Types of AM

- Conventional/Full AM
 - Analog broadcast radio
- DSB Suppressed-Carrier AM
 - Satellite Communications
- Single Sideband AM
 - Long distance telephone links
- Vestigial Sideband AM
 - Analog broadcast TV
- Quadrature AM
 - PC modem, wireless LAN, digital TV

See Section 3.5 on pages 88-91

Conventional AM

• Consider a sinusoidal carrier wave given by $A_c \cos(2\pi f_c t)$. Let m(t) denote the modulating signal (i.e., message). The full AM is given by

• Fourier transform of x(t):

$$X(f) = \frac{A_c}{2} [\delta(f - f_c) + \delta(f + f_c)] + \frac{k_a A_c}{2} [M(f - f_c) + M(f + f_c)]$$

Spectrum of Conventional AM

- Upper sideband and lower sideband are symmetrical.
- $f_c > W$ to ensure the sidebands do not overlap.
- Transmission bandwidth of a conventional AM is exactly twice the message bandwidth W, that is, 2W.

Envelope Detection

The simplest form of envelope detector is the diode

detector:

• In order for this diode detector to work, it is required that $\frac{1}{f_c} \ll RC \ll \frac{1}{W}$.

Expression & Spectrum of DSBSC-AM

- The DSBSC AM modulated signal x(t) is $x(t) = m(t) \cdot A_c \cos 2\pi f_c t$
- The signal spectrum is obtained as

$$X(f) = \frac{A_c}{2} [M(f - f_c) + M(f + f_c)]$$

Note: DSBSC-AM shifts the center freq. from 0 to $\pm f_c$, and doubles the BW, while maintaining the spectral shape

Coherent/Synchronous Demodulation

The job of demodulation is to recover the message m(t) from the DSBSC-AM signal x(t).

$$\cos x \cos y = \frac{1}{2} \left[\cos(x - y) + \cos(x + y) \right]$$

- 1. Input (DSBSC): $x(t) = m(t) \cdot A_c \cos 2\pi f_c t$
- 2. $v(t) = A_c' \cos(2\pi f_c t + \phi) \cdot m(t) \cdot A_c \cos 2\pi f_c t$ = $\frac{1}{2} A_c' A_c m(t) \cos \phi + \frac{1}{2} A_c' A_c m(t) \cos(4\pi f_c t + \phi)$
- 3. $v_0(t) = \frac{1}{2}A_c'A_cm(t)\cos\phi = \text{constant} \times m(t)$
- ✓ The output contains a phase error, ϕ . Output = 0 if $\phi = \pm \pi/2$. Output is max if $\phi = 0$, i.e., the local oscillator has the same frequency & phase (synchronized, coherent) as the carrier component in the AM signal.

- 1. The message signal $m(t) = 3\cos(2\pi 70t) + 4\sin(2\pi 70t)$ is input to the system shown below to generate a DSBSC-AM signal x(t). Assume that $v_0(t) = a v_1(t) + b v_1^2(t)$ where a and b are constants, and the carrier frequency $f_c >> 70$ Hz.
 - (a) Sketch the amplitude spectrum of the filter input
 - (b) Determine the center frequency and bandwidth of the filter in this modulator
 - (c) Determine the minimum value of f_c permitted for this modulator

Solution of (a)

$$v_{o}(t) = av_{i}(t) + bv_{i}^{2}(t)$$

$$= a \Big[m(t) + \cos(2\pi f_{c}t) \Big] + b \Big[m(t) + \cos(2\pi f_{c}t) \Big]^{2}$$

$$= a m(t) + b m^{2}(t) + 2b m(t) \cos(2\pi f_{c}t) + a \cos(2\pi f_{c}t) + b \cos^{2}(2\pi f_{c}t)$$

$$\underbrace{\frac{b}{2} + \frac{b}{2} \cos(4\pi f_{c}t)}$$

$$m(t) = 3\cos(2\pi 70t) + 4\sin(2\pi 70t) = 5\cos(2\pi 70t - \theta) \leftarrow \text{ from Trigo}$$

 $m^2(t) = \frac{25}{2} + \frac{25}{2}\cos(2\pi 140t - 2\theta) \text{ where } \theta = \tan^{-1}\frac{4}{3}$ Table

So, filter input = $v_o(t) - a\cos(2\pi f_c t)$ $=5a\cos(2\pi 70t-\theta)+\frac{25b}{2}+\frac{25b}{2}\cos(2\pi 140t-2\theta)$ $+(10b\cos(2\pi70t-\theta)\cos(2\pi f_c t)+\frac{b}{2}+\frac{b}{2}\cos(4\pi f_c t)$ 13*b* 25b/4 |5a/21

5b/2

b/4

 $2f_c$

freq

desired DSBSC-AM signal 傅里叶变换是对称的,所以可以只画单边频谱

 f_{c} -70 f_{c} f_{c} +70

5b/2

0 70 140

Solution of (b)

Since the message signal m(t) is a $\cos(2\pi 70t - \theta)$ signal, its DSBSC-AM signal should be the $\cos(2\pi 70t - \theta)$ $\cos(2\pi f_c t)$ term. Hence the linear filter should have center freq = f_c and bandwidth = 140Hz in order to separate it from the other unwanted signal components.

Solution of (c)

From the spectrum of part (a),

$$f_c - 70 > 140$$

$$\Rightarrow f_c > 210$$
, or $f_c > 3 \times \text{message bandwidth}$

2. A suppressed-carrier AM signal $x_1(t)$ is generated by modulating $s_1(t) = rect\left(\frac{t}{4}\right) + 2rect\left(\frac{t-4}{4}\right)$ with $\sin\left(1000\,\pi t\right)$. Sketch the time waveform of $x_1(t)$.

Solution

3. A DSBSC-AM signal is

$$x(t) = 3 \sin 180\pi t + 3 \sin 220\pi t$$

- (a) Sketch the amplitude spectrum of x(t) to deduce the carrier frequency in x(t)
- (b) Given that x(t) was generated using a sine carrier signal with phase 0, demodulate x(t).

Solution

$$x(t) = 3 \sin 180\pi t + 3 \sin 220\pi t$$

傅里叶变换是对称的,所以可以只画单边频谱 Carrier freq = centre freq of AM spectrum \Rightarrow f_c = 100Hz

To demod x(t), multiply it by $\sin(2\pi \ 100t)$ followed by LPF. From X(f), AM signal BW = 110-90 = 20Hz. LPF bandwidth = message signal BW = $\frac{1}{2} \times 20$ Hz = 10Hz.

Demodulator output

- = $[(3 \sin 180\pi t + 3 \sin 220\pi t) \sin 200\pi t]_{LPF}$
- = 3 [$\sin 180\pi t \sin 200\pi t + \sin 220\pi t \sin 200\pi t$]_{LPF}
- = 3/2 [$\cos(180-200)\pi t \cos(180+200)\pi t$ + $\cos(220-200)\pi t - \cos(220+200)\pi t$]_{LPF}
- $= 3/2 [2 \cos 20\pi t \cos 380\pi t \cos 420\pi t]_{LPF}$
- $=3\cos 20\pi t$

Since the modulation process would halve the amplitude of message signal, a filter with a gain of 2 should be added into demodulator. Then we would have de demodulator output as

 $6\cos 20\pi t$