Amazon Food Reviews

Data Source: https://www.kaggle.com/snap/amazon-fine-food-reviews

This dataset consists of reviews of fine foods from Amazon. The data span a period of more than 10 years, including all ~500,000 reviews up to October 2012. Reviews include product and user information, ratings, and a plain text review. It also includes reviews from all other Amazon categories.

Excerpt

- 1. Applied K-Nearest Neighbour on Different Featurization of Data viz. BOW(uni-gram,bi-gram), tfidf, Avg-Word2Vec(using Word2Vec model pretrained on Google News) and tf-idf-Word2Vec
- 2. Used both brute & kd-tree implementation of KNN
- 3. Evaluated the test data on various performance metrics like accuracy, f1-score, precision, recall, etc. also plotted Confusion matrix using seaborne

Data includes:

- Reviews from Oct 1999 Oct 2012
- 568,454 reviews
- 256,059 users
- 74,258 products
- 260 users with > 50 reviews

Attribute Information:

- 1. Id
- 2. Productld unique identifier for the product
- 3. Userld unqiue identifier for the user
- 4. ProfileName
- 5. HelpfulnessNumerator number of users who found the review helpful
- 6. HelpfulnessDenominator number of users who indicated whether they found the review helpful or not
- 7. Score rating between 1 and 5
- 8. Time timestamp for the review
- 9. Summary brief summary of the review
- 10. Text text of the review

Number of

people who found the review helpful

who indicated whether or not the review was helpful

129 of 134 people found the following review helpful

Summary

The state of the contract of t

By Cimmerian on November 20, 2014

What a great TV. When the decision came down to either sending my kids to college or buying this set, the choice was easy. Now my kids can watch this set when they come home from their McJobs and be happy like me.

1 Comment Was this review helpful to you?

Rating

-Product ID

-Reviewer User ID

Review

Objective:- Review Polarity

Given a review, determine the review is positive or neagative

Using text review to decide the polarity

Take the summary and text of review and analyze it using NLP whether the customer feedback/review is positive or negative

In [3]:

```
#Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sqlite3 as sql
import seaborn as sns
from time import time
import random
import gensim
import warnings
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion matrix
from sklearn.metrics import precision score
from sklearn.metrics import fl_score
from sklearn.metrics import recall score
warnings.filterwarnings("ignore")
%matplotlib inline
# sets the backend of matplotlib to the 'inline' backend:
#With this backend, the output of plotting commands is displayed inline within frontends like the
Jupyter notebook.
#directly below the code cell that produced it. The resulting plots will then also be stored in th
e notebook document.
#Functions to save objects for later use and retireve it
import pickle
def savetofile(obj,filename):
   pickle.dump(obj,open(filename+".p","wb"))
def openfromfile(filename):
   temp = pickle.load(open(filename+".p","rb"))
    return temp
```

In [4]:

```
# !wget --header="Host: storage.googleapis.com" --header="User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.139 Safari/537.36" --header= "Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8" --header="Accept-Language: en-US,en;q=0.9" "https://storage.googleapis.com/kaggle-datasets/18/2157/database.sqlite.zip?GoogleAccessId=web-data@kaggle-161607.iam.gserviceaccount.com&Expires=1526375292&Signature=G950D7LgGsnAoencBUsNHa3R2iIGiXOhdITLbh&\(\text{9}\)IGS3JA9ETgbJRa3tHTguzL0ignoIz2sjQUxyY2YbcD98XR8immdcAmrFlQVA6Jm\(\text{2}\)BpJu\(\text{2}\)BpDGjF05FpW0wGeMq6utKq2Qy8\(\text{N}\)W\(\text{2}\)F3\(\text{2}\)E7\(\text{5}\)T357B\(\text{2}\)Bi3kGcBP4uaEzMk6F\(\text{2}\)BpGaZnxcroDAcjpSj9VzU03INKPwpkbxtM\(\text{2}\)FrWCaX748Bpgx9uKqwfrRakGR\(\text{2}\)nMHcUukj\(\text{2}\)FhaKKRi9QoQaTNpdRjmVB\(\text{2}\)FqewKwDXTN8sr701yMkmqItQXBJI9Y312GqSP3Vd\(\text{2}\)B3oleta5Hz2L9x1BFyUcLoylxI4pTjukwu1A\(\text{3}\)D\(\text{3}\)D" -0 "database.sqlite.zip" -c
```

Loading the data

In [40]:

```
#Using sqlite3 to retrieve data from sqlite file

con = sql.connect("final.sqlite") #Loading Cleaned/ Preprocesed text that we did in Text
Preprocessing

#Using pandas functions to query from sql table
df = pd.read_sql_query("""
SELECT * FROM Reviews
""",con)

#Reviews is the name of the table given
#Taking only the data where score != 3 as score 3 will be neutral and it won't help us much
df.head()
```

Out[40]:

	index	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	
0	0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1	Positive	1:
1	1	2	B00813GRG4	A1D87F6ZCVE5NK	dli pa	0	0	Negative	10
2	2	3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1	Positive	12
3	3	4	B000UA0QIQ	A395BORC6FGVXV	Karl	3	3	Negative	10
4	4	5	B006K2ZZ7K	A1UQRSCLF8GW1T	Michael D. Bigham "M. Wassir"	0	0	Positive	10

```
In [41]:

df.describe()

Out[41]:
```

	index	ld	HelpfulnessNumerator	HelpfulnessDenominator	Time
count	364171.000000	364171.000000	364171.000000	364171.000000	3.641710e+05
mean	241825.377603	261814.561014	1.739021	2.186841	1.296135e+09
std	154519.869452	166958.768333	6.723921	7.348482	4.864772e+07
min	0.000000	1.000000	0.000000	0.000000	9.393408e+08
25%	104427.500000	113379.500000	0.000000	0.000000	1.270858e+09
50%	230033.000000	249445.000000	0.000000	1.000000	1.311379e+09
75%	376763.500000	407408.500000	2.000000	2.000000	1.332893e+09
max	525813.000000	568454.000000	866.000000	878.000000	1.351210e+09

```
In [42]:
```

```
df.shape
df['Score'].size
```

Out[42]:

364171

-> For EDA and Text Preprecessing Refer other ipynb notebook

Score as positive or negative

```
In [43]:
```

```
def polarity(x):
    if x == "Positive":
        return 0
    else:
        return 1
df["Score"] = df["Score"].map(polarity) #Map all the scores as the function polarity i.e. positive or negative
df.head()
```

Out[43]:

	index	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	
0	0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1	0	130
1	1	2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0	1	134
2	2	•	Bassi Occilo	A DVI MIM IIVVAIN	Natalia Corres			•	404

	index	2	Productid	ABALIVIVVJIAAAIN Userld	BNatalia amo	HolpfulpossNumorator	HelpfulnessDenominator	Score	121
	illuex	iu	Fioductio	Oseria		Helpiumessivumerator	HelpfulliessDellollillator	Score	
					Corres"				
3									
	3	4	B000UA0QIQ	A395BORC6FGVXV	Karl	3	3	1	130
4									
					Michael D.				
	4	5	BUURK 2777K	A1UQRSCLF8GW1T	Bigham "M.	0	0	0	135
	-	3	BOOOKZZZIK	ATOGREGOET TOWN		ľ	0	١	133
					Wassir"				
4									

In [44]:

```
#Taking Sample Data
n_samples = 25000
df_sample = df.sample(n_samples)

###Sorting as we want according to time series
df_sample.sort_values('Time',inplace=True)
df_sample.head(10)
```

Out[44]:

	index	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	Helpfulne
117924	138706	150524	0006641040	ACITT7DI6IDDL	shari zychinski	0	0
1144	1146	1245	B00002Z754	A29Z5PI9BW2PU3	Robbie	7	7
117265	137932	149700	B00006L2ZT	A19JWUIRF6DXLV	Andrew J Monzon	2	4
316048	443664	479725	B00005U2FA	A270SG4UVKEO3X	Susanna "suzattorney"	23	23
77727	87386	95119	B0000DIYIJ	A3S4XR84R8S0TV	Brook Lindquist	0	1
218787	284749	308481	B0000DIVUR	AAFD4W6P5XWNT	Nick Watson	7	8
334889							

	477821	516699	B00B0DG87B	AF5EKQ4I9NHJ4serId	Smitty Peete ProfileName	HelpfulnessNumerator	Helpfulne:
262407							
	359912	389289	B0000DYZCG	A1U4PHVIQPBCD2	Dan Murphy	2	4
77127							
	86598	94281	B0000CNU2Q	A1NOWEOLKMRRXM	T. Reinhardt "olivia lee"	27	27
178039							
110000	224637	243579	B0000DIYKD	AYHW6HJSUCSAE	"insolent_shoeshine_grrl"	11	13

In [45]:

```
#Saving 25000 samples in disk to as to test to test on the same sample for each of all Algo savetofile(df_sample,"sample_25000_knn")
```

In [4]:

```
#Opening from samples from file
df_sample = openfromfile("sample_25000_knn")
```

KNN Models using Different Featurization in NLP

Bag of Words (BoW)

A commonly used model in methods of Text Classification. As part of the BOW model, a piece of text (sentence or a document) is represented as a bag or multiset of words, disregarding grammar and even word order and the frequency or occurrence of each word is used as a feature for training a classifier.

OR

Simply, Converting a collection of text documents to a matrix of token counts

In [15]:

```
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn import preprocessing

#Breaking into Train and test
X_train, X_test, y_train, y_test = train_test_split(df_sample['CleanedText'].values,df_sample['Score'].values,test_size=0.3,shuffle=False)
```

```
#Text -> Uni gram Vectors
uni_gram = CountVectorizer()
X train = uni gram.fit transform(X train)
#Normalize Data
X_train = preprocessing.normalize(X_train)
print("Train Data Size: ",X train.shape)
X_test = uni_gram.transform(X_test)
#Normalize Data
X_test = preprocessing.normalize(X_test)
print("Test Data Size: ",X_test.shape)
Train Data Size: (17500, 26976)
Test Data Size: (7500, 26976)
In [10]:
from sklearn.model_selection import TimeSeriesSplit
tscv = TimeSeriesSplit(n splits=10)
for train, cv in tscv.split(X_train):
     print("%s %s" % (train, cv))
   print(X_train[train].shape, X_train[cv].shape)
(1600, 26976) (1590, 26976)
(3190, 26976) (1590, 26976)
(4780, 26976) (1590, 26976)
(6370, 26976) (1590, 26976)
(7960, 26976) (1590, 26976)
(9550, 26976) (1590, 26976)
(11140, 26976) (1590, 26976)
(12730, 26976) (1590, 26976)
(14320, 26976) (1590, 26976)
(15910, 26976) (1590, 26976)
```

Finding the best 'k' value using Forward Chaining Cross Validation or Time Series CV

1. Without Grid Search CV

Wall time: 5min 57s

```
In [11]:
```

```
%%time
from sklearn.model selection import TimeSeriesSplit
from sklearn.neighbors import KNeighborsClassifier
#No of splits for Forward Chaining Cross Validation
n \text{ splits} = 10
#Max no. of neighbours for KNN
neigh max = 100
tscv = TimeSeriesSplit(n_splits=n_splits)
#To store accuracy of different k values
k_{acc} = []
for k in range(1,neigh_max,2):
    #To store accuracy of different fold
    acc list = []
    for train, cv in tscv.split(X_train):
          if(train.size > k):
            knn = KNeighborsClassifier(n_neighbors=k,algorithm='brute',n_jobs=-1)
            knn.fit(X_train[train],y_train[train])
            acc_list.append(knn.score(X_train[cv],y_train[cv])*100)
    if (acc list):
       acc nparr = np.array(acc list)
    k acc.append(acc nparr.mean())
k_acc = np.array(k_acc)
CPU times: user 2min 46s, sys: 1min 9s, total: 3min 56s
```

```
In [12]:
savetofile(k acc, "k acc uni gram")
In [13]:
k_acc_uni_gram = openfromfile("k_acc_uni_gram")
k_acc_uni_gram
Out[13]:
array([ 80.83018868, 84.25786164, 84.98113208,
                                                                                85.29559748,
             85.34591195, 85.51572327, 85.51572327, 85.42767296, 85.46540881, 85.33333333, 85.24528302, 85.23899371, 85.28930818, 85.23899371, 85.19496855, 85.20125786, 85.13207547, 85.05660377, 85.02515723, 84.98113208,
             85.02515723, 84.95597484, 84.94968553,
                                                                                 84.89937107,
            84.86163522, 84.8427673, 84.8490566, 84.83647799, 84.79245283, 84.78616352, 84.7672956, 84.74842767, 84.72327044, 84.71698113, 84.72955975, 84.72327044, 84.72327044, 84.72955975, 84.74213836, 84.73584906,
             84.72327044, 84.72327044, 84.69811321,
                                                                                 84.67295597.
             84.66037736, 84.66037736, 84.67295597, 84.66666667,
             84.67295597, 84.6666667])
```

In [14]:

```
sns.set_style("darkgrid")
plt.plot(np.arange(1,100,2),k_acc_uni_gram)
plt.xlabel("K Nearest Neighbours")
plt.ylabel("Accuracy")
plt.title("Accuracy for different k values on uni_gram")
plt.show()
```


With k=11-13 uni_gram has the highest accuracy of 86%

As we can see after a no. of neighbours the accuracy dips hence the no. of neighbours is restricted to 100 neighbours

2. With Grid Search CV

The above code for finding best value of 'k' can be condensed using Grid Search CV it tries all the possible params which tell it to try on and returns the best params and best accuracy

A.Brute Algorithm

```
In [16]:
```

```
%time
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
```

```
knn = KNeighborsClassifier(algorithm='brute')

# neigh = np.arange(1,100,2)
param_grid = {'n_neighbors':np.arange(1,100,2)} #params we need to try on classifier
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gsv = GridSearchCV(knn,param_grid,cv=tscv,verbose=1)
gsv.fit(X_train,y_train)
print("Best HyperParameter: ",gsv.best_params_)
print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))

CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 14.1 µs
Fitting 10 folds for each of 50 candidates, totalling 500 fits
Best HyperParameter: {'n_neighbors': 11}
Best Accuracy: 85.52%
```

```
[Parallel(n_jobs=1)]: Done 500 out of 500 | elapsed: 46.4min finished
```

In [7]:

```
#Testing Accuracy on Test data
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=11)*
knn.fit(X_train,y_train)
y_pred = knn.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred)))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2), range(2))
sns.set(font_scale=1.4) #for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Accuracy on test set: 84.080% Precision on test set: 0.639 Recall on test set: 0.187 F1-Score on test set: 0.289 Confusion Matrix of test set: [[TN FP] [FN TP]]

Out[7]:

<matplotlib.axes._subplots.AxesSubplot at 0x3fff3d250eb8>

B. Kd tree Algorithm

```
In [17]:
```

```
%time
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
```

```
knn = KNeighborsClassifier (algorithm='kd_tree')
# neigh = np.arange(1,100,2)
param_grid = {'n_neighbors':np.arange(1,100,2)} #params we need to try on classifier
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gsv = GridSearchCV(knn,param_grid,cv=tscv,verbose=1)
gsv.fit(X_train,y_train)
print("Best HyperParameter: ",gsv.best_params_)
print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))

CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 8.58 µs
Fitting 10 folds for each of 50 candidates, totalling 500 fits
Best HyperParameter: {'n_neighbors': 11}
Best Accuracy: 85.52%

[Parallel(n_jobs=1)]: Done 500 out of 500 | elapsed: 46.3min finished
```

In [16]:

```
#Testing Accuracy on Test data
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=11,algorithm='kd_tree')
knn.fit(X_train,y_train)
y_pred = knn.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred)))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2), range(2))
sns.set(font_scale=1.4) #for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Accuracy on test set: 84.347%
Precision on test set: 0.686
Recall on test set: 0.178
F1-Score on test set: 0.283
Confusion Matrix of test set:
[[TN FP]
[FN TP]]

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x3fff1e5945f8>

bi-gram

In [17]:

```
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
```

```
#Breaking into Train and test
X_train, X_test, y_train, y_test = train_test_split(df_sample['CleanedText'].values,df_sample['Scor
e'].values,test size=0.3,shuffle=False)
#taking one words and two consecutive words together
bi gram = CountVectorizer(ngram range=(1,2))
X_train = bi_gram.fit_transform(X_train)
#Normalize Data
X_train = preprocessing.normalize(X_train)
print("Train Data Size: ",X train.shape)
X_test = bi_gram.transform(X_test)
#Normalize Data
X_test = preprocessing.normalize(X_test)
print("Test Data Size: ",X_test.shape)
Train Data Size: (17500, 377282)
Test Data Size: (7500, 377282)
```

A.Brute Algorithm

```
In [19]:
```

```
%time
from sklearn.model selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(algorithm='brute')
\# neigh = np.arange(1,100,2)
param_grid = {'n_neighbors':np.arange(1,100,2)} #params we need to try on classifier
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gsv = GridSearchCV(knn,param_grid,cv=tscv,verbose=1)
gsv.fit(X_train,y_train)
print("Best HyperParameter: ",gsv.best_params_)
print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))
CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 9.06 \mu s
Fitting 10 folds for each of 50 candidates, totalling 500 fits
Best HyperParameter: {'n_neighbors': 17}
Best Accuracy: 85.77%
[Parallel(n jobs=1)]: Done 500 out of 500 | elapsed: 47.3min finished
```

In [18]:

```
#Testing Accuracy on Test data
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=17)
knn.fit(X train,y train)
y pred = knn.predict(X test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
print("Recall on test set: %0.3f"%(recall score(y test, y pred)))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
Accuracy on test set: 84.613%
Precision on test set: 0.728
Recall on test set: 0.179
F1-Score on test set: 0.288
Confusion Matrix of test set:
 [ [TN FP]
 [FN TP] ]
```

Out[18]:

B. Kd tree Algorithm

```
In [20]:
%time
from sklearn.model selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(algorithm='kd_tree')
\# neigh = np.arange(1,100,2)
param_grid = {'n_neighbors':np.arange(1,100,2)} #params we need to try on classifier
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gsv = GridSearchCV(knn,param_grid,cv=tscv,verbose=1)
gsv.fit(X_train,y_train)
print("Best HyperParameter: ",gsv.best_params_)
print("Best Accuracy: %.2f%%"%(gsv.best score *100))
CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 8.82 µs
Fitting 10 folds for each of 50 candidates, totalling 500 fits
Best HyperParameter: {'n_neighbors': 17}
Best Accuracy: 85.77%
[Parallel(n jobs=1)]: Done 500 out of 500 | elapsed: 47.6min finished
In [19]:
#Testing Accuracy on Test data
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n neighbors=17,algorithm='kd tree')
```

```
#Testing Accuracy on Test data
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=17,algorithm='kd_tree')
knn.fit(X_train,y_train)
y_pred = knn.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred)))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font_scale=1.4) #for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

```
Accuracy on test set: 84.613%
Precision on test set: 0.728
Recall on test set: 0.179
F1-Score on test set: 0.288
Confusion Matrix of test set:
[[TN FP]
[FN TP]]
```

Out[19]:

tf-idf

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 tf_{ij} = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

In [20]:

```
%%time
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn import preprocessing

#Breaking into Train and test
X_train, X_test, y_train, y_test =
train_test_split(df_sample['CleanedText'].values,df_sample['Score'].values,test_size=0.3,shuffle=F@idf = TfidfVectorizer(ngram_range=(1,2)) #Using bi-grams
X_train = tfidf.fit_transform(X_train)
#Normalize Data
X_train = preprocessing.normalize(X_train)
print("Train Data Size: ",X_train.shape)
X_test = tfidf.transform(X_test)
#Normalize Data
X_test = preprocessing.normalize(X_test)
print("Test Data Size: ",X_test.shape)

4
```

Train Data Size: (17500, 377282) Test Data Size: (7500, 377282)

CPU times: user 3.88 s, sys: 16 ms, total: 3.89 s

Wall time: 3.89 s

A.Brute Algorithm

In [22]:

```
%time
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(algorithm='brute')
# neigh = np.arange(1,100,2)
param_grid = {'n_neighbors':np.arange(1,100,2)} #params we need to try on classifier
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gsv = GridSearchCV(knn,param_grid,cv=tscv,verbose=1)
```

```
gsv.rit(x_train,y_train)
print("Best HyperParameter: ",gsv.best_params_)
print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))

CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 8.11 µs
Fitting 10 folds for each of 50 candidates, totalling 500 fits
Best HyperParameter: {'n_neighbors': 9}
Best Accuracy: 85.41%

[Parallel(n jobs=1)]: Done 500 out of 500 | elapsed: 47.4min finished
```

In [22]:

```
#Testing Accuracy on Test data
from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=9)
knn.fit(X_train,y_train)
y_pred = knn.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred)))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font_scale=1.4) #for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Accuracy on test set: 84.480% Precision on test set: 0.801 Recall on test set: 0.139 F1-Score on test set: 0.237 Confusion Matrix of test set: [[TN FP] [FN TP]]

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x3fff1d1ff860>

B. Kd tree Algorithm

In [23]:

```
%time
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(algorithm='kd_tree')
# neigh = np.arange(1,100,2)
param_grid = {'n_neighbors':np.arange(1,100,2)} #params we need to try on classifier
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gsv = GridSearchCV(knn,param_grid,cv=tscv,verbose=1)
gsv.fit(X train,y train)
```

```
print("Best HyperParameter: ",gsv.best_params_)
print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))

CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 8.58 µs
Fitting 10 folds for each of 50 candidates, totalling 500 fits
Best HyperParameter: {'n_neighbors': 9}
Best Accuracy: 85.41%

[Parallel(n_jobs=1)]: Done 500 out of 500 | elapsed: 47.5min finished
```

In [23]:

```
#Testing Accuracy on Test data
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=9,algorithm='kd_tree')
knn.fit(X_train,y_train)
y_pred = knn.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred)))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font_scale=1.4) #for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

Accuracy on test set: 84.480% Precision on test set: 0.801 Recall on test set: 0.139 F1-Score on test set: 0.237 Confusion Matrix of test set: [[TN FP] [FN TP]]

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x3fff1d166080>

Gensim

Gensim is a robust open-source vector space modeling and topic modeling toolkit implemented in Python. It uses NumPy, SciPy and optionally Cython for performance. Gensim is specifically designed to handle large text collections, using data streaming and efficient incremental algorithms, which differentiates it from most other scientific software packages that only target batch and in-memory processing.

Word2Vec

[Refer Docs] : https://radimrehurek.com/gensim/models/word2vec.html

```
from gensim.models import KeyedVectors
#Loading the model from file in the disk
w2vec_model = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)
In [25]:
w2v vocub = w2vec model.wv.vocab
len(w2v_vocub)
Out[251:
3000000
Avg Word2Vec
 . One of the most naive but good ways to convert a sentence into a vector
 . Convert all the words to vectors and then just take the avg of the vectors the resulting vector represent the
   sentence
In [26]:
avg_vec_google = [] #List to store all the avg w2vec's
# no datapoints = 364170
# sample_cols = random.sample(range(1, no_datapoints), 20001)
for sent in df_sample['CleanedText_NoStem']:
    cnt = 0 #to count no of words in each reviews
    sent vec = np.zeros(300) #Initializing with zeroes
     print("sent:",sent)
    sent = sent.decode("utf-8")
    for word in sent.split():
        try:
              print(word)
            wvec = w2vec_model.wv[word] #Vector of each using w2v model
              print("wvec:",wvec)
            sent_vec += wvec #Adding the vectors
             print("sent_vec:",sent_vec)
            cnt += 1
        except:
            pass #When the word is not in the dictionary then do nothing
```

```
print(sent vec)
    sent_vec /= cnt #Taking average of vectors sum of the particular review
     print("avg vec:",sent vec)
    avg vec google.append(sent vec) #Storing the avg w2vec's for each review
     print("*********
# print(avg vec google)
avg_vec_google = np.array(avg_vec_google)
CPU times: user 12.1 s, sys: 160 ms, total: 12.3 s
```

```
Wall time: 12.3 s
```

```
In [27]:
```

```
np.isnan(avg_vec_google).any()
```

Out[27]:

False

In [28]:

```
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
avg_vec_norm = preprocessing.normalize(avg_vec_google)
#Not shuffling the data as we want it on time basis
```

```
X train, X test, y train, y test = train test split(avg vec norm, df sample['Score'].values, test siz
e=0.3.shuffle=False)
In [29]:
avg_vec_norm.shape
Out[291:
(25000, 300)
In [30]:
avg vec norm.max()
Out[30]:
0.26854231895936098
A.Brute Algorithm
In [581:
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(algorithm='brute')
\# neigh = np.arange(1,100,2)
param grid = {'n neighbors':np.arange(1,40,2)} #params we need to try on classifier
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gsv = GridSearchCV(knn,param_grid,cv=tscv,verbose=1)
gsv.fit(X_train,y_train)
print("Best HyperParameter: ",gsv.best_params_)
print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))
CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 10 µs
Fitting 10 folds for each of 20 candidates, totalling 200 fits
Best HyperParameter: {'n_neighbors': 11}
Best Accuracy: 85.61%
[Parallel(n_jobs=1)]: Done 200 out of 200 | elapsed: 14.0min finished
In [31]:
#Testing Accuracy on Test data
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=11)
knn.fit(X train,y train)
y pred = knn.predict(X test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred)))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
Accuracy on test set: 85.107%
Precision on test set: 0.845
Recall on test set: 0.172
F1-Score on test set: 0.286
Confusion Matrix of test set:
 [ [TN FP]
 [FN TP] ]
```

Out[31]:

<matplotlib.axes. subplots.AxesSubplot at 0x3ffe2748fac8>

B. Kd tree Algorithm

F1-Score on test set: 0.286 Confusion Matrix of test set:

[[TN FP]

```
In [33]:
%time
from sklearn.model selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(algorithm='kd tree')
\# neigh = np.arange(1,100,2)
param_grid = {'n_neighbors':np.arange(1,40,2)} #params we need to try on classifier
tscv = TimeSeriesSplit(n splits=10) #For time based splitting
gsv = GridSearchCV(knn,param_grid,cv=tscv,verbose=1,n_jobs=-1)
gsv.fit(X_train,y_train)
print("Best HyperParameter: ",gsv.best_params_)
print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))
CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 8.82 µs
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[Parallel(n jobs=-1)]: Done 10 tasks
                                           | elapsed:
[Parallel(n jobs=-1)]: Done 160 tasks
                                           | elapsed: 17.0min
[Parallel(n_jobs=-1)]: Done 200 out of 200 | elapsed: 24.8min finished
Best HyperParameter: {'n_neighbors': 11}
Best Accuracy: 85.61%
In [32]:
#Testing Accuracy on Test data
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=11,algorithm='kd_tree')
knn.fit(X_train,y_train)
y_pred = knn.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred)))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
Accuracy on test set: 85.107%
Precision on test set: 0.845
Recall on test set: 0.172
```

Out[32]:

<matplotlib.axes._subplots.AxesSubplot at 0x3ffe2748f080>

Tf-idf W2Vec

- . Another way to covert sentence into vectors
- Take weighted sum of the vectors divided by the sum of all the tfidf's i.e. (tfidf(word) x w2v(word))/sum(tfidf's)

In [62]:

```
%%time
###Sorting as we want according to time series
df_sample.sort_values('Time',inplace=True)

###tf-idf with No Stemming
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer(ngram_range=(1,2)) #Using bi-grams

tfidf_vec_new = tfidf.fit_transform(df_sample['CleanedText_NoStem'].values)

print(tfidf_vec_new.shape)
features = tfidf.get_feature_names()

(25000, 586319)
CPU times: user 6.37 s, sys: 92 ms, total: 6.46 s
```

In [67]:

Wall time: 6.93 s

```
%%time
tfidf_w2v_vec_google = []
review = 0
for sent in df_sample['CleanedText_NoStem'].values:
   cnt = 0
   weighted sum = 0
   sent_vec = np.zeros(300)
    sent = sent.decode("utf-8")
    for word in sent.split():
        try:
             print(word)
            wvec = w2vec_model.wv[word] #Vector of each using w2v model
             print("w2vec:",wvec)
              print("tfidf:",tfidf_vec_ns[review,features.index(word)])
            tfidf_vec = tfidf_vec_new[review,features.index(word)]
            sent_vec += (wvec * tfidf_vec)
            weighted sum += tfidf vec
        except:
             print(review)
            pass
```

```
sent_vec /= weighted_sum
     print(sent_vec)
    tfidf_w2v_vec_google.append(sent_vec)
    review += 1
tfidf_w2v_vec_google = np.array(tfidf_w2v_vec_google)
savetofile(tfidf_w2v_vec_google,"tfidf_w2v_vec_google")
CPU times: user 5h 58min 35s, sys: 2.69 s, total: 5h 58min 38s
Wall time: 5h 58min 39s
In [5]:
#Precomputed File
tfidf w2v vec google = openfromfile("tfidf w2v vec google")
#Loading the same samples as using precomuted file
df_sample_new = openfromfile("df_sample_new_tfidfw2vec")
In [6]:
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
tfidfw2v vecs norm = preprocessing.normalize(tfidf w2v vec google)
#Not shuffling the data as we want it on time basis
X train, X test, y train, y test = train test split(tfidfw2v vecs norm, df sample new['Score'].value
s, test size=0.3, shuffle=False)
A.Brute Algorithm
In [7]:
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import TimeSeriesSplit
knn = KNeighborsClassifier(algorithm='brute')
\# neigh = np.arange(1,100,2)
param_grid = {'n_neighbors':np.arange(1,40,2)} #params we need to try on classifier
tscv = TimeSeriesSplit(n splits=10) #For time based splitting
gsv = GridSearchCV(knn,param_grid,cv=tscv,verbose=1)
gsv.fit(X_train,y_train)
print("Best HyperParameter: ",gsv.best params )
print("Best Accuracy: %.2f%%"%(gsv.best score *100))
CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 12.4 µs
Fitting 10 folds for each of 20 candidates, totalling 200 fits
Best HyperParameter: {'n neighbors': 9}
Best Accuracy: 85.08%
[Parallel(n jobs=1)]: Done 200 out of 200 | elapsed: 14.0min finished
In [11]:
#Testing Accuracy on Test data
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n neighbors=9)
knn.fit(X_train,y_train)
y_pred = knn.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred)))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font_scale=1.4) #for label size
sns.heatmap(df cm, annot=True,annot kws={"size": 16}, fmt='g')
```

```
Accuracy on test set: 84.920%
Precision on test set: 0.675
Recall on test set: 0.127
F1-Score on test set: 0.214
Confusion Matrix of test set:
 [ [TN FP]
 [FN TP] ]
```

Out[11]:

<matplotlib.axes. subplots.AxesSubplot at 0x3fff3340c2e8>

B. Kd tree Algorithm

```
In [10]:
%time
from sklearn.model selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import TimeSeriesSplit
knn = KNeighborsClassifier(algorithm='kd_tree')
\# neigh = np.arange(1,100,2)
param grid = {'n neighbors':np.arange(1,40,2)} #params we need to try on classifier
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gsv = GridSearchCV(knn,param_grid,cv=tscv,verbose=1)
gsv.fit(X_train,y_train)
print("Best HyperParameter: ",gsv.best_params_)
print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))
CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 8.34 µs
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[Parallel(n_jobs=1)]: Done 200 out of 200 | elapsed: 380.7min finished
Best HyperParameter: {'n_neighbors': 9}
Best Accuracy: 85.08%
```

In [12]:

```
#Testing Accuracy on Test data
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=9)
knn.fit(X_train,y_train)
y_pred = knn.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
print("Recall on test set: %0.3f"%(recall score(y test, y pred)))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
```

```
sns.set(font_scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
```

```
Accuracy on test set: 84.920%
Precision on test set: 0.675
Recall on test set: 0.127
F1-Score on test set: 0.214
Confusion Matrix of test set:
[ [TN FP]
[FN TP] ]
```

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x3fff33419ef0>

Performance Table

KNN (with 25k points)							
Featurization	Algo	Accuracy	F1-Score				
Uni gram	brute	84.08	0.289				
Uni - gram	kd-tree	84.347	0.283				
Bi -gram	brute	84.613	0.288				
DI -giaili	kd-tree	84.613	0.288				
tfidf	brute	84.48	0.237				
tilui	kd-tree	84.48	0.237				
Avg Word2Vec	brute	85.107	0.286				
Avg vvoluzvec	kd-tree	85.107	0.286				
tfidf - Word2vec	brute	84.92	0.214				
tiidi - wordzvec	kd-tree	84.92	0.214				

Conclusions

Note: As I have taken only 25k points(due to huge training time) the accuracy will not be the representive of the real accuracy

- 1. Best Accuracy of 85.107% is achieved by Avg Word2Vec Featurization
- 2. The kd-tree and brute implementation of KNN gives relatively similar results
- 3. KNN is a very slow Algorithm compared to others takes alot of time to train
- 4. KNN did not fair in terms of precision and F1-score. Overall KNN was not that good for this dataset