PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

IOP224 INVESTIGACIÓN DE OPERACIONES

Práctica Dirigida 1 Primer semestre 2025

Aquellos ejercicios marcados con (*) o (**) son más retadores para alumnos sin previa exposición a cursos de análisis en \mathbb{R}^n y microeconomía. Todos los ejercicios se pueden resolver aplicando análisis convexo y optimización, sin importar el contexto del problema.

Elementos de álgebra lineal

- I. Espacios vectoriales y producto interno.
 - 1. Demuestre que en un espacio vectorial \mathcal{U} , el vector nulo (elemento neutro) $\mathbf{0}$ es único.
 - 2. Dados $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, analice si $|x_1y_1| \cdot |x_2y_2|$ define un producto interno. Sugerencia: considere $(x_1, x_2) = (1, 0)$.
 - 3. Dados $\mathbf{x}, \mathbf{y} \in \mathcal{U}$, pruebe que si $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, entonces $||\mathbf{x}|| \le ||\mathbf{x} + a\mathbf{y}||$ para todo $a \in \mathbb{R}$. Sugerencia: recuerde que $||\mathbf{x}||^2 = \mathbf{x} \cdot \mathbf{x}$.
 - 4. Pruebe que

$$16 \le (x_1 + x_2 + x_3 + x_4) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} \right), \ x_i > 0.$$

Sugerencia: use la desigualdad media-aritmética o Cauchy-Schwarz.

- 5. Pruebe que si $\mathbf{x} \neq \mathbf{0}$ e \mathbf{y} es un vector en la misma dirección del vector \mathbf{x} , entonces $\Pr_{\mathbf{x}} \mathbf{y} = \|\mathbf{y}\| \mathbf{u}$, donde \mathbf{u} es un vector unitario en la dirección del vector \mathbf{x} .
- 6. Demuestre que, dados $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \cdot ||\mathbf{y}||$, donde $||\mathbf{x}|| = \sqrt{x_1^2 + x_2^2}$. Esto se conoce como la desigualdad de Cauchy-Schwarz. Sugerencia: use $(x+y)^2 = x^2 + 2xy + y^2 \ge 0$ o considere el polinomio $p(t) = ||\mathbf{x} t\mathbf{y}||$.
- 7. Asuma que la desigualdad anterior se cumple en \mathbb{R}^n (esto se deduce de hecho de una de las posibles demostraciones del ítem anterior de manera directa). Demuestre que

$$(x_1 + \dots + x_n)^2 \le n(x_1^2 + \dots + x_n^2).$$

Sugerencia: considere el vector **1** y $(x_1,...,x_n)$.

8. Use la desigualdad de Cauchy-Schwarz para probar la desigualdad triangular: $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ (para \mathbb{R}^n es la misma prueba)

$$||x + y|| \le ||x|| + ||y||.$$

Sugerencia: use Cauchy-Schwarz.

- II. Subespacios vectoriales. Bases y dimensión.
 - 1. Analice si $S = \{\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 : x_1 x_2 \ge 0\}$ es un subespacio vectorial de \mathbb{R}^2 y de serlo, encuentre su dimensión.
 - 2. Analice si $S = \{A \in \mathcal{M}_{n \times n} : A \text{ es simétrica}\}$ es un subespacio vectorial de \mathbb{R}^2 y de serlo, encuentre su dimensión.

1

- 3. Si el concepto de combinación lineal se extendiera a una suma infinita, ¿cuál seria una combinación lineal que generaría la función $f(x) = e^x$? ¿Y para $g(x) = \cos x$?
- 4. Determine todos los subespacios de \mathbb{R}^2 .
- 5. Demuestre que el conjunto de todas las funciones continuas $f:[a,b]\to\mathbb{R}$ es un subespacio vectorial del espacio vectoriales de funciones $F:[a,b]\to\mathbb{R}$.
- 6. Si $\mathbf{x}_1, ..., \mathbf{x}_4$ genera \mathcal{U} , analice si

$$\{\mathbf{x}_1 - \mathbf{x}_2, \mathbf{x}_2 - \mathbf{x}_3, \mathbf{x}_3 - \mathbf{x}_4, \mathbf{x}_4\}$$

generan el espacio.

7. Analice la siguiente afirmación: si $\{\mathbf{x}_1,...,\mathbf{x}_m\}$ y $\{\mathbf{y}_1,...,\mathbf{y}_m\}$ son listas de vectores li, entonces $\{\mathbf{x}_i+\mathbf{y}_i\}_{i=1,...,m}$ es una lista de vectores li.

III. Transformaciones lineales.

- 1. Considere las siguientes dos variables económicas: el precio de un cierto bien, denotado por p, y la demanda de un consumidor de dicho bien, denotada por D. Proponga una relación lineal o lineal afín (escoja adecuadamente una de las 2) entre D y p. Justifique e interprete su propuesta. ¿Cómo cambiaría si sabe que el consumidor es muy sensible al precio?
- 2. Pruebe que las aplicaciones T que se dan a continuación son transformación lineales. a) $T(x_1, x_2, x_3) = (x_1 + 2x_2, 3x_1)$.
 - b) $T(x_1, x_2, x_3) = (2x_2, x_1 + 3x_1).$
 - c) $T(x_1, x_2, x_3) = 3x_1 + x_2 x_3$.
- 3. Sea T una transformación lineal. Pruebe que si $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ son ld, entonces $T\mathbf{x}_1, T\mathbf{x}_2, \dots, T\mathbf{x}_n$ también son ld.
- 4. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal, tal que T(1,0)=(1,3) y T(0,1)=(1,1). Obtenga T(2,5). En general, ¿cómo es $T(x_1,x_2)$?
- 5. Sea $T:\mathbb{R}^2 \to \mathbb{R}^2$ una aplicación definida por

$$T(x_1, x_2) = (4x_1 - 2x_2, x_1 + x_2).$$

Encuentre la matriz asociada a T en la base $\mathcal{B} = \{(5,3), (1,1)\}.$

- 6. Sea A un matriz cuadrada de orden $n \times n$. Pruebe que si $A\mathbf{x} = \mathbf{0}$ para todo $\mathbf{x} \in \mathbb{R}^n$, entonces A = 0.
- 7. Proporcione un ejemplo de una aplicación homogénea de grado 1 que no sea aditiva.
- 8. Considere una función de producción tipo Cobb-Douglas: $F(K, L) = AK^{\alpha}L^{\beta}$, donde K denota capital, L trabajo y A > 0 es una constante.
 - ¿Bajo qué condiciones sobre los parámetros un incremento en los insumos genera un incremento en la producción?
 - ¿Bajo qué condiciones sobre los parámetros la tasa de crecimiento de la producción respecto de sus factores K y L es cada vez menor?
- 9. Sea \mathcal{U} un espacio vectorial con dimensión n > 1. Sea $\mathcal{L}(\mathcal{U}, \mathcal{U})$ el espacio de aplicaciones lineales de \mathcal{U} en \mathcal{U} . Considere $C \subset \mathcal{L}(\mathcal{U}, \mathcal{U})$ el conjunto de todas la aplicaciones lineales no invertibles de \mathcal{U} en \mathcal{U} . Analice si C es o no un subespacio vectorial.

Modelos

Modelo de Leontief.

Considere tres sectores productivos: el sector primario agro-exportador, el sector industrial y el sector de servicios. Suponga que, en términos de proporciones, el sector primario requiere de 0.4 de su propio sector, 0.4 del sector industrial y 0.1 del sector de servicios. Por otro lado, el sector industrial requiere de 0.2 del sector agro-exportador, 0.2 de su propio sector y del sector servicios 0.3. Finalmente, el sector servicios requiere 0.2 del sector agro-exportador, 0.1 del sector industrial y 0.3 de su propio sector. Además, se sabe que la demanda externa es $\mathbf{d} = \begin{bmatrix} 100 & 150 & 200 \end{bmatrix}$.

- Plantee el modelo como un problema de insumo-producto e interprételo.
- Encuentre la oferta óptima (cantidad producida) por cada sector en el equilibrio.

Modelo general de oferta y demanda.

Considere un mercado con $1, \dots, N$ bienes. Denotemos las cantidades por q_i y los precios p_i .

- Represente matricialmente la siguiente situación: la demanda por un bien depende de los precios de todos bienes de forma lineal.
- Represente matricialmente la siguiente situación: la demanda por un bien depende únicamente de su precio.
- Para los dos ítem anteriores, interprete la pre-imagen de {0}.
- Analice en función de si los bienes son complementarios o sustitutos los valores de los parámetros.

Función homogénea de grado k.

Considere la función $F: \mathbb{R}^N_+ \to \mathbb{R}$ dada por

$$F(x_1,\cdots,x_n;\boldsymbol{\theta}) = \prod_{i=1}^n x_i^{\theta_i}.$$

- Una función es homogénea de grado k > 0 si $f(\lambda \mathbf{x}) = \lambda^k f(\mathbf{x})$.
- De condiciones sobre los parámetros $\theta_1, \dots, \theta_n$ para que F sea homogénea de grado k.
- Demuestre que si f es homogénea de grado k, $\langle \nabla f(\mathbf{x}), \mathbf{x} \rangle = kf(\mathbf{x})$.
- En investigación operativa, un tema fundamental es la producción.
 - 1. Interprete F como una función de producción: ¿qué representan los x_i ? ¿los θ_i ?
 - 2. Analice el comportamiento de F en función de los parámetros: monotonía, rendimientos a escala.
 - 3. Modifique F para ajustarse al siguiente enunciado: para que la producción no sea nula, es necesario que cada insumo i sea mayor estrictamente a un umbral a_i . Nota: la función que va a construir volverá a aparecer más adelante.

Ejercicios adicionales. Fuente: https://www2.math.upenn.edu/ugrad/calc/m240/240la.pdf

- 1. Espacios vectoriales. ¿Cuáles de los siguientes conjuntos son espacios vectoriales?
 - a) $\{\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 2x_3 = 0\}$
 - b) El conjunto de soluciones x de Ax = 0, donde A es una matriz $m \times n$.
 - c) El conjunto de matrices 2×2 A tales que det(A) = 0.
 - d) El conjunto de polinomios p(x) tales que $\int_{-1}^{1} p(x) dx = 0$.
 - e) El conjunto de soluciones y = y(t) de la ecuación diferencial y'' + 4y' + y = 0.
- 2. Bases en \mathbb{R}^2 . ¿Cuáles de los siguientes conjuntos de vectores son bases de \mathbb{R}^2 ?
 - a) $\{(0,1),(1,1)\}$
 - b) $\{(1,0),(0,1),(1,1)\}$
 - c) $\{(1,0),(-1,0)\}$
 - $d) \{(1,1),(1,-1)\}$
 - e) $\{(1,1),(2,2)\}$
 - f) $\{(1,2)\}.$
- 3. Dependencia lineal en \mathbb{R}^4 . ¿Para qué valores reales de x los vectores

$$(x, 1, 1, 1), (1, x, 1, 1), (1, 1, x, 1), (1, 1, 1, x)$$

no forman una base de \mathbb{R}^4 ? Para cada valor de x que encuentres, ¿cuál es la dimensión del subespacio de \mathbb{R}^4 que generan?

- 4. Determinante con escalares. Sea A una matriz 5×5 tal que $\det(A) = -1$. Calcula $\det(-2A)$.
- 5. Caracterización de matrices invertibles. Sea A una matriz $n \times n$ de números reales o complejos. ¿Cuáles de las siguientes afirmaciones son equivalentes a: "la matriz A es invertible"?
 - a) Las columnas de A son linealmente independientes.
 - b) Las columnas de A generan \mathbb{R}^n .
 - c) Las filas de A son linealmente independientes.
 - d) El núcleo de A es $\{0\}$.
 - e) La única solución de la ecuación homogénea Ax = 0 es x = 0.
 - f) La transformación lineal $T_A: \mathbb{R}^n \to \mathbb{R}^n$ definida por A es inyectiva.
 - g) La transformación lineal $T_A: \mathbb{R}^n \to \mathbb{R}^n$ definida por A es sobreyectiva.
 - h) El rango de A es n.
- 6. Caracterización de aplicaciones lineales inyectivas. Sea $A: \mathbb{R}^n \to \mathbb{R}^k$ una aplicación lineal. Demuestre que son equivalentes las siguientes afirmaciones:
 - a) A es inyectiva (por lo tanto $n \leq k$).
 - b) $\dim \ker(A) = 0$. (ker es Núcleo por Kernel del alemán).
 - c) A tiene inversa por la izquierda B, tal que BA = I.

- d) Las columnas de A son linealmente independientes.
- 7. Solución general de un sistema. Considere el sistema de ecuaciones:

$$\begin{cases} x + y - z = a \\ x - y + 2z = b \end{cases}$$

- a) Encuentre la solución general de la ecuación homogénea.
- b) Una solución particular de las ecuaciones no homogéneas cuando a=1 y b=2 es x=1, y=1, z=1. Encuentre la solución general del sistema no homogéneo.
- c) Encuentre una solución particular cuando a=-1 y b=-2.
- d) Encuentre una solución particular cuando a = 3 y b = 6.

Observación: una vez hecha la parte a), se pueden escribir directamente las soluciones de las partes siquientes.

8. Resolución matricial. Sea

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

- a) Encuentre la solución general Z de la ecuación homogénea AZ=0.
- b) Encuentre una solución de $AX = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
- c) Encuentre la solución general de la ecuación del inciso b).
- d) Encuentre alguna solución de $AX = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ y de $AX = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$.
- e) Encuentre alguna solución de $AX = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$.
- f) Encuentre alguna solución de $AX = {7 \choose 2}$.

Nota: $\binom{7}{2} = \binom{1}{2} + 2 \binom{3}{0}$. Observación: después de hacer los incisos a), b) y e), se pueden escribir directamente las soluciones de los incisos restantes.

- 9. Transformación de figuras por matrices. Considere la matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ como una transformación lineal entre planos.
 - a) Si dos rectas en el plano original son paralelas, demuestre que sus imágenes bajo A también son paralelas (aunque pueden coincidir).
 - b) Sea Q el cuadrado unidad: 0 < x < 1, 0 < y < 1. Sea Q' su imagen bajo la transformación A. Demuestre que el área de Q' es |ad bc|.

Más generalmente, el área de cualquier región se multiplica por |ad-bc|, lo cual corresponde al determinante de A.

10. Aplicaciones lineales con núcleo dado. Encuentre todas las aplicaciones lineales $L: \mathbb{R}^3 \to \mathbb{R}^3$ cuyo núcleo es exactamente el plano

$$\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + 2x_2 - x_3 = 0\}.$$

11. Núcleo e imagen coincidentes. Sea V un espacio vectorial de dimensión n y sea $T:V\to V$ una transformación lineal tal que la imagen y el núcleo de T coinciden.

5

- a) Demuestre que n es par.
- b) Dé un ejemplo de una transformación lineal T con esa propiedad.
- 12. Espacio de aplicaciones con núcleo dado. Sea $V \subset \mathbb{R}^{11}$ un subespacio lineal de dimensión 4. Considere la familia \mathcal{A} de todas las aplicaciones lineales $L: \mathbb{R}^{11} \to \mathbb{R}^9$ cuyo núcleo contiene a V.
 - a) Demuestre que \mathcal{A} es un espacio vectorial.
 - b) Calcule su dimensión.

Profesor del curso: Jorge Chávez.

Asistente de docencia: Marcelo Gallardo.