Explaining teaching score with age

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences

Refresher: Exploratory data visualization

Regression line

```
# Code to create scatterplot
ggplot(evals, aes(x = age, y = score)) +
  geom_point() +
  labs(x = "age", y = "score",
       title = "Teaching score over age")
# Add a "best-fitting" line
ggplot(evals, aes(x = age, y = score)) +
  geom_point() +
  labs(x = "age", y = "score",
       title = "Teaching score over age") +
  geom_smooth(method = "lm", se = FALSE)
```

Regression line

Refresher: Modeling in general

- Truth: Assumed model is $y = f(ec{x}) + \epsilon$
- Goal: Given y and \vec{x} , fit a model $\hat{f}(\vec{x})$ that approximates $f(\vec{x})$, where $\hat{y}=\hat{f}(\vec{x})$ is the fitted/predicted value for the observed value y

Modeling with basic linear regression

• Truth:

- \circ Assume $f(x)=eta_0+eta_1\cdot x$
- \circ *Observed* value $y=f(x)+\epsilon=eta_0+eta_1\cdot x+\epsilon$

• Fitted:

- \circ Assume $\hat{f}(x) = \hat{eta}_0 + \hat{eta}_1 \cdot x$
- \circ Fitted/predicted value $\hat{y}=\hat{f}\left(x
 ight)=\hat{eta}_{0}+\hat{eta}_{1}\cdot x$

Back to regression line

Equation for fitted blue regression line:

$$\hat{y} = \hat{f}(ec{x}) = \hat{eta}_0 + \hat{eta}_1 \cdot x$$

Teaching score over age

Computing slope and intercept of regression line

Using the formula form $y \sim x$:

```
# Fit regression model using formula of form: y ~ x
model_score_1 <- lm(score ~ age, data = evals)
# Output contents
model_score_1</pre>
```

```
Call:
lm(formula = score ~ age, data = evals)

Coefficients:
(Intercept) age
4.461932 -0.005938
```

Computing slope and intercept of regression line

Using the formula form $\mathbf{y} \, \sim \, \mathbf{x}$, which is akin to $\hat{y} = \hat{f} \left(\vec{x}
ight)$

```
# Fit regression model using formula of form: y ~ x
model_score_1 <- lm(score ~ age, data = evals)

# Output regression table using wrapper function:
get_regression_table(model_score_1)</pre>
```

Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

Predicting teaching score using age

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences

Refresher: Regression line

New instructor prediction

Refresher: Regression table

```
library(ggplot2)
library(dplyr)
library(moderndive)

# Fit regression model using formula of form: y ~ x
model_score_1 <- lm(score ~ age, data = evals)

# Output regression table using wrapper function
get_regression_table(model_score_1)</pre>
```

```
# A tibble: 2 x 7
          estimate std_error statistic p_value lower_ci...
 term
            <dbl>
 <chr>
                     <dbl>
                              <dbl> <dbl> ...
                     0.127
                                       4.21...
1 intercept
           4.46
                              35.2
            -0.006
                     0.003
                              -2.31
                                            -0.011...
2 age
                                     0.021
```

Predicted value

• Predictive regression models in general:

$$\hat{y} = \hat{f}(x) = \hat{eta}_0 + \hat{eta}_1 \cdot x$$

- Our predictive model: $sc\^{o}re = 4.46 0.006 \cdot age$
- ullet Our prediction: $4.46-0.006\cdot 40=4.22$

Prediction error

Prediction error

Residuals as model errors

- Residual = $y \hat{y}$
- ullet Corresponds to ϵ from $y=f(ec{x})+\epsilon$
- ullet For our example instructor: $y-\hat{y}=3.5-4.22=-0.72$
- In linear regression, they are on average 0.

Computing all predicted values

```
# Fit regression model using formula of form: y ~ x
model_score_1 <- lm(score ~ age, data = evals)
# Get information on each point
get_regression_points(model_score_1)</pre>
```

```
A tibble: 463 \times 5
    ID score
            age score_hat residual
 <int> <dbl> <dbl>
                     <dbl>
                            <dbl>
                            0.452
                     4.25
     1 4.7
              36
     2 4.1
              36
                     4.25
                            -0.148
3
     3 3.9
              36
                     4.25
                            -0.348
     4 4.8
                     4.25
              36
                            0.552
     5 4.6
              59
                     4.11
                             0.488
```

"Best fitting" regression line

Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

Explaining teaching score with gender

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences

Exploratory data visualization

```
library(ggplot2)
library(dplyr)
library(moderndive)

ggplot(evals, aes(x = gender, y = score)) +
    geom_boxplot() +
    labs(x = "gender", y = "score")
```

Boxplot of score over gender

Facetted histogram

```
library(ggplot2)
library(dplyr)
library(moderndive)

ggplot(evals, aes(x = score)) +
  geom_histogram(binwidth = 0.25) +
  facet_wrap(~gender) +
  labs(x = "gender", y = "score")
```

Facetted histogram

Fitting a regression model

```
# Fit regression model
model_score_3 <- lm(score ~ gender, data = evals)

# Get regression table
get_regression_table(model_score_3)</pre>
```

Fitting a regression model

```
# Compute group means based on gender
evals %>%
  group_by(gender) %>%
  summarize(avg_score = mean(score))
```

A different categorical explanatory variable: rank

```
evals %>%
  group_by(rank) %>%
  summarize(n = n())
```

Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

Predicting teaching score using gender

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences

Group means as predictions

```
library(ggplot2)
library(dplyr)
library(moderndive)

evals %>%
  group_by(gender) %>%
  summarize(mean_score = mean(score), sd_score = sd(score))
```

Computing all predicted values and residuals

```
# Fit regression model:
model_score_3 <- lm(score ~ gender, data = evals)

# Get information on each point
get_regression_points(model_score_3)</pre>
```

```
# A tibble: 463 x 5
     ID score gender score_hat residual
                      <dbl>
  <int> <dbl> <fct>
                             <dbl>
                             0.607
         4.7 female
                   4.09
         4.1 female
                   4.09
                             0.007
                   4.09
     3
         3.9 female
                             -0.193
         4.8 female
                   4.09
                             0.707
                  4.23
        4.6 male
                             0.366
         4.3 male
                      4.23
                             0.066
```

Histogram of residuals

```
# Fit regression model
model_score_3 <- lm(score ~ gender, data = evals)</pre>
# Get regression points
model_score_3_points <- get_regression_points(model_score_3)</pre>
model_score_3_points
# Plot residuals
ggplot(model_score_3_points, aes(x = residual)) +
  geom_histogram() +
  labs(x = "residuals",
       title = "Residuals from score ~ gender model")
```

Histogram of residuals

Residuals from score ~ gender model

Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

