Text-Independent Speaker Recognition Using Gaussian Mixture Models

Eduardo Martins Barros de Albuquerque Tenório

Centro de Informática Universidade Federal de Pernambuco Trabalho de Graduação em Engenharia da Computação

embat@cin.ufpe.br

Recife, 25 de Junho de 2015

Conteúdo

- Introdução
- Sistemas de Reconhecimento de Locutor
- Extração de Características
- Modelos de Mistura Gaussianas
- Experimentos
- Conclusão

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- 4) Modelos de Mistura Gaussianas
- Experimentos
- Conclusão

Fala O que está sendo dito

- Fala O que está sendo dito
 - Conteúdo da mensagem

Fala O que está sendo dito

- Conteúdo da mensagem
- Estado emocional do locutor

Fala O que está sendo dito

- Conteúdo da mensagem
- Estado emocional do locutor
- Sotaque ou dificuldade de articulação

- Fala O que está sendo dito
 - Conteúdo da mensagem
 - Estado emocional do locutor
 - Sotaque ou dificuldade de articulação

Locutor Quem está falando

Fala O que está sendo dito

- Conteúdo da mensagem
- Estado emocional do locutor
- Sotaque ou dificuldade de articulação

Locutor Quem está falando

• Identificar uma pessoa num grupo

Fala O que está sendo dito

- Conteúdo da mensagem
- Estado emocional do locutor
- Sotaque ou dificuldade de articulação

Locutor Quem está falando

- Identificar uma pessoa num grupo
- Autenticar um usuário

Fala O que está sendo dito

- Conteúdo da mensagem
- Estado emocional do locutor
- Sotaque ou dificuldade de articulação

Locutor Quem está falando

- Identificar uma pessoa num grupo
- Autenticar um usuário

Este trabalho é focado em reconhecimento de locutor

Identificação Determina a identidade de um locutor dentro de um conjunto não unitário

Identificação Determina a identidade de um locutor dentro de um conjunto não unitário

• 1 para N

- Identificação Determina a identidade de um locutor dentro de um conjunto não unitário
 - 1 para N
 - Problema de conjunto fechado

- Identificação Determina a identidade de um locutor dentro de um conjunto não unitário
 - 1 para N
 - Problema de conjunto fechado
 - Verificação Determina se o locutor é quem diz ser

- Identificação Determina a identidade de um locutor dentro de um conjunto não unitário
 - 1 para N
 - Problema de conjunto fechado
 - Verificação Determina se o locutor é quem diz ser
 - 1 para 1

- Identificação Determina a identidade de um locutor dentro de um conjunto não unitário
 - 1 para N
 - Problema de conjunto fechado
 - Verificação Determina se o locutor é quem diz ser
 - 1 para 1
 - Problema de conjunto aberto

- Identificação Determina a identidade de um locutor dentro de um conjunto não unitário
 - 1 para N
 - Problema de conjunto fechado
 - Verificação Determina se o locutor é quem diz ser
 - 1 para 1
 - Problema de conjunto aberto

Dependente Teste \in Treinamento

Dependente Teste ∈ Treinamento

Diversos graus de dependência

Dependente Teste ∈ Treinamento

- Diversos graus de dependência
- Teste ∉ Treinamento ⇒ Retreinamento

Dependente Teste ∈ Treinamento

- Diversos graus de dependência
- Teste ∉ Treinamento ⇒ Retreinamento

Independente Teste \neq Treinamento

Dependente Teste ∈ Treinamento

- Diversos graus de dependência
- Teste ∉ Treinamento ⇒ Retreinamento

Independente Teste \neq Treinamento

Características não textuais

Dependente Teste ∈ Treinamento

- Diversos graus de dependência
- Teste ∉ Treinamento ⇒ Retreinamento

Independente Teste \neq Treinamento

- Características não textuais
- Presentes em diferentes sotaques e até gibberish

Dependente Teste ∈ Treinamento

- Diversos graus de dependência
- Teste ∉ Treinamento ⇒ Retreinamento

Independente Teste \neq Treinamento

- Características não textuais
- Presentes em diferentes sotaques e até gibberish

Este trabalho é focado em reconhecimento de locutor **independente de texto**

GMM Combinação de Gaussianas

GMM **Combinação** de Gaussianas
UBM GMM gerado por diversas **locuções de fundo**

GMM Combinação de Gaussianas UBM GMM gerado por diversas locuções de fundo

AGMM GMM adaptado a partir de um UBM

GMM Combinação de Gaussianas

UBM GMM gerado por diversas locuções de fundo

AGMM GMM adaptado a partir de um UBM

FGMM GMM utilizando Fractional Covariance Matrix (FCM)

Implementar sistemas de reconhecimento de locutor e analizar:

• Taxas de **sucesso** para identificação

- Taxas de sucesso para identificação
 - Diferentes tamanhos de mistura (M)

- Taxas de sucesso para identificação
 - Diferentes tamanhos de mistura (M)
 - ullet Diferentes tamanhos de características $(oldsymbol{\Delta})$

- Taxas de **sucesso** para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)
- Comparar identificações utilizando GMM e FGMM

- Taxas de **sucesso** para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)
- Comparar identificações utilizando GMM e FGMM
- Taxas de falsa detecção e falsa rejeição para verificação

- Taxas de sucesso para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)
- Comparar identificações utilizando GMM e FGMM
- Taxas de falsa detecção e falsa rejeição para verificação
 - Diferentes tamanhos de mistura (M)

Objetivos

Implementar sistemas de reconhecimento de locutor e analizar:

- Taxas de sucesso para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)
- Comparar identificações utilizando GMM e FGMM
- Taxas de falsa detecção e falsa rejeição para verificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)

Objetivos

Implementar sistemas de reconhecimento de locutor e analizar:

- Taxas de sucesso para identificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)
- Comparar identificações utilizando GMM e FGMM
- Taxas de falsa detecção e falsa rejeição para verificação
 - Diferentes tamanhos de mistura (M)
 - Diferentes tamanhos de características (Δ)
- Comparar verificações utilizando GMM e AGMM

Conteúdo

- Introdução
- Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- 4) Modelos de Mistura Gaussianas
- Experimentos
- Conclusão

Modelagem Para cada locutor $\mathcal{S}_j \in \boldsymbol{\mathcal{S}}$

Modelagem Para cada locutor $\mathcal{S}_j \in \boldsymbol{\mathcal{S}}$

ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por $\mathcal S_j$

Modelagem Para cada locutor $\mathcal{S}_j \in \mathcal{S}$

- Extrair \mathbf{X}_k dos sinais \mathbf{Y}_k falados por \mathcal{S}_j
- ullet Treinar um λ_j para cada \mathcal{S}_j através dos \mathbf{X}_k

Modelagem Para cada locutor $\mathcal{S}_j \in \mathcal{S}$

- Extrair \mathbf{X}_k dos sinais \mathbf{Y}_k falados por \mathcal{S}_j
- ullet Treinar um λ_j para cada \mathcal{S}_j através dos \mathbf{X}_k

Teste Para um locutor desconhecido ${\cal S}$

- Modelagem Para cada locutor $\mathcal{S}_j \in \mathcal{S}$
 - Extrair \mathbf{X}_k dos sinais \mathbf{Y}_k falados por \mathcal{S}_j
 - ullet Treinar um λ_j para cada \mathcal{S}_j através dos \mathbf{X}_k
 - Teste Para um locutor desconhecido ${\cal S}$
 - ullet Extrair old X do sinal old Y falado por ${\mathcal S}$

Modelagem Para cada locutor $S_j \in \mathcal{S}$

- Extrair \mathbf{X}_k dos sinais \mathbf{Y}_k falados por \mathcal{S}_j
- ullet Treinar um λ_j para cada \mathcal{S}_j através dos \mathbf{X}_k

Teste Para um locutor desconhecido ${\cal S}$

- ullet Extrair old X do sinal old Y falado por ${\mathcal S}$
- $i = \arg_j \max p(\mathbf{X}|\lambda_j) \implies \mathcal{S} \leftarrow \mathcal{S}_i$

Modelagem Para cada locutor $S_j \in \mathcal{S}$

- Extrair X_k dos sinais Y_k falados por S_j
- Treinar um λ_j para cada \mathcal{S}_j através dos \mathbf{X}_k

Teste Para um locutor desconhecido ${\cal S}$

- ullet Extrair old X do sinal old Y falado por ${\mathcal S}$
- $i = \arg_j \max p(\mathbf{X}|\lambda_j) \implies \mathcal{S} \leftarrow \mathcal{S}_i$

Modelagem Para todos os $\mathcal{S}_j \in \boldsymbol{\mathcal{S}}$

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- ullet Treinar um λ_{bkg} através dos $oldsymbol{X}_k$ de todos os \mathcal{S}_j

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- ullet Treinar um λ_{bkg} através dos $old X_k$ de todos os $\mathcal S_j$
- ullet Modelar um λ_j para cada \mathcal{S}_j

Modelagem Para todos os $\mathcal{S}_j \in \boldsymbol{\mathcal{S}}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- ullet Treinar um λ_{bkg} através dos $old X_k$ de todos os $\mathcal S_j$
- ullet Modelar um λ_j para cada \mathcal{S}_j

Modelagem Para todos os $\mathcal{S}_j \in \boldsymbol{\mathcal{S}}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- ullet Treinar um λ_{bkg} através dos $old X_k$ de todos os $\mathcal S_j$
- ullet Modelar um λ_j para cada \mathcal{S}_j

Teste S diz ser $S_C \in S$

• Extrair **X** do sinal **Y** falado por S_C

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

- ullet Extrair $old X_k$ dos sinais $old Y_k$ falados por cada $\mathcal S_j$
- Treinar um λ_{bkg} através dos \mathbf{X}_k de todos os \mathcal{S}_j
- ullet Modelar um λ_j para cada \mathcal{S}_j

- Extrair **X** do sinal **Y** falado por S_C
- $\Lambda(\mathbf{X}) = \log p(\mathbf{X}|\lambda_C) \log p(\mathbf{X}|\lambda_{bkg})$

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

- Extrair \mathbf{X}_k dos sinais \mathbf{Y}_k falados por cada \mathcal{S}_j
- Treinar um λ_{bkg} através dos \mathbf{X}_k de todos os \mathcal{S}_j
- ullet Modelar um λ_j para cada \mathcal{S}_j

- Extrair **X** do sinal **Y** falado por S_C
- $\Lambda(\mathbf{X}) \geq \theta \implies aceita$

Modelagem Para todos os $\mathcal{S}_j \in \mathcal{S}$

- Extrair \mathbf{X}_k dos sinais \mathbf{Y}_k falados por cada \mathcal{S}_j
- Treinar um λ_{bkg} através dos \mathbf{X}_k de todos os \mathcal{S}_j
- ullet Modelar um λ_j para cada \mathcal{S}_j

- Extrair **X** do sinal **Y** falado por S_C
- $\Lambda(\mathbf{X}) \geq \theta \implies aceita$

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- 4 Modelos de Mistura Gaussianas
- Experimentos
- 6 Conclusão

• Natural e frequente na fala

- Natural e frequente na fala
- Facilmente mensurável

- Natural e frequente na fala
- Facilmente mensurável
- ↑ variação inter-locutor e ↓ variação intra-locutor

- Natural e frequente na fala
- Facilmente mensurável
- ↑ variação inter-locutor e ↓ variação intra-locutor
- Constante no tempo e não afetável pela saúde

- Natural e frequente na fala
- Facilmente mensurável
- ↑ variação inter-locutor e ↓ variação intra-locutor
- Constante no tempo e não afetável pela saúde
- Robusta a ruído razoável e a transmissão

- Natural e frequente na fala
- Facilmente mensurável
- ↑ variação inter-locutor e ↓ variação intra-locutor
- Constante no tempo e não afetável pela saúde
- Robusta a ruído razoável e a transmissão
- Difícil de ser produzido artificialmente

- Natural e frequente na fala
- Facilmente mensurável
- ↑ variação inter-locutor e ↓ variação intra-locutor
- Constante no tempo e n\u00e3o afet\u00e1vel pela sa\u00fade
- Robusta a ruído razoável e a transmissão
- Difícil de ser produzido artificialmente
- Não ser facilmente modificável pelo locutor

Simula a função da cóclea

Simula a função da cóclea

Escala Mel Logaritmica

Simula a função da cóclea

Escala Mel Logaritmica

•
$$f_{mel} = 2595 \log_{10}(1 + \frac{f}{700})$$

Simula a função da cóclea

Escala Mel Logaritmica

• $f_{mel} = 2595 \log_{10}(1 + \frac{f}{700})$

•
$$s_{emph}[n] = s[n] - \alpha \cdot s[n-1]$$

- $s_{emph}[n] = s[n] \alpha \cdot s[n-1]$
- $\alpha \in [0.95, 0.98]$

- $s_{emph}[n] = s[n] \alpha \cdot s[n-1]$
- $\alpha \in [0.95, 0.98]$

Janelamento Divide o sinal em janelas superpostas

Janelamento Divide o sinal em janelas superpostas

• Largura de 20 milissegundos

Janelamento Divide o sinal em janelas superpostas

- Largura de 20 milissegundos
- Deslocamento de 10 milissegundos

Janelamento Divide o sinal em janelas superpostas

- Largura de 20 milissegundos
- Deslocamento de 10 milissegundos

|FFT|2 Calcula o espectro de potência

|FFT|2 Calcula o espectro de potência

Filtros Espectro em Hz ⇒ espectro em **mels**

Filtros Espectro em Hz \implies espectro em **mels**

dB Calcula a sonoridade

dB Calcula a sonoridade

 ${\tt DCT\ Coeficientes\ espectrais} \implies {\tt coeficientes\ } {\tt cepstrais}$

DCT Coeficientes espectrais \implies coeficientes **cepstrais**

•
$$c_n = \sum_{k=1}^K S_k \cdot \cos\left[n\left(k - \frac{1}{2}\right)\frac{\pi}{K}\right], n = 1, 2, ..., L$$

DCT Coeficientes espectrais ⇒ coeficientes **cepstrais**

•
$$c_n = \sum_{k=1}^K S_k \cdot \cos \left[n \left(k - \frac{1}{2} \right) \frac{\pi}{K} \right], n = 1, 2, ..., L$$

CMS Normaliza os MFCCs para reduzir perturbações

CMS Normaliza os MFCCs para reduzir perturbações

•
$$c_n = c_n - \frac{1}{T} \sum_{t=1}^{T} c_{n,t}$$

CMS Normaliza os MFCCs para reduzir perturbações

•
$$c_n = c_n - \frac{1}{T} \sum_{t=1}^{T} c_{n,t}$$

 \triangle s Novos c_n **derivados** dos antigos c_n (opcional)

 \triangle s Novos c_n **derivados** dos antigos c_n (opcional)

$$\bullet \ \Delta_t = \frac{\sum_{n=1}^{N} n(c_{t+n} - c_{t-n})}{2 \sum_{n=1}^{N} n^2}$$

\triangle s Novos c_n derivados dos antigos c_n (opcional)

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- Modelos de Mistura Gaussianas
- Experimentos
- Conclusão

GMM
$$p(\mathbf{x}|\lambda) = \sum_{i=1}^{M} w_i p_i(\mathbf{x})$$

GMM
$$p(\mathbf{x}|\lambda) = \sum_{i=1}^{M} w_i p_i(\mathbf{x})$$

Gaussiana $p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$

GMM
$$p(\mathbf{x}|\lambda) = \sum_{i=1}^{M} w_i p_i(\mathbf{x})$$

Gaussiana $p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$
 $\lambda = \{(w_i, \boldsymbol{\mu}_i, \mathbf{\Sigma}_i)\}, i = 1, ..., M$

GMM
$$p(\mathbf{x}|\lambda) = \sum_{i=1}^{M} w_i p_i(\mathbf{x})$$

Gaussiana $p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$
 $\lambda = \{(w_i, \boldsymbol{\mu}_i, \mathbf{\Sigma}_i)\}, i = 1, ..., M$
 $\mathbf{\Sigma}$ diagonal $\implies \sigma^2$

GMM
$$p(\mathbf{x}|\lambda) = \sum_{i=1}^{M} w_i p_i(\mathbf{x})$$

Gaussiana $p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$
 $\lambda = \{(w_i, \boldsymbol{\mu}_i, \mathbf{\Sigma}_i)\}, i = 1, ..., M$
 $\mathbf{\Sigma}$ diagonal $\implies \sigma^2$
Dada uma sequência \mathbf{X}

GMM
$$p(\mathbf{x}|\lambda) = \sum_{i=1}^{M} w_i p_i(\mathbf{x})$$

Gaussiana $p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$
 $\lambda = \{(w_i, \boldsymbol{\mu}_i, \mathbf{\Sigma}_i)\}, i = 1, ..., M$
 $\mathbf{\Sigma}$ diagonal $\implies \sigma^2$
Dada uma sequência \mathbf{X}
 $\bullet p(\mathbf{X}|\lambda) = \prod_{t=1}^{T} p(\mathbf{x}_t|\lambda).$

GMM
$$p(\mathbf{x}|\lambda) = \sum_{i=1}^{M} w_i p_i(\mathbf{x})$$

Gaussiana $p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})' \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$
 $\lambda = \{(w_i, \boldsymbol{\mu}_i, \mathbf{\Sigma}_i)\}, i = 1, ..., M$
 $\mathbf{\Sigma}$ diagonal $\implies \sigma^2$
Dada uma sequência \mathbf{X}
• $p(\mathbf{X}|\lambda) = \prod_{t=1}^{T} p(\mathbf{x}_t|\lambda)$.

• Função não linear de λ

GMM
$$p(\mathbf{x}|\lambda) = \sum_{i=1}^{M} w_i p_i(\mathbf{x})$$

Gaussiana $p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$
 $\lambda = \{(w_i, \boldsymbol{\mu}_i, \mathbf{\Sigma}_i)\}, i = 1, ..., M$
 $\mathbf{\Sigma}$ diagonal $\implies \sigma^2$

Dada uma sequência X

- $p(\mathbf{X}|\lambda) = \prod_{t=1}^{T} p(\mathbf{x}_t|\lambda).$
- ullet Função não linear de λ
- Estimar com o Expectation-Maximization (EM)

Expectation-Maximization

Estimar $\lambda^{(k+1)}$ a partir de λ^k

Estimar $\lambda^{(k+1)}$ a partir de λ^k Obedecer $p(\mathbf{X}|\lambda^{(k+1)}) \geq p(\mathbf{X}|\lambda^{(k)})$

Estimar $\lambda^{(k+1)}$ a partir de λ^k

Obedecer $p(\mathbf{X}|\lambda^{(k+1)}) \ge p(\mathbf{X}|\lambda^{(k)})$

Calcular *E-Step* e *M-Step* para cada *k* até convergir

Estimar $\lambda^{(k+1)}$ a partir de λ^k

Obedecer
$$p(\mathbf{X}|\lambda^{(k+1)}) \geq p(\mathbf{X}|\lambda^{(k)})$$

Calcular *E-Step* e *M-Step* para cada *k* até convergir

E-Step
$$P(i|\mathbf{x}_t) = \frac{w_i p_i(\mathbf{x}_t)}{\sum_{k=1}^{M} w_k p_k(\mathbf{x}_t)}$$

Estimar $\lambda^{(k+1)}$ a partir de λ^k

Obedecer
$$p(\mathbf{X}|\lambda^{(k+1)}) \ge p(\mathbf{X}|\lambda^{(k)})$$

Calcular *E-Step* e *M-Step* para cada *k* até convergir

EM

E-Step
$$P(i|\mathbf{x}_t) = \frac{w_i p_i(\mathbf{x}_t)}{\sum_{k=1}^{M} w_k p_k(\mathbf{x}_t)}$$

Estimar $\lambda^{(k+1)}$ a partir de λ^k

Obedecer
$$p(\mathbf{X}|\lambda^{(k+1)}) \ge p(\mathbf{X}|\lambda^{(k)})$$

Calcular *E-Step* e *M-Step* para cada *k* até convergir

E-Step
$$P(i|\mathbf{x}_t) = \frac{w_i p_i(\mathbf{x}_t)}{\sum_{k=1}^{M} w_k p_k(\mathbf{x}_t)}$$

Pesos
$$\overline{w}_i = \frac{1}{T} \sum_{t=1}^{T} P(i|\mathbf{x}_t, \lambda)$$

Estimar $\lambda^{(k+1)}$ a partir de λ^k

Obedecer
$$p(\mathbf{X}|\lambda^{(k+1)}) \ge p(\mathbf{X}|\lambda^{(k)})$$

Calcular *E-Step* e *M-Step* para cada *k* até convergir

E-Step
$$P(i|\mathbf{x}_t) = \frac{w_i p_i(\mathbf{x}_t)}{\sum_{k=1}^{M} w_k p_k(\mathbf{x}_t)}$$

Pesos
$$\overline{w}_i = \frac{1}{T} \sum_{t=1}^{T} P(i|\mathbf{x}_t, \lambda)$$

Médias
$$\overline{\mu}_i = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)\mathbf{x}_t}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)}$$

Estimar $\lambda^{(k+1)}$ a partir de λ^k

Obedecer
$$p(\mathbf{X}|\lambda^{(k+1)}) \ge p(\mathbf{X}|\lambda^{(k)})$$

Calcular *E-Step* e *M-Step* para cada *k* até convergir

E-Step
$$P(i|\mathbf{x}_t) = \frac{w_i p_i(\mathbf{x}_t)}{\sum_{k=1}^{M} w_k p_k(\mathbf{x}_t)}$$

Pesos
$$\overline{w}_i = \frac{1}{T} \sum_{t=1}^{T} P(i|\mathbf{x}_t, \lambda)$$

Médias
$$\overline{\mu}_i = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)\mathbf{x}_t}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)}$$

Variâncias
$$\overline{\sigma}_i^2 = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)\mathbf{x}_t^2}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)} - \overline{\mu}_i^2$$

$$M = 8$$

$$M = 8$$

$$\Delta = 0$$

$$M = 8$$

$$\Delta = 0$$

Inicialização k-means com 1 iteração

$$M = 8$$

$$\Delta = 0$$

Inicialização k-means com 1 iteração

Limiar 10^{-3}

Utiliza locuções de todos os locutores registrados

Utiliza locuções de todos os locutores registrados Realça características comuns

Utiliza locuções de todos os locutores registrados Realça características comuns

 \mathbf{X} específico $\Longrightarrow \uparrow \Lambda(\mathbf{X})$

Utiliza locuções de todos os locutores registrados

Realça características comuns

X específico $\Longrightarrow \uparrow \Lambda(\mathbf{X})$

Escolhido o tipo (b)

Utiliza locuções de todos os locutores registrados Realça características comuns

 \mathbf{X} específico $\Longrightarrow \uparrow \Lambda(\mathbf{X})$

Escolhido o tipo (b)

Adaptação λ_{bkg} treinado $\Longrightarrow \lambda_j$ para cada \mathcal{S}_j

Adaptação λ_{bkg} treinado $\Longrightarrow \lambda_j$ para cada \mathcal{S}_j Modelagem mais rápida que EM

Adaptação λ_{bkg} treinado $\Longrightarrow \lambda_j$ para cada \mathcal{S}_j Modelagem mais rápida que EM Composto de *M-Step* e *MAP-Step*

```
Adaptação \lambda_{bkg} treinado \Longrightarrow \lambda_i para cada S_i
            Modelagem mais rápida que EM
            Composto de M-Step e MAP-Step
    E-Step Semelhante ao E-Step do EM
```

Adaptação λ_{bkg} treinado $\Longrightarrow \lambda_j$ para cada \mathcal{S}_j Modelagem mais rápida que EM Composto de *M-Step* e *MAP-Step*

E-Step Semelhante ao E-Step do EM

•
$$n_i = \sum_{t=1}^T P(i|\mathbf{x}_t)$$

- Adaptação λ_{bkg} treinado $\Longrightarrow \lambda_j$ para cada \mathcal{S}_j Modelagem mais rápida que EM Composto de *M-Step* e *MAP-Step*
 - E-Step Semelhante ao E-Step do EM
 - $n_i = \sum_{t=1}^T P(i|\mathbf{x}_t)$
 - $E_i(\mathbf{x}) = \frac{1}{n_i} \sum_{t=1}^{T} P(i|\mathbf{x}_t) \mathbf{x}_t$

- Adaptação λ_{bkg} treinado $\Longrightarrow \lambda_j$ para cada \mathcal{S}_j Modelagem mais rápida que EM Composto de *M-Step* e *MAP-Step*
 - E-Step Semelhante ao *E-Step* do EM
 - $\bullet \ n_i = \sum_{t=1}^T P(i|\mathbf{x}_t)$
 - $E_i(\mathbf{x}) = \frac{1}{n_i} \sum_{t=1}^{T} P(i|\mathbf{x}_t) \mathbf{x}_t$
 - $E_i(\mathbf{x}^2) = \frac{1}{n_i} \sum_{t=1}^T P(i|\mathbf{x}_t) \mathbf{x}_t^2$

Adaptação λ_{bkg} treinado $\Longrightarrow \lambda_j$ para cada \mathcal{S}_j Modelagem mais rápida que EM Composto de *M-Step* e *MAP-Step*

E-Step Semelhante ao E-Step do EM

$$\bullet \ n_i = \sum_{t=1}^T P(i|\mathbf{x}_t)$$

•
$$E_i(\mathbf{x}) = \frac{1}{n_i} \sum_{t=1}^{T} P(i|\mathbf{x}_t) \mathbf{x}_t$$

•
$$E_i(\mathbf{x}^2) = \frac{1}{n_i} \sum_{t=1}^{T} P(i|\mathbf{x}_t) \mathbf{x}_t^2$$

Adaptação λ_{bkg} treinado $\Longrightarrow \lambda_j$ para cada \mathcal{S}_j Modelagem mais rápida que EM

Composto de $M ext{-}Step$ e $MAP ext{-}Step$

E-Step Semelhante ao *E-Step* do EM

$$\bullet \ n_i = \sum_{t=1}^T P(i|\mathbf{x}_t)$$

•
$$E_i(\mathbf{x}) = \frac{1}{n_i} \sum_{t=1}^{T} P(i|\mathbf{x}_t) \mathbf{x}_t$$

•
$$E_i(\mathbf{x}^2) = \frac{1}{n_i} \sum_{t=1}^T P(i|\mathbf{x}_t) \mathbf{x}_t^2$$

Pesos
$$\hat{w}_i = [\alpha_i n_i / T + (1 - \alpha_i) w_i] \gamma$$

Adaptação λ_{bkg} treinado $\Longrightarrow \lambda_j$ para cada \mathcal{S}_j Modelagem mais rápida que EM Composto de *M-Step* e *MAP-Step*

E-Step Semelhante ao E-Step do EM

•
$$n_i = \sum_{t=1}^T P(i|\mathbf{x}_t)$$

•
$$E_i(\mathbf{x}) = \frac{1}{n_i} \sum_{t=1}^{T} P(i|\mathbf{x}_t) \mathbf{x}_t$$

•
$$E_i(\mathbf{x}^2) = \frac{1}{n_i} \sum_{t=1}^T P(i|\mathbf{x}_t) \mathbf{x}_t^2$$

Pesos
$$\hat{w}_i = [\alpha_i n_i / T + (1 - \alpha_i) w_i] \gamma$$

Médias $\hat{\mu}_i = \alpha_i E_i(\mathbf{x}) + (1 - \alpha_i) \mu_i$

Adaptação $\lambda_{bk\sigma}$ treinado $\Longrightarrow \lambda_i$ para cada S_i Modelagem mais rápida que EM

Composto de M-Step e MAP-Step

E-Step Semelhante ao E-Step do EM

$$\bullet \ n_i = \sum_{t=1}^T P(i|\mathbf{x}_t)$$

•
$$E_i(\mathbf{x}) = \frac{1}{n_i} \sum_{t=1}^{T} P(i|\mathbf{x}_t) \mathbf{x}_t$$

•
$$E_i(\mathbf{x}^2) = \frac{1}{n_i} \sum_{t=1}^{T} P(i|\mathbf{x}_t) \mathbf{x}_t^2$$

Pesos
$$\hat{w}_i = [\alpha_i n_i / T + (1 - \alpha_i) w_i] \gamma$$

Médias
$$\hat{\boldsymbol{\mu}}_i = \alpha_i E_i(\mathbf{x}) + (1 - \alpha_i) \boldsymbol{\mu}_i$$

Variâncias
$$\hat{\sigma_i}^2 = \alpha_i E_i(\mathbf{x}^2) + (1 - \alpha_i)(\sigma_i^2 + \mu_i^2) - \hat{\mu_i}^2$$

 γ normaliza os pesos

 γ normaliza os pesos

Coeficiente
$$\alpha_i = \frac{n_i}{n_i + r}$$

 γ normaliza os pesos

Coeficiente
$$\alpha_i = \frac{n_i}{n_i + r}$$

• $\alpha_i \rightarrow 0 \implies$ manter os antigos parâmetros

 γ normaliza os pesos

Coeficiente
$$\alpha_i = \frac{n_i}{n_i + r}$$

- $\alpha_i \rightarrow 0 \implies$ manter os antigos parâmetros
- ullet $lpha_i
 ightarrow 1 \implies$ adaptar para os novos parâmetros

 γ normaliza os pesos

Coeficiente
$$\alpha_i = \frac{n_i}{n_i + r}$$

- $\alpha_i \rightarrow 0 \implies$ manter os antigos parâmetros
- ullet $lpha_i
 ightarrow 1 \implies$ adaptar para os novos parâmetros

 γ normaliza os pesos

Coeficiente
$$\alpha_i = \frac{n_i}{n_i + r}$$

- $\alpha_i \rightarrow 0 \implies$ manter os antigos parâmetros
- ullet $lpha_i
 ightarrow 1 \Longrightarrow$ adaptar para os novos parâmetros

Pesos, médias e variâncias adaptados

GMM com **\Sigmu** fracionário

GMM com **\Sigmu** fracionário

•
$$\sigma^2 = E[(X^r - \mu^r)^2]$$

GMM com **\Sigmu** fracionário

•
$$\sigma^2 = E[(X^r - \mu^r)^2]$$

$$\bullet \ \overline{\sigma}_i^2 = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t,\lambda) (\mathbf{x}_t^r - \overline{\mu}_i^r)^2}{\sum_{t=1}^T P(i|\mathbf{x}_t,\lambda)}$$

GMM com **\Sigmu** fracionário

•
$$\sigma^2 = E[(X^r - \mu^r)^2]$$

$$\bullet \ \overline{\sigma}_i^2 = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda) (\mathbf{x}_t^r - \overline{\mu}_i^r)^2}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)}$$

GMM com **\Sigmu** fracionário

•
$$\sigma^2 = E[(X^r - \mu^r)^2]$$

$$\bullet \ \overline{\sigma}_i^2 = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda) (\mathbf{x}_t^r - \overline{\mu}_i^r)^2}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)}$$

Antes
$$c_n = c_n + (1 - \min_t c_{n,t})$$

GMM com **\Sigmu** fracionário

•
$$\sigma^2 = E[(X^r - \mu^r)^2]$$

$$\bullet \ \overline{\sigma}_i^2 = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda) (\mathbf{x}_t^r - \overline{\mu}_i^r)^2}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)}$$

Antes
$$c_n = c_n + (1 - \min_t c_{n,t})$$

Depois
$$\mu_n = \mu_n - (1 - \min_t c_{n,t})$$

GMM com **\Sigmu** fracionário

•
$$\sigma^2 = E[(X^r - \mu^r)^2]$$

$$\bullet \ \overline{\sigma}_i^2 = \frac{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda) (\mathbf{x}_t^r - \overline{\mu}_i^r)^2}{\sum_{t=1}^T P(i|\mathbf{x}_t, \lambda)}$$

Antes
$$c_n = c_n + (1 - \min_t c_{n,t})$$

Depois
$$\mu_n = \mu_n - (1 - \min_t c_{n,t})$$

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- Modelos de Mistura Gaussianas
- 6 Experimentos
- 6 Conclusão

Experimentos

Conteúdo

- Introdução
- 2 Sistemas de Reconhecimento de Locutor
- 3 Extração de Características
- 4) Modelos de Mistura Gaussianas
- Experimentos
- Conclusão

Conclusão

Obrigado