Lecture 12 Fuzzy Logic and Expert Systems

CS 180 – Intelligent Systems

Dr. Victor Chen

Three Al areas

- Knowledge Learning
 - Machine learning/Neural networks
 - No closed-form math expression
- Optimization
 - Search
 - Adversarial search
 - Genetic algorithms
- Knowledge Reasoning
 - Bayesian inference
 - Fuzzy logic

What is a FUZZY LOGIC?

Fuzzy Logic is an approach to computing based on "degrees of truth" rather than the usual "true or false" (1 or 0) boolean (binary) logic, on which the modern computers are based.

DNA match/search using fuzzy Logic

To find approximate matches for a search key

Text match/search using fuzzy Logic

To find approximate matches (slang, misspelling, abbreviation on social media) for a search key

Other fuzzy logic applications

- To match customers to identify the buying behavior
- For customer address matching
- To match file paths
- To detect plagiarism (text re-use)
- For spam filtering

Fuzzy Sets (Fuzzy Logic) vs Crisp Sets (Boolean Logic)

1. Crisp Set Classical sets which have distinct objects. For e.g.,

```
A = {apples, oranges, mangoes}
B = {2, 4, 6, 8}
(each element has a membership degree of 1)
```

- 2. Fuzzy Set © The membership degree can be $0<\mu(x)<1$ $A = \left\{ \begin{array}{ccc} 0.4 & \text{tpai} \\ \text{n} \end{array} \right. 0.6 & \text{car} \\ \text{e} \end{array}$
 - where is a separator, and + is the logic OR
 - train has a membership degree of 0.4
 - If the membership degree is 0, it means that the element is not associated with set A.
 - If the membership degree is 1, it means that the element is strongly associated with

Boolean Logic (Crisp Sets)

Membership value

$$\mu_A(x) = 1$$
, iif $x \in A$
= 0, iif $x \notin A$

FUZZY THEORY

Fuzzy Logic (Fuzzy Sets)

Is Bob honest?

→ Very honest (1)
→ Honest (0.8)
→ Honest (sometimes) (0.5)
→ dishonest (0)

/
(membership value/degree)

Membership value

$$\mu_A$$
 (x) ε [0, 1]

Definition of Fuzzy Sets

A fuzzy set A is defined by using

$$A=\{x | \mu(x)\}$$

where $\mu(x)$ is a membership function.

- The range of $\mu(x)$ is [0,1]. We cannot say clearly if x is in A or not when $0<\mu(x)<1$.
- A fuzzy set A is described as follows:

$$A = \mu_A(x_1)/x_1 + \mu_A(x_2)/x_2 + ... + \mu_A(x_N)/x_N$$

where / is a separator, and + is the logic OR.

Operations on fuzzy sets

Meaning	Set notation	Membership function
Equivalence	A = B	$\mu_{\scriptscriptstyle A}(x) = \mu_{\scriptscriptstyle B}(x)$
Implication	$A \subseteq B$	$\mu_{A}(x) \leq \mu_{B}(x)$
Complement (negation)	\overline{A}	$\mu_{A}(x) = 1 - \mu(x)$
Union	$A \cup B$	$\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$
Intersection	$A \cap B$	$\mu_{A \cap B}(x) = \min\{ \mu_A(x), \mu_B(x) \}$

Operations of fuzzy sets

Meaning	Set notation	Membership function
Difference	A - B or $(A \cap \overline{B})$	$\mu_{A-B}(x) = \min\{ \mu_A(x), \neg \mu_B(x) \}$
Sum	A + B	$\mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - (\mu_A(x) \cdot \mu_B(x))$
Product	$A \cdot B$	$\mu_{A} \cdot (x) = \mu_{A}(x) \cdot \mu_{B}(x)$
Bounded sum	$A \oplus B$	$\mu_{A^{\oplus}B}(x) = \min\{1, \ \mu_{A}(x) + \mu_{B}(x)\}$
Bounded difference	$A \ominus B$	$\mu_{A} \in \{0, \mu_{A}(x) - \mu_{B}(x)\}$

Union

$$\begin{array}{c} \mathcal{Q}_{1} \rangle & \mathcal{B}_{1} = \sqrt{\frac{1}{1.0}} + \frac{0.75}{1.5} + \frac{0.3}{2.0} + \frac{0.15}{2.5} + \frac{0}{3.0} \end{array}$$

$$\begin{array}{c} \mathcal{B}_{2} = \sqrt{\frac{1}{1.0}} + \frac{0.6}{1.5} + \frac{0.2}{2.0} + \frac{0.1}{2.5} + \frac{0}{3.0} \end{array}$$

$$\begin{array}{c} \mathcal{B}_{1} \cup \mathcal{B}_{2} = \max \left[\mathcal{M}_{A}(\alpha), \mathcal{M}_{B}(\alpha) \right] \quad \forall \text{NION} \end{array}$$

$$\begin{array}{c} \mathcal{B}_{1} \cup \mathcal{B}_{2} = \frac{1}{1.0} + \frac{0.75}{1.5} + \frac{0.3}{2.0} + \frac{0.15}{2.5} + \frac{0}{3.0} \end{array}$$

Intersection

$$\begin{array}{l} B_{1} = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} + \frac{0.3}{2.0} + \frac{0.15}{2.5} + \frac{0}{3.0} \end{cases} \\ B_{2} = \begin{cases} \frac{1}{1.0} + \frac{0.6}{1.5} + \frac{0.2}{2.0} + \frac{0.1}{2.5} + \frac{0}{3.0} \end{cases} \\ S_{0} = \begin{cases} \frac{1}{1.0} + \frac{0.6}{1.5} + \frac{0.2}{2.0} + \frac{0.1}{2.5} + \frac{0.2}{3.0} \end{cases} \\ B_{1} \cap B_{2} = \min \left[M_{A}(x), M_{B}(x) \right] \\ N = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} + \frac{0.2}{2.0} + \frac{0.1}{2.5} + \frac{0.2}{3.0} \end{cases}$$

Complement

$$\begin{array}{c} B_{1} = \begin{cases} \frac{1}{1.0} + \frac{19.15}{1.5} + \frac{0.3}{2.0} + \frac{0.15}{2.5} + \frac{0}{3.0} \end{cases} \\ B_{2} = \begin{cases} \frac{1}{1.0} + \frac{0.6}{1.5} + \frac{0.2}{2.0} + \frac{0.1}{2.5} + \frac{0}{3.0} \end{cases} \\ S_{1} = \begin{cases} \frac{1}{1.0} + \frac{0.6}{1.5} + \frac{0.2}{2.0} + \frac{0.1}{2.5} + \frac{0}{3.0} \end{cases} \\ S_{1} = \begin{cases} \frac{1}{1.0} + \frac{0.6}{1.5} + \frac{0.2}{2.0} + \frac{0.85}{2.5} + \frac{0.7}{2.0} + \frac{0.85}{2.5} + \frac{1}{3.0} \end{cases} \\ = \begin{cases} \frac{0}{1.0} + \frac{0.85}{1.5} + \frac{0.7}{2.0} + \frac{0.85}{2.5} + \frac{1}{3.0} \end{cases}$$

Difference

$$\begin{array}{c} B_{1} = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} + \frac{0.3}{2.0} + \frac{0.15}{2.5} + \frac{0}{3.0} \end{cases} \\ B_{2} = \begin{cases} \frac{1}{1.0} + \frac{0.6}{1.5} + \frac{0.2}{2.0} + \frac{0.1}{2.5} + \frac{0}{3.0} \end{cases} \\ S_{1} = \begin{cases} \frac{1}{1.0} + \frac{0.6}{1.5} + \frac{0.2}{2.0} + \frac{0.1}{2.5} + \frac{0}{3.0} \end{cases} \\ S_{2} = \begin{cases} \frac{1}{1.0} + \frac{0.4}{1.5} + \frac{0.8}{2.0} & \frac{0.9}{2.5} + \frac{0.15}{2.0} \end{cases} \\ B_{2} = \begin{cases} \frac{1}{1.0} + \frac{0.4}{1.5} + \frac{0.8}{2.0} & \frac{0.9}{2.5} + \frac{0.15}{2.0} \end{cases} \\ B_{1} = \begin{cases} \frac{1}{1.0} + \frac{0.4}{1.5} + \frac{0.8}{2.0} & \frac{0.9}{2.5} + \frac{0.15}{2.0} \end{cases} \\ C_{1} = \begin{cases} \frac{1}{1.0} + \frac{0.4}{1.5} + \frac{0.8}{2.0} & \frac{0.9}{2.5} + \frac{0.15}{2.0} \end{cases} \\ C_{2} = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} + \frac{0.15}{2.0} & \frac{0.15}{2.0} + \frac{0.15}{2.0} \end{cases} \\ C_{3} = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} + \frac{0.15}{2.0} & \frac{0.15}{2.0} + \frac{0.15}{2.0} \end{cases} \\ C_{4} = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} + \frac{0.15}{2.0} & \frac{0.15}{2.0} & \frac{0.15}{2.0} \end{cases} \\ C_{4} = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} + \frac{0.15}{2.0} & \frac{0.15}{2.0} & \frac{0.15}{2.0} \end{cases} \\ C_{4} = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} + \frac{0.15}{2.0} & \frac{0.15}{2.0} & \frac{0.15}{2.0} \end{cases} \\ C_{5} = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} + \frac{0.15}{2.0} & \frac{0.15}{2.0} & \frac{0.15}{2.0} \end{cases} \\ C_{5} = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} + \frac{0.15}{2.0} & \frac{0.15}{2.0} & \frac{0.15}{2.0} \end{cases} \\ C_{5} = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} + \frac{0.15}{2.0} & \frac{0.15}{2.0} & \frac{0.15}{2.0} \end{cases} \\ C_{5} = \begin{cases} \frac{1}{1.0} + \frac{0.15}{1.5} & \frac{0.15}{2.0} & \frac{0.1$$

Sum

$$\begin{array}{c}
A = \begin{cases} \frac{1}{1} + \frac{0.5}{1.5} + \frac{0.3}{2.0} + \frac{0.4}{2.5} \end{cases} \\
B = \begin{cases} \frac{0.4}{1} + \frac{0.2}{1.5} + \frac{0.7}{2.0} + \frac{0.1}{2.5} \end{cases} \\
Soln: Algebraic Sum$$

$$M_{A+B}(\alpha) = \begin{bmatrix} U_{A}(\alpha) + U_{B}(\alpha) \end{bmatrix} - \begin{bmatrix} M_{A}(\alpha) \cdot M_{B}(\alpha) \end{bmatrix} \\
1.4 - 0.4 = 1 \\
0.7 - 0.1 = 0.6 \\
0.5 - 0.04 = 0.46
\end{cases}$$

$$\begin{array}{c}
1.0 - 0.21 = 0.79 \\
0.5 - 0.04 = 0.46
\end{array}$$

$$\begin{array}{c}
1.0 - 0.21 = 0.79 \\
0.5 - 0.04 = 0.46
\end{array}$$

Product

QI)
$$A = \{\frac{1}{1} + \frac{0.5}{1.5} + \frac{0.3}{2.0} + \frac{0.4}{2.5}\}$$
 $B = \{\frac{0.4}{1} + \frac{0.2}{1.5} + \frac{0.7}{2.0} + \frac{0.1}{2.5}\}$

Soln: Algebraic Product - $M_{A.B} = M_{A}(x)$. $M_{B}(x)$
 $M_{A.B} = \{\frac{0.4}{1} + \frac{0.1}{1.5} + \frac{0.21}{2.0} + \frac{0.04}{2.5}\}$

Bounded Sum

Qi)
$$A = \begin{cases} \frac{1}{1} + \frac{0.5}{1.5} + \frac{0.3}{2.0} + \frac{0.4}{2.5} \end{cases}$$
 $B = \begin{cases} \frac{0.4}{1} + \frac{0.2}{1.5} + \frac{0.7}{2.0} + \frac{0.1}{2.5} \end{cases}$

Soln: Bounded Sum | $M_{ABB} = \min[1, (M_A + M_B)]$
 $M_{A+B}(1) = \min[1, (1+0.4)] = \min[1, (M_A + M_B)]$
 $M_{A+B}(2) = \min[1, (0.7)] = 0.7$
 $M_{A+B}(3) = \min[1, (0.7)] = 0.7$
 $M_{A+B}(4) = \min[1, (0.7)] = 0.5$

Bounded Difference

QI)
$$A = \{\frac{1}{1} + \frac{0.5}{1.5} + \frac{0.3}{2.0} + \frac{0.4}{2.5}\}$$
 $B = \{\frac{0.4}{1} + \frac{0.2}{1.5} + \frac{0.7}{2.0} + \frac{0.1}{2.5}\}$

Soln: Bounded Difference $M_{AOB}(x) = mox[0, (M_A(x) - M_B(x))]$
 $M_{AOB}(1) = mox[0, 0.6] = 0.6$
 $(2) = mox[0, 0.3] = 0.3$
 $(3) = mox[0, -0.4] = 0$
 $(4) = mox[0, 0.3] = 0.3$

Practice

- All the people: X={Alice, Bob, Charles, Eric, William}
- Fuzzy sets A="young persons" and B="tall persons" are defined by
 - A = 0.4/Alice + 0.6/Bob + 0.8/Charles + 1.0/Eric + 0.9/William
 - B = 0.3/ Alice + 0.5/Bob +0.9/Charles + 0.6/Eric + 1.0/William
- Who are the young or tall persons?
 - AUB = 0.4/Alice + 0.6/Bob + 0.9/Charles + 1.0/Eric + 1.0/William
- Who are the young and tall persons?
 - A∩B =0.3/ Alice +0.5/Bob +0.8/ Charles + 0.6/ Eric + 0.9/William
- Who are tall and old persons?
 - $-B-A=B\cap A$
 - -A = 0.6/Alice + 0.4/Bob + 0.2/Charles +0/Eric + 0.1/William
 - B A = 0.3/Alice + 0.4/Bob + 0.2/Charles +0/Eric + 0.1/William

Fuzzy Numbers

Fuzzy numbers are fuzzy sets defined on real numbers

• Given A = $\mu_A(x_1)/x_1 + \mu_A(x_2)/x_2 + ... + \mu_A(x_N)/x_N$, if $x_{1, x_{2, ...}} x_N$ are real numbers and $0 < \mu_A(x_i) < 1$, the A is a fuzzy number.

• On the other hand, if for any x_N , $\mu(x_N) = 0$ or 1, then A is a crisp number or crisp set

One example fuzzy number

$$\mu_{(A)}(x) = \begin{cases} 0, & x < a_1 \\ \frac{x - a_1}{a_2 - a_1}, & a_1 \le x \le a_2 \\ \\ \frac{a_3 - x}{a_3 - a_2}, & a_2 \le x \le a_3 \\ \\ 0, & x > a_3 \end{cases}$$

fuzzy numbers vs crisp numbers

Crisp An crisp member 1.3 A crisp number set 1.25 1.35

Cases of fuzzy numbers

Membership functions of fuzzy numbers can be unsymmetric

Two fuzzy numbers (each X has a membership value for each fuzzy number)

Intersection of fuzzy numbers

Union of fuzzy numbers

Negation (Complement) of fuzzy number

In Artificial Intelligence, the ultimate question is: MACHINES THINK LIKE HUMAN

Humans think and reason in a way similar to fuzzy logic/numbers

Expert Systems and Fuzzy inference

• An expert system is an AI that solves problems by reasoning. An expert system has two components: a knowledge base and an inference engine

- Most of the inference engines used in experts systems were built on fuzzy inference techniques
- The most used fuzzy inference technique is the so-called Mamdani method.

Fuzzy inference (Mamdani method)

The fuzzy inference process is performed in four steps:

- 1. Fuzzification of the input variables,
- 2. Evaluation of fuzzy rules (i.e., rules on fuzzy numbers);
- 3. Aggregation of the rule outputs
- 4. Defuzzification.

Operation of Fuzzy System

Two (crisp) input variables:

X is on a scale of 0 to 10, described using three fuzzy numbers:

A1: project_funding is inadequate

A2: project_funding is marginal

A3: project_funding is adequate

B1: project_staffing is small

B2: project_staffing is large

Output (crisp) variable: Z = ? Z is on a scale of 0 to 100

C1: risk is low

C2: risk is normal

C3: risk is high

Step 1: Let's define fuzzy numbers

A1: project_funding is inadequate

A2: project_funding is marginal

A3: project funding is adequate

B1: project_staffing is small
B2: project_staffing is large

C1: risk is low

C2: risk is normal

C3: risk is high

Step 2: Let's define fuzzy rules on fuzzy numbers:

Rule: 1 Rule: 1

IF x is A3 IF project_funding is adequate

OR y is B1 OR project_staffing is small

THEN z is C1 THEN risk is low

Rule: 2 Rule: 2

IF x is A2 IF project_funding is marginal

AND y is B2 AND project_staffing is large

THEN z is C2 THEN risk is normal

Rule: 3 Rule: 3

IF x is A1 IF project_funding is inadequate

THEN z is C3 THEN risk is high

Step 3: Fuzzification

- Take the <u>crisp inputs</u>, X and Y (project funding and project staffing)
- Determine the degree to which these inputs belong to each fuzzy number.
- The output is called <u>fuzzy input</u>

Suppose X (project funding) = 3 and Y (project staffing) = 6

project funding

project staffing

• Fuzzy input: $\mu_{(x=A1)} = 0.5$ $\mu_{(x=A2)} = 0.2$ and $\mu_{(x=A3)} = 0$, $\mu_{(y=B1)} = 0.1$ and $\mu_{(y=B2)} = 0.7$

Step 4: Rule Evaluation

- Apply the fuzzy input to the fuzzy rules.
- To evaluate the disjunction of the rule inputs, we use the OR fuzzy operation.

$$\mu_A \cup_B (x) = max [\mu_A(x), \mu_B(x)]$$

To evaluate the conjunction of the rule inputs, we apply the AND fuzzy operation :

$$\mu_A \cap_B(\mathbf{x}) = \min \left[\mu_A(\mathbf{x}), \, \mu_B(\mathbf{x}) \right]$$

Mamdani-style rule evaluation

Fuzzified inputs:

- $\mu_{(x=A1)} = 0.5$
- $\mu_{(x=A2)} = 0.2$
- $\bullet \quad \mu_{(x=A3)} = 0 ,$
- $\mu_{(y=B1)} = 0.1$
- $\mu_{(y=B2)} = 0.7$

Fuzzy output: z is C1 (0.1), z is C2 (0.2), and z is C3 (0.5),

Step 5: Aggregation of the Rule Outputs

We combine fuzzy outputs into <u>a single fuzzy number</u>.

Step 6: Defuzzification

- The defuzzification process converts the aggregated fuzzy number to a single (crisp) number.
- In other words, here we convert the fuzzy output to the crisp output for final presentation
- Most popular defuzzification method is the centroid defuzzification.

• Centroid defuzzification method finds a point representing the center of gravity of the fuzzy number, A, on the interval, ab.

$$COG = \int_{a}^{b} \mu_{A}(x) x dx$$

$$\int_{a}^{b} \mu_{A}(x) dx$$

 A reasonable estimate can be obtained by calculating weighed sum over a sample of points.

Centre of gravity (COG):

$$COG = \frac{(0+10+20)\times0.1 + (30+40+50+60)\times0.2 + (70+80+90+100)\times0.5}{0.1+0.1+0.1+0.2+0.2+0.2+0.2+0.5+0.5+0.5+0.5+0.5} = 67.4$$

Result

Two input variables:

project_funding = 3, on a scale of 0 to 10

project_staffing = 6, on a scale of 0 to 10

Output:

risk = 67.4 on a scale of 0 to 100

Lab 14: Fuzzy Control Systems using Fuzzy Inference

- Scikit-fuzzy
- Tipping problem

Install Scikit-fuzzy for Lab 14

```
Anaconda Prompt (Anaconda3)

(base) C:\Users\chenh>pip install scikit-fuzzy
```