		Total Pages:	9		
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY					
		Scheme for Valuation/Answer Key			
Scheme of evaluation (marks in brackets) and answers of problems/key					
	FO	URTH SEMESTER B.TECH DEGREE(R,S) EXAMINATION JUNE 2022(20	19		
		Scheme)			
		Course Code: CST206 Course Name: OPERATING SYSTEMS			
Max	x M	arks: 100 Duration: 3	Hours		
TVICE	4. 111		110015		
		PART A (Answer all questions; each question carries 3 marks)	Marks		
1		Bootstrap loader, located in ROM, can perform various tasks – run diagnostics to	3		
1		determine the state of the system, initializes all aspects of the system, locate the	3		
		kernel in memory, loads it into memory and starts its execution.			
2		Using dual mode of operations – user mode and kernel mode	3		
3			3		
3		3 child processes will be created and hence together with parent, it will print Forked 4 times.	3		
4		Blocking send. Non blocking send, Blocking receive, Non blocking receive	3		
5		When several processes access and manipulate the same data concurrently and the	3		
		outcome of the execution depends on the particular order in which the access			
		takes place, is called a race condition.			
		Race condition definition/explanation- 1.5 marks			
		Example - 1.5 marks			
6		Process termination, Resource preemption	3		
		Listing - 1 mark			
		explanation - 2 marks			
7		If you know at compile time where the process will reside in memory, then	3		
		absolute code can be generated at compile time - compile time binding			
		If it is not known at compile time where the process will reside in memory, then			
		the compiler must generate relocatable code. In this case, final binding is delayed			
		until load time load time binding.			
	ì		1		

Logical memory size = $256 * 4KB = 2^20 B$. Logical address has 20 bits.

1.5 marks each

8

		Physical memory size = $64 * 4KB = 2^18 B$. Physical address has 18 bits.	
		Offset - depends upon page size. Hence $4KB = 2^12 B$. So offset = 12 bits	
		1 mark each	
9		The seek time is the time for the disk arm to move the heads to the cylinder	3
		containing the desired sector. The rotational latency is the additional time for the	
		disk to rotate the desired sector to the disk head. The disk bandwidth is the total	
		number of bytes transferred, divided by the total time between the first request for	
		service and the completion of the last transfer.	
		1 mark each	
10		master file directory user 1 user 2 user 3 user 4	3
		user file directory Cat bo a test a data a test x data a	
		diagram - 1 mark	
		explanation - 2 marks	
		Note: As Directory structure is not mentioned explicitly in the syllabus, full credit may be given if attempted	
		may be given if attempted	
		may be given if attempted PART B	
1	a)	PART B (Answer one full question from each module, each question carries 14 marks)	7
.1	a)	PART B (Answer one full question from each module, each question carries 14 marks) Module -1	7
.1	a) b)	PART B (Answer one full question from each module, each question carries 14 marks) Module -1 System call explanation – 3 marks	7
1	Í	PART B (Answer one full question from each module, each question carries 14 marks) Module -1 System call explanation – 3 marks Explaining system calls using APIs and system call interface – 4 marks	
1	Í	PART B (Answer one full question from each module, each question carries 14 marks) Module -1 System call explanation – 3 marks Explaining system calls using APIs and system call interface – 4 marks Micro-kernel architecture – diagram – 2 marks	
	Í	PART B (Answer one full question from each module, each question carries 14 marks) Module -1 System call explanation – 3 marks Explaining system calls using APIs and system call interface – 4 marks Micro-kernel architecture – diagram – 2 marks Explanation – 4 marks	
1 2	b)	PART B (Answer one full question from each module, each question carries 14 marks) Module -1 System call explanation – 3 marks Explaining system calls using APIs and system call interface – 4 marks Micro-kernel architecture – diagram – 2 marks Explanation – 4 marks Communication – through message passing – 1 mark	7
	b)	PART B (Answer one full question from each module, each question carries 14 marks) Module -1 System call explanation – 3 marks Explaining system calls using APIs and system call interface – 4 marks Micro-kernel architecture – diagram – 2 marks Explanation – 4 marks Communication – through message passing – 1 mark Functions of OS – Process Management, Memory Management, Storage	7


```
5
16 a)
       The structure of Philosopher i:
           do {
               wait (chopstick[i] );
                wait (chopStick[ (i + 1) % 5] );
                           // eat
                signal (chopstick[i] );
                signal (chopstick[ (i + 1) % 5] );
                            // think
           } while (TRUE);
       Pseudocode - 3 marks
       Deadlock and starvation possible with this code; - explanation 2 marks
                                                                         9
   b)
             Allocation
                          Max
                                   Available
                                              Need
              ABCD
                         ABCD
                                   ABCD
                                             ABCD
               0012
                                    1520
                          0012
                                              0000
        P_0
        P_1
              1000
                          1750
                                              0750
              1354
                          2356
        P_2
                                              1002
        P_3
              0632
                          0652
                                              0020
              0014
                         0656
        P_{\Delta}
                                              0642
              Work = 1520, Finish = FFFFF
          1.
              Take P0. Need0 (0 0 0 0)<= Work.
          2.
              Work = 1520 + 0012 = 1532,
              Finish = TFFFF
```

- 3. Take P3. Need3 (0 0 2 0) <= Work Work = 1 5 3 2 + 0 6 3 2 = 1, 11, 6, 4 Finish = T F F T F
- 4. Take P2. Need2 (1 0 0 2) <= Work
 Work = 1, 11, 6, 4 + 1 3 5 4 = 2, 14,11, 8
 Finish = T F T T F
- 5. Take P4 . Need4 (0 6 4 2) <= Work
 Work = 2, 14,11,8 + 0 0 1 4 = 2, 14, 12, 12
 Finish = T F T T T
- 6. Take P1. Need1 (0 7 5 0) <= Work
 Work = 2, 14, 12, 12 + 1 0 0 0 = 3, 14, 12,12
 Finish = T T T T T

Safe sequence <P0, P3, P2, P4, P1>. State is safe.

Checking for the safe state: 4 Marks

Note: More than one safe sequence are there. Mark can be given to any safe sequence.

State at time T0 is safe.

Request arrives : P1 < 0.4, 2.0 >

- 1. Check whether Request(P1) \leq Need1. <0,4,2,0> <= <0.750>. Request is valid.
- 2. Check whether Request(P1) <= Available. <0,4,2,0> <= <1 5 2 0>. Hence can try to allocate.
- 3. Pretend to allocate resources and arrive at the new state.

State at time T1. (Pretend Resource is allocated)

Allocation (P1): $<1 \ 0 \ 0> + <0 \ 4 \ 2 \ 0> = <1 \ 4 \ 2 \ 0>$

Need (P1) : <0.750> -<0.420> = <0.330>

Available : <1520 > - <0420 > = <1100 >

<P0, P2, P3, P1, P4> is a safe sequence. Hence request can be granted.

Executing Resource request Algorithm and then checking for safe state : 5 marks

Module -4

19	a)	Access methods - sequential , direct with explanations.	4
		2 marks each	
	b)	Linked allocation - 5 marks	10
		Indexed allocation - 5 marks.	
		Explanations with required diagrams.	
20	a)	3 marks each for explanation and answer.	9
		FCFS: 100 -> 20->89 -> 130 ->45 -> 120 -> 180	
		Head movement : 410 cylinders	
		SSTF: 100 -> 89 -> 120 -> 130 -> 180 -> 45 -> 20	
		Head movement: 262 cylinders	
		CSCAN: Method-1 If direction of head movement towards 199 $100 \Rightarrow 120 \Rightarrow 130 \Rightarrow 180 \Rightarrow 199 \Rightarrow 0 \Rightarrow 20 \Rightarrow 45 \Rightarrow 89$ Total Head movement= 387 Cylinders Method-2 If direction of head movement towards 0 $100 \Rightarrow 89 \Rightarrow 45 \Rightarrow 20 \Rightarrow 0 \Rightarrow 199 \Rightarrow 180 \Rightarrow 130 \Rightarrow 120$ Total Head movement= 378 Cylinders Three Marks can be given to any one method	
	b)	Owner, Group, Universe Explanation – 3 marks Example - 2 marks	5

ь			