NoIR 카메라와 GPS 정보를 통한 산불 현장 분석 및 산불 확산 예측

캐니성 서한경 이휘원 조성운

팀원 소개

팀원 소개

서한경

아이디어 제안 캔위성 제작

이휘원

영상 처리 프로그램 작성

조성운

캔위성 설계 캔위성 제작

	1차심사	2차심사	사전교육	경연대회
주임무	열화상 카메라를 이용한	열화상 카메라를 이용한	열화상 카메라를 이용한	NoIR카메라를 이용한
	산불 발생 지역 촬영	산불 발생 지역 촬영	산불 발생 지역 촬영	산불발생 지역 활영
부임무	산불 지역 사진을 통한			
	산불 확산 예측	산불 확산 예측	산불 확산 예측	산불 확산 예측

캔위성을 통해 산불 현장을 촬영, 분석하여 산불 확산을 예측하자!

캔위성 구조

NoIR 카메라

기본 카메라

캔위성 구조

라즈베리파이+배터리

NoIR 카메라

기본 카메라

캔위성 구조

NoIR 카메라 모듈 (8MP 1080P30)

카메라 모듈 (SCAM-30 TTL)

임무 결과

임무 결과 - GPS

KOREA

임무 결과 - 기본 카메라

임무 결과 - 기본 카메라

"캔위성이 바람의 영향으로 계속 지면을 바라보지 않을 것 같다"

대부분의 사진이 지면을 향함!

인코딩 중 찰영 중지 -> 라즈베리파이 작동 중지!

KOREA

2초 간격으로 찰영하도록 설정된 카메라가 로켓을 세운 시점 이후 갑자기 인코딩 중 찰영 중지!

로켓에 캔위성이 들어간 후 로켓 내부 벽에 의해 스위치가 눌린 것으로 추측했으나…

풀이 나온 사진으로 분석 가능!

p--

데이터 분석

데이터 분석

■ ■ + 100%

KOREA

데이터 분석 - GPS

" 낙하시간: 168초

최고고도: 315.5m "

데이터 분석 - GPS

"바람의 방향이 계속 변하는 것을 알 수 있다!"

데이터 분석 - 위도 이동

■ Ge@Gebra 그래픽 계산기

eq1: x² / 6370² + y² / 6261.71² = 1

- ✓ 적도 반지름 : a = 6370 km
- ✓ 극 반지름 : b = 6261.71 km
- ✓ 이심률 : $e = \frac{a-b}{a} = 0.017$

위도 거리(m) =
$$\sqrt{\left[a \times \left\{\cos\left(\varphi_1 \times \frac{\pi}{180}\right) - \cos\left(\varphi_1 \times \frac{\pi}{180}\right)\right\}\right]^2 + \left[b \times \left\{\sin\left(\varphi_1 \times \frac{\pi}{180}\right) - \sin\left(\varphi_1 \times \frac{\pi}{180}\right)\right\}\right]^2}$$

데이터 분석 - 경도 이동

경도 거리(m) =
$$2\pi \times a \times cos(\frac{\varphi_1 + \varphi_2}{2} \times \pi/180) \times \frac{\varphi_2 - \varphi_1}{360} \times 1000$$

=2*PI()*6370*COS((A2/2+A3/2)*PI()/180)*(B3-B2)/360*1000

데이터 분석 - 풍향

$$f_x$$
 = IF(E3>0,"남","북")

$$f_{x}$$
 =IF(F3>0,"서","동")

[풍향(8방위)]

풍향						
뽜	동	풍				
ᆲ	동	풍				
ᇻ	동	풍				
山	동	풍				
加	동	풍				
抽	동	풍				
加	동	풍				
加	동	풍				
ᆲ	동	풍				
뱌	동	풍				
뽜	동	풍				
		풍				
북		풍				
	•					

데이터 분석 - 평균속도(풍속)

DATA 수신 간격: 2초

이동 거리
$$(m) = \sqrt{(위도 거리)^2 + (경도 거리)^2}$$

속력
$$(m/s) = \frac{이동거리_{(m)}}{2(sec)}$$

데이터 분석 - 풍향/풍속

	Α	В	С	D	Е	F	G	Н	I	J	K	A
1	latitude	longitude	elevation]
2	34.612635	127.2080333	238.1	단위 : m	위도이동(m)	경도이동(m)	평균 속도(m/s)		풍형	턍		
3	34.61247	127.20814	315.5	21.65727	-18.13363607	-11.84097666	10.82863663	북	동	풍		
4	34.612515	127.208195	320.3	7.857211	4.945537025	-6.105523759	3.92860525	남	동	풍		
5	34.61255833	127.208255	319.7	8.187988	4.762369048	-6.660555178	4.093994205	남	동			
6	34.61260333	127.2083133	317.3	8.148052	4.945537152	-6.475523996	4.074025918	남	동	풍		
7	34.61264	127.20838	313.7	8.42657	4.029696983	-7.400582198	4.213284783	남	동			
8	34.61267333	127.2084483	309.3	8.423851	3.66336093	-7.585582099	4.211925601	남	동			
9	34.612695	127.2085183	304.1	8.12724	2.381184623	-7.770584503	4.063619807	남	동			
10	34.61270333	127.20858	298.8	6.906501	0.915840244	-6.845509246	3.45325065	남	동			
11	34.61270667	127.2086217	293.2	4.639827	0.366336097	-4.625342591	2.319913588	남	동			
12	34.612685	127.2086283	288.7	2.493536	-2.381184631	-0.740055194	1.246768015	북	동			
13	34.612675	127.2086317	284	1.159629	-1.099008287	-0.370027918	0.579814599	북	동			
14	34.612675	127.2086317	284	0	0	0	0			풍		
15	34.61263333	127.2086317	275	4.579201	-4.579201159	0	2.28960058	북		풍		
16	34.61259333	127.2086233	271.1	4.492312	-4.396033062	0.9250732	2.246156	북	서			
17	34.61255	127.2086133	268.1	4.890037	-4.762369095	1.110090391	2.445018409	북	서			
18	34.61251	127.2085833	264.9	5.515058	-4.39603296	3.330278811	2.757528909	북	서			
19	34.61247833	127.2085367	261.8	6.240893	-3.480192723	5.180443927	3.120446309	북	서			
20	34.61245333	127.2084817	258.8	6.695252	-2.747520551	6.105532713	3.347625983	북	서			
21	34.61243333	127.2084433	255.7	4.78952	-2.198016425	4.255376552	2.394760208	북	서			
22	34.61240833	127.2084083	252.4	4.758656	-2.747520516	3.885348617	2.379327786	북	서			
23	34.61238	127.2083767	249.4	4.696124	-3.113856561	3.515320562	2.348062038	북	서			
24	34.61234833	127.2083517	246.7	4.451269	-3.480192597	2.775257646	2.225634489	북	서			
25	34.61232667	127.208315	243.6	4.715725	-2.381184389	4.070383842	2.357862577	북	서			
26	34.612305	127.20827	240.6	5.533971	-2.381184377	4.995477016	2.766985257	북	서			
27	34.61228333	127.2082267	237.7	5.367552	-2.381184361	4.810465067	2.683775937	북	서			
28	34.612265	127.2081817	234.8	5.386513	-2.014848295	4.995488426	2.693256313	북	서			
29	34 61224333 Sheet1	127 208135	231.6	5 701556	-2 381184335	5 180512198	2 850778204	부	서	포		▼

산불 확산을 예측하기위한 초기작업


```
uchar* pointer_input = video.ptr<uchar>(y); // y위치를 지정해줌
         for (int x = 0; wd > x; x++)
                ChangeColor(y, x, 1); // 녹색 강조
                mission[0][y][x] = -1; // 미션 배열에 표지
φ:
            else if (c(y, x, 2)) // 산불인 경우
                ChangeColor(y, x, 2); // 적색 강조
                mission[0][y][x] = 1; // 미션 배열에 표지
            else // 녹지, 산불이 아닌 경우
                ChangeColor(y, x, 3); // 어둡게 만듦
         imshow("first", video);
         waitKey(1);
```

원본 사진의 산불과 연소 물질 분포 처리


```
占// c(y, x, 1) == 1은 그 픽셀이 녹지 melt
│// c(y, x, 2) == 1은 그 픽셀이 산불
    uchar r, g, b;
    uchar* pointer_input = video.ptr<uchar>(y);
    r = pointer_input[3 * x + 2];
    g = pointer_input[3 * x + 1];
    b = pointer_input[3 * x + 0];
    // (y, x) 위치의 r, g, b값을 변수에 저장
        if ((g / (double)b) + (g / (double)r) < s_g1) return O; // g 비율합이 일정값 이하면 리턴
        if ((g - b) + (g - r) < s_g2) return 0; // g 차이합이 일정값 이하면 리턴
        if ((r + g + b) > s_w1) return 0; // 백색이면 리턴
    if (c == 2) // 산불인지 판단
       if ((r / (double)g) + (r / (double)b) < s_r1) return 0; // r 비율합이 일정값 이하면 리턴
        if ((r - b) + (r - g) < s_r2) return 0; // r 차이합이 일정값 이하면 리턴
        if ((r + g + b) > s_w1) return 0; // 백색이면 리턴
    return 1;// 위 조건을 통과했다면 녹지 or 산불이 맞다고 판단
```

실제로 산불과 연소 물질을 판단하는 함수


```
cin \gg dxy[i][0] \gg dxy[i][1];
f(0); // 시간 0부터 frame까지의 상황을 mission 배열에 저장
for (int t = 0; frame >= t; t++)
   video = imread("use.jpg", IMREAD_COLOR); // video 초기화
       for (int x = 0; wd > x; x++)
          int c = mission[t][y][x];
          if (c == 1) ChangeColor(y, x, 2); // 산불 강조
           else if (c == -1) ChangeColor(y, x, 1); // 녹지 강조
           else ChangeColor(y, x, 3); // 어둡게
   imshow("mission video", video); // 시간 t의 화재 상황 출력
   waitKey(10000 / frame); // 딜레이
waitKey(0);
```

산불 확산을 예측하고, 이를 영상으로 출력


```
□void f(int t) // 시간 t의 상황을 mission[t] 배열에 저장
     if (t >= frame) return;
     for (int y = 0; ht+100 > y; y++)
         for (int x = 0; wd+100 > x; x++)
             if (x < 0 || wd <= x || y < 0 || ht <= y) break;
mission[t + 1][y][x] = mission[t][y][x];
             if (mission[t][y][x] == 1) // 산불 지역인 경우 확산시킬 준비
                 dy1 = 1.2 * dxy[t][1];
                          double b = dy;
                          if (i < 0 && j < 0)
                              a += 0.3 * dx1;
                          if (i < 0 && j >= 0) { ... }
                          if (i >= 0 && j < 0) {
                          if (i >= 0 && j >= 0) {
                          if (0 > y + i || y + i >= ht || 0 > x + j || x + j >= wd) break;
                          if (ellipse(a, b, j, i) <= 1)</pre>
```

실제로 산불 확산을 예측한 배열을 만드는 함수

데이터 분석 - 산불 확산

사진 속 건물을 발화점이라고 가정 → 대회당일 촬영한 사진으로 산불 확산 예측

데이터 분석 - 산불 확산

NoIR 사진에서 풀만을 특이적으로 인식하여 탈 물질 파악 성공!

추가 실험

추가 실험

" 대회 당일 상황으로는 산불현장 촬영 및 분석이 불가능"

"추가실험의 필요성 느낌"

추가 실험 - 색지

산불 상황 단순화하여 산불 확산 예측 시도!

추가 실험 - 색지

```
G - O 📸 - 🖆 💾 🚜
                                Release v x86
                                                      ▼ ▶ 로컬 Windows 디버거 ▼ 5 등 등 1 등 1 등 2 및 1 개 개 및 -
                                                                                                                                                                                  🖒 Live Share
                                                        capture270.jpg
                                                                                                                                                                      ▼ 솔루션 탐색기
                                                      · (전역 범위)
                                                                                                              → Ø main(void)
                                                                                                                                                                         ○ ○ 🟠 🛗 - 🐚 - 🕏
                                                                                                                                                                         🕠 솔루션 'gazeaaaa' (1/1

▲ gazea(Visual Studio)

                                                                                                                                                                           ▶ ⊪■ 참조
                                                                                                                                                                           🕨 📊 외부 종속성
                                                                                                                                                                            🔺 🚛 리소스 파일
                cout « "이미지를 불러오지 못했습니다.";
                                                                                                                                                                                 capture260.jp
                                                                                                                                                                                 🔁 capture261.j
                                                                                                                                                                                 capture262.j
                                                                                                                                                                                 capture267.j
                                                                                                                                                                                 🔁 capture270.j
                                                                                                                                                                                 colorpaper.P
                                                                                                                                                                                 Picture_1908
                                                                                                                                                                                 Picture_19080
                                                                                                                                                                                 Picture_1908
                                                                                                                                                                                 Picture_19080
                       ChangeColor(y, x, 1); // 녹색 강조
mission[0][y][x] = -1; // 미션 배열에 표지
                                                                                                                                                                                 Picture_1908
                                                                                                                                                                                 Picture_1908
                                                                                                                                                                                 Picture_1908
                                                                                                                                                                                 Picture_1908
                                                                                                                                                                                 Picture_1908
                                                                                                                                                                 → 1 ×
                                                                                                                                                                                 Picture_1908
                                                    マー全 全 2 秒
                                                                                                                                                                                 Picture_1908
  [VSIX I] Trace log: C: #Users\ted02\text{#AppData\text{#Local\text{#Temp\text{#VSFeedbackIntelliCodeLogs\text{#20190815_224323_VS.log}}
                                                                                                                                                                                 Picture_1908
                                                                                                                                                                                 Picture_19080
                                                                                                                                                                                 Picture_19080
                                                                                                                                                                                 Picture_19080
```


구역을 색처리를 통해 구분하여 산불확산 예측 성공!

흰색인 휴지를 탈 물질로 인식하지 않아 산불 확산 예측 어려움

실제 불을 잘 인식하여 산불 확산 예측 가능!

```
Release 🔻
                                               x86
 Picture_190808_112217.jpg
                              colorpaper.PNG
                                                   use.jpg
 🛂 gazea
                double n = ab(p / a);
                double m = ab(q / b);
                return n * n + m * m;
           ⊟void f(int t) // 시간 t의 상황을 mission[t] 배열에
                if (t >= frame) return;
                for (int y = 0; ht+100 > y; y++)
                    for (int x = 0; wd+100 > x; x++)
                       if (x < 0 || wd <= x || y < 0 || ht <=
                       mission[t + 1][y][x] = mission[t][y][x]
```


실제 불의 번집과 산불 확산 예측이 일치 → 프로그램의 정확도 확인

추가 실험

VS

대회 당일에는 분석할 수 없는 상황을 추가실험을 통해 구현하여 계획한 임무 성공적으로 완성!

홍보 및 제언

홍보 및 제언

댓글을 입력하세요...

0000

홍보 및 제언

CNNSAT

• 119 자료제공-> 산불 확산 예측하여 소화에 도움 (효율적인 소방 경로 및 필요 인력 예측)

• 산불 데이터 분석 -> 산불 연구 및 예방

• 산불 취약한 곳 판별 -> 소방시설 강화

• 산 근처 효율적인 소방시설 구축 및 인력 배치