Genetyczne czynniki ryzyka

- Badania GWAS (Genome-Wide Association Studies) asocjacje na skalę genomu
- Korelacja wariantów genetycznych z ryzykiem choroby
- · Znajduje się wiele korelacji, ale żadna nie może być decydującym czynnikiem
- Tajemnica brakującej odziedziczalności

Wizualizacja GWAS - Manhattan plot

The UK Biobank resource with deep phenotyping and genomic data

Clare Bycroft^{1,13}, Colin Freeman^{1,13}, Desislava Petkova^{1,12,13}, Gavin Band¹, Lloyd T. Elliott², Kevin Sharp², Allan Motyer³, Damjan Vukcevic^{3,4}, Olivier Delaneau^{5,6,7}, Jared O'Connell⁸, Adrian Cortes^{1,9}, Samantha Welsh¹⁰, Alan Young¹¹, Mark Effingham¹⁰, Gil McVean^{1,11}, Stephen Leslie^{3,4}, Naomi Allen¹¹, Peter Donnelly^{1,2,14} & Jonathan Marchini^{1,2,14}

Istotność wartości p w GWAS

- $p < 5.10^{-8}$ próg zwyczajowy (dla populacji europejskiej)
- można też wyliczyć istotność korzystając z różnych poprawek statystycznych
 - Bonferroniego (prosta, ale zbyt restrykcyjna)
 - Benjaminiego-Hochberga (FDR False Discovery Ratio)

Dane

- Informacja o osobach (w tym ew. rodowody) + fenotypy
- Genotypy
- · Pozycje miejsc zmiennych w genomie (mapa)

Format PLINK

Dane:

- rodowód i genotypy: plik .ped
- mapa: plik .map

Dane w formacie binarnym

- rodowód: plik .fam (pierwsze 6 kolumn pliku .ped)
- mapa: plik .bim (dodatkowe dane: allele i MAF)
- genotypy markera: plik .bed (skompresowana wersja pliku tekstowego)

Kodowanie rodowodu

Płeć: 1 mężczyzna, 2 kobieta, 0 nieznana Choroba: 1 zdrowa(y), 2 chora(y), 0 nieznana 0 zawsze oznacza nieznane/brak danych!!!

Rodzina	osoba	ojciec	matka	płeć	choroba	marker1a1	marker1a2
001	1	0	0	1	1	A	A
001	2	0	0	2	2	A	C
001	3	1	2	2	2	C	C
001	4	0	0	1	1	3	4
001	5	4	3	1	2	A	C

Liczba spacji nieistotna (minimum 1)

Pliki mapy

CHROMOSOME MARKER POSITION

1 Marker1 0

format .map

1 rs12073590 0.029735 1205155 C A 1 rs6685064 0.029785 1211292 T C 1 rs61559999 0.030045 1235792 T C 1 rs62623580 0.030111 1254255 A G

format .bim

Inne częste formaty

VCF

plink (w wersji 1.9b lub wyższej) odczytuje pliki vcf i bcf i przekształca na .bed/.bim/.fam

Program plink

plink --file nazwa wczytuje pliki nazwa.ped nazwa.map

plink --bfile nazwa

wczytuje pliki nazwa.fam nazwa.bim nazwa.bed

Konwersja formatów

plink --file przyklad --make-bed --out nowanazwa

plink --bfile przyklad --recode --tab --out nowanazwa

plink --vcf przyklad.vcf --make-bed --out nowanazwa

W pliku VCF nie ma osobnych ID osoby i rodziny! Domyślnie każda osoba jest traktowana jako będąca z odrębnej rodziny, chyba że w jej ID jest znak '_", wtedy służy jako delimiter.

Przykładowe możliwości plink

--assoc

analiza asocjacji

--assoc --adjust

j.w. z poprawkami statystycznymi

--out nowanazwa

Przykładowe możliwości plink

```
--keep / --remove lista
zachowuje / usuwa osoby o ID z pliku lista
--keep-fam --remove-fam
j.w., tylko dla ID rodziny a nie osoby
--extract / --exclude lista
zachowuje / usuwa markery o nazwach z pliku lista
+ wiele innych (filtrowanie wg. chromosomów, MAF, SNP vs. indele, i wiele innych)
--make-bed --out nowanazwa
zapisuje efekt filtrowania w nowym pliku
```

Interpretacja wg. bazy genomu człowieka

- Na stronie ncbi.nlm.nih.gov, w sekcji Genetics & Medicine, baza ClinVar, narzędzie Variation Viewer
- Formaty zapytania (przykłady)
 - rs28693734 identyfikator SNP (z bazy dbSNP), o ile dostępny
 - chr1:215210111 chromosom:pozycja (uwaga na genom referencyjny)