Universitatea din București

FMI

Calculabilitate şi Complexitate

Puncte:25. Timp: 50 min
Data: 3-02-2025

Examen, 3 Februarie, Nivelul I,

Subjecte: A

Instrucțiuni I. Completați (pe foaia auxiliară) răspunsul/răspunsurile corecte. Toate intrebările contează in mod egal. Puteți folosi marginile hârtiei drept ciornă, dar nicun alt material. O intrebare poate avea mai multe răspunsuri corecte. Toate contează in mod egal. Pe de altă parte, dacă alegeți un răspuns greșit, punctajul vostru la intrebare este zero.

- 1. Funcția lui Ackermann **nu** este
 - (a) primitiv recursivã.
 - (b) recursivã.
 - (c) parţial recursivã.
 - (d) calculabilă de un program LOOP.
- 2. Care operație, aplicată unei(unor) funcții primitiv recursive, garantează că rezultatul este o funcție primitiv recursivă?
 - (a) compunere
 - (b) recursie primitivã
 - (c) minimizare
 - (d) suma a douã funcții.
- 3. Consider am funcția f(n) = 0 dacă conjectura lui Collatz (vezi cursul 1) este adevărată, f(n) = 1 altfel. f este o funcție
 - (a) recursivã.
 - (b) primitiv recursivã.
 - (c) care poate fi calculată de o mașină Turing.
 - (d) care crește mai rapid decât orice funcție primitiv recursivã.
- 4. Cum putem crea o funcție care **nu** e primitiv recursivă?
 - (a) enumeram toate funcțiile primitiv recursive. Cream o funcție care pe inputul i returnează valoarea $f_i(i) + 1$.
 - (b) folosim operația de minimizare, dacă rezultatul nu este definită pentru toate inputurile i.
 - (c) prin compunere din două funcții primitiv recursive.
 - (d) Cu un automat finit.

- 5. Dacã A, B sunt probleme de decizie iar $A \oplus B = \{x0 | x \in A\} \cup \{y1 | y \in B\}$ atunci
 - (a) $B \leq_m A \oplus B$.
 - (b) $A \oplus B \leq_m A$.
 - (c) Ambele reduceri sunt adevarate.
 - (d) Nicio reducere nu e adevãratã
- 6. Dacă A este o mulțime nevidă și recursivă iar K este problema opririi, atunci
 - (a) $A \leq_m A \oplus K$.
 - (b) $K \leq_m A \oplus K$.
 - (c) Ambele reduceri sunt adevarate.
 - (d) Nicio reducere nu e adevarata.
- 7. Care din următoarele modele de calcul recunosc o clasă de limbaje inchisă la operația de complementare?
 - (a) automat finit
 - (b) maşinã Turing cu o bandã.
 - (c) maşinã Turing cu douã benzi.
 - (d) Toate modelele menţionate.
- 8. Care din problemele următoare sunt reductibile la problema determinării dacă un număr este prim sau nu? **NU** cerem ca reducerea să fie calculabilă în timp polinomial.
 - (a) problema opririi K.
 - (b) problema de a decide dacă un graf este 2-colorabil.
 - (c) problema Quantified Boolean Formula (QBF).
 - (d) Niciuna din problemele listate.
- 9. Care din clasele următoare de probleme de decizie conțin clasa limbajelor regulate?
 - (a) clasa problemelor de decizie recursive
 - (b) clasa problemelor de decizie primitiv recursive.
 - (c) P, clasa problemelor care au algoritmi poliniomiali.
 - (d) niciuna din clase.
- 10. Care din problemele următoare **nu** sunt recursive?
 - (a) $K_1 = \{\langle x, y \rangle : M_x(y) \text{ se opreste intr-un pas} \}$
 - (b) $K = \{ \langle x, y \rangle : M_x(y) \text{ se opreste} \}.$
 - (c) $\overline{K} = \{\langle x, y \rangle : M_x(y) \text{ nu se opreste}\}$
 - (d) toate problemele sunt recursive.

- 11. Pentru care din următoarele probleme puteți da algoritmi care să le rezolve?
 - (a) Fiind date o mulţime de tipuri de pavaje, decideţi dacã putem pava planul cu pavajele Wang date.
 - (b) Fiind date o mulţime de tipuri de pavaje, decideţi dacã putem pava un pătrat 3x3 cu pavajele Wang date
 - (c) Fiind dat un polinom cu coeficienți intregi $p(x_1, x_2, ..., x_n)$ există soluții intregi pentru ecuația $p(x_1, x_2, ..., x_n) = 0$?
 - (d) Fiind dat un polinom cu coeficienți intregi $p(x_1, x_2, ..., x_n)$ există soluții pentru ecuația $p(x_1, x_2, ..., x_n) = 0$ cu $|x_1|, ..., |x_n| \ge 1000$?
- 12. Fiind dată o mașină Turing deterministă, care din afirmațiile următoare sunt adevărate?
 - (a) Dacă pe o intrare x maşina rulează in f(|x|) paşi, atunci pe orice intrare y spațiul folosit de maşină este O(f(|y|)).
 - (b) Dacă pe o intrare x mașina rulează in spațiu f(|x|), atunci pe orice intrare y mașina rulează in O(f(|y|)) pași.
 - (c) Dacã pe o intrare x maşina nu se oprește atunci spațiul folosit de M(x) este infinit.
 - (d) niciuna din afirmațiile celelalte nu este adevărată.
- 13. Fiind dată formula următoare: $(x \lor y \lor z) \land (y \lor \overline{t}) \land (\overline{z} \lor \overline{t}) \land \overline{x}$, care literali sunt puri ?
 - (a) x
 - (b) y
 - (c) z
 - (d) t
- 14. Care din următoarele afirmații sunt cunoscute drept adevărate?
 - (a) Orice algoritm polinomial nedeterminist poate fi simulat de un algoritm determinist cu complexitate polinomialã.
 - (b) Orice algoritm polinomial nedeterminist poate fi simulat de un algoritm determinist cu complexitate $O(2^{n^{O(1)}})$.
 - (c) Dându-se o formulă booleană in care toate variabilele sunt cuantificate, există un algoritm polinomial pentru a decide dacă fomulele sunt adevărate sau false.
 - (d) Pentru o parte a afirmațiilor de mai sus nu se cunoaște statutul lor de adevar.

- 15. Care din următoarele probleme nu sunt cunoscute ca fiind NP-complete?
 - (a) HORN-SAT
 - (b) 4-SAT
 - (c) XOR-SAT.
 - (d) problema 2-colorării unui graf.
- 16. Dacă problema A este NP-completă atunci
 - (a) orice problem a de decizie nevidã $B \in P$ se reduce la A
 - (b) orice problem a de decizie nevidă $B \in NP$ se reduce la A
 - (c) A este NP-hard.
 - (d) niciunul din răspunsuri nu este adevărat.
- 17. Care din următoarele afirmații sunt adevărate?
 - (a) Dacã $A \leq_m^P B$ şi $B \in P$ atunci $A \in P$.
 - (b) Dacã $A \leq_m^P B$ şi $B \in NP$ atunci $A \in NP$.
 - (c) Dacã $A \leq_m^P B$ şi B este NP-completã atunci A este NP-completã.
 - (d) Dacã $A \leq_m^P B$ şi B este NP-hard atunci A este NP-hard.
- 18. Care din următoarele afirmații este adevărată?
 - (a) O formulă logică CNF cu cel mult trei literali in fiecare clauză are demonstrații prin rezoluție de lungime polinomială in n.
 - (b) O formulă logică CNF cu cel mult un literal pozitiv in fiecare clauză are demonstrații prin rezoluție de lungime polinomială in n.
 - (c) Existã un algoritm de tip Davis-Putnam care pe instanțe nesatisfiabile pentru 3-SAT rulează in timp polinomial in n.
 - (d) Există un algoritm de tip DPLL care pe instanțe care codifică principiul cutiei (Principiul lui Dirichlet) rulează in timp polinomial in n.
- 19. Care din următoarele probleme sunt cunoscute că au algoritmi polinomiali?
 - (a) Fiind dată o mulțime de numere, putem alege o submulțime a cărei sumă ia o valoare dată?
 - (b) Fiind dat un graf orientat G şi douã vârfuri s, t, putem ajunge in cel mult cinci paşi de la s la t?
 - (c) Putem colora un graf cu 3 culori astfel incât orice două vârfuri adiacente să aibă culori diferite?
 - (d) Fiind dată o formulă propozițională in forma normală conjunctivă in care in fiecare clauză apare cel mult doi literal pozitivi, este formula satisfiabilă?

- 20. Dacă P = NP atunci ...
 - (a) Putem colora un graf cu numărul minim de culori in timp polinomial.
 - (b) putem rezolva orice problem a cu un algoritm polinomial.
 - (c) putem gasi o soluție pentru problema Vertex Cover cu un algoritm cu complexitate polinomială.
 - (d) Orice problemã rezolvabilã in timp polinomial folosind SAT ca subrutinã are un algoritm polinomial.
- 21. Care din următoarele clase de complexitate are probleme complete?
 - (a) co-NP.
 - (b) toate clasele Σ_k^P din ierarhia polinomialã.
 - (c) PSPACE.
 - (d) Niciuna din clase.
- 22. Care din următoarele afirmații descriu funcționarea algoritmilor moderni de tip CDCL pentru problema satisfiabilității ?
 - (a) Algoritmii folosesc propagare unitarã.
 - (b) Algoritmii adaugă la formule constrângeri pe care le "invaţă" ca urmare a eșecurilor anterioare.
 - (c) Algoritmii exploatează tranziția de fază in problema satisfiabilității.
 - (d) Niciunul din celelalte rãspunsuri nu este corect.
- 23. Dacă P = NP atunci ...
 - (a) P = co NP.
 - (b) Putem testa izomorfismul a două grafuri in timp polinomial.
 - (c) Orice problemã NP-hard este in P
 - (d) Niciuna din celelalte variante nu este adevarata.
- 24. Fie R un predicat recursiv cu 5 argumente. Definim problema de decizie A prin $A = \{x \in \Sigma^* : (\forall y)(\forall z)(\exists t)(\exists u)R(x,y,z,t,u)\}$. Care din afirmaţiile de mai jos sunt adevarate?
 - (a) A este recursiv enumerabilã.
 - (b) $A \in NP$.
 - (c) $A \in \Pi_4^P$.
 - (d) $A \in \Pi_2$.

- 25. Care din următoarele probleme \mathbf{nu} are o tranziție de fază de tip SAT/UNSAT ?
 - (a) 1-k-SAT, $k \ge 3$.
 - (b) 3-SAT.
 - (c) Horn-SAT.
 - (d) Toate au.

Answer Key for Exam A

Instrucțiuni I. Completați (pe foaia auxiliară) răspunsul/răspunsurile corecte. Toate intrebările contează in mod egal. Puteți folosi marginile hârtiei drept ciornă, dar nicun alt material. O intrebare poate avea mai multe răspunsuri corecte. Toate contează in mod egal. Pe de altă parte, dacă alegeți un răspuns greșit, punctajul vostru la intrebare este zero.

- 1. Funcția lui Ackermann **nu** este
 - (a) primitiv recursivã.
 - (b) recursivã.
 - (c) parţial recursivã.
 - (d) calculabilă de un program LOOP.
- 2. Care operație, aplicată unei(unor) funcții primitiv recursive, garantează că rezultatul este o funcție primitiv recursivă?
 - (a) compunere
 - (b) recursie primitivã
 - (c) minimizare
 - (d) suma a douã funcţii.
- 3. Consider am funcția f(n) = 0 dacă conjectura lui Collatz (vezi cursul 1) este adevărată, f(n) = 1 altfel. f este o funcție
 - (a) recursivã.
 - (b) primitiv recursivã.
 - (c) care poate fi calculatã de o maşinã Turing.
 - (d) care crește mai rapid decât orice funcție primitiv recursivã.
- 4. Cum putem crea o funcție care \mathbf{nu} e primitiv recursivă ?
 - (a) enumerãm toate funcțiile primitiv recursive. Cream o funcție care pe inputul i returnează valoarea $f_i(i) + 1$.
 - (b) folosim operația de minimizare, dacă rezultatul nu este definită pentru toate inputurile i.
 - (c) prin compunere din două funcții primitiv recursive.
 - (d) Cu un automat finit.
- 5. Dacă A,B sunt probleme de decizie iar $A\oplus B=\{x0|x\in A\}\cup\{y1|y\in B\}$ atunci
 - $| (a) | B \leq_m A \oplus B.$
 - (b) $A \oplus B \leq_m A$.
 - (c) Ambele reduceri sunt adevãrate.
 - (d) Nicio reducere nu e adevãratã

- 6. Dacă A este o mulțime nevidă și recursivă iar K este problema opririi, atunci
 - $| (a) | A \leq_m A \oplus K.$
 - (b) $K \leq_m A \oplus K$.
 - (c) Ambele reduceri sunt adevarate.
 - (d) Nicio reducere nu e adevãratã.
- 7. Care din următoarele modele de calcul recunosc o clasă de limbaje inchisă la operația de complementare?
 - (a) automat finit
 - (b) maşinã Turing cu o bandã.
 - (c) maşinã Turing cu douã benzi.
 - (d) Toate modelele menţionate.
- 8. Care din problemele următoare sunt reductibile la problema determinării dacă un număr este prim sau nu? **NU** cerem ca reducerea să fie calculabilă în timp polinomial.
 - (a) problema opririi K.
 - (b) problema de a decide dacã un graf este 2-colorabil.
 - (c) problema Quantified Boolean Formula (QBF).
 - (d) Niciuna din problemele listate.
- 9. Care din clasele următoare de probleme de decizie conțin clasa limbajelor regulate?
 - (a) clasa problemelor de decizie recursive
 - (b) clasa problemelor de decizie primitiv recursive.
 - |(c)| P, clasa problemelor care au algoritmi poliniomiali.
 - (d) niciuna din clase.
- 10. Care din problemele următoare ${\bf nu}$ sunt recursive ?
 - (a) $K_1 = \{\langle x, y \rangle: M_x(y) \text{ se oprește intr-un pas} \}$
 - (b) $K = \{\langle x, y \rangle : M_x(y) \text{ se opreste}\}.$
 - $\overline{(c)}$ $\overline{K} = \{\langle x, y \rangle : M_x(y) \text{ nu se opreste} \}$
 - (d) toate problemele sunt recursive.

- 11. Pentru care din următoarele probleme puteți da algoritmi care să le rezolve?
 - (a) Fiind date o mulţime de tipuri de pavaje, decideţi dacã putem pava planul cu pavajele Wang date.
 - (b) Fiind date o mulțime de tipuri de pavaje, decideți dacă putem pava un pătrat 3x3 cu pavajele Wang date
 - (c) Fiind dat un polinom cu coeficienții intregii $p(x_1, x_2, ..., x_n)$ există soluții intregii pentru ecuația $p(x_1, x_2, ..., x_n) = 0$?
 - (d) Fiind dat un polinom cu coeficienți intregi $p(x_1, x_2, \dots, x_n)$ există soluții pentru ecuația $p(x_1, x_2, \dots, x_n) = 0$ cu $|x_1|, \dots, |x_n| \ge 1000$?
- 12. Fiind dată o mașină Turing deterministă, care din afirmațiile următoare sunt adevărate?
 - [(a)] Dacã pe o intrare x maşina ruleazã in f(|x|) paşi, atunci pe orice intrare y spaţiul folosit de maşină este O(f(|y|)).
 - (b) Dacã pe o intrare x maşina ruleazã in spaţiu f(|x|), atunci pe orice intrare y maşina ruleazã in O(f(|y|)) paşi.
 - (c) Dacã pe o intrare x maşina nu se oprește atunci spațiul folosit de M(x) este infinit.
 - (d) niciuna din afirmațiile celelalte nu este adevărată.
- 13. Fiind datā formula urmātoare: $(x \lor y \lor z) \land (y \lor \overline{t}) \land (\overline{z} \lor \overline{t}) \land \overline{x}$, care literali sunt puri ?
 - (a) x
 - (b) y
 - (c) z
 - (d) t
- $14.\ {\rm Care\ din\ urmãtoarele\ afirmații\ sunt\ cunoscute\ drept\ adevãrate}$?
 - (a) Orice algoritm polinomial nedeterminist poate fi simulat de un algoritm determinist cu complexitate polinomialã.
 - Orice algoritm polinomial nedeterminist poate fi simulat de un algoritm determinist cu complexitate $O(2^{n^{O(1)}})$.
 - (c) Dându-se o formulă booleană in care toate variabilele sunt cuantificate, există un algoritm polinomial pentru a decide dacă fomulele sunt adevărate sau false.
 - (d) Pentru o parte a afirmațiilor de mai sus nu se cunoaște statutul lor de adevãr.

- 15. Care din următoarele probleme nu sunt cunoscute ca fiind NP-complete?
 - (a) HORN-SAT
 - (b) 4-SAT
 - (c) XOR-SAT.
 - (d) problema 2-colorării unui graf.
- 16. Dacă problema A este NP-completă atunci
 - (a) orice problem a de decizie nevidã $B \in P$ se reduce la A
 - (b) orice problem a de decizie nevidă $B \in NP$ se reduce la A
 - (c) A este NP-hard.
 - (d) niciunul din rãspunsuri nu este adevãrat.
- 17. Care din următoarele afirmații sunt adevărate?
 - (a) Dacã $A \leq_m^P B$ şi $B \in P$ atunci $A \in P$.
 - (b) Dacã $A \leq_m^P B$ şi $B \in NP$ atunci $A \in NP$.
 - (c) Dacă $A \leq_m^P B$ și B este NP-completă atunci A este NP-completă.
 - (d) Dacã $A \leq_m^P B$ şi B este NP-hard atunci A este NP-hard.
- 18. Care din următoarele afirmații este adevărată?
 - (a) O formulă logică CNF cu cel mult trei literali in fiecare clauză are demonstrații prin rezoluție de lungime polinomială in n.
 - (b) O formulă logică CNF cu cel mult un literal pozitiv in fiecare clauză are demonstrații prin rezoluție de lungime polinomială in n.
 - (c) Existã un algoritm de tip Davis-Putnam care pe instanțe nesatisfiabile pentru 3-SAT rulează in timp polinomial in n.
 - (d) Există un algoritm de tip DPLL care pe instanțe care codifică principiul cutiei (Principiul lui Dirichlet) rulează in timp polinomial in n.
- 19. Care din următoarele probleme sunt cunoscute că au algoritmi polinomiali?
 - (a) Fiind dată o mulțime de numere, putem alege o submulțime a cărei sumă ia o valoare dată?
 - (b) Fiind dat un graf orientat G şi douã vârfuri s, t, putem ajunge in cel mult cinci paşi de la s la t?
 - (c) Putem colora un graf cu 3 culori astfel incât orice două vârfuri adiacente să aibă culori diferite ?
 - (d) Fiind dată o formulă propozițională in forma normală conjunctivă in care in fiecare clauză apare cel mult doi literal pozitivi, este formula satisfiabilă?

- 20. Dacã P = NP atunci ...
 - (a) Putem colora un graf cu numãrul minim de culori in timp polinomial.
 - (b) putem rezolva orice problem a cu un algoritm polinomial.
 - (c) putem găsi o soluție pentru problema Vertex Cover cu un algoritm cu complexitate polinomială.
 - (d) Orice problemã rezolvabilã in timp polinomial folosind SAT ca subrutinã are un algoritm polinomial.
- 21. Care din următoarele clase de complexitate are probleme complete?
 - (a) $\operatorname{co-}NP$.
 - (b) toate clasele Σ_k^P din ierarhia polinomialã.
 - (c) PSPACE.
 - (d) Niciuna din clase.
- 22. Care din următoarele afirmații descriu funcționarea algoritmilor moderni de tip CDCL pentru problema satisfiabilității ?
 - (a) Algoritmii folosesc propagare unitarã.
 - (b) Algoritmii adaugă la formule constrângeri pe care le "invaţă" ca urmare a eșecurilor anterioare.
 - (c) Algoritmii exploatează tranziția de fază in problema satisfiabilității.
 - (d) Niciunul din celelalte raspunsuri nu este corect.
- 23. Dacã P = NP atunci ...
 - (a) P = co NP.
 - (b) Putem testa izomorfismul a douã grafuri in timp polinomial.
 - (c) Orice problemã NP-hard este in P
 - (d) Niciuna din celelalte variante nu este adevãratã.
- 24. Fie R un predicat recursiv cu 5 argumente. Definim problema de decizie A prin $A = \{x \in \Sigma^* : (\forall y)(\forall z)(\exists t)(\exists u)R(x,y,z,t,u)\}$. Care din afirmațiile de mai jos sunt adevărate?
 - (a) A este recursiv enumerabilã.
 - (b) $A \in NP$.
 - (c) $A \in \Pi_4^P$.
 - (d) $A \in \Pi_2$.
- 25. Care din următoarele probleme ${\bf nu}$ are o tranziție de fază de tip SAT/UNSAT ?
 - (a) 1-k-SAT, $k \ge 3$.
 - (b) 3-SAT.
 - (c) Horn-SAT.
 - $\overline{(d)}$ Toate au.