From Fastq Files to Differentially Expressed Genes

Introduction to RNA-Seq Pipelines and Computational Analysis
Mini Workshop

12 January 2018

Álvaro Cortés C.

RNA-Seq Project Workflow

Experimental Design

Sequencing

Follow-up & Support

RNA-Seq at Genomics Core

A typical RNA-Seq analysis at the Genomics Core delivers:

20 report files: differentially expressed genes, reads quality report, counting report,...

3GB of raw and analyzed data: Fastq, BAM, counts, normalized counts, gene expression files, heatmaps...

RNA-Seq Data Interpretation & Analysis

Reads and Differential Expression

• Sequencer produces millions of reads and a qualification for each base call

- What reads have to do with differential expression of genes?
 - Observations: read counts
 - Goal: discover changes in abundance between conditions

Read count is linearly related to the abundance of the target transcript

Estimating Differential Expression of Genes

- Count the number of reads that map into annotated genes
 - Map: Align reads w.r.t. a reference genome (transcriptome)
 - Count: number of aligned reads per feature (genes).

Reference Genome

- Perform statistical analysis on the counts to discover quantitative changes in expression levels between experimental groups
 - Normalization of counts
 - Probabilistic modeling of read counts
 - Estimate differential expression

RNA-Seq Workflow at Genomics Core

RNA-Seq Data Interpretation & Analysis

- What is a "read"?
 - A raw sequence (ordered collection) of nucleotides names A,C,G,T, or N.
 - Typical differential Expression Analysis: 50 characters long (single end).
- Fastq format?
 - Plain-text file, where each read and complementary information occupies 4 consecutive lines
 - Typical size RNA-Seq 50bp, 15M reads: 500M compressed, 2000M unzipped

Counting reads in fastq files: zcat my.fastq.gz | echo \$((`wc -l`/4)) : 12.748.143

Reads Fastq files

Reads are the raw diamonds of any NGS bioinformatics analysis.

Reads are collected in fastq files

One or two files per sample:

for RNA-Seq, DE, typically one: Single-End sequencing.

How many reads need to be produced?

Experiment and Library preparation kit dependent:

Differential Expression, typically

Illumina: 10-20M reads

QuantSeq: 1-2M reads

SNP Calling Illumina: >100M reads.

Reads and Fastq Files

- Line 1: Read identifier and is followed by a sequence that
 - Unique, platform dependent
 - Begins with a '@' character

- Line 2: Raw sequence of nucleotides: read
- Line 3: begins with a '+' character and is optionally followed by the same sequence identifier.
- Line 4: Quality values for the sequence in Line 2

Read and Fastq: Base Calling Quality Control

- A quality score (Q-score) is a prediction of the probability of an error in base calling.
- It serves as a compact way to communicate very small error probabilities
 - $P = 10^{(-Q/10)}$
 - $Q = -10 \log 10(P)$

ASC	ASCII_BASE=33 Illumina, Ion Torrent, PacBio and Sanger										
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

Reads: Base Calling Quality Control

Reads: Base Calling Quality Control

```
! "#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
33
                                         104
                                                     126
         0.....9......40
                    0.2.....41
S - Sanger Phred+33, raw reads typically (0, 40)
          Solexa+64, raw reads typically (-5, 40)
X - Solexa
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```


Report: Aggregated Quality Control

Quick impression of whether reads as a whole present anomalies

Per base sequence quality

Fastq Files Quality Control

Fastq Files Quality Control

Overrepresented sequences:

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCC}$	40105	32.362577063361414	TruSeq Adapter, Index 12 (100% over 51bp)
ATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCG	5730	4.6238016849036505	TruSeq Adapter, Index 12 (100% over 51bp)

Water Content

Number of reads: 14.103.785

Fastq Adapter Filter: 8.922602

Preprocessing or not?

- Preprocessing remove/trimming reads with low quality data?
- Better quality input data with less noise...
 - Tradeoff: information is lost...can affect alignment

Quality scores are exploited by aligners

RNA-Seq Workflow Genomics Core

From Raw Reads to Alignment

Where do reads come from?

Splice-Aware Alignment

- Individual reads are aligned to a reference genome
- RNA-seq read alignment differs from standard alignment:
 - •If an RNA-Seq read spans an exon boundary, part of the map will not map contiguously to the reference
 - •This causes the standard mapping procedure to fail

Reference-Based Alignment with Tophat 2

Reference Sequence in Fasta Format

- genome.fa human-readable nucleotide sequence
- Mouse genome: 2.6GB
- And it looks like this:

CTCAGAAGATGGAAAGATCTCCCATGCTCATGGATTGGCAGGATCAATATTGTAAAAATG GCTATCTTGCCAAAAGCAATCTACAGATTCAATGCAATCCCCATCAAAATTCCAACTCAA TTCTTCAACGAATTAGAAGGAGCAATTTGCAAATTCATCTGTAATAACAAAAACCTAGG ATAGCAAAAAGTCTTCTCAAGGATAAAAGAACCTCTGGTGGAATCACCATGCCTGACCTA GTAGACCAATGGAATAGAATTGAAGACCCAGAAATGAACCCACACACCTATGGTCACTTG TGCTGGCACAACTGGTTGTTATCATGTAGAAGAATGCGAATCGATCCATACTTATCTCCT TGTACTAAGGTCAAATCTAAATGGATCAAAGAACTTCACATAAAACCAGAGACACTGAAA CTTATAGAGGAGAAAGTGGGGAAAAGCCTTGAAGATATGGGCACAGGGGAAAAATTCCTG AACAGAACAGCAATGGCTTGTGCTGTAAGATTGAGAATTGACAAATGGGACCTAATGAAA CTCCAAAGTTTCTGCAAGGCAAAAGACACCGTCAATAAGAGAAAGAGACCACCAACAGAT TGGGAAAGGATCTTTACCTATCCTAAATCAGATAGGGGACTAATATCCAACATATATAAA GAACTCAAGAAGGTGGACTTCAGAAAATCAAACAACCCCATTAAAAAATGGGGCTCAGAA CTGAACAAGAATTCTCACCTGAGTTATACCGAATGGCAGAGAAGCACCTGAAAAAATGC TCAACATCCTTAATCATCAGGGAAATGCAAATCAAAACAACCCTGAGATTCCACCTCACA CCAGTCAGAATGTCTAAGATCAAAAATTCAGGTGACAGCAGATGCTGGCGAGGATGTGGA GAAAGAAGAACACTCCTCCATTGTTGGTGGGATTGCAGGCTTGTACAACCACTCTGGAAA TCCGTCTGGCGGTTCCTCAGAAAATTGGACATAGTACTACCGGAGGATCCAGCAATACCT CTCCTGGGCATATATCCAGAAGATGCCCCAACTGGTAAGAAGGACACATGCTCCACTATG TTCATAGCAGCCTTATTTATAATAGCCAGAAGCTGGAAAGAACCCAGATGCCCCTCAACA GAGGAATGGATACAGAAAATGTGGTACATCTACACAATGGAGTACTACTCAGCTATTAAA AAGAATGAATTTATGAAATTCCTAGCCAAATGGATGGACCTGGAGGGCATCATCCTGAGT

GTF Files: Gene Transfer Format

column-number	content	values/format
1	chromosome name	chr{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,X,Y,M}
2	annotation source	{ENSEMBL,HAVANA}
3	feature-type	{gene,transcript,exon,CDS,UTR,start_codon,stop_codon,Selenocysteine}
4	genomic start location	integer-value (1-based)
5	genomic end location	integer-value
6	score (not used)	
7	genomic strand	{+,-}
8	genomic phase (for CDS features)	{0,1,2,.}

Tophat Alignment Strategy

Reference-Based Alignment with Tophat 2

SAM/BAM Files

Aligners produces SAM (Sequence Alignment Map) file

BAM files are machine-readable versions of SAM files

SAM Format Explained

51M CIGAR: match? Skipped bases on reference?

Unpaired or paired (=)?

TGTTCGGACACTTCAAGTTCTGCATCACTCTCTGCGGAGGATACATTCTAT

Reference

Visualizing Alignment on IGV

Counting Reads on HTSeq

Method

- Count each read only once
- Multi-mapping reads and reads overlapping multiple features discarded

	union	intersection _strict	intersection _nonempty
gene_A	gene_A	gene_A	gene_A
gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	no_feature	gene_A
gene_A read gene_A	gene_A	gene_A	gene_A
gene_A	gene_A	gene_A	gene_A
gene_A	ambiguous	gene_A	gene_A
gene_A	ambiguous	ambiguous	ambiguous

Simon Anders

Counting Reads on HTSeq

Resulting table of absolute counts for each sample and feature:

Sa	ample 1	Sample 2	Sample 3	Sample4	
FBgn0000003	0	0	0	1	
FBgn0000008	76	70	88	70	
FBgn0000014	0	0	0	0	
FBgn0000015	1	2	0	0	
FBgn0000017	3564	3150	3072	3334	
FBgn0000018	245	310	299	308	

Counting Reads on HTSeq

Normalization of Counts: Impact Library Size

A bigger library produces more reads...But in slide 5:

"Read Counts is linearly related to the abundance of the target transcript"

Counting Reads

Normalization of Counts: Size Factors

Adjust for library sizes to produce count values in a common scale:

	Sample 1	Sample 2	Sample 3	Sample4				
FBgn0000003	0	0	0	1				
FBgn0000008	76	70	88	70				
FBgn0000014	0	0	0	0				
FBgn0000015	1	2	0	0		_	•	
FBgn0000017	3564	3150	3072	3334	1	2	3	4
FBgn0000018	245	310	299	308		Li	brary sizes	

Normalized counts Feature	Sample 1	Sample 2	Sample 3	Sample4
FBgn0000003	0.00	0.00	0.0	0.897
FBgn0000008	87.05	69.27	86.1	62.803
FBgn0000014	0.00	0.00	0.0	0.000
FBgn0000015	1.15	1.98	0.0	0.000
FBgn0000017	4082.02	3116.93	3004.5	2991.238
FBgn0000018	280.61	306.75	292.4	276.335

76/0.873 = 87.05

Counting Reads

More on Normalization

- Possible extra normalization:
 - Longer transcripts are more likely to have sequences mapped to their genes
 - Higher counts, biasing comparisons between transcripts of different lengths.
 - RPKM Reads per kilo base per million mapped reads

"based on three real mRNA and one miRNA-seq datasets,we confirm previous observations that RPKM and TC, both of which are still widely in use [40,41], are ineffective and should be definitively abandoned

in the context of differential analysis"

Briefings in Bioinformatics Advance Access published September 17, 2012

A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis

Marie-Agnès Dillies", Andrea Rau", Julie Aubert", Christelle Hennequet-Arties", Marine Jeanmougin", Nicolas Servant", Céline Keime', Guillemsette March, David Castel, Jord Estelle, Gregory Guernec, Bernd Jagla, Luc Jouneau, Denis Labië, Caroline Le Gall, Brigitte Schäeffer, Stephane Le Cram", Michaël Guedf^{*}, Florence Jaffrézic' and an behaff of The French StatOmisque Consortum

Submitted: I2th April 2012; Received (in revised form): 29th June 2012

Differential Expression Analysis

•Statistical test: Decide whether for a given gene, an observed difference in reads counts is significant

Comparison between different biological conditions

Read counts per gene are modeled by a probability distribution

Deseq or EdgeR?

Box 2 | Differences between DESeq and edgeR

The two packages described in this protocol, DESeq and edgeR, have similar strategies to perform differential analysis for count data. However, they differ in a few important areas. First, their look and feel differs. For users of the widely used limma package⁶⁰ (for analysis of microarray data), the data structures and steps in edgeR follow analogously. The packages differ in their default normalization: edgeR uses the trimmed mean of M values⁵⁶, whereas DESeq uses a relative log expression approach by creating a virtual library that every sample is compared against; in practice, the normalization factors are often similar. Perhaps most crucially, the tools differ in the choices made to estimate the dispersion. edgeR moderates feature-level dispersion estimates toward a trended mean according to the dispersion-mean relationship. In contrast, DESeq takes the maximum of the individual dispersion estimates and the dispersion-mean trend. In practice, this means DESeq is less powerful, whereas edgeR is more sensitive to outliers. Recent comparison studies have highlighted that no single method dominates another across all settings^{27,61,62}.

PROTOCOL

Count-based differential expression analysis of RNA sequencing data using R and Bioconductor

Simon Anders¹, Davis J McCarthy^{2,3}, Yunshun Chen^{4,5}, Michal Okoniewski⁶, Gordon K Smyth^{4,7}, Wolfgang Huber¹ & Mark D Robinson^{8,9}

RNA-Seq Workflow at Genomics Core

Understanding DeSeq Results

id	baseMean	baseMeanA	baseMeanB	foldChange	log2FoldChange	pval	padj
∏p9	61.2142079613	114.5039786047	7.9244373179	0.0692066548	-3.8529454185	3.18278695454205E-038	7.8910836963961E-034
Roums4	111.7253852962	3.3863424303	220.064428162	64.9858756734	6.0220542852	3.14004006066747E-016	3.89255066120643E-012
Serinc3	5049.0292624521	2783.4853979737	7314.5731269304	2.6278467752	1.3938811573	8.88017567331908E-011	7.33887318228667E-007
Apoba	687.9674505131	478.6234549012	897.3114461251	1.8747753311	0.9067177166	3.02197214770456E-005	0.1833853013
Psiga	318.5920273479	219.6643392529	417.519715443	1.9007168704	0.926543645	3.69832818348108E-005	0.1833853013
lgdskv12-98	3.4254621585	0.697231647	6.1536926701	8.8258940866	3.1417424346	7.3351076233012E-005	0.2589065108
Ssdlc12a5	17.8775194124	28.617735224	7.1373036008	0.249401413	-2.0034584562	8.04863286246797E-005	0.2589065108
Treb3l3	31.0676067843	13.9815013501	48.1537122185	3.444101675	1.7841277338	8.35418096347497E-005	0.2589065108
Tm16316	1.205992866	2.4119857321	0	0	-Inf	0.0001326348	0.3653795179
Ces1d	553.0344051691	424.629437072	681.4393732662	1.604785994	0.6823809198	0.0002487961	0.6168402322
Vsiq1	134.705417607	168.1043611548	101.3064740591	0.6026403679	-0.7306307796	0.0005224394	1

RNA-Seq at Genomics Core

Experimental Design & Project Management

Céline Helsmoortel
Celine.helsmoortel@uzleuven.be

<u>Gregory Maes</u> <u>Gregory.maes@kuleuven.be</u>

Alvaro Cortes C. alvaro.cortes@uzleuven.be

Laboratory Support

Vanessa Brys vanessa.brys@uzleuven.be

Bioinformatics Analysing & Reporting

Álvaro Cortés C. alvaro.cortes@uzleuven.be

