Prep Course Mathematics **Elementary functions**

Sonja Otten, Christian Seifert (Deutsch), Jens-Peter M. Zemke (English)

Content

- 1. Classes of elementary functions
 - Affine functions
 - Quadratic functions
 - Polynomial functions
 - Rational functions
 - Power functions, root functions
 - Exponential functions
 - ► Logarithm functions
 - Trigonometric functions
- 2. Transformation of functions
 - Translations
 - Scaling
 - Reflections
 - Comment
 - Compositions

Affine functions

- ... functions f acting as f(x) := ax + b for $x \in \mathbb{R}$, where $a, b \in \mathbb{R}$
 - ightharpoonup a slope, b intercept

Example

We determine the term describing the affine function f:

We read off:

$$b = \frac{5}{2}$$

$$a = \frac{0 - \frac{5}{2}}{\frac{5}{2} - 0} = -1.$$

Hence
$$f(x) = -x + \frac{5}{2}$$
.

Draw a sketch of f and g given by $f(x):=\frac{1}{2}x+1$ and g(x):=-2x+4 for $x\in\mathbb{R}.$

Draw a sketch of f and g given by $f(x):=\frac{1}{2}x+1$ and g(x):=-2x+4 for $x\in\mathbb{R}.$

Quadratic functions

... functions f acting as $f(x) := ax^2 + bx + c$ for $x \in \mathbb{R}$, where $a, b, c \in \mathbb{R}$ and $a \neq 0$

- ightharpoonup a > 0: opening to the top
- ightharpoonup a < 0: opening to the bottom

Vertex form via completing the square:

$$f(x) = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + c - a\frac{b^2}{4a^2}.$$

Vertex
$$\left(-\frac{b}{2a}, c - \frac{b^2}{4a}\right)$$
.

Example

We calculate the vertex form of f given by $f(x) := -x^2 + 4x - 1$ for $x \in \mathbb{R}$.

2 possible methods:

- ightharpoonup read of the vertex: (2,3).
- ightharpoonup completing the square: $f(x)=-(x-2)^2+3$, hence vertex (2,3).

Sketch the function f given by $f(x) := \frac{1}{2}x^2 + x - 1$ for $x \in \mathbb{R}$.

Sketch the function f given by $f(x) := \frac{1}{2}x^2 + x - 1$ for $x \in \mathbb{R}$.

Polynomial functions

... functions f acting as $f(x) := a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$ for $x \in \mathbb{R}$, where $a_0, \ldots, a_n \in \mathbb{R}$ and $a_n \neq 0$

- f given by $f(x) := x^3 3x^2$ for $x \in \mathbb{R}$.
- f given by $f(x) := x^7 5x^6 + 3x^3 2x^2 x + 3$ for $x \in \mathbb{R}$.

Rational functions

... functions f acting as $f(x):=\frac{p(x)}{q(x)}$ for $x\in\mathbb{R}$ such that $q(x)\neq 0$, where p,q are polynomial functions.

- ▶ f given by $f(x) := \frac{x^2+1}{(x+2)(x-1)(x-4)}$ for $x \in \mathbb{R}$, $x \neq -2, 1, 4$.

Power functions, root functions

... functions f acting as $f(x):=x^{m/n}=\sqrt[n]{x^m}=\sqrt[n]{x^m}$, where $m\in\mathbb{Z}$ and $n\in\mathbb{N}$ domain depends on $\frac{m}{n}$

Power functions, root functions

... functions f acting as $f(x) := x^{m/n} = \sqrt[n]{x^m} = \sqrt[n]{x}^m$, where $m \in \mathbb{Z}$ and $n \in \mathbb{N}$

 \triangle domain depends on $\frac{m}{n}$

For $k := \frac{m}{n}$ integer:

 $k \geqslant 0$: f defined on \mathbb{R}

ightharpoonup k < 0: f defined for $x \in \mathbb{R}$, $x \neq 0$

Power functions, root functions

... functions
$$f$$
 acting as $f(x):=x^{m/n}=\sqrt[n]{x^m}=\sqrt[n]{x^m}$, where $m\in\mathbb{Z}$ and $n\in\mathbb{N}$ domain depends on $\frac{m}{n}$

For $k := \frac{m}{n}$ integer:

$$k \ge 0$$
: f defined on \mathbb{R}

ightharpoonup k < 0: f defined for $x \in \mathbb{R}$, $x \neq 0$

For $q := \frac{m}{n}$ non-integer: f root function

$$ightharpoonup q > 0$$
: f defined for $x \in \mathbb{R}$, $x \geqslant 0$

ightharpoonup q < 0: f defined for $x \in \mathbb{R}$, x > 0

Exponential functions

... functions f acting as $f(x) := a^x$ for $x \in \mathbb{R}$, where a > 0.

- ightharpoonup 0 < a < 1: f decreasing
- ightharpoonup a = 1: f constant
- ightharpoonup a > 1: f increasing

Exponential functions

... functions f acting as $f(x) := a^x$ for $x \in \mathbb{R}$, where a > 0.

- ightharpoonup 0 < a < 1: f decreasing
- ightharpoonup a = 1: f constant
- ightharpoonup a > 1: f increasing

Important special case: $a=\mathrm{e}\approx 2.7182818285$, Euler number. Then $f(x)=\mathrm{e}^x=\exp(x)$. Every exponential function of this form: $a^x=\mathrm{e}^{x\ln a}$.

Growth of bacteria: doubling every 20 minutes, i.e., eightfold increase per hour. With N_0 bacteria at time t=0: amount of bacteria at time t in hours:

$$N(t) = N_0 \cdot 8^t.$$

Growth of bacteria: doubling every 20 minutes, i.e., eightfold increase per hour. With N_0 bacteria at time t=0: amount of bacteria at time t in hours:

$$N(t) = N_0 \cdot 8^t.$$

How long does it take to have 100 times as many bacteria?

Growth of bacteria: doubling every 20 minutes, i.e., eightfold increase per hour. With N_0 bacteria at time t=0: amount of bacteria at time t in hours:

$$N(t) = N_0 \cdot 8^t.$$

How long does it take to have 100 times as many bacteria?

$$N(t) = N_0 \cdot 8^t \stackrel{!}{=} 100N_0,$$

i.e.,
$$8^t = 100$$
. Hence

$$t = \frac{\ln 100}{\ln 8} \approx 2,2146$$
 hours.

Logarithm functions

... functions f acting as $f(x) := \log_a(x)$ for x > 0, where a > 0.

Logarithm functions

... functions f acting as $f(x) := \log_a(x)$ for x > 0, where a > 0.

For a = e: $f(x) = \log_e(x) = \ln(x)$, natural logarithm.

Every logarithm function of this form: $\log_a(x) = \frac{\ln x}{\ln a}$.

Sketch the functions f,g,h given by $f(x):=\mathrm{e}^x$ and g(x):=x for $x\in\mathbb{R}$, and $h(x):=\ln(x)$ for x>0.

Sketch the functions f,g,h given by $f(x):=\mathrm{e}^x$ and g(x):=x for $x\in\mathbb{R}$, and $h(x):=\ln(x)$ for x>0.

Trigonometric functions

 \dots functions f based on the sine function \sin and the cosine function \cos .

$$\cos(x) = \frac{\text{Adjacent}}{\text{Hypotenuse}},$$

$$\sin(x) = \frac{\text{Opposite}}{\text{Hypotenuse}},$$

$$\tan(x) = \frac{\sin(x)}{\cos(x)} = \frac{\text{Opposite}}{\text{Adjacent}}$$

Trigonometric functions

 \dots functions f based on the sine function \sin and the cosine function \cos .

Translations

... vertical shift:

For function $f: D \to \mathbb{R}$ and $c \in \mathbb{R}$: $g: D \to \mathbb{R}$ with g(x) := f(x) + c for $x \in D$.

- ightharpoonup c > 0: shift upwards
- ightharpoonup c = 0: no shift
- ightharpoonup c < 0: shift downwards

Translations

... vertical shift:

For function $f: D \to \mathbb{R}$ and $c \in \mathbb{R}$: $g: D \to \mathbb{R}$ with g(x) := f(x) + c for $x \in D$.

- ightharpoonup c > 0: shift upwards
- ightharpoonup c = 0: no shift
- ightharpoonup c < 0: shift downwards

... horizontal shift:

For function $f \colon D \to \mathbb{R}$ and $a \in \mathbb{R}$: $g \colon \{x \in \mathbb{R}; \ x + a \in D\} \to \mathbb{R}$ with g(x) := f(x + a) for $x \in \mathbb{R}$ such that $x + a \in D$.

- ightharpoonup a > 0: shift to the left
- ightharpoonup a = 0: no shift
- ightharpoonup a < 0: shift to the right

Starting from a sketch, determine $a \in \mathbb{R}$ such that $\cos(x) = \sin(x+a)$ for all $x \in \mathbb{R}$.

Starting from a sketch, determine $a \in \mathbb{R}$ such that $\cos(x) = \sin(x+a)$ for all $x \in \mathbb{R}$.

We read off that \cos is a left shift of \sin by $\frac{\pi}{2}$, so $a = \frac{\pi}{2}$.

Scaling

in vertical direction:

For function $f: D \to \mathbb{R}$ and a > 0: $g: D \to \mathbb{R}$ with g(x) := af(x) for $x \in D$.

- ▶ 0 < a < 1: shrinkage▶ a = 1: no stretching/shrinkage
 - ightharpoonup a > 1: stretching

Scaling

in vertical direction:

For function $f: D \to \mathbb{R}$ and a > 0: $g: D \to \mathbb{R}$ with g(x) := af(x) for $x \in D$.

- 0 < a < 1: shrinkage
 a = 1: no stretching/shrinkage
 - ightharpoonup a > 1: stretching

in horizontal direction:

For function $f: D \to \mathbb{R}$ and a > 0: $g: \{x \in \mathbb{R}; ax \in D\} \to \mathbb{R}$ with g(x) := f(ax) for $x \in \mathbb{R}$ such that $ax \in D$.

- ightharpoonup 0 < a < 1: stretching
 - ightharpoonup a = 1: no stretching/shrinkage
 - ightharpoonup a > 1: shrinkage

For the given function f with $f(x):=x^2$ for $x\in[-2,2]$ determine the action of the function g given by g(x):=f(2x) and make a sketch.

For the given function f with $f(x):=x^2$ for $x\in[-2,2]$ determine the action of the function g given by g(x):=f(2x) and make a sketch.

We calculate

$$g(x) = f(2x) = (2x)^2 = 4x^2$$

for $x \in [-1, 1]$.

For the given function f with $f(x):=x^2$ for $x\in[-2,2]$ determine the action of the function g given by g(x):=f(2x) and make a sketch.

We calculate

$$g(x) = f(2x) = (2x)^2 = 4x^2$$

for $x \in [-1, 1]$.

Reflections

... over the horizontal axis

For function $f \colon D \to \mathbb{R}$:

 $g \colon D \to \mathbb{R} \text{ with } g(x) := -f(x) \text{ for } x \in D.$

Reflections

... over the horizontal axis

For function $f : D \to \mathbb{R}$:

 $g \colon D \to \mathbb{R}$ with g(x) := -f(x) for $x \in D$.

... over the vertical axis

For function $f : D \to \mathbb{R}$:

 $g\colon \{x\in\mathbb{R};\ -x\in D\}\to\mathbb{R} \text{ with } g(x):=f(-x) \text{ for } x\in\mathbb{R} \text{ such that } -x\in D.$

Reflections

... over the horizontal axis

For function $f: D \to \mathbb{R}$:

 $g \colon D \to \mathbb{R} \text{ with } g(x) := -f(x) \text{ for } x \in D.$

... over the vertical axis

For function $f : D \to \mathbb{R}$:

 $g\colon \{x\in\mathbb{R}; \ -x\in D\}\to\mathbb{R} \text{ with } g(x):=f(-x) \text{ for } x\in\mathbb{R} \text{ such that } -x\in D.$

... over the origin

For function $f: D \to \mathbb{R}$:

 $g \colon \{x \in \mathbb{R}; \ -x \in D\} \to \mathbb{R} \text{ with } g(x) := -f(-x) \text{ for } x \in \mathbb{R} \text{ such that } -x \in D.$

For functions $f\colon \widetilde{D}\to\mathbb{R}$ and $g\colon D\to\widetilde{D}$: $f(g)=f\circ g\colon D\to\mathbb{R},\ (f\circ g)(x):=f(g(x))$ for $x\in D$, composition of f and g.

For functions $f\colon \widetilde{D}\to\mathbb{R}$ and $g\colon D\to\widetilde{D}\colon f(g)=f\circ g\colon D\to\mathbb{R}$, $(f\circ g)(x):=f(g(x))$ for $x\in D$, composition of f and g.

- ightharpoonup vertical shift of g: f(x) := x + c, then f(g(x)) = g(x) + c
- ▶ horizontal shift of f: g(x) := x + a, then f(g(x)) = f(x + a)

```
For functions f\colon \widetilde{D}\to\mathbb{R} and g\colon D\to\widetilde{D}\colon f(g)=f\circ g\colon D\to\mathbb{R}, (f\circ g)(x):=f(g(x)) for x\in D, composition of f and g.
```

- ightharpoonup vertical shift of g: f(x) := x + c, then f(g(x)) = g(x) + c
- $lackbox{ horizontal shift of } f\colon g(x):=x+a \text{, then } f(g(x))=f(x+a)$
- lacktriangledown stretching/shrinkage in vertical direction of g: f(x)=ax, then f(g(x))=ag(x)
- lacktriangledown stretching/shrinkage in horizontal direction of f: g(x)=ax, then f(g(x))=f(ax)

```
For functions f\colon \widetilde{D}\to\mathbb{R} and g\colon D\to\widetilde{D}\colon f(g)=f\circ g\colon D\to\mathbb{R}, (f\circ g)(x):=f(g(x)) for x\in D, composition of f and g.
```

- ightharpoonup vertical shift of g: f(x) := x + c, then f(g(x)) = g(x) + c
- $lackbox{ horizontal shift of } f\colon g(x):=x+a \text{, then } f(g(x))=f(x+a)$
- lacktriangledown stretching/shrinkage in vertical direction of g: f(x)=ax, then f(g(x))=ag(x)
- lacktriangledown stretching/shrinkage in horizontal direction of $f\colon g(x)=ax$, then f(g(x))=f(ax)
- reflection over the horizontal axis of g: f(x) = -x, then f(g(x)) = -f(x)
- reflection over the vertical axis of f: g(x) = -x, then f(g(x)) = f(-x)
- lacktriangledown reflection over the origin of $f\colon g(x)=-x$, then g(f(g(x)))=-f(-x)

For the function f given by $f(x) := \sin(x)$ for $x \in \mathbb{R}$ draw a sketch of the function g given by $g(x) := 2f\left(\frac{1}{2}x + \frac{\pi}{2}\right) + 1$ for $x \in \mathbb{R}$.

For the function f given by $f(x) := \sin(x)$ for $x \in \mathbb{R}$ draw a sketch of the function g given by $g(x) := 2f\left(\frac{1}{2}x + \frac{\pi}{2}\right) + 1$ for $x \in \mathbb{R}$.

