In-class Exercises: Functional Dependencies

Suppose we have a relation R with attributes ABCD

1. What an FD means. Suppose the functional dependency $BC \to D$ holds in R. Create an instance of R that violates this FD.

Solution:

In order to violate this FD, we need two tuples with the same value for B and the same value for C (both!), yet different values for D.

A	В	C	D
1	3	6	4
2	3	6	5

2. Equivalent sets of FDs.

(a) Are the sets $A \to BC$ and $A \to B$, $A \to C$ equivalent? If yes, explain why. If no, construct an instance of R that satisfies one set of FDs but not the other.

Solution:

These are equivalent — there is no instance of the relation that satisfies one but not the other. This can be proven, as follows:

- Assume that $A \to BC$.
 - Under this assumption, $A^+ = ABC$.
 - Therefore $A \to B$, and $A \to C$.
- Assume that $A \to B$, and $A \to C$.
 - Under this assumption, $A^+ = ABC$.
 - Therefore $A \to BC$.
- Therefore each set of FDs follows from the other. They are equivalent.
- (b) Are the sets $PQ \to R$ and $P \to Q, P \to R$ equivalent? If yes, explain why. If no, construct an instance of R that satisfies one set of FDs but not the other.

Solution:

These are not equivalent, as demonstrated by this instance that satisfies $PQ \to R$ but not $P \to Q, P \to R$:

In fact we can always "split the RHS" of an FD.

3. Keys and FDs.

(a) We claimed that if a set of attributes K functionally determines all attributes, K must be a superkey (i.e., no two tuples can agree on all attributes in K). Do you believe this? Suppose these FDs hold in $R: A \to BC, C \to D$. Does A functionally determine all attributes of R? Can two tuples agree on A?

Solution:

This is left as an exercise to explore on your own, in order to build your intuition.

(b) We also said that if K is a superkey (i.e., no two tuples can agree on all attributes in K) K must functionally determine all attributes. Do you believe this? Suppose A is a superkey of R Does A functionally determine all attributes of R?

Solution:

Again, this is left as an intuition-building exercise.

4. Does an FD follow from a set of FDs? Suppose we have a relation on attributes ABCDEF with these FDs:

$$AC \rightarrow F, CEF \rightarrow B, C \rightarrow D, DC \rightarrow A$$

- (a) Does it follow that $C \to F$?
- (b) Does it follow that $ACD \rightarrow B$?

Solution:

We use the closure test to check whether an FD follow from a set of FDs.

 $C^+ = CDAF$. Therefore, $C \to F$ does follow.

 $ACD^+ = ACDF$. Therefore, $ACD \rightarrow B$ does not follow.

5. **Projecting a set of FDs onto a subset of the attributes.** Suppose we have a relation on attributes ABCDE with these FDs:

$$A \to C$$
, $C \to E$, $E \to BD$

(a) Project the FDs onto attributes ABC.

Solution:

To project onto a set of attributes, we systematically consider every possible LHS of an FD that might hold on those attributes.

- $A^+ = ACEBD$, therefore $A \to BC$. (It also functionally determines DE, but these are not in our set of attributes. And it functionally determines itself, but we don't need to write down dependencies that are tautologies.)
- $B^+ = B$. This yields no FDs for our set of attributes.
- $C^+ = CEBD$, therfore $C \to B$.
- We don't need to consider any supersets of A. A already determines all of our attributes ABC, so supersets of A will be only yield FDs that already follow from $A \to BC$.
- The only remaining subset of the attributes ABC to consider is BC. $BC^+ = BCED$. This yields no FDs for our set of attributes.
- So the projection of the FDs onto ABC is: $\{A \to BC, C \to B\}$.
- (b) Project the FDs onto attributes ADE.

Solution:

- $A^+ = ACEBD$, therefore $A \to DE$.
- $D^+ = D$. This yields no non-trivial FDs..
- $E^+ = EBD$, therfore $E \to D$.
- Again, we don't need to consider any supersets of A, since A determines all the attributes ADE also.
- The only remaining subset of the attributes ABC to consider is DE. $DE^+ = DEB$. This yields no FDs for our set of attributes.
- So the projection of the FDs onto ADE is: $\{A \to DE, E \to D\}$.