Projekt 2 - Sieci Hopfielda

Odgadywanie postaci z Shreka

Bogusław Błachut, Damian Tworek, Zuzanna Furtak

- 1. Stworzyliśmy sieć neuronową, która na podstawie zamazanego częściowo obrazka odgaduje postać ze shreka, obecną w zbiorze treningowym.
- 2. Do stworzenia programu użyliśmy:
 - a. Języka Python i jego bibliotek:
 - b. Biblioteki Hopfield network do stworzenia i wytrenowania sieci
 - c. Biblioteki Numpy do operacji, które potrzebowały wektorów lub macierzy
 - d. Biblioteki Matplotlib do wizualizacji obrazków
 - e. Biblioteki PIL do otwierania obrazków i konwersji na skalę szarości
 - f. Biblioteki Glob do odczytywania obrazków z katalogu
- 3. W zbiorze treningowym umieściliśmy kolejno 2, 3 i 4 obrazki z poniższego zbioru.

Powyższe obrazki przekonwertowaliśmy na postać uproszczoną, by lepiej dało się przewidywać. Poniżej forma uproszczona:

Każdy z obrazków został zamazany na trzy sposoby (poziomy), każdy kolejny poziom zakrywa większą część obrazka.

Na poniższym zdjęciu kolejno od góry zamazanie najmniejsze, średnie i duże.

Dla 2 obrazków w zbiorze treningowym:

Gdy w zbiorze treningowym umieściliśmy dwa obrazki sieć odwzorowała idealnie, dokładność oscylowała wokół 100%

Dla 3 obrazków w zbiorze treningowym:

Gdy w zbiorze treningowym umieściliśmy trzy obrazki dokładność spadła do około 30% na niektórych obrazkach Fiony, na pozostałych postaciach pozostała równie wysoka, jak wcześniej.

Dla 4 obrazków w zbiorze treningowym:

Gdy do zbioru treningowego załączyliśmy 4 obrazki, dokładność dla wszystkich postaci spadła diametralnie. Średnio wynosiła 50-70%.

Wniosek:

Sieć Hopfielda sprawdziła się bardzo dobrze, gdy w zbiorze treningowym było mało elementów (2). Wraz ze zwiększaniem zbioru treningowego dokładność sieci malała. Ostateczne wyniki dla 4 elementów w zbiorze były niezadowalające.