

T1 Asymmetric Analysis and Multiparty Computation

Maria Eichlseder Daniel Kales

Applied Cryptography 2 – ST 2020

A Wiener's Attack on RSA

Wiener's Attack on RSA

Points

Implement Wiener's attack on RSA to recover small $d (\rightarrow L1)$:

- f a Compute n-th convergents of continued fractions for $\Bbb Q$
- **b** Recover private key from given RSA public key & decrypt message

[Wie90] Michael J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory 36.3 (1990), pp. 553–558. DOI: 10.1109/18.54902.

A Questions

Example:

$$N = 9449868410449, e = 6792605526025, d < \frac{1}{3}\sqrt[4]{N} \approx 584.$$

1. Perform Wiener's attack by computing the convergents of $\frac{e}{N}$:

$$\frac{p_i}{q_i} = \frac{1}{1}, \frac{2}{3}, \frac{3}{4}, \frac{5}{7}, \frac{18}{25}, \frac{23}{32}, \frac{409}{569}, \dots$$

- 2. Test: d = 569 if $M^{e \cdot 569} = M$
- 3. Pick x = 2:

$$x^{(ed-1)/2^1} = x^{(ed-1)/2^2} = \dots = x^{(ed-1)/2^5} = 1$$

 $x^{(ed-1)/2^6} = x^{60390508504816} \equiv 8233548335126 = y \neq \pm 1$

4. $p = \gcd(N, y - 1) = 1234577 \Rightarrow N = 1234577 \cdot 7654337$

B Multiparty Computation with Oblivious Transfers

Multiparty Computation with Oblivious Transfers

Points

Implement 1-out-of-2 OT to enable Multiparty Computation problem $(\rightarrow$ L2)

- Implement 1-out-of-2 OT
- **b** Implement 1-out-of-*N* OT
- Implement GMW and evaluate a small circuit
- d Evaluate the AES-128 encryption circuit

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. SODA. ACM/SIAM, 2001, pp. 448–457.

B Naor-Pinkas OT

Naor-Pinkas Oblivious Transfer

B Building $\binom{N}{1}$ -OT

- Instantiate directly if supported (e.g., Naor-Pinkas OT)
- Build from $\binom{2}{1}$ -OT (Idea: transfer encryption key per bit of ν)

$\binom{N}{1}$ -OT from $\binom{2}{1}$ -OT

- Sender prepares $L = \log_2(N)$ keypairs: $(k_1^0, k_1^1), \dots, (k_L^0, k_L^1)$
- Sender encrypts and sends item m_i :

$$C_i = m_i \oplus \left(igoplus_{j=1}^L \mathbb{E}(k_j^{i_j}, i)
ight)$$

- For each bit b of ν : Perform $\binom{2}{1}$ -OT to give chooser k_i^b
- Chooser has all keys to decrypt C_{ν}

C Factoring with Factor Bases and Sieving

Factoring with Factor Bases and Sieving

Points

Implement Quadratic Sieve factorization (\rightarrow L1):

- a Implement factoring with factor bases 1: Collect squares
- **b** Implement factoring with factor bases 2: Combine relations
- Implement sieving with a quadratic equation
- d Apply the combined QS algorithm to factor 100-bit N

[Pom85] Carl Pomerance. The Quadratic Sieve Factoring Algorithm. Advances in Cryptology – EUROCRYPT 84. Vol. 209. LNCS. Springer, 1985, pp. 169–182. DOI: 10.1007/3-540-39757-4_17.

C Factoring with Sieving – Cheatsheet

- 1. Select factor base of small prime numbers $\mathcal{B} = \{p_1, p_2, \dots, p_k\}$ For each prime p_j , solve $\alpha_j^2 - n \equiv 0 \pmod{p_j}$ (0 to 2 solutions)
- 2. For all x_i in $[\sqrt{n} C, \sqrt{n} + C]$, store (x_i, Y_i) with $Y_i = x_i^2 n$
- 3. Sieve: For each α_j , divide all Y_i for $x_i = \alpha_j + k \cdot p_j$ by p_j
- 4. Collect all relations (x_i, Y_i) with smooth $Y_i = \prod_j p_j^{e_{ij}}$
- 5. Solve: select subset of Y_i 's such that their product is square
- 6. $x = \prod x_i$ and $y = \sqrt{\prod Y_i} \rightarrow \text{hope that gcd}(x \pm y, n) \in \{p, q\}$

Factoring with Quadratic Sieve: Example I

Factor n = 2769:

1 Choose factor base $\mathcal{B} = \{2, 3, 5, 7, 11\}$ and find α_j :

$$\alpha_2^2 \equiv 2769 \equiv 1 \mod 2 \qquad \to \alpha_2 = \pm 1, \qquad a_i = 49, 51, 53, 55, 57$$
 $\alpha_3^2 \equiv 2769 \equiv 0 \mod 3 \qquad \to \alpha_3 = 0, \qquad a_i = 51, 54, 57$
 $\alpha_5^2 \equiv 2769 \equiv 4 \mod 5 \qquad \to \alpha_5 = \pm 2, \qquad a_i = 52, 53, 57$
 $\alpha_7^2 \equiv 2769 \equiv 4 \mod 7 \qquad \to \alpha_7 = \pm 2, \qquad a_i = 54, 58$
 $\alpha_{11}^2 \equiv 2769 \equiv 8 \mod 11 \qquad \text{no solution!}$

If your library can't compute $\alpha = \sqrt{n} \in \mathbb{Z}_p$: Tonelli-Shanks algo

Factoring with Quadratic Sieve: Example II

Collect relations by sieving $[\sqrt{n} - C, \sqrt{n} + C] = [49, 57]$:

a_i	49	50	51	52	53	54	55	56	57
b_i	-368	-269	-168	-65	40	147	256	367	480
÷2	2 ⁴		2 ³		2 ³		2 ⁸		2 ⁵
÷3			3^1			3^1			3^1
÷5				5 ¹	5^1				5^1
÷7			7 ¹			7 ²			
(-1)	(-1)	(-1)	(-1)	(-1)					
Rest	23	269	1	13	1	1	1	367	1

Factoring with Quadratic Sieve: Example III

Solve the linear system mod 2: $a_i \in \{53, 54, 57\}$ sum to 0

a _i	49	50	51	52	53	54	55	56	57
b_i	-368	-269	-168	-65	40	147	256	367	480
÷2			1		1	0	0		1
÷3			1		0	1	0		1
÷5			0		1	0	0		1
÷7			1		0	0	0		0
(-1)			1		0	0	0		0
Rest	X	X	✓	X	✓	✓	✓	Х	✓

(keyword: kernel/nullspace of a matrix over $\mathbb{Z}_2)$

4
$$x = \prod a_i = 53 \cdot 54 \cdot 57 = 163134$$

 $y = \sqrt{\prod b_i} = 2^{(3+5)/2} \cdot 3^{(1+1)/2} \cdot 5^{(1+1)/2} \cdot 7^{2/2} = 1680$

5
$$gcd(x + y, n) = gcd(164814, 2769) = 39$$

Rules

Coding:

- Pick your favourite programming language
- You'll need support for big-integer and modular arithmetic
- Number theory (primes) and linear algebra recommended
- If it's not open-source, please ask us first!
- Suggestions: C/C++ with libraries, Java, Python/Sage

Submission:

- Submit your team's code as a {zip, tar.gz} archive
- Add a file README. {md, txt, pdf} on the top level (design choices, limitations, howto, runtime).
- Include Makefile and/or clear instructions to run

Submission (Deadline 30 April 2020)

Upload your KU submissions in the Student Tick System (STicS):

Questions?

If you're unsure how to tackle some of the steps (finding α , ...), ask anytime (lecture, newsgroup, email, your colleagues)!