⇒ E Pro	blem List 〈	> >\$		Run 斉 Submit	Ø		88	£6
Description	☐ Editorial	Solutions	Submissions	🕏 Debugger 🗙				

1383. Maximum Performance of a Team

	F - 1		O
Hard	Topics	Companies	Hint

You are given two integers $\, n \,$ and $\, k \,$ and two integer arrays $\,$ speed $\,$ and $\,$ efficiency $\,$ both of length $\, n \,$. There are $\, n \,$ engineers numbered $\,$ fr

Choose **at most** k different engineers out of the n engineers to form a team with the maximum **performance**.

The performance of a team is the sum of its engineers' speeds multiplied by the minimum efficiency among its engineers.

Return the maximum performance of this team. Since the answer can be a huge number, return it **modulo** $10^9 + 7$.

Example 1:

```
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 2
```

Output: 60 Explanation:

We have the maximum performance of the team by selecting engineer 2 (with speed=10 and efficiency=4)

Example 2:

```
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 3
```

Output: 68
Explanation:

This is the same example as the first but k = 3. We can select engineer 1, engineer 2 and engineer 5

Example 3:

```
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 4 Output: 72
```

Constraints:

- 1 <= k <= n <= 10⁵
- speed.length == n
- efficiency.length == n
- 1 <= speed[i] <= 10^5
- 1 <= efficiency[i] <= 10^8

Seen this question in a real interview before? 1/4

Yes No

Accepted 92K Submissions 192.1K Acceptance Rate 47.9%

- Topics
- Companies
- Mint 1
- O Hint 2
- **Similar Questions**
- Discussion (13)