10.21

Un campo magnetico variabile nel tempo con la legge $\vec{B} = \vec{u_n}(0.05t^2 - 0.2t)[T]$ è definito in una regione cilindrica di raggio R = 5 cm; in tale regione il campo è uniforme e parallelo all'asse.

Calcolare la forza F_1 cha agisce su un elettrone (fermo) a distanza $r_1=0.04\,m$ dal centro dell'asse all'istante $t_1=4\,s$.

Calcolare la forza F_2 che agisce nello stesso istante a una distanza $r_2=0.07\ m$ dal centro.

Calcolare l'istante in cui a qualsiasi distanza la forza è nulla.

Formule utilizzate

Soluzione punto a

Il campo magnetico dipende dal tempo B(t) produce un campo elettrico E(t) anche dipendente dal tempo secondo la legge:

$$\varepsilon_{i} = \oint \vec{E}(t)d\vec{s} = -\frac{d\Phi(\vec{B}(t))}{dt} = -\frac{d}{dt} \int_{\Sigma} \vec{B} \vec{u_{n}} d\Sigma$$
Per $0 \le r \le R$:
$$-\frac{d\Phi(\vec{B}(t))}{dt} = -\pi r^{2} \frac{dB}{dt} = -\pi r^{2} (0.1t - 0.2)$$

$$\varepsilon_{i} = \oint \vec{E}(t)d\vec{s} = 2\pi r E$$

Eguagliando i due risultati: $-\pi r^2(01.t-0.2)=2\pi rE$

da cui: $E = -\frac{r}{2}(0.1t - 0.2)$ con segno +, cioè in senso antiorario.

Ovvero \vec{E} circola in verso antiorario fino a t=2 s e poi in verso orario. $F_1=qE_1=6.4*10^{-22}~N$ (verso antiorario)

Soluzione punto b

Per
$$r \ge R$$
: $\Phi(\vec{B}) = \int_{\Sigma} \vec{B} \vec{u_n} d\Sigma = B\pi R^2$
 $-\frac{d\Phi(\vec{B}(t))}{dt} = -\pi R^2 \frac{dB}{dt} = -\pi R^2 (0.1t - 0.2)$

 $varepsilon_i = \oint \vec{E}(t)d\vec{s} = 2\pi r E.$ Uguagliando i risulati otteniamo:

$$E = -\frac{R^2}{2r}(0.1t - 0.2)$$

E = $-\frac{R^2}{2r}(0.1t-0.2)$ $F_2=qE_2=e\frac{R^2}{2r_2}(0.1t_1-0.2)=5.7*10^{-22}~N$ anche in questo caso in senso antiorario.

Soluzione punto c

Siccome a qualsiasi distanza la forza è proporzionale a (0.1t -0.2) la forza diventa nulla quando:

$$0.1t - 0.2 = 0$$
 $F = 0 \text{ per } t = 2 \text{ } s$

Questo corrisponde al tempo in corrispondenza al quale il campo magnetico assume il suo valore minimo pari a -0.2 T.