: G'_{id}

c_0	$1010\overline{1}001$
\mathbf{c}_1	10000101

$$G'_{id} = (V_{id}, E'_{id})$$

$$E'_{id} = E_h + E_v$$

Edge list E'_{id} with Edge Properties:

Edge	(V_a,V_b)	Туре	Polarity	Length	(C_1,C_2)
1	(1,2)	h	+	1	
2	(1,3)	h	-	3	
3	(1,4)	h	+	6	
4	(1,5)	V	+		(c_0,c_1)
5	(2,3)	h	-	1	
6	(2,4)	h	+	4	
7	(3,4)	h	ı	2	
8	(4,7)	V	+		(c_0,c_1)
9	(5,6)	h	+	4	
10	(5,7)	h	+	6	
11	(6,7)	h	+	1	

• Completed ID Graph: G_{id}

$$E_{id} = E'_{id} - E_{unique}$$

• Search Graph:

• Hamiltonian Walk: S_7 , S_6 , S_3 , S_5 , S_8 , S_4 , S_1 , S_2 .

• ID Graph Vertex Availability Table after (S6, S3)

Elimination:

V _{id} 1	Available
V _{id} 2	Not Available
V _{id} 3	Available
V _{id} 4	Not Available
V _{id} 5	Not Available
V _{id} 6	Not Available
V _{id} 7	Available

Design with Genetic Algorithm

• Fitness Function:

$$fitness: \sum_{i=1}^{n} (OC_i - 1)$$
 (If $OC_i > 1$ else 0)

OC: Occurrence Count: Number of Elimination

Hamiltonian Walk (Chromosomes):

S7, S6, S3, S5, S8, S4, S1, S2

Example

• 10th order FIR filter with 16bit CSD digits and maximum 3 non-zero digits:

a0	0	-3H	0	0	0	-3H	0	0	0	0	0	0	0	-1	0	0
al	0	0	-5H	0	1	0	0	0	-5H	0	0	0	0	0	0	0
a2	0	0	0	0	0	+6V	0	0	+9V	0	+11V	0	0	0	0	0
a3	0	0	0	0	+1H	0	+1H	0	0	-1	0	0	0	0	0	0
a4	0	0	0	0	0	0	+1H	0	+1H	0	-1	0	0	0	0	0
a5	0	0	0	0	0	+6V	0	0	+9V	0	+11V	0	0	0	0	0
a6	0	0	0	0	0	0	-5H	0	-1	0	0	0	-5H	0	0	0
a7	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0
a8	0	0	0	0	0	0	0	0	-5H	0	0	-1	0	0	-5H	0
a9	0	0	0	0	0	0	0	0	0	0	-3H	0	0	0	-3H	0
a10	0	0	0	0	0	0	0	0	0	0	-3H	0	-1	0	-3H	0

Improvement Table

• 10th order FIR filter with 16bit CSD digits:

Filter (by non-zero digit count)	_	Reduction (additions)	Additions Required After Elimination	Reduction (%)
6	45	14	31	31.1%
5	36	10	26	27.7%
4	40	13	27	32.5%
3	29	7	22	24.1%
2	20	6	14	30.0%

Future Works

- Using Immune Programming as an optimization function
- Trying Different Algorithms for Elimination