

Quantitative Methoden – Operations Research

Kapitel 1: Einführung, Modellierung

Ludwigshafen Prof. Dr. Joachim Schmidt

Überblick

Einführung in das Operations Research

- 1. Einführung
 - Modellierung und Operations Research
 - Einführung in die Teilgebiete des OR
 - Lineare Programmierung
- 2. Dualität und Transportproblem
- 3. Dynamische Optimierung
- 4. Graphentheoretische Verfahren
- 5. Kombinatorische und Ganzzahlige Optimierung
 - Suchverfahren und lokale Optimierungsverfahren

Ziele und Aufbau der Veranstaltung

Ziele:

- Strandlegende Methoden des OR kennenlernen
- Mathematische Modellierung
- > Grundkonzepte und Begriffe einordnen können

Aufbau

- > Definitionen
- > Modellierungsaufgaben
- Übungsaufgaben (Rechnen)

Prüfungsleistung Klausur:

- Modellierungsaufgabe (Text in math. Formulierung umwandeln)
- > Lösungsverfahren rechnen
- > Verständnisfragen zu Lösungsprinzipen

Literatur:

Grundlage für die Veranstaltung sind:

- > W. Domschke, A. Drexl: *Einführung in Operations Research;* Springer 2007
- W. Domschke, A. Drexl, R. Klein, A. Scholl, S.Voß: "Ubungen und Fallbeispiele zum Operations Research Springer 2007

Weitere hilfreiche Lehrbücher:

- T Ellinger, G Beuermann, R.Leisten, Operations Research. Einführung, Springer 2003
- > Gert Heinrich, Operations Research, Oldenburg Verlag 2007
- > Kathöfer, Müller-Funk, Operations Research, UVK, Verlagsgesellschaft
- WISU- Lexikon Operations Research, Lange Verlage Düsseldorf,www.wisu.de

Begriffsbestimmung: Operations Research (OR) 1)

Ursprung aus dem Militär

- Erste Ansätze während des 2. Weltkriegs in England und USA
- Qualifiziertes Abbild der Realität (Modell) ermöglicht methodische Lösung von Optimierungsfragestellungen
- Teilgebiete des Operations Research sind: 10
 - > Lineare Optimierung
 - > Graphentheorie und Netzplantechnik
 - > Ganzzahlige und kombinatorische Optimierung
 - > Dynamische Optimierung
 - > Nichtlineare Optimierung
 - > Warteschlagentherorie
 - > Simulation

¹⁾ Quelle:Domschke Drexl 2007

Von der Zieldefiniton zum Optimierungsmodell

Vom Optimierungsmodell zur Lösung

Grundlegende Begriffe für dieser Vorlesung 1)

- Modell: Qualifiziertes Abbild der Realität (Modell) ermöglicht methodische Lösung von Optimierungsfragestellungen.
 - Enthält mindestens eine Entscheidungsalternative und eine bewertendeZielfunktion
 - Deterministisches Modell: Parameter und Nebenbedingunge sind bekannt
 - Stochastisches Modell: Mindestens ein Parameter ist eine Zufallszahl (Zufallsvariable)

Im Rahmen der Vorlesung behandeln wir deterministische Optimierungsmodelle und deren Lösung.

Grundlegende Begriffe für dieser Vorlesung 1)

Modellierung

Quelle: Fränzick nach, T Ellinger, et. al. Operatiions Research

Aufgabe 1

- Formulieren Sie für das folgende Problem das Planungsziel, die Kennzahl und die Planungs- (Handlungsalternative) sowie die Randbedingungen
 - Es soll eine bestimme Anzahl von Produkten pro Periode hergestellt werden. Die Produktionskosten sind konstant.
 - Für die Produktion wird jede Periode wird die gleiche Menge an Rohstoffen gebraucht
 - Die Preise für die Rohstoffe pro Periode sind unterschiedlich
 - Der Lieferant kann in einer Periode maximal den Bedarf für zwei Perioden liefern.
 - Die Lagerkapazität ist auf den Bedarf von zwei Perioden beschränkt.
- Wie lautet die Zielfunktion? Was sind die Nebenbedingungen?
- Handelt es sich um ein deterministisches oder stochastisches Modell?
- Welches sind die modellhaften Annahmen (im Vergleich zu einem realen Produktionsproblem)?

Grundlegende Begriffe für dieser Vorlesung 1)

Lösungen für Optimierungsproblemen (1)

> Algorithmus:

Ein Algorithmus (Lösungsverfahren) ist eine Vorschrift, nach der Eingabedaten in einer festen Reihenfolge durch eine endliche Anzahl von Schritten in Ausgabedaten (Ergebnisse, *Lösungen*) umgeformt werden.

> Komplexitätstheorie:

Untersuchung der Komplexität von Optimierungsmodellen um Aussagen über den Rechenaufwand von Algorithmen zu treffen

- Polynominal lösbar: Rechenaufwand eines Algorithmus lässt sich durch ein von der Problemgröße (z.B. Anzahl der Kunden oder Produkte) abhängiges Polynom²⁾ nach oben beschränken
- Nicht polynominal lösbar: Bei nicht polynominal lösbaren Verfahren wächst die Rechenzeit ebenso wie die Lösungsmenge mit zunehmender Problemgröße exponentiell. Diese Probleme werden als NP- schwer bezeichnet.

¹⁾ Quelle:Domschke, Drexl 2007 WISU Lexion Operations Research

²⁾ Polynom: In der Schulmathematik wird eine Polynomfunktion auch als ganzrationale Funktion bezeichne; Quelle: Wikipedia

Grundlegende Begriffe für dieser Vorlesung 1)

Lösungen für Optimierungsproblemen (2)

- Exakte Lösungsverfahren:
 - Für ein polynominal lösbares Problem kann i.d.R. durch ein exaktes Lösungsverfahren die optimale Lösung bestimmt werden. Angewendet für:
 - > Lineare Optimierungsprobleme
 - > Kürzeste Wege Problem
- > Optimale Lösung:
- Weist eine unter Beachtung der Randbedingungen zulässige Lösung den höchstmöglichen Zielfunktionswert aller zulässigen Lösungen auf, ist sie optimal (Analog bei Minimumsproblem)
- > Heuristik:
- Lösungsverfahren, welche für nicht polynominal lösbare Problemen in der Praxis eingesetzt werden. Eine Heuristik ist ein zweckmäßig, erfolgversprechend erscheinendes Vorgehen. Sie garantieren nicht, dass eine optimale Lösung gefunden wird, besitzen jedoch zumeist polynominalen Rechenaufwand. Angewendet für z.B. Kombinatiorische Optimierungsprobleme
- > Heuristiken lassen sich allgemein in **Eröffnungs** und **Verbesserungs**verfahren unterteilen.

Grundlegende Begriffe für dieser Vorlesung

Planung:

Planung:

systematisch-methodische Vorgehensweise zur Analyse und Lösung von Problemen. Erfordert das Festlegen von messbaren Zielkriterien. Planung soll daher hier als quantitative Methode verstanden werden.

Simulation

Simulationsmethoden dienen der Untersuchung (dem "Durchspielen") einzelner Alternativen bzw. Konfigurationsvarianten in komplexen (zumeist stochastischen) Systemen.

Bedeutung einer effizienten Modellierung

Effiziente Modellierung entscheiden für Rechenaufwand

- Hoher Rechenaufwand für NP- schwere Probleme
- Modellierung für die es Verfahren mit polynominalem Rechenaufwand gibt sind häufig mit Standardsoftware zu lösen
- > Bsp.: Lineare Optimierungsproblem mit reellwertigen Variablen
- Bekannte Probleme: Fertigungsplanung, Verschnittproblem

Probleme aus der Logistik

- Viele praktische Probleme sind ganzzahlige lineare Optimierungsmodelle für die in der Praxis Heurisitken eingesetzt werden
- > Bekannte Problem: Reihenfolgeproblem, Tourenplanungsproblem

Aufgabe 2

- > Formulieren Sie für das folgende Problem eine Heuristik:
 - Ein Wanderer möchte aus einer Menge von n Gegenständen diejenigen aussuchen, die bei Einhalten des Maximalgewichtes G seines Rucksacks zu maximalem Gesamtnutzen führen.
 - Jeder Gegenstand j = 1, ..., n besitzt ein Gewicht w_j und verursacht einen Nutzen in Höhe von c_j.
- > Wie lautet die Entscheidungsvariable?
- > Bekommen Sie über die gewählte Heuristik die beste Lösung des Problems?
- > Wie lautet die Zielfunktion für das Rucksackproblem?
- > Wodurch wird die Restriktion gebildet?
- > Wie ist der Wertebereich der Entscheidungsvariablen?
- > Formulieren Sie ein mögliches Verbesserungsverfahren

Formulierung eines allgemeinen Optimierungsmodells (2)

Zielfunktion (1.1)

 Gesucht wird ein Nutzenmaximum (z.B. Absatzmenge, Erlös ,Deckungsbeitrag) oder ein Kostenminum (manchmal auch kürzeste Durchlaufzeit oder Distanz)

Restriktionensystem (1.2)

 System- aus Gleichungen (Ungleichungen), welche die Randbedigungen beschreiben (z.B. Kapazitätsbeschränkung)

Wertebereich der Entscheidungsvariablen (1.3)

- > Jede Variable hat einen kontinuierliche, ganzzahligen oder binären Wertebereich
- Haben nicht alle Entscheidungsvariablen ganzzahligen oder binären Wertebereich spricht man von (gemischt-) ganzzahlige bzw.(gemischt-) binäre Optimierungsmodellen

Alle in der Vorlesung behandelten Probleme entsprechen dieser Formulierung

 Nicht behandelt werden insbesondere: Modelle mit mehrfacher Zielsetzung (= Effizienzkriterien zur Beurteilung der Lösung wird benötigt)

Kombinatorische Optimierungsprobleme

Unterteilung nach dem Wertebereich der ¹⁾ Entscheidungsvariablen

Probleme mit typischerweise kontinuierlichen Wertebereich:

 Verschnittproblem, Mischungsproblem, Investitionsplanung (aufteilbar), Produktionsplanung (nicht Stückzahl orientier)

Probleme mit typischerweise ganzzahligen Wertebereich:

- > Investitionsplanung (nicht teilbar), Produktionsplanung (Stückzahl),
- > Set- Partitioning-Problem (= Auswahl aus einer großen Menge von möglichen Lösungen)

Probleme mit typischerweise binären Wertebereich:

- > Reihenfolgeprobleme: Festlegen der Besuchs- oder Bearbeitungsreihenfolge;
- > z.B. Maschinenbelegung, Traveling Salesman-Problem, Briefträger-Problem, Allgemeines Tourenplanungsproblem
- Supplierungsprobleme: Bilden von Gruppen von Objekten; z.B. Bin Packing-
- > und Losgrößenprobleme, Tourenplanung
- > <u>Zuordnungsprobleme</u>: Festlegen von Zuordnungen zwischen Objekten; z.B.
- > lineares Zuordnungsproblem, Personaleinsatzplanung, Stundenplanproblem
- > Auswahlprobleme: Ermittlung einer oder mehrerer Teilmengen auszuwählender
- Objekte; z.B. Knapsack-Problem, Investitionsplanung (nicht aufteilbare)

Formulierung eines allgemeinen Optimierungsmodells (1)

Mathematische Schreibweise für alle in der Vorlesung behandelten Modelle

Maximiere oder minimiere
$$z = F(x)$$
 (1.1)

unter den Nebenbedingungen

$$g_i(x)$$
 $\begin{cases} \geq \\ = \\ \leq \end{cases}$ 0 für $i = 1, \dots, m$ (1.2)

$$mit \ x \in {\rm I\!R}^n_+ \ oder \ x \in {\rm Z}^n_+ \ oder \ x \in {\rm I\!B}^n. \tag{1.3}$$

 \mathbb{R}^n_+ Menge der reellen nichtnegativen, n-elementigen Zahlen

 Z_{+}^{n} Menge der nichtnegativen ganzen Zahlen

■ Menge der binären Zahlen

Quelle: Becker, nach Domschke, Drexel 2007

Formulierung eines linearen Optimierunsproblems (1)

Unter einem lineares Optimierungs- oder Programmierungsproblem versteht man die Aufgabe, eine lineare Zielfunktion

$$z = F(x_1, ..., x_p) = c_1x_1 + \cdots + c_px_p$$

zu maximieren oder zu minimieren unter Beachtung von linearen Nebenbedingungen der Form

$$\begin{array}{lcl} a_{i1}x_1 + \cdots + a_{ip}x_p & \leq & b_i & (i=1,\ldots,m_1) \\ \\ a_{i1}x_1 + \cdots + a_{ip}x_p & = & b_i & (i=m_1+1,\ldots,m_2) \\ \\ a_{i1}x_1 + \cdots + a_{ip}x_p & \geq & b_i & (i=m_2+1,\ldots,m) \end{array}$$

und meist auch von Vorzeichenbedingungen $x_j \ge 0$ für einige oder alle j = 1, ..., p.

Formulierung eines linearen Optimierunsproblems (2)

Definition des Begriffes zulässige Lösung und optimale Lösung

- Ein Punkt oder Vektor $\mathbf{x} = (x_1, \dots, x_p) \in \mathbb{R}^p$, der alle Neben- und Vorzeichenbedingungen erfüllt, heißt *zulässige Lösung* des LP.
- Eine zulässige Lösung $\mathbf{x}^* = (x_1^*, \dots, x_p^*)$ heißt *optimale Lösung* des LP, wenn es keine zulässige Lösung \mathbf{x} mit besserem Zielfunktionswert als $F(\mathbf{x}^*)$ gibt.
- Mit X bezeichnen wir die Menge der zulässigen Lösungen, mit X* die Menge der optimalen Lösungen eines LP.

Quelle: Becker, nach Domschke, Drexel 2006

Beispiel für ein Maximierungsproblem

Produktionsplanungsproblem

	Produkt 1	Produkt 2	Verfügbare Kapazität
Maschine	1 (h)	1 (h)	100 (h)
Rohstoff	6 (ME)	9 (ME)	720 (ME)
Verpackung	0 (h)	1 (h)	60 (h)
Deckungs- beitrag	10	20	

Gesucht: Wieviel ME von den Produkten sollen hergestellt werden, damit der Deckungsbeitrag maximal wird?

Mathematische Formulierung des Produktionsproblems

Maximierungsaufgabe:

 x_1, x_2 = von Produkt 1, 2 herzustellende Mengeneinheit

Maximiere:
$$F(x_1,x_2) = 10x_1+20x_2$$
 (1)

Unter der Nebenbedingung (NB):

$$x_1+x_2 \le 100$$
 Maschinenrestriktion (2)
 $6x_1+9x_2 \le 720$ Rohstoffrestriktion (3)
 $x_2 \le 60$ Verpackungsrestriktion (4)

 $x_1,x_2 \geq 0 \tag{5}$

Quelle: Domschke, Drexel 2006

Begründung für die Normalform

Zielfunktion

Eine minimierende Zielfunktion lässt sich durch die Multtiplikation mit -1 in eine maximierende Zielfunktion umwandeln

Restriktionensystem

- > Eine "kleiner" Nebenbedingung läßt sich durch die Multiplikation beider Seiten in eine "größer" Nebenbedigung umwandeln
- > Eine Gleichung kann man durch zwei Ungleichungen ersetzen
- Eine Ungleichung kann durch die Schlupfvariablen in eine Gleichung überführt werden

Wertebereich der Entscheidungsvariablen

Falls eine Variable x_i beliebige reele Werte annehmen kann (insb. negative Werte), kann man sie durch zwei Variablen x_i 'und x_i' ersetzen, die lediglich positve Werte annehmen dürfen, wobei gilt: x_i = x_i'-x_i'

Darstellung der Produktionsproblems in Normalform

Maximierungsaufgabe als Gleichungssytem

 $x_1, x_2 =$ Strukturvariablen

 x_3 , x_4 , x_5 = Schlupfvariablen

Maximiere:
$$F(x_1,x_2) = 10x_1+20x_2$$
 (1)

Unter der Nebenbedingung (NB):

$$x_1 + x_2 + x_3 = 100$$
 (2)

$$6x_1 + 9x_2 + x_4 = 720 (3)$$

$$x_2 + x_5 = 60$$
 (4)

$$x_1, \dots, x_5 \qquad \geq 0 \tag{5}$$

Quelle: Domschke, Drexel 2006

Darstellung der Produktionsproblems in Matrixschreibweise

Maximiere: $F(x_1,x_2) = 10x_1+20x_2$

Unter den Nebenbedingungen (NB):

$$x_1 + x_2 + x_3 = 100$$
 $6x_1 + 9x_2 + x_4 = 720$
 $x_2 + x_5 = 60$
 $x_1, ..., x_5 \ge 0$

Maximiere $F = \begin{pmatrix} 10 & 20 & 0 & 0 & 0 \end{pmatrix} *$

Unter den Nebenbedingungen (NB):
$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 6 & 9 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ . \\ . \\ \mathbf{x}_5 \end{pmatrix} = \begin{pmatrix} 100 \\ 720 \\ 60 \end{pmatrix}$$

und $x_1,...,x_5 \ge 0$

Erläuterung des Spimplexalgorithmus (1)

Das Simplex Tableau

	BV	x ₁	X_2	x_3	X_4	X ₅	b _i
	x ₃	1	1	1			100
Basisvariable	X_4	6	9		1		720
	X ₅		1			1	60
	F	-10	-20	0	0	0	0

Aktueller Zielfunktionswert

F-Zeile - $10x_1$ - $20x_2$ +F:= 0

Erläuterung des Spimplexalgorithmus (2)

Iterationen des primalen Simplex

>Wahl der Pivotspalte t:

Suche die Spalte mit dem kleinsten F Wert => größter Zuwachs einer Nichtbasisvariablen

>Wahl der Pivotzeile s:

Größtmögliche Steigerung gewählten Nichtbasisvariable, so dass keine bisherige BV negativ wird. Hilfsweis berechnen wir den Quotient $q_i = b_i/a_{it}$ für alle Zeilen i=1,...,m berechnet. Der kleinste Werte q_s ist der maximal zulässige Wert für x_t und ergibt die Pivotzeile s für alle aij > 0

>Transformation des Simplextableaus:

Man dividiert die Pivotzeile durch den Pivotwert. Zu den übrigen Zeilen addiert man ein Vielfaches der Pivotzeile, so daß in der Pivotspalte Nullen entstehen

- >Austausch der Basisvariablen
- >Enthält die F- Zeile nur nichtnegative Werte => aktuelle Basislösung ist optimal

Erläuterung des Simplexalgorithmus (3)

Iterationen des primalen Simplex

	ı		I			ı	
BV	X_1	X_2	X_3	X_4	X ₅	b _i	q _i
X_3	1	1	1		-	100	100
x ₃ x ₄ x ₅ F	6	9		1		720	80
X ₅		1			1	60	60
F	-10	-20	0	0	0	0	0
X ₃ X ₄ X ₂ F	1	_	1		-1	40	40
X_4	6			1	-9	180	30
X_2		1			1	60	
F	-10	0	0	0	20	1200	0
$\overline{x_3}$			1	1/6	1/2	10	-
x ₃ x ₁ x ₂ F	1			1/6	-3/2	30	
X_2		1			1	60	_
F	0	0	0	5/3	5	1500	

$$x_1$$
, $x_2 = 0$; Nichtbasisvariabel (NB),
 x_3 , x_4 , $x_5 = (100,720,60)$; Basisvariabel
 $F(x_1,x_2) = 0$

 x_1 , $x_5 = 0$; x_5 wird neue NB, x_1 bleibt NB x_2 , x_3 , $x_4 = (60,40,180)$; x_3,x_4 bleiben Basisvariablen, x_2 wird neue Basisvariabel $F(x_1,x_2) = 1200$

 x_4 , $x_5 = 0$, x_4 wird neue NB, x_5 bleibt NB x_1 , x_2 , $x_3 = (30,60,10)$ x_2 , x_3 bleiben Basisvariablen, x_1 wird neue Basisvariabel $F(x_1,x_2) = 1500$

Aufgabe 4 Simplex Tableau

Ein Gemüsebauer pflanzt in seinem Gewächshaus Tomaten und Gurken an. In der Saison kann er im Gewächshaus maximal 10 Tonnen erzeugen. Für die Tomaten werden 80 € je to. und für die Gurken 65 € je to. erzielt. In der Saison sind maximal 9 to. Gurken absetzbar.

Die Produktionskosten je Tonnen Tomaten betragen 50€ und für die Tonne Gurken 40€.

In dieser Saison müssen alle Produkte auf Keime untersucht werden. Die Laboruntersuchung einer Tonne Tomaten dauert 5 Stunden; die Dauer bei einer Tonne Gurken beträgt 2 Stunden. Es stehen für die Saison maximal 30 Laborstunden zur Verfügung.

- Formulieren Sie das mathematische Modell wandeln Sie das Problem in die Normalform um und erstellen Sie das entsprechende Simplex Tableau
- Wie lautet eine zulässige Basislösung?

Erläuterung des Simplexalgorithmus (3)

Iterationen des primalen Simplex für Aufgabe 4

	ı		I			l	
BV	X ₁	X_2	X_3	X_4	X ₅	b _i	q _i
	1	1	1			10	10
x ₃ x ₄ x ₅ F	5	2		1		30	6
X ₅		1			1	9	_
F	-30	-25	0	0	0	0	0
X ₃		3/5	1	-1/5		4	20/3
x ₃ x ₁ <u>x₅</u> F	1	2/5		1/5		6	15
X ₅		1			1	9	9
F	0	-13	0	6	20	180	0
$\overline{\mathbf{x}_2}$		1	5/3	-1/3		20/3	-
x ₂ x ₁ x ₅ F	1		-2/3	1/3		10/3	
X ₅			-5/3	1/3	1	7/3	_
F	0	0	65/3	5/3	0	800/3	

Aufgabe 3

Aufgabe 3 Simplex Tableau

Endtableau in anderer Darstellung

	χ_4	x_2	χ_3	x_1	χ_5	b_i
x_2	$-\frac{1}{3}$	1	<u>5</u>	0	0	20 3
x_1	$\frac{1}{3}$	0	$-\frac{2}{3}$	1	0	10
χ_5	$\frac{1}{3}$	0	$-\frac{5}{3}$	0	1	7 3
z	<u>5</u>	0	65 3	0	0	800 3

Aufgabe 4 Modellierung

- Eine Fabrik stellt in ihren Werkstätten A, B, C drei mit 1, 2, 3 bezeichnete Artikel her
- > Die monatliche Produktionsraten x₁, x₂, x₃ ist zu bestimmen.
- Das maximale Arbeitspensum der 3 Werkstätten A, B, C beträgt 200, 60 bzw. 40Stunden pro Monat.
- > Die Artikel werden in mehreren Werkstätten verarbeitet.
- Arbeitsweg Artikel 1: In den Werkstätten erzeugte Stückzahl für Artikel 1 je Stunde: A=6 ; B= 12; C= 10
- Arbeitsweg des Artikel 2: In den Werkstätten erzeugte Stückzahl für Artikel 2 je Stunde: A= 1; B= 12; C= 30
- Arbeitsweg des Artikel 3 : In den Werkstätten erzeugte Stückzahl für Artikel 3 je Stunde: B= 20; C= 10
- > Höchstens werden monatlich von den 3 Artikeln 200, 500bzw. 150 Stück gebraucht.
- Der Gewinn je Artikel beträgt 350, 250 und 400 Euro.

Gesucht ist jener Plan, der einen maximalen Gewinn verspricht.

Basislösung eines linearen Optimierungsproblems

Basislösung 1)

Eine Basislösung eines (mxn) LP Problems in Normalform erhält man, indem man n-m Variablen gleich 0 setzt (Nichtbasisvariablen) und mit den restlichen Variablen (Basisvariablen) das verbleibende Gleichungssystem löst.

Ecke	Basisvariable	Nichtbasisvari able (Wert =0)
A= (0,0	X ₃ =100,x ₄ =720, X ₅ =60	X ₁ , X ₂
B= (0,60)	X ₂ =60, x ₃ =40, X ₄ =180	X ₁ , X ₅
C= (30,60)	X ₁ =30, x ₂ =60, X ₃ =10	X ₄ , X ₅
D= (60,40)	X ₁ =60, x ₂ =40, X ₅ =20	X ₃ , X ₄
E= (100,0)	X ₁ =100,x ₄ =120,X ₅ =60	X ₂ , X ₃

¹⁾ Quelle: Domschke, Drexl 2007, siehe dort auch mathematisch exakte Defintion

Graphische Lösung von linearen Optimierungsproblemen

Übungsaufgabe: Lösungsbereich

Maximiere: F(x,y) = 4x+3y

Unter den Nebenbedingungen (NB):

$$x + 3 y \le 9$$

$$-x + 2y \ge 2$$

$$x, y \ge 0$$

a. Zeichnen Sie die den Lösungsraum begrenzenden Geraden und schraffieren den zulässigen Lösungsraum für das Problem.

Quantitative Methoden – Operations Research

Abschnitt 2 : Dualität linearer Optimierungsprobleme

Hochschule für Wirtschaft und Gesellschaft Ludwigshafen Prof. Dr. Joachim Schmidt

Aufgabe 5: Mindestbedingungen

Herstellung und Verkauf eines Nahrungsmittel:

- Ziel: Nahrungsmittel mit vorgegeben Nährwert zu max. Preis verkaufen
- Wir haben zwei verschieden Nahrungsmittelsorten I und II
- Es gibt Mindestmengen für Eiweiß und Energie und Maximalmengen für Fett
- Erstellen sie das mathematische Modell
- Stellen Sie den Lösungsraum zeichnerisch dar
- Gibt es eine zulässige Anfangslösung?

	ТурІ	Тур II	Täglich
Eiweiß (ME/100g)	1	1	Min. 8 ME
Energie (ME/100g)	3	1	Min. 12 ME
Fett (ME/100g)	1	1	Max 10
Preis (€/100g)	2	1	

Verfahren zur Bestimmung einer zulässigen Basislösung (1)

Das Ausgangsproblem wird durch die Hinzunahme von Schlupfvariablen umgeformt

Maximiere:
$$F(x_1,x_2) = 2x_1+x_2$$
 (1)

Unter der Nebenbedingung (NB):

$$x_1 + x_2 \geq 8 \tag{2}$$

$$3x_1 + x_2 \geq 12 \tag{3}$$

$$x_1 + x_2 \leq 10 \tag{4}$$

$$x_1, x_2 \ge 0 \tag{5}$$

Quelle: Domschke, Drexel 2006

Versuch der Bestimmung einer zulässigen Basislösung

- 1. Transformation ≥ Bedingung durch Multiplikation mit -1 in ≤ Bedingung
- 2. Einfügen von Schlupfvariablen x₃, x₄ x₅

Maximiere:
$$F(x_1,x_2) = 2x_1+x_2$$
 (1)

Unter der Nebenbedingung (NB):

$$-x_1-x_2 + x_3 = -8$$
 (2)

$$-3x_1 - x_2 + x_4 = -12 (3)$$

$$x_1 + x_2 + x_5 = 10$$
 (4)

$$x_1, \dots, x_5 \qquad \geq 0 \tag{5}$$

Es ergibt mit den Nichtbasisvariablen $x_1 = x_2 = (0,0)$ keine zulässige Basislösung

$$\rightarrow$$
 $x_3 := -8$, $x_4 := -12$, $x_5 := 10$

Quelle: Domschke, Drexel 2006

Verfahren zur Bestimmung einer zulässigen Basislösung (2)

- Transformation der ≥ Bedingungen durch Multiplikation mit -1 in ≤ Bedingungen
- Umwandlung in Gleichungen durch Hinzunahme der Schlupfvariablen
- Aufstellung als Simplextableau

Basisösung ist unzulässig x_1 , $x_2 = 0$; Nichtbasisvariabel (NB), x_3 , x_4 , $x_5 = (-8,-12,10)$; Basisvariabel $F(x_1,x_2) = 0$

BV	X ₁	\mathbf{x}_2	x ₃	X ₄	X ₅	b _i
X_3	-1	-1	1			-8
X_4	-3	-1		1		-12
X ₅	1	1			1	10
F	-2	-1	0	0	0	0

Aktueller Zielfunktionswert

Erläuterung des dualen Simplex

Iterationen des dualen Simplexalgorithmus

Wahl der Pivotzeile s:

gibt es kein b'_i < 0: zulässige Basislösung liegt vor → Abbruch sonst: wähle Zeile s mit <u>kleinstem b'_s</u> als Pivotzeile (bei mehreren mit gleichem kleinsten Wert wähle beliebige)

Wahl der Pivotspalte t :

gibt es kein $\underline{\mathbf{a'_{sj}}} < \mathbf{0}$ in Pivotzeile s \Rightarrow keine zulässige Basislösung ; Abbruch des gesamten Verfahrens

sonst wähle Spalte t mit maximalen Quotient Ct/ast für alle Spalten

>Transformation des Simplextableaus:

Wie beim primalen Simplex

Beim primalen Simplex wird zuerst die Pivotspalte, dann die Pivotzeile ausgewählt, beim dualen Simplex ist es andersherum

Dualer Simplexalgorithmus

- Basislösung unzulässig
- Wähle Pivotzeile b_i = -12 minimal; Zeile 2 wird Pivotzeile
- $c_1/a_{21} := -2/-3$; $c_2/a_{22} := -1/-1$ a_{22} ist größtes Element für $a_{2j} < 0$ \Rightarrow Spalte 2 wird Pivotspalte

BV	X ₁	X ₂	x ₃	X ₄	X ₅	b _i	
x_3	-1	-1	1			-8	
X_4	-3	-1		1		-12	Pivotzeile
X ₅	1	1			1	10	_
F	-2	-1	0	0	0	0	_

• Tableautransformation wie im primale Verfahren: Man dividiert die Pivotzeile durch den Pivotwert. Zu den übrigen Zeilen addiert man ein Vielfaches der Pivotzeile, so daß in der Pivotspalte und der F Spalte Nullen entstehen

Iterationsschritte des Dualen Simplex (1)

- Dividiere die Pivotzeile durch den Pivotwert
- Addiere die Pivotzeile zu den darüber/darunterliegenden Zeilen, so dass in der Pivotspalte jeweils 0 entstehen

BV	X ₁	X_2	\mathbf{x}_3	X_4	X ₅	b _i		
X_3	-1	-1	1			-8		
X_4	-3	-1		1		-12		
X ₅	1	1			1	10		
F	-2	-1	0	0	0	0		
						1		
BV	X ₁	X_2	\mathbf{x}_3	X_4	X ₅	b _i		
вv х ₃	x ₁	X ₂	x ₃	-1	X ₅	b _i	*+1	
					X ₅			
x ₃	2	0		-1	X ₅	4	*+1 *-1	*+1

Iterationsschritte des Dualen Simplex (Pivotzeile)

- Basislösung unzulässig
- Wähle Pivotzeile b_i = -2 minimal; Zeile 3 wird Pivotzeile
- $c_1/a_{21} := 1/-2$ ist einzige Möglichkeit (w.g. $a_{ij} < 0$)
 - → Spalte 1 wird Pivotspalte

BV	X ₁	\mathbf{x}_2	x ₃	X ₄	X ₅	b _i	_
X_3	2		1	-1		4	
X_2	3	1		-1		12	
X ₅	-2			1	1	-2	
F	1	0	0	-1	0	12	- 4

Vorliegende Lösung ist weiterhin unzulässig; erneute Tabellen Transformation

Iterationsschritte des Dualen Simplex (2)

BV	x ₁	X ₂	\mathbf{x}_3	X_4	X ₅	b _i	_
X ₃	2		1	-1		4	
\mathbf{X}_{2}	3	1		-1		12	
X_5	-2			1	1	-2	
F	1	0	0	-1	0	12	-
BV	 <mark>X</mark>	x_{2}	x ₃	X_4	X ₅	b _i	
X ₃	0		1		1	2	
_ x ₂	0	1		1/2	3/2	9	*-3
x ₁	1			-1/2	-1/2	1 [
F	0	0	0	-1/2	1/2	11	*-1

Iterationsschritte des Dualen Simplex (Pivotspalte)

Basisösung ist zulässig, aber nicht optimal (F Zeile enthält negative Werte) x_4 , $x_5 = 0$; Nichtbasisvariabel (NB), x_1 , x_2 , $x_3 = (1,9,2)$; Basisvariabel $F(x_1,x_2) = 11$

BV	x ₁	x_2	x ₃	X_4	X ₅	b _i
x_3			1		1	2
x_{2}		1		1/2	3/2	9
x ₁	1			-1/2	-1/2	1
F	0	0	0	-1/2	1/2	11

Nun weiter mit primalen Simplex:

- Wahl der Pivotspalte t (F Spalte mit kleinsten negativen Wert)→Spalte 4
- Wahl der Pivotzeile s: b_t/ a_{it}, mit a_{it}>0 minimal b₄/ a₂₄ > 0 einzige Möglichkeit
 → Zeile 2 wird Pivotzeile

Iterationsschritte des Dualen Simplex (2)

BV	x ₁	x ₂	x ₃	X ₄	x ₅	b _i	_
x_3			1		1	2	
X_2		1		1/2	3/2	9	
x ₁	1			-1/2	-1/2	1	_
F	0	0	0	-1/2	1/2	11	
BV	x ₁	\mathbf{x}_2	x ₃	X ₄	X ₅	b _i	_
	X ₁	X ₂	X ₃	X ₄	X ₅	b _i	- _
	X ₁	x ₂	x ₃		x ₅ 1 3	b _i 2 18	*+1/2
X ₃	1		x ₃	0	1	2	*+1/2

Optimale Basislösung x_1 : = 10 F:= 20 x_2 , x_5 = 0; Nichtbasisvariabel (NB), x_1 , x_3 , x_4 = (10,2,18); Basisvariabel $F(x_1,x_2)$ = 20

Iterationsschritte des Dualen Simplex (3)

Optimale Basislösung

 x_2 , x_5 = 0; Nichtbasisvariabel (NB), x_1 , x_3 , x_4 = **(10,2,18)**; Basisvariabel $F(x_1,x_2)$ = 20

	X_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	b_i
<i>X</i> ₃			1		1	2
<i>X</i> ₄		2		1	3	18
x_1	1	1			1	10
F	0	1	0	0	2	20

Voraussetzung für das direkte Lösen mit dem Simplex Verfahren

Voraussetzungen für die direkte Anwendung des primalen Algorithmus:

- Maximierungsfunktion mit nicht negativer Bewertung
- nur ≤ Bedingungen
- nichtnegative Variablen und Begrenzungsvektor
- primal zulässiger Anfangstableau

Voraussetzungen für die direkte Anwendung des dualen Algorithmus:

- Minimierungsfunktion (oder Max. mit negativer Bewertung)
- nur ≥ Bedingungen

Andere Kombinationen erfolgen die kombinierte Verwendung von primalen und dualen Algorithmus (z.B. Maximierung mit ≤ und ≥ Bedingungen) oder zusätzliche Verfahrenschritte (→ 2 Phasen Methode)

Unterscheidung zwischen primalen und dualen Verfahren

Primale Verfahren:

- Ausgehend von einer zulässigen Lösung werden weitere zulässige Lösungen bestimmt
- Verfahren nähert sich schrittweise ("monoton") der optimalen Lösung
- Bsp. Primaler Simplex

Duale Verfahren:

- Ausgehend von einer optimalen (aber nicht zulässigen) Lösung werden weitere optimale Lösungen aber nicht zulässige Lösungen bestimmt
- Die erste zulässige Lösung ist die Optimallösung
- Bsp. Dualer Simplex oder Dijkstra Verfahren zur Bestimmung k\u00fcrzester Wege

Quantitative Methoden – Operations Research

Abschnitt 3: Transportproblem

Hochschule Ludwigshafen Prof. Dr. Joachim Schmidt

Das Transportproblem

Das Transportproblem ist ein Lineares Optimierungsproblem mit spezieller Struktur

Gegeben:

- Ein homogenes Gut (homogen → beliebig oft teilbar)
- Versandorte mit den jeweiligen Vorräten v_i (i = 1,...,m)
- Empfangsorte mit dem Bedarf b_j (j = 1,...,n) X_{ij} = die Menge des Stoffs, die von dem Versandort i zum Empfangsort j transportiert werden soll
- c_{ii} = Kosten für den Transport des Stoffs von i nach j pro Mengeneinheit

Gesucht:

sind die zu transportierenden Mengen x_{ii} , , so dass die Transportkosten so gering wie möglich sind.

Mathematische Modellierung des Transportproblems

Gesucht ist:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} = Min!$$
 (7)

$$\sum_{j=1}^{n} x_{ij} = v_{i} \quad i = 1,...,m \quad \text{und} \quad \sum_{j=1}^{m} x_{ij} = b_{j} \quad j = 1,...,n$$
 (8)

$$\sum_{j=1}^{n} x_{ij} \ge 0 \quad i = 1,...,m \qquad j = 1,...,n \tag{9}$$

- (7) = Minimale Summe der Transportkosten
- (8) = Alle Bedarfe gedeckt, alle Angebote ausgeschöpft
- (9) = Nur Transporte von Angebotsort zum Nachfrageort

Darstellung des Transportproblems als LP Problem

Optimierungsaufgabe

Entfernung und Transportkosten je Tankladung (TL)

von \ nach	Lissabon (B_1)	Barcelona (B_2)	Florenz (B ₈)	Angebot
Hamburg (A ₁)	2800 km	1800 km	1400 km	46 TI
	6 T€	4 T €	3 T€	16 TL
Paris (A₂)	1900 km	1100 km	1100 km	14 TL
	3 T€	2 T€	2 T€	14 11
Nachfrage	15 TL	5 TL	10 TL	30 TL

Anmerkungen;

- Gesamtangebotsmenge und Nachfragemenge sind gleich
- Die Restriktion kann daher entfallen
- Kilometer werden als Kostenwert nicht genutzt nur Transportkosten in T€

Formulierung als Gleichungssystem

Minimiere

$$F = 6x_{11} + 4x_{12} + 3x_{13} + 3x_{21} + 2x_{22} + 2x_{23}$$

unter den Nebenbedingungen

1.Angebot

$$x_{11} + x_{12} + x_{13} = 16$$

$$x_{21} + x_{22} + x_{23} = 14$$

2.Nachfrage

$$x_{11} + x_{21} = 15$$

$$x_{12} + x_{22} = 5$$

$$x_{13} + x_{23} = 10$$

3. Keine negativen Transporte

$$x_{11},...,x_{23} \ge 0$$

Quelle: Bsp. aus Wikipedia

Transportproblem: LP mit spezieller Struktur

	X ₁₁	X ₁₂	X ₁₃	X ₂₁	X ₂₂	X ₂₃	vi und bi
A_1	1	1	1				16
A_2				1	1	1	14
B_1	1			1			15
B_2		1			1		5
B_3			1			1	10
F	-6	-4	-3	-3	-2	-2	

Bestimmung einer zulässigen Anfangslösung:

X_{ii}:0 ist keine zulässige Anfangslösung

→ Eröffnungsverfahren zur Bestimmung einer zulässigen Basislösung

Eröffnungsverfahren für das Transportproblem

Nordwesteckenregel

- >Es wird zuerst möglichst viel in die Nord-West-Ecke gepackt.
- >A₁ liefert also 15 Einheiten an B₁
- >A₁ hat noch eine Einheit übrig, die an B₂ geliefert wird.
- > Den restlichen Bedarf von B₂ deckt A₂ mit 4 Einheiten
- > A₂ hat noch 10 Einheiten übrig, welche an B₃

Berechnung mit dem Transporttableau

	B₁	B_2	B_3	
A_1	X ₁₁	X ₁₂	X ₁₃	16
A_2	X ₂₁	X ₂₂	X ₂₃	14
	15	5	10	

Zulässige Basislösung: $x_{11} = 15$; $x_{12} = 1$; $x_{22} = 4$; $x_{23} = 10$; $x_{13} = 0$; $x_{21} = 0$

Lösung des Transportproblems

Heuristik zur Bestimmung einer Anfangslösung

- >Nordwesteckenregel liefert i.d.R. schlechte Ausgangslösung:
 - Kosten im Lösungsverfahren nicht berücksichtig
- > Andere Eröffnungsmethoden Spaltenminimum Methode

Verwendung des Simplex Algorithmus für das Transportproblem

- >Reale Problem oft sehr groß
- >Koeffizienten Matrix schwach besetzt
- >Simplexverfahren möglich aber nicht gut geeignet
- >Spezielles Version der Simplexmethode (Netzwerk Simplex)
 - → Modi Methode

Transportproblem

- Bei der Belieferung von Kunden mit Heizöl können die Tanklager A₁, A₂ und A₃ genutzt werden. Die verfügbaren Mengen betragen
 - > a_1 := 10, a_2 , := 8, a_3 := 7
- > Die Kundenorte B₁,B₄ benötigen folgende Mengen:
 - $b_1:=6, b_2, :=5, b_3:=8, b_4:=6$
- Die Transportkosten werden durch die folgende Matrix beschrieben:

$$\mathbf{C} = \left(\begin{array}{cccc} 7 & 7 & 4 & 7 \\ 9 & 5 & 3 & 3 \\ 7 & 2 & 6 & 4 \end{array}\right)$$

- > Gesucht ist ein kongen in die Menge die von A₁ nach B₁ transportiert
- Wie lautet die mathematische Schreibweise als lineares Optimierungsproblem
- Bestimmen Sie mit dem Transporttableau eine Anfangslösung mit Hilfe der Nordwesteckenregel.

(textliche und formale Formulierung des Prinzips)

- > Es werden alle Spalten des Transporttableaus nacheinander betrachtet
- > Für jede Spalte: Bestimme den kleinsten Kostenwert für eine unmarkierte Zeile:
- > Transportmenge x_{ii}:= Minimum aus Angebot und Nachfrage
- > Reduziere Angebot und Nachfrage um die gewählte Transportmenge
- > Falls Angebotsmenge >0
 - Iteration in nächster Spalte wiederholen
 - >kleinsten Kostenwert in unmarkierten Zeilen suchen
- > Sonst::
 - > Zeile markieren
 - >Bleibe in der Spalte
 - >kleinsten Kostenwert in unmarkierten Zeilen suchen

- ullet Start: Alle Zeilen unmarkiert, alle $x_{ij}:=0$
- Iteration $j = 1, \ldots, n$:
 - (1) Suche in Spalte j in den nicht markierten Zeilen das kleinste c_{hj}
 - Bei gleich großen Elementen: Wähle Element mit niedrigsten Zeilenindex
 - (2) Aufnahme von x_{hj} in Basis
 - Wert $x_{hj} := \min\{a_h, b_j\}$
 - Reduziere Angebot $a_h := a_h x_{hj}$
 - Reduziere Nachfrage $b_j := b_j x_{hj}$
 - Falls danach $a_h = 0$: Markiere Zeile h und gehe zu (1). Ansonsten j := j + 1.

Es werden alle Spalten nacheinander betrachtet

- > Für jede Spalte: Bestimme den kleinsten Kostenwert für die unmarkierten Zeilen:
- > Start Spalte j: = 1
- > Kleinstes Element c₁₁ = 7; bei gleichen Kostenwerten in Spalte wähle kleinsten Zeilenindex
- > Transportmenge x_{11} mit x_{11} = min{ a_1 , b_1 } = 6
- > Reduktion Angebot: $a_1 = a_1 6 = 4$
- > Reduktion Nachfrage: $b_1 = b_1 6 = 0$
- > Angebot > 0 gehe zur nächsten Spalte j:=2

Iteration für Spalte 2

- > Kleinstes Element $c_{32} = 2$
- > $x_{32} = min\{a_3, b_2\} = 5$
- > Reduktion Angebot: $a_3 = 7 5 = 2$
- > Reduktion Nachfrage: $b_2 = 5 5 = 0$
- > Angebot > 0 gehe zur nächsten Spalte j:=3

$C = \left(\begin{array}{c} \end{array} \right.$	7 9 7	7 5 2	4 3 6	7 3)
\	'	_	U	4	/
			_		
		j:=2			

	_					/
	1	2	3	4	a_i	/
1	6				10	4
2					8	
3		5			7	2
b_j	6	5	8	6		
	0	0				
	•			'	•	

Restliche Angebots menge

Iteration für Spalte 3

- > Kleinstes Element $c_{23} = 3$
- $x_{23} = min\{a_2, b_3\} = 8$
- > Reduktion Angebot: $a_2 = 8 8 = 0$
- > Reduktion Nachfrage: $b_3 = 8 8 = 0$
- Angebot = 0; Markiere Zeile i:=2

- Kleinstes Element in Spalte 3 ist jetzt c_{13} =4
- $x_{13} = min\{a_1, b_3\} = 0$, Aber Element der Lösung! (man spricht von einer primal degenrierten Basislösung)
- Keine Änderung; Angebot a₁>0, gehe zu Spalte 4

Iteration für Spalte 4

- > Kleinstes Element c₃₄= 4, da Zeile 2 markiert
- > $x_{34} = min\{a_3, b_4\} = 2$, da Angebot a_3 auf 2 reduziert
- > Reduktion Angebot: $a_3 = 2 2 = 0$
- > Reduktion Nachfrage: $b_4 = 6 2 = 4$
- > Angebot = 0; Markiere Zeile i:=3
- > Kleinstes Element in Spalte 4 ist jetzt c₁₄ =7
- $x_{14} = min\{a_1, b_4\} = 4$
- > Reduktion ergibt a₄ :=0 → Markiere Zeile 1
- > Fertig: Alle Zeilen markiert

Optimierungsverfahren: Stepping Stone Methode

Lösungsprinzip (analog zum Simplex)

- > Es wird nacheinander versucht, jedes nicht belegte Feld mit einer Einheit zu belegen.
- > Ergäben sich dadurch Einsparungen gegenüber der Ausgangslösung, wäre gezeigt, dass diese nicht optimal war, und es könnte als nächster Schritt die Verbesserung der Lösung vorgenommen werden
- > Reduzierte Kosten für eine Mengeneinheit im Beispiel: c_{24} := 3-7+4-3 := -3
 - → Der Tausch reduziert die Kosten um 3 GE
- > Dieser Verbesserungssuche muss für alle bisher nicht besetzten Felder durchgeführt werden.

- Für den negativsten cij Wert eines bisher nicht besetzen Feldes wird die Transportmenge größtmöglich erhöht (im Bsp. 4 Einheiten) → verbesserte Basislösung
- Danach weiter Iteration bis keine Verbesserung mehr erzielbar→ keine negative C_{ij}

Vergleich von Simplex und Stepping Stone Methode

Stepping-Stone-Methode

- besetzte Felder im Transporttableau (d. h. Verbindungen auf denen transportiert wird)
- nicht besetzte Felder im Transporttableau (d.h. Verbindungen, auf denen nicht transportiert wird)
- > Ermittlung der cii
- Optimalitätstest: Überprüfung, ob noch Einsparungsmöglichkeiten bestehen (cij < 0)
- Bestimmung des Feldes (des Transportweges), auf dem neu transportiert werden soll
- Engpaßbestimmung: Bestimmung des Feldes (des Transportweges), auf dem nichts mehr transportiert werden soll

Simplexalgorithmus

- Basisvariable im Simplextableau (z. B.: Produkte, die produziert werden)
- Nichtbasisvariable im Simplextableau (z. B.:Produkte, die nicht produziert werden)
- > Ermittlung der Zielfunktionszeile in den einzelnen Tableaus
- Optimalitätstest: Überprüfung, ob noch Verbesserungsmöglichkeiten bestehen (negative F- Werte)
- > Bestimmung der in die Basis eintretenden Variablen (z. B. eines Guts, das neu produziert werden soll oder einer Kapazität, die Reserven haben soll, I. Simplexkriterium)
- Engpaßbestimmung: Bestimmung der aus der Basis austretenden Variablen (z. B. eines Engpasses, der ausgelastet werden soll oder eines Guts, das nicht mehr produziert werden soll, 2.Simplexkriterium)

Quelle: Ellinger, OR, S. 91

Aufgabe 7: Transportproblem (Angebot ≠ Nachfrage)

In L- Town werden Falschparker rigoros abgeschleppt. Ein Abschleppunternehmer hat deshalb drei Fahrzeuge am Standort S1 und zwei Fahrzeuge am Standort S2 stationiert. An den Einsatzorten P1 – P4 werden jeweils 1,2,5,1, Abschleppfahrzeuge benötigt. Die Fahrzeiten zu den Einsatzorten betragen vom Standort S1: 6,8,8 und 4 Minuten; vom Standort S2 muss mit 4,2,6,12 Minuten Fahrzeit zu den Einsatzorten gerechnet werden. Es soll ein Einsatzplan mit minimalen Fahrzeiten berechnet werden. Hinweis: Es können nicht alle Falschparker abgeschleppt werden. Die Fahrzeit zu den nicht abgeschleppten Falschparkern wird im Modell mit 0 Minuten Fahrzeit bewertet.

a. Welche ergänzende Maßnahme ist notwendig und das Problem als Transportproblem zu modellieren. Modellieren Sie diese im Starttableau

	P ₁	P ₂	P ₃	P ₄	Einsatzorte ←
S ₁					
S ₂					
s					

	P ₁	P ₂ Spalten M	P ₃	P ₄	Einsatzorte ←
S ₁					
S ₂					
S					

- b. Ermitteln Sie eine Lösung mit der Nordwestecken Regel der Spalte Minimumsregel
- c. Ermitteln Sie mit der Stepping Stone Methode eine Verbesserungsmöglichkeit

Formulierung als Transportproblem

- > Es soll ein Instandhaltungsplan für eine Maschinenpark mit identischen Maschinen erstellt werden.
- > Für den identischen Maschinentyp gibt es zwei Lieferanten
- > Die Wartungskosten je Maschine unterscheiden sich je Aufstellungsorten und Lieferant:

Aufstellort	Wartungskosten (Lieferant 1)
Werkstatt A	16
Werkstatt B	20
Werkstatt C	40
Werkstatt D	37

Aufstellort	Wartungskosten (Lieferant2)
Werkstatt A	13
Werkstatt B	29
Werkstatt C	38
Werkstatt D	49

- > In den Werkstätten werden folgende Anzahl an Maschinen benötigt:
 - \rightarrow A = 3,B = 5,C= 8,D=2
- > Der Lieferant 1 kann 10 Maschinen, der Lieferant 2 kann 8 Maschinen liefern.
- Berechnen Sie eine Lösung mittels der Nordwesteckenregel und der Spaltenminimum

Modi Methode zur Bestimmung einer optimalen Lösung

- > Bestimme eine **Anfangslösung** (z.Bsp. mit der Nordwesteckenregel, Spaltenminimunregel)
- Falls x_{ii} > 0 (= aktuelle Basisvariable oder BV) → c_{ii} = u_i + v_i
- > Da die ui und vj nicht eindeutig bestimmt sind → Setze eine wird ein u_i oder v_j :=0 (am besten jene, in deren Zeile/Spalte die meisten BV stehen)
- > Falls $x_{ij} = 0$ (= aktuelle Nichtbasisvariable oder NBV) $\rightarrow \underline{c_{ij}} := c_{ij} u_i v_j$
- Die NBV mit dem am stärksten negativen cii ist eine neue BV (Basistausch)
- Erhöhe die neue BV nach der Stepping stone Regel
- > Sind alle <u>c</u>_{ii} ≥ 0 → optimale ist Lösung erreicht

Lösung des Beispiel aus Aufgabe 6 mit der Modi Methode

Anfangslösung (= Basisvariablen) nach Spaltenminimum Methode bestimmt; Regel für BV: Setze u1:=0 und berechne:

Jetzt: Berechnung der reduzierten Kosten für die NBV

$$\underline{c_{ij}} = c_{ij} - u_i - v_j$$

$$\overline{c_{12}} = 7 - 0 - 5 = 2$$

$$\overline{c_{21}} = 9 + 1 - 7 = 3$$

$$\overline{c_{22}} = 5 + 1 - 5 = 1$$

$$\overline{c_{24}} = 3 + 1 - 7 = -3$$

$$\overline{c_{31}} = 7 + 3 - 7 = 3$$

$$\overline{c_{33}} = 6 + 3 - 4 = 5$$

$$1
2
3
4
0
4
0
2
5
1
8
-3
-1
3
5
5
2
-3
0
4
7$$

Lösung des Beispiel aus Aufgabe 6 mit der Modi Methode

C_{2,4} einziger negative Wert

Durchführung des "Stepping Stone" Tausch beginnend mit $x_{2,4}$

$$\mathbf{C} = \left(\begin{array}{cccc} 7 & 7 & 4 & 7 \\ 9 & 5 & 3 & 3 \\ 7 & 2 & 6 & 4 \end{array}\right)$$

Ersparnis: 4*(+3-7+4-3):=-12

Lösung des Beispiel aus Aufgabe 6 mit der Modi Methode

Erneute Bestimmung der Dualvariablen v und u und der reduzierten Kosten

$$\mathbf{C} = \left(\begin{array}{cccc} 7 & 7 & 4 & 7 \\ 9 & 5 & 3 & 3 \\ 7 & 2 & 6 & 4 \end{array}\right)$$

$$u_1 + v_1 = 7$$
, $u_1 + v_3 = 4$, $u_2 + v_3 = 3$, $u_2 + v_4 = 3$, $u_3 + v_2 = 2$, $u_3 + v_4 = 4$

$$v_1 = 7$$
, $v_3 = 4$, $u_2 = -1$
 $v_4 = 4$, $u_3 = 0$, $v_2 = 2$

$$\underline{\mathbf{c}_{ij}} = \mathbf{c}_{ij} - \mathbf{u}_{i} - \mathbf{v}_{j}$$

$$\underline{\mathbf{c}_{12}} = 7 - 0 - 2 = 5$$

$$\underline{\mathbf{c}_{14}} = 7 - 0 - 4 = 3$$

$$\underline{\mathbf{c}_{21}} = 9 + 1 - 7 = 3$$

$$\underline{\mathbf{c}_{22}} = 5 + 1 - 2 = 4$$

$$\underline{\mathbf{c}_{31}} = 7 - 0 - 7 = 0$$

$$\underline{\mathbf{c}_{33}} = 6 - 0 - 4 = 2$$

Alle <u>c_{ii} ≥ 0</u> → optimale ist Lösung erreicht

Aufgabe 9 : Exakte Lösung des Transportproblems

		Verkauf	sstellen		
Fabrik	V1	V2	V3	V4	Produktion
F1	10	5	6	11	25
F2	2	2	7	4	25
F3	9	1	4	8	50
Nachfrage	15	20	30	35	100

- · Bestimmen Sie eine Anfangslösung
- Berechnen Sie mit Hilfe der Modi Methode die exakte Lösung

Bestimmung der Dualvariablen und reduzierten Kostenwerte

ì\j	·	1	:	2	**	3	4	1	s	u _l
_	10		5		6	-4	11	-3	25	0
1		15	(10					25	0
2	1	-6	2		7		4	-7	25	,
2			(10	(15			25	-3
,	9	5	1	2	4		8			-6
3					(15	(35	50	-0
dj	1	5	2	0	3	0	3	5		
vj	1	0		5	1	10	1	4		

Veränderung der Transportmenge (Stepping Stone)

i\j	1	1	:	2		3		4	sı	u _l
1	10		5		6	-4	11	-3	25	0
'	(15	(10					23	U
,	1	-6	2		7		4	-7	25	•
2			(10	(15-E	(3 +	25	-3
	9	5	1	2	4		8			-6
3		•		•	(15+ 2	(35- E	50	-0
dj	1	5	2	20	3	0	3	5		
v _j	1	0		5	1	0	1	4		

K = 665 – 7 * ε = 665 – 7*15 = 560

Aufgabe 9 : Exakte Lösung des Transportproblems

2. Iteration

ī\j	1	2	3	4	sı	u _l	K = 560 – 6 * ε
1	10	5 10+ g	6 3	11 4	25	0	= 560 - 6*10 = 500
2	1 6	2	7 7	4 15	25	-3	
3	9 -2	1 _5	4 30	8 20	50	1	
dj	15	20	30	35			
v _j	10	5	3	7			

4. Iteration

ī\j	1	2	3	4	SI	u _l	K = 485 – 2 * ε
	10 3	5	6	11 1	25	0	= 485 – 2*20 = 445
1		20-€	5+ 8		25	U	
2	1	2 3	7 7	4	25	(
2	15			10	25	-6	
3	9 4	1 -2	4	8	50	-2	
3		8	25- ₺	25	50	-2	
dj	15	20	30	35			•
$\mathbf{v}_{\mathbf{j}}$	7	5	6	10			

3. Iteration

i\j	1		2	2	;	3	4	1	sı	ul	Κ = 500 – 3 * ε
1	10 (5-		5 (20	6	[3] (E)	11	-2	25	0	= 500 - 3*5 = 485
2	1 10-	_	2	6	7	7	4 (15- g	25	-9	
3	9		1	1	4	30- &	8 (20+ g	50	- 5	
dj	15		2	0	3	80	3	5			
vj	10		5			9	1	3			

Optimale Lösung

i\j	1	1		2	3	3	4	4	sı	u _l
1	10	3	5	2	6	25	11	1	25	2
2	1 (15	2	5	7	7	4 (10	25	-4
3	9	4	1 (20	4	5	8 (25	50	0
d _j	1	5	2	0	3	0	3	5		
vj	5	5	1	1		4	8	3		

Bei allen NBVn stehen positive Koeffizienten → optimale Lösung gefunden.

- Basisvariablen:
 - $x_{13} = 25$ $x_{21} = 15$
 - $x_{21} = 10$
 - $x_{24} = 10$
 - □ x₃₃ = 5
 - □ x₃₄ = 25

Gesamte Transportkosten: K = 445

Quelle: Nach Hartl Uni Wien, Kapitel 3 Strategische Planungsprobleme

Quantitative Methoden – Operations Research

Abschnitt 4: Graphentheorie

Ludwigshafen Prof. Dr. Joachim Schmidt

Darstellung des Transportproblems als Graph

Das Transportproblem lässt sich als bewerteter gerichteter Graph darstellen

Begriffe in der Graphentheorie (1)

Graph

- Ein Graph besteht aus einer Knotenmenge V und einer Kanten oder Pfeilmenge E
- > Ungerichteter Graph → V= Knotenmenge, E Kantenmenge, Schreibweise
 G= [V,E]
- > Gerichteter Graph (Digraph) → V= Knotenmenge, E Pfeilmenge
- > Schreibweise G= (V,E)
- In einem gerichteten Graph heißt ein Knoten j unmittelbarer Nachfolger von i , wenn es eine Pfeil (i,j) gibt (analog: Vorgänger)
- > Man sagt i und j sind mit dem Pfeil inzident
- > Ein Graph oder Digraph kann als Inzidenzliste gespeichert werden:

```
V= { Knotennr. 1, ..... Knotennr n}
```

E= { (Kante von Knoten 1 nach Knoten 2),..... (Kante von Knoten n nach Knoten n)}

Begriffe in der Graphentheorie (2)

Wege und Ketten in Graphen

- > Sei G=(V, E) ein Graph und **W=(v₁,...,v_n)** eine Folge von Knoten aus V, mit der Eigenschaft, dass für alle i aus {1,...,n-1} gilt das v_i und v_{i+1} durch eine Kante verbunden sind.
- > W bezeichnet man als ungerichteten Weg in G,
- > Gerichteter Weg: v_i und v_{i+1} sind durch ein Pfeil verbunden
- > Knoten v₁ nennt man Startknoten von W und den Knoten V_n den Endknoten von W.
- Berücksichtigt man die Pfeilrichtung nicht so spricht man von einer Kette
- > Ein Graph heißt schwach zusammenhängend, wenn jedes Kontenpaar von G durch mindestens eine Kette verbunden ist.
- > Ein Digraph heißt stark zusammenhängend, wenn jedes Kontenpaar i,j durch mindestens einen Weg von i nach j und einen Weg von j nach i verbunden sind.
- > Zusammenhangskomponente: Ein zusammenhängender Teilgraph mit maximaler Knoten und Kantenzahl.

Begriffe in der Graphentheorie (4)

Länge eines Weges in Graphen

- > In Graphen ohne gewichtete Kanten bezeichnet man mit
- > n-1 die Länge eines Weges, wobei W=(v₁,...,vn).→
- > Länge eines Weges in ungerichteten Graphen → Anzahl der zugehörigen Kanten.
- > Für gewichtete Graphen → Länge eines Weges ist die Summe der Kantengewichte aller zugehörigen Kanten.
- > Kürzester Weg → Weg von i nach j, dessen Länge minimal ist.
- > Die **Länge eines kürzesten Weges** nennt man auch Abstand oder Distanz von i nach j

Begriffe in der Graphentheorie (3)

Digraph

Ein bewerteten gerichteten Graph ohne parallel Pfeile oder Schlingen (= Pfeil der wieder am Ausgangsknoten endet) mit endlicher Kontenmenge nennt man Digraph

Dijkstra Algorithmus

(Benannt nach dem niederländischen Informatiker Edsger Dijkstra)

Lösungsprinzip

- Duales Verfahren zur Bestimmung kürzester Wege, d.h. jede gefunde Lösung ist optimal aber nicht unbedingt zulässig
- Sukzessive wird der n\u00e4chst beste Knoten in eine Ergebnismenge aufgenommen und aus der Menge der noch zu bearbeitenden Knoten entfernt.
- Gehört zu den "Greedy" Algorithmen: In jeder Iteration wird der Folgezustand ausgewählt, der in diesem Zeitpunkt das beste Ergebnis verspricht (z.b. Verfahren des steilsten Anstieg)
- Greedy Algorithmen sind in der Regel schnell aber nicht optimal
- Die Kantengewichte des Graphen dürfen dabei nicht negativ sein

Anwendungsmöglichkeit

Kürzeste Wege verfahren werden für Routenplaner eingesetzt. Der Graph repräsentiert hier das Straßennetz, welches verschiedene Punkte miteinander verbindet.

Verfahren zur Bestimmung von kürzesten Wegen

Verfahren von Dijkstra

Bestimme die kürzesten Wege von einem Startknoten a zu allen anderen Knoten

- Setze D[a]:= 0; D[i]:= { } (in der Tabelle steht für
- > Für die Iterationen wird eine Liste MK der markierten Konten angelegt. Setze MK := {a}
- Wähle aus den markierten Konten MK den Knoten mit der kleinsten Entfernung D[i]
 - Prüfe für alle unmittelbaren Nachfolger j von i ob D[j] > D[i] + c_{ii}
 - > Ja, dann → D[j] := D[i] + c_{ij}; Nehme j in MK auf, Aktualisiere die Wegeliste R[j] := i
- Verfahren endet, wenn MK leer
- ➤ Kürzester Weg von a zu allen Knoten des Digraphen gefunden.

Dijkstra Verfahren nur anwendbar wenn alle $c_{ij} > 0$

Listendarstellung für den Dijkstra Algorithmus

Wegeliste R[i]:

Einen Weg in einem bewerten gerichteten Graph mit n Knoten von einem Knoten a zu allen anderen Konten i in einer eindimensionalen Liste R [1..n]: R [1..n] mit R[i] := Knotennummer des unmittelbaren Vorgängers in einem Weg von a nach i

Entfernungslist D[i]:

Die Länge für einen Weg in einem bewerten gerichteten Graph mit n Knoten von einem Knoten a zu allen anderen Konten i in einer eindimensionalen Liste D [1..n]→: D[i] := Gewichte der Pfeile auf dem Weg von a nach i

Wege- und Entfernungsliste für einen bewerteten Digraph

Entfernungs- und Wegliste nach Iteration 1 des Dijkstra Algorithmus

	<u>i</u>	1	2	3	4	5	
Entfernungsliste	D[i]	0	20	-	10	-	MK = {2,4}
Wegeliste	R[i]		1		1		

Dijkstra Algorithmus: Weitere Iterationen

Iteration 2: i = 4; keine Änderung für Knoten 2, Änderung für Knoten 5;

Dijkstra Algorithmus: Weitere Iterationen

Iteration 3: i = 2; Änderung für Knoten 3;

Dijkstra Algorithmus: Weitere Iterationen

Iteration 4: i = 3; Änderung für Knoten 5;

Iteration 5: keine Änderungen; MK leer

Entfernungsliste	<u>i</u>	1	2	3	4	5	
Wegeliste	<u>D[i]</u>	0	20	40	10	50	MK={,5}
	R[i]		1	2	1	3	

Dijkstra Algorithmus: Ergebnis

kürzester Wege ausgehend von Startknoten a = 1

Der kürzeste Weg $w_{1,5}$ lässt sich rekursiv von Knoten 5 beginnend ablesen: R[5]= 3; R[3]=2; R[2]=1 \Rightarrow $w_{1,5}$ = (1,2,3,5)

	<u>i</u>	1	2	3	4	5
Entfernungsliste	<u>D[i]</u>	0	20	40	10	50
Wegeliste	R[i]		1	2	1	3

Matrixform für einen bewerteten Digraph

Kostenmatrix (nach)

(von)
$$\begin{pmatrix} 0 & 20 & \infty & 10 & \infty \\ \infty & 0 & 20 & \infty & 50 \\ \infty & \infty & 0 & \infty & 10 \\ \infty & 20 & \infty & 0 & 50 \\ \infty & \infty & 20 & \infty & 0 \end{pmatrix}$$

Kostenmatrix C(G):

Ein Graph mit n Knoten kann durch eine n x n - Matrix repräsentiert werden.

Man nummeriert die Knoten von 1 bis n durch und trägt in die Matrix das Kantengewicht der mit dem Vorgängerknoten inzidenten Kante ein.

Aufgabe 9 Kürzeste Wegerechnung in Matrixform

Sie haben 7 unterschiedliche Orte mit folgenden Entfernungen in km.

- a. Welche Graphenstruktur liegt vor?
- b. Bestimmen Sie den k\u00fcrzesten Weg vom Lagerort 1 zum Lagerort 7. F\u00fcllen Sie dazu die unten stehenden Tabellen vollst\u00e4ndig aus.

<u>i</u>	1	2	3	4	5	6	7	_
D[i]								_ MK:= {
R[i]								
<u>i</u>	1	2	3	4	5	6	7	_
D[i]								_ MK:= {
R[i]								·
	I							
<u>i</u>	1	2	3	4	5	6	7	_
D[i]								_ MK:= -
R[i]								L

d _{ij}	1	2	3	4	5	6	7
1	0	14		20			
2	14	0	39		22		
3		39	0		34		
4	20			0	17		33
5		22		17	0	26	51
6			34		26	0	48
7				33	51	48	0

62

5

53 MK:=

3,6,7

Aufgabe 9 Kürzeste Wegerechnung in Matrixform

Sie haben 7 unterschiedliche Orte mit folgenden Entfernungen in km.

- a. Welche Graphenstruktur liegt vor?
- b. Bestimmen Sie den k\u00fcrzesten Weg vom Lagerort 1 zum Lagerort 7. F\u00fcllen Sie dazu die unten stehenden Tabellen vollst\u00e4ndig aus.

d _{ij}	1	2	3	4	5	6	7
1	0	14		20			
2	14	0	39		22		
3		39	0		34		
4	20			0	17		33
5		22		17	0	26	51
6			34		26	0	48
7				33	51	48	0

i	1	2	3	4	5	6	7				I				
D[i]	0	14		20				_ _ MK:= {2	2 /	<u>i</u>	1	2	3	4	5
	0			20				_ IVIN [2	∠,┯	D[i]		14	53	20	36
R[i]		1		1											
<u>i</u>	1	2	3	4	5	6	7	_		R[i]		1	2	1	2
D[i]	0	14	53	20	36			_ MK:= -	4,3,	5					
R[i]		1	2	1	2			, ,							
	I														
<u>i</u>	1	2	3	4	5	6	7	_							
D[i]		14	53	20	36		53	_ MK:= -	3,5	5,7					
R[i]		1	2	1	2		4	Ĺ							

Probleme bei praktischen Wegerechnungen in Netzen

- > Große Netze
- > Netze nicht zusammenhängend
- > Unterschiedliche Bewertungen zu berücksichtigen
- > Alternative Streckenführung
- > Schnelles rerouting

Definition: Baum für einen ungerichteten Graphen

Baum: Ein ungerichteter Graph mit n Knoten und n-1 Kanten, der keinen Kreis¹) enthält, ist ein Baum. (Kreis→ Eine Kette mit identischen Anfangs und Endknoten

Spannender Baum: ein Teilgraph eines ungerichteten Graphen, der ein Baum ist und alle Knoten dieses Graphen enthält. Spannbäume existieren nur in zusammenhängenden Graphen.

Minimal spannender Baum: Ein spannender Baum in einem bewertenden Graph mit minimaler Kantenbewertung.

Minimaler spannender Baum im Digraphen

¹⁾ Kreis→ Eine Kette mit identischen Anfangs und Endknoten

Verfahren zur Bestimmung von minimal spannenden Bäumen

Verfahren von Prim- Dijkstra

(Benannt nach Robert Prim und Edsger Dijkstra)

- Wähle einen beliebigen Knoten als Startgraph T.
- Solange T noch nicht alle Knoten enthält:
 - Wähle eine Kante e mit minimalen Bewertung, die einen noch nicht in T enthaltenen Knoten v mit T verbindet.
- > Füge e und v dem Graphen T hinzu.

Verfahren von Prim- Dijkstra

- 1. Iteration: Wähle 1(oder jeden anderen Knoten)
- 2. Wähle den Knoten 3 (minimale Kantenbewertung 2)
- 3. Wähle den Knoten 5 (minimale Kantenbewertung 3)
- 4. Wähle den Knoten 2 (minimale Kantenbewertung 3)
- 5. Wähle den Knoten 6 und 4 (minimale Kantenbewertung 4); alle anderen Knoten mit gleicher Kantenbewertung sind bereits enthalten
 - > Minimal spannender Baum erzeugt.

Anwendung von minimal spannenden Bäumen

- > Versorgungs- oder Verkehrsnetze mit minimalen Gesamtkosten
- > Optimierung von Computernetzwerken mit redundanten Verbindungen
- Als vereinfachtes ("relaxiertes") Problem für das "Traveling Salesman Problem

Wandeln Sie den oben angegeben Digraphen in einen Graphen um Bestimmen Sie für den oben angegeben Graphen einen minimal spannenden Baum

Quantitative Methoden – Operations Research

Abschnitt 5 : Ganzzahlige Optimierung

Hochschule Ludwigshafen Prof. Dr. Joachim Schmidt

Ganzzahlige Optimierung und kombinatorische Optimierung

Anwendbarkeit des Simplexverfahrens:

- > Der Simplexalgorithmus ist für folgende Problemtypen geeignet
 - lineare Zielfunktion und Nebenbedingungen
 - kontinuierliche Entscheidungsvariablen
- Viele Problem haben ganzzahlige Entscheidungsvariablen
 - Ganzzahliges Problem: Die Entscheidungsvariablen müssen ganzzahlig sein.
 - Kombinatorische Probleme: Die Entscheidungsvariablen k\u00f6nnen nur die Werte 0 oder 1 annehmen.

Für ganzzahlige oder kombinatorische Probleme ist der Simplexalgorithmus in der Regel nicht geeignet.

Ganzzahlige Optimierung und kombinatorische Optimierung

In der Praxis gibt es eine Reihe von Problemen, die keine kontinuierlichen Wertebereich erlauben

Probleme mit typischerweise binären Wertebereich:

- Reihenfolgeprobleme: Festlegen der Besuchs- oder Bearbeitungsreihenfolge; z.B. Maschinenbelegung, Traveling Salesman-Problem, Briefträger-Problem, Allgemeines Tourenplanungsproblem
- Gruppierungsprobleme: Bilden von Gruppen von Objekten; z.B. Bin Packing-und Losgrößenprobleme, Tourenplanung
- Zuordnungsprobleme: Festlegen von Zuordnungen zwischen Objekten;
 z.B.lineares Zuordnungsproblem, Personaleinsatzplanung,
 Stundenplanproblem
- Auswahlprobleme: Ermittlung einer oder mehrerer Teilmengen auszuwählender Objekte; z.B. Knapsack-Problem, Investitionsplanung (nicht aufteilbare)

Schranken für Zielfunktionswerte¹⁾

Untere Schranke

- > Bei der Lösung eines Optimierungsmodells mit zu maximierender Zielfunktion erhält man durch jede zulässige (aber nicht optimale) Lösung eine untere Schranke für den optimalen Zielfunktionswert
- > Diese kann z.B. mit Hilfe einer Heuristik ermittelt

Lower Bound (LB)

> Die größte bekannte untere Schranke (globale untere Schranke) LB

Upper Bound (UB).

Eine obere Schranke (upper bound) UB erhält man durch exaktes Lösen einer Relaxation des Problems.

1) Bei zu minimierender Zielfunktion ist die Bedeutung von unteren und oberen Schranken zu vertauschen

Relaxation

Ein komplexes Optimierungsmodell wird durch Relaxation vereinfacht, indem Nebenbedingungen weggelassen oder abgeschwächt werden.

LP-Relaxation

Durch Weglassen der Ganzzahligkeitsforderung entsteht die LP-Relaxation

Lagrange Relaxation

durch Weglassen von Nebenbedingungen und Bestrafung ihrer Nichtbeachtung in der Zielfunktion erhält man die Lagrange-Relaxation.

Branch- and- Bound- Verfahren (Maximierung)

Grundablauf B&B Verfahren (Maximierungs Problem):

- Berechne eine untere Schranke LB für das Problem P₀. Falls keine LB bestimmbar wähle z.B. LB:=0
- UB wird z.B. durch eine Heuristik oder durch eine Relaxation gebildet.

Verzweigung (Branch):

Verzweige (Branch): Vereinfache das Problem und bilde mindestens zwei Relaxationen P_I als Teilproblem

Beschränkung (Bound):

> Berechne eine optimale aber nicht unbedingt zulässige Lösung als lokale obere Schranke UB (P_i) eines Teilproblems.

Anwendung des B&B Verfahrens für das Rucksackproblems

Maximiere:
$$F(x_1,x_2) = 10x_1+9x_2+12x_3+5x_4+9x_5$$
 Wert der Güter

Unter der Nebenbedingung (NB):

$$5x_1+6x_2+12x_3+10x_4+12x_5 \le 25$$
 Kapazität Rucksack x_1, \dots, x_5 $\in \{0,1\}$ Ganzzahligkeit

- > Sortiere die Produkte nach fallenden Quotient Nutzen/ Gewicht
- Packe die Güter, beginnend mit dem höchsten Quotienten in den Rucksack, solange die Gewichtsgrenze nicht überschritten ist; das erste Gut welches die Gewichtsgrenze überscheitet wird anteilig eingeplant. → UB für P₀ bestimmt
- Verzweigung nach der Tiefensuche: Die einzige nicht ganzzahlige Variable wird zu 0 bzw. zu 1 fixiert. → LB für P_i bestimmt
- > Ausloten der Teilprobleme

Bestimmung der globalen unteren Schranke LB

- > Vektor der Quotienten $c_i/w_i = (2, \frac{3}{2}, 1, \frac{1}{2}, \frac{3}{4},)$
- > Entscheidungsvariablen $x_i = (x_1, x_2, x_3, x_4, x_5)$
- Hinzunahme der Gegenstände x₁,..., x₄
- > Anteilige Hinzunahme von x₅ stellt eine Relaxation dar
- > Optimale Lösung der Relaxation $x = (1,1,1,0,\frac{1}{6})$ UB =32,5
- > Wählt man $x_5 = 0$ erhält man eine zulässige Lösung $F_0 = 31$
- > Dies ist auch die globale untere Schranke LB = 31

Quelle: Domschke, Drexel 2007, S.140

Branch & Bound für das Rucksackproblem:

Verzweigung nach der Tiefensuchstrategie; Optimale Lösung P_2 : $x_1=1, x_2=1, x_3=1, x_4=0, x_5=0$

Ausgelotet: Keine Veränderung LB

Ausgelotet: $UP(P_3) \le LB$ Muss nicht weiter betrachtet werden

Branch- and- Bound: "Ausloten" von Teilproblemen

Ein Teilproblemen einer Maximierungs Aufgabe ist ausgelotet, wenn:

1.) Das relaxierte Teilproblem P_i besitzt keine (gem. der gelockerten Bedingungen) zulässige Lösung

oder

2.) Für die (lokale) obere Schranke des Teilproblems P_i gilt $UB(P_i) \le LB$. Das Teilproblems P_i kann daher keine bessere als die bisher beste Lösung haben.

oder

3.) Die erhaltene optimale Lösung des Teilproblems P_i ist zulässig. Ist ihr Zielfunktionswert höher als die globale untere Schranke LB, so ist die Lösung des Teilproblems die neue untere Schranke LB und aktuell Lösung von P₀

Grundidee eines Branch-and-Bound-Verfahrens:

Maximierungsproblem; Annahme globale untere Schranke LB =100

Regeln zur Bildung von Teilproblemen (Branching Regel)

Tiefensuche (Lifo Regel):

- > Es wird zunächst jeweils nur das erste Teilproblem eines Knotens gebildet.
- > Dies wird so lange wiederholt, bis man einen Knoten ausloten kann.
- Danach geht man zurück und folgt dem nächstmöglichen Teilproblem wieder "in die Tiefe".

Breitensuche (Maximum Upper Bound-Regel):

- Man bildet alle Teilprobleme des aktuellen Knotens, berechnet dafür obere Schranken und sortiert sie absteigend in einer Kandidatenliste.
- Aus dieser Liste wird jeweils der erste Knoten (mit größter oberer Schranke) gewählt und weiter verzweigt.
- Bei zu minimierender Zielfunktion ist analog eine Minimal Lower Bound-Regel anzuwenden.

Komponenten eines Branch & Bound Verfahrens

- Start des Verfahrens, z.B. durch Anwendung einer Heuristik
- Regeln zur Bildung von Relaxationen P_i
- > Regeln zum Ausloten von Problemen Pi
- Regeln zur Reihenfolge der Auswahl von zu verzweigenden Problemen P_k
- Regeln zur Bildung von Teilproblemen (zum Verzweigen) eines Problems P_k

Quelle: Domschke, Drexel Einführung in das Operations Research 2006

Lineare Optimierungsaufgabe mit Ganzzahligkeitsbedingung (Problem P₀)

Maximiere: $F(x_1,x_2) = x_1+2x_2$ (6.1)

Unter der Nebenbedingung (NB):

 $x_1 + 3x_2 \leq 7 \tag{6.2}$

 $3x_1+2x_2 \leq 10$ (6.3)

 $x_1,x_2 \ge 0$ und ganzzahlig (6.4)

Lösungsprinzip:

- > Jedes Teilproblem mit nicht ganzzahliger Lösung x_h wird in zwei disjunkte Teilproblem zerlegt:
 - Die Lösung x_h wird auf die nächste ganze Zahl f auf und abgerundet (Teilproblem P₁ und P₂)
 - > Für P_1 wird die Bedingung $x_h \le f$ eingeführt
 - > Für P_2 wird die Bedingung $x_h \ge f$ eingeführt

Grafische Lösung für die Relaxation P₀ (ohne Ganzzahligkeit)

Die optimale Lösung x_1 := 2,29 und x_2 := 1.57 ist nicht zulässig Der Zielfunktionswert UB=5.43 ist ein eine obere Schranke (LB=0 ist untere Schranke) Verzweigung P_1 mit $x_1 \le 2$ und P_2 mit $x_1 \ge 3$

Simplex Tableau für das nichtganzzahlige Problem P₀

	x1	x2	х3	x4		
х3	1	3	1		7	
x4	3	2	0	1	10	
	-1	-2	0	0	0	
x2	0,33	1,00	0,33		2,33 div. 3	
x4	2,33	0,00	-0,66	1,00	5,33 mal -2	
	-0,33	0,00	0,67	0,00	4,67 mal2	
x2	0,00	1,00	0,33	-0,14	1,57	
x1	1,00	0,00	-0,28	0,43	2,29	
	0,00	0,00	0,76	0,14	5,43	

Teilproblems P₁

Maximiere: $F(x_1,x_2) = x_1+2x_2$

Unter der Nebenbedingung (NB):

$$x_1 + 3x_2 \le 7$$

$$3x_1+2x_2 \leq 10$$

 $x_1 \leq 2$

 $x_1, x_2 \ge 0$

Teilproblems P₂

Maximiere: $F(x_1,x_2) = x_1+2x_2$

Unter der Nebenbedingung (NB):

$$x_1 + 3x_2 \le 7$$

$$3x_1+2x_2 \leq 10$$

$$x_1 \geq 3$$

$$\mathbf{x}_1, \mathbf{x}_2 \geq 0$$

Die optimale Lösung von P_1 x_1 := 2; x_2 := 1.667ist nichtzulässig Zielfunktionswert UB(P_1)=5.33 \rightarrow obere Schranke (LB=0 bleibt untere Schranke) Neue Verzweigung P_3 mit $x_2 \le 1$ und P_4 mit $x_2 \ge 2$

Simplex Tableau und Umformung für relaxiertes Problem P₁

Zusätzliche Randbedingung x1<2

	x1	x2	х3	x 4	x5	
х3	1	3	1			7
x4	3	2	0	1		10
<u>x5</u>	1	0	0		1	2
	-1	-2	0	0	0	
x2	0,33	1,00	0,33			2,33
x4	2,33	0,00		1,00		5,33
<u>x5</u>	1,00	0,00	0,00		1,00	2,00
	-0,33	0,00	0,67	0,00	4,67	4,67
x2	0,00	1,00	0,33		0.33	1,67
x4	0,00	0,00		1,00	2,33	0,67
<u>x1</u>	1,00	0,00	0,00		1,00	2,00
	0,00	0,00	0,67	0,00	5,00	5,33

Lösungsbaum

Charakteristik: Branch & Bound

- Branch-and-Bound führt auf einen Entscheidungsbaum, ist selbst aber kein spezielles Verfahren, sondern eine Behandlungsmethode (Meta-Verfahren).
- > Für konkrete kombinatorische Optimierungsprobleme ergeben sich dementsprechend angepasste Branch-and-Bound-Algorithmen

Meta-Verfahren

- > Bestimmung einer globalen LB über Heuristik oder Relaxation
- Regeln zur Bildung eines vereinfachten Problems (z.B. Verzicht auf Ganzzahligkeit wird als LP¹⁾ Relaxation bezeichnet
- > Suchstrategie (Breiten-, Tiefensuche)
- > Regeln zum Ausloten

Lösungsverfahren

- z.B. Simplex Verfahren für ein LP Problem
- Heuristisch Lösungsverfahren (siehe später Heuristik für das Rucksack Problem)
 Verfahren

Verbesserungs- und Suchverfahren

Unterscheidung zwischen Verbesserungs- und lokalen Suchverfahren

Verbesserungsverfahren:

Startet z.B. mit der Lösung y_1 und findet das lokalen Minimum in y_2 , jedoch nicht, das globale Minimum y* zu finden, da es keine Verschlechterung zulässt. (Bsp. 2- Opt Verfahren)

Lokales Suchverfahren:

Gelangt u.U. aus y₂ wieder heraus, indem es einen oder mehrere Züge zur schlechteren Lösung y₃ (lokales Maximum) durchführt um dann y* zu erreichen. Art der Suche wird über eine heuristische Metastrategie festgelegt (Bsp. Simulated Annealing, Threshold Accepting)

Quelle: nach: Domschke, Scholl, Heursitken, Jenaer Schriften zur Wirtschaftswissenschaft, 2006

Einordnung von Branch & Bound Verfahren

Branch&Bound

- Eine neue UB ergibt sich durch Heuristiken oder durch die beste bisher gefundene Lösung (nur bei Tiefensuche).
- > Bei der Breitensuche ist der Speicherplatz zu berücksichtigen, aber die erste erhaltene zulässige Lösung ist aber i.d.R. sehr gut

Weiter Ansätze

- > Für kleine Problemgrößen kann man mit Enumerationsverfahren auch für NP schwere Problem optimale Lösungen finden.
- Approximativen Lösung von Optimierungsproblemen: Realistische Optimierungsproblem, die durch ihre hohe Komplexität das vollständige Ausprobieren aller Möglichkeiten und einfache mathematische Verfahren ausschließen
 - → Heuristiken, Nachoptimierung, Naturanaloge Algorithmen (z.B. Simulated Annealing, Genetische Algorithmen)

Teil 5 Quantitative Methoden – Operations Research Quantitative Methoden: Kombinatorische und Ganzzahlige Optimierung

