Contents

0.1	Notation for Data Set
0.2	Relational operators
0.3	Factorials Numbers
	0.3.1 Factorials
	0.3.2 Choose Operator
0.4	Binomial Coefficients
0.5	Binomial Coefficients
	0.5.1 Binomial Coefficients
	0.5.2 Binomial Coefficients
0.6	Maximum, Minimum and Range
	0.6.1 Range
0.7	Summation
0.8	Summation
0.9	The Exponential Function
	0.9.1 Example: Factorials
	0.9.2 Example 1

0.1 Notation for Data Set

- Suppose that we have a data set with n observations. For each observation, a measure is recorded. Conventionally the measures are denoted x unless a more suitable notation is available.
- A subscript can be used to indicate which observation the measure is for.
- Hence we would write a data set as follows; $(x_1, x_2, x_3, x_1 \dots x_n)$ (i.e. the first, second, third ... nth observation).

0.2 Relational operators

- $\bullet~>$ means 'is greater than
- \bullet \geq means 'is greater than or equal to
- < means 'is less than

- \bullet \leq means 'is less than or equal to
- \neq means 'is not equal to
- \approx or \simeq means 'is approximately equal to

0.3 Factorials Numbers

A factorial is a positive whole number, based on a number n, and which is written as "n!". The factorial n! is defined as follows:

$$n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$$

The factorial function (symbol: !) just means to multiply a series of descending natural numbers.

Remark $n! = n \times (n-1)!$

Example:

•
$$3! = 3 \times 2 \times 1 = 6$$

•
$$4! = 4 \times 3! = 4 \times 3 \times 2 \times 1 = 24$$

Remark 0! = 1 not 0.

Example:

•
$$4! = 4 \times 3 \times 2 \times 1 = 24$$

•
$$7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5,040$$

•
$$3! = 3 \times 2 \times 1 = 6$$

•
$$4! = 4 \times 3! = 4 \times 3 \times 2 \times 1 = 24$$

•
$$1! = 1$$

•
$$0! = 1$$

$$(n+1)! = (n+1) \times n!$$

•
$$5! = 5 \times 4!$$

•
$$6! = 6 \times 5!$$
 and so on

0.3.1 Factorials

Examples:

Importantly

$$n! = n \times (n-1)! = n \times (n-1) \times (n-2)!$$

For Example

$$6! = 6 \times 5! = 6 \times 5 \times 4!$$

• factorials

$$n! = (n) \times (n-1) \times (n-2) \times \ldots \times 1$$

$$-5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

$$-3! = 3 \times 2 \times 1$$

Factorials

- $5! = 5 \times 4 \times 3 \times 2 \times 1 (= 120)$
- $5! = 5 \times 4!$

Factorials Numbers

A factorial is a positive whole number, based on a number n, and which is written as "n!". The factorial n! is defined as follows:

$$n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$$

Remark $n! = n \times (n-1)!$

Example:

- $3! = 3 \times 2 \times 1 = 6$
- $4! = 4 \times 3! = 4 \times 3 \times 2 \times 1 = 24$

Remark 0! = 1 not 0.

0.3.2 Choose Operator

For the positive integer n and non-negative integer k (with $k \leq n$), the choose operator is calculated as follows:

$$\binom{n}{k} = \frac{n!}{k! \times (n-k)!}$$

Evaluate the following:

- $1\binom{5}{2}$
- $2\binom{5}{0}$
- $3\binom{10}{1}$
- $4 \binom{10}{9}$

The Choose Operator

$$\binom{n}{k} = \frac{n!}{k! \times (n-k)!}$$
$$\binom{3}{1} = \frac{3!}{1! \times (3-1)!} \frac{3 \times 2!}{1! \times 2!} = \frac{3}{1} = 3$$

The Choose Operator

- $\bullet \ \binom{3}{0} = 1$
- (Remember 0! is always equal to 1)
- $\bullet \ \binom{3}{1} = 3$
- $\binom{3}{2} = 3$
- $\binom{3}{3} = 1$

0.4 Binomial Coefficients

- n! and k! are the coefficients of n and k respectively.
- $n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$
- For example $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- $n! = n \times (n-1)!$
- Importantly 0! = 1 not 0.

$$\binom{6}{2} = \frac{6!}{2! \times (6-2)!} = \frac{6!}{2! \times 4!}$$
$$= \frac{6 \times 5 \times 4!}{2! \times 4!} = 30/2 = 15$$

More examples of Binomial coefficients on blackboard.

0.5 Binomial Coefficients

For the positive integer n and non-negative integer k (with $k \leq n$), the choose operator is calculated as follows:

$$\binom{n}{k} = \frac{n!}{k! \times (n-k)!}$$

$$\binom{n}{r} = \frac{n!}{(n-r)!r!}$$
$$\binom{6}{3} = \frac{6!}{(6-3)!3!} = \frac{6!}{3! \times 3!}$$
$$\frac{6!}{3! \times 3!} = \frac{6 \times 5 \times 4 \times 3!}{3! \times 3!} = \frac{120}{6} = 120$$

Evaluate the following:

1. $\binom{5}{2}$

3. $\binom{6}{3}$

5. $\binom{10}{1}$

2. $\binom{5}{0}$

4. $\binom{6}{6}$

6. $\binom{10}{9}$

$$\binom{n}{k} = \frac{n!}{k! \times (n-k)!}$$

• $\binom{6}{2} = 15$

• $\binom{4}{0} = 1$

• $\binom{5}{2} = 10$

• $\binom{4}{3} = 4$

Formula

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{k(k-1)\dots 1},$$

which can be written using factorials as whenever $k \leq n$

Binomial Coefficients

In the last class, we came across binomial coefficients. Informally, binomial coefficients are the number of ways k items can be selected from a group of n items. The binomial coefficient indexed by n and k is usually written as ${}^{n}C_{k}$ or

 $\binom{n}{k}$

. C is colloqually known as the "choose operator".

$$\binom{n}{k} = \frac{n!}{k! \times (n-k)!}$$

(We call the operator the choose operator. We will use both notations interchangeably.)

Binomial Coefficients

- n! and k! are the coefficients of n and k respectively.
- $n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$
- For example $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- $n! = n \times (n-1)!$
- Importantly 0! = 1 not 0.

$$\binom{6}{2} = \frac{6!}{2! \times (6-2)!} = \frac{6!}{2! \times 4!}$$
$$= \frac{6 \times 5 \times 4!}{2! \times 4!} = 30/2 = 15$$

More examples of Binomial coefficients on blackboard. **Probability Mass Function** (Formally defining something mentioned previously)

• a probability mass function (pmf) is a *function* that gives the probability that a discrete random variable is exactly equal to some value.

$$P(X = k)$$

- The probability mass function is often the primary means of defining a discrete probability distribution
- It is conventional to present the probability mass function in the form of a table.
- The p.m.f of a value k is often denoted f(k).

Binomial Example 1 (Revision from Last Class)

Suppose a die is tossed 5 times. What is the probability of getting exactly 2 fours?

Solution: This is a binomial experiment in which the number of trials is equal to 5, the number of successes is equal to 2, and the probability of success on a single trial is 1/6 or about 0.167. Therefore, the binomial probability is:

$$P(X = 2) = {}^{5}C_{2} \times (1/6)^{2} \times (5/6)^{3} = 0.161$$

Binomial Example 2 Suppose there is a container that contains 6 items. The probability that any one of these items is defective is 0.3. Suppose all six items are inspected.

- What is the probability of 3 defective components?
- What is the probability of 4 defective components?

$$P(3 \text{ defects}) = f(3) = P(X = 3) = {6 \choose 3} 0.3^3 (1 - 0.3)^{6-3} = 0.1852$$

$$P(4 \text{ defects}) = f(4) = P(X = 4) = {6 \choose 4} 0.3^4 (1 - 0.3)^{6-4} = 0.0595$$

0.5.1 Binomial Coefficients

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{k(k-1)\dots 1},$$

which can be written using factorials as whenever $k \leq n$

Evaluat the following

- ${}^{10}C_0$
- ${}^{10}C_1$
- \bullet 6C_3

Solutions

- ${}^{10}C_0 = 10!/(10! \times 0!) = 1$
- ${}^{10}C_1 = 10!/(9! \times 1!) == 1$
- ${}^{6}C_{3}$

0.5.2 Binomial Coefficients

$$\binom{5}{2} = \frac{5!}{2! (5-2)!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = 10$$

$$\binom{5}{0} = \frac{5!}{0! (5-0)!} = \frac{5!}{0! \cdot 5!} = \frac{5!}{2!} = 1$$

Recall 0! = 1

 \bullet In the last class, we came across binomial coefficients. Informally, binomial coefficients are the number of ways k items can be selected from a group of n items.

• The binomial coefficient indexed by n and k is usually written as ${}^{n}C_{k}$ or

$$\binom{n}{k}$$

 \bullet C is colloqually known as the "choose operator".

$$\binom{n}{k} = \frac{n!}{k! \times (n-k)!}$$

• (We call the operator the choose operator. We will use both notations interchangeably.)

• n! and k! are the coefficients of n and k respectively.

• $n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$

• For example $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

• $n! = n \times (n-1)!$

• Importantly 0! = 1 not 0.

$$\binom{6}{2} = \frac{6!}{2! \times (6-2)!} = \frac{6!}{2! \times 4!}$$
$$= \frac{6 \times 5 \times 4!}{2! \times 4!} = 30/2 = 15$$

More examples of Binomial coefficients on blackboard.

$$\binom{52}{5} = 2598960$$

Easier example

$$\binom{8}{3} = \frac{8!}{3! \times 5!}$$

We can divide above and below by (5!), leaving us with

$$\frac{8\times7\times6}{3\times2\times1}=56$$

There are 56 way to pick 3 objects at random from group of 8 objects.

More Exercises

Evaluate the following:

(i) $\binom{5}{2}$ (iv) $\binom{6}{6}$

(ii) $\binom{5}{0}$ (v) $\binom{10}{1}$

(iii) $\binom{6}{3}$ (vi) $\binom{10}{9}$

0.6 Maximum, Minimum and Range

0.6.1 Range

• The Range is simply the difference between the maximum value

• The range of a set of data is the difference between the highest and lowest values in the data set.

• Consider the following data set

$$\{39, 23, 34, 41, 37, 27, 44\}$$

• The highest value (i.e. the maximum) is 44.

• The lowest value (i.e. the minimum) is 23.

• The range is the difference is between these two numbers:

Range
$$= 44 - 23 = 21$$
.

In this frst homework, we will focus on some simple calculations, and simple concepts. The learning outcome is to familiarise yourself with the SULIS homework system

• Calculate the range of the following data set

• Calculate the range of these numbers:

$$3, -7, 5, 13, -2$$

• For each of these data sets, determine the sample size.

0.7 Summation

The summation sign \sum is commonly used in most areas of statistics. Given $x_1 = 3, x_2 = 1, x_3 = 4, x_4 = 6, x_5 = 8$ find:

$$(i) \sum_{i=1}^{i=n} x_i \qquad (ii) \sum_{i=3}^{i=4} x_i^2$$

$$(i) \sum_{i=1}^{i=n} x_i = x_1 + x_2 + x_3 + x_4 + x_5$$
$$= 3 + 1 + 4 + 6 + 8$$
$$= 22$$

$$(ii)\sum_{i=1}^{i=n} x_i^2 = x_3^2 + x_4^2 = 9 + 16 = 25$$

When all elements of a data set are used, a simple version of the summation notation can be used. $\sum_{i=1}^{i=n} x_i$ can simply be written as $\sum x$

Example

Given that $p_1 = 1/4$, $p_2 = 1/8$, $p_3 = 1/8$, $p_4 = 1/3$, $p_5 = 1/6$ find:

$$\bullet \sum_{i=1}^{i=n} p_i \times x_i$$

$$\bullet \sum_{i=1}^{i=n} p_1 \times x_i^2$$

0.8 Summation

The summation sign \sum is commonly used in most areas of statistics. Given $x_1 = 3, x_2 = 1, x_3 = 4, x_4 = 6, x_5 = 8$ find:

$$(i) \sum_{i=1}^{i=n} x_i \qquad (ii) \sum_{i=3}^{i=4} x_i^2$$

(i)
$$\sum_{i=1}^{i=n} x_i = x_1 + x_2 + x_3 + x_4 + x_5$$

= $3 + 1 + 4 + 6 + 8$
= 22

(ii)
$$\sum_{i=1}^{i=n} x_i^2 = x_3^2 + x_4^2 = 9 + 16 = 25$$

When all elements of a data set are used, a simple version of the summation notation can be used. $\sum_{i=1}^{i=n} x_i$ can simply be written as $\sum x$

Example

Given that $p_1 = 1/4, p_2 = 1/8, p_3 = 1/8, p_4 = 1/3, p_5 = 1/6$ find:

$$\bullet \sum_{i=1}^{i=n} p_i \times x_i$$

$$\bullet \ \sum_{i=1}^{i=n} p_1 \times x_i^2$$

0.9 The Exponential Function

$$f(x) = e^x$$

For most statistical analyses that you are likely to encounter, the value of x is likely to be negative or less than one.

$$f(x) = e - 1$$

$$f(x) = e^{0.5}$$

Combinations formula

$${}^{n}C_{k} = \frac{n!}{k! \times (n-k)!}$$

- Remark $n! = n \times (n-1)!$
- 0! = 1

Show that

$${}^{n}C_{0} = 1$$

Solution:

$${}^{n}C_{0} = \frac{n!}{0! \times (n-0)!} = \frac{n!}{n!} = 1$$

Show that

$${}^{n}C_{1}=n$$

Solution:

$${}^{n}C_{1} = \frac{n!}{1! \times (n-1)!} = \frac{n \times (n-1)!}{(n-1)!} = n$$

Compute 7C_2

Solution:

$${}^{7}C_{2} = \frac{7!}{2! \times (7-2)!} = \frac{7 \times 6 \times 5!}{2! \times 5!} = \frac{42}{2} = 21$$

Compute $^{11}C_1$

Solution:

$$^{11}C_1 = \frac{11!}{1! \times 10!} = \frac{11 \times 10!}{1 \times 10!} = 11$$

0.9.1 Example: Factorials

Examples:

- $4! = 4 \times 3 \times 2 \times 1 = 24$
- $7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5,040$
- 1! = 1
- 0! = 1

Importantly

$$n! = n \times (n-1)! = n \times (n-1) \times (n-2)!$$

For Example

$$6! = 6 \times 5! = 6 \times 5 \times 4!$$

- $3! = 3 \times 2 \times 1 = 6$
- $4! = 4 \times 3! = 4 \times 3 \times 2 \times 1 = 24$
- factorials

$$n! = (n) \times (n-1) \times (n-2) \times \ldots \times 1$$

- $-5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- $-3! = 3 \times 2 \times 1$
- Zero factorial : Remark 0! = 1 not 0.

$$0! = 1$$

0.9.2 Example 1

$$\binom{5}{2} = \frac{5!}{2! \ (5-2)!} = \frac{5.4.3!}{2!.3!} = \frac{5.4}{2.1} = 10$$

Example 2

$$\binom{5}{0} = \frac{5!}{0! (5-0)!} = \frac{5!}{0! \cdot 5!} = \frac{5!}{2!} = 1$$

Recall 0! = 1