Source To Outcome Pathway (STOP) – Next Generation Risk Assessment (NGRA) put into practice

<u>Tollefsen, K.E.*</u>, Kim Leirvik, Sam A. Welch, Walter Zobl, Li Xie, Viviane Girardin

Norwegian Institute for Water Research (NIVA)

*knut.erik.tollefsen@niva.no

10th Norwegian Environmental Toxicology Symposium (NETS) Stavanger August 28-29, 2025

Background

- High # chemicals
- Multiple sources
- Multiple exposure pathways
- Multiple exposure routes
- High # target species
- Multiple Modes of Action
- Multiple stressors (mixtures)

Traditional Risk Assessment

- One chemical lack of real-life complexity
- No or little mechanistic insight not exploiting available data
- Limit applicability to other areas of relevance

Next Generation Risk Assessment (NGRA)

OECD: structured, hypothesis-driven, and iterative approach to chemical safety evaluation that **integrates New Approach Methodologies** (NAMs), such as **in vitro assays**, **high-throughput screening**, and **computational modeling**, to assess potential risks without reliance on animal testing.

ECHA: Exposure-led, integrative framework that moves beyond traditional hazard-based assessments to incorporate **mechanistic data, probabilistic modeling**, and real-world exposure considerations.

WHO: An adaptive and evolving framework that incorporates novel scientific methods to better understand chemical risks in complex environmental and biological systems. It emphasizes the use of **alternative test methods**, **exposure science**, and **data integration** to inform public health decision-making.

US EPA: data-driven framework that leverages computational toxicology, machine learning, and mechanistic biological knowledge to predict chemical hazards and exposure scenarios.

shift towards a more predictive, mechanistic, and high-throughput risk assessment for (eco)relevant exposure scenarios

Source To Outcome Pathway (STOP)

Aggregate Exposure Pathway (AEP)

Adverse Outcome Pathway (AOP)

STOP combines **exposure-driven** (AEP) and **effect-driven** (AOP) frameworks into one integrated approach for mechanistic, holistic risk assessment.

Aggregate Exposure Pathway (AEP)

An **Aggregate Exposure Pathway (AEP)** is a conceptual framework that organizes and describes **the sequence of key exposure states** and **processes linking** an **external exposure** source to an **internal dose** at a biological target site relevant for risk assessment and regulatory decision-making.

Adverse Outcome Pathway (AOP)

An Adverse Outcome Pathway (AOP) is a conceptual framework that **portrays** existing knowledge concerning the linkage between a direct molecular initiating event and an adverse outcome, at a level of biological organization relevant to risk assessment.

Case study – Risk prediction

Exposure

Risk Quotient (RQ) = $\sum_{n=1}^{n} C_{exposure}/C_{hazard}$ (CA assumption)

Is there a risk to non-target organisms?

RQ>1 (Risk) RQ<1 (No risk)

Comp: FW Site: HEIA Period: 2015 P-goal: Chronic Naurstad NIBIO Kolstad/Bye Skas-Heigre

Exposure data

- Water concentrations
- >115 active substances
- Multiple sites
- >20 yrs of data

Pesticides - JOVA

Hazard data

No-effect thresholds

Acute (AMF) & Chronic (MF)

- Algae
- Crustaceans
- Plants
- Fish

Plantevernmidler - Nibio

Risk prediction (Chronic)

Species at risk

No-effect thresholds

- ECOTOX (Chronic, NOEC)
- Multiple species groups

Most susceptible species

Insects/spiders/crustaceans Molluscs, worms

Toxicity targets (arthropods)

No-effect thresholds

ECOTOX (Chronic, NOEC)

Multiple species groups Dry weight (AQUIRE only)

Most relevant targets

Mortality/survival Development Growth

Summary

- Conceptual STOP model using in-house data, databases, and models proposed
- Selected modules of a STOP modeling framework developed and tested
- Data reporting formats, User Interfaces (UI) and analysis prototyped
- Effects modeling (e.g. using AOPs, DR-modeling & tox thresholds) mature
- Exposure modeling (e.g. using AEP & monitoring data) still in the scoping
- Integration of the full model infrastructure pending

Acknowledgements

Hans Ragnar Norli Kathinka Lang Marianne Stenrød Marit Hauken Roger Holten Sven Roar Odenmarck

The EXPECT team

More information?

STOP

PARC

Funding

Contact

Knut Erik Tollefsen, knut.erik.tollefsen@niva.no

