Microsoft Malware Prediction

Springboard Data Science Career Track
Capstone Project 2

Marco Riva August 6, 2021

Motivation

Malware is a serious threat to billions of customers privacy and security

Can we use Machine Learning to Prevent Malware infection?

 Predictive tools for malware detection are key to preserving customer privacy!

Problem Formulation

- Supervised Learning
- Binary Classification: Malware vs No Infection
- Balanced dataset

Objectives

- Utilize historical computer data provided by Microsoft to predict if a Windows machine will be infected by malware
- Identify features correlated with Malware infection and provide actionable insights

Evaluation Metric

Receiver Operating Characteristic Area Under the Curve (ROC AUC)

Data Source

https://www.kaggle.com/c/microsoft-malware-prediction/data

This presentation

Data Acquisition

Exploratory
Data Analysis

Feature Engineering

Modeling

Insights

CSV 9M+ rows 83 columns Outliers
Errors
Inconsistencies
High Cardinality

Cleaned Data Exploration Processing
Encodings
Transformers

Binary Classification What we've learned

Data Wrangling

What Features?

- Machine Specs and Operative System (OS)
- Microsoft Defender Specs
- AntiVirus & Security Settings
- Browser & Apps
- Geographical Information
- Device Census File Data

What Target?

- Balanced binary variable
- Positive class implies malware presence

Data Wrangling - Missing Values

- Dropped features with more than 40% missing values
- No duplicates founds

	52 S1 60	880A
	missing_count	%
PuaMode	8919174	99.97
Census_ProcessorClass	8884852	99.59
DefaultBrowsersIdentifier	8488045	95.14
Census_IsFlightingInternal	7408759	83.04
Census_InternalBatteryType	6338429	71.05
Census_ThresholdOptin	5667325	63.52
Census_IsWIMBootEnabled	5659703	63.44
SmartScreen	3177011	35.61
OrganizationIdentifier	2751518	30.84
SMode	537759	6.03
Cityldentifier	325409	3.65
Wdft_IsGamer	303451	3.40
Wdft_RegionIdentifier	303451	3.40
Census_InternalBatteryNumberOfCharges	268755	3.01
Census_FirmwareManufacturerIdentifier	183257	2.05

Data Wrangling - Numerical data

- Errors in records converted to null values
- Skewed distributions and obvious outliers

 ID features numerically encoded converted to category dtype

Data Wrangling - Categorical Data

- Spelling typos and inconsistencies: categories labeled as "OFF", "Off", "off"
- Reduced cardinality of categorical features (ID columns excluded)
- Redundant OS and Census features dropped: OsBuildLab, Census_OSBuildNumber

Exploratory Data Analysis - Numerical Data

Spearman's Rank Correlation

Exploratory Data Analysis - Categorical Data

Exploratory Data Analysis - Categorical Data

Exploratory Data Analysis - Categorical Data

Top 20 features by chi2 statistics

	Chi2-statistics	p-value
SmartScreen_encoded_ExistsNotSet	2.214759e+05	0.000000e+00
SmartScreen_encoded_RequireAdmin	5.698300e+04	0.000000e+00
AvSigVersion_encoded_Other	4.569324e+04	0.000000e+00
AVProductsInstalled_2.0	4.478073e+04	0.000000e+00
AVProductsInstalled_1.0	2.998999e+04	0.000000e+00
Processor_x86	2.574212e+04	0.000000e+00
Census_OSArchitecture_x86	2.557563e+04	0.000000e+00
AvSigVersion_encoded_273	2.183277e+04	0.000000e+00
EngineVersion_encoded_15100	2.160499e+04	0.000000e+00
EngineVersion_encoded_14901	1.711393e+04	0.000000e+00
Census_PowerPlatformRoleName_Slate	1.686514e+04	0.000000e+00
AppVersion_encoded_14	1.560553e+04	0.000000e+00
AVProductsInstalled_3.0	1.482473e+04	0.000000e+00
IsProtected_1.0	1.297864e+04	0.000000e+00
AppVersion_encoded_16	1.270238e+04	0.000000e+00
EngineVersion_encoded_15000	1.224884e+04	0.000000e+00
AppVersion_encoded_18	1.111389e+04	0.000000e+00
EngineVersion_encoded_14800	1.027182e+04	0.000000e+00
AVProductsEnabled_2.0	9.696989e+03	0.000000e+00
Census_MDC2FormFactor_encoded_Detachable	8.591842e+03	0.000000e+00

Feature Engineering

80% Train Set

20% Test Set

Preprocessing Pipeline

- Missing values imputation
- Categorical variables One Hot Encoding
- ID variables Target Encoding
- 511 columns obtained

```
# Preprocessing for numerical data
numerical transformer = SimpleImputer(strategy='median')
# Preprocessing for binary data
binary_transformer = SimpleImputer(strategy='most_frequent')
# Preprocessing for categorical data encoded as numerical ID's
id transformer = Pipeline(steps=[
    ('encoding', TargetEncoder())
# Preprocessing for categorical data
categorical transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most frequent')),
    ('onehot', OneHotEncoder(handle unknown='ignore'))
# Bundle transformers
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numerical transformer, num col),
        ('bin', binary transformer, binary col),
        ('id', id transformer, id col),
        ('cat', categorical_transformer, cat_col)
```

Modeling

- Logistic Regression with LASSO Regularization
- Ensemble Models, Bagging and Boosting Models
 - Random Forests
 - XGBoost, LightGBM
 - Not as interpretable but offer feature importances

Hyperparameter Tuning and Pipeline

- Tuning and Overfitting addressed with Randomized Search:
 - 3-fold-cross-validation and 15 iterations due to limitations in computational power and time constraints
 - o 5-fold-cv and 60 iterations advisable if computational power allows it

Performance Evaluation on Test Set

Explored Stacked model to boost performance

	Coefficient	
Model		
XGBoost	2.169014	
Random Forest	3.303607	
LightGBM	1.313139	
Logistic Regression	-1.748189	

	precision	recall	f1-score	support
0	0.66	0.66	0.66	892394
1	0.66	0.66	0.66	891902

Balanced data, balanced performance Threshold may be adapted to increase recall

Feature Importance confirmed EDA findings

	Chi2-statistics	p-value
SmartScreen_encoded_ExistsNotSet	2.214759e+05	0.000000e+00
SmartScreen_encoded_RequireAdmin	5.698300e+04	0.000000e+00
Av Sig Version_encoded_Other	4.569324e+04	0.000000e+00
AVProductsInstalled_2.0	4.478073e+04	0.000000e+00
AVProductsInstalled_1.0	2.998999e+04	0.000000e+00
Processor_x86	2.574212e+04	0.000000e+00
Census_OSArchitecture_x86	2.557563e+04	0.000000e+00

Future Work

- Approach the problem with a different "temporal" strategy
 - Malware infection determined by how up-to-date the machine protection is
 - Temporal sampling is important
- Stratified models an option to explore, e.g. for different OS/AV/Defender versions
- Adopt parallel computing solutions to investigate a wider range of hyperparameters

Thank you!