

Maschinelles Lernen

Komplexere Modellfamilien

Prof. Dr. Rainer Stollhoff

- Wiederholung
 - Lineare Regression
 - Klassifikationsbäume / Ensemlemethoden
- Allgemein
 - Regression Klassifikation
 - Exkurs: Parametrisch / Nicht-Parametrisch
- Generalisierte Lineare Modelle
- SVM
- Neuronale Netzwerke

Multivariate Lineare Regression – Gradientenabstieg

Aufgabe: Regression, d.h. Vorhersage $\hat{y} = \hat{y}(x) = f(x)$

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n$ mit $x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,n})$

Qualität: Verlustfunktion: $L(y, \hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2 = L(\theta)$

Maschine: Regression mit $f(\mathbf{x}; \boldsymbol{\theta}) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \dots + \boldsymbol{\theta_m} \cdot \boldsymbol{x_m}$

Lernen: Finde Werte für $\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_m)$, die die quadratische Verlustfunktion minimieren Durch geeignete Wahl von θ in einem iterativen Prozess (Gradientenabstiegsverfahren):

1. Wähle Startwert z.B.
$$\theta^0 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

2. Berechne Gradienten

$$\nabla L(\theta^{0}) = \begin{pmatrix} \frac{\partial}{\partial \theta_{0}} L(\theta^{0}) \\ \frac{\partial}{\partial \theta_{1}} L(\theta^{0}) \\ \vdots \\ \frac{\partial}{\partial \theta_{m}} L(\theta^{0}) \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} (y_{i} - (\theta_{0} + \theta_{1} \cdot x_{1} + \theta_{2} \cdot x_{2} + \dots + \theta_{m} \cdot x_{m})) \cdot (-2 \cdot 1) \\ \sum_{i=1}^{n} (y_{i} - (\theta_{0} + \theta_{1} \cdot x_{1} + \theta_{2} \cdot x_{2} + \dots + \theta_{m} \cdot x_{m})) \cdot (-2 \cdot x_{i,1}) \\ \vdots \\ \sum_{i=1}^{n} (y_{i} - (\theta_{0} + \theta_{1} \cdot x_{1} + \theta_{2} \cdot x_{2} + \dots + \theta_{m} \cdot x_{m})) \cdot (-2 \cdot x_{i,m}) \end{pmatrix}$$

3. Update $\theta^{t+1} = \theta^t + \alpha \cdot \nabla L(\theta^t)$

Klassifikationsbäume

- Idee: Rekursive Partitionierung / Wiederholtes Aufteilen
- Teilungsregel: In jedem neuen Knoten möglichst die gleiche Klasse, d.h. mit $p_K={}^{\#\{i \text{ in } K: \ y_i=1\}}/{}_{\#\{i \text{ in } K\}}$
 - Minimiere Brier score $p_K \cdot (1 p_K)$
 - Maximiere log-lik

$$\sum_{i \text{ in } K: y_i = 1} \log p_K + \sum_{i \text{ in } K: y_i = 0} \log(1 - p_K)$$

Ensemble Methoden

- Idee: "Swarm Intelligence" oder "Wisdom of the Crowd"
 - Erzeuge wiederholt einfache Modelle
 - Aggregiere die einzelnen Vorhersagen z.B. mit Mittelwertbildung oder Mehrheitsentscheid
- Bagging = Bootstrap-Aggregating
 - Erzeuge Modelle auf Bootstrap Stichproben
- RandomForest
 - Erzeuge Bäume mit zufälligen Parametern (hier: Wahl der Partitionierung in einem Knoten) auf Bootstrap Stichproben
- Boosting
 - Erzeuge Modelle auf iterativ gewichteten Datensätzen
- Erhöhe die Gewichte von Beobachtungen, die falsch vorhergesagt wurden

- Wiederholung
 - Lineare Regression
 - Klassifikationsbäume / Ensemlemethoden
- Allgemein
 - Regression Klassifikation
 - Exkurs: Parametrisch / Nicht-Parametrisch
- Generalisierte Lineare Modelle
- SVM
- Neuronale Netzwerke

Ausblick: Multivariate Regression – Gradientenabstieg

Aufgabe: Regression, d.h. Vorhersage $\hat{y} = \hat{y}(x) = f(x)$

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n$ mit $x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,n})$

Qualität: Verlustfunktion: $L(y, \hat{y}) = L(\theta)$

Maschine: Regression mit $\mathbf{f}(x; \boldsymbol{\theta})$

Lernen: Finde Werte für $\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_m)$, die die quadratische Verlustfunktion minimieren Durch geeignete Wahl von θ in einem iterativen Prozess (Gradientenabstiegsverfahren):

1. Wähle Startwert z.B.
$$\theta^0 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

2. Berechne Gradienten

$$\nabla L(\theta^{0}) = \begin{pmatrix} \frac{\partial}{\partial \theta_{0}} L(\theta^{0}) \\ \frac{\partial}{\partial \theta_{1}} L(\theta^{0}) \\ \vdots \\ \frac{\partial}{\partial \theta_{m}} L(\theta^{0}) \end{pmatrix} = \begin{pmatrix} \frac{d}{df} L(f(\theta^{0})) \cdot \frac{\partial}{\partial \theta_{0}} f(x; \theta^{0}) \\ \frac{d}{df} L(f(\theta^{0})) \cdot \frac{\partial}{\partial \theta_{1}} f(x; \theta^{0})) \\ \vdots \\ \frac{d}{df} L(f(\theta^{0})) \cdot \frac{\partial}{\partial \theta_{m}} f(x; \theta^{0})) \end{pmatrix}$$

3. Update $\theta^{t+1} = \theta^t + \mathbf{A} \cdot \nabla L(\theta^t)$

Vorhersage anhand von Wahrscheinlichkeiten

Fehlklassifikationsrate

$$\operatorname{err} = \frac{1}{n} \sum_{i} 1_{(y_i \neq \hat{y}_i)}$$

Quadrat. Fehler der Wahrs.

$$L(p,\hat{p}) = \frac{1}{n} \sum_{i} (p_i - \hat{p}_i)^2$$

Brier-Score

$$L(y, \hat{p}) = \frac{1}{n} \sum_{i} (y_i - \hat{p}_i)^2$$

Likelihood

$$L(y, \hat{p}) = \prod_{i:y_i=1} \hat{p}(x) \prod_{i:y_i=0} (1 - \hat{p}(x))$$

Log-Likelihood

$$l(y, \hat{p}) = \sum_{i:y_i=1} \log \hat{p}(x_i) + \sum_{i:y_i=0} \log(1 - \hat{p}(x_i))$$

Klassifikation mittels Linearer Regression?

Modellfamilie

$$f(x;\theta) = \theta_0 + \sum_{j=1}^k x_j \theta_j = x \cdot \theta$$

- Für gewöhnlich werden Parameter mit eta statt mit heta bezeichnet
- Mit Klassifikation

$$\hat{y}(x) = \begin{cases} 1 & \text{falls } f(x; \theta) \ge 0.5 \\ 0 & \text{falls } f(x; \theta) < 0.5 \end{cases}$$

• Minimiere die Verlustfunktion

$$L(y, \hat{y}) = (y - \hat{y})^2$$

$$L(y, f) = (y - x \cdot \theta)^2$$

für den Datensatz $(x_i, y_i)_{i=1}^n$

$$L(y, \hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\neq \sum_{i=1}^{n} (y_i - x_i \cdot \theta)^2 = L(\theta)$$

Regression mit Bäumen?

- Idee: Rekursive Partitionierung / Wiederholtes Aufteilen
- Teilungsregel: Neue Knoten mit möglichst geringer Varianz, d.h. mit $\bar{y}_{K_1} = {}^1/_{\#K_1} \sum_{i \ in \ K_1} y_i$ und analog \bar{y}_{K_2}
 - Minimiere quadratischen Fehler

$$\sum_{i \text{ in } K_1} (y_i - \bar{y}_{K_1})^2 + \sum_{i \text{ in } K_2} (y_i - \bar{y}_{K_2})^2$$

Exkurs: Klassifikation – Maximum-Likelihood-Schätzer mit Gradientenabstieg

Aufgabe: Klassifikation, d.h. Vorhersage $\hat{y} = \hat{y}(x) \in \{0,1\}$

mittels Vorhersage der bedingten Wahrscheinlichkeit $\mathbf{f}(x;\theta) = \hat{p}(y=1|x;\theta)$ und Grenzwert

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^n$

Qualität: (Likelihood) oder log-likelihood

$$L(\theta) = \sum_{i:y_i=1} \log \hat{p}(x_i; \theta) + \sum_{i:y_i=0} \log(1 - \hat{p}(x_i; \theta))$$

Lernen: Finde einen Wert für θ , der die log-likelihood minimiert (bzw. likelihood maximiert) Durch geeignete Wahl von θ in einem iterativen Prozess (Gradientenabstiegsverfahren):

1. Wähle Startwert z.B.
$$\theta^0 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

2. Berechne Gradienten
$$\nabla L(\theta^{0}) = \begin{pmatrix} \frac{\partial}{\partial \theta_{0}} L(\theta^{0}) \\ \frac{\partial}{\partial \theta_{1}} L(\theta^{0}) \\ \vdots \\ \frac{\partial}{\partial \theta_{n}} L(\theta^{0}) \end{pmatrix} = \begin{pmatrix} \frac{d}{df} L(f(\theta^{0})) \cdot \frac{\partial}{\partial \theta_{0}} f(x; \theta^{0}) \\ \frac{d}{df} L(f(\theta^{0})) \cdot \frac{\partial}{\partial \theta_{1}} f(x; \theta^{0}) \\ \vdots \\ \frac{d}{df} L(f(\theta^{0})) \cdot \frac{\partial}{\partial \theta_{n}} f(x; \theta^{0}) \end{pmatrix}$$

3. Update $\theta^{t+1} = \theta^t + A \cdot \nabla L(\theta^t)$

Vergleich: Parametrisch und Nicht-Parametrisch

	Parametrisch	Nicht-Parametrisch
Art und Anzahl Parameter	vorab festgelegt	wird iterativ bestimmt
Beispiele	Lineare Regression Logistische Regression Neuronale Netzwerke	Klassifikationsbäume Regressionsbäume Ensemble-Verfahren Support Vector Machines
Optimierung	analytisch oder iterativ	iterativ
Interpretierbarkeit	direkt über den Wert der Parameter	indirekt über Auswertungsfunktionen
Komplexität	vorab festgelegt	variabel
Flexibilität	steigt mit Komplexität	variabel

- Wiederholung
 - Lineare Regression
 - Klassifikationsbäume / Ensemlemethoden
- Allgemein
 - Regression Klassifikation
 - Exkurs: Parametrisch / Nicht-Parametrisch
- Generalisierte Lineare Modelle
- SVM
- Neuronale Netzwerke

Logistische Regression

Linearer Kern

$$f(x;\theta) = \theta_0 + \sum_{j=1}^{k} x_j \theta_j = x \cdot \theta$$

Logistische Transformation

$$\hat{p}(y = 1|x; \theta) = \hat{p}(x; \theta) = \frac{\exp(f(x; \theta))}{1 + \exp(f(x; \theta))}$$
$$\frac{\log(\hat{p}(x; \theta))}{\log(1 - \hat{p}(x; \theta))} = f(x; \theta)$$

• Wähle die Parameter θ so, dass Sie die Log-Likelihood

für den Datensatz $(x_i, y_i)_{i=1}^n$ maximieren $\log(L(\theta))$

$$= \sum_{i:y_i=1} \log \hat{p}(x_i; \theta) + \sum_{i:y_i=0} \log (1 - \hat{p}(x_i; \theta))$$

Vergleich Logistische Regression / Baum

- Wiederholung
 - Lineare Regression
 - Klassifikationsbäume / Ensemlemethoden
- Allgemein
 - Regression Klassifikation
 - Exkurs: Parametrisch / Nicht-Parametrisch
- Generalisierte Lineare Modelle
- Support Vector Machines (SVM)
- Neuronale Netzwerke

Support Vector Machines - Hyperebene

• Grundidee: Trennende Hyperebenen

$$y \in \{-1,1\}$$

$$y \cdot \left(\theta_0 + \sum_{j=1}^k x_j \theta_j\right) \ge 0$$

• Erweiterung: Abstand zur Grenze (M: margin) maximieren

$$y \cdot \left(\theta_0 + \sum_{j=1}^k x_j \theta_j\right) \ge M$$

Mit Nebenbedingung $\left(\sum_{j=0}^k \theta_j^{\ 2}\ \right) = 1$

Suppor Vector Machines - Hyperebene

 Problemfall 1: Robustheit gegenüber Ausreißern

 Problemfall 2: Nicht-separierbare, überlappende Klassen

Support Vector Machines - SVC

ullet Grundidee Support Vector Classifier: Schlupfvariablen $arepsilon_i$ ermöglichen trennende

Hyperebenen, Margin-Maximierung

$$y_i \cdot \left(\theta_0 + \sum_{j=1}^k x_{i,j}\theta_j\right) \ge M(1 - \varepsilon_i)$$

Mit Nebenbedingungen $\left(\sum_{j=0}^k {\theta_j}^2\right) = 1$, $\varepsilon_i \geq 0$ und $\left(\sum_{i=1}^n \varepsilon_i\right) \leq C$

= großes M

Kleines C = wenig Fehler = kleines M

Support Vector Machines - SVC

Problemfall: Lineare Trennung nicht möglich

• Lösungsansatz: Variablentransformation

$$y_i \cdot \left(\theta_0 + \sum_{j=1}^k x_{i,j}\theta_{j,1} + \sum_{j=1}^k x_{i,j}^2\theta_{j,2}\right) \ge M(1 - \varepsilon_i)$$

Mit Nebenbedingungen
$$\left(\sum_{j=0}^k \theta_{j,1}^2 + \sum_{j=0}^k \theta_{j,2}^2\right) = 1$$
, $\varepsilon_i \ge 0$ und $\left(\sum_{i=1}^n \varepsilon_i\right) \le C$

Support Vector Machines

Der Kernel-Trick:

• verwende Skalarprodukt mit Beobachtungen $(x_i)_{i=1}^n$

$$\langle x, x_i \rangle = \sum_{j=1}^{\kappa} x_j x_{i,j}$$

• als Ersatz für Parameter im linearen Modell

$$\theta_0 + \sum_{j=1}^k x_j \theta_j = \theta_0 + \sum_{i=1}^n \sum_{j=1}^k \alpha_i x_j x_{i,j} = \theta_0 + \sum_{i=1}^n \alpha_i \langle x, x_i \rangle$$

wobei $\alpha_i \neq 0$ nur für Support-Vektoren und $\theta_j = \sum_{i=1}^n \alpha_i x_{i,j}$

- Und ersetze Skalarprodukt $\langle x, x_i \rangle$ durch Kernel $K(x, x_i)$
 - Linearer Kern $K(x, x_i) = \langle x, x_i \rangle$
 - Polynomieller Kern $K(x, x_i) = (c + \gamma \langle x, x_i \rangle)^d$
 - Radiale Basis Kern $K(x, x_i) = exp(-\gamma \cdot \sum_{j=1}^k \langle x x_i, x x_i \rangle)$
- Damit: Nicht-lineare Trennung mit linearer Darstellung

$$\theta_0 + \sum_{i=1}^n \alpha_i K(x, x_i)$$

Support Vector Machines

$$K(x, x_i) = (c + \gamma \langle x, x_i \rangle)^3$$

$$K(x,x_i) = exp\left(-\gamma \cdot \sum_{j=1}^k (x_j - x_{i,j})^2\right)$$

Vergleich logReg und SVM

logReg

Linearer Kern

$$f(x;\theta) = \theta_0 + \sum_{j=1}^k x_j \theta_j = x \cdot \theta$$

- Parameter entsprechen Einfluss der Variablen
- Nichtlineares y durch logistische Transformation

$$\hat{p}(y=1|x) = \frac{\exp(f(x;\theta))}{1+\exp(f(x;\theta))}$$

 Nichtlineare Trennung durch Interaktionen und Transformationen der Variablen (z.B. MFP)

$$+ X5 * X6 + I(X7^2)$$

SVM

$$y_i \cdot \left(\theta_0 + \sum_{i=1}^n \alpha_i \cdot K(x, x_i)\right) \ge M(1 - \varepsilon_i)$$

- Trennende Hyperebene
- Maximierung der Margin
- Schlupfvariablen ε_i
- Support-Vektoren x_i mit $\varepsilon_i \ge 0$ und $\alpha_i \ge 0$
- Parameter entsprechen Einfluss der Ähnlichkeit zu Support Vektoren
- Nicht-lineare Kernelfunktionen

- Wiederholung
 - Lineare Regression
 - Klassifikationsbäume / Ensemlemethoden
- Allgemein
 - Regression Klassifikation
 - Exkurs: Parametrisch / Nicht-Parametrisch
- Generalisierte Lineare Modelle
- Support Vector Machines (SVM)
- Neuronale Netzwerke

Neuronale Netzwerke – Vorbild Biologie

- Kortikale Neuronen
 - Input über Dendriten
 - Output über Axon
 - Durchschnittlich 7000 Verbindungen je Neuron

Quelle: NIH, Wikipedia

Introduction on Neural Networks

Single Neuron

$$score(\lambda, x) = \sum_{j} \lambda_j \ h_j(x)$$

= aggregation of weighted features

Rosenblatt (1958), Perceptron

Neuronale Netzwerke – Feedforward

- Parallele Vorhersagen
 - − y_i: Zielgrößen
- Einlagiges Perzeptron (Rosenblatt, 1958) $f_{j,out} = \sum_{i} w_{i,j} \cdot f_{i,in} = w_j \cdot f_{in}$
- $f_{i,in}$: Eingabe /Input
- $w_{i,j}$: Gewichte
- $f_{j,out}$: Output

Neuronale Netzwerke - Gradientenabstieg

 Anpassung durch Gradientenabstieg (quadrat. Fehler):

$$L(w_j) = (y_j - f_{j,out})^2$$

$$= \left(y_j - \sum_i w_{i,j} \cdot f_{i,in}\right)^2$$

$$\frac{\partial}{\partial w_j} L \sim (y_j - f_{j,out}) \cdot f_{i,in}$$

Update-Regel

$$w_{i,j}^{neu} = w_{i,j}^{alt} + \Delta w_{i,j}$$

mit $\Delta w_{i,j} = \alpha \cdot (y_j - f_{j,out}) \cdot f_{i,in}$

Introduction on Neural Networks

Layer of Neurons

Quelle: Kandel et al., Principles of Neural Science

Neuronale Netzwerke – Multilayer Feedforward

Mehrlagiges Perzeptron

$$f_{j,k} = h\left(\sum_{i \in L_{k-1}} w_{i,j,k} \cdot f_{i,k-1}\right)$$

- k: Schicht / Layer
- $-f_{i,k-1}$: Eingabe /Input
- $w_{i,j,k}$: Gewichte
- h: Aktivierungsfunktion
- $-f_{i,k}$: Ausgabe / Output

Hochschule Wildau

Technical University of Applied Sciences

Neuronale Netzwerke – Multilayer Feedforward

 Anpassung durch Backpropagation = Rückwärtsmeldung des Fehlers:

$$w_{i,j,k}^{neu} = w_{i,j,k}^{alt} + \Delta w_{i,j,k}$$
$$\Delta w_{i,j,k} = \alpha \cdot \delta_{j,k} \cdot f_{i,k-1}$$

– Output-Schicht:

$$\delta_{j,out} = (y_j - f_{j,out}) \cdot f'_{j,out}$$

– Hidden-Schicht:

$$\delta_{j,k} = \left(\sum_{l \in L_{k+1}} w_{j,l,k+1} \cdot \boldsymbol{\delta}_{l,k+1}\right) \cdot f'_{j,k}$$

 $oldsymbol{\delta_{l,k+1}}$ ist der rückwärtsgemeldete Fehler

Hochschule Wildau

Technical University of Applied Sciences

playground.tensorflow.org

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

Neuronale Netzwerke – Vorbild Biologie

- Kortikale Neuronen
 - Input über Dendriten
 - Output über Axon
 - Durchschnittlich 7000 Verbindungen je Neuron
- Visueller Cortex
 - Netzwerk von Neuronen
 - Hierarchische Struktur

Quelle: Kandel et al., Principles of Neural Science

Introduction on Neural Networks

- = aggregation of weighted(...)
- = AWF = aggregation of weighted AWF
- = universal approximator (Hornik, Stinchcombe, White, 1989)

Quelle: Szegedy et al., 2015

Introduction on Neural Networks

Single Neuron

$$score(\lambda, x) = \sum_{i} \lambda_{j} h_{j}(x)$$

= aggregation of weighted features

Multilayer Feedforward

$$h_j = \sum_{i} x_i w_{ji}$$

$$y_k = \sum_{j} h_j u_{kj}$$
weighted (

= aggregation of weighted (
aggregation of weighted features
)

Deep Learning

