k-Nearest Neighbor

George Darmiton da Cunha Cavalcanti (gdcc@cin.ufpe.br)
Cln/UFPE

Introdução

Problema:

- Como classificar um dado padrão?
- Comparando com outros

k-NN (k-Nearest Neighbors)

- K-vizinhos mais próximos
- Compara um padrão X de classe desconhecida com um conjunto de outros padrões cujas classes são conhecidas e infere a classe de X a partir dos mais semelhantes
 - Mais semelhantes = mais próximos = menor distância

NN ou 1-NN

- Jóquei
- Halterofilista

- Classifica-se um dado padrão associando a ele a classe do elemento de treinamento mais próximo (que tem a menor distância)
- Exemplo:
 - X está mais próximo de um elemento da classe Jóquei, logo X será classificado como Jóquei
 - Y está mais próximo de um elemento da classe Halterofilista, logo Y será classificado como tal

NN ou 1-NN

- Jóquei
- Halterofilista

- e = [peso(kg); altura(m)]
- $x = [70; 1,63] \rightarrow ?$
- $y = [83; 1,77] \rightarrow ?$

Conjunto de Treino:

- $j_1 = [50; 1,60] \rightarrow J\'{o}quei$
- $j_2 = [53; 1,65] \rightarrow J\text{\'oquei}$
- $j_3 = [60; 1,58] \rightarrow J\text{\'oquei}$
- $j_4 = [62; 1,62] \rightarrow J\acute{o}quei$
- $h_1 = [91; 1,75] \rightarrow Halterofilista$
- $h_2 = [102; 1,85] \rightarrow Halterofilista$
- $h_3 = [105; 1,82] \rightarrow Halterofilista$
- $h_4 = [103; 1,77] \rightarrow Halterofilista$
- $h_5 = [87; 1,73] \rightarrow Halterofilista$

Distância Euclidiana – D(a,b)

$$D(a,b) = sqrt((a_1-b_1)^2 + (a_2-b_2)^2 + ... + (a_n-b_n)^2)$$

Sabendo que:

$$a = [a_1, a_2, ..., a_n];$$

$$b = [b_1, b_2, ..., b_n];$$

$$D(x, j_1) = 20$$

$$D(x, j_2) = 17^*$$

$$D(x, j_3) = 10$$

$$D(x, j_4) = 8$$

$$D(x, h_1) = 21$$

$$D(x, h_2) = 32$$

$$D(x, h_3) = 35$$

$$D(x, h_4) = 33$$

$$D(x, h_5) = 17^*$$

Diagrama de Voronoi

Distância Euclidiana Normalizada

$$D_n(a_l, a_k) = \sqrt{\sum_{i=1}^n \left(\frac{a_{li} - a_{ki}}{range_i}\right)^2}$$

Sendo:

- $a_i = [a_{i1}, a_{i2}, ..., a_{in}]$
- 1 <= j <= M
- M é o número de elementos no conjunto de treinamento
- $= \max_{i} = \max(a_{ii})$
- $\min_{i} = \min(a_{ii})$
- range_i= max_i min_i

Distância Euclidiana:

- x = [70; 1,63]
- $j_1 = [50; 1,60]$
- D(x, j_1)² = (70-50)² + (1,63 1,60)²
- $D(x, j_1)^2 = 20^2 + 0.03^2$
- A altura tem influência desprezível no cálculo da distância

Distância Euclidiana Normalizada

$$DN(a_l, a_k) = \sqrt{\sum_{i=1}^{n} \left(\frac{a_{li} - a_{ki}}{range_i}\right)^2}$$

$$D(x, j_1) = 0.38$$

$$D(x, j_2) = 0.32^*$$

$$D(x, j_3) = 0.26$$

$$D(x, j_4) = 0.15$$

$$D(x, h_1) = 0.59$$

$$D(x, h_2) = 1.00$$

$$D(x, h_3) = 0.95$$

$$D(x, h_4) = 0.79$$

$$D(x, h_5) = 0.48^*$$

$$D(a_l, a_k) = \sqrt{\sum_{i=1}^{n} (a_{li} - a_{ki})^2}$$

$$D(x, j_1) = 20$$

$$D(x, j_2) = 17^*$$

$$D(x, j_3) = 10$$

$$D(x, j_4) = 8$$

$$D(x, h_1) = 21$$

$$D(x, h_2) = 32$$

$$D(x, h_3) = 35$$

$$D(x, h_4) = 33$$

$$D(x, h_5) = 17^*$$

k-NN

- Jóquei
- Halterofilista

- Classifica-se um dado padrão associando a ele a classe de maior frequência entre os k vizinhos mais próximos
- Exemplo (3-NN):
 - X está mais próximo de um elemento da classe Halterofilista
 - Mas outros dois elementos da classe Jóquei também estão entre o 3 vizinhos mais próximos
 - X será classificado como Jóquei

k-NN

- Jóquei
- Halterofilista

- Classifica-se um dado padrão associando a ele a classe que apresentar a maior soma dos peso entre os k vizinhos mais próximos
- Exemplo (5-NN):
 - X tem 3 vizinhos
 "Halterofilista" e 2 vizinhos
 "Jóquei"
 - X será classificado como Halterofilista

k-NN (peso pela distância)

- Jóquei
- Halterofilista

- Calculando o peso
 - Os vizinhos da classe "Jóquei" tem um peso maior.
 - Desta forma, X é associado à classe "Jóquei"

$$w_i = \frac{1}{d(x, e_i)}$$

Vantagens e Desvantagens

Vantagens

- Rápido treinamento
- Capaz de aprender funções complexas
- Não perde/desperdiça informação

Desvantagens

- Lento para realizar uma consulta
- Facilmente enganado por um atributo irrelevante

Exemplo

Base de Dados Iris

- 3 classes
- 50 padrões por classe
- 4 atributos numéricos por padrão
- Fonte: UCI (http://archive.ics.uci.edu/ml/)

	SEM PESO	COM PESO
k = 1	95,80	95,80
k = 2	95,67	95,80
k = 3	95,33	95,80
k = 5	95,27	95,53
k = 6	96,67	95,53
k = 11	95,53	95,47
k = 16	96,27	95,47
k = 21	95,13	95,60
k = 31	95,13	95,40

Referências

- Tom Mitchell. **Machine Learning**. McGraw-Hill. 1997.
- S. Theodoridis and K. Koutroumbas. *Pattern Recognition*. Academic Press. 2006.
- Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer. 2006
- Richard O. Duda, Peter E. Hart and David G. Stork. Pattern Classification. Wiley-Interscience. 2000

