HSE FCS SE Calculus-1 2023-2024

Lecturer: Ivan Erlikh File edited by: vova kormilitsyn

ver. 1.2.5

Теоремы и определения

Definition: Высказывания и n-местные предикаты

Высказывание - это упрощённая модель повествования предложения, такая что каждое высказывание либо истинно, либо ложно, но не одновременно

n-местные предикат (n-арный предикат) - это выражение, которое превращается в высказывание, если в нём заменить $x_1, x_2, ..., x_n$ на подходящие имена, где $x_1, x_2, ..., x_n$ - переменные в предикате

Definition: Логические операции

Отрицание: $\bullet \neg A$ (также обозначают \overline{A}) означает "не A"

Логическое и: • $A \wedge B$ означает "верно A и верно B"

Логическое или: • $A \lor B$ означает "верно A, или верно B, или верны A и B вместе"

Исключающее или: $\bullet A \oplus B$ означает "верно ровно одно из высказываний A, B"

Импликация: $\bullet A \Longrightarrow B$ означает "если верно A, то верно B"

 Θ квивалентность: $\bullet A \iff B$ означает "A верно тогда и только тогда, когда верно B"

Note

Пусть $A \implies B$

Если A верно, то B тоже верно, но если A ложно, то B может быть и истинным, и ложным

Пусть $A \iff B$

Если A ложно, то ложно B. Если B верно, то верно A

\mathbf{Note}

Логические операции можно выражать через другие логические операции, например, $(A \Longrightarrow B) \Longleftrightarrow (\neg A \lor B)$

Definition: Кванторы

Квантор всеобщности обозначается как ∀ и означает "для любого"

Квантор существования обозначается как В и означает "существует"

Квантор едиственности обозначается как! и означает "едиственный, такой что ..."

Example

Всеобщность: $\bullet \ \forall x \in \mathbb{R} : \phi(x)$ означает

"Для любого x из \mathbb{R} выполняется предикат $\phi(x)$ "

Существование: • $\exists x (x \in \mathbb{Q} \implies \psi(x))$ означает

"Существует x, такой что если x из \mathbb{Q} , то выполняется предикат $\psi(x)$ "

Единственность: • $\forall n \in \mathbb{N} \exists ! k \in \mathbb{N} \cup \{0\} : 2^k \le n < 2^{k+1}$ означает

"Для любого натурального числа существует и едиственно такое

целое неотрицательное число k, что $2^k \le n < 2^{k+1}$ "

Note

На практике квантор едиственности часто используется вместе с квантором существования т.е. часто используют связку ∃!, "существует и единственно"

Note

Вместо "¬∃" пишут "∄"

Claim Правило обращения кванторов

При обращении кванторов квантор существования меняется на квантор всеобщности, квантор

всеобщности меняется на квантор существования, а утверждение под кванторами меняется на противоположное

Example

Пусть дано высказывание:

$$\forall n \in \mathbb{N} \exists m_1 \in \mathbb{Z} \exists m_2 > m_1 \, \forall q \in \mathbb{Q} : |m_1| > n \land \neg \psi(q \cdot m_1 \cdot m_2 - n)$$

Тогда отрицание к этому высказыванию будет:

$$\exists n \in \mathbb{N} \, \forall m_1 \in \mathbb{Z} \, \forall m_2 > m_1 \, \exists q \in \mathbb{Q} : |m_1| \le n \vee \psi(q \cdot m_1 \cdot m_2 - n)$$

Claim Метод математической индукции

Пусть есть предикат $\phi(n)$, который выполняется или не выполняется при различных $n \in \mathbb{N}$ Тогда, если $\exists k \in \mathbb{N} : \phi(k)$ и $\forall n \geq k : (\phi(n) \implies \phi(n+1))$, то по методу математической индукции получаем $\forall n \geq k : \phi(n)$

Этапы доказательства:

База индукции: • Проверка истинности $\phi(k)$

Предположение индукции: • Пусть для некоторого $n \in \mathbb{N} \land n \ge k$ верно $\phi(n)$

Шаг индукции: • Докажем, что $\phi(n+1)$, используя предположение индукции

Вывод: • $\forall n \geq k : \phi(n)$

Theorem Неравенство Бернулли

Если $n \in \mathbb{N}$ и $x \ge -1$, то $(1+x)^n \ge 1+xn$

Proof:

Докажем неравенство при помощи метода математической индукции

1. База индукции:

Пусть
$$n = 1 \implies (1 + x)^n = 1 + x \ge 1 + x$$

2. Предположение индукции:

Пусть для некоторого $n \ge 1$ верно, что $(1+x)^n \ge 1+xn$

3. Шаг индукции: Рассмотрим неравенство, подставив в него n+1:

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x)$$

$$1 + x \ge 0 \implies (1 + x)^n \cdot (1 + x) \ge (1 + xn) \cdot (1 + x) = 1 + xn + x + n \cdot x^2 \ge 1 + nx + x = 1 + n(x + 1)$$

Следовательно, $(1+x)^{n+1} \ge 1 + n(x+1)$

4. Обозначим доказываемое как предикат $\phi(n)$, тогда получаем:

$$\phi(1) \land \forall n \in \mathbb{N} : (\phi(n) \implies \phi(n+1))$$

Тогда по принципу математической индукции $\forall n \in \mathbb{N} : \phi(n)$

Definition: Перестановки, размещения и сочетания

Пусть дано множество из n элементов

• Если все элементы попарно различны (т.е. при решении задачи мы считаем, что два любых элемента множества различны), то количество попарно различных перестановок этого множества обозначается как P_n и равно n!

Пусть зафиксировано $k \in \mathbb{N} \cup \{0\}$, такое что $k \leq n$, тогда:

- Количество количество способов, которыми мы можем выбрать k-элементное подмножество данного множества, считая, что элементы попарно различны, обозначается как A_n^k и равно $\frac{n!}{(n-k)!}$
- Количество количество способов, которыми мы можем выбрать k-элементное подмножество данного множества, считая, элементы равны, обозначается как C_n^k и равно $\frac{n!}{k!(n-k)!}$

Theorem Бином Ньютона

 $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$ (формально, перед равенством необходимо написать $\forall a,b \in \mathbb{R} \forall n \in \mathbb{N}$)

Proof:

Докажем это утверждение при помощи метода математической индукции

1. База индукции:
$$n=1 \implies (a+b)^n = a+b = \sum_{k=0}^1 C_n^k a^k b^{n-k}$$

- 2. Предположение индукции: пусть для некоторого $n \ge 1$: $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$
- 3. Рассмотрим равенство и докажем, что оно верно при подстановке n+1 :

$$(a+b)^{n+1} = (a+b)(a+b)^{n} = (a+b)\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} =$$

$$= a\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} + b\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} = \sum_{k=0}^{n} C_{n}^{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n+1-k}$$

$$= \sum_{k=1}^{n+1} C_{n}^{k-1} a^{k} b^{n-(k-1)} + \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n+1-k} = C_{n}^{n} a^{n+1} b^{0} + \sum_{k=1}^{n} C_{n}^{k-1} a^{k} b^{n+1-k} + C_{n}^{0} a^{0} b^{n+1} \sum_{k=1}^{n} C_{n}^{k} a^{k} b^{n+1-k} =$$

$$= a^{n+1} + b^{n+1} + \sum_{k=1}^{n} (C_{n}^{k-1} + C_{n}^{k}) a^{k} b^{n+1-k} = C_{n+1}^{n+1} a^{n+1} + C_{n+1}^{0} b^{n+1} + \sum_{k=1}^{n} C_{n+1}^{k} a^{k} b^{n+1-k} =$$

$$= \sum_{k=0}^{n+1} C_{n+1}^{k} a^{k} b^{n+1-k}$$

$$= \sum_{k=0}^{n+1} C_{n+1}^{k} a^{k} b^{n+1-k}$$

4. Получили:

Равенство верно при n=1, а из верности равенства для n следует верность равенства для n+1 (при $n \ge 1$), тогда по методу математической индукции получим, что равенство верно $\forall n \in \mathbb{N}$

Definition: Числовая последовательность

Числовая последовательность - это счётно бесконечный проиндексированный набор чисел

Definition: Ограниченная сверху числовая последовательность

Числовая последовательность $\{a_n\}$ называется ограниченной сверху, если

 $\exists C \in \mathbb{R} \, \forall n \in \mathbb{N}: \, a_n < C$

Definition: Ограниченная снизу числовая последовательность

Числовая последовательность $\{a_n\}$ называется ограниченной снизу, если

 $\exists C \in \mathbb{R} \, \forall n \in \mathbb{N}: \, a_n > -C$

Definition: Ограниченная числовая последовательность

Числовая последовательность $\{a_n\}$ называется ограниченной, если

 $\exists C > 0 \, \forall n \in \mathbb{N} : \, |a_n| < C$

Note

Числовая последовательность ограничена ⇔ она ограничена сверху и ограничена снизу

Definition: Неограниченная числовая последовательность

Числовая последовательность $\{a_n\}$ называется неограниченной, если она не является ограниченной, то есть

 $\forall C > 0 \,\exists n \in \mathbb{N} : |a_n| \ge C$

Definition: Отделимая от нуля числовая последовательность

Числовая последовательность $\{a_n\}$ называется отделимой от нуля, если

 $\exists \varepsilon > 0 \, \forall n \in \mathbb{N} : \, |a_n| > \varepsilon$

Definition: Эпсилон окрестность

Эпсилон окрестностью вещественного числа x_0 (элемента поля вещественных чисел) называется множество $(x_0 - \varepsilon; x_0 + \varepsilon)$ и обозначается $U_{\varepsilon}(x_0)$.

Обычно говорят "Эпсилон окрестность точки x_0 "

Example

$$U_1(\pi) = (\pi - 1; \pi + 1)$$

$$U_e(e) = (0; 2e)$$

Definition: Проколотая эпсилон окрестность

Проколотой эпсилон окрестностью вещественного числа x_0 (элемента поля вещественных чисел) называется множество $(x_0 - \varepsilon; x_0 + \varepsilon) \setminus \{x_0\}$ и обозначается $\dot{U}_{\varepsilon}(x_0)$.

Обычно говорят "Проколотая эпсилон окрестность точки x_0 "

Example

$$\dot{U}_1(e) = (e-1; e+1) \setminus \{e\} = (e-1; e) \cup (e; e+1)$$

Definition: Сходящаяся числовая последовательность

Числовая последовательность называется сходящейся, если она имеет конечный предел при $n o + \infty$, т.е. ч.п. $\{a_n\}$ называется сходящейся, если $\exists \lim_{n \to +\infty} a_n = A \in \mathbb{R}$, то есть по определению

$$\exists A \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \forall n > N : |a_n - A| < \varepsilon$$

Note

Сходящаяся ч.п. является ограниченной

Note

Неравенство $|a_n - A|$ < ε равносильно тому, что a_n ∈ $U_ε(A)$

Definition: Бесконечно большая числовая последовательность

Числовая последовательность $\{a_n\}$ называется бесконечно большой, если она стремится к $+\infty$, к $-\infty$ или к ∞ при $n \to +\infty$, т.е.

- $\lim_{n \to +\infty} a_n = +\infty \iff \forall M > 0 \,\exists N = N(M) \forall n > N : a_n > M$
- $\lim_{n\to+\infty} a_n = -\infty \iff \forall M > 0 \exists N = N(M) \forall n > N : a_n < -M$
- $\bullet \ \lim_{n \to +\infty} a_n = \infty \iff \forall M > 0 \, \exists N = N(M) \forall n > N : |a_n| > M$

Definition: Бесконечно малая числовая последовательность

Числовая последовательность $\{a_n\}$ называется бесконечно малой, если она стремится к 0 при n o+∞, T.e.

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) \forall n > N : |a_n| < \varepsilon$$

Note

Связи числовых последовательностей:

- $\frac{1}{6.6.} = 6.M.$ $\frac{1}{6.M.} = 6.6.$ $\frac{1}{0$ ограниченная
- = отделимая от нуля
- отделимая от нуля = ограниченная

Note

Если ч.п. сходится или является б.б., то предел единственный

Proposition Докажите по определению, что

(ограниченная ч.п.) + (ограниченная ч.п.) = ограниченная ч.п.

б.м + б.м. = б.м.

б.м. \cdot (ограниченная ч.п.) = б.м.

отделимая от нуля ч.п. — ограничена ч.п.

Proposition Приведите пример, когда

(отделимая от нуля ч.п.) + (отделимая от нуля ч.п.) = отделимая от нуля ч.п.

(отделимая от нуля ч.п.) + (отделимая от нуля ч.п.) = 6.м.

6.6 + 6.6 = 6.6.

6.6 + 6.6 = 6.м.

6.6 + 6.6 = (ограниченная ч.п.)

6.6 + 6.6 = (отделимая от нуля ч.п.)

Theorem Teopema: свойство предельного перехода в неравенствах

$$(\exists N \in \mathbb{N} \, \forall n \geq N : c_n > A) \wedge (\lim_{n \to \infty} c_n = C) \implies C \geq A$$

Proof:

1. Распишем, что дано, по определению:

 $\forall \varepsilon > 0 \exists N_1(\varepsilon) \forall n > N_1(\varepsilon) : |c_n - C| < \varepsilon$

Это равносильно $\forall \varepsilon > 0 \exists N_1(\varepsilon) \forall n > N_1(\varepsilon) : C - \varepsilon < c_n < C + \varepsilon$

 $\exists N \in \mathbb{N} \, \forall n \geq N : c_n > A$

2. Для любого ε рассмотрим $M(\varepsilon) = \max(N_1(\varepsilon), N) + 1$

Тогда $\forall \varepsilon > 0 \exists M(\varepsilon) = \max(N_1(\varepsilon), N) + 1 \, \forall n > M : (C - \varepsilon < c_n < C + \varepsilon \land c_n > A)$

Следовательно, $\forall \varepsilon > 0 \exists M(\varepsilon) \forall n > M : C + \varepsilon > A$

Выражение под кванторами не зависит от M и $n \implies \forall \varepsilon > 0 : C + \varepsilon > A$

3. Предположим от противного, что C < A

Положим $\varepsilon := \frac{A-C}{2} > 0 \implies C+\varepsilon = C+\frac{A-C}{2} = \frac{A+C}{2} < A$

Получили, что $\exists \varepsilon > 0 : C + \varepsilon < A \implies \widehat{\mathbb{W}} \implies$ предположение, что C < A, неверно $\implies C \ge A$

Theorem Теорема о зажатой последовательности (о 2 миллиционерах / 2 полицейских / гамбургерах)

$$a_n,b_n,c_n$$
 - числовые последовательности $\lim_{n\to\infty}a_n=X$ $\lim_{n\to\infty}b_n=X$ $\exists N\in\mathbb{N}\ \forall n\geq N: a_n\leq c_n\leq b_n$ $\Longrightarrow\lim_{n\to\infty}c_n=X$

Proof:

Докажем для случая, когда $X \in \mathbb{R}$. При $X \in \overline{\mathbb{R}} \setminus \mathbb{R}$ доказательство проводится аналогично

1. Распишем по определению пределы.

 $\forall \varepsilon > 0 \,\exists N_1(\varepsilon) \,\forall n > N_1(\varepsilon) : X - \varepsilon < a_n < X + \varepsilon$

 $\forall \varepsilon > 0 \,\exists N_2(\varepsilon) \,\forall n > N_2(\varepsilon) : X - \varepsilon < b_n < X + \varepsilon$

Рассмотрим $N_3(\varepsilon) = \max(N_1(\varepsilon), N_2(\varepsilon), N)$, тогда

 $\forall \varepsilon > 0 \,\exists N_3(\varepsilon) \,\forall n > N_3(\varepsilon) : X - \varepsilon < a_n \le c_n \le b_n < X + \varepsilon$

 $\implies \forall \varepsilon > 0 \exists N_3(\varepsilon) \forall n > N_3(\varepsilon) : X - \varepsilon < c_n < X + \varepsilon$

Theorem Теорема о свойстве предела б.м. ч.п.

если $a \in \mathbb{R}$, то

$$\lim_{n \to \infty} a_n = a \iff a_n = a + \alpha_n$$
, где α_n - б.м. ч.п.

$$" \implies "$$

Распишем по определению, что дано:

$$\lim_{n\to\infty}a_n=a\iff\forall\varepsilon>0\,\exists N(\varepsilon)\,\forall n>N(\varepsilon):|a_n-a|<\varepsilon$$

Обозначим ч.п. $\alpha_n = a_n - a$, тогда $a_n = a + \alpha_n$

Тогда: $\forall \varepsilon > 0 \exists N(\varepsilon) \forall n > N(\varepsilon) : |\alpha_n| < \varepsilon$

Доказали, что $a_n=a+\alpha_n$, где α_n - б.м. ч.п.

" ← '

Распишем то, что α_n - б.м., по определению:

$$\lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 \,\exists N(\varepsilon) \,\forall n > N(\varepsilon) : |\alpha_n| < \varepsilon$$

По условию $a_n = a + \alpha_n$, тогда $a_n - a = \alpha_n$, подставим в выражение под кванторами:

 $\forall \varepsilon > 0 \,\exists N(\varepsilon) \,\forall n > N(\varepsilon) : |a_n - a| < \varepsilon$

Доказали по определению, что $\lim_{n\to\infty} a_n = a$

Definition: Монотонность ч.п.

Ч.п. $\{a_n\}$ называется строго возрастающей, если $\forall n \in \mathbb{N}: a_{n+1} > a_n$

Ч.п. $\{a_n\}$ называется строго убывающей, если $\forall n \in \mathbb{N} : a_{n+1} < a_n$

Ч.п. $\{a_n\}$ называется неубывающей, если $\forall n \in \mathbb{N} : a_{n+1} \geq a_n$

Ч.п. $\{a_n\}$ называется невозрастающей, если $\forall n \in \mathbb{N} : a_{n+1} \leq a_n$

Claim Аксиома непрерывности действительных чисел (принцип полноты)

$$\begin{array}{l} A \subseteq \mathbb{R} \\ A \neq \varnothing \\ B \subseteq \mathbb{R} \\ B \neq \varnothing \\ \forall a \in A \ \forall b \in B : a \leq b \end{array} \right\} \implies \exists c \in \mathbb{R} \ \forall a \in A \ \forall b \in B : a \leq c \leq b$$

Definition: Ограниченное сверху множество

Подможество $A \subseteq \mathbb{R}$ называется ограниченным свеху, если $\exists C \in \mathbb{R} \ \forall a \in A : a \leq C$

Definition: Ограниченное снизу множество

Подможество $A \subseteq \mathbb{R}$ называется ограниченным снизу, если $\exists C \in \mathbb{R} \ \forall a \in A : a \geq C$

Definition: Ограниченное множество

Подможество $A \subseteq \mathbb{R}$ называется ограниченным, если $\exists C > 0 \ \forall a \in A : |a| \leq C$

Definition: Определение верхней грани множества

Пусть дано множество $A \subset \mathbb{R} \land A \neq \emptyset$. Тогда верхней гранью множества A называют число $c \in \mathbb{R}$, такое что $\forall a \in A : a \leq c$

Definition: Определение нижней грани множества

Пусть дано множество $A\subset\mathbb{R}\land A\neq\varnothing$. Тогда нижней гранью множества A называют число $c\in\mathbb{R}$, такое что $\forall a\in A:a\geq c$

Definition: Определение точной верхней грани множества

Пусть дано множество $A \subset \mathbb{R} \land A \neq \emptyset$. Тогда точной верхней гранью множества A называют наименьший элемента множества всех верхних граней множества A и обозначают $\sup A$

Definition: Определение точной нижней грани множества

Пусть дано множество $A \subset \mathbb{R} \land A \neq \emptyset$. Тогда точной нижней гранью множества A называют наибольший элемента множества всех нижней граней множества A и обозначают inf A

Note

Вообще говоря, наименьшый и наибольший элементы множества не всегда существуют. Например, у множества (0;1) нет ни наименьшего, ни наибольшего элементов, при этом $\sup(0;1)=1 \notin (0;1)$, $\inf(0;1)=0 \notin (0;1)$

Theorem Теорема о существовании точной грани множества

Если множество $A \subset \mathbb{R}$, $A \neq \emptyset$ ограничено сверху, то $\exists \sup A$ Если множество $A \subset \mathbb{R}$, $A \neq \emptyset$ ограничено снизу, то $\exists \inf A$

Proof: Докажем для верхней грани, для нижней грани доказательство аналогично

$$A \subseteq \mathbb{R} \land A \neq \emptyset \land (\exists C > 0 \, \forall a \in A \implies a < C) \implies \exists \sup A$$

- 1. Обозначим $S_A = \{c \in \mathbb{R} | \forall a \in A \implies a \leq c\} \neq \emptyset$ множество верхних граней Это множество не пусто, т.к. A ограничено по условию, т.е. $\exists c > 0 \ \forall a \in A \implies a \leq c$
- 2. По построению множества A и S_A удовлетворяют аксиоме непрерывности действительных чисел, тогда $\exists b \in \mathbb{R} \ \forall a \in A \forall c \in S_A \implies a \leq b \leq c$ Но из $b \leq c \implies b \in S_A$, при этом ($\forall c \in S_A \implies b \leq c$), следовательно, b является наименьшим элементом множества верхних граней множества A, тогда по определению точной верхней грани $b = \sup A$

Theorem Теорема Вейерштрасса (о существовании предела ч.п.)

Если ч.п. $\{a_n\}$ неубывает и ограничена сверху, то она сходится Если ч.п. $\{a_n\}$ невозрастает и ограничена снизу, то она сходится

Proof: Докажем для неубывающей ч.п., для невозрастающей ч.п. доказательство аналогично

1. Обозначим множество значений ч.п. $A = \{a_n\}$

T.к. a_n - числовая последовательность, то множество A счётно или конечно

(т.е. существует инъекция между A и $\mathbb{N}, A \lesssim \mathbb{N}$)

Также $A \neq \emptyset$ и множество A ограничено сверху \implies по теореме о существовании точной верхней грани $\exists \sup A = a$

2. Докажем, что $\lim_{n\to+\infty}a_n=a$, т.е. $\forall \varepsilon \exists N=N(\varepsilon) \, \forall n>N(\varepsilon): |a_n-a|<\varepsilon$

 a_n неубывает и ограничена сверху $a \implies |a_n - a| = a - a_n$, тогда

 $|a_n - a| < \varepsilon \iff a - a_n < \varepsilon \iff a_n > a - \varepsilon$

T.к. последовательность a_n неубывает, то следующие 2 высказывания равносильны:

 $\forall \varepsilon \, \exists N = N(\varepsilon) \, \forall n > N(\varepsilon) : a_n > a - \varepsilon \, (\#)$

 $\forall \varepsilon \exists N = N(\varepsilon) : a_N > a - \varepsilon$ (*)

3. Докажем второе высказывание (*) методом от противного. Предположим, что $\exists \varepsilon_0 \forall n \in \mathbb{N} : a_n \leq a - \varepsilon_0$ Тогда число $a - \varepsilon_0$ - верхняя грань множества A, но a само является точной верхней гранью, но $a - \varepsilon_0 < a \implies \bot \implies$ неверно предположение, что высказывание (*) неверно \implies высказывание (#) верно

Definition: Число е

Рассмотрим ч.п. $a_n = (1 + \frac{1}{n})^n$

Докажем, что у ч.п. есть конечный предел и обозначим его \emph{e}

Proof: 1. Докажем, что a_n ограничена сверху числом 3

$$a_{n} = \sum_{k=0}^{n} C_{n}^{k} \left(\frac{1}{n}\right)^{k} = 1 + C_{n}^{1} \cdot \frac{1}{n} + C_{n}^{2} \cdot \frac{1}{n^{2}} + \dots + C_{n}^{n} \frac{1}{n^{n}} =$$

$$= 1 + \frac{n}{1!} \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^{2}} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^{3}} + \dots + \frac{n(n-1)(n-2) \cdot \dots \cdot 2 \cdot 1}{1 \cdot 2 \cdot \dots \cdot (n-1)n} \frac{1}{n^{n}} =$$

$$= 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{n}\right) \le$$

$$\leq 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le 1 + \frac{1}{1!} + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n} =$$

$$= 2 + \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n} = 2 + \frac{1}{1} - \frac{1}{n} = 3 - \frac{1}{n} < 3$$

2. Докажем, что a_n - возрастающая ч.п.

Рассмотрим a_{n+1}

$$\begin{split} a_{n+1} &= 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) + \dots \\ &+ \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{n-1}{n+1} \right) + \\ &+ \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{n-1}{n+1} \right) \cdot \left(1 - \frac{n}{n+1} \right) \\ \text{T. K. } \forall m \in \{1, \dots, n\} \ 1 - \frac{m}{n} < 1 - \frac{m}{n+1}, \ \text{To} \\ a_{n+1} \geq a_n + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{n-1}{n+1} \right) \cdot \left(1 - \frac{n}{n+1} \right) > a_n \end{split}$$

3. $\{a_n\}$ ограничена сверху и возрастает $\implies \exists \lim_{n\to\infty} a_n \in \mathbb{R}$

Definition: Подпоследовательность

Пусть дана ч.п. $\{a_n\}$, тогда подпоследовательностью называется ч.п., полученная последовательным выбором некоторых членов исходной ч.п. и обозначается $\{a_{n_k}\}$

${f Note}$

Если $\{a_{n_k}\}$ - подпоследовательность ч.п. $\{a_n\}$, то $\forall k\in\mathbb{N}:n_k\geq k$

Definition: Частичный предел

Частичный предел ч.п. $\{a_n\}$ - число, являющееся пределом какой-либо сходящейся подпоследовательности данной последовательности $\{a_n\}$

Definition: Верхний предел ч.п.

Верхним пределом ч.п. $\{a_n\}$ называется предел

$$\overline{\lim}_{n\to+\infty} a_n = \lim_{k\to+\infty} \sup\{a_n\}_{n\geq k}$$

Definition: Нижний предел ч.п.

Нижним пределом ч.п. $\{a_n\}$ называется предел

$$\underline{\lim}_{n\to+\infty}a_n=\lim_{k\to+\infty}\inf\{a_n\}_{n\geq k}$$

Definition: Предельная точка ч.п.

Предельной точкой ч.п. $\{a_n\}$ называется число a, такое что в любой окрестности точки a находится бесконечно много членов ч.п. $\{a_n\}$

Theorem Определение предельной точки ч.п. эквивалентно определению частичного предела ч.п.

Proof:

1. a - частичный предел $\implies a$ - предельная точка $\{a_n\}$

$$\forall \varepsilon > 0 \exists N = N(k) \forall k > N : |a_{n_k} - a| < \varepsilon$$

 \iff

 $\forall \varepsilon > 0 \exists N = N(k) \forall k > N : a_{n_k} \in U_{\varepsilon}(a)$

Следовательно, $\forall \varepsilon$ в $U_{\varepsilon}(a)$ попадает бесконечно много членов $\{a_n\}$

2. a - предельная точка $\{a_n\} \implies a$ - ч.п. $\{a_n\}$

По определению предельной точки $\forall \varepsilon$ в $U_{\varepsilon}(a)$ попадает бесконечно много членов $\{a_n\}$

Предъявим ч.п. $\{a_{n_k}\}\subseteq\{a_n\}$, такую что $\exists\lim_{k\to\infty}a_{n_k}=a$

Обозначим $\varepsilon_k = \frac{1}{k}$

Рассмотрим ε_1 , в $U_{\varepsilon_1}(a)$ попадает бесконечно много членов $\{a_n\}$, выберем какой-то член a_{n_1}

Рассмотрим ε_2 , в $U_{\varepsilon_2}(a)$ попадает бесконечно много членов $\{a_n\}$, поэтому $\exists n_2 > n_1 : a_{n_2} \in U_{\varepsilon_2}(a)$

Рассмотрим ε_k , в $U_{\varepsilon_k}(a)$ попадает бесконечно много членов $\{a_n\}$, поэтому $\exists n_k > n_{k-1} : a_{n_k} \in U_{\varepsilon_k}(a)$

Таким образом, построена ч.п. $\{a_{n_k}\}$, такая что $\forall k \in \mathbb{N} : a - \frac{1}{k} < a_{n_k} < a + \frac{1}{k} \Longrightarrow$

 \Longrightarrow по теореме о зажатой последовательности $\lim_{k\to\infty}a_{n_k}=a$

Note

Свойства частичных пределов ч.п.

 $\{a_n\}$ сходится $\iff \lim_{n\to+\infty} a_n = \underline{\lim}_{n\to+\infty} a_n$

 $\lim_{n\to+\infty} a_n = \sup\{$ множества предельных точек $\{a_n\}\}$

 $\underline{\lim}_{n\to+\infty} a_n = \inf\{$ множества предельных точек $\{a_n\}\}$

 $\overline{\lim}_{n \to +\infty} a_n$ и $\underline{\lim}_{n \to +\infty} a_n$ - частичные пределы

Theorem Система вложенных отрезков

Системой вложенных отрезков называют счётно бесконечное множество отрезков, каждый из

Example

Рассмотрим $S = \{[1 - \frac{1}{k}; 2 + \frac{1}{k}]\}_{k \in \mathbb{N}}$, тогда $S = \{[0; 3], [0.5; 2.5], [\frac{2}{3}; 2\frac{1}{3}], ...\}$ Рассмотрим $S = \{[\pi; \pi - \frac{1}{k}]\}_{k \in \mathbb{N}}$, тогда $S = \{[\pi; \pi - 1], [\pi; \pi - \frac{1}{4}], [\pi; \pi - \frac{1}{27}], ...\}$

Theorem Теорема Больцано-Вейерштрасса

Из любой ограниченной ч.п. можно выделить сходящуюся подпоследовательность

Proof:

По определению ограниченной ч.п. $\exists C \forall n \in \mathbb{N} |a_n| < C$

Построим искому подпоследовательность при помощи системы вложенных отрезков

 $I_1=[-c;c], \forall n\in \mathbb{N} a_n\in I_1$, выберем какой-то член ч.п. $a_{n_1}\in I_1$

Т.к. $\{a_n\}$ - ч.п., то в какой-то половине точно есть бесконечно много членов $\{a_n\}$

Выберем эту половину и обозначим I_2 , выберем в нём какой-то член ч.п. $a_{n_2} \in I_2$, такой что $n_2 > n_1$ (если это нельзя сделать, т.е. $\forall m \ (a_m \in I_2 \implies m \le n_1)$, то в I_2 лишь конечное число членов

ч.п.
$$\{a_n\} \implies (\mathbb{W}) \implies \exists n_2 > n_1 : a_{n_2} \in I_2)$$

Пусть построен I_k и a_{n_k} . Делим I_k пополам и выбираем половину,

в которой бесконечно много членов $\{a_n\}$, обозначим эту половину как I_{k+1}

и выберем $a_{n_{k+1}}: n_{k+1} > n_k$ (если это нельзя сделать, т.е. $\forall m \ (a_m \in I_{k+1} \implies m \le n_k),$

тогда в I_{k+1} лишь конечное число членов ч.п. $\{a_n\} \implies (\mathbb{W}) \implies \exists n_{k+1} > n_k : a_{n_{k+1}} \in I_{k+1})$

Построили последовательность $\{I_k\}_{k\in\mathbb{N}}$, где $I_k=[b_k;d_k]$

 $\forall k \in \mathbb{N} : I_{k+1} \subset I_k \implies \{b_k\}$ неубывает и ограничена сверху C

$$\implies \exists \lim_{n \to +\infty} b_k = b, b \ge b_k$$

 $\forall k \in \mathbb{N} : I_{k+1} \subset I_k \implies \{d_k\}$ невозрастает и ограничена снизу — C

$$\implies \exists \lim_{n \to +\infty} d_k = d, d \le d_k$$

При этом
$$|d_k - b_k| = \frac{2 \cdot C}{2^{k-1}} \xrightarrow[k \to +\infty]{} 0$$

 $ADDPROOF[d \ge b]$ (пока что см. консультацию 2)

$$d-b \le d_k - b_k \underset{k \to +\infty}{\longrightarrow} 0 \implies d \le b \implies d = b$$

Получили:
$$\lim_{n \to +\infty} b_k = b = d = \lim_{n \to +\infty} d_k$$

 b_k и d_k - границы отрезка $I_k \implies \forall k \in \mathbb{N} : b_k \leq a_k \leq d_k \implies$

 \Longrightarrow по теореме о пределе зажатой последовательности $\lim_{n \to +\infty} a_k = b = d$

Definition: Фундаментальная ч.п.

Ч.п. $\{a_n\}$ называется фундаментальной, если

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \forall n, m > N(\varepsilon) : |a_n - a_m| < \varepsilon$$

```
Theorem Критерий сходимости ч.п. по Коши
```

Ч.п. $\{a_n\}$ сходится \iff $\{a_n\}$ - Фундаментальная ч.п.

Proof:

$$" \implies "$$

Распишем, что дано: $\exists A \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists N_1(\varepsilon) \ \forall n > N_1 : |a_n - A| < \varepsilon$

Хотим доказать: $\forall \varepsilon > 0 \, \exists N_2(\varepsilon) \, \forall n, m > N_2 : |a_n - a_m| < \varepsilon$

$$|a_n - a_m| < \varepsilon \iff |a_n - a + a - a_m| < \varepsilon \iff |a_n - a| + |a - a_m| < \varepsilon \iff |a_n - a| + |a_m - a| < \varepsilon$$

Положим
$$N_2(\varepsilon) := N_1\left(\frac{\varepsilon}{2}\right) \Longrightarrow$$

$$\forall \varepsilon > 0 \,\exists N_2(\varepsilon) \,\forall n, m > N_2 : |a_n - a| + |a_m - a| < \varepsilon \implies$$

$$\forall \varepsilon > 0 \,\exists N_2(\varepsilon) \,\forall n, m > N_2 : |a_n - a_m| < \varepsilon$$

Распишем, что дано: $\forall \varepsilon > 0 \, \exists N_2(\varepsilon) \, \forall n,m > N_2(\varepsilon) : |a_n - a_m| < \varepsilon$

Покажем, что $\{a_n\}$ ограничена: положим $\varepsilon=1$

$$\exists N_2(1) \, \forall n, m > N_2 : |a_n - a_m| < 1 \implies$$

$$\exists N_2(1) \, \forall n > N_2 : |a_n - a_{N_2(1)+1}| < 1 \implies$$

$$\exists N_2(1) \, \forall n > N_2 : a_{N_2(1)+1} - 1 < a_n < a_{N_2(1)+1} + 1$$

Положим
$$C := \max(|a_1|, |a_2|, ..., |a_{N_2(1)}|, |a_{N_2(1)+1}|) + 1 \Longrightarrow$$

$$\forall n \in \mathbb{N} : |a_n| \leq C$$

Тогда по теореме Больцано-Вейерштрасса

$$\exists a \in \mathbb{R} \,\exists \{a_{n_k}\} : \lim_{k \to +\infty} a_{n_k} = a$$

Докажем, что
$$\lim_{n\to+\infty} a_n = a$$

Перепишем, что дано:

$$\forall \varepsilon > 0 \,\exists N_2(\varepsilon) \,\forall n, m > N_2(\varepsilon) : |a_n - a_m| < \varepsilon$$

$$\forall \varepsilon > 0 \,\exists N_3(\varepsilon) \,\forall k > N_3(\varepsilon) : |a_{n_k} - a| < \varepsilon$$

Распишем, что хотим доказать:

$$\forall \varepsilon > 0 \,\exists N_1(\varepsilon) \,\forall n > N_1(\varepsilon) : |a_n - a| < \varepsilon$$

$$|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \iff |a_n - a_{n_k}| + |a_{n_k} - a| < \varepsilon$$

Т.к. при выборе членов в подпоследовательности $n_k \ge k$, то при $k > N_3(\varepsilon) \implies n_k > N_3(\varepsilon)$

Положим
$$N_1(\varepsilon) = \max\left(N_2\left(\frac{\varepsilon}{2}\right), N_3\left(\frac{\varepsilon}{2}\right)\right) \Longrightarrow$$

$$\forall \varepsilon > 0 \,\exists N_1(\varepsilon) \,\forall n > N_1(\varepsilon) : |a_n - a_{n_k}| + |a_{n_k} - a| < \varepsilon \implies$$

$$\forall \varepsilon > 0 \,\exists N_1(\varepsilon) \,\forall n > N_1(\varepsilon) : |a_n - a| < \varepsilon$$

Definition: Постоянная Эйлера

Рассмотрим ч.п. $\gamma_n=1+\frac{1}{2}+\ldots+\frac{1}{n}-\ln n$ Докажем, что у ч.п. есть конечный предел и обозначим его γ

Proof:

 $\gamma_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n > \ln \frac{2}{1} + \ln \frac{3}{2} + \ln \frac{4}{3} + \dots + \ln \frac{n+1}{n} - \ln n =$ $= \ln 2 - \ln 1 + \ln 3 - \ln 2 + \ln 4 - \ln 3 + \dots + \ln(n+1) - \ln n - \ln n =$ $= -\ln 1 + \ln(n+1) - \ln n = \ln \frac{n+1}{n} > \ln 1 = 0$

Definition: Определение функции

Множество пар $\{(x,y)\in\mathbb{R}^2|x\in D_f\wedge y\in E_f\}$ называется функцией f с областью определения D_f и областью значения E_f , если $\forall x\in D_f$ $\exists !y\in E_f:(x,y)\in f$ (для удобства $(x,y)\in f$ обозначают как f(x)=y)

Обозначение функции: $f: X \to Y$

В данном обозначении подразумевают, что $D_f = X, E_f \subseteq Y$

Example

 $f: \mathbb{N} \cup \{0\} \to \mathbb{R}$

 $\forall n \in \mathbb{N} \cup \{0\} : f(n) = (-1)^{n+1} \cdot \left\lceil \frac{n}{2} \right\rceil$, в данном случае $D_f = \mathbb{N} \cup \{0\}$, $E_f = \mathbb{Z} \subset \mathbb{R}$

Т.к. несложно установить, что $E_f = \mathbb{Z}$, то можно написать $f : \mathbb{N} \cup \{0\} \to \mathbb{Z}$

Definition: Определение инъективной функции

Функция f называется инъективной, если $\forall y \in E_f \exists ! x \in D_f : f(x) = y$ Это эквивалентно тому, что $\forall x_1, x_2 \in D_f : (x_1 \neq x_2 \implies f(x_1) \neq f(x_2))$ (говорят, что f - инъекция)

Example

 $\forall n\in\mathbb{N}$ функция $f(x)=x^{2n-1}$ является инъективной $\forall n\in\mathbb{N}$ функция $f(x)=x^{2n}$ не является инъективной

Definition: Определение сюръективной функции

Функция $f: X \to Y$ называется сюръективной для множества Y, если $E_f = Y$ (говорят, что f - сюръекция)

Когда говорят, что f сюръективна, не уточняя множество, то подразумевают, что f сюръективна для Y

Example

Функция $\sin: \mathbb{R} \to \mathbb{R}$ не сюръективна для \mathbb{R} , но сюръективна для [-1;1]

Definition: Определение биективной функции

Функция $f: X \to Y$ называется биективной, если она инъективна и сюръективна (говорят, что f - биекция)

Example

Функция $f: \mathbb{N} \cup \{0\} \to \mathbb{Z}$, такая что $\forall n \in \mathbb{N} \cup \{0\}: f(n) = (-1)^{n+1} \cdot \left\lceil \frac{n}{2} \right\rceil$ - биекция между $\mathbb{N} \cup \{0\}$ и \mathbb{Z} (как следствие, показали, что $\mathbb{N} \cup \{0\} \sim \mathbb{Z}$, т.е. множества равномощны)

Definition: Определение обратной функции

Функция $y = f^{-1}(x)$ называется обратной функцией к функции y = f(x), если множество пар фукнции f^{-1} является симметрией множества пар f

ightharpoons Note ightharpoons

Функция обратима 👄 она инъективна

Definition: Определение предела функции по Коши

$$\lim_{x\to x_0} f(x) = A \iff \forall \varepsilon > 0 \, \exists \delta = \delta(\varepsilon) \, \forall x \in \dot{U}_\delta(x_0) : f(x) \in U_\varepsilon(A)$$

$\bf Note$

При этом $\dot{U}_{\delta}(+\infty) = (\delta; +\infty), \ \dot{U}_{\delta}(-\infty) = (-\infty; \delta), \ \dot{U}_{\delta}(\infty) = (-\infty; \delta) \cup (\delta; +\infty)$

Definition: Определение предела функции по Гейне

$$\lim_{x \to x_0} f(x) = A \iff \forall \{x_n\} : (x_n \neq x_0 \land \lim_{n \to +\infty} x_n = x_0 \implies \lim_{n \to +\infty} f(x_n) = A)$$

Definition: Односторонний предел функции

Левосторонним пределом функции называют предел функции по Коши f при $x \to x_0$ слева, то есть

$$\lim_{x \to x_0^-} f(x) = A \iff \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \forall x \in (x_0 - \delta; x_0) : f(x) \in U_{\varepsilon}(A)$$

Правосторонним пределом функции называют предел функции по Коши f при $x \to x_0$ справа, то есть

$$\lim_{x \to x_0 +} f(x) = A \iff \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \forall x \in (x_0; x_0 + \delta) : f(x) \in U_{\varepsilon}(A)$$

Theorem Свойство предела функции при $x o x_0$, $x_0 \in \mathbb{R}$

$$\lim_{x\to x_0} f(x) = A \iff \lim_{x\to x_0+} f(x) = \lim_{x\to x_0-} f(x) = A, \ \mathrm{rge} \ A \in \overline{\mathbb{R}}$$

Proof:

$$" \implies "$$

Дано:
$$\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in \dot{U}_{\delta}(x_0) : f(x) \in U_{\varepsilon}(A)$$

Тогда:

$$\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in (x_0; x_0 + \delta) : f(x) \in U_{\varepsilon}(A)$$

$$\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in (x_0 - \delta; x_0) : f(x) \in U_{\varepsilon}(A)$$

" ⇐ "

Дано:

$$\forall \varepsilon > 0 \,\exists \delta_1 = \delta_1(\varepsilon) > 0 \,\forall x \in (x_0; x_0 + \delta_1) : \, f(x) \in U_{\varepsilon}(A)$$

$$\forall \varepsilon > 0 \,\exists \delta_2 = \delta_2(\varepsilon) > 0 \,\forall x \in (x_0 - \delta_2; x_0) : f(x) \in U_{\varepsilon}(A)$$

Положим $\delta(\varepsilon) = \min(\delta_1(\varepsilon), \delta_2(\varepsilon))$, тогда:

 $\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in \dot{\mathcal{U}}_{\delta}(x_0) \subseteq (x_0 - \delta_2; x_0) \cup (x_0; x_0 + \delta_1) : f(x) \in \mathcal{U}_{\varepsilon}(A)$

Definition: Бесконечные пределы

- $\lim_{x \to x_0} f(x) = +\infty \iff \forall M > 0 \,\exists \delta(M) > 0 \,\forall x \in \dot{U}_{\delta}(x_0) : f(x) > M$
- $\lim_{x \to x_0} f(x) = -\infty \iff \forall M > 0 \,\exists \delta(M) > 0 \,\forall x \in \dot{U}_{\delta}(x_0) : f(x) < -M$
- $\lim_{x \to x_0} f(x) = \infty \iff \forall M > 0 \,\exists \delta(M) > 0 \,\forall x \in \dot{U}_{\delta}(x_0) : |f(x)| > M$

Definition: Бесконечно малая функция

Функция называется б.м. при $x \to x_0$, если $\lim_{x \to x_0} f(x) = 0$, при этом $x_0 \in \mathbb{R}$

Функция называется б.м. при $x \to +\infty$, если $\lim_{x \to +\infty} f(x) = 0$

Функция называется б.м. при $x \to -\infty$, если $\lim_{x \to -\infty} f(x) = 0$

Definition: Бесконечно большая функция

Функция называется б.б. при $x \to x_0$, если $\lim_{x \to x_0} f(x) = \infty$, при этом $x_0 \in \mathbb{R}$

Функция называется б.б. при $x \to +\infty$, если $\lim_{x \to +\infty} f(x) = \infty$

Функция называется б.б. при $x \to -\infty$, если $\lim_{x \to -\infty} f(x) = \infty$

Definition: Ограниченная функция

Функция называется ограниченной при $x \to x_0$, если $\exists \delta > 0 \,\exists C > 0 \,\forall x \in \dot{\mathcal{U}}_{\delta}(x_0) : |f(x)| < C$

Definition: отделимая от нуля функция

Функция называется отделимой от нуля при $x \to x_0$, если $\exists \delta > 0 \,\exists \varepsilon_0 > 0 \,\forall x \in \dot{U}_\delta(x_0) : |f(x)| > \varepsilon_0$

Note

Связь функций при $x \to x_0$, где x - аргумент обоих функций, x_0 - число, которому стремится аргумент обоих функций:

- $\frac{1}{6.6}$ = 6.м. $\frac{1}{6.\text{м.}}$ = 6.6. $\frac{1}{\text{ограниченная}}$ = отделимая от нуля
- $\frac{1}{\text{отделимая от нуля}}$ = ограниченная

Theorem Теорема о зажатой функции

$$f(x): \mathbb{R} \to \mathbb{R}, g(x): \mathbb{R} \to \mathbb{R}, h(x): \mathbb{R} \to \mathbb{R}$$

$$\lim_{x \to x_0} f(x) = A$$

$$\lim_{x \to x_0} h(x) = A$$

$$\exists \delta > 0 \, \forall x \in \dot{U}_{\delta}(x_0): f(x) \leq g(x) \leq h(x)$$

$$\lim_{x \to x_0} g(x) = A$$

Definition: Первый замечательный предел

$$\lim_{x\to +\infty}\frac{\sin x}{x}=1$$

Definition: Второй замечательный предел

$$\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$$

Theorem Теорема о пределе сложной функции

$$\lim_{x\to x_0} f(x) = y_0 \\ \lim_{y\to y_0} g(y) = g(y_0) \end{cases} \implies \lim_{x\to x_0} g(f(x)) = g(y_0)$$

Распишем, что дано, по определению:

$$\forall \varepsilon > 0 \,\exists \delta_1(\varepsilon) \,\forall x \in \dot{U}_{\delta_1(\varepsilon)}(x_0) : |f(x) - y_0| < \varepsilon \, (1)$$

$$\forall \lambda > 0 \,\exists \delta_2(\lambda) \,\forall y \in \dot{\mathcal{U}}_{\delta_2(\lambda)}(y_0) : |g(y) - g(y_0)| < \lambda \, (2)$$

Распишем, что хотим доказать:

$$\forall \eta > 0 \, \exists \delta_3 = \delta(\eta) \forall x \in \dot{U}_{\delta_3(\eta)}(x_0) : |g(f(x)) - g(y_0)| < \eta$$

Положим $\delta_3(\eta) = \delta_1(\delta_2(\eta))$, тогда :

$$x \in \dot{\mathcal{U}}_{\delta_3(\eta)}(x_0) \iff x \in \dot{\mathcal{U}}_{\delta_1(\delta_2(\eta))}(x_0) \implies \text{ no } (1) \ |f(x) - y_0| < \delta_2(\eta)$$

$$|f(x)-y_0|<\delta_2(\eta)\iff f(x)\in U_{\delta_2(\eta)}(y_0)$$

По (2) знаем, что если
$$f(x) \in \dot{U}_{\delta_2(\eta)}(y_0)$$
, то $|g(f(x)) - g(y_0)| < \eta$

Если
$$f(x) = y_0$$
, то $|g(f(x)) - g(y_0)| = 0 < \eta$

Иначе, если
$$f(x) \neq y_0 \iff f(x) \in \dot{U}_{\delta_2(\eta)}(y_0)$$
, то $|g(f(x)) - g(y_0)| = 0 < \eta$

Получили:
$$\forall \eta > 0 \,\exists \delta_3 = \delta_1(\delta_2(\eta)) \,\forall x \in \dot{\mathcal{U}}_{\delta_3(\eta)}(x_0) : |g(f(x)) - g(y_0)| < \eta$$

Definition: Асимптоты

Вертикальная асимптота: • Прямая x = a называется вертикальной асимптотой

для графика функции y = f(x), если

 $\lim_{x \to a^{-}} f(x) = \pm \infty \lor \lim_{x \to a^{+}} f(x) = \pm \infty$

Горизонтальная асимптота: • Прямая y = b называется горизонтальной асимптотой для

графика функции y = f(x) на $\pm \infty$, если

 $\lim_{x\to\pm\infty}f(x)=b$

Вообще говоря, горизонтальные асимптоты на $+\infty$ и $-\infty$

могут быть разными

Наклонная асимптота: • Прямая y = kx + b называется наклонной асимптотой для

графика функции y = f(x) при $x \to \pm \infty$, если

 $\lim_{x \to \pm \infty} f(x) - (kx + b) = 0$

Вообще говоря, наклонные асимптоты на +∞ и -∞

могут быть разными

Theorem Признак наклонной асимптоты

Прямая y = kx + b - наклонная асимптота графика функции y = f(x) при $x \to +\infty$

$$\left\{ \begin{array}{l} \lim_{x \to +\infty} \frac{f(x)}{x} = k \\ \lim_{x \to +\infty} f(x) - kx = b \end{array} \right.$$

$$"\Longrightarrow"$$

1. Распишем определение наклонной асимптоты: $\lim_{x \to +\infty} (f(x) - (kx + b)) = 0$

Вынесем b из предела: $\lim_{x \to +\infty} f(x) - kx = b$

$$f(x)-kx-b$$
 - б.м. при $x \to +\infty$

Т.к. $x \to +\infty$, то можно поделить на x:

$$\frac{f(x)}{x} - k = \frac{b}{x} + \frac{6 \cdot M}{x}$$

$$\frac{\frac{b}{x}}{x \xrightarrow{\lambda \to +\infty}} 0$$

$$\frac{\frac{6 \cdot M}{x}}{x \xrightarrow{\lambda \to +\infty}} 0$$

$$\Rightarrow \frac{f(x)}{x} - k \xrightarrow{\lambda \to +\infty} 0$$

T.K.
$$\lim_{x \to +\infty} f(x) - kx = b$$
, to $\lim_{x \to +\infty} (f(x) - (kx + b)) = 0$

Definition: О - символика

•
$$f(x) = \overline{o}(g(x))$$
 при $x \to x_0 \in \overline{\mathbb{R}}$, если $\frac{f(x)}{g(x)}$ - б.м. при $x \to x_0$

о-малое: •
$$f(x)=\overline{o}(g(x))$$
 при $x\to x_0\in\overline{\mathbb{R}},$ если $\frac{f(x)}{g(x)}$ - б.м. при $x\to x_0$ О-большое: • $f(x)=\underline{O}(g(x))$ при $x\to x_0\in\overline{\mathbb{R}},$ если $\frac{f(x)}{g(x)}$ - ограниченная при $x\to x_0$

Definition: Непрерывность функции в точке

Функция называется непрерывной в точке x_0 , если

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Clarification

Если x_0 - граница области определения, то рассматривается односторонний предел

Note

Свойства непрерывных функций:

- Сумма, произведение и частное непрерывных функций непрерывные функции (по арифметике пределов функции)
- Композиция непрерывных функций непрерывная функция (по теореме о пределе сложной функции)

$$\lim_{x \to x_0} g(x) = g(x_0) = y_0 \\ \lim_{y \to y_0} f(y) = f(y_0)$$
 \implies $\lim_{x \to x_0} f(g(x)) = f(g(x_0))$

Claim Правило замены переменных в пределе

Пусть дана сложная функция f(g(x)), тогда, если для некоторой точки $x_0: \lim_{x\to x_0} g(x) = g(x_0) = y_0$ и $\lim_{y\to y_0} f(y) = A \in \mathbb{R}$, то $\lim_{x\to x_0} f(g(x)) = f(g(x_0))$

Example (Пример использования правила замены переменной в пределе)

Пусть надо найти
$$\lim_{x\to 0} \frac{\sin(\pi x)}{x}$$

Преобразуем выражение:
$$\frac{\sin(\pi x)}{x} = \frac{\sin(\pi x)}{\pi x} \cdot \pi$$

В данном случае в обозначения из утверждения выше:

$$f(y) = \frac{\sin(y)}{y}$$

$$g(x) = \pi x$$

$$g(x)$$
 непрерывна в точке $x_0=0, y_0=g(x_0)=0,\,$ и при этом $\lim_{y\to y_0}f(y)=1=A$

Тогда по правилу замены переменной в пределе:

$$\lim_{x\to 0}\frac{\sin(\pi x)}{\pi x}\cdot\pi=\lim_{x\to 0}A\cdot\pi=\lim_{x\to 0}1\cdot\pi=\pi$$

Definition: Непрерывность функции на множестве

Функция называется непрерывной на множестве E, если она непрерывна в каждой точке множества E

/st Когда говорят, что функция непрерывна, имеют ввиду, что она непрерывна на D_f */

Note

В частность, функция непрерывна на отрезке [a;b], если она непрерывна в каждой точке отрезка [a;b] При этом, в точках a и b рассматриваются односторонние пределы

Theorem Теорема о функции, непрерывной на отрезке (иногда называют теоремой Вейерштрасса)

Функция, непрерывная на отрезке, ограничена на этом отрезке и достигает наибольшее и наименьшее значения на этом отрезке

Докажем, что функция ограничена сверху и достигает наибольшее значение. Для второго случая доказательство проводится аналогично

1. E_f — мно-во значений f(x) на [a;b]

Обозначим
$$M = \sup E_f = \sup_{x \in [a;b]} f(x) \in \overline{\mathbb{R}}$$

Построим некоторую строго возрастающую ч.п. $a_n \to M$ при $n \to +\infty$

2. Докажем, что $\forall n \in \mathbb{N} \exists x_n \in [a;b] : a_n < f(x_n)$

Предположим от противного, то есть $\exists n_0 \, \forall x \in [a;b] : a_{n_0} \geq f(x)$

Тогда a_{n_0} - верхняя грань множества E_f

Однако, т.к. a_n - возрастающая ч.п. и $\lim_{n \to +\infty} a_n = a$, то $\forall n \in \mathbb{N} : a_n < M$

В частности, $a_{n_0} < M$, т.е. a_{n_0} - верхняя грань, которая меньше точной верхней грани \implies

$$\Longrightarrow (\mathbb{W}) \Longrightarrow \forall n \in \mathbb{N} \, \exists x_n \in [a;b] : a_n < f(x_n)$$

3. По построению $\forall x \in [a;b]: f(x) \leq M$

Тогда $\forall n \in \mathbb{N} \exists x_n \in [a;b] : a_n < f(x_n) \leq M$

Следовательно, по теореме о зажатой последовательности $\lim_{n\to\infty} f(x_n) = M$

4. Докажем, что $M = f(x_0)$

Т.к. x_n - ограниченная ч.п., то по теореме Больцано-Вейерштрасса из неё можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}$ такую, что $x_{n_k} \underset{k \to +\infty}{\longrightarrow} x_0 \in [a;b]$

Т.к. f непрерывна в на отрезке, то она непрерывна в x_0 , следовательно

$$\lim_{k\to +\infty} f(x_{n_k}) = f(x_0)$$

$$\left(\lim_{n\to+\infty}f(x_n)=M\right)\wedge\left(\lim_{k\to+\infty}f(x_{n_k})=f(x_0)\right)\implies M=f(x_0)<\infty$$

Таким образом, на отрезке [a;b] функция f ограничена сверху числом $M=f(x_0)$

Theorem Теорема (2) о функции, непрерывной на отрезке

Непрерывная на отрезке [a;b] принимает все промежуточные значения Пусть f(x) непрерывна на [a;b], $f(x_1)=A$, $f(x_2)=B$, $x_1< x_2$, БОО A< B, тогда $\forall c\in (A;B)\,\exists x_0\in (x_1;x_2): f(x_0)=c$

1. Построим последовательность вложенных отрезков:

/* Если Вам так будет удобнее, то докажем существование x_0 бинпоиском по ответу */

$$[a_1; b_1] := [x_1; x_2]$$

$$x_3 := \frac{a_1 + b_1}{2}$$
, рассмотрим $f(x_3)$

$$1) f(x_3) = c \implies q.e.d.$$

$$(2) f(x_3) < c \implies [a_2; b_2] := [x_3; b_1]$$

$$3)f(x_3) > c \implies [a_2; b_2] := [a_1; x_3]$$

Применяя это правило, продолжим строить последовательность отрезков

Если ни на какой итерации не произойдёт случай 1), то получим счётно бесконечную последовательность отрезков $\{[a_n;b_n]\}_{n\in\mathbb{N}}$

По построению ч.п. $\{a_n\}$ неубывает и ограничена сверху $b \implies \exists \lim_{n \to +\infty} a_n \le b$

По построению ч.п. $\{b_n\}$ невозрастает и ограничена снизу $a \implies \exists \lim_{n \to +\infty} b_n \ge a$

$$b_n - a_n = \frac{b-a}{2^{n-1}} \longrightarrow_{n \to +\infty} 0 \implies \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = x_0$$

$$x_0 \in [a;b] \Longrightarrow f(x)$$
 непрерывна в $x_0 \Longrightarrow \lim_{x \to x_0} f(x) = f(x_0) \Longrightarrow$

$$\implies$$
 по определению по Гейне $\lim_{n \to +\infty} f(a_n) = \lim_{n \to +\infty} f(b_n) = f(x_0)$

По построению $f(a_n) < c \land f(b_n) > c \implies c \le f(x_0) \le c \implies f(x_0) = c$

Corollary Следствие

f(x) непрерывна на $[a;b] \implies E_f = [\inf E_f; \sup E_f]$

Corollary Следствие

$$f(x) = x^2$$
 непрерывна на $D_f = [0;2] \implies (E_f = [0;4] \land \exists x_0 \in \mathbb{R} : x_0^2 = 2)$

To есть доказано существование числа $\sqrt{2}$

Corollary Следствие

$$f(x)$$
 непрерывна на $[a;b] \land f(a) < 0 \land f(b) > 0 \implies \exists c \in (a;b) : f(c) = 0$

Definition: Определение монотонности функции

- f(x) называется строго возрастающей на $E \subseteq \mathbb{R}$, если $\forall x_1, x_2 \in E: x_1 < x_2 \implies f(x_1) < f(x_2)$
- f(x) называется неубывающей на $E \subseteq \mathbb{R}$, если $\forall x_1, x_2 \in E: x_1 < x_2 \implies f(x_1) \leq f(x_2)$
- f(x) называется строго убывающей на $E \subseteq \mathbb{R}$, если $\forall x_1, x_2 \in E: x_1 < x_2 \implies f(x_1) > f(x_2)$
- f(x) называется невозрастающей на $E \subseteq \mathbb{R}$, если $\forall x_1, x_2 \in E : x_1 < x_2 \implies f(x_1) \ge f(x_2)$

Definition: Достаточное условие обратимости

Если функция f(x) строго монотонна на X, то f(x) обратима на X

Proof:

Предположим от противного, что f(x) не инъективна, то есть

$$\exists x_1, x_2 \in X : x_1 \neq x_2 \land f(x_1) = f(x_2)$$

$$x_1 \neq x_2 \implies \min(x_1, x_2) < \max(x_1, x_2) \implies (\mathbb{W})$$
 с определением строгой монотонности

Definition: Критерий обратимости функции

Пусть функция f(x) непрерывна на [a;b]. Тогда f(x) обратима $\iff f(x)$ строго монотонна

Proof:

"
 "Смотри достаточное условие обратимости

 $" \implies "$

Докажем для случая, когда f(x) строго монотонно возрастает, для убывания аналогично

Предположим от противного, тогда БОО

 $\exists x_1 < x_2 < x_3 \in [a;b]: f(x_1) < f(x_2) \ge f(x_3)$

Если $f(x_2) = f(x_3)$, то f не инъективна $\implies f$ не обратима $\implies (\mathbb{W})$

Иначе, положим $c := \frac{\max(f(x_1), f(x_3)) + f(x_2)}{2} \implies f(x_1) < c < f(x_2) \land f(x_3) < c < f(x_2)$

f непрерывна на $[a;b] \implies f$ непрерывна на $[x_1;x_2]$ и $[x_2;x_3]$

f непрерывна на $[x_1; x_2] \implies \exists x_0' \in (x_1; x_2) : f(x_0') = c$

f непрерывна на $[x_2; x_3] \implies \exists x_0'' \in (x_2; x_3) : f(x_0'') = c$

Получили: $\exists x_0' < x_0'' \in [a;b]: f(x_0') = f(x_0'') \implies f$ не инъективна $\implies f$ не обратима $\implies (\mathbb{W})$

Theorem

Если функция f(x) непрерывна и строго монотонна на [a;b], то функция $f^{-1}(y)$:

- 1) определена на $E_f = [\min(f(a), f(b)); \max(f(a), f(b))]$
- 2) мотонотонна (и имеет ту же монотонность) на E_f
- 3) непрерывна на E_f

- 1. Доказано по критерию обратимости функции
- 2. БОО f возрастает на [a;b]

Предположим от противного

 $f^{-1}(y)$ не возрастает на $[a;b] \implies \exists y_1 < y_2 \in [f(a);f(b)]: f^{-1}(y_1) \geq f^{-1}(y_2)$

По определению обратной функции $f^{-1}(y_1), f^{-1}(y_2) \in [a;b]$, обозначим $x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2)$

 $x_1 \geq x_2 \implies f(x_1) \geq f(x_2)$. При этом, $f(x_1) = y_1 \wedge f(x_2) = y_2$

 $x_1 \ge x_2 \implies y_1 \ge y_2 \implies \widehat{\mathbb{W}}$

3. Докажем непрерывность по определению

Дано: $x = f^{-1}(y)$ - определённая монотонная на [a;b] функция

Докажем, что f^{-1} непрерывна в любой точке $y_0 \in (f(a); f(b))$

Для $y_0 \in \{f(a), f(b)\}$ доказательство аналогично (нужно рассмотреть односторонние пределы)

По определению непрерывности в точке $\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall y \in \dot{\mathcal{U}}_{\delta}(y_0) : |f^{-1}(y) - f^{-1}(y_0)| < \varepsilon$

Обозначим $f^{-1}(y_0) = x_0$

БОО докажем для таких ε , что $U_{\varepsilon}(x_0) \subset (a;b)$. Для бо́льших ε неравество также будет выполняться $a < x_0 - \varepsilon < x_0 + \varepsilon < b$

Обозначим $y_1 = f(x_0 - \varepsilon), y_2 = f(x_0 + \varepsilon),$ тогда $y_1 < y_0 < y_2$

Положим $\delta := \min(y_2 - y_0, y_0 - y_1)$, тогда $U_{\delta}(y_0) \in (y_1; y_2)$

Докажем, что при выбранном δ выполняется неравенство под знаками кванторов:

 $y \in U_{\delta}(y_0) \implies y \in (y_1; y_2) \implies f^{-1}(y_1) < f^{-1}(y) < f^{-1}(y_2) \implies x_0 - \varepsilon < f^{-1}(y) < x_0 + \varepsilon \implies$ $\implies |f^{-1}(y) - x_0| < \varepsilon \implies$ неравенство под кванторами верно и определение выполняется

Corollary Следствие (без доказательства)

Если функция f(x) непрерывна и строго монотонна на (a;b), $a,b\in\overline{\mathbb{R}}$, то функция $f^{-1}(y)$:

- 1) определена на (m; M), где $m = \min(f(a), f(b)), M = \max(f(a), f(b))$
- 2) мотонотонна (и имеет ту же монотонность) [m; M]
- 3) непрерывна на (m; M)

Идея доказательства: рассмотреть $[c;d]\subset (a;b)$, для него верна теорема выше, а далее перейти к пределу при границах, стремящихся к a и b

Corollary

Т.к. $f(x)=x^n$ непрерывна и строго монотонно возрастает на $D_f=n$ \vdots $2?[0;+\infty):\mathbb{R},$ то

 $g(x)=\sqrt[n]{x}$ непрерывна и строго монотонно возрастает на $D_g=E_f=n\div 2?[0;+\infty):\mathbb{R}$

Definition: Обратные тригонометрические функции

 $y=\sin x$ непрерывна и возрастает на $D_f=[-\frac{\pi}{2};\frac{\pi}{2}]$

 \Longrightarrow $\exists \arcsin:=\sin^{-1}:y=\arcsin x$ непрерывна и возрастает на $E_f=[-\frac{\pi}{2};\frac{\pi}{2}],$ область значений - $D_f=[-1;1]$

Аналогично

- $y = \arccos x$ непрерывна и убывает на $E_f = [0; \pi]$, область значений $D_f = [-1; 1]$
- $y = \arctan x$ непрерывна и возрастает на $E_f = (-\frac{\pi}{2}; \frac{\pi}{2})$, область значений $D_f = \mathbb{R}$
- ullet $y=\mathrm{arcctg}\,x$ непрерывна и убывает на $E_f=(0;\pi)$, область значений $D_f=\mathbb{R}$

Definition: Показательная функция

(теорема без доказательства) функция $y = a^x$, a > 0

- 1) определена на $D_f = \mathbb{R}, E_f = (0; +\infty)$
- 2) возрастает при a > 1 и убывает при 0 < a < 1
- 3) непрерывна на \mathbb{R}
- $\bullet \ 4) \ a^x \cdot a^y = a^{x+y}$ /* Следствие: $\phi(x) = a^x$ является изоморфизмом между (\mathbb{R} , +) и (\mathbb{R}_+ , *) */ $(a^x)^y = a^{xy}$

Definition: Логарифмическая функция

Функция, обратная к $y = a^x$, $a \in (0,1) \cup (1,+\infty)$ обозначается $y = \log_a x$

- 1) определена на $D_f = (0; +\infty), E_f = \mathbb{R}$
- 2) возрастает при a > 1 и убывает при 0 < a < 1
- 3) непрерывна на $(0; +\infty)$
- 4) $\log_a x + \log_a y = \log_a xy$ /* Следствие: $\psi(x) = \log_a x$ является изоморфизмом между (\mathbb{R}_+ ,*) и (\mathbb{R}_+ +)*/ $\log_a x^{\alpha} = \alpha \log_a x$

Corollary Следствия из 2 замечательного предела

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$
$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

Proof:

$$\frac{\ln(x+1)}{x} = \frac{1}{x}\ln(x+1) = \ln(x+1)^{\frac{1}{x}}$$

 Φ ункция $\ln x$ непрерывна, тогда по теореме о пределе сложной функции

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \ln(x+1)^{\frac{1}{x}} = 1$$

 $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$

Proof:

$$t = e^{x} - 1 \implies x = \ln(t+1)$$

$$x \to 0 \implies t \to \infty$$

$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = \lim_{t \to 0} \frac{t}{\ln(t+1)} = 1$$

Corollary Показательная функция с вещественным показателем

$$y = x^{\alpha}, \alpha \in \mathbb{R}, D_f = (0; +\infty)$$

 $y = e^{\alpha \ln x}$

 $\ln x$ непрерывна и возрастает на $(0; +\infty)$

 $\alpha \ln x$ непрерывна и возрастает при $\alpha > 0$ и убывает при $\alpha < 0$

 $e^{\alpha \ln x}$ непрерывна и возрастает при $\alpha > 0$ и убывает при $\alpha < 0$

Corollary

 $\lim_{x\to +\infty} a(x) = a \wedge \lim_{x\to +\infty} b(x) = b \implies \lim_{x\to +\infty} a(x)^{b(x)} = \lim_{x\to +\infty} e^{b(x)\ln a(x)} = e^{b\ln a} = a^b$ Для ч.п. $\{a_n\}$ и $\{b_n\}$ построим кусочно-линейные функции a(x) и b(x), такие что $\forall n \in \mathbb{N}: a(n) =$ $a_n \wedge b(n) = b_n$

Тогда $\lim_{n\to+\infty} a_n = a \wedge \lim_{n\to+\infty} b_n = b \implies \lim_{n\to+\infty} a_n^{b_n} = a^b$

Definition: Определение производной

Производная функции f в точке x_0 - это предел

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Note

 $\forall x \in \mathbb{R} : (\sin x)' = \cos x$

Proof:

$$\lim_{x \to x_0} \frac{\sin x - \sin x_0}{x - x_0} = \lim_{x \to x_0} \frac{2 \sin \left(\frac{x - x_0}{2}\right) \cos \left(\frac{x + x_0}{2}\right)}{x - x_0} = \lim_{x \to x_0} \cos \left(\frac{x + x_0}{2}\right) = \cos x_0$$

Note

 $\forall x \in \mathbb{R} \ \forall n \in \mathbb{N} : (x^n)' = nx^{n-1}$

Proof:

$$\lim_{x \to x_0} \frac{x^n - x_0^n}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0) \sum_{k=0}^{n-1} x^{n-1-k} x_0^k}{x - x_0} = \lim_{x \to x_0} \sum_{k=0}^{n-1} x^{n-1-k} x_0^k = n x_0^{n-1}$$

♦ Note

 $(a^x)' = a^x \ln a$

Proof:

$$\lim_{x \to x_0} \frac{a^x - a^{x_0}}{x - x_0} = a^{x_0} \lim_{x \to x_0} \frac{a^{x - x_0} - 1}{x - x_0} = a^{x_0} \lim_{t \to 0} \frac{a^t - 1}{t} =$$

$$= a^{x_0} \lim_{t \to 0} \frac{e^{t \ln a} - 1}{t} = a^{x_0} \lim_{s \to 0} \frac{e^s - 1}{s} \cdot \ln a = a^{x_0} \ln a$$

♦ Note

 $(e^x)' = e^x$

Claim Правила подсчёта производных

Если $\exists f'(x), \exists g'(x), \alpha \in \mathbb{R}, \beta \in \mathbb{R}$, то

- $(\alpha f(x) + \beta g(x))' = \alpha f'(x) + \beta g'(x)$
- $(f(x) \cdot f(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ $g(x) \neq 0 \implies \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$

Definition: Дифференцируемость функции

Функция f(x) называется дифференцируемой в точке x_0 , если

$$\exists A \in \mathbb{R} : f(x) = f(x_0) + A \cdot (x - x_0) + \overline{o}(x - x_0)$$

Theorem

Функция f(x) дифференцируема в точке $x_0 \iff \exists f'(x_0) (\in \mathbb{R})$

Proof:

$$" \implies "$$

По определению дифференцируемости в точке

$$\exists A \in \mathbb{R}: \, f(x) = f(x_0) + A \cdot (x - x_0) + \overline{o}(x - x_0) \implies \frac{f(x) - f(x_0)}{x - x_0} = A + \overline{o}(1) \implies$$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = A \in \mathbb{R} \implies \exists f'(x_0) = A \in \mathbb{R}$$

По определению производной:

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \in \mathbb{R} \implies \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) + \overline{o}(1) \implies$$

$$\implies f(x) - f(x_0) = f'(x_0) \cdot (x - x_0) + \overline{o}(x - x_0)$$

$$\implies f(x) = f(x_0) + A \cdot (x - x_0) + \overline{o}(x - x_0), A = f'(x_0) \in \mathbb{R}$$

Definition: Определение дифференциала

Дифференциал функции f(x) в точке x_0 - это линейная функция $df(x) = A \cdot (x - x_0)$ такая, что $f(x) = f(x_0) + df(x) + \overline{o}(x - x_0)$

Theorem

Дифференцируемая в точке x_0 функция непрерывна в ней

Proof:

По определению дифференцируемости в точке x_0 :

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \overline{o}(x - x_0)$$

$$f'(x_0) \in \mathbb{R} \implies \lim_{x \to \infty} f'(x_0) \cdot (x - x_0) = 0$$

$$f'(x_0) \in \mathbb{R} \Longrightarrow \lim_{x \to x_0} \lim_{x \to x_0} f'(x_0) \cdot (x - x_0) = 0 \\ \lim_{x \to x_0} \overline{o}(x - x_0) = 0$$

$$\implies \lim_{x \to x_0} f(x) = x_0$$

Theorem

Если g(x) дифференцируема в точке x_0 и функция f(y) дифференцируема в точке $y_0 = g(x_0)$, то f(g(x)) дифференцируема в точке x_0 и $(f(g(x)))'|_{x=x_0} = f'(g(x_0)) \cdot g'(x_0)$

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + \overline{o}(x - x_0)$$

$$f(y) = f(y_0) + f'(y_0)(y - y_0) + \overline{o}(y - y_0) \Longrightarrow$$

$$f(g(x)) = f(g(x_0)) + f'(g(x_0))(g'(x_0)(x - x_0) + \overline{o}(x - x_0)) + \overline{o}(g'(x_0)(x - x_0) + \overline{o}(x - x_0))$$

$$f(g(x)) = f(g(x_0)) + f'(g(x_0))g'(x_0)(x - x_0) + f'(g(x_0)) \cdot \overline{o}(x - x_0) + \overline{o}(g'(x_0)(x - x_0) + \overline{o}(x - x_0)) =$$

$$= f(g(x_0)) + f'(g(x_0))g'(x_0)(x - x_0) + \overline{o}(x - x_0) + (x - x_0)\overline{o}(g'(x_0) + \overline{o}(x)(1)) =$$

$$= f(g(x_0)) + f'(g(x_0))g'(x_0)(x - x_0) + \overline{o}(x - x_0) \Longrightarrow (f(g(x)))'|_{x = x_0} = f'(g(x_0)) \cdot g'(x_0)$$

Theorem

Если f(x) непрерывна и обратима на $[a;b], x_0 \in (a;b), \exists f'(x_0) \neq 0,$ тогда $\exists (f^{-1}(y))'|_{y=f(x_0)=y_0} = \frac{1}{f'(x_0)}$

Proof:

$$\lim_{y \to y_0} \frac{f'(y) - f'(y_0)}{y - y_0} = |\text{замена } y = f(x)| = \lim_{x \to x_0} \frac{f^{-1}(f(x)) - f^{-1}(f(x_0))}{f(x) - f(x_0)} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$$

Example

$$\begin{array}{l} f(x) = e^x, f'(x) = e^x, f^{-1}(y) = \ln y \\ (f^{-1}(y))'|_{y = y_0} = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{e^{f^{-1}(y_0)}} = \frac{1}{e^{\ln y_0}} = \frac{1}{y_0} \end{array}$$

Example

Пример:
$$y = x^{\alpha}$$
, $\alpha \in \mathbb{R}$, $D_f = (0; +\infty)$
 $y = e^{\alpha \ln x} \implies y' = e^{\alpha \ln x} (\alpha \ln x)' = e^{\alpha \ln x} \cdot \frac{\alpha}{x} = \alpha x^{\alpha - 1}$

Definition: Определение локального минимума (точка минимума)

 x_0 - точка локального минимума функции f(x), если $\exists \delta_0 > 0 \ \forall x \in U_{\delta_0}(x_0) : f(x_0) \le f(x)$

 x_0 - точка строгого локального минимума функции f(x), если $\exists \delta_0 > 0 \ \forall x \in \dot{U}_{\delta_0}(x_0) : f(x_0) < f(x)$

Definition: Определение локального максимума (точка максимума)

 x_0 - точка локального максимума функции f(x), если $\exists \delta_0 > 0 \ \forall x \in U_{\delta_0}(x_0) : f(x_0) \geq f(x)$

 x_0 - точка строгого локального максимума функции f(x), если $\exists \delta_0 > 0 \ \forall x \in \dot{U}_{\delta_0}(x_0) : f(x_0) > f(x)$

Definition: Точка локального экстремума

Точками локального экстремума называются точки минимума и точки максимума

Theorem Необходимое условие локального экстремума (теорема Ферма)

Если x_0 - точка локального экстремума, то $\exists f'(x_0) \implies f'(x_0) = 0$

Пусть $\exists f'(x_0)$

Докажем для случая, когда x_0 - локальный минимум, для локального максимума доказательство аналогично.

Предел при $x \to x_0$ существует \implies существуют односторонние пределы и они совпадают с $f'(x_0)$ В некоторой δ окрестности $f(x_0) \le f(x)$

Definition: Касательная к графику функции

Касательной к графику функции f(x) называется прямая $y = f'(x_0)(x - x_0) + f(x_0)$

Theorem Теорема Ролля

Если функция f(x) удовлетворяет условиям:

- Непрерывна на [a; b]
- \bullet Дифференцируема на (a;b)
- $\bullet \ f(a) = f(b)$

To $\exists \xi \in (a; b) : f'(\xi) = 0$

Proof:

- 1. Обозначим $M:=\sup_{x\in[a;b]}f(x)$, $m:=\inf_{x\in[a;b]}f(x)$ достигаются, т.к. функция непрерывна на отрезке
- 2. Если $m=M \implies f(x)=const \implies \forall x\in (a;b): f'(x)=0$
- 3. Иначе, если m < M, тогда хотя бы одна из этих точек достигается в $\xi \in (a;b)$ (т.к. f(a) = f(b)) БОО $f(\xi) = M \implies \xi$ точка loc max

f дифференцируема на $(a;b) \Longrightarrow \exists f'(\xi) \Longrightarrow f'(\xi) = 0$ (по теореме Ферма)

Theorem Теорема Лагранжа

Если функция f(x) удовлетворяет условиям:

- Непрерывна на [a; b]
- ullet Дифференцируема на (a;b)

To $\exists \xi \in (a; b) : \frac{f(b) - f(a)}{b - a} = f'(\xi)$

Proof:

1. Рассмотрим $F(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$, эта функция также, как и функция f,

непрерывна на [a;b] и дифференцируема на (a;b)

 $F(a) = F(b) \implies$ для F выполняются требования теоремы Ролля $\implies \exists \xi \in (a;b) : F'(\xi) = 0 \implies$

$$\implies \exists \xi \in (a;b): f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0 \implies \exists \xi \in (a;b): \frac{f(b) - f(a)}{b - a} = f'(\xi)$$

Corollary

Если функция f(x) удовлетворяет условиям:

- Непрерывна на [a; b]
- Дифференцируема на (a; b)
- f'(x) = 0 на (a; b)

To f(x) = const на [a;b]

Proof:

$$\forall x_1, x_2 \in [a; b] f(x)$$
 удовлетворяет требованиям теоремы Лагранжа на $[x_1, x_2] \Longrightarrow \exists \xi \in (x_1; x_1) : f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) = 0 \cdot (x_2 - x_1)$ Получили: $\forall x_1, x_2 \in [a; b] f(x_2) - f(x_1) = 0$

Corollary

Если функции f(x) и g(x) удовлетворяют условиям:

- Непрерывность на [a; b]
- Дифференцируемость на (a;b)
- $\bullet \ \forall x \in (a;b): f'(x) = g'(x)$

To $\forall x \in [a; b] : f(x) - g(x) = const$

Theorem Теорема следствие

Если $\phi(x)$ непрерывна на [a;b] и $\phi'(x)$ определена везде на (a;b), кроме, быть может, x_0 , и $\exists \lim_{x \to x_0} \phi'(x) = A \in \mathbb{R}$

То $\exists \phi'(x_0) = A$, т.е. у производной непрерывной функции нет точек устранимого разрыва

Proof:

По определению производной и по теореме Лагранжа:

$$\phi'(x_0) = \lim_{x \to x_0} \frac{\phi(x) - \phi(x_0)}{x - x_0} = \lim_{x \to x_0} \phi'(\xi(x)), \xi(x) \in (x_0; x), \text{ t.k. Ha } (x_0; x)$$

 $\phi(x)$ удовлетворяет требованиям т. Лагранжа

 $\lim_{x \to x_0} \xi(x) = x_0 \implies \phi'(x_0) = \lim_{x \to x_0} \phi'(\xi(x)) = A$ (по теореме о пределе сложной функции)

Theorem Теорема Коши

Если функции f(x) и g(x) удовлетворяют условиям:

- Непрерывность на [a; b]
- Дифференцируемость на (a; b)

И $g'(x) \neq 0$ на (a;b) и $g(a) \neq g(b)$

To $\exists \xi \in (a; b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$

1. Рассмотрим $F(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g(x)$, эта функция также непрерывна на [a;b] и дифференцируема на (a;b) $F(a) = F(b) \implies$ для F выполняются требования теоремы Ролля $\implies \exists \xi \in (a;b) : F'(\xi) = 0 \implies \exists \xi \in (a;b) : \frac{f(b) - f(a)}{g(b) - g(a)}g'(\xi) = 0 \implies \exists \xi \in (a;b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$

Theorem

Если функция f(x) удовлетворяет условиям:

- Непрерывна на [a; b]
- \bullet Дифференцируема на (a;b)

To:

 $\forall x \in (a;b): f'(x) \geq 0 \iff f(x)$ неубывает на [a;b] $\forall x \in (a;b): f'(x) > 0 \implies f(x)$ возрастает на [a;b] (Для 2 высказывания импликация в обратную сторону не верна, например, для $f(x) = x^3$ в т. x = 0)

Proof:

"
$$\Leftarrow$$
 "
$$\forall x_0 \in (a;b): f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$f(x) - \text{ неубывающая функция } \Longrightarrow \forall x \neq x_0: \frac{f(x) - f(x_0)}{x - x_0} \geq 0$$

$$\Longrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \geq 0$$
" \Longrightarrow "
$$\forall x_1 < x_2 \in [a;b]: f(x) \text{ удовлетворяет т. Лагранжа на } [x_1;x_2] \Longrightarrow \exists \xi \in (x_1;x_2): f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$$

$$f'(\xi) \geq 0 \Longrightarrow f(x_2) \geq f(x_1)$$

$$f'(\xi) > 0 \Longrightarrow f(x_2) > f(x_1)$$

Corollary

Если f(x) непрерывна на [a;b] и дифференцируема на (a;b), кроме конечного числа точек (дифференцируемость), и $f'(x) \ge 0$, то f(x) неубывает на [a;b]

Theorem Достаточное условие экстремума

Если $\exists \delta > 0$: $(\forall x \in (x_0 - \delta; x_0) : f'(x) \geq 0) \land \land (\forall x \in (x_0; x_0 + \delta) : f'(x) \leq 0) \land \land (f(x))$ непрерывна в точке x_0 , то x_0 - точка loc max (нестрогого)

Definition: Выпуклость и вогнутость функций

Функция называется выпуклой вверх на отрезке [a;b], если

 $\forall x_1 < x_2 \in [a;b]$ верно:

график функции y = f(x) лежит выше хорды, соединяющей точки $(x_1; f(x_1))$ и $(x_2; f(x_2))$, т.е.

 $l(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} x + \frac{x_2 f(x_1) - x_1 f(x_2)}{x_2 - x_1}$ - уравнение хорды l $\forall x \in [x_1; x_2]: f(x) \geq l(x)$ - нестрогая выпуклость

 $\forall x \in (x_1; x_2) : f(x) > l(x)$ - строгая выпуклость

В определении функции, выпуклой вниз, знаки неравенств $f(x) \ge l(x)$ и f(x) > l(x) меняются на противоположные

Theorem

Если f(x) непрерывна на [a;b] и на $(a;b)\exists f''(x)$, то

 $\forall x \in (a;b): f''(x) \ge 0 \implies f(x)$ выпукла вниз

 $\forall x \in (a;b): f''(x) \leq 0 \implies f(x)$ выпукла вверх

Proof:

Докажем выпуклость вниз, выпуклость вверх доказывается аналогично

Пусть $x_1 < x_2 \in [a;b]$, тогда для доказательства по определению необходимо

доказать верность неравенства:

$$\forall x \in (x_1; x_2) : l(x) - f(x) \ge 0$$

$$l(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} x + \frac{x_2 f(x_1) - x_1 f(x_2)}{x_2 - x_1} - \text{уравнение хорды } l$$

$$f(x_2) - f(x_1) - x_2 f(x_1) - x_1 f(x_2) - x_2 f(x_1) - x_2 f(x_2)$$

$$l(x) - f(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} x + \frac{x_2 f(x_1) - x_1 f(x_2)}{x_2 - x_1} - f(x) \frac{x_2 - x_1 + x - x_1}{x_2 - x_1} =$$

$$= \frac{f(x_1)(x_2 - x) + f(x_2)(x - x_1)}{x_2 - x_1} - \frac{f(x)(x_2 - x) + f(x)(x - x_1)}{x_2 - x_1} =$$

$$= \frac{f(x_1)(x_2 - x) + f(x_2)(x - x_1)}{x_2 - x_1} - \frac{f(x)(x_2 - x) + f(x)(x - x_1)}{x_2 - x_1} =$$

$$= \frac{f(x_1)(x_2 - x_1) + f(x_2)(x - x_1) - f(x)(x_2 - x) - f(x)(x - x_1)}{x_2 - x_1} =$$

$$=\frac{(f(x_1)-f(x))(x_2-x)+(f(x_2)-f(x))(x-x_1)}{x_2-x_1}=$$

$$=\frac{(f(x_2)-f(x))(x-x_1)-(f(x_1)-f(x))(x_2-x)}{x_2-x_1}=$$

на $(x_1; x)$ и $(x; x_2)$ выполняется т. Лагранжа, $\xi \in (x; x_2)$, $\eta \in (x_1; x)$

$$\equiv \frac{(x-x_1)(x_2-x)(f'(\xi)-f'(\eta))}{x_2-x_1}$$
 \equiv , т.к. для функции f' на $(\eta;\xi)$ выполняется т. Лагранжа $\equiv \frac{(x-x_1)(x_2-x)f''(\zeta)(\xi-\eta)}{x_2-x_1} \geq 0$, $\zeta \in (\eta;\xi)$

При нахождении опечаток просьба написать https://t.me/i8088_t, на момент компиляции ник в тг: vova kormilitsyn