2/2

2/2

2/2

0/2

2/2

2/2

+31/1/30+

	QCM T	ΓHLR 2
Nom et prénom, lisibles :		Identifiant (de haut en bas): □0 □1 2 □3 □4 □5 □6 □7 □8 □9
Castelot Chomas		3 0
		1 0 1 2 3 4 5 6 7 8 9
olus restrictive (par exemple pas possible de corriger une ncorrectes pénalisent; les bl	e s'il est demandé si 0 es erreur, mais vous pouve anches et réponses mult	une; si plusieurs réponses sont valides, sélectionner la st <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est ez utiliser un crayon. Les réponses justes créditent; les tiples valent 0. et: les 1 entêtes sont +31/1/xx+···+31/1/xx+.
.2 Pour toute expression	rationnelle e , on a $e^* \equiv$	Q.7 L'expression Perl '[-+]?[0-9]+,[0-9]*' n'engendre pas:
, .		ir engenare pas .
🚰 vrai	☐ faux	☐ '42,4' ☐ '42,' ৣ '42' ☐ '42,42'
vrai Pour toutes expression $e(f+g) \equiv ef + eg$ et $(e+f)$	ns rationnelles e, f, g , on	
vrai Pour toutes expression $e(f+g) \equiv ef + eg$ et $(e+f)$ \Box faux	ns rationnelles e, f, g , on $g \equiv eg + fg$. The variance of	☐ '42,4' ☐ '42,' ৣ '42' ☐ '42,42'
vrai Pour toutes expression $e(f+g) \equiv ef + eg \text{ et } (e+f)$	as rationnelles e, f, g , on $g \equiv eg + fg$. The value of the value	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, $n > 1$, on a $L_1^n = L_2^n \Longrightarrow L_1 = L_2$.
vrai 2.3 Pour toutes expression $e(f+g) \equiv ef + eg \text{ et } (e+f)$ ☐ faux 2.4 Il est possible de test onnelle engendre un langa; ☐ Souvent vrai ☐ Toujours vrai	ns rationnelles e, f, g, on g ≡ eg + fg. wrai er si une expression ra- ge vide. Toujours faux Souvent faux	
rai 2.3 Pour toutes expression e(f+g) ≡ ef + eg et (e+f) faux 2.4 Il est possible de test connelle engendre un langa Souvent vrai Toujours vrai 2.5 Pour toutes expression	ns rationnelles e, f, g , on $g \equiv eg + fg$. Trailer si une expression rage vide. Toujours faux	
yrai 2.3 Pour toutes expression $e(f+g) \equiv ef + eg \text{ et } (e+f)$ ☐ faux 2.4 Il est possible de test ionnelle engendre un langa ☐ Souvent vrai ☐ Toujours vrai 2.5 Pour toutes expression	ns rationnelles e, f, g, on g ≡ eg + fg. wrai er si une expression ra- ge vide. Toujours faux Souvent faux	
vrai Q.3 Pour toutes expression $e(f+g) \equiv ef + eg$ et $(e+f)$ faux Q.4 Il est possible de test cionnelle engendre un langage Souvent vrai Toujours vrai Q.5 Pour toutes expression $(e+f)^* \equiv (e^*f^*)^*$.	ns rationnelles e, f, g , on $g \equiv eg + fg$. Toujours faux Souvent faux ns rationnelles e, f , on a	

Fin de l'épreuve.