Neurala nätverk & Keras

en introduktion

Introduktion

- Syfte
 - Sprida intresset f
 ör machine learning
 - Ge en grund f
 ör att b
 örja arbeta med NN
 - Visa på enkelheten att bygga och använda neurala nätverk
- Att börja med:
 - Neural network basics med fokus på klassificering
 - En kort introduktion av Keras
 - Ett ganska trivialt exempel
- Om tid över:
 - Ett inte lika trivialt exempel

Vad är ett neuralt nätverk?

- En (kedja av) funktion(er)
 - \circ f: X, W \rightarrow Y
- Ett antal beräkningsenheter, ordnade i lager, kopplade med viktade länkar
- En metod för att approximera funktioner
- Ett verktyg f\u00f6r att modellera ett klassificeringsproblem
 - Binary: representerar bilden en katt?
 - Multiclass: representerar bilden en "hund", "katt", eller "mus"?
 - Diskret: "ja", "nej", "hund"
 - o Probabilistiskt: sannolikhetsfördelning över klasserna

Neurala nätverkets komponenter: nod

- En beräkningsenhet
- Realiserar en funktion
 - $\circ y = a(\mathbf{x} \bullet \mathbf{w})$
 - Output motsvarar nodens "aktivering"
- Ett antal inputs $(\mathbf{x} = x_1, ..., x_n)$
 - (Ofta låter man en input alltid vara = 1 (bias))
- Varje input har en vikt (w = w₁, ..., w_n)
- Input multipliceras vikt och summeras
- Aktiveringsfunktion a
 - Icke-linjär funktion
 - Syfte: att tillgängliggöra icke-linjära mappning
 - o ReLU, Sigmoid, tanh, m. fl.

Bildkälla: deeplearning4j.org

Bildkälla: Danijar Hafner, quora.org

Neurala nätverkets komponenter: lager

- Input layer
 - Behållare för input (feature-vektor)
 - Varje "nod" realiserar en identitetsfunktion, input = output
- Hidden layers
 - Feature-detektorer, mönsterigenkännare
 - Idé: noder ska aktiveras i relation till mönster i input
- Output layer
 - Omvandlar de dolda lagrens aktivering till en skala vi kan tolka
- Sammankopplade med viktade länkar
- I feedforward neural network gäller:
 - Data f\u00e4rdas fr\u00e4n input-lagret, genom de dolda, till output-lagret
 - Output från ett lager blir input till det följande

Bildkälla: mtechprojects.org

Neurala nätverkets komponenter: sammanfattning

- En samling sammankopplade beräkningsenheter (noder) ordnade i lager
- Mappar input till output, givet interna parametrar (vikter)
- Input ges till det f\u00f6rsta lagret
- Varje nod i hidden och output layers
 - 1. Summerar den viktade outputen från det föregående lagret
 - 2. Applicerar aktiveringsfunktion på summan
- Aktiveringen i det sista lagret utgör nätverkets output

När är neurala nätverk lämpligt?

- NN är mer lämpligt:
 - o när stor mängd (märkt) data finns tillgängligt
 - o när vi har liten kännedom om vilka egenskaper som beskriver klasserna
 - när datat har kontinuerlig karaktär
- NN är mindre lämpligt:
 - onär lärande inte är nödvändigt, t. ex. om problemet är linjärt separabelt
 - o när kännedom om varför en viss egenskap leder till ett visst resultat är avgörande

Hur löser vi klassificeringsproblem med NN?

- 1. Förbered data
- 2. Konstruera modellen (nätverket)
- 3. Fitting: träna modellen
- 4. Evaluera modellen

1. Förbered data

- Märkt data utgörs av sample-label-par
- Sample: ett stickprov, en observation, en feature-vektor, input
- <u>Label</u>: klassen ett sample tillhör, "hund", det önskade outputen.
- Dela upp samples i två ömsesidigt uteslutande mängder
- Båda bör representera problemet väl
- Båda bör ha samma klassdistribution
- Training set
 - Samples att träna modellen med
- Test set
 - Samples att evaluera den tränade modellen på

2. Konstruera modellen (1/2)

- Struktur
 - Input-"noder"
 - Antalet ska matcha dimensionen på feature-vektorn
 - Output-noder
 - Antalet ska matcha antalet klasser (eller 1 om binärt)
 - Dolda lager och noder
 - Ingen gimmie
 - Trial and error
 - "Komplexare problem, fler noder"

2. Konstruera modellen (2/2)

- Activation function
 - Bestäms per lager
- Loss/cost function
 - Representerar kostnaden av felaktigheter i output
 - Ett mått på hur väl modellen fungerar i lärandet
 - Hur mycket skiljer sig svaret från sanningen?
 - Beräknas på nätverkets output och det rätta svaret
 - Ex: mean squared error (MSE)
- Optimizer method
 - Beskriver hur modellen uppdaterar sina inre parametrar (vikter)
 - Ex: stochastic gradient descent (SGD)

3. Träna modellen

- Syfte: lära modellen om koppling mellan feature och label
- Mål: minimera loss function
- Princip: beräkna det effektivaste sättet att minska loss function
- Steg (i grova drag):
 - 1. Mata nätverket med ett antal samples och beräkna medelkostnaden av samlad output
 - 2. Beräkna proportionen av varje vikts bidrag till kostnadsfunktionen (gradient)
 - Backpropagation lärande-algoritmen
 - 3. Korrigera vikterna i gradientens negativa riktning
 - Stochastic gradient descent "ta dig ner till botten av dalen"
 - Hur mycket man korrigerar vikterna styrs av learning rate

4. Evaluera modellen

- Syfte: att utvärdera hur väl modellen generaliserar problemet
- Mata n\u00e4tverket med samples fr\u00e4n test set
- Jämför resultaten med de önskade (labels)
- Hur mäter vi prestanda?
 - Accuracy
 - andelen korrekta klassificeringar bland alla klassificeringar
 - \blacksquare TP + TN / (TP + TP + FP + FN)
 - Precision & Recall
 - Precision: Positive Predictive Value, (TP / (TP + FP))
 - Recall: True Positive Rate, Sensitivity (TP / (TP + FN))
 - Med flera...

Keras

Från keras.io:

- High-level neural network API
- Utvecklat med fokus på att tillgängliggöra snabb experimentation
- Stödjer olika typer av nätverk
- Stödjer körning på både CPU och GPU
- Användarvänligt
- Hög modularitet

Keras – begrepp

- Model: representerar en modell av ett neural n\u00e4tverk
 - Håller både struktur och saker som loss function, metrics
 - Sequential: modell för ett typiskt feedforward neural network
- <u>Layer</u>: representerar ett lager i ett nätverk
 - Dense: fully connected layer
- <u>Batch</u>: ett antal samples, processas oberoende och parallellt
- Epoch: en iteration av hela tränings-set:et

Ett ganska trivialt exempel

Logisk OR-grind

Input	Önskad output
(0, 0)	0
(0, 1)	1
(1, 0)	1
(1, 1)	1

Ett mindre trivialt exempel

Stad eller by?

Input	Önskad output
LBP(satellitbild över del av stad)	0
LBP(satellitbild över del av by)	1

LBP i en mening: frekvenser av olika intensitetsmönster i en bild

Bildkälla: opencv.org

Vad vi förhoppningsvis lärt oss

- Olika synsätt på vad ett neuralt nätverk är
- Beståndsdelar i neurala nätverk
- Stegen i att lösa ett klassificeringsproblem med neurala nätverk
- Hur man gör NN i Keras