

JET 101

石油工程数值分析及数据可视化方法 **王斌**

石油工程学院 水射流实验室

考核与要求

- 总成绩 = 课堂小测验10% + 作业40% + 期中大作业 20% + 期末大作业 30%
- 课堂小测验(5次)- 截至日期 当天课程结束
- 课后作业(5次) 截至日期 下一周上课之前
- 期中大作业(固定编程题) 截至日期 2021年1月7日
 - 提交报告和源代码
 - 固定选题
- 期末大作业(开放编程题)- 截至日期 2022年1月28日
 - 提交报告和源代码
 - 自由选题

□ 学习目标

学习目标	学习成果	效果考察	课程活动
应该掌握哪些知识?	应该能够做哪些事情?	怎么考察学生?	应该怎么学习?
 Python环境安装 JupyterNotebook使用 Python语言基础 数据类型 函数 条件判断 循环 	1. 能够安装Python编程环境, Anaconda + VS Code 2. 能够建立Notebook, 运行hello world程序 3. 能够对简单编程问题进行编程	1. 测试学生是否能运行代码 2. 测试Notebook使用情况 3. 课堂10min测验一个简单编程问题	1. 观看Python网络课程 2. 完成课后作业2-6

□ 学习目标

学习目标	学习成果	效果考察	课程活动
应该掌握哪些知识?	应该能够做哪些事情?	怎么考察学生?	应该怎么学习?
1. Numpy和Matplotlib入门 2. Python实战	1. 能够使用Numpy创建向量和矩阵 2. 能够使用Matplotlib画图 3. 能够手动对简单线性代数问题进行编程 4. 能够安装第三方库	1. 测试学生是否能运行代码 2. 测试Notebook使用情况 3. 课堂测验简单问题 • 安装pyvista并运行 • 随机生成二维点云并画图	1. 观看Python网络课程 2. 完成课后作业7, 8, 9 3. 启动中期Project

□ 线性代数复习与实现

□ Python编程环境安装

- Anaconda + VS Code
- https://github.com/WaterJetLab/PGE310-IntroProgramming/tree/main/EnvironmentSetup

□ Python作业和程序演示

□ 课下学习

- 第3章 Python变量和数据类型
- 第4章 Python语言的控制流程
- 第5章 Python的List容器
- 第9章 Python的函数

□ Python小测验题

Assignment 2

□ 作业

Assignment 3,4,5,6

绪论

□ 工程和科学中的方法

绪论

□ 工程和科学中的数值模拟

大数据分析能帮助我们 当做实验数据:

- •太大
- •太复杂
- •太快
- •噪音太大

太空望远镜照片

Halliburton

基因组序列

井下传感器数据

□ 学习目标

学习目标	学习成果	效果考察	课程活动
应该掌握哪些知识?	应该能够做哪些事情?	怎么考察学生?	应该怎么学习?
 1. 下载和使用第三方库 2. Numpy基础 创建向量和矩阵 基本运算 3. Matplotlib画图 	1. 根据需求寻找和使用库 2. 会用		

