

Pontificia Universidad Javeriana

Facultad de ingeniería

Departamento de Ingeniería de Sistemas

Docente: Eddy Herrera Daza

Presentan: David Andrés Ramírez Monroy, Andrés Felipe Giraldo Malagón, Camilo Andrés García Silva

2021

1. Primer problema

• Enunciado

Dado el siguiente problema de valor inicial:

$$y' = -\alpha y; \ y(0) = y_0$$

Aplicando Euler utilice un α en el intervalo de [0,10] con dos cifras significativas y encuentre el valor de α donde la solución es creciente y dónde es decreciente.

• Solución

Para hallar la solución analítica se requería integrar la función ofrecida por el ejercicio, esto con el fin de encontrar el valor de *y*:

$$y = \int -\alpha y \to y = y_0 e^{-\alpha t}$$

Teniendo en cuenta lo anterior primero se evalúo la función y' con el método de Euler y después se evalúo la función y, ambas dentro del intervalo [0,10], por lo cual se obtuvo lo siguiente:

x	Solución numérica	Solución analítica	
0.1	0.8 0.82		
0.2	0.64 0.67		
0.3	0.51	0.55	
0.4	0.41	0.45	
0.5	0.33	0.37	
0.6	0.26	0.3	
0.7	0.21	0.25	
0.8	0.17	0.2	
0.9	0.13 0.17		
1	0.11 0.14		
1.1	0.09	0.09 0.11	
1.2	0.07	0.09	
1.3	0.05	0.07	

1.4	0.04 0.06		
1.5	0.04	0.05	
1.6	0.03	0.04	
1.7	0.02 0.03		
1.8	0.02 0.03		
1.9	0.01 0.02		
2.0	0.01	0.02	
2.1	0.01	0.01	
2.2	0.01	0.01	
2.3	0.01	0.01	
2.4	0	0.01	
2.5	0	0.01	
2.6	0	0.01	
2.7	0	0	
2.8	0	0	
2.9	0	0	
3.0	0	0	
3.1	0	0	
3.2	0	0	
3.3	0	0	
3.4	0	0 0	
		. 77	

Tabla 1. Comparativa soluciones primer problema

La gráfica presentada posteriormente demuestra la solución para y' comparada con la solución para la ecuación y dentro del intervalo de α [0, 10]. Para propósitos de este ejercicio se escogió el valor de α = 2:

Solución con método Euler 1.0 Solucion numerica Solucion analitica 0.8 0.6 0.4 0.2 0.0 2 4 6 8 0 10 t

Gráfica 1. Comparación gráfica soluciones primer problema

Con todo lo expuesto anteriormente la solución, tanto numérica como analítica, es decreciente en el intervalo $(-\infty, 2.4)$ y no hay valor conocido dentro de la función en la que esta sea creciente.

2. Segundo problema

• Enunciado

Dado el sistema de ecuaciones diferenciales que corresponden a una muestra estudio del sistema depredador presa de capturas de linces y conejos entre los años 1900 y 1920:

$$\begin{cases} x'(t) = 0.4x(t) - 0.018x(t)y(t); x(0) = 30\\ y'(t) = -0.8x(t) + 0.023x(t)y(t); y(0) = 4 \end{cases}$$

Encuentre la solución numérica del sistema de ecuaciones diferenciales con una evolución por año, realice una gráfica que muestre la evolución de las presas.

Año	Conejos	Linces	Año	Conejos	Linces
1900	30	4	1911	40.3	8
1901	47.2	6.1	1912	57	12.3
1902	70.2	9.8	1913	76.6	19.5
1903	77.4	35.2	1914	52.3	45.7
1904	36.3	59.4	1915	19.5	51.1
1905	20.6	41.7	1916	11.2	29.7
1906	18.1	19	1917	7.6	15.8
1907	21.4	13	1918	14.6	9.7
1908	22	8.3	1920	16.2	10.1
1909	25.4	9.1	1921	24.7	8.6
1910	27.1	7.4	1922	-	-

Figura 1. Tabla con los datos originales.

Compare la solución con los datos reales y evalúe el error total promedio y el error local, en que año se produce mayor error.

• Solución

Para resolver este problema se utilizó el método de Euler como lo solicitaba el problema y con este método se recopilaron los siguientes datos:

Gráfica 2. Comparación datos originales contra los datos aproximados.

Con los resultados de la gráfica se puede deducir que el método de Euler no es muy preciso para este problema, debido a que a simple vista se puede observar como los datos originales están muy alejados de los aproximados. Al mismo tiempo lo mencionado anteriormente se puede afirmar mediante el cálculo de errores.

Presa	Error Promedio
Conejos	0.96
Linces	0.59

Tabla 2. Errores según presa.