Choice of Matrices: 2 matrices of 1024*1024 each

Total Number of Bit Operations in a Cycle = $2*n^2$ (Including XOR and AND Operations)

Total number of operations for a Normal Matrix Multiplication = $2*n^3(n^3 \text{ multiplication and } n^3 \text{ additions})$

64*64 Matrix Multiplication

Speed of Ethernet Communication: 500Mbps

Total Transfer in bits into the Hardware through Ethernet : ([64*64]bits * 17) for one block * 16*16 blocks = $17*2^{20}$ bits

Delay Incurred = $17*2^{20}$ bits $/500*2^{20} = 34$ msec

Total Transfer in bits from the Hardware through Ethernet : 64*64]bits * 16) for one block * 16*16 blocks = $16*2^{20}$ bits = 32 msec

Total Delay for Input and Output Blocks of Data through Ethernet = 66 msec

Overhead Delay Incurred in Ethernet Transmission = 64 usec for every block of transfer

Total Overhead Delay(Both to and from) for the Multiplier = $64 * 10^{-6} * 256 * 2 = 32.7$ msec

Computation Time

Total number of clock cycles per computation of 32*32 resultant output = 3270

Total Clock Cycles taken for the entire 1024*1024 matrices = 16*16*3270 = 837120 clocks

Total Time taken for the computation = 837120/167 Mhz = 5 msec

Total Time Taken from the Application = 388 msec

Computation Time = 5/(97.6+5) = 4.8%

Peak Computational power of the system = BOP/cycle * clock frequency

 $= 2* (64)^2 * 167*10^6 = 1.368 \text{ TOPS}$