Spatially Varying Persistence for High Dynamic Range VR Displays

Kishore Rathinavel

Motivation: Photorealistic VR

Real world is high dynamic range

1/20 sep at f / 22

Today's VR headsets use an LDR display

Dynamic Range of Human Vision

- Human vision contrast ratio
 - Instantaneous 10⁴: 1
 - ▶ With Adaptation 10^{20} : 1
- Commonly available displays 255: 1

1/60 sec at f / 22

Existing methods to display HDR image

- Using LDR displays:
 - Tonemapping
 - After-images
- HDR displays perceptual study shows this is preferred

2004 HDR Display: Projector prototype

- Limitations:
 - Power consumption
 - Form factor

2004 HDR Display: LED array prototype

Backlight image after diffusion

After LCD

	HDR 2004	Our LED array
Quantization	1024	16
Max luminance		
Controller scheme	Individual control	Row wise control

Judder in VR

Judder in VR

- Cause: rapid relative motion between display and eyes
 - Smooth pursuit
 - Vestibular Ocular Reflex (VOR)

Stationary object in real world

Moving object, fixed gaze in real world

- Moving object, fixed gaze in HMD
- Artifact: Strobing (depends on fps)

- Eyes following moving object in HMD
- Artifacts: Motion blur, chromatic aberration

Judder in VR

Motion blur

Judder in VR

☐ Strobing* + Motion Blur

Solutions for Judder in VR

- □ ~1000 fps low latency display
- Low persistence

Main challenge for HDR VR display

- Trade off between brightness and persistence
- Proposed approach:
 - Allow for high persistence for bright pixels
 - Spatially varying persistence backlight
- Basis for approach
 - Glare phenomena

Simulating perceived HDR image

Original HDR image

Perceived HDR image

A closer look...

Original HDR image

Perceived HDR image

Modelling glare function

(esuods) (es

Glare filter from paper

Glare filter from our implementation

Our approach

Minimize difference between

- Perceived HDR image
 - \blacktriangleright image $*PSF_{glare}$
- Perceived Display image
 - ightharpoonup image $*PSF_{glare} * (eye motion vector)$

$$E = ||I - MP||^{2}$$

$$R = I - MP$$

$$M_{k+1}^{T} = M_{k}^{T} + \frac{RP^{T}}{PP^{T}}$$

$$P_{k+1} = P_{k} + \frac{R^{T}M}{M^{T}M}$$

$$E = ||G * I - \sum_{t=1}^{N} G * M \cdot (K * tv * B_{t})||^{2},$$
 where,
 G is the glare filter I is the HDR image M is the LCD modulation image K is the diffusion kernel V is the eye gaze-change velocity

 B_t is the brightness of LED at time t

Design choices

Perceived Display image:

Variations in LED array

- Temporal control of LED:
 - □ PWM vs PDM
- Voltage control of LEDs:
 - ☐ Fixed voltage for all LEDs (binary images)
 - Controllable voltage for full frame-time (LCD placed over binary LED array)
 - Controllable voltage for quantized frame-time

Variations in LED illumination

BCM vs PDM

Simulations for PDM and Fixed Voltage

Simulations for PDM and Fixed Voltage; t = Ims

Simulations for PDM and Fixed Voltage; t = 2ms

Simulations for PDM and Fixed Voltage; t = 3ms

Simulations for PDM and Fixed Voltage; t = 4ms

Simulations for PDM and Fixed Voltage; t = 5ms

Simulations for PDM and Fixed Voltage; t = 6ms

Prototype

Arduino to drive LEDs

LCD panel and LED array (underneath)

Ethernet shield for real-time update of backlight image

Memorial HDR scene

Prototype: Comparing BCM and PDM

Prototype: Comparing BCM and PDM

- Why is the difference so subtle?
 - LED array has 200 fps update
 - I/16 scanning scheme
 - □ Max on time = 1/(200*16) = 0.3 ms
- Very hard to demonstrate normal/high persistence in current hardware
- Oculus Rift has around 3 ms persistence

Dynamic prototype

- Implemented dynamic update of backlight array
 - UDP
 - Data compressed, transmitted, and unpacked in Mega
- Image flickers
 - Unpacking data in Mega is expensive
 - Might improve with assembly code implementation

Limitations of current hardware

- Max Brightness of display
- LED update scheme: Static update vs 1/16
- Insufficient communication bandwidth
- Compute power

Summary

- Implemented HDR 2004 paper
- Simulated perceived images for HDR content (glare modelling)
- Demonstrated spatially varying persistence in simulations and prototype
- Developed methods to factorize target HDR image into dual layer modulation for various LED illumination schemes
- Implemented dynamic update of LED array

Future work

- Building better LED array addressable with an FPGA
- Explore variable voltage
- Eye-tracking:
 - Control maximum persistence
 - After-images
- Color optimization; RGB backlight
- Light shaping

Thank you