Color Lecture 2

Maricor Soriano

Trinity of Color

Trinity of Optical Measurement

Light Sources

- Naturally occurring or man-made
- Spectral power distribution
 - Visible spectrum plot of wavelength of visible light (350-750 nm) versus how much of each light the object
 - Emits (EMITTANCE)
 - Reflects (REFLECTANCE)
 - Absorbs (ABSORBANCE)
 - Transmits (TRANSMITTANCE)
- Polarization
 - Linear
 - Circular
 - Random
- Coherence

Daylight

Dawn or dusk

Daylight at high noon

Cloudy day

Spectral Power Distribution

Man-made Light Sources

Incandescents

Blackbody Radiation

When objects are heated they spontaneously emit radiation. A blackbody was first defined by Kirchhoff in 1859 as an ideal object which is a perfect absorber of energy and at the same time a perfect emitter of radiation.

The first functioning blackbody radiator was built by Wien and Lummer in 1897.

Blackbody Radiation

When a blackbody is heated at T kelvins, color of emitted light will shift from red to yellot to white to blue.

Planck's Blackbody Radiation Formula

Max Planck won the curve fitting challenge by assuming the energy of individual oscillators in the cavity is quantized. Thus, the spectrum as a function of wavelength $\tilde{\lambda}$ lambda and temperature T in kelvins is given by

$$B(\lambda, T) = \frac{2hc^2}{\lambda^5(\exp(\frac{hc}{\lambda kT}) - 1)}$$

Where

 $h = Plancl's constant = 6.6262 \times 10E(-34) Js$ $c = speed of light = 3 \times 10E8 m/s$

Blackbody Radiator Sources

Gas discharge tubes - elemental gases excited by electrons

Fluorescents

Correlated Color Temperature (CCT)

CCT - a measure for the light source which tells what the temperature of a blackbody should be to have the same color as the light source.

Light Emitting Diodes

LED - many colors to choose from

Lasers - Highly monochromatic, highly coherent

Nd:YAG solid-state laser

Activity 2 - Familiarization with Properties of Light Sources

INDIVIDUAL WORK

GROUP WORK

(See PDF)