Conductivity Soil Temperature Moisture Nitrogen Phosphorus Potassium Transmitter (Type 485)

PR-3000-TR-ECTHNPK-N01

Ver 2.0

Chapter 1 Product Introduction

1.1 Product overview

The sensor has stable performance and high sensitivity, and is an important tool for observing and studying the occurrence, evolution, improvement and water-salt dynamics of saline soil. By measuring the dielectric constant of the soil, it can directly and stably reflect the true moisture content of various soils. It can measure the volume percentage of soil moisture, which is a soil moisture measurement method that meets the current international standards.

The sensor is suitable for soil moisture monitoring, scientific experiments, water-saving irrigation, greenhouses, flowers and vegetables, grassland pastures, soil rapid testing, plant cultivation, sewage treatment, precision agriculture and other occasions.

1.2 Features

- The six parameters of soil moisture content, electrical conductivity, temperature and nitrogen, phosphorus and potassium are combined into one.
- Low threshold, few steps, fast measurement, no reagents, unlimited detection times.
- It can also be used for the conductivity of water and fertilizer integrated solutions, as well as other nutrient solutions and substrates.
- The electrode is made of specially treated alloy material, which can withstand strong external impact and is not easy to damage.
- Completely sealed, resistant to acid and alkali corrosion, can be buried in the soil or directly into the water for long-term dynamic testing.
- High precision, fast response, good interchangeability, probe insertion design to ensure accurate measurement and reliable performance.

1.3 The main parameters

DC power supply (default)	DC 4.5-30V			
Maximum power consumption	0.7W (24V DC Power supply)			
Working temperature	-40°C~+60°C			
Core chip temperature resistance	85°C			
Conductivity parameter	Range Resolution	0-20000us/cm 10us/cm		

	Precision	0-10000us / cm within the range of \pm 3%; 10000-20000us / cm within the range of \pm 5%		
	Range	0-100%		
G - 11 1	Resolution	0.1%		
Soil moisture parameters	Precision	0-50%内±2%, 50-100%内±3%(棕 壤, 60%,25℃)		
	Range	-40~80°C		
Soil temperature parameter	Resolution	分辨率: 0.1℃		
	Precision	±0.5℃ (25℃)		
	Range	1-1999 mg/kg(mg/L)		
NPK parameters	Resolution	1 mg/kg(mg/L)		
	Precision	±2%FS		
Conductivity temperature compensation	Built-in tem	nperature compensation sensor, compensation range 0-50°C		
Protection level		IP68		
Probe material	Aı	nti-corrosion special electrode		
Sealing material	Black flame-retardant epoxy resin			
Default cable length	2 meters			
Dimensions	45*15*123mm			
Output signal		RS485(Modbus 协议)		

Shell size

Equipment size drawing (unit: mm)

1.4 System frame diagram

单接

This product can also be combined with multiple sensors on a 485 bus. In theory, one bus can be used for 254 485 sensors, and the other end is connected to a PLC with a 485 interface, and a single-chip microcomputer is connected through a 485 interface chip, or USB to 485 can be used. Computer connection, use the sensor configuration tool provided by our company to configure and test (only one device can be connected when using the configuration software).

多接

Chapter 2 Hardware Connection

2.2 Interface description

The power interface is a wide-voltage power supply that can input 4.5~30V. When wiring the 485 signal wire, pay attention to the two wires A and B that cannot be reversed, and the addresses of multiple devices on the bus cannot be conflicted

.2.2.1 Sensor wiring

Thread color	Description	Remark	
Brown	Power positive	4.5~30V DC	
black	Power ground	GND	
yellow	485-A	485-A	
Blue	485-B	485-B	

Chapter 3 How to Use

Since the electrode directly measures the conductivity of the soluble salt ions in the soil, the soil volumetric water content must be higher than about 20% when the soluble ions in the soil can accurately reflect the conductivity of the soil. In the long-term observation, the measured value after irrigation or rainfall is closer to the true level. If you are performing a quick test, you can water the soil to be tested first, and perform the measurement after the water is fully penetrated.

If you are measuring on a hard surface, you should drill holes first (the diameter of the probe should be smaller than the diameter of the probe), then insert the soil and compact the soil before measuring; the sensor should be protected from severe vibration and impact, let alone knocked with hard objects. Because the sensor is a black package, the sensor will heat up rapidly (up to 50°C) under strong sunlight. In order to prevent excessive temperature from affecting the temperature measurement of the sensor, please pay attention to shading and protection when using it in the field or in the field.

3.1 Quick test method

Select a suitable measurement location, avoid rocks, ensure that the steel needle does not touch hard objects, throw away the surface soil according to the required measurement depth, maintain the original tightness of the soil below, hold the sensor vertically and insert it into the soil. Do not shake left and right. It is recommended to measure multiple times to find the average value within a small range of a measuring point.

3.2 Buried measurement method

Dig a pit with a diameter of >20cm vertically, insert the sensor needle horizontally into the pit wall at a predetermined depth, and fill the pit tightly. After a period of stability, measurement and recording can be carried out for several days, months or even longer.

3.3 Matters needing attention

- 1. All steel needles must be inserted into the soil during measurement.
- 2. Avoid strong sunlight directly shining on the sensor and cause the temperature to be too high. Pay attention to lightning protection when using in the field.
- 3. Do not bend the steel needle violently, pull the lead wire of the sensor forcefully,

and do not hit or hit the sensor violently.

- 4. The sensor's protection grade is IP68, and the entire sensor can be soaked in water.
- 5. Due to the presence of radio frequency electromagnetic radiation in the air, it is not suitable to stay in the air for a long time with electricity.

Chapter 4 Configuration Software Installation and Use

Our company provides the supporting "485 parameter configuration software", which can conveniently use the computer to read the parameters of the sensor, and at the same time flexibly modify the device ID and address of the sensor.

Note that you need to ensure that there is only one sensor on the 485 bus when using the software to obtain it automatically.

4.1 Connect the sensor to the computer

After connecting the sensor to the computer through USB to 485 and supplying power, you can see the correct COM port in the computer (check the COM port in "My Computer—Properties—Device Manager—Port").

Open the data package, select "Debug software" --- "485 parameter configuration

software", find and open.

If the COM port is not found in the device manager, it means that you have not installed the USB to 485 driver (included in the data package) or the driver has not been installed correctly, please contact a technician for help.

4.2 Use of sensor monitoring software

- ①. The configuration interface is shown in the figure. First, obtain the serial port number according to the method in chapter 3.1 and select the correct serial port.
- 2. Click the test baud rate of the software, the software will test the baud rate and address of the current device, the default baud rate is 4800bit/s, and the default address is 0x01.
- ③. Modify the address and baud rate according to the needs of use, and at the same time, you can query the current function status of the device.

4. If the test is unsuccessful, please recheck the equipment wiring and 485 driver installation.

Chapter 5 Communication Protocol

5.1 Basic communication parameters

Code	8-bit binary					
Data bit	8-bit					
Parity bit	NO					
Stop bit	1 bit					
Error checking	CRC (Redundant Cyclic Code)					
Baud rate	2400bit/s, 4800bit/s, 9600 bit/sCan be set, the factory default is 480					
Dada Tate	Obit/s					

5.2 Data frame format definition

Using Modbus-RTU communication protocol, the format is as follows:

Initial structure \geq 4 bytes of time

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error check = 16-bit CRC code

Time to end structure \geq 4 bytes

Address code: the address of the transmitter, which is unique in the communication network (factor default 0x01).

Function code: The command function instruction issued by the host, this transmitter only uses function code 0x03 (read register data).

Data area: The data area is the specific communication data, pay attention to the high byte of the 16b data first!

CRC code: two-byte check code.

Host query frame structure:

Address c	Function c Register start ad		Register lengt	egister lengt Check code 1	
ode ode		dress	h	ow bit	ck code
1 byte 1 byte 2 by		2 byte	2 byte	1 byte	1 byte

Slave response frame structure:

Address	Function	Number of	Data area	Second data	Nth data area	Check code
code	code	valid bytes		area		

1 byte 1 byte 2 byte	2 byte 2 byte 2 byte
----------------------	----------------------

5.3 Register address

Register address	PLC or configuration address	content	operat e	Definition description	
0000 H	40001 (Decimal)	Moisture content	Read only	Real-time value of water content (expanded 10 times)	
0001 H	40002	Temperature	Read	Real-time temperature	
000111	(Decimal)	value	only	value (expanded 10 times)	
0002 11	40003	Candyativity	Read	Real-time conductivity	
0002 H	(Decimal)	Conductivity	only	value	
000211	40004	NT:	Read	Real-time value of	
0003H	(Decimal)	Nitrogen content	only	nitrogen content	
000411	40005(D : 1)	Phosphorus	Read	Phosphorus content	
0004H	40005(Decimal)	content	only	real-time value	
0005 11	40006	Potassium	Read	Potassium content	
0005 H	(Decimal)	content	only	real-time value	
000611	40007	1	Read		
0006 H	(Decimal)	salinity	only	Salinity real-time value	
000711	40008	Total dissolved	Read	TTD C 1 1	
0007H	(Decimal)	solids TDS	only	TDS real-time value	
	40025	Conductivity	Read	0-100 corresponds to	
0022 H	40035	temperature	and	0.0%-10.0%	
	(Decimal)	coefficient	write	Default 0.0%	
	40026	G 1: '.	Read	0-100 corresponds to	
0023 H	40036	Salinity	and	0.00-1.00	
	(Decimal)	coefficient	write	Default 55 (0.55)	
	40027		Read	0-100 corresponds to	
0024 H	40037	TDS coefficient	and	0.00-1.00	
	(Decimal)		write	Default 50 (0.5)	
0050 11	40081	Temperature	Read	Integer (expanded by 10	
0050 H	(Decimal)	calibration value	and	times)	

			write	
0051 H	40082 (Decimal)	Water content calibration value	Read and write	Integer (expanded by 10 times)
0052 H	40083 (Decimal)	Conductivity calibration value	Read and write	Integer
02E8 H	40745 (Decimal)	Sixteen higher nitrogen content coefficient	Read and write	True value
02E9 H	40746 (Decimal)	Sixteen lower nitrogen content coefficient	Read and write	(IEEE754 standard floating point type)
02EA H	40747 (Decimal)	Nitrogen content calibration value	Read and write	Integer
02F2 H	40755 (Decimal)	Sixteen higher phosphorus content coefficient	Read and write	True value
02F3 H	40756(Decimal)	Sixteen lower phosphorus content coefficient	Read and write	(IEEE754 standard floating point type)
02F4 H	40757 (Decimal)	Phosphorus content calibration value	Read and write	Integer
02FC H	40765 (Decimal)	Sixteen higher potassium content coefficient	Read and write	True value (IEEE754 standard
02FD H	40766 (Decimal)	Sixteen lower potassium content	Read and write	floating point type)

		coefficient		
	40767	Potassium	Read	
02FE H	(Decimal)	content	and	Integer
	(Decimal)	calibration value	write	
	42001		Read	
07D0 H	(Decimal)	Device address	and	1~254 (factory default 1)
			write	
07D1 H	42002		Read	0 for 2400
	42002 (Decimal)	Device baud rate	and	1 for 4800
			write	2 for 9600

Note: The conductivity moisture equipment has no temperature value and its calibration value register

5.4 Communication protocol example and explanation

5.4.1 Example: Read the conductivity and temperature and moisture value of the device (address 0x01)

Interrogation frame

Addı		Start address	Data length	Check code low byte	Check code high byte
0x0	0x03	x03		0x05	0xCB

Reply frame

Addre ss code	Functi on code	Returns the number of valid bytes	Moisture value	Temperatu re value	Conduc tivity value	Check code low byte	Check code high byte
0x01	0x03	0x06	0x02 0x92	0xFF 0x9B	0x03 0xE8	0xD8	0x0F

Temperature calculation:

When the temperature is lower than $0\,^{\circ}\text{C}$, the temperature data is uploaded in the form of complement code.

Temperature: FF9B H (hexadecimal) = -101 => temperature = -10.1 °C

Moisture calculation:

Moisture: 292 H (hexadecimal) = 658 => Humidity = 65.8%, that is, the soil

volumetric moisture content is 65.8%.

Conductivity calculation:

Conductivity: 3E8 H (hexadecimal) = 1000 => Conductivity = 1000 us/cm

5.4.2 Example: Read the real-time value of nitrogen content of device

address 0x01

Interrogation frame

Address	Function code	Start address	Data length	Check code low byte	Check code high byte
0x01	0x03	0x00 0x03	0x00 0x01	0x74	0x0A

Reply frame

Address code	Function code	Returns the n umber of vali d bytes	Nitrogen con tent	Check code low byte	Check code high byte
0x01	0x03	0x02	0x00 0x20	0xB9	0x9C

Nitrogen calculation:

Nitrogen content: 0020 H (hexadecimal) = 32 => Nitrogen = 32mg/kg

5.4.3 Example: Read the real-time value of the phosphorus content of

the device address 0x01

Interrogation frame

Address code	Function code	Start address	Data length	Check code low byte	Check code high byte
0x01	0x03	0x00 0x04	0x00 0x01	0xC5	0xCB

Reply frame

Address	Function	Returns the n	Phosphorus	Check code	Check code hig
code	code	umber of vali	content	low byte	h byte

		d bytes				
0x01	0x03	0x02	0x00 0x25	0x79	0x9F	

Phosphorus content calculation:

Phosphorus content: 0025 H (hexadecimal) = 37 => Phosphorus = 37mg/kg

5.4.4 Example: Read the real-time value of potassium content of device address 0x01

Interrogation frame

ſ						
	Address	Function	Start address	Data length	Check code 1	Check code h
	code	code			ow byte	igh byte
	0x01	0x03	0x00 0x05	0x00 0x01	0x94	0x0B

Reply frame

Address code	Function code	Returns the n umber of vali d bytes	Potassium co ntent	Check code low byte	Check code high byte
0x01	0x03	0x02	0x00 0x30	0xB8	0x50

Potassium content calculation:

Potassium content: 0030 H (hexadecimal) = 48 => potassium = 48mg/kg

Chapter 6 Common Problems and Solutions

No output or output error

possible reason:

- ① The computer has a COM port, and the selected port is incorrect.
- **②** The baud rate is wrong.
- ③ The 485 bus is disconnected, or the A and B wires are connected reversely.
- 4. Too much equipment or too long wiring, power supply nearby, add 485 booster, and add 120Ω terminal resistance at the same time.
- **⑤** The USB to 485 driver is not installed or damaged.
- **6** The equipment is damaged.