[!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018.

1 Números Complexos

1.1 Introdução

Seja $\mathbb R$ o conjunto dos Reais. Consideremos o produto cartesiano $\mathbb R \times \mathbb R = \mathbb R^2$ tal que:

$$\mathbb{R}^2 = \{(x, y) | x, y \in \mathbb{R}\}\tag{1}$$

Se tomarmos dois elementos (a,b) e (c,d) de \mathbb{R}^2 , podemos definir as seguintes operações:

- 1. Igualdade: $(a,b) = (c,d) \Leftrightarrow a = c \ e \ b = d$
- 2. Adição: (a,b) + (c,d) = (a+c,b+d)
- 3. Multiplicação: $(a,b) \cdot (c,d) = (ac bd, ad + bc)$

O conjunto dos números complexos (denotado por \mathbb{C}) é o conjunto dos pares ordenados de números reais para as quais estã definidas as operações acima. É usual representa cada elemento $(x,y) \in \mathbb{C}$ com o símbolo z, logo:

$$z \in \mathbb{C} \Leftrightarrow z = (x, y) \text{ sendo } x, y \in \mathbb{R}$$
 (2)

Teorema (Adição em $\mathbb C$) A operação de adição define em $\mathbb C$ uma estrutura com as seguintes propriedades:

- 1. Propriedade associativa;
- 2. Propriedade comutativa;
- 3. Existência do elemento neutro; $\exists \ e_a \in \mathbb{C} \mid z + e_a = z, \ \forall z \in \mathbb{C}$
- 4. Existência do elemento simétrico; $\forall z \in \mathbb{C} \ \exists \ z' \in \mathbb{C} \ | \ z+z'=e_a$

Teorema (Multiplicação em \mathbb C) A operação de multiplicação define em $\mathbb C$ uma estrutura com as seguintes propriedades:

- 1. Propriedade associativa;
- 2. Propriedade comutativa;
- 3. Existência do elemento neutro; $\exists \ e_m \in \mathbb{C} \mid z \cdot e_m = z, \ \forall z \in \mathbb{C}$
- 4. Existência do elemento inverso; $\forall z \in \mathbb{C}^* \; \exists \; z'' \in \mathbb{C} \; | \; z \cdot z'' = e_m$

Exercício: Prove os Teoremas enunciados;

Divisão: Decorre do último item do Teorema anterior que, dados $z_1 \in \mathbb{C}$ tal que $z_1 = (a, b) \neq (0, 0)$ e $z_2 = (c, d)$, existe um único $z \in \mathbb{C}$ ta que $z_1 \cdot z = z_2$. Mostre que

$$\frac{z_2}{z_1} = \left(\frac{ca+db}{a^2+b^2}, \frac{da-cb}{a^2+b^2}\right)$$

Teorema (**Distribuição**) Em C é válido a seguinte relação:

$$z_1(z_2+z_3)=z_1z_2+z_1z_3 \ \forall z_1,z_2,z_3 \in \mathbb{C}$$

Demonstração: À cargo do leitor.

1.2 Forma Algébrica

Se considerarmos um subconjunto \mathbb{R}' de \mathbb{C} formado pelos pares ordenados cujo a segunda componente é nula, ou seja:

$$\mathbb{R}' = \{(a, b) \in \mathbb{C} \mid b = 0\}$$

E considerarmos uma aplicação de f, de $\mathbb{R} \to \mathbb{R}'$ que leva cada $x \in \mathbb{R}$ ao par $(x,0) \in \mathbb{R}'$, verificamos que tal aplicação é sobrejetora, pois, todo par de \mathbb{R}' é correspondente, segundo f de $x \in \mathbb{R}$, além disso, se tomarmos $x, x' \in \mathbb{R}$ com $x \neq x'$ temos que $(x,0) \in \mathbb{R}'$ e $(x',0) \in \mathbb{R}'$ são distintos, ou seja, a aplicação é injetora. Como a aplicação é injetora e sobrejetora, temos então que ela é bijetora. Além do mais, note que a aplicação f conserva as operações de adição de multiplicação. Note que a+b com $a,b \in \mathbb{R}$ está associado a $(a+b,0) \in \mathbb{R}'$, ou seja:

$$f(a+b) = (a+b,0) = (a,0) + (b,0) = f(a) + f(b)$$

. É fácil de ver que com o produto *ab* ocorre o mesmo, e que

$$f(ab) = f(a) \cdot f(b)$$

Como existe uma bijeção nesta aplicação que conserva as operações de soma e produto, dizemos que \mathbb{R} e \mathbb{R}' são *isomorfos*. Devido a esse isomorfismo, operar com (x,0) leva a resultados análogos aos obtidos operando com x, o que justifica a igualdade $x=(x,0), \forall x\in\mathbb{R}$. Assim, o conjunto dos números reais \mathbb{R} passa a ser considerado subconjunto do conjuntos dos \mathbb{C} , ou seja, $\mathbb{R}\subset\mathbb{C}$;

Definimos então, **unidade imaginária** e indicamos por i, o número complexo (0,1). Note que com isso, obtemos que

$$i^2 = i \cdot i = (0,1) \cdot (0,1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1,0) = -1$$

Que é a propriedade básica da unidade imaginária, ou seja: $i^2 = -1$

Como isso podemos obter informações quanto i^0 , i^1 , i^3 , \cdots por exemplo. Fica como exercício então mostrar que:

$$i^{4n} = 1$$
, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$

para qualquer $n \in \mathbb{N}$.

Note que, dado um número complexo z = (x, y), temos:

$$z = (x, y) = (x, 0) + (0, y) = (x, 0) + (y \cdot 0 - 0 \cdot 1, y \cdot 1 + 0 \cdot 0) = (x, 0) + (y, 0) \cdot (0, 1)$$

Como (0,1) por definição é i, temos então:

$$z = x + yi \tag{3}$$

Ou seja, todo número complexo pode ser escrito sob essa forma que chamamos de "forma algébrica". O número real x é chamado de parte real de z, enquanto que o número real y é a parte imaginária de z. Denotamos respectivamente por Re(z) e Im(z). Denotar dessa forma é muito bom pois, a multiplicação fica mais "natural", ao invés de calcularmos a multiplicação da forma como definimos inicialmente, podemos simplesmente fazer um produto usual, ou seja:

$$(a+bi)(c+di) = a(c+di) + bi(c+di) = ac + adi + bci + bdi^2 = (ac - bd) + (ad + bc)i$$

1.3 Conjugado de C

Definição: O conjugado de um número complexo z=x+yi é denotado por \bar{z} e definido como

$$\bar{z} = x - yi$$

Teorema Para todo $z \in \mathbb{C}$ tem-se que:

- 1. $z + \bar{z} = 2 \cdot Re(z)$;
- 2. $z \bar{z} = 2 \cdot Im(z) \cdot i$;
- 3. $z = \bar{z} \Leftrightarrow z \in \mathbb{R}$

Teorema Se z_1 e z_2 são números complexos quaisquer, então:

- 1. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- 2. $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

Voltando ao caso da divisão, observe que agora possuímos um processo mais prático de fazer a divisão entre dois números complexos:

$$\frac{z_2}{z_1} = \frac{c+di}{a+bi} = \frac{(c+di)(a-bi)}{(a+bi)(a-bi)} = \frac{ca+db}{a^2+b^2} + \frac{da-cb}{a^2+b^2}i$$

Lembre-se, não leve isso como uma fórmula, pois, aparece naturalmente. Concluímos então que basta multiplicarmos a nossa expressão pelo conjungado no numerador e denominador (para manter a igualdade).

2 Forma Trigonométrica

**Seção em construção; porém, vai um resumo:

Definição: A norma de um número complexo z = x + yi é um número real e positivo:

 $N(z) = x^2 + y^2$

Definição: O módulo de um número complexo z=x+yi é um número real e positivo que satisfaz:

 $|z| = \rho = \sqrt{N(z)}$

Teorema Se z_1 e z_2 são dois números complexos quaisquer, então:

- 1. $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$
- 2. $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} z_2 \neq 0$
- 3. $|z_1 + z_2| \le |z_1| + |z_2|$

Definição: O argumento de um número complexo, não nulo, o ângulo θ tal que:

$$cos\theta = \frac{x}{\rho}$$
 $sin\theta = \frac{y}{\rho}$

- Em sala de aula: Plano de Argand Gauss,

Dado um número complexo z = x + yi, não nulo, note que:

$$z = x + yi = \rho \left(\frac{x}{\rho} + \frac{y}{\rho}i\right) = \rho(\cos\theta + i \cdot \sin\theta)$$

Que é a forma polar (ou trigonométrica) de z.

- Em sala de aula serão discutidos a potenciação, radiciação, equações binômias e trinômias com números complexos. Deixarei abaixo apenas algumas fórmulas e lembretes para eu poder continuar escrevendo em breve. Não entraremos muito em detalhes, porém, é bom saber e ter uma ideia de como funciona, se cair numa segunda fase, as fórmulas provavelmente serão dadas.

1º Fórmula de Moivre

$$z^{n} = \rho^{n}(\cos\theta + i \cdot \sin\theta) \tag{4}$$

2º Fórmula de Moivre

$$z_k = \rho^{\frac{1}{n}} \left(\cos \left(\frac{\theta}{n} + K \cdot \frac{2\pi}{n} \right) + i \cdot \sin \left(\frac{\theta}{n} + K \cdot \frac{2\pi}{n} \right) \right) \tag{5}$$

onde $z_k = z^{\frac{1}{n}} \Leftrightarrow z_k^n = z$

Equação Binômia

Chama-se equação binômia toda equação redutível à forma:

$$ax^n + b = 0$$

onde $a, b \in \mathbb{C}$, $a \neq 0$ e $n \in \mathbb{N}$

Equação Trinômia

Chama-se equação binômia toda equação redutível à forma:

$$ax^{2n} + bx^n + c = 0$$

onde $a, b, c \in \mathbb{C}$, $a, b \neq 0$ e $n \in \mathbb{N}$

3 Exercícios

**À ser atualizado!

1. Efetuar as seguintes operações indicadas:

(a)
$$(6+7i)(1+i)$$

(i)
$$(4-3i)(5-i)(1+i)$$

(b)
$$(5+4i)(1-i)+(2+i)i$$

(j)
$$(1+2i)(2+i)$$

(c)
$$(1+2i)^2 - (3+4i)$$

(k)
$$(7+2i)(7-2i)$$

(d)
$$(3+2i)+(2-5i)$$

(1)
$$(3+2i)^2$$

(e)
$$(5-2i)-(2+8i)$$

(m)
$$(5-i)^2$$

(f)
$$(1+i) + (1-i) - 2i$$

(m)
$$(5-i)^{-1}$$

(g)
$$(6+7i) - (4+2i) + (1-10i)$$

(n)
$$(1+i)^3$$

(o) $(5-i)^2$

(h)
$$(2-3i)(1+5i)$$

(p)
$$(3+2i)^2$$

2. Provar que $(1+i)^2 = 2i$ e colocar na forma algébrica o número:

$$z = \frac{(1+i)^{80} - (1+i)^{82}}{i^{96}}$$

3. Calcule as seguintes potências de i

(a)
$$i^{76}$$

(b)
$$i^{110}$$

(c)
$$i^{97}$$

(d)
$$i^{503}$$

- 4. Provar que $(1-i)^2 = -2i$ e calcular $(1-i)^{96} + (1-i)^{97}$
- 5. Determinar $x \in \mathbb{R}$ e $y \in \mathbb{R}$ que satisfaza as seguintes equações:

(a)
$$2 + 3yi = x + 9i$$

(f)
$$(3+yi) + (x-2i) = 7-5i$$

(b)
$$(x+yi)(3+4i) = 7+26i$$

$$(g) (x+yi)^2 = 2i$$

(c)
$$(x + yi)^2 = 4i$$

(d) $3 + 5ix = y - 15i$

(h)
$$(2-x+3y)+2yi=0$$

(e)
$$(x + yi)(2 + 3i) = 1 + 8i$$

(i)
$$(3-i)(x+yi) = 20$$

- 6. Qual é a condição para que o produto de dois números complexos a+bi e c+di dê um número real?
- 7. Encontre a solução geral para a equação $y=ax^2+bx+c$ sabendo que $a,b,c\in\mathbb{R}_+^*$ e $b^2>4ac$, ou seja, o discriminante é tal que $\Delta<0$.

8.

[!] Mais exercícios serão adicionados em breve!