Probing-RAG: Self-Probing to Guide Language Models in Selective Document Retrieval

Ingeol Baek, Hwan Chang, Byeongjeong Kim, Jimin Lee, Hwanhee Lee

Language Intelligence lab, Chung-Ang University

Motivation

- Recently, research on Retrieval-Augmented Generation (RAG) has been actively exploring Adaptive-RAG, which <u>dynamically</u> <u>determines whether additional information retrieval is needed</u>.
- Previous Adaptive-RAG approaches employed an external classifier to decide how many retrievals were necessary. However, this method failed to consider the model's internal knowledge.
- Furthermore, recent LLMs possess extensive knowledge and <u>may</u> <u>be capable of generating responses without the need for search</u>. However, we intentionally disregard this ability and employ RAG, which <u>can lead to conflicts between the model's internal knowledge and the information retrieved from documents</u>.

Method

- we use a module called **Prober to determine whether additional** retrieval is needed.
- The Prober module is a binary classification module that takes the hidden state as input, after being integrated with the model's internal residual network.

- Using the two Probers that showed the best performance, we extracted the kernel density estimation, and <u>notable differences</u> were observed.
- Additionally, we confirmed that the accuracy of the Prober exceeded 0.7 for each layer.
- Finally, as the performance of the Prober improved, we observed a <u>corresponding increase in QA performance</u>, with a high correlation of 0.93.

Training Dataset Construction

	No Retrieval	With Retrieval		
Correct	Query: What race track in the midwest hosts a 500 mile race every May?	Query: Were Scott Derrickson and Ed Wood of the same nationality?		
	Rationale: The Indianapolis 500 is a 500-mile (800 km) automo-	Passages: {Retrieved passage 1,, Retrieved passage 5}		
	bile race Pred: Indianapolis Motor Speedway	Rationale: Scott Derrickson is an American film director, screenwriter		
	Label: Indianapolis Motor Speed-	Pred: Yes		
	way ACC (Prober Training Label): 1	Label: Yes ACC (Prober Training Label): 1		
Incorrect	Query: When was Poison's album "Shut Up, Make Love" released?	Query: Are Random House Tower and 888 7th Avenue both used for real estate?		
	Rationale: The album "Shut Up, Make Love" was released in	Passages: {Retrieved passage 1,, Retrieved passage 5}		
	Pred: 1990	Rationale: Random House Tower is a 40-story skyscraper in		
		Pred: Yes		
	Label: 2000 ACC (Prober Training Label): 0	Label: No ACC (Prober Training Label): 0		

 To train the Prober module, we used datasets like HotpotQA, NaturalQA, and TriviaQA, <u>creating four types of datasets</u>.

Experiment

Methods	In-Domain HotpotQA NQ		TriviaQA		Out-of- MuSiQue		-Domain 2Wiki		Average			
	EM	ACC	EM	ACC	EM	ACC	EM	ACC	EM	ACC	EM	ACC
Gemma-2b												
No Retrieval	16.8	28.0	15.0	24.6	37.4	45.4	3.2	4.8	22.6	<u>43.0</u>	19.0	<u>29.2</u>
Single-step Approach	14.6	<u>28.2</u>	11.4	26.0	19.6	38.8	1.8	<u>5.8</u>	22.8	38.4	14.0	27.4
LLM-based	18.6	25.8	17.6	20.4	36.8	41.8	3.8	4.6	24.2	25.8	20.2	23.7
FLARE	13.2	21.0	9.0	21.8	13.8	31.0	1.2	5.0	21.6	27.8	11.8	21.3
DRAGIN	<u>19.8</u>	22.6	<u>18.8</u>	22.2	42.8	<u>47.0</u>	4.2	4.8	26.4	28.8	22.4	25.1
Adaptive-RAG	13.2	23.6	11.4	<u>26.2</u>	22.8	40.8	1.2	3.0	21.6	40.6	14.0	26.8
Probing-RAG(Ours)	21.8	39.4	21.6	35.0	<u>41.8</u>	52.2	4.8	8.8	<u>24.2</u>	43.6	22.8	35.8
Mistral-7b												
No Retrieval	17.0	20.6	13.2	19.8	38.0	45.2	3.4	6.2	16.4	30.0	17.6	24.4
Single-step Approach	18.6	<u>34.2</u>	16.8	35.0	34.6	<u>51.0</u>	5.4	9.0	21.6	<u>32.6</u>	19.4	<u>32.4</u>
LLM-based	20.4	32.0	15.8	35.6	41.2	49.8	5.6	9.4	16.8	32.4	20.0	31.8
FLARE	20.4	32.0	15.4	34.4	35.0	45.6	$\overline{4.4}$	6.6	18.6	31.0	18.8	29.9
DRAGIN	21.2	28.0	16.8	37.2	39.8	42.2	5.2	7.2	23.2	25.8	21.2	28.1
Adaptive-RAG	19.0	26.0	<u>17.2</u>	<u>37.4</u>	<u>40.8</u>	50.2	4.0	5.8	22.6	31.6	20.7	30.2
Probing-RAG(Ours)	22.4	38.6	20.8	39.4	43.2	52.2	5.8	9.8	<u>23.0</u>	33.4	23.0	34.7

In the experimental results, we were able to achieve the best performance with the Prober trained on both <u>in-domain and out-of-domain datasets</u>.

	Total Retrieval Call	No	Single-step	Multi-step	
	Total Redieval Call	Retrieval Step Ratio			
LLM-based	2345	6.2%	93.8%	0.00%	
FLARE	5317	12.41%	29.35%	58.24%	
DRAGIN	13570	0.00%	1.20%	98.80%	
Adaptive-RAG	3068	7.79%	61.96%	30.25%	
Probing-RAG	1988	57.46%	20.19%	22.35%	

 We measured the consistency of each approach by evaluating how consistently they matched the queries answered correctly during DirectQA.

Consistency	HotpotQA	NQ	TriviaQA	MuSiQue	2Wiki
No Retrieval	100%	100%	100%	100%	100%
Single-step-RAG	73.8%	76.0%	82.0%	70.4%	85.0%
FLARE	74.4%	76.4%	83.8%	68.8%	72.8%
DRAGIN	75.2%	75.0%	81.8%	77.8%	69.8%
Adaptive-RAG	83.0%	76.6%	86.0%	74.6%	93.2%
Probing-RAG	90.6%	92.6%	91.0%	96.4%	96.6%

• While all methods showed a relatively low consistency of about 70%, Probing-RAG demonstrated a consistency of around 90%.