

Math 225 Jective & Sept 22nd 2823

Coal: Stidents should understand the busic concepts behind orthogonality. Furthermore students should be able to verify when a set of vetors are orthogonal.

Class Q: How can you check when vectors are I to

Sustan

Perpendicular & orthogonal are the same

Recall! if i, V & IR2 (or B"more generally) then

u.v = u.v, +u.v. bit gemetrically this is interpreted

as voj z Iul IVI cos o

(note it doesn't matter which a o' v'

You may recognize this as il livere are orthogonal off i.v=0

these are equivalent because if $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta = 0$ then $\cos(\theta) = 0$ (as $|\vec{u}| |\vec{v}| > 0$ if $\vec{u} \neq 0$ and $\vec{v} \neq 0$) $\Rightarrow \theta = \sqrt{2}$

Hilroy

	it forms out this works in general not just IR2
	For a proof see office hours In \mathbb{R}^n We say a set of vectors $\{\vec{v}_1,,\vec{v}_r\}$ is orthogonal if $\vec{v}_i \cdot \vec{v}_j = 0$ when its se. When the vectors are parmise orthogonal or any two are orthogonal
9	Example $\begin{cases} \begin{bmatrix} 1 & 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \subset \mathbb{R}^3 \left\{ \vec{e}_1, \vec{e}_2 \right\} \subset \mathbb{R}^2 \\ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix} \right\} \left\{ \vec{e}_1, \vec{e}_2, \vec{e}_3 \right\} \subset \mathbb{R}^3 \left(dsoon \right)$
	Moreover such a set of vectors is said to be orthonormal if in addition to being orthogonal they are "normal" (have length 1 1 \vec{v}_1 = 1).
	Example [e, ez, e3 & CTR3 S [cos o], -sin o] CTR2
	Verify $\begin{bmatrix} \cos \theta \end{bmatrix} \cdot \begin{bmatrix} -\sin \theta \end{bmatrix} = \cos \theta (-\sin \theta) + \sin \theta \cos \theta = 0$ $\begin{bmatrix} \sin \theta \end{bmatrix} \cdot \begin{bmatrix} \cos \theta \end{bmatrix}$
	$ [\cos \theta] = \sqrt{(\cos \theta)^2 + (\sin \theta)^2} = \sqrt{1} = 1$
	$\left \frac{-sh \theta}{cos \theta} \right = \sqrt{(-sm \theta)^2 + (cos \theta)^2} = \sqrt{(sh \theta)^2 + (cos \theta)^2} = \sqrt{1} = \sqrt{1}$
	Lemma: any set of a different orthogonal vectors in R' forms a basis

(3)

Proof: for n=3 (exact same process for arbitrary n)

let $\vec{V}_1, \vec{V}_2, \vec{V}_3$ be orthogonal vectors & suppose $\vec{C}_1 \vec{V}_1 + \vec{C}_2 \vec{V}_2 + \vec{C}_3 \vec{V}_3 = \vec{0}$ lets dot with \vec{V}_1

 $C_{1}\vec{V}_{1}\cdot\vec{V}_{1} + C_{2}\vec{V}_{2}\cdot\vec{V}_{1} + C_{3}\vec{V}_{3}\cdot\vec{V}_{1} = \vec{O}\cdot\vec{V}_{1}$ $= \vec{O} = \vec{O} = \vec{O}$

> c_1/V_1/2=0 => C_=0

If you repeat this process with V. Q. V. you get that $C_2 = C_3 = 0$. This gives us 3 linearly independent vectors in \mathbb{R}^3 which means (as dim $(\mathbb{R}^3)=3$) they form a basis!

Why do we care? orthagonal things are nice!

Thm I let {Vi, ..., Vn} be an orthogonal busis for R" and \(\tilde{E} R'\) then the unique scalars \(C_1, ..., C_n \) st.

 $\overline{U} = C_1 \overline{V}_1 + in + C_1 \overline{V}_1$ are given by $C_1 = \overline{u} \cdot \overline{V}_2$ $\forall i$

Proof by assumption $\vec{u} = c_i \vec{v}_i + ... + c_n \vec{v}_n$ since the \vec{v}_i 's form a basis. to get the formula we will do the same track & look at

V. Vi = (c, Vit ... + Cn Vn) · Vi

= CIVI. vi + ... + Cn Vn · Vi

by orthogonalsty

= Cr(Vi·Vi) since Vi·V5 = 0 enless == S

SMCe Vito Vo-Vito & we can dride by it to get Hert - U-VE

this idea leads to prejections (mondays class)

Naturally one might then consider what we can do with orthonormal vectors? put them in a matrix! when we do we get some remarkable properties.

an nxn matrix A whose columns form an orthonormal set is called an orthogonal matrix

Properties

- · A is orthogonal off A' = AT
- · II AXII = IIXII YXER'
- · Az. Ay = x. 7
- · A 15 orthogonal
- · det(A) = 11
- · if A is an eval of A then 121=1
- · If Ad Bare orthogonal then so too is AB

Proof! (of #1) in this context showing that A'= A'
is equivalent to A' A = In (as A is invertible & inverses are
chique)

Consider ATA it we want it to be the identity that is showing that (ATA) is = \$1 if i= ;

O else

let ai denote the columns of A and hence the rows of AT by the definition of making multiplication

$$AA = \begin{bmatrix} -\vec{a}_1 & - & \begin{bmatrix} 1 & 1 & 1 \\ -\vec{a}_1 & - & a_n \end{bmatrix} - \begin{bmatrix} a_0 & a_0 \end{bmatrix} - \begin{bmatrix} a_0 & a_0 \end{bmatrix} = \begin{bmatrix} a_0 & a_0 \end{bmatrix}$$

Hilroy

however the āi's form an orthonormal set by assumptions
this āi'a; = { 1 i = i which is as we showed also equil

20 clsc to [A^TA] is this completing the

proof