

USN 1 M S

(Autonomous Institute, Affiliated to VTU) (Approved by AICTE, New Delhi & Govt. of Karnataka) Accredited by NBA & NAAC with 'A+' Grade

TS42

SUPPLEMENTARY SEMESTER EXAMINATIONS - JULY 2023

Program : B.E :- Information Science and Semester :

Course Name : **Operating Systems** Max. Marks : 100 Course Code : **IS42** Duration : 3 Hrs

Instructions to the Candidates:

Answer one full question from each unit.

UNIT - I

- a) How does the distinction between kernel mode and user mode function CO1 (10)
 as a rudimentary form of protection (security) in operating system?
 Justify.
 - b) Explain the process of invoking system call with an example. Also write CO1 (10) various system calls.
- 2. a) Describe process scheduling? Explain the various levels of scheduling. CO1 (10) Distinguish pre-emptive and non-pre-emptive scheduling algorithms?
 - b) Consider the following set of processes with the length of the CPU burst CO1 (10) time given in milliseconds:

Process	Burst Time	Priority
P1	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

The processes are assumed to have arrived in the order p1, p2, p3, p4, p5 all at time 0.

- i) Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, anon pre-emptive priority (a smaller prioritynumber implies a higher priority) and RR (quantum=1) scheduling.
- ii) What is the turnaround time of each process for each of the scheduling algorithms in part A?
- iii) What is the waiting time of each process for each of the scheduling algorithms in part A? Which of the schedules in part a results in the minimal average waiting time?

UNIT - II

- 3. a) Prove that the Peterson's Solution for critical section problem is correct CO2 (10) with the help of flag and turn variables.
 - b) Describe the conditions under which a deadlock situation may arise? CO2 (10) Distinguish between deadlock avoidance and prevention strategies?

IS42

4.	a)	Consider system with five prod C, Resources type A has 10	CO2	(10)				
		7 instances.	,					
		The snapshot at time T0 is	ALLOTED	MAX				
			ALLOTED A B C	A B C				
		P0	0 1 0	7 5 3				
		P1	200	3 2 2				
		P2 P3	3 0 2 2 1 1	9 0 2 2 2 2				
		P4	0 0 2	4 3 3				
		i)Now the process P1 request one additional resource type A and two instances of C. Determine whether this new site is safe or not. ii)What is the content of 'need' matrix?						
		iii) if request from P1 arrives f		granted immediately?				
	b)	Explain about condition vari classical synchronization probl	ables in monitors		CO2	(10)		
			UNIT - III					
5.	a)	What is dynamic storage allo different strategies with an ex		ddress this problem with	CO3	(80)		
	b)	Draw and explain the working	•	ng hardware in detail?	CO3	(07)		
	c)	Consider a computer system s		_	CO3	(05)		
		32-bit physical addresses. Sin		·				
		size as the physical address		rating system designers				
		decide to get rid of the virtual	memory entirely.					
6.	a)	What is page fault? Explain vadynamic demand paging.	rious steps involve	ed to handle page fault in	CO3	(10)		
	b)	Consider the following page reference string:				(10)		
		1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6 How many page faults would occur for replacement by LRU, optimal, for						
		three, and four frames? All frames are initially empty and first unique						
		page reference causes a page		, , , , , , , , , , , , , , , , , , , ,				
7.	2)	Consider that a disk drive has	UNIT - IV	numbered 0 to 4 000. The	CO4	(10)		
/.	a)	drive is currently serving re	•		C04	(10)		
		request was at cylinder 125.	The queue of pe	ending requests, in FIFO				
		order, is: 86, 1470, 913, 17 from the current head position						
		that the disk arm moves to s						
		following disk scheduling algor	rithms?					
	b)	i. FCFS ii. SSTF iii. SCAN Write note on :	iv. C-SCAN v. LO	OK vi. C-LOOK.	CO4	(10)		
	b)	(i) Log structured file syste	m		CO4	(10)		
		(ii) Efficiency and Usage of						
		(iii) File system mounting.	·					
C	۵١	Evoluin in datail	liek ochoduling -	Jaorithma with	CO 4	(10)		
8.	a)	Explain in detail various of example.	iisk scheauling a	ngonunns with suitable	CO4	(10)		
	b)	Explain the following concepts			CO4	(10)		
		i) File operations ii) File Struct	ures iii) File Types					

IS42

UNIT - V

9.	a)	Discuss the goals and principles of protection in a modern computer system.	CO5	(10)
	b)	Explain how protection domains combined with an access matrix are used to specify the resources a process may access.	CO5	(10)
10.	a) b)	Examine capability and language-based protection systems. Illustrate the networking protocols supported in operating systems.	CO5 CO5	(10) (10)
