7. Sicherheit

Gliederung

- Sicherheitsziele
- Kryptographie abstrakt
- Authentifikation
- Integrität
- Schlüsselverteilung und Zertifikate
- Firewalls
- Angriffe und Gegenmaßnahmen
- Sicherheit in den verschiedenen Kommunikationsschichten

Lernziele:

- Prinzipien der Sicherheit im Netz
 - Kryptographie und Nutzungen, die über Vertraulichkeitsschutz hinausgehen
 - Authentifikation
 - Nachrichtenintegrität
 - Schlüsselverteilung
- Sicherheit in der Praxis
 - Firewalls
 - Sicherheitsfunktionen in den Kommunikationsschichten

Sicherheitsziele

Vertraulichkeit Integrität Verfügbarkeit Die drei immer genannten Hauptziele

Anonymität Es gibt weitere Ziele. Ziele können gegensätzlich sein **Nachvollziehbarkeit / Zurechenbarkeit**

...

Authentifikation Die beiden grundlegenden Hilfsdienste **Autorisierung**

Im Netz:

Nachrichtenvertraulichkeit / Integrität Nachrichten--Absenderauthentifikation, Empfängerauthentifikation

Freunde und Feinde: Alice, Bob, Trudy

- In der Welt der Netzsicherheit wohlbekannt
- Bob und Alice (befreundet!) wollen sicher kommunizieren
- Trudy (der Eindringling) kann Nachrichten abfangen, löschen, verändern, einschleusen

F: Was kann Trudy (allg. ein "bad Guy") tun?

A: Jede Menge!

- Abhören
- aktiv neue Nachrichten einfügen / unterschieben
- Maskerade: fälschen (spoof) der Quelladresse eines Pakets (oder anderer Kontrollfelder)
- Sitzungsübernahme (Hijacking) / Verbindungsübernahme

Verfügbarkeitsattacke (Denial of Service / DoS-Attacke)

darüber später mehr.....

Kryptographie abstrakt

Symmetrische Verschlüsselung:

Beide Schlüssel sind identisch - Shared Secret

Asymmetrische Verschlüsselung:

Paar aus öffentlichem und privatem Schlüssel

(Public Key, Private Key), (Privater Schlüssel ist geheim)

Prinzipien der Verschlüsselung

- > Algorithmen i.d.R. bekannt, Schlüssel unbekannt
- > Man unterscheidet
 - > Monoalphabetische Verschlüsselung jedes Zeichen wir einzeln verschlüsselt
 - Blockverschlüsselung ganze Blöcke werden verschlüsselt

sowie

- Symmetrische Verschlüsselung identische Schlüssel auf beiden Seiten
- Unsymmetrische Verschlüsselung unterschiedliche Schlüssel

Blockverschlüsselung

- Nachrichten werden in Blöcken fester Größe verschlüsselt (z.B., 64-bit Blöcke).
- 1-zu-1 Abbildung zwischen Blöcken des Klartextes und des verschlüsselten Textes

Beispiel mit k=3:

<u>input</u>	<u>output</u>	input	output
000	110	$\frac{100}{100}$	011
001	111	101	010
010	101	110	000
011	100	111	001

• Es gibt 2^k! Möglichkeiten der Abbildung (für k=3 nur 40320 für k=64 sehr viele..)

Blockverschlüsselung

Blockverschlüsselung liefert identische Ergebnisse bei identischen Blöcken

Deshalb i.d.R. Nutzung positionsabhängiger Schlüssel:

Verfügbare Verfahren:

DES, 3DES, AES

Angriffsmöglichkeiten

 Angriff auf Basis des verschlüsselten Textes: Trudy besitzt den verschlüsselten Text und kann ihn analysieren

Zwei Ansätze:

- Ausprobieren aller
 Schlüssel, u.U. sind
 einzelne Schlüssle
 wahrscheinlicher als
 andere
 Voraussetzung Klartext
 kann identifiziert werden
- Statistische Analyse

- Angriff bei (in Teilen)
 bekanntem Klartext: Trudy
 kann Klartext
 verschlüsseltem Text
 zuordnen
 z.B. bei einem
 monoalphabetischen Verfahren
 erkennt Trudy die
 Verschlüsselung von Alice und
- Angriff bei ausgewähltem Klartext: Trudy kann den verschlüsselten Text zu einem beliebigen Klartext generieren

Symmetrische Verschlüsselung

Symmetrische Verschlüsselung:

Bob und Alice kennen beide gemeinsam denselben Schlüssel: Shared Secret $\mathbf{K}_{\text{A-B}}$

Problem

Das Shared Secret muss irgendwann vorher einmal auf sichere Weise kommuniziert worden sein: *Man kann nur dann sicher kommunizieren, wenn man vorher schon einmal sicher kommunizieren konnte!*

Vorteil

Leistungsfähige Algorithmen und Implementierungen verfügbar.

• Beispiele: DES, TripleDES, AES

Anforderungen:

- 1. Es gibt zwei Schlüssel, K^+ und K^- , so dass $K^-(K^+(m)) = m$
- 2. K⁻ kann nicht aus K⁺ oder K⁺(m) hergeleitet werden

Zugehöriger Algorithmus: RSA: Rivest, Shamir, Adelson Algorithmus

- 1977 publiziert
- 1983 patentiert
- 2000 Patent erloschen

Basis: modulo Arithmetik

x mod n = Rest, wenn x durch n dividiert wird Eigenschaften:

```
[(a mod n) + (b mod n)] mod n = (a+b) mod n

[(a mod n) - (b mod n)] mod n = (a-b) mod n

[(a mod n) * (b mod n)] mod n = (a*b) mod n
```

Somit gilt

```
(a \mod n)^d \mod n = a^d \mod n
```

```
Beispiel: x=14, n=10, d=2:

(x \text{ mod } n)^d \text{ mod } n = 4^2 \text{ mod } 10 = 6

x^d = 14^2 = 196 \text{ damit gilt auch } x^d \text{ mod } 10 = 6
```

Vorgehen:

- Wähle zwei große Primzahlen p, q
 (z.B. Länge 1024 Bit oder größer)
- 2. Berechne n = pq, z = (p-1)(q-1)
- 3. Wähle ein e(e < n), das keine gemeinsamen Primfaktoren mit z hat (e, z sind "relative prim")
- 4. Wähle d, so dass ed-1 durch z teilbar ist (also: $ed \mod z = 1$)
- 5. Öffentliche Schlüssel (n,e). Private Schlüssel (n,d).

Ver- und Entschlüsselung:

- 1. Seien (n,d) und (n,e) wie auf der vorherigen Folie berechnet
- 2. Verschlüsselung der Nachricht m (< n)

$$c = m^e \mod n$$

3. Entschlüsselung der Nachricht

$$m = c^d \mod n$$

Warum funktioniert das Verfahren??

Es gilt hier
$$m = (m^e \mod n)^d \mod n$$

Beweis erfordert Sätze aus der Zahlentheorie!

Public Key Kryptographie – Asymmetrische Verschlüsselung

Public Key Kryptographie [RSA]

- Es gibt kein geteiltes Geheimnis
- Alle kennen den öffentlichen Schlüssel
- Nur der Empfänger kennt den privaten Entschlüsselungsschlüssel
- $* Es gilt \mathbf{m} = \mathbf{K}_{B}^{-}(\mathbf{K}_{B}^{+}(\mathbf{m})) und \mathbf{m} = \mathbf{K}_{B}^{+}(\mathbf{K}_{B}^{-}(\mathbf{m}))$

Authentifikation

Bob und Alice kommunizieren per Nachrichtenaustausch.

Ziel: Bob möchte, dass Alice ihm beweist, dass sie wirklich Alice ist

Protokoll ap1.0: Alice teilt mit "Ich bin Alice"

<u>Fehlermöglichkeiten</u>

Protokoll ap2.0: Alice teilt mit "Ich bin Alice" und sende meine IP-Adresse

Sende mit eigener IP-Adresse

Fehlermöglichkeiten

<u>Protokoll ap3.0:</u> Alice teilt mit "Ich bin Alice", sende meine IP-Adresse und ein geheimes Password.

Authentifikation

Vorlagen von H. Krumm und

Kurose/Ross (copyright 99-12)

Verhindere erfolgreiche Wiedereinspiel-Attacken Ziel:

Zahl, die nicht vorhersagbar ist und nur einmal benutzt wird (N_{once}) Nonce:

Protokoll ap.4: Als Beweis dafür, dass Alices Antwort "frisch" ist, sendet Bob eine N_{once} R an Alice, Alice muss R in verschlüsselter Weise zurücksenden (Challenge-Response-Authentifkation)

Die Antwort ist frisch, und sie kommt von Alice, da nur sie (außer Bob) K_{A-B} kennt und R verschlüsseln konnte. 20

Authentifikation mit Public Key Kryptographie

Bisher wird ein Shared Secret K_{A-B} benötigt, das initial beiden bekannt sein muss

Geht es auch mit Public-Key-Verschlüsselung?

Protokol ap5.0: N_{once} und Signatur

Bob berechnet

K_A⁺(K_A(R)) = R

und weiß, dass nur

Alice ihren privaten

Schlüssel kennt, so

dass nur sie die

Nachricht erzeugen

konnte

Schwachstelle - "Man in the Middle" Angriff

© Peter Buchholz 2017 nach Vorlagen von H. Krumm und Kurose/Ross (copyright 99-12) sollte für Bob prüfbar sein

Digitale Signatur

Kryptographische Technik, welche die Funktion handschriftlicher Unterschriften erfüllen soll

- Sender (Bob) signiert ein Dokument digital und bestätigt damit, dass er das Dokument so erzeugt hat
- verifizierbar, fälschungssicher:
 Empfänger (Alice) kann Dritten gegenüber beweisen, dass Bob, und niemand anders (auch Alice nicht), das Dokument signiert haben muss

ABER:

- Kryptoalgorithmen sind nicht ewig sicher:
 Digitale Unterschriften müssen alle paar Jahre aufgefrischt werden
- Private Schlüssel können korrumpiert werden: Rückrufe

Digitale Signatur

Einfache digitale Signatur für eine Nachricht m:

Bob signiert m dadurch, dass er m mit seinem privaten Schlüssel K_B verschlüsselt: K_B (m)

Wenn Alice diese Nachricht empfängt, den öffentlichen Schlüssel von Bob kennt und davon ausgehen kann, dass Bobs privater Schlüssel nur Bob bekannt ist:

- Bob und kein anderer hat diese Nachricht so signiert
- Bob kann nicht abstreiten, dass er die Nachricht signiert hat Probleme:
- Asymmetrische Verschlüsselung ist rechenaufwändig
- Wie erfährt Alice den öffentlichen Schlüssel K_B + von Bob?

Message Digest - Kryptographische Hashfunktion

Das direkte Signieren langer Nachrichten kostet viel Rechenzeit

<u>Ziel:</u> effizient berechenbarer Fingerabdruck einer Nachricht m: Message Digest H(m)

H ist kryptographische Hashfunktion

- Beispiele MD5 (RFC 1321)
 - Berechnet eine 128 Bit langen
 Sequenz in 4 Schritten.
 - Für eine zufällig gewählte 128 Bit lange Sequenz ist es schwer eine zugehörige Nachricht zu erzeugen, deren MD5 Hash-Sequenz gerade der berechneten Sequenz entspricht.

SHA-1 (NIST Standard)

Eigenschaften kryptographischer Hashfunktionen:

- Abbildung langer Bytefolgen auf kürzere Folge
- Nicht umkehrbar: Gegeben x = H(m), so ist es sehr aufwändig daraus m zu berechnen
- Gegeben m und x=H(m), so ist es sehr aufwändig ein m'≠m zu finden, so dass x=H(m') gilt.
- Es ist sehr aufwändig, überhaupt zwei m, m' zu finden, so dass H(m)=H(m') gilt

Digitale Signatur = Signierter Message Digest

Bob sendet digital signierte Nachricht

Alice verifiziert die Signatur und die Integrität der signierten Nachricht

Vertrauenswürdige dritte Parteien

<u>Verwaltung symmetrischer</u> <u>Schlüssel:</u>

Wie können 2 Parteien im Netz ein Shared Secret etablieren?

Lösung:

- Key Distribution Center (KDC) wirkt als Mittler zwischen den Parteien
 - statt n² Shared Secrets zwischen allen Paaren sind initial nur n Shared Secrets zwischen KDC und den Parteien einzurichten
 - KDC generiert bei Bedarf
 Sitzungsschlüssel für 2 Parteien

Public Key Zertifizierung:

 Wenn Alice den öffentlichen Schlüssel von Bob erfährt, wie kann sie sicher sein, dass das wirklich Bobs öffentlicher Schlüssel ist

Lösung:

 Zertifizierungsstelle (Certification Authority CA)

Key Distribution Center (KDC)

- Alice, Bob brauchen ein Shared Secret zur effizienten sicheren Kommunikation
- KDC: Server verwaltet je Partei einen geheimen Schlüssel
- Alice und Bob kennen jeweils ihre eigenen geheimen Schlüssel, $K_{A\text{-}KDC}$ $K_{B\text{-}KDC}$, mit deren Hilfe sie mit dem KDC authentifiziert kommunizieren können.
- Wenn Alice eine Sitzung mit Bob durchführen will, lassen sie sich vom KDC einen Sitzungsschlüssel als Shared Secret zwischen Alice und Bob erzeugen

Key Distribution Center (KDC)

Wie erfährt Bob den Sitzungsschlüssel R1?

KDC erzeugt "Ticket", das von Alice unveränderbar an Bob weitergegeben wird

Alice und Bob kommunizieren effizient: Sie nutzen R1 als Session Key für die symmetrische Verschlüsselung

Zertifizierungsstellen (Certification Authorities CAs)

- Certification Authority (CA): Verwaltet die Bindung eines öffentlichen Schlüssels an Person / Partei E.
- E registriert seinen öffentlichen Schlüssel bei CA.
 - E weist sich bei CA aus (z.B. mit dem Personalausweis)
 - CA erzeugt einen Datensatz, das Zertifikat, das die Bindung von K_E^+ an E dokumentiert
 - Zertifikat: "K_E⁺ ist öffentlicher Schlüssel von E" digital signiert von CA

Inhalt eines Zertifikats

- Seriennummer (eindeutig für alle Zertifikate derselben CA)
- Information zur Partei: Name, Art
 - auch (hier nicht sichtbar) öffentlicher Schlüssel sowie Angaben zu unterstützter Kryptoalgorithmen

Firewalls

Verkehrskontrolleinrichtung an Grenze eines Firmennetzes zum öffentlichen Netz hin (auch an Innennetzgrenzen zu sensiblen Subnetzen): Lässt manche Kommunikation zu, manche nicht.

Firewalls: Motivation

Eigentlich sind Firewalls nicht nötig, weil alle Hosts und Router nur vorgesehene Dienste an vorgesehene Nutzer erbringen sollen und dies durch die Autorisierungs- und Authentifikationsdienste der Rechner kontrolliert wird.

Aber es gibt immer wieder unvorhergesehene Schwachstellen, die aus Programmier- und Administrationsfehlern resultieren.

Deshalb sollen Firewalls zusätzlich unabhängig von den anderen Diensten unerwünschten Verkehr abblocken und damit die Angriffsfläche verkleinern.

Ferner

- Abwehr von Verfügbarkeitsangriffen auf das Innennetz
- Abwehr von IP-Spoofing-Angriffen
- Oft in Verbindung mit NAT
- Oft in Verbindung mit VPN

Firewalls: Architektur

Drei Aspekte

- Netztopologie
 - Innennetz Außennetz,
 Firewall an Verbindungswegen
- Filterfunktion3 Filtertypen
 - Applikationsfilter
 - Verbindungsfilter
 - Paketfilter (statisch / dynamisch)
- Filteranordnung
 - nur ein Router mit Paketfilter
 - mehrere zusammenwirkende Filter und Knoten
 - » Dual homed Bastion Host
 - » Screened Subnet

Paket-Filter

 Router, der Innen- und Außennetz verbindet, hat Paketfilterfunktion

 Liste aus Filterregeln der Form "Interface, Bedingung über Paket-Header, Aktion"

- source IP address, destination
 IP address, TCP/UDP source
 and destination port numbers
- ICMP message type, TCP SYN and ACK bits
- Aktion: Paket durchlassen, verwerfen (mit / ohne Alarm)
- Statische und dynamische Filter

Should arriving packet be allowed in? Departing packet let out?

Filterlisten - Aufbau

Vorne: Anti-Spoofing Regeln verbieten, dass

von außen Pakete mit Innenadressen

als Absenderadresse durchkommen

Mitte: Nur positive Regeln für den

notwendigen Verkehr

Hinten: Negative Regeln, die den ganzen Rest

verbieten.

Verbindungsfilter

Realisierung durch einen Prozess "Verbindungs-Gateway" auf einem Firewall-Host

Es werden keine direkten
 Transportverbindungen mehr zwischen
 Außen- und Innennetz zugelassen:

Stattdessen 2 Verbindungen:Client – Gateway und Gateway – Server

 Gateway packt die TCP-Nutzdaten aus und verpackt sie selbst wieder

- Prüfung der TCP-Adressen und Formate, Erschweren von Formatfehler- und Segmentierungsattacken
- Die eigentlichen Anwendungsdaten können nicht untersucht werden, weil das Verbindungsgateway das Anwendungsprotokoll nicht kennt

Applikationsfilter

- Realisierung durch einen Prozess "Applikationsgateway" auf einem Firewall-Host, z.B. Telnet-Gateway
- Es werden keine direkten Anwendungsverbindungen mehr zwischen Außen- und Innennetz zugelassen:
 - Stattdessen 2 Verbindungen:Client Gateway und Gateway Server
- Gateway packt die Anwendungsnutzdaten aus und verpackt sie selbst wieder
- Gateway kann Anwendungsdaten interpretieren, da speziell für bestimmten Anwendungstyp erzeugt:
 - Nutzerkennungen, Authentifikation und Autorisierung
 - Zusatzdaten (z.B. Mail-Anhänge, Active X, Applets)

Ein Applikationsgateway wird oft auch Applikations-Proxy oder Applikationsfilter genannt

Typische Bedrohungen im Internet (Internet Security Threats)

Mapping und Scanning:

- Vor dem eigentlichen Angriff: Erkunde das Netz, finde heraus, welche Hosts, Dienste, Betriebssysteme vorhanden sind
- ping kann zeigen, welche Host-Adressen vergeben sind (auch Verzeichnisse sind nützlich)
- Port-Scanning: Versuch, zu jedem TCP Port eine Verbindung aufzubauen bzw. jeden UDP-Port anzusprechen Kommt eine Reaktion, welche?
 Bekannte Schwachstellen und Angriffsmuster durchspielen.
 - » nmap (http://www.insecure.org/nmap/) mapper: "network exploration and security auditing"
- Ferner: Versuch, sich einzuloggen, Versuch FTP-Server-Account anzusprechen. Nutzernamen und Passwörter raten.
 Standardmäßig eingerichtete Accounts testen.

Schutzmaßnahmen?

Internet Security Threats: Schutzmaßnahmen

Verkleinere Angriffsfläche

- Firewalls
- Auf Desktop-PC: Personal Firewall
- Gehärtete Konfiguration

Bemerke Besonderheiten

- Log-Erzeugung und Prüfung (Logging and Audit)
- Verkehrsstatistiken führen und überwachen
- Systemkonfiguration und Dateien überwachen (Tripwire)
- IDS Automatische Angriffserkennunng (Intrusion Detection Systeme)

Entferne Schwachstellen

- Aktualisiere Systeme, wenn Patches verfügbar
- Scanne selbst, um Schwachstellen zu finden

Wehre bösartigen Code ab

 Virenscanner, Firewall, gehärtete Konfiguration, eingeschränkte Nutzeraccounts

Sichere E-Mail: Vertraulichkeit

- Alice will vertrauliche Mail m an Bob senden
- Bob hat einen zertifizierten öffentlichen Schlüssel

- Prüft Bobs Zertifikat: Gültig?
- Generiert per Zufallsgenerator symmetrischen Secret Key Ks
- Verschlüsellt Nachricht mit K₅ (Effizienz)
- verschlüsselt K_S mit Bobs öffentlichem Schlüssel
- \square sendet beides, $K_s(m)$ und $K_s(K_s)$, in E-Mail an Bob
- Bob entschlüsselt erst K_B(K_S), dann K_S(m)
 © Peter Buchholz 2017 nach

TLS / SSL: Transport Layer Security / Secure Socket Layer

- "Aufsatz" auf TCP-Verbindungen:
 - (optionale) Authentifikation der Partnerprozesse
 - Vertraulichkeit, Integrität und Authentizität der Nachrichten per Verschlüsselung
- in Anwendungsprozessen zu implementieren, z.B. im Web-Browser und im Web-Server (shttp)
- Betrieb in 2 Phasen
 - 1. Vorbereitung
 - Authentifikation,
 Kryptoparameterabstimmung,
 Sitzungsschlüsselaustausch
 - 2. Kommunikation "Wie TCP" über Sockets

Server Authentifikation:

- SSL-Enabled Browser enthält
 Zertifikate vertrauenswürdiger CAs.
- Browser fordert von einem kontaktierten Server dessen Zertifikat an, das von einer dieser CAs ausgestellt sein muss
- Browser prüft mit dem CA-Zertifikat, ob das Server-Zertifikat gültig ist (Problem: Rückrufe)
- Schauen Sie mal in die Einstellungen Ihres Browsers um die CA-Liste einzusehen

IPsec: Network Layer Security

- IPsec ist im Protokoll IP V6 enthalten
 Es kann auch in IP V4 eingesetzt werden
- IPsec sichert den IP-Paketaustausch zwischen Netzknoten
- IPsec wird als "Aufsatz" auf IP im Kern des Host-Betriebssystems implementiert und durch Administrationsparameter aktiviert
 - Vorteil: Keine Änderungen oder Ergänzungen der Anwendungsprozesse nötig
 - Nachteil: Knoten und nicht individuelle Anwendungsprozesse bilden die Endpunkte der gesicherten Kommunikation

- Problem:
 - IP ist verbindungslos/sitzungslos
 - Effiziente Kommunikation verlangt Sitzungsschlüssel als Shared Secret
- Lösung: Konzept der Security Association SA
 - Je Paar aus Quelle und Ziel (also auch je Richtung) wird SA definiert
 - Alle passenden IP-Pakete gehören zur SA, solange SA existiert
- ♦ Betrieb ähnlich SSL: 2 Phasen
 - SA Aufbau
 - Paketaustausch
- SA-Aufbau wird durch Knotenadministration gesteuert: Security Policy Definition (SPD) legt für "Quelle → Ziel" fest, oh und mit welchen

"Quelle → Ziel" fest, ob und mit welchen
Parametern eine SA einzurichten ist, so dass
die IP-Pakete, die diesem Muster folgen, nur
innerhalb einer solchen SA ausgetauscht
werden.

IEEE 802.11 Wireless LAN – Security

- WLAN-Frames können leicht abgehört werden
 - Funkwellen halten sich nicht an die Grundstücksgrenzen
 - es gibt Richtantennen
- Sicherheitsfunktionen
 - Authentifikation und Verschlüsselung
- ◆ Wired Equivalent Privacy (WEP): Ein schwacher Versuch
 - Authentifikation a la ap4.0, Shared Secret und Challenge Response basiert
 - » Host sendet Request an Access Point, der antwortet mit 128-Bit N_{once}
 - » Host sendet verschlüsselte N_{once} zurück
 - Keine dynamische Schlüsselverteilung
 - Es gibt für Access Point und alle Hosts ein Gruppen-"Shared Secret"
 Daraus werden alle benötigten Schlüssel abgeleitet.
 - Verschlüsselung ist relativ leicht zu brechen

802.11i: Verbesserte Sicherheit im WLAN

- man kann deutlich stärker verschlüsseln
- dynamische Schlüsselverteilung wird unterstützt
- bindet einen separaten Authentifikationsserver ein, der nicht mit dem Access Point zusammenfällt (z.B. Kerberos, RADIUS)