Stage M2 : les liens entre les inégalités et la croissance

Clément Henin

10 mai 2016

Publication OCDE

ÉQUATION EMPIRIQUE

$$lny_{c,t} - lny_{c,t-1} = \alpha lny_{c,t-1} + \beta_1 Etudes_{c,t-1} + \beta_2 Invest_{c,t-1} + \gamma Gini_{c,t-1} + \mu_c + \mu_t + \epsilon_{c,t}$$
 (1)

Les coefficients sont estimés avec une méthode des moments généralisés « système ».

Le jeu de données utilisé contient moins de 130 observations.

RÉSULTATS

Table 2.1. The negative impact of inequality on growth in OECD countries

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Net inequality (t-1)	-0.775**	-0.799**	-0.809*	-0.995***		-1.285**	-1.213**	
	(0.318)	(0.374)	(0.431)	(0.350)		(0.503)	(0.462)	
Gross inequality (t-1)					-0.583	0.172		
					(1.031)	(0.612)		
(Gross - Net) ineq. (t-1)							0.081	-0.278
							(0.686)	(1.325)
y (t-1)	-0.140**	-0.089	-0.069	-0.081	0.047	-0.073	-0.086	0.133
	(0.052)	(0.060)	(0.073)	(0.122)	(0.181)	(0.121)	(0.132)	(0.227)
Human capital (t-1)		-0.002	-0.005	0.004	0.009	-0.005	-0.007	0.014
		(0.013)	(0.013)	(0.018)	(0.022)	(0.013)	(0.012)	(0.020)
Investment (t-1)		0.216	0.521	0.187	1.606	-0.217	-0.251	2.423
		(0.379)	(0.634)	(1.393)	(1.299)	(1.359)	(1.486)	(2.028)
M2 (p-v al)	0.710	0.536	0.605	0.774	0.903	0.594	0.656	0.940
Hansen statistic (p-val)	0.991	0.736	0.535	0.375	0.602	0.378	0.356	0.528
Observ ations	128	128	128	128	125	125	125	125
Number of countries	31	31	31	31	30	30	30	30
Number of instruments	27	31	26	16	16	18	18	16

Note: The dependent variable is $\Delta \ln v_i$ where v_i is per capita GDP, and [t-(t-1)] is a five-year period. Inequality is measured by Gini indexes. Robust, two-step System GMM estimator with Windmeiger-corrected standard errors. All regressions include country and period dummies. M2 are the p-values of the tests for second order serial correlation in the differenced error terms; Hansen denotes the p-value on the Hansen test of over identifying restrictions. ***, **, * denote significance at the 1%, 5%, 10% levels, respectively.

CRITIQUE DE FORBES (2000)

Il n'y a pas assez de points pour se permettre un dummy par pays et par période.

FIGURE: OLS avec des dummies

CRITIQUE DE FORBES (2000)

Si on fait cette même régression en deux étapes on réalise quelle part de la variance est expliquée.

COMPLEXIFICATION

On commence par discrétiser les variables :

QCA MAISON

Impact des inégalités sur la croissance non pas en moyenne pour tous les pays mais plus spécifiquement.

La croissance vaut 1 lorsque le pays.periode est dans le quart le plus fort.

		0	1	all
gini	gdp			
0	mean	0.47222***	0.11956***	0.21875
	size	36	92	128
1	mean	0.39130***	0.14285*	0.31343
	size	92	42	134
all	mean	0.41406***	0.12686***	0.267176
	size	128	134	262

L'impact positif global du Gini vient simplement de la distribution gini-gdp!

QCA MAISON

		0	1	2	all
gini	gdp				
0	mean	0.63636***	0.175	0.10606***	0.21875
	size	22	40	66	128
1	mean	0.42424***	0.27906	0.08**	0.31343
	size	66	43	25	134
all	mean	0.47727***	0.22891	0.09890***	0.267176
	size	88	83	91	262

ARBRE DE DÉCISION

Dans la lignée de la QCA, on a cherché une méthode permettant de trouver automatique des « poches prévisibles » *i.e.* des groupes pays.periode partageant les même caractéristiques et ayant une croissance moyenne significativement éloignée la moyenne globale. À chaque étape, l'algorithme de régression trouve une division de l'espace des phases (variable, valeur) qui maxime « l'homogénéité de chacun des groupes créés ».

$$R_1(j,s) = \{X/X_j < s\} \text{ and } R_2(j,s) = \{X/X_j \ge s\}$$

Avec (j, s) solution de :

$$\min_{j,s} \left[\min_{c_1} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2 \right]$$

EXEMPLE D'ARBRE

Arbre

VISUALISATION POUR UN ARBRE À 2 VARIABLES

ENCORE À FAIRE

Découper l'espace des phases en sous-groupe de pays partageant les mêmes caractéristiques et trouver l'influence du gini sur la croissance dans chacun de ces sous-groupes.

Premier exemple

Qui donne

- ▶ Rechercher des différences entre groupes avec un découpage plus systématique (QCA maison avec différence de croissance en fonction du Gini à la place de la croissance)
- améliorer la méthode pour la rendre plus robuste

QUESTIONS

- ▶ corrélation croissance-PIB positive pour les deux variables à t et négative pour croissance à t et PIB à t 1. Est-ce que cela ne vient pas simplement de la définition de la croissance $(PIB_t PIB_{t-1})$? Si oui, est-ce un problème? Que faire alors? (l'OCDE prend comme croissance la première croissance de la période de années pour éviter cette corrélation)
- Sur quelles autres variables pourrait-on utiliser notre méthode de QCA maison?