BERT 논문 리뷰

윤세환

목차

- 등장배경
- 타 모델과의 구조 간단 비교
- 전체적인 모델 구조 (input embedding, encoder)
- 핵심개념 (NSP, MLM)
- pre-train
- 성능비교

등장배경

- pre-train된 언어 모델을 fine-tuning해서 사용하는 구조가 효과적이었고, 이런 구조를 채택하는 모델인 EMLo와 GPT가 좋은 성능을 보여줌
- 하지만 위 2개 모델의 경우 단방향 모델을 사용하는 방식이었고 이 방식은 모델이 문맥을 이해하는데 있어 한계가 있다고 주장하여 (특히 GPT), 양방향을 한번에 모두 고려하는 모델인 BERT(Bidirectional Encoder Representations from Transformers)을 제시함

타 모델과의 구조 간단 비교

- 단방향을 고려하는 GPT, 양방향을 모두 반영하긴 하지만 2개의 분리된 단방향 모델을 병합해서 사용하는 ELMo와는 달리, BERT의 경우 한번에 양방향의 데이터를 반영하고 있다.

전체적인 모델 구조

Input Embedding

[CLS] 토큰 : 입력의 첫 번째 토큰

[SEP] 토큰 : 한 문장의 종료를 의미하는 토큰

- Token Embeddings ("my" -> [0.01, 0.51, 0.34, 0.4, ...])
- Segment Embeddings BERT의 Pre-train과정에서 NSP(이후에 언급)을 위해서 2개의 문장을 받게 되는데, 이 2개의 문장을 구분하기 위해 수행
- Position Embeddings
 Position Encoding을 별도의 embedding layer를 사용해 수행

Encoder Block

- Transformer 구조 중, Encoder 부분만을 사용
- BERT-base
 - encoder의 개수: 12
 - 히든 레이어 차원: 784
 - self-attention의 multi-head 수 : 12
- BERT-large
 - encoder의 개수: 24
 - 히든 레이어 차원: 1024
 - self-attention의 multi-head 수 : 16

- BERT-base는 GPT와 매개변수 개수를 맞춘 모델

핵심 개념

- Next Sentence Prediction (NSP)
- Masked Language Model (MLM)

핵심 개념 - NSP

- 입력으로 받은 2 문장이 서로 이전/이후 문장으로 연결되는 관계인가?를 학습 [예시1] 내일 팀배치를 위한 설문조사를 진행할 예정입니다. 신중하고 솔직한 답변으로 응해주시길 바랍니다. >> 두 문장이 자연스럽게 연결됨
 - [예시2] 내일 팀배치를 위한 설문조사를 진행할 예정입니다. 원하는 어휘 크기에 도달할 때까지 이 단계가 반복됩니다. >> 두 문장이 서로 다른 맥락
- 2 문장이 서로 연결되면 [1, 0], 아니면 [0, 1]을 리턴하도록 학습 수행

핵심 개념 - NSP

 NSP를 학습할 때는, 문장의 첫 토큰인 [CLS]의 output값을 사용한다.

- 즉, [CLS]의 output에 적용하는
Linear Classifier의 최종 결과물의
차원은 2차원이며,
입력받은 2 문장이 서로 연결된다면
[1, 0], 아니라면 [0, 1]에 가깝게
결과값이 출력되도록 학습되도록
한다.

핵심 개념 - MLM (Masked Language Model)

- 단일 방향 모델을 적용했을 때처럼, 다음 단어를 예측하는 방식은 양방향을 한번에 반영하는 모델에는 적용하기 어려움
- 따라서, 문장의 특정 단어를 마스킹하고, 해당 마스킹한 단어를 예측하는 방식으로 학습을 진행 (전체 중 15%)
- 단, 이 방식을 사용할 경우 pre-train과 fine-tuning간 학습 방식에 큰 차이가 발생할 수 있기에, 이를 완화하기 위해서 Masking을 다음과 같이 수행한다.
 - masking할 단어를 정했다면,
 80%의 확률로 해당 입력을 [MASK] 토큰을 마스킹한다.
 10%의 확률로는 아예 다른 단어로 대체하고
 10% 확률에는 단어를 수정하지 않는다.

핵심 개념 - MLM

[예시] "흥미로운 논문이 **하나** 있어서 가져와봤습니다."에서 "하나**"**를 마스킹하는 경우

- 80% : 흥미로운 논문이 [MASK] 있어서 가져와봤습니다.
- **10%** : 흥미로운 논문이 **사과** 있어서 가져와봤습니다.
- 10% : 흥미로운 논문이 **하나** 있어서 가져와봤습니다.

핵심 개념 - MLM

Pre-training 과정 요약

- input Embedding을 사용하여 입력된 단어를 임베딩한다.
 (token embedding, segment embedding, positional embedding을 더한 값)
- input Embedding을 수행한 값을 Transformer의 encoder에 입력값으로 넣는다.
- 가장 첫 토큰인 [CLS]의 output의 경우 두 문장이 서로 연결되었는지 여부 (NSP) 학습을 위해 사용되고, 나머지 결과들 중 maksed된 위치의 결과값은 마스킹된 단어를 예측하는 MLM 학습을 위해 사용된다.
- 손실함수값은 NSP, MLM에서 발생한 값을 더해서 사용한다.

Pre-training 관련 정보

- 손실함수는 NSP, MLM 모두 Cross Entropy를 사용
- 모든 레이어에 p=0.1의 dropout을 적용
- 최적화 기법은 Adam을 사용했으며 하이퍼파라미터는 아래와 같음
 - learning rate: 1e-4
 - b1 = 0.9
 - b2 = 0.999
 - I2 weight decay = 0.01
 - 추가적으로 learning rate는 10000 step까지 천천히 1e-4까지 증가시켰다가 그 이후는
 - linear하게 감소시킴 (warm-up lear
- 활성화 함수는 gelu를 사용

성능 비교

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	=
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
$BERT_{BASE}$	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set.⁸ BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

성능비교 - MLM, NSP 적용 및 모델 크기

	Dev Set						
Tasks	MNLI-m						
T-	(Acc)	(Acc)	(Acc)	(Acc)	(F1)		
$BERT_{BASE}$	84.4	88.4	86.7	92.7	88.5		
No NSP	83.9	84.9	86.5	92.6	87.9		
LTR & No NSP	82.1	84.3	77.5	92.1	77.8		
+ BiLSTM	82.1	84.1	75.7	91.6	84.9		

Table 5: Ablation over the pre-training tasks using the BERT_{BASE} architecture. "No NSP" is trained without the next sentence prediction task. "LTR & No NSP" is trained as a left-to-right LM without the next sentence prediction, like OpenAI GPT. "+ BiLSTM" adds a randomly initialized BiLSTM on top of the "LTR + No NSP" model during fine-tuning.

Hyperparams				Dev Set Accuracy				
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2		
3	768	12	5.84	77.9	79.8	88.4		
6	768	3	5.24	80.6	82.2	90.7		
6	768	12	4.68	81.9	84.8	91.3		
12	768	12	3.99	84.4	86.7	92.9		
12	1024	16	3.54	85.7	86.9	93.3		
24	1024	16	3.23	86.6	87.8	93.7		

Table 6: Ablation over BERT model size. #L = the number of layers; #H = hidden size; #A = number of attention heads. "LM (ppl)" is the masked LM perplexity of held-out training data.

참고 링크

- bert 모델에 대한 시각 자료 : <u>https://jalammar.github.io/illustrated-bert/</u>
- positional encoding vs positional embedding :
 https://heekangpark.github.io/ml-shorts/positional-encoding-vs-positional-embedding
 edding
- bert input embedding : <u>https://tinkerd.net/blog/machine-learning/bert-embeddings/</u>
- WordPiece 토큰화 : https://wikidocs.net/166826
- 논문 링크 : [1810.04805] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding