

Data Science

Data Visualization

Agenda

01 Understanding Data Visualization

02 Base Graphics in R

03 Visualization with GGPLOT2

Data Visualization

Data Visualization

Data visualization is basically presentation of data with graphics. It's a way to summarize your findings and display it in a form that facilitates interpretation and can help in identifying patterns or trends

A picture is worth a 1000 words. Humans are easily attracted to visuals and most of us prefer to understand a particular scenario through pictures instead of text

It is faster to recognize a result than to read a paragraph. When done well, visualizations explain complex ideas simply.

Oftentimes charts tell the story much faster than a prose description or a table presentation

After looking at the data

Is it possible to answer the following questions?

- Which order method type has highest revenue
- Which product line has highest quantity?

Retailer country	Order method type	Retailer type	Product line	Product type	Product	Year	Revenue	Quantity	Gross margin
United States	Telephone	Golf Shop	Personal Accessories	Navigation	Trail Master	2012	1095	3	0.34767123
United States	Telephone	Department Store	Camping Equipment	Sleeping Bags	Hibernator	2012	160103.2	1160	0.3769019
United States	Telephone	Department Store	Camping Equipment	Sleeping Bags	Hibernator Self - Inflating Mat	2012	66514.28	556	0.5440107
United States	Telephone	Department Store	Camping Equipment	Sleeping Bags	Hibernator Pad	2012	16205.73	411	0.51382196
United States	Telephone	Department Store	Camping Equipment	Sleeping Bags	Hibernator Pillow	2012	33520.42	2475	0.46298346
United States	Fax	Outdoors Shop	Camping Equipment	Cooking Gear	TrailChef Water Bag	2013	19418.52	3102	0.53194888
United States	Fax	Outdoors Shop	Camping Equipment	Cooking Gear	TrailChef Cook Set	2013	42304.32	794	0.34365616
United States	Fax	Outdoors Shop	Camping Equipment	Cooking Gear	TrailChef Single Flame	2013	52266.32	824	0.26880025
United States	Telephone	Department Store	Camping Equipment	Packs	Canyon Mule Journey Backpack	2012	235660.36	676	0.38805542
United States	Telephone	Department Store	Camping Equipment	Packs	Canyon Mule Cooler	2012	53822.16	1652	0.50890117
United States	Web	Golf Shop	Personal Accessories	Watches	Venue	2014	73949	1013	0.42858294
United States	Web	Golf Shop	Personal Accessories	Watches	Infinity	2014	157890.2	665	0.45986527
United States	Web	Golf Shop	Personal Accessories	Watches	Lux	2014	67265.2	396	0.48654044

Below is the sample data: Sales Products

After displaying the data in the form of graphs. Lets try answering the questions

After displaying the data in the form of graphs. Lets try answering the questions

Which order method type has highest revenue?

Web order method type has highest revenue among all the order method type.

Moreover looking at the pie chart you can also tell that which order method type has lowest revenue: Email.

After displaying the data in the form of graphs. Lets try answering the questions

Which product line has highest quantity?

From the graph it can be easily seen that Personal Accessories has highest number among all the product line.

Base Graphics in R

Base Graphics in R

Base Graphics helps in making simple graphs

density.default(x = customer_churn\$MonthlyCharges)

Bar Plots are suitable for showing comparison between cumulative totals across several groups

Distribution of Contract

Making a simple Bar-plot

Adding color

plot(customer_churn\$Dependents, col="coral")

Adding x-axis label & title

plot(customer_churn\$Dependents,
col="coral",xlab="Dependents",
main="Distribution of Dependents")

No Yes Dependents Distribution of Dependents

Bar-plot for 'PhoneService' column

plot(customer_churn\$PhoneService,col="aquamarine4")

Bar-plot for 'Contract' column

plot(customer_churn\$Contract,col="palegreen4",
xlab="Contract",
main="Distribution of Contract")

Histogram is basically a plot that breaks the data into bins (or breaks) and shows frequency distribution of these bins

Histogram of customer_churn\$MonthlyCharges

Making a simple histogram

hist(customer_churn\$tenure)

Histogram of customer_churn\$tenure

Adding Color

hist(customer_churn\$tenure,col="olivedrab")

Histogram of customer_churn\$tenure

Change the number of bins

hist(customer_churn\$tenure,
col="olivedrab",
breaks=30)

Histogram of customer_churn\$tenure

Grammar of Graphics

Grammar of Graphics

Every form of communication needs to have grammar. Since, visualization is also a form of communication, it needs to have a foundation of grammar

I am John

Am John I

Components of Grammar of Graphics

Element	Description
Data	The data-set for which we would want to plot a graph
Aesthetics	The metrics onto which we plot our data
Geometry	Visual elements to plot the data
Facet	Groups by which we divide the data

Visualization with ggplot2

Visualization with ggplot2

ggplot2 is a system for declaratively creating graphics, based on the Grammar of Graphics. You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details

geom_hist() function helps in making histograms with ggplot2

Build a histogram for 'tenure' column

ggplot(data=customer_churn,
aes(x=tenure))+geom_histogram()

Change the number of bins

ggplot(data = customer_churn,
aes(x=tenure))+geom_histogram(bins = 50)

Add fill color and border color

ggplot(data = customer_churn, aes(x=tenure))+
geom_histogram(fill="palegreen4", col="green")

Assign 'Partner' to fill aesthetic

ggplot(data = customer_churn, aes(x=tenure, fill=Partner))+geom_histogram()

Set Position to be 'identity'

ggplot(data = customer_churn,
aes(x=tenure, fill=Partner))+
geom_histogram(position = "identity")

geom_bar() function helps in making bar-plots with ggplot2

Build a bar-plot for 'Dependents' column

ggplot(data = customer_churn,
aes(x=Dependents))+geom_bar()

Add fill color

ggplot(data = customer_churn,
aes(x=Dependents))+geom_bar(fill="chocolate")

Assigning 'DeviceProtection' column to fill aesthetic

ggplot(data = customer_churn,
aes(x=Dependents,fill=DeviceProtection))
+geom_bar()

Set the position to 'dodge'

ggplot(data = customer_churn,
aes(x=Dependents,fill=DeviceProtection))
+geom_bar(position='dodge')

geom_point() function helps in making scatterplots with ggplot2. A scatter plot helps in understanding how does one variable change w.r.t another variable. It is used for two continuous values

Scatter-plot between 'TotalCharges' & 'tenure'

```
ggplot(data = customer_churn,
aes(y=TotalCharges,x=tenure))+geom_point(
)
```


Adding color

ggplot(data = customer_churn,
aes(y=TotalCharges,x=tenure)) +
geom_point(col="slateblue3")

Map 'Partner' to col aesthetic

ggplot(data = customer_churn, aes(y=TotalCharges,x=tenure, col=Partner)) + geom_point()

Map 'InternetService' to col aesthetic

ggplot(data = customer_churn,
aes(y=TotalCharges,x=tenure,
col=InternetService)) +
geom_point()

geom_boxplot() function helps in making boxplots with ggplot2. Box Plot shows 5 statistically significant numbers- the minimum, the 25th percentile, the median, the 75th percentile and the maximum. It is thus useful for visualizing the spread of the data and deriving inferences accordingly

Box-plot between 'MonthlyCharges' & 'InternetService'

ggplot(data =
customer_churn,aes(y=MonthlyCharges,x=In
ternetService))+geom_boxplot()

Add fill color

ggplot(data =
customer_churn,aes(y=MonthlyCharges,x=Inte
rnetService))+geom_boxplot(fill="violetred4")

Faceting the data

Faceting the data

facet_grid() is used to facet the data. Faceting is used when the plot is too chaotic and some variables have to be grouped into different facets to have a better visualization

facet_grid()

Initial Graph

ggplot(data = customer_churn,
aes(x=tenure,fill=InternetService))+
geom_histogram()

After Faceting

ggplot(data = customer_churn,
aes(x=tenure,fill=InternetService))+
geom_histogram()+ facet_grid(~InternetService)

facet_grid()

Initial Graph

ggplot(data = customer_churn,
aes(y=TotalCharges,x=tenure, col=Contract))+
geom_point()+geom_smooth()

After Faceting

ggplot(data = customer_churn,
aes(y=TotalCharges,x=tenure, col=Contract))+
geom_point()+geom_smooth()+facet_grid(~Contract)

Theme layer is used to add themes to our plots

Initial Graph

ggplot(data = customer_churn,aes(x=tenure))+
geom_histogram(fill="tomato3",
col="mediumaquamarine") -> g1

After Adding Title

g1+labs(title = "Distribution of tenure")->g2

Copyright IntelliPaat. All rights reserved

After Adding Title

g1+labs(title = "Distribution of tenure")->g2

After Adding Panel Background

g2+theme(panel.background =
element_rect(fill = "olivedrab3"))->g3

After Adding Panel Background

g2+theme(panel.background =
element_rect(fill = "olivedrab3"))->g3

After Adding Plot Background

g3+theme(plot.background = element_rect(fill = "palegreen4"))->g4

After Adding Plot Background

```
g3+theme(plot.background = element_rect(fill = "palegreen4"))->g4
```


After Changing Title

g4+theme(plot.title = element_text(hjust = 0.5, face="bold", colour = "peachpuff"))

Which of these is the correct code to make a bar-plot for the 'TechSupport' column. The color of the bars should be 'blue' & the title of the plot should be 'Distribution of Tech Support'

- 1. plot(customer_churn\$TechSupport, col="blue", main="Distribution of Tech Support")
- 2. plot(customer_churn\$TechSupport, fill="blue", main="Distribution of Tech Support")
- 3. plot(customer_churn\$TechSupport, col="blue", title="Distribution of Tech Support")
- 4. plot(customer_churn\$TechSupport, color="blue", title="Distribution of Tech Support")

Which of these is the correct code to make a histogram for the 'tenure' column. The fill color of the bins should be 'azure' & the number of bins should be 87

- 1. ggplot(data = customer_churn,aes(x=tenure,col='azure'))+geom_histogram(bins=87)
- 2. ggplot(data = customer_churn,aes(x=tenure))+geom_histogram(col="azure",bins=87)
- 3. ggplot(data = customer_churn,aes(x=tenure))+geom_histogram(fill="azure",bins=87)
- 4. ggplot(data = customer_churn,aes(x=tenure,fill='azure'))+geom_histogram(bins=87)

Which of these is the correct code to make a bar-plot for the 'OnlineBackup' column. The color of the bars should be determined by the 'PhoneService' column

- 1. ggplot(data = customer_churn,aes(fill=OnlineBackup,x=PhoneService))+geom_bar()
- 2. ggplot(data = customer_churn,aes(y=OnlineBackup,fill=PhoneService))+geom_bar()
- 3. ggplot(data = customer_churn,aes(x=OnlineBackup))+geom_bar(fill=PhoneService)
- 4. ggplot(data = customer_churn,aes(x=OnlineBackup,fill=PhoneService))+geom_bar()

To which of these geometries can you add the facet_grid()?

- 1. geom_bar()
- geom_histogram()
- 3. geom_point()
- 4. All of the above

Thank You