

-2023上粉笔教资-

《信息技术》

数据库技术 1/3

▶讲师:孙珍珍

※ 复习一下

Fb 粉筆教师

ł库技术·······208	第五章
库基础208	第一节
模型213	第二节
数据库217	第三节
ess 数据库 ···································	第四节
基础246	第五节
数据库的设计259	第六节

【高中】-近八次考试专业知识-节占比

【初中】-近8次考试专业知识-节占比

Fb 粉筆 教师

0000

第一节 数据库基础

概念	定义
1.数据 (DATA)	是对客观事物的描述或逻辑归纳。
2.数据库 (DB)	是长期存储在计算机内、有组织的、可共享的相关数据的集合
4.数据库系统 (DBS)	是指在计算机系统中引入数据库后的系统
3.数据库管理系统 (DBMS)	常见的有SQL Server、Oracle、MySQL、Access 等

数据库是存放数据的仓库,数据库系统是指在计算机系统中安装了数据库后的系统,数据库管理系统是位于用户与操作系统之间的一层数据管理软件,上述三者之间的关系是()。

- A.DBMS包含DB和DBS
- B.三者之间是相互对等的关系
- C.三者之间无任何关系
- D.DBS包含DB和DBMS

(一)人工管理阶段

王一	李二	张三	赵四
80	70	90	88

求四个人的和

求四个人的平均值

(二)文件系统阶段

王一	李二	张三	赵四
80	70	90	88

王一	李二	张三
80	70	90

二、数据库技术的发展

P211

DBMS

映射

映射

]映射

应用程序 2

•

应用程序n

求前2个人的和

逻辑文件	n

逻辑文件2

王一	李二
80	70

王一	李二	李二 张三	
80	70	90	88

数据库

二、数据库技术的发展

总结下

	数据管理	数据保存性	共享性/冗余性	独立性
人工管理阶段	人	不保存	不共享、冗余大	无独立性
文件系统阶段	文件系统	长期保存	共享差、冗余大	独立性低
数据库管理阶段	DBMS	结构化保存	共享高、冗余小	独立性高

(2020下·初中)Windows系统中的文件管理方式如图所示,请说出该管理方式的名称并简要说明优点。

```
a:\
一初中
|-高中
|-高一年级
 |-1 班
   通知. docx
   主题班会.pptx
  -语文学科资料
   -数学学科资料
   第一学期(期中)xlsx
  | 第一学期(期末)xlsx
   -英语学科资料
   |-信息技术学科资料
   1-背景图片
    IMG 0810. jpg
    -sample music
 -1 班
   第一
   第二
```

【参考答案】

- (1)该管理方式为文件系统管理方式。
- (2)该管理方式的优点有:
 - ①由文件系统管理数据。
 - ②数据可长期保存。
 - ③有一定的共享性。
 - ④有一定的独立性。

三、数据库系统的结构

P211

姓名	学号	班级
张三	FB001	一班
李四	FB002	二班
王五	FB003	一班

			`
姓名	班级	语文	数学
张三	一班	67	90
王五	一班	76	85

姓名	学号	班级	语文	数学
张三	FB001	一班	67	90
李四	FB002	二班	89	95
王五	FB003	一班	76	85

张三	•••••	李四	• • • • •	王五	•••••

三、数据库系统的结构

(一)数据库系统的三级结构

	个数	别名	关键字
外模式	多个	用户模式/子模式	用户、程序、视图
模式	1个	概念模式/概念视图	概念、公共视图、全局视图
内模式	1个	物理模式/存储模式	物理、存储

(二)数据库系统的二级映像

1.外模式/模式映像:保证逻辑独立性

2.模式/内模式映像:保证物理独立性

- 1.最终用户使用的数据视图称为()。
- A.内模式

B.外模式

C.概念模式

D.存储模式

- 2.数据库的三级模式结构之间存在着两级映像,使得数据库系统具有较高的()
- A.事务并发性

B.数据可靠性

C.数据独立性

D.数据重用性

(2021下·初中)通常实现DBMS对数据库的安全保护功能是()。

- A.完整性控制、并发控制、模式识别、故障恢复
- B.并发控制、安全性控制、故障恢复、模式识别
- C.安全性控制、完整性控制、备份与恢复、模式识别
- D.完整性控制、安全性控制、并发控制、备份与恢复

(2018下·初中)简述数据库管理系统(DBMS)必须提供的主要数据控制功能。

1.数据定义

▶ DBMS提供数据定义语言(DDL),定义数据库的结构、完整性约束和用户的权限等。

2.数据操纵

➤ DBMS提供数据操纵语言(DML),可实现对数据的插入、删除、修改和查询等操作。

3.数据控制(保护)

主要包括数据的安全性控制、数据的完整性控制、数据的并发控制、数据的备份与恢复控制。

4.数据维护

▶主要包括数据库出现故障后的恢复、数据库的重组、性能的监视等。由使用程序来完成。

Fb 粉筆教师

0000

第二节 数据模型

P213

信息世界

计算机世界

概念模型

逻辑模型

物理模型

每个班级要有班级 编号、学院、系别 和人数等特征。

每个学生都有学号、 姓名、性别、系别。

一个班级里可以有 很多个学生,每个 学生只能在一个班 级中。

班级编号	学院	系别	人数

学号	姓名	性别	系别	班级编号

一、概念模型

(一)相关术语

术语	说明	实例
实体	客观存在并可以相互区分的事物	学生、 教师、 班级等
属性	实体所具有的特征	学号、身份证号、年龄、性别等
实体型	同类实体,由实体名和属性名来描述	学生(学号、身份证号、年龄、性别)
实体集	同一类型的实体的集合	全体学生、全体教师等
码(键、关键字)	唯一标识实体的某一属性或属性集	学号、身份证号
域	某一属性的取值范围	性别的取值范围为{男,女}
联系	实体和实体之间的现实关联	教师和学生是教与被教的关系

P214

1.一对一联系(1:1)

- ▶两个方向都是1:1
- ▶例:班级和班主任

2.一对多联系 (1:n)

▶一个方向是1:1,另一个方向是1:n

(二)实体型之间的联系

▶例:学生和班主任

3.多对多联系(m:n)

- ▶两个方向都是1:n
- ▶例:学生和课程

(2018上·高中)下列选项中,实体集之间的联系是"一对一"的是()。

A. 班级和学生

B. 顾客和商品

C. 学生和课程

D. 居民和身份证

◆E-R图提供了表示实体、属性和联系的方法

例①:班级和班主任 例②:学生和班主任 例③:学生和课程

- ◆图素
 - ▶矩形表示实体
 - ▶椭圆表示属性
 - ▶菱形表示联系
 - ▶无向边+联系类型

(2020下·高中)在E-R图中,用来表示实体的图形是()。

A.菱形

B.矩形

C.椭圆形

D.三角形

(2016上·初中)下列选项中,符合学生选课实际情况的E-R图是()。

二、逻辑模型

(一)层次模型

1.结构

2.特点

- (1)一个模型有且只有一个节点没有双亲节点,这个节点称为根节点
- (2)根节点以外的其他节点有且只有一个双亲节点
- (3)父子节点之间的联系是一对多联系(1:n)

二、逻辑模型

(二)网状模型

1.结构

➤网型结构

2.特点

- (1)允许一个以上的节点没有双亲节点
- (2)允许一个节点有多个双亲节点
- (3)节点之间存在多种联系(m:n)

(三)关系模型

▶结构:二维表

▶联系:一对一、一对多、多对多

SNo (学号)	SN (姓名)	Sex (性别)	Dept (系别)	Age (年龄)
11001	冯明	男	计算机	18
11002	陈月	女	通信	19
12001	褚共	男	计算机	18
12002	卫潮	男	自动化	20
12003	蒋生	女	通信	20

SNo	CNo	Grade	
(学号)	(课程编 号)	(成绩)	
11001	C0201	85	
11001	C0204	80	
11002	C0302	65	
12001	C0201	70	
12001	D0101	76	
12002	C0203	80	
12003	C0201	85	
12003	D0101	95	

(2019下·高中)某专业每位导师指导三名硕士研究生,不同导师所带同一性别研究生可以住在同一个宿舍,数据模型如图所示,该数据模型属于()。

- A.网状模型
- B.层次模型
- C.关系模型
- D.面向对象模型

Fb 粉筆 教师

第三节 关系数据库

一、关系模型

P217

(一)基本概念

1.关系:二维表

2.属性:列、字段;元数

3.域:值域

4.元组:行、记录

5.分量:属性值

教师表 T

TNo (教师号)	TN (姓名)	Sex (性别)	Prof (职称)	Dept (系别)	Sal (工资)
01001	赵乾	女	讲师	计算机	6000
01002	钱坤	男	讲师	自动化	6000
01003	孙震	女	副教授	自动化	7000
02011	李离	女	教授	通信	8000
02013	周巽	男	教授	计算机	8000

✓如,(01001,赵乾,女,讲师,计算机,6000)中"01001"为一个分量

6.关系模式:二维表结构

✓如, T (TNo, TN, Sex, Prof, Dept, Sal)

- (1)每一列是同质的
- (2)不同列有不同的名字
- (3)列的顺序可以任意交换
- (4)行的顺序可任意交换
- (5)不允许出现完全一样的行
- (6)不允许出现合并单元格

教师表 T

TNo (教师号)	TN (姓名)	Sex (性别)	Prof (职称)	Dept (系别)	Sal (工资)
01001	赵乾	女	讲师	计算机	6000
01002	钱坤	男	讲师	自动化	6000
01003	孙震	女	副教授	自动化	7000
02011	李离	女	教授	通信	8000
02013	周巽	男	教授	计算机	8000

1.一对一联系的转换

▶规则:选择一个合适的实体,在其中加入另一实体的码。

(三) E-R图和关系模式的转换

【例】学生和身份证。

关系模式转换步骤:

①分别写出每个实体对应的关系模式:

学生(学号,姓名,性别,系别)

身份证(身份证号,签发机关,有效时间)

②任意选择其中一个实体,加入另一实体的码

学生(学号,姓名,性别,系别,))

③得出最终答案【不唯一】

学生(学号,姓名,性别,系别,身份证号)

身份证(身份证号,签发机关,有效时间)

Fb粉笔

(三)ER图和关系模式的转换

2.一对多联系的转换

▶规则:在"多"的那端实体中加入"一"的那端实体的码。

【例】班级和学生。

关系模式转换步骤:

①分别写出每个实体对应的关系模式

班级(班级编号,学院,系别,人数)

学生(学号,姓名,性别,系别)

②在多的那端实体中加入一端实体的码

学生(学号,姓名,性别,系别,)

③得出最终答案

班级(班级编号,学院,系别,人数)

学生(学号,姓名,性别,系别,班级编号)

(三)ER图和关系模式的转换

3.多对多联系的转换

▶规则:联系也需要转换,码为两个实体的码的组成

【例】学生和课程。

关系模式转换步骤:

①分别写出每个实体对应的关系模式

学生(学号,姓名,性别,系别)

课程(课程编号,课程名称,学分)

②增加联系的关系模式,同时加上两个实体的码

选课(_____, 成绩)

③得出最终答案

学生(学号,姓名,性别,系别)

课程(课程编号,课程名称,学分)

选课(学号,课程编号,成绩)

(2017上·初中)将如图所示的E-R图中的"学生"实体转换成二维表,下列选项正确的是

A. 姓名 学号 院系

B. 学生 选修 课程

C. 学生 姓名 学号 院系

D. 学号 姓名 学生 选修

(2022上·高中)某公司的业务规则为:(1)每个职工的属性有职工号,姓名,职位和小时工资;(2)每位职工有一个职位,且多名职工可能有相同的职位;(3)工程的属性有工程号和工程名称;(4)每位职工可以参加几个不同的工程,且每个工程有多名职工参与;(5)职位决定小时工资,按职工在每个工程中完成的工时计算酬金。该业务ER模型如图所示,若将其转换成关系模式集正确的是()。

A.工程(<u>工程号</u>,工程名称)

职工(职工号,姓名,小时工资)

酬金(工程号,职位,<u>职工号</u>,工时)

B.工程(<u>工程号</u>,工程名称)

职工(职工号,姓名,工程号)

酬金(职工号,职位,小时工资,工时)

C.工程(<u>工程号</u>,工程名称)

职工(职工号,姓名,小时工资,工程号)

酬金(<u>职工号</u>,职位,工时)

D.工程(<u>工程号</u>,工程名称)

职工(职工号,姓名,职位,小时工资)

酬金(<u>工程号,职工号</u>,工时)

https://www.fenbi.com

ら粉筆

二、关系模型的完整性约束

◆有3类:实体完整性、参照完整性、用户定义完整性

(一)关系的码

键码	定义
候选码	唯一确定一个元组的属性或属性集
主属性	包含在候选码中的属性
非码属性	不包含在任何候选码中的属性
主码	若有多个候选码,选定其中一个即为主码(主键、主关系键、关系键、关键字)
外码	若属性X是关系R1的主码,同时又在另一个关系R2,则称X是R2的外码(外键)

学生(学号,身份证号,姓名,班级编号)

班级(班级编号,学院,系别,人数)

选课(学号,课程编号,成绩)

二、关系模型的完整性约束

(二)实体完整性

➤原则:①有主码(<u>不空</u>)②不同元组的主码<u>不重复</u>

【例】在选课(学号,课程编号,成绩)中,主码为(学号,课程编号),则"学号"与"课程编号"两个属性值都不能为空。

选课表 SC

SNo (学号)	CNo (课程编号)	Grade(成绩)
11001	C0201	85
11001	C0204	80
11002	C0302	65
12001	C0201	70
12001	D0101	76

二、关系模型的完整性约束

(三)参照完整性

▶ 原则: R2表的外键X的取值,参照R1表的主键值

【例】已知学生与班级的关系如下:

学生(学号,身份证号,姓名,班级编号)

班级(班级编号,学院,系别,人数)

则学生关系中的"班级编号"只能取班级关系中"班级编号"中已经存在的值。

(四)用户自定义完整性

▶原则:事先定义值域

【例】规定选课关系中"成绩"属性的取值范围为0~100之间的整数等。

1.主关键字是关系模型中的重要概念。当一张二维表(A表)的主关键字被包含到另一张二维表(B表)中时,它就称为B表的()。

A.主关键字

B.候选关键字

C.外部关键字

D.候选码

2.设属性A是关系R的主属性,则属性A不能取空值(NULL),这是满足()规则。

A.实体完整性

B.参照完整性

C.用户自定义完整性

D.域完整性

(一)传统的集合运算

1.并

	R			S	
A	В	C	A	В	C
a_1	b_1	<i>c</i> ₁ -	- a ₁	b_1	$c_{\scriptscriptstyle 1}$
a_1	b_1	c_2	a_2	b_2	$c_{\scriptscriptstyle 1}$
a_2	b_2	c_1	a_2	b_3	c_2

$R \cup S$				
A	В	C		
a_1	b_1	c_1		
a_1	b_1	c_2		
a_2	b_2	c_1		
a_2	b_3	c_2		

①符号: U

②两个关系的列:一模一样

③结果:R行+S行-RS重复

④可交换: RUS = SUR

2.差

	R			S	
A	В	C	A	В	C
a_1	b_1	<i>c</i> ₁ -	- a ₁	b_1	c_1
a_1	b_1	C_2	a_2	b_2	c_1
a_2	b_2	c_1	a_2	b_3	c_2

<i>R</i> – <i>S</i>					
A	В	C			
a_1	b_1	c_2			

①符号: -

②两个关系的列:一模一样

③结果: R行 - RS重复

④不可交换: R-S≠S-R

3.交

	R			S	
A	В	C	A	В	C
a_1	b_1	<i>c</i> ₁ _	_ a ₁	b_1	c_1
a_1	b_1	c_2	a_2	b_2	\mathcal{C}_1
a_2	b_2	c_1	a_2	b_3	c_2

$R \cap S$				
A	В	C		
a_1	b_1	c_1		
a_2	b_2	c_1		

①符号:∩

②两个关系的列:一模一样

③结果:RS重复

④可交换: R∩S = S∩R

(2017下·高中)如图所示,由关系R和S得到关系T的操作是()。

A.并

B.交

C.投影

D.选择

R

Α	В	С
а	1	2
b	2	3
С	3	1

S

А	В	С
Z	5	3
С	3	1

T

А	В	С
а	1	2
b	2	3
С	3	1
Z	5	3

(2021下·初中)设有两个关系R和S,分别包含15个和10个元素,则在R∩S、RUS、R-S运算中不可能出现的元组数目是()。

A.0、25、15

B.4、21、11

C.7、17、8

D.10、15、5

(2022下·初高中)设关系R和S具有相同的属性个数且相对应属性的值取自同一个域,

则:R-(R-S)等价于()。

A.RUS

B.R∩S

C.R×S

D.R - S

4.广义笛卡尔积

S

	R	
A	В	C
a_1	b_1	c_1
a_1	b_1	c_2

A	В	С	D					
a_1	b_1	$c_{\scriptscriptstyle 1}$	d_1					
a_2	b_2	c_1	d_3					
a_2	b_3	c_2	d_4					

			$R \times S$			
R.A	R.B	R.C	S.A	S.B	S.C	D
a_1	b_1	c_1	a_1	b_1	c_1	d_1
a_1	b_1	c_1	a_2	b_2	c_1	d_3
a_1	b_1	c_1	a_2	b_3	c_2	d_4
a_1	b_1	c_2	a_1	b_1	c_1	d_1
a_1	b_1	c_2	a_2	b_2	c_1	d_3
a_1	b_1	c_2	a_2	b_3	c_2	d_4

(2022上·高中)已知R={a1,a2,a3}, S={1,2}, T=R×S。那T关系中的元组数为 ()。

- A. 2
- B. 3
- C. 5
- D. 6

关系数据库

交

可借助数学上的集合进行理解

有疑问没?等你吖

第三节	关系数据库······P226 ~ P251	21′
第四节	Access 数据库······	230
第五节	SOL 基础······	240

Fb 粉笔 數师

