Синтез систем регулирования методом линейно-квадратичной аппроксимационной коррекции

А. Б. Филимонов

МИРЭА – Российский технологический университет E-mail: filimon_ab@mail.ru

Аннотация. Разрабатывается методология аппроксимационной коррекции управляемых динамических систем. Желаемый результат коррекции задается эталонной моделью. В предлагаемых схемах динамической коррекции применяется формализм линейно-квадратичной оптимизации. предлагаемых схемах динамической коррекции применяется формализм линейно-квадратичной оптимизации, в котором оптимизируемые интегральные квадратичные критерии мерой отклонения переходных характеристик скорректированного объекта от их эталонных значений. Посредством предложенных схем коррекции решается задача синтеза систем регулирования с заданными прямыми показателями качества.

Ключевые слова: синтез систем управления; качество управления; динамическая коррекция; эталонная модель; линейно-квадратичная оптимизация

I. Введение

Проблема качества процессов управления, несмотря на давнюю историю развития, до сих пор остается важнейшей и слабо развивающейся в теории и практике автоматических систем. Более того, приходится констатировать, что в исследованиях последних десятилетий в известной мере утрачена преемственность с интуитивно ясными и технически содержательными классическими представлениями о качестве процессов управления, выработанными отечественной школой автоматики [1].

В современной автоматике при синтезе автоматических систем все большую популярность находят требования не желаемого или допустимого, а оптимального качества процесса управления синтезируемой системы [2-10]. При этом наибольшее применение безраздельное господство получили квадратичные критерии оптимальности, породившие класс линейно-квадратичных (ЛК) задач управления и являющиеся исходными в ставшем уже классическим методе аналитического конструирования оптимальных регуляторов (АКОР) Калмана-Летова. Здесь критерий качества задается в виде интегральной квадратичной формы от тех или иных показателей действительного переходного процесса, либо от невязки (рассогласования) действительного и желаемого (эталонного) переходных процессов системы и требуется обеспечить максимальную их близость (см., например, [11–19]).

Н. Б. Филимонов

Московский государственный университет *им. М.В. Ломоносова* E-mail: nbfilimonoy@mail.ru

Однако, несмотря на чрезвычайную популярность и видимые достоинства, методология квадратичной оптимизации процессов управления неоднократно подвергалась резкой критике со стороны ведущих отечественных и зарубежные ученых [2].

В настоящей работе предлагается новый метод синтеза систем автоматического регулирования (САР), основанный на динамической коррекции объекта управления [20-24], которая осуществляется посредством применения формализма ЛК-задач оптимизации. В основе решаемой задачи коррекции лежит идея постулирования желаемых динамических свойств синтезируемой системы в виде заданной эталонной модели скорректированного объекта. Алгоритмизация задач коррекции базируется на формализме ЛК-задач управления, причем оптимизируемые интегральные квадратичные функционалы служат мерой отклонения формируемых переходных характеристик каналов регулирования от эталонных значений. Предлагаемый метод показывает возможность конвергенции классической концепции прямых показателей качества процессов регулирования и методологии АКОР.

II. Назначение аппроксимационной коррекции

Один из действенных способов решения задач управления заключается в их *декомпозиции* на две подзадачи: предварительной динамической коррекции объекта и формирования закона управления для скорректированного объекта. Данную идею воплощает блок-схема САУ, представленная на рис. 1. Здесь управляющее устройство (УУ) состоит из двух блоков: *блока коррекции* (БК), исправляющего динамику объекта в соответствии с заданной эталонной динамической моделью, и *блока управления* (БУ), реализующего закон управления для скорректированного объекта.

Далее рассматривается класс линейных стационарных динамических объектов, описываемых в переменных состояния уравнениями вида

$$\dot{\mathbf{x}} = \mathbf{A}_0 \mathbf{x} + \mathbf{B}_0 \mathbf{u} \,, \tag{1}$$

$$\mathbf{y} = \mathbf{C}_0 \mathbf{x} \,, \tag{2}$$

где $t \ge 0$, $\mathbf{u} \in \mathbf{R}^r$ – управляющий вход, $\mathbf{x} \in \mathbf{R}^n$ – состояние, $\mathbf{y} \in \mathbf{R}^m$ – управляемый выход объекта, причем полагаем, что $1 < m \le r$, $\mathbf{A}_0 \in \mathbf{R}^{n \times n}$, $\mathbf{B}_0 \in \mathbf{R}^{n \times r}$, $\mathbf{C}_0 \in \mathbf{R}^{m \times n}$.

Рис. 1.

Передаточная матрица объекта по каналу «вход – выход» равна

$$\mathbf{W}_0(s) = \mathbf{C}_0 (\mathbf{E}_n s - \mathbf{A}_0)^{-1} \mathbf{B}_0,$$

где ${\bf s}$ — комплексная частота, ${\bf E}_n$ — единичная матрица n-го порядка.

Назначение САУ – отработка уставки $\mathbf{y}^*(t)$:

$$\mathbf{y}(t) \approx \mathbf{y}^*(t)$$
,

в соответствии с заданными требованиями качества процессов управления.

Действие БК будем оценивать по реакции скорректированного объекта на тестовый сигнал

$$\mathbf{v}(t) = \mathbf{v}(0) \neq 0 \quad (t > 0). \tag{3}$$

Полагаем, что данный сигнал генерируется *задатчи-ком*, описываемым дифференциальным уравнением

$$\dot{\mathbf{v}} = 0$$
.

Желаемую динамику выхода скорректированного объекта зададим эталонной моделью (ЭМ) порядка $n_{\rm M}$:

$$\dot{\mathbf{x}}_{\mathbf{M}} = \mathbf{A}_{\mathbf{M}} \mathbf{x}_{\mathbf{M}} + \mathbf{B}_{\mathbf{M}} \mathbf{v} \,, \tag{4}$$

$$\mathbf{y}_{\mathbf{M}} = \mathbf{C}_{\mathbf{M}} \mathbf{x}_{\mathbf{M}} + \mathbf{D}_{\mathbf{M}} \mathbf{v}, \qquad (5)$$

где $\mathbf{x}_{\mathrm{M}} \in \mathbf{R}^{n_{\mathrm{M}}}$ — состояние, $\mathbf{y}_{\mathrm{M}} \in \mathbf{R}^{m}$ — выход эталонной модели; \mathbf{A}_{M} , \mathbf{B}_{M} , \mathbf{C}_{M} , \mathbf{D}_{M} — числовые матрицы соответствующих размеров.

Полагаем, что ЭМ устойчива, так что реакция выхода на постоянное входное воздействие (3) устанавливается на постоянном уровне, т.е.

$$\lim_{t\to\infty}\dot{\mathbf{y}}_{\mathbf{M}}(t)=0.$$

Расхождение между выходом скорректированного объекта и выходом эталонной модели выражает *невязка*

$$\delta \mathbf{y}(t) = \mathbf{y}(t) - \mathbf{y}_{\mathbf{M}}(t)$$
.

Динамическая коррекция объекта должна обеспечивать требование:

$$\delta \mathbf{y}(t) \approx 0$$
. (6)

Введем малый положительный параметр у:

$$0 < \gamma << 1. \tag{7}$$

Точность приближения (6) будем оценивать следующим интегральным квадратичным критерием (здесь $\| ... \|$ обозначает евклидову норму вектора):

$$J_{y}^{\gamma} = \int_{0}^{\infty} e^{-2\gamma t} \| \delta \mathbf{y}(t) \|^{2} dt, \qquad (8)$$

а интенсивность управляющих воздействий - критерием

$$J_{u}^{\gamma} = \int_{0}^{\infty} e^{-2\gamma t} \| \mathbf{u}(t) \|^{2} dt.$$
 (9)

Весовой множитель $e^{-2\gamma t}$ обеспечивает сходимость функционалов (8) и (9) для класса *ограниченных* функций, позволяя рассматривать установившиеся режимы в САУ с *ненулевой* асимптотикой процессов $\delta \mathbf{v}(t)$ и $\mathbf{u}(t)$.

Задачу синтеза БК можно формализовать посредством ограничения или минимизации критериев (8), (9). В наиболее общей постановке это будет задача двухкритериальной оптимизации вида (g > 0):

$$J^{\gamma} = gJ_{\nu}^{\gamma} + J_{u}^{\gamma} \longrightarrow \min$$
,

или то же самое, но с учетом (8), (9):

$$J^{\gamma} = \int_{0}^{\infty} e^{-2\gamma t} (g \| \delta \mathbf{y}(t) \|^{2} + \| \mathbf{u}(t) \|^{2}) dt \rightarrow \min . \quad (10)$$

Оптимизационный аспект структурно-параметрического синтеза БК показывает, что рассматриваемый тип динамической коррекции объекта по своему смыслу является аппроксимационным.

III. ЭКВИВАЛЕНТНАЯ СТАЦИОНАРНАЯ ЛИНЕЙНО-КВАДРАТИЧНАЯ ЗАДАЧА

Предлагаемую структуру БК отражает рис. 2.

Рис. 2.

Рассмотрим систему S порядка $N = n + n_{\mathbf{M}} + m$:

$$\dot{\mathbf{x}} = \mathbf{A}_0 \mathbf{x} + \mathbf{B}_0 \mathbf{u} \,, \tag{13}$$

$$\dot{\mathbf{x}}_{\mathbf{M}} = \mathbf{A}_{\mathbf{M}} \mathbf{x}_{\mathbf{M}} + \mathbf{B}_{\mathbf{M}} \mathbf{v}, \qquad (14)$$

$$\dot{\mathbf{v}} = \mathbf{0}$$
, (15)

$$\delta \mathbf{y} = \mathbf{C}_0 \mathbf{x} - \mathbf{C}_M \mathbf{x}_M - \mathbf{D}_M \mathbf{v}. \tag{16}$$

Она описывает динамику состояний объекта и эталонной модели, формирование сигналов $\mathbf{v}(t)$ и $\delta \mathbf{y}(t)$.

Сформируем вектор состояния системы S:

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{x}_{\mathbf{M}} \\ \mathbf{v} \end{bmatrix}. \tag{17}$$

Тогда уравнения (13)–(16) можно записать в форме:

$$\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}\mathbf{u} \,, \tag{18}$$

$$\delta \mathbf{y} = \mathbf{C} \mathbf{z} . \tag{19}$$

В соответствии с (17) матрицы ${\bf A}$, ${\bf B}$, ${\bf C}$ имеют блочную структуру (нулевые блоки оставлены пустыми), представленную следующими выражениями:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_0 & & & \\ & \mathbf{A}_M & \mathbf{B}_M \\ & & \mathbf{A}_M & \mathbf{B}_M \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{B}_0 \\ & & \end{bmatrix},$$

$$\mathbf{C} = \begin{bmatrix} \mathbf{C}_0 & | -\mathbf{C}_M & | -\mathbf{D}_M \\ & & & \end{bmatrix}.$$

Закон управления (11) представим в виде

$$\mathbf{u} = -\mathbf{K}\mathbf{z} , \qquad (20)$$

где в соответствии с (17) К – блочная матрица:

$$\mathbf{K} = [\mathbf{K}_1 \mid \mathbf{K}_2 \mid \mathbf{K}_3]. \tag{21}$$

Из (19) следует равенство

$$g \| \delta \mathbf{y} \|^2 = \mathbf{z}^{\mathrm{T}} \mathbf{Q} \mathbf{z} , \qquad (22)$$

где ${f Q}$ — симметрическая неотрицательно определенная матрица:

$$\mathbf{Q} = g \mathbf{C}^{\mathrm{T}} \mathbf{C} \tag{23}$$

Используя (22), преобразуем критерий (10) к виду

$$J^{\gamma} = \int_{0}^{\infty} e^{-2\gamma t} \left(\mathbf{z}^{\mathrm{T}}(t) \mathbf{Q} \mathbf{z}(t) + \| \mathbf{u}(t) \|^{2} \right) dt \rightarrow \min . \quad (24)$$

Рассмотрим вспомогательную систему \hat{S} :

$$\hat{\mathbf{x}} = (\mathbf{A}_0 - \gamma \mathbf{E}_n) \hat{\mathbf{x}} + \mathbf{B}_0 \hat{\mathbf{u}}, \qquad (25)$$

$$\hat{\hat{\mathbf{x}}}_{\mathbf{M}} = (\mathbf{A}_{\mathbf{M}} - \gamma \mathbf{E}_{n_{\mathbf{M}}}) \hat{\mathbf{x}}_{\mathbf{M}} + \mathbf{B}_{\mathbf{M}} \hat{\mathbf{v}}, \qquad (26)$$

$$\dot{\hat{\mathbf{v}}} = -\gamma \hat{\mathbf{v}} , \qquad (27)$$

где $\hat{\mathbf{x}} \in \mathbf{R}^n$, $\hat{\mathbf{x}}_{\mathbf{M}} \in \mathbf{R}^{n_{\mathbf{M}}}$, $\hat{\mathbf{v}} \in \mathbf{R}^m$, $\hat{\mathbf{u}} \in \mathbf{R}^r$ – управляющий вход.

Вводя вектор состояние системы \hat{S} :

$$\widehat{\mathbf{z}} = \begin{bmatrix} \widehat{\mathbf{x}} \\ \widehat{\mathbf{x}}_{\mathbf{M}} \\ \widehat{\mathbf{v}} \end{bmatrix},$$

из (25)-(27) получим ее уравнения состояния в виде

$$\dot{\hat{\mathbf{z}}} = \hat{\mathbf{A}}\hat{\mathbf{z}} + \hat{\mathbf{B}}\hat{\mathbf{u}}, \qquad (28)$$

где

$$\widehat{\mathbf{A}} = \mathbf{A} - \gamma \mathbf{E}_{N} \,. \tag{29}$$

Из (29) следует, что спектр системы \hat{S} получается сдвигом спектра системы S влево на малую величину (7).

Установим связь между динамическими процессами в системах \hat{S} и \hat{S} .

Предложение 1. Система S приводится к системе S посредством следующей замены переменных:

$$\mathbf{z}(t) = e^{\gamma t} \hat{\mathbf{z}}(t), \quad \mathbf{u}(t) = e^{\gamma t} \hat{\mathbf{u}}(t).$$
 (30)

Таким образом, соотношения (30) устанавливают взаимно однозначное соответствие между управляемыми движениями систем \hat{S} и \hat{S} .

Подстановка выражений (30) в критерий (24) приводит к оптимизационной задаче для системы \hat{S} :

$$J^{0} = \int_{0}^{\infty} (\widehat{\mathbf{z}}^{\mathrm{T}}(t)\mathbf{Q}\widehat{\mathbf{z}}(t) + \|\widehat{\mathbf{u}}(t)\|^{2})dt \rightarrow \min.$$
 (31)

Отсюда вытекает следующее предложение.

Предложение 2. Исходная задача ЛК-оптимизации процессов управления (24) в системе S эквивалентна стационарной задаче ЛК-оптимального управления системой \widehat{S} по критерию (31).

Отметим, что закон управления (20) для системы S с помощью соотношений (30) преобразуется в закон управления для системы \hat{S} :

$$\hat{\mathbf{u}} = -\mathbf{K}\hat{\mathbf{z}} \ . \tag{32}$$

Предложение 3. Если объект (1), (2) является вполне управляемым, эталонная модель (4), (5) – устойчива, то оптимизационная задача (10) разрешима.

Обоснуем данное предложение. В силу предложения 2 вопрос разрешимости оптимизационной задачи (18), (24) сводится к вопросу разрешимости задачи (28), (31). Заметим, что система \hat{S} состоит из трех подсистем, представленных уравнениями (25)–(27). Из полной управляемости объекта следует, что подсистема (25) вполне управляема. Подсистемы (26), (27) хотя и неуправляемы, но являются устойчивыми. Таким образом, система \hat{S} стабилизируе-

ма, т.е. посредством действия стабилизирующих обратных связей возможно добиться ее устойчивости. В этом случае функционал в (31) будет принимать конечные значения, что гарантирует существование оптимума (10).

Замечание. Приведем еще одно соображение в пользу излагаемого подхода к формализации задачи динамической коррекции - применении критериев качества (8), (9) с параметризацией (7) и последующем сведении исходной оптимизационной задачи к эквивалентной стационарной ЛК-задаче.

Пусть время установления переходных процессов в скорректированном объекте не превышает величины T, причем γT <<1. Сравним движения систем \hat{S} и \hat{S} , полагая, что их начальные состояния совпадают:

$$\hat{\mathbf{z}}(0) = \mathbf{z}(0)$$
.

Сравнение уравнений (13)–(15) и (25)–(27) показывает, что управляемые динамические процессы в системах $\mathbf S$ и $\hat{\mathbf S}$ практически не будут отличаться на временном интервале $0{<}t{\le}T$. В частности, согласно (27) сигнал $\hat{\mathbf v}(t)$ является экспоненциальным

$$\hat{\mathbf{v}}(t) = \hat{\mathbf{v}}(0) \exp(-\gamma t)$$
,

но в силу (7) это — слабозатухающий (т.е. квазистационарный) сигнал, который практически совпадает с постоянным сигналом (3) при $0 < t \le T$.

IV. РЕДУКЦИЯ ЗАДАЧ РЕГУЛИРОВАНИЯ НА ОСНОВЕ СХЕМ АППРОКСИМАЦИОННОЙ КОРРЕКЦИИ

Решение стационарной ЛК-задачи (28), (31) дает линейный закон управления (32) с матрицей ${\bf K}$ вида

$$\mathbf{K} = \mathbf{B}^{\mathrm{T}} \mathbf{P}$$
.

где $\mathbf{P} \in \mathbf{R}^{N \times N}$ — симметрическая матрица, являющаяся решением алгебраического матричного уравнения Риккати

$$\mathbf{P}\mathbf{B}\mathbf{B}^{\mathrm{T}}\mathbf{P}-\mathbf{P}\widehat{\mathbf{A}}-\widehat{\mathbf{A}}^{\mathrm{T}}\mathbf{P}-\mathbf{O}=0$$
.

Разбивая полученную матрицу ${\bf K}$ согласно (21) на блоки размеров $r \times n$, $r \times n_{\bf M}$ и $r \times m$, находим искомые матричные параметры ${\bf K}_1$, ${\bf K}_2$ и ${\bf K}_3$ БК (11), (12).

Необходимая настройка БК осуществляется посредством подходящего выбора весового коэффициента g в структуре весовой матрицы (23).

Построение САУ по схеме динамической коррекции каналов управления (рис. 1) позволяет упростить задачу регулирования — она решается применительно к эталонной модели скорректированного объекта. Если же динамический порядок эталонной модели меньше порядка модели, т.е. $n_{\rm M} < n$, то динамическая коррекция объекта порождает еще один благоприятный эффект — снижение размерности задачи регулирования.

Пример. Параметры объекта: n = 3, m = r = 1;

$$\mathbf{A}_0 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -0.5 & 1 \\ 0 & 0 & -1 \end{bmatrix}, \quad \mathbf{B}_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{C}_0 = \begin{bmatrix} 1.5 & 0 & 0 \end{bmatrix}.$$

Его передаточная функция

$$W_0(s) = \mathbf{C}_0 (\mathbf{E}_n s - \mathbf{A}_0)^{-1} \mathbf{B}_0 = \frac{3}{s(s+1)(2s+1)}.$$

Примем следующую эталонную модель динамики скорректированного объекта:

$$W_{\rm M}(s) = \frac{2s+1}{(s+1)^2}$$
.

Приведем результаты расчета параметров БК для ряда вариантов значений весового коэффициента g:

1)
$$g = 10^{2}$$
: $\mathbf{K}_{1} = [15.00 \ 10.08 \ 3.60]$,
 $\mathbf{K}_{2} = [-2.77 \ -0.53]$, $K_{3} = -7.94$;
 $\Lambda = \{-1.00, -1.00, -1.27 \pm 2.06i, -2.55\}$;
2) $g = 10^{3}$: $\mathbf{K}_{1} = [47.43 \ 22.99 \ 5.85]$,
 $\mathbf{K}_{2} = [-13.35 \ -4.23]$, $K_{3} = -22.16$;
 $\Lambda = \{-1.00, -1.00, -1.84 \pm 3.09i, -3.68\}$;
3) $g = 10^{4}$: $\mathbf{K}_{1} = [150.00 \ 51.57 \ 9.20]$,
 $\mathbf{K}_{2} = [-55.94 \ -21.60]$, $K_{3} = -55.80$;
 $\Lambda = \{-1.00, -1.00, -2.68 \pm 4.57i, -5.35\}$;
4) $g = 10^{5}$: $\mathbf{K}_{1} = [474.3 \ 114.3 \ 14.2]$,
 $\mathbf{K}_{2} = [-213.6 \ -91.2]$, $K_{3} = -132.8$;
 $\Lambda = \{-1.00, -1.00, -3.91 \pm 6.73i, -7.83\}$.

Рис. 3.

Рис. 3 иллюстрирует результат динамической коррекции. На нем представлены переходные характеристики скорректированного объекта и эталонной модели, т.е. их реакции y(t) и $y_{\rm M}(t)$ на единичную ступеньку: $v{=}1(t)$. Видно, что фактическая переходная характеристика близка к эталонной.

Список литературы

- Солодовников В.В., Филимонов Н.Б. Динамическое качество систем автоматического регулирования. М.: МВТУ им. Н.Э. Баумана, 1987.
- [2] Филимонов Н.Б. Проблема качества процессов управления: смена оптимизационной парадигмы // Мехатроника, автоматизация, управление. 2010. № 12. С. 2-11.
- [3] Справочник по теории автоматического управления / Под ред. А.А. Красовского. М.: Наука, 1987.

- [4] Методы классической и современной теории автоматического управления. В 5-ти тт. Т. 4. Теория оптимизации систем автоматического управления / Под ред. К.А. Пупкова и Н.Д. Егупова. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004.
- [5] Hocking L.M. Optimal Control: An Introduction to the Theory and Applications, Oxford University Press, New York, 1991.
- [6] Stengel R. Optimal Control and Estimation, Dover Publications, 1994.
- [7] Sontag E.D. Mathematical Control Theory: Deterministic Fi-nite Dimensional Systems, Springer, 1998.
- [8] Mutambara A. Design and Analysis of Control Systems, Boca Raton, FL: CRC Press, 1999.
- [9] Locatelli A. Optimal Control: An Introduction, Birkhauser, Boston, MA, 2001.
- [10] Goebel R. Stabilizing a linear systems with saturation through optimal control, IEEE Trans. Autom. Control, vol. 50, no. 5, pp. 650–655, May 2005.
- [11] Johnson M.A., Grimble M.J. Recent Trends in Linear Op-timal Quadratic Multivariable Control Systems Design, IEEE-review, vol. 134, pp. 53-71, 1987.
- [12] Cao Y., Ren W. Optimal linear-consensus algorithms: An LQR perspective, IEEE Transactions on Systems, Man, and Cyber-netics, Part B (Cybernetics), vol. 40, no. 3, pp. 819–830, June 2010.
- [13] Mehrmann V. The Linear Quadratic Control Problem: Theory and Numerical Algorithms, Habilitationsschrift, Universit/it Bielefeld. 1988.
- [14] Dorato P., Abdallah C., Cerone V. Linear-Quadratic Control: An Introduction, Prentice Hall, Englewood Cliffs, NY, 1995.
- [15] Sima V. Algorithms for Linear-Quadratic Optimization, Marcel Dekker, Inc., New York, NY, 1996.
- [16] Anderson B.D.O., Moore J.B. Optimal Control: Linear Quadratic Methods, Prentice Hall, Englewood Cliffs, New Jersey, Dover Publications, 2007.
- [17] Alt W., Schneider C. Linear-quadratic control problems with L1-control cost. Optimal Control Applications and Methods, vol. 36, pp. 512-534, 2015.
- [18] Montenbruck J.M., Schmidt G.S., Seyboth G.S., Allgöwer F. On the necessity of diffusive couplings in linear synchro-nization problems with quadratic cost, IEEE Transactions on Automatic Control, vol. 60, no. 11, pp. 3029–3034, Nov 2015.
- [19] Nguyen D.H. Reduced-order distributed consensus controller design via edge dynamics, IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 475– 480, Jan 2017.
- [20] Солодовников В.В., Филимонов А.Б., Филимонов Н.Б. Аналитическое конструирование оптимальных регуляторов методом фазового пространства. Ч. І. Объекты с одномерным управляющим входом // Изв. вузов. Приборостроение. 1982. № 6. С. 23-27.
- [21] Солодовников В.В., Филимонов А.Б., Филимонов Н.Б. Аналитическое конструирование оптимальных регуляторов методом фазового пространства. Ч.П. Многосвязное регулирование // Изв. вузов. Приборостроение. 1982. № 8. С. 28-32.
- [22] Филимонов А.Б., Филимонов Н.Б. Динамическая коррекция процессов регулирования методом линейно-квадратичной оптимизации // Мехатроника, автоматизация, управление. 2011. № 5. С. 9-14.
- [23] Филимонов А.Б., Филимонов Н.Б. Аппроксимационная формализация обратных задач динамики в процессах управления // Проблемы управления и моделирования в сложных системах: Труды XIV Международной конференции. Самара: Самарский НЦ РАН, 2012. С. 546-549.
- [24] Филимонов А.Б., Филимонов Н.Б. Метод динамической ра-звязки каналов управления на основе формализма линейно-квадратичной оптимизации // Материалы конференции «Управление в технических, эргатических, организационных и сетевых системах» СПб.: ГНЦ РФ ОАО «Концерн «ЦНИИ «Электроприбор», 2012. С. 827-830.
- [25] Филимонов А.Б., Филимонов Н.Б. Метод динамической коррекции и автономизации каналов управления в многосвязных системах на основе формализма линейно-квадратичной оптимизации // Мехатроника, автоматизация, управление. 2012. № 12. С. 2-6.