AD-A278 130

44 6 1

ATOMIC ENERGY LEVELS

As Derived From the Analyses of Optical Spectra

Volume I, Section 1

The Spectra of Hydrogen, Deuterium, Helium, Lithium Beryllium, Boron, Carbon, Nitrogen, Oxygen, and Fluorine

CIRCULAR 467

DTIC QUALITY INSPECTED 3

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

94 4 7 101

UNITED STATES DEPARTMENT OF COMMERCE, W. Averell Harriman, Secretary NATIONAL BUREAU OF STANDARDS, E. U. Condon, Director

ATOMIC ENERGY LEVELS

As Derived From the Analyses of Optical Spectra

Volume I, Section 1

The Spectra of Hydrogen, Deuterium, Helium, Lithium Beryllium, Boron, Carbon, Nitrogen, Oxygen, and Fluorine

By CHARLOTTE E. MOORE

Circular of the National Bureau of Standards 467
Issued April 15, 1948

DTIC QUALITY ECONOCIO 3

For sale by the Superintendent of Documents, U.S. Government Princing Office, Washington 25, D.

Foreword

This pamphlet is the first of a series being prepared at the National Bureau of Standards as part of a program on the critical compilation of all energy levels derived from observations of atomic spectra (exclusive of hyperfine structure ascribed to atomic nuclei). The collected results will finally appear in bound volumes of approximately 500 pages each, made up of these sections.

The project was undertaken after the authors of "Atomic Energy States", R. F. Bacher and S. Goudsmit, stated that they had no intention of revising their extremely useful book published in 1932. That book gave data for 231 spectra, most of which were incompletely described and analyzed 15 years ago. Now structure has been recognized in 460 spectra, and the former analysis in almost every case has been greatly extended. The purpose of these pamphlets is to make all present information available to scientific workers.

Details of the work were discussed at a meeting of the National Research Council Committee on Line Spectra of the Elements called by the chairman, H. N. Russell, and held in Washington in May 1946. It was then decided to send to interested workers in various fields a questionnaire regarding the most useful form of presentation of the data on atomic energy levels. The present form represents the majority vote resulting from that inquiry.

A text describing details of the tables will form the introduction to volume I. It will also contain numerous indices and cross references to facilitate the use of the books. In addition, charts of predicted terms in the spectra of leading isoelectronic sequences will be given.

Even without the detailed introduction, it is hoped that the advance distribution of the individual sections as they are completed may stimulate further spectroscopic research.

The generous response with unpublished material and the many helpful conferences with scientific workers are a great inspiration in carrying out this extensive task. The cordial cooperation and personal interest of the numerous scientists who have been participating in this project are greatly appreciated. In particular, the many suggestions by W. F. Meggers have been invaluable.

E. U. CONDON, Director.

WASHINGTON, D. C., January 1948.

п

Contents

Element	Z	Spectrum	Page	Element	Z	Spectrum	Page
Hydrogen	1	H 1	1 3	Nitrogen	7	N 1	32 35
Helium	2	He 1 He 11	4 7			N 111 N 1v N v	38 40 42
Lithium	3	Li 1 Li 11 Li 111	8 10 11			N vii	43 44
Beryllium	4	Be I	12 14 14 15	Oxygen	8	O I	45 47 50 53 56
Boron	5	B I	16 17 19 19 20	Fluorine	9	O vi O vii O viii	58 59 59
Carbon	6	C I	21 24 26 29 30 31		v	F II	62 64 66 69 71 74

HYDROGEN

HI

1 electron

Z = 1

Ground state 1s %

18 2S₄ 109679.041 cm⁻¹

I. P. 13.595 volts

The term values through n=38 have been calculated by J. E. Mack, using $R_{\rm H_1}=109677.581$ and taking into account the fine structure of the individual lines. Mack's calculations have been extended to include n=39 and n=40. Details of the spectrum are given by Fowler and by Paschen-Götze. The wavelengths calculated by J. E. Mack have been published in the Revised Multiplet Table.

W. E. Lamb, Jr. and R. C. Retherford have recently been studying "The Fine Structure of the Hydrogen Atom by a Microwave Method", and have kindly furnished their preliminary results in advance of publication. They state that the 2s ²S₂ level is higher than the 2p ²P₁ level by about 0.033 cm⁻¹ and that this value almost certainly lies between 0.027 cm⁻¹ and 0.043 cm⁻¹.

REFERENCES

- A Fowler, Report on Series in Line Spectra, p. 89 (Fleetway Press, London, 1922). (T) (C L)
- F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 22 (Julius Springer, Berlin, 1922). (T) (C L)
- H. E. White, Introduction to Atomic Spectra, p. 33 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934).
 (G D)
- T. Suga, Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 34, No. 740, 16 (1937). (C L)
- R. T. Birge, Rev. Mod. Phys. 13, 233 (1941). (R_{H_1})
- J. E. Mack, Unpublished material (1942). (I P) (T) (C L)
- C. E. Moore, Princeton Obs. Contr. No. 20, 1 (1945). (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)
- W. E. Lamb, Jr., and R. C. Retherford, Phys. Rev. 72, 241 (1947); Letter (July 1947). (T)
- H. A. Bethe, Phys. Rev. 72, 339 (1947).

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1a	1s ² S	*	0. 000		19s, etc.	19s ² S, etc.	⅓, etc.	109375. 22	
2s, 2p 2p	2s 2S, 2p 2P° 2p 2P°	11/4	82259. 190 82259. 555	0. 365	20s, etc.	20s 2S, etc.	⅓, etc.	109404. 85	
3s, 3p	38 28, 3p 2P°	i i	97492. 481		21s, etc.	21s ² S, etc.	⅓, etc.	109430. 34	ļ
3p, 3d 3d	3p P, 3d D	1½ 2½	97492. 589 97492. 625	0. 108 0. 036	22s, etc.	22s 2S, etc.	14, etc.	109452. 43	
		۲ ٪			23s, etc.	23s 2S, etc.	1/2, etc.	109471. 711	ĺ
4s to 4f	4s 2S to 4f 2F°	to 31/2	102824. 118 to . 186	0. 068	24s, etc.	24s ² S, etc.	⅓, etc.	109488. 629	
		1 3/3	, 1		25s, etc.	25s 2S, etc.	14, etc.	109503. 557	
5 e to 5 g	58 2S to 5g 2G	to 4½	105291. 898 to . 936	0. 038	26s, etc.	26s ² S, etc.	⅓, etc.	109516. 796	
		1	, ,		27s, etc.	27s ² S, etc.	34, etc.	109528. 592	
6s to 6h	6s 2S to 6h 2H°	{ to 5½	106632. 418 to . 441	0. 023	28s, etc.	28s ² S, etc.	½, etc.	109539. 146	
7	70 20 040		107440. 708		29s, etc.	29a 2S, etc.	½, etc.	109548, 628	
7s, etc.	7s ² S, etc.	1/2, etc.	to . 722	0. 014	30s, etc.	30s 2S, etc.	⅓, etc.	109557. 177	
8s, etc.	8s ² S, etc.	⅓, etc.	107965. 319 to 329	0. 010	31s, etc.	31s 2S, etc.	½, etc.	109564. 912	
9s, etc.	9s ² S, etc.	½, etc.	108324. 990		32s, etc.	32a 2S, etc.	⅓, etc.	109571. 934	
oe, e.c.	38 -0, 600.	/2, etc.	to . 997	0. 007	33s, etc.	33s ² S, etc.	1/2, etc.	109578. 327	
10 s , etc.	10s 2S, etc.	⅓, etc.	108582. 26		34s, etc.	34s ² S, etc.	1/2, etc.	109584. 164	
11a, etc.	11s 2S, etc.	. ½, etc.	108772. 61		35s, etc.	35s 2S, etc.	½, etc.	109589. 508	
12s, etc.	12s 2S, etc.	1/2, etc.	108917. 39		36s, etc.	36s ² S, etc.	⅓, etc.	109594. 413	
13s, etc.	13s ² S, etc.	1/2, etc.	109030. 06		37s, etc.	37s ² S, etc.	½, etc.	109598. 926	
14a, etc.	14s 2S, etc.	15, etc.	109119. 46		38s, etc.	38s 2S, etc.	½, etc.	109603. 087	ĺ
15s, etc.	15s 2S, etc.	⅓, etc.	109191. 58		39s, etc.	39a 2S, etc.	½, etc.	109606. 932	
16s, etc.	16s 2S, etc.	1/2, etc.	109250. 61		40s, etc.	40s 2S, etc.	⅓, etc.	109610, 493	
17s, etc.	17s ² S, etc.	½, etc.	109299, 53						
18 s , etc.	18s 2S, etc.	1/2, etc.	109340. 53			∞=Limit		109679. 041	

April 1946.

DEUTERIUM

D

1 electron

Z=1

Ground state 18 2S4

18 ²S₁₄ 109708.879 cm⁻¹

I. P. 13.598 volts

The term values have been calculated by J. E. Mack, using $R_{\rm D}$ =109707.419 and taking into account the fine structure of the individual lines. The wavelengths calculated by J. E. Mack have been published in the Revised Multiplet Table.

REFERENCES

R. T. Birge, Rev. Mod. Phys. 13, 233 (1941). (R_D)

J. E. Mack, Unpublished material (1942). (I P) (T) (C L)

C. E. Moore, Princeton Obs. Contr. No. 20, 1 (1945). (C L)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

D D

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s 2s, 2p 2p	1s 'S 2s 'S, 2p 'P° 2p 'P°	½ ½ 1½	0. 000 82281. 568	0, 365	6s to 6h	6s 2S to 6h 2H°	½ to 5½	106661. 427 to . 450	0. 023
	-	l í	82281. 933 97519. 004		7s, etc.	7s ² S, etc.	⅓, etc.	107469. 937 to . 951	0. 014
3s, 3p 3p, 3d 3d	3s 2S, 3p 2P° 3p 2P°, 3d 2D 3d 2D	1½ 1½ 2½	97519. 112 97519. 148	0. 108 0. 036	8s, etc.	8s ² S, etc.	½, etc.	107994. 691 to . 701	0. 010
4s to 4f	4s 2S to 4f 2F°	½ to 3½	102852. 091 to . 159	0. 068					
5s to 5g	5s 2S to 5g 2G	½ to 4½	105320. 542 to . 580	0. 038		∞=Limit		109708, 879	

April 1946.

HELIUM

He 1

2 electrons

Z=2

Ground state 182 1So

 18^{3} $^{1}S_{0}$ 198305 ± 15 cm⁻¹

I. P. 24.580 volts

Most of the terms are taken from Paschen-Götze with the term values subtracted from Paschen's limit as quoted by Robinson in 1937. Higher members of the ${}^{1}F^{\circ}$ and ${}^{3}F^{\circ}$ series are taken from Meggers and Dieke. The term 2p ${}^{3}P^{\circ}$ has been calculated from its combination with 2s ${}^{3}S_{1}$, using the resolved triplet as observed by Meggers, the intervals being -0.078 cm⁻¹ and -0.996 cm⁻¹. The components of 3p ${}^{3}P^{\circ}$ are based on Paschen's value of 3p ${}^{3}P_{3}$ and the intervals observed by Gibbs and Kruger; -0.165 cm⁻¹ and -0.192 cm⁻¹.

Some doubt exists regarding the correct classifications of lines attributed to doubly excited helium, such as those observed at 309.04 A and 320.38 A by Compton and Boyce, and at 320.392 A and 357.507 A by Kruger. Approximate theoretical computations of the energies of doubly excited levels have been made by a number of authors and are summarized by Wu. His classification of the line observed at 320.4 A as 2p 3 P $^{\circ}$ $-2p^2$ 3 P has been adopted and used for the calculation of $2p^2$ 3 P.

Several references deal with intercombinations in He 1, namely, those by Lyman, Hopfield, Paschen, Suga, and others. The term values based on the excellent long series have been adopted in the table, since it is believed that they are the most accurate.

REFERENCES

- F. Paschen und R. Götze, Seriengesetze der Linienspektren p. 22 (Julius Springer, Berlin, 1922). (T) (C L)
- T. Lyman, Astroph. J. 60, 1 (1924). (T) (C L)
- K. T. Compton and J. C. Boyce, J. Franklin Inst. 205, 497 (1928). (C L)
- F. Paschen, Sitz. Berlin Akad. Wiss. 30, 662 (1929). (T) (C L)
- J. J. Hopfield, Astroph. J. 72, 133 (1930). (T) (C L)
- P. G. Kruger, Phys. Rev. 36, 855 (1930). (C L)
- R. C. Gibbs and P. G. Kruger, Phys. Rev. 37, 1559 (1931). (T)
- W. F. Meggers and G. H. Dieke, Bur. Std. J. Research 9, 121, RP462 (1932). (T) (C L)
- F. Paschen and R. Ritschl, Ann. der Phys. [5] 18, 888 (1933). (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 209 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934).
 (G D)
- W. F. Meggers, J. Research Nat. Bur. Std. 14, 487, RP781 (1935). (C L)
- T. Suga, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 34, No. 740, 16 (1937). (C L)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P)
- P. Jacquinot, Compt. Rend. 208, 1896 (1939). (C L)
- T.-Y. Wu, Phys. Rev. 66, 291 (1944). (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

Heı

	116						
Config.	Desig.	J	Level	Config.	Desig.	J	Level
182	1s2 1S	0	0±15	15 78	7s ¹S	0	195973, 19
1s 2s	2s ³ S	1	159850. 318	1 <i>8</i> 7 <i>p</i>	7p *P°	2, 1, 0	196021, 72
1s 2s	2s 18	0	166271. 70	1s 7d	7d *D	3, 2, 1	196064, 00
1s 2p	2p *P°	2	169081. 111	1s 7d	7d ¹D	2	196064, 31
		0 1	169081. 189 16908 2 . 185	1s 7f	7 <i>f</i> ¹F°	3	196065. 4
1s 2p	2p ¹P°	1	171129. 148	1 <i>8 7f</i>	7f *F°	4, 3, 2	196065. 51
1a 3a	3s ² S	1	183231. 08	1s 7p	7p ¹P°	1	196073. 41
1a 3a	3s ¹S	0	184859. 06	1s 8s	8a 3S	1	196455. 79
1s 3p	3p 3P°	2	185558. 92	1s 8s	8s ¹S	0	196529. 03
-	•	1 0	185559. 085 185559. 277	1s 8p	8p 3P°	2, 1, 0	196561. 08
1s 3d	3d ³D	3, 2, 1	186095. 90	1s 8d	8d *D	3, 2, 1	196589. 42
1s 3d	3d ¹D	2	186099. 22	1s 8d	8d ¹D	2	196589. 73
1s 3p	3p 'P°	1	186203. 62	1s 8f	8f 1F°	3	196590, 3
1s 4s	4s ³ S	1 1	190292. 46	1s 8f	8f *F°	4, 3, 2	196590. 42
1s 4s	4s ¹S	0	190934. 50	1s 8p	8p 1P°	1	196595. 56
1s 4p	4p *P°	2, 1, 0	191211. 42	18 98	98 38	1	196856. 37
1s 4d	4d ³D	3, 2, 1	191438. 83	1s 9s	9s 1S	0	196907. 13
1s 4d	4d ¹D	2	191440, 71	1s 9p	9p *P°	2, 1, 0	196929. 68
1s 4f	4 <i>f</i> * F°	4, 3, 2	191446. 61	1s 9d	9d ¹D	2	196949. 49
1s 4f	4f 1F°	3	191447. 24	1s 9d	9d *D	3, 2, 1	196949. 63
1s 4p	4p 1P°	1	191486. 95	1s 9f	9f 1F°	3	196950. 3
1s 5s	58 ² S	1	193341. 33	1a 9f	9f *F°	4, 3, 2	196950. 36
1s 5s	58 ¹ S	0	193657. 78	1s 9p	9p 1P°	1	196953, 95
1s 5p	5p ³P°	2, 1, 0	198~95. 07	1s 10s	10s 3S	1	197139. 76
1s 5d	5d *D	3, 2, 1	193911. 48	1s 10s	10s ¹S	0	197176. 36
1s 5d	5d ¹D	2	193912. 54	1s 10p	10p 3P°	2, 1, 0	197192. 65
1s 5f	5f ¹F°	3	193914. 31	1s 10d	10d ¹D	2	197207. 08
1s 5f	5f ³F°	4, 3, 2	193915.79	1s 10d	10d 3D	3, 2, 1	197207. 30
1s 5p	5p 1P°	1	193936.75	1s 10f	10f *F°	4, 3, 2	197208.0
1s 6s	6a 3S	1	194930. 46	1s 10p	10p ¹P°	1	197210. 41
1s 6s	6s ¹S	0	195109. 17	1s 11s	11s *S	1	197347. 05
1 s 6 p	6p *P°	2, 1, 0	195187. 21	1s 11p	11p *P°	2, 1, 0	197386. 98
1s 6d	6d *D	3, 2, 1	195254. 37	1s 11d	11d 1D	2	197397. 62
1s 6d	6d ¹ D	2	195255. 02	1s 11d	11d 3D	3, 2, 1	197397. 75
1s 6f	6f 'F°	3	195256.7	1s 11f	11f *F°	4, 3, 2	197398, 6
1s 6f	6f F°	4, 3, 2	.195256. 82	ls 11p	11p 1P°	1	197400. 18
1s 6p	6p 1P°	1	195269. 17	1s 12s	12s *S	1	197503. 69
1: 7:	7a 38	1 1	1958 62 . 6 3	1s 12s	12s ¹S	0	197524. 26

He I—Continued

He I-Continued

Config.	Desig.	J	Level	Config.	Desig.	J	Level
1s 12p	12p *P°	2, 1, 0	197534. 44	1s 16d	16d *D	3, 2, 1	197876, 41
1s 12d	12d ¹D	2	197542. 54	1s 16p	16p ¹P°	1	197877. 04
1s 12d	12d ³D	3, 2, 1	197542. 67	1s 17p	17p *P°	2, 1, 0	197922. 51
1s 12p	12p ¹P°	1	197544. 56	1s 17d	17d *D	3, 2, 1	197925, 33
1a 13a	13s ² S	1	197624, 98	1s 17p	17p 'P°	1	197925, 87
1s 13p	13p *P°	2, 1, 0	197649. 07	1s 18p	18p *P°	2, 1, 0	197984. 02
1a 13a	13s ¹S	0	197649, 78	1s 18d	18d ³D	3, 2, 1	197966. 75
1s 13d	13d ¹D	2	197655, 19	1s 18p	18p ¹ P°	1 1	197966, 80
1s 13d	13d ³D	3, 2, 1	197655. 47	1s 19p	19p *P°	2, 1, 0	197999, 12
1s 15,	13p 'P°	1	197858. 95	1s 19d	19d *D	3, 2, 1	198001. 43
1s 14s	14s ³S	1	197721. 13	1s 19p	19p 'P°	1	198001, 44
1s 14p	14p *P°	2, 1, 0	1977 3 9. 90	1s 20p	20p *P°	2, 1, 0	198029.07
1s 14d	14d ¹D	2	197744. 918	1s 20p	20p 1P°	1	198031, 02
1s 14d	14d *D	3, 2, 1	197744. 94	1s 20d	20d ³D	3, 2, 1	198031. 41
1s 14p	14p ¹P°	1	197746. 15	1s 21p	21p *P°	2, 1, 0	198054.85
1a 15a	158 ⁸ S	1	197796. 63	1s 21d	21d 3D	3, 2, 1	198056. 50
1s 15p	15p P°	2, 1, 0	19781 3 . 11	1s 22p	22p ³P°	2, 1, 0	198077. 15
1a 15d	15d *D	3, 2, 1	197817. 05			.	·
la 15p	15p 1P°	1	197818. 12	Не п (² S ₃)	Limit		198305
1s 16p	16p 'P°	2, 1, 0	19787 2 . 95	2 <i>p</i> ²	2p2 *P	2, 1, 0	481198

August 1946.

(H I sequence; 1 electron)

Z=2

Ground state 18 S

18 St 438912.425 cm-1

I. P. 54.403 volts

The term values have been calculated by J. E. Mack, using $R_{\rm He} = 109722.263$ and taking into account the fine structure of the individual lines. Details of the spectrum are given by Fowler and by Paschen-Götze. The wavelengths calculated by J. E. Mack have been published in the Revised Multiplet Table.

REFERENCES

- A. Fowler, Report on Series in Line Spectra, p. 95 (Fleetway Press, London, 1922). (T) (C L)
- F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 25 (Julius Springer, Berlin, 1922). (T) (C L)
- H. E. White, Introduction to Atomic Spectra, p. 33 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- T. Suga, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 34, No. 740, 20 (1937). (C L)
- R. T. Birge, Rev. Mod. Phys. 13, 233 (1941). (R_{H_0})
- J. E. Mack, Unpublished material (1942). (I P) (T) (C L)
- C. E. Moore, Princeton Obs. Contr. No. 20, 1 (1945). (C L)
- J. E. Mack and N. Austern, Phys. Rev. 72, 972; Bul. Am. Phys. Soc. 22, No. 6, p. 23 (1947). (Fine structure).

He II He II

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
18	18 ² S	1/4	0. 000		12s, etc.	12s ² S, etc.	1/2, etc.	435864. 534 to . 583	0. 049
2s, 2p 2p	2s ² S, 2p ² P° 2p ² P°	1½ 1½	329182. 858 329188. 701	5. 843	13s, etc.	13s 2S, etc.	1/2, etc.	436315. 409 to . 447	0. 038
3s, 3p 3p, 3d 3d	3s ² S, 3p ² P° 3p ² P°, 3d ² D 3d ² D	1½ 1½ 2½	390144. 376 390146. 109 390146. 685	1. 733 0. 576	14s, etc.	14s ² S, etc.	⅓, etc.	436673. 163 to . 194	0. 031
4s, 4p 4p, 4d	48 28, 4p 2P° 4p 2P°, 4d 2D	1½ 1½ 2½ 3½	411480. 673 411481. 402	0. 729 0. 242	15s, etc.	15s 2S, etc.	1/2, etc.	436961. 781 to . 807	0. 026
4d, 4f 4f	4d 'D, 4f 'F' 4f 'F'		411481. 644 411481. 766	0. 122	16s, etc.	16s ² S, etc.	⅓, etc.	437197. 994 to 8. 015	0. 021
5s, 5p 5p, 5d 5d, 5f 5f, 5g 5g	5e 2S, 5p 2P° 5p 2P°, 5d 2D 5d 2D, 5f 2F°	14 14 24 34 44	421356. 227 421356. 601 421356. 723	0. 374 0. 122 0. 065	17s, etc.	17s ² S, etc.	1/2, etc.	437393. 761 to . 778	0. 017
5f, 5g 5g	5f ² F ⁶ , 5g ² G 5g ² G	\$	421356. 788 421356. 826	0. 038	18s, etc.	18s ² S, etc.	⅓, etc.	437557. 815 to . 829	0. 014
6s to 6h	6s 2S to 6h 2H°	{ to 5½	426720. 683 to 1. 043	0. 360	19s, etc.	19a 2S, etc.	14, etc.	437696. 654 to . 666	0. 012
7s, etc.	7s ² S, etc.	⅓, etc.	429955. 263 to . 496	0. 233	20s, etc.	20s ² S, etc.	⅓, etc.	437815. 191 to . 202	0. 011
8s, etc.	8s 2S, etc.	⅓, etc.	432054. 618 to . 778	0. 160	21s, etc.	21s 2S, etc.	⅓, etc.	437917. 202 to . 212	0. 010
9s, etc.	9s 2S, etc.	⅓, etc.	433493. 924 to 4. 039	0. 115	22s, etc.	22s 28, etc.	⅓, etc.	438005. 620 to . 629	0.009
10e, etc.	10e 28, etc.	⅓, etc.	434523. 448 to . 532	0. 084		F 2 26		40010 /	
11s, etc.	11s 28, etc.	⅓, etc.	435285. 179 to . 241	.0.062		Limit		438912, 425	Į.

LITHIUM

Li I

3 electrons

Z=3

Ground state 1s2 2s 2S4

28 2S1 43486.76 ±0.28 cm⁻¹

I. P. 5.390 volts

The analysis is from Fowler and Paschen-Götze. Meissner has generously furnished in advance of publication preliminary results of level splittings derived from observed hyperfine-structure of selected lines. These data are as follows:

Term	Interval (cm ⁻¹)	Line resolved (A)	Term	Line resolved (A)
2p 2P°	0. 3366 ±0. 0005*	6707. 912, . 761	3s 2S	8126. 452, . 231
3d 2D	0.037 ± 0.001	6103. 649, . 538	48 2S	4971. 745, . 661
4d 2D	0.017 ± 0.002	4602. 894, . 826	58 2S	4273. 127, . 066
5d 2D	0.010 ± 0.002	4132. 191, . 136	68 2S	3985, 538, , 485
6d 1D	0.008 ± 0.003	3915, 346, . 295	i	·

^{*}Average of 6 determinations.

The values in the table for the above terms have been calculated from these wavelengths. Jackson and Kuhn state that the multiplet splitting of $2p^2P^\circ=0.3372\pm0.0005$ cm⁻¹.

The remaining terms given to two decimals have been calculated from the measures by France. All other term values are from Fowler's Report.

REFERENCES

- N. A. Kent, Astroph. J. 40, 337 (1914). (T) (Z E)
- A. S. King, Astroph. J. 44, 169 (1916). (T)
- A. Fowler, Report on Series in Line Spectra, p. 96 (Fleetway Press, London, 1922). (T) (C L)
- F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 54, (Julius Springer, Berlin, 1922). (T) (C L)
- R. W. France, Proc. Roy. Soc. (London) [A] 129, 354 (1930). (I P) (T) (C L)
- H. E. White, Introduction to Atomic Spectra, p. 77, 87, (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- D. A. Jackson and H. Kuhn, Proc. Roy. Soc. (London) [A] 173, 278 (1939). (I S)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs).
- K. W. Meissner, L. G. Mundie, and P. Stetson, unpublished material (Dec. 1947). (T) (C L)

Li 1

Liı

Config.	Desig.	J	Level	Config.	Desig.	J	Level
28	2s 3S	34	0. 00	15p	15p 3P°	14, 14	4 2 995. 51
2 _p	2p ³P°	1½ 1½	1490 3 , 66 14904, 00	16 <i>p</i>	16p ² P°	34, 134	43055. 3 4
3a	3s *S	177 1/4	27206. 12	17p	17p ²P°	14, 14	43105. 4 2
3p	3p ¹ P°	⁷² ½, 1½	30925. 38	18 <i>p</i>	18p ¹ P°	14, 14	43146.98
3d	3d ¹ D	11/2	31283. 08	19p	19p ² P°	14, 14	43 181. 84
	0.3 D	21/2	31283. 12	20p	20p ³P°	14, 14	43211. 39
4:	4s ² S	14	35012. 06	21p	21p ¹P°	14, 114	43237. 16
4 p	4p ² P°	¥, 1¥	3 6469. 55	22p	22p ³P°	14, 114	4 32 59. 14
4 d	4d 2D	1½ 2½	36623. 38 36623. 40	23p	23p ³P°	14, 14	4 32 78. 96
4 f	4f ³F°	21/4, 31/4	36630. 2	24p	24p ³P°	14, 14	4 32 96. 0 3
~' 5e	-	1 1/2, 6/2	38299. 50	25p	25p *P°	14, 14	4 33 11. 45
5p	5p ² P°	½, 1½	39015, 56	26p	26p ³P°	14, 114	43324. 81
5d	5d *D	1	39097. 42	27p	27p ³P°	14, 14	4 333 6. 40
	0. 2	1½ 2½	39097. 44	28p	28p ³P°	11/2	4 33 46. 3 9
55	5f 2F°	21/2, 31/4	3 9104. 5	29p	29p ² P°	14, 14	43354. 91
68	6a 2S	1/2	39987. 64	30p	30p *P°	14, 114	43363.71
6 <i>p</i>	6 <i>p</i> ⁴P°	14, 14	40390. 84	31p	31p ² P°	½, 1½	43372.06
6d	6d ² D	1½ 2½	40437. 31 40437. 32	32p	32p P°	14, 14	43378. 3 1
7.	7 s ° S	1/2	40950, 7	33p	33p ¹P°	14, 14	43384. 9
7p	7p ³P°	14, 11/2	41217. 35	34p	34p ² P°	14, 114	43390. 3
7d	7d *D	1½, 2½	41248. 9	35p	35p ² P°	14, 14	4 33 95. 4
8p	8p ² P°	1/2, 2/4	41751. 63	36p	36p ³P°	14, 114	43 400. 5
8d	8 <i>d</i> 2D	114, 214	41787. 3	37p	37p ¹P°	14, 14	43404.7
9p	9p *P°	172, 273	42118. 27	38p	38p ²P°	14, 14	43 408 . 6
9d .	9d 3D	114, 214	42141. 1	39p	39p ³P°	14, 114	43412. 4
10p	10p ² P°		42141. 1 42379. 16	40p	40p ³P°	14, 14	43 416. 9
10 <i>p</i> 11 <i>p</i>	10 <i>p -</i> 1 11 <i>p 3</i> P°	%, 1% %, 1%	42579. 10 4 2 569. 1	41 <i>p</i>	41p *P°	½, 1½	434 2 0. 9
11 <i>p</i> 12 <i>p</i>	11p -P - 12p 2P°	72, 172 14, 114	42009. 1 4 2 719. 14	42p	42p ³P°	14, 14	43424. 3
•	_	'''				-	
13p	13p P°	1, 11,	428 32. 9 2	Li 11 (¹S₀)	Limit		43486. 76
14p	14p ² P°	14, 114	4292 3 . 3 9				

December 1947.

(He I sequence; 2 electrons)

Z=3

Ground state 182 1S0

182 1So 610079 ± 25 cm⁻¹

I. P. 75.6193 ± 0.0031 volts

Singlet series have been published by both Schüler and Werner, the longer ones by Schüler. In the term list Schüler's rounded off values have been used for the terms 4s to 7s 1 S, 5d to 8d 1 D and 8f 1 F°. The limit is from Robinson and the 2p to 4p 1 P° terms are from Edlén. All the remaining terms are from Werner, who gives also an extrapolated value of 2s 1 S₀, entered in brackets in the table.

Intersystem combinations have not been observed, but the long series should give a reliable determination of the relative positions of the singlet and triplet terms.

REFERENCES

- H. Schüler, Zeit. Phys. 37, 568 (1926). (T) (C L)
- S. Werner, Nature 116, 574 (L) (1925); 118, 154 (L) (1926). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 209 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934).
 (G D)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

Li 11

Li II

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
1s ² ¹ S	18 ³	1s2 1S	0	0	48	18 48	4s ¹S	0	581590
28	1s 2s	28 3S	1	476046	4p	1 s 4p	4p ³P°	2, 1, 0	581897
28	1s 2s	28 ¹S	0	[490079]	4d	1s 4d	4d *D	3, 2, 1	582612
2 <i>p</i>	1s 2p	2p ³P°	2, 1, 0	494273	4D	1s 4d	4d 1D	2	582631
1 s 2p ¹P	1s 2p	2p ¹P°	1	501816	4 <i>f</i>	1s 4f	4f *F°	4, 3, 2	<i>582</i> 644
3.	18 38	3e *S	1	554761	4F	1a 4f	4f 'F'	8	58 2 645
38	1a 3a	3e 18	0	558779	1s 4p ¹P	1s 4p	4p ¹P°	1	582832
3 <i>p</i>	1s 3p	3p *P°	2, 1, 0	559501	58	1s 5s	5s *S	1	591184
3d	1e 3d	3d *D	8, 2, 1	561245	58	1a 5a	5e 18	o	591984
3D	1s 3d	. 3d ¹ D	2	561276	5p	1s 5p	5p *P°	2, 1, 0	592141
1s 3p ¹ P	1s 3p	3p ¹P°	1	561749	5d	1e 5d	5d *D	3, 2, 1	592505
4	1. 48	4s 3S	1	579982	5D	1s 5d	5d 1D	2	592508

Li II-Continued

Li II--Continued

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
5 F	1a 5f	5f 1F°	3	592523	78	1a 7a	7 s ¹S	0	60092
5 <i>f</i>	1s 5f	5f F°	4, 3, 2	592527	7d	1a 7d	7d •D	8, 2, 1	60111
5P	1# 5p	5p 1P°	1	592639	7D	1s 7d	7d 1D	2	60111
60	1e 6e	6s 4S	1	597122	7 <i>f</i>	1s 7f	7f *F°	4, 3, 2	60112
68	1a 6a	6s 1S	0	597574	7F	1s 7f	7f 'F°	8	60112
6 <i>p</i>	1s 6p	6p *P°	2, 1, 0	597666	8 <i>D</i>	1s 8d	8d 1D	2	60321
6d	1s 6d	6d 1D	3, 2, 1	597876	8 <i>f</i>	1s 8f	8f *F°	4, 3, 2	60322
6D	1 s 6d	6d 1D	2	597877	8 F	1s 8f	8f 1F°	8	60322
6 <i>f</i>	1a 6f	6f 'F°	4, 3, 2	597886					
6 F	1# 6f	6f 'F°	8	597886		Li m (*S _N)	Limit		61007
7#	1s 7s	78 S	1	600641		1			

May 1946.

Li m

(H r sequence; 1 electron)

Z=3

Ground state 18 %

18 2S₁₄ 987677 cm⁻¹

I. P. 122.423 volts

Edlén has calculated from the Penney series formula the positions of the first three lines of the Lyman series, $1s^2S-np^2P^\circ$ (n=2,3,4), at 134.994 A, 113.903 A, and 107.997 A, respectively. These lines are clearly visible on his spectrograms, but there is a discordance between the observed and calculated wavelengths, which he attributes to the unsymmetrical broadening of the lines.

Gale and Hoag report that they have observed 5 lines of this series and the first line of the Balmer series. The calculated position of the latter is 729.05 A, according to Edlén.

The term values listed have been derived from Edlén's calculated wavelengths.

REFERENCES

W. G. Penney, Phil. Mag. [7] 9, 661 (1930).

H. G. Gale and J. B. Hoag, Phys. Rev. 37, 1703 (A) (1931). (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 28, 152 (1934). (I P) (T) (C L)

Li m

Li m

Config.	Desig.	J	Level	Config.	Desig.	J	Level
1s 2p	1s 2S 2p 2P°	% %, 1%	0 740774	4 p	₫p ₃bo	14, 114	925952
3 <i>p</i>	3p ¹P°	%, 1%	877940		Limit		987677

October 1946.

BERYLLIUM

Be I

4 electrons

Z=4

Ground state 1s2 2s2 1S0

28² ¹S₀ 75192.29 cm⁻¹

I. P. 9.320 volts

All but four of the terms are from the work of Paschen or Paschen and Kruger. According to Paschen no intersystem combinations have been observed. The relative positions of the singlet and triplet terms are, however, excellently determined by long series with a relative uncertainty x not exceeding ± 2 cm⁻¹.

The predicted position of the resonance line, $2s^2 {}^{1}S_0 - 2p {}^{3}P_0^{\circ}$, is 4548.29 A. Paton and Nusbaum have observed a line at 4553.07 A to which they assign this classification, but their result has not been confirmed.

The term values of higher series members, calculated from the series formula but not substantiated by observation, are in brackets in the table.

Four terms are from Edlén's work: 2p2 1D, 3p 3P°, 2p2 1S, and 3p3P.

REFERENCES

- R. F. Paton and R. E. Nusbaum, Phys. Rev. 33, 1093 (A) (1929). (C L)
- F. Paschen and P. G. Kruger, Ann. der Phys. [5] 8, 1005 (1931). (T) (C L)
- F. Paschen, Ann. der Phys. [5] 12, 514 (1932). (I P) (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 51 (1934). (T) (C L)
- H. E. White, Introduction to Atomic Spectra, p. 179 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934).
 (G D)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

Be I

Be I

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
282	282 18	0	0. 00		2s(2S)3p	3p 'P°	1	[60187]	
2s(*S)2p	2p *P°	0	21979. 43+x	0. 68	2s(2S)3d	3d *D	1, 2, 3	62054.8 +z	
Į		2	21980. 11+x 21982. 46+x	2. 35	2s(2S)3d	3d ¹D	2	64428. 15	l
2s(*8)2p	2p ¹P°	1	42565. S		2s(2S)4s	4s 3S	1	64507. 7 +x	
2e(28)3e	38 ⁴ S	1	52082. 07+x		2s (³ S) 4s	48 18	0	65245. 4	
2s(28)3s	3s ¹ S	0	54677. 2		2s (² S) 4p	4p *P°	0, 1, 2	[65949] +z	
2p3	2p3 1D	2	56432. 5	}	2s (°S) 4p	4p 1P°	1	[67228]	1
2s(°S)3p	3p *P°	0, 1, 2	58791.6 +x		2s (°S) 4d	4d *D	1, 2, 3	67943. 6 +x	
2p2	2p³ *P	0	59694. 61+x	1.40	2s (*S) 4d	4d ¹D	2	68781. 2	1
		1 2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1. 40 2. 03	2e (°S) 5e	5e *S	1	69009. 8 +2	

Be I-Continued

Be I—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s (°8) 5s	5e ¹ S	0	69322. 3		2s (°S) 9d	9d 3D	1, 2, 3	73803. 2 +x	
2s (*8) 5p	5p *P°	0, 1, 2	[69634.5] + x		2s (°S) 9d	9d ¹D	2	73866. 9	
2s (*S) 5d	5d *D	1, 2, 3	70606. 7 +x		2s (2S) 10s	10s 1S	0	73930. 4	
2s (*8) 5d	5d ¹ D	2	71002. 3	}	2s (*S) 10d	10d *D	1, 2, 3	74070. 6 +x	
2s (*S) 6s	6a 3S	1	71161. 9 $+x$		2s (3S) 10d	10d ¹D	2	74116. 7	
2s (*S) 6s	6e ¹ S	0	71320. 7		2a (2S) 11a	11s ¹S	0	74163. 4	
2s (*S) 6p	6p *P°.	0, 1, 2	[71482. 9].+x		2s (2S) 11d	11d *D	1, 2, 3	74268. 6	
2p2	2p3 18	0	71498. 9		2s (°S) 11d	11d ¹D	2	74301. 4	
2s (*S) 6d	6d ^a D	1, 2, 3	72030. 6 $+x$		2s (2S) 12d	12d *D	1, 2, 3	74416.3 + z	1
2s (*8) 6d	6d ¹ D	2	72251. 1		2s (2S) 12d	12d ¹D	2	74443. 2	
2s (28) 7s	7e *S	1	72355. 4 $+x$		Be 11 (2S ₁₄)	Limit		75192. 29	
2s (² S) 7s	7a ¹S	0	72448. 3		2p (2P°) 3s	3s ¹ P°	0	85554. 96+x	2. 05
2s (*S) 7d	7d *D	1, 2, 3	72881. 9 $+x$				1 2	85557.01+x 85560.93+x	3. 92
2s (2S) 7d	7d ¹D	2	73017. 2	Ì	2p (2P°) 3p	3p *P	0		
2s (² S) 8s	8a 38	1	73089. 1 +x	!			1 2	91901. 8 +x	
2a (2S) 8a	8a 18	0	73146. 7		2p (2P°) 3d	3d 'D°	1	[94189.51] + x	0. 60
2s (*S) 8d	8d *D	1, 2, 3	73429.6 + x				1 2 3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1. 15
2s (*S) 8d	8d 1D	2	73519. 7	[2p (P°) 3d	3d 1P°	0	95162. 1 +x	1.0
2s (°S) 9s	9s ¹ S	0	73608. 5				1 2	$\begin{vmatrix} 95163.1 + x \\ 95165.0 + x \end{vmatrix}$	1. 9

May 1946.

Be I OBSERVED TERMS*

Config.	Observed Terms								
243	2+2 1S								
2s(*S)2p	$ \begin{cases} 2p & ^{3}P^{\circ} \\ 2p & ^{1}P^{\circ} \end{cases} $								
$2p^2$	{ 2p³ 'S 2p³ 'P 2p²	ıD	,						
	$ns \ (n \ge 3)$	np (n≥3)	$nd (n \ge 3)$						
2s(°S) nx	3- 8s *S 3-11s *S	3p *P°	3-12d *D 3-12d 1D						
2p(3P°)nx	3e 3P°	3 <i>p</i> *P	3d *P° 3d *D°						

^{*}For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

(Li 1 sequence; 3 electrons)

Z=4

Ground state 1s2 2s 2S1/4

28 2S% 146881.7 cm-1

I. P. 18.206 volts

The analysis has been taken from the paper by Paschen and Kruger.

REFERENCES

F. Paschen and P. G. Kruger, Ann. der Phys. [5] 8, 1014 (1931). (I P) (T) (C L)

H. E. White, Introduction to Atomic Spectra p. 98, (McGraw-Hill Book Co., Inc. New York, N. Y., 1934). (G D)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

Be II

Be II

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interva
24	2s ² S	1/2	0. 0		5 <i>f</i>	5f °F°	214, 314	129321. 9	
2p	2p P°	11/2	3 19 2 8. 8 3 19 3 5. 4	6. 6	68	6s ² S	14	133559. 1	
3e	3a ² S	*	88231. 2		6 <i>p</i>	6p P°	11/2	134485. 6	
3 <i>p</i>	3p 2P°	11/2	96496. 4 96498. 2	1. 8	6d	6d 2D	11/2, 21/2	134682. 0	ı
3 <i>d</i>	3 <i>d</i> 2D	11/4, 21/4	98053. 2		6 <i>f</i>	6f *F°	21/4, 31/4	134688. 1	
40	48 ² S	3/2	115465. 2	• •	7s 7p	7s 2S 7p 2P°	1 4	137226. 0	
4 p	4p ² P°	11/2	118760	• •		-	11/4	137796	
4d	4d 2D	11/4, 21/4	119422. 2	• •	7d 7f	7d °D 7f °F°	1½, 2½ 2½, 3½	137920. 0 137923. 1	
4 <i>f</i>	4f 2F°	21/2, 31/4	119444. 6	• •	8d	8 <i>d</i> 2D	11/2, 21/2	140020. 4	
5a	5s ² S	1/4	127336. 1			04 2	-/2, -/-	11002011	ł
5p	5p 2P°	11/2	1 2 8970. 2	• •	Вени ('S ₀)	Limit		146881.7	
5d	5d 2D	114, 214	129311. 3						i

April 1946.

Be III

(He I sequence; 2 electrons)

Z=4

Ground state 182 1So

182 1So 1241225 ±100 cm⁻¹

I. P. 153.850 ±0.012 volts

Both Robinson and Edlén report six lines of the singlet series observed, although the earlier members have also been measured by others. The range is between 81 A and 100 A. The singlet terms have been taken from Robinson's paper.

The relative absolute values of the triplet and singlet terms have been determined by extrapolation of 3d ³D from He 1 and Li 11, according to Edlén, who has generously furnished his unpublished term values of the triplets. Apparently no intersystem combinations have been observed in Be 111, but the existence of the observed line $1s^2$ ¹S₀-2p ³P₁ in the related spectra from B IV to Al XII, within the errors of measurement of the predicted positions, indicates that the uncertainty x is small.

Be III-Continued

REFERENCES

- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (T) (C L)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

Ве пі

Ве п

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1e ⁵	1s² ¹S	0	0		1s 4p	4p 1P°	1	1179830	
1s 2s	2a 38	1	956496 + x		1a 5p	5p ¹P°	1	1201894	
1s 2p	2p *P°	0 1 2	$983348 + x \\ 983363 + x$	15	1s 6p 1s 7p	6p ¹ P° 7p ¹ P°	1	1 2 13931	
1s 2p	2p ¹P°	1	997466)					
1s 3p	3p ¹P°	1	1132323		Be Iv (2S ₁₆)	Limit		1241225	

September 1947.

Be IV

(H 1 sequence; 1 electron)

Z=4

Ground state 1s Si

18 2St 1756065 cm-1

I. P. 217.664 volts

For the lines of Be ν that have been observed, $1s^2S-np^2P^2$ (n=2 to 7), Robinson lists wavelengths derived from the Penney series formula. The range is from 58 A to 75 A. The terms listed for this spectrum have been calculated from his data.

Tyrén also reports the first three members of the series as observed.

REFERENCES

- W. G. Penney, Phil. Mag. [7] 9, 661 (1930).
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 28, 152 (1934). (I P) (T) (C L) H. A. Robinson, Phys. Rev. 56, 99 (1936). (C L)
- F. Tyrén, Zeit. Phys. 98, 771 (1936). (C L)

Be IV

Be IV

Config.	Desig.	J _.	Level	Config.	Desig.	J	Level
le le	1s ² S	3/3	0	6 <i>p</i>	6p ² P°	14, 114	1707292
2 <i>p</i>	2p 2P°	14, 114	1317087	7p	7 <i>p</i> ⁴P°	% , 1%	1720835
3 <i>p</i>	3p 2P°	14, 114	15609 88	ļ			
4 <i>p</i>	4p 2P°	½, 1½	1646 32 4		Limit		175 6065
5 <i>p</i>	5p 2P°	¾, 1¾	16858 32	`		ļ	

October 1946.

BORON

BI

5 electrons

Z=5

Ground state 1s2 2s2 2p 2P4

2p 2P° 66930 cm-1

I. P. 8.296 volts

The spectrum is incompletely observed, but 34 lines have been classified in the interval between 1378 A and 2498 A. The terms for which there is an entry in the column of the table headed "Authors", are from Edlén, but a correction of 90 cm⁻¹ has been added to the limit as quoted from Selwyn (66840 cm⁻¹). Whitelaw and Mack have recalculated the limit and derived the value B 1 2s² 2p 2P²₂-B 11 2s² 1S₀=66930 cm⁻¹, using the ²D series alone because of extraconfigurational perturbations in the ²S series. Selwyn averaged the limits from both the ²S and ²D series.

The remaining terms are from an unpublished manuscript kindly furnished by Clearman, who has extended the doublet series by further observations and confirmed the correction to the limit mentioned above. Clearman has also found two quartet terms. No intersystem combinations have been observed, as indicated by x in the table. Edlén estimates that $2p^2P_{1\frac{1}{2}}^2-2p^2^4P_{2\frac{1}{2}}=28800$ cm⁻¹, by analogy with the observed intersystem combinations in C II and N III. The corresponding value of $2p^2$ $^4P_{\frac{1}{2}}$ is entered in brackets in the table and has been added to all of Clearman's values of quartet terms.

REFERENCES

- I. S. Bowen, Phys. Rev. 29, 231 (1927). (T) (C L)
- E. W. H. Selwyn, Proc. Phys. Soc. (London) 41, 401 (1929). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 74 (1934). (T)
- H. E. White, Introduction to Atomic Spectra p. 115 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935). (I P) (T)
- B. Edlén, Zeit. Phys. 98, 564 (1936). (C L)
- W. Opeschowski and D. A. DeVries, Physica 6, No. 9, 913 (1939). (I S)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)
- H. E. Clearman Jr., unpublished material (Aug. 1947). (T) (C L)

Authors	Config.	Desig.	J	Level	Interval	Authors	Config.	Desig.	J	Level	Interval
2p *P ₁ *P ₂	2s³(¹S)2p	2p *P°	11/2	0 16	16	5d ² D	28 ³ (¹ S)5d	5d 1D	{ 1½ 2½	} 62481	
	2s 2p³	2p2 1P	1,75	[28805] + x	5	ļ	2s 2p³	2p³ ¹S	*	63561	
2p' 4P ₂			1½ 2½ 2½	28810 + x $28816 + x$	5 6	6d 2D	2s²(¹S)6d	6d 2D	{ 1½ 2½	63847	
3s ² S ₁	2s²(¹S)3s	3s 2S	14	40040			2s³(¹S)7s	78 2S	14	64156	
2p' ³D	2s 2p²	2p³ ¹D	{ 1½ 2½	} 47857			2s³(¹S)7d	7d 2D	{ 1½ 2½	} 64664	
3d *D	2s ² (¹S)3d	3d *D	{ 1½ 2½	} 54765			2s ² (¹S)8d	8d 2D	{ 1½ 2½	65195	
4s *S ₁	2s2(1S)4s	4a 2S	14	55009			2s ² (¹S)9s	98 28	3/2	65553	
4d ² D	2s²(¹S)4d	4d 2D	{ 1½ 2½	} 59989			B11 (1S0)	Limit		66930	
5s 2S1	2s³(¹S)5s	5a 2S	1/4	60146			2s 2p³	2p3 3P	11/2	72535 72547	12
·	2s²(¹S)6s	68 ² S	*	62098			2p³	2p³ 4S°	11/2	97057+x	

August 1947.

B I OBSERVED TERMS*

Config. 1s ² +	Observed Terms	Observed Terms							
2s2(1S)2p	2p 3P°								
2s 2p²	$\left\{\begin{array}{cccccc} & 2p^2 & ^{4}\mathrm{P} & \\ & 2p^3 & ^{2}\mathrm{S} & 2p^3 & ^{2}\mathrm{P} & 2p^3 & ^{3}\mathrm{D} \end{array}\right.$								
2p²	2pt 48°								
	ns (n≥3)	nd $(n \ge 3)$							
2s ² (¹S)nx	3-7s, 9s 2S	3-8d ² D							

^{*}For predicted terms in the spectra of the B $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

BII

(Be I sequence; 4 electrons)

Z=5

Ground state 1s2 2s2 1S0

282 ISo 202895 cm-1

I. P. 25.149 volts

The terms are from Edlén, who remarks that the observed series, especially in the singlet system, are too short for the precise determination of the limits. By analogy with Be I, C III, and N IV, he interpolates the value of $2s^2$ $^1S_0-2p$ $^3P_1^\circ$ as 37340 cm⁻¹, which places the limit $2s^2$ 1S_0 at 202895.0 cm⁻¹. The absolute values of the singlet terms as published in Edlén's Monograph have therefore been increased by 249 cm⁻¹. The relative uncertainty x is probably less than this. No intersystem combinations have been observed.

An extrapolated value of 3s 'So is given in brackets.

B_{II}—Continued

REFERENCES

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 51 (1934). (T) (C L) B. Edlén, Zeit. Phys. 98, 561 (1936). (I P) (C L)

Вп

Вп

Interval	Level	J	Desig.	Config.	Edlén	Interval	Level	J	Desig.	Config.	Edlén
	171544.7+x	0, 1, 2	4p *P°	2s(2S)4p	4p *P		0. 0	0	2s² ¹S	288	2s ¹Se
	174072. 6+x	1, 2, 3	4d ³D	2s(2S)4d	4d 3D	6.4	37333. 6+x	0	2p *P°	2s(³ S)2p	2p *P.
1	174902.5+x	2, 3, 4	4f *F°	2s(2S)4f	4f ³F	16. 4	37340.0+x 37356.4+x	1 2			³ P ₁ ³ P ₂
	174921.5	3	4f 'F°	2s(2S)4f	4f ¹F2		73396. 7	1	2p ¹P°	2s(³ S)2p	2p ¹P1
	175546. 0	2	4d ¹D	2s(2S)4d	4d 1D2	8.4	98910. 3+x	0	2p3 3P	$2p^2$	2p' *P0
	180896. 5+x	1	5s 3S	2s(2S)5s	5s 3S1	14. 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2			*P ₁ *P ₂
9. 8	181645. 2+z	0	38 ³P°	2p(2P°)3s	3e' ¹ P ₀		102362. 1	2	2p2 1D	2p2	2p' 1D2
20. 9	$ \begin{array}{c} 181655.\ 0+x \\ 181675.\ 9+x \end{array} $	1 2			*P ₁		127662. 0	0	2p ² 1S	$2p^3$	2p' ¹S ₀
	184633. 1+x	1, 2, 3	5d *D	$2s(^2S)5d$	5d *D		129772. 9+x	1	3s ¹ S	$2s(^{3}S)3s$	3s ² S ₁
	184908. 2 +x	2, 3, 4	5 <i>f</i> *F°	2s(2S)5f	5f *F		[135946]	0	3s 1S	2s(2S)3s	3s ¹ S ₀
	189126. 6	1	3p ¹P	2p(2P°)3p	3p' ¹P₁	3.7	143989. 7+x	0, 1	3p *P°	$2s(^2S)3p$	3p *Po1
12	194748? +x	2, 3	3d ³F°	$2p(^{2}\mathrm{P}^{\circ})3d$	3d' 3F23		143993. 4+x	2	0 170	0.490.0	³ P ₂
	194760? +x	4		a (470) a 1	*F4		144102.0	1	3p 1P°	2s(2S)3p	3p ¹ P ₁
	197721.0	2	3d 1D°	$2p(^{3}P^{\circ})3d$.	3d′ ¹D2		150649. $0+x$	1, 2, 3	3d ¹ D	2s(2S)3d	3d *D
	200484.6+x	1, 2, 3	3d ³ D°	$2p(^{2}\mathrm{P}^{\mathrm{o}})3d$	3d′ ³D		154686. 9	2	3d ¹D	$2s(^2S)3d$	3d 1D2
							166344. 4+x	1	48 3S	2s(2S)4s	4s *S ₁
	202895		Limit	B 111 (2S%)		1	167934. 2	0	4s ¹S	2s(2S)4s	4s 1S ₀

May 1946.

B II OBSERVED TERMS*

Config. 182+			Observed Te	rms	
2e ²	282 18				
$2s(^2\mathrm{S})2p$	{	2p *P° 2p 'P°			
$2p^2$	{ 2p² 'S	$2p^{2}$ *P $2p^{2}$ 1D			
		ns $(n \ge 3)$	np (n≥3)	nd (n≥3)	nf (n≥4)
2s(² S)nx	{3-5s 3S 4s 1S		3, 4p *P° 3p *P°	3-5d *D 3, 4d ¹ D	4, 5f *F° 4f *F°
2p(2P°)nx	{	3# *P°	3p ¹P	3d ³ D° 3d ³ F° 3d ¹ D°	

^{*}For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

(Li I sequence; 3 electrons)

Z=5

Ground state 1s2 2s 2SM

28 2S 305931.1 cm-1

I. P. 37.920 volts

The terms are from Edlén. The absolute values are based on the assumption that n^* for 5g ²G equals that of the corresponding term in C IV, where 5g ²G -6h ²H° has been observed. The precision of this term in B III is estimated to be within ± 1 cm⁻¹. The series are well represented by a Ritz formula.

Edlén gives four extrapolated term intervals, which are entered in brackets in the table REFERENCES

- A. Ericson and B. Edlén, Zeit. Phys. 59, 676 (1930). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 37 (1934). (I P) (T) (C L) (G D)

Bm

Bm

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2s ² S ₁	28	28 28	*	0. 0		5p 3P2	5 <i>p</i>	5p 2P°	1½	265719.7	[2. 2]
2p ² P ₁ ² P ₂	2 <i>p</i>	2p *P°	11/2	48 3 58. 5 48 392 . 6	34. 1	5d 2D2	5 <i>d</i>	5d 2D	11/2 21/2	266389. 5	
3s ² S ₁ 3p ² P ₁ ² P ₂	3s 3p	3s 2S 3p 2P°	½ ½ 1½	180201. 8 19 2 949. 2	10. 2	5f 2F	5 <i>f</i>	5f 'F°	{ 2½ 3½	2 66416. 5	
	3 <i>d</i>	3 <i>d</i> *D	1½ 1½ 2½	192959. 4	[3. 4]	5 <i>g</i> 2G	5 g	5g 2G	{ 3½ 4½ 4½	} 266427, 2	
3d ² D ₁ 4s ² S ₁	48	4s 2S	21/4	196071. 2 237695. 5	(3. 1)	6d ² D ₃	6d	6d 2D	1½ 2½	278473. 7	
4p 2P3	4 p	4p *P°	11/2	2 4 2 83 2 . 4	[4. 3]	6f ²F	6 <i>f</i>	6f 2F°	{ 2½ 3½	2 78491.7	
4d 2D2	4 d	4d ³D	1½ 2½	244138. 9	[1. 4]	6 <i>g</i> ² G	6 <i>g</i>	6g 2G	{ 3½ 4½	} 278497. 5	
4f ³F	4 f	4f 'F°	{ 2½ 3½	2 44199. 2							
5s 2S ₁	5#	5e 2S	1/4	263156. 2			B IV (1S0)	Limit		305931. 1	

April 1946.

BIV

(He I sequence; 2 electrons)

Z=5

Ground state 182 1So

182 1Sa 2091960 ± 200 cm-1

I. P. 259.298 ± 0.025 volts

The singlet terms are from Tyrén and the observed singlet combinations are in the range from 48 to 60 A. The unit adopted by Tyrén, 10³ cm⁻¹, has here been changed to cm⁻¹.

Relative absolute values of the triplet terms were derived by the extrapolation of 3d ³D from He 1 and Li 11, according to unpublished material generously furnished by Dr. Edlén. These calculations have confirmed the classification by Tyrén of a line at 61 A as the intersystem combination $1s^2$ ¹S₀-2p ³P₁°. The triplet terms have been taken from Edlén's 1947 manuscript.

B IV-Continued

REFERENCES

- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (T) (C L)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)
- F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (I P) (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

B IV

B IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
169	1st 18	0	0		ls 4p	4p 1P°	1	1982750	
1s 2s	2s ³ S	1	1601505		1 s 5p	5p ¹P°	1	2022000	
1s 2p	2p *P°	o l	1636898 163688 2	-16	1s 6p	6p ¹P°	1	2 04 33 60	
1s 2p	2p ¹P°	2 1	1656934 16580 2 0	52	B v (*8%)	Limit		2091960	
1s 3p	3p ¹P°	1	1898180						

September 1947.

BV

(H I sequence; 1 electron)

Z=5

Ground state 1s 2SH

18 2S 2744207 cm-1

I. P. 340.144 volts

Edlén has calculated the positions of the first three members of the Lyman series, $1s^2S-np^2P^0$ (n=2, 3, 4), using Penney's formula. These wavelengths, 48.585 A, 40.995 A and 38.869 A, respectively, have been used to compute the term values listed here. The lines have all been observed by Tyrén.

REFERENCES

- W. G. Penney, Phil. Mag. [7] 9, 661 (1930).
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 28, 152 (1934). (I P) (T) (C L)
- F. Tyrén, Zeit. Phys. 98, 771 (1936). (C L)

B v

B v

Config.	Desig.	J	Level	Config.	Desig.	J	Level
18	1s 2S	½	0	4p	4p *P°	14, 114	2572744
2p 3p	2p ² P°	%, 1% %, 1%	2 058 2 47 2 4393 22		Limit		2744207

October 1946.

CARBON

Cı

6 electrons

Z=6

Ground state 1s2 2s2 2p2 Po

2p3 Po 90878.3 cm-1

I. P. 11.264 volts

The term assignments are taken from Edlén, who has revised and extended the earlier work on the analysis of this spectrum. Two extrapolated term values, derived from the irregular doublet law, are entered in brackets in the table.

The singlet and triplet terms are well connected by intersystem combinations. Only two quintet terms are known. They are connected with the rest by intersystem combinations based on the measures of the resonance lines by Shenstone.

One term, 5p 'S, has been revised as suggested in the 1939 reference listed below.

Selected term values of C I have been improved from a study of the lines that have been clearly identified in the Infrared Solar Spectrum. Such precision cannot be expected from terms based on lines in the ultraviolet. As a starting point the value of 3s $^8P_1^{\circ}=60353.00$ cm⁻¹ was adopted as correct, to agree with Shenstone's recent measures. Excellent agreement was found between the laboratory measures of Kiess (8335 A to 11330 A) and solar wave-numbers of lines identified as C I in the solar spectrum. Further to the red solar wavelengths surpass laboratory values in accuracy and give consistent internal separations within the multiplets.

In the course of this work all term values have been recalculated. Consequently, most of the listed values differ slightly from those published by Edlén. No changes have been made in his analysis, but the level $3d^{3}P_{0}^{a}$, calculated from solar wave-numbers, has been added to his list.

REFERENCES

- A. Fowler and E. W. H. Selwyn, Proc. Roy. Soc. (London) [A] 118, 34 (1928). (T) (C L)
- 8. B. Ingram, Phys. Rev. 34, 421 (1929). (T) (C L)
- F. Paschen and G. Kruger, Ann. der Phys. [5] 7, 1 (1930). (T) (C L)
- B. Edién, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 104 (1934). (I P) (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 266 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- C. C. Kiess, J. Research Nat. Bur. Std. 20, 33, RP1062 (1938). (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1936). (Summary hfs)
- Y. Ishida, T. Tamura, and M. Fukushima, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 36, No. 936, 417 (1939). (T) (C L)
- H. D. Babcock and C. E. Moore, Carnegie Inst. Wash. Publ. 579 (1947). (Solar data)
- B. Edlén, Nature 159, No. 4030, 129 (1947). (C L)
- A. G. Shenstone, Phys. Rev. 72, 411 (1947). (T) (C L)

								C I			
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p *P ₀ *P ₁	2s² 2p²	2p2 3P	0 1	0. 0 16. 4	16. 4	4d 1D2	2s² 2p(²P°)4d	4d ¹ D°	2	83500	
³P₂	2s2 2p2	2p1 1D	2 2	43. 5 10193. 70	27. 1	4d *F,	2s ² 2p(² P°)4d	4d ³F°	2 3	85761	
2p ¹D₁		1				4145			4		
2p1 S0	2s ² 2p ³ 2s 2p ²	2p ^{2 1} S 2p ^{2 5} S°	2	21648, 4 33735, 2		4d *D ₁ *D ₂ *D ₃	2s ² 2p(² P°)4d	4d ³ D°	1 2 3	83830 83837 83847	7 10
38 *Po	2s2 2p(2P°)3s	3s ¹ P°	0	60333. 80	19. 20	58 ¹P ₁	2s ² 2p(² P°)5s	5s ¹ P°	1	8388 2 . 5	
*P ₁ *P ₂			$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	60353. 00 60393. 52	40. 52	4d ¹ F ₄	2s2 2p(2P°)4d	4d 'F°	3	83949	
38 ¹ P ₁	2s2 2p(2P°)3s	3s 1P°	1	61982. 20		4d ¹ P ₁	2s² 2p(²P°)4d	4d 'P°	1	840 32	
2p' D ₁ D ₂ D ₃ D ₁	2s 2p³	2p* *D°	3 2 1	64088. 56 64093. 19 6 409 2. 01	-4. 63 1. 18	4d ³ P ₂ ³ P ₁ ³ P ₀	28 ² 2p(² P°)4d	4d ³P°	2 1 0	8410 2. 6 8411 2	9
3p 1P1	2s2 2p(2P°)3p	3p 1P	1	68858		5p ¹ P ₁	2s ² 2p(² P°)5p	5p ¹P	1	84852. 13	
$3p ^{3}D_{1}$ $^{3}D_{2}$ $^{3}D_{3}$	2s³ 2p(³P°)3p	3p 3D	1 2 3	69689. 79 69710. 99 69744. 40	21. 20 33. 41	5p ² D ₂ ³ D ₂	2s² 2p(²P°)5p	5p ¹D	1 2 3	84952 84986, 2	34
3p *S1	2s2 2p(2P°)3p	3p 3S	1	70744. 26		5p 1D2	282 2p(2P°)5p	5p ¹D	2	85400. 38	
3p P0	2s ² 2p(2P°)3p	3 <i>p</i> ⁴P	0	71352. 81	12. 42	5p 1S0	2s² 2p(²P°)5p	5p 1S	0	85625. 84	
³ P ₁ ³ P ₂			1 2	71365. 23 71385. 70	20. 47	5d 1D:	28 ² 2p(² P°)5d	5d ¹D°	2	86187	
3p 1D2	2s³ 2p(²P°)3p	3p ¹D	2	72611. 06		5d 3F ₂	2s² 2p(²P°)5d	5d F°	2	86319	
3p 1S0	2s2 2p(2P°)3p	3p ¹S	0	73976. 23		3F3			3 4	86326.9	8
2p' *P	2s 2p³	2p³ ³P°	2, 1, 0	75 2 56. 3			2s² 2p(²P°)5d	5d *D°	1		
3d ¹ D ₂	2s² 2p(²P°)3d	3d ¹D°	2	77680. 5	l il	5d ³ D ₂ ³ D ₃			2 3	86371. 3 86396	25
48 Po	2s² 2p(²P°)4s	48 ³P°	0	78105. 23	11. 83	6s ¹P1	2s² 2p(²P°)6s	68 1P°	1	86413.96	
*P.			1 2	78117.06 78148. 3 6	31. 30	5d ¹ F ₃	282 2p(2P°)5d	5d 1F2	3	86450	
3d *F2	2s³ 2p(²P°)3d	3d *F°	2	78199. 34	16. 48	5d ¹ P ₁	2s² 2p(²P°)5d	5d ¹ P°	1	86491	
·F.			3 4	78 2 15. 8 2 78 2 50. 22	34. 40	5d 3P2	2s2 2p(2P°)5d	5d ³P°	2	86504	10
3d *D1	2s² 2p(²P°)3d	3d ³ D°	1	78300. 8	6	*P ₁			0	86517	-13
*D,			3	78307 78 3 16	9	6d ¹ D ₂	282 2p(2P°)6d	6d ¹ D°	2	876 32	
4s ¹P1	2s ³ 2p(² P°)4s	4s ¹P°	1	78338		6d ¹ F ₂	2s2 2p(2P°)6d	6d ³F°	2	87706	7
3d 1F2	2s2 2p(2P°)3d	3d ¹F°	3	78531		*F*			3 4	87713	'
3d 1P1	282 2p(2P°)3d	3d ¹ P°	1	787 27 . 91			283 2p(3P°)6d	6d 3D°	1		
3d P2	2s³ 2p(2P°)3d	3d P°	2	79311. 10	-7. 96	6d *D,			3	8775 2 877 73	21
*P ₁			$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	79319. 06 793 23. 32	-4. 26	78 ¹P₁	≟s² 2p(²P°)7s	7s ¹P°	1	87795. 3	
4p 3D1	2s ² 2p(² P°)4p	4p 3D	1	80173. 29	19. 20	6d 1F3	2s ² 2p(² P°)6d	6d 'F°	3	87807	
*D;			3	80192. 49 80222. 74	30. 25	6d 1P2	2s ² 2p(² P°)6d	6d ³P°	2	878 3 0	-9
4p 1P1	2s2 2p(2P°)4p	4p 1P	1	80563. 57		*P ₁			0	<i>87839</i>	
4p *S1	2s2 2p(2P°)4p	4p 18	1	81105. 70		6d ¹ P ₁	2s² 2p(²P°)6d	6d 1P°	1	87831. 3	
4p *P ₀ *P ₁ *P ₂	2s² 2p(²P°)4p	4p *P	0 1 2	81311. 52 81326. 33 81344. 48	14. 81 18. 15	7d °F ₂ °F ₃ °F ₄	2s² 2p(²P°)7d	7d *F°	2 3 4	88541. 8 88547	5
4p 1D2	2s ³ 2p(³ P°)4p	4p ¹D	2	81770. 36			2st 2p(2P°)7d	7d *D°	1		
4p 180	2s2 2p(2P°)4p	4p 18	$\begin{bmatrix} 0 \end{bmatrix}$	82252. 31		7d *D2	I		2 3	88607	

C I—Continued

C I—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
7d 'F.	2s³ 2p(¹P°)7d	7d 'F°	3	88624			2s² 2p(²P°)9d	9d *D°			
7d 1P1	2s2 2p(2P°)7d	7d 'P°	1	886 32 . 44		9d 3D1			3	89514	
7d ³ P ₂	2s1 2p(1P°)7d	7d *P°	2	88639		9d 1F,	2s2 2p(2P°)9d	9d 'F°	3	89517	1
			0				2s2 2p(2P°) 10d	10d ³ D°			
8d 'F,	2s2 2p(2P°)8d	8d *F°	4	89081		10d 3D3			3	89779	
3F,			3 2	8908 2	-1		282 2p(2P°) 11d	11 <i>d</i> 'D°			
	2s2 2p(2P°)8d	8d *D°	1			11d *D ₃			3	89968. 4	Ì
8d *D;			3	89146			C 11 (2P%)	Limit		90878. 3	
8d 1F2	2s ³ 2p(² P°)8d	8d 1F°	3	89155		2p' 1D2	2s 2p³	$2p^{1}$ $^{1}\mathrm{D}^{0}$	2	[97878]	
8d *P ₂	282 2p(3P°)8d	8d P°	2	89158			2s 2p ² (4P)3s	3s ⁵ P	1 2	103541. 8 103562. 5	20. 7 24. 8
			ō						3	103587. 3	24.8
	2s2 2p(2P°)9d	9d *F°	4 3			2p' *S ₁	2s 2p²	2p³ *S°	1	105800. 5	
9d *F ₂			3 2	89450		2p' 1P1	2s 2p2	2p³ ¹P°	1	[119878]	

September 1947.

C 1 OBSERVED TERMS*

Config.		Observed Terms	
2s² 2p²	$\begin{cases} 2p^{2-1}S & 2p^{2-1}P & \\ 2p^{2-1}D & \end{cases}$		
2s 2p³	$\begin{cases} 2p^{3} {}^{3}S^{\circ} \\ 2p^{3} {}^{3}S^{\circ} & 2p^{3} {}^{3}P^{\circ} & 2p^{3} {}^{3}D^{\circ} \end{cases}$		
	ns $(n \ge 3)$	np (n≥3)	nd $(n \ge 3)$
2s ² 2p(² P°)nx 2s 2p ² (⁴ P)nx	3, 4s *P° 3-7s *P° 3s *P	3, 4p ³ S 3, 4p ³ P 3-5p ³ D 3-5p ¹ S 3-5p ¹ P 3-5p ¹ D	3-8d *P° 3-11d *D° 3-9d *F° 3-7d *P° 3-6d *D° 3-9d *F°

^{*}For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Z=6

Ground state 1s2 2s2 2p 2P

 $2p \, ^{2}P_{\frac{1}{4}}^{\circ}$ 196659. $0 \, \text{cm}^{-1}$

I. P. 24.376 volts

The term values for the doublets are taken from Edlén's Monograph. He has since rejected his 5p' D term. Intersystem combinations have been observed by Edlén (1936) and the resulting correction to the quartet terms as published in his Monograph, +19.3 cm⁻¹, has been applied.

REFERENCES

- A. Fowler and E. W. H. Selwyn, Proc. Roy. Soc. (London) [A] 130, 312 (1928). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 74 (1934). (I P) (T) (C L) (G D)
- B. Edlén, Zeit. Phys. 98, 561 (1936). (C L)
- B. Eldén, private communication (Dec. 1947). (T)

C II

Сп

	CII					CII					
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p *P, *P,	2e ² (¹ S)2p	2p ³P°	1½	0. 0 64. 0	64. 0	5s ² S ₁	2s³(¹S)5s	5s *S	*	173348. 18	
2p' 'P ₁	2s 2p³	2p² 4P	1½ 1½ 2½	43000. 2 43021. 8	21. 6	5p ² P ₁ ² P ₂	2s ² (¹ S)5p	5p ² P°	11%	175287. 9 175295. 2	7. 3
⁴ P ₈			1 1	43050. 7	28. 9	38' ² P ₁ ² P ₂	2s 2p(*P°)3s	3s ² P°	11%	178194. 1 178 22 0. 8	26. 7
$2p' \stackrel{\mathrm{sD}_3}{\mathrm{sD}_2}$	2s 2p³	2p² ³D	2½ 1½	74930. 9 74933. 2	-23.	5d ² D ₂	2s³(¹S)5d	5d *D	1½ 2½	178494. 8	
2p' *S ₁ 2p' *P ₁	2s 2p ² 2s 2p ²	2p ^{2 2} S 2p ^{2 2} P	1/4	96494. 1 110625. 1		5 <i>f</i> °F	2s ² (¹S)5f	5f *F°	{ 2½ 3½	} 178956. 46	
*P ₂	•		11/2	110666. 3	41. 2	6s *S ₁	2s ² (¹S)6s	6s 2S	1/2	181258	
3e ² S ₁ 3p ² P ₁	2s ² (¹ S)3s 2s ² (¹ S)3p	3s ² S 3p ² P°	14 14	116537. 88 131724. 68	12.40	3p' 4D ₁	2s 2p(³P°)3p	3p 4D	114	181694, 50 181709, 20	14. 70
¹ P ₃ 2p" ⁴ S ₂		2p³ 48°	11/2	131735. 81	11. 13	D.			1½ 1½ 2½ 3½	181734. 21 181770. 48	25. 01 36. 27
3d ² D ₂	2p ² 2s ² (¹ S)3d	3d D	1½ 1½ 2½	<i>142024. 4</i> 145549. 99	1. 45	3p' ² P ₁ ² P ₂	2s 2p(*P°)3p	3 <i>p</i> ⁴P	11/2	182025. 0 182044. 5	19. 5
³ D ₃ 2p'' ² D ₃	2p2	2p2 2D°	1 1	145551. 44 150462. 8		6d 2D2	28 ³ (¹ S)6d	6d 2D	1½ 2½	184064. 9	
² D ₂ 4s ² S ₁	2s ² (¹ S)4s	48 28	2½ 1½ ½	150467. 9 157234. 43	-5. 1	6f ³F	2e ² (¹ S)6f	6f *F°	{ 2½ 3½	} 184576. 20	
4p 2P1	2s ² (¹ S)4p	4p 2P°	72 1½ 1½	162518.70	5, 92	3p′ 4S ₂	2s 2p(³ P°)3p	3p 4S	11/2	184688. 69	
³ P ₂ 3a' ⁴ P ₁	2s 2p(³P°)3s	3s 4P°	1 1	16 2 524. 62 166964. 70		3p' 4P ₁ 4P ₂	2s 2p(³ P°)3p	3p 4P	11/2	186425, 02 186441, 32	16. 30
4P. 4P.			1½ 1½ 2½	166988. 46 1670 33 . 4 3	23. 76 44. 97	4P ₃	0- 0- AD9\2-	2 •D	21/2	186463. 75	22. 43
4d ² D ₂ ² D ₃	2s³(¹S)4d	4d *D	1½ 2½	168123. 92 168124. 33	0. 41	3p' *D ₃	2s 2p(P°)3p	3p *D	11/2 21/2	188579. 3 188612. 7	33. 4
2p'' ³ P ₁ ³ P ₂	2p ⁸	2 <i>p</i> ³ ³P°	11/4	1687 3 1. 6 1687 5 0. 2	18.6	3p' 2S ₁ 3d' 4F ₂	2s 2p(*P°)3p 2s 2p(*P°)3d	3p 48 3d 4F°	11/4	194571. 9 195750. 8	
4) 'F	2e³(¹S)4f	4f °F°	{ 2½ 3½]	168979.05		F.	24 ap(1)00	00 3	2½ 3½ 4½	195765. 1 195784. 7 19581 2 . 3	14. 3 19. 6 27. 6

C 17—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3d' ⁴ D ₁ ⁴ D ₂ ⁴ D ₃	2s 2p(*P°)3d	3d 4D°	1½ 1½ 2½ 3½	196556. 2 196561. 8 196570. 5	5. 6 8. 7	4d' ³F4	2s 2p(*P°)4d	4d *F°	2½ 3½	221502	
4D4			3%	196580. 8	10. 3	4/" (G,	2s 2p(P°)4f	4 ∮ 'G	2½ 3½	221543. 0 221553. 2	10. 2 21. 3
3d′ ³D,	C III (¹ S ₀) 2s 2p(¹ P°)3d	Limit 3d ³ D°	11/	196659. 0		4G. 4G.			4½ 5½	221574, 5 221603, 6	29. 1
*D,	• • •	-	1½ 2½	1984 26 . 4 1984 3 7. 2	10. 8	4f" ¹ G ₄ ² G ₁	2s 2p(*P°)4f	4∫ *G	3½ 4½	221585 221628	43
3d' 4P ₄ 4P ₂ 4P ₁	2s 2p(*P°)3d	3d 'P°	2½ 1½ ½	19884 2 . 0 19886 3 . 5 198877. 7	-21. 5 -14. 2	4f" *D. *D. *D.	2s 2p(P°)4f	4f 'D	3½ 2½ 1½ ½	221696. 5 221727. 4 221746. 3	-30. 9 -18. 9
3d' ² F ₂ ² F ₄	2s 2p(P°)3d	3d ² F°	2½ 3½	199941. 4 199984. 2	42.8	- 	<u> </u>		1		
3d' 2P2 2P1	2s 2p(P°)3d	3d P°	11/4	202180. 3 202204. 4	-24. 1	4f' ¹ D ₁ ¹ D ₂	2s 2p(*P°)4f	4f D	2½ 1½	221707. 9 221752. 9	-45.0
48' 4P ₁ 4P ₂	2s 2p(\$P°)4s	4s •P°	1½	209550. 26 209574. 28	24. 02 46. 08	4d' ² P ₂ ² P ₁	2s 2p(*P°)4d	4d ² P°	1½ ½	222259. 1 222286. 0	-26. 9
4P ₃ 4p' 2P ₁ 2P ₂	2s 2p(*P^)4p	4p *P	2½ ½ 1½	209620. 36 214406. 6 214429. 7	23. 1	58′ ⁴ P ₈	2s 2p(*P°)5s	5s 4P°	1½ 1½ 2½	22 581 3	
4p' 4D ₁	2s 2p(³P°)4p	4p 4D		214758. 3	14. 3	5p′ ³P	2s 2p(*P°)5p	5p 2P	{ ½ 1½	227901	
D.			1½ 2½ 3½	214772. 6 214794. 6 214828. 0	22. 0 33. 4		2s 2p(P°)5d	5d 4D°	1½ 1½ 2½ 3½		
4p' 4S2	2s 2p(3P°)4p	4p 'S	11/2	215765. 6		5d′ 4D4				230763	
4p' 4P ₁ 4P ₃	2s 2p(P°)4p	4p 4P	1½ 1½ 2½	216378. 0 216397. 7	19. 7	5d′ ⁴ P ₃	2s 2p(*P°)5d	5d 4P°	2½ 1½ ½	251050	
4p' ² D ₃	2s 2p(P°)4p	4p 3D	11/4 21/2	216927		<i>5f</i> ′ ³F	2s 2p(*P°)5f	5 <i>f</i> °F	{ 2½ 3½	} 231221]
4d' 'F ₂ 'F ₃ 'F ₄ 'F ₅	2s 2p(³P°)4d	4d 'F°	1½ 2½ 3½ 4½	219553. 8 219568. 5 219589. 2 219617. 0	14. 7 20. 7 27. 8	5ƒ′ ⁴F₃	2s 2p(*P°)5f	5 / F	1½ 2½ 3½ 4½	231226. 8	
4d' 'D ₂	2s 2p(P°)4d	4d 'D°	1½ 1½ 2½	220127. 8 220137. 0	9. 2 10. 6		2s 2p(*P°)5f	5 / 'G	2½ 3½ 4½ 5½		
4D4	0-0-000	4.7.9700	3½	220147. 6	10.0	5f' 4G ₆	0 0 000 54		1	231499. 3	
4d′ ² D ₂ ² D ₃	2s 2p(P°)4d	4d *D°	21/2	220601. 1 220614. 2	13. 1	5ƒ″ ⁴D₄	2s 2p(*P°)5f	5f *D	3½ 2½ 1½ ½	231520. 4	
4P ₁ 4P ₂ 4P ₁	2s 2p(*P°)4d	4d 4P°	2½ 1½ ½	22 0808. 47 22 08 2 8. 97 22 0840. 87	-20. 50 -11. 90		2s 2p(°P°)6d	6d 4D°			
4f' 2F3 2F4	2s 2p(*P°)4f	4f 2F	2½ 3½	221089. 6 221098. 8	9. 2	6d′ 4D4			1½ 2½ 3½	236444	
	2s (2p(³P°)4f	4 f	11/2			6d′ 4Pa	2s 2p(P°)6d	6d 4P°	2½ 1½ ½	236605	
4f' 4F4			1½ 2½ 3½ 4½	221106. 3 221107. 4	1.1				1 1/4		

December 1947.

C II OBSERVED TERMS*

Config. 1s ² +		Observ	ved Terms	
2s ² (¹ S)2p 2s 2p ² 2p ³				
	ns (n≥3)	$np \ (n \geq 3)$	nd (n≥3)	nf (n≥4)
2s ² (¹ S) nx 2s 2p(³ P°) nx	3-6s ² S { 3-5s ⁴ P° 3s ² P°	3-5p ² P° 3, 4p ⁴ S 3, 4p ⁴ P 3, 4p ⁴ D 3p ² S 3, 5p ² P 3, 4p ² D	3-6d ² D 3-6d ⁴ P° 3-6d ⁴ D° 3, 4d ⁴ F° 3, 4d ² P° 3, 4d ² D° 3, 4d ² F°	4-6f ² F° 4, 5f ⁴ D 4, 5f ⁴ F 4, 5f ⁴ G 4f ² D 4, 5f ² F 4f ² G

^{*}For predicted terms in the spectra of the B I isoelectronic sequence, see Introduction.

C m

(Be I sequence; 4 electrons)

Z=6

Ground state 1s2 2s2 1S0

282 1Sa 386159. 7 cm-1

I. P. 47.864 volts

All but three terms are from Edlén's Monograph. For the terms 7d ³D, 8d ³D, and 9d ³D the revised values of Whitelaw and Mack have been used. Edlén has since rejected his 4d' ¹P term.

No intersystem combinations have been found with certainty. The long D-series determine the limits to about ± 25 cm⁻¹. The uncertainty x in the relative positions of the singlets and triplets is, therefore, less than ± 50 cm⁻¹ according to Edlén. No trace of the line predicted at 1910.7 ± 2 A, $2s^2$ $^{1}S_0-2p$ $^{3}P_1^{\circ}$, is visible on his plates. A line observed at 339 A (294314.1 cm⁻¹) agrees within 4 cm⁻¹ with the calculated combination 2p $^{3}P_1^{\circ}-5d$ $^{1}D_2$. This identification is uncertain, since it is not confirmed by other intersystem combinations.

REFERENCES

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 51 (1934). (I P) (T) (C L) (G D)

N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935). (T)

B. Edlén, private communication (Dec. 1947). (T)

Cm

C m

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval	
28 180	28ª	2e2 1S	0	0. 0		2p' :D;	2p2	2pt 1D	2	145875. 1		
2p *P0 *P1	2s(2S)2p	2p *P°	ó	52315.0+x	23. 0	2p′ ¹S ₀	2p2	2p2 18	0	182520. 2		
*P ₁ *P ₂			2	52338.0+x 52394.8+x	56.8	3s ³ S ₁	2s(*S)3s	3s 3S	1	238160. 7+x		
2p 1P1	2s(2S)2p	2p 1P°	1	102351. 4		3s ¹S ₀	2a(*S)3a	3s 18	0	247169. 5	1	
2p' \$P ₀ \$P ₁ \$P ₂	2p2	2p3 *P	0 1 2	$\begin{array}{c} 137374.\ 0+x \\ 137403.\ 4+x \\ 137450.\ 5+x \end{array}$	29. 4 47. 1	3p 'P ₁	2s(*S)3p	3p 1P°	1	2589314		

		U111 U		4				III COM	Mucu		
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3p *P.	2s(² S)3p	3p *P°	0 1 2	259653. 8+x 259659. 3+x 259672. 1+x	5. 5 12. 8	5d ² D ₂	2s(*S)5d	5d *D	1 2 3	345444 +x	
3d ³ D ₁ ³ D ₂ ³ D ₃	2s(*S)3d	3d *D	1 2 3	$\begin{array}{c} 269957.\ 6+x \\ 269959.\ 7+x \\ 269962.\ 9+x \end{array}$	2. 1 3. 2	5g ² G ₄ ² G ₅	2s(*8)5g	<i>5g</i> *G	3 4 5	346525. 1+x 346526. 0+x	0. 9
3d 1D2	2s(2S)3d	3d ¹D	2	276482. 7		5g 1G4	2s(2S)5g	5g ¹G	4	346577. 5	}
38' P0	2p(*P°)5s	3s ³P°	Į o	308162.9+x	33. 3	5d ¹ D ₂	2s(2S)5d	5d 1D	2	346656. 0	İ
*P ₁			1 2	308196. 2+x 308264. 8+x	68.6	3d' ¹P₁	2p(3P°)3d	3d 'P°	1	34671 3 . 1	
48 *S ₁ 38' ¹ P ₁	2s(2S)4s 2p(2P°)3s	4s ¹ S 3s ¹ P°	1 1	309404. 5+x \$10005. 2		5f *F ₂ *F ₃ *F ₄	2s(2S)5f	5f *F°	2 3 4	347099.5+x 347101.3+x 347103.7+x	1. 8 2. 4
4s 1So	2s(2S)4s	4s ¹S	0	311720. 7		5 <i>f</i> 'F ₁	2s(*S)5f	5f 1F°	3	348859. 5	
4p *P01	2s(2S)4p	4p P°	0, 1	317743 +x	5	6s *S ₁	2s(² S) 6s	68 3S	1	354796 +x	
*P ₃			2	317748 + x		6p ¹P₁	2s(*S)6p	6p 1P°	1	357088	1
3p' ¹P₁	2p(3P°)3p	3p 1P	1	319719. 4			2s(*8)6d	6d D	1		İ
4d ³ D ₁ ³ D ₂ ³ D ₃	2s(2S)4d	4d 'D	1 2 3	$\begin{array}{c} 321358.8 + x \\ 321375.1 + x \\ 321398.6 + x \end{array}$	16. 3 23. 5	6d *D ₃			3	358046 +z	
4f *F ₂ *F ₃ *F ₄	2s (2S)4f	4f *F°	2 3 4	321949. 1+x 321955. 8+x 321964. 7+x	6. 7 8. 9	6g *G ₄ *G ₅	2s(*S)6g	6g *G	3 4 5	$\begin{array}{c} 358638.\ 3+x \\ 358639.\ 0+x \end{array}$	0. 7
4p ¹P1	2s(2S)4p	4p 1P°	1	322403. 1		6g 1G4	2s(2S)6g	6g ¹G	4	358688. 9	
4f 1Fa	2s(2S)4f	4f 'F°	3	322701. 1		6d 1D2	2s(2S)6d	6d 1D	2	358725. 5	
3p' *D ₁ *D ₂ *D ₃	2p(2P°)3p	3p *D	1 2 3	$\begin{array}{c} 323024.\ 0+x \\ 323049.\ 4+x \\ 323088.\ 2+x \end{array}$	25. 4 38. 8	6f *F4	2s(*S)6f	6f .L.	2 3 4	358800 +z	
4d ¹ D ₂	2s(*S)4d	4d 1D	2	324212. 0		6f 1F2	2s(2S)6f	6f 'F°	3	3591 22. 2	
3p' 3S ₁	2p(2P°)3p	3p *S	1	327225. 7+x		78 ² S ₁	2s(2S)7s	7s 3S	1	363561 +x	
3p' *Po	2p(2P°)3p	3p 3P	0	329633. 1+x		7p ¹P₁	2s(2S)7p	7p 1P°	1	364896	
³ P ₁ ³ P ₂		"	1 2	329654. 2+x 329690. 9+x	21. 1 36. 7	7d •D	2s(2S)7d	7d *D	1, 2, 3	365585 +z	
3d' ¹D,	2p(*P°)3d	3d 1D°	2	332690. 3		7d ¹D2	2s(2S)7d	7d ¹D	2	366027. 0	
3p' 1D ₁	2p(2P°)3p	3p 1D	2	333116. 4		8p ¹P1	2s(2S)8p	8p 1P°	1	3 699 2 6	ļ
3d' F.	2p(2P°)3d	3d F°	2	333333. 4+x		8d *D	2s(2S)8d	8d *D	1, 2, 3	370438 +x	
F.	. , ,		3	333358. 4+x 333395. 0+x	25. 0 36. 6	9d *D	2s(2S)9d	9d *D	1, 2, 3	373748 + x	}
3d' *D ₁ *D ₂ *D ₂	2p(*P°)3d	3d D°	2 3	337602. 9+x 337616. 4+x	13. 5 20. 3	48′ ³P₂	2p(3P°)4s	4s *P°	0 1 2	3786 5 7 +x	
58 ⁸ S ₁	2s(2S)5s	5s *S	1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		4p' ¹P1	2p(2P°)4p	4p 1P	1	381104. 8	
3d' *P2	2p(*P°)3d	3d *P°	2	340049. 5+x		4p' ¹ D ₂	2p(3P°)4p	4p *D	1 2	381919 +x]
*P ₁ *P ₀	2p(-1)60	04 °1	1 0	340049. 5+x 340075. 8+x 340090. 5+x	$\begin{bmatrix} -26.3 \\ -14.5 \end{bmatrix}$	*p :D;	2p(2P°)4p	4p 3P	3 0	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	39
3d′ ¹F₃	2p(3P°)3d	3d ¹F°	3	341368. 5		4p' *P ₁ *P ₃	-P(=)*P	1	1 2	$ \begin{array}{r} 384313 + x \\ 384350 + x \end{array} $	37
5p ¹P1	2s(2S)5p	5p 'P°	1	<i>343255</i> . 7		4p' 1D,	2p(3P°)4p	4p 1D	2	385637. 5	
	2s(2S)5p	5p P°	0			4d' 1D ₂	2p(2P°)4d	4d ¹ D°	2	385816. 2	
5p 3P2			2	344181 +x			C IV (2S ₁₆)	Limit		386159. 7	:
3p′ ¹S ₀	$2p(^{1}P^{\circ})3p$	3p 18	l o	345093. 9	1 1						

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
	2p(2P°)4d	4d Do	1 2			5d' ³ P ₂	2p(°P°)5d	5d *P°	2	410841 +=	
4d' 1D3			2 3	387646 +x					ō		1
4d' 1P,	2p(P°)4d	4d P°	2	388448 +z			2p(3P°)6p	6p 3D	1		1
		Ĭ	ő			6p' *D;			2 3	421380 +z	
4d' 1F ₃	2p(2P°)4d	4d 'F°	3	388772. 2			2p(*P°)6p	6p 3P	0		
5p' 1P1	2p(P°)5p	5p ¹P	1	407430. 4		6p' 1P2			2	421967 +x	
	2p(P°)5p	5p *D	1 2		İ		2p(*P°)6d	6d aDo	1		
5p' *D;			3	407774 +x		6d' *D ₃			2 3	422881 +x	
	2p(*P°)5p	5p 3P	o			6d' *P*	2p(*P°)6d	6d P°	2	423058 +s	
5p' ³ P ₃			2	408873 +x					1		
5p' 1D2	2p(P°)5p	5p : D	2	409505. 0			2p(P°)7p	7p 1D	1		
5d' 1D2	2p(P°)5d	5d 1D°	2	40968 2 . 1		7p' *D ₃			2 3	429345 +2	
	2p(2P°)5d	5d *D°	1 2				2p(P°)7p	7p *P	o e		
5d' ¹ D ₁			3	4105 3 4 +x		7p' *P2			1 2	429712 +2	.]

December 1947.

C III OBSERVED TERMS*

Config.		Observed 7	rerms		
2s ² 2s(² S)2p 2p ²	$\left\{egin{array}{cccc} 2p^3 & {}^{1}\mathrm{S} & & & & & & & & & & \\ & & 2p & {}^{3}\mathrm{P}^{\circ} & & & & & & & \\ & & & 2p & {}^{1}\mathrm{P}^{\circ} & & & & & & & \\ & & & & & & 2p^2 & {}^{3}\mathrm{P} & & & & & & & \\ & & & & & & & & & & & $				
	ns (n≥3)	np (n≥3)	$nd (n \ge 3)$	$nf (n \ge 4)$	$ng \ (n \geq 5)$
2s(°S)nx 2p(°P°)nx	{3-7s 3S 3, 4s 1S {3, 4s 3P° 3s 1P°	3-5p *P° 3-8p ·P° 3p *S 3-7p *P 3-7p *D 3p ·S 3-5p ·P 3-5p ·D	3-9d *D 3-7d 1D 3-6d *P° 3-6d *D° 3d *F° 3d 1P° 3-5d 1D° 3, 4d 1F°	4-6f *F* 4-6f *F*	5, 6g *G 5, 6g ¹ G

^{*}For predicted terms of the Be ι isoelectronic sequence, see Introduction.

(Li 1 sequence; 3 electrons)

Z=6

Ground state 1s2 2s Si

28 2S4 520177.8 cm⁻¹

I. P. 64.476 volts

The terms are from Edlén. His extrapolated values of three intervals and the term values of the two high series members 8f ²F° and 8g ²G, etc., which were calculated from a well-determined series formula, are entered in brackets in the table.

REFERENCES

B. Edlén, Zeit. Astroph. 7, 378 (1933). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 40 (1934). (I P) (T) (C L) (G D)

T.-Y. Wu, Phys. Rev. 58, 1114 (1940). (C L)

C IV

C IV

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interv
2s ² S ₁	28	2s *S	1/2	0. 0		6d ¹ D	6d	6d 2D	{ 1½ 2½	} 471368	
2p ² P ₁ ³ P ₂	2 <i>p</i>	2p ² P°	1½ 1½	64484. 2 64591. 3	[107. 1	6f ºF	6 <i>f</i>	6f 'F°	{ 2½ 3½	} 47140 5 . 0	
3s ² S ₁	3e	3s 2S	14	302847. 9	!			1	1	<u> </u>	ĺ
3p ² P ₁ ² P ₂	3 <i>p</i>	3p 2P°	У <u>.</u> 1½	320048. 5 320080. 0	[31. 5	6g ² G	6 <i>g</i>	6g *G	{ 3½ 4½	471407. 4	
3d 2D,	3 <i>d</i>	3d *D	1½ 2½	324880. 2 324890. 9	[10. 7]	6h 2H	6 h	6h 2H°	{ 4½ 5½	} 471407.9	
4s 2S1	48	48 28	1/4	401346. 7		7s 2S ₁	78	78 2S	*	482659	
4p P1 2P2	4p	4p P°	1½ 1½	408308. 9 408322. 2	13. 3	7p 2P	7p	7p 2P°	11%	} 485951	}
4d D.	4d	4d 2D	1½ 2½	410333. 8 410338. 2	4. 4	7d 2D	7d	7d 3D	{ 1½ 2½	} 484309	
4f °F4	45	4f 2F°	2½ 3½	410434. 1	[2. 1]	7f °F	7 <i>f</i>	7f 2F°	{ 2½ 3½	} 484 343 . 8	}
5s 2S ₁	5#	5e 2S	1/2	445366. 1		7g 2G	7 <i>g</i>	7g ³G	{ 3½ 4½ 4½	} 484346.6	
5p ² P ₁ ² P ₂	5 p	5p ² P°	1½ 1½	448854 448861	[6. 7]	7h ³H	7ሕ	7 ስ ³ H°	{ 4½ 5½	} 484546.9	
5d ⁹ D ₈	5d	5d *D	1½ 2½	449887. 4	[2. 2]	8p *P	8 <i>p</i>	8p 2P°	{ 1½	} 492473	
5 <i>f</i> °F	5 <i>f</i>	5f °F°	{ 2½ 3½	} 4499 3 8. 2		8F	8 f	8f *F°	{ 2½ 3½	} [49 2 74 3]	
<i>5g</i> ³G	5 <i>g</i>	5g ³G	{ 3½ 4½	449948. 4		8GHIK	8g, etc.	8g ² G, etc.		492745]	
6s 2S ₁	6a	6s 3S	*	468765		1		1	71/2	ľ	1
6p 2P	6р	6p *P°	{ ½ 1½	} 47076 3			C v (¹S₀)	Limit		520 177. 8	

April 1946.

7615**36°-46---8**

(He i sequence; 2 electrons)

Z=6

Ground state 1s2 1Sa

182 1So 3162450 ± 300 cm-1

I. P. 391.986 ± 0.037 volts

The singlet terms are from Tyrén, who has reported (1940) nine lines visible on his spectrograms. His limit has been calculated from the series members n=2 to 6. The remaining singlet terms have been calculated from three classified lines at 32 A given in his 1936 paper. He has also classified a line at 40.731 A as the intersystem combination $1s^2$ ${}^{1}S_0-2p$ ${}^{2}P_1^{0}$. His unit, 10^3 cm⁻¹ has here been changed to cm⁻¹.

The triplet terms are from an unpublished manuscript kindly furnished by Edlén, who states that the absolute term values of the triplets are based on an extrapolation of 3d ³D from He I and Li II. The relative positions of the singlet and triplet terms thus determined confirm the intersystem combination reported by Tyrén.

REFERENCES

- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (C L)
- F. Tyrén, Zeit. Phys. 98, 774 (1936). (C L)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)
- F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (I P) (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

C v

C v

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
183	1s² ¹S	0	0		1s 4p	4p ¹P°	1	2991680	
18 28	2s ³ S	1	2411266		1s 5p	5p ¹P°	1	3053060	
1s 2p	2p 3P°	0	2455165	-13	1s 6p	6p ¹P°	. 1	3 0864 2 0	ļ
]		2	2455152 2455288	136	1s 7p	7p 'P°	1 1	\$106750	
1 s 2p	2p 1P°	1	2 48 32 40	}	1s 8p	8p 1P°	1	3 118760	}
1s 3d	3d ³D	3, 2, 1	2857308						
1s 3p	3p ¹ P°	1	2 859 3 50		C vi (2S ₁₆)	Limit		3162450	

September 1947.

(H I sequence; 1 electron)

Z=6

Ground state 1s \$3

1s *S₄ 3952252 cm⁻¹

I. P. 489.882 volts

Edlén has calculated the positions of the first three members of the Lyman series, 1s $^{3}S-np$ $^{3}P^{\circ}(n=2, 3, 4)$, using Penney's formula. These wavelengths, 33.734, 28.464, and 26.988 A, respectively, have been used to compute the term values listed here. The lines have all been observed by Tyrén.

REFERENCES

W. G. Penney, Phil. Mag. [7] 3, 661 (1930).

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 28, 152 (1934). (I P) (T) (C L) F. Tyrén, Zeit. Phys. 98, 771 (1936). (C L)

C vi

C VI

Config.	Desig.	J	Level	Config.	Desig.	J	Level	
18	1s 2S 2p 2P°	½ ½, 1½	0 2 964 3 70	4p	4p 2P°	14, 14	3705350	
2p 3p	3p 2P°	72, 172 1/2, 11/2	\$513210		Limit		3952252	

October 1946.

NITROGEN

NΙ

7 electrons

Z=7

Ground state 182 282 2p8 4S11

 $2p^3$ ${}^4S_{1}^{\circ}$ 117345 cm⁻¹

I. P. 14.54 volts

The terms have been taken chiefly from the list prepared by Ekefors with extensions calculated from the classifications published in Tokyo. Unfortunately, no term list was included in the Tokyo papers. Consequently, considerable editing has been done in compiling terms from all the observational material. Revised values are suggested for a few levels and tentative values not in the literature are listed for 5d $^4F_{2\frac{1}{2}}$, 5d $^4F_{1\frac{1}{2}}$, 5d $^4D_{3\frac{1}{2}}$, and 6d $^4D_{3\frac{1}{2}}$. Further study is needed to verify the numerous blends resulting from practically coincident levels.

Intersystem combinations have been observed.

Kiess has generously furnished his unpublished g-values derived from the observed Zeeman effects of 18 infrared lines.

REFERENCES

- O. S. Duffendack and R. A. Wolfe, Phys. Rev. 34, 409 (1929). (C L)
- S. B. Ingram, Phys. Rev. 34, 421 (1929). (T) (C L)
- E. Ekefors, Zeit. Phys. 63, 437 (1930). (I P) (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 260 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- B. Edlén, Bergstrand's Festkskrift p. 135 (1938). (C L)
- M. Kamiyama, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 36, No. 933, 375 (1939). (C L)
- M. Kamiyama and T. Sugiura, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 37, Nos. 982 and 983, 479 (1940). (C L)
- M. Kamiyama and H. Noguchi, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 39, No. 1100, 475 (1942). (C L)
- J. R. Holmes, Phys. Rev. 63, 41 (1943). (I S)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)
- C. C. Kiess and G. Shortley, J. Research Nat. Bur. Std. 41 (1948) (in press). (Z E)

Nι

NI

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
2s² 2p²	2p³ 4S°	11/2	О			2s 2p4	2p4 4P	2½ 1½ ½	88109. 5 88153. 4	-43. 9	
2s ² 2p ³	2p³ ¹D°	2½ 1½	19 223 19 23 1	-8				173	88173. 0	-19.6	
		1	<u>, </u>		·	2s ³ 2p ³ (³ P)3p	3p 2S°	1 1/4	9 3 58 2. 3		
2s ² 2p ³	2p³ ¹P°	{ 1½ / ½	28840			2s ³ 2p ³ (³ P)3p	3p 'D°	1,74	94772. 2	22.6	0. 002 1. 19
2s ² 2p ² (³ P)3s	3s 4P	1½ 1½ 2½	83285. 5 83319. 3 83366. 0	33. 8 46. 7	2. 670 1. 735 1. 603			1½ 2½ 3½	94794. 8 948 32 . 1 9488 3 . 1	37. 3 51. 0	1. 36 1. 44
2s² 2p²(³P)3s	3s ² P	11/2	86131. 4 86223. 2	91. 8	1.003	2s ² 2p ² (³ P)3p	3p 4P°	1½ 1½ 2½	95476. 5 95494. 9 955 33. 2	18. 4 38. 3	2. 671 1. 737 1. 598

N I-Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs
2s² 2p²(°P)3p	3p 48°	11/2	96751.7		2. 004	2s² 2p²(³P)4d	4d 4P	1½ 1½ 2½	110325 110351	26	
2s ² 2p ² (³ P)3p	3p 2D°	11/4 21/2	96788. 2 96864. 2	76. 0					110403	52	
2s² 2p²(³P)3p	3p ¹ P°	1%	97770. 1 97805. 8	35. 7		28 ³ 2p ³ (³ P)4d	4d 2D	21/2	110448. 3 110470. 5	22. 2	
2s² 2p²(¹D)3s	38′ 2D	2½ 1½	99665 99658	-7		28 ² 2p ² (¹ D)3p	3p' 2D°	134 214	1105 2 1. 9 110545. 8	23. 9	
2s ² 2p ² (³ P)4s	48 ⁴ P	1½ 2½	103618, 1 103668, 1	50. 0		2s ² 2p ² (¹ D)3p	3p' *P°	11%	11 22 94. 8 11 232 0. 8	26. 0	
		1	103736. 8	68. 7	•	2s ² 2p ² (³ P)6s	6s 4P	1½ 1½ 2½	112565. 9 112610. 6	44. 7 72. 0	
2s ³ 2p ³ (³ P)4s	48 ³ P	11/2	104142. 2 104227. 4	85. 2		2s ² 2p ² (³ P)6s	68 ² P	i	112682, 6 112735		
2s ² 2p ² (³ P)3d	3d P	1½ ½	104615, 4 104654, 9	-39. 5		1		11%	112823	88	
2s ³ 2p ² (³ P)3d	3d 'F	1½ 2½ 3½ 4½	104665 104684 104718 104767	19 34 49		2s ² 2p ² (³ P)5d	5d 4F	1¼ 2¼ 3¼ 4½	112751? 112763? 112799 112862	12 36 63	
2s³ 2p²(³P)3d	3d ³F	214	104810. 9 104882. 7	71. 8		2s ² 2p ² (³ P)5d	5d ² P	11/4	112801 112816	-15	
2s ² 2p ² (³ P)3d	3d 4P	1½ 1½	104864	26		2s ² 2p ² (³ P)5d	5d 2F	2½ 3½	112820 112890. 2	70	
		21/2	104890 104957	67		28 ² 2p ² (² P)5d	5d 4D	1½ 1½ 2½			
2s ² 2p ² (³ P)3d	3d 4D	1½ 1½ 2½	104987 104998 105011	11 13 9				31/2	112825 1128927	67	
2s ² 2p ² (³ P)3d	3d 2D	3½ 1½ 2½	105020 105120. 8	23. 5		2s² 2p²(³P)5d	5d 4P	1½ 1½ 2½	112855 112874 112912	19 38	
2s ² 2p ² (³ P)4p	4p 2S°	2½ ½	105144. 3 106478. 6	20.0		2s² 2p²(³P)5d	5d 2D	1½ 2½	112929. 2 112947. 5	18. 3	
2s ² 2p ² (³ P)4p	4p 'D'	1½ 1½ 2½ 3½	106760. 5 106780. 1 106816. 1 106870. 7	19. 6 36. 0 54. 6		2s² 2p²(³P)7s	7s 4P	1½ 1½ 2½	1140157 1140727 114146	57 74	
2s ² 2p ² (³ P)4p	4p 4P°	½ 1½	10698 2. 7 106998. 3	15. 6	1	2s ² 2p ² (³ P)7s	7s ² P	11/2	114130 114163	33	
28 ³ 2p ² (³ P)4p	4p 4S°	2½ 1½	107039. 0 107447. 2	40. 7	-	2s² 2p²(³P)6d	6d 'F	1½ to 4½	114160		
2s ² 2p ² (³ P)5s	58 4P	1½ 1½ 2½	109813. 5 109857. 8 109927. 9	44. 3 70. 1		2s ² 2p ² (² P)6d	6d 1D	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	114182	66	
2s ² 2p ² (³ P)5s	58 2P	1½ 1½	110029. 2 110108. 5	79. 3		2s² 2p²(³P)6d	6d *P	3½ 1½ ½	114248? 114193	-16	
2s ² 2p ² (³ P)4d	4d 4F	1½ 2½ 3½ 4½	110196 110214	18 34		2s² 2p²(³P)6d	6d ² F	2½ 3½ 3½	114209 114196	79	
		i 1	110248 110304	56		2s² 2p²(³P)6d	6d 2D		114275 114232. 2		
2s ² 2p ² (² P)4d	4d 'D	1½ 1½ 2½ 3½	110221 110275 110288 110339	54 13 51	!	2s³ 2p³(³P)6d	6d 4P	1½ 2½ 1½ 1½ 2½	114290. 5 114259	58. 3 15	
2s ³ 2p ² (³ P)4d	4d ² P	11/2	110221. 7 110244. 6	-22. 9		2s² 2p²(³P)8s	8s 4P	}	114274 114809		
2s ² 2p ² (³ P)4d	4d 2F	2½ 3½	110311 110373	62				1½ 1½ 2½	114890 114942	81 52	

N I-Continued

N I-Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs.
2s ² 2p ² (³ P)8s	8s ² P	{ ½ 1½	} 114950			2s ² 2p ² (³ P)11s	11s *P	{ ½ 1½	} 116107		
2s² 2p²(³P)7d	7d 4D	{ to 3½ 3½	114988			2s ² 2p ² (² P)11s	11s ⁴ P	{ to 2½	116124		
2s³ 2p³(³P)7d	7d 2F	{ 2½ 3½	} 115004			2s ² 2p ² (³ P)10d	10d 2P	{ 1½ ½	} 116155		
2s² 2p³(³P)7d	7d ² P	{ 1½ ½ ½	} 115017			2s ² 2p ² (³ P) 10d	10d 2F	{ 2½ 3½	} 116159		
2s ² 2p ² (³ P)7d	7d 2D	1½ 2½	115057. 5 115100. 1	42. 6		2s² 2p²(³P)10d	10d 'D	{ to 3½	116164		
2s³ 2p²(³P)7d	7d 'P	1½ 1½ 2½	115103			2s² 2p²(³P)10d	10d 2D	{ 1½ 2½	} 116 24 0		
2s³ 2p²(³P)9s	98 ³P	{ ½ 1½	} 115480			2s² 2p²(³P)10d	10d 4P	{ ½ to 2½	116259		
2s² 2p²(³P)9s	9s 4P	{ to 2½ to 2½	115483			2s ² 2p ² (³ P)12s	12s ²P	{ ½ 1½	116305		
2s² 2p²(³P)8d	8d 4D	{ to 3½	115524		,	2s² 2p²(³P)12s	12s 4P	{ ½ to 2½	116312		
2s ² 2p ² (³ P)8d	8d 2P	{ 1½ ½ ½	} 115530			2s ² 2p ² (*P)11d	11d *P	11/2	} 116351		
2s ² 2p ² (³ P)8d	8d 2F	{ 2½ 3½	} 1155 3 5			2s ² 2p ² (² P)11d	11d °F	{ 2½ 3½	116359		
2s ² 2p ² (³ P)8d	8d 2D	1½ 2½	115597 115622	25		2s² 2p²(³P)11d	11 <i>d •</i> D	{ ½ to 3½	116367		
2s ² 2p ² (³ P)8d	8d 4P	{ to 2½ to	115618			2s ² 2p ² (³ P)11d	11 <i>d *</i> D	11/4 21/2	116436		
2s ² 2p ² (*P)10s	10s ²P	11/2	} 115842			2s ² 2p ² (³ P)11d	11d 4P	{ to 2½ 2½	116441		
2s ² 2p ² (³ P)10s	10s 'P	$ \begin{cases} \frac{1}{2} & \text{to} \\ 2\frac{1}{2} & \text{2} \end{cases} $	115855	,		2s ² 2p ² (³ P)13s	13s ² P	{ 1½ 1½	} 116467		!
2s² 2p²(³P)9d	9d 4D	{ to 3½	115887			2s ² 2p ² (³ P)12d	12d ² P	{ 1½ ½	116502		
2s ² 2p ² (³ P)9d	9d 2P	{ 1½ ½ ½	} 115889			2s ² 2p ² (³ P)12d	12d 4P	{ to 21/2	116581		
28 ² 2p ² (³ P)9d	9d 2F	{ 2½ 3½	115902			2s ² 2p ² (³ P)12d	12d ³D	{ 1½ 2½	116625		
28 ² 2p ² (³ P)9d	9d 2D	1½ 2½	115 973 115 99 1	18						-	
2s² 2p²(³P)9d	9d 4P	{ ½ to 2½	115990			N 11 (3P ₀)	Limit		117345		

October 1947.

N I OBSERVED TERMS*

Config. 1s ² +		Observed Ter	ms			
2s³ 2p³	$\begin{cases} 2p^{3} \ ^{4}\text{S}^{\circ} \\ & 2p^{3} \ ^{2}\text{P}^{\circ} & 2p^{3} \ ^{2}\text{D}^{\circ} \end{cases}$					
2s 2p4	2p4 4P					
	ns (n≥3)	np (n≥3)			$nd \ (n \ge 3)$	
2s² 2p²(³P)nx	{ 3-12s 4P 3-13s 3P	3, 4p 4S° 3, 4p 4P° 3, 3, 4p 2S° 3p 2P°		-12d ⁴ P -12d ³ P	3–11d ⁴ D 3–12d ² D	3- 6d 4F 3-11d 4F
2s2 2p2(1D)nx'	38' 2 D	3p′ ²P°	3p′ ³D°			

^{*}For predicted terms in the spectra of the N I isoelectronic sequence, see Introduction.

NII

(C 1 sequence; 6 electrons)

Z=7

Ground state 182 282 2p2 3Pa

2p2 Po 238846. 7 cm-1

I. P. 29.605 volts

Edlén has revised and extended the earlier analysis of this spectrum. The terms are all taken from his Monograph, except those from the 4f configuration, which are from his 1936 paper, and his 3s' 3P and 5f-terms, which he has generously furnished in a private communication.

The singlet and triplet terms are well connected by intersystem combinations but the quintets are not so connected with the others. Edlén also suggests that by analogy with C x and O x the published absolute values of the quintet terms should be decreased by about 500 cm⁻¹. This correction has been applied in the table and should diminish the uncertainty x appreciably.

- A. Fowler and L. J. Freeman, Proc. Roy. Soc. (London) [A] 114, 662 (1927). (T) (C L)
- L. J. Freeman, Proc. Roy. Soc. (London) [A] 124, 666 (1929). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 109 (1934). (I P) (T) (C L) (G D of singlets)
- B. Edlén, Zeit. Phys. 98, 564 (1936). (T) (C L)
- J. B. Green and H. N. Maxwell, Phys. Rev. 51, 243 (1937). (Z E)
- B. Edlén, unpublished material (Dec. 1947). (T).

		7/ 11						11 II			
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ³ P ₀ ³ P ₁	2s2 2p2	2p² ¹P	0	0. 0	49. 1	4p *S ₁	2s² 2p(²P°)4p	4p 'S	1	203532. 8	
*P ₃			1 2	49. 1 131. 3	82. 2	4p 1D2	2s ² 2p(² P°)4p	4p ¹D	2	205350. 7	ł
2n ¹ D ₂ 2 _P ¹ S ₀	2s ² 2p ² 2s ² 2p ²	2p ² ¹ D 2p ³ ¹ S	0	15315. 7 32687. 1		38′ ⁵ P ₁ ⁵ P ₂ ⁶ P ₃	2s 2p2(4P)3s	38 ⁸ P	1 2 3	205982. 1+x 206038. 1+x 206108. 7+x	56. 0 70. 6
2p' 5S2	2s 2p²	2p3 1S°	2	47167.7+x		4p 1S0	2s2 2p(2P°)4p	4p 1S	0	206327. 5	
$2p'$ $^{3}D_{1}$ $^{3}D_{1}$	2 ~ 2p³	2p³ ³D°	3 2 1	9 223 7. 9 9 22 51. 3 9 22 52. 9	-13. 4 -1. 6	4d ³ F ₂ ³ F ₃ ³ F ₄	2s² 2p(²P°)4d	4d ³F°	2 3 4	209675. 3 209739. 5 209825. 3	64. 2 85. 8
2p' 3P12	2s 2p³	2p³ *P°	2, 1	109218. 2	-6.6	4d ¹ D ₂	2s2 2p(2P°)4d	4d ¹ D°	2	209926. 92	
² P ₀ 2p' ¹ D ₂	2s 2p³	2p ³ ¹ D°	0 2	109 22 4. 8 144189. 1		4d ³ D ₁ ³ D ₃ ³ D ₃	2s2 2p(2P°)4d	4d ³D°	1 2	210239. 8 210266. 3	26. 5 35. 6
38 *P ₀ *P ₁ *P ₂	2s ² 2p(² P°)3s	3s ¹ P°	0 1 2	148909. 3 7 148940. 97 149077. 3 3	31. 60 136. 36	4d P ₂ P ₁ P ₀	2s² 2p(²P°)4d	4d ³ I'°	3 2 1 0	210301. 9 210705. 4 210751. 5 210777. 0	-46. 1 -25. 5
3s ¹ P ₁	2s ² 2p(² P°)3s	3s 1P°	1	149188.74		4f ¹ F ₃	2s² 2p(²P°)4f	4f ¹F	3	211030. 90	
2p' *S ₁	28 2p1	2p³ 5°	1	1551 2 9. 9		4f 1F,	2s ² 2p(² P°)4f	4) F 4) F	2	211033. 71	
3p ¹ P ₁	2s ² 2p(² P°)3p	3p 1P	1	164611. 60		*F ₃	28° 2p(°1)4j	49 -1	3 4	211057. 07 211061. 03	23. 36 3. 96
3p ³ D ₁ ³ D ₂ ³ D ₂	2s ² 2p(² P°)3p	3p 3D	1 2 3	166522. 48 166583. 26 166679. 45	60. 78 96. 19	4d ¹ F ₃	2s ² 2p(² P°)4d	4d ¹F°	3	211104.8	
2p' ¹ P ₁	2s 2p³	2p3 1P0	1	166765. 7		4f ³ G ₃ ³ G ₄	2s2 2p(2P°)4f	4f *G	3 4	211288. 02 211295. 65	7. 63
3p *S1	2s² 2p(²P°)3p	3p 3S	1	168893. 04		³G₅			5	211390. 77	95. 12
3p 1P0	2s² 2p(²P°)3p	3p *P	0	170573. 38	35. 25	4d ¹ P ₁	2s ² 2p(² P°)4d	4d 1P°	1	2 11 33 5. 5	
³ P ₁ ³ P ₂		-	1 2	170608, 63 170667, 00	58. 37	4f ¹G4	2s ² 2p(2P°)4f	4f ¹G	4	211402. 89	
3p ¹D ₂	2s² 2p(²P°)3p	3p ¹D	2	174212. 93		4f ID ₃ ID ₂ ID ₁	2s ² 2p(³ P°)4f	4f ¹D	3 2 1	211411. 25 211416. 20 211487. 28	-4. 95 -71. 08
3p ¹S₀	2s ² 2p(² P°)3p	3p 18	0	178274, 17		$4f ^{1}\mathrm{D_{2}}$	2s2 2p(2P°)4f	4f ¹D	2	211491. 16	
3d *F ₂ *F ₃ *F ₄	2s² 2p(²P°)3d	3d *F°	2 3 4	18651 2 . 3 8 186571. 80 18665 3 . 3 5	59. 42 81. 55	38' ¹ P ₀ ² P ₁ ¹ P ₂	2s 2p ² (4P)3s	38 ³P	0 1 2	211750. 2 211780. 6 211828. 8	30. 4 48. 2
$3d$ $^{1}\mathrm{D}_{2}$	2s ² 2p(² P°)3d	3d ¹D°	2	187092. 20		5s ² P ₀	0-4 0 (4D0) 7	58 *P°			
3d *D ₁ *D ₂ *D ₃	2s² 2p(²P°)3d	3d ³D°	1 2 3	187436. 34 187462. 38 187492. 72	24. 04 30. 34	³ P ₁ ³ P ₃	2s² 2p(²P°) 5s	58 °P°	0 1 2	214212. 4 214258. 2 214385. 3	45. 8 127. 1
3d ³ P ₂	2s² 2p(²P°)3d	3d P°	2	188858. 09		5s ¹P ₁	2s2 2p(2P°)5s	5s ¹P°	1	214828.0	
³ P ₁ ³ P ₀		0.0 1	1 0	188909. 89 188937. 95	-51. 80 -28. 06		2s³ 2p(³P°)5d	5d *D°	1 2]
3d ¹ F ₃	2s ² 2p(² P°)3d	3d 1F°	3	189336. 0		5d *D ₃			3	220717	
3d ¹ P ₁	2s ² 2p(² P°)3d	3d ¹ P°	1	190121. 15		5f 3F ₂ 3F ₃ 3F ₄	2s ² 2p(³ P°)5f	5 <i>f</i> ³F	2 3 4	221070. 2 221074. 3	4.1
48 P ₀ P ₁ P ₂	2s ² 2p(² P°)4s	48 ² P°	0 1 2	196541. 09 196592. 88 196712. 17	51. 79 119. 29	5d ¹ F ₂	2s² 2p(²P°)5d	5d ¹F°	3	221157.6	
48 ¹ P ₁	2s² 2p(²P°)4s	48 ¹ P°	1	197859. 28		5f *G ₃ G ₄ G ₅	2s ³ 2p(³ P°)5f	5 / ³ G	3 4 5	221227. 7 221232. 7 221302. 2	5. 0 69 . 5
4p ¹ P ₁	2s ² 2p(² P°)4p	4p 1P	1	202169. 9		5f 'G4	2s² 2p(²P°)5f	5 <i>f</i> ¹G	4	221312. 1	
4p ² D ₁ ² D ₂ ³ D ₃	2s ² 2p(² P°)4p	4p ³ D	1 2 3	202714. 94 202765. 86 202862. 06	50. 92 96. 20	3p' 5D0	28 2p ² (4P)3p	3p *D°	0 1	224027. 1+x 224042. 9+x	15. 8 29. 4
4p ³ P ₀ ³ P ₁ ³ P ₂	2s ² 2p(² P°)4p	4p *P	0 1 2	203164. 7 203188. 8 203259. 7	24. 1 70. 9	³ D ₃ ⁴ D ₃ ⁵ D ₄		Ì	2 3 4	224072. S+x 224115. 4+x 224169. S+x	43. 1 53. 9

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3p' *P ₁ *P ₂ *P ₃	2s 2p²(4P)3p	3p *P°	1 2 3	225987. 1+x 226011. 2+x 226055. 2+x	24. 1 44. 0	3d' ⁵ P ₃ ⁵ P ₁	2s 2p³(4P)3d	3d ⁶ P	3 2 1	244737. 4+x 244775. 9+x 244802. 0+x	-38.5 -26.1
3p′ ¹ S ₁	2e 2p ² (4P)3p N III (² P ²)	3p §S°	2	230223. 0+x 238846. 7		3d' D ₀	2s 2p³(¹P)3d	3d *D	0 1 2	245319. 8+x 245323. 4+x 245331. 3+x	7. 9
3d' F: F: F: F: F: F: F:	2s 2p ³ (*P)3d	3d °F	1 2 3 4 5	243355. 5+x 243371. 2+x 243396. 6+x 243430. 2+x 243470. 8+x	15. 7 25. 4 33. 6 40. 6	*D ₃			3 4	245342. 9+x 245356. 9+x	140

N II OBSERVED g-VALUES

Desig.	J	Obs. g	Desig.	J	Obs. g	Desig.	J	Obs. g
3e ³P°	1 2	1. 455 1. 502	3p 'S	1	2. 015	3d ¹D°	2	0. 986
3s ¹P°	1	1. 051	3 <i>p</i> ³P	1 2	1. 530 1. 497	3 <i>d</i> 3D°	1 2	0. 494 1. 114
3p ¹P	1	1. 005	3p ¹D	2	1. 002	3 <i>d</i> ³P°	3	1. 329 1. 504
3p 'D	1 2	0. 494 1. 166	3d *F°	3	1. 079 1. 250	5 <i>a</i> -1	1	1. 487
	3	1. 330		•		3d ¹P°	1	1. 026

N II OBSERVED TERMS*

Config. 1s ² +						Observ	ved Terms					
2s³ 2p²	$\begin{cases} 2p^{2-1}S & 2p^2 \end{cases}$		2p ² ¹ D					-		·		
2s 2p³	$\begin{bmatrix} 2p^3 \ ^5S^{\circ} \\ 2p^3 \ ^3S^{\circ} & 2p^3 \\ & 2p^3 \end{bmatrix}$	*P°	$rac{2p^{3}}{2p^{3}}$ $^{1}\mathrm{D}^{\circ}$									
	ns (1	ı≥3)			$np \ (n \geq 3)$)		nd $(n \ge 3)$			$nf \ (n \geq 4)$)
2s ² 2p(² P°)nx	{ 3–5s 3–5s	ibo		3, 4p *S 3, 4p *S	3, 4p ³ P 3, 4p ¹ P	3, 4p ³ D 3, 4p ¹ D	3, 4d *P° 3, 4d *P°	3-5d ¹ D° 3, 4d ¹ D°	3, 4d *F° 3–5d 'F°	4f ¹D 4f ¹D	4, 5f ³ F 4f ¹ F	4, 5f *G 4, 5f *G
2s 2p2(4P)nx	{ 3s	P P		3p *8°	3p ⁵ P°	3p ⁸ D°	3d ⁶ P	3d *D	3d *F			

^{*}For predicted terms in the spectra of the C I isolectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Z=7

Ground state 1s2 2s2 2p 2P30

2p P 382625.5 cm⁻¹

I. P. 47.426 volts

All of the terms except those with a 4f-electron, have been taken from Edlén's Monograph. In 1936 Edlén published a revised and extended list of 4f-terms and the corresponding classified lines, including intersystem combinations. The observed correction to his previously published quartet terms —396.4 cm⁻¹, connecting them with the doublet terms has been incorporated into the present list.

REFERENCES

- L. J. Freeman, Proc. Roy. Soc. (London) [A] 121, 318 (1928). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 78 (1934). (I P) (T) (C L) (G D)
- B. Edlén, Zeit. Phys. 98, 561 (1936). (T) (C L)

NIII

NIII

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p 2P1 2P2	2s ² (¹ S)2p	2p 2P°	1½	0. 0 174. 5	174. 5	38' 4P ₁ 4P ₂ 4P ₃	2s 2p(³P°)3s	3s 4P°	1½ 1½ 2½	287535. 6 287598. 1 287713. 9	62. 5 115. 8
2p' 4P ₁ 4P ₂ 4P ₃	2s 2p²	.2p2 4P	1½ 1½ 2½	57192. 1 57252. 0 57333. 2	59. 9 81. 2	3s' ² P ₁ ² P ₂	2s 2p(³P°)3s	3s *P°	11/2	297150. 2 297263. 1	112. 9
2p' 2D3	2s 2p2	2p2 2D	2½ 1½	101023. 8 101031. 5	-7. 7	48 ² S ₁	2s2(1S)4s	4 <i>8</i> 2S	14	301088. 2	
² D ₂ 2p′ ² S ₁	2s 2p²	2p² 2S	172	131003. 5		3p' ² P ₁ ² P ₂	2s 2p(*P°)3p	3p 2P	11%	309132. 6 309185. 8	53. 2
2p' 2P1 2P2	2s 2p²	2p2 2P	1½ 1½	145876. 1 145986. 5	110. 4	3p' *D ₁ *D ₂ *D ₂	2s 2p(³P°)3p	3p 4D	1½ 1½ 2½ 3½	309662. 8 309698. 3 309760. 5	35. 5 62. 2
2p'' 4S2	2p ²	2p3 4S°	11/2	18680 2 . 3		4D4	Į		31/2	309856. 7	96. 2
$2p^{\prime\prime}^{2}\mathrm{D}_{3}^{2}$	2p³	2p³ ³D°	2½ 1½	203072. 2 203088. 9	-16.7	4p ² P ₁ ² P ₂	2s ² (¹S)4p	4p 2P°	11/2	\$11691. \$ \$11716. 1	24. 8
38 ² S ₁	2s2(1S)3s	3s 2S	3/2	221302. 4		3p' 482	2s 2p(3P°)3p	3p 4S	1½	314224. 0	ļ
$2p''_{2P_{2}}^{2P_{1}}$	2p3	2p³ 2P°	11/2	230404. 5 230408. 6	4. 1	3p' 4P ₁ 4P ₂ 4P ₃	2s 2p(3P°)3p	3 <i>p</i> ⁴P	1½ 1½ 2½	317299. 9 317343. 4 317402. 3	43. 5 58. 9
$3p {}_{2}^{2}P_{1}$	2s ² (¹S)3p	3p 2P°	11/2	245665. 7 245701. 7	36. 0	4d ² D ₂ ² D ₃	2s ² (¹S)4d	4d ³D	1½ 2½	317750. 8 317781. 8	31. 0
3d ² D ₂	2s ² (¹S)3d	3d 2D	1½ 2½	267238. 5 267244. 4	5. 9	4f 'F4	2s ² (¹S)4f	4f 'F°	2½ 3½	320287. 5	

N III—Continued

N III-Continued

	 	1	T		 			1			
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$3p'$ $^{2}D_{2}$ $^{2}D_{3}$	2s 2p(³P°)3p	3p 2D	1½ 2½	320977. 4 321065. 8	88. 4	4p' ² D ₂ ² D ₃	2s 2p(³P°)4p	4p *D	1½ 2½	377883. 7 377970. 8	87. 1
3p′ 2S1	2s 2p(*P°)3p	3p 28	14	327056. 8		4p' 4S2	2s 2p(3P°)4p	4p 48	11/2	378440. 5	1
3d' 4F3 4F3 4F4 4F4	2s 2p(³P°)3d	3d 4F°	1½ 2½ 3½ 4½	330238. 4 330273. 5 330325. 3 330396. 7	35. 1 51. 8 71. 4	4p' 4P ₁ 4P ₂ 4P ₃	2s 2p(³P°)4p	4p 4P	1½ 2½	379307 3 379352. 1 379405. 0	44. 8 52. 9
3d' 'Dı	2s 2p(³P°)3d	0.1470	1 -	352796. 6			N IV (1S ₀)	Limit		382625.5	1
4D ₂ 4D ₃ 4D ₄	28 2p(°1°)3a	3d 'D'	1½ 2½ 3½	332810. 0 332832. 0 332860. 3	13. 4 22. 0 28. 3	4d' 4F ₃ 4F ₄ 4F ₅	2s 2p(*P°)4d	4d 'F°	1½ 2½ 3½ 4½	384016 384065 384139	49 74
5s ³ S ₁	2s ² (¹ S)5s	5s 2S	1/2	333713. 1					1	,	
3d' ¹ D ₂ ² D ₂	2s 2p(*P°)3d	3d 2D°	1½ 2½	334542. 2 334568. 9	26. 7	4d′ 2D	2s 2p(3P°)4d	4d ² D°	{ 1½ 2½	}3851 26	
3d' 4P ₃ 4P ₃ 4P ₁	2s 2p(*P°)3d	3d 4P°	2½ 1½ ½	336213. 4 336268. 0 336303. 1	54. 6 35. 1	4d' ⁴ D ₂ ⁴ D ₃ ⁴ D ₄	2s 2p(3P°)4d	4d ⁴ D°	1½ 2½ 3½	385296 385323 385352	27 29
3d' ² F ₃ ² F ₄	2s 2p(P°)3d	3d 2F°	2½ 3½	339744. 4 339855. 7	111. 3	4d′ 4Pa	2s 2p(P°)4d	4d 4P°	2½ 1½ ½	386246	
5d ² D ₂ ² D ₃	2s ² (¹ S)5d	5d 2D	1½ 2½	341946. 2 341947. 9	1. 7	4f′ ² F ₃ ² F ₄	2s 2p(*P°)4f	4f *F	2½ 3½	386953. 4 386974	21
3d' ² P ₂ ² P ₁	2s 2p(3P°)3d	3d ² P°	11/2	342693. 0 342763. 7	-70.7	•	2s 2p(³P°)4f	4 <i>f</i> •F	11/4 21/2		
5f ² F ₄	2s³(¹S)5f	5f 2F°	2½ 3½	342752. O		4f" 4F ₃ 4F ₄ 4F ₅			2½ 3½ 4½	387000. 8 387010. 3 387042. 3	9. 5 32. 0
5 <i>g</i> ³G	2s²(¹S)5g	5g 2G	{ 3½ 4½	}343116		4d' 2F3 2F4	2s 2p(3P°)4d	4d ³F°	2½ 3½	387728.7 387811.5	82. 8
6d 2D3	2s²(¹S)6d	6d *D	1½ 2½	354517		4f″ 4G₃ 4G₄ 4G₅	2s 2p(*P°)4f	4 <i>f</i> +G	2½ 3½ 4½	388039. 2 388082. 9 388134. 8	43. 7 51. 9
6f 2F4	2s ² (¹ S)6f	6f 2F°	2½ 3½	354955.7		٠Ğ,			51/2	388198	63
6g ² G	2s²(¹S)6g	6g ² G	{ 3½ 4½ 4½	355214		4f" ² G ₄ ² G ₅	2s 2p(³ P°)4f	4f 2G	3½ 4½	388190. 3 388290. 0	99. 7
48' 4P ₁ 4P ₂ 4P ₃	2s 2p(³P°)4s	4s 4P°	1½ 2½	368525. 6 368588. 3 368704. 8	62. 7 116. 5	4f' ⁴ D ₄ ⁴ D ₃ ⁴ D ₂ ⁴ D ₁	2a 2p(*P°)4f	4 <i>f</i> •D	3½ 2½ 1½ ½	388273. 4 388310. 9 388359. 2 388386. 6	-37. 5 -48. 3 -27. 4
$\overline{3p}'$ $^{1}_{^{3}D_{3}}$	2s 2p(¹P°)3p	3p′ 2D	1½ 2½	373342 373376	34	4f' ² D ₃ ² D ₂	2s 2p(³P°)4f	4f ² D	2½ 1½	388376. 9 388442. 4	-65. 5
4p' ² P ₁ ² P ₂	2s 2p(*P°)4p	4p 2P	11/2	374747. 4 374805. 3	57. 9	3d' 2D ₂ 2D ₃	2s 2p(¹P°)3d	3d′ ³D°	11/2 21/2	396574. 9 396584. 8	9. 9
4p' *D ₁ *D ₂ *D ₃ *D ₄	2s 2p(*P°)4p	4p 4D	1½ 1½ 2½ 3½	376756. 6 376803. 3 376863. 8 376953. 3	46. 7 60. 5 89. 5	5d′ 4D4	2s 2p(*P°) 5d	5d 4D°	1½ 1½ 2½ 3½	409017	
$\overline{3p}' {}^{3}P_{1} {}^{3}P_{2}$	2s 2p(¹P°)3p	3p′ ³P	11%	377591 377608	17	อน. เปน			372	400011	
- luna			•	·		<u> </u>	·		·		

June 1946.

N III OSBERVED TERMS*

Config.		Observed Terms	
2s³ (¹S)2p	2p *P°		······································
2s 2p³	$\left\{\begin{array}{ccccc} 2p^{2} & ^{2}P & $		
$2p^3$	{ 2p³ 'S° 2p³ P° 2p³ D°		
	ns (n≥3)	np (n≥3)	nd $(n \ge 3)$
2s³ (¹S)nx	3-5a 3S	3, 4p ² P°	3–6d ³D
2s 2p(*P°)nx	{ 3, 4s 4P° 3s 2P°	3, 4p 4S 3, 4p 4P 3, 4p 4D 3p 2S 3, 4p 2P 3, 4p 2D	3, 4d 4P° 3-5d 4D° 3, 4d 4F° 3d 2P° 3, 4d 2D° 3, 4d 2F°
2s 2p(1P°)nx'		3p' ² P 3p' ² D	3d′ ¹D°
	$nf \ (n \ge 4)$	$ng \ (n \ge 5)$	
2s² (¹S)nx	4-6f 2F°	5, 6g ² G	
2s 2p(3P°)nx	{ 4f 'D 4f 'F 4f 'G 4f 'D 4f 'F 4f 'G		

^{*}For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

NIV

(Be I sequence; 4 electrons)

Z=7

Ground state 1s2 2s2 1S0

282 1So 624851 cm-1

I. P. 77.450 volts

The terms are from Edlén's papers. The absolute values of the singlet terms are uncertain, since only two members of the ¹D-series have been observed. No intersystem combinations have been found. By analogy with N III, Edlén (1936) estimates that $2s^2$ ¹S₀-2p ³P₁°=67200 cm⁻¹, which gives the absolute value of $2s^2$ ¹S₀ as 624851 cm⁻¹ instead of the earlier value 624499 cm⁻¹. The relative uncertainty x, therefore probably does not exceed ± 300 cm⁻¹.

The terms 4p 3 P°, 4f 3 F°, 5g 3 G, and 3d 3 F° are from the 1936 reference. Edlén obtains the 4f 3 F° term by assuming that 5g 3 G is hydrogen-like (absolute value 70500 cm⁻¹) and adopting Freeman's identification of the 4f 3 F° -5g 3 G group of lines. The listed value of 5g 3 G has been adjusted to fit Edlén's adopted value of 4f 3 F°.

The estimated value of 3d 3F° is included in the table in brackets.

- L. J. Freeman, Proc. Roy. Soc. (London) [A] 127, 330 (1930). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 62 (1934). (T) (C L)
- B. Edlén, Zeit. Phys. 98, 561 (1936). (I P) (C L)

N IV

N IV

Interva	l	Leve	J	Desig.	Config.	Edlén	Interval	Level	J	Desig.	Config.	Edlén
	+x	[499851]	2, 3, 4	3d *F°	2p(*P°)3d	3d′ *F		0	0	281 18	283	2s 1Se
	+x	503625	0, 1, 2	4p P°	2s(2S)4p	4p *P	63. 2	67136. 4+x	0	2p *P°	2s(2S)2p	2p *P0 *P1
31	+x	505487	1	3d D°	2p(2P°)3d	3d' 1D1	144. 2	67199. 6+x 67343. 8+x	1 2			³ P ₂
48	+x + x	505518 505561	3			D,		130695	1	2p ¹P°	2s(2S)2p	2p 1P1
		506292	3	3d 'F°	2p(1P°)3d	3d′ ¹F₃	73. 2	$175463.5+x \\ 175536.7+x$	0	2p2 3P	2 <i>p</i> ²	2p' P0 P1
		5070 22	1	4p ¹P°	2s(2S)4p	4p ¹P1	124. 8	175661.5+x	2			*P.
			1	4d ¹D	2s(*S)4d			188885	2	2p ² ¹D	$2p^3$	2p' 1D2
	+x	511384	3			4d *D2		235370	0	2p ² 1S	2p3	2p' 1S0
-58	+x	511440	2	3d *P°	2p(2P°)3d	3d' ³ P ₂ ³ P ₁		377206+x	1	3s 3S	2s(3S)3s	38 ³ S ₁
	+x	511493	0	ļ		*F1		388858	0	3s ¹ S	2s(2S)3s	3s 1S0
		514638	2	4d ¹D	2s(2S)4d	4d ¹ D ₂		404521	1	3p ¹P°	2s(2S)3p	3p ¹ P ₁
8	$+x \\ +x \\ +x$	516631 516639 516650	2 3 4	4f °F°	2s(³ S)4f	4f ² F ₂ ³ F ₃ ² F ₄	15. 8 35. 4	405893. 2+x 405909. 0+x 405944. 4+x	0 1 2	3p *P°	2s(2S)3p	3p 3P0 3P1 3P2
		519414	1	3d ¹P°	2p(2P°)3d	3d′ ¹P₁	3.5	419967. 8+x	1	3d 3D	2s(2S)3d	3d *D1
		5 2 1868	3	4f 1F°	2s(2S)4f	4f ¹F;	8.1	$\begin{vmatrix} 419971. \ 3+x \ 419979. \ 4+x \end{vmatrix}$	2 3		,	³ D ₂ ³ D ₃
		550218	1	5p 1P°	2s(2S)5p	5p ¹ P ₁		429158	2	3d 1D	2s(2S)3d	$3d ^{1}\mathrm{D_{2}}$
	+ <i>x</i>	552731	1 2 3	5d *D	2s(2S)5d	5d ³D ₃	77. 6 162. 8	465223.0+x 465300.6+x 465463.4+x	0 1 2	3s ¹ P°	2p(2P°)3s	38' ³ P ₆ ³ P ₁ ³ P ₂
	+x	554419	3, 4, 5	5g *G	2s(2S)5g	5g ³G		47303 2	1	3s ¹P°	2p(2P°)3s	38' 1P1
			1	6d *D	2s(2S)6d			480880	1	3p ¹P	2p(2P°)3p	3p' 1P1
	+x	574940	3		:	6d ³ D ₃			1	3p *D	2p(2P°)3p	
		591043	2	4p ¹D	2p(P°)4p	4p' 1D2	131	$\begin{vmatrix} 484394 & +x \\ 484525 & +x \end{vmatrix}$	2 3			3p' ¹ D ₂ ¹ D ₃
39	+x	593665	1,2	4d *D°	2p(3P°)4d	4d' *D1 2		487542 +x	1	3p 38	2p(2P°)3p	3p' 3S1
	+x	593704	3			*D ₃			0	3p 3P	2p(2P°)3p	0 / 17
		624851		Limit	N v (2S ₁₄)		98	$\begin{vmatrix} 494240 & +x \\ 494338 & +x \end{vmatrix}$	1 2			3p' 3P ₁ 3P ₂
			1 2	5d D°	2p(2P°)5d			498315	2	3d 1D°	2p(*P°)3d	3d′ ¹D₂
	+x	<i>6</i> 84 198	3			5d' ³ D ₃		499708	2	3p 1D	2p(3P°)3p	3p' 1D2

May 1946.

N IV OBSERVED TERMS*

Config.		Observed	Terms	
2s ² 2s(*S)2p	2p 3P° 2p 1P°			
2p ²	$\begin{cases} 2p^{2} & 2p^{3} & 2p^{3} & 1 \\ 2p^{2} & 1 & 2p^{3} & 1 \end{cases}$			
	ns (n≥3)	$np (n \ge 3)$	nd (n≥3)	$nf \ (n \ge 4) ng \ (n \ge 8)$
2s(2S)nx	{ 3s 3S 3s 1S	3, 4p ¹ P° 3–5p ¹ P°	3–6d ³ D 3, 4d ¹ D	4f *F° 5g *G
2p(3P°)nx	3s ¹ P°	3p *S 3p *P 3p *D 3p *P 3, 4p *D	3d ¹ P° 3-5d ¹ D° 3d ¹ F°	

^{*}For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

Nv

(Li r sequence; 3 electrons)

Z=7

Ground state 1s2 2s 2S14

28 2S₁₄ 789532.9 cm⁻¹

I. P. 97.863 volts

Both Edlén and Cady have published analyses of this spectrum. Edlén has recently extended the earlier work and has generously furnished his revised term list in manuscript form. The observed term values in the table are from this unpublished list.

Edlén's extrapolated intervals and the term values for higher series members based on his calculations from the series formula are entered in brackets in the table. These have been taken from his 1933 and 1934 papers.

- W. Cady, Phys. Rev. 44, 821 (1933). (T) (C L)
- B. Edlén, Zeit. Astroph. 7, 378 (1933). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 41 (1934). (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (I P) (T)

NV

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2s 2S ₁ 2p 2P ₁	2s 2p	2s 2S 2p 2P°	1/4 1/4	0. 0 80464. 9	258. 4	6GH	- 6g, 6h	6g ² G, etc.	3½ to 5½	713335]	
3e 2S1	3a	3s 2S	11/2	807 23. 3 456134		78	78	7s 3S	1/4	[731432]	
3p ² P ₁ ³ P ₂	3 <i>p</i>	3p 1P°	1½ 1½	477777. 2 477851. 4	74. 2	7P	7 <i>p</i>	7p 3P°	11/2	} 7 52993	
3d 2D2	3 <i>d</i>	3d 2D	1½ 2½	484403 484427	[24]	7D	7d	7d 2D	1 ½ 2 ½	[733516]	
² D ₂ 4s ² S ₁	48	48 2S	272 1/2	606337		7 F	7 <i>f</i>	7f *F°	{ 2½ 3½	} [7 33 547]	
4p ³P,	4 <i>p</i>	4p 2P°	{ ½ 1½	} 615150	[32]	7GHI	7 g , etc.	7g 2G, etc.	3½ to 6½	[733552]	
4d 3D3	4d	4d 2D	{ 1½ 2½	617905	[10]	8S	88	8a 2S	½	[745260]	
	58	58 2S	1/4	673882		8P	8 <i>p</i>	8p 2P°	{ ½ 1½	} [746 3 11]	
5p 3P2	5 <i>p</i>	5p 2P°	11/2	678297	[16]	8D	8 <i>d</i>	8d *D	{ 1½ 2½	} [746649]	
5d 2D3	5 <i>d</i>	5d 2D	{ 1½ 2½	679725	[5]	8F	8 <i>f</i>	8f 2F°	{ 2½ 3½	} [746670]	
6S	в	6s 2S	1/2	[709947]					f 31⁄4	ĥ	
6p ³P	~ 6p	6p ² P°	{ ½ 1½	712464		8GHIK	8 <i>g</i> , etc.	8g ² G, etc.	to 7½	} [746674] }	
6d 2D	6d	6d 2D	{ 1½ 2½	713289			N vi (¹S₀)	Limit		789532. 9	
6 F	6 <i>f</i>	6f ³F°	{ 2½ 3½	} [7 <i>1332</i> 7]			14 41 (400)			104002. 7	

September 1947.

N vi

(He 1 sequence; 2 electrons)

Z=7

Ground state 182 1So

 18^2 $^{1}\text{S}_0$ 4452800 ± 500cm⁻¹.

I. P. 551.925 ± 0.062 volts

Tyrén has observed the first three members of the singlet series. They are in the region from 23 A to 28 A. He lists also one intersystem combination—a line at 29.084 A classified as $18^2 \, ^{1}\text{S}_0 - 2p \, ^{3}\text{P}_1^{\circ}$. His unit, $10^3 \, \text{cm}^{-1}$, has here been changed to cm⁻¹.

Edlén has generously furnished his unpublished manuscript containing absolute values of the triplet terms extrapolated along the He I isoelectronic sequence. The relative positions of the singlet and triplet terms thus determined confirm the intersystem combination reported by Tyrén. The 2s ^3S-2p $^3P^\circ$ combination has apparently not been observed, but Edlén regards the extrapolation from the irregular doublet law as very reliable. Brackets are used in the table to indicate extrapolated values not yet confirmed by observation.

- F. Tyrén, Nova Acta Reg. Soc. Sci Uppsala [IV] 12, No. 1, 24 (1940). (I P) (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

		N VI			N VI						
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval		
100	1s ² 1S	0	0		1s 3p	3p ¹P°	1	4016390			
10 20	28 38	1	[3385890]		1s 4p	4p 1P°	1	4 2 06810	1		
1# 2p	2p ¹P°	0 1 2	[3438 2 70] 34382 80 [3438570]	[10] [290]	N v11 (*S ₁)	Limit	-	4452860	-		
1 2 p	2p ¹ P°	1	3 47 3 790				}	Ì	1		

September 1947.

N VII

(H I sequence; 1 electron)

Z = 7

Ground state 1s 2S₁₄

18 ²S₁₄ cm⁻¹

I. P. volts

Tyrén has observed the Lyman line 1s ${}^2S-2p$ ${}^2P^{\circ}$. The calculated position of this line 24.779 A, has been used to obtain the listed value of the 2p ${}^2P^{\circ}$ term.

REFERENCE

F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12. No. 1, 24 (1940). (C L)

N vii

Config.	Desig.	J	Level
18	1s 3S	1/2	0
2p	2p	½, 1½	4035675

November 1946.

OXYGEN

01

8 electrons

Z=8

Ground state 1s2 2s2 2p4 3P2

 $2p^4$ 3P_2 109836.7 cm $^{-1}$

I. P. 13.614 volts

Edlén has published a detailed analysis of this spectrum in which he has revised and extended the earlier work by others. The terms have all been taken from his paper. For the higher series members not included in his main term table, ns $^{5}S^{\circ}$ and ns $^{3}S^{\circ}$ (n=8 to 11), and nd $^{3}D^{\circ}$ and nd $^{3}D^{\circ}$ (n=8 to 10) the observed values taken from his discussion of the series formulas (p. 15), in which he compares observed and calculated values, are listed below.

Two terms not derived from observed lines are entered in brackets: 11s S, which is calculated from the series formula and 2s 2p⁵ P, which is extrapolated.

Intersystem combinations connect the terms of the singlet, triplet, and quintet systems. Kiess and Shortley have observed q values for four levels as follows:

Desig.	Obs. g
38 583	1.999
3p 5P1	2.506
* 8P2	1.836
₽P.	1.666

- A. Fowler, Report on Series in Line Spectra p. 166 (Fleetway Press, London, 1922). (T) (C L)
- R. Frerichs, Phys. Rev. 34, 1239 (1929); 36, 398 (1930). (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 266 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- K. R. More and C. A. Rieke, Phys. Rev. 50, 1054 (1936). (Standard wavelengths)
- B. Edlén, Kungl. Svenska Vetenskapsakad. Handl. [3] 20, No. 10, 31 pp. (1943). (I P) (T) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)
- C. C. Kiess and G. Shortley, J. Research Nat. Bur. Std. 41 (1948) (in press). (Z E)

4	`		
	,	1	
•	_	-	•

\sim	-
	1
•	

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s² 2p²	2p4 3P	2	0. 0 158, 5	-158. 5	2s² 2p³(4S°)4s	48 3S°	1	96 22 5. 5	
		ō	226. 5	-68. 0	2s ² 2p ³ (4S°)3d	3d ⁵ D°	4	97420. 24	-0. 13
2s² 2p²	2p4 1D	2	15867.79				3, 2 2, 1, 0	97420. 37 97420. 50	-0. 13
2s² 2p⁴	2p4 1S	0	33792. 4		2s² 2p²('S°)3d	3d ³D°	3, 2, 1	97488. 14	
2s ² 2p ² (4S°)3s	3s ⁵ S°	2	73767. 81		2s² 2p³(4S°)4p	4p 5P	1	99092. 64	0. 67
2s² 2p²(4S°)3s	38 ⁸ S°	1	76794. 69				3	99093. 31 99094. 52	0. 67 1. 21
2s³ 2p³(4S°)3p	3p ⁸ P	1	86625, 35 86627, 37	2. 02	2s ² 2p ² (4S°)4p	4p ³P	2, 1, 0	99680. 4	t
		2 3	86631. 04	3. 67	2s ² 2p ² (2D°)3s	38′ ³D°	3 2	1011 3 5. 04 101147. 2 1	-12. 17
2s ² 2p ² (4S°)3p	3 <i>p</i> ⁴P	2 1	88630. 84 88630. 30	0. 54			ī	101155. 10	-7.89
ĺ		Ö	88631. 00	-0. 70	2s² 2p³(4S°)5s	5a ⁸ S°	2	102116. 21	
2s² 2p²(4S°)4s	48 580	2	95476. 43		2s ² 2p ² (4S°)5s	58 *S°	₁	102411.65	

	O I—Continued				O 1—Continued						
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval		
2s³ 2p³(³D°)3s	3s′ ¹D°	2	102661. 63		2s ² 2p ² (² D°)3p	3p' ¹D	2	116630, 51			
28 ² 2p ³ (4S°)4d	4d ⁵ D°	4	102865. 09		2s² 2p²(²D°)4s	4a' ¹D°	2	122798.7	1		
20 Sp (10 / 12		3 2 1 0			2s ² 2p ² (2D°)3d	3d′ ³P°	2 1 0	123296. 6 123355. 2 123386. 9	-58.6 -31.7		
2s² 2p³(4S°)4d	4d ¹D°	3, 2, 1	102908. 14		2s² 2p²(²D°)3d	3d′ *F°	4 3	1 24213 . 18			
2s ² 2p ³ ('S°)5p	5p 3P	2, 1, 0	103869. 4		_		2		İ		
2s ² 2p ³ (4S°)6s	6s ⁵ S°	2	105019. 0		2s³ 2p³(²D°)3d	3d' 1G°	4	124238. 21			
28 ³ 2p ³ (4S°)6s	68 ¹ S°	1	105164. 90		2s ² 2p ³ (2D°)3d	3d′ *G°	5 4	124 23 9. 66 1 242 58. 37	-18.71 5.85		
2s ² 2p ³ (4S°)5d	5d ⁵ D°	4 to 0	105 3 85. 3				3	124252. 52	""		
28 ² 2p ² (4S°)5d	5d ³D°	3, 2, 1	105408. 58		2s ³ 2p ³ (2D°)3d	3d' 'F°	3	124326. 32			
2s ² 2p ³ (4S°)6p	6p ³P	2, 1, 0	105911. 3		2s ³ 2p ³ (² D°)4p	4p' ¹D	3 2	125774. 51 125782. 09	-7. 58 -5. 05		
2s ³ 2p ³ (4S°)7s	78 ⁵ S°	2	106545. 1				1	125787. 14	-5. 05		
2s ² 2p ³ (4S°)7s	78 ³ S°	1	106627. 9		2s 2p5	2p5 *P°	2 1	126266. 48 126339. 92	-73. 44		
2s ² 2p ³ (4S°)6d	6d 5D°	4 to 0	106751. 2				Ö	126383. 44	-43. 52		
2s ³ 2p ³ (4S°)6d	6d ^a D°	3, 2, 1	106765. 8		2s ² 2p ² (² P°)3p	3p′′ ³D	3 2	127281. 85 127287. 62	-5. 77		
2s ² 2p ³ (4S°)8s	8s ⁵ S°	2	107445. 4				ĩ	127290. 93	-3. 31		
2s ² 2p ³ (4S°)8s	88 38°	1	107497. 1		2s ² 2p ³ (² P°)3p	3p'' ¹P	1	127667. 85			
2s ² 2p ³ (4S°)7d	7d 5D°	4 to 0	10757 3 . 1		2s2 2p3(2P°)3p	3p" ¹D	2	128595. 02			
2s ² 2p ² (4S°)7d	7d ³D°	3, 2, 1	10758 2 . 7	1	2s ² 2p ³ (2D°)5s	58′ ¹D°	2	129134 ±			
2s² 2p²(4S°)9s	98 ⁵ S°	2	108021. 4		2s² 2p³(²D°)4d	4d′ ³F°	4	129666. 55			
2s ² 2p ³ (4S°)9s	9s 3S°	1	108057. 6				3 2	}			
2s² 2p³(4S°)8d	8d 5D°	4 to 0	108105. 7		2s² 2p²(²D°)4d	4d′ ¹G°	4	129679. 49			
2s ² 2p ³ (4S°)8d	8d ¹ D°	3, 2, 1	108116. 6		2s² 2p²(²D°)4d	4d′ ³G°	5	129680. 14	-19. 02		
2s ² 2p ³ (4S°) 10s	10s 5S°	2	108412.0	1			4 3	129699, 16 129693, 08	6. 08		
2s ² 2p ³ (4S°)10s	10s 3S°	1	108436. 1		2s² 2p³(²D°)4d	4d′ ¹F°	3	129736.60			
2s ² 2p ³ (4S°)9d	9d ⁵ D°	4 to 0	108470. 2		2s2 2p3(2D°)4d	4d′ ³P°	2	129969. 60	-9. 44		
$2s^2 \ 2p^3(^4\mathrm{S}^\circ) 9d$	9d ³D°	3, 2, 1	108477. 8				1 0	129979.04 129984.15	-5. 11		
2s ² 2p ³ (4S°)11s	11s 5S°	2	[108688. 4]		2s² 2p³(²P°)3p	3p'' ¹S	0	130943. 21			
2s ² 2p ³ (4S°)11s	11s 3S°	1	108707. 3		2s² 2p²(²D°)6s	68′ ¹D°	2	131927 ±			
2s ² 2p ³ (4S°)10d	10d ⁵ D°	4 to 0 3, 2, 1	108731. 5 108734. 4		2s ² 2p ³ (² D°)5d	5d' *F°	4	152190.7 ±			
2s ² 2p ³ (4S°)10d O II (4S° ₁₈)	Limit	3, 2, 1	109836. 7		20 2p (2)01		3 2				
28 ³ 2p ³ (2D°)3p	3p′ ³D	3	113294. 42	-0. 13	2s² 2p³(²D°)5d	5d′ 1G°	4	132197.6 ±			
-0 -p (- /op		3 2 1	113294. 55 113298. 01	-3.46	28 ² 2p ³ (³ D°)5d	5d′ ³G°	5	152198. 1	-19.7		
2s³ 2p³(²D°)3p	3 <i>p′</i> ⁵F	1 .	113714. 06	-7. 00			3	132217.8			
		4 3 2	113721. 06 113726. 81	-5. 75	2s² 2p²(²D°)5d	5d′ ³P°	2, 1	132310 ±			
2s ³ 2p ³ (³ P°)3s	38" *P°	2	113910. 20	10 43		#.4 1TO	0	100/10 L			
• • •		1 0	113920. 63 113926. 80	-10. 43 -6. 17	2s ² 2p ³ (² D°)7s	7s' 1D° 6d' 1P°	2 2, 1	133413 ± 133618 ±			
2s ² 2p ³ (² D°)3p	3p′ ¹F	3	113995. 81		2s ² 2p ³ (2D°)6d		0	100010 I	1		
2s2 2p2(2P°)3s	38" 1P°	1	115918. 3 0	1	2s 2p5	2p ⁵ 1P°	1	[189837]			

August 1947.

O I OBSERVED TERMS*

Config.	,				0	bserved Te	rms				
2e ² 2p ⁴ 2e 2p ⁵	{ 2p4 18	2p ⁴ ³ P 2p ⁵ ³ P°	2p4 1D								
		ns (n≥3)			np ((n≥ 3)			nd (n	≥ 3)	
2e ² 2p ² (4S°)nx	3-10s 58° 3-11s 58°	•			3, 4p ⁵ P 3-6p ³ P				3-10d ⁵ D° 3-10d ⁵ D°		
2s2 2p2(2D°)nx'	{		38' *D° 3–78' *D°			3, 4p' *D 3p' *D	3p′ ³F 3p′ ¹F	3-6d' *P°		3-5d' F° 3, 4d' F°	3-5d′ ³G° 3-5d′ ¹G°
2s ² 2p ² (² P°)nx''	{	38" 3P° 38" 1P°		3p'' 18	3p" 1P	${3p^{\prime\prime}} {}^{1}D \over {3p^{\prime\prime}} {}^{1}D$					

^{*}For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

On

(N 1 sequence; 7 electrons)

*Z=*8

Ground state 1s2 2s2 2p3 4S11

2p3 4S11 283550.9 cm-1

I. P. 35.146 volts

The terms are from Edlén's publications. He has summarized the earlier work on analysis by others and extended it by his observations in the far ultraviolet.

Edlén states that a number of the 5f-terms are very uncertain. These are followed by a "?" in the table. His estimated values of three terms from the ('S) limit in O III are given in brackets.

Mihul lists the observed Zeeman effects for 111 lines, which in general agree well with the theoretical patterns for the adopted classifications. From his data a number of g-values could be calculated, but many of the observed patterns are unresolved.

Although the analysis of O II is fairly complete, the measures by different observers are discordant. The term values could be greatly improved by a set of homogeneous observations. A monograph containing all classified lines of this spectrum is also needed.

The doublet and quartet terms are connected by intersystem combinations, but the sextet terms are not so connected with the rest. The relative uncertainty, x, may be a few hundred cm⁻¹.

- I. S. Bowen, Phys. Rev. 29, 231 (1927). (T) (C L)
- A. Fowler, Proc. Roy. Soc. (London) [A] 110, 476 (1926). (T) (C L)
- C. Mihul, Ann. de Phys. [10] 9, 294 (1928). (T) (C L) (Z E)
- H. N. Russell, Phys. Rev. 31, 27 (1928). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 136 (1934). (I P) (T) (C L) (G D)
- B. Edlén, Zeit. Phys. **93**, 728 (1935). (T) (C L)

		UL	· 								
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p 482	283 2p3	2p³ 4S°	11/2	0. 0		3d ¹ P ₁	2s² 2p²(³P)3d	3d ² P	11/4	233430. 10 233544. 09	-113 99
2p ² D ₃ ² D ₂	2s² 2p³	D° تو22 و2	21/2 11/2	26808. 4 26829. 4	-21.0	3d ² D ₂ ² D ₃	2s ² 2p ² (³ P)3d	3d 2D	1½ 2½	234402. 48 234454. 45	51. 97
2p ² P ₂ ² P ₁	2s² 2p³	2p3 2P°	1'4	40466. 9 40468. 4	-1.5	48 ⁴ P ₁ ⁴ P ₂	2s ² 2p ² (³ P)4s	4a 1P	1/2 11/2	238626. 32 238731. 54	105. 22 161. 42
2p' 4P ₃ 4P ₃ 4P ₁	2s 2p4	2p4 4P	2½ 1½ ½	119837. 7 120001. 1 120083. 5	-163. 4 -82. 4	4P ₃ 48 ² P ₁	2s ² 2p ² (³ P)4s	4s ² P	214 14	238892. 96 240328. 75	187. 53
2p' *D;	2s 2p4	2p4 2D	2½ 1½	165987. 7 165996. 0	-8.3	² P ₂ 3a' ⁴ S ₁	2s 2p³(⁵ S°)3s	3s''' •S°	114 214	240516. 28 245395. 5 +x	
3s ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s² 2p²(³P)3s	3s 4P	1½ 1½ 2½	185235. 36 185340. 68 185499. 20	105. 32 158. 52	$4p \ ^{4}D_{1} \ ^{4}D_{2} \ ^{4}D_{3} \ ^{4}D_{4}$	2s ² 2p ² (³ P)4p	4p 'D°	11/4 21/4 21/4 31/4	245767. 80 245816. 29 245902. 85 246028. 95	48. 49 86. 56 126. 10
3s ² P ₁ ² P ₂	2s ² 2p ² (³ P)3s	3s ²P	1½ 1½	188888. 38 189068. 37	179. 99	4p ² D ₂ ² D ₃	2s² 2p²(³P)4p	4p 2D°	11/2	248009. 1 248185. 3	176. 2
2p' 2S ₁	2s 2p4 2s2 2p2(3P)3p	2p4 2S 3p 2S°	14 14	195710. 4 203942. 21		4p ² P ₁ ² P ₂	2s ² 2p ² (³ P)4p	4p 3P°	11/4	248425. 35 248514. 23	88. 88
3p ² S ₁ 3p ⁴ D ₁	2s ² 2p ² (³ P)3p	3p 4D°	1½ 1½ 1½	206730. 80 206786. 34	55. 54		2s² 2p²(¹S)3p	3p'' ² P°	{ ½ 1½ 1½	[250251]	
⁴ D ₂ ⁴ D ₄			2½ 3½	206877. 90 207002. 52	91. 56 124. 62	3d 2F4 2F2	2s ² 2p ² (¹ D)3d	3d′ ³F	314	251220. 9 251224. 1	-3. 2
$\overline{38}$ 2 D $_{3}$ 2 D $_{2}$	2s ² 2p ² (¹ D)3s	39' 2D	2½ 1½	206971. 3 206972. 3	-1.0	3d 1 G5	28 ² 2p ² (¹ D)3d	3d′ 2G	4½ 3½	252607. 7 252608. 9	-1.2
3p ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s ² 2p ² (³ P)3p	3p 4P°	1½ 1½ 2½ 2½	208346, 17 208392, 27 208484, 24	46. 10 91. 97	3d 2D2	2s² 2p³(¹D)3d	3d' ² D	1½ 2½	253046. 23 253048. 35	2. 12
3p ² D ₂ ² D ₃	2s ² 2p ² (³ P)3p	3p 2D°	1½ 2½	211521.98 211712.66	190. 68	3d ² P ₁ ² P ₂	2s² 2p²(¹D)3d	3d' 2P	11/4	253789. 51 253791. 87	2. 36
3p 4S1	2s ² 2p ² (³ P)3p	3p 4S°	11/2	212161.94			28 ³ 2p ² (³ P)4d	4d 'F	13/2		
2p' ² P ₂ ² P ₁	2s 2p4	2p4 2P	11/2	212593. 2 212762. 4	-169.2	4d 4F4 4F8	!		3½ 4½	254481. 5 254590. 7	109. 2
3p ² P ₁ ² P ₂	2s² 2p²(³P)3p	3p ³ P°	11/2	214169.74 214229.48	59. 74	4d 'D ₂ ,	2s ² 2p ² (³ P)4d	4d 'D	1½ 1½ 2½	254895. 2	
_	$2s^2 \ 2p^2({}^1S)3s$	38′′ 2S	1 1/4	[226851]			0.01/45000	35''' 48°	31/2	05/000 p	
3p 'F;	$2s^2 2p^2(^1D)3p$	3p' 'F°	214 314	228723. 3 228746. 9	23. 6	38′ 4S ₂ 4d 4P ₁	2s 2p ¹ (⁶ S°)3s 2s ² 2p ² (³ P)4d	1	21/2	254982. 2 255104. 6	
3p 2D,	2s ² 2p ² (¹ D)3p	3p' 2D°	2½ 1½	229946. 6 229968. 2	-21.6	40 'P ₁ 'P ₂ 'P ₁	28° 2p-(°1')4a	144 1	11/2	255140. 9 255162. 6	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
3d 4F ₂ 4F ₃	2s² 2p²(³P)3d	3d F	1½ 2½ 3½	231296. 05 231350. 08 231427. 99	54. 03 77. 91	4d ³ P, ³ P ₁	2s² 2p²(³P)4d	4d ² P	11/2	255172. 5 255281. 4	-108. 9
*F ₄ *F ₅	Į.	0.147	41/2	231530. 26	102. 27	4d 2F2 2F4	2s ² 2p ² (³ P)4d	4d 'F	2½ 3½	255301. 3 255465. 2	163. 9
3d ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	2s² 2p²(³P)3d	3d 4P	2½ 1½ ½	232462. 83 232536. 06 232602. 57	-73. 23 -66. 51	3d 2S ₁	2s ² 2p ² (¹ D)3c 2s ² 2p ² (² P)4f	1	214	255622. 4 255689. 6	
3p 2P1 2P2	2s2 2p2(1D)3p	3p′ ² P°	11/2	232480. 1 232526. 7	46. 6	4f ² D ₂ ² D ₃			2½ 1½ 3½	255812. 2	-122.0
3d *D;	2s ² 2p ² (³ P)3d	3d 4D	11/2 21/2 31/2	232711. 70 232745. 98 232747. 51 232753. 86	34. 28 1. 53 6. 35	4f *D. *D. *D. *D.		J. T.	3½ 2½ 1½ ½	255813. 1 255913 ± 255912. 0	-121. 1 -100 1
3d ² F ₄	2s ² 2p ² (³ P)3d	3d 2F	2½ 3½	232796. 27 232959. 26	162. 99						

O II-Continued

O II—Continued

Eldén	Config.	Desig.	J	Level	Interval	Eldén	Config.	Desig.	J	Level	Interval
4f 4G ₅ 4G ₄ 4G ₆	2s ² 2p ² (³ P)4f	4 <i>f</i> 4G°	2½ 3½ 4½	255755. 8 255759. 4 255827. 6	3. 6 68. 2	5f ² G ₄ ² G ₅	2s ² 2p ² (² P)5f	5f 2G°	3½ 4½	265763. 0 265930. 2	167. 2
4G _€ 4 <i>f</i> 2G ₄	0-1 9-1/3D) 4 f	4f 2G°	514	2 55977. 5	149. 9	5d ² D ₃	2s ² 2p ² (³ P)5d	5d 2D	1½ 2½	2658 56	İ
${}^{3}G_{5}$	2s ³ 2p ² (³ P)4f	4) •G	3½ 4½	255829. 4 255983. 6	154. 2	5f 'F ₂	$2s^2 \ 2p^3(^3{\rm P})5f$	5f 'F°	11/2	265928? 265961?	33
4d ² D ₂ ² D ₃	2s ² 2p ² (³ P)4d	4d 2D	1½ 2½	255843. 1 255897. 2	54. 1	4F4 4F5			2½ 3½ 4½ 4½	265985 265999	24 14
4f 4F2 4F1	2s ² 2p ² (³ P)4f	45 °F°	11/2	256083. 5 256087. 6	4. 1	5f 2F ₃	$2s^2 \ 2p^2(^3{ m P}) \ 5f$	5f 2F°	2½ 3½	265988 ? 265999 ?	11
4F4 4F4		•	2½ 3¼ 4¼	256123. 1 256136. 2	35. 5 13. 1	3n' 6P.	2s 2p³(⁵ S°)3p	3p''' 6P	11/2	267763. 39+2	
4f 2F3 2F4	2s ² 2p ² (³ P)4f	4f 2F°	2½ 3½	256125.8 256143.3	17. 5	⁶ P ₂ ⁶ P ₄			2½ 3½	267770. 85+2 267783. 40+2	10 55
58 ⁴ P ₁ ⁴ P ₂	2s ² 2p ² (³ P)5s	5s •P	1½ 1½ 2½	257693. 7 257797. 9	104. 2	4d 2F ₃ 2F ₄	2s ² 2p ² (¹ D)4d	4d′ ³F	2½ 3½	274739. 2 274782. 4	43. 2
4P ₃		_	1	257963. 8	165. 9	4d 2D23	2s2 2p2(1D)4d	4d′ ³D	{ 1½ 2½	274920	
5 ² P ₁ ² P ₂	2s ² 2p ² (³ P)5s	5s ¹ P	11/2	258408. 6 258601. 7	193. 1	4d 2P₁ ₂	2s² 2p²(¹D)4d	4d′ ²P	{ ½ 1½	}2756117	
$\overline{4s} ^{2}\mathrm{D}_{3}$ $^{2}\mathrm{D}_{2}$	2s ² 2p ² (¹D)4s	48′ ² D	2½ 1½	259286. 2 259287. 0	-0.8	4f 2G	2s ² 2p ² (¹ D)4f	4f' 2G°	{ 3½ 4½	} }275841. 3	
5p 4D,	2s ² 2p ² (³ P)5p	5p 4D°	11/2	260959	00	_		•	1	,)	
4D(2½ 3½	261042 261180	83 138	4f 2F	2s ² 2p ² (¹ D)4f	4f' 2F°	{ 2½ 3½	} <i>275879. 6</i>	
5p 4P2	2s² 2p²(³P)5p	5p 4P°	11/2	261261.7	00.6	_	2s ² 2p ² (¹ S)3d	3d" ¹D	11/2 21/2	}[275951]	
4P ₃	0.1.0.2/20).5	f - 100	21/2	261354. 3	92. 6	4d 2S₁	2s ² 2p ² (¹ D)4d	4d′ 2S	1/2	275997?	
$5p \stackrel{^2\mathrm{D}_2}{^2\mathrm{D}_3}$	2s ² 2p ² (³ P)5p	5p ² D°	1½ 2½	261697. 5 261869. 4	171. 9	4 ∫ 2D	28 ² 2p ² (1D)4f	4f′ ³D°	11/2 21/2	}276066. 3	
5d 4D2,3	28 ² 2p ² (² P)5d	5d 4D	{ 1½ 2½ 3½	}265220. 3		<u>4</u>	$2s^2 \ 2p^2(^1\mathrm{D})4f$	4ƒ″ ³H°	{ 4½ 5½	} <i>276109.</i> 1	
			1	 	İ	4 f ⁴P	2s ² 2p ² (¹ D)4f	4f′ 2P°	{ ½ 1½	276263. 9?	
5d ⁴ P ₃ ⁴ P _{1 2}	2s ² 2p ² (³ P)5d	5 d 'P	2½ 1½ ½	265431. 5 265468. 2	-36. 7	58 2D23	2s² 2p²(¹D)5s	58′ ³D	{ 1½ 2½	}278140	
	2s ² 2p ² (³ P)5d	5d ² F	2½	,			O 111 (3P ₀)	Limit	2/2	28 3550.9	
5d 2F4			3½	265578?		3d' ⁶ D ₅	2s 2p³(5S°)3d	3d''' *D°	41/2	291895.90+2	-0. 88
5f ⁴ D ₄ ⁴ D ₃ ⁴ D ₂ ⁴ D ₁	2s ² 2p ² (² P)5f	5f 'D°	3½ 2½ 1½ ½	265639 265705? 265762? 265859?	-66 -57 -97	⁶ D ₄ ⁶ D ₃ ⁶ D ₂ ⁶ D ₁			3½ 2½ 1½ ½	291896. 78 + 2 291898. 01 + 2 291899. 11 + 2 291899. 81 + 2	-1.23 -1.10
5f 4G ₂ 4G ₄ 4G ₅ 4G ₆	2s ² 2p ² (³ P)5f	5 f 4G°	2½ 3½ 4½ 5½	265665? 265691 265761 265925	26 70 164	4s′ 6S3	2s 2p³(⁵ S°)4s	48′′′ ⁶ S°	21/2	298849. 2 +2	

O II OBSERVED TERMS*

Config.	Observe	ed Terms
28 ² 2p ³	{ 2p³ 'S° 2p³ 2P° 2p³ 2D°	
2s 2p4	$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$ns \ (n \ge 3)$	$np \ (n \ge 3)$
2s² 2p²(³P)nx	{ 3-5s ⁴ P 3-5s ² P	3p 'S° 3, 5p 'P° 3-5p 'D° 3p 'S° 3, 4p 'P° 3-5p 'D°
$2s^2 \ 2p^2(^1{\rm D}) nx'$	3–5s′ ²D	3p' ² P° 3p' ² D° 3p' ² F°
2s 2p³(5S°)nx'''	{3, 48''' 6S° 38''' 4S°	3p''' ⁶ P
	$nd \ (n \ge 3)$	$nf \ (n \ge 4)$
2s ² 2p ² (³ P)nx	{ 3-5d ⁴ P 3-5d ⁴ D 3, 4d ⁴ F 3, 4d ² P 3-5d ² D 3-5d ² F	4, 5f 'D° 4, 5f 'F° 4, 5f 'G° 4f 'D° 4, 5f 'F° 4, 5f 'G°
$2s^2 \ 2p^2(^1{\rm D}) nx'$	3, 4d' 2S 3, 4d' 2P 3, 4d' 2D 3, 4d' 2F 3d' 2G	4f' 2P° 4f' 2D° 4f' 2F° 4f' 2G° 4f' 2H°
2s 2p³(⁵ S°) nx'''	{ 3d′′′ •D°	

^{*}For predicted terms in the spectra of the N I isoelectronic sequence, see Introduction.

Om

(C 1 sequence; 6 electrons)

Z=8

Ground state 1s2 2s2 2p2 8P0

$2p^2$ 3P_0 443193.5 cm⁻¹

I. P. 54.934 volts

The terms are from the papers by Edlén. The singlet, triplet and quintet terms are connected by intersystem combinations. Edlén has kindly furnished some unpublished results for inclusion here, namely, that intersystem combinations with quintet terms indicate that his published absolute values of these terms should be decreased by 418 cm⁻¹. This correction has been incorporated into the tabular values of the quintet terms.

- C. Mihul, Ann. de Phys. [10] 9, 326 (1928). (T) (C L) (Z E)
- A. Fowler, Proc. Roy. Soc. (London) [A] 117, 317 (1928). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci Uppsala [IV] 9, No. 6, 115 (1934). (I P) (T) (C L) (G D)
- B. Edlén, Zeit. Phys. 93, 726 (1935). (T) (C L)
- B. Edlén, Naturwiss. 30, 279 (1942). (T) (C L)
- B. Edlén, unpublished material (Dec. 1947). (T)

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p *P ₀ *P ₁ *P ₁	2s² 2p²	2p2 *P	0 1 2	0. 0 113. 4 306. 8	113. 4 193. 4	38' 3P0 3P1 3P2	2s 2p²(4P)3s	38 [‡] P	0 1 2	350026. 1 350122. 9 350302. 3	96. 8 179. 4
$2p \ ^1D_2$	28 ³ 2p ³	2p ² ¹ D	2	20271. 0		48 ¹ P ₀ ³ P ₁	282 2p(2P°)48	48 ³P°	o	356732	106
2p 1S0	282 2p2	2p2 1S	0	43183. 5		3P2			1 2	356838 357111	273
2p' 5S2	2s 2p³	2p3 5S°	2	60 312. 1		48 ¹P1	282 2p(2P°)48	48 ¹P°	1	3 58667. 4	
2p' 3D ₃ 3D ₂	2s 2p³	2p³ ³D°	3 2	120025. 4 120052. 6	-27. 2	3p′ 3S1	2s 2p2(4P)3p	3p 3S°	1	<i>\$6\$266.</i> 8	
$^{1}D_{1}$			1	120058. 5	-5. 9	3p' 5D ₀ 5D ₁	2s 2p ² (⁴ P)3p	3p ¹ D°	0	365515.76 365550,60	34. 84
2p' ³ P ₂ ³ P ₁ ³ P ₀	2s 2p³	2p³ ³P°	2 1 0	142381. 7 142382. 8 142396. 9	-1. 1 -14. 1	⁵ D ₂ ⁵ D ₃ ⁵ D ₄			2 3 4	365619.12 365719.16 365846.46	68. 52 100. 04 127. 30
2p' 1D2	2s 2p³	2p³ ¹D°	2	187049. 4		4p ¹P1	28 ² 2p(² P°)4p	4p ¹P	1	365723. 9	
2p' 3S1	2s 2p³	2p³ 3S°	1	197086. 7		4p *D1	2s ² 2p(² P°)4p	4p 3D	1	366486, 91	107. 10
2p' 1P1	2s 2p³	2p³ ¹P°	1	210458. 5		*D ₂			3	366594. 01 366801. 04	207. 03
3s ¹ P ₀ ³ P ₁	2s2 2p(2P°)3s	38 ³P°	0	267257. 29	118. 36	4p 3S1	28 ² 2p(2P°)4p	4p 38	1	367952. 20	1
38 ¹ P ₁	2s² 2p(²P°)3s	3s ¹P°	$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$	267375. 65 267632. 59 273080. 07	256. 94	3p' ⁵ P ₁ ⁵ P ₂ ⁵ P ₃	2s 2p ² (4P)3p	3p *P°	1 2 3	368526. 37 368583. 63	57. 26 101. 12
2p" P2	2p4	2p4 3P	2	283758. 9		4p 3P0	2s ² 2p(² P°)4p	4p *P	0	368684. 75 370326. 7	
³ P ₁ ³ P ₀	Zp-	2p. ·r	1 0	283976. 6 284073. 3	-217. 7 -96. 7	³ P ₁ ³ P ₂	28° 2p(°F')4p	4p • F	1 2	370326. 7 370415. 7 370524. 2	89. 0 108. 5
3p ¹ P ₁	2s ² 2p(² P°)3p	3p ¹P	1	290956. 62		4p 1D2	282 2p(2P°)4p	4p ¹D	2	370900. 6	
$3p ^3D_1$	2s ² 2p(² P°)3p	3p 3D	1 2	293865. 26	136. 34	4p 1S0	2s ² 2p(² P°)4p	4p 1S	0	373046. 2	
³ D ₂	2s ² 2p(² P°)3p	2- 10	3	294001. 60 294221. 65	220. 05	$3p' ^{3}D_{1}$	2s 2p ² (4P)3p	3 <i>p</i> ³D°	1 2	374575 374662. 5	88 136. 1
$3p$ $^{8}S_{1}$ $2p^{\prime\prime}$ $^{1}D_{2}$		3p 3S	1	297557. 50		3D3	0 - 0 - 24T) 0	0 400	3	374798.6	
-	2p4	2p4 1D	2	298289. 4		3p' 5S2	28 2p ² (⁴ P)3p	3p ⁸ S°	2	376067.66	
${3p \ ^{3}P_{0} \atop ^{3}P_{1} \atop ^{3}P_{2}}$	2s² 2p(²P°)3p	3p 3P	0 1 2	300228. 21 300310. 31 300440. 85	82. 10 130. 54	4d 3F2	28 ² 2p(² P°)4d	4d *F°	2 3 4	377375	
3p 1D2	2s ² 2p(² P°)3p	3p ¹D	2	306584. 8		4d 1D2	282 2p(2P°)4d	4d ¹D°	2	377687	
3p ¹ S ₀ 3d ² F ₂	2s ² 2p(² P°)3p 2s ² 2p(² P°)3d	3p 'S 3d 'F'	0 2	313801. 07 324462. 45		3p' 3P ₂ 3P ₁ 3P ₀	2s 2p ² (4P)3p	3 <i>p</i> ³P°	2 1 0	378408. 5 378420. 9 378438. 1	-12.4 -17.2
³F₃ ³P₄		55 1	3 4	324658. 25 324836. 41	195. 79 178. 16	4d 3D1	2s ² 2p(² P°)4d	4d ³D°	1	379232	i
3d ¹ D ₂	28 ² 2p(² P°)3d	3d 1D0	2	324734. 22		³ D ₂	20 20(1)10	10 2	2 3	379293 379356	61 63
3d ² D ₁ ³ D ₂ ² D ₃	28 ¹ ?p (2P°)3d	3d ³D°	1 2 3	327227. 94 327277. 18 327350. 90	49. 24 73. 72	4d ³ P ₂	2s² 2p(²P°)4d	4d ³P°	2 1 0	38070 6	
3d P2	2s² 2p(²P°)3d	3d *P°	2	329467.98	-114. 00	4d 'F;	2s ² 2p(2P°)4d	4d 'F°	3	380782	
⁸ P ₁ ² P ₀			0	329581.98 329643.43	-61. 45	4d ¹ P ₁	282 2p(2P°)4d	4d ¹P°	1	3 81086	
3d 1F ₃	28 ² 2p(² P°)3d	3d 1F°	3	331820. 2			28 ³ 2p(2P°)58	58 ³P°	0		
3d ¹P1	2s ² 2p(² P°)3d	3d ¹P°	1	332777. 1		58 ³ P ₂			1 2	392221	
38' ⁵ P ₁ ⁵ P ₂	2s 2p2(4P)3s	3s 5P	1 2	338565. 87 338690. 34	124. 47	5s ¹P ₁	2s ¹ 2p(2P°)5s	5s ¹P°	1	392 778	
⁵ P ₃ 2p" ¹ S ₀	2 <i>p</i> 4	2p4 1S	3 0	338851. 50 343302. 6?	161. 16	38' *D1 *D2 *D3	2s 2p²(²D)3s	35′ ³D	1 2 3	394090 394126 394195	36 69

Interva	Level	J	Desig.	Config.	Edlén	Interval	Level	J	Desig.	Config.	Edlén
	422977	8	7d 1F°	2s ² 2p(2P°)7d	7d ¹F3	38, 70	394516. 45	1	3d *F	2s 2p ² (4P)3d	3d' 'F1
	424998	8	3p' 'F°	2s 2p2(1D)3p	3p' 1F.	57. 55 75. 74	394555. 15 394612. 70	3			F ₂
1	426338	2	3p′ ¹D°	2s 2p ² (2D)3p	$3\overline{p}'$ $^{1}D_{2}$	92. 03	394688. 44 394780. 47	4 5			•F.
119 163	428487 428606 428769	1 2 3	48 ⁵ P	2s 2p²(4P)4s	48' ⁵ P ₁ ⁶ P ₂ ⁶ P ₈	-3. 6 -4. 1 10. 1	398135. 0 398131. 4 398127. 3 398137. 4	0 1 2 3	3d *D	2s 2p³(4P)3d	3d' ⁵ D ₀ ⁵ D ₁ ⁶ D ₂ ⁵ D ₃
1	430025	1	3p′ ¹P°	2s 2p ³ (³ D)3p	3p′ ¹P₁	81. 4	398218.8	4			D.
}	4 3 7015. 0	1	4p *8°	2s 2p ³ (4P)4p	4p′ 3S1	-70. 0 -38. 5	398474. 3 398544. 3	3 2	3d ⁵ P	2s 2p ² (⁴ P)3d	3d' ⁶ P ₃
]	180811 0	o	4p *D°	2s 2p³('P)4p	4p' 5D0	- 30. 3	398582. 8	1			⁴P₁
62. 2 92. 0 122. 3	458241.0 458505.2 458595.2 458517.5	1 2 3 4			⁵ D ₁ ⁵ D ₂ ⁵ D ₃ ⁵ D ₄	-109. 9 53. 7	400354. 8 400464. 7 400518. 4	2 1 0	3d *P	2s 2p²(⁴ P)3d	3d' ³ P ₂ ³ P ₁ ³ P ₀
51. 4 98. 1	439278. 1 439329. 5	1 2	4p *P°	2s 2p ² (4P)4p	4p' 5P1 5P2	96 133. 7	401379 401475. 4 401609. 1	2 3 4	3 <i>d</i> °F	2s 2p ² (4P)3d	3d' *F ₂ *F ₃ *F ₄
00.7	439427.6	8			⁵ P ₃	'	401530	2 3	5d *F°	283 2p(2P°)5d	5d *F;
		1 2 3	4p ³D°	2s 2p ² (4P)4p	•			4			
	442710	3			4p' *D ₂		401787	2	5d 1D°	2s ² 2p(² P°)5d	5d 1D ₃
	443193. 5	 	Limit	O IV (2P.)				1 2	5d ³D°	28 ² 2p(² P°)5d	
-70	450167	3	4d *P	2s 2p2(4P)4d	41' 5Ps		402530	3			5d ² D ₃
-54	450237 450291	2 1			⁵ P ₂ ⁵ P ₁		403374	3	5d ¹F°	2s³ 2p(²P°)5d	5d ¹ F ₃
	452855		3d′ ³F	0- 0-1/17\04	3d′ ¹F		40 3526	1	5d ¹P°	2s2 2p(2P°)5d	5d ¹ P ₁
		2, 3, 4	_	2s 2p ² (² D)3d	1	29. 0	405805. 1 405834. 1	1 2	3d 3D	2s 2p2(4P)3d	3d' 3D1 2D2
	454174	1, 2, 3	3d' *D	2s 2p ² (² D)3d	3₫′ ³D	48. 9	405883. 0	3			3D1
	457634	0, 1, 2	3d′ ³P	2s 2p³(*D)3d	3d′ ¹P		414675	2	6d ¹D°	282 2p(P°)6d	6d ¹ D ₂
1	473750		5d *P	2s 2p2(iP)5d	5d′ 5P2			1	6d 3D°	2s ² 2p(² P°)6d	
		1		,			415181	2 3			6d 3D2

O III OBSERVED TERMS*

Config. 18 ² +		Observed Terms	
2s² 2p²	${f f f f f f f f f f f f f $		
2s 2p²		o o	
2 <i>p</i> ⁴	$\left\{ \begin{array}{ll} 2p^{4} {}^{1}\mathrm{S} & 2p^{4} {}^{1}\mathrm{P} \\ & 2p^{4} {}^{1}\mathrm{D} \end{array} \right.$		
	ns (n≥3)	np (n≥3)	nd (n≥3)
2s ³ 2p(³ P°)nx	3-5s 1P°	3, 4p ² S 3, 4p ² P 3, 4p ² D 3, 4p ¹ S 3, 4p ¹ P 3, 4p ¹ D	3, 4d *P° 3-6d *D° 3-5d *F° 3-5d *P° 3-6d *D° 3-5, 7d *F°
2s 2p ² (⁴ P) nx	3, 4s ⁵ P 3s ³ P	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-5d P 3d D 3d F 3d P 3d D 3d F
2s 2p ² (2D)nx'	{ 3s' *D	3p' 1P° 3p' 1D° 3p' 1F°	3d' P 3d' D 3d' F

^{*}For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Z = 8

Ground state 1s2 2s2 2p 2P4

2p P 624396.5 cm-1

I. P. 77.394 volts

Most of the terms are from Edlén's Monograph, corrected to agree with his 1935 paper, in which he adds several terms from $2p^2(^1D)$ and relabels his $2p^2(^3P)3s$ 3P term as $2p^2(^1D)3s$ 3D . He also lists a combination in the visible, 3s' $^3P^0-3p'$ 3D , from which a revised value of 3s' $^3P^0$ has been calculated. A few other additions and corrections kindly communicated by Edlén have been incorporated into the table.

The term 6f 2F° is from the paper by Whitelaw and Mack.

No intercombinations between the doublet and quartet terms have been observed, but the limits adopted by Edlén are based on well-established series, and the relative positions of the two groups of terms differ by probably only a small constant x.

REFERENCES

- L. J. Freeman, Proc. Roy. Soc. (London) [A] 127, 330 (1930). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Uppsala [IV] 9, No. 6, 87 (1934). (I P) (T) (C L) (G D)
- P. G. Kruger and W. E. Shoupp, Phys. Rev. 44, 105 (1933). (T) (C L)
- E. Edlén, Zeit. Phys. 93, 726 (1935). (T) (C L)
- N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935). (T)
- B. Edlén, unpublished material (Dec. 1947). (T)

O IV

O IV

											
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ³ P ₁ ³ P ₂	2s² (¹S)2p	2p 2P°	1½	0. 0 386. 5	386. 5	38′ ² P ₁ ² P ₂	2s 2p(³P°)3s	3s ² P°	11/2	452808. 0 453073. 0	265. 0
2p' 4P ₁ 4P ₂ 4P ₃	2s 2p2	2p² 4P	1½ 1½ 2½	71177.0+x $71308.4+x$ $71492.9+x$	131. 4 184. 5	3p' ² P ₁ ² P ₂	2s 2p(³P°)3p	3p 2P	1½ 1½	467231. 1 467346. 5	115. 4
2p' ¹ D ₁ ¹ D ₂	2s 2p²	2p² ²D	2½ 1½	126936. 3 126950. 3	-14.0	3p' ⁴ D ₁ ⁴ D ₂ ⁴ D ₃ ⁴ D ₄	2s 2p(*P°)3p	3p 4D	1½ 1½ 2½ 3½	468075. 4+x 468154. 2+x 468289. 7+x 468499. 4+x	78. 8 135. 5 209. 7
2p′ ³ S ₁	2s 2p³	2p² 2S	1/2	164366. 9		3p' 4S2	2s 2p(*P°)3p	3p 4S	11/2	474217.8+x	
2p' *P ₁ *P ₂	2s 2p²	2p3 2P	11/2	180481. 3 180724. 6	243. 3	3p' 4P ₁ 4P ₂	2s 2p(*P°)3p	3p 4P	1½ 1½ 2½	478587. 7+x 478682. 2+x	94. 5 129. 1
2p'' 4S ₂	2p3	2p³ 4S°	11/2	231275.1+x	1	4P ₃			21/2	478811.3+x	
$2p^{\prime\prime}$ 2 D ₂ 2 D ₂	2 <i>p</i> ³	2p³ ²D°	2½ 1½	255156.7 255186.0	-29. 3	3p' ² D ₃	2s 2p(*P°)3p	3 <i>p</i> 3D	1½ 2½	482667. 5 482923. 1	255. 6
2p" ² P ₁ ² P ₂	$2p^2$	2p³ ²P°	11/2	289016. 1 289024. 0	7. 9	48 2S1	2s²(¹S)4s	4s 2S	34	485823. 1	
3s 2S1	2s³(¹S)3s	3s ² S	3/2	357614. 8		3p' 2S1	2s 2p(2P°)3p	3p 2S	3/2	492880	
3p ² P ₁ ² P ₂	2s³(¹S)3p	3 <i>p</i> ² P°	11/2	390161. 1 390248. 2	87. 1	3d' 4F ₂ 4F ₃ 4F ₄	2s 2p(*P°)3d	3d 'F °	1½ 2½ 3½	494907. 5+z 494986. 5+z 495098. 7+z	78. 8 112. 4
3d ² D ₂ ² D ₂	2s2(iS)3d	3d 3D	1½ 2½	419533. 5 419550. 2	16. 7	4F.			41/2	495252.8+x	154. 1
38' 4P ₁ 4P ₂ 4P ₃	2s 2p(*P°)3s	3s 4P°	1½ 1½ 2½	438588. 5+x 438723. 6+x 438970. 5+x	135. 1 246. 9	3d' ⁴ D ₁ ⁴ D ₂ ⁴ D ₃ ⁴ D ₄	2s 2p(*P°)3d	3d 'D°	1½ 2½ 3½	499506. 4+x 499535. 3+x 499582. 0+x 499646. 6+x	28. 9 46. 7 64. 6

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
								ļ	<u> </u>		- Val
3d' ¹ D ₂ ² D ₁	2s 2p(*P°)3d	3d ² D°	1½ 2½	501511. 3 501566. 4	55. 1	4d' ² D ₂ ² D ₁	2s 2p(*P°)4d	4d D°	1½ 2½	59 3627 593708	81
3d' 4P ₃ 4P ₃ 4P ₁	2s 2p(*P°)3d	3d ⁴ P°	21/4 11/4 1/4	503834.5+x 503947.9+x 504021.7+x	-113. 4 -73. 8	4f" 2F2 2F4	2s 2p(*P°)4f	4 <i>f</i> °F	2½ 3½	594007 594080	78
4d ¹ D ₂ ² D ₃	2s²(¹S)4d	4d 2D	11/4	510560 510567	7	4f" ² D ₂ ² D ₃	2s 2p(*P°)4f	4f 'D	1½ 2½	594337 594542	205
3d' 2F2 2F4	2s 2p(*P°)3d	3d 2F°	2½ 3½	510746. 1 510978. 5	232. 4	4d' ² F ₃ ² F ₄	2s 2p(*P°)4d	4d F°	2½ 3½	596 2 99 596477	178
3d' P2	2s 2p(*P°)3d	3d ^a P°	11/4	514217	151	3p'' 3S1	2p ³ (³ P)3p	3p" 2S°	1/2	597254	
² P ₁ 38' ² P ₁	2s 2p(¹P°)3s	38′ ¹P°	ì	514368 518684		8f *F	2s²(¹S)8f	8f : F°	{ 2½ 3½	}597 352	
³ P ₂			11/4	51869Ô	6	4d' ³ P ₃ ² P ₁	2s 2p(*P°)4d	4d P°	11/2	5977 26 59786 3	-137
5s ² S ₁ 3p' ² D ₂	2s ² (¹ S)5s	5s ² S 3p′ ² D	114	539368 547311	!	38'' *D,	2p ² (¹ D)3s	38''' *D	1½ 2½	600092	14
3p. 3D3	2s 2p(¹P°)3p	op -D	1½ 2½	547336	25	³D,	2p2(3P)3p	3p" 4D°	1	600106	
3p' 2P1 2P2	2s 2p(1P°)3p	3p′ *P	11%	549792 549855	63	0 445	2p (1)op		1½ 1½ 2½ 3½		
5d 2D1	2s²(¹S)5d	5d 2D	1½ 2½	552034		3p" 4D4	2p ² (³ P)3p	3p" 4P°	i	602977 +x	
5f °F	2s ² (¹ S)5f	5f 2F°	{ 2½ 3½	}55 2490		3p'' 4P3			1½ 2½	6064 5 4 + x	
3p' 2S₁	2s 2p(¹P°)3p	3p' 2S	35	554461		3p" *D1	2p2(*P)3p	3p" *D°	2½ 1½	615431	-29
48' 4P1	2s 2p(*P°)4s	48 ⁴ P°	11/2	568638 +x 568773 +x	135 247	2D2	0.447%			815460	
4P ₂		,	234	569020 +x	241	3p'' 4S ₂	2p ¹ (¹ P)3p	3p'' 'S'	11/2	616588 +x	
3d' ³F₄	2s 2p(¹P°)3d	3d′ ³F°	2½ 3½	570791			Ov(18 ₀)	Limit	(21/4	,	
48' 3P1 3P2	2s 2p(*P°)4s	48 °P°	11/2	57 3 696 57 3 907	211	3p‴ ⁵F	2p ² (¹ D)3p	3p''' ³F°	{ 2½ 3½	<i>\$624882</i>	
_	2s³(¹S)6d	6d *D	1½ 2½			5p' 3P2	2s 2p(*P°)5p	5p ¹P	11%	628496	
6d ² D ₃	0-1 0 (170) 4	4p 2P	,	574373 575204		3d'' 2F4	2p3(4P)3d	3d'' *F	2½ 3½	630095	
4p' ² P ₁ ³ P ₂	2s ² 2p(³ P°)4p	4p - r	11/2	575373	169	5p' 3D2	2s 2p(*P°)5p	5p 'D	11/2	630703	
$\overline{3d'}$ $^{3}D_{3}$ $^{2}D_{3}$	2s 2p(1P°)3d	3d′ ³D°	11/2 21/2	575819 57585 3	34	3D3			21/2	630879	176
36" 4P1	2p2(3P)3s	38″ 4P	1½ 1½	576591 + x 576735 + x	144	3d" ¹ D ₁ ² D ₂	2p ² (³ P)3d	3d" 2D	2½ 1½	632426 632594	-168
$^4\hat{P}_3^2$			21/2	576947 +x	212		2s 2p(2P°)5d	5d 'D°	11%		
3d' ² P ₁ ² P ₂	2s 2p(¹P°)3d	3d′ ²P°	1½ 1½	581721 581743	22	5d′ 4D4			1¼ 1¼ 2¼ 3½	633896 +x	
4p' 3D2 3D3	2s 2p(*P°)4p	4p 2D	11/4 21/2	584552 584768	216	5d′ 4P3	2s 2p(*P°)5d	5d 4P°	2½ 1½ ½	634245. 5+x	
7f °F	2s ² (¹ S)7f	7f *F °	{ 2½ 3½	}587850		5d' F.	2s 2p(*P°)5d	5d °F°	2½ 3½	636024	212
4p′ 28	2s 2p(*P°)4p	4p 38	1/2	590071		³ F ₄ 5d' ³ P ₂	2s 2p(P°)5d	5d 2P°	l .	636236 636492?	
	2s 2p(*P°)4d	4d 'D°	1½ 1½ 2½ 3½						11/4		
4d′ 4D4			2½ 3½	591767 +x		3d" ⁴ P ₃ ⁴ P ₃ ⁴ P ₁	2p ² (³ P)3d	3d'' 4P	2½ 1½ ½	636851 + x $636950 + x$ $637012 + x$	-99 -62
4d' 'P3	2s 2p(*P*)4d	4d 4P°	2½ 1½ ½	59 2 999 +x		3d" ³D	2p ² (¹D)3d	3d''' ° D	1½ 2½	637012 +x }646859	

O IV—Continued

Edlén .	Config.	Desig.	J	Level	Interval
3d" *F ₃ *F ₄	2p ² (¹D)3d	3d''' ³F	2½ 3½	651098 651117	19
3d" P2 P1	2p³(¹D)3d	3d''' ³P	1½ ½	653328 653411	-83
	2s 2p(*P°)6d	6d 4D°	1 <u>%</u>	,	
6d' 4D4	1		1½ 2½ 3½	656 32 8 +x	
4p′ ³D₃	2s 2p(1P°)4p	4p' ³D	1¼ 2¼	656748	
3d'' ¹S₁	2p3(1D)3d	3d''' 28	14	659998	
4d' ¹D₃	2s 2p(¹P°)4d	4d′ 2D°	1¼ 2¼	668538	
	2s 2p(*P°)7d	7d 4D°	½ 1½		
7d' 4D4			1½ 2½ 3½	669705 +x	,

Config.						Obe	Observed Terms	9							
2s('iS) 2p		2p 1P°													
2s 2ps	{2p² 1S	2p² (P 2p² 1P	$2p^{2}$ 1												
2p3	{2p, 4S.	2p² 1P°	$2p^{11}D^{\circ}$												
•		ns (n≥3)			ž į	np (n≥3)				nd (nd (n≥3)				nf (n≥4)
20 (18) nx	3-5e 3S				3p 1P°						3-64	ē		<u> </u>	5, 7, 8f sF°
2s 2p(3P°) nx	-	3, 4s 'P° 3, 4s 2P°		3p 4S 3, 4p 2S	3p 'P	32 4D 3-52 1D			3-54	î Î	3,44	ůů ůů	25.20	tro Fo 4f 1D	
2s 2p(1P°)nx'		8e' 1P°		3b, 3S	3p' P				39,	3Po	3, 44'	ů.	gq,	F.	
2p*(P)nx"	~	38'' 4P		3p" 4S° 3p" 3S°	3p" 4P°	3p" τΩ° 3p" τΩ°			3d"	Q	34" 'D	Ð	3d" 'F	F	
2p2(1D)nz"			38"" *D				3p"" 1F°	3p" 18 3d" 18	34" 1P	4	34"" 1D	5	34,,, 1F	<u> </u>	

*For predicted terms in the spectra of the B isoelectronic sequence, see Introduction.

(Be I sequence; 4 electrons)

Z=8

Ground state 1s2 2s2 1S0

282 1So 918702 cm-1

I. P. 113.873 volts

Edlén has revised and extended his published analysis and has generously furnished a manuscript copy of his complete term list in advance of publication, for inclusion here. He states that no intersystem combinations have been observed and that the relative uncertainty x in the position of the triplet terms with respect to the singlets may be ± 100 cm⁻¹.

In the published papers Edlén has used a prime to designate the terms from the 2Po limit in O vr.

- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 62 (1934). (I P) (T) (C L)
- B. Edlén, unpublished material (Dec. 1947). (I P) (T)

		O V				0,	7
Config.	Desig.	J	Level	Interval	Config.	Desig.	
	· 						

Config.	Desig.	J	Level	Interval	Config.	Desig.	J _	Level	Interval
282	28 ² 1S	0	0		2p(2P°)3p	3p *8	1	684124 +x	
2s(³ S)2p	2p *P°	0 1 2	82121. 2+x 82257. 9+x 82564. 1+x	136. 7 306. 2	2p(2P°)3p	3 <i>p</i> ³P	0 1 2	$\begin{array}{c} 689585. \ 6+x \\ 689699. \ 6+x \\ 689890. \ 3+x \end{array}$	114. 0 190. 7
2s(2S)2p	2p 1P°	1	158798		2p(2P°)3d	3d 1D°	2	694646	
2p²	2p ² ² P	0	$\begin{array}{c} 213641.\ 7+x \\ 213797.\ 4+x \end{array}$	155. 7	2p(2P°)3p	3p ¹ D	2	697170	
		1 2	213797.4+x $214066.2+x$	268. 8	2p(2P°)3d	3d 3D°	1 2	704360 + x 704424 + x	64
2p²	2p ² ¹ D	2	231722		,		3	704527 +x	103
2 p ²	2p² ¹S	0	287909		2p(2P°)3p	3p 18	0	707630	
2s(2S)3s	38 ¹ S	1	547150.0+x		2p(3P°)3d	3d 3P°	2	708154 + x 708296 + x	-142
2s(2S)3s	38 ¹ S	0	561278		İ		0	708296 + x 708379 + x	-83
2s(2S)3p	3p ¹ P°	1	580826		2p(2P°)3d	3d ¹F°	3	712967	
2s(2S)3p	3p *P°	o l	582983. 6+x	36. 3	2p(2P°)3d	3d ¹ P°	1	719277	
		1 2	583019.9 + x 583097.2 + x	77. 3	2s(2S)4s	48 18	1	722666 +x]
2s(2S)3d	3d *D	1	600925.5+x 600936.3+x	10. 8	2s(2S)4s	4s 1S	0	731667	
		1 2 3	600956. $1+x$	19. 8	2s(2S)4p	4p *P°	0	736108 +x	18
2s(² S)3d	3d ¹D	2	612617	1	1		2	736126 + x	
2p(2P°)3s	3s *P°	0	653099.7+x 653262.2+x	162. 5	2s(2S)4p	4p 1P°	1	- 757885	
		2	653605.0+x	342. 8	2s(2S)4d	4d *D	1 2	742401 + x 742407 + x	6
2p(2P°)3s	3s ¹ P°	1	664486				3	742421 + x	14
2p(3P°)3p	3p 1P	1	672695		2s(2S)4d	4d 1D	2	746280	
2p(°P°)3p	3p 3D	1 2	677333 + x 677532 + x	199	2s(2S)4f	4f ¹F°	3	749857	
i		3	677847 + x	315	2s(2S)5s	5e *S	1	796263 + x	

O v---Continued

O v—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s(3S)5p	5p ¹P°	1	802452		2s(*S)7p	7p ¹P°	1	860874	
2s(² S)5d	5d ¹ D	1 2 3	806625 +x		2s(2S)7d	7d *D	1 2 3	861975 +x	
2s(2S)5d	5d 1D	2	808351		2s(2S)7d	7d ¹D	2	862419	
2p(2P°)4s	4s ¹P°	1	824280		2s(2S)8p	8p ¹ P°	1	874447	İ
2p(2P°)4p	4p ¹P	1	829588		2s(2S)8d	8d *D	1		
2p(2P°)4p	4p 'D	1 2 3	831047 + x $831213 + x$ $831504 + x$	166 291	2p(*P°)5p	5p ¹P	2 3 1	875365 + <i>x</i> 898580	
2p(2P°)4p	4p *S	1	832251 + x		2p(P°)5p	5p 'D	1	00000	
2p(2P°)4p	4p ² P	0	835151 +x	170		-	3	899671 +x	
0. 070)43	43.170	2	835321 +x	-1.0	2p(3P°)5p	5 <i>p</i> •P	0		
2p(2P°)4d	4d ¹ D°	2	837834			_	2	901344 +x	
2p(*P°)4p	4p 1D	2	837864		2p(2P°)5p	5p ¹D	2	902442	
2s(2S)6p	6p ¹P°	1	8 3 9616		2p(3P°)5d	5d ¹ D°	, 2	90 2 59 2	
2s(2S)6f	6f 1F°	3	8408 32		2p(2P°)5d	5d 3D°	1 2		
2s(2S)6d	6d *D	1 2 3	841220 +x		2p(*P°)5d	5d ¹F ^ċ	3	904497 +x 906404	
2p(3P°)4d	4d 3D°	1	841280 +x	94	O vi (2SH)	Limit		918702	{
		3	$841374 + x \\ 841497 + x$	123	2p(2P°)6p	6p 1P	1	935093	
2s(2S)6d	6d ¹ D	2	842105		2p(2P°)6p	6p 3D	1	,	
2p(*P°)4d	4d ¹P°	2	843290 + x 843397 + x	-107 -52		•	3	935945 +2	
2p(P°)4d	4d ¹F°	3	843449 + x 847129	-	2p(³ P°)6p	6 <i>p</i> ³P	0 1 2	936805 +x	
2p(3P°)4d	4d ¹P°	1	847465		2p(2P°)6p	6p ¹D	2	937341	

O v OBSERVED TERMS*

Config. 1s ² +					Observ	ved Terms				
2s²	28 ³ 1S									
2s(2S)2p		2p ³ P° 2p ¹ P°								
2p³	2p² ¹S	2p³ ³P	· 2p² ¹D							
		ns (n≥3)		`	$np \ (n \ge 3)$			nd (n≥3)		$nf(n \ge 4)$
2s(2S)nx	3-5s 38 3, 4s 18				3, 4p *P° 3–8p ¹ P°			3–8d ³D 3–7d ¹D		4, 6 <i>f</i> ¹F°
2p(2P°)nx		3s ³ P° 3, 4s ¹ P°		3, 4p 3S 3p 1S	3-6p ³ P 3-6p ¹ P	3-6p ³ D 3-6p ¹ D	3, 4d P° 3, 4d P°	3–5d ³ D° 3–5d ¹ D°	3-5d 'F°	

^{*}For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

(Li 1 sequence; 3 electrons)

Z=8

Ground state 1s2 2s Si

28 %, 1113999.5 cm⁻¹

I. P. 138.080 volta

This spectrum has been analyzed by Edlén. The observed term values have all been taken from a manuscript generously furnished by him in advance of publication. He remarks that the np $^3P^{\circ}$ and nd 3D series have been observed in the vacuum spark further than given in the table. For series members beyond n=6 he states that the term values calculated from a Ritz formula are probably to be preferred.

In the table, extrapolated intervals and calculated term values are entered in brackets. They have been taken from the 1933 and 1934 references below, as have also the entries in column one.

REFERENCES

- B. Edlén, Zeit. Astroph. 7, 378 (1933). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 44 (1934). (T) (C L)
- F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

IV O

O VI

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2s 2S1	28	2s *S	1/2	0.0		6 F	6 <i>f</i>	el 1ko	{ 2½ 3½ 3½	} [1004 2 65]	
2p ² P ₁ ² P ₂	2p	2p 2P°	11%	96375. 0 96907. 5	532. 5	6 GH	6g, 6h	6g ² G, etc.	31/4	[] [1004276]	
3e 2S1	38	3s 2S	*	640039. 8	1	0 GH	Oy, Ox	oy-G, etc.	534) [1004210]	
3p 2P1 2P2	3 <i>p</i>	3p 2P°	11/2	66611 3. 2 666269. 8	156. 6	78	78	7a 28	*	1030780	
3d ² D ₂ ² D ₃	3 <i>d</i>	3d 2D	1½ 2½	674625. 7 674676. 8	51.1	7 P	7 <i>p</i>	7p ² P°	11%	1032630	
4s ² S ₁	48	48 28	1/2	852696	<u> </u>	7 D	7d	7d 2D	1½ 2½	} 1033324	
4p ¹ P ₁ ² P ₂	4 p	4p 2P°	11/2	863333. 8 863397. 7	63. 9	7 F	7 <i>f</i>	7f 1F°	{ 2½ 3½	} [10 33382]	
4d ³ D ₂ ² D ₃	4 d	4d D	1½ 2½	866880. 1 866901. 5	21. 4	7 GHI	7g, etc.	7g ² G, etc.	3½ to 6½	[1033389]	
4f 2F2 2F4	4 f	4f 2F°	2½ 3½	867077. 7 867087. 5	9.8	88	88	8e 28	1/2	[1050543]	
	54	5s 2S	. 1/2	948690		8 P	8 p	8p ¹ P°	{ ½	} 1051724	
5p 3P2	5p	5p 2P°	11%	} 954080	[33]	8 F	8 <i>f</i>	8f 2F°	{ 2½ 3½	} [105 2280]	
5d 2D1	5d	5d *D	{ 1½ 2½ 2½	} 955856	[11]	0.0717	0	0.404	31/4	Corpora	
68	6s	6s 2S	*	1000080		8 GHIK	8g, etc.	8g ² G, etc.	1 7%	[1052285]	
6 P	6 <i>p</i>	6p P°	{ ½ 1½	} 1003130		8 D	8d ·	8d 2D	11/4 21/4	} 1052296	
6d 2D2	6d	6d 2D	{ 1½ 2½	} 1004178							
_			2/2				O A11 (18.9)	Limit		1113999. 5	

September 1947.

O VII

(He I sequence; 2 electrons)

Z=8

Ground State 182 1So

18 1S 5963000 ± 600 cm-1

I. P. 739.114 ±0.074 volts

Five singlet lines have been observed by Tyrén in the interval 17 A to 21 A. He has also observed one intersystem combination—a line at 21.804 A classified as $1s^2$ $^{1}S_0-2p$ $^{3}P_1^{0}$. His unit 10^3 cm⁻¹ has here been changed to cm⁻¹.

The triplet terms are from Edlén, who has kindly furnished them in advance of publication. He remarks that the extrapolated absolute term values of the triplets relative to those of the singlets confirm the intersystem combination reported by Tyrén. The $2s^3S-2p^3P^\circ$ combination has apparently not been observed, but Edlén regards the extrapolation from the irregular doublet law as very reliable. Brackets are used in the table to indicate extrapolated values not yet confirmed by observation.

REFERENCES

- F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 25 (1940). (I P) (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

		O VII					O VII	. ————	
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
182	1s2 1S	0	6		1s 3p	3p ¹P°	1	<i>53</i> 68550	
1s 2s	28 S	1	4525340		1s 4p	4p ¹P°	1	56 2 8100	
1 s 2p	2p *P°	ļ	[4586170]	[60]	1s 5p	5p ¹P°	1	<i>5748450</i>	
		2	4586 23 0 [4586780]	[60] [550]	1s 6p	6p ¹P°	1	<i>5813950</i>	
1s 2p	2p ¹P°	1	4629200				-		
1s 3p	3p *P°	0, 1, 2	<i>5356380</i>		O vIII (28%)	Limit		5963000	
1s 3d	3d *D	3, 2, 1	5364990			•	`		ļ .
	•		,	1	ľ		1	I .	1

September 1947.

O VIII

(H 1 sequence; 1 electron)

Z=8

Ground state 1s 2S4

18 S,

cm-i

I. P. volts

Tyrén has observed the Lyman line 1s ^2S-2p $^2P^\circ$ of O viii. The calculated position of this line, 18.967 A, places the 2p $^2P^\circ$ term at 5272315 cm⁻¹ above the ground term 1s $^2S_{12}=0$.

REFERENCE

F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (C L)

November 1946.

FLUORINE

Fı

9 electrons

Z=9

Ground state 1s2 2s2 2p5 2P11

2p⁵ ³P₁, 140553.5 cm⁻¹

I. P. 17.42 volts

This spectrum is incompletely analyzed, but the terms from the 3P limit in F II are fairly well established. The terms listed have been taken from Edlén's later paper, supplemented by unpublished levels from further analysis by Lidén. The new levels have been generously furnished in manuscript form by Edlén, for inclusion here.

Intersystem combinations have been observed, connecting the doublet and quartet terms. Edlén remarks that it is impossible to assign term designations to the levels labeled 3d X and 4d X, because of the departure from LS-coupling. He also states that the terms from ¹D in F 11 need further confirmation. They are connected with the rest by only two ultraviolet lines, those observed by Bowen at 806.92 A and 809.60 A.

REFERENCES

- G. H. Carragan, Astroph. J. 63, 145 (1926). (Z E)
- I. S. Bowen, Phys. Rev. 29, 231 (1927). (T) (C L) B. Edlén, Zeit. Phys. 93, 447 (1935). (C L)
- B. Edlén, Zeit. Phys. 98, 445 (1936). (I P) (T) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)
- B. Edlén, unpublished material (Dec. 1947). (T)
- K. Lidén, Ark. Mat. Astr. Fys. (Stockholm) in press (1947). (T)

Fı

FΙ

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ² P ₂ ² P ₁	2s² 2p⁵	2p ⁵ ³ P°	11/2	0. 0 404. 0	-404. 0	3p ² D ₃ ² D ₃	2s 2p4(*P)3p	3p ²D°	2½ 1½	1176 23. 73 11787 3. 75	-250. 02
3s 4P3	2s2 2p4(3P)3s	3s 4P	21/2	102406. 50	-274. 74	3p 2S1	2s ² 2p ⁴ (³ P)3p	3p 28°	*	118406. 09	
⁴ P ₃ ⁴ P ₁			11/2	102681. 24 102841. 20	—159. 96	3p 4S2	2s ² 2p ⁴ (³ P)3p	3p 48°	11/2	1184 2 5, 20	[
3s ² P ₂ ² P ₁	2s ² 2p ⁴ (³ P)3s	3s ² P	1½ ½	104731. 86 105057. 10	— 325. 24	3p ² P ₂ ² P ₁	2s³ 2p⁴(³P)3p	3p ² P°	1½ ½	1189 3 11908 2. 6 3	-145. 02
3p 4P ₃ 4P ₂	2s² 2p⁴(³P)3p	3p 4P°	2½ 1½ ½	115918.70 116041.69	122. 99 102. 70	38 ² D ₃ ² D ₂	2s ² 2p ⁴ (¹ D)3s	38′ ³D	2½ 1½	123925. 50 123926. 56	-1.06
⁴ P ₁ 3p ⁴ D ₄ ⁴ D ₃ ⁴ D ₂	1	3p 'D°	3½ 2½ 1½ ½	116144. 39 116988. 21 117164. 83 117309. 37 117392. 77	-176. 62 -144. 54 -83. 40	3d ⁴ D ₄ ⁴ D ₂ ⁴ D ₁	2s² 2p⁴(³P)3d	3d 4D	3½ 2½ 1½ ½	128064. 90 128088. 63 128123. 51 128185. 80	-23. 73 -34. 88 -62. 29

F I-Continued

F 1-Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3d X _s	2s² 2p⁴(¹P)3d	3d Z4		128141. 27			2s² 2p¹(³P)4d	4d 4F	41/2	133606. 39	-317. 44
3d 4F,	2s2 2p4(3P)3d	3d 'F	4½ 3½ 2½ 1½	128219. 92 128515. 55	-295. 63 -10. 60				3½ 2½ 1½	133923. 83 133932. 56 133972. 06	-8. 73 -39. 50
4F,			11%	128526. 15 128612. 73	-86.58	l	2e ² 2p ⁴ (² P)4d	4d Z,		133607. 33	ļ
3d X,	2s² 2p²(³P)3d	3d Z ₂		128220. 65			2s2 2p4(3P)4d	4d Z ₂		133624, 61	ļ
3d X4	2s ³ 2p ⁴ (³ P)3d	3d Z 3		128221. 16			2s ² 2p ⁴ (³ P)4d	4d Z ₁		133644. 4	
3d X4	2st 2pt(tP)3d	3d Y ₃		128339. 53			282 2p4(3P)4d	4d Y ₂		133911. 08	
3d X4	2s³ 2p⁴(³P)3d	3d Y2	11/2	128524. 09	į		2s2 2p4(3P)4d	4d Y ₁		133920. 20	
3d X,	2s2 2p4(3P)3d	3d Y1		128606. 88			2s2 2p4(3P)4d	4d Y1		133966. 47	
3d X ₂	2s2 2p4(2P)3d	3d X ₂	}	128698. 68			2s ² 2p ⁴ (³ P)4d	4d X2		134085. 53	
3d X1	2s² 2p⁴(³P)3d	3d X1	1	128713. 12]		2s2 2p4(P)4d	4d X1		134092. 03	
	2s ² 2p ⁴ (*P)5s	5s 4P	2½ 1½ ½	132596. 26 132745. 77 133009. 96	149. 51 264. 19	3p 2F2 2F4	2s ² 2p ⁴ (¹ D)3p	3p′ ³F°	2½ 3½	137594. 6 3 1 3 760 3 . 44	8. 81
	2s² 2p⁴(³P)5s	5a ³P	11/4	132999. 16 133224. 10	-224. 94	3p 2D2 2D3	2s ² 2p ⁴ (¹ D)3p	3p′ ² D°	1½ 2½	138700. 15 138708. 01	7. 86
	2s² 2p⁴(²P)4d	4d 'D	3½ 2½ 1½ ½	133545. 27 133558. 14 133578. 15	-12. 87 -20. 01		F 11 (³ P ₂)	Limit		14055 3 . 5	
			1/2	133614, 10	-35.95	2p′ 2S1	2s 2p ⁶	2p ⁸ 2S	1/4	[168554]	
	2s2 2p4(1P)4d	41 Z4		133584, 35		1					

F 1 OBSERVED TERMS*

Config. 1s ² +		Observed Terms	
2s² 2p³	2p ⁵ ² P°		
	ns (n≥3)	$np \ (n \ge 3)$	$nd (n \ge 3)$
2s² 2p⁴(²P)nx	{ 3, 5s ⁴ P 3, 5s ² P	3p 4S° 3p 4P° 3p 4D° 3p 2S° 3p 2P° 3p 2D°	3, 4d 'D 3, 4d 'I
$2s^3 \ 2p^4(^1\mathrm{D})nx'$	38′ ³D	3p' ² D° 3p' ² F°	

^{*}For predicted terms in the spectra of the F $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(O i sequence; 8 electrons)

Z=9

Ground state 1s2 2s2 2p4 3P2

 $2p^{4}$ $^{3}P_{2}$ 282190.2 cm $^{-1}$

I. P. 34.98 volts

Bowen, Dingle, and Edlén have all contributed to the analysis of this spectrum. The singlet and triplet terms are taken from Edlén, who has revised and extended the earlier work. The quintet terms, except 5f °F, are from Dingle's paper. The term 5f °F derived by Edlén agrees well with the 4f °F term and Dingle's series limit.

The singlet and triplet terms are connected by intersystem combinations. The relative position of the quintets is determined by the series with the uncertainty x probably not exceeding 200 cm⁻¹.

Edlén lists a number of combinations that probably involve $2s^2 2p^3(^2D^\circ)4f$ terms at about $288600 \pm \text{cm}^{-1}$ above the ground state.

In a private communication Edlén has stated that his term published as $\overline{3d}$ ³D should have the designation $\overline{4s}$ ³P. He has also revised his published value of 3d' ¹S°.

REFERENCES

- H. Dingle, Proc. Roy. Soc. (London) [A] 128, 600 (1930). (T) (C L)
- I. S. Bowen, Phys. Rev. 45, 82 (1934). (T) (C L)
- B. Edlén, Zeit. Phys. 93, 433 (1935). (I P) (T) (C L)
- B. Edlén, private communication (Dec. 1947). (T)

FII

Fп

		F :						F 11			
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ³ P ₂ ³ P ₁ ³ P ₀	2s² 2p⁴	2p4 3P	2 1 0	0. 0 341. 8 490. 6	-341. 8 -148. 8		2s² 2p²('S°)3d	3d *D°	4 3 2 1	231158. 08 + x 231158. 99 + x 231160. 19 + x 231160. 87 + x	-0. 91 -1. 20 -0. 68
2p 1D3	2s³ 2p⁴	2p4 1D	2	20873					Ō	231161.39+x	
2p 180	2s² 2p⁴	2p4 1S	0	44919		3d ¹ D ₁	2s² 2p³('S°)3d	3d ³D°	1	232064. 18	0. 80
2p' *P, *P, *P, *P,	2s 2p ⁵	2p5 *P°	2 1	164797. 7 165107. 1	-309. 4	*D ₂			3	232064. 98 232067. 06	2. 08
*P0			0	165281. 0	— 173 . 9		2s ² 2p ³ (⁴ S°)4s	48 ⁵ S°	2	235311.15+x	
	2s ² 2p ² (4S°)3s	3s 5S°	2	176654. 2 +x		3p 1P1	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3p$	3p′ ¹P	1	235643. 1	
3s ³ S ₁	2s ² 2p ² (4S°)3s	3s 3S°	1	182865. 2		$\overline{3p} \stackrel{\mathbf{i}}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_2}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_2}{\overset{\mathbf{D}_1}}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}{\overset{\mathbf{D}_1}}{\overset{\mathbf{D}_1}}{\overset{\mathbf{D}_1}}{\overset{\mathbf{D}}}{\overset{\mathbf{D}_1}}{\overset{\mathbf{D}}}}{\overset{\mathbf{D}}}}{\overset{\mathbf{D}}}}{\overset{\mathbf{D}}}}{\overset{\mathbf{D}}}}}{\overset{\mathbf{D}}}}}}}}}}$	2s ² 2p ³ (² D°)3p	3p′ ³D	1 2	236170. 35 236173. 07	2. 72
	2s³ 2p³(4S°)3p	3p ⁵ P	1 2	$\begin{array}{c} 202609.65 + x \\ 202620.98 + x \end{array}$	11. 33 19. 55	*D;			3	236195. 57	22. 50
			3	202640. $53+x$	13.00	4s ³ S ₁	2s ² 2p ² (4S°)4s	4s ³ S°	1	236961.63	
3p ³ P ₀ ³ P ₁ ³ P ₂	2s ² 2p ¹ (⁴ S°)3p	3p *P	0 1 2	207702. 91 207699. 91 207704. 61	-3.00 4.70	3p *F4 *F5 *F5	2s ² 2p ³ (² D°)3p	3p′ ³F	4 3 2	237507. 91 237508. 72 237509. 37	-0. 81 -0. 65
35 *D.	2s² 2p²(²D°)3s	38′ ³D°	3	211866.62	-21. 07	3p 1F8	2s ² 2p ³ (² D°)3p	3p′ ¹F	3	238323. 6	
² D ₂ ² D ₁			2 1	211887.69 211900.72	-13.03	2p' ¹P1	2s 2p ⁴	2p ^{\$ 1} P°	1	23 9605. 0	
$\overline{38}$ $^{1}D_{3}$	2s ² 2p ² (² D°)3s	38′ ¹D°	2	215069. 8		3p *P2	2s ² 2p ³ (² D°)3p	3p′ ³P	2	240093. 10	-60. 24
3 1P1	2s ² 2p ³ (² P°)3s	38″ ¹P°	1	227228. 2		*P ₁			0	240153. 34 240179. 91	-26. 57
35 P2	2s² 2p³(²P°)3s	3s'' ³P°	2 1	229550. 83 229552. 44	-1.61	3p 1D2	2s² 2p³ (²D°) 3p	3p′ ¹D	2	246283. 9	
³ P ₁ ³ P ₀			ő	229555. 10	-2.66	4p 3P ₀ 3P ₁ 3P ₂	28 ³ 2p ³ (⁴ S°)4p	4p *P	0 1 2	246655. 10 246662. 55 246682. 67	7. 45 20. 12
	1					3p *S1	2s ² 2p ² (2P°)3p	3p'' \$8	1	253313. 2	

:		F II—Co	ntinue	d .	
Edlén	Config.	Desig.	J	Level	Interval
4d ³ D ₃	2s2 2p2(4S°)4d	4d Do	1 2 3	254016	
4 <i>f</i> *F	2s ³ 2p ³ (4S°)4f	4 <i>f</i> °F	4, 3, 2	254547. 3	ļ
3p D; D; D;	2s ² 2p ² (² P°)3p	3p′′ ³D	3 2 1	254702. 30 254717. 36 254723. 96	-15.06 -6.60
	2s ³ 2p ³ (4S°)4f	4 <i>f</i> *F	5 to 1	254703. 1+x	
$\overline{\overline{3p}} ^{1}P_{1}$	2s ³ 2p ³ (² P°)3p	3p" ¹P	1	255606. 0	
3p 3P0 3P1 3P2	2s ² 2p ³ (² P°)3p	3p'' ⁸ P	0 1 2	257253. 9 257268. 8 257292. 7	14. 9 23. 9
$\overline{\overline{3p}}$ $^{1}D_{2}$	2s ³ 2p ³ (³ P°)3p	3p'' ¹D	2	258930 v	
5f *F	2s ³ 2p ³ (4S°)5f	5f *F	5 to 1	264610 +x	
3d *F;	2s² 2p²(²D°)3d	3d′ ³F°	2 3 4	264953. 1 2 264958. 6 3 264965. 91	5. 51 7. 28
3d 1Se	2s ² 2p ³ (³ D°)3d	3d′ ¹S°	0	264994. 9	
3d ¹ G ₅ ¹ G ₄	2s² 2p² (²D°)3d	3d' ¹G°	5 4 3	265255. 8 265267. 8 265289. 3	-12.0 -21.5
3d 1G4	28 ² 2p ² (² D°)3d	3d′ ¹G°	4	265310. 1	
3d ¹ D ₁ ¹ D ₁	2s² 2p²(²D°)3d	3d′ ³D°	3 2 1	265472.70 265498.74 265517.14	-26.04 -18.40
3d 1D2	28 ³ 2p ³ (2D°)3d	3d′ ¹D°	2	266270. 2	
<u>3p</u> ₁S₀	2s² 2p³(²P°)3p	3p'' 18	0	266338. 4	
<u>3d</u> ∗S₁	$2s^{3}2p^{3}(^{2}\mathrm{D}^{\circ})3d$	3d′ \$S°	1	266360. 69	
3d ³ P ₂ ³ P ₁ ³ P ₀	2s² 2p²(²D°)3d	3d′ *P°	2 1 0	266454. 2 7 266499. 1 2 266 5 16. 35	-44. 85 -17. 23
3d 1F2	$2s^2 2p^3 (^2 \mathrm{D}^{\circ}) 3d$	3d′ ¹F°	3	266548.7	
$\widehat{3d}$ $^{1}P_{1}$	$2s^{2}2p^{3}(^{2}\mathrm{D}^{\circ})3d$	3d' 1P°	1	267400. 3	
48 ² D ₃ ² D ₂ ² D ₁	2s² 2p³(²D°)4s	48′ ³D°	3 2 1	269548. 7 269564. 2 269574. 5	-15.5 -10.3
4s 1D2	$2s^{2}\ 2p^{3}(^{2}\mathrm{D}^{\circ})4s$	48′ ¹D°	2	270508. 4	
	F III (48°1)	Limit		2821 90 . 2	
3d *F. *F. *F.	2s² 2p²(²P°)3d	3d'' *F°	4 3 2	282544. 7 282569. 7 282586. 9	-25. 0 -17. 2
3d 1D2	2s² 2p²(²P°)3d	3d'' ¹D°	2	282774, 7	
3d *P ₀ *P ₁ *P ₂	2s ² 2p ² (² P°)3d	3d′′ *P°	0 1 2	282897. 0 282915. 4 282947. 9	16. 4 34. 5
3d ¹F₃	2s² 2p²(²P°)3d	3d'' ¹F°	3	283409. 4	
3d 1P1	2e ³ 2p ³ (³ P°)3d	3d'' ¹P°	1	284224.8	
3d 'D,	2s² 2p²(³P°)4s	48" *P°	2 1 0	286701, 9 286706, 6 286707, 3	-4.7 -0.7

Config.						Obser	Observed Terms						
2s 2p4	{ 2p* 1S	2p' 1P	2p* 1D										
2s 2ps	<u></u>	2ps 1Po 2ps 1Po	i					,					
		ns (n≥3)			du	$np \ (n \geq 3)$				nd (n≥3)			nf (n≥4)
24 2p²(48°)nx	(3, 48 5S° (3, 48 5S°				3p eP 3, 4p eP					34 40°3, 44°3			4, 55 °F 45 °F
2s 2p2(3D°)nx'	<u></u>		3, 48' 3D° 3, 48' 1D°		3p' [‡] P 3p' ¹ P	3p/ 1D 3p/ 1D	3p' 4F 3p' 1F	34' 85° 34' 18°	3d' 1P° 3d' 1P°	34′ 1D° 34′ 1D°	3d' 1F° 3d' 1F°	34, 10°	
24 2p2 (3P0) nx''	<u></u>	3, 48" apo 38" 1Po		3p" 38 3p" 18	3p" 1P 3p" 1P	3p" 3D 3p" 1D			34" 1P°	34" 1D°	3d" 1F°		

F II OBSERVED TERMS*

*For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

(N I sequence; 7 electrons)

Z=9

Ground state 1s2 2s2 2p3 4S11

 $2p^3$ $^4S_{1\frac{1}{2}}$ 505410 cm $^{-1}$

I. P. 62.646 volts

The terms are from the paper by Edlén. With the aid of observations in the extreme ultraviolet he has extended the analysis by Bowen and Dingle and derived improved values of the series limits. He has found the sextet terms and estimated their position relative to the other terms. The value of x is somewhat uncertain. Bowen found 14 intersystem combinations connecting the doublet and quartet terms.

The term 3p'' ²P° depends upon the combination with 3s'' ²S, assigned to a pair of lines at 2920 A. According to Edlén this classification is somewhat uncertain.

REFERENCES

H. Dingle, Proc. Roy. Soc. (London) [A] 122, 144 (1929). (T) (C L)

I. S. Bowen, Phys. Rev. 45, 82 (1934). (T) (C L)

B. Edlén, Zeit. Phys. 93, 433 (1935). (I P) (T) (C L)

F III

FIII

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p 4S2	2s² 2p³	2p3 4S°	11/2	0		3s ² P ₁ ² P ₂	2s² 2p²(³P)3s	3s ² P	11/2	324489. 9 324874. 4	384. 5
$2p$ $^2\mathrm{D_3}$ $^2\mathrm{D_2}$	2s³ 2p³	2p³ ²D°	2½ 1½	34084 34120	-36	38 ² D ₃ ² D ₂	2s² 2p²(¹D)3s	38′ ²D	2½ 1½	344016. 2 344019. 5	-3. 3
2p 2P13	2s² 2p²	2p³ ²P°	{ 1½ ½ ½	} 51558		3p 2S1	2s² 2p²(³P)3p	3p 2S°	1/2	344438. 4	
2p' 4P ₃ 4P ₂ 4P ₁	2s 2p4	2p4 4P	2½ 1½ ½	151897. 9 152235. 3 152410. 0	-337. 4 -174. 7	3p ⁴ D ₁ ⁴ D ₂ ⁴ D ₃ ⁴ D ₄	2s ² 2p ² (³ P)3p	3p 'D°	1½ 1½ 2½ 3½	348700. 5 348815. 4 349005. 1 349264. 0	114. 9 189. 7 258. 9
$2p' {}^{2}\mathrm{D}_{2}^{2}$ $2p' {}^{2}\mathrm{S}_{1}^{2}$	2s 2p4 2s 2p4	2 _F 4 ² D 2 _F 4 ² S	2½ 1½ ½	210240 210256 248260	-16	3p 4P ₁ 4P ₂ 4P ₃	2s² 2p²(³P)3p	3p 4P°	1½ 1½ 2½	351234. 1 351328. 4 351517. 1	94. 3 188. 7
2p' ² P ₂ ² P ₁	2s 2p4	2p4 2P	11/2	266559 266943	-384	3p ² D ₂ ² D ₃	28 ² 2p ² (³ P)3p	3p 2D°	1½ 2½	355979. 6 356370. 0	390. 4
38 ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s ² 2p ² (³ P)3s	3s 'P	1½ 1½ 2½	316707. 3 316918. 6 317237. 5	211. 3 318. 9	3p 4S2	2s² 2p²(³P)3p	3p 4S°	11/2	<i>\$57477.</i> 0	

F III—Continued

F III—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interva
							Conng.			250761	
3p ³ P ₁ ² P ₂	2s ² 2p ² (² P)3p	3p 2P°	11/2	360346. 2 360433. 1	86. 9	$\begin{array}{c} 4p \ ^4\mathrm{D}_1 \\ ^4\mathrm{D}_2 \\ ^4\mathrm{D}_3 \end{array}$	2s ² 2p ² (³ P)4p	4p 'D°	11/2	426426. 0 426556. 4 426730. 7	130. 4 174. 3
38 2S1	$2s^3 \ 2p^2(^1{ m S})3s$	38′′ 2S	×	372673. 0		$^4D_4^3$			2½ 3½	426987.5	256. 8
3p 2F3	$2s^2 2p^2(^1D)3p$	3p′ ³F°	2½ 3½	376806. 2 376871. 0	64. 8	4p 4P ₁ 4P ₂ 4P ₃	28 ² 2p ² (³ P)4p	4p 'P°	1½ 1½ 2½	427456.7 427542.4 427729.3	85. 7 186. 9
$\overline{3p}$ $^{2}D_{2}$	2s ² 2p ² (¹ D)3p		2½ 1½	380242. 9 380299. 1	-56. 2	$4p {}^{2}_{2} D_{2}$	2s² 2p²(³P)4p	4p 'D'	11/2 21/2	429105. 3 429500. 6	395. 3
$\overline{3p} {}^{2}P_{1}$	$2s^2 \ 2p^2(^1\mathrm{D})3p$	3p' ¹ P°	$1\frac{1}{2}$ $1\frac{1}{2}$	384350. 9 384485. 2	134. 3	4p ² P ₁ ² P ₂	2s ² 2p ² (³ P)4p	4p 2P°	11/2	431057. 1 431224. 2	167. 1
3d 4F ₂ 4F ₃ 4F ₄ 4F ₅	2s ² 2p ² (³ P)3d	3d 'F	1½ 2½ 3½ 4½	387257. 3 387366. 2 387521. 8 387725. 5	108. 9 155. 6 203. 7	3p' 4P ₃ 4P ₂ 4P ₁	28 2p³(⁵S°)3p	3p''' 4P	2½ 1½ 1½	434546. 3 434567. 0 434581. 6	-20. 7 -14. 6
3d ² P ₂ ² P ₁	2s² 2p²(³P)3d	3d 2P	1½ ½	389523. 5 389735. 7	-212. 2	48 2D28	2s ² 2p ² (¹ D)4s	48′ ³D	{ 2½ 1½	}440830	
3d ⁴ D ₁ ⁴ D ₂	$2s^2\ 2p^2(^3\mathrm{P})3d$	3d 'D	1½ 1½	390118. 4 390078. 3	-40.1 -2.6	4d ² P ₂ ² P ₁	2s ² 2p ² (³ P)4d	4d ² P	11/2	441159 441384	-225
⁴ D ₃ ⁴ D ₄ 3d ⁴ P ₃	2s² 2p²(³P)3d	3d 4P	2½ 3½ 2½	390075. 7 390208. 4 390832. 3	132. 7	4d ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	2s ² 2p ² (³ P)4d	4d 4P	2½ 1½ ½	442153 442300 442378	-147 -78
3a 1F3 4P2 4P1	28- 2p-(-1)3a	ou ·r	11/2	390974. 0 391045. 2	$\begin{bmatrix} -141.7 \\ -71.2 \end{bmatrix}$	4d ² F ₃ ² F ₄	2s ² 2p ² (³ P)4d	4d 2F	2½ 3½	442280 442634	354
3d ² F ₃ ² F ₄	$2s^2 \ 2p^2(^3P) \ 3d$	3d 2F	2½ 3½	391 2 55. 6 391625. 5	369. 9	$\overline{\overline{\overline{3}\overline{d}}}\ ^2\mathrm{D}_2,$	$2s^2 \ 2p^2(^1{ m S})3d$	3d'' ² D	{ 1½ 2½	 }442760	
38′ ⁶ S ₃	$2s \ 2p^3(^5{ m S}^\circ)3s$	38''' 'S°	2½	391910.0 + x		4d ² D ₂	2s ² 2p ² (³ P)4d	4d ² D	1	444960	40
$3d \stackrel{\mathfrak{s}}{\operatorname{D}_2} {\operatorname{D}_3}$	$28^2 \ 2p^2(^3\mathrm{P}) \ 3d$	3d 2D	1½ 2½	395266, 1 395384, 1	118.0	$^{2}D_{3}$			1½ 2½	445008	48
2p'' ² P ₂ ₂ P ₁	$2p^5$	2p ⁵ ² P°	11/2	401203 401721	-518	3d' ⁶ D ₈ ⁶ D ₄ ⁶ D ₃ ⁶ D ₂	2s 2p³(5S°)3d	3d′′′ ⁵D°	4½ 3½ 2½ 1½	462930. 1+x 462932. 7+x 462936. 5+x 462939. 9+x	-2. 6 -3. 8 -3. 4
38' 4S ₂	$2s \ 2p^3(^5{ m S}^{\circ})3s$	38''' 4S°	11/2	404778		$^{6}\overline{\mathrm{D}}_{1}^{\star}$			1 1/2	462942.4+x	-2. 5
3p 2P1 2P2	$2s^2 \ 2p^2(^1{ m S}) \ 3p$	3p'' ² P°	11/2	406899. 2 40690 3 . 3	4.1	5d 4P ₃ 4P ₁₂	2s ² 2p ² (² P)5d	5d 4P	$ \left\{ \begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array} \right. $	465409 }465541	-132
3d 2F ₄ 2F ₃	$2s^2 \ 2p^2(^1\mathrm{D}) 3d$	3d′ 2F	3½ 2½	413136. 1 413187. 1	-51.0	$5d$ $^2\mathrm{D}_{23}$	2s ² 2p ² (³ P)5d	5d 2D	{ 1½ 2½	}4662 93	
3d 2G5 2G4	2s ² 2p ² (¹ D)3d	3d′ ² G	4½ 3½	414887. 0 414890. 1	-3.1	4d 2F34	2s² 2p²(¹D)4d	4d′ ²F	{ 3½ 2½ 2½	}466810	
48 ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s ² 2p ² (³ P)4s	48 ⁴ P	1½ 1½ 2½	415188 415714		$\overline{4d}\ ^2\mathrm{D}_{23}$	2s ² 2p ² (¹ D)4d	4d′ ²D	{ 1½ 2½	}466964	
$\overline{3d} \stackrel{^{2}\mathrm{D}_{2}}{^{^{2}\mathrm{D}_{3}}}$	$2s^2\ 2p^2(^1\mathrm{D})3d$	3ď 2D	1½ 2½	416160. 7 416178. 1	17. 4	4d 2P12	2s ² 2p ² (¹ D)4d	4d′ ²P	{ ½ 1½	} 467798	
48 ³ P ₁ ² P ₂	2s ² 2p ² (³ P)4s	48 ² P	11/2	417581 417968	387	3d′ ⁴ D ₄ ⁴ D ₃	2s 2p ³ (⁵ S°)3d	3d''' ¹ D°	$ \begin{cases} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{cases} $	467868. 9 467869. 3	-0. 4 -1. 0
3d 2P1	2s ² 2p ² (1D)3d	3d′ 2P	1½ 1½	418180. 6	60. 3	$^4D_{12}$			1 1/2 1/2	}467870. 3	_1.0
² P ₂ 3d ² S ₁	2s² 2p²(¹D)3d	3d′ 2S	1½ 1½	418240. 9 420997. 9		$\overline{3s'} ^2\mathrm{D}_3^{} $	2s 2p³(³D°)3s	381A 3Do	2½ 1½	474369 474413	-44
3p' ⁶ P ₂ ⁶ P ₃ ⁶ P ₄	2s 2p ² (⁵ S°)3p	3p''' ⁶ P	1½ 2½ 3½	$\begin{array}{c} 425239.6 + x \\ 425261.3 + x \\ 425297.4 + x \end{array}$	26 1	5d 2F34	28 ² 2p ² (¹ D)5d	5d′ ²F	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 489494	
4p 2S ₁	282 2p2(2P)4p	4p 2S°	372 1/2	425291. 4 +x 425388. 9		$\overline{5d}$ $^2\mathrm{D}_{23}$	2s ² 2p ² (¹ D)5d	5d′ ²D	{ 1½ 2½ 2½	}490140	
							F Iv(³ P ₀)	Limit		505410	

January 1947.

F III Observed Terms*

Config. 1s ² +		Observed Terms	
2s ³ 2p ³	{ 2p³ 4S° 2p³ 2P° 2p³ 2D°		
2s 2p4	$\left\{ egin{array}{lll} & 2p^4 & ^4\mathrm{P} \ & 2p^4 & ^2\mathrm{P} & 2p^4 & ^2\mathrm{D} \end{array} ight.$		
$2p^{\delta}$	2p ⁵ ² P°	•	
	$ns \ (n \ge 3)$	$np \ (n \ge 3)$	nd (n≥3)
2s ² 2p ² (³ P)nx	{ 3, 4s ⁴ P 3, 4s ² P	3p 4S° 3, 4p 4P° 3, 4p 4D° 3, 4p 2S° 3, 4p 2P° 3, 4p 2D°	3-5d ⁴ P 3d ⁴ D 3d ⁴ F 3, 4d ³ P 3-5d ³ D 3, 4d ³ F
2s2 2p2(1D)nx'	3, 48' ² D	3p' 2P° 3p' 2D° 3p' 2F°	3d' 2S 3, 4d' 2P 3-5d' 2D 3-5d' 2F 3d' 2G
2s ² 2p ² (¹ S)nx''	3s'' 2S	3p" ³P°	3d" *D
2s 2p³(5S°)nx'''	(38''' 4S° (38''' 4S°	3p''' ⁶ P 3p''' ⁴ P	3d''' ⁴ D°
2s 2p²(³D°)nx¹▼	3814 1Do	-	

^{*}For predicted terms in the spectra of the NI isoelectronic sequence, see Introduction.

F IV

(C I sequence; 6 electrons)

Z=9

Ground state 1s² 2s² 2p² ³P_a

 $2p^2$ 3P_0 703766.4 cm⁻¹

I. P. 87.23 volts

The first work on this spectrum was by Bowen. Edlén has greatly extended the earlier analysis. About 250 lines in the intervals 140 to 679 A and 2171 to 3176 A are now classified. The terms are from Edlén, who has rejected two terms in his published list, 4d' ³S and $\overline{3s}'$ ³S. Extrapolated values are entered in brackets in the table.

The singlet and triplet terms are connected by intersystem combinations. No such combinations involving quintet terms have been observed. The uncertainty x may reach 50 to 100 cm^{-1} .

- B. Edlén, Zeit. Phys. 92, 19 (1934). (I P) (T) (C L)
- B. Edlén, private communication (Dec. 1947). (T)

F IV

			114					FIV			
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p *P ₀ *P ₁ *P ₂	2s² 2p²	2p³ ³P	0 1 2	0. 0 225. 2 613. 4	225, 2 388, 2	3p' 5P ₁ 5P ₂ 5P ₃	2s 2p ² (4P)3p	3p *P°	1 2 3	542578. 3+x 542693. 2+x 542895. 2+x	114. 9 202. 0
2p 1D2	2s² 2p²	2p3 1D	2	25241	1	3p' *D ₁	2s 2p ² (4P)3p	3 <i>p</i> ³D°	1 2	550918 551098	180
2p 1S0	282 2p2	2p3 1S	0	53544	}	*D ₂		1	3	551366	268
2p' \$S ₂	2s 2p ³	2p3 5S°	2	74506 + x		3p' 3P1	2s 2p2(4P)3p	3p 3P°	0	556051	}
$2p' \stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}$	2s 2p²	2p³ ³D°	3 2 1	147841. 8 147888. 9 147901. 6	-47. 1 -12. 7	3P ₂ 4s 3P _a	2s ² 2p(² P°)4s	48 apo	2 0	556316 559747	265
2p' 3P ₂ 3P ₁ 3P ₀	2s 2p³	2p2 3P0	2 1 0	175 23 7. 0 175242. 0 175264. 1	$\begin{bmatrix} -5.0 \\ -22.1 \end{bmatrix}$	³ P ₃		4. 170	1 2	559881 560 3 04	134 423
2p' 1D ₁	2s 2p²	2p1 1D°	2	228908		48 ¹ P ₁	2s ² 2p(² P°)4s	48 1P°	1	561267	
2p' *S _i	2s 2p³	2p3 *S°	1	238297. 2		38' 3D ₁ 3D ₂	$2s \ 2p^{2}(^{2}D)3s$	3s' ³D	1 2	567900 568019	119 156
$2p'$ $^{1}P_{1}$	2s 2p²	2pt 1Po	1	257390		*D ₃	0- 0-2/470\9.4	9.2470	3	568175	100
2p" ³ P ₂ ⁸ P ₁ ³ P ₀	$2p^4$	2p4 3P	2 1 0	348327. 0 348770. 0 348963. 0	-443. 0 -193. 0	3d' ⁵ F ₁ ⁵ F ₂ ⁵ F ₃ ⁵ F ₄ ⁵ F ₅	2s 2p ² (4P)3d	3d ⁴F	1 2 3 4 5	[576581] +x 576656.1+x 576768.2+x 576916.6+x 577100.1+x	[75] 112, 1 148, 4 183, 5
38 ³ P ₀ ³ P ₁ ³ P ₂	2s² 2p(²P°)3s	38 \$P°	0 1 2	416417. 3 416639. 8 417143. 4	222, 5 503. 6	3d' ⁵ D ₀ ⁶ D ₁ ⁵ D ₂ ⁵ D ₃	2s 2p ² (4P)3d	3d ⁵D	0 1 2 3	581806. 1+x 581811. 5+x 581828. 6+x	5. 4 17. 1 43. 7
38 ¹P1	282 2p(2P°)38	38 1P°	1	42 3 606. 4	}	⁵ D ₄	,		4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105, 3
3p ³ D ₁ ³ D ₂ ³ D ₃	28 ² 2p(2P°)3p	3p *D	1 2 3	451819. 6 452081. 1 452517. 1	261. 5 436. 0	3d' ⁵ P ₃ ⁵ P ₂ ⁵ P ₁	2s 2p ² (4P)3d	3 <i>d</i> ⁵P	3 2 1	583547 +x 583697 +x 583798 +x	-150 -101
$3p\ ^{3}S_{1}$	2s² 2p(2P°)3p	3p 3S	1	456884. 3	}	3d' 3P2	2s 2p2(4P)3d	3d ³P	2	585201	-224
3p 3P0 3P1	2s² 2p(2P°)3p	3p ⁸ P	0	460215. 2 460385. 8	170. 6 254. 8	³ P ₁ ³ P ₀	0- 0-2/27)9	2./17	0	585425 585531	-106
² P ₂	0.4 0 (27)0) 0	9170	2	460640. 6	 	3s' ¹D₂	2s 2p ² (2D)3s	38′ ¹D	2	586263	
3p 1D ₂	28 ² 2p(2P°)3p	3p 1D	2	469644. 2		4d 3F ₂	2s ² 2p(² P°)4d	4d F°	3	586641	ł
3d \$F ₂ \$F ₃ \$F ₄	28 ² 2p(² P°)3d	3d *F°	2 3 4	492395. 1 492858. 8 493206. 2	463. 7 347. 4	4d ¹ D ₂	2s² 2p(²P°)4d	4d ¹ D°	2	5871 3 0	
3d 1D2	282 2p(2P°)3d	3d ¹D°	2	492864		3d' 3F2	2s 2p2(4P)3d	3d ³F	2	588021	202
3d ² D ₁ ² D ₂ ² D ₃	2s ² 2p(² P°)3d	3d D°	1 2 3	497481. 4 497575. 6 497729. 1	94. 2 153. 5	³ F ₃ ⁸ F ₄ 4d ³ D ₁	2s² 2p(²P°)4d	4d ³D°	3 4 1	588223 588478 <i>589109</i>	255
3d ² P ₂	2s² 2p(²P°)3d	3d P°	2 1	500390. 1 500602. 1	-212.0	³ D ₂ ³ D ₃	25-20(-1)44	4a 4D	2 3	589188 58940 6	79 218
⁸ P ₀ 38′ ⁵ P ₁	2s 2p ² (4P)3s	3 <i>8</i> ⁵ P	0	500716. 5 502723. 0+x	241 4	4d ³ P ₂ ³ P ₁ ³ P ₀	2s ² 2p(² P°)4d	4d P°	2 1 0	590024 590201 590262	- 177 61
5P₂ 5P₃			2 3	502964.4+x 503282.4+x	241. 4 318. 0	4d 1F2	2s ² 2p(² P°)4d	4d 'F°	3	592240	}
3d 1F ₃	2s² 2p(²P°)3d	3 <i>d</i> ¹F°	3	505421. 4		4d ¹P1	2s ² 2p(² P°)4d	4d 'P°	1	592674]
3d ¹ P ₁	2s² 2p(²P°)3d	3d 1P°	1	506514	i	3d' 2D1	2s 2p ² (4P)3d	3d *D	1	595331	-
38' *P0 *P1	2s 2p ² (⁴ P)3s	38 ³P	0	519341 519539	198 351	³ D ³			2 3	595403 595481	72 78
³ P ₂			2	519890	991	3p′ ¹F₃	2s 2p ² (2D)3p	3p′ ¹F°	3	609811	1
3p' 3S ₁	2s 2p ² (4P)3p	3 <i>p</i> ⁵S°	1	534686		3p' 1D2	2s 2p ² (2D)3p	3p' ¹ D°	2	612830	
3p' ⁵ D ₀ ⁵ D ₁	2s 2p ² (4P)3p	3p *D°	0	$\begin{bmatrix} 538507 \end{bmatrix} + x \\ 538573. 3 + x \end{bmatrix}$	[66]	$\overline{3p}' {}^{1}P_{1}$	2s 2p ² (² D)3p	3p' 1P°	1	618889	1
⁵ D ₂ ⁵ D ₃ ⁶ D ₄			2 3 4	538709. 2+x 538909. 8+x 539166. 1+x	135, 9 200, 6 256, 3	5d ¹ F ₂	2s ² 2p(² P°)5d	5d *F°	2 3 4	629547	

F IV-Continued

F IV—Continued

Interva	1	Leve	J	Desig.	Config.	Edlén	Interval	1	Leve	J	Desig.	Config.	Edlén
		657546	3	3d' ¹F	2s 2p³(³D)3d	3d' 1F2			650019	2	5d ¹D°	2s² 2p(°P°)5d	5d ¹ D ₂
		657800	2	3d′ ¹D	2s 2p2(2D)3d	3d′ ¹D₂				1	5d ² D°	2s2 2p(2P°)5d	
		658629	1	3d' ¹P	2s 2p2(2D)3d	3d′ ¹P₁	.		631126	3			5d 2D3
		000010	1 2	4p *D°	2s 2p ² (4P)4p	4p' 3D2	[-120]		[631426] 631546	2 1, 0	5d *P°	2s ² 2p(² P°)5d	5d ³ P ₂ ³ P ₀₁
		66 2 84 3	3	4 170	0 0 4/ITN 4	4p •D3			632730	3	5d ¹F°	$2s^2 \ 2p(^3{ m P}^{\rm o}) \ 5d$	5d 1F3
}			0	4p *P°	2s 2p ² (4P)4p				632740	1	5d ¹ P°	2s ² 2p(² P°)5d	5d 1P1
1		665409	2			4p' 3P3			644224	2, 3, 4	3d′ *F	2s 2p2(2D)3d	3d' F234
199	+x + x	675110 675309	2, 1	4d ⁵ P	2s 2p ² (4P)4d	4d' 5P2 5P1 2	[1	48 P	2s 2p2(4P)4s	i
200 239	·	677467 677667	2 3	4d *F	2s 2p2(4P)4d	4d' 3F2	323	+x	645504 645827	3			48′ ⁵ P ₂ ⁵ P ₂
209		677906	4			³F₄				0 1	3d' *P	$2s \ 2p^2(^2D)3d$	
196		679798 679994	1, 2 3	4d ³D	2s 2p2(4P)4d	4d' *D ₁ *D ₁₂			648827	2			3d' P2
	ļ	703766.4		Limit	F v (³P%)	- "	146		650196 650342	1, 2	3d′ ³D	2s 2p2(2D)3d	3d' 3D12 2D2
			1	5p *D°	2s 2p2(4P)5p					1 1	6d D°	$2s^2 \ 2p(^2{ m P}^{\circ}) \ 6d$	
ŧ		710760	2 3			5p′ ³ D ₃			653606	2 3			6d ² D ₃
-202	$+x \\ +x$	716878 717080	3 2, 1	5d ⁵ P	2s 2p2(4P)5d	5d' 5P3 5P12	-61		653772 653833	2 1, 0	6d ³P°	2s² 2p(²P°)6d	6d ³ P ₂ ³ P ₀₁
		738996	2, 3, 4	4d′ ³F	2s 2p2(2D)4d	4d' 3F224			654469	3	6d 1F°	2s2 2p(2P°)6d	6d 1F ₃
									654739	1	3d′ 3S	2s 2p2(2D)3d	3d' 3S₁

F IV OBSERVED TERMS*

Config. 1s ² +						Observed	i Terms				
2s² 2p²	${\{}_{2p^{2}}{}_{1}{ m S}$	2p² ³P	2p² ¹D			-					
's 2p³	$\left\{ \begin{matrix} 2p^3 \ ^5\mathrm{S}^{\circ} \\ 2p^3 \ ^3\mathrm{S}^{\circ} \end{matrix} \right.$	2p³ ³P° 2p³ ¹P°	$2p^3 \ ^{3}{ m D}^{\circ} \ 2p^3 \ ^{1}{ m D}^{\circ}$								
$2p^{\epsilon}$		2p4 3P									
		$ns \ (n \ge 3)$			nį	o (n≥3)			1	nd $(n \geq 3)$	
2s ² 2p(² P°)nx	{	3, 48 ³ P° 3, 48 ¹ P°		3p 3S	3p *P	3p ³ D 3p ¹ D			3-6d P° 3-5d P°	3-6d ³ D° 3-5d ¹ D°	3-5d *F° 3-6d *F°
s 2p ² (4P)nx	{	3, 4s ⁵ P 3s ³ P		3p 3S°	3p ⁵ P° 3, 4p ³ P°	3p ⁵ D° 3–5p ³ D°			3-5d ⁵ P 3d ⁵ P	3d ⁵ D 3, 4d ³ D	3d ⁵ F 3, 4d ² F
s 2p2(2D) nx'	\ {		$3s'$ $^{3}\mathrm{D}$ $3s'$ $^{1}\mathrm{D}$		3p' 1P°	3p′ ¹D°	3p′ ¹F°	3d′ 3S	3d′ ³P 3d′ ¹P	3d′ ³D 3d′ ¹D	3, 4d' *F 3d' *F

^{*}For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

(B 1 sequence; 5 electrons)

Z=9

Ground state 1s2 2s2 2p 2P4

2p P; 921450 cm-1

I. P. 114.214 volts

All of the terms are from an unpublished manuscript kindly furnished by Edlén. He bas revised and extended his earlier analysis. The notation in the left column is from his published papers.

No intersystem combinations have been observed. The position of the quartet terms relative to the doublets may be in error by ± 100 cm⁻¹ according to Edlén. This uncertainty is indicated by x in the table.

REFERENCES

- B. Edlén, Zeit. Phys. 89, 597 (1934); 92, 26 (1934); 94, 56 (1935). (I P) (T) (C L).
- B. Edlén, unpublished material (Dec. 1947). (I P) (T).

F v

F v

								₽. A			
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$2p {}^{2}\mathrm{P}_{1} \ {}^{2}\mathrm{P}_{3}$	2s ² (¹S)2p	2p *P°	1%	0 748	746	38' ³ P ₁ ² P ₂	2s 2p(3P°)3s	3s *P°	11/4	658856 659365	509
2p' *P ₁ *P ₃ *P ₃	2s 2p²	2p² 'P	1½ 1½ 2½	$\begin{array}{c} 86035 + x \\ 86287 + x \\ 86651 + x \end{array}$	252 364	3p' 2P1 1P2	2s 2p(³P°)3p	3p 2P	11%	656208 656436	228
$2p' \ ^{2}D_{2} \ ^{2}D_{2}$	2s 2p²	2p² ³D	2½ 1½	152876 152898	-22	3p' 4D ₁ 4D ₂ 4D ₃	2s 2p(*P°)3p	3p 4D	1½ 2½ 3½	$\begin{array}{c c} 657988+x \\ 658134+x \\ 658390+x \end{array}$	256
2p′ 2S1	2s 2p2	2p² 28	1/4	197565		4D4		1	31/2	658791 + x	401
2p' *P1	28 2p2	2p2 2P	1½ 1½	214881	400	3p' 4S ₂	2s 2p(*P°)3p	3p 48	11/4	666240+x	
² P ₂		}	11/4	215348	467	3p' ² D ₂	2s 2p(3P°)3p	3p 2D	1½ 2½	675932	490
2p'' 4S ₂	2p3	2p³ 4S°	11/4	276657+x					ł	676422	100
2p" ² D ₁ ² D ₁	$2p^3$	2p ³ ² D°	21/4	307226	-47	3p′ 2S ₁	2s 2p(P°)3p	3p 3S	14	687806	
- 1		•	11/4	307273	-4/	3d' *D ₁₂	2s 2p(3P°)3d	3d 4D°	{ ,}	} 697817+x	***
2p'' ² P ₁ 2P ₂	$2p^{2}$	2p3 2P°	11/2	347418 347438	20	4D ₃ 4D ₄			{ ½ 1½ 2½ 3½ 3½	697919+x 698055+x	102 136
3e 2S ₁	2s ² (¹ S)3s	38 ² S	1/4	524751	Į.	3d' 2D,	2s 2p(*P°)3d	3a 2D°	11%	699293	•
3p ² P ₁ 2P ₂	2s ² (¹S)3p	3p 2P°	1½ 1½	565867		*D*			1½ 2½	699389	96
j]	11/4	585544	177	3d' 4P ₃	2s 2p(*P°)3d	3d 4P°	21/2	702908+x	- 209
3d ² D ₂	2s2(1S)3d	3d 2D	1½ 2½	602476 602516	40	⁴ P ₂ ⁴ P ₁		į	2½ 1½ ½	703117+x 703259+x	-142
3s' 4P ₁ 4P ₃ 4P ₃	2s 2p(*P°)3s	3s ⁴ P°	1½ 2½	621138 + x 621395 + x 621863 + x	257 468	38' 1P13	2s 2p(¹P°)3s	38' 3P°	{ ½ 1½	} 712755	

F v-Continued

F v—Continued

Edlén	Config.	Desig.	J	Level	Interval	Eglén	Config.	Desig.	J	Level	Interval
3d' ² F ₃ ² F ₄	2s 2p(P°)3d	3d F°	2½ 3½	71 2 840 71 3 306	466		2s 2p(3P°)4d	4d D°	1½ 2½	841598 841695	97
4s 2S1	2s²(¹S)4s	4s 2S	3/2	712936		4d' 4P3	2s 2p(P°)4d	4d 'P°	214	842452+x	
3d' ² P ₂ ² P ₄	2s 2p(P°)3d	3d 2P°	114	71847 2 718691	-219		0.04(0).0.3	0.100	11/2		
4d ² D ₂ ² D ₃	2s ² (¹S)4d	4d ¹D	1½ 2½	744010 744036	26		2s ² (¹ S)6d	6d *D	11/2 21/2	843497	
$\overline{3p}' {}^{1}_{2} \mathrm{D}_{2}^{2}$	2s 2p(1P°)3p	3p' 3D	11/4 21/4	751406 751452	46	3p" 2F3	2p ³ (¹ D)3p	3p′′′ ¹ F°	214 314	84411 2 844 2 66	154
3p' *P1	2s 2p(¹P°)3p	3p' 2P	11/2	752529	127	4d' ² F ₃ ² F ₄	2s 2p(3P°)4d	4d F°	214 31/2	84750 6 847817	311
³ P ₂ 3p ' ² S ₁	2s 2p(1P°)3p	3p′ 2S	1 1	753656 760342	12.		$2p^2(^3\mathrm{P})3d$	3d'' ² P	114	853035 853442	-407
3d' 2F34	28 2p('P')3p 28 2p('P')3d	3d' 2F°	∫ 2½\	783650			$2p^2(^1\mathrm{D})3p$	3p''' *D°	11/4 21/4	854971	
38" 4P1 4P2	2p ² (*P)3s	3s" 4P	3½ 5 ½ 1½ 2½	784343 + x $784604 + x$	261 410	3d" 4P ₃ 4P ₂ 4P ₁	2p2(3P)3d	3d'' 'P	2½ 1½ ½	860421 + x $860619 + x$ $860725 + x$	- 198
4P ₃ 3d′ ² D ₂	2s 2p(¹P°)3d	3d′ 2D°	11/2	785014+x	39	3d′′ ²D	$2p^2(^1\mathrm{D})3d$	3d''' ² D	$\left\{\begin{array}{c}1^{14}\\2^{14}\end{array}\right\}$	873904	
*D3	9- 9- (IDO) 9-1	2.7. 200	21/2	787764		3d" 2F34	2p2(1D)3d	3d''' * F	$\left\{ \begin{array}{c} 2^{1/2} \\ 3^{1/2} \end{array} \right\}$	880312	
3d' ³ P ₁₂ 3e'' ³ P ₁	2s 2p(1P°)3d 2p2(3P)3s	3d′ ² P° 3s′′ ² P	1 1 1 3 4	793308 797059	460	3d'' ² P ₁ ² P ₂	$2p^2(^1\mathrm{D})3d$	3d''' ²P	11/2	882930 883083	153
² P ₂	2s ² (¹ S)5d	5d 2D	11/2	797519 808663	460	- •	2s 2p(*P°)5s	5s 'P'	3/4 1 1/2		
5d 2D ₃		ļ	21/2	808677	14		0.0.0000		21/2	892180+x	
4s' 4P2	2s 2p(*P°)4s	48 'P°	1½ 1½ 2½	810298+x			2s 2p(*P°)5p	5p 2D	1½ 2½	901487 902012	525
38'' 2D	$2p^{2}(^{1}\mathrm{D})3s$	38''' 2D	$\left\{\begin{array}{c} 1^{1/3} \\ 2^{1/2} \end{array}\right\}$	811075			2s 2p(*P°)5d	5d 'D'	1½ 2½		
	$2p^{3}(^{3}\mathrm{P})3p$	3p'' 'D°	1/2	0445401		5d′ ¹D	2s 2p(\$1.0)5d	5d 4P°	31/2	906074 + x 906565 + x	
3p'' 'D4			1½ 2½ 3½	$816518+x \\ 816759+x \\ 817101+x$	241 342		28 2p(°1)5a	5a -1	11/2	90 0 303+x	
	$2p^2(^3\mathrm{P})3p$	3p'' 4P°	14	000000		·	Fv1 (1S0)	Limit		921450	
3p'' 4P ₃			1½ 2½	823375 + x 823625 + x	250		2s 2p(3P°)6d	6d 4D°	11/2		
	2s 2p(3P°)4p	4 <i>p</i> ² P	11/2	829436 829707	271				2½ 3½	9409 2 1+x	
4p' ² D ₂ ² D ₃	2s 2p(2P°)4p	4p ³D	1½ 2½	833501 833920	419		2s 2p(P°)6d	6d 'P°	2½ 1½ ½	941286 + x	
3p" 4S2	2p ² (³ P)3p 2s 2p(³ P°)4p	3p'' 4S°	11/2	884790+x			2p2(3P)4d	4d'' 'P	2½ 1½ ½	998189+x	
	28 2p(*P°)4p 28 2p(*P°)4d	4p *S 4d *D°	(3/3)	838036					172		
4d' 'D ₄	wp(1) 1U		$ \left\{ \begin{array}{c} \frac{12}{12} \\ \frac{12}{12} \\ \frac{212}{32} \\ 32 \end{array} \right\} $	841037 + x 841095 + x 841305 + x	58 210	:					

F v OBSERVED TERMS*

Config. 1s2+				Obser	ved Terms	3			
2s ² (¹ S)2p	2p 3P	0							
2s 2p²	$\left\{\begin{array}{ll} 2p^{2-2}S & 2p^{2-4}P \\ 2p^{2-2}S & 2p^{2-2}P \end{array}\right.$	2p² ¹D ·							
2p ³	{2p³ 4S° 2p³ 2P	° 2p³ ¹D°							
	ns (n≥3)		пр	(n≥3)			nd (n≥3)	
2s ³ (¹ S)nx	3, 4s *S			3p 2P°				3-6d 2D	
2s 2p(*P°)nx	{ 3-58 4P 38 2P	0	3p 4S 3, 4p 2S	3, 4p ² P	3p 4D 3-5p 2D		3-6d 4P° 3d 2P°	3-6d ⁴ D° 3, 4d ² D°	3, 4d ² F°
2s 2p(1P°)nx'	38′ ²P	•	3p′ 2S	3p′ 2P	3p′ ²D		3d′ ²P°	3d' 1D°	3d' 2F°
2p2(1P)nx''	{ 38" 4P 38" 2P		3p′′4S°	3p'' 4P°	3 <i>p</i> ′′⁴D°		3, 4d'' 4P 3d'' 2P		
$2p^2(^1\mathrm{D})nx'''$		38′′′ ³D			3p''' 2D°	3p''' 2F°	3d′′′ ² P	3d''' ¹D	3d''' 2F

^{*}For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

F VI

(Be I sequence; 4 electrons)

Z=9

Ground state 1s2 2s2 1S0

28² ¹S₀ 1267581 cm⁻¹

I. P. 157.117 volts

Edlén has revised and extended his published analysis and has generously furnished a manuscript copy of his complete term list avance of publication, for inclusion here.

In the published papers he has use me to designate the terms from the ²P° limit in F v11.

Intersystem combinations connecting the singlet and triplet systems of terms, have been observed.

- B. Edlén, Zeit. Phys. 89, 179 (1934). (I P) (T) (C L)
- B. Edlén, Zeit. Phys. 94, 56 (1935). (T) (C L)
- B. Edlén, unpublished material (Dec. 1947). (I P) (T)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
22	2s ² 1S	0	0 96601		2p(2P°)3d	3d ¹ P°	2 1 0	958524 958811 958958	-287 -147
2s(3S)2p	2p 3P°	1 2	96861 97437	260 576	2p(2P°)3d	3d 'F°	3	947305	
2s(*S)2p	2p ¹P°	1	186841		2p(*P°)3d	3d ¹P°	1	953402	
2 <i>p</i> ³	2p² ³P	0	251341 251635	294 510	2s(2S)4s	4s ² S 4s ¹ S	1 0	989928 997693	
	0170	2 2	252145 274597		2s(2S)4s 2s(2S)4p	48 'S 4p 1P°	1	1007852	
2p³	2p³ ¹D	_	_•			4d 1D		1007002	
2p ² 2s(² S)3s	2p ² ¹ S 3s ² S	0	340424 747298		2s(2S)4d	40.0	1 2 3	1014439	
2s(2S)3s	3s ¹S	o	764392		2s(2S)4d	4d ¹ D	2	1019363	
2s(3S)3p	3p 'P°	1	7878 33	}	2s(*S)5s	5e 3S	1	1093463	
2s(¹ S)3p	3 <i>p</i> ³P°	o		.]	2s(2S)5p	5p ¹P°	1	1099409	
. , ,		1 2	790 32 6 790474	148	2s(2S)5d	5d *D	1 2		
2s(28)3d	3d *D	1, 2 3	812169 812208	39			3	1106417	
2s(2S)3d	3d ¹D	2	826853	-	2s(2S)5d	5d ¹ D	2	1108712	-
2p(2P°)3s	38 ³P°	0	871160		2p(2P°)4s	48 ¹P°	1	1112328	
2p(-1)38	0.0	1 2	871441 872078	281 637	2p(2P°)4p	4p ¹P	1	1115967	ļ
2p(2P°)3s	38 ¹P°	1	884290		2p(2P°)4p	4p 3D	1 2 3	1117498 1117741 1118273	243 532
2p(2P°)3p	3p ¹P	1	895287		0 (470) 4	419		1118278	1
$2p(^{2}\mathrm{P}^{\circ})3p$	3 <i>p</i> ³D	1 2 3	900442 900785 901397	343 612	2p(2P°)4p 2p(2P°)4p	4p 2S 4p 2P	1 0 1	1121377	194
2p(2P°)3p	3p 2S	1	909316	1		1	2	1122662	194
2p(1)3p 2p(2P°)3p	3p 3P	0	915196		2p(2P°)4p	4p 1D	2	1126152	
2p(•P°)3p	<i>Sp -</i> 1	1 2	915420 915770	224 350	2p(2P°)4d	4d ¹D°	2	1126168	İ
2p(3P°)3d	· 3d 1D°	2	921821		2p(2P°)4d	4d ² D°	1 2 3	1130339	
$2p(^3\mathrm{P}^\circ)3p$	3p ¹D	2	925393		2p(2P°)4d	4d P°	2	1131653	
2p(3P°)3d	. 3d *D°	1 2 3	933586 933717 933920	131 203	2p(-1)***	70 · 1	1 0	1131857	-204
O (4T)() O	910		934633		2p(2P°)4d	4d 'F°	3	1135953	
$2p(^{3}P^{\circ})3p$	3p ¹S	0	904000		2p(*P°)4d	4d ¹P°	1	1137535	1

F vi—Continued

F vi-Continued

Config.	Derig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s(2S)6p	6p ¹P°	1	1154428		2p(2P°)5d	5d D°	1		
2s(2S)6d	6d *D	1		1			1 2 3	1220940	
		1 2 3	1156097		2p(*P°)5d	5d *P°	2	1221541	
2s(2S)6d	6d ¹ D	2	1157385				2 1 0		
2s(2S)7p	7p ¹P°	1	1184469		2p(2P°)5d	5d 'F°	3	1223598	
2s(2S)7d	7d *D	1			2p(2P°)5d	5d ¹P°	1	1224285	
		1 2 3	1185884		2p(*P°)6p	6p *D	1		
3s(2S)7d	7d ¹ D	2	1186611				1 2 3	1266672	
2s(2S)8d	8d 3D	1			F vii (2S ₁₄)	Limit		1267581	
		1 2 3	1205139		2p(3P°)6p	6p *P	0		
2p(2P°)5p	5 p ³ D	1					2	1267616	
		1 2 3	1215055		2p(2P°)6p	6 <i>p</i> ¹D	2	1268554	
2p(3P°)5p	5 <i>p</i> *P	0			2p(2P°)6d	6d *D°	1		1
		1 2	1216995		:		1 2 3	1269888	
2p(2P°)5p	5 <i>p</i> ¹ D	2	1218588		2p(2P°)6d	6d 1F°	3	1271437	
2p(2P°)5d	5d ¹ D°	2	1218786		2p(2P°)7d	7d *D°	1 1		
							1 2 3	1299418	

F vi Observed Terms*

Config. 1s ² +		Observed Terms	
282	2s² ¹S		
2s(2S)2p	2p ³ P° 2p ¹ P°		
$2p^3$	$\left\{\begin{array}{cc} 2p^{3} {}^{1}S & {}^{2}p^{3} {}^{3}P \\ 2p^{3} {}^{1}D \end{array}\right.$		
	ns (n≥3)	np (n≥3)	nd (n≥3)
2s(2S)nx	{ 3-5s 3S 3, 4s 1S	3p ³P° 3-7p ¹P°	3–8d ³D 3–7d ¹D
2p(3P°)nx	38 P° 3, 48 P°	3, 4p \$S 3-6p \$P 3-6p \$D 3p \$S 3, 4p \$P 3-6p \$D	3-5d ³ P° 3-7d ³ D° 3-5d ¹ P° 3-5d ¹ D° 3-6d ¹ F°

^{*}For predicted terms in the spectra of the Be $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(Li 1 sequence; 3 electrons)

Z=9

Ground state 1s2 2s 2S1

28 ²S₁ 1493656 cm⁻¹

L. P. 185.139 volts

The analysis is by Edlén, who, in 1934, published a list of nine classified lines in the range between 86 A and 134 A. He has recently extended the analysis and has generously furnished his unpublished term list for use in the present compilation. All terms in the table have been taken from the later list, although the entries in column one are from the earlier paper.

Edlén remarks that the np ²P° and nd ²D series have been observed in the vacuum spark further than indicated in the table, but beyond n=6 the term values calculated from a Ritz formula are probably to be preferred.

REFERENCES

- B. Edlén, Zeit. Phys. 89, 179 (1934). (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (I P) (T)

F v11

F vII

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
28 2S	28	2s 2S	1/4	0			68	68 ³ S	1/2	1339216	
2p ² P ₁ 2P ₂	2p	2p *P°	11/2	112258 113235	977		6 <i>p</i>	6 <i>p</i> ³P°	{ ½ 1½	342877	
3s 2S	38	3s 2S	1/2	854625			6 <i>d</i>	6d 3D	{ 1½ 2½	344141	
3p ² P ₁	3 <i>p</i>	3p 'P°	11/2	885136 885418	282		78	78 ² S	1/2	1380775	
3d ² D ₂ 2D ₃	3 <i>d</i>	3d 2D	1½ 2½	895632 895722	90		7p .	7 <i>p</i> ⁵P°	{ ½ 1½	} 1382858	
48 2S	48	48 2S	1/2	1140416			7 <i>d</i>	7d 3D	{ 1½ 2½	} 1383841	
4p 2P2	4 p	4p 2P°	{ ½ 1½	1152977			8 <i>p</i>	8p 3P0	{ ½ 1½	} 1408848	
4d ² D ₃	4 d	4d *D	1½ 2½	1157223 1157255	32		8d	8d 1D	{ 1½ 2½	} 1409538	
	58	58 2S	1/2	1269826					272	,	
	5 <i>p</i>	5p *P°	{ ½ 1½	1276194			F vIII (180)	Limit		1493656	
5d 2D2	5 <i>d</i>	5d 2D	{ 1½ 2½ 2½	} 1278404							

September 1947.

P viii

(He I sequence; 2 electrons)

Z=9

Ground state 1s2 1S0

183 1Sa 7693400 ± 800 cm-1

I. P. 953.60 ± 0.10 volts

Flemberg has classified three lines between 13 A and 16 A as the first three members of the singlet series. Tyrén has also observed the first two members of this series and classified a line at 16.951 A as the intersystem combination $1s^2 \, ^1S_0 - 2p \, ^3P_1^\circ$. Tyrén's value of the limit is quoted here. The unit, $10^3 \, \text{cm}^{-1}$, has here been changed to cm^{-1} .

Edlén has extended the analysis and has generously furnished his unpublished manuscript containing absolute values of the triplet terms extrapolated along the He I isoelectronic sequence. The relative positions of the singlet and triplet terms thus determined confirm the intersystem combination reported by Tyrén. The $2s^3S-2p^3P^\circ$ combination has apparently not been observed, but Edlén regards the extrapolation from the irregular doublet law as very reliable. Brackets are used in the table to denote extrapolated values not yet confirmed by observation.

REFERENCES

- F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 25 (1940). (I P) (T) (C L)
- H. Flemberg, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 18 p. 34 (1942). (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

F VIII

F vIII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
182	1s ² ¹S	0	0		1s 3d	3d ¹D	3, 2, 1	[6912360]	
1s 2s	2s ¹ S	1	[5829920]		1s 3p	3p 'P°	1	6916590	
1s 2p	2p *P°	0 1 2	[5899150] 5899 3 10 [5900 2 60]	[160] [950]	1s 4p	4p ¹P°	1	7 2 56680	
1s 2p	2p 1P°	1	5949900		F 1% (2S14)	Limit		7693400	:

September 1947.