Serie

Definizione: la somma di n elementi di una successione si indica con s_n . La somma di tutti gli elementi della successione è invece S.

Notazione

•
$$S = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=0}^n a_k = \sum_{k=0}^\infty a_k$$

Numeri triangolari

• $T_n = \sum_{k=0}^n k = \frac{n(n+1)}{2}$ è la somma dei primi n-numeri, o alternativamente l'n-esimo numero triangolare

Carattere di una serie

Casi

- Se S è un numero finito, si dice che S è una serie convergente
- Se S tende a + ∞ , si dice che S è una serie divergente positivamente

- Se S tende a $-\infty$, si dice che S è una serie divergente negativamente
- Se s_n non esiste, si dice che S è una serie indeterminata

Calcolo

- Deve valere $\lim_{n\to\infty} a_n = 0$
- Se conosciamo una formula per $s_n = f(n)$ possiamo calcolare $S = \lim_{n \to \infty} s_n = \lim_{n \to \infty} f(n)$

Proprietà e criteri di convergenza

Proprietà di base

• Se
$$S = \sum_{n=0}^{\infty} a_n$$
 converge, allora anche $\sum_{n=0}^{\infty} c \cdot a_n$ converge

• Se
$$S_1 = \sum_{n=0}^{\infty} a_n$$
e $S_2 = \sum_{n=0}^{\infty} b_n$ convergono, allora anche
$$\sum_{n=0}^{\infty} (a_n + b_n)$$
 converge

Confronti

- Date due successioni $a_n \le b_n$ i cui termini siano tutti positivi:
 - o Se $s_b = \sum b_n$ converge, allora anche $s_a = \sum a_n$ converge
 - o Se $s_a^{} = \sum a_n^{}$ non converge, allora anche $s_b^{} = \sum b_n^{}$ non converge
- Date due successioni a_n , b_n i cui termini siano tutti positivi
 - o Se $\frac{a_n}{b_n} \neq 0$ è finito, allora entrambe le serie hanno stesso carattere
 - o Se $\frac{a_n}{b_n}=0$ e $\sum b_n$ converge allora anche $\sum a_n$ converge
 - o Se $\frac{a_n}{b_n}$ =+ ∞ e $\sum b_n$ diverge allora anche $\sum a_n$ diverge

Moltiplicare per una potenza

• Sia a_n una successione, prendiamo $L = \lim_{n \to \infty} n^p a_n$ allora:

o
$$L \in R \setminus \{0\} \land p > 1 \Longrightarrow \sum a_n$$
 converge

o
$$L \in R \setminus \{0\} \land p \le 1 \Longrightarrow \sum a_n \text{ diverge}$$

o
$$L = 0 \land p > 1 \Longrightarrow \sum a_n$$
 converge

o
$$L = 0 \land p \le 1$$
 non implica niente

o
$$L = + \infty \land p \le 1 \Longrightarrow \sum a_n$$
 diverge

Criterio della radice

- Sia a_n una successione, prendiamo $L = \lim_{n \to \infty} \sqrt[n]{a_n}$, allora:
 - o Se L < 1 allora $\sum a_n$ converge
 - o Se L > 1 allora $\sum a_n$ diverge
 - o L=1 non implica niente

Criterio del rapporto

- Sia a_n una successione, prendiamo $\lim_{n \to \infty} L = \frac{a_{n+1}}{a_n}$, allora:
 - o Se L < 1 allora $\sum a_n$ converge

- o Se L > 1 allora $\sum a_n$ diverge
- o L = 1 non implica niente

Moduli

• Sia a_n una successione i cui termini hanno segno alternato, se $\left|a_{n+1}\right| \leq \left|a_n\right|$ e $a_n=0$ allora $\sum a_n$ converge

Serie notevoli

Serie armonica

- Sia $\{a_n\} = \left\{\frac{1}{(n+1)^p}\right\}$, allora:
 - o Se $p \leq 1$ allora $\sum a_n$ diverge
 - o Se p > 1 allora $\sum a_n$ converge

Serie geometrica

- Sia $\{a_n\} = \{p^n\}$, allora:
 - o Se $|p| \le 1$ allora $\sum a_n$ converge
 - o Se p>1 allora $\sum a_n$ diverge
 - o Se p < -1 allora $\sum a_n$ è indeterminata