Modeling Mesenchymal to Epithelial Transition in Endodermal Cells

Ryan Muoio

Leesa Strasser

Mesenchymal to Epithelial Transition

Motivation

Cancer invasion

Reprogramming and cell fate

Wound healing

Previous Models

Our Model

EMT/MET in cancer cells

Partial Differential Equations

MET in development

Langevin Dynamics

Objectives

Simulate the mesenchymal phase of MET: cells have random motion

Simulate the epithelial phase of MET: cells have directed motion and begin to adhere to one another

Model the interaction between the cell and extracellular matrix to visualize how it affects the cell migration transition

Approach

Experiments

• Timelapse microscopy of developing embryos

Data

Tracking cell trajectories in ImageJ

Model

• Active Brownian dynamics

Endodermal cells undergo MET during gastrulation

Experimental Data

Measured Parameters

Average Velocity

Confinement Ratio

Results Mean-Squared Displacement (MSD)

Results Translational MSD

Results Rotational MSD

Results Confinement Ratio

Results

Mesenchymal

Epithelial

Rotational Coefficient

 $1.32 \text{ rad}^2/\text{s}^n$

 $0.922 \, \text{rad}^2/\text{s}^n$

Translational Coefficient

 $8.54 \, \mu \text{m}^2/\text{s}^n$

 $3.32 \, \mu \text{m}^2/\text{s}^n$

Translational equation

Heaviside function

$$H(x) = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases}$$

$$H(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Heaviside function

attractive

$$\left[H(r_{ij}-2\sigma)\right]$$

nonzero outside the disc

$$H(2\sigma - r_{ij})$$

repulsive

nonzero inside the disc

Rotational equation

Coupled

$$m_{i}\ddot{\mathbf{r}}_{i} = -\gamma\dot{\mathbf{r}}_{i} + \sqrt{2D}\gamma\dot{\mathbf{W}}_{i} - \frac{\alpha}{r_{ij}^{2}}H(r_{ij} - 2\sigma)\hat{\mathbf{r}}_{ij}$$
$$+\beta H(2\sigma - r_{ij})\hat{\mathbf{r}}_{ij} + \gamma u\,\hat{\mathbf{n}}$$

$$I\ddot{\theta}_i = -\gamma_\theta \dot{\theta}_i + \sqrt{2D_\theta} \gamma_\theta \dot{W}_{\theta,i} - \kappa \cdot (\theta_i - \theta_{\text{avg}})$$

Results

Future

Introduce environmental factors

- ECM viscosity
- Cell density

Simulate cellcell signaling

- Example: reduce cell-repulsion caused by lack of Ephrin signals
- GTPases involved in cytoskeleton

Post-Presentation

Following the class presentation, various attempts were made to produce simulation results that exhibited behavior similar to that shown in videos of zebrafish cells—behavior such as collective motion. However, the suggested changes to the code were not enough to produce desired results. As such, rather than invest further time into rewriting the code, the decision was made to submit what was already complete, though we understand the results are less than desirable.