Movie Recommendation System

Team Members:

Danielle Aras Soumyadeb Maity Jhansi Saketa B V

About the Project

In a crowded entertainment market, movie streaming services and advertisers need to present customers with the most relevant recommendations possible to maintain customer interest and loyalty. This project will use a database of user-submitted movie ratings to explore ways to generate movie recommendations and predict how users may rate future movies.

Data

MovieLens Dataset

"Latest Full" set will be used (27 million data points)

URL:

https://grouplens.org/datasets/movielens/

The dataset has been downloaded to Danielle's computer

Tools

- Python
- Pandas
- Scikit-learn
- Matplotlib

Classification

SVD

Singular Value Decomposition

- Unsupervised
- Collaborative filtering
- Factorization of the matrix into three matrices
- Method from linear algebra that has been generally used as a dimensionality reduction technique in machine learning

Classification

SVD

Evaluation - SVD

```
from surprise.model_selection import train_test_split
from surprise import accuracy
# define train test function
def train test algo(algo, label):
    training set, testing set = train test split(rating dataframe, test size = 0.25)
    algo.fit(training set)
    test output = algo.test(testing set)
    test dataframe = pd.DataFrame(test output)
    print("RMSE -",label, accuracy.rmse(test output, verbose = False))
    print("MAE -", label, accuracy.mae(test_output, verbose=False))
    print("MSE -", label, accuracy.mse(test output, verbose=False))
    return test dataframe
train_test_SVD = train_test_algo(SVD_algo, "SVD_algo")
print(train test SVD.head())
RMSE - SVD algo 0.7979897029603923
MAE - SVD algo 0.6025927732135373
MSE - SVD algo 0.6367875660308151
             iid r_ui
                                                   details
   39569 59107 2.0 2.652985 {'was impossible': False}
1 135415 59784 2.5 3.090653 {'was impossible': False}
2 180345 36529 5.0 4.189357 {'was_impossible': False}
         45728 3.5 2.758480 {'was impossible': False}
4 237509 133281 3.0 3.443806 {'was_impossible': False}
```

Train-Test Split Evaluation Method:

- 75 Percent for Training Data and 25 Percent for Testing Data.
- RMSE 0.8
- MAE 0.6
- MSE 0.6

Results

SVD

```
Top Three Movies Recommendations for first 5 users
       userId movieId
                          rating imdbId \
0
            1
                   318
                       4.905599
                                  111161
1
            1
                   527 4.848964
                                 108052
2
            1
                                 119217
                  1704
                        4.686185
            2
11986
                   318 4.527728
                                 111161
            2
11987
                 26086
                        4.481109
                                   56300
            2
11988
                  7153 4.462035
                                 167260
23972
            3
                   318 4.646206
                                 111161
23973
            3
                  2858 4.617762
                                 169547
            3
23974
                   632 4.583413
                                  114671
35958
            4
                  5418 5.000000
                                  258463
35959
            4
                  4011 5.000000
                                  208092
35960
            4
                  3275 5.000000
                                  144117
            5
47944
                  2858
                        5.000000
                                  169547
            5
47945
                  7153 4.996867
                                 167260
47946
            5
                  5618 4.975823 245429
                                                   title
0
                        Shawshank Redemption, The (1994)
1
                                 Schindler's List (1993)
2
                                Good Will Hunting (1997)
11986
                        Shawshank Redemption, The (1994)
       Occurrence at Owl Creek Bridge, An (La rivière...
11987
       Lord of the Rings: The Return of the King, The ...
11988
23972
                        Shawshank Redemption, The (1994)
23973
                                  American Beauty (1999)
23974
             Land and Freedom (Tierra y libertad) (1995)
35958
                             Bourne Identity, The (2002)
35959
                                           Snatch (2000)
35960
                             Boondock Saints, The (2000)
47944
                                  American Beauty (1999)
       Lord of the Rings: The Return of the King, The ...
47945
      Spirited Away (Sen to Chihiro no kamikakushi) ...
```

Classification

Nearest Neighbor

Nearest Neighbor (KNN)

- Unsupervised
- Collaborative filtering
- Finding similarity between searched movie name and other existing movie in database
- Cosine metric is chosen over Euclidean to calculate distance among data points.

Results - KNN

Other recommendations for movie: God Father:

Get the Gringo (2012), similarity or distance: 0.7862867116928101
Cold in July (2014), similarity or distance: 0.784233808517456
Imperium (2016), similarity or distance: 0.7790570855140686
The Trust (2016), similarity or distance: 0.7748041152954102
Forsaken (2016), similarity or distance: 0.7747822999954224
Triple 9 (2016), similarity or distance: 0.7712504267692566
Walk Among the Tombstones, A (2014), similarity or distance: 0.75550585
Bastille Day (2016), similarity or distance: 0.7426487803459167
In a Valley of Violence (2016), similarity or distance: 0.7412719726562
Criminal (2016), similarity or distance: 0.7377589344978333

Other recommendations for movie: Titanic:

Jaws (1975), similarity or distance: o.8694257736206055
Lethal Weapon (1987), similarity or distance: o.8664568662643433
Patriot Games (1992), similarity or distance: o.8655930757522583
Backdraft (1991), similarity or distance: o.8655616044998169
Red Dawn (1984), similarity or distance: o.8647364974021912
Superman (1978), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754
Thelma & Louise (1991), similarity or distance: o.8639472126960754

Clustering

K-Means

K-Means clustering

- Unsupervised
- Group users into clusters based on their movie ratings
- Points are assigned to the nearest cluster based on Euclidean distance from centroids
- Once grouped, recommendations can be generated for users based on the highest rated movies in their cluster

Evaluation - K Means

Inertia (Sum of Squared Error)

A measure of similarity between points in the same cluster, used for the "Elbow Method"

Silhouette Coefficient

A measure of distance between different clusters and distance between points within each cluster

Knowledge Gained (Results)

Clustering

```
def get_top_recs(cluster, df_model, df_ratings, min_ratings, top_n):
    cluster_ids = df_model[df_model['Cluster'] == cluster]['userId'].tolist()
    df_cluster = df_ratings[df_ratings['userId'].isin(cluster_ids)]
    com_ratings = df_cluster.groupby('movieId').filter(lambda x: len(x) > min_ratings)
    return com_ratings.groupby('title').mean()['rating'].reset_index().sort_values('rating', ascending=False).head(top_n)

get_top_recs(1, df_avg, df_c, 10, 10)
```

```
        287
        It's a Wonderful Life (1946)
        4.725000

        288
        Intouchables (2011)
        4.642857

        298
        Killing Fields, The (1984)
        4.590909

        454
        Shawshank Redemption, The (1994)
        4.584906

        565
        Wallace & Gromit: The Wrong Trousers (1993)
        4.576923

        77
        Bonnie and Clyde (1967)
        4.576923

        0
        12 Angry Men (1957)
        4.571429

        223
        Good, the Bad and the Ugly, The (Buono, il bru... Apocalypse Now (1979)
        4.562500

        31
        Apocalypse Now (1979)
        4.545250

        315
        Life Is Beautiful (La Vita è bella) (1997)
        4.545455
```

Using a simple function and existing dataframes, top-rated recommendations for each cluster can be generated.

Applications

We can use a hybrid model to combine all the discussed methods like k-means clustering, SVD, and KNN for use in a recommendation system for any movie library.

Consider how services like Netflix, Hulu, etc. have multiple types of recommendations.

Reference

[1] Carlos A. Gomez-Uribe and Neil Hunt. 2015. The Netflix recommender system: Algorithms, business value, and innovation. ACM Trans. Manage. Inf. Syst. 6, 4, Article 13 (December 2015), 19 pages. DOI: http://dx.doi.org/10.1145/2843948

[2] Eyrun A. Eyjolfsdottir, Gaurangi Tilak, Nan Li (2008), "MovieGEN: A Movie Recommendation System", 2008 Conference Proceedings.

[3] Roman, Victor (2019), "Unsupervised Classification Project: Building a Movie Recommender with Clustering Analysis and K-Means", Towards Data Science, https://towardsdatascience.com/unsupervised-classification-project-building-a-movie-recommender-with-clustering-analysis-and-4bab0738efe6

[4] Nixon, Alex Escola (2020), "Building a movie content based recommender using tf-idf", Towards Data Science, https://towardsdatascience.com/content-based-recommender-systems-28a1dbd858f5