AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1 (Canceled).
1	22. (New) An computer system for solving an interval global optimization
2	problem specified by a function f and a set of equality constraints, the computer
3	system comprising:
4	a processing unit;
5	a memory;
6	an interval arithmetic unit within the processing unit, wherein the interval
7	arithmetic unit is configured to receive floating-point numbers representing a first
8	endpoint and a second endpoint for a first interval and floating-point numbers
9	representing a first endpoint and a second endpoint for a second interval, and is
10	configured to perform arithmetic operations to produce a first endpoint and a
11	second endpoint representing a resulting interval;
12	wherein computational code within the memory is configured to perform
13	an interval global optimization process to compute guaranteed bounds on a
14	globally minimum value of the function $f(x)$ subject to the set of equality
15	constraints;
16	wherein the optimizer is configured to,
17	apply term consistency to the set of equality constraints
18	over a subbox X, and to

19	exclude portions of the subbox X that can be shown to
20	violate any of the equality constraints.
1	23. (New) The computer-system of claim 22,
2	wherein the interval arithmetic unit includes a first input, wherein the first
3	input includes a first floating point number representing a lower bound of the first
4	input and a second floating point number representing an upper bound of the first
5	input; and
6	wherein the interval arithmetic unit includes a second input, wherein the
7	second input includes a third floating point number representing a lower bound of
8	the second input and a fourth floating point number representing an upper bound
9	of the second input.
1	24. (New) The computer-system of claim 22, wherein the optimizer is
2	configured to:
3	precondition the set of equality constraints through multiplication by an
4	approximate inverse matrix \mathbf{B} to produce a set of preconditioned equality
5	constraints;
6	apply term consistency to the set of preconditioned equality constraints
7	over the subbox X ; and to
8	exclude portions of the subbox X that can be shown to violate any of the
9	preconditioned equality constraints.
1	25. (New) The computer-system of claim 22, wherein the optimizer is
2	configured to:
3	keep track of a least upper bound f_bar of the function $f(\mathbf{x})$;
4	unconditionally remove from consideration any subbox for which
5	$inf(f(\mathbf{x})) > f \ bar;$

apply term consistency to the inequality $f(\mathbf{x}) \le f_bar$ over the subbox X; 1 2 and to exclude portions of the subbox X that violate the inequality. 3 1 26. (New) The computer-system of claim 22, wherein the optimizer is 2 configured to: 3 apply box consistency to the set of equality constraints $q_i(\mathbf{x}) = 0$ (i=1,...,r)4 over the subbox X; and to 5 exclude portions of the subbox X that violate the set of equality 6 constraints. 27. (New) The computer-system of claim 22, wherein the optimizer is 1 2 configured to: 3 evaluate a first termination condition; wherein the first termination condition is TRUE if a function of the width 4 of the subbox X is less than a pre-specified value, ε_X , and the absolute value of the 5 6 function, f, over the subbox X is less than a pre-specified value, ε_F ; and to 7 terminate further splitting of the subbox X if the first termination 8 condition is TRUE 1 28. (New) The computer-system of claim 22, wherein the optimizer is

configured to perform an interval Newton step on the John conditions.

2