life.augmented

ASM330LHH

Automotive 6-axis inertial module: 3D accelerometer and 3D gyroscope

Datasheet - production data

Typ: $2.5 \times 3.0 \times 0.83 \text{ mm}^3$

Features

- Extended temperature range from -40 to +105 °C
- Embedded compensation for high stability over temperature
- Accelerometer user-selectable full scale up to ±16 g
- Extended gyroscope range from ±125 to ±4000 dps
- SPI & I2C host serial interface
- Six-channel synchronized output to enhance accuracy of dead-reckoning algorithms
- Smart programmable interrupts
- Embedded 3 kbytes FIFO available to underload host processor
- · ECOPACK, RoHS and "Green" compliant

Applications

- Dead reckoning (DR)
- Vehicle-to-everything (V2X)
- Telematics, eTolling
- Anti-theft systems
- Impact detection and crash reconstruction
- Motion-activated functions
- · Driving comfort
- Vibration monitoring and compensation

Description

The ASM330LHH is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope with an extended temperature range up to +105 °C and designed to address automotive non-safety applications.

ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes to serve both the automotive and consumer market. The ASM330LHH is AEC-Q100 compliant and industrialized through a dedicated MEMS production flow to meet automotive reliability standards. All the parts are fully tested with respect to temperature to ensure the highest quality level.

The sensing elements are manufactured using ST's proprietary micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The ASM330LHH has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g and a wide angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000/\pm 4000$ dps that enables its usage in a broad range of automotive applications.

All the design aspects of the ASM330LHH have been optimized to reach superior output stability, extremely low noise and full data synchronization to the benefit of sensor-assisted applications like dead reckoning and sensor fusion.

The ASM330LHH is available in a 14-lead plastic land grid array (LGA) package.

Table 1. Device summary

Part number	Temp. range [°C]	Package	Packing
ASM330LHH	-40 to +105	I GA-14I	Tray
ASM330LHHTR	-40 to +105	(2.5 x 3.0 x 0.83 mm ³)	Tape & Reel

Contents ASM330LHH

Contents

1	Ove	rview .		10
2	Emb	edded I	ow-power features	11
3	Pin	descript	tion	12
4	Mod	ule spe	cifications	14
	4.1	Mecha	nical characteristics	14
	4.2	Electric	cal characteristics	17
	4.3	Tempe	erature sensor characteristics	18
	4.4	Comm	unication interface characteristics	19
		4.4.1	SPI - serial peripheral interface	19
		4.4.2	I ² C - inter-IC control interface	20
	4.5	Absolu	ite maximum ratings	21
	4.6	Termin	ology	22
		4.6.1	Sensitivity	22
		4.6.2	Zero-g and zero-rate level	22
5	Digit	tal interi	faces	23
	5.1	I ² C/SP	I interface	23
		5.1.1	I ² C serial interface	23
		5.1.2	SPI bus interface	26
6	Fund	ctionalit	ty	30
	6.1	Operat	ting modes	30
	6.2	Gyroso	cope power modes	30
	6.3		erometer power modes	
	6.4		diagram of filters	
		6.4.1	Block diagram of the gyroscope filter	
		6.4.2	Block diagrams of the accelerometer filters	
	6.5	FIFO .		33
		6.5.1	Bypass mode	
		6.5.2	FIFO mode	34

ASM330LHH Contents

		6.5.3 Continuous mode	34
		6.5.4 Continuous-to-FIFO mode	35
		6.5.5 Bypass-to-Continuous mode	
		6.5.6 Bypass-to-FIFO mode	
		6.5.7 FIFO reading procedure	36
7	Appli	cation hints	37
	7.1	ASM330LHH electrical connections	37
8	Regis	ster mapping	39
9	Regis	ster description	42
	9.1	PIN_CTRL (02h)	
	9.2	FIFO_CTRL1 (07h)	42
	9.3	FIFO_CTRL2 (08h)	43
	9.4	FIFO_CTRL3 (09h)	44
	9.5	FIFO_CTRL4 (0Ah)	45
	9.6	COUNTER_BDR_REG1 (0Bh)	46
	9.7	COUNTER_BDR_REG2 (0Ch)	46
	9.8	INT1_CTRL (0Dh)	47
	9.9	INT2_CTRL (0Eh)	48
	9.10	WHO_AM_I (0Fh)	48
	9.11	CTRL1_XL (10h)	49
	9.12	CTRL2_G (11h)	50
	9.13	CTRL3_C (12h)	51
	9.14	CTRL4_C (13h)	52
	9.15	CTRL5_C (14h)	53
	9.16	CTRL6_C (15h)	54
	9.17	CTRL7_G (16h)	55
	9.18	CTRL8_XL (17h)	55
	9.19	CTRL9_XL (18h)	57
	9.20	CTRL10_C (19h)	57
	9.21	ALL_INT_SRC (1Ah)	58
	9.22	WAKE_UP_SRC (1Bh)	58
	9.23	D6D_SRC (1Dh)	59
	_		

	9.24	STATUS_REG (1Eh)	. 59
	9.25	OUT_TEMP_L (20h), OUT_TEMP_H (21h)	. 60
	9.26	OUTX_H_G (23h), OUTX_L_G (22h)	. 60
	9.27	OUTY_H_G (25h), OUTY_L_G (24h)	. 60
	9.28	OUTZ_H_G (27h), OUTZ_L_G (26h)	. 61
	9.29	OUTX_H_A (29h), OUTX_L_A (28h)	. 61
	9.30	OUTY_H_A (2Bh), OUTY_L_A (2Ah)	. 61
	9.31	OUTZ_H_A (2Dh), OUTZ_L_A (2Ch)	. 62
	9.32	FIFO_STATUS1 (3Ah)	. 62
	9.33	FIFO_STATUS2 (3Bh)	. 63
	9.34	TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)	. 64
	9.35	INT_CFG0 (56h)	. 65
	9.36	INT_CFG1 (58h)	. 65
	9.37	THS_6D (59h)	. 66
	9.38	WAKE_UP_THS (5Bh)	. 66
	9.39	WAKE_UP_DUR (5Ch)	. 67
	9.40	FREE_FALL (5Dh)	. 67
	9.41	MD1_CFG (5Eh)	. 68
	9.42	MD2_CFG (5Fh)	. 68
	9.43	INTERNAL_FREQ_FINE (63h)	. 69
	9.44	X_OFS_USR (73h)	. 70
	9.45	Y_OFS_USR (74h)	. 70
	9.46	Z_OFS_USR (75h)	. 70
	9.47	FIFO_DATA_OUT_TAG (78h)	. 71
	9.48	FIFO_DATA_OUT_X_H (7Ah) and FIFO_DATA_OUT_X_L (79h)	. 72
	9.49	FIFO_DATA_OUT_Y_H (7Ch) and FIFO_DATA_OUT_Y_L (7Bh)	. 72
	9.50	FIFO_DATA_OUT_Z_H (7Eh) and FIFO_DATA_OUT_Z_L (7Dh)	. 72
10	Typic	cal performance characteristics	. 73
	10.1	Gyroscope Angular Random Walk (ARW)	. 73
	10.2	Gyroscope Bias Instability (BI)	. 75
	10.3	Gyroscope nonlinearity	. 77

	.
ASM330LHH	Contents
	Content

11	Soldering information
12	Package information
	12.1 LGA-14L package information
	12.2 LGA-14 packing information
13	Revision history

List of tables ASM330LHH

List of tables

Table 1.	Device summary	1
Table 2.	Pin description	. 12
Table 3.	Mechanical characteristics	. 14
Table 4.	Electrical characteristics	. 17
Table 5.	Temperature sensor characteristics	. 18
Table 6.	SPI slave timing values (in mode 3)	. 19
Table 7.	I ² C slave timing values	. 20
Table 8.	Absolute maximum ratings	. 21
Table 9.	Serial interface pin description	. 23
Table 10.	I ² C terminology	. 23
Table 11.	SAD+Read/Write patterns	. 24
Table 12.	Transfer when master is writing one byte to slave	. 24
Table 13.	Transfer when master is writing multiple bytes to slave	. 24
Table 14.	Transfer when master is receiving (reading) one byte of data from slave	
Table 15.	Transfer when master is receiving (reading) multiple bytes of data from slave	
Table 16.	Gyroscope LPF2 bandwidth selection	
Table 17.	Internal pin status	
Table 18.	Registers address map	. 39
Table 19.	PIN_CTRL register	
Table 20.	PIN CTRL register description	
Table 21.	FIFO CTRL1 register	. 42
Table 22.	FIFO_CTRL1 register description	
Table 23.	FIFO_CTRL2 register	
Table 24.	FIFO CTRL2 register description	
Table 25.	FIFO_CTRL3 register	
Table 26.	FIFO_CTRL3 register description	
Table 27.	FIFO_CTRL4 register	
Table 28.	FIFO_CTRL4 register description	
Table 29.	COUNTER_BDR_REG1 register	
Table 30.	COUNTER_BDR_REG1 register description	
Table 31.	COUNTER_BDR_REG2 register	
Table 32.	COUNTER_BDR_REG2 register description	
Table 33.	INT1 CTRL register	
Table 34.	INT1_CTRL register description	
Table 35.	INT2_CTRL register	
Table 36.	INT2_CTRL register description	
Table 37.	WhoAml register	
Table 38.	CTRL1_XL register	
Table 39.	CTRL1_XL register description	
Table 40.	CTRL2_G register	
Table 41.	CTRL2_G register description	
Table 42.	CTRL3_C register	
Table 43.	CTRL3_C register description.	
Table 44.	CTRL4_C register	
Table 45.	CTRL4_C register description.	
Table 46.	CTRL5_C register	
Table 47.	CTRL5 C register description.	
Table 48	Angular rate sensor self-test mode selection	53

ASM330LHH List of tables

Table 49.	Linear acceleration sensor self-test mode selection	53
Table 50.	CTRL6_C register	
Table 51.	CTRL6 C register description	
Table 52.	Trigger mode selection	
Table 53.	Gyroscope LPF1 bandwidth selection	
Table 54.	CTRL7_G register	
Table 55.	CTRL7_G register description	
Table 56.	CTRL8_XL register	
Table 57.	CTRL8_XL register description.	
Table 58.	Accelerometer bandwidth configurations	
Table 59.	CTRL9_XL register	
Table 60.	CTRL9_XL register description.	
Table 61.	CTRL10_C register	
Table 62.	CTRL10_C register description.	
Table 63.	ALL_INT_SRC register	
Table 65.	ALL_INT_SRC register description.	
Table 65.	WAKE_UP_SRC register	
Table 66.	WAKE_UP_SRC register description	
Table 60.	D6D_SRC register	
Table 67.	D6D_SRC register description	
Table 69.	STATUS_REG register	
Table 70.	STATUS_REG register description	
Table 71.	OUT_TEMP_L register	
Table 72.	OUT_TEMP_H register	
Table 73.	OUT_TEMP register description	
Table 74.	OUTX_H_G register	
Table 75.	OUTX_L_G register	
Table 76.	OUTX_H_G, OUTX_L_G register description	
Table 77.	OUTY_H_G register	
Table 78.	OUTY_L_G register	
Table 79.	OUTY_H_G, OUTY_L_G register description	
Table 80.	OUTZ_H_G register	
Table 81.	OUTZ_L_G register	
Table 82.	OUTZ_H_G, OUTZ_L_G register description.	
Table 83.	OUTX_H_A register	
Table 84.	OUTX_L_A register.	
Table 85.	OUTX_H_A, OUTX_L_A register description	
Table 86.	OUTY_H_A register	
Table 87.	OUTY_L_A register	
Table 88.	OUTY_H_A, OUTY_L_A register description	
Table 89.	OUTZ_H_A register	
Table 90.	OUTZ_L_A register	
Table 91.	OUTZ_H_A, OUTZ_L_A register description	
Table 92.	FIFO_STATUS1 register	62
Table 93.	FIFO_STATUS1 register description	
Table 94.	FIFO_STATUS2 register	63
Table 95.	FIFO_STATUS2 register description	
Table 96.	TIMESTAMP3 register	
Table 97.	TIMESTAMP2 register	64
Table 98.	TIMESTAMP1 register	
Table 99.	TIMESTAMP0 register	
Table 100.	TIMESTAMPx register description	64

List of tables ASM330LHH

INT_CFG0 register
INT_CFG0 register description
INT_CFG1 register
INT_CFG1 register description
THS_6D register
THS_6D register description
WAKE_UP_THS register
WAKE_UP_THS register description
WAKE_UP_DUR register
WAKE_UP_DUR register description
FREE_FALL register67
FREE_FALL register description
MD1_CFG register
MD1_CFG register description
MD2_CFG register
MD2_CFG register description
INTERNAL_FREQ_FINE register69
INTERNAL_FREQ_FINE register description
X_OFS_USR register
X_OFS_USR register description
Y_OFS_USR register
Y_OFS_USR register description
Z_OFS_USR register
Z_OFS_USR register description
FIFO_DATA_OUT_TAG register
FIFO_DATA_OUT_TAG register description
FIFO tag
FIFO_DATA_OUT_X_H register72
FIFO_DATA_OUT_X_L register
FIFO_DATA_OUT_X_H, FIFO_DATA_OUT_X_L register description
FIFO_DATA_OUT_Y_H register72
FIFO_DATA_OUT_Y_L register
FIFO_DATA_OUT_Y_H, FIFO_DATA_OUT_Y_L register description
FIFO_DATA_OUT_Z_H register72
FIFO_DATA_OUT_Z_L register
FIFO_DATA_OUT_Z_H, FIFO_DATA_OUT_Z_L register description
Reel dimensions for carrier tape of LGA-14 package
Document revision history

ASM330LHH List of figures

List of figures

igure 1.	Pin connections	
igure 2.	SPI slave timing diagram (in mode 3)	19
igure 3.	I ² C slave timing diagram	
igure 4.	Read and write protocol (in mode 3)	26
igure 5.	SPI read protocol (in mode 3)	
igure 6.	Multiple byte SPI read protocol (2-byte example) (in mode 3)	27
igure 7.	SPI write protocol (in mode 3)	
igure 8.	Multiple byte SPI write protocol (2-byte example) (in mode 3)	28
igure 9.	SPI read protocol in 3-wire mode (in mode 3)	29
igure 10.	Block diagram of filters	
igure 11.	Gyroscope filtering chain	31
igure 12.	Accelerometer chain	
igure 13.	Accelerometer composite filter	
Figure 14.	ASM330LHH electrical connections	37
Figure 15.	Accelerometer block diagram	56
Figure 16.	ARW gyro / pitch axis	
igure 17.	ARW gyro / roll axis	74
igure 18.	ARW gyro / yaw axis	74
Figure 19.	BI gyro / pitch axis	
igure 20.	BI gyro / roll axis	
igure 21.	Bl gyro / yaw axis	
igure 22.	Gyro NL / pitch axis	
igure 23.	Gyro NL / roll axis	
igure 24.	Gyro NL / yaw axis	
igure 25.	LGA-14L 2.5 x 3.0 x 0.83 mm³ (typ.) package outline and mechanical data	80
igure 26.	Carrier tape information for LGA-14 package	
igure 27.	LGA-14 package orientation in carrier tape	
igure 28.	Reel information for carrier tape of LGA-14 package	82

Overview ASM330LHH

1 Overview

The ASM330LHH is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.

This device is suitable for telematics and dead-reckoning applications as well as vehicle-to-vehicle (V2X) and impact detection as a result of its high stability over temperature and time, combined with superior sensing precision.

The event-detection interrupts enable efficient and reliable motion-activated functions, implementing hardware recognition of free-fall events, 6D orientation, activity or inactivity, and wakeup events.

Up to 3 kbytes of FIFO allows overall power saving of the system.

Like the entire portfolio of MEMS sensor modules, the ASM330LHH leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The ASM330LHH is available in a small plastic land grid array (LGA) package of $2.5 \times 3.0 \times 0.83$ mm to address ultra-compact solutions.

2 Embedded low-power features

The ASM330LHH has been designed to feature the following on-chip functions:

- 3 kbytes data buffering:
 - 100% efficiency with flexible configurations and partitioning
- Event-detection interrupts (fully configurable):
 - free-fall
 - wakeup
 - 6D orientation
 - activity / inactivity recognition

Pin description ASM330LHH

3 Pin description

Z (TOP VIEW) DIRECTION OF THE DETECTABLE ACCELERATIONS CS SCL SDA NC 11 1 SDO/SA0 NC **BOTTOM RES VIEW** INT2 RES VDD 8 4 INT1 7 5 (TOP VIEW) DIRECTION OF THE DETECTABLE ANGULAR RATES

Figure 1. Pin connections

Table 2. Pin description

Pin#	Name	Function
	SDO	SPI 4-wire serial data output (SDO)
1	SA0	I²C least significant bit of the device address (SA0)
2	RES	Connect to VDDIO or GND
3	RES	Connect to VDDIO or GND
4	INT1 ⁽¹⁾	Programmable interrupt #1
5	Vdd_IO ⁽²⁾	Power supply for I/O pin
6	GNSD	Connect to GND
7	GND	Connect to GND
8	Vdd ⁽³⁾	Power supply
9	INT2	Programmable interrupt #2 (INT2) / Data enabled (DEN)
10	NC	Leave unconnected
11	NC	Leave unconnected
12	CS	I²C/SPI mode selection (1: SPI idle mode / I²C communication enabled; 0: SPI communication mode / I²C disabled and reset)

ASM330LHH Pin description

Table 2. Pin description (continued)

Pin#	Name	Function
13	SCL	l²C serial clock (SCL) SPI serial port clock (SPC)
14	SDA	l²C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)

- 1. INT1 must be set to '0' or left unconnected during power-on.
- 2. Recommended 100 nF filter capacitor.
- 3. Recommended 100 nF plus 10 μF capacitors.

4 Module specifications

4.1 Mechanical characteristics

@Vdd = 3.0 V, T = -40 °C to +105 °C, up to gyroscope FS = ± 2000 dps unless otherwise noted^(a)

Table 3. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
				±2		
LA_FS	Linear acceleration measurement			±4		g
LA_IS	range			±8		g
				±16		
				±125		
				±250		
G_FS	Angular rate			±500		dps
G_FS	measurement range			±1000		ups
				±2000		
				±4000		
		@LA_FS = ±2 g		0.061		
14 80	A_So Linear acceleration sensitivity ⁽²⁾	@LA_FS = ±4 g		0.122		mg/LSB
LA_30		@LA_FS = ±8 g		0.244		Hig/LSB
		@LA_FS = ±16 g		0.488		
		@G_FS = ±125 dps		4.37		
		@G_FS = ±250 dps		8.75		
G_So	Angular rate sensitivity ⁽²⁾	@G_FS = ±500 dps		17.5		mdps/LSB
G_30	Angular rate sensitivity	@G_FS = ±1000 dps		35.0		mups/LSB
		@G_FS = ±2000 dps		70.0		
		@G_FS = ±4000 dps		140.0		
LA_So%	Sensitivity tolerance ⁽³⁾	at component level @25°C	-5		+5	%
G_So%	Sensitivity tolerance ⁽³⁾	at component level @25°C	-5		+5	%
LA_SoDr	Linear acceleration sensitivity change vs. temperature ⁽⁴⁾			±100		ppm/°C
G_SoDr	Angular rate sensitivity change vs. temperature ⁽⁴⁾			±70		ppm/°C

a. The product is factory calibrated at 3.0 V. The operational power supply range is from 2.0 V to 3.6 V.

14/84 DocID031239 Rev 4

Table 3. Mechanical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
LA_TyOff	Linear acceleration zero-g level offset accuracy ⁽⁵⁾		-80		+80	m <i>g</i>
G_TyOff	Angular rate zero-rate level ⁽⁵⁾		-10		+10	dps
LA_TCOff	Linear acceleration zero-g level change vs. temperature ⁽⁴⁾			±0.10		m <i>g/</i> °C
G_TCOff	Angular rate typical zero-rate level change vs. temperature ⁽⁴⁾			±0.005		dps/°C
LA_Cx	Linear acceleration cross-axis sensitivity	T = 25 °C		±1		%
G_Cx	Angular rate cross-axis sensitivity	T = 25 °C		±1		%
Rn	Rate noise density ⁽⁶⁾			5	12	mdps/√Hz
NL	Nonlinearity ⁽⁷⁾	Best-fit straight line		0.01		% FS
ARW	Angular random walk ⁽⁷⁾	T = 25 °C		0.21		deg/√h
BI	Bias instability ⁽⁷⁾	T = 25 °C		3		deg/h
An	Acceleration noise density ⁽⁸⁾	@LA_FS = ±2 g		60	200	μ <i>g</i> /√Hz
LA_ODR	Linear acceleration output data rate			12.5 26 52 104 208 416 833 1667 3333 6667		- Hz
G_ODR	Angular rate output data rate			12.5 26 52 104 208 416 833 1667 3333 6667		
	Linear acceleration self-test output change ⁽⁹⁾⁽¹⁰⁾⁽¹¹⁾⁽¹²⁾		40		1700	mg
Vst	Angular rate	FS = ±250 dps	20		80	dps
	self-test output change ⁽¹³⁾⁽¹⁴⁾	FS = ±2000 dps	150		700	dps
Тор	Operating temperature range		-40		+105	°C

^{1.} Typical specifications are not guaranteed.

- 2. Sensitivity values after factory calibration test and trimming.
- 3. Subject to change.
- 4. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured during final test for production.
- 5. Across temperature and life. Assuming post-solder effect compensated at the end of production line.
- Gyroscope rate noise density is independent of the ODR for FS up to ±2000 dps, max value specified at ambient temperature.
- Based on characterization data on a limited number of samples. Not measured during final test for production. See Section 10: Typical performance characteristics for typical distributions.
- 8. Accelerometer noise density is independent of the ODR, max value specified at ambient temperature.
- 9. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in a dedicated register for all axes.
- 10. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 0.061 mg at ±2 g full scale.
- 11. Accelerometer self-test limits are full-scale independent.
- 12. The self-test output change limits include full Vdd range and impact of soldering.
- 13. The sign of the angular rate self-test output change is defined by the STx_G bits in a dedicated register for all axes.
- 14. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale.

4.2 Electrical characteristics

@ Vdd = 3.0 V, T = -40 °C to +105 °C, up to gyroscope FS = ± 2000 dps unless otherwise noted

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Vdd Supply voltage		2.0		3.6	V
Vdd_IO	Power supply for I/O		1.62		3.6	V
GA_ldd	Gyroscope and Accelerometer current consumption	ODR = 1.6 kHz		1.3	1.6	mA
A_ldd	Accelerometer current consumption	ODR < 1.6 kHz		360	530	μA
IddPD	Gyroscope and accelerometer current consumption during power-down			3	13	μА
Ton	Turn-on time ⁽²⁾			35		ms
V _{IH} ⁽³⁾	Digital high-level input voltage		0.7 * VDD_IO			V
V _{IL} ⁽³⁾	Digital low-level input voltage				0.3 * VDD_IO	V
V _{OH} ⁽³⁾ High-level output voltage V _{OL} ⁽³⁾ Low-level output voltage		I _{OH} = 4 mA ⁽⁴⁾	VDD_IO - 0.2			V
		I _{OL} = 4 mA ⁽⁴⁾			0.2	V
Тор	Operating temperature range		-40		+105	°C

^{1.} Typical specifications are not guaranteed.

 $^{2. \}quad \text{Time to obtain stable sensitivity (within $\pm 5\%$ of final value) switching from power-down to normal operation}$

^{3.} Guaranteed by design characterization and not tested in production

^{4. 4} mA is the minimum driving capability, i.e. the minimum DC current that can be sourced/sunk by the digital pad in order to guarantee the correct digital output voltage levels V_{OH} and V_{OL} .

4.3 Temperature sensor characteristics

@ Vdd = 3.0 V, T = 25 $^{\circ}$ C unless otherwise noted^(b).

Table 5. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
TODR	Temperature refresh rate			52		Hz
Toff	Temperature offset ⁽²⁾		-15		+15	°C
TSen	Temperature sensitivity			256		LSB/°C
TST	Temperature stabilization time ⁽³⁾				500	μs
T_ADC_res	T_ADC_res Temperature ADC resolution			16		bit
Тор	Operating temperature range		-40		+105	°C

^{1.} Typical specifications are not guaranteed.

18/84 DocID031239 Rev 4

^{2.} The output of the temperature sensor is 0 LSB (typ.) at 25 $^{\circ}$ C.

^{3.} Time from power ON bit to valid output data. Based on characterization.

b. The product is factory calibrated at 3.0 V.

Communication interface characteristics 4.4

SPI - serial peripheral interface 4.4.1

Subject to general operating conditions for Vdd and Top.

Table 6. SPI slave timing values (in mode 3)

Symbol	Parameter	Valu	ue ⁽¹⁾	Unit
Symbol	Farameter	Min	Max	Offic
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)}	SDO output hold time	5		
t _{dis(SO)}	SDO output disable time		50	

Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Figure 2. SPI slave timing diagram (in mode 3)

Note:

Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.

4.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 7. I²C slave timing values

Symbol	Parameter	I ² C standa	ırd mode ⁽¹⁾	I ² C fast	mode ⁽¹⁾	Unit
Зушьог	Parameter	Min	Max	Min	Max	Unit
f _(SCL)	SCL clock frequency	0	100	0	400	kHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		lie.
t _{w(SCLH)}	SCL clock high time	4.0		0.6		— µs
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0	3.45	0	0.9	μs
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7		0.6		110
t _{su(SP)}	STOP condition setup time	4		0.6		— µs
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

^{1.} Data based on standard I²C protocol requirement, not tested in production.

SDA

START

SDA

START

SUSSA

Lau(SDA)

Lau(S

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.

Absolute maximum ratings 4.5

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.3 ms	3000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	0.3 to Vdd_IO +0.3	V

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ± 1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see *Table 3*).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see *Table 3*).

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-g offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-g level change vs. temperature" in *Table 3*. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see *Table 3*).

22/84 DocID031239 Rev 4

ASM330LHH Digital interfaces

5 Digital interfaces

5.1 I²C/SPI interface

The registers embedded inside the ASM330LHH may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The device is compatible with SPI modes 0 and 3.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (i.e connected to Vdd_IO).

Pin name	Pin description
CS	SPI enable I²C/SPI mode selection (1: SPI idle mode / I²C communication enabled; 0: SPI communication mode / I²C disabled)
SCL/SPC	I ² C Serial Clock (SCL) SPI Serial Port Clock (SPC)
SDA/SDI/SDO	I ² C Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)
SDO/SA0	SPI Serial Data Output (SDO) I²C less significant bit of the device address

Table 9. Serial interface pin description

5.1.1 I²C serial interface

The ASM330LHH I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Term Description

Transmitter The device which sends data to the bus

Receiver The device which receives data from the bus

Master The device which initiates a transfer, generates clock signals and terminates a transfer

Slave The device addressed by the master

Table 10. I²C terminology

There are two signals associated with the I²C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I²C interface is implemeted with fast mode (400 kHz) I²C standards as well as with the standard mode.

In order to disable the I²C block, (I2C_disable) = 1 must be written in CTRL4_C (13h).

Digital interfaces ASM330LHH

I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the ASM330LHH is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is '1' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is '0' (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the ASM330LHH behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the *CTRL3_C* (12h) (IF_INC).

The slave address is completed with a Read/Write bit. If the bit is '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (Write) the master will transmit to the slave with direction unchanged. *Table 11* explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Command SAD[6:1]		SAD[0] = SA0	R/W	SAD+R/W
Read 110101		0	1	11010101 (D5h)
Write	Write 110101		0	11010100 (D4h)
Read 110101		1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 11. SAD+Read/Write patterns

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 13. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

ASM330LHH Digital interfaces

Table 14. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave

Maste	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DAT A		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

Digital interfaces ASM330LHH

5.1.2 SPI bus interface

The ASM330LHH SPI is a bus slave. The SPI allows writing and reading the registers of the device.

The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO.

Figure 4. Read and write protocol (in mode 3)

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: $R\overline{W}$ bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is '0', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of SDI and SDO remain unchanged.

ASM330LHH Digital interfaces

SPI read

Figure 5. SPI read protocol (in mode 3)

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Figure 6. Multiple byte SPI read protocol (2-byte example) (in mode 3)

Digital interfaces ASM330LHH

SPI write

Figure 7. SPI write protocol (in mode 3)

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 8. Multiple byte SPI write protocol (2-byte example) (in mode 3)

ASM330LHH Digital interfaces

SPI read in 3-wire mode

A 3-wire mode is entered by setting the *CTRL3_C* (12h) (SIM) bit equal to '1' (SPI serial interface mode selection).

Figure 9. SPI read protocol in 3-wire mode (in mode 3)

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

Functionality ASM330LHH

6 Functionality

6.1 Operating modes

In the ASM330LHH, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

The ASM330LHH has three operating modes available:

- · only accelerometer active and gyroscope in power-down or sleep mode
- only gyroscope active and accelerometer in power-down
- both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo-mode the ODRs are totally independent.

6.2 Gyroscope power modes

In the ASM330LHH, the gyroscope can be configured in two different operating modes: power-down and high-performance mode. High-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

6.3 Accelerometer power modes

In the ASM330LHH, the accelerometer can be configured in two different operating modes: power-down and high-performance mode. High-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

30/84 DocID031239 Rev 4

ASM330LHH Functionality

6.4 Block diagram of filters

CS SCL/SPC Low Pass Gyro I2C/SPI ADC1 front-end Gyro SDA/SDI/SDO SDO/SA0 interface S Regs ΜЕ array, Ε Ν XL FIFO front-end M S Low Pass Interrupt ■ INT1 ADC2 S O mng INT2 R Temperature sensor Voltage and current references Trimming circuit and Test interface Clock and phase Power FTP generator management

Figure 10. Block diagram of filters

6.4.1 Block diagram of the gyroscope filter

The gyroscope filtering chain appears below.

ADC HPF1 LPF1 LPF2 ODR_G[3:0] FIFO

Figure 11. Gyroscope filtering chain

The gyroscope ODR is selectable from 12.5 Hz up to 6.66 kHz. A low-pass filter (LPF1) is available, for more details about the filter characteristics see *Table 53: Gyroscope LPF1* bandwidth selection. The digital LPF2 filter cannot be configured by the user and its cutoff frequency depends on the selected gyroscope ODR, as indicated in the following table.

Data can be acquired from the output registers and FIFO.

Gyroscope ODR [Hz] LPF2 cut-off [Hz] 12.5 4.3 26 8.3 52 16.7 33 104 208 67 417 133 833 267 1667 539 3333 1137 6667 3333

Table 16. Gyroscope LPF2 bandwidth selection

Functionality ASM330LHH

6.4.2 Block diagrams of the accelerometer filters

In the ASM330LHH, the filtering chain for the accelerometer part is composed of the following:

- Digital filter (LPF1)
- Composite filter

Details of the block diagram appear in the following figure.

Figure 12. Accelerometer chain

Figure 13. Accelerometer composite filter

1. The cutoff value of the LPF1 output is ODR/2.

57

ASM330LHH Functionality

6.5 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but It can wake up only when needed and burst the significant data out from the FIFO.

The ASM330LHH embeds 3 kbytes of data in FIFO to store the following data:

- Gyroscope
- Accelerometer
- Timestamp
- Temperature

Writing data in the FIFO is triggered by the accelerometer / gyroscope data-ready signal.

The applications have maximum flexibility in choosing the rate of batching for physical sensors with FIFO-dedicated configurations: accelerometer, gyroscope and temperature sensor batching rates can be selected by the user. It is possible to select decimation for timestamp batching in FIFO with a factor of 1, 8, or 32.

The reconstruction of a FIFO stream is a simple task thanks to the FIFO_DATA_OUT_TAG byte that allows recognizing the meaning of a word in FIFO.

FIFO allows correct reconstruction of the timestamp information for each sensor stored in FIFO. If a change in the ODR or BDR (Batching Data Rate) configuration is performed, the application can correctly reconstruct the timestamp and know exactly when the change was applied without disabling FIFO batching. FIFO stores information of the new configuration and timestamp in which the change was applied in the device.

The programmable FIFO watermark threshold can be set in *FIFO_CTRL1* (07h) and *FIFO_CTRL2* (08h) using the WTM[8:0] bits. To monitor the FIFO status, dedicated registers (*FIFO_STATUS1* (3Ah), *FIFO_STATUS2* (3Bh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO watermark status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pins of these status events, the configuration can be set in *INT1_CTRL* (0Dh) and *INT2_CTRL* (0Eh).

The FIFO buffer can be configured according to six different modes:

- Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode
- Bypass-to-FIFO mode

Each mode is selected by the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 (0Ah) register.

Functionality ASM330LHH

6.5.1 Bypass mode

In Bypass mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty. Bypass mode is also used to reset the FIFO when in FIFO mode.

6.5.2 FIFO mode

In FIFO mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

To reset FIFO content, Bypass mode should be selected by writing *FIFO_CTRL4* (*0Ah*)(FIFO_MODE_[2:0]) to '000'. After this reset command, it is possible to restart FIFO mode by writing *FIFO_CTRL4* (*0Ah*)(FIFO_MODE_[2:0]) to '001'.

The FIFO buffer memorizes up to 3 kbytes of data but the depth of the FIFO can be resized by setting the WTM [8:0] bits in *FIFO_CTRL1 (07h)* and *FIFO_CTRL2 (08h)*. If the STOP_ON_WTM bit in *FIFO_CTRL2 (08h)* is set to '1', FIFO depth is limited up to the WTM [8:0] bits in *FIFO_CTRL1 (07h)* and *FIFO_CTRL2 (08h)*.

6.5.3 Continuous mode

Continuous mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag *FIFO_STATUS2* (3Bh)(FIFO_WTM_IA) is asserted when the number of unread samples in FIFO is greater than or equal to *FIFO_CTRL1* (07h) and *FIFO_CTRL2* (08h)(WTM [8:0]).

It is possible to route the FIFO_WTM_IA flag to *FIFO_CTRL2 (08h)* to the INT1 pin by writing in register *INT1_CTRL (0Dh)*(INT1_FIFO_TH) = '1' or to the INT2 pin by writing in register *INT2_CTRL (0Eh)*(INT2_FIFO_TH) = '1'.

A full-flag interrupt can be enabled, *INT1_CTRL* (*0Dh*)(INT1_FIFO_FULL) = '1' or *INT2_CTRL* (*0Eh*)(INT2_FIFO_FULL) = '1', in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the FIFO_OVR_IA flag in FIFO_STATUS2 (3Bh) is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh)(DIFF_FIFO_[9:0]).

34/84 DocID031239 Rev 4

ASM330LHH Functionality

6.5.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Wake-up
- Free-fall
- D6D

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.

When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.

6.5.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode).

FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Wake-up
- Free-fall
- D6D

6.5.6 Bypass-to-FIFO mode

In Bypass-to-FIFO mode (*FIFO_CTRL4 (0Ah)*(FIFO_MODE_[2:0] = '111'), data measurement storage inside FIFO operates in FIFO mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode).

FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Wake-up
- Free-fall
- D6D

Functionality ASM330LHH

6.5.7 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers and each FIFO word is composed of 7 bytes: one tag byte (*FIFO_DATA_OUT_TAG (78h)*, in order to identify the sensor, and 6 bytes of fixed data (FIFO_DATA_OUT_registers from (79h) to (7Eh)).

The DIFF_FIFO_[9:0] field in the *FIFO_STATUS1* (3Ah) and *FIFO_STATUS2* (3Bh) registers contains the number of words (1 byte TAG + 6 bytes DATA) collected in FIFO.

In addition, it is possible to configure a counter of the batch events of accelerometer or gyroscope sensors. The flag COUNTER_BDR_IA in FIFO_STATUS2 (3Bh) alerts that the counter has reached a selectable threshold (CNT_BDR_TH_[9:0] field in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch)). This allows triggering the reading of FIFO with the desired latency of one single sensor. The sensor is selectable using the TRIG_COUNTER_BDR bit in COUNTER_BDR_REG1 (0Bh). As for the other FIFO status events, the flag COUNTER_BDR_IA can be routed on the INT1 or INT2 pins by asserting the corresponding bits (INT1_CNT_BDR of INT1_CTRL (0Dh) and INT2_CNT_BDR of INT2_CTRL (0Eh)).

Meta information about accelerometer and gyroscope sensor configuration changes can be managed by enabling the ODR_CHG_EN bit in *FIFO_CTRL2 (08h)*.

36/84 DocID031239 Rev 4

ASM330LHH Application hints

7 Application hints

7.1 ASM330LHH electrical connections

Vdd IO I²C configuration Rpu = 10 kOhm Rpu SCL SDA < Vdd IO SDO/SA0 11 Pull-up to be added 1 **BOTTOM** INT2 **VIEW** Vdd INT1 8 4 5 Vdd IO Vdd Vdd_IO C2 C3 10 uF 100 nF 100 nF **GND GND** GND **GND**

Figure 14. ASM330LHH electrical connections

The device core is supplied through the Vdd line while the I/O pads are supplied through the Vdd_IO line. As a common design practice, the power supply decoupling capacitors C1 = 100 nF ceramic and C2 =10 μ F aluminum should be placed as near as possible to pin 8, while C3 = 100 nF ceramic should be positioned as close as possible to pin 5.

All the voltage and ground supplies must be present at the same time to have proper IC behavior.

The functionality of the device and the measured acceleration/angular rate data are selectable and accessible through the I²C or SPI interfaces. When using the I²C protocol, CS must be tied high. Every time the CS line is set to low level, the I²C bus is internally reset.

All the functions, the threshold and the timing of the two interrupt pins can be completely programmed by the user through the I²C/SPI interface.

Application hints ASM330LHH

The procedure to correctly initialize the device is as follows:

1. INT1: Leave unconnected or connect with external pull-down during power-on. Pull-up must be avoided on this pin.

- 2. INT2: Recommended to not connect with external pull-up.
- 3. Properly configure the device:
 - a) SPI case: I2C_disable = 1 in CTRL4_C (13h) and DEVICE_CONF = 1 in CTRL9_XL (18h).
 - b) I²C case: I2C_disable = 0 (default) in CTRL4_C (13h) and DEVICE_CONF = 1 in CTRL9_XL (18h).

Table 17. Internal pin status

pin#	Name	Function	Pin status
1	SDO	SPI 4-wire interface serial data output (SDO)	Default: input without pull-up.
'	SA0	I ² C least significant bit of the device address (SA0)	Pull-up is enabled if bit SDO_PU_EN = 1 in reg. 02h.
2	RES	Connect to VDDIO or GND	Default: input without pull-up.
3	RES	Connect to VDDIO or GND	Default: input without pull-up.
4	INT1	Programmable interrupt 1	Default: input with pull-down ⁽¹⁾
5	VDDIO	Power supply for I/O pins	
6	GND	0 V supply	
7	GND	0 V supply	
8	VDD	Power supply	
9	INT2	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Default: output forced to ground
10	NC	Leave unconnected	Default: input with pull-up.
11	NC	Leave unconnected	Default: input with pull-up.
12	CS	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h and DEVICE_CONF = 1 in reg 18h.
13	SCL	l ² C serial clock (SCL) / SPI serial port clock (SPC)	Default: input without pull-up
14	SDA	I ² C serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	Default: input without pull-up

^{1.} INT1 must be set to '0' or left unconnected during power-on.

ASM330LHH Register mapping

8 Register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

Table 18. Registers address map

Nome	Time	Regist	er address	Defeult	Commont
Name	Туре	Hex	Binary	Default	Comment
PIN_CTRL	R/W	02	00000010	00111111	
RESERVED	-	04-06			Reserved
FIFO_CTRL1	R/W	07	00000111	00000000	
FIFO_CTRL2	R/W	08	00001000	00000000	
FIFO_CTRL3	R/W	09	00001001	00000000	
FIFO_CTRL4	R/W	0A	00001010	00000000	
COUNTER_BDR_REG1	RW	0B	00001011	00000000	
COUNTER_BDR_REG2	RW	0C	00001100	00000000	
INT1_CTRL	R/W	0D	00001101	00000000	
INT2_CTRL	R/W	0E	00001110	00000000	
WHO_AM_I	R	0F	00001111	01101011	
CTRL1_XL	R/W	10	00010000	00000000	
CTRL2_G	R/W	11	00010001	00000000	
CTRL3_C	R/W	12	00010010	00000100	
CTRL4_C	R/W	13	00010011	00000000	
CTRL5_C	R/W	14	00010100	00000000	
CTRL6_C	R/W	15	00010101	00000000	
CTRL7_G	R/W	16	00010110	00000000	
CTRL8_XL	R/W	17	0001 0111	00000000	
CTRL9_XL	R/W	18	00011000	11100000	
CTRL10_C	R/W	19	00011001	00000000	
ALL_INT_SRC	R	1A	00011010	output	
WAKE_UP_SRC	R	1B	00011011	output	
RESERVED		1C	00011100	output	
D6D_SRC	R	1D	00011101	output	
STATUS_REG	R	1E	00011110	output	
RESERVED	-	1F	00011111		
OUT_TEMP_L	R	20	00100000	output	
OUT_TEMP_H	R	21	00100001	output	

Register mapping ASM330LHH

Table 18. Registers address map (continued)

Nome	Tuno	Regist	er address	Default	Comment
Name	Туре	Hex	Binary	Delault	Comment
OUTX_L_G	R	22	00100010	output	
OUTX_H_G	R	23	00100011	output	
OUTY_L_G	R	24	00100100	output	
OUTY_H_G	R	25	00100101	output	
OUTZ_L_G	R	26	00100110	output	
OUTZ_H_G	R	27	00100111	output	
OUTX_L_A	R	28	00101000	output	
OUTX_H_A	R	29	00101001	output	
OUTY_L_A	R	2A	00101010	output	
OUTY_H_A	R	2B	00101011	output	
OUTZ_L_A	R	2C	00101100	output	
OUTZ_H_A	R	2D	00101101	output	
RESERVED	-	2E-39			Reserved
FIFO_STATUS1	R	3A	00111010	output	
FIFO_STATUS2	R	3B	00111011	output	
RESERVED	-	3C-3F			
TIMESTAMP0_REG	R	40	01000000	output	
TIMESTAMP1_REG	R	41	01000001	output	
TIMESTAMP2_REG	R	42	01000010	output	
TIMESTAMP3_REG	R	43	01000011	output	
RESERVED	-	44-55			
INT_CFG0	RW	56	01010110	00000000	
RESERVED	-	57	01010111		Reserved
INT_CFG1	RW	58	01011000	00000000	
THS_6D	RW	59	01011001	00000000	
RESERVED	-	5A	01011010		Reserved
WAKE_UP_THS	RW	5B	01011011	00000000	
WAKE_UP_DUR	RW	5C	01011100	00000000	
FREE_FALL	RW	5D	01011101	00000000	
MD1_CFG	RW	5E	01011110	00000000	
MD2_CFG	RW	5F	01011111	00000000	
RESERVED	-	60-62		00000000	Reserved
INTERNAL_FREQ_FINE	R	63	01100011	output	

ASM330LHH Register mapping

Table 18. Registers address map (continued)

			- '			
Name	Tuno	Regist	Register address		Comment	
Name	Туре	Hex Binary		Default	Comment	
RESERVED	-	64-72		00000000	Reserved	
X_OFS_USR	RW	73	01110011	00000000		
Y_OFS_USR	RW	74	01110100	00000000		
Z_OFS_USR	RW	75	01110101	00000000		
RESERVED	-	76-77			Reserved	
FIFO_DATA_OUT_TAG	R	78	01111000	output		
FIFO_DATA_OUT_X_L	R	79	01111001	output		
FIFO_DATA_OUT_X_H	R	7A	01111010	output		
FIFO_DATA_OUT_Y_L	R	7B	01111011	output		
FIFO_DATA_OUT_Y_H	R	7C	01111100	output		
FIFO_DATA_OUT_Z_L	R	7D	01111101	output		
FIFO_DATA_OUT_Z_H	R	7E	01111110	output		
RESERVED	-	7F			Reserved	

9 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

9.1 PIN_CTRL (02h)

SDO pin pull-up enable/disable register (r/w)

Table 19. PIN_CTRL register

0	SDO_ PU_EN	1 ⁽¹⁾						
---	---------------	------------------	------------------	------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to '1' for the correct operation of the device.

Table 20. PIN_CTRL register description

SDO_PU_EN	Enable pull-up on SDO pin. Default value: 0 (0: SDO pin pull-up disconnected; 1: SDO pin with pull-up)
-----------	--

9.2 FIFO_CTRL1 (07h)

42/84

FIFO control register 1 (r/w)

Table 21. FIFO_CTRL1 register

WTM7	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0
------	------	------	------	------	------	------	------

Table 22. FIFO_CTRL1 register description

	FIFO watermark threshold, in conjunction with WTM8 in FIFO_CTRL2 (08h)
WTM[7:0]	1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO
VV IVI[7.0]	Watermark flag rises when the number of bytes written in the FIFO is greater than
	or equal to the threshold level.

9.3 FIFO_CTRL2 (08h)

FIFO control register 2 (r/w)

Table 23. FIFO_CTRL2 register

STOP_ONWTM 0(1) 0(1) ODRCHGEN 0(1)	0 ⁽¹⁾	0 ⁽¹⁾	WTM8
--	------------------	------------------	------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 24. FIFO_CTRL2 register description

STOP_ON_ WTM	Sensing chain FIFO stop values memorization at threshold level (0: FIFO depth is not limited (default); 1: FIFO depth is limited to threshold level, defined in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h))
ODRCHG_EN	Enables ODR CHANGE virtual sensor to be batched in FIFO
WTM8	FIFO watermark threshold, in conjunction with WTM[7:0] in FIFO_CTRL1 (07h) 1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level.

9.4 FIFO_CTRL3 (09h)

FIFO control register 3 (r/w)

Table 25. FIFO_CTRL3 register

BDR_GY_	BDR_GY_	BDR_GY_	BDR_GY_	BDR_XL_	BDR_XL_	BDR_XL_	BDR_XL_
3	2	1	0	3	2	1	0

Table 26. FIFO_CTRL3 register description

	Table 20.1 II O_OTINES register description
	Selects Batch Data Rate (writing frequency in FIFO) for gyroscope data. (0000: Gyro not batched in FIFO (default);
	0001: 12.5 Hz;
	0010: 26 Hz;
	0011: 52 Hz;
	0100: 104 Hz;
BDB CV [3:0]	0101: 208 Hz;
BDR_GY_[3:0]	0110: 417 Hz;
	0111: 833 Hz;
	1000: 1667 Hz;
	1001: 3333 Hz;
	1010: 6667 Hz;
	1011: 6.5 Hz;
	1100-1111: not allowed)
	Selects Batch Data Rate (writing frequency in FIFO) for accelerometer data. (0000: Accelerometer not batched in FIFO (default);
	0001: 12.5 Hz;
	0010: 26 Hz;
	0011: 52 Hz;
	0100: 104 Hz;
BDR_XL_[3:0]	0101: 208 Hz;
	0110: 417 Hz;
	0111: 833 Hz;
	1000: 1667 Hz;
	1001: 3333 Hz;
	1010: 6667 Hz;
	1011-1111: not allowed)

9.5 FIFO_CTRL4 (0Ah)

FIFO control register 4 (r/w)

Table 27. FIFO_CTRL4 register

DEC_TS_	DEC_TS_	ODR_T_	ODR_T_	0(1)	FIFO_	FIFO_	FIFO_
BATCH_1	BATCH_0	BATCH_1	BATCH_0	0	MODE2	MODE1	MODE0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 28. FIFO_CTRL4 register description

	Selects decimation for timestamp batching in FIFO. Writing rate will be the maximum rate between XL and GYRO BDR divided by decimation decoder.
DEC_TS_	(00: Timestamp not batched in FIFO (default);
BATCH_[1:0]	01: Decimation 1: max(BDR_XL[Hz],BDR_GY[Hz]) [Hz];
	10: Decimation 8: max(BDR_XL[Hz],BDR_GY[Hz])/8 [Hz];
	11: Decimation 32: max(BDR_XL[Hz],BDR_GY[Hz])/32 [Hz])
ODR_T_ BATCH_[1:0]	Selects batching data rate (writing frequency in FIFO) for temperature data (00: Temperature not batched in FIFO (default); 01: 1.6 Hz; 10: 12.5 Hz; 11: 52 Hz)
FIFO_ MODE[2:0]	FIFO mode selection (000: Bypass mode: FIFO disabled; 001: FIFO mode: stops collecting data when FIFO is full; 010: Reserved; 011: Continuous-to-FIFO mode: Continuous mode until trigger is deasserted, then FIFO mode; 100: Bypass-to-Continuous mode: Bypass mode until trigger is deasserted, then Continuous mode; 101: Reserved; 110: Continuous mode: If the FIFO is full, the new sample overwrites the older one; 111: Bypass-to-FIFO mode: Bypass mode until trigger is deasserted, then FIFO mode.)

9.6 COUNTER_BDR_REG1 (0Bh)

Counter batch data rate register 1 (r/w)

Table 29. COUNTER_BDR_REG1 register

dataready _pulsed	RST_ COUNTER _BDR	TRIG_ COUNTER _BDR	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	CNT_BDR _TH_9	CNT_BDR _TH_8

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 30. COUNTER BDR REG1 register description

	idalo del deditter_pert_regional decomption					
dataready_ pulsed	Enables pulsed data-ready mode (0: Data-ready latched mode (returns to 0 only after an interface reading) (default); 1: Data-ready pulsed mode (the data ready pulses are 75 µs long)					
RST_ COUNTER_ BDR	Resets the internal counter of batching events for a single sensor. This bit is automatically reset to zero if it was set to '1'.					
TRIG_ COUNTER_ BDR	Selects the trigger for the internal counter of batching events between XL and gyro. (0: XL batching event; 1: GYRO batching event)					
CNT_BDR_ TH_[9:8]	In conjunction with CNT_BDR_TH_[7:0] in COUNTER_BDR_REG2 (0Ch), sets the threshold for the internal counter of batching events. When this counter reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to '1'.					

9.7 COUNTER_BDR_REG2 (0Ch)

Counter batch data rate register 2 (r/w)

Table 31. COUNTER_BDR_REG2 register

| CNT_BDR |
|---------|---------|---------|---------|---------|---------|---------|---------|
| _TH_7 | _TH_6 | _TH_5 | _TH_4 | _TH_3 | _TH_2 | _TH_1 | _TH_0 |

Table 32. COUNTER_BDR_REG2 register description

	In conjunction with CNT_BDR_TH_[9:8] in COUNTER_BDR_REG1 (0Bh), sets
CNT_BDR_TH_	the threshold for the internal counter of batching events. When this counter
[7:0]	reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in
	FIFO_STATUS2 (3Bh) is set to '1'.

46/84 DocID031239 Rev 4

9.8 INT1_CTRL (0Dh)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT1. The output of the pad will be the OR combination of the signals selected here and in register *MD1_CFG* (5Eh).

Table 33. INT1_CTRL register

DEN_ INT1_ INT1_ FIFO flag	INT1_ FIFO_ OVR	INT1_ FIFO_TH	INT1_ BOOT	INT1_ DRDY_G	INT1_ DRDY_XL
----------------------------	-----------------------	------------------	---------------	-----------------	------------------

Table 34. INT1_CTRL register description

DEN_DRDY_flag	Sends DEN_DRDY (DEN stamped on sensor data flag) to INT1 pin.
INT1_CNT_BDR	Enables COUNTER_BDR_IA interrupt on INT1 pin.
INT1_FIFO_FULL	Enables FIFO full flag interrupt on INT1 pin.
INT1_FIFO_OVR	Enables FIFO overrun interrupt on INT1 pin.
INT1_FIFO_TH	Enables FIFO threshold interrupt on INT1 pin.
INT1_BOOT	Enables boot status on INT1 pin.
INT1_DRDY_G	Gyroscope data-ready interrupt on INT1 pin.
INT1_DRDY_XL	Accelerometer data-ready interrupt on INT1 pin.

9.9 INT2_CTRL (0Eh)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried over INT2. The output of the pad will be the OR combination of the signals selected here and in register *MD2_CFG* (5Fh).

Table 35. INT2_CTRL register

0 ⁽¹⁾	INT2_ CNT_BDR	INT2_ FIFO_ FULL	INT2_ FIFO_ OVR	INT2_ FTH	INT2_ DRDY_TEMP	INT2_ DRDY_G	INT2_ DRDY_XL
------------------	------------------	------------------------	-----------------------	--------------	--------------------	-----------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 36. INT2_CTRL register description

INT2_CNT_BDR	Enables COUNTER_BDR_IA interrupt on INT2 pin.
INT2_FIFO_FULL	Enables FIFO full flag interrupt on INT2 pin.
INT2_FIFO_OVR	Enables FIFO overrun interrupt on INT2 pin.
INT_FIFO_TH	Enables FIFO threshold interrupt on INT2 pin.
INT2_DRDY_TEMP	Temperature sensor data-ready interrupt on INT2 pin.
INT2_DRDY_G	Gyroscope data-ready interrupt on INT2 pin.
INT2_DRDY_XL	Accelerometer data-ready interrupt on INT2 pin.

9.10 WHO_AM_I (0Fh)

WHO_AM_I register (r). This is a read-only register. Its value is fixed at 6Bh.

Table 37. WhoAml register

0	1	1	0	1	0	1	1

9.11 CTRL1_XL (10h)

Accelerometer control register 1 (r/w)

Table 38. CTRL1_XL register

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	FS1_XL	FS0_XL	LPF2_XL_ EN	0 ⁽¹⁾
---------	---------	---------	---------	--------	--------	----------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 39. CTRL1_XL register description

	Table 03. OTTET_AL register description
	Accelerometer ODR selection
	(0000: Power-down (default);
	0001: 12.5 Hz;
	0010: 26 Hz;
	0011: 52 Hz;
	0100: 104 Hz;
ODR_XL[3:0]	0101: 208 Hz;
ODK_XL[3.0]	0110: 417 Hz;
	0111: 833 Hz;
	1000: 1667 Hz;
	1001: 3333 Hz;
	1010: 6667 Hz;
	1011: not allowed;
	11xx: not allowed)
	Accelerometer full-scale selection
	(00: ±2 g (default);
FS[1:0]_XL	01: ±16 <i>g</i> ;
	10: ±4 g;
	11: ±8 g)
	Accelerometer high-resolution selection:
LPF2_XL_EN	(0: Output from first stage digital stage filtering selected (default);
	1: Output from LPF2 second filtering stage selected)

9.12 CTRL2_G (11h)

Gyroscope control register 2 (r/w)

Table 40. CTRL2_G register

	ODR G3	ODR G2	ODR G1	ODR G0	FS1 G	FS0 G	FS 125	FS 4000
- 1	_	_	_	. –	-	_	_	. –

Table 41. CTRL2_G register description

	Table 41. OTINEZ_O Tegister description
	Gyroscope ODR selection.
	(0000: Power-down;
	0001: 12.5 Hz;
	0010: 26 Hz;
	0011: 52 Hz;
	0100: 104 Hz;
ODR_G[3:0]	0101: 208 Hz;
ODIX_G[3.0]	0110: 417 Hz;
	0111: 833 Hz;
	1000: 1667 Hz;
	1001: 3333 Hz;
	1010: 6667 Hz;
	1011: not allowed;
	11xx: not allowed)
	Gyroscope chain full-scale selection
	(00: ±250 dps;
FS[1:0]_G	01: ±500 dps;
	10: ±1000 dps;
	11: ±2000 dps)
	Selects gyro chain full-scale ±125 dps
FS_125	(0: FS selected through bits FS[1:0]_G;
	1: FS set to ±125 dps)
	Selects gyro chain full-scale ±4000 dps
FS_4000	(0: FS selected through bits FS[1:0]_G or FS_125;
	1: FS set to ±4000 dps)

9.13 CTRL3_C (12h)

Control register 3 (r/w)

Table 42. CTRL3_C register

BOOT BDU H_LACTIVE PP_OD SIM IF_INC	0 ⁽¹⁾	SW_RESET
-------------------------------------	------------------	----------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 43. CTRL3_C register description

	Reboots memory content. Default value: 0
воот	(0: normal mode; 1: reboot memory content)
	Note: the accelerometer must be ON. This bit is automatically cleared.
	Block Data Update. Default value: 0
BDU	(0: continuous update;
	1: output registers are not updated until MSB and LSB have been read)
H LACTIVE	Interrupt activation level. Default value: 0
II_LACTIVE	(0: interrupt output pins active high; 1: interrupt output pins active low
PP_OD	Push-pull/open-drain selection on INT1 and INT2 pins. This bit must be set to '0' when H_LACTIVE is set to '1'. Default value: 0
	(0: push-pull mode; 1: open-drain mode)
SIM	SPI Serial Interface Mode selection. Default value: 0
Silvi	(0: 4-wire interface; 1: 3-wire interface)
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (I²C or SPI). Default value: 1
	(0: disabled; 1: enabled)
	Software reset. Default value: 0
SW_RESET	(0: normal mode; 1: reset device)
	This bit is automatically cleared.

9.14 CTRL4_C (13h)

Control register 4 (r/w)

Table 44. CTRL4_C register

0 ⁽¹⁾ SLEEP_G INT2_on_ 0 ⁽¹⁾ DRDY_ I2C_disable SEL_	0 ⁽¹⁾
---	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 45. CTRL4_C register description

SLEEP_G	Enables gyroscope Sleep mode. Default value:0 (0: disabled; 1: enabled)			
All interrupt signals available on INT1 pin enable. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pins; 1: all interrupt signals in logic or on INT1 pin)				
DRDY_MASK	Enables data available (0: disabled; 1: mask DRDY on pin (both XL & Gyro) until filter settling ends (XL and Gyro independently masked).			
I2C_disable	Disables I ² C interface. Default value: 0 (0: SPI and I ² C interfaces enabled (default); 1: I ² C interface disabled)			
LPF1_SEL_G	Enables gyroscope digital LPF1; the bandwidth can be selected through FTYPE[2:0] in CTRL6_C (15h). (0: disabled; 1: enabled)			

9.15 CTRL5_C (14h)

Control register 5 (r/w)

Table 46. CTRL5_C register

(1) ROUNDING1 ROUNDING	0 ⁽¹⁾	ST1_G	ST0_G	ST1_XL	ST0_XL
------------------------	------------------	-------	-------	--------	--------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 47. CTRL5 C register description

idalo in o integration decompliani					
ROUNDING[1:0]	Circular burst-mode (rounding) read of the output registers. Default value: 00 (00: no rounding; 01: accelerometer only; 10: gyroscope only; 11: gyroscope + accelerometer)				
ST[1:0]_G	Angular rate sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 48</i>)				
ST[1:0]_XL	Linear acceleration sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 49</i>)				

Table 48. Angular rate sensor self-test mode selection

ST1_G ST0_G		Self-test mode		
0	0	Normal mode		
0	1	Positive sign self-test		
1	0	Not allowed		
1	1	Negative sign self-test		

Table 49. Linear acceleration sensor self-test mode selection

ST1_XL ST0_XL		Self-test mode		
0	0	Normal mode		
0	1	Positive sign self-test		
1	0	Negative sign self-test		
1	1	Not allowed		

9.16 CTRL6_C (15h)

Control register 6 (r/w)

Table 50. CTRL6_C register

TRIG_EN LVL1_EN LVL2_EN	0 ⁽¹⁾	USR_ OFF_W	FTYPE_2	FTYPE_1	FTYPE_0
-------------------------	------------------	---------------	---------	---------	---------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 51. CTRL6_C register description

TRIG_EN	DEN data edge-sensitive trigger enable. Refer to <i>Table 52</i> .
LVL1_EN	DEN data level-sensitive trigger enable. Refer to <i>Table 52</i> .
LVL2_EN	DEN level-sensitive latched enable. Refer to Table 52.
USR_OFF_W	Weight of XL user offset bits of registers X_OFS_USR (73h), Y_OFS_USR (74h), Z_OFS_USR (75h) (0 = 2^{-10} g/LSB; 1 = 2^{-6} g/LSB)
FTYPE[2:0]	Gyroscope low-pass filter (LPF1) bandwidth selection. <i>Table 53</i> shows the selectable bandwidth values.

Table 52. Trigger mode selection

TRIG_EN, LVL1_EN, LVL2_EN	Trigger mode
100	Edge-sensitive trigger mode is selected
010	Level-sensitive trigger mode is selected
011	Level-sensitive latched mode is selected
110	Level-sensitive FIFO enable mode is selected

Table 53. Gyroscope LPF1 bandwidth selection

FTYPE [2:0]	12.5 Hz	26 Hz	52 Hz	104 Hz	208 Hz	416 Hz	833 Hz	1.67 kHz	3.33 kHz	6.67 kHz
000	4.3	8.3	16.7	33	67	133	222	274	292	297
001	4.3	8.3	16.7	33	67	128	186	212	220	223
010	4.3	8.3	16.7	33	67	112	140	150	153	154
011	4.3	8.3	16.7	33	67	134	260	390	451	470
100	4.3	8.3	16.7	34	62	86	96	99	N	A
101	4.3	8.3	16.9	31	43	48	49	50	N	A
110	4.3	8.3	13.4	19	23	24.6	25	25	NA	
111	4.3	8.3	9.8	11.6	12.2	12.4	12.6	12.6	N	A

9.17 CTRL7_G (16h)

Control register 7 (r/w)

Table 54. CTRL7_G register

0 ⁽¹⁾ HP_EN_G HPM1_G HPM0_G	0 ⁽¹⁾	0 ⁽¹⁾	USR_OFF _ON_OUT	0 ⁽¹⁾	
--	------------------	------------------	--------------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 55. CTRL7_G register description

HP_EN_G	Enables gyroscope digital high-pass filter. The filter is enabled only if the gyro is in HP mode. Default value: 0 (0: HPF disabled; 1: HPF enabled)
HPM_G[1:0]	Gyroscope digital HP filter cutoff selection. Default: 00 (00 = 16 mHz; 01 = 65 mHz; 10 = 260 mHz; 11 = 1.04 Hz)
USR_OFF_ON_ OUT	Enables accelerometer user offset correction block; it's valid for the low-pass path - see <i>Figure 13</i> . Default value: 0 (0: accelerometer user offset correction block bypassed; 1: accelerometer user offset correction block enabled)

9.18 CTRL8_XL (17h)

Control register 8 (r/w)

Table 56. CTRL8_XL register

HPCF_XI	. HPCF_XL	HPCF_XL	HP_REF_	FASTSETTL	HP_SLOPE	O ⁽¹⁾	LOW_PASS
_2	_1	_0	MODE_XL	_MODE_XL	_XL_EN	0(1)	_ON_6D

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 57. CTRL8_XL register description

HPCF_XL_[2:0]	Accelerometer LPF2 and HP filter configuration and cutoff setting. Refer to <i>Table 58</i> .
HP_REF_ MODE_XL	Enables accelerometer high-pass filter reference mode (valid for high-pass path - HP_SLOPE_XL_EN bit must be '1'). Default value: 0 (0: disabled, 1: enabled ⁽¹⁾)
FASTSETTL _MODE_XL	Enables accelerometer LPF2 and HPF fast-settling mode. The filter sets the second samples after writing this bit. Active only during device exit from power-down mode. Default value: 0 (0: disabled, 1: enabled)
HP_SLOPE_ XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 15.
LOW_PASS _ON_6D	LPF2 on 6D function selection. Refer to <i>Figure 15</i> . Default value: 0 (0: ODR/2 low-pass filtered data sent to 6D interrupt function; 1: LPF2 output data sent to 6D interrupt function)

^{1.} When enabled, the first output data have to be discarded.

Table 58. Accelerometer bandwidth configurations

Filter type	HP_SLOPE_ XL_EN	LPF2_XL_EN	HPCF_XL_[2:0]	Bandwidth
		0	-	ODR/2
			000	ODR/4
			001	ODR/10
			010	ODR/20
Low pass	0	1	011	ODR/45
			100	ODR/100
		-	101	ODR/200
			110	ODR/400
			111	ODR/800
			000	SLOPE (ODR/4)
			001	ODR/10
			010	ODR/20
High noon	1		011	ODR/45
High pass	'	-	100	ODR/100
			101	ODR/200
			110	ODR/400
			111	ODR/800

Figure 15. Accelerometer block diagram LOW_PASS_ON_6D Free-fall 6D / 4D LPF2_XL_EN USR_OFF_ON_OUT HP_SLOPE_XL_EN 0 Digital LP Filter 0 USER **OFFSET** LPF2 USR_OFF_W OFS_USR[7:0] LPF1 output⁽¹⁾ FIFO HPCF_XL[2:0] Wake-up Activity / Inactivity Digital HP Filter SPI/ USR_OFF_ON_WU SLOPE_FDS I²C 001 010 111 HPCF_XL[2:0] SLOPE **FILTER** HPCF_XL[2:0]

1. The cutoff value of the LPF1 output is ODR/2.

9.19 CTRL9_XL (18h)

Control register 9 (r/w)

Table 59. CTRL9_XL register

DEN_X	DEN_Y	DEN_Z	DEN_XL_G	DEN_XL_EN	DEN_LH	DEVICE _CONF	0 ⁽¹⁾	
-------	-------	-------	----------	-----------	--------	-----------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 60. CTRL9_XL register description

DEN_X	DEN value stored in LSB of X-axis. Default value: 1 (0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB)					
DEN_Y	DEN value stored in LSB of Y-axis. Default value: 1 (0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB)					
DEN_Z	DEN value stored in LSB of Z-axis. Default value: 1 (0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB)					
DEN_XL_G	DEN stamping sensor selection. Default value: 0 (0: DEN pin info stamped in the gyroscope axis selected by bits [7:5]; 1: DEN pin info stamped in the accelerometer axis selected by bits [7:5])					
DEN_XL_EN	Extends DEN functionality to accelerometer sensor. Default value: 0 (0: disabled; 1: enabled)					
DEN_LH	DEN active level configuration. Default value: 0 (0: active low; 1: active high)					
DEVICE_CONF	Enables the proper device configuration. Default value: 0 It is recommended to always set this bit to 1 during device configuration. (0: default; 1: enabled)					

9.20 CTRL10_C (19h)

Control register 10 (r/w)

Table 61. CTRL10_C register

0(1) 0(1)	TIMESTAMP _EN	0 ⁽¹⁾				
-----------	------------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 62. CTRL10_C register description

	TIMESTAMD EN	Enables timestamp counter. Default value: 0 (0: disabled; 1: enabled) The counter is readable in TIMESTAMPO (40h), TIMESTAMP1 (41h)
		The counter is readable in <i>TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h).</i>

9.21 ALL_INT_SRC (1Ah)

Source register for all interrupts (r)

Table 63. ALL_INT_SRC register

ENDCOUNT U CHANGE	D6D_IA	0	0	WU_IA	FF_IA	
-----------------------	--------	---	---	-------	-------	--

Table 64. ALL_INT_SRC register description

TIMESTAMP_ENDCOUNT	Alerts timestamp overflow within 6.4 ms				
SLEEP_CHANGE_IA	Detects change event in activity/inactivity status. Default value: 0 (0: change status not detected; 1: change status detected)				
D6D_IA	Interrupt active for change in position of portrait, landscape, face-up, face-down. Default value: 0 (0: change in position not detected; 1: change in position detected)				
WU_IA	Wake-up event status. Default value: 0 (0: event not detected, 1: event detected)				
FF_IA	Free-fall event status. Default value: 0 (0: event not detected, 1: event detected)				

9.22 WAKE_UP_SRC (1Bh)

Wake-up interrupt source register (r)

Table 65. WAKE_UP_SRC register

0	SLEEP_ CHANGE_IA	FF_IA	SLEEP_ STATE	WU_IA	X_WU	Y_WU	Z_WU	
---	---------------------	-------	-----------------	-------	------	------	------	--

Table 66. WAKE_UP_SRC register description

SLEEP_	Detects change event in activity/inactivity status. Default value: 0					
CHANGE_IA	(0: change status not detected; 1: change status detected)					
FF IA	Free-fall event detection status. Default: 0					
	(0: free-fall event not detected; 1: free-fall event detected)					
SLEEP STATE	Sleep status bit. Default value: 0					
OLLLI _OTATL	(0: activity status; 1: inactivity status)					
WU IA	Wakeup event detection status. Default value: 0					
WO_IA	(0: wakeup event not detected; 1: wakeup event detected.)					
X WU	Wakeup event detection status on X-axis. Default value: 0					
X_W0	(0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)					
Y WU	Wakeup event detection status on Y-axis. Default value: 0					
1_***	(0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)					
Z WU	Wakeup event detection status on Z-axis. Default value: 0					
	(0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)					

9.23 D6D_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (r)

Table 67. D6D_SRC register

DEN_DRDY	D6D_IA	ZH	ZL	ΥH	YL	XH	XL	

Table 68. D6D_SRC register description

DEN_ DRDY	DEN data-ready signal. It is set high when data output is related to the data coming from a DEN active condition. ⁽¹⁾
D6D_ IA	Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0 (0: change position not detected; 1: change position detected)
ZH	Z-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)
ZL	Z-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)
YH	Y-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over-threshold) detected)
YL	Y-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)
ХН	X-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)
XL	X-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)

The DEN data-ready signal can be latched or pulsed depending on the value of the dataready pulsed bit of the COUNTER_BDR_REG1 (0Bh) register.

9.24 STATUS_REG (1Eh)

Status register (r)

Table 69. STATUS_REG register

Table 70. STATUS_REG register description

TDA	Temperature new data available. Default: 0 (0: no set of data is available at temperature sensor output; 1: a new set of data is available at temperature sensor output)
GDA	Gyroscope new data available. Default value: 0 (0: no set of data available at gyroscope output; 1: a new set of data is available at gyroscope output)
XLDA	Accelerometer new data available. Default value: 0 (0: no set of data available at accelerometer output; 1: a new set of data is available at accelerometer output)

4

9.25 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 71. OUT_TEMP_L register

	14516 7 11 00 1_1 211111 _2 10 910101							
Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0	
Table 72. OUT_TEMP_H register								
Temp15	Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8	

Table 73. OUT_TEMP register description

T	emp[15:0]	Temperature sensor output data
'	op[o.o]	The value is expressed as two's complement sign extended on the MSB.

9.26 OUTX_H_G (23h), OUTX_L_G (22h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 74. OUTX_H_G register

D15	D14	D13	D12	D11	D10	D9	D8	
	Table 75. OUTX_L_G register							
D7	D6	D5	D4	D3	D2	D1	D0	

Table 76. OUTX_H_G, OUTX_L_G register description

D[15:0]

9.27 OUTY_H_G (25h), OUTY_L_G (24h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 77. OUTY_H_G register

D15	D14	D13	D12	D11	D10	D9	D8	
	Table 78. OUTY_L_G register							
D7	D6	D5	D4	D3	D2	D1	D0	

Table 79. OUTY_H_G, OUTY_L_G register description

D[15:0]	Gyroscope roll axis output expressed in 2's complement	
---------	--	--

9.28 OUTZ_H_G (27h), OUTZ_L_G (26h)

Angular rate sensor pitch yaw (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 80. OUTZ_H_G register

_								
	D15	D14	D13	D12	D11	D10	D9	D8
			Tab	le 81. OUT	Z_L_G regi	ster		
	D7	D6	D5	D4	D3	D2	D1	D0

Table 82. OUTZ_H_G, OUTZ_L_G register description

D[15:0] Gyroscope yaw axis output expressed in 2's complement

9.29 OUTX_H_A (29h), OUTX_L_A (28h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 83. OUTX_H_A register

D15	D14	D13	D12	D11	D10	D9	D8	
	Table 84. OUTX_L_A register							
D7	D6	D5	D4	D3	D2	D1	D0	

Table 85. OUTX_H_A, OUTX_L_A register description

D[15:0] Accelerometer X-axis output expressed as 2's complement

9.30 OUTY_H_A (2Bh), OUTY_L_A (2Ah)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 86. OUTY_H_A register

D15	D14	D13	D12	D11	D10	D9	D8
Table 87. OUTY_L_A register							
D7	D6	D5	D4	D3	D2	D1	D0

Table 88. OUTY_H_A, OUTY_L_A register description

D[15:0] Accelerometer Y-axis output expressed as 2's complement

9.31 OUTZ_H_A (2Dh), OUTZ_L_A (2Ch)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 89. OUTZ_H_A register

D15	D14	D13	D12	D11	D10	D9	D8
		Tab	le 90. OUT	Z_L_A regi	ster		
D7	D6	D5	D4	D3	D2	D1	D0

Table 91. OUTZ_H_A, OUTZ_L_A register description

D[15:0] Accelerometer Z-axis output expressed as 2's complement

9.32 FIFO_STATUS1 (3Ah)

FIFO status register 1 (r)

Table 92. FIFO_STATUS1 register

| DIFF_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FIFO_7 | FIFO_6 | FIFO_5 | FIFO_4 | FIFO_3 | FIFO_2 | FIFO_1 | FIFO_0 |

Table 93. FIFO_STATUS1 register description

DIFF_	Number of unread sensor data (TAG + 6 bytes) stored in FIFO
FIFO_[7:0]	In conjunction with DIFF_FIFO[9:8] in FIFO_STATUS2 (3Bh).

9.33 FIFO_STATUS2 (3Bh)

FIFO status register 2 (r)

Table 94. FIFO_STATUS2 register

FIFO_ WTM_IA	FIFO_ OVR_IA	FIFO_ FULL IA	COUNTER BDR IA	FIFO_OVR_ LATCHED	0	DIFF_ FIFO 9	DIFF_
** · · · · ·	0 11(_,,,	''	_551_"\	LATIONED		' ''	0_0

Table 95. FIFO_STATUS2 register description

	<u> </u>
FIFO_ WTM_IA	FIFO watermark status. Default value: 0 (0: FIFO filling is lower than WTM; 1: FIFO filling is equal to or greater than WTM) Watermark is set through bits WTM[8:0] in FIFO_CTRL2 (08h) and FIFO_CTRL1 (07h).
FIFO_ OVR_IA	FIFO overrun status. Default value: 0 (0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO_ FULL_IA	Smart FIFO full status. Default value: 0 (0: FIFO is not full; 1: FIFO will be full at the next ODR)
COUNTER_ BDR_IA	Counter BDR reaches the CNT_BDR_TH_[9:0] threshold set in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch). Default value: 0 This bit is reset when these registers are read.
FIFO_OVR_ LATCHED	Latched FIFO overrun status. Default value: 0 This bit is reset when this register is read.
DIFF_ FIFO_[9:8]	Number of unread sensor data (TAG + 6 bytes) stored in FIFO. Default value: 00 In conjunction with DIFF_FIFO[7:0] in FIFO_STATUS1 (3Ah)

9.34 TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)

Timestamp first data output register (r). The value is expressed as a 32-bit word and the bit resolution is 25 μ s.

Table 96. TIMESTAMP3 register

D31	D30	D29	D28	D27	D26	D25	D24	
Table 97. TIMESTAMP2 register								
D23	D22	D21	D20	D19	D18	D17	D16	
	Table 98. TIMESTAMP1 register							
D15	D14	D13	D12	D11	D10	D9	D8	
Table 99. TIMESTAMP0 register								
D7	D6	D5	D4	D3	D2	D1	D0	

Table 100. TIMESTAMPx register description

D[31:0]	Timestamp output registers: 1LSB = 25 μs

The formula below can be used to calculate a better estimation of the actual timestamp resolution:

TS_Res = 1 / (40000 + (0.0015 * INTERNAL_FREQ_FINE * 40000))

where INTERNAL_FREQ_FINE is the content of INTERNAL_FREQ_FINE (63h).

9.35 INT_CFG0 (56h)

Activity/inactivity functions, configuration of filtering, and interrupt latch mode configuration (r/w).

Table 101. INT_CFG0 register

0 ⁽¹⁾	INT_CLR _ON_ READ	SLEEP_ STATUS_ ON_INT	SLOPE_ FDS	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	LIR	
------------------	-------------------------	-----------------------------	---------------	------------------	------------------	------------------	-----	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 102. INT_CFG0 register description

INT_CLR_ON_ READ	This bit allows immediately clearing the latched interrupts of an event detection upon the read of the corresponding status register. It must be set to 1 together with LIR. Default value: 0
INLAD	(0: latched interrupt signal cleared at the end of the ODR period; 1: latched interrupt signal immediately cleared)
SLEEP_STATUS _ON_INT	Activity/inactivity interrupt mode configuration. If INT1_SLEEP_CHANGE or INT2_SLEEP_CHANGE bits are enabled, drives the sleep status or sleep change on INT pins. Default value: 0 (0: sleep change notification on INT pins; 1: sleep status reported on INT pins)
SLOPE_FDS	HPF or SLOPE filter selection on wake-up and Activity/Inactivity functions. Default value: 0 (0: SLOPE filter applied; 1: HPF applied)
LIR	Latched Interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)

9.36 INT_CFG1 (58h)

Enables interrupt function register (r/w)

Table 103. INT_CFG1 register

INTERRUPTS_	INACT_	INACT_	O(1)	O(1)	0(1)	0(1)	O ⁽¹⁾
ENABLE	EN1	EN0	0(1)	0(1)	0(*)	0(1)	0(1)

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 104. INT_CFG1 register description

INTERRUPTS _ENABLE	Enables hardcoded functions
INACT_EN[1:0]	Enables activity/inactivity (sleep) function. Default value: 00 (00: stationary/motion-only interrupts generated, XL and gyro do not change; 01: sets accelerometer ODR to 12.5 Hz, gyro does not change; 10: sets accelerometer ODR to 12.5 Hz, gyro to sleep mode; 11: sets accelerometer ODR to 12.5 Hz, gyro to power-down mode)

9.37 THS_6D (59h)

Portrait/landscape position register (r/w)

Table 105. THS_6D register

D4D_ EN	SIXD_THS1	SIXD_THS0	0 ⁽¹⁾					
------------	-----------	-----------	------------------	------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 106. THS_6D register description

D4D_EN	Enables detection of 4D orientation. Z-axis position detection is disabled. Default value: 0 (0: disabled; 1: enabled)
SIXD_THS[1:0]	Threshold for 4D/6D function (00: 80 degrees (default); 01: 70 degrees; 10: 60 degrees; 11: 50 degrees)

9.38 WAKE_UP_THS (5Bh)

Wake-up configuration register (r/w)

Table 107. WAKE_UP_THS register

0 ⁽¹⁾ USR_OFF WK_THS	WK_THS4 WK_THS3	WK_THS2 WK_THS	1 WK_THS0
---------------------------------	-----------------	----------------	-----------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 108. WAKE_UP_THS register description

USR_OFF_ ON_WU	Sends the low-pass filtered data with user offset correction (instead of high-pass filtered data) to the wakeup function.
WK_THS[5:0]	Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in WAKE_UP_DUR (5Ch). Default value: 000000

9.39 WAKE_UP_DUR (5Ch)

Free-fall, wakeup and sleep mode functions duration setting register (r/w)

Table 109. WAKE_UP_DUR register

FF DUR5	WAKE_	WAKE_	WAKE_	SLEEP_	SLEEP_	SLEEP_	SLEEP_
FF_DUR5	DUR1	DUR0	THS_W	DUR3	DUR2	DUR1	DUR0

Table 110. WAKE_UP_DUR register description

FF_DUR5	Free fall duration event. Default: 0 For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration. 1 LSB = 1 ODR_time
WAKE_DUR[1:0]	Wake up duration event. Default: 00 1LSB = 1 ODR_time
WAKE_THS_W	Weight of 1 LSB of wakeup threshold. Default:0 (0: 1 LSB = FS_XL / (2^6) ; 1: 1 LSB = FS_XL / (2^8))
SLEEP_DUR[3:0]	Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR) 1 LSB = 512 ODR

9.40 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w)

Table 111. FREE_FALL register

	ſ	FF DUR4	FF DUR3	FF DUR2	FF DUR1	FF DUR0	FF THS2	FF THS1	FF THS0
--	---	---------	---------	---------	---------	---------	---------	---------	---------

Table 112. FREE_FALL register description

FF_DUR[4:0]	Free-fall duration event. Default: 0 For the complete configuration of the free fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch) configuration
	Free fall threshold setting
	(000: 156 mg (default);
	001: 219 mg;
	010: 250 mg;
FF_THS[2:0]	011: 312 m <i>g</i> ;
	100: 344 mg;
	101: 406 mg;
	110: 469 m <i>g</i> ;
	111: 500 mg)

9.41 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w)

Table 113. MD1_CFG register

	INT1_	(4)			(1)		(4)	(4)
CHANGE _ _ _	SLEEP_	0(1)	INT1_WU	INT1_FF	0 ⁽¹⁾	INT1_6D	0 ⁽¹⁾	0 ⁽¹⁾

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 114. MD1_CFG register description

INT1_SLEEP_ CHANGE ⁽¹⁾	Routing of activity/inactivity recognition event on INT1. Default: 0 (0: routing of activity/inactivity event on INT1 disabled; 1: routing of activity/inactivity event on INT1 enabled)					
	Routing of wakeup event on INT1. Default value: 0					
INT1_WU	(0: routing of wakeup event on INT1 disabled; 1: routing of wakeup event on INT1 enabled)					
	Routing of free-fall event on INT1. Default value: 0					
INT1_FF	(0: routing of free-fall event on INT1 disabled; 1: routing of free-fall event on INT1 enabled)					
	Routing of 6D event on INT1. Default value: 0					
INT1_6D	(0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)					

Activity/Inactivity interrupt mode (sleep change or sleep status) depends on SLEEP_STATUS_ON_INT bit in INT_CFG0 (56h) register.

9.42 MD2_CFG (5Fh)

Functions routing on INT2 register (r/w)

Table 115. MD2_CFG register

INT2_ SLEEP_ CHANGE	0 ⁽¹⁾	INT2_WU	INT2_FF	0 ⁽¹⁾	INT2_6D	0 ⁽¹⁾	INT2_ TIMESTAMP

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 116. MD2_CFG register description

INT2_SLEEP_ CHANGE ⁽¹⁾	Routing of activity/inactivity recognition event on INT2. Default: 0 (0: routing of activity/inactivity event on INT2 disabled; 1: routing of activity/inactivity event on INT2 enabled)
INT2_WU	Routing of wakeup event on INT2. Default value: 0 (0: routing of wakeup event on INT2 disabled; 1: routing of wake-up event on INT2 enabled)
INT2_FF	Routing of free-fall event on INT2. Default value: 0 (0: routing of free-fall event on INT2 disabled; 1: routing of free-fall event on INT2 enabled)
INT2_6D	Routing of 6D event on INT2. Default value: 0 (0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)
INT2_TIMESTAMP	Enables routing on INT2 pin of the alert for timestamp overflow within 6.4 ms

Activity/Inactivity interrupt mode (sleep change or sleep status) depends on SLEEP_STATUS_ON_INT bit in INT_CFG0 (56h) register.

9.43 INTERNAL_FREQ_FINE (63h)

Internal frequency register (r)

Table 117. INTERNAL_FREQ_FINE register

| FREQ_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FINE7 | FINE6 | FINE5 | FINE4 | FINE3 | FINE2 | FINE1 | FINE0 |

Table 118. INTERNAL_FREQ_FINE register description

FREQ_FINE[7:0]	Difference in percentage of the effective ODR (and timestamp rate) with respect to the typical. Step: 0.15%. 8-bit format, 2's complement.
1 1 1 2 3 2 1 11 1 2 [7 .0]	to the typical. Step: 0.15%. 8-bit format, 2's complement.

The formula below can be used to calculate a better estimation of the actual ODR:

ODR_Actual = (6667 + ((0.0015 * INTERNAL_FREQ_FINE) * 6667)) / ODR_Coeff

ODR_Coeff
512
256
128
64
32
16
8
4
2
1

The Selected_ODR parameter has to be derived from the ODR_XL selection (*Table 39: CTRL1_XL register description*) in order to estimate the accelerometer ODR and from the ODR_G selection (*Table 41: CTRL2_G register description*) in order to estimate the gyroscope ODR.

9.44 X_OFS_USR (73h)

Accelerometer X-axis user offset correction (r/w). The offset value set in the X_OFS_USR offset register is internally subtracted from the acceleration value measured on the X-axis.

Table 119. X_OFS_USR register

X_(DFS_	X_OFS_						
US	R_7	USR_6	USR_5	USR_4	USR_3	USR_2	USR_1	USR_0

Table 120. X_OFS_USR register description

X_OFS_ [7:0]	USR_
[7:0]	

Accelerometer X-axis user offset correction expressed in two's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127 127].

9.45 Y_OFS_USR (74h)

Accelerometer Y-axis user offset correction (r/w). The offset value set in the Y_OFS_USR offset register is internally subtracted from the acceleration value measured on the Y-axis.

Table 121. Y_OFS_USR register

| Y_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| | USR_6 | | | | | | |

Table 122. Y_OFS_USR register description

Y_OF	:S_
Y_OF USR_	[7:0]

Accelerometer Y-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].

9.46 Z_OFS_USR (75h)

Accelerometer Z-axis user offset correction (r/w). The offset value set in the Z_OFS_USR offset register is internally subtracted from the acceleration value measured on the Z-axis.

Table 123. Z_OFS_USR register

| Z_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| | | USR_5 | | | | | |

Table 124. Z_OFS_USR register description

1/ ()=5	Accelerometer Z-axis user offset calibration expressed in 2's complement, weight
USR_[7:0]	depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range
031_[1.0]	[-127, +127].

9.47 FIFO_DATA_OUT_TAG (78h)

FIFO tag register (r)

Table 125. FIFO_DATA_OUT_TAG register

	TAG_ SENSOR_ 4	TAG_ SENSOR_ 3	TAG_ SENSOR_ 2	TAG_ SENSOR_ 1	TAG_ SENSOR_ 0	TAG_CNT _1	TAG_CNT _0	TAG_ PARITY	
--	----------------------	----------------------	----------------------	----------------------	----------------------	---------------	---------------	----------------	--

Table 126. FIFO_DATA_OUT_TAG register description

TAG_SENSOR_[4:0]	Identifies the sensor in: FIFO_DATA_OUT_X_H (7Ah) and FIFO_DATA_OUT_X_L (79h), FIFO_DATA_OUT_Y_H (7Ch) and FIFO_DATA_OUT_Y_L (7Bh), and FIFO_DATA_OUT_Z_H (7Eh) and FIFO_DATA_OUT_Z_L (7Dh)
TAG_CNT_[1:0]	2-bit counter which identifies sensor time slot
TAG_PARITY	Parity check of TAG content

Table 127. FIFO tag

TAG_SENSOR_[4:0]	Sensor name				
0x01	Gyroscope				
0x02	Accelerometer				
0x03	Temperature				
0x04	Timestamp				
0x05	CFG_Change				

9.48 FIFO_DATA_OUT_X_H (7Ah) and FIFO_DATA_OUT_X_L (79h)

FIFO data output X (r)

Table 128. FIFO_DATA_OUT_X_H register

D15	D14	D13	D12	D11	D10	D9	D8		
Table 129. FIFO_DATA_OUT_X_L register									
D7	D6	D5	D4	D3	D2	D1	D0		

Table 130. FIFO_DATA_OUT_X_H, FIFO_DATA_OUT_X_L register description

D[15:0] FIFO X-axis output

9.49 FIFO_DATA_OUT_Y_H (7Ch) and FIFO_DATA_OUT_Y_L (7Bh)

FIFO data output Y (r)

Table 131. FIFO_DATA_OUT_Y_H register

D15	D14	D13	D12	D11	D10	D9	D8				
Table 132. FIFO_DATA_OUT_Y_L register											
D7	D6	D5	D4	D3	D2	D1	D0				

Table 133. FIFO_DATA_OUT_Y_H, FIFO_DATA_OUT_Y_L register description

D[15:0] FIFO Y-axis output

9.50 FIFO_DATA_OUT_Z_H (7Eh) and FIFO_DATA_OUT_Z_L (7Dh)

FIFO data output Z (r)

Table 134. FIFO_DATA_OUT_Z_H register

D15	D14	D13	D12	D11	D10	D9	D8		
Table 135. FIFO_DATA_OUT_Z_L register									
D7	D6	D5	D4	D3	D2	D1	D0		

Table 136. FIFO_DATA_OUT_Z_H, FIFO_DATA_OUT_Z_L register description

D[15:0]	FIFO Z-axis	output			

10 Typical performance characteristics

The following distributions were calculated by measuring 100 samples at room temperature in the characterization lab.

10.1 Gyroscope Angular Random Walk (ARW)

Figure 17. ARW gyro / roll axis

10.2 Gyroscope Bias Instability (BI)

Figure 19. Bl gyro / pitch axis

Figure 20. Bl gyro / roll axis

Figure 21. Bl gyro / yaw axis

10.3 Gyroscope nonlinearity

Figure 22. Gyro NL / pitch axis

Figure 24. Gyro NL / yaw axis

78/84 DocID031239 Rev 4

11 Soldering information

The LGA package is compliant with the ECOPACK, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.

Land pattern and soldering recommendations are available at www.st.com/mems.

Package information ASM330LHH

12 **Package information**

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

12.1 **LGA-14L** package information

Figure 25. LGA-14L 2.5 x 3.0 x 0.83 mm³ (typ.) package outline and mechanical data

LGA-14 packing information 12.2

Do E1 1.75<u>±</u>0.10 Ø 1.50 0.00 0.30±0.05 D1 Ø1.50 MIN. R0.20 TYP SECTION Y-Y SECTION X-X Measured from centreline of sprocket hole to centreline of pocket.

Cumulative tolerance of 10 sprocket holes is ± 0.20. (I) +/- 0.05 Во 3.30 +/- 0.05 (11) 1.00 Ko +/- 0.10 +/- 0.05 +/- 0.10 +/- 0.30 P1 W 8.00 Forming format : Press form - 17-B 12.00 Required length: 170 meter / 22B3 reel ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Figure 26. Carrier tape information for LGA-14 package

Package information ASM330LHH

Figure 28. Reel information for carrier tape of LGA-14 package

Table 137. Reel dimensions for carrier tape of LGA-14 package

Reel dimensions (mm)		
A (max)	330	
B (min)	1.5	
С	13 ±0.25	
D (min)	20.2	
N (min)	60	
G	12.4 +2/-0	
T (max)	18.4	

ASM330LHH Revision history

13 Revision history

Table 138. Document revision history

Date	Revision	Changes
18-Feb-2019	3	First public release
06-May-2020	4	Updated Sg in Table 8: Absolute maximum ratings Updated linear acceleration self-test output change in Table 3: Mechanical characteristics Updated text in I²C operation Updated batch data rate for BDR_XL_[3:0] in FIFO_CTRL3 (09h) Updated bit 2 in COUNTER_BDR_REG1 (0Bh) Updated bit 6 in ALL_INT_SRC (1Ah) Updated bits 4 and 6 in WAKE_UP_SRC (1Bh) Updated description of bit D4D_EN in THS_6D (59h)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

