Kombinatoryka

Weronika Jakimowicz

Zadanie 1. Niech $p_n = \binom{2n}{n} 2^{-2n}$ oraz $s_n = \sum_{k=0}^n p_k$. Pokaż, że $s_n = (2n+1)p_n$. Który z ciągów, $\frac{s_n^2}{n}$ czy $\frac{s_n^2}{n+1}$, jest rosnący, a który malejący?

Zadanie 2. Niech

$$P_{n} = \left\{ (a_{i})_{i=1}^{2n} : a_{i} = \pm 1, \sum_{i=1}^{2n} a_{i} = 0 \right\}$$

Oblicz $|P_n|$

Zadanie 3. Niech Z będzie zbiorem o n elementach. Na ile sposobów można wybrać $A \subseteq B \subseteq Z$? Zakładamy, że każdy zbiór zawiera siebie i zbiór pusty.

Zadanie 4. Pokaż, że $2^{2n} = \sum_{k=0}^{n} {2n \choose k} {2(n-k) \choose n-k}$.

Zadanie 5. Na płaszczyźnie dany jest skończony zbiór punktów Z o tej własności, że żadne dwie odległości punktów zbioru Z nie są równe. Punkty A i B należące do Z łączymy wtedy i tylko wtedy, gdy A jest punktem najbliższym B lub B jest punktem najbliższym A. Udowodnić, że żaden punkt zbioru Z nie będzie połączony z więcej niż pięcioma innymi.

Zadanie 6. Płaszczyznę pokryto kołami o jednakowym promieniu w ten sposób, że środek każdego z tych kół nie należy do żadnego innego koła. Dowieść, że każdy punkt płaszczyzny należy do co najwyżej pięciu kół.

Zadanie 7. Żaba skacze po stawie, na którym pływa 8 liści ułożonych w okrąg. Na ile sposobów może przeskoczyć na najbardziej odległy od siebie liść w 2n skokach?

Zadanie 8. Udowodnić, że dla liczby naturalnej *n* większej od 1 następujące warunki są równoważne:

- a) n jest liczbą parzystą
- b) istnieje permutacja $(a_0, a_1, a_2, ..., a_{n-1})$ zbioru $\{0, 1, ..., n-1\}$ o tej własności, że ciąg reszt z dzielenia przez n liczb $a_0, a_0 + a_1, a_0 + a_1 + a_2, ..., a_0 + a_1 + ... + a_{n-1}$ jest też permutacją tego zbioru.

Zadanie 9. Ile najwięcej kawałków sera można uzyskać z pojedynczego grubego kawałka za pomocą *n* cięć nożem? Zakładamy, że każde cięcie jest wyznaczone przez płaszczyznę przecinającą kawałek sera.

Zadanie 10. W turnieju szachowym uczestniczy 2n zawodników, przy czym każdych dwóch spośród nich rozgrywa między sobą co najwyżej jedną partię. Dowieść, że taki przebieg rozgrywek, w którym żadna trójka uczestników nie rozgrywa trzech partii między sobą jest możliwy wtedy i tylko wtedy, gdy liczba wszystkich partii rozegranych w turnieju nie przekracza n^2 .

Zadanie 11. Każdemu wierzchołkowi sześcianu przyporządkowano liczbę 1 lub -1, a każdej ścianie - iloczyn liczb przyporządkowanych wierzchołkom tej ściany. Wyznaczyć zbiór wartości, które może przyjąć suma 14 liczb przyporządkowanych ścianom i wierzchołkom.

Zadanie 12. Ile jest połączeń w pary wierzchołków wypukłego 2k-kąta tak, by odpowiadające mu przekątne (lub boki) nie przecinały się.

Zadanie 13. Niech $n=p_1^{n_1}p_2^{n_2}\cdot\dots\cdot p_s^{n_2}$, ϕ będzie funkcją Eulera i

$$\psi(\mathbf{n}) = \text{lcm}(\phi(p_1^{n_1}), \phi(p_2^{n_2}), ..., \phi(p_s^{n_2})).$$

Udowodnij, że dla a względnie pierwszego z n zachodzi $n|a^{\psi(n)}-1$.

Zadanie 14. Na polach szachownicy $n \times n$ rozmieszczono n^2 różnych liczb całkowitych, po jednej na każdym polu. W każdej kolumnie pole z największą liczbą pomalowano na czerwono. Zbiór n pól szachownicy nazwiemy dopuszczalnym, jeżeli żadne dwa z tych pól nie znajdują się w tym samum wierszu ani w tej samej kolumnie. Spośród wszystkich zbiorów dopuszczalnych wybrano zbiór, dla którego suma liczb umieszczonych na jego polach jest największa. Wykazać, że w tak wybranym zbiorze jest czerwone pole.

Zadanie 15. Dane są karty 3 pola na 3. W każdym z pól możemy zrobić dziurkę. Karty są na tyle symetryczne, że możemy je obracać wokół środka i odwracać na drugą stronę nie wiedząc potem w jakiej pozycji były one na początku. Pokaż, że istnieje 8 rozróżnialnych kart 3×3 z dwoma dziurkami. Narysuj te karty.