Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/000656

International filing date: 24 January 2005 (24.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 003 362.5

Filing date: 22 January 2004 (22.01.2004)

Date of receipt at the International Bureau: 05 April 2005 (05.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

BUNDESREPUBLIK DEUTSCHLAND 17 03 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 003 362.5

Anmeldetag:

22. Januar 2004

Anmelder/Inhaber:

Max-Planck-Gesellschaft zur Förderung der

Wissenschaften eV, 80539 München/DE

Bezeichnung:

Verfahren zur Identifizierung und Herstellung von Effektoren Calmodulin-abhängiger Peptidyl-Prolyl

cis/trans Isomerasen

IPC:

C 12 Q 1/533

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 10. März 2005 **Deutsches Patent- und Markenamt**

Der Präsident Im Auftrag

Max-Planck-Gesellschaft zur Förderung der Wissenschaften eV H2104 DE S3

Verfahren zur Identifizierung und Herstellung von Effektoren Calmodulin-abhängiger Peptidyl-Prolyl cis/trans Isomerasen

Die vorliegende Erfindung betrifft ein Verfahren zur Identifizierung und Herstellung von Effektoren der Peptidyl-Prolyl *cis/trans* Isomerasen die durch Calmodulin aktivierbar sind. Ferner betrifft die Erfindung die Verwendung der identifizierten Effektoren zur Herstellung von Arzneimitteln, sowie Screening-Verfahren und Kits.

Peptidyl-Prolyl cis/trans Isomerasen, im weiteren als PPIasen bezeichnet, werden entsprechend den Empfehlungen des "Nomenclature Committee of the International Union of Biochemistry and Molecular Biology" ("Enzyme Nomenclature", Academic Press, 1992) unter der EC Nummer 5.2.1.8 zusammengefaßt. Die Hauptvertreter dieser Enzymklasse wurden mittels ihrer enzymatischen Aktivität gegenüber geeigneten Substraten entdeckt und definiert, wie z.B. Cyclophilin (Fischer et al, Nature. 337(1989):476-8); FKBP12 (Harding et al. Nature. 341(1989):758-60) oder Parvulin (Rahfeld et al. FEBS Letters. 352(1994):180-4). PPIasen können die cis/trans Isomerisierung von Prolylpeptidbindungen in Oligopeptiden und Proteinen katalysieren. International erfolgt die Zuordnung bisher nicht klassifizierter Proteine zu dieser Enzymklasse oft durch Primärsequenzvergleich mittels ständig aktualisierter Datenbanken wie z.B. SwissProt, TrEMBL (z.B.: Nucleic Acids Res. 31:365geeigneter der Nutzung und (cds@celera.com) **CELERA** 370(2003) oder Vergleichsalgorithmen (wie z.B. Bioinformatics 15:219-227(1999) oder US6023659). Die Güte dieser Zuordnung wird mit Hilfe geeigneter Verrechnungswerte (Scores) beurteilt.

Eine weitere Möglichkeit der Zuordnung unbekannter Proteine zur Klasse der PPIasen besteht in der Bestimmung der PPIase Aktivität mittels geeigneter PPIase Aktivitätstests wie z.B. mittels isomerspezifischer Proteolyse (*Fischer et al. Biochim. Biophys Aacta 43(1984),1101; Fischer et al. Nature. 337(1989):476-8*), magnetischer Kernresonanzspektroskopie (*Kern et al. Biochemistry 34(12995)13598, Reimer et al. Biochemical J. 326(1997)181*), oder anderer dem Fachmann bekannter spektroskopischer Bestimmungsmethoden (wie z.B.: *Janowski et al. Analytical Biochemistry 252(1997),299;*

Garcia-Echeverria et al. Biochem. Biophys Res. Commun. 191(1992),2758). Trotz Anwendung der oben aufgeführten unterschiedlichsten PPIase-Aktivitätsnachweise zeigt sich, daß einige den PPIasen zugeordnete Enzyme, wie z.B. FKBP38 (Shirane Nature Cell Biology 5(2003)1) eine im Vergleich zu bekannten PPIase-Vertretern wie Cyclophilin, FKBP12 oder Parvulin nur geringe oder kaum nachweisbare PPIase-Aktivität gegenüber typischen PPIase Substraten aufweisen. Typische PPIase Substrate weisen eine Peptidyl-Prolyl Peptidbindung auf, sind dem Fachmann bekannt und sind in zahlreichen dem Fachmann zugänglichen Literaturstellen beschrieben, so z.B.: Clinical Chemistry. 44(3):502-8, 1998; Analytical Biochemistry. 252(2):299-307, 1997; Biochemistry. 34(41):13594-602, 1995; Biochemistry. 30(25):6127-34, 1991; Biochemistry. 30(25):6127-34, 1991; Journal of Molecular Biology. 271(5):827-37, 1997, oder in Patentschriften aufgeführt, wie z.B. in CA2334812; EP0647713; WO0142245; EP0360029.

Seit 1986 wurden ferner Proteinkomplexe beschrieben die sich aus jeweils einem Molekül einer PPIase, einem niedermolekularen Wirkstoff wie Cyclosporin A oder FK506, der Proteinphosphatase Calcineurin, dem Calmodulin und bis zu 4 Kalziumionen zusammensetzen: so z.B: Cell Biochemistry & Biophysics. 30(1):115-51, 1999; Bioorganic & Medicinal Chemistry. 5(2):217-32, 1997; Current Opinion in Structural Biology. 6(6):770-5, 1996; FASEB Journal. 9(1):63-72, 1995. Transplantation Proceedings. 18(6 Suppl 5):219-37, 1986; Science. 233(4767):987-9, 1986. In keinem Fall konnte jedoch für diese Komplexe der Nachweis einer Aktivierung der PPIase Aktivität erbracht werden. Einige Untersuchungen weisen sogar auf eine Inhibierung der PPIase-Aktivität in diesem Komplex hin.

Calmodulin kommt in tierischen und pflanzlichen Zellen als weitverbreiteter intrazellulärer Ca²⁺-Rezeptor vor, der eine Vielzahl Ca²⁺-regulierter Prozesse vermittelt. Bei Anstieg des cytoplasmatischen Kalziumspiegels, verursacht durch Öffnung von Kalziumkanälen in der Plasmamembran oder einer Membran von intrazellulären Speichervesikeln, wird Calmodulin aktiviert. Viele Enzyme, Pumpen, Membrantransportproteine und andere Zielproteine werden durch-Ca²⁺/Calmodulin reguliert, wobei die meisten Wirkungen nicht direkt durch Calmodulin, sondern über Ca²⁺/Calmodulin abhängige Protein-Kinasen ausgelöst werden. In einigen Fällen ist Calmodulin auch eine selbständige regulatorische Untereinheit eines allosterischen Enzyms (z.B. Phosphorylase-Kinase). Calmodulin erkennt die verschiedenen Zielproteine offenbar an positiv geladenen, amphipathischen alpha-Helices, da beide Lappen

des Ca²⁺-Calmodulin hydrophobe Sequenzbereiche aufweisen, die von negativ geladenen Regionen umgeben sind, und damit Komplementarität zu positiv geladenen amphiphilen alpha-Helices aufweisen (P. Cohen u. C.B. Klee (Hrsg.) Calmodulin. Elsevier, Amsterdam, 1988). Obwohl Teilbereiche der Primärsequenz konserviert erscheinen, gibt es doch beträchtliche Unterschiede zwischen einzelnen Spezies, so. z.B. zwischen dem humanen Protein und dem aus Hefe.

Die Interaktion von Calmodulin mit Enzymen führt bekanntermaßen nicht zwangsläufig zu deren Aktivitätssteigerung. So sind Beispiele beschrieben in denen entweder keine Beeinflussung der Enzymaktivität, so z.B: Biochemical Journal. 368(Part 1):145-157, 2002; Biochemical Journal. 365(Part 3):659-667, 2002 oder sogar eine inhibitorische Wirkung (z.B.: Biochemistry. 42(9):2740-2747, 2003; National Academy of Sciences of the United States of America. 99(12):8424-8429, 2002; Biochemistry. 40(41):12430-12435, 2001; Proceedings of the National Academy of Sciences of the United States of America. 98(6):3168-3173, 2001) beobachtet wurde.

Des weiteren gelang es unterschiedlichsten Gruppen ab 1992, unabhängig von oben beschriebenen "Multimeren Komplexen", eine direkte Interaktion von PPIasen mit Calmodulin entweder vorherzusagen oder direkt nachzuweisen, ohne jedoch eine Aktivierung der PPIase-Aktivität durch Calmodulin nachzuweisen. So z.B.: Plant Molecular Biology. 48(4):369-381, 2002; Mini-Reviews in Medicinal Chemistry. 1(4):377-97, 2001; Planta. 215(1):119-26, 2002; Plant Molecular Biology. 48(4):369-81, 2002; Journal of of Biological Chemistry. Journal 84(3):460-71, 2002; Biochemistry. Cellular 276(42):38762-73, 2001; Trends in Plant Science. 6(9):426-31, 2001; Structure. 9(5):431-8, 2001; Developmental Biology. 225(1):101-11, 2000; Plant Physiology. 119(2):693-704, 1999; Planta. 205(1):121-31, 1998; Journal of Biological Chemistry. 272(51):32463-71, 1997; Plant Molecular Biology. 32(3):493-504, 1996; Molecular & General Genetics. 252(5):510-7, 1996; Biochemical & Biophysical Research Communications. 209(1):117-25, 1995; Journal of Biological Chemistry. 268(18):13187-92, 1993; Proceedings of the National Academy of Sciences of the United States of America. 89(22):10974-8, 1992; Proceedings of the National Academy of Sciences of the United States of America. 89(14):6270-4, 1992. In keinem Fall konnte jedoch in einer dieser Arbeiten die Aktivierung einer der untersuchten PPIase-Aktivitäten durch den Zusatz von Calmodulin beschrieben werden.

Bisher bekannte Effektoren von PPIasen wie Cyclosporin A (z.B. US4722999), FK506 (z.B.: US5457182) oder Rapamycin (z.B.: US4885171) gelten als hochwirksame Medikamente der Humanmedizin.

Das der vorliegenden Erfindung zugrunde liegende Problem war die Bereitstellung von Mitteln für ein Verfahren zur Identifizierung und /oder Herstellung eines Effektors einer Calmodulin-abhängigen Peptidyl-Prolyl *cis/trans* Isomerase. Durch Lösung dieses technischen Problems sollen spezifisch wirkende Medikamente bereitgestellt werden.

Das technische Problem wird durch die erfindungsgemäße Bereitstellung der in den Patentansprüchen charakterisierten Ausführungsformen gelöst und basiert unter anderem auf der unerwarteten und der Offenbarung im Stand der Technik entgegenstehenden Lehre, daß die PPIase-Aktivität von Calmodulin bindenden PPIasen unter bestimmten Bedingungen durch Calmodulin aktiviert werden kann.

Somit betrifft die vorliegende Erfindung ein Verfahren zur Identifizierung und/oder Herstellung eines Effektors einer Calmodulin-abhängigen Peptidyl-Prolyl cis/trans Isomerase (CaMAP) bestehend aus den Schritten

- (a) Mischen geeigneter Mengen einer CaMAP oder eines CaMAPPeptidfragments/derivats mit einer geeigneten Menge Calmodulin oder eines
 Calmodulinfragments/derivats in einer geeigneten Reaktionslösung mit und
 ohne den Effektor;
- (b) Zugabe einer geeigneten Menge eines geeigneten CaMAP-Substrates;
- (c) Messen der CaMAP-Aktivität; und
- (d) Nachweis, daß der Effektor
 - (i) ein Inhibitor ist, wenn die CaMAP-Aktivität in der Reaktionslösung mit dem Effektor kleiner ist als in der Reaktionslösung ohne den Effektor; oder
 - (ii) ein Aktivator ist, wenn die CaMAP-Aktivität in der Reaktionslösung mit dem Effektor größer ist als in der Reaktionslösung ohne den Effektor.

Der Begriff "Effektor" definiert in Zusammenhang mit der vorliegenden Erfindung Moleküle, welche die enzymatische Aktivität der Peptidyl-Prolyl cis/trans Isomerasen

modulieren (Modulatoren). Erfindungsgemäß umfasst diese Definition Inhibitoren und Aktivatoren. "Inhibitoren" sind hierbei definiert als Moleküle, die eine bestimmte enzymatische Aktivität hemmen. Der Begriff "Aktivatoren" definiert Moleküle, die eine bestimmte enzymatische Aktivität verstärken. Die nach dem vorliegenden Verfahren analysierbaren Effektoren gehören zu allen bekannten Stoffklassen, die sich aufgrund ihrer physikalisch-chemischen Eigenschaften für das Verfahren eignen. Zu den analysierbaren Effektoren gehören sowohl anorganische als auch organische Moleküle. Die Effektoren können chemisch synthetisiert oder durch Isolierung aus natürlichen Quellen, wie beispielsweise Lebewesen bereitgestellt werden. Bevorzugt handelt es sich bei den Effektoren um Peptide oder Polypeptide, Zuckermoleküle, Lipide oder Kombinationen aus diesen Molekülgruppen. Besonders bevorzugt handelt es sich bei den analysierbaren Effektoren um Peptide oder Polypeptide oder Derivate davon. Insbesondere bevorzugt umfassen die Effektoren Moleküle, die bekanntermaßen mit Peptidyl-Prolyl cis/trans Isomerasen interagieren, wie beispielsweise Peptidinhibitoren, Antikörper, Lektine oder Fragmente oder Derivate davon, deren inhibierende oder aktivierende Aktivität in dem vorliegenden erfindungsgemäßen Verfahren getestet werden kann.

"Calmodulin-abhängige Peptidyl-Prolyl *cis/trans* Isomerasen (CaMAPs)" im Sinne der Erfindung lassen sich mittels unterschiedlicher Methoden für den Fachmann erhalten, wie z.B. die nachfolgend beschriebenen. Dabei umfasst der Begriff CaMAP erfindungsgemäß gleichfalls "CaMAP-Peptidfragmente/derivate", worunter verkürzte oder durch unterschiedliche dem Fachmann bekannte Verfahren modifizierte CaMAPs zu verstehen sind, die eine Peptidyl-Prolyl *cis/trans* Isomeraseaktivität aufweisen.

Motivsuche: So kann beispielsweise in dem Fachmann zugänglichen Datenbanken wie z.B. SwissProt; Trembl; Trenew; Trest; Trgen; Trome usw. nach PPIasen mit Motiven gesucht werden, die typisch für eine Bindung von Calmodulin sind. Typische Motive sind dem Fachmann bekannt und wurden mehrfach beschrieben, so z.B. in Journal of Biological Chemistry 277(2002)14681; Journal of Biological Chemistry. 276(10):7129-35, 2001; Journal of Biological Chemistry. 273(18):10819-22, 1998; Journal of Biological Chemistry. 269(42):26431-7, 1994.; Journal of Biological Chemistry. 276(10):7129-35, 2001; Plant Physiology. 123(4):1495-506, 2000; Journal of Biological Chemistry. 275(28):21121-9, 2000; FEBS Letters. 455(3):367-71, 1999; Chinese Journal of Biotechnology. 14(3):165-71,

1998), FASEB J 1997 Apr;11(5):331-40; Nature 410(2001)1120-1124.

Das nachstehende Beispiel 4 zeigt exemplarisch eine solche erfindungsgemäße Suchstrategie mit dem helicalen Calmodulin-Motiv KHAAQRSTETALYRKM, um potentielle CaMAPs in dem Fachmann bekannten Datenbanken aufzufinden. Eine eindeutige Zuordnung zu CaMAPs erfolgt dann mittels eines oder mehrerer dem Fachmann bekannten Aktivitätstests. Einige geeignete Aktivitätsnachweisverfahren im Sinne der Erfindung sind die bereits oben beschriebene isomerspezifische Proteolyse, magnetische Kernresonanzspektroskopie, oder andere dem Fachmann bekannte spektroskopische Bestimmungsmethoden. Ferner wird in diesem Zusammenhang auf die Anwendungsbeispiele 1-3 verwiesen, die typischer PPIase-Aktivitätsbestimmungen zeigen.

Interaktion mit Calmodulin: Andere Strategien im Sinne der Erfindung zur Ermittlung erfindungsgemäßer CaMAPs nutzen die Bindungsaffinitäten zwischen Calmodulin und Bindeprotein. Wie bereits ausgeführt, gelang es in dem vorliegenden erfindungsgemäßen Verfahren überraschenderweise durch Zusatz geeigneter Mengen von Calmodulin die PPlase-Aktivität verschiedener PPlasen gegenüber geeigneten Substraten und unter geeigneten Bedingungen um mindestens eine Größenordnung zu steigern, wobei diese Steigerung bei optimalen Bedingungen mehrere Größenordnungen betragen kann, z.B. wie in den Beispielen 1-3 beschrieben das zehntausendfache. Wie in Beispiel 1 gezeigt ist, kann die CaMAP Aktivität durch Calmodulin dosisabhängig aktiviert werden. Für die Aktivierung der CaMAP kann Calmodulin unterschiedlichster Tierspezies genutzt werden. Wie im Beispiel 1 aufgeführt, z.B. aus Rinder-Hirn gewonnenes Calmodulin, oder molekularbiologisch hergestelltes humanes Calmodulin (Beispiel 2).

Zum Interaktionsnachweis gibt es derzeit unzählige Methoden und Verfahren, die auch automatisierte Suchstrategien mittels für Screening entwickelten Geräten (z.B. Biosensor [Vaccine. 18(3-4):362-70, 1999; Journal of Biological Chemistry. 273(31):19691-8, 1998], Kalorimetrie [Biochimica et Biophysica Acta. 386(1):155-67, 1975; Yao Hsueh Hsueh Pao-Acta Pharmaceutica Sinica. 35(10):774-7, 2000]; Korrelationsspektroskopie [Current Opinion in Chemical Biology. 2(3):397-403, 1998; Proceedings of the National Academy of Sciences of the United States of America. 95(4):1421-6, 1998]) einschließen. So kann bevorzugt im Sinne der Erfindung das potentielle Bindeprotein oder das wirksame Calmodulin an eine makroskopische Matrize, z.B. Agarose (Calmodulin-Agarose für Affintiätsstudien ist z.B. kommerziell erhältlich; z.B.: Sigma Bestellnr.: P4385), gebunden

und anschließend von nicht gebundenen Stoffen durch Waschen befreit werden, um danach die Interaktionspartner mittels geeigneter Strategien, wie z.B. SDS-PAGE und Massenspektrometrie, zu identifizieren. Die so durchgeführte Identifikation von Calmodulin-Interaktionspartnern war mehrfach erfolgreich, wie z.B. in folgenden Arbeiten beschrieben: Plant Physiology. 116(2):845-851, 1998; Plant Journal. 24(3):317-326, 2000; Molecular & Cellular Biochemistry. 183(1-2):183-191, 1998; Planta. 205(1):121-131, 1998; Journal of 1998. Eine andere Möglichkeiten 273(2):677-680, Chemistry. Biological Interaktionsnachweises ist die Stabilisierung der Interaktion durch chemische Modifikation, dem Fachmann unter dem Begriff "Crosslinken" bekannt, wie z.B. in folgenden Arbeiten beschrieben: Biochemistry. 40(26):7903-7913, 2001; Biochemistry. 37(23):8378-8384, 1996; Journal of Biological Chemistry. Biochemistry. 35(14):4375-4386, 1998; 271(5):2651-2657, 1996. Mit dieser Technik wurde z.B. auch das in Arabidopsis für einen Phänotyp verantwortliche AtFKBP42 (Plant Journal. 32(3):263-276, Anwendungsbeispiel 4 in der Datenbank als tr:Q9LDC0 bezeichnet, gefunden.

Strukturänderung: Eine weitere Strategie im Sinne der Erfindung zur Ermittlung erfindungsgemäßer CaMAPs basiert auf der Tatsache, dass durch Bindung von Calmodulin an CaMAP die Molekülgeometrie der CaMAP oft so verändert wird, daß dies mittels spektroskopischer Methoden erfaßbar ist. Spektroskopische Verfahren zum Nachweis dieser Strukturänderung sind dem Fachmann vertraut. Eine solche typische Veränderung ist in Anwendungsbeispiel 11 aufgeführt.

Aktivitätsänderung: Vorzugsweise kann die Interaktion von Calmodulin mit CaMAP anhand der durch diese Interaktion hervorgerufenen PPIase-Aktivitätssteigerung erkannt werden. Typische Anwendungen sind in den nachfolgenden Beispielen 1, 2, 3, 5 und 8 zusammengefaßt. Mit dieser Technik konnten in der vorliegenden Erfindung z.B. MzFKBP-66 und AtFKBP42 als CaMAPs identifiziert werden.

Erfindungsgemäß können durch Calmodulin aktivierbare PPIasen von den in Datenbanken vorhandenen Nukleotidsequenzen abweichen. So kann durch gezielte Veränderung mittels gentechnischer oder chemischer Mittel bzw. durch direkte chemische Synthese ein Protein mit neuen Eigenschaften erhalten werden. Ziel solcher Veränderungen kann es sein, CaMAPs für spezifische Rollen in Technik und Medizin zuzuschneiden. Hierzu gehört die Herstellung von CaMAPs mit: 1) erhöhter Stabilität gegenüber Hitze, extremen pH-Werten,

oxidierenden Atmosphären und organischen Lösungsmitteln; 2) verbesserter oder neuer Substratspezifität; 3) veränderten Eigenschaften, welche die Rückgewinnung bei Folgeverfahren erleichtert. 4) veränderten Eigenschaften, welche eine konstitutive Aktivität der CaMAP bewirkt. Da Konformation und Eigenschaften von Proteinen durch ihre Primärsequenz bestimmt werden, ist das Ziel im wesentlichen die geplante Veränderung von Aminosäuresequenzen existierender Proteine. Alternativ können kleine Proteine chemisch synthetisiert werden (Peptidsynthese). Die chemische Synthese ermöglicht eine weitere Regulierung der Sekundärstruktur des Proteins, da unnatürliche Aminosäuren eingeführt werden können, wie z.B. 2,2-Dimethylglycin, dessen Konformation eingeschränkt ist und deshalb eine stabile Sekundärstruktur ermöglicht. Es kann auch eine chemische Modifizierung nativer Enzyme durchgeführt werden, mit dem Ziel, die normalen Eigenschaften zu erhalten (z.B. Enzymaktivität), während eine größere Stabilität erreicht wird. Eine allgemein angewandte Methode besteht darin, Gene zu synthetisieren, die für eine gesuchte Polypeptidsequenz codieren. Hybridgene können chemisch synthetisiert werden, indem Segmente von natürlichen Genen chemisch synthetisierten DNA-Sequenzen hinzugefügt werden. Alternativ können neue Primärsequenzen gebildet werden, indem synthetische DNA-Sequenzen dazu verwendet werden, natürliche Gene zu erweitern oder Segmente natürlicher Gene zu ersetzen. Die entstandene synthetische oder Hybrid-DNA wird dann in ein Plasmid inseriert, um das geplante Protein zu synthetisieren.

Molekularbiologische Veränderung: So läßt sich die Primärsequenz von einer CaMAP mittels dem Fachmann bekannter Methoden so verändern, daß einzelne oder mehrere Aminosäuren der Primärsequenz durch andere Aminosäuren ersetzt werden. So wird zur Verbesserung der Löslichkeit einer CaMAP in Ausführungsbeispiel 9 ein Glycin in Position 2 durch ein Arginin ersetzt. Es ist auch erfindungsgemäß umfasst, die Primärsequenz N- oder C-terminal mittels einzelner Aminosäuren, Oligopeptiden oder ganzer Proteine zu verlängern. Es ist ferner erfindungsgemäß umfasst, nur (Peptid-)Teilbereiche der natürlichen oder mittels molekularbiologischer Methoden veränderten CaMAPs herzustellen. So wird in Ausführungsbeispiel 9 die Herstellung einer CaMAP mit verkürztem N-Terminus beschrieben. Eine besonders für die Suche nach Effektoren von CaMAPs geeignete gentechnisch veränderte CaMAP bzw. CaMAP-Peptidfragmente/derivate, erkennt man an der aktivierenden Wirkung von Calmodulin im Sinne der Erfindung auf die PPIase-Aktivität sind Peptidfragmente/derivate **CaMAPs** bzw. aktivierten CaMAP. Diese der

erfindungsgemäß bevorzugt.

Nach Auffinden potentieller CaMAP Sequenzen in Datenbanken kann das Protein mittels üblicher, dem Fachmann bekannter Verfahren aus der Nukleotidsequenz hergestellt werden. cDNA-Klondatenbanken stehen die Klonierung für DNA-Quellen Als Genombibliotheken zur Verfügung. Zur Übertragung und zum Einbau fremder DNA-Sequenzen in eine Wirtszelle werden DNA-Vektoren benutzt, in welche die gewünschten Sequenzen eingefügt werden. Mit Hilfe von Restriktionsendonucleasen unterschiedlicher Spezifität können die DNA-Vektoren und zellulären Genome an ausgewählten Stellen gespalten werden. Wenn Vektor und Donor-DNA mit dem gleichen Enzym gespalten werden, sind die Enden komplementär und können hybridisiert und dann durch eine DNA-Ligase (Polynucleotid-Ligase) kovalent verknüpft werden. In Abhängigkeit von Vektor- und Wirtssystem sind eine Vielzahl von Methoden entwickelt worden, die dem Fachmann zugänglich und bekannt sind um die gentechnisch hergestellte rekombinante DNA in eine Wirtszelle einzuführen. In Anwendungsbeispiel 10 wird die molekularbiologische Herstellung einer CaMAP exemplarisch aufgeführt.

Posttranslationale Veränderungen: Neben oben aufgeführter Änderung der Primärsequenz können erfindungsgemäße CaMAPs auch posttranslational verändert sein. So können CaMAPs z.B. acetyliert, methyliert, ubiquitiniliert oder phosphoryliert sein. Wobei zahlreiche in vivo ablaufende posttranslationale Veränderungen von Proteinen vom Fachmann auch in vitro durchgeführt werden können. So läßt sich die CaMAP zumindest in mittels unterschiedlicher Protein-Serin/Threonin und Protein-Tyrosin-Kinasen phosphorylieren. Je nach Herkunftsart und Isolationsprozedur kann unterschiedlich posttranslational modifizierte CaMAP erhalten werden. Übersichten posttranslationaler Modifikationen von Proteinen sind dem Fachmann bekannt und in zahlreichen Veröffentlichungen beschrieben, so z.B.: Annals of the New York Academy of Sciences. Protein Chemistry. 37:247-334, 1985; Science. in1992; Advances 663:48-62. Current Opinion in Rheumatology. 14(3):244-9, 198(4320):890-6, 1977; Biomolecular Engineering. 18(5):213-20, 2001; International Journal of Biochemistry. 24(1):19-28, 1992). Anwendungsbeispiel 10 zeigt exemplarisch die radioaktive Markierung einer CaMAP. Eine besonders für die Suche nach Effektoren von CaMAPs geeignete posttranslational veränderte CaMAP, bzw. CaMAP-Peptidfragment/derivat, erkennt man an der aktivierenden Wirkung von Calmodulin im Sinne der Erfindung auf die PPIase-Aktivität der CaMAP. Diese aktivierten CaMAPs bzw. Peptidfragmente/derivate sind erfindungsgemäß bevorzugt.

Proteinchemische Veränderung: Es kann auch erfindungsgemäß von Vorteil sein, die CaMAP chemisch zu modifizieren. Die dazu notwendigen Methoden und Verfahren sind dem Fachmann als proteinchemische Verfahren bekannt. Neben der Modifikation von Lysinen (Journal of Biological Chemistry. 273(43):28516-28523, 1998; Biochimica et Biophysica Acta. 844(2):265-9, 1985) der Oxidation oder Carbethoxylation (Pharmacology. 26(5):249-57, 1983; Biochemistry. 17(19):3924-8, 1978) sind die unterschiedlichsten chemischen Veränderungen möglich. Bekannte Techniken zur chemischen Veränderung werden z.B. in Current Opinion in Biotechnology. 10(4):324-30, 1999; Current Opinion in Chemical Biology. 5(6):696-704, 2001; Biochemistry-Russia. 63(3):334-44, 1998; Biotechnology & Applied Biochemistry. 26 (Pt 3):143-51, 1997; Biological Research. 29(1):127-40, 1996; Methods in Molecular Biology. 35:171-85, 1994; Methods in Molecular Biology. 32:311-20, 1994; Nature Cell Biology. 5(1):28-37, 2003) beschrieben. Anwendungsbeispiel 10 zeigt exemplarisch die radioaktive Markierung einer CaMAP. Eine besonders für die Suche nach Effektoren von CaMAPs geeignete chemisch modifizierte CaMAP, erkennt man an der aktivierenden Wirkung von erfindungsgemäßem Calmodulin auf die PPIase-Aktivität der CaMAP oder des CaMAP-Peptidfragments/derivats. Diese aktivierten CaMAPs bzw. Peptidfragmente/derivate sind erfindungsgemäß bevorzugt.

Calmodulin im Sinne der Erfindung umfasst sämtliche dem Fachmann bekannte Polypeptide dieser Molekülklasse, die zur Aktivierung der CaMAP-Aktivität geeignet sind. Gleichfalls sind erfindungsgemäß Calmodulinfragmente und/oder Calmodulinderivate eingeschlossen, die zu einer Aktivierung der Peptidyl-Prolyl cis/trans Isomerase-Aktivität im erfindungsgemäßen Verfahren führen. Der Nachweis der Steigerung der Peptidyl-Prolyl cis/trans Isomerase-Aktivität kann mittels dem Fachmann bekannten und oben beschriebenen Verfahren durchgeführt werden. Erfindungsgemäßes Calmodulin kann sehr unterschiedlich sein. So kann die gezielte Veränderung eines Proteins durch genetische oder chemische Mittel bzw. die direkte chemische Synthese eines Proteins mit neuen Eigenschaften erreicht werden. Ziel solcher Veränderungen ist es, Proteine für spezifische Rollen in Technik und Medizin zuzuschneiden. Hierzu gehört die Herstellung von Enzymen mit: 1) erhöhter

Stabilität gegenüber Hitze, extremen pH-Werten, oxidierenden Atmosphären und organischen Lösungsmitteln; 2) verbesserter oder neuer Substratspezifität und 3) veränderten Eigenschaften, welche die Rückgewinnung bei Folgeverfahren erleichtert. Da Konformation und Eigenschaften der Proteine durch ihre Primärsequenz bestimmt werden, ist das Ziel im wesentlichen die geplante Veränderung von Aminosäuresequenzen existierender Proteine. Alternativ können kleine Proteine chemisch synthetisiert werden (Peptidsynthese). Die chemische Synthese ermöglicht eine weitere Regulierung der Sekundärstruktur des Proteins, da unnatürliche Aminosäuren eingeführt werden können, wie z.B. 2,2-Dimethylglycin, dessen Konformation eingeschränkt ist und deshalb eine stabile Sekundärstruktur ermöglicht. Es kann auch eine chemische Modifizierung nativer Enzyme durchgeführt werden, mit dem Ziel, die normalen Eigenschaften zu erhalten (z.B. Enzymaktivität), während eine größere Stabilität erreicht wird. So wurde dem Gewebsplasminogenaktivator, der für die Behandlung von Thrombose eingesetzt wird, Resistenz gegen proteolytischen Abbau im Körper verliehen, indem die Oberflächenlysinreste durch Reaktion mit einem Säureanhydrid modifiziert wurden. Eine allgemein angewandte Methode besteht darin, Gene zu synthetisieren, die für eine gesuchte Polypeptidsequenz codieren. Es ist möglich, synthetische Gene aus bis zu 100 Nucleotiden chemisch zu synthetisieren. Hybridgene können chemisch synthetisiert werden, indem Segmente von natürlichen Genen chemisch können Alternativ hinzugefügt werden. DNA-Sequenzen synthetisierten Primärsequenzen gebildet werden, indem synthetische DNA-Sequenzen dazu verwendet werden, natürliche Gene zu erweitern oder Segmente natürlicher Gene zu ersetzen. Die entstandene synthetische oder Hybrid-DNA wird dann in ein Plasmid inseriert, um das geplante Protein zu synthetisieren.

Molekularbiologische Veränderung: So lässt sich die Primärsequenz von Calmodulin mittels dem Fachmann bekannter Methoden so verändern, daß einzelne oder mehrere Aminosäuren der Primärsequenz durch andere Aminosäuren ersetzt werden. Es ist auch möglich die Primärsequenz N- oder C-terminal mittels einzelner Aminosäuren, Oligopeptiden oder ganzer Proteine zu verlängern. Es kann auch von Vorteil sein, nur Teilbereiche des natürlichen oder mittels molekularbiologischer Methoden veränderten Proteins herzustellen, wie dies in Beispiel 9 dargestellt ist. Besonders bevorzugt im Sinne der Erfindung ist für die Aktivierung der Calmodulin-Derivat, die man an der aktivierenden Wirkung auf

die PPIase-Aktivität der CaMAP erkennt.

Posttranslationale Veränderungen: Neben oben aufgeführter Änderung der Primärsequenz kann Calmodulin posttranslational verändert sein. So kann es z.B. acetyliert, methyliert, ubiquitiniliert oder phosphorolyiert sein. Wobei zahlreiche in vivo ablaufende posttranslationale Veränderungen von Proteinen vom Fachmann auch in vitro durchgeführt werden können. So läßt sich Calmodulin in vitro und in vivo mittels unterschiedlicher Protein Serin/Threonin und Protein-Tyrosin Kinasen phosphorylieren und durch pleiotrope Proteinphosphatasen wie z.B. PP1gamma oder PP2A dephosphorylieren (Eur. J. Biochem 269(2002)3619). Neben der gezielten in vitro Phosphorylierung, mit definierter Phosphorylierung einzelner Serine, Threonine oder Tyrosine, von gentechnisch hergestelltem Calmodulin (z.B. Zhang JG. Biochemical & Biophysical Research Communications. 222(2):439-444, 1996 oder West et al. Protein Engineering. 2(4):307-11, 1988) kann Calmodulin auch entsprechend zahlreicher Vorschriften (wie z.B.: Ho et al. Preparative Biochemistry. 16(4):297-308, 1986; oder Caldwell und Haug in Analytical Biochemistry. 116(2):325-30, 1981) aus unterschiedlichsten Materialien wie z.B. Rinder-Hirn, Rinder-Herz oder Hoden hergestellt werden. Je nach Herkunftsart und Isolationsprozedur wird erhalten. Übersichten Calmodulin modifiziertes posttranslational unterschiedlich posttranslationaler Modifikationen von Proteinen sind dem Fachmann bekannt und in zahlreichen Zeitschriftenbeiträgen beschrieben, so zB.: Annals of the New York Academy of Sciences. 663:48-62, 1992; Advances in Protein Chemistry. 37:247-334, 1985; Science. 1977; Current Opinion in Rheumatology. 14(3):244-9, 198(4320):890-6, Biomolecular Engineering. 18(5):213-20, 2001; International Journal of Biochemistry. 24(1):19-28, 1992). Besonders im Sinne der Erfindung für die Aktivierung der CaMAPs geeignetes posttranslational verändertes Calmodulin bzw. Calmodulinfragment oder Calmodulin-Derivat erkennt man an seiner aktivierenden Wirkung auf die PPIase-Aktivität der CaMAP.

Proteinchemische Veränderungen: Es kann erfindungsgemäß auch von Vorteil sein, das CaMAP aktivierende Calmodulin chemisch zu modifizieren. Die dazu notwendigen Methoden und Verfahren sind dem Fachmann als proteinchemische Verfahren bekannt. Neben der Modifikation von Lysinen (Journal of Biological Chemistry. 273(43):28516-28523, 1998; Biochimica et Biophysica Acta. 844(2):265-9, 1985) oder der Oxidation oder

Carbethoxylation von Calmodulin (Pharmacology. 26(5):249-57, 1983; Biochemistry. 17(19):3924-8, 1978) sind die unterschiedlichsten chemischen Veränderungen an Proteinen möglich. Bekannte Techniken zur chemischen Veränderung werden z.B. in Current Opinion in Biotechnology. 10(4):324-30, 1999; Current Opinion in Chemical Biology. 5(6):696-704, 2001; Biochemistry-Russia. 63(3):334-44, 1998; Biotechnology & Applied Biochemistry. 26 (Pt 3):143-51, 1997; Biological Research. 29(1):127-40, 1996; Methods in Molecular Biology. 35:171-85, 1994; Methods in Molecular Biology. 32:311-20, 1994; Nature Cell Biology. 5(1):28-37, 2003) beschrieben. Besonders für das erfindungsgemäße Verfahren für die Aktivierung der CaMAPs geeignetes chemisch modifiziertes Calmodulin bzw. Calmodulinfragment Calmodulin-Derivat ist bevorzugt und kann an seiner aktivierenden Wirkung auf die PPlase-Aktivität einer CaMAP erkannt werden.

Der Begriff "geeignete CaMAP-Substrate" umfasst im Sinne der Erfindung alle Substrate der Peptidyl-Prolyl cis/trans Isomerasen. Insbesondere sind dies Substanzen, die eine Peptidyl-Prolyl Peptidbindung aufweisen. "Geeignete CaMAP-Substrate" im Sinne der Erfindung sind in zahlreichen dem Fachmann zugänglichen Literaturstellen beschrieben, so z.B.: Clinical Chemistry. 44(3):502-8, 1998; Analytical Biochemistry. 252(2):299-307, 1997; Biochemistry. 34(41):13594-602, 1995; Biochemistry. 30(25):6127-34, 1991; Biochemistry. 30(25):6127-34, 1991; Journal of Molecular Biology. 271(5):827-37, 1997, oder in Patentschriften aufgeführt, wie z.B. in CA2334812; EP0647713; WO0142245; EP0360029. Besonders bevorzugte CaMAP-Substrate im Sinne der Erfindung sind Peptide mit einer Xaa-Pro-Yaa – Gruppierung, wobei Xaa vorzugsweise für die Aminsäuren Glu, Phe oder Leu steht, wie z.B. Suc-Ala-Phe-Pro-Phe-NHNp oder Suc-Ala-Ala-Glu-Pro-Arg-NHNp.

"Geeignete Mengen" der angegebenen Komponenten des erfindungsgemäßen Verfahrens sind unter anderem aus den Ausführungsbeispielen zu entnehmen und liegen für die erfindungsgemäße CaMAP oder das CaMAP-Peptidfragment/derivat, Calmodulin oder Calmodulinfragment/derivat sowie dem CaMAP-Substrat in einem Bereich von 0,01μM bis 10mM in der Reaktionslösung. Bevorzugt ist ein Bereich von 0,1μM bis 1mM. Besonders bevorzugt ist ein Wert von 1 μM.

Die erfindungsgemäße "geeignete" Reaktionslösung ist definiert als Puffersystem, das neben

Wasser, Pufferbestandteile auch weitere, z.B. nachstehend spezifizierte Komponenten enthalten kann und die Identifizierung eines Effektors der Calmodulin-abhängigen Peptidyl-Prolyl *cis/trans* Isomerasen gewährleistet.

Der Nachweis der Aktivierung von CaMAPs durch Calmodulin ist für den Fachmann nicht naheliegend (siehe Beispiel 1). Die CaMAP FKBP38 neigt z.B. zum Präzipitieren. Dadurch können Aktivitätsbestimmungen verfälscht oder unmöglich werden. So führt der Zusatz von Kalziumionen, die üblicherweise zur Calmodulinaktivierung genutzt werden, bei Konzentrationen größer 5 mM zum Ausfallen der Proteine im Meßansatz. Wie in den Beispielen 1,2 und 3 gezeigt, kann es vorteilhaft sein in den Aktivitätsassays ein Protein ohne hydrophoben Bindungsanker (beschrieben in Beispiel 9) zu verwenden. Der Nachweis von CaMAP-Aktivität mit dem kompletten Protein, gestaltet sich wegen der auftretenden Präzipitationsprobleme schwieriger.

Die nach Zusammenmischen in der Reaktionslösung enthaltenen Komponenten liegen vorzugsweise in gelöster Form vor. Zur Herstellung der Reaktionsansätze in geeigneten Reaktionsgefäßen sind die Komponenten unter Durchmischung zuzugeben. Die Mischung kann bereits durch geeignete, dem Fachmann geläufige Pipettiertechniken erreicht werden. Zusätzlich kann durch mechanische Einwirkung, beispielsweise durch Vortexen, Schwenken oder Schütteln der Mischeffekt verbessert werden.

Ferner kann es vorteilhaft sein, nach Mischung aller notwendigen Komponenten über eine gewisse Zeit, beispielsweise 5 sec, 10 sec, 30 sec, 1 min, 2 min, 5 min, 10 min oder 20 min die Reaktionslösung zu inkubieren, bevor die Reaktion gestartet wird.

Effektoren von CaMAPs lassen sich im Sinne des erfindungsgemäßen Verfahrens einfach identifizieren. Erfindungsgemäß kann dazu entweder eine konstitutiv aktive CaMAP verwendet werden oder die Aktivierung der CaMAP kann durch Calmodulin bzw. entsprechende Fragmente oder Derivate erfolgen. Durch diese Aktivierung wird das katalytische Zentrum der CaMAP so verändert, daß die Katalyse typischer CaMAP Substrate unter optimalen Katalysebedingungen mindestens um das 2-fache gesteigert wird. Diese Steigerung der CaMAP Aktivität um mindestens das 1,5 —fache, bevorzugt mindestens das 2-fache ist auch ein Kennzeichen optimaler Katalysebedingungen. Um optimale Katalysebedingungen zu erreichen, kann ein breiter Bereich von Puffern verwendet werden. Insbesondere kann ein Puffer mit einem pH-Wert im Bereich von 5-10, stärker bevorzugt im Bereich von 6-8 und insbesondere im Bereich zwischen 6.5-8.0 verwendet werden. Ein

Beispiel für ein geeignetes Puffersystem ist 20 mM HEPES-Puffer mit einem pH von 7.8. Weitere erfindungsgemäße Pufferlösungen umfassen unter anderem TRIS/HCl, HEPES/NaOH oder Ammoniumcarbonatpuffer in einer Endkonzentration von 5 mM bis 200 mM.

Die Reaktionstemperatur des erfindungsgemäßen Verfahrens kann gewählt werden z.B. im Bereich von 0 °C bis 30 °C vorzugsweise zwischen 5 °C und 15 °C, besonders bevorzugt liegt die Temperatur bei 8 °C. Eine höhere Temperatur kann zur Denaturierung von Proteinen führen, während eine niedrigere Temperatur zu einer Abnahme der Reaktionsgeschwindigkeit führen wird. Das Reaktionsgemisch kann zusätzlich Proteinstabilisierende Mittel, wie z.B. Saccharose, Sorbitol oder Ethylenglykol, vorzugsweise in einer Menge von 200 bis 500 mM und insbesondere in einer Menge von 250 bis 300 mM enthalten. Ferner kann es von Vorteil sein, der Reaktionslösung Proteinaseinhibitoren, z.B. das von Roche^R erhältliche "PI Complete"-Gemisch in dem vom Hersteller angegebenen Mengenbereich zuzusetzen. Da erfindungsgemäßes Calmodulin durch Zusatz von zweiwertigen Ionen wie Ca2+ erhalten werden kann, dürfen dem Reaktionsansatz zugesetzte Chemikalien das zur Aktivierung des Calmodulin erforderliche zweiwertige Ion nur soweit maskieren, das die Bildung eines wirksamen Calmodulins nicht verhindert wird. Das Ausführungsbeispiel 11 zeigt, wie durch Zusatz eines Gemischs von Kalziumionen und Calmodulin zum Testansatz die Aktivierung einer CaMAP erreicht wird und wie durch Chelatierung der Kalziumionen diese Aktivierung verhindert werden kann. Effektoren aktivierter CaMAPs können die PPIase-Katalyse, wie in Beispiel 5 gezeigt, signifikant beeinflussen. Eine signifikante Beeinflussung liegt vor, wenn die Aktivierung der CaMAP um mindestens 50% verändert wird, wobei bei Verwendung von Inhibitoren die Calmodulin-Aktivierung aufgehoben werden kann, wie dies in Beispiel 5 dargestellt ist.

Affinitätsassays zum Nachweis von CaMAP-Effektoren: Effektoren von CaMAPs können die durch Calmodulin an der CaMAP bewirkte Konformationsänderung (Ausführungsbeispiel 11) so beeinflussen, das die PPIase-Aktivität der "Aktivierten CaMAP" trotz sonst optimaler Reaktionsbedingungen verändert wird. So können Effektoren z.B. auf die CaMAP Bindungsstelle zum wirksamen Calmodulin, oder auf die Calmodulin Bindungsstelle zur CaMAP wirken. Inhibitoren können auch auf die zur Aktivierung von wirksamen Calmodulin gegebenenfalls notwendigen Bindungsstellen für zweiwertige Metallionen, wie z.B. der Bindungsstellen für Kalziumionen wirken. Inhibitoren können aber auch direkt am

PPIase-Katalysezentrum wirken. So kann z.B. der Wirkstoff Cyclosporin A die CaMAP Cyp40 (Swiss-Prot Nomenklatur: CYP4_HUMAN) signifikant inhibieren, wie dies in Beispiel 8 aufgeführt ist. Der Wirkstoff FK506 wiederum kann signifikant die CaMAP FKB38 (Swiss-Prot Nomenklatur: FKB8_HUMAN) inhibieren, wie dies in Beispiel 5 aufgeführt ist. Effektoren von CaMAPs können mittels dem Fachmann bekannten Affinitätsassays gefunden werden. Solche Affinitätsassays zum Nachweis der Bindung eines Liganden können sehr unterschiedlich aufgebaut sein. Beispiele sind in den Patentschriften CA2162568; US5434052; WO0122084; US6281006; WO03018846; EP1202056; DE10030798A1; US5773225; NZ504112; HU0201142; HK1029376 GB2300260; aufgeführt. Prinzipiell lassen sich diese Nachweisverfahren in zwei verschiedene Typen einteilen. In solche (A), bei denen der Effektor die Aktivierung der CaMAP beeinflußt. Typisch ist hier der Einfluß auf die Stärke der Interaktion zwischen wirksamen Calmodulin und CaMAP, wie dies in den Ausführungsbeispielen 6 und 11 gezeigt ist. Und in solche (B), bei denen der Effektor am oder in der Nähe des katalytischen Zentrums bindet. Typisch sind hier Bindungsassays, bei denen Liganden aktivierter CaMAPs dadurch gefunden werden, in dem diese schon bekannte Liganden vom katalytischen Zentrum verdrängen. Eine solche Ausführungsform ist in Ausführungsbeispiel 7 angegeben.

Aktivitätsassavs zum Nachweis von Effektoren aktivierter CaMAPs. Optimale Verfahren zum Nachweis von Effektoren der CaMAP Aktivität sind mittels der bereits bekannten Effektoren Cyclosporin A und FK506 zu erkennen. Dazu wird die Aktivität der CaMAP durch eine hinreichende Menge eines wirksamen Calmodulin gegenüber einem geeignetem CaMAP Substrates bei Nutzung eines geeigneten PPIase-Aktivitätstestes so aktiviert, daß durch Zusatz einer minimalen Menge eines bekannten CaMAP Inhibitors eine signifikante Verminderung der CaMAP Aktivität beobachtbar ist. Um eine Aktivierung von CaMAPs durch wirksames Calmodulin zu erreichen, kann es von Vorteil sein, die CaMAP für bis zu 20 Minuten bei 20 °C mit diesem Protein- oder Proteinfragment zu inkubieren. Es kann aber auch von Vorteil sein, eine größere Menge durch Zusatz einer geeigneten Menge an wirksamen Calmodulin bereits aktivierter CaMAP nach ihrer Herstellung in Aliquots so zu lagern, daß diese so aktivierte CaMAP zur CaMAP Aktivitätsmessung schon zur Verfügung steht. Um eine Hemmung der CaMAP-Aktivität durch Effektoren zu erreichen kann es von Vorteil sein, in einem ersten Schritt die CaMAP mit einer geeigneten Konzentration an wirksamen Calmodulin zu inkubieren um nach dieser ersten Inkubation den Effektor

zuzugeben und diesen mit dem Gemisch weiter zu inkubieren. Es kann aber auch von Vorteil sein, die Reihenfolge der Zugabe umzukehren oder eine gleichzeitige Inkubation vorzunehmen. Bei Verwendung von konstitutiv aktiver CaMAP kann der Zusatz von wirksamem Calmodulin unterbleiben Die Inkubationszeiten des Effektors mit aktivierter CaMAP sollen mindestens 1 Sekunde, vorzugsweise 300 Sekunden betragen, können aber oder auch weitaus größer sein, um eine Effektuierung beobachten zu können. Geeignete CaMAP Assays sind alle PPIase-Aktivitätsassays, die eine Vorinkubation von Effektor und aktivierter CaMAP erlauben und welche die Messung der Effektuierung durch CaMAP Effektoren ermöglichen.

(1994) 317-318; S.J. Martin u. D.R. Green Cell 82 (1995) 349-352; M. Tewari et al. J. Biol. Chem. 270 (1995) 18.738-18.741; C.D. Gregory (Hrsg.) Apoptosis and the Immune Response Wiley-Liss., New York, 1995]. Es sind aus der Literatur Beispiele bekannt, in denen die bereits bekannten Hemmstoffe der CaMAP-Aktivität Apoptose auslösen (Cyclosporin A: International Journal of Molecular Medicine. 7(4):431-437, 2001; Anticancer Research. 20(5B):3363-3373, 20001; Scandinavian Journal of Immunology. 56(4):353-360, 2002; FK506: Life Sciences. 66(23):2255-2260, 2000; Clinical & Experimental Immunology. 125(1):19-24, 2001) aber auch Apoptose verhindern (Scandinavian Journal of Immunology. 56(4):353-360, 2002; American Journal of Respiratory & Critical Care Medicine. 165(4):449-455, 2002; Carcinogenesis. 21(11):2027-2033, 2000; FEBS Letters. 447(2-3):274-276, 1999;FK506 Brain Research. 826(2):210-219, 1999; British Journal of Pharmacology. 126(5):1139-1146, 1999; NeuroReport. 9(9):2077-2080, 1998). Eine Ursache der widersprüchlichen Wirkung beider Hemmstoffe auf Zellebene kann mit der Beeinflussung weiterer PPIasen, die nicht durch wirksames Calmodulin aktivierbar sind, erklärt werden. In humanen Zellen sind mehr als 5 verschiedene PPIasen Cyclosporin A-sensitiv und mehr als 5 verschiedene PPIasen FK506-empfindlich. Daß spezifische CaMAP Inhibitoren bei humanen Zellen Apoptose hervorrufen sollten zeigt ein publiziertes Depletionsexperiment der CaMAP FKBP38 mittels siRNA (Nature Cell Biology 5(2003)1). Deshalb stellt das erfindungsgemäße Verfahren ferner eine neue Methode zur Identifizierung und Herstellung von Effektoren zur Entwicklung von Therapien zur gezielten Auslösung der Apoptose bereit, an denen CaMAPs beteiligt sind. Solche Mittel und Therapien sind wichtig bei all den Erkrankungen, die durch gezielte Vernichtung von Zellen therapierbar sind. Dazu gehören insbesondere Tumorerkrankungen. Die gezielte therapeutische Induktion von Apoptose kann aber auch von Vorteil sein, um die Immunogenität von Zellen zu beeinflussen, wie dies z.B. in US5,922,598 beschrieben wird.

In der erfindungsgemäßen Ausführungsform ist gleichfalls ein Verfahren zum Screening und/oder Herstellung eines Effektors einer CaMAP, bestehend aus den Schritten

(a) Mischen geeigneter Mengen einer CaMAP oder eines CaMAP-Peptidfragments/derivats mit einer geeigneten Menge Calmodulin oder eines Calmodulinfragment/derivats in einer geeigneten Reaktionslösung mit und ohne eine Probe, die eine einzelne oder eine Vielzahl von Verbindungen enthält, die Kandidaten für einen Inhibitor oder Aktivator sind;

- (b) Zugabe einer geeigneten Menge eines geeigneten CaMAP-Substrates;
- (c) Messen der CaMAP-Aktivität; und
- (d) Nachweis, daß die Probe
 - (i) inhibitorische Aktivität besitzt, wenn die CaMAP-Aktivität in der Reaktionslösung mit der Probe kleiner ist als in der Reaktionslösung ohne die Probe; oder
 - (ii) aktivierende Aktivität besitzt, wenn die CaMAP-Aktivität in der Reaktionslösung mit der Probe größer ist als in der Reaktionslösung ohne die Probe, umfaßt.

Das erfindungsgemäße Verfahren schließt die Ausführungsbeschreibungen für die Schritte (a) bis (d) des Verfahrens zur Bestimmung, ob ein Effektor ein Inhibitor oder ein Aktivator ist mit ein, wobei hierbei anstelle eines Effektors eine Probe untersucht wird. Unter "Probe" sind sämtliche natürlichen oder künstlichen Proben zu verstehen, die Kandidaten für Inhibitoren oder Aktivatoren des vorgegebenen Enzyms enthalten und in dem erfindungsgemäßen Verfahren getestet werden können. Darunter fallen sowohl homogene Lösungen eines Moleküls als auch Gemische mehrerer Moleküle. Unter Molekülen, die in dem Verfahren durchmustert werden können, sind die als Effektoren gekennzeichneten Moleküle der vorgenannten Ausführungsform eingeschlossen. Die Proben können natürlichen Quellen entnommen sein oder synthetisch hergestellt sein. Beispielsweise können die Proben Molekülbibliotheken entnommen werden, wie sie beispielsweise für Oligopeptide oder Naturstoffe existieren. Desweiteren können Proben auch durch Aufschlüsse biologischen Materials, beispielsweise Lebendmaterial oder ehemals lebendiges Material, entnommen werden oder Kulturüberständen von Mikroorganismen-kulturen entstammen. Die Proben können als Rohextrakt oder -Überstand vorliegen oder können in einer frei zu wählenden Reinigungsform vorliegen. Zur Reinigung können die Extrakte oder Überstände fraktioniert werden. Hierfür stehen dem Fachmann zahlreiche Techniken zur differenzielle Fällung, Gradientenzentrifugation, beispielsweise Verfügung, wie sämtliche umfaßt biologische Material Chromatographietechniken, etc. Das

Organismenbereiche, wobei das Material entweder kultiviert oder der Natur entnommen sein kann.

"Screening" bedeutet im Zusammenhang mit der vorliegenden Erfindung die Durchmusterung einer Vielzahl von Proben, die eine einzelne oder eine Vielzahl von Verbindungen enthalten, die Kandidaten für Inhibitoren oder Aktivatoren des vorgegebenen Enzyms darstellen, mit dem Ziel, Inhibitoren oder Aktivatoren der CaMAP zu identifizieren. Im allgemeinen bedeutet "Screening" ein Verfahren, bei dem eine Vielzahl von Proben auf eine bestimmte Eigenschaft hin untersucht wird, von denen im allgemeinen zuvor nicht bekannt ist, wie sie auf die zu testende Eigenschaft reagieren.

Ein weiterer Aspekt der vorliegenden Erfindung erlaubt die Quantifizierung von Effektoren in biologischen Materialien oder Proben. CaMAP-Effektoren können in biologischen Materialien aus unterschiedlichsten Ursachen zu finden sein. Neben intrinsisch in Zellen vorkommenden Gen-kodierten Effektoren, können Effektoren auch durch Kontamination mit anderen biologischen Materialien, wie z.B. eine Infektion durch Bakterien oder durch die Nahrungsaufnahme, insbesondere bei gestörter Darmresorption in biologische Materialien kommen, in denen sich diese Effektoren nachweisen lassen. Effektoren können aber auch als Medikament, entweder direkt als Wirkstoff, oder indirekt als Vorläuferwirkstoff beabsichtigt in biologische Materialien verbracht werden. Die Quantifizierung dieser CaMAP -Effektoren in biologischen Materialien kann nützlich sein, um bei therapeutischer Gabe dieser Effektoren über die ermittelte Bioverfügbarkeit ein optimales Therapieregime zu erreichen. Sind bestimmte Konzentrationen intrinsisch in Zellen vorkommender CaMAP-Effektoren Kennzeichen bestimmter Zustände dieser biologischen Objekte, und kann aus diesen besonderen Zuständen dieser Materialien eine Kenntnis erhalten werden, die nützlich ist, ist es von Vorteil deren Konzentration zu quantifizieren. Bei der Quantifizierung von CaMAP-Effektoren kann es von Vorteil sein, deren Konzentration in Form eines Schwellentestes zu ermitteln. Nach Definition eines Normbereiches, der die Konzentration des CaMAP-Effektors in der biologischen Probe des Zustandes (A) beschreibt, kann aus einer signifikanten Abweichung der Konzentration des CaMAP-Effektors von diesem Normwert auf eine Änderung des Zustandes (A) in den Zustand (B) der biologischen Probe geschlossen werden. Ausführungsbeispiele 6 und 7 zeigen typische erfindungsgemäße Anwendungen.

Zusätzlich betrifft die Erfindung als bevorzugte Ausführungsform ein Verfahren, das die vorgenannten Schritte (a) bis (d) umfaßt und zusätzlich den Schritt:

(e) Fraktionieren der Probe, für die in Schritt (d) inhibitorische oder aktivierende Aktivität festgestellt wurde, und Wiederholen der Schritte (a) bis (d), bis der in der Probe enthaltene Inhibitor oder Aktivator gereinigt vorliegt.

In einer weiteren bevorzugten Ausführungsform sind die CaMAPs des erfindungsgemäße Verfahren ausgewählt aus der Gruppe bestehend aus den humanen CaMAPs wie FKBP36, FKBP37.7, FKBP44, FKBP51, FKBP52 und Cyp40, und Enzymen, welche in der "Swissprot"-Datenbank, die z.B. über die folgende Internetadresse http://us.expasy.org/sprot/ zugänglich sind, entsprechend der dort vorgenommenen Bezeichnungen FKBP66, FKBP42, AILP1 RAT;AIPL1 HUMAN, AIP MOUSE, AIP CERAE, AIP HUMAN, AILP1_RABIT, FKB8_HUMAN, FKB8_MOUSE, FKB5_HUMAN, AILP1 MOUSE, FKB7 WHEAT, FKB4_HUMAN, FKB4_MOUSE, FKB4 RABIT, FKB5_MOUSE, CYP4_BOVIN und CYP4_HUMAN aufgeführt sind.

oder Calmodulin das Ausführungsform ist bevorzugten weiteren In einer Calmodulinfragment/derivat des erfindungsgemäße Verfahren, welches in der "Swissprot"-Datenbank entsprechend der dort vorgenommenen, nachfolgend aufgeführten Bezeichnung den Fachmann zugänglich ist, ausgewählt aus der Gruppe bestehend aus: CALM_ACHKL (P15094), CALM_BLAEM (Q9HFY6), CALM_CANAL (P23286), (P04352), CALM DICDI (P02599), CALM CHLRE CALM_CAPAN (P93087), (P19533), CALM EMENI (P02594),(P07181), CALM_ELEEL CALM DROME (P93171), CALM HELAN CALM FAGSY (Q39752), (P11118), CALM EUGGR (P02593), CALM KLULA (O60041), CALM_HUMAN (P13565), CALM_HORVU (P27161), CALM_LYTPI (P05935), CALM_MAGGR (Q9UWF0), CALM LYCES CALM MEDSA (P48976), (P41040), CALM MALDO CALM_MAIZE (Q02052),CALM ORYSA CALM NEUCR (P02596), (P17928), CALM METSE (P29612), CALM_PARTE (P07463), CALM_PATSP (P02595), CALM_PHYIN (P27165), (P41041), CALM_PNECA (P11120), CALM PLECO (P24044),CALM PLAFA CALM SOLTU (P13868), CALM SCHPO (P05933),CALM_PYUSP (P11121),

(P05934),CALM STRPU (P21251), CALM STIJA CALM SPIOL (P04353), (Q05055),CALM TETTH (P02598), CALM TETPY (P27166), CALM STYLE CALM WHEAT (P04464), CALM TRYCR (P18061), CALM_TRYBB (P04465),CALM_YEAST (P06787), Q9UWF0, Q02052, P19533, AAL89686, Q7M510, Q96TN0, P27165, AAG01043, P02593, Q7T3T2, Q40302, O02367, Q95NR9, Q9UB37, AAH54805 AAH54973, AAL02363, AAH59427, AAH59500, AAH54600, AAH53150, AAH50926, AAH45298, AAH44434, AAP88918, AAP35501, AAP35464, BAC56543, AAC83174, AAD55398, AAC63306, AAD45181, AAH21347, BAC40168, BAB28631, BAB28319, BAB28116, BAB23462, AAH58485, AAH51444, AAH47523, P07181, Q7QGY7, Q8STF0, AAO25039, AAM50750, AAK61380, BAB89360, O94739, P02594, Q9D6G4, O16305, Q96HK3, P11120, O96102, P21251, Q9U6D3, Q8X187, O93410, AAR10240, P11121, Q9XZP2, Q42478, AAQ01510, P17928, P93171, O97341, O96081, AAD10244, AAM81203, AAA34238, AAA34014, AAA34013, P02596, P93087, Q43699, CAD20351, BAB61916, BAB61915, AAF65511, P02595, P59220, P27162, Q93VL8, Q39447, Q94801, AAQ63462, AAQ63461, AAM81202, BAB61918, BAB61917, BAB61914, BAB61913, BAB61912, BAB61911, BAB61910, BAB61909, AAG27432, AAG11418, wobei sich diese oder ähnlich geeignete Sequenzen mittels Sequenzvergleichsprogrammen wie z.B. dem BLAST-Programm in biochemischen Datenbanken, welche ständig durch Neueinträge aktualisiert und erweitert werden, leicht auffinden lassen.

In einer weiteren bevorzugten Ausführungsform enthält die geeignete Reaktionslösung des erfindungsgemäßen Verfahrens zweiwertige Ionen ausgewählt aus der Gruppe bestehend aus Zn²⁺, Cu²⁺, Co²⁺, Ni²⁺, Mn²⁺, Ca²⁺ und/oder Mg²⁺. In einer bevorzugten Ausführungsform enthält die geeignete Reaktionslösung die erfindungsgemäßen zweiwertigen Ionen in einer Konzentration von 0,1 bis 20 mM. Besonders bevorzugt ist ein Konzentration der zweiwertigen Ionen in einer Konzentration von 2.5, 3, 3,5, 4, 4,5, 5, 5,5, 6 oder 6,5 mM. Die zweiwertigen Ionen können erfindungsgemäß einzeln oder in jedweder Kombination in der Reaktionslösung vorliegen. Optional ist die Zugabe weiterer Ionen wie z.B. Na⁺, K⁺, Li⁺ in einer Konzentration von 0,5 bis 100 mM der Reaktionslösung.

In einer weiteren bevorzugten Ausführungsform weist die geeignete Reaktionslösung des erfindungsgemäßen Verfahrens einen pH-Wert zwischen pH 5 und pH 10 auf. Besonders bevorzugt ist ein pH-Wert von 6, 6,25, 6,5, 6,75, 7,7,25, 7,5, 7,75, 8 oder 8,25.

Zusätzlich betrifft die Erfindung in einer weiteren Ausführungsform ein Verfahren zur

Identifizierung und/oder Herstellung eines Effektors einer CaMAP bestehend aus den Schritten

- (a) Mischen geeigneter Mengen einer konstitutiv aktiven CaMAP in einer geeigneten Reaktionslösung mit und ohne den Effektor;
- (b) Zugabe einer geeigneten Menge eines geeigneten CaMAP-Substrates;
- (c) Messen der CaMAP -Aktivität; und
- (d) Nachweis, daß der Effektor
 - (i) ein Inhibitor ist, wenn die CaMAP-Aktivität in der Reaktionslösung mit dem Effektor kleiner ist als in der Reaktionslösung ohne den Effektor; oder
 - (ii) ein Aktivator ist, wenn die CaMAP-Aktivität in der Reaktionslösung mit dem Effektor größer ist als in der Reaktionslösung ohne den Effektor.

Der Begriff "konstitutiv aktiv" beinhaltet durch beispielsweise Anwendung einer oder mehrere der oben aufgeführten Methoden, eine CaMAP so zu verändern, daß diese die enzymatische Aktivität einer CaMAP ohne die Gegenwart von Calmodulin erreicht. Durch diese Methoden kann erfindungsgemäß eine Aktivitätssteigerung einer CaMAP unter optimalen Bedingungen um mindestens das 1,5-fache, erfindungsgemäß besonders bevorzugt das mindestens 2–fache erreicht wird. Strategien um zu einem konstitutiv aktiven Enzym zu kommen sind dem Fachmann bekannt und wurden mehrfach beschrieben, so z.B. in Journal of Biological Chemistry. 272(6):3223-3230, 1997; Journal of Neurobiology. 52(1):24-42, 2002 und FEBS Letters. 503(2-3):185-188, 2001 Die Verwendung einer konstitutiv aktivierten CaMAPs ist für das erfindungsgemäße Verfahren besonders bevorzugt.

Des weiteren betrifft die Erfindung als bevorzugte Ausführungsform ein Verfahren, bei dem die Abfolge der Schritte (a) und (b) vertauscht ist.

Das erfindungsgemäße Verfahrens ermöglicht weiter den Nachweis des Effektors durch spektroskopische oder radioaktive Methoden. Spektroskopische Methoden im Sinne der Erfindung sind dem Fachmann geläufig und umfassen u.a. CD-Spektroskopie, Fluoreszenzspektroskopie, Absorptionsspektroskopie. Ferner können zum Nachweis der erfindungsgemäßen Effektoren massenspektrometrische Verfahren wie z.B. MS-MALDI, Liganden-Bindungsverfahren wie z.B. Biacore oder Strukturverfahren wie z.B. NMR-

Techniken zum Einsatz kommen. Radioaktive Methoden zum Nachweis des Effektors sind dem Fachmann vertraut und sind in den Beispielen 6, 7 und 10 aufgeführt.

Vorzugsweise ist das erfindungsgemäße Verfahren ein Hochdurchsatzverfahren.

Zusätzlich betrifft die Erfindung ein Verfahren, das die vorgenannten Schritte (a) bis (e) umfaßt und zusätzlich den Schritt:

(f) Formulieren des identifizierten und/oder hergestellten Effektors mit einem pharmazeutisch akzeptablen Träger oder Lösungsmittel.

Der erfindungsgemäß identifizierte und/oder hergestellte Effektor wird in einer weiteren bevorzugten Ausführungsform gegebenenfalls in Kombination mit einem "pharmakologisch akzeptablen Träger" und/oder Lösungsmittel formuliert. Beispiele für besonders geeignete pharmakologisch verträgliche Träger sind dem Fachmann bekannt und umfassen gepufferte Kochsalzlösungen, Wasser, Emulsionen wie z.B. Öl/Wasser-Emulsionen, verschiedene Arten von Detergenzien, sterile Lösungen, etc.

Ebenso umfaßt die vorliegende Erfindung die Verwendung des erfindungsgemäß identifizierten und/oder hergestellten Effektors zur Herstellung eines Arzneimittels zur Behandlung von Tumorerkrankungen. Tumorerkrankungen, die mit dem erfindungsgemäßen Ovarialkarzinome, Mammakarzinome, werden umfassen behandelt Arzneimittel Bronchialkarzinome, Kolonkarzinome, Melanome, Blasenkarzinome, Magenkarzinome, Prostatakarzinome, Gebärmutterhalstumore, Gehirntumore, Kopf/Halstumore, Bauchspeicheldrüsentumore, Nierenkarzinome, Knochentumore, Hodenkarzinome, Speiseröhrentumore, maligne Lymphome, Non-Hodgkin-Lymphome, Hodgkin-Lymphome und Schilddrüsenlymphome.

Arzneimittel im Sinne der Erfindung, die die oben aufgeführten pharmakologisch akzeptablen Träger umfassen, können mittels bekannter konventioneller Methoden formuliert werden. Diese Arzneimittel können einem Individuum in einer geeigneten Dosis verabreicht werden. Die Verabreichung kann oral oder parenteral erfolgen, z.B. intravenös, intraperitoneal, subcutan, intramuskulär, lokal, intranasal, intrabronchial oder intradermal, oder über einen Katheter an einer Stelle in einer Arterie. Die Art der Dosierung wird vom behandelnden Arzt entsprechend den klinischen Faktoren bestimmt. Es ist dem Fachmann bekannt, daß die Art der Dosierung von verschiedenen Faktoren abhängig ist, wie z.B. der Körpergröße bzw. dem Gewicht, der Körperoberfläche, dem Alter, dem Geschlecht oder der

allgemeinen Gesundheit des Patienten, aber auch von dem speziell zu verabreichenden Mittel, der Dauer und Art der Verabreichung, und von anderen Medikamenten, die möglicherweise parallel verabreicht werden. Eine typische Dosis kann z.B. in einem Bereich zwischen 0,01 und 10000 µg liegen, wobei Dosen unterhalb oder oberhalb dieses beispielhaften Bereiches, vor allem unter Berücksichtigung der oben erwähnten Faktoren, vorstellbar sind. Im allgemeinen sollte sich bei regelmäßiger Verabreichung der erfindungsgemäßen Arzneimittelformulierung die Dosis in einem Bereich zwischen 10 ngund 10 mg-Einheiten pro Tag bzw. pro Applikationsintervall befinden. Wird die Zusammensetzung intravenös verabreicht sollte sich die Dosis in einem Bereich zwischen 1 ng- und 0,1 mg-Einheiten pro Kilogramm Körpergewicht pro Minute befinden.

Die Zusammensetzung der Erfindung kann lokal oder systemisch verabreicht werden. Präparate für eine parenterale Verabreichung umfassen sterile wäßrige oder nicht-wäßrige Lösungen, Suspensionen und Emulsionen. Beispiele für nicht-wäßrige Lösungsmittel sind Propylenglykol, Polyethylenglykol, pflanzliche Öle wie z.B. Olivenöl, und organische Esterverbindungen wie z.B. Ethyloleat, die für Injektionen geeignet sind. Wäßrige Träger umfassen Wasser, alkoholisch-wäßrige Lösungen, Emulsionen, Suspensionen, Salzlösungen und gepufferte Medien. Parenterale Träger umfassen Natriumchlorid-Lösungen, Ringer-Dextrose, Dextrose und Natriumchlorid, Ringer-Laktat und gebundene Öle. Intravenöse Träger umfassen z.B. Flüssigkeits-, Nährstoff- und Elektrolyt-Ergänzungsmittel (wie z.B. solche, die auf Ringer-Dextrose basieren). Die erfindungsgemäße Arzneimittel kann außerdem Konservierungsmittel und andere Zusätze umfassen, wie z.B. antimikrobielle Verbindungen, Antioxidantien, Komplexbildner und inerte Gase. Des weiteren können, abhängig von der beabsichtigten Verwendung, Verbindungen wie z.B. Interleukine, Wachstumsfaktoren, Differenzierungsfaktoren, Interferone, chemotaktische Proteine oder ein unspezifisches immunmodulatorisches Agens enthalten sein.

Erfindungsgemäß identifizierte CaMAP-Effektoren, i.e. Substanzen die zur Aktivierung, Inhibierung oder Stabilisierung von CaMAPs geeignet sind und deren spezifische Wirkung auf die in biologischen Objekten vorhandene CaMAP Aktivität, nach Applikation zu überwiegender therapeutischer Beeinflussung pathobiochemischer Vorgänge in diesen biologischen Objekten führt, sind als Therapeutika solcher Vorgänge geeignet. Sind therapeutisch nutzbare CaMAP-Effektoren Gen-kodiert, kann es vorteilhaft sein, die zur Synthese im zu therapierenden Organismus notwendige Sequenzinformation selbst in diesen

Organismus, mittels dem Fachmann bekannten gentherapeutischer Methoden, einzubringen. Es kann aber auch von Nutzen sein, den für die Therapie nützlichen Wirkstoff (CaMAP Effektor) als Substanz-Vorstufe herzustellen, aus der sich erst am eigentlichen Wirkort, oder auf dem Weg zum Wirkort die wirksame Substanz (Wirkstoff) bildet. Die Gründe für diese Verfahrensweise können vielfältiger Natur sein. So kann z.B. bei instabilen Wirkstoffen durch die Verabreichung des Wirkstoffes als Substanz-Vorstufe eine Erhöhung der Stabilität werden. Bestimmte Wirkstoffes erreicht Bioverfügbarkeit des und damit Modifizierungen der Substanz können aber auch geeignet sein, Löslichkeitseigenschaften in gewünschter Weise zu verändern, oder aber es ermöglichen gerichtet biologische Barrieren, die ein Penetrieren des Wirkstoffes zum Wirkort verhindern können, für die geänderte Substanz oder ihre Vorstufe durchgängig zu machen. Ferner ist umfasst, dass zur Verbesserung der pharmakologischen Eigenschaften des nach dem erfindungsgemäßes Verfahren identifizierten Effektors dieser weiter modifiziert wird, um eine modifizierte Organspezifizität, eine verbesserte Aktivität, eine gesteigerte Toxizität für Tumorzellen (einen verbesserten therapeutischen Index), verminderte Nebenwirkungen, einen zeitlich versetzten Beginn der therapeutischen Wirksamkeit oder der Länge der therapeutischen veränderte pharmakokinetische Parameter (Resorption, Distribution, Wirksamkeit, Metabolismus oder Exkretion), modifizierte physikochemische Parameter (Löslichkeit, hygroskopische Eigenschaften, Farbe, Geschmack, Geruch, Stabilität, Zustandsform), verbesserte generelle Spezifizität, Organ-/Gewebespezifitität, und/oder eine optimierte Verabreichungsform und -route aufweist, was durch die Veresterung von Carboxylgruppen, Hydroxylgruppen mit Carbonsäuren, Hydroxylgruppen zu bespielweise Phosphaten, Pyrophosphaten, Sulfaten, "Hemisukzinaten" oder die Bildung von pharmazeutisch verträglichen Salzen, pharmazeutisch verträglichen Komplexen oder die Synthese von pharmakologisch aktiven Polymeren oder die Einführung von hydrophilen Gruppen, die Einführung bzw. den Austausch von Substituenten in Aromaten oder Seitenketten, die Veränderung des Substituentenmusters oder der Modifikation durch die Einführung von isosterischen oder bioisosterischen Gruppen oder die Synthese von homologen Verbindungen, bzw. der Einführung von verzweigten Seitenketten, der Konversion von Alkylsubstituenten zu zyklischen Analogen, der Derivatisierung von Hydroxylgruppen zu Ketalen oder Acetalen, der N-Acetylierung zu Amiden, Phenylcarbamaten, der Synthese von Mannich-Basen bzw. Iminen oder durch die Umwandlung von Ketonen, Aldehyden in Schiffschen-Basen, Oxime, Acetale, Ketale, Enolester, Oxaholidine, Thiozolidine oder deren Kombinationen erreicht wird.

Die Erfindung umfasst die Verwendung des erfindungsgemäß identifizierten und/oder hergestellten Effektors zur Herstellung eines Arzneimittels zur Verhinderung oder Verminderung von Transplantatabstoßung. Weiterhin umfasst die Verwendung des erfindungsgemäß identifizierten und/oder hergestellten Effektors die Herstellung eines Arzneimittels zur Beeinflussung neurodegenerativer Krankheiten/Erkrankungen, wie z.B. Alpers, Alzheimer, Batten-Erkrankung, Cockayne Syndrom, Corticobasale Ganglion Degeneration, Huntington'schen Krankheit, idiopathischen Parkinsonismus, Lewy-Bodie Erkrankung, Motor Neuron Disease, Multiple systemische Atrophie, Multiple Sklerose, Olivopontocerebelle Atrophie, Parkinson, Postpoliomyelitisches Syndrom, Prionen-Erkrankung, Progressive supranucleäre Paralyse, Rett-Syndrom, Shy-Drager Syndrom und Tuberöse Sklerose.

In einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung ein Kit umfassend die erfindungsgemäße CaMAP oder ein CaMAP-Peptidfragment/derivat, das erfindungsgemäße Calmodulin oder ein Calmodulinfragment/derivat eine oder mehrere Pufferlösungen und/oder ein oder mehrere Substrate. Optional ferner eine Anleitung zur Durchführung eines oder mehrerer der oben beschriebenen Verfahren.

Eine solche Anleitung enthält die in der vorliegenden Erfindungsbeschreibung enthaltenen Ausführungsbeschreibungen, die es dem Anwender erlauben, das oder die erfindungsgemäße(n) Verfahren zu nutzen. Zusätzlich kann die Anleitung Angaben aus dem Stand der Technik enthalten, die dem Anwender die Durchführung bestimmter Techniken erleichtern.

Im vorliegenden Anmeldungstext werden mehrere Dokumente zitiert. Jedes der hier zitierten Dokumente (unter Einschluß jeglicher Beschreibungen von Herstellern, Anleitungen und dergleichen) wird hiermit mit Verweis zum Gegenstand der vorliegenden Anmeldung gemacht; es wird jedoch nicht eingeräumt, dass irgendein zitiertes Dokument tatsächlich zum Stand der Technik für die vorliegende Erfindung gehört.

Die Figuren zeigen:

Figur 1

Fig.1a zeigt die isomerspezifische pNitroanilid-Freisetzung bei 390 nm in Gegenwart (a) und Abwesenheit (b) von 2 μM Calmodulin, sowie ohne FKBP38 (c). Die Reaktionskurven b und c sind nahezu identisch und entsprechen der unkatalysierten spontanen *cis/trans* Isomerisierung. Fig. 1b zeigt die Abhängigkeit der CaMAP Aktivität von der Ca^{2+/}Calmodulin-Konzentration. Die Versuchsdurchführung ist in Ausführungsbeispiel 1 beschrieben. Bei Konzentrationen > 5 mM an Kalziumchlorid wurde ein Ausfallen der Probe beobachtet.

Figur 2

zeigt ein mittels SDS-PAGE und Phosphoimager erhaltenes Übersichtsbild der nach Beispiel 10 hergestellten chromatographisch aufgereinigten CaMAP FKBP38.

Figur 3

zeigt die CD-spektroskopisch nachgewiesene Strukturänderung (CD-Spektren) nach Ausführungsbeispiel 11. Die durchgezogene Linie in Fig. 3a entspricht der summarischen spektralen Änderung von Lösung A (5 mM CaCl₂, 10 μM FKBP38 in CD-Puffer) und B (20 μM Calmodulin (Rinderhirn, Sigma) in CD-Puffer) in den verschiedenen Kammerhälften. Als CD-Puffer wurde eine Lösung aus 10 mM HEPES-Puffer und 5 mM Kalziumchlorid bei einem pH von 7.5 verwendet. Die gepunktete Linie in Fig. 3a zeigt ein typisches Spektrum welches nach Mischen beider Lösungen auftritt. Nach Zugabe von 1 M EGTA zur Mischung, wird das Spektrum erhalten, welches typisch für die nicht miteinander wechselwirkenden Proteine Calmodulin und FKBP38 ist (durchgezogene Linie).

Die gepunktete Linie in Fig. 3b zeigt das typische Spektrum nach Mischen beider Lösungen. Das Spektrum der durchzogenen Line wurde nach Erhöhen der Kalziumchloridkonzentration auf 10 mM erhalten.

Die nachfolgenden Beispiele erläutern die vorliegende Erfindung, ohne diese auf die beschriebenen Beispiele einzuengen:

Ausführungsbeispiel 1: Aktivierung der CaMAP durch Calmodulin

Folgendes Ausführungsbeispiel zeigt die typische dosisabhängige Aktivierung der PPIase-Aktivität einer CaMAP durch Calmodulin.

Die humane CaMAP FKBP38 (Synonyme: FKBP8_human; Swiss-Prot-Nr.:Q14318) wurde molekularbiologisch, wie in Ausführungsbeispiel 9 beschrieben, hergestellt und in Aliquotes zu 100 μl bei einer Konzentration von 0.83 mg/ml Protein bei –80 °C gelagert. Unmittelbar vor der Aktivitätsmessung wurde ein solches Aliquot aufgetaut und anschließend bei 4 °C gelagert. Weiterhin wurde käufliches (Sigma; Bestellnummer P2277) aus Rinderhirn isoliertes Calmodulin, welches bei –80 °C gelagert war, unmittelbar vor der Aktivitätsmessung aufgetaut und bei 4 °C gelagert. Als Substrat der CaMAP wurde Suc-Ala-Phe-Pro-Phe-pNA (Bachem; Bestellnummer L-1400) verwendet. Als isomerspezifisches Hilfsenzym wurde alpha-Chymotrypsin welches aus Rinderpankreas isoliert wurde (Merck KG; Bestellnummer: 102307) verwendet. Folgende Gebrauchslösungen wurden unmittelbar vor der Messung hergestellt und bei 4 °C gelagert:

LösungA: 55 mM HEPES Puffer, pH 7.8; 1mM DTT, 0.5% Glycerol

LösungB: 20 mg des Peptidsubstrates gelöst in 1 ml DMSO

LösungC: 20 mg Chymotrypsin in 200 µl LösungA gelöst

LösungD: FKBP38 (100 µM, verdünnt in Lösung A)

LösungE: Calmodulin (300 μM, verdünnt in Lösung A)

LösungF: Kalziumchlorid (1 M in Lösung A)

Zur kinetischen Bestimmung der CaMAP-Aktivität wird ein rechnergestütztes Diodenarray-Spektrometer (Hewlett Packard) mit einer Küvettentemperierung bei 4 °C verwendet.

Ein typischer Meßansatz enthielt 1 μ1 LösungB; 1 μM FKBP38, 2 μM Calmodulin und 0 bis 10 mM Kalziumchlorid. Das Gesamtvolumen wurde mit LösungA auf 1200 μ1 eingestellt. Nach Vorinkubation für 5 Minuten zur Bildung der aktivierten CaMAP wurde die Aktivitätsmesung durch Zugabe von 3 μ1 LösungC gestartet. Abb. 1a zeigt die isomerspezifische pNitroanilid-Freisetzung bei 390 nm in Gegenwart (a) und Abwesenheit (b) von 2 μM Calmodulin, sowie ohne FKBP38 (c). Die Reaktionskurven b und c sind nahezu identisch und entsprechen der unkatalysierten spontanen *cis/trans* Isomerisierung.

Abb. 1b zeigt die Abhängigkeit der CaMAP Aktivität von der Ca^{2+/}Calmodulin-Konzentration. Bei Konzentrationen > 5 mM an Kalziumchlorid wurde ein Ausfallen der Probe beaobachtet.

Ausführungsbeispiel 2: Screening mittels Fluoreszenzassay

Zur Durchführung des Assays wird eine in Patentschrift <u>WO0188178</u> beschriebene Ausführungsvorschrift und die in Patentschrift <u>WO0102837</u> beschriebene Gerätekombination genutzt und wie folgt abgewandelt: Folgende Lösungen werden hergestellt: Substratlösung: 2 mg/ml disulfidverbrücktes Abz-<u>Cys-Phe-Pro-Ala-Cys-Phe-NHNp</u> in DMSO; Enzymlösung: 1 μM Lösung von humanem FKBP38; 5 μM Calmodulin (Herstellung siehe Beispiel 9), 5 mM CaCl₂ in 50 mM HEPES-Puffer, pH 7.5; Effektorlösungen: 0.1 mg/ml Substanz in DMSO; Startlösung: 100 mM DTT in 50 mM HEPES-Puffer, pH 7.5

In eine handelsübliche Titerplatte mit 384 Reaktionskammern werden je Kammer 2 µl Substratlösung, 1 µl Effektorlösung und 20 µl Enzymlösung pipettiert. Zur Minderung von Pipettierfehlern wurde, aus den entsprechenden Mengen Enzym- und Substratlösung eine solche Mischung zu erzeugen, daß bei Pipettieren von 40 µl dieser Mischung je Kammer die gleichen Konzentrationen erreicht werden, wie beim Pipettieren der Einzelvolumina. Die Platte wird dann bei 6° C für 20 Minuten so gelagert, daß jede der Reaktionskammern nach 20 Minuten eine Temperatur von 6 °C aufweist. Die eigentliche Reaktion wird durch Zugabe von jeweils 20 µl Startlösung gestartet.

Bei sachgemäßer Temperaturkonstanz von 6 °C während der Meßzeit und dem Erreichen einer homogenen Durchmischung der Lösungen von Substrat-, Enzym- und Effektorlösung mit der Startlösung lassen sich bei Anregung der Fluoreszenz mit einer UV-Lampe mit einem Anregungsspektralbereich zwischen 250 und 330 nm in jeder einzelnen Reaktionskammer die Zunahme von sichtbarem Licht bei 420 nm registrieren. Der visuelle Vergleich der erhaltenen Registrierkurven kann zum Auffinden eines Effektors dienen.

Ausführungsbeispiel 3: Screening mittels isomerspezifischer Hydrolyse

Zur Durchführung des Assays wird eine in Clinical Chemistry 44(1998)502-508 veröffentlichte Ausführungsvorschrift wie folgt abgewandelt: Folgende Lösungen werden hergestellt: Substratlösung: 30 mg/ml Suc-Ala-Phe-Pro-Phe-NHNp in DMSO; Enzymlösung: 1 μM Lösung von humanem FKBP38; 5μM Calmodulin (Sigma: Rinderherz-Calmodulin; Best. Nr.:P0270), 5 mM CaCl₂ in 50 mM HEPES-Puffer, pH 7.5; Effektorlösungen: 0.5 mg/ml Substanz in DMSO; Startlösung: 20mg/ml Chymotrypsin in 50 mM HEPES-Puffer, pH 7.5

In eine handelsübliche Titerplatte mit 96 Reaktionskammern werden je Kammer 20 µl Substratlösung, 1 µl Effektorlösung und 20 µl Enzymlösung pipettiert. Zur Minderung von Pipettierfehlern ist es von Vorteil, aus den entsprechenden Mengen Enzym- und Substratlösung eine solche Mischung zu erzeugen, daß bei Pipettieren von 40 µl dieser Mischung je Kammer die gleichen Konzentrationen erreicht werden, wie beim Pipettieren der Einzelvolumina. Die Platte wird dann bei 4 °C für 20 Minuten so gelagert, daß jede der Reaktionskammern nach 20 Minuten eine Temperatur von 4 °C aufweist. Die eigentliche Reaktion wird durch Zugabe von jeweils 80 µl Startlösung gestartet.

Bei sachgemäßer Temperaturkonstanz von 4 °C während der Meßzeit und dem Erreichen einer homogenen Durchmischung der Lösungen von Substrat-, Enzym- und Effektorlösung mit der Startlösung lassen sich mit der in Clinical Chemistry 44(1998)502-508 publizierten Versuchsanordnung 96 Registrierkurven innerhalb von ca. 12 Minuten erhalten. Der visuelle Vergleich der erhaltenen Registrierkurven kann zum Auffinden eines Effektors dienen.

Ausführungsbeispiel 4: Suche nach CaMAPs in Datenbanken

In dem Fachmann zugänglichen Datenbanken, wie z.B. Swiss; Trembl; Trenew; Trest; Trgen; Trome usw., die z.B. unter http://www.expasy.com zugänglich sind, kann nach CaMAPs relativ einfach durch Eingabe von Calmodulin-Sequenzmotifen (z.B: FASEB J 1997 Apr;11(5):331-40; *Nature* 410(2001)1120-1124) gesucht werden. So ergibt die Suche mit dem helicalen CaM-Motif KHAAQRSTETALYRKM folgende Treffer:

sw:AIP_CERAE, sw:AIP_HUMAN, sw:AIPL1_HUMAN, sw:AILP1_RAT, sw:AILP1_MOUSE, sw:AI

LP1_RABIT, sw: FKB5_HUMAN, sw: AIP_MOUSE, sw: CYP4_BOVIN, sw: FKB4_HUMAN, sw: FKB5_M OUSE, sw: FKB4_MOUSE, sw: FKB4_RABIT, sw: CYP4_HUMAN, sw: FKB7_WHEAT, tr: Q9XT11, tr: Q9C650,tr:Q95L05,tr:Q9XSI2,tr:Q9LSF3,tr:Q38949,tr:Q07617,tr:Q9U4N1,tr:Q9VL 78, tr:Q9LDC0, tr:O04843, tr:Q38931, tr:Q9XSH5, tr:Q9QZJ4, tn:AAM13008, tn:AAH152 60,te:Hs_75305_4,te:Os_10593_1,te:BJ463801,te:BJ467593,te:BQ481189,te:BQ57 4171,te:W78674,te:At_5664_1,te:Dr_5498_2,te:Hs_153057_2,te:Hv_2313_1,te:Zm _2379_1,te:BJ468073,te:BJ463557,te:BJ466276,te:BQ458668,te:BQ425486,te:BG8 33626,te:Hs_75305_6,te:Hs_153057_3,te:Hv_6100_1,te:BI839989,te:BE222983,te :BG056407,te:At_25402_1,te:Bt_4797_1,te:Ta_6047_1,te:AV925548,te:BJ467976, te:BE455629, te:BQ287799, te:BQ205586, te:Mm_154390_2, te:Ta_65_1, te:Ta_639_1, te:BJ462559,te:BJ465793,te:AW473479,te:BG115973,te:BQ417256,te:At_36868_1, te:Bt_7221_1,te:Hs_7557_4,te:Ta_639_2,te:BJ463904,te:BF921901,te:Mm_75161_ 1,te:BQ238312,te:BJ467770,te:BJ485644,te:BJ468521,te:BI563211,te:BM034859, te:BQ421312,te:BQ575087,te:BQ574529,te:Dm_1764_1,te:Mm_12758_3,te:Rn_8187_ 2,te:Rn_23741_2,te:Zm_3457_1,te:BJ483495,te:BJ462661,te:BJ465277,te:BJ4601 15, te:BJ452568, te:BQ575306, tg:AC093196_37, tg:AC020203_5, tg:AC025647_4, tg:A L590962_2,tg:AC082643_3,tg:AB026647_15,tg:AB077822_10,tg:AP001184_15,tg:AB 019232_10,tg:AC005135_13,tg:AP003474_7,tg:AC005841_4,tg:AE003626_64,tg:AL0 33519_4,tg:AL355494_2,to:NT_009759_3_6,to:NT_007978_123_1,to:NT_007978_123 _2,to:NT_009759_3_0,to:NT_007592_1412_0,to:NT_007592_1412_1,to:NT_007592_1 412_2, to:NT_009759_3_4, to:NT_007978_123_0.

Die Beschränkung des Suchalgorithmus auf PPIasen, die in der Datenbank "Swissprot" zusammengefaßt sind, ergibt folgende Enzyme:AIP_HUMAN, AIP_CERAE, AIP_MOUSE, AIPL1_HUMAN, AILP1_RAT, AILP1_MOUSE, AILP1_RABIT, FKB8_HUMAN, FKB8_MOUSE, FKB5_HUMAN, FKB5_MOUSE, FKB4_HUMAN, FKB4_MOUSE, FKB4_RABIT, FKB7_WHEAT, CYP4_BOVIN, CYP4_HUMAN

Ausführungsbeispiel 5: FKBP38 Inhibition mit FK506

Zum Nachweis der Inhibition der PPIase-Aktivität der CaMAP FKBP38 werden folgende Lösungen hergestellt: LösungH: DMSO; LösungI: 15 mM Lösung an FK506 (Fujisawa GmbH) in DMSO. Entsprechend Ausführungsbeispiel 1 werden zwei Küvetten mit 1 μ1 LösungB (Substrat); 0.5 μM FKBP38, 0.5μM Calmodulin und 5 mM Kalziumchlorid beschickt. Anschließend werden zu Küvette 5a 1 μ1 LösungH gegeben und zum Vergleich zu Küvette 5b 1 μ1 LösungI. Nach Mischen der Lösungen werden die Küvetten jeweils für 20 Minuten bei 6 °C aufbewahrt. Danach erfolgt der Start der PPIase-Aktivitätsbestimmung wie in Beispiel 1 angegeben durch Zupipettieren von LösungC (Chymotrypsin). Bei Verwendung

des Substrates Suc-Ala-Phe-Pro-Phe-NHNp ergibt die rechnerische Auswertung der Isomerisierungsgeschwindigkeit des Ansatzes in Küvette 5a einen Wert von 0.0071 s⁻¹ und der Ansatz in Küvettea 5b einen Wert von 0.0105 s⁻¹. Der Wert von 0.0071 entspricht der unkatalysierten Reaktion in Abb. 1b. Der Wert von 0.0105 entspricht der katalysierten Reaktion von Abb. 1a. Die Progreßkurve 1d entspricht der unkatalysierten Reaktion. Daraus folgt, die PPIase-Aktivität der CaMAP FKBP38 kann durch den FKBP-Inhibitor FK506 inhibiert werden. Eine Auftragung der Inhibitorkonzentration gegen die ermittelte Enzymaktivität ergibt einen IC50-Wert von etwa 4.3 μM.

Ausführungsbeispiel 6: Suche nach Effektoren mittels Affinitätsassay

Dieser Screeningansatz, ausgeführt in Titerplatten (96 Wells, Flachboden; Firma Nunc-Diagnostik) ermöglicht die Suche nach Effektoren, welche die Interaktion zwischen wirksamen Calmodulin und aktivierbarer CaMAP stören. Dieser Assay wird als radioaktiver Assay durchgeführt. Folgende Vorbereitungen sind zu treffen:

Herstellung des radioaktiv markierten Calmodulins: Mittels humaner SrC-Tyrosina) Kinase (Sigma: Bestellnummer 5439) wird Calmodulin (rekombinantes humanes Calmodulin, hergestellt entsprechend Ausführungsbeispiel 2) gezielt phosphoryliert. Dazu werden 10 μ l Tyrosin-Kinase, 50 μ l Calmodulin (1.2 mg/ml), 10 μ l $^{32}P_{gamma}$ ATP (Amersham, frisch geliefert) in eine Gesamtvolumen von 80 µl für 3 Stunden bei 30 °C inkubiert, wobei der Gesamtansatz bei einem pH von 7.5 neben Calmodulin und Tyrosinkinase noch 2 mM Kalziumchlorid, 50 mM Trispuffer, 1 mM DTT, 100 mM NaCl, 10mM MgCl₂, 1% Glycerol und 0.01% Tween enthält. Anschließend wird die Mischung in 500 µl einer Lösung aus 30%-igem Ammoniumsulfat und 50 mM Tris-Puffer pH 7.5 aufgenommen und auf eine Chromatografiesäule (Pierce, Minisäulen), welche mit 2 ml Phenylsepharose (Sigma) gefüllt ist und mit dem Auftragspuffer äquilibriert wurde gegeben. Nach dem Auftragen wird die Säule mit ca 50 Säulenvolumen gewaschen. Danach wird das radioaktiv markierte Calmodulin durch schrittweises versetzen der Säule mit einer Lösung bestehend aus 50 mM Trispuffer/30% Glycerin bei einem pH von 7.5 in Aliquotes von 100 µl abgelöst und getrennt in Gefäßen aufgefangen. Die Calmodulin enthaltenden Fraktionen können durch ihre β -Strahlung mittels Scintillationsmessung detektiert werden und zu einer gemeinsamen Fraktion, üblicherweise ca 500 μ l vereinigt werden. Mittels nicht-radioaktiv markiertem Calmodulin und FKBP38 (Herstellung siehe Ausführungsbeispiel 9) wird eine Calmodulin/FKBP38-Lösung hergestellt, welche eine Konzentration von 5 μ M Calmodulin und 2.5 μ M FKBP38 aufweist.

- Herstellung der Antikörper markierten Titerplatten: Eine Lösung von IgGb) gereinigten Antikörpern (erhalten durch Immunisierung von Kaninchen gegenüber HPLC gereinigtem FKBP38) wird in 12 Verdünnungsstufen (1+9; 1+99,1+999) in 10-er Schritten mit 20 mM Tris-Puffer pH 7.5 verdünnt. Von der Verdünnung wird in die 12 Spalten einer 96-er Titerplatte jeweils 50 µl pipettiert, so daß in der ersten Spalte die erste Verdünnung und in der 12. Spalte sich die Lösung mit der 12. Verdünnung befindet. Die Titerplatte wird mittels Folie abgedeckt und für 12 Stunden bei 4 °C inkubiert. Danach wird der nichtgebundene Anteil des Antikörpers durch vorsichtiges 5 maliges Waschen mit Waschlösung (50 mM Tris-Puffer, pH 7.5; 0.1% Tween) entfernt und die Titerplatte zuletzt mit 50µl Waschlösung versehen. Die unter a erhaltene Calmodulin/FKBP38-Lösung wird nun ebenfalls in 10-er Verdünnungsschritten 8 mal mit Arbeitspuffer (10µM Kalziumchlorid 50 mM Trispuffer, 1 mM DTT, 100 mM NaCl, 1% Glycerol und 0.01% Tween) verdünnt. Dann werden jeweils 1 µl dieser Verdünnungen so zur Titerplatte pipettiert, daß in Reihe 1 sich die 1+9, in Reihe zwei die 1+99 usw. Verdünnungen befinden. Nach Inkubation der Titerplatte für 1 Stunde bei 4 °C wird die Platte wiederum 5 mal mit Waschlösung gewaschen und anschließend für 1 Stunde auf einen 32P empfindlichen Screen (Amersham) gelegt und mittels Phosphoimager (FUJI-Diagnostik) vermessen und zugehöriger Software ausgewertet. Optimale Konzentrationen von CaMAP und Antikörper zur Durchführung des Assays sind den Kavitäten der Titerplatte zuzuordnen, welche eine hohe Radioaktivität aufweisen. Die Sensitivität des Assays ist in der Nähe des Übergangs von hoher zu niedriger Radioaktivität am größten.
 - c) Durchführung des Assays/Qualitätskontrolle: Mit der unter b) ermittelten optimalen Konzentration an Antikörper und Calmodulin werden eine gewünschte Anzahl von Titerplatten, wie unter b) angegeben, präpariert. Fehlerhaft präparierte Platten oder

Kavitäten können mittels angegebener Phosphoimaging-Prozedur herausgefunden werden. Der eigentliche Screening wird wie folgt durchgeführt: zu den 50 μl Waschlösung je Kavität werden 5 μl zu testender Wirkstoff pipettiert. Zur Qualitätskontrolle wird in 2 Kavitäten 5 μl einer 500 μM Lösung an EDTA pipettiert. Nach Inkubation der Platte bei 4 °C für 1 Stunde wird die Platte wiederum 5 mal mit Waschpuffer gewaschen um abgelöstes radioaktives Calmodulin abzuwaschen. Anschließend wird die verbliebene Radioaktivität mittels Phosphoimaging vermessen. Effektoren, die wie das unspezifische EDTA zur Verdrängung des aktivierenden Calmodulins von der CaMAP führen, erkennt man an der verminderten Radioaktivität in diesen Kavitäten.

Ausführungsbeispiel 7: Kompetitionsassay mit radioaktiv markiertem Liganden

Kompetationsassays für CaMAPs lassen sich unter Nutzung bereits bekannter Inhibitoren von CaMAPs wie Cyclosporin A oder FK506 aufbauen. Eine einfache Möglichkeit besteht in der Verwendung radioaktiv markierter Liganden, wie diese als Tritium markiertes FK506 (Transplantation. 63(2):293-298, 1997; Fujisawa GmbH) oder Tritium markiertes Cyclosporin A (Amersham) zugänglich sind. Eine mögliche Vorgehensweise, welche die Bindung von Calmodulin an Titerplatten einbezieht, soll hier beschrieben werden: Genutzt wird, das Streptavidin gecoatete Mikrotiterplatten (z.B.:Roche-Diagnostik;Cat.No: 1734776) und Biotin-gelabeltes Calmodulin (Calbiochem; Cat.No:208697) kommerziell erhältlich sind, sowie ein handelsüblicher Mikrotiterplattenreader (Dynatech, MR7000) mit automatischer Dispensiereinheit und Wascher. In einem ersten Schritt wird nach den Vorschriften des Herstellers die gecoateten Titerplatten mit Calmodulin (0.5 µM Lösung, 30µl je Kavität) für 30 min bei Raumtemperatur versetzt. Nach 5-maligen Spülen mit Waschlösung (siehe Ausführungsbeispiel 6) ist die Platte fertig und kann für mindestens 8 Stunden bei 4 °C gelagert werden. Unmittelbar vor Beginn des Kompetitionsassays wird die Platte mit 0.5 µM Lösung an FKBP38 (50 mM Trispuffer, pH 7.5; 5 mM CaCl₂; 1 mM DTT; 0.5 mM Glycerol), wobei 30 µl je Kavität pipettiert werden, für 30 Minuten bei Raumtemperatur versetzt. Anschließend wird die Platte wiederum 5-mal schonend gewaschen. Ist die verwendete CaMAP durch Cyclosporin A inhibierbar, wird nachfolgend als radioaktiver Ligand das Tritium markiertes Cyclosporin A, wird die CaMAP wie FKBP38 durch FK506 inhibiert, wird als radioaktiver Ligand Tritium markiertes FK506 verwendet. Zur Durchführung des Assays werden je Kavität 0.5 μl Wirkstoff (1mg/ml in DMSO), sowie 30 μl Pufferlösung (50 mM Trispuffer, pH 7.5; 5 mM CaCl₂; 1 mM DTT; 0.5 mM Glycerol), welche eine Konzentration von 50μM radioaktiv markiertem Liganden enthält, für 60 Minuten bei Raumtemperatur inkubiert. Anschließend werden jeweils 20 μl je Kavität entnommen, mit 1 ml Szintillationslösung (Roth) versetzt und mittels Quickzint Flow Counter (Zinsser Analytic) vermessen. Potentielle Liganden werden an einem erhöhten Radioaktivitätssignal erkannt.

Ausführungsbeispiel 8: Inhibition von Cyp40 durch Cyclosporin A

Cyp40, wird molekularbiologisch entsprechend der in Acta Crystallographica Section D-Biological Crystallography. 55(Part 5):1079-1082, 1999 beschriebenen Weise hergestellt. Es wird analog Ausführungsbeispiel 3 gearbeitet. Als Enzymlösung werden 1 µM Cyp40 sowie 5 µM Calmodulin und 5 mM CaCl2 gelöst in 50 mM HEPES-Puffer pH 7.5 verwendet. Als Effektorlösung werden 1 mg Cyclosporin A (Sigma C3662) in 50 %-igem Ethanol gelöst. Als Kontrollösung dient 50 %-ige Ethanollösung.

Der Vergleich der Messung mit und ohne Cyclosporin zeigt die für eine Inhibierung typische Umsatzkurve.

Ausführungsbeispiel 9: Molekularbiologische Herstellung der CaMAP FKBP38

Nach Identifizierung der potentiellen CaMAP entsprechend Ausführungsbeispiel 5, wurde mittels IRALp962N1726Q2 (RZPD-Ressourcenzentrum GmbH, Berlin) und den Primern 38BspHI5 und h383-ma bei einer Annealing-Temperatur von 50 °C mit 1,5 mM MgCl und 1μ1 Enhancer mit Pfx Polymerase ein PCR-Ansatz durchgeführt, wobei das Glycin in Position 2 gegen ein Arginin ausgetauscht wurde. Das PCR Produkt wurde gereinigt und mittels blunt end-Ligation in den pSTBlue-1-Vektor kloniert. Das Produkt der Ligation wurde in E. Coli DH5α-Zellen transformiert. Positiv-selektierte Transformanten wurden auf eine Agarplatte mit Kanamycin übertragen und ihr Zellmaterial als Template einer Kolonie-PCR genutzt. Die PCR-Produkte der positiv selektierten Klone wurden isoliert und mit den Restriktionsendonucleasen Ncol und Sacl analytisch verdaut. Anschließend wurde die

hFKBP381-336 Sequenz in pET28a kloniert. Das resultierende Konstrukt wurde in Rosetta-Zellen transformiert.

Zur Herstellung von ca. 100 mg FKBP38 wurden sechs 1 l Kulturen des Klons angezogen. Abweichend von den Standardbedingungen (Clontech/pET28a-Vector) wurden die Kulturen bei 20 °C angezogen. Weiterhin wurde 20 min vor Induktion durch Zugabe von Äthanol eine Endkonzentration von 2 % eingestellt. Nach Ernten und Aufschluß des Zellmaterials mittels French® Press, und nachfolgender Ultrazentrifugation wurde der Überstand mit 200 ml 10 mM MES-Puffer (pH 6,0) versetzt und nachfolgend verschiedenen chromatografischen Reinigungsschritten wie Ionenaustausch- (DEAE, SO₃) und Gelverteilungschromatografie (Sephadex G75) unterworfen.

Ausführungsbeispiel 10: Radioaktive Markierung der CaMAP FKBP38

10 μl einer FKBP38-Lösung (0.2 mg/ml, Herstellung entsprechend Beispiel 9) werden mit 1 μl Proteinkinase A (NEB; Bestellnummer P6000L; Proteinmenge 1 mg/ml) bei einem pH von 7.5 (50 mM Trispuffer) und 200μM gamma³²P-ATP (Amersham, 8 Curie per mmol) für 1 Stunde bei 30 °C inkubiert. ³²P markiertes FKBP38 wird mittels Gelfiltration von weiteren radioaktiven Bestandteilen gereinigt. Fig. 2 zeigt ein mittels SDS-PAGE und Phosphoimager erhaltenes Übersichtsbild der so hergestellten chromatografisch sauberen CaMAP.

Ausführungsbeispiel 11: Spektroskopisch nachweisbare Strukturänderung

CD-Spektren der Fig. 3a wurden bei 20 °C mit einem CD-Spektrometer (Jasco J-710)und einer gekammerten 1 cm Küvette aufgenommen. Folgende Bedingungen wurden gewählt: Lösung A: 5 mM CaCl₂, 10 µM FKBP38 in CD-Puffer; Lösung B: 20 µM Calmodulin (Rinderhirn, Sigma) in CD-Puffer. CD-Puffer steht für eine Lösung aus 10 mM HEPES-Puffer und 5 mM Kalziumchlorid bei einem pH von 7.5. Die durchgezogene Linie entspricht der summarischen spektralen Änderung von Lösung A und B in verschiedenen Kammerhälften. Die gepunktete Linie zeigt ein typisches Spektrum welches nach Mischen beider Lösungen auftritt. Nach Zugabe von 1 M EGTA zur Mischung, wird das Spektrum

erhalten, welches typisch für die nicht miteinander wechselwirkenden Proteine Calmodulin und FKBP38 ist (durchgezogene Linie).

Die Bedingungen die zu Fig. 3b führen, stimmen mit denen der Fig. 3a überein: Die gepunktete Linie zeigt das typische Spektrum nach Mischen beider Lösungen. Das Spektrum der durchzogenen Line wurde nach Erhöhen der Kalziumchloridkonzentration auf 10 mM erhalten. Diese Spektrum ist typisch für die Präzipitation von Proteinen.

Patentansprüche

- 1. Verfahren zur Identifizierung und/oder Herstellung eines Effektors einer Calmodulinabhängigen Peptidyl-Prolyl cis/trans Isomerase (CaMAP) bestehend aus den Schritten
 - (a) Mischen geeigneter Mengen einer CaMAP oder eines CaMAPPeptidfragments/derivats mit einer geeigneten Menge Calmodulin oder eines
 Calmodulinfragments/derivats in einer geeigneten Reaktionslösung mit und
 ohne den Effektor;
 - (b) Zugabe einer geeigneten Menge eines geeigneten CaMAP-Substrates;
 - (c) Messen der CaMAP-Aktivität; und
 - (d) Nachweis, daß der Effektor
 - (i) ein Inhibitor ist, wenn die CaMAP-Aktivität in der Reaktionslösung mit dem Effektor kleiner ist als in der Reaktionslösung ohne den Effektor;
 oder
 - (ii) ein Aktivator ist, wenn die CaMAP-Aktivität in der Reaktionslösung mit dem Effektor größer ist als in der Reaktionslösung ohne den Effektor.
- 2. Verfahren zum Screening und/oder Herstellung eines Effektors einer CaMAP, bestehend aus den Schritten
 - (a) Mischen geeigneter Mengen einer CaMAP oder eines CaMAPPeptidfragments/derivats mit einer geeigneten Menge Calmodulin oder eines
 Calmodulinfragment/derivats in einer geeigneten Reaktionslösung mit und
 ohne eine Probe, die eine einzelne oder eine Vielzahl von Verbindungen
 enthält, die Kandidaten für einen Inhibitor oder Aktivator sind;
 - (b) Zugabe einer geeigneten Menge eines geeigneten CaMAP-Substrates;
 - (c) Messen der CaMAP-Aktivität; und
 - (d) Nachweis, daß die Probe
 - (i) inhibitorische Aktivität besitzt, wenn die CaMAP-Aktivität in der Reaktionslösung mit der Probe kleiner ist als in der Reaktionslösung ohne die Probe; oder

- (ii) aktivierende Aktivität besitzt, wenn die CaMAP-Aktivität in der Reaktionslösung mit der Probe größer ist als in der Reaktionslösung ohne die Probe.
- 3. Verfahren nach Anspruch 2, zusätzlich umfassend den Schritt
 - (e) Fraktionieren der Probe, für die in Schritt (d) inhibitorische oder aktivierende Aktivität festgestellt wurde, und Wiederholen der Schritte (a) bis (d), bis der in der Probe enthaltene Inhibitor oder Aktivator gereinigt vorliegt.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die CaMAP ausgewählt ist aus der Gruppe bestehend aus den humanen CaMAPs FBKP36, FKBP37.7, FKBP44, FKBP51, FKBP52 und Cyp40, und Enzymen, welche in der "Swissprot"-Datenbank entsprechend der dort vorgenommenen Bezeichnung unter FKBP66, FKBP42, AIP_HUMAN, AIP_CERAE, AIP_MOUSE, AIPL1_HUMAN, AILP1_RAT, AILP1_MOUSE, AILP1_RABIT, FKB8_HUMAN, FKB8_MOUSE, FKB5_HUMAN, FKB5_MOUSE, FKB4_HUMAN, FKB4_MOUSE, FKB4_RABIT, FKB7_WHEAT, CYP4_BOVIN, und CYP4_HUMAN aufgeführt sind.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Calmodulin oder Calmodulinfragment/derivat ausgewählt ist aus der Gruppe bestehend aus CALM_ACHKL (P15094), CALM_BLAEM (Q9HFY6), CALM_CANAL (P23286), CALM_CAPAN (P93087), CALM_CHLRE (P04352), CALM_DICDI (P02599), CALM_DROME (P07181), CALM_ELEEL (P02594), CALM_EMENI (P19533), CALM_EUGGR (P11118), CALM_FAGSY (Q39752), CALM_HELAN (P93171), CALM_HORVU (P13565), CALM_HUMAN (P02593), CALM_KLULA (O60041), CALM_LYCES (P27161), CALM_LYTPI (P05935), CALM_MAGGR (Q9UWF0), (P48976), CALM MEDSA CALM MALDO (P41040), CALM MAIZE (P17928), CALM_METSE (P02596), CALM_NEUCR (Q02052), CALM_ORYSA (P29612), CALM_PARTE (P07463), CALM_PATSP (P02595), CALM_PHYIN (P27165), CALM_PLAFA (P24044), CALM_PLECO (P11120), CALM_PNECA (P41041), CALM_PYUSP (P11121), CALM_SCHPO (P05933), CALM_SOLTU

(P13868), CALM_SPIOL (P04353), CALM_STIJA (P21251), CALM_STRPU (P05934), CALM_STYLE (P27166), CALM_TETPY (P02598), CALM_TETTH (Q05055), CALM_TRYBB (P04465), CALM_TRYCR (P18061), CALM_WHEAT (P04464), CALM_YEAST (P06787), Q9UWF0, Q02052, P19533, AAL89686, Q7M510, Q96TN0, P27165, AAG01043, P02593, Q7T3T2, Q40302, O02367, Q95NR9, Q9UB37, AAH54805 AAH54973, AAL02363, AAH59427, AAH59500, AAH54600, AAH53150, AAH50926, AAH45298, AAH44434, AAP88918, AAD55398, AAC63306, BAC56543, AAC83174, AAP35501, AAP35464, AAD45181, AAH21347, BAC40168, BAB28631, BAB28319, BAB28116, BAB23462, AAH58485, AAH51444, AAH47523, P07181, Q7QGY7, Q8STF0, AAO25039, AAM50750, AAK61380, BAB89360, O94739, P02594, Q9D6G4, O16305, Q96HK3, P11120, O96102, P21251, Q9U6D3, Q8X187, O93410, AAR10240, P11121, Q9XZP2, Q42478, AAQ01510, P17928, P93171, O97341, O96081, AAD10244, AAM81203, AAA34238, AAA34014, AAA34013, P02596, P93087, Q43699, CAD20351, BAB61916, BAB61915, AAF65511, P02595, P59220, P27162, Q93VL8, Q39447, Q94801, AAQ63462, AAQ63461, AAM81202, BAB61918, BAB61917, BAB61914, BAB61913, BAB61912, BAB61911, BAB61910, BAB61909, AAG27432, AAG11418.

- 5. Verfahren nach einem der Ansprüche 1 bis 5, wobei die geeignete Reaktionslösung zweiwertige Ionen ausgewählt aus der Gruppe bestehend aus Zn²+, Cu²+, Co²+, Ni²+, Mn²+, Ca²+ und/oder Mg²+ in einer Konzentration von 0.1-20 mM enthält.
- 6. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Reaktionslösung einen pH-Wert zwischen pH 5 und pH 10 hat.
- 7. Verfahren zur Identifizierung und/oder Herstellung eines Effektors einer CaMAP bestehend aus den Schritten
 - (a) Mischen geeigneter Mengen einer konstitutiv aktiven CaMAP in einer geeigneten Reaktionslösung mit und ohne den Effektor;
 - (b) Zugabe einer geeigneten Menge eines geeigneten CaMAP-Substrates;
 - (c) Messen der CaMAP -Aktivität; und

- (d) Nachweis, daß der Effektor
 - ein Inhibitor ist, wenn die CaMAP-Aktivität in der Reaktionslösung mit dem Effektor kleiner ist als in der Reaktionslösung ohne den Effektor; oder
 - (ii) ein Aktivator ist, wenn die CaMAP-Aktivität in der Reaktionslösung mit dem Effektor größer ist als in der Reaktionslösung ohne den Effektor.
- 10. Verfahren nach einem der Ansprüche 1 bis 9, wobei die Abfolge von Schritt (a) und Schritt (b) vertauscht ist.
- 11. Verfahren nach einem der Ansprüche 1 bis 10, wobei der Nachweis durch spektroskopische oder radioaktive Methoden erfolgt.
- 12. Verfahren nach einem der Ansprüche 1 bis 11, wobei das Verfahren als Hochdurchsatzverfahren durchgeführt wird.
- 13. Verfahren nach einem der Ansprüche 1 bis 12, weiterhin umfassend den Schritt:
 - (f) Formulieren des identifizierten und/oder hergestellten Effektors mit einem pharmazeutisch akzeptablen Träger oder Lösungsmittel.
- 14. Effektor identifiziert nach einem der Verfahren 1 bis 13 optional mit einem pharmazeutisch akzeptablen Träger oder Lösungsmittel.
- 15. Verwendung eines Effektors, der durch ein Verfahren gemäß der Ansprüche 1 bis 13 identifiziert wurde, zur Herstellung eines Arzneimittels zur Behandlung von Tumorerkrankungen.
- Verwendung eines Effektors, der durch ein Verfahren gemäß der Ansprüche 1 bis 13 identifiziert wurde, zur Herstellung eines Arzneimittels zur Verhinderung oder Verminderung von Transplantatabstoßung oder zur Behandlung neurodegenerativer Erkrankungen.

17. Kit umfassend die CaMAP oder ein Peptidfragment/derivat wie beschrieben in Anspruch 1 oder 4, und Calmodulin oder ein Calmodulinfragment/derivat wie beschrieben in Anspruch 1 oder 5, eine oder mehrere Pufferlösungen und/oder ein oder mehrere Substrate.

Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Identifizierung und Herstellung von Effektoren der Peptidyl-Prolyl *cis/trans* Isomerasen die durch Calmodulin aktivierbar sind. Ferner betrifft die Erfindung die Verwendung der identifizierten Effektoren zur Herstellung von Arzneimitteln, sowie Screening-Verfahren und Kits.

Fig. 1a

Fig. 1b

Fig. 2

Fig. 3a

Fig. 3b