ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 16 febbraio 2015

Esercizio A

$R_1 = 1200 \Omega$	$R_{10} = 4 \text{ k}\Omega$
$R_2 = 6 \text{ k}\Omega$	$R_{11} = 16 \text{ k}\Omega$
$R_4 = 3250 \Omega$	$R_{12} = 50 \Omega$
$R_5 = 7500 \Omega$	$C_1 = 33 \text{ nF}$
$R_6 = 615 \text{ k}\Omega$	$C_2 = 220 \text{ nF}$
$R_7 = 30 \text{ k}\Omega$	$C_3 = 10 \text{ nF}$
$R_8 = 100 \Omega$	$V_z = 3.6 \text{ V}$
$R_9 = 2400 \Omega$	$V_{CC} = 18 \text{ V}$

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.5 mA/V² e $V_T=1$ V; Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$; D è un diodo zener ideale con $V_z=3.6$ V. Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₃ in modo che, in condizioni di riposo, la tensione sul collettore di Q₂ sia 10 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₁. (R: R₃ = 772.12 Ω)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -112.76$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 15486.23$ Hz; $f_{z2} = 301.43$ Hz; $f_{p2} = 5399.55$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 795.77$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{AC} + \overline{B}\right)\left(\overline{B}D + \overline{D}\right) + \overline{E}\left(\overline{B} + D\right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 500 \Omega$	$R_5 = 300 \Omega$
$R_2 = 2 \text{ k}\Omega$	$R_6 = 1 \text{ k}\Omega$
$R_3 = 700 \Omega$	C = 68 nF
$R_4 = 2 \text{ k}\Omega$	$V_{CC} = 6 V$

Il circuito IC₁ è un NE555 alimentato a $\mathbf{V}_{CC} = \mathbf{6V}$, Q₁ E Q₂ hanno una $\mathbf{R}_{on} = 0$ e $\mathbf{V}_{T} = 1\mathbf{V}$. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: $\mathbf{f} = 9079.59$ Hz)