432 Class 3 Slides

github.com/THOMASELOVE/2019-432

2019-01-29

Today

- More with SMART BRFSS 2017
- Analysis of Variance models with and without interaction
- Analysis of Covariance models

Recapping from Last Time

- We pulled in data from the SMART BRFSS (2017) (see the Data and Code - smart_2017 folder for details) from SAS XPT files.
- We cleaned up that data, which took a while, and saved it as an R data set.
- We pulled it back into R with readRDS, and selected 20 variables of interest for the six MMSAs which include Ohio. That gave us 6,277 subjects.
- We explored the data a bit, and used simple imputation to deal with NAs.
- That file (with imputations) is called smart_a_imp now.
- One new thing I did since last time was to save smart_a_imp as an R data set, and put it on our web site under Class 03 and the Data and Code folder.

Getting Where I Got Last Time

```
library(skimr); library(broom); library(janitor)
library(simputation); library(tidyverse)
smart_oh_2017 <- readRDS("data/smart 2017 oh.rds")</pre>
smart a raw <- smart oh 2017 %>%
    select(subject, genhealth, physhealth, menthealth,
           bmi, bmigroup, weight_kg, height_m, exerany,
           numdocs2, flushot, smoke 100, educgroup,
           diagnoses, seatbelt_always, hx_diabetes,
           female, internet30, agegroup, mmsaname)
set.seed(20190124)
```

Getting Where I Got Last Time

```
smart a imp <- smart a raw %>%
    impute pmm(smoke 100 ~ mmsaname) %>%
    impute pmm(exerany ~ mmsaname) %>%
    impute pmm(flushot ~ mmsaname) %>%
    impute pmm(internet30 ~ mmsaname) %>%
    impute cart(numdocs2 ~ mmsaname + flushot) %>%
    impute_cart(genhealth ~ mmsaname + smoke_100) %>%
    impute_cart(educgroup ~ mmsaname) %>%
    impute_cart(agegroup ~ mmsaname) %>%
    impute_cart(seatbelt_always ~ mmsaname) %>%
    impute_pmm(physhealth ~ mmsaname) %>%
    impute_pmm(menthealth ~ mmsaname) %>%
    impute_rlm(diagnoses ~ numdocs2) %>%
    impute_rlm(weight_kg ~ physhealth + exerany) %>%
    impute rlm(height m ~ physhealth + female) %>%
    impute pmm(hx diabetes ~ weight kg + exerany)
```

Recalculating BMI and BMI group after imputation

The New Step (if you want to skip the rest)

```
saveRDS(smart_a_imp, "data/smart_a_imp.rds")
```

Now, we could have started with . . .

```
smart_a_imp <- readRDS("data/smart_a_imp.rds")</pre>
```

and ignored everything except for the package loading.

Onward: Predicting bmi

We'll investigate the prediction of bmi using smart_a_imp.

- The outcome of interest is bmi, which is quantitative.
- Inputs/predictors in the models we build will include:
 - seatbelt_always = 1 if subject always wears seatbelt, else 0
 - hx_diabetes = 1 if the subject has a diabetes diagnosis, else 0
 - ullet exercises, and 0 otherwise
 - genhealth = five-category self-reported overall health
 - menthealth = days (in last 30) where mental health impeded activity
 - ullet diagnoses = diagnoses (out of 10) that apply to the subject

Predicting bmi using seatbelt_always

```
ggplot(smart_a_imp, aes(x = seatbelt_always, y = bmi)) +
    geom_point()
```


Not so helpful.

Faceted Histograms?

```
ggplot(smart_a_imp, aes(x = bmi)) +
    geom_histogram(bins = 20) + theme_bw() +
    facet_wrap(~ seatbelt_always, labeller = "label_both")
```


R Studio Cheat Sheets to the rescue?

- https://www.rstudio.com/resources/cheatsheets/ or
- just google, or
- Help ... Cheatsheets ... Data Visualization with ggplot2

downloads a PDF.

From R Studio Cheat Sheet for ggplot2

discrete x, continuous y f <- ggplot(mpg, aes(class, hwy))

f + geom_col(), x, y, alpha, color, fill, group, linetype, size

f + geom_boxplot(), x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight

f + geom_dotplot(binaxis = "y", stackdir = "center"), x, y, alpha, color, fill, group

f + geom_violin(scale = "area"), x, y, alpha, color, fill, group, linetype, size, weight

Predicting bmi using seatbelt_always

```
ggplot(smart_a_imp, aes(x = seatbelt_always, y = bmi)) +
    geom_violin() +
    geom_boxplot(width = 0.2) +
    coord_flip() + theme_bw()
```


Cleaning Up (revised after class)

```
ggplot(smart_a_imp, aes(x = seatbelt_always, y = bmi)) +
    geom_violin() +
    geom_boxplot(aes(fill = seatbelt_always), width = 0.2) +
    coord_flip() + theme_bw() + guides(fill = FALSE) +
    labs(x = "Does Subject Always Wear Seatbelt?",
        y = "Body-Mass Index",
        title = "Can Seatbelt use predict BMI?",
        subtitle = "SMART BRFSS 2017 from 6 Ohio MMSAs")
```


Numerical Summary of BMI by Seatbelt Status

```
mosaic::favstats(bmi ~ seatbelt_always, data = smart_a_imp)
```

```
seatbelt_always min Q1 median Q3

Yes 12.11097 24.33720 27.60355 31.79628

No 14.81143 24.81081 28.45451 33.80255

max mean sd n missing

75.52133 28.58543 6.227591 5538 0

74.97521 30.22454 8.316329 739 0
```

- How would you want to do this comparison?
- What would be a rational way to predict bmi with seatbelt_always alone, based on this summary?

Building a t test

```
t.test(bmi ~ seatbelt_always,
       data = smart_a_imp, var.equal = TRUE)
    Two Sample t-test
data: bmi by seatbelt always
t = -6.431, df = 6275, p-value = 1.361e-10
alternative hypothesis: true difference in means is not equal
95 percent confidence interval:
 -2.138762 -1.139464
sample estimates:
mean in group Yes mean in group No
         28.58543
                          30.22454
```

Building a t-test Model: model1

```
model1 <- lm(bmi ~ seatbelt_always, data = smart_a_imp)
model1</pre>
```

```
Call:
```

```
lm(formula = bmi ~ seatbelt_always, data = smart_a_imp)
```

Coefficients:

```
(Intercept) seatbelt_alwaysNo 28.585 1.639
```

```
confint(model1, level = 0.90)
```

```
5 % 95 % (Intercept) 28.441559 28.729299 seatbelt_alwaysNo 1.219813 2.058412
```

Summarizing model1 with tidy

```
tidy(model1, conf.int = TRUE, conf.level = 0.90) %>%
    print.data.frame(digits = 2)
```

```
term estimate std.error statistic p.value
1 (Intercept) 28.6 0.087 326.9 0.0e+00
2 seatbelt_alwaysNo 1.6 0.255 6.4 1.4e-10
conf.low conf.high
1 28.4 28.7
2 1.2 2.1
```

Summarizing model1 with glance

```
glance(model1) %>%
    print.data.frame(digits = 2)

r.squared adj.r.squared sigma statistic p.value df logLik
1    0.0065    0.0064    6.5     41 1.4e-10 2 -20663
    AIC BIC deviance df.residual
1    41332    41352    265782    6275
```

Regression Diagnostics for model1

```
par(mfrow=c(1,2))
plot(model1, which = c(1,2))
```


What have we learned from model1?

Based on our sample of 6277 subjects, the model suggests that:

- the ordinary least squares prediction of BMI for people who always wear a seatbelt is 28.59 kg/m², and
- the OLS prediction of BMI for people who don't always wear a seatbelt is $28.585429 + 1.639113 = 30.22 \text{ kg/m}^2$
- \bullet the mean difference between those who don't wear a seatbelt and those who do is 1.64 kg/m²
- a 90% confidence (uncertainty) interval for that mean difference ranges from (1.22, 2.06) kg/m^2

What else have we learned from model1?

- model1 accounts for 0.65% of the variation in bmi, so that knowing the subject's seatbelt status does very little to reduce the size of the prediction errors, as compared to an "intercept-only" model that just predicts the overall mean bmi for all subjects
- despite this, the model is highly "statistically significant" with a p value for seatbelt status that is on the order of 10^{-10} .
- the model makes some very large errors, since the standard deviation of those prediction errors (labeled as sigma, or σ) is 6.5, which is enormous on the scale of bmi...

```
min Q1 median Q3 max mean
12.11097 24.3372 27.64314 31.89453 75.52133 28.7784
sd n missing
6.529016 6277 0
```

mosaic::favstats(~ bmi, data = smart_a_imp)

OK. So model1 isn't good enough.

• What about a two-factor model?

Suppose we decide to predict bmi using both seatbelt_always and also exerany.

• Can we draw a picture?

What will this do?

The resulting plot of faceted histograms

Would boxplots be better?

```
ggplot(smart_a_imp, aes(x = seatbelt_always, y = bmi)) +
    geom_boxplot() + theme_bw() +
    facet_wrap(~ exerany, labeller = "label_both")
```


Why doesn't this work?

```
ggplot(smart_a_imp, aes(x = exerany, y = bmi)) +
    geom_boxplot() + theme_bw() +
    facet_wrap(~ seatbelt_always, labeller = "label_both")
```

Warning: Continuous x aesthetic -- did you forget aes(group=...)?

Make exerany a factor!

```
ggplot(smart_a_imp, aes(x = factor(exerany), y = bmi)) +
    geom_boxplot() + theme_bw() +
    facet_wrap(~ seatbelt_always, labeller = "label_both")
```


Maybe we should just concentrate on the means?

```
summaries1 <- smart_a_imp %>%
    group_by(seatbelt_always, exerany) %>%
    summarize(n = n(), mean = mean(bmi), stdev = sd(bmi))
summaries1
```

We could use favstats from mosaic for more detail if needed.

Plot the Means

```
pd <- position_dodge(0.2)</pre>
ggplot(summaries1, aes(x = factor(exerany), y = mean,
                        col = seatbelt always)) +
  geom errorbar(aes(ymin = mean - stdev,
                    ymax = mean + stdev),
                width = 0.2, position = pd) +
  geom_point(size = 2, position = pd) +
  geom_line(aes(group = seatbelt_always), position = pd) +
  labs(y = "Body-Mass Index",
       x = "Exercise?"
       title = "Observed Means (+/- SD) for BMI")
```

Means Plot (result)

Running the Two-Way ANOVA model

We can run a model to predict a quantitative outcome using two categorical factors, either with or without an interaction between the two factors.

In our case, we can run either:

or

ANOVA "No-Interaction" Model (Main Effects Model)

```
anova(model2_noint)
```

```
Analysis of Variance Table
```

```
Response: bmi

Df Sum Sq Mean Sq F value Pr(>F)

seatbelt_always 1 1752 1751.7 42.216 8.802e-11 ***

exerany 1 5446 5446.2 131.251 < 2.2e-16 ***

Residuals 6274 260336 41.5

---

Signif. codes:
0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Interpreting the Main Effects Model

```
tidy(model2_noint, conf.int = TRUE, conf.level = 0.90) %>%
    print.data.frame(digits = 2)
```

```
term estimate std.error statistic p.value
      (Intercept)
                   30.0
                            0.15
                                   199.4 0.0e+00
 seatbelt_alwaysNo 1.5
                           0.25 5.9 4.1e-09
3
         exerany -2.0
                           0.18 -11.5 4.3e-30
 conf.low conf.high
1
    29.7 30.2
2
    1.1 1.9
3
    -2.3 -1.7
```

ANOVA Model with Interaction

```
anova(model2_int)
```

Analysis of Variance Table

```
Response: bmi
                         Df Sum Sq Mean Sq F value
                          1 1752 1751.7 42.215
seatbelt_always
                          1 5446 5446.2 131.248
exerany
seatbelt_always:exerany
                                35 35.0 0.843
Residuals
                       6273 260301 41.5
                          Pr(>F)
seatbelt_always
                       8.807e-11 ***
                       < 2.2e-16 ***
exerany
seatbelt_always:exerany
                          0.3586
Residuals
```

Signif. codes: github.com/THOMASELOVE/2019-432

Interpreting the Model with Interaction

```
tidy(model2_int, conf.int = TRUE, conf.level = 0.90) %>%
    print.data.frame(digits = 2)
```

```
term estimate std.error statistic
1
             (Intercept) 29.95
                                   0.16
                                          189.89
2
        seatbelt alwaysNo 1.79
                                   0.42
                                           4.30
3
                exerany -1.95
                                   0.19 - 10.36
 seatbelt_alwaysNo:exerany -0.48
                                   0.52
                                          -0.92
 p.value conf.low conf.high
           29.7
1 0.0e+00
                   30.21
2 1.8e-05 1.1 2.48
3 6.1e-25 -2.3 -1.64
4 3.6e-01 -1.3
                   0.38
```

Regression Diagnostics for model2_int

```
par(mfrow=c(1,2))
plot(model2_int, which = c(1,2))
```


Assessing these Two-Factor ANOVA models

Check the interaction first!

- Does the means plot (interaction plot) show a meaningful interaction between the factors?
- Does the interaction term account for a substantial amount of the variation in the outcome?
- Does the interaction term significantly improve the model?

If all three of these are YES, or all three are NO, the choice is obvious.

- If all three are YES, we certainly will use the model including the interaction.
- If all three are NO, then a main-effects model (without interaction) is likely to work out well.

What do we do otherwise? It depends.

In our case . . .

- The means plot showed essentially parallel lines. There's no evidence there of a strong or meaningful interaction.
- The interaction term sum of squares is 35, out of a total sum of squares of 267,534. That's an incredibly small fraction, so there's no sign of substantial interaction.
- The interaction term doesn't significantly improve the model its p value is 0.3586

So, would the main-effect model in this case be a reasonable approach?

Main Effects Model, again

```
tidy(model2_noint, conf.int = TRUE, conf.level = 0.90) %>%
    print.data.frame(digits = 2)
```

```
term estimate std.error statistic p.value
      (Intercept)
                    30.0
                            0.15
                                    199.4 0.0e+00
 seatbelt_alwaysNo 1.5
                            0.25 5.9 4.1e-09
3
          exerany -2.0
                            0.18 -11.5 4.3e-30
 conf.low conf.high
1
    29.7 30.2
2
    1.1 1.9
3
    -2.3 -1.7
```

Regression Diagnostics for model2_noint

```
par(mfrow=c(1,2))
plot(model2_noint, which = c(1,2))
```


Two-Factor Analysis of Variance

- Check interaction first.
 - Is there evidence of substantial interaction in a plot?
 - Is the interaction effect a large part of the model?
 - Is the interaction term statistically significant?
- If interaction is deemed to be meaningful, then "it depends" is the right conclusion, and we cannot easily separate the effect of one factor from another.
- If interaction is not deemed to be meaningful, we might consider fitting the model without the interaction (the "main effects" model) and separately interpreting the impact of each of the factors.

What if we add menthealth to the model?

Analysis of Variance Table

```
Response: bmi

Df Sum Sq Mean Sq F value Pr(>F)

menthealth 1 2007 2007.3 48.583 3.491e-12 ***

seatbelt_always 1 1587 1587.3 38.416 6.081e-10 ***

exerany 1 4750 4750.2 114.966 < 2.2e-16 ***

Residuals 6273 259189 41.3

---

Signif. codes:
0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Comparing Main Effect Models with anova

```
anova(model3_noint, model2_noint)
```

Analysis of Variance Table

```
Model 1: bmi ~ menthealth + seatbelt_always + exerany
Model 2: bmi ~ seatbelt_always + exerany
Res.Df RSS Df Sum of Sq F Pr(>F)
1 6273 259189
2 6274 260336 -1 -1146.9 27.757 1.421e-07 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Other Comparison Strategies

```
glance(model3 noint) %>% print.data.frame(digits = 2)
 r.squared adj.r.squared sigma statistic p.value df logLik
     0.031 0.031 6.4 67 7.7e-43 4 -20584
   AIC BIC deviance df.residual
1 41178 41212 259189 6273
glance(model2_noint) %>% print.data.frame(digits = 2)
```

```
r.squared adj.r.squared sigma statistic p.value df logLik
1 0.027 0.027 6.4 87 7e-38 3 -20598
AIC BIC deviance df.residual
1 41204 41231 260336 6274
```

Regression Diagnostics for model3_noint

```
par(mfrow=c(1,2))
plot(model3_noint, which = c(1,2))
```


What if we consider the interaction again?

Analysis of Variance Table

```
Response: bmi
```

```
Df Sum Sq Mean Sq F value
menthealth
                             2007
                                   2007.3 48.5814
                          1 1587 1587.3 38.4145
seatbelt_always
                          1 4750 4750.2 114.9631
exerany
seatbelt_always:exerany
                               35 34.6 0.8376
Residuals
                       6272 259154
                                     41.3
                          Pr(>F)
menthealth
                       3.493e-12 ***
seatbelt always
                       6.084e-10 ***
```

Comparing Interaction Models with anova

```
anova(model3_int, model2_int, model2_noint)
```

Analysis of Variance Table Model 1: bmi ~ menthealth + seatbelt_always * exerany Model 2: bmi ~ seatbelt_always * exerany Model 3: bmi ~ seatbelt_always + exerany Res.Df RSS Df Sum of Sq F Pr(>F) 1 6272 259154 2 6273 260301 -1 -1146.51 27.7477 1.428e-07 *** 3 6274 260336 -1 -34.98 0.8466 0.3576 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Regression Diagnostics for model3_int

```
par(mfrow=c(1,2))
plot(model3_int, which = c(1,2))
```


Coming up ...

- Using factors with more than two levels as predictors in ANOVA/ANCOVA
- Linear regression using both quantitative and categorical predictors
- Improving on stepwise regression for model selection with "best subsets"
- Improving on cross-validation of linear regression models

Upcoming Deliverables

- Minute Paper after Class 3 is due tomorrow (Wednesday) at 2 PM.
- Homework 1 is due Friday at 2 PM, via Canvas.