

Improvement Subject

TMAH 用量減量 (LSS Cost down project)

Fab./ Division

L3D Array

AUO improvement no.

LSTW09040187

LSS Outline

1.Define

- 2.Measure
- 3.Analyze
- 4.Improve
- 5.Control

Project Charter

Title: TMAH減量

GB:陳枝汶

Business Gap

1.2009年TMAH 1~3月平均用量為114ml/PEP,平均每月25% TMAH成本為87萬,年度成本為1,047萬/年。

2.2008年與 $3A \times B \times C \times 4A$ 廠比較TMAH用量,3D用量一直是

3.5G廠用量最大廠區, Chemical 成本相對其他廠區高。

3.依照公司Cost down 政策進行TMAH 用量減量

Customer

External: AUO

Internal:L3D 副廠 陳世龍、PH 經理 紀伯儒

Defects & Metrics

缺陷: Chemical TMAH 生產用量過多 主要指標:廠務端TMAH每月用量計算 次要指標:月平均每一PEP製程用量

衍生指標: 增加機台管線重新接管費用、製程顯影用量變更驗證、顯影mura issue產牛

Problem Statement

1.2009年TMAH 1~3月平均用量為114ml/PEP,平均25% TMAH年度成本為1,047萬/年。

2.比較2008年3.5G廠間(*註1)比較,用量是同樣run LTPS廠3B的1.8倍、是3A與4A廠的3倍,是3C廠的5倍。

Objective Statement

依據2009 1~3月計算用量,champion 設定目標執行

1.設定TMAH 減量必達目標: 114ml/pep→100ml/pep

2.設定TMAH 減量挑戰目標追平3B廠。

Financial Impact

預估改善後TMAH用量每年可cost down \$128萬/年

直接改善效益:

=計算2009年25%TMAH平均PEP用量114ml

=>用量改善(114ml/pep→100ml/pep)後,年度TMAH Cost 為 (0.014L/pep*30K*0.8*5.5pep*NT.58*12月)\$128萬/年。

潛在效益: 減量後TMAH機台評估節能效益

Milestones/Timeline:	Scheduled	Actual
Define Tollgate Review:	2009/05/27	2009/05/27
Measure Tollgate Review:	2009/06/11	2009/06/11
Analyze Tollgate Review:	2009/07/02	2009/07/02
Improve Tollgate Review:	2009/07/16	2009/07/16
Control Tollgate Review:	2009/08/06	2009/08/27

Project Scope/Boundaries:

Process Start: DDS (TMAH 2.38%調和系統) 供給 Process Stop: 製程TMAH排放至TMAH 供給/回收系統 In Scope: DDS系統、黃光CAR機台 TMAH 供給/回收系統

Out of Scope: NA

Team: 陳枝汶、林美菁、李漢忠、夏瑋俊、廖明啟

Champion: 陳世龍

註1:3.5G廠區為L3A、3B、3C、3D、4A

註2:L3D 2008年TMAH月平均用量與Cost均已扣

除6、11、12月low season)

rietary & Confidential

定義&限定問題範圍

Problem statement

3W2H 分析

經由蒐集資料,進行3W2H資料分析,經由分析清楚、明確的說明事件的原由

What is wrong

•TMAH用量過多 造成生產成本過 多。

Where is happened

•L3D PH TMAH用量 過多,副廠要求要進 行用量改善

When it occurred

●依據**2008年**用量統 計L3D PH TMAH用 量是3.5G廠用量最

How much

•2008年3D PH TMAH平 均月用量是22,501 L,年 度花費為NT.1,566萬

(註一)

How do I know

•依據2008年用量統計 3D PH TMAH用量是 3B的1.7倍、4A、3A 的3倍,3C的4.2倍

AUO Proprietary & Confidential

MUO

註1:TMAH平均月用 量計算時間為2008年 01~12月平均用量(扣除 6、11、12月low season)

定義&限定問題範圍

Problem statement

2009年1月 TMAH 減量Action

2009年1月TMAH減量Action DEV 1 puddle上線,單片製程用量已減量30%上線。

問題點:

- ■機台顯影製程 2.38%TMAH用量是友廠用量2倍 對策
- 資料分析主因為顯影recipe 設定差異所導致
- 1.確認友廠顯影製程recipe 設定為1puddle,3D設定

為Double puddle。

負責人:陳新豪/夏瑋俊

驗證時間/機台: CAR-01 2008/12~2009/01

■ 驗證顯影製程新recipe, Double puddle 變更為1puddle,申請SWR進行1puddle 測試,確認

1puddle 製程生產產品良率保持一致。

Action於1月完成上線展開後,確認1~3月整 體TMAH 25% 總用量較2008年已下降30%

P D

※ 感謝 L3DP1 陳新豪 強力support

確認驗證良率Pass,新顯影recipe 全數展開至生產機台。 SWR No: 40743

SWR驗證結果無顯影相關Defect code

		L3D 25%TMAH單PEP用量比較表
	200	イ ロー・オート / / ウ
	180	1puddle 上線
	160	159.98 158.22 150.84 149.25 156.20 148.9 1 1.11
_ ₽	140	129.49
TMAH 25%(ml)	120	140.60
25	100	109.54.05.24
I₹	80	
=	60	
	40	98年2月,生
	20	
	0	成切換
	od _{k×} ,	S Str N Str S Str
		3 3 3 3 9 9 9

B16							2008/6/26 07:10				
Model	Yield	Output	-N	- B	Defectifem	Retio	Corrective/Preventive Action	Yield Loss	DE ON		
							6/24-6/25 集中判出 * 實際fairs	atio 斯0.15%			
//2545454					marisans.	6.82%	Pad - Scratch	0.80%	.0		
					BEAR CHARLES	0.02%	M2-Open	0.15%	.2		
							M2-SR residue	0.07%	1		
							6/24-6/25 集中判出・資際fairs	atio 馬0.16%			
AD15AND5		0.60%	3.07%	水平均缺陷	0.78%	Not found	0.52%	2			
					0.000		M1-Open	0.26%	1		
					其它Anny不良	0.45%	Via hole strnormal				
					二连克森州	0.34%					
					4.004	0.000	Scratch	0.24%	.0		
					十字版	8.30%	Particle	0.06%	- 2		

定義&限定問題範圍

Problem statement

2008年3.5 代廠間3D TMAH用量最大

(資料蒐集時間2008/4~2009/3月)

回溯2008/04~2009/03月3.5代廠區間 TMAH用量比較,3D廠用量是3C廠的4.2倍。

DEV 1puddle 上線後,與友廠比較平均用量排序為(多→少): L3D (114 ml/PEP)→L3B (81 ml/PEP) →L4A (54 ml/PEP) →L3A (45ml/PEP) →L3C (33 ml/PEP) ,仍是各廠之最多,啟動改善Action (3D以09/1~3月用量與友廠比對,友廠資料比對不包含2008/08~2009/3月 low season)

定義&限定問題範圍

High-Level Process Map

宏觀流程圖分析

分析TMAH由廠務端supply 至黃光機台相關路徑,經由流程圖找出改善切入點 1.設定改善切入點為PR光阻生產機台與PL光阻Rework 機台TMAH用量改善。

定義&限定問題範圍

High-Level Process Map

Suppliers

Inputs

Process

Outputs

Customers

•L3D PH工程師 •廠務TMAH

chemical 工程師

- •DDS 25% TMAH 調合2.38%系統。
- •DDS G1/G2 TMAH 2.38%供給/ 回收系統。
- •DDS 2.38%新液 供給系統
- •CAR/CAJ 生產機 台DEV unit。

Requirements

- •供給足夠量 2.38%TMAH 使生產機台得 以正常生產
- ●回收足夠 2.38%TMAH 回收量

DDS 25%調合 2.38%TMAH •DEV Nozzle 顯 影液吐出。

G1&G2供給/回

收系統

CAR/CAJ 牛產

機台 DEV Unit

DEV Unit

Dummy

Dispense

CAR/CAJ DEV Unit 製程使用

G1&G2供給/回 收系統

- •TMAH顯影後產品基板。
- •TMAH顯影後 Dummy 控片
- •TMAH Dummy dispense TMAH chemical
- •TMAH 製程顯影 後廢液。
- •生產機台與 TMAH 供給/回收 系統用電量

Requirements

- •顯影液吐出量 符合製程需 求。
- •產品顯影後品 質要符合製程 規範。
- •Dummy控片 run後產品不製 程應符合製程 規範。
- •製程顯影液要百分百回收。
- •Dummy Dispense 後產 品要符合製程 規範。

- •L3D 副廠
- •L3DPH Manager

確定專案目標及收益

Financial Benefit

財務效益估計

分析2009年TMAH 用量(2009/01~03月),估算專案成功後財務效益,直接效益: TMAH減量後生產支出成本下降金額。

專案效益項目	專案效益說明	Saving 類別	金額/年
TMAH減量	Champion設定Target: 114ml/pep→100ml/pep Cost saving 約NTD 128萬/年 =>計算公式 =改善量*月產片數*回收率*PEP數*Cost*12個月 (改善量:14ml/PEP,月產量以30K計算,回收Ratio以80%計,PEP數以平均5.5計,單價為:\$58/L) 【14ml/pep*30K*0.8*5.5pep*(58/1000)*12 =128萬】	Hard saving	NTD 1,280K

註1:TMAH平均月用量計算時間為2009年01~03月平均用量

註2:3A、B、C、4A計算比較均以廠務計算模式,計算TMAH 25%Pep平均用量是以月為計算單位,故廠級間資料計算模式均一致採用廠務計算模式計算。

定義&限定問題範圍

Goals

目標設定(Target)

依據2009/01~03月計算用量,預計improve TMAH 每一 PEP用量減量至100ml/pep

- 1.設定TMAH 減量<mark>必達目標</mark>每一PEP 用量25%TMAH: 100ml/pep。(減量11%)
- 2.挑戰目標設定TMAH用量減量90ml/Pep(減量21%)。

KI	기	Now	Champion Target	Challenge
單PEF TMAH		114 (ml/ PEP)	114ml Down to100ml (Pep) (約:NTD:120萬/年)	114ml Down to 90ml (Pep) (約:NTD:211萬/年)

創建專案憲章

Schedule

排定Project schedule

排定各階段預定確認項目與執行時間安排。

LSSTMA	H 用量減量Schedule	W9 15	W9 16	W9 17	W9 18	W9 19	W9 20	W9 21	W9 22	W9 23	W9 24		W9 27	W9 28	W9 29	VV9 30	W9 31	W9 32	W9 33	VV9 35	W9 36
	改善主題目標設定 相拉圖找出改善主題																				
Define	識別業務差距 建立宏觀流程圖縮小改善範圍 分析財務改善效益 設定改善目標																				
Measure	確認TAMH資料正確性 建立作業流程圖,找出改善項目 量化流程能力																				
Analyze	識別潛在原因 調查顯著的變數X's																				
Improve	産生潜在的解決方案 選擇與試驗解決方案 建立實施計劃																				
Control	創建控制與監測計劃 全面實施角決方案 專案結案																				

:規劃進度

:實際進度

創建專案憲章

Team Member

- Start on Apr 02 '09
- Finish on Aug 27 '09

專案成員

邀請專家一同協助改善

			LSS TMA	\H減量
Role	Person	Dept.	職稱	Main Job
Champion	陳世龍	L3DP0	3D副廠	主題選定與專案review
Finance	李崇主	FAAB1	副理	專案財務效益Review
BB leader	陳建銘	L3DM1	副理	手法指導與技術詢問
GB	陳枝汶	L3DP2	工程師	Project leader
Member	林美菁	L3DP2	工程師	實驗規劃與進度追蹤
Member	夏瑋俊	L3DP2	工程師	機台資料蒐集/分析與改善執行
Member	李漢忠	L3DP2	工程師	TMAH 廠務端用量計算與改善執行
Member	廖明啟	L3DP2	工程師	機台資料蒐集/分析與改善執行
Supporter	呂建璋	L3DM3	工程師	廠級Chemical 用量資料蒐集與分析

LSS Outline

2.Measure

- 1.Define
- 3.Analyze
- 4.Improve
- 5.Control

Measure

定義流程現狀

Fully developed current-state value stream map (VSM)

專案名稱:__TMAH用量減量_

組別:_LSTW09040187__

專案類型: DMAIC _

<u>階段開始日期:</u> 05/27/2009 階段完成日期: 06/11/2009

<u>目標陳述</u>: 25%TMAH用量減量(2009年Pep平均用量減量114ml/pep→100ml/pep , 減量12% , <mark>挑戰減量21%</mark>)

<u>專案指標變化 (大Y)</u>: 廠務 TMAH 25%單Pep月用量

114ml→100 ml

財務效益累積:總年度Cost down NTD: 120萬(經由 Quick action後, Pep用量由114ml→101ml,總用量已改善92%,費用效益為NTD: 110萬/年)

流程現狀描述:

- 1.Process flow: G1/G2 TMAH 2.38% 供給/回收系統→CAR→DEV unit→(DEV Dummy / DEV process 1 puddle) → G1/G2供給/回收系統 2.CAR機型共有7台,每台有三個DEV unit。
- 測量系統之狀況:
- 1.計算TMAH 25%用量之系統為廠務端流量計錶 頭。
- 2.利用1).Tank 體積計算、2).超音波計算tank 含量,二項用量計算確認廠務端25% TMAH 流量計 錶頭的正確性。

流程能力之水準:

Initial Z Bench 水準:-0.98,經由Quick action 改善後, Z Bench 水準:-0.1

Conclusion / Issue / Next Steps:

Conclusion:

- 1. 流程之製程能力Z Bench: -0.98
- 2.小組經由Process 分析,確認細分後的各process,找出可改善item。
- 3.使用用浪費分析,找出流中Dummy Dispense 為一浪費設定,可先行改善執行Quick action。
- 4. Quick action → Dummy recipe interval & lot head 變更為interval & before。
- 5.初步Quick action 效益已達目標設定92%。

Next Step:

1.執行腦力激盪法與分析工具找出後續用量減量可改善的切入點。

Measure

驗證測量系統的有效性

Reliable data on critical input/output

廠務25%TMAH 量測值確認

TMAH由廠務端supply 25%濃度至黃光機台,月用量統計由廠務集中計算,確認廠務流量計錶頭的的準確性與超音波計算差異在+/-1%之間,檢驗結果為,我們可以接受廠務流量計所記錄TMAH用量值。

手法:

1.廠務關閉L3D 25% TMAH buffer tank supply至L3D DDS的閥門,記錄a).超音波流量計表頭total數值;b).廠務25%流量錶頭;c).L3D 25% TMAH buffer tank液位高度。

2.廠務記錄完三個數值後,開啟L3D 25% TMAH buffer tank supply valve,手動補充buffer tank顯影液,待buffer tank補滿後,記錄a).超音波流量計表頭 total數值;b).廠務25%流量錶頭數值。;c).L3D 25% TMAH buffer tank 液位高度。

_		_										
			廠務流量計錶頭流量計算確認									
Ī	日期	廠務超音波增加量	流量計錶頭增加量	量測Tank液面上昇高度 換算TMAH增加量								
	H \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	所以4万/CE 日 /汉·日/JII <u>宝</u>	加重时吸吸行加重	換算TMAH增加量	波誤差百分比							
	6/5	97	98	98.6	-1.03%							
1	6/10	158	157	157	0.63%							
	6/11	98	99	98.6	-1.02%							

量化流程能力

Baseline measures of process capability

L3D TMAH 2009/01~03月用量Data 確認

依據2009/01~03月,每一PEP 月平均用量Data進行 **常態分析** 確認,P-Value 為0.375 (P-Value >0.05),確認每月PEP平均用量為常態分配,Z Bench: -0.98,製程能力不佳。

定義流程現狀

L3D TMAH 2009年 用量Data 確認

依據流程內容進行小組討論,對Process 與機台作動模式進行分析,以浪費的觀點來分析,找出Dummy Dispense 流程與生產不相關為一浪費設定,後續TMAH用量減量方向第一確認項目為"生產機台Dummy recipe "確認

量化流程能力

Quick win

確認生產機台Dummy recipe 設定

蒐集DEV dummy recipe 設定,確認Dummy recipe 各項設定item 並加以比較,小組比較 DEV Dummy 設定頻率為Interval & before 為最佳。

Dispense name	CAR-	01A	CAR-	02A	CAR-	-03A	CAR	-04A	CAR-	05A	CAR-	06A	CAR-	-07A
Condition	Interval or	lot head	Interval or	lot head	Interval o	r lot head	Interval o	r lot head	Interval or	lot head	Interval or	lot head	Interval or	lot head
Interval Time	3600	(s)	3600	(s)	3600	(s)	3600	(s)	3600	(s)	3600	(s)	3600	(s)
Dispense Time	10.0	(s)	10.0	(s)	10.0	(s)	10.0	(s)	10.0	(s)	10.0	(s)	10.0	(s)
Prevention	5.0	(s)	5.0	(s)	5.0	(s)	5.0	(s)	5.0	(s)	5.0	(s)	5.0	(s)

機合現行設定條件 Process program Dummy dispense edit Developer File [24] ITEL] Dispense name Developing solution Rinse Condition Interval or lot head Specified interval 7200 (s) 10.0 (s)

Dummy recipe 可設定條件

Dummy 條件	執行條件
• , , , , , ,	不執行
	依設定的interval 時間進行Dummy
3.Lot head	每一批的第一片
4.Before processing	Batch 的第一片執行Dummy
5.Interval & lot head	依設定的interval 時間與每一批的第一片
6.Interval or lot head	依設定的interval時間或者每一批的第一日
7.Interval & before	依設定的interval 時間與Batch 的第一片
8.Interval or before	依設定的interval 時間或者Batch 的第一片

以目前機台端設定Dummy Recipe執行 Lot Head Dummy 一次,每天Dummy 用量為326L的2.38%TMAH,約25%總用量的10%,執行Quick Action 先行改善。

Measure

量化流程能力

Quick win

問題點:

■機台顯影製程Dummy recipe 設定Dummy 頻率密集,造成TMAH 用量浪費。

對策

■分析機台Dummy recipe 設定item進行用量改善分析機台Dummy recipe 設定執條件不一,確認現機台設定條件非最佳化。

負責人:夏瑋俊/李漢忠

驗證時間/機台:98/04/11 CAR-01A

實施方式:

■將Dummy recipe 設定由Interval & lot head變更為
Interval & before ,由每一批Dummy 變更為By batch
與Idle 一小時以上才Dispense,若連續run貨機台無
idle 則每天可節省機台Dummy 40次。

P D

- 1.將新Dummy recipe 上線,4/16完成所有機 台Dummy recipe 修上線。
- 2.Monitor 4/1~4/30日TMAH by Pep 平均用量下降至0.101L/Pep, 總用量下降11%

機台端變更為Interval & Before。

Monitor CAR-01A density chart 無特殊異常

量化流程能力

Quick win

L3D TMAH 2009年 用量Data 確認

使用2-sample T test,確認減量後成效,確認計算P-Value 值為: 0,驗證結果為Quick action 為有效改善對策。

Two-Sample T-Test and CI: 98/01-03, 98/04-06

Two-sample T for 98/01~03 vs 98/04~06

N Mean StDev SE Mean 98/01~03 82 0.1121 0.0124 0.0014 98/04~06 91 0.1012 0.0139 0.0015

 $\int H0: \mu 1(98/01 \sim 03) \le \mu 2(98/04 \sim 06)$

*H*1: μ 1(98/01 ~ 03) > μ 2(98/04 ~ 06)

Difference = mu (98/01~03) - mu (98/04~06)

Estimate for difference: 0.01087

95% lower bound for difference: 0.00756

T-Test of difference = 0 (vs >): T-Value = 5.42 P-Value = 0.000

P-Value = 0.000 DF = 170

P-Value <1 拒絕H0; 接受H1

量化流程能力

A capable measurement system

Quick action 成效確認

使用Quick action後針對TMAH 25%用量,改善前後成效確認,Z-Bench 己由 -0.98 下降至-0.1。(平均單一PEP 25% TMAH 用量由114ml下降至101ml)

Quick action 前: Z Bench: -0.98

Quick action 後: Z Bench: -0.1

經由Quick action 成效已達成92%的減量目標,但仍有8%需努力, LSS team 後續將經由"A"與"I" phase 完成減量目標。

LSS Outline

3.Analyze

- 1.Define
- 2.Measure
- 4.Improve
- 5.Control

Analyze

識別潛在原因

Potential root cause analysis

專案名稱:___TMAH用量減量_

組別:_LSTW09040187_ 專案類型: DMAIC

<u>目標陳述</u>: 25%TMAH用量減量(2009年Pep平均用量減量114ml/pep→100ml/pep , 減量12% , 挑戰減量21%)

<u>專案指標變化 (大Y)</u>: 廠務 TMAH 25%單Pep月用量

114ml→100 ml

<u>財務效益累積</u>:總年度Cost down NTD: 120萬(經由

Quick action後,Pep用量由114ml→101ml,總用量己改

善92%,費用效益為NTD:110萬/年)

識別潛在原因 (x's):

小組人員針對M phase資料進行腦力激盪,建立 魚骨圖,經由魚骨圖找出潛在原因

顯著的 x's

經由魚骨圖分析出三項潛在原因

- 1.各機台流量調整差異大。
- 2.各機台Dummy recipe 設定。
- 3.DEV Nozzle end 距基板距離不一。

顯著原因之影響與方程式Y=f(x)

本次主題為用量減量,各顥著因子皆為獨立因子,並無交集,因此無建立方程式。

Conclusion / Issue / Next Steps :

Conclusion:

1.生產機台流量用量align 6L/min →預計可降低每一Pep 製程用量10%。

階段開始日期: 06/11/2009

階段完成日期: 07/02/2009

- 2.使用系統圖找出Dummy recipe 設定不佳處→預計align 各機台Dummy 時間設定後用量可改善4%
- 3.機台Nozzle end 走行距離設定 →process puddle end 距基板邊緣統一設為0.5mm,預計用量可改善2%

Next Step:

依據A phase分析測試,依測試結果擬定機台展開 schedule。

Analyze

識別潛在原因

Potential root cause analysis

TMAH用量減量特性要因圖分析

小組成員運用<mark>腦力激盪</mark>,針對人、機、料、法分析各項要因建立**特性要因圖**。小組討論 後將針對TEL 機台與人員設定、recipe 限制進行分析。

調查顯著的Xs

Verification of potential root cause by data chart

L3D DEV unit 機台設定比較

- 1.比較各機台端製程設定值後發現,各機台DEV unit TMAH 流量設定不一。
- 2.Supply N2 壓力設定值不一(1.N2設定值太小,會導致TMAH供給時須將TMAH regulator 調整至最大才能獲得須要的TMAH流量)
- 3.流量設定值最小的CAR-04A, DEV Nozzle Gap keep in spec (Spec: 1.8 +/-0.3)

機台	N2	Unit	1	2	3	TMAH流量值 (L/min)	
		DEV 4-2	1.75~1.85	2.0~2.1	1.75~1.85	7.3	
CAR-01A	0.34	DEV 4-3	1.8~1.85	1.8~1.85	1.8~1.85	7.5	
		DEV 4-4	1.65~1.75	2.0~2.1	2.0~2.1	7.6	
		DEV 4-2	1.75~1.85	1.6~1.75	1.75~1.85	7	
CAR-02A	0.31	DEV 4-3	2.00	1.85~1.95	1.75~1.8	6.3	
		DEV 4-4	1.75~1.85	1.75~1.85	1.75~1.85	6.6	
		DEV 4-2	1.85~1.95	2.0~2.1	1.95~2.0	7	
CAR-03A	l	DEV 4-3	1.85~1.95	1.85~1.95	1.75~1.8	7.1	
		DEV 4-4	1.75~1.85	1.75~1.85	1.75~1.85	6	
		DEV 4-2	1.75~1.85	1.75~1.85	1.75~1.85	5.6	
CAR-04A	0.23	0.23	DEV 4-3	1.8~1.85	1.85~1.9	1.85~1.9	5.9
		DEV 4-4	1.75~1.85	1.75~1.85	1.75~1.8	5.8	
		DEV 4-2	1.75~1.85	1.85~1.9	1.75~1.85	8	
CAR-05A	0.26	DEV 4-3	1.75~1.85	1.75~1.85	1.85~1.9	6.7	
		DEV 4-4	2.0~2.1	2.0~2.1	2.0~2.1	6.8	
		DEV 4-2	1.75~1.85	1.95~2.0	2.0~2.1	7.1	
CAR-06A	0.31	DEV 4-3	1.90~2.0	1.90~2.0	1.75~1.85	6.7	
		DEV 4-4	1.85~1.9	1.85~1.9	1.75~1.8	6.7	
		DEV 4-2	1.8~1.85	1.8~1.85	1.8~1.85	6.1	
CAR-07A	0.28	DEV 4-3	1.75~1.85	1.75~1.85	1.75~1.85	6.3	
		DEV 4-4	1.75~1.85	1.75~1.85	1.75~1.8	6.8	

CAR各機台流量箱型圖分析 Boxplot of CAR-01A, CAR-02A, CAR-03A, CAR-04A, CAR-05A, CAR-06A, ... 8.0 7.5 CAR-01A CAR-02A CAR-03A CAR-04A CAR-05A CAR-06A CAR-07A

比對各機台硬體後發現改善item:

- •各機台DEV 流量均依Spec (5~9L/min)調整,並無設定調整Target,因而導致各機台用量不均,機台機流量設定不一造成浪費。
- •各機台N2均依Spec (0.2~0.4L/min)調整,並無設定調整Target, Align 友廠設定0.3Mpa,穩定製程用量
- •各機台DEV Nozzle Gap,均己調整至Spec內。

Analyze

調查顯著的Xs

Verification of potential root cause by data chart

機台 流量確認 機台設定比較

1.比對CAR各機台現行流量設定,目前各機台流量設定不一,主要原因為廠內設定Spec 為 5~9,因此各機台只要在range 內的即可,並無特定align 流量設定。

2.依據現行CAR-04A run貨條件,將各機台流量設定為6L/min,預計流量align後,DEV process用量可節省10%用量(7台CAR機台)

現況CAR各機台流量設定

將各機台流量設定轉換為6L/min後,各機台計算可得的用量節省效益

機台	4-2	4-3	4-4	平均
CAR-01A	7.3	7.5	7.6	7.5
CAR-02A	7	6.3	6.6	6.6
CAR-03A	7	7.1	6	6.7
CAR-04A	5.6	5.9	5.8	5.8
CAR-05A	8	6.7	6.8	7.2
CAR-06A	7.1	6.7	6.7	6.8
CAR-07A	6.1	6.3	6.8	6.4
	6.7			

	機台	4-2	4-3	4-4	平均
	CAR-01A	1.3	1.5	1.6	1.5
	CAR-02A	1	0.3	0.6	0.6
	CAR-03A	1	1.1	0	0.7
\rangle	CAR-04A	-0.4	-0.1	-0.2	-0.2
	CAR-05A	2	0.7	0.8	1.2
	CAR-06A	1.1	0.7	0.7	8.0
	CAR-07A	0.1	0.3	8.0	0.4
		0.7			

TMAH製程用量減量方針擬定,預期製程用量減量10%,

I Phase將測試流量align後製程window 的可靠度

調查顯著的Xs

機台機台Nozzle 走行設定比較

1.比對CAR各機台現行Nozzle 塗佈行程比較,目前各機台Puddle End 端設定不一,廠內設定並無特定align,若調整puddle end 端距基板距離調整至與CAR-07A 一致,預估製程用量可節省約2%。

機台	DEV Unit	P1	Begin	P3	PUDDLE Distence	More than margin usage
	DL V OIIII	(mm)	(mm)	(mm)	(mm)	(濃度:2.38 %,單位: L)
	4-2	400	433	1220	787	0.41
R1	4-3	400	432	1220	788	0.42
	4-4	400	434	1220	786	0.43
	4-2	390	440	1215	775	0.40
R2	4-3	390	440	1215	775	0.36
	4-4	390	440	1215	775	0.38
	4-2	390	445	1220	775	0.12
R3	4-3	390	445	1220	775	0.12
	4-4	390	445	1220	775	0.10
	4-2	390	440	1210	770	0.18
R4	4-3	390	435	1210	775	0.18
	4-4	390	440	1210	770	0.18
	4-2	410	448	1215	767	0.23
R5	4-3	410	441	1215	774	0.19
	4-4	410	440	1215	775	0.19
	4-2	400	445	1210	765	0.21
R6	4-3	400	445	1210	765	0.20
	4-4	400	445	1210	765	0.20
	4-2	390	450	1200	750	0.08
R7	4-3	390	450	1200	750	0.08
	4-4	390	450	1200	750	0.09

CAR-04A機台進行量測驗證: CAR-04A 顯影puddle End 端超 出距離縮短。

1).針對顯影puddle End 端超出基板距離縮短,將距離縮短後達到減量目的,

原始設定Nozzle 超出2cm,調整後超出0.5cm,(調整走行距離770mm-->755mm)

預計可達到約2%的製程用量減量效益。

Analyze

調查顯著的Xs

Verification of potential root cause by data chart

DEV Dummy recipe TMAH 用量減量系統圖分析

小組成員針對DEV Dummy recipe討論,針對Recipe 設定頻率與設定時間進行系統圖分析,分析出各項影響因子與改善方向。

PL rework 機台TMAH Dummy 用量減量方針擬定,預期 JAS-01A Dummy 用量減量96%,約總用量4%

計算方式:

rietary & Confidential

JAS-01A為offline 機台,平均一天idle 約18hr,每次dummy 用量為860ml,一天約purge: 232L, (約20L 25%TMAH)

變更為2hr Dummy 一次,平均一天idle 18hr,每次用量860ml,一天約purge: 7.7L, (約0.7L 25%TMAH)

LSS Outline

4.Improve

- 1.Define
- 2.Measure
- 3.Analyze
- 5.Control

產生潛在的解決方案

Tested, robust solution target to the goal with validation

專案名稱: TMAH用量減量

組別: LSTW09040187 專案類型: DMAIC

<u>目標陳述</u>: 25%TMAH用量減量(2009年Pep平均用量減 量114ml/pep→100ml/pep , 減量12%, 挑戰減量21%)

專案指標變化 (大Y): 廠務 TMAH 25%單Pep月用量

114ml→100 ml

財務效益累積:總年度Cost down NTD: 120萬(經由 Quick action後,Pep用量由114ml→101ml,總用量已改 善92%,費用效益為NTD:110萬/年)

潛在的解決方案:

- 1.各機台流量調整差異大。
- 2.各機台Dummy recipe設定不一。
- 3.DEV Nozzle end 距基板距離不一。

解決方案選擇並測試結果:

- 1.機台間流量差異將align機台現況使用TMAH最 少之機台進行用量6L/min align調整。
- 2.JAS-01A Dummy recipe 設定不佳,導致用量 過大,align 生產機台調整。
- 3.DEV Nozzle End 距離不一, align 現況最佳條 件,距邊5mm,進行減量改善

實施計畫

使用P、D、C、A手法將各解決方案逐一上線, 並安排展開schedule

Conclusion / Issue / Next Steps:

Conclusion:

1. 生產機台流量用量align 6L/min →預計可於8/11完成 CAR機台展開。

階段開始日期: 07/02/2009

階段完成日期: 07/16/2009

- 2.使用系統圖找出Dummy recipe 設定不佳處→7/14己 align 生產機台Dummy 時間設定240sec調整為 7200sec •
- 3.機台Nozzle end 走行距離設定 →process puddle end 距基板邊緣統一設為0.5mm。

Next Step:

- 1.機台設定規範將納入PM復機點檢表確認。
- 2.DEV Puddle End 端設定將納入製程SOP規範
- 3.JAS-01A Dummy recipe 設定將納入Rework 作業指 導書規範。

選擇&試驗解決方案

Documentation on result of chosen Lean solution

TMAH 流量設定align 製程Window確認

- 1.CAR-04A DEV unit 所有條件均在Spec內,且流量設定為最少之機台,顯示出其餘機台均為用量浪費之狀態。
- 2.依據CAR-04A 流量條件於CAR-06A 測試顯影流量window,確保產品品質

Unit	DEV 4-2	DEV 4-3	DEV 4-4
現行流量 (L/min)	(7.1 L/min)	(6.7 L/min)	(6.5 L/min)
3.0	90	60	70
3.5	80	80	80
4.0	80	80	90
4.5	90	90	90
5.0	90	90	95
5.5	95	95	95
6.0	100	100	100
6.5	100	100	100
各unit原值	100	100	100

定義:

60	puddle邊緣深鉅齒狀 向前拖曳poor puddle
70	puddle邊緣淺鋸齒狀 無向前拖曳poor puddle
80	puddle邊緣更淺鉅齒狀
90	puddle僅 角落poor puddle
95	角落poor puddle 幾乎看不見
100	完美~~!!

DEV 評分示意圖

CAR-06A 流量調整align Window 確認結果Pass,流量可由 7.1L/min調降為6L/min, DEV 塗佈狀態完全符合標準,但 流量向下Window 略顯不足→使用P、D、C、A手法改善

選擇&試驗解決方案

Documentation on result of chosen Lean solution

P

A

D

C

問題點:

■機台顯影製程用量align 6L/min,顯影塗佈window 略有不足

對策

■分析各機台主顯影recipe 設定進行改善

分析各機台recipe 於顯影起始端recipe 設定"wait" 與"N-wait"不一,確認recipe 設定可改善起始端塗佈 不良issue,後續將進行驗證。

依各機台PM schedule 擬定機台TMAH 流量 align 調整作業。

TMAH 流量 align 調整	CAR-01A	CAR-02A	CAR-03A	CAR-04A	CAR-05A	CAR-06A	CAR-07A
預定展開日期	7/21	7/7	8/9	7/9	7/8	8/11	8/4
實際機台展開 日期	7/21	7/7	8/9	7/9	7/8	8/11	8/4

檢測item:

調整後AOI+ADI+CD 確認,目前展開機台測試結果無發現有顯影issue。

負責人:夏瑋俊/廖明啟/李漢忠

驗證時間/機台: 98/07/9 CAR-06A

實施方式:

■將CAR-06A Dev 起始端recipe參數設定由原始wait 變更為N-wait,驗證recipe 調整後顯影puddle 起始端 製程window的分數變化。

註:

DEV recipe "wait" 設計指,Recipe 指定Nozzle 一定要到達指定位置,不若時間設定秒數是否合理,Nozzle 到達定位後即進行下一step。

DEV recipe "N-wait" 設計指,Recipe 指定Nozzle 到達指定位置後,需依指定時間停留,完成指定時間動作後才可進行下一step。

Window 確認結果, DEV 塗佈狀態己由TMAH流量5L/min即可完成標準(100分)的塗佈狀態。

Recipe window modify:

Step	Time	Speed	Acc.	Dispense Arm1							
	(sec)	(rpm)	(rpm/s)						Spd.	Posi.	Mode.
1	3.0	0	0	5					1	P1	Wait
2	2.5	0	0	1	5	8			6	P1	N-Wait
3	1.0	0	0	1	5	8			6	Begin	Wait
4	9.5	0	0	1	5	8			6	P3	Wait
5	3.0	0	0	5	8				6	P3	N-Wait
6	65.0	0	0	5	8				1	P3	N-Wait
7	3.0	0	0	5	8				1	Home	Wait

Dev 塗佈測試評分結果:

Unit	DEV 4-2	DEV 4-3	DEV 4-4
測試流量			
4.5	95	95	95
5.0	100	100	100
5.5	100	100	100
6.0	100	100	100
6.5	100	100	100

N-wait

AUO Proprietary & Confidential

※ 對策實施後25%TMAH 用量減少10% (整體改善預測約8%)

選擇&試驗解決方案

Documentation on result of chosen Lean solution

問題點:

- CAR 機台DEV puddle end recipe fine tune 對策
- ■依據機台recipe 設定蒐集進行分析
 - 1.機台間Nozzle End 位置距基板邊緣位置不
 - 一距離由0~38mm不等。
 - 2.依據各機台設定差異進行align 調整,減少因設定差異而造成的浪費。

依各機台PM schedule 擬定機台DEV nozzle End 位置align 調整作業。

TMAH NOZ align 調整	CAR-01A	CAR-02A	CAR-03A	CAR-04A	CAR-05A	CAR-06A	CAR-07A
預定展開日期	7/21	7/7	8/9	7/9	7/8	8/11	8/4
實際機台展開 日期	7/21	7/7	8/9	7/9	7/8	8/11	8/4

負責人:李漢忠/林美菁

驗證時間/機台:CAR-04A

實施方式:

- ■將CAR-04A Dev puddle end端機台參數設定由原始距基板20~25mm,調整為距基板邊緣5mm,減少TMAH製程用量的浪費。
- ■此Action為Align CAR-07A 機台端設定,故驗證lot只需確認當站外觀檢,確認外觀檢無異常mura即可展開。

D C

經由DEV puddle end 端調後,計算機台製程用量約可減少2%的浪費。

177	DEV Unit	P1	Begin	P3	PUDDLE Distence	More than margin usage
		(mm)	(mm)	(mm)	(mm)	(濃度:2.38 %,單位: L)
	4-2	390	440	1210	770	0.18
R4	4-3	390	435	1210	775	0.18
	4-4	390	440	1210	770	0.18

原始設定Nozzle 超出20mm,調整後超出5mm,(調整走行距離770mm-->755mm)預計可達到約2%的製程用量減量效益。

& Confidential

選擇&試驗解決方案

Documentation on result of chosen Lean solution

P

D

C

問題點:

- JAS-01A 機台DEV Dummy TMAH 2.38% 量太多 對策
- ■依據系統圖分析結果
- 1.JAS-01A機台為PL rework 機台,使用2.38%新液

TMAH,現行機台設定Dummy 間隔秒數為240sec。

2.。現行一天Dummy 約purge: 232L, (約20L

25%TMAH)

負 責 人:林美菁/夏瑋俊

驗證時間/機台:2009/07/06 JAS-01A

實施方式:

- Align 生產機台,將Dummy 設定時間與CAR 機台 align,由240sec 延長至7200sec。
- ■現行JAS-01A Dummy TMAH 為2.38% 新液,且機台設計為無回收機制,因而造成浪費

調整Dummy recipe 上線,7/14日上線

DEVICE SELECTION

SETUP SETUP OF MOVEMENT NC DATA ARITHMETIC OTHER SETUP CALCULATE RESULT

SETUP OF MOVEMENT

DIVISION DATA NAME SETTING VALUE UNIT A

Duamy discharge In predispens discharge node 2 Off/On

In predispens discharge interval 7200.0 sec
In predispens discharge time 5.0 sec
Sack back Developing solution sack back delay time 3.0 sec
Ejecter motion setting Ejecter motion selection 0 Off/On

SETTING VALUE	UNIT
2	0ff/0n
7200.0	sec
5.0	sec
3.0	sec
0	Off/On

※ 對策實施後JAS-01A Dummy用量減少96% (整體改善4%)

預測JAS-01A機台調整Dummy interval 時間後 Daily purge 量可由232L/day降為7.7L/day

GUO Proprietary & Confidential

控片確認PL rework 後AOI無 Rework不淨issue

LSS Outline

5.Control

- 1.Define
- 2.Measure
- 3.Analyze
- 4.Improve

Control

創建控制&監控計劃

Documentation for transfer plan

專案名稱:____TMAH用量減量___

組別:_LSTW09040187_ 專案類型: DMAIC

<u>目標陳述</u>: 25%TMAH用量減量(2009年Pep平均用量減量114ml/pep→100ml/pep , 減量12% , 挑戰減量21%) 事<u>案指標變化 (大Y)</u>: 廠務 TMAH 25%單PEP月用量 114ml→100 ml

<u>財務效益累積</u>:總年度Cost down NTD: 248萬(經由I Phase 後,總用量已減量23%,費用效益為NTD: 248萬/年)

控制&監測計畫:

將改善action 新增至SOP規範內,並將相關點檢項目新增至PM 後復機check list 內,執行後續成效管控。

全面實施解決方案結果:

1.LSS team 經由Quick action與 I Phase 減量後 TMAH用量已由114ml/PEP改善至86ml/PEP,整 體TMAH用量減量23% ,超越LSS設定challenge 目標Down 21%。

結案移交行動:

- 1.專案完成後移交L3DPH 執行後續成效維持
- 2.請移交部門於8/20前完成相關SOP改版完成。

Conclusion / Issue / Next Steps :

Conclusion:

- 1.LSS 經由M phase 的Quick action 完成
- 1.LSS減量設定目標與Challenge目標均完成,TMAH用量已由114ml/PEP改善至86ml/PEP。

<u>階段開始日期:</u> 07/16/2009 階段完成日期: 08/06/2009

Next Step:

- 1.相關SOP改版作業push 完成。
- 2.落實後續成效維持確認作業的執行

專案結案並移交

Complete project documentation

TMAH 減量後成效確認-L3D 單一PEP 用量確認

- 1.使用Box plot 確認LSS I Phase努力後-TMAH 用量減量執行後,by 月份Box plot顯示 TMAH用量平均PEP用量由114ml改善至平均PEP用量86ml,用量改善 23 %
- 2.Champion Target 為 100ml/Pep,減量後成效為86ml/Pep,減量目標完成

專案結案並移交

Validate performance and Financial result

LSS 專案成效確認

LSS I Phase action 後成效確認, Z-Bench 己改善至 1.14 (Overall capability)。

(Z- Bench 己由原始 -0.98經由LSS 改善至 1.14)

專案結案並移交

Validate performance and Financial result

TMAH 減量後成效確認-廠級間比較

減量後與3.5G廠間用量比較,TMAH 減量後單一PEP用量由114ml/PEP減量至86ml/PEP, 超越Challenge 設定目標,且追平3B單一PEP用量。

KPI	Now	Champion Target	Challenge
單PEP 2 TMAH	114 (ml/ PEP)	114ml Down to 100ml (Pep) (約:NTD:120萬/年)	114ml Down to 90ml (Pep) (約: NTD:211萬/年)

Before and after process metrics

CAR機台 TMAH流量Monitor

- 1.設定機台流量Spec 為顯影塗佈Nozzle 走行至基板中心處,TMAH流量Target設定為:
- 6 (+/- 0.3) L/min •
- 2.將機台端改善後Monitor item 新增至PM後check list SOP表單內,確保製程Window OK。

光阻塗佈顯影機 (TEL CS800M) 設備保養項目表

保管單位 Storage	L3D 黃光工程部
保存年限 Retention Period	3年

保養實施日期: 年 月 日

機台編號: CAR - A

							РМ	lte	m c	hec	k I	st				Comment	
ITEM	Unit Name	Check Items	Designated Month Block Number (* for all block)				ck)		Action	Result	Comment						
33	DEV	DEV Nozzle Gap measure	1	2	3	4	5	6	7	8	9	10 1	1 12	Spec. Check ARM : 1.8 +/-0.3mm	OK / NA		

MQC glass running check list								
Item	Unit Name	Check Item	Method	Record Method	Comment			
12		Developer Puddle Status check	Visual	V / X				
13	DEV	DEV Nozzle	Spec : 5 L/min≦Value≦9 L/min Target : 6+/- 0.3 L/min	Numeric value				
14	4-2	Rinse	5 L/min≦Value≦9 L/min	Numeric value				
15		Back Rinse	5 L/min≦Value≦9 L/min	Numeric value				

CAR機台 DEV Puddle End 位置

- 1.設定機台顯影塗佈Nozzle 走行至基板End 處,設定Nozzle 距基板邊緣為5mm。
- 2.將機台端改善後recipe 設定 item 新增至製程規範 SOP表單內,確保製程Window OK。

文件編號 Document No.: L3DPH-09-010 作者 Author: JRWEN CHEN 陳枝汶 版次 Version: 21

文件中文名稱 Document Chinese Name: 黃光區機台管理規範 生效日 Effective Date:

文件英文名稱 Document English Name: PHOTO line process machine management SOP

1.1.1.1.13 DEV (Developer)

- 1. 顯影液流量控制規格為 5~9 L/min (Target 設定:6(+/-0.3)L/min)
- 2. DEV Nozzle recipe 設定 Nozzle P3 距離基板 End 設定為,超出 5mm。

JAS-01A 機台 DEV Dummy recipe 設定

- 1. 設定機台Dummy recipe 設定時間為7200sec, Dummy 時間 5sec。。
- 2.將機台端改善後recipe 設定 item 新增至製程規範 SOP表單內,確保製程Window OK。

文件編號 Document No.: L3DPH-09-010

作者 Author: 陳枝汶

版次 Version: 6

文件中文名稱 Document Chinese Title: 黃光區議台管理規範

华效日 Effective Date:

文件英文名稱 Document English Title: PHOTO line process machine management SOP

JAS-01A Dummy redpe

G SD					
STEP SETUP OF HOVEN	ENT NC DATA	ARITHMETIC	OTHER SETUP	CALCULA	TE RESUL
SETUP OF MOVEMENT DIVISION	1	ATA NAME	SETTING VALUE	UNIT	-
	In predignens discharge nor	2	Off/On		
	In predispens discharge int	7200.0	sec		
	In predispens discharge tis	5.0	sec		
Sack back	Developing solution sack be	3.0	200		
Ejecter motion setting	Ejecter motion selection	0	Off/On	W.	

TMAH 用量減量

(Photo Cost down project)

在LSS展開的過程中,利用3W2H與SIPOC來選定主題,蒐集資料分析現況製程能力,利用流程圖找出浪費,執行Quick action 進行第一時間的用量改善,特性要因圖與系統圖來找出問題重點。搭配PDCA找出最佳化改善方法。

選擇正確的改善題目+正確的改善手法,進行有系統的改善流程,因此獲得了

First time right 的結果~

交流時間

