ENGR 2910-101: Circuit Analysis

Homework 10: 11/10/21 Due: 11/17/21

Question 1 [10]

The current in a 20 mH inductor is

$$i = 40 \text{ mA},$$
 $t \le 0$
 $i(t) = (A_1 e^{-10000t} + A_2 e^{-40000t}) \text{ A},$ $t \ge 0.$

At t = 0, the voltage across the inductor is 28 V.

Find the expresion for the voltage across the inductor for t > 0.

Instructor: Leo Silbert

Question 2 [10]

For t < 0, the current in the inductor is 1 A in the circuit below. The inductor voltage for t > 0 is given by,

$$v_L(t) = 3e^{-4t} \text{ mV},$$
 $0^+ \le t \le 2 \text{ s}$
 $v_L(t) = -3e^{-4(t-2)} \text{ mV},$ $2 \le t < \infty \text{ s}.$

Calculate the current $i_L(t)$ for the entire period $0 \le t < \infty$ and sketch, **by hand**, both $v_L(t)$ and $i_L(t)$.

Question 3 [10]

At the moment the switch is opened in the circuit below, there is no energy stored in the inductor. $L_1 = 5$ H, $L_2 = 0.2$ H, M = 0.5 H, and $R_o = 10\Omega$.

- (i) Derive the differential equation that governs the behavior of i_2 .
- (ii) If, $i_g = (e^{-10t} 10)$ A for $t \ge 0$ and $i_2(t) = (625e^{-10t} 250e^{-50t})$ mA, what is the expression for the voltage, v_1 , across the current source?

Question 4 [10]

For the following circuit:

- (i) Analyze the t < 0 circuit to find the initial current flowing through the inductor.
- (ii) Analyze the $t=0^+$ circuit. Perform a node analysis to arrive at an equation for the voltage across the 15Ω resistor in terms of v_o .
- (iii) Similarly, perform a node analysis at the inductor node to arrive at an equation for i_{Δ} , and hence compute the initial voltage $v_o(0^+)$.

Question 5 [10]

The voltage source for the circuit in (a) is shown in (b). There is no energy stored in the capacitor for t < 0.

- (i) Derive the three expressions for $v_o(t)$ for the three time intervals: $0 \le t \le 4$ ms, 4 ms $\le t \le 8$ ms, and $t \ge 8$ ms.
- (ii) On the same figure, draw by hand v_o and v_s .

