EPITA	1	InfoS3
	1	

Novem	hre	2020
MOVEIII	שוט	2020

Groupe :

NOM:	 Prénom :	
INCIVI .	 Prenom:	

Contrôle Electronique - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (QCM sans points négatifs - 4 points)

Chois	issez la ou les bonnes réponses :			
Q1.	Que peut-on dire de la tension aux bornes d'un interrupteur ouvert ?			
	a- Elle est nulle	c- Elle est toujours négative		
	(b) Elle dépend du circuit	d- Elle est toujours positive		
Q2.	Le dopage permet d'augmenter la résistivité du semi-conducteur			
	a- VRAI	(b) FAUX		

- Q3. Quand on associe deux morceaux de silicium dopés différemment, il se crée, au niveau de la séparation entre les 2 morceaux, une zone de charges immobiles. Comment appelle-t-on cette zone?
 - a- Une diode

c- Une pile

b- Une zone de déplétion

- d- Une zone interdite
- Q4. La cathode d'une diode : (une ou plusieurs réponses sont possibles)
 - a- est la borne par laquelle entre le courant en sens direct
 - (b) correspond à la zone dopée N
 - © Est la borne de potentiel le plus bas lorsque la diode est polarisée en sens direct
- Q5. Un matériau semi-conducteur ayant un dopage de type P présente :
 - a un défaut d'électrons dans sa structure cristaline
 - b- un surnombre d'électrons dans sa structure cristaline
- **Q6.** Si on utilise son modèle réel (générateur de tension imparfait), par quoi remplace-t-on la diode quand elle est bloquée :
 - a- Un fil

c- Un générateur de tension idéal

(b) Un interrupteur ouvert

d- Un générateur de Thévenin

Q7. Par quoi remplace-t-on la diode passante si on utilise le modèle réel (générateur de tension imparfait)? On notera V_0 sa tension de seuil.

Q8. Soit le circuit ci-contre, dans lequel on considère la diode idéale (interrupteur)

Que vaut la tension V_d aux bornes de la diode si E=10V, $R=100\Omega$.

$$(c-) -10V$$

$$d - 0,1 V$$

Exercice 2. Révisions de SUP et diodes (6 points)

Soit le circuit suivant.

1. Déterminer le générateur de Thévenin vu par la diode.

En uhlisant les équivalences Thérenin Morhon on a:

2. A quelle condition la diode est-elle passante ? On utilisera le modèle à seuil (Modèle générateur de tension parfait).

La disde reste plapaire tourt pur
$$V_D < V_O$$
.

6r, si la disde est plapaire, $V_D = E_{th}$.

=5 Si la disde est passante si $\frac{3RI-2E}{F} > V_O$

Exercice 3. Diodes (5 points)

Soit le schéma suivant : On modélisera la diode en utilisant son modèle à seuil (générateur de tension idéal) avec $V_0=0.7V$. Pour les 2 questions suivantes, vous utiliserez un raisonnement par l'absurde.

1. Si $R=1k\Omega$, $I_0=10mA$ et E=5V, montrer que la diode est bloquée. Déterminer alors l'intensité du courant I_R qui traverse la résistance.

2. Si $R=10\Omega$, $I_0=10mA$ et E=5V, montrer que la diode est passante. Déterminer alors l'intensité du courant I_D qui traverse la diode.

Exercice 4. Écrêteur (5 points)

Soit le circuit suivant, dans laquelle on considère la diode idéale.

On donne $e(t) = E \cdot \sqrt{2} \cdot \sin(\omega t)$ avec $E > E_0$ ($E_0 = cste$)

1. Déterminer la tension u(t) aux bornes de R_L si la diode est passante.

2. Déterminer l'expression de la tension u(t) aux bornes de R_L si la diode est bloquée. On supposera que $r \ll R_L$.

Quelle est alors l'expression de la tension $v_D(t)$ aux bornes de la diode. En déduire pour quelles valeurs de e(t) la diode est bloquée.

3. Tracer sur le graphe ci-dessous la tension u(t) aux bornes de R_L si $E_0=5V$

