TÀI LIỆU DÀNH CHO ĐÔI TƯỢNG HỌC SINH TRUNG BÌNH MỰC 5-6 ĐIỂM

Rút gon biến đổi tính toán biểu thức lũy thừa

Công thức lũy thừa					
Cho các số dương a, b và $m, n \in \mathbb{R}$. Ta có:					
$ a^0 = 1 $	• $\underline{a^n = a.aa}$ với $n \in \mathbb{N}^*$ $n \ thừa số$				
	$\bullet a^m.a^n = a^{m+n}$		$\bullet \frac{a^m}{a^n} = a^{m-n}$		
$ a^nb^n=(ab)^n$	$\bullet \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$	■ ^m √a	$ \frac{1}{a^n} = a^{\frac{n}{m}} \left\langle * \sqrt{a} = a^{\frac{1}{2}} \right. \\ \left\langle * \sqrt[3]{a} = a^{\frac{1}{3}} \right. \\ \left\langle * \sqrt$		

- Câu 1. (Nhân Chính Hà Nội 2019) Cho $a > 0, m, n \in \mathbb{R}$. Khẳng định nào sau đây đúng?
- **A.** $a^m + a^n = a^{m+n}$. **B.** $a^m \cdot a^n = a^{m-n}$. **C.** $(a^m)^n = (a^n)^m$. **D.** $\frac{a^m}{a^n} = a^{n-m}$.
- (THPT Minh Khai 2019) Với a > 0, b > 0, α, β là các số thực bất kì, đẳng thức nào sau đây Câu 2.

A.
$$\frac{a^{\alpha}}{a^{\beta}} = a^{\alpha-\beta}$$
.

B.
$$a^{\alpha}.a^{\beta}=a^{\alpha+\beta}$$
.

A.
$$\frac{a^{\alpha}}{a^{\beta}} = a^{\alpha-\beta}$$
. **B.** $a^{\alpha}.a^{\beta} = a^{\alpha+\beta}$. **C.** $\frac{a^{\alpha}}{b^{\beta}} = \left(\frac{a}{b}\right)^{\alpha-\beta}$. **D.** $a^{\alpha}.b^{\alpha} = (ab)^{\alpha}$.

- (Sở Quảng Trị 2019) Cho x, y > 0 và $\alpha, \beta \in \mathbb{R}$. Tìm đẳng thức sai dưới đây. Câu 3.

$$\mathbf{A.} \left(xy \right)^{\alpha} = x^{\alpha}.y^{\alpha}.$$

A.
$$(xy)^{\alpha} = x^{\alpha}.y^{\alpha}$$
. **B.** $x^{\alpha} + y^{\alpha} = (x + y)^{\alpha}$. **C.** $(x^{\alpha})^{\beta} = x^{\alpha\beta}$. **D.** $x^{\alpha}.x^{\beta} = x^{\alpha+\beta}$.

- (Nho Quan A Ninh Bình 2019) Cho các số thực a,b,m,n(a,b>0). Khẳng định nào sau đây Câu 4. là đúng?

A.
$$\frac{a^m}{a^n} = \sqrt[n]{a^m}$$
.

$$\mathbf{B.} \left(a^m \right)^n = a^{m+n} \, .$$

A.
$$\frac{a^m}{a^n} = \sqrt[n]{a^m}$$
. **B.** $(a^m)^n = a^{m+n}$. **C.** $(a+b)^m = a^m + b^m$. **D.** $a^m.a^n = a^{m+n}$.

(Cụm 8 Trường Chuyên 2019) Với α là số thực bất kì, mệnh đề nào sau đây sai? Câu 5.

$$\mathbf{A.} \ \sqrt{10^{\alpha}} = \left(\sqrt{10}\right)^{\alpha}$$

$$\mathbf{B.} \ \sqrt{10^{\alpha}} = 10^{\frac{\alpha}{2}}$$

C.
$$(10^{\alpha})^2 = (100)^{\alpha}$$

A.
$$\sqrt{10^{\alpha}} = (\sqrt{10})^{\alpha}$$
. **B.** $\sqrt{10^{\alpha}} = 10^{\frac{\alpha}{2}}$. **C.** $(10^{\alpha})^2 = (100)^{\alpha}$. **D.** $(10^{\alpha})^2 = (10)^{\alpha^2}$.

(**Mã 105 2017**) Rút gọn biểu thức $Q = b^{\frac{5}{3}} : \sqrt[3]{b}$ với b > 0. Câu 6.

A.
$$Q = b^{-\frac{4}{3}}$$

B.
$$Q = b^{\frac{2}{3}}$$

C.
$$Q = b^{\frac{3}{9}}$$

D.
$$Q = b^2$$

(**Mã 110 2017**) Rút gọn biểu thức $P = x^{\frac{1}{3}} \cdot \sqrt[6]{x}$ với x > 0. Câu 7.

A.
$$P = \sqrt{x}$$

B.
$$P = x^{\frac{1}{8}}$$

C.
$$P = x^{\frac{2}{9}}$$

D.
$$P = x^2$$

- (SGD Nam Định 2019) Cho a là số thực dương. Giá trị rút gọn của biểu thức $P = a^{\frac{4}{3}} \sqrt{a}$ bằng Câu 8.
- **C.** $a^{\frac{11}{6}}$.
- (Mã 102 2017) Cho biểu thức $P = \sqrt[4]{x} \cdot \sqrt[3]{x^2} \cdot \sqrt{x^3}$, với x > 0. Mệnh đề nào dưới đây đúng? Câu 9.

NCHVĚN	RÃO	VIIONC	0946798489
NGUYEN	BAU	YUUNG -	· UY40/Y848Y

A. $P = r^{\frac{2}{3}}$

B. $P = x^{\frac{1}{2}}$ **C.** $P = x^{\frac{13}{24}}$ **D.** $P = x^{\frac{1}{4}}$

Câu 10. (THPT Lương Thế Vinh Hà Nội 2019) Cho biểu thức $P = x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x}$ với x > 0. Mệnh đề nào dưới đây đúng?

A. P = x

B. $P = x^{\frac{11}{6}}$ **C.** $P = x^{\frac{7}{6}}$

(THPT Lê Quy Đôn Điện Biên 2019) Rút gọn biểu thức $P = x^{\frac{1}{6}} \cdot \sqrt[3]{x}$ với x > 0.

A. $P = x^{\frac{1}{8}}$

Câu 12. (THPT Sơn Tây Hà Nội 2019) Cho a là số thực dương. Viết và rút gọn biểu thức $a^{\frac{3}{2018}}$. $^{2018}\sqrt[3]{a}$ dưới dạng lũy thừa với số mũ hữu tỉ. Tìm số mũ của biểu thức rút gọn đó.

C. $\frac{3}{1009}$.

Câu 13. (**Cụm Liên Trường Hải Phòng 2019**) Rút gọn biểu thức $P = \frac{a^{\sqrt{3}+1}.a^{2-\sqrt{3}}}{\left(a^{\sqrt{2}-2}\right)^{\sqrt{2}+2}}$ với a > 0. **A.** P = a. **B.** $P = a^3$. **C.** $P = a^4$. **D.** $P = a^5$.

Câu 14. (THPT Yên Khánh - Ninh Bình 2019) Biểu thức $P = \sqrt[3]{x\sqrt[5]{x^2}\sqrt{x}} = x^{\alpha}$ (với x > 0), giá trị của α

C. $\frac{9}{2}$. D. $\frac{3}{2}$.

Câu 15. (KTNL GV Thuận Thành 2 Bắc Ninh 2019) Cho a là số thực dương khác 1. Khi đó $\sqrt[4]{a^{\frac{2}{3}}}$ **B.** $a^{\frac{8}{3}}$. **C.** $a^{\frac{3}{8}}$. **D.** $\sqrt[6]{a}$.

A. $\sqrt[3]{a^2}$.

Câu 16. (Cụm Liên Trường Hải Phòng 2019) Rút gọn biểu thức $P = \frac{a^{\sqrt{3}+1}.a^{2-\sqrt{3}}}{\left(a^{\sqrt{2}-2}\right)^{\sqrt{2}+2}}$ với a>0

B. $P = a^3$

Câu 17. (THPT Lương Tài Số 2 2019) Cho biểu thức $P = x^{-\frac{3}{4}} \cdot \sqrt{\sqrt{x^5}}$, x > 0. Khẳng định nào sau đây là **B.** $P = x^{-\frac{1}{2}}$ **C.** $P = x^{\frac{1}{2}}$

A. $P = x^{-2}$

Câu 18. (**Bỉm Sơn - Thanh Hóa - 2019**) Cho biểu thức $P = \frac{a^{\sqrt{5}+1}.a^{2-\sqrt{5}}}{\left(a^{\sqrt{2}-2}\right)^{\sqrt{2}+2}}$. Rút gọn P được kết quả:

 \mathbf{A}, a^5 .

B. *a* .

 \mathbf{C} , a^3 .

Câu 19. (**Chuyên Vĩnh Phúc 2019**) Cho biểu thức $P = \sqrt[3]{x} \cdot \sqrt[4]{x^3} \sqrt{x}$, với x > 0. Mệnh đề nào dưới đây **B.** $P = x^{\frac{7}{12}}$. **C.** $P = x^{\frac{5}{8}}$. **D.** $P = x^{\frac{7}{24}}$.

A. $P = x^{\frac{1}{2}}$

(THPT Thiệu Hóa - Thanh Hóa 2019) Cho hai số thực dương a,b. Rút gọn biểu thức $A = \frac{a^{\frac{1}{3}}\sqrt{b} + b^{\frac{1}{3}}\sqrt{a}}{6\int_{a}^{b} + 6\int_{b}^{b}}$ ta thu được $A = a^{m}.b^{n}$. Tích của m.n là

A. $\frac{1}{8}$

B. $\frac{1}{21}$

Câu 21. (Sở Quảng Ninh 2019) Rút gọn biểu thức $A = \frac{\sqrt[3]{a^7} \cdot a^{\frac{11}{3}}}{a^4 \sqrt[7]{a^{-5}}}$ với a > 0 ta được kết quả $A = a^{\frac{m}{n}}$ trong đó $m,n\in N^*$ và $\frac{m}{n}$ là phân số tối giản. Khẳng định nào sau đây đúng?

A. $m^2 - n^2 = 312$. **B.** $m^2 + n^2 = 543$. **C.** $m^2 - n^2 = -312$. **D.** $m^2 + n^2 = 409$.

(Sở Vĩnh Phúc 2019) Cho a là số thực dương. Đơn giản biểu thức $P = \frac{a^{\frac{4}{3}} \left(a^{\frac{-1}{3}} + a^{\frac{2}{3}}\right)}{a^{\frac{1}{4}} \left(a^{\frac{3}{4}} + a^{\frac{-1}{4}}\right)}$. Câu 22.

A. P = a(a+1). **B.** P = a-1. **C.** P = a.

D. P = a + 1.

Câu 23. Cho a, b là các số thực dương. Rút gọn $P = \frac{a^{\frac{4}{3}}b + ab^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}}$ ta được

 $\mathbf{A} \cdot P = ab$.

B. P = a + b. **C.** $P = a^4b + ab^4$. **D.** P = ab(a + b).

Câu 24. (KTNL GV Thọt Lý Thái Tổ 2019) Cho biểu thức $\sqrt[5]{8\sqrt{2\sqrt[3]{2}}} = 2^{\frac{m}{n}}$, trong đó $\frac{m}{n}$ là phân số tối giản. Gọi $P = m^2 + n^2$. Khẳng định nào sau đây **đúng**?

A. $P \in (330;340)$.

B. $P \in (350;360)$. **C.** $P \in (260;370)$. **D.** $P \in (340;350)$.

2019) Cho a > 0, b > 0, giá trị (Sở Bắc Ninh biểu Câu 25. thức $T = 2(a+b)^{-1} \cdot (ab)^{\frac{1}{2}} \cdot \left[1 + \frac{1}{4} \left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}}\right)^{2}\right]^{\frac{1}{2}}$ bằng

A. 1.

B. $\frac{1}{2}$. **C.** $\frac{2}{3}$.

(**Đề Tham Khảo 2017**) Tính giá trị của biểu thức $P = (7 + 4\sqrt{3})^{2017} (4\sqrt{3} - 7)^{2016}$ **A.** $P = (7 + 4\sqrt{3})^{2016}$ **B.** P = 1 **C.** $P = 7 - 4\sqrt{3}$ **D.** $P = 7 + 4\sqrt{3}$ Câu 26.

(Chuyên Lê Quý Đôn Quảng Trị 2019) Cho biểu thức $P = \sqrt[3]{\frac{2}{3}} \sqrt[3]{\frac{2}{3}} \sqrt{\frac{2}{3}}$. Mệnh đề nào trong các Câu 27. mệnh đề sau là đúng?

A. $P = \left(\frac{2}{3}\right)^{\frac{1}{8}}$. **B.** $P = \left(\frac{2}{3}\right)^{18}$. **C.** $P = \left(\frac{2}{3}\right)^{\frac{1}{18}}$. **D.** $P = \left(\frac{2}{3}\right)^{\frac{1}{2}}$.

Câu 28. (**THPT An Lão Hải Phòng 2019**) Cho hàm số
$$f(a) = \frac{a^{-\frac{1}{3}} \left(\sqrt[3]{a} - \sqrt[3]{a^4}\right)}{a^{\frac{1}{8}} \left(\sqrt[8]{a^3} - \sqrt[8]{a^{-1}}\right)}$$
 với $a > 0, a \ne 1$. Tính

giá trị
$$M = f(2017^{2016})$$

A.
$$M = 2017^{1008} - 1$$

B.
$$M = -2017^{1008} - 1$$

A.
$$M = 2017^{1008} - 1$$
 B. $M = -2017^{1008} - 1$ **C.** $M = 2017^{2016} - 1$ **D.** $M = 1 - 2017^{2016}$

D.
$$M = 1 - 2017^{2016}$$

Câu 29. (THPT Trần Phú 2019) Giá trị của biểu thức
$$P = \frac{2^3 \cdot 2^{-1} + 5^{-3} \cdot 5^4}{10^{-3} \cdot 10^{-2} - (0,1)^0}$$
 là

Câu 30. (**THPT Ngô Quyền** – **2017**) Cho hàm số
$$f(a) = \frac{a^{\frac{2}{3}} \left(\sqrt[3]{a^{-2}} - \sqrt[3]{a}\right)}{a^{\frac{1}{8}} \left(\sqrt[8]{a^3} - \sqrt[8]{a^{-1}}\right)}$$
 với $a > 0$, $a \ne 1$. Tính giá trị

$$M = f(2017^{2018}).$$

A.
$$2017^{2018} + 1$$
.

A.
$$2017^{2018} + 1$$
. **B.** $-2017^{1009} - 1$. **C.** 2017^{1009} .

$$C. 2017^{1009}$$

D.
$$2017^{1009} + 1$$
.

Câu 31. Cho biểu thức
$$f(x) = \sqrt[3]{x} \sqrt[4]{x^5}$$
. Khi đó, giá trị của $f(2,7)$ bằng

Câu 32. Tính giá trị biểu thức
$$P = \frac{\left(4 + 2\sqrt{3}\right)^{2018} \cdot \left(1 - \sqrt{3}\right)^{2017}}{\left(1 + \sqrt{3}\right)^{2019}}$$
.

A. $P = -2^{2017}$.

B. -1 .

C. -2^{2019} .

A.
$$P = -2^{2017}$$

B.
$$-1$$
.

$$\mathbf{C.} - 2^{2019}$$

D.
$$2^{2018}$$

Câu 33. (Chuyên Nguyễn Du-ĐăkLăk 2019) Giá trị biểu thức
$$(3+2\sqrt{2})^{2018} \cdot (\sqrt{2}-1)^{2019}$$
 bằng

A.
$$(\sqrt{2}+1)^{2019}$$

B.
$$(\sqrt{2}-1)^{2017}$$

C.
$$(\sqrt{2}-1)^{2019}$$

B.
$$(\sqrt{2}-1)^{2017}$$
. **C.** $(\sqrt{2}-1)^{2019}$. **D.** $(\sqrt{2}+1)^{2017}$.

Câu 34. Cho
$$a > 0, b > 0$$
 giá trị của biểu thức $T = 2(a+b)^{-1}(ab)^{\frac{1}{2}} \left[1 + \frac{1}{4} \left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}}\right)^{2}\right]^{\frac{1}{2}}$ bằng

B.
$$\frac{1}{3}$$

C.
$$\frac{2}{3}$$
.

D.
$$\frac{1}{2}$$

Dang 2. So sánh các biểu thức chứa lũy thừa

- Nếu a > 1 thì $a^{\alpha} > a^{\beta} \Leftrightarrow \alpha > \beta$;
- Nếu 0 < a < 1 thì $a^{\alpha} > a^{\beta} \Leftrightarrow \alpha < \beta$.
- Với moi 0 < a < b, ta có:

$$a^m < b^m \iff m > 0$$

$$a^m > b^m \iff m < 0$$

Câu 1. (Bạc Liêu – Ninh Bình 2019) Cho
$$(\sqrt{2}-1)^m < (\sqrt{2}-1)^n$$
. Khi đó

A.
$$m=n$$
.

B.
$$m < n$$
.

C.
$$m > n$$
.

D.
$$m \neq n$$
.

Câu 2. Cho
$$a > 1$$
. Mệnh đề nào sau đây là đúng?

A.
$$a^{-\sqrt{3}} > \frac{1}{a^{\sqrt{5}}}$$
. **B.** $a^{\frac{1}{3}} > \sqrt{a}$. **C.** $\frac{\sqrt[3]{a^2}}{a} > 1$.

B.
$$a^{\frac{1}{3}} > \sqrt{a}$$
.

C.
$$\frac{\sqrt[3]{a^2}}{a} > 1$$
.

D.
$$\frac{1}{a^{2016}} < \frac{1}{a^{2017}}$$
.

(THPT Yên Phong Số 1 Bắc Ninh 2019) Trong các mênh đề sau, mênh đề nào SAI? Câu 3.

A.
$$\left(\sqrt{3}-1\right)^{2018} > \left(\sqrt{3}-1\right)^{2017}$$
.

B.
$$2^{\sqrt{2}+1} > 2^{\sqrt{3}}$$
.

C.
$$(\sqrt{2}-1)^{2017} > (\sqrt{2}-1)^{2018}$$
.

$$\mathbf{D.} \left(1 - \frac{\sqrt{2}}{2} \right)^{2019} < \left(1 - \frac{\sqrt{2}}{2} \right)^{2018}.$$

(THPT Sơn Tây Hà Nội 2019) Khẳng định nào sau đây đúng? Câu 4.

A.
$$(\sqrt{5}+2)^{-2017} < (\sqrt{5}+2)^{-2018}$$
.

B.
$$(\sqrt{5}+2)^{2018} > (\sqrt{5}+2)^{2019}$$

C.
$$(\sqrt{5}-2)^{2018} > (\sqrt{5}-2)^{2019}$$
.

D.
$$(\sqrt{5}-2)^{2018} < (\sqrt{5}-2)^{2019}$$
.

(THPT Lê Quý Đôn Đà Nẵng 2019) Khẳng định nào dưới đây là đúng? Câu 5.

$$\mathbf{A.} \left(\frac{3}{7}\right)^{\sqrt{3}} > \left(\frac{5}{8}\right)^{\sqrt{3}}.$$

$$\mathbf{B.} \left(\frac{1}{2}\right)^{-\pi} < \left(\frac{1}{3}\right)^{-\pi}.$$

C.
$$3^{-\sqrt{2}} < \left(\frac{1}{5}\right)^{\sqrt{2}}$$

$$\mathbf{A.} \left(\frac{3}{7}\right)^{\sqrt{3}} > \left(\frac{5}{8}\right)^{\sqrt{3}}. \qquad \mathbf{B.} \left(\frac{1}{2}\right)^{-\pi} < \left(\frac{1}{3}\right)^{-\pi}. \qquad \mathbf{C.} \ 3^{-\sqrt{2}} < \left(\frac{1}{5}\right)^{\sqrt{2}}. \qquad \mathbf{D.} \left(\frac{1}{4}\right)^{-50} < \left(\sqrt{2}\right)^{100}.$$

Câu 6. (Nam Định - 2018) Trong các khẳng định sau, khẳng định nào sai?

$$\mathbf{A.} \left(1 - \frac{\sqrt{2}}{2} \right)^{2018} < \left(1 - \frac{\sqrt{2}}{2} \right)^{2017}.$$

B.
$$\left(\sqrt{2}-1\right)^{2017} > \left(\sqrt{2}-1\right)^{2018}$$
.

C.
$$(\sqrt{3}-1)^{2018} > (\sqrt{3}-1)^{2017}$$
.

D.
$$2^{\sqrt{2}+1} > 2^{\sqrt{3}}$$
.

(THPT Tiên Lãng 2018) Tìm tập tất cả các giá trị của a để $\sqrt[21]{a^5} > \sqrt[7]{a^2}$? Câu 7.

A.
$$a > 0$$
.

B.
$$0 < a < 1$$
.

D.
$$\frac{5}{21} < a < \frac{2}{7}$$
.

So sánh ba số: $(0,2)^{0,3}$, $(0,7)^{3,2}$ và $\sqrt{3}^{0,3}$. Câu 8.

A.
$$(0,7)^{3,2} < (0,2)^{0,3} < \sqrt{3}^{0,3}$$
.

B.
$$(0,2)^{0,3} < (0,7)^{3,2} < \sqrt{3}^{0,3}$$
.
D. $(0,2)^{0,3} < \sqrt{3}^{0,3} < (0,7)^{3,2}$.

C.
$$\sqrt{3}^{0,3} < (0,2)^{0,3} < (0,7)^{3,2}$$
.

D.
$$(0,2)^{0,3} < \sqrt{3}^{0,3} < (0,7)^{3,2}$$

(THPT Cộng Hiền 2019) Cho a, b > 0 thỏa mãn $a^{\frac{1}{2}} > a^{\frac{1}{3}}, b^{\frac{2}{3}} > b^{\frac{3}{4}}$. Khi đó khẳng định nào Câu 9.

A.
$$0 < a < 1, 0 < b < 1$$
. **B.** $0 < a < 1, b > 1$. **C.** $a > 1, 0 < b < 1$.

B.
$$0 < a < 1, b > 1$$

C.
$$a > 1, 0 < b < 1$$

D.
$$a > 1, b > 1$$
.

So sánh ba số $a = 1000^{1001}$, $b = 2^{2^{64}}$ và $c = 1^1 + 2^2 + 3^3 + ... + 1000^{1000}$?

A.
$$c < a < b$$
.

B.
$$b < a < c$$
.

$$\mathbf{C}$$
, $c < b < a$.

D.
$$a < c < b$$
.

Dạng 3. Tìm tập xác định của hàm số lũy thừa

■ **Dạng:**
$$\begin{cases} y = x^{\alpha} \\ y = u^{\alpha} \end{cases}$$
 với u là đa thức đại số.

■ Tập xác định:

Nếu
$$\alpha \in \mathbb{Z}^+ \xrightarrow{BK} u \in \mathbb{R}$$
.

$$N\hat{\text{eu}} \begin{bmatrix} \alpha \in \mathbb{Z}^- \\ \alpha = 0 \end{bmatrix} u \neq 0.$$

Nếu
$$\alpha \notin \mathbb{Z} \xrightarrow{DK} u > 0$$
.

(Mã 123 2017) Tập xác định D của hàm số $y = (x-1)^{\frac{1}{3}}$ là:. Câu 1.

A.
$$D = (1; +\infty)$$

B.
$$D = \mathbb{R}$$

C.
$$D = \mathbb{R} \setminus \{1\}$$
 D. $D = (-\infty; 1)$

D.
$$D = (-\infty; 1)$$

(Mã 104 2017) Tìm tập xác định D của hàm số $y = (x^2 - x - 2)^{-3}$. Câu 2.

NGUYĒN BĀO VƯƠNG - 0946798489

A.
$$D = (-\infty; -1) \cup (2; +\infty)$$

B.
$$D = \mathbb{R} \setminus \{-1, 2\}$$

C.
$$D = \mathbb{R}$$

D.
$$D = (0; +\infty)$$

(Chuyên Bắc Giang 2019) Tập xác định của hàm số $y = (x-1)^{\frac{1}{5}}$ là Câu 3.

A.
$$[1;+\infty)$$

B.
$$\mathbb{R} \setminus \{1\}$$

C.
$$(1;+\infty)$$

D.
$$(0;+\infty)$$

Tìm tập xác định D của hàm số $y = (x^2 - 3x)^{-4}$. Câu 4.

A.
$$(0;3)$$
.

B.
$$D = \mathbb{R} \setminus \{0, 3\}$$
.

C.
$$D = (-\infty; 0) \cup (3; +\infty)$$
.

$$\mathbf{D.} \ D = R$$

(KSCL THPT Nguyễn Khuyến 2019) Tìm tập xác định của hàm số: $y = (4 - x^2)^{\frac{2}{3}}$ là Câu 5.

A.
$$D = (-2, 2)$$

B.
$$D = R \setminus \{2; -2\}$$
 C. $D = R$

$$\mathbf{C.}\ D=R$$

D.
$$D = (2; +\infty)$$

(Thpt Lương Tài Số 2 2019) Trong các hàm số sau đây, hàm số nào có tập xác định $D = \mathbb{R}$? Câu 6.

$$\mathbf{A.} \ \ y = \left(2 + \sqrt{x}\right)^{\pi}$$

A.
$$y = (2 + \sqrt{x})^{\pi}$$
 B. $y = (2 + \frac{1}{x^2})^{\pi}$ **C.** $y = (2 + x^2)^{\pi}$

C.
$$y = (2 + x^2)^n$$

D.
$$y = (2 + x)^{x}$$

(Chuyên Vĩnh Phúc 2019) Tìm tập xác định D của hàm số $y = (3x^2 - 1)^{\frac{1}{3}}$. Câu 7.

A.
$$D = \left(-\infty; -\frac{1}{\sqrt{3}}\right) \cup \left(\frac{1}{\sqrt{3}}; +\infty\right)$$

B.
$$D = \mathbb{R}$$

$$\mathbf{C.} \ D = \mathbb{R} \setminus \left\{ \pm \frac{1}{\sqrt{3}} \right\}$$

C.
$$D = \mathbb{R} \setminus \left\{ \pm \frac{1}{\sqrt{3}} \right\}$$
 D. $D = \left(-\infty; -\frac{1}{\sqrt{3}} \right] \cup \left[\frac{1}{\sqrt{3}}; +\infty \right]$

(THPT An Lão Hải Phòng 2019) Hàm số nào dưới đây đồng biến trên tập xác định của nó? Câu 8.

A.
$$y = \left(\frac{1}{\pi}\right)$$

A.
$$y = \left(\frac{1}{\pi}\right)^x$$
 B. $y = \left(\frac{2}{3}\right)^x$ **C.** $y = \left(\sqrt{3}\right)^x$

C.
$$y = \left(\sqrt{3}\right)^3$$

D.
$$y = (0,5)^x$$

(THPT An Lão Hải Phòng 2019) Tìm tập xác định D của hàm số $y = (x^2 + 2x - 3)^{\sqrt{2}}$. Câu 9.

A.
$$D = \mathbb{R}$$

B.
$$D = (-\infty; -3) \cup (1; +\infty)$$
 C. $D = (0; +\infty)$ **D.** $D = \mathbb{R} \setminus \{-3; 1\}$

D.
$$D = \mathbb{R} \setminus \{-3; 1\}$$

(Chuyên KHTN 2019) Tập xác định của hàm số $y = (x-1)^{\frac{1}{2}}$ là Câu 10.

A.
$$(0;+\infty)$$
.

B.
$$[1;+\infty)$$
.

$$\mathbf{C}.\ (1;+\infty).$$

D.
$$(-\infty;+\infty)$$
.

Câu 11. (Liên Trường Thọt Tọ Vinh Nghệ An 2019) Tập xác định của hàm số $y = (x^2 - 4x)^{\frac{2019}{2020}}$ là

A.
$$(-\infty;0] \cup [4;+\infty]$$

A.
$$(-\infty;0] \cup [4;+\infty)$$
 B. $(-\infty;0) \cup (4;+\infty)$ **C.** $(0;4)$

D.
$$\mathbb{R} \setminus \{0;4\}$$

(THPT Gang Thép Thái Nguyên 2019) Tập xác định của hàm số $y = (-x^2 + 6x - 8)^{\sqrt{2}}$ là Câu 12.

A.
$$D = (2;4)$$
.

B.
$$\left(-\infty;2\right)$$
.

$$\mathbf{C}.(4;+\infty).$$

D.
$$D = \mathbb{R}$$

(KTNL GV THPT Lý Thái Tổ 2019) Tìm tập xác định của hàm số $y = (x^2 - 7x + 10)^{-3}$ Câu 13.

A.
$$\mathbb{R} \setminus \{2; 5\}$$
.

B.
$$(-\infty;2)\cup(5;+\infty)$$
. **C.** \mathbb{R} .

Câu 14. (Chuyên Nguyễn Tất Thành Yên Bái 2019) Tìm tập xác định D của hàm số $y = (4x^2 - 1)^{-3}$.

A.
$$D = \mathbb{R} \setminus \left\{ -\frac{1}{2}; \frac{1}{2} \right\}$$
.

A.
$$D = \mathbb{R} \setminus \left\{ -\frac{1}{2}; \frac{1}{2} \right\}.$$
 B. $D = \left(-\infty; \frac{-1}{2} \right) \cup \left(\frac{1}{2}; +\infty \right).$

$$\mathbf{C}.\ D=\mathbb{R}$$
.

D.
$$D = \left(-\frac{1}{2}; \frac{1}{2}\right)$$
.

Câu 15. (**Hsg Tỉnh Bắc Ninh 2019**) Tập xác định của hàm số
$$y = (4-3x-x^2)^{-2019}$$
 là

A.
$$\mathbb{R} \setminus \{-4;1\}$$
.

B.
$$\mathbb{R}$$
.

$$\mathbf{C.} [-4;1].$$

Câu 16. (Chuyên Lê Quý Đôn Điện Biên 2019) Tìm tập xác định của
$$y = (x^2 - 3x + 2)^{\frac{-1}{3}}$$

A.
$$(-\infty;1)\cup(2;+\infty)$$
. **B.** $\mathbb{R}\setminus\{1;2\}$.

B.
$$\mathbb{R} \setminus \{1; 2\}$$
.

C.
$$y' = \frac{2x}{(x^2 + 2) \ln 5}$$
. **D.** \mathbb{R} .

Câu 17. (KTNL GV Thuận Thành 2 Bắc Ninh 2019) Tập xác định của hàm số
$$y = (x^2 - 3x + 2)^{\pi}$$
 là

B.
$$(-\infty;1)\cup(2;+\infty)$$
. **C.** $\mathbb{R}\setminus\{1;2\}$.

C.
$$\mathbb{R} \setminus \{1; 2\}$$

D.
$$\left(-\infty;1\right] \cup \left[2;+\infty\right)$$

Câu 18. (Sở Bắc Ninh 2019) Tìm tập xác định
$$D$$
 của hàm số $y = (x^2 - 3x - 4)^{\sqrt{2-\sqrt{3}}}$.

A.
$$D = \mathbb{R} \setminus \{-1, 4\}$$
.

B.
$$D = (-\infty; -1] \cup [4; +\infty)$$
.

$$\mathbf{C}.\ D=\mathbb{R}$$
.

D.
$$D = (-\infty; -1) \cup (4; +\infty)$$
.

Câu 19. (**Gia Lai 2019**) Tìm tập xác định *D* của hàm số
$$y = (x^2 - 6x + 9)^{\frac{\pi}{2}}$$
.

A.
$$D = \mathbb{R} \setminus \{0\}$$
.

B.
$$D = (3; +\infty)$$
. **C.** $D = \mathbb{R} \setminus \{3\}$.

$$\mathbf{C.}\ D = \mathbb{R} \setminus \{3\}$$

D.
$$D = \mathbb{R}$$
.

Câu 20. (chuyên Hà Tĩnh 2019) Tìm tập xác định của hàm số
$$y = (x^2 - 3x + 2)^{\frac{1}{3}}$$
 là

A.
$$\mathbb{R} \setminus \{1; 2\}$$
.

B.
$$(-\infty;1) \cup (2;+\infty)$$
. **C.** $(1;2)$.

D.
$$\mathbb{R}$$
 .

Câu 21. (**Chu Văn An - Hà Nội - 2019**) Tập xác định D của hàm số
$$y = (x^3 - 27)^{\frac{\pi}{2}}$$
 là

A. D =
$$(3; +\infty)$$
.

B.
$$D = [3; +\infty)$$
.

$$\mathbf{C.} \ \mathbf{D} = \mathbb{R} \setminus \{3\}.$$

D. D =
$$\mathbb{R}$$
 .

Câu 22. (**Bắc Ninh 2019**) Tập xác định của hàm số
$$y = (x^2 - 3x + 2)^{\frac{3}{5}} + (x - 3)^{-2}$$
 là

A.
$$D = (-\infty; +\infty) \setminus \{3\}$$

A.
$$D = (-\infty; +\infty) \setminus \{3\}$$
 B. $D = (-\infty; 1) \cup (2; +\infty) \setminus \{3\}$.

C.
$$D = (-\infty; +\infty) \setminus (1; 2)$$
. **D.** $D = (-\infty; 1) \cup (2; +\infty)$.

Dạng 4. Đạo hàm hàm số lũy thừa

$$\begin{cases} y = x^{\alpha} \longrightarrow y' = \alpha x^{\alpha - 1} \\ y = u^{\alpha} \longrightarrow y' = \alpha u^{\alpha - 1} \cdot \underline{u'} \end{cases}$$

Câu 1. (Sở Quảng Trị 2019) Tìm đạo hàm của hàm số:
$$y = (x^2 + 1)^{\frac{3}{2}}$$

A.
$$\frac{3}{2}(2x)^{\frac{1}{2}}$$

B.
$$\frac{3}{4}x^{-\frac{1}{4}}$$

B.
$$\frac{3}{4}x^{-\frac{1}{4}}$$
 C. $3x(x^2+1)^{\frac{1}{2}}$ **D.** $\frac{3}{2}(x^2+1)^{\frac{1}{2}}$

D.
$$\frac{3}{2}(x^2+1)^{\frac{1}{2}}$$

Câu 2. (Kiểm tra năng lực - ĐH - Quốc Tế - 2019) Đạo hàm của hàm số
$$y = (3-x^2)^{\frac{2}{3}}$$
 tại $x = 1$ là

A.
$$\frac{\sqrt[3]{4}}{3}$$
.

B.
$$-\frac{2\sqrt[3]{4}}{2}$$
. **C.** $-\frac{\sqrt[3]{2}}{2}$.

C.
$$-\frac{\sqrt[3]{2}}{3}$$

NGUYĒN BẢO VƯƠNG - 0946798489

(THPT Lý Nhân Tông – 2017) Hàm số $y = \sqrt[5]{\left(x^2 + 1\right)^2}$ có đạo hàm là. Câu 3.

A.
$$y' = \frac{4x}{5\sqrt[5]{(x^2+1)^3}}$$

B.
$$y' = 2x\sqrt{x^2 + 1}$$
.

C.
$$y' = 4x\sqrt[5]{x^2 + 1}$$
.

A.
$$y' = \frac{4x}{5\sqrt[5]{(x^2+1)^3}}$$
. B. $y' = 2x\sqrt{x^2+1}$. C. $y' = 4x\sqrt[5]{x^2+1}$. D. $y' = \frac{4}{\sqrt[5]{(x^2+1)^2}}$.

(THPT Nguyễn Đăng Đạo – 2017) Đạo hàm của hàm số $y = (2x+1)^{-\frac{1}{3}}$ trên tập xác định là. Câu 4.

A.
$$-\frac{1}{3}(2x+1)^{-\frac{4}{3}}$$
.

B.
$$2(2x+1)^{-\frac{1}{3}}\ln(2x+1)$$
.**C.** $(2x+1)^{-\frac{1}{3}}\ln(2x+1)$. **D.** $-\frac{2}{3}(2x+1)^{-\frac{4}{3}}$.

D.
$$-\frac{2}{3}(2x+1)^{-\frac{4}{3}}$$
.

(Chuyên Vinh 2018) Đạo hàm của hàm số $y = (x^2 + x + 1)^{\frac{1}{3}}$ là Câu 5.

A.
$$y' = \frac{1}{3} (x^2 + x + 1)^{\frac{8}{3}}$$

A.
$$y' = \frac{1}{3} (x^2 + x + 1)^{\frac{8}{3}}$$
. **B.** $y' = \frac{2x + 1}{2\sqrt[3]{x^2 + x + 1}}$. **C.** $y' = \frac{2x + 1}{3\sqrt[3]{(x^2 + x + 1)^2}}$. **D.** $y' = \frac{1}{3} (x^2 + x + 1)^{\frac{2}{3}}$.

D.
$$y' = \frac{1}{3} (x^2 + x + 1)^{\frac{2}{3}}$$
.

(THPT Chuyen LHP Nam Dinh – 2017) Tính đạo hàm của hàm số $y = (1 - \cos 3x)^6$. Câu 6.

A.
$$y' = 6\sin 3x (1 - \cos 3x)^5$$
.

B.
$$y' = 6\sin 3x(\cos 3x - 1)^5$$
.

C.
$$y' = 18\sin 3x(\cos 3x - 1)^5$$
.

D.
$$y' = 18\sin 3x(1-\cos 3x)^5$$
.

(THPT Chuyên LHP – 2017) Tìm đạo hàm của hàm số $y = (x^2 + 1)^{\frac{e}{2}}$ trên \mathbb{R} . Câu 7.

A.
$$y' = 2x(x^2+1)^{\frac{e}{2}-1}$$
.

B.
$$y' = ex\sqrt{(x^2+1)^{e-2}}$$
.

C.
$$y' = \frac{e}{2}(x^2 + 1)^{\frac{e}{2}-1}$$
.

D.
$$y' = (x^2 + 1)^{\frac{e}{2}} \ln(x^2 + 1)$$
.

(THPT Tứ Kỳ - Hải Dương - 2018) Cho hàm số $y = \sqrt{e\sqrt{e\sqrt{e\sqrt{e\sqrt{x}}}}}$, (x > 0). Đạo hàm của yCâu 8.

A.
$$y' = e^{\frac{15}{16}} . x^{-\frac{31}{32}}$$
.

A.
$$y' = e^{\frac{15}{16}} x^{-\frac{31}{32}}$$
. **B.** $y' = \frac{\sqrt{e\sqrt{e\sqrt{e\sqrt{e\sqrt{e}}}}}}{32 \sqrt[32]{x^{31}}}$. **C.** $y' = e^{\frac{15}{16}} x^{\frac{31}{32}}$. **D.** $y' = \frac{\sqrt{e\sqrt{e\sqrt{e\sqrt{e\sqrt{e}}}}}}{2\sqrt{x}}$

C.
$$y' = e^{\frac{15}{16}}.x^{\frac{31}{32}}$$
.

$$\mathbf{D.} \ \ y' = \frac{\sqrt{e\sqrt{e\sqrt{e\sqrt{e\sqrt{e}}}}}}{2\sqrt{x}}.$$

Câu 9. (**Xuân Trường - Nam Định - 2018**) Tính đạo hàm của hàm số $y = \sin 2x + 3^x$

A.
$$y' = 2\cos 2x + x3^{x-1}$$

B.
$$y' = -\cos 2x + 3^x$$
.

C.
$$y' = -2\cos 2x - 3^x \ln 3$$
.

D.
$$y' = 2\cos 2x + 3^x \ln 3$$
.

(THPT Thuận Thành - Bắc Ninh - 2018) Đạo hàm của hàm số $y = (2x-1)^{\frac{1}{3}}$ là: Câu 10.

A.
$$y' = \frac{1}{3} (2x-1)^{-\frac{2}{3}}$$
.

B.
$$y' = (2x-1)^{\frac{1}{3}} \cdot \ln |2x-1|$$
.

C.
$$y' = \frac{2}{3}(2x-1)^{\frac{4}{3}}$$
.

D.
$$y' = \frac{2}{3}(2x-1)^{-\frac{2}{3}}$$
.

Câu 11. (THPT Nghen - Hà Tĩnh - 2018) Đạo hàm của hàm số $y = x.2^x$ là

A.
$$y' = (1 + x \ln 2)2^x$$
. **B.** $y' = (1 - x \ln 2)2^x$. **C.** $y' = (1 + x)2^x$. **D.** $y' = 2^x + x^2 2^{x-1}$.

B.
$$y' = (1 - x \ln 2) 2^x$$
.

C.
$$v' = (1+x)2^x$$

D.
$$v' = 2^x + x^2 2^{x-1}$$
.

Dạng 5. Khảo sát hàm số lũy thừa

Khảo sát hàm số lũy thừa $y = x^{\alpha}$

Tập xác định của hàm số lũy thừa $y = x^{\alpha}$ luôn chứa khoảng $(0; +\infty)$ với mọi $\alpha \in \mathbb{R}$. Trong trường hợp tổng quát, ta khảo sát hàm số $y = x^{\alpha}$ trên khoảng này.

$y = x^{\alpha}, \alpha > 0.$

- 1. Tập xác định: $(0; +\infty)$.
- 2. Sự biến thiên

$$y' = \alpha . x^{\alpha - 1} > 0 \qquad \forall x > 0.$$

Giới han đặc biệt:

$$\lim_{x\to 0^+} x^\alpha = 0, \quad \lim_{x\to +\infty} x^\alpha = +\infty.$$

Tiệm cận: không có.

3. Bảng biến thiên.

-	Bung ofen unen.				
	х	0 +∞			
	<i>y</i> '	+			
	У	0			

- $y = x^{\alpha}, \alpha < 0.$
- 1. Tập xác định: $(0; +\infty)$.
- 2. Sự biến thiên

$$y' = \alpha . x^{\alpha - 1} < 0 \qquad \forall x > 0.$$

Giới hạn đặc biệt:

$$\lim_{x\to 0^+} x^\alpha = +\infty, \quad \lim_{x\to +\infty} x^\alpha = 0.$$

Tiệm cận:

Ox là tiệm cận ngang.

Oy là tiệm cận đứng.

3. Bảng biến thiên.

x	0 +∞
y'	-
У	+∞

Đồ thị của hàm số.

Câu 1. (THPT Phan Chu Trinh - Đắc Lắc - 2018) Hàm số nào sau đây nghịch biến trên ℝ?

A.
$$y = 2^x$$
.

B.
$$y = \left(\frac{1}{3}\right)^x$$
.

$$\mathbf{C.} \ \ y = \left(\sqrt{\pi}\right)^x.$$

$$\mathbf{D.} \ \ y = \mathbf{e}^x$$

Câu 2. Cho các hàm số lũy thừa $y = x^{\alpha}$, $y = x^{\beta}$, $y = x^{\gamma}$ có đồ thị như hình vẽ. Mệnh đề đúng là

A.
$$\alpha > \beta > \gamma$$
.

B.
$$\beta > \alpha > \gamma$$
.

C.
$$\beta > \gamma > \alpha$$
.

D.
$$\gamma > \beta > \alpha$$
.

Câu 3. Đường cong ở hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

A. $v = 2^{1-x}$.

D. $y = \log_2(2x)$.

- (THPT Quốc Oai Hà Nội 2017) Cho hàm số $y = x^{-\sqrt{3}}$ khẳng định nào sau đây đúng? Câu 4.
 - **A.** Đồ thi hàm số cắt truc Ox.
 - B. Đồ thi hàm số không có tiêm cân.
 - C. Đồ thị hàm số có một tiệm cận đứng và không có tiệm cận ngang.
 - **D.** Đồ thị hàm số có một tiệm cận đứng và một tiệm cận ngang.
- (Chuyên Vinh 2017) Cho là các số α , β là các số thực. Đồ thị các hàm số $y=x^{\alpha}$, $y=x^{\beta}$ trên Câu 5. khoảng $(0; +\infty)$ được cho trong hình vẽ bên. Khẳng định nào sau đây là đúng?

A. $0 < \alpha < 1 < \beta$.

B. $\beta < 0 < 1 < \alpha$.

C. $0 < \beta < 1 < \alpha$. **D.** $\alpha < 0 < 1 < \beta$.

- (THPT THD Nam Dinh- 2017) Cho hàm số $y = x^{-\sqrt{2}}$. Mệnh đề nào sau đây là sai? Câu 6.
 - **A.** Hàm số có tập xác định là $(0; +\infty)$.
- **B.** Đồ thị hàm số không có tiệm cận.
- C. Hàm số nghịch biến trên khoảng $(0; +\infty)$. D. Đồ thị hàm số không cắt trục hoành.
- (Chuyên Nguyễn Huệ 2019) Số cực trị của hàm số $y = \sqrt[5]{x^2} x$ là Câu 7.

D. 0.

(THPT Lương Văn Tụy - Ninh Bình - 2018) Cho a, b, c là ba số dương khác 1. Đồ thị các Câu 8. hàm số $y = \log_a x$, $y = \log_b x$, $y = \log_c x$ được cho trong hình vẽ bên. Mệnh đề nào dưới đây là mệnh đề đúng?

A. a < b < c.

B. c < a < b.

 \mathbf{C} , c < b < a.

D. b < c < a.

Câu 9. (THPT Nghen - Hà Tĩnh - 2018) Cho ba số thực dương a, b, c khác 1. Đồ thị các hàm số $y = a^x$, $y = b^x$, $y = c^x$ được cho trong hình vẽ dưới đây. Mệnh đề nào dưới đây đúng?

- **A.** 1 < a < c < b.
- **B.** a < 1 < c < b.
- **C.** a < 1 < b < c.
- **D.** 1 < a < b < c.

Câu 10. (THPT Yên Lạc - 2018) Hàm số $y = x^2 e^{2x}$ nghịch biến trên khoảng nào?

- **A.** $(-\infty;0)$.
- **B.** (-2;0).
- C. $(1;+\infty)$.
- **D.** (-1;0).

BẠN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

*https://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-7QpKlG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương & https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) Thttps://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

* https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!