HW 3

Huaiqian Shou hshou CV

Q1.1

Jacobian Matrix which is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

A is
$$\nabla$$
 I $\frac{\mathrm{dW}}{\mathrm{dP}}$
B is $I(W(x,p)) - T(x)$

It should be invertible

Q1.3

Q1.4

Q2.3

3.1

I think the reason might be that if we do the calculation in the original way, matrix A would change as p changes, but in the inverse way, A does not change through the iteration, which save a lot of computation. However, it seems that my InverseCompositionAffine does not boost the calculation speed.