Cancer Epidemiology

```
by Dr Jason Wong
```

Date: 16-11-2022 (Updated 21-11-2022)

The RMarkdown notebook to run your own code can be downloaded here

1. Scenario

You are a grants officer working for the Hong Kong Health Bureau. The HK government has recently announced new special funding in cancer research to be administered by the Bureau. You are tasked with coming up with a proposal for distribution of funding to specific cancer types that are in most need of research.

Discussion points:

- What is important to consider when selecting a cancer type in need of research?
- What type of data is required?

2. Hong Kong population

You are aware that generally cancer is disease that affects the elderly more than the young. You decide to first take a closer look at the structure of the population of Hong Kong.

Historic population of Hong Kong can be obtained from the Census and Statistics Department.

An abridged version of the full historic population of Hong Kong is provided here containing the population of Hong Kong from 1965, 1975, 1985, 1995, 2005, 2015 and 2022 categorised by sex and age (0-19, 20-44, 45-64, 65+).

Discussion points:

- What is the trend in Hong Kong's population over the past ~60 years?
- What is the best way to visualise this data?

Download population data

```
##
                                              2005
                                                      2015
                                                             2022
        Sex
              Age
                  1965
                        1975
                                1985
                                       1995
            0-19 901.9 989.7
                               909.0
                                      835.6
                                             719.0
                                                    613.8
## 2
       male 20-44 607.4 795.6 1210.2 1363.7 1263.7 1146.9 1039.2
       male 45-64 266.5 414.3
                               525.9
                                      615.7
                               170.5
       male
              65+
                  42.2 84.6
                                      269.3
                                             384.7
                                                    520.0
            0-19 865.6 938.8
                               840.3
                                      780.7
                                             684.1
                                                    575.0
## 6 female 20-44 539.3 685.6 1093.7 1423.6 1530.4 1531.8 1338.7
## 7 female 45-64 286.3 400.7
                               470.7
                                      535.0
                                             884.7 1224.3 1314.7
                  88.7 152.3
                               235.9
                                      332.5
                                             450.0 594.6
## 8 female
              65+
```

Format data for plotting

Here we convert the original dataframe into simplified format for ggplot2.

```
male<-data.frame(year = as.numeric(colnames(HKPop[1,3:9])),</pre>
                 0-19 = as.numeric(HKPop[1,3:9]),
                 ^{20-44} = as.numeric(HKPop[2,3:9]),
                 ^{45-64} = as.numeric(HKPop[3,3:9]),
                 ^{65+} = as.numeric(HKPop[4,3:9]),
                 check.names = FALSE)
female<-data.frame(year = as.numeric(colnames(HKPop[1,3:9])),</pre>
                 0-19 = as.numeric(HKPop[5,3:9]),
                 ^{20-44} = as.numeric(HKPop[6,3:9]),
                 ^{45-64} = as.numeric(HKPop[7,3:9]),
                 ^{65+} = as.numeric(HKPop[8,3:9]),
                 check.names = FALSE)
if (!require("tidyverse")) install.packages("tidyverse")
male<-as_tibble(male) %>% select(year, `0-19`, `20-44`, `45-64`, `65+`) %>% gather (key="age", value="popula
female<-as_tibble(female) %>% select(year, `0-19`, `20-44`, `45-64`, `65+`) %>% gather (key="age", value="po
male
## # A tibble: 28 x 3
##
       year age
                  'population ('000s)'
##
      <dbl> <chr>
                                 <dbl>
  1 1965 0-19
##
                                  902.
##
   2 1975 0-19
                                  990.
## 3 1985 0-19
                                  909
## 4 1995 0-19
                                  836.
## 5 2005 0-19
                                  719
## 6 2015 0-19
                                  614.
## 7 2022 0-19
                                  531.
## 8 1965 20-44
                                  607.
## 9 1975 20-44
                                  796.
## 10 1985 20-44
                                 1210.
## # ... with 18 more rows
female
## # A tibble: 28 x 3
##
                  'population ('000s)'
       year age
##
      <dbl> <chr>
                                 <dbl>
  1 1965 0-19
##
                                  866.
##
   2 1975 0-19
                                  939.
## 3 1985 0-19
                                  840.
## 4 1995 0-19
                                  781.
## 5 2005 0-19
                                  684.
## 6 2015 0-19
                                  575
## 7 2022 0-19
                                  502.
## 8 1965 20-44
                                  539.
```

```
## 9 1975 20-44 686.
## 10 1985 20-44 1094.
## # ... with 18 more rows
```

Plotting population data

Uses ggplot2 and gridExtra to make line plot of male and female population data side-by-side.

```
if (!require("ggplot2")) install.packages("gglot2")
if (!require("gridExtra")) install.packages("gridExtra")
library(ggplot2)
library(gridExtra)
#Import the necessary packages and libraries
pmale<-ggplot(male,aes(x=year,y=`population ('000s)`,group=age))+</pre>
  geom_line(aes(color=age))+
  geom_point(aes(color=age))+
  scale_color_brewer(palette="Spectral")+
  theme_classic()+
 ylim(0,1600) +
  theme(legend.position="none")+
  scale_x_continuous(breaks = seq(1965, 2022, by = 10))+
  ggtitle("male")
pfemale<-ggplot(female,aes(x=year,y=`population ('000s)`,group=age))+</pre>
  geom_line(aes(color=age))+
  geom_point(aes(color=age))+
  scale_color_brewer(palette="Spectral")+
  theme classic()+
  ylim(0,1600) +
  theme(legend.position="right",axis.title.y = element_blank())+
  scale_x_continuous(breaks = seq(1965, 2022, by = 10))+
  ggtitle("female")
grid.arrange(pmale,pfemale,ncol=2,widths=c(3,3.75))
```


3. Cancer registry data

It is clear that Hong Kong has an aging population, thus cancer incidence would also likely increase. To examine cancer incidence and mortality in Hong Kong you obtain data from the Hong Kong Cancer Registry, which is maintained by the Hospital Authority.

Cancer incidence data was summarised for the last three decades (1990-1999, 2000-2009 and 2010-2019).

Discussion points:

- Has incidence been increasing for most cancers? How about mortality?
- How has cancer risk and mortality rate changed in the past 3 decades?
- Has the incidence-to-mortality ratio been decreasing generally? Is it statistically significant?
- Which cancer type has the highest incidence in children (0-19) when compared with the elderly (65+). Is this statistically significantly different to incidence of children versus elderly cancers in general?

Download cancer registry data

```
HKCancer<- read.table("https://github.com/StatBiomed/BMDS-book/raw/main/notebooks/module5-epidemi/HK_car
sep = "\t", header = TRUE, stringsAsFactor=FALSE)
HKCancer</pre>
```

##		Туре	Sex	Age	Year	Biliary	Bladder	${\tt Brain}$	Breast	${\tt Cervix}$	
##	1	${\tt incidence}$	male	0-19	1990-1999	0	6	212	0	0	
##	2	incidence	male	20-44	1990-1999	36	165	368	6	0	
##	3	${\tt incidence}$	male	45-64	1990-1999	322	1266	393	28	0	
##	4	${\tt incidence}$	male	65+	1990-1999	830	2920	318	35	0	
##	5	${\tt incidence}$	male	0-19	2000-2009	0	2	206	0	0	
##	6	${\tt incidence}$	male	20-44	2000-2009	31	103	267	9	0	
##	7	${\tt incidence}$	male	45-64	2000-2009	297	900	372	52	0	
##	8	${\tt incidence}$	male	65+	2000-2009	1134	3103	299	96	0	
##	9	${\tt incidence}$	male	0-19	2010-2019	0	2	155	0	0	
##	10	${\tt incidence}$	male	20-44	2010-2019	28	18	276	14	0	
##	11	${\tt incidence}$	male	45-64	2010-2019	530	648	511	72	0	
##	12	${\tt incidence}$	male	65+	2010-2019	1568	2399	380	107	0	
##	13	${\tt incidence}$	${\tt female}$	0-19	1990-1999	0	2	149	6	0	
##	14	${\tt incidence}$	${\tt female}$	20-44	1990-1999	52	62	283	4228	1263	
##	15	${\tt incidence}$	${\tt female}$	45-64	1990-1999	246	246	238	5311	1839	
##	16	${\tt incidence}$	${\tt female}$	65+	1990-1999	909	1199	284	4122	1574	
##	17	${\tt incidence}$	${\tt female}$	0-19	2000-2009	0	0	132	4	4	
##	18	incidence	female	20-44	2000-2009	34	39	223	5887	1204	
##	19	incidence	female	45-64	2000-2009	287	179	265	11833	1676	
##	20	incidence	female	65+	2000-2009	1190	1090	237	5774	1329	
##	21	incidence	female	0-19	2010-2019	0	2	119	1	0	
##	22	incidence	female	20-44	2010-2019	36	17	223	6658	1294	
##	23	incidence	female	45-64	2010-2019	452	188	394	22096	2288	
##	24	incidence	female	65+	2010-2019	1500	872	283	10337	1269	
		${\tt mortality}$		0-19	1990-1999	0	0	76	0	0	
		mortality			1990-1999	14	6	156	0	0	
		mortality			1990-1999	169	240	268	5	0	
		mortality			1990-1999	548	1036	240	13	0	
		mortality			2000-2009	0	0	63	0	0	
		mortality			2000-2009	10	9	99	1	0	
		mortality			2000-2009	111	175	205	3	0	
		mortality			2000-2009	592	1209	209	26	0	
		mortality			2010-2019	1	0	28	0	0	
		mortality			2010-2019	5	4	107	2	0	
		mortality			2010-2019	181	166	288	8	0	
		mortality			2010-2019	595	1272	206	25	0	
		mortality				0		59	0	0	
		mortality				20	6	104	644	193	
		mortality				141	40	113	1284	494	
		mortality				663	486	197	1504	748	
		mortality				0	0	42	0	160	
		mortality				12	3	77 145	691	162	
		mortality				125 731	31 482	145	2112	415 670	
		mortality				731		158	1809		
		mortality				7	0 2	29 67	0 525	0 167	
		mortality mortality				170	51	196		622	
						782	534	174	3452 2600	709	
##	40	mortality			2010-2019 lymphoma I						Lung
##	1	15	-	Jugarii	. rymphoma 1 35	.aposi n. 0	24	1	356		6
##		1087			64	0	141	86	509		1036
##		4644			47	0	530	824	453		8420
##		8058			41	0		1265	623		15152
	-	2300				·			020		

##	E	5	38	32	0	20	0	329	33	3
##		957	8	119	9	221	37	437	1116	772
##		6418	18	77	4	1071		642	6015	7909
##		13352	13	77	8	1275		864		18870
##		6	26	53	0	31	0	338	24	2
##		1005	10	163	25	293		401	659	541
##		10034	28	87	18	1978		1033	6500	9523
##		18003	15	114	12	1977		1381		20588
##		2	33	10	0	25	0	296	37	7
##		932	11	61	0	98		393	353	597
##		3166	9	19	0	256		312	1093	2629
	16	7728	16	33	0	503		534	2244	8428
##		5	14	30	0	15	0	219	13	5
	18	938	12	122	2	120		405	212	625
##		4430	10	33	0	482		469	1041	3397
##		10810	8	35	0	830		723	2637	9517
##	21	5	14	32	0	19	0	237	21	0
##		1057	9	174	0	135		443	168	647
##		7200	16	58	4	887		786	1168	6312
##	24	13119	20	58	5	1203	84	913	3007	10872
##	25	10	3	0	0	2	0	120	36	1
##	26	347	1	11	0	47	16	297	1059	605
##	27	1708	2	12	0	208	248	296	4118	5828
##	28	3969	3	16	0	385	575	471	4161	12819
##	29	4	2	0	0	2	0	81	19	0
##	30	289	1	9	1	34	7	209	777	514
##	31	2116	5	11	0	312	160	378	4432	5894
	32	6541	3	23	1	628		766		17272
##		1	3	0	0	3		62	11	0
	34	221	2	2	4	36	6	152	405	308
##		2950	8	11	2	447		491	4291	6527
	36	8484	2	35	0	895	426	1138		18695
	37	1	3	0	0	4		93	15	2
	38	302	1	3	0	22		215	187	379
	39 40	1100 3633	1 3	1	0	81	14 49	212 452	737 1915	1821 7182
##		3033	2	11 1	0	265 1		452	1915	7102
	42	266	6	5	0	23	1	165	143	383
	43	1341	5	4	0	127	9	288	717	2163
	44	5204	1	14	0	467		655	2712	8732
	45	4	0	1	0	2		42	6	2
	46	218	0	5	0	14		145	92	304
	47	1955	0	7	1	166	2	311	759	3460
	48	6640	0	15	0	564		781	3315	9399
##			esothelioma	Multiple.my						
##	1	3	0		1	4	33			
##	2	50	0		43	53	3049			
##	3	82	0		210	109	3724			
##	4	107	0		421	120	1212			
##	5	1	0		1	7	16			
##		41	5		38	38	2114			
##		98	34		326	161	3750			
##		137	77		674	137	1177			
##	9	0	0		0	3	21			

##	10	47	4	26	41		133	9		
##	11	186	51	525	174		365	3		
##	12	195	154	910	154		120	7		
##	13	2	0	1	1		1	3		
##		44	0	19	31		138			
##		58	0	150	57		115			
##		102	0	417	93		53			
##		2	0	0	5			6		
##		41	8	21	36		94			
##		102	12	185	74		118			
##		118	14	559	92		46			
##		3	0	0	6			6		
##		70	10	24	37		58			
##		128	34	399	105		114			
##		179	24	636	102		38			
##		2	0	0	0			6		
##		17	0	18	11		77 167			
## ##		46 72	0	122 297	42 55		167 73			
##		0	0	0	1			2		
##		16	5	17	9		45			
##		55	24	137	32		155			
##		85	54	493	62		86			
##		0	0	0	0			2		
##		12	0	5	2		23			
##		79	38	190	50		141			
##		128	140	571	60		81			
##		0	0	0	0			1		
##		14	0	7	7		24			
##	39	25	0	74	12		42	1		
##	40	50	0	273	49		30	2		
##	41	1	0	0	0			0		
##	42	11	3	6	5		15	9		
##	43	49	9	88	14		38	5		
##	44	89	16	388	40		30	5		
##	45	1	0	0	0			1		
##		23	7	4	1		7	7		
##		73	13	101	17		34			
##	48	120	23	456	36		26			
##		Non.Hodgkin.		.melanoma.skin	Oesoph	_		-		
##			137	8		0	18	0	4	2
##			596	211		158	324	0	106	19
##			997	613			1165	0	514	78
##			1210	968		2203		0	887	184
##			111	4		0	6	0	1	0
## ##			454	220		82	312	0	71 780	18
##			1216 1756	917 1835		2126	1354	0	1440	71
##			106	1033		0	9	0	1440	199 0
##			487	291		54	304	0	109	21
##			1910	1782			1941	0	1402	154
##			2633	2975			1813	0	2302	279
##			75	2373		0	21	77	2502	0
##			444	156		48	241	854	60	0
11	_ I		111	100		10		30 1	00	J

	4-		_			074	054	004	070	000	•
##				94		374	254	364	970	290	0
	16			.20		1249	761	485	776	875	0
	17			43		4	1	20	108	0	0
##	18			:61		182	13	254	1299	62	0
	19			888		580	190	454	1846	461	0
##	20			:09		2476	725	768	891	1329	0
##	21			57		4	0	9	84	3	0
##	22			75		303	16	259	1466	92	0
##	23			61		1168	174	920	3166	923	0
##	24			883		3268		1091	1128	2101	0
##	25			25		0	0	1	0	3	0
##	26			.79		4	86	79	0	78	3
##	27			880		18	1341	501	0	476	10
##	28			551		47	1652	545	0	918	31
##	29			17		0	0	1	0	0	1
	30			.45		5	53	62	0	49	3
	31			61		21	1010	465	0	680	9
##				.19		72	1798	743	0	1339	43
##				15		0	0	1	0	0	0
##				83		2	30	63	0	60	1
##				42		25	914	563	0	1100	18
##				73		93	1640	824	0	2191	39
##				16		1	0	1	1	1	0
##			118			2	12 118	30	139	33	0
##				194 6				75	431	266	0
##			6	05		42	505	193	520	875	0
##				8		2	0	1	3	0	0
##				.04		3	9	40	155	42	0
##				256		4	103	100	601	382	0
##			8	95		72	585	297	649	1317	0
##				5		0	0	2	1	0	0
##				81		1	5	32	167	50	0
##				312		16	93	170	1056	713	0
##	48	D1 .		.33	a 11	72	518	400	879	2075	0
##	4				Small.	intestine					
##		0	0	137		0	5	6			22
## ##		0	10	320		31	429 1990	27			50
		0	481	281		102		8			38 34
##		0	3073 0	261		131 0					94
## ##		0	6	118 307		34		5 39			21 33
##		0	1588	367		113		39 6			55 47
##		0	8676	316		163		4			±1 78
##		0	1	110		103		5			17
##		0	18	299		46		58			96
##		0	4128	527		293		10			34
##		0	14703	507		336		10			24
##		1	14703	128		330			0		2 4 30
	14	13	0	283		22				38 129	
##		0	0	283		53					94 38
##		0	0	232		116					79
	17	0	0	105		0			0 .		7 <i>9</i> 31
##		8	0	322		24				64 16	
##		3	0	300		80				16 15	
##	13	3	U	300		60	911		J 1	10 15	10

	00		^	•	0.47	450	0540	^	25	505
	20		0	0	247	153	2512	0	65	595
	21		0	0	86	1	0	0	5	103
	22	-	12	0	330	38	318	0	30	2291
	23		3	0	509	221	1653	0	81	3200
	24		0	0	351	251	2809	0	67	940
	25		0	0	41	1	0	2	7	1
	26		0	3	98	8	220	23	28	4
	27		0	131	99	40	1074	5	38	34
	28		0	1158	153	53	2452	15	49	70
	29		0	0	30	0	1	1	2	0
	30		0	2	94	6	140	9	21	10
	31		0	160	116	34	1046	5	42	35
	32		0	2299	161	89	2814	8	58	101
	33		0	0	27	0	0	1	2	1
	34		0	3	89	4	97	11	20	6
	35		0	279	209	57	996	4	81	45
	36		0	3638	336	151	2955	2	74	151
	37		0	0	39	0	1	0	2	0
	38		7	0	68	6	269	0	9	10
##	39		0	0	97	15	451	0	11	47
##	40		0	0	149	52	1544	0	38	175
##	41		0	0	29	0	0	0	0	0
##	42		4	0	65	6	210	0	13	8
##	43		1	0	106	26	561	0	32	40
##	44		0	0	152	95	1712	0	44	215
##	45		0	0	20	0	0	0	0	1
##	46		4	0	82	1	158	0	12	6
##	47		3	0	219	35	731	0	43	44
##	48		0	0	236	109	1818	0	50	211
##		${\tt Uterus}$	Vulva							
##	1	0	0							
##	2	0	0							
##	3	0	0							
##	4	0	0							
##	5	0	0							
##	6	0	0							
##	7	0	0							
##	8	0	0							
##	9	0	0							
##	10	0	0							
##	11	0	0							
##	12	0	0							
	13	2	1							
##	14	478	49							
##	15	1362	96							
##	16	729	235							
##	17	2	2							
##	18	821	44							
##	19	3071	147							
##	20	1130	336							
##	21	3	1							
##	00	1165	57							
	22		٠.							
	23	6582	235							
##										

```
## 25
                   0
## 26
            0
                   0
## 27
            0
                   0
            0
                   0
## 28
## 29
            0
                   0
## 30
            0
                   0
## 31
            0
## 32
            0
                   0
## 33
            0
                   0
            0
                   0
## 34
## 35
            0
                   0
            0
## 36
                   0
            0
                   0
## 37
## 38
           18
                   4
## 39
          119
                  22
## 40
          149
                  71
## 41
           0
                  0
## 42
           23
                  16
## 43
          198
                 53
## 44
          205
                133
## 45
            0
                   0
## 46
           43
                  18
## 47
                 107
          517
## 48
          432
                 197
```

3a. Visualise changes in incidence and mortality

```
# first plot incidence for each cancer type
#Import the necessary packages and libraries
if (!require("ggplot2")) install.packages("gglot2")
if (!require("gridExtra")) install.packages("gridExtra")
if (!require("ggpubr")) install.packages("ggpubr")
library(ggplot2)
library(gridExtra)
library(ggpubr)
HKCancer_inc <- HKCancer[HKCancer$Type=='incidence',]</pre>
p<-list()
for (i in 1:(ncol(HKCancer_inc)-4)){
  p[[i]] <-ggplot(HKCancer_inc,aes_string(fill=names(HKCancer_inc)[3],x=names(HKCancer_inc)[4],
                                          y=names(HKCancer_inc)[i+4],group=names(HKCancer_inc)[3]))+
       geom_bar(position="dodge",stat="identity")+
       facet_wrap(~Sex) +
       theme_classic()+
       scale_fill_brewer(palette="Spectral")+
       theme(legend.position="none")+
       theme(text = element_text(size = 10))+
       ggtitle(names(HKCancer_inc)[i+4])+
       ylab("Incidence")
```

```
}
do.call('grid.arrange',c(p,ncol=3,nrow=12))
```



```
# now plot mortality for each cancer type
#Import the necessary packages and libraries
if (!require("ggplot2")) install.packages("gglot2")
if (!require("gridExtra")) install.packages("gridExtra")
if (!require("ggpubr")) install.packages("ggpubr")
if (!require("dplyr")) install.packages("dplyr")
library(ggplot2)
library(gridExtra)
library(ggpubr)
library(dplyr)
HKCancer_mort <- HKCancer[HKCancer$Type=='mortality',]</pre>
p<-list()
#(ncol(HKCancer_inc)-4)
for (i in 1:(ncol(HKCancer_mort)-4)){
 p[[i]] <-ggplot(HKCancer_mort,aes_string(fill=names(HKCancer_mort)[3],x=names(HKCancer_mort)[4],
                                          y=names(HKCancer_mort)[i+4],group=names(HKCancer_mort)[3]))+
       geom_bar(position="dodge",stat="identity")+
       facet_wrap(~Sex) +
       theme_classic()+
       scale_fill_brewer(palette="Spectral")+
       theme(legend.position="none")+
       theme(text = element_text(size = 10))+
       ggtitle(names(HKCancer_mort)[i+4])+
       ylab("Mortality")
do.call('grid.arrange',c(p,ncol=3,nrow=12))
```


3b. Calculate cancer risk and mortality rate

To calculate disease risk we need to calculated the number of new cases over the number of persons at risk over a specific time period. We have the incidence for each decade and can estimate the number of persons at risk based on the population in 1995, 2005 and 2015.

```
# cancer risk calculation
HKCancer_inc <- HKCancer[HKCancer$Type=='incidence',]</pre>
HKCancer_inc_risk <- HKCancer_inc[,1:5]</pre>
risk <- function(x,age,sex,year){</pre>
  if (is.integer(x)){
    pop_n <- HKPop %>% filter(Sex==sex & Age==age)
    if (year == "1990-1999"){ return (as.double(x)/as.double(pop_n$`1995`)) }
    else if (year == "2000-2009") {return (as.double(x)/as.double(pop_n^22005))}
    else { return (as.double(x)/as.double(pop_n$^2015^)) }
  }
  return (x)
for (i in 5:ncol(HKCancer_inc)){
  HKCancer_inc_risk[names(HKCancer_inc)[i]] <- mapply(risk,HKCancer_inc[,i],HKCancer_inc[,3],HKCancer_inc</pre>
#visualise cancer risk
p<-list()
for (i in 1:(ncol(HKCancer_inc_risk)-4)){
  p[[i]] <-ggplot(HKCancer_inc_risk,aes_string(fill=names(HKCancer_inc_risk)[3],x=names(HKCancer_inc_risk)
                                                y=names(HKCancer_inc_risk)[i+4],group=names(HKCancer_inc_risk)
       geom_bar(position="dodge",stat="identity")+
       facet_wrap(~Sex) +
       theme_classic()+
       scale_fill_brewer(palette="Spectral")+
       theme(legend.position="none")+
       theme(text = element_text(size = 10))+
       ggtitle(names(HKCancer_inc)[i+4])+
       ylab("incidence per 1000")
}
do.call('grid.arrange',c(p,ncol=3,nrow=12))
```



```
# mortality rate calculation
HKCancer mort <- HKCancer[HKCancer$Type=='mortality',]</pre>
HKCancer_mort_risk <- HKCancer_mort[,1:5]</pre>
risk <- function(x,age,sex,year){</pre>
  if (is.integer(x)){
    pop_n <- HKPop %>% filter(Sex==sex & Age==age)
    if (year == "1990-1999"){ return (as.double(x)/as.double(pop_n$`1995`)) }
    else if (year == "2000-2009") {return (as.double(x)/as.double(pop_n^22005))}
    else { return (as.double(x)/as.double(pop_n$`2015`)) }
  }
  return (x)
for (i in 5:ncol(HKCancer_mort)){
  HKCancer_mort_risk[names(HKCancer_mort)[i]] <- mapply(risk, HKCancer_mort[,i], HKCancer_mort[,3], HKCancer_mort</pre>
#visualise mortality rate
p<-list()
for (i in 1:(ncol(HKCancer_mort_risk)-4)){
  p[[i]] <-ggplot(HKCancer_mort_risk,aes_string(fill=names(HKCancer_mort_risk)[3],x=names(HKCancer_mort_
                                                 y=names(HKCancer_mort_risk)[i+4],group=names(HKCancer_mort_risk)
       geom_bar(position="dodge",stat="identity")+
       facet_wrap(~Sex) +
       theme_classic()+
       scale_fill_brewer(palette="Spectral")+
       theme(legend.position="none")+
       theme(text = element_text(size = 10))+
       ggtitle(names(HKCancer_inc)[i+4])+
       ylab("mortality per 1000")
}
do.call('grid.arrange',c(p,ncol=3,nrow=12))
```


3c. Mortality-incidence ratio

Cancer research can be focused on improving cancer outcomes in a number of ways. For example cancer prevention research that seeks to reduce cancer incidence which would also ultimately reduce cancer mortality. Another area is cancer therapy which would not affect incidence but seeks to reduce mortality, or at least prolong survival. We don't go into survival analysis in this tutorial, but a way to get an idea whether treatment is improving by looking at the mortality-incidence ratio.

```
HKCancer_inc <- HKCancer[HKCancer$Type=='incidence',]
HKCancer_mort <- HKCancer[HKCancer$Type=='mortality',]
HKCancer_mort_inc <- HKCancer_mort[,1:5]

risk <- function(mort,inc){
   if (inc == 0){ return (0) }
    return (as.double(mort)/as.double(inc))
}

for (i in 5:ncol(HKCancer_mort)){
   HKCancer_mort_inc[names(HKCancer_mort)[i]] <- mapply(risk,HKCancer_mort[,i],HKCancer_inc[,i])
}</pre>
```


3d. Paired t-test on mortality-incidence ratio change

In general, across the different cancer types is cancer treatment improving? We can use a paired t-test comparing the mortality-incidence ratio of cancers from the 1990-1999 period with the 2010-2019 period.

```
#First sum up all incidence and mortality data for each cancer type across age and sex
HKCancer_inc_sum <- aggregate(HKCancer_inc[,-(1:4)],list(HKCancer_inc$Year),FUN=sum)</pre>
HKCancer mort sum <- aggregate(HKCancer mort[,-(1:4)],list(HKCancer mort$Year),FUN=sum)
HKCancer_mort_inc_year <- data.frame(Year=HKCancer_mort_sum[,1])</pre>
risk <- function(mort,inc){</pre>
  return (as.double(mort)/as.double(inc))
}
for (i in 2:ncol(HKCancer_mort_sum)){
  HKCancer_mort_inc_year[names(HKCancer_mort_sum)[i]] <- mapply(risk, HKCancer_mort_sum[,i], HKCancer_inc
}
HKCancer_mort_inc_year_m <-data.frame(\`1990-1999\` = as.numeric(HKCancer_mort_inc_year[1,2:37]),
                                     `2000-2009` = as.numeric(HKCancer_mort_inc_year[2,2:37]),
                                     `2010-2019` = as.numeric(HKCancer_mort_inc_year[3,2:37]),
                                     check.names = FALSE)
HKCancer mort inc year m$Cancer <- names(HKCancer mort inc year)[-1]
HKCancer_mort_inc_year_t<-as_tibble(HKCancer_mort_inc_year_m) %>% select(`Cancer`,`1990-1999`,`2000-200
plot<-ggplot(HKCancer_mort_inc_year_t,aes(x=Year,y=MIR, color=Year))+</pre>
       geom boxplot(na.rm=T) +
       theme classic()+
       scale_color_brewer(palette="Dark2")+
       geom_jitter(shape=16, position=position_jitter(0.2),na.rm=T)+
       ylab("mortality-incidence ratio")+
       ylim(0,1.2) + geom_signif(comparisons = list(c("1990-1999", "2010-2019")),
                                 map_signif_level=F, test= "t.test",test.args = list(paired = TRUE), na
       geom_signif(comparisons = list(c("1990-1999", "2000-2009")), map_signif_level=F, test= "t.test",
       geom_signif(comparisons = list(c("2000-2009", "2010-2019")), map_signif_level=F, test= "t.test",
plot
```



```
p<-list()
p[[1]]<-t.test(HKCancer_mort_inc_year_m$`1990-1999`,HKCancer_mort_inc_year_m$`2000-2009`,paired=TRUE,al
p[[2]]<-t.test(HKCancer_mort_inc_year_m$`1990-1999`,HKCancer_mort_inc_year_m$`2010-2019`,paired=TRUE,al
p[[3]]<-t.test(HKCancer_mort_inc_year_m$`2000-2009`,HKCancer_mort_inc_year_m$`2010-2019`,paired=TRUE,al
p
   [[1]]
##
##
##
    Paired t-test
##
## data: HKCancer_mort_inc_year_m$'1990-1999' and HKCancer_mort_inc_year_m$'2000-2009'
## t = 0.79695, df = 33, p-value = 0.4312
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
   -0.01415536 0.03238636
## sample estimates:
  mean difference
##
       0.009115498
##
##
##
##
  [[2]]
##
##
    Paired t-test
##
## data: HKCancer_mort_inc_year_m$'1990-1999' and HKCancer_mort_inc_year_m$'2010-2019'
```

```
## t = 2.1861, df = 33, p-value = 0.036
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.002055217 0.057209924
## sample estimates:
## mean difference
       0.02963257
##
##
##
## [[3]]
##
## Paired t-test
## data: HKCancer_mort_inc_year_m$'2000-2009' and HKCancer_mort_inc_year_m$'2010-2019'
## t = 1.5413, df = 35, p-value = 0.1322
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -0.005438019 0.039734021
## sample estimates:
## mean difference
##
          0.017148
```

3e. Childhood versus elderly cancers

Although it is clear that the incidence of cancer is typically higher in the elderly, some cancers affect children as well. What cancer types disproportionate affect children? For each cancer type, compare the proportion of 0-19 versus 65+ incidence against the 0-19 versus 65+ incidence for all other cancer types.

```
# Examine the proportion of childhood
HKCancer_inc <- HKCancer[HKCancer$Type=='incidence',]</pre>
HKCancer_inc_age_sum <- aggregate(HKCancer_inc[,-(1:4)],list(HKCancer_inc$Age),FUN=sum)</pre>
HKCancer_inc_age_sum$Total<- rowSums(HKCancer_inc_age_sum[,-1])</pre>
HKCancer_inc_age_sum_csq <- data.frame(cancer=names(HKCancer_inc_age_sum[,2:ncol(HKCancer_inc_age_sum),
pval <- list()</pre>
ratio <- list()
for (i in 2:(ncol(HKCancer_inc_age_sum))){
  val = Map('-', HKCancer inc age sum$Total, HKCancer inc age sum[,i])
  dat <- data.frame(cancer=HKCancer_inc_age_sum[c(1,4),i], other =c(val[[1]],val[[2]]))</pre>
  pval <- append(pval,fisher.test(dat)$p.val)</pre>
  ratio<- append(ratio,log(as.double(dat[1,1]+0.1)/as.double(dat[2,1]+0.1)))</pre>
HKCancer_inc_age_sum_csq$pval <- pval</pre>
HKCancer_inc_age_sum_csq$ratio <- ratio</pre>
plot_child<-ggplot(HKCancer_inc_age_sum_csq[-37,],aes(x=reorder(cancer,-as.numeric(ratio)),y=as.numeric
       geom_bar(stat="identity",fill="red")+
       geom_hline(yintercept=-4.12132318942113, linetype="dashed",
                 color = "black", linewidth=0.5)+
       theme_classic()+
       scale_fill_brewer(palette="Spectral")+
       theme(legend.position="none")+
```

```
#theme(text = element_text(size = 10))+
    theme(axis.title.x=element_blank())+
    theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
    ylab("log((child+0.1)/(elderly+0.1)")
plot_child
```


HKCancer_inc_age_sum_csq

```
##
                     cancer
                                      pval
                                                  ratio
## 1
                             1.21618e-216
                                              -11.17481
                    Biliary
## 2
                    Bladder 9.601084e-314
                                              -6.711128
## 3
                      Brain
                                              -0.615666
## 4
                     Breast
                                         0
                                              -7.519824
                                              -6.925188
## 5
                     Cervix 1.635299e-126
                                              -7.531208
##
  6
                 Colorectum
                        Eye 2.085337e-112
                                              0.5039276
##
## 8
          Hodgkin.lymphoma
                              3.658856e-81
                                             -0.6227962
## 9
                     Kaposi
                                   0.41662
                                              -5.525453
## 10
                     Kidney
                                              -3.882371
                             1.560619e-71
## 11
                     Larynx 1.963055e-113
                                              -8.129416
## 12
                  Leukaemia
                                              -1.043172
                                         0
## 13
                      Liver
                                         0
                                              -4.909033
                                              -8.191896
##
  14
                       Lung
                                         0
##
  15
                   Melanoma
                             6.246412e-15
                                              -4.324192
                             5.396388e-09
                                              -7.897668
## 16
              Mesothelioma
```

```
Multiple.myeloma 6.126613e-106
## 17
                                             -7.062026
## 18
                            0.0001285609
                      Nasal
                                             -3.286427
               Nasopharynx
## 19
                             4.628193e-74
                                              -3.95948
## 20 Non.Hodgkin.lymphoma
                             4.513518e-11
                                             -2.940272
## 21
         Non.melanoma.skin
                                             -6.315107
## 22
                Oesophagus 1.377432e-251
                                             -8.943186
                       Oral 5.100139e-108
## 23
                                             -4.379029
## 24
                      Ovary
                             0.0002847234
                                              -2.34054
##
  25
                  Pancreas
                             3.11451e-246
                                             -6.690686
##
  26
                      Penis
                             3.023792e-18
                                             -5.753479
##
  27
                  Placenta
                               0.07013259
                                              2.397895
##
  28
                  Prostate
                                             -10.08778
##
  29
                    Sarcoma 9.774701e-213
                                             -1.028899
## 30
           Small.intestine 1.479593e-31
                                             -5.916202
                                             -7.137096
## 31
                    Stomach
## 32
                     Testis
                             1.871184e-97 -0.09472556
## 33
                     Thymus
                             6.748934e-06
                                             -1.915502
##
   34
                    Thyroid
                            7.821825e-09
                                             -2.194891
  35
                     Uterus 1.457974e-105
##
                                             -6.262217
## 36
                      Vulva
                            1.521831e-27
                                             -5.552298
## 37
                      Total
                                             -4.121323
```

4. Existing cancer funding and publication data

The Hong Kong government established in Health and Medical Research Fund (HMRF) in 2011 to specifically provide research funding for health and medical research in Hong Kong. Since 2016 over 370 projects in the category of Cancer has been funded for a total of ~\$400 M dollars. A list of all funded projects can be found on the Health Bureau webpage. You would like to use this data to see if there is any association between previous project funding and the epidemiology of cancers in Hong Kong.

We can also do a similar thing with publications and ask if the research publications in Hong Kong have been aligned with the incidence and mortality. We can obtain this data from PubMed using the following terms: ("Hong Kong" [Affiliation]) AND (neoplasms [MeSH Terms])

The data has been predownloaded as the Pubmed API via R is a bit slow.

Discussion points:

- Why has research publications increased dramatically in recent years? Is there something unsual with the dataset?
- What are the main cancer types being researched in Hong Kong?
- Is there any correlation between funding and cancer incidence and mortality?

Download HMRF grants and Pubmed data

```
HMRF<- read.delim("https://github.com/StatBiomed/BMDS-book/raw/main/notebooks/module5-epidemi/HMRF_canc
#HMRF

pubmed<- read.delim("https://github.com/StatBiomed/BMDS-book/raw/main/notebooks/module5-epidemi/pubmed_
#pubmed
hist(pubmed$Publication.Year)</pre>
```

Histogram of pubmed\$Publication.Year

Make word cloud for grants

```
if (!require("ggwordcloud")) install.packages("ggwordcloud")
if (!require("tm")) install.packages("tm")
if (!require("dplyr")) install.packages("dplyr")
if (!require("RColorBrewer")) install.packages("RColorBrewer")
library(ggwordcloud)
library(tm)
library(dplyr)
library(RColorBrewer)
#Create a vector containing only the text
gtext <- HMRF$Project.Title</pre>
# Create a corpus
gdocs <- Corpus(VectorSource(gtext))</pre>
gdocs <- gdocs %>%
  tm_map(removePunctuation) %>%
  tm_map(stripWhitespace)
gdocs <- tm_map(gdocs, content_transformer(tolower))</pre>
gdocs <- tm_map(gdocs, removeWords, stopwords("english"))</pre>
gdtm <- TermDocumentMatrix(gdocs)</pre>
gmatrix <- as.matrix(gdtm)</pre>
gwords <- sort(rowSums(gmatrix),decreasing=TRUE)</pre>
```

```
gdf <- data.frame(word = names(gwords), freq=gwords)</pre>
set.seed(1235) # for reproducibility
gp<-ggwordcloud(words = gdf$word, freq = gdf$freq, min.freq = 1,max.words=200, random.order=FALSE, rot.
#gp
#Create a vector containing only the text
pmtext <- pubmed$Title</pre>
# Create a corpus
pmdocs <- Corpus(VectorSource(pmtext))</pre>
pmdocs <- pmdocs %>%
 tm_map(removePunctuation) %>%
  tm map(stripWhitespace)
pmdocs <- tm_map(pmdocs, content_transformer(tolower))</pre>
pmdocs <- tm_map(pmdocs, removeWords, stopwords("english"))</pre>
pmdtm <- TermDocumentMatrix(pmdocs)</pre>
pmmatrix <- as.matrix(pmdtm)</pre>
pmwords <- sort(rowSums(pmmatrix), decreasing=TRUE)</pre>
pmdf <- data.frame(word = names(pmwords), freq=pmwords)</pre>
set.seed(1235) # for reproducibility
pm<-ggwordcloud(words = pmdf$word, freq = pmdf$freq, min.freq = 1,max.words=200, random.order=FALSE, ro
grid.arrange(arrangeGrob(pm, top = 'Pubmed'),arrangeGrob(gp, top = 'Grants'),nrow=2,heights=c(6,6))
```

Pubmed

Grants

Make compare grant funding with incidence and mortality

```
if (!require("ggrepel")) install.packages("ggrepel")
if (!require("ggplot2")) install.packages("gglot2")
if (!require("gridExtra")) install.packages("gridExtra")
library(ggrepel)
library(ggplot2)
library(gridExtra)

grantpmsum<- read.delim("https://github.com/StatBiomed/BMDS-book/raw/main/notebooks/module5-epidemi/Gratgrantpmsum</pre>
```

## 2 Bladder 0 14 ## 3 Brain 2 2 ## 4 Breast 34 11	##		Cancer	Grants	Pubmed
## 3 Brain 2 2 ## 4 Breast 34 11	##	1	Biliary	0	72
## 4 Breast 34 11	##	2	Bladder	0	141
	##	3	Brain	2	294
## 5 Cervix 9 4	##	4	Breast	34	1147
	##	5	Cervix	9	408

```
## 7
                                   2
                                          27
                         Eye
           Hodgkin lymphoma
## 8
                                   0
                                          21
## 9
                                   0
                                           6
                      Kaposi
## 10
                      Kidney
                                   0
                                         133
## 11
                                   0
                                           8
                      Larynx
## 12
                                         515
                  Leukaemia
                                  18
## 13
                       Liver
                                  97
                                        2077
## 14
                                  22
                                         773
                        Lung
## 15
                   Melanoma
                                   0
                                          99
## 16
               Mesothelioma
                                   6
                                          58
## 17
                                   0
                                         104
           Multiple myeloma
## 18
                                   0
                                          14
                       Nasal
## 19
                Nasopharynx
                                  24
                                        1113
## 20 Non-Hodgkin lymphoma
                                   0
                                          55
## 21
                        Skin
                                   0
                                          32
## 22
                                   7
                                         404
                 Oesophagus
## 23
                        Oral
                                   5
                                         229
## 24
                                         354
                       Ovary
                                  14
## 25
                   Pancreas
                                   2
                                         141
## 26
                       Penis
                                   0
                                          7
## 27
                                   0
                                           9
                   Placenta
## 28
                                   6
                                         322
                   Prostate
## 29
                                   2
                                         216
                     Sarcoma
## 30
            Small intestine
                                   0
                                         11
## 31
                     Stomach
                                   5
                                         455
## 32
                      Testis
                                   0
                                          18
                                   0
## 33
                      Thymus
                                           3
                                   2
## 34
                                         231
                     Thyroid
## 35
                      Uterus
                                   0
                                          72
## 36
                       Vulva
                                   0
                                           8
HKCancer_inc <- HKCancer[HKCancer$Type=='incidence',]</pre>
HKCancer_mort <- HKCancer[HKCancer$Type=='mortality',]</pre>
```

40

857

Colorectum

6

```
HKCancer_inc <- HKCancer[HKCancer$Type=='incidence',]

HKCancer_inc_sum <- data.frame(incidence=colSums(HKCancer_inc[,-(1:4)]))

HKCancer_mort <- HKCancer[HKCancer$Type=='mortality',]

HKCancer_mort_sum <- data.frame(mortality=colSums(HKCancer_inc[,-(1:4)]))

HKCancer_compare <-data.frame(cancer=grantpmsum$Cancer, grants=grantpmsum$Grants, pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Grants, pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Grants, pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Grants, pubmed=grantpmsum$Pubmed=grantpmsum$Pubmed=grantpmsum$Grants, pubmed=grantpmsum$Pubmed=grantpmsum$Grants, pubmed=grantpmsum$Pubmed=grantpmsum$Grants, pubmed=grantpmsum$Pubmed=grantpmsum$Grants, pubmed=grantpmsum$Grants, pubmed=g
```


5. Task (to be completed in Tutotial 2 by 3:00pm and shared with other tutorial group)

As a group, discuss what cancer type you think is most worthy of funding in Hong Kong. Prepare 2-3 PowerPoint/Google Slides summarising your decision. Include some points and figures supporting your final conclusion. If possible also include suggestions of what other data/analyses can be performed and/or other cancer types that are also in need of funding in Hong Kong.