### UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO CURSO DE ENGENHARIA DE COMPUTAÇÃO

INTELIGÊNCIA ARTIFICIAL



# N-Rainhas com Algoritmo Genético e Simulated Annealing

# Alunos:

Professor:

Alexandre Luz Jaime Dantas Ramon Fava

Allan Robson Silva Venceslau

# Sumário

| Problema das N-Rainhas     | 3  |
|----------------------------|----|
| Solução Implementada       | 4  |
| Simulated Annealing        | 6  |
| Resultados                 | 9  |
| Algoritmo Genético         | 12 |
| Resultados                 | 14 |
| Referências Ribliográficas | 18 |

### Problema das N-Rainhas

O problema das N-Rainhas, já descrito em Eight Queens Puzzle é um problema combinatório exponencial. Este artigo tem por interesse mensurar o aumento da complexidade com o aumento das dimensões, descrever uma heurística consistente, descrever deduções obtidas em nossas experiências e apresentar 3 algoritmos do tipo Hill Climbing. Hill Climbing é equivalente à técnica do Gradient Descent. As aplicações desses algoritmos são várias, citaremos a seguir algumas:

Para o Gradiente Descendente temos ampla utilização na área de aprendizagem de máquinas. Muitas vezes algumas versões do gradiente descendente são extremamente promissoras como a versão estocástica.

O Hill Climbing com algumas modificações se torna uma boa ferramenta, como é muito simples e fácil de implementar alguns experimentos de otimização utilizam o Hill Climbing para fazer um comparação com o que está sendo desenvolvido[1].

### Solução Implementada

A programação principal dos algoritmos foi realizada em C++ com a criacação de duas classes principais: genetico.h e annealing.h. N arquivo main.h foram chamadas cada classe com seus respectivos construtores como os dados passados por atribuição direta de entrada (usado a entrada de argumentos na função main). A Sequencia de entrada de variáveis foi padronizada de forma que fosse possível chamar esse programa usando outra linguagem passando somente os parâmetros de entrada e lendo a saída. A saída de nosso programa é um vetor com as posições das rainhas em cada linha e coluna, assim como adotado como padrão de cromossomo. A figura abaixo mostra a estrutura de nosso programa em C++.



Figura 1 - Estrutura do Programa em C++

Foi criado um programa em PHP para fazer o papel de interface entre o HTML e o C++. No programa HTML foram criados o tabuleiro para mostrar a solução que é passado para ele pelo PHP. A interface final de nosso programa em HTML é apresentada na figura abaixo.



Figura 2 - Interface Gráfica

Na interface gráfica é possível selecionar qual algoritmo queremos executar assim como passar os devidos parâmetros. A figura abaixo mostra a solução de um exemplo de algoritmo genético.



Figura 3 - Solução Algoritmo Genético

Quando ocorre colisões, o respectivo tabuleiro é mostrado na cor vermelho, assim como mostra o exemplo abaixo onde as rainhas linha 0 coluna 3 e 4, linha 1 coluna 2 e 6, linha 4 coluna 5, linha 6 coluna 8 ocorrem colisões.



Figura 4 - Exemplo de Colisões com Algoritimo genético

O programa está disponível online para acesso nos endereços abaixo. Ressaltamos que a disponibilidade dos links está sujeita a erros no acesso aos servidores. Em outras palavras, verifique a disponibilidade do link com os administradores do site.

http://alexandreluz.ddns.net/~alexandre/n-rainhas/

http://jaimedantas.ddns.net/index 3.html

### Simulated Annealing

É uma técnica de busca local probabilística, em que o resultado é uma solução ótima, porém, não necessariamente a melhor.

O algoritmo funciona substituindo a solução atual por uma solução próxima (na sua vizinhança no espaço de soluções), escolhida de acordo com uma função objetivo e com uma variável T (temperatura). Quanto maior for T, maior a componente aleatória que será incluída na próxima solução escolhida. À medida que o algoritmo progride, o valor de T é decrementado, começando o algoritmo a convergir para uma solução ótima, necessariamente local.

Para resolver o problema das N Rainhas, que consiste em dispor n rainhas em um xadrez n por n, configuramos um vetor inicial em que cada posição contém o lugar onde a rainha está disposta na respectiva coluna. por exemplo, em um xadrez 4x4, com um vetor inicial [0,1,2,3], as rainhas estão dispostas na diagonal principal do tabuleiro.

Começamos a busca a partir de uma solução inicial qualquer. Damos valores para a temperatura inicial, taxa de resfriamento, tamanho n do xadrez. O procedimento principal consiste em um loop que a cada iteração, gera aleatoriamente um único vizinho da solução corrente.

A função objetivo consta em avaliar o número de colisões entre as rainhas dado uma configuração do tabuleiro. ela retornará um valor negativo, pois estamos buscando o valor mínimo.

A cada geração de um novo vizinho, é testada a variação  $\Delta$  do valor da função objetivo (diferença de energia), isto é,  $\Delta=f$  (próximo) – f (atual), onde temos as seguintes situações:

•  $\Delta > 0$ : implica que a nova solução é melhor que a anterior. Assim o vetor resultado recebe os valores da nova solução.

- $\Delta = 0$ : Caso de estabilidade, não há redução de energia. A solução é indiferente.
- Δ < 0: A aceitação desse tipo de solução é mais provável a altas temperaturas e bastante improvável a temperaturas reduzidas. Para reproduzir essas características, geralmente usa-se, para calcular a probabilidade de se aceitar a nova solução, uma função conhecida, que é dada por e^(-Δ/temperatura), chamado de temperatura e que regula a probabilidade de soluções com pior custo.</li>
  - Gera-se um número aleatório retirado de uma distribuição uniforme no intervalo [0, 1].
  - Se este número for menor ou igual a "p", aceita-se a solução.
  - Se for maior que "p", rejeita-se a solução.

A temperatura assume inicialmente um valor elevado. Após um número fixo de iterações (o qual representa o número de iterações para o sistema atingir o equilíbrio térmico em uma dada temperatura), a temperatura é gradativamente diminuída por uma razão de resfriamento  $\alpha$ , tal que T = Tinicial \*  $\alpha$ ^t, sendo  $0 < \alpha < 1$  e t o número de iterações. Como esse procedimento se dá no início, há uma chance maior de se escapar de mínimos locais e, à medida que T se aproxima de zero, o algoritmo se comporta como o método de descida, uma vez que diminui a probabilidade de se aceitar movimentos que possa piorar.

O procedimento é finalizado quando a temperatura chega a um valor próximo de zero ou quando o número de colisões for zero. Encontrando, assim, um resultado otimizado.

### Resultados

Foram realizadas 100 execuções consecutivas com os mesmos parâmetros para que poderemos traçar tendências de padrões. Usando a linguagem de programação C++, foi criado um programa para realizar todas os testes de forma automática variando um parâmetro por vez e deixando os outros parâmetros fixados. A saída do programa foi a média de colisões para as 100 execuções consecutivas para cada variação de parâmetro.

O primeiro teste realizado foi o de influencia do tamanho do tabuleiro na solução gerada. Foram fixados para esse teste a temperatura inicial de 100 e o fator de resfriamento em 0.95. Foram testados tabuleiros de tamanhos entre 4 e 100 rainhas. Analisando o gráfico abaixo, podemos concluir que a função que rege a relação entre tamanho de tabuleiro e colisões é linear. É possível notar que para tabuleiros pequenos a quantidades de colisões tende a zero, e para tabuleiros muito grandes, a quantidade de colisões também tende a aumentar linearmente.



Figura 5 - Variação de Tabuleiro

O fator de resfriamento a tem um papel importantíssimo na qualidade da solução gerada pelo nosso programa. É ela que limita a quantidades de execuções de nosso programa, e geralmente varia de zero à um. Para nossos testes, foram realizados testes com a constante de resfriamento variando de 0.9 até 0.9999. O gráfico abaixo mostra o resultado obtido. Podemos concluir que quando a temperatura de resfriamento tente a 1, a quantidade de colisões tente a zero. Entretendo, para obtermos essa solução ideal, exigiríamos um poder de processamento muito elevado. Quando realizados os testes com a=0.9999 o tempo de execução dos testes foi muito alto, com alguns testes durando mais de 3 minutos de execução. Para esse teste foram fixados a temperatura inicial de 1000 e o tabuleiro de 7 rainhas.



Figura 6 - Variação da taxa de resfriamento

O último teste realizado foi o de temperatura inicial. Foram testadas temperaturas de 1 até 100.000 e os resultados analisados. O resultado obtido como temperatura ideal, ou seja, a que gera menos colisões, foi de T=1000. Para esse teste foram fixados a constante de resfriamento de 0.999 e o tabuleiro de 7 rainhas.



Figura 7 - Variação da Temperatura Inicial

De forma geral, o simulate annealing apresentou uma média de execuções elevada, assim como o excessivo uso de memória e processamento em nossos testes. Em alguns testes, foram usados mais de 600 MB de memória RAM quando executado os testes mais pesados do simulated annealing.

## Algoritmo Genético

Algoritmos Genéticos (AG) são implementados como uma simulação de computador em que uma população de representações abstratas de solução é selecionada em busca de soluções melhores. A evolução geralmente se inicia a partir de um conjunto de soluções criado aleatoriamente e é realizada por meio de gerações. A cada geração, a adaptação de cada solução na população é avaliada, alguns indivíduos são selecionados para a próxima geração, e recombinados ou mutados para formar uma nova população. A nova população então é utilizada como entrada para a próxima iteração do algoritmo.

Para achar o máximo global, essa técnica utiliza:

- Exploração, processo de visitar pontos inteiramente novos no espaço de busca. Necessário para explorar regiões desconhecidas do espaço de busca. Utilizada nas funções crossover e mutação.
- Prospecção Processo de explorar o espaço de busca utilizando de informações de pontos anteriormente visitados a fim de encontrar melhores pontos.
   Utilizada na função seleção natural.

Utilizaremos a mesma modelagem das n rainhas do algoritmo anterior para esse.

O programa começa com as escolhas do tamanho do cromossomo, tamanho da população, probabilidade de mutação e probabilidade de crossover.

A probabilidade de mutação é menor do que 1%. Se for elevado vira uma busca aleatória. A mutação previne a permanência em espaços de busca limitado.

A probabilidade de crossover fica entre 60% a 99%.

Assim, cria-se uma população inicial. Depois, avalia-se cada indivíduo dessa população para saber quais os mais "adaptados", menores números de colisões entre as rainhas.

Os principais métodos da seleção natural são: roleta, torneio, amostragem universal estocástica. Foi utilizado o torneio, onde foi escolhido aleatoriamente 2 elementos, e entre eles, escolhido o mais adaptado.

Na função crossover são escolhidos aleatoriamente 2 indivíduos da população e gerado dois novos indivíduos com a combinação desses dois escolhendo-se um ponto de corte aleatório.

Na função mutação, cada posição do cromossomo é avaliado em torno de uma probabilidade para saber se ocorrerá ou não a mutação, caso ocorra, será mudado aleatoriamente o valor que encontra-se nessa posição.

Ao final volta para o começo do algoritmo avaliando-se os novos indivíduos.

### Resultados

Foram-se avaliado o desempenho e os resultados obtidos do algoritmo genético, alterando apenas uma característica do algoritmo e mantendo-se todas as outras constantes, foi possível observar o comportamento do mesmo em várias situações diferentes, e a partir daí pode-se ver como cada elemento do algoritmo influencia nos resultados obtidos.



Figura 8 - Variação no Cromossomo

Variando-se apenas o tamanho do tabuleiro, ou seja, o tamanho do cromossomo, pode-se observar que a média de colisões aumenta de forma linear.



Figura 9 - Variação na População

Variando-se apenas o tamanho da população por outro lado podemos observar uma variação de forma linear para a quantidade de colisões até uma população em torno de 25 cromossomos, e a partir daí a quantidade média de colisões torna-se praticamente constante.

# Média de Colisões para 100 execuções 8 7 6 5 1 0 0.6 0.64 0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96 Probabilidade Crossover

Figura 10 - Variação na Probabilidade de Crossover

A probabilidade de crossover, como já foi dito antes, garante a diversidade de cromossomos na população, fazendo cruzamentos entre cromossomos. Nesse caso, pode-se observar que uma probabilidade em torno de 70% seria o ideal, como o próprio gráfico demonstra.



Figura 11 - Variação na Quantidade Máxima de Gerações

Em contraste com os outros elementos, a quantidade máxima de gerações teve pouca ou nenhuma influência na média de colisões para quantidades abaixo de 600, ou seja, a média de colisões ficava inconstante, aleatória. Entretanto a partir de 600 já se é possível observar um comportamento mais linear na quantidade de colisões com o aumento progressivo das gerações.

Por fim, pode-se dizer que para que o algoritmo genético funcione de forma eficaz e o mais rápido possível, mantendo-se uma precisão boa, é preciso levar em consideração vários fatores, desde a complexidade do problema a ser resolvido, até o processamento disponível do computador a ser usado. Uma mistura de tamanhos variados dos elementos do algoritmo é o recomendado para alcançar tal resultado, procurando encontrar um equilíbrio entre os valores, para que nenhum fique demasiadamente maior que os outros.

# Referências Bibliográficas

[1] Wikpedia, **Problema das N-Rainhas.** Disponível em https://pt.wikipedia.org/wiki/Problema\_das\_N-Rainhas Acesso em 17 de abril de 2016.