INFO-6047

Basics of Switching

House Keeping

	INFO-6047 Switching and Routing											
	ISN	11 - Information Security Manage	ment (ISM1-ITY-20189) Detailed Weekly Content	_								
Week	Date of Lecture or Tests, 7:00 – 9:00 PM EST	Lecture/Test	Reading	Lab Time INFO-6047-01 Wednesday 5:00 – 8:00 PM EST INFO-6047-02 Tuesday 5:00 – 8:00 PM EST	Grade							
Week 01	Monday, January 02, 2023		College-Wide Orientation									
Week 02	Monday, January 09, 2023	Introduction	N/A	Lab 01 - Basics of PT	3.0%							
Week 03	Monday, January 16, 2023	Basics of Routing	Chapter 01 & 02 (Introduction to Networking, Network Media Copper)	Lab 02 - Intro to Routing	3.0%							
Week 04	Monday, January 23, 2023	Basics of Switching	Chapter 03 & 04 (Network Media Fiber Network Media Wireless)	Lab 03 - Intro to Switching	3.0%							
Week 05	Monday, January 30, 2023	VLANs	Chapter 05 (Data Encoding & Transmistion)	Lab 04 - VLANs	3.0%							
Week 06	Monday, February 06, 2023	Routing	Chapter 06 (Network OS & Comunications)	Lab 05 - Routing	3.0%							
Week 07	Monday, February 13, 2023	Mid-Term Test		Mid-Term (Test 1)	32.0%							
Study Break	Monday, February 20, 2023		Study Break - No Class This Wee	k								
Week 08	Monday, February 27, 2023	Inter-VLAN Routing	Chapter 10 (TCP/IP Fundamentals)	Lab 06 - Inter VLAN Routing	3.0%							
Week 09	Monday, March 06, 2023	Static Routing	Chapter 11 (Subnetting)	Lab 07 - Static & Default Routs	3.0%							
Week 10	Monday, March 13, 2023	Dynamic Routing - RIP	Chapter 12 (Additional Transmission Modalities)	Lab 08 - RIP Protocol	3.0%							
Week 11	Monday, March 20, 2023	Dynamic Routing - OSPF	Chapter 14 (RA & LD Communications)	Lab 09 - OSPF Protocol	3.0%							
Week 12	Monday, March 27, 2023	Access Control Lists	Chapter 15 (Network Security)	Lab 10 - ACLs	3.0%							
Week 13	Monday, April 03, 2023	DHCP	Chapter 16 Maintaining the Network)	Lab 11 - DHCP	3.0%							
Week 14	Monday, April 10, 2023	NAT	Chapter 17 (Troubleshooting Fundamentals of a Network)	Lab 12 - NAT	3.0%							
Week 15	Monday, April 17, 2023	Final Test		Final Test (Test 2)	32%							

Labs and quizzes will open Monday at 00:01 AM EST and the quiz will close Sunday at 23:59 PM EST. Tuesday Section-02 from 5:00 – 8:00 PM EST and Wednesday Section-01 from 5:00 – 8:00 PM EST

Review - Lecture 02 — Basics of Routing

- OSI Model, L3/Routing
- IPv4 Address space (32 bit)
- IPv6 Address space (128 bit)
- Layer 2 vs Layer 3
- Switches as Routers?
- The word "no"
- Network Topologies
- Physical Layer
- Routers

Encapsulating and De-Encapsulating Packets

PC1 Sends a Packet to PC2

R1 Looks Up Route to Destination

https://www.ciscopress.com/articles/article.asp?p=2756479&seqNum=5

R1 Forwards Packet to R2

https://www.ciscopress.com/articles/article.asp?p=2756479&seqNum=5

R2 Looks Up Route to Destination

R2's Routing Table

Network	Hops	Next-hop-IP	Exit Interface
192.168.1.0/24	1	192.168.3.1	Fa/0/0
192.168.2.0/24	0	Dir. Connect.	Fa/0/0
192.168.3.0/24	0	Dir. Connect.	S0/0/0
192.168.4.0/24	1	192.162.3.2	\$0/0/0

R2 Forwards Packet to R3

R2's Routing Table

Network	Hops	Next-hop-IP	Exit Interface
192.168.1.0/24	1	192.168.3.1	Fa/0/0
192.168.2.0/24	0	Dir. Connect.	Fa/0/0
192.168.3.0/24	0	Dir. Connect.	\$0/0/0
192.168.4.0/24	1	192.162.3.2	S0/0/0

https://www.ciscopress.com/articles/article.asp?p=2756479&seqNum=5

R3 Forwards Packet to PC2

https://www.ciscopress.com/articles/article.asp?p=2756479&seqNum=5

Summary - Basics of switching

- Form Factor
- Ethernet Switches
 - Data Link Layer
 - Broadcast / Unicast
 - MAC Address Table
 - Switch Forwarding Methods
 - Cut-Through
 - Store & Forward
- Network Latency
 - Network Congestion
 - Alleviating Network Congestion
- Switching Layer 2 / 3
- Switch Database Management (SDM)
- Basic commands
- This week's Lab
- This week's quiz

Form Factor (Cisco)

Fixed Platforms

Common Business Considerations When Selecting Switch Equipment

- **Cost** The cost of a switch will depend on the number and speed of the interfaces supported features and expansion capability
- Port Density Network Switches must support the appropriate number of devices on the network
- Power it is now common to power access points, IP phones, and even compact switches using Power over Ethernet (PoE). in addition to PoE considerations, some chassis-based switches support redundant power supplies.
- Reliability The switch should provide continuous access to the network
- Port Speed The speed of the network is of primary concern to the end user
- Frame Buffers The ability of the switch to store frames is important in a network where there may be congested port to server or other areas of the network
- **Scalability** the number of users on a network typically grows over time: therefor, the switch should provide the opportunity for growth.

Form Factor (Cisco) (continued)

Modular Platform

- Enterprise chassis
- The chassis contain one or more management cards
- The chassis contain one or more Power supplies
- The chassis accept line cards that contain the port

Form Factor (Cisco) (continued)

Stackable Platform

- Enterprise switches
- Stackable switches, connected by a special cable, effectively operate as one larger switch
- Newer versions of the switches, include the possibility of stacking the power supplies

- Data Link Layer
 - The basic purposes of data link layer protocols are:
 - Encapsulation, framing
 - access Layer 2
 - to the data channel
 - addressing MAC addresses
 - bridges, switches
 - many IEEE specifications written at this layer (802.3, 802.5..)
 - moving frame data from device to device
 - Forward Ethernet frames based on the destination MAC address of the frames
 - Builds a table that is used to determine how to forward traffic through the switch
 - Table called a MAC address, forwarding or Content Addressable Memory (CAM) table
 - The port and associated MAC address is stored in the forwarding table
 - The information in the MAC address table is used to send frames

Broadcast

Preamble	Destination MAC	Source MAC	Length	Encapsulated Data	End of Frame
	FF	0D			

MAC Table

F0/1	F0/2	F0/3	F0/4	F0/5	F0/6	F0/7	F0/8	F0/9	F0/10	F0/11	F0/12
							0D				

Unicast step 1

Frame

Preamble	Destination MAC	Source MAC	Length	Encapsulated Data	End of Frame
	0B	0D			

MAC Table

F0/1	F0/2	F0/3	F0/4	F0/5	F0/6	F0/7	F0/8	F0/9	F0/10	F0/11	F0/12
	0A		0B		0C		0D				

• Unicast step 2

Frame

Preamble	Destination MAC	Source MAC	Length	Encapsulated Data	End of Frame
	ОВ	0D			

MAC Table

F0/1	F0/2	F0/3	F0/4	F0/5	F0/6	F0/7	F0/8	F0/9	F0/10	F0/11	F0/12
	0A		0B		0C		0D				

- MAC Address Table/Filtering database
 - database of MAC addresses and ports
 - forwarding table
 - Cisco calls CAM
 - Back in the Thick Net, Thin Net and Hub days also known as a Bridge or a Repeater

- Switch Forwarding Methods
 - Cut-Through
 - First switches were cut-through
 - Used on older switches
 - Two variants:
 - Fast Forward
 - Fragment Free
 - A cut-through switch forwards before it is entirely received, at a minimum the destination address of the frame must be read before the frame can be forwarded
 - Cut Through allows the switch to start forwarding in about 10 microseconds (very Fast)
 - No FCS check
 - No Automatic Buffering
 - Read start of frame as it comes in, as far as end of byte 64
 - Look up port and start forwarding while remainder of frame is still coming in
 - Discards collision fragments (too short) but other bad frames are forwarded
 - Entry and exit must be same bandwidth
 - Lowest latency

Frames can begin to be forwarded as soon as the Destination MAC is received.

- Switch Forwarding Methods (Continued)
 - Store & Forward
 - Used when switch has interfaces which support different speeds
 - Cisco switches are now all store and forward
 - Required for support of combination of 10/100/1000 interfaces
 - A store-and-forward switch receives the entire fran switch looks up the destination address which dete forwarded out the correct port
 - Store and Forwarding allows the switch to:
 - Check for errors (via FCS check)
 - Perform Automatic Buffering
 - ~Slower forwarding
 - Used today by most every switch as a default

Store-and-forward switching entails receipt of the entire frame (up to about 9,200 bytes for jumbo frames) before a forwarding decision is made.

Switch Forwarding Methods (Continued)

	Store-and-Forward	Cut-Through
Buffers frames until the full frame has been received by the switch.	0	
 Checks the frame for errors before releasing it out of its switch ports if the full frame was not received, the switch discards it. 		
No error checking on frames is performed by the switch before releasing the frame out of its ports.		Ø
A great method to use to conserve bandwidth on your network.	0	
 The destination Network Interface Card (NIC) discards any incomplete frames using this frame forwarding method. 		0
 The faster switching method, but may produce more errors in data integrity therefore, more bandwidth may be consumed. 		Ø

Network Latency

- The time a frame or packet takes to travel from the source to the destination
 - A typist will stop using the network tools somewhere around 250ms of latency

Network Latency

Each device in the path introduces latency.

Network Latency (continued)

Network Congestion

- PCs more powerful -send and process more data at higher rates
- Increasing use of remote resources
- More broadcasts, more congestion
- Applications make more use of advanced graphics, video etc.
- Splitting collision and broadcast domains helps

Alleviating Network Congestion

- Switches help alleviating network congestion by:
 - facilitating the segmentation of a LAN into separate collision domains
 - providing full-duplex communication between devices
 - taking advantage of their high port density
 - buffering large frames
 - employing high speed ports
 - taking advantage of their fast-internal switching process
 - having a low per-port cost

Switching - Layer 2 / 3

- Traditional Ethernet switches
 - work at layer 2
 - use MAC addresses
- Layer 3 switches
 - can carry out the same functions as layer 2 switches
 - can also use layer 3 IP addresses to route between networks

Switch Database Management (SDM)

- Many switches do NOT know what IPv6 is out of the box
- They will pass IPv6 packet with out hinderance

- BUT to add an IPv6 address to a VLAN or a route entry we need to use the SDM command to enable IPv6
- To start using IPv6 on a Cisco Layer 3 Switch, you need to start by reconfiguring the switches memory with the SDM command
- The reload command is needed to restart the operating system and redistribute the memory
- There are many argument for the SDM command BUT for us this is what we need to do "sdm prefer dual-ipv4-and-ipv6 default" to get IPv4 and IPv6 to work on a switch.

Of course, this will not work on a L2 device

In "enable" mode use the show command to see the state of the "SDM"

SW-1# show sdm prefer

Now we need to actually tell the switch that we will be using IPv4 and IPv6 addressing

SW-1# conf t

SW-1(config)# sdm prefer?

This will give you a list of possible SDM configurations, the one you want is:

dual-ipv4-and-ipv6 default

once you see the list of possible options the prompt at the bottom of the screen should be

SW-1(config)# sdm prefer dual-ipv4-and-ipv6 default"

Press enter and follow the prompts which should have you doing:

SW-1(config)# exit

SW-1# reload

Basic Commands

The prompt should look like the following:

```
switch>
```

To enter **Privileged** (enable) mode type

```
switch> enable switch#
```

Note: the prompt change

To leave enable mode type

```
switch# exit switch>
```


Hostname

Must be set from Global Configuration Mode
 You must first be in Privileged (enable) mode
 To enter Global Config mode type
 switch# conf t (config terminal)
 switch(config)# hostname < name>

```
Press RETURN to get started!

Switch> enable
Switch# config term
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# hostname G2010

G2010(config)#
```

Note: the prompt change

- Login Passwords
 - Cisco stores console enable and telnet passwords in plain text in configuration file
 - service password-encryption command used to encrypt all stored passwords
 - Code 7 indicates service password encryption is being used
 - It's not great encryption, BUT it keeps the noisy lookyloos from looking over your shoulder and seeing the passwords
 - There are may sites on the internet where you can feed in a code 7 password, and it will decode it for you.

```
Switch(config)#show running
-----deleted output-----
line con 0
password cisco
login
line vtv 0 4
password cisco
login
line vtv 5 15
password cisco
login
Switch(config)#service password-encryption
Switch(config)#show running
-----deleted output------
line con 0
password 7 0822455D0A16
login
line vtv 0 4
password 7 0822455D0A16
login
line vtv 5 15
password 7 0822455D0A16
login
```


- Working from the privileged mode (enable)
 - To configure the switch you must be in configuration mode

```
switch# config t (t for terminal) full command is configure terminal
switch(config)# interface vlan 1
switch(config-if)# ip address 10.10.10.10 255.255.255.0
switch(config-if)# exit
switch(config)# hostname Toronto
Toronto(config)# exit
Toronto# exit
Toronto>
```


- Commands to verify your configuration
 - Show commands
 - show running-config
 - show ip interface brief ← interfaces used should be "up" and "up"
 - show interface (fa 0/1)
 - show vlan

 - show version

 - show interface status
- show cdp neighbors ← one of my favorite command to see if cable are plugged in correctly
- show post ← Not available in Packet Tracer

Interface Range

```
Switch(config)# interface range fa0/1 - 20
Switch(config-if-range)#
```

- A useful command if you want to put the same configuration on several interfaces
 - Place in VLAN
 - Set port security
 - Trunking

- Save your Configuration
 - Your configuration should be saved to NVRam
 - copy running-config startup-config or
 - write for short or shorter yet wr
 - This will save your configuration to a text file called config.text in NVRAM (None Volatile RAM (Random Access Memory))
 - Can be copied from the CLI and saved as a text file
 - From the command line you can save a text file to a TFTP or FTP server

LAB

This weeks quiz

- Reminder
 - This week's quiz questions are from this week's lecture, lab, and chapters 1 through 4 of the reading material!

QUESTIONS

