Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_mate-info BAREM DE EVALUARE ȘI DE NOTARE

Test 4

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$n < 3 \Rightarrow M = \{0, 1, 2\}$	3p
	Suma pătratelor elementelor mulțimii M este $0^2 + 1^2 + 2^2 = 5$	2 p
2.	Abscisa vârfului parabolei asociate funcției f este $-\frac{b}{2a} = \frac{m}{2}$	2p
	$\frac{m}{2} = 3$, deci $m = 6$	3 p
3.	$x + 2 = 8 - x \Rightarrow 2x = 6$	3 p
	x = 3, care convine	2p
4.	O mulțime cu 12 elemente are C_{12}^{10} submulțimi cu 10 elemente	3 p
	$C_{12}^{10} = \frac{12 \cdot 11}{2} = 66$	2p
5.	D(2,2), deci $M(5,6)$, unde M este mijlocul segmentului CD	2 p
	$m_{AC} = 3$, deci ecuația dreptei paralele cu dreapta AC și care trece prin punctul M este	
	y-6=3(x-5), deci $y=3x-9$	3 p
6.	$\cos 2k\pi = 1$ și $\cos (2k+1)\pi = -1$, unde $k \in \mathbb{Z}$	2p
	$S = (-1) + 1 + (-1) + 1 + \dots + (-1) + 1 = 0$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} 1 & 1 & -1 \end{pmatrix}$ $\begin{vmatrix} 1 & 1 & -1 \end{vmatrix}$	
	$A(1) = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{vmatrix} =$	2p
	= 0 + (-1) + (-1) - 0 - 1 - 1 = -4	3 p
b)	$A(x)A(y) = \begin{pmatrix} 1+2xy & 0 & 1-2xy \\ 0 & 2 & 0 \\ 1-2xy & 0 & 1+2xy \end{pmatrix}, A(2xy) = \begin{pmatrix} 2xy & 1 & -2xy \\ 1 & 0 & 1 \\ -2xy & 1 & 2xy \end{pmatrix}, \text{ pentru orice numere}$ reale x şi y	2p
	$\det(A(x)A(y)-A(2xy)) = \begin{vmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 1 \end{vmatrix} = 0, \text{ pentru orice numere reale } x \text{ si } y$	3р
c)	$A(x)A\left(\frac{1}{2x}\right) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = 2I_3, \text{ pentru orice număr real nenul } x$	2p
	$A(1)A(\frac{1}{2}) + A(2)A(\frac{1}{4}) + \dots + A(1010)A(\frac{1}{2020}) = 1010 \cdot 2I_3$, deci $n = 2020$	3p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

2.a)	$2^5 * 3^5 = \left(\sqrt[5]{2^5} + \sqrt[5]{3^5}\right)^5 =$	3р
	$=(2+3)^5=5^5$	2p
b)	$2^{5} * x^{5} * (243x^{5}) = (\sqrt[5]{2^{5}} + \sqrt[5]{x^{5}} + \sqrt[5]{243x^{5}})^{5} = (2 + x + 3x)^{5} = (2 + 4x)^{5}, \text{ unde } x \text{ este număr}$	3p
	real	
	$(2+4x)^5 = 10^5$, deci $x=2$	2 p
c)	$1^{5} * 2^{5} = \left(\sqrt[5]{1}^{5} + \sqrt[5]{2}^{5}\right)^{5} = (1+2)^{5}, \ 1^{5} * 2^{5} * 3^{5} = \left(\sqrt[5]{1}^{5} + \sqrt[5]{2}^{5} + \sqrt[5]{3}^{5}\right)^{5} = (1+2+3)^{5}$	2p
	$M = 1^5 * 2^5 * 3^5 * \dots * 10^5 = \left(\sqrt[5]{1}^5 + \sqrt[5]{2}^5 + \sqrt[5]{3}^5 + \dots + \sqrt[5]{10}^5\right)^5 = \left(1 + 2 + 3 + \dots + 10\right)^5 = 5^5 \cdot 11^5 = N,$	3 p
	de unde obținem $M - N = 0$	

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{(x+1)-(x-1)}{(x+1)^2} + \frac{1}{x+1} - \frac{1}{x} =$	2p
	$= \frac{2x + x(x+1) - (x+1)^2}{x(x+1)^2} = \frac{x-1}{x(x+1)^2}, \ x \in (0, +\infty)$	3 p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x-1}{x+1} + \ln \frac{x+1}{x} \right) = 1 + \ln 1 = 1$	3p
	Dreapta de ecuație $y = 1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
c)	$f'(x) \le 0$, pentru orice $x \in (0,1]$, deci f este descrescătoare pe $(0,1]$ și $f'(x) \ge 0$, pentru orice $x \in [1,+\infty)$, deci f este crescătoare pe $[1,+\infty) \Rightarrow f(x) \ge f(1)$, pentru orice $x \in (0,+\infty)$	3p
	$f(1) = \ln 2 > 0 \Rightarrow f(x) > 0$, pentru orice $x \in (0, +\infty)$, de unde obținem că graficul funcției f nu intersectează axa Ox	2p
2.a)	$\int_{0}^{1} f^{2}(x) dx = \int_{0}^{1} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{1} =$	3 p
	$= \frac{1}{3} + 1 - 0 = \frac{4}{3}$	2p
b)	$\int_{-1}^{1} xf(x) dx = -\int_{-1}^{0} x\sqrt{x^2 + 1} dx + \int_{0}^{1} x\sqrt{x^2 + 1} dx =$	2p
	$= -\frac{1}{3}(x^2 + 1)^{\frac{3}{2}} \begin{vmatrix} 0 \\ -1 \end{vmatrix} + \frac{1}{3}(x^2 + 1)^{\frac{3}{2}} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = -\frac{1}{3} + \frac{2\sqrt{2}}{3} + \frac{2\sqrt{2}}{3} - \frac{1}{3} = \frac{4\sqrt{2} - 2}{3}$	3 p
c)	Din regula lui l'Hospital, $\lim_{x \to 0} \frac{\int_{0}^{x} t \cdot f(t) dt}{x^{2}} = \lim_{x \to 0} \frac{x f(x)}{2x} =$	3p
	$= \lim_{x \to 0} \frac{\sqrt{x^2 + 1}}{2} = \frac{1}{2}$	2 p