Numerical Analysis Homework 6. Matrix Condition Numbers

102061125 陳冠鈞

1. Objective

There are two parts in this homework. The first part analyzes the termination conditions for the *power method* that finds the largest eigenvalue of an nxn matrix A. The second part applies *power method*, *inverse power method* and *inverse power method with shifting* to find out the matrix condition numbers of different size of resistor networks.

2. Computational Complexity

- Only one matrix-vector multiplication is needed for each iteration $\rightarrow 0(n^2)$
- Since the power method takes N_{iter} iterations, the overall complexity is $O(N_{iter} * n^2)$.

3. Results

• Part 1

Four different termination conditions.

$$\begin{split} & \epsilon_{1} = \left| \lambda^{(k+1)} - \lambda^{(k)} \right|, \\ & \epsilon_{2} = \left\| q^{(k+1)} - q^{(k)} \right\|_{2}, \\ & \epsilon_{2} = \left\| r^{(k+1)} \right\|_{2}, \\ & \epsilon_{4} = \frac{\left\| r^{(k+1)} \right\|_{2}}{\left| (w^{(k)})^{T} q^{(k)} \right|} \end{split}$$

Using power method, here are four different error vs. iterations.

different error	iter when err smaller than 10^{-9}	time	time/iter	
ϵ_1	299	0.00225	0.67275	
ϵ_2	794	0.002297	1.823715	
ϵ_3	268	0.002297	0.615596	
ϵ_4	683	0.006875	4.695625	

After analyzing each termination conditions, I prefer using ϵ_1 which is the difference of the calculated eigenvalues. The reason is that ϵ_1 has the least CPU time computing the eigenvalue of these resistor networks in this homework.

• Part 2

■ Condition numbers

# of nodes	9	25	121	441	1681	2601
condition	6.854104816	36.50760292	302.4332798	1467.204739	7016.86965	11574.26448
number						

The condition number grows linearly as number of nodes increase.

■ Eigenvalues

The largest eigenvalue increases exponentially and the smallest eigenvalue decreases exponentially.

■ CPU time

The CPU time to find either largest or smallest eigenvalue increases exponentially.

4. Conclusion

- CPU time matches the computational complexity.
- Using inverse power method with shifting, if the "shift" is properly positioned, the eigenvalue close to the "shift" will be found quickly.
- Initial eigenvector guess $q^{(0)}$ can affect the convergence rate, iterations to reach the termination condition, and the total time.