

1. For the network of Fig. 1:
 - (a) Determine Z_i and Z_o .
 - (b) Find A_v and A_i .
 - (c) Repeat part (a) with $r_o = 20 \text{ k}\Omega$.
 - (d) Repeat part (b) with $r_o = 20 \text{ k}\Omega$.

2. (Report) For the network of Fig. 2, determine V_{CC} for a voltage gain of $A_v = -200$.

3. For the network of Fig. 3:
 - (a) Determine r_e .
 - (b) Calculate Z_i and Z_o .
 - (c) Find A_v and A_i .
 - (d) Repeat parts (b) and (c) with $r_o = 25 \text{ k}\Omega$.

4. For the network of Fig. 4:
 - (a) Determine r_e .
 - (b) Find Z_i and Z_o .
 - (c) Calculate A_v and A_i .
 - (d) Repeat parts (b) and (c) with $r_o = 20 \text{ k}\Omega$.

5. (Report) For the network of Fig. 5, determine R_E and R_B if $A_v = -10$ and $r_e = 3.8 \Omega$. Assume that $Z_b = \beta R_E$

6. For the network of Fig. 6:
 - (a) Determine r_e .
 - (b) Find Z_i and A_v .
 - (c) Calculate A_i .

7. (Report) For the network of Fig. 7:
 - (a) Determine Z_i and Z_o .
 - (b) Find A_v .
 - (c) Calculate V_o if $V_i = 1 \text{ mV}$.

8. For the network of Fig. 8, determine A_v and A_i

9. For the collector FB configuration of Fig. 9:
 - (a) Determine r_e .
 - (b) Find Z_i and Z_o .

(c) Calculate A_v and A_i .

10. (Report) Given $r_e = 10$, $\beta = 200$, $A_v = -160$, and $A_i = 19$ for the network of Fig. 10, determine R_C , R_F , and V_{CC} .

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig. 8.78:

Fig.9

Fig.10