Network Estimation:: CHEAT SHEET

Centrality

Stablity

Packages

qgraph plot networks bootnet estimate networks Estimate mixed graphical mgm networks/network prediction psychonetrics (confirmatory) network modeling

install.packages("ggraph","bo otnet", "psychonetrics")

Data Format

Columns: Variables (Nodes)

Rows: **Participants**

Network Estimation

Gaussian Graphical Model (Continuous Data)

GMM net <estimateNetwork(data, default = "EBICglasso", corMethod = "cor", missing = "pairwise")

Based on correlations Pairwise deletion of missing values

Ising Model (Binary Data)

Ising_net <-</pre> estimateNetwork(data, default = "IsingFit", rule = "OR", missing = "listwise") "OR" Rule

Listwise deletion of missing values

Type of Variable Mixed Graphical Model (Mixed Data, g = Continuous e.g., Continuous, Count, Categorical)

Fit obj <- mgm(data, type = rep("g", 2), level = rep(1,2), Level of Variable (continuous = 1) lambdaSel = "EBIC" lambdaGam = 0.25Type of Model

Network Prediction

Determines how much variance is explained by other nodes in the network

pred obj <- predict(object =</pre> Fit_obj, data, errorCon = "R2")

predict works only with networks fitted with the mgm package and no

Network Plots

mgm

Basic Plotting

Several possibilities to plot network

Both codes produce identical results.

plot(GGM net)

Object from *estimate*Network function

ggraph(GGM net\$graph, layout="spring", theme = colorblind)

> Fruchterman-Reingold

Advanced Plotting

groups <- c(rep("Beliefs",6),</pre> c = Categorical rep("Feelings",4))

Differentiate between groups

plot(GGM net, groups = groups, legend = false, pie = abs(pred obj\$errors[,2]),

labels = colnames(data) Object via predict

Define groups

boot1 <- bootnet(GGM net,</pre> statistics = c("edge", "Strength", "Closeness"), nboots = 1000, nCores = 2, type = "nonparametric")

Network Stability

set.seed(4815162342)

cent <- centrality(GGM net)</pre>

Plot including grouping and R² for each

node (defined by the ring around the

Network Centrality

= "raw", include =

#determine values

centralityPlot(GGM net, scale

c("Strength", "Closeness"))

node).

Set Seed for reproducibility

Use also

'closeness" or "strength"

Edge comparison

boot2 <- bootnet(GGM net,</pre> statistics = c("Strength". "Closeness"), nboots = 1000 nCores = 2, type = "case")

plot(boot1, statistics = "edge", labels = TRUE, order = "sample")

Plot edge stability.

plot(boot2, statistics = c("Strength", "Closeness"))

Plot centrality stability.

Difference Tests

plot(boot1, statistics = "edge", plot = "difference", onlyNonZero = TRUE, order = \ "sample") specify difference

RStudio® is a trademark of RStudio, Inc. • CC BY SA Janis Zickfeld • jhzickfeld@gmail.com • Learn more at http://psychosystems.org/software/•