Fonction exponentielle

Définition

On appelle <u>fonction exponentielle</u> l'unique fonction f dérivable sur \mathbb{R} telle que :

$$f' = f$$
 et $f(0) = 1$.

On note cette fonction e^x .

Conséquence:
$$(e^x)'=e^x$$
 et $e^0=1$.

Courbe représentative

- La fonction exponentielle est strictement croissante.
- L'ensemble de définition est R .
- L'ensemble des images est $]0,+\infty[$ $(e^x>0)$.
- L'image de 0 est $e^0=1$.
- L'image de 1 est $e^1 = e$ avec $e \approx 2,71828$.
- Si $f(x)=e^x$ alors $f'(x)=e^x$.

Tableau de variations

x	- ∞	0		1	+ ∞
$f'(x) = e^x$			+		
$f(x) = e^x$	0	_1_		e	*+∞

Propriétés

•
$$e^0=1$$
 ; $e^1=e$; $e^x>0$; $(e^x)'=e^x$.

Pour a et b réels quelconques :

•
$$e^{a+b} = e^a e^b$$
 ; $e^{a-b} = \frac{e^a}{e^b}$; $e^{-a} = \frac{1}{e^a}$; $(e^a)^n = e^{an}$.

•
$$e^a = e^b \Leftrightarrow a = b$$
 ; $e^a < e^b \Leftrightarrow a < b$; $e^a > e^b \Leftrightarrow a > b$.

Fonction logarithme népérien

Définition

- On appelle <u>logarithme népérien</u> d'un réel strictement positif a, l'unique solution de l'équation $e^x = a$.
- On la note $x = \ln a$.
- La <u>fonction logarithme népérien</u> est la fonction :

$$\ln: \]0; +\infty[\to \mathbb{R}$$
$$x \to \ln x$$

Courbe représentative

- La fonction logarithme népérien est strictement croissante et définie uniquement sur les réels strictement positifs (x>0).
- L'image de 1 est ln 1=0 .
- L'image de e est ln e=1.
- Pour x>0, si $f(x)=\ln x$ alors $f'(x)=\frac{1}{x}$.

Tableau de variations

Propriétés

Pour tout a>0 et b>0:

- $\ln ab = \ln a + \ln b$; $\ln \frac{a}{b} = \ln a \ln b$; $\ln a^n = n \ln a$; $\ln \frac{1}{b} = -\ln b$.
- $e^x = a$ équivaut à $x = \ln a$.
- Pour tout x, $\ln(e^x)=x$. Pour tout x strictement positifs, $e^{\ln x}=x$.

Comment résoudre une équation ou une inéquation où figure la fonction logarithme ou la fonction exponentielle ?

• l'équation
$$\ln x = a$$
 a pour solution : $x = e^a$.

- In $a = \ln b$ équivaut à a = b.
- In a < In b équivaut à a < b.
- l'équation $e^x = a$, avec a > 0, a pour solution : $x = \ln a$.
- $e^a = e^b$ équivaut à a = b.
- $e^a < e^b$ équivaut à a < b.

Exemple 1 : Résoudre l'équation $e^{-0.5x+1}-2=0$.

$$e^{-0.5x+1} = 2 \Leftrightarrow -0.5x+1 = \ln 2 \Leftrightarrow x = \frac{\ln 2 - 1}{-0.5} = 2(1 - \ln 2)$$
.

L'ensemble des solutions est $S = \{2(1-\ln 2)\}$.

Exemple 2 : Résoudre l'inéquation $2\ln(x+4) > \ln(2-x)$.

Ensemble de définition : x+4>0 et 2-x>0 soit -4< x<2 donc D=]-4;2[.

$$\ln(x+4)^2 > \ln(2-x) \Leftrightarrow (x+4)^2 > 2-x \Leftrightarrow x^2 + 9x + 14 > 0 \Leftrightarrow x < -7 \text{ ou } x > -2$$
.

On doit avoir $x \in D$, donc l'ensemble des solutions est S =]-2;2[.

Exemple 3 : Résoudre l'équation $e^x - 10 = -3e^{2x}$.

$$3e^{2x}+e^x-10=0 \Leftrightarrow 3(e^x)^2+e^x-10=0$$
.

Changement de variable : $X = e^x$, on obtient l'équation $3X^2 + X - 10 = 0$.

Cette équation a pour solutions : $X_1 = -2$ et $X_2 = \frac{5}{3}$.

Il faut alors résoudre les équations d'inconnue x:

- $e^x = -2$ n'a pas de solution, car $e^x > 0$.
- $e^x = \frac{5}{3}$ a pour solution $x = \ln \frac{5}{3}$.

L'ensemble des solutions est $S = \left\{ \ln \frac{5}{3} \right\}$.

EXERCICES

Ex 1 : Simplifier les expression suivantes.

$$\ln 3 + \ln \frac{1}{3} \quad ; \quad \ln e^3 + \ln e \quad ; \quad e^{-\ln 2} \quad ; \quad \ln \sqrt{e^5} \quad ; \quad e^{\ln 5 - \ln 3} \quad ; \quad \ln e^3 + e^{\ln 3} \quad .$$

Ex 2 : Résoudre les équations proposées.

- 1. $\ln x + 2 = 0$; $\ln (x+1) 3 = 0$.
- 2. $\ln(x+2) = \ln(2x+1)$; $2\ln x + \ln 3 = 0$.
- 3. $\ln x + 2 = 0$.
- 4. $e^{2x}-3=0$; $e^{2x}=e^{x+1}$.
- 5. $e^{4x} 2e^{3x} = 0$; $e^{0.2x} = 2e^{-0.2x}$.
- 6. $e^{2x}-2e^x-3=0$; $e^{2x}-2e^x+2=0$.

Ex 3 : Résoudre les inéquations proposées.

- 1. $\ln(x+1)<0$; $\ln(2-x)>\ln 3$.
- $2. \quad \ln\left(\frac{x+1}{x-1}\right) > 0 .$
- 3. $3-2e^{0.5x} > 0$.
- 4. $e^{x}(e^{x}-2)>0$.
- 5. $e^{2x} 4e^x < 0$.
- 6. $1-e^{0.5x-1}<0$.
- 7. Étudier sur \mathbb{R} le signe de $(e^x+1)(e^x-3)$.