LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT 204 - FALL 2006 PRINCETON UNIVERSITY

ALFONSO SORRENTINO

1. Adjoint of a linear operator

Note: In these notes, V will denote a n-dimensional euclidean vector space and we will denote the inner product by \langle , \rangle .

Definition. Let (V, \langle , \rangle) be a *n*-dimensional euclidean vector space and $T: V \longrightarrow$ V a linear operator. We will call the adjoint of T, the linear operator $S: V \longrightarrow V$ such that:

$$\langle T(u), v \rangle = \langle u, S(v) \rangle$$
, for all $u, v \in V$.

Proposition 1. Let (V, \langle , \rangle) be a n-dimensional euclidean vector space and T: $V \longrightarrow V$ a linear operator. The adjoint of T exists and is unique.

Moreover, if \mathbb{E} denotes an orthonormal basis of V (with respect to \langle , \rangle) and T has matrix B with respect to \mathbb{E} (i.e., $T(\mathbb{E}) = \mathbb{E}B$), then the adjoint of T is the linear operator $S: V \longrightarrow V$, that has matrix B^T with respect to \mathbb{E} .

For this reason, the adjoint of T is sometimes called the "transpose operator" of Tand denoted T^T .

Proof. Let \mathbb{E} an arbitrary basis of V, let $T(\mathbb{E}) = \mathbb{E}B$, with $B \in \mathcal{M}_n(\mathbb{R})$ and let Abe the matrix of \langle , \rangle (w.r.t. \mathbb{E}). Therefore:

$$\langle u, v \rangle = \langle \mathbb{E}x, \mathbb{E}y \rangle = x^T A y$$
 for all $u = \mathbb{E}x, v = \mathbb{E}y \in V$

[observe that $A \in GL_n(\mathbb{R})$, since \langle , \rangle is an inner product].

Let us denote with $S:V\longrightarrow V$ an arbitrary linear operator with matrix $C\in$ $\mathcal{M}_n(\mathbb{R})$ (w.r.t. \mathbb{E}), i.e., $S(\mathbb{E}) = \mathbb{E}C$. For any $u, v \in V$ we have:

$$\langle T(u), v \rangle = \langle T(\mathbb{E}x), \mathbb{E}y \rangle = \langle \mathbb{E}Bx, \mathbb{E}y \rangle = (Bx)^T Ay = x^T (B^T A)y$$

 $\langle u, S(v) \rangle = \langle \mathbb{E}x, S(\mathbb{E}y) \rangle = \langle \mathbb{E}x, \mathbb{E}Cy \rangle = x^T A(Cy) = x^T (AC)y$.

Hence:

S is the adjoint of
$$T \iff B^T A = AC \iff C = A^{-1}B^T A$$
.

Therefore, the adjoint of T exists and is unique (in fact, its matrix w.r.t. \mathbb{E} is uniquely determined by A and B). Moreover, if \mathbb{E} is orthonormal, then $A = I_n$ and $C = B^T$.

Definition. Let (V, \langle, \rangle) be a *n*-dimensional euclidean vector space and $T: V \longrightarrow$ V a linear operator. T is said to be self-adjoint [or symmetric] if $T = T^T$; i.e.,

$$\langle T(u), v \rangle = \langle u, T(v) \rangle$$
, for all $u, v \in V$.

Remark. Let $T:V\longrightarrow V$ be a linear operator and $\mathbb E$ an orthonormal basis of V. If $T(\mathbb{E}) = \mathbb{E}B$, then it follows from the previous proposition that:

$$T \text{ is self-adjoint } \underset{1}{\Longleftrightarrow} \quad B = B^T \,.$$

Hence, self-adjoint operators on V (with $\dim V = n$) are in 1-1 correspondence with symmetric matrices in $\mathcal{M}_n(\mathbb{R})$. In particular, they form a vector subspace of $\operatorname{End}(V)$, that is isomorphic to the vector subspace of symmetric matrices in $\mathcal{M}_n(\mathbb{R})$. Notice that if \mathbb{E} is NOT orthonormal, then a self-adjoint operator might not have a symmetric matrix (w.r.t. that basis); viceversa, an operator with a symmetric matrix (w.r.t. a non-orthonormal basis) might not be self-adjoint.

Example. Let V be a two dimensional euclidean vector space, with inner product \langle , \rangle defined by

$$A = \left(\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array}\right)$$

with respect to a fixed basis \mathbb{E} . Let $T:V\longrightarrow V$ a linear operator, defined by $T(\mathbb{E})=\mathbb{E}B$, where

$$B = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right) .$$

Let us verify that T is not self-adjoint (although B is symmetric) and find the matrix of its adjoint operator S (w.r.t. \mathbb{E}).

Observe that, if T were self-adjoint, we would have

$$\langle T(\mathbb{E}x), \mathbb{E}y \rangle = \langle \mathbb{E}x, T(\mathbb{E}y) \rangle$$
, for all $\mathbb{E}x, \mathbb{E}y \in V$;

from which

$$x^T(B^TA)y = x^T(AB)y$$
 for all $x, y \in \mathcal{M}_{n,1}(\mathbb{R})$.

Therefore, we should have $B^T A = AB$, but:

$$B^T A = \left(\begin{array}{cc} 0 & 1 \\ 3 & -1 \end{array}\right) \neq \left(\begin{array}{cc} 0 & 3 \\ 1 & -1 \end{array}\right).$$

The adjoint of T is defined by:

$$S(\mathbb{E}) = \mathbb{E}C \quad \text{with } C = A^{-1}B^TA = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}.$$

2. Spectral theorem for self-adjoint operators

The main theorem of this section states that if T is a self-adjoint operator on an eucliden vector space, then there exists an orthonormal basis of V formed by eigenvectors of T.

Theorem 1 (Spectral theorem for self-adjoint operators). Let V be a n-dimensional euclidean vector space and $T:V\longrightarrow V$ a self-adjoint linear operator. Then, there exists an orthonormal basis of V formed by eigenvectors of T.

The proof of this theorem is based on the following preliminary results.

Proposition 2. Let $A \in \mathcal{M}_n(\mathbb{R})$ be a symmetric matrix. Then, its characteristic polynomial $P = P_A$ has n real roots (each counted with its algebraic multiplicity); hence, P can be factorized in the product of n linear polynomials in $\mathbb{R}[x]$.

Proof. From the Fundamental Theorem of Algebra, it follows that P can be always linearly factorized in $\mathbb{C}[x]$. We need only to show that each root $\lambda \in \mathbb{C}$ of P is indeed a real number; i.e., $\lambda \in \mathbb{R}$.

Let $T: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be the linear operator with matrix A, with respect to the canonical basis \mathbb{E} of \mathbb{C}^n . Since λ is an eigenvalue of T, then there exists a non-zero vector z such that $T(z) = \lambda z$, *i.e.*,

$$(1) Az = \lambda z.$$

Let us remember some definitions and simple results about the complex numbers. For any $\alpha = x + iy \in \mathbb{C}$, we define its conjugate as $\overline{\alpha} = x - iy$. In particular, the following holds:

$$\begin{split} &\alpha\overline{\alpha}=x^2+y^2 \qquad \text{[it is called "norm" of α];} \\ &\alpha\overline{\alpha}\geq 0 \text{ and } \alpha\overline{\alpha}=0 \iff \alpha=0 \text{;} \\ &\alpha=\overline{\alpha} \text{;} \\ &\alpha=\overline{\alpha} \iff \alpha\in\mathbb{R} \text{;} \\ &\overline{\alpha+\beta}=\overline{\alpha}+\overline{\beta} \quad \text{and} \quad \overline{\alpha\beta}=\overline{\alpha}\overline{\beta} \text{.} \end{split}$$

Let us consider a non-zero vector $z=\begin{pmatrix}z_1\\\vdots\\z_n\end{pmatrix}\in\mathbb{C}^n$ and its "conjugate" $\overline{z}=$

$$\left(\begin{array}{c} \overline{z_1} \\ \vdots \\ \overline{z_n} \end{array}\right) \in \mathbb{C}^n$$
. One can easily verify that

$$\overline{z}^T z = \sum_{i=1}^n \overline{z_i} z_i > 0 \quad \text{[at least one } z_i \text{ is different from zero]};$$

$$\overline{\left(\overline{z^T} A z\right)} = \overline{\overline{z^T}} \overline{A} \overline{z} = z^T A \overline{z} \quad \text{[since } A \text{ is real]}.$$

If we multiply (1) by \overline{z}^T (on the left), we get

$$\overline{z}^T A z = \overline{z}^T \lambda z = \lambda(\overline{z}^T z),$$

and consequently

$$\lambda = \frac{1}{\overline{z}^T z} (\overline{z}^T A z) \,.$$

In order to show that $\lambda \in \mathbb{R}$, it suffices to verify that $\overline{z}^T A z \in \mathbb{R}$ or equivalently:

$$\overline{(\overline{z^T}Az)} = \overline{z}^T Az).$$

In fact, using that A is symmetric:

$$\overline{(\overline{z^T}Az)} = z^T A \overline{z} = (z^T A \overline{z})^T = \overline{z}^T A z.$$

Proposition 3. Let T be a self-adjoint operator on a n-dimensional euclidean vector space V and u an eigenvector. Then, $T(u^{\perp}) \subseteq u^{\perp}$; i.e., T let the subspace u^{\perp} fixed.

Proof. Let $T(u) = \lambda u$. For any $v \in u^{\perp}$ [i.e., $\langle v, u \rangle = 0$] we have:

$$\langle T(v), u \rangle = \langle v, T(u) \rangle = \langle v, \lambda u \rangle = \lambda \langle v, u \rangle = 0.$$

Therefore,
$$T(v) \in u^{\perp}$$
;

We can now prove the Spectral Theorem.

Proof. [Spectral Theorem] We proceed by induction on $n = \dim(V)$. If $\dim V = 1$, then the assertion is evident (it is sufficient to choose any basis $\mathbb{E} = (e_1)$ with $\|e_1\| = 1$). Suppose that $n \geq 2$ and assume that the theorem is true for self-adjoint operators on euclidean vector spaces of dimension n - 1.

According to proposition 2, T has at least one real eigenvalue λ and call e_1 one of the corresponding eigenvectors. We can assume that $||e_1|| = 1$ (otherwise, we just divide this vector by its norm).

One can observe that e_1^{\perp} is an euclidean vector subspace of V of dimension n-1 (see Lecture V, § 2). From proposition 3, $T(e_1^{\perp}) \subseteq e_1^{\perp}$, therefore we can restrict T to the subspace e_1^{\perp} . We obtain a new linear operator $T': e_1^{\perp} \longrightarrow e_1^{\perp}$, that is still self-adjoint (since it acts like T on the vectors in e_1^{\perp}).

Using the inductive hypothesis, T' has an orthonormal basis $\{e_2, \ldots, e_n\}$, formed by eigenvectors. Since $e_1 \perp e_i$ (for all $i = 1, \ldots, n$), then the vectors e_1, \ldots, e_n are pairwise orthogonal and therefore linearly independent. These vectors form the desired basis.

Remark. Let T be a self-adjoint operator and \mathbb{F} an orthonormal basis of eigenvectors of T. We want to point out that, with respect to this basis, T is represented by a diagonal matrix:

$$D = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{array}\right),$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of T. They are not necessarily distinct: each of them appears h_{λ_i} times on the diagonal (where h_{λ_i} is its algebraic multiplicity = geometric multiplicity).

Proposition 4. Let $T: V \longrightarrow V$ be a self-adjoint operator. If u, v are eigenvectors corresponding to distinct eigenvalues, then they are orthogonal. Therefore, the eigenspaces of T are pairwise orthogonal.

Proof. Let $T(u) = \lambda u$ and $T(v) = \mu v$, with $\lambda, \mu \in \mathbb{R}$ and $\lambda \neq \mu$. We have:

$$\langle T(u), v \rangle = \langle \lambda u, v \rangle = \lambda \langle u, v \rangle$$
 and $\langle u, T(v) \rangle = \langle u, \mu v \rangle = \mu \langle u, v \rangle$.

Since $\langle T(u), v \rangle = \langle u, T(v) \rangle$, then $\lambda \langle u, v \rangle = \mu \langle u, v \rangle$ and therefore (since $\lambda \neq \mu$) $\langle u, v \rangle = 0$.

It follows also that $E_{\lambda} \subseteq E_{\mu}^{\perp}$ and $E_{\mu} \subseteq E_{\lambda}^{\perp}$ (where E_{λ} and E_{μ} are the associated eigenspaces).

Remark. From the previous proposition, it follows that in order to compute an orthonormal basis \mathbb{F} of eigenvectors of a self-adjoint operators, it is enough to find the basis of each eigenspace E_{λ} and orthonormalize it (using Gram-Schmidt, for instance). The union of such bases provides the desired one.

Example. In \mathbb{R}^4 with the canonical inner product, consider the linear operator defined (w.r.t. the canonical basis of \mathbb{R}^4) by:

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Determine an orthonormal basis \mathbb{F} of eigenvectors of T and write the matrix of T with respect to \mathbb{F} .

Solution: T has characteristic polynomial

$$P = (x-1)^2(x+1)^2$$

and therefore its specturm is $\Lambda(T) = \{1, -1\}$, with multiplicities $h_1 = 2$ and $h_{-1} = 2$.

The eigenspace E_1 has equations:

$$\begin{cases} -2x_2 = 0 \\ -x_3 + x_4 = 0 \end{cases}$$

and therefore: $E_1 = \langle (1,0,0,0), (0,0,1,1) \rangle$. This basis is already orthogonal, but we need to normalize the vectors, dividing by their norm:

$$E_1 = \left\langle (1, 0, 0, 0), \left(0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \right\rangle.$$

The eigenspace E_{-1} has equations:

$$\begin{cases} 2x_1 = 0 \\ x_3 + x_4 = 0 \end{cases}$$

and therefore: $E_{-1} = \langle (0, 1, 0, 0), (0, 0, 1, -1) \rangle$. This basis is already orthogonal, but we need to normalize the vectors, dividing by their norm:

$$E_{-1} = \left\langle (0, 1, 0, 0), \left(0, 0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right) \right\rangle.$$

Concluding, an orthonormal basis \mathbb{F} for T is given by:

$$\mathbb{F} = \mathbb{E}C, \quad \text{where } C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix} \in O_4(\mathbb{R}).$$

The matrix of T with respect to this basis is:

$$T(\mathbb{F}) = \mathbb{F}D$$
, where $D = C^T A C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$.

3. Unitary operators

Definition. Let (V, \langle , \rangle) be a *n*-dimensional euclidean vector space and $T: V \longrightarrow V$ a linear operator. We will say that is *unitary* if:

$$\langle T(u), T(v) \rangle = \langle u, v \rangle$$
, for all $u, v \in V$

[i.e., T preserves the inner product \langle , \rangle in V].

Proposition 5. Let T be a linear operator on (V, \langle , \rangle) . We have:

 $T \text{ is unitary} \iff T \text{ is invertible and } T^{-1} = T^T.$

Proof. (\Longrightarrow) It is sufficient to verify that $T^T \circ T = \mathrm{Id}$, that is equivalent to

$$T^T(T(v)) = v$$
 for all $v \in V$.

In fact, from the definition above and that of adjoint of T, one can conclude:

$$\langle u, v \rangle = \langle T(u), T(v) \rangle = \langle u, T^T(T(v)) \rangle$$
;

therefore,

$$\langle u, v - T^T(T(v)) \rangle = 0$$
 for all $u \in V$.

We can deduce from this (using the non-degeneracy of the inner product) that $T^T(T(v)) = v$, for any $v \in V$.

 (\Leftarrow) We have that, for any $u, v \in V$:

$$\langle T(u), T(v) \rangle = \langle u, T^T(T(v)) \rangle = \langle u, T^{-1}(T(v)) \rangle = \langle u, v \rangle$$
.

Let us try to deduce some information about the matrices of these unitary operators. Let \mathbb{E} be a basis for (V, \langle , \rangle) and suppose that $\langle \mathbb{E}x, \mathbb{E}y \rangle = x^T Ay$. If T is a linear operator on V, such that $T(\mathbb{E}) = \mathbb{E}B$, then:

$$T \text{ is unitary} \iff \langle T(\mathbb{E}x), T(\mathbb{E}y) \rangle = \langle \mathbb{E}x, \mathbb{E}y \rangle, \quad \text{for all } \mathbb{E}x, \mathbb{E}y \in V$$

$$\iff \langle \mathbb{E}Bx, \mathbb{E}By \rangle = \langle \mathbb{E}x, \mathbb{E}y \rangle, \quad \text{for all } \mathbb{E}x, \mathbb{E}y \in V$$

$$\iff (Bx)^T A(By) = x^T Ay, \quad \text{for all } x, y \in \mathcal{M}_{n,1}(\mathbb{R})$$

$$\iff x^T (B^T AB)y = x^T Ay, \quad \text{for all } x, y \in \mathcal{M}_{n,1}(\mathbb{R})$$

$$\iff B^T AB = A.$$

Corollary 1. Let (V, \langle , \rangle) be a n-dimensional euclidean vector space, with an orthonormal basis \mathbb{E} and let $T: V \longrightarrow V$ a linear operator, such that $T(\mathbb{E}) = \mathbb{E}B$. Then,

T is unitary \iff $B \in O_n(\mathbb{R})$ [i.e., B is an orthogonal matrix].

Proof. For what observed above: T is unitary if and only if $B^TAB = A$. Since \mathbb{E} is orthonormal, then $A = I_n$ and we get:

$$T$$
 is unitary \iff $B^TB = I_n \iff$ $B \in O_n(\mathbb{R})$.

Remark. i) Let T be a unitary operator. If $\mathbb E$ is an orthonormal basis, then also $T(\mathbb E)$ is an orthonormal basis (see Lecture V, prop. 8). Therefore, unitary operators send orthonormal bases into orthonormal bases.

- ii) If T is a unitary operator, then $\det T = \pm 1$. In fact, if $T(\mathbb{E}) = \mathbb{E}B$, with \mathbb{E} orthonormal, then $B \in O_n(\mathbb{R})$ and $\det T = \det B = \pm 1$. In particular, unitary operators with $\det T = 1$ are called *special unitary operators* (or *rotations*) of V.
- iii) If T is unitary, then its spectrum $\Lambda_T \subseteq \{1, -1\}$. In fact, if $T(u) = \lambda u$,

$$\langle u, u \rangle = \langle T(u), T(u) \rangle = \langle \lambda u, \lambda u \rangle = \lambda^2 \langle u, u \rangle$$
;

therefore $\lambda^2 = 1$, that implies $\lambda = \pm 1$.

iv) Let us point out that, in general, a unitary linear operator might not be diagonalizable. Consider, for instance, \mathbb{R}^2 with the canonical inner product and the operator that is defined (w.r.t. the canonical basis) by

$$R_{\frac{\pi}{2}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in SO_2(\mathbb{R}) \subset O_2(\mathbb{R}).$$

This is a unitary operator and it has no eigenvalues, hence it is not diagonalizable.

v) If T is unitary and $\Lambda_T = \{1, -1\}$, then the eigenspaces E_1 and E_{-1} are orthogonal to each other. In fact, if T(u) = u and T(v) = -v, then:

$$\langle u, v \rangle = \langle T(u), T(v) \rangle = \langle u, -v \rangle = -\langle u, v \rangle ;$$

this implies that $\langle u, v \rangle = 0$ and therefore $\langle u, v \rangle = 0$.

vi) If T is unitary and u is one of its eigenvectors, then $T(u^{\perp}) \subseteq u^{\perp}$. In fact, for any $v \in u^{\perp}$ (remember that $\lambda = \pm 1$):

$$\langle T(v), u \rangle = \frac{1}{\lambda} \langle T(v), \lambda u \rangle = \frac{1}{\lambda} \langle T(v), T(u) \rangle = \frac{1}{\lambda} \langle v, u \rangle = 0;$$

hence, $T(v) \in u^{\perp}$.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY $E\text{-}mail\ address$: asorrent@math.princeton.edu