1. Basquete de robôs

A organização da OIBR, Olimpíada Internacional de Basquete de Robô, está começando a ter problemas com dois times: os *Bit Warriors* e os *Byte Bulls*. É que os robôs desses times acertam quase todos os lançamentos, de qualquer posição na quadra! Pensando bem, o jogo de basquete ficaria mesmo sem graça se jogadores conseguissem acertar qualquer lançamento, não é mesmo? Uma das medidas que a OIBR está implantando é uma nova pontuação para os lançamentos, de acordo com a distância do robô para o início da quadra. A quadra tem 2000 centímetros de comprimento, como na figura.

Dada a distância D do robô até o início da quadra, onde está a cesta, a regra é a seguinte:

- Se D \leq 800, a cesta vale 1 ponto;
- Se $800 < D \le 1400$, a cesta vale 2 pontos;
- Se $1400 < D \le 2000$, a cesta vale 3 pontos.

A organização da OIBR precisa de ajuda para automatizar o placar do jogo. Dado o valor da distância D, você deve escrever um programa para calcular o número de pontos do lançamento.

Entrada

A primeira e única linha da entrada contém um inteiro D indicando a distância do robô para o início da quadra, em centímetros, no momento do lançamento.

Saída

Seu programa deve produzir uma única linha, contendo um inteiro, 1, 2 ou 3, indicando a pontuação do lançamento.

Restrições

• $0 \le D \le 2000$

Exemplos

Entrada	Saída
1720	3

Entrada	Saída
250	1

Entrada	Saída
1400	2

Link para teste: https://olimpiada.ic.unicamp.br/pratique/pj/2018/f1/basquete/

2. Cartas

Um novo game de realidade aumentada tem, dentro dele, um minigame que aparece em certas situações para aumentar o ganho de pontos do game principal. O mini-game é um joguinho de memória com quatro cartas, formando dois pares de cartas iguais. Quer dizer, duas cartas têm um número inteiro N marcado em uma de suas faces e as outras duas cartas têm um outro número inteiro M, $N \neq M$. Neste problema, o jogador já virou três cartas, como mostrado na figura.

Claro que, dadas as condições, a carta que falta virar vai formar par com uma das três que já foram viradas. No caso da figura, o número marcado na carta que ainda falta virar é 11. Implemente um programa que, dados os números de três cartas, imprima o número da carta que ainda falta virar!

Entrada

A primeira linha da entrada contém um inteiro A, representando a primeira carta aberta. A segunda linha contém o inteiro B, representando a segunda carta. A terceira linha contém o inteiro C, que é a terceira carta.

Saída

Seu programa deve imprimir uma linha contendo um inteiro representando o número que está na carta que ainda falta virar.

Restrições

• $0 \le A,B,C \le 100$

Exemplos

Entrada	Saída
40	11
11	
40	

Entrada	Saída
8	96
8	
96	

Link para teste: https://olimpiada.ic.unicamp.br/pratique/pj/2017/f2/cartas/

3. Drone de Entrega

A loja do Pará, especializada em vendas pela internet, está desenvolvendo drones para entrega de caixas com as compras dos clientes. Cada caixa tem a forma de um paralelepípedo reto retângulo (ou seja, no formato de um tijolo).

O drone entregará uma caixa de cada vez, e colocará a caixa diretamente dentro da casa do cliente, através de uma janela. Todas as janelas dos clientes têm o formato retangular e estão sempre totalmente abertas. O drone tem um aplicativo de visão computacional que calcula exatamente as dimensões H e L da janela. O drone consegue colocar a caixa através da janela somente quando uma das faces da caixa está paralela à janela, mas consegue virar e rotacionar a caixa antes de passá-la pela janela.

O aplicativo de controle do drone está quase pronto, mas falta um pequeno detalhe: um programa que, dadas as dimensões da maior janela do cliente e as dimensões da caixa que deve ser entregue, determine se o drone vai ser capaz de entregar a compra (pela janela) ou se a compra terá que ser entregue por meios normais.

Entrada

A entrada é composta por cinco linhas, cada uma contendo um número inteiro. A três primeiras linhas contêm os valores A, B, C, indicando as três dimensões da caixa, em centímetros. As duas últimas linhas contêm os valores H e L, indicando a altura e a largura da janela, em centímetros.

Saída

Seu programa deve escrever uma única linha, contendo apenas a letra S se a caixa passa pela janela e apenas a letra N em caso contrário.

Restrições

• $1 \le A, B, C \le 100$

• $1 \le H, L \le 100$

Exemplos

Entrada	Saída
30	S
50	
80	
30 50 80 80 60	
60	

Entrada	Saída
75	N
100	
50	
100	
30	

Entrada	Saída
20	S
22	
5	
20	
10	

Link para teste: https://olimpiada.ic.unicamp.br/pratique/pj/2017/f1/drone/

4. PUM

Escreva um programa que leia um valor inteiro N. Este N é a quantidade de linhas de saída que serão apresentadas na execução do programa.

Entrada

O arquivo de entrada contém um número inteiro positivo N.

Saída

Imprima a saída conforme o exemplo fornecido.

Exemplo de Entrada	Exemplo de Saída
7	1 2 3 PUM 5 6 7 PUM 9 10 11 PUM 13 14 15 PUM 17 18 19 PUM 21 22 23 PUM 25 26 27 PUM

5. Sequência Lógica 2

Escreva um programa que leia dois valores **X** e **Y**. A seguir, mostre uma sequência de 1 até Y, passando para a próxima linha a cada **X** números.

Entrada

O arquivo de entrada contém dois valores inteiros, (1 < X < 20) e (X < Y < 100000).

Saída

Cada sequência deve ser impressa em uma linha apenas, com 1 espaço em branco entre cada número, conforme exemplo abaixo. Não deve haver espaço em branco após o último valor da linha.

Exemplo de Entrada	Exemplo de Saída
3 99	1 2 3 4 5 6 7 8 9 10 11 12 97 98 99