Параллельные архитектуры и алгоритмы Презентация

Денис Морозов morozov.den@samsung.com

> ¹Mobile Lab 2 Samsung R&D

²Department of Computer Science, doctoral studies University of "Kiev-Mogyla Academy"

Январь, 2012

План

1 Параллельные архитектуры

2 Параллельные алгоритмы

3 Клеточные автоматы

- SISD Single Instruction stream over a Single Data stream
- SIMD Single Instruction Multiple Data
- MISD Multiple Instruction Single Data
- MIMD Multiple Instruction Multiple Data

- SISD Single Instruction stream over a Single Data stream
- □ SIMD Single Instruction Multiple Data
- MISD Multiple Instruction Single Data
- □ MIMD Multiple Instruction Multiple Data

- SISD Single Instruction stream over a Single Data stream
- □ SIMD Single Instruction Multiple Data
- MISD Multiple Instruction Single Data
- □ MIMD Multiple Instruction Multiple Data

- SISD Single Instruction stream over a Single Data stream
- □ SIMD Single Instruction Multiple Data
- □ MISD Multiple Instruction Single Data
- MIMD Multiple Instruction Multiple Data

- SISD Single Instruction stream over a Single Data stream
- □ SIMD Single Instruction Multiple Data
- MISD Multiple Instruction Single Data
- □ MIMD Multiple Instruction Multiple Data

SMP (symmetric multiprocessing)

SMP (symmetric multiprocessing) - симметричная многопроцессорная архитектура. Главной особенностью систем с архитектурой SMP является наличие общей физической памяти, разделяемой всеми процессорами. При работе с SMP-системами используют так называемую парадигму программирования с разделяемой памятью - shared memory paradigm (OpenMP).

SMP

Возможны конфликты при обращении к общей памяти

- _ CREW
- _ CRCW

MPP (massive parallel processing)

MPP (massive parallel processing) - массивно-параллельная архитектура. Главная особенность такой архитектуры состоит в том, что память физически разделена. При работе с MPP-системами используют Massive Passing Programming Paradigm - парадигму программирования с передачей данных (MPI, PVM, BSPlib)

Гибридная архитектура NUMA

Главная особенность гибридной архитектуры NUMA (nonuniform memory access) - неоднородный доступ к памяти. Архитектура cc-NUMA (Cache Coherent Non-Uniform Memory Access) - неоднородный доступ к памяти с обеспечением когерентности кэшей.

Конвейерные процессоры

выборка команды; расшифровка команды; выборка необходимых операндов; выполнение команды; сохранение результатов.

Матричные процессоры

Наиболее распространенными из систем класса один поток команд - множество потоков данных (SIMD) являются матричные системы, которые лучше всего приспособлены для решения задач, характеризующихся параллелизмом независимых объектов или данных. Моделью параллельных вычислений на матричных (векторных) ВС являются клеточные автоматы.

Процессоры баз данных

Создание такого рода систем связывается с реализацией параллелизма при выполнении последовательности операций и транзакций, а также конвейерной потоковой обработки данных.

Кластеры

Кластер представляет собой два или более компьютеров (часто называемых узлами), объединяемых при помощи сетевых технологий на базе шинной архитектуры или коммутатора и предстающих перед пользователями в качестве единого информационно-вычислительного ресурса. Важна топология связи процессоров в кластерной системе.

Закон Амдала

Самое важное в вопросе эффективности параллельного кода - это хороший дизайн самого алгоритма.

$$S(p) = \frac{t_s}{ft_s + (1-f)t_s/p} = \frac{p}{1 + (p-1)f}$$

- □ алгоритм сложения сдваиванием
- □ скалярное произведение векторов
- умножение матрицы на вектор
- 🗆 умножение матриц
- 🗆 алгоритм параллельной сортировки Бэтчера
- 🗆 нахождение решения уравнений в конечных разностях
- 🗆 свертка с большим ядром над полем комплексных чисел

- 🗆 алгоритм сложения сдваиванием
- □ скалярное произведение векторов
- умножение матрицы на вектор
- 🗆 умножение матриц
- 🗆 алгоритм параллельной сортировки Бэтчера
- правнений в конечных разностях правнений в конечных разностях
- 🗆 свертка с большим ядром над полем комплексных чисел

- алгоритм сложения сдваиванием
- скалярное произведение векторов
- имножение матрицы на вектор
- 🗆 умножение матриц
- 🗆 алгоритм параллельной сортировки Бэтчера
- 🗆 нахождение решения уравнений в конечных разностях
- 🗆 свертка с большим ядром над полем комплексных чисел

- 🗆 алгоритм сложения сдваиванием
- 🗆 скалярное произведение векторов
- 🗆 умножение матрицы на вектор
- умножение матриц
- алгоритм параллельной сортировки Бэтчера
- пахождение решения уравнений в конечных разностях
- 🗆 свертка с большим ядром над полем комплексных чисел

- 🗆 алгоритм сложения сдваиванием
- скалярное произведение векторов
- 🗆 умножение матрицы на вектор
- при умножение матриц
- алгоритм параллельной сортировки Бэтчера
- 🗆 нахождение решения уравнений в конечных разностях
- 🗆 свертка с большим ядром над полем комплексных чисел

- 🗆 алгоритм сложения сдваиванием
- 🗆 скалярное произведение векторов
- 🗆 умножение матрицы на вектор
- при умножение матриц
- 🗆 алгоритм параллельной сортировки Бэтчера
- правнений в конечных разностях правнений в конечных разностях
- 🗆 свертка с большим ядром над полем комплексных чисел

- 🗆 алгоритм сложения сдваиванием
- 🗆 скалярное произведение векторов
- 🗆 умножение матрицы на вектор
- при умножение матриц
- 🗆 алгоритм параллельной сортировки Бэтчера
- правнений в конечных разностях правнений в конечных разностях
- 🗆 свертка с большим ядром над полем комплексных чисел

- 🗆 алгоритм сложения сдваиванием
- 🗆 скалярное произведение векторов
- 🗆 умножение матрицы на вектор
- при умножение матриц
- 🗆 алгоритм параллельной сортировки Бэтчера
- правнений в конечных разностях правнений в конечных разностях
- 🗆 свертка с большим ядром над полем комплексных чисел

- 1 начальная установка р . Установить $\rho \leftarrow 2^{t-1}$, где $t = log_2N$ наименьшее целое число, такое, что $2^t = N$. (Шаги 2-5 будут выполняться с $\rho = 2^{t-1}, 2^{t-2}, ..., 1$.)
- 2 начальная установка q, r, d . Установить $q \leftarrow 2^{t-1}, r \leftarrow 0, d \leftarrow p$.
- 3 цикл по i . Для всех t , таких, что $0 \le i < N-d$ и $i \land p = r$, выполнять шаг 4. Затем перейти к шагу 5.
- 4 Сравнение/обмен $0 \le i < N-d, K_{i+1} \leftrightarrow K_{i+d+1}$
- 5 Цикл по q . Если $q \neq p$, установить $d \leftarrow q p, q \leftarrow q/2, r \leftarrow p$ и возвратиться к шагу 3
- [6] Цикл по p. Установить $p \leftarrow \lfloor p/2 \rfloor$. Если p > 0 возвратиться к шагу 2.

- I начальная установка р . Установить $p \leftarrow 2^{t-1}$, где $t = log_2N$ наименьшее целое число, такое, что $2^t = N$. (Шаги 2-5 будут выполняться с $p = 2^{t-1}, 2^{t-2}, ..., 1$.)
- 2 начальная установка q, r, d . Установить $q \leftarrow 2^{t-1}, r \leftarrow 0, d \leftarrow p$.
- в цикл по i . Для всех t , таких, что $0 \le i < N-d$ и $i \land p = r$, выполнять шаг 4. Затем перейти к шагу 5.
- 4 Сравнение/обмен $0 \le i < N d, K_{i+1} \leftrightarrow K_{i+d+1}$
- 5 Цикл по q . Если $q \neq p$, установить $d \leftarrow q p, q \leftarrow q/2, r \leftarrow p$ и возвратиться к шагу 3
- [6] Цикл по p. Установить $p \leftarrow \lfloor p/2 \rfloor$. Если p > 0 , возвратиться к шагу 2.

- I начальная установка р . Установить $\rho \leftarrow 2^{t-1}$, где $t = log_2N$ наименьшее целое число, такое, что $2^t = N$. (Шаги 2-5 будут выполняться с $\rho = 2^{t-1}, 2^{t-2}, ..., 1$.)
- 2 начальная установка q,r,d . Установить $q\leftarrow 2^{t-1},r\leftarrow 0,d\leftarrow p$.
- 3 цикл по i . Для всех t , таких, что $0 \le i < N-d$ и $i \land p = r$, выполнять шаг 4. Затем перейти к шагу 5.
- 4 Сравнение/обмен $0 \le i < N d, K_{i+1} \leftrightarrow K_{i+d+1}$
- 5 Цикл по q . Если $q \neq p$, установить $d \leftarrow q p, q \leftarrow q/2, r \leftarrow p$ и возвратиться к шагу 3
- [6] Цикл по p. Установить $p \leftarrow \lfloor p/2 \rfloor$. Если p > 0 возвратиться к шагу 2.

- 1 начальная установка р . Установить $p \leftarrow 2^{t-1}$, где $t = log_2N$ наименьшее целое число, такое, что $2^t = N$. (Шаги 2-5 будут выполняться с $p = 2^{t-1}, 2^{t-2}, ..., 1$.)
- 2 начальная установка q,r,d . Установить $q \leftarrow 2^{t-1}, r \leftarrow 0, d \leftarrow p$.
- з цикл по i . Для всех t , таких, что $0 \le i < N-d$ и $i \land p = r$, выполнять шаг 4. Затем перейти к шагу 5.
- 4 Сравнение/обмен $0 \le i < N d, K_{i+1} \leftrightarrow K_{i+d+1}$
- 5 Цикл по q . Если $q \neq p$, установить $d \leftarrow q-p, q \leftarrow q/2, r \leftarrow p$ и возвратиться к шагу 3
- [6] Цикл по p. Установить $p \leftarrow \lfloor p/2 \rfloor$. Если p > 0 возвратиться к шагу 2.

- 1 начальная установка р . Установить $p \leftarrow 2^{t-1}$, где $t = log_2N$ наименьшее целое число, такое, что $2^t = N$. (Шаги 2-5 будут выполняться с $p = 2^{t-1}, 2^{t-2}, ..., 1$.)
- 2 начальная установка q,r,d . Установить $q \leftarrow 2^{t-1}, r \leftarrow 0, d \leftarrow p$.
- з цикл по i . Для всех t , таких, что $0 \le i < N-d$ и $i \land p = r$, выполнять шаг 4. Затем перейти к шагу 5.
- 4 Сравнение/обмен $0 \le i < N-d, K_{i+1} \leftrightarrow K_{i+d+1}$
- 5 Цикл по q . Если $q \neq p$, установить $d \leftarrow q p, q \leftarrow q/2, r \leftarrow p$ и возвратиться к шагу 3
- [6] Цикл по p. Установить $p \leftarrow \lfloor p/2 \rfloor$. Если p > 0 возвратиться к шагу 2.

- 1 начальная установка р . Установить $p \leftarrow 2^{t-1}$, где $t = log_2N$ наименьшее целое число, такое, что $2^t = N$. (Шаги 2-5 будут выполняться с $p = 2^{t-1}, 2^{t-2}, ..., 1$.)
- 2 начальная установка q,r,d . Установить $q \leftarrow 2^{t-1}, r \leftarrow 0, d \leftarrow p$.
- 3 цикл по i . Для всех t , таких, что $0 \le i < N-d$ и $i \land p = r$, выполнять шаг 4. Затем перейти к шагу 5.
- 4 Сравнение/обмен $0 \le i < N-d, K_{i+1} \leftrightarrow K_{i+d+1}$
- 5 Цикл по q . Если $q \neq p$, установить $d \leftarrow q p, q \leftarrow q/2, r \leftarrow p$ и возвратиться к шагу 3.
- [6] Цикл по p. Установить $p \leftarrow \lfloor p/2 \rfloor$. Если p > 0 , возвратиться к шагу 2.

- 1 начальная установка р . Установить $p \leftarrow 2^{t-1}$, где $t = log_2N$ наименьшее целое число, такое, что $2^t = N$. (Шаги 2-5 будут выполняться с $p = 2^{t-1}, 2^{t-2}, ..., 1$.)
- 2 начальная установка q,r,d . Установить $q \leftarrow 2^{t-1}, r \leftarrow 0, d \leftarrow p$.
- 3 цикл по i . Для всех t , таких, что $0 \le i < N-d$ и $i \land p = r$, выполнять шаг 4. Затем перейти к шагу 5.
- 4 Сравнение/обмен $0 \le i < N-d, K_{i+1} \leftrightarrow K_{i+d+1}$
- 5 Цикл по q . Если $q \neq p$, установить $d \leftarrow q p, q \leftarrow q/2, r \leftarrow p$ и возвратиться к шагу 3.
- 6 Цикл по p. Установить $p \leftarrow \lfloor p/2 \rfloor$. Если p > 0 , возвратиться к шагу 2.

р	4	2	2	1	1	1
q	4	4	2	4	2	1
r	0	0	2	0	1	1
d	4	2	2	1	3	1

$$\boxed{1} \ 1 \leftrightarrow 5, 2 \leftrightarrow 6, 3 \leftrightarrow 7, 4 \leftrightarrow 8$$

$$2 \quad 1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 7, 6 \leftrightarrow 8$$

$$3 \leftrightarrow 5, 4 \leftrightarrow 6$$

$$\boxed{4} \quad 1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 6, 7 \leftrightarrow 8$$

$$5$$
 $2 \leftrightarrow 5, 4 \leftrightarrow 7$

$$[6]$$
 2 \leftrightarrow 3, 4 \leftrightarrow 5, 6 \leftrightarrow 7

р	4	2	2	1	1	1
q	4	4	2	4	2	1
r	0	0	2	0	1	1
d	4	2	2	1	3	1

$$\boxed{1} \ 1 \leftrightarrow 5, 2 \leftrightarrow 6, 3 \leftrightarrow 7, 4 \leftrightarrow 8$$

$$2 \quad 1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 7, 6 \leftrightarrow 8$$

$$3 \leftrightarrow 5, 4 \leftrightarrow 6$$

4
$$1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 6, 7 \leftrightarrow 8$$

$$5 2 \leftrightarrow 5, 4 \leftrightarrow 7$$

$$[6]$$
 2 \leftrightarrow 3, 4 \leftrightarrow 5, 6 \leftrightarrow 7

р	4	2	2	1	1	1
q	4	4	2	4	2	1
r	0	0	2	0	1	1
d	4	2	2	1	3	1

$$\boxed{1} \ 1 \leftrightarrow 5, 2 \leftrightarrow 6, 3 \leftrightarrow 7, 4 \leftrightarrow 8$$

$$2 \ 1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 7, 6 \leftrightarrow 8$$

$$3 \leftrightarrow 5, 4 \leftrightarrow 6$$

$$\boxed{4} \quad 1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 6, 7 \leftrightarrow 8$$

$$5 2 \leftrightarrow 5, 4 \leftrightarrow 7$$

$$6 \ 2 \leftrightarrow 3, 4 \leftrightarrow 5, 6 \leftrightarrow 7$$

р	4	2	2	1	1	1
q	4	4	2	4	2	1
r	0	0	2	0	1	1
d	4	2	2	1	3	1

$$\boxed{1} \ 1 \leftrightarrow 5, 2 \leftrightarrow 6, 3 \leftrightarrow 7, 4 \leftrightarrow 8$$

$$2 \ 1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 7, 6 \leftrightarrow 8$$

$$3 \leftrightarrow 5, 4 \leftrightarrow 6$$

$$\boxed{4} \ 1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 6, 7 \leftrightarrow 8$$

$$5$$
 2 \leftrightarrow 5, 4 \leftrightarrow 7

$$[6]$$
 2 \leftrightarrow 3, 4 \leftrightarrow 5, 6 \leftrightarrow 7

р	4	2	2	1	1	1
q	4	4	2	4	2	1
r	0	0	2	0	1	1
d	4	2	2	1	3	1

$$\boxed{1} \ 1 \leftrightarrow 5, 2 \leftrightarrow 6, 3 \leftrightarrow 7, 4 \leftrightarrow 8$$

$$2 \ 1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 7, 6 \leftrightarrow 8$$

$$3 \leftrightarrow 5, 4 \leftrightarrow 6$$

$$\boxed{4} \ 1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 6, 7 \leftrightarrow 8$$

$$5$$
 $2 \leftrightarrow 5, 4 \leftrightarrow 7$

$$6$$
 2 \leftrightarrow 3, 4 \leftrightarrow 5, 6 \leftrightarrow 7

р	4	2	2	1	1	1
q	4	4	2	4	2	1
r	0	0	2	0	1	1
d	4	2	2	1	3	1

$$\boxed{1} \ 1 \leftrightarrow 5, 2 \leftrightarrow 6, 3 \leftrightarrow 7, 4 \leftrightarrow 8$$

$$2 \ 1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 7, 6 \leftrightarrow 8$$

$$3 \leftrightarrow 5, 4 \leftrightarrow 6$$

$$5 \ 2 \leftrightarrow 5, 4 \leftrightarrow 7$$

$$6 2 \leftrightarrow 3, 4 \leftrightarrow 5, 6 \leftrightarrow 7$$

р	4	2	2	1	1	1
q	4	4	2	4	2	1
r	0	0	2	0	1	1
d	4	2	2	1	3	1

$$\boxed{1} \ 1 \leftrightarrow 5, 2 \leftrightarrow 6, 3 \leftrightarrow 7, 4 \leftrightarrow 8$$

$$2 \ 1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 7, 6 \leftrightarrow 8$$

$$3 \leftrightarrow 5, 4 \leftrightarrow 6$$

$$\textbf{4} \ \textbf{1} \leftrightarrow \textbf{2}, \textbf{3} \leftrightarrow \textbf{4}, \textbf{5} \leftrightarrow \textbf{6}, \textbf{7} \leftrightarrow \textbf{8}$$

$$5 \ 2 \leftrightarrow 5, 4 \leftrightarrow 7$$

$$[6]$$
 2 \leftrightarrow 3, 4 \leftrightarrow 5, 6 \leftrightarrow 7

Разностная схема

Уравнение в конечных разностях:

$$\frac{\partial^2 f}{\partial x^2} - \frac{\partial f}{\partial y} = 0$$

Свертка

$$(x^{n_1} + a_{n_1-1}x^{n_1-1} + \dots + a_0) \cdot (x^{n_2} + b_{n_2-1}x^{n_2-1} + \dots + b_0)$$
$$(x^{n_1} + a_{n_1-1}x^{n_1-1} + \dots + a_0) \cdot (x - x_1) \cdot \dots \cdot (x - x_{n_2})$$

Литература I

- Дональд Э. Кнут Искусство программирования, том 3. Сортировка и поиск Вильямс, 2011
- Т. Тоффоли, Н. Марголус Машины клеточных автоматов Мир, 1991.
- Дж.фон Нейман Теория самовоспроизводящихся автоматов Мир, 1971.
- Миронов А.А., Карпов А.Н.
 Параллельные алгоритмы обработки данных http://www.viva64.com/ru/a/0032/