

WORLD INTELLECTUAL PROPERTY OR ZATION

International Bureau INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 7: WO 00/34526 (11) International Publication Number: A1 C12Q 1/68, C07K 14/435 (43) International Publication Date: 15 June 2000 (15.06.00) PCT/US99/29405 (81) Designated States: JP, European patent (AT, BE, CH, CY, DE, (21) International Application Number: DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). (22) International Filing Date: 10 December 1999 (10.12.99) Published (30) Priority Data: With international search report. 09/210,330 11 December 1998 (11.12.98) (71) Applicant: CLONTECH LABORATORIES, INC. [US/US]; 1020 East Meadow Drive, Palo Alto, CA 94303 (US). (72) Inventors: LUKYANOY, Sergey Anatolievich; ul. Golubinskaya 13/1-161, Moscow (RU). FRADKOV, Arcady Fedorovich; ul. Dnepropetrovskaya, 35/2-14, Moscow, 113570 (RU). LABAS, Yulii Aleksandrovich; ul. Generala Tyuleneva, 35-416, Moscow, 117465 (RU). MATZ, Mikhail Vladimirovich; ul. Teplii stan, 7/2-28, Moscow, 117465 (RU). (74) Agent: ADLER, Benjamin, A.; McGregor & Adler, 8011 Candle Ln., Houston, TX 77071 (US). (54) Title: FLUORESCENT PROTEINS FROM NON-BIOLUMINESCENT SPECIES OF CLASS ANTHOZOA, GENES ENCODING SUCH PROTEINS AND USES THEREOF (57) Abstract The present invention is directed to novel fluorescent proteins from non-bioluminescent organisms from the Class Anthozoa. Also disclosed are methods of identifying nucleic acid sequence encoding the fluorescent proteins and further analyzing the proteins.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

4.4	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AL		ES Fl	Spain Finland	LT	Lithuania	SK	Slovakia
AM	Armenia						
AT	Austria .	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago .
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW.	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
a	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	, LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		•
EE	Estonia	LR	Liberia	SG	Singapore		
1							

FLUORESCENT PROTEINS FROM NON-BIOLUMINESCENT SPECIES OF CLASS ANTHOZOA, GENES ENCODING SUCH PROTEINS AND USES THEREOF

5

10

15

20

25

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to the field of molecular biology.

More specifically, this invention relates to novel fluorescent proteins,
methods of identifying the DNA sequences encoding the proteins and
uses thereof.

Description of the Related Art

Fluorescence labeling is a particularly useful tool for marking a protein, cell, or organism of interest. Traditionally, protein of interest is purified, then covalently conjugated fluorophore derivative. For in vivo studies, the protein-dye complex is then inserted into cells of interest using micropipetting or a method of reversible permeabilization. The dye attachment and insertion steps, however, make the process laborious and difficult to control. alternative method of labeling proteins of interest is to concatenate or fuse the gene expressing the protein of interest to a gene expressing a marker, then express the fusion product. Typical markers for this method of protein labeling include β-galactosidase, firefly luciferase

10

15

20

25

and bacterial luciferase. These markers, however, require exogenous substrates or cofactors and are therefore of limited use for *in vivo* studies.

A marker that does not require an exogenous cofactor or substrate is the green fluorescent protein (GFP) of the jellyfish Aequorea victoria, a protein with an excitation maximum at 395 nm, a second excitation peak at 475 nm and an emission maximum at 510 nm. GFP is a 238-amino acid protein, with amino acids 65-67 involved in the formation of the chromophore.

Uses of GFP for the study of gene expression and protein localization are discussed in detail by Chalfie et al. in *Science* 263 (1994), 802-805, and Heim et al. in *Proc. Nat. Acad. Sci.* 91 (1994), 12501-12504. Additionally, Rizzuto et al. in *Curr. Biology* 5 (1995), 635-642, discuss the use of wild-type GFP as a tool for visualizing subcellular organelles in cells, while Kaether and Gerdes in *Febs Letters* 369 (1995), 267-271, report the visualization of protein transport along the secretory pathway using wild-type GFP. The expression of GFP in plant cells is discussed by Hu and Cheng in *Febs Letters* 369 (1995), 331-334, while GFP expression in *Drosophila* embryos is described by Davis et al. in *Dev. Biology* 170 (1995), 726-729.

Crystallographic structures of wild-type GFP and the mutant GFP S65T reveal that the GFP tertiary structure resembles a barrel (Ormö et al., Science 273 (1996), 1392-1395; Yang, et al., Nature Biotechnol 14 (1996), 1246-1251). The barrel consists of beta sheets in a compact structure, where, in the center, an alpha helix containing the chromophore is shielded by the barrel. The compact structure makes GFP very stable under diverse and/or harsh conditions such as protease treatment, making GFP an extremely useful reporter in

10

15

20

25

general. However, the stability of GFP makes it sub-optimal for determining short-term or repetitive events.

A great deal of research is being performed to improve the properties of GFP and to produce GFP reagents useful and optimized for a variety of research purposes. New versions of GFP have been developed, such as a "humanized" GFP DNA, the protein product of which has increased synthesis in mammalian cells (Haas, et al., Current Biology 6 (1996), 315-324; Yang, et al., Nucleic Acids Research 24 (1996), 4592-4593). One such humanized protein is "enhanced green fluorescent protein" (EGFP). Other mutations to GFP have resulted in blue-, cyan- and yellow-green light emitting versions. Despite the great utility of GFP, however, other fluorescent proteins with properties similar to or different from GFP would be useful in the art. fluorescent proteins result in possible new colors, or produce pH-Other benefits of novel fluorescent proteins dependent fluorescence. include fluorescence resonance energy transfer (FRET) possibilities based on new spectra and better suitability for larger excitation.

The prior art is deficient in novel fluorescent proteins wherein the DNA coding sequences are known. The present invention fulfills this long-standing need in the art.

SUMMARY OF THE INVENTION

The present invention is directed to an isolated and purified fluorescent protein selected from the group consisting of amFP486, cFP484, zFP506, zFP538, dsFP483, drFP583, asFP600, dgFP512 and dmFP592.

WO 00/34526

10

15

20

25

In one embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence encodes a peptide having a sequence selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12 and 14. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

In another embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence hybridizes to a primer selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15 and 16. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

In still another embodiment of the present invention, there is provided a method of analyzing a fluorescent protein in a cell, comprising the steps of expressing a nucleic acid sequence encoding a fluorescent protein having an amino acid sequence selected from the group consisting of SEQ ID Nos. 55-63 in the cell; and measuring a This method further comprises a fluorescence signal from the protein. step of sorting the cell according to the signal. Preferably, the cell is sorted by fluorescence activated cell sorting. Still preferably, nucleic acid sequence comprises a gene of interest encoding a protein of interest fused to the fluorescent protein, wherein the protein of interest is distinct from the fluorescent protein. The detected fluorescence signal indicates the presence of the gene of interest and the protein of interest in the cell. By identifying further a n

10

15

20

25

intracellular location of the fluorescent protein, an intracellular location of the protein of interest is also identified.

Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the presently preferred embodiments of the invention given for the purpose of disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the modified strategy of 3'-RACE used to isolate the target fragments. Sequences of the oligonucleotides used are shown in Table 2. Dp1 and Dp2 are the degenerate primers used in the first and second PCR, respectively (see Tables 3 and 4 for the sequences of degenerate primers).

Figure 2A shows multiple alignment of novel fluorescent proteins. The numbering is based on Aequorea victoria green fluorescent protein (GFP). Two proteins from Zoanthus and four from Discosoma are compared between each other: residues identical to the corresponding ones in the first protein of the series are represented by dashes. Introduced gaps are represented by dots. In the sequence of A. victoria GFP, the stretches forming beta-sheets are underlined; the residues whose side chains form the interior of the beta-can are shaded (according to Yang et al., Nature Biotechnol. 14, 1246–1251 (1996). Figure 2B shows the N-terminal part of cFP484, which has no homology with the other proteins. The putative signal peptide is underlined.

Figure 3 shows the excitation and emission spectrum of the novel fluorescent protein from Anemonia majano, amFP486.

15

25

Figure 4 shows the excitation and emission spectrum of the novel fluorescent protein from Clavularia, cFP484.

Figure 5 shows the excitation and emission spectrum of the novel fluorescent protein from Zoanthus, zFP506.

Figure 6 shows the excitation and emission spectrum of the novel fluorescent protein from Zoanthus, zFP538.

Figure 7 shows the excitation and emission spectrum of the novel fluorescent protein from *Discosoma striata*, dsFP483.

Figure 8 shows the excitation and emission spectrum of the novel fluorescent protein from *Discosoma*, drFP583.

Figure 9 shows the excitation and emission spectrum of the novel fluorescent protein from *Anemonia sulcata*, asFP600.

Figure 10 shows the excitation and emission spectrum of the novel fluorescent protein from *Discosoma*, dgFP512.

Figure 11 shows the excitation and emission spectrum of the novel fluorescent protein from *Discosoma*, dmFP592.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the term "GFP" refers to the basic green fluorescent protein from Aequorea victoria, including prior art versions of GFP engineered to provide greater fluorescence or fluoresce in different colors. The sequence of Aequorea victoria GFP (SEQ ID No. 54) has been disclosed in Prasher et al., Gene 111 (1992), 229-33.

As used herein, the term "EGFP" refers to mutant variant of GFP having two amino acid substitutions: F64L and S65T (Heim et al., Nature 373 (1995), 663-664). The term "humanized" refers to changes made to the GFP nucleic acid sequence to optimize the codons for

15

20

25

expression of the protein in human cells (Yang et al., Nucleic Acids Research 24 (1996), 4592-4593).

with the present invention there may be In accordance molecular biology, microbiology, and employed conventional DNA techniques within the skill of the art. Such recombinant techniques are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual (1982); "DNA Cloning: A Practical Approach," Volumes I and II (D.N. Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" (B.D. Hames & S.J. Higgins eds. (1985)); "Transcription and Translation" (B.D. Hames & S.J. Higgins eds. (1984)); "Animal Cell Culture" (R.I. Freshney, ed. (1986)); "Immobilized Cells and Enzymes" (IRL Press, (1986)); B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in either single stranded form or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes.

A DNA "coding sequence" is a DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3'

10

15

20

25

(carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and synthetic DNA sequences. A polyadenylation signal and transcription termination sequence may be located 3' to the coding sequence.

As used herein, the term "hybridization" refers to the process of association of two nucleic acid strands to form an antiparallel duplex stabilized by means of hydrogen bonding between residues of the opposite nucleic acid strands.

The term "oligonucleotide" refers to a short (under 100 bases in length) nucleic acid molecule.

"DNA regulatory sequences", as used herein, are transcriptional and translational control sequences, such as promoters, enhancers, polyadenylation signals, terminators, and the like, that provide for and/or regulate expression of a coding sequence in a host cell.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above the promoter Within background. sequence will be found initiation site, as well as protein transcription binding responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Various promoters, including inducible promoters, may be used to drive the various vectors of the present invention.

10

15

20

25

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.

has been "transformed" or "transfected" b y exogenous or heterologous DNA when such DNA has been introduced inside the cell. The transforming DNA may or may not be integrated (covalently linked) into the genome of the cell. In prokaryotes, yeast, and mammalian cells for example, the transforming DNA may be maintained on an episomal element such as a plasmid. With respect to eukaryotic cells, a stably transformed cell is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example, heterologous DNA includes coding sequence in a construct where portions of genes from two different sources have been brought together so as to produce a fusion protein product. Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

10

15

20

25

As used herein, the term "reporter gene" refers to a coding sequence attached to heterologous promoter or enhancer elements and whose product may be assayed easily and quantifiably when the construct is introduced into tissues or cells.

The amino acids described herein are preferred to be in the "L" isomeric form. The amino acid sequences are given in one-letter code (A: alanine; C: cysteine; D: aspartic acid; E: gluetamic acid; F: phenylalanine; G: glycine; H: histidine; I: isoleucine; K: lysine; L: leucine; M: metionine; N: asparagine; P: proline; Q: gluetamine; R: arginine; S: serine; T: threonine; V: valine; W: tryptophane; Y: tyrosine; X: any residue). NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide. In keeping with standard polypeptide nomenclature, *J Biol. Chem.*, 243 (1969), 3552-59 is used.

The present invention is directed to an isolated and purified fluorescent protein selected from the group consisting of amFP486, cFP484, zFP506, zFP538, dsFP483, drFP583, asFP600, dgFP512 and dmFP592.

In one embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence encodes a peptide having a sequence selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12 and 14. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

In another embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a

10

15

20

fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence hybridizes to a primer selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15 and 16. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

In still another embodiment of the present invention, there is provided a method of analyzing a fluorescent protein in a cell, comprising the steps of expressing a nucleic acid sequence encoding a fluorescent protein having an amino acid sequence selected from the group consisting of SEQ ID Nos. 55-63 in the cell; and measuring a fluorescence signal from the protein. This method further comprises a step of sorting the cell according to the signal. Preferably, the cell is sorted by fluorescence activated cell sorting. Still preferably, the nucleic acid sequence comprises a gene of interest encoding a protein of interest fused to the fluorescent protein, wherein the protein of interest is distinct from the fluorescent protein. The detected fluorescence signal indicates the presence of the gene of interest and further the protein of interest in the cell. By identifying location of the fluorescent protein, intracellular an intracellular location of the protein of interest is also identified.

The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion.

EXAMPLE 1

Biological Material

Novel fluorescent proteins were identified from several genera of Anthozoa which do not exhibit any bioluminescence but have fluorescent color as observed under usual white light or ultraviolet light. Six species were chosen (see Table 1).

10

5

TABLE 1

Anthozoa Species Used in This Study

Species	Area of Origination	Fluorescent Color
Anemonia	Western Pacific	bright green tentacle tips
majano	-	
Clavularia sp.	Western Pacific	bright green tentacles and
		oral disk
Zoanthus sp.	Western Pacific	green-yellow tentacles and
		oral disk
Discosoma sp.	Western Pacific	orange-red spots oral disk
"red"		
Discosoma	Western Pacific	blue-green stripes on oral
striata	-	disk
Discosoma sp.	Western Pacific	faintly purple oral disk
"magenta"		
Discosoma sp.	Western Pacific	green spots on oral disk

"green"		
Anemonia	Mediterranean	purple tentacle tips
sulcata		

WO 00/34524

EXAMPLE 2

cDNA Preparation

5

15

Total RNA was isolated from the species of interest according to the protocol of Chomczynski and Sacchi (Chomczynski P., et al., Anal. Biochem. 162 (1987), 156-159). First-strand cDNA was synthetized starting with 1-3 µg of total RNA using SMART PCR cDNA synthesis kit (CLONTECH) according to the provided protocol with the only alteration being that the "cDNA synthesis primer" provided in the kit was replaced by the primer TN3 (5'- CGCAGTCGACCG(T)₁₃, SEQ ID Amplified cDNA samples were then prepared as No. 1) (Table 2). described in the protocol provided except the two primers used for PCR were the TS primer (5'-AAGCAGTGGTATCAACGCAGAGT, SEQ ID No. 2) (Table 2) and the TN3 primer (Table 2), both in 0.1 µM concentration. Twenty to twenty-five PCR cycles were performed to amplify a cDNA sample. The amplified cDNA was diluted 20-fold in water and 1 µl of this dilution was used in subsequent procedures.

TABLE 2

Oligos Used in cDNA Synthesis and RACE

5 TN3: 5'-CGCAGTCGACCG(T)₁₃

WO 00/34

(SEQ ID No. 1)

T7-TN3: 5'-GTAATACGACTCACTATAGGGCCGCAGTCGACCG(T)₁₃

(SEQ ID No. 17)

10

TS-primer: 5'-AAGCAGTGGTATCAACGCAGAGT (SEQ ID No. 2)

T7-TS:

15 5'-GTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT (SEQ ID No. 18)

T7: 5'-GTAATACGACTCACTATAGGGC

(SEQ ID No. 19)

20

TS-oligo 5'-AAGCAGTGGTATCAACGCAGAGTACGCrGrGrG (SEQ ID No. 53)

25

EXAMPLE 3

Oligo Design

5

10

To isolate fragments of novel fluorescent protein cDNAs, PCR using degenerate primers was performed. Degenerate primers were designed to match the sequence of the mRNAs in regions that were predicted to be the most invariant in the family of fluorescent proteins. Four such stretches were chosen (Table 3) and variants of degenerate primers were designed. All such primers were directed to the 3'-end of mRNA. All oligos were gel-purified before use. Table 2 shows the oligos used in cDNA synthesis and RACE.

TABLE 3

Key Amino Acid Stretches and Corresponding Degenerate Primers Used for Isolation of Fluorescent Proteins

5

	r		
Stretch Position	Amino Acid		
according to	Sequence of	Degenerated Primer Name	
A. victoria GFP (7)	the Key Stretch	and Sequence	
20-25	GXVNGH	NGH: 5'- GA(C,T) GGC TGC	
	(SEQ ID No. 3)	GT(A,T,G,C) $AA(T,C)$ $GG(A,T,G)$	
		CA (SEQ ID No. 4)	
31-35	GEGEG	GEGa: 5'- GTT ACA GGT GA(A,G)	
·	(SEQ ID No. 5)	GG(A,C) GA(A,G) GG	
	1	(SEQ ID No. 6)	
		GEGb: 5'- GTT ACA GGT GA(A,G)	
		GG(T,G) $GA(A,G)$ GG	
	GEGNG	(SEQ ID No. 7)	
	GEGNG	GNGa: 5'- GTT ACA GGT GA(A,G)	
	(SEQ ID No. 8)	GG(A,C) AA(C,T) GG	
		(SEQ ID No. 9)	
		GNGb: 5'- GTT ACA GGT GA(A,G) GG(T,G) AA(C,T) GG	
		(SEQ ID No. 10)	
127-131	GMNFP	NFP: 5' TTC CA(C,T) GGT	
127-131	(SEQ ID No. 11)	(G,A)TG AA(C,T) TT(C,T) CC	
	GVNFP	(SEQ ID NO. 13)	
	(SEQ ID No. 12)	(820 25 110. 15)	
134-137	GPVM	PVMa: 5' CCT GCC (G,A)A(C,T)	
	(SEQ ID No. 14)	GGT CC(A,T,G,C) GT(A,C) ATG	
		(SEQ ID NO. 15)	
		PVMb: 5' CCT GCC (G,A)A(C,T)	
		GGT CC(A,T,G,C) GT(G,T) ATG	
	·	(SEQ ID NO. 16)	

10

15

EXAMPLE 4

Isolation of 3'-cDNA Fragments of nFPs

The modified strategy of 3'-RACE was used to isolate the target fragments (see Figure 1). The RACE strategy involved two consecutive PCR steps. The first PCR step involved a first degenerate primer (Table 4) and the T7-TN3 primer (SEQ ID No. 17) which has a 3' portion identical to the TN3 primer used for cDNA synthesis (for sequence of T7-TN3, Table 2). The reason for substituting the longer T7-TN3 primer in this PCR step was that background amplification which occurred when using the shorter TN3 primer was suppressed effectively, particularly when the T7-TN3 primer was used at a low concentration (0.1 _M) (Frohman et al., (1998) PNAS USA, 85, 8998-9002). The second PCR step involved the TN3 primer (SEQ ID No. 1, Table 2) and a second degenerate primer (Table 4).

TABLE 4

Combinations of Degenerate Primers for First and Second PCR Resulting in Specific Amplification of 3'-Fragments of nFP cDNA

Species	First	Second Degenerate Primer
	Degenerate	
	Primer	
Anemonia majano	NGH	GNGb
	(SEQ ID No. 4)	(SEQ ID No. 10)
Clavularia sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Zoanthus sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Discosoma sp. "red"	NGH	GEGa (SEQ ID No. 6),
	(SEQ ID No. 4)	NFP (SEQ ID No. 13) or
		PVMb (SEQ ID No. 16)
Discosoma striata	NGH	NFP
	(SEQ ID No. 4)	(SEQ ID No. 13)
Anemonia sulcata	NGH	GEGa (SEQ ID No. 6)
	(SEQ ID No. 4)	or NFP (SEQ ID No. 13)

5

The first PCR reaction was performed as follows: 1 µl of 20-fold dilution of the amplified cDNA sample was added into the reaction mixture containing 1X Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 µM dNTPs, 0.3 µM of first degenerate

primer (Table 4) and 0.1 µM of T7-TN3 (SEQ ID No. 17) primer in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C, 1 min.; 72°C, 40 sec; 24 cycles for 95°C, 10 sec.; 62°C, 30 sec.; 72°C, 40 The reaction was then diluted 20-fold in water and 1 µl of this dilution was added to a second PCR reaction, which contained Advantage KlenTaq Polymerase Mix with the buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.3 µM of the second degenerate primer (Table 4) and 0.1 µM of TN3 primer. profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C (for GEG/GNG or PVM) or 52°C (for NFP), 1 min.; 72°C, 40 sec; 13 cycles for 95°C, 10sec.; 62°C (for GEG/GNG or PVM) or 58°C (for NFP), 30 sec.; 72°C, 40 sec. The product of PCR was cloned into PCR-Script vector (Stratagene) according to the manufacturer's protocol.

WO 00/34526

5

10

15

20

25

Different combinations of degenerate primers were tried in the first and second PCR reactions on the DNA from each species until a combination of primers was found that resulted specific in band of expected amplification--meaning that a pronounced (about 650-800 bp for NGH and GEG/GNG and 350-500 bp for NFP and PVM--sometimes accompanied by a few minor bands) was detected on agarose gel after two PCR reactions. The primer combinations choice for different species of the Class Anthozoa are listed in Table 4. Some other primer combinations also resulted in amplification fragments of correct size, but the sequence of these fragments showed no homology to the other fluorescent proteins identified or to Aequorea victoria GFP.

10

15

20

25

EXAMPLE 5

Obtaining Full-Length cDNA Copies

obtained 3'-fragments novel Upon sequencing the cDNAs, two nested 5'-directed primers protein were fluorescent synthesized for cDNA (Table 5), and the 5' ends of the cDNAs were then amplified using two consecutive PCRs. In the next PCR reaction, the novel approach of "step-out PCR" was used to suppress background The step-out reaction mixture contained 1x Advantage amplification. KlenTaq Polymerase Mix using buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.2 µM of the first gene-specific primer (see Table 5), 0.02 µM of the T7-TS primer (SEQ ID No. 18), 0.1 µM of T7 primer (SEQ ID No. 19) and 1 µl of the 20-fold dilution of the amplified cDNA sample in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was diluted 50-fold in water and one μ l of this dilution was added to the second (nested) PCR. The reaction contained 1X Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 μM dNTPs, 0.2 μM of the second gene-specific primer and 0.1 μM of TS primer (SEQ ID No. 2) in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 12 The product of cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. amplification was then cloned into pAtlas vector (CLONTECH) according to the manufacturer's protocol.

TABLE 5

Gene-Specific Primers Used for 5'-RACE

Species	First Primer	Second (Nested) Primer	
Anemonia	5'-GAAATAGTCAGGCATACTGGT	5'-GTCAGGCATAC	
majano	(SEQ ID No. 20)	TGGTAGGAT	
	·	(SEQ ID No. 21)	
Clavularia	5'-CTTGAAATAGTCTGCTATATC	5'-TCTGCTATATC	
sp.	(SEQ ID No. 22)	GTCTGGGT	
•		(SEQ ID No. 23)	
Zoanthus	5'-	5'-GTCTACTATGTCTT	
sp.	GTTCTTGAAATAGTCTACTATGT	GAGGAT	
	(SEQ ID No. 24)	(SEQ ID No. 25)	
Discosoma	5'-CAAGCAAATGGCAAAGGTC	5'-CGGTATTGTGGCC	
sp. "red"	(SEQ ID No. 26)	TTCGTA	
•		(SEQ ID No. 27)	
Discosoma	5'-TTGTCTTCTTCTGCACAAC	5'-CTGCACAACGG	
striata	(SEQ ID No. 28)	GTCCAT	
		(SEQ ID No. 29)	
Anemonia	5'-CCTCTATCTTCATTTCCTGC	5'-TATCTTCATTTCCT	
sulcata	(SEQ ID No. 30)	GCGTAC	
•		(SEQ ID No. 31)	
Discosoma	-5'-TTCAGCACCCCATCACGAG	5'-ACGCTCAGAGCTG	
sp.	(SEQ ID No. 32)	GGTTCC	
"magenta"		(SEQ ID No. 33)	
Discosoma	5'-CCCTCAGCAATCCATCACGTTC	5'-ATTATCTCAGTGGA	
sp. "green"	(SEQ ID No. 34)	TGGTTC	
	·	(SEQ ID No. 35)	

EXAMPLE 6

Expression of nFPs in E.coli

WO 00/34

5

10

15

20

25

To prepare a DNA construct for novel fluorescent protein expression, two primers were synthesized for each cDNA: a 5'-directed "downstream" primer with the annealing site located in the 3'-UTR of the cDNA and a 3'-directed "upstream" primer corresponding to the site of translation start site (not including the first ATG codon) (Table Both primers had 5'-heels coding for a site for a restriction endonuclease; in addition, the upstream primer was designed so as to allow the eloning of the PCR product into the pQE30 vector (Qiagen) in such a way that resulted in the fusion of reading frames of the vectorencoded 6xHis-tag and nFP. The PCR was performed as follows: 1 µl of the 20-fold dilution of the amplified cDNA sample was added to a mixture containing 1x Advantage KlenTaq Polymerase Mix with buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.2 µM of upstream primer and 0.2 µM of downstream primer, in a final total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of this amplification step was purified by phenol-chlorophorm extraction and ethanol precipitation and then cloned into pQE30 vector using restriction endonucleases corresponding to the primers' standard sequence according to protocols.

All plasmids were amplified in XL-1 blue *E. coli* and purified by plasmid DNA miniprep kits (CLONTECH). The recombinant clones were selected by colony color, and grown in 3 ml of LB medium (supplemented with 100 µg/ml of ampicillin) at 37°C overnight. 100 µl

of the overnight culture was transferred into 200 ml of fresh IB medium containing 100 μ g/ml of ampicillin and grown at 37°C, 200 rpm up to OD₆₀₀ 0.6-0.7. 1 mM IPTG was then added to the culture and incubation was allowed to proceed at 37°C for another 16 hours. The cells were harvested and recombinant protein, which incorporated 6x His tags on the N-terminus, was purified using TALONTM metal-affinity resin according to the manufacturer's protocol (CLONTECH).

5

WO 00/34

Primers Used to Obtain Full Coding Region of nFPs for Cloning into Expression Construct

Species	Upstream Primer	Downstream Primer
Anemonia majano	5' -acatggatccgctctttcaaaca agtttatc (SEQ ID No. 36) BamHI	5'-tagtactcgagcttattcgta tttcagtgaaatc (SEQ ID No. 37) XhoI
Clavularia sp.	L: 5'-acatggatccaacattttttga gaaacg (SEQ ID No. 38) BamHI S: 5'-acatggatccaaagctctaacc accatg (SEQ ID No. 39) BamHI	5'-tagtactcgagcaacacaa accctcagacaa (SEQ ID No. 40) XhoI
Zoanthus sp.	5'- acatggatccgctcagtcaaag cacggt (SEQ ID No. 41) BamHI	5'-tagtactcgaggttggaactacat tcttatca (SEQ ID No. 42) XhoI
Discosoma sp. "red"	5'- acatggatccaggtettccaagaat gttatc (SEQ ID No. 43) BamHI	5'-tagtactcgaggagccaagttc agcctta (SEQ ID No. 44) XhoI
Discosoma striata	5'- acatggatccagttggtccaagagtgtg (SEQ ID No. 45) BamHI	5'-tagcgagctctatcatgcctc gtcacct (SEQ ID No. 46) SacI
Anemonia sulcata	5'- acatggatccgcttcctttttaaagaagact (SEQ ID No. 47) BamHI	5'-tagtactcgagtccttgggagc ggcttg (SEQ ID No. 48) XhoI
Discosoma sp. "magenta"	5'- acatggatccagttgttccaagaatgtgat (SEQ ID No. 49) BamHI	5'-tagtactcgaggccattacg ctaatc (SEQ ID No. 50) XhoI
Discosoma sp. "green"	5'-acatggatccagtgcacttaaagaagaaatg (SEQ ID No. 51)	5'-tagtactcgagattcggtttaat gccttg (SEQ ID No. 52)

EXAMPLE 7

Novel Fluorescent Proteins and cDNAs Encoding the Proteins

Seven cDNA full-length cDNAs encoding fluorescent proteins were obtained (SEQ ID Nos. 45-51), and seven novel fluorescent proteins were produced (SEQ ID Nos. 53-59). The spectral properties of the isolated novel fluorescent proteins are shown in Table 7, and the emission and excitation spectra for the novel proteins are shown in Figures 3-11.

10

5

TABLE 7

Spectral Properties of the Isolated NFPs.

Species	NFP	Abs.	Emission	Maximum	Relative	Relative
	Name	Max.	Maximum	Extinction	Quantum	Brightness
		n m	n m	Coeff.	Yield*	**
Anemonia majano	amFP486	458	486	40,000	0.3	0.43
Clavularia sp.	cFP484	456	484	35,300	0.6	0.77
Zoanthus sp.	zFP506	496	506	35,600	0.79	1.02
Zoanthus sp.	zFP538	528	538	20,200	0.52	0.38
Discosoma sp. "red"	drFP583	558	583	22,500	0.29	0.24
Discosoma striata	dsFP483	443	483	23,900	0.57	0.50
Anemonia sulcata	asFP600	572	596	56,200	<0.001	-
Discosoma sp "green"	dgFP512	502	512	20,360	0.3	0.21
Discosoma sp. "magenta"	dmFP592	573	593	21,800	0.11	0.09

^{5 *}relative quantum yield was determined as compared to the quantum yield of A. victoria GFP.

^{**}relative brightness is extinction coefficient multiplied by quantum yield divided by the same value for A. victoria GFP.

10

Multiple alignment of fluorescent proteins is shown in The numbering is based on Aequorea victoria green Figure 2A. fluorescent protein (GFP, SEQ ID No. 54). The amino acid sequences of the novel fluorescent proteins are labeled as SEQ ID Nos. 55-63. proteins from Zoanthus and four from Discosoma are compared between each other: residues identical to the corresponding ones in the first protein of the series are represented by dashes. Introduced gaps are represented by dots. In the sequence of A. victoria GFP, the stretches forming \beta-sheets are underlined; the residues whose side chains form the interior of the β-can are shaded. Figure 2B shows the N-terminal part of cFP484, which has no homology with the other proteins. The putative signal peptide is underlined.

The following references were cited herein.

- 1. Ormo et al., (1996) Science 273: 1392-1395.
- 15 2. Yang, F., et al., (1996) Nature Biotech 14: 1246-1251.
 - 3. Cormack, et al., (1996) Gene 173, 33-38.
 - 4. Haas, et al., (1996) Current Biology 6, 315-324.
 - 5. Yang, et al., (1996) Nucleic Acids Research 24, 4592-4593.
 - 6. Ghoda, et al.. (1990) J. Biol. Chem. 265: 11823-11826.
- 20 7. Prasher D.C. et al. (1992) Gene 111:229-33.
 - 8. Kain et al. (1995) Biotechniques 19(4):650-55.
 - 9. Chomczynski P., et al., (1987) Anal. Biochem. 162, 156-159.
 - 10. Frohman et al., (1998) PNAS USA, 85, 8998-9002.

Any patents or publications mentioned in this specification 25 are indicative of the levels of those skilled in the art to which the invention pertains. These patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated bе incorporated by reference.

10

One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The present examples along with the methods, procedures, treatments, molecules, and specific compounds described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention as defined by the scope of the claims.

WHAT IS CLAIMED IS:

1. A method of identifying a DNA sequence encoding a fluorescent protein, comprising the step of:

screening for an existence of a nucleic acid sequence in a sample, wherein said nucleic acid sequence encodes a peptide having a sequence selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12 and 14, and wherein the existence of said nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

10

15

25

5

2. A method of identifying a DNA sequence encoding a fluorescent protein, comprising the step of:

screening for an existence of a nucleic acid sequence in a sample, wherein said nucleic acid sequence hybridizes to a primer selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15 and 16, and wherein the existence of said nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

- 3. A method of analyzing a fluorescent protein in a cell, 20 comprising the steps of:
 - a) expressing a nucleic acid sequence encoding a fluorescent protein in said cell, wherein said protein having an amino acid sequence selected from the group consisting of SEQ ID Nos. 55-63; and
 - b) measuring a fluorescence signal from said protein.
 - 4. The method of claim 3, further comprising the step of:

sorting said cell according to said signal.

- 5. The method of claim 4, wherein said step of sorting comprises sorting said cell by fluorescence activated cell sorting.
- 5 6. The method of claim 3, wherein said nucleic acid sequence comprises a gene of interest encoding a protein of interest fused to said fluorescent protein, wherein said protein of interest is distinct from said fluorescent protein.
- 7. The method of claim 6, wherein the fluorescence signal indicates a presence of said gene of interest in said cell.
 - 8. The method of claim 7, wherein said cell further comprises a protein of interest fused to said fluorescent protein.
 - 9. The method of claim 8, further comprising the step of:

identifying an intracellular location of said fluorescent protein, thereby identifying an intracellular location of said protein of 20 interest.

10. An isolated and purified fluorescent protein selected from the group consisting of amFP486, cFP484, zFP506, zFP538, dsFP483, drFP583, asFP600, dgFP512 and dmFP592.

10 20 30 40 50 MSKGEELFTG. VVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTT.GKLPVPW GFP	SEQ ID#
MAQSKHGLTK. EMTMKYRMEGCVDGHKEVITGEGIGVDBVGVG	54
	0 0
MSWSKSVIKE.EMLIDLHLEGTFNGHVEEIVCVGVGVGVGVGVG	
M-ALY-K-N-TMVVLP-K-R-DYQ-SQELT-VSY dgFP5	12 62
-RSNSY dgFP5 M-CNF-RFKVRMVFR-R-Y-HK-KA- drFP5	83 60
E-E-R-IHCS-K-M	00
MASFLKK.TMPFKTTIEGTVNGHYFKCTGKGEGNPFEGTQEMKIEVIEGGPLPFAF asFP6	00 61
MALSNKFIGD.DMKMTYHMDGCVNGHYFTVKGEGNGKPYEGTQTSTFKVTMANGGPLAFSF amFP4 (KALTTMGVIKPDMKIKLKMEGNVNGHAFVIEGEGEGKPYDGTHTLNLEVKMAEGAPLPFSY CFP48	86 55
· ·	4 56
60 70 80 90 100 110	
FIBVITES IGVOCESKYPDHMKQHDFFKSAM: PEGYVQERT I FFKDDGNYKTBAFVVERCD	GFP
DIDITION OF THE POOL OF THE PROPERTY OF THE PR	
· · · · · · · · · · · · · · · · · · ·	zFP506 zFP538
HILCPOROYGNKAFVHHPDDIP DVIVICE PROVINGE	
DTTMRNY-EIF-QTCSGPNGS-Q-T-TYV-TA-SNVV-D.	dsFP483 dgFP512
DSS-VY-KAFKV-NV-TA-SNVV-D DSS-VY-KA	drFP583
* ···V-NVVTVCO C **PO	dmFP592
HILSTSCMYGSKTFIKYVSGIPDYFKQSFPEGFTWERTTTYEDGGFLTAHQDTSLDGD	asFP600
DILSTVFKYGNRCFTAYPTSMPDYFKQAFPEGFTWERTTTYEDGGFLTAHQDTSLDGD DILSNAFQYGNRALTKYPDDIADYFKQSFPEGYSWERTMTFEDKGIVKVKSDISMEED	amFP486
100	cFP484
120 130 140 150 160 170	
TLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQL	GFP
CMYHESKFYGVNFPADGPVM.KKMTDNWEPSCEKIIPVPKQGILKGDVSMYLLLKDGGRLR	zFP506
·	zFP538
CENYDIKFTGLNFPPNGPVV.QKKTTGWEPSTERLYPRDGVLIGDIHHALTVEGGGHYV	dsFP483
I-KVI-VSDMMR	dgFP512
I-EVI-VSDMRR-RSK-EK-KLKDL	drFP583
CLVYKVKILGNNFPADGDUM ONVAGDUDDATELE CLVYKVKILGNNFPADGDUM ONVAGDUDDATELE CLVYKVKILGNNFPADGDUM ONVAGDUDDATELE CL	dmFP592
CLVYKVKILGNNFPADGPVM.QNKAGRWEPATEIVYEVDGVLRGQSLMALKCPGGRHLT CFEHKSTFHGVNFPADGPVM.AKKTTGWDPSFEKMTVCDGILKGDVTAFLMLQGGGNYR	asF.P600
SFIYEIRFDGMNFPPNGPVM.QKKTLKWEPSTEIMYVRDGVLVGDISHSLLLEGGGHYR	amFP486
	cFP484
180 190 200 210 220 230	
ADHYQONTPIGDG. PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK	GFP
CQFDTVYKAKSVPRKMPDWHFIQHKLTREDRSDAKNQKWHLTEHAIASGSALP	zFP506
	2FP538
CDIKTVYPAKKPVKMPGYHYVDTKLVIRSNDKEFM.KVEEHEIAVARHHPLQSQ	dsFP483
	dgFP512
VEF-SI-MQLYSD-T-HNEDYT.IQY-RTEGLFL VEF-SI-MV PS-QLYSDMT-HNEDYT VQY-KTQFIKPLQ	drFP583
CHI HITTYPEVEDI CAL MARCHITTONI CAL CHI HITTYPE CAL CHI HITTYP	dmFP592
CHLHTTYRSKKPASALKMPGFHFEDHRIEIMEEVEKGK.CYKQYEAAVGRYCDAAPSKLGHN	asFP600
CQFHTSYKTKKPVTMPPNHVVEHRIARTDLDKGGN.SVQLTEHAVAHITSVFPF CDFKSIYKAKKVVKLPDYHFVDHRIEILNHDKDYN.KVTLYENAVARYSLLPSQA	amFP486
THE TENNEST OF THE TE	cFP484
mark and a second secon	

FIG. 2A

MKCKFVFCLSFLVLAITNANIFLRNEADLEEKTLRIP

》

FIG. 5

FIG. 6

dsFP484

7/11

EG.

WO 00/34526

extinction

40000F

35000

FIG. 8

250

|

~

20000

15000

10000

5000

25000

Fig. 10

11/11

		SEQUENCE LISTING
	<110>	Lukyanov, Sergey A.
		Labas, Yulii A.
		Matz, Mikhail V.
5		Fradkov, Arcady F.
	<120>	Fluorescent proteins from non-bioluminescent
		species of Class Anthozoa, genes encoding such
		proteins and uses thereof
	<130>	D6196PCT
10	<141>	1999-12-10
	<150>	09/210,330
	<151>	1998-12-11
	<160>	63
	•	· ·
15	<210>	1
	<211>	25
	<212>	DNA
	<213>	artificial sequence
	<220>	
20	<221>	primer_bind
	<223>	primer TN3 used in cDNA synthesis and RACE
	<400>	1
	cgcagtcgac c	gttttttt tttt 25
25	<210>	2
	<211>	23
	<212>	DNA
	<213>	artificial sequence
	<220>	
30	<221>	primer_bind
	<223>	primer TS used in cDNA synthesis and RACE
	<400>	2
	aagcagtggt a	atcaacgcag agt 23
35	<210>	3
	<211>	6
	<212>	PRT

	WO 00/34526		PCT/US99/29405
	<213>	Aequorea victoria	
	<220>		
	<222>	21	
	<223>	amino acid sequence of a key stret	ch on which
5		primer NGH is based; Xaa at positi	on 21
		represents unknown	
	<400>	3	
	Gly Xaa Val	Asn Gly His	
		5	
10	-		
	<210>	4	
	<211>	20	
	<212>	DNA	
	<213>	artificial sequence	
15	<220>		
	<221>	primer_bind	
	<222>	12	
	<223>	primer NGH used for isolation of	
		protein; n at position 12 represen	nts any of the
20		four bases	
	<400>	4	
	gayggctgcg t	naayggdca	20
	<210>	5	
25	<211>	5	
	<212>	PRT	
	<213>	Aequorea victoria	
	<220>		
	<222>	3135	
30	<223>	amino acid sequence of a key stre	tch on which
		primers GEGa and GEGb are based	
	<400>	5	
	Gly Glu Gly	Glu Gly	
	•	5	
35			
	<210>	6	

<211>

	WO 00/34526	PCT/US99/29	405
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
5	<223>	primer GEGa used for isolation of fluorescent protein	
	· <400>	6	
	<400 >	0	
	gttacaggtg arg	ggmgargg 20	
10	<210>	7	
	<211>	20	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
15	<221>	primer_bind	
	<223>	primer GEGb used for isolation of fluorescent	•
		protein	
	<400>	7	
	gttacaggtg ar	ggkgargg 20	
20	.010.	0	
	<210>	8	
	<211> · · · · · · · · · · · · · · · · · ·	5 PRT	
	<212>	Aequorea victoria	
25	<220>	Aequorea Victoria	
23		3135	
	<223>		1
		primers GNGa and GNGb are based	
	<400>	8	
30	Gly Glu Gly A	sn Gly	
	-	5	
	<210>	9	
	<211>	20	
35	<212>	DNA	
	<213>	artificial sequence	

SEQ 3/28

<220>

	WO 00/34526		PCT/US99/29405
	<221>	primer_bind	
	<223>	primer GNGa used for isolation of	fluorescent
		protein	
	<400>	9	
5	attagaggta ara	ama ayara	20
5	gttacaggtg arg	· · · · · · · · · · · · · · · · · · ·	20
	<210>	10	
	<211>	20	
	<212>	DNA	
10	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	<i>,</i>
	<223>	primer GNGb used for isolation of	fluorescent
	•	protein	
15	<400>	10	
	gttacaggtg arg	gkaaygg	20
	<210>	11	
	<211>	5	
20	<212>	PRT	
	<213>	Aequorea victoria	
	<220>		
	<222>	127131	
	<223>	amino acid sequence of a key stre	etch on which
25		primer NFP is based	
	<400>	11	
	Gly Met Asn Pl	ne Pro	
		5	
30	<210>	12	
	<211>	5	
	<212>	PRT	
	<213>	Aequorea victoria	
	<220>		·
35	<222>	127131	
	<223>	amino acid sequence of a key str	etch on which

SEQ 4/28

primer NFP is based

```
WO 00/34
                                                             PCT/US99/29405
          <400>
                     12
    Gly Val Asn Phe Pro
                      5
5
          <210>
                     13
          <211>
                     20
          <212>
                     DNA
          <213>
                     artificial sequence
          <220>
10
          <221>
                     primer_bind
          <223>
                     primer NFP used for isolation of fluorescent
                     protein
          <400>
                     13
    ttccayggtr tgaayttycc
                                                            20
15
                     14
          <210>
          <211>
                     4
          <212>
                     PRT
          <213>
                     Aequorea victoria
20
          <220>
          <222>
                     134..137
          <223>
                     amino acid sequence of a key stretch on which
                     primers PVMa and PVMb are based
          <400>
                     14
25
    Gly Pro Val Met
          <210>
                     15
          <211>
                     21
30
          <212>
                     DNA
          <213>
                     artificial sequence
          <220>
```

SEQ 5/28

primer PVMa used for isolation of fluorescent protein; n at position 15 represents any of the

<221>

<222>

<223>

35

primer_bind

21

47

45

four bases

<400> 15

cctgccrayg gtccngtmat g

<223> primer PVMb used for isolation of fluorescent
protein; n at position 15 represents any of the
four bases

15 <400> 16

cctgccrayg gtccngtkat g 21

<210> 17 47 <211> 20 <212> DNA <213> artificial sequence <220> <221> primer_bind <223> primer T7-TN3 used in cDNA synthesis and RACE 25 <400> 17

gtaatacgac tcactatagg gccgcagtcg accgtttttt ttttttt

<210> 18 <211> 45 30 <212> DNA <213> artificial sequence <220> <221> primer_bind <223> primer T7-TS used in cDNA synthesis and RACE 35 <400> 18

gtaatacgac tcactatagg gcaagcagtg gtatcaacgc agagt

	<210>	19
	<211>	22
	<212>	DNA
5	<213>	artificial sequence
	<220>	- •
	<221>	primer_bind
	<223>	primer T7 used in cDNA synthesis and RACE
	<400>	19
10	gtaatacgac	tcactatagg gc 22
	<210>	20
	<211>	21
	<212>	DNA
15	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
		Anemonia majano
20	<400>	20
	gaaatagtca	ggcatactgg t 21
	<210>	21
	<211>	20
25	<212>	DNA
	<213>	artificial sequence
	<220>	mudana a bina
	<221>	-
30	<223>	
50	<400>	Anemonia majano 21
	gtcaggcata	ctggtaggat 20

WO 00/3452

<210>

<211>

35

. 22

21

SEQ 7/28

	WO 00/34526	PCT/US99/29405
	212	DW.
	<212>	DNA
	<213>	artificial sequence
	<220>	
_	<221>	-
5	<223>	gene-specific primer used for 5'-RACE for
		Clavularia sp.
	<400>	22
	cttgaaatag	tctgctatat c 21
10	<210>	23
	<211>	19
	<212>	DNA
	<213>	artificial sequence
	<22 <u>0</u> >	
15	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
		Clavularia sp.
	<400>	23
	tctgctatat	cgtctgggt 19
20	-	·
20	<210>	24
	<211>	
	<212>	DNA
	<213>	artificial sequence
25	<220>	
	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
		Zoanthus sp.
	<400>	24
30	gttcttgaaa	tagtctacta tgt 23
		•
	<210>	25
	<211>	20
	<212>	DNA

<213> artificial sequence

	WO 00/34536	PCT/US9	ç
	<220>		
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE for	
		Zoanthus sp.	
5	<400>	25	
	gtctactatg	tcttgaggat 20	
	<210>	26	
	<211>	19	
10	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
	<223>	gene-specific primer used for 5'-RACE for	
15		Discosoma sp. "red"	
	<400>	26	
	caagcaaatg	gcaaaggtc 19	
	<210>	27	
20	<211>	19	
	<212>	DNA	
	<213>	artificial sequence	
	<220>		
	<221>	primer_bind	
25	<223>	gene-specific primer used for 5'-RACE for	
		Discosoma sp. "red"	
	<400>	27	
	cggtattgtg	gccttcgta 19	
		-	
30	<210>	28	
	<211>		
	<212>	•	
	<213>		
	<220>	· · · · · · · · · · · · · · · · · · ·	
35	<221>	·	
	<223>	-	

SEQ 9/28

Discosoma striata

<400> 28

	1200		
	ttgtcttctt	ctgcacaac	19
5	<210>	29	_
	<211>	17	
	<212>		
	<213>		
	<220>	arciriciai seguence	
10			
10	<221>		
	<223>	gene-specific primer used	for 5'-RACE for
		Discosoma striata	
	<400>	29	
			1.7
	ctgcacaacg	ggtccat	17
15			
	<210>	30	
	<211>	20	
	<212>	DNA.	
	<213>	artificial sequence	
20	<220>		-
	<221>	primer_bind	
	<223>	gene-specific primer used	d for 5'-RACE for
		Anemonia sulcata	
	<400>	30	
25	cctctatctt	catttcctgc	20

25	cctctatctt	catttcctgc		20
	<210>	31		

	<211>	20
	<212>	DNA
30	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
		Anemonia sulcata
35	<400>	31
		The state of the s

tatcttcatt tcctgcgtac

	<210>	32
	<211>	19
	<212>	DNA
5	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
		Discosoma sp. "magenta"
10	<400>	32
	ttcagcaccc	catcacgag 19
	<210>	33
	<211>	
15	<212>	
	<213>	
	<220>	
	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
20		Discosoma sp. "magenta"
	<400>	33
	acgctcagag	ctgggttcc 19
	<210>	34
25	<211>	22
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
30	<223>	gene-specific primer used for 5'-RACE for
		Discosoma sp. "green"
	<400>	34
	ccctcagcaa	tccatcacgt tc 22
35	-21 No	25
33	<210> <211>	
	\Z11>	20

WO 00/34536

<212>

DNA

		PCT/US99/29405
	WO 00/34526	FC170379125403
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
5		Discosoma sp. "green"
	<400>	35
	attatctcag	tggatggttc 20
	<210>	36
10	<211>	31
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
15	<223>	upstream primer used to obtain full coding region
		of nFPs from Anemonia majano
	<400>	36
	acatggatcc	gctctttcaa acaagtttat c 31
20	<210>	
	<211>	34
	<212>	
	<213>	artificial sequence
	<220>	
25	<221>	•
	<223>	
		region of nFPs from <i>Anemonia majano</i>
	<400>	37
	tagtactcga	gcttattcgt atttcagtga aatc 34
30		-
	-010-	20

35

<210> 38 <211> 29 <212> - DNA artificial sequence <213> <220> primer_bind <221> upstream primer used to obtain full coding region <223>

SEQ 12/28

of nFPs from Clavularia sp. <400> 38 acatggatcc aacatttttt tgagaaacg 29 5 <210> 39 <211> 28 <212> DNA <213> artificial sequence <220> 10 <221> primer_bind <223> upstream primer used to obtain full coding region of nFPs from Clavularia sp. <400> 39 acatggatcc aaagctctaa ccaccatg 28 15 <210> 40 <211> 31 <212> DNA <213> artificial sequence 20 <220> <221> primer_bind <223> downstream primer used to obtain full coding region of nFPs from Clavularia sp. <400> 40 25 tagtactcga gcaacacaaa ccctcagaca a 31 <210> 41 28 <211> <212> DNA 30 <213> artificial sequence <220> <221> primer_bind <223> upstream primer used to obtain full coding region of nFPs from Zoanthus sp. 35 <400> 41

28

acatggatcc gctcagtcaa agcacggt

	<210>	42
	<211>	32
	<212>	DNA
5	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	downstream primer used to obtain full coding
		region of nFPs from Zoanthus sp.
10	<400>	42
	tagtactcga	ggttggaact acattettat ca 32
	<210>	43
	<211>	31
15	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region
20		of nFPs from <i>Discosoma sp</i> . "red"
	<400>	43
	acatggatcc	aggtcttcca agaatgttat c 31
	<210>	44
25	<211>	29
	<212>	DNA
	<213>	artificial sequence
•	<220>	
	<221>	primer_bind
30	<223>	downstream primer used to obtain full coding
		region of nFPs from Discosoma sp. "red"
	<400>	44
	tagtactcga	ggagccaagt tcagcctta 29
35	<210>	45
	<211>	28
	<212>	DNA

	WO 00/34536	PCT/US99/29405
	<213>	artificial sequence
	<220>	- · · · · · · · · · · · · · · · · · · ·
	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region
5		of nFPs from Discosoma striata
	<400>	45
	acatggatcc	agttggtcca agagtgtg 28
	<210>	46
10	<211>	28
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
15	<223>	downstream primer used to obtain full coding
		region of nFPs from Discosoma striata
	<400>	46
	tagcgagctc	tatcatgcct cgtcacct 28
20	<210>	47
	<211>	31
	<212>	DNA
	<213>	artificial sequence
	<220>	
25	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region
		of nFPs from <i>Anemonia sulcata</i>
	<400>	47
	acatggatcc	gcttcctttt taaagaagac t 31
30		
	<210>	48
	<211>	28
	<212>	DNA
	<213>	artificial sequence
35	<220>	
	<221>	primer_bind
	<223>	downstream primer used to obtain full coding

region of nFPs from Anemonia sulcata

<400> 48

	(400)	
	tagtactcga	gtccttggga gcggcttg 28
5	<210>	49
	<211>	30
	<212>	DNA
	<213>	artificial sequence
	<220>	
10	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region
		of nFPs from Discosoma sp. "magenta"
•	<400>	49
		agttgttcca agaatgtgat 30
1 ~	acatggatcc	agttgttcca agaatgtgat 30
15		
	<210>	50
	<211>	26
	<212>	DNA
	<213>	artificial sequence
20	<220>	
	<221>	primer_bind -
	<223>	downstream primer used to obtain full coding
		region of nFPs from Discosoma sp. "magenta"
	<400>	50
25	tagtactcga	ggccattacg ctaatc 26

	<210>	51
	<211>	31
	<212>	DNA
30	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region
	•	of nFPs from Discosoma sp. "green"
35	<400>	51

acatggatcc agtgcactta aagaagaaat g

			<2	10>		52													
5			<2	11>		29													
<pre></pre>			<2	12>		DNA													
Company Comp	5		<2	13>		arti	fici	al s	eque	nce									
Company Comp			<2	20>															
region of nFPs from Discosoma sp. "green" 10			<2	21>		prim	er_b	ind											
region of nFPs from Discosoma sp. "green" 10			· <2	23>		down	stre	am p	rime	r us	ed t	o ob	tain	ful	1 co	dina			
10																_			
Second S	10		<4	00>									•		1 0011				
Second S		tant	- act	- c n -	* > + +	~~~+	·	- -						0.0					
15		cagi	Lact	.ya y	jacc	cygu	LL a	acyce	reeg					29					
15			<2	10>		53						·							
<pre></pre>			<2	11>		33													
<pre></pre>	15		<2	1-2>		DNA													
Company Comp			<2	13>		arti	artificial sequence												
223> TS-oligo used in cDNA synthesis and RACE 20			<2	20>	>														
20			<2	21>	primer_bind														
aagcagtggt atcaacgcag agtacgcrgr grg 33 <pre></pre>			<2	23>		TS-o	ligo	use	d in	CDN	A sy	nthe	sis .	and	RACE				
210> 54	20		<4	<00		53	٠					•							
25		aago	cagt	ggt a	atca	acgca	ag ag	gtaco	gergi	rigro	3			3	33				
25			-0	1 0.		- 4													
25																			
<pre></pre>	25																		
<pre></pre>	23																		
Ser Ser						Aequ	orea	VIC	tori	a									
400> 54 Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 5 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser 20 25 30																			
30 Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 15 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser 20 30							o ac	ıa s	eque	nce	ot G	FP							
Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser 20 25 30	30	Mot			C1		C1	T	Db -	m1	~ 1			_		_			
Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser 20 25 30	30	Mec	ser	пуs	GIY		GIU	ьеu	Pne	Thr		Val	Val	Pro	He				
20 25 30		Va 1	Glu	Leu	Δen		y en	1707	λαν	<i>C</i> 1		T	Dh.	G	77- T				
		VUL	GIU	Deu	nsp		ASP	vai	ASII	СТА		гуз	Pne	ser	vai				
1		Glv	Glu	Glv	Glu		Asp	Ala	Thr	ጥህን		Lve	Len	ጥኩዮ	T.011				
35	35	_		1						- <u>1</u> ~		د برد	u	* ***	⊥ eu				
Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu		Phe	Ile	Cys	Thr		Gly	Lys	Leu	Pro		Pro	Tro	Pro	Thr				
50 55 60							_	-											

				,						`					
	Phe	Lys	Val	Thr	Met	Ala	Asn	Gly	Gly	Pro	Leu	Ala	Phe	Ser	Phe
					50					55					60
	Asp	Ile	Leu	Ser	Thr	Val	Phe	Lys	Tyr	Gly	Asn	Arg	Cys	Phe	Thr
					65					70					75
5	Ala	Tyr	Pro	Thr	Ser	Met	Pro	Asp	Tyr	Phe	Lys	Gln	Ala	Phe	Pro
					80					85			-		90
	Asp	Gly	Met	Ser	Tyr	Glu	Arg	Thr	Phe	Thr	Tyr	Glu	Asp	Gly	Gly
					95					100					105
	Val	Ala	Thr	Ala	Ser	Trp	Glu	Ile	Ser	Leu	Lys	Gly	Asn	Cys	Phe
10					110					115					120
	Glu	His	Lys	Ser	Thr	Phe	His	Gly	Val	Asn	Phe	Pro	Ala	Asp	Gly
			•		125	÷				130		•			13Š
	Pro	Val	Met	Ala	Lys	Lys	Thr	Thr	Gly	Trp	Asp	Pro	Ser	Phe	Glu
					140					145					150
15	Lys	Met	Thr	Val	Cys	Asp	Gly	Ile	Leu	Lys	Gly	Asp	Val	Thr	Ala
					155					160					165
	Phe	Leu	Met	Leu	Gln	Gly	Gly	Gly	Asn	Tyr	Arg	Cys	Gln	Phe	His
					170					175					180
	Thr	Ser	Tyr	Lys	Thr	Lys	Lys	Pro	Val	Thr	Met	Pro	Pro	Asn	His
20					185					190					195
	Val	Val	Glu	His	Arg	Ile	Ala	Arg	Thr	Asp	Leu	Asp	Lys	Gly	Gly
					200					205					210
	Asn	Ser	Val	Gln	Leu	Thr	Glu	His	Ala	Val	Ala	His	Ile	Thr	Ser
					215					220					225
25	Val	Val	Pro	Phe											

	<210>	56
	<211>	266
30	<212>	PRT
	<213>	Clavularia sp.
	<220>	
	<223>	amino acid sequence of cFP484
	<400>	56
35	Met Lys Cys Lys	s Phe Val Phe Cys Leu Ser Phe Leu Val Leu Ala
		.5 10 15
	Ile Thr Asn Ala	a Asn Ile Phe Leu Arg Asn Glu Ala Asp Phe Glu

	٠			,	20					25					30
	Glu	Lvs	Thr	Phe	Arg	Ile	Pro	Lvs	Ala		Thr	Thr	Met	Gly	
	01-	_,_			35					40				-	45
	Ile	Lys	Pro	Asp	Met	Lys	Ile	Lys	Leu		Met	Glu	Gly	Asn	Val
5		-		-	50	-		_		55			_		60
	Asn	Gly	His	Ala	Phe	Val	Ile	Glu	Gly	Glu	Gly	Glu	Gly	Lys	Pro
					65					70					7 5
	Tyr	Asp	Gly	Thr	His	Thr	Leu	Asn	Leu	Glu	Val	Lys	Glu	Gly	Ala
					80					85	٠				90
10	Pro	Leu	Pro	Phe	Ser	Tyr	Asp	Ile	Leu	Ser	Asn	Ala	Phe	Gln	Tyr
					95			. •		100					105
	Gly	Asn	Arg	Ala	Leu	Thr	Lys	Tyr	Pro	Asp	Asp	Ile	Ala	Asp	Tyr
					110					115					120
	Phe	Lys	Gln	Ser	Phe	Pro	Glu	Gly	Tyr	Ser	Trp	Glu	Arg	Thr	
15					125	_	_	_		130				*•	135
	Thr	Phe	Glu	Asp	Lys	Gly	Ile	Val	Lys		Lys	Ser	Asp	Ile	
			~ 7		140	-1		_	~ 3	145		 1	3	01	150
	Met	G1u	GIu	Asp	Ser	Pne	TTE	чуr	GIU		Arg	Pne	Asp	GIY	мес 165
20	7	Dho	Dwo	Dro	155 Asn	Clar	- Dro	*** 1	Mot	160	Tarc	Larg	መኮን	Len	
20	Asp	Pne	PIO	PIO	170	GIY	PIO	vai	Met	175	цуѕ	цуъ	1111	Беи	180
	כדייים	Gĺu	Pro	Ser	Thr	Glu	Tle	Met	Ψvr		Ara	Asp	Glv	Val	
	11p	014	110	DCI	185	010			-1-	190	3		1		195
	Val	Glv	Asp	Ile	Ser	His	Ser	Leu	Leu		Glu	Gly	Gly	Gly	
25		-	_		200					205		_			210
	Tyr	Arg	Cys	Asp	Phe	Lys	Ser	Ile	Tyr	Lys	Ala	Lys	Lys	Val	Val
					215					220					225
	Lys	Leu	Pro	Asp	Tyr	His	Phe	Val	Asp	His	Arg	Ile	Glu	Ile	Leu
					230					235					240
30	Asn	His	Asp	Lys	Asp	Tyr	Asn	Lys	Val	Thr	Leu	Tyr	Glu	Asr	Ala
					245					250					255
	Val	Ala	Arg	Tyr	Ser		Leu	Pro	Ser						
					260				٠	265				•	
35		<2	210>		57										
		<2	211>		230										
		<2	212>		PRT										

		<2	13>		Zoanthus sp.											
		<22	20>													
		<22	23>		amin	o ac	id s	eque	nce	of z	FP50	6				
		<40	<0C		57								•			
5	Ala	Gln	Ser	Lys	His	Gly	Leu	Thr	Lys	Glu	Met	Thr	Met	Lys	Tyr	
					5					10					15	
	Arg	Met	Glu	Gly	Cys	Val	Asp	Gly	His	Lys	Phe	Val	Ile	Thr	Gly	
					20					25					30	
	Glu	Gly	Ile	Gly	Tyr	Pro	Phe	Lys	Gly	Lys	Gln	Ala	Ile	Asn	Leu	
10					35			-		40					45	
	Cys	Val	Val	Glu	Gly	Gly	Pro	Leu	Pro	Phe	Ala	Glu	Asp	Ile	Leu	
					50					55					60	
	Ser	Ala	Ala	Phe	Asn	Tyr	Gly	Asn	Arg	Val	Phe	Thr	Glu	Tyr	Pro	
					65					70					75	
15	Gln	Asp	Ile	Val	Asp	Tyr	Phe	Lys	Asn	Ser	Cys	Pro	Ala	Gly	Tyr	
					80					85					90	
	Thr	Trp	Asp	Arg	Ser	Phe	Leu	Phe	Glu	Asp	Gly	Ala	Val	Cys	Ile	
					95					100					105	
••	Cys	Asn	Ala	Asp	Ile	Thr	Val	Ser	Val		Glu	Asn	Cys	Met	_	
20	•		_	_	110	_				115		_			120	
	His	GIu	Ser	Lys	Phe	Tyr	Gly	Val	Asn		Pro	Ala	Asp	Gly		
	**- 7	36-4-	T	.	125		_	_	_	130	_	_			135	
	vaı	Met	Lys	ьуs	Met	Thr	Asp	Asn	Trp		Pro	Ser	Cys	GIu		
25	т1.	Tlo	Dwo	17-1	140	T	01 <u>~</u>	Q1	~ 1 -	145	.	~ 1	_	**. 7	150	
23	116	TIE	PLO	val	Pro 155	цуs	GIII	СТА	тте		ьуs	GIY	Asp	Vai		
	Met	ጥኒታታ	T.e.u	T.e.u		Lare	λan	Gly	Cly	160	Tou	7~~	Caro		165 Phe	
	1100		Deu	шса	170	ДуБ	АЗР	Gry	СТУ	175	neu	Arg	Суб	GIII	180	
	Asp	Thr	Val	ጥ ህጉ	Lys	Ala	Lvs	Ser	Val		Δτα	Tare	Met	Pro		
30			•	-7-	185	1114	Lyb	DCI	var	190	ALG	Llys	Mec	FLO	195	
	Trp	His	Phe	Ile	Gln	His	Lvs	Leu	Thr		Glu	Asp	Ara	Ser		
	~				200		_			205		1101	9	501	210	
	Ala	Lys	Asn	Gln	Lys	Trp	His	Leu	Thr		His	Ala	Ile	Ala		
					215	-				220					225	
35	Gly	Ser	Ala	Leu	Pro											
					230											

WO 00/34526

		<21	L0>	. !	58										
		<21	L1>	:	230						•				
		<23	12>	:	PRT										
5		<23	13>		Zoan	thus	sp.								
		<22	20>						•				-		
		<22	23>	i	amino	ac:	id s	equei	nce (of z	FP53	В			
		<40	<00		58										
	Met	Ala	His	Ser	Lys	His	Gly	Leu	Lys	Glu	Glu	Met	Thr	Met	
10					5					10					15
	Tyr	His	Met	Glu		Cys	Val	Asn	Gly		Lys	Phe	Val	Ile	
					20			_	-	25					30
	Gly	Glu	Gly	Ile		Tyr	Pro	Phe	Lys		Lys	Gln	Thr	IIe	
					35	~-7	~ 1	_	_	40	~ 1	~ .	01	3	45
15	Leu	Cys	Val	He		GIY	GIY	Pro	Leu		Pne	Ser	GIU	Asp	60
	T	C =	210	C1	50	Tura	(The sace	C111	y an	55	Tlo	Dho		Clu	
	Leu	Ser	Ala	GTĀ	65	гу	ıyı	GIA	Asp	70	TIE	rne	IIIL	Gia	75
	Dro	Gln	Asp	Tle		Δsn	ጥህዮ	Phe	Lvs		Ser	Cvs	Pro	Ala	
20	110	GIII	пър		80	2101	-7-	1110	2,5	85	DUI	2,2			90
20	Tvr	Thr	Trp	Glv		Phe	Leu	Phe	Glu		Gly	Ala	Val	Cys	
	-1 -			1	95					100				•	105
	Cys	Asn	Val	Asp		Thr	Val	Ser	Val	Lys	Glu	Asn	Cys	Ile	Tyr
	_			_	110					115					120
25	His	Lys	Ser	Ile	Phe	Asn	Gly	Met	Asn	Phe	Pro	Ala	Asp	Gly	Pro
					125					130					135
	Val	Met	Lys	Lys	Met	Thr	Thr	Asn	Trp	Glu	Ala	Ser	Cys	Glu	Lys
		•			140					145					150
	Ile	Met	Pro	Val	Pro	Lys	Gln	Gly	Ile	Leu	Lys	Gly	Asp	Val	Ser
30					155					160					165
	Met	Tyr	Leu	Leu	Leu	Lys	Asp	Gly	Gly	Arg	Tyr	Arg	Суѕ	Gln	
					170					175					180
	Asp	Thr	Val	Tyr		Ala	Lys	Ser	Val			Lys	Met	Pro	
					185			_		190					195
35	Trp	His	Phe	Ile		His	Lys	Leu	Leu			Asp	Arg	·Ser	
			_		200	_		_		205					210
	Ala	Lys	Asn	Gln			Gln	Leu	Thr			Ala	ıIle	. Ala	
					215					220	1	-			225

Pro Ser Ala Leu Ala

_			1.0		F.0										
5			10>		59										
			11>		232										
			12>		PRT										
			13>		Disc	osom	a st	riat	a						
			20>	•											
10			23>		amin	o ac	id s	eque	nce	of d	sFP4	83			
		<4	00>		59										
	Met	Ser	Cys	Ser	Lys	Ser	Val	Ile	Lys	Glu	Glu	Met	Leu	Ile	Asp
					5					10					15
	Leu	His	Leu	Glu	Gly	Thr	Phe	Asn	Gly	His	Tyr	Phe	Glu	Ile	Lys
15					20					25					30
	Gly	Lys	Gly	Lys	Gly	Gln	Pro	Asn	Glu	${\tt Gly}$	Thr	Asn	Thr	Val	Thr
					35					40					45
	Leu	Glu	Val	Thr	Lys	Gly	Gly	Pro	Leu	Pro	Phe	Gly	Trp	His	Ile
					50					55					60
20	Leu	Cys	Pro	Gln	Phe	Gln	Tyr	Gly	Asn	Lys	Ala	Phe	Val	His	His
					65					70					75
	Pro	Asp	Asn	Ile	His	Asp	Tyr	Leu	Lys	Leu	Ser	Phe	Pro	Glu	Gly
					80					85					90
	Tyr	Thr	Trp	Glu		Ser	Met	His	Phe		Asp	Gly	Gly	Leu	Cys
25					95	_				100					105
	Cys	Ile	Thr	Asn		Ile	Ser	Leu	Thr		Asn	Cys	Phe	Tyr	
	_		_		110		_		_	115				•	120
	Asp	TIE	Lys	Phe		GIY	Leu	Asn	Phe		Pro	Asn	Gly	Pro	
20	*** 7	01	.	-	125	m)	~7	_		130	_				135
30	Val	GIN	Lys	ьуs		inr	GIA	Trp	GIu		Ser	Thr	GIu	Arg	
	(Th. 200	Dwa	7	7 ~~	140	1701	*	-1 .	~ 1	145	~ ¬				150
	ıyı	PIO	Arg	Asp		vai	ьеи	TTE	GIY		TTE	His	HIS	Ala	
	mb∞	17-1	C1	C1	155	C1	TT	m		160		~ 7 -	.	m1	165
35	TIIL	vai	Glu	СТУ	170	GTĀ	HIS	Tyr	Ата		Asp	TIE	ьуs	Thr	
,,,	ጥኒታ	Δνα	Δl=	Laze		ልገ።	- ר ת	T 011	T ***	175	D	01. -	m	77.° -	180
	тут	AIG	Ala	пÃS		MIG.	`WTG	ьeu	гЛЗ		Pro	стλ	ıyr	HIS	
					185					190					195

<210> --- <211> <212> PRT <213> Discosoma sp. "red" <220> <223> amino acid sequence of drFP583 <400>

Tyr Glu Pro Lys Lys Asp Lys

Met Arg Ser Ser Lys Asn Val Ile Lys Glu Phe Met Arg Phe Lys Val Arg Met Glu Gly Thr Val Asn Gly His Glu Phe Glu Ile Glu

Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp Ile

Leu Ser Pro Gln Phe Gln Tyr Gly Ser Lys Val Tyr Val Lys His

Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly His Asn Thr Val Lys

Pro Ala Asp Ile Pro Asp Tyr Lys Lys Leu Ser Phe Pro Glu Gly

Phe Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val

Thr Val Thr Gln Asp Ser Ser Leu Gln Asp Gly Cys Phe Ile Tyr

Lys Val Lys Phe Ile Gly Val Asn Phe Pro Ser Asp Gly Pro Val

Met Gln Lys Lys Thr Met Gly Trp Glu Ala Ser Thr Glu Arg Leu -140

Tyr Pro Arg Asp Gly Val Leu Lys Gly Glu Ile His Lys Ala Leu

Lys Leu Lys Asp Gly Gly His Tyr Leu Val Glu Phe Lys Ser Ile

	•	W O 007												rei	170399
	Tyr	Met	Ala	Lys	Lys	Pro	Val	Gln	Leu	Pro	Gly	Tyr	Tyr	Tyr	Val
					185			,		190					195
	Asp	Ser	Lys	Leu	Asp	Ile	Thr	Ser	His	Asn	Glu	Asp	Tyr	Thr	Ile
					200					205					210
5	Val	Glu	Gln	Tyr	Glu	Arg	Thr	Glu	Gly	Arg	His	His	Leu	Phe	Leu
					215	•				220					225
		<2	10>		61							•			
		<2	11>		232										
10		<2	12>		PRT										
		<2	13>		Anem	onia	sul	cata							
		<2	20>									•			•
		<2	23>		amin	o ac	id s	eque	nce	of a	sFP6	00			
		<4	00>		61										
15	Met	Ala	Ser	Phe	Leu	Lys	Lys	Thr	Met	Pro	Phe	Lys	Thr	Thr	Ile
					5					10					15
	Glu	Gly	Thr	Val	Asn	Gly	His	Tyr	Phe	Lys	Cys	Thr	Gly	Lys	Gly
					20					25					30
	Glu	Gly	Asn	Pro	Phe	Glu	Gly	Thr	Gln	Glu	Met	Lys	Ile	Glu	Val
20					35					40					45
	Ile	Glu	Gly	Gly	Pro	Leu	Pro	Phe	Ala	Phe	His	Ile	Leu	Ser	Thr
					50					55					60
	Ser	Cys	Met	Tyr	Gly	Ser	Lys	Thr	Phe	Ile	Lys	Tyr	Val	Ser	Gly
					65					70					75
25	Ile	Pro	Asp	Tyr	Phe	Lys	Gln	Ser	Phe	Pro	Glu	Gly	Phe	Thr	Trp
					80					85					90
	Glu	Arg	Thr	Thr	Thr	Tyr	Glu	Asp	Gly	Gly	Phe	Leu	Thr	Ala	His
					95					100					105
	Gln	Asp	Thr	Ser	Leu	Asp	Gly	Asp	Cys	Leu	Val	Tyr	Lys	Val	Lys
30					110					115					120
	Ile	Leu	Gly	Asn	Asn	Phe	Pro	Ala	Asp	Gly	Pro	Val	Met	Gln	Asn

Lys Ala Gly Arg Trp Glu Pro Ala Thr Glu Ile Val Tyr Glu Val

Asp Gly Val Leu Arg Gly Gln Ser Leu Met Ala Leu Lys Cys Pro

Gly Gly Arg His Leu Thr Cys His Leu His Thr Thr Tyr Arg Ser

120

	Lys	Lys	Pro	Ala	Ser	Ala	Leu	Lys	Met	Pro	Gly	Phe	His	Phe	Glu
					185					190					195
	Asp	His	Arg	Ile		Ile	Met	Glu	Glu		Glu	Lys	Gly	Lys	
_		.		Th	200	77.	77.	1107	01	205	(T)	۰	3 an	הות	210
5	чуr	гуѕ	Gln	туг	215	Ala	Ala	vaı	GTÀ	220	TYL	Cys	Asp	Ата	225
	Pro	Ser	Lys	Leu		His	Asn			220					223
			_ _		230										
10		-2	10>		62										
10			11>		231										
			12>		PRT										
		<2	13>		Disc	osom	a sp	. "g	reen	. "					
		<2	20>												
15		<2	23>		amin	o ac	id s	eque	nce	of d	lgFP5	12			
		<4	00>		62										
	Met	Ser	Ala	Leu	Lys	Glu	Glu	Met	Lys	Ile	Asn	Leu	Thr	Met	Glu
					5					10					15
	Gly	Val	Val	Asn	Gly	Leu	Pro	Phe	Lys	Ile	Arg	Gly	Asp	Gly	Lys
20					20					25					30
	Gly	Lys	Pro	Tyr	Gln	Gly	Ser	Gln	Glu	Leu	Thr	Leu	Thr	Val	Val
	_				35					40					45
	Tare	Glv	Gly	Pro		Pro	Phe	Ser	ጥህን		Tle	Leu	Thr	Thr	Met
	ט גע	CLJ	O±3	110				501	-1-				· -		60
		_			50					55				_	
25	Phe	Gln	Tyr	Gly	Asn	Arg	Ala	Phe	· Val	Asn	Tyr	Pro	Glu	Asp	Ile
					65					70					7.5
	Pro	Asp	Ile	Phe	Lys	Gln	Thr	Cys	Ser	Gly	Pro	Asn	Gly	Gly	Tyr
					80				~-	85					90
-	Ser	Trp	Gln	Arg	Thr	Met	Thr	Tyr	Glu	ı Asp	Gly	r Gly	v Val	. Суз	Thr
30					95					100					105
									-						

SEQ 26/28

115

Ala Thr Ser Asn Ile Ser Val Val Gly Asp Thr Phe Asn Tyr Asp

	Ile	His	Phe	Met	Gly	Ala	Asn	Phe	Pro	Leu	Asp	Gly	Pro	Val	Met
					125					130					135
	Gln	Lys	Arg	Thr	Met	Lys	Trp	Glu	Pro	Ser	Thr	Glu	Ile	Met	Phe
					140					145					150
5	Glu	Arg	Asp	Gly	Met	Leu	Arg	Gly	Asp	Ile	Ala	Met	Ser	Leu	Leu
					155					160					165
	Leu	Lys	Gly	Gly	Gly	His	Tyr	Arg	Cys	Asp	Phe	Glu	Thr	Ile	Tyr
					170					175					180
	Lys	Pro	Asn	Lys	Val	Val	Lys	Met	Pro	Asp	Tyr	His	Phe	Val	Asp
10					185					190					195
	His	Cys	Íle	Glu	Ile	Thr	Ser	Gln	Gln	Asp	Tyr	Tyr	Asn	Val	Val
					200					205					210
	Glu	Leu	Thr	Glu	Val	Ala	Glu	Ala	Arg	Tyr	Ser	Ser	Leu	Glu	Lys
					215					220					225
15	Ile	Gly	Lys	Ser	Lys	Ala							•		
					230						-				
			10>		63										
20.			11> 12>		235 PRT										
20.			13>			coson	na sp). "n	nager.	ıta"					
			20>				-		_						
		<2	23>		amir	o ac	id s	eque	nce	of d	lmFP5	92			
		<4	<00>		63										
25	Met	Ser	Cys	Ser	Lys	Asn	Val	Ile	Lys	Glu	Phe	Met	Arg	Phe	Lys
					5					10					15
	Val	Arg	Met	Glu	Gly	Thr	Val	Asn	Gly	His	Glu	Phe	Glu	Ile	Lys
					20					25					30
	Gly	Glu	Gly	Glu	Gly	Arg	Pro	Tyr	Glu	Gly	His	Cys	Ser	Val	Lys
30					35					40					45

			•							•					
	Leu	Met	Val	Thr	Lys	Gly	Gly	Pro	Leu	Pro	Phe	Ala	Phe	Asp	Ile
					50			•		55					60
	Leu	Ser	Pro	Gln	Phe	Gln	Tyr	Gly	Ser	Lys	Val	Tyr	Val	Lys	His
					65	-				70					75
5	Pro	Ala	Asp	Ile	Pro	Asp	Tyr	Lys	Lys	Leu	Ser	Phe	Pro	Glu	Gly
					80					85					90
	Phe	Lys	Trp	Glu	Arg	Val	Met	Asn	Phe	Glu	Asp	Gly	Gly	Val	Val
					100					105					110
	Thr	Val	Ser	Gln	Asp	Ser	Ser	Leu	Lys	Asp	Gly	Cys	Phe	Ile	Tyr
0					115					120					125
	Glu	Val	Lys	Phe	Ile	Gly	Val	Asn	Phe	Pro	Ser	Asp	Gly	Pro	Val
					130					135					140
	Met	Gln	Arg	Arg	Thr	Arg	Gly	Trp	Glu	Ala	Ser	Ser	Glu	Arg	Leu
					145					150		•			155
15	Tyr	Pro	Arg	Asp	Gly	Val	Leu	Lys	Gly	Asp	Ile	His	Met	Ala	
					160					165					170
	Arg	Leu	Glu	Gly	Gly	Gly	His	Tyr	Leu	Val	Glu	Phe	Lys	Ser	
					175					180					185
	Туг	Met	. Val	. Lys	Lys	Pro	Ser	Val	Glr	Leu	Pro	Gly	тут	Tyr	
20					190					195					200
	Val	Asr	Ser	Lys	Lev	Asp) Met	Thr	Ser			ı Glı	ı Asr	у Туз	
					205		•			210		_	•		215
	Va]	l Val	l Glı	ı Glr			ı Lys	Thr	Glr			y His	s His	s Pro	
					220)				225	5				230
25	Ile	e Ly:	s Pro	o Lev	ı Glı	ı									

SEQ 28/28

Facsimile No. (703) 305-3230

International application No.

	_		PCT/US99/2940)5						
A. CLASSIFICATION OF SUBJECT MATTER IPC(7) :C12Q 1/68; C07K 14/435 US CL :435/6, 69.1; 530/350 According to International Patent Classification (IPC) or to both national classification and IPC										
B. FIELDS SEARCHED										
Minimum d	ocumentation searched (classification system followed	l by classification sym	bols)							
U.S. : 435/6, 69.1, 968; 530/350; 424/9.6, 436/172										
Documentat	ion searched other than minimum documentation to the	extent that such docum	nents are included	in the fields searched						
	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)									
Please See	e Extra Sheet.			•						
C. DOC	UMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where app	propriate, of the relevan	nt passages	Relevant to claim No.						
***	The sequence diskette submitted with thus the references listed below were search, and not by a search of the SEC		***							
Х, Р	MATZ et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology. October 1999, Volume 17, No. 10, pages 969-973, entire document.									
Х, Р	DE 197 18 640 A1 (WIEDENMA document.	NN) 22 July 1	999, entire	3-10						
Furth	ner documents are listed in the continuation of Box C	. See patent	t family annex.							
"A" do	ecial categories of cited documents:		ernational filing date or priority lication but cited to understand invention							
"E" čau	rlier document published on or after the international filing date			e claimed invention cannot be						
cit	L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) Y* document of particular relevance; the cla									
me	means being obvious to a person skilled in the art									
the	reument published prior to the international filing date but later than priority date claimed	*&* document mem	ber of the same paten	t family						
	actual completion of the international search UARY 2000	Date of mailing of the international search report 2 MAR 2000								
			~ I I A I L L L	^						
Commissio Box PCT	mailing address of the ISA/US oner of Patents and Trademarks n, D.C. 20231	Authorized officer GABRIELE ELISABETH BOGAINA								

Telephone No.

(703) 308-0196

. 5 . . . -. · -7. . -