Memory Management Systems Overview

Compact-fit Moving

Metronome Time First-fit: free, deref CFM: malloc, deref Best-fit: free, deref CFNM: deref O(1) DL: free, deref M TLSF: malloc, free, deref Half-fit: malloc, free, deref O(log n) Jamaica: deref CFM: free O(n)CFNM: malloc, free Jamaica: malloc, free, deref First-fit: malloc unbounded Best-fit: malloc in n DL: malloc Space predictable unpredictable

Best-fit versus First-fit

Best-fit versus First-fit

Best-fit versus First-fit

Free List

- Allocation:
 - malloc may take time proportional to heap size

- Allocation:
 - malloc may take time proportional to heap size
- Deallocation:
 - free takes constant time

- Allocation:
 - malloc may take time proportional to heap size
- Deallocation:
 - free takes constant time
- Access:
 - read and write take constant time

- Allocation:
 - malloc may take time proportional to heap size
- Deallocation:
 - free takes constant time
- Access:
 - read and write take constant time
- Unpredictable fragmentation

Free List Operations

- Select:
 - malloc

Free List Operations

- Select:
 - malloc
- Insert:
 - free

Free List Operations

- Select:
 - malloc
- Insert:
 - free
- Delete:
 - coalescing

 List: singly-linked or doubly-linked (using boundary tags)

- List: singly-linked or doubly-linked (using boundary tags)
- Segregated lists: array of lists for different sizes

- List: singly-linked or doubly-linked (using boundary tags)
- Segregated lists: array of lists for different sizes
- Buddy systems: split blocks in powers of two (called buddies if same size)

- List: singly-linked or doubly-linked (using boundary tags)
- Segregated lists: array of lists for different sizes
- Buddy systems: split blocks in powers of two (called buddies if same size)
- Indexed lists: trees, bitmaps

- List: singly-linked or doubly-linked (using boundary tags)
- Segregated lists: array of lists for different sizes
- Buddy systems: split blocks in powers of two (called buddies if same size)
- Indexed lists: trees, bitmaps
- Hybrid: Doug Lea's allocator

DL Complexity

- Allocation:
 - malloc may take time proportional to heap size
- Deallocation:
 - free takes constant time
- Access:
 - read and write take constant time
- Unpredictable fragmentation

There is a trade-off between external and internal fragmentation

[Masmano et al., In J. of Real-Time Systems, 2008]

Half-fit Complexity

- Allocation:
 - malloc takes constant time
- Deallocation:
 - free takes constant time
- Access:
 - read and write take constant time
- Unpredictable fragmentation

Two-level Segregated Fit (TLSF)

[Masmano et al., In J. of Real-Time Systems, 2008]

TLSF Complexity

- Allocation:
 - malloc takes constant time
- Deallocation:
 - free takes constant time
- Access:
 - read and write take constant time
- Unpredictable fragmentation (yet better than HF)

Jamaica Complexity

- Allocation:
 - malloc(n) takes time proportional to n
- Deallocation:
 - free(n) takes time proportional to n
- Access:
 - read and write take time proportional to n
- Predictable fragmentation

