

Assessing the Performance of a Deep Learning Model Used on High Resolution Endomicroscopic Images for the Detection of Cervical Precancer

Matthew Thomas¹, Karthik Goli², Yajur Maker², Ruchika Mitbander², Richard Schwarz², Jenny Carns², Rebecca Richards-Kortum²

¹Cockrell School of Engineering, University of Texas at Austin, Austin, TX ²Department of Bioengineering, Rice University, Houston TX

Cervical Cancer Around the World

Fewer than 5% of women in lowand middle-income countries are ever screened for cervical cancer

Barriers to screening include lack of trained clinicians and the need for expensive devices

Clinical Data

Study 1: Hospital Geral de Mavalane, Maputo, Mozambique

20 patients

42 biopsies Study 2: Hospital Central de Maputo, Maputo, Mozambique

11 patients

biopsies

<u>Purpose</u>

I aim to determine the accuracy of a multitask neural network used on HRME images captured by a multimodal colposcope to detect cases of cervical intraepithelial neoplasia (CIN) 2+ among women in two different low-resource clinical sites

Multi-Modal Colposcope

Pocket Colposcope Frame

HRME Frame

Methods

Conduct manual widefield translations to identify biopsy-correlated frames

Run HRME model to generate probabilities

Use biopsy summary videos to conduct manual quality control

Calculate the maximum of the moving average (MoMA) of probabilities per biopsy site

Model Results

Model Issues

Pathology	Number of Biopsies (% of Total Biopsies)	False Positives (% of Pathology Count)
Condyloma, Condyloma/CIN 1	17 (27.0%)	8 (41.1%)
Cervicitis	6 (9.5%)	6 (100%)
No significant diagnoses/changes	3 (4.8%)	1 (33.3%)

Conclusion and Future Outlook

- The multi-task model performed consistent across two different sites, achieving sensitivities comparable to the clinician and outperforming specificity at both
- The HRME seems to have trouble obtaining quality nuclei images on condyloma cases that are heavily keratinized and larger in size
- The model appears to perform less accurately on milder and/or flat condyloma cases, where nuclei are still somewhat visible though with significant debris
- Given the large prevalence of condyloma in this patient population, the model may need to be tuned to improve diagnosis on these images

<u>Acknowledgements</u>

I would like to thank everyone at the RRK Lab for their support and mentorship this summer.

References

Brenes, D., Salcedo, M. P., Coole, J. B., Maker, Y., Kortum, A., Schwarz, R. A., Carns, J., Vohra, I. S., Possati-Resende, J. C., Antoniazzi, M., Fonseca, B. O., Souza, K. C. B., Santana, I. V. V., Barbin, F. F., Kreitchmann, R., Ramanujam, N., Schmeler, K. M., & Richards-Kortum, R. (2024). Multiscale Optical Imaging Fusion for Cervical Precancer Diagnosis: Integrating Widefield Colposcopy and High-Resolution Endomicroscopy. *IEEE transactions on bio-medical engineering*, *PP*, 10.1109/TBME.2024.3379898. Advance online publication. https://doi.org/10.1109/TBME.2024.3379898