```
In [5]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         pd.set option('display.max columns', None)
         plt.rcParams['figure.figsize'] = (12,6)
In [4]: data = pd.read csv("E:\data set\Phishing Legitimate full.csv")
In [3]: float_cols = data.select_dtypes('float64').columns
         for c in float cols:
              data[c] = data[c].astype('float32')
         int_cols = data.select_dtypes('int64').columns
         for c in int_cols:
              data[c] = data[c].astype('int32')
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10000 entries, 0 to 9999
         Data columns (total 50 columns):
          #
              Column
                                                        Non-Null Count Dtype
         - - -
          0
              id
                                                         10000 non-null int32
                                                        10000 non-null int32
10000 non-null int32
          1
               NumDots
          2
               SubdomainLevel
                                                         10000 non-null int32
          3
               PathLevel
                                                        10000 non-null int32
10000 non-null int32
          4
               UrlLength
          5
               NumDash
                                                        10000 non-null int32
10000 non-null int32
          6
               {\tt NumDashInHostname}
          7
               AtSymbol
                                                         10000 non-null int32
          8
               TildeSymbol
                                                        10000 non-null int32
10000 non-null int32
          9
               NumUnderscore
          10
               NumPercent
               NumQueryComponents
                                                         10000 non-null int32
          11
                                                        10000 non-null int32
10000 non-null int32
               NumAmpersand
          12
          13
               NumHash
          14
               NumNumericChars
                                                         10000 non-null int32
                                                        10000 non-null int32
10000 non-null int32
          15
               NoHttps
               RandomString
          16
          17
               IpAddress
                                                         10000 non-null int32
                                                        10000 non-null int32
10000 non-null int32
               DomainInSubdomains
          18
          19 DomainInPaths
                                                        10000 non-null int32
10000 non-null int32
          20 HttpsInHostname
          21
               HostnameLength
                                                         10000 non-null int32
          22
               PathLength
                                                        10000 non-null int32
10000 non-null int32
          23
               OuervLenath
          24
               DoubleSlashInPath
                                                        10000 non-null int32
          25
               NumSensitiveWords
                                                        10000 non-null int32
10000 non-null float32
          26
               EmbeddedBrandName
          27
               PctExtHyperlinks
          28 PctExtResourceUrls
                                                         10000 non-null float32
                                                        10000 non-null int32
10000 non-null int32
          29
               ExtFavicon
          30
              InsecureForms
          31 RelativeFormAction
                                                        10000 non-null int32
                                                        10000 non-null int32
10000 non-null int32
          32
               ExtFormAction
          33
               AbnormalFormAction
          34
               PctNullSelfRedirectHyperlinks
                                                        10000 non-null float32
          35
               FrequentDomainNameMismatch
                                                         10000 non-null
                                                                           int32
                                                        10000 non-null int32
          36
               FakeLinkInStatusBar
                                                        10000 non-null int32
10000 non-null int32
          37
               RightClickDisabled
          38
               PopUpWindow
                                                        10000 non-null int32
          39
               SubmitInfoToEmail
                                                        10000 non-null int32
10000 non-null int32
          40
               IframeOrFrame
          41 MissingTitle
          42
               ImagesOnlyInForm
                                                        10000 non-null int32
                                                        10000 non-null int32
10000 non-null int32
          43
               SubdomainLevelRT
          44
              UrlLengthRT
          45
               PctExtResourceUrlsRT
                                                        10000 non-null int32
                                                        10000 non-null int32
10000 non-null int32
          46
               AbnormalExtFormActionR
          47
               ExtMetaScriptLinkRT
          48 PctExtNullSelfRedirectHyperlinksRT 10000 non-null int32
49 CLASS LABEL 10000 non-null int32
          49 CLASS_LABEL
         dtypes: float32(3), int32(47)
         memory usage: 1.9 MB
In [7]: data.rename(columns={'CLASS LABEL': 'labels'}, inplace=True)
In [8]: data.sample(5)
```


In [13]: corr_heatmap(data, 10, 20)

In [14]: corr_heatmap(data, 20, 30)

In [16]: corr_heatmap(data, 40, 50)


```
In [17]: from sklearn.feature_selection import mutual_info_classif

In [18]: X = data.drop(['id', 'labels'], axis=1)
    y = data['labels']

In [19]: discrete_features = X.dtypes == int

In [20]: mi_scores = mutual_info_classif(X, y, discrete_features=discrete_features)
    mi_scores = pd.Series(mi_scores, name='MI Scores', index=X.columns)
    mi_scores = mi_scores.sort_values(ascending=False)
    mi_scores
```

```
Out[20]: PctExtHyperlinks
                                                 0.470615
         {\tt PctExtResourceUrls}
                                                 0.287998
         PctNullSelfRedirectHyperlinks
                                                 0.233576
         PctExtNullSelfRedirectHyperlinksRT
                                                 0.212144
         FrequentDomainNameMismatch
                                                 0.131566
         NumNumericChars
                                                 0.129133
         {\sf ExtMetaScriptLinkRT}
                                                 0.121971
         NumDash
                                                 0.112274
         SubmitInfoToEmail
                                                 0.080130
         NumDots
                                                 0.071204
         InsecureForms
                                                 0.062497
         PathLevel
                                                 0.054670
         QueryLength
                                                 0.054056
         PathLength
                                                 0.047413
         NumSensitiveWords
                                                 0.038090
         UrlLength
                                                 0.032149
         HostnameLength
                                                 0.030030
         NumQueryComponents
                                                 0.027929
         PctExtResourceUrlsRT
                                                 0.021614
         NumAmpersand
                                                 0.020247
         {\tt AbnormalExtFormActionR}
                                                 0.015332
         UrlLengthRT
                                                 0.015089
                                                 0.014805
         NumDashInHostname
         IpAddress
                                                 0.013922
         MissingTitle
                                                 0.013292
         AbnormalFormAction
                                                 0.012685
         IframeOrFrame
                                                 0.012480
         ExtFormAction
                                                 0.011569
         NumHash
                                                 0.011511
         EmbeddedBrandName
                                                 0.011107
         NumPercent
                                                 0.010437
         NumUnderscore
                                                 0.007182
         PopUpWindow
                                                 0.006713
                                                 0.005063
         TildeSymbol
         {\tt DomainInPaths}
                                                 0.004764
         RelativeFormAction
                                                 0.004580
         {\tt SubdomainLevelRT}
                                                 0.004332
         FakeLinkInStatusBar
                                                 0.003984
         SubdomainLevel
                                                 0.002838
         RightClickDisabled
                                                 0.002098
                                                 0.002029
         {\tt RandomString}
         DomainInSubdomains
                                                 0.001879
         ExtFavicon
                                                 0.001787
                                                 0.000000
         HttpsInHostname
         ImagesOnlyInForm
                                                 0.000000
         NoHttps
                                                 0.000000
                                                 0.000000
         AtSymbol
         DoubleSlashInPath
                                                 0.000000
         Name: MI Scores, dtype: float64
In [21]: def plot_mi_scores(scores):
              scores = scores.sort_values(ascending=True)
              width = np.arange(len(scores))
              ticks = list(scores.index)
              plt.barh(width, scores)
              plt.yticks(width, ticks)
              plt.title("MI Scores")
          plt.figure(dpi=100, figsize=(12,12))
          plot_mi_scores(mi_scores)
```



```
y = data['labels']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True)

lr = LogisticRegression(max_iter=10000)
lr.fit(X_train, y_train)

y_pred = lr.predict(X_test)

precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred)

return precision, recall, f1, accuracy

In [27]: arr = []
for i in range(20,51,1):
    precision, recall, f1, accuracy = train_logistic(data, i)
    print("Performance for Logistic Model with Top {} features is precision : {}, recall : {}, f1 score : {}, a
```

arr.append([i, precision, recall, f1, accuracy])

```
Performance for Logistic Model with Top 20 features is precision: 0.8943248532289628, recall: 0.9298067141403
866, f1 score : 0.9117206982543641, accuracy : 0.9115
Performance for Logistic Model with Top 21 features is precision: 0.906496062992126, recall: 0.94364754098360
66, f1 score: 0.924698795180723, accuracy: 0.925
Performance for Logistic Model with Top 22 features is precision: 0.9306243805748265, recall: 0.939, f1 score
: 0.9347934295669488, accuracy : 0.9345
Performance for Logistic Model with Top 23 features is precision: 0.91666666666666, recall: 0.9354508196721
312, f1 score : 0.9259634888438133, accuracy : 0.927
Performance for Logistic Model with Top 24 features is precision : 0.9279835390946503, recall : 0.9376299376299
376, f1 score : 0.9327817993795242, accuracy : 0.935
Performance for Logistic Model with Top 25 features is precision: 0.9195289499509323, recall: 0.9398194583751
254, f1 score : 0.9295634920634921, accuracy : 0.929
Performance for Logistic Model with Top 26 features is precision: 0.9164208456243854, recall: 0.9481180061037
64, f1 score : 0.932, accuracy : 0.932
Performance for Logistic Model with Top 27 features is precision: 0.9349112426035503, recall: 0.9423459244532
804, f1 score : 0.938613861386, accuracy : 0.938
Performance for Logistic Model with Top 28 features is precision: 0.9434914228052472, recall: 0.9285004965243
296, f1 score : 0.9359359359359, accuracy : 0.936
Performance for Logistic Model with Top 29 features is precision: 0.9255533199195171, recall: 0.9255533199195
171, f1 score : 0.9255533199195171, accuracy : 0.926
Performance for Logistic Model with Top 30 features is precision: 0.9256360078277887, recall: 0.9422310756972
112, f1 score : 0.9338598223099704, accuracy : 0.933
Performance for Logistic Model with Top 31 features is precision : 0.9165867689357622, recall : 0.9446640316205
533, f1 score : 0.9304136253041362, accuracy : 0.9285
Performance for Logistic Model with Top 32 features is precision: 0.9058252427184466, recall: 0.9339339339339
34, f1 score : 0.9196648595367176, accuracy : 0.9185
Performance for Logistic Model with Top 33 features is precision: 0.9258188824662813, recall: 0.9533730158730
159, f1 score : 0.93939393939394, accuracy : 0.938
Performance for Logistic Model with Top 34 features is precision: 0.9299691040164778, recall: 0.9357512953367
876, f1 score : 0.9328512396694214, accuracy : 0.935
Performance for Logistic Model with Top 35 features is precision: 0.927710843373494, recall: 0.93807106598984
77, f1 score : 0.9328621908127208, accuracy : 0.9335
Performance for Logistic Model with Top 36 features is precision: 0.9295366795366795, recall: 0.9563058589870
904, f1 score : 0.9427312775330398, accuracy : 0.9415
Performance for Logistic Model with Top 37 features is precision: 0.9315332690453231, recall: 0.9498525073746
312, f1 score : 0.9406037000973709, accuracy : 0.939
Performance for Logistic Model with Top 38 features is precision : 0.916023166023166, recall : 0.94146825396825
4, f1 score : 0.9285714285714286, accuracy : 0.927
Performance for Logistic Model with Top 39 features is precision: 0.9408866995073891, recall: 0.9408866995073
891, f1 score : 0.9408866995073891, accuracy : 0.94
Performance for Logistic Model with Top 40 features is precision: 0.9409409409409409, recall: 0.9390609390609
39, f1 score : 0.94, accuracy : 0.94
Performance for Logistic Model with Top 41 features is precision: 0.9244357212953876, recall: 0.9448345035105
316, f1 score : 0.9345238095238094, accuracy : 0.934
Performance for Logistic Model with Top 42 features is precision: 0.9257425742574258, recall: 0.9415911379657
603, f1 score : 0.9335996005991014, accuracy : 0.9335
Performance for Logistic Model with Top 43 features is precision: 0.9464469618949537, recall: 0.9484004127966
976, f1 score : 0.9474226804123711, accuracy : 0.949
Performance for Logistic Model with Top 44 features is precision: 0.9303921568627451, recall: 0.9396039603960
396, f1 score : 0.9349753694581281, accuracy : 0.934
Performance for Logistic Model with Top 45 features is precision : 0.936105476673428, recall : 0.94958847736625
52, f1 score : 0.9427987742594486, accuracy : 0.944
Performance for Logistic Model with Top 46 features is precision: 0.9460539460539461, recall: 0.9527162977867
203, f1 score : 0.94937343358396, accuracy : 0.9495
Performance for Logistic Model with Top 47 features is precision: 0.9277942631058358, recall: 0.9551934826883
91, f1 score: 0.9412945308580031, accuracy: 0.9415
Performance for Logistic Model with Top 48 features is precision: 0.94848484848485, recall: 0.9361914257228
315, f1 score : 0.9422980431510286, accuracy : 0.9425
Performance for Logistic Model with Top 49 features is precision: 0.9375600384245918, recall: 0.9457364341085
271, f1 score : 0.9416304872165943, accuracy : 0.9395
Performance for Logistic Model with Top 50 features is precision: 0.937984496124031, recall: 0.94901960784313
72. fl score: 0.9434697855750486. accuracy: 0.942
```

Out[28]:	num_of_features	precision	recall	f1_score	accuracy
0	20	0.894325	0.929807	0.911721	0.9115
1	21	0.906496	0.943648	0.924699	0.9250
2	22	0.930624	0.939000	0.934793	0.9345
3	23	0.916667	0.935451	0.925963	0.9270
4	24	0.927984	0.937630	0.932782	0.9350
5	25	0.919529	0.939819	0.929563	0.9290
6	26	0.916421	0.948118	0.932000	0.9320
7	27	0.934911	0.942346	0.938614	0.9380
8	28	0.943491	0.928500	0.935936	0.9360
9	29	0.925553	0.925553	0.925553	0.9260
10	30	0.925636	0.942231	0.933860	0.9330
11	31	0.916587	0.944664	0.930414	0.9285
12	32	0.905825	0.933934	0.919665	0.9185
13	33	0.925819	0.953373	0.939394	0.9380
14	34	0.929969	0.935751	0.932851	0.9350
15	35	0.927711	0.938071	0.932862	0.9335
16	36	0.929537	0.956306	0.942731	0.9415
17	37	0.931533	0.949853	0.940604	0.9390
18	38	0.916023	0.941468	0.928571	0.9270
19	39	0.940887	0.940887	0.940887	0.9400
20	40	0.940941	0.939061	0.940000	0.9400
21	41	0.924436	0.944835	0.934524	0.9340
22	42	0.925743	0.941591	0.933600	0.9335
23	43	0.946447	0.948400	0.947423	0.9490
24	44	0.930392	0.939604	0.934975	0.9340
25	45	0.936105	0.949588	0.942799	0.9440
26	46	0.946054	0.952716	0.949373	0.9495
27	47	0.927794	0.955193	0.941295	0.9415
28	48	0.948485	0.936191	0.942298	0.9425
29	49	0.937560	0.945736	0.941630	0.9395
30	50	0.937984	0.949020	0.943470	0.9420

```
In [29]: sns.lineplot(x='num_of_features', y='precision', data=df, label='Precision Score')
sns.lineplot(x='num_of_features', y='recall', data=df, label='Recall Score')
sns.lineplot(x='num_of_features', y='fl_score', data=df, label='Fl Score')
sns.lineplot(x='num_of_features', y='accuracy', data=df, label='Acc Score')
```

Out[29]: <AxesSubplot:xlabel='num_of_features', ylabel='precision'>


```
In [30]:
    def train_rfc(data, top_n):
        top_n_features = mi_scores.sort_values(ascending=False).head(top_n).index.tolist()
        X = data[top_n_features]
        y = data['labels']
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True)
              rfc = cuRfc(n estimators=500,
                          split criterion=1.
                          max_depth=32,
                          max_leaves=-1
                          max features=1.0.
                          n_bins=128)
              rfc.fit(X train, y train)
             y_pred = rfc.predict(X_test, predict_model='CPU')
             precision = precision_score(y_test, y_pred)
              recall = recall_score(y_test, y_pred)
              f1 = f1 score(y test, y pred)
             accuracy = accuracy score(y test, y pred)
              return precision, recall, f1, accuracy
In [33]: df = pd.DataFrame(arr, columns=['num_of_features', 'precision', 'recall', 'f1_score', 'accuracy'])
         df.head()
Out[33]:
           num_of_features precision
                                    recall f1_score accuracy
                                          0.94347
                       20 0.937984 0.94902
                                                     0.942
         1
                       21 0.937984 0.94902 0.94347
                                                     0.942
         2
                       22 0.937984 0.94902 0.94347
                                                     0.942
         3
                       23 0.937984 0.94902 0.94347
                                                     0.942
                       24 0.937984 0.94902 0.94347
                                                     0.942
         4
In [43]: from sklearn.preprocessing import StandardScaler
          scaler=StandardScaler()
          x train=scaler.fit transform(X train)
         x test=scaler.transform(X test)
In [45]: from sklearn.ensemble import RandomForestClassifier
         classifier=RandomForestClassifier(random_state = 0)
         classifier.fit(x_train, y_train)
         RandomForestClassifier(random state=0)
Out[45]:
In [46]:
         y_pred1=classifier.predict(x_test)
         y_pred1_train=classifier.predict(x_train)
In [54]: from sklearn.metrics import confusion_matrix,mean_absolute_error,mean_squared_error,recall_score,accuracy_score
In [48]: confusion_matrix(y_test,y_pred1)
Out[48]: array([[ 970,
                          14],
                 [ 14, 1002]], dtype=int64)
In [49]: print("Recall is", recall_score(y_test,y_pred1))
         Recall is 0.9862204724409449
In [50]: print("Precision is", precision_score(y_test,y_pred1))
         Precision is 0.9862204724409449
In [51]: print("Mean Absolute Error is", mean absolute error(y test, y pred1))
         Mean Absolute Error is 0.014
In [52]: print("Mean Squared Error is", mean squared error(y_test,y_pred1))
         Mean Squared Error is 0.014
In [55]: print(" Root Mean Squared Error is", mean_squared_error(y_test,y_pred1, squared=False))
          Root Mean Squared Error is 0.11832159566199232
In [57]: print("Accuracy is",accuracy score(y test,y pred1))
         Accuracy is 0.986
In [59]: from sklearn.metrics import classification report
          print(classification report(y test, y pred1))
```

	macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99	2000 2000		
In []:							
In []:							
In []:							

984 1016 2000

precision recall f1-score support

0.99 0.99

0.99

0.99 0.99 0.99 0.99

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

0 1

accuracy