Statistical Theory II: Chapter 9 - Properties of Point Estimators and Methods of Estimation

Chris Hayduk

March 25, 2019

Problem 9.20.

We know that $\frac{Y}{n}$ is an unbiased estimator of p with $V(\frac{Y}{n}) = \frac{pq}{n}$ from Ch. 8.

Since pq is a constant,

$$\lim_{n \to \infty} \frac{pq}{n} = pq \lim_{n \to \infty} \frac{1}{n} = pq(0) = 0$$

By Theorem 9.1, $\frac{Y}{n}$ is thus a consistent estimator of p.

Problem 9.46.

We know that an exponential distribution has the following pdf:

$$f(x;\beta) = \begin{cases} \frac{1}{\beta}e^{-\frac{x}{\beta}} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Thus,

$$L(y_1, y_2, ..., y_n | \beta) = f(y_1, y_2, ..., y_n | \beta)$$

$$= f(y_1 | \beta) * f(y_2 | \beta) * ... * f(y_n | \beta)$$

$$= \frac{1}{\beta} e^{-\frac{y_1}{\beta}} * ... * \frac{1}{\beta} e^{-\frac{y_n}{\beta}}$$

$$= \left(\frac{1}{\beta}\right)^n e^{-\Sigma y_i / \beta}$$

$$= \left(\frac{1}{\beta}\right)^n e^{-n\overline{y}/\beta}$$

If we let $g(\overline{y}, \beta) = \left(\frac{1}{\beta}\right)^n e^{-n\overline{y}/\beta}$ nd $h(y_1, y_2, ..., y_n) = 1$, we can see that,

$$L(y_1,...,y_n|\beta) = g(\overline{y},\beta) * h(y_1,...,y_n)$$

This satisfies Theorem 9.4, and thus \overline{Y} is a sufficient statistic for the parameter β .

Problem 9.56.

We know from Exercise 9.38(b) that $\Sigma(Y_i - \mu)^2$ is sufficient for σ^2 .

We also know that $\hat{\sigma}^2 = \frac{1}{n-1} \Sigma (y_i - \mu)^2$ is an unbiased estimator for σ^2 from Ch. 8.4. Since $\hat{\sigma}^2$ is unbiased and is a function of the sufficient statistic, it is an MVUE for σ^2 .

Problem 9.70.

We need to estimate one parameter, λ , so we only need to find $\mu'_1 = m'_1$.

The value of μ'_1 for a Poisson random variable is,

$$\mu_1' = \mu = \lambda$$

.

The first sample moment is,

$$m_1' = \frac{1}{n} \Sigma Y_i = \overline{Y}$$

.

Thus,

$$\mu_1' = \lambda = \overline{Y}$$

_

Problem 9.82.

- a) By Theorem 9.4, a sufficient statistic for θ is $\Sigma Y_i^r.$
- b) $ln(L(\theta)) = -nln(\theta) + nln(r) + (r-1)ln(\Pi y_i) \Sigma y_i^r/\theta$ After taking the derivative with regards to θ and setting the equation equal to 0, we get:

 $\hat{\theta} = \frac{1}{n} \Sigma Y_i^r$

.

c) We know that $\hat{\theta}$ is a function of the sufficient statistic. $E(Y^r) = \theta$, so $\hat{\theta}$ is unbiased and, by Theorem 9.5, $\hat{\theta}$ is the MVUE for θ .