Analysis 2A

Luc Veldhuis

21 Maart 2016

Functie door een punt

We kunnen al: $f: \mathbb{R} \to \mathbb{R}^m$ (kromme in \mathbb{R}^m) differentiëren.

Nu gaan we kijken naar $F: \mathbb{R}^n \to \mathbb{R}^m$

Neem nu $a \in \mathbb{R}^n$, en $v \in \mathbb{R}^n$ een 'richting' (vector $\neq 0$)

Dan krijgen we een lijn $I_{\nu}(t) = \nu t + a$

 $F \circ I_{v}$ is een kromme in \mathbb{R}^{m} die op Im(F) ligt en door F(a) gaat.

$$\mathbb{R} \to^{l_v} \mathbb{R}^n \to^{\digamma} \mathbb{R}^m$$

$$t\mapsto I_{\nu}(t)\mapsto F(I_{\nu}(t))$$

Noem
$$F(I_{\nu}(t)) = \gamma_{\nu}$$

$$Im(F) = \{ y \in \mathbb{R}^m | \exists x \in \mathbb{R}^n, F(x) = y \}$$

Definition

De **richtingsafgeleide** van F in a in de richting van v is de snelheid van F in t = 0

$$D_{\nu}F(a)=\gamma_{\nu}'(0)$$

Afgeleide

$$f: \mathbb{R} \to \mathbb{R}^m$$

 $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

 $D_{e_i}D_iF(a)=\frac{\partial F}{\partial x_i}(a)$

Gevolg

$$\begin{split} \gamma_{\nu}(0) &= F(I_{\nu}(0)) = F(a) \\ D\nu F(a) &= \gamma_{\nu}'(0) = \lim_{h \to 0} \frac{\gamma_{\nu}(h) - \gamma_{\nu}(0)}{h} = \lim_{h \to 0} \frac{F(a + h\nu) - F(a)}{h} \\ e_{i} &= (0, \dots, 0, 1, 0, \dots, 0) \text{ met } 1 \text{ op de } i\text{-de plek} \\ D_{e_{i}} F(a) &= D_{i} F(a) \text{ heet de } i\text{-de partiële afgeleide van } F \text{ in } a \text{ met } 1 \leq i \leq n. \\ \text{Als } (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \text{ coordinaten zijn op } \mathbb{R}^{n} \text{ dan is de notatie:} \end{split}$$

Voorbeeld

Voor $F: \mathbb{R}^3 \to \mathbb{R}^m$ zijn de partiële afgeleiden van F(a):

$$\frac{\partial F}{\partial x}(a)$$

$$\frac{\partial F}{\partial y}(a)$$

$$\frac{\partial F}{\partial z}(a)$$

Hoe berekenen we de afgeleide?

$$D_{e_i}F(a) = \lim_{h \to 0} \frac{F(a+he_i) - F(a)}{h} = \lim_{h \to 0} \frac{F(a_1, a_2, \dots, a_i + h, \dots, a_n) - F(a_1, \dots, a_n)}{h}$$

Alleen x_i wordt als variabele behandeld, alle andere variabelen behandelen we als parameters (constant!)

Voorbeeld

$$\begin{split} F: \mathbb{R}^2 &\to \mathbb{R}^2 \\ F(x_1, x_2) &= (x_1 x_2, e^{x_1} \sin(x_2)) \\ D_1 F(x_1, x_2) &= \frac{\partial F}{\partial x_1} (x_1, x_2) = (x_2, e^{x_1} \sin(x_2)) \\ D_1 F(x_1, x_2) &= \frac{\partial F}{\partial x_2} (x_1, x_2) = (x_1, e^{x_1} \cos(x_2)) \end{split}$$

Richtingsafgeleide van andere vector

Neem $c \in \mathbb{R}$ en $v \in \mathbb{R}^n$ met $F : \mathbb{R}^n \to \mathbb{R}^m$ dan geldt:

$$D_{cv}F(a)=cD_vF(a)$$

Ook zouden we graag willen dat:

 $\{D_{\nu}F(a)\}_{\nu\in\mathbb{R}^n}:=\mathcal{L}_a$ een *n*-lineaire deelruimte van \mathbb{R}^m wordt. We zoeken een raakruimte in F(a) aan het Im(F).

 $F(a) + \mathcal{L}_a$ is de kandidaat voor de raakruimte vaan Im(F) in F(a) (analoog voor de raaklijn aan een kromme)

Functie voor richtingsafgeleide van een vector in een punt

 $L: \mathbb{R}^n \to \mathbb{R}^m$ $v \mapsto DvF(a)$

Vraag

Stel voor dat F in $a \in \mathbb{R}^n$ richtingsafgeleiden heeft voor alle $v \in \mathbb{R}^n$, noemen we dan F differentieerbaar in a? **Nee!** Hij moet ook continue zijn.

Voorbeeld

$$f(x,y) = \begin{cases} \frac{2x^2y}{x^4+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Deze functie is niet continue in (0,0) en toch heeft f alle richtingsafgeleiden in (0,0).

We berekenen de richtingsafgeleiden in (0,0).

$$v \neq (0,0) = (a,b) \in \mathbb{R}^2$$

$$D_{\nu}f(0,0) = \lim_{h \to 0} \frac{f(ha,hb) - f(0,0)}{h} = \lim_{h \to 0} \frac{2a^{2}b}{h^{2}a^{4} + b^{2}} = \begin{cases} 0 & b = 0\\ \frac{2a^{2}}{b} & b \neq 0 \end{cases}$$

Differentiaal

Definitie Differentiaal ('lineaire benadering')

Neem $F \subseteq D\mathbb{R}^n \to \mathbb{R}^m$ en $a \in D$ inwendig punt van D $(\exists r > 0$ zodandig dat $B_r(a) \subseteq D)$

F is differentieerbaar in $a \Leftrightarrow$ er bestaat een lineaire afbeelding $L: \mathbb{R}^n \to \mathbb{R}^m$ met $\lim_{\|h\| \to 0} \frac{F(a+h)-F(a)-L(h)}{\|h\|} = 0$

 $L = dF_a$ heet het differentiaal van F in a.

$$\mathcal{L}in(\mathbb{R}^n,\mathbb{R}^m) \stackrel{1-1}{\longleftrightarrow} Mat(m \times m,\mathbb{R})$$

$$dF_a \leftrightarrow F'(a)$$
 (afgeleide van F in a)

$$dF_a(h) = F'(a)h \ \forall h \in \mathbb{R}^n$$

Differentiaal

Voorbeeld

- $F: \mathbb{R}^n \to \mathbb{R}^m$ constant. $F(x) = b \ \forall x \in \mathbb{R}^n$. Dan is F overal differentieerbaar en $dF_x: \mathbb{R}^n \to \mathbb{R}^m$ is de triviale oplossing. $dF_x(h) = (0, \dots, 0) \ \forall h \in \mathbb{R}^n$
- $F: \mathbb{R}^n \to \mathbb{R}^m$ lineaire afbeelding. Dan is F overal differentieerbaar met $dF_x = F$ en $dF_x(h) = F(h) \ \forall h \in \mathbb{R}^n$

Stelling 2.1

Relatie tussen richtingsafgeleide en differentiaal:

Als F differentieerbaar is in a, dan heeft F alle richtingsafgeleiden. $(D_vF(a)$ bestaat voor alle $v\in\mathbb{R}^n$ en $D_vF(a)=dF_a(v)$

Differentiaal

Opmerkingen

- Differentieerbaarheid impliceert continuïteit
- $f(x) = \begin{cases} \frac{2x^2y}{x^4+y^2} & (x,y) = (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ heeft alle richtingsafgeleiden in (0,0) maar is niet differentieerbaar.