Diszkrét matematika 1.

3. gyakorlat

1. Adja meg az alábbi számok tízes számrendszerbeli alakját!

 110010_2 , 201331_4 , 1825_9 , 2210_3 , 111_2 , 111_6 , $10D_{16}$, 1002_4

- **2.** Adja meg a 21, 256, 1543, 9865, 33421 és 1300
 - (a) kettes,
 - (b) hármas,
 - (c) ötös

számrendszerbeli alakját!

- 3. Anélkül, hogy áttérne tízes számrendszerre adja meg
 - (a) a 1302₄, 311₄, 10032₄ kettes számrendszerbeli,
 - (b) a 5281₉, 4760₉, 318₉ hármas számrendszerbeli,
 - (c) a 1101₂, 10110₂, 111010₂ négyes számrendszerbeli,
 - (d) a 2001₃, 11210₃, 200121₃ kilences számrendszerbeli,
- (e) a $59A_{16}$, $B760_{16}$, 318_{16} kettes számrendszerbeli alakját!
- 4. Végezze el az alábbi műveleteket!

$$1101_2 + 111_2$$
, $10011_2 + 1011_2$, $3105_6 + 4411_6$, $11011_2 - 1101_2$, $3242_5 - 2004_5$, $10110_2 \cdot 110_2$

- 5. Igazolja az alábbi oszthatóságokat!
 - (a) $9|(10^{19} + 53)$,

(c) $6|(10^7 - 88)$,

(b) $36|(10^{17}-64)$,

(d) $12|(10^{16} + 44)$.

${\bf 10.}$ Igazolja, hogy négy egymást követő egész szám szorzata mindig osztható 24-gyel!		
11. Euklideszi algoritmus segítségével számítsa ki az alábbi számok legnagyobb közös osztóját!		
(a) 672 és 360,	(c) 1225 és 216,	(e) 783 és 1160,
(b) 455 és 312,	(d) 680 és 845,	(f) 3751 és 1240.
12. Mutassa meg, hogy nem léteznek olyan a és b egész számok, hogy $a^2 = 5b^2$.		
13. Bizonyítsa be, hogy az alábbi egyenletek nem oldhatók meg a pozitív egész számok körében!		
(a) $n^{k+1} = (n+1)^k$,	(c)	$k(k^4 + 1) = 3267,$
(b) $a^6 + 25a = 7425$,	(d)	$30^n + 31^m = 32^k.$
14. Oldja meg az alábbi egyenleteket az egész számok körében!		
(a) $a^2 - b^2 = 100$,	(d)	ab + a + b = 5,
(b) $a^2 - 4b^2 = 116$,	(e)	ab + 3a - 5b + 3 = 0,
(c) $ab + a + b = 12$,	(f)	ab + 2a + 3b = 137.

9. Létezik-e olyan n egész szám, hogy n! pontosan 5 nullára végződik?

 ${\bf 6.}$ Milyen számjegyeket írhatunk a és b helyére, hogy teljesüljön az osztha-

(c) 45|61a24b

(d) 72|44a21b

(c) $200|(101^3 + 99^3)$

(d) $99|(11^{22} - 22^{11})$

tóság?

(a) 33|52ab71

(b) 36|762a4b

(a) $200|(199^3 - 199)$

(b) $7|(11^9 - 4^9)$

7. Igazolja az alábbi oszthatóságokat!

8. Számítsa ki 100! hány nullára végződik!