Raisonnement par récurrence

$N^{\circ}1$

Soit f(x) = sin(x)

Prouver, à l'aide d'un raisonnement par récurrence, que pour tout naturel n la dérivée $n^{\text{ième}}$ de f, notée $f^{(n)}(x)$ est donnée par :

$$f^{(n)}(x) = \sin\left(\frac{n, \pi}{2} + x\right)$$

N°2

 $\overline{\text{Soit }} S_n = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2$

Prouver, à l'aide d'un raisonnement par récurrence, que

$$S_n = \frac{n(n+1)(2n+1)}{6}$$

N°3

 $\overline{\text{Soit}} \ x_n = 7^{3n} - 1$

Prouver, à l'aide d'un raisonnement par récurrence, que pour tout entier naturel n, x_n est un multiple de 19.

<u>N°4</u>

Prouver, à l'aide d'un raisonnement par récurrence, que pour tout entier naturel n,

$$\left(\frac{5}{4}\right)^n \ge 1 + \frac{n}{4}$$

<u>N°5</u>

Soit $y_n = n^7 - n$

Prouver, à l'aide d'un raisonnement par récurrence, que pour tout entier naturel n, y_n est un multiple de 7.

<u>N°6</u>

Soit $f(x) = \frac{1}{x}$

Prouver, à l'aide d'un raisonnement par récurrence, que pour tout naturel n la dérivée $n^{\text{ième}}$ de f, notée $f^{(n)}(x)$ est donnée par :

$$f^{(n)}(x) = (-1)^n \frac{n!}{x^{n+1}}$$

$N^{\circ}7$

Soit
$$R_n = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3$$

Prouver, à l'aide d'un raisonnement par récurrence, que pour tout naturel non nul n:

$$R_n = (1 + 2 + 3 + \dots + n)^2$$

<u>N°8</u>

Prouver, à l'aide d'un raisonnement par récurrence, que pour tout entier naturel n,

$$(1\,1)^n \ge 1 + \frac{n}{10}$$

N°9

Soit
$$z_n = n^5 - n$$

Prouver, à l'aide d'un raisonnement par récurrence, que pour tout entier naturel n, z_n est un multiple de 5.

N°10

Prouver, à l'aide d'un raisonnement par récurrence, que pour tout entier naturel n,

$$\sqrt{1+n} \le 1 + \frac{n}{2}$$

Exercices sur les suites

Exercice 1:

Soit la suite $(u_n)_{n\in\mathbb{N}}$ donnée par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{u_n + 2} = f(u_n) \end{cases}$$

- 1) Montrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 2$.
- 2) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

Exercice 2:

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases}
 u_0 = 0 \\ u_{n+1} = u_n^2 + 1
\end{cases}$$

Démontrer par récurrence que pour tout $n \ge 4$ $u_n \ge 2^n$.

Exercice 3:

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0=1\\ u_{n+1}=u_n+2n+3 \end{cases}$

- 1. Etudier le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$.
- 2. Démontrer que pour tout naturel n, $u_n > n^2$.
- 3. Déduisez-en le comportement de la suite en $+\infty$.

Exercice 4:

On note $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_n=\sum_{k=n}^{2n}\frac{1}{k}=\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2n}$

- 1. Prouver que pour tout $(u_n)_{n \in \mathbb{N}^*}$, $u_{n+1} u_n = \frac{-3n-2}{n(2n+2)(2n+1)}$,
- 2. Déduisez-en le sens de variation de la suite $(u_n)_{n\in\mathbb{N}^*}$.
- 3. Démontrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est convergente.

Exercice 5:

On note u_n le nombre de foyers, exprimé en millions, possédant un téléviseur à écran plat l'année n.

On pose n = 0 en 2005, $u_0 = 1$

et , pour tout entier naturel n, $u_{n+1} = \frac{1}{10}u_{n}$, $(20 - u_n)$.

1. Soit f la fonction définie sur l'intervalle [0; 20] par :

$$f(x) = \frac{x}{10}, (20 - x)$$

- a) Étudiez les variations de la fonction f sur [0; 20].
- b) Déduisez-en que pour tout x de [0; 10], $f(x) \in [0; 10]$.
- 2. Prouver par récurrence que, pour tout naturel n, $0 \le u_n \le u_{n+1} \le 10$.
- 3. Prouvez que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminez sa limite ℓ ,

Exercice 6:

Soit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout naturel non nul n, par : $u_n=rac{n!}{n^n}$

- 1. Justifiez que pour tout naturel non nul n, $0 < u_n \le \frac{1}{n}$.
- 2. Quel est le comportement en $+\infty$ de la suite $(u_n)_{n\in\mathbb{N}^*}$?

Exercice 7:

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = u_n^2 - u_n + 1 \end{cases}$$

Démontrer par récurrence que pour tout naturel n $\frac{1}{2} \le u_n < 1$.

Exercice 8:

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout entier naturel n par

$$u_n = n + 1 - \cos{(n)}.$$

- 1. Démontrer que pour tout entier naturel $n, n \le u_n \le n + 2$,
- 2. Quel est le comportement en $+\infty$ de la suite $(u_n)_{n\in\mathbb{N}}$?

Exercice 9:

Soit la suite $(u_n)_{n\geq 1}$ définie pour tout entier naturel $n\geq 1$ par :

$$u_n = \sum_{k=1}^n \frac{1}{k^3} = \frac{1}{1^3} + \frac{1}{2^3} + \dots + \frac{1}{n^3}$$

- 1. a. Montrer que la suite $(u_n)_{n\geq 1}$ est croissante.
 - b. Montrer par récurrence que, pour tout naturel $n \ge 1$, $u_n \le 2 \frac{1}{n}$,
- 2. En déduire que la suite $(u_n)_{n\geq 1}$ est convergente.

Exercice 10:

Soit $(e_n)_{n\geq 1}$ la suite définie pour tout naturel $n\geq 1$ par :

$$e_n = \frac{11n^2}{4\sin(2n) - 7}$$

- 1. Montrer que pour tout naturel $n \ge 1$, $e_n \le -n^2$.
- 2. En déduire la limite de la suite $(e_n)_{n\geq 1}$.

Exercice 11:

On considère une suite $(u_n)_{n\in\mathbb{N}}$ dont aucun terme n'est nul.

On définit alors la suite $(v_n)_{n\in\mathbb{N}}$ par $v_n=-rac{2}{u_n}$,

Pour chaque proposition, indiquez si elle est vraie ou fausse et proposez une démonstration pour la réponse indiquée.

Dans le cas d'une proposition fausse, la démonstration consistera à fournir un contre-exemple :

- 1. Si $(u_n)_{n\in\mathbb{N}}$ est convergente, alors $(v_n)_{n\in\mathbb{N}}$ est convergente.
- 2. Si $(u_n)_{n\in\mathbb{N}}$ est minorée par 2, alors $(v_n)_{n\in\mathbb{N}}$ est minorée par -1.
- 3. Si $(u_n)_{n\in\mathbb{N}}$ est décroissante, alors $(v_n)_{n\in\mathbb{N}}$ est croissante.
- 4. Si $(u_n)_{n\in\mathbb{N}}$ est divergente, alors $(v_n)_{n\in\mathbb{N}}$ converge vers 0.

Exercice 12:

On se propose d'étudier le comportement à l'infini de la suite $(u_n)_{n\geq 1}$ définie pour tout naturel non nul n par :

$$u_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}$$

- 1. Quel est le plus petit des n termes de la somme définissant u_n ? le plus grand ?
- 2. Déduisez-en un encadrement de u_n .
- 3. Puis déterminer le comportement de la suite $(u_n)_{n\geq 1}$ à l'infini.

Exercice 13:

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout naturel n par :

$$u_0 = 0$$
 et $u_{n+1} = \sqrt{3u_n + 4}$

1. a) Démontrer que pour tout naturel n

$$0 \le u_n < 4$$

- b) Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- c) Déduisez-en que la suite $(u_n)_{n\in\mathbb{N}}$ converge.
- 2. a) Démontrez que pour tout naturel n

$$4 - u_{n+1} \le \frac{1}{2} (4 - u_n)$$

b) Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout naturel n par :

$$v_n = 4 - u_n$$

Démontrer que pour tout naturel n

$$0 \le v_n \le \frac{1}{2^{n-2}}$$

c) Déduisez-en la convergence de la suite $(v_n)_{n\in\mathbb{N}}$ et sa limite puis la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 14:

Démontrer que pour tout entier naturel $n \ge 2$ $3n^2 \ge (n+1)^2$

Exercice 15:

On considère la suite $(w_n)_{n\in\mathbb{N}}$ dont les termes vérifient, pour tout entier naturel $n\geq 1$: $n,w_n=(n+1)w_{n-1}+1$ et $w_0=1$.

Ce tableau donne les dix premiers termes de cette suite :

w_0	W_1	W_2	W_3	W_4	W_5	W_6	W_7	W_8	W ₉
1	3	5	7	9	11	13	15	17	19

- 1. Détaillez le calcul permettant d'obtenir w_{10} .
- Dans cette question, toute trace de recherche même incomplète ou d'initiative même non fructueuse, sera prise en compte.

Donnez la nature de la suite $(w_n)_{n\in\mathbb{N}}$.

Puis calculez w_{2021} ,

Exercice 16:

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout entier naturel n, $u_{n+1} = \frac{1}{3}u_n + n - 2$

- 1. Calculez u_1 u_2 et u_3 .
- 2. a) Démontrez que pour tout naturel $n \geq 4$, $u_n \geq 0$.
 - a) Démontrez que pour tout naturel $n\geq 4$, $u_n\geq 0$. b) Déduisez-en que pour tout entier naturel $n\geq 5$, $u_n\geq n-3$.
 - c) Déduisez-en la limite de la suite $(u_n)_{n\in\mathbb{N}}$.
- 3. On définit la suite $(v_n)_{n\in\mathbb{N}}$ par : $v_n=-2u_n+3n-\frac{21}{2}$
 - a) Démontrez que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique et précisez sa limite.
 - b) Déduisez-en que pour tout naturel n,

$$u_n = \frac{25}{4}, \left(\frac{1}{3}\right)^n + \frac{3}{2}n - \frac{21}{4}$$

c) Soit la somme \mathcal{S}_n définie pour tout naturel n par :

$$S_n = \sum_{k=0}^n u_k$$

Déterminez l'expression de S_n en fonction de n.

En déduire la limite de la suite $(S_n)_{n\in\mathbb{N}}$.