

Description

The VST06N018 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

V_{DS} =60V,I_D =200A

$$\begin{split} R_{DS(ON)} &= 1.8 m\Omega \text{ (typical)} \ @ \ V_{GS} \\ &= 10 \text{V} \\ R_{DS(ON)} &= 2.1 m\Omega \text{ (typical)} \ @ \ V_{GS} \\ &= 4.5 \text{V} \end{split}$$

- Excellent gate charge x R_{DS(on)} product
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST06N018-TC	VST06N018	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	60	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous (Silicon Limited)	I _D	200	А
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	140	А
Pulsed Drain Current	I _{DM}	800	А
Maximum Power Dissipation	P _D	255	W
Derating factor		1.7	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	2000	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{eJC}	0.59	°C/W
---	------------------	------	------

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.5	2.2	V
Drain-Source On-State Resistance	В	V _{GS} =10V, I _D =100A	-	1.8	2.3	mΩ
	R _{DS(ON)}	V _{GS} =4.5V, I _D =100A	-	2.1	2.7	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =100A	-	60	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	.,	-	9760	-	PF
Output Capacitance	Coss	V_{DS} =30V, V_{GS} =0V, F=1.0MHz	-	1600	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0IVIDZ	-	65	-	PF
Switching Characteristics (Note 4)	·		•			
Turn-on Delay Time	t _{d(on)}		-	24	-	nS
Turn-on Rise Time	t _r	$V_{DD} = 30V, I_D = 100A$	-	20	-	nS
Turn-Off Delay Time	t _{d(off)}	$V_{GS}\text{=}10V,R_{G}\text{=}4.7\Omega$	-	60	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg		-	173		nC
Gate-Source Charge	Q _{gs}	V_{DS} =30V, I_{D} =100A, V_{GS} =10V	-	32.1		nC
Gate-Drain Charge	Q_{gd}	VGS-10V	-	24.6		nC
Drain-Source Diode Characteristics	· ·		-			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =200A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	200	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = I _S	-	68		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	114		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=30V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance