

$K\mathcal{E}=\frac{1}{2}mv^2$

EN QUOI LA MODÉLISATION DE L'EXPÉRIENCE DE DIFFUSION A L'AIDE D'UN PUITS DE POTENTIEL EST PERTINENTE? QUELLES EN SONT LES LIMITES?

5-M.C3

Nassim Izza Nassim Bousslimani Yona Bulard

SOMMAIRE

Introduction

Simulation du phénomène

Explication du phénomène

Limites du modèle

Modélisation du phénomène

Conclusion

INTRODUCTION

Ramsauer

L'effet Ramsauer-Townsend est un phénomène surprenant observé en physique quantique qui concerne la diffusion d'électrons sur des atomes de gaz nobles

Explication du phénomène

Résonance de Transmission des Électrons

Le phénomène Ramsauer-Townsend, découvert en 1921, révèle que les électrons traversent presque sans diffusion les gaz nobles à certaines énergies, en raison d'une résonance de transmission expliquée par la mécanique quantique.

A. Pertinence / Pourquoi modéliser avec un puits de potentiel ?

Utilité du puits de potentiel :

Particule en mécanique quantique :

- décrite par une fonction d'onde et donne la probabilité de présence.
- Evolution régie par l'équation de Schrödinger.
- rencontre avec une barrière ou puits => réfléchie ou transmise, (même si semble impossible en physique classique).

Ici le puits :

- rend compte de l'interaction entre un électron et un atome de gaz noble
- simuler la diffusion de l'électron et explique pourquoi celle-ci disparaît à certaines énergies

A. Pertinence / Pourquoi modéliser avec un puits de potentiel ?

Pertinence du puits de potentiel

- Outil simple pour une approche analytique et numérique
- Bon accord qualitatif avec l'expérience, valeur pédagogique et scientifique
- Modèle limité mais capture l'essentiel du réel
- Montre la dualité onde-particule de l'électron
- Visualise les résonances quantiques (transmission totale)
- Reproduit qualitativement les résultats expérimentaux
- Aide à une compréhension intuitive des phénomènes de réflexion et transmission

B. Choix du modèle

C. Résolution analytique

1. Solutions des régions

A partir de l'equation de Schrödinger indépendante du temps en 1D :

$$-rac{\hbar^2}{2m}rac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)$$

On trouve:

$$\varphi_1(x) = A_1 e^{ikx} + B_1 e^{-ikx}$$

$$\varphi_2(x) = A_2 e^{iqx} + B_2 e^{-iqx}$$

$$\varphi_3(x) = A_3 e^{ikx}$$

2. Condition de continuité

$$\varphi_1(-a)=\varphi_2(-a)$$

$$\varphi_1'(-a) = \varphi_2'(-a)$$

$$\varphi_2(a)=\varphi_3(a)$$

$$arphi_1'(-a)=arphi_2'(-a)$$
 $arphi_2'(a)=arphi_3'(a)$

On obtient:

$$-ikA_{1}e^{-ika} + ikB_{1}e^{ika} = -iqA_{2}e^{-iqa} + iqB_{2}e^{iqa}$$
 (2)

$$A_2 e^{iqa} + B_2 e^{-iqa} = A_3 e^{ika} (3)$$

$$iqA_2e^{iqa} - iqB_2e^{-iqa} = ikA_3e^{ika} (4)$$

3. Expression de T(E)

$$T=\left|rac{A_3}{A_1}
ight|^2 \qquad A_3=A_2\cdotrac{2iq}{ik+iq}\cdot e^{i(q-k)a}$$

$$T=\left|rac{A_3}{A_1}
ight|^2 = A_3=A_2\cdotrac{2iq}{ik+iq}\cdot e^{i(q-k)a} = A_2=A_1\cdotrac{2ik\cdot e^{-ika}}{iq\left(e^{-iqa}-e^{3iqa}\left(rac{2iq}{ik+iq}-1
ight)
ight)+ik\left(e^{-iqa}+e^{3iqa}\left(rac{2iq}{ik+iq}-1
ight)
ight)}$$

On remplace :

$$T = \left|rac{A_3}{A_1}
ight|^2 = \left|rac{A_2}{A_1} \cdot rac{2iq}{ik+iq} \cdot e^{i(q-k)a}
ight|^2$$

$$T = \left| rac{2ik \cdot e^{-ika}}{iq\left(e^{-iqa} - e^{3iqa}\left(rac{2iq}{ik + iq} - 1
ight)
ight) + ik\left(e^{-iqa} + e^{3iqa}\left(rac{2iq}{ik + iq} - 1
ight)
ight)} \cdot rac{2iq}{ik + iq} \cdot e^{i(q - k)a}
ight|^2$$

Simulation du phénomène

1. La propagation d'un paquet d'onde

Simulation du phénomène

Les états stationnaires

Simulation du phénomène

La courbe de transmission

 $\sigma(v) \propto 1 - T(E(v))$

Les limites du modèle

- Le modèle est unidimensionnel
- Le puits carré est une approximation grossière du potentiel atomique réel
- La modélisation ne prend pas en compte certains effets
- L'utilisation d'ondes stationnaires simplifie la réalité

Conclusion