Estrategias para mejorar funciones en la arquitectura de una red neuronal

Tomando tu modelo base (un MLP de clasificación con make moons) y pensando en situaciones en las que el primer experimento con Adam + CrossEntropy + ReLU "se queda corto", aquí van tres combinaciones sugeridas, cada una pensada para un tipo de dificultad distinta (datos escasos, complejos o desbalanceados).

© 1. Datos escasos o poco representativos

El modelo sobreajusta fácilmente, la pérdida baja rápido pero la validación no mejora.

Cambios sugeridos:

Elemento	Reemplazo	Justificación	
Optimizador	SGD +	Más estable en datasets pequeños: evita adaptarse	
	Momentum	en exceso al ruido de cada minibatch.	
Función de error	Huber Loss	Mezcla de MSE y MAE: penaliza con suavidad los	
		errores pequeños, robusta ante outliers.	
Función de	Leaky ReLU	Evita que las neuronas "mueran" cuando hay pocas	
activación		muestras informativas.	

☐ Intuición:

Es como decirle al modelo "aprende con cautela y tolerancia". Huber reduce la agresividad del castigo y el momentum le da inercia a los cambios, evitando sobreajuste.

En código (PyTorch Lightning):

```
loss = F.huber loss(logits, F.one hot(y, num classes=2).float())
optimizer = torch.optim.SGD(self.parameters(), lr=self.lr, momentum=0.9)
activation = nn.LeakyReLU()
```


2. Datos muy ruidosos o con fronteras complejas

El modelo parece no converger, la pérdida oscila, la superficie del error es irregular.

Cambios sugeridos:

Elemento	Reemplazo	Justificación		
Optimizador	RMSProp	Diseñado para gradientes inestables (RNNs, datos secuenciales o ruidosos). Adapta el paso a cada dimensión.		
Función de error	Log-Cosh Loss	Suaviza los gradientes, evita explosiones de error por valores atípicos.		
Función de activación	ELU (Exponential Linear Unit)	Introduce suavidad en el rango negativo y mejora la estabilidad de la retropropagación.		

☐ Intuición:

Como un pintor que cambia de pincel para suavizar trazos bruscos. El modelo "fluye" mejor por la superficie del error.

En código:

```
loss = torch.mean(torch.log(torch.cosh(logits - F.one hot(y,
num classes=2).float())))
optimizer = torch.optim.RMSprop(self.parameters(), lr=self.lr)
activation = nn.ELU()
```


3. Datos desbalanceados o clases raras

El modelo ignora clases minoritarias; el accuracy parece alto pero el recall de una clase es bajo.

Cambios sugeridos:

Elemento	Reemplazo	Justificación
Optimizador	Nesterov Accelerated Gradient (NAG)	Permite anticipar la dirección del gradiente, mejora la convergencia en problemas difíciles.
Función de error	Focal Loss	Pondera más los errores de clases raras y atenúa los de clases frecuentes.
Función de activación	Swish	Función suave y autoajustada, ayuda a modelar relaciones no lineales en datos desbalanceados.

☐ Intuición:

El modelo se vuelve más "atento" a los ejemplos difíciles. Focal Loss concentra el esfuerzo donde el modelo aún falla.

En código:

```
def focal_loss(logits, targets, alpha=0.25, gamma=2.0):
    ce_loss = F.cross_entropy(logits, targets, reduction="none")
    pt = torch.exp(-ce_loss)
    return (alpha * (1 - pt) ** gamma * ce_loss).mean()

optimizer = torch.optim.SGD(self.parameters(), lr=self.lr, momentum=0.9,
    nesterov=True)
activation = lambda: nn.SiLU() # Swish = SiLU en PyTorch
```

Resumen comparativo

Contexto	Optimizador	Función	Activación	Efecto esperado
problemático	sugerido	de error		
Datos escasos o	SGD +	Huber	Leaky	Estabiliza, evita
inestables	Momentum		ReLU	sobreajuste
Datos ruidosos o	RMSProp	Log-Cosh	ELU	Suaviza gradientes,
muy complejos				mejora
				convergencia
Datos	NAG	Focal Loss	Swish	Focaliza aprendizaje
desbalanceados			(SiLU)	en clases raras

Si quieres, puedo integrarte estas tres variantes directamente en el modelo base Lightning, de modo que los estudiantes puedan ejecutarlas con un parámetro config="escaso", "ruidoso", o "desbalanceado" y ver en W&B cómo cambia el comportamiento.

¿Quieres que te lo deje implementado así?