§ 4. Исследование функций и построение графиков

1. Возрастание и убывание функции. Экстремум. Функция y = f(x)называется возрастающей (убывающей) в интервале (a, b), если из неравенства $x_1 < x_2$, где x_1 , $x_2 \in (a, b)$ следует неравенство $f(x_1) < f(x_2)$ (соответственно $f(x_1) > f(x_2)$).

Если функция f(x) дифференцируема на интервале (a, b) и f'(x) > 0 при всех $x \in (a, b)$, то функция f(x) возрастает на (a, b); если же f'(x) < 0 при всех $x \in (a, b)$, то f(x) убывает на этом ин-

тервале.

В простейших случаях область определения функции y=f(x) можно разбить на конечное число интервалов монотонности. Каждый из интервалов монотонности ограничен критическими точками, в ко-

торых f'(x) = 0 или f'(x) не существует.

Если существует такая окрестность $U_{\delta}(x_0)$ точки x_0 , что для всякой точки $x \neq x_0$ этой окрестности выполняется неравенство f(x) > $> f(x_0)$ (или $f(x) < f(x_0)$), то точка x_0 называется точкой минимума (максимума) функции y = f(x), а число $f(x_0)$ — минимумом (максимумом) этой функции. Точки минимума и максимума функции называются ее точками экстремума.

Необходимое условие экстремума. Если x_0 —точка экстремума функции f(x), то $f'(x_0)=0$ или $f'(x_0)$ не существует, т. е. хо - критическая точка этой функции.

Обратное, вообще говоря, неверно.

Достаточные условия экстремума непрерывной функции. 1) Пусть функция f(x) дифференцируема в некоторой окрестности $(x_0-\delta,x_0+\delta)$ критической точки x_0 , за исключением, быть может, самой этой точки. Если при этом в интервалах $(x_0-\delta,x_0)$ и $(x_0,x_0+\delta)$ производная f'(x) имеет противоположные знаки, то x_0 —точка экстремума, причем, если f'(x) > 0 при $x \in (x_0 - \delta, x_0)$ и f'(x) < 0 при $x \in (x_0, x_0 + \delta)$, то x_0 —точка максимума, а если f'(x) < 0 при $x \in (x_0 - \delta, x_0)$ и f'(x) > 0 при $x \in (x_0 + \delta, x_0)$, то x_0 —точка минимума. Если же f'(x) при $x \in (x_0 - \delta, x_0 + \delta)$, $x \neq x_0$, сохраняет энак, то точка x_0 не является точкой экстремума.

2) Пусть функция f(x) дважды дифференцируема в критической точке x_0 и в некоторой ее окрестности. Если $f''(x_0) < 0$, то x_0 точка максимума функции f(x), если $f''(x_0) > 0$, то x_0 точка минимума. Если же $f''(x_0) = 0$, то требуются дополнительные исследо-

вания.

Пример 1. Найти интервалы менотонности и точки экстремума функции $f(x) = \frac{|x-1|}{x^2}$

$$f'(x) = \begin{cases} \frac{x-2}{x^3} & \text{при } x \in (-\infty, 0) \cup (0, 1), \\ \frac{2-x}{x^3} & \text{при } x \in (1, +\infty). \end{cases}$$

Приравнивая ее нулю, получаем x=2. Таким образом, критическими точками (с учетом тех точек, где производная не существует) являются: точками (с учетом тех точек, где производная не существует) являются: $x_1=0, x_2=1, x_3=2$. Они разбивают область определения f(x) на четыре интервала монотонности: $(-\infty, 0), (0, 1), (1, 2)$ и $(2, +\infty)$. Так как f'(x) > 0 при $x \in (-\infty, 0) \cup (1, 2)$ и f'(x) < 0 при $x \in (0, 1) \cup (2, +\infty)$, то f(x) монотонно возрастает при $x \in (-\infty, 0) \cup (1, 2)$, монотонно убывает при $x \in (0, 1) \cup (2, +\infty)$, в точке $x_3=2$ достигает ма- $(f(2) = \frac{1}{4})$, а в точке $x_2 = 1$ — минимум (f(1) = 0). Полученные результаты удобно свести в следующую таблицу:

Таблица 4.1									
x	(-∞, 0)	0	(0, 1)	1	(1, 2)	2	(2, +∞)		
 f (x)	1	+ ∞	1	0	1	1/4	1		
f' (x)	+	не сущ.	-	не сущ.	+ .	0	-		

Заметим, что в рассматриваемом примере первое достаточное условие позволяет определить характер каждой из критических точек данной функции. В то же время второе достаточное условие неприменимо в точке x_2 , так как в этой точке не существует первая производная.

Для указанных функций найти интервалы возрастания и убывания и точки экстремума:

4.4.
$$y = x\sqrt{1-x^2}$$
. 4.5. $y = \frac{2x^2-1}{x^4}$. 4.6. $y = \frac{x}{\ln x}$.

4.7.
$$y = x - 2\sin x$$
. 4.8. $y = x - 2\ln x$.

4.9.
$$y = \ln x - \arctan x$$
. 4.10. $y = e^x \cos x$.

4.11.
$$y = x^x$$
. 4.12. $y = \cosh^2 x + 1$.

Наибольшее (наименьшее) вначение непрерывной функции f(x) на данном отрезко [a, b] достигается или в критических точках, или на концах этого отрезка,

Определить наибольшее *М* и наименьшее *т* значения следующих функций на указанных отрезках (а если отрезок не указан, то во всей области определения):

4.13,
$$y = -3x^4 + 6x^2$$
; [-2, 2]. 4.14, $y = x + 2\sqrt{x}$; [0, 4].

по шоссе и по железнои дороге обла наимсприст. 4.27. Окно имеет форму прямоугольника, завершенного полукругом (рис. 50). Задан периметр р этой фигуры.

ника.

4.30. Периметр осевого сечения цилиндра равен 6а.

Найти наибольший объем такого цилиндра.

4.31. Цилиндр вписан в конус с высотой h и радиусом основания г. Найти наибольший объем вписанного цилиндра.

4.32. Найти наименьший объем конуса, описанного

около шара, радиуса г.

4 33 Найти наибо

2. Направление выпуклости. Точки перегиба. График дифференцируемой функции y = f(x) называется выпуклым вниз (или вогнутым

Рис. 52.

вверх) на интервале (а, b), если дуга кривой на этом промежутке расположена выше касательной, проведенной к графику функции

y = f(x) в любой точке $x \in (a, b)$. Если же на интервале (a, b) всякая касательная располагается выше дуги кривой, то график дифференцируємой функции на этом интервале называется выпуклым вверх (или вогнутым вниз) (на рис. 52 график функции y = f(x) является выпуклым вниз на интервале (a, x_0) и выпуклым вверх на интервале (x_0, b)).

Если функция дважды дифференцируема на (a, b) и f''(x) > 0(f''(x) < 0), то ее график является выпуклым вниз (вверх) на этом

интервале. В простейших случаях область определения функции f (х) можно разбить на конечное число интервалов с постоянным направлением выпуклости. Каждый из этих интервалов ограничев точками, в которых f''(x) = 0, либо f''(x) не существует. Точка $(x_0, f(x_0))$, в которых f''(x) = 0, либо f''(x) не существует. торой направление выпуклости графика функции меняется на противоположное, называется точкой перегиба (см. рис. 52).

Достаточное условие точки перегиба. Пусть функция f(x) дважды дифференцируема в некоторой окрестности $U_{0}(x_{0})$ точки x_{0} , в которой $f''(x_{0})=0$ или $f''(x_{0})$ не существует. Если при этом в интервалах $(x_0-\delta, x_0)$ и $(x_0, x_0+\delta)$ производная f''(x)

имеет противоположные знаки, то x_0 — точка перегиба.

Пример 2. Найти интервалы выпуклости и точки перегиба

имеет противоположные знаки, то 20—10чка перегион. Пример 2. Найти интервалы выпуклости и точки перегиба графика функции $y = \frac{|x-1|}{x^2}$

Находим вторую производную:

$$f''(x) = \begin{cases} \frac{2(3-x)}{x^4}, & x \in (-\infty, 0) \cup (0, 1), \\ \frac{2(x-3)}{x^4}, & x \in (1, +\infty). \end{cases}$$

Следовательно, критическими точками первой производной являются точки $x_1=0, x_2=1$ $x_3=3$. При этом в точках x_1 и x_2 вторая производная не существует (в частности, $f_-(1)=4$, а $f_+(1)=-4$).

а в точке ха она равна нулю.

Получаем четыре интервала выпуклости: (-со, 0), (0 1), (1, 3), (3. +∞). Исследуя знак второй производной в каждом из этих интервалов, выводим, что график функции является выпуклым вниз на интервалах $(-\infty, 0), (0, 1), (3, +\infty)$ и выпуклым вверх на интервале (1, 3). Следовательно, точки х2 и х3 являются точками перегиба графика функции, а х1 не является. Полученные результаты удобно свести в следующую таблицу:

Таблица 4.2

X	(-∞ , 0)	0	(0, 1)	1	(1, 3)	3	(3, + ∞)
f(x)		+00	_	0	-	2- 9	_
f" (x)	+	не сущ.	+	не сущ.		0	+

Найти интервалы выпуклости графика функции y = f(x), точки перегиба и угловые коэффициенты к касательных в точках перегиба:

4.40.
$$y = x^{1} + 7x + 1$$
. 4.41. $y = x^{4} + 6x^{2}$.
4.42. $y = \sqrt[3]{(x-2)^{5}} + 3$. 4.43. $y = \sqrt[3]{x+1} - \sqrt[3]{x-1}$.
4.44. $y = \sqrt[3]{(x+1)^{2}} + \sqrt[3]{(x-1)^{2}}$. 4.45. $y = xe^{2x} + 1$

3. Асимптоты. Пусть для функции y = f(x) существует такая прямая, что расстояние от точки M(x, f(x)) графика функции до этой прямой стремится к нулю при бесконечном удалении точки M от начала координат. Тогда такая прямая называется асимптотой графика функции.

Если при этом координата x точки M стремится k конечному числу a, то полупрямая x=a (y>0 либо y<0) является вертикальной асимптотой. Для существования вертикальной асимптоты в точке x=a необходимо и достаточно, чтобы хотя бы один из пре-

делов $\lim_{x\to a\pm 0} f(x)$ был равен бесконечности.

Непрерывные функции не имеют вертикальных асимптот.

Если же координата x точки M стремится $k+\infty$ или $-\infty$, то имеем наклонную асимптоту y=kx+b, для существования которой необходимо и достаточно существование двух пределов

$$\lim_{x \to \infty} \frac{f(x)}{x} = k \quad \text{if } \lim_{x \to \infty} (f(x) - kx) = b.$$

При этом указанные пределы могут быть различными при $x \to +\infty$ (для правой наклонной асимптоты) и при $x \to -\infty$ (для левой наклонной асимптоты).

. Пример 3. Найти асимптоты графика функции $y = \frac{|x-1|}{x^2}$.

Так как функция непрерывна на всей оси, кроме точки x=0, то вертикальная асимптота может существовать лишь в этой точке.

$$\lim_{x\to 0+0} \frac{|x-1|}{x^2} = \lim_{x\to 0-0} \frac{|x-1|}{x^2} = +\infty,$$

и, следовательно, прямая x = 0—вертикальная асимптота.

Найдем наклонные асимптоты. Так кан

$$\lim_{x \to +\infty} \frac{\frac{|x-1|}{x^2}}{x} = 0 = k \quad \text{if} \quad \lim_{x \to +\infty} \left(\frac{|x-1|}{x^2} - 0 \cdot x\right) = 0 = b,$$

то прямая $y=0\cdot x+0=0$ является правой наклонной (в данном случае горизонтальной) асимптотой.

Совершенно аналогично находим, что та же прямая y=0 яв-

ляется и левой наклонной асимптотой.

Найти асимптоты графиков указанных функций:

4.52.
$$y = \sqrt[5]{\frac{x}{x-2}}$$
. 4.53. $y = \sqrt[3]{x^3 - x^2}$.
4.54. $y = \sqrt{|x^2 - 3|}/x$. 4.55. $y = 3x + \arctan 5x$.

симум, если $\phi(x_0) < 0$ и n четное; экстремума нет, если n нечетное. 4.3. Воспользоваться первым достаточным условием экстремума. 4.4. На $(-1, -1/\sqrt{2}) \cup (1/\sqrt{2}, 1)$ убывает, на $(-1/\sqrt{2}, 1/\sqrt{2})$ возрастает; $y_{\min} = y(-1/\sqrt{2}) = -1/\sqrt{2}$, $y_{\max} = y(1/\sqrt{2}) = 1/2$. 4.5. На $(-\infty, -1) \cup (0, 1)$ возрастает, на $(-1, 0) \cup (1, +\infty)$ убы-

вает; $y_{\text{max}} = y(-1) = y(1) = 1$. 4.6. На (0, 1) U(1, e) убывает, на (e, $+\infty$) возрастает; $y_{\min} = y(e) = e$. 4.7. На $\left(\frac{\pi}{3}(6k-1), \frac{\pi}{3}(6k+1)\right)$ убывает, на $\left(\frac{\pi}{3}(6k+1), \frac{\pi}{3}(6k+5)\right)$ возрастает; $=y\left(2k\pi+\frac{\pi}{3}\right)=2k\pi+\left(\frac{\pi}{3}-\sqrt{3}\right)\approx 2k\pi-0.685,$ ymax = $=y\left(2k\pi+\frac{5\pi}{3}\right)=2(k+1)\pi-\left(\frac{\pi}{3}-\sqrt{3}\right)\approx 2(k+1)\pi+0.685,$ $k \in \mathbb{Z}$. 4.8. На (0, 2) убывает, на $(2, +\infty)$ возрастает; $y_{\min} = y(2) = 2(1-\ln 2) \approx 0.61$. 4.9. Возрастает во всей области определения. 4.10. Ha $\left(\frac{\pi}{4}(8k-3), \frac{\pi}{4}(8k+1)\right)$ возрастает, на $\left(\frac{\pi}{4}(8k+1), \frac{\pi}{4}(8k+1)\right)$ $\frac{\pi}{4}$ (8k+5))убывает; $y_{\text{max}} = y \left(2k\pi + \frac{\pi}{4} \right) = e^{2k\pi} \left(e^{\frac{\pi}{4}} \cdot \frac{\sqrt{2}}{2} \right) \approx 1,55e^{2k\pi}$. $y_{\min} = y \left(2k\pi + \frac{5\pi}{4} \right) = -e^{2k\pi} \left(e^{\frac{\pi}{4}} \cdot \frac{\sqrt{2}}{2} \right) \approx -1,55e^{2k\pi},$ 4.11. На (0, 1/e) убывает, на $(1/e, +\infty)$ возрастает; $y_{\min} = y(1/e) =$ $=(1/e)^{\frac{e}{e}}\approx 0,69.$ 4.12. На $(-\infty,0)$ убывает, на $(0,+\infty)$ возрастает; $y_{\min}=y(0)=2.$ 4.13. M=3, m=-24. 4.14. M=8, m=0.**4.15.** M = 0.6, m = -1. **4.16.** M = 1, m = 0.6. **4.17.** M = 2, $m = \sqrt[3]{2} \approx 1$ $\approx 1,26.4.18. M = \pi/4, m = 0.4.19. M = 1, m = -1.4.20. M = 1/\sqrt{e} \approx$ \approx 0,61, $m=-1/\sqrt{e}\approx -0.61$. 4.21. ● Рассмотреть функцию $y=e^x-(1+x)$ и показать, что у нее существует единственный минимум: $y_{\min} = y(0) = 0$, 4.25. $\frac{av_1 + bv_2}{v_1^2 + v_2^2}$ c. 4.26. $|AP| = \left(500 - \frac{100}{\sqrt{3}}\right)$ $\approx 442,3$ KM. 4.27. $x = \frac{2p}{4+\pi}$, $y = \frac{1}{2} \left(p - x - \frac{\pi x}{2} \right)$, 4.28. $\alpha = \frac{2\pi}{3}$. 4.29. $\frac{ah}{4}$. 4.30. πa^3 . 4.31. $\frac{4}{27}\pi r^2 h$. 4.32. $\frac{8}{3}\pi r^3$. 4.33. $\frac{2\pi}{9\sqrt{3}}$ 4.34. $2r^2$, 4.35. N (1, 1). 4.36. $x = R\sqrt{2}$, $y = R/\sqrt{2}$. 4.37. Разделить отрезок пополам. 4.38. $r = \frac{1}{(\sqrt{R^2 + H^2} - R)(\sqrt{R^2 + H^2} + 2R)}$ 4.39. $h=(e^{2/3}-d^{2/3})^{3/2}$. 4.40. На $(-\infty,0)$ —выпуклость вверх, на $(0,+\infty)$ —выпуклость вниз, M(0,1)—точка перегиба, k=7. 4.41. График всюду выпуклый вниз. 4.42. На $(-\infty,2)$ —выпуклость $(0,+\infty)$ 4.41. І рафик всюду выпуклый вниз. 4.42. На $(-\infty, 2)$ —выпуклость вверх, на $(2, +\infty)$ —выпуклость вниз, M (2, 0)—точка перегиба, k=0. 4.43. На $(-\infty, -1)$ \bigcup $(1, +\infty)$ —выпуклость вниз, на (-1, 1)—выпуклость вверх, $M_1\left(-1, \frac{3}{4}/\overline{2}\right)$ и $M_2\left(1, \frac{3}{4}/\overline{2}\right)$ —точки перегиба, $M_1=k_2=\infty$. 4.44. График всюду выпуклый вверх. 4.45. На $M_1=k_2=\infty$. 4.44. График всюду выпуклый вверх. 4.45. На $M_1=k_2=\infty$. 4.44. График всюду выпуклый вверх. 4.45. На $M_1=k_2=\infty$. 4.46. На $M_1=k_2=\infty$. 4.47. На $M_1=k_2=\infty$. — $M_1=k_2=\infty$. 4.47. На $M_1=k_2=\infty$. — выпуклость вниз, $M_1=k_2=\infty$. 4.47. На $M_1=k_2=\infty$. Выпуклость вверх, на $M_1=k_2=\infty$. 4.47. На $M_1=k_2=\infty$. Выпуклость вверх, на точка перегиба, $k=\infty$. 4.47. На $(0,e^{-5/6})$ — выпуклость вверх, на

$$(e^{-5/6}, +\infty)$$
—выпуклость вниз, $M\left(e^{-5/6}, 1-\frac{5}{6}e^{-5/6}\right)$ —точка перегиба, $k=-\frac{3}{2}e^{-5/3}\approx -0.28$. 4.48. $a=-\frac{3}{2}, b=\frac{9}{2}$. 4.49. $\frac{1}{\sigma\sqrt{2}}$. 4.51. • Если x_0 —абсцисса точки перегиба, то x_0 tg $x_0=2$. Тогда $y_0^2=y^2$ (x_0) = $x_0^2\sin^2 x_0=\frac{4x_0^2}{4+x_0^2}$. 4.52. $x=2, y=1$. 4.53. $y=x-\frac{1}{3}$.