Aula 11 - Parte 1

Funções Reais de Várias Variáveis Reais: Domínio, Contradomínio, Gráfico e Conjuntos de Nível.

Mónica Celis.

Cálculo II -Agrup. IV-5.

2020

Sumário da Aula 11 - Parte 1.

- Introdução.
- 2 Definição de Função Real de Várias Variáveis Reais. Exemplos.
- O Domínio, Contradomínio e Gráfico.
- Conjuntos de Nível.

Consideremos o seguinte enunciado:

Consideremos o seguinte enunciado:

O volume V de um cilindro é dado por $V = \pi r^2 h$, onde r é o raio e h é a altura.

Consideremos o seguinte enunciado:

O volume V de um cilindro é dado por $V = \pi r^2 h$, onde r é o raio e h é a altura.

Analisando este enunciado verificamos que a função envolvida requer o uso de duas variáveis independentes.

Consideremos o seguinte enunciado:

O volume V de um cilindro é dado por $V = \pi r^2 h$, onde r é o raio e h é a altura.

Analisando este enunciado verificamos que a função envolvida requer o uso de duas variáveis independentes. Podemos, por exemplo, dizer que o volume de um cilindro, denotado por V, é uma função do raio r e da altura h. Assim,

$$V = V(r, h)$$

é uma função de duas variáveis definida por

$$V(r,h)=\pi r^2h.$$

Consideremos o seguinte enunciado:

O volume V de um cilindro é dado por $V = \pi r^2 h$, onde r é o raio e h é a altura.

Analisando este enunciado verificamos que a função envolvida requer o uso de duas variáveis independentes. Podemos, por exemplo, dizer que o volume de um cilindro, denotado por V, é uma função do raio r e da altura h. Assim,

$$V = V(r, h)$$

é uma função de duas variáveis definida por

$$V(r,h)=\pi r^2h.$$

A função volume do cilindro recebe dois números reais e produz a partir deles um único número real.

Dado $\mathcal{D} \subseteq \mathbb{R}^n$, chamamos **função real de n variáveis reais** ^a **de domínio** \mathcal{D} a toda a correspondência que associa de forma única a cada elemento de \mathcal{D} um número real. Notação:

$$f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$$

(x₁, x₂, \cdots, x_n) \to z = f(x₁, x₂, \cdots, x_n)

^aou campo escalar de *n* variáveis.

Seja $\mathcal D$ o conjunto de pontos do $\mathbb R^2$ representado por

Seja \mathcal{D} o conjunto de pontos do \mathbb{R}^2 representado por

A cada ponto (x, y) pertencente a $\mathcal{D} \subseteq \mathbb{R}^2$, podemos fazer corresponder um número $z \in \mathbb{R}$, dado por

$$z = \sqrt{4 - x^2 - y^2}.$$

Neste caso estamos diante de uma função de duas variáveis reais denotada por

$$f: \mathcal{D} \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$$

 $(x,y) \mapsto z = f(x,y) = \sqrt{4 - x^2 - y^2}$

Neste caso estamos diante de uma função de duas variáveis reais denotada por

$$f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto z = f(x,y) = \sqrt{4 - x^2 - y^2}$

O domínio desta função é o conjunto $\mathcal{D} \subseteq \mathbb{R}^2$, isto é, o conjunto de pontos $(x,y) \in \mathbb{R}^2$, tais que

$$4 - x^2 - y^2 \ge 0$$
 ou $x^2 + y^2 \le 4$

Neste caso estamos diante de uma função de duas variáveis reais denotada por

$$f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto z = f(x,y) = \sqrt{4 - x^2 - y^2}$

O domínio desta função é o conjunto $\mathcal{D}\subseteq\mathbb{R}^2$, isto é, o conjunto de pontos $(x,y)\in\mathbb{R}^2$, tais que

$$4 - x^2 - y^2 \ge 0$$
 ou $x^2 + y^2 \le 4$

Escrevemos,

$$D_f = \left\{ (x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 4 \right\}.$$

Determine e descreva geometricamente o domínio da função:

$$f(x,y) = ln(x-y)$$

Determine e descreva geometricamente o domínio da função:

$$f(x,y) = ln(x-y)$$

A função f(x,y) = In(x-y) é uma função de duas variaveis. Portanto, o seu domínio é um subconjunto de \mathbb{R}^2 .

Determine e descreva geometricamente o domínio da função:

$$f(x,y) = ln(x-y)$$

A função f(x,y) = In(x-y) é uma função de duas variaveis. Portanto, o seu domínio é um subconjunto de \mathbb{R}^2 .

Sabemos que ln(x - y) é um número real quando

Determine e descreva geometricamente o domínio da função:

$$f(x,y) = ln(x-y)$$

A função f(x,y) = In(x-y) é uma função de duas variaveis. Portanto, o seu domínio é um subconjunto de \mathbb{R}^2 .

Sabemos que ln(x - y) é um número real quando

$$x - y > 0 \Leftrightarrow x > y$$

Determine e descreva geometricamente o domínio da função:

$$f(x,y) = In(x-y)$$

A função f(x,y) = In(x-y) é uma função de duas variaveis. Portanto, o seu domínio é um subconjunto de \mathbb{R}^2 .

Sabemos que ln(x - y) é um número real quando

$$x - y > 0 \Leftrightarrow x > y$$

Logo, o domínio da função é

$$D_f = \left\{ (x, y) \in \mathbb{R}^2 | \ x > y \right\}.$$

O seguinte gráfico mostra a região de \mathbb{R}^2 que representa graficamente \mathcal{D}_f

Determine e descreva geometricamente o domínio da função:

$$g(x,y)=\frac{xy}{\sqrt{x^2-y^2}}.$$

Determine e descreva geometricamente o domínio da função:

$$g(x,y)=\frac{xy}{\sqrt{x^2-y^2}}.$$

Os pontos $(x, y) \in \mathbb{R}^2$ que pertencem ao domínio de g devem satisfazer que

Determine e descreva geometricamente o domínio da função:

$$g(x,y)=\frac{xy}{\sqrt{x^2-y^2}}.$$

Os pontos $(x, y) \in \mathbb{R}^2$ que pertencem ao domínio de g devem satisfazer que

$$x^2 - y^2 > 0$$
 \Leftrightarrow $(x - y)(x + y) > 0$

Determine e descreva geometricamente o domínio da função:

$$g(x,y)=\frac{xy}{\sqrt{x^2-y^2}}.$$

Os pontos $(x, y) \in \mathbb{R}^2$ que pertencem ao domínio de g devem satisfazer que

$$x^2 - y^2 > 0$$
 \Leftrightarrow $(x - y)(x + y) > 0$

Logo, o domínio da função é

Determine e descreva geometricamente o domínio da função:

$$g(x,y)=\frac{xy}{\sqrt{x^2-y^2}}.$$

Os pontos $(x, y) \in \mathbb{R}^2$ que pertencem ao domínio de g devem satisfazer que

$$x^2 - y^2 > 0$$
 \Leftrightarrow $(x - y)(x + y) > 0$

Logo, o domínio da função é

$$D_g = \{(x,y) \in \mathbb{R}^2 | (x-y)(x+y) > 0 \}.$$

(x - y)(x + y) > 0 é um número real positivo quando

$$(x - y)(x + y) > 0$$
 é um número real positivo quando

$$(x-y) > 0$$
 e $(x+y) > 0$ ou $(x-y) < 0$ e $(x+y) < 0$

$$(x-y)(x+y) > 0$$
 é um número real positivo quando

$$(x-y) > 0$$
 e $(x+y) > 0$ ou $(x-y) < 0$ e $(x+y) < 0$

Figura: R_1 é definida pela primeira condição, R_2 é definida pela segunda condição.

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$CD_f = \{f(x_1, x_2, ..., x_n) : (x_1, x_2, ..., x_n) \in \mathcal{D}\}$$

chamamos o contradomínio de f.

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$CD_f = \{f(x_1, x_2, ..., x_n) : (x_1, x_2, ..., x_n) \in \mathcal{D}\}$$

chamamos o contradomínio de f.

Exemplo 4

Encontre o domínio e contradomínio da função

$$f(x,y) = x^2 + y^2$$

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$CD_f = \{f(x_1, x_2, ..., x_n) : (x_1, x_2, ..., x_n) \in \mathcal{D}\}$$

chamamos o contradomínio de f.

Exemplo 4

Encontre o domínio e contradomínio da função

$$f(x,y)=x^2+y^2$$

O domínio da função f é todo \mathbb{R}^2 , isto é,

$$D_f = \mathbb{R}^2$$

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$CD_f = \{f(x_1, x_2, ..., x_n) : (x_1, x_2, ..., x_n) \in \mathcal{D}\}$$

chamamos o contradomínio de f.

Exemplo 4

Encontre o domínio e contradomínio da função

$$f(x,y)=x^2+y^2$$

O domínio da função f é todo \mathbb{R}^2 , isto é,

$$D_f = \mathbb{R}^2$$

O contradomínio da função f é

$$CD_f = \mathbb{R}_0^+ = [0, +\infty[$$

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$\mathcal{G}_f = \{(x_1, ..., x_n, z) \in \mathbb{R}^{n+1} : z = f(x_1, ..., x_n), com(x_1, ..., x_n) \in \mathcal{D}\}$$

chamamos o gráfico de f.

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$\mathcal{G}_f = \{(x_1, ..., x_n, z) \in \mathbb{R}^{n+1} : z = f(x_1, ..., x_n), com(x_1, ..., x_n) \in \mathcal{D}\}$$

chamamos o gráfico de f.

Exemplo 5

No exemplo 1 vimos que o domínio da função $f(x,y) = \sqrt{4-x^2-y^2}$ é o conjunto

$$D_f = \left\{ (x, y) \in \mathbb{R}^2 | \ x^2 + y^2 \le 4 \right\}.$$

O contradomínio de f é

$$CD_f = [0, 2].$$

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$\mathcal{G}_f = \{(x_1, ..., x_n, z) \in \mathbb{R}^{n+1} : z = f(x_1, ..., x_n), com(x_1, ..., x_n) \in \mathcal{D}\}$$

chamamos o gráfico de f.

Exemplo 5

No exemplo 1 vimos que o domínio da função $f(x,y) = \sqrt{4-x^2-y^2}$ é o conjunto

$$D_f = \left\{ (x, y) \in \mathbb{R}^2 | \ x^2 + y^2 \le 4 \right\}.$$

O contradomínio de f é

$$CD_f = [0, 2].$$

O gráfico dessa função é o conjunto

$$\mathcal{G}_f = \{(x, y, z) \in \mathbb{R}^3 : z = \sqrt{4 - x^2 - y^2}\}$$

e, geometricamente, representa o hemisfério superior da esfera de centro na origem e raio 2.

e, geometricamente, representa o hemisfério superior da esfera de centro na origem e raio 2.

Figura: Gráfico da função $f(x, y) = \sqrt{4 - x^2 - y^2}$.

Observação 1

Se a função em questão depender de mais do que duas variáveis, o gráfico é um conjunto de pontos num espaço de dimensão maior do que 3, que não podemos visualizar.

Observação 1

Se a função em questão depender de mais do que duas variáveis, o gráfico é um conjunto de pontos num espaço de dimensão maior do que 3, que não podemos visualizar.

Definição 4

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$\mathcal{N}_k = \{(x_1, x_2, ..., x_n) \in \mathcal{D} : f(x_1, x_2, ..., x_n) = k\}$$

chamamos conjunto de nível k de f.

Para n = 2, o conjunto \mathcal{N}_k passa a denotar-se por \mathcal{C}_k e a designar-se por **curva de nível** k **de** f.

Para n = 3, o conjunto \mathcal{N}_k passa a denotar-se por \mathcal{S}_k e a designar-se por superfície de nível k de f.

Observação 1

Se a função em questão depender de mais do que duas variáveis, o gráfico é um conjunto de pontos num espaço de dimensão maior do que 3, que não podemos visualizar.

Definição 4

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$\mathcal{N}_k = \{(x_1, x_2, ..., x_n) \in \mathcal{D} : f(x_1, x_2, ..., x_n) = k\}$$

chamamos conjunto de nível k de f.

Para n = 2, o conjunto \mathcal{N}_k passa a denotar-se por \mathcal{C}_k e a designar-se por **curva de nível** k **de** f.

Para n = 3, o conjunto \mathcal{N}_k passa a denotar-se por \mathcal{S}_k e a designar-se por superfície de nível k de f.

Iremos considerar, quase exclusivamente, funções com duas ou três variáveis.

Iremos considerar, quase exclusivamente, funções com duas ou três variáveis.

Exemplo 6

Iremos considerar, quase exclusivamente, funções com duas ou três variáveis.

Exemplo 6

$$C_0: \sqrt{4-x^2-y^2}=0 \iff x^2+y^2=4;$$

Iremos considerar, quase exclusivamente, funções com duas ou três variáveis.

Exemplo 6

$$C_0: \sqrt{4-x^2-y^2}=0 \iff x^2+y^2=4;$$

$$C_1: \sqrt{4-x^2-y^2} = 1 \iff x^2+y^2 = 3;$$

Iremos considerar, quase exclusivamente, funções com duas ou três variáveis.

Exemplo 6

$$C_0: \sqrt{4-x^2-y^2}=0 \iff x^2+y^2=4;$$

$$C_1: \sqrt{4-x^2-y^2}=1 \iff x^2+y^2=3;$$

$$C_{\frac{1}{2}}: \sqrt{4-x^2-y^2} = \frac{1}{2} \iff x^2+y^2 = \frac{15}{4};$$

Iremos considerar, quase exclusivamente, funções com duas ou três variáveis.

Exemplo 6

$$C_0: \sqrt{4-x^2-y^2}=0 \iff x^2+y^2=4;$$

$$C_1: \sqrt{4-x^2-y^2}=1 \iff x^2+y^2=3;$$

$$C_{\frac{1}{2}}: \sqrt{4-x^2-y^2} = \frac{1}{2} \iff x^2+y^2 = \frac{15}{4};$$

$$C_{\frac{4}{3}}: \sqrt{4-x^2-y^2} = \frac{4}{3} \iff x^2+y^2 = \frac{20}{9};$$

$$\mathcal{C}_{\frac{3}{2}}:\sqrt{4-x^2-y^2}=rac{3}{2} \ \Leftrightarrow \ x^2+y^2=rac{7}{4};$$

$$C_{\frac{3}{2}}: \sqrt{4-x^2-y^2} = \frac{3}{2} \iff x^2+y^2 = \frac{7}{4};$$

$$C_2: \sqrt{4-x^2-y^2} = 2 \iff x = y = 0$$

$$C_{\frac{3}{2}}: \sqrt{4-x^2-y^2} = \frac{3}{2} \iff x^2+y^2 = \frac{7}{4};$$

$$C_2: \sqrt{4-x^2-y^2} = 2 \iff x = y = 0$$

Para k < 0 e k > 2, as curvas de nível C_k são conjuntos vazios.

$$C_{\frac{3}{2}}: \sqrt{4-x^2-y^2} = \frac{3}{2} \iff x^2+y^2 = \frac{7}{4};$$

$$C_2: \sqrt{4-x^2-y^2} = 2 \iff x = y = 0$$

Para k < 0 e k > 2, as curvas de nível C_k são conjuntos vazios. A figura a seguir mostra as curvas de nível da função f, determinadas anteriormente.

$$C_{\frac{3}{2}}: \sqrt{4-x^2-y^2} = \frac{3}{2} \iff x^2+y^2 = \frac{7}{4};$$

$$C_2: \sqrt{4-x^2-y^2}=2 \iff x=y=0$$

Para k < 0 e k > 2, as curvas de nível C_k são conjuntos vazios. A figura a seguir mostra as curvas de nível da função f, determinadas anteriormente.

Seja $g: \mathbb{R}^2 \to \mathbb{R}$ tal que $g(x, y) = 4 - y^2$.

O domínio da função é : $D_g = \mathbb{R}^2$.

Seja $g: \mathbb{R}^2 \to \mathbb{R}$ tal que $g(x, y) = 4 - y^2$.

O domínio da função é : $D_g = \mathbb{R}^2$.

O contradomínio da função é $CD_g =]-\infty, 4]$

Seja $g: \mathbb{R}^2 \to \mathbb{R}$ tal que $g(x, y) = 4 - y^2$.

O domínio da função é : $D_g = \mathbb{R}^2$.

O contradomínio da função é $CD_g =]-\infty, 4]$

O gráfico da função é $\mathcal{G}_g = \{(x, y, z) \in \mathbb{R}^3 : z = 4 - y^2\}$ (cilindro parabólico).

Seja $g: \mathbb{R}^2 \to \mathbb{R}$ tal que $g(x, y) = 4 - y^2$.

O domínio da função é : $D_g = \mathbb{R}^2$.

O contradomínio da função é $CD_g =]-\infty, 4]$

O gráfico da função é $\mathcal{G}_g = \left\{ (x,y,z) \in \mathbb{R}^3 : z = 4 - y^2 \right\}$ (cilindro parabólico).

Figura: Gráfico de $g(x, y) = 4 - y^2$.

Para $k \le 4$, a curva de nível k de g é

$$\mathcal{C}_k = \left\{ (x, y) \in \mathbb{R}^2 : k = 4 - y^2 \right\}$$

Para $k \le 4$, a curva de nível k de g é

$$C_k = \left\{ (x, y) \in \mathbb{R}^2 : k = 4 - y^2 \right\}$$

Trata-se da união de duas retas de equações $y = \sqrt{4 - k}$ e $y = -\sqrt{4 - k}$.

Para $k \le 4$, a curva de nível k de g é

$$C_k = \left\{ (x, y) \in \mathbb{R}^2 : k = 4 - y^2 \right\}$$

Trata-se da união de duas retas de equações $y = \sqrt{4 - k}$ e $y = -\sqrt{4 - k}$.

Figura: Curvas de nível de $g(x, y) = 4 - y^2$.

Seja $h: \mathbb{R}^2 \to \mathbb{R}$ tal que $h(x, y) = x^2 - y^2$.

Seja $h: \mathbb{R}^2 \to \mathbb{R}$ tal que $h(x, y) = x^2 - y^2$.

O domínio da função é : $D_g = \mathbb{R}^2$.

Seja $h: \mathbb{R}^2 \to \mathbb{R}$ tal que $h(x, y) = x^2 - y^2$.

O domínio da função é : $D_g = \mathbb{R}^2$.

O contradomínio da função é $CD_g = \mathbb{R}$.

Seja $h: \mathbb{R}^2 \to \mathbb{R}$ tal que $h(x, y) = x^2 - y^2$.

O domínio da função é : $D_g = \mathbb{R}^2$.

O contradomínio da função é $CD_g = \mathbb{R}$.

O gráfico da função é $\mathcal{G}_g = \{(x,y,z) \in \mathbb{R}^3 : z = x^2 - y^2\}$ (paraboloíde hiperbólico).

Figura: Gráfico de $h(x, y) = x^2 - y^2$.

As curvas de nível de h são

As curvas de nível de h são

$$\mathcal{C}_k = \left\{ (x,y) \in \mathbb{R}^2: \ k = x^2 - y^2 \right\}, \ \text{com} \ k \in \mathbb{R}.$$

As curvas de nível de h são

$$C_k = \{(x, y) \in \mathbb{R}^2 : k = x^2 - y^2\}, com k \in \mathbb{R}.$$

A curva de nível k é, para $k \in \mathbb{R} \setminus \{0\}$, a hipérbole de equação $x^2 - y^2 = k$ e, para k = 0, a reunião das duas retas de equações y = x e y = -x.

As curvas de nível de h são

$$C_k = \{(x, y) \in \mathbb{R}^2 : k = x^2 - y^2\}, \text{ com } k \in \mathbb{R}.$$

A curva de nível k é, para $k \in \mathbb{R} \setminus \{0\}$, a hipérbole de equação $x^2 - y^2 = k$ e, para k = 0, a reunião das duas retas de equações y = x e y = -x.

Exercício 1

 Determine o domínio das seguintes funções e descreva-o geometricamente.

(a)
$$f(x,y) = \sqrt{\frac{1+x}{1+y}}$$
.
(b) $g(x,y) = ln\left(\frac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}+x}\right)$.
(c) $h(x,y) = \frac{2-\sqrt{4-x^2-y^2}}{x^2+y^2}$.

- 2. Determinar as curvas/superfícies de nível das seguintes funções e descreva do ponto de vista geométrico. Desenhar as curvas de nível para os valores de k dados.
 - (a) $f(x,y) = 2 (x^2 + y^2)$, k = -3, -2, -1, 0, 1, 2.
 - (b) $h(x, y) = 2x^2 + 4y^2$, k = 2, 3, 4, 8.
 - (c) $h(x, y, z) = x^2 + y^2 + z^2$.