3. táblás gyakorlat – visszavezetés

Számoljuk meg, hány páros szám van egy tömbben...

- A) ... összegzéssel
- B) ... számlálással

A)

$$A = (t : \mathbb{Z}^n, c : \mathbb{N})$$

$$ef = (t = t')$$

$$uf = \left(ef \land c = \sum_{i=1}^n f(t, i)\right),$$

ahol:

$$f: \mathbb{Z}^n \times \mathbb{N} \to \mathbb{N}$$
, és
$$\forall i \in [1..n]: f(t,i) = \begin{cases} 1, & ha\ 2|t[i] \\ 0, & k\"{u}l\ddot{o}nben \end{cases}$$

Mivel ha összegzésre akarjuk visszavezetni, akkor nem használhatunk feltételes összegzést, ezért voltunk kénytelenek egy esetszétválasztásos függvényt használni.

Egyébként használhattuk volna a χ függvényt is:

$$uf_2 = \left(ef \wedge c = \sum_{i=1}^n \chi(2|t[i])\right)$$

Visszavezetés (összegzés):

$$\begin{array}{cccc} H & \sim & \mathbb{N} \\ [m..n] & \sim & [1..n] \\ f(i) & \sim & f(t,i) \\ \mathbb{S} & \sim & C \end{array}$$

Struktogram:

$$c:=0$$

$$i=1..n$$

$$c:=c+f(t,i)$$

$$i: \mathbb{N}$$

A ciklusmagban egy nem megengedett kifejezés áll, mert annak egy részét (f-et) nem írtuk meg. Magát azt, hogy c:=c+f(t,i) nem tudjuk átírni, de ha kiemeljük egy változóba a nem megengedett részt (ezt hívjuk úgy, hogy *függvény helyettesítése változóval-transzformáció*), akkor egy fokkal könnyebb dolgunk lesz, hiszen nem egy nem megengedett kifejezésünk lesz egy értékadáson belül, hanem lesz egy nem megengedett értékadásunk, majd egy már teljesen jó másik értékadásunk.

c := 0	
i = 1n	<i>i</i> : N
sv = f(t, i)	sv: №
c := c + sv	ez n

ez már oké, hiszen sv is meg c is egyszerű szám

A nem megengedett értékadástól pedig mivel f egy esetszétválasztással definiált függvény, már könnyen meg tudunk szabadulni.

c:= 0				
i = 1n				
	2 t[i]			
	$sv \coloneqq 1$	$sv \coloneqq 0$	sv:ℕ	
	c := c + sv			

De ha eleve a c = c + f(t, i) értékadásba képzeljük bele a fenti transzformációt és így egy lépést kihagyunk, az is helyes megoldás:

c:= 0				
i = 1n				
2 t[i]				
	c := c + 1	$c \coloneqq c + 0$		

 $i:\mathbb{N}$

(else ág: vagy SKIP)

Hasonló módszerrel minden számlálásos feladatot meg lehet oldani összegzéssel. Az összegzés általánosabb tétel.

Persze nyilván az ilyen feladatokat számlálással fogjuk többnyire megoldani:

B)

$$A = (t : \mathbb{Z}^n, c : \mathbb{N})$$

$$ef = (t = t')$$

$$uf = \left(ef \land c = \sum_{\substack{i=1\\2|t[i]}}^{n} 1\right)$$

Visszavezetés (számlálás):

$$[m..n] \sim [1..n]$$

$$\beta(i) \sim 2|t[i]$$

Struktogram:

<i>c</i> := 0			
i = 1n			
	2 t[i]		
	c := c + 1	SKIP	

Egyébként ha a fenti χ függvényes összegzést vezettük volna vissza, akkor centire ugyanezt a struktogramot kaptuk volna... mint ahogy a bonyolultabb f függvényes esetben is... a megfelelő transzformációk elvégzése után.