What is claimed is:

5

10

1. A hair dye composition comprising a dissociative direct dye represented by the following formula (1):

wherein, R^1 , R^2 , R^3 and R^4 each independently represents a hydrogen atom or a substituent, X represents a hydroxyl group or $-NHSO_2R^5$, in which R^5 represents an alkyl, aryl or heterocyclic group, A represents a group represented by any one of the below-described formulas (Cp-1) through (Cp-12) which group may have one or more substituents:

$$(Cp-1) (Cp-2) (Cp-3) (Cp-4)$$

$$R^{11} R^{12} R^{14} R^{14} N_{N} O (Cp-8)$$

$$(Cp-5) (Cp-6) (Cp-7) (Cp-8)$$

(Cp-5) (Cp-6) (Cp-7) (Cp-8)
$$R^{19} \qquad R^{21} \qquad R^{22} \qquad R^{25} \qquad R^{26} \qquad R^{27} \qquad R^{28}$$

$$R^{20} \qquad R^{23} \qquad R^{24} \qquad R^{26} \qquad R^{29} \qquad$$

$$(Cp-9)$$
 $(Cp-10)$ $(Cp-11)$ $(Cp-12)$ $(R^{39})_u$ $(R^{31}$ R^{30} R^{32} R^{34} R^{35} R^{35} R^{38} R^{38}

(in formulas (Cp-1) through (Cp-12), * is a position

bonding to the nitrogen atom in formula (1),

5

10

15

20

25

in formula (Cp-1), R^{11} represents a cyano, acyl, aryl or heterocyclic group, or $-C(R^{101})=C(R^{102})-R^{103}$, in which R^{101} , R^{102} and R^{103} each independently represents a hydrogen atom or a substituent with the proviso that at least one of R^{102} and R^{103} is an electron attractive group having a Hammett σp value of 0.1 or greater,

in formula (Cp-2), R^{12} represents a cyano, alkoxycarbonyl, carbamoyl, aryl or heterocyclic group, and R^{13} and R^{14} each independently represents a hydrogen atom or an alkyl, aryl or heterocyclic group,

in formula (Cp-3), R¹⁵ represents a hydrogen atom or an alkyl, aryl, heterocyclic, amino, alkylamino, arylamino, heterocyclic amino, alkoxy, acylamino, alkoxycarbonylamino, ureido, alkoxycarbonyl, carbamoyl or cyano group, and R¹⁶ represents a hydrogen atom or an alkyl, aryl or heterocyclic group,

in formula (Cp-4), R^{17} and R^{18} each independently represents a hydrogen atom or an alkyl, aryl or heterocyclic group,

in formula (Cp-5), R^{19} and R^{20} each independently represents a hydrogen atom or an alkyl, aryl or heterocyclic group,

in formula (Cp-6), R^{21} and R^{22} each independently represents a cyano, carbamoyl, alkoxycarbonyl,

alkylsulfonyl or arylsulfonyl group, and R^{23} represents a hydrogen atom or an alkyl, aryl or heterocyclic group,

in formula (Cp-7), R^{24} , R^{25} and R^{26} each independently represents a hydrogen atom or a substituent,

in formula (Cp-8), R^{27} and R^{28} each independently represents a cyano, carbamoyl, alkoxycarbonyl, alkylsulfonyl or arylsulfonyl group, R^{29} represents a substituent, and s stands for an integer of from 0 to 6,

5

10

15

20

25

in formula (Cp-9), R^{30} and R^{31} each independently represents a hydrogen atom or a substituent, and Z^1 represents an atomic group necessary for the formation of a 6-membered ring together with N-C=N,

in formula (Cp-10), R^{32} represents a hydrogen atom or a substituent, and Z^2 represents an atomic group necessary for the formation of a 6-membered ring together with N-C=N,

in formula (Cp-11), R^{33} , R^{34} and R^{35} each independently represents a hydrogen atom or a substituent, Z^3 represents a nitrogen atom or $-C(R^{36})=$, in which R^{36} represents a hydrogen atom or a substituent, with the proviso that when Z^3 represents $-C(R^{36})=$, R^{34} and R^{36} may be coupled to form a 5-membered or 6-membered ring, and

in formula (Cp-12), R^{37} and R^{38} each independently represents a cyano, carbamoyl, alkoxycarbonyl, alkylsulfonyl or arylsulfonyl group, R^{39} represents a hydrogen atom or a substituent, u stands for an integer of

from 0 to 4 and Z^4 represents $-SO_2-$ or $-SO_-)$, or salt thereof.

5

10

15

20

25

- 2. A hair dye composition of Claim 1, wherein R¹ and R² of the dissociative direct dye (1) are each a hydrogen or halogen atom, or an alkyl, cyano, acylamino, ureido, alkoxycarbonylamino, aryloxycarbonylamino, sulfamoylamino, alkylsulfonylamino, arylsulfonylamino, alkoxycarbonyl, sulfamoyl or carbamoyl group which may be substituted.
- 3. A hair dye composition of Claim 1, wherein R^3 and R^4 of the dissociative direct dye (1) are each a hydrogen atom, a halogen atom, or an alkyl or acylamino group which may be substituted.
- 4. A hair dye composition of Claim 1, wherein X of the dissociative direct dye (1) is a hydroxyl group or $NHSO_2R^5$, and R^5 is an alkyl group which may be substituted.
- 5. A hair dye composition of Claim 1, wherein A of the dissociative direct dye (1) is a group, which may have one or more substituents, selected from the groups represented by:

formula (Cp-1) in which R^{11} is a cyano group, acyl group, heterocyclic group or group $-C(R^{101})=C(R^{102})-R^{103}$,

formula (Cp-2) in which R^{12} is a cyano group, aryl group or heterocyclic group and R^{13} and R^{14} are each a hydrogen atom, alkyl group or aryl group, with the proviso that at least one of R^{13} and R^{14} represents a hydrogen atom,

formula (Cp-3) in which R¹⁵ is an alkyl, amino, alkylamino, arylamino, heterocyclic amino, alkoxy, acylamino, alkoxycarbonylamino, ureido, alkoxycarbonyl, carbamoyl or cyano group, and R¹⁶ is an aryl or heterocyclic group,

5

10

15

20

25

formula (Cp-4) in which R^{17} and R^{18} are each an alkyl or aryl group,

formula (Cp-5) in which R^{19} and R^{20} are each an aryl or heterocyclic group,

formula (Cp-6) in which R^{21} and R^{22} are each a cyano, carbamoyl or alkoxycarbonyl and R^{23} is a hydrogen atom or an alkyl group,

formula (Cp-7) in which R^{24} is a hydrogen atom or an aryl, acylamino, alkylsulfonylamino or arylsulfonylamino group and R^{25} and R^{26} are each a hydrogen atom or an aryl, alkoxycarbonyl, carbamoyl, alkylsulfonyl, arylsulfonyl or cyano group,

formula (Cp-8) in which R^{27} and R^{28} are each a cyano, carbamoyl or alkoxycarbonyl group, R^{29} is a halogen atom or an acylamino, alkylsulfonylamino, arylsulfonylamino, alkoxycarbonyl, carbamoyl, alkylsulfonyl or arylsulfonyl group, and s is an integer of from 0 to 2,

formula (Cp-9) in which R^{30} and R^{31} are each a hydrogen atom or an alkyl, aryl, heterocyclic, alkoxycarbonyl, carbamoyl, alkylsulfonyl, arylsulfonyl or

cyano group and Z^1 is a group capable of forming the following ring systems:

5

10

15

20

in which, R¹¹¹ represents a hydrogen atom or an alkoxy, amino, alkylamino, arylamino, heterocyclic amino, acylamino, ureido, alkoxycarbonylamino, aryloxycarbonylamino, sulfamoylamino, alkylsulfonylamino, arylsulfonylamino, alkylthio, arylthio or heterocyclic thio group, R¹¹² represents a hydrogen or halogen atom, or an alkyl, acyl, carbamoyl or alkoxycarbonyl group, R¹¹³ and R¹¹⁴ each independently represents a hydrogen atom or an alkyl group, R¹¹⁵ represents a hydrogen atom or an alkyl group, and R¹¹⁶ represents a hydrogen atom or an alkyl group, and R¹¹⁶ represents a hydrogen atom or an alkyl, aryl, alkoxy, aryloxy, amino, alkylamino, arylamino, heterocyclic amino, acylamino, ureido, alkoxycarbonylamino, alkylsulfonylamino, arylsulfonylamino, alkylthio, or arylthio group,

formula (Cp-10) in which R^{32} is a hydrogen atom or an alkyl, aryl, heterocyclic, alkoxycarbonyl, carbamoyl, alkylsulfonyl, arylsulfonyl or cyano group, and Z^2 is a group capable of forming the following ring systems:

in which, R^{111} to R^{116} have the same meanings as described above,

5

10

15

20

formula (Cp-11) in which Z^3 is $-C(R^{36})=$, R^{36} representing a hydrogen atom or an acylamino group, R^{33} and R^{34} are each a hydrogen atom, a halogen atom, an alkyl group or acylamino group, and R^{35} is a hydrogen atom or an alkyl group; or in which Z^3 is $-C(R^{36})=$, R^{34} and R^{36} are coupled together to form a benzene ring which may be substituted with a halogen atom or an amino, alkylamino, arylamino, heterocyclic amino, acylamino, ureido, alkoxycarbonylamino, alkylsulfonylamino or arylsulfonylamino group, R^{33} represents an acylamino, alkylsulfonylamino, carbamoyl or sulfamoyl group, and R^{35} represents a hydrogen atom, and

formula (Cp-12) in which R^{37} and R^{38} are a cyano or alkoxycarbonyl group, R^{39} is a halogen atom or an acylamino, alkylsulfonylamino, arylsulfonylamino, alkoxycarbonyl, carbamoyl, alkylsulfonyl or arylsulfonyl group, u is an integer of from 0 to 2, and Z^4 is $-SO_2-$.

6. A hair dye composition of Claim 1, wherein A of the dissociative direct dye (1) is a group represented by

formula (Cp-1), (Cp-2), (Cp-3), (Cp-4), (Cp-7), (Cp-9) or (Cp-11).