МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Сети и телекоммуникации» Тема: Настройка таблиц маршрутизации Вариант 12(26)

Студентка гр. 1304	Чернякова В.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2023

Цель работы.

Изучение методов статической маршрутизации в IP-сетях; овладение управлением таблицами маршрутизации на узлах сетевого уровня.

Задание.

- 1. Для всех узлов сети установить IP-адреса, маски подсетей и шлюзы по умолчанию, чтобы добиться успешного выполнения Echo-запроса ближайших соседей (находящихся в одной подсети).
- 2. Настроить таблицы маршрутизации на маршрутизаторах, чтобы добиться доставки пакетов от узла K1 к узлу K2 и обратно, от узла K2 к K3 и обратно, от узла K3 к K1 и обратно. Пакеты должны доходить до узлов кратчайшим путем.
- 3. Настроить таблицы маршрутизации на узлах K1, K2 и K3, чтобы обеспечить кратчайшую доставку пакетов между этими узлами, если это невозможно было обеспечить в п. 2.

В отчете привести конфигурацию TCP/IP для каждого из узлов, таблицы маршрутизации, результаты Echo-запросов между узлами K1, K2 и K3, а также обоснование правильности и оптимальности выбранных маршрутов.

Вариант 12. Файл со схемой сети: lab2_var12.jfst. Все маршрутизаторы и компьютеры имеют адреса из диапазона 200.0.1.1 - 200.0.254.254. Обозначения в задании: K1 - PC1, K2 - PC2, K3 - PC3.

Выполнение работы.

1. Разделим сеть на подсети следующим образом:

2. Зададим IP-адреса, маски подсети и шлюзы по умолчанию для всех узлов подсети.

Name	Interface	IP address	Subnet mask	Default gateway	Link name
pc1	eth0	200.0.2.1	255.255.255.0	200.0.2.2	pc1-TO-R1
pc2	eth0	200.0.8.1	255.255.255.0	200.0.8.2	R6-TO-pc2
pc3	eth0	200.0.4.1	255.255.255.0	200.0.4.3	Н1-ТО-рс3
R1	eth0	200.0.2.2	255.255.255.0	1200.0.3.2	pc1-TO-R1
	eth1	200.0.3.1	255.255.255.0		R1-TO-R2
R2	eth0	200.0.3.2	255.255.255.0	200.0.3.1	R1-TO-R2
	eth1	200.0.4.2	255.255.255.0		R2-TO-H1
R3	eth0	200.0.4.3	255.255.255.0	200.0.5.2	H1-TO-R3
	eth1	200.0.5.1	255.255.255.0	200.0.3.2	R3-TO-R4
R4	eth0	200.0.5.2	255.255.255.0	1200.0.6.2	R3-TO-R4
	eth1	200.0.6.1	255.255.255.0		R4-TO-R5

R5	eth0	200.0.6.2	255.255.255.0	200.0.7.2	R4-TO-R5
	eth1	200.0.7.1	255.255.255.0		R5-TO-R6
R6	eth0	200.0.7.2	255.255.255.0	200.0.7.1	R5-TO-R6
	eth1	200.0.8.2	255.255.255.0		R6-TO-pc2

При таких настройках запросы доходят следующим образом:

- Oт pc1 до pc3;
- От pc3 до pc2.
- 3. Настроим таблицу маршрутизации для корректной доставки пакетов между каждым из узлов.
 - Корректная доставка от рс1 до рс2:

Настраиваем R2 так, чтобы любой попавший на него пакет и имеющий в качестве подсети назначения 200.0.8.0/255.255.255.0 будет направлен на маршрутизатор R3 200.0.4.3.

• Корректная доставка от рс3 до рс1:

Настраиваем рс3 так, чтобы любой попавший на него пакет и имеющий в качестве подсети назначения 200.0.2.0/255.255.255.0 будет направлен на маршрутизатор R2 200.0.4.2.

• Корректная доставка от рс2 до рс1:

Настраиваем R5, R4, R3 так, чтобы любой попавший на них пакет и имеющий в качестве подсети назначения 200.0.2.0/255.255.255.0 будет направлен на следующие маршрутизаторы соответственно R4 200.0.6.1, R3 200.0.5.1, R2 200.0.4.2.

• Корректная доставка от рс2 до рс3:

Настраиваем R5, R4 так, чтобы любой попавший на них пакет и имеющий в качестве подсети назначения 200.0.4.0/255.255.255.0 будет направлен на следующие маршрутизаторы соответственно R4 200.0.6.1, R3 200.0.5.1.

Далее представлены таблицы маршрутизации после настройки.

R2:

Route table

Codes: C - connected, S - static, R - RIP, B - BGP, O - OSPF, * - candidate default S* default/0.0.0.0[0] via 200.0.3.1 (eth0) S 200.0.8.0/255.255.255.0[0] via 200.0.4.3 (eth1) C 200.0.4.2/255.255.255.0 is directly connected, eth1 C 200.0.3.2/255.255.255.0 is directly connected, eth0

pc3:

Route table

Codes: C - connected, S - static, R - RIP, B - BGP, O - OSPF, * - candidate default S* default/0.0.0.0[0] via 200.0.4.3 (eth0) S 200.0.2.0/255.255.255.0[0] via 200.0.4.2 (eth0) C 200.0.4.1/255.255.255.0 is directly connected, eth0

R3:

Route table

Codes: C - connected, S - static, R - RIP, B - BGP, O - OSPF, * - candidate default S* default/0.0.0.0[0] via 200.0.5.2 (eth0) S 200.0.2.0/255.255.255.0[0] via 200.0.3.2 (eth0) C 200.0.5.1/255.255.255.0 is directly connected, eth1 C 200.0.4.3/255.255.255.0 is directly connected, eth0

R4:

Route table

Codes: C - connected, S - static, R - RIP, B - BGP, O - OSPF, * - candidate default S 200.0.4.0/255.255.255.0[0] via 200.0.5.1 (eth0) S* default/0.0.0.0[0] via 200.0.6.2 (eth0) S 200.0.2.0/255.255.255.0[0] via 200.0.5.1 (eth0) C 200.0.6.1/255.255.255.0 is directly connected, eth1 C 200.0.5.2/255.255.255.0 is directly connected, eth0

R5:

Route table

Codes: C - connected, S - static, R - RIP, B - BGP, O - OSPF, * - candidate default S 200.0.4.0/255.255.255.0[0] via 200.0.6.1 (eth0) S* default/0.0.0.0[0] via 200.0.7.2 (eth0) S 200.0.2.0/255.255.255.0[0] via 200.0.6.1 (eth0) C 200.0.7.1/255.255.255.0 is directly connected, eth1 C 200.0.6.2/255.255.255.0 is directly connected, eth0

4. Проверим корректность Есһо-запросов.

$$pc1(200.0.2.1) \rightarrow pc3(200.0.4.1)$$

20:26:35-325 pc1 20:26:35-325 pc1	ICMP_packet ICMP_packet	Network Network	ProtocolStack received packet from local Interface. Confirmed Packet is for this Network Layer Device.			
20:26:35-325 pc1	Echo Reply Packet	Network	Echo reply packet received from 200.0.4.1			
$pc1(200.0.2.1) \rightarrow pc2(200.0.8.1)$						
20:28:48-860 pc1	ICMP_packet	Network	ProtocolStack received packet from local Interface.			
20:28:48-860 pc1 20:28:48-860 pc1	ICMP_packet Echo Reply Packet	Network Network	Confirmed Packet is for this Network Layer Device. Echo reply packet received from 200.0.8.1			
pc2(200.0.8.1) -> pc1(200.0.2.1)						
20:29:28-790 pc2	ICMP_packet	Network	ProtocolStack received packet from local Interface.			
20:29:28-790 pc2 20:29:28-790 pc2	ICMP_packet Echo Reply Packet	Network Network	Confirmed Packet is for this Network Layer Device. Echo reply packet received from 200.0.2.1			
$pc2(200.0.8.1) \rightarrow pc3(200.0.4.1)$						
20:29:54-852 pc2	ICMP_packet	Network	ProtocolStack received packet from local Interface.			
20:29:54-852 pc2 20:29:54-852 pc2	ICMP_packet Echo Reply Packet	Network Network	Confirmed Packet is for this Network Layer Device. Echo reply packet received from 200.0.4.1			
pc3(200.0.4.1) -> pc1(200.0.2.1)						
20:30:37-781 pc3	ICMP_packet	Network	ProtocolStack received packet from local Interface.			
20:30:37-781 pc3 20:30:37-781 pc3	ICMP_packet Echo Reply Packet	Network Network	Confirmed Packet is for this Network Layer Device. Echo reply packet received from 200.0.2.1			
$pc3(200.0.4.1) \rightarrow pc2(200.0.8.1)$						
20:31:04-408 pc3	ICMP_packet	Network	ProtocolStack received packet from local Interface.			
20:31:04-408 pc3 20:31:04-408 pc3	ICMP_packet Echo Reply Packet	Network Network	Confirmed Packet is for this Network Layer Device. Echo reply packet received from 200.0.8.1			

Выбранные пути будут являться оптимальными, так как они единствены. Во всех случаях пакет успешно доходит до пункта назначения и обратно, значит, все таблицы маршрутизации настроены верно.

Выводы.

В ходе лабораторной работы были изучены методы статической маршрутизации в IP-сетях и способ управления таблицами маршрутизации на узлах сетевого уровня.