

Exercise 7A

Question 20:

Perimeter of quad. ABCD =
$$34 + 29 + 21 + 42 = 126$$
 cm
Area of triangle BCD = $\frac{1}{2} \times 20 \times 21 = 210$ cm²

For area of triangle ABD,

Let
$$a = 42 \text{ cm}$$
, $b = 20 \text{ cm}$ and $c = 34 \text{ cm}$

Let a = 42 cm, b = 20 cm and c = 34 cm
Therefore, s =
$$\frac{42 + 20 + 34}{2} = \frac{96}{2} = 48$$
 cm

Area of ABD =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

= $\sqrt{48(48-42)(48-20)(48-34)}$
= $\sqrt{48 \times 6 \times 28 \times 14}$
= $\sqrt{16 \times 3 \times 3 \times 2 \times 2 \times 14 \times 14}$
= $4 \times 3 \times 2 \times 14 = 336 \text{ cm}^2$

Area of quad. ABCD = Area ΔABD + Area ΔBCD

Thus the area of quad. ABCD = $336 + 210 = 546 \text{ cm}^2$.

Question 21:

Consider the right triangle ABD.

By Pythagoras Theorem, we have

$$AB = \sqrt{BD^2 - AD^2}$$

$$AB = \sqrt{26^2 - 24^2}$$

$$= \sqrt{676 - 576}$$

$$= \sqrt{100}$$

$$AB = 10 \text{ cm}$$

$$\Rightarrow \text{base} = 10 \text{ cm}$$

Area of the triangle ABD = $\frac{1}{2}$ × base × height

$$\Rightarrow$$
 Area of \triangle ABD= $\frac{1}{2} \times 10 \times 24$ [: base = 10 cm, height = 24 cm]

 \Rightarrow Area of \triangle ABD=120cm²

Area of equilateral triangle BCD = $\frac{\sqrt{3}}{4}$ a²

$$\Rightarrow = \frac{1.73}{4} (26)^2 [a = 26 \text{cm}, \sqrt{3} = 1.73]$$

$$\Rightarrow = 292.37 \,\text{cm}^2$$

Area of quad. ABCD = Area of
$$\triangle$$
ABD +Area of \triangle BCD = 120 + 292.37 = 412.37 cm².

********* FND ********