- Создать проект lab7_z1
- Микросхема: **xc7a100tcsg324-2**
- Создать на языке C++ функцию (N=128, din_type int, dout_type int),

```
#include "lab7_z1.h"

provid lab7_z1(dout_type a[N], din_type b[N], din_type c[N])

{
    dout_type temp_mult;
    Mult:for (int i = 0; i < N; i++)
    {
        temp_mult = b[i] * c[i];
        a[i] = temp_mult;
    }
}</pre>
```

• Создать тест lab7_z1_test.cpp для проверки функции (не менее трех запусков функции) . Осуществить моделирование (с выводом результатов в консоль).

Исследование:

- Solution1
 - clock period 10; clock_uncertainty =1
 - о Выключите конвейеризацию для цикла Mult
 - о осуществите синтез.
 - о Посмотрите на отчет должен быть похож на приведенный ниже

Сколько модулей умножения (DSP) требуется для реализации?

Какой период тактового сигнала (оцениваемый)?

о Посмотрите на Schedule Viewer – должен быть похож на приведенный ниже

Сколько тактов занимает выполнение операции умножения?

- Solution1_1
 - clock period 10; clock_uncertainty =1
 - Выключите конвейеризацию для цикла Mult
 - Для переменной temp_mult задайте директиву BIND_OP

- о осуществите синтез.
- о Посмотрите на отчет должен быть похож на приведенный ниже

Сколько модулей умножения (DSP) требуется для реализации?

Сколько всего умножителей в данной микросхеме? Какой максимальный Unroll Factor цикла MULT (так чтобы использовались только DSP) может быть задан для данной микросхемы?

Какой период тактового сигнала (оцениваемый)?

o Посмотрите на Schedule Viewer – должен быть похож на приведенный ниже

Сколько тактов занимает выполнение операции умножения?

- Solution1_2 (на основе решений solution 1_1)
 - o clock period 15; clock_uncertainty =1
 - Выключите конвейеризацию для цикла Mult
 - о Для переменной temp_mult задайте директиву BIND_OP: fabric

- о осуществите синтез.
- о Посмотрите на отчет должен быть похож на приведенный ниже

Сколько модулей умножения (DSP) требуется для реализации?

Сколько логических элементов (LUT) требуется для реализации?

Сколько всего LUT в данной микросхеме? Какой максимальный Unroll Factor цикла MULT (так чтобы использовались только LUT) может быть задан для данной микросхемы?

Какой период тактового сигнала (оцениваемый)?

o Посмотрите на Schedule Viewer – должен быть похож на приведенный ниже

Сколько тактов занимает выполнение операции умножения?

- Solution 2 (на основе решения solution 1)
 - clock period 10; clock_uncertainty =1
 - o Задайте максимально возможный Unroll Factor цикла MULT (чтобы использовались только DSP)
 - Используйте Array Partition (или Array Reshape) нужного типа и фактора, обеспечивающего балансировку производительности умножителей и чтения/записи данных (использование одно портовой или двух портовой памяти – на ваш выбор).
 - Включите конвейеризацию для цикла Mult
 - Для переменной temp_mult задайте директиву BIND_OP

- о осуществите синтез.
- о Посмотрите на отчет

Сколько модулей умножения (DSP) требуется для реализации?

Какой период тактового сигнала (оцениваемый)?

Сколько тактов занимает выполнение операции умножения?

o Посмотрите на Schedule Viewer

Сколько операций считывания данных осуществляется параллельно?

Сколько операций умножения осуществляется параллельно?

Сколько операций записи данных осуществляется параллельно?

Осуществляется ли конвейеризация? Какой II?

- o Запустите CoSimulation,
 - Посмотрите и зафиксируйте Wave Viewer подготовьтесь дать пояснения.

Измерение времени выполнения на ПК

- Используются исходные коды функции lab7_z1.cpp (**solution_2**)
- На базе теста lab7_z1_test.cpp следует создать отдельный, модернизированный, тест lab7_z1_testSW.cpp (сохранить в папке C:\Xilinx_trn\HLS2023\lab7_z1\source) для проверки времени выполнения функции lab7_z1 на ПК. Исходные данные входных массивов должны быть псевдослучайными из всего диапазона int.
- Следует осуществить компиляцию модернизированного теста и запускать его как отдельное приложение
 - Следует сделать две реализации кода
 - Для одного ядра (потока) базовая реализация
 - Для N ядер/потоков (где N число ядер/потоков в вашем ПК) например так: https://stackoverflow.com/questions/414714/compiling-with-g-using-multiple-cores
- Следует провести измерение времени выполнения синтезируемой функции на Вашем ПК для каждого из случаев
 - о Для одного ядра
 - N = 8192
 - N = 16384
 - N = 32768
 - N = 65 536
 - Для N ядер
 - N = 8192
 - N = 16384
 - N = 32768
 - N = 65 536

0

• среди 32 запусков (каждого варианта) необходимо найти и зафиксировать медиану значения времени выполнения.

Измерение времени выполнения на аппаратной реализации

- Используются исходные коды функции lab7_z1.cpp (**solution_2**)
- следует осуществить синтез для случаев
 - o N = 8192
 - o N = 16384
 - o N = 32768
 - o N = 65 536

и для каждого случая зафиксировать: II, Estimated period, время выполнения = II * Estimated period

Сравнительный анализ

- Составить xls таблицу и построить два графика (
 - о по оси X случаи
 - N = 8192
 - N = 16384
 - N = 32768
 - N = 65 536
 - о по У время выполнения функции на ПК и аппаратной реализации

Отчет, должен включать

- о Задание
- о Раздел с описанием исходного кода функции
- о Раздел с описанием теста
- о Раздел с описание созданного командного файла
- о Раздел с описанием результатов сравнения решений (со снимками экрана)
- о Раздел с анализом результатов
 - Анализ и выбор оптимального (критерий максимальная производительность) решения
- о Раздел с описанием модернизированного теста
 - Следует указать компилятор, используемый для компиляции.
- о Результаты измерения времени выполнения на ПК
 - Следует указать: тип процессора, базовую частоту работы, максимальную частоту работы, объем ОЗУ.
- о Результаты измерения времени выполнения на аппаратной реализации
- Раздел с анализом результатов
- о Выводы

Архив должен включать всю рабочую папку проекта (включая модернизированный тест, xls таблицу и **скомпилированные приложения – папка ..\source**), отчет