Institut für Mathematische Stochastik

Prof. Dr. R. Grübel Dr. C. Franz, M. Kötter, Dr. M. Reich

Aufgabenblatt 6 zur Vorlesung

Elementare Wahrscheinlichkeitstheorie und Statistik A WS 2004/05

Stundenübung

Aufgabe 26.

(a) Es sei X gleichverteilt auf den Zahlen $\{1,\ldots,n\},\,n\in\mathbb{N},\,\mathrm{d.h.}$

$$P(X = k) = \frac{1}{n}, \qquad k = 1, \dots, n.$$

Bestimmen Sie den Erwartungswert E(X) und die Varianz Var(X) von X.

- (b) Bestimmen Sie $E(z^X)$ für $X \sim \text{Geo}(p), |z| \leq 1$.
- (c) Es bezeichne X_n die Anzahl der Fixpunkte bei einer zufälligen Permutation von n Elementen. Bestimmen Sie $E(X_n)$.

Aufgabe 27. Eine Zufallsvariable X nehme die Werte $0, 1, 2, \ldots$ an und habe einen endlichen Erwartungswert, d.h. $E(X) < \infty$. Zeigen Sie, dass gilt

$$E(X) = \sum_{j=1}^{\infty} P(X \ge j).$$

Hausübung

Aufgabe 28.

(a) Es sei X eine Poisson-verteilte Zufallsvariable mit Parameter $\lambda>0.$ Bestimmen Sie den Erwartungswert der Zufallsvariablen

$$Y := \frac{1}{1+X}$$
 und $Z := \frac{X}{1+X}$.

(b) Sei X hypergeometrisch verteilt mit den Parametern N, M und n, d.h.

$$P(X = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$
 für $k = 0, ..., \min\{M, n\}$.

Berechnen Sie den Erwartungswert von X.

(2/2 Punkte)

Aufgabe 29. Ein fairer Würfel wird n mal nacheinander geworfen (Laplace-Modell (Ω, \mathcal{A}, P) mit $\Omega = \{1, \ldots, 6\}^n$). Die Zufallsvariable Y_n sei die größte der geworfenen Augenzahlen, also $Y_n(\omega_1, \ldots, \omega_n) := \max_{1 \leq j \leq n} \omega_j$, $(\omega_1, \ldots, \omega_n) \in \mathcal{A}$.

(a) Bestimmen Sie $\mathrm{E}Y_n$ und zeigen Sie, dass

$$\lim_{n\to\infty} \mathrm{E}(Y_n) = 6.$$

(b) Zeigen Sie, dass

$$\lim_{n \to \infty} \operatorname{Var}(Y_n) = 0.$$

(3/3 Punkte)

Abgabe der Hausübungen in den Übungsstunden vom 29. November bis 1. Dezember.