GEN 242: Linear Algebra

Chapter 2: Matrices

Solutions Guide

Instructor: Richard Bahin

Full Sail University

Table of Contents

4	nswers5
	Order of a Matrix5
	Trace of a Square Matrix5
	Transpose of a Matrix5
	Matrix Entry Value6
	Column and Row Vectors6
	Symmetric Matrices
	Diagonal, Triangular, and Skew-Symmetric Matrices7
	Matrices Addition
	Matrix Form of Vector Dot Product
	Matrix Form of Vector Cross Product
	Matrix Multiplication
	Right and Left Vector-Matrix Multiplication9
	Systems of Linear Equations and Augmented Matrices9
	Identifying Row-Echelon Form10
	Identifying Reduced Row-Echelon Form (RREF)10
	Computing Row-Echelon Form10
	Computing Reduced Row-Echelon Form
	Solving Systems Using Reduced Row-Echelon Form
	Rank of a Matrix
	Linear Dependence Using Matrix Echelon Form
	Basis Using Matrix Reduced Row-Echelon Form
	Basis of a Matrix Row Space
	Basis of a Matrix Column Space
	Basis of a Matrix Null Space14
	Coordinate of a Vector and Matrix14
	Change of Basis and Transition Matrix15

Solutions	16
Order of a Matrix	_
Trace of a Square Matrix	
Transpose of a Matrix	
Matrix Entry Value Problem 4	
Column and Row Vectors	
Symmetric Matrices Problem 6	
Diagonal, Triangular, and Skew-Symmetric Matrices	
Matrices Addition	
Matrix Form of the Vector Dot Product	
Matrix Form of the Vector Cross Product	
Matrix Multiplication	
Right and Left Vector-Matrix Multiplication	
Systems of Linear Equations and Augmented Matrices	
Identifying a Row-Echelon Form of a Matrix	
Identifying the Reduced Row-Echelon Form of a Matrix	
Computing the Row-Echelon Form of a Matrix	
Computing the Reduced Row-Echelon Form of a Matrix	
Solution of Systems of Linear Equations Using Reduced Row-Echelon Form	
Rank of a Matrix	

Linear Dependence Using Matrix Echelon Form	55
Problem 20	55
Problem 21	
Problem 22	
Basis Using Matrix Reduced Row-Echelon Form	
Problem 23	62
Problem 24	64
Problem 25	72
Basis of a Matrix Row Space	78
Problem 26	
Designation Matrix Column Cross	02
Basis of a Matrix Column Space	
Problem 27	82
Basis of a Matrix Null Space	85
Problem 28	85
Coordinate of a Vector and Matrix	91
Problem 29	
Problem 30	
Problem 31	
Problem 32	93
Change of Basis and Transition Matrix	95
Problem 33	95
Problem 34	97
Problem 35	
Problem 36	

Answers

Order of a Matrix

- 1.a $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{bmatrix}$ is order $\boxed{3x3}$ (alternately, a square matrix of order 3).
- 1.b $\begin{bmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{bmatrix}$ is order $\boxed{4x4}$ (alternately, a square matrix of order 4).
- 1.c $\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$ is order $\boxed{2x2}$ (alternately, a square matrix of order 2).
- 1.d $\begin{bmatrix} 1 & 4 & 0 & 4 \\ 1 & 8 & 3 & 1 \end{bmatrix}$ is order $\boxed{2x4}$.
- 1.e $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is order $\boxed{3x1}$.

Trace of a Square Matrix

2.a Trace
$$\begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{bmatrix} \end{pmatrix} = \boxed{11}$$

2.b Trace
$$\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$
 = $\boxed{5}$

2.c Trace
$$\begin{bmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{bmatrix} = \boxed{19}$$

2.d Trace
$$\begin{bmatrix} 1 & 7 & 5 \\ 1 & 4 & 7 \\ 1 & 7 & -5 \end{bmatrix} = \boxed{0}$$

Transpose of a Matrix

3.a
$$\begin{bmatrix} 1 & 5 & 7 \\ 9 & 1 & 7 \\ 0 & 7 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 9 & 0 \\ 5 & 1 & 7 \\ 7 & 7 & 1 \end{bmatrix}$$

3.b
$$\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}^T = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$$

3.c
$$\begin{bmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 5 & 7 & 3 \\ 1 & -1 & 8 & 5 \\ 3 & 6 & 9 & 9 \\ 5 & 2 & -2 & 10 \end{bmatrix}$$

3.d
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 & 6 \\ 2 & 5 & 7 \\ 3 & 7 & 5 \end{bmatrix}$$

3.e
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}^T = \boxed{\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}}$$

Matrix Entry Value

4.
$$M = \begin{bmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} m_{12} = 1 & m_{34} = -2 & m_{14} = 5 \\ m_{22} = -1 & m_{44} = 10 & m_{33} = 9 \end{bmatrix}$$

Column and Row Vectors

5.a
$$\vec{v} = (2,1,3) \rightarrow \vec{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$
 column and $\vec{v} = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}$ row.

5.b
$$\vec{v} = (2,0,3,4) \rightarrow \vec{v} = \begin{bmatrix} 2 \\ 0 \\ 3 \\ 4 \end{bmatrix}$$
 column and $\vec{v} = \begin{bmatrix} 2 & 0 & 3 & 4 \end{bmatrix}$ row.

5.c
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
 is already in column format; $\vec{v} = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ row.

5.d
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 is already in column format; $\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ row.

Symmetric Matrices

6.a
$$\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$
 is **not** symmetric.
6.b $\begin{bmatrix} 2 & 6 \\ 6 & 3 \end{bmatrix}$ is symmetric.
6.c $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix}$ is symmetric.
6.e $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{bmatrix}$ is symmetric.

6.c
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{bmatrix}$$
 is **not** symmetric.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$
 is symmetric.

6.f Given symmetric matrix
$$M = \begin{bmatrix} 2 & x & y & 7 \\ 0 & 4 & z & t \\ 1 & 0 & 1 & u \\ v & 6 & 8 & 5 \end{bmatrix}$$
: This question is mislabeled as 6.b on FSO.
$$x = 0 \qquad z = 0 \qquad u = 8$$

$$y = 1 \qquad t = 6 \qquad v = 7$$

Diagonal, Triangular, and Skew-Symmetric Matrices

7.a
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & 5 \end{bmatrix}$$
 is upper triangular. 7.c $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is diagonal.

7.b
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 5 & 1 & 0 & 0 \\ 7 & 8 & 9 & 0 \\ 3 & 5 & 0 & 10 \end{bmatrix}$$
 is lower triangular.
$$7.d \begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & -7 \\ -3 & 7 & 0 \end{bmatrix}$$
 is skew-symmetric.

$$\operatorname{skew}((1,2,3)) = \begin{bmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix}$$
7.e
$$\operatorname{skew}((0,2,-1)) = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix}$$

$$\operatorname{skew}((4,-2,3)) = \begin{bmatrix} 0 & -3 & -2 \\ 3 & 0 & -4 \\ 2 & 4 & 0 \end{bmatrix}$$

This question is mislabeled as 7.b on FSO.

Matrices Addition

Given
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$:

8.a
$$A + B = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 7 & 2 \\ 4 & 3 & 4 \end{bmatrix}$$

8.b
$$2B - A = \begin{bmatrix} 1 & -2 & 4 \\ 6 & -1 & 1 \\ -1 & 3 & 5 \end{bmatrix}$$

8.c
$$B - B^T = \begin{bmatrix} 0 & -3 & 1 \\ 3 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$

8.d
$$2A - 3A = \begin{bmatrix} -1 & -2 & 0 \\ 0 & -5 & -1 \\ -3 & -1 & -1 \end{bmatrix} = -A$$

8.e
$$A^T + B = \begin{bmatrix} 2 & 0 & 5 \\ 5 & 7 & 2 \\ 1 & 3 & 4 \end{bmatrix}$$

Matrix Form of Vector Dot Product

9.a
$$(0,2,-1)\cdot(1,2,3)=1$$

9.b
$$(3,2,-4)\cdot(2,2,-1)=14$$

Matrix Form of Vector Cross Product

10.a
$$(0,2,-1) \times (1,2,3) = \begin{bmatrix} 8 \\ -1 \\ -2 \end{bmatrix} = (8,-1,-2)$$

10.b
$$(2,1,-1) \times (1,0,-1) = \begin{bmatrix} -1\\1\\-1 \end{bmatrix} = (-1,1,-1)$$

Matrix Multiplication

11.a
$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 7 & 4 & 8 \\ 16 & 12 & 8 \\ 7 & 4 & 10 \end{bmatrix}$$

11.b
$$\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & 6 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 9 \\ 20 & 15 \end{bmatrix}$$

11.c
$$\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \\ 1 & 4 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 6 \\ 3 & 11 \end{bmatrix}$$

11.d
$$\begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 3 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 3 & 2 \end{bmatrix}$$

11.e
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 4 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 5 \\ 5 & 7 & 11 \\ 10 & 8 & 14 \end{bmatrix}$$

11.f
$$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} = 5$$

11.g
$$\begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 0 & 0 \\ 3 & 6 & 3 \end{bmatrix}$$

Right and Left Vector-Matrix Multiplication

Given
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 3 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$:

12.a
$$A \cdot \vec{v} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$
 12.e $B \cdot \vec{u} = \begin{bmatrix} 10 \\ 3 \\ 1 \end{bmatrix}$

12.b
$$\vec{v} \cdot A = \begin{bmatrix} 4 & 7 & 5 \end{bmatrix}$$
 12.f $\vec{u} \cdot B = \begin{bmatrix} 10 & 3 & 1 \end{bmatrix}$

12.c
$$A \cdot \vec{u} = \begin{bmatrix} 1 \\ 6 \\ 1 \end{bmatrix}$$
 12.g $B \cdot \vec{w} = \begin{bmatrix} 13 \\ 5 \\ 7 \end{bmatrix}$

12.d
$$\vec{u} \cdot A = \begin{bmatrix} 1 & 6 & 1 \end{bmatrix}$$

12.h $\vec{v} \cdot \vec{u}^T = \begin{bmatrix} 0 & 1 & 3 \\ 0 & 2 & 6 \\ 0 & 1 & 3 \end{bmatrix}$

Systems of Linear Equations and Augmented Matrices

13.a
$$\begin{cases} x + 2y = 5 \\ 2x - 3y = -4 \end{cases} \to \begin{bmatrix} 1 & 2 & 5 \\ 2 & -3 & -4 \end{bmatrix}$$

13.b
$$\begin{cases} x + 2y = 7 \\ 5x - 3y = 9 \end{cases} \rightarrow \begin{bmatrix} 1 & 2 & |7| \\ 5 & -3 & |9| \end{bmatrix}$$

13.c
$$\begin{cases} 2x + 3y = 16 \\ 2x - y = 8 \end{cases} \rightarrow \begin{bmatrix} 2 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 16 \\ 8 \end{bmatrix}$$

13.d
$$\begin{cases} 3x + y = 2 \\ 2x + y = 1 \end{cases} \rightarrow \begin{bmatrix} 3 & 1 & | 2 \\ 2 & 1 & | 1 \end{bmatrix}$$

13.e
$$\begin{cases} x + y - 5z = -3 \\ x + y + z = 3 \\ 7x - y + 2z = 8 \end{cases} \begin{bmatrix} 1 & 1 & -5 & -3 \\ 1 & 1 & 1 & 3 \\ 7 & -1 & 2 & 8 \end{bmatrix}$$

13.f
$$\begin{cases} x + y + z = 2 \\ x - 3y + 2z = -4 \rightarrow \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & -3 & 2 & -4 \\ 5x - y + 3z = 8 \end{bmatrix}$$

13.g
$$\begin{cases} x + 3y + z = 4 \\ 2x - y + 2z = 1 \\ 3x - y + 2z = 3 \end{cases} \begin{bmatrix} 1 & 3 & 1 & | & 4 \\ 2 & -1 & 2 & | & 1 \\ 3 & -1 & 2 & | & 3 \end{bmatrix}$$

13.h
$$\begin{cases} x+y-z=6\\ 2x+3y+z=7\\ x-y+2z=-2 \end{cases} \begin{bmatrix} 1 & 1 & -1 & 6\\ 2 & 3 & 1 & 7\\ 1 & -1 & 2 & -2 \end{bmatrix}$$

Identifying Row-Echelon Form

14.a

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
 is **not** row-echelon.
 14.e
 $\begin{bmatrix} 1 & 4 & 2 \\ 0 & 3 & 4 \\ 0 & 0 & 2 \end{bmatrix}$ is row-echelon.

 14.b
 $\begin{bmatrix} 8 & 4 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ is row-echelon.
 14.f
 $\begin{bmatrix} 0 & 5 & 3 & 0 & 7 \\ 0 & 0 & 5 & 5 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ is row-echelon.

 14.c
 $\begin{bmatrix} 1 & 4 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix}$ is **not** row-echelon.
 14.g
 $\begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix}$ is row-echelon.

 14.d
 $\begin{bmatrix} 0 & 8 & 2 \\ 2 & 3 & 4 \\ 0 & 0 & 3 \end{bmatrix}$ is **not** row-echelon.
 14.i
 $\begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}$ is **not** row-echelon.

 14.j
 $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 5 \end{bmatrix}$ is row-echelon.

Identifying Reduced Row-Echelon Form (RREF)

15.a
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is RREF.}$$
15.b
$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \text{ is not RREF.}$$
15.c
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \text{ is not RREF.}$$
15.d
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ is not RREF.}$$
15.d
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ is not RREF.}$$
15.d
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ is not RREF.}$$
15.d
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ is not RREF.}$$
15.d
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 7 \\ 0 & 1 & 0 & 5 & 3 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \text{ is RREF.}$$
15.e
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ is not RREF.}$$
15.e
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ is not RREF.}$$

Computing Row-Echelon Form

16.a
$$\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 \\ 0 & 7 \end{bmatrix}$$
16.b $\begin{bmatrix} 2 & 6 \\ 6 & 3 \end{bmatrix} \sim \begin{bmatrix} 2 & 6 \\ 0 & -15 \end{bmatrix}$
16.c $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 0 & 0 & -40 \end{bmatrix}$
16.e $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & 0 & -40 \end{bmatrix}$
16.e $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 4 & 7 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

Full Sail University

Computing Reduced Row-Echelon Form

17.a
$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & -3 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

17.b
$$\begin{bmatrix} 1 & 2 & 7 \\ 5 & -3 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$

17.c
$$\begin{bmatrix} 2 & 3 & 16 \\ 2 & -1 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

17.d
$$\begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

17.e
$$\begin{bmatrix} 1 & 1 & -5 & -3 \\ 1 & 1 & 1 & 3 \\ 7 & -1 & 2 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & \frac{5}{4} \\ 0 & 1 & 0 & \frac{3}{4} \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

17.f
$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & -3 & 2 & -4 \\ 5 & -1 & 3 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

17.g
$$\begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & -1 & 2 & 1 \\ 3 & -1 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

17.h
$$\begin{bmatrix} 1 & 1 & -1 & 6 \\ 2 & 3 & 1 & 7 \\ 1 & -1 & 2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

Solving Systems Using Reduced Row-Echelon Form

18.a
$$\begin{cases} x + 2y = 5 \\ 2x - 3y = -4 \end{cases} \rightarrow \begin{cases} x = 1 \\ y = 2 \end{cases}$$

18.b
$$\begin{cases} x + 2y = 7 \\ 5x - 3y = 9 \end{cases} \to \begin{cases} x = 3 \\ y = 2 \end{cases}$$

18.c
$$\begin{cases} 2x + 3y = 16 \\ 2x - y = 8 \end{cases} \to \begin{cases} x = 5 \\ y = 2 \end{cases}$$

18.d
$$\begin{cases} 3x + y = 2 \\ 2x + y = 1 \end{cases} \rightarrow \begin{cases} x = 1 \\ y = -1 \end{cases}$$

18.e
$$\begin{cases} x + y - 5z = -3 \\ x + y + z = 3 \\ 7x - y + 2z = 8 \end{cases} \rightarrow \begin{cases} x = 1 \\ y = 1 \\ z = 1 \end{cases}$$

18.f
$$\begin{cases} x + y + z = 2 \\ x - 3y + 2z = -4 \\ 5x - y + 3z = 8 \end{cases} \begin{cases} x = 3 \\ y = 1 \\ z = -2 \end{cases}$$

18.g
$$\begin{cases} x + 3y + z = 4 \\ 2x - y + 2z = 1 \\ 3x - y + 2z = 3 \end{cases} \begin{cases} x = 2 \\ y = 1 \\ z = -1 \end{cases}$$

18.h
$$\begin{cases} x + y - z = 6 \\ 2x + 3y + z = 7 \\ x - y + 2z = -2 \end{cases} \begin{cases} x = 3 \\ y = 1 \\ z = -2 \end{cases}$$

Rank of a Matrix

19.a
$$\operatorname{Rank}\begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix} \end{pmatrix} = 3$$
19.c $\operatorname{Rank}\begin{pmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 6 & 1 & 1 \\ 3 & 4 & 3 & 4 \end{bmatrix} \end{pmatrix} = 3$
19.b $\operatorname{Rank}\begin{pmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{bmatrix} \end{pmatrix} = 2$
19.d $\operatorname{Rank}\begin{pmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 1 & -5 \end{bmatrix} \end{pmatrix} = 3$

Linear Dependence Using Matrix Echelon Form

- 20.a $\{(1,2,5), (2,4,1), (1,1,2)\}$ is linearly independent.
- 20.b $\{(1,4,3), (3,0,1), (1,1,2)\}$ is linearly independent.
- 20.c $\{(1,1,1), (1,2,0), (0,-1,1)\}$ is **not** linearly independent.
- 20.d $\{(1,1,1), (1,2,0), (0,-1,2)\}$ is linearly independent.
- 21.a $\{(1,2),(2,4)\}$ is linearly dependent.
- 21.b $\{(2,8),(2,5)\}$ is linearly **in**dependent.
- 22.a $\{1-x, 5-3x+2x^2, 1+3x-x^2\}$ is inearly **in**dependent.
- 22.b $\{1 + x + x^2, x + 2x^2, x^2\}$ is linearly **in**dependent.

Basis Using Matrix Reduced Row-Echelon Form

- 23.a $\{(2,8), (2,5)\}\$ forms a basis for \mathbb{R}^2 .
- 23.b $\{(1,3),(2,6)\}$ does **not** form a basis for \mathbb{R}^2 .
- 24.a $\{(1,0,0), (1,1,0), (1,1,1)\}$ forms a basis for \mathbb{R}^3 .
- 24.b $\{(1,2,3),(2,0,1),(3,2,2)\}$ forms a basis for \mathbb{R}^3 .
- 24.c $\{(1,2,1), (1,7,-1), (2,1,3)\}$ forms a basis for \mathbb{R}^3 .
- 24.d $\{(1,2,1), (5,2,3), (3,2,2)\}$ does **not** form a basis for \mathbb{R}^3 .
- 25.a $\{1-x, 5-3x+2x^2, 1+3x-x^2\}$ forms a basis for P_2 .
- 25.b $\{1 + 2x + x^2, 2 + x^2, 3 + 2x + 2x^2\}$ forms a basis for P_2 .
- 25.c $\{1 + x + x^2, x + 2x^2, x^2\}$ forms a basis for P_2 .
- 25.d $\{1-2x+3x^2, 5+6x-x^2, 3+2x+x^2\}$ does not for a basis for P_2 .

Basis of a Matrix Row Space

26.a
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -40 \end{bmatrix}$$
$$\dim(\operatorname{rowsp}(A)) = 3$$
$$\operatorname{rank}(A) = 3$$

26.b
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{bmatrix} \rightarrow \begin{cases} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -4 \\ -1 \end{bmatrix} \\ \dim(\operatorname{rowsp}(A)) = 2 \\ \operatorname{rank}(A) = 2 \end{cases}$$

26.c
$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 6 & 1 \\ 3 & -4 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -27 \end{bmatrix}$$
$$\dim(\operatorname{rowsp}(A)) = 3$$
$$\operatorname{rank}(A) = 3$$

26.d
$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 1 & -5 \end{bmatrix} \rightarrow \begin{cases} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \\ \dim(\operatorname{rowsp}(A)) = 2 \end{cases}$$
$$\operatorname{rank}(A) = 2$$

Basis of a Matrix Column Space

27.a
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix} \rightarrow \begin{cases} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix} \\ \dim(\operatorname{colsp}(A)) = 3 \\ \operatorname{rank}(A) = 3 \end{cases}$$

27.b
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{bmatrix} \rightarrow \begin{cases} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} \\ \dim(\operatorname{colsp}(A)) = 2 \\ \operatorname{rank}(A) = 2 \end{cases}$$

27.c
$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 6 & 1 \\ 3 & -4 & 3 \end{bmatrix} \rightarrow \begin{cases} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 6 \\ -4 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \end{cases}$$
$$dim(colsp(A)) = 3$$
$$rank(A) = 2$$

27.d
$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 1 & -5 \end{bmatrix} \rightarrow \begin{cases} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \\ \dim(\operatorname{colsp}(A)) = 2 \\ \operatorname{rank}(A) = 2 \end{cases}$$

Basis of a Matrix Null Space

28.a
$$\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \rightarrow \begin{cases} \vec{0} \\ \dim(\text{Null}(A)) = 0 \end{bmatrix}$$
28.d
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 3 & 8 \end{bmatrix} \rightarrow \begin{cases} \vec{0} \\ \dim(\text{Null}(A)) = 0 \end{bmatrix}$$
28.b
$$\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \rightarrow \begin{cases} \begin{bmatrix} -3 \\ 1 \end{bmatrix} \\ \dim(\text{Null}(A)) = 1 \end{bmatrix}$$
28.c
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \end{bmatrix} \rightarrow \begin{cases} \vec{0} \\ 1 \end{bmatrix}$$

$$\dim(\text{Null}(A)) = 0$$
28.d
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 3 & 8 \end{bmatrix} \rightarrow \dim(\text{Null}(A)) = 0$$

$$28.e \begin{bmatrix} 1 & 5 & 3 \\ 2 & 5 & 1 \end{bmatrix} \rightarrow \begin{pmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \end{pmatrix}$$

$$\dim(\text{Null}(A)) = 1$$
28.c
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \end{bmatrix} \rightarrow \dim(\text{Null}(A)) = 0$$

Coordinate of a Vector and Matrix

Given basis $B = \{\hat{i}, \hat{j}, \hat{k}\} = \{(1,0,0), (0,1,0), (0,0,1)\}$:

29.a
$$\left[2\hat{\imath} + 3\hat{\jmath} - \hat{k}\right]_{B} = (2,3,-1)$$
 29.c $\left[5\hat{\imath} - \hat{k}\right]_{B} = (5,0,-1)$ 29.b $\left[\hat{\imath} + \hat{\jmath} - \hat{k}\right]_{B} = (1,1,-1)$

Given basis
$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
:

30.a
$$\begin{bmatrix} 2 & 2 \\ 4 & 3 \end{bmatrix}_B = (2,2,4,3)$$
 30.c $\begin{bmatrix} 0 & 4 \\ 2 & 1 \end{bmatrix}_B = (0,4,2,1)$ 30.b $\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}_B = (1,2,1,0)$ 30.d $\begin{bmatrix} 3 & -7 \\ 2 & 4 \end{bmatrix}_B = (3,-7,2,4)$

31.a
$$[5-4x+7x^2+10x^3]_{B=\{1,x,x^2,x^3\}} = (5,-4,7,10)$$

31.b
$$[-x + 3x^2]_{B=\{1,x,x^2,x^3\}} = (0,-1,3,0)$$

31.c
$$[-x + 3x^2]_{B=\{1,x,x^2\}} = (0,-1,3)$$

31.d
$$[2-x+7x^2]_{B=\{1,x,x^2\}}=(2,-1,7)$$

32.a
$$[(2,-3)]_{B=\{(1,1),(3,4)\}} = (17,-5)$$
 32.c $[(-3,1)]_{B=\{(1,3),(2,1)\}} = (1,-2)$ 32.b $[(8,7)]_{B=\{(1,2),(2,1)\}} = (2,3)$ 32.d $[(1,2)]_{B=\{(1,1),(3,4)\}} = (-2,1)$

Change of Basis and Transition Matrix

Given the bases $S = \{\hat{i}, \hat{j}\} = \{(1,0), (0,1)\}$ and $B = \{\vec{u}_1, \vec{u}_2\} = \{(1,2), (2,5)\}$:

33.a
$$M_{B \leftarrow S} = \begin{bmatrix} 5 & -2 \\ 2 & 1 \end{bmatrix}$$
 33.b $[(1,2)_S]_B = (1,4)_B$ 33.c $M_{S \leftarrow B} = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$

33.b
$$[(1,2)_S]_B = (1,4)_B$$

33.c
$$M_{S \leftarrow B} = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$$

Given the bases $S = \{\hat{i}, \hat{j}\} = \{(1,0), (0,1)\}$ and $B = \{\vec{u}_1, \vec{u}_2\} = \{(1,3), (1,4)\}$:

34.a
$$M_{B \leftarrow S} = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix}$$

$$34.c M_{S \leftarrow B} = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$$

34.b
$$[(1,2)_S]_B = (2,-1)_B$$

Given the bases $B = {\vec{u}_1, \vec{u}_2} = {(1,3), (1,4)}$ and $B' = {\vec{v}_1, \vec{v}_2} = {(1,2), (2,5)}$:

35.a
$$M_{B' \leftarrow B} = \begin{bmatrix} -1 & -3 \\ 1 & 2 \end{bmatrix}$$

35.b
$$[(2,5)_B]_{B'} = (-17,12)_{B'}$$

Given the bases $B = {\vec{u}_1, \vec{u}_2} = {(1,3), (1,4)}$ and $B' = {\vec{v}_1, \vec{v}_2} = {(1,2), (1,1)}$:

36.a
$$M_{B' \leftarrow B} = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$$

36.b
$$[(3,1)_B]_{B'} = (9,-5)_{B'}$$

Solutions

Order of a Matrix

Problem 1

Identify the order of the following matrices:

Matrix order is "(#rows)x(#columns)".

1.a
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{bmatrix}$$

Matrix A has three rows and three columns.

$$Order(A) = 3x3$$

1.b
$$A = \begin{bmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{bmatrix}$$

Matrix A has four rows and four columns.

$$Order(A) = 4x4$$

1.c
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

Matrix A has two rows and two columns.

$$Order(A) = 2x2$$

1.d
$$A = \begin{bmatrix} 1 & 4 & 0 & 4 \\ 1 & 8 & 3 & 1 \end{bmatrix}$$

Matrix A has two rows and four columns.

$$Order(A) = 2x4$$

1.e
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Matrix *A* has three rows and one column.

$$Order(A) = 3x1$$

Trace of a Square Matrix

Problem 2

Calculate the trace of the following matrices:

Trace is the sum of the elements on a square matrix's main diagonal.

2.a
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{bmatrix}$$

Trace(4) = a...

$$Trace(A) = a_{11} + a_{22} + a_{33}$$

$$Trace(A) = (1) + (5) + (5)$$

$$Trace(A) = 11$$

2.c
$$A = \begin{bmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{bmatrix}$$

$$Trace(A) = a_{11} + a_{22} + a_{33} + a_{44}$$

$$Trace(A) = (1) + (-1) + (9) + (10)$$

$$Trace(A) = 19$$

2.b
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$Trace(A) = a_{11} + a_{22}$$

$$Trace(A) = (2) + (3)$$

$$Trace(A) = 5$$

2.d
$$A = \begin{bmatrix} 1 & 7 & 5 \\ 1 & 4 & 7 \\ 1 & 7 & -5 \end{bmatrix}$$

$$Trace(A) = a_{11} + a_{22} + a_{33} + a_{44}$$

$$Trace(A) = (1) + (4) + (-5)$$

$$Trace(A) = 0$$

Transpose of a Matrix

Problem 3

Find the transpose for each of the following matrices:

3.a
$$A = \begin{bmatrix} 1 & 5 & 7 \\ 9 & 1 & 7 \\ 0 & 7 & 1 \end{bmatrix}$$

$$A^{t} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{bmatrix}$$

$$A^{t} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$

$$A^t = \begin{bmatrix} 1 & 9 & 0 \\ 5 & 1 & 7 \\ 7 & 7 & 1 \end{bmatrix}$$

3.b
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$A^{t} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$$

3.c
$$A = \begin{bmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{bmatrix}$$
$$A^{t} = \begin{bmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{12} & a_{22} & a_{32} & a_{42} \\ a_{13} & a_{23} & a_{33} & a_{43} \\ a_{14} & a_{24} & a_{34} & a_{44} \end{bmatrix}$$
$$A^{t} = \begin{bmatrix} 1 & 5 & 7 & 3 \\ 1 & -1 & 8 & 5 \\ 3 & 6 & 9 & 9 \\ 5 & 2 & -2 & 10 \end{bmatrix}$$

3.d
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{bmatrix}$$
$$A^{t} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$
$$A^{t} = \begin{bmatrix} 1 & 2 & 6 \\ 2 & 5 & 7 \\ 3 & 7 & 5 \end{bmatrix}$$

3.e
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

$$A^{t} = \begin{bmatrix} a_{11} & a_{21} & a_{31} & a_{41} \end{bmatrix}$$

$$A^{t} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$

Matrix Entry Value

Problem 4

Given matrix $M = \begin{bmatrix} 1 & 1 & 3 & 5 \\ 5 & -1 & 6 & 2 \\ 7 & 8 & 9 & -2 \\ 3 & 5 & 9 & 10 \end{bmatrix}$, find the following entry values:

$$m_{12} \rightarrow \boxed{m_{12} = 1}$$
 $m_{14} \rightarrow \boxed{m_{14} = 5}$ $m_{22} \rightarrow \boxed{m_{22} = -1}$ $m_{33} \rightarrow \boxed{m_{33} = 9}$ $m_{34} \rightarrow \boxed{m_{34} = -2}$ $m_{44} \rightarrow \boxed{m_{44} = 10}$

Column and Row Vectors

Problem 5

Rewrite the following vectors using the alternative format (row to column, column to row):

5.a
$$\vec{v} = (2,1,3)$$

$$\vec{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

5.c
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

5.b
$$\vec{v} = (2,0,3,4)$$

$$\vec{v} = \begin{bmatrix} 2 \\ 0 \\ 3 \\ 4 \end{bmatrix}$$

5.d
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $\vec{v} = (1,2)$

Symmetric Matrices

Problem 6

For the following matrices, identify each as either symmetric or asymmetric:

A matrix is symmetric if it is equal to its transpose.

6.a
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$A^t = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$$

$$A^t = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$$

$$A^t \neq A$$

A is asymmetric.

6.b
$$A = \begin{bmatrix} 2 & 6 \\ 6 & 3 \end{bmatrix}$$

$$A^t = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$$

$$A^t = \begin{bmatrix} 2 & 6 \\ 6 & 3 \end{bmatrix}$$

$$A^t = A$$

A is symmetric.

6.c
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{bmatrix}$$
$$\begin{bmatrix} a_{11} & a_{21} & a_{22} \end{bmatrix}$$

$$A^t = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$

$$A^t = \begin{bmatrix} 1 & 2 & 6 \\ 2 & 5 & 7 \\ 3 & 7 & 5 \end{bmatrix}$$

$$A^t \neq A$$

A is asymmetric.

6.d
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix}$$
$$A^{t} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$A^t = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix}$$

$$A^t = A$$

A is symmetric.

6.e
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

$$A^t = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$

$$A^t = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

$$A^t = A$$

A is symmetric.

6.f If
$$M = \begin{bmatrix} 2 & x & y & 7 \\ 0 & 4 & z & t \\ 1 & 0 & 1 & u \\ v & 6 & 8 & 5 \end{bmatrix}$$
 is a symmetric matrix, what must be the values of:

$$x: x = m_{12}$$
 $m_{12} = m_{21}$
 $m_{12} = 0$

symmetric matrix

$$m_{24} = m_{42}$$
 sy $m_{24} = 6$

 $m_{24} = m_{42}$ | symmetric matrix

$$|t = 6|$$

x = 0

 $y = m_{13}$ *y*:

 $m_{13} = m_{31}$

symmetric matrix

$$m_{13}=1$$

$$y = 1$$

u: $u = m_{34}$

 $t: t = m_{24}$

 $m_{34} = m_{43}$ | symmetric matrix

$$m_{34}=8$$

$$u = 8$$

$$z$$
: $z = m_{23}$

$$m_{23} = m_{32}$$

symmetric matrix

$$m_{23} = 0$$

$$z = 0$$

v: $v = m_{41}$

 $m_{41}=m_{14} \; ig| \; {
m symmetric \ matrix}$

 $m_{41} = 7$

v=7.

Diagonal, Triangular, and Skew-Symmetric Matrices

Problem 7

For the following matrices, identify each as diagonal, upper triangular, lower triangular, or skew-symmetric:

7.a
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & 5 \end{bmatrix}$$

All elements below the main diagonal are zero. A is **lower triangular**.

7.b
$$B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 5 & 1 & 0 & 0 \\ 7 & 8 & 9 & 0 \\ 3 & 5 & 9 & 10 \end{bmatrix}$$

All elements above the main diagonal are zero. B is **upper triangular**.

7.c
$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

All elements not on the main diagonal are zero. C is **diagonal**.

7.d
$$D = \begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & -7 \\ -3 & 7 & 0 \end{bmatrix}$$

All elements across the main diagonal are negations of each other, and all elements on the main diagonal are zero. *D* is **skew symmetric**.

Full Sail University October 2020

7.e Write the skew symmetric matrix for each of the following vectors:

A vector (x, y, z) becomes the skew-symmetric matrix $\begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$.

$$\vec{v} = (1,2,3)$$

$$\text{skew}(\vec{v}) = \begin{bmatrix} 0 & -v_z & v_y \\ v_z & 0 & -v_x \\ -v_y & v_x & 0 \end{bmatrix}$$

$$\text{skew}(\vec{v}) = \begin{bmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix}$$

This problem is labeled 7.b on FSO.

$$\vec{u} = (0,2,-1)$$

$$\operatorname{skew}(\vec{u}) = \begin{bmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{bmatrix}$$

$$\operatorname{skew}(\vec{u}) = \begin{bmatrix} 0 & -(-1) & 2 \\ -1 & 0 & -0 \\ -2 & 0 & 0 \end{bmatrix}$$

$$\operatorname{skew}(\vec{u}) = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix}$$

$$\vec{w} = (4, -2, 3)$$

$$\text{skew}(\vec{w}) = \begin{bmatrix} 0 & -w_z & w_y \\ w_z & 0 & -w_x \\ -w_y & w_x & 0 \end{bmatrix}$$

$$\text{skew}(\vec{w}) = \begin{bmatrix} 0 & -3 & -2 \\ 3 & 0 & -4 \\ -(-2) & 4 & 0 \end{bmatrix}$$

$$\text{skew}(\vec{w}) = \begin{bmatrix} 0 & -3 & -2 \\ 3 & 0 & -4 \\ 2 & 4 & 0 \end{bmatrix}$$

Matrices Addition

Problem 8

Given matrices
$$A=\begin{bmatrix}1&2&0\\0&5&1\\3&1&1\end{bmatrix}$$
 and $B=\begin{bmatrix}1&0&2\\3&2&1\\1&2&3\end{bmatrix}$, find the following:

8.a
$$A + B$$

$$A + B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

$$A+B = \begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\ a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\ a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33} \end{bmatrix}$$

$$A + B = \begin{bmatrix} (1) + (1) & (2) + (0) & (0) + (2) \\ (0) + (3) & (5) + (2) & (1) + (1) \\ (3) + (1) & (1) + (2) & (1) + (3) \end{bmatrix}$$

$$A + B = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 7 & 2 \\ 4 & 3 & 4 \end{bmatrix}$$

8.b
$$2B - A$$

$$2B - A = 2 \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$2B - A = \begin{bmatrix} 2(1) & 2(0) & 2(2) \\ 2(3) & 2(2) & 2(1) \\ 2(1) & 2(2) & 2(3) \end{bmatrix} - \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$2B - A = \begin{bmatrix} 2 & 0 & 4 \\ 6 & 4 & 2 \\ 2 & 4 & 6 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$2B - A = \begin{bmatrix} 2 - 1 & 0 - 2 & 4 - 0 \\ 6 - 0 & 4 - 5 & 2 - 1 \\ 2 - 3 & 4 - 1 & 6 - 1 \end{bmatrix}$$
$$2B - A = \begin{bmatrix} 1 & -2 & 4 \\ 6 & -1 & 1 \\ -1 & 3 & 5 \end{bmatrix}$$

$$2B - A = \begin{bmatrix} 1 & -2 & 4 \\ 6 & -1 & 1 \\ -1 & 3 & 5 \end{bmatrix}$$

8.c
$$B - B^t$$

$$B - B^{t} = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}^{t}$$

$$B - B^{t} = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 3 & 1 \\ 0 & 2 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

$$B - B^{t} = \begin{bmatrix} 1 - 1 & 0 - 3 & 2 - 1 \\ 3 - 0 & 2 - 2 & 1 - 2 \\ 1 - 2 & 2 - 1 & 3 - 3 \end{bmatrix}$$

$$B - B^{t} = \begin{bmatrix} 0 & -3 & 1 \\ 3 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$

8.d
$$2A - 3A$$

$$2A - 3A = 2 \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix} - 3 \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$2A - 3A = \begin{bmatrix} 2(1) & 2(2) & 2(0) \\ 2(0) & 2(5) & 2(1) \\ 2(3) & 2(1) & 2(1) \end{bmatrix} - \begin{bmatrix} 3(1) & 3(2) & 3(0) \\ 3(0) & 3(5) & 3(1) \\ 3(3) & 3(1) & 3(1) \end{bmatrix}$$

$$2A - 3A = \begin{bmatrix} 2 & 4 & 0 \\ 0 & 10 & 2 \\ 6 & 2 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 6 & 0 \\ 0 & 15 & 3 \\ 9 & 3 & 3 \end{bmatrix}$$

$$2A - 3A = \begin{bmatrix} 2 - 3 & 4 - 6 & 0 - 0 \\ 0 - 0 & 10 - 15 & 2 - 3 \\ 6 - 9 & 2 - 3 & 2 - 3 \end{bmatrix}$$

$$2A - 3A = \begin{bmatrix} -1 & -2 & 0 \\ 0 & -5 & -1 \\ 2 & 1 & 1 \end{bmatrix} = -A$$

8.e
$$A^{t} + B$$

$$A^{t} + B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}^{t} + \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

$$A^{t} + B = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 5 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

$$A^{t} + B = \begin{bmatrix} 1+1 & 0+0 & 3+2 \\ 2+3 & 5+2 & 1+1 \\ 0+1 & 1+2 & 1+3 \end{bmatrix}$$

$$A^{t} + B = \begin{bmatrix} 2 & 0 & 5 \\ 5 & 7 & 2 \\ 1 & 3 & 4 \end{bmatrix}$$

Matrix Form of the Vector Dot Product

Problem 9

For the following vector pairs, write the matrix dot product:

9.a
$$\vec{u} = (0,2,-1) \text{ and } \vec{v} = (1,2,3)$$
 9.b $\vec{s} = (3,2,-4) \text{ nd } \vec{t} = (2,2,-1)$ $\vec{u} \cdot \vec{v} = [u_x \quad u_y \quad u_z] \cdot \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$ $\vec{s} \cdot \vec{t} = [s_x \quad s_y \quad s_z] \cdot \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$ $\vec{u} \cdot \vec{v} = [0 \quad 2 \quad -1] \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $\vec{s} \cdot \vec{t} = [3 \quad 2 \quad -4] \cdot \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ $\vec{u} \cdot \vec{v} = (0)(1) + (2)(2) + (-1)(3)$ $\vec{s} \cdot \vec{t} = (3)(2) + (2)(2) + (-4)(-1)$ $\vec{s} \cdot \vec{t} = 6 + 4 + 4$ $\vec{s} \cdot \vec{t} = 14$

Matrix Form of the Vector Cross Product

Problem 10

For the following vector pairs, write the matrix cross product:

10.a
$$\vec{u} = (0,2,-1)$$
 and $\vec{v} = (1,2,3)$

$$\vec{u} \times \vec{v} = \text{skew}(\vec{u}) \cdot \vec{v}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{bmatrix} \cdot \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} 0 & -(-1) & (2) \\ (-1) & 0 & -(0) \\ -(2) & (0) & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} (0)(1) + (1)(2) + (2)(3) \\ (-1)(1) + (0)(2) + (0)(3) \\ (-2)(1) + (0)(2) + (0)(3) \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} 0 + 2 + 6 \\ -1 + 0 + 0 \\ -2 + 0 + 0 \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} 8 \\ -1 \\ -2 \end{bmatrix} = (8, -1, -2)$$

Alternate:

$$\vec{u} \times \vec{v} = \begin{bmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & 2 & -1 \\ 1 & 2 & 3 \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} 2 & -1 \\ 2 & 3 \end{bmatrix} \hat{\imath} - \begin{bmatrix} 0 & -1 \\ 1 & 3 \end{bmatrix} \hat{\jmath} + \begin{bmatrix} 0 & 2 \\ 1 & 2 \end{bmatrix} \hat{k}$$

$$\vec{u} \times \vec{v} = [(2)(3) - (2)(-1)]\hat{\imath} - [(0)(3) - (1)(-1)]\hat{\jmath} + [(0)(2) - (1)(2)]\hat{k}$$

$$\vec{u} \times \vec{v} = [6 - (-2)]\hat{\imath} - [0 - (-1)]\hat{\jmath} + [0 - 2]\hat{k}$$

 $\vec{u} \times \vec{v} = 8\hat{\imath} - \hat{\jmath} - 2\hat{k} = (8, -1, -2)$

10.b
$$\vec{u} = (2,1,-1) \text{ and } \vec{v} = (1,0,-1)$$

$$\vec{u} \times \vec{v} = \text{skew}(\vec{u}) \cdot \vec{v}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{bmatrix} \cdot \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} 0 & -(-1) & (1) \\ (-1) & 0 & -(2) \\ -(1) & (2) & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & -2 \\ -1 & 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} (0)(1) + (1)(0) + (1)(-1) \\ (-1)(1) + (0)(0) + (-2)(-1) \\ (-1)(1) + (2)(0) + (0)(-1) \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} (-1)(1) + (0)(0) + (-2)(-1)(1) + (0)(0) + (-2)(-1)(1) + (0)(0) + (0)(-1)(0) \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} 0 + 0 + (-1) \\ -1 + 0 + 2 \\ -1 + 0 + 0 \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} -1\\1\\-1 \end{bmatrix} = (-1,1,-1)$$

Alternate:
$$\vec{u} \times \vec{v} = \begin{bmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} \hat{\imath} & -1 \\ 0 & 1 \end{bmatrix} \hat{\imath} - \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix} \hat{\jmath} + \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \hat{k}$$

$$\vec{u} \times \vec{v} = [(1)(-1) - (0)(-1)]\hat{\imath} - [(2)(-1) - (1)(-1)]\hat{\jmath} + [(2)(0) - (1)(1)]\hat{k}$$

$$\vec{u} \times \vec{v} = [-1 - 0]\hat{\imath} - [-2 - (-1)]\hat{\jmath} + [0 - 1]\hat{k}$$

$$\vec{u} \times \vec{v} = -\hat{\imath} + \hat{\jmath} - \hat{k} = (-1, 1, -1)$$

Matrix Multiplication

Problem 11

For the following matrix pairs, multiply the first matrix by the second:

11.a
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$

$$A \cdot B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} (1)(1) + (2)(3) + (0)(1) & (1)(0) + (2)(2) + (0)(2) & (1)(2) + (0)(1) + (2)(3) \\ (0)(1) + (5)(3) + (1)(1) & (0)(0) + (5)(2) + (1)(2) & (0)(2) + (5)(1) + (1)(3) \\ (3)(1) + (1)(3) + (1)(1) & (3)(0) + (1)(2) + (1)(2) & (3)(2) + (1)(1) + (1)(3) \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} 1 + 6 + 0 & 0 + 4 + 0 & 2 + 0 + 6 \\ 0 + 15 + 1 & 0 + 10 + 2 & 0 + 5 + 3 \\ 3 + 3 + 1 & 0 + 2 + 2 & 6 + 1 + 3 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} 7 & 4 & 8 \\ 16 & 12 & 8 \end{bmatrix}$$

11.b
$$C = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$
 and $D = \begin{bmatrix} 2 & 6 \\ 6 & 3 \end{bmatrix}$

$$C \cdot D = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & 6 \\ 6 & 3 \end{bmatrix}$$

$$C \cdot D = \begin{bmatrix} (2)(2) + (-1)(6) & (2)(6) + (-1)(3) \\ (1)(2) + (3)(6) & (1)(6) + (3)(3) \end{bmatrix}$$

$$C \cdot D = \begin{bmatrix} 4 + (-6) & 12 + (-3) \\ 2 + 18 & 6 + 9 \end{bmatrix}$$

$$C \cdot D = \begin{bmatrix} -2 & 9 \\ 20 & 15 \end{bmatrix}$$

11.c
$$E = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 1 \end{bmatrix}$$
 and $F = \begin{bmatrix} 1 & 3 \\ 1 & 4 \\ 0 & 1 \end{bmatrix}$

$$E \cdot F = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \\ 1 & 4 \\ 0 & 1 \end{bmatrix}$$

$$E \cdot F = \begin{bmatrix} (1)(1) + (0)(1) + (3)(0) & (1)(3) + (0)(4) + (3)(1) \\ (2)(1) + (1)(1) + (1)(0) & (2)(3) + (1)(4) + (1)(1) \end{bmatrix}$$

$$E \cdot F = \begin{bmatrix} 1 + 0 + 0 & 3 + 0 + 3 \\ 2 + 1 + 0 & 6 + 4 + 1 \end{bmatrix}$$

$$E \cdot F = \begin{bmatrix} 1 & 6 \\ 3 & 11 \end{bmatrix}$$

11.d
$$G = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$
 and $H = \begin{bmatrix} 1 & 0 \\ 3 & 1 \\ 0 & 1 \end{bmatrix}$

$$G \cdot H = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 3 & 1 \\ 0 & 1 \end{bmatrix}$$

$$G \cdot H = \begin{bmatrix} (1)(1) + (1)(3) + (3)(0) & (1)(0) + (1)(1) + (3)(1) \\ (0)(1) + (1)(3) + (1)(0) & (0)(0) + (1)(1) + (1)(1) \end{bmatrix}$$

$$G \cdot H = \begin{bmatrix} 1 + 3 + 0 & 0 + 1 + 3 \\ 0 + 3 + 0 & 0 + 1 + 1 \end{bmatrix}$$

$$G \cdot H = \begin{bmatrix} 4 & 4 \\ 3 & 2 \end{bmatrix}$$

Full Sail University

11.e
$$I = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 4 & 1 & 1 \end{bmatrix} \text{ and } J = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$

$$I \cdot J = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 4 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$

$$I \cdot J = \begin{bmatrix} (1)(2) + (0)(1) + (1)(1) & (1)(1) + (0)(2) + (1)(2) & (1)(2) + (0)(3) + (1)(3) \\ (1)(2) + (2)(1) + (1)(1) & (1)(1) + (2)(2) + (1)(2) & (1)(2) + (2)(3) + (1)(3) \\ (4)(2) + (1)(1) + (1)(1) & (4)(1) + (1)(2) + (1)(2) & (4)(2) + (1)(3) + (1)(3) \end{bmatrix}$$

$$I \cdot J = \begin{bmatrix} 2 + 0 + 1 & 1 + 0 + 2 & 2 + 0 + 3 \\ 2 + 2 + 1 & 1 + 4 + 2 & 2 + 6 + 3 \\ 8 + 1 + 1 & 4 + 2 + 2 & 8 + 3 + 3 \end{bmatrix}$$

$$I \cdot J = \begin{bmatrix} 3 & 3 & 5 \\ 5 & 7 & 11 \\ 10 & 0 & 14 \end{bmatrix}$$

11.f
$$K = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$
 and $L = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$

$$K \cdot L = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$$

$$K \cdot L = (1)(2) + (2)(0) + (1)(3)$$

$$K \cdot L = 2 + 0 + 3$$

$$\boxed{K \cdot L = 5}$$

Linear Algebra

11.g
$$M = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$$
 and $N = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

$$M \cdot N = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$M \cdot N = \begin{bmatrix} (2)(1) & (2)(2) & (2)(1) \\ (0)(1) & (0)(2) & (0)(1) \\ (3)(1) & (3)(2) & (3)(1) \end{bmatrix}$$

$$M \cdot N = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 0 & 0 \\ 3 & 6 & 3 \end{bmatrix}$$

29

Right and Left Vector-Matrix Multiplication

Problem 12

Given
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 3 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$, calculate:

12.a
$$A \cdot \vec{v}$$
 and $\vec{v} \cdot A$

$$A \cdot \vec{v} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 3 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$A \cdot \vec{v} = \begin{bmatrix} (2)(1) + (1)(2) + (0)(1) \\ (0)(1) + (3)(2) + (1)(1) \\ (3)(1) + (1)(2) + (0)(1) \end{bmatrix}$$

$$A \cdot \vec{v} = \begin{bmatrix} 2+2+0\\ 0+6+1\\ 3+2+0 \end{bmatrix}$$

$$A \cdot \vec{v} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

$$\vec{v} \cdot A = \vec{v}^t \cdot A^t$$

$$\vec{v} \cdot A = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}^t \cdot \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 3 & 1 & 0 \end{bmatrix}^t$$

$$\vec{v} \cdot A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 1 & 3 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\vec{v} \cdot A = [(1)(2) + (2)(1) + (1)(0) \quad (1)(0) + (2)(3) + (1)(1) \quad (1)(3) + (2)(1) + (1)(0)]$$

$$\vec{v} \cdot A = [2 + 2 + 0 \quad 0 + 6 + 1 \quad 3 + 2 + 0]$$

$$\vec{v} \cdot A = \begin{bmatrix} 4 & 7 & 5 \end{bmatrix}$$

12.b
$$A \cdot \vec{u}$$
 and $\vec{u} \cdot A$

$$A \cdot \vec{u} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 3 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$$

$$A \cdot \vec{u} = \begin{bmatrix} (2)(0) + (1)(1) + (0)(3) \\ (0)(0) + (3)(1) + (1)(3) \\ (3)(0) + (1)(1) + (0)(3) \end{bmatrix}$$

$$A \cdot \vec{u} = \begin{bmatrix} 0 + 1 + 0 \\ 0 + 3 + 3 \\ 0 + 1 + 0 \end{bmatrix}$$

$$A \cdot \vec{u} = \begin{bmatrix} 1 \\ 6 \\ 1 \end{bmatrix}$$

$$\vec{u} \cdot A = \vec{u}^t \cdot A^t$$

$$\vec{u} \cdot A = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}^t \cdot \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 3 & 1 & 0 \end{bmatrix}^t$$

$$\vec{u} \cdot A = \begin{bmatrix} 0 & 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 1 & 3 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\vec{u} \cdot A = \begin{bmatrix} (0)(2) + (1)(1) + (3)(0) & (0)(0) + (1)(3) + (3)(1) & (0)(3) + (1)(1) + (3)(0) \end{bmatrix}$$

$$\vec{u} \cdot A = \begin{bmatrix} 0 + 1 + 0 & 0 + 3 + 3 & 0 + 1 + 0 \end{bmatrix}$$

$$\vec{u} \cdot A = \begin{bmatrix} 1 & 6 & 1 \end{bmatrix}$$

12.c
$$B \cdot \vec{u}$$
 and $\vec{u} \cdot B$

$$B \cdot \vec{u} = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$$

$$B \cdot \vec{u} = \begin{bmatrix} (2)(0) + (1)(1) + (3)(3) \\ (1)(0) + (0)(1) + (1)(3) \\ (2)(0) + (1)(1) + (0)(3) \end{bmatrix}$$

$$B \cdot \vec{u} = \begin{bmatrix} 0 + 1 + 9 \\ 0 + 0 + 3 \\ 0 + 1 + 0 \end{bmatrix}$$

$$B \cdot \vec{u} = \begin{bmatrix} 10 \\ 3 \end{bmatrix}$$

$$\vec{u} \cdot B = \vec{u}^t \cdot B^t$$

$$\vec{u} \cdot B = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}^t \cdot \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}^t$$

$$\vec{u} \cdot B = \begin{bmatrix} 0 & 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$$

$$\vec{u} \cdot B = \begin{bmatrix} (0)(2) + (1)(1) + (3)(3) & (0)(1) + (1)(0) + (3)(1) & (0)(2) + (1)(1) + (3)(0) \end{bmatrix}$$

$$\vec{u} \cdot B = \begin{bmatrix} 0 + 1 + 9 & 0 + 0 + 3 & 0 + 1 + 0 \end{bmatrix}$$

$$\vec{u} \cdot B = \begin{bmatrix} 10 & 3 & 1 \end{bmatrix}$$

12.d
$$B \cdot \vec{w}$$

Linear Algebra

$$B \cdot \vec{w} = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

$$B \cdot \vec{w} = \begin{bmatrix} (2)(3) + (1)(1) + (3)(2) \\ (1)(3) + (0)(1) + (1)(2) \\ (2)(3) + (1)(1) + (0)(2) \end{bmatrix}$$

$$B \cdot \vec{w} = \begin{bmatrix} 6 + 1 + 6 \\ 3 + 0 + 2 \\ 6 + 1 + 0 \end{bmatrix}$$

$$B \cdot \vec{w} = \begin{bmatrix} 13 \\ 5 \\ 7 \end{bmatrix}$$

12.e
$$\vec{v} \cdot \vec{u}^t$$

$$\vec{v} \cdot \vec{u}^t = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}^t$$

$$\vec{v} \cdot \vec{u}^t = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 3 \end{bmatrix}$$

$$\vec{v} \cdot \vec{u}^t = \begin{bmatrix} (1)(0) & (1)(1) & (1)(3) \\ (2)(0) & (2)(1) & (2)(3) \\ (1)(0) & (1)(1) & (1)(3) \end{bmatrix}$$

$$\vec{v} \cdot \vec{u}^t = \begin{bmatrix} 0 & 1 & 3 \\ 0 & 2 & 6 \\ 0 & 1 & 3 \end{bmatrix}$$

32

Systems of Linear Equations and Augmented Matrices

Problem 13

For each of the following systems of linear equations, write the augmented matrix:

13.a
$$\begin{cases} x + 2y = 5 \\ 2x - 3y = -4 \end{cases}$$
$$\begin{bmatrix} 1 & 2 \\ 2 & -3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ -4 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & -3 & -4 \end{bmatrix}$$

13.b
$$\begin{cases} x + 2y = 7 \\ 5x - 3y = 9 \end{cases}$$
$$\begin{bmatrix} 1 & 2 \\ 5 & -3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ 9 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 7 \\ 5 & -3 & 9 \end{bmatrix}$$

13.c
$$\begin{cases} 2x + 3y = 16 \\ 2x - y = 8 \end{cases}$$
$$\begin{bmatrix} 2 & 3 \\ 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 16 \\ 8 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 & 16 \\ 2 & -1 & 8 \end{bmatrix}$$

13.d
$$\begin{cases} 3x + y = 2 \\ 2x + y = 1 \end{cases}$$
$$\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$

13.e
$$\begin{cases} x + y - 5z = -3 \\ x + y + z = 3 \\ 7x - y + 2z = 8 \end{cases}$$
$$\begin{bmatrix} 1 & 1 & -5 \\ 1 & 1 & 1 \\ 7 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \\ 8 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & -5 \\ 1 & 1 & 1 \\ 7 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \\ 8 \end{bmatrix}$$

13.f
$$\begin{cases} x + y + z = 2 \\ x - 3y + 2z = -4 \\ 5x - y + 3z = 8 \end{cases}$$
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -3 & 2 \\ 5 & -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \\ 8 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & -3 & 2 & -4 \\ 5 & -1 & 3 & 8 \end{bmatrix}$$

13.g
$$\begin{cases} x + 3y + z = 4 \\ 2x - y + 2z = 1 \\ 3x - y + 2z = 3 \end{cases}$$
$$\begin{bmatrix} 1 & 3 & 1 \\ 2 & -1 & 2 \\ 3 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & -1 & 2 & 1 \\ 3 & -1 & 2 & 3 \end{bmatrix}$$

13.h
$$\begin{cases} x + y - z = 6 \\ 2x + 3y + z = 7 \\ x - y + 2z = -2 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 1 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 7 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 & 6 \\ 2 & 3 & 1 & 7 \\ 1 & -1 & 2 & -2 \end{bmatrix}$$

Identifying a Row-Echelon Form of a Matrix

Problem 14

For each of the following matrices, identify if it is in row echelon form:

Row-echelon form requires:

All all-zero rows are at the matrix's bottom.

The first non-zero number of a row is to the right of the first non-zero number in the row above.

14.a
$$A = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

A is **not** in row-echelon form. Its single non-zero row is not at the matrix's bottom.

14.b
$$B = \begin{bmatrix} 8 & 4 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

B is in row-echelon form. Its single non-zero row is at the matrix's bottom. The first non-zero number of the second row is to the right of the first non-zero number in the first row.

14.c
$$C = \begin{bmatrix} 1 & 4 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix}$$

 ${\it C}$ is **not** in row-echelon form. The first non-zero number in the third row is not located to the right of the first non-zero number in the second row.

14.d
$$D = \begin{bmatrix} 0 & 8 & 2 \\ 2 & 3 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

D is **not** in row-echelon form. The first non-zero number in the second row is not to the right of the first non-zero number in the first row.

14.e
$$E = \begin{bmatrix} 1 & 4 & 2 \\ 0 & 3 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$

E is in row-echelon form. The first non-zero number in each row is located to the right of the first non-zero number in the row above. There are no all-zero rows to consider.

Full Sail University October 2020

14.f
$$F = \begin{bmatrix} 0 & 5 & 3 & 0 & 7 \\ 0 & 0 & 5 & 5 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

F is in row-echelon form. The single all-zero row is at the matrix's bottom. The first non-zero number in each row is located to the right of the first non-zero number in the row above.

14.g
$$G = \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix}$$

G is in row-echelon form. The first non-zero number in the second row is located to the right of the first non-zero number in the first row. There are no all-zero rows to consider.

14.h
$$H = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$$

 ${\it H}$ is **not** in row-echelon form. The single all-zero row is not located at the matrix's bottom.

14.i
$$I = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}$$

I is **not** in row-echelon form. The first non-zero number in the second row is not located to the right of the first non-zero number in the first row.

14.j
$$J = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 5 \end{bmatrix}$$

J is in row-echelon form. The first non-zero number in the second row is located to the right of the first non-zero number in the first row.

Identifying the Reduced Row-Echelon Form of a Matrix

Problem 15

For each of the following matrices, identify if it is in **reduced** row echelon form:

Reduced row-echelon form requires:

The matrix is in row-echelon form.

All all-zero rows are at the matrix's bottom.

The first non-zero number of a row is to the right of the first non-zero number in the row above.

The first non-zero number in each row has the value 1.

The first non-zero in each row is the only non-zero number in that entire column.

15.a
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A is in reduced row-echelon form. There are no all-zero rows to consider. The first non-zero number of each row is to the right of the first non-zero number of the row above. The first non-zero number of each row has the value 1. The first non-zero number in each row is the only non-zero number in that entire column.

15.b
$$B = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

B is **not** in reduced row-echelon form. The first non-zero number in the second row shares that column with a second non-zero number (in the first row).

15.c
$$C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

C is **not** in reduced row-echelon form. The first non-zero number in the third row does not have a value of 1, and it shares that column with a second non-zero number (in the first row).

15.d
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

D is **not** in reduced row-echelon form. The single all-zero row is not located at the matrix's bottom.

Full Sail University October 2020

15.e
$$E = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

E is **not** in reduced row-echelon form. The first non-zero number in the first row does not have a value of 1.

15.f
$$F = \begin{bmatrix} 1 & 5 & 0 & 0 & 7 \\ 0 & 0 & 1 & 5 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

F is in reduced row-echelon form. Its single all-zero row is located at the matrix's bottom. The first non-zero number in the second row is to the right of the first non-zero number in the first row. The first non-zero numbers in each row has a value of one and are the only non-zero numbers in their respective columns.

15.g
$$G = \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix}$$

G is **not** in reduced row-echelon form. The first non-zero number in the second row does not have a value of 1 and shares the column with another non-zero number.

15.h
$$H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

H is in reduced row-echelon form. There are no all-zero rows to consider. The first non-zero number in the second row is to the right of the first non-zero number in the first row. The first non-zero numbers in both rows have values of 1 and are the only non-zero numbers in their respective columns.

15.i
$$I = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 5 \end{bmatrix}$$

 $\it I$ is in reduced row-echelon form. There are no all-zero rows to consider. The first non-zero number in the second row is to the right of the first non-zero number in the first row. The first non-zero numbers in both rows have values of 1 and are the only non-zero numbers in their respective columns.

15.j
$$J = \begin{bmatrix} 1 & 0 & 0 & 0 & 7 \\ 0 & 1 & 0 & 5 & 3 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

J is in reduced row-echelon form. There are no all-zero rows to consider. The first non-zero number in each row is located to the right of the first non-zero numbers in the rows above, has a value of 1, and is the only non-zero number in its respective column.

Computing the Row-Echelon Form of a Matrix

Problem 16

Convert the following matrices to row echelon form:

16.a
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{bmatrix} 2 - 1 & -1 - 3 \\ 1 & 3 \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & -4 \\ 1 & 3 \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & -4 \\ 1 & 3 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 1 & -4 \\ 1 - 1 & 3 - (-4) \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & -4 \\ 0 & 7 \end{bmatrix}$$

16.b
$$A = \begin{bmatrix} 2 & 6 \\ 6 & 3 \end{bmatrix}$$

$$A \to \begin{bmatrix} 2 & 6 \\ 6 & 3 \end{bmatrix} \xrightarrow{r_2 - 3r_1} \begin{bmatrix} 2 & 6 \\ 6 - 3(2) & 3 - 3(3) \end{bmatrix}$$

$$A \sim \begin{bmatrix} 2 & 6 \\ 0 & -15 \end{bmatrix}$$

16.c
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 6 & 7 & 5 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & 3 \\ 2 - 2(1) & 5 - 2(2) & 7 - 2(3) \\ 6 - 6(1) & 7 - 6(2) & 5 - 6(3) \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -13 \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -13 \end{bmatrix} \xrightarrow{r_3 + 5r_2} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 + 5(0) & -5 + 5(1) & -13 + 5(1) \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -8 \end{bmatrix}$$

16.d
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & 3 \\ 2 - 2(1) & 5 - 2(2) & 0 - 2(3) \\ 3 - 3(1) & 0 - 3(2) & 5 - 3(3) \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & -6 & -4 \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & -6 & -4 \end{bmatrix} \xrightarrow{r_3 + 6r_2} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 + 6(0) & -6 + 6(1) & -4 + 6(-6) \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & 0 & -40 \end{bmatrix}$$

16.e
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 4 & 7 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 4 & 7 & 3 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & 1 \\ 2 - 2(1) & 3 - 2(2) & 1 - 2(1) \\ 4 - 4(1) & 7 - 4(2) & 3 - 4(1) \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 + 0 & -1 - (-1) & -1 - (-1) \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Computing the Reduced Row-Echelon Form of a Matrix Problem 17

Convert the following matrices to reduced row echelon form:

17.a
$$A = \begin{bmatrix} 1 & 2 & 5 \ 2 & -3 & -4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 5 \ 2 & -3 & -4 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & 5 \ 2 - 2(1) & -3 - 2(2) & -4 - 2(5) \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 5 \ 0 & -7 & -14 \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 5 \ 0 & -7 & -14 \end{bmatrix} \xrightarrow{-r_2/2} \begin{bmatrix} 1 & 2 & 5 \ -0/2 & -(-7)/2 & -(-14)/2 \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 5 \ 0 & 1 & 2 \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 2 & 5 \ 0 & 1 & 2 \end{bmatrix} \xrightarrow{r_1 - 2r_2} \begin{bmatrix} 1 - 2(0) & 2 - 2(1) & 5 - 2(2) \ 0 & 1 & 2 \end{bmatrix}$$

$$A \sim \begin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 2 \end{bmatrix}$$

October 2020

17.b
$$B = \begin{bmatrix} 1 & 2 & 7 \\ 5 & -3 & 9 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 7 \\ 5 & -3 & 9 \end{bmatrix} \xrightarrow{r_2 - 5r_1} \begin{bmatrix} 1 & 2 & 7 \\ 5 - 5(1) & -3 - 5(2) & 9 - 5(7) \end{bmatrix}$$

$$B \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & -13 & -26 \end{bmatrix}$$

$$B \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & -13 & -26 \end{bmatrix} \xrightarrow{-r_2/13} \begin{bmatrix} 1 & 2 & 7 \\ -0/13 & -(-13)/13 & -(-26)/13 \end{bmatrix}$$

$$B \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 1 & 2 \end{bmatrix}$$

$$B \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{r_1 - 2r_2} \begin{bmatrix} 1 & 2 - 2(1) & 7 - 2(2) \\ 0 & 1 & 2 \end{bmatrix}$$

$$B \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$

17.c
$$C = \begin{bmatrix} 2 & 3 & 16 \\ 2 & -1 & 8 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 3 & 16 \\ 2 & -1 & 8 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 2 & 3 & 16 \\ 2 - 2 & -1 - 3 & 8 - 16 \end{bmatrix}$$

$$C \sim \begin{bmatrix} 2 & 3 & 16 \\ 0 & -4 & -8 \end{bmatrix}$$

$$C \sim \begin{bmatrix} 2 & 3 & 16 \\ 0 & -4 & -8 \end{bmatrix} \xrightarrow{r_2/(-4)} \begin{bmatrix} 2 & 3 & 16 \\ 0/_{-4} & -4/_{-4} & -8/_{-8} \end{bmatrix}$$

$$C \sim \begin{bmatrix} 2 & 3 & 16 \\ 0 & 1 & 2 \end{bmatrix}$$

$$C \sim \begin{bmatrix} 2 & 3 & 16 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{r_1 - 3r_2} \begin{bmatrix} 2 - 3(0) & 3 - 3(1) & 16 - 3(2) \\ 0 & 1 & 2 \end{bmatrix}$$

$$C \sim \begin{bmatrix} 2 & 0 & 10 \\ 0 & 1 & 2 \end{bmatrix}$$

$$C \sim \begin{bmatrix} 2 & 0 & 10 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{r_1/2} \begin{bmatrix} 2/_2 & 0/_2 & 10/_2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$C \sim \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

17.d
$$D = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{bmatrix} 3 - 2 & 1 - 1 & 2 - 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$D \sim \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$D \sim \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 0 & 1 \\ 2 - 2(1) & 1 - 2(0) & 1 - 2(1) \end{bmatrix}$$

$$D \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

$$17.e \quad E = \begin{bmatrix} 1 & 1 & -5 & -3 \\ 1 & 1 & 1 & 3 \\ 7 & -1 & 2 & 8 \end{bmatrix}$$

$$E = \begin{bmatrix} 1 & 1 & -5 & -3 \\ 1 & 1 & 1 & 3 \\ 7 & -1 & 2 & 8 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 1 & 1 & -5 & -3 \\ 1 - 1 & 1 - 1 & 1 - (-5) & 3 - (-3) \\ 7 - 7(1) & -1 - 7(1) & 2 - 7(-5) & 8 - 7(-3) \end{bmatrix}$$

$$E \sim \begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 0 & 6 & 6 \\ 0 & -8 & 35 & 29 \end{bmatrix} \xrightarrow{r_2 / 6} \begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 0 & 6 & 6 \\ 0 & -8 & 35 & 29 \end{bmatrix} \xrightarrow{r_2 / 6} \begin{bmatrix} 0 / 6 & 0 / 6 & 6 / 6 \\ 0 / (-8) & -8 / (-8) & 35 / (-8) \end{bmatrix}$$

$$E \sim \begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 0 & 6 & 6 \\ 0 & 1 & 1 \\ 0 & 1 & -\frac{35}{8} & -\frac{29}{8} \end{bmatrix}$$

$$E \sim \begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 0 & 6 & 6 \\ 0 & 1 & -\frac{35}{8} & -\frac{29}{8} \end{bmatrix} \xrightarrow{r_2 \leftrightarrow r_3} \begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 1 & -\frac{35}{8} & -\frac{29}{8} \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$E \sim \begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 1 & -\frac{35}{8} & -\frac{29}{8} \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$E \sim \begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 1 & -\frac{35}{8} & -\frac{29}{8} \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{r_2 \leftrightarrow r_3} \begin{bmatrix} 1 + 5(0) & 1 + 5(0) & -5 + 5(1) & -3 + 5(1) \\ 0 & -\frac{35}{8} & -\frac{29}{8} & \frac{17 + 5r_3}{2^2 + \frac{35}{8} & 3} \end{bmatrix} \xrightarrow{r_2 \leftrightarrow r_3} \begin{bmatrix} 1 + 5(0) & 1 + 5(0) & -5 + 5(1) & -3 + 5(1) \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$E \sim \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & \frac{3}{4} \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$E \sim \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & \frac{3}{4} \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{bmatrix} 1 - 0 & 1 - 1 & 0 - 0 & 2 - \frac{3}{4} \\ 0 & 1 & 0 & \frac{3}{4} \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{5}{4} \end{bmatrix}$$

$$E \sim \begin{bmatrix} 1 & 0 & 0 & \frac{5}{4} \\ & & & \frac{3}{4} \\ 0 & 1 & 0 & \frac{3}{4} \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{aligned} & 17. \text{f} \quad F = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & -3 & 2 & -4 \\ 5 & -1 & 3 & 8 \end{bmatrix} \\ & F = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & -3 & 2 & -4 \\ 5 & -1 & 3 & 8 \end{bmatrix} \frac{r_2 - r_1}{r_3 - 5 r_1} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 - 1 & -3 - 1 & 2 - 1 & -4 - 2 \\ 5 & -5 & 1 & 3 - 5 & 1 \end{bmatrix} \\ & F \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -4 & 1 & -6 \\ 0 & -6 & -2 & -2 \end{bmatrix} \\ & F \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -4 & 1 & -6 \\ 0 & -6 & -2 & -2 \end{bmatrix} \frac{r_2 / (-4)}{\longrightarrow} \begin{bmatrix} 0 / (-4) & -4 / (-4) & 1 / (-4) & -6 / (-4) \\ 0 & -6 & -2 & -2 \end{bmatrix} \\ & F \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -4 & 1 & -6 \\ 0 & -6 & -2 & -2 \end{bmatrix} \\ & F \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{4} & \frac{3}{2} \\ 0 & -6 & -2 & -2 \end{bmatrix} \frac{r_2 + 6 r_2}{\longrightarrow} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{4} & \frac{3}{2} \\ 0 & -6 & -2 & -2 \end{bmatrix} \\ & F \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{4} & \frac{3}{2} \\ 0 & -6 & -2 & -2 \end{bmatrix} \frac{r_2 + 6 r_2}{\longrightarrow} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 + 6 & 0 & -6 + 6 & (1) & -2 + 6 & \left(-\frac{1}{4}\right) & -2 + 6 & \left(\frac{3}{2}\right) \end{bmatrix} \\ & F \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{4} & \frac{3}{2} \\ 0 & 0 & -\frac{7}{2} & 7 \end{bmatrix} \end{aligned}$$

$$F \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{4} & \frac{3}{2} \\ 0 & 0 & -\frac{7}{2} & 7 \end{bmatrix} \xrightarrow{r_3\left(-\frac{2}{7}\right)} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{4} & \frac{3}{2} \\ 0 \cdot \left(-\frac{2}{7}\right) & 0 \cdot \left(-\frac{2}{7}\right) & -\frac{7}{2} \cdot \left(-\frac{2}{7}\right) & 7 \cdot \left(-\frac{2}{7}\right) \end{bmatrix}$$

$$F \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{4} & \frac{3}{2} \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$F \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{4} & \frac{3}{2} \\ 0 & 0 & 1 & -2 \end{bmatrix} \xrightarrow{r_2 + \frac{1}{4}r_3} \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{4} & \frac{1}{4}(0) & 1 + \frac{1}{4}(0) & -\frac{1}{4} + \frac{1}{4}(1) & \frac{3}{2} + \frac{1}{4}(-2) \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$F \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix} \xrightarrow{r_1 - r_2 - r_3} \begin{bmatrix} 1 - 0 - 0 & 1 - 1 - 0 & 1 - 0 - 1 & 2 - 1 - (-2) \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$F \sim \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$F \sim \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$17.g \quad G = \begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & -1 & 2 & 1 \\ 3 & -1 & 2 & 3 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & -1 & 2 & 1 \\ 3 & -1 & 2 & 3 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 - 2(1) & -1 - 2(3) & 2 - 2(1) & 1 - 2(4) \\ 3 - 3(1) & -1 - 3(3) & 2 - 3(1) & 3 - 3(4) \end{bmatrix}$$

$$G \sim \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & -7 & 0 & -7 \\ 0 & -10 & -1 & -9 \end{bmatrix}$$

$$G \sim \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & -7 & 0 & -7 \\ 0 & -10 & -1 & -9 \end{bmatrix} \xrightarrow{r_2/(-7)} \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0/-7 & -7/-7 & 0/-7 & -7/-7 \\ 0 & -10 & -1 & -9 \end{bmatrix}$$

$$G \sim \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & -10 & -1 & -9 \end{bmatrix}$$

$$G \sim \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & -10 & -1 & -9 \end{bmatrix} \xrightarrow{r_3 + 10r_2} \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & 1 & 0 & 1 \\ 0 + 10(0) & -10 + 10(1) & -1 + 10(0) & -9 + 10(1) \end{bmatrix}$$

$$G \sim \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$G \sim \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \xrightarrow{-r_3} \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & 1 & 0 & 1 \\ -0 & -0 & -(-1) & -1 \end{bmatrix}$$

$$G \sim \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$G \sim \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{r_1 - 3r_2 - r_3} \begin{bmatrix} 1 - 3(0) - 0 & 3 - 3(1) - 0 & 1 - 3(0) - 1 & 4 - 3(1) - (-1) \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$G \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$17. \text{h} \quad H = \begin{bmatrix} 1 & 1 & -1 & 6 \\ 2 & 3 & 1 & 7 \\ 1 & -1 & 2 & -2 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 1 & -1 & 6 \\ 2 & 3 & 1 & 7 \\ 1 & -1 & 2 & -2 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 2 - 2(1) & 3 - 2(1) & 1 - 2(-1) & 7 - 2(6) \\ 2 - 2(1) & 3 - 2(1) & 1 - 2(-1) & 7 - 2(6) \end{bmatrix}$$

$$H \sim \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 3 & -5 \\ 0 & -2 & 3 & -8 \end{bmatrix} \xrightarrow{r_3 + 2r_2} \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 3 & -5 \\ 0 & -2 & 3 & -8 \end{bmatrix} \xrightarrow{r_3 + 2r_2} \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 3 & -5 \\ 0 & -2 & 3 & -8 \end{bmatrix} \xrightarrow{r_3 + 2r_2} \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 3 & -5 \\ 0 & 0 & 9 & -18 \end{bmatrix}$$

$$H \sim \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 3 & -5 \\ 0 & 0 & 9 & -18 \end{bmatrix} \xrightarrow{r_3 / 9} \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 3 & -5 \\ 0 & 0 & 9 & -18 / 9 \end{bmatrix}$$

$$H \sim \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 3 & -5 \\ 0 & 0 & 9 & -18 \end{bmatrix} \xrightarrow{r_3 / 9} \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 3 & -5 \\ 0 / 9 & 0 / 9 & 9 / 9 & -18 / 9 \end{bmatrix}$$

$$H \sim \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 3 & -5 \\ 0 & 0 & 1 & -2 \end{bmatrix} \xrightarrow{r_2 - 3r_3} \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 3 & -5 \\ 0 & 0 & 1 & -3(0) & 3 - 3(1) & -5 - 3(-2) \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix} \xrightarrow{r_2 - 3r_3} \begin{bmatrix} 1 & 1 & 1 & -1 & 6 \\ 0 & 3 & 3 & -3(0) & 1 & -3(0) & 3 - 3(1) & -5 - 3(-2) \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix}$$

$$H \sim \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$H \sim \begin{bmatrix} 1 & 1 & -1 & 6 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix} \xrightarrow{r_1 - r_2 + r_3} \begin{bmatrix} 1 - 0 + 0 & 1 - 1 + 0 & -1 - 0 + 1 & 6 - 1 + (-2) \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$H \sim \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

Solution of Systems of Linear Equations Using Reduced Row-Echelon Form Problem 18

Solve each of the following systems of linear equations using a matrix in RREF:

18.a
$$\begin{cases} x + 2y = 5 \\ 2x - 3y = -4 \end{cases}$$

$$\begin{bmatrix} 1 & 2 & | & 5 \\ 2 & -3 & | & -4 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & | & 5 \\ 2 & -3 & | & -4 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & | & 5 \\ 2 & -3 & | & -4 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & | & 5 \\ 2 & -7 & | & -14 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | & 5 \\ 0 & -7 & | & -14 \end{bmatrix} \xrightarrow{r_2 / -7} \begin{bmatrix} 0 & | & 2 \\ 0 & -7 & | & -7 / & -7 \end{bmatrix} - 14 / -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | & 5 \\ 0 & 1 & | & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | & 5 \\ 0 & 1 & | & 2 \end{bmatrix} \xrightarrow{r_1 - 2r_2} \begin{bmatrix} 1 - 2(0) & 2 - 2(1) & | & 5 - 2(2) \\ 0 & 1 & | & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | & 5 \\ 0 & 1 & | & 2 \end{bmatrix} \xrightarrow{r_1 - 2r_2} \begin{bmatrix} 1 - 2(0) & 2 - 2(1) & | & 5 - 2(2) \\ 0 & 1 & | & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 2 \end{bmatrix}$$

$$\begin{bmatrix} x = 1 \\ y = 2 \end{bmatrix}$$
Check:
$$x + 2y = (1) + 2(2) = 1 + 4 = 5$$

$$2x - 3y - 2(1) - 3(2) = 2 - 6 = -4$$

18.b
$$\begin{cases} x + 2y = 7 \\ 5x - 3y = 9 \end{cases}$$

$$\begin{bmatrix} 1 & 2 & | 7 \\ 5 & -3 & | 9 \end{bmatrix} \xrightarrow{r_2 - 5r_1} \begin{bmatrix} 1 & 2 & | 7 \\ 5 - 5(1) & -3 - 5(2) & | 9 - 5(7) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | 7 \\ 0 & -13 & | -26 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | 7 \\ 0 & -13 & | -26 \end{bmatrix} \xrightarrow{r_2/-13} \begin{bmatrix} 1 & 2 & | -26/-13 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | 7 \\ 0 & 1 & | 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | 7 \\ 0 & 1 & | 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | 7 \\ 0 & 1 & | 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | 7 \\ 0 & 1 & | 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | 7 \\ 0 & 1 & | 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | 7 \\ 0 & 1 & | 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & | 3 \\ 0 & 1 & | 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & | 3 \\ 0 & 1 & | 2 \end{bmatrix}$$

$$\begin{bmatrix} x = 3 \\ y = 2 \end{bmatrix}$$
Check:
$$(3) + 2(2) = 3 + 4 = 7$$

$$5(3) - 3(2) = 15 - 6 = 9$$

18.c
$$\begin{cases} 2x + 3y = 16 \\ 2x - y = 8 \end{cases}$$

$$\begin{bmatrix} 2 & 3 & 16 \\ 2 & -1 & 8 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 2 & 3 & 16 \\ 2 - 2 & -1 & 3 & -16 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 16 \\ 0 & -4 & -8 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 16 \\ 0 & -4 & -8 \end{bmatrix} \xrightarrow{r_2/-4} \begin{bmatrix} 2 & 3 & -16 \\ 0/-4 & -4/-4 & -8/-4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 16 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 16 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{r_1 - 3r_2} \begin{bmatrix} 2 - 3(0) & 3 - 3(1) & 16 - 3(2) \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 10 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 10 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{r_1/2} \begin{bmatrix} 2/2 & 0/2 & 10/2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 2 \end{bmatrix}$$

Check:
$$2x + 3y = 2(5) + 3(2) = 10 + 6 = 16$$
$$2x - y = 2(5) - (2) = 10 - 2 = 8$$

5(3) - 3(2) = 15 - 6 = 9

47

18.d
$$\begin{cases} 3x + y = 2 \\ 2x + y = 1 \end{cases}$$

$$\begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{bmatrix} 3 - 2 & 1 - 1 & 2 - 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 0 & 1 \\ 2 - 2(1) & 1 - 2(0) & 1 - 2(1) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} x = 1 \\ y = -1 \end{bmatrix}$$

$$\begin{bmatrix} x = 1 \\ y = -1 \end{bmatrix}$$

$$\begin{bmatrix} x + y - 5z = -3 \\ x + y + z = 3 \\ 7x - y + 2z = 8 \end{bmatrix}$$
Check:
$$3(1) + (-1) = 3 - 1 = 2$$

$$2(1) + (-1) = 2 - 1 = 1$$

18.e
$$\begin{cases} x + y + z = 3 \\ 7x - y + 2z = 8 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & -5 & -3 \\ 1 & 1 & 1 & 3 \\ 7 & -1 & 2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -5 & -3 \\ 1 & 1 & 1 & 3 \\ 7 & -1 & 2 & 8 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 1 & 1 & -5 & -3 \\ 1 -1 & 1 - 1 & 1 - (-5) & 3 - (-3) \\ 7 & -1 & 2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 0 & 6 & 6 \\ 7 & -1 & 2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 0 & 6 & 6 \\ 7 & -1 & 2 & 8 \end{bmatrix} \xrightarrow{r_2 / 6} \begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 / 6 & 0 / 6 & 6 / 6 \\ 7 & -1 & 2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 0 & 6 & 6 \\ 7 & -1 & 2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 0 & 1 & 1 \\ 7 & -1 & 2 & 8 \end{bmatrix} \xrightarrow{r_1 + 5r_2} \begin{bmatrix} 1 + 5(0) & 1 + 5(0) & -5 + 5(1) & -3 + 5(1) \\ 0 & 0 & 1 & 1 \\ 7 & -1 & 2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -5 & -3 \\ 0 & 0 & 1 & 1 \\ 7 & -1 & 2 & 8 \end{bmatrix} \xrightarrow{r_3 - 2r_2} \begin{bmatrix} 1 + 5(0) & 1 + 5(0) & -5 + 5(1) & -3 + 5(1) \\ 0 & 0 & 1 & 1 \\ 7 & -1 & 0 & | 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & | 2 \\ 0 & 0 & 1 & | 1 \\ 7 & -1 & 0 & | 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 7 & -1 & 0 & 6 \end{bmatrix} \xrightarrow{r_3 - 7r_1} \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 7 - 7(1) & -1 - 7(1) & 0 - 7(0) & 6 - 7(2) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & -8 & 0 & -8 \end{bmatrix} \xrightarrow{r_3/(-8)} \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{r_1 - r_3} \begin{bmatrix} 1 & 1 - 1 & 0 - 0 & 2 - 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Linear Algebra

Check:
$$x + y - 5z = (1) + (1) - 5(1) = 1 + 1 - 5 = -3$$

$$x = 1$$

$$y = 1$$

$$z = 1$$

$$x + y + z = (1) + (1) + (1) = 1 + 1 + 1 = 3$$

$$7x - y + 2z = 7(1) - (1) + 2(1) = 7 - 1 + 2 = 8$$

18.f Solve
$$\begin{cases} x + y + z = 2\\ x - 3y + 2z = -4\\ 5x - y + 3z = 8 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & -3 & 2 & -4 \\ 5 & -1 & 3 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & -3 & 2 & -4 \\ 5 & -1 & 3 & 8 \end{bmatrix} \xrightarrow[r_3 - 5r_1]{} \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 1 - 1 & -3 - 1 & 2 - 1 & 2 - 4 - 2 \\ 5 - 5(1) & -1 - 5(1) & 3 - 5(1) & 8 - 5(2) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -4 & 1 & -6 \\ 0 & -6 & -2 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -4 & 1 & -6 \\ 0 & -6 & -2 & -2 \end{bmatrix} \xrightarrow{r_3/(-2)} \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & -4 & 1 & -6 \\ 0/_{-2} & -6/_{-2} & -2/_{-2} & -2/_{-2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -4 & 1 & -6 \\ 0 & 3 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -4 & 1 & -6 \\ 0 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{r_2 + r_3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 + 0 & -4 + 3 & 1 + 1 & -6 + 1 \\ 0 & 3 & 1 & 1 \end{bmatrix}$$

Full Sail University

49

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & -1 & 2 & -5 \\ 0 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{r_2/(-1)} \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & -1 & 2 & -5 \\ 0 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{r_2/(-1)} \begin{bmatrix} 0 & 1 & 1 & 1 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{r_2/(-1)} \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{r_3-3r_2} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{r_3-3r_2} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{r_3-3r_2} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 7 & -14 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 7 & -14 \end{bmatrix} \xrightarrow{r_3/7} \begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 7 & -14 \end{bmatrix} \xrightarrow{r_3/7} \begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 7 & -14 \end{bmatrix} \xrightarrow{r_3/7} \begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 1 & -2 \end{bmatrix} \xrightarrow{r_3+2r_3} \begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 1 & -2 \end{bmatrix} \xrightarrow{r_3-r_2-r_3} \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix} \xrightarrow{r_3-r_2-r_3} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & -2 \\ 0 & 1 & 0 & 1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix} \xrightarrow{r_3-r_2-r_3} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

5x - y + 3z = 5(3) - (1) + 3(-2) = 15 - 1 - 7 = 8

Full Sail University October 2020

3x - y + 2z = 3(2) - (1) + 2(-1) = 6 - 1 - 2 = 3

18.h Solve
$$\begin{cases} x+y-z=6\\ 2x+3y+z=7.\\ x-y+2z=-2 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & -1 & 6\\ 2 & 3 & 1 & 7\\ 1 & -1 & 2 & |-2| \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 & 6\\ 2 & 3 & 1 & 7\\ 1 & -1 & 2 & |-2| \end{bmatrix} \xrightarrow{r_2-2r_1} \begin{bmatrix} 1 & 1 & -1 & 6\\ 2 & 3 & 1 & 7\\ 1 & -1 & 2 & |-2| \end{bmatrix} \xrightarrow{r_3-r_1} \begin{bmatrix} 1 & 1 & -1 & 6\\ 2 & 3 & 1 & 7\\ 1 & -1 & 2 & |-2| \end{bmatrix} \xrightarrow{r_3-r_1} \begin{bmatrix} 1 & 1 & -1 & 1 & -1\\ 2-2(1) & 3-2(1) & 1-2(-1) & 7-2(6) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 & 6\\ 0 & 1 & 3 & |-5\\ 0 & -2 & 3 & |-8| \end{bmatrix} \xrightarrow{r_3+2r_2} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 3 & |-5\\ 0 & -2 & 3 & |-8| \end{bmatrix} \xrightarrow{r_3+2r_2} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 3 & |-5\\ 0 & 0 & 9 & |-18| \end{bmatrix} \xrightarrow{r_3/9} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 3 & |-5\\ 0 & 0 & 9 & |-18| \end{bmatrix} \xrightarrow{r_3/9} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 3 & |-5\\ 0 & 0 & 9 & |-18| \end{bmatrix} \xrightarrow{r_3/9} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 3 & |-5\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 3 & |-5\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 3 & |-5\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 3 & |-5\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 3 & |-5\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 6\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & |-2| \end{bmatrix} \xrightarrow{r_2-3r_3} \begin{bmatrix} 1 & 1 & -1 & | & 1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & |-2| \end{bmatrix}$$

$$\begin{cases} x = 3 \\ y = 1 \\ z = -2 \end{cases}$$

Check:

$$x + y - z = (3) + (1) - (-2) = 3 + 1 + 2 = 6$$

 $2x + 3y + z = 2(3) + 3(1) + (-2) = 6 + 3 - 2 = 7$
 $x - y + 2z = (3) - (1) + 2(-2) = 3 - 1 - 4 = -2$

Rank of a Matrix

Problem 19

Matrix rank is the number of non-zero rows in its row-echelon equivalent matrix.

19.a What is the rank of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & 3 \\ 2 - 2(1) & 5 - 2(2) & 0 - 2(3) \\ 3 - 3(1) & 0 - 3(2) & 5 - 3(3) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & -6 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & -6 & -4 \end{bmatrix} \xrightarrow{r_3 + 6r_2} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 + 6(0) & -6 + 6(1) & -4 + 6(3) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & 0 & 14 \end{bmatrix}$$
 Row Echelon form 3 nonzero rows

$$Rank(A) = 3$$

19.b What is the rank of $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{bmatrix}$:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{bmatrix} \xrightarrow[r_3 - 3r_1]{} \xrightarrow[r_3 - 3r_1]{} \begin{bmatrix} 1 & 2 & 1 \\ 2 - 2(1) & 0 - 2(2) & 1 - 2(1) \\ 3 - 3(1) & 2 - 3(2) & 2 - 3(1) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -4 & -1 \\ 0 & -4 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -4 & -1 \\ 0 & -4 & -1 \end{bmatrix} \xrightarrow{r_3-r_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -4 & -1 \\ 0-0 & -4-(-4) & -1-(-1) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -4 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
 Row Echelon form 2 non-zero rows

$$Rank(A) = 2$$

19.c What is the rank of
$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 6 & 1 & 1 \\ 3 & 4 & 3 & 4 \end{bmatrix}$$
?
$$\begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 6 & 1 & 1 \\ 3 & 4 & 3 & 4 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 - 2(1) & 6 - 2(1) & 1 - 2(2) & 1 - 2(3) \\ 3 - 3(1) & 4 - 3(1) & 3 - 3(2) & 4 - 3(3) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 4 & -3 & -5 \\ 0 & 1 & -3 & -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 4 & -3 & -5 \\ 0 & 1 & -3 & -5 \end{bmatrix} \xrightarrow{r_2 - 4r_3} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 - 4(0) & 4 - 4(1) & -3 - 4(-3) & -5 - 4(-5) \\ 0 & 1 & -3 & -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & 9 & 15 \\ 0 & 1 & -3 & -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & 9 & 15 \\ 0 & 1 & -3 & -5 \end{bmatrix} \xrightarrow{r_2 \leftrightarrow r_3} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & -3 & -5 \\ 0 & 0 & 9 & 15 \end{bmatrix}$$

$$Rank(A) = 3$$

19.d What is the rank of
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 1 & -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 1 & -5 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 1 & -1 \\ 2 - 2(1) & 3 - 2(1) & -1 - 2(1) \\ 3 - 3(1) & 1 - 3(1) & -5 - 3(-1) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -3 \\ 0 & -2 & -8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -3 \\ 0 & -2 & -8 \end{bmatrix} \xrightarrow{r_3 + 2r_2} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -3 \\ 0 + 2(0) & -2 + 2(1) & -8 + 2(-3) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & -14 \end{bmatrix}$$

 $\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & -14 \end{bmatrix}$ Row Echelon form 3 non-zero rows

Rank(A) = 3

Linear Dependence Using Matrix Echelon Form

Problem 20

To determine linear independence, convert vector sets into matrix of transposed vectors, convert matrix to row-echelon form. If the matrix has no zero rows, the set is linearly independent.

20.a Are
$$\vec{u}_1 = (1,2,5)$$
, $\vec{u}_2 = (2,4,1)$, and $\vec{u}_3 = (1,1,2)$ linearly independent in \mathbb{R}^3 ?
$$M_a = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{bmatrix}$$

$$M_a = \begin{bmatrix} u_{1x} & u_{2x} & u_{3x} \\ u_{1y} & u_{2y} & u_{3y} \\ u_{1z} & u_{2z} & u_{3z} \end{bmatrix}$$

$$M_a = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 5 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 5 & 1 & 2 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & 1 \\ 2 - 2(1) & 4 - 2(2) & 1 - 2(1) \\ 5 - 5(1) & 1 - 5(2) & 2 - 5(1) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & -1 \\ 0 & -9 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & -1 \\ 0 & -9 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & -1 \\ 0 & -9 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$
 Row-Echelo No zero row

This vector set is linearly independent.

Row-Echelon form No zero rows

```
Alternate: |M_a| = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 5 & 1 & 2 \end{vmatrix}
|M_a| = \begin{vmatrix} 4 & 1 \\ 1 & 2 \end{vmatrix} (1) - \begin{vmatrix} 2 & 1 \\ 5 & 2 \end{vmatrix} (2) + \begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} (1)
|M_a| = [(4)(2) - (1)(1)](1) - [(2)(2) - (5)(1)](2) + [(2)(1) - (5)(4)](1)
|M_a| = (8 - 1)(1) - (4 - 5)(2) + (-12)(1)
|M_a| = (7)(1) - (-1)(2) + (-12)(1)
|M_a| = (7)(1) - (-1)(2) + (-12)(1)
 |M_a| = (7)(1) - (-1)(2) + (-18)(1)

|M_a| = 7 + 2 - 18
  |M_a| = -9
  |M_a| \neq 0
  Linearly independent.
```

20.b Are
$$\vec{v}_1 = (1,4,3), \vec{v}_2 = (3,0,1), \text{ and } \vec{v}_3 = (1,1,2) \text{ linearly independent in } \mathbb{R}^3?$$

$$M_b = [\vec{v}_1 \quad \vec{v}_2 \quad \vec{v}_3]$$

$$M_b = \begin{bmatrix} v_{1x} & v_{2x} & v_{3x} \\ v_{1y} & v_{2y} & v_{3y} \\ v_{1z} & v_{2z} & v_{3z} \end{bmatrix}$$

$$M_b = \begin{bmatrix} 1 & 3 & 1 \\ 4 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$

$$M_b = \begin{bmatrix} 1 & 3 & 1 \\ 4 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix} \xrightarrow{r_2 - 4r_1} \begin{bmatrix} 4 - 4(1) & 0 - 4(3) & 1 - 4(1) \\ 3 - 3(1) & 1 - 3(3) & 2 - 3(1) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & -12 & -4 \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & -12 & -4 \\ 0 & -8 & -1 \end{bmatrix} \xrightarrow{r_2/-4} \begin{bmatrix} 0/_{-4} & -12/_{-4} & -4/_{-4} \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 3 & 1 \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 3 & 1 \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 3 & 1 \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 3 & 1 \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 3 & 1 \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 0 & \frac{5}{8} \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 0 & \frac{5}{8} \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 0 & \frac{5}{8} \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 0 & \frac{5}{8} \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 0 & \frac{5}{8} \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 0 & \frac{5}{8} \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 0 & \frac{5}{8} \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & -8 & 5 \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & -8 & 5 \\ 0 & -8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & -8 & -1 \\ 0 & 0 & \frac{5}{8} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & -8 & -1 \\ 0 & 0 & \frac{5}{8} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & -8 & -1 \\ 0 & -8 & -1 \end{bmatrix}$$

This vector set is linearly independent.

Alternate:
$$|M_b| = \begin{vmatrix} 1 & 3 & 1 \\ 4 & 0 & 1 \\ 3 & 1 & 2 \end{vmatrix}$$

$$|M_b| = \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix} (1) - \begin{vmatrix} 4 & 1 \\ 3 & 2 \end{vmatrix} (3) + \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} (1)$$

$$|M_b| = [(0)(2) - (1)(1)](1) - [(4)(2) - (3)(1)](3) + [(4)(1) - (3)(0)](1)$$

$$|M_b| = (0 - 1)(1) - (8 - 3)(3) + (4 - 0)(1)$$

$$|M_b| = (-1)(1) - (5)(2) + (4)(1)$$

$$|M_b| = -1 - 10 + 4$$

$$|M_b| = -7$$

$$|M_b| \neq 0$$
 Linearly independent.

This matrix set is *not* linearly independent.

Alternate:
$$|M_c| = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{vmatrix}$$

$$|M_c| = \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} (1) - \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} (1) + \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} (0)$$

$$|M_c| = [(2)(1) - (0)(-1)](1) - [(1)(1) - (1)(-1)](1)$$

$$+ [(1)(0) - (1)(2)](0)$$

$$|M_c| = (2 - 0)(1) - (1 + 1)(1) + (0 - 2)(0)$$

$$|M_c| = (2)(1) - (2)(1) + (-2)(0)$$

$$|M_c| = 2 - 2 + 0$$

$$|M_c| = 0$$
Not linearly independent.

20.d Are
$$\vec{x}_1 = (1,1,1)$$
, $\vec{x}_2 = (1,2,0)$, and $\vec{x}_3 = (0,-1,2)$ linearly independent in \mathbb{R}^3 ?
$$M_d = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \vec{x}_3 \end{bmatrix}$$

$$M_d = \begin{bmatrix} x_{1x} & x_{2x} & x_{3x} \\ x_{1y} & x_{2y} & x_{3y} \\ x_{1z} & x_{2z} & x_{3z} \end{bmatrix}$$

$$M_d = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 2 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 1 & 1 & 0 \\ 1 - 1 & 2 - 1 & -1 - 0 \\ 1 - 1 & 0 - 1 & 2 - 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{r_3 + r_2} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 + 0 & -1 + 1 & 2 + (-1) \end{bmatrix}$$
 Row-echelon form. No zero rows.

This vector set is linearly independent.

Alternate:
$$|M_d| = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 2 \end{vmatrix}$$

$$|M_d| = \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} (1) - \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} (1) + \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} (0)$$

$$|M_d| = [(2)(2) - (0)(-1)](1) - [(1)(2) - (1)(-1)](1)$$

$$+ [(1)(0) - (1)(2)](0)$$

$$|M_d| = (4 - 0)(1) - [2 - (-1)](1) + (0 - 2)(0)$$

$$|M_d| = (4)(1) - (3)(1) + (-2)(0)$$

$$|M_d| = 4 - 3 + 0$$

$$|M_d| = 1$$

$$|M_d| \neq 0$$

$$\text{Linearly independent.}$$

Problem 21

21.a Are
$$\vec{u}_1=(1,2)$$
 and $\vec{u}_2=(2,4)$ linearly independent in \mathbb{R}^2 ?

$$\begin{split} M_{a} &= \begin{bmatrix} \vec{u}_{1} & \vec{u}_{2} \end{bmatrix} \\ M_{a} &= \begin{bmatrix} u_{1x} & u_{2x} \\ u_{1y} & u_{2y} \end{bmatrix} \\ M_{a} &= \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \\ \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \xrightarrow{r_{2}-2r_{1}} \begin{bmatrix} 1 & 2 \\ 2-2(1) & 4-2(2) \end{bmatrix} \\ \begin{bmatrix} 1 & 2 \end{bmatrix} \end{split}$$

This vector pair is *not* linearly independent.

Row-echelon form 1 zero row

Alternate:

te:
$$|M_a| = \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix}$$

$$|M_a| = (1)(4) - (2)(2)$$

$$|M_a| = 4 - 4$$

$$|M_a| = 0$$
 Not linearly independent.

21.b Are $\vec{v}_1 = (2.8)$ and $\vec{v}_2 = (2.5)$ linearly independent in \mathbb{R}^2 ?

$$\begin{aligned} M_b &= [\vec{v}_1 & \vec{v}_2] \\ M_b &= \begin{bmatrix} v_{1x} & v_{2x} \\ v_{1y} & v_{2y} \end{bmatrix} \\ M_b &= \begin{bmatrix} 2 & 2 \\ 8 & 5 \end{bmatrix} \\ \begin{bmatrix} 2 & 2 \\ 8 & 5 \end{bmatrix} \xrightarrow{r_2 - 4r_1} \begin{bmatrix} 2 & 2 \\ 8 - 4(2) & 5 - 4(2) \end{bmatrix} \\ \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} \end{aligned}$$

This vector pair is linearly independent.

Row-echelon form. No zero rows.

Alternate:

te:

$$|M_a| = \begin{vmatrix} 2 & 2 \\ 8 & 5 \end{vmatrix}$$

 $|M_a| = (2)(5) - (8)(2)$
 $|M_a| = 10 - 16$
 $|M_a| = -6$
 $|M_a| \neq 0$
Linearly independent.

Problem 22

22.a Is
$$\begin{cases} u = 1 - x \\ v = 5 - 3x + 2x^{2} \text{ linearly independent in } P_{2}? \\ w = 1 + 3x - x^{2} \end{cases}$$

$$M_{a} = \begin{bmatrix} [u]^{t} & [v]^{t} & [w]^{t} \end{bmatrix}$$

$$M_{a} = \begin{bmatrix} u_{0} & v_{0} & w_{0} \\ u_{1} & v_{1} & w_{1} \\ u_{2} & v_{2} & w_{2} \end{bmatrix}$$

$$M_{a} = \begin{bmatrix} 1 & 5 & 1 \\ -1 & -3 & 3 \\ 0 & 2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 1 \\ -1 & -3 & 3 \\ 0 & 2 & -1 \end{bmatrix} \xrightarrow{r_{2}+r_{1}} \begin{bmatrix} 1 & 5 & 1 \\ -1+1 & -3+5 & 3+1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 1 \\ 0 & 2 & 2 \\ 0 & 2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 1 \\ 0 & 2 & 2 \\ 0 & 2 & -1 \end{bmatrix} \xrightarrow{r_{3}-r_{2}} \begin{bmatrix} 1 & 5 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & -3 \end{bmatrix}$$

Row-echelon form No zero rows.

This polynomial set is linearly independent.

Alternate:
$$|M_a| = \begin{vmatrix} 1 & 5 & 1 \\ -1 & -3 & 3 \\ 0 & 2 & -1 \end{vmatrix}$$

$$|M_a| = \begin{vmatrix} -3 & 3 \\ 2 & -1 \end{vmatrix} (1) - \begin{vmatrix} -1 & 3 \\ 0 & -1 \end{vmatrix} (5) + \begin{vmatrix} -1 & -3 \\ 0 & 2 \end{vmatrix} (1)$$

$$|M_a| = [(-3)(-1) - (2)(3)](1) - [(-1)(-1) - (0)(-1)](5) + [(-1)(2) - (0)(-3)](1)$$

$$|M_a| = (3 - 6)(1) - (1 - 0)(5) + (-2 - 0)(1)$$

$$|M_a| = (-3)(1) - (1)(5) + (-2)(1)$$

$$|M_a| = -3 - 5 - 2$$

$$|M_a| = -10$$

$$|M_a| \neq 0$$

$$|M_a| \neq 0$$

$$|M_a| = |M_a| = |$$

22.b Is
$$\begin{cases} a = 1 + x + x^2 \\ b = x + 2x^2 \end{cases} \text{ linearly independent in } P_2?$$

$$c = x^2$$

$$M_b = \begin{bmatrix} [a]^t & [b]^t & [c]^t \end{bmatrix}$$

$$M_b = \begin{bmatrix} a_{a0} & b_{a0} & c_{a0} \\ a_{a1} & b_{a1} & c_{a1} \\ a_{a2} & b_{a2} & c_{a2} \end{bmatrix}$$

$$M_a = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 1 & 0 & 0 \\ 1 - 1 & 1 - 0 & 0 - 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{r_2 - r_1 - 2r_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{r_2 - r_1 - 2r_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 - 1 - 2(0) & 2 - 0 - 2(1) & 1 - 0 - 2(0) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Row-echelon form No zero rows.

This polynomial set is linearly independent.

Alternate:
$$|M_b| = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{vmatrix}$$

$$|M_b| = \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} (1) - \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} (0) + \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} (0)$$

$$|M_b| = [(1)(1) - (2)(0)](1) - [(1)(1) - (1)(0)](0) + [(1)(2) - (1)(1)](0)$$

$$|M_b| = (1 - 0)(1) - (1 - 0)(0) + (2 - 1)(0)$$

$$|M_b| = (1)(1) - (1)(0) + (1)(0)$$

$$|M_b| = 1 - 0 + 0$$

$$|M_b| = 1$$

$$|M_b| \neq 0$$

$$\text{Linearly independent.}$$

Basis Using Matrix Reduced Row-Echelon Form

Problem 23

If a vector set is a basis for \mathbb{R}^2 , its constituent vectors will be linearly independent, and the set will span \mathbb{R}^2 .

23.a Do $\vec{u}_1=(2.8)$ and $\vec{u}_2=(2.5)$ form a basis for \mathbb{R}^2 ?

Linear independence:

$$[B] = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 \end{bmatrix}$$

$$[B] = \begin{bmatrix} u_{1x} & u_{2x} \\ u_{1y} & u_{2y} \end{bmatrix}$$

$$[B] = \begin{bmatrix} 2 & 2 \\ 8 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 \\ 8 & 5 \end{bmatrix} \xrightarrow{r_1/2} \begin{bmatrix} 2/2 & 2/2 \\ 8 - 4(2) & 5 - 4(2) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix}$$

Row-echelon form No zero rows.

Since vector set B has no zero rows in its row-echelon form, B is linearly independent.

Span:

If B spans \mathbb{R}^2 , then any arbitrary vector in \mathbb{R}^2 may be expressed as a linear combination of the vectors in B.

$$\vec{w} = (x_1, y_1)$$

$$\vec{w} = c_1 \vec{u}_1 + c_2 \vec{u}_2$$

$$(x_1, y_1) = c_1(2, 8) + c_2(2, 5)$$

$$\begin{bmatrix} 2 & 2 \\ 8 & 5 \end{bmatrix} \cdot \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 \\ 8 & 5 \end{bmatrix} y_1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 \\ 8 & 5 \end{bmatrix} y_1 \xrightarrow{r_1/2} \begin{bmatrix} 2/2 & 2/2 \\ 8 - 4(2) & 5 - 4(2) \end{bmatrix} y_1 - 4x_1$$

$$\begin{bmatrix} 1 & 1 \\ 0 & -3 \\ y_1 - 4x_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & \frac{1}{2}x_1 \\ 0 & -3 & y_1 - 4x_1 \end{bmatrix} \xrightarrow{r_2/(-3)} \begin{bmatrix} 1 & 1 & \frac{1}{2}x_1 \\ 0 & -3 & -3 \end{pmatrix} \xrightarrow{r_2/(-3)} \begin{bmatrix} \frac{1}{2}x_1 \\ 0 & 1 & \frac{1}{3}x_1 \\ \frac{1}{3}x_1 - \frac{1}{3}y_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & \frac{1}{2}x_1 \\ 0 & 1 & \frac{1}{3}x_1 - \frac{1}{3}y_1 \end{bmatrix} \xrightarrow{r_1-r_2} \begin{bmatrix} 1 - 0 & 1 - 1 & \frac{1}{2}x_1 - (\frac{4}{3}x_1 - \frac{1}{3}y_1) \\ 0 & 1 & \frac{4}{3}x_1 - \frac{1}{3}y_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & \frac{1}{3}y_1 - \frac{5}{6}x_1 \\ 0 & 1 & \frac{4}{3}x_1 - \frac{1}{3}y_1 \end{bmatrix}$$

$$\vec{w} = (x_1, y_1) = (\frac{1}{3}y_1 - \frac{5}{6}x_1) \vec{u}_1 + (\frac{4}{3}x_1 - \frac{1}{3}y_1) \vec{u}_2$$

Since arbitrary vector \vec{w} can be represented as a linear combination of the vectors in set B, vector set B spans \mathbb{R}^2 .

Since vector set B is both linearly independent and spans \mathbb{R}^2 , it is a basis for \mathbb{R}^2 .

23.b Do
$$\vec{u}_1 = (1,3)$$
 and $\vec{u}_2 = (2,6)$ form a basis for \mathbb{R}^2 ?

Linear independence:

$$[B] = [\vec{u}_1 \quad \vec{u}_2]$$

$$[B] = \begin{bmatrix} u_{1x} & u_{2x} \\ u_{1y} & u_{2y} \end{bmatrix}$$

$$[B] = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 3 \\ 2 - 2(1) & 6 - 2(3) \end{bmatrix}$$

$$[B] = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$
Row-echelon form.
One zero row.

Since vector set B has at least one zero row in its row-echelon form, B is not linearly independent.

Because vector set B is not linearly independent, it is not a basis for \mathbb{R}^2 .

Problem 24

If a vector set is a basis for \mathbb{R}^2 , its constituent vectors will be linearly independent, and the set will span \mathbb{R}^2 .

24.a Do $\vec{u}_1=(1,0,0)$, $\vec{u}_2=(1,1,0)$, and $\vec{u}_3=(1,1,1)$ form a basis for \mathbb{R}^3 ? Linear independence:

$$[B] = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{bmatrix}$$

$$[B] = \begin{bmatrix} u_{1x} & u_{2x} & u_{3x} \\ u_{1y} & u_{2y} & u_{3y} \\ u_{1z} & u_{2z} & u_{3z} \end{bmatrix}$$

$$[B] = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{bmatrix} 1 - 0 & 1 - 1 & 1 - 1 \\ 0 - 0 & 1 - 0 & 1 - 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Row echelon form No zero rows.

Since vector set ${\it B}$ has no zero rows in its row-echelon form, ${\it B}$ is linearly independent.

Span:

If B spans \mathbb{R}^3 , then any arbitrary vector in \mathbb{R}^3 may be expressed as a linear combination of the vectors in B.

$$\begin{split} \overrightarrow{w} &= (x_1, y_1, z_1) \\ \overrightarrow{w} &= c_1 \overrightarrow{u}_1 + c_2 \overrightarrow{u}_2 + c_3 \overrightarrow{u}_3 \\ (x_1, y_1, z_1) &= c_1 (1,0,0) + c_2 (1,1,0) + c_3 (1,1,1) \\ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 \\ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 \\ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 \\ \begin{bmatrix} 1 & 0 & 1 - 1 & 1 - 1 \\ 0 - 0 & 1 - 0 & 1 - 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 - y_1 \\ \begin{bmatrix} 1 & 0 & 1 - 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 \\ \begin{bmatrix} 1 & 0 & 1 - 1 & 1 - 1 \\ 0 & 0 & 1 - 0 & 1 - 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 - y_1 \\ \begin{bmatrix} 1 & 0 & 1 - 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 \\ \end{bmatrix} x_1 - y_1 \\ \begin{bmatrix} 1 & 0 & 1 - 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 - y_1 \\ \begin{bmatrix} 1 & 0 & 1 - 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 - y_1 \\ \begin{bmatrix} 1 & 0 & 1 - 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 - y_1 \\ \begin{bmatrix} 1 & 0 & 1 - 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 - y_1 \\ \begin{bmatrix} 1 & 0 & 1 - 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} x_1 - y_1 \\ \end{bmatrix} x_1$$

$$\begin{bmatrix} 1 & 0 & 0 & | x_1 - y_1 \\ 0 & 1 & 0 & | y_1 - z_1 \\ 0 & 0 & 1 & | z_1 \end{bmatrix}$$

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} x_1 - y_1 \\ y_1 - z_1 \\ z_1 \end{bmatrix}$$

$$\vec{w} = (x_1, y_1, z_1) = (x_1 - y_1)(1,0,0) + (y_1 - z_1)(1,1,0) + z_1(1,1,1)$$

Since arbitrary vector \overrightarrow{w} can be represented as a linear combination of the vectors in set B, vector set B spans \mathbb{R}^3 .

Since vector set B is both linearly independent and spans \mathbb{R}^3 , it is a basis for \mathbb{R}^3 .

24.b Do $\vec{u}_1=(1,2,3),$ $\vec{u}_2=(2,0,1),$ and $\vec{u}_3=(3,2,2)$ form a basis for \mathbb{R}^3 ? Linear independence:

$$[B] = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{bmatrix}$$

$$[B] = \begin{bmatrix} u_{1x} & u_{2x} & u_{3x} \\ u_{1y} & u_{2y} & u_{3y} \\ u_{1z} & u_{2z} & u_{3z} \end{bmatrix}$$

$$[B] = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 2 \\ 3 & 1 & 2 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & 3 \\ 2 - 2(1) & 0 - 2(2) & 2 - 2(3) \\ 3 - 3(1) & 1 - 3(2) & 2 - 3(3) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & -4 \\ 0 & -5 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & -4 \\ 0 & -5 & -7 \end{bmatrix} \xrightarrow{r_2 / -4} \begin{bmatrix} 1 & 2 & 3 \\ 0 / -4 & -4 / -4 / -4 & -4 / -4 \\ 0 & -5 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -7 \end{bmatrix}$$
Row-echelon form. No zero rows.

Since vector set ${\cal B}$ has no zero rows in its row-echelon form, ${\cal B}$ is linearly independent.

Span:

$$\begin{split} \overrightarrow{w} &= (x_1, y_1, z_1) \\ \overrightarrow{w} &= c_1 \overrightarrow{u}_1 + c_2 \overrightarrow{u}_2 + c_3 \overrightarrow{u}_3 \\ (x_1, y_1, z_1) &= c_1 (1, 2, 3) + c_2 (2, 0, 1) + c_3 (3, 2, 2) \\ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 2 \\ 3 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} c_1 \\ c_2 \\ 3 & 1 & 2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \\ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix} y_1 \\ 3 & 1 & 2 \begin{vmatrix} z_1 \\ z_1 \end{vmatrix} \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & 3 & x_1 \\ 2 - 2(1) & 0 - 2(2) & 2 - 2(3) \\ 3 - 3(1) & 1 - 3(2) & 2 - 3(3) \end{vmatrix} x_1 - 2(x_1) \\ \begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & -4 \\ 0 & -5 & -7 \end{vmatrix} x_1 - 2x_1 \\ 0 & -5 & -7 \end{vmatrix} x_1 - 2x_1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & x_1 \\ 0 - 4 & -4 \end{vmatrix} y_1 - 2x_1 \\ 0 & -5 & -7 \end{vmatrix} x_1 - 3x_1 \end{bmatrix} \xrightarrow{r_2 / -4} \begin{bmatrix} 0 / -4 & -4 / -4 & -4 / -4 \\ 0 & -5 & -7 \end{vmatrix} x_1 - 3x_1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -7 \end{vmatrix} \frac{x_1}{z_1 - 3x_1} \frac{x_1}{z_1 - \frac{1}{4}y_1} \\ 0 & -5 & -7 \end{vmatrix} \xrightarrow{r_3 + 5r_2} \begin{bmatrix} 1 & 2 & 3 \\ 0 + 5(0) & -5 + 5(1) & -7 + 5(1) \\ -7 + 5(1) \end{vmatrix} \frac{x_1}{z_1 - \frac{1}{4}y_1} \frac{1}{2}x_1 - \frac{1}{4}y_1 \\ 0 & 0 & -2 \end{vmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2x_1 - \frac{1}{4}y_1 \\ 2x_1 - \frac{1}{4}y_1 \end{bmatrix} \xrightarrow{r_3 / 2} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{vmatrix} \frac{1}{z_1} \frac{1}{z_1} \frac{1}{z_1} \frac{1}{4}y_1 \\ 0 & 0 & -2 \end{vmatrix} x_1 - \frac{1}{2}x_1 - \frac{1}{4}y_1 \\ 0 & 0 & -2 \end{vmatrix} \xrightarrow{r_3 / 2} \frac{1}{z_1} \frac{1}{z_1} \frac{1}{z_1} \frac{1}{z_2} \frac{1}{z_1} - \frac{1}{4}y_1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & \frac{1}{2}x_1 - \frac{1}{4}y_1 \\ 0 & 0 & -2 \end{vmatrix} x_1 - \frac{1}{2}x_1 - \frac{1}{4}y_1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & \frac{1}{1}x_1 + \frac{5}{6}y_1 - \frac{1}{2}z_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{array}{c} x_1 \\ \frac{1}{2}x_1 - \frac{1}{4}y_1 \\ \frac{1}{4}x_1 + \frac{5}{8}y_1 - \frac{1}{2}z_1 \end{bmatrix} \xrightarrow{r_1 - 2r_2} \begin{bmatrix} 1 - 2(0) & 2 - 2(1) & 3 - 2(1) \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{array}{c} x_1 - 2\left(\frac{1}{2}x_1 - \frac{1}{4}y_1\right) \\ \frac{1}{2}x_1 - \frac{1}{4}y_1 \\ \frac{1}{4}x_1 + \frac{5}{8}y_1 - \frac{1}{2}z_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2}y_1 \\ \frac{1}{2}x_1 - \frac{1}{4}y_1 \\ \frac{1}{4}x_1 + \frac{5}{8}y_1 - \frac{1}{2}z_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \frac{1}{4}x_1 + \frac{5}{8}y_1 - \frac{1}{2}z_1 \end{bmatrix} \xrightarrow{r_1 - r_3} \begin{bmatrix} 1 - 0 & 0 - 0 & 1 - 1 \\ 0 - 0 & 1 - 0 & 1 - 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}y_1 - \left(\frac{1}{4}x_1 + \frac{5}{8}y_1 - \frac{1}{2}z_1\right)} \frac{1}{2}x_1 - \frac{1}{4}y_1 - \left(\frac{1}{4}x_1 + \frac{5}{8}y_1 - \frac{1}{2}z_1\right) \\ \frac{1}{4}x_1 + \frac{5}{8}y_1 - \frac{1}{2}z_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{4}x_1 - \frac{1}{8}y_1 + \frac{1}{2}z_1 \\ \frac{1}{4}x_1 - \frac{7}{8}y_1 + \frac{1}{2}z_1 \\ \frac{1}{4}x_1 + \frac{5}{8}y_1 - \frac{1}{2}z_1 \end{bmatrix}$$

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -\frac{1}{4}x_1 - \frac{1}{8}y_1 + \frac{1}{2}z_1 \\ \frac{1}{4}x_1 - \frac{7}{8}y_1 + \frac{1}{2}z_1 \\ \frac{1}{4}x_1 + \frac{5}{8}y_1 - \frac{1}{2}z_1 \end{bmatrix}$$

$$\vec{w} = (x_1, y_1, z_1) = \left(-\frac{1}{4}x_1 - \frac{1}{8}y_1 + \frac{1}{2}z_1\right)(1, 2, 3) + \left(\frac{1}{4}x_1 - \frac{7}{8}y_1 + \frac{1}{2}z_1\right)(2, 0, 1) + \left(\frac{1}{4}x_1 + \frac{5}{8}y_1 - \frac{1}{2}z_1\right)(3, 2, 2)$$

Since arbitrary vector \vec{w} can be represented as a linear combination of the vectors in set B, vector set B spans \mathbb{R}^3 .

Since vector set B is both linearly independent and spans \mathbb{R}^3 , it is a basis for \mathbb{R}^3 .

24.c Do $\vec{u}_1=(1,2,1)$, $\vec{u}_2=(1,7,-1)$, and $\vec{u}_3=(2,1,3)$ form a basis for \mathbb{R}^3 ? Linear independence:

$$[B] = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{bmatrix}$$

$$[B] = \begin{bmatrix} u_{1x} & u_{2x} & u_{3x} \\ u_{1y} & u_{2y} & u_{3y} \\ u_{1z} & u_{2z} & u_{3z} \end{bmatrix}$$

$$[B] = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 7 & 1 \\ 1 & -1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 7 & 1 \\ 1 & -1 & 3 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 1 & 2 \\ 2 - 2(1) & 7 - 2(1) & 1 - 2(2) \\ 1 - 1 & -1 - 1 & 3 - 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 5 & -3 \\ 0 & -2 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 5 & -3 \\ 0 & -2 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 5 & -3 \\ 0 & -2 & 6 \end{bmatrix} \xrightarrow{r_3 + \frac{r}{5}r_1} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 5 & -3 \\ 0 & -2 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 5 & -3 \\ 0 & 0 & 24 \end{bmatrix}$$
Row-echelon form.
No zero rows.

Since vector set *B* has no zero rows in its row-echelon form, *B* is linearly independent.

Span:

$$\vec{w} = (x_1, y_1, z_1)$$

$$\vec{w} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + c_3 \vec{u}_3$$

$$(x_1, y_1, z_1) = c_1 (1, 2, 1) + c_2 (1, 7, -1) + c_3 (2, 1, 3)$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 7 & 1 \\ 1 & -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 | x_1 \\ 2 & 7 & 1 | y_1 \\ 1 & -1 & 3 | z_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 | x_1 \\ 2 & 7 & 1 | y_1 \\ 1 & -1 & 3 | z_1 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 1 & 2 \\ 2 - 2(1) & 7 - 2(1) & 1 - 2(2) \\ 1 - 1 & -1 - 1 & 3 - 2 \end{bmatrix} \xrightarrow{x_1} \begin{bmatrix} x_1 \\ y_1 - 2(x_1) \\ z_1 - x_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 5 & -3 \\ 0 & -2 & 1 \end{bmatrix} \xrightarrow{x_1} \begin{bmatrix} x_1 \\ y_1 - 2x_1 \\ z_1 - x_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 5 & -3 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 - 2x_1 \\ z_1 - x_1 \end{bmatrix} \xrightarrow{r_2/5} \begin{bmatrix} 0 /_5 & 5 /_5 & -3 /_5 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 - 2x_1 /_5 \\ z_1 - x_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{3}{8} \frac{1}{5} y_1 - \frac{2}{5} x_1 \\ 0 - 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ z_1 - x_1 \end{bmatrix} \xrightarrow{r_2+2r_5} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{3}{5} \\ 0 - 2 & 1 \end{bmatrix} \xrightarrow{r_3+2r_5} \begin{bmatrix} x_1 \\ z_1 - x_1 \end{bmatrix} \xrightarrow{r_5+2r_5} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{3}{5} \\ 0 - 2 & 1 \end{bmatrix} \xrightarrow{r_5+2r_5} \begin{bmatrix} x_1 \\ z_1 - x_1 \end{bmatrix} \xrightarrow{r_5+2r_5} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{3}{5} \\ 0 & 0 & -2 + 2(1) & 1 + 2\left(-\frac{3}{5}\right) \left| z_1 - x_1 + 2\left(\frac{1}{5}y_1 - \frac{2}{5}x_1\right) \right|$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{3}{5} \\ 0 & 0 & -\frac{1}{5} \end{bmatrix} \xrightarrow{\frac{1}{5}y_1 - \frac{2}{5}x_1} \xrightarrow{r_5+2r_5} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{3}{5} \end{bmatrix} \xrightarrow{\frac{1}{5}y_1 - \frac{2}{5}x_1} \xrightarrow{r_5+2r_5} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{3}{5} \end{bmatrix} \xrightarrow{\frac{1}{5}y_1 - \frac{2}{5}x_1} \xrightarrow{r_5-2r_5} \begin{bmatrix} 1 & 0 & 1 & 3(0) & -\frac{3}{5} - 3\left(-\frac{1}{5}\right) \left| \frac{1}{5}y_1 - \frac{2}{5}x_1 - 3\left(-\frac{9}{5}x_1 + \frac{2}{5}y_1 + z_1\right) \right|$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{3}{5} \end{bmatrix} \xrightarrow{\frac{1}{5}y_1 - \frac{2}{5}x_1} \xrightarrow{r_5-2r_5} \begin{bmatrix} 1 & 0 & 1 & 1 & 2 \\ 0 & 0 & -\frac{1}{5} \end{bmatrix} \xrightarrow{\frac{9}{5}x_1 + \frac{2}{5}y_1 + z_1} \xrightarrow{r_5-2r_5} \begin{bmatrix} 1 & 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & -\frac{1}{5} \end{bmatrix} \xrightarrow{\frac{9}{5}x_1 + \frac{2}{5}y_1 + z_1} \xrightarrow{r_5-2r_5} \begin{bmatrix} 1 & 0 & 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 & 5x_1 - y_1 - 3z_1 \\ 0 & 0 & -\frac{1}{5} \end{bmatrix} \xrightarrow{\frac{9}{5}x_1 + \frac{2}{5}y_1 + z_1} \xrightarrow{r_5-2r_5} \begin{bmatrix} 1 & 0 & 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 & 5x_1 - y_1 - 3z_1 \\ 0 & 0 & 1 & 9x_1 - 2y_1 - 5z_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 \end{bmatrix} \xrightarrow{r_5-r_5} \xrightarrow{r_5-r_5} \begin{bmatrix} 1 - 0 & 1 - 1 & 2 & 0 \\ 0 & 1 & 0 & 5x_1 - y_1 - 3z_1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_5-r_5} \begin{bmatrix} 1 - 0 & 0 - 2(0) & 2 - 2(1) \end{bmatrix} \xrightarrow{r_5-r_5} \begin{bmatrix} -\frac{9}{5}x_1 + \frac{2}{5}y_1 + z_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix} \xrightarrow{r_5-r_5} \xrightarrow{r_5-r_5} \begin{bmatrix} 1 - 2(0) & 0 - 2(0) & 2 - 2(1) \end{bmatrix} \xrightarrow{r_5-r_5} \xrightarrow{r_5-r_5-r_5} \xrightarrow{r_5-r_5-r_5} \xrightarrow{r_5-r_5} \xrightarrow{r_5-r_5-r_5} \xrightarrow{r_5-r_5} \xrightarrow{r_5-r_5} \xrightarrow{r_5-r_5} \xrightarrow{r_5-r$$

Since arbitrary vector \vec{w} can be represented as a linear combination of the vectors in set B, vector set B spans \mathbb{R}^3 .

Since vector set B is both linearly independent and spans \mathbb{R}^3 , it is a basis for \mathbb{R}^3 .

 $+(9x_1-2y_1-5z_1)(2,1,3)$

24.d Do $\vec{u}_1 = (1,2,1)$, $\vec{u}_2 = (5,2,3)$, and $\vec{u}_3 = (3,2,2)$ form a basis for \mathbb{R}^3 ? Linear independence:

$$[B] = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{bmatrix}$$

$$[B] = \begin{bmatrix} u_{1x} & u_{2x} & u_{3x} \\ u_{1y} & u_{2y} & u_{3y} \\ u_{1z} & u_{2z} & u_{3z} \end{bmatrix}$$

$$[B] = \begin{bmatrix} 1 & 5 & 3 \\ 2 & 2 & 2 \\ 1 & 3 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 2 & 2 & 2 \\ 1 & 3 & 2 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 5 & 3 \\ 2 - 2(1) & 2 - 2(5) & 2 - 2(3) \\ 1 - 1 & 3 - 5 & 2 - 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 0 & -8 & -4 \\ 0 & -2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 0 & -8 & -4 \\ 0 & -2 & -1 \end{bmatrix} \xrightarrow{r_2 - 4r_3} \begin{bmatrix} 1 & 5 & 3 \\ 0 - 4(0) & -8 - 4(-2) & -4 - 4(-1) \\ 0 & -2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 0 & 0 & 0 \\ 0 & -2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 0 & 0 & 0 \\ 0 & -2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 0 & 0 & 0 \\ 0 & -2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 0 & 0 & 0 \\ 0 & -2 & -1 \end{bmatrix}$$

 $\begin{bmatrix} 1 & 5 & 3 \\ 0 & -2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

Row-echelon form. One zero row.

Since vector set B has a zero row in its row-echelon form, B is not linearly independent.

Since vector set B is not linearly independent, it is **not** a basis for \mathbb{R}^3 .

Problem 25

If a polynomial set is a basis for P_2 , its constituent polynomials will be linearly independent, and the set will span P_2 .

25.a Do the polynomials u=1-x, $v=5-3x+2x^2$, and $w=1+3x-x^2$ form a basis for P_2 ?

Linear independence:

$$[P] = \begin{bmatrix} u & v & w \end{bmatrix}$$

$$[P] = \begin{bmatrix} a_{0,u} & a_{0,v} & a_{0,w} \\ a_{1,u} & a_{1,v} & a_{1,w} \\ a_{2,u} & a_{2,v} & a_{2,w} \end{bmatrix}$$

$$[P] = \begin{bmatrix} 1 & 5 & 0 \\ -1 & -3 & 2 \\ 0 & 3 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 0 \\ -1 & -3 & 2 \\ 0 & 3 & -1 \end{bmatrix} \xrightarrow{r_2 + r_1} \begin{bmatrix} 1 & 5 & 0 \\ -1 + 1 & -3 + 5 & 2 + 0 \\ 0 & 3 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 0 \\ 0 & 2 & 2 \\ 0 & 3 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 0 \\ 0 & 2 & 2 \\ 0 & 3 & -1 \end{bmatrix} \xrightarrow{r_3 - \frac{1}{2}r_2} \begin{bmatrix} 1 & 5 & 0 \\ 0 & 2 & 2 \\ 0 & -\frac{3}{2}(0) & 3 - \frac{3}{2}(2) & -1 - \frac{3}{2}(2) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & -4 \end{bmatrix}$$
Row-echelon form. No zero rows.

Since polynomial set ${\cal P}$ has no zero rows in its row-echelon form, ${\cal P}$ is linearly independent.

Span:

$$p = a_{0,p} + a_{1,p}x + a_{2,p}x^{2}$$

$$p = c_{1}u + c_{2}v + c_{3}w$$

$$a_{0,p} + a_{1,p}x + a_{2,p}x^{2} = c_{1}(1 - x + 0x^{2}) + c_{2}(5 - 3x + 2x^{2}) + c_{3}(1 + 3x - x^{2})$$

$$\begin{bmatrix} 1 & 5 & 1 \\ -1 & -3 & 3 \\ 0 & 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} a_{0,p} \\ a_{1,p} \\ a_{2,p} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 1 \\ -1 & -3 & 3 \\ 0 & 2 & -1 \end{bmatrix} \begin{vmatrix} a_{0,p} \\ a_{1,p} \\ a_{2,p} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 1 & 1 & a_{0,p} \\ -1 & -3 & 3 & a_{1,p} \\ 0 & 2 & -1 & a_{2,p} \end{bmatrix} \xrightarrow{r_2+r_1} \begin{bmatrix} -1 + 1 & -3 + 5 & 1 & a_{1,p} + a_{0,p} \\ -1 + 1 & -3 + 5 & 3 + 1 & a_{1,p} + a_{0,p} \\ 0 & 2 & 4 & a_{0,p} + a_{1,p} \\ 0 & 2 & -1 & a_{0,p} + a_{1,p} \\ 0 & 2 & -1 & a_{0,p} \end{bmatrix} \xrightarrow{r_2-r_2} \begin{bmatrix} 1 & 5 & 1 & a_{0,p} \\ 0 & 2 & 4 & a_{0,p} + a_{1,p} \\ 0 & 2 & -1 & a_{0,p} + a_{1,p} \\ 0 & 2 & 4 & a_{0,p} + a_{1,p} \\ 0 & 0 & -5 & -a_{0,p} - a_{1,p} + a_{2,p} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 1 & a_{0,p} \\ 0 & 2 & 4 & a_{0,p} + a_{1,p} \\ 0 & 0 & -5 & -a_{0,p} - a_{1,p} + a_{2,p} \end{bmatrix} \xrightarrow{r_2/r_2} \begin{bmatrix} 1 & 5 & 1 \\ 0/2 & 2/2 & 4/2 \\ 0 & 0 & -5 & -a_{0,p} - a_{1,p} + a_{2,p} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 1 & a_{0,p} \\ 0 & 2 & 4 & a_{0,p} + a_{1,p} \\ 0 & 0 & -5 & -a_{0,p} - a_{1,p} + a_{2,p} \end{bmatrix} \xrightarrow{r_2/r_2} \begin{bmatrix} 1 & 5 & 1 \\ 0/2 & 2/2 & 4/2 \\ 0 & 0 & -5 & -5/-5 \end{bmatrix} \xrightarrow{(a_{0,p} + a_{1,p})/2} (-a_{0,p} - a_{1,p} + a_{2,p})/_{-5} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 1 & a_{0,p} \\ 0 & 1 & 2 & 2 & a_{0,p} \\ 0 & 1 & 1 & 2 & 2 & a_{0,p} \\ 0 & 0 & 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 0 & 0 & 1 &$$

Since arbitrary polynomial p can be represented as a linear combination of polynomial set P, set P spans P_2 .

Since polynomial set P is linearly independent and spans P_2 , P is a basis for P_2 .

25.b Do polynomials $u=1+2x+x^2$, $v=2+x^2$, and $w=3+2x+2x^2$ form a basis for P_2 ?

Linear independence:

$$[P] = \begin{bmatrix} u & v & w \end{bmatrix}$$

$$[P] = \begin{bmatrix} a_{0,u} & a_{0,v} & a_{0,w} \\ a_{1,u} & a_{1,v} & a_{1,w} \\ a_{2,u} & a_{2,v} & a_{2,w} \end{bmatrix}$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & 3 \\ 2 - 2(1) & 0 - 2(2) & 2 - 2(3) \\ 1 - 1 & 1 - 2 & 2 - 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & -4 \\ 0 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & -4 \\ 0 & -1 & -1 \end{bmatrix} \xrightarrow{r_3 - \frac{1}{4}r_2} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & -4 \\ 0 & -1 & -1 & \frac{1}{4}(-4) & -1 - \frac{1}{4}(-4) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$
Row-echelon form. One zero row.

Because polynomial set P has a zero row in its row-echelon form, P is not linearly independent.

Since polynomial set P is not linearly independent, it is not a basis for P_2 .

25.c Do polynomials $u=1+x+x^2$, $v=x+2x^2$, and $w=x^2$ form a basis for P_2 ? Linear independence:

$$[P] = \begin{bmatrix} u & v & w \end{bmatrix}$$

$$[P] = \begin{bmatrix} a_{0,u} & a_{0,v} & a_{0,w} \\ a_{1,u} & a_{1,v} & a_{1,w} \\ a_{2,u} & a_{2,v} & a_{2,w} \end{bmatrix}$$

$$[P] = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 1 & 0 & 0 \\ 1 - 1 & 1 - 0 & 0 - 0 \\ 1 - 1 & 2 - 0 & 1 - 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \xrightarrow{r_3 - 2r_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 - 2(0) & 2 - 2(1) & 1 - 2(0) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} Row-echelon form. \\ No zero vectors.$$

Because vector set P has no zero rows in its row-echelon form, P is linearly independent.

Span:

$$p = a_{0,p} + a_{1,p}x + a_{2,p}x^{2}$$

$$p = c_{1}u + c_{2}v + c_{3}w$$

$$a_{0,p} + a_{1,p}x + a_{2,p}x^{2}$$

$$= c_{1}(1 - x + 0x^{2}) + c_{2}(5 - 3x + 2x^{2}) + c_{3}(1 + 3x - x^{2})$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} a_{0,p} \\ a_{1,p} \\ a_{2,p} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | a_{0,p} \\ 1 & 1 & 0 & | a_{1,p} \\ 1 & 2 & 1 & | a_{2,p} \end{bmatrix} \xrightarrow{r_{2}-r_{1}} \begin{bmatrix} 1 & 0 & 0 & | a_{0,p} \\ 1 - 1 & 1 - 0 & 0 - 0 & | a_{1,p} - a_{0,p} \\ 1 - 1 & 2 - 0 & 1 - 0 & | a_{2,p} - a_{0,p} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & a_{0,p} \\ 0 & 1 & 0 & -a_{0,p} + a_{1,p} \\ 0 & 2 & 1 & -a_{0,p} + a_{2,p} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & a_{0,p} \\ 0 & 1 & 0 & -a_{0,p} + a_{1,p} \\ 0 & 2 & 1 & -a_{0,p} + a_{2,p} \end{bmatrix} \xrightarrow{r_3 - 2r_2} \begin{bmatrix} 1 & 0 & 0 & a_{0,p} \\ 0 & 1 & 0 & -a_{0,p} + a_{1,p} \\ 0 - 2(0) & 2 - 2(1) & 1 - 2(0) \end{bmatrix} \xrightarrow{r_3 - 2r_4} -a_{0,p} + a_{1,p}$$

$$\begin{bmatrix} 1 & 0 & 0 & a_{0,p} \\ 0 & 1 & 0 & -a_{0,p} + a_{1,p} \\ 0 & 0 & 1 & a_{0,p} - 2a_{1,p} + a_{2,p} \end{bmatrix}$$

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} a_{0,p} \\ -a_{0,p} + a_{1,p} \\ a_{0,p} - 2a_{1,p} + a_{2,p} \end{bmatrix}$$

$$p = a_{0,p}u + (-a_{0,p} + a_{1,p})v + (a_{0,p} - 2a_{1,p} + a_{2,p})w$$

Since arbitrary polynomial p can be represented as a linear combination of polynomial set P, set P spans P_2 .

Since polynomial set P is linearly independent and spans P_2 , P is a basis for P_2 .

25.d Do polynomials $u=1-2x+3x^2$, $v=5+6x-x^2$, and $w=3+2x+x^2$ form a basis for P_2 ?

Linear independence:

$$[P] = \begin{bmatrix} u & v & w \end{bmatrix}$$

$$[P] = \begin{bmatrix} a_{0,u} & a_{0,v} & a_{0,w} \\ a_{1,u} & a_{1,v} & a_{1,w} \\ a_{2,u} & a_{2,v} & a_{2,w} \end{bmatrix}$$

$$[P] = \begin{bmatrix} 1 & 5 & 3 \\ -2 & 6 & 2 \\ 3 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ -2 & 6 & 2 \\ 3 & -1 & 1 \end{bmatrix} \xrightarrow{r_2 + 2r_1} \begin{bmatrix} 1 & 5 & 3 \\ -2 + 2(1) & 6 + 2(5) & 2 + 2(3) \\ 3 - 3(1) & -1 - 3(5) & 1 - 3(3) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 0 & 16 & 8 \\ 0 & -16 & -8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 0 & 16 & 8 \\ 0 & -16 & -8 \end{bmatrix} \xrightarrow{r_3 + r_2} \begin{bmatrix} 1 & 5 & 3 \\ 0 & 16 & 8 \\ 0 + 0 & -16 + 16 & -8 + 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 0 & 16 & 8 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 0 & 16 & 8 \\ 0 & 0 & 0 \end{bmatrix}$$
Row-echelon form. One zero row.

Since polynomial set P has one zero row in its row-echelon form, P is not linearly independent.

Since polynomial set P is not linearly independent, P is **not** a basis for P_2 .

Basis of a Matrix Row Space

Problem 26

To find the basis of a matrix's row space, find the matrix's row-echelon form. Each nonzero row in the row-echelon form is a vector in the row space's basis. The number of vectors in the basis is the dimension of the matrix's row space. The number of non-zero rows in the matrix's row-echelon form is the matrix's rank.

26.a Given $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix}$, find the basis of its row space, the dimension of its row space, and its rank.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & 3 \\ 2 - 2(1) & 5 - 2(2) & 0 - 2(3) \\ 3 - 3(1) & 0 - 3(0) & 5 - 3(3) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & -6 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & -6 & -4 \end{bmatrix} \xrightarrow{r_3 + 6r_2} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & + 6(0) & -6 + 6(1) & -4 + 6(-6) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & 0 & -40 \end{bmatrix}$$
Row-echelon form.

The non-zero rows in the row-echelon form of matrix A are the vectors in the basis of A's row space.

A basis of A's row space is $\left\{\begin{bmatrix}1\\2\\3\end{bmatrix}, \begin{bmatrix}0\\1\\-6\end{bmatrix}, \begin{bmatrix}0\\0\\-40\end{bmatrix}\right\}$

The dimension of matrix A's row space is the number of vectors in the row space's basis.

$$\dim(\operatorname{rowsp}(A)) = 3$$

The number of non-zero rows in the row-echelon form of matrix A is A's rank.

$$rank(A) = 3$$

26.b Given $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{bmatrix}$, find the basis of its row space, the dimension of its row space, and its rank.

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 2 & 1 \\ 2 - 2(1) & 0 - 2(2) & 1 - 2(1) \\ 3 - 3(1) & 2 - 3(2) & 2 - 3(1) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -4 & -1 \\ 0 & -4 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -4 & -1 \\ 0 & -4 & -1 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -4 & -1 \\ 0 - 0 & -4 - (-4) & -1 - (-1) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -4 & -1 \\ 0 & -4 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -4 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Row-echelon form.

The non-zero rows in the row-echelon form of matrix A are the vectors in the basis of A's row space.

A basis of A's row space is $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -4 \\ -1 \end{bmatrix}$

The dimension of matrix A's row space is the number of vectors in the row space's basis.

$$\dim(\operatorname{rowsp}(A)) = 2$$

The number of non-zero rows in the row-echelon form of matrix A is A's rank.

$$rank(A) = 2$$

October 2020

26.c Given $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 6 & 1 \\ 3 & -4 & 3 \end{bmatrix}$, find the basis of its row space, the dimension of its row space, and its rank

and its rank.
$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 6 & 1 \\ 3 & -4 & 3 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & -1 & 2 \\ 2 - 2(1) & 6 - 2(-1) & 1 - 2(2) \\ 3 - 3(1) & -4 - 3(-1) & 3 - 3(2) \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 8 & -3 \\ 0 & -1 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 8 & -3 \\ 0 & -1 & -3 \end{bmatrix} \xrightarrow{r_2 + 8r_3} \begin{bmatrix} 1 & -1 & 2 \\ 0 + 8(0) & 8 + 8(-1) & -3 + 8(-3) \\ 0 & -1 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & -27 \\ 0 & -1 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & -27 \\ 0 & -1 & -3 \end{bmatrix} \xrightarrow{r_2 \leftrightarrow r_3} \begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & -3 \\ 0 & 0 & -27 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & -3 \\ 0 & 0 & -27 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & -3 \\ 0 & 0 & -27 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & -3 \\ 0 & 0 & -27 \end{bmatrix}$$
Row-echelon form.

The non-zero rows in the row-echelon form of matrix A are the vectors in the basis of A's row space.

A basis of A's row space is $\left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -27 \end{bmatrix} \right\}$

The dimension of matrix A's row space is the number of vectors in the row space's basis.

$$\dim(\operatorname{rowsp}(A)) = 3$$

The number of non-zero rows in the row-echelon form of matrix A is A's rank.

$$\operatorname{rank}(A) = 3$$

Given $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 1 & -5 \end{bmatrix}$, find the basis of its row space, the dimension of its row space, and its rank.

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & -2 & -2 \end{bmatrix} \xrightarrow{r_3 + 2r_2} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 + 2(0) & -2 + 2(1) & -2 + 2(1) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Row-echelon form.

The non-zero rows in the row-echelon form of matrix A are the vectors in the basis of A's row space.

A basis of A's row space is $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

The dimension of matrix A's row space is the number of vectors in the row space's basis.

$$\dim(\operatorname{rowsp}(A)) = 2$$

The number of non-zero rows in the row-echelon form of matrix A is A's rank.

$$rank(A) = 2$$

Basis of a Matrix Column Space

Problem 27

To find the basis of a matrix's column space, find the matrix's row-echelon form. Note which columns have pivots. The corresponding columns in the original matrix are vectors forming a basis for the original matrix's column space. The number of vectors in the basis is the dimension of the matrix's column space. The number of non-zero rows in the matrix's row-echelon form is the matrix's rank.

27.a Given $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 3 & 0 & 5 \end{bmatrix}$, find the basis of its column space, the dimension of its column space, and its rank.

$$A \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & 0 & -40 \end{bmatrix}$$

Row-echelon form, found in #26.a.

The row echelon form has three pivots, one in each column. Therefore, all three columns in A form a basis of A's column space.

A basis of A's row space is $\left\{\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}2\\5\\0\end{bmatrix},\begin{bmatrix}3\\0\\5\end{bmatrix}\right\}$.

The dimension of matrix A's column space is the number of vectors in the column space's basis.

$$\dim(\operatorname{colsp}(A)) = 3$$

The number of non-zero rows in the row-echelon form of matrix A is A's rank.

$$rank(A) = 3$$

27.b Given $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 2 \end{bmatrix}$, find the basis of its column space, the dimension of its column space, and its rank.

$$A \sim \begin{bmatrix} \mathbf{1} & 2 & 1 \\ 0 & -\mathbf{4} & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Row-echelon form, found in #26.b.

The row echelon form has two pivots, in the first two columns. Therefore, the first two columns in A form a basis of A's column space.

A basis of A's column space is $\left\{\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\0\\2 \end{bmatrix}\right\}$

The dimension of matrix A's column space is the number of vectors in the column space's basis.

$$\dim(\operatorname{colsp}(A)) = 2$$

The number of non-zero rows in the row-echelon form of matrix *A* is *A*'s rank.

$$rank(A) = 2$$

27.c Given $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 6 & 1 \\ 3 & -4 & 3 \end{bmatrix}$, find the basis of its column space, the dimension of its column space, and its rank.

$$A \sim \begin{bmatrix} \mathbf{1} & -1 & 2 \\ 0 & -\mathbf{1} & -3 \\ 0 & 0 & -\mathbf{27} \end{bmatrix}$$

Row-echelon form, found in #26.c.

The row echelon form has three pivots, one in each column. Therefore, all three columns in A form a basis of A's column space.

A basis of A's column space is $\left\{\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}-1\\6\\-4\end{bmatrix},\begin{bmatrix}2\\1\\3\end{bmatrix}\right\}$

The dimension of matrix A's column space is the number of vectors in the column space's basis.

$$\dim(\operatorname{colsp}(A)) = 3$$

The number of non-zero rows in the row-echelon form of matrix *A* is *A*'s rank.

$$\operatorname{rank}(A) = 2$$

27.d Given $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 1 & -5 \end{bmatrix}$, find the basis of its column space, the dimension of its column space, and its rank.

$$A \sim \begin{bmatrix} \mathbf{1} & 1 & -1 \\ 0 & \mathbf{1} & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Row-echelon form, found in #26.d.

The row echelon form has two pivots, in the first two columns. Therefore, the first two columns in A form a basis of A's column space.

A basis of A's column space is $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$

The dimension of matrix A's column space is the number of vectors in the column space's basis.

$$\dim(\operatorname{colsp}(A)) = 2$$

The number of non-zero rows in the row-echelon form of matrix A is A 's rank.

$$rank(A) = 2$$

Basis of a Matrix Null Space

Problem 28

A matrix's null space is the set of all vectors that will multiply with the matrix to produce $\vec{0}$. Set up an equation with an arbitrary vector. Create an equivalent augmented matrix. Find the augmented matrix's reduced row-echelon form to solve for the vector set. In each solution, set the free variables to arbitrary values and solve for the remaining (leading) variable.

28.a Given matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$, find a basis for the matrix's null space and the null space's dimension.

$$A \cdot \vec{v} = \vec{0}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 0 \end{bmatrix} \xrightarrow{r_2 - 3r_1} \begin{bmatrix} 1 & 2 & 0 \\ 3 - 3(1) & 5 - 3(2) & 0 - 3(0) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{r_2/-1} \begin{bmatrix} 1 & 2 & 0 \\ 0/-1 & -1/-1 & 0/-1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$

$$\vec{v} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
The basis of Null(A) is $\boxed{\{\vec{0}\}}$.

 $\dim(\operatorname{Null}(A)) = 0$

28.b Given matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$, find a basis for the matrix's null space and the null space's dimension.

$$A \cdot \vec{v} = \vec{0}$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 0 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 3 & 0 \\ 2 - 2(1) & 6 - 2(3) & 0 - 2(0) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{cases} x + 3y = 0 \\ 0 = 0 \end{cases}$$

$$x + 3t = 0$$

$$x = -3t$$

$$v = \begin{bmatrix} -3t \\ t \end{bmatrix}$$

$$v = t \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

The basis of Null(A) is $\left\{ \begin{bmatrix} -3\\1 \end{bmatrix} \right\}$.

 $\dim(\operatorname{Null}(A)) = 1$

28.c Given matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \end{bmatrix}$, find a basis for the matrix's null space and the null space's dimension.

$$\begin{split} A \cdot \vec{v} &= \vec{0} \\ \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 3 & 1 & 0 \end{bmatrix} & \begin{bmatrix} r_2 - r_1 \\ -r_2 - r_1 \\ r_3 - 2 r_1 \end{bmatrix} & \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 - 1 & 2 - 1 & 0 - 0 & 0 - 0 \\ 2 - 2(1) & 3 - 2(1) & 1 - 2(0) & 0 - 2(0) \end{bmatrix} \\ \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} & \begin{bmatrix} r_1 - r_2 \\ -r_2 - r_1 \\ -r_3 - r_2 \end{bmatrix} & \begin{bmatrix} 1 - 0 & 1 - 1 & 0 - 0 & 0 - 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} & \begin{bmatrix} x \\ y \\ z \end{bmatrix} & = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} & \\ x &= 0 \\ y &= 0 \\ z &= 0 & \\ y &= 0 \\ z &= 0 & \\ \end{bmatrix} & \text{The basis of Null}(A) \text{ is } \begin{bmatrix} \vec{0} \\ \vec{0} \end{bmatrix}. \end{split}$$

 $\dim(\operatorname{Null}(A)) = 0$

28.d Given matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 3 & 8 \end{bmatrix}$, find a basis for the matrix's null space and the null space's dimension.

$$\begin{array}{llll} A \cdot \vec{v} &= \vec{0} \\ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 3 & 8 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 3 & 8 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 1 & 2 & 5 & 0 \\ 2 & 3 & 8 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ r_2 & r_1 \\ 2 & 2 & 5 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 1 & 2 & 5 & 0 \\ 2 & 3 & 8 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ r_2 & r_1 \\ 2 & 3 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 2 & 5 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & -1 & 2 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & -1 & 2 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 &$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

$$\vec{v} = \vec{0}$$

The basis of Null(A) is $[\vec{0}]$.

$$\dim(\operatorname{Null}(A)) = 0$$

28.e Given matrix $A = \begin{bmatrix} 1 & 5 & 3 \\ 2 & 5 & 1 \end{bmatrix}$, find a basis for the matrix's null space and the null space's dimension.

$$A \cdot \vec{v} = \vec{0}$$

$$\begin{bmatrix} 1 & 5 & 3 \\ 2 & 5 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3|0 \\ 2 & 5 & 1|0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3|0 \\ 2 & 5 & 1|0 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 5 & 3 & 0 \\ 2 - 2(1) & 5 - 2(5) & 1 - 2(3)|0 - 2(0) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 & 0 \\ 2 - 2 & 5 - 10 & 1 - 6|0 - 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 & 0 \\ 0 & -5 & -5|0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 & 0 \\ 0 & -5 & -5|0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 & 0 \\ 0 & -5 & -5|0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -2|0 \\ 0 & -5 & -5|0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -2|0 \\ 0 & -5 & -5|0 \end{bmatrix} \xrightarrow{r_2/(-5)} \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0/_{-5} & -5/_{-5} & -5/_{-5} & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -2|0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} x - 2z = 0 \\ y + z = 0 \end{cases}$$

x and y are pivots; z is the only free variable.

Assign an arbitrary value to z: z = t

$$x - 2(t) = 0$$

$$x - 2t = 0$$

$$y + (t) = 0$$

$$y + t = 0$$

$$x = 2t$$

$$y = -t$$

$$\vec{v} = \begin{bmatrix} 2t \\ -t \\ t \end{bmatrix} = t \cdot \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

$$Null(A) = span \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

The basis of Null(A) contains only one vector, $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$

$$\dim(\operatorname{Null}(A)) = 1$$

Coordinate of a Vector and Matrix

Problem 29

29.a Find the coordinates of $\vec{u} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$ with respect to the basis $B = \{\hat{\imath}, \hat{\jmath}, \hat{k}\} = \{(1,0,0), (0,1,0), (0,0,1)\}.$

By inspection, $[\vec{u}]_B = (2,3,-1)$.

29.b Find the coordinates of $\vec{v} = \hat{\imath} + \hat{\jmath} - \hat{k}$ with respect to the basis $B = \{\hat{\imath}, \hat{\jmath}, \hat{k}\} = \{(1,0,0), (0,1,0), (0,0,1)\}.$

By inspection, $[\vec{v}]_B = (1,1,-1)$.

29.c Find the coordinates of $\vec{w} = 5\hat{\imath} - \hat{k}$ with respect to the basis $B = \{\hat{\imath}, \hat{\jmath}, \hat{k}\} = \{(1,0,0), (0,1,0), (0,0,1)\}.$

By inspection, $[\vec{v}]_B = (5,0,-1)$.

Problem 30

30.a Find the coordinates of matrix $A = \begin{bmatrix} 2 & 2 \\ 4 & 3 \end{bmatrix}$ with respect to $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.

By inspection, $[A]_B = (2,2,4,3)$.

30.b Find the coordinates of matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ with respect to $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.

By inspection, $[A]_B = (1,2,1,0)$.

30.c Find the coordinates of matrix $A = \begin{bmatrix} 0 & 4 \\ 2 & 1 \end{bmatrix}$ with respect to $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.

By inspection, $[A]_B = (0,4,2,1)$.

30.d Find the coordinates of matrix $A = \begin{bmatrix} 3 & -7 \\ 2 & 4 \end{bmatrix}$ with respect to $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.

By inspection, $[A]_B = (3, -7, 2, 4)$.

Problem 31

31.a Given polynomial $p(x) = 5 - 4x + 7x^2 + 10x^3$, find its coordinates with respect to base $B = \{1, x, x^2, x^3\}$

By inspection, $[p(x)]_B = (5, -4,7,10)$.

31.b Given polynomial $p(x) = -x + 3x^2$, find its coordinates with respect to base $B = \{1, x, x^2, x^3\}$

By inspection, $[p(x)]_B = (0, -1, 3, 0)$.

31.c Given polynomial $p(x) = -x + 3x^2$, find its coordinates with respect to base $B = \{1, x, x^2\}$

By inspection, $[p(x)]_B = (0, -1, 3)$.

31.d Given polynomial $p(x) = 2 - x + 7x^2$, find its coordinates with respect to base $B = \{1, x, x^2\}$

By inspection, $[p(x)]_B = (2, -1, 7)$.

Problem 32

32.a Calculate the coordinates of vector $\vec{u} = (2, -3)$ with respect to basis $B = \{(1,1), (3,4)\}$.

$$\vec{u} = c_1(1,1) + c_2(3,4)$$

$$(2,-3) = c_1(1,1) + c_2(3,4)$$

$$\begin{cases} c_1 + 3c_2 = 2 \\ c_1 + 4c_2 = -3 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \\ c_1 + 4c_2 = -3 \end{cases} \xrightarrow{E_2 - E_1} \frac{-c_1 - 3c_2 = -2}{c_2 = -5}$$

$$\begin{cases} c_1 + 3c_2 = 2 \\ c_2 = -5 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \\ c_2 = -5 \end{cases} \xrightarrow{C_1 + 3c_2 = 2} \xrightarrow{C_1 - 3c_2 = -3(-5)}$$

$$\begin{cases} c_1 + 3c_2 = 2 \xrightarrow{E_1 - 3E_1} & c_1 + 3c_2 = 2 \\ c_2 = -5 & c_1 + 3c_2 = 2 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \xrightarrow{E_1 - 3E_1} & c_1 + 3c_2 = 2 \\ c_2 = -5 & c_1 + 3c_2 = 2 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \xrightarrow{E_1 - 3E_1} & c_1 + 3c_2 = 2 \\ c_2 = -5 & c_1 + 3c_2 = 2 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \xrightarrow{E_1 - 3E_1} & c_1 + 3c_2 = 2 \\ c_2 = -5 & c_1 + 3c_2 = 2 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \xrightarrow{E_1 - 3E_1} & c_1 + 3c_2 = 2 \\ c_2 = -5 & c_1 + 3c_2 = 2 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \xrightarrow{E_1 - 3E_1} & c_1 + 3c_2 = 2 \\ c_2 = -5 & c_1 + 3c_2 = 2 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \xrightarrow{E_1 - 3E_1} & c_1 + 3c_2 = 2 \\ c_2 = -5 & c_1 + 3c_2 = 2 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \xrightarrow{E_1 - 3E_1} & c_1 + 3c_2 = 2 \\ c_2 = -5 & c_1 + 3c_2 = 2 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \xrightarrow{E_1 - 3E_1} & c_1 + 3c_2 = 2 \\ c_2 = -5 & c_1 + 3c_2 = 2 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \xrightarrow{E_1 - 3E_1} & c_1 + 3c_2 = 2 \\ c_2 = -5 & c_1 + 3c_2 = 2 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 2 \xrightarrow{E_1 - 3E_1} & c_1 + 3c_2 = 2 \\ c_2 = -3(-5) & c_1 = 17 \end{cases}$$

$$\begin{cases} c_1 = 17 & c_2 = -5 \\ c_1 = 17 & c_2 = -5 \end{cases}$$

$$\vec{u} = \vec{u} = \vec{u}$$

32.b Calculate the coordinates of vector $\vec{u} = (8,7)$ with respect to basis $B = \{(1,2), (2,1)\}$.

$$\vec{u} = c_1(1,2) + c_2(2,1)$$

$$(8,7) = c_1(1,2) + c_2(2,1)$$

$$\begin{cases} c_1 + 2c_2 = 8 \\ 2c_1 + c_2 = 7 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = 8 \\ 2c_1 + c_2 = 7 \end{cases} \xrightarrow{E_2 - 2E_1} \frac{-2c_1 - 2(2c_2) = -2(8)}{-3c_2 = -9}$$

$$\begin{cases} c_1 + 2c_2 = 8 \\ -3c_2 = -9 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = 8 \\ -3c_2 = -9 \end{cases} \xrightarrow{E_2/-3} \begin{cases} c_1 + 2c_2 = 8 \\ -3c_2/_{-3} = -9/_{-3} \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = 8 \\ c_2 = 3 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = 8 \\ c_2 = 3 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = 8 \\ c_2 = 3 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = 8 \\ c_2 = 3 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = 8 \\ c_2 = 3 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = 8 \\ c_2 = 3 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = 8 \\ c_2 = 3 \end{cases}$$

$$\begin{cases} c_1 - 2c_2 = -2(3) \\ c_1 = 2 \end{cases}$$

$$\begin{cases} c_1 = -9 \\ c_2 = 3 \end{cases}$$

32.c Calculate the coordinates of vector $\vec{u} = (-3,1)$ with respect to basis $B = \{(1,3), (2,1)\}$.

$$\vec{u} = c_1(1,3) + c_2(2,1)$$

$$(-3,1) = c_1(1,3) + c_2(2,1)$$

$$\begin{cases} c_1 + 2c_2 = -3 \\ 3c_1 + c_2 = 1 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = -3 \\ 3c_1 + c_2 = 1 \end{cases} \xrightarrow{E_2 - 3E_1} \frac{3c_1 + c_2 = 1}{-3c_1 - 3(2c_2) = -3(-3)} \xrightarrow{-5c_2 = 10}$$

$$\begin{cases} c_1 + 2c_2 = -3 \\ -5c_2 = 10 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = -3 \\ -5c_2 = 10 \end{cases} \xrightarrow{E_2/-5} \begin{cases} c_1 + 2c_2 = -3 \\ -5c_2/-5 = 10/-5 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = -3 \\ c_2 = -2 \end{cases}$$

$$\begin{cases} c_1 + 2c_2 = -3 \\ c_2 = -2 \end{cases} \xrightarrow{C_1 + 2c_2 = -3} \xrightarrow{-2c_2 = -2(-2)} \xrightarrow{C_1 = 1}$$

$$\begin{cases} c_1 = 1 \\ c_2 = -2 \end{cases}$$

$$\boxed{[\vec{u}]_B = (1, -2)}$$

32.d Calculate the coordinates of vector $\vec{u} = (1,2)$ with respect to basis $B = \{(1,1), (3,4)\}$.

$$\vec{u} = c_1(1,1) + c_2(3,4)$$

$$(1,2) = c_1(1,1) + c_2(3,4)$$

$$\begin{cases} c_1 + 3c_2 = 1 \\ c_1 + 4c_2 = 2 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 1 \\ c_1 + 4c_2 = 2 \end{cases} \xrightarrow{E_2 - E_1} \frac{c_1 + 4c_2 = 2}{-c_1 - 3c_2 = -1}$$

$$\begin{cases} c_1 + 3c_2 = 1 \\ c_2 = 1 \end{cases}$$

$$\begin{cases} c_1 + 3c_2 = 1 \\ c_2 = 1 \end{cases} \xrightarrow{E_1 - 3E_2} \frac{c_1 + 3c_2 = 1}{-c_1 - 3c_2 = -3(1)}$$

$$\begin{cases} c_1 + 3c_2 = 1 \\ c_2 = 1 \end{cases} \xrightarrow{C_1 - 2}$$

$$\begin{cases} c_1 = -2 \\ c_2 = 1 \end{cases}$$

$$\vec{u}|_B = (-2,1)$$

Change of Basis and Transition Matrix

Problem 33

Given the bases $S = \{\hat{i}, \hat{j}\}$ and $B = \{\vec{u}_1, \vec{u}_2\} = \{(1,2), (2,5)\}...$

33.a Find the transition matrix from S to B, $M_{B \leftarrow S}$.

$$\hat{i} = a\vec{u}_1 + b\vec{u}_2
(1,0) = a(1,2) + b(2,5)
{a + 2b = 1}
{2a + 5b = 0}
$$\begin{cases}
a + 2b = 1 \\
2a + 5b = 0
\end{cases}$$

$$\begin{cases}
a + 2b = 1 \\
b = -2
\end{cases}$$

$$\begin{cases}
a + 2b = 1 \\
b = -2
\end{cases}$$

$$\begin{cases}
a + 2b = 1 \\
b = -2
\end{cases}$$

$$\begin{cases}
a + 2b = 1 \\
b = -2
\end{cases}$$

$$\begin{cases}
a = 5 \\
b = -2
\end{cases}$$

$$[\hat{i}]_B = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

$$\hat{j} = c\vec{u}_1 + d\vec{u}_2$$

$$(0,1) = c(1,2) + d(2,5)$$

$$\begin{cases}
c + 2d = 0 \\
2c + 5d = 1
\end{cases}$$

$$\begin{cases}
c + 2d = 0 \\
d = 1
\end{cases}$$

$$\begin{cases}
c + 2d = 0 \\
d = 1
\end{cases}$$

$$\begin{cases}
c + 2d = 0 \\
d = 1
\end{cases}$$

$$\begin{cases}
c + 2d = 0 \\
d = 1
\end{cases}$$

$$\begin{cases}
c + 2d = 0 \\
d = 1
\end{cases}$$

$$\begin{cases}
c - 2d = -2(1) \\
c = -2
\end{cases}$$

$$\begin{cases}
c = -2 \\
d = 1
\end{cases}$$

$$[\hat{j}]_B = \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$$$

$$M_{B \leftarrow S} = \begin{bmatrix} [\hat{\imath}]_B & [\hat{\jmath}]_B \end{bmatrix}$$

$$M_{B \leftarrow S} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

$$M_{B \leftarrow S} = \begin{bmatrix} 5 & -2 \\ 2 & 1 \end{bmatrix}$$

33.b Find the coordinate of $\vec{v} = (1,2) = \hat{\imath} + 2\hat{\jmath}$ in B, $[\vec{v}]_B$.

$$[\vec{v}]_{B} = M_{B \leftarrow S} \cdot \vec{v}$$

$$[\vec{v}]_{B} = \begin{bmatrix} 5 & -2 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$[\vec{v}]_{B} = \begin{bmatrix} (5)(1) + (-2)(2) \\ (2)(1) + (1)(2) \end{bmatrix}$$

$$[\vec{v}]_{B} = \begin{bmatrix} 5 + (-4) \\ 2 + 2 \end{bmatrix}$$

$$[\vec{v}]_{B} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

33.c Find the transition matrix from B to S, a.k.a. $M_{S \leftarrow B}$.

$$\begin{aligned} \vec{u}_1 &= a\hat{\imath} + b\hat{\jmath} \\ (1,2) &= a(1,0) + b(0,1) \\ \text{By inspection, } \begin{cases} a &= 1 \\ b &= 2 \end{cases} \\ [\vec{u}_1] &= \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \vec{u}_1 \end{aligned}$$

$$\vec{u}_2 = c\hat{\imath} + d\hat{\jmath}$$

 $(2,5) = c(1,0) + d(0,1)$
By inspection, $\begin{cases} c = 2 \\ d = 5 \end{cases}$
 $[\vec{u}_2]_S = \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \vec{u}_2$

$$M_{S \leftarrow B} = \begin{bmatrix} \begin{bmatrix} \vec{u}_1 \end{bmatrix}_S & \begin{bmatrix} \vec{u}_2 \end{bmatrix}_S \end{bmatrix}$$
$$M_{S \leftarrow B} = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$$

Problem 34

Given the bases $S = \{\hat{i}, \hat{j}\}$ and $B = \{\vec{u}_1, \vec{u}_2\} = \{(1,3), (1,4)\}...$

34.a Find the transition matrix from S to B, $M_{B \leftarrow S}$.

$$\hat{i} = a\vec{u}_1 + b\vec{u}_2
(1,0) = a(1,3) + b(1,4)
\begin{cases}
a + b = 1 \\
3a + 4b = 0
\end{cases}$$

$$\begin{cases}
a + b = 1 \\
3a + 4b = 0
\end{cases}
\xrightarrow{E_2 - 3E_1} \frac{-3a - 3b = -3(1)}{b = -3}$$

$$\begin{cases}
a + b = 1 \\
b = -3
\end{cases}$$

$$\begin{cases}
a + b = 1 \\
b = -3
\end{cases}$$

$$\begin{cases}
a + b = 1 \\
b = -3
\end{cases}
\xrightarrow{E_1 - E_2} a + b = 1 \\
b = -3
\end{cases}$$

$$\begin{cases}
a = 4 \\
b = -3
\end{cases}$$

$$\hat{i} = \vec{b} = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$$

$$\hat{j} = c\vec{u}_1 + d\vec{u}_2$$

$$(0,1) = c(1,3) + d(1,4)$$

$$\begin{cases}
c + d = 0 \\
3c + 4d = 1
\end{cases}$$

$$\begin{cases}
c + d = 0 \\
d = 1
\end{cases}$$

$$\begin{cases}
c + d = 0 \\
d = 1
\end{cases}$$

$$\begin{cases}
c + d = 0 \\
d = 1
\end{cases}$$

$$\begin{cases}
c + d = 0 \\
d = 1
\end{cases}$$

$$\begin{cases}
c - d = -(1) \\
d = 1
\end{cases}$$

$$\begin{cases}
c = -1 \\
d = 1
\end{cases}$$

$$M_{B \leftarrow S} = \begin{bmatrix} [\hat{i}]_B & [\hat{j}]_B \end{bmatrix}$$

$$M_{B \leftarrow S} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

$$M_{B \leftarrow S} = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix}$$

34.b Find the coordinate of $\vec{v} = (1,2) = \hat{\imath} + 2\hat{\jmath}$ in B, a.k.a. $[\vec{v}]_B$.

$$[\vec{v}]_{B} = M_{B \leftarrow S} \cdot \vec{v}$$

$$[\vec{v}]_{B} = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$[\vec{v}]_{B} = \begin{bmatrix} (4)(1) + (-1)(2) \\ (-3)(1) + (1)(2) \end{bmatrix}$$

$$[\vec{v}]_{B} = \begin{bmatrix} 4 + (-2) \\ -3 + 2 \end{bmatrix}$$

$$[\vec{v}]_{B} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

34.c Find the transition matrix from B to S, a.k.a. $M_{S \leftarrow B}$.

$$\vec{u}_{1} = a\hat{\imath} + b\hat{\jmath}$$

$$(1,3) = a(1,0) + b(0,1)$$
By inspection, $\begin{cases} a = 1 \\ b = 3 \end{cases}$

$$[\vec{u}_{1}] = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \vec{u}_{1}$$

$$\vec{u}_{2} = c\hat{\imath} + d\hat{\jmath}$$

$$(1,4) = c(1,0) + d(0,1)$$
By inspection, $\begin{cases} c = 1 \\ d = 4 \end{cases}$

$$[\vec{u}_{2}]_{S} = \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \vec{u}_{2}$$

$$M_{S \leftarrow B} = \begin{bmatrix} [\vec{u}_{1}]_{S} & [\vec{u}_{2}]_{S} \end{bmatrix}$$

$$M_{S \leftarrow B} = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$$

Problem 35

Given the bases $B = {\vec{u}_1, \vec{u}_2} = {(1,3), (1,4)}$ and $B' = {\vec{v}_1, \vec{v}_2} = {(1,2), (2,5)}...$

35.a The transition matrix from B to B', $M_{B' \leftarrow B}$.

$$\vec{u}_{1} = a\vec{v}_{1} + b\vec{v}_{2}$$

$$(1,3) = a(1,2) + b(2,5)$$

$$\left\{a + 2b = 1 \atop 2a + 5b = 3\right\}$$

$$\left\{a + 2b = 1 \atop 2a + 5b = 3\right\} \xrightarrow{E_{2} - 2E_{1}} \xrightarrow{-2a - 2(2b) = -2(1)} b = 1$$

$$\left\{a + 2b = 1 \atop b = 1\right\}$$

$$\left\{a + 2b = 1 \atop b = 1\right\} \xrightarrow{E_{1} - 2E_{2}} \xrightarrow{a + 2b = 1} \xrightarrow{a + 2b = -2(1)} a = -1$$

$$\left\{a + 2b = 1 \atop b = 1\right\} \xrightarrow{A_{1} - 2b = -2(1)} \xrightarrow{A_{2} - 2b = -2(1)} a = -1$$

$$\left\{a = -1 \atop b = 1\right\} \xrightarrow{A_{2} - 2b = -2(1)} a = -1$$

$$\left\{a = -1 \atop b = 1\right\} \xrightarrow{A_{2} - 2b = -2(1)} \xrightarrow{A_{2} - 2b = -2(1)} a = -1$$

$$\left\{a = -1 \atop b = 1\right\} \xrightarrow{A_{2} - 2b = -2(1)} \xrightarrow{A_{2} - 2b = -2(2d)} \xrightarrow{A_{2} - 2b = -2(2d)} \xrightarrow{A_{2} - 2b = -2(2d)} a = 2$$

$$\left\{c + 2d = 1 \atop d = 2\right\} \xrightarrow{A_{2} - 2b = -2(2d)} \xrightarrow{$$

$$M_{B' \leftarrow B} = \begin{bmatrix} \vec{u}_1 \end{bmatrix}_{B'} \quad [\vec{u}_2]_{B'}$$

$$M_{B' \leftarrow B} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

$$M_{B' \leftarrow B} = \begin{bmatrix} -1 & -3 \\ 1 & 2 \end{bmatrix}$$

Find the coordinate of $[\vec{v}]_B = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ in B'. 35.b

$$\begin{split} [\vec{v}]_{B'} &= M_{B' \leftarrow B} \cdot [\vec{v}]_{B} \\ [\vec{v}]_{B'} &= \begin{bmatrix} -1 & -3 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 5 \end{bmatrix} \\ [\vec{v}]_{B'} &= \begin{bmatrix} (-1)(2) + (-3)(5) \\ (1)(2) + (2)(5) \end{bmatrix} \\ [\vec{v}]_{B'} &= \begin{bmatrix} -2 + (-15) \\ 2 + 10 \end{bmatrix} \\ [\vec{v}]_{B'} &= \begin{bmatrix} -17 \\ 12 \end{bmatrix} \end{split}$$

Problem 36

Given the bases $B = {\vec{u}_1, \vec{u}_2} = {(1,3), (1,4)}$ and $B' = {\vec{v}_1, \vec{v}_2} = {(1,2), (1,1)}...$

Find the transition matrix from B to B', $M_{B' \leftarrow B}$. 36.a

$$\vec{u}_{1} = a\vec{v}_{1} + b\vec{v}_{2}$$

$$(1,3) = a(1,2) + b(1,1)$$

$$\begin{cases} a+b=1\\ 2a+b=3 \end{cases}$$

$$\begin{cases} a+b=1\\ 2a+b=3 \end{cases} \xrightarrow{E_{2}-2E_{1}} \frac{2a+b=3}{-2a-2b=-2(1)}$$

$$-b=1$$

$$\begin{cases} a+b=1\\ -b=1 \end{cases}$$

$$\begin{cases} a+b=1\\ -b=1 \end{cases} \xrightarrow{E_{2}/-1} \begin{cases} a+b=1\\ -b/-1=1/-1 \end{cases}$$

$$\begin{cases} a+b=1\\ b=-1 \end{cases}$$

$$\begin{cases} a+b=1\\ b=-1 \end{cases} \xrightarrow{E_{1}-E_{2}} a+b=1\\ b=-(-1)\\ a=2 \end{cases}$$

$$\begin{cases} a=2\\ b=-1 \end{cases}$$

$$[\vec{u}_1]_{B'} = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$\vec{u}_2 = c\vec{v}_1 + d\vec{v}_2$$

$$(1,4) = c(1,2) + d(1,1)$$

$$\begin{cases} c + d = 1 \\ 2c + d = 4 \end{cases}$$

$$\begin{cases} c+d=1\\ 2c+d=4 \xrightarrow{E_2-2E_1} \frac{2c+d=4}{-2c-2d=-2(1)}\\ -d=2 \end{cases}$$

$$\begin{cases} c+d=1\\ -d=2 \end{cases} \xrightarrow{E_2/-1} \begin{cases} c+d=1\\ -d/_{-1}=2/_{-1} \end{cases}$$

$$\begin{cases} c+d=1\\ d=-2 \end{cases}$$

$$\begin{cases} c + d = 1 & \xrightarrow{E_1 - E_2} \\ d = -2 & \xrightarrow{C} + d = 1 \\ -d = -(-2) \\ c = 3 \end{cases}$$

$$\begin{cases} c = 3 \\ d = -2 \end{cases}$$

$$\left[\vec{u}_{2}\right]_{B'} = \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$\begin{split} M_{B'\leftarrow B} &= [[\vec{u}_1]_{B'} \quad [\vec{u}_2]_{B'}] \\ M_{B'\leftarrow B} &= \begin{bmatrix} a & c \\ b & d \end{bmatrix} \\ \\ M_{B'\leftarrow B} &= \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix} \end{split}$$

Alternate:
$$[M_{B'}|M_B]$$

$$[\vec{v}_1 \quad \vec{v}_2|\vec{u}_1 \quad \vec{u}_2]$$

$$[\frac{1}{2} \quad \frac{1}{1}|\frac{1}{3} \quad \frac{1}{4}]$$

$$[\frac{1}{0} \quad \frac{1}{1}|\frac{1}{2}]$$

$$[\frac{1}{0} \quad \frac{1}{2}|\frac{1}{2}]$$

$$[\frac{1}{0} \quad \frac{1}{2}|\frac{1}$$

36.b Find the coordinate of $[\vec{v}]_B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ in B'.

$$\begin{split} & [[\vec{v}]_B]_{B'} = M_{B' \leftarrow B} \cdot [\vec{v}]_B \\ & [[\vec{v}]_B]_{B'} = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 1 \end{bmatrix} \\ & [[\vec{v}]_B]_{B'} = \begin{bmatrix} (2)(3) + (3)(1) \\ (-1)(3) + (-2)(1) \end{bmatrix} \\ & [[\vec{v}]_B]_{B'} = \begin{bmatrix} 6+3 \\ -3+(-2) \end{bmatrix} \\ & [[\vec{v}]_B]_{B'} = \begin{bmatrix} 9 \\ -5 \end{bmatrix} \end{split}$$

END