Языки описания схем

(mk.cs.msu.ru o Лекционные курсы o Языки описания схем)

Блок 8

Ещё несколько слов о триггерах: Синхронные триггеры Асинхронные триггеры Типичные входы триггеров Лектор:

Подымов Владислав Васильевич

E-mail:

valdus@yandex.ru

Вступление

Напоминание: D-триггер

- ▶ Значение сигнала на входе d сохраняется в момент каждого положительного фронта тактового сигнала
- ightharpoonup Значение *сигнала* на выходе q всегда совпадает с последним сохранённым значением

Какие бывают триггеры, что у них общего и чем они различаются?

Синхронные триггеры

Синхронный триггер — это схема Σ , устроенная следующим образом

Как правило, в каждый момент времени Σ находится в одном из двух основных состояний: 0 или 1

Исключения:

- ► Когда состояние изменяется, Σ кратковременно (*мгновенно*) проходит через особое переходное состояние
- ▶ При "неправильной" работе Σ может переходить в неспецифицированное состояние (*) с неизвестным поведением

В Σ обязательно содержится *тактовый вход*, через который поступает *тактовый сигнал* (clk) с заранее заданным *активным уровнем* Активный уровень триггера задаётся как активный уровень сигнала clk По умолчанию будем считать все синхронные триггеры положительными Состояния Σ могут изменяться только во время передних фронтов clk

Значения на выходах Σ зависят только от текущего состояния

Синхронные триггеры

Символом q [записью \overline{q}] принято обозначать

- текущее состояние триггера [отрицание текущего состояния], а также
- выход, значение на котором всегда равно [противоположно] текущему состоянию

 $\it Oбычно$ в триггерах содержатся только выходы $\it q$ и $\overline{\it q}$

Табличный способ задания синхронного триггера

с входами i_1, \ldots, i_n (кроме тактового): $(\alpha_1, \ldots, \alpha_n, v \in B; v' \in \{0, 1, *\})$

I_1,\ldots,I_n	q	q'	Оно же:	$I_1(t),\ldots,I_n(t)$		q(t)	q(t+1)		
$\alpha_1 \dots \alpha_n$	v	 v'		α_1	• • •	α_n	V	 v'	
				• • •					

Трактовка: если перед передним фронтом clk триггер находился в состоянии v и на входах были значения α_1,\dots,α_n , то после фронта триггер перейдёт в состояние v'

Синхронные триггеры

Пример: табличный способ задания D-триггера

d	q	q'
0	0	0
0	1	0
1	0	1
1	1	1

d(t)	q(t)	q(t+1)
0	0	0
0	1	0
1	0	1
1	1	1

Асинхронные триггеры

Асинхронный триггер не имеет тактового входа, тактового сигнала и соответствующих ограничений на поведение, а в остальном устроен так же, как синхронный

Табличный способ задания асинхронного триггера

с входами i_1,\ldots,i_n : $\left(\alpha_1,\ldots,\alpha_n\in B;\ v\in\{0,1,q,*\}\right)$

$$\begin{array}{c|ccc}
i_1, \dots, i_n & q \\
\hline
\dots & \dots \\
\alpha_1 \dots \alpha_n & v \\
\dots & \dots
\end{array}$$

Трактовка: если значения на входах равны α_1,\ldots,α_n и

- $v \neq q$, то триггер переходит в состояние v и остаётся в этом состоянии, пока значения на входах не изменятся
- ightharpoonup v = q, то триггер не изменяет своё состояние

Асинхронные триггеры

Пример: табличный способ задания

Типичные дополнительные входы синхронных триггеров:

Синхронный сброс *sr*

Если
$$sr(t) = 1$$
, то $q(t+1) = 0$

Если sr(t)=0, то значение q(t+1) определяется согласно таблице

Синхронная установка ss

Если
$$ss(t) = 1$$
, то $q(t+1) = 1$

Если ss(t)=0, то значение q(t+1) определяется согласно таблице

Типичные дополнительные входы любых триггеров:

Асинхронный сброс ar

Если ar=1, то триггер переходит в состояние 0 и остаётся в нём, пока значение ar не изменится

Если ar=0, то триггер функционирует обычным образом

Асинхронная установка as

Если as=1, то триггер переходит в состояние 1 и остаётся в нём, пока значение as не изменится

Если as=0, то триггер функционирует обычным образом

Включение еп

Если en = 0, то триггер не изменяет своё состояние

Если $\mathit{en}=1$, то триггер функционирует обычным образом

Примеры

D-триггер с синхронным сбросом:

D-триггер с асинхронным сбросом:

Примеры

D-триггер с синхронной установкой:

D-триггер с асинхронной установкой:

Примеры

D-триггер:

D-триггер с включением:

Примеры

D-защёлка:

D-защёлка с асинхронным сбросом:

D-защёлка с асинхронной установкой:

Примеры

D-защёлка:

D-защёлка с включением:

