FIT3181 Deep Learning Week 00: Extra Content – Linear Algebra

Dr. Trung Le trunglm@monash.edu

Acknowledge Prof. Dinh Phung for this material.

Linear Algebra

n-dimensional vector

Operations on vector

transpose: column vector to row vector

$$\mathbf{x}^{\mathsf{T}} = [x_1 \ x_2 \ \dots \ x_n]$$

$$\mathbf{x} = \left[egin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}
ight]$$

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$
 addition

$$\mathbf{x}^{\mathsf{T}}\mathbf{y} = x_1y_1 + x_2y_2 + \ldots + x_ny_n$$

inner product

p-norm

$$||\mathbf{x}||_p = (|x_1|^p + \ldots + |x_D|^p)^{\frac{1}{p}}$$

- 1. $||\mathbf{x}|| > 0$ when $\mathbf{x} \neq \mathbf{0}$ and $||\mathbf{x}|| = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- 2. $||k\mathbf{x}|| = ||k|| ||\mathbf{x}||$ for any scalar k.
- 3. $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

- p = 0: how many elements in x are non-zeros (sparsity)
- p = 1: sum of absolute values of elements
- p = 2: length of the vector

Length of a vector

$$length(\mathbf{x}) = \sqrt{x_1^2 + \dots + x_D^2}$$

$$||\mathbf{x}||_2 = \sqrt{x_1^2 + \dots + x_D^2}$$

Distance between two vectors

Cosine similarity

$$\cos(\theta) = \frac{x^T y}{||x||||y||} = \frac{x^T y}{\sqrt{x^T x} \sqrt{y^T y}} \longrightarrow 1 - \cos(\theta)$$

Cosine distance can be computed via Euclidean distance if vectors are made unit vectors! (why?)

Matrix

column vector

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \text{ row vector}$$

Vector Space Model

	vocabulary	Doc1	Doc2
1	goal	1	0
2	data	1	2
3	information	2	2
4	insight	1	0
5	you	0	2

Document 1

"The goal is to turn data into information, and information into insight" Carly Fiorina

Document 2

"You can have data without information, but you cannot have information without data."

Daniel Keys Moran

Vector Space Model

	vocabulary	Doc1	Doc2
1	goal	1	0
2	data	1	2
3	information	2	2
4	insight	1	0
5	you	0	2

Document 1

"The goal is to turn data into information, and information into insight"

Carly Fiorina

Document 2

"You can have data without information, but you cannot have information without data."

Daniel Keys Moran

terms

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 & 0 \\ 0 & 2 & 2 & 0 & 2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

$$x_2 = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \\ 2 \end{bmatrix}^1$$

Vector Space Model

Document 1

"The goal is to turn data into information, and information into insight"

Carly Fiorina

Document 2

"You can have data without information, but you cannot have information without data."

Daniel Keys Moran

 $x_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}^T$

$$x_2 = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \\ 2 \end{bmatrix}$$

- Each document is now represented as a vector.
- We can now compute distance between vectors to compute their similarity.
- We can then make quantitative statement about which document is how similar to other!
- This is the core of information retrieval/clustering!

Euclidean distance:
$$\sqrt{(1-0)^2 + (1-2)^2 + (2-2)^2 + (1-0)^2 + (0-2)^2}$$

= $\sqrt{0+1+0+1+4} = \sqrt{6} \approx 2.45$

Feature Matrix

Term-by-document matrix for text analysis

Document 1

"The goal is to turn data into information, and information into insight"

Carly Fiorina

Document 2

"You can have data without information, but you cannot have information without data."

Daniel Keys Moran

Feature Matrix

- In general, we create a vocabulary of features for all the instances in the dataset.
- Represent each instance as a vector on features listed in the vocabulary.
- Let us say our dataset has N instances, so we create N vectors $x_1, x_2, ..., x_N$.
- Each of these vectors are called feature vector.
- We stack these vectors as a matrix A and call it feature matrix.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

also applies to vector

- Matrix addition
- Matrix subtraction
- Matrix multiplication
 - Matrix and scalar multiplication
 - Matrix and matrix multiplication (usual and dot product)
- Other operations (Inverse, Determinant, Trace)
- Type of matrices (Symmetric, Orthogonal)

Addition and subtraction

- You can add or subtract matrices if they have the <u>same size</u>.
- The elements in the corresponding positions are added or subtracted.

Addition:

$$\begin{bmatrix} 2 & 4 \\ 5 & 6 \\ 1 & 7 \end{bmatrix} + \begin{bmatrix} 4 & 6 \\ 0 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 10 \\ 5 & 7 \\ 2 & 9 \end{bmatrix}$$

Subtraction is similar

Multiplication and division

To multiply a matrix A with scalar α , multiply each element of A with α as below:

Scalar division is similarly done except that division by 0 is not allowed for obvious reason.

Elementwise multiplication

- You can multiply any two matrices elementwise if they have the <u>same size</u>.
- Consider $A \odot B = C$, now C(i,j) is computed as a product of A(i,j) and B(i,j).

Multiply two matrices

- You can multiply any two matrices if the #columns in the first matrix is equal to #rows in the second matrix.
- □ Consider AB = C, now C(i,j) is computed as a dot product of A(i,:) and B(:,j).
- Matrix multiplication is <u>NOT</u> commutative. Multiplication order matters, in other words, in general:

$$AB \neq BA$$

They may even not be size compatible if multiplied in other order!

Square and rectangular matrices

If a matrix A has size $m \times n$ such that m = n, then it is called a square matrix otherwise it is a rectangular matrix.

$$A = \begin{bmatrix} 1 & 6 \\ 2 & 3 \end{bmatrix}$$
 is a square matrix of size 2×2 .

Transpose of a matrix

- The transpose of a matrix A is obtained by putting all the elements on matrix rows on its columns.
- \Box Transpose of A is denoted by A^T , then $A^T(i,j) = A(j,i)$.

Symmetric matrices

□ A matrix A is called symmetric if it is equal to its transpose, that is, $A = A^T$.

□ Example:
$$A = \begin{bmatrix} 2 & 0.5 \\ 0.5 & 2 \end{bmatrix}$$
 is a symmetric matrix of size 2×2 .

Symmetric matrix is always a square matrix.

Diagonal matrices

 \square A matrix A is called a <u>diagonal</u> matrix if A(i,j) = 0 if $i \neq j$.

Diagonal matrix is always a square matrix.

Identity matrix

□ A matrix I is called an identity matrix if it is a diagonal matrix and I(i,i) = 1.

Example:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

□ Note that we often use $I_{n \times n}$ to denote an identity matrix of size $n \times n$.

Inverse of a matrix

□ A matrix A is called as inverse of matrix B, if and only if AB = BA = I.

 \square Since AB = BA, both A and B need to be square matrices.

 \Box If A is inverse of B, we denote it as $A=B^{-1}$

Orthogonal matrix

 $\ \square$ A square matrix U is called an orthogonal matrix if its transpose is equal to its inverse, i.e.

$$U^T = U^{-1}$$

- Any identity matrix is orthogonal.
- The other examples of orthogonal matrices are rotation matrices.

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Other related concepts

- Determinant of a matrix
- Trace of a matrix
- Linear Independence
- Rank of a matrix
- Eigen values/Eigen vectors of a matrix

Eigen analysis

- \square Given a square matrix A, a number λ and a vector u that satisfies $Au = \lambda u$ are called an eigenvalue and the corresponding eigenvector of A.
- □ For a matrix A of size $d \times d$, there are d eigenvectors and eigenvalue pairs.
- It is possible to have only k (which is less than or equal to d) nonzero eigenvalues for A.
- The number of nonzero eigenvalues are equal to the rank of the matrix.

Eigen analysis

o If $U=[u_1\ u_2,\ldots,u_d]$ are the d eigenvectors of matrix A and $\lambda_1,\ldots,\lambda_d$ are the corresponding eigenvalues, then we have

$$Au_1 = \lambda_1 u_1$$
, $Au_2 = \lambda_2 u_2$, ..., $Au_d = \lambda_d u_d$.

These can be collectively written as

$$AU = U \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_d \end{bmatrix} = UD$$

o The matrix U is always orthogonal meaning $u_i^T u_j = 0$ if $i \neq j$ and 1 otherwise. Clearly, $U^T = U^{-1}$. Therefore, we have

$$A = UDU^T$$

Eigen analysis

 \circ Eigenvalues of a matrix **A** can be found by solving the characteristic polynomial in λ :

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

- \circ The roots of the polynomial are the eigenvalues of the matrix $m{A}$.
- Once all the eigenvalues are obtained, a eigenvector corresponding to a particular eigenvalue can be obtained by solving

$$Au_1 = \lambda_1 u_1$$

Singular value decomposition (SVD)

 \circ Given any $n \times d$ matrix X, its SVD is given as

$$X = USV^T$$

where U is an $n \times d$ orthogonal matrix, S is a $d \times d$ diagonal matrix with elements $S(i,i) = \sigma_i$ and V is an $d \times d$ orthogonal matrix.

- \circ The diagonal elements of S, σ_i 's are called singular values of the matrix X.
- \circ The number of nonzero singular values is less than or equal to min(n, d) and is also equal to the rank of the matrix X.

