

Fig. 1

Fig. 2

1 TTGCCCTCAA CAAAGATGGT CTTTATGGTA CAGGTTCCCT AGCAGTCTGG
51 ATTCCGGTTG TAGTTTAGT TATTCTTTT TTTTTTTTT TAAACGGTAC
101 GTGGTCGCAG ACGAAGAAAT GGAAGCCAGA GACAAGCAGG TACTCCGCTC
151 CCTGCGTCTG GAGCTGGGTG CCGAGGTACT GGTGGAAGGA CTGGTTCTTC
201 AGTACCTTTA CCAGGAAGGA ATTTTGACAG AAAACCACAT TCAAGAAATC
251 AAAGCTCAAA CCACAGGCCT CCGGAAGACA ATGCTGTTGC TGGACATCCT
301 GCCTTCCAGG GGCCCCAAAG CTTTGACAC CTTCTCGAT TCCCTCCAGG
351 AATTTCCCTG GGTAAGAgAG AAGCTGGAGA AGGCGAGAGA GGAAGTCTCA
401 GCCGAGCTGC CTACAGGTGA CTGGATGGCC GGAATCCCCT CACACATCCT
451 CAGCAGCTCG CCATCAGACC AGCAGATTAA CCAGCTGGCT CAGAGGCTAG
501 GCCCGGAGTG GGAGCCCGTG GTCCTGTCTC TGGGACTGTC CCAGACCGAC
551 ATCTACCGCT GCAAGGCCAA CCATCCCCAC AACGTGCATT CGCAGGTGGT
601 GGAGGCCTTT GTCCGCTGGC GCCAGCGTTT TGGGAAGCAG GCCACCTTCC
651 TAAGCTTACA CAAGGGCCTC CAGGCAATGG AGGCTGATCC CTCCCTGCTC
701 CAGCACATGC tGGAGTGACC TGACCCCCCCC CCGCGCCCCC CCCCCACTTG
751 CTGTGGGGGT GGTGGGGCGT GGGTTCCCAA GTCACACTGG CTGAACCGGA
801 CTTTTCTCAG CAGGTGGCTT TGTTCTGGC TTTTCAGTGA TCTGTTACG
851 GAAAGAGATC GTCCACCACT CACTCAACCA TCGATTGGCT TTAATTGCTT
901 GAAGACTGCG CTGTTGTAAC TATGGTTGG AACTTTGTGG CTGGCCTTTA
951 ACAGGAGGCC AGAAAAAAACA CAACACCCAC CCTACCCAAC CCCCCAAAAAA
1001 ATCATGCTAC AGCATGAAAT GCAGGTGTCC TGCATAACAAG GCAGCTACAC
1051 TTGTGTTGCC TGGAGACTGG ATTGTGCATT TAGCTCTTCA TAATGGTGAT
1101 GATAATAAAA AAGCAAATTG TGATATAGAA TGTGCCTCTT TCAATGAGAG
1151 AGTATTATAT CACACACACA CACACACACA CACACACACA TACACACACA
1201 CACACCAATC TTCTGTTGCA TAGACGGAGG GTGTAAAAAT ATGGGAGTGG
1251 AGCAAGATTG ATAGCAGTCA TGTGACGACG GAGATAAATA ACTCAGGCAG
1301 GATGTATAGA TTAAGCATGA GACACCGAAG CTCCCTGCAG AGGCCAGGG
1351 GAGAACGGAA GACCTTCATC TTAACAAATT GTATGAGGAG TCTCTGTCCA
1401 TTTGTTAAAG GCATTGGATC AGAGACAAGA GGGCTCAGTG TTTCTCTTGA
1451 GGCCTGAATG GCTGAAGGCG GTGAGTTCCC GAGGGGCGTC ATGGGTTGTC
1501 CAGCCTTCA TTAACTGCAC ATAGTGTAG CCAGACAGGT GTACGTGTTT
1551 GTCATCCCAT CTAAGAGACT GAAGCAGGAG GATCACCTGT ACATGACTGC
1601 TTCTTCAAC ATTTTAAAT GTGTAACCTC TATTAAATTG TCTCAGTGCA
1651 AAAAAAAAAA AAAAAAAA

Fig. 3A

MEARDKQVLRSI.RLELGAEVLVEGLVLQQLYQEGILTENHIQEIKAQTTG
LRKTMLLLDILPSRGPKAFDTFLDSLQEFPWVREKLEKAREEVSAELPTG
DWMAGIPSHILSSSPSDQQINQLAQRLLGPWEPEVVLSSLGLSQTDIYRCKA
NHPHNVHSQVVEAFVWRQRFGKQATFLSLHKGQLAMEADPSLLQHMLE"

Fig. 3B

1 GAAGAAATGG AAGCCAGAGA CAAGCAGGTA CTCCGCTCCC TGCCTCTGGA
 (1) → (2) →
 51 GCTGGGTGCC GAGGTACTGG TGGAAGGACT GGTTCTTCAG TACCTTACC
 101 AGGAAGGAAT TTTGACAGAA AACCACATTC AAGAAATCAA AGCTCAAACC
 ← ←
 151 ACAGGCCCTCC GGAAGACAAT GCTGTTGCTG GACATCCTGC CTTCCAGGGG
 (3)
 201 CCCCAAAGCT TTTGACACCT TCCTCGATTC CCTCCAGGAA TTTCCCTGGG
 ← ← (4)
 251 TAAGAGAGAA GCTGGAGAAG GCGAGAGAGG AAGTCTCAGC CGAGCTGCCT
 301 ACAG

Fig. 4

```
1   ggaaatggag gctagagaca agcaagtgct tcgctccctt cgccctggagt  
51  tgggtgcaga ggtactggtg gaggggctag tcctccagta tctttatcag  
101 gaaggggtct tgacagaaaag ccacgttcaa gaaattaaag ctcagccac  
151 aggcctccgg
```

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig 9a

Fig 9b

Fig. 10

Fig. 11

A: *hg/hg* mice

B: +/+ mice

Fig. 12

Deletion breakpoint in
intron 2 of *Socs2/Cish2*

Deletion breakpoint
excluding *Vespr*

Socs2/Cish2

Raidd/Cradd

Vespr

Fig. 13

Fig. 14