

HCC/HCF40109B

QUAD LOW-TO-HIGH VOLTAGE LEVEL SHIFTER

- INDEPENDENCE OF POWER SUPPLY SE-QUENCE CONSIDERATIONS – V_{CC} CAN EX-CEED V_{DD}, INPUT SIGNALS CAN EXCEED BOTH V_{CC} AND V_{DD}
- UP AND DOWN LEVEL-SHIFTING CAPA-BILITY
- THREE-STATE OUTPUTS WITH SEPARATE ENABLE CONTROLS
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED AT 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TEN-TATIVE STANDARD N°. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC40109B** (extended temperature range) and HCF40109B (intermediate temperature range) are monolithic integrated circuits, available in 16lead dual in-line plastic or ceramic package and plastic micropackage. The HCC/HCF40109B contains four low-to-high-voltage level-shifting circuits. Each circuit will shift a low-voltage digital-logic input signal (A, B, C, D) with logical $1 = V_{CC}$ and logical 0 = V_{SS} to a higher-voltage output signal (E, F, G, H) with logical $1 = V_{DD}$ and logical $0 = V_{SS}$. The HCC/HCF40109B, unlike other low-to-high levelshifting circuits, does not require the presence of the high-voltage supply (V_{DD}) before the application of either the low-voltage supply (V_{CC}) or the input signals. There are no restrictions on the sequence of application of VDD, VCC, or the input signals. In addition, there are no restrictions on the relative magnitudes od the supply voltages or input signals within the device maximum ratings; V_{CC} may exceed V_{DD}, and input signals may exceed V_{CC} , and V_{DD} . When operated in the mode Vcc V_{DD}, HCC/HCF40109B, will operate as a high-to-low level-shifter. The HCC/HCF 40109B also features individual three-state output capability. A low level on any of the separately enabled three-state output

controls produces a high-impedance state in the corresponding output.

June 1989 1/12

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	٧
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package-temperature Range	200	mW mW
T _{op}	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	္င
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	٧
	HCF Types	3 to 15	V
V_{I}	Input Voltage	0 to V _{DD}	٧
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	ိ ဂိ

LOGIC DIAGRAM

TRUTH TABLE

	Inp	uts	Outputs
Mode		Enable	
	A, B, C, D	A, B, C, D	E, F, G, H
Low to High	0	1	0
Level Shift	1	1	1
	Х	0	Z

LOGIC 0 = LOW (Vss)

X = Don't Care.

Z = High Impedance.

LOGIC 1 = V_{CC} at INPUTS and V_{DD} at OUTPUTS.

^{*} All voltage are with respect to V_{SS} (GND).

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

				Test C	Condit	tions					Value				
Symbol	Parame	ter	Vı	٧o	I _O	Vcc	V _{DD}	TL	o w*		25°C		T _{Hi}	igh [*]	Unit
			(V)	(V)	(μA)	(V)	(V)	Min	Max.	Min.	Тур.	Max.	Min.	Max.	1
ΙL	Quiescent		0/ 5				5		1		0.02	1		30	μΑ
	Current	HCC	0/10				10		2		0.02	2		60	1
		Types	0/15				15		4		0.02	4		120	1
			0/20				20		20		0.04	20		600	1
			0/ 5				5		4		0.02	4		30	
		HCF Types	0/10				10		8		0.02	8		60	1
		Types	0/15				15		16		0.02	16		120	1
V _{OH}	Output High	1	0/ 5		< 1		5	4.95		4.95			4.95		
	Voltage		0/10		< 1		10	9.95		9.95			9.95		V
			0/15		< 1		15	14.95		14.95			14.95		
V _{OL}	Output Low	1	5/0		< 1		5		0.05			0.05		0.05	
	Voltage		10/0		< 1		10		0.05			0.05		0.05	V
			15/0		< 1		15		0.05			0.05		0.05	1
V _{IH}	Input High Voltage			1/9	< 1	5	10	3.5		3.5			3.5		V
				1.5/13.5	< 1	10	15	7		7			7		1 °
V_{IL}	Input Low \	/oltage		1/9	< 1	5	10		1.5			1.5		1.5	V
				1.5/13.5	< 1	10	15		3			3		3	1 ^v
I _{OH}	Output		0/ 5	2.5			5	- 2		- 1.6	- 3.2		- 1.15		
	Drive	HCC Types	0/ 5	4.6			5	- 0.64		- 0.51	- 1		- 0.36		1
	Current	Турез	0/10	9.5			10	- 1.6		- 1.3	- 2.6		- 0.9]
			0/15	13.5			15	- 4.2		- 3.4	- 6.8		- 2.4		
			0/ 5	2.5			5	- 1.53		- 1.36	- 3.2		- 1.1		mA
		HCF Types	0/ 5	4.6			5	- 0.52		- 0.44	– 1		- 0.36		
		Турсз	0/10	9.5			10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5			15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output		0/ 5	0.4			5	0.64		0.51	1		0.36		
	Sink Current	HCC Types	0/10	0.5			10	1.6		1.3	2.6		0.9		
	Current	Туроо	0/15	1.5			15	4.2		3.4	6.8		2.4		mA
			0/ 5	0.4			5	0.52		0.44	1		0.36		
		HCF Types	0/10	0.5			10	1.3		1.1	2.6		0.9		
		.,,,,,,	0/15	1.5			15	3.6		3.0	6.8		2.4		<u> </u>
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18		1		18		± 0.1		± 10 ⁻⁵	± 0.1		± 1	
	Current	HCF Types	0/15] An	y Inpu	ut	15		± 0.3		± 10 ⁻⁵	± 0.3		± 1	μΑ

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$. ** Forced output disabled

STATIC ELECTRICAL CHARACTERISTICS (continued)

				Test Conditions				Value							
Symbol	ymbol Parameter		٧ı	٧o	Io	Vcc	V_{DD}	TL	ow*		25 °C		T _H	ig h [*]	Unit
			(V)	(V)	(V)	(V)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
I _{OH} , I _{OL} **	3-State Output	HCC Types	0/18	0/18			18		± 0.4		±10 ⁻⁴	± 0.4		± 12	
	Leakage Current	HCF Types	0/15	0/15			15		± 1.0		±10 ⁻⁴	± 1.0		± 7.5	μΑ
Cı	Input Capa	citance		Any Input					5	7.5			рF		

DYNAMIC ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C, C_L = 50pF, R_L = 200k Ω , typical temperature coefficient for all V_{DD} values is 0.3%/°C, all input rise and fall time = 20ns)

Symbol	Parameter	Shifting Mode	Test Co	nditions		Value		Unit
Syllibol	Parameter	Shirting wode	V _{CC} (V)	V_{DD} (V)	Min.	Тур.	Max.	Onit
t _{PHL} ,	Propagation Delay Time		5	10		300	600	
t _{PLH}	(data input to output)	L-H	5	15		220	440	
	High to Low Level		10	15		180	360	
			10	5		850	1600	ns
		H-L	15	5		850	1600	
			15	10		290	580	
	Low to High Level		5	10		130	260	
		L-H	5	15		120	240	
			10	15		70	140	
			10	5		230	460	ns
		H-L	15	5		230	460	
			15	10		80	160	
t _{PHZ}	3-State Disable Delay Time		5	10		60	120	
	Output High to High Impedance	L-H	5	15		50	100	
			10	15		35	70	
			10	5		120	240	ns
		H - L	15	5		120	240	
			15	10		40	80	
t _{PZH}	High Impedance to Output High		5	10		320	640	
		L-H	5	15		230	460	
			10	15		180	360	
			10	5		800	1500	ns
		H - L	15	5		800	1500	
			15	10		280	560	
t _{PLZ}	Output Low to High Impedance		5	10		370	740	
		L-H	5	15		300	600	
			10	15		250	500	20
			10	5		850	1600	ns
		H - L	15	5		850	1600	
			15	10		350	700	

^{*} T_{Low} = -55°C for HCC device : -40°C for HCF device.

* T_{High} = + 125°C for HCC device : +85°C for HCF device.

The Noise Margin for both "1" and "0" level is : 1V min. with V_{DD} = 5V, 2V min. with V_{DD} = 10V, 2.5V min. with V_{DD} = 15V.

** Forced output disabled

DYNAMIC ELECTRICAL CHARACTERISTICS (continued)

Cumbal	Parameter	Chifting Made	Test Co	nditions		Value		Unit
Symbol	Parameter	Shifting Mode	V _{CC} (V)	V _{DD} (V)	Min.	Тур.	Max.	Unit
t _{PZL}	High Impedance to Output Low		5	10		100	200	
		L-H	5	15		80	160	
			10	15		40	80	
			10	5		120	240	ns
		H-L	15	5		120	240	
			15	10		40	80	
t _{THL} ,	Transition Time		5	10		50	100	
t_{TLH}		L-H	5	15		40	80	
			10	15		40	80	
			10	5		100	200	ns
		H-L	15	5		100	200	
			15	10		50	100	

Output Low (sink) Current Characteristics.

Typical Transition Timevs. Load Capacitance.

Output High (source) Current Characteristics.

Typical High-to-low Propagation Delay Time vs. Load Capacitance.

Typical Low-to-high Propagation Delay Time vs. Load Capacitance.

High-level Supply Voltage vs. Low-level Supply Voltage.

Typical Input Switching vs. High-level Supply Voltage.

Typical Dynamic Power Dissipation vs. Input Frequency.

TEST CIRCUITS

Output Enable Delay Times Test Circuit and Waveforms.

TEST CIRCUITS (continued)

Quiescent Device Current.

Input Voltage.

Input Leakage Current.

Dynamic Power Dissipation.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
ı			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch				
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

