In Class Activities

Taylor Series Evaluation

Introduction

I did the work by hand to do the series expansion of sine and cosine.

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}$$

$$f(x) + f'(0) \times + \frac{f''(0)}{2} x^{2} + \frac{f'''(0)}{6} x^{3} + \frac{f''''(0)}{2^{4}} x^{4} + \frac{f'''''(0)}{120} x^{5} + \frac{f''''(0)}{6} x^{3} + \frac{f''''(0)}{2^{4}} x^{4} + \frac{f^{(k)}(0)}{120} x^{5} + \frac{f^{(k)}(0)}{6} x^{5} + \frac{f^{(k)}$$

```
In [11]: import numpy as np

cosExp = lambda x: 1-1/2*x**2+1/24*x**4-1/np.math.factorial(6)*x**6+1/np.math.factori
sinExp = lambda x: x-1/6*x**3+1/120*x**5-1/np.math.factorial(7)*x**7+1/np.math.factor
print(cosExp(3*np.pi/4),np.cos(3*np.pi/4),(cosExp(3*np.pi/4)-np.cos(3*np.pi/4))/np.co
print(sinExp(3*np.pi/4),np.sin(3*np.pi/4),(sinExp(3*np.pi/4)-np.sin(3*np.pi/4))/np.si
```

Conclusion

Depending on how precise we need the calculation to be, we could only include so many terms.

Part 2 for In Class

Introduction

This is to help us learn and get comfortable with complex numbers.

Work done by hand

Conclusion

We can model many real things in the world much more simply with complex numbers.

Exercise 2.7

Introduction

```
In [15]: ▶ import numpy as np
             C = 1
             n = 0
             while C <= 1e9:
                 print(C)
                 C = (4*n+2)/(n+2)*C
                 n +=1
             1
             1.0
             2.0
             5.0
             14.0
             42.0
             132.0
             429.0
             1430.0
             4862.0
             16796.0
             58786.0
             208012.0
             742900.0
             2674440.0
             9694845.0
             35357670.0
             129644790.0
             477638700.0
```

Conclusion

I forgot the n+=1 at first... not a good idea. I put the print statement first so that it doesn't print the last C that is bigger that a billion.

Exercise 2.8

Introduction

This assignment tells me all of what to do. That's nice

Conclusion

That was easy. It did what I expected.