Tema 3. Sucesiones Numéricas

[versión 0.1', compilado el 26/9/2015]

Contenidos

1	Lo básico	1
2	Límites de sucesiones	3
	2.1 Convergencia	
	2.2 Paso a Funciones Continuas	6
	2.3 Teorema del Sandwich	7
3	Monotonicidad y cotas	10
	Monotonicidad y cotas 3.1 Monotonicidad	10
	3.2 Cotas	13
4	Recursión	17
\mathbf{R}_{0}	ferencias	20

1 Lo básico

Definición 1.1 (Sucesión). Una sucesión real es una secuencia de números a_n indexados sobre \mathbb{N} , es decir que existe una aplicación $f: \mathbb{N} \to \mathbb{R}$ tal que

$$a_n = f(n), \ n \in \mathbb{N}$$
 (forma explícita de a_n)

Se denota $(a_n)_{n\in\mathbb{N}}$ para referirse a la sucesión

$$a_0, a_1, a_2, a_3, \dots$$

o lo que es lo mismo

$$(a_n)_{n\in\mathbb{N}} = (a_0, a_1, a_2, a_3, \dots)$$

Nota 1.1. Cuando nos referimos a los números enteros positivos usamos la notación

$$\mathbb{N}^* = \mathbb{Z}^+ = \{1, 2, 3, \dots\}$$

O sea que el conjunto de los números naturales es

$$\mathbb{N} = \mathbb{Z}^+ \cup \{0\} = \{0, 1, 2, 3, \dots\}$$

Definición 1.2 (Rango). Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión.

El rango o ámbito de la sucesión $(a_n)_{n\in\mathbb{N}}$ corresponde a

$$\mathcal{R} = \{a_n / n \in \mathbb{N}\} = \{a_0, a_1, a_2, a_3, \dots\}$$

Una sucesión también puede ser truncada, dada una sucesión $(a_n)_{n=n_0,n_0+1,n_0+2,\dots}$ corresponde a la secuencia

$$a_{n_0}, a_{n_0+1}, a_{n_0+2}, a_{n_0+3}, \dots$$

es decir, que se toma a_n para los naturales $n \geq n_0$.

En tal caso el rango o ámbito de la sucesión $(a_n)_{n\in\mathbb{N}}$ corresponde a

$$\mathcal{R} = \{a_n / n = n_0, n_0 + 1, n_0 + 2, \dots\} = \{a_{n_0}, a_{n_0+1}, a_{n_0+2}, a_{n_0+3}, \dots\}$$

Ejemplo 1.1. $(a_n) = (1, 1/2, 1/3, 1/4, 1/5, \dots)$ es la sucesión cuya forma explícita puede ser

$$a_n = \frac{1}{n+1}, \quad n \in \mathbb{N}$$

El rango de a_n corresponde a $\mathcal{R} = \{1, 1/2, 1/3, 1/4, 1/5, \dots\} = \left\{\frac{1}{n+1} / n \in \mathbb{N}\right\}$

Ejemplo 1.2. Considere la sucesión

$$a_n = \frac{(-1)^n}{3^n + 1}$$

Como

$$a_0 = \frac{1}{1+1}$$
, $a_1 = \frac{-1}{3+1}$, $a_2 = \frac{1}{9+1}$, $a_3 = \frac{-1}{27+1}$, $a_4 = \frac{1}{81+1}$, ...

La sucesión a_n también tiene representación

$$(a_n)_{n\in\mathbb{N}} = \left(\frac{1}{2}, \frac{-1}{4}, \frac{1}{10}, \frac{-1}{28}, \frac{1}{82}, \dots\right)$$

El rango de a_n corresponde a

$$\mathcal{R} = \left\{ \frac{1}{2}, \, \frac{-1}{4}, \, \frac{1}{10}, \, \frac{-1}{28}, \, \frac{1}{82}, \, \dots \right\}$$

Ejemplo 1.3. La sucesión $a_n = (-1)^n + 1$ corresponde a la secuencia

$$2, 0, 2, 0, 2, 0, \ldots$$

pues $a_0 = 1 + 1$, $a_1 = -1 + 1$, $a_2 = 1 + 1$, $a_3 = -1 + 1$, ..., o sea que

$$a_n = \begin{cases} 2 & \text{, si } n \text{ es par} \\ 0 & \text{, si } n \text{ es impar} \end{cases}$$

El rango de a_n corresponde a $\mathcal{R} = \{0, 2\}$.

2 Límites de sucesiones

2.1 Convergencia

Definición 2.1 (Convergencia). Una sucesión $(a_n)_{n\in\mathbb{N}}$ es llamada **convergente**, si existe un número finito L tal que

n suficientemente grande $\implies a_n \approx L$

Formalmente,

$$\forall \epsilon > 0, \ \exists N > 0, \ \text{tal que } n > N \implies |a_n - L| < \epsilon$$

Se denota

$$L = \lim_{n \to +\infty} a_n$$

L es llamado valor de convergencia de a_n o simplemente límite de a_n .

En caso contrario se dice que a_n es **divergente**, es decir si L no existe o es infinito.

Nota 2.1. El límite a_n es infinito positivo si

$$\forall M > 0, \exists N > 0 \text{ tal que } n > N \implies a_n > M$$

Se denota $\lim_{n\to+\infty} a_n = +\infty$.

Igualmente el límite a_n es **infinito negativo** si

$$\forall M > 0, \exists N > 0 \text{ tal que } n > N \implies a_n < -M$$

Se denota $\lim_{n\to+\infty} a_n = -\infty$.

En estos casos existe el límite de la sucesión pero la sucesión es divergente por tener límites infinitos.

Teorema 2.1. Sean $(a_n)_{n\in\mathbb{N}}$ y $(b_n)_{n\in\mathbb{N}}$ successores convergentes, entonces

1. $\forall \alpha \in \mathbb{R}$, " $\alpha a_n + b_n$ " es una sucesión convergente y cumple

$$\lim_{n \to +\infty} [\alpha a_n + b_n] = \alpha \lim_{n \to +\infty} a_n + \lim_{n \to +\infty} b_n$$

2. " $a_n \cdot b_n$ " es convergente y cumple

$$\lim_{n \to +\infty} [a_n \cdot b_n] = \lim_{n \to +\infty} a_n \cdot \lim_{n \to +\infty} b_n$$

3. Si $\lim_{n\to+\infty} b_n \neq 0$, " a_n/b_n " es una sucesión convergente y cumple

$$\lim_{n \to +\infty} \left[\frac{a_n}{b_n} \right] = \frac{\lim_{n \to +\infty} a_n}{\lim_{n \to +\infty} b_n}$$

4. Si $G : \mathbb{R} \to \mathbb{R}$ es una aplicación continua en el rango de a_n , entonces " $G(a_n)$ " es una sucesión convergente y cumple

$$\lim_{n \to +\infty} G(a_n) = G\left(\lim_{n \to +\infty} a_n\right)$$

Notas 2.2.

1.
$$\lim_{n \to +\infty} n^{\alpha} = \begin{cases} +\infty &, \text{ si } \alpha > 0\\ 1 &, \text{ si } \alpha = 0\\ 0^{+} &, \text{ si } \alpha < 0 \end{cases}$$

2.
$$\lim_{n \to +\infty} \frac{1}{n} = 0 \qquad \wedge \qquad \lim_{n \to +\infty} \frac{1}{n^{\alpha}} = \begin{cases} 0^{+} & , \text{ si } \alpha > 0 \\ 1 & , \text{ si } \alpha = 0 \\ +\infty & , \text{ si } \alpha < 0 \end{cases}$$

3.
$$\lim_{n \to +\infty} r^n = \begin{cases} +\infty & , \text{ si } r > 1 \\ 1 & , \text{ si } r = 1 \\ 0 & , \text{ si } |r| < 1 \end{cases}$$

$$\uparrow \quad , \text{ si } r \leq -1 \qquad \land \qquad \lim_{n \to +\infty} r^{-n} = \begin{cases} 0 & , \text{ si } r > 1 \\ 1 & , \text{ si } r = 1 \\ +\infty & , \text{ si } |r| < 1 \\ \not \equiv & , \text{ si } r \leq -1 \end{cases}$$

Ejemplo 2.1. Determine la convergencia de la sucesión

$$a_n = \frac{2n^2 - n + 3}{3n^2 + 4}$$

Solución:

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{2 - \frac{1}{n} + \frac{3}{n^2}}{3 + \frac{4}{n^2}} = \frac{2 - 0 + 0}{3 + 0} = \frac{2}{3}$$

Ejemplo 2.2. Determine la convergencia de la sucesión

$$a_n = \frac{2n + 3n^2}{n}$$

Solución:

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{2n + 3n^2}{n} = \lim_{n \to +\infty} [2 + 3n] = 2 + (+\infty) = +\infty$$

Entonces a_n es divergente.

Nota 2.3. Si

$$a_n = \frac{\alpha_k \, n^k + \alpha_{k-1} \, n^{k-1} + \dots + \alpha_1 \, n + \alpha_0}{\beta_\ell \, n^\ell + \beta_{\ell-1} \, n^{\ell-1} + \dots + \beta_1 \, n + \beta_0}$$

entonces

$$\lim_{n \to +\infty} a_n = \begin{cases} \alpha_k / \beta_k &, \text{ si } k = \ell \\ 0 & \text{ si } k < \ell \\ \infty & \text{ si } k > \ell \end{cases}$$

Ejemplo 2.3. Determine la convergencia de la sucesión

$$a_n = \frac{2^{3n}}{5^{n-1}}$$

Solución:

Note que

$$a_n = \frac{5 \cdot 8^n}{5^n} = 5 \cdot \left(\frac{8}{5}\right)^n$$

Como 8/5 > 1, entonces a_n es una sucesión divergente.

Ejemplo 2.4. Determine la convergencia de la sucesión

$$a_n = \frac{2^n - 3^{n+1}}{5 \cdot 3^n + \sqrt{6^n}}$$

Solución:

Note que $\sqrt{6^n} = (\sqrt{6})^n \le (\sqrt{9})^n = 3^n$ y también $3^n \ge 2^n$, entonces

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{\frac{2^n - 3^{n+1}}{3^n}}{\frac{5 \cdot 3^n + \sqrt{6^n}}{3^n}} = \lim_{n \to +\infty} \frac{\left(\frac{2}{3}\right)^n - 3}{5 + \left(\frac{\sqrt{6}}{3}\right)^n} = \frac{0 - 3}{5 + 0} = -\frac{3}{5}$$

Luego la sucesión a_n es convergente y tiene límite -3/5.

Teorema 2.2. Si $(a_n)_{n\in\mathbb{N}}$ es una sucesión convergente, el límite L de a_n es único.

Definición 2.2 (Subsucesión). Sea $(a_n)_{n \in \mathbb{N}}$ una sucesión, $(b_n)_{n \in \mathbb{N}}$ es llamado subsucesión de a_n si existe una secuencia de números naturales $n_0 < n_1 < n_2 < n_3 < \dots$ tales que $b_k = a_{n_k}$.

Se denota $(a_{n_k})_{k\in\mathbb{N}}$ es una subsucesión de $(a_n)_{n\in\mathbb{N}}$.

Nota 2.4. Si $(a_{n_k})_{k\in\mathbb{N}}$ es subsucesión de $(a_n)_{n\in\mathbb{N}}$, entonces el rango de a_{n_k} está contenido en el rango de a_n

$$\{a_{n_0}, a_{n_1}, a_{n_2}, \dots\} \subseteq \{a_0, a_1, a_2, \dots\}$$

Ejemplo 2.5. Sea $a_n = \frac{(-1)^n}{n}$, $n \in \mathbb{N}^*$, que corresponde a la sucesión

$$(a_n)_{n\in\mathbb{N}} = \left(-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \dots\right)$$

Tenemos que $b_k = a_{2k}$ es una subsucesión de a_n correspondiente a

$$b_k = \frac{(-1)^{2k}}{2k} = \frac{1}{2k}$$

que se expande

$$(b_k)_{k \in \mathbb{N}^*} = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \dots\right)$$

También tenemos la subsucesión

$$(a_{2k+1})_{k \in \mathbb{N}} = \left(-1, \frac{-1}{3}, \frac{-1}{5}, \frac{-1}{7}, \dots\right)$$

Teorema 2.3. Si $(a_n)_{n\in\mathbb{N}}$ es una sucesión convergente con límite L, entonces toda subsucesión $(a_{n_k})_{k\in\mathbb{N}}$ es convergente y cumple que

$$\lim_{k \to +\infty} a_{n_k} = L$$

Nota 2.5. Si $(b_n)_{n\in\mathbb{N}}$ y $(c_n)_{n\in\mathbb{N}}$ son subsucesiones convergentes de $(a_n)_{\in\mathbb{N}}$ tales que

$$L_1 = \lim_{n \to +\infty} b_n \quad \land \quad L_2 = \lim_{n \to +\infty} c_n$$

Si $L_1 \neq L_2$, entonces la sucesión $(a_n)_{n \in \mathbb{N}}$ es divergente.

Ejemplo 2.6. Verifique la convergencia de la sucesión $a_n = (-1)^n + 1$.

Solución: Note que

$$a_{2k} = (-1)^{2k} + 1 = 1 + 1 = 2 \xrightarrow[k \to +\infty]{} 2$$

pero

$$a_{2k+1} = (-1)^{2k+1} + 1 = -1 + 1 = 0 \xrightarrow[k \to +\infty]{} 0$$

Como $2 \neq 0$, se concluye que a_n divergente pues tiene subsucesiones con límites distintos.

Ejemplo 2.7. Verifique la convergencia de la sucesión $a_n = \cos(n\pi)$.

Solución: Note que

$$a_{2k} = \cos(2k\pi) = 1 \xrightarrow[k \to +\infty]{} 1$$

pero

$$a_{2k+1} = \cos\left[(2k+1)\pi\right] = -1 \xrightarrow[k \to +\infty]{} -1$$

Como $1 \neq -1$, se concluye que a_n divergente pues tiene subsucesiones con límites distintos.

2.2 Paso a Funciones Continuas

Nota 2.6 (Paso a continuas). Sea $(a_n)_{n\in\mathbb{N}}$ sucesión y sea $f:[0,+\infty[\to\mathbb{R}]]$ función continua tal que

$$\forall n \in \mathbb{N}, \ f(n) = a_n$$

entonces se cumple que

$$\lim_{n \to +\infty} a_n = \lim_{x \to +\infty} f(x)$$

siempre que el límite anterior exista.

Ejemplo 2.8. Estudie la convergencia de la sucesión

$$a_n = \left(1 - \frac{2}{n}\right)^{4n}$$

Solución: Note que a_n se puede extender a una función contínua convergente:

$$\lim_{n \to +\infty} a_n = \lim_{x \to +\infty} \left(1 - \frac{2}{x} \right)^{4x} , \text{ Forma } 1^{\infty}$$

$$= \exp \left[\lim_{x \to +\infty} 4x \ln \left(1 - \frac{2}{x} \right) \right] , \text{ Forma } \infty \cdot 0$$

$$= \exp \left[4 \lim_{x \to +\infty} \frac{\ln (1 - 2/x)}{1/x} \right] , \text{ Forma } \frac{0}{0}$$

$$\stackrel{L.H}{=} \exp \left[4 \lim_{x \to +\infty} \frac{(1 - 2/x)^{-1} \cdot (2/x^2)}{-1/x^2} \right]$$

$$= \exp \left[4 \lim_{x \to +\infty} \left[-2 \left(1 - \frac{2}{x} \right)^{-1} \right] \right]$$

$$= e^{-8}$$

Nota 2.7.

$$\lim_{n \to +\infty} n \operatorname{sen}\left(\frac{1}{n}\right) = 1$$

$$\lim_{n \to +\infty} n \operatorname{sen}\left(\frac{a}{n}\right) = a$$

$$\lim_{n \to +\infty} n \operatorname{sen}\left(\frac{a}{n}\right) = a$$

$$\lim_{n \to +\infty} \left(1 + \frac{a}{n}\right)^{bn} = e^{ab}$$

$$\lim_{n \to +\infty} \left[n - n \cos \left(\frac{1}{n} \right) \right] = 0$$

Nota 2.8. Sea $(a_n)_{n\in\mathbb{N}}$ sucesión y sea $f:[0,+\infty[\to\mathbb{R}]$ función continua tal que

$$\forall n \in \mathbb{N}, \ f(n) = a_n$$

si a_n es convergente, NO se garantiza la existencia del límite de f(x), o sea que es posible que

$$\lim_{n \to +\infty} a_n \neq \lim_{x \to +\infty} f(x)$$

Ejemplo 2.9. La sucesión $a_n = \cos(2n\pi)$, $n \in \mathbb{N}$ es convergente, pues para todo $n \in \mathbb{N}$, $a_n = 1$, pero la función $f(x) = \cos(2x\pi)$, $x \in \mathbb{R}$ no tiene límite.

2.3 Teorema del Sandwich

Teorema 2.4 (Teorema del Sandwich).

Sean $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ y $(c_n)_{n\in\mathbb{N}}$ successores tales que para $n\geq n_0$

$$a_n \le b_n \le c_n$$

Si a_n y c_n convergen a L, entonces b_n también es convergente y tiene límite L.

$$a_n \le b_n \le c_n \quad \land \quad L = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} c_n \implies \lim_{n \to +\infty} b_n = L$$

Pues,

$$L \le \lim_{n \to +\infty} a_n \le L \implies \lim_{n \to +\infty} a_n = L$$

Ejemplo 2.10. Estudie la convergencia de $a_n = \frac{\cos(n\pi)}{n^2 + 1}$.

Solución:

Como $-1 \le \cos(n\pi) \le 1$, entonces

$$\frac{-1}{n^2+1} \le \frac{\cos(n\pi)}{n^2+1} \le \frac{1}{n^2+1} \implies \lim_{n \to +\infty} \frac{-1}{n^2+1} \le \lim_{n \to +\infty} \frac{\cos(n\pi)}{n^2+1} \le \lim_{n \to +\infty} \frac{1}{n^2+1}$$

$$\implies 0 \le \lim_{n \to +\infty} \frac{\cos(n\pi)}{n^2+1} \le 0$$

Se concluye por el teorema de sandwich, que

$$\lim_{n \to +\infty} \frac{\cos(n\pi)}{n^2 + 1} = 0$$

Nota 2.9. Sean $(a_n)_{n\in\mathbb{N}}$ y $(b_n)_{n\in\mathbb{N}}$ successores reales, entonces

(a)
$$0 \le a_n \le b_n$$
 \wedge $\lim_{n \to +\infty} b_n = 0 \implies \lim_{n \to +\infty} a_n = 0$

(b)
$$a_n \ge b_n \quad \land \quad \lim_{n \to +\infty} b_n = +\infty \implies \lim_{n \to +\infty} a_n = +\infty$$

(c)
$$a_n \le b_n \quad \land \quad \lim_{n \to +\infty} b_n = -\infty \implies \lim_{n \to +\infty} a_n = -\infty$$

Nota 2.10. Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión real, entonces

(a)
$$\lim_{n \to +\infty} |a_n| = 0 \iff \lim_{n \to +\infty} a_n = 0$$

(b)
$$\lim_{n \to +\infty} |a_n| = +\infty \iff \lim_{n \to +\infty} a_n = \pm \infty$$

Ejemplo 2.11. Estudie la convergencia de la sucesión

$$a_n = \frac{n \cdot (-1)^n}{n^3 - n + 1}$$

Solución:

Tenemos que

$$\lim_{n \to +\infty} |a_n| = \lim_{n \to +\infty} \left| \frac{n \cdot (-1)^n}{n^3 - n + 1} \right|$$

$$= \lim_{n \to +\infty} \frac{n}{n^3 - n + 1}, \quad \text{pues } |(-1)^n| = 1$$

$$= \lim_{n \to +\infty} \frac{1}{n^2 - 1 + 1/n}$$

$$= \frac{1}{+\infty - 1 + 0}$$

$$= 0$$

Se concluye entonces que $a_n \to 0$.

Ejemplo 2.12. Estudie la convergencia de la sucesión $a_n = \frac{n!}{n+1}$.

Solución:

Tenemos que

$$\frac{n!}{n+1} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2}{n+1} \ge \frac{n(n-1)}{n+1} = \frac{n^2 - n}{n+1} \xrightarrow[+\infty]{} +\infty$$

Se concluye entonces que $a_n \to +\infty$.

Definición 2.3. Considere dos sucesiones $a_n, b_n, n \in \mathbb{N}$

1. Se dice que a_n y b_n son **equivalentes** si y solo si

$$\lim_{x \to +\infty} \frac{a_n}{b_n} = 1$$

se denota $a_n \cong b_n$

2. Si existe y es finito el límite

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \alpha \neq 0$$

se escribe $a_n \sim b_n$

lo cual se puede leer como que " a_n y b_n son similares".

3. Se dice que a_n es "más rápido" que b_n o que b_n es "más lento" que a_n si y solo si

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = +\infty \iff \lim_{n \to +\infty} \frac{b_n}{a_n} = 0$$

se denota $a_n \gg b_n \iff b_n \ll a_n$

Notas 2.11.

- (a) $\forall p > 0, \left[\ln(n) \ll n^p \right]$
- (b) Si $0 < p_1 < p_2$, entonces $n^{p_1} \ll n^{p_2}$
- (c) Si $0 < p_1 < 1 < p_2$, entonces $\boxed{n^{p_1} \ll n \ll n^{p_2}}$
- (d) Si $1 < r_1 < r_2$, entonces $r_1^n \ll r_2^n$
- (e) Para todo $p \in {\rm I\!R}$ y para todo r > 1se cumple que $\boxed{n^p \ll r^n \ll n! \ll n^n}$

Ejemplo 2.13. Calcule el límite de $a_n = \frac{2^n}{n!}$.

Solución:

$$\lim_{n \to +\infty} \frac{2^n}{n!} = 0, \text{ pues } n! \gg 2^n$$

3 Monotonicidad y cotas

3.1 Monotonicidad

Definición 3.1 (Monotonía o monotonicidad). Una sucesión $(a_n)_{n\in\mathbb{N}}$ es llamada

- (a) Monótona Creciente ($a_n \nearrow$) si y solo si $\forall n \in \mathbb{N}, \ a_{n+1} \ge a_n$. También es llamada monótona creciente estrictamente si $a_{n+1} > a_n$.
- (b) Monótona Decreciente ($a_n \searrow$) si y solo si $\forall n \in \mathbb{N}, \ a_{n+1} \leq a_n$. También es llamada monótona decreciente estrictamente si $a_{n+1} < a_n$. Si una sucesión es siempre creciente o siempre decreciente, se dice que es monótona.

Ejemplo 3.1. Verifique que $a_n = \frac{1}{n^2 + 1}$ es una sucesión decreciente.

Solución: Tenemos que a_n es decreciente si y solo si

$$a_{n+1} \le a_n \iff \frac{1}{(n+1)^2 + 1} \le \frac{1}{n^2 + 1} \iff n^2 + 1 \le (n+1)^2 + 1$$

 $\iff n^2 + 1 \le n^2 + 2n + 1 + 1$
 $\iff 0 \le 2n + 1, \quad (\checkmark)$

Como $\forall n \in \mathbb{N}, \ 2n+1 \geq 0$, queda verificado entonces que $a_n \searrow$.

Notas 3.1. Sea $(a_n)_{n\in\mathbb{N}}$ sucesión real

- 1. Si para todo $n, m \in \mathbb{N}$
 - (a) " $n \le m \iff a_n \le a_m$ ", entonces a_n es creciente.
 - (b) " $n \le m \iff a_n \ge a_m$ ", entonces a_n es decreciente.
- 2. Dada una sucesión $(a_n)_{n\in\mathbb{N}}$
 - (a) $a_n \nearrow \iff \forall n \in \mathbb{N}, \ a_{n+1} a_n \ge 0.$
 - (b) $a_n \searrow \iff \forall n \in \mathbb{N}, \ a_{n+1} a_n \le 0.$
- 3. Si para todo $n \in \mathbb{N}, \ a_n > 0$ (sucesión positiva), entonces
 - (a) $a_n \nearrow \iff \forall n \in \mathbb{N}, \ \frac{a_{n+1}}{a_n} \ge 1.$
 - (b) $a_n \searrow \iff \forall n \in \mathbb{N}, \ \frac{a_{n+1}}{a_n} \le 1.$
- 4. Si existe una función $f:[0,+\infty[\to \mathbb{R} \text{ monótona tal que } f(n)=a_n, \text{ entonces }$
 - (a) Si $\forall x \in [0, +\infty[, f(x) \nearrow \implies a_n \nearrow$
 - (b) Si $\forall x \in [0, +\infty[, f(x) \searrow \implies a_n \searrow$

Ejemplo 3.2. Verifique la monotonía de la sucesión $a_n = \frac{3n-2}{5n+1}$.

Solución:

Opción 1: Estudiando $a_{n+1} - a_n$

Tenemos que

$$a_{n+1} - a_n = \frac{3(n+1) - 2}{5(n+1) + 1} - \frac{3n - 2}{5n + 1}$$

$$= \frac{(3n+1)(5n+1) - (5n+6)(3n-2)}{(5n+6)(5n+1)}$$

$$= \frac{15n^2 + 8n + 1 - (15n^2 + 8n - 12)}{(5n+6)(5n+1)}$$

$$= \frac{13}{(5n+6)(5n+1)} > 0, \quad \forall n \in \mathbb{N}$$

Entonces $a_{n+1} - a_n > 0 \iff a_{n+1} > a_n \iff a_n \nearrow$ estrictamente.

Opción 2: Estudiando $f(x) = \frac{3x-2}{5x+1}$

$$f'(x) = \frac{3 \cdot (5x+1) - (3x-2) \cdot 5}{(5x+1)^2}$$
$$= \frac{13}{(5x+1)^2} > 0, \quad \forall x \in \mathbb{R}^+$$

Entonces $f'(x) > 0 \iff f(x) \nearrow \implies a_n \nearrow$ estrictamente.

Ejemplo 3.3. $a_n = (-1)^n/n$, $n \in \mathbb{N}$ no es monótona, pues sus valores consecutivos cambian de relación siempre

$$a_n: -1, 1/2, -1/3, 1/4, -1/5, \dots$$

Ejemplo 3.4. Estudie la monotonía de la sucesión $a_n = \text{sen}(1/n), n \in \mathbb{N}^*$.

Solución:

Sea $f(x) = \text{sen}(1/x), x \in \mathbb{R}$, entonces

$$f'(x) = (-1/x^2) \cdot \cos(1/x) < 0, \ \forall x \in [1, +\infty[$$

Entonces $\forall x \in [1, +\infty[, f(x) \searrow \implies a_n \searrow]$

Nota 3.2. Sean a_n, b_n sucesiones reales positivas y $G : \mathcal{R} \to \mathbb{R}$ aplicación real continua en el rango \mathcal{R} de a_n , entonces.

- 1. $a_n \nearrow \iff -a_n \searrow$
- $2. \ a_n \nearrow \iff [a_n]^{-1} \searrow$
- 3. $a_n \nearrow \wedge b_n \nearrow \implies \forall \alpha \in \mathbb{R}, \ [a_n \cdot b_n] \nearrow \wedge [\alpha + a_n + b_n] \nearrow$
- 4. $a_n \searrow \wedge b_n \searrow \implies \forall \alpha \in \mathbb{R}, \ [a_n \cdot b_n] \nearrow \wedge [\alpha + a_n + b_n] \searrow$
- 5. $a_n \searrow \wedge b_n \nearrow \implies [a_n \cdot b_n] \searrow$
- 6. $a_n \nearrow \land G(x) \nearrow \implies G[a_n] \nearrow$
- 7. $a_n \searrow \land G(x) \nearrow \implies G[a_n] \searrow$

8.
$$a_n \searrow \wedge G(x) \searrow \implies G[a_n] \nearrow$$

Nota 3.3. Si r > 0,

$$r^n \searrow \iff r < 1 \quad \land \quad r^n \nearrow \iff r > 1$$

Ejemplo 3.5. Estudie la monotonía de $a_n=2+\frac{3^{-n}}{\sqrt{n+1}}+\frac{5^{n+1}}{7^n}$ Solución:

Tenemos que $3^n\nearrow\ \ {\rm y}\ \sqrt{n+1}\nearrow\ \Longrightarrow\ 3^n\sqrt{n+1}\nearrow\ ,$ luego

$$\frac{3^{-n}}{\sqrt{n+1}} = \frac{1}{3^n \sqrt{n+1}} \searrow$$

también, como 5/7 < 1

$$\frac{5^{n+1}}{7^n} = 5\left(\frac{5}{7}\right)^n \searrow$$

Se concluye entonces que a_n es decreciente.

3.2 Cotas

Definición 3.2 (Cotas). De una sucesión $(a_n)_{n\in\mathbb{N}}$ se dice que es

(a) Acotada inferiormente si y solo si

$$\exists M_1 \in \mathbb{R} \text{ tal que } \forall n \in \mathbb{N}, \ M_1 \leq a_n$$

 M_1 es llamado **cota inferior** de la sucesión a_n .

(b) Acotada superiormente si y solo si

$$\exists M_2 \in \mathbb{R} \text{ tal que } \forall n \in \mathbb{N}, \ a_n \leq M_2$$

 M_2 es llamado **cota superior** de la sucesión a_n .

(c) Acotada si es acotada inferiormente y superiormente a la vez, es decir

$$\exists M_1, M_2 \in \mathbb{R} \text{ tales que } \forall n \in \mathbb{N}, \ M_1 \leq a_n \leq M_2$$

Ejemplo 3.6. $a_n = 3\operatorname{sen}(n) + 1$ es una sucesión acotada, pues $\forall n \in \mathbb{N}$

$$-1 \le \operatorname{sen}(n) \le 1 \iff -3 + 1 \le 3\operatorname{sen}(n) + 1 \le 3 + 1$$

 $\iff -2 \le 3\operatorname{sen}(n) + 1 \le 4$

La cota inferior es -2 y la cota superior es 4.

Note que a_n es divergente y no es monótona, pues sus valores varían entre -2 y 4 sin ningún orden.

Ejemplo 3.7. $a_n = (-1)^n$ es una sucesión acotada, pues $\forall n \in \mathbb{N}$

$$-1 \le (-1)^n \le 1$$

La cota inferior es -1 y la cota superior es 1.

Claramente a_n es divergente y no es monótona.

Ejemplo 3.8. $a_n = n^3 + 1$ es una sucesión acotada inferiormente por 1, pues $\forall n \in \mathbb{N}$

$$0 \le n^3 \iff 1 \le n^3 + 1$$

Ejemplo 3.9. $a_n = \frac{5}{n+4}$ es una sucesión acotada pues $\forall n \in \mathbb{N}$

$$0 \le \frac{5}{n+4} \le \frac{5}{4}$$
, pues $n+4 \ge 4$

La cota inferior es 0 y la cota superior es 5/4.

Teorema 3.1. Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión real.

- (a) Si $\lim_{n \to +\infty} a_n = +\infty$ ó si existe una subsucesión a_{n_k} tal que $\lim_{k \to +\infty} a_{n_k} = +\infty$, entonces la sucesión NO es acotada superiormente.
- (b) Si $\lim_{n \to +\infty} a_n = -\infty$ ó si existe una subsucesión a_{n_k} tal que $\lim_{k \to +\infty} a_{n_k} = -\infty$, entonces la sucesión NO es acotada inferiormente.
- (c) Si existen subsucesiones a_{n_k} y a_{m_k} tales que $\lim_{k\to +\infty} a_{n_k} = +\infty$ y $\lim_{k\to +\infty} a_{m_k} = -\infty$, entonces la sucesión a_n NO es acotada ni inferior ni superiormente.

Ejemplo 3.10. La sucesión $a_n = n^3 + 1$ no es acotada superiormente, pues

$$\lim_{n \to +\infty} a_n = +\infty$$

Ejemplo 3.11. La sucesión $a_n = \csc(1/n)$ no es acotada superiormente, pues

$$\lim_{n \to +\infty} a_n = \csc(0^+) = \frac{1}{0^+} = +\infty$$

Ejemplo 3.12. La sucesión $a_n = \tan \left[\frac{n}{n^3 + 4} - \frac{\pi}{2} \right]$ no es acotada inferiormente, pues

$$\lim_{n \to +\infty} a_n = \tan\left[0^+ - \frac{\pi}{2}\right] = \tan\left[-\frac{\pi}{2}\right] = -\infty$$

Ejemplo 3.13. La sucesión $a_n = (-1)^n \ln(n)$ no es acotada ni superiormente ni inferiormente, pues

$$\lim_{k \to +\infty} a_{2k} = \lim_{k \to +\infty} \ln(2k) = +\infty \quad \land \quad \lim_{k \to +\infty} a_{2k+1} = -\lim_{k \to +\infty} \ln(2k+1) = -\infty$$

Nota 3.4. Sea $(a_n)_{n=n_0,n_0+1,n_0+2,...}$ una sucesión monótona.

- (a) Si $a_n \nearrow$, entonces a_n acotada inferiormente por a_{n_0} . Es decir que $\forall n \geq n_0, \ a_n \geq a_{n_0}$.
- (b) Si $a_n \setminus$, entonces a_n acotada superiormente a_{n_0} . Es decir que $\forall n \geq n_0, \ a_n \leq a_{n_0}$.

Teorema 3.2. Sea $(a_n)_{n=n_0,n_0+1,n_0+2,...}$ una sucesión monótona y convergente, entonces a_n es acotada.

(a) Si $a_n \nearrow entonces para todo natural <math>n \ge n_0$

$$a_{n_0} \le a_n \le \lim_{n \to +\infty} a_n$$

(b) $Si \ a_n \searrow entonces \ para \ todo \ natural \ n \ge n_0$

$$\lim_{n \to +\infty} a_n \le a_n \le a_{n_0}$$

Ejemplo 3.14. Determine la convergencia, monotonía y cotas de la sucesión

$$a_n = \frac{2n^2 - n + 1}{3n^2 + 1}, \quad n \in \mathbb{N}^*$$

Solución:

Tenemos que

$$\lim_{n \to +\infty} \frac{2n^2 - n + 1}{3n^2 + 1} = \lim_{n \to +\infty} \frac{\frac{2n^2 - n + 1}{n^2}}{\frac{3n^2 + 1}{n^2}} = \lim_{n \to +\infty} \frac{2 - \frac{1}{n} + \frac{1}{n^2}}{3 + \frac{1}{n^2}} = \frac{2 - 0 + 0}{3 + 0} = \frac{2}{3}$$

entonces la sucesión es convergente hacia 2/3.

Hay dos maneras de ver la mononía

Opción 1: Sea

$$f(x) = \frac{2x^2 - x + 1}{3x^2 + 1}$$

entonces

$$f'(x) = \frac{(4x-1)\cdot(3x^2+1) - (2x^2 - x + 1)\cdot 6x}{(3x^2+1)^2}$$

$$= \frac{12x^3 + 4x - 3x^2 - 1 - 12x^3 + 6x^2 - 6x}{(3x^2+1)^2}$$

$$= \frac{3x^2 - 2x - 1}{(3x^2+1)^2}$$

$$= \frac{(3x+1)(x-1)}{(3x^2+1)^2} \ge 0, \quad \text{siempre que } x \ge 1$$

luego $x \ge 1 \implies f'(x) \ge 0 \implies f(x) \nearrow \implies a_n \nearrow$ siempre que $n \in \mathbb{N}^*$.

Opción 2:

$$a_{n+1} - a_n = \frac{2(n+1)^2 - (n+1) + 1}{3(n+1)^2 + 1} - \frac{2n^2 - n + 1}{3n^2 + 1}$$

$$\vdots$$

$$= \frac{3n^2 + n - 2}{(3n^2 + 6n + 4)(3n^2 + 1)}$$

 $\forall n \in \mathbb{N}^*, \ 3n^2 + n - 2 = (3n - 2)(n + 1) > 0$ entonces $a_{n+1} - a_n > 0$ Luego $\forall n \in \mathbb{N}^*, \ a_{n+1} > a_n \iff a_n \nearrow$

Finalmente, como la sucesión a_n , $n \in \mathbb{N}^*$ es monótona creciente y convergente, entonces es acotada inferiormente por a_1 y superiormente por $\lim_{n \to +\infty} a_n$.

La cota superior es $\lim_{n\to+\infty} a_n = 2/3$ y la cota inferior es $a_1 = \frac{2-1+1}{3+1} = \frac{1}{2}$

$$\therefore \quad \forall n \in \mathbb{N}^*, \ \frac{1}{2} \le a_n < a_{n+1} \le \frac{2}{3}$$

Ejemplo 3.15 (Ejercicio). Determine la convergencia, monotonía y cotas de la sucesión

$$a_n = \frac{5n-1}{4n-3}, \quad n \in \mathbb{N}$$

Resp. / $a_n \to 5/4$ es convergente. a_n decreciente sii $n \ge 1$. En $\mathbb N$ no es monótona. a_n sí es acotada: $1/3 \le a_n \le 4$

Nota 3.5. Sea $(a_n)_{n=n_0,n_0+1,n_0+2,...}$ una sucesión monótona.

(a) Si $a_n \nearrow y \lim_{n \to +\infty} a_n = +\infty$, entonces a_n es acotada inferiormente por a_{n_0} , pero NO es acotada superiormente:

$$\forall n \in \mathbb{N}, \ a_{n_0} \leq a_n \leq \lim_{n \to +\infty} a_n = +\infty$$

(b) Si $a_n \searrow \lim_{n \to +\infty} a_n = -\infty$, entonces a_n es acotada superiormente por a_{n_0} , pero NO es acotada inferiormente:

$$\forall n \in \mathbb{N}, \ -\infty = \lim_{n \to +\infty} a_n \le a_n \le a_{n_0}$$

Ejemplo 3.16. Determine la convergencia, monotonía y cotas de la sucesión

$$a_n = n \cdot \arctan(2 - n), \quad n \in \mathbb{N}$$

Solución: Tenemos que

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} n \cdot \arctan(2 - n) = +\infty \cdot \arctan(-\infty) = +\infty \cdot \left(-\frac{\pi}{2}\right) = -\infty$$

Luego a_n es una sucesión divergente a $-\infty$.

Note que, para todo $x \in \mathbb{R}$

$$\left[\arctan(1-x)\right]' = \frac{-1}{1+(1-x)^2} < 0 \implies \arctan(1-x) \searrow$$

Entonces para todo $n \in \mathbb{N}$

$$n \nearrow \wedge \arctan(1-n) \searrow \implies a_n = n \cdot \arctan(2-n) \searrow$$

Concluimos entonces que a_n es una sucesión divergente, monótona decreciente estrictamente y acotada superiormente por $a_0 = 0$ pero NO es acotada inferiormente.

$$\forall n \in \mathbb{N}, \ -\infty \le a_{n+1} < a_n \le 0$$

Ejemplo 3.17. Determine la convergencia, monotonía y cotas de la sucesión

$$a_n = \ln \left[\frac{n^2 + 1}{3n + 2} \right], \quad n \in \mathbb{N}$$

Solución: Como ln(x) es una función continua en \mathbb{R}^+ , tenemos que

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \ln \left[\frac{n^2 + 1}{3n + 2} \right] = \ln(+\infty) = +\infty$$

Luego a_n es una sucesión divergente a $+\infty$.

Recordemos que ln(x) es creciente en todo su dominio y note que

$$\left[\frac{x^2+1}{3x+2}\right]' = \frac{2x(3x+2)-3(x^2+1)}{(3x+2)^2} = \frac{3x^2+4x-3}{(3x+2)^2} > 0 \quad , \ \forall x \ge 1$$

Entonces para todo $n \in \mathbb{N}^*$ y para todo $x \in \mathbb{R}^*$

$$\frac{n^2+1}{3n+2} \nearrow \wedge \ln(x) \nearrow \Longrightarrow a_n = \ln\left[\frac{n^2+1}{3n+2}\right] \nearrow$$

Así se cumple que a_n es monótona creciente estrictamente en \mathbb{N}^* con límite igual a $+\infty$, entonces a_n es acotada inferiormente por $\min(a_0, a_1)$ pero NO es acotada superiormente.

Note además que

$$a_0 = \ln\left(\frac{1}{2}\right) \quad \wedge \quad a_1 = \ln\left(\frac{2}{5}\right)$$

donde

$$\frac{1}{2} \ge \frac{2}{5} \iff 5 \ge 4 \implies \min(a_0, a_1) = a_1$$

Se concluye que a_n es una sucesión divergente que no es monótona en \mathbb{N} pues $a_0 > a_1$, es acotada inferiormente por $a_1 = \ln(2/5)$ y no tiene cota superior.

$$\forall n \in \mathbb{N}, \ \ln(2/5) \le a_n \le +\infty$$
 $\land \quad \forall n \in \mathbb{N}^*, \ \ln(2/5) \le a_n < a_{n+1} \le +\infty$

4 Recursión

Definición 4.1 (Recursión). Una sucesión $(a_n)_{n\in\mathbb{N}}$ está definida de manera recursiva o por **recursión**, si se definen los primeros valores $a_0, a_1, \dots a_p$, y se establece una relación

$$\forall n \in \mathbb{N}, \quad a_{n+p} = G(a_{n+p-1}, a_{n+p-2}, \dots, a_{n-1}, a_n)$$

Ejemplo 4.1.

$$\begin{cases} a_0 = 3 \\ a_{n+1} = 3 \cdot a_n \end{cases}$$

es una serie definida recursivamente.

Note que, para la sucesión anterior

Ejemplo 4.2 (Sucesión de Fibonacci).

$$\begin{cases} a_0 = 1 \\ a_1 = 1 \\ a_{n+2} = a_{n+1} + a_n \end{cases}$$

es una serie definida recursivamente.

Note que, para la sucesión anterior

$$a_2 = a_1 + a_0 = 1 + 1 = 2$$

 $a_3 = a_2 + a_1 = 2 + 1 = 3$
 $a_4 = a_3 + a_2 = 3 + 2 = 5$
 $a_5 = a_4 + a_3 = 5 + 3 = 8$
:

Teorema 4.1 (Teorema de Weierstrass). También es conocido como teorema de convergencia monótona.

Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión real monótona, entonces

(a) Si a_n creciente y acotada superiormente, entonces a_n es convergente.

$$\forall n \in \mathbb{N}, \ a_n \nearrow \land \exists M \in \mathbb{R}, \ a_n < M \implies a_n \ convergente$$

(b) Si a_n decreciente y acotada inferiormente, entonces a_n es convergente.

$$\forall n \in \mathbb{N}, \ a_n \searrow \land \exists M \in \mathbb{R}, \ a_n > M \implies a_n \ convergente$$

Nota 4.1. Si $(a_n)_{n\in\mathbb{N}}$ es una sucesión convergente con valor de convergencia L, entonces se cumple que, para todo $p\in\mathbb{N}$

$$\lim_{n \to +\infty} a_n = L \quad \land \quad \lim_{n \to +\infty} a_{n+p} = L$$

Teorema 4.2 (Condición de Cauchy). Sea $(a_n)_{n\in\mathbb{N}}$ sucesión real, entonces para todo $p\in\mathbb{N}$

$$a_n \ convergente \iff \lim_{n \to +\infty} (a_{n+p} - a_n) = 0$$

Nota 4.2. Si una sucesión definida recursivamente en una relación

$$a_{n+p} = G(a_{n+p-1}, a_{n+p-2}, \dots, a_{n-1}, a_n)$$

es convergente, con valor de convergencia L, entonces se cumple la igualdad

$$L = G(\underbrace{L, L, \dots, L}_{p \text{ veces}})$$

Ejemplo 4.3. Considere la sucesión $(a_n)_{n\in\mathbb{N}}$ sucesión definida recursivamente

$$\begin{cases} a_0 = 3 \\ a_{n+1} = 9 - \frac{14}{a_n} \end{cases}$$

Muestre que a_n es monótona creciente, acotada superiormente por 8 y concluir convergencia.

Solución:

Monotonía: $a_n \nearrow \iff a_{n+1} > a_n$

Probemos por inducción sobre $n \in \mathbb{N}$:

$$n = 0$$

$$a_0 = 3 \wedge a_1 = 9 - \frac{14}{3} = \frac{13}{3}$$

note que

$$a_0 < a_1 \iff 3 < \frac{13}{3} \iff 9 < 13 \quad (\checkmark)$$

$$n \rightarrow n+1$$

$$\begin{cases} h.i: & a_{n+1} > a_n \\ h.q.d: & a_{n+2} > a_{n+1} \end{cases}$$

Note que

$$h.i \iff a_{n+1} > a_n \iff \frac{1}{a_{n+1}} < \frac{1}{a_n} \iff -\frac{1}{a_{n+1}} > -\frac{1}{a_n}$$

Tenemos que

$$a_{n+2} = 9 - \frac{14}{a_{n+1}} \stackrel{h.i}{>} 9 - \frac{14}{a_n} = a_{n+1} \implies a_{n+2} > a_{n+1} \quad (\checkmark)$$

Luego, por inducción matemática se concluye que $\forall n \in \mathbb{N}, \ a_n \nearrow$

Cota: Veamos por inducción sobre $n \in \mathbb{N}$ que $a_n < 8$.

$$\begin{array}{c}
 \boxed{n=0} \\
 a_0 = 3 < 8 \quad (\checkmark) \\
 \hline{n \rightarrow n+1} \\
 \begin{cases}
 h.i: & a_n < 8 \\
 h.q.d: & a_{n+1} < 8
\end{array}$$

Como $a_n \nearrow \Longrightarrow \forall n \geq 0, \ a_n \geq a_0 = 3 > 0$, note además que

$$h.i \iff a_n < 8 \iff \frac{1}{a_n} > \frac{1}{8} \iff -\frac{1}{a_n} < -\frac{1}{8}$$

Tenemos que

$$a_{n+1} = 9 - \frac{14}{a_n} \stackrel{h.i}{<} 9 - \frac{14}{8} = \frac{58}{8}$$

además

$$\frac{58}{8} < 8 \iff 58 < 64 \quad (\checkmark)$$

entonces $a_{n+1} < 58/8 < 8 \quad (\checkmark)$

Luego, por inducción matemática se concluye que $\forall n \in \mathbb{N}, \ a_n < 8.$

Convergencia: Como $a_n \nearrow y$ a_n acotada superiormente, entonces a_n es convergente por el teorema de convergencia monótona, luego existe L tal que $L = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} a_{n+1}$.

Entonces

$$a_{n+1} = 9 - \frac{14}{a_n} \implies L = 9 - \frac{14}{L}$$

$$\implies L^2 = 9L - 14$$

$$\implies L^2 - 9L + 14 = 0$$

$$\implies (L - 2)(L - 7) = 0$$

$$\implies L = 2 \quad \lor \quad L = 7$$

Como a_n es creciente y convergente, cumple

$$3 = a_0 < a_n < L \implies L > 3$$

Por lo tanto el valor de convergencia es L=7.

Ejemplo 4.4 (Ejercicio). Considere la sucesión $(a_n)_{n\in\mathbb{N}}$ sucesión definida recursivamente

$$\begin{cases} a_0 = 6 \\ a_{n+1} = \sqrt{6 \, a_n - 8} \end{cases}$$

Muestre que a_n es monótona decreciente, acotada inferiormente por 3 y concluir convergencia. En caso de ser convergente calcule el límite.

Resp. / Que es decreciente y acotada son propiedades que se prueban por inducción, luego concluya que a_n converge por convergencia monótona hacia 4. Al final: $4 \le a_n \le 6$

Referencias

- [1] Duarte A. & Cambronero S., Construcción de conjuntos Numéricos, 2007
- [2] Pisa Volio E., *Introducción al Análisis real en una variable*, Editorial de la Universidad de Costa Rica, Costa Rica, 2003
- [3] Poltronieri J., Cálculo 2, Serie: Cabécar, Costa Rica, 1998
- [4] Duarte A. & Cambronero S., Complementos de Cálculo, 2011
- [5] Ugalde W. J., MA0350 Cálculo en una Variable II, 2011
- [6] Takeuchi Y., Sucesiones y Series, Editorial Limusa, M'exico, 1983
- [7] Apostol T.M., Análisis Matemático, Editorial Reverté, México, 1982
- [8] Demidovich B., Problemas y Ejercicios de Análisis Matemático, Editorial Mir, Moscú, URSS, 1973
- [9] Doneddu A., Análisis y Geometría Diferencial, Editorial Aguilar, España, 1979
- [10] Larson R., Hostetler, Cálculo y Geometría Analítica, Editorial McGraw-Hill, México, 1989
- [11] Edwards C.H & Penney D. E., Cálculo con Geometría Analítica, Prentice Hall Hispanoamericana, México, 1996
- [12] Spiegel M. R., Manual de fórmulas y tablas matemáticas, Editorial McGraw-Hill, México, 1970