Sampling People, Records, & Networks

Jim Lepkowski, PhD **Professor & Research Professor Emeritus** Institute for Social Research, University of Michigan Research Professor. Joint Program in Survey Methodology, University of Maryland

Unit 4

- I Stratifica-tion
- 2 Sampling variance
- 3 Proportionate allocation
- 4 Disproportionate allocations
- 5 Comapring strata
- 6 Number of strata

- Unit 1: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

Unit 4

- I Forming groups
- 2 Sampling variance
- 3 More on grouping
- 4 Allocate sample
- 5 Other allocations
- 6 Weights

- Unit 1: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
 - Forming groups
 - Sampling variance
 - More on grouping
 - Allocate sample
 - Other allocations
 - Weights to combine across strata
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

- Unit I: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
 - Forming groups
 - Sampling variance
 - More on grouping
 - Allocate sample
 - Other allocations
 - · Weights to combine across strata
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

Sampling People, Records, & Networks

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

Seq. No.	ID	Division	Sex	Rank
1	38516070	Eng&Prof	m	3
2	25428686	Medicine	f	3
3	30318994	Medicine	m	3
4	35886147	Medicine	m	1
5	41416693	Eng&Prof	f	2
6	60055684	Lit&SocSci	m	1
7	76731882	Medicine	f	3
8	51765248	Biol&Sci	m	3
9	26471240	Lit&SocSci	f	3
10	25864673	Biol&Sci	m	1
11	23049573	Medicine	m	1
12	12928113	Lit&SocSci	m	1
13	13594590	Lit&SocSci	m	1
14	20820530	Medicine	m	3
15	52026919	Medicine	m	1
16	59283042	Eng&Prof	m	3
17	37941753	Medicine	m	2
18	32498845	Eng&Prof	m	1
19	42120123	Medicine	m	1
20	83562743	Eng&Prof	m	3
21	39834280	Biol&Sci	m	2
22	60683602	Medicine	f	1
23	18186559	Medicine	m	1
24	20110594	Medicine	m	3
25	61862981	Lit&SocSci	m	1

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

- Stratification procedure
 - Population (faculty)
 - Frame (faculty list)
 - Auxiliary variables: things known about each element in the population before the sample is drawn
 - Sequence number, ID, rank, sex, division

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

1 Population

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

- Stratification procedure
 - Population (faculty, step I)
 - Frame (faculty list, step 2)
 - Auxiliary variables: things known about each element in the population before the sample is drawn
 - Sequence number, ID, rank, sex, division

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

Stratification procedure

- Population (faculty, step I)
- Frame (faculty list, step 2)
 - Auxiliary variables: things known about each element in the population before the sample is drawn
 - Sequence number, ID, rank, sex, division
- Divide list into groups based on the auxiliary variables
 - Must be 'discrete' (categorical)
 - · Must be known for every element in the list
- Count up the number of elements in each group N_h

Sampling People, Records, & Networks

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

h	Stratum	$N_{_h}$
1	Assistant	115
2	Associate	75
3	Full	210
Total		400

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

Stratification procedure

- Population (faculty, step I)
- Frame (faculty list, step 2)
 - Auxiliary variables: things known about each element in the population before the sample is drawn
 - Sequence number, ID, rank, sex, division
- Divide list into groups based on the auxiliary variables
 - Must be 'discrete' (categorical)
 - · Must be known for every element in the list
- Count up the number of elements in each group $N_{_h}$
- Compute the fraction of the population in each group \mathcal{W}_h

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

h	Stratum	N_{h}	$W_{_h}$
1	Assistant	115	0.2875
2	Associate	75	0.1875
3	Full	210	0.5250
Total		400	1.0000

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

- Stratification procedure
 - Population (faculty, step 1)
 - Frame (faculty list, step 2)
 - Auxiliary variables: things known about each element in the population before the sample is drawn
 - Sequence number, ID, rank, sex, division
 - Divide list into groups based on the auxiliary variables
 - Must be 'discrete' (categorical)
 - · Must be known for every element in the list
 - Count up the number of elements in each group $V_{_h}$
 - Compute the fraction of the population in each group W_h
 - Draw a sample from each group n_h (sample, step 3)
 - Keep track of sampling rates $f_h = n_h / N_h$
 - sampling fraction

Sampling People, Records, & Networks

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

h	Stratum	N_{h}	$W_{_h}$	n_h	f_h
1	Assistant	115	0.2875	23	0.2
2	Associate	75	0.1875	15	0.2
3	Full	210	0.5250	42	0.2
Total		400	1.0000	80	0.2

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

- Stratification procedure estimation
 - Calculate estimate for each group (estimation, step 4a)
 - Say means $\bar{y}_1 = \$50, \bar{y}_2 = \$70, \ and \ \bar{y}_3 = \90

Sampling People, Records, & Networks

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

h	Stratum	N_h	$W_{_h}$	n_h	f_h	$\overline{\mathcal{Y}}_h$
1	Assistant	115	0.2875	23	0.2	50
2	Associate	75	0.1875	15	0.2	70
3	Full	210	0.5250	42	0.2	90
Total		400	1.0000	80	0.2	

>avg.

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

- Stratification procedure estimation
 - Calculate estimate for each group (estimation, step 4a)
 - Say means $\bar{y}_1 = \$50, \bar{y}_2 = \$70, \ and \ \bar{y}_3 = \90
 - Combine estimates across groups (step 4b)

$$\overline{y} = \sum_{h=1}^{H} W_h \overline{y}_h$$

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

- Stratification procedure estimation
 - Calculate estimate for each group (estimation, step 4a)
 - Say means $\bar{y}_1 = \$50$, $\bar{y}_2 = \$70$, and $\bar{y}_3 = \$90$
 - Combine estimates across groups (step 4b)

$$\overline{y} = \sum_{h=1}^{H} W_h \overline{y}_h$$

• Or here, $\bar{y}_w = (0.2875)(\$50) + (0.1875)\$70 + (0.5250)\$90 = \74.75

Sampling People, Records, & Networks

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

h	Stratum	N_{h}	$W_{_h}$	n_h	f_h	$ar{y}_h$
1	Assistant	115	0.2875	23	0.2	50
2	Associate	75	0.1875	15	0.2	70
3	Full	210	0.5250	42	0.2	90
Total		400	1.0000	80	0.2	\$74.75

>avg.

- The procedure
- Using discrete variables
- Selection
- Combining data across groups

- Stratification procedure estimation
 - Calculate estimate for each group (estimation, step 4a)
 - Say means $\bar{y}_1 = \$50, \bar{y}_2 = \$70, \ and \ \bar{y}_3 = \90
 - Combine estimates across groups (step 4b)

$$\overline{y} = \sum_{h=1}^{H} W_h \overline{y}_h$$

- Or here, $\overline{y} = (0.2875)(\$50) + (0.1875)\$70 + (0.5250)\$90 = \$74.75$
- But there are two more steps to go ... standard error and confidence interval computation

Unit 4

- I Forming groups
- 2 Sampling variance
- 3 More on grouping
- 4 Allocate sample
- 5 Other allocations
- 6 Weights

- Unit I: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
 - Forming groups
 - Sampling variance
 - More on grouping
 - Allocate sample
 - Other allocations
 - Weights to combine across strata
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

