Белорусский государственный университет информатики и радиоэлектроники Кафедра интеллектуальных информационных технологий

Отчет по лаборатор	рной работе №3
по дисциплине «Модели решения зад	ач в интеллектуальных системах»
Вариан	т 10
Выполнил студент гр. 021702:	Кавков М.А.

Минск 2022 Жук А.А.

Проверил:

Цель

Ознакомиться, проанализировать и получить навыки реализации модели нейронной сети для задачи предсказания числовых последовательностей.

Задание

1. Реализовать модель сети Элмана с функцией активации гиперболичекого тангенса.

Описание модели

Сеть Элмана – рекуррентная сеть, выходы нейронов промежуточного слоя которой соединяются с контекстными нейронами входного слоя:

Входные данные:

- predictions_count (N) количество прогнозируемых значений;
- it максимальное число итераций;
- error (e) максимально-допустимая среднеквадратическая ошибка;
- size (p) размер окна;

• α – коэффициент обучения.

Выходные данные:

• Вектор Ү.

В лабораторной работе использовалась функция активации гиперболического тангенса:

$$tanh(x) = \frac{e^{2x}-1}{e^{2x}+1}$$

Производная функции:

$$\frac{1}{\cosh^2 x}$$

График функции:

Ход работы

Пользователь выбирает одну из заранее определенных последовательностей:

- **1.** Периодическая функция (1, 0, -1, 0, 1, 0, -1, 0)
- **2.** Ряд Фибоначчи *0,01 (0.01, 0.01, 0.02, 0.03, 0.05, 0.08, 0.13, 0.21)
- **3.** Показательная функция с основанием 2(1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125)
- **4.** Функция х!*0,0001 (0.0001, 0.0001, 0.0002, 0.0006, 0.0024, 0.0120, 0.0720, 0.5760).

Предсказания числовых последовательностей:

Последовательность	Результат	Отклонени е	Количество итераций	p	α	e
1, 0, -1, 0, 1, 0, -1, 0	0.997066	0,002934	244000	4	0.0001	0.0001

0.01, 0.01, 0.02, 0.03, 0.05, 0.08, 0.13, 0.21	0.315022	0,024978	1000000	4	0.0001	0.0001
1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125		0,01448215	10000000	4	0.0001	0.0001
0.0001, 0.0001, 0.0002, 0.0006, 0.0024, 0.0120, 0.0720, 0.5760	0,322652	3,709348	10000000	4	0.0001	0.0001

Выводы

В результате выполнения лабораторной работы была разработана программа, позволяющая предугадывать число x_{n+1} (следующий член последовательности из n элементов) при помощи сети Элмана с функцией активации гиперболического тангенса.

Исходя из полученных результатов, можно сделать вывод, что предсказания данной модели сети максимально точны для периодической функции с значениями в промежутке [-1,1] (1, 0, -1, 0, 1, 0, -1, 0). Самая большая погрешность предсказания оказалась у факториальной функции (0.0001, 0.0001, 0.0002, 0.0006, 0.0024, 0.0120, 0.0720, 0.5760), где следующий член прогрессии ожидался 4,608. Небольшая погрешность у показательной функции (1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125) и ряда Фибоначчи (0.01, 0.01, 0.02, 0.03, 0.05, 0.08, 0.13, 0.21) была достигнута только при увеличении количества итераций.