HPM5300 DCServo 用户使用手册

HPM5300DCServo

目录

表格	目录	2
第一章	HPM5300 DCSERVO 简介	3
第二章	硬件电路	5
2. 1	电路模块介绍	5
第三章	软件开发套件	8
3. 1 3. 2	简介	
第四章	版本信息1	4
第五章	免责声明 1	5
3 12.1	格目录	
7 7 8		
	1: 主要器件位号对应器件功能名称	
	2:接口名称	
	3: 34 连接器列表	
	4: 编码器接口管脚列表	
表	5: 启动配置表	7

HPM5300DCServo

第一章 HPM5300 DCServo 简介

HPM5300 DCServo 是一款PMSM电机驱动器,由控制板CTL和驱动板DRV组成。直流24V供电,最大持续电流有效值为 5A。各器件位置如图 1,图 2所示。表 1 给出了器件位置对应器件的名称和各接口的名称。

图 1: 控制板顶层与底层器件位置图

图 2: 驱动板顶层与底层器件位置图

序号	名称	序号	名称
1	HPM5361 EG1	2	UART 芯片
3	CAN 芯片	4	RESET 按键
5	WAKEUP 按键	6	422 芯片
7	485 芯片	8	QEI 芯片
9	BOOT 拨码开关	10	3.3V 电源芯片
11	EEPROM	12	IPM模块
13	电流采样芯片	14	15V 电源芯片
15	5V 电源芯片		

HPM5300DCServo

表 1: 主要器件位号对应器件功能名称

1	JTAG DEBUG接口	2	UART TYPE-C接口
3	CAN 接口	4	GP10/QE0接口
5	编码器接口	6	驱动板接口
7	控制板接口	8	24V电源接口
9	电机接口		

表 2: 接口名称

HPM5300DCServo 第二章 硬件电路

第二章 硬件电路

HPM5300 DCSERVO 电源输入可由24V电源接口给整个系统供电或者由UART Type-C接口单独为控制板供电。I/O 接口是 3.3V 电平,如外接其他设备,需确保电平匹配,如不匹配可能导致不能正常工作或损坏芯片。

2.1 电路模块介绍

2.1.1 系统架构

HPM5300 DCSERVO 系统架构如图 3。

图 3: HPM5300 DCSERVO 硬件设计框图

2.1.2 电源

HPM5300 DCSERVO具有两种供电方式,可以选择Debug USB Type-C 或 USBO OTG Type-C接口来为整板供电。

2.1.3 UART TYPEC 接口

J1 是 HPM5300 DCSERVO UART接口,主控芯片通过CH340与外部通信。

2.1.4 扩展 10 / QEO接口

HPM5300 DCSERVO 板载一排扩展 10/QEO, 即排针 J4。J4的信号列表如表3。

HPM5300

HPM5300DCServo 第二章 硬件电路

引脚名	功能名	连接器编号		功能名	引脚名
	3. 3V	1	2	GND	
PA09	101	3	4	102	PA10
PA26	QEO_A/103	5	6	QE0_B/104	PA27

表 3: J4 连接器列表

2.1.5 **DEBUG接口**

HPM5300 DCSERVO的DEBUG接口使用P2.54排针,即J2。

2.1.6 CAN 接口

CN3 是 HPM5300 DCSERVO 板上的 CAN接口,该接口使用3.81间距接插件,方便用户使用CAN功能。CAN芯片选用TJA1042T/3。

2.1.7 USB 接口

J1 是 HPM5300 DCSERVO 板上的 USBO 接口,连接器类型是 Type-C。支持 USB 2.0 OTG。同时支持USB串行启动和 ISP,即通过USB给芯片下载bin文件,下载工具通过官网获取。

2.1.8 按键

HPM5300 DCSERVO 板载两个按键分别是RESET, WAKEUP。

WAKEUP按键用于唤醒芯片,该按键连接到芯片的wakeup管脚,专用于芯片唤醒,默认下拉,高电平有效。即芯片通过程序休眠后,按住按键,保持高电平一段时间(24M 8个clk)后唤醒。更多WAKEUP的使用请参考HPM5300用户手册。

2.1.9 编码器接口

J3是 HPM5300 DCSERVO 板上的DB15电机编码器接口,配合板子上QEI、485模块电阻的上下件可兼容SEI与QEI通信类型编码器。J3 的信号列表如表 1表 4所示。

功能名	连接器编号		功能名
QA+	1	2	QB+
GND	3	4	485_P
DATA_P	5	6	
QZ+	7	8	QZ-
485_ N	9	10	DATA_N
QA-	11	12	QB-
+5V	13	14	CLK_P
CLK_N	15		

表 4: 编码器接口管脚列表

HPM5300DCServo 第二章 硬件电路

2.1.10 **BOOT** 拨码开关设置

芯片默认是通过 拨码开关设置对应 BOOT_MODE[1:0]=[PA03:PA02] 引脚选择启动模式,配置如表 5所示。

拨码开关 [1:0]		启动模式	说明	
0FF	0FF	XPI NOR FLASH 启动	从连接在 XPI0上的串行 NOR	
			FLASH 启动(芯片内部自带FLASH)	
OFF	ON	在系统编程(ISP)/串行启动	从 UARTO/USBO 上烧写固件,0TP. 或 从UARTO/USBO启动	
ON	0FF	在系统编程(ISP)/串行启动	从 UARTO/USBO 上烧写固件,OTP. 或 从UARTO/USBO启动	
ON	ON	保留模式	保留模式	

表 5: 启动配置表

第三章 软件开发套件

3.1 简介

HPM_APP(HPM 应用程序支持包)是基于 HPM SDK框架开发的针对典型应用的软件例程集合。包含了先楫半导体推出的各个典型应用例程,例如: HPM6200四电机应用, HPM5300高精度16位ADC应用等。

图 4: HPM_APP应用支持包架构示意

在hpm_app目录下,有以下内容:

> SDK > sdk_env_v1.4.0 > hpm_app

名称 个	修改日期	类型	大小
apps apps	2024/3/7 18:23	文件夹	
boards	2024/3/7 18:23	文件夹	
components	2024/3/7 18:23	文件夹	
docs	2024/3/7 18:23	文件夹	
middleware	2024/3/7 18:23	文件夹	
services	2024/3/7 18:23	文件夹	
l tools	2024/3/7 18:23	文件夹	
CMakeLists	2024/1/25 17:13	文本文档	1 KB
README	2024/1/12 11:36	Markdown	3 KB
VERSION	2024/1/12 16:56	文件	1 KB

图 5: HPM_APP 内容

- 1. apps文件夹包含了多个应用例程。
- 2. boards文件夹下包含了多个应用板卡支持包,用户可在先楫官方地址下载对应应用板卡相关硬件资料。
- 3. components文件夹下是hpm_app所需的各个组件。
- 4. docs下是相关文档。
- 5. middleware下是hpm_app所需的中间件。
- 6. services文件夹下是各个services代码。
- 7. tools文件夹下是工具。

3.2 HPM_APP快速使用指南

1. 下载并安装Segger Embedded Studio For RISC-V。

图 6: 安装Segger Embedded Studio For RISC-V

- 2. 下载sdk_env_vx. x. x. zip压缩包后解压(sdk_env版本需要v1. 2. 0以上,本文以sdk_env_v1. 4. 0为例)。 Note: 解压目标路径中只可包含英文字母以及下划线,不可包含空格、中文等字符。
- 3. 下载hpm_app_vx. x. x. z ip压缩包后解压到当前文件夹,打开解压后的文件夹,把hpm_app文件夹整体拷贝到 sdk_env_v1. 4. 0目录下,如图13所示:

图 7: 把hpm_app文件夹拷贝到sdk_env_v1.2.0目录下

4. 在hpm_sdk下(注意不是hpm_app)的Cmakelist.txt中添加add_subdirectory(../hpm_app ../hpm_app/build_tmp), 如图14所示。

图 8: 在hpm_sdk下的Cmakelist.txt中添加路径

5. 双击打开 sdk_env_v1.4.0下 start_cmd.cmd, 该脚本将打开一个 Windows command prompt(以下将此 Windows cmd prompt 简称为 sdk prompt),如果之前步骤配置正确,将会看到图15所示,以下演示如何创建针对 HPM5300_adc_evk的应用工程。

HPM5300 ADC EVK用户使用指南

图 9: 打开 sdk prompt

- 6. 在命令行中切换路径至 hpm_app下的具体的一个示例程序, 以 adc16_sinad为例。
 - > cd ./hpm_app/apps/adc/adc16_sinad
 - > 回车
- 7. 生成目标板卡代码工程, 在命令行中输入:
 - > generate_project -x E:\SDK\sdk_env_v1.4.0\hpm_app\boards -b hpm5300_adc_evk
 - > 回车

图 10: 生成目标板卡应用程序工程

8. 当前目录下将生成名为 HPM5300_adc_evk_build 的目录。该目录下 segger_embedded_studio 的目录中可找到 Segger Embedded Studio 的工程文件sinad.emProject,双击可打开该工程。

HPM5300 ADC EVK用户使用指南

图 11: Segger Embedded Studio sinad工程

9. 使用 Segger Embedded Studio 打开sinad 工程即可进行编译。

图 12: Segger Embedded Studio 编译 sinad 工程

10. 编译完成后右击工程,选择"Options",在左侧栏"Debug"下选择GDB Server,在GDB Server Command Line中修改为如下所示配置。

Note: cmsis_dap.cfg只针对cmsis-dap调试器,其他调试请按照《HPM5300EVK用户使用手册》中描述修改相应的配置文件。

图 13: Segger Embedded Studio 修改GDB server配置

11. 完成以上操作后即可开始运行程序。

第四章 版本信息

表 3: 版本信息

日期	版本	描述
Rev1. 0	2024/05/01	初版发布。

第五章 免责声明

上海先楫半导体科技有限公司(以下简称:"先楫")保留随时更改、更正、增强、修改先楫半导体产品和/或本文档的权利, 恕不另行通知。用户可在先楫官方网站 https://www.hpmicro.com 获取最新相关信息。

本声明中的信息取代并替换先前版本中声明的信息。

HPM5300 DCSERVO 第四章 免责声明