Cognitive Algorithms - Exercise Sheet 1

Solutions for * Exercise

Department of Machine Learning - TU Berlin

Task 3 - Convergence of the perceptron

1. Because the data set is linearly seperable, there exists a w_{sep} , such that for all x_i , $w_{sep}^T x_i \ge \xi$ for some $\xi \ge 0$. Let x_j be the data point with the largest squared norm $||x_j||^2$.

$$w_{sep}^{T} x_{i} y_{i} \geq \xi$$

$$\Leftrightarrow \frac{1}{\xi} w_{sep}^{T} x_{i} y_{i} \geq 1$$

$$\Leftrightarrow [w_{sep}']^{T} x_{i} y_{i} \geq 1$$

$$\Leftrightarrow [w_{sep}']^{T} x_{i} y_{i} \geq ||x_{j}||^{2} \geq ||x_{i}||^{2}$$

2. Now let $\mathbf{w}^{\text{sep}} = w_{sep}^{"}$.

$$\|\mathbf{w}^{\text{new}} - \mathbf{w}^{\text{sep}}\|^{2} = \|\mathbf{w}^{\text{old}} + \underbrace{\eta}_{=1} \mathbf{x}_{m} y_{m} - \mathbf{w}^{\text{sep}}\|^{2}$$

$$= (\mathbf{w}^{\text{old}} - \mathbf{w}^{\text{sep}} + \mathbf{x}_{m} y_{m})^{\top} (\mathbf{w}^{\text{old}} - \mathbf{w}^{\text{sep}} + \mathbf{x}_{m} y_{m})$$

$$= (\mathbf{w}^{\text{old}} - \mathbf{w}^{\text{sep}})^{\top} (\mathbf{w}^{\text{old}} - \mathbf{w}^{\text{sep}}) + 2(\mathbf{w}^{\text{old}} - \mathbf{w}^{\text{sep}})^{\top} \mathbf{x}_{m} y_{m} + (\mathbf{x}_{m} y_{m})^{\top} \mathbf{x}_{m} y_{m}$$

$$= \|\mathbf{w}^{\text{old}} - \mathbf{w}^{\text{sep}}\|^{2} + 2 \underbrace{(\mathbf{w}^{\text{old}})^{\top} \mathbf{x}_{m} y_{m}}_{\leq 0 \text{ since } \mathbf{x}_{m} \text{ misclassified}} -2(\mathbf{w}^{\text{sep}})^{\top} \mathbf{x}_{m} y_{m} + \underbrace{y_{m}^{2}}_{=1} \|\mathbf{x}_{m}\|^{2}$$

$$\leq \|\mathbf{w}^{\text{old}} - \mathbf{w}^{\text{sep}}\|^{2} - 2(\mathbf{w}^{\text{sep}})^{\top} \mathbf{x}_{m} y_{m} + \|\mathbf{x}_{m}\|^{2}$$

$$\leq \|\mathbf{w}^{\text{old}} - \mathbf{w}^{\text{sep}}\|^{2} - 2\|\mathbf{x}_{m}\|^{2} + \|\mathbf{x}_{m}\|^{2}$$

$$= \|\mathbf{w}^{\text{old}} - \mathbf{w}^{\text{sep}}\|^{2} - \|\mathbf{x}_{m}\|^{2}.$$