Using Counterexamples for Improving the Precision of Reachability Computation with Polyhedra

Chao Wang, Zijiang Yang*, Aarti Gupta, Franjo Ivančić

NEC Laboratories America, Princeton, NJ
*Western Michigan University, Kalamazoo, MI

Motivation

- Static analysis based on abstract interpretation uses widening to accelerate fixpoint computation
 - widening is designed a prior if it isn't precise enough
 - either report inconclusive (a warning),
 - or redesign the widening operator manually
- We use CEGAR to improve the precision of abstract interpretation
 - introduce a new operator extrapolation with a care set
 - the care set is a forbidden area
 - iteratively expand the care set to remove false bugs
 - new algorithms for simplifying polyhedral representations

Related Work

- Widening/Extrapolation in polyhedral domains
 - widening [Cousot78], extrapolation [Henzinger95]
 - for polyhedral powersets [Bultan98,Bagnara04]
 - widening up-to [Halbwachs93,97], lookahead widening [Gopan06]
- CEGAR [Kushan94,Clarke00,Ball01]
- [Gulavani and Rajamani, TACAS06] uses CEGAR to refine abstract interpretation: after identifying the precision-loss step,
 - they use LUB (least upper bound) to replace widening
 - we expand the care set to improve widening precision

Outline

- Background
- Preliminaries
- Extrapolation with a Care Set
- Optimizations
- Application in Program Verification
- Conclusions

Widening [Cousot76]

- **●** A widening operator on a partial order set (L, \sqsubseteq) is a partial function $\nabla: L \times L \to L$ such that
 - 1. for all $x, y \in L$, $x \sqsubseteq x \nabla y$ and $y \sqsubseteq x \nabla y$;
 - 2. for all ascending chains $y_0 \sqsubseteq y_1 \sqsubseteq ...$, the ascending chain defined by $x_0 := y_0$ and $x_{i+1} := x_i \nabla y_{i+1}$ for $i \ge 0$ is *not strictly increasing*.
- In reachability fixpoint computation $F = \mu Z$. $I \cup post(Z)$

$$y_0 = I$$
 $x_0 = I$
 $y_1 = I \cup post(I)$ $x_1 = I \nabla y_1$
 $y_2 = x_1 \cup post(x_1)$ $x_2 = x_1 \nabla y_2$
 $y_3 = \dots$

In model checking one would replace $x_i \nabla y_{i+1}$ by y_{i+1}

Polyhedral Abstract Domains

- A polyhedron is $P = \{ \mathbf{x} \in \mathbb{Z}^n \mid \forall i : \mathbf{a}_i^T \cdot \mathbf{x} \leq b_i \}$
 - ightharpoonup P is a finite conjunction of linear inequality constraints
 - $\mathbf{a}_i^T \cdot \mathbf{x} \leq b_i$ is a linear inequality constraint
 - a constraint is also called a "half-space"
- The constraint system representation of a polyhedron
 - implemented in the Omega Library
 - an alternative is the generator system representation
 - the two have complementary strengths
 - both are used in PPL

Standard Widening

Let $P \sqsubseteq Q$ be two convex polyhedra; $P \nabla Q$ is defined as:

- 1. when P is empty, return Q;
- 2. otherwise, remove from P all inequalities not satisfied by Q.

[Cousot78, Halbwachs79]

Widening Up-To

• $P\nabla_M Q$ is the conjunction of $P\nabla Q$ with all the constraints in M that are satisfied by both P and Q.

- ullet The *up-to set* M a finite set of linear inequality constraints
 - if x is of subrange type 1..10, add $x \ge 1$ and $x \le 10$
 - for a loop for (x=0; x<5; x++), add x<5

[Halbwachs93,97]

Polyhedral Powerset Domains

- A polyhedral powerset is a finite union of convex polyhedra
- For two powersets P and Q, we compute $P_i \nabla Q_i$ for all pairs $P_i \in P$ and $Q_i \in Q$ such that $P_i \sqsubseteq Q_i$
- $P\nabla Q$ is an extrapolation
 - also used by [Bultan98]
 - no termination guarantee

Outline

- Background
- Preliminaries
- Extrapolation with a Care Set
- Optimizations
- Application in Program Verification
- Conclusions

Extrapolation with a Care Set

- **●** Definition: a partial function $\overset{\neg C}{\nabla}: L \times L \to L$ on set (L, \sqsubseteq)
 - 1. for all $x, y \in L$, we have $x \sqsubseteq x \overset{\neg C}{\nabla} y$ and $y \sqsubseteq x \overset{\neg C}{\nabla} y$;
 - 2. for all ascending chains $y_0 \sqsubseteq y_1 \sqsubseteq ...$, the ascending chain defined by $x_0 := y_0$ and $x_{i+1} := x_i \overset{\neg C}{\nabla} y_{i+1}$ for $i \ge 0$ satisfies: if $y_i \cap C = \emptyset$, then $x_i \cap C = \emptyset$.
- We use a care set C to restrict "directions-of-growth"
 - ullet shall not add new states to C (forbidden area)

Extrapolation with a Care Set

- $P_1 \overset{\neg C}{\nabla} Q_1$ is smaller than $P_1 \nabla Q_1$
- $P_2 \overset{\neg C}{\nabla} Q_2$ is the same as $P_2 \nabla Q_2$

Extrapolation with a Care Set (algorithm)

- Given $P \sqsubset Q$ and the care set C
 - 1. build a new polyhedron P': for each constraint c of P whose half-space does not contain Q, if $P^c_{true} \cap C = \emptyset$, then drop c.
 - 2. build a new polyhedron Q': drop constraint c of Q whose half-space does not contain P', if $Q^c_{true} \cap C = \emptyset$. return Q' as the result.

For Program Verification

- We use a polyhedral powerset domain on linear programs
 - where pre(), post(), and LUB \cup are precise
 - only ∇ causes precision loss
- In reachability fixpoint computation
 - $\hat{F}_0 = I$, and $\hat{F}_{i+1} = \hat{F}_i \nabla (\hat{F}_i \cup post(\hat{F}_i))$ for all $i \geq 0$.
 - check invariant property ψ (bad states are $\neg \psi$)
- ullet Both \widehat{F}_i and $\neg \psi$ are powersets of polyhedra

The Iterative Procedure

Initialize the care set $C = \emptyset$

- 1. Start forward reachability fixpoint computation
 - $\hat{F}_0 = I$, and $\hat{F}_{i+1} = \hat{F}_i \overset{\neg C}{\nabla} (\hat{F}_i \cup post(\hat{F}_i))$ for all $i \geq 0$.
- 2. If $\hat{F}_{fi} \cap \neg \psi \neq \emptyset$, start precise backward analysis
 - $m{P}_{fi} = \hat{F}_{fi} \cap \neg \psi$, and
 - \blacksquare $B_{i-1} = \hat{F}_{i-1} \cap pre(B_i)$ for all $i \leq fi$ and i > 0.
- 3. If $B_0 \neq \emptyset$, we have found a counterexample
 - otherwise, $B_{i-1} = \emptyset$; we expand care set C to include B_i
 - go back to step 1

Expanding the Care Set

Theorem 1 If there exists an index 0 < i < fi such that $B_{i-1} = \emptyset$, then B_i must have been introduced into \hat{F}_i by extrapolation during forward fixpoint computation.

Correctness and Termination

- We keep expanding the care set C until
 - 1. a counterexample is found (ψ fails), or
 - 2. $\hat{F} \cap \neg \psi$ becomes empty (ψ holds), or
 - 3. time/memory out (undecided).
- Conclusive results
 - \hat{F} is an upper bound \longrightarrow proofs are correct
 - backward analysis is precise CEX's are valid
- Trade-off (due to undecidability)
 - expanding C guarantees precision improvement
 - does not guarantee termination of reachability computation

Improving Widening Up-To

• $M = {\neg c_i \mid c_i \text{ is a constraint of a polyhedron in } C}.$

- $M = \{ \neg c_1, \neg c_2, \neg c_3 \}$
 - if $Q \sqsubseteq \neg c_i$, make sure $(P\nabla_M Q) \sqsubseteq \neg c_i$
 - otherwise, ignore $\neg c_i$

Improving Widening Up-To

- $M = \{ \neg c_1, \neg c_2, \neg c_3 \}$
 - if $Q \sqsubseteq \neg c_i$, make sure $(P\nabla_M Q) \sqsubseteq \neg c_i$
 - otherwise, ignore $\neg c_i$

- Trade-off
 - ∇_M is a widening with termination guarantee
 - ullet However, expanding C may not always improve precision

Outline

- Background
- Preliminaries
- Extrapolation with a Care Set
- Optimizations
- Application in Program Verification
- Conclusions

LUB can be overapproximated

- We have assumed that LUB is precise to ease presentation
 - It isn't a necessary requirement we can overapproximate
- We can selectively merge some polyhedra in a powerset
 - as long as the merging result does not intersect C
 - ullet i.e. use $\overset{\neg C}{\cup}$ instead of \cup
- Proof of correctness, or Theorem 1, still holds

Simplifying Backward Analysis

- Under-approximating backward analysis
 - $B_{i-1} = \hat{F}_{i-1} \cap pre(SUBSET(B_i))$
 - B'_i can be a polyhedron of the powerset B_i

Simplifying Polyhedral Representations

Interpolate: Let P and Q be two sets such that $P \sqsubseteq Q$. The interpolate $P\tilde{\triangle}Q$ is a new set such that $P \sqsubseteq (P\tilde{\triangle}Q) \sqsubseteq Q$.

- In forward fixpoint computation
 - $post(\hat{F}_i)$
 - $post(\hat{F}_i \setminus \hat{F}_{i-1})$
 - post(S) where $S = (\hat{F}_i \setminus \hat{F}_{i-1})\tilde{\triangle}\hat{F}_i$

Simplifying Polyhedral Representations

Restrict: Let P and Q be two sets. The restrict $P \downarrow Q$ is defined as the new set $\{\mathbf{x} \in \mathbb{Z}^n \mid \mathbf{x} \in P \cap Q, \text{ or } \mathbf{x} \notin Q\}$.

GIST: empty $(P_{\neg c}^c \cap Q)$?

OUR alg: empty $(\neg c \cap Q)$?

Compared to gist [Pugh94], our algorithm is cheaper, though it may return larger polyhedra

Outline

- Background
- Preliminaries
- Extrapolation with a Care Set
- Optimizations
- Application in Program Verification
- Conclusions

Implementation

- Implemented in F-Soft verification platform [Ivancic et al. CAV05]
 - With MC + SA: still many unresolved properties
 - static analysis isn't precise enough
 - model checking runs out of time/memory
- We want to resolve these properties using extrapolation with an iteratively improved care set
- Builds upon CUDD and the Omega Library
 - BDDs to track control flow logic
 - Polyhedral powersets to represent numerical constraints

Preliminary Experiments

comparison: reachability fixpoint computation on C programs

Program	Analysis Result				Total CPU Time (s)			
name	widen	extra	MIX	BDD	widen	extra	MIX	BDD
	only	refine	m.c.	m.c.	only	refine	m.c.	m.c.
bakery	?	true	true	true	18	5	13	2
tcas-1	?	true	true	true	18	34	128	433
tcas-2	?	true	true	true	18	37	132	644
tcas-3	?	true	true	true	18	49	135	433
tcas-4	?	true	true	true	18	19	137	212
tcas-5	?	false	false	false	18	80	150	174
appl-a	true	true	?	?	17	22	>1800	>1800
appl-b	?	false	false	?	11	94	277	>1800
appl-c	?	false	false	?	13	111	80	>1800
appl-d	?	false	false	?	13	68	78	>1800

tcas: from traffic alert and collision avoidance system

appl: from embedded software on a portable device

Conclusions

- We use CEGAR to improve the precision of extrapolation in abstract interpretation by iteratively expanding a care set
 - algorithms for computing extrapolation with a care set in polyhedral domain
- Promising results: can retain scalability of static analysis and at the same time improve precision
- Future work: apply to other abstract domains (e.g. octagon and interval domains)