$$= e (aa^{-1} = bb^{-1} = e)$$

$$= (ab)(ab)^{-1} ((ab)(ab)^{-1} = e)$$

$$= abab ((ab)^{-1} = ab)$$

由消去律,有 ab = ba。由 a, b 的任意性知, G 是交换群。矛盾。

上面证明了存在 $a \in G$,使得 $a^{-1} \neq a$ 。令 $c = a, d = a^{-1}$,则有 $c \neq d$,但 cd = dc = e。

4.

证明: 令 $H=G_1\oplus G_2$,对任意 $v_i\in V(H)$,设 v_i 在 G_1 和 G_2 中的度数分别为 $a_i=|N_{G_1}(v_i)|$ 和 $b_i=|N_{G_2}(v_i)|$ 。由环和运算的定义和容斥原理知, $d_H(v_i)=|N_H(v_i)|=|N_{G_1}(v_i)\oplus N_{G_2}(v_i)|=a_i+b_i-2|N_{G_1}(v_i)\cap N_{G_2}(v_i)|$,由于 G_1 和 G_2 是欧拉图,所以 a_i,b_i 是偶数,从而 $d_H(v_i)$ 也是偶数。

设 V_k 是 H 的任意连通分支,下面证明对任意项点 $v_i \in V_k$ 都有 $d_{H[V_k]}(v_i) = d_H(v_i)$ 。

若不然,就存在边 $(v_i,v_j)\in E(H)$,但 $(v_i,v_j)\notin E(H[V_k])$,由于 $H[V_k]$ 是由顶点集 V_k 生成的子图,所以仅当 $v_j\notin V_k$ 时才会有这种情况。但由于 v_j 与 v_i 间有边,而 v_i 与 V_k 中其它顶点有通路,所以 v_j 与 V_k 中各顶点都有通路。由连通分支定义应有 $v_j\in V_k$ 。矛盾。这就证明了对任意 $v_i\in V_k$,都有 $d_{H[V_k]}(v_i)=d_H(v_i)$ 。

由此可知,对 H 中的任意连通分支 $H[V_k]$, V_k 中每个顶点的度数都是偶数,从而 $H[V_k]$ 是欧拉图。