CS 208: Automata Theory and Logic

Spring 2024

Instructor : Prof. Supratik Chakraborty

$\underline{\text{Disclaimer}}$

This is a compiled version of class notes scribed by students registered for CS 208 (Automata Theory and Logic) in Spring 2024. Please note this document has not received the usual scrutiny that formal publications enjoy. This may be distributed outside this class only with the permission of the instructor.

Contents

1	Proj	positional Logic	3
	1.1	Syntax	3
	1.2	Semantics	4
		1.2.1 Important Terminology	6
	1.3	Proof Rules	7
	1.4	Natural Deduction	9
	1.5	Soundness and Completeness of our proof system	10
	1.6	What about Satisfiability?	12
	1.7	Algebraic Laws and Some Redundancy	13
		1.7.1 Distributive Laws	13
		1.7.2 Reduction of bi-implication and implication	13
		1.7.3 DeMorgan's Laws	13
	1.8	Negation Normal Forms	13
	1.9	From DAG to NNF-DAG	14
		III Zinerene III gerrenia ee eenvere Zire ee IIII Zire ii vii vii vii vii vii vii vii vii vii	18
		Conjunctive Normal Forms	22
		Satisfiability and Validity Checking	24
	1.13	DAG to Equisatisfiable CNF	25
		Tseitin Encoding	25
		Towards Checking Satisfiability of CNF and Horn Clauses	26
	1.16	Counter example for Horn Formula	27
		1.16.1 Example	27
		Davis Putnam Logemann Loveland (DPLL) Algorithm	28
	1.18	DPLL in action	30
		1.18.1 Example	30
	1.19	Applying DPLL Algorithm to Horn Formulas	31

Chapter 1

Propositional Logic

In this course we look at two ways of computation: a state transition view and a logic centric view. In this chapter we begin with logic centered view with the discussion of propositional logic.

Example. Suppose there are five courses C_1, \ldots, C_5 , four slots S_1, \ldots, S_4 , and five days D_1, \ldots, D_5 . We plan to schedule these courses in three slots each, but we have also have the following requirements:

	D_1	D_2	D_3	D_4	D_5
S_1					
$\overline{S_2}$					
S_3					
S_4					

- For every course C_i , the three slots should be on three different days.
- Every course C_i should be scheduled in at most one of S_1, \ldots, S_4 .
- For every day D_i of the week, have at least one slot free.

Propositional logic is used in many real-world problems like timetables scheduling, train scheduling, airline scheduling, and so on. One can capture a problem in a propositional logic formula. This is called as encoding. After encoding the problem, one can use various software tools to systematically reason about the formula and draw some conclusions about the problem.

1.1 Syntax

We can think of logic as a language which allows us to very precisely describe problems and then reason about them. In this language, we will write sentences in a specific way. The symbols used in propositional logic are given in Table 1.1. Apart from the symbols in the table we also use variables usually denoted by small letters p, q, r, x, y, z, \ldots etc. Here is a short description of propositional logic symbols:

- Variables: They are usually denoted by smalls $(p, q, r, x, y, z, \dots \text{ etc})$. The variables can take up only true or false values. We use them to denote propositions.
- Constants: The constants are represented by \top and \bot . These represent truth values true and false.

• Operators: \land is the conjunction operator (also called AND), \lor is the disjunction operator (also called OR), \neg is the negation operator (also called NOT), \rightarrow is implication, and \leftrightarrow is bi-implication (equivalence).

Name	Symbol	Read as
true	Т	top
false	\perp	bot
negation	\neg	not
conjunction	\wedge	and
disjunction	\vee	or
implication	\rightarrow	implies
equivalence	\leftrightarrow	if and only if
open parenthesis	(
close parenthesis)	

Table 1.1: Logical connectives.

For the timetable example, we can have propositional variables of the form p_{ijk} with $i \in [5]$, $j \in [5]$ and $k \in [4]$ (Note that $[n] = \{1, \ldots, n\}$) with p_{ijk} representing the proposition 'course C_i is scheduled in slot S_k of day D_j '.

Rules for formulating a formula:

- Every variable constitutes a formula.
- The constants \top and \bot are formulae.
- If φ is a formula, so are $\neg \varphi$ and (φ) .
- If φ_1 and φ_2 are formulas, so are $\varphi_1 \wedge \varphi_2, \varphi_1 \vee \varphi_2, \varphi_1 \rightarrow \varphi_2$, and $\varphi_1 \leftrightarrow \varphi_2$.

Propositional formulae as strings and trees:

Formulae can be expressed as a strings over the alphabet $\mathbf{Vars} \cup \{\top, \bot, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,)\}$. **Vars** is the set of symbols for variables. Not all words formed using the alphabet qualify as propositional formulae. A string constitutes a well-formed formula (wff) if it was constructed while following the rules. Examples: $(p_1 \lor \neg q_2) \land (\neg p_2 \to (q_1 \leftrightarrow \neg p_1))$ and $p_1 \to (p_2 \to (p_3 \to p_4))$.

Well-formed formulas can be represented using trees. Consider the formula $p_1 \rightarrow (p_2 \rightarrow (p_3 \rightarrow p_4))$. This can be represented using the parse tree in figure Figure 1.1a. Notice that while strings require parentheses for disambiguation, trees don't, as can be seen in Figure 1.1b and Figure 1.1c.

1.2 Semantics

Semantics give a meaning to a formula in propositional logic. The semantics is a function that takes in the truth values of all the variables that appear in a formula and gives the truth value of the formula. Let 0 represent "false" and 1 represent "true". The semantics of a formula φ of n variables is a function

$$[\![\varphi]\!]: \{0,1\}^n \to \{0,1\}$$

Figure 1.1: Parse trees obviate the need for parentheses.

It is often presented in the form of a truth table. Truth tables of operators can be found in table Table 1.2.

			$arphi_1$	φ_2	$\varphi_1 \wedge \varphi_2$			$arphi_1$	φ_2	$\varphi_1 \vee \varphi_2$
			0	0	0			0	0	0
$\varphi \mid \neg \varphi$			0	1	0			0	1	1
0 1			1	0	0			1	0	1
$1 \mid 0$			1	1	1			1	1	1
(a) Truth table for ¬	φ .		(b) Trut	h tab	le for $\varphi_1 \wedge \varphi_2$	2.		(c) Trut	h tab	le for $\varphi_1 \vee \varphi_2$.
(φ_1	φ_2	$\varphi_1 \rightarrow \varphi$	o_2		φ_1	φ_2	$\varphi_1 \leftrightarrow \varphi$	$ ho_2$	
_	0	0	1			0	0	1		
	0	1	1			0	1	0		
	1	0	0			1	0	0		
	1	1	1			1	1	1		
(d) T	Trut	h tab	le for φ_1	$\rightarrow \varphi_2$. (e) Trut	h tab	le for φ_1	$\leftrightarrow \varphi_2$	

Table 1.2: Truth tables of operators.

Remark. Do not confuse 0 and 1 with \top and \bot : 0 (false) and 1 (true) are meanings, while \top and \bot are symbols.

Rules of semantics:

- $\llbracket \neg \varphi \rrbracket = 1$ iff $\llbracket \varphi \rrbracket = 0$.
- $\llbracket \varphi_1 \wedge \varphi_2 \rrbracket = 1$ iff $\llbracket \varphi_1 \rrbracket = \llbracket \varphi_2 \rrbracket = 1$.
- $\llbracket \varphi_1 \vee \varphi_2 \rrbracket = 1$ iff at least one of $\llbracket \varphi_1 \rrbracket$ or $\llbracket \varphi_2 \rrbracket$ evaluates to 1.

- $\llbracket \varphi_1 \to \varphi_2 \rrbracket = 1$ iff at least one of $\llbracket \varphi_1 \rrbracket = 0$ or $\llbracket \varphi_2 \rrbracket = 1$.
- $\llbracket \varphi_1 \leftrightarrow \varphi_2 \rrbracket = 1$ iff at both $\llbracket \varphi_1 \to \varphi_2 \rrbracket = 1$ and $\llbracket \varphi_2 \to \varphi_1 \rrbracket = 1$.

Truth Table: A truth table in propositional logic enumerates all possible truth values of logical expressions. It lists combinations of truths for individual propositions and the compound statement's truth.

Example. Let us construct a truth table for $[(p \lor s) \to (\neg q \leftrightarrow r)]$ (see Table 1.3).

p	q	r	s	$p \lor s$	$\neg q$	$\neg q \leftrightarrow r$	$(p \lor s) \to (\neg q \leftrightarrow r)$
0	0	0	0	0	1	0	1
0	0	0	1	1	1	0	0
0	0	1	0	0	1	1	1
0	0	1	1	1	1	1	1
0	1	0	0	0	0	1	1
0	1	0	1	1	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	0	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	0
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	1
1	1	0	0	1	0	1	1
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

Table 1.3: Truth table of $(p \lor s) \to (\neg q \leftrightarrow r)$.

1.2.1 Important Terminology

A formula φ is said to (be)

- satisfiable or consistent or SAT iff $[\![\varphi]\!] = 1$ for some assignment of variables. That is, there is at least one way to assign truth values to the variables that makes the entire formula true. Both a formula and its negation may be SAT at the same time (φ and $\neg \varphi$ may both be SAT).
- unsatisfiable or contradiction or UNSAT iff $\llbracket \varphi \rrbracket = 0$ for all assignments of variables. That is, there is no way to assign truth values to the variables that makes the formula true. If a formula φ is UNSAT then $\neg \varphi$ must be SAT (it is in fact valid).
- valid or tautology: $[\![\varphi]\!] = 1$ for all assignments of variables. That is, the formula is always true, no matter how the variables are assigned. If a formula φ is valid then $\neg \varphi$ is UNSAT.
- semantically entail φ_1 iff $[\![\varphi]\!] \preceq [\![\varphi_1]\!]$ for all assignments of variables, where 0 (false) \preceq 1 (true). This is denoted by $\varphi \models \varphi_1$. If $\varphi \models \varphi_1$, then for every assignment, if φ evaluates to 1 then φ_1 will evaluate to 1. Equivalently $\varphi \to \varphi_1$ is valid.

- semantically equivalent to φ_1 iff $\varphi \models \varphi_1$ and $\varphi_1 \models \varphi$. Basically φ and φ_1 have identical truth tables. Equivalently, $\varphi \leftrightarrow \varphi_1$ is valid.
- equisatisfiable to φ_1 iff either both are SAT or both are UNSAT. Also note that, semantic equivalence implies equisatisfiability but **not** vice-versa.

Term	Example
SAT	$p \lor q$
UNSAT	$p \land \neg p$
valid	$p \lor \neg p$
semantically entails	$\neg p \models p \rightarrow q$
semantically equivalent	$p \to q, \neg p \lor q$
equisatisfiable	$p \wedge q, r \vee s$

Table 1.4: Some examples for the definitions.

Example. Consider the formulas $\varphi_1: p \to (q \to r)$, $\varphi_2: (p \land q) \to r$ and $\varphi_3: (q \land \neg r) \to \neg p$. The three formulas φ_1, φ_2 and φ_3 are semantically equivalent. One way to check this is to construct the truth table.

On drawing the truth table for the above example, one would realise that it is laborious. Indeed, for a formula with n variables, the truth table has 2^n entries! So truth tables don't work for large formulas. We need a more systematic way to reason about the formulae. That leads us to proof rules...

But before that let us get a closure on the example at the beginning of the chapter. Let p_{ijk} represent the proposition 'course C_i is scheduled in slot S_k of day D_j '. We can encode the constraints using the encoding strategy used in tutorial 1 - problem 3. That is, by introducing extra variables that bound the sum for first few variables (sum of i is atmost j). Using this we can encode the constraints as : $\sum_{k=1}^4 p_{ijk} \leq 1$, $\sum_{j=1}^5 p_{ijk} \leq 1$, $\sum_{i=1}^5 p_{ijk} \leq 1$, $\sum_{k=1}^4 \sum_{j=1}^5 p_{ijk} \leq 3$, $\sum_{k=1}^4 \sum_{j=1}^5 p_{ijk} \leq 3$ and $\neg (\sum_{k=1}^4 \sum_{j=1}^5 p_{ijk} \leq 2)$.

1.3 Proof Rules

After encoding a problem into propositional formula we would like to reason about the formula. Some of the properties of a formula that we are usually interested in are whether it is SAT, UNSAT or valid. We have already seen that truth tables do not scale well for large formulae. It is also not humanly possible to reason about large formulae modelling real-world systems. We need to delegate the task to computers. Hence, we need to make systematic rules that a computer can use to reason about the formulae. These are called as proof rules.

The overall idea is to convert a formula to a normal form (basically a standard form that will make reasoning easier - more about this later in the chapter) and use proof rules to check SAT etc.

Rules are represented as

$$\frac{\text{Premises}}{\text{Inferences}} \text{Connector}_{i/e}$$

• Premise: A premise is a formula that is assumed or is known to be true.

- **Inference**: The conclusion that is drawn from the premise(s).
- Connector: It is the logical operator over which the rule works. We use the subscript *i* (for introduction) if the connector and the premises are combined to get the inference. The subscript *e* (for elimination) is used when we eliminate the connector present in the premises to draw inference.

Example. Look at the following rule

$$\frac{\varphi_1 \wedge \varphi_2}{\varphi_1} \wedge_{e_1}$$

In the rule above $\varphi_1 \wedge \varphi_2$ is assumed (is premise). Informally, looking at \wedge 's truth table, we can infer that both φ_1 and φ_2 are true if $\varphi_1 \wedge \varphi_2$ is true, so φ_1 is an inference. Also, in this process we eliminate (remove) \wedge so we call this AND-ELIMINATION or \wedge_e . For better clarity we call this rule \wedge_{e_1} as φ_1 is kept in the inference even when both φ_1 and φ_2 could be kept in inference. If we use φ_2 in inference then the rule becomes \wedge_{e_2} .

Table 1.5 summarises the basic proof rules that we would like to include in our proof system.

Connector	Introduction	Elimination
\wedge	$rac{arphi_1 arphi_2}{arphi_1 \wedge arphi_2} \wedge_i$	$\frac{\varphi_1 \wedge \varphi_2}{\varphi_1} \wedge_{e_1} \frac{\varphi_1 \wedge \varphi_2}{\varphi_2} \wedge_{e_2}$
V	$\frac{\varphi_1}{\varphi_1 \vee \varphi_2} \vee_{i_1} \frac{\varphi_2}{\varphi_1 \vee \varphi_2} \vee_{i_2}$	$\frac{\varphi_1 \vee \varphi_2 \varphi_1 \to \varphi_3 \varphi_2 \to \varphi_3}{\varphi_3} \vee_e$
\rightarrow	$ \begin{array}{c c} \varphi_1 \\ \vdots \\ \varphi_2 \\ \hline \varphi_1 \to \varphi_2 \end{array} \to_i $	$\frac{\varphi_1 \varphi_1 \to \varphi_2}{\varphi_2} \to_e$
¬	$\begin{array}{c c} \varphi \\ \vdots \\ \bot \\ \hline \neg \varphi \end{array} \neg_i$	$\frac{\varphi \neg \varphi}{\bot} \neg_e$
Τ		$\frac{\perp}{\varphi} \perp_e$
$\neg\neg$		$\frac{\neg \neg \varphi}{arphi} \neg \neg_e$

Table 1.5: Proof rules.

In the \rightarrow_i rule, the box indicates that we can *temporarily* assume φ_1 and conclude φ_2 using no extra non-trivial information. The \rightarrow_e is referred to by its Latin name, *modus ponens*.

Example 1. We can now use these proof rules along with $\varphi_1 \wedge (\varphi_2 \wedge \varphi_3)$ as the premise to conclude $(\varphi_1 \wedge \varphi_2) \wedge \varphi_3$.

$$\frac{\varphi_{1} \wedge (\varphi_{2} \wedge \varphi_{3})}{\varphi_{2} \wedge \varphi_{3}} \wedge_{e_{2}} \frac{\varphi_{1} \wedge (\varphi_{2} \wedge \varphi_{3})}{\varphi_{1}} \wedge_{e_{1}}$$

$$\frac{\varphi_{2} \wedge \varphi_{3}}{\varphi_{2}} \wedge_{e_{1}} \frac{\varphi_{2} \wedge \varphi_{3}}{\varphi_{3}} \wedge_{e_{2}}$$

$$\frac{\varphi_{1} \quad \varphi_{2}}{\varphi_{1} \wedge \varphi_{2}} \wedge_{i}$$

$$\frac{\varphi_{1} \wedge \varphi_{2} \quad \varphi_{3}}{(\varphi_{1} \wedge \varphi_{2}) \wedge \varphi_{3}} \wedge_{i}$$

1.4 Natural Deduction

If we can begin with some formulas $\phi_1, \phi_2, \dots, \phi_n$ as our premises and then conclude φ by applying the proof rules established we say that $\phi_1, \phi_2, \dots, \phi_n$ syntactically entail φ which is denoted by the following expression, also called a *sequent*:

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \varphi$$
.

We can also infer some formula using no premises, in which case the sequent is $\vdash \varphi$. Applying these proof rules involves the following general rule:

We can only use a formula φ at a point if it occurs prior to it in the proof and if **no box** enclosing that occurrence of φ has been closed already.

Example. Consider the following proof of the sequent $\vdash p \lor \neg p$:

1.	$\neg(p \lor \neg p)$	assumption
2.	p	assumption
3.	$p \lor \neg p$	$\vee_{i_1} 2$
4.		$\neg_e \ 3,1$
5.	$\neg p$	\neg_i 2–4
6.	$p \lor \neg p$	$\vee_{i_2} 5$
7.	上	\neg_e 6,1
8.	$\neg\neg(p\vee\neg p)$	\lnot_i 1–7
9.	$p \vee \neg p$	$\neg \neg_e \ 8$

Example. Proof for $p \vdash \neg \neg p$ which is $\neg \neg_i$, a derived rule

1.
$$p$$
 premise
2. $\neg p$ assumption
3. \bot $\neg e$ 1, 2
4. $\neg p$ $\neg e$ 2–3

Example. A useful derived rule is *modus tollens* which is $p \to q, \neg q \vdash \neg p$:

Example. $\neg p \land \neg q \vdash \neg (p \lor q)$:

1.5 Soundness and Completeness of our proof system

A proof system is said to be sound if everything that can be derived using it matches the semantics.

Soundness:
$$\Sigma \vdash \varphi$$
 implies $\Sigma \models \varphi$

The rules that we have chosen are indeed individually sound since they ensure that if for some assignment the premises evaluate to 1, so does the inference. Otherwise they rely on the notion of contradiction and assumption. Hence, soundness for any proof can be shown by inducting on the length of the proof.

A complete proof system is one which allows the inference of every valid semantic entailment:

Completeness:
$$\Sigma \models \varphi$$
 implies $\Sigma \vdash \varphi$

Let's take some example of semantic entailment. $\Sigma = \{p \to q, \neg q\} \models \neg p$.

p	q	$p \rightarrow q$	$\neg q$	$\neg p$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	0
1	1	1	0	0

As we can see, whenever both $p \to q$ and $\neg q$ are true, $\neg p$ is true. The question now is how do we derive this using proof rules? The idea is to 'mimic' each row of the truth table. This means that we assume the values for p, q and try to prove that the formulae in Σ imply φ^1 . And to prove an implication, we can use the \to_i rule. Here's an example of how we can prove our claim for the first row:

1.
$$\neg p$$
 given
2. $\neg q$ given
3. $(p \rightarrow q) \land \neg q$ assumption
4. $\neg p$ 1
5. $((p \rightarrow q) \land \neg q) \rightarrow \neg p \rightarrow_i 3,4$

Similarly to mimic the second row, we would like to show $\neg p, q \vdash ((p \rightarrow q) \land \neg q) \rightarrow \neg p$. Actually for every row, we'd like to start with the assumptions about the values of each variable, and then try to prove the property that we want.

Figure 1.2: Mimicking all 4 rows of the truth table

This looks promising, but we aren't done, we have only proven our formula under all possible assumptions, but we haven't exactly proven our formula from nothing given. But note that the reasoning we are doing looks a lot like case work, and we can think of the \vee_e rule. In words, this rule states that if a formula is true under 2 different assumptions, and one of the assumptions is always true, then our formula is true. So if we just somehow rigorously show at least one of our row assumptions is always true, we will be able to clean up our proof using the \vee_e rule.

But as seen above, we were able to show a proof for the sequent $\vdash \varphi \lor \neg \varphi$. If we just recursively apply this property for all the variables we have, we should be able to capture every row of truth table. So combining this result, our proofs for each row of the truth table, and the \lor_e rule, the whole proof is constructed as below. The only thing we need now is the ability to construct proofs for each row given the general valid formula $\bigwedge_{\phi \in \Sigma} \phi \to \varphi$.

This can be done using **structural induction** to prove the following:

Let φ be a formula using the propositional variables p_1, p_2, \ldots, p_n . For any assignment to these variables define $\hat{p}_i = p_i$ if p_i is set to 1 and $\hat{p}_i = \neg p_i$ otherwise, then:

 $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \varphi$ is provable if φ evaluates to 1 for the assignment $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \neg \varphi$ is provable if φ evaluates to 0 for the assignment.

 $^{^1\}Sigma$ semantically entails φ is equivalent to saying intersection of formulae in Σ implies φ is valid

1.6 What about Satisfiability?

Using Natural Deduction, we can only talk about the formulas that are a contradiction or valid. But there are formulas that are neither i.e. they are satisfiable for some assignment of variables but not all. Example, for some p and q,

$$\forall p \land q$$

But clearly, $p \wedge q$ is satisfiable when both p and q are true. Natural deduction can only claim statements like,

$$\vdash \neg p \to \neg (p \land q)$$
$$\vdash (p \to (q \to (p \land q)))$$

An important link between the two situations is that,

A formula ϕ is valid **iff** $\neg \phi$ is not satisfiable

1.7 Algebraic Laws and Some Redundancy

1.7.1 Distributive Laws

Here are some identities that help complex formulas to some required forms discussed later. These formulas are easily derived using the natural deduction proof rules as discussed above.

$$\phi_1 \land (\phi_2 \lor \phi_3) = \models (\phi_1 \land \phi_2) \lor (\phi_1 \land \phi_3)$$
$$\phi_1 \lor (\phi_2 \land \phi_3) = \models (\phi_1 \lor \phi_2) \land (\phi_1 \lor \phi_3)$$

1.7.2 Reduction of bi-implication and implication

We also see that bi-implication and implication can be reduced to \vee, \wedge and \neg and are therefore redundant in the alphabet of our string.

$$\phi_1 \longleftrightarrow \phi_2 = | \models (\phi_1 \to \phi_2) \land (\phi_2 \to \phi_1)$$
$$(\phi_1 \to \phi_2) = | \models ((\neg \phi_1) \lor \phi_2)$$

1.7.3 DeMorgan's Laws

Similar to distributive laws, the following laws (again easily provable via natural deduction) help reduce any normal string to a suitable form (discuissed in the next section).

$$\neg(\phi_1 \land \phi_2) = \models (\neg \phi_1 \lor \neg \phi_2)$$
$$\neg(\phi_1 \lor \phi_2) = \models (\neg \phi_1 \land \neg \phi_2)$$

1.8 Negation Normal Forms

except at the leaves, consider $(p \lor \neg r) \land (\neg q \lor (r \land (p \lor \neg r)))$

In mathematical logic, a formula is in negation normal form (NNF) if the negation operator (\neg) is only applied to variables and the only other allowed Boolean operators are conjunction (\land) and disjunction (\lor) One can convert any formula to a NNF by repeatedly applying DeMorgan's Laws to any clause that may have a \neg , until only the variables have the \neg operator. For example A NNF formula may be represented using it's parse tree, which doesn't have any negation nodes

Parse Tree Representation of the Above Example:

Since, the red part of the tree is repeating twice, we can make a **DAG(Directed Acyclic Graph)** instead of the parse tree.

DAG Representation

1.9 From DAG to NNF-DAG

Given a DAG of propositional logic formula with only \vee , \wedge and \neg nodes, can we efficiently get a DAG representing a semantically equivalent NNF formula?

Idea 1: Let's push the " \neg " downwards by applying the De Morgans Law and see what happens. Lets Consider the following example and the highlighted \neg .

Pushing down the highlighted \neg across the red edge.

Now , we have an issue in the blue edge. The blue edge wanted the non - negated tree node but due to the above mentioned change , it is getting the negated node. So, this idea won't work. We want to preserve the non-negated nodes as well.

Modification: Make two copies of the DAG and negate(i.e., \neg pushing) only 1 of the copies and if a nodes wants non - negated node then take that node from the copied tree.

Figure 1.3: Step 1

Figure 1.4: Step 2

Figure 1.5: Step 3

Figure 1.6: Step 4 : Remove all redundant nodes

1.10 An Efficient Algorithm to convert DAG to NNF-DAG

Figure 1.7: Step 1:Make a copy of the DAG and Remove all " \neg " nodes except the ones which are applied to the basic variables

Figure 1.8: Step 2: Negate the entire DAG obtained in step 1

Figure 1.9: Step 3: Remove the "¬" nodes from the first DAG by connecting them to the corresponding node in the negated DAG.

Figure 1.10: Step 4: Remove all the redundant nodes.

Figure 1.11: NNF - DAG

Figure 1.12: The NNF DAG (rearranged) $\,$

NOTE: The size of the NNF - DAG obtained using the above algorithm is atmost two times the size of the given DAG. Hence we have an O(N) formula for converting any arbitrary DAG to a semantically equivalent NNF - DAG.

1.11 Conjunctive Normal Forms

A formula is in conjunctive normal form or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of variables.

Examples:

• Parse Tree for a formula in CNF

• Parse Tree for the formula $(\neg(p \land \neg q) \land (\neg(\neg r \land s)) \land t)$ in NNF

Some Important Terms

• LITERAL:

- Variable or it's complement.
- Example : p , \neg p , r , \neg q

• CLAUSE:

- A clause is a disjunction of literals such that a literal and its negation are not both in the same clause, for any literal
- Example : p \vee q \vee (\neg r) , p \vee (\neg p) \vee (\neg r) -> Not Allowed

• CUBE:

- a Cube is a conjunction of literals such that a literal and its negation are not both in the same cube, for any literal
- Example $p \wedge q \wedge (\neg r)$, $p \wedge (\neg p) \wedge (\neg r)$ -> Not Allowed

• CONJUNCTIVE NORMAL FORM(CNF)

- A propositional formula is said to be in Conjunctive Normal Form (CNF) if it is a conjunction of clauses
- Product of Sums
- Example ($p \lor q \lor (\neg r)$) \land ($q \lor r \lor (\neg s) \lor t$)

• DISJUNCTIVE NORMAL FORM(DNF)

- A formula is said to be in Disjunctive Normal Form (DNF) if it is a disjunction of cubes.
- Sum of Products
- Example ($p \land q \land (\neg r)$) \lor ($q \land r \land (\neg s) \land t$)

Given a DAG of propositional logic formula with only \vee , \wedge and \neg nodes, can we efficiently get a DAG representing a semantically equivalent CNF/DNF formula?

Tutorial 2 Question 2:

The Parity Function can be expressed as $(((....(x_1 \oplus x_2) \oplus x_3) \oplus x_n)$ The Parse Tree for $x_1 \oplus x_2$ is

Now consider $\phi = x_1 \oplus x_2$ then Parse tree for $(x_1 \oplus x_2) \oplus x_3$ will be

Now putting $\phi = x_1 \oplus x_2$ in the tree, we get the following DAG representation

We notice that on adding x_i we are adding 4 nodes. Hence, the size of DAG of the parity function is atmost 4n. And we have already shown that size of NNF-DAG is atmost 2 times the size of DAG. So, the size of the semantically equivalent NNF-DAG is atmost 8n.

Also, in the Tutorial Question we have proved that the DAG size of the semantically equivalent $\mathbf{CNF}/\mathbf{DNF}$ formula is at least 2^{n-1} .

NNF -> CNF/DNF (Exponential Growth in size of the DAG)

1.12 Satisfiability and Validity Checking

It is easy to check validity of CNF. Check for every clause that it has some p, $\neg p$. If there is a clause which does not have both(p, $\neg p$), then the Formula is not valid because we can always assign variables in such a way that makes this clause false.

Example - If we have a clause $p \lor q \lor (\neg r)$, we can make it 0 with assignments p = 0, q = 0 and r = 1.

And if both a variable and its conjugate are present in a clause then since $p \lor \neg p$ is valid and $1 \lor \phi = 1$ for any ϕ . So, the clause will be always valid.

Hence, we have an O(N) algorithm to check the validity of CNF but the price we pay is conversion to it (which is exponential).

It is hard to check validity of DNF because we will have to find an assignment which falsifies all the cubes.

What is meant by satisfiability?

Given a Formula, is there an assignment which makes the formula valid.

It is **easy to check satisfiability of DNF**. Check for every cube that it has some p, $\neg p$. If there is a cube which does not have both $(p, \neg p)$, then the Formula is satisfiable because we can always assign variables in such a way that makes this cube true and hence the entire formula true. Overall, We just need to find a satisfying assignment for any one cube.

Hard to check satisfiability using CNF. We will have to find an assignment which simultaneosly

satisfy all the cubes.

NOTE: A formula is valid if it's negation is not satisfiable. Therefore, we can convert every validity problem to a satisfiability problem. Thus, it suffices to worry only about satisfiability problem.

1.13 DAG to Equisatisfiable CNF

Claim: Given any formula, we can get an equisatisfiable formula in CNF of linear size efficiently. *Proof:* Let's consider the DAG $\phi(p, q, r)$ given below:

- 1. Introduce new variables $t_1, t_2, t_3, \dots, t_n$ for each of the nodes. We will get an equisatisfiable formula $\phi'(p, q, r, t_1, t_2, t_3, \dots, t_n)$ which is in CNF.
- 2. Write the formula for ϕ' as a conjunction of subformulas for each node of form given below:

$$\phi' = (t_1 \iff (p \land q)) \land (t_2 \iff (t_1 \lor \neg r)) \land (t_3 \iff (\neg t_2)) \land (t_4 \iff (\neg p \land \neg r)) \land (t_5 \iff (t_3 \lor t_4)) \land t_5$$

3. Convert each of the subformula to CNF. For the first node it is shown below:

$$(t_1 \iff (p \land q)) = (\neg t_1 \land (p \land q)) \land (\neg (p \land q) \lor t_1)$$

$$= (\neg t_1 \lor p) \land (\neg t_1 \lor q) \land (\neg p \lor \neg q \lor t_1)$$

4. For checking the equisatisfiability of ϕ and ϕ' : Think about an assignment which makes ϕ true then apply that assignment to ϕ' .

1.14 Tseitin Encoding

The Tseitin encoding technique is commonly employed in the context of Boolean satisfiability (SAT) problems. SAT solvers are tools designed to determine the satisfiability of a given logical formula, i.e., whether there exists an assignment of truth values to the variables that makes the entire formula true.

The basic idea behind Tseitin encoding is to introduce additional auxiliary variables to represent complex subformulas or logical connectives within the original formula. By doing this, the formula can be transformed into an equivalent CNF representation.

Say you have a formula Q(p, q, r, ...). Now we can use and introduce auxiliary variables $t_1, t_2, ...$ to make a new formula $Q'(p, q, r, ..., t_1, t_2, ...)$ using Tseitin encoding which is equisatisfiable as Q is equisatisfiable as Q but not sematically equivalent. Size of Q' is linear in size of Q.

Lets take an example to understand better. Consider the formula $(\neg((q \land p) \lor \neg r)) \lor (\neg p \land \neg r)$

We define a new equisatisfiable formula with auxiliary variables t_1, t_2, t_3, t_4 and t_5 as follows:

$$(t_1 \iff p \land q) \land (t_2 \iff t_1 \lor \neg r) \land (t_3 \iff \neg t_2) \land (t_4 \iff \neg p \land \neg r) \land (t_5 \iff t_3 \lor t_4) \land (t_5)$$

1.15 Towards Checking Satisfiability of CNF and Horn Clauses

A Horn clause is a disjunctive clause (a disjunction of literals) with at most one positive literal. A Horn Formula is a conjuction of horn clauses, for example:

$$(\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_4 \lor x_5 \lor \neg x_3) \land (\neg x_1 \lor \neg x_5) \land (x_5) \land (\neg x_5 \lor x_3) \land (\neg x_5 \lor \neg x_1)$$

Now we can convert any horn clause to an implication by using disjunction of the literals that were in negation form in the horn clause on left side of the implication and the unnegated variable on the other side of the implication. So all the variables in all the implications will be unnegated. So the above equation can be translated as follows.

$$x_{1} \wedge x_{2} \implies x_{3}$$

$$x_{4} \wedge x_{3} \implies x_{5}$$

$$x_{1} \wedge x_{5} \implies \bot$$

$$x_{5} \implies x_{3}$$

$$\top \implies x_{5}$$

Now we try to find a satisfying assignment for the above formula.

From the last clause we get $x_5 = 1$, now the fourth clause is $\top \implies x_3$.

Then from the fourth clause we get that $x_3 = 1$.

Now in the remaining clauses none of the left hand sides are reduced to \top .

Hence, we set all remaining variables to 0 to get a satisfying assignment.

Algorithm 1: HORN Algorithm

```
1 Function HORN(\phi):
2
       for each occurrence of \top in \phi do
          mark the occurrence
3
       while there is a conjunct P_1 \wedge P_2 \wedge \ldots \wedge P_{k_i} \to P' in \phi do
4
          // such that all P_i are marked but P' isn't
          if all P_i are marked and P' isn't then
5
              \max P'
 6
       if \perp is marked then
7
          return'unsatisfiable'
8
9
          return'satisfiable'
10
```

Complexity:

If we have n variables and k clauses then the solving complexity will be O(nk) as in worst case in each clause you search for each variable.

1.16 Counter example for Horn Formula

In our previous lectures, we delved into the Horn Formula, a valuable tool for assessing the satisfiability of logical formulas.

1.16.1 **Example**

We are presented with a example involving conditions that determine when an alarm (a) should ring. Let's outline the given conditions:

- 1. If there is a burglary (b) in the night (n), then the alarm should ring (a).
- 2. If there is a fire (f) in the day (d), then the alarm should ring (a).
- 3. If there is an earthquake (e), it may occur in the day (d) or night (n), and in either case, the alarm should ring (a).
- 4. If there is a prank (p) in the night (n), then the alarm should ring (a).
- 5. Also it is known that prank (p) does not happen during day (d) and burglary (b) does not takes place when there is fire (f).

Let us write down these implications

$$b \wedge n \Rightarrow a \quad f \wedge d \Rightarrow a \quad e \wedge d \Rightarrow a$$

$$e \wedge n \Rightarrow a \quad p \wedge n \Rightarrow a \quad d \wedge n \Rightarrow \bot$$

$$b \wedge f \Rightarrow a \quad p \wedge d \Rightarrow \bot$$

Now we want to examine the possible behaviour of this systen under the assumption that alarm rings during day. For this we add two more clauses:

$$\top \Rightarrow a \quad \top \Rightarrow d$$

This directly gives us that a, d have to be true, what about the rest? We can see that setting all the remaining variables to false is a satisfying assignment for this set of formulae.

Hence we have none of prank, earthquake, burglary or fire and hence alarm should not ring. This means that our formulae system is incomplete.

To achieve this, we try to introduce new variables Na (no alarm), Nf (no fire), Nb (no burglary), Ne (no earthquake), and Np (no prank).

We extend the above set of implications in a natural way using these formulae:

$$a \wedge Na \Rightarrow \bot$$
 $b \wedge Nb \Rightarrow \bot$ $f \wedge Nf \Rightarrow \bot$ $e \wedge Ne \Rightarrow \bot$ $p \wedge Np \Rightarrow \bot$
$$Nb \wedge Nf \wedge Ne \wedge Np \Rightarrow Na$$

All the implications will hold true for the values b = p = e = f = Nb = Ne = Nf = Np = 0. Here, we are getting b = Nb, which is not possible, hence, we need the aditional constraint that $b \iff Nb$. But on careful examination we see that this cannot be represented as a horn clause. Therefore, it becomes necessary to devise an alternative algorithm suited for evaluating satisfiability.

1.17 Davis Putnam Logemann Loveland (DPLL) Algorithm

This works for more general cases of CNF formulas where it need not be a Horn formula. Let us first discuss techniques and terms required for our Algorithm.

- Partial Assignment (PA): It is any assignment of some of the propositional variables. Ex. $PA = \{x_1 = 1, x_2 = 0\}$; $PA = \{\}$, etc.
- Unit Clause: It is any clause which only has one literal in it. Ex. .. \wedge $(\neg x_5) \wedge$.. Note: If any Formula has a unit clause then the literal in it has to be set to true.
- Pure Literal: A literal which doesn't appear negated in any clause. Say a propositional variable x appear only as $\neg x$ in every clause it appears in., or say y appears only as y in every clause.

Note: If there is a pure literal in the formula, it does not hurt any clause to set it to true. All the clauses in which this literal is present will become true immediately.

We will now utilize every techniques we learnt to simplify our formula. First we check if our formula has unit clause or not. If yes then we assign the literal in that clause to be 1. Note, $\varphi[l=1]$ is the formula obtained after setting l=1 everywhere in the formula. We also search for pure literals. If we find a pure literal then we can simply assign it 1 (or 0 if it always appears in negated form) and proceed, this cannot harm us (cause future conflicts) due to the definition of Pure Literal. If we do not have any of these then we have only one option left at the moment which is try and error.

We assign any one of the variable in the formula a value which we choose by some way (not described here). Then we go on with the usual algorithm until we either get the whole formula to

be true or false. At this step we might have to backtrack if the formula turns out to be false. If it is true we can terminate the algorithm.

Note: Our algorithm **can be as worse as a Truth Table** as we are trying every assignment. But as we are applying additional steps, after making a decision there are high chances that we get a unit clause or a pure literal.

Now as we have done all the prerequisites let us state the algorithm.

```
Algorithm 2: SAT(\varphi, PA)
```

```
{// These are the base cases for our recursion}
if \varphi = \top then
  return SAT(sat, PA)
else if \varphi = \bot then
  return SAT(unsat, PA)
else if C_i is a unit clause (literal l) and C_i \in \varphi then
  {//This step is called Unit Propagation}
  return SAT(\varphi[l=1], PA \cup {l=1}) {// Here recursively call the algorithm on the simplified}
                                                                                         //formula \varphi[l=1]
else if l is a pure literal and l \in \varphi then
  {//This step is called Pure Literal Elimination}
  return SAT(\varphi[l=1], PA \cup \{l=1\})
else
  {//This step is called Decision Step}
  x \leftarrow \text{choose a } \text{var}(\varphi)
  v \leftarrow \text{choose}\_\texttt{a}\_\texttt{value}(\{0,1\})
  if SAT(\varphi[x=v], PA \cup \{x=v\}).status = sat then
     return SAT(sat, PA \cup {x = v})
  else if SAT(\varphi[x=1-v], PA \cup \{x=1-v\}).status = sat then
     return SAT(sat, PA \cup {x = 1 - v})
  else
     return SAT(unsat, PA)
  end if
end if
```

Question Can the formula be a horn formula after steps 1 and 2 can't be applied anymore? i.e. If our formula does not have any unit clause or pure literal can it be a horn formula?

ANS. Yes. Here is an example

$$(a \vee \neg b) \wedge (\neg a \vee b)$$

1.18 DPLL in action

1.18.1 **Example**

Consider the following clauses, for which we have to find whether all can be satisfied for a variable mapping or not using DPLL algorithm-

$$\begin{array}{lll} C_1: (\neg P_1 \vee P_2) & C_2: (\neg P_1 \vee P_3 \vee P_5) & C_3: (\neg P_2 \vee P_4) & C_4: (\neg P_3 \vee P_4) \\ C_5: (P_1 \vee P_5 \vee \neg P_2) & C_6: (P_2 \vee P_3) & C_7: (P_1 \vee P_3 \vee P_7) & C_8: (P_6 \vee \neg P_5) \end{array}$$

Lets make two possible decision trees for these clauses.

PLE - Pure literal elimination UP - Unit Propagation D - Decision

Figure 1.13: DPLL

The following is the decision tree if we remove the point 2 of DPLL. Note the increase in number of operations.

Figure 1.14: DPLL without point 2

1.19 Applying DPLL Algorithm to Horn Formulas

Let us apply DPLL algorithm to Horn Formula If there are no variables on LHS, it becomes a Unit Clause $i.e. \, \top \to x_i$ and is equivalent to (x_i) . Horn Method can be viewed in terms of DPLL algorithm as following:

- Apply Unit Propagation until you can't apply.
- After that, set all remaining variables to 0.

Advantage of Horn's method is after all possible Unit Propagations are done, it sets all remaining variables to 0, but in DPLL we need to go step by step for each remaining variable.

But Horn's method can only be applied in a special case, moreover, in Horn's method we only figure out which variables to set true as opposed to DPLL which can figure out whether variable needs to be set to true or false via the Pure Literal Elimination.