PANC: Projeto e Análise de Algoritmos

<u>Aula 03</u>: <u>Análise do Tempo de Execução – Ordenação</u> <u>por Inserção e outros exemplos</u>

Breno Lisi Romano

http://sites.google.com/site/blromano

Instituto Federal de São Paulo – IFSP São João da Boa Vista Bacharelado em Ciência da Computação – 3º Semestre

Sumário

- Revisão de Conteúdo
- Cálculo do Tempo de Execução
 - Limitantes Inferiores e Superiores
 - Custos
 - Otimalidade de um Algoritmo
 - Cálculo do Tempo de Execução e Perspectiva
- Comparando Algoritmos
- Ordenação por Inserção (Insertion Sort)

Recapitulando... (1)

- "Algorithm analysis usually means 'give a big-O figure for the running time of an algorithm (Of course, a big-O would be even better). This can be done by getting a big-O figure for parts of the algorithm and then combining these figures using the sum and product rules for big-O.
- Another useful technique is to pick an elementary operation, such as additions, multiplications or comparisons, and observing that the running time of the algorithm is big-O of the number of elementary operations. Then, you can analyze the exact number of operations as function of n in the worst case."
- lan Parberry, Problems on Algorithms

Recapitulando... (2)

Importância:

- Os algoritmos permeiam toda a ciência da computação (entre outras ciências),
 independente da área de concentração
- O projeto de algoritmos é fortemente influenciado pela estimativa de seu comportamento
- Estamos interessados em algoritmos eficientes, ou pelo menos, "bem comportados"

Projeto:

- Antes de projetarmos um algoritmo, analisa-se o problema:
 - suas características
 - sua complexidade
 - contexto em que se encontra o que determinará a exigência sobre tempo de execução e qualidade das soluções
- Depois desta análise, as decisões se concentram em qual tipo de algoritmo será utilizado, quais estruturas de dados e outros detalhes de implementação

Recapitulando... (3)

Implementação:

- Uma vez tomadas todas as decisões anteriores, implementa-se o algoritmo
- Qual é o custo de se utilizar uma determinada implementação específica?
- Devemos levar em consideração a memória necessária para armazenar as estruturas de dados e os trechos do código – quantas vezes cada um será executado?

Analisando Algoritmos:

- Analisar o comportamento assintótico de um algoritmo (ou implementação) de acordo com o tamanho da entrada
- Se aplicarmos a mesma métrica a diferentes algoritmos para um mesmo problema,
 podemos compará-los de uma maneira adequada

Recapitulando... (4)

Analisando Algoritmos:

- Análise Teórica
- Na prática, outros fatores podem influenciar o desempenho de uma implementação:
 - Otimizações realizadas pelo compilador
 - Características do sistema operacional
 - Características de hardware
- Algumas simplificações são feitas nesta análise teórica, como veremos a seguir

Comparando Algoritmos:

- Recomenda-se comparar algoritmos com complexidade dentro de uma mesma ordem de grandeza por meio de experimentos computacionais
- Desta forma, os custos reais e outros não aparentes se tornam claros

Recapitulando... (5)

Perspectivas - Definição:

 Além do ambiente computacional, o comportamento de um algoritmo pode variar de acordo com o comportamento da entrada (tamanho, estrutura, etc.), o que gera diferentes Perspectivas

Melhor Caso:

 A entrada está organizada de maneira que o algoritmo levará o tempo mínimo para resolver o problema

Pior Caso:

Foco da Análise

 A entrada está organizada de maneira que o algoritmo levará o tempo máximo para resolver o problema

Caso Médio:

 A entrada está organizada de maneira que o algoritmo levará um tempo médio para resolver o problema

Como Medir?

- Consideramos um conjunto de instruções com custos especificados, normalmente, só as instruções mais significativas
- Definimos uma função de custo ou função de complexidade T
- T(n) é a medida de custo da execução de um algoritmo para uma instância de tamanho n:
 - A função de complexidade de tempo T(n) mede o tempo necessário para executar um algoritmo (número de instruções)
 - Não o tempo medido no relógio, mas quantas vezes operações relevantes serão executadas
 - A função de complexidade de espaço T(n) mede a quantidade de memória necessária para executar um algoritmo

Cálculo do Tempo de Execução (1)

Limitante Inferior:

Dado um determinado problema P, chamamos de limite inferior (ou lower bound) LB(P) a complexidade mínima necessária para resolvê-lo

Limitante Superior:

 Dado um determinado problema P, chamamos de limite superior (ou upper bound) UB(P) a complexidade do melhor algoritmo conhecido que o resolve

Limitantes Inferiores e Superiores:

- Um determinado problema é considerado computacionalmente resolvido se:
 - UB(P) pertence ao mesmo domínio de LB(P)

Cálculo do Tempo de Execução (2)

- Problema computacional: Dado um array A de n números inteiros,
 determine o maior valor entre eles
- Como calcular, em função de n, o número máximo de operações realizadas por este algoritmo?

Cálculo do Tempo de Execução (3)

Custos:

- A contribuição de cada instrução para o tempo de execução é o produto de seu custo individual e o número de vezes que é executada:
 - Uma operação com custo c₁ executada uma vez contribui com c₁
 - Uma operação com custo c₂ executada n vezes contribui com c₂.n
 - Um laço (for, while) que termina de maneira usual contribui com o produto de uma constante e a quantidade de vezes que foi executado
 - Operações de atribuição, incremento e comparação são contados como uma única constante
 - A comparação do laço é sempre executada uma vez mais, para determinar o seu fim
 - Por exemplo, um laço de 0 até n-1 é executado n vezes

Cálculo do Tempo de Execução (4)

Custos:

- Um desvio condicional (if, switch) fora do cabeçalho de um laço é contado como tempo constante
- Uma chamada para uma função tem complexidade correspondente à complexidade da execução da função
- Uma função recursiva tem sua complexidade definida em termos da recorrência associada
- Instruções contidas dentro de laços são executadas repetidas vezes, o que deve ser levado em consideração
- O tempo de execução T(n) é, portanto, a soma destes produtos referentes a cada instrução do algoritmo

Obs: Basicamente entendemos lan Parberry agora!!!

Cálculo do Tempo de Execução (5)

Análise Assintótica:

 No pior caso, são realizadas 4+4.(n-1) operações (para n ≥ 1), logo, o algoritmo é Linear (4.n)

^{* 01} atribuição inicial e repete n-1 vezes (01 comparação, 01 incremento), no máximo. Adicionalmente, 01 última comparação

Cálculo do Tempo de Execução (6)

Considerações:

- O algoritmo arrayMax executa 4n operações primitivas, excluindo os termos de mais baixa ordem
- Sejam a e b os tempos de execução das instruções mais rápida e mais lenta da arquitetura utilizada, respectivamente
- Seja T(n) o tempo real de execução do pior caso de arrayMax
- Temos que:
 - a . 4n ≤ T (n) ≤ b . 4n → T(n) é delimitada por duas funções lineares
- A linearidade de T(n) é uma propriedade intrínseca de arrayMax
 - Por exemplo, o ambiente de hardware ou software apenas alterariam T(n) por uma constante, porém, a linearidade se manteria
 - Não existe um algoritmo melhor que linear para arrayMax()

Propriedade:

Cada algoritmo possui uma taxa de crescimento que lhe é intrínseca

Otimalidade de um Algoritmo

Teorema - Limitante Inferior para Encontrar o Maior Elemento:

 Qualquer algoritmo para encontrar o maior elemento de um conjunto com n elementos (n ≥ 1), faz pelo menos n-1 comparações

Prova:

 Cada um dos n-1 elementos deve ser mostrado, por meio de comparações, ser menor do que algum outro elemento, logo, n-1 comparações são necessárias

Otimalidade:

Se o limitante inferior para encontrar o menor elemento é igual ao limitante superior → o problema é computacionalmente resolvido e o algoritmo é ótimo

Outro Exemplo: Cálculo do Tempo de Execução – Maior e Menor Elemento (1)

 Problema computacional: encontrar o maior e o menor elemento de um array de inteiros A, de tamanho n, com n ≥ 1

```
1 int maxMin1(int A[], int n, int max, int min)
2 {
      max = A[0];
     min = A[0];
5 for(int i=1; i < n; i++){
         if(A[i] > max)
             max = A[i];
         if(A[i] < min)
             min = A[i];
10
11 }
```


Outro Exemplo: Cálculo do Tempo de Execução – Maior e Menor Elemento (2)

 Vamos analisar o algoritmo para determinar o T(n) baseando-se apenas no número de comparações entre os elementos de A

```
1 int maxMin1(int A[], int n, int max, int min)
2 {
     max = A[0];
4 \min = A[0];
5 for(int i=1; i< n; i++){
        if(A[i] > max)
           max = A[i]; 2.(n-1) comparações
8 if(A[i] < min) \leftarrow
           min = A[i];
9
10
11 }
```

Análise: O número de comparações é T(n) = 2.(n-1) para n>0, para o melhor caso, pior caso e caso médio → este algoritmo pode ser melhorado

Outro Exemplo: Cálculo do Tempo de Execução – Maior e Menor Elemento (3)

Conseguimos melhorar?

```
1 int maxMin2(int A[], int n, int max, int min)
2 {
      max = A[0];
      min = A[0];
5 for(int i=1; i< n; i++){
         if(A[i] > max)
             max = A[i];
                                       ? comparações
         else if(A[i] < min)
             min = A[i];
10
11 }
```

Para esta nova versão, as perspectivas mudaram?

Outro Exemplo: Cálculo do Tempo de Execução – Maior e Menor Elemento (4)

```
1 int maxMin2(int A[], int n, int max, int min)
2 {
     max = A[0];
     min = A[0];
  for(int i=1; i< n; i++){
        if(A[i] > max)
            max = A[i];
else if(A[i] < min)
            min = A[i];
9
10
11 }
```

Melhor Caso:

Os elementos estão em ordem crescente, logo, o número de comparações é T(n) = n-1

Pior Caso:

Os elementos estão em ordem decrescente, logo, o número de comparações é T(n) = 2.(n-1)

Outro Exemplo: Cálculo do Tempo de Execução – Maior e Menor Elemento (5)

Caso Médio:

- Supõe-se uma distribuição de probabilidades sobre o conjunto de entradas de tamanho n
 - É comum supor uma distribuição em que quaisquer entradas são igualmente prováveis, embora isso não seja sempre verdade
- Esta análise geralmente é mais elaborada do que as duas anteriores
- Podemos considerar uma distribuição dos elementos de A de maneira que A[i] será maior do que a variável max na metade dos casos
 - Ou seja, o primeiro if será executado (n-1) vezes, e o else $\frac{(n-1)}{2}$ vezes
- Portanto, o **número de comparações** é $T(n) = (n-1) + \frac{n-1}{2} = \frac{3n}{2} \frac{3}{2}$, para n>0
- Este não é um algoritmo ótimo, embora seja melhor do que o primeiro.
 Vejamos uma terceira versão de algoritmo! Alguém consegue pensar em uma melhora?

Outro Exemplo: Cálculo do Tempo de Execução – Maior e Menor Elemento (6)

maxMin3() - Lógica:

- Compare os elementos de A aos pares, separando-os em dois subconjuntos:
 - A-: conjunto dos menores elementos
 - A+: conjunto dos maiores elementos
- Obtenha o maior elemento comparando os $\left\lceil \frac{n}{2} \right\rceil 1$ elementos do conjunto A+
- Obtenha o menor elemento comparando os $\left\lceil \frac{n}{2} \right\rceil 1$ elementos do conjunto A-

Qual é a complexidade de cada perspectiva deste algoritmo?

```
int maxMin3(int A[], int n, int max, int min)
   if(n\%2!=0){
       A[n+1] = A[n];
                                            Quando o n (tamanho do array) é ímpar,
       n = n + 1:
                                         o último elemento é duplicado, por simplicidade
   max = A[0];
   min = A[1];
   if(A[0] < A[1])
                                        Identifica o maior (max) e o menor (min) elemento
       \max = A[1];
                                                do array entre os dois primeiros
       min = A[0];
   for(int i=2; i< n-1; i+=2){
       if(A[i] > A[i+1])
          if(A[i] > max)
              max = A[i];
          if(A[i+1] < min)
              min = A[i+1];
                                      Os elementos são comparados dois a dois:
       }else{
                                         Os elementos maiores são comparados com max
          if(A[i] < min)
                                         Os elementos menores são comparados com min
              min = A[i];
          if(A[i+1] > max)
              max = A[i+1];
```

```
int maxMin3(int A[ ], int n, int max, int min)
   if(n\%2!=0){
       A[n+1] = A[n];
       n = n+1:
    }
   max = A[0];
   min = A[1];
 • if(A[0] < A[1]){
       \max = A[1];
       min = A[0];
   for(int i=2; i< n-1; i+=2){
    \rightarrow if(A[i] > A[i+1]){
 \longrightarrow if(A[i] > max)
                max = A[i];
        \rightarrow if(A[i+1] < min)
                min = A[i+1];
       }else{
         \rightarrow if(A[i] < min)
                min = A[i];
         \rightarrow if(A[i+1] > max)
               \max = A[i+1];
```

Qual o número de comparações?

- Quais Comparações que importam?

Análise da Complexidade:

- T(n) =
$$1 + \frac{(n-2)}{2} + \frac{(n-2)}{2} + \frac{(n-2)}{2}$$

-
$$T(n) = \frac{3n}{2} - 2$$

Vamos analisar o Melhor, o Pior e o Caso Médio?????

É tudo igual!

Outro Exemplo: Cálculo do Tempo de Execução – Maior e Menor Elemento (9)

- Comparemos as três versões de algoritmos apresentadas:
 - De uma maneira geral, maxMin2 e maxMin3 são superiores a maxMin1
 - maxMin2 é superior a maxMin3 no melhor caso
 - maxMin3 é superior a maxMin2 com relação ao pior caso
 - maxMin2 e maxMin3 são bastante próximos quando ao caso médio
- Qual algoritmo você escolheria?

		Melhor Caso	Caso Médio	Pior Caso
	maxMin1	2(<i>n</i> -1)	2(<i>n</i> -1)	2(<i>n</i> -1)
	maxMin2	n-1	$\frac{3n}{2} - \frac{3}{2}$	2(<i>n</i> -1)
	maxMin3	$\frac{3n}{2} - 2$	$\frac{3n}{2} - 2$	$\frac{3n}{2} - 2$
ļ		_		_

Continuando os Cálculos de Tempo de Execução.....

ORDENAÇÃO POR INSERÇÃO (INSERTION SORT)

Problema: Ordenação

Problema de Ordenação:

Ordenar uma sequência de números de maneira não decrescente

Entrada:

■ Uma sequência de n números <a₁, a₂, a₃, . . . , aո>

Saída:

- Uma permutação <a'₁, a'₂, a'₃, . . . , a'ո> da sequência de entrada, tal que a'₁ ≤ a'₂ ≤ a'₃ ≤ . . . ≤ a'n
- Vamos começar estudando o algoritmo de Ordenação por Inserção (Insertion Sort)

Ordenação por Inserção: Ilustração (1)

	1	2	3	4	5	6
(f)	1	2	3	4	5	6

Ordenação por Inserção: Lógica (2)

- A ordenação por inserção é caracterizada pelo princípio no qual se divide o array em dois segmentos: um já ordenado e o outro não ordenado
- Inicialmente, o primeiro segmento é formado apenas por um elemento (já considerado ordenado)
- O segundo segmento contém n-1 elementos restantes não ordenados
- O progresso se desenvolve em n-1 interações sendo que, em cada uma delas, um elemento do segmento não ordenado é transferido para o primeiro segmento, e inserido na posição correta em relação aos demais elementos já existentes

Ordenação por Inserção: Lógica (3)

- Veja os passos utilizados para se ordenar valores pelo método da inserção direta:
 - 1. Considere o primeiro elemento como pertencente ao segmento ordenado S1
 - 2. Considere os demais elementos como pertencentes ao segmento desordenado S2
 - 3. Toma-se um dos elementos não ordenados do segmento S2, a partir do primeiro, e localiza-se a sua posição relativa correta em S1
 - 4. A cada comparação realizada entre o elemento do segmento S2 e os que já estão no segmento S1, podemos obter um dos seguintes resultados:
 - O elemento a ser inserido é menor do que aquele com o qual se está comparando. Neste caso, este é movido uma posição para a direita, deixando vaga a posição que anteriormente ocupava
 - O elemento a ser inserido é maior ou igual àquele que se está comparando. Neste caso, fazemos a inserção do elemento na posição vaga, a qual corresponde à sua posição correta no segmento S1
 - Se o elemento a ser inserido é maior que todos do segmento S1, a inserção corresponde a deixá-lo na posição que já ocupava em S2
 - Após cada inserção, a fronteira entre os dois segmentos é deslocado uma posição para a direita, indicando, com isto, que o segmento ordenado ganhou um elemento e o não ordenado perdeu um
 - 5. O processo prossegue até que todos os elementos de S2 tenham sido transferidos para S1

Ordenação por Inserção: Exemplo (4)

Exemplo Ilustrativo:

i	0	1	2	3	4	5
Vet[i]	60	30	40	50	90	80
	S 1			S2	417	

Primeira Iteração:

i	0	1	2	3	4	5
Vet[i]	60	<u>30</u>	40	50	90	80
	S 1			S2		

i	0	1	2	3	4	5
Vet[i]	30	60	<u>40</u>	50	90	80
	S 1			S2		

Ordenação por Inserção: Exemplo (5)

Segu	nda	Itera	cão:
			3

i	0	1	2	3	4	5
Vet[i]	30	40	60	<u>50</u>	90	80
-	S1			S2	AT MAN	

Terceira Iteração:

i	0	1	2	3	4	5
Vet[i]	30	40	50	60	<u>90</u>	80
	S 1				S	52

Quarta Iteração:

i	0	1	2	3	4	5
Vet[i]	30	40	50	60	90	<u>80</u>
	S1					S2

Quinta Iteração:

i	0	1	2	3	4	5
Vet[i]	30	40	50	60	80	90

Ordenação por Inserção: Mais um Exemplo (6)

Segundo Exemplo Ilustrativo:

i	0	1	2	3	4	5	6	7
Vet[i]	44	55	12	42	94	18	06	67

Solução:

i	0	1	2	3	4	5	6	7	Iteração
Vet[i]	44	<u>55</u>	12	42	94	18	06	67	-
Vet[i]	44	55	<u>12</u>	42	94	18	06	67	1
Vet[i]	12	44	55	<u>42</u>	94	18	06	67	2
Vet[i]	12	42	44	55	<u>94</u>	18	06	67	3
Vet[i]	12	42	44	55	94	<u>18</u>	06	67	4
Vet[i]	12	18	42	44	55	94	<u>06</u>	67	5
Vet[i]	06	12	18	42	44	55	94	<u>67</u>	6
Vet[i]	06	12	18	42	44	55	67	94	7

Ordenação por Inserção: Pseudocódigo (7)

Ordenação por Inserção: Análise da Complexidade (8)

- O que é importante analisar?
 - Finitude: o algoritmo para?

Corretude: o algoritmo faz o que promete?

Complexidade de Tempo: quantas instruções são necessárias no pior caso para ordenar os n elementos?

Ordenação por Inserção: Finitude (9)

- No laço enquanto (linha 5), o valor de i diminui a cada iteração e
 o valor inicial é i = j-1 ≥ 1 → sua execução para em algum
 momento por causa do teste condicional i ≥ 1
- O laço na linha 1 evidentemente para (o contador j atingirá o valor n + 1 após n - 1 iterações)
- Portanto, o algoritmo para!

```
ORDENA
1 para j \leftarrow 2 até n faça
...
4 i \leftarrow j - 1
5 enquanto i \ge 1 e A[i] > chave faça
6 ...
7 i \leftarrow i - 1
8 ...
```


Ordenação por Inserção: Corretude (10)

- Invariante de Laços e Provas de Corretude:
 - Definição: é uma propriedade que relaciona as variáveis do algoritmo a cada execução completa do laço
 - Ele deve ser escolhido de modo que, ao término do laço, tenha-se uma propriedade útil para mostrar a corretude do algoritmo
 - A prova de corretude de um algoritmo requer que sejam encontrados e provados invariantes dos vários laços que o compõem
 - Em geral, é mais difícil descobrir um invariante apropriado do que mostrar sua validade se ele for dado de bandeja...

Ordenação por Inserção: Corretude (11)

- Invariante Principal de ORDENA (i1):
 - No começo de cada iteração do laço para das linha 1–8, o sub(array)
 A[1... j−1] está ordenado

Ordenação por Inserção: Corretude (12)

- A estratégia "típica" para mostrar a corretude de um algoritmo iterativo através de invariantes segue os seguintes passos:
 - Mostre que o invariante vale no início da primeira iteração (trivial, em geral)
 - Suponha que o invariante vale no início de uma interação qualquer e prove que ele vale no início da próxima iteração
 - Conclua que se o algoritmo para e o invariante vale no início da última iteração, então o algoritmo é correto
- Note que (1) e (2) implicam que o invariante vale no início de qualquer iteração do algoritmo. Isto é similar ao método de indução matemática!

Ordenação por Inserção: Corretude (13)

- Vamos verificar a corretude do algoritmo de ordenação por inserção usando a técnica de prova por invariantes de laços
- Invariante Principal (i1):
 - No começo de cada iteração do laço para das linha 1–8, o sub(array)
 A[1... j−1] está ordenado

1					j				n	
20	25	35	40	44	55	38	99	10	65	50

- Suponha que o invariante vale
- Então a corretude do algoritmo é "evidente". Por que?
 - No início da última iteração temos j = n + 1. Assim, do invariante segue que o (sub)array A[1 . . . n] está ordenado!

Ordenação por Inserção: Corretude (14)

- Um Invariante Mais Preciso (i1'):
 - No começo de cada iteração do laço para das linha 1–8, o sub(array)
 A[1... j−1] é uma permutação ordenada do sub(array) original A[1... j−1]

```
ORDENA

1  para j \leftarrow 2 até n faça

2   chave \leftarrow A[j]

3  \triangleright Insere A[j] no subvetor ordenado A[1..j-1]

4   i \leftarrow j-1

5   enquanto i \ge 1 e A[i] > chave faça

6   A[i+1] \leftarrow A[i]

7   i \leftarrow i-1

8   A[i+1] \leftarrow chave
```


Ordenação por Inserção: Corretude (15)

 Validade na primeira iteração: temos j=2 e o invariante simplesmente afirma que A[1...1] está ordenado → Evidente

 Validade de uma iteração para a seguinte: O algoritmo empurra os elementos maiores que a chave para seus lugares corretos e ela é colocada no espaço vazio

Corretude do algoritmo: na última iteração, temos j=n+1 e logo
 A[1...n] está ordenado com os elementos originais do array → O
 algoritmo é Correto!

Ordenação por Inserção: Complexidade de Tempo (16)

OF	RDENA	Custo	# execuções	
1 p	oara j ← 2 até n faça	<i>C</i> ₁	?	
2	$chave \leftarrow A[j]$	c_2	?	
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	?	
4	$i \leftarrow j - 1$	c_4	?	
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	C 5	?	
6	$A[i+1] \leftarrow A[i]$	<i>c</i> ₆	?	
7	$i \leftarrow i - 1$	C 7	?	
8	$A[i+1] \leftarrow chave$	<i>C</i> ₈	?	

- A constante **c**_k representa o **custo (tempo)** de cada execução da linha **k**
- Denote por t_j o número de vezes que o teste no laço enquanto
 (linha 5) é feito para aquele valor de j

Ordenação por Inserção: Complexidade de Tempo (17)

OF	RDENA	Custo	Vezes
1 p	oara j ← 2 até n faça	C ₁	n
2	$chave \leftarrow A[j]$	<i>C</i> ₂	<i>n</i> − 1
3	⊳ Insere A[j] em A[1j – 1]	0	<i>n</i> − 1
4	$i \leftarrow j - 1$	<i>C</i> ₄	<i>n</i> − 1
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	C 5	$\sum_{j=2}^{n} t_j$
6	$A[i+1] \leftarrow A[i]$	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	C 7	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow chave$	<i>c</i> ₈	<i>n</i> – 1

- A constante **c**_k representa o **custo (tempo)** de cada execução da linha **k**
- Denote por t_j o número de vezes que o teste no laço enquanto (linha 5) é feito para aquele valor de j

Ordenação por Inserção: Complexidade de Tempo (18)

- Tempo de Execução Total T(n) da Ordenação por Inserção:
 - Soma dos tempos de execução de cada uma das linhas do algoritmo, ou seja:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Como se vê, entradas de tamanho igual (i.e., mesmo valor de n), podem apresentar tempos de execução diferentes já que o valor de T(n) depende dos valores dos t_i

Ordenação por Inserção: Complexidade de Tempo (19)

 T(n) no Melhor Caso da Ordenação por Inserção:

- O array já está ordenado
- Para j = 2, ..., n temos A[i] ≤ chave na linha 5 quando i=j-1. Assim, t_j = 1 para j = 2, ..., n

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$

- Este tempo de execução é da forma an + b para constantes a e b que dependem apenas dos c_i.
- Portanto, no melhor caso, o T(n) é uma função linear

Ordenação por Inserção: Complexidade de Tempo (20)

- T(n) no Pior Caso da Ordenação por Inserção:
 - O array está em ordem decrescente

OF	RDENA	Custo	Vezes
1 p	para $j \leftarrow 2$ até n faça	C ₁	n
2	chave ← A[j]	c_2	<i>n</i> − 1
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	<i>n</i> − 1
4	$i \leftarrow j - 1$	C4	<i>n</i> − 1
5	enquanto $i \ge 1$ e $A[i] > $ chave faça	c ₅	$\sum_{i=2}^{n} t_i$
6	$A[i+1] \leftarrow A[i]$	c_6	$\sum_{i=2}^{n} (t_i - 1)$
7	$i \leftarrow i - 1$	C 7	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow chave$	<i>c</i> ₈	n – 1

- Para inserir a chave em A[1 ... j−1], temos que compará-la com todos os elementos neste sub(array). Assim, t_j = j para j = 2, ..., n
- Lembrem-se que:

Soma dos Termos de uma P.A Finita

$$s_n = \frac{(a_1 + a_n).n}{2}$$

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$
$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

Ordenação por Inserção: Complexidade de Tempo (21)

T(n) no Pior Caso da Ordenação por Inserção:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j + c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_8 (n-1)$$

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$
$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8)$$

- Este tempo de execução é da forma an² + bn + c, onde a, b e c são constantes que dependem apenas dos c_i.
- Portanto, no pior caso, o T(n) é uma função quadrática

Ordenação por Inserção: Implementação 01 (22)

```
/*InsertionSort01(): Função que ordena um array
considerando o método de ordenação por inserção */
void InsertionSort01(int Vet[])
  int i, j, chave;
 for(j = 1; j < n; j + +)
   chave = Vet[i];
   i = i - 1;
   while ((i \ge 0) \&\& (Vet[i] \ge chave))
           Vet[i+1] = Vet[i];
            i = i - 1:
    Vet[i+1] = chave;
```

j: índice do segmento ordenadoi: índice para encontrar a posição de inserção chave: elemento chave analisado

Ordenação por Inserção: Implementação 02 (23)

```
/*InsertionSort02(): Função que ordena um array considerando o método de ordenação por
  inserção */
void InsertionSort(int Vet[])
  int i, j, aux;
  for(i=1; i < n; i++) 
    for(j=i; j>0; j--){
       if(Vet[j] < Vet[j-1]) {
          aux = Vet[j-1];
          Vet[j-1] = Vet[j];
          Vet[j] = aux;
```

i: índice do segmento ordenado

j: índice do segmento não ordenado

variável auxiliar para troca

Conclusão: Comparando Algoritmos (1)

Comparação Justa?

- Podemos comparar algoritmos utilizando as funções de complexidade de espaço e tempo, negligenciando as constantes de proporcionalidade
- Desta forma, um algoritmo n² é pior que outro n, ambos para o mesmo problema

 Contudo, as constantes de proporcionalidade podem revelar fatos escondidos

Conclusão: Comparando Algoritmos (2)

Exemplo:

- Suponha dois algoritmos: um exige 100.n unidades de tempo e outro exige 2.n² unidades de tempo
- Dependendo do tamanho do problema, o melhor algoritmo pode variar:
 - Para n < 50, o segundo algoritmo é melhor que o primeiro
 - Se a quantidade de dados for pequena, é preferível optar pelo segundo
 - Entretanto, o tempo de execução do segundo algoritmo cresce mais rapidamente que o tempo de execução do primeiro

Conclusão: Comparando Algoritmos (3)

- O estudo assintótico nos permite "jogar para debaixo do tapete" os valores das constantes envolvidas, i.e., aquilo que independe do tamanho da entrada
- Considere 3n² + 10n + 50:

		0	Diferença
n	$3n^2 + 10n + 50$	3 <i>n</i> ²	percentual
64	12978	12288	5,32%
128	50482	49152	2,63%
512	791602	786432	0,65%
1024	3156018	3145728	0,33%
2048	12603442	12582912	0,16%
4096	50372658	50331648	0,08%
8192	201408562	201326592	0,04%
16384	805470258	805306368	0,02%
32768	3221553202	3221225472	0,01%

■ 3n² é o termo dominante para n muito grande → Concentrar nos termos dominantes

PANC: Projeto e Análise de Algoritmos

Aula 03: Calculando Tempo de Execução – Ordenação por Inserção e outros exemplos

Breno Lisi Romano

Dúvidas???

http://sites.google.com/site/blromano

Instituto Federal de São Paulo – IFSP São João da Boa Vista Bacharelado em Ciência da Computação – 3º Semestre

