Lenguaje matemático, conjuntos y números

Fe de erratas de la revisión de la segunda edición.

Este documento se irá actualizando con las erratas que vayan apareciendo.

Capítulo 1

• p. 12, ejemplo 1.5, también en p.269 ejercicio 2b), línea 5 y p. 357, línea 12.

Dice: \otimes

Debería decir: \oplus

• p. 16, último párrafo.

Dice: Leyes de Morgan

Debería decir: Leyes de De Morgan

• p. 20, línea 14.

La ley 2, $p \Longrightarrow p \lor q$, no es realmente una ley de simplificación del condicional. Se denomina ley de ampliación disyuntiva o ley aditiva.

• pp. 25 y 26, líneas -8 y 1, respectivamente.

Dice: leves de simplificación

Debería decir: leyes de identidad

• p. 27, Paso 3, líneas 1, 2 y 3 respectivamente.

Dice: 1. $[(p \land \neg q) \lor \neg p] \land [(p \land \neg q) \lor \neg r)] \lor (\neg q \lor r)$

Debería decir: 1. $\{[(p \land \neg q) \lor \neg p] \land [(p \land \neg q) \lor \neg r)]\} \lor (\neg q \lor r)$

Dice: 2. $[(p \lor \neg p) \land (\neg q \lor \neg p)] \land [(p \lor \neg r) \land (\neg q \lor \neg r)] \lor (\neg q \lor r)$

Debería decir: 2. $\{[(p \lor \neg p) \land (\neg q \lor \neg p)] \land [(p \lor \neg r) \land (\neg q \lor \neg r)]\} \lor (\neg q \lor r)$

Dice: 3. $[1 \land (\neg q \lor \neg p)] \land [(p \lor \neg r) \land (\neg q \lor \neg r)] \lor (\neg q \lor r)$

Debería decir: 3. $\{[\mathbf{1} \land (\neg q \lor \neg p)] \land [(p \lor \neg r) \land (\neg q \lor \neg r)]\} \lor (\neg q \lor r)$

• p. 30, líneas -5.

Dice: ley del tercio excluso

Debería decir: ley de reducción al absurdo

Capítulo 2

• p. 53, ejercicio 2.28, línea 8.

Dice: ... y $x \notin A \cap B$, o, $x \notin A$ y ...

Debería decir: ... y $x \notin A \cap B$, o $x \notin A$ y ...

• p. 54, últimas leyes de la tabla 2.1.

Dice: Leves de Morgan

Debería decir: Leyes de De Morgan

• p. 59, línea 17.

Dice: la proposición P_{ab}

Debería decir: la proposición R_{ab}

• pp. 68 y 69, líneas -3 y 5, respectivamente.

Dice: Russel

Debería decir: Russell

 \bullet p. 70, ejercicio 3, líneas 1 y 2.

Dice: cierto para

Debería decir: cierto sólo para

Capítulo 3

• p. 92, líneas 4 y 5.

Dice: máximales

Debería decir: maximales

• p. 94, línea -8.

Dice: $f(A) = \{ y \in B \mid \exists x \in A, ef(x) = y \}$

Debería decir: $f(A) = \{ y \in B \mid \exists x \in A, f(x) = y \}$

• p. 94, línea -6.

Dice: Im(f).

Debería decir: Im(f) o Im f.

• p. 101, línea 5.

Dice: $\forall n \in \mathbb{N}^*$

Debería decir: $\forall n \in \mathbb{N}$

• p. 102, línea -3.

Dice: basta suponer

Debería decir: basta comprobar

• p. 103, línea -2.

Dice: (véase ura 3.23)

Debería decir: (véase la figura 3.23)

• p. 105, líneas -11 y -2.

Dice: Si f es

Debería decir: Si f es

• p. 109, línea 10.

Dice: Card(A)

Debería decir: card(A)

• p. 119, última línea.

Dice: Si f es

Debería decir: Si f es

Capítulo 4

• p. 126, línea 7.

Dice: G

Debería decir: G

• p. 128, línea 14.

Dice: el elemento simétrico de a

Debería decir: el elemento simétrico de a

• p. 133, línea 18 (y en todas las páginas donde aparece el término inversible)

Dice: inversible

Debería decir: invertible

• p. 134, línea 9.

Dice: $= (A \cap B \cap \overline{C}) \cup (A \cap \overline{B} \cap C)$

Debería decir: $= (A \cap B \cap \overline{C}) \cup (A \cap \overline{B} \cap C)$

 $= (A \cap B \cap \overline{A}) \cup (A \cap B \cap \overline{C}) \cup (\overline{A} \cap A \cap C) \cup (\overline{B} \cap A \cap C)$

• p. 148, línea 5.

Dice: homorfismo

Debería decir: homomorfismo

• p. 148, línea 6.

Dice: se denota por Ker f

Debería decir: se denota por Ker f o Ker(f)

Capítulo 5

• p. 159, líneas 2 y 3.

Dice: Conoce como ... reconocer cuando ...

Debería decir: Conoce cómo ... reconocer cuándo ...

• p. 180, línea 2.

Dice: de m sobre n

Debería decir: de m sobre n

• p. 182, línea -6.

Dice: $m = \min M$

Debería decir: $m = \min(M)$

• p. 201, líneas -10, -7 y -6.

Dice: Card(

Capítulo 6

 \bullet p. 207, línea 10

Dice: los Elementos de Euclides

Debería decir: los Elementos de Euclides

• p. 213, línea 11

Dice: Si $a \leq b$ entonces $f(a) \leq f(b)$.

Debería decir: Si $a \leq a'$ entonces $f(a) \leq f(a')$.

• p. 218, línea -9

Dice: $s \geq 0$ pues $r \in \mathbb{Q}$ y $r \geq 0$.

Debería decir: $s \ge 0$ pues $r \in \mathbb{Q}$ y $r \ge 0$.

• p. 221, línea -2

Dice: parte entera de x

Debería decir: parte entera de x

• p. 229, línea 12

Dice: los elementos de Euclides

Debería decir: los Elementos de Euclides

• p. 248, línea 9

Dice: los elementos de Euclides

Debería decir: los *Elementos* de Euclides

Capítulo 7

• p. 242, línea -11.

Dice: cuadrado un número

Debería decir: cuadrado de un número

• p. 248, línea 4

Dice: **módulo** de z

Debería decir: **módulo** de z

• p. 248, línea 9

Dice: $|z| \ge 0$

Debería decir: $|z| \ge 0$

• p. 249, línea -4

Dice: **argumento** de z

Debería decir: **argumento** de z

• p. 251, línea -1; • p. 252, líneas -3 y 5; • p. 266, línea 12

Dice: fórmula de Moivre

Debería decir: fórmula de De Moivre

• p. 254, línea -10; • p. 255, línea 8

Dice: raíces n-ésimas

Debería decir: raíces n-ésimas

Ejercicios resueltos

• p. 282, ejercicio 7a), línea 2.

Dice: $B \nsubseteq C$

Debería decir: $B \not\subset C$

• p. 285, ejercicio 11, líneas 8 y 9.

Dice: La otra distributiva no se cumple en general. Por ejemplo, si $A = \{1\}$, $B = \{2\}$ y $C = \{3\}$ entonces $A \cup (B \triangle C) = \{1, 2, 3\}$ mientras que $(A \cup B) \triangle (A \cup C) = \{1, 2\} \triangle \{1, 3\} = \{2, 3\}$.

Debería decir: La otra distributiva no se cumple en general. Por ejemplo, si $A = \{1, 2, 3\}$, $B = \{1, 2, 4\}$ y $C = \{1, 3, 5\}$ entonces $A \triangle (B \cap C) = \{2, 3\}$ mientras que $(A \triangle B) \cap (A \triangle C) = \{3, 4\} \cap \{2, 5\} = \emptyset$.

• p. 285, ejercicio 11, línea -4.

Dice: Leyes de Morgan

Debería decir: Leyes de De Morgan

• p. 292, ejercicio 2, línea 2.

Dice: subconjuntos de $A \times A$ no vacíos.

Debería decir: subconjuntos de $A \times A$ no vacíos. ¿Qué ocurre cuando el conjunto A o las relaciones son vacías?

• p. 297, línea 2.

Dice:
$$\begin{cases} x = 0 \\ y > 0 \end{cases}$$
, unión el semiplano, $\begin{cases} x = 1 \\ y > 1 \end{cases}$
Debería decir: $\begin{cases} x = 0 \\ y > 0 \end{cases}$, unión el semiplano, $\begin{cases} x = 1 \\ y < 1 \end{cases}$

• p. 301, ejercicio 11, apartado d.

Hay que añadir al final: También es una relación antisimétrica y por tanto de orden.

• p. 301, ejercicio 12, apartado b.

Hay que añadir al final: La relación es la relación de igualdad en las funciones reales de variable real. En consecuencia, también es una relación antisimétrica y por tanto de orden.

• p. 305, ejercicio 20, línea 5.

Dice: no inyectiva , véase el ejercicio13 b) y

Debería decir: no inyectiva, véase el ejercicio 13 b), y

• p. 307, ejercicio 2, línea 5.

Dice: $a \star b \in H_1 \cap H_2$

Debería decir: $a \star b^{-1} \in H_1 \cap H_2$

• p. 318, ejercicio 7, líneas 1,2 y 3.

Dice: Comprobamos por inducción que $1+2+2^2+2^3+\cdots+2^n=2^{n+1}-1$ para todo $n\geqslant 1$.

i) Para n=1, sustituimos y se obtiene la igualdad $1+2=2^2-1=3$, que es verdadera

Debería decir: Comprobamos por inducción que $1+2+2^2+2^3+\cdots+2^n=2^{n+1}-1$ para todo $n\in\mathbb{N}$.

i) Para n=0, sustituimos y se obtiene la igualdad $1=2^1-1=1$, que es verdadera