CS4004/CS4504: FORMAL VERIFICATION

Lecture 9: First Order Logic

Vasileios Koutavas

School of Computer Science and Statistics Trinity College Dublin

Terms in FOL are strings from the syntax:

$$t ::= x \mid c \mid f(t, \dots, t)$$

A term can be:

- → a variable
 - \rightarrow e.g.: x, y, z, \dots

Terms in FOL are strings from the syntax:

$$t ::= x \mid c \mid f(t, \dots, t)$$

A term can be:

- → a variable
 - \rightarrow e.g.: x, y, z, ...
- → a constant c, AKA a nullary function (a function with zero arguments)
 - → e.g.: andy, mary, ...
 - \rightarrow we pick constants from a set ${\mathcal F}$ of functions

Terms in FOL are strings from the syntax:

$$t ::= x \mid c \mid f(t, \dots, t)$$

A term can be:

- → a variable
 - \rightarrow e.g.: x, y, z, \dots
- → a constant c, AKA a nullary function (a function with zero arguments)
 - → e.g.: andy, mary, ...
 - \rightarrow we pick constants from a set ${\mathcal F}$ of functions
- \rightarrow an application of an *n*-ary (n > 0) function f to n terms t_1, \ldots, t_n
 - → e.g. natural numbers: zero, succ(zero), succ(succ(zero)), succ(x),...
 - \rightarrow we pick functions from the same set ${\cal F}$

Formulas in FOL are strings from the syntax:

$$A ::= P(t_1, \ldots, t_n) \mid (\neg A) \mid (A \land A) \mid (A \lor A) \mid (A \to A) \mid \forall x.A \mid \exists x.A$$

A formula can be:

- \rightarrow an application of a predicate *P* with arity n > 0 to terms t_1, \ldots, t_n
 - \rightarrow e.g.: I(mary), Y(andy, x)
 - \rightarrow we pick constants from a set \mathcal{P}

Formulas in FOL are strings from the syntax:

$$A ::= P(t_1, \ldots, t_n) \mid (\neg A) \mid (A \land A) \mid (A \lor A) \mid (A \to A) \mid \forall x.A \mid \exists x.A$$

A formula can be:

- \rightarrow an application of a predicate *P* with arity n > 0 to terms t_1, \ldots, t_n
 - \rightarrow e.g.: I(mary), Y(andy, x)
 - \rightarrow we pick constants from a set \mathcal{P}
- \rightarrow if A, B are formulas then so are $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \lor B)$

Formulas in FOL are strings from the syntax:

$$A ::= P(t_1, \ldots, t_n) \mid (\neg A) \mid (A \land A) \mid (A \lor A) \mid (A \to A) \mid \forall x.A \mid \exists x.A$$

A formula can be:

- \rightarrow an application of a predicate *P* with arity n > 0 to terms t_1, \ldots, t_n
 - \rightarrow e.g.: I(mary), Y(andy, x)
 - \rightarrow we pick constants from a set \mathcal{P}
- \rightarrow if A, B are formulas then so are $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \lor B)$
- \rightarrow if A is a formula and x is a variable then $\forall x.A$ and $\exists x.A$ are formulas.

```
\begin{split} &t,f\in\mathcal{F}\\ &P\in\mathcal{P}\\ &t::=x\mid c\mid f(t,\ldots,t)\\ &A::=P(t_1,\ldots,t_n)\mid (\neg A)\mid (A\wedge A)\mid (A\vee A)\mid (A\to A)\mid \forall x.A\mid \exists x.A \end{split}
```

binding priorities:

 \neg , $\forall x$, $\exists x$ bind more tightly than \land and \lor which bind more tightly than \rightarrow which is right-associative

FOL formulas are syntax trees where

- → all the **leaves** are terms
- → all nodes above leaves are predicates
- → and all **other internal nodes** are operators

EXAMPLE

Express in FOL and write as a syntax tree the following:

"every son of my father is my brother"

"For every natural number i within the domain of array A, the value of A at i is larger than or equal to the value of A at every j less than i"

FIRST ORDER LOGIC

$$\begin{split} &c,f\in\mathcal{F}\\ &P\in\mathcal{P}\\ &t::=x\mid c\mid f(t,\ldots,t)\\ &A::=P(t_1,\ldots,t_n)\mid (\neg A)\mid (A\land A)\mid (A\lor A)\mid (A\to A)\mid \forall x.A\mid \exists x.A \end{split}$$

We can use FOL to reason about

- ightarrow natural numbers: $\mathcal{F} = \{0, succ, \ldots\}$, large enough \mathcal{P}
- ightarrow booleans: $\mathcal{F} = \{\top, \bot, \ldots\}$, large enough \mathcal{P}

FIRST ORDER LOGIC

$$c, f \in \mathcal{F}$$

$$P \in \mathcal{P}$$

$$t ::= x \mid c \mid f(t, \dots, t)$$

$$A ::= P(t_1, \dots, t_n) \mid (\neg A) \mid (A \land A) \mid (A \lor A) \mid (A \to A) \mid \forall x.A \mid \exists x.A$$

We can use FOL to reason about

- \rightarrow natural numbers: $\mathcal{F} = \{0, succ, \ldots\}$, large enough \mathcal{P}
- \rightarrow booleans: $\mathcal{F} = \{\top, \bot, \ldots\}$, large enough \mathcal{P}
- \rightarrow propositional logic: $\mathcal{F} = \emptyset$ and $\mathcal{P} = \{p, q, r \dots\}$

QUANTIFICATION

Universal (\forall) and existential (\exists) quantification allow us to express interesting properties of an infinite number of terms.

- \rightarrow "Every student is younger than some instructor": $\forall x. (Student(x) \rightarrow \exists y. (Instructor(y) \land Younger(x, y)))$
- \rightarrow "Not all birds can fly": $\neg \forall x. (Bird(x) \rightarrow CanFly(x))$
- \rightarrow "every son of my father is my brother": $\forall x. \forall y. (Son(x, y) \land Father(y, me) \rightarrow Brother(x, me))$

EXAMPLE

Write the following as syntax trees:

- \rightarrow "Every student is younger than some instructor": $\forall x. (Student(x) \rightarrow \exists y. (Instructor(y) \land Younger(x, y)))$
- \rightarrow "Not all birds can fly": $\neg \forall x. (Bird(x) \rightarrow CanFly(x))$

 \rightarrow "every son of my father is my brother": $\forall x. \forall y. (Son(x, y) \land Father(y, me) \rightarrow Brother(x, me))$

VARIABLE SCOPE

Definition

- $\rightarrow \forall x.A \text{ binds}$ the variable x in A
 - \rightarrow the scope of variable x is A
 - $\rightarrow x$ is bound in $\forall x.A$
 - \rightarrow x is free in A
- $\rightarrow \exists x.A \text{ binds}$ the variable x in A
 - \rightarrow the scope of variable x is A
 - \rightarrow x is bound in $\exists x.A$
 - \rightarrow x is free in A
- → any variable x which appears in a formula A and is not bound in A is called free in A

VARIABLE SCOPE

Definition

- $\rightarrow \forall x.A \text{ binds}$ the variable x in A
 - \rightarrow the scope of variable x is A
 - $\rightarrow x$ is bound in $\forall x.A$
 - \rightarrow x is free in A
- $\rightarrow \exists x.A \text{ binds}$ the variable x in A
 - \rightarrow the scope of variable x is A
 - \rightarrow x is bound in $\exists x.A$
 - \rightarrow x is free in A
- → any variable x which appears in a formula A and is not bound in A is called free in A

Example: find the free and bound variables

$$\forall x.((P(x) \to Q(y)) \land \exists y.(x \land y))$$

$$\forall x.((P(x) \to Q(y)) \land \exists x.(x \land x))$$

CONVENTION

Barendreght convention: To avoid confusion, every bound variable will be distinct from any other bound variable and all the free variables.

$$\forall x.((P(x) \rightarrow Q(y)) \land \exists z.(x' \land z))$$

We will need to replace variables for actual terms.

^{*}Substitution is defined in detail in LiCS 2.2.3 & 2.2.4. The book **does not use the Barendreght convention** thus substitution A[t/x] is more complicated to avoid binders in A binding free variables in t.

We will need to replace variables for actual terms.

We will only replace free variables

^{*}Substitution is defined in detail in LiCS 2.2.3 & 2.2.4. The book does not use the Barendreght convention thus substitution A[t/x] is more complicated to avoid binders in A binding free variables in t.

We will need to replace variables for actual terms.

We will only replace free variables

Definition

A[t/x] is defined to be the formula we get by replacing all **free** occurrences of x in A with t.

^{*}Substitution is defined in detail in LiCS 2.2.3 & 2.2.4. The book does not use the Barendreght convention thus substitution A[t/x] is more complicated to avoid binders in A binding free variables in t.

We will need to replace variables for actual terms.

We will only replace free variables

Definition

A[t/x] is defined to be the formula we get by replacing all **free** occurrences of x in A with t.

Example: what is A[john/y] and A[Y(john,x)/y] when A is:

$$\forall x.((P(x) \to Q(y)) \land \exists y.(x \land y))$$

$$\forall x.((P(x) \to Q(y)) \land \exists x.(x \land x))$$

$$\forall x.((P(x) \rightarrow Q(y)) \land \exists z.(x \land z))$$

(These formulas do not respect the Barendreght convention.)

^{*}Substitution is defined in detail in LiCS 2.2.3 & 2.2.4. The book does not use the Barendreght convention thus substitution A[t/x] is more complicated to avoid binders in A binding free variables in t.

We will need to replace variables for actual terms.

We will only replace free variables

Definition

A[t/x] is defined to be the formula we get by replacing all **free** occurrences of x in A with t.

Example: what is A[john/y] and A[Y(john,x)/y] when A is:

$$\forall x.((P(x) \to Q(y)) \land \exists y.(x \land y))$$

$$\forall x.((P(x) \to Q(y)) \land \exists x.(x \land x))$$

$$\forall x.((P(x) \to Q(y)) \land \exists z.(x \land z))$$

(These formulas do not respect the Barendreght convention.)

Using the Barendreght convention there is no danger of **binding** any variables of Y(john, x) when we substitute A[Y(john, x)/y].

^{*}Substitution is defined in detail in LiCS 2.2.3 & 2.2.4. The book does not use the Barendreght convention thus substitution A[t/x] is more complicated to avoid binders in A binding free variables in t.

FOL PROOF THEORY: NATURAL DEDUCTION

SYMBOLIC PROOFS IN FOL

As in propositional logic, in FOL:

- → We will use natural deduction rules to define the axioms of the logic.
- \rightarrow We will symbolically prove the validity of sequents: $A_1, \dots A_n \vdash B$

PROPOSITIONAL RULES

All propositional logic rules are rules of FOL:

$$\frac{A_1}{A_1 \wedge A_2} \wedge i \qquad \frac{A_1 \wedge A_2}{A_1} \wedge e_1 \qquad \frac{A_1 \wedge A_2}{A_2} \wedge e_2$$

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \vee i \qquad \frac{A_1 \wedge A_2}{B} \vee i \qquad \frac{A_2 \wedge A_2}{B} \vee i \qquad \frac{A_1 \wedge A_2}{B} \wedge e$$

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \vee i \qquad \frac{A_2 \wedge A_2}{B} \vee i \qquad \frac{A_1 \wedge A_2}{B} \wedge e$$

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_1 \wedge A_2}{B} \wedge i \qquad \frac{A_1 \wedge A_2}{B} \wedge e$$

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_1 \wedge A_2}{B} \wedge e$$

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_1 \wedge A_2}{B} \wedge e$$

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_1 \wedge A_2}{B} \wedge e$$

$$\frac{A_1}{A_1 \vee A_2} \wedge e \qquad \frac{A_1 \wedge A_2}{B} \wedge e$$

$$\frac{A_1}{A_1 \vee A_2} \wedge e \qquad \frac{A_1 \wedge A_2}{B} \wedge e$$

[†]Only in classical FOL

EQUALITY RULES

We will work with sets of predicates \mathcal{P} which contain at least one special binary predicate: equality.

- → That is equality between terms. (there is no equality between predicates)
- \rightarrow **Notation**: We will write this predicate in infix notation: $t_1 = t_2$.
- → We will have the following rules (axioms) for equality:

$$\frac{1}{t=t} = i \quad \text{(reflexivity)} \qquad \qquad \frac{t_1 = t_2 \quad A[t_1/x]}{A[t_2/x]} = e$$

EQUALITY RULES

We will work with sets of predicates \mathcal{P} which contain at least one special binary predicate: equality.

- → That is equality between terms. (there is no equality between predicates)
- \rightarrow **Notation**: We will write this predicate in infix notation: $t_1 = t_2$.
- → We will have the following rules (axioms) for equality:

$$\frac{1}{t=t} = i \quad \text{(reflexivity)} \qquad \qquad \frac{t_1 = t_2 \quad A[t_1/x]}{A[t_2/x]} = e$$

→ Equality as we know it is symmetric and transitive. Prove [‡] the following derivable rules (theorems):

$$\frac{t_1 = t_2}{t_2 = t_1} = sym$$
 $\frac{t_1 = t_2}{t_1 = t_3} = trans$

i.e., prove the FOL sequents $(t_1 = t_2 \vdash t_2 = t_1)$ and $(t_1 = t_2, t_2 = t_3 \vdash t_2 = t_1)$

[‡]Proofs are the same as before with small extensions (stay tuned).

EXAMPLE

Assume the set of natural numbers $\mathcal{F} = \{0, 1, 2, \dots, +\}$ where + is an infix binary function. Assume the usual arithmetic predicates over natural numbers $\mathcal{P} = \{=, <, >, \leq, \geq, \dots\}$.

Prove:

$$t_1 = t_2 \vdash (t + t_2) = (t + t_1)$$

EXAMPLE

Assume a FOL over natural numbers. Prove:

$$[x+1=1+x], [(x+1)>1\to x>0] \vdash (1+x)>1\to (x>0)$$