BEST AVAILABLE COPY

US Appln. No.-10/789,323 Filed: 2/27/04; Stapper et al File: DEAV2003/0016US NP

世界知的所有権機関

PCT

国 際 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 277/34, 417/12, A61K 31/425

(11) 国際公開番号

WO96/38428

(43) 国際公開日

1996年12月5日(05.12.96)

(21) 国際出願番号

. .

(22) 国際出顧日

PCT/JP96/01459 1996年5月30日(30.05.96)

(30) 優先権データ

特願平7/159781

1995年6月2日(02.06.95)

ТР

特額平8/153139

1996年5月24日(24.05.96)

JP

A1

(71) 出願人(米国を除くすべての指定国について)

杏林製薬株式会社

(KYORIN PHARMACEUTICAL CO., LTD.)[JP/JP]

〒101 東京都千代田区神田駿河台2丁目5番地 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ)

前田敏夫(MAEDA, Toshio)[JP/JP]

野村昌弘(NOMURA, Masahiro)[JP/JP]

〒329-01 栃木県下都賀郡野木町友沼6096 Tochigi, (JP)

栗野勝也(AWANO, Katsuya)[JP/JP]

〒323 栃木県小山市客沢352-22 Tochigi, (JP)

木下 進(KINOSHITA, Susumu)[JP/JP]

〒349-02 埼玉県南埼玉郡白岡町新白岡3-10-10 Saitama, (JP)

佐藤浩也(SATOH, Hiroya)[JP/JP]

〒329-01 栃木県下都賀郡野木町友沼4660-4 Tochigi, (JP)

村上浩二(MURAKAMI, Koji)[JP/JP] 〒329-01 栃木県下都賀郡野木町丸林386-2

プレシーン野木ハイランズ704 Tochigi, (JP)

角田雅樹(TSUNODA, Masaki)[JP/JP]

〒329-01 栃木県下都賀郡野木町友沼5932 Tochigi, (JP)

(74) 代理人

弁理士 笑浦 清(MINOURA, Kiyoshi)

〒101 東京都千代田区神田北乗物町16番地 英ピル Tokyo, (JP)

(81) 指定国

AU, CA, CN, HU, KR, US, 欧州特許(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, NL, PT, SE).

添付公開書類

国際調査報告書

(54) Tide: N-BENZYLDIOXOTHIAZOLIDYLBENZAMIDE DERIVATIVES AND PROCESS FOR PRODUCING THE SAME

(54) 発明の名称 N-ベンジルジオキソチアソリジルベンズアミド誘導体及びその製造法

(57) Abstract

Novel N-benzyldioxothiazolidylbenzamide derivatives represented by general formula (1) which improve insulin resistance and have potent hypoglycemic and lipid-lowering effects, wherein R^1 and R^2 are the same or different and each represents hydrogen, lower (C_{1-4}) alkyl, lower (C_{1-3}) alkoxy, lower (C_{1-3}) haloalkyl, lower (C_{1-3}) haloalkoxy, halogeno, hydroxy, nitro, amino optionally substituted by lower (C_{1-3}) alkyl or a heterocycle, or R^1 and R^2 may be bonded to each other to thereby form methylenedioxy; R^3 represents lower (C_{1-3}) alkoxy, hydroxy or halogeno; and $\underline{\hspace{0.5cm}}$ represents a double or single bond.

(57) 要約

本発明はインスリン抵抗性を改善し、強力な血糖低下作用と脂質 低下作用を有する新規なN-ベンジルジオキソチアゾリジルベンズ アミド誘導体及びそれらの製造法を提供するもので、一般式(1)

$$R^{1}$$

$$R^{2}$$

$$NH$$

$$(1)$$

[式中、 R^1 , R^2 は同一又は異なって、水素、炭素数 $1\sim 4$ の低級アルキル基、炭素数 $1\sim 3$ の低級アルコキシ基、炭素数 $1\sim 3$ の低級ハロアルキル基、炭素数 $1\sim 3$ の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 $1\sim 3$ の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R^1 と R^2 が結合しメチレンジオキシ基を、 R^3 は炭素数 $1\sim 3$ の低級アルコキシ基、水酸基、ハロゲン原子を、点線は実線との組み合せで二重結合又は単結合を示す〕で表されることを特徴とする N- ベンジルジオキソチアゾリジルベンズアミド誘導体及びそれらの製造法に関する。

情報としての用途のみ PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

CI コート・ジボアール KE ケニア MX メキシコ UA ウクライナ CM カメルーン KG キルギスタン NE ニジェール UG ウガング CN 中国 KP 朝鮮民主主義人民共和国 NL オラング US アメペキスタン CU キューベ KR 大峰民国 NO ノールウェー UZ ウズベキスタン CZ チェッコ共和国 KZ カザフスタン NZ ニュー・ジーランド VN ヴィェトナム	•	AAAAABBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCC	カメルーン 中国 キューバ	KG KP KR	日本 ケニア キルギスタン 朝鮮民主主総人民共和国	ICKRSTUVCDGK LNRWXELON MMMNNNN	ニジェール オランダ	PPRRSSSSSSSSTTTTTTUUUVV	アメリカ会会的	
---	---	--	---------------------	----------------	------------------------------------	--------------------------------	---------------	-------------------------	---------	--

明細

N-ベンジルジオキソチアゾリジルベンズアミド誘導体及びその 製造法

技術分野

本発明は、糖尿病及び高脂血症を改善する新規なN-ベンジルジオキソチアゾリジルベンズアミド誘導体及びそれらの製造法に関する。

背景技術

従来より経口糖尿病治療薬としては、ビグアナイド系及びスルホニルウレア系化合物が用いられている。しかしながらビグアナイド系化合物では、乳酸アシドーシスあるいは低血糖を、スルホニルウレア系化合物では重篤かつ遷延性の低血糖を引き起こし、その副作用が問題となっており、このような欠点のない新しい糖尿病治療剤の出現が望まれている。またチアゾリジン-2,4-ジオン誘導体のあるものが血糖低下及び血中脂質低下作用を示すことが知られているが(Journal of Medicinal Chemistry,第35巻、P. 1853(1992)、特開平1-272573号公報)、これらの化合物はいずれも、チアソリジン-2,4-ジオン環と芳香環を結ぶ中間のベンゼン環の置換をはずれる、東に前者は芳香環がオキサゾール環であり、後者は結合がスルホンアミドである等、本発明化合物であるN-ベンジルジオキソチアゾリジルベンズアミド誘導体とは構造的に異なるものである。

糖尿病患者の大多数を占めるインスリン非依存型糖尿病 (NID DM) においてはインスリン抵抗性を改善し、安全性の高い有効な

血糖低下薬が強く望まれる。

本発明者らは、インスリン抵抗性を改善し、強力な血糖低下作用を有する安全性の高い薬物に関して鋭意研究を重ねた結果、下記一般式(1)で表される新規N-ベンジルジオキソチアゾリジルベンズアミド誘導体が優れた血糖低下作用、脂質低下作用を有することを見出し本発明を完成した。

発明の開示

即ち本発明は一般式(1)

[式中、 R^1 , R^2 は同一又は異なって、水素、炭素数 $1\sim4$ の低級アルキル基、炭素数 $1\sim3$ の低級アルコキシ基、炭素数 $1\sim3$ の低級ハロアルキル基、炭素数 $1\sim3$ の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 $1\sim3$ の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R^1 と R^2 が結合しメチレンジオキシ基を、 R^3 は炭素数 $1\sim3$ の低級アルコキシ基、水酸基、ハロゲン原子を、点線は実線との組み合せで二重結合又は単結合を示す〕で表されるN-ベンジルジオキソチアゾリジルベンズアミド誘導体及びその薬理学的に許容しうる塩である。

本発明における一般式(1)で表される化合物の塩類は慣用のものであって、金属塩例えばアルカリ金属塩(例えばナトリウム塩、カリウム塩など)、アルカリ土類金属塩(例えばカルシウム塩、マ

グネシウム塩など)、アルミニウム塩等薬理学的に許容しうる塩が 挙げられる。

また、本発明における一般式(1)には、二重結合に基づく立体 異性体及びチアゾリジン部分に基づく光学異性体が含まれることが あるが、そのような異性体及びそれらの混合物はすべてこの発明の 範囲内に包含されるものとする。

本発明の一般式(1)において、「低級アルキル基」とは、メチル、エチル、プロピル、ブチル等、直鎖もしくは分岐した炭素数1~4のものが挙げられる。

「低級アルコキシ基」とは、メトキシ、エトキシ、プロポキシ等、 直鎖もしくは分岐した炭素数1~3のものが挙げられる。

「低級ハロアルキル基」とは、トリフルオロメチル等、直鎖もしくは分岐した炭素数1~3のものが挙げられる。

「低級ハロアルコキシ基」とは、トリフルオロメトキシ等、直鎖 もしくは分岐した炭素数1~3のものが挙げられる。

「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

「低級アルキル基で置換されても良いアミノ基」とは、アミノ基 又は、メチル、エチル、プロピル等、直鎖もしくは分岐した炭素数 1~3の低級アルキル基で1又は2置換されたメチルアミノ基、エ チルアミノ基、ジメチルアミノ基、ジエチルアミノ基等が挙げられ る。

本発明によれば上記一般式(1)である化合物は以下の方法により製造することができる。

一般式(1)である化合物は一般式(7)の化合物に一般式(11) の化合物を作用させることにより製造することができる。

[式中、 R^1 , R^2 は同一又は異なって、水素、炭素数1~4の低級アルキル基、炭素数1~3の低級アルコキシ基、炭素数1~3の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数1~3の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R^1 と R^2 が結合しメチレンジオキシ基を、 R^3 は炭素数1~3の低級アルコキシ基、水酸基、ハロゲン原子を、点線は実線との組み合せで二重結合又は単結合を示す]

$$HO_2C$$
 NH
 (7)

[式中、R³、点線は前述の通り]

$$R^1$$
 CH_2NH_2 (11)

[式中、R¹, R² は前述の通り]

反応は有機溶媒、例えばジメチルスルホキシド、N, N-ジメチルホルムアミド等中で、縮合剤、例えば1-エチル-3-(3'-ジメチルアミノプロピル)カルボジイミド、シアノリン酸ジエチル等で処理することにより行うことができる。また必要ならば有機塩基、例えばトリエチルアミン等を添加しても良い。

反応温度としては氷冷~室温で行うことができる。

一般式(1b)である化合物は、一般式(1a)の化合物を還元することにより製造することができる。

[式中、 R^1 , R^2 , R^3 は前述の通り]

$$R^1$$
 R^3
 NH
(1a)

[式中、 R^1 , R^2 , R^3 は前述の通り]

反応は有機溶媒、例えばエタノール、酢酸エチル、N, N-ジメチルホルムアミド等中、あるいはそれらの混合溶媒中で、室温~加熱下、パラジウム/炭素等の触媒存在下に常圧~4 kg/cm² で水素添加することにより行うことができる。 あるいは有機溶媒、例えばエタノール等のアルコール中、又は水との混合溶媒中で、室温~

加熱下にナトリウムアマルガムと処理することにより行うことができる。

下記一般式 (1d) である化合物は一般式 (1c) にルイス酸を作用させることにより製造することができる。

$$R^1$$
 HO S NH (1d)

[式中、 R^1 , R^2 、点線は前述の通り]

[式中、 R^1 , R^2 、点線は前述の通り]

反応は有機溶媒、例えばジクロロメタン、クロロホルム等中、-78℃~室温下でルイス酸、例えば三臭化ホウ素、三塩化ホウ素等で 処理することにより行うことができる。

一般式(7)である化合物は下記一般式(6)の化合物を加水分解することにより製造できる。

$$R^{5}O_{2}C$$
 NH
(6)

[式中、 R^3 、点線は前述の通りであり、 R^5 は炭素数 $1 \sim 3$ の低級アルキル基を示す]

反応は酸性、又はアルカリ性条件下で、反応温度としては冷却下 ~溶媒還流で行うことができ、例えば、酢酸と濃塩酸の混合溶媒中 で加熱還流することが好ましい。

一般式(4)である化合物は下記一般式(2)の化合物に式(3) の化合物を作用させることにより製造できる。

[式中、 R^3 は前述の通りであり、 R^4 は水素、炭素数 $1\sim3$ の低級アルキル基を示す]

[式中、R³ 及びR⁴ は前述の通り]

反応は有機溶媒、例えばベンゼン、トルエン、キシレン等中で、 反応温度としては室温~溶媒還流温度で行うことができるが、溶媒 還流温度が好ましい。また触媒として、二級アミン(ピペリジン等) あるいは酢酸塩類(酢酸アンモニウム等)と酢酸の添加も好適であ る。

また無溶媒で塩基(酢酸ナトリウム、ピペリジン等)と共に加熱 することによっても行うことができる。

一般式(5)である化合物は、一般式(4)の化合物を還元する ことにより製造することができる。

$$R^3$$
 S NH (5)

[式中、R³, R⁴ は前述の通り]

反応は有機溶媒、例えばエタノール、酢酸エチル、N, $N-ジメチルホルムアミド等中、あるいはそれらの混合溶媒中で、室温~加熱下、パラジウム/炭素等の触媒存在下に常圧~<math>4 \, kg/cm^2$ で水素添加することにより行うことができる。

あるいは有機溶媒、例えばエタノール等のアルコール中、又は水 との混合溶媒中で、室温~加熱下にナトリウムアマルガムと処理す ることにより行うことができる。

一般式(7a)である化合物は下記一般式(10)の化合物にチオ尿素を作用させた後、加水分解することによっても製造できる。

[式中、R³ は前述の通り]

$$R^{3}$$

$$X$$

$$CO_{2}R^{6}$$
(10)

[式中、 R^3 、 R^5 は前述の通りであり、 R^6 は炭素数 $1\sim3$ の低級アルキル基を、X はハロゲン原子を示す]

一般式(10)の化合物とチオ尿素との反応は有機溶媒、例えばエタノール等のアルコール中で室温~溶媒還流温度で行うことができるが、溶媒還流温度が好ましい。必要ならば塩基(酢酸ナトリウム等)を添加しても良い。次の加水分解反応は酸性条件下で行うことができ、例えば塩酸、あるいは塩酸と有機溶媒(スルホラン等)の混合溶媒中で加熱還流することが好ましい。

一般式(10)である化合物は一般式(8)の化合物をジアゾニウム塩とした後に一般式(9)の化合物とメイルバイン アリレイション(Meerwein Arriation)を行うことにより製造できる。

$$R^3$$
 NH_2
(8)

[式中、R³, R⁵ は前述の通り]

[式中、R⁶ は前述の通り]

反応は有機溶媒、例えばメタノール、エタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、水及びこれらの混合溶媒中、塩酸、臭化水素酸等のハロゲン化水素存在下、一般式(8)である化合物を亜硝酸ナトリウム等の亜硝酸塩類によりジアゾ化した後、一般式(9)である化合物の存在下に触媒量の酸化第一銅、塩化第一銅等の第一銅塩類を作用させることにより行うことができる。

発明を実施するための最良の形態

次に本発明を具体例によって説明するがこれらの例によって本発明が限定されるものではない。実施例で使用する略号は以下の意味を表す。

1HNMRプロトン核磁気共鳴スペクトルMS質量スペクトルCDC13重水素化クロロホルムDMFN、Nージメチルホルムアミド

DMSO

ジメチルスルホキシド

THF

テトラヒドロフラン

 $d_{6} - DMSO$

重水素化ジメチルスルホキシド

実施例1

5-(2,4-ジオキソチアゾリジン-5-イリデン)メチル-2-メトキシ安息香酸メチル

5-ホルミルー2-メトキシ安息香酸メチル(490mg)、チアゾリジンー2、4ージオン(358mg)、酢酸アンモニウノ(401mg)、酢酸(<math>0.8ml)、ベンゼン(10ml)の混合物をディーンスターク脱水装置を付して4時間加熱還流した。冷後、析出した結晶を濾取し、ベンゼン、20%アセトン水溶液で洗浄した後、乾燥し、目的化合物を結晶として634mg(86%)得た。

1H NMR $(d_6 - DMSO)$, δ : 3.83 (3 H, s), 3.90 (3 H, s), 7.34 (1 H, d, J = 9.3Hz), 7.79 (1 H, s), 7.76-7.83 (1 H, m), 7.87-7.92 (1 H, m), 12.59 (1 H, s)

<u>実施例2~3</u>

実施例1と同様にして表1の化合物を得た。

[表1]

実施例	. R ³	R 4	性状	MS (m/z): M [†]
2	ΕtΟ	E t	結晶	
3	i — P r O	H	結晶	3 0 7

実施例4

5-(2,4-ジオキソチアゾリジン-5-イル)メチル-2-メトキシ安息香酸メチル

5-(2, 4-i)オキソチアゾリジン-5-(1)デン)メチルー2-メトキシ安息香酸メチル(9.52g)をDMF(250m1)に懸濁し、室温、 $3.5kg/cm^2$ に水素加圧下10%パラジウム/炭素(10.0g)で水素化した。反応後、溶液を濾過、濃縮し、残留物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:アセトン=50:1)で精製し、目的化合物をアモルファスとして5.88g(61%)得た。MS(m/z): 295(M⁺)

実施例5

5-(2,4-ジオキソチアゾリジン-5-イリデン)メチルー 2-メトキシ安息香酸

5-(2,4-ジオキソチアゾリジン-5-イリデン)メチルー2-メトキシ安息香酸メチル(629mg)の酢酸-濃塩酸(1:1,18.0ml) 懸濁液を6時間加熱還流した。冷後、水(36ml)を加え、結晶を濾取し、水洗後、乾燥し、目的化合物を結晶として599mg

(100%) 得た。

¹H NMR (d₆ - DMSO), δ: 3.89 (3 H, s), 7.31 (1 H, d, J = 8.8 Hz), 7.76 (1 H, d d, J = 2.4, 8.8Hz), 7.79 (1 H, s), 7.89 (1 H, d, J = 2.4 Hz), 12.58 (1 H, s), 12.91 (1 H, b r)

実施例6~7

実施例5と同様にして表2の化合物を得た。

[表2]

実施例	R ³	点線部分	性状	MS (m/z): M ⁺
6	MeO	単結合	結晶	
7	EtO	二重結合	結晶	293

実施例8

2 - プロモー3 - (3 - メトキシカルボニル-4 - フルオロフェニル) プロピオン酸メチル

5-アミノー2-フルオロ安息香酸メチル (4.12g) の47%臭化 水素酸 (11.4ml)、メタノール (20ml)、アセトン (50ml) 溶液に 塩ー氷冷却攪拌下、亜硝酸ナトリウム(1.88g)を水(3 ml)に溶解して、内温-5 $^{\circ}$ $^{\circ}$

¹H NMR (CDCl₃), δ: 3. 25 (1 H, dd, J=7. 3, 14. 6Hz), 3. 46 (1 H, dd, J=7. 8, 14. 2Hz), 3. 75 (3 H, s), 3. 93 (3 H, s), 4. 38 (1 H, t, J=7. 8Hz), 7. 09 (1 H, dd, J=8. 8, 10. 8Hz), 7. 38 (1 H, ddd, J=2. 4, 4. 4, 8. 8Hz), 7. 80 (1 H, dd, J=2. 4, 6. 3Hz)

MS (m/z): 318, 320 (M⁺)

実施例 9~10

実施例8と同様にして表3の化合物を得た。

[表3]

実施例	R ³	·R ⁵	R 6	性 状	MS (m/z): M ⁺
9	6 – M e O	E t	Ме	油状物	3 4 4
1 0	2 - M e O	Ме	Ме	油状物	330, 332

実施例11

5-(2, 4-ジオキソチアゾリジン-5-イル) メチル-2-フルオロ安息香酸

2-プロモー3-(3-メトキシカルボニルー4-フルオロフェニル)プロピオン酸メチル(1.22g)のエタノール(40ml)溶液にチオ尿素(356mg)を加え、11時間加熱還流した。冷後、減圧下濃縮し、残留物に水(50ml)を加え、攪拌下飽和炭酸水素ナトリウム水溶液でpH8程度とした後、エーテル(20ml)、n-ヘキサン(40ml)を加えてそのまま10分間攪拌した。結晶を濾取し、水洗後乾燥した。得られた固体をスルホラン(10ml)に溶解し、6 N塩酸(20ml)を加えて8時間加熱還流した。冷後、氷水に注ぎ析出した結晶を濾取、水洗後乾燥し、目的化合物を結晶として 403mg(39%)を得た。

¹H NMR (d₆ - DMSO), δ: 3. 22 (1 H, dd, J = 8. 3, 14. 2Hz), 3. 51 (1 H, dd, J = 4. 4, 14. 2Hz), 4. 95 (1 H, dd, J = 4. 4, 8. 3Hz), 7. 27 (1 H, dd, J = 8. 3, 10. 8Hz), 7. 51 (1 H, ddd, J = 2. 5, 4. 9, 8. 3Hz), 7. 74 (1 H, dd, J = 2. 5, 6. 8Hz), 12. 05 (1 H, s), 13. 28 (1 H, s) MS (m/z): 269 (M⁺)

実施例12~13

実施例11と同様にして表4の化合物を得た。 [表4]

実施例	R ³	性状	MS (m/z): M [†]
1 2	4 - M e O	結晶	2 8 1
1 3	2 - M e O	結晶	281

実施例14

N-(4-1)フルオロメチルベンジル)-5-(2, 4-3)オンチアゾリジン-5-1イリデン)メチル-2-1メトキシベンズアミド

5-(2, 4-i)オキソチアゾリジン-5-(1)デン)メチルー 2-(1) 2 - メトキシ安息香酸(1.00 g)、4-(1) 2 - メトキシ安息香酸(1.00 g)、4-(1) 2 - メトキシ安息香酸(1.00 g)、4-(1) 2 - ステルズロメチルベンジルアミン(627 mg)の DMF(10 ml)溶液にアルゴン雰囲気、室温攪拌下シアノリン酸ジエチル(615 mg)、トリエチルアミン(370 mg)を加え、そのまま 5 時間攪拌した。反応液を氷水に注ぎ、析出する結晶を濾取、水洗後乾燥し目的化合物を結晶として1.31 g(84%)得た。更にこのものをエタノールから再結晶し、黄色プリズム晶とし

て精製した目的化合物を得た。融点 210.0~211.5 ℃

元素分析値(%): $C_{20}H_{15}F_3$ N_2 O_4 Sとして

C H N

計算值 55.04 3.46 6.42

実測値 55.30 3.36 6.48

実施例15~38

実施例14と同様にして表5及び表6の化合物を得た。

[表5]

1	7	-;	1	(2) 早報	•	ik:	381	8;
	2	×	TO ME COLUMN	(海特品将供)	서 전 편	± 5	K \ ≈ 91	z z
9 1	H	6-Me0	草	アモルファス	cliffit of s	81. 81 81. 94	4. 90 5. 10	7. 56
8	#	8 -Me0	- FEET	209.0~212.0(ヘキサン製剤)	cliffig of s	61. 94 62. 32	4. 50	7. 61
17	3-CF3	8 -Me O	40 42 43	145.0~147.0 (財報エチルーヘキサン)	chaliff Not S	54. 19 54. 88	3.93	6.39
188	3-CF1	6-Me0	日本語	188. $0 \sim 190. 0$ (x $9 / - h$)	CHEISFIN O, S 6	52.88 52.78	3.77	6. 17 6. 18
19	2-CF1	6 -Me0	42	179.0~181.0 (時後エチルーヘキサン)	CHEITFIN OLS	54. 79 54. 58	3. 91 3. 98	6.39 6.30
0%	2-CF,	6-MeO	日本日	197. $0 \sim 199. 0$ (x \$ 1 - h)	Crafif 1 N O S	54. 47 54. 60	3. 55	
21	3, 5-CF3	6-Me0	- State	237. $0 \sim 239. 0$ (DMF- $x \neq l - h$)	CILHIFF N O 3	49. 12 49. 04	2. 95 3. 01	5. 4 5. 4 43
22	4-t-Bu.	6-Me0	## ## ##	135.0~136.0 (時間エチルーへキサン)	c ₁₁ H ₁₁ N ₁ O ₁ 3	64. 77 64. 97	8. 14 6. 31	6.57
% %	4 - t - Bu	6 -MeO	- 1876B	185. $0 \sim 188. 0$ $(\le 9 \ J - II)$	Cuhun o, s	62. 62 62. 85	5.92 5.94	6.33
***	4-CF30	6-MeO	「動権合	166. $0 \sim 168.0$ (x 9 / $-\hbar$)	CHHIF1 N	53. 09 52. 83	3.3 68 88	6. 5.88
25	4-Me0	B-Meo	日間は	209, 0 - 211, 0 (DMF-x9/-A)	CHHIN OS S	60. 29 60. 35	4. 55 55 55	7. 03
28	3. 4-MeO	6-MeO	40	アモルファス	C11H1N1 O, S	57.99 58.02	5. 21 5. 44	6. 44 6. 15

[表6]

							1 1 1			
ACTION	æ	₽.	.chtp.tes)	高 点 (で): (再結晶発現)	14 14 88	IK# O		分析者(96) 第一次政治 第一次政治	3 ≇ ∑	
2.7	3. 4-methy- lenedioxy	6-Me0	二重接合	238.0 - 241.0 (DMF-19/-n)	Clatis No S	55.55 50.50 1.20	2.E.	186	6.6	80
88	\$ - \$	8-Me0	444年	T もルファス	Cliffiff of S	57. 4	4.4. 9.55	56		24
29		4-Me0	42	$204.0 \sim 207.$ (7 the help h)	O CHHIFI NI OLS	54. 7		91	æ.e.	0 to
30	3. 4-methy- lenedioxy	4-Mec	草	134.0~137.0 C19H18N2 Og	Cliffich Og S	5.7.	4.4.	38	6.6	78
31	Œ	4-Mc0	草	95. 0 ~ 98. 0 CHHIN O, S (x \$ / - h)	ClyHigN O, S	0.0. 0.0.	55.0 5.1	50 E0	٠.٠.	33
8	4 - CF3	2-Me0	母林	197. 0 ~ 199. 0 CuHIF 1 N O.		54. 7	80 60 80 80		69.69	99
33	4-CF3	6-810	944	$ \frac{227.0 \sim 229.0}{(DMF - x / 2 / 2 - x)} C_{11} H_{11} P_{1} N_{1} O_{1} $	CuHIIP, N. O. S	54.9		ري ده دي		90
34	3. 4-methy- lenedloxy	6-810	二重格合	$\begin{bmatrix} 213, \ 0 \sim 215, \ 0 \\ (DMF - x f / - h) \end{bmatrix}$	Curun's Of S	5 9 1 9 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4.4	ເກຄາ	æ,æ,	57
60 R2	4 - CF	6-i-Pr0	報	231. 0 ~ 232. 0 CHHIF1 N 04	CHHIFT NO S	56, 89 56, 68	44	~	 00	88
36	4-CF	9 ·	444	145.0~146.0 C!!! Hit I N 0 0 (塩化メチレン)	CIBHIFT N O S	53.5	60 60 60 60 60 60	~	ტ. ი. ი.	~~~
ن	4- (Me) 1 N	6-Me0	1.00m	203.0~208.0 CHHN 90t	CHHIN O'S		*			
38	4-Me	6-Me0	二重結合	$170, 0 \sim 172, 0 c_{11}H_{11}N_{1}O_{1}$	CHHIN Of 3	MS (a	MS (m/x)	382	(BK [†] .)	
										7

* 1 H NMR (1 G = DMSO), 1 S: 2.86 (6 H, s), 3.94 (3 H, s), 4.38 (2 H, d, J = 5.9Hz), 6.69 (2 H, d, J = 8.8Hz), 7.18 (2 H, d, J = 8.8Hz), 7.28 (1 H, d, J = 7.9Hz), 7.74 (1 H, dd, J = 2.2, 7.9Hz), 7.78 (1 H, s), 7.95 (1 H, d, J = 2.2Hz), 8.59 (1 H, t, J = 5.9Hz), 12.30 (1 H, br)

実施例39

N-(4-トリフルオロメチルベンジル) -5-(2, 4-ジオキソチアソリジン-5-イル) メチルー2ーメトキシベンズアミド N-(4-トリフルオロメチルベンジル) -5-(2, 4-ジオキソチアソリジン-5-イリデン) メチルー2ーメトキシベンズアミド(500mg)をエタノール(70ml) に懸濁し、室温、 $3.0 \, \mathrm{kg/cm^2}$ に水素加圧下10%パラジウム/炭素($500 \, \mathrm{mg}$) で水素化した。反応液を濾過、濃縮し残留物をシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=50:1)で精製し、目的化合物を結晶として $403 \, \mathrm{mg}$ (80%) 得た。更にこのものを酢酸エチルから再結晶し、無色粉末晶として精製した目的化合物を得た。融点 $176.0 \sim 177.5 \, \infty$

元素分析値(%): $C_{20}H_{17}F_3N_2O_4$ Sとして

C H N

計算值 54.79 3.91 6.39

実測値 54.75 3.84 6.40

実施例40~48

実施例39と同様にして表7の化合物を得た。

[表7]

#	1.0	~-	(C) # ##	} •	1 254 ₹
₩		×	(再抽品冷災)	型 版	を と と と と と と と と と と と と と と と と と と と
40	3, 5-CP ₃	6-Me0	167. $0 \sim 169. 0$ (x \$ 1 - N)	CIHIFI NI OLS	49, 80 3, 19 5, 53 50, 00 3, 06 5, 54
41	4-Me	6-Me0	7 = 1 7 7 3	Cloffield of S	62, 48 5, 24 7, 29 62, 20 5, 23 7, 30
4.2	4-CF30	8-Me0	ナモルファス	CoHIIFI No Os S	52. 86 3. 77 6. 17 52. 68 3. 80 6. 45
4.3	4-Me0	6-MeO	アモルファス	C10H10N1 O5 S	59. 31 5. 11 6. 92 59. 24 5. 03 6. 94
44	3. 4-methy- lenedioxy	6-Me0	7 € ħ 7 7 3	CHHIN O'S	57. 33 4. 46 6. 69 57. 10 4. 38 6. 89
45	4-(Me) t N	6-Me0	アモルファス	C ₁₁ H ₁₃ N ₃ O ₄ S	60. 33 5. 68 10. 05 60. 48 5. 66 10. 13
48	4-CF ₃	6-Eto	159. $0 \sim 162. 0$ (x \(\frac{7}{2} - \hbar{h} \)	CHHIF N O'S	55. 74 4. 23 6. 19 55. 65 4. 25 6. 34
41	3, 4-methy- lenedioxy	6-510	アモルファス	chitany of s	58. 87 4. 71 6. 54 58. 59 4. 85 6. 72
48	4-CF3	6-1-Pr0	158.0~158.5 (酢酸エチルーヘキサン)	CuHuFi Na Ou S	56. 85 4. 54 6. 01 56. 70 4. 44 5. 98

実施例49

N-(4-1) フルオロメチルベンジル)-5-(2, 4-3) キソチアゾリジン-5-1 イル)メチル-2-1 ドロキシベンズアミド

N-(4-トリフルオロメチルベンジル) -5-(2,4-ジオキソチアゾリジン-5-イル) メチル-2-メトキシベンズアミド (800mg)の無水塩化メチレン(30m1) 懸濁液にアルゴン雰囲気、ドライアイス-アセトン冷却攪拌下、1.0N三臭化ホウ素-塩化メチレン溶液(2.20m1) をゆっくり滴下した。室温で6時間攪拌した後、3日間放置した。水を加え、30分間攪拌した後、減圧下濃縮した。 残留物に酢酸エチルを加え、水洗後無水硫酸ナトリウムで乾燥した。 減圧下濃縮し残留物をシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=40:1) で精製し、目的化合物を結晶として 618mg (80%) 得た。このものをエタノールー水から再結晶し、淡褐色粉末晶として精製した目的化合物を得た。融点 $146.0\sim148.0$ \sim

元素分析値(%): $C_{19}H_{15}F_3N_2O_4$ Sとして

C H N

計算值 53.77 3.56 6.60

実測値 53.92 3.88 6.49

実施例50

実施例39で得られた(\pm)-N-(4-トリフルオロメチルベンジル)<math>-5-(2, 4-ジオキソチアゾリジン-5-イル)メチル-2-メトキシベンズアミド1.00gを酢酸エチル20m1に加熱溶解し

た。冷却後、L(-) - フェネチルアミン 0.276 g を加え、一週間室温放置した。析出した結晶を濾過、酢酸エチルで洗浄後乾燥し、0.753 g の L(-) - フェネチルアミン塩を白色鱗片状晶として得た。更に酢酸エチルで再結晶を行い、二番晶 0.142 g および三番晶 0.0908 g を得た。融点 191~193 \mathbb{C} 、旋光度 $[\alpha]_{D}=-87^{\circ}$ (C=0.24, THF)

元素分析値(%): C28H28F3 N3 O4 Sとして

C H N

計算值 60.10 5.04 7.51

実測値 60.24 5.05 7.43

一番晶として得られた 0.753 g を氷冷下、1 N 塩酸 20 m l に加え、5 分間攪拌後濾過、結晶を水洗、加熱乾燥した。得られた結晶をエタノールで再結晶し、白色粉末晶として目的物 0.532 g を得た。融点 $194\sim195$ $^{\circ}$ $^{\circ}$ 旋光度 $[\alpha]_{D}=-100$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ (C=0.24, THF) 元素分析値 $(%): C_{20}H_{17}F_3$ N_2 O_4 S として

C H N

計算值 54.79 3.91 6.39

実測値 54.72 3.90 6.35

光学純度測定のため得られた結晶の一部(約1 mg)を採取、メタノール3 mlに溶解、氷冷下、ジアゾメタンーエーテル溶液 0.2mlを加え、5分間室温攪拌後、溶媒を減圧留去した。更に減圧蒸留用ポンプで1時間残留溶媒を留去した後、残渣をメタノールに溶解、液体クロマトグラフィー(カラム; キラルセルAD(ダイセル)、溶出溶媒; ヘキサン: イソプロパノール=70:30、流速; 1.0ml/min, 測定波長; $\lambda=230$ nm、保持時間; 22.3lmin)にて光学純度を測定99.2%eeであった。

実施例51

(+) - N - (4 - h + y - y - y + h + y - y - h + y - h + y +

実施例39で得られた(\pm) -N-(4-h) フルオロメチルベンジル) -5-(2,4-i) オキソチアゾリジン-5-(4) メチルー2-メトキシベンズアミド1.00gをD(+) -フェネチルアミンにて実施例50 と同様光学分割を行い、D(+) -フェネチルアミン塩として一番晶 0.742 g、二番晶 0.143 g、三番晶 0.0587 gを白色鱗片状晶として得た。融点 $191\sim193$ C、旋光度 $[\alpha]_0=87$ (C=0.24, THF)

元素分析値(%): $C_{28}H_{28}F_3N_3O_4$ Sとして

C H N

計算値 60.10 5.04 7.51

実測値 59.95 5.19 7.49

実施例50と同様一番晶 0.742 g を 1 N 塩酸で処理、エタノールで再結晶、白色粉末晶として目的物 0.510 g を得た。融点 $194 \sim 195$ \mathbb{C} 、旋光度 $[\alpha]_n = 100°$ (C=0.24, THF)

元素分析値(%): C₂₀H₁₇F₃N₂O₄Sとして

C H N

計算値 54.79 3.91 6.39

実測値 54.88 4.03 6.42

光学純度測定のため、実施例50と同様にジアゾメタンでN-メチル化後、液体クロマトグラフィー(カラム; キラルセルAD(ダイセル)、溶出溶媒: $^{1.0ml/min}$ 、測定波長; $\lambda=230nm$ 、保持時間; 30.64min)にて光学純度を測定99.2% eeであった。

試験例1

遺伝性肥満マウス (C57BL ob/ob)を用い、試験前に 尾静脈より採血して血糖値を測定した。血糖値に差がないように群 分けし、実施例36、39、46及び48の化合物を10mg/kgの用量で5日 間経口投与した。耐糖能試験は一晩絶食した後、グルコースの2g /kgを経口投与し、0分、30分及び60分の血糖値を測定した。血糖 低下率は下記式より求めた。

血糖低下率 (%) =

【(ビヒクル対照群のグルコース投与0分、18分及び8分の血菌値の触和) - 各群のグルコース投与0分、18分及び8分の血菌性の触和)】

(ピヒクル対照群のグルコース投与0分、10分及び60分の血管値の絵和)

結果を表8に示す。これらの結果より、本発明化合物は強力な血 糖低下作用を有することが示された。

[表8]

化 合物	用 量 (mg/kg)	血糖低下率 (%)
実施例36	1 0	4 3
実施例39	10	4 7
実施例46	1 0	3 7
実施例48	1 0	4 5

試験例2

遺伝性肥満マウス(C57BL ob/ob)を用い、試験前に 尾静脈より採血して血中トリグリセリド値および血中遊離脂肪酸値 を測定し、群分けした。実施例39の化合物を下記の用量で2週間経 口投与した後、血中トリグリセリド値及び血中遊離脂肪酸値を測定 した。各パラメーターの低下率は下記式より求めた。

結果を表9に示す。これらの結果より、本発明化合物は強力な脂質低下作用を有することが示された。

[表9]

化合物	用 量 (mg/kg)	血中トリグリセリド 低下率(%)	血中遊離脂肪酸 低下率(%)
実施例39	1	2 8	2 6
天肥例39	3	4 2	2 9

産業上の利用可能性

以上のように本発明にかかるNーベンジルジオキソチアゾリジルベンズアミド誘導体によれば、インスリン非依存型糖尿病におけるインスリン抵抗性を改善し、強力な血糖低下作用を有する安全性の高い薬剤が得られる。

請求の範囲

1. 一般式(1)

$$R^1$$
 R^3
 NH
(1)

「式中、 R^1 , R^2 は同一又は異なって、水素、炭素数 $1\sim4$ の低級アルキル基、炭素数 $1\sim3$ の低級アルコキシ基、炭素数 $1\sim3$ の低級ハロアルキル基、炭素数 $1\sim3$ の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 $1\sim3$ の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R^1 と R^2 が結合しメチレンジオキシ基を、 R^3 は炭素数 $1\sim3$ の低級アルコキシ基、水酸基、ハロゲン原子を、点線は実線との組み合せで二重結合又は単結合を示す〕で表されるN-ベンジルジオキソチアゾリジルベンズアミド誘導体及びその薬理学的に許容しうる塩。

- 2. 化合物がN-(4-トリフルオロメチルベンジル)-5-(2,4-ジオキソチアゾリジン-5-イル)メチル-2-メトキシベンズアミドである、請求項1記載のN-ベンジルジオキソチアゾリジルベンズアミド誘導体及びその薬理学的に許容しうる塩。
- 化合物がN-(4-トリフルオロメチルベンジル)-5-(2, 4-ジオキソチアゾリジン-5-イル)メチル-2-イソプロポ キシベンズアミドである、請求項1記載のN-ベンジルジオキソ

チアゾリジルベンズアミド誘導体及びその薬理学的に許容しうる 塩。

- 4. 化合物がN-(4-トリフルオロメチルベンジル)-5-(2,4-ジオキソチアゾリジン-5-イル)メチル-2-エトキシベンズアミドである、請求項1記載のN-ベンジルジオキソチアゾリジルベンズアミド誘導体及びその薬理学的に許容しうる塩。
- 5. 化合物がN-(4-トリフルオロメチルベンジル)-5-(2,4-ジオキソチアゾリジン-5-イル)メチル-2-フルオロベンズアミドである、請求項1記載のN-ベンジルジオキソチアゾリジルベンズアミド誘導体及びその薬理学的に許容しうる塩。

6. 一般式(2)

[式中、 R^3 は炭素数 $1\sim3$ の低級アルコキシ基、水酸基、ハロゲン原子を、 R^4 は水素、炭素数 $1\sim3$ の低級アルキル基を示す〕で表される化合物に式(3)

で表される化合物を作用させることを特徴とする一般式 (4)

[式中、R³, R⁴ は前述の通り]で表される化合物の製造法。

7. 一般式(4)

[式中、 R^3 は炭素数 $1\sim3$ の低級アルコキシ基、水酸基、ハロゲン原子を、 R^4 は水素、炭素数 $1\sim3$ の低級アルキル基を示す]で表される化合物を還元することを特徴とする一般式(5)

$$R^{4}O_{2}C$$

$$NH$$

$$(5)$$

[式中、R³, R⁴ は前述の通り]で表される化合物の製造法。

8. 一般式(6)

[式中、 R^3 は炭素数 $1\sim3$ の低級アルコキシ基、水酸基、ハロゲン原子を示し、 R^5 は炭素数 $1\sim3$ の低級アルキル基を、点線は実線との組み合せで二重結合又は単結合を示す〕で表される化合物を加水分解することを特徴とする一般式(7)

$$HO_2C$$
 S
 NH
 (7)

[式中、R³、点線は前述の通り]で表される化合物の製造法。

9. 一般式(8)

[式中、 R^3 は炭素数 $1\sim3$ の低級アルコキシ基、水酸基、ハロゲン原子を、 R^5 は炭素数 $1\sim3$ の低級アルキル基を示す〕で表され

る化合物をハロゲン化水素の存在下にジアゾニウム塩とした後に一般式(9)

$$CO_2R^6$$
 (9)

[式中、 R^6 は炭素数 $1\sim3$ の低級アルキル基を示す] で表される 化合物を作用させることを特徴とする一般式 (10)

$$R^{5}O_{2}C$$
 $CO_{2}R^{6}$ (10)

[式中、 R^3 , R^5 , R^6 は前述の通りであり、Xはハロゲン原子を示す]で表される化合物の製造法。

10. 一般式(10)

$$R^3$$

$$X$$

$$CO_2R^6$$
(10)

[式中、 R^3 は炭素数 $1\sim3$ の低級アルコキシ基、水酸基、ハロゲン原子を、 R^5 は炭素数 $1\sim3$ の低級アルキル基を、 R^6 は炭素数 $1\sim3$ の低級アルキル基を示し、X はハロゲン原子を示す] で表さ

れる化合物にチオ尿素を作用させた後、加水分解することを特徴と する一般式 (7a)

[式中、R³ は前述の通り]で表される化合物の製造法。

11. 一般式(7)

[式中、R³ は炭素数1~3の低級アルコキシ基、水酸基、ハロゲン原子を、点線は実線との組み合せで二重結合又は単結合を示す]で表される化合物に一般式(11)

$$R^1$$
 CH_2NH_2 (11)

[式中、 R^1 , R^2 は同一又は異なって、水素、炭素数 $1\sim4$ の低級アルキル基、炭素数 $1\sim3$ の低級アルコキシ基、炭素数 $1\sim3$ の

低級ハロアルキル基、炭素数 $1 \sim 3$ の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 $1 \sim 3$ の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは \mathbf{R}^1 と \mathbf{R}^2 が結合しメチレンジオキシ基を示す〕で表される化合物を作用させることを特徴とする一般式(1)

[式中、 R^1 , R^2 , R^3 、点線は前述の通り] で表されるN-ベンジルジオキソチアゾリジルベンズアミド誘導体の製造法。

12. 一般式(la)

$$R^1$$
 R^3
 NH
(1a)

[式中、 R^1 , R^2 は同一又は異なって、水素、炭素数 $1\sim 4$ の低級アルキル基、炭素数 $1\sim 3$ の低級アルコキシ基、炭素数 $1\sim 3$ の低級ハロアルキル基、炭素数 $1\sim 3$ の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 $1\sim 3$ の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R^1 と R^2 が結合しメチレンジオキシ基を、 R^3 は炭素数 $1\sim 3$ の低級アルコキ

シ基、水酸基、ハロゲン原子を示す]を還元することを特徴とする. 一般式 (1b)

[式中、 R^1 , R^2 , R^3 は前述通り] で表されるN-ベンジルジオキソチアゾリジルベンズアミド誘導体の製造法。

13. 一般式 (1c)

[式中、 R^1 , R^2 は同一又は異なって、水素、炭素数 $1\sim4$ の低級アルキル基、炭素数 $1\sim3$ の低級アルコキシ基、炭素数 $1\sim3$ の低級ハロアルコキシ基、ハロ低級ハロアルカキル基、炭素数 $1\sim3$ の低級ハロアルカキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 $1\sim3$ の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R^1 と R^2 が結合しメチレンジオキシ基を、点線は実線との組み合せで二重結合又は単結合を示す〕で表される化合物にルイス酸を作用させることを特徴とする一般式(1d)

[式中、 R^1 , R^2 、点線は前述の通り]で表されるN-ベンジルジオキソチアゾリジルベンズアミド誘導体の製造法。

14. 一般式(1)

[式中、 R^1 , R^3 は同一又は異なって、水素、炭素数1~4の低級アルキル基、炭素数1~3の低級アルコキシ基、炭素数1~3の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数1~3の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R^1 と R^2 が結合しメチレンジオキシ基を、 R^3 は炭素数1~3の低級アルコキシ基、水酸基、ハロゲン原子を、点線は実線との組み合せで二重結合又は単結合を示す〕で表されるN-ベンジルジオキソチアゾリジルベンズアミド誘導体及びその薬理学的に許容しうる塩の少なくとも1種類以上を有効成分とする血糖降下薬。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/01459

A. CLASSIFICATION OF SUBJECT MATTER Int. C1 ⁶ C07D277/34, 417/12,	A61K31/425
According to International Patent Classification (IPC) or to bo	
B. FIELDS SEARCHED	
Minimum documentation searched (classification system followed	by classification symbols)
Int. Cl ⁶ CO7D277/34, 417/12,	A61K31/425
Documentation searched other than minimum documentation to the	extent that such documents are included in the fields searched
Electronic data base consulted during the international search (name	e of data base and, where practicable, search terms used)
CAS ONLINE	
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category* Citation of document, with indication, where	
A JP, 5-255288, A (Sankyo Co October 5, 1993 (05. 10. 9 & EP, 549366, Al & US, 533	3)
A JP, 5-213913, A (Adir et C April 5, 1995 (05. 04. 95) & EP, 528734, Al & US, 526 & FR, 2680512, Al	
A JP, 1-272573, A (Pfizer In October 31, 1989 (31. 10. & EP, 332331, A & US, 5061	89)
Further documents are listed in the continuation of Box C	. See patent family annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considere to be of particular relevance 	me because or ment and the materials
"E" earlier document but published on or after the international filing dat "L" document which may throw doubts on priority claim(s) or which i cited to establish the publication date of another citation or othe	considered novel or cannot be considered to involve an inventive step when the document is taken alone
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means	"Y" document of particular relovance; the claimed investion cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"P" document published prior to the international filing date but later that the priority date claimed	"&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
August 5, 1996 (05. 08. 96)	August 13, 1996 (13. 08. 96)
Name and mailing address of the ISA/	Authorized officer
Japanese Patent Office	The Laboratory
Facsimile No.	Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)

国際出願番号 PCT/JP96/01459

			, 01403
A. 発明の	属する分野の分類(国際特許分類(IPC))		
Int.Cl* C 0	7D277/34, 417/12, A61	K31/425	٠.
B. 調査を	テット公路		
	Tったガザ 最小限資料(国際特許分類(IPC))		
MAZ C 11 > 1C.	WORKER (EDITION)		
Int. Cl ^e C O	7D277/34, 417/12, A61	K31/425	
最小限資料以外	外の資料で調査を行った分野に含まれるもの		
国際調査で使用	用した電子データベース(データベースの名称 、	一切査に使用した用語)	
CAS O			
C. 関連する	5と認められる文献		
引用文献の			関連する
カテゴリー*			請求の範囲の番号
A	JP, 5-255288, A (三共株式会社) (05.10.93)	5.10月.1993	1-14
,	&EP, 549366, A1&US, 533	8855, A	•
A	 JP, 5-213913, A (アディール :	エ コンパニー) 5 4月 1995	1-14
	(05. 04. 95)		1 14
	&EP, 528734, A1&US, 526	6582, A	
	&FR, 2680512, A1	•	
A		4 2 (1-14
A	JP, 1-272573, A (ファイザー・/ 31. 10月. 1989 (31. 10. 89)		
	&EP, 332331, A&US, 5061		
	, , , , , , , , , , , , , , , , , , , ,		
□ C欄の統き	にも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
* 引用文献の	ウカテゴリー	の日の後に公安された文献	
「A」特に関連	堅のある文献ではなく、一般的技術水準を示す	「丁」国際出願日又は優先日後に公表さ	れた文献であって
もの	Santak wat more in the santak is a santak	て出願と矛盾するものではなく、	発明の原理又は理
「ヒ」先行文版	状ではあるが、国際出願日以後に公表されたも	論の理解のために引用するもの 「X」特に関連のある文献であって、当	97 - 1 7 - 42 00
「L」優先権主	E張に疑義を提起する文献又は他の文献の発行	・A」 特に関連のめる人献くめつく、 = の新規性又は進歩性がないと考え	
	は他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、当	
	里由を付す)	上の文献との、当業者にとって自	
	ころ開示、使用、展示等に言及する文献	よって進歩性がないと考えられる	もの
「P」国際田原	日前で、かつ優先権の主張の基礎となる出額	「&」同一パテントファミリー文献	
国際調査を完了	した日	国際調査報告の発送日	
	05. 08. 96	1 3.08	3 .96
国際調査機関の	ク名称及びあて先	特許庁審査官(権限のある職員)	4C 9283
	名が及びめて元 日特許庁(ISA/JP)	岡部 義恵 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7 3 2 8 3
窡	B便番号100	65	U
東京都	3千代田区霞が関三丁目 4番 3 号	電話番号 03-3581-1101	内線 3453

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.