Estática dos fluidos

Elisa Valentim Goulart

Núcleo de Estudos da Qualidade do Ar

Dinâmica versus estática

Estática dos fluidos

Fluido em respouso

Só existem tensão normal aplicada

Pressão e gravidade

Força de superfície

Força de campo

Pressão em um ponto de fluido

$$d\vec{F} = d\vec{F}_S + d\vec{F}_B$$

$$d\vec{F} = (-\nabla p + \rho g)dxdydz$$

$$\frac{d\vec{F}}{dV} = \left(-\nabla p + \rho g\right) = 0$$

Estática dos fluidos

Força de corpo

Única força de corpo é a gravidade.

$$d\vec{F}_B = \vec{g}dm = \vec{g}\rho dV$$

$$d\vec{F}_B = \rho \vec{g} dx dy dz$$

Força de superfície

Pressão em um ponto de fluido

Balanço hidrostático

$$-\nabla p + \rho g = 0$$

Força de pressão líquida por unidade de volume

Força de corpo por unidade de volume

$$-\frac{\partial p}{\partial x} + \rho g = 0 \qquad -\frac{\partial p}{\partial y} + \rho g = 0 \qquad -\frac{\partial p}{\partial z} + \rho g = 0$$

$$\frac{dp}{dz} = -\rho g$$

Restrições do Balanço hidrostático

- Fluido estático
- Gravidade é a única força de campo
- Eixo z é vertical e voltado para cima

E para a atmosfera?

- A atmosfera geralmente é considerado em balanço hidrostático. Mesmo com movimentos de ventos.
- O balanço pode ser considerado desde que os acelerações verticais sejam muito menores que a aceleração da gravidade.

E para a atmosfera?

Representa o balanço
entre a força do
gradiente vertical de
pressão e a força de
gravidade

E para a atmosfera?

Como a pressão atmosférica varia com a altura, pode-se calcular a pressão em um determinado nível supondo certas condições de equilíbrio

Princípio de Pascal

 O Principio de Pascal representa uma das mais significativas contribuições práticas para a mecânica dos fluidos no que tange a problemas que envolvem a transmissão e a ampliação de forças através da pressão aplicada a um fluido.

 O seu enunciado diz que: "quando um ponto de um líquido em equilíbrio sofre uma variação de pressão, todos os outros pontos também sofrem a mesma variação".

Aplicação do princípio de Pascal

 Ao se aplicar uma pressão em um ponto qualquer de um líquido em equilíbrio, essa pressão se transmite a todos os demais pontos do líquido, bem como às paredes do recipiente.

 Essa propriedade dos líquidos, expressa pela lei de Pascal, é utilizada em diversos dispositivos, tanto para amplificar forças como para transmitilas de um ponto a outro. Um exemplo disso é a prensa hidráulica e os freios hidráulicos dos automóveis.

Aplicação do princípio de Pascal

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

Exercício

1- Na figura apresentada a seguir, os êmbolos A e B possuem áreas de 80cm² e 20cm² respectivamente. Despreze os pesos dos êmbolos e considere o sistema em equilíbrio estático. Sabendo-se que a massa do corpo colocado em A é igual a 100kg, determine a massa do corpo colocado em B.

Solução

Força atuante em A:

$$F_A = m_A \cdot g$$

$$F_{A} = 100 \cdot 10$$

$$F_{A} = 1000 \text{N}$$

Força atuante em B:

$$\frac{F_A}{A_A} = \frac{F_B}{A_B}$$

$$\frac{1000}{80} = \frac{F_{B}}{20}$$

$$F_B = \frac{1000 \cdot 20}{80}$$

$$F_{R} = 250 \text{N}$$

Massa em B:

$$F_B = m_B \cdot g$$

$$m_B = \frac{F_B}{g}$$

$$m_{B} = \frac{250}{10}$$

$$m_B = 25 \,\mathrm{kg}$$

Referenciais de pressão

P absoluta = P manométrica + P atmosférica

Variação de pressão em um fluido estático

$$\int_{p_0}^{p} dp = -\int_{z_0}^{z} \rho g \, dz$$

$$p - p_0 = -\rho g(z - z_0)$$
$$p - p_0 = \rho g(z_0 - z)$$

$$\Delta p = \rho g h$$

Manômetros

Exercício de manômetros

1) No manômetro diferencial mostrado na figura, o fluido $\bf A$ é água, $\bf B$ é óleo e o fluido manométrico é mercúrio. Sendo h_1 = 25cm, h_2 = 100cm, h_3 = 80cm e h_4 = 10cm, determine qual é a diferença de pressão entre os pontos $\bf A$ e $\bf B$.

Dados: $\gamma_{h20} = 10000 \text{N/m}^3$, $\gamma_{Hg} = 136000 \text{N/m}^3$, $\gamma_{\text{óleo}} = 8000 \text{N/m}^3$.

Solução

Ponto 1:

$$P_1 = P_A + \gamma_{h2o} \cdot h_1$$

Ponto 2:

$$P_2 = P_1 + \gamma_{Hg} \cdot h_2$$

$$P_2 = P_A + \gamma_{h2o} \cdot h_1 + \gamma_{Hg} \cdot h_2$$

Ponto 3:

 $P_3 = P_2$ Mesmo fluido e nível

$$P_3 = P_A + \gamma_{h2o} \cdot h_1 + \gamma_{Hg} \cdot h_2$$

Diferença de pressão:

$$P_{\rm B} = P_{\rm 3} - \gamma_{\rm oleo} \cdot h_{\rm 3}$$

$$P_{\rm B} = P_{\rm A} + \gamma_{\rm h2o} \cdot h_1 + \gamma_{\rm Hg} \cdot h_2 - \gamma_{\rm oleo} \cdot h_3$$

$$P_{\rm B} - P_{\rm A} = \gamma_{\rm h2o} \cdot h_1 + \gamma_{\rm Hg} \cdot h_2 - \gamma_{\rm oleo} \cdot h_3$$

$$P_B - P_A = 10000 \cdot 0.25 + 136000 \cdot 1 - 8000 \cdot 0.8$$

$$P_B - P_A = 132100 \, \text{Pa}$$

Exercício

2) O tubo **A** da figura contém tetracloreto de carbono com peso específico relativo de 1,6 e o tanque **B** contém uma solução salina com peso específico relativo da 1,15. Determine a pressão do ar no tanque **B** sabendo-se que a pressão no tubo A é igual a 1,72bar.

Solução

Pressão em A:

$$1,72$$
bar = P_{A}

$$P_A = \frac{1,72 \cdot 101230}{1,01}$$

$$P_A = 172391,68$$
Pa

Peso específico:

Tetracloreto:

$$\gamma_{TC} = \gamma_{rTC} \cdot \gamma_{h2o}$$

$$\gamma_{TC} = 1,6 \cdot 10000$$

$$\gamma_{TC} = 16000 \text{N/m}^3$$

Solução Salina:

$$\gamma_{SS} = \gamma_{rSS} \cdot \gamma_{h2o}$$

$$\gamma_{SS} = 1.15 \cdot 10000$$

$$\gamma_{SS} = 11500 \text{ N/m}^3$$

Determinação da Pressão: Ponto 1:

$$P_1 = P_A - \gamma_{TC} \cdot 0.9$$

$$P_1 = 172391,68 - 16000 \cdot 0,9$$

$$P_1 = 157991,68$$
Pa

Ponto 2:

 $P_2 = P_1$ Mesmo fluido e nível

$$P_2 = 157991,68$$
Pa

Ponto 3:

$$P_3 = P_2 + \gamma_{SS} \cdot 0.9$$

$$P_3 = 157991,68 + 11500 \cdot 0,9$$

$$P_3 = 168341,68$$
Pa

Ponto 4:

$$P_{\scriptscriptstyle 4}=P_{\scriptscriptstyle 3}\,$$
 Mesmo fluido e nível

$$P_4 = 168341,68$$
Pa

Ponto 5:

$$P_5 = P_4 - \gamma_{ss} \cdot 1,22$$

$$P_5 = 168341,68 - 11500 \cdot 1,22$$

$$P_5 = 154311,68 \, \text{Pa}$$