MIT · 6.036 | Introduction to Machine Learning (2020)

MIT 6.036(2020)· 课程资料包 @ShowMeAl

视频 中英双语字幕 课件 一键打包下载 笔记

官方笔记翻译

代码

作业项目解析

网络

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1y44y187wN

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/mit-6.036

机器学习 循环神经 神经网络 感知器

特征构建聚类

聚类 马尔可夫决策过程

随机森林 决策树 逻辑回归 卷积神经网络 状态机

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**何页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复[添砖加页]

6.036/6.862: Introduction to Machine Learning

Lecture: starts Tuesdays 9:35am (Boston time zone)

Course website: introml.odl.mit.edu

Who's talking? Prof. Tamara Broderick

Questions? Ask on Discourse: discourse.odl.mit.edu

Materials: Will all be available at course website

Today's Plan

- I. (More) logistics
- II. Machine learning setup
- III. Linear classifiers

6.036/6.862: Introduction to Machine Learning

Lecture: starts Tuesdays 9:35am (Boston time zone)

Course website: introml.odl.mit.edu

Who's talking? Prof. Tamara Broderick

Questions? Ask on Discourse: discourse.odl.mit.edu

Materials: Will all be available at course website

Today's Plan

- I. (More) logistics
- II. Machine learning setup
- III. Linear classifiers

(set "Lecture 1" category)

Computer Science Prerequisites

Computer Science Prerequisites

Python programming

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

Math Prerequisites

 Matrix manipulations (inverse, transpose, multiplication, etc.)

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

- Matrix manipulations (inverse, transpose, multiplication, etc.)
- Points and planes in dimension > 2

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

- Matrix manipulations (inverse, transpose, multiplication, etc.)
- Points and planes in dimension > 2
- Gradients

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

- Matrix manipulations (inverse, transpose, multiplication, etc.)
- Points and planes in dimension > 2
- Gradients
- Basic discrete probability (random variables, independence, conditioning, etc.)

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

- Matrix manipulations (inverse, transpose, multiplication, etc.)
- Points and planes in dimension > 2
- Gradients
- Basic discrete probability (random variables, independence, conditioning, etc.)

~	Welcome to 6.036
	Announcements
	Schedule Survey
	Basic Information
	Readiness Assessment
	Grading Policies
	Collaboration Policy
	Teaching Staff
	Software
	Numpy Tutorial
	Course calendar

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

- Matrix manipulations (inverse, transpose, multiplication, etc.)
- Points and planes in dimension > 2
- Gradients
- Basic discrete probability (random variables, independence, conditioning, etc.)

6.036/6.862: Introduction to Machine Learning

6.036/6.862: Introduction to Machine Learning, Staff

6.036/6.862: Introduction to Machine Learning, Staff

Instructors:

6.036/6.862: Introduction to Machine Learning, Staff

Instructors:

Teaching Assistants:

6.036/6.862: Introduction to Machine Learning, Staff

Instructors:

Teaching Assistants:

~	Welcome to 6.036
	Announcements
	Schedule Survey
	Basic Information
	Readiness Assessment
	Grading Policies
	Collaboration Policy
	Teaching Staff
	Software
	Numpy Tutorial
	Course calendar

• **Lecture** + course notes

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture

- Lecture + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students

- Lecture + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff

- Lecture + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework

- Lecture + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework

Week 1: Basics

Week 1 Live Lecture

Introduction to ML

Linear classifiers

Week 1 Nanoquiz
NQ due Sep 4, 2020 16:00 EDT

Week 1 Lab
LAB due Sep 7, 2020 21:00 EDT

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework

Week 1: Basics

Week 1 Live Lecture

Introduction to ML

Linear classifiers

Week 1 Nanoquiz NQ due Sep 4, 2020 16:00 EDT

Week 1 Lab
LAB due Sep 7, 2020 21:00 EDT

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework
- Nanoquiz (no midterm/final)
 - Timed

Week 1: Basics

Week 1 Live Lecture

Introduction to ML

Linear classifiers

Week 1 Nanoquiz
NQ due Sep 4, 2020 16:00 EDT

Week 1 Lab
LAB due Sep 7, 2020 21:00 EDT

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework
- Nanoquiz (no midterm/final)
 - Timed
- Office hours

Week 1: Basics

Week 1 Live Lecture

Introduction to ML

Linear classifiers

Week 1 Nanoquiz
NQ due Sep 4, 2020 16:00 EDT

Week 1 Lab
LAB due Sep 7, 2020 21:00 EDT

- Lecture + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework
- Nanoquiz (no midterm/final)
 - Timed
- Office hours
- 6.862: project (canvas.mit.edu)

Week 1 Live Lecture

Introduction to ML

Linear classifiers

Week 1 Nanoquiz
NQ due Sep 4, 2020 16:00 EDT

Week 1 Lab
LAB due Sep 7, 2020 21:00 EDT

Homework 1

Machine learning (ML): why & what

Machine learning (ML): why & what

Machine learning algorithm confirms 50 new exoplanets in historic first THE LANCET Child & Adolescent Health A new datase ARTICLES | ONLINE FIRST A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial Andreea M Pavel, MD • Janet M Rennie, MD • Linda S de Vries, PhD • Mats Blennow, PhD • Adrienne Foran, MD • Divyen K Shah, MD • et al. Show all authors Open Access • Published: August 27, 2020 • DOI: https://doi.org/10.1016/S2352-4642(20)30239-X • Check for updates

What is ML?

 What is ML? A set of methods for making decisions from data. (See the rest of the course!)

- What is ML? A set of methods for making decisions from data. (See the rest of the course!)
- Why study ML? To apply; to understand; to evaluate

- What is ML? A set of methods for making decisions from data. (See the rest of the course!)
- Why study ML? To apply; to understand; to evaluate
- Notes: ML is not magic. ML is built on math.

- What is ML? A set of methods for making decisions from data. (See the rest of the course!)
- Why study ML? To apply; to understand; to evaluate
- Notes: ML is not magic. ML is built on math.

What do we have?

What do we have? (Training) data

• *n* training data points

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})!$$
 ! R^d

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})!$$
 ! R^d

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

Label y⁽ⁱ⁾! {"1,+1}

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

Label y⁽ⁱ⁾! {"1,+1}

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

Label y⁽ⁱ⁾! {"1,+1}

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

Label y⁽ⁱ⁾! {" 1,+1}

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

Label y⁽ⁱ⁾! {" 1,+1}

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want?

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

How to label?

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector $\mathbf{x}^{(i)} = (\mathbf{x}_{1}^{(i)}, \dots, \mathbf{x}_{d}^{(i)})^{!} ! \mathbf{R}^{d}$
 - Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

How to label? Hypothesis h: R^d! {"1,+1}

$$x \longrightarrow h \longrightarrow y$$

• Example h: For any x, h(x) = +1

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

$$x \longrightarrow h \longrightarrow y$$

- Example h: For any x, h(x) = +1
 - Is this a hypothesis?

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^! ! R^d$$

- Label y⁽ⁱ⁾! {" 1,+1}
- Training data $D_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

$$x \longrightarrow \boxed{h} \longrightarrow y$$

- Example h: For any x, h(x) = +1
 - Is this a good hypothesis?

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! \mathbf{H}

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! \mathbf{H}

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! \mathbf{H}

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

Hypothesis class H: set of h! H

 Example H: All hypotheses that label +1 on one side of a line and -1 on the other side

Math facts!

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

Hypothesis class H: set of h! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

Hypothesis class H: set of h! H

Hypothesis class H: set of h! H

Hypothesis class H: set of h! H

Hypothesis class H: set of h! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

Hypothesis class H: set of h! H

Hypothesis class H: set of h! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

Hypothesis class H: set of h! H

Hypothesis class H: set of h! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! \mathbf{H}

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

Hypothesis class H: set of h! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! \mathbf{H} • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side Math facts!

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!**

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!** 11 1111

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!**

• Hypothesis class \mathcal{H} : set of \mathbf{h} ! H • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!** 1 10

 Hypothesis class H: set of h! H • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!** Linear classifier: $h(x) = sign(!! x + !_0)$ 1 10

Hypothesis class H: set of h! H

Hypothesis class H: set of h! H

Hypothesis class H: set of h! H

Hypothesis class H: set of h! H

 Hypothesis class H: set of h! H • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!** Linear classifier: $h(x) = sign(!! x + !_0)$ +1 if $!! x + !_0 > 0$ $! 1 if !! x + !_0 " 0$

Linear classifiers

 Hypothesis class H: set of h! H • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!** Linear classifier: $h(x;!,!_0) = sign(!! x + !_0)$ +1 if $!! x + !_0 > 0$! 1 if ! $x + !_0$ 0

Linear classifiers

Linear classifiers

Should predict well on future data

• Should predict well on future data

 How good is a classifier at a single point?

• Should predict well on future data

 How good is a classifier at a single point?

• Should predict well on future data

• How good is a classifier at a single point? Loss L(g,a)

Should predict well on future data

How good is a classifier at a single point? Loss L(g,a) g: guess,

Should predict well on future data

• How good is a classifier at a single point? Loss L(g,a) g: guess,

• Example: 0-1 loss

Should predict well on future data

• How good is a classifier at a single point? Loss L(g,a) g: guess,

• Example: 0-1 loss

$$L(g, a) = 0$$
 if $g = a$
1 else

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss

$$L(g, a) = 0 \text{ if } g = a$$

1 else

• Example: asymmetric loss

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss

$$L(g,a) = \begin{cases} 0 & \text{if } g = a \\ 1 & \text{else} \end{cases}$$

Example: asymmetric loss

" 1 if
$$g = 1, a = ! 1$$
,
L(g,a) = # 100 if $g = ! 1, a = 1$
0 else

a: actual

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g, a) g: guess,
 - Example: 0-1 loss

$$L(g,a) = \begin{cases} 0 & \text{if } g = a \\ 1 & \text{else} \end{cases}$$

Example: asymmetric loss

" 1 if
$$g = 1, a = ! 1$$

L(g, a) = # 100 if $g = ! 1, a = 1$
0 else

a: actual

Test error (n' new points):

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss

$$L(g,a) = \begin{cases} 0 & \text{if } g = a \\ 1 & \text{else} \end{cases}$$

Example: asymmetric loss

" 1 if
$$g = 1, a = ! 1$$
,
L(g,a) = # 100 if $g = ! 1, a = 1$
0 else

• Test error (n'new points): $E(h) = \frac{1}{n!} \sum_{i=n+1}^{n} L(h(x^{(i)}), y^{(i)})$

a: actual

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss

$$L(g,a) = \begin{cases} 0 & \text{if } g = a \\ 1 & \text{else} \end{cases}$$

Example: asymmetric loss

" 1 if
$$g = 1, a = ! 1$$

L(g, a) = # 100 if $g = ! 1, a = 1$
0 else

• Test error (n' new points): $E(h) = \frac{1}{n!} \sum_{i=n+1}^{n} L(h(x^{(i)}), y^{(i)})$

a: actual

Training error:

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss

$$L(g,a) = \begin{cases} 0 & \text{if } g = a \\ 1 & \text{else} \end{cases}$$

• Example: asymmetric loss

$$u$$
 1 if $g = 1$, $a = ! 1$, $L(g, a) = \# 100$ if $g = ! 1$, $a = 1$ 0 else

• Test error (n' new points): $E(h) = \frac{1}{n!} \sum_{i=n+1}^{n} L(h(x^{(i)}), y^{(i)})$

a: actual

• Training error: $E_n(h) = \frac{1}{n} \sum_{i=1}^{n} L(h(x^{(i)}), y^{(i)})$

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss

$$L(g,a) = \begin{cases} 0 & \text{if } g = a \\ 1 & \text{else} \end{cases}$$

Example: asymmetric loss

$$u$$
 1 if $g = 1$, $a = ! 1$, $L(g, a) = \# 100$ if $g = ! 1$, $a = 1$ 0 else

• Test error (n' new points): $E(h) = \frac{1}{n!} \sum_{i=n+1}^{n} L(h(x^{(i)}), y^{(i)})$

a: actual

- Training error: $E_n(h) = \frac{1}{n} \prod_{i=1}^{!} L(h(x^{(i)}), y^{(i)})$
- ያ Prefer h to h if $E_n(h) < E_n(h)$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$

• Have data; have hypothesis class

Want to choose a good classifier

• Recall: $x \longrightarrow h \longrightarrow y$

• Have data; have hypothesis class

Want to choose a good classifier

• Recall: $x \longrightarrow h \longrightarrow y$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New:

- Have data; have hypothesis class
- Want to choose a good classifier

- Have data; have hypothesis class
- Want to choose a good classifier

• Have data; have hypothesis class

Want to choose a good classifier

• Recall: $x \longrightarrow h \longrightarrow y$

- Have data; have hypothesis class
- Want to choose a good classifier

• Have data; have hypothesis class

Want to choose a good classifier

Have data; have hypothesis class

Want to choose a good classifier

Have data; have hypothesis class

Want to choose a good classifier

• Recall: $x \longrightarrow h \longrightarrow y$

• New: D_n \longrightarrow learning algorithm \longrightarrow h

Example:

Have data; have hypothesis class

Want to choose a good classifier

• Recall: $x \longrightarrow h \longrightarrow y$

• New: D_n \longrightarrow learning algorithm \longrightarrow h

Example:

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm \longrightarrow h
- Example:

for j = 1, ..., 1 trillion

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm \longrightarrow h
- Example:

for j=1, ..., 1 trillion Randomly sample $(!^{(j)},!_0^{(j)})$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm \longrightarrow h
- Example:

for j = 1, ..., 1 trillion Randomly sample $(!^{(j)},!_0^{(j)})$ Set $h^{(j)}(x) = h(x;!^{(j)},!_0^{(j)})$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm \longrightarrow h
- Example:

for j = 1, ..., 1 trillion Randomly sample $(!^{(j)},!_0^{(j)})$ Set $h^{(j)}(x) = h(x;!^{(j)},!_0^{(j)})$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm \longrightarrow h
- Example:

for j = 1, ..., 1 trillion Randomly sample $(!^{(j)},!_0^{(j)})$ Set $h^{(j)}(x) = h(x;!^{(j)},!_0^{(j)})$ Ex learning alg

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm \longrightarrow h
- Example:

for j = 1, ..., 1 trillion Randomly sample $(!^{(j)},!_0^{(j)})$ Set $h^{(j)}(x) = h(x;!^{(j)},!_0^{(j)})$ Ex learning alg (D_n)

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm \longrightarrow h
- Example:

for j = 1, ..., 1 trillion Randomly sample $(!^{(j)},!_0^{(j)})$ Set $h^{(j)}(x) = h(x;!^{(j)},!_0^{(j)})$

 $\texttt{Ex_learning_alg(} \ \boldsymbol{D}_{n} \ \text{; } k < \text{1 trillion)}$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm \longrightarrow h
- Example:

for j = 1, ..., 1 trillion Randomly sample $(!^{(j)},!_0^{(j)})$ Set $h^{(j)}(x) = h(x;!^{(j)},!_0^{(j)})$

Ex_learning_alg(D_n ; $k \le 1$ trillion)

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm \longrightarrow h
- Example:

for j = 1, ..., 1 trillion Randomly sample $(!^{(j)},!_0^{(j)})$ Set $h^{(j)}(x) = h(x;!^{(j)},!_0^{(j)})$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm \longrightarrow h
- Example:

for j = 1, ..., 1 trillion Randomly sample $(!^{(j)},!_0^{(j)})$ Set $h^{(j)}(x) = h(x;!^{(j)},!_0^{(j)})$

Ex_learning_alg(D_n ; $k \le 1$ trillion) Set $j! = argmin_{j" \{1,...,k\}} E_n(h^{(j)})$ Return $h^{(j')}$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow$
 - New: learning algorithm
- Example:
 - for j = 1, ..., 1 trillion Randomly sample $(!^{(j)},!_0^{(j)})$ Set $h^{(j)}(x) = h(x;!^{(j)},!^{(j)}_0)$
 - Ex_learning_alg(D_n ; $k \le 1$ trillion) Set $j! = \operatorname{argmin}_{j'' \{1,...,k\}} E_n(h^{(j)})$ Return $\mathbf{h}^{(j')}$
- hyperparameter • How does training error of Ex learning $alg(D_n;1)$ compare to the training error of Ex learning $alg(D_n;2)$?

MIT · 6.036 | Introduction to Machine Learning (2020)

MIT 6.036(2020)· 课程资料包 @ShowMeAl

视频 中英双语字幕 课件 一键打包下载 笔记

官方笔记翻译

代码

作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1y44y187wN

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/mit-6.036

机器学习 循环神经 神经网络 感知器

特征构建

聚类

马尔可夫决策过程

网络

随机森林 决策树 逻辑回归 卷积神经网络 状态机

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复[添砖加页]