Math 531 Homework 3

Theo Koss

February 2021

1 Section 2.1

- Problem 1:
 - (a) $f: \mathbb{R} \to \mathbb{R}$; f(x) = x + 3. Injective and surjective. This is a bijection
 - (b) $f: \mathbb{C} \to \mathbb{C}$; $f(x) = x^2 + 2x + 1$. Surjective but not injective.
 - (c) $f: \mathbb{Z}_n \to \mathbb{Z}_n$; $f([x]_n) = [mx + b]_n$, where $m, b \in \mathbb{Z}$. Neither injective nor surjective? (What if m, b = 0).
 - (d) $f: \mathbb{R}^+ \to \mathbb{R}; f(x) = ln(x)$. Injective and surjective. This is a bijection.
- Problem 6: Let $S = \{1, 2, 3\}$ and $T = \{4, 5\}$.
 - (a) How many functions are there from $S \to T$? From $T \to S$? There are $2^3 = 8$ from $S \to T$, and $3^2 = 9$ from $T \to S$.
 - (b) How many of the functions from $S \to T$ are one-to-one? How many are onto? None of the functions are one-to-one. There are 6 functions that are onto.
 - (c) How many of the functions from $T \to S$ are one-to-one? How many are onto? There are 6 functions from $T \to S$ that are one-to-one. None of the functions are onto.

• Problem 15: Let $f: A \to B$ and $g: B \to C$ be functions. Prove that if $g \circ f$ is one-to-one, the f is one-to-one, and that if $g \circ f$ is onto, then g is onto.

Proof. Consider
$$A = \{x_1, x_2, x_3, ..., x_n\}$$
, $B = \{y_1, y_2, y_3, ..., y_n\}$ and $C = \{z_1, z_2, z_3, ..., z_n\}$. Since $g \circ f$ is one-to-one, QED

2 Section 2.2

• Problem 4: Let S be the set of all ordered pairs (m, n) of positive integers. For $(a_1, a_2) \in S$ and $(b_1, b_2) \in S$, define $(a_1, a_2) \sim (b_1, b_2)$ if $a_1 + b_2 = a_2 + b_1$. Show that \sim is an equivalence relation.

Proof. Reflexivity: Check $(a,b) \sim (a,b) \Longrightarrow a+b=a+b$. Symmetry: Check $(a,b) \sim (c,d)$ iff $(c,d) \sim (a,b)$. Then a+b=c+d iff c+d=a+b. This is true. Transitivity: Check if $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$, then $(a,b) \sim (e,f)$.

a+b=c+d and c+d=e+f, so we can replace c+d in the second equation to get: a+b=e+f. Then $(a,b)\sim (e,f)$. Therefore this is an equivalence relation. QED

• Problem 9: Show that any circular relation is an equivalence relation.

Proof. By definition, $R \subseteq S \times S$ is both symmetric and transitive. (IDK how to show reflexivity? I think it has to do with the fact that transitivity is stronger than reflexivity but idk)

QED

3 Section 2.3

• Problem 3: $(\frac{1}{3}, \frac{2}{4}, \frac{3}{10}, \frac{4}{5}, \frac{5}{7}, \frac{6}{8}, \frac{7}{2}, \frac{8}{6}, \frac{9}{9}, \frac{10}{10})$ As a product of disjoint cycles and as a product of transpositions, construct its associated diagram, and find its order.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 10 & 5 & 7 & 8 & 2 & 6 & 9 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 10 & 2 & 4 & 5 & 7 & 6 & 8 & 9 \\ 3 & 10 & 1 & 4 & 5 & 7 & 2 & 8 & 6 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 10 \\ 3 & 10 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 & 5 & 7 \\ 4 & 5 & 7 & 2 \end{pmatrix} \cdot \begin{pmatrix} 6 & 8 \\ 8 & 6 \end{pmatrix} \cdot \begin{pmatrix} 9 \\ 9 \end{pmatrix}$$

The order is 12.

- Problem 7: Not sure :/
- Problem 14: Prove that (a, b) cannot be written as a product of two cycles of length three.

Proof. (a,b) is an odd permutation. A cycle of length 3 is an even permutation, and even times even can never be odd, therefore the product of two cycles of length 3 is even. QED