- 1. Jaké z vlastností relací (reflexivní, symetrická, tranzitivní, antisymetrická) mají následující relace? Jsou to ekvivalence či uspořádání?
 - $R_1 = \{(-2,5), (5,5), (5,-2), (0,0)\}$ na množině $\{-2,0,5\}$.
 - $R_2 = \{(-2, -2), (5, -2), (0, 5), (0, 0), (0, -2)\}$ na množině $\{-2, 0, 5\}$.
 - $R_3 = \{(x, y) \in \mathbb{N}^2; x \ge y\}.$
 - $R_4 = \{(x, y) \in \mathbb{R}^2; x y \in \mathbb{N}\}.$
 - $R_5 = \{(x, y) \in \{1, \dots, 10\}^2; x \text{ a } y \text{ jsou nesoudělné} \}.$
 - $R_6 = \{(x, y) \in \mathbb{N}^2; x \mid y\}.$
- 2. Najděte relaci na $\{1, 2, 3, 4\}$, která
 - a) je současně symetrická i antisymetrická,
 - b) není ani symetrická, ani antisymetrická.
- 3. Jak vypadá relace $R \circ R$, označuje-li R
 - a) relaci rovnosti na množině \mathbb{Z} ,
 - b) relaci \leq na \mathbb{N} ,
 - c) relaci < na \mathbb{N} ,
 - d) relaci < na \mathbb{R} .
- 4. Dokažte, že relace $R \subseteq X \times Y$ je tranzitivní právě, když $R \circ R \subseteq R$.
- 5. Pro následující dvojice množin rozhodněte, zda je mezi nimi nějaká inkluze, nebo dokonce rovnost. Předpokládejme, že A, B_1, \ldots, B_n, X a Y jsou libovolné množiny.
 - a) $A \cap (B_1 \cup \ldots \cup B_n)$ vs. $(A \cap B_1) \cup \ldots \cup (A \cap B_n)$,
 - b) $A \setminus (B_1 \cup \ldots \cup B_n)$ vs. $(A \setminus B_1) \cup \ldots \cup (A \setminus B_n)$,
 - c) $2^{X \cup Y}$ vs. $2^X \cup 2^Y$.