

# Busan science high school 2023 Ocean ICT Festival **2023 BOIF**

B

QR 삽입 후 테두리 삭제

Youtube 영상 QR

# 페니실린 부산물을 활용한 해양 중금속 제거

3309 김지윤 3310 배장욱 3312 우윤형

#### 작품 개요

중금속 오염으로 인한 해양 생태계의 파괴가 해양 문제의 주요 화두로 떠오 르는 가운데, 다양한 해결방안이 제시되었으나 실질적으로 이미 오염된 해 수를 정화시킬 효과적인 방법은 등장하고 있지 않다. 이 문제에 대한 해결책 으로 연구를 통해 중금속 오염 정화가 입증된 균주를 활용하여 필터를 제작 하고 간단한 장치에 장착하여 활용성을 높여보고자 한다.

#### 작품 목적

"유럽 바다는 75%이상이 중금속에 오염된 위험 구역"이라는 이야기가 나올 정도로 해양 중금속 오염은 심 각해지고 있다. 실제 한국해양학회 지에 2019년 게재된 한국 해양 오 염도 평가에 따르면 남해안 지방의 오염정도가 6%를 넘어선다고 한다. 이것을 해결하기 위해서 다양한 방 법이 제시되고 있으나, 실질적인 실 행 단계에 들어선 방법은 많지 않다. 그러나, 중금속 오염이 심각한 문제 로 대두된 만큼 다양한 방법이 연구 되었고, 그만큼 여러 가지 접근이 존 재하였으나 실질적으로는 사용되 고 있는 방법이 존재하지 않는다. 따 라서 본 작품은 현재 존재하는 방법 보다 더욱 효율적이고 친환경적으 로 중금속 제거를 수행할 수 있도록 하는 방법을 찾아내어 그것을 적용 한 장치를 제작하는 것이다.

## 작품 제작 과정

Penicillium 제조과정에서 생긴 부 산물을 활용한다. 가장 먼저 Penicillium을 액체 배지에서 배양 한다. 배양된 Penicillium을 거름망 으로 거르고, 기름을 이용해 페니실 린을 분리한다. 페니실린을 분리하 고 남은 Penicillium 균주를 활용하 는 것이 본 실험의 목적이며, 남은 균주를 2차적으로 세척하고 나면 필 터의 주재료가 준비되는 것이다. 페 니실린을 분리하고 남은

Penicillium 균주는 2차 세척 및 건 조 과정을 거치면 납과 카드뮴 등 의 중금속을 흡착하는 효과를 가지 는 것으로 "폐 Penicillium 균주를 이용한 중금속 흡착특성"에서 확인 되었다. 이 Penicillium 균주에 황토 와 숯과 같은 물질을 혼합하여 반죽 형태로 제작하여 필터를 제작하고, 제작한 필터를 장착한 장치를 일정 범위 내에서 이동하도록 유도하여 해수 내 중금속 농도를 감소시킨다. 해수의 흐름을 이용하기 때문에 다 량의 전력이 필요하지 않고, 위치를 확인하기 위한 GPS 장치만을 탑재 하고 있다.

### 코드(GPS)

```
#include <SoftwareSerial.h>
     #include <TinyGPS.h>
     #define RXPIN 6
     #define TXPIN 5
     #define GPSBAUD 9600
     TinyGPS gps;
     SoftwareSerial uart gps(RXPIN, TXPIN);
     void getgps(TinyGPS &gps);
12
     void setup()
       Serial.begin(9600);
       uart_gps.begin(GPSBAUD);
       Serial.println("");
       Serial.println("GPS Shield QuickStart Example Sketch v12
       Serial.println("
                              ...waiting for lock...
       Serial.println("");
     void loop()
       while(uart_gps.available())
                                       // While there is data c
           int c = uart_gps.read(); // load the data into a
           if(gps.encode(c))
                                  // if there is a new valid se
             getgps(gps);
                                  // then grab the data.
     void getgps(TinyGPS &gps)
       float latitude, longitude;
       gps.f_get_position(&latitude, &longitude);
       Serial.print("Lat/Long: ");
       Serial.print(latitude,5);
       Serial.print(", ");
       Serial.println(longitude,5);
       byte month, day, hour, minute, second, hundredths;
       gps.crack_datetime(&year,&month,&day,&hour,&minute,&secc
       Serial.print("Date: "); Serial.print(month, DEC); Serial
       Serial.print(day, DEC); Serial.print("/"); Serial.print(
       Serial.print(" Time: "); Serial.print(hour, DEC); Serial
       Serial.print(minute, DEC); Serial.print(":"); Serial.pri
       Serial.print("."); Serial.println(hundredths, DEC);
       Serial.print("Altitude (meters): "); Serial.println(gps.
       Serial.print("Course (degrees): "); Serial.println(gps.f
       Serial.print("Speed(kmph): "); Serial.println(gps.f_spee
       Serial.println();
       unsigned long chars;
       unsigned short sentences, failed_checksum;
       gps.stats(&chars, &sentences, &failed_checksum);
       delay(10000);
```

#### 3D 모델링



## 결과

| Element  | Qmax  | Langmuir<br>constant |
|----------|-------|----------------------|
| Cadmium  | 20.7  | 0.68                 |
| Chromium | 32.25 | 2.74                 |
| Copper   | 76.34 | 0.43                 |
| Lead     | 75.76 | 3.22                 |
| Zinc     | 18.94 | 1.98                 |

표를 참조하여 보면 크로뮴을 제외한 모든 금속에서 상관계수 값이 0.97 이상의 높은 신뢰도를 보여준다. Qmax를 비교해 보면 Cu > Pb > Cr > Cd > Zn 순으로 나타나 구리 와 납에 대한 흡착성이 가장 높음을 알 수 있으며 카드뮴과 아연에 대한 흡착성은 상 대적으로 낮음을 알 수 있다



본 작품에 활용된 필터는 구리와 납의 오 염 농도가 높은 해역에 적합할 것으로 생 각된다. 폐 페니실리움 균주를 활용하기 때문에 매우 적은 비용으로 제작이 가능 하고 필터만 교체한다면 반영구적으로 사용가능하다는 장점이 있다고 생각되 어 활용 전망이 매우 밝다고 생각된다.