Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 19: June 12th, 2017

Lecturer: Alan Arroyo Guevara Notes By: Harsh Mistry

Definition 19.1 A Closed Walk is one which $v_0 = v_n$. A Cycle is a walk where all $v_0, v_1, \ldots, v_{n-1}$ are distinct and $v_0 = v_n$

Theorem 19.2 Let $x, y \in V(G)$. If there is a walk from x to y, then there is a path from x to y

Proof: Consider a walk $W: v_n c_1, v_1 c_2, \dots, v_{n-1} c_n$ where $v_0 = x, v_n = u$ and suppose length(W) is as small as possible.

- If W is a path, we are done.
- Suppose W is not a path, then there exists $0 \le i \le j \le n$ such that $v_i = v_j$. Then, $W' = v_0 v_1 \dots, v_i v_{j+1} v_{j+2} \dots v_n$ has a shorter length than W, which is a contradiction.

Theorem 19.3 If every vertex in G has degree at least 2, then G has a cycle.

Proof: Take a path $P = v_0 v_1 \dots v_1$ of maximal length, v_0 has a neighbour $Z \neq v_1$. Such Z must be in P otherwise $P^p rime : zv_0 v_1 \dots v_n$ would be larger than P. Thus v_0 has a neighbour v_i with $i = 2, \dots, n$. Then $v_0 v_1 \dots v_i v_0$ is a a cycle

Notions of Graph Theory:

• Hamilton Cycle: A cycle that goes through all the vertices of the graph