Harmonic Analysis

Ikhan Choi

November 10, 2021

Contents

Ι	Fourier analysis	2
1	Fourier series	3
2	Fourier integrals	4
II	Singular integral operators	5
3	Caldéron-Zygmund theory	6
4	Littlewood-Paley theory	8
5	Multiplier theorems	9
III	Pseudo-differential operators	10
IV	Oscillatory integral operators	11

Part I Fourier analysis

Fourier series

Fourier integrals

- **2.1** (Fourier transform of regular Borel measures). Let $\mathcal{M}(\mathbb{R}^d)$ be the space of regular Borel complex measures on \mathbb{R}^d .
- (a) If $f \in \mathcal{M}(\mathbb{R}^d)$, then $\widehat{f} \in C_b(\mathbb{R}^d)$.
- (b) If $f \in \mathcal{M}(\mathbb{R}^d)$ and $\widehat{f} \in L^1(\mathbb{R}^d)$, then $f \in L^1(\mathbb{R}^d)$.
- (c) Fourier inversion holds for $\mathcal{M}(\mathbb{R}^d)$ in the sense that

Part II Singular integral operators

Caldéron-Zygmund theory

Let *f* be a nonnegative and sufficiently nice function on \mathbb{R}^d , and fix $\lambda > 0$.

3.1 (Calderón-Zygmund decomposition of sets). Let $E_n f$ be the conditional expectation with repect to the σ -algebra generated by dyadic cubes with side length 2^{-n} . Let $Mf = \sup_n |E_n f|$ be the maximal function, and let $\Omega := \{x : Mf(x) > \lambda\}$ for fixed $\lambda > 0$. For $x \in \Omega$ let Q_x be the maximal dyadic cube such that $x \in Q_x$ and

$$\frac{1}{|Q_x|}\int_{Q_x}f>\lambda.$$

- (a) $\{Q_x : x \in \Omega\}$ is a countable partition of Ω .
- (b) We have an weak type estimate $|\Omega| \le \frac{1}{\lambda} ||f||_{L^1}$.
- (c) $||f||_{L^{\infty}(\Omega^c)} \leq \lambda$.
- (d) For $x \in \Omega$

$$\frac{1}{|Q_x|} \int_{Q_x} f \le 2^d \lambda.$$

3.2 (Calderón-Zygmund decomposition of a function). Let

$$g(x) := \begin{cases} f(x) & , x \notin \Omega \\ \frac{1}{|Q_x|} \int_{Q_x} f & , x \in \Omega \end{cases}$$

and $b_i := (f - g)\chi_{Q_i}$.

- (a) f = g + b where $b = \sum_{i} b_{i}$.
- (b) $||g||_{L^1} = ||f||_{L^1}$.

- (c) $\|g\|_{L^{\infty}} \lesssim_d \lambda$.
- (d) $\int_{Q_i} b_i = 0.$
- **3.3** (Calderón-Zygmund theory for convolution type). Let T be a singular integral operator of convolution type in the sense that there is a function $K \in L^1_{loc}(\mathbb{R}^d \setminus \{0\})$ such that

$$Tf(x) = \int K(x - y)f(y) \, dy$$

whenever $x \notin \text{supp } f$. Suppose the following two conditions are satisfied.

- (i) The L^2 -boundedness: $||Tf||_{L^2} \lesssim ||f||_{L^2}$.
- (ii) The Hörmander condition: $\int_{|x|>2|y|} |K(x-y)-K(x)| dx \lesssim 1$.

Let $f = g + b = g + \sum_i b_i$ be the Calderón-Zygmund decomposition, and let $\Omega^* := \bigcup_i Q_i^*$ where Q_i^* is the cube with the same center as Q_i and whose sides are $2\sqrt{d}$ times longer.

(a) The L^2 -boundedness implies

$$|\{x: |Tg(x)| > \frac{\lambda}{2}\}| \lesssim_d \frac{1}{\lambda} ||f||_{L^1}.$$

(b) The Hörmander condition implies

$$|\{x: |Tb(x)| > \frac{\lambda}{2}\} \setminus \Omega^*| \lesssim_d \frac{1}{\lambda} ||f||_{L^1}.$$

(c) T is weak (1, 1).

Littlewood-Paley theory

Multiplier theorems

Part III Pseudo-differential operators

Part IV Oscillatory integral operators