Tunable Kernel-Nulling for direct detection of exoplanets

1. Calibration and performance

V. Foriel¹, F. Martinache¹, D. Mary¹ and R. Laugier²

¹ Université Côte d'Azur, Observatoire de la Côte d'Azur Nice, CNRS, Laboratoire Lagrange, Nice, France

² KU Leuven university, Leuven, Belgium

Received --; accepted --

ABSTRACT

Context. Lorem ipsum
Aims. Lorem ipsum
Methods. Lorem ipsum
Results. Lorem ipsum
Conclusions. Lorem ipsum

Key words. Lorem ipsum

1. Introduction

- 1. Nulling interferometry
- 2. Kernel nulling
- 3. Integrated optics & phase shifters

2. Materials and methods

- 1. VLTI/ASGARD (/NOTT?)
- 2. Integrated optics & phase shifters
- 3. Studied architecture
- 4. Observation conditions (Vegga-like star, noise etc.)
- 5. Calibration methods (Fig 2 & 3)

Genertic Algorithm Input obstruction Machine Leaning?

Fig. 1. Studied architecture

Fig. 2. Perturbed phases

Fig. 3. Calibrated phases

3. Results and limitations

- Numerical results
 Kernel-Null depth (Fig 5 & 6)
 Kernel inversion and swapping
- 2. Laboratory results
- 3. Laboratory limitations (ex. crosstalk)

Fig. 4. Sensitivity to input noise

Fig. 5. Calibration using genetic algorithm

Fig. 6. Calibration using input obstruction

4. Conclusions and prospects

- Conditions for noticing a performance gain
 Need of a post calibration caracterization process to identify
- 3. Deeper statistical analysis is required to truely caracterize performance gain (the null depth is not the only relevant parameter)

4. Architecture limitations (ex. no amplitude modulation, no photometric outputs)

Acknowledgements. Lorem ipsum

References

Lorem ipsum

Article number, page 2 of 2