Experimental Design and Linear Estimators

Kentaro Tanaka

Linear Model

- a, b, c = -1 or 1
- y: A function of a, b, c with Gaussian noise

Problem Estimate some of the unknown parameters from the experiments 😎

There are $2^3 = 8$ types of experiments. **(6**) (μ) b outputs

Each <u>column</u> corresponds to an experiment.

Linear Estimator

A linear model:
$$(a, b, c = -1 \text{ or } 1)$$

$$y = \mu + \beta_a a + \beta_b b + \beta_c c + \varepsilon$$
unknown _______ noise

An example of linear (unbiased) estimator of β_a

$$\boldsymbol{\varepsilon}$$
 : ignored

$$\hat{\beta}_a = \frac{1}{2} \{ -y_1 + y_5 \} = \frac{1}{2} \{ -(\mu - \beta_a - \beta_b - \beta_c) + (\mu + \beta_a - \beta_b - \beta_c) \} = \beta_a$$

The linear estimator of
$$\beta_a$$
: $\hat{\beta}_a = \sum_{g=1} x_{ag} Y_g$ $(x_{a1}, \dots, x_{a8} \in \mathbf{R})$

Design of Experiments

One of the purpose of design of experiments is to construct the optimal experimental design.

Problem

Choose fewer experiments among 1, ..., 8 with the minimum loss of information to estimate some of the unknown parameters.

Model selection, sparse modeling, ...

Group Lasso

A linear model :
$$y = \mu + \beta_a a + \beta_b b + \beta_c c + \varepsilon$$

- Problem
- Obtain the good linear unbiased estimators.
- Choose fewer experiments.

Assume that we want to estimate β_a and β_b .

minimize
$$\{\|x_a\|^2 + \|x_b\|^2\} + \sum_{g=1}^8 \lambda_g \sqrt{x_{ag}^2 + x_{bg}^2} \}$$
variances
 \Rightarrow good estimators)

Sparseness
 \Rightarrow fewer experiments)

subject to

$$\binom{\mathbf{M}\mathbf{x}_a}{\mathbf{M}\mathbf{x}_b} = \binom{\mathbf{e}_a}{\mathbf{e}_b}$$
 \times \text{Unbiasedness} \text{(\$\Rightarrow\$ linear unbiased estimators)}

Numerical Examples

(https://github.com/tanaken-basis/explasso)

$$y = \mu + \beta_a a + \beta_b b + \beta_c c + \varepsilon$$

Example 1) Assume that we want to estimate β_a , β_b

$$\implies$$
 $(\lambda_1, \dots, \lambda_8) = (10, 100, 20, 200, 40, 400, 80, 800)$

⇒ Solve the problem of Group lasso

□ The optimal solution :

	U	9	9
(μ)	1	1	1
a	1	1	1
b	1	1	-1
С	-1	-1	-1

Example 2) Assume that we want to estimate β_a , β_b , β_c

$$\implies (\lambda_1, \dots, \lambda_8) = (100, 0, 0, 100, 0, 100, 100, 0)$$

□⇒ Group lasso ⇒ L

(μ)	1	1	1	1
a	1	1	-1	-1
b	1	1	1	-1
С	1	-1	-1	1

(3)

(2)

The selection of the experiments strongly depends on the tuning parameters!

minimize
$$\{\|\boldsymbol{x}_a\|^2 + \|\boldsymbol{x}_b\|^2\} + \sum_{g=1}^{8} (\lambda_g) \sqrt{x_{ag}^2 + x_{bg}^2}$$

subject to $\binom{\boldsymbol{M}\boldsymbol{x}_a}{\boldsymbol{M}\boldsymbol{x}_b} = \binom{\boldsymbol{e}_a}{\boldsymbol{e}_b}$

Example 3) Assume that we want to estimate $|\beta_a, \beta_b|$

$$\implies \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = \lambda_6 = \lambda_7 = \lambda_8$$
 (highly symmetric)

	U		3	4	3	(b)		•
(μ)	1	1	1	1	1	1	1	1
а	-1	1	-1	-1	1	1	1	1
b	-1	-1	1	1	-1	-1	1	1
C	-1	1	-1	1	-1	1	-1	1

Sparse solutions (asymmetric solutions) are never obtained from ...

Example 4) Assume that we want to estimate β_a , β_b

$$\implies \lambda_1, \lambda_3, \lambda_5 < \lambda_2, \lambda_4, \lambda_6, \lambda_7, \lambda_8$$

 $\Rightarrow \textbf{Group lasso} \Rightarrow \begin{vmatrix} 1 & 3 & 5 \\ (\mu) & 1 & 1 & 1 \\ a & -1 & -1 & 1 \\ \hline b & -1 & 1 & -1 \\ \hline c & -1 & -1 & -1 \end{vmatrix}$

		1	3	5	7	
	(μ)	1	1	1	1	
or	a	-1	1	1	1	_ r
or	b	-1	1	1	-1	or.
	С	-1	-1	-1	1	

Example 5) Assume that we want to estimate $|\beta_a, \beta_b|$

$$\Rightarrow [\lambda_1, \lambda_2, \lambda_5 < \lambda_4 < \lambda_3, \lambda_6, \lambda_7, \lambda_8]$$

	(1)	2	(4)	(5)	_
(<i>µ</i>)	1	1	1	1	
а	-1	ī	1	1	O 15
b	-1	1	1	1	or
С	-1	1	1	-1	

Example 6) Assume that we want to estimate $|\beta_a, \beta_b|$

$$\Rightarrow \lambda_1, \lambda_2, \lambda_4 < \lambda_5 < \lambda_3, \lambda_6, \lambda_7, \lambda_8$$

	1	2	4	5	
(μ)	1	1	1	1	
a	-1	1	-1	1	0.5
b	-1	1	1	1	or
C	-1	1	1	-1	

The different orderings of $\lambda_1, \dots, \lambda_8$ can give the same structure of the solution.

Question

What makes the patterns of the solutions? — Gröbner basis

A linear model:
$$(a, b, c = -1 \text{ or } 1)$$

A linear model :
$$y = \mu + \beta_a a + \beta_b b + \beta_c c + \varepsilon$$

(a, b, c = -1 or 1) unknown noise

An example of linear (unbiased) estimator of β_a

$$\boldsymbol{\varepsilon}$$
 : ignored

$$\hat{\beta}_{a} = \frac{1}{2} \{ -y_{1} + y_{5} \} = \frac{1}{2} \{ -(\mu - \beta_{a} - \beta_{b} - \beta_{c}) + (\mu + \beta_{a} - \beta_{b} - \beta_{c}) \} = \beta_{a}$$

$$= (\mu - \beta_{a} - \beta_{b} - \beta_{c}) \left\{ -\frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\} = (\mu - \beta_{a} - \beta_{b} - \beta_{c}) \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \beta_{a}$$

A linear model: (a, b, c = -1 or 1)

$$y = \mu + \beta_a a + \beta_b b + \beta_c c + \varepsilon$$
unknown noise

T: a subset of the columns $(1), \dots, (8)$

A linear combination of T is a linear unbiased estimator of β_a

(A linear combination of T) = $\begin{pmatrix} k \\ 0 \\ 0 \end{pmatrix}$

$$(k \neq 0)$$

Lemma

T: a subset of the columns $(1), \dots, (8)$

(A linear combination of
$$T$$
) = $\begin{pmatrix} 0 \\ k \\ 0 \\ 0 \end{pmatrix}$

 $T \in \ker M_{-a} / \ker M$

Gröbner basis

$$\begin{cases} \ker M : & \text{toric ideal} = < x_1 x_4 - x_2 x_3, \ x_1 x_6 - x_2 x_5, \ x_1 x_8 - x_2 x_7, \dots > \\ \ker M_a : & \text{toric ideal} = < x_1 - x_5, \ x_2 - x_6, \ x_3 - x_7, \ x_4 - x_8, \ x_1 x_4 - x_2 x_3 > \\ \ker M / \ker M_a : & < x_1 - x_5, \ x_2 - x_6, \ x_3 - x_7, \ x_4 - x_8 > \end{cases}$$
Gröbner bases

Any linear unbiased estimator of β_a is a linear combination of $y_1 - y_5$, $y_2 - y_6$, $y_3 - y_7$, $y_4 - y_8$.

Gröbner basis

$$\begin{cases} \ker M : & \text{toric ideal} = \langle x_1 x_4 - x_2 x_3, x_1 x_6 - x_2 x_5, x_1 x_8 - x_2 x_7, \dots \rangle \\ \ker M_b : & \text{toric ideal} = \langle x_1 - x_3, x_2 - x_4, x_5 - x_7, x_6 - x_8, x_1 x_6 - x_2 x_5 \rangle \\ \ker M / \ker M_b : & \langle x_1 - x_3, x_2 - x_4, x_5 - x_7, x_6 - x_8 \rangle \end{cases}$$
Gröbner bases

Any linear unbiased estimator of β_b is a linear combination of $y_1 - y_3$, $y_2 - y_4$, $y_5 - y_7$, $y_6 - y_8$.

Assume that we want to estimate β_a , β_b

- Any linear unbiased estimator of β_a is a linear combination of $y_1-y_5,\,y_2-y_6,\,y_3-y_7,\,y_4-y_8$.
- Any linear unbiased estimator of β_b is a linear combination of $y_1 y_3, y_2 y_4, y_5 y_7, y_6 y_8$.

In the both cases, $y_1 - y_5$ and $y_2 - y_4$ are chosen.

Lemma (in page 13)

T: a subset of the columns of design matrix.

A linear combination of
$$T = \begin{pmatrix} 0 \\ k \\ 0 \\ 0 \end{pmatrix}$$
 $T \in \ker M_{-a} / \ker M$

 Any linear unbiased estimator is a linear combination of linear combinations of columns given as Gröbner basis.

Any least square estimator is a linear combination of linear combinations of columns given as Gröbner basis.

Simple linear regression:
$$\hat{\beta} = \sum_{j < k} \tau_{jk} \left(\frac{y_j - y_k}{x_j - x_k} \right)^{-1}$$
, $\tau_{jk} \propto (x_j - x_k)^2$

• If we allow *errors* in the computation of ker M or ker M_{-a} , the lemma $\ \, \bigcirc \, \,$ may also useful for high-dimensional (n < p) data.

$$y = \mu + \beta_a a + \beta_b b + \beta_c c + \varepsilon$$

$$\text{ker } M\left(\frac{1}{3}\right) = \emptyset$$

$$\begin{vmatrix} (\mu) \\ b \\ c \end{vmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \\ \hline y_1 & y_2 & y_3 \end{bmatrix} = \mathbf{M}_{-a}$$
 ker $M_{-a} \left(\frac{1}{3}\right) = \left\{\frac{1}{3}(y_1 + y_2 - y_3)\right\}$

$$\ker M_{-a}\left(\frac{1}{3}\right) = \left\{\frac{1}{3}(y_1 + y_2 - y_3)\right\}$$

$$\frac{1}{3}(y_1 + y_2 - y_3) \in \ker M_{-a}\left(\frac{1}{3}\right) / \ker M\left(\frac{1}{3}\right)$$

Nearly unbiased estimator with tolerance of 1/3

Lemma (in page 13)

T: a subset of the columns of design matrix.

A linear combination of
$$T = \begin{pmatrix} 0 \\ k \\ 0 \\ 0 \end{pmatrix}$$
 $T \in \ker M_{-a} / \ker M$

$$\ker M \subset \ker M_{-ab} \subset \ker M_{-abc} \subset \cdots$$

$$\operatorname{coker} M \supset \operatorname{coker} M_{-ab} \supset \operatorname{coker} M_{-abc} \supset \cdots$$

$$\ker M(\delta_1) \subset \ker M(\delta_2) \subset \ker M(\delta_3) \subset \ker M(\delta_4) \subset \cdots$$

 $(\delta_i: \operatorname{tolerance}(error), \ 0 < \delta_1 < \delta_2 < \delta_3 < \cdots)$

- A connection with homology (matroid) ?
- A connection with persistent homology?

 $\ker M \subset \ker M_{-a} \subset \ker M_{-ab} \subset \ker M_{-abc} \subset \cdots$

$$\begin{bmatrix} (\mu) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ a & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\ b & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\ \hline c & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \end{bmatrix} = M_{+a}$$

 $\ker M_{-b} / \ker M = (\ker M_{-ab} / \ker M_a) \cap \ker M_{+a}$

Linear regressions

Linear regressions

References

- 4ti2
- Algebraic Statistics: Computational Commutative Algebra in Statistics,
 C. Pistone, E. Riccomagno, H. Wynn, Chapman & Hall, (2000)

Groebner do-jo
 (gu re bu na-a, do-o jo-o)

