- 1. In triangle $\triangle ABC$, point D lies on AC and point E lies on BC. Angles ABC and EDC are right angles. Given that CD = 6cm, AD = 7cm and AB = 5cm, what is the area of ABED?
- 2. Four congruent circles, each of which is tangent externally to two of the other three circles, are circumscribed by a square of area $144cm^2$. If a small circle is then placed in the centre so that it is tangent to each of the circles, what is the diameter of the small circle?
- 3. In quadrilateral PQRS, side PQ is parallel to and 3 times as long as side SR. Diagonals PR and QS intersect at O, PO : OR = 1 : 3 and QO : OS = 1 : 4. If ΔPQO has area $2cm^2$, find the area of PQRS.
- 4. ABCD is an isoceles trapezium with AB parallel to DC, AC = DC and AD = BC. If the height of the trapezium is equal to AB, find the ratio of AB : DC.
- 5. In triangle ABC, M and N are points on AB and AC respectively such that AM : MB = 1 : 3 and AN : NC = 3 : 5. What is the ratio of [MNC] : [ABC]?
- 6. Six right-angled triangles are assembled together. Given PQ = a and QR = 8a, find (b a)(b + a) in terms of a.
- 7. On side BC of ΔABC point A_1 is taken so that $BA_1:A_1C=2:1$. What is the ratio in which median CC_1 divides segment AA_1 ?

	8.	Square $PQRS$ is inscribed into ΔABC so that vertices P and Q lie on sides AB and AC and vertices R and S lie on BC . Express the length of the squares side through a and h_a .
*	9.	Four isoceles right triangles are removed from the four corners of a square piece of paper so that a rectangle remains. What is the length of the diagonal of the rectangle if the sum of the areas of the cut-off pieces is $200cm^2$?
** [10.	Congruent radii PS and QR intersect tangent SR . If the two disjoint shaded regions have equal area and if $PS=10cm$, what is the area of rectangle $PRQS$?
** [11.	An equilateral triangle ABC has area $\sqrt{3}$ and side length 2. Point P is an arbitrary point in the interior of the triangle. What is the sum of the distances from P to AB,AC and BC ?
		Proofs
Ī	12.	Consider heights AA_1 and BB_1 in acute triangle $\triangle ABC$. Prove that $A_1C \cdot BC = B_1C \cdot AC$.
-	13.	Consider height CH in right triangle ABC with right angle C . Prove that $AC_2 = AB \cdot AH$ and $CH_2 = AH \cdot BH$.
		2

** 14. Prove that the medians of a triangle meet at one point and this point divides each median in the ratio of 2: 1 counting from the vertex. (A median is a line from a vertex to the opposite side that divides the side equally)