Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum III

Úloha č. 19

Název úlohy: Měření indexu lomu Jaminovým interferometrem

Jméno: Vojtěch Votruba

Datum měření: 2024-02-21

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů	
Teoretická část	0-2		
Výsledky a zpracování měření	0–9		
Diskuse výsledků	0-4		
Závěr	0-1		
Použitá literatura	0-1		
Celkem	max. 17		

Posuzoval: dne:

Pracovní úkoly

- 1. Změřte závislost indexu lomu vzduchu na tlaku n(p). Celé měření zopakujte nejméně třikrát.
- 2. Závislost n(p) zpracujte graficky již v praktiku. Graf je povinnou součástí zápisu z měření.
- 3. Proveďte lineární regresi závislosti n(p), stanovte chybu parametrů získaných lineární regresí.
- 4. Sestrojte graf závislosti vlnové délky sodíkové čáry na indexu lomu vzduchu $\lambda(n)$.
- 5. Porovnáním tabelovaného n_{15}, p_0 a změřeného n_t, p_0 stanovte teplotu laboratoře (včetně chyby).

1 Teoretická část

K měření zadaných závislostí má být v této úloze použit Jaminův interferometr, jedná se o druh interferometru skládající se ze dvou zrcadel, v našem konkrétním případě tato soustava zrcadel bude doplněna dvojicí kyvet, vývěvou a Jaminovým kompenzátorem. Celý interferometr je pak sestavený podle obr. 1.

Obrázek 1: Jaminův interferometr, převzato z [1].

Abychom zjistili, jaký bude výstup na detektorů D, zkoumáme podle obrázku paprsky 1' a 1". Jsou-li zrcadla nastavena paralelně, z jednoduché geometrie můžeme spočíst, že dráhový rozdíl paprsků bude nulový [1]. Při zkoumání interference nás ovšem nezajímá pouze rozdíl geometrických drah paprsků, ale také rozdíl jejich optických drah. Uvažujeme-li, že v první kyvetě bude prostředí s indexem lomu n_1 a ve druhé kyvetě prostředí s indexem lomu n_0 , bude pro rozdíl optických drah paprsků Δ platit

$$\Delta = l(n_1 - n_0) + \Delta_0,\tag{1}$$

kde l je délka obou kyvet a Δ_0 je případný rozdíl drah v důsledku rozdílného natočení zrcadel nebo kompenzátorů [1]. Z toho dále zjišťujeme, že budeme-li měnit index lomu v první kyvetě z hodnoty n_1 na n_2 , bude změna v dráhovém rozdílu rovna

$$\delta = l(n_2 - n_1). \tag{2}$$

Použijeme-li v pokusu plošný zdroj, vyplývá z teorie interference, že dalekohledem zaostřeným na nekonečno budeme pozorovat interferenční proužky stejného sklonu [1]. Posunutí celého interferenčního obrazce o jeden proužek pak odpovídá fázové změně 2π neboli dráhové změně o jednu vlnovou délku λ . Posune-li se celý interferenční obrazec o k proužků, můžeme psát [1]

$$\delta = k\lambda. \tag{3}$$

Spojením rovností (2) a (3) pak získáváme vztah

$$n_2 = n_1 + \frac{k\lambda}{l}. (4)$$

Tato rovnice nám bude stačit ke splněních prvních 3 pracovních úkolů. Abychom určili vlnovou délku v prostředí λ ve čtvrtém úkolu, vyjdeme z definice indexu lomu, kterou lze přepsat do tvaru

$$\lambda = \lambda_0/n,\tag{5}$$

kde λ_0 je vlnová délka ve vakuu a n index lomu daného prostředí. Dále v úloze použijeme fenomenologický vztah z tabulek [2], který udává závislost indexu lomu na teplotě prostředí

$$n_{t,p} - 1 = (n_{15,p_0} - 1) \frac{(1 + 15\gamma)p}{(1 + \gamma t)p_0},$$
(6)

 $n_{t,p}$ zde značí index lomu při dané teplotě a tlaku, p tlak, $p_0=101,325\,\mathrm{kPa}$ a $\gamma=3670\times10^{-6}\,\mathrm{K^{-1}}$ teplotní součinitel objemové roztažnosti vzduchu [2].

2 Výsledky a zpracování měření

2.1 Závislost indexu lomu na tlaku

Postup: Nejprve jsme pomocí vývěvy vyčerpali z první kyvety vzduch a vytvořili v ní tak hrubé vakuum. Poté jsme postupně otevírali a zavírali kohoutek, kterým jsme do oné kyvety přiváděli vzduch. Zvyšující se množství vzduchu v kyvetě vedlo ke zvýšení tlaku, jehož velikost jsme odečítali z digitálního manometru. Hodnotu tlaku jsme odečetli vždycky ve chvíli, kdy se interferenční obrazec pozorovaný dalekohledem posunul o deset proužků. Hodnoty z manometru jsme zapisovali, dokud nedosáhly maxima, takto jsme celé měření zopakovali čtyřikrát a vždy isme si zaznamenali z laboratorního rtuťového teploměru teplotu v místnosti.

Nejistoty a konstanty: Chybu digitálního manometru jsme odhadli jako jeho "nejmenší dílek" tedy jako jednotku v posledním řádu, který manometr ukazoval $\sigma_p=1$ hPa. Nejistotu určení počtu interferenčních proužků σ_k odhadneme konzervativně na $\sigma_k=1$, to proto, že celá aparatura během měření netěsnila dobře a do kyvety se dostával vzduch i přes zavřený kohoutek. Zároveň musíme zohlednit nepřesnost odečtu ze strany experimentátora, která dělala minimálně půl interferenčního proužku. Nejistotu odečtu teploty z rtuťového teploměru odhadneme jako velikost nejmenšího dílku tedy na $\sigma_t=0.5$ °C. Dvě převzaté konstanty potřebné k výpočtu: vlnovou délku $\lambda=589,3$ nm [2] ve vzduchu a délku kyvet l=50 cm [1] považujeme za přesné. Dále bereme jako referenční přesnou hodnotu $n_1=1$.

Všechny naměřené hodnoty i s dopočtenou hodnotu indexu lomu podle vztahu (4) jsou uvedeny v tabulce 1 a závislosti n(p) pro jednotlivá měření byly zpracovány do grafu 2.

Obrázek 2: Závislost indexu lomu n na tlaku p pro 4 měření

Tabulka 1: Naměřené hodnoty tlaku p a odpovídající index lomu n pro 1. až 4. měření

\overline{k}	σ_k	p_1 / hPa	p_2 / hPa	p_3 / hPa	p_4 / hPa	σ_p / hPa	n
0	1	0	0	0	0	1	1,00000
10	1	56	45	41	50	1	1,00001
20	1	102	95	88	107	1	1,00002
30	1	146	141	134	152	1	1,00004
40	1	196	184	180	190	1	1,00005
50	1	242	229	238	246	1	1,00006
60	1	292	275	284	296	1	1,00007
70	1	340	319	329	342	1	1,00008
80	1	385	364	376	396	1	1,00009
90	1	430	408	427	451	1	1,00011
100	1	475	452	475	498	1	1,00012
110	1	518	497	518	539	1	1,00013
120	1	563	543	568	592	1	1,00014
130	1	608	587	612	641	1	1,00015
140	1	655	631	657	690	1	1,00017
150	1	701	677	701	741	1	1,00018
160	1	747	725	749	785	1	1,00019
170	1	797	770	803	831	1	1,00020
180	1	841	815	855	877	1	1,00021
190	1	888	859	910	921	1	1,00022
200	1	932	905	953	966	1	1,00024
207	1	-	-	-	999	1	1,00024
210	1	975	951	991	-	1	1,00025
212	1	-	-	999	-	1	1,00025
214	1	999	-	-	-	1	1,00025
221	1	-	999	-	-	1	1,00026

Jak je vidět na obr. 2 jednotlivá měření byla proložena křivkou a zpracována lineární regresí. K tomu byl použit software Origin, který vrací nejistotu fitu s přihlédnutím na chybu měření. Směrnice β , které nám vrátil Origin, jsme zprůměrovali a nejistotu tohoto průměru jsme podle metody přenosu chyb spočetli jako

$$\sigma_{\overline{\beta}} = \frac{1}{4} \sqrt{\sigma_{\beta_1}^2 + \sigma_{\beta_2}^2 + \sigma_{\beta_3}^2 + \sigma_{\beta_4}^2}.$$
 (7)

Všechny údaje získané fitováním jsou nakonec uvedeny v tabulce 2.

Tabulka 2: Výsledky fitování závislosti n = n(p)

	1. Měření	2. Měření	3. Měření	4. Měření	Průměr
$\beta/10^{-7} hPa^{-1}$	2,56	2,62	2,477	2,43	2,522
$\sigma_{\beta}/10^{-7} hPa^{-1}$	0,02	0,02	0,008	0,01	0,008

2.2 Závislost vlnové délky a teplota v laboratoři

Závislost $\lambda = \lambda(n)$ zpracujeme takto: Nejprve určíme vlnovou délku světla ve vakuu λ_0 a pak postupným dosazování vypočtených indexů lomu z předchozích tabulek a pomocí vzorce (5) získáme hodnoty λ odpovídající daným n. Tento proces jsme provedli pro každou sadu naměřených hodnot, přičemž λ_0 jsme pro každou z nich vypočetli též podle vzorce (5). Za λ jsme dosadili tabelovanou hodnotu pro vzduch [2] a za index lomu n jsme dosadili poslední změřenou hodnotu, která odpovídá naplnění kyvety vzduchem v laboratoři. Průběhy byly finálně podle zadání graficky zpracovány do obr. 3 programem 0rigin.

Pro splnění 5. pracovního úkolu užijeme vztahu (7) a porovnáme teploměrem naměřenou teplotu v laboratoři s vypočtenou teplotu. Za n_{15,p_0} dosazujeme tabelovanou [2] hodnotu – k jejímu zjištění jsme použili odhad vlnové délky sodíkové výbojky ve vakuu λ_0 , který byl vztahem (5) určen jako $\lambda_0 = \lambda_{vzd} n$, zde je λ_{vzd} vlnová délka ve vzduchu a n je index lomu stanovený pro nejvyšší tlak v kyvetě. Za $\frac{n_{t,p}-1}{p}$ dosadíme směrnici β získanou v předchozí podsekci. Výsledky tohoto úkolu jsou k nahlédnutí v tabulce 3. Nejistotu odhadnuté teploty t

stanovíme triviálně podle metody přenosu chyb, neboť nejistotu tabelovaných hodnot neuvažujeme:

$$\frac{\sigma_t}{t} = \frac{\sigma_\beta}{\beta}.\tag{8}$$

Tabulka 3: Vypočtená teplota v laboratoři v porovnání s teplotou naměřenou na teploměru

	1. Měření	2. Měření	3. Měření	4. Měření
Vypočtená teplota / °C	34,7(3)	27,6(2)	45,0(4)	51,1(4)
Teplota na teploměru / °C	26,0(5)	24,0(5)	25,0(5)	24,5(5)

Zpracujeme-li nyní všechna měření teploty analogicky ke zpracování směrnic v předchozí podsekci (aritmetický průměr, chyba aritmetického průměru), dostáváme pro vypočtenou teplotu

$$t = 39,6(2)$$
 °C. (9)

Obrázek 3: Závislost indexu lomu n na tlaku p pro 4 měření

3 Diskuse výsledků

3.1 Zhodnocení výsledků

Z pracovních úkolů je patrné, že hlavními výsledky této úlohy jsou 1. Závislost n(p) a 2. stanovená teplota v laboratoři t. Závislost $\lambda(n)$ je v podstatě pouze teoretickým vztahem a jediný způsob, jakým do něj vstupuje naše měření, je stanovení λ_0 . Zaměříme se proto tedy primárně na dva výše zmíněné výsledky.

Závislost n(p) vychází uspokojivě. Naměřené hodnoty se velmi dobře dají proložit přímkou a podíváme-li se do tabulky 2 nalézáme dobrou orientační shodu v hodnotách směrnice. Hodnoty se neshodují v rámci chyby, ale o tom více v další podsekci.

Oproti tlakové závislosti teplota v laboratoři vyšla velmi neuspokojivě. Některé z vypočtených hodnot jsou téměř dvakrát vyšší než by měly být (viz 3), leč nacházíme v hodnotách alespoň řádovou orientační shodu.

3.2 Nezapočtené zdroje chyby a jiné nedostatky

Jak jsme již zmínili v hlavní části protokolu, jedním z nedostatků měření bylo nepříliš dobré těsnění kyvet (resp. spojení kyvet a vývěvy). Poté, co experimentátor vyčerpal z kyvety veškerý vzduch a kyvetu vypnul, začal se do ní i přes zavřený kohoutek dostávat vzduch, to mohlo nepříznivě ovlivnit vývoj celého měření, ačkoliv nelze tento vliv dobře kyantifikovat.

Nejistota také byla v celém měření jistě také podhodnocena, protože jsme se rozhodli neuvažovat nejistotu zadaných konstant. Můžeme však předpokládat, že chyba bude relativně nízká a rozhodně by nemohla způsobit takový rozdíl, jaký vidíme u porovnáních vypočtených a naměřených teplot.

Posledním nezapočteným zdrojem chyb mohl být jistě teplotní gradient nebo odlišná teplota v kyvetě a v místnosti. Při odčerpávaní vzduchu vývěvou mohlo docházet k celé řadě jevů jako promíchávaní různě teplého vzduchu a není jistě, zda proběhlé odčerpávání můžeme považovat za izotermický děj.

4 Závěr

Pomocí Jaminova interferometru jsme proměřili závislost indexu lomu vzduchu n na tlaku p. Tuto závislost jsme graficky i tabelárně znázornili a proložili ji přímkou. Hodnotu její směrnice jsme stanovili na $\beta=2,522(8)\times 10^{-7}\,\mathrm{hPa}^{-1}$.

Dále jsme z naměřených údajů pro každé měření vypočetli závislosti $\lambda(n)$ a ty jsme též znázornili graficky. Finálně jsme se pokusili použít fenomenologický vztah ke stanovení teploty laboratoře a dosáhli jsme řádové (byť ne dobré) shody, kdy nám vyšlo $t=39,6(2)\,^{\circ}\mathrm{C}$.

Reference

- [1] Měření indexu lomu Jaminovým interferometrem [online]. [cit. 2024-02-20]. Dostupné z: https://physics.mff.cuni.cz/vyuka/zfp/zadani/319
- [2] BROŽ, J., V. ROSKOVEC a M. VALOUCH. Fyzikální a matematické tabulky. 1. vyd. Praha: SNTL, 1980, 305 s.