(12) UK Patent Application (19) GB (11) 2 371 064 (13) A

(43) Date of A Publication 17.07.2002

(21)	Application No	0200380.4

(22) Date of Filing 09.01.2002

(30) Priority Data

(31) 60261732 (32) 16.01.2001 (31) 60261895 (32) 16.01.2001

(31) **60261895** (32) **16.01.2001** (31) **60263970** (32) **24.01.2001**

(31) 60296092 (31) 10021697 (32) 05.06.2001 (32) 12.12.2001

(71) Applicant(s)
Schlumberger Holdings Limited
(Incorporated in the British Virgin Islands)
PO Box 71, Craigmuir Chambers, Road Town, Tortola,
British Virgin Islands

(72) Inventor(s)

Craig D Johnson Patrick W Bixenman (51) INT CL7

E21B 43/10 33/128

(52) UK CL (Edition T) E1F FKA FLA F205

(56) Documents Cited

WO 99/02818 A1 US 5667011 A WO 01/83943 A1

58) Field of Search

UK CL (Edition T) E1F FJF FLA F205 INT CL⁷ E21B 33/12B 43/08 43/10 EPODOC, WPI, JAPIO

(74) Agent and/or Address for Service

Brian D Stoole

WesternGeco Limited, Schlumberger House, Buckingham Gate, GATWICK, West Sussex, RH6 0NZ, United Kingdom

(54) Abstract Title Packer formed from a tubular having bistable cells

(57) A packer (80) for use in a well bore is constructed from a tubular (90) having a region (80) formed from a number of bistable cells (23, 83). The portion (80) of the tubular (90) which is expanded to form the packer, has a seal (84) thereon. The seal (84) may be formed from an elastomer and a resin or catalyst may be employed to allow the seal (84) to harden after setting.

FIG. 4A

FIG. 4A

FIG. 5A

FIG. 5B

FIG. 6B

FIG. 7A

FIG. 7C

FIG. 7D

FIG. 9A

FIG. 9R

FIG. 11

FIG. 12

FIG. 13

FIG. 18B

FIG. 19

FIG. 21

WELLBORE ISOLATION TECHNIQUE

FIELD OF THE INVENTION

This invention relates to equipment that can be used in the drilling and completion of boreholes in an underground formation and in the production of fluids from such wells.

BACKGROUND OF THE INVENTION

Fluids such as oil, natural gas and water are obtained from a subterranean geologic formation (a "reservoir") by drilling a well that penetrates the fluid-bearing formation. Once the well has been drilled to a certain depth the borehole wall is supported to prevent collapse.

In many applications, it is desirable to isolate portions of the wellbore. Typically, one or more packers are deployed within the casing string and moved to a desired location within the wellbore. The packer is expanded at the desired location to form a boundary to fluid flow from one region of the wellbore to another. Often, packers are deployed with other tubulars to isolate desired regions of the annulus formed around the tubular.

It would be desirable to have a simple, functional wellbore isolation device able to function as a packer and/or a variety of other types of isolation devices.

SUMMARY OF THE INVENTION

In one aspect of the present invention, a technique is provided for isolating regions of a wellbore from unwanted fluid flow. The technique utilizes an expandable member that may be deployed at a desired location in a wellbore and then expanded outwardly. According to one aspect of the invention, the expandable device is utilized as a packer.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:

Figures 1A and 1B are illustrations of the forces imposed to make a bistable structure;

Figure 2A and 2B show force-deflection curves of two bistable structures;

Figures 3A - 3F illustrate expanded and collapsed states of three bistable cells with various thickness ratios;

Figures 4A and 4B illustrate a bistable expandable tubular in its expanded and collapsed states;

Figures 4C and 4D illustrate a bistable expandable tubular in collapsed and expanded states within a wellbore;

Figures 5A and 5B illustrate an expandable packer type of deployment device;

Figures 6A and 6B illustrate a mechanical packer type of deployment device;

Figures 7A - 7D illustrate an expandable swage type of deployment device;

Figures 8A - 8D illustrate a piston type of deployment device;

Figures 9A and 9B illustrate a plug type of deployment device;

Figures 10A and 10B illustrate a ball type of deployment device;

Figure 11 is a schematic of a wellbore utilizing an expandable bistable tubular;

Figure 12 illustrates a motor driven radial roller deployment device;

Figure 13 illustrates a hydraulically driven radial roller deployment device;

Figure 14 is a cross sectional view of one embodiment of the packer of the present invention;

Figure 15 is a cross sectional view of another embodiment of the packer of the present invention;

Figure 16 is a side elevation view of an embodiment of the present invention in a contracted state;

Figure 17 is a side elevation view of an embodiment of the present invention in an expanded state;

Figures 18A-C are schematic views of an alternative embodiment of the present invention;

Figure 19 is a perspective view of an alternative embodiment of the present invention;

Figure 20 is a schematic view of an alternative embodiment of the present invention;

Figure 21 is a schematic view of an alternative embodiment of the present invention;

Figure 22 is a cross-sectional view of an alternative embodiment of the present invention;

Figure 23 is a cross-sectional view taken generally along the axis of a system for utilizing a wellbore isolation device according to one embodiment of the invention; and

Figure 24 is a view similar to Figure 23 but showing an expandable component in its expanded state.

While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Bistable devices used in the present invention can take advantage of a principle illustrated in Figures 1A and 1B. Figure 1A shows a rod 10 fixed at each end to rigid supports 12. If the rod 10 is subjected to an axial force it begins to deform as shown in Figure 1B. As the axial force is increased rod 10 ultimately reaches its Euler buckling limit and deflects to one of the two stable positions shown as 14 and 15. If the buckled rod is now clamped in the buckled position, a force at right angles to the long axis can cause the rod to move to either of the stable positions but to no other position. When the rod is

subjected to a lateral force it must move through an angle ${\mathfrak g}$ before deflecting to its new stable position.

Bistable systems are characterized by a force deflection curve such as those shown in Figures 2A and 2B. The externally applied force 16 causes the rod 10 of Fig. 1B to move in the direction X and reaches a maximum 18 at the onset of shifting from one stable configuration to the other. Further deflection requires less force because the system now has a negative spring rate and when the force becomes zero the deflection to the second stable position is spontaneous.

The force deflection curve for this example is symmetrical and is illustrated in Figure 2A. By introducing either a precurvature to the rod or an asymmetric cross section the force deflection curve can be made asymmetric as shown in Figure 2B. In this system the force 19 required to cause the rod to assume one stable position is greater than the force 20 required to cause the reverse deflection. The force 20 must be greater than zero for the system to have bistable characteristics.

Bistable structures, sometimes referred to as toggle devices, have been used in industry for such devices as flexible discs, over center clamps, hold-down devices and quick release systems for tension cables (such as in sailboat rigging backstays).

Instead of using the rigid supports as shown in Figures 1A and 1B, a cell can be constructed where the restraint is provided by curved struts connected at each end as shown in Figures 3A - 3F. If both struts 21 and 22 have the same

thickness as shown in Figures 3A and 3B, the force deflection curve is linear and the cell lengthens when compressed from its open position Figure 3B to its closed position Figure 3A. the cell struts have different thicknesses, as shown in Figures 3C - 3F, the cell has the force deflection characteristics shown in Figure 2B, and does not change in length when it moves between its two stable positions. An expandable bistable tubular can thus be designed so that as the radial dimension expands, In one example, if the the axial length remains constant. thickness ratio is over approximately 2:1, the heavier strut resists longitudinal changes. By changing the ratio of thickto-thin strut dimensions, the opening and closing forces can be changed. For example, Figures 3C and 3D illustrated a thickness ratio of approximately 3:1, and Figures 3E and 3F illustrate a thickness ratio of approximately 6:1.

An expandable bore bistable tubular, such as casing, a tube, a patch, or pipe, can be constructed with a series of circumferential bistable connected cells 23 as shown in Figures 4A and 4B, where each thin strut 21 is connected to a thick strut 22. The longitudinal flexibility of such a tubular can be. modified by changing the length of the cells and by connecting each row of cells with a compliant link. Further, the force deflection characteristics and the longitudinal flexibility can also be altered by the design of the cell shape. Figure 4A illustrates an expandable bistable tubular 24 in its expanded expandable illustrates the configuration while 4B Figure contracted orcollapsed its 24 in bistable tubular Within this application the term "collapsed" is configuration. used to identify the configuration of the bistable element or device in the stable state with the smallest diameter, it is not

meant to imply that the element or device is damaged in any way. In the collapsed state, bistable tubular 24 is readily introduced into a wellbore 29, as illustrated in Figure 4C. Upon placement of the bistable tubular 24 at a desired wellbore location, it is expanded, as illustrated in Figure 4D.

The geometry of the bistable cells is such that the tubular cross-section can be expanded in the radial direction to increase the overall diameter of the tubular. As the tubular expands radially, the bistable cells deform elastically until a specific geometry is reached. At this point the bistable cells move, e.g. snap, to a final expanded geometry. materials and/or bistable cell designs, enough energy can be released in the elastic deformation of the cell (as each bistable cell snaps past the specific geometry) that the expanding cells are able to initiate the expansion of adjoining bistable cells past the critical bistable cell geometry. Depending on the deflection curves, a portion or even an entire length of bistable expandable tubular can be expanded from a single point.

In like manner if radial compressive forces are exerted on an expanded bistable tubular, it contracts radially and the bistable cells deform elastically until a critical geometry is reached. At this point the bistable cells snap to a final collapsed structure. In this way the expansion of the bistable tubular is reversible and repeatable. Therefore the bistable tubular can be a reusable tool that is selectively changed between the expanded state as shown in Figure 4A and the collapsed state as shown in Figure 4B.

In the collapsed state, as in Figure 4B, the bistable expandable tubular is easily inserted into the wellbore and placed into position. A deployment device is then used to change the configuration from the collapsed state to the expanded state.

In the expanded state, as in Figure 4A, design control of the elastic material properties of each bistable cell can be such that a constant radial force can be applied by the tubular wall to the constraining wellbore surface. The material properties and the geometric shape of the bistable cells can be designed to give certain desired results.

One example of designing for certain desired results is an expandable bistable tubular string with more than one diameter throughout the length of the string. This can be useful in boreholes with varying diameters, whether designed that way or as a result of unplanned occurrences such as formation washouts or keyseats within the borehole. This also can be beneficial when it is desired to have a portion of the bistable expandable device located inside a cased section of the well while another portion is located in an uncased section of the well. Figure 11 A wellbore 40 is illustrates one example of this condition. drilled from the surface 42 and comprises a cased section 44 and an openhole section 46. An expandable bistable device 48 having segments 50, 52 with various diameters is placed in the well. The segment with a larger diameter 50 is used to stabilize the openhole section 46 of the well, while the segment having a reduced diameter 52 is located inside the cased section 44 of the well.

Bistable collars or connectors 24A (see Figure 4C) can be designed to allow sections of the bistable expandable tubular to be joined together into a string of useful lengths using the same principle as illustrated in Figure 4A and 4B. bistable connector 24A also incorporates a bistable cell design that allows it to expand radially using the same mechanism as for the bistable expandable tubular component. Exemplary bistable connectors have a diameter slightly larger than the The bistable expandable tubular sections that are being joined. connector is then placed over the ends of the two sections and mechanically attached to the expandable tubular Mechanical fasteners such as screws, rivets or bands can be used to connect the connector to the tubular sections. connector typically is designed to have an expansion rate that is compatible with the expandable tubular sections, so that it continues to connect the two sections after the expansion of the two segments and the connector.

Alternatively, the bistable connector can have a diameter smaller than the two expandable tubular sections joined. Then, the connector is inserted inside of the ends of the tubulars and mechanically fastened as discussed above. Another embodiment would involve the machining of the ends of the tubular sections on either their inner or outer surfaces to form an annular recess in which the connector is located. A connector designed to fit into the recess is placed in the recess. The connector would then be mechanically attached to the ends as described above. In this way the connector forms a relatively flush-type connection with the tubular sections.

A conveyance device 31 transports the bistable expandable tubular lengths and bistable connectors into the wellbore and to the correct position. (See Figures 4C and 4D). The conveyance device may utilize one or more mechanisms such as wireline cable, coiled tubing, coiled tubing with wireline conductor, drill pipe, tubing or casing.

A deployment device 33 can be incorporated into the overall assembly to expand the bistable expandable tubular and connectors. (See Figures 4C and 4D). Deployment devices can be of numerous types such as an inflatable packer element, a mechanical packer element, an expandable swage, a piston apparatus, a mechanical actuator, an electrical solenoid, a plug type apparatus, e.g. a conically shaped device pulled or pushed through the tubing, a ball type apparatus or a rotary type expander as further discussed below.

An inflatable packer element is shown in Figures 5A and 5B and is a device with an inflatable bladder, element, or bellows incorporated into the bistable expandable tubular system bottom hole assembly. In the illustration of Figure 5A, the inflatable packer element 25 is located inside the entire length, or a portion, of the initial collapsed state bistable tubular 24 and any bistable expandable connectors (not shown). Once the bistable expandable tubular system is at the correct deployment depth, the inflatable packer element 25 is expanded radially by pumping fluid into the device as shown in Figure 5B. The inflation fluid can be pumped from the surface through tubing or drill pipe, a mechanical pump, or via a downhole electrical pump which is powered via wireline cable. As the inflatable packer element 25 expands, it forces the bistable expandable tubular 24

to also expand radially. At a certain expansion diameter, the inflatable packer element causes the bistable cells in the tubular to reach a critical geometry where the bistable "snap" effect is initiated, and the bistable expandable tubular system expands to its final diameter. Finally the inflatable packer element 25 is deflated and removed from the deployed bistable expandable tubular 24.

A mechanical packer element is shown in Figures 6A and 6B and is a device with a deformable plastic element 26 that expands radially when compressed in the axial direction. The force to compress the element can be provided through a compression mechanism 27, such as a screw mechanism, cam, or a hydraulic piston. The mechanical packer element deploys the bistable expandable tubulars and connectors in the same way as the inflatable packer element. The deformable plastic element 26 applies an outward radial force to the inner circumference of the bistable expandable tubulars and connectors, allowing them in turn to expand from a contracted position (see Figure 6A) to a final deployment diameter (see Figure 6B).

An expandable swage is shown in Figures 7A - 7D and comprises a series of fingers 28 that are arranged radially around a conical mandrel 30. Figures 7A and 7C show side and top views respectively. When the mandrel 30 is pushed or pulled through the fingers 28 they expand radially outwards, as illustrated in Figures 7B and 7D. An expandable swage is used in the same manner as a mechanical packer element to deploy a bistable expandable tubular and connector.

A piston type apparatus is shown in Figures 8A - 8D and

comprises a series of pistons 32 facing radially outwardly and used as a mechanism to expand the bistable expandable tubulars and connectors. When energized, the pistons 32 apply a radially directed force to deploy the bistable expandable tubular assembly as per the inflatable packer element. Figures 8A and 8C illustrate the pistons retracted while Figures 8B and 8D show the pistons extended. The piston type apparatus can be actuated hydraulically, mechanically or electrically.

A plug type actuator is illustrated in Figures 9A and 9B and comprises a plug 34 that is pushed or pulled through the bistable expandable tubulars 24 or connectors as shown in Figure 9A. The plug is sized to expand the bistable cells past their critical point where they will snap to a final expanded diameter as shown in Figure 9B.

A ball type actuator is shown in Figures 10A and 10B and operates when an oversized ball 36 is pumped through the middle of the bistable expandable tubulars 24 and connectors. To prevent fluid losses through the cell slots, an expandable elastomer based liner 38 is run inside the bistable expandable tubular system. The liner 38 acts as a seal and allows the ball 36 to be hydraulically pumped through the bistable tubular 24 and connectors. The effect of pumping the ball 36 through the bistable expandable tubulars 24 and connectors is to expand the cell geometry beyond the critical bistable point, allowing full expansion to take place as shown in Figure 10B. Once the bistable expandable tubulars and connectors are expanded, the elastomer sleeve 38 and ball 36 are withdrawn.

Radial roller type actuators also can be used to expand the

bistable tubular sections. Figure 12 illustrates a motor driven expandable radial roller tool. The tool comprises one or more sets of arms 58 that are expanded to a set diameter by means of a mechanism and pivot. On the end of each set of arms is a roller 60. Centralizers 62 can be attached to the tool to locate it correctly inside the wellbore and the bistable tubular 24. A motor 64 provides the force to rotate the whole assembly, the roller(s) circumferentially inside thus turning The axis of the roller(s) is such as to allow the roller(s) to rotate freely when brought into contact with the inner surface of the tubular. Each roller can be conicallyshaped in section to increase the contact area of roller surface to the inner wall of the tubular. The rollers are initially retracted and the tool is run inside the collapsed bistable tubular. The tool is then rotated by the motor 64, and rollers 60 are moved outwardly to contact the inner surface of the bistable tubular. Once in contact with the tubular, the rollers are pivoted outwardly a greater distance to apply an outwardly radial force to the bistable tubular. The outward movement of the rollers can be accomplished via centrifugal force or an appropriate actuator mechanism coupled between the motor 64 and the rollers 60.

The final pivot position is adjusted to a point where the bistable tubular can be expanded to the final diameter. The tool is then longitudinally moved through the collapsed bistable tubular, while the motor continues to rotate the pivot arms and rollers. The rollers follow a shallow helical path 66 inside the bistable tubular, expanding the bistable cells in their path. Once the bistable tubular is deployed, the tool rotation is stopped and the roller retracted. The tool is then withdrawn

from the bistable tubular by a conveyance device 68 that also can be used to insert the tool.

Figure 13 illustrates a hydraulically driven radial roller deployment device. The tool comprises one or more rollers 60 that are brought into contact with the inner surface of the bistable tubular by means of a hydraulic piston 70. The outward radial force applied by the rollers can be increased to a point where the bistable tubular expands to its final diameter. Centralizers 62 can be attached to the tool to locate it correctly inside the wellbore and bistable tubular 24. rollers 60 are initially retracted and the tool is run into the collapsed bistable tubular 24. The rollers 60 are then deployed and push against the inside wall of the bistable tubular 24 to expand a portion of the tubular to its final diameter. entire tool is then pushed or pulled longitudinally through the bistable tubular 24 expanding the entire length of bistable Once the bistable tubular 24 is deployed in its cells 23. expanded state, the rollers 60 are retracted and the tool is withdrawn from the wellbore by the conveyance device 68 used to insert it. By altering the axis of the rollers 60, the tool can be rotated via a motor as it travels longitudinally through the bistable tubular 24.

Power to operate the deployment device can be drawn from one or a combination of sources such as: electrical power supplied either from the surface or stored in a battery arrangement along with the deployment device, hydraulic power provided by surface or downhole pumps, turbines or a fluid accumulator, and mechanical power supplied through an

appropriate linkage actuated by movement applied at the surface or stored downhole such as in a spring mechanism.

The bistable expandable tubular system is designed so the internal diameter of the deployed tubular is expanded to maintain a maximum cross-sectional area along the expandable tubular. This feature enables mono-bore wells to be constructed and facilitates elimination of problems associated with traditional wellbore casing systems where the casing outside diameter must be stepped down many times, restricting access, in long wellbores.

The bistable expandable tubular system can be applied in numerous applications such as an expandable open hole liner where the bistable expandable tubular 24 is used to support an open hole formation by exerting an external radial force on the wellbore surface. As bistable tubular 24 is radially expanded, the tubular moves into contact with the surface forming wellbore These radial forces help stabilize the formations and allow the drilling of wells with fewer conventional casing strings. The open hole liner also can comprise a material, e.g. a wrapping, that reduces the rate of fluid loss from the wellbore into the formations. The wrapping can be made from a variety of expandable metallic and/or elastomeric materials including By reducing fluid loss into the formations, the materials. expense of drilling fluids can be reduced and the risk of losing circulation and/or borehole collapse can be minimized.

Liners also can be used within wellbore tubulars for purposes such as corrosion protection. One example of a corrosive environment is the environment that results when

carbon dioxide is used to enhance oil recovery from a producing formation. Carbon dioxide (CO₂) readily reacts with any water (H₂O) that is present to form carbonic acid (H₂CO₃). Other acids can also be generated, especially if sulfur compounds are present. Tubulars used to inject the carbon dioxide as well as those used in producing wells are subject to greatly elevated corrosion rates. The present invention can be used to place protective liners, e.g. a bistable tubular 24, within an existing tubular to minimize the corrosive effects and to extend the useful life of the wellbore tubulars.

Another exemplary application involves use of the bistable tubular 24 as an expandable perforated liner. The open bistable cells in the bistable expandable tubular allow unrestricted flow from the formation while providing a structure to stabilize the borehole.

an expandable sand screen where the bistable cells are sized to act as a sand control screen. Also, a filter material can be combined with the bistable tubular as explained below. For example, an expandable screen element can be affixed to the bistable expandable tubular. The expandable screen element can be formed as a wrapping around bistable tubular 24. It has been found that the imposition of hoop stress forces onto the wall of a borehole will in itself help stabilize the formation and reduce or eliminate the influx of sand from the producing zones, even if no additional screen element is used.

The above described bistable expandable tubulars can be made in a variety of manners such as: cutting appropriately

shaped paths through the wall of a tubular pipe thereby creating an expandable bistable device in its collapsed state; cutting patterns into a tubular pipe thereby creating an expandable bistable device in its expanded state and then compressing the device into its collapsed state; cutting appropriate paths through a sheet of material, rolling the material into a tubular shape and joining the ends to form an expandable bistable device in its collapsed state; or cutting patterns into a sheet of material, rolling the material into a tubular shape, joining the adjoining ends to form an expandable bistable device in its expanded state and then compressing the device into its collapsed state.

The materials of construction for the bistable expandable tubulars can include those typically used within the oil and gas industry such as carbon steel. They can also be made of specialty alloys (such as a monel, inconel, hastelloy or tungsten-based alloys) if the application requires.

The configurations shown for the bistable tubular 24 are illustrative of the operation of a basic bistable cell. Other configurations may be suitable, but the concept presented is also valid for these other geometries.

In Figures 14 and 15, a packer 80 formed of bistable cells is illustrated. The packer 80 has a tubular 82 formed of bistable cells 83, such as those previously discussed. In addition, the packer 80 has at least one seal 84 along at least a portion of its length. An exemplary seal 84 may include one or more layers positioned internally, externally, or both with

respect to tubular 82. Additionally, the layer(s) may be intermixed with the openings formed in the cells.

Figure 14 illustrates an embodiment having an internal and an external seal 84. Figure 15 illustrates a packer 80 having only an internal seal 84. The seal 84 may be formed of an elastomer or other material. Further, the properties of the seal 84 allow it to at least match the expansion ratio of the tubular 82. Folds or other design characteristics of the seal 84 may be used to facilitate the expansion.

Also, a resin or catalyst 85 may be used to allow the seal In one alternative embodiment a 84 to harden after setting. resin or other flowable material is placed between the layers of seals 84 (as in Figure 14). Once the packer 80 is placed in the well and expanded, the flowable material may be hardened or otherwise altered to improve the sealing characteristics of the In some applications, hardening of the resin or packer 80. other material requires heating of the material by a service The packer 80 can be expanded as described herein, and In one embodiment of may comprise a variety of bistable cells. use, the packer 80 is deployed on a run-in tool that includes an The packer 80 is positioned at the desired expanding tool. location and expanded to seal against the walls of the casing or other tubular. Typically, the packer 80 is connected to a tubing or other conduit that extends downhole below the packer The packer 80 provides a seal in the annulus to prevent or restrict fluid flow longitudinally in the well (the typical use The present invention also may act as a well for packers). anchor which includes or excludes the seal 84.

In Figure 16, an alternative embodiment is illustrated in which the packer 80 forms a portion of a conduit. embodiment shown, a well conduit 90 (such as a tubing) has a portion (marked as the packer 80) that is cut to form the bistable cells. The packer portion 80 has a seal 84 thereon as In Figure 16, a portion of the seal previously described. material 84 is illustrated as removed to reveal the bistable cells 83 in the underlying tubular 82. In Figure 17, the packer portion 80 is illustrated in its expanded state. It should be noted that in typical applications the well conduit 90 which does not have bistable cells formed therein, does not expand. Thus, one embodiment for attaching the well conduit to the packer 80 is to form the packer 80 as an integral part of the well conduit 90 (note that a welded connection resembles this embodiment and is an alternative method of forming the present invention). Other methods include conventional methods of nonintegral connection.

In alternative embodiments, the well conduit has a plurality of bistable cell packers 80 formed thereon. In yet another alternative embodiment, a portion or portions 91 of the well conduit in addition to the packer portions 80 are formed of bistable cells so that these other portions also undergo expansion (see Figure 17). The other portions may or may not have a material applied thereto. For example, the other portion may have a screen or filter material applied thereto to provide a well sand screen.

Referring to Figures 18A-C, an alternative design of the present invention is illustrated in a schematic, partial cross-sectional view. The expandable packer is shown in the retracted

expanded states, respectively, and in partial elevational view (Figure 18C). The packer shown includes a base tubular 82 formed of thin struts 21 and thick struts 22 forming Slats 92 are bistable cells 23/83 as previously described. attached to the tubing 82 at one edge and extend generally longitudinally in the embodiment shown (see Figure Specifically, each slat 92 is attached to the tubing 82 at the and the width of the slats is such that they thick struts 22, overlap at least the adjacent slat when the tubing 82 is in the Although illustrated as having a slat attached expanded state. to each of the thick struts, the packer may have a slat attached to alternate thick struts 22 or in other configurations. Furthermore, the slats may extend in a direction other than the The slats 92 slide over one another longitudinal direction. during expansion so that the outside of the tubing 82 is covered by the overlapping slats 92.

A seal 84 may be attached to the slats 92 to provide the seal for the packer. Although shown in the figures as folded, the seal 84, may have other characteristics that facilitate its ability to expand with the slats 92 and tubular 82. Also, the seal 84 may have other characteristics previously mentioned (e.g., resin, internal seal, etc).

It should be noted that although described as a packer, the present invention may be used to provide isolation over a long length as opposed to a traditional packer or downhole tool which generally seals only a relatively short longitudinal distance. Thus, the present invention may be used in a manner similar to a casing to provide isolation for an extended length.

In Figure 19, a perspective view of packer 80 (or isolation device) having a plurality of slats 92 attached thereto is overlapping arrangement previously an illustrated in The tubing 82 includes end extensions 94 that extend described. longitudinally from the endmost cells. The slats 92 may be attached to the end extensions 94, to certain portions of the thick struts 22 and/or to certain thick struts 22. embodiment, for example, the struts 92 are attached to the thick struts which are longitudinally aligned with the end extensions Although generally shown as attached at an edge of the slats 92, the slats also may attach to the tubing 82 at a position intermediate the edges.

In Figure 20, an expandable tubing (or conduit) 90 is illustrated positioned in a well 100. The conduit 90 includes a plurality of spaced packers 80 or expandable sealing devices. The expandable packers 80 engage the wellbore wall preventing annular flow thereby. Therefore, any microannulus formed between the expandable tubing 90 and the well 100 (which may include a casing) is sealed in the longitudinal direction to restrict or prevent unwanted flow thereby. The conduit 90 may include one or more such packers 80, as desired, to control the flow. Further, the packers 80 may be spaced at regular intervals or at some other predetermined spacing to control the flow in the annulus as needed.

In one example, illustrated schematically in Figure 21, the individual joints of tubing 90 are interconnected by a packer 80 to compartmentalize each joint of conduit from the adjacent joint(s). The packer 80 can be a separate connector as shown in Figure 21 or it can be formed as part of the joint.

Accordingly, the packer 80 can be positioned at an end of the joint 90, in the middle of the joint 90, or at any other location along its length. In one embodiment both conduit 90 and packers 80, of Figures 20 and 21, are formed of bistable cells.

Another embodiment of a downhole device is illustrated in Figure 22. In this embodiment, a downhole tool 110 is formed of an inner tube 112 surrounded by a fluid retention layer 114. An outer tube 116 is disposed to surround fluid retention layer 114.

Inner tube 112, fluid retention layer 114 and outer tube 116 are expandable. For example, inner tube 112 may comprise a plurality of bistable cells 118 to facilitate radial expansion towards the stable, expanded state. Similarly, outer tube 116 may comprise a plurality of bistable cells 120 also designed to facilitate expansion of outer tube 116 towards its stable, The exact arrangement of bistable cells in the expanded state. inner tube 112 and outer tube 116 are optimized according to different tube diameters and desired expansion characteristics. Fluid retention layer 114, on the other hand, may be made from a variety of materials that permit expansion. For example, the layer may be formed from a solid polymeric, e.g. rubber, sheet or an overlapping metallic foil able to uncoil as inner tube 112 and outer tube 116 are expanded. Such an overlapping metal foil can be formed from a plurality of individual, overlapping sheets or from a single coiled sheet.

In the embodiment illustrated, outer tube 116 is rotated slightly such that bistable cells 120 are out of phase with

partially overlap bistable cells 118, as illustrated in Figure 22. This arrangement creates a quasi-solid, fluid-tight structure. The structure can be used as a formation shut-off device, such as a packer, or as an expandable casing patch.

Another system for compartmentalizing portions of a wellbore is labeled as system 130 and illustrated in Figures 23 and 24. System 130 is designed to isolate an annular flow path 132 disposed between a sand screen 134, or other tubular downhole device, and a formation wall 136 defining the wellbore.

During operation of sand screen 134, fluid is drawn from formation wall 136 into the interior of sand screen 134 and produced along a main production fluid path 138. However, if uninterrupted, flow can also be created along annular flow path 132 between sand screen 134 and formation wall 136. This flow along the wellbore wall potentially leads to a variety of problems, such as sanding or formation collapse.

Accordingly, a flow isolation device 140 is mounted to sand screen 134 at one or more desired intervals. Similar to a packer, flow isolation device 140 isolates portions 142 of the annulus between sand screen 134 and formation wall 136, as best illustrated in Figure 24. This isolation blocks or at least inhibits the detrimental flow along annular flow path 132. In one embodiment, flow isolation device 140 can be disposed through sand screen 134 at joints or intervals that separate one expandable screen section from the next. In other embodiments, however, the flow isolation device 140 is placed at a variety of desired locations along sand screen 134. At any of these

locations, flow isolation device 140 can be expanded from a contracted state 144, as illustrated in Figure 23, to an expanded state 146 that creates isolated portions 142 of the annulus, as illustrated in Figure 24.

An exemplary flow isolation device 140 comprises expandable device formed of bistable cells, as discussed above, that permit the device to be moved from contracted state 144 to expanded state 146 when an expansion device is moved through If the flow isolation device 140 extends sand screen 134. radially inwardly into flow path 138 in its contracted state 144, then the expansion mechanism can force flow isolation device 140 to its expanded state 146 without further expanding sand screen 134. Alternatively, both sand screen 134 and flow isolation device 140 can be expanded together until flow isolation device 140 is moved to its expanded state proximate formation wall 136. Flow isolation device 140 also may be formed from a variety of other materials, such as rubber jackets, designed to expand outwardly and seal the wellbore. Regardless of the specific design, blocking all or at least a substantial portion of this unwanted annular flow contributes to the function and longevity of production in a given wellbore.

The particular embodiments disclosed herein are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all

such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.

CLAIMS

- A wellbore isolation device, comprising:
 - an expandable component having a wellbore isolation region, the wellbore isolation region comprising a bistable cell layer that can be expanded to limit fluid flow along a wellbore.
- 2. The wellbore isolation device as recited in claim 1, wherein the expandable component comprises a packer.
- 3. The wellbore isolation device as recited in claim 1, further comprising a sand screen, wherein the expandable component is coupled to the sand screen.
- 4. The wellbore isolation device as recited in claim 1, wherein the bistable cell layer comprises a plurality of bistable cells.
- 5. The wellbore isolation device as recited in claim 2, wherein the bistable cell layer comprises a plurality of bistable cells.
- 6. The wellbore isolation device as recited in claim 5, further comprising a seal disposed about the bistable cell layer.
- 7. The wellbore isolation device as recited in claim 1, wherein the bistable cell layer comprises an inner layer and an outer layer.

- 8. The wellbore isolation device as recited in claim 7, wherein the inner layer and the outer layer are tubular.
- 9. The wellbore isolation device as recited in claim 8, wherein the inner layer and the outer layer each comprise a plurality of bistable cells.
- 10. The wellbore isolation device as recited in claim 9, further comprising a fluid retention layer disposed between the inner layer and the outer layer.
- 11. The wellbore isolation device as recited in claim 9, wherein the bistable cells of the outer layer are out of phase with the bistable cells of the inner layer.
- 12. The wellbore isolation device as recited in claim 1, further comprising a plurality of overlapping slats connected to the bistable cell layer.
 - 13. A method for isolating regions of a well, comprising:

placing a packer with a layer of bistable cells at a desired location in a wellbore; and

expanding the packer.

14. The method as recited in claim 12, further comprising deploying a seal layer around the layer of bistable cells.

- 15. The method as recited in claim 13, further comprising forming the bistable cells through a layer of metallic material.
- 16. The method as recited in claim 14, further comprising wrapping the metallic material into a generally tubular configuration.

17. A packer, comprising:

- a tubular formed of a plurality of bistable cells; and
- a seal member disposed along at least a portion of the tubular.
- 18. The packer as recited in claim 17, wherein the seal member comprises an internal seal.
- 19. The packer as recited in claim 17, wherein the seal member comprises an external seal.
- 20. The packer as recited in claim 18, wherein the seal member comprises an external seal.
- 21. The packer as recited in claim 17, wherein the seal member has an expansion ratio that at least matches an expansion ratio of the tubular.
- 22. The packer as recited in claim 17, further comprising a resin to facilitate hardening of the seal member after expansion.

- 23. The packer as recited in claim 17, further comprising a catalyst to facilitate hardening of the seal member after expansion.
- 24. The packer as recited in claim 17, wherein the seal member comprises a plurality of layers.
- 25. The packer as recited in claim 17, wherein the tubular forms a portion of a well conduit.
- 26. The packer as recited in claim 25, wherein the well conduit comprises at least one additional region of bistable cells.
- 27. The packer as recited in claim 17, further comprising a plurality of overlapping slats mounted to the tubular.
- 28. The packer as recited in claim 27, further comprising a seal mounted to the slats.
- 29. A system for isolating a portion of a wellbore, comprising:

means for forming an isolation device with a plurality of bistable cells; and

means for expanding the plurality of bistable cells within a wellbore.

30. A system for forming at least a partial seal along a wellbore, comprising:

- _____
- a conduit patch having an expandable tubular component comprising a bistable cell.
- 31. The system as recited in claim 30, further comprising a seal coupled to the expandable tubular component.
- 32. The system as recited in claim 30, wherein the bistable cell comprises a plurality of bistable cells.
- 33. The system as recited in claim 31, wherein the bistable cell is a plurality of bistable cells.
- 34. The system as recited in claim 32, further comprising a resin to facilitate hardening of the seal after expansion of the expandable tubular component.
- 35. The system as recited in claim 32, further comprising a catalyst to facilitate hardening of the seal after expansion of the expandable tubular component.
- 36. A system for facilitating a desired fluid flow within a wellbore, comprising:
 - a tubular having a plurality of separate portions formed of bistable cells.
- 37. The system as recited in claim 36, wherein at least one portion of the plurality of separate portions comprises a packer.

- ____
- 38. The system as recited in claim 37, wherein the packer comprises a seal member.
- 39. The system as recited in claim 38, wherein the seal member is external to the tubular.
- 40. The system as recited in claim 38, wherein the seal member is internal to the tubular.
- 41. The system as recited in claim 36, wherein at least two portions of the plurality of separate portions comprise packers.
- 42. The system as recited in claim 37, wherein at least one portion of the plurality of separate portions comprises a sand screen.

Application No:

GB 0200380.4

1-42

Claims searched:

Examiner:
Date of search:

Dr. Lyndon Ellis 2 May 2002

Patents Act 1977 Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.T): Elf FJF, FLA, FKA, FKF,

Int Cl (Ed.7): E21B

Other: Online: EPODOC, WPI, JAPIO

Documents considered to be relevant:

Category	Identity of document and relevant passage		Relevant to claims	
A, P	WO 01/83943 A1	(Schlumberger)	1	-
A	WO 99/02818 A1	(Petroline)		-
Α	US 5667011	(Shell)		-
		· · · · · · · · · · · · · · · · · · ·		ļ

& Member of the same patent family

E Patent document published on or after, but with priority date earlier than, the filing date of this application.

X Document indicating lack of novelty or inventive step
 Y Document indicating lack of inventive step if combined with one or more other documents of same category.

A Document indicating technological background and/or state of the art.

Document published on or after the declared priority date but before the filing date of this invention.

(12) UK Patent Application (19) GB (11) 2 370 301 (13) A

(43) Date of A Publication 26.06.2002

(21) Application No 0130640.6

(22) Date of Filing 21.12.2001

(30) Priority Data

(31) 60257224

(32) 21.12.2000

(71) Applicant(s)

Baker Hughes Incorporated (Incorporated in USA - Delaware) 3900 Essax Lane, Suite 1200, P.O. Box 4740, Houston, Texas 77210-4740, United States of America

(72) Inventor(s)

Martin P Coronado Edward T Wood Benn A Voll Mohamad F Khodaverdian Ray Vincent Van N Ho

(74) Agent and/or Address for Service Murgitroyd & Company Scotland House, 165-169 Scotland Street,

GLASGOW, G5 8PL, United Kingdom

(51) INT CL7 E21B 43/08 43/10 43/14

(52) UK CL (Edition T) E1F FJF FLW FMU

(56) Documents Cited

GB 2343691 A EP 0360597 A GB 2336383 A

US 6263966 B

US 5901789 A

Field of Search UK CL (Edition T) E1F FJB FJF FLA FLW FMU INT CL7 E21B 43/08 43/10 43/14 Online: WPI EPODOC JAPIO

A method for well completion using an expandable isolation system

(57) A well completion method for isolating at least one zone which comprises running into the wellbore a string with isolators 24, 26 in conjunction with a screen 28 which allows flow from the surrounding formation into the string and expanding the isolators and the screen in the wellbore. The isolators are tubular with a sleeve of an elastomeric sealing material. The screen is made of a weave in one or more layers. The completion assembly includes an inflatable expansion assembly which provides a limited expansion force and/or diameter. A plurality of zones can be isolated on a single trip.

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

FIG. 1a

FIG. 2a

FIG. 3a

FIG. 1c

FIG. 2c

FIG. 3c

FIG. 1d

FIG. 2d

FIG. 3d

FIG. 4a

FIG. 5a

FIG. 4c

FIG. 5c

FIG. 4d

FIG. 5d

FIG. 7

F/G. 9b

FIG. 14

FIG. 20

FIG. 23

FIG. 24

FIG. 25

FIG. 27

FIG. 28

TITLE: EXPANDABLE PACKER ISOLATION SYSTEM 1 2 FIELD OF THE INVENTION 3 The field of this invention is one-trip completion 4 systems, which allow for zone isolation and 5 production using a technique for expansion of 6 screens and isolators, preferably in open hole 7 8 completions. 9 BACKGROUND OF THE INVENTION .10 Typically zonal isolation is desirable in wells with 11 different pressure regimes, incompatible reservoir 12 13 fluids, and varying production life. The typical solution to this issue in the past has been to 14 cement and perforate casing. Many applications 15 further required gravel packing adding an extra 16 measure of time and expense to the completion. The 17 cemented casing also required running cement bond 18 logs to insure the integrity of the cementing job. 19 It was not unusual for a procedure involving 20 cemented casing, gravel packing and zonal isolation 21 using packers to take 5-20 days per zone and cost as 22 much or over a million dollars a zone. Use of cement 23 in packers carried with it concerns of spills and 24 extra trips into the well. Frequently fracturing 25 techniques were employed to increase well 26 productivity but cost to complete was also 27 increased. Sand control techniques, seeking to 28 combine gravel packing and fracturing, also bring on 29 risks of unintended formation damage, which could 30 31 reduce productivity.

32

- 1 In open hole completions, gravel packing was
- 2 difficult to effectively accomplish although there
- 3 were fewer risks in horizontal pay zones. The
- 4 presence of shale impeded the gravel packing
- 5 operation. Proppant packs were used in open hole
- 6 completions, particularly for deviated or horizontal
- 7 open hole wells. Proppant packing involved running a
- 8 screen in the hole and pumping proppants outside of
- 9 it. Proppants such as gravel or ceramic beads were
- 10 effective to control cave-ins but still allowed
- 11 water or gas coning and breakthroughs. Proppant
- 12 packs have been used between activated isolation
- 13 devices such as external casing packers in
- 14 procedures that were complex, time consuming, and
- 15 risky. More recently, a new technique which is the
- 16 subject of a co-pending patent application also
- 17 assigned to Baker Hughes Incorporated a refined
- 18 technique has been developed wherein a proppant pack
- 19 is delivered on both sides of a non-activated
- 20 annular seal. In this technique the seal can
- 21 thereafter be activated against casing or open hole.
- 22 While this technique involved improved zonal
- 23 isolation, it was still costly and involved complex
- 24 delivery tools and techniques for the proppant.

- 26 Shell Oil Company has disclosed more recently,
- 27 techniques for expansion of slotted liners using
- 28 force driven cones. Screens have been mechanically
- 29 expanded, in an effort to eliminate gravel packing
- in open hole completions. The use of cones to expand
- 31 slotted liners suffered from several weaknesses. The
- 32 structural strength of the screens or slotted liners

being expanded suffered as a tradeoff to allow the 1 2 necessary expansion desired. When placed in service such structures could collapse at differential 3 4 pressures on expanded screens of as low as 2-300 pounds per square inch (PSI). Expansion techniques 5 6 suffered from other shortcomings such as the potential for rupture of a tubular or screen upon 7 expansion. Additionally, where the well bore is 8 9 irregular the cone expander will not apply uniform 10 expansion force to compensate for void areas in the 11 well bore. This can detract from seal quality. expansion results in significant longitudinal 12 shrinkage, which potentially can misalign the screen 13 being expanded from the pay zone, if the initial 14 15 length is sufficiently long. Due to longitudinal shrinkage, overstress can occur particularly when 16 expanding from bottom up. Cone expansions also 17 18 require high pulling forces in the order of 250,000 pounds. Slotted liner is also subject to relaxation 19 after expansion. Cone expansions can give irregular 20 fracturing effect, which varies with the borehole 21 22 size and formation characteristics. 23 Accordingly the present invention has as its main 24 25 objective the ability to replace traditional cemented casing completion procedures. This is 26 accomplished by running isolators in pairs for each 27 28 zone to be produced with a screen in between. The 29 screen and isolators are delivered in a single trip and expanded down hole using an inflatable device 30 31 to preferably expand the isolators. The screens can

also be similarly expanded using an inflatable tool

or by virtue of mechanical expansion, depending on 1 the application. Each zone can be isolated in a 2 single trip. The completion assembly and the 3 expansion tool can selectively be run in together or on separate trips. These and other features of the invention can be more readily understood by a review 6 of the description of the preferred embodiment, 7 which appears below. 8 9 SUMMARY OF THE INVENTION 10 A completion technique to replace cementing casing, 11 perforating, fracturing, and gravel packing with an 12 open hole completion is disclosed. Each zone to be 13 isolated by the completion assembly features a pair 14 of isolators, which are preferably tubular with a 15 sleeve of a sealing material such as an elastomer on 16 the outer surface. The screen is preferably made of 17 a weave in one or more layers with a protective 18 outer, and optionally an inner, jacket with 19 openings. The completion assembly can be lowered on 20 rigid or coiled tubing which, internally to the 21 completion assembly, includes the expansion 22 assembly. The expansion assembly is preferably an 23 inflatable design with features that provide limits 24 to the delivered expansion force and/or diameter. A 25 plurality of zones can be isolated in a single trip. 26 27 DETAILED DESCRIPTION OF THE DRAWINGS 28 Figures 1a-d, are a sectional elevation view of the 29 open hole completion assembly at the conclusion of 30 running in; 31

1 Figures 2a-d, are a sectional elevation view of the

- open hole completion assembly showing the upper
- 3 optional packer in a set position;
- 4 Figures 3a-d, are a sectional elevation view of the
- 5 open hole completion assembly with a zone isolated
- 6 at its lower end;
- 7 Figures 4a-d, are a sectional elevation view of the
- 8 open hole completion assembly with a zone isolated
- 9 at its upper end;
- 10 Figures 5a-d, are a sectional elevation of the open
- 11 hole completion assembly in the production mode;
- 12 Figure 6 is a sectional elevation view of the
- 13 circulating valve of the expansion assembly;
- 14 Figure 7 is a sectional view elevation of the
- inflation valve mounted below the circulating valve;
- 16 Figures 8a-b are a sectional elevation view of the
- injection control valve mounted below the
- 18 circulating valve;
- 19 Figures 9a-b are a sectional elevation view of the
- 20 inflatable expansion tool mounted below the
- 21 injection control valve;
- 22 Figure 10 is a sectional elevation view of the drain
- valve mounted below the inflatable expansion tool;
- 24 Figure 11 a detail of a first embodiment of the
- 25 sealing element on an isolator in the run in
- 26 position;
- 27 Figure 12 is the view of Fig. 11 in the set
- 28 position;
- 29 Figure 13 is a second alternative isolator seal in
- 30 the run in position;
- 31 Figure 14 is the view of Fig. 13 in the set
- 32 position;

- 1 Figure 15 is a third alternative isolator seal in
- 2 the run in position featuring end sleeves;
- 3 Figure 16 is a detail of an end sleeve shown in Fig.
- 4 15;
- 5 Figure 17 is the view of Fig. 15 in the set
- 6 position;
- 7 Figure 18 is a fourth alternative isolator seal
- 8 showing a filled cavity beneath it, in the run in
- 9 position;
- 10 Figure 19 is the view of Fig. 18 in the set
- 11 position;
- 12 Figure 20 is the view taken along line 20-20 shown
- 13 in Fig. 19;
- 14 Figure 21 illustrates a sectional elevation view of
- an undulating seal on the isolator in the run in
- 16 position;
- 17 Figure 22 is the view of Fig. 21 in the set
- 18 position;
- 19 Figure 23 is another alternative isolator with a
- 20 wall re-enforcing feature shown in section during
- 21 run-in;
- Figure 24 is the view of Fig. 23 after the mandrel
- 23 has been expanded;
- 24 Figure 25 is the view of Fig. 24 after expansion of
- 25 an insert sleeve with the bladder.
- 26 Figure 26 is a section view of an unexpanded
- 27 isolator showing travel limiting sleeve;
- Figure 27 is the view of Fig. 26 after maximum
- 29 expansion of the isolator; and
- Figure 28 is the view at line 28-28 of Fig. 26.

32 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to Figs. la-d, the completion assembly C 1 is illustrated in the run in position in well bore 2 10. At its lower end, as seen in Figs. 1d-5d are a 3 wash down shoe 12 and a seal sub 14 both of known design and purpose. Working up-hole from seal sub 14 5 are a pair of isolators 16 and 18 which are spaced 6 apart to allow mounting a screen assembly 20 in 7 between. Further up-hole is a section of tubular 22 8 whose length is determined by the spacing of the 9 zones to be isolated in the well bore 10. Further 10 up-hole is another set of isolators 24 and 26 having 11 a screen assembly 28 in between. Optionally at the 12 top of the completion assembly C is a packer 30, 13 which is selectively settable against the well bore 14 10, as shown in Fig. 2a. Those skilled in the art 15 will appreciate that the completion assembly 16 described is for isolation of two distinct producing 17 zones. The completion assembly C can also be 18 configured for one zone or three or more zones by 19 20 repeating the pattern of a pair of isolators above 21 and below a screen for each zone. 22 The completion assembly C can be run in on an 23 expansion assembly E. Located on the expansion 24 25 assembly E is a setting tool 32 which supports the packer 30 and the balance of the completion assembly 26 C for run in. Ultimately, the setting tool 32 27 actuates the packer 30 in a known manner. The 28 majority of the expansion assembly E is nested 29 within the completion assembly C for run in. At the 30 lower end 34 of the expansion assembly E, there is 31

engagement into a seal bore 36 located in seal sub

1 14. If this arrangement is used, circulation during 2 run in is possible as indicated by the arrows shown in Figs. 1a-d. 3 4 The expansion assembly E shown in Figs. 1a-d through 5 6 5a-d is illustrated schematically featuring an expanding bladder 38. The bladder 38 is shown above 7 8 the seal bore 36 in an embodiment where flow through 9 the expansion assembly E can exit its lower end 34. 10 In a known manner one or more balls can be dropped to land below the bladder 38 so that it can be 11 12 selectively inflated and deflated at desired 13 locations. While this is one way to actuate the 14 bladder 38, the preferred technique is illustrated in Figs. 6-10. Using the equipment shown in these 15 16 Figures, the placement of the seal bore 36 will need 17 to be above the bladder 38, as will be explained 18 below. 19 At this point, the overall process can be readily 20 21 understood. The completion assembly C is supported 22 off of the expansion assembly E for running in to 23 the well bore in tandem on rigid or coiled tubing 24 40. The setting tool 32 engages the packer 30 for support. Circulation is possible during run in as 25 26 flow goes through the expansion assembly E and, in 27 the preferred embodiment shown in Fig. 7, exits 28 laterally through the inflation valve 42 at ports 44 29 which are disposed below a seal bore such as 36. It should be noted that the inflation valve 42 (see 30 31 Fig. 7) is disposed above screen expansion tool 47 32 (see Figs. 9a-b), which comprises the bladder 38.

- 1 During run in, the bladder 38 is deflated and
- 2 circulation out of ports 44 goes around deflated
- 3 bladder 38 and out through wash down shoe 14, or an

· 9

- 4 equivalent lower outlet, and back to the surface
- 5 through annulus 46.
- 6 The packer 30 is set using the setting tool 32, in a
- 7 known manner which puts a longitudinal compressive
- 8 force on element 48 pushing it against the well bore
- 9 10, closing off annulus 46 (as shown in Fig. 2a).
- 10 The use of packer 30 is optional and other devices
- 11 can be used to initially secure the position of
- 12 completion assembly C prior to expansion, without
- 13 departing from the invention.
- 14 The expansion assembly is then actuated from the
- 15 surface to inflate bladder 38 so as to diametrically
- 16 expand the lowermost isolator 16, followed by screen
- 20, isolator 18, and, if present, isolator
- 18 24, followed by screen 28, and isolator 26. These
- 19 items can be expanded from bottom to top as
- 20 described or in a reverse order from top to bottom
- or in any other desired sequence without departing
- 22 from the invention. The expansion technique involves
- 23 selective inflation and deflation of bladder 38
- 24 followed by a repositioning of the expansion
- 25 assembly E until all the desired zones are isolated
- 26 by expansion of a pair of isolators above and below
- an expanded screen. The number of repositioning
- 28 steps is dependent on the length of bladder 38 and
- 29 the length and number of distinct isolation
- 30 assemblies for the respective zones to be isolated.
- 31 Fig.3c shows the lower screen 20 and the lowermost
- 32 isolator 16 already expanded. Fig. 4b shows the

- upper screen 28 being expanded, while Figs. 5a-d
- 2 reveal the conclusion of expansion which results in
- 3 isolation of two zones, or stated differently, two
- 4 production locations in the well bore 10. This
- 5 Figure also illustrates that the expansion assembly
- 6 E has been removed and a production string 50 having
- 7 lower end seals 52 has been tagged into seal bore 54
- 8 in packer 30. It should be noted that tubular 22
- 9 has not been expanded as it lies between the zones
- of interest that require isolation.
- 11 Now that the overall method has been described, the
- various components, which make up the preferred
- embodiment of the expansion assembly E, will be
- 14 further explained with reference to Figs. 6-10.
- 15 Going from up-hole to down hole the expansion
- assembly E comprises: a circulating valve 56 (see
- 17 Fig. 6); an inflation valve 42 (see Fig. 7); an
- 18. injection control valve 58 (see Figs. 8a-b); an
- inflatable expansion tool 47 (see Figs.9a-b); and a
- 20 drain valve 60 (see Fig. 10).
- 21 The purpose of the circulating valve 56 is to serve
- 22 as a fluid conduit during the expansion and
- 23 deflation of the bladder 38. It comprises a top sub
- 24 62 having an inlet 64 leading to a through passage
- 25 66. A piston 68 is held in the position shown by one
- or more shear pins 70. Housing 72 connects a
- bottom sub 74 to the top sub 62. Seals 76 and 78
- 28 straddle opening 80 in housing 72 effectively
- 29 isolating opening 80 from passage 66. A ball seat 82
- 30 is located on piston 68 to eventually catch a ball
- 31 (not shown) to allow breaking of shear pins 70 and a
- 32 shifting of piston 68 to expose opening or openings

- 1 80. The main purpose of the circulating valve 56 is
- 2 to allow drainage of the string as the expansion
- assembly E is finally removed from the well bore 10
- at the conclusion of all the required expansions.
- 5 This avoids the need to lift a long fluid column
- 6 that would otherwise be trapped inside the tubing
- 7 40, during the trip out of the hole.
- 8 The next item, mounted just below the circulating
- 9 valve 56, is the inflation valve 42. It is
- illustrated in the run in position. It has a top sub
- 11 84 connected to a dog housing 86, which is in turn
- connected to a bottom sub 88. A body 90 is mounted
- between the top sub 84 and the bottom sub 88 with
- 14 seal 92 disposed at the lower end of annular cavity
- 94. A piston 95, having a groove 96, is disposed in
- annular cavity 94. Body 90 supports ball seat 97 in
- passage 98. Body 90 has a lateral passage 100 to
- provide fluid communication between passage 98 and
- piston 95. A shear pin or pins 102 secure the
- 20 initial position of piston 95 to dog housing 86.
- 21 Body 90 also has lateral openings 104 and 106 while
- 22 dog housing 86 has a lateral opening 44 near opening
- 23 106. At the top of piston 95 are seals 108 and 110
- 24 to allow for pressure buildup above piston 95 in
- 25 passage 98 when a ball (not shown) is dropped onto
- 26 ball seat 97. Mounted to dog housing 86 are locking
- 27 dogs 112 which are biased into groove 96 when it
- presents itself opposite dogs 112. Biasing is
- provided by a band spring 114.
- 30 The operation of the inflation valve 42 can now be
- understood. During run in, passage 98 is open down
- 32 to lateral opening 106. Since passage 98 is

initially obstructed in injection control valve 58, 1 for reasons to be later explained, flow into passage 2 3 98 exits the dog housing 86 through lateral openings 106 (in body 90) and lateral opening 44 (in dog housing 86). Since opening 44 is below a seal 5 bore (such as 36) mounted to the completion assembly 7 C flow from the surface will, on run in, go through the circulating valve 56 and through passage 98 of 8 9 inflation valve 42 and finally exit at port 44 for conclusion of the circulation loop to the surface 10 11 through annulus 46. Dropping a ball (not shown) onto ball seat 97 allows pressure to build on top of 12 piston 95, which breaks shear pin 102 as piston 95 13 moves down. This downward movement allows flow to 14 15 bypass the now obstructed ball seat 97 by moving 16 seals 108 and 110 below lateral port 104. At the 17 same time, lateral port 44 is obstructed as seal 116 18 passes port 106 in body 90. The movement of piston 95 is locked as dogs 112 are biased by band spring 19 114 into groove 96. Pressure from the surface, at 20 21 this point, is directed into the injection control 22 valve 58. 23 24 The injection control valve 58 comprises a top sub 25 118 connected to a valve mandrel 120 at thread 122. Valve mandrel 120 is connected to spring mandrel 124 26 27 at thread 126. Spring mandrel 124 is connected to 28 sleeve adapter 128 at thread 130. Sleeve adapter 128

32 to seal plug 138 to valve mandrel 120. Flow entering

between valve mandrel 120 and top sub 118 are

is connected to bottom sub 132 at thread 134. Wedged

perforated sleeve 136 and plug 138. Seal 140 is used

29

30

```
passage 142 from passage 98 in the inflation valve
 1
     42 passes through openings 144 in perforated sleeve
2
     136 and through lateral passage 146 in valve mandrel
 3
 4
     120. This happens because plug 138 obstructs passage
     142 below openings 144. Piston 148 fits over valve
 5
     mandrel 120 to define an annular passage 150, the
 6
     bottom of which is defined by seal adapter 152,
 7
     which supports spaced seals 154 and 156. In the
 8
      initial position, seals 154 and 156 straddle passage
 9
     158 in valve mandrel 120. A pressure buildup in
10
      annular passage 150 displaces piston 148 and moves
11
      seal 154 past passage 158 to allow flow to bypass
12
     plug 138 through a flow path which includes openings
13
      144, passage 146, passage 158, and eventually out
14
     bottom sub 132. At the same time spring 160 is
15
      compressed by seal adapter 152, which moves in
16
      tandem with piston 148. Seals 154 and 156 wind up
17
      straddling passage 162 in valve mandrel 120. This
18
      prevents escape of fluid out through passage 164 in
19
      seal adapter 152. Accordingly, fluid flow initiated
20
      from the surface will flow through injection control
21
      valve 58 after sufficient pressure has displaced
22
      piston 148. Such flow will proceed into inflatable
23
      expansion tool 47. Upon removal of surface pressure,
24
      spring 160 displaces seals 154 and 156 back above
25
      passage 162 to allow pressure to be bled off through
26
      passage 164 to allow bladder 38 to deflate, as will
27
      be explained below.
28
29
      Referring now to Figs. 9a-b, the structure and
30
      operation of the inflatable expansion tool 47 will
31
32
      now be described. A top sub 168 is connected to a
```

mandrel 170 and a bottom sub 172 is connected to the 1 lower end of the mandrel 170. Bladder 38 is retained 2 in a known manner to mandrel 170 by a fixed 3 connection at seal adapter 174 at its upper end and 4 by a movable seal adapter 176 at its lower end. Seal 5 adapter 176 is connected to spring housing 178 to 6 define a variable volume chamber 180 in which are 7 mounted a plurality of Belleville washers 182. A 8 stop ring 184 is mounted to mandrel 170 in a manner 9 where it is prevented from moving up-hole. Passages 10 186 and 187 communicate pressure in central passage 11 188 through the mandrel 170 and under bladder 38 to 12 inflate it. In response to pressure below the 13 bladder 38, there is up-hole longitudinal movement 14 of seal adapter 176 and spring housing 178. Since 15 stop ring 184 can't move in this direction, the 16 Belleville washers get compressed. Outward expansion 17 of bladder 38 can be stopped when all the Belleville 18 washers have been pressed flat. Other techniques for 19 limiting the expansion of bladder 38 will be 20 described below. What remains to be described is 21 the drain valve 60 shown in Fig. 10. It is this 22 valve that creates the back- pressure to allow 23 24 bladder 38 to expand. 25 The drain valve 60 has a top sub 190 connected to an 26 adapter 192, which is, in turn, connected to housing 27 194 followed, by a bottom sub 196. A piston 198 is 28 connected to a restrictor housing 200 followed by a 29 30 seal ring seat 202. Restrictor housing 200 supports a restrictor 204. Spring 206 bears on bottom sub 196 31 and exerts an up-hole force on piston 198. Seal 208 32

forces flow through restrictor 204 producing back-1 pressure, which drives the expansion of bladder 38. 2 Initially flow will proceed through restrictor 204 3 into passage 210 and around spring 206 and between 4 seal ring seat 202 and seal ring insert 212. This 5 flow situation will only continue until there is 6 contact between seal ring seat 202 and seal ring 7 insert 212. At that time flow from the surface stops 8 and applied pressure from surface pumps is applied 9 directly under bladder 38. One reason to cut the 10 flow from drain valve 60 is to prevent pressure 11 pumping into the formation below, which can have a 12 negative affect on subsequent production. When the 13 surface pumps are turned off, a gap reopens between 14 seal ring seat 202 and seal ring insert 212. Some 15 16 under bladder pressure can be relieved through this gap. Most of the accumulated pressure will bleed off 17 through passage 164 in the injection control valve 18 58 (see Fig. 8a) in the manner previously described. 19 20 Those skilled in the art can now see how by 21 selective inflation and deflation of bladder 38 the 22 isolators and screens illustrated in Figs. 1a-d can 23 be expanded in any desired order. 24 Some of the features of the invention are the 25 various designs for the expandable isolator, such as 26 isolator 26, as illustrated in Figs. 11-22. It 27 should be noted that the isolator depicted in Figs. 28 la-d is not an inflatable packer in the traditional 29 sense. Rather it is a tubular mandrel 214 surrounded 30 by a sealing sleeve 216 wherein inflatable, such as 31 bladder 38, or other devices are used to expand both 32

- 1 mandrel 214 and sleeve 216 together into the open
- 2 hole of well bore 10.
- In the embodiments shown in Figs. 11 and 12 the
- 4 sleeve 216 is shown in rubber. There are
- 5 circumferential ribs 218 added to prevent rubber
- 6 migration or extrusion upon expansion. The expanded
- 7 view is illustrated in Fig. 12. In open hole
- 8 completions, the ribs 218 dig into the borehole
- 9 wall. This assures seal integrity against extrusion.
- 10 Ribs 218 can be directly attached to the mandrel 214
- or they can be part of a sleeve, which is slipped
- over mandrel 214 before the rubber is applied.
- Direct connection of ribs 218 can cause locations of
- 14 high stress concentration, whereas a sleeve with
- ribs 218 mounted to it reduces the stress
- 16 concentration effect. Ribs 218 can be applied in a
- 17 variety of patterns such as offset spirals. They can
- 18 be continuous or discontinuous and they can have
- 19 variable or constant cross-sectional shapes and
- 20 sizes.
- 21 A beneficial aspect of ribs 39 in bladder 38 (see
- 22 Fig. 9a) is that their presence helps to reduce
- 23 longitudinal shortening of mandrel 214 and sleeve
- 24 216 as they are diametrically expanded. Limiting
- 25 longitudinal shrinkage due to expansion is a
- 26 significant issue when expanding long segments
- 27 because a potential for a misalignment of the screen
- 28 and surrounding isolators from the zone of interest.
- 29 This effect can happen if there is significant
- 30 longitudinal shrinkage, which is a more likely
- 31 occurrence if there is a mechanical expansion with a
- 32 cone.

2	The expansion techniques can be a combination of an
3	inflatable for the isolators and a cone for
4	expansion of screens. This hybrid technique is most
5	useful for cone expanding long screen sections while
6	the isolators above and below are expanded with a
7	bladder. The isolators require a great deal of force
8	to assure seal integrity making the application of
9	inflatable technology most appropriate. The
10	inflation pressure for a bladder 38 disposed inside
11	an isolator can be monitored at the surface. The
12	characteristic pressure curve rises steeply until
13	the mandrel starts to yield, and then levels off
14	during the expansion process, and thereafter there
15	is a subsequent spike at the point of contact with
16	the formation or casing. It is not unusual to see
17	the plateau at about 6,000 PSI with a spike going as
18	high as 8500 PSI. Use of pressure intensifiers
19	adjacent the bladder 38, as a part of the expansion
20	assembly E, allows the up-hole equipment to operate
21	at lower pressures to keep down equipment costs. The
22	ability to monitor and control inflation pressure
23	can be a control technique to regulate the amount of
24	expansion in an effort to avoid mandrel failure or
25	overstressing the formation. Another monitoring
26	technique for real time expansion is to put strain
27	sensors in the isolator mandrels and use known
28	signal transmission techniques to communicate such
29	information to the surface in real time. Yet another
30	technique for limitation of expansion can be control
31	of the volume of incompressible fluid delivered
32	under the bladder 38. Another technique can be to

apply longitudinal corrugations to the mandrel 214, 1 such that the size it will expand to when rounded by 2 an inflatable is known. 3 Referring now to Figs. 13 and 14, another approach 5 to limiting extrusion of sealing sleeve 216 upon 6 expansion by a bladder 38, is to put reinforcing 7 ribs 220 in whole or in part at or near the upper 8 and/or lower ends of the sealing sleeve 216. Their 9 presence creates an increased force into the open 10 hole to reduce end extrusion, as shown in Fig. 14. 11 12 In Figs. 15-17, the anti-extrusion feature is a pair 13 of embedded rings 221 that run longitudinally in 14 sleeve 216. The stiffness of each ring 221 can be 15 varied along its length, from strongest at the ends 16 of sleeve 216 to weaker toward its middle. One way 17 to do this is to add bigger holes 222 closer to the 18 middle of sleeve 216 and smaller holes 224 nearer 19 the ends, as shown in Fig. 16. Another way is to 20 vary the thickness. 21 22 In Figs. 18-20, another variation is shown which 23 involves a void space 226 between the mandrel 214 24 and the sleeve 216. This space can be filled with a 25 deformable material, or a particulate material, such 26 as proppant, sand, glass balls or ceramic beads 228. 27 The beneficial features of this design can be seen 28 after there is expansion in an out of round open 29 hole, as shown in Fig. 20. Where there is a short 30 distance to expand to the nearby borehole wall, 31 contact of sleeve 216 occurs sooner. This causes a 32

displacement of the filler 228 so that the regions 1 with greater borehole voids can still be as tightly 2 sealed as the regions where contact is first made. 3 This configuration, in particular, as well as the 4 other designs for isolators discussed above offers 5 an advantage over mechanical expansion with a cone. 6 Cone expansion applies a uniform circumferential 7 expansion force regardless of the shape of the 8 borehole. The inflate technique conforms the applied 9 force to where the resistance appears. Expansions 10 that more closely conform to the contour of the well 11 . bore can thus be accomplished. Use of the void 226 12 with filler 228 merely amplifies this inherent 13 advantage of expansion with a bladder 38. Those 14 skilled in the art will appreciate that the shorter 15 the bladder 38, the greater is the ability of the 16 isolator to be expanded in close conformity with the 17 borehole configuration. One the other hand, a 18 shorter bladder also requires more cycles for 19 expansion of a given length of isolator or screen. 20 Longer bladders not only make the expansion go 21 faster, but also allow for greater control of 22 longitudinal shrinkage. Here again, the ability to 23 control longitudinal shrinkage will have a tradeoff. 24 25 If the mandrel 214 is restrained from shrinking as much longitudinally its wall thickness will decrease 26 27 on diametric expansion. Compensation for this phenomenon by merely increasing the initial wall 28 thickness of the mandrel 214 creates the problem of 29 greatly increasing the required expansion pressure. 30

A solution is demonstrated in Figs. 23-25. In these

```
2
      Figures, the mandrel 214 still has the sleeve 216.
      Internally to mandrel 214 is a seal bore 230, which
 3
 4
      can span the length of the sleeve 216. Within the
      seal bore 230, the inflatable expansion tool 47 is
 5
 6
     inserted. The inflatable expansion tool 47 has been
     modified to have a bladder 38 and an insert sleeve
7
      232 with a port 234 all mounted between two body
 8
     rings 236 and 238. Initially, as shown in Fig. 24,
 9
     fluid pressure expands the mandrel 214 against the
10
11
     borehole through port 234. Then the bladder 38 is
     expanded to push the sleeve 232 against the already
12
13
     expanded mandrel 214 (see Fig. 25).
14
     Yet another technique for improving the sealing of
15
     an isolator is to take advantage of the greater
16
     coefficient of thermal expansion in the sleeve 216
17
18
      such as when it is made of rubber. If the rubber is
     pre-cooled prior to running into the well bore it
19
20
     will grow in size as it comes to equilibrium
     temperature even after it has been inflatably
21
22
     expanded. The subsequent expansion increases sealing
      load. Thus rather than over-expanding the formation
23
      in-order to store elastic energy in it, the use of a
24
     mandrel 214 with a thin rubber sleeve 216 allows
25
      storage of elastic strain in the rubber itself.
26
     Although rubber has been mentioned for sleeve 216
27
     other resilient materials compatible with down hole
28
29
      temperatures, pressures and fluids can be used
30
      without departing from the invention.
```

31

1 The screens, such as 28 can have a variety of structures and can be a single or multi-layer 2 arrangement. In Fig.1b, the screen 28 is shown as a 3 4 sandwich of a 250-micron membrane 240 between inner 242 and outer 244 jackets. These jackets are 5 6 perforated or punched and the membrane itself can be a plurality of layers joined to each other by 7 sintering or other joining techniques. The advantage 8 9 of the sandwich is to minimize relative expansion as well as to protect the membrane 240. 10 11 Yet another isolator configuration is visible in 12 Figs. 21-22. Here the mandrel 214 has a wavy 13 configuration one embodiment of which is a 14 15 circumferential ribbed appearance. The sleeve 216 is applied to have a cylindrical exterior surface. 16 After expansion, as seen in Fig. 22, the mandrel 214 17 becomes cylindrically shaped while the sleeve takes 18 on a wavy exterior shape with peaks where the 19 20 mandrel 214 had valleys, in its pre-expanded state. 21 22 Yet another issue resolved by the present invention is how to limit expansion of the isolators in a 23 radial direction. Unrestrained growth can result in 24 rupture if the elongation limits of the mandrel 214 25 26 are exceeded. Additionally, excessive loads on the 27 formation can fracture it excessively adjacent the 28 isolator. Expansion limiting devices can be applied to the isolator itself or to the fluid expansion 29 tool used to increase its diameter. In one example, 30

the mandrel 214 is wrapped in a sleeve 215 made of a

biaxial metal weave before the rubber is applied.

31

```
This material is frequently used as an outer jacket
1
     for high- pressure industrial hose. It allows a
2
     limited amount of diametric expansion until the
3
     weave "locks up" at which time further expansion is
4
     severely limited in the absence of a dramatic
5
     increase in applied force. This condition can be
6
     monitored from the surface so as to avoid over-
 7
     expansion of the isolator.
 8
9
     As an expanding-mandrel packer is radially expanded
10
     outwards it is desirable to have a mechanism in
11
     place to limit the radial growth of the packer.
12
     the packer is allowed to expand without restraint of
13
     some kind it will ultimately rupture once the
14
     elongation limit of the mandrel material is
15
     exceeded. Also, if the packer is allowed to place
16
     an excessive load against an open hole formation
17
     wall the formation may be damaged and caused to
18
                                        There needs to be
     fracture adjacent to the packer.
19
      an expansion limiting mechanism in either the
20
     packer, such as isolator 16, or expansion device,
21
      such as expansion assembly E.
22
23
      If the expanding-mandrel packer is being expanded
24
      using an inflatable packer (i.e. using hydraulic
25
      pressure), once the yield point of the material is
26
      exceeded and the mandrel deforms plastically,
27
      pressure indications of the amount of radial
28
      expansion is impossible. Therefore, it is desirable
29
      that once a pre-determined level of expansion is
30
      obtained there is a pressure indication that would
31
      indicate the packer is at its maximum design limit.
32
```

```
1
     An increase in applied pressure would be obtained if
 2
      at some point the packer is subjected to an
 3
      increased mechanical force opposing additional
 4
      expansion.
 5
 6
      The expansion of the packer may be limited by
 7
      wrapping a bi-axial metal weave sleeve over the
      mandrel (see Fig. 26) prior to adding the sealing
 8
 9
      medium 216 (i.e. rubber). The bi-axial sleeve 215
10
     will grow circumferentially as the packer mandrel is
      expanded, however at a pre-determined diameter the
11
12
     bi-axial sleeve will "lock-up" (see Fig. 27),
     preventing any additional radial expansion of the
13
14
     mandrel without a significant increase in applied
     radial load from the expansion device.
                                              This could
15
16
     give an indication at the surface that the limiting
      diameter of the packer has been reached, and further
17
      expansion is ceased.
18
19
20
      The bi-axial mesh sleeve 215 would be fabricated in
      a tubular shape, and would be installed over the
21
      expanding-mandrel 214 during assembly of the packer.
22
      The mesh sleeve 215 would be in the un-expanded
23
      condition at this time. A rubber sealing cover 216
24
      would then be applied over the bi-axial sleeve 215
25
      to serve as the sealing component as the packer is
26
      expanded radially against the open-hole or casing.
27
      The assembled packer cross section is shown in Fig.
28
29
      28.
30
31
     As the packer is expanded in the borehole, the bi-
32
      axial mesh sleeve 215 expands circumferentially
```

along with the packer mandrel 214. The rubber cover Once a pre-216 is also expanding at this time. determined amount of expansion is obtained however 3 the weaved metal fibers in the bi-axial sleeve will 4 reach a configuration where further expansion is not 5 possible, without breaking the fibers in the mesh. 6 This will result in additional resistance to radial 7 expansion, which will be detected by an increase in . 8 applied pressure required for additional expansion. 9 At this point attempts at further expansion is 10 11 ceased. 12 Fig. 27 shows the condition of the packer after 13 reaching the expansion limit of the packer, as 14 dictated by the maximum diametrical growth limit of 15 the bi-axial mesh sleeve 215. The fiber orientation 16 in the mesh sleeve is more in a perpendicular 17 orientation to the long axis of the packer than 18 before expansion was started. The amount of 19 expansion possible in these mesh sleeves is dictated 20 by the wrapping pattern used, and can be varied to 21 allow various expansion potentials. 22 23 The amount of expansion of bladder 38 can also be 24 limited by regulation of volume delivered to it by 25 measuring the flow going in or by delivering fluid 26 from a reservoir having a known volume. Typically 27 the isolators and screens of the present invention 28 will have to be expanded up to 25%, or more, to 29 reach the borehole. This requires materials with 30 superior ductility and toughness. Some acceptable 31 materials are austenitic stainless steels, such as 32

```
1
      304L or 316L, super austenitic stainless steel (Alloy
 2
      28), and nickel based alloys (Inconel 825). As much
      as a 45% elongation can be achieved by using these
 3
      materials in their fully annealed state. These
 4
 5
     materials have superior corrosion resistance
      particularly in chlorides or in sour gas service,
 6
 7
      although some of the materials perform better than
      others. Inconel 825 is very expensive which may rule
 8
 9
      it out for long intervals. In vertical wells with
      short zones this cost will not normally be an issue.
10
11
      The sequence of expansion can also have an effect on
12
      the overall system performance of the isolators. A
13
      desirable sequence can begin with an upper isolator
14
15
      followed by a screen expansion followed by expansion
      of the lower isolator. Simultaneous expansion of the
16
      isolators and screen should be avoided because of
17
      the potentially different pressure responses, which,
18
      in turn, can cause either under or over expansion of
19
20
      the isolators, which, in turn, can cause inadequate
      sealing or formation fracturing.
21
22
      When an isolator, such as 16, is expanded, the
23
      sealing integrity can be checked. This can be
24
25
      accomplished using the expansion assembly E
      illustrated in Figs. 6-10. After expansion of the
26
      bladder 38, which sets isolator 16, the bladder 38
27
      is allowed to deflate by removal of pressure from
28
      the surface. Thereafter, flow from the surface is
29
      resumed with bladder 38 still in position inside the
30
      now expanded isolator 16. The injection control
31
      valve 58 is opened by flow through it, which
32
```

ultimately exits through the drain valve 60. Due to 1 creation of backpressure by virtue of restrictor 204 2 (see Fig. 10) the bladder re-inflates inside the 3 expanded mandrel 214 of the isolator 16. A seal is 4 created between the completion assembly C and the 5 expansion assembly E. Since there is an exit point 6 7 at wash down shoe 14 and the isolator 16 is already expanded against the well bore 10, applied pressure 8 from the surface will go back up the annulus 46 9 until it encounters the sealing sleeve 216, which is 10 now firmly engaging the bore hole wall 10. The 11 12 annulus 46 is monitored at the surface to see if any returns arrive. Absence of returns indicates the 13 seal of isolator 16 is holding. It should be noted 14 that conducting this test puts pressure on the 15 formation for a brief period. It should also be 16 noted that the other isolators could be checked for 17 leakage in a similar manner. For example, isolator 18 18 can be checked with bladder 38 re-inflated and 19 flow through the expansion assembly E, which exits 20 through screen 20 and exerts pressure against a 21 sealing sleeve 216 of isolator 18. 22 23 As previously mentioned, it may be desirable to 24 combine the inflatable technique with a mechanical 25 26 expansion technique using a cone expander. The 27 driven cone technique may turn out to be more useful in expanding the screen, since substantially less 28 force is required. Cone expansion is a continuous 29 30 process and can be accomplished much faster for the 31 screens, which are typically considerably longer than the isolators. When it comes to the isolators, 32

1 the cone expansion technique has some serious drawbacks. Since the isolators must be expanded in 2 3 open hole or casing in order to obtain a seal with a 4 force substantial enough for sealing, greater 5 certainty is required that such a seal has been 6 accomplished than can be afforded with cone 7 expansion techniques. In open hole applications, the exact diameter of the hole is unknown due to 8 washouts, drill pipe wear of the borehole, and other 9 10 reasons. In cased hole applications, there is the issue of manufacturing tolerances in the casing. If 11 12 the casing is slightly oversized, there will be 13 insufficient sealing using a cone of a fixed 14 dimension. There may be contact by the sealing sleeve 216 but with insufficient force to hold back 15 the expected differential pressures. On the other 16 17 hand, if the casing is undersized, the isolator may 18 provide an adequate seal but the amount of realized expansion may be too small to allow the cone driver 19 to pass through. If driving from bottom to top there 20 will be a solid lockup, which prevents removal of 21 22 the cone driver from the well. If driving from top 23 to bottom the isolator will not be able to expand 24 over its entire length. A solution can be the use of 25 the expansion assembly E for the isolator expansion in combination with a cone expansion assembly for 26

the screens. These two expansion assemblies can be

run in separate trips or can be combined together in

a single assembly, which preferably is run into the

borehole together with the completion assembly C.

30 31

27

28

It is known that drilling fluids can cause a 1 drilling-induced damage zone immediately around the 2 well bore 10. Depending on factors such as formation 3 mechanical properties and residual stresses radial 4 fractures can be extended as much as two feet into 5 the formation to bypass the drilling-induced damage 6 zone. This can be accomplished by over expanding the 7 screens as they contact the well bore. A stable 8 fracture presents little or no danger of migration 9 into the zone sealed by the packers. Thus, for 10 . example in an eight inch well bore an expansion 11 pressure of about 2500 PSI yields a fracture radius 12 of about .5 feet, while a pressure of 7600PSI causes 13 a 1 foot radius fracture. Because of the large 14 friction existing between the screen and the well 15 bore wall, multiple radial fractures may be induced 16 in different directions, not necessarily aligned 17 with the maximum horizontal stress direction. 18 Increased fracture density improves well bore 19 productivity. 20 21 Those skilled in the art will appreciate that the 22 techniques described above can result in a savings 23 in time and expense in the order of 75% when 24 compared to traditional techniques of cementing and 25 perforating casing coupled with traditional gravel 26 packing operations. The system is versatile and can 27 be accomplished while running coiled tubing because 28 the expansion technique is not dependent on work 29 string manipulation as may by needed for a cone 30 expansion using pushing or pulling on the work 31 string. Expansion techniques can be combined and 32.

- can include roller expansion as well as cone or an
- 2 inflatable or combinations. The expansion assembly E

- 3 can expand both the isolators and the screens.
- 4 Another expansion device that can be used is a
- 5 swedge. The preferred direction of expansion is
- 6 down hole starting from the packer 30 or any other
- 7 sealing or anchoring device, which can be used in
- 8 its place. The inflatable technique acts to limit
- 9 axial contraction when compared to other methods of
- 10 expansion due to the axial contact constraint
- 11 . between the inflatable and isolator or screen during
- the expansion process. The sealing sleeve 216 can be
- 13 rubber or other materials that are compatible with
- 14 conditions down hole and exhibit the requisite
- 15 resiliency to provide an effective seal at each
- 16 isolator. The formulation of the sleeve can vary
- along its length or in a radial direction in an
- 18 effort to obtain the requisite internal pressure for
- 19 sealing while at the same time limiting extrusion.
- 20 Real time feedback can be incorporated into the
- 21 expansion procedure to insure sufficient expansion
- 22 force and to prevent over-stressing. Stress can be
- 23 sensed during expansion and reported to the surface
- 24 as the bladder 38 expands. The delivered volume to
- 25 the bladder 38 can be controlled or the flow into it
- 26 can be measured. The formation can be locally
- 27 fractured by screen expansion to compensate for
- drilling fluid, which can contaminate the borehole
- 29 wall. Using the isolators with tubular mandrels 214
- 30 a far greater strength is realized than prior
- 31 techniques, which required liners to be slotted to
- 32 reduce expansion force while sacrificing collapse

resistance. The sandwich screens of the present

1

2 invention can withstand differential pressures of 2-3000 PSI as compared to other structures such as 3 those expanded by rollers where resistance to collapse is only in the order of 2-300 PSI. 5 6 In another expansion technique, the mandrel 214 can be made from material which, when subjected to 7 electrical energy increases in dimension to force 8 9 the sealing sleeve 216 into sealing contact with the 10 borehole. 11 The use of an inflatable technique to expand the 12 13 isolators and screens allows flexibility in the direction of expansion i.e. either up-hole or down-14 15 hole. It further allows selective expansion of the screens, using a variety of techniques, followed by 16 subsequent isolator expansion by the preferred use 17 of the expansion assembly E. 18 19 20 The length of the inflatable is inversely related to 21 its sensitivity to borehole variation and is 22 directly related to the speed with which the 23 isolator is expanded. The screens can be expanded with bladder 38 to achieve localized or more 24 25 extensive formation fracturing. Overall, higher 26 forces for expansion can be delivered using the 27 expansion assembly E than other expansion techniques, such as cone expansions. The inflatable 28 29 technique can vary the force applied to create uniformity in fracture effect when used in a well 30 bore with differing hardness or shape variations. 31

The inflatable expansion can be accomplished using a 1 down hole piston that is weight set or actuated by 2 an applied force through the work string. If 3 pressure is used to actuate a down hole piston, a pressure intensifier can be fitted adjacent the 5 piston to avoid making the entire work string handle 6 the higher piston actuation pressures. 7 8 The isolators can have constant or variable wall 9 thickness and can be cylindrically shaped or 10 longitudinally corrugated. 11 12 The above description is illustrative of the 13 preferred embodiment and the full scope of the 14 invention can be determined from the claims, which 15

appear below.

1 Claims:

- A well completion method for isolating at least
- 4 one zone, comprising:
- 5 running into the wellbore a string with at
- 6 least one isolator in conjunction with a tool which
- 7 allows flow from the surrounding formation into the
- 8 string;
- 9 expanding said isolator and said tool in said
- 10 wellbore.
- 11 2. The method of claim 1, comprising:
- 12 performing said expanding of said isolator and
- 13 said tool in a single trip into the wellbore.
- 14 3. The method of claim 1, comprising:
- running in an anchor with said string;
- setting the anchor before said expanding; and
- 17 releasing the string from the anchor before
- 18 said expanding.
- 19 4. The method of claim 1, comprising:
- 20 running in an expansion assembly comprising an
- 21 inflatable with said string; and
- 22 expanding said at least one isolator at least
- 23 in part with said inflatable.
- 24 5. The method of claim 4, comprising:
- 25 selectively deflating and moving said
- 26 inflatable for repositioning;
- 27 continuing expansion of said at least one
- isolator or tool by re-inflating said inflatable
- 29 after said repositioning.
- 30 6. The method of claim 1, comprising:

- forming said at least one isolator from an un-
- 2 perforated mandrel covered by a resilient sealing
- 3 sleeve.
- 4 7. The method of claim 6, comprising:
- 5 expanding said mandrel from its original size;
- 6 and
- 7 using at least a partially annealed material for
- 8 said mandrel.
- 9 8. The method of claim 6, comprising:
- 10 limiting the amount of expansion with a device
- 11 fitted to said mandrel.
- 12 9. The method of claim 8, comprising:
- using a woven sleeve around said mandrel that
- locks up after a predetermined amount of expansion
- 15 of said mandrel as said device.
- 16 10. The method of claim 8, comprising:
- using a strain sensor as said device;
- 18 transmitting, in real time, the sensed strain
- 19 to the surface; and
- 20 determining the amount of expansion from said
- 21 sensed strain.
- 22 11. The method of claim 6, comprising:
- 23 providing radially extending members from said
- 24 mandrel into said resilient sealing sleeve to resist
- 25 extrusion of said resilient sleeve after expansion
- of said mandrel.
- 27 12. The method of claim 6, comprising:
- 28 providing an embedded ring located adjacent at
- 29 least one end of said resilient sleeve to resist
- 30 extrusion of said sleeve after expansion of said
- 31 mandrel.
- 32 13. The method of claim 12, comprising:

- varying the stiffness of said ring along its
- 2 length.
- 3 14. The method of claim 6, comprising:
- 4 providing exterior undulations on said mandrel;
- 5 providing a cylindrically shaped outer surface
- on said resilient sleeve;
- 7 converting said cylindrical shape of the outer
- 8 surface of said resilient sleeve to an undulating
- 9 shape upon expansion of said mandrel.
- 10 15. The method of claim 6, comprising:
- providing a void between said mandrel and said
- 12 resilient sealing sleeve;
- placing a deformable material or a particulate
- 14 material in said void;
- using said deformable material or said
- 16 particulate material to aid said resilient sleeve
- 17 conform to the wellbore shape on expansion of said
- 18 mandrel.
- 19 16. The method of claim 6, comprising:
- 20 pre-cooling said resilient sealing sleeve below
- 21 ambient temperature before insertion into the
- 22 wellbore.
- 23 17. The method of claim 1, comprising:
- 24 circulating through said string during run in;
- 25 closing off circulation passages;
- 26 building pressure in said string;
- using pressure in said string to expand said at
- least one isolator, at least in part.
- 29 18. The method of claim 1, comprising:
- 30 providing an inflatable on said string to
- 31 expand said at least one isolator at least in part.
- 32 19. The method of claim 1, comprising:

- fully expanding said at least one isolator solely with at least one inflatable.
- 3 20. The method of claim 19, comprising:
- 4 regulating the volume of incompressible fluid
- 5 delivered to said inflatable as a way to limit
- 6 expansion of said at least one isolator.

- 8 21. The method of claim 19, comprising:
- 9 using a screen as said tool;
- 10 expanding said screen against the wellbore wall
- 11 mechanically.
- 12 22. The method of claim 19, comprising:
- using a screen as said tool;
- expanding said screen with said inflatable.
- 15 23. The method of claim 22, comprising:
- 16 expanding said at least one isolator and said
- 17 screen in a single trip with said inflatable.
- 18 24. The method of claim 18, comprising:
- 19 forming said at least one isolator from an un-
- 20 perforated mandrel covered by a resilient sealing
- 21 sleeve;
- 22 initially expanding said mandrel with pressure
- 23 and then completing the expansion with said
- 24 inflatable.
- 25 25. The method of claim 22, comprising:
- 26 pressure testing, after expansion, the seal of
- 27 said at least one isolator through said screen.
- 28 26. The method of claim 19, comprising:
- 29 performing said expanding of said at least one
- 30 isolator and said tool in a single trip into the
- 31 wellbore.
- 32 27. The method of claim 26, comprising:

- running in an anchor with said string;
- setting the anchor before said expanding said
- 3 inflatable:
- 4 releasing the string from the anchor before
- 5 actuation of the inflatable;
- f removing said inflatable from the wellbore with
- 7 said string.
- 8 28. The method of claim 18, comprising:
- 9 forming at least one of said isolators from an
- 10 un-perforated mandrel covered by a resilient sealing
- 11 sleeve;
- initially expanding said mandrel mechanically
- 13 with a cone-type device and then completing the
- 14 expansion with said inflatable.
- 15 29. The method of claim 1, comprising:
- 16 expanding said tool into contact with the
- 17 formation; and
- fracturing the formation by said expanding.
- 19 30. The method of claim 6, comprising:
- 20 expanding said tool into contact with the
- 21 formation; and
- 22 fracturing the formation by said expanding.
- 23 31. The method of claim 18 comprising:
- 24 expanding said tool into contact with the
- 25 formation; and
- 26 fracturing the formation by said expanding.
- 27 32. The method of claim 18, comprising:
- 28 providing at least two isolators disposed above
- 29 and below said tool;
- 30 providing at least one screen as said tool;
- 31 expanding at least one of said isolators and
- 32 said screen at least in part with said inflatable.

- 1 33. The method of claim 31, comprising:
- 2 fracturing the formation by said expanding of
- 3 said screen.

Application No:

GB 0130640.6

Claims searched: 1-33

Examiner:

Date of search:

Nicholas Mole 15 April 2002

Patents Act 1977 Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.T): ElF (FJF, FMU, FLW, FJB, FLA)

Int CI (Ed.7): E21B (43/08, 43/10, 43/14)

Other: Online: WPI EPODOC JAPIO

Documents considered to be relevant:

Category	Identity of docume	ent and relevant passage	Relevant to claims
Α	GB 2343691 A	(SHELL)	
A	GB 2336383 A	(BAKER HUGHES)	
A	EP 0360597 A	(HALLIBURTON)	
A, P	US 6263966 B	(HAUT)	
A	US 5901789	(DONELLY)	

the filing date of this application.

Document indicating lack of novelty or inventive step
 Document indicating lack of inventive step if combined with
 one or more other documents of same category.

[&]amp; Member of the same patent family

A Document indicating technological background and/or state of the art.

P Document published on or after the declared priority date but before the

filing date of this invention.

Patent document published on or after, but with priority date earlier than,

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

/
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.