

Key Areas of Knowledge – RPL Application

Australian Computer Society Skills Assessment

1 July 2012

Recognition of Prior Learning (RPL) Application

Jeff Ferguson, FACS PCP Peter Juliff, FACS HLM Vijay Khandelwal, FACS PCP

Contents

Key Areas of Knowledge	.1
Introduction	.2
Required Level of KA Acquisition	.3
Structure of the KA Descriptions	.3
The Areas of Knowledge	.3
TECHNOLOGY RESOURCES (TR)	.4
TR1. Hardware and software fundamentals	.4
TR2. Data and information management	.5
TR3. Networking	.6
TECHNOLOGY BUILDING (TB)	.7
TB1. Programming	.7
TB2. Human-Computer Interaction	.8
TB3 & 4. System Development and Acquisition	.8
SERVICES MANAGEMENT (SM)	.9
SM1. Service Management	.9
SM2. Security Management	10
OUTCOMES MANAGEMENT (OM)	12
OM1. Organisational and Management Concepts	12
OM2. Change Management	14

Introduction

Key Areas of Knowledge (KA) has been developed from the ACS Core Body of Knowledge (CBOK) as a guide for applicants who have not acquired a formal ICT qualification equivalent to an Australian Degree or Diploma but spent a considerable length of time in professional-level ICT employment and wish to apply for an ICT Skills Assessment via the Recognition of Prior Learning (RPL) pathway.

The purpose of RPL is to give applicants the opportunity to demonstrate that they have acquired a level of knowledge equivalent to that of a formal tertiary ICT qualification by addressing as many of the areas referred to in the *Key Areas of Knowledge* they consider are covered by their acquired knowledge.

A summary of the key areas of knowledge appears below. The details of each area follow as separate sections.

KEY AREAS OF KNOWLEDGE

TR.TECHNOLOGY RESOURCES

TR1. Hardware and software fundamentals

TR2. Data and information management

TR3. Networking

TB.TECHNOLOGY BUILDING

TB1. Programming

TB2. Human-computer interaction

TB3 & TB4.System development and acquisition

SM. SERVICES MANAGEMENT

SM1. Service management

SM2. Security management

OM. OUTCOMES MANAGEMENT

OM1. Organisational and Management Concepts

OM2. Change management

None of the areas are mandatory: applicants will be allowed an opportunity to address areas of knowledge they acquired through their experience.

Required Level of KA Acquisition

Applicants are expected to demonstrate a clear *comprehension* of a number of the individual thematic modules within their chosen knowledge area/-s. Applicants should also be able to demonstrate *application* in at least one of the units or modules which should be clearly supported by professional references included and the Project Reports submitted in section 4.

Structure of the KA Descriptions

The Key Areas of Knowledge (KA) is organized hierarchically into three levels.

The highest level of the hierarchy is the knowledge area, e.g. TECHNOLOGY RESOURCES (TR).

Each knowledge area is identified by a two-letter abbreviation, such as or TR for Technology Resources.

The knowledge areas are broken down into smaller divisions called units, which represent individual thematic modules within a knowledge area, e.g.: Hardware and software fundamentals, Data and information management and Networking for TR knowledge area. Each unit is identified by adding a numeric suffix to the area name.

Each unit is further subdivided into a set of topics, which are the lowest formal level of the hierarchy. Topics are given as example only and do not constitute a complete and exhaustive list of possible topics within a unit.

Amount of topics depends on the unit and should be sufficient for the applicants to demonstrate their knowledge of the unit.

There are topics which are further broken down into subtopics.

There is a preamble to each unit.

The Areas of Knowledge

TECHNOLOGY RESOURCES (TR)

TR1. Hardware and software fundamentals

Preamble

ICT systems require both hardware and software. The hardware is the multiple physical components within the system and the software is the computer programs and associated procedures and documentation

Table of Topics

Topic 1: Hardware fundamentals

Central Processing Unit (CPU)

ALU

Instruction set

Addressing

Memory

Primary memory

Cache memory

Virtual memory

Peripheral devices

Mass storage

Removable storage

Human-computer interaction devices

Mobile ICT devices

ICT integration

Topic 2: Software fundamentals

System software

Operating system

Human interaction

Device drivers

Compilers/interpreters

Visual development environments

Text editors

Application software

Word processing

Spreadsheets

Business applications

Financial management

Customer relationship management

Supply chain management

Education

Medicine

Decision support systems

Industrial automation

Image processing and manipulation

Music

TR2. Data and information management

Preamble

Data and information management address the policies, practices and architectures that control, protect, deliver and enhance the data and information of the enterprise. The topic is broad ranging and includes

- the organisation of sets of shared data for efficient query and update
- an appreciation of the data resource
- an understanding of the technical background of computer system management of data
- definition of data needs and the functions of data
- user-oriented data languages, and
- the management of data and information within the organisation.

Table of Topics

Topic 1: Data

Character based data

Fields, records and files

Data files

Text files

Image data

Static images

Moving images

Sound

Topic 2: Data Governance

Data owner

Topic 3: Data Architecture, Design

Data architecture

Data Analysis

Data Modelling

Hierarchical model

Entity relationship model

Object model

Topic 4: Database Management

Database management systems

Data definition

Data manipulation

Database administration

RDBMS

OODBMS

Database Query Languages

SQL

Database security

Database integrity

Topic 5: Data Security Management

Data access

Data privacy

Data erasure

Topic 6: Data Quality Management

Data cleansing
Data integrity
Data quality assurance

Topic 7: Data Warehousing and Data Intelligence

Data warehouse
Data mart
Data mining
Business intelligence

TR3. Networking

Preamble

Networking is concerned with communication among ICT systems and devices and includes the design, implementation and management of digital communications networks. It covers basic concepts and terminology; the International Standards Organisation reference model for open systems interconnection; communications equipment, software and services; network architectures; an overview of local area networks; Telstra facilities.

Table of Topics

Topic 1: Network Classification

Connection method (wired, optical, wireless)
Type

LAN

WAN

VPN

Relationship (client-server, peer-to-peer)
Topology (bus, star, ring)
Private Networks / Public Networks

Topic 2: Data communication

```
Link control
OSI Reference model
Asynchronous and synchronous transmission
Communication protocol
TCP/IP
FTP
HTTP
DHCP
```

Topic 3: Internet

```
History
Governance
World Wide Web (WWW)
Browsers
Copyright
URLs
Electronic mail (e-mail)
Telephony (VOIP)
Data transfer
Social Impact
Social networking (e.g. Facebook, Twitter, ...)
SMS
```

Forums
Gaming
Malware (viruses, worms, identity theft, phishing, etc)

Topic 4: Networking hardware

Modem

Router

Firewall

Repeater

Personal Digital Assistant (PDA)

TECHNOLOGY BUILDING (TB)

TB1. Programming

Preamble

This area deals with the ability to specify a solution to a problem in a form which is able to be converted to a machine-executable product which will produce the correct result for a specified problem. It encompasses the ability to design a solution to a problem, preferably in a form which is independent of the target programming language for its implementation, to translate that design into the syntax of a programming language and to produce an executable program which is correct, efficient and maintainable. The unit also encompasses the aspects of software documentation which are essential to the effective use of the software during its lifetime.

Table of topics

Topic1: Program specification

Design of documentation to specify the requirements of a program

Topic 2: Program design

Algorithm design and associated documentation Program structure and logic data design Suitability of languages for problem domains

Topic 3: Program implementation

Structure and syntax of a programming language

The procedures of editing, compiling, etc, needed to produce an executable program

Topic 4: Program testing

Formal proof of correctness vs testing procedures Design of test data Program testing methods

Topic 5: Program documentation

Internal and external program documentation

Differing documentation requirements for technical staff and users

Topic 6: Programming paradigms

An appreciation of the existence of and fundamental differences between procedural, functional, logic and object-oriented paradigms

TB2. Human-Computer Interaction

Preamble

This area deals with the interaction between the users of computer systems and the software managing the applications being used. It involves aspects of interface design which impinge on the user's ease of operation and a study of human phenomena which relate to the ability of the user to make efficient and effective use of the facilities available.

Table of topics

Topic 1: User interaction design

Information design and visualisation, interaction design, hardware elements such as mouse, microphone, pointer, etc.

Usability testing

Rapid prototyping

Topic 2: Display design

Graphic design, legibility and colour, top-down processing, pictorial representation, access minimisation, consistency of response, user tailorability

Multi-lingual facilities

Multi-cultural issues

Topic 3: Special considerations

Design for the disabled and impaired users Design for group use applications

TB3 & 4. System Development and Acquisition

Preamble

This area develops basic systems analysis and design skills by examining commonly used techniques and system development methodologies. A range of life-cycle models are considered including the classical waterfall approach and more recent approaches such as prototyping and evolutionary development. The aim is to present a balanced overview of the process of analysing user requirements, designing computerised information systems to meet these requirements and at the same time developing the necessary skills to apply the techniques to simple problems. It also deals with the translation of the design into the implementation of the working system.

Table of Topics

Topic 1: Role of Information Systems in an Organisation

Topic 2: System Development Methodologies

Different systems development life cycle models such as waterfall, spiral, evolutionary, prototyping

Phases, stages, activities and stakeholders, deliverables, models and modelling techniques

Common system development methodologies - structured analysis and design, information engineering and object oriented approaches

Topic 3: Fact Finding Techniques

Interviews, workshops, discussions, forms and documents, observation

Topic 4: The role of Models and Modelling Techniques

A framework for relating and understanding models - planning, analysis, design and implementation stages versus data, process, behaviour, location, organisation and motivation perspectives

Topic 5: Business Area Analysis

Problems, participants, physical versus essential models

Typical modelling techniques based on any one development methodology or paradigm which may include data flow diagrams, functional decomposition diagrams, functional dependency diagrams, decision tables / trees, state transition diagrams, process descriptions, entity relationship diagrams, class diagrams, object diagrams, interaction diagrams, module diagrams, etc.

Topic 6: Business Systems Design

Constraints, problems and participants. Deciding on the automation boundary. Design options. Typical modelling techniques based on any one development methodology or paradigm which may include structure charts, dialog flow diagrams, module diagrams, call graphs, etc. User interface design - ergonomics, data entry and validation, input forms, windows, window objects, screens and reports. Transforming analysis models into design models.

Topic 7: Supporting Analysis and Design

The use of proformas and standards, system dictionaries and CASE tools.

Topic 8: Project Management

Team structures, project scenarios, risk assessment, monitoring and measurement, tools PERT/ CPM

Topic 9: Quality Assurance

Topic 10: Walkthroughs, inspections, reviews, consistency checks

Topic 11: System acquisition

Options available for acquisition – in-house development, outsourced development, proprietary software products

Enterprise Resource Planning (ERP) systems

System evaluation criteria

Acquisition strategy and management

Contract and legal considerations

SERVICES MANAGEMENT (SM)

SM1. Service Management

Preamble

ICT Service Management deals with the ongoing operation of ICT in an organisational context and includes frameworks for structuring the interactions of ICT personnel with business customers and users. It is concerned with the back-office or operational concerns of the organisation and may be referred to as operations architecture or operations management.

Table of Topics

Topic 1: ICT Service Management

Service and Quality Organisations and Policies Process Management

Topic 2: Service Support

Service Desk

Recording Problems

Resolving and Monitoring Problems

Incident Management

Incident Identification

Incident Recording

Incident Resolution

Problem Management

Underlying Cause Determination

Problem Resolution

Future Incident Prevention

Configuration Management

ICT Infrastructure Change Control

Record Keeping of ICT Infrastructure Components

Release Management

Topic 3: Service Delivery

Service Level Management

Defining Service Level Agreement

Monitoring Services

Underpinning Contracts with Suppliers

Financial Management for ICT Services

Budgeting and Accounting

Price Performance Analysis

Capacity Management

Capacity Planning

Resource Management

Performance Management

Demand and Load Management

Availability Management

Resource Deployment Methods and Techniques

Maintenance Management

Continuity Management

Disaster Recovery Planning

Business Continuity Planning

Contingency Planning

SM2. Security Management

Preamble

Information technology professionals are increasingly responsible for the incorporation of security services and mechanisms into overall information systems under development and in operation. This responsibility is expected to increase as national and international guidelines and legislation are developed and enforced. The ICT professionals will need to be familiar with social, governmental and legal requirements in this area and to incorporate appropriate technologies into systems during the development phase with appropriate levels of security management created for ongoing usage of the systems.

Table of topics

Topic 1: Historical Background

Role of Information Technology Professionals

Topic 2: Societal, Governmental and Legal Imperatives for Information Systems Security and Privacy

International Guidelines (OECD Privacy and Information Systems Security Guidelines) Regional Security Requirements (European Community)

Legal Requirements - Australia's Privacy Act, State Privacy and Computer Security / Crime Related Acts and Regulations

Australian Standards for Information Security

Topic 3: Professional Responsibility and Information Systems Security

Relationships between Concepts of Quality, Safety, Reliability and Security

Topic 4: Computer Security

Hardware Requirements and Features

Operating Systems Security

Topic 5: Access Control, Authentication, Integrity, Confidentiality eg RACF, ACF-2, Etc.

UNIX Security

Database Security

Personal Computer/Small Systems Security

Topic 6: Security Technologies

Access Control Mechanisms

Algorithms - Hash, One-Way and Related Functions / SHA, ISO

Cryptography

Symmetric and Asymmetric Techniques

Commonly-Used Ciphers: DES, RSA, RC2-4, IDEA, SAFER, Etc.

Topic 7: Key Management

Topic 8: Modes of Usage

Authentication Architectures
Third Party Schemes/Certificates

Topic 9: Network Security

Early Proprietary and Mainframe Technologies

Open Systems Interconnection Security Architecture (ISO 7498-2)

Topic 10: Security Services and Mechanisms

MIT "Kerberos"

ECMA Model - "SESAME"

Security and Telecommunications Services

Topic 11: Computer-Telephone Integration

Topic 12: Trusted Systems and Networks

"Rainbow" Series (USA) / National Criteria, eg Canada, Australia, and Others ITSEC / ITSEM (Europe)

Topic 13: Concepts of Security Functionality and Enforcement/Verification

Common Criteria

Significance of Trusted Systems Technologies

Topic 14: Verification Techniques and Software Engineering

Topic 15: Security in the Distributed Systems (Client/Server) and Object Oriented Environments

Topic 16: Security and Specific Industry Requirements

Health Care Industry
Banking and Finance Industry
Commercial and Military Government Systems

Topic 17: Security Management

Organisation Responsibilities Management Requirements

OUTCOMES MANAGEMENT (OM)

OM1. Organisational and Management Concepts

Preamble

Organisational governance comprises a set of processes and policies affecting the way an organisation is run. It encompasses the goals and strategies of the organisation and its various stakeholders, namely, employees, customers, suppliers, regulatory agencies, shareholders, management, board of directors, and the community at large.

This area also deals with the methods and problems of managing and assuring the quality of computing system projects, particularly from the viewpoint of the practitioner as a member of the project team. The area takes a balanced approach to software quality in that there is a focus on both product and process issues. Factors that impact quality outcomes associated with all phases of development are addressed. Throughout there should be a constructive focus on quality; that is, quality requirements are planned and specified, processes are then put in place to satisfy these requirements, and these processes are supported by integral processes which ensure that the quality requirements have been satisfied.

Table of Topics

Topic 1: Organisational Governance

Organisational Functions
Organisational Structure
Business Processes
Organisational Culture
Organisational Performance and Shareholder Value
Conflict Resolution
Board of Directors

Topic 2: ICT Governance

Management of ICT

Strategic ICT Processes

Business Systems Planning

ICT Architecture Definition

Strategic Planning and Control

Tactical and Operational ICT Processes

Management Systems Planning

Systems, Application and Data Management

Project Management

End User Service Management

Security and Recovery Management

Skills Planning and Management

Problem and Change Control

Resource, Production and Distribution Control

Financial Administration

Education and Training

Topic 3: ICT Project Management Concepts and Models

Project Definition

Project Success

Measuring Success

Post-Implementation Reviews

Project Size

Lines of Code

Effort/Duration

Function Points

Project Life Cycle

Topic 4: Project Management Techniques

Steering Committees

Project Justification

Project Planning

Project Development Strategies

Methodologies

Risk Assessment

Estimation

Quality Assurance

Scheduling

Project Tracking and Reporting

Topic 5: Introduction to Software Quality

Understanding and Measuring Quality

Costs and Benefits of Quality

Role of People in Producing Quality Software

Factors That Impact the Quality of Software

Topic 6: Software Quality Planning

Role of Planning

Software Quality Requirements

Preparing a Software Quality Plan

Implementing a Software Quality Plan

Preparing a Quality Manual

Topic 7: Processes for Assuring the Quality of Software

Risk Management
Conformance to Standards
Reviews, Audits, Walkthroughs and Inspections
Verification, Validation and Testing
Configuration Management

Topic 8: Product Quality

Software Product Standards
Quality Attributes of Software
Product Characteristics of Quality Software
Measuring and Evaluating Product Quality and Associated Metrics

Topic 9: Process Quality

Software Process Standards Process Definition Process Measurement

Topic 10: Process Assessment

Process Improvement Capability Evaluation Procurement of Software

Topic 11: Post Development Software Quality Assurance

Maintenance and Evolution of Software Re-Engineering of Software Software Product Quality Improvement

OM2. Change Management

Preamble

Change management is the process of ensuring that all changes are assessed, approved, implemented and reviewed in a controlled manner. In the context of ICT the objective of Change Management is to ensure that standardised methods and procedures are used for efficient and prompt handling of all changes to ICT infrastructure so that there is minimal impact on the provision of service. Changes may arise in response to problems, or externally imposed requirements, such as, regulatory changes, new business initiatives, or need for improved efficiency and effectiveness.

Table of Topics

Topic 1: Approaches to Change

Topic 2: Individual, Team, and Organisational Change

Topic 3: Change Management

Phases of Change
Change Process
Change Agent and Problem Owner
Problem Management
Key Factors for Effective Change Management
Cultural Attributes of Change
Resistance to Change
Impact of change

Topic 4: Models and Approaches to Change

Systems Approach to Change Change Strategies Moving towards Change Internal Vs External Change Agent Cultural Change IT Based Process Change Changing the Information Culture

Topic 5: Leading Change

Phases of Change Leadership Style and Skills

END OF DOCUMENT