

# "Modelación de estructura con disipadores de energía no lineal"

**Docente:** 

Jose Antonio Abell

## Integrantes:

Jaime Contardo Felipe Elgueta Jorge Salas Jose Tomas Toledo

Fecha:

28.08.2018

En este informe se compararán los métodos de Euler y Runge-Kutta utilizados para la resolución de la ecuación diferencial de nuestra estructura con disipadores de energía y así poder concluir que método es más eficiente.

1

Para esto se colocaron los siguientes disipadores por pisos:

| Piso 1  | 0 N      |
|---------|----------|
| Piso 2  | 800000 N |
| Piso 3  | 250000 N |
| Piso 4  | 500000 N |
| Piso 5  | 300000 N |
| Piso 6  | 800000 N |
| Piso 7  | 0 N      |
| Piso 8  | 300000 N |
| Piso 9  | 250000 N |
| Piso 10 | 150000 N |
| Piso 11 | 500000 N |
| Piso 12 | 0 N      |
| Piso 13 | 300000 N |
| Piso 14 | 150000 N |
| Piso 15 | 150000 N |
| Piso 16 | 250000 N |
| Piso 17 | 250000 N |
| Piso 18 | 0 N      |
| Piso 19 | 0 N      |
| Piso 20 | 0 N      |

Se tienen en total 4950000 N en disipadores distribuidos en los pisos.

A continuación, se muestran los datos del sismo y los resultados obtenidos por cada método para el mismo suceso. También se muestra el error calculado respecto a RK45, pues es mas preciso que Euler, pero se demora mucho más.



(1)

| HORA                  | 23:46:02   |
|-----------------------|------------|
| FECHA                 | 2014-04-01 |
| LONGITUD EPICENTRO    | -70.91     |
| LATITUD EPICENTRO     | -19.57     |
| MAGNITUD              | 8.2        |
| PROFUNDIDAD EPICENTRO | 38.0       |

# 20140401-234602-T09A-HNE



El drift para RK45 de entrepiso máximo es 0.00034572758633223 producido en el piso 1. El drift para Euler de entrepiso máximo es 0.00037143271448929 producido en el piso 1.  $\text{Error} = \frac{|RK45-Euler|}{RK45} = 0.074351$ 

# 20140401-234609-T08A-HNE



El drift para RK45 de entrepiso máximo es 0.0006771114233021332 producido en el piso 1. El drift para Euler de entrepiso máximo es 0.0007134823868007212 producido en el piso 1.  $\text{Error} = \frac{|RK45-Euler|}{RK45} = 0.053715$ 

# 20140401-234609-T07A-HNE



El drift para RK45 de entrepiso máximo es 0.0012145724823421447 producido en el piso 1. El drift para Euler de entrepiso máximo es 0.0012958314667962409 producido en el piso 1.  $\text{Error} = \frac{|RK45-Euler|}{RK45} = 0.066903$ 



(2)

| HORA                  | 22:53:55   |
|-----------------------|------------|
| FECHA                 | 2015-09-16 |
| LONGITUD EPICENTRO    | -71.86     |
| LATITUD EPICENTRO     | -31.55     |
| MAGNITUD              | 8.4        |
| PROFUNDIDAD EPICENTRO | 11.0       |

# 20150916-225355-C11O-HNE



El drift para RK45 de entrepiso máximo es 0.002590368132994813 producido en el piso 1. El drift para Euler de entrepiso máximo es 0.0026318961501661277 producido en el piso 1.  $\text{Error} = \frac{|RK45-Euler|}{RK45} = 0.016032$ 

# 20150916-225404-C26O-HNE



El drift para RK45 de entrepiso máximo es 0.00030864964542245325 producido en el piso 1.

El drift para Euler de entrepiso máximo es 0.0003885581635540551 producido en el piso 1.  $Error = \frac{|RK45-Euler|}{RK45} = 0.258897$ 

# 20150916-225414-C18O-HNE



El drift para RK45 de entrepiso máximo es 0.00052887628026091 producido en el piso 1. El drift para Euler de entrepiso máximo es 0.0005886037596632884 producido en el piso 1.  $Error = \frac{|RK45-Euler|}{RK45} = 0.112933$ 

Con lo presentado, se puede apreciar que aunque hay error entre los métodos no es enorme y comparado con el tiempo y costo que conlleva utilizar RK45, conviene para este caso Euler.

8