Proposizione Sia X uno spazio di Banach su \mathbb{K} e sia $L \in \mathcal{K}(X;X)$. I seguenti fatti sono equivalenti:

(a) $\sigma(L)$ è finito oppure esiste una successione infinitesima (λ_h) in \mathbb{K} tale che

$$\sigma(L) = \{0\} \cup \{\lambda_h : h \in \mathbb{N}\},\,$$

(b) per ogni $\varepsilon > 0$, l'insieme

$$\sigma(L) \setminus B(0,\varepsilon)$$

è finito.

Dimostrazione.

 $(a) \Longrightarrow (b)$ Se $\sigma(L)$ è finito, allora per ogni $\varepsilon > 0$, l'insieme $B(0,\varepsilon) \cap \sigma(L)$ è finito. Allora

$$\sigma(L) \setminus B(0,\varepsilon) = \sigma(L) \setminus (B(0,\varepsilon) \cap \sigma(L))$$

è finito.

Supponiamo quindi che esista (λ_h) in \mathbb{K} tale che $\lambda_h \to 0$ e

$$\sigma(L) = \{0\} \cup \{\lambda_h : h \in \mathbb{N}\}.$$

Sia $\varepsilon > 0$, allora esiste $\bar{h} \in \mathbb{N}$ tale che per ogni $h \geq \bar{h}$, $|\lambda_h| < \varepsilon$. Allora per ogni $h \geq \bar{h}$, $\lambda_h \in \mathrm{B}(0,\varepsilon)$. Evidentemente, $0 \in \mathrm{B}(0,\varepsilon)$, allora

$$\sigma(L) \setminus B(0,\varepsilon) = \left\{ \lambda_h : h < \bar{h} \right\} = \left\{ \lambda_0, \dots, \lambda_{\bar{h}-1} \right\}$$

ossia è un insieme finito.

 $(b)\Longrightarrow(a)$ Supponiamo che per ogni $\varepsilon>0,\,\sigma(L)\setminus \mathrm{B}(0,\varepsilon)$ sia finito. Se $\sigma(L)$ è finito, ho concluso.

Supponiamo quindi che $\sigma(L)$ non sia finito. Osserviamo subito che se X avesse dimensione finita, allora $\sigma(L) = \sigma_p(L)$ in contraddizione con la non finitezza di $\sigma(L)$. Quindi X non ha dimensione finita.

Mostriamo che $\sigma(L)$ è numerabile. Per ipotesi, dato h > 0

$$E_h = \sigma(L) \setminus B\left(0, \frac{1}{h}\right)$$

è al più numerabile. Inoltre (E_h) è una successione crescente di insiemi tale che

$$\sigma(L) = \bigcup E_h,$$

allora $\sigma(L)$, essendo unione numerabile di insiemi al più numerabili, è al più numerabile. Siccome $\sigma(L)$ non è finito, allora è numerabile.

Mostriamo che $0 \in \sigma(L)$. Se per assurdo $0 \notin \sigma(L)$, allora $0 \in \varrho(L)$, allora L è biettiva. Allora per la (a) del Teorema dell'alternativa di Fredholm, $\mathcal{N}(L-L)$ ha dimensione finita. L'assurdo deriva dal fatto che $X = \mathcal{N}(L-L)$.

In particolare 0 è aderente a $\sigma(L)$, quindi esiste (λ_h) in $\sigma(L)$ tale che $\lambda_h \to 0$. Essendo $\sigma(L)$ numerabile, a meno di ridefinire la successione (λ_h) , possiamo sempre pensare che

$$\sigma(L) = \{0\} \cup \{\lambda_h : h \in \mathbb{N}\}$$
.