

FIGURE 1

ACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGA
CCCACCGCGTCCGGGCCGGAGCAGCACGGCGCAGGACCTGGAGCTCCGGCTCGTCTTCCCG
CAGCGCTACCCGCCATCGCCTGCCGCCGGCCGCGCTGGGGCTCTGCCGCTTGCTG
CTGCTGCCGCCGCCGGAGGCCAAGAACGCGACGCCCTGCCACCAGGTGCCGGGGCT
GGTGGACAAGTTAACCAAGGGATGGTGGACACCGCAAAGAACAACTTGGCGGCCGGAAACA
CGGCTTGGGAGGAAAAGACGCTGTCCAAGTACGAGTCCAGCGAGATTGCCCTGCTGGAGATC
CTGGAGGGCTGTGCAGAGCAGCGACTTCGAATGCAATCAGATGCTAGAGGCGCAGGAGGA
GCACCTGGAGGCCTGGCTGCAGCTGAAGAGCGAATATCCTGACTTATCGAGTGGTTT
GTGTGAAGACACTGAAAGTGTGCTGCTCTCCAGGAACCTACGGTCCGACTGTCTGCATGC
CAGGGCGGATCCCAGAGGCCCTGCAGCGGAATGCCACTGCAGCGAGATGGAGCAGACA
GGGCGACGGGTCTGCCGTGCCACATGGGTACCAAGGGCCGCTGTGCACTGACTGCATGG
ACGGCTACTTCAGCTCGCTCCGAAACGAGACCCACAGCATCTGCACAGCCTGTGACGAGTCC
TGCAAGACGTGCTCGGCCTGACCAACAGAGACTGCAGCGAGTGTGAAGTGGCTGGGTGCT
GGACGAGGGCGCCTGTGGATGTGGACGAGTGTGCAGGCCGAGCCGCCTCCCTGCAGCGCTG
CGCAGTTCTGTAAGAACGCCAACGGCTCCTACAGTGCAGAGTGTGACTCCAGCTGTG
GGCTGCACAGGGGAAGGCCAGGAAACTGTAAAGAGTGTATCTCTGGCTACGCAGGGAGCA
CGGACAGTGTGCAGATGTGGACGAGTGTCACTAGCAGAAAAAACCTGTGTGAGGAAAAACG
AAAAGTGCATAACTCCAGGGAGCTACGTCTGTGTGCTACGGCTGAAGAACAG
GAAGATGCCGTGTGCCGCCGGCAGAGGCTGAAGCCACAGAAGGAGAAAGCCGACACAGCT
GCCCTCCCGGAAGACCTGTAATGTGCCGACTTACCCCTAAATTATTAGAAGGATGTCC
CGTGGAAAATGTGCCCTGAGGATGCCGTCTGCAGTGGACAGCGGGGGAGAGGCTGC
CTGCTCTCTAACGGTTGATTCTCATTGTCCTTAAACAGCTGCATTCTGGTTGTTCTTA
AACAGACTTGTATTTGATACTGAGTTCTTGTAAATAAAATTGACCATTGTAGGTAATCAGG
AGGAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAC
TTGGCCGCCATGGCCAATTGTTATTGCAGCTTATAATGGTTACAAATAAGCAATAGCA
TCACAAATTTCACAAATAAGCATTTCAGCTAGTTGTGGTTGTC
ATCAATGTATCTTATCATGTCGGATCGGAATTAAATTGCCGCAGCACCATGGCTGAAAT
AACCTCTGAAAGAGGAACCTGGTTAGGTACCTCTGAGGCGGAAAGAAC
AGCTGTGGAATG
TGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCAGCAGGCAGAAGTATGCAAGCATGC
ATCTCAATTAGTCAGCAACCCAGTTT

FIGURE 2

><subunit 1 of 1, 353 aa, 0 stop

><MW: 38192, pI: 4.53, NX(S/T) : 2

MRLPRAALGLPLLLLLPPAPEAAKKPTPCHRCGLVDKFNQGMVDTAKKNFGGGNTAEEKTLSKYESSEIRL
LEILEGLCESSDFECNQMLEAQEEHLEAWWLQLKSEYPDLFEWFCVKTLKVCCSPGTYGPDCLACQGGSQRPCSG
NGHCSDGSRQGDGSCRHMGYQGPLCTDCMDGYFSSLRNEHTSICTACDESCKTCSGLTNRDCGECEVGWLDE
GACVDVDECAAEPPPCSAAQFCKNANGSYTCEECDSSCVGCTGEGPGNCKECISGYAREHGQCADVDEC SLA EKT
CVRKNENCYNTPGSYVCVCPDGFEETEDACVPPAEEATEGESPTQLPSREDL

Signal peptide:

amino acids 1-24

N-glycosylation sites.

amino acids 190-194 and 251-255

Glycosaminoglycan attachment sites.

amino acids 149-153 and 155-159

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 26-30

Casein kinase II phosphorylation sites.

amino acids 58-62, 66-70, 86-90, 197-201, 210-214, 255-259, 295-299, 339-343
and 349-353

Tyrosine kinase phosphorylation site.

amino acids 303-310

N-myristoylation sites.

amino acids 44-50, 54-60, 55-61, 81-87, 150-156, 158-164, 164-170, 252-258 and
313-319

Aspartic acid and asparagine hydroxylation site.

amino acids 308-320

EGF-like domain cysteine pattern signature.

amino acids 166-178

Leucine zipper pattern.

amino acids 94-116

FIGURE 3

CAGGTCCAAC TG CAC CT CG GT CT AT CG ATT GA ATT CCC CG GG AT CCT CT AG AG AT CC CTC
GACCTCGACCCACCGCGTCCGCCAGGCCGGAGGCAGCGGCCAGCGTCTAAACGGGAACA
GCCCTGGCTGAGGGAGCTGCAGCGCAGCAGAGTATCTGACGGCGCCAGGTTGCGTAGGTGCG
GCACGAGGAGTTTCCCGCAGCGAGGAGGTCTGAGCAGCAGCATGGCCGGAGGAGCGCCTTC
CCTGCCGCCGCTCTGGCTCTGGAGCATCCTCTGTGCGCTGGCACTGCAGGGCGAGGC
CGGGCCGCCGAGGAGGAGACCTGTACCTATGGATCGATGCTCACCAAGGCAAGAGTACTCA
TAGGATTGAAGAAGATATCCTGATTGTTAGAGGGAAAATGGCACCTTTACACATGAT
TTCAGAAAAGCGAACAGAGAATGCCAGCTATTCTGTCAATATCCATTCCATGAATTTAC
CTGGCAAGCTGCAGGGCAGGCAGAATACTCTATGAATTCTCTGCGCTCCCTGGATA
AAGGCATCATGGCAGATCCAACCGTCAATGTCCCTCTGCTGGGAACAGTGCGCTCACAGGCA
TCAGTTGTTCAAGTTGGTTCCATGTCTTGGAAAACAGGATGGGTGGCAGCATTGAAGT
GGATGTGATTGTTATGAATTCTGAAGGCAACACCATTCTCAAACACCTCAAAATGCTATCT
TCTTAAACATGTCAACAAGCTGAGTGCCCAGCGGGTGGCAAATGGAGGCTTTGTAAT
GAAAGACGCATCTCGAGTGTCTGATGGGTTCCACGGACCTCACTGTGAGAAAGCCCTTG
TACCCACGATGTATGAATGGTGGACTTGTGACTCCTGGTTCTGCATCTGCCACCTG
GATTCTATGGAGTGAACTGTGACAAAGCAAACCTGCTCAACCACCTGCTTAATGGAGGGACC
TGTTCCTACCCGGAAAATGTATTGCCCTCCAGGACTAGAGGGAGAGCAGTGTGAAATCAG
CAAATGCCACAACCCGTGCAAATGGAGGTAATGCATTGGTAAAAGCAAATGTAAGTGT
CCAAAGGTTACCAGGGAGACCTCTGTCAAAGCCTGCGAGCCTGGCTGTGGTCACAT
GGAACCTGCCATGAACCCAAACAAATGCCAATGTCAAGAAGGTTGGCATGGAAGACACTGCAA
TAAAAGGTACGAAGCCAGCCTCATACATGCCCTGAGGCCAGCAGCGCCAGCTCAGGAGC
ACACGCCCTCACTAAAAAGGCCGAGGAGCGGGGGATCCACCTGAATCCAATTACATCTGG
TGAACTCCGACATCTGAAACGTTTAAGTTACACCAAGTTACAGCCTTGTAAACCTTCA
TGTGTTGAATGTTCAAATAATGTTCACTACACTTAAGAATACTGGCCTGAATTATTAGCT
TCATTATAAAATCACTGAGCTGATATTACTCTTCTTTAAGTTCTAAGTACGTCTGTAG
CATGATGGTATAGATTTCTGTTCACTGCTTGGCAGATTTATATTGTCAATTGA
TCAGGTTAAAATTTCACTGAGCTGAGGAGATTTCAAAATTACAATGCATTATGGT
GTCTGGGGCAGGGAACATCAGAAAGGTTAAATTGGCAAAATGCGTAAGTCACAAGAAT
TTGGATGGTCAGTTAATGTTGAAGTTACAGCATTCAAGATTTATTGTCAAGATATTAGAT
GTTGTTACATTTAAAATTGCTTTAATTAAACTCTCAATAACAAATATTGGCACC
TTACCATTATTCCAGAGATTCACTGAGGTTAAATTACACTGTGGTAGTGGCATT
AAACAATATAATATTCTAAACACAATGAAATAGGAAATATAATGTATGAACCTTTGCAT
TGGCTTGAAGCAATATAATATTGTAAACAAAACACAGCTCTACCTAATAACATT
ACTGTTGTATGTATAAAATAAGGTGCTGCTTTAGTTTTGGAAAAAAA
AAAAAAAAAAAAAAAGGGCGGCCGCACTCTAGAGTCGACCTGCAGAAGCTTGGC
CGCCATGGCCCAACTGTTATTGCAGCTTATAATG

FIGURE 4

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33094
><subunit 1 of 1, 379 aa, 0 stop
><MW: 41528, pI: 7.97, NX(S/T): 2
MARRSAFPAAALWLWSILLCLLALRAEAGPPQEESLYLWIDAHQARVLIGFEEDILIVSEGK
MAPFTHDFRKAQQRMPAIPVNIHSMNFTWQAAGQAEYFYEFLSLRSLDKGIMADPTVNVPPLL
GTVPHKASVVQVGFPCLGKQDGVAAFEVDVIVMNSEGNTILQTPQNAIFFKTCQQAECPGGC
RNGGFCNERRICECPDGFHGPCEKALCTPRCMNGLCVTPGFCICPPGFYGVNCDKANCST
TCFNGGTCFYPGKICPPGLEGEQCEISKCPQPCRNGGKIGKSCKCSKGYQGDLCSPVVC
EPGCGAHGTCHEPNKCQCQEGWHGRHCNKRYEASLIHALRPAGAQLRQHTPSLKKAERRDP
PESNYIW
```

SEARCHED BY PROTEIN PREDICTION

Signal peptide:

amino acids 1-28

N-glycosylation site.

amino acids 88-92, 245-249

Casein kinase II phosphorylation site.

amino acids 319-323

Tyrosine kinase phosphorylation site.

amino acids 370-378

N-myristoylation sites.

amino acids 184-190, 185-191, 189-195, 315-321

ATP/GTP-binding site motif A (P-loop).

amino acids 285-293

EGF-like domain cysteine pattern signature.

amino acids 198-210, 230-242, 262-274, 294-306, 326-338

FIGURE 5

CGGACGGCGTGGCGTCCGGCGGTGCAGAGCCAGGAGGCCAGGAGGCCAGGAGGCCACCATGTGGCAGTTCCTGGGGCTAC
TGCTGTTGCTGCCGCTGGCTGGCCACTTGGCTCTGGGCTGGGCCAGCAGGGCTGCTGGCGCCGG
GAGCTAGCACCGGGTCTGCACCTGCAGGGCATCCGGACGCCAGGGCAGGCTACTGCCAGGA
GCAGGGACCTGTGCTGCCGCGGCCGTGCCAGCAGACTGTGCCCTGCCACTCTGGGCGCCATCT
GTTACTGTGACCTCTCTGCAACCGCACGGTCTCCGACTGCTGCCCTGACTTCTGGGACTTC
TGCCTCGGCGTGCCACCCCCCTTTCCCCGATCCAAGGATGTATGCATGGAGGTCGTATCTA
TCCAGTCTTGGAACGTACTGGACAACGTGAACCGTGCACCTGCCAGGAGAACAGGCAGT
GGCATGGTGGATCCAGACATGATCAAAGCCATCAACCAGGGCAACTATGGCTGGCAGGCTGG
GAACCACAGCGCCTCTGGGGCATGACCCCTGGATGAGGGCATTGCTACCGCTGGGACCA
TCCGCCATCTCCTCGGTATGAACATGCATGAAATTATAACAGTGCTGAACCCAGGGGAG
GTGCTTCCCACAGCCTCGAGGCCTCTGAGAAAGTGGCCAACCTGATTGACGCCCTTTGA
CCAAGGCAACTGTGCAAGGCTCTGGGCTTCTCCACAGCAGCTGTCATCGATCGTGTCT
CAATCCATTCTCTGGGACACATGACGCCCTGTCCGTGCCAGAACCTGCTGTCTTGAC
ACCCACCAGCAGCAGGGCTGCCCGGTGGCGTCTGATGGTGCCTGGTGGTTCTGCGTCG
CCGAGGGGTGGTGTGACCACTGCTACCCCTCTCGGGCGTGAAACGAGACGAGGCTGGCC
CTGCGCCCCCTGTATGATGACAGCCGAGCCATGGGTGGGGCAAGCGCCAGGCCACTGCC
CACTGCCCAACAGCTATGTTAATAACAATGACATCTACCAAGGTCACTCCTGTCTACCGCCT
CGGCTCCAACGACAAGGAGATCATGAAGGAGCTGATGGAGAAATGGCCCTGTCCAAGCCCTCA
TGGAGGTGCATGAGGACTTCTCCTATAAAGGGAGGCATCTACAGCCACAGCCAGTGAGC
CTTGGGAGGCCAGAGAGATAACGCCGATGGACCCACTCAGTCAAGATCACAGGATGGGG
AGAGGAGACGCTGCCAGATGGAAGGACGCTAAATACTGGACTGCCAACTCCTGGGGCC
CAGCCTGGGCGAGAGGGCCACTTCCGATCGCGCCGTCATGAGTGCACATCGAG
AGCTTGTGCTGGCGTCTGGGCGCTGGGCGTGGGATGGAGGACATGGGTGATCACTGAGGCTG
CGGGCACACGCCGGGTCCGGCCTGGGATCCAGGCTAAGGGCCGGGAAGAGGCCCAATG
GGCGGTGACCCAGCCTGCCGACAGAGCCGGCGCAGGCCAGGGCGCTAAT
CCCGCGCGGGTCTCGCTGACGCAGGCCCTGGGAGCCGGCAGGCAGACTGGCG
GAGCCCCCAGACCTCCAGTGGGACGGGGCAGGGCTGGCTGGGAAGAGCACAGCTGCAG
ATCCCAGGCCTCTGGGCCCAACTCAAGACTACCAAAGCCAGGACACCTCAAGTCTCCAGC
CCAATACCCACCCCAATCCGTATTCTTTTTTTTAGACAGGGTCTTGCTCCG
TTGCCCAAGGTGGAGTGCAGTGGCCATCAGGGCTACTGTAACCTCCGACTCCTGGGTTCA
AGTACCCAGCCCTCCACCTCAGCCTCTCAAGTAGCTGGACTACAGGTGCACCACACCTGGC
TAATTTGTATTTGTAAAGAGGGGGTCTCACTGTGTTGCCAGGCTGGTTCGAACT
CCTGGGCTCAAGCGGTCCACCTGCCTCCGCTCCAAAGTGTGGATTGCAGGCATGAGCC
ACTGCACCCAGCCCTGTATTCTTATTTCAGATATTATTTCTTCACTGTTTAAAAA
TAAAACCAAAAGTATTGATAAAAAAAAAAA

FIGURE 6

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33223
><subunit 1 of 1, 164 aa, 1 stop
><MW: 18359, pI: 7.45, NX(S/T): 1
MWRCPLLLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAGGRYCQEQLCCRGRADDC
ALPYLGAICYCDLFCNRTVSDCCPDFWDFCLGVPPPFPIQGCMHGGRIYPVLGYWDNCNR
CTCQENRQWHGGSRHDQSHQPGQLWLAGWEQRLLGHDPG
```

N-glycosylation site.

amino acids 78-82, 161-165

Casein kinase II phosphorylation site.

amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300,
411-415

N-myristoylation site.

amino acids 21-27, 39-45, 44-50, 104-110, 160-164, 224-230,
269-275, 378-384, 442-448

Amidation site.

amino acids 26-30, 318-322

Eukaryotic thiol (cysteine) proteases histidine active site.

amino acids 398-409

FIGURE 7

AGGCTCCTGGCCTTTCCACAGCAAGCTNTGCNATCCGATTGTTGTCTCAAATCCA
ATTCTCTTGGGACACATNACGCCTGTCCTTNGCCCCAGAACCTGCTGTCTTGACACCCAC
CAGCAGCAGGGCTGCCCGNTGGCGTCTCGATGGTGCCTGGTGGTTCTGCGTCGCCGAGG
GNTGGTGTCTGACCACTGCTACCCCTCTCGGGCCGTGAACGAGACGAGGCTGGCCCTGCGC
CCCCCTGTATGATGCACAGCCGAGCCATGGTCGGGGCAAGGCCAGGCCACTGCCACTGC
CCCAACAGCTATGTTAATAACAATGACATCTACCAAGGTCACTCCTGTCTACCGCCTCGGCTC
CAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCATGGAGG
TGCATGAGGACTTCTCCTATACAAGGGAGGCATCTACAGCCACAGCCAGTGAGCCTGGG
AGGCCAGAGAGATAACGCCGGCATGGGACCCACTCAG

FIGURE 8

GCTGCTTGCCTGTTGATGGCAGGCCTGGCCCTGCAGCCAGGCAGTGCCTGCTGTGCTACT
CCTGCAAAGCCCAGGTGAGCAACGAGGACTGCCTGCAGGTGGAGAACTGCACCCAGCTGGGG
GAGCAGTGCTGGACCGCGCATCCGCGCAGTGGCCTCCTGACCGTCATCAGCAAAGGCTG
CAGCTTGAACTCGTGGATGACTCACAGGACTACTACGTGGCAAGAAGAACATCACGTGCT
GTGACACCGACTTGTGCAACGCCAGCGGGCCATGCCCTGCAGCCGGCTGCCGCATCCTT
GCGCTGCTCCCTGCACTCGGCCTGCTGCTCTGGGGACCCGGCCAGCTATAGGCTCTGGGGGG
CCCCGCTGCAGCCCACACTGGGTGTGGTCCCCAGGCCTCTGTGCCACTCCTCACAGACCTG
GCCCAGGGAGCCTGCTGGTTCCTGAGGCACATCCTAACGCAAGTCTGACCATGTATGT
CTGCACCCCTGTCCCCACCCTGACCCTCCATGCCCTCTCCAGGACTCCCACCCGGCAGA
TCAGCTCTAGTACACAGATCCGCCTGCAGATGCCCTCCAACCCTCTCTGCTGCTGTTTC
CATGCCCAGGCCAGCATTCTCCACCCTTAACCCTGTGCTCAGGCACCTCTTCCCCAGGAAGCCTT
CCCTGCCACCCTATCTATGACTTGAGCCAGGTCTGGTCCGTGGTGTCCCCCGCACCCAGCA
GGGGACAGGCACTCAGGAGGGCCCAGTAAAGGCTGAGATGAAGTGGACTGAGTAGAACTGG
GGACAAGAGTCGACGTGAGTCCTGGAGTCTCCAGAGATGGGCCTGGAGGCCTGGAGGAA
GGGGCCAGGCCTCACATTCGTGGGCTCCCTGAATGGCAGCCTGAGCACAGCGTAGGCCCT
AATAAACACCTGGATAAGCCAAAAAA

FIGURE 9

MTHRTTWARRTSRAVTPTCATPAGPMPCSRLPPSLRCSLHSACCSGDPASYRLWGAPLQPT
LGVVPQASVPLLTDLAQWEPVLVPEAHPNASLTMYVCTPVPHDPPMALSRTPTRQISSLDT
DPPADGPSNPLCCCFFHGPAGFSTLNPVLRHLFPQEAFPAHPIYDLSQVWSVVSPAPSRCQALRRAQ

Signal peptide:

amino acids 1-47

N-glycosylation site.

amino acids 31-35, 74-78, 84-88

Casein kinase II phosphorylation site.

amino acids 22-26, 76-80

N-myristoylation site.

amino acids 56-60

Amidation site.

amino acids 70-74

FIGURE 10

CCCCACCGCGTCCGAACCTCTCCAGCGATGGGAGCCGCCCTGCTGCCAACCTCACTCTGT
GCTTACAGCTGCTGATTCTCTGCTGTCAAACACTCAGTACGTGAGGGACCAGGGCGCCATGACC
GACCAGCTGAGCAGGCCAGATCCCGAGTACCAACTCTACAGCAGGACCAGTGGCAAGCA
CGTGCAGGTACCGGGCGTCGATCTCCGCCACCGCCGAGGACGGCAACAAGTTGCCAAGC
TCATAGTGGAGACGGACACGTTGGCAGCCGGTTCGCATCAAAGGGCTGAGAGTGAGAAG
TACATCTGTATGAACAAGAGGGCAAGCTCATCGGAAGCCCAGCGGGAAAGAGCAAAGACTG
CGTGTTCACGGAGATCGTGCTGGAGAACAACTATAACGGCCTTCCAGAACGCCGGCACGAGG
GCTGGTTCATGGCCTTCACGCCGGCAGGGCGGCCAGGCTCCGCAGCGCCAGAAC
CAGCGCGAGGCCCACTTCATCAAGCGCCTCTACCAAGGCCAGCTGCCCTCCCCAACACGC
CGAGAACAGAACAGCTCGAGTTGTGGCTCCGCCACCCGCCAGAACAGCGCACAC
GGCGGCCCAAGCCCTCACGTAGTCTGGAGGCAGGGGCAGCAGCCCTGGGCCCTCCC
CACCCCTTCCCTTAATCCAAGGACTGGGCTGGGTGGCGGGAGGGAGCCAGATCCCC
GAGGGAGGACCTGAGGGCGCGAACGCATCCGAGCCCCCAGCTGGGAAGGGCAGGCCGGTG
CCCCAGGGCGGCTGGCACAGTGCCCCCTCCCGACGGTGGCAGGCCCTGGAGAGGAACCT
GAGTGTACCCCTGATCTCAGGCCACCAGCCTCTGCCGCCCTCCAGCCGGCTCCTGAAGCC
CGCTGAAAGGTCAAGCAGTGAAGGCCTTGCAAGACAACCGTCTGGAGGTGGCTGTCCCTAAAA
TCTGCTTCTCGGATCTCCCTCAGTCTGCCCTCCAGCCCCAAACTCCTCCTGGCTAGACTGTA
GGAAGGGACTTTGTTGTTGTTCAAGAAAAAGAAAGGGAGAGAGAGGAAAATAG
AGGGTTGTCCACTCCTCACATTCCACGACCCAGGCCTGCACCCCCACCCCCAACTCCCAGCCC
CGGAATAAAACCATTTCCTGC

FIGURE 11

MGAARLLPNLTLCLQLLILCCQTQYVRDQGAMTDQLSRRQIREYQLYSRTSGKHVQVTGRRI
SATAEDGNKFAKLIVETDTFGSRVRIKGAESEKYICMNKRGKLIGKPSGKSKDVFTEIVLE
NNYTAFQNARHEGWFMAFTRQGRPRQASRSRQNQREAHFIKRLYQGQLPFPNHAEKQKQFEF
VGSAPTRRTKRTRRPQPLT

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 9-13, 126-130

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 60-64

Casein kinase II phosphorylation site.

amino acids 65-69

Tyrosine kinase phosphorylation site.

amino acids 39-48, 89-97

N-myristoylation site.

amino acids 69-75, 188-194

Amidation site.

amino acids 58-62

HBGF/FGF family signature.

amino acids 103-128

FIGURE 12

ACTTGCCATCACCTGTTGCCAGTGTGGAAAATTCTCCCTGTTGAATTTCATGGAG
GACAGCAGCAAAGAGGGCAACACAGGGTGTAAAGACCAAGACAGCAGGGAGATTATTTAC
CATACGCCCTCAGGACGTTCCCTCTAGCTGGAGTTCTGGACTTCAACAGAACCCCATCCAGT
CATTGATTTGCTGTTATTTTTCTTTCTTTCCCACCACATTGTATTTAT
TTCCGTACTTCAGAAATGGGCCTACAGACCACAAAGTGGCCAGCCATGGGCTTTCT
GAAGTCTTGGCTTATCATTCCCTGGGGCTCTACTCACAGGTGTCAAACCTCTGGCCTGCC
CTAGTGTGTGCCGCTGCGACAGGAACCTTGTCTACTGTAATGAGCGAAGCTGACCTCAGTG
CCTCTGGGATCCCAGGGCGTAACCGTACTCTACCTCCACAACAAACAAATTAAATAATGC
TGGATTCCTGCAGAACTGCACAATGTACAGTCGGTGACACGGTCTACCTGTATGGCAACC
AACTGGACGAATTCCCCATGAACCTTCCAAGAAATGTCAAGAGTTCTCCATTGCAAGGAAAAC
AATATTCAAGACCATTCAACGGCTGCTTGCCCCAGCTTGAAGCTTGAAGAGCTGCACCT
GGATGACAACCTCCATATCCACAGTGGGGGTGGAAGACGGGCCTCCGGGAGGCTATTAGCC
TCAAATTGTTGTTTGTCTAAGAATCACCTGAGCAGTGTGCCTGTTGGGCTCCTGTGGAC
TTGCAAGAGCTGAGAGTGGATGAAAATCGAATTGCTGTCAATCCGACATGGCCTCCAGAA
TCTCACGAGCTGGAGCGTCTATTGTTGACGGGAAACCTCTGACCAACAAGGGTATGCCG
AGGGCACCTTCAGCCATCTCACCAAGCTCAAGGAATTTCATTGTACGTAATTGCTGTCC
CACCCCTCCCGATCTCCAGGTACGCATCTGATCAGGCTCTATTGCAAGGACAACCAAGAT
AAACCACATTCTTGACAGCCTCTCAAATCTGCGTAAGCTGGAACGGCTGGATATATCA
ACAACCAACTCGGGATGCTGACTCAAGGGTTTTGATAATCTCCAACTGAAGCAGCTC
ACTGCTCGGAATAACCCCTGGTTTGACTGCAGTATTAAATGGGTACAGAAATGGCTCAA
ATATATCCCTCATCTCAACGTGCGGGTTCATGTGCCAAGGTCTGAACAAAGTCCGGG
GGATGGCGTCAGGAAATTAAATATGAATCTTGTCCCTGCCCACACGACCCCCGGCCTG
CCTCTTTACCCAGCCCCAAGTACAGCTCTCCGACCCTCAGCCTCCACCCCTCTAT
TCCAAACCTAGCAGAAGCTACACGCCCTCAAACCTTACACATCGAAACTCCCACGATTC
CTGACTGGGATGGCAGAGAAAGAGTGAACCCACCTATTCTGAACGGATCCAGCTCTATC
CATTGTAATGATACTCCATTCAAGTCAGCTGGCTCTCTTCAACGTGATGGCATA
CAAACTCACATGGGTGAAAATGGGCCACAGTTAGTAGGGGGCATCGTTCAGGAGCGCATAG
TCAGCGGTGAGAAGCAACACCTGAGCCTGGTTAACTTAGAGCCCCGATCCACCTATCGGATT
TGTTAGTGCCACTGGATGTTTAACTACCGCGCGGTAGAAGACACCATTGTTCAGAGGC
CACCAACCATGCCTCTATCTGAACACGGCAGCAACACAGCGTCCAGCCATGAGCAGACGA
CGTCCCACAGCATGGCTCCCCCTTCTGCTGGCGGGCTTGATGGGGCGCGGTGATATT
GTGCTGGTGGTCTTGTCTAGCGTCTTGTGCTGCATATGCACAAAAAGGGCGCTACACCTC
CCAGAAGTGGAAATACAACCGGGCGGGCGGAAGATGATTATTGCGAGGCAGGCACCAAGA
AGGACAACCTCCATCTGGAGATGACAGAAACCAAGTTTCAGATCGTCTCTAAATAACGAT
CAAACCTTAAAGGAGATTCAAGACTGCAGCCATTACACCCAAATGGGGCATTAATTA
CACAGACTGCCATATCCCCAACACATGCGATACTGCAACAGCAGCGTGCCAGACCTGGAGC
ACTGCCATACGTGACAGCCAGAGGCCAGCGTTATCAAGCGGACAATTAGACTCTTGAGAA
CACACTCGTGTGTCACATAAGACACGCAGATTACATTGATAATGTTACACAGATGCAT
TTGTCATTGAAACTCTGTAATTATAACGGTGTACTATATAATGGGATTTAAAAAGTG
CTATCTTCTATTCAAGTTAAATTACAAACAGTTGTAACCTTTGCTTTAAATCTT

FIGURE 13

MGLQTTKWPShGaffLKSwlIISLGLySQVSKLLACPSVCRCDRNFVYCNERSLTSVPLGIP
EGVTvLYLHNNQINNAGFPaelHNvQSVHTVYLYGNQLDEFPMNLPKNVRVLHLQENNIQTI
SRAALAQLLKLEELHLDNsISTVGVEDGAFREAIISLKLFLSKNHLSVPVGLPVDLQELR
VDENRIAVISDMAFQNLTSLERLIVDGNLLTNKGIAEGTFSHLTKLKEFSIVRNSLSHPPPD
LPGTHLIRLYLQDNQINHIPLTAFSNLRKLERLDISNNQLRMLTQGVFDNLSNLKQLTARN
PWFCDCSIKWVTEWLKYIPSSLNVRGFMCGPEQVRGMARVELNMNLLSCPTTPGLPLFTP
APSTASPTTQPPTLSIPNPSRSYTPPTTSLPTIPDWDRGRERVTPPISERIQLSIHFVND
TSIQVSWLSSLFTVMAKLTWVKMGSIVGGIVQERIVSGEKQHLSLVNLEPRSTYRICLVPL
DAFNyRAVEDTICSEATTHASYLNNGNTASSHEQTTSHSMGSPFLLAGLIGGAVIFVLVVL
LSVFCWHMHKKGRYTSQWKYNRGRRKDDYCEAGTKKDnsILEMTETSFQIVSLNNNDQLLKG
DFRLQPIYTPNGGINYTDCHIPNNMRYCNSSVPDLEHCHT

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site.

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653

Casein kinase II phosphorylation site.

amino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655

Tyrosine kinase phosphorylation site.

amino acids 319-328

N-myristoylation site.

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300,
522-528, 545-551, 633-639

Amidation site.

amino acids 581-585

Leucine zipper pattern.

amino acids 164-186

Phospholipase A2 aspartic acid active site.

amino acids 39-50

FIGURE 14

ACTTGGAGCAAGCGCGGCGGGAGACAGAGGCAGAGCTGGGCTCCGTCCGCCACGAGCG
ATCCCCGAGGAGAGCCGGCCCTCGCGAGGCAGAGGGCGACGAGGAAGACCCGGGTGGCTCGGCCCTGCC
TCGCTTCCCAGGCGCGGGCTGCAGCCTTGCCCCCTCTGCTCGCCTTGAAAATGGAAAAGATGCTCGCAGGCT
GCTTCTGCTGATCCTCGGACAGATCGCTCCCTCCCTGCCAGGGCAGGGAGCGGTACAGTGGAGGTCCATCT
CTAGGGCAGACACGCTCGGACCCACCGCAGACGCCCTCTGGAGAGTTCTGTGAGAACACAAGGGCAGACC
TGGTTTCATCATGACAGCTCTCGCAGTGTCAACACCATGACTATGCAAAGGTCAAGGAGTTCATGTGGACA
TCTTGCATTCTGGACATTGGCTCTGATGTCAACCGAGTGGGCTGCTCCAATATGGCAGCACTGTCAAGAATG
AGTTCTCCCTCAAGACCTCAAGAGGAAGTCCGAGGTGGAGCTGCTCAACAGGATGCCACTGTCCACGG
GCACCATGACTGGCTGGCCATCCAGTATGCCCTGAAACATCGCATCTCAGAACAGGAGAGGGGGCCGGCCCTGA
GGGAGAATGTGCCACGGGCATAATGATCGACAGATGGGAGACCTCAGGACTCCGTGGCCAGGGTGGCTGCTA
AGGCACGGGACACGGGCATCTAATCTTGCATTGGTGTGGCCAGGTAGACTTCAACACCTGAAAGTCCATTG
GGAGTGAGCCCCATGAGGACCATGTCTTCTGTGGCAATTTCAGCCAGATTGAGACGCTGACCTCCGTGTCC
AGAAGAAGTTGTGACGGCCACATGTGCAAGCACCTGGAGCATAACTGTGCCACTCTGCACTAACATCCCTG
GCTCATACGTCAGGTGCAAACAAGGCTACATTCTCAACTCGGATCAGACGACTTGCAAGATCCAGGATCTGT
GTGCCATGGAGGACCAACTGTGAGCAGCTGTGTGAATGTGCCGGCTCTCGTGTGCCAGTGCTACAGTG
GCTACGCCCTGGCTGAGGATGGGAAGAGGTGTGGACTACTGTGCTCAGAAAACCACGGATGTGAAC
ATGAGTGTGAAATGCTGATGGCTCTACCTTGCCAGTGCCATGAGGATTGCTCTTAACCCAGATGAAAAAA
CGTGCACAAGGATCAACTACTGTGCACTGAACAAACCGGGCTGTGAGCATGAGTGCCTCAACATGGAGGAGGCT
ACTACTGCCGCTGCCACCGTGGCTACACTCTGGACCCCAATGGAAAACCTGCAGCCAGTGCTCAGAAGGCTCC
AGCAGGACCATGGCTGTGAGCAGCTGTGTGAACACCGAGGATTCTCGTGTGCCAGTGCTCAGAAGGCTCC
TCATCAACGAGGACCTCAAGACCTGCTCCGGTGGATTACTGCCCTGCTGAGTGACCATGGTTGTGAATACTCCT
GTGTCACATGGACAGATCTTGCCCTGTCAGTGTCTGAGGGACACGTGCTCCGCAGCGATGGGAAGACGTGTG
CAAAATTGGACTCTTGTGCTCTGGGGACCAACGGTTGTGAACATTGCTGTGAAGCAGTGAAGATTGTTGTGT
GCCAGTGTCTTGAAGGTTATATACTCCGTGAAGATGGAAAACCTGCAGAAGGAAGATGTCTGCCAGTATAG
ACCATGGCTGTGAACACATTGTGTGAACAGTGACGACTCATACACGTGCGAGTGCTGGAGGATTCCGGCTCG
CTGAGGATGGGAAACGCTGCCAGGAAGGAAGGATGTCTGCAAATCAACCCACCATGGCTGCAACACATTGTGTTA
ATAATGGGAAATTCTACATCTGCAAATGCTCAGAGGGATTGTTCTAGCTGAGGGACGGAAGACGGTGCAAGAAAT
GCACTGAAGGCCAATTGACCTGGCTTGTGATCGATGGATCCAAGAGTCTGGAGAAGAGAATTGAGGTCG
TGAAGCAGTTGTCACTGGAATTATAGATTCTTGCAACATTTCCCCAAAGCCGCTCGAGTGGGCTGCTCCAGT
ATTCCACACAGGTCCACACAGAGTTCACTCTGAGAAAACCTCAACTCAGGAAAGACATGAAAAAAGCCGTGGCCC
ACATGAAATACATGGGAAAGGGCTCTATGACTGGCTGCCCTGAAACACATGTTGAGGAGAAGTTTACCCAAAG
GAGAAGGGGCCAGGCCCTTCCACAGGGTGCCCAGAGCAGCCATTGTTGTTCACCGACGGACGGCTCAGGATG
ACGTCTCCGAGTGGGCCAGTAAAGCCAAGGCCAATGGTATCACTATGTATGCTGTTGGGGTAGGAAAAGCCATTG
AGGAGGAACATACAAGAGATTGCCCTGAGGCCACAAACAAGCATTCTTCTATGCCAGACTTCAGCACAATGG
ATGAGATAAGTGGAAAACCTCAAGAAAGGCATCTGTGAAGCTCTAGAAGAAGACTCCGATGGAAGACAGGACTCTCCAG
CAGGGGAACCTGCAAAACGGTCCAACAGCCAACAGAAATCTGAGCCAGTCACCATAAATATCCAAGACCTACTTT
CCTGTTCTAATTGCACTGCAACACAGATATCTGTTGAAGAAGACAATCTTACGGTCTACACAAAAGCTTT
CCCATTCAACAAAACCTTCAGGAAGCCCTTGGAAAGAAAAACACGATCAATGCAAATGTGAAAACCTTATAATGT
TCCAGAACCTGCAAACGAAGAAGTAAGAAAATTAAACACAGCGCTTAGAAGAAATGACACAGAGAAATGGAAGGCC
TGGAAAATCGCTGAGATACAGATGAAGATTAGAATCGCAGACACATTGTTAGTCATTGTATCACGGATTACAAT
GAACGCAGTGCAGAGGCCAAAGCTCAGGCTATTGTTAAATCAATAATGTTGAGTAAAACAATCAGTACTGA
GAAACCTGGTTGCCACAGAACAAAGACAAGAAGTATAACTAACTTGTATAAATTCTAGGAAAAAAATCCT
TCAGAATTCTAAGATGAATTACCAAGGTGAGAATGAATAAGCTATGCAAGGTATTTGTAATATAACTGTGGACAC
AACTTGCTTCTGCCCTACCTGCCCTAGTGTGCAATCTCATTGACTATAACGATAAAGTTGCACAGTCTTACTT
CTGAGAACACTGCCATAGGAATGCTGTTTTGTACTGGACTTACCTGATATATGTATATGGATGTATG
CATAAAAATCATAGGACATATGTAATTGTGGAACAAGTGGATTAACTACAAATTAAATTCAACACTTCAG

FIGURE 15

MEKMLAGCFLLILGQIVLLPAEARERSGRSISRGRHARTHPOALLESSCENKRADLVFII
DSSRSVNTHDYAKVEFIVDILQFLDIGPDVTRVGLLQYGSTVKNEFSLKTFKRKSEVERAV
KMRHLSTGTMGLAIQYALNIAFSEAE GARPLREN VPRVIMIVTDGRPQDSVAEVAAKARD
TGILIFAI GVGQVDFNTLKSIGSEPHEDHVFLVANFSQIETLTSVFQKKLCTAHMCSTLEHN
CAHFCINI PGSYVCRCKQGYILNSDQTT CRI QDLCAMEDHNCEQLCVNVPGSFVCQCYSGYA
LAEDGKRCVAVD YCASENHGCEHECVNADGSYLCQCHEGFALNPDEKTCTRINYCALNKPGC
EHECVNMEESYYCRCHRGYTLDPNGKTC SRVDHCAQQDHGCEQLCLNTEDSFVCQCSEGFLI
NEDLKTCSRVDYCLLSDHGCEYSCVNMDRSFACQCPEGHVLRS DGKTCAKLDSCALGDHGCE
HSCVSSEDSFVCQC FEGYILREDGKTCRRKDVCQAIDHGCEHICVNSDDSYTCECLEGFR LA
EDGKRCR KDVCKSTHHGCEHICVNNNGNSYICKCSEG FVLAEDGRRCKCTEGPIDL VFVID
GSKSLGEENFEVVVKQFVTGIIDS LTISP KAARV GLLQYSTQVHTEFTLRNFNSAKDMKKAVA
HMKYMGKGSM TGLALKHMFERSFTQGEGARPLSTRVPRAAIVFTDGRAQDDVSEWASKAKAN
GITMYAVGVGKAIEEELQEIA SEPTN KHLFYAEDFSTMDEI SEKLKKGICEALEDSDGRQDS
PAGE LPKTVQQPTESEPVTINI QDLLSCSNFAVQHRYLFEEDNLLRSTQKLSHSTKPSGSPL
EEKHDQCKCENLIMFQNLANEEVRKLTQRLEEMTQRMEALENRLRYR

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 221-225

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 115-119, 606-610, 892-896

Casein kinase II phosphorylation site.

amino acids 49-53, 118-122, 149-153, 176-180, 223-227, 243-247,
401-405, 442-446, 501-505, 624-628, 673-677, 706-710, 780-784,
781-785, 819-823, 866-870

N-myristoylation site.

amino acids 133-139, 258-264, 299-305, 340-346, 453-459, 494-500,
639-645, 690-696, 752-758, 792-798

Amidation site.

amino acids 314-318, 560-564, 601-605

Aspartic acid and asparagine hydroxylation site.

amino acids 253-265, 294-306, 335-347, 376-388, 417-423, 458-464,
540-546, 581-587

FIGURE 16

GGAGCCGCCCTGGGTGTCAGCGGCTGGCTCCCGCGCACGCTCCGGCGTCGCAGCCTCG
GCACCTGCAGGTCCGTGCGTCCCGCGCTGGCGCCCGTACTCCGTCCGGCCAGGGAGGGC
CATGATTCCCTCCCGGGCCCTGGTACCAACTTGCTGCCGTTTGTTCCTGGGCTGA
GTGCCCTCGCGCCCCCTCGCGGGCCAGCTGCAACTGCACCTGCCGCCAACCGGTTGCAG
GCGGTGGAGGGAGGGAAAGTGGTGCTTCCAGCGTGGTACACCTGCACGGGAGGTGTCTTC
ATCCCAGCCATGGGAGGTGCCCTTGATGTGGTTCTCAAACAGAAAGAAAAGGAGGATC
AGGTGTTGTCCATCAATGGGTACAACAAGCAAACCTGGAGTATCCTGGTCTACTCC
ATGCCCTCCCGAACCTGTCCCTGCCGCTGGAGGGCTCCAGGAGAAAGACTCTGGCCCTA
CAGCTGCTCCGTGAATGTGCAAGACAAACAAGGCAAATCTAGGGGCCACAGCATAAAACCT
TAGAACTCAATGTACTGGTTCTCCAGCTCCTCCATCCTGCCGCTCCAGGGTGTGCCCAT
GTGGGGCAAACGTGACCTGAGCTGCCAGTCTCCAAGGAGTAAGCCGCTGTCCAATACCA
GTGGGATCGGCAGCTCCATCCTCCAGACTTCTTGACCAGCATTAGATGTCATCCGTG
GGTCTTAAGCCTCACCAACCTTCGTCTCCATGGCTGGAGTCTATGTCTGCAAGGCCAC
AATGAGGTGGGCACTGCCAATGTAATGTGACGCTGGAAGTGAGCACAGGGCTGGAGCTGC
AGTGGTTGGAGCTGTTGGGTACCCCTGGAGGAGCCAGCCAATGATATCAAGGAGGATGCC
TCTTGTACCACCGCCGGCAAGGCCCTGGAGGAGCCAGCCAATGATATCAAGGAGGATGCC
ATTGCTCCCCGGACCCCTGCCCTGGCCAAGAGAGCTCAGACACAATCTCAAGAATGGGACCC
TTCCTCTGTCACCTCCGCACGAGCCCTCCGGCCACCCCATGCCCTCCCAGGCCTGGTGCAT
TGACCCCCACGCCAGTCTCCAGGCCAGGCCCTGCCCTCACCAAGACTGCCACGACAGAT
GGGGCCACCCCTCAACCAATATCCCCATCCCTGGTGGGTTCTCCTCTGGCTTGAGCCG
CATGGGTGCTGTGCCTGTGATGGTGCCCTGCCAGAGTCAGCTGGCTCTGGTAT**GATGAC**
CCCACCACTATTGGCTAAAGGATTGGGTCTCTCCTCTATAAGGGTCACCTCTAGCAC
AGAGGCCTGAGTCATGGAAAGAGTCACACTCCTGACCCCTAGTACTCTGCCAACCTCTC
TTTACTGTGGAAAACCATCTCAGTAAGACCTAAGTGTCCAGGAGACAGAAGGAGAAGAGGA
AGTGGATCTGGAATTGGGAGGGAGCCTCCACCCACCCCTGACTCCTCCTTATGAAGCCAGCTG
CTGAAATTAGCTACTCACCAAGAGTGAGGGCAGAGACTTCCAGTCAGTGAGTCTCCAGGC
CCCCCTGATCTGTACCCACCCCTATCTAACACCACCCCTGGCTCCACTCCAGCTCCGT
ATTGATATAACCTGTCAGGCTGGTTGGTTAGGTTTACTGGGCAGAGGATAGGAAATCTC
TTATTAAAACATGAAATATGTGTTGGTTAGGTTTACTGGGCAGAGGATAGGAAATCTC
TGTTGTATGAAAAA

FIGURE 17

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHL PANRLQAVEGGEVVLPAWYTLHGEVSS
SQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGHQEKDSGPY
SCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHGANVTLSCQSPRSKP
AVQYQ WDRQLPSFQTFFAPALDVIRGSLSLTNLSSMAGVYVCKAHNEVGT
AQCNVTLEVSTGPGAA VVAGAVVGTLVGLGLLAGLVLLYHRRGKALEEPANDI
KEDAIAPRTL PWPKSSDTISKNGTL SSVTSARALRPPHGPPRPGALTPTPSLSSQALPS
PRLPTTDGAHPQPISPIPGGVSSSGLSR MGAVPVMVPAQS QAGSLV

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 245-267

N-glycosylation site.

amino acids 108-112, 169-173, 213-217, 236-240, 307-311

N-myristoylation site.

amino acids 90-96, 167-173, 220-226, 231-237, 252-258, 256-262,
262-268, 308-314, 363-369, 364-370

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 164-175

FIGURE 18

CGCCACCACTGCGGCCACC GCCAATGAAACGCCTCCGCTCCTAGGGTTTTCCACTTG
TTGAATTGTTCTATACTCAAATTGACCAAGACACCTGTCTCCAAATGAAAATGTGA
AATACGCAATGAAATTGAGCCTGCTATTGCAACATGGGATTTCAGGAAATGGTGTACAA
TTTGTGAAGATGATAATGAATGTGGAAATTAACTCAGTCTGTGGCGAAATGCTAATTGC
ACTAACACAGAAGGAAGTTATTATTGTATGTGTACCTGGCTTCAGATCCAGCAGTAACCA
AGACAGGTTTATCACTAATGATGGAACCGTCTGTATAGAAAATGTGAATGCAAACGCCATT
TAGATAATGTCTGTATAGCTGCAAATATTAAATAAAAACCTTAACAAAAATCAGATCCATAAAA
GAACCTGTGGCTTGCTACAAGAAGTCTATAGAAATTCTGTGACAGATCTTCACCAACAGA
TATAATTACATATATAGAAATTAGCTGAATCATCTCATTACTAGGTTACAAGAACAAACA
CTATCTCAGCCAAGGGACACCCCTTCTAActCAACTCTTACTGAATTGTAACAAACCGTGAAT
AATTTGTTCAAAGGGATACTTGTAGTTGGACAAGTTATCTGTGAATCATAGGAGAAC
ACATCTTACAAAActCATGCACACTGTTGAACAAGCTACTTAAGGATATCCCAGAGCTTCC
AAAAGACCACAGAGTTGATACAAATTCAACGGATATAGCTCTCAAAGTTTCTTTGAT
TCATATAACATGAAACATATTCTCATATGAATATGGATGGAGACTACATAAATATATT
TCCAAAGAGAAAAGCTGCATATGATTCAAATGGCAATGTTGCAGTGCACTTTATATTATA
AGAGTATTGGTCTTGCTTCATCATCTGACAACCTCTTATTGAAACCTCAAATTATGAT
AATTCTGAAGAGGAGGAAAGAGTCATATCTTCAGTAATTTCAGTCTCAATGAGCTCAAACCC
ACCCACATTATATGAACCTGAAAAAAATAACATTACATTAAGTCATCGAAAGGTACAGATA
GGTATAGGAGTCTATGTGCATTGGAAATTACTCACCTGATACCATGAATGGCAGCTGGTCT
TCAGAGGGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCT
GACACATTGCAATTGATGTCCTCTGGCCTTCCATTGGTATTAAAGATTATAATATT
TTACAAGGATCACTCAACTAGGAATAATTATTCACTGATTGCTTGCCATATGCATTTT
ACCTTCTGGTTCTTCAGTGAATTCAAAGCACCAGGACAACAATTCAAACAAATTCTTGTG
TAGCCTATTCTTGCTGAATTGTTCTTGTGGATCAATCAAATACTAATAAGCTCT
TCTGTTCAATCATTGCCGACTGCTACACTACTTCTTAGCTGCTTGCATGGATGTGC
ATTGAAGGCATACATCTCATCTGTTGGGTGTCATCTACAACAAGGGATTGGCA
CAAGAATTTTATATCTTGCTATCTAACGCCAGCCGTGGTAGTTGGATTTCGGCAGCAC
TAGGATACAGATATTATGGCACAACCAAAGTATGTTGGCTTAGCACCGAAAACAACCTTATT
TGGAGTTTATAGGACAGCATGCCATTCTGTTAATCTCTTGCTTGGAGTCAT
CATATAACAAAGTTTCTGTCACACTGCAGGGTTGAAACCAGAAGTTAGTTGCTTGAGAAC
TAAGGTCTGTGCAAGAGGAGCCCTCGCTCTGTTCTCGGCACCACGGATCTT
GGGTTCTCATGTTGCACGCATCAGGTTACAGCTTACCTCTCACAGTCAGCAATGC
TTTCCAGGGATGTTCAATTCTTGTTATCTGTGTTATCTAGAAAGATTCAAGAAGAAT
ATTACAGATTGTCAAAATGCCCCGTGTTGGATGTTAAGGTAACATAGAGAAC
GTGGATAATTACAACACTGCACAAAATAAAATCCAAGCTGTGGATGACCAATGTATAAAA
TGACTCATCAAATTATCCAATTATTAACACTAGACAAAAGTATTAAATCAGTTTCT
GTTATGCTATAGGAACGTAGATAATAAGGAAAATTATGTATCATATAGATATACTATGT
TTTCTATGTGAAATAGTTCTGTCAAATAGTATTGAGATATTGAGATATTGAAAGTAATTGGTT
CTCAGGAGTGTATCTGCACCCAGGAAAGATTCTTCTAACACGAGAAGTATATGAA
TGTCTGAAGGAAACCACTGGCTTGATATTCTGTGACTCGTGTGCCTTGAAACTAGTCC
CCTACCACTCGGTAATGAGCTCCATTACAGAAAGTGGAACATAAGAGAACATGAAGGGCAGA
ATATCAAACAGTGAAAAGGAATGATAAGATGTATTTGAATGAACTGTTCTGTAGAC
TAGCTGAGAAATTGTTGACATAAAAGAATTGAAGAACACATTTCACCTTGTGAA
TTGTTCTGAACCTAAATGTCCACTAAACAACTTAGACTCTGTTGCTAAATCTGTTCTT
TTCTAATATTCTAAAAAAAAAGGTTACCTCCACAAATTGAAAAA
AAAAAAAAAAAAAAAAAAAAA

FIGURE 19

MKRLPLLVFSTLLNCSYTQNCTKTPCLPNAKCEIRNGIEACYCNMGFSGNGVTICEDDNECGNLTQSCGENANCTNTGSYYCMCVPGRSSSNQDRFITNDGTVCIENVANCHLDNVCIANINKTLTKIRSIKEPVALLQEYVRNSVTDLSPTDIITYIEILAESSSLGYKNNTISAKDTLSNSTLTFVKTVNPFQRDTFVVWDKLSVNHRRTHTKLMHTVEQATLRIQSFKTTEFDTNSTDIALKVFFFDSYNMKHIHPHMMMDGDYINIFPKRKAAYDSGNVAVAFLYYKSIGPLLSSSDNFLLPQNYDNSEEERVISSVISVSMSSNPPTLYELEKITFTLSHRKVTDRYRSLCAFWNYPDTMNGWSSEGCELTYSNETHTSCRCHLTHFAILMSGPSIGIKDYNILTRITQLGIIISLICLAIICIFTFWFFSEIQSTRTTIHKNLCCSLFLAELVFLVGINTNTNKLFCSSIAGL LHYFFLAFAFWMCIEGIHLYLIVGVVIYNKGFLHKNFYIFGYLSPAVVVGFSaalgyryygtTKVCWLSTENNFIFIWSFIGPACLIILVNLAFGVIIYKVFRHTAGLKPEVSCFENIRSCARGA LALLFLLGTTWIFGVVLHVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNVPCCFGCLR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 430-450, 465-486, 499-513, 535-549, 573-593, 619-636, 648-664

N-glycosylation site.

amino acids 15-19, 21-25, 64-68, 74-78, 127-131, 177-181, 188-192, 249-253, 381-385, 395-399

Glycosaminoglycan attachment site.

amino acids 49-53

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 360-364

Casein kinase II phosphorylation site.

amino acids 54-58, 68-72, 76-80, 94-98, 135-139, 150-154, 155-159, 161-165, 181-185, 190-194, 244-248, 310-314, 325-329, 346-350, 608-612

Tyrosine kinase phosphorylation site.

amino acids 36-44, 669-677, 670-678

N-myristoylation site.

amino acids 38-44, 50-56, 52-58, 80-86, 382-388, 388-394, 434-440, 480-486, 521-527

Aspartic acid and asparagine hydroxylation site.

amino acids 75-87

FIGURE 20

TGGAAACATATCCTCCCTCATATGAATATGGATGGAGACTACATAAATATATTCCAAAGNG
AAAAGCCGGCATATGGATTCAAATGGCAATGTTGCAGTGATTTTATATTATAAGAGTAT
TGGTCCCTTGCTTCATCATCTGACAACCTCTTATTGAAACCTCAAAATTATGATAATTCT
GAAGAGGAGGAAAGAGTCATATCTTCAGTAATTCAGTCTCAATGAGCTCAAACCCACCCAC
ATTATATGAAC TTGAAAAAACATTTACATTAAGTCATCGAAAGGTACAGATAGGTATA
GGAGTCTATGTGGCATTGGAAACTCACCTGATACC ATGAATGGCAGCTGGTCTTCAGAG
GGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCTGACACA
TTTGCAATTGATGTCCTCTGGCCTTCCATTGGTATTAAAGATTATAATATTCTTACAA
GGATCACTCAACTAGGAATAATTATTCACTGATTGTCTTGCCATATGCATTTTACCTTC
TGGTTCTTCAGTGAATTCAAAGCACCAGGA

FIGURE 21

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGTGGGGAGGAGTTCCCGAAACCCGGCCG
CTAAGCGAGGCCTCCTCCTCCCGCAGATCCGAACGGCCTGGGCGGGTCACCCCGCTGGGA
CAAGAAGCCGCCGCTGCCTGCCGGGGCCGGAGGGGGCTGGGCTGGGCGGGAGGCAG
GGTGTGAGTGGGTGTGCGGGGGCGGAGGCTTGATGCAATCCGATAAGAAATGCTCGGG
TGTCTGGCACCTACCGTGGGCCGTAAGGCCTACTATATAAGGCTGCCGGCCGGAG
CCGCCGCCGCGTCAGAGCAGGAGCGCTCGTCCAGGATCTAGGGCACGACCATCCAACCC
GGCACTCACAGCCCCGAGCGCATCCGGTCGCCAGCCTCCGCACCCCCATGCCGG
AGCTGCGCCGAGAGCCCCAGGGAGGTGCCATGCGGAGCGGGTGTGCGTGGTCCACGTATGG
ATCCTGGCCGGCCTCTGGCTGGCCGTGGCCGGCGCCCCCTGCCCTCTCGGACGCCGGGCC
CCACGTGCACTACGGCTGGGCACCCCATCCGCCTGCCACCTGTACACCTCCGGCCCC
ACGGGCTCTCCAGCTGCTTCTGCCATCCGTGCCAGGGCTCGTGGACTGCCGCCGGGC
CAGAGCGCACAGTTGCTGGAGATCAAGGCAGTCGCTCTGCCACCGTGGCATCAAGGG
CGTGCACAGCGTGCCTGACCTCTGCATGGCGCCAGGGCAAGATGCAGGGCTGCTTCAGT
ACTCGGAGGAAGACTGTGCTTCAGGGAGGAGATCCGCCAGATGGCTACAATGTGTACCGA
TCCGAGAACGCCCTCCGGCTCCCTGAGCAGTGCCAAACAGCGGAGCTGTACAAGAA
CAGAGGCTTCTTCACTCTCATTCCGCCTGCTGCCATGGTCCCAGAGGAGCCTG
AGGACCTCAGGGCCACTTGAATCTGACATGTTCTTCCGCCTGGAGACCGACAGCATG
GACCCATTGGCTTGTACCCGACTGGAGGCCGTGAGGAGTCCCAGCTTGAGAAGTAA
GAGACCATGCCGGCCTTCACTGCTGCCAGGGCTGTGGTACCTGCAGCGTGGGACG
TGCTTCTACAAGAACAGTCCTGAGTCCACGTTCTGTTAGCTTAGGAAGAACATCTAGAA
GTTGTACATATTCAAGAGTTTCCATTGGCAGTGCCTAGTTCTAGCCAATAGACTGTCTGAT
CATAAACATTGTAAGCCTGTAGCTTGCCTGCCAGCTGCTGCCCTGGGCCCTATTCTGCTCCCTCGA
GGTTGCTGGACAAGCTGCTGCACTGCTCAGTTCTGCTGAATAACCTCCATCGATGGGAAC
TCACTTCCTTGGAAAAATTCTTATGTCAAGCTGAAATTCTCTAAATTCTCATCACTTC
CCCAGGAGCAGCCAGAACAGCAGGAGTAGTTAATTCAAGGAACAGGTGATCCACTCTGTA
AAACAGCAGGTAATTCACTCAACCCATGTGGAATTGATCTATATCTACTTCCAGGG
ACCATTGCCCTCCCAAATCCCTCCAGGCCAGAACACTGACTGGAGCAGGCATGGCCACCAG
GCTTCAGGAGTAGGGGAAGCCTGGAGGCCACTCCAGGCCCTGGGACAACCTGAGAATTCCCC
CTGAGGCCAGTTCTGCATGGATGCTGCTGAGAATAACTGCTGTCCGGTGTACCTGC
TTCCCATCTCCAGGCCACCAGCCCTGCCCACCTCACATGCCCTCCCATGGATTGGGCCT
CCCAGGCCCTTACCTTATGTCAACCTGCACTCTGTTCAAAAATCAGGAAAAGAAAAGAT
TTGAAGACCCCAAGTCTGTCAATAACTTGCTGTGAGCAGCGGGGAAGACCTAGAAC
CCTTCCCCCAGCACTGGTTTCAACATGATATTATGAGTAATTATTTGATATGTACA
TCTCTTATTCTTACATTATTATGCCCAAATTATATTATGTATGTAAAGTGAGGTTG
TTTGTATATTAAAATGGAGTTGTTGT

FIGURE 22

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWDPIRLRHLYTSGPHGLSSCFLRI
RADGVVDCARGQSAHSLLIEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE
EIRPDGYNVYRSEKHRLPVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD
MFSSPLETDSMDPFGLVTGLEAVRSPSFEK

Signal peptide:

amino acids 1-22

Casein kinase II phosphorylation site.

amino acids 78-82, 116-120, 190-194, 204-208

N-myristoylation site.

amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 48-59

FIGURE 23

CCCAGAAGTTCAAGGGCCCCCGGCCTCCTGCGCTCCTGCCGCCGGACCCCTGACCTCCTCA
GAGCAGCCGGCTGCCGCCCGGAAGATGGGAGGAGGAGCCACCGCCTCCTGCTG
CTGCTGCGCTACCTGGTGGTCGCCCTGGGCTATCATAAGGCCTATGGGTTTCTGCCAAA
AGACCAACAAGTAGTCACAGCAGTAGAGTACCAAGAGGCTATTTAGCCTGCAAAACCCAA
AGAAGACTGTTCCAGATTAGAGTGGAAAGAAACTGGGTGGAGTGTCTCCTTGTCTAC
TATCAACAGACTCTCAAGGTGATTTAAAAATCGAGCTGAGATGATAGATTCAATATCCG
GATCAAAATGTGACAAGAAGTGATGCGGGAAATATCGTTGTGAAGTTAGTGCCCCATCTG
AGCAAGGCCAAAACCTGGAAGAGGATAACAGTCACCTGGAAGTATTAGTGGCTCCAGCAGTT
CCATCATGTGAAGTACCCCTCTGCTCTGAGTGGAACTGTGGTAGAGCTACGATGTCAAGA
CAAAGAAGGAATCCAGCTCCTGAATACACATGGTTAAGGATGGCATCCGTTGCTAGAAA
ATCCCAGACTGGCTCCAAAGCACCAACAGCTCATACACAATGAATAACAAAAACTGGAACT
CTGCAATTAAACTGTTCCAAACTGGACACTGGAGAATATTCTGTGAAGGCCGAATTG
TGGATATCGCAGGTGCTGGAAACGAATGCAAGTAGATGATCTAACATAAGTGGCA
TCATAGCAGCGTAGTAGTTGTGGCCTTAGTGATTCCGTTGTGGCCTGGTGTATGCTAT
GCTCAGAGGAAAGGCTACTTTCAAAAGAAACCTCCTCCAGAAGAGTAATTCTCATCTAA
AGCCACGACAATGAGTAAAATGTGCAGTGGCTACGCCGTAAATCCCAGCACTTGGAAAGG
CCGGCGGGCGGATCACGAGGTAGGAGTTCTAGACCAGTCTGCCAATATGGTAAACCC
CATCTCTACTAAAATACAAAAATTAGCTGGCATGGTGGCATGTGCCTGCAGTCCAGCTGC
TTGGGAGACAGGAGAATCACTGAACCCGGAGGCGGAGGTTGCAGTGAGCTGAGATCACGC
CACTGCAGTCCAGCCTGGTAACAGAGCAAGATTCCATCTCAAAAAATAAAATAATA
AATAAAATCTGGTTTACCTGTAGAATTCTTACAATAAATAGCTTGATATTG

FIGURE 24

MARRSRHRLLLLLLRYLVVALGYHKAYGFSAPKDJQQVVTAVEYQEAILACKTPKKT
VSSRLEWKKLGRSVSFVYYQQTLQGDFKNRAEMIDFNIRIKNVTRSDAGKYRCEVSAPSEQ
GQNLEEDTVTLEVLVAPAVPSCEVPSSALSGTVVELRCQDKEGNPAPEYTWFKD
GIRLLENPRLGSQSTNSSYTMNTKTGTLQFNTVSKLDTGEYSCEARN
SVGYRRCPGKRMQVDDLNISGIIAAVVVA
LVI
SVCGLGVCYAQRKG
YFSKETSFQKSNSSSKATTMSENVQWLTPV
IPALWKA
AAAGGSRGQEF

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 130-144, 238-258

N-glycosylation site.

amino acids 98-102, 187-191, 236-240, 277-281

Casein kinase II phosphorylation site.

amino acids 39-43, 59-63, 100-104, 149-153, 205-209, 284-288

N-myristoylation site.

amino acids 182-188, 239-245, 255-261, 257-263, 305-311

Amidation site.

amino acids 226-230

FIGURE 25

GACATCGGAGGTGGCTAGCACTGAAACTGCTTTCAAGACGAGGAAGAGGAGGAAAGAG
AAAGAAGAGGAAGATGTTGGCAACATTATTAACATGCTCCACAGCCGGACCTGGCAT
CATGCTGCTATTCTGCAAATACTGAAGAACATGGGATTAAATATTTACTTCTAAATAA
ATGAATTACTCAATCTCCTATGACCACATCTACATACACTCCACCTTCAAAAAGTACATCAATA
TTATATCATTAAGGAAATAGTAACCTCTCTTCTCAATATGCATGACATTGGACAATG
CAATTGTGGCACTGGCACTTATTCAGTGAAGAAAAACTTGTGGTTCTATGGCATTATCA
TTGACAAATGCAAGCATCTCCTTATCAATCAGCTCTATTGAACTTACTAGCACTGACTG
TGGAACTCTTAAGGGCCCATTACATTCTGAAGAAGAAAGCTAAGATGAAGGACATGCCACT
CCGAATTCTATGTGCTACTTGCCTAGCTATCACTACACTAGTACAAGCTGTAGATAAAAAAG
TGGATTGTCCACGGTTATGTACGTGTGAAATCAGGCCTGGTTACACCCAGATCCATTAT
ATGGAAGCATCTACAGTGGATTGTAATGATTAGGTCTTTAACCTTCCCAGCCAGATTGCC
AGCTAACACACAGATTCTCTCACAGACTAACATATTGCAAAAATTGAATACTCCACAG
ACTTTCCAGTAAACCTTACTGGCCTGGATTATCTCAAAACAATTATCTTCAGTCACCAAT
ATTAATGTAAGGAGATGCCTCAGCTCCTTCTGTGTACCTAGAGGAAACAAACTACTGA
ACTGCCTGAAAATGTCGCAACTGAGCAACTACAAGAACTCTATATTAAATCACAAC
TGCTTCTACAATTTCACCTGGAGCCTTATTGGCTACATAATCTCTCGACTTCATCTC
AATTCAAATAGATTGCAGATGATCAACAGTAAGTGGTTGATGCTCTTCAAATCTAGAGAT
TCTGATGATTGGGAAAATCCAATTATCAGAATCAAAGACATGAACCTTAAGCCTCTTATCA
ATCTCGCAGCCTGGTTAGCTGGTATAACCTCACAGAAATACCAGATAACGCCCTGGTT
GGACTGGAAAACCTAGAAAGCATCTCTTTACGATAACAGGCTTATTAAAGTACCCCCATGT
TGCTCTTCAAAAGTTGTAATCTCAAATTGGATCTAAATAAAACTCTATTAAATAGAA
TACGAAGGGGTGATTTAGCAATATGCTACACTAAAAGAGTTGGGATAAAATAATATGCCT
GAGCTGATTCCATCGATAGTCTGCTGTGGATAACCTGCCAGATTAAAGAAAATAGAAC
TACTAACAAACCTAGATTGTCTTACATTCAACCCATGCATTTCAGACTCCCCAAGCTGG
AATCACTCATGCTAACAGCAATGCTCTCAGTGCCTGTACCATGGTACCTGAGTCTCG
CCAAACCTCAAGGAAATCAGCATAACAGTAACCCATCAGGTGTGACTGTGTACCCGTTG
GATGAACATGAACAAAACCAACATTGATTGAGCCAGATTCACTGTTTGCCTGGACC
CACCTGAATTCCAAGGTCAAATGTTGGCAAGTGCATTTCAGGGACATGATGGAAATTGT
CTCCCTTCTTATAGCTCCTGAGAGCTTCTTCTAATCTAAATGTTAGAAGCTGGGAGCTATGT
TTCCTTCACTGTAGAGCTACTGCAGAACACCAGCCTGAAATCTACTGGATAACACCTTCTG
GTCAAAAACCTTGCCTAATACCCCTGACAGACAAGTTCTATGTCCTTCTGAGGGAAACACTA
GATATAATGGCGTAACCTCCAAAGAAGGGGTTTATATACTTGTATAGCAACTAACCTAGT
TGGCGCTGACTTGAAGTCTGTTATGATCAAAGTGGATGGATCTTCCACAAGATAACAAATG
GCTCTTGAATATTAAAATAAGAGATATTGAGCAGGCCATTCAAGTTGGTGTCTGGAAAGCA
AGTTCTAAAATTCTCAAATCTAGTGTAAATGGACAGCCTTGTCAAGACTGAAAATTCTCA
TGCTCGCAAAGTGCCTGAATACCATCTGATGTCAAGGTATATAATCTTACTCATCTGAATC
CATCAACTGAGTATAAAATTGTATTGATATTCCACCATCTACAGAAAAACAGAAAAAAA
TGTGTAAATGTCACCACCAAGGTTGCACCCCTGATCAAAAGAGTATGAAAAGAATAATAC
CACAAACACTTATGGCCTGTCTGGAGGCCTTCTGGGATTATTGGTGTGATATGTCTTATCA
GCTGCCTCTCCAGAAATGAACCTGTGATGGTGGACACAGCTATGTGAGGAATTACTTACAG
AAACCAACCTTGCATTAGGTGAGCTTATCCTCTGATAAAATCTCTGGGAAGCAGGAAA
AGAAAAAAAGTACATCACTGAAAGTAAAGCAACTGTTAGGTTACCAACAAATATGTCT
AAAAACCAAGGAAACCTACTCCAAAATGAAC

FIGURE 26

MKDMPLRIHVLLGLAITTLVQAVDKVDCPRLCTCEIRPWFTPRTSIYMEASTVDCNDLGLLT
FPARLPANTQILLQTNNIAKIEYSTDTPVNLTGLDLSQNNLSSVTNINVKKMPQLLSVYLE
ENKLTELPEKCLSELSNLQELYINHNLLSTISPGAFIGLHNLRLHLNSNRLQMINSKWFDA
LPNLEILMIGENPIIRIKDMNFKPLINLRSVIAGINLTEIPDNALVGLENLESISFYDNRL
IKVPHVALQKVNLKFLLDNKNPINRIRRGSFSNMLHLKELGINNMPELISIDSALVDNLPD
LRKIEATNNPRLSYIHPNAFFRLPKLESMLNSNALSAHYHTIESLPNLKEISIHSPNIRC
DCVIRWMNMNKTNIRFMEPDSLFCVDPPEFQGQNVROVHFRDMMEICLPLIAPESFPSNLNV
EAGSYVSFHCRTAEPQPEIYWITPSGQKLLPNTLTDKFYVHSEGTLINGVTPKEGGLYTC
IATNLVGADLKSVMIKVDGFPQDNNGSLNIKIRDIQANSVLVSWKASSKILKSSVKWTAFV
KTENSHAAQSARI PSDVKVYNLTHLN PSTEYKICIDIPTIYQKNRKKCVNVTTKGLHPDQKE
YEKNNTTTLMACLGGLLGIIGVICLISCLSPEMNCDGGHSYVRNYLQKPTFALGELYPPLIN
LWEAGKEKSTSLKVATVIGLPTNMS

Signal sequence:

amino acids 1-22

Transmembrane domain:

amino acids 633-650

N-glycosylation site.

amino acids 93-97, 103-107, 223-227, 382-386, 522-526, 579-583,
608-612, 624-628, 625-629

Casein kinase II phosphorylation site.

amino acids 51-55, 95-99, 242-246, 468-472, 487-491

Tyrosine kinase phosphorylation site.

amino acids 570-579

N-myristoylation site.

amino acids 13-19, 96-102, 158-164, 221-227, 352-358, 437-443,
491-497, 492-498, 634-640, 702-708

Cell attachment sequence.

amino acids 277-280

FIGURE 27

GCCCCGGGACTGGCGCAAGGTGCCAAGCAAGGAAAGAAATAATGAAGAGACACATGTGTTAG
CTGCAGCCTTTGAAACACGCAAGAAGGAAATCAATAGTGTGGACAGGGCTGGAACCTTAC
CACGCTTGGAGTAGATGAGGAATGGGCTCGTATTGCTGACATTCCAGCATGAATCT
GGTAGACCTGTGGTTAACCGTTCCCTCCATGTGTCTCCTACAAAGTTTGTCTTA
TGATACTGTGCTTCATTCTGCCAGTATGTGTCCAAGGGCTGTCTTGTCTCCTCTGGG
GGTTAAATGTCACCTGTAGCAATGCAAATCTCAAGGAAATACCTAGAGATCTCCTCCTGA
AACAGTCTTACTGTATCTGGACTCCAATCAGATCACATCTATTCCAATGAAATTAAAGG
ACCTCCATCAACTGAGAGTTCTCAACCTGTCCAAAATGGCATTGAGTTATCGATGAGCAT
GCCTCAAAGGAGTAGCTGAAACCTTGAGACTCTGGACTTGTCCGACAATCGGATTCAAAG
TGTGCAAAAAATGCCTCAATAACCTGAAGGCCAGGGCAGAATTGCCAACACCCTGGC
ACTGCGACTGTACTCTACAGCAAGTTCTGAGGAGCATGGCGTCCAATCATGAGACAGCCCAC
AACGTGATCTGTAACCGTCCGTGGATGAAACATGCTGGCAGACCATTCTCAATGCTGC
CAACGACGCTGACCTTGTAAACCTCCCTAAAAAAACTACCGATTATGCCATGCTGGTCACCA
TGTGGCTGGTTCACTATGGTATCTCATATGTGGTATTATGTGAGGCAAAATCAGGAG
GATGCCGGAGACACCTCGAATACTTGAATCCCTGCCAAGCAGGCAGAAGAAAGCAGATGA
ACCTGATGATATTAGCACTGTGGTATAGTGTCCAAACTGACTGTCAATTGAGAAAGAAAGAAA
GTAGTTGCGATTGCAGTAGAAATAAGTGGTTACTTCTCCATCCATTGAAACATTTGAA
ACTTTGTATTCAGTTTTGAATTATGCCACTGCTGAACCTTAACAAACACTACAACA
TAAATAATTGAGTTAGGTGATCCACCCCTTAATTGTACCCCCGATGGTATATTCTGAGT
AAGCTACTATCTGAACATTAGTTAGATCCATCTCACTATTTAATAATGAAATTATTTTT
AATTAAAAGCAAATAAAAGCTTAACCTTGAACCATGGAAAAAAAAAAAAAAACA

FIGURE 28

MNLVDLWLTRSLSMCLLQS FVLMILCFHSASMC PKG CLC SSS GGLN VTCS N ANLKEIPRDL
PPETVLLYLDSNQITSIPNEIFKDLHQLRVLNLSKNGIEFIDEHAFKGVAETLQTLDLSDNR
IQSVHKNAFNNLKARARIANNPWHCDCTLQQVLRSMASNHETAHNVICKTSVLDEHAGRPF
NAANDADLCNLPKKTTDYAMLVTMFGWFTMVISYVVYYVRQNQEDARRHLEYLKSLPSRQKK
ADEPDDISTVV

Signal sequence:

amino acids 1-33

Transmembrane domain:

amino acids 205-220

N-glycosylation site.

amino acids 47-51, 94-98

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 199-203

Casein kinase II phosphorylation site.

amino acids 162-166, 175-179

N-myristoylation site.

amino acids 37-43, 45-51, 110-116

FIGURE 29

ACCGAGCCGAGCGGACCGAAGGCAGCAGGGATTGAGGTGAGCAAGAGGATGCTGGCGGGG
GGCGTGAGGAGCATGCCAGCCCCCTCCTGGCCTGCTGGCAGCCCACCTCCTGCTGGTGCT
GGGCTCAGTGTGTCAGGCTCGGCCACGGCTGCCGCCCCGCTGCGAGTGCTCCGCCAGG
ACCGCGCTGTGCTGTGCCACCGCAAGTGCTTGTGGCAGTCCCCGAGGGCATCCCCACCGAG
ACCGCCTGCTGGACCTAGGAAGAACGCATCAAACGCTAACCGAGCACGAGTTCGCCAG
CTTCCGACCTGGAGGAGCTGGAGCTAACGAGAACATCGTGAGCGCCGTGGAGGCCGGCG
CCTTCAACAACCTTCAACCTCCGGACGCTGGGTCTCCGAGCAACGCCCTGAAGCTCATC
CCGCTAGGCGTCTTCACTGGCCTCAGCAACCTGACCAAGCAGGACATCAGCAGAACAAAGAT
CGTTATCCTACTGGACTACATGTTCAGGACCTGTACAACCTCAAGTCACTGGAGGTTGGCG
ACAATGACCTCGTCTACATCTCACCGCGCCTCAGCGGCCTAACAGCCTGGAGCAGCTG
ACGCTGGAGAAATGCAACCTGACCTCCATCCCCACCGAGGGCGTGTCCCACCTGCACGGCCT
CATCGTCTGAGGCTCCGGCACCTCAACATCAATGCCATCCGGGACTACTCCTTCAAGAGGC
TGTACCGACTCAAGGTCTTGGAGATCTCCACTGGCCTACTTGGACACCAGACACCCAAC
TGCCTCTACGGCCTCAACCTGACGTCCCTGTCCATCACACACTGCAATCTGACCGCTGTGCC
CTACCTGGCCGTCCGCCACCTAGTCTATCTCCGCTTCCCTAACCTCTCCATACACCCCCATCA
GCACCATTGAGGGCTCCATGTTGCATGAGCTGCTCCGGCTGCAGGAGATCCAGCTGGTGGCG
GGGCAGCTGGCGTGGTGGAGCCCTATGCCTTCCCGGCCCTAACACTACCTGCGCGTGTCAA
TGTCTCTGGCAACCAGCTGACCAACTGGAGGAATCAGTCTTCACTCGGTGGCAACCTGG
AGACACTCATCCTGGACTCCAACCCGCTGGCCTGCGACTGTCGGCTCTGTGGTGGTCCGG
CGCCGCTGGGGCTCAACTTCAACCGGCAGCAGCCCACGTGCGCCACGCCAGGTTGTCCA
GGGCAAGGAGTTCAAGGACTCCCTGATGTGCTACTGCCAACTACTCACCTGCCGCCGCG
CCCGCATCCGGGACCGCAAGGCCAGCAGGTGTTGGACGAGGGCACACGGTGCAGTT
GTGTGCCGGGCGATGGCAGCCGCCATCCTCTGGCTCTCACCCGAAAGCACCT
GGTCTCAGCCAAGAGCAATGGCGGCTCACAGTCTTCCGTGATGGCACGCTGGAGGTGCGCT
ACGCCAGGTACAGGACAACGGCACGTACCTGTGCATCGCGCCAACGCCGGGCGAACGAC
TCCATGCCGCCACCTGCATGTGCAGCTACTGCCGACTGCCCATCAGCCAACAA
GACCTTCGCTTCATCTCAACCAGCCGGCGAGGGAGAGGCCAACAGCACCCGCCACTG
TGCCTTCCCTCGACATCAAGACCCTCATCGCCACCACATGGCTTCTCATCTTT
CTGGCGTCGCTCTCTGGCTGGTGTGCTGTTCTGGAGGCCGGCAAGGGCAACAC
AAAGCACAAATCGAGATCGAGTATGTGCCCGAAAGTCGGACGCAGGCATCAGCTCCGCCG
ACGGCCCCGCAAGTTCAACATGAAGATGATATGAGGCCGGGGGGGGCAGGGACCCCCG
GGCGGCCGGCAGGGGAAGGGCTGGTCGCCACCTGCTCACTCTCCAGTCCTTCCACCTC
CTCCCTACCTCTACACACGTTCTCTTCTCCCTCCGCCCTCGTCCCTGCTGCCCG
CCAGCCCTCACCACCTGCCCTCTTCTACCAGGACCTCAGAACGCCAGACCTGGGACCCCA
CCTACACAGGGCATGACAGACTGGAGTTGAAAGCCGACGAACCGACACGCCAGAGTCA
ATAATTCAATAAAAAGTTACGAACCTTCTGTAACTTGGTTCAATAATTATGGATT
TATGAAAATTGAAATAATAAAAAGAGAAAAAAACTAAAAAAAAAAAAAA

FIGURE 30

MQVSKRMLAGGVRSMPSPLLACWQPI~~LLVLGSVLSGSATGCPPCECSAQDRAVLCHRKCF~~
VAVPEGIPTETRLLDLGKNRIKTLNQDEFASFPHLEELNENIVSAVEPGAFNNLFNLRTL
GLRSNRLKLIPLGVFTGLSNLTQDISENKIVILLDYMFQDLYNLKSLEVGDNDLVYISHRA
FSGLNSLEQLTLEKCNLTSIPTEALSHLHGLIVLRLRHLNINAIRDYSFKRLYRLKVLEISH
WPYLDTMTPNCLYGLNLTSLSITHCNLTAVPYLAVRHLVYLRFLNLSYNPISTIEGSMLHEL
LRLQEIQLVGGQLAVVEPYAFRGLNYLRVLNVSGNQLTTLEESVFHSVGNLETLLDSNPLA
CDCRLLWVFRRRWRLNFNRRQQPTCATPEFVQGKEFKDFPDVLLPNYFTCRRARIRDRKAQQV
FVDEGHTVQFVCRADGDPPPAILWLSPRKHLVSAKSNGRLTVFPDGTLEVRYAQVQDNGTYL
CIAANAGGNDNSMPAHLHVRSYSPDWPHQPNKTFAFISNQPGEGEANSTRATVPFPFDIKTLI
IATTMGFISFLGVVLFC~~L~~VLLFLWSRGKGNTKH~~NIEIEYV~~PRKSDAGISSADAPRKFNMKMI

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 556-578

N-glycosylation site.

amino acids 144-148, 202-206, 264-268, 274-278, 293-297, 341-345,
492-496, 505-509, 526-530, 542-546

Casein kinase II phosphorylation site.

amino acids 49-53, 108-112, 146-150, 300-304, 348-352, 349-353,
607-611

Tyrosine kinase phosphorylation site.

amino acids 590-598

N-myristoylation site.

amino acids 10-16, 32-38, 37-43, 113-119, 125-131, 137-143,
262-268, 320-326, 344-350, 359-365, 493-499, 503-509, 605-611

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 32-43

FIGURE 31

CCCGACGCGTCGGCACCTCGGCCGGCTCCGAAGCGGCTCGGGGCGCCCTTCGGTCAAC
ATCGTAGTCCACCCCCCTCCCCATCCCCAGCCCCGGGATTCAAGGCTCGCCAGGCCAGCC
AGGGAGCCGGCCGGGAAGCGCGATGGGGCCCCAGCCGCCTCGCTCCTGCTCCTGCTCCTGC
TGTCGCCTGCTGGCGCCGGCGGGCCAACCTCTCCCAGGACGACAGCCAGCCCTGG
ACATCTGATGAAACAGTGGTGGCTGGTGGCACCGTGGCTCAAGTGCCAAGTGAAAGATCA
CGAGGACTCATCCCTGCAATGGTCTAACCTGCTCAGCAGACTCTACTTTGGGGAGAAGA
GAGCCCTCGAGATAATCGAATTCACTGGTTACCTCTACGCCAACGAGCTCAGCATCAGC
ATCAGCAATGTGGCCCTGGCAGACGAGGGCGAGTACACCTGCTCAATCTTCACTATGCCTGT
GCGAACTGCCAAGTCCCTCGTCACTGTGCTAGGAATTCCACAGAACGCCATCATCACTGGTT
ATAAAATCTTCATTACGGGAAAAAGACACAGCCACCCCTAAACTGTCAGTCTCTGGGAGCAAG
CCTGCAGCCGGCTCACCTGGAGAAAGGGTGACCAAGAACTCCACGGAGAACCAACCGCAT
ACAGGAAGATCCAATGGTAAAACCTTCACTGTCAGCAGCTGGTACATTCCAGGTTACCC
GGGAGGATGATGGGGCGAGCATCGTGTGCTCTGTGAACCAGTAAAGGGAGCTGAC
AGATCCACCTCTCAACGCATTGAAGTTTATACACACCAACTGCGATGATTAGGCCAGACCC
TCCCCATCCTCGTGAGGGCCAGAAGCTGTTGCTACACTGTGAGGGTCGGCAATCCAGTCC
CCCAGCAGTACCTATGGGAGAAGGAGGGCAGTGTGCCACCCCTGAAGATGACCCAGGAGAGT
GCCCTGATCTCCCTTCCTCAACAAGAGTGACAGTGGCACCTACGGCTGCACAGCCACCA
CAACATGGGCAGCTACAAGGCCTACTACACCCCTCAATGTTAATGACCCAGTCCGGTGC
CCTCCTCCAGCACCTACCACGCCATCATCGTGGAATCGTGGCTTCATTGTCTCCTGCTG
CTCATCATGCTCATCTCCTGGCCACTACTTGATCCGGCACAAAGGAACCTACCTGACACA
TGAGGCAAAAGGCTCCGACGATGCTCCAGACGCCAGGGCCATCATCAATGCAGAAGGCC
GGCAGTCAGGAGGGACGACAAGAAGGAATATTCATCTAGAGGCCCTGCCACTTCCTGC
GCCCCCAAGGGCCCTGTGGGACTGCTGGGCCGTACCAACCCGGACTTGTACAGAGCAA
CCGCAGGGCCGCCCTCCGCTTGCTCCCCAGCCCACCCACCCCGTACAGAAATGTCTGC
TTGGGTGCGGTTTGACTCGGTTGGAATGGGGAGGGAGGAGGGCGGGGGAGGGAGGG
TTGCCCTCAGCCCTTCCGTGGCTCTGCATTGGTTATTATTATTTGTAAACAATCC
CAAATCAAATCTGTCTCCAGGCTGGAGAGGCAGGAGGCCCTGGGTGAGAAAAGCAAAAAACA
AACAAAAAAACA

FIGURE 32

MGAPAASLLLLLFFACCWAPGGANLSQDDSQPWTSDETVVAGGTVVLKCQVKDHEDSSLQW
SNPAQQTLYFGEKRALRDNRQLVTSTPHELSIISNVALADEGEYTCSIFTMPVRTAKSLV
TVLGIPQKPIITGYKSSLREKDTATLNCQSSGSKPAARLTWRKGDQELHGEPTRIQEDPNGK
TFTVSSSVTFQVTREDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQ
KLLLHCEGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGSYKA
YYTLNVNDPSPVPSSSTYHAIIGGIVAFIVFLLLIMLIFLGHYLIRHKGTYLTHEAKGSDD
APDADTAIINAEGGQSGGDDKKEYFI

Signal sequence:

amino acids 1-20

Transmembrane domain:

amino acids 331-352

N-glycosylation site.

amino acids 25-29, 290-294

Casein kinase II phosphorylation site.

amino acids 27-31, 35-39, 89-93, 141-145, 199-203, 388-392

N-myristoylation site.

amino acids 2-8, 23-29, 156-162, 218-224, 295-301, 298-304,
306-310, 334-340, 360-364, 385-389, 386-390

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 33

GGGGGTTAGGGAGGAAGGAATCCACCCCCACCCCCCAAACCCCTTCTCCTTCTGG
CTTCGGACATTGGAGCACTAAATGAACCTGAAATTGTGTCTGTGGCGAGCAGGATGGTCGCTG
TTACTTTGTGATGAGATCGGGGATGAATTGCTCGTTAAAAATGCTGCTTGGATTCTGTT
GCTGGAGACGTCTTTGCTTGCCGCTGGAAACGTTACAGGGGACGTTGCAAAGAGAAGA
TCTGTTCTGCAATGAGATAGAAGGGGACCTACACGTAGACTGTGAAAAAAAGGGCTTCACA
AGTCTGCAGCGTTCACTGCCCGACTTCCCAGTTTACCAATTATTCATGGCAATT
CCTCACTCGACTTTCCATAATGAGTTGCTAACCTTATAATGCGGTTAGTTGCACATGG
AAAACAATGGCTTGCATGAAATCGTCCGGGGCTTCTGGGGCTGCAGCTGGTAAAAGG
CTGCACATCAACAACAAGATCAAGTCTTTCGAAAGCAGACTTCTGGGGCTGGACGA
TCTGGAATATCTCCAGGCTGATTTAATTATTACGAGATATAGACCCGGGGCTTCCAGG
ACTTGAACAAAGCTGGAGGTGCTCATTAAATGACAATCTCATCAGCACCCACTGCCAAC
GTGTTCCAGTATGTGCCATCACCCACCTCGACCTCCGGGTAACAGGCTGAAAACGCTGCC
CTATGAGGAGGTCTGGAGCAAATCCCTGGTATTGCGGAGATCCTGCTAGAGGATAACCCTT
GGGACTGCACCTGTGATCTGCTCTCCCTGAAAGAATGGCTGGAAAACATTCCAAGAATGCC
CTGATCGGCCAGTGGTCTGCGAAGCCCCCACCAGACTGCAGGGTAAAGACCTCAATGAAAC
CACCGAACAGGACTTGTGTCCTTGAAAAACCGAGTGGATTCTAGTCTCCGGCGCCCCCTG
CCCAAGAACAGGACCTTGCTCCTGGACCCCTGCCACTCCTTCAAGACAAATGGCAAGAG
GATCATGCCACACCAGGTCTGCTCCAAACGGAGGTACAAAGATCCCAGGCAACTGGCAGAT
CAAAATCAGACCCACAGCAGCGATAGCGACGGTAGCTCCAGGAACAAACCTTAGCTAAC
GTTTACCCCTGCCCTGGGGCTGCAGCTGCGACCACATCCCAGGTCGGTTAAAGATGAAAC
TGCAACAAACAGGAACGTGAGCAGCTGGCTGATTGAAGCCCAGCTCTAACGTGCAGGA
GCTTTCTACGAGATAACAAGATCCACAGCATCCGAAAATCGCACTTGTGGATTACAAGA
ACCTCATTCTGTTGGATCTGGCAACAATAACATCGCTACTGTAGAGAACACACTTCAAG
AACCTTTGGACCTCAGGTGGCTACATGGATAGCAATTACCTGGACACGCTGTCCGGGA
GAAATTGCCGGGCTGCAAAACCTAGAGTACCTGAACGTGGAGTACAACGCTATCCAGCTCA
TCCTCCGGCACTTCAATGCCATGCCAAACTGAGGATCCTCATTCTCAACAAACAACCTG
CTGAGGTCCCTGCCTGTGGACGTGTTGCTGGGTCTCGCTCTAAACTCAGCCTGCACAA
CAATTACTCATGTACCTCCGGTGGCAGGGGTCGGACCAAGTTAACCTCCATCATCCAGA
TAGACCTCCACGGAAACCCCTGGAGTGCTCCTGCACAATTGTGCCTTCAAGCAGTGGGCA
GAACGCTTGGGTTCCGAAGTGTGATGAGCGACCTCAAGTGTGAGACGCCGGTGAACCTT
TAGAAAGGATTTCATGCTCCTCTCAATGACGAGATCTGCCCTCAGCTGTACGCTAGGATCT
CGCCCACGTTAACCTGCACAGTAAAACAGCACTGGGTTGGCGAGACCGGACGCACCTCC
AACTCCTACCTAGACACCAGCAGGGTGTCCATCTGGTGTGGCCACTGCTGCTGGT
GTTGTCACCTCCGCCTTCACCGTGGTGGGATGCTCGTGTGTTATCCTGAGGAACCGAAAGC
GGTCCAAGAGACGAGATGCCAACTCCTCCCGTCCGAGATTAACTCCCTACAGACAGTCTGT
GAECTTCTACTGGCACAATGGGCTTACAACGAGATGGGCCCCACAGAGTGTATGACTG
TGGCTCTCACTCGCTCTCAGACTAAGACCCCAACCCCAATAGGGAGGGCAGAGGGAAAGGCG
ATACATCCTTCCCCACCGCAGGCACCCGGGGCTGGAGGGCGTGTACCCAAATCCCCGCG
CCATCAGCCTGGATGGCATAAGTAGATAAAACTGTGAGCTCGCACAAACGAAAGGGCT
GACCCCTTACTTAGCTCCCTCTTGAAACAAAGAGCAGACTGTGGAGAGCTGGAGAGCGCA
GCCAGCTCGCTTTGCTGAGAGCCCCCTTGACAGAAAGCCCAGCACGACCCCTGCTGGAAG
AACTGACAGTGCCCTCGCCCTCGGCCCCGGGGCTGTGGGTTGGATGCCCGGTTCTATAC
ATATATACATATATCCACATCTATATAGAGAGATAGATATCTATTTCCCTGTGGATTAG
CCCCGTGATGGCTCCCTGTTGGCTACGCAGGGATGGCAGTTGCACGAAGGCATGAATGTAT
TGTAAATAAGTAACTTGACTTCTGAC

FIGURE 34

MLLWILLLETSLCFAAGNVGVDVCKEKCSCNEIEGDLHVDCEKKGFTSLQRFTAPTSQFYH
LFLHGNSLTRLFPNEFANFYNAVSLHMENNGLHEIVPGAFGLQLVKRLHINNNKIKSFRKQ
TFLGLDDLEYLQADFNLLRIDPGAFQDLNKEVLILNDNLISTLPANVFQYVPITHLDLRG
NRLKTLPYEEVLEQIPGIAEILLEDPWDCTCDLLSLKEWLENIPKNALIGRVVCEAPTRLQ
GKDLNETTEQDLCPLKNRVDSSLPPAPAQEETFAPGPLPTPKTNQEDHATPGSAPNGGTK
IPGNWQIKIRPTAAIATGSSRNKPLANSLPCPGGCSDHIPGSGLKMNCNNRNVSSLADLKP
KLSNVQELFLRDNKIHSIRKSHFVDYKNLILLLDGNNNIATVENNTFKNLLDLRWLYMDSNY
LDTLSREKFAGLQNLEYLNVEYNQIQILPGLTFNAMPKLRILILNNNLLRSLPVDFAGVSL
SKLSLHNYYFMYLPVAGVLDQLTSIIQIDLHGNPWECSCTIVPFKQWAERLGSEVLMSDLKC
ETPVNFFRKDFMLLSNDEICPQLYARISPLTSHSKNSTGLAETGTHNSYLDTSRVSISVL
VPGLLLVFTSAFTVVGMLVFILRNRKRSKRDANSASEINSLQTVCDSYWHNGPYNADG
AHRVYDCGSHSLSD

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 618-638

N-glycosylation site.

amino acids 18-22, 253-257, 363-367, 416-420, 595-599, 655-659

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 122-126, 646-650

Casein kinase II phosphorylation site.

amino acids 30-34, 180-184, 222-226, 256-260, 366-370, 573-577,
608-612, 657-661, 666-670, 693-697

N-myristoylation site.

amino acids 17-23, 67-73, 100-106, 302-308, 328-334, 343-349,
354-360, 465-471, 493-499, 598-604, 603-609

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 337-348

FIGURE 35

AGTCGACTGCGTCCCTGTACCCGGGCCAGCTGTGTTCTGACCCCCAGAATAACTCAGGGC
TGCACCGGGCCTGGCAGCGCTCCGCACACATTCTGCGGGCTAAGGGAAACTGTTGGC
CGCTGGGCCCGCGGGGGATTCTTGGCAGTTGGGGGTCCGTGGGAGCGAGGGCGGAGGGG
AAGGGAGGGGGAACCGGGTTGGGAAGCCAGCTGTAGAGGGCGGTGACC CGCTCCAGACAC
AGCTCTGCGTCCCTCGAGCGGACAGATCCAAGTTGGGAGCAGCTCTGCGTGC GGCCCTCAG
AGAATGAGGGCGGCCGTTCGCCCTGTGCCTCCTGGCAGGCGCTCTGGCCCGGGCGG
CGGCGAACACCCCCTGCGACCGTGCTGGCTCGGCTCGGGCCTGCTACAGCCTGC
ACCA CGCTACCATGAAGCGGCAGGGCGCCGAGGAGGCCTGCATCCTGCGAGGTGGGGCGCTC
AGCACCGTGC GTGC GGGCGCCGAGCTGCGCGCTGTGCTCGCGCTCCTGCGGGCAGGCCAGG
GCCGGAGGGGCTCAAAGACCTGCTGTTCTGGT CGCACTGGAGCGCAGGCGTTCCC ACT
GCACCC TGAGAAGCAGCCTTGC GGGGTTCTCGCTGTCTCCGACCCGGCGGTCTC
GAAAGCGACACGCTGCAGTGGGTGGAGGAGCCCAACGCTCCTGCACCGCGCGGAGATGCGC
GGTACTCCAGGCCACCGTGAGGCGCAGGCTGGAAGGAGATGCGATGCCACCTGC
GCGCCAACGGCTACCTGTGCAAGTACCAAGTTGAGGTCTTGTGTCCTGCGCCGCCCCGG
GCCGCTCTAACTTGAGCTATCGCGCCCTTCCAGCTGCACAGCGCCGCTCTGGACTTCAG
TCCACCTGGGACCGAGGTGAGTGC GCTCTGCCGGGACAGCTCCGATCTCAGTTACTGCA
TCGCGGACGAAATCGCGCTCGCTGGACAAACTCTCGGGCGATGTGTTGTCCCTGCC
GGGAGGTACCTCCGTGCTGGCAAATCGCAGAGCTCCCTAACTGCCTAGACGACTTGGGAGG
CTTGCCTCGGAATGTGCTACGGGCTTCGAGCTGGGAAGGACGGCCGCTTGTGACCA
GTGGGAAGGACAGCGACCCCTGGGGGACCGGGTGCCCACCAGGCGCCGGCCACT
GCAACCAGCCCCGTGCCG CAGAGAACATGGCAATCAGGGTGACGAGAACAGCTGGGAGAGAC
ACCACTTGCCCTGAAACAAGACAATTCA GTAACATCTATTCTGAGATTCTCGATGGGAT
CACAGAGCACGATGTCTACCCCTCAAATGTCCCTCAAGCCGAGTCAGGCCACTATCACC
CCATCAGGGAGCGTGATTCCAAGTTAATTCTACGACTCCTCTGCCACTCCTCAGGCTT
CGACTCCTCTGCGGTCTTCAATTGTGAGCACAGCAGTAGTAGTGTGTTGGTATCT
TGACCATGACAGTACTGGGCTTGTCAAGCTCTGCTTCA GAAAGCCCTTCCAGCCA
AGGAAGGAGTCTATGGGCCCGCCGGCCTGGAGAGTGATCCTGAGCCCCTGCTTGGCTC
CAGTTCTGCACATTGCAAAACATGGGTGAAAGTCGGGACTGTGATCTGCGGGACAGAG
CAGAGGGTGCTTGTGGAGTCCCTTGGCTCTAGTGATGCAATGGAAACAGGGGA
CATGGGCACTCCTGTGAACAGTTTCACTTTGATGAAACGGGAACCAAGAGGAACCTAC
TTGTGTA CTGACAATTCTGAGAAATCCCCCTTCTAAATTCCCTTACTCCACTGAG
GAGCTAAATCAGAAC TGCACACTCCTCCCTGATGATAGAGGAAGTGGAAAGTGCCTTAGGA
TGGTGATACTGGGGACCGGGTAGTGCTGGGAGAGATATTTCTTATGTTATTGGAGAA
TTTGGAGAAGTGATTGAACTTTCAAGACATTGGAAACAAATAGAACACAAATATAATTACA
TTAAAAAATAATTCTACCAAAATGGAAAGGAAATGTTCTATGTTGTCAGGCTAGGAGTAT
ATTGGTTGAAATCCCAGGGAAAAAATAAAAATAAAGGATTGTTGAT

FIGURE 36

MRPAFALCLLWQALWPGPGGGEHPTADRAGCSASGACYSLHHATMKRQAAEEACILRGGALS
TVRAGAELRAVLALLRAGPGPGGGSKDLLFWVALERRSHCTLENEPLRGFSWLSSDPGGLE
SDTLQWVEEPQRSCTARRCAVLQATGGVEPAGWKEMRCHLRANGYLCKYQFEVLCAPRPGA
ASNLSYRAPFQLHSAALDFSPPGTEVSALCRGQLPISVTCIADEIGARWDKLSGDVLCPCPG
RYLRAGKCAELPNCLDDLGGFACECATGFELGKDGRSCVTSGEGQPTLGGTGVPTRRPPATA
TSPVPQRTWPIRVDEKLGETPLVPEQDNSVTSIPEIPRWGSQSTMSTLQMSLQAESKATITP
SGSVISKFNSTTSSATPQAFDSSSAVFIFVSTAVVVLVILTMVLGLVKLCFHESPSSQPR
KESMGPPGLESDEPEPAALGSSAHCTNNGVKVGDCDLRDRAEGALLAESPLGSSDA

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 189-193, 381-385

Glycosaminoglycan attachment site.

amino acids 289-293

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 98-102, 434-438

Casein kinase II phosphorylation site.

amino acids 275-279, 288-292, 342-346, 445-449

N-myristoylation site.

amino acids 30-36, 35-41, 58-64, 59-65, 121-127, 151-157,
185-191, 209-215, 267-273, 350-356, 374-380, 453-459, 463-469,
477-483

Aspartic acid and asparagine hydroxylation site.

amino acids 262-274

FIGURE 37

FIGURE 38

MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESFIGSEGFPGVYPPNSKCTWK
ITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGHANGQRIGRFCGTFRPGALVSSGNKMMV
QMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDRDYPAGVTCVWHIV
APKNQLIELKFEKFDVERDNYCRYDYVAVFNGEVNDARRIGKYCGDSPAPIVSERNELLI
QFLSDLSLTADGFIGHYIFRPKKLPTTTEQPVTTFPVTTGLKPTVALCQQKCRTGTLEGN
YCSSDFVLAGTVITTITRD GSLHATVSIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRR
GLNYIIMGQVGEDGRGKIMPNSFIMMFKTKNQKLLDALKNKQC

Signal sequence:

amino acids 1-23

N-glycosylation site.

amino acids 355-359

Casein kinase II phosphorylation site.

amino acids 64-68, 142-146, 274-278

Tyrosine kinase phosphorylation site.

amino acids 199-208

N-myristoylation site.

amino acids 34-40, 35-41, 100-106, 113-119, 218-224, 289-295,
305-311, 309-315, 320-326, 330-336

Cell attachment sequence.

amino acids 149-152

FIGURE 39

CGGACGCGTGGCGGACGCGTGGCGGCCACGGCGCCGCGGCTGGGGCGGTGCGCTTCTT
CCTTCTCCGTGGCCTACGAGGGTCCCCAGCCTGGTAAAGATGGCCCCATGGCCCCGAAGG
GCCTAGTCCCAGCTGTGCTCTGGGCCTCAGCCTCTCCTCAACCTCCCAGGACCTATCTGG
CTCCAGCCCTCTCCACCTCCCCAGTCTTCTCCCCGCCTCAGCCCCATCCGTGTACACCTG
CCGGGGACTGGTTGACAGCTTAACAAGGGCTGGAGAGAACCATCCGGACAACCTTGAG
GTGGAAACACTGCCTGGAGGAAGAGAATTGTCAAATAAAAGACAGTGAGACCCGCCTG
GTAGAGGTGCTGGAGGGTGTGCAGCAAGTCAGACTCGAGTGCCACCGCCTGGAGCT
GAGTGAGGAGCTGGTGGAGAGCTGGTGGTTACAAGCAGCAGGAGGCCGGACCTCTTCC
AGTGGCTGTGCTCAGATTCCCTGAAGCTCTGCTGCCCGCAGGCACCTCGGGCCCTCTGC
CTTCCCTGTCTGGGGAACAGAGAGGCCCTCGGGTGGCTACGGCAGTGTGAAGGAGAAGG
GACACGAGGGGGCAGCGGCACTGTGACTGCCAAGCCGGCTACGGGGTGAGGCCGTGGCC
AGTGTGGCCTGGCTACTTGAGGCAGAACGCAACGCCAGCCATCTGGTATGTTGGCTTGT
TTTGGCCCTGTGCCGATGCTCAGGACCTGAGGAATCAAACGTGTTGCAATGCAAGAAGGG
CTGGGCCCTGCATCACCTCAAGTGTGAGACATTGATGAGTGCCACAGAGGGAGCCAAC
GTGGAGCTGACCAATTCTGCGTGAACACTGAGGGCTCCTATGAGTGCCGAGACTGTGCCAAG
GCCTGCCTAGGCTGCATGGGGCAGGCCAGGTCGCTGTAAGAAGTGTAGCCCTGGCTATCA
GCAGGTGGCTCCAAGTGTCTCGATGGATGAGTGTGAGACAGAGGTGTCCGGAGAGA
ACAAGCAGTGTGAAAACACCGAGGGCGGTTATCGCTGCATCTGTGCCGAGGGCTACAAGCAG
ATGGAAGGCATCTGTGTAAGGAGCAGATCCCAGAGTCAGCAGGCTTCTCAGAGATGAC
AGAAGACGAGTTGGTGGTGCTGCAGCAGATGTTCTTGGCATCATCTGTGCACTGGCCA
CGCTGGCTGCTAAGGGCAGTGGTGGTCAACGCCATCTCATTGGGCTGTGGCGGCCATG
ACTGGCTACTGGTTGTCAGAGCGCAGTGACCGTGTGGAGGGCTTCATCAAGGGCAGAT
ATCGCGGCCACCACCTGTAGGACCTCCTCCCACCCACGCTGCCCGAGAGCTGGCTGCC
TCCTGCTGGACACTCAGGACAGCTTGGTTATTTTGAGAGTGGGTAAGCACCCCTACCTG
CCTTACAGAGCAGCCCAGGTACCCAGGCCGGCAGACAAGGCCCTGGGTAAAAAGTAGC
CCTGAAGGTGGATACCATGAGCTTCCACCTGGCGGGACTGGCAGGCTCACAATGTGTGA
ATTTCAAAAGTTTCTTAATGGTGGCTGCTAGAGCTTGGCCCTGCTTAGGATTAGGTG
GTCCTCACAGGGTGGGCCATCACAGCTCCCTGCCAGCTGCATGCCAGTTCTGT
TCTGTGTTCACCATCCCCACACCCATTGCCACTTATTATTCATCTCAGGAAATAAAGA
AAGGTCTGGAAAGTTAAAAAAAAAAAAAAAAAAAAAA

FIGURE 40

MAPWPPKGLVPAVLWGLSLFLNLPGPIWLQPSPPPQS PPPQPHPCHTCRLVDSFNKGLER
TIRDNFGGGNTAWEENLSKYKDSETRLVEVLEGVCSKSDFECHRLLESELVESWWFHKQ
QEAPDLFQWLCSDSLKLCCPAGTFGPSCLPCCGGTERPCGGYGCCEGEGTRGGSGHCDCQAG
YGGEACGQCGLGYFEAERNASHLVCACFGPCARCSGPPEESNLQCKKGWALHHLKCVDIDE
CGTEGANCGADQFCVNTEGSYECRDCAKACLGCMGAGPGRCKKCSPGYQQVGSKCLDVDECE
TEVCPGENKQCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTEDELVVLQQMFFG
IIICALATLAAGDLVFTAIFIGAVAAMTGYWLSERSDRVLEGFIKGR

Signal sequence:

amino acids 1-29

Transmembrane domain:

amino acids 372-395

N-glycosylation site.

amino acids 79-83, 205-209

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 290-294

Casein kinase II phosphorylation site.

amino acids 63-67, 73-77, 99-103, 101-105, 222-226, 359-363

N-myristoylation site.

amino acids 8-14, 51-57, 59-65, 69-75, 70-76, 167-173, 173-179,
177-183, 188-194, 250-256, 253-259, 267-273, 280-286, 283-289,
326-332, 372-378, 395-401

Aspartic acid and asparagine hydroxylation site.

amino acids 321-333

EGF-like domain cysteine pattern signature.

amino acids 181-193

FIGURE 41

TGAGACCCTCCTGCAGCCTCTCAAGGGACAGCCCCACTCTGCCTCTGCTCCTCCAGGGCA
GCACCATGCAGCCCCCTGTGGCTCTGCTGGCACTCTGGTGTGCCCCCTGGCCAGCCCCGGG
GCCGCCCTGACCGGGGAGCAGCTCCTGGCAGCCTGCTGCCAGCTGCAGCTCAAAGAGGT
GCCCACCTGGACAGGGCCGACATGGAGGAGCTGGTCATCCCCACCCACGTGAGGGCCCAGT
ACGTGGCCCTGCTGCAGCGCAGCCACGGGACCGCTCCCGCGAAAGAGGTTAGCCAGAGC
TTCCGAGAGGTGGCCGGCAGGTTCTGGCGTGGAGGCCAGCACACACCTGCTGGTGTTCGG
CATGGAGCAGCGCTGCCGCCAACAGCGAGCTGGTCAGGCCGTGCTGCCGTCTCCAGG
AGCCGGTCCCCAAGGCCGCGCTGCACAGGCACGGCGCTGTCCCCGCCAGCGCCCGGGCC
CGGGTGACCGTCGAGTGGCTCGCGTCCCGCACGACGGCTCCAACCGCACCTCCCTATCGA
CTCCAGGCTGGTGTCCGTCCACGAGAGCGGCTGGAAGGCCTTCGACGTGACCGAGGCCGTGA
ACTTCTGGCAGCAGCTGAGCCGGCCCCGGCAGCCGTGCTGCTACAGGTGTCGGTGCAGAGG
GAGCATCTGGGCCCGCTGGCGTCCGGCGCCACAAGCTGGTCCGCTTGCCCTCGCAGGGGGC
GCCAGCCGGCTTGGGAGCCCCAGCTGGAGCTGCACACCCCTGGACCTGGGGACTATGGAG
CTCAGGGCGACTGTGACCCCTGAAGCACCAATGACCGAGGGCACCCGCTGCTGCCGCCAGGAG
ATGTACATTGACCTGCAGGGATGAAGTGGGCCAGAACTGGGTGCTGGAGCCCCCGGGCTT
CCTGGCTTATGAGTGTGTGGCACCTGCCGGCAGCCCCCGGAGGCCCTGGCCTTAAGTGGC
CGTTTCTGGGGCCTCGACAGTGCATGCCCTGGAGACTGACTCGCTGCCATGATCGTCAGC
ATCAAGGAGGGAGGCAGGACCAGGCCAGGTGGTCAGCCTGCCAACATGAGGGTGCAGAA
GTGCAGCTGTGCCTCGGATGGTGCCTCGTGCCTGCCAGGCCATAGGCCCTAGTG
TAGCCATCGAGGGACTTGACTTGTGTGTTCTGAAGTGTGAGGGTACCAAGGAGAGCTG
GCGATGACTGAAGTGCCTGATGGACAAATGCTCTGTGCTCTAGTGAGCCCTGAATTGCTT
CCTCTGACAAGTTACCTCACCTAATTGGCTTCTCAGGAATGAGAATCTTGCCACTGGA
GAGCCCTGCTCAGTTCTATTACTGCAGTATATTCTAAGCAGTACCT
GTGGAGATACTGTAACCTGAGGGCAGAAAGCCANTGTGTATTGTTACTTGCTGTAC
TGGATCTGGCTAAAGTCCACCACCACTCTGGACCTAACAGACCTGGGGTAAGTGTGGGT
TGTGCATCCCCAATCCAGATAATAAGACTTTGAAAACATGAATAAAACACATTATTCT
AAAAA

100 700 2000 5000 10000

FIGURE 42

MQPLWLCWALWVLPLASPGAAALTGEQLLGSLRLQLKEVPTLDRADMEELVIPTHVRAQYV
ALLQRSHGDRSRGKRFQSFSREVAGRFLALEASTHLLVFGMEQRLPPNSELVQAVLRLFQEP
VPKAALHRHGRLSPRSARARVTVEWLRVRDDGSNRTSLIDSRLVSVHESGWKAFDVTEAVNF
WQQLSRPRQPLLLQSVQREHLGPLASGAHKLVRFASQGAPAGLGEPQLELHTLDLGDYGAQ
GDCDPEAPMTEGTRCCRQEMYIDLQGMKWAENWVLEPPGFLAYECVGTCRQPPEALAFKWPF
LGPRQCIASETDSLPMIVSIKEGGTRPQVVSLPNMRVQKCSCASDGALVPRRLQP

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 158-162

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 76-80

Casein kinase II phosphorylation site.

amino acids 68-72, 81-85, 161-165, 169-173, 319-323, 329-333

N-myristoylation site.

amino acids 19-25, 156-162, 225-231, 260-266, 274-280

Amidation site.

amino acids 74-78

TGF-beta family signature.

amino acids 282-298

FIGURE 43

GTCTGTTCCCAGGAGTCCTCGCGGCTGTTGTCAGTGGCCTGATCGCGATGGGACAAA
GGCGCAAGTCGAGAGGAAACTGTTGTCCTCTCATATTGGCGATCCTGTTGCTCCCTGG
CATTGGGCAGTGTACAGTCACTCTTCTGAACCTGAAGTCAGAATTCTGAGAATAATCCT
GTGAAGTTGTCCTGTCCTACTCGGGCTTTCTTCTCCCCGTGGAGTGGAAAGTTGACCA
AGGAGACACCACCACTCGTTGCTATAATAACAAGATCACAGCTCCTATGAGGACCGGG
TGACCTTCTGCCAACCTGGTATCACCTCAAGTCCGTGACACGGGAAGACACTGGGACATAC
ACTTGTATGGTCTCTGAGGAAGGCGAACAGCTATGGGAGGTCAAGGTCAAGCTCATCGT
GCTTGTGCCTCCATCCAAGCCTACAGTTAACATCCCCTCCTGCCACCATTGGGAACCGGG
CAGTGCTGACATGCTCAGAACAGATGGTCCCCACCTTCTGAATAACACCTGGTCAAAGAT
GGGATAGTGATGCCAACAGAACAGATGGTCCCCACCTTCTGAACTCTCCTATGTCT
GAATCCCACACAGGAGAGCTGGTCTTGATCCCCTGTCAGCCTCTGATAACTGGAGAACACA
GCTGTGAGGCACGGAATGGTATGGGACACCCATGACTTCAAATGCTGTGCGATGGAGCT
GTGGAGCGGAATGTGGGGTCATCGTGGCAGCCGTCTGTAACCCCTGATTCTCCTGGGAAT
CTTGGTTTTGGCATCTGGTTGCCTATAGCCGAGGCCACTTGACAGAACAAAGAAAGGGA
CTTCGAGTAAGAAGGTGATTACAGCCAGCCTAGTGCCGAAGTGAAGGAGAACCAAACAG
ACCTCGTCATTCCCTGGTGTGAGCCTGGTCGGCTACCGCCTATCATCTGCATTGCCCTACT
CAGGTGCTACGGACTCTGGCCCTGATGTCTGTAGTTCACAGGATGCCCTATTGTCTTC
TACACCCCACAGGGCCCCCTACTTCTCGGATGTGTTTAATAATGTCAGCTATGCC
ATCCTCCTTCATGCCCTCCCTCCCTTACCACTGCTGAGTGGCCTGGAACTTGTAA
GTGTTATTCCCCATTCTTGAGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCC
TTCTAAGTAGACAGAAAAATGGCGGGGTCGCAGGAATCTGCACTCAACTGCCACCTGGC
TGGCAGGGATCTTGAATAGGTATCTTGAGCTGGTTCTGGCTCTTCCCTGTACTGAC
GACCAGGGCCAGCTGTTCTAGAGCGGAATTAGAGGCTAGAGCGGCTGAAATGGTTGTTGG
TGATGACACTGGGTCCTCCATCTCTGGGCCACTCTCTGTCTTCCATGGGAAGTG
CCACTGGATCCCTGCCCCTGCTGAATACAAGCTGACTGACATTGACTGTCTGT
GGAAAATGGGAGCTTGTGGAGAGCATAGTAAATTTCAGAGAACCTGAAGCCAAAAG
GATTAAAACCGCTGCTCTAAAGAAAAGAAAATGGAGGCTGGCGCAGTGGCTACGCCTG
TAATCCCAGAGGCTGAGGCAGGCGGATCACCTGAGGTGGAGTTGGATCAGCCTGACCA
ACATGGAGAAACCTACTGGAAATACAAAGTTAGCCAGGCATGGTGGTGCATGCCCTGTAGTC
CCAGCTGCTCAGGAGCCTGGCAACAAGAGCAAAACTCCAGCTCAAAAAAAAAAAAAAA

FIGURE 44

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRIPENNPVKLSCAYSGFSSPRVEW
KFDQGDTTRLCYNNKITASYEDRVTFLPTGITFKSVTREDTGTYTCMVSEEGGNSYGEVKV
KLIVLVPPSKPTVNIPSSATIGNRAVLTSEQDGSPPSEYTWFKDGIIVMPTNPKSTRAFSNS
SYVLNPTTGELVFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNVGVIVAAVLVTLI
LLGILVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSSFLV

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 238-255

N-glycosylation site.

amino acids 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 270-274

Casein kinase II phosphorylation site.

amino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158,
193-197, 203-207, 287-291

N-myristoylation site.

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

FIGURE 45

CAGCGCGTGGCCGGCGCTGTGGGGACAGCATGAGCGGCGGTTGGATGGCGCAGGTTGGA
GCGTGGCGAACAGGGCTCTGGCCTGGCGCTGCTGCTGCTGCTCGGCCTCGGACTAGGCCT
GGAGGCCGCGCGAGCCGCTTCCACCCGACCTCTGCCAGGCCAGGCCAGCTCAG
GCTCGTGCCACCCACCAAGTTCCAGTGCCGCACCAGTGGTTATGCGTGCCCCCACCTGG
CGCTGCGACAGGGACTTGGACTGCAGCGATGGCAGCGATGAGGAGGAGTGCAGGATTGAGCC
ATGTACCCAGAAAGGGCAATGCCACCGCCCCCTGGCCTCCCTGCCCTGCACCGCGTCA
GTGACTGCTCTGGGGAACTGACAAGAAACTGCGCAACTGCAGCCGCTGGCCTGCCTAGCA
GGCGAGCTCCGTTGCACGCTGAGCGATGACTGCATTCCACTCACGTGGCGCTGCGACGGCCA
CCCAGACTGTCCGACTCCAGCGACGAGCTGGCTGTGGAACCAATGAGATCCTCCGGAAG
GGGATGCCACAACCAGGGGCCCCCTGTGACCCCTGGAGAGTGTACCTCTCAGGAATGCC
ACAACCAGGGGCCCCCTGTGACCCCTGGAGAGTGTCCCTCTGTCGGAATGCCACATCCTC
CTCTGCCGGAGACCAGTCTGGAAGCCAACTGCCTATGGGTTATTGCAGCTGCTGCGGTGC
TCAGTGCAAGCCTGGTCACCGCCACCCCTCCTCTTGTCCCTGGCTCCGAGCCAGGAGCGC
CTCCGCCACTGGGTTACTGGTGGCCATGAAGGAGTCCCTGCTGTCAGAACAGAACAGAC
CTCGCTGCCTGAGGACAAGCAACTGCCACCCAGTCACTCAGCCCTGGCGTAGCCGGACA
GGAGGAGAGCAGTGATGCGGATGGGTACCCGGGCACACCAGCCCTCAGAGACCTGAGTTCTT
CTGGCCACGTGGAACCTCGAACCCGAGCTCCTGCAGAAGTGGCCCTGGAGATTGAGGGTCCC
TGGACACTCCCTATGGAGATCCGGGAGCTAGGATGGGAACCTGCCACAGCCAGAACAGAC
GGGCTGGCCCCAGGCAGCTCCAGGGGGTAGAACGCCCTGTGCTTAAGAACACTCCCTGCTG
CCCCGTCTGAGGGTGGCGATTAAGTTGCTTC

700 720 740 760 780 800 820 840 860 880

FIGURE 46

MSGGWMAQVGAWRTGALGLLLLLGLGLEAAASPLSTPTSAQAAGPSSGSCPPTKFQCR
TSGLCVPLTWRCRDLDLSDGSDEEECRIEPCQKGQCPPPGLPCPCTGVSDCSGGTDKKL
RNCSRILACLAGELRCTLSDDCIPLTWRCDGHPDCPDSSDELGGTNEILPEGDATTMGPPVT
LESVTSLRNATTMGPVTLESPSVGNATSSSAGDQSGSPTAYGVIAAAAVLSASLVTATLL
LLSWLRAQERLRPLGLLVAMKESLLLSEQKTSLP

Signal sequence:

amino acids 1-30

Transmembrane domain:

amino acids 230-246

N-glycosylation site.

amino acids 126-130, 195-199, 213-217

Casein kinase II phosphorylation site.

amino acids 84-88, 140-144, 161-165, 218-222

N-myristoylation site.

amino acids 3-9, 10-16, 26-32, 30-36, 112-118, 166-172, 212-218,
224-230, 230-236, 263-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 44-55

Leucine zipper pattern.

amino acids 17-39

FIGURE 47

CCACCGCTCCGGTCTCGCTCGCTCGCAGCGGCGGCAGCAGAGGTGCGCACAGATGCGG
GTTAGACTGGCGGGGGAGGAGGCGGAGGAGGAAGGAAGCTGCATGCATGAGACCCACAGA
CTCTTGCAAGCTGGATGCCCTCTGTGGATGAAAGATGTTATCATGGAATGAACCCGAGCAATG
GAGATGGATTCTAGAGCAGCAGCAGCAGCAGCAACCTCAGTCCCCCAGAGACTCTTG
GCCGTGATCCTGTGGTTTAGCTGGCGCTGTGCTTCGCCCTGCACAGCTCACGGCGGGTT
CGATGACCTCAAGTGTGTGCTGACCCGGCATTCCCGAGAATGGCTTCAGGACCCCCAGCG
GAGGGTTTCTTGAAGGCTCTGTAGCCGATTCACTGCCAAGACGGATTCAAGCTGAAG
GGCGCTACAAAGAGACTGTGTTGAAGCATTAAATGGAACCTAGGCTGGATCCAAGTGA
TAATTCCATCTGTGTGCAAGAAGATTGCCGTATCCCTCAAATCGAAGATGCTGAGATTATA
ACAAGACATATAGACATGGAGAGAACGTAATCATCACTTGTATGAAGGATTCAAGATCCGG
TACCCCGACCTACACAATATGGTTTATTATGTCGCGATGATGGAACGTGGAATAATCTGCC
CATCTGTCAAGGCTGCCGTGAGACCTCTAGCCTCTTCTAATGGCTATGTAAACATCTCTGAGC
TCCAGACCTCCTTCCGGTGGGACTGTGATCTCCTATCGCTGCTTCCGGATTAAACCTT
GATGGGTCTCGTATCTTGAGTGCTTACAAAACCTTATCTGGTGTCCAGCCCACCCGGTG
CCTTGCTCTGGAAGCCAAGTCTGTCCACTACCTCAAATGGTGAGTCACGGAGATTCGTCT
GCCACCCGGCCTTGTGAGCGTACAACCACGGAACTGTGGTGGAGTTTACTGCGATCCT
GGCTACAGCCTCACCAAGCGACTACAAGTACATCACCTGCCAGTATGGAGAGTGGTTCTTC
TTATCAAGTCTACTGCATCAAATCAGAGCAAACGTGGCCCAGCACCCATGAGACCCCTCTGA
CCACGTGGAAGATTGTGGCGTTACGGCAACCAGTGTGCTGCTGGTGTGCTCGTCATC
CTGGCCAGGATGTTCCAGACCAAGTTCAAGGCCACTTCCCCCAGGGGGCTCCCCGGAG
TTCCAGCAGTGACCTGACTTGTGGTAGACGGCGTGCCTCATGCTCCGTCTATG
ACGAAGCTGTGAGTGGCGCTTGAGTGCCTAGGCCCGGGTACATGGCCTCTGTGGGCCAG
GGCTGCCCTTACCGTGGACGACCAGAGCCCCCAGCATAACCCGGCTCAGGGACACGGA
CACAGGCCAGGGAGTCAGAAACCTGTGACAGCGTCTCAGGCTCTGAGCTGCTCCAAA
GTCTGTATTCACCTCCAGGTGCCAAGAGAGCACCCACCTGCTGGACAACCTGACATA
ATTGCCAGCACGGCAGAGGAGGTGGCATCCACCAGCCCAGGCATCCATCATGCCACTGGGT
GTTGTTCTAAGAAACTGATTGATTAAAAAATTCCAAAGTGTCTGAAGTGTCTTTCAA
ATACATGTTGATCTGTGGAGTTGATTCTTCTCTTGTGGTTAGACAAATGTAAACAA
AGCTCTGATCCTAAAATTGCTATGCTGATAGAGTGGTGGAGGGCTGGAAGCTTGATCAAGTC
CTGTTCTTCTTGACACAGACTGATTAAAATTAAAAGNAAAAAA

FIGURE 48

MYHGMNPSNGDGFLEQQQQQQPQSPQRLLAVILWFQLALCFGPAQLTGGFDDLQVCADPGI
PENGFRTPSGGVFFEGSVARFHQCQDGFKLGATKRLCLKHFNGLGWI PSDNSICVQEDCRI
PQIEDAEIHNKTYRHGEKLIITCHEGFKIRYPDLHNMVSLCRDDGTWNNLPICQGCLRPLAS
SNGYVNISELQTSFPVGTVISYRCFPGFKLDGSAYLECLQNLIWSSSPRCLALEAQVCPLP
PMVSHGDFVCHPRPCERYNHGTVEFYCDPGYSLTSDYKYITCQYGEWFPSYQVYCIKSEQT
WPSTHETLLTTWKIVAFATSVLLVLLVILARMFQTKFKAHFPPRGPPRSSSDPDFVVVD
GVPVMLPSYDEAVSGGLSALGPGYMASVGQGCPLPVDDQSPPAYPGSGDTDTGPGESETCDS
VSGSELLQSLYSPPRCQESTHPASDNPDIIASTAAEVASTSPGIHHAHWVLFLRN

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 325-344

N-glycosylation site.

amino acids 104-108, 134-138, 192-196

Casein kinase II phosphorylation site.

amino acids 8-12, 146-150, 252-256, 270-274, 313-317, 362-366,
364-368, 380-384, 467-471, 468-472

N-myristoylation site.

amino acids 4-10, 61-67, 169-175, 203-209, 387-393, 418-424,
478-484

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 394-405

FIGURE 49

CCCCACGCGTCCGCTCCGGCCCTCCCCCCCCTCCCGTCGGTCCGTGGTGGCCTAGAGA
TGCTGCTGCCCGGGTTGCAGTTGTCGCGCACGCCCTGCCCGCCAGCCCGCTCCACCGCCGT
AGCGCCCGAGTGTGGGGGGCGCACCCGAGTCGGGCCATGAGGCCGGAAACCGCGCTACAGG
CCGTGCTGCCGTGCTGGCTGGTGGGCTGCCGGCCGACGGGTGCCCTGCTGAGTGCC
TCGGATTGGACCTCAGAGGAGGGCAGCCAGTCTGCCGGGAGGGACACAGAGGCCTTGTAA
TAAAGTCATTTACTTCATGATACTTCTCGAACAGACTGAACATTGAGGAAGCAAAGAACCT
GCAGGAGGGATGGAGGCCAGCTAGTCAGCATCGAGTCTGAAGATGAACAGAAACTGATAGAA
AAGTTCATTGAAAACCTCTGCCATCTGATGGTGAECTCTGGATTGGCTCAGGAGGCGTGA
GGAGAAACAAAGCAATAGCACAGCCTGCCAGGACCTTATGCTGGACTGATGGCAGCATAT
ACAATTTAGGAACTGGTATGTGGATGAGCCGCTGCCGGCAGCGAGGTCTGCGTGGTCATG
TACCATCAGCCATCGGCACCCGCTGGCATCGGAGGCCCTACATGTTCCAGTGGAAATGATGA
CCGGTGCAACATGAAGAACAACTTCATTGCAAATATTCTGATGAGAAACCAGCAGTCCCTT
CTAGAGAAGCTGAAGGTGAGGAAACAGAGCTGACAACACCTGTACTTCCAGAAGAAACACAG
GAAGAAGATGCCAAAAAAACATTAAAGAAAGTAGAGAACGCTGCCCTGAATCTGCCCTACAT
CCTAATCCCCAGCATTCCCTCTCCCTCCTGTGGTCAACCACAGTTGTATGTTGGTT
GGATCTGTAGAAAAAGAAAACGGGAGCAGCCAGACCCCTAGCACAAAGAACACACCATC
TGGCCCTCTCCTCACCAAGGAAACAGCCGGACCTAGAGGTCTACAATGTCATAAGAAAACA
AAGCGAAGCTGACTTAGCTGAGACCCGGCCAGACCTGAAGAATATTCATTCCGAGTGTGTT
CGGGAGAAGCCACTCCGATGACATGTCTTGTGACTATGACAACATGGCTGTGAACCCATCA
GAAAGTGGTTGTGACTCTGGTGAGCGTGGAGAGTGAGATTGTGACCAATGACATTATGA
GTTCTCCCCAGACAAATGGGAGGAGTAAGGAGTCTGGATGGTGAAATGAAATATATG
GTTATTAGGACATATAAAAACTGAAACTGACAACAAATGGAAAAGAAATGATAAGCAAAATC
CTCTTATTTCTATAAGAAAATACACAGAACGGTCTATGAACAAAGCTTAGATCAGGTCTGT
GGATGAGCATGTGGTCCCCACGACCTCCTGTTGGACCCCCACGTTGGCTGTATCCTTTAT
CCCAGCCAGTCATCCAGCTGACCTTATGAGAACGGTACCTTGCCCAGGTCTGGCACATAGTA
GAGTCTCAATAATGTCACTTGGTTGGTGTATCTAACCTTAAGGGACAGAGCTTACCTG
GCAGTGATAAAAGATGGGCTGTGGAGCTGGAAAACCACCTCTGTTTCCCTGCTCTACAG
CAGCACATATTATCATACAGACAGAAAATCCAGAACATCTTCAAAGCCCACATATGGTAGCACAG
GTTGGCCTGTGCATCGCAATTCTCATATCTGTTTTCAAAGAATAAAATCAAATAAAGA
GCAGGAAAAAA

FIGURE 50

MRPGTALQAVLLAVLLVGLRAATGRLLSASDLRGGQPVCRGQTQRPCYKVIYFHDTSRRL
NFEEAKEACRRDGGQLVSIESEDEQKLIEKFIENLLPSDGDFWIGLRRREEKQSNSTACQDL
YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPYMFQWNDDRCNMKNFICKY
SDEKPAVPSREAEGEETELTPVLPETQEEDAKTFKESREAALNAYILIPSIPLLLLLLV
VTTVVCWVWICRKRKREQPDYSTKKQHTIWPSPHQGNSPDLEVYNVIRKQSEADLAETRPDL
KNISFRVCSCGEATPDDMSCDYDNMAVNPESGFVTLSVESGFVTNDIYEFS PDQMGRSKES
GWVENEIYGY

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 117-121, 312-316

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 296-300

Casein kinase II phosphorylation site.

amino acids 28-32, 30-34, 83-87, 100-104, 214-218, 222-226,
299-303, 306-310, 323-327

N-myristoylation site.

amino acids 18-24, 37-43, 76-82, 146-152

FIGURE 51

GGGGTCTCCCTCAGGGCCGGGAGGCACAGCGGTCCCTGCTGAAGGGCTGGATGTACGC
ATCCGCAGGTTCCCGCGGACTTGGGGCGCCGCTGAGCCCCGGCGCCCGAGAAGACTTGT
GTTGCCTCCTGCAGCCTCAACCCGGAGGGCAGCGAGGGCCTACCACCATGATCACTGGTGT
GTTCAGCATGCGCTTGTGGACCCCAGTGGCGTCCTGACCTCGCTGGCGTACTGCCTGCACC
AGCGGCGGGTGGCCCTGGCCAGCTGCAGGAGGCCATGCCAGTGTCCGGTCACCGCAGC
CTGCTGAAGTTGAAAATGGTGCAGGTGCGTTGACACGGGGCTCGGAGTCCTCTCAAGCC
GCTCCGCTGGAGGAGCAGGTAGAGTGGAACCCCCAGCTATTAGAGGTCCCACCCAAACTC
AGTTGATTACACAGTCACCAATCTAGCTGGTGGTCCGAAACCATAATTCTCCTTACGACTCT
CAATACCATGAGACCACCCCTGAAGGGGGCATGTTGCTGGCAGCTGACCAAGGTGGCATT
GCAGCAAATGTTGCCTTGGAGAGAGACTGAGGAAGAACTATGTGGAAAGACATTCCCTTC
TTTCACCAACCTCAACCCACAGGAGGTCTTATTGTTCCACTAACATTTCGGAATCTG
GAGTCCACCCGTTGTTGCTGGCTGGCTTTCCAGTGTCAAGAAAGAAGGACCCATCATCAT
CCACACTGATGAAGCAGATTAGAAGTCTTGATCCAACTACCAAAGCTGCTGGAGCCTGA
GGCAGAGAACCAAGAGGCCGGAGGCAGACTGCCTCTTACAGCCAGGAATCTCAGAGGATTG
AAAAAGGTGAAGGACAGGATGGCATTGACAGTAGTGTGATAAAAGTGGACTTCTCATCCTCCT
GGACAACGTGGCTGCCAGCAGGACACAAACCTCCAAAGCTGCCCATGCTGAAGAGATTG
CACGGATGATCGAACAGAGAGACTGTGGACACATCCTGTACATACTGCCAAGGAAGACAGG
GAAAGTCTTCAGATGGCAGTAGGCCATTCCCTCACATCCTAGAGAGCAACCTGCTGAAAGC
CATGGACTCTGCCACTGCCCGACAAGATCAGAAAGCTGTATCTATGCGGCTCATGATG
TGACCTTCATACCGCTTTAATGACCTGGGATTTGACCACAAATGCCACCGTTGCT
GTTGACCTGACCATGGAACCTTACCAAGCACCTGGAATCTAAGGAGTGGTTGTGCAGCTCTA
TTACCACGGGAAGGAGCAGGTGCCAGAGGTTGCCCTGATGGCTCTGCCGCTGGACATGT
TCTTGAATGCCATGTCAGTTATACCTTAAGCCCAGAAAAATACCATGCACTCTGCTCTCAA
ACTCAGGTGATGGAAGTTGGAAATGAAGAGTAACTGATTATAAAAGCAGGATGTGTTGATT
TTAAAATAAGTGCCTTATACAATG

FIGURE 52

MITGVFSMRLWTPVGVLTSAYCLHQRRAVALAELQEADGQCPVDRSLLKLKMVQVVFRHGAR
SPLKPLPLEEQVEWNPQLLEVPPQTQFDYTVTNLAGGPKPYSFYDSQYHETTLKGGMFAGQL
TKVGMQQMFALGERLRKNYVEDIPFLSPTFNQEVFIRSTNIFRNLESTRCLLAGLFQCQKE
GPIIIHTDEADSEVLYPNYQSCWSLRQRTRGRQTAISLQPGISEDLKKVKDRMGIDSSDKVD
FFILLDNVAEQAHLNPSCPMLKRFARMIEQRRAVDTSLYILPKEDRESLQMAVGPFLHILES
NLLKAMDSATAPDKIRKLYLYAAHDVTIFIPLLMTLGIFDHKWPPFAVDLTMEYLQHLESKEW
FVQLYYHGKEQVPRGCPDGLCPPLDMFLNAMSVTLSPEKYHALCSQTQVMEVGNEE

Signal sequence:

amino acids 1-23

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 218-222

Casein kinase II phosphorylation site.

amino acids 87-91, 104-108, 320-324

Tyrosine kinase phosphorylation site.

amino acids 280-288

N-myristoylation site.

amino acids 15-21, 117-123, 118-124, 179-185, 240-246, 387-393

Amidation site.

amino acids 216-220

Leucine zipper pattern.

amino acids 10-32

Histidine acid phosphatases phosphohistidine signature.

amino acids 50-65

FIGURE 53

CTCCTCTAACATACTTGCAGCTAAACTAAATATTGCTGCTGGGGACCTCCTCTAGCCT
TAAATTCAGCTCATCACCTCACCTGCCTTGGTCATGGCTCTGCTATTCTCCTTGATCCTT
GCCATTTGCACCAGACCTGGATTCCTAGCGTCTCCATCTGGAGTGC~~GG~~CTGGTGGGGGCCT
CCACCGCTGTGAAGGGCGGGTGGAGGTGGAACAGAAAGGCCAGTGGGGCACC~~GT~~TGTGATG
ACGGCTGGGACATTAAGGACGTGGCTGTGTTGCCGGAGCTGGCTGTGGAGCTGCCAGC
GGAACCCCTAGTGGTATTTGTATGAGCCACCAGCAGAAAAAGAGCAAAGGT~~CCT~~CATCCA
ATCAGTCAGTTGCACAGGAACAGAAGATA~~C~~ATTGGCTCAGTGTGAGCAAGAAGAAGTTATG
ATTGTTCACATGATGAAGATGCTGGGCATCGTGTGAGAACCCAGAGAGCTTTCTCCCCA
GTCCCAGAGGGTGT~~C~~AGGCTGGCTGACGCCCTGGCATTGCAAGGGAC~~G~~CGTGGAA~~G~~TGAA
GCACCAGAACCA~~G~~GTGGTACCGTGTGCCAGACAGGCTGGAGCCTCCGGGCCGAAAGGTGG
TGTGCCGGCAGCTGGGATGTGGGAGGGCTGTACTGACTCAAAAACGCTGCAACAAGCATGCC
TATGGCCGAAAACCCATCTGGCTGAGCCAGATGTCATGCTCAGGACGAGAAGCAACC~~TT~~CA
GGATTGCCCTCTGGCCTTGGGGAAAGAACACACTGCAACC~~A~~ATGATGAAGACACGTGGTCG
AATGTGAAGATCC~~TT~~GACTTGAGACTAGTAGGAGGAGAACCTCTGCTCTGGCGACTG
GAGGTGCTGCACAAGGGCGTATGGGCTCTGTCTGTGATGACA~~A~~CTGGGAGAAAAGGAGGA
CCAGGTGGTATGCAAGCAACTGGGCTGTGGAGTCCCTCTCCCTCAGAGACCGGA
AATGCTATGCCCTGGGTTGGCCGCATCTGGCTGGATAATGTC~~T~~GCTCAGGGAGGGAG
CAGTCCCTGGAGCAGTGC~~C~~AGCACAGATTTGGGGTTTCAGACTGCACCCACCAGGAAGA
TGTGGCTGT~~C~~ATCTGCTCAGTGTAGGTGGGCATCATCTAATCTGTTGAGTGCCTGAATAGAA
GAAAAACACAGAAGAAGGGAGCATTACTGTCTACATGACTGCATGGATGAACACTGATCT
TCTTCTGCCCTGGACTGGACTTAACTTGGTGC~~CC~~CTGATTCTCAGGCC~~T~~CAGAGTTGG
ATCAGAACTTACAACATCAGGTCTAGTTCTCAGGCCATCAGACATAGTTGGA~~A~~CTACATCA
CCACCTTCCTATGTCTCCACATTGCACACAGCAGATTCCCAGCCTCCATAATTGTGTGTAT
CAACTACTAAATACATTCTCACACACACACACACACACACACACACACACACACATA
CACCA~~TTT~~GT~~C~~CTGTTCTGAAGAA~~CT~~GTGACAAAATACAGATTTGGTACTGAAAGAGA
TTCTAGAGGAAC~~GG~~AATTTAAGGATAAAATTCTGAATTGGTTATGGGTTCTGAAATTG
GCTCTATAATCTAATTAGATATAAAATTCTGGTAAC~~TT~~ATTTACAATAAAAGATAGCAC
TATGTGTTCAA

FIGURE 54

MALLFSLILAICTRPGFLASPSGVRLVGGHRCEGRVEQKGQWGTVCDDGWDIKDVAVL
RELGCGAASGTPSGILYEPPAEKEQKVLIQSVSCTGTEDTLAQCEQEEVYDCSHDEDAGASC
ENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNQWYTVCQTGWSLRAAKVVCRQLGCGRAVL
TQKRCNKHAYGRKPIWLSQMCSGREATLQDCPSGPWGKNTCNHDEDTWVECEDPFDLRLVG
GDNLCSRLEVLHKGVWGSVCDDNWGEKEDQVVCKQLGCGKSLSPSFRDRKCYGPGVGRIDL
DNVRCSGEEQSLEQCQHRFWGFHDCTHQEDVAVICSV

Signal sequence:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 47-51, 97-101, 115-119, 209-213, 214-218, 234-238,
267-271, 294-298, 316-320, 336-340

N-myristoylation site.

amino acids 29-35, 43-49, 66-72, 68-74, 72-78, 98-104, 137-143,
180-186, 263-269, 286-292

Amidation site.

amino acids 196-200

Speract receptor repeated domain signature.

amino acids 29-67, 249-287

FIGURE 55

ACTGCACTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTGACCTCGAC
CCACCGTCCCGGGACCGTGGCGGACCGTGGGCCGGCTACCAGGAAGAGTCTGCCGAAG
GTGAAGGCCATGGACTTCATCACCTCCACAGCCATCCTGCCCTGCTGTTGGCTGCCCTGG
CGTCTCGGCCTCTTCCGGCTGCTGCAGTGGGTGCGCGGGAAAGGCCTACCTGCGGAATGCTG
TGGTGGTGATCACAGGCGCCACCTCAGGGCTGGCAAAGAATGTGAAAAGTCTTCTATGCT
GCGGGTGCTAAACTGGTGCTCTGTGGCCGGAATGGTGGGCCCTAGAACAGACTCATCAGAGA
ACTTACCGCTTCTCATGCCACCAAGGTGCAGACACACAAGCCTTACTTGGTGACCTTCGACC
TCACAGACTCTGGGCCATAGTGAGCAGCTGAGATCCTGCAGTGCTTGGCTATGTC
GACATACTTGTCAACAATGCTGGATCAGCTACCGTGGTACCATCATGGACACCAAGTGG
TGTGGACAAGAGGGTCATGGAGACAAACTACTTGGCCCAGTTGCTCTAACGAAAGCACTCC
TGCCCTCCATGATCAAGAGGGAGGCAAGGCCACATTGTCGCCATCAGCAGCATCCAGGGCAAG
ATGAGCATTCCCTTCGATCAGCATATGCAGCCTCCAAGCACGCAACCCAGGCTTCTTG
CTGTCGCGGCCGAGATGGAACAGTATGAAATTGAGGTGACCGTCATCAGCCCCGGCTACA
TCCACACCAACCTCTGTAAATGCCATCACCAGGATGGATCTAGGTATGGAGTTATGGAC
ACCACCAAGGCCAGGGCGAAGCCCTGTGGAGGTGGCCAGGATGTTCTGCTGCTGTGG
GAAGAAGAAGAAAGATGTGATCCTGGCTGACTTACTGCCTCCTGGCTGTTATCTCGAA
CTCTGGCTCCTGGCTCTTCAGCCTCATGGCCTCAGGGCCAGAAAAGAGCGGAAATCC
AAGAACTCCTAGTACTCTGACCAGCCAGGGCAGGGCAGAGAACGACTCTTAGGCTTGC
TTACTCTACAAGGGACAGTTGCATTGAGACTTTAATGGAGATTGCTCTACAAGTGG
AAAGACTGAAGAAACACATCTGTGCAGATCTGCTGGCAGAGGACAATAAAAACGACAACA
AGCTTCTTCCCAGGGTGAGGGAAACACTTAAGGAATAATATGGAGCTGGGTTAACACT
AAAAACTAGAAATAAACATCTCAAACAGTAAAAAAAAAAAGGGCGGCCGCACTCTAG
AGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGGTTATTGCAGCTTATAATGGTTAC

FIGURE 56

MDFITSTAILPLLFGCLGVFGLFRLLQWVRGKAYLRNAVVIITGATSGLGKECAKVFYAAGA
KLVLCGRNGGALEELIRELTASHATKVQTHKPYLVTFDLTDGAI
VAAAEEILQCFGYVDIL
VNNA
GISYRG
TIDTTVDVKRM
ETNYFGPVALTKALLPSMIKR
RQGHIVAISSIQGKMSI
PFRSAYAASKHATQAFFDCLRAEMEQYEIEVTVISPGYIHTNLSVNAITADGSRYGVMDTTT
AQGRSPVEVAQDVLA
AVGKKKD
VILADLLPSL
AVYLRT
LAPGLFFSL
MASRARKERKS
KNS

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 104-120, 278-292

N-glycosylation site.

amino acids 228-232

Glycosaminoglycan attachment site.

amino acids 47-51

Casein kinase II phosphorylation site.

amino acids 135-139, 139-143, 253-257

Tyrosine kinase phosphorylation site.

amino acids 145-153, 146-153

N-myristoylation site.

amino acids 44-50, 105-111, 238-244, 242-248, 291-297

Amidation site.

amino acids 265-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 6-17

FIGURE 57

CCCCACCGCGTCCGCTGGTGTAGATCGAGCAACCCTCTAAAAGCAGTTAGAGTGGTAAAAAA
AAAAAAAAAACACACCAAACGCTCGCAGGCCACAAAAGGG**GATGAA**ATTCTTCTGGACATCCTC
CTGCTTCTCCCGTTACTGATCGTCTGCTCCCTAGAGTCCTCGTGAAGCTTTTATTCCCTAA
GAGGAGAAAATCAGTCACCGGCAGAAATCGTGTGATTACAGGAGCTGGCATGGAATTGGGA
GACTGACTGCCTATGAATTGCTAAACTTAAAGCAAGCTGGTCTCTGGATATAAAATAAG
CATGGACTGGAGGAAACAGCTGCCAATGCAAGGGACTGGTGCCAAGGTCATACCTTGTTG
GGTAGACTGCAGCAACCGAGAAGATATTACAGCTCTGCAAAGAAGGTGAAGGCAGAAATTG
GAGATGTTAGTATTAGTAAATAATGCTGGTGTAGTCTATACATCAGATTGTTGCTACA
CAAGATCCTCAGATTGAAAAGACTTTGAAGTTAATGTACTTGACATTTCTGGACTACAAA
GGCATTCTCCTGCAATGACGAAGAATAACCATGCCATTGTCACTGTGGCTCGGCAG
CTGGACATGTCTGGTCCCCTTACTGGCTTACTGTTCAAGCAAGTTGCTGCTGTTGGA
TTTCATAAAACTTGACAGATGAACGGCTGCCTTACAAATAACTGGAGTC
AAAACACATG
TCTGTGTCCTAATTGTAACACTGGCTTCATCAAAATCCAAGTACAAGTTGGGACCCA
CTCTGGAACCTGAGGAAGTGGTAAACAGGCTGATGCATGGGATTCTGACTGAGCAGAAGATG
ATTTTATTCCATCTCTATAGCTTTTAACAACATTGGAAAGGATCCTCCTGAGCGTT
CCTGGCAGTTAAAAGAAAAACTAGTTAAGTTGATGCAGTTATTGGATATAAAATGA
AAGCGCA**AA**GCACCTAGTTCTGAAAACGATTACAGGTTAGGTTAGGTGATGTCATCTA
ATAGTGCAGAATTAAATGTTGAACCTCTGTTTTCTAATTATCCCCATTCTCAATA
TCATTGAGGCTTGGCAGTCTCATTACTACCACTGTTAGCCAAAAGCTGATT
ACATATGATATAAACAGAGAAACCTTAGAGGTGACTTTAAGGAAAATGAAGAAAAGAA
CCAAAATGACTTTATTAAAATAATTCCAAGATTATTGTTGAGCTCACCTGAAGGCTTGCAA
AATTGTAACATAACCGTTATTAAACATATATTGTTGAGCTCACCTAAATTGTTG
ATAATTGTTGTTCTTTCTGTTCTACATAAAACGTTAGAAACTCAAGCTCTCTAAATAAAA
TGAAGGACTATCTAGGGTATTTCACAATGAATATCATGAACCTCAATGGTAGGTTTC
ATCCTACCCATTGCCACTCTGTTCTGAGAGATACCTCACATTCCAATGCCAACATTCT
GCACAGGGAAGCTAGAGGTGGATACACGTGTGCAAGTATAAAAGCATCACTGGGATTAAAG
GAGAATTGAGAGAATGTACCCACAAATGGCAGCAATAATAATGGATCACACTTAAAAAAA
AA
AA

FIGURE 58

MKFLLDILLPLLLIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGIGRLTAYEFAKLKSK
LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKVKAEIGDVSILVNNAGVV
YTSDLFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNHGHIVTVASAAGHVSVPFLLAYC
SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTSLGPTLEPEEVVNRLMH
GILTEQKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34, 283-287

Casein kinase II phosphorylation site.

amino acids 52-56, 95-99, 198-202, 267-271

N-myristoylation site.

amino acids 43-49, 72-78, 122-128, 210-216

TOP SECRET//NOFORN

FIGURE 59

CCACCGCTCCGGACCGTGGTCGACTAGTTAGATCGCGAGCGGCCGCCGCGCTC
AGGGAGGAGCACCGACTGCGCCGCACCCCTGAGAGATGGTTGGTGCCTGTGGAAAGGTGATTG
TTTCGCTGGTCCTGTTGATGCCCTGGCCCTGTGATGGGCTGTTCGCTCCCTACAGAAGT
GTTCCATGCCACCTAACGGAGACTCAGGACAGCCATTATTCTCACCCCTTACATTGAAGC
TGGGAAGATCCAAAAGGAAGAGAACATTGAGTTGGTCGGCCCTTCCCAGGACTGAACATGA
AGAGTTATGCCGGCTCCTCACCGTGAATAAGACTTACAACAGCAACCTCTCTGGTTC
TTCCCAGCTCAGATACAGCCAGAACGATGCCAGTAGTTCTCTGGCTACAGGGTGGGCCGGG
AGGTTCATCCATGTTGGACTCTTGGAACATGGCCCTATGTTGTCACAAGTAACATGA
CCTTGCCTGACAGAGACTTCCCCTGGACCACAACGCTCTCCATGCTTACATTGACAATCCA
GTGGGCACAGGCTTCAGTTTACTGATGATAACCCACGGATATGCAGTCATGAGGACGATGT
AGCACGGGATTATAACAGTGCACTAATTCAAGTTTCAGATATTCTGAATATAAAAATA
ATGACTTTTATGTCACTGGGAGTCTTATGCAGGGAAATATGTGCCAGCCATTGCACACCTC
ATCCATTCCCTCAACCCCTGTGAGAGAGGTGAAGATCAACCTGAACGGAATTGCTATTGGAGA
TGGATATTCTGATCCGAATCAATTATAAGGGGCTATGCAGAAATTCTGTACCAAATTGGCT
TGTTGGATGAGAACGAAAAAAAGTACTTCCAGAACAGCAGTGCCTGAATGCATAGAACACATC
AGGAAGCAGAACTGGTTGAGGCCTTGAATACTGGATAAAACTACTAGATGGCAGTTAAC
AAGTGATCCTCTTACTTCCAGAATGTTACAGGATGTAGTAATTACTATAACTTTGCCTG
GCACCGAACCTGAGGATCAGCTTACTATGTGAAATTGGTCACTCCCAGAGGTGAGACAA
GCCATCCACGTGGGAATCAGACTTTAATGATGGAACTATAGTTGAAAAGTACTTGCAGA
AGATACAGTACAGTCAGTTAACGCATGGTTAAGTGAATAATTATAAGGTTCTGA
TCTACAATGCCAACGGACATCATCGTGGCAGCTGCCCTGACAGAGCGCTCTGATGGC
ATGGACTGGAAAGGATCCCAGGAATACAAGAACGGCAGAAAAAAAGTTGGAAGATCTTAA
ATCTGACAGTGAAGTGGCTGGTTACATCCGGCAAGCGGGTGAATTCCATCAGGTAATTATTC
GAGGTGGAGGACATATTTACCCATGACCAGCCTCTGAGAGCTTTGACATGATTAATCGA
TTCATTATGGAAAAGGATGGATCCTTATGTTGATAAAACTACCTCCAAAAGAGAACAT
CAGAGGTTTCATTGCTGAAAAGAAAATCGTAAAACAGAAAATGTCAAGGAATAAAAAAA
TTATCTTTCATATCTGCAAGATTTCATCAATAAAAATTATCCTGAAACAAGTGAGC
TTTGTTTTGGGGGAGATGTTACTACAAAATTAAACATGAGTACATGAGTAAGAATTACA
TTATTTAACTAAAGGATGAAAGGTATGGATGATGTGACACTGAGACAAAGATGTATAATGA
AATTTAGGGTCTTGAATAGGAAGTTAATTCTTAAGAGTAAGTGAAGGAGTGCAGTTG
TAACAAACAAAGCTGTAACATCTTCTGCCAATAACAGAACAGTTGGCATGCCGTGAAGGT
GTTTGGAAATATTATGGATAAGAACAGCTCAATTATCCAAATAATGGATGAAGCTATAA
TAGTTGGGAAAAGATTCTCAAATGTATAAAGTCTTAGAACAAAAGAACATTCTTGAAATA
AAAATATTATATAAAAGTAAAAAAAAAA

FIGURE 60

MVGAMWKIVSLVLLMPGCDGLFRSLYRSVSMPKGDSGQPLFLTPYIEAGKIQKGREL
VGPPGLNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEH
GPYVVTTSNMTLRDRDFPWTTLSMLYIDNPVGTGSFTDDTHGYAVNEDDVARDLYSALIQF
FQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSNPNVREVKINLNGIAIGDGYSDPESIIGG
YAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEEAFEILDKLLDGDLTSDPSYFQNVTG
CSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIHVGNQTFNDGTIVEKYLREDTVQSVKPWLT
EIMNNYKVLIYNGQLDIIVAALTERSLMGMDWKGSQEYKKAEKVKWKIFKSDSEVAGYIRO
AGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDPYVG

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 81-85, 132-136, 307-311, 346-350

Casein kinase II phosphorylation site.

amino acids 134-138, 160-164, 240-244, 321-325, 334-338, 348-352,
353-357, 424-428

Tyrosine kinase phosphorylation site.

amino acids 423-432

N-myristoylation site.

amino acids 22-28, 110-116, 156-162, 232-238

Serine carboxypeptidases, serine active site.

amino acids 200-208

Crystallins beta and gamma 'Greek key' motif signature.

amino acids 375-391

FIGURE 61

CGAGGGCTTCGGCTCCGAATGGCACATGTGGAATCCCAGTCTGGTGGCTACAACAT
TTTCCCTTCTAACAAAGTCTAACAGCTGTTCAACAGCTAGTGATCAGGGGTTCTTCTT
GCTGGAGAAGAAAGGGCTGAGGGCAGAGCAGGGCACTCTCACTCAGGGTGANAGCTCCTTG
CCTCTCTGTTGATAACAGAGCATGAGAAAGTGAAGAGATGCAGCGGAGTGAGGTGATGGAAG
TCTAAAATAGGAAGGAATTGTGCAATATCAGACTCTGGGAGCAGTTGACCTGGAGAGC
CTGGGGGAGGGCCTGCCTAACAAAGCTTCAAAAAACAGGAGCAGTCCACTGGCTGGGAT
AAGACGTGCCGGTAGGATAGGAAAGACTGGGTTAGTCCTAATATCAAATTGACTGGCTGGG
TGAACCTCAACAGCCTTTAACCTCTGGGAGATGAAAACGATGGCTTAAGGGGCCAGAAA
TAGAGATGCTTGTAAAATAAATTTAAAAAAGCAAGTATTTCATAGCATAAAGGCTAGA
GACCAAAATAGATAACAGGATTCCCTGAACATTCTAACAGAGGAGAAAGTATGTTAAAATA
GAAAAACAAAATGCAGAAGGAGGAGACTCACAGAGCTAACACCAGGATGGGACCTGGGTC
AGGCCAGCCTTTGCTCCTCCGGAAATTATTTGGTCTGACCACTCTGCCTTGTGTTT
GCAGAATCATGTGAGGGCAACCGGGGAAGGTGGAGCAGATGAGCACACACAGGAGCCGTCT
CCTCACCAGCCGCCCTCTCAGCATGGAACAGAGGCAGCCCTGGCCCCGGGCCCTGGAGGTGG
ACAGCCGCTCTGTTGCTCTCAGTGGTCTGGGTGCTGCTGGCCCCCAGCAGCCGGC
ATGCCCTCAGTTCAAGCACCTTCACTCTGAGAACTGTGACTGGACCTCAACCACCTGACCGT
CCACCAAGGGACGGGGCGTCTATGTGGGGCATCAACCGGGTCTATAAGCTGACAGGCA
ACCTGACCATCCAGGTGGCTATAAGACAGGGCCAGAAGAGGACAACAAGTCTCGTTACCCG
CCCTCATCGTGAGCCCTGAGCGAAGTGCTCACCTCACCAACAATGTCAACAAAGCTGCT
CATCATTGACTACTCTGAGAACCGCCTGCTGGCCTGTGGGAGCCTCTACCAGGGGTCTGCA
AGCTGCTGCGGCTGGATGACCTCTCATCCTGGTGGAGCCATCCCACAAGAAGGAGCACTAC
CTGTCAGTGTCAACAAGACAGGGCACCAGTACGGGTGATTGTGCGCTCTGAGGGTGAGGA
TGGCAAGCTCTTCATGGCACGGCTGGATGGAAGCAGGATTACTTCCGACCCCTGTCCA
GCCGGAAAGCTGCCCGAGACCCCTGAGTCCTCAGCCATGCTGACTATGAGCTACACAGCGAT
TTTGTCTCTCTCATCAAGATCCCTCAGACACCCCTGGCCCTGGTCTCCCACCTTGACAT
CTTCTACATCTACGGCTTGTAGTGGGGCTTGTCTACTTCTCACTGTCCAGCCGAGA
CCCTGAGGGTGTGCCATCAACTCCGCTGGAGACCTCTACACCTCACGATCGTCCGG
CTCTGCAAGGATGACCCCAAGTCCACTCATACGTGTCCTGCCCTGGCTGCACCCGGC
CGGGGTGGAATACCGCCTCAGGCTGCTTACCTGCCAACGCTGGGACTCACTGGCCC
AGGCCTTCAATATCACCAGCCAGGACGATGTACTCTTGCCATCTCTCAAAGGGCAGAAG
CAGTATCACCACCCGCCGATGACTCTGCCCTGTGTCCTCCCTATCCGGCCATCAACTT
GCAGATCAAGGAGGCCCTGCAGTCCTGCTACCAAGGGCAGGGCAACCTGGAGCTCAACTGGC
TGCTGGGAAGGACGCCAGTGCACGAAGGCCCTGCCCCATCGATGATAACTCTGTGGA
CTGGACATCAACCAGCCCTGGGAGGCTCAACTCCAGTGGAGGGCTGACCCCTGTACACCAC
CAGCAGGGACCGCATGACCTCTGTGGCCTCTACGTTACAACGGCTACAGCGTGGTTTG
TGGGGACTAAGAGTGGCAAGCTGAAAAAGGTAAGAGTCTATGAGTTGAGATGCTCCAATGCC
ATTCACCTCTCAGCAAAGAGTCCCTTTGGAGGTAGCTATTGGTGGAGATTTAACTATAG
GCAACTTATTTCTGGGAACAAAGGTGAAATGGGGAGGTAAGAAGGGTTAATTTGTG
ACTTAGCTCTAGCTACTCCAGCCATCAGTCATTGGTATGTAAGGAATGCAAGCGTA
TTCAATATTCCTAACCTTAAGAAAAACTTAAGAAGGTACATCTGCAAAAGCAAA

FIGURE 62

MGTLGQASLFAPPNYFWSDHSALCFAESCEGQPGKVEQMSTHRSRLLTAAPLSMEQRQPWP
RALEVDSRSVVLLSVVWVLLAPPAAGMPQFSTFHSENRDWTFNHLTVHQGTGAVYVGAINRV
YKL TGNLTIQVAHKTGPEEDNKSRYPPLIVQPCSEVLTLTNNVNKLLIIDYSENRLLAGSL
YQGVCKLLRLDDLFI LVEPSHKKEHYLSSVNKTGTMGVIVRSEGEDGKLFIGTAVDGKQDY
FPTLSSRKLP RDPESSAMLDYELHSDFVSSLIKI PSDLALVSHFDIFYIYGFASGGFVYFL
TVQPETPEGVAINSAGDLFYTSRIVRLCKDDPKFHSYVSLPFGCTRGVEYRLLQAAYLAKP
GDSL AQA FNITSQDDVLFAIFSKGQKQYHHPPDDSALCAFPIRAINLQIKERLQSCYQGEGN
LELNWLLGKD VQCTKAPVPIDDNFCGLDINQPLGGSTPVEGLTLYTTSRDRMTS VASYVYNG
YSVVFGTKSGKLKKVRVYEFRCSNAIHLLSKESLLEG SYWWRFNYRQLYFLGEQR

Signal sequence:

amino acids 1-32

Transmembrane domain:

amino acids 71-87

N-glycosylation site.

amino acids 130-134, 145-149, 217-221, 381-385

Casein kinase II phosphorylation site.

amino acids 139-143, 229-233, 240-244, 291-295, 324-328, 383-387,
384-388, 471-475, 481-485, 530-534

N-myristoylation site.

amino acids 220-226, 319-325, 353-359, 460-466, 503-509

FIGURE 63

AGGCTCCCGCGCGCGGCTGAGTGGACTGGAGTGGAAACCGGGTCCCCCGCCTAGAGAACACCCGATGACCA
CGTGGAGCCTCCGGCGGAGGCCGGCCCGCACCGCTGGACTCCCTGCTGGCTTGGCTCTGGCTCC
GCAGGCTGGACTGGAGCACCCCTGGTCCCTGCGGCTCCGCATCGACAGCTGGGCTGCAGGCCAAGGGCTGA
ACTTCATGCTGGAGGATTCCACCTTCTGGATCTCGGGGCTCCATCCACTATTCGTGTGCCAGGGAGTACT
GGAGGGACCGCCTGCTGAAGATGAAGGCCTGGCTTGAAACACCCCTCACCACTATGTTCCGTGAAACCTGCATG
AGCCAGAAAGAGGCAAATTGACTTCTCTGGAACCTGGACCTGGAGGCTTCGTCCTGATGGCCGAGAGATCG
GGCTGTGGGTGATTCTCGCTCCAGGCCCTACATCTGCACTGAGATGGACCTCGGGGCTTGCCAGCTGGCTAC
TCCAAGACCCCTGGCATGAGGCTGAGGACAACCTACAAGGGCTTACCGAAGCAGTGGACCTTATTGACCAC
TGATGTCAGGGTGGTGCACCTCCAGTACAAGCGTGGGGACCTATCATTGCGTGCAAGGTGGAGAATGAATATG
GTTCCATAATAAAGACCCCGCATACATGCCCTACGTCAAGAAGGCACTGGAGGACCGTGGCATTGTGAAACTGC
TCCTGACTTCAGACAACAAGGATGGGCTGAGCAAGGGGATTGTCCAGGGACTTGGCCACCATCAACTTGCAGT
CAACACACGAGCTGCAGCTACTGACCACCTTCTTCAACGTCCAGGGACTCAGCCCAGATGGTATGGAGT
ACTGGACGGGGTGGTTGACTCGTGGGAGGCCCTCACAAATATCTGGATTCTCTGAGGTTTGAAAACCGTGT
CTGCAATTGTGGACGCCGCTCCATCAACCTCTACATGTTCCACGGAGGACCAACTTGGCTTCAATGAAATG
GAGCATGCACTCCATGACTACAAGTCAGATGTCACCAAGCTATGACTATGATGCTGTGACAGAACGGCG
ATTACACGGCAAGTACATGAAGCTCGAGACTTCTCGGCTCCATCTCAGGCATCCCTCTCCCTCCCCACCTG
ACCTTCTTCCAAGATGCCGTATGAGCCCTAACGCCAGTCTGTACCTGCTCTGTGGACGCCCTCAAGTACC
TGGGGAGCCAATCAAGTCTGAAAAGCCATCAACATGGAGAACCTGCCAGTCATGGGAAATGGACAGTCT
TCGGGTACATTCTCTATGAGACCAGCATCACCTCGTCTGGCATCTCAGTGGCACGTGATGTCAGGGCAGG
TGTTGTGAACACAGTATCCATAGGATTCTGGACTACAAGACAACGAAGATGCTGTCCCCCTGATCCAGGGTT
ACACCGTGTGAGGATCTGGTGGAGATCGTGGCGAGTCAGTATGGGAGAATATTGATGACCAAGCGCAAAG
GCTTAATTGAAATCTCTATCTGAATGATTCAACCTGAAAAACTTCAGAACTATAGCCTGGATATGAAGAAGA
GCTTCTTCAGAGGTTGCCCTGGACAAATGGNNTCCCTCCAGAAACACCCACATTACCTGCTTCTTCTGG
TAGCTGTCCATCAGCTCACGCCCTGTGACACCTTCTGAAGCTGGAGGGTGGAGAAGGGGTTGTATTCA
TCAATGCCAGAACCTTGACGTTACTGGAACATTGGACCCAGAACAGCTTACCTCCAGGTCCCTGGTTGA
GCAGCGGAATCAACCAGGTACATTGAGGAGACGATGGCGGCCCTGCATTACAGTCAGGAAACCCCCC
ACCTGGGCAGGAACCAGTACATTAGTGGAGGCTGGCACCCCTCTGCTGGGCCAGTGGAGACTGCCGCTC
CTCTGACCTGAAGGCTGGCTGCTGCCACCCCTCACTGCAAAAGCATCTCTTAAGTAGCAACCTCAGGG
ACTGGGGCTACAGTCTGCCCTGTCTCAGCTAAACCTAAGCCTGCAGGAAAGGTGGATGGCTCTGGGCC
TGGCTTGTGATGATGGCTTCTACAGGCCCTGCTTGTGCCAGGCTGTGGCTGTCTAGGGTGGAGC
AGCTAATCAGATGCCAGCTTGGCCCTCAGAAAAGCTGCTGAAACAGTGCCTTGCACCCGACGTACAGCCC
TGCGAGCATGCTGGACTCAGCGTGCTTGTGGCTTGGCCACATCCCTCATGGCCCCCAT
TTTATCCCCGAATCCTGGGTGTGTCACAGTGTAGAGGGTGGGAAGGGTGTCTCACCTGAGCTGACTTTGTT
CTTCCCTCACACCTCTGAGCCTTCTTGGATTCTGGAAGGAACCTGGCTGAGAACATGTGACTTCCCC
TCCCTTCCCACTCGCTGCTTCCCACAGGGTGCAGGGCTGGAGAACAGAAATCCTCACCTGCGTCTCC
CAAGTTAGCAGGTGTCTGGTGTCACTGAGGAGGACATGTGAGTCCTGGCAGAACCCATGGCCATGTCTGCA
CATCCAGGGAGGAGGACAGAACGGCCAGCTCACATGTGAGTCCTGGCAGAACCCATGGCCATGTCTGACATCC
AGGGAGGAGGACAGAACGGCCAGCTCACATGTGAGTCCTGGCAGAACCCATGGCCATGTCTGACATCCAGGG
GGAGGACAGAACGGCCAGCTCACATGTGAGTCCTGGCAGAACCCATGGCCATGTCTGACATCCAGGGAGGAGG
ACAGAACGGCCAGCTCAGTGGCCCCGCTCCCCACCCCCACGCCGAACAGCAGGGCAGAGCAGCCCTCTTC
GAAGTGTGTCAGTCCGATTGAGCCTTGTCTGGGCCCAGCCAAACACCTGGCTTGGCTACTGTCTGA
GTTGCAGTAAAGCTATAACCTTGAATCACAA

FIGURE 64

MTTWSLRRR PART LGLLLVVLGFLVLRRL DWSTLVPLRLRH RQLGLQAK GWNFM LEDST FW
IFGGSIHYFRVPREYWRDRLLKMKACGLNT LTTYVPWNLHEPERGKFDFSGNLDLEAFVLM A
AEIGLWVILRPGPYICSEMDLGGLPSWLLQDPGMRLRTTYKGFT EAVDLYFDHLM SRVVPL Q
YKRGGPIIAVQNEYGSYNKDPAYMPYVKKALEDRG IVELLLTSDNKDG LSKGIVQGV LAT
INLQSTHELQ LTTFLFNVQGTQPKMVMEYWTGF DSWGGPHNILD SSEVLKTVSAIVDAG S
SINLYMFHGGTNFGFMNGAMHFHDYKSDVT SYDYDAVLTEAGDYTA K YMLRDFFGSISGIP
LPPP P DLLPKMPYEPLTPVLYLSLWDALKYLGEPIKSEKPINMENLPVN GNGQSF GYI LY
TSITSSGILSGHVHD RGQVFVNTVSIGFLDYKTTKIAVPLI QGYTVL RILVENRGRV NYGEN
IDDQRKGLIGNLYLNDSPLKNFRIYS LDMKKSFFQRFGLDKWXSLP EPTLPAFFLG SLSIS
STPCDTFLKLEGWEKGVVFINGQNLGRYWNIGPQKTLYLPGPWLSSGINQVIVFEETMAGPA
LQFTETPHLGRNQYIK

Signal sequence:

amino acids 1-27

Casein kinase II phosphorylation site.

amino acids 141-118, 253-257, 340-344, 395-399, 540-544, 560-564

N-myristoylation site.

amino acids 146-152, 236-242, 240-246, 244-250, 287-293, 309-315,
320-326, 366-372, 423-429, 425-431, 441-447, 503-509, 580-586

FIGURE 65

GGGGACGCGGAGCTGAGAGGCTCCGGCTAGCTAGGTGTAGGGTGGACGGTCCCAGGACC
CTGGTGAGGGTTCTACTTGGCCTTCGGTGGGGTCAAGACGCAGGCACCTACGCCAAAGG
GGAGCAAAGCCGGCTCGGCCGAGGCCCCCAGGACCTCATCTCCAATGTTGGAGGAATC
CGACACGTGACGGCTGTCCGCCGTCTCAGACTAGAGGAGCGCTGTAAACGCCATGGCTCCC
AAGAACGCTGTCTGCCTTCGTTCCCTGCTGCTGCCGCTCAGCCTGACGCTACTGCTGCCCA
GGCAGACACTCGGTGTTGCTAGTGGATAGGGTCATGACCGGTTCTCCTAGACGGGGCC
CGTCCGCTATGTGTCTGGCAGCCTGCACTACTTCGGTACCGCGGGTCTTGGGCCGAC
CGGCTTTGAAGATGCGATGGAGCGGCCTCAACGCCATACAGTTATGTGCCCTGGAACTA
CCACGAGCCACAGCCTGGGGTCTATAACTTTAATGGCAGCCGGACCTCATTGCCCTTCTGA
ATGAGGCAGCTCTAGCGAACCTGTTGGTCATACTGAGACCAGGACCTACATCTGTGCAGAG
TGGGAGATGGGGGTCTCCCATCCTGGTTGCTCGAAAACCTGAAATTCATCTAAGAACCTC
AGATCCAGACTTCCTGCCAGTGGACTCCTGGTTCAAGGTCTGCTGCCCAAGATATATC
CATGGCTTTATCACAATGGGGCAACATCATTAGCATTAGGTGGAGAATGAATATGGTAGC
TACAGAGCCTGTGACTTCAGTACATGAGGCACTTGGCTGGCTCTCCGTGCACTGCTAGG
AGAAAAGATCTTGCTCTTACACACAGATGGGCCTGAAGGACTCAAGTGTGGCTCCCTCCGGG
GACTCTATACCACTGTAGATTTGGCCCAGCTGACAACATGACCAAAATCTTACCCCTGCTT
CGGAAGTATGAACCCCATGGCCATTGGTAAACTCTGAGTACTACACAGGCTGGCTGGATTA
CTGGGGCCAGAATCACTCCACACGGTCTGTGTCAGCTGTAACCAAAGGACTAGAGAACATGC
TCAAGTTGGGAGCCAGTGTGAACATGTACATGTTCCATGGAGGTACCAACTTGGATATTGG
AATGGTGCCGATAAGAAGGGACGCTTCCCTCCGATTACTACCAGCTATGACTATGATGCACC
TATATCTGAAGCAGGGGACCCCACACCTAACGCTTTTGCTCTCGAGATGTCATCAGCAAGT
TCCAGGAAGTTCTTGGACCTTACCTCCCCGAGCCCCAAGATGATGCTTGGACCTGTG
ACTCTGCACCTGGTTGGCATTACTGGCTTCTAGACTTGCTTGGCTTGGCCCCGTGGGCCAT
TCATTCAATCTGCCAATGACCTTGAGGCTGTCAAGCAGGACCATGGCTCATGTTGTACC
GAACCTATATGACCCATACCAATTGGAGCCAACACCATTCTGGTGCCAAATAATGGAGTC
CATGACCGTGCCTATGTGATGGATGGGTGTTCCAGGGTGTGGAGCGAAATATGAG
AGACAAACTATTTGACGGGAAACTGGGTCCAAACTGGATATCTTGGTAGGAGAACATGG
GGAGGCTCAGCTTGGGTCTAACAGCAGTGAACCTAACGGCCTGTTGAAGCCACCAATTCTG
GGGCAAACAATCCTACCCAGTGGATGATGTTCCCTGAAAATTGATAACCTTGTGAAGTG
GTGGTTCCCTCCAGTTGCCAAATGCCATATCCTCAAGCTCTTCTGGCCCCCACATTCT
ACTCCAAAACATTCCAATTAGGCTCAGTTGGGACACATTCTATATCTACCTGGATGG
ACCAAGGGCCAAGTCTGGATCAATGGTTAACCTGGCCGGTACTGGACAAAGCAGGGCC
ACAACAGACCCCTACGTGCCAAGATTCTGCTGTTCTAGGGAGCCCTCAACAAAATTA
CATTGCTGGAACTAGAACGATGTACCTCTCCAGCCCCAAGTCCAATTGGATAAGCCTATC
CTCAATAGCACTAGTACTTGCACAGGACACATATCAATTCCCTTCAGCTGATACACTGAG
TGCCTCTGAACCAATGGAGTTAAGTGGCACTGAAAGGTAGGCCGGCATGGTGGCTCATGC
CTGTAATCCCAGCAGTGGGAGGCTGAGACGGGTGGATTACCTGAGGTCAAGGACTTCAAGA
CCAGCCTGGCCAACATGGTAAACCCCGTCTCCACTAAAAATACAAAATTAGCCGGCGTG
ATGGTGGGCACCTCTAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATTGCTTGAATCC
AGGAGGCAGAGGTTGCAGTGAGTGGAGGTTGTACCACTGCACTCCAGCCTGGCTGACAGTGA
GACACTCCATCTAAAAAAAAAA

FIGURE 66

MAPKKLSCIRSLLLPLSLTLLLPQADTRSFVVDRGHDRFLLDGAPFRYVSGSLHYFRVPRVL
WADRLLKMRWSGLNAIQFYVPWNYHEPQPGVYNFNGSRDLIAFLNEAALANLLVILRPGPYI
CAEWEMGGLPSWLLRKPEIHLRTSDPDFLAAVDSWFKVLLPKIYPWLYHNGGANISIQVENE
YGSYRACDFSYMRHLAGLFALLGEKILLFTTDGPEGLKCGSLRGLYTTVDFGPADNMTKIF
TLLRKYEPHGPLVNSEYYTGWLWQNHSTRVSATKGLENMLKLGASVNMYMFHGGTNF
GYWNGADKKGRFLPITTSDYDAPISEAGDPTPKLFALRDVISKFQEVPPLPPPSPKML
GPVTLHLVGHLLAFLDLLCPRGPIHSILPMTFEAVKQDHGFMLYRTYMTHTIFEPTFWVPN
NGVHDRAYVMVDGVFQGVVERNMRDKLFLTGKLGSKLDILVENMGRSLFGSNSSDFKGLLKP
PILGQTILTQWMMFPLKIDNLVKWWFPLQLPKWPYPQAPSGPTFYSKTFPILGSVGDTFLYL
PGWTKGQVWINGFNLGRYWTQGPQQTLYVPRFLLFPRRGALNKITLLELEDVPLQPQVQFLD
KPILNSTSTLHRTHINSLSADTLSASEPMELSGH

Signal sequence:

amino acids 1-27

N-glycosylation site.

amino acids 97-101, 243-247, 276-280, 486-490, 625-629

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 4-8

Casein kinase II phosphorylation site.

amino acids 148-152, 234-238, 327-331, 423-427, 469-473, 550-554,
603-607, 644-648

Tyrosine kinase phosphorylation site.

amino acids 191-198

N-myristoylation site.

amino acids 131-137, 176-182, 188-194, 203-209, 223-229, 227-233,
231-237, 274-280, 296-300, 307-313, 447-453, 484-490

FIGURE 67

GCTTGAAACACGTC TGCAAGCCAAAGTTGAGCATCTGATTGGTTATGAGGTATTTGAGTGC
ACCCACAATATGGCTTACATGTTAAAAAGCTTCTCATCAGTTACATATCCATTATTTGTGT
TTATGGCTTATCTGCCTCTACACTCTCTGGTTATTCAAGGATACTTGAAGGAATATT
CTTCGAAAAAGTCAGAGAAGAGAGCAGTTAGTGACATTCCAGATGTCAAAAACGATTT
GCGTTCTTCTTCACATGGTAGACCAGTATGACCAGCTATATTCCAAGCGTTGGTGTGTT
CTTGTCAAGAGTTAGTGAAAATAAACCTAGGGAAATTAGTTGAACCATGAGTGGACATTG
AAAAACTCAGGCAGCACATTCA CGCAACGCCAGGACAAGCAGGAGTTGCATCTGTTCATG
CTGTCGGGGGTGCCGATGCTGTCTTGACCTCACAGACCTGGATGTGCTAAAGCTTGAAC
AATTCCAGAAGCTAAAATTCTGCTAACAGATTCTCAAATGACTAACCTCCAAGAGCTCCACC
TCTGCCACTGCCCTGCAAAAGTTGAACAGACTGCTTAGCTTCTCGCGATCACTGAGA
TGCCTTCACGTGAAGTTCACTGATGTGGCTGAAATTCTGCCTGGGTGTATTGCTCAAAA
CCTTCGAGAGTTGTACTTAATAGGCAATTGAACTCTGAAAACAATAAGATGATAGGACTTG
AATCTCTCCGAGAGTTGCGGCACCTTAAGATTCTCACGTGAAGAGCAATTGACCAAAGTT
CCCTCCAACATTACAGATGTGGCTCCACATCTTACAAAGTTAGTCATT CATAATGACGGCAC
TAAACTCTGGTACTGAACAGCCTTAAGAAAATGATGAATGTCGCTGAGCTGGAACCTCCAGA
ACTGTGAGCTAGAGAGAATCCCACATGCTATTTCAGCCTCTCTAACAGGAACCTGGAT
TTAAAGTCCAATAACATTGCACAATTGAGGAAATCATCAGTTCCAGCATTAAAACGACT
GACTTGTAAAATTATGGCATAACAAAATTGTTACTATTCCCTCTATTACCCATGTCA
AAAACTTGGAGTCACTTATTCTCTAACACAACAGCTCGAACCTTACCAAGTGGCAGTATT
AGTTACAGAAA ACTCAGATGCTTAGATGTGAGCTACAACAACATTCAATGATTCCAATAGA
AATAGGATTGCTTCAGAACCTGCAGCATTGCATATCACTGGAACAAAGTGGACATTCTGC
CAAACAAATTGTTAAATGCATAAAGTTGAGGACTTTGAATCTGGACAGAACTGCATCACC
TCACCTCCAGAGAAAGTTGGTCAGCTCTCCCAGCTCACTCAGCTGGAGCTGAAGGGAACTG
CTTGGACCGCCTGCCAGCCCAGCTGGCCAGTGTGGATGCTCAAGAAAAGCGGGCTTGTG
TGGAAAGATCACCTTTGATAACCTGCCACTCGAACGTCAAAGAGGCATTGAATCAAGACATA
AATATTCCCTTGCAAATGGGATTTAAACTAAGATAATATATGACAGTGATGTGCAGGAAC
AACTCCTAGATTGCAAGTGCTCACGTACAAGTTATTACAAGATAATGCATTAGGAGTAG
ATACATCTTTAAAATAAACAGAGAGGATGCATAGAAGGCTGATAGAAGACATAACTGAAT
GTTCAATGTTGTAGGGTTTAAGTCATTCACTTCAAATCATTGTTTTCTTTGGGG
AAAGGGAAAGGAAAATTATAATCACTAATCTGGTTCTTTAAATTGTTGTAACCTGGAT
GCTGCCGCTACTGAATGTTACAAATTGCTGCCGTCAAAGTAAATGATTAAATTGACATT
TTCTTACTAAAAAAAAAAAAAA

FIGURE 68

MAYMLKKLLISYISIICVYGFICLYTLFWLFRIPLKEYSFEKVREESSFSDIPDVKNDFAFL
LHMVDQYDQLYSKRGVFLSEVSENKLREISLNHEWTFEKLQRQHISRNAQDKQELHLFMLSG
VPDAVFSDLTDVLKLELIPEAKIPAKISQMTNLQELHLCHCPAKVEQTAFSFLRDHLRCLH
VKFTDVAEIPA WVYLLKNLRELYLIGNLNSENNKMIGLESRLERLHLKILHVKSNLTKVPSN
ITDVAPHLT KLVIHNDGT KLLVLNSLKKMMNVAEELQNCELERI P HAI F SLSNLQ ELDLKS
NNIRTIEEIISFQHLKRLTCLKLWHNKIVTI PPSITHVKNLESLYFSNNKLESLPVAVFSLQ
KLRCLDVSYNNISMIPIEIGLLQNLQHLHITGNKVDILPKQLFKCIKLRTLNLGQNCITSLP
EKVGQLSQLTQLELKGNCLDR LPAQLGQCRMLKKSGL VVEDHLFD TLPLEVKEALNQDINIP
FANGI

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 241-245, 248-252, 383-387

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 326-330

Casein kinase II phosphorylation site.

amino acids 48-52, 133-137, 226-230, 315-319, 432-436, 444-448

Tyrosine kinase phosphorylation site.

amino acids 349-355, 375-381

N-myristoylation site.

amino acids 78-84, 124-130, 212-218, 392-398

FIGURE 69

CCACCGCGTCCGGCCTCTCTGGACTTGCAATTCCATTCTTTGACAAACTGACTTTTTATTC
TTTTTCCATCTCTGGGCCAGCTTGGGATCCTAGGCCGCTGGGAAGACATTGTGTTTACACACATAAGGAT
CTGTGTTGGGTTCTCTCTCCCCTGACATTGCATTGCTTAGGTACATCGAAGTCTTGACCTCCATACAGTATTGCTGTC
GCTCAGTGCTTGCTGCACTTATCTGCCTAGGTACATCGAAGTCTTGACCTCCATACAGTATTGCTGTC
ATCGCTGGTGGTACCTGCGGCCCTGCTCTGCTGATAGTTGTCGTCTGTCTTACTTCAAATACACAAC
GCGCTAAAAGCTGCAAAGGAACCTGAAAGCTGTCGGCTGTAaaaaaaATACAACCCAGACAAAGGTGTGGTGGCCAAG
AACAGCCAGGCCAAAACCATTGCCACGGAGCTTGCTGCGACATAATGAGGGCTCTGAGTTAGGAAAGGCTCCCTCTCAA
AGTTTGATTCCTGCCCCCTGCTGTCAGTAAATGAGGGCTCTGAGTTAGGAAAGGCTCCCTCTCAA
GCAGAGCCCTGAAAGACTTCAATGATGTCATGAGGGCACCTGTTGTGATGTCAGGACAGAAGAAAGGCACAG
CTCCCCATCAGTTCATGAAAATAACTCAGTGCTGCTGGAAACAGCTGCTGGAGATCCCTACAGAGAGCTTC
CACTGGGGCAACCTTCAGGAAGGAGTTGGGGAGAGAGAACCCCTACTGTGGGAATGCTGATAAAACAGTCA
CACAGCTGCTCTATTCTCACACAAATCTACCCCTGCGTGGACTGACGTTCCCTGGAGGTGTCCAGAAA
GCTGATGTAACACAGAGCTATAAAAGCTGTCGGCTTAAGGCTGCCAGGCCCTGCAAAATGGAGCTTGT
AGAAGGCTCATGCCATTGACCCCTTAATTCTCTGTTGGCGAGCTGACAATGGGGAGGCTGAAGGCAAT
GCAAGCTGCACAGTCAGTCTAGGGGGTGCACATGGCAGAGACCCACAAGGCATGATCCTGCAACTCAATCCC
AGTGAGAACTGCACCTGGACAATAGAAAGACAGAAAACAAAGCATCAGAATTATCTTCTATGTCCAGCTT
GATCCAGATGGAAGCTGTAAGGATGAAACATTAAGTCTTGACGGAACCTCCAGCAATGGGCCTGCTAGGG
CAAGTCTGCAGTAAAAGACTATGTCCTGATTTGAATCATCATCCAGTACATTGACGTTCAAATAGTTACT
GAATCAGCAAGAATTCAAAGAACTGTCCTTGCTTCAACTACTTCTCTCTAACTATCTTCTATCCAAACTGT
GGCGGTTACCTGGATACCTTGGAGGATCCTCACCAGCCCAATTACCCAAAGCCGATCCTGAGCTGGCTTAT
TGTGTTGGCACATACAAGTGGAGAAAGATTACAAGATAAAACTAACTCAAAGAGATTTCCTAGAAATAGAC
AAACAGTGCATTTGATTTCTGCCATCTATGATGGCCCTCACCACACTGCTGCTGTTGCTACAGATTATGCCAATTCT
GGCCGTGTGACTCCCACCTTCGAATCGTCATCAAACACTCTGACTGTCGTGTTGCTACAGATTATGCCAATTCT
TACCGGGGATTTCTGCTCTCACACCTCAATTATGCAGAAAACATCAACACTACATCTTAACTTGTCTTCT
GACAGGATGAGAGTTATTATAAGCAAATCCTACACTAGAGGTTTAACTCTAATGGGAATAACTTGCAACTAAA
GACCCAATTGCAAGACCAAAATTCAAATGTTGGAATTCTGCTCCCTTAAATGGATGTGGTACAATCAGA
AAGGTTAGAAGATCAGTCATTACTACACCAATAATCACCTTCTGCTCCTCAACTCTGAAAGTGTGATCACC
CGTCAGAAACAACTCCAGATTATTGTAAGTGTGAAATGGGACATAATTCTACAGTGGAGATAATATAACAA
GAAGATGATGTAATCAAAGTCAAATGCACTGGGAAATATAACACAGCATGGCTTTGAATCCAATTCA
TTTGGAAAAGACTATACTTGAAATCACCATATTATGTTGGAACCAACTCTTGTGTCAGTTAGTCTGCAC
ACCTCAGATCAAATTGGTGGTTCTGATACCTGTAAGGCCTCTCCACCTGACTTTGCATCTCCAAACC
TACGACCTAATCAAGAGTGGATGTAAGTGTGAGATGAAACTTGTAAGGTGATCCCTTATTGGACACTATGGGAGA
TTCCAGTTAATGCCCTTAAATTCTGAGAAGTATGAGCTGTGATCTGCACTGTAAGTTGATATGTGAT
AGCAGTGGCACCACCAAGTCTGCTGCAATCAAGGTTGTCAGGAGAAGCAGACATTCTCATATAAATGG
AAAACAGATTCCATCATAGGACCCATTGCTGAAAAGGGATGCAAGTGCAAGTGGCAATTCAAGGATTCAGCAG
GAAACACATGCCAAGAAACTCCAAACAGCCCTTCAACAGTGTGCACTGTTCTCATGGTCTAGCTG
AATGTGGTACTGTAGCGACAATCACAGTGAGGCAATTGTAATCAACGGGAGACTACAAATACCAGAAGCTG
CAGAACTATTAACTAACAGGTCAACCCCTAAGTGAGACATGTTCTCCAGGATGCCAAAGGAAATGCTACCTG
GGCTACACATATTGAATAATGAGGAAGGGCCTGAAAGTGACACACAGGCCCTGATGAAAAAAA

FIGURE 70

MELVRRLMPLTLIILSCLAEITMAEAEGNASCTVSLGGANMAETHKAMILQLNPSENCTWTI
ERPENKSIRIIIFSIVQLDPDGSCESENIKVFDGTSSNGPLLGVCSKNDYVPVFESSSSTLT
FQIVTDSARIQRTVFVFFSPNISIPNCGGYLDTLEGSFTSPNYPKPHPELAYCVWHIQV
EKDYKIKLNFKEIFLEIDKQCKFDLAIYDGPSTNSGLIGQVGRVTPTFESSNSLTVVLS
TDYANSYRGFSASYTSIYAENINTSLTCSSDRMRVIISKSYLEAFNSNGNNLQLKDPTCRP
KLSNVVEFSVPLNGCGTIRKVEDQSITYTNIIITFSASSTSEVITRQKQLQIIVKCEMGHNST
VEIIYITEDDVIQSQNALGKYNTSMALFESNSFEKTILESPYYVDLNQTLFVQVSLHTSDPN
LVVFLDTCRASPTDFASPTYDLIKSGCSRDETCKVYPLFGHYGRFQFNNAFKFLRSMSSVYL
QCKVLICDSSDHQSRCNQGCVRSKRDISSYWKWKTDSIIGPIRLKRDRSASGNSGFQHETHA
EETPNQPFNSVHLFSFMVLALNVVTVATITVRHFVNQRADYKYQKLQNY

Signal sequence:

amino acids 1-24

Transmembrane domain:

amino acids 571-586

N-glycosylation site.

amino acids 29-33, 57-61, 67-71, 148-152, 271-275, 370-374,
394-398, 419-423

Casein kinase II phosphorylation site.

amino acids 22-26, 108-112, 289-293, 348-352, 371-375, 379-383,
408-412, 463-467, 520-524, 556-560

Tyrosine kinase phosphorylation site.

amino acids 172-180, 407-415, 407-416, 519-528

N-myristoylation site.

amino acids 28-34, 38-44, 83-89, 95-101, 104-110, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 71

GACGGAAAGAACAGCGCTCCCGAGGCCGCGGGAGCCTGCAGAGAGGACAGCCGGCCTGCGCCG
GGACATGCGGCCCCAGGAGCTCCCAGGCTCGCGTTCCCGTGTGCTGTTGCTGC
TGCTGCCGCCGCCGTGCCCTGCCACAGCGCCACGCCGCTCGACCCCACCTGGGAGTCC
CTGGACGCCGCCAGCTGCCCGCGTGGTTGACCAGGCAAGTCGGCATCTCATCCACTG
GGGAGTGTGTTCCGTGCCAGCTCGTAGCGAGTGGTCTGGGGTATTGGAAAAGGAAA
AGATACCGAAGTATGTGAATTATGAAAGATAATTACCCCTCTAGTTCAAATATGAAGAT
TTTGGACCACTATTACAGCAAATTAAAAATTTTAATGCCAACAGTGGGCAGATATTTCAGGC
CTCTGGTGCAAATACATTGTCTTAACCTCAAACATCATGAAGGCTTACCTGTGGGGT
CAGAATATTGTGGAACGTGGAATGCCATAGATGAGGGGCCAAGAGGGACATTGTCAAGGAA
CTTGAGGTAGCCATTAGGAACAGAACTGACCTGCGTTGGACTGTACTATTCCCTTTGA
ATGGTTTCACTCCGCTCTCCTGAGGATGAATCCAGTCATTCCATAAGCGGCAATTCCAG
TTTCTAAGACATTGCCAGAGCTCTATGAGTTAGTGAACAACATCAGCCTGAGGTTCTGTGG
TCGGATGGTACGGAGGACCCGATCAAACTGGAACAGCACAGGCTCTGGCCTGGTT
ATATAATGAAAGCCCAGTCCGGGGCACAGTAGTCACCAATGATCGTTGGGAGCTGGTAGCA
TCTGTAAGCATGGTGGCTCTACCTGCAGTGATCGTTATAACCCAGGACATTTGCCA
CATAAATGGAAAATGCATGACAATAGACAAACTGTCTGGGCTATAGGAGGAAGCTGG
AATCTCTGACTATCTACAATTGAAGAATTGGTGAAGCAACTTGTAGAGACAGTTCATGTG
GAGGAAATCTTGATGAATATTGGGCCACACTAGATGGCACCATTTCTGTAGTTTGAG
GAGCGACTGAGGCAAGTGGGCTCTGGCTAAAGTCATGGAGAAGCTATTATGAAACCTA
TACCTGGCGATCCCAGAATGACACTGTCACCCAGATGTGTGGTACACATCCAAGCCTAAAG
AAAAATTAGCTATGCCATTAAATGGGCCACATCAGGACAGCTGTTCTGGCCAT
CCCAAAGCTATTCTGGGGCAACAGAGGTGAAACTACTGGGCCATGGACAGCCACTTAAC
GATTCTTGAGCAAATGGCATTATGGTAGAACTGCCACAGCTAACCATTCAGATGC
CGTGTAAATGGGCTGGCTAGCCCTAACTAATGTGATCTAAAGTGCAGCAGAGTGGCTG
ATGCTGCAAGTTATGCTAAGGCTAGGAACATCAGGTGTCTATAATTGTAGCACATGGAGA
AAGCAATGTAACGGATAAGAAAATTATGGCAGTTCAAGCCCTTCCCTTTCCACTA
AATTTTCTAAATTACCCATGTAACCATTAACTCTCCAGTGCACTTGCCATTAAAGTC
TCTTCACATTGATTGTTCCATGTGTGACTCAGAGGTGAGAATTTCACATTATAGTAG
CAAGGAATTGGTGGTATTATGGACCGAACTGAAAATTATGTTGAAGCCATATCCCCCATG
ATTATATAGTTATGCATCACTTAATATGGGATATTCTGGAAATGCATTGCTAGTCAT
TTTTTTGTGCCAACATCATAGAGTGTATTACAAAATCCTAGATGGCATAGCCTACTACA
CACCTAATGTGTATGGTATAGACTGTCCTAGGCTACAGACATATACAGCATGTTACTG
AATACTGTAGGCAATAGTAACAGTGGTATTGTATATCGAAACATATGGAAACATAGAGAAG
GTACAGTAAAATACTGTAAAATGGTGCACCTGTATAGGGCACTTACCCAGGAATGGAG
CTTACAGGACTGGAAGTTGCTCTGGGTGAGTCAGTGAGTGAATGTGAAGGCCTAGGACATTA
TTGAACACTGCCAGACGTTATAAAACTGTATGCTTAGGCTACACTACATTATAAAAAAAA
GTTTTCTTCTTCATTATAAACATAAGTGTACTGTAACTTACAAACGTTTAATT
TTTAAACCTTTGGCTTTGTAATAACACTAGCTAAACATAACTCATTGTGCAA
ATGTAA

FIGURE 72

MRPQELPRLAFPLLLLLLPPPCPAHSATRFDPTWESLDARQLPAWFDQAKFGIFIHG
VFSVPSFGSEWFWWYQKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWADIFQAS
GAKYIVLTSKHHEGFTLWGSEYSWNNAIDEGPKRDIVKELEVAIRNRTDLRGFLYYSLFEW
FHPLFLEDESSSFHKRQFPVSKTLPELYELVNNTQPEVLWSDGDGGAPDQYWNSTGFLAWLY
NESPVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDKLSWGYRREAGI
SDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLRQVGSWLKVNGEAIYETY
WRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSGQLFLGHPKAILGATEVKLLGHGQPLNWI
SLEQNGIMVELPQLTIHQMPCKWGWALALTNVI

Signal sequence:

amino acids 1-28

N-glycosylation site.

amino acids 171-175, 239-243, 377-381

Casein kinase II phosphorylation site.

amino acids 32-36, 182-186, 209-213, 227-231, 276-280, 315-319,
375-375

Tyrosine kinase phosphorylation site.

amino acids 361-369, 389-397

N-myristoylation site.

amino acids 143-149, 178-184, 255-261, 272-278, 428-434

Leucine zipper pattern.

amino acids 410-432

Alpha-L-fucosidase putative active site.

amino acids 283-295

FIGURE 73

AGCAGGGAAATCCGGATGTCTCGGTTATGAAGTGGAGCAGTGAGTGTGAGCCTAACATAGT
TCCAGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAAGTGGCCATC
TGAGGTGTTCCCTGGCTCTGAAGGGTAGGCACGATGCCAGGTGCTTCAGCCTGGTGTG
CTTCTCACTCCATCTGGACCACGAGGCTCTGGCCAAGGCTTTGCCTGCAGAAGAGCT
TTCCATCCAGGTGTCAAGCAGAATTATGGGGATCACCCCTGTGAGCAAAAGGCGAACAGC
AGCTGAATTTCACAGAAGCTAAGGAGGCCTGTAGGCTGCTGGACTAAGTTGGCCGGCAAG
GACCAAGTTGAAACAGCCTGAAAGCTAGCTTGAACATTGCAGCTATGGCTGGGTTGGAGA
TGGATTCGTGGTCATCTCTAGGATTAGCCCCAACCCCAAGTGTGGAAAAATGGGGTGGGTG
TCCTGATTTGGAAGGTTCCAGTGAGCCGACAGTTGCAGCCTATTGTTACAACATCTGAT
ACTTGGACTAACTCGTCATTCCAGAAATTATCACCAACAAAGATCCCATAATTCAACACTCA
AACTGCAACACAAACAAACAGAATTATTGTCAAGTACACTACTCCTCCTGCTCCAGCTTCACTT
ACTCTACAATACCTGCCCTACTACTACTCCTCCTGCTCCAGCTTCACTTCACTTCCACGG
AGAAAAAAATTGATTTGTGTCAAGAAGTTTATGGAAACTAGCACCATGTCTACAGAAC
TGAACCATTGTTGAAAATAAAGCAGCATTCAAGAATGAAGCTGCTGGGTTGGAGGTGTCC
CCACGGCTCTGCTAGTGCTTCTCCTCTTGGTGTGAGCTGGCTTGGATTTC
TATGTCAAAAGGTATGTGAAGGCCTTCCCTTACAAACAAGAATCAGCAGAAGGAAATGAT
CGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCTAATGAGGAATCAAAGA
AAACTGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACCTACCGTGCATGCCTGGAA
GCTGAAGTTTAGATGAGACAGAAATGAGGAGACACACCTGAGGCTGGTTCTTCATGCTCC
TTACCCCTGCCCTAGCTGGGAAATCAAAGGCCAAAGAACCAAAGAAGAAAGTCCACCC
GGTTCTTAACGGAAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAAC
CCTTCTCCTTATTGTAACCTGTCTGGATCCTATCCTCCTACCTCCAAAGCTCCCACGGCC
TTCTAGCCTGGCTATGCTTAATAATATCCCACGGAGAAAGGAGTTTGCAAAGTGCAA
GGACCTAAACATCTCATCAGTATCCAGTGGTAAAAGGCCCTGGCTGTGAGGCTAGG
TGGGTTGAAAGCCAAGGAGTCACTGAGACCAAGGCTTCTACTGATTCCGAGCTCAGAC
CCTTCTCAGCTCTGAAAGAGAACACGTATCCCACCTGACATGTCCTCTGAGCCGGTA
AGAGCAAAAGAACGGAGAAAGTTAGCCCTGAAAGCCATGGAGATTCTCATAACTTGAG
ACCTAATCTCTGTAAGCTAAAATAAAGAACAGGCTGAGGATACGACAGTACACT
GTCAGCAGGGACTGTAACACAGACAGGGTCAAAGTGTGCTCTGAACACATTGAGTTGGA
ATCACTGTTAGAACACACACACTTACTTTCTGGTCTCTACCACTGCTGATATTCT
AGGAAATATACTTTACAAGTAACAAAATAAAACTCTTATAAATTCTATTTTATCTGA
GTTACAGAAATGATTACTAAGGAAGATTACTCACTAATTGTTAAAAAGTAATAAAATTCA
ACAAACATTGCTGAATAGCTACTATATGTCAAGTGCTGTGCAAGGTATTACACTCTGTAAT
TGAATATTATTCCTCAAAAATTGCACATAGTAGAACCGCTATCTGGGAAGCTATTCT
GTTTGATATTCTAGCTTACTTCAACTTAACTTAAATTCTTAAACATACCTAACAGAAC
ATTCAATTCTCTAATATGGCAACCATTATAACCTTAATTATTAAACATACCTAACAGAAC
TACATTGTTACCTCTATATACCAAAAGCACATTAAAAGTGCCTTAACAAATGTATCACTA
GCCCTCCTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATTGTGACAAAAATTAA
AGCATTAGAAAATT

FIGURE 74

MARCFSLVLLLTSIWTTRLLVQ GSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACR
LLGLSLAGKDQVETALKASFETCSYGWVGDFVVISRISP NPKCGKNGVGVLIW KVPVSRQF
AA YCYNSSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTPP
A PASTSIPRRKKLICVTEVF METSTMSTETEPF VENKA AFKNEAAGFGGVPTALLVLALLFF
GAAAGLGFCYVKRYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSP
SKTTVRCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

FIGURE 75

AGATGGCGGTCTTGGCACCTCAATTGCTCTCGTATTGGTGCACGACTTCACGATGG
CTCGCCCAACCTTACTACCTCTGTCGGCCCTGCTCTGCTGCCTCCTACTCGTGAGGAA
ACTGCCGCCGCTCTGCCACGGCTGCCACCCAACGCGAAGACGGTAACCGTGTGACTTG
ACTGGAGAGAAGTGGAGATCCTGATGTTCTCAGTGCATTGTGATGATGAAGAACCGCAGA
TCCATCACTGTGGAGCAACATATAGGCAACATTTCATGTTAGTAAAGTGGCAAACACAAT
TCTTTCTTCCGCTTGGATATTGCATGGCCTACTTACATCACACTCTGCATAGTGTCC
TGATGACGTGCAAACCCCCCTATATATGGGCCCTGAGTATATCAAGTACTTCAATGATAAA
ACCATTGATGAGGAACTAGAACGGACAAGAGGGTCACTTGGATTGTGGAGTTCTTGCCAA
TTGGTCTAATGACTGCCAATCATTGCCCTATCTATGCTGACCTCTCCCTAAATACAAC
GTACAGGGCTAAATTTGGGAAGGTGGATGTTGGACGCTACTGATGTTAGTACGGTAC
AAAGTGAGCACATCACCCCTACCAAGCAACTCCCTACCCCTGATCCTGTTCCAAGGTGGCAA
GGAGGCAATGCGCGGCCACAGATTGACAAGAAAGGACGGCTGTCTCATGGACCTCTCTG
AGGAGAATGTGATCCGAGAATTAACTTAAATGAGCTATACCAGCGGGCCAAGAAACTATCA
AAGGCTGGAGACAATATCCCTGAGGAGCAGCCTGTTCAACCCCCACCACAGTGTCA
TGGGAAAACAAGAAGGATAAAAGATCCTCACTTGGCAGTGCTCCTCTCCTGTCAATT
CCAGGCTCTTCCATAACCACAAGCCTGAGGCTGCAGCCTTNATTNATGTTTCCCTTGG
CTGNGACTGGNTGGGCAGCATGCAGCTCTGATTAAAGAGGCATCTAGGGATTGTCAG
GCACCCCTACAGGAAGGCCTGCCATGCTGTGGCCAAGTCTTCACTGGAGCAAGAAAGAGATC
TCATAGGACGGAGGGGGAAATGGTTCCCTCCAAGCTGGTCAGTGTGTTACTGCTTATC
AGCTATTAGACATCTCCATGGTTCTCCATGAAACTCTGTGGTTCATCATTCTTCTAG
TTGACCTGCACAGCTGGTAGACCTAGATTAAACCTAAGGTAAGATGCTGGGTATAGAA
CGCTAAGAATTTCACCCAGGACTCTGCTTCAAGCCCTCTGGCTCGTTATGGTC
TTCATTAAAAGTATAAGCCTAACTTGTGCTAGTCCTAAGGAGAAACCTTAACCACAAAG
TTTTTATCATTGAAGACAATATTGAACAACCCCCCTATTGTGGGATTGAGAAGGGGTGAA
TAGAGGCTTGAGACTTCCCTTGTGGTAGGACTTGGAGGGAGAAATCCCTGGACTTCAC
TAACCCCTGACATACTCCCCACACCCAGTTGATGGCTTCCGTAATAAAAGATTGGGATT
TCCTTTG

FIGURE 76

MAVLAPLIALVYSVPRLSRWLAQPYYLLSALLSAAFLLVRKLPPPLCHGLPTQREDGNPCDFD
WREVEILMFLSAIVMMKNRRSITVEQHIGNIFMFSKVANTILFFRLDIRMGLLYITLCIVFL
MTCKPPLYMGPEYIKYFNDKTIDEELERDKRVTWIVEFFANWSNDCQSFAPIYADLSLKYNC
TGLNFGKVDVGRYTDVSTRYKVSTSPLTKQLPTLILFQGGKEAMRRPQIDKKGRAVSWTFSE
ENVIREFNLNELYQRACKLSKAGDNIPEEQPVASTPTTVSDGENKKDK

Signal sequence:

amino acids 1-48

Transmembrane domain:

amino acids 111-125

N-glycosylation site.

amino acids 165-169, 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 154-158, 265-269

Casein kinase II phosphorylation site.

amino acids 51-55, 145-149, 245-249, 286-290, 288-292

N-myristoylation site.

amino acids 188-194, 225-231

Myb DNA-binding domain repeat signature 1.

amino acids 244-253

FIGURE 77

GGACAGCTCGGGCCCCCGAGAGCTCTAGCCGTCAGGGAGCTGCCCTGGGACGTTGCCCTG
GGGCCCTGGCCGGGTACCCCTGGCATGAGGAGATGGCCTGTTGCTCTGGTCCA
TTGCTCCTGCTGCCGGCTCCTACGGACTGCCCTACAACGGCTTACTACTCCAACAG
CGCCAACGACCAGAACCTAGGCAACGGTCATGGCAAAGACCTCTTAATGGAGTGAAGCTGG
TGGTGGAGACACCCGAGGGAGACCCCTGTTCACCTACCAAGGGGCCAGTGTGATCCTGCCCTGC
CGCTACCGCTACGAGCCGGCCTGGTCTCCCAGGGCGTGTGCGTGTCAAATGGTGGAAAGCT
GTCGGAGAACGGGCCAGAGAAGGACGTGCTGGTGCCATGGGCTGAGGCACCGCTCCT
TTGGGACTACCAAGGCCGCGTGCACCTGGCAGGACAAAGAGCATGACGTCTCGCTGGAG
ATCCAGGATCTGCGGCTGGAGGACTATGGCGTTACCGCTGTGAGGTATTGACGGCTGGA
GGATGAAAGCGGTCTGGTGAGGACTGGAGCTGGAGCTGCGGGGTGTGGTCTTCCTTACCA
ACGGCGCTACCAAGTCAACTTCCACGAGGGCCAGCAGGTCTGTGCAGAGCAGGCTGCC
GTGGCCTCCTTGAGCAGCTCTCCGGGCTGGAGGAGGGCTGGACTGGTGCAACGCC
CTGGCTGCAGGATGCTACGGTGCAGTACCCCATCATGTTGCCCGGCAGCCCTGCC
CAGGCCTGGCACCTGGCGTGCAGCTACGGCCCCGCCACGCCCTGCACCGCTATGAT
GTATTCTGCTCGCTACTGCCCTCAAGGGCGGGTGTACTACCTGGAGCACCCCTGAGAAC
GACGCTGACAGAGGCAAGGGAGGCCTGCCAGGAAGATGATGCCACGATGCCAAGGTGGAC
AGCTCTTGCCGCTGGAAGTCCATGCCCTGGACCGCTGCCACGCTGGCTGGCAGAT
GGCAGCGTCCGCTACCCGTGGTTACCCGCATCCTAACTGTGGCCCCCAGAGCCTGGG
CCGAAGCTTGCGCTCCCCGACCCGCAGAGCCGTTGTACGGTGTACTGCTACGCCAGC
ACTAGGACCTGGGCCCTCCCGGCCGCATTCCCTCACTGGCTGTATTATTGAGTGGTT
CGTTTCCCTGTGGGTTGGAGCCATTAACTGTTTATACTTCTCAATTAAATTTCT
TTAAACATTTTTACTATTTTGAAAGCAAACAGAACCCATGCCCTCCCTGCTCCTG
GATGCCCACTCCAGGAATCATGCTTGCTCCCTGGCCATTGCGGTTGTGGCTTCTG
GAGGGTCCCCGCATCCAGGCTGGCTCCCTCCCTTAAGGAGGTTGGTGGCCAGAGTGGC
GGTGGCCTGTCTAGAATGCCGCCGGAGTCCGGCATGGTGGCACAGTTCTCCCTGCC
CAGCCTGGGGAAAGAAGAGGGCCTGGGGGCTCCGGAGCTGGCTTGGCCTCTCCTGCC
CACCTCTACTCTCTGTGAAGCCGCTGACCCAGTCTGCCCACTGAGGGCTAGGGCTGGAA
GCCAGTTCTAGGCTCAGGCAGAACATCTGAGGAAAGAAACTCCCTCCCCGTTCC
TCCCTCTCGGTTCAAAGAACATGTTGTCATTGTTCTCCTGTTCCCTGTGTGG
GGAGGGGCCCTCAGGTGTGTACTTGGACAATAATGGTGTATGACTGCCCTCGCCAA
AA
AA

FIGURE 78

MGLLLLVPLLLLPGSYGLPYNGFYYSNSANDQNLGNHGKDLLNGVKLVVETPEETLFTYQ
GASVILPCRYRYEPALVSPRRVRVKWWKLSENGAPEKDVVAIGLRHRSFGDYQGRVHLRQD
KEHDVSLEIQDLRLEDYGRYRCEVIDGLEDESGLVELELRGVVFVQSPNGRYQFNFHEGQQ
VCAEQAAVVASFEQLFRAWEEGLDWCNAGWLQDATVQYPIMLPRQPCGGPGLAPGVRSGPR
HRRLHRYDVFCFATALKGRVYYLEHPEKLTLTEAREACQEDDATIAKVGQLFAAWKFHGLDR
CDAGWLADGSVRYPVVHPHPNCGPPEPGVRSFGFPDPQSRLYGVYCYRQH

Signal sequence:

amino acids 1-17

Casein kinase II phosphorylation site.

amino acids 29-33, 53-57, 111-115, 278-282

Tyrosine kinase phosphorylation site.

amino acids 137-145

N-myristoylation site.

amino acids 36-42, 184-190, 208-214, 237-243, 297-303, 307-313

FIGURE 79

FIGURE 80

MMWRPSVLLLLLRLHGAQGKPSPDAGPHQGRVHQAAPLSDAPHDDAHGNFQYDHEAFLGR
EVAKEFDQLTPEESQARLGRIVDRMDRAGDGWVSLAELRAWIAHTQQRHIRDSVSAAWDT
YDTDGRVGWEELRNATYGHYAPGEFHDVEDAETYKKMLARDERRFRVADQDGDSMATRE
ELTAFLHPEEFPHMRDIVIAETLEDLDRNKGYVQVEEYIADLYSAEPGEEEPAWVQTERQQ
FRDFRDLNKDGHLDGSEVGHVLPPAQDQPLVEANHLLHESDTDKDGRLSKAEILGNWNMFV
GSQATNYGEDLTRHHDEL

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 140-144

Casein kinase II phosphorylation site.

amino acids 72-76, 98-102, 127-131, 184-188, 208-212, 289-293,
291-295, 298-302

N-myristoylation site.

amino acids 263-269, 311-317

Endoplasmic reticulum targeting sequence.

amino acids 325-330

FIGURE 81

GGGGCCTTGCCTTCCGCACTCGGGCGCAGCCGGGTGGATCTCGAGCAGGTGC GGAGCCCCGG
GCGGCAGGGCGCGGGTGCAGGGGATCCCTGACGCCCTGTGCCCCTTTGTCGCTCCAG
CCTGTCGTCGTCGTTGGCGCCCCCGCCTCCCCCGGGTGCAGGGGTTGCACACCGATCCTG
GGCTTCGCTCGATTGGCGCCGAGGGCGCTCCCAGACCTAGAGGGCGCTGGCCTGGAGCAG
CGGGTCGTCGTCGTCCTCTCCCTCGCGCCGCCGGGATCCGAAGGGTGCAGGGGCTCT
GAGGAGGTGACCGCGGGGCTCCCAGCACCTGGCCTGCCCCTGAGCAGGGTGCAGGGGCTCT
GTGTGAGCAGCCTATCAGTCACCATGTCCGCAGCCTGGATCCCAGCTCGGCCTCGGTGTG
TGTCTGCTGCTGCCGGGCCCGGGCAGCGAGGGAGCCGCTCCCATTGCTATCACATG
TTTACCAAGAGGCTTGGACATCAGGAAAGAGAAAGCAGATGTCTCTGCCAGGGGCTGCC
CTCTTGAGGAATTCTCTGTGTATGGGAACATAGTATATGCTCTGTATCGAGCATATGTGGG
GCTGCTGTCACAGGGGAGTAATCAGCAACTCAGGGGACCTGTACGAGTCTATAGCCTACC
TGGTCGAGAAAACATTCTCAGTAGATGCCATGGCATCCAGTCTCAAATGCTTCTAGAT
GGTCTGCTCTTCACAGTAACAAAGGCAAAGTAGTACACAGGAGGCCACAGGACAAGCA
GTGTCCACAGCACATCCACCAACAGGTAAACGACTAAAGAAAACACCCAGAAGAAAAC
CAATAAAGATTGTAAGCAGACATTGCATTCTGATTGATGGAAGCTTAATATTGGCAGC
GCCGATTTAACATTACAGAAGAATTGGCTTAATGTTGGAAAGTGGCTCTAACATTGGAA
GAAGGACCACATGTGGCCTTGTCAAGCCAGTGAACATCCAAAATAGAATTACTTGAA
AAACTTACATCAGCAAAGATGTTGTTGCCATAAGGAAGTAGGTTAGGGCTAGAGGGGTA
ATTCCAATACAGGAAAAGCCTGAAAGCATACTGCTCAGAAATTCTCACGGTAGATGCTGGA
GTAAGAAAAGGGATCCCCAAAGTGGTGGTATTATTGATGGTGGCCTCTGATGACAT
CGAGGAAGCAGGCATTGTGGCAGAGAGTTGGTGTCAATGTATTATAGTTCTGTGGCCA
AGCCTATCCCTGAAGAACTGGGATGGTCAGGATGTCACATTGTTGACAAGGCTGCTGT
CGGAATAATGGCTTCTCTTACCATGCCAACTGGTTGGCACCAAAATACGTAAA
GCCTCTGGTACAGAACGCTGTGCACTCATGAACAAATGATGTGCAAGACCTGTTATAACT
CAGTGAACATTGCCTTCTAATTGATGGCTCCAGCAGTGTGGAGATAGCAATTCCGCCTC
ATGCTGAAATTGTTCCAACATAGCCAAGACTTTGAAATCTCGGACATTGGTCCAAGAT
AGCTGCTGTACAGTTACTTATGATCAGCGCACGGAGTTCACTGACTATAGCACCA
AAGAGAATGTCCTAGCTGTCACTAGAAACATCCGCTATATGAGTGGTGGAAACAGCTACTGGT
GATGCCATTCTTCACTGTTAGAAATGTGTTGGCCCTATAAGGGAGAGCCCCAACAGAA
CTTCCTAGTAATTGTCACAGATGGCAGTCCTATGATGATGTCCAAGGCCCTGCAGCTGCTG
CACATGATGCAGGAATCACTATCTCTGTGGTGGCTGGCACCTCTGGATGACCTG
AAAGATATGGCTTCTAAACCGAAGGAGTCTCACGCTTCTTCACAAGAGAGTTCACAGGATT
AGAACCAATTGTTCTGATGTCATCAGAGGCATTGTTAGAGATTCTTACAATCCCAGCAAT
AATGGTAACATTGACAACTGAAAGAAAAAGTACAAGGGGATCCAGTGTGTAATTGTATT
CTCATAACTGAAATGCTTACTGATGACATAGAATCAGATAACAAACTATTAAGTATGTCAAC
AGCCATTAGGCAAATAAGCACTCCTTAAAGCCGCTGCCTCTGGTTACAATTACAGTGT
ACTTTGTTAAAACACTGCTGAGGCTTCATAATCATGGCTCTAGAAACTCAGGAAAGAGGA
GATAATGTGGATTAAAACCTTAAGAGTTCTAACCATGCCTACTAAATGTACAGATATGCAAA
TTCCATAGCTCAATAAAAGAATCTGATACCTTAGACCAAAAAAA

FIGURE 82

MSAAWIPALGLGVCLLLPGPAGSEGAAPIAITCFTRGLDIRKEKADVLCPGGCPLLEFSVY
GNIVYASVSSICGAAVHRGVISNSGGPVRVYSLPGRENYSSVDANGIQSQMLSRWSASFTVT
KGKSSTQEATGQAVSTAHPPTGKRLKKTPPEKKTGNKDKCKADIAFLIDGSFNIQRRFNLQKN
FVGKVALMLGIGTEGPHVGLVQASEHPKIEFYLNFTSAKDVLFAIKEVGFRGGNSNTGKAL
KHTAQKFFTVDAGVRKGIPKVVVVFIDGWPSSDIEEAGIVAREFGVNFIIVSVAKPIPEELG
MVQDVTFVDKAVCRNNGFFSYHMPNWFGTTKYVKPLVQKLCTHEQMMCSKTCYNSVNIAFLI
DGSSSVGDSNFRLMLEFVSNIAKTFEISDIGAKIAAVQFTYDQRTEFSFTDYSTKENVLA
RNIRYMSGGTATGDAISFTVRNVFGPIRESPNKNFLVIVTDGQSYDDVQGPAAAHDAGITI
FSVGVAWAPLDDLKDMASKPKESHAFFTREFTGLEPIVSDVIRGICRDFLESQQ

Signal sequence:

amino acids 1-24

N-glycosylation site.

amino acids 100-104, 221-225

Casein kinase II phosphorylation site.

amino acids 102-106, 129-133, 224-228, 316-320, 377-381, 420-424,
425-429, 478-482, 528-532

N-myristoylation site.

amino acids 10-16, 23-29, 81-87, 135-141, 158-164, 205-211,
239-245, 240-246, 261-267, 403-409, 442-448, 443-449

Amidation site.

amino acids 145-149

FIGURE 83

CGCCCGCGCTCCCGCACCGCGGCCACCGCGCCGCTCCGCATCTGCACCCGAGCCC
GGCGGCCTCCCGCGGGAGCGAGCAGATCCAGTCCGGCCCGAGCGCAACTCGGCCAGTC
GGCGCGGGCTGCGGGCGCAGAGCGGAGATGAGCGGGCTGGGGCACCCCTGCTGTGCCTGC
TGCTGGCGGGCGGCGGTCCCCACGGCCCCCGCCGCTCCGACGGCGACCTCGGCTCCAGTC
AAGCCCGGCCCGGCTCTCAGCTACCCGAGGAGGACACCGCAGCACAAATTGCGCAGCGCGTGGAAAGAGATGGAGG
GGTTGAGGAAGTGTGAGGACACGCAGCACAAATTGCGCAGCGCGTGGAAAGAGATGGAGG
CAGAAGAAGCTGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACACTACCTCCAGCTAT
ACAATGAGACCAACACAGACACGAAGGTTGAAATAATACCATCCATGTGCACCGAGAAAT
TCACAAGATAACCAACAACAGACTGGACAAATGGTCTTTCAGAGACAGTTATCACATCTG
TGGGAGACGAAGAAGGCGAGAAGGAGCCACGAGTGCATCATCGACGAGGACTGTGGGCCAGC
ATGTACTGCCAGTTGCCAGCTCCAGTACACCTGCCAGCCATGCCGGGCCAGAGGATGCT
CTGCACCCGGGACACTGAGTGTGGAGACCAGCTGTGTCTGGGTCACTGCACCAAAA
TGGCCACCAGGGGAGCAATGGGACCATCTGTGACAACCAGAGGGACTGCCAGCCGGGCTG
TGCTGTGCCTCCAGAGAGGGCTGCTGTTCCCTGTGTGCACACCCCTGCCGTGGAGGGCGA
GCTTGCATGACCCGCCAGCGGCTCTGGACCTCATCACCTGGAGCTAGAGCCTGATG
GAGCCTGGACCGATGCCCTGTGCCAGTGGCCTCTGCCAGCCCCACAGCCACAGCCTG
GTGTATGTGTGCAAGCCACCTCGTGGAGCCGTGACCAAGATGGGAGATCCTGCTGCC
CAGAGAGGTCCCCGATGAGTATGAAGTTGCCAGCTTCATGGAGGAGGTGCGCCAGGAGCTGG
AGGACCTGGAGAGGAGCCTGACTGAAGAGATGGCGCTGGGGAGCCTGCCGTGCCGCT
GCACTGCTGGAGGGAAAGAGATTAGATCTGGACCAAGGCTGTGGTAGATGTGCAATAGAA
ATAGCTAATTATTCAGGTGTGCTTAGGCGTGGCTGACCAGGCTTCTCCTACA
TCTTCTCCAGTAAGTTCCCTCTGGCTTGACAGCATGAGGTGTTGCAATTGTTCA
TCCCCCAGGCTGTTCTCCAGGCTTCACAGTCTGGCTTGGGAGAGTCAGGCAGGGTTAAC
TGCAGGAGCAGTTGCCACCCCTGTCCAGATTATTGGCTGCTTGCCTCTACAGTTGGCAG
ACAGCCGTTGTTCTACATGGCTTGATAATTGTTGAGGGAGGAGATGGAAACAATGTGG
AGTCTCCCTGTGATTGGTTGGGAAATGTGGAGAAGAGTGCCTGCTTGCAAAACATCAA
CCTGGCAAAATGCAACAAATGAATTTCACCGAGTCTTCCATGGCATAGGTAAGCTG
TGCCTTCAGCTGTTGCAGATGAAATGTTCTGTTCACCTGCATTACATGTGTTATTCA
AGCAGTGTGCTCAGCTCTACCTCTGTGCCAGGGCAGCATTTCATATCCAAGATCAATT
CCTCTCTCAGCACAGCCTGGGGAGGGGTATTGTTCTCGCCATCAGGGATCTCAGAG
GCTCAGAGACTGCAAGCTGCTGCCAAGTCACACAGCTAGTGAAGACCAGAGCAGTTCA
CTGGTTGTGACTCTAAGCTCAGTGCTCTCCACTACCCACACCAGCCTGGTGCCACCAA
AAGTGTCCCCAAAAGGAAGGAGAATGGGATTGGGACTTGAGGCATGCACATCTGGAATTAA
GTCAAACATAATTCTCACATCCCTCTAAAGTAAACTACTGTTAGGAACAGCAGTGTCTCAC
AGTGTGGGGAGCCGCTTCTAATGAAGACAATGATATTGACACTGTCCCTCTGGCAGT
TGCATTAGTAACCTTGAAAGGTATATGACTGAGCGTAGCATAACAGTTAACCTGCAGAAACA
GTACTTAGGTAATTGAGGGGAGGATTATAAATGAAATTGCAAAATCACTAGCAGCAAC
TGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGCTGTGAAACATGGTT
GTAATATGCGACTGCCAACATGTATTGACACTGCTACGCCACTCCACAAATGATGTTTCA
TGGACTGTTGCCACCATGTATTGACACTGCTTAAAGTTAAAGTTGACATGATTGTA
TAAGCATGCTTCTTGAGTTAAATTATGTATAAACATAAGTGCATTAGAAATCAAGC
ATAAAATCACTCAACTGCAAAAAAAAAAAAAAA

600 700 800 900 1000 1100 1200

FIGURE 84

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEATLNEMFREVEELMEDTQ
HKLRSAVEEMEAEEAAKASSEVNLPPSYHNETNTDTKGNNTIHVHREIHKITNNQTG
QMVFSETVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRSECCG
DQLCVWGHCTKMATRGSNGTICDNQRDCQPGLCCAFQRGLFPVCTPLPVEGELCHDPASRL
LDLITWELEPDGALDRCPCASGLLCOPHSHLVYVCKPTFVGSRDQDGIELLPREVPEYEV
GSFMEEVRQELEDLERSLTEEMALGEPAAAAALLGEEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316,
327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

FIGURE 85

AAGGAGGGCTGGGAGGAAAGAGGTAAGAAAGGTAGAGAACCTACCTCACATCTCTCTGGGCTCAGAAGGACTCTG
AAGATAACAATAATTCAAGCCCATCCACTCTCCTTCCCAAACACACATGTGCATGTACACACACATACA
CACACATACACCTTCCTCTCCTCACTGAAGACTCACAGTCACTCACTCTGAGCAGGTCATAGAAAAGGACAC
TAAAGCCTTAAGGACAGGCCATTACCTCTGAGCTCTGGCTTGAGTCAGGAAACATGGAGGG
CCAGGCACGGTACTCACACCTGTAATCCCAGCATTGGAGACCGAGGTGAGCAGATCACTTGAGGTCAAGGAG
TTCGAGACCAGCCTGGCCAACATGGAGAAACCCCCATCTCACTAAAAATACAAAAATTAGCCAGGAGTGGTGGC
AGGTGCTGTAATCCCAGTACTCAGGTGGCTGAGCCAGGAGAATCGCTGAATCCAGGAGGGAGGATGCCAGT
CAGCTGAGTGCACCGCTGCACTCCAGCCTGGTGCAGAATGAGACTCTGTCTCAAACAAACACGGGAGGA
GGGTAGATACTGCTTCTGCAACCTCCTAACCTGCACTCTGATCTTCCAGGGCTGCCCTGATGGGCCCTG
GCAATGACTGAGCAGGCCAGCCCCAGGGACAAGGAAGAGAAGGCATATTGAGGAGGGCAAGAAGTGA
GTGAGAATGACTGCCCTGGGAGGGTGGTCTTGGGCCCTGGCAGGGTTGCTGACCCCTAACCTGCAAAACAC
AAGAGCAGGACTCCAGACTCTCCTGTGAATGGTCCCTGCCCTGAGCTCCACCAATGAGGCTTCTCGTGGCCCC
ACTCTTGCTAGCTGGGGCTGGTGCCTGCACTGTGCCACTGTGCCCTGGTACCCGGATGTTCCCTGCCCTCA
GTGTGCTGCCAGATCCGGCCCTGGTATACGGCCCTGCTGCTTACCGCGAGGCTACCACTGTGGACTGCAATGA
CCTATTCTGACGCCAGTCCCCCGGCACTCCCCGAGGCACACAGACCCCTGCTGAGGCAACAGCATTGT
CCGTGTGGACCAGAGTGAAGTGGCTACCTGCCAATCTCACAGAGCTGGACCTGTCCCAGAACAGCTTTGGA
TGCCCGAGACTGTGATTCCATGCCCTGCCCTGGCAGCTGCTGAGCCTGACCTAGAGGAGAACCGAGCTGAC
GGAGGACACAGCTTGCAAGGGCTGGCAGGCTACAGGAACACTATCTCAACCACAACCAGCTTACCGCATCG
CCCCAGGGCCTTCTGGCTCAGCAACTTGTGCGGCTGCACCTCAACTCCAACCTCTGAGGGCCATTGACAG
CCGCTGGTTGAAATGCTGCCAACTGGAGACTCATGATTGGGGCAACAAGGTAGATGCCATCCTGGACAT
GAACCTCCGGCCCTGGCCAACCTGCGTAGCCTGGTCTAGCAGGATGAACCTGCCGGAGATCTCGACTATGC
CTTGAGGGCTGCAAAGCCTGGAGAGCCTCTTCTATGACAACCAGCTGCCCTGGGTGCCAGGCGGGCACT
GGAACAGGTGCCGGCTCAAGTCTCTAGACCTCAACAAGAACCCGCTCCAGGGTAGGGCCGGGACTTGC
CAACATGCTGACCTTAAGGAGCTGGACTGAACAACATGGAGGAGCTGGTCTCCATGACAAGTTGCCCTGGT
GAACCTCCCCGAGCTGACCAAGCTGGACATCCAATAACCCACGGCTGTCTTCTATCCACCCCCGGCCTTCA
CCACCTGCCCTGGAGGACCTCATGCTCAACAACACGCTCTCAGTGCCTTGACCCAGCAGACGGTGGAGTC
CTTGCCCAACCTGCAAGGGTAGGTCTCACGCCAACCCATCCGCTGTGACTGTGTCATCCGCTGGCCAATGC
CACGGGCACCCGTGTCGCTTATCGAGCCGAATCCACCCCTGTGCGGAGGCTCCGGACCTCCAGCGCCTCCC
GGTCCGTGAGGTGCCCTTCCGGGAGATGACGGACCAACTGTTGCCCTCATCTCCCCAGAAGCTTCCCCCAAG
CCTCAGGTAGCCAGTGGAGAGAGCATGGTGTGCAATTGCCGGCACTGCCGAACCCGAACCCGAGATCTACTG
GGTCACTCCAGCTGGCTCGACTGACACCTGCCATGCAGGCAAGGAGGTACGGGTGACCCGGGACCT
GGAGCTGCGGAGGGTGACAGCAGAAGAGGCAGGGCTATACACCTGTGTTGGCCAGAACCTGGTGGGGCTGACAC
TAAGACGGTTAGTGTGGTGTGCGCTCCTCCAGCCAGGAGGGCAAGGACAGGGGCTGGAGCTCC
GGTGCAGGAGACCCACCCCTATCACATCTGCTATCTGGTCAACCCACCAACAGTGTCCACCAACCTCAC
CTGGTCCAGTGCCTCCTCCCTGGGGCCAGGGGCCACAGCTGGCCCTGCCTGGGGAAACCCACAGCTA
CAACATTACCGCCTCCTCAGGCCACGGAGTACTGGGCTGCCGCAAGTGGCTTGTGATGCCACACCCA
GTTGGCTTGTGATGGGCCAGGACCAAAGAGGCCACTCTTGCCACAGAGCCTAGGGGATGTCCTGGCTCAT
TGCCATCCTGGCTCGCTGCTCTCTGGCAGCTGGCTAGGGCCACCTTGGCACAGGCCAACCCAGGAA
GGGTGTGGGTGGGAGGCGCCTCTCCAGCCTGGCTTCTGGGCTGGAGTGGCCCTTGTCCGGGTTGT
GTCTGCTCCCTCGTCTGCCCTGGAATCCAGGGAGGAAGCTGCCAGATCCTCAGAAGGGAGACACTGTTGCC
ACCATTGTCTAAATTCTTGAAGCTCAGCCTGCCAGGAAAGGACATGGACCCACGTGCTTGAGGCCTGGCAGCTGGC
CAAGACAGATGGGCTTGTGGCCCTGGGGGCTCTGAGCCTGGCTTCTGAGCCTTGGCTTACCTCCTAGGGTCA
CCTCTGCTGCCATTCTGAGGAACATCTCCAAGGAACAGGGAGGGACTTGGCTAGAGCCTCCCTGCCCTCCCCATCTT
CTCTGCCCCAGGGCTCTGGGCCCTGGCTTCTGCTTCTGCTTCTGCTGCCCTGGCTGCAACCCCTTCTCTTC
TCTTCTCTGTAAGTCTCAGTTGCTTGCTTCTGCTTCTGCTGCCCTGGCAAGGGCTGAAGGAGGGCACTCCATCTCAC
CTCGGGGGCTGCCCTCAATGTGGGAGTGACCCAGCCAGATCTGAAGGACATTGGAGAGGGATGCCAGGAA
CGCCTCATCTCAGCAGCCTGGCTGGCATTCCGAAGCTGACTTTCTATAGGCAATTGGTACCTTGTGGAGAA
ATGTGTCACCTCCCCAACCGATTCACTCTTCTCTGTTGAAAAAATAAAATAACAATAAAA
AAAA

100 200 300 400 500 600 700 800 900

FIGURE 86

MRLLVAPLLLAWVAGATATVPVVPWHVPCPPQCACQIRPWYTPRSSYREATTVDCCNDLFLTA
VPPALPAGTQTLLLQSNSIVRVDQSELGYLANLTELDLSQNSFSDARDCDFHALPQLLSLHL
EENQLTRLEDHSFAGLASLQEELYLNHNQLYRIAPRAFSGLSNLLRLHLSNLLRAIDSRWFE
MLPNLEILMIGGNKVDAILDMNFRPLANLRSILVLAGMNLREISDYALEGLQSLESLSFYDNQ
LARVPRRALEQVPGLKFLDLINKPLQRVGPGDFANMLHLKELGLNNMEELVSIDKFALVNLP
ELTKLDITNNPRLSFIHPRAFHHLQPQMETLMLNNNALSALHQQTVESLPNLQEVGLHGNPIR
CDCVIRWANATGTRVRFIEPQSTLCAEPPDQLQRLPVREVPFREMTHCLPLISPRSFPSSQ
VASGESMVVLHCRALAEPEPEIYWVTPAGLRLTPAHGRRYRVYPEGTLELRRVTAAEAGLYT
CVAQNLVGADETKTVVVGRALLQPGRLDEGQGLELRVQETHPYHILLSWTPPNTVSTNLTW
SSASSLRGQGATALARLPRGTHSYNITRLLQATEYWACLQVAFADAHTQLACVWARTKEATS
CHRALGDRPGLIAILALAVALLLAAGLA AHLGTGQPRKGVGRRPLPPAWAFWGWSAPSVRVV
SAPLVLPWNPGRKLPRSSEGETLLPPLSQNS

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 629-648

N-glycosylation site.

amino acids 94-98, 381-385, 555-559, 583-587

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 485-489

Casein kinase II phosphorylation site.

amino acids 46-50, 51-55, 96-100, 104-108, 130-134, 142-146,
243-247, 313-317, 488-492, 700-704

Tyrosine kinase phosphorylation site.

amino acids 532-540

N-myristoylation site.

amino acids 15-21, 493-499, 566-572

Amidation site.

amino acids 470-474, 660-664, 692-696

FIGURE 87

GCAAGGCCAAGGCCTGTTGAGAAGGTGAAGAAGTCCGGACCCATGTGGAGGGGGACATTGTGTACCGCCT
CTACATGGCGCAGACCATCATCAAGGTGATCAAGTTCATCCTCATCATCTGCTACACCGTCTACTACGTGCACAA
CATCAAGTTGACGGACTGCACCGTGGACATTGAGAGCCTGACGGGCTACCGCACCTACCGCTGTGCCACCC
CCTGGCACACTCTCAAGATCCTGGCTCCTCATACATCAGCCTAGTCATCTTACGGCCTCATCTGCATGTA
CACACTGTGGTGGATGCTACGGCCTCCCTCAAGAAGTACTCGTTGAGTCGATCGTGGAGGAGCAGCTACAG
CGACATCCCCGACGTCAAGAACGACTTCGCCTCATGCTGACCTCATTGACCAATACGACCCGCTACTCCAA
GCGCTTCGCCGTCTCTGTGGAGGTGAGTGAGAACAGCTGGCAGCTGAACCTCAACAACGAGTGGACGCT
GGACAAGCTCCGGCAGCGGCTACCAAGAACGCGCAGGACAAGCTGGAGCTGACCTGTTCATGTCAGTGGCATT
CCCTGACACTGTGTTGACCTGGTGGAGCTGGAGGTCCCTAAGCTGGAGCTGATCCCGACGTGACCATCCC
CAGCATTGCCAGCTCACGGCCTCAAGGAGCTGGCTCTACACACAGCGGCCAAGATTGAAAGCGCTGCGCT
GGCCTTCTGCGCGAGAACCTGCGGGCCTGCACATCAAGTTACCGACATCAAGGAGATCCGCTGTGGATCTA
TAGCCTGAAAGACACTGGAGGAGCTGACCTGACGGCAACCTGAGCGCGGAGAACAAACGCTACATGTCATCGA
CGGGCTGCGGGAGCTCAAACGCCCTCAAGGTGCTGCCAGCTCAAGAGCAACCTAACGAAAGCTGCCACAG
AGATGTGGGCGTGCACCTGCGAGAACGCTGTCCATCAACAATGAGGGCACCAAGCTCATCGTCTCAACAG
GAAGATGGCGAACCTGACTGGAGCTGATCCGCTGCGACCTGGAGGCGATCCCCCACTCCATCTCAGCCT
CCACAACCTGCGAGAGATTGACCTCAAGGACAACAAACCTCAAGGACCATCGAGGGAGATCATCAG
CTTCCAGCACCTGCACCCCTCACTCCCTTAAGCTGTGTAACACACATGCCCTACATCCCCATCCAGATCG
CCTGGAGCGCCTCTACCTGAAACCGCAACAAGATCGAGAACGATCCCCCAGCTCTTACTGCCAGCTGC
CTACCTGGACCTCAGCCACAACAAACCTGACCTTCCCTGCCAGATCGGCCCTCTGCGAGAACCTCCAGAAC
AGCCATCACGGCAACCGGATCGAGACGCTCCCTCGGAGCTTCCAGTGCCGGAAGCTGCCGGCCCTGCAC
GGGCAACAAACGTGTCAGTCACTGCCCTCCAGGGTGGCGAGCTGACCAACCTGACCGAGATCGAGCTGC
CAACCGCTGGAGTGCTGCTGTGGAGCTGGCGAGTGCCCACTGCTCAAGCGCAGCGGCTTGGTGGAGGA
GGACCTGTTCAACACACTGCCACCCAGGTGAAGGAGCGCTGTGGAGGGCTGACAAGGAGCAGGCCTGAG
GCCGGCCAGCACAGCAAGCAGCAGGACCGCTGCCAGTCTCAGGCCCGAGGGCAGGCCTAGCTTCTCCAG
AACTCCCGGACAGCCAGGACAGCCTCGGGCTGGCAGGAGCCTGGGGCCGTTGTGAGTCAGGCCAGAGCAGA
GGACAGTATCTGTGGGCTGCCCTTTCTCCCTCTGAGACTCACGCCAGGGCAAGTGCTTGGAGGAG
AGCAAGTCTCAAGAGCGCAGTATTGGATAATCAGGGCTCTCCCTGGAGGCCAGCTGCCAGGGCTGAG
CTGCCACCAGAGGTCTGGGACCCCTACTTAGTTCTGGTATTATTCTCCATCTCCACCTCCTCATCC
AGATAACTTATACATCCCAAGAAAGTCAGCCCAGATGGAAGGTGTCAGGGAAAGGTGGCTGCC
TTGTCCCTTATTAGCGATGCCCGGGCATTTAACACCCACCTGGACTTCAGCAGAGTGGCCGGGGCAAC
CCATGGGACGGTCAACCAGCAGTGCCGGCTGGCTCTGCGGTGCGGCCAGGGCCTCCAGCTGG
AAGGCCAGGCCCTGGAGCTTGCTCTCAGTTTGAGCTTGTGGCAGTTAGTTTTGT
AAACAATTTTAAAAAAAGCTTGGAAAATGGATGGTTGGGTATTAAAAAGAAAAAAACTTAAAAAA
AAAAGACACTAACGGCCAGTGAAGTGGAGTCTCAGGGCAGGGTGGCAGTTCCCTTGAGCAAAGCAG
TGAACGTGTTCTTCCCTGGGCCAGGGTGCAGGGTGTCTCCGGATCTGGTGTGACCTTGGTCCAGGAGTT
CTATTGTTCTGGGGAGGGAGGTTTTGTGTTGGTTGGGTTTTGGTGTCTGTGTTCTTCTCCTCC
ATGTGTCCTGGCAGGCCACTATTCTGTCGGCTGGGCCAGAGGGAAATGTTCTGGAGCTGCC
ACTCGGGTGGCTAATCCCCGATGAAACGGTCTCCATTGCCACCTCCCTCTGCCCTGCC
CGCACAGTGTAAAGGAGCCAAGAGGAGGCCACTTCCGGCAGACTTGTGTTCC
CCAGTGCCACCGCTGGCCTCCGCTGTTCCATCAGCCCTGCGCACCTGGCTCT
GAGGCTGGCGGAAAGGGAGGTCGCCCTGGGAGGGCAGGCCGTTGGTCAAGCG
CTGGAGTGACACAGCCAGTCGGCACCTGGTGGCTGGAGGCCAACCTGCTT
AGATCACTCGGTCCCCACCTT
AGAAGGGTCCCCGCCCTAGATCAATCAGTGGACACTAAGGCACGTTTAGAGTCTTGTCTTA
CCATCCGTCTGTCGCTCCATTGTGTTCTGCGTGTGTCATTGGATATAATCCTCAG
CCTCTGACAACCATGAAGCAAAATCCGTTACATGTGGGTCTGA
ACTTGTAGACTCGGTACAGTATCAAATAA
ATCTATAACAGAAAAAAAAAAAAAA

FIGURE 88

MRQTIIKVIKFILIIICYTVYYVHNIFKFDVDCTVDIESLTGYRTYRCAHPLATLFKILASFYI
SLVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSDIPDVKNDFAFMLHLIDQYDPLYSK
RFAVFLSEVSENKLRLQLNNNEWTLDKLRQRLTKNAQDKLELHLFMLSGIPDTVFSDLVELEV
LKLELIPDVTIPPSIAQLTGLKELWLYHTAAKIEAPALAFLRENLRALHIKFDTIKEIPLWI
YSLKTLEELHLTGNLSAENNRIVIDGLRELKRLKVLRLKSNLSPQVVTDVGVHLQKLSI
NNEGTKLIVLNSLKKMANLTELELIRCDLERIPHISIFSLHNLQEIDLKDNNLKTIEEIISFQ
HLHRLTCLKLWYNHIAYIPIQIGNLTNERLYLNRNKIEKIPTQLFYCRKLRYLDLSHNNLT
FLPADIGLLQNLQNLAITANRIETLPPELFQCRKLRALHGNVLQSLPSRVGELTNLTQIE
LRGNRLECLPVELGECPLLKRSGLVVEEDLFNTLPPEVKERLWRADKEQA

Transmembrane domain:

amino acids 51-75 (type II)

N-glycosylation site.

amino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 85-89

Casein kinase II phosphorylation site.

amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368,
398-402, 493-497

N-myristoylation site.

amino acids 173-179, 261-267, 395-401, 441-447

FIGURE 89

GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTCATGGAGCTGGCACTGCGGCGCTCTCCCGT
CCCGCGGTGGTTGCTGCTGCCGCTGCTGGCCTGAACGCAGGAGCTGTCATTGACT
GGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATG
TTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACCTCTCAGAACTGCCCTGGTCAT
GTGGCTTCAGGGCGGTCCAGGCAGGTTCTAGCACTGGATTTGGAAACTTGAGGAAATTGGGC
CCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATT
GTGGATAATCCC GTGGCACTGGTT CAGTT ATGTGAATGGTAGTGGTGCCTATGCCAAGGA
CCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAG
AATTCCAGACAGTTCCATTCTACATTTCTCAGAGT CCTATGGAGGAAAATGGCAGCTGGC
ATTGGTCTAGAGCTTTATAAGGCCATT CAGCGAGGGACC ATCAAGTGC AACTT GCGGGGT
TGCCTGGGTGATT CCTGGATCTCCCTGTTGATT CGGTGCTCTCCTGGGACCTTACCTGT
ACAGCATG TCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTG CAGAGCAAGTA
CTGAATGCCGTAAATAAGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGAAAGCAGAAAT
GATCATTGAACAGAACACAGATGGGTGAACCTCTATAACATCTTA ACTAAAAGCACTCCCA
CGTCTACAATGGAGTCGAGTCTAGAATT CACACAGAGGCCACCTAGTTGTCTTGTCAGCGC
CACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGCCCATCAGAAAGAA
GCTAAAATTATTCTGAGGATCAAT CCTGGGAGGCCAGGCTACCAACGTCTTGTGAACA
TGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATC
AACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGT CAGGAGGCCTG
GGTGC GAAACTGAAGTGGCCAGAACTGCCTAAATT CAGTCAGCTGAAGTGGAGGCCCTGT
ACAGTGACCC TAAATCTTGAAACATCTGCTTTGTCAAGTCCTACAAGAACCTTGCTTTC
TACTGGATTCTGAAAGCTGGTCATATGGT CTTCTGACCAAGGGACATGGCTCTGAAGAT
GATGAGACTGGT GACTCAGCAAGAATAGGATGGATGGGCTGGAGATGAGCTGGTTGGCCT
TGGGGCACAGAGCTGAGCTGAGGCCGCTGAAGCTGTAGGAAGGCCATTCTCCCTGTATCT
AACTGGGCTGTGATCAAGAACGGTTCTGACCA GCTTCTGCAGAGGATAAAATCATTGTCTCT
GGAGGCAATTGGAAATTATTCTGCTCTAAAAAAACCTAAGATTTTAAAAAATTGAT
TTGTTTGATCAAAATAAAGGATGATAATAGATATTAA

FIGURE 90

MELALRRSPVPRWLLLLP₁LLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSC
KNFSELPLVMWLQGGPGGSSTGFGNFEIGPLSDLKPRKTTWLQAASLLFVDNPVGTGFSY
VNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQR
GTIKCNFAGVALGDSWISPVDVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYRE
ATELGKAEMIIEQNTDGVNFYNILTKSTPTSTMESLEFTQSHLVCLCQRHVRHLQRDALS
QLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDL
IVDTMGQEAWRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVP
SDQGDMALKMMRLVTQQE

Signal sequence:

amino acids 1-25

N-glycosylation site.

amino acids 64-68, 126-130, 362-366

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 101-105

Casein kinase II phosphorylation site.

amino acids 204-208, 220-224, 280-284, 284-288, 351-355, 449-453

N-myristoylation site.

amino acids 22-28, 76-82, 79-85, 80-86, 119-125, 169-175,
187-193, 195-201, 331-337, 332-338, 360-366

FIGURE 91

GGCCGCGGGAGAGGAGGCCATGGGCGCGCGCGGGCGCTGCTGCTGGCGCTGCTGCTGGCTC
GGGCTGGACTCAGGAAGCCGGAGTCGCAGGAGGCAGCGCCGTTATCAGGACCATGCAGGCCGA
CGGGTCATCACGTGCGCAGCGTGGGAGAGGACGCCGAACCTGGCGTTGCCGTGGCA
GGGGAGCCTGCGCCTGTGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGG
CACTCACGGCGGCGCACTGCTTGAAACCTATAGTGACCTTAGTGATCCCTCCGGGTGGATG
GTCCAGTTGCCAGCTGACTTCCATGCCATCCTCTGGAGCCTGCAGGCCTACTACACCCG
TTACTCGTATCGAATATCTATCTGAGCCCTCGTACCTGGGAATTCACCTATGACATTG
CCTTGGTGAAGCTGTCTGCACCTGTACCTACACTAAACACATCCAGCCCCTGTCTCCAG
GCCTCCACATTGAGTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGGGGTACATCAA
AGAGGATGAGGCAGTGCATCTCCCCACACCCTCCAGGAAGTTCAAGGTGCCATCATAAACAA
ACTCTATGTGCAACCACCTCTCCTCAAGTACAGTTCCGCAAGGACATCTTGGAGACATG
GTTTGTGCTGGCAACGCCAACGGCGGAAGGATGCCTGCTCGGTGACTCAGGTGGACCCCT
GGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGAGTGGCTGTG
GTCGGCCAATCGGCCGGTGTCTACACCAATATCAGCCACCACCTTGAGTGGATCCAGAAG
CTGATGGCCAGAGTGGCATGTCCCAGCCAGACCCCTCCTGCCACTACTCTTTCCCTCT
TCTCTGGCTCTCCACTCCTGGGCCGGTCTGAGCCTACCTGAGCCCATGCAGCCTGGGC
CACTGCCAAGTCAGGCCCTGGTCTCTGTCTTGGTAATAAACACATTCCAGTTGA
TGCCTTGCAGGGCATTCTCAAAAAAAAAAAAAAAA

FIGURE 92

MGARGALLALLARAGLRKPESQEAPLSGPCGRRVITSRIVGGEDAELGRWPQGSLRLW
DSHVCVGVSLLSHRWALTAAHCFETYSIDLSDPSGWMVQFGQLTSMPSFWSLQAYYTRYFVSNI
YLSPRYLGNSPYDIALVKLSAPVTYTAKHIQPICLQASTFEFENRTDCWVTGWGYIKEDEALP
SPHTLQEJVQVAIINNSMCNHLFLKYSFRKDIFGDMVCAGNAQGGKDACFGDSGGPLACNKNG
LWYQIGVVSWGVGCGRPNRPGVYTNISHHFEWIQKLMAQSGMSQPDPSWPLLFFPLLWALPL
LGPV

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 167-171, 200-204, 273-277

Casein kinase II phosphorylation site.

amino acids 86-90, 134-138, 161-165, 190-194, 291-295

N-myristoylation site.

amino acids 2-8, 44-50, 101-107, 225-231, 229-235, 239-245,
259-265, 269-275

Amidation site.

amino acids 33-37

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 252-263,

Serine proteases, trypsin family, histidine active site.

amino acids 78-84

FIGURE 93

CCCACGCGTCCGGACGCGTGGGAAGGGCAGAATGGGACTCCAAGCCTGCCTCCTAGGGCT
CTTGCCCTCATCCTCTGGCAAATGCAGTTACAGCCCAGGCCGACCAGCGAGGACGC
TGCCCCCAGGCTGGGTGCCCCCTGGCGTGCAGGACCCCTGAGGAAGAGCTGAGTCACCTT
GCCCTGAGACAGCAGAATGTGGAAAGACTCTCGGAGCTGGTGCAGGCTGTGTCGGATCCCAG
CTCTCCTCAATAACGGAAAATACCTGACCCCTAGAGAATGTGGCTGATCTGGTGGCCATCCC
CACTGACCCCTCCACACGGTGCAGGGAAATGGCTCTGGCAGCCGGAGGCCAGAAGTGCATTCT
GTGATCACACAGGACTTCTGACTTGCTGGCTGAGCATTGACAAGCAGAGCTGCTGCTCCC
TGGGCTGAGTTCATCACTATGTGGGAGGACCTACGAAACCATGTTGTAAGGTCCCCAC
ATCCCTACCAGCTTCCACAGGCCTGGCCCCCATGTGGACTTGTGGGGGACTGCACCGT
TTTCCCCAACATCATCCCTGAGGCAACGTCTGAGCCGAGGTGACAGGGACTGTAGGCCT
GCATCTGGGGTAACCCCTGTGATCCGTAAGCGATACAACCTGACCTACAAGACGTGG
GCTCTGGCACCAGCAATAACAGCCAAGCCTGTGCCAGTTCCCTGGAGCAGTATTCCATGAC
TCAGACCTGGCTCAGTCATGCGCCTTCTGGCAACTTGACATCAGGCATCAGTAGC
CCGTGTGGTGGACAACAGGGCCGGGGCCGGGATTGAGGCCAGTCTAGATGTGAGT
ACCTGATGAGTGCTGGTGCACATCTCACCTGGGCTACAGTAGCCCTGGCCGGCATGAG
GGACAGGAGCCCTTCCTGCAGTGGCTATGCTGCTCAGTAATGAGTCAGCCCTGCCACATGT
GCATACTGTGAGCTATGGAGATGATGAGGACTCCCTCAGCAGGCCTACATCCAGCGGGTCA
ACACTGAGCTCATGAAGGCTGCCGCTGGGTCTCACCTGCTCTCGCCTCAGGTGACAGT
GGGGCCGGGTGGTCTGTCTGGAAAGACACCAGTTCCGCCAACCTTCCCTGCCTCCAG
CCCCTATGTCACCACAGTGGAGGCACATCCTCCAGGAACCTTCCTCATCACAAATGAAA
TTGTTGACTATATCAGTGGTGGCTTCAGCAATGTGTTCCACGGCCTCATACCAGGAG
GAAGCTGTAACGAAGTTCTGAGCTAGCCCCCACCTGCCACCATCCAGTTACTTCAATGC
CAGTGGCCGTGCCTACCCAGATGTGGCTGCACCTTGATGGCTACTGGGTGGTCAGCAACA
GAGTGCCATTCCATGGGTGTCGGAACCTCGCCTCTACTCCAGTGGTTGGGGGATCCTA
TCCTTGATCAATGAGCACAGGATCCTAGTGGCCGCCCCCTTGGCTTCTCAACCCAAG
GCTCTACCAGCAGCATGGGCAGGTCTTGTGTAACCCGTGGCTGCCATGAGTCCTGTC
TGGATGAAGAGGTAGAGGGCAGGGTTCTGCTCTGGCTGGTGGATCCTGTAACAGGC
TGGGGAACACCAACTCCCAGCTTGCTGAAGACTCTACTCAACCCCTGACCCCTTCTATC
AGGAGAGATGGCTTGTCCCCCTGCCCTGAAGCTGGCAGTTCACTCCCTATTCTGCCCTGTG
GAAGCCCTGCTGAACCTCAACTATTGACTGCTGCAGACAGCTTATCTCCCTAACCCCTGAAA
TGCTGTGAGCTTGACTTCACTCCACCCCTACCATGCTCCATCATACTCAGGTCTCCCTACT
CCTGCCCTAGATTCTCAATAAGATGCTGTAACTAGCATTTTGATGCCCTCCCTCCGC
ATCTCATCTTCTCTTCAATCAGGTTTCAAAGGGTTGTATACAGACTCTGTGCACTA
TTCACTTGATATTCAATTCCCAATTCACTGCAAGGAGACCTCTACTGTCACCGTTACTCT
TTCCTACCTGACATCCAGAAACAATGGCCTCCAGTGCATACTCTCAATCTTGTGTTATG
GCCTTCCATCATAGTTGCCACTCCCTCTCCTACTTAGCTCCAGGTCTTAACCTCTG
ACTACTCTTGTCTTCTCTCATCAATTCTGCTTCTCATGGAATGCTGACCTCATTG
TCCATTGAGATTGGCTCTCAGTTACTCATTGCCCCGGAACAAATCACTGACA
TCTACAACCATTACCATCTCACTAAATAAGACTTCTATCCAATAATGATTGATAACCTCAA
TGTAAAAAA

FIGURE 94

MGLQACLLGLFALILSGKCSYSPEPDQRRTLPPGWVSLGRADPEEELSITFALRQQNVERLS
ELVQAVSDPSSPQYGKYLTLENVADLVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWL
SIRQAELLPGAEFHYYVGGPTETHVVRSRSPHYQLPQALAPHVDFVGGLHRFPPSSLRQRP
EPQVTGTVGLHLGVTPSVIRKRYNLTSQDVSGTSNNSQACAQFLEQYFHDSDLAQFMRLFG
GNFAHQASVARVVGQQGRGRAGIEASLDVQYILMSAGANISTWVYSSPGRHEGQEFLQWLML
LSNESALPHVHTVSYGDDEDSLSSAYIQRVNTELMKAAARGLTLLFASGDGAGCWSVSGRH
QFRPTFPASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEEAVTKFLSSSP
HLPPSSYFNASGRAYPDVAALSDGYWVVSNRVPIPWVSGTSASTPVFGGILSLINEHRILSG
RPPLGFLNPRLYQQHGAGLFDVTRGCHECLDEEVEGQGFCSGPWDPVTGWGTPTSQLC

Signal sequence:

amino acids 1-16

N-glycosylation site.

amino acids 210-214, 222-226, 286-290, 313-317, 443-447

Glycosaminoglycan attachment site.

amino acids 361-365, 408-412, 538-542

Casein kinase II phosphorylation site.

amino acids 212-216, 324-328, 392-396, 420-424, 525-529

N-myristoylation site.

amino acids 2-8, 107-113, 195-201, 199-205, 217-223, 219-225,
248-254, 270-276, 284-290, 409-415, 410-416, 473-479, 482-488,
521-527, 533-539, 549-555

FIGURE 95

GCCGCGCGCTCTCTCCGGCGCCCACACCTGTCTGAGCGGCGAGCGAGCCGCCGGC
GGGCTGCTCGCGCGGAACAGTGCTCGGCATGGCAGGGATTCCAGGGCTCCTCTCCTTC
TTCTTCTGCTCTGTGCTGTGGCAAGTGAGCCCTACAGTGCCCCCTGGAAACCCACTTG
GCCTGCATAACCGCCTCCCTGCGTCTGCCCCAGTCTACCCCTCAATTAGCCAAGCCAGACT
TTGGAGCCGAAGCAAATTAGAAGTATCTTCTCATGTGGACCCAGTGTCTAAGGGAACCT
CCACTGCCCACTTACGAAGAGGCCAAGCAATATCTGTCTTATGAAACGCTCTATGCCAATGG
CAGCCGCACAGAGACGCAGGTGGCATCTACATCCTCAGCAGTAGTGGAGATGGGCCAAC
ACCGAGACTCAGGGCTTCAGGAAAGTCTCGAAGGAAGCGGCAGATTATGGCTATGACAGC
AGGTTCAGCATTGGAAAGGACTTCCTGCTCAACTACCCTTCTCAACATCAGTGAAGTT
ATCCACGGGCTGCACCGCACCCCTGGTGGCAGAGAACGATGTCCACAGCTGCCACTGCA
TACACGATGAAAAAACCTATGTGAAAGGAACCCAGAACGCTTCAGTGGCTTCTAAAGCCC
AAGTTAAAGATGGTGGTCGAGGGGCCAACGACTCCACTTCAGCCATGCCAGCAGATGAA
ATTCAGTGGATCCGGGTGAAACGCACCCATGTGCCAAGGGTTGGATCAAGGGCAATGCCA
ATGACATCGGCATGGATTATGATTATGCCCTCCTGGAACTCAAAAAGCCCCACAAGAGAAAA
TTTATGAAGATTGGGGTGAGCCCTCTGCTAACGAGCTGCCAGGGGCCAGAACATTCACTTCTC
TGGTTATGACAATGACCGACCAGGAATTGGTGTATCGCTTCTGTGACGTCAAAGACGAGA
CCTATGACTGCTCTACCAGCAATGCCATGCCAGCCAGGGGCCAGGGCTGGGTCTAT
GTGAGGATGTGGAAGAGACAGCAGCAGAACGTTGGAGCCAAAAATTATTGGCATTTCAGG
GCACCAGTGGGTGGACATGAATGGTCCCCACAGGATTCAACGTGGCTGTCAAATCACTC
CTCTCAAATATGCCAGATTGCTATTGGATTAAAGGAAACTACCTGGATTGTAGGGAGGG
TGACACAGTGGCCCTGGCAGCAATTAGGGCTTCATGTTCTTATTTAGGAGAGGCC
AAATTGTTTGTCAATTGGCGTGCACACGTGTGTGTGTGTGTGTGTGTAAAGGTGT
CTTATAATCTTACCTATTCTACAATTGCAAGATGACTGGCTTACTATTGAAAATG
GTTTGTGTATCATATCATATCATTAAGCAGTTGAAGGCATACTTTGCATAGAAATAA
AAAAAAATCTGATTGGGGCAATGAGGAATATTGACAATTAGTTAATCTCACGTTTG
CAAACTTGATTTATTCATCTGAACCTGTTCAAAGATTATTAATATTAAATATTGGCATA
CAAGAGATATGAAAAAAAAAAAAAA

FIGURE 96

MAGIPGLLFLLFFLLCAVGQVSPYSAPWKPTWPAYRLPVVLPQSTLNLA
KPDFGAEAKLEVS
SSCGPQCHKGTPLPTYEEAKQYLSYETLYANGSRTETQVGIYILSSSGDGAQHRD
SGSSGKS
RRKRQIYGYDSRFSIFGKDFLLNYPFSTSVKLSTGCTGTLVAEKHVLTA
AHCIDHGKTYVKG
TQKLRVGFLKPDKFDGGRGANDSTSAMPEQMFKQWIRVKRTHVPKGWI
KGNANDIGMDYDYA
LLELKKPHKRKFMKIGVSPPAKQLPGGRIHFSGYDNDRPGNLVYRFCDV
KDETYDLYQQCD
AQPGASGSGVYVRMWKRQQQKWERKIIGIFSGHQWVDMNGSPQDFNVAV
RITPLKYAQICYW
IKGNYLDCREG

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 93-97, 207-211

Glycosaminoglycan attachment site.

amino acids 109-113, 316-320

Casein kinase II phosphorylation site.

amino acids 77-81, 95-99, 108-112, 280-284, 351-355

N-myristoylation site.

amino acids 159-165, 162-168, 202-208, 205-211, 314-320, 338-344

Serine proteases, trypsin family, histidine active site.

amino acids 171-177

FIGURE 97

GCATGCCCTGGGTCTCTGAGCCTGCTGCCCTGCTCCCCGCCCCACCAGCCATGGTGGTT
CTGGAGCGCCCCAGCCCTGGGTGGGGCTGTCTGGCACCTCACCTCCCTGCTGCTGCTG
GCGTCGACAGCCATCCTCAATGCGGCCAGGATAACCTGTTCCCCAGCCTGTGGGAAGCCCCA
GCAGCTGAACCGGGTTGTGGCGCGAGGACAGCACTGACAGCGAGTGGCCCTGGATCGTGA
GCATCCAGAAGAATGGGACCCACCACTGCGCAGGTTCTGCTCACCAAGCCGCTGGGTGATC
ACTGCTGCCACTGTTCAAGGACAACCTGAACAAACCATAACCTGTTCTGTGCTGCTGGG
GGCCTGGCAGCTGGGAACCCTGGCTCTGGTCCCAGAACGGTGGGTGTTGCCTGGGTGGAGC
CCCACCCGTGTATT CCTGGAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCCTCGAG
CGCTCCATACAGTTCTCAGAGCGGGTCCGCCATCTGCCAACCTGATGCCCTATCCACCT
CCCTCCAACACCCACTGCTGGATCTCAGGCTGGGGAGCATCCAAGATGGAGTTCCCTTG
CCCACCCCTCAGACCCCTGCAGAACGCTGAAGGTTCTATCATGACTCGGAAGTCTGCAGCCAT
CTGTACTGGCGGGAGCAGGACAGGGACCCATCACTGAGGACATGCTGTGCCGGCTACTT
GGAGGGGGAGCAGGGATGCTTGTCTGGCGACTCCGGGGCCCTCATGTGCCAGGTGGACG
GCGCCTGGCTGCTGGCCGGCATCATCAGCTGGCGAGGGCTGTGCCAGCGAACAGGCC
GGGGTCTACATCAGCCTCTCTGCGCACCGCTCCTGGTGGAGAACGATCGCAAGGGTGCA
GCTCCCGGGCGCGCTCAGGGGGTGGGCCCTCAGGGCACCGAGCCAGGGCTCTGGGCC
CCGCGCGCTCCTAGGGCGCAGCGGACGCGGGCTCGGATCTGAAAGCGGCCAGATCCACA
TCTGGATCTGGATCTGGCGGCCCTGGCGGTTCCCCCGCGTAAATAGGCTCATCTACC
TCTACCTCTGGGGGCCGGACGGCTGCGGAAAGGAAACCCCTCCCCGACCCGCCGAC
GGCCTCAGGCCCCCCTCCAAGGCATCAGGCCGCCAACGGCCTCATGTCCCCGCCAAC
GACTTCCGGCCCCGCCGGGGCCCCAGCGCTTTGTGTATATAAATGTTAATGATT TATT
AGGTATTGTAACCCCTGCCACATATCTTATTATTCTCCAATTCAATAAATTATTATT
CTCCAAAAAAA

FIGURE 98

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA43318
><subunit 1 of 1, 317 aa, 1 stop
><MW: 33732, pI: 7.90, NX(S/T): 1
MVVSGAPPALGGGCLGTFTSLLLLASTAILNAARI PVPPACGKPQQLNRVVGGEDSTDSEWP
WIVSIQKNGTHHCAGSLLTSRWVITAHCFKDNLNKPYLF SVLLGAWQLGNPGSRSQKVGVVA
WVEPHPVYSWKEGACADIALVRLERSIQFSERVLPICLPDASIHLPPNTHCWISGWGSIQDG
VPLPHPQTLQKLKVPIIDSEVC SHLYWRGAGQGPITEDMLCAGYLEGERDACLGDGGPLMC
QVDGAWLLAGII SWGEGCAERNRPGVYISLSAHRSWVEKIVQGVQLRGRAQGGGALRAPSGQ
SGAAARS

Signal sequence:

amino acids 1-32

N-glycosylation site.

amino acids 62-66, 96-100, 214-218, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 99

GACGGCTGCCACCAATGCACGGCTCCTGAGTTCTGATGCTCTGCCGCTACTGCTA
CTGCTGGTGGCCACCACAGGGCCCAGGTGGAGCCCTCACAGATGAGGAGAACGTTGATGGT
GGAGCTGCACAACCTCTACCGGGCCCAGGTATCCCCACGGCCTCAGACATGCTGCACATGA
GATGGGACGAGGAGCTGGCCGCTTCGCCAAGGCCTACGCACGGCAGTGCAGTGGGGCAC
AACAAAGGAGCGCGGGCGCCGGCGAGAATCTGTTGCCATCACAGACGAGGGCATGGACGT
GCCGCTGCCATGGAGGAGTGGCACCACGAGCGTGAGCACTACAACCTCAGGCCGCCACCT
GCAGCCCAGGCCAGATGTGGCCACTACACGCAGGTGGTATGGCCAAGACAGAGAGGATC
GGCTGTGGTCCCACCTCTGTGAGAAAGCTCCAGGGTGGTGGAGGAGACCAACATCGAATTACT
GGTGTGCAACTATGAGCCTCCGGGAAACGTGAAGGGAAACGCCCTACCAGGAGGGACTC
CGTGCCTCCAAATGTCCTCTGGCTACCACTGCAAGAACTCCCTCTGTGAACCCATCGGAAGC
CCGGAAGATGCTCAGGATTGCTTACCTGGTAAC TGAGGCCCATCCTCCGGCGACTGA
AGCATCAGACTCTAGGAAAATGGGTACTCCTCTCCCTAGCAACGGGATTCCGGCTTCT
TGGTAACAGAGGTCTCAGGCTCCCTGGCAACCAAGGCTCTGCCTGCTGTGGAAACCCAGGCC
CCAACCTCCTTAGCAACGAAAGACCCGCCCTCCATGGCAACAGAGGCTCACCTGCGTAAC
AACTGAGGTCCCTTCCATTGGCAGCTCACAGCCTGCCCTCCTGGATGAGGAGCCAGTTA
CCTTCCCCAAATCGACCCATGTCCTATCCAAAATCAGCAGACAAAGTGACAGACAAAACA
AAAGTGCCCTCTAGGAGGCCAGAGAACTCTCTGGACCCCAAGATGTCCCTGACAGGGCAAG
GGAACCTCCTACCCCATGCCAGGAGGAGGCTGAGGCTGAGGCTGAGTTGCCTCCTCCAGTG
AGGTCTTGGCCTCAGTTTCCAGGCCAGGACAAGCCAGGTGAGCTGCAGGCCACACTGGAC
CACACGGGGCACACCTCCTCCAAGTCCCTGCCAATTCCCCAATACCTCTGCCACCGCTAA
TGCCACGGGTGGCGTGCCTGGCTCTGCAGTCGCTTGCCAGGTGCAGAGGCCCTGACA
AGCCTAGCGTTGTGTCAGGGCTGAACCTGGGCCCTGGCATGTGTGGGCCCTCCTGGGA
CTACTGCTCCTGCCTCCTCTGGTGGCTGGAATCTTCTGAATGGGATACCAACTCAAAGGG
TGAAGAGGTCAGCTGTCCCTGTCATCTTCCCCACCCGTCCCCAGGCCCTAAACAAGATA
CTTCTGGTTAAGGCCCTCCGAAGGGAAAGGCTACGGGCATGTGCCTCATCACACCCTCC
ATCCTGGAGGCACAAGGCCTGGCTGGCTGCGAGCTCAGGAGGCCCTGAGGACTGCACACC
GGGCCACACCTCTCCTGCCCTCCCTGAGTCCTGGGGTGGAGGATTGAGGGAGCT
CACTGCCTACCTGGCCTGGGCTGTCTGCCACACAGCATGTGCCTCTCCCTGAGTGCCTG
TGTAGCTGGGGATGGGGATTCCCTAGGGCAGATGAAGGACAAGCCCCACTGGAGTGGGTTC
TTTGAGTGGGGAGGCAGGGACGAGGAAGTAACTCCTGACTCTCCAATAAAACCT
GTCCAACCTGTGAAA

Figure 99

FIGURE 100

MHGSCSFLMLLLPLLLLLVATTGPVGALTDEEKRLMVELHNLYRAQVSPASDMILHMRWDEE
LAAFAKAYARQCVWGHNKERGRRGENLFAITDEGMVDPLAMEEWHHEREHYNLSAATCSPGQ
MCGHYTQVVWAKTERIGCGSHFCEKLQGVEETNIELLVCNYEPPGNVKGRPYQEGETPCSQC
PSGYHCKNSLCEPIGSPEADAQDLPYLVTEAPSFRATEASDSRKMGTPSSLATGIPAFLVTEV
SGSLATKALPAVETQAPTSLATKDPPSMATEAPPCVTTEVPSILAHLPSLDEEPVTFPKS
THVPIPKSADKVTDKTKVPSRSPENSLDPKMSLTGARELLPHAQEEAEAEELPPSSEVLAS
VFPAQDKPGELQATLDHTGHTSSKSLPNFPNTSATANATGGRALALQSSLPGAEGPDKPSVV
SGLNSGPGHVWGPLLGLLLLPPVLVLAGIF

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 114-118, 403-407, 409-413

Glycosaminoglycan attachment site.

amino acids 439-443

Casein kinase II phosphorylation site.

amino acids 29-33, 50-54, 156-160, 195-199, 202-206, 299-303

N-myristoylation site.

amino acids 123-129, 143-149, 152-158, 169-175, 180-186, 231-237,
250-256

Amidation site.

amino acids 82-86, 172-176

Peroxidases proximal heme-ligand signature.

amino acids 287-298

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 1.

amino acids 127-138

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 2.

amino acids 160-172

FIGURE 101

GTAACGTGAGTCAGGGCTTTCATTTGGGAAGCCCCCTCAACAGAACCGGTCAATTCTCCAAGTTATGGTGGACGT
ACTTCTGTTGTCCTCCCTGCTTGCTTTACATTAGCAGACCGGACTTAAGTCACAACAGATTATCTTTCAT
CAAGGCAAGTCCATGAGCCACCTTCAAAGCCTCGAGAACTGAACAACAATGAATTGGAGACCATTCC
AAATCTGGGACCAGTCTCGGCAAATATTACACTTCTCTCTGGCTGGAAACAGGATTGTTGAAATACTCCCTGA
ACATCTGAAAGAGTTCACTGAAACTTTGGACCTAGCAGAACAAATATTCAAGAGCTCCAAACTGCATT
TCCAGCCCTACAGCTCAAATATCTGTATCTCACAGAACCGAGTCACATCAATGGAACCTGGGTATTTGACAA
TTTGGCCAACACACTCCTGTAAAGCTGAACAGGAACCGAATCTCAGCTATCCCACCCAAAGATGTTAAACT
GCCCAACTGCAACATCTGAATTGAACCGAAACAAGATTAAAATGTAGATGGACTGACATTCCAAGGCCTGG
TGCTCTGAAAGTCTCTGAAATGCAAGAACAGGAAACTTATGGATGGAGCTTTGGGGCTGAGCAA
CATGGAAATTTCGAGCTGGACCATAACAACCTAACAGAGATTACCAAAGGCTGGCTTACGGCTTGCTGATGCT
GCAGGAACCTCATCTCAGCCAAAATGCCATCACAGGATCAGCCCTGATGCCCTGGAGTCTGCCAGAAGCTCAG
TGAGCTGGACCTAACTTCACTTCAAGGTTAGATGATTCAAGCTTCTGGCCAAGCTTACTAAATAC
ACTGCACATTGGAACAAACAGACTCAGTCATTGCTGATTGCTCTCCGGGGCTTCCAGTTAAAGACTTT
GGATCTGAAGAACAAATGAAATTCTGGACTATTGAGACATGAAGACATGGTCTTCTCTGGGCTTGACAAACTGAG
GCGACTGATACTCCAAGGAAATCGGATCCGTTCTTACTAAAAAGCCTTACTGGTTGGATGCAATTGGAGCA
TCTAGACCTGAGTGACAACGCAATCATGTTACAAGGCAATGCATTTCACAAATGAAGAAACTGCAACAAATT
GCATTAAATACATCAAGCCTTGTGCGATTGCCAGCTAAATGGCTCCACAGGGGGGGAAAACAACTT
TCAGAGCTTGTAAATGCCAGTTGTGCTGCCCCATCCTCAGCTGCTAAAGGAAGAACGATTGGCTGTTAGGCCAGA
TGGCTTGTGTTGATGATTCCAAACCCAGATCACGGTTCAGCCAGAAACACAGTCGGCAATAAAAGGTT
CAATTGAGTTCATCTGCTCAGCTGCCAGCAGCAGTGATTCCCAATGACTTTGCTGGAAAAAGACAATGA
ACTACTGCATGATGCTGAAATGAAATTATGCACACCTCCGGGCCAAGGGGGCGAGGTGGCGAGGTGATGGAGTATACCAC
CATCCTCGGCTGCGCAGGGTGAATTGCCAGTGAGGGAAATATCAGTGTCATCTCCAATCACTTGGTTC
ATCCTACTCTGCTAAAGCCAAGCTTACAGTAATATGCTTCCCTCATTCAACAGACCCCCATGGATCTCACCAT
CCGAGCTGGGGCATGGCACGCTGGAGTGTGCTGCTGGGGCACCCAGCCCCCAGATAGCCTGGCAGAAGGA
TGGGGGACAGACTTCCAGCTGCACGGGAGAGACGATGCATGTGATGCCGGAGGATGACGTGTTCTTATCGT
GGATGTGAAGATAGAGGACATTGGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTGCAAAATGC
AACTCTGACTGCTCTAGAAACACCATCATTTCGCGCCACTGTTGGACCGAAGTGAACCAAGGGAGAAACAGC
CGTCTACAGTGCATTGCTGGAGGAAGGCCCTCCCCCTAAACTGAACCTGGACCAAAGATGATAGCCCATTGGTGGT
AACCGAGAGGCACTTTGTGAGCAGGCAATCAGCTCTGATTATTGAGACTCAGATGTCAGTGCTGGAA
ATACACATGTGAGATGCTAACACCCCTGGCACTGAGAGAGGAAACGTGCGCCTCAGTGATCCCCACTCCAAC
CTGCGACTCCCCCTCAGATGACAGCAGGCCACTCGTTAGACGATGACGGATGGGCCACTGTGGGTGTCGTGATCATAGC
CGTGGTTGCTGTGGGGCACGTCACTCGTGTGGGTGTCATCATATACACACAAAGGGGGAGGAATGAAGA
TTGAGCATTACCAACACAGATGAGACCAACTTGCAGCAGAGTATTCTAGTTATTGTCATCTCAGGGAACGTT
AGCTGACAGGCAGGATGGTAGCTCTCAGAAAGTGAAGGCCACCCAGTTGTCACATCTCAGGTGCTGG
ATTTTCTTACACAAACATGACAGTAGTGGGACCTGCCATTGACAATAGCAGTGAAGCTGATGTGGAGCTGC
CACAGATCTGTTCTTGTCCGTTTGGGATCCACAGGCCCTATGTTATTGAGGGAAATGTGATGGCTCAGA
TCCTTTGAAACATATCATACAGGTGCACTGACCCAAAGAACAGTTTAATGGACCAACTATGAGCCAGTT
CATAAAGAAAAGGAGTGTACCCATGTTCTCATCCTCAGAAGAACCTGCGAACGGCTTCAGTAATATATC
GTGGCTTCACATGTGAGGAAGCTACTAACACTAGTTACTCTCACAAATGAAGGACCTGGAATGAAAATCTGTG
TCTAAACAAGTCTCTTTAGATTTAGTGCAAATCCAGAGGCCAGCGCTGGITGCCTCGAGTAATTCTTCTATGGG
TACCTTGGAAAAGCTCTCAGGAGACCTCACCTAGATGCCATTCAAGCTTGGACAGCCATCAGATTGTCAGCC
AAGAGCCTTTATTGAAAGCTCATCTTCCCCAGACTTGGACTCTGGGTAGAGGAAGATGGGAAAGAAAGGAC
AGATTTCAAGGAAGAAAATCACATTGTACCTTAAACAGACTTTAGAAAATCACAGGACTCCAAATTTCAGTC
TTATGACTTGGACACATAGACTGAATGAGACCAAAGGAAAAGCTTAAACATACACTCAGTGAACCTTATT
AAAGAGAGAGAATCTTATGTTAAATGGAGTTATGAATTAAAAGGATAAAATGCTTTATTATACAGAT
GAACCAAATACAAAAGTTATGAAAATTAACTGGGAATGATGCTCATATAAGAACACCTTTAAACTA
TTTTTAACTTGTTTATGCAAAAAGTATCTACGTTAAATTAAATGATATAATCATGATTATTTATGTATT
TTATAATGCCAGATTCTTTATGAAAATGAGTTACTAAAGCATTAAATAACCTGCCATTGACCAATT
TTAAATAGAAGTTACTTCATTATATTGACATTATTAATAAAATGTGCAATTGAA

FIGURE 102

MVDVLLLFSLCLLFHISRPDLSHNRLSFIKASSMSHLQLSLREVKLNNNELETIPNLGPVSAN
ITLLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEP
GYFDNLANTLLVLKLNRRNIRSAIPPKMFKLPQLQHLELNRNKIKNVDGLTFQGLGALKSLKM
QRNGVTKLMGDGFWGLSNMEILQLDHNNLTEITKGWLGYLLMLQELHLSQNAINRISPDAWE
FCQKLSLELDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRLGSSLKTLDDLKNNE
ISWTIEDMNGAFSGLDKLRRLILQGNRIRSITKKAFTGDALEHLDLSDNAIMSLQGNAFSQ
MKKLQQLHLNTSSLLCDCQLKWLPQWVAENNQSFVNASCAPQLLKGRSIFAVSPDGFVCD
DFPKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKDNELLHDAEMENYAHLRAGQ
GEVMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTNVNMLPSFTKTPMDLTIRAGA
MARLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAQN
SAGSISANATLTVLETPSFLRPLLDRTVTKGETAVLQCIAGGSPPPQLNWTKDDSPLVVTER
HFFAAGNQLLIIVDSVSDAGKYTCMSNTLGERGNVRLSVIPTPTCDSQPMTAPSLEDDG
WATVGVIIIAVVCCVVGTSLVWVVIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTIAD
RQDGYSSESSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEATDLFLCPFLGSTGP
MYLKGNVYGSDFETYHTGCSPDPRTVLMHYEPSYIKKKECYPCHPSEESCERSFSNISW
PSHVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDA
YSSFGQPSDCQPRAFYLKAHSSPDLDGSEEDGKERTDFQEENHICTFKQTLENYRTPNFQS
YDLDT

Signal sequence:

amino acids 1-19

Transmembrane domain:

amino acids 746-765

N-glycosylation site.

amino acids 62-66, 96-100, 214-220, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 103

GGGGAGAGGAATTGACCATGTAAAAGGAGACTTTTTTGGTGGTGGCTGTTGGGTGCCTGCAAAATG
AAGGATGCAGGACGCAGCTTCTCTGGAACCGAACGCAATGGATAAAACTGATTGTGCAAGAGAGAAGGAAGAAC
GAAGCTTTCTGTGAGCCCTGGATCTAACACAAATGTGTATATGTGCACACAGGGAGCATTCAAGAATGAAA
TAAACCAGAGTTAGACCCGGGGGTTGGTGTGTTCTGACATAAATAATCTTAAAGCAGCTTCCCCCTCC
CCACCCCCAAAAAAAGGATGATTGGAATGAAGAACCGAGGATTACAAAGAAAAAGTATGTTCTTCTC
TATAAAGGAGAAGTGAGCCAAGGAGATATTTGGAATGAAAAGTTGGGCTTTTAGTAAAGTAAGAAACT
GGTGTGGTGGTGTCTTCTTCTTGAATTCCACAAGAGGGAGGAAATTAATAACATCTGCAAAGAAA
TTTCAGAGAAGAAAAGTTGACCGCCGAGATTGAGGCATTGATTGGGGAGAGAAACCCAGCAGAGCACAGTTGGA
TTTGTGCCATGTTGACTAAATTGACGGATAATTGCAAGTGGATTCTCATCAACCTCCTTTTTAAAT
TTTATTCCCTTGTATCAAGATCATGCGTTCTCTGTCTAACACCACCTGGATTTCCATCTGGATGTTGCT
GTGATCAGTCTGAAATACAACACTGTTGAATTCCAGAACAGGACAAACACCAGATAAAATTATGTAATGTTGAAACAAGAT
GACCTTACATCCACAGCAGATAATTGAGGTCTAGGTTAACAGGGCCCTATTGACCCCTGCTTGTGGTCT
GCTGGCTCTCAACTCTGTGGCTGGCTGGCTCAGACCTGCCCTCTGTGTGCTCTGCCAGCAA
CCAGTCAGCAAGGTGATTGTGTTGGAAAAACCTCGCTGAGGTTCCGGATGGCATCTCCACCAACACACGGCT
GCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTCAAGCACTTGAGGCACTGGAAATCCT
ACAGTTGAGTAGGAACCATATCAGAACCAATTGAAATTGGGGCTTCAATGGTCTGGCAACCTCAACACTCTGGA
ACTCTTGACATCGTCTTACTACCATCCGAATGGAGCTTTGTATACTTGCTCAAACGCTCTGTT
GCGAACACAACCCATTGAAAGCATCCCTCTTATGCTTTAACAGAATTCCCTTTGCCGACTAGACTTAGG
GGAATTGAAAAGACTTCATACATCTCAGAACGGTGCCTTGAAGGTCTGTCAAATTGAGGTATTGAAACCTTG
CATGTGCAACCTCGGGAAATCCCTAACCTCACACCGCTCATAAAACTAGATGAGCTGGATCTCTGGGAAATCA
TTTATCTGCCATCAGGCCTGGCTTTCCAGGGTTGATGCACCTCAAAACTGTGGATGATACTGCCCAGAT
TCAAGTGAACGGAATGCCTTGACAACCTTCAGTCACTAGTGGAGATCAACCTGGCACACAATAATCTAAC
ATTACTGCCTCATGACCTTCACTCCCTGATCATCTAGAGCGGATACATTACATCACAAACCTTGGAACTG
TAACTGTGACATACTGTGGCTCAGCTGGGATAAAAGACATGGCCCCCTGAACACAGCTTGTGCCCCGGT
TAACACTCCTCCAATCTAAAGGGGAGGTACATTGGAGAGCTGACCAGAATTACTTCACATGCTATGCTCCGGT
GATTGTGGAGCCCCCTGCAGACCTCAATGTCAGTGAAGGCATGGCAGCTGAGCTGAAATGTCGGGCTCCACATC
CCTGACATCTGTATCTGGATTACTCCAAATGGAACAGTCATGACACATGGGGCTACAAAGTGCGGATAGCTGT
GCTCAGTGTGTTGACTGTTAACATGTAACCTGTGCAAGGATACAGGCATGTACACATGTATGGTGGTAA
TTCCGGTGGGAAACTACTGTGTTCAGCCACCTGAAATTGTTACTGCAGCAACCAACTACTCTTCTTACTTT
AACCGTCACAGTAGAGACTATGGAACCGCTCAGGATGAGGCACGGGACACAGATAACAATGTGGGCTCCACTCC
AGTGGTCGACTGGGAGACCAATGTGACCCCTCTCACACCAACAGGACACAAGGTCGACAGAGAAAACCTT
CACCATCCCAGTGAATGATATAAACAGTGGGATCCCAGGAATTGATGAGGTCTGACAGACTACAAATCATCAT
TGGGTGTTTGTGGCCATCACACTCATGGCTGCACTGATGCTGGTCAATTCTACAAGATGAGGAAGCAGCACCA
TCGGGAAAACCATCACGCCAACAGGACTGTTGAAATTATTAAATGTGGATGAGGATTACGGGAGACACACC
CATGGAAAGCCACCTGCCATGCCCTGCTATCGAGCATGAGCACCTAAATCACTATAACTCATACAAATCTCCCTT
CAACCCACACAAACAGTTAACACAATAATTCAATACACAGTTCACTGCACTGACATGAGGTTATTGATCGAATGAA
CTCTAAAGACAATGTACAAGAGACTCAAATCTAAACATTACAGAGTTACAAAAAACAAACATCAAAAAACAA
GACAGTTATTAAAAATGACACAAATGACTGGCTAAATCTACTGTTCAAAAAAGTGTCTTACAAAAACAA
AAAAGAAAAGAAATTATTAAACATTCTATTGTGATCTAAAGCAGACAAAAA

FIGURE 104

MLNKMTLHPQQIMIGPRFNRALFDPLLVLLALQLLVAGLVRAQTCPSVCSCSNQFSKVIC
VRKNLREVPDGISTNTRLLNLHENQIQIIKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA
NLNTLELFDNRLTTIPNGAFVYLSKLKELWLRNNPIESIPSYAFNRIPSLRRLDLGELKRLS
YISEGAFEGLSNLRYLNLCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL
WMIQSQIQVIERNAFDNLQSLVEINLAHNNLTLLPHDLFTPPLHHLERIHLHHNPWCNC
WLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLNTEGMAAE
LKCRASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTQDTGMYTCMVNSVGN
TTASATLNVTAATTPFSYFSTVTETMEPSQDEARTTDNNVGPTPVVDWETTNVTTSLTPQ
STRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFVAITLMAAVMLVIFYKMRKQHHRQN
HHAPTRTVEIINVDDETGDTPMESHLPMPAIEHEHLNHYN SYKSPFNHTTVNTINSIHSS
VHEPLLIRMN SKDNVQETQI

Signal sequence:

amino acids 1-44

Transmembrane domain:

amino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438,
442-446, 488-492, 606-610

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 183-187

Casein kinase II phosphorylation site.

amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243,
391-397, 422-428, 433-439, 531-537

FIGURE 105

AGCCGACGCTGCTCAAGCTGCAACTCTGTCAGTTGCAGTTGGCAGTTCTTCCGTTCTGCTGTTGGGGCA
TGAAAGGGCTCGCCGCCGGAGTAAAAGAAGGAATTGACCGGGCAGCGCAGGGAGGAGCGCGCACCGCACCGC
GAGGGCGGGCGTGCACCCCTCGGCTGGAAGTTGTGCCCCGGCCCGAGCGCGCCGGCTGGAGCTTCGGTAGA
GACCTAGGCCCTGGACCGCGATGAGCGCGAGCCTCCGTGCGCGCCGGCTGGAGCTTCGGTAGCGCTGTGC
GCGGTGCTGGGGCGCTGGCGCTGGACAGCGGGCGTGCAGGGAACTCGGGCAGCCCTCTGGGTAGCGCC
GAGCGCCCATGCCCACTACCTGCGCTGCCCTCGGGACCTGCTGGACTGCACTGTAAGCGGCTAGCGCTCTT
CCCAGGCCACTCCCGTCTGGGTGCTCGGCTGGACTTAAGTCACAACAGATTATCTTCATCAAGGCAAGTTCC
ATGAGCCACCTTCAAAGCTTCGAGAACAGTGAACAACAGATTGAGACCAATTCCAATCTGGGACCA
GTCTCGGCAAAATATTACACTTCTCTTGGCTGAAACAGGATTGTGAAATACTCCCTGAACATCTGAAAGAG
TTTCAGTCCCTTGAACACTTGGACCTTAGCAGCAACAAATATTTCAGAGCTCAAACATGCAATTCCAGCCCTACAG
CTCAAATATCTGTATCTAACAGCAACCGAGTCACATCAATGAAACCTGGGTTTGAACATTGGCCAACACAA
CTCCTGTGTTAAAGCTAACAGGAACCGAACATCTCAGCTATCCCACCCAAGATGTTAAACTGCCCCACTGCAA
CATCTCGAATTGAAACCGAACAGATTAAAATGTAGATGGACTGACATTCCAAGGCTTGGTGTCTGAAGTCT
CTGAAAATGCAAAGAAATGGAGTAACGAAACTTATGGATGGACTTTTGGGGCTGAGCAACATGGAAATTG
CAGCTGGACCATAACAAACCTAACAGAGATTACCAAAGGCTGGCTTACGGCTGCTGATGCTGAGGAACCTCAT
CTCAGCCAAATGCCATCACAGGATCAGCCCTGATGCTGGAGTTCTGCCAGAAGCTCAGTGAGCTGGACCTA
ACTTCAATCACTTATCAAGGTTAGATGATTCAAGCTTCTGGCTAAGCTTACTAAATACACTGCACATTGGG
AACAAACAGAGTCAGCTACATTGCTGATTGTGCCCTTCCGGGGCTTCCAGTTAAAGACTTGGATCTGAAGAAC
AATGAAATTCTCTGGACTATTGAAGACATGAATGGTCTTCTCTGGGCTGACAAACTGAGGCAGCTGATAACTC
CAAGGAAATCGGATCGTTCTATTACTAAAAAAAGCCTTCACTGGTTGGATGCAATTGGAGCATAGACCTGAGT
GACAACGCAATCATGTCTTACAAGGCAATGCAATTTCACAAATGAAGAAACTGCAACAAATTGCAATTAAATACA
TCAAGCTTTGTGCGATTGCCAGCTAAATGGCTCCACAGTGGTGGCGAAAACAATTTCAGAGCTTGT
AATGCCAGTTGTGCCCATCCTCAGCTGCTAAAGGAAGAACGATTGGTGTAGCCAGATGGCTTGT
GATGATTTCACCAAAACCCAGATCACGGTCTAGCCAGAAACACAGTCGGCAATAAAAGGTTCCAATTGAGTTTC
ATCTGCTCAGCTGCCAGCAGCTGATTCCCAATGACTTTGCTGGAAAAAAAGACAATGAACACTGCTGATGAT
GCTGAAATGAAAATTATGCACACCTCCGGGGCCAAGGTGGCGAGGTGATGGAGTATACCACCATCCTCGGCTG
CGCGAGGTGGAATTGCAACCTCCGGGGCCAAGGTGGCGAGGTGATGGAGTATACCACCATCCTCGGCTG
AAAGCCAAGCTTACAGTAAATATGCTTCCCTCATTCAACAGACCCCCATGGATCTCACCACCGAGCTGGGCC
ATGGCACGCTGGAGTGTCTGCTGCTGGGCCACCCAGCCCCAGATAGCCTGGCAGAAGGATGGGGCACAGAC
TTCCAGCTCACGGAGAGACGCATGCTGATGCCAGGATGACGTGTTCTTATCGGGATGTGAAGATA
GAGGACATTGGGTATACAGCTGCACAGCTCAGAACAGTCAGGAAGTATTCAAGCAATGCAACTTGACTGTC
CTAGAAACACCATCATTGCGGCCACTGTTGGACCGAACTGTAACCAAGGGAGAAACAGCCGCTCTACAGTGC
ATTGCTGGAGGAAGCCCTCCCCCTAAACTGAACTGGACCAAGATGATAGCCATTGGTGGTAACCGAGAGGCAC
TTTTTGCAGCAGGCAATCAGCTCTGATTATTGAGCTCAGATGTCAGTGCTGGAAATACACATGTGAG
ATGCTTAACACCTTGGACTGAGAGAGGAAACGTCGCCCTCAGTGTGATCCCCACTCCAACCTGCACTCCCT
CAGATGACAGCCCCATGTTAGACGATGACGGATGGGCCACTGTGGGTGTCGTGATCATAGCCGGTTGCTGT
GTGGGGCACGTCACTCGTGTGGGTGTCATCATACACACACAAGGGAGGAATGAAGATTGAGCATTAC
AACACAGATGAGACCAACTGCCAGATATTCTCTAGTTATTGTCATCTCAGGGAACGTTAGCTGACAGGCAG
GATGGTACGTGCTTCAAGAAAGTGGAAAGCCACCAAGTTGTACATCTCAGGTGCTGGATTTCCTTACCA
CAACATGACAGTAGTGGGACCTGCCATATTGACAATAGCAGTGAAGCTGATGAGCTGCCACAGATCTGTC
CTTGTGCTGTTTGGATCCACAGGCCCTATGTATTGAAAGGGAAATGTGTATGGCTCAGATCCTTGAACAA
TATCATACAGGGTGCAGTCTGACCCAAGAACAGTTAAATGGACCACTATGAGCCAGTTACATAAAGAAAAG
GAGTGTACCCATGTTCTCATCTTCAAGAACAGTCTGCAAGAACAGCTGGAGCTTCAGTAATATATCGTGGCTTACAT
GTGAGGAAGCTACTTAACACTAGTTACTCTCACATGAAGGACCTGGAAATGAAAATCTGTGCTAAACAAGTCC
TCTTAGATTGCAATCCAGAGCCAGCGCTGGTCTCGAGTAATTCTTCTATGGTACCTTGGAAAA
GCTCTCAGGAGACCTCACCTAGATGCCATTCAAGCTGGACAGCCATCAGATTGTCAGCCAAGAGCCTTTAT
TTGAAAGCTCATTCTCCCCAGACTTGGACTCTGGTCAAGAGGAAGATGGGAAAGAACAGATTTCAGGAA
GAAAATCACATTGTACCTTAAACAGACTTAGAAAACACTACAGGACTCCAATTTCAGTCTTATGACTTGGAC
ACATAGACTGAATGAGACCAAGGAAAGCTTAACATACTACCTCAAGTGAACATTATTTAAAGAGAGAAT
CTTATGTTTTAAATGGAGTTATGAATTAAAGGATAAAATGCTTATTATACAGATGAACCAAATTAC
AAAAGTTATGAAAATTAACTGGGAATGATGCTCATATAAGAACACCTTTAAACTATTTTAACTT
TTTATGAAAAAAAGTATCTACGTAATTAAATGATATAATCATGATTATTATGTTATTTATAATGCCAGA
TTCTTTTATGGAAAATGAGTTACTAAAGCATTTAAATAACCTGCCCTGTACCATTTTAAATAGAAGTT
ACTTCATTATATTGACATTATTTAATAAAATGTGCAATTGAAAAAAAAAAAAAA

FIGURE 106

MSAPSLRARAAGLGLLLCAVLGRAGRSDSGGRGELGQPMSGVAAERPCPTTCRCLGDLDCSR
KRLARLPEPLPSWVARLDLSHNRLSF IKASSMSHLQLSREVKLNNNELETIPNLGPVSANIT
LLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEPGY
FDNLANTLLVLKLNRRNRI SAIPPKMFKL PQLQHLELNRNKIKNVDGLTFQGLGALKSLKMQR
NGVTKLMGAFWGLSNMEI LQLDHNNLTEITKGWLYGLLMLQELHLSQNAINRISPDAWEFC
QKLSELDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRLGSSLKTLDLKNEIS
WTIEDMNGAFSGLDKLRRRI LQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQMK
KLQLHLNTSSLCDCQLKWLPQWVAENNQSFVNASCAPHQPLLKGRSIFAVSPDGVCDDF
PKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAKKDNELLHDAEMENYAHLRAQGGE
VMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGAMA
RLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCAQNSA
GSISANATLTVLETPSFLRPLLDRTVKGETAVLQCIAGGSPPPKNWTKDDSPLVVTERHF
FAAGNQLLIIVDSDVSDAGKYTCEMSNTLGTERGNVRLSVIPTPTCDSPQMTAPSLLDDGWA
TVGVVIIAVVCCVVGTSLVWWVIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTLADRO
DGYVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLFCPFLGSTGPMY
LKGNVYGSDFETYHTGSPDPRTVLMHYEPSYIKKKECYPCHPSEESCERSFSNISWPS
HVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDAYS
SFGQPSDCQPRAFYLAHSSPDLDGSEEDGKERTDFQEENHICTFKQTLENYRTPNFQSYDLDT

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 808-828

N-glycosylation site.

amino acids 122-126, 156-160, 274-278, 442-446, 469-473, 515-519, 688-692, 729-733, 905-909, 987-991, 999-1003, 1016-1020

Glycosaminoglycan attachment site.

amino acids 886-890

Casein kinase II phosphorylation site.

amino acids 99-103, 180-184, 263-267, 314-318, 324-328, 374-378, 383-387, 407-411, 524-528, 608-612, 692-696, 709-713, 731-735, 799-803, 843-847, 863-867, 907-911, 1003-1007, 1018-1022, 1073-1077, 1079-1083, 1081-1085

Tyrosine kinase phosphorylation site.

amino acids 667-675

N-myristoylation site.

amino acids 14-20, 36-42, 239-245, 257-263, 380-386, 427-433, 513-519, 588-594, 672-678, 683-687, 774-780, 933-939

Leucine zipper pattern.

amino acids 58-80, 65-87

FIGURE 107

CAAAACTTGCCTCGCGGAGACGCCAGCTGACTGAATGGAAGGGCCCGAGCCCGGAGCGCAGCTGAGAC
TGGGGGAGCGCTTCGGCCTGTGGGGCGCCCTGGCGCCGGGCGCAGCAGGGAAAGGGGAAGCTGTGGTCTGC
CTGCTCCACGAGGCGCCACTGGTGTGAACCAGGGAGAGCCCCCTGGGTGGTCCCCTATCCCTCTTTATATA
GAAACCTTCCACACTGGGAAGGCAGGGCAGGAGGGCTCATGGTGAGCAAGGAGGGCGCTGATCTGCAGG
GCGCACAGCATTCCGAGTTACAGATTTACAGATAACCAATGGAAGGCAGGAGGCAGAACAGCCCTGCCTGGT
TCCATCAGCCCTGGCGCCAGGCGCATCTGACTCGGCACCCCTGCAGGCACCATGGCCAGAGCCGGTCTGC
TGCTCTGCTGCTGCTGCCACAGCTGCACCTGGACCTGTGCTTGCGTGGAGGGCCCAGGATTGGCGAA
GTGGCGCCACAGCTGAGCCCCGAAGAGAACGAATTGCGGAGGAGGAGCCGGTCTGGTACTGAGCCCTGAGG
AGCCCCGGGCTGGCCAGCCCGTCACTGCCCCGAGACTGTGCCTGTTCCAGGAGGGCGTGTGGACTGTG
GCGGTATTGACCTGCGTGAGTTCCGGGGACCTGCCTGAGCACACCAACCACCTATCTGCAGAACAAACCAGC
TGGAAAAGATCTACCCCTGAGGAGCTCTCCGGCTGCACCGCTGGAGACACTGAACCTGCAAAACAAACCCTG
CTTCCCGAGGGCTCCAGAGAAGGCAGTTGAGCATCTGACCAACCTCAATTACCTGACTTGGCAATAACAAGC
TGACCTTGGCACCCCGTCTCTGCCAACGCCCTGATCAGTGTGGACTTGTGCTGCCAACTATCTCACCAAGATCT
ATGGGCTCACCTTGGCCAAGGCCAAACTTGAGGTCTGTGTACCTGCACAAACAAGCTGGCAGACGCCGGG
TGGCGGACAACATGTTCAACGGCTCCAGCAACCTGAGGTCTCATCTGTCAGCAACTCTCTGCCAACGTC
CCAAGCACCTGCCCTGCCCTGTACAAGCTGACCTCAAGAACAAAGCTGGAGAAGATCCCCCGGGG
TCAGCCAGCTGAGCAGCTGGCGAGCTATACTGCCAGAACAAACTACCTGACTGAGGGGCTGGACAACGAG
CCTCTGGAAGCTCTCCAGCCTGGAGTACCTGGATCTGTCCAGCAACAAACTGTCTGGTCCAGCTGGCTG
CGCGCAGCCTGGTGTGCTGCACCTGGAGAACAGCCATCGGAGCGTGGAGCGAATGTGCTGACCCCCATCC
GCAGCCTGGAGTACCTGCTGTCACAGCAACCAAGCTGCCAGGAGCAGGGCATCCACCCACTGGCTTCCAGGGC
TCAAGCGGTTGACACGGTGCACCTGTACAACAAACCGCAGCTGGAGCGCGTGGCCAGTGGCTGCTGCC
GCACCCCTCATGATCTGCACAAACAGATCACAGGCACTGGCGGAAGACTTGGCACCACCTACTTCTGGAGG
AGCTCAACCTCAGCTACAACCGCATCACCAGCCACAGGGTGCACCGCGACGCCCTCCGCAAGCTGCCCTG
GCTCGCTGGACCTGTGGGAACCCGGCTGCACACGCTGCCACCTGGGCTGCCCGAAATGTCCATGTGCTGAAGG
TCAAGCGCAATGAGCTGGCTGCCCTGGCACAGGGGCGTGGCGGGCATGGCTCAGCTGCCAGTGTACCTCA
CCAGCAACCGACTGCCAGCCAGGCCCTGGGCCCCCTGCTGGTGGACCTGCCCATCTGCAGCTGCTGGACA
TCGCCGGGAATCAGCTCACAGAGATCCCCGAGGGCTCCCCGAGTCACCTGAGTACCTGTACCTGAGAACAAACA
AGATTAGTGGCTGCCGCCAATGCCCTGACTCCACGCCAACCTCAAGGGGATCTTCTCAGGTTAACAAAGC
TGGCTGTGGCTCGTGGACAGTCCTCCGGAGGCTGAAGCACCTGCAGGTCTGGACATTGAAGGCAACT
TAGAGTTGGTACATTCAAGGACCGTGGCCCTGGGAAGGAAAGGAGGAGGAGGAAGAGGAGGAGGAGG
AGGAAGAGGAAACAAGATAGTGACAAGGTGATGCAGATGTGACCTAGGATGATGGACCGCCGACTCTTTCTGC
AGCACACGCCCTGTGTGCTGTGAGCCCCCAACTCTGCCGTGTCACACAGAACACCCAGCTGCACACATGAGGCA
TCCCACATGACACCGGCTGACACAGTCTCATATCCCCACCCCTCCACGGCGTGTCCCAGGCCAGACACATGC
ACACACATCACACCCCTCAAACACCCAGCTCACAGAACACAAACTACCCCTCCAAACCCACCAAGTCTGTACAC
CCCCACTACCGCTGCCACGCCCTGTAATCATGCAGGGAGGGCTGCCCTGGCACACACAGGCCACCC
TCCCTCCCCCTGTCAGATGTGTATGCTGACATACACACCACACACATGCACAAAGTCATGTGCGAA
CAGCCCTCCAAAGCTATGCCACAGACAGCTTGTGCCAGGAGAACATCAGGCCATAGCAGCTGCCGTCTGCC
GTCCCATCTGTCCGTTCCCTGGAGAAGACACAAGGGTATCCATGCTGTGGCCAGGTGCTGCCACCC
GGAACTCACAAAAGCTGGTTTATTCTTCCATCCTATGGGACAGGAGCTTCAGGACTGCTGCCCTGG
TGGCCACCCCTGCTCCTCCAGGTGCTGGCAGTCACCTGCTAAGAGTCCCTCCCTGCCACGCCCTGGCAGGACA
CAGGCACCTTCCAATGGGAAGGCCAGTGGAGGGCAGGATGGAGAGGCCCTGGGTGCTGCTGGGGCTTGGGG
CAGGAGTGAAGCAGAGGTGATGGGGCTGGCTGAGCCAGGGAGGAAGGACCCAGCTGCACCTAGGAGACACCTT
GTTCTTCAGGCTGTGGGGGAAGTTCCGGTGCCTTATTCTTATTCTTCTAAGGAAAAAAATGATAAAA
CTCAAAGCTGATTCTTCTTGTATAGAAAAACTAATATAAAAGCATTATCCCTATCCCTGCAAAAAAAA

FIGURE 108

MEGEEAEQPAWFHQWPWRPGASDSAPPAGTMAQSRVLLLLLPPQLHLGPVLAVRAPGFGRS
GGHSLSPPEENEFAEEEPLVLSPEEPGPGPAAVSCPRDCACSQEGVVDCGGIDLREFPGDLP
EHTNHLSLQNNQLEKIYPEELSRLHRLETNLQNNRLTSRGLPEKAFEHTNLNYLYLANNK
LTTLAPRFLPNALISVDFAANYLTKIYGLTFGQKPNLRSVYLHNNKLADAGLPDNMFNGSSNV
EVLILSSNFLRHVPKHLPPALYKLHLKNNKLEKIPPGAFSELSSLRELYLQNNYLTDEGLDN
ETFWKLSSLEYLDLSSNNLSRVPAGLPRSLVLLHLEKNAIRSDANVLPIRSLEYLLLHSN
QLREQGIHPLAFQGLKRLHTVHLYNNALERVPSGLPDRVRLMILHNQITGIGREDFATTYF
LEELNLSYNRITSQVHRDAFRKLRLRSLDLSGNRLHTLPPGLPRNVHVLKVKRNEALA
RGALAGMAQLRELYLTSNRLRSRALGPRAWVDLAHLQLLDIAGNQLTEIPEGLPESLEYLYL
QNNKISAVPANAFDSTPNLKIGIFLRFNKLAVGSVVDSAFRRLKHLQVLDIEGNLEFGDISKD
RGRLGKEKEEEEEEEEEEETR

Signal sequence:

amino acids 1-48

N-glycosylation site.

amino acids 243-247, 310-314, 328-332, 439-443

Casein kinase II phosphorylation site.

amino acids 68-72, 84-88, 246-250, 292-296, 317-321, 591-595

N-myristoylation site.

amino acids 19-25, 107-113, 213-219, 217-223, 236-242, 335-341,
477-483, 498-502, 539-545, 548-554

Leucine zipper pattern.

amino acids 116-138, 251-273, 258-280, 322-344, 464-486, 471-493,
535-557

FIGURE 109

GGGAGGGGGCTCCGGGCCGCGCAGCAGACCTGCTCCGGCGCGCCTGCCGCTGCTCTCCGGAGCGGCAG
CACTAGCCGGCGCGAGGGCTGGGGTCTCGAGACTCTCAGAGGGCGCCTCCATGGCCCACCA
CAACCTGTTCTCGCGCCACTGCGCTGCCAGGACCCGCTGCCAACATGGATTTCCTGGCGTGGT
GCTGGTATCCTCGCTCACCTGCAAGCGGCCGAGTCAGCGAGGTGGCCAGGAAATAGTGTATCGAT
TGGCCTATGCGTTATGGGGAGGATTGACTGCTGCTGGGGCTGGCTGCCAGTCTTGGGACAGTGTAGCC
TGTGTGCCAACCACGATGCAAACATGGTGAATGTATGGGCCAACAAAGTCAAGTGTATCCTGGTTATGCTGG
AAAAACCTGTAATCAAGATCTAAATGAGTGTGGCTGAAGCCCCGCCCTGTAAGCACAGGTGATGAACACTTA
CGGCAGCTACAAGTGTACTGTCTAACGGATATATGCTCATGCCGATGGTCTCTGCTCAAGTGCCCTGACTG
CTCCATGGCAAACAGTGTAGTGGCTGTGATGGTTAAAGGACAAATACTGGGCCAGTGCCATCCCTGGCCT
GCACCTGGCTCTGTGGAGGACCTGTGATGGTGAATGTGCTACAGGAAGAGCCTCTGCCCTAGATT
TAGGCAATGTGTCAACACTTGGGAGCTACATCTGCAAGTGTCAAAAGGCTTCGATCTCATGTATATTGGAGG
CAAATATCAATGTCATGACATAGACGAATGCTCACTGGTCAGTATCAGTGAGCAGCAGTGTGCTGATGTTAA
CGTAGTGGTCTACAAGTGCACAAATGTAAGGAGGATACAGGGTGAATGGACTGACTTGTGTTATATCCAAA
AGTTATGATTGAACCTCAGGTCCAATTGATGTTACCAAAAGGAAATGGTACCATTTAAAGGGTACACAGGAAA
TAATAATTGGATTCCGTGATGGAGTACTGGTGGCTCCGAAGACACCATATATTCCCTATCATTACCAA
CAGGCCTACTCTAACAGCAACAAGACCTACACCAAGCCAACACCAATTCTACTCCACCACACC
CCTGCCAACAGAGCTCAGAACACCTTACACCACTACACCCAGAAAGGCCAACACCAGGACTGACAACATAGC
ACCAGCTGCCAGTACACCCAGGAGGATTACAGTTGACAACAGGGTACAGACAGACACCCTGAGAAACCCAGG
AGATGTGTTAGTGTCTGGTACACAGTTGTAATTGGACCATGGACTTTGGATGGATCAGGGAGAAAGACAA
TGACTTGCACTGGAAACCAATCAGGGACCCAGCAGGTGACAATATCTGACAGTGTGGCAGCCAAGCCCCAGG
GGGAAAAGCTGCACGCTGGTGTACCTCTGGCCCTCATGCATTAGGGACCTGTGCTGTGATTAGGCA
CAAGGTGACGGGCTGCACTCTGGCACACTCCAGGTGTTGTGAGAAAACACGGTCCCCACGGAGCAGCCCTGTG
GGGAAGAAATGGTGGCCATGGCTGGAGGCAAACACAGATCACCTTGCAGGGGCTGACATCAAGAGCGAATCACA
AAGATGATTAAGGGTTGGAAAAAAAGATCTATGATGGAAAATTAAAGGAACACTGGATTATTGAGCCTGGAGAAG
AGAAGACTGAGGGCAAACCAATTGATGGTTTCAAGTATATGAAGGGTTGGCACAGAGAGGGTGGCACCAGCTG
TTCTCCATATGCACTAAGAATAGAACAGAGGAAACTGGCTTAGACTAGAGTATAAGGGAGCATTCTGGCAGG
GCCATTGTTAGAATACTTCATAAAAAGAAGTGTGAAAATCTCAGTATCTCTCTCTTCTAAATTAGA
TAAAATTTGCTATTAAAGATGGTAAAGATGTTCTTACCAAGGAAAAGTAACAAATTATAGAATTCCAAA
AGATGTTTGATCTACTAGTAGTATGCACTGAAAATCTTACAATTAAATTGGACAAGGCTTAATTAGG
CATTTCCCTCTGACCTCTAAATGGAGAGGGATTGAAAGGGGAAAGAGGCCACAAATGCTGAGCTCACTGAAATA
TCTCTCCCTTATGGCAATTCTAGCAGTATTAAGAAAAAAAGGAAACTATTCTTCAAATGAGAGTATGATGGAC
AGATATTGTTAGTATCTCAGTATGTTCTAGTGTGGCGGTGTTCAATGTTCTCTTCAAGGTAAGGTATAAGCC
TTTCATTGTTCAATGGATGATGTTCAAGGTTCTTAAAGAGATCCTTCAAGGAACACAGTTCAAGAG
ATTTTCATGGGTGCATTCTCTGCTTGTGTGACAAGTTATCTGGCTGCTGAGAAAGAGTGCCTGCC
ACACCGGCAGACCTTCCCTCACCTCATCAGTATGATTGATTCTCTTATCAATTGGACTCTCCAGGTTCCAC
AGAACAGTAATATTTTGAAACAATAGGTACAATAGAAGGTCTTGTCAATTAAACCTGGTAAAGGCAGGGCTGG
AGGGGGAAAATAATCATTAAGCCTTGAGTAACGGCAGAATATATGGCTGTAGATCCATTAAATGGTTATT
TCCTTATGGTCATATAACTGCACAGCTGAAGATGAAAGGGAAAATAATGAAATTTCAGTTCTGATGCCAA
TGATACATTGCACTAAACTGATGGAAGAAGTTATCCAAAGTACTGTATAACATCTGTTATTATTAATGTTT
CTAAAATAAAATGTTAGTGGTTTCAAATGGCTAATAAAAACAATTATGTAAATAAAACACTGTTAGTAAT

FOOTER: 4298000000

FIGURE 110

MDFLLALVLVSSLYLQAAAEDGWRPRQIVSSIGLCRYGGRIDCCWGWARQSWGQCQPVCQP
RCKHGE CIGPNKCKCHPGYAGKTCNCQDLNECGLKPRPCKHRCMNTYGSYKCYCLNGYMLMPD
GSCSSALTCSMANCQYGC DVVKGQIRCQCPSPGLHLAPDGRTCDVDECATGRASCPRFRC
VNTFGSYICKCHKGFDLMIYIGGKYQCHDIDECSLGQYQCSSFARCYNVRGSYKCKCKEGYQG
DGLTCVYIPKVMIEPSGPIHPKGNGTILKGDTGNNNWIPDVGSTWWPPKTPYIPPIITNRP
TSKPTTRPTPKPTPIPTPPPPPPLPTELRTPLPPTTPERPTTGLTTIAPA AASTPPGGITVDN
RVQTDPQKPRGDVFSLVHSCNFDHGLCGWIKEKDNDLHWEPIRD PAGGQYLTVSAAKAPGG
KAARLVLPLGRLMHSGDLCLSFRHKVTGLHS GTLQVFVRKHGAHGAALWGRNGGHGWRQTQI
TLRGADIKSESQR

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 273-277

Casein kinase II phosphorylation site.

amino acids 166-170, 345-349

Tyrosine kinase phosphorylation site.

amino acids 199-206

N-myristoylation site.

amino acids 109-115, 125-131, 147-153, 191-197, 221-227, 236-242,
421-427, 433-439, 462-468, 476-482

Aspartic acid and asparagine hydroxylation site.

amino acids 104-116, 186-198, 231-243

Cell attachment sequence.

amino acids 382-385

EGF-like domain cysteine pattern signature.

amino acids 75-87

FIGURE 111

CTTCTTGAAAAGGATTATCACCTGATCAGGTTCTCTGCATTTGCCCTTAGATTGTGA
AATGTGGCTCAAGGTCTCACAACTTCCCTTCCTTGCAACAGGTGCTGCTCGGGCTGA
AGGTGACAGTGCACATCACACACTGTCCATGGCGTCAGAGGTCAAGGCCCTACCTACCGTC
CACTATGGCTTCCACACTCCAGCATCAGACATCCAGATCATATGGCTATTGAGAGACCCA
ACAATGCCCAAATACTTACTGGGCTCTGTGAATAAGTCTGTGGTCTGACTTGAATACC
AACACAAGTTCACCATGATGCCACCCAAATGCATCTGCTTATCAACCCACTGCAGTCCCT
GATGAAGGCAATTACATCGTAAGGTCAACATTCAAGGAAATGGAACATCTATCGCCAGTCA
GAAGATAACAAGTCACGGTGATGATCCTGTACAAAGCCAGTGGTGCAAGATTCACTCCCT
CTGGGGCTGTGGAGTATGTGGGAACATGACCCGTACATGCCATGTGGAAGGGGCACTCGG
CTAGCTTACCAATGGCTAAAAAAATGGAGACCTGTCCACACCAGCTCCACCTACTCCTTTC
TCCCCAAAACAATACCCTCATATTGCTCCAGTAACCAAGGAAGACATTGGAAATTACAGCT
GCCTGGTGAGGAACCTGTCAGTGAATGGAAAGTGATATCATTATGCCCATCATATTAT
GGACCTTATGGACTTCAGTGAATTCTGATAAAGGGCTAAAGTAGGGGAAGTGTACTGT
TGACCTTGGAGAGGCCATCCTATTGATTGTTCTGCTGATTCTCATCCCCCAACACCTACT
CCTGGATTAGGAGGACTGACAATACTACATATCATTAAGCATGGGCCTCGCTTAGAAGTT
GCATCTGAGAAAGTAGCCCAGAAGACAATGGACTATGTGTGCTTACAACAAACATAAC
CGGCAGGCAAGATGAAACTCATTCACAGTTATCATCACTCCGTAGGACTGGAGAAGCTTG
CACAGAAAGGAAATCATTGTCACCTTAGCAAGTATAACTGGAATATCACTATTTGATT
ATATCCATGTGCTTCTCTTCTATGGAAAAAAATCAACCCCTACAAAGTTATAAAACAGAA
ACTAGAAGGCAGGCCAGAAACAGAATACAGGAAAGCTCAAACATTTCAGGCCATGAAGATG
CTCTGGATGACTTCGGAATATATGAATTGTTGCTTCCAGATGTTCTGGTGTTCAGG
ATTCCAAGCAGGTCTGTTCCAGCCTCTGATTGTGTATGGGGCAAGATTGCACAGTACAGT
GTATGAAGTTATTCACTGACATCCCTGCCAGCAGCAAGACCATCCAGAGT**GAAC**TTTCA
GCTAAACAGTACATTGAGTGAATTCTGAAGAAACATTAAAGGAAAACAGTGGAAAAGT
ATATTAATCTGGAATCACTGAAGAAACCAGGACCAACACCTCTACTCATTATTCCCTTACA
TGCAGAATAGAGGCATTATGCAAATTGAACTGCAGGTTTCAGCATATACACAATGTCTT
GTGCAACAGAAAAACATGTTGGGAAATATTCCCTCAGTGGAGAGTCGTTCTGCTGACGG
GGAGAACGAAAGTGACAGGGTTCTCATAAGTTGTATGAAATATCTCTACAAACCTCA
ATTAGTTCTACTCTACACTTCACTATCATCAACACTGAGACTATCCTGTCTCACCTACAAA
TGTGGAAACTTACATTGTTGATTTCAATTATTCCAAATTCTATCTTGTATTAGTG
TTAAGAATGCTAAATTATGTTCAATTATTCCAAATTCTATCTTGTATTGTACAA
CAAAGTAATAAGGATGGTTGTCAACAAAACAAAATATGCCCTCTCTTTTTCAATCACC
AGTAGTATTGGAGAAGACTTGTGAACACTTAAGGAAATGACTATTAAAGTCTTATTGTTA
TTTTTTCAAGGAAAGATGGATTCAAATAAATTATTCTGTTTGTCTTAAAAA

FIGURE 112

MWLKVFTTFLSFATGACSGLKVTVPSPHTVHGVRGQALYLPVHYGFHTPASDIQIIWLFERPH
TMPKYLLGSVNKSVPDLEYQHKFTMMPNASLLINPLQFPDEGNYIVKVNIQGNGLTLSASQ
KIQVTVDPPVTKPVVQIHPPSGAVEYVGNTLTCHVEGGTRLAYQWLKNGRPVHTSSTYSFS
PQNNTLHIAPVTKEDIGNYSCLVRNPVSEMESDIIMPIIYYGPYGLQVNNSDKGLKVGEVFTV
DLGEAILFDCSADSHPPNTYSWIRTDNTTYIIKHGPRLEVASEKVAQKTMDYVCCAYNNIT
GRQDETHFTVIITSVGLEKLAQKGKSLSPLASITGISLFLIISMCLLFLWKKYQPYKVIKQK
LEGRPETEYRKAQTFSGHEDALDDFGIYEFVAFPDVSGVSRIPSRSVPASDCVSGQDLHSTV
YEVIQHIPAQQQDHPE

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 341-359

N-glycosylation site.

amino acids 73-77, 92-96, 117-121, 153-157, 189-193, 204-208,
276-280, 308-312

Casein kinase II phosphorylation site.

amino acids 129-133, 198-202, 214-218, 388-392, 426-430, 433-437

Tyrosine kinase phosphorylation site.

amino acids 272-280

N-myristoylation site.

amino acids 15-21, 19-25, 118-124, 163-167, 203-209, 231-237,
239-245

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 113

GCAAGCGGCGAAATGGCGCCCTCCGGGAGTCTTGCAGTTCCCCTGGCAGTCCTGGTGTGCTGTT
GCTTTGGGGTGCTCCCTGGACGCACGGCGGCCGGAGCAACGTTCGCGTCATCACGGACGAGA
ACTGGAGAGAACTGCTGGAAGGAGACTGGATGATAGAATTATGCCCGTGGTGCCTGCT
TGTCAAAATCTCAACCGGAATGGAAAGTTGCTGAATGGGGAGAAGATCTGAGGTTAA
TATTGCGAAAGTAGATGTCACAGAGCAGCCAGGACTGAGTGGACGGTTATCATAACTGCTC
TTCCTACTATTATCATTGTAAGATGGTGAATTAGGGCCTATCAGGGTCCAAGGACTAAG
AAGGACTTCATAAAACTTATAAGTGATAAAGAGTGGAAAGAGTATTGAGCCCCTTCATCATG
GTTTGGTCCAGGTTCTGTTCTGATGAGTAGTATGTCAGCACTCTTCAGCTATCTATGTGGA
TCAGGACGTGCCATAACTTATTGAAGACCTGGATTGCCAGTGTGGGATCATATACT
GTTTGCTTAGCAACTCTGTTCCGGACTGTTATTAGGACTCTGTATGATATTGTGGC
AGATTGCCTTGTCCCTCAAAAAGGCGCAGACCACAGCCATACCCATACCCCTCAAAAAAAAT
TATTATCAGAACATCTGCACAACCTTGAAAAAAAGTGGAGGAGGAACAAGAGGCGGATGAAGAA
GATGTTCAGAAGAAGAAGCTGAAAGTAAAGAAGGAACAAACAAAGACTTCCACAGAACATGC
CATAAAGACAACGCTCTGGTCCATCATTGGCACAGATAAACTCTAGTTAAATTATAG
TTATCTTAATATTGATTTGATAAAACAGAACAGATTGATCATTGTTGGTTGAAGTG
AACTGTGACTTTTGAAATATTGCAAGGTTCAGTCTAGATTGTCATTAAATTGAAGAGTCTA
CATTCAAGAACATAAAAGCACTAGGTATACAAGTTGAAATATGATTAAAGCACAGTATGATG
GTTTAAATAGTTCTCTAATTGAAAAATCGTGCACAGAACATAAGATTGATATTGTTGTTG
TTAATAATAACCTATTCAAGTCTGAGTTGAAAATTACATTCCCAAGTATTGCAATT
TGAGGTATTAAAGAAGATTATTAGAGAAAAATTACATTCTCATTGATATAATTGTTCTG
TTCACTGTGAAAAAAAGAACATATTCCCATAAAATGGAGTTGCCATTGTCCTCAAG
AAATGTGATTTCAGTACAATTCTGGTCTTTAGAGGTATATTCCAAATTTCCTGTT
ATTAAATTGTTATGCAACTAAACACTACCTACATTAAATTACAGTTCTACACA
TGGTAATACAGGATATGCTACTGATTAGGAAGTTTAAGTTCATGGTATTCTCTGATT
CAACAAAGTTGATTTCTCTGATTTCCTACTTACTATGGTTACATTGTTATT
CAAATTGGATGATAATTCTGGAAACATTGTTATGTTAGTAAACAGTATTGTT
GTTTCAAACACTGAAGTTACTGAGAGATCCATCAAATTGAACAATCTGTTGAATT
TTGGCCACTTTTCAGATTACATCATTGCTGAACATTCAACTGAAATTGTT
TTCTTTGGATGTAAGGTGAACATTCTGATTGTTCTGATGTGAAAAAGCCTGGTA
TTTACATTGAAAATTCAAAGAAGCTTAATATAAAAGTTGCTACTCAGGAAAAAG
CATCTCTTGATATGCTTAAATGTATTGTTCTCATACAGAAAGTTCTAATTGAT
TTTACAGTCTGTAATGCTGATGTTAAAATAAAACATTGTTATT
ACTTCATATTATCCTGTGTTCTTCCTGACTGGTAATATTGTTGTTGGATT
GTCAGTAGGATGGAACATTAGTGTATTGTTACTCCTAAAGAGCTAGAATACATAGTT
CACCTTAAAAGAAGGGGAAAATCAAATACAATGAACACTGACCAATTACGTAGTAGAC
AATTCTGTAATGTCCTCTTCTAGGCTCTGTTGCTGTGAATCCATTAGATTACAG
TATCGTAATATAACAGTTCTTAAAGCCCTCTCCTTAAAGAGCTAGAATACATAGTT
AAAGAGTTGGATGTTGTAACCTGATGCCTTAAAGAAAAATATCCTAAGCACAAAATAACCT
TTCTAACCACTCATTAAAGCTGAAAAAAAAAAAAAA

FIGURE 114

MAPSGSLAVPLAVLVLLLWGAPWTHGRRSNVRVITDENWRELLEGDWMIEFYAPWCPACQNL
QPEWESFAEWGEDLEVNIAKVDVTEQPGLSGRFIITALPTIYHCKDGEFRRYQGPRTKKDFI
NFISDKEWKSIEPVSSWFGPGSVMSSMSALFQLSMWIRTCHNYFIEDLGLPVWGSYTVFAL
ATLFSGLLLGLCMIFVADCLCPSKRRRPQPYPPSKLLSESAQPLKKVEEEQEADEEDVSE
EEAESKEGTNKDFPQNAIRQRSLGPSLATDKS

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 182-201

Casein kinase II phosphorylation site.

amino acids 68-72, 119-123, 128-132, 247-251, 257-261

Tyrosine kinase phosphorylation site.

amino acids 107-115

N-myristoylation site.

amino acids 20-26, 192-198

Amidation site.

amino acids 25-29

FIGURE 115

GCGAGTGTCCAGCTCGGGAGACCCGTGATAATTGTTAACTAATTCAACAAACGGGACCCTT
CTGTGTGCCAGAAACCGCAAGCAGTTGCTAACCCAGTGGGACAGGC GGATTGGAAGAGCGGG
AAGGT CCTGGCCCAGAGCAGTGACACTTCCCTCTGTGACCATGAAACTCTGGGTGTCTGC
ATTGCTGATGGCTGGTTGGTGTCTGAGCTGTGCAGGCCAATTCTCACCTCTATTG
GGCACATGACTGACCTGATTATGCAGAGAAAGAGCTGGTGCAGTCTCTGAAAGAGTACATC
CTTGTGGAGGAAGCCAAGCTTCCAAGATTAAGAGCTGGGCCAACAAAATGGAAGCCTGAC
TAGCAAGTCAGCTGCTGATGCTGAGGGCTACCTGGCTCACCTGTGAATGCCTACAAACTGG
TGAAGCGGCTAAACACAGACTGGCCTGCGCTGGAGGACCTTGTCCCTGCAGGACTCAGCTGCA
GGTTTATCGCCAACCTCTGTGCAGCGGAGTTCTCCCCACTGATGAGGAGGAGATAGG
AGCTGCCAAGCCCTGATGAGACTTCAGGACACATACAGGCTGGACCCAGGCACAATTCCA
GAGGGGAACTTCCAGGAACCAAGTACCAAGGCAATGCTGAGTGTGGATGACTGCTTGGATG
GGCCGCTCGGCCTACAATGAAGGGGACTATTATCATACGGTGTGTGGATGGAGCAGGTGCT
AAAGCAGCTTGTGATGCCGGGGAGGAGGCCACCAACCAAGTCACAGGTGCTGGACTACCTCA
GCTATGCTGTCTTCCAGTTGGGTGATCTGCACCGTGCCTGGAGCTCACCCGCCCTGCTC
TCCCTTGACCCAAAGCCACGAACGAGCTGGAGGGAAATCTGCGGTACTTGTAGCAGTTATTGGA
GGAAGAGAGAGAAAAAACGTTAACAAATCAGACAGAAGCTGAGCTAGCAACCCAGAAGGCA
TCTATGAGAGGCCTGTGGACTACCTGCCTGAGAGGGATGTTACGAGAGCCTGTGCGGG
GAGGGTGTCAAACGTACGACACCCGTAGACAGAAGAGGGCTTCTGTAGGTACCAACATGGCAA
CAGGGCCCCACAGCTGCTCATTGCCCTTCAAAGAGGAGGACGGAGTGGACAGCCCGCACA
TCGTCAGGTACTACGATGTCTGATGAGGAAATCGAGAGGATCAAGGAGATCGCAAAA
CCTAAACTTGCACGCCACCGTGTGATCCAAGACAGGAGTCTCACTGTGCCAGCTA
CCGGGTTTCCAAAGCTCCTGGCTAGAGGAAGATGATGACCCCTGTTGGCCCGAGTAAATC
GTCGGATGCAGCATATCACAGGGTTAACAGTAAAGACTGCAGAATTGTTACAGGTTGCAAAT
TATGGAGTGGGAGGACAGTATGAACCGCACTCGACTTCTCTAGGGCACCTTTGACAGCGG
CCTCAAAACAGAGGGAAATAGGTTAGCGACGTTCTTAACTACATGAGTGTAGAAGCTG
GTGGTGCCACCGTCTCCCTGATCTGGGGCTGCAATTGGCTAAGAAGGGTACAGCTGTG
TTCTGGTACAACCTCTGCGGAGCGGGGAAGGTGACTACCGAACAGACATGCTGCCTGCC
TGTGCTTGTGGCTGCAAGTGGGTCTCCAATAAGTGGTCCATGAACGAGGACAGGAGTTCT
TGAGACCTTGTGGATCAACAGAAGTTGACTGACATCCTTTCTGTCCCTCCCTGGTC
CTTCAGCCCATGTCAACGTGACAGACACCTTGTATGTTCTTGTATGTTCTATCAGGCT
GATTTTGGAGAAATGAATGTTGTCTGGAGCAGAGGGAGACCATACTAGGGCGACTCCTGT
GTGACTGAAGTCCCAGCCCTCCATTCAAGCCTGTGCCATCCCTGGCCCCAAGGCTAGGATCA
AAGTGGCTGAGCAGAGTTAGCTGTCTAGCGCCTAGCAAGGTGCCTTGTACCTCAGGTGTT
TTAGGTGTGAGATGTTCAGTGAACCAAAGTTCTGATACCTGTTACATGTTGTTTAT
GGCATTCTATCTATTGTGGCTTACCAAAAATAAAATGCCCCAACAGAAAAAA

FIGURE 116

MKLWVSALLMAWFGVLSCVQAEFFTSIGHMTDLIYAEKELVQSLKEYILVEEAKLSKIKSWA
NKMEALTSKSAADAEGYLAHPVNAYKLVKRLNTDWPALEDLVLQDSAAGFIANLSVQRQFFP
TDEDEIGAAKALMRLQDTYRLDPGTISRGELPGTKYQAMLSVDDCFGMGRSAYNEGDDYYHTV
LWMEQVLKQLDAGEEATTTKSQVLDYLSYAVFQLGDLHRALELTRRLSLDPSHERAGGNLR
YFEQLLEEEEREKTLTNQTEAELATPEGIYERPVVDYLPERDVYESLCRGEVKLTPRRQKRLF
CRYHHGNRAPQLLIAPFKEEDEWDSPHIVRYYDVMDSDEEIERIKEIAKPKLARATVRDPKTG
VLTVASYRVSKSSWLEEDDPVVARVNRMQHITGLTVKTAELLQVANYGVGGQYEPHFDFS
RRPFDSGLKTEGNRLATFLNYMSDVEAGGATVFPDLGAAIWPKGTAVFWYNLLRSGEDYR
TRHAACPVLVGCKWVSNKWFHERGQEFLRPCGSTEV

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 115-119, 264-268

Glycosaminoglycan attachment site.

amino acids 490-494

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 477-481

Casein kinase II phosphorylation site.

amino acids 43-47, 72-76, 125-129, 151-155, 165-169, 266-270,
346-350, 365-369, 385-389, 457-461, 530-534

Tyrosine kinase phosphorylation site.

amino acids 71-80, 489-496

N-myristoylation site.

amino acids 14-20, 131-137, 171-177, 446-452

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 8-19

Leucine zipper pattern.

amino acids 213-235

FIGURE 117

GCAGTATTGAGTTTACTCCTCTTTTAGTGGAAAGACAGACATAATCCCAGTGTGAGTGAAATTGATTGT
TTCATTTATTACCGTTGGCTGGGGTTAGTTCCGACACCTTCACAGTTGAAGAGCAGGCAGAAGGAGTTGTGA
AGACAGGACAATCTCTGGGGATGCTGGTCCTGGAAGGCCAGCGGGCCTGCTCTGCTTTGGCCTCATTGACCC
CAGGTTCTCTGGTTAAACTGAAAGCCTACTACTGGCCTGGTGCCATCAATCCATTGATCCTTGAGGCTGTGCC
CCTGGGGCACCCACCTGGCAGGGCTACCACCATGCGACTGAGCTCCCTGTTGGCTCTGCTGCGGCCAGCGCTTC
CCCTCATCTTAGGGCTGCTCTGGGGTGCAGCCTGAGCCTCTGCGGGTTCTGGATCCAGGGGAGGGAGAAG
ATCCCTGTGTCGAGGCTGTAGGGGAGCGAGGAGGGCCACAGAATCCAGATTGAGAGCTCGGCTAGACCAAAGTG
ATGAAGACTTCAAACCCCGATTGCCCCACTACAGGGACCCACAAGCCTACAAGAAGGTGTCAGGAAC
GGTACATCCAGACAGAGCTGGCTCCGTGAGCGGTTGCTGGTGGCTGACCTCCGAGCTACACTGTCCA
CTTTGGCCGTGGCTGTGAAACCGTACGGTGGCCATCACTTCCCTCGGTTACTCTACTTCACTGGCAGCGGGGG
CCCGGGCTCCAGCAGGGATGCAAGTGGTGTCTCATGGGATGAGCGGCCGCTGGCTATGTCAGAGACCCCTGC
GCCACCTTCACACACACTTGGGGCCACTACGACTGGTCTTCATCATGCAAGGATGACACATATGTGCAAGGCC
CCCGCTGGCAGCCCTGCTGGCCACCTCAGCATCAACCAAGACCTGACTTAGGCCGGCAGAGGAGTTATTG
GCGCAGGCGAGCAGGCCGGTACTGTCATGGGGCTTGGCTACCTGTTGTCACGGAGTCTCCTGCTTCGTC
GGCCACATCTGGATGGCTGCCAGGGAGACATTCTCAGTGGCTCTGACGAGTGGCTTGGACGCTGCCATTG
ACTCTCTGGGCGTCGGCTGTGTCACAGCAGGGCAGCAGTATGCTCATTTGAATGGCCAAAATAGGG
ACCTGAGAAGGAAGGGAGCTCGGCTTCTGAGTCGCTGCCACCTGCTCCGAAGGTACCCCTCATGT
ACCGCTCCACAAACGCTTCAGCGCTCTGGAGTTGGAGCGGGCTTACAGTAAATAGAACAACTGCAAGCTCAGA
TCCGGAACCTGACCGTGTGACCCCCGAAGGGGAGGCAGGGCTGAGCTGGCCGTTGGCTCCCTGCTCCTTCA
CACACACACTCTGCTTGTAGGTGCTGGACTACTTCACAGAGCAGCACACCTCTCTGCAAGATGGG
CTCCAAGTGCCTACTACAGGGGCTAGCAGGGCGACGTGGTGTGCTGGAGACTGCCCTGAGCAGCTCA
ATCGCGCTATCAGCCCCGCTGCGCTTCCAGAAGCAGCGACTGCTCAACGGTATCGCGCTTCGACCCAGCAC
GGGCATGGAGTACACCTGGACCTGCTTGGAAATGTTGACACAGCGTGGCACCAGGGGGCCCTGGCTCGCA
GGTCAGCCTGCTGCCACTGAGCCGGTGGAAATCCTACCTATGCCCTATGTCACTGAGGCCACCGAGTGC
AGCTGGTGTGCCACTCTGGTGGCTGAAGCTGCTGAGCCCCGGCTTCTGAGGCGTTGAGCCAATGTCC
TGGAGCCAGAGAACATGCTCACCCTGTTGCTGGTCTACGGGCCACGAGAAGTGGCCGGAGCTCCAG
ACCCATTCTGGGTGAAGGCTGAGCAGGGAGTTAGAGCAGGGTACCTGGACGAGGCTGGCTGGCTCG
CTGTGCGAGCAGAGGCCCTCCAGGTGCGACTCATGGACGTGGCTCGAAGAAGCACCTGTGGACACTCTCT
TCTTCTTACCAACCGTGTGGACAAGGCTGGCCGAAGTCTCAACCGCTGCGATGAATGCCATCTGCT
GGCAGGCCCTTCCAGTCCATTCCAGGAGTTCAATCTGCCCTGTCACCACAGAGATCACCCCCAGGGCCCC
CGGGGCTGGCCCTGACCCCCCCTCCCTGGTGTGACCCCTCCGGGGGCTCTATAGGGGGAGATTG
ACCGGCAGGCTCTGCGGAGGGCTGCTTCTACAACGCTGACTACCTGGCCGCCAGGCCGGCTGGCAGGTGAAC
TGGCAGGCCAGGAAGGAGGAAGGCCCTGGAGGGCTGGAGGGTGTGGATGTTCTCCGGTTCTCAGGGCTCC
ACCTTTGGGGCGTAGAGGCCAGGGCTGGTGTGAGAAGTTCTCCCTGCGAGACTGAGGCCACGGCTCAGTGAAG
AACTCTACCACCGCTGCCCTCAGCAACCTGGAGGGCTAGGGGCCGTGCCAGCTGGCTATGGCTCTTTG
AGCAGGAGCAGCCAATAGCACTTAGCCCGCTGGGGCCCTAACCTATTACCTTGTCTGCCAGCC
CCAGGAAGGGCAAGGAAGATGGTGGACAGATAGAGAATTGTTGCTGTATTTTAAATATGAAAATGTTATTAA
ACATGTCTTGTGCC

FIGURE 118

MRLSSLLALLRPALPLILGLSLGCSLSLLRVSWIQGEGEDPCVEAVGERGGPQNPDSRARLD
QSDEDFKPRIVPYYRDPNKPYKKVLRTRYIQTTELGSRERLLVAVLTSRATLSTLAVAVNRTV
AHHPRLLYFTGQRGARAPAGMQVVSHGDERPAWLMSETLRHLHFGADYDWFFIMQDDTY
VQAPRLAALAGHLSINQDLYLGRAEEFIGAGEQARYCHGGFGYLLRSRLLLRLPHLDGCRG
DILSARPDEWLGRCLIDSLGVGCVSQHQGQQYRSFELAKNRDPEKEGSSAFLSAFAVHPVSE
GTLMYRLHKRFSALELERAYSEIEQLQAQIRNLTVLTPEGEAGLSWPVGLPAPFTPNSRFEV
LGWDYFTEQHTFSCADGAPKCPLOQASRADVGDALETALEQLNRRYQPRLRFQKQRLLNGYR
RFDPARGMEYTLDLLECVTQRGHRRALARRVSLLRPLSRVEILPMPYVTEATRVQLVLPPLL
VAEAAAAPAFLEAFAAVLEPREHALLTLLLVYGPREGGRGAPDPFLGVKAEEEELERRYPG
TRLAWLAVRAEAPSQVRLMDVSVSKHPVDTLFFLTTWTRPGPEVLRCRMNAISGWQAFFP
VHFQEFPALSPQRSPPGPPGAGPDPPSPPGADPSRGAPIGGRFDRQASAEGCFYNADYLAA
RARLAGELAGQEEEALEGLEVMDFVFLRFSGLHLFRAVEPGLVQKFSLRDCSPRLSEELYHR
CRLSNLEGLGGRQLAMALFEQEQANST

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 489-507

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-68, 150-154, 322-326, 331-337, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-678

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 119

CGGAGTGGTGCACGTGAGAGGAAACCGTGCACGGCTGCCTTCCTGTCCCCAAGCC
GTTCTAGACGCCGGAAAAATGCTTCTGAAAGCAGCTCTTTGAAGGGTGTGATGCTTGG
AAGCATTCTGTGCTTGATCACTATGCTAGGACACATTAGGATTGGCATGGAAATAGAA
TGCACCACCATGAGCATCATCACCTACAAGCTCTAACAAAGAAGATATCTGAAAATTCA
GAGGATGAGCGCATGGAGCTCAGTAAGAGCTTCGAGTATACTGTATTATCCTGTAAAACC
CAAAGATGTGAGTCTTGGCTGCAGTAAAGGAGACTGGACAAACACTGTGACAAAGCAG
AGTTCTCAGTTCTGAAAATGTTAAAGTGTGAGTCAATTAAATGGACACAAATGACATG
TGGTTAATGATGAGAAAAGCTTACAAATACGCCCTTGATAAGTATAGAGACCAATACAAC
GTTCTCCTGCACGCCACTACGTTGCTATCATTGAAAACCTAAAGTATTTTGTAA
AAAAGGATCCATCACAGCCTTCTATCTAGGCCACACTATAAAATCTGGAGACCTTGAATAT
GTGGGTATGGAAGGAGGAATTGTCTTAAGTGTAGAATCAATGAAAAGACTTAACAGCCTCT
CAATATCCCAGAAAAGTGTCTGAACAGGGAGGGATGATTGGAAGATATCTGAAGATAAAC
AGCTAGCAGTTGCCTGAAATATGCTGGAGTATTGCAAGAAATGCAGAAGATGCTGATGGA
AAAGATGTATTTAATACCAATCTGTTGGCTTCTATTAAAGAGGCAATGACTTACACCC
CAACCAGGTAGTAGAAGGCTGTTGTCAGATATGGCTTACTTTAATGGACTGACTCCAA
ATCAGATGCATGTGATGTATGGGTATACCGCCTAGGGCATTGGCATATTTCAAT
GATGCATTGGTTTCTTACCTCAAATGGTCTGACAATGACTGAGAAGTGGTAGAAAAGCG
TGAATATGATCTTGTATAGGACGTGTGTCATTATTGTAGTAGTAACATATCCAA
TACAGCTGTATGTTCTTTCTTTCTAATTGGTGGCACTGGTATAACCACACATTAAAG
TCAGTAGTACATTTAAATGAGGGTGGTTTTCTTAAAACACATGAACATTGAAATG
TGTTGGAAAGAAGTGTAAAGAATAATAATTGCAAATAAACTATTAAATAATATTAT
GTGATAAAATTCTAAATTATGAACATTAGAAATCTGTGGGCACATATTGCTGATTGGTT
AAAAAAATTAAACAGGTCTTAGCGTTCAAGATATGCAAATGATATCTCTAGTTGTGAATT
TGTGATTAAAGTAAACTTTAGCTGTGTGTTCCCTTACTTCTAATACGTATTATGTTCT
AAGCCTCCCCAAGTTCCAATGGATTTGCCTCTCAAATGTACAACTAAGCAACTAAAGAAA
ATTAAAGTGAAAGTTGAAAAT

FIGURE 120

MLSSESSFLKGVMLGSIFCALITMLGHIRIGHGNRMHHHEHHHLQAPNKEDILKISEDERME
LSKSFRVYCIILVKPKDVSLWAAVKETWTKHCDKAEFFSSENVKFESINMDTNMDWLMMRK
AYKYAFDKYRDQYNWFFLARPTTFAIENLYFLLKKDPSPQFYLGHTIKSGDLEYVGMEGG
IVLSVESMKRLNSLLNIPEKCPEQGGMIWKISEDQLAVCLKYAGVFAENAEDADGKDVFNT
KSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQMHVMMYGVYRLRAFGHIFNDALVFL
PPNGSDND

Signal sequence:

amino acids 1-33

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-132, 150-154, 322-326, 331-335, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-672

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 121

FIGURE 122

MNSSKSSETQCTERGCFSSQMFLWTVAGIPILFLSACFITRCVVTFRIFQTCDEKKFQLPEN
FTELSCNYGSGSVKNCCPLNWEYFQSSCYFFSTDТИWALSLKNCSAMGAHLVVINSQEEQ
EFLSYKKPKMREFFIGLSDQVVEGQWQWVDGTPLTKSLSFWDVGEPNNIATLEDATMRDSS
NPRQNWNNDVTCFLNYFRICEMVGINPLNKGKSL

Signal sequence:

amino acids 1-42

N-glycosylation site.

amino acids 2-6, 62-66, 107-111

Casein kinase II phosphorylation site.

amino acids 51-55, 120-124, 163-167, 175-179, 181-185

N-myristoylation site.

amino acids 15-21, 74-80, 155-161

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 27-38

FIGURE 123

GGGACTACAAGCCGCGCGCTGCCGCTGGCCCCCTCAGCAACCCCTGACATGGCGCTGAGGCGGCCACCGCGAC
TCCGGCTCTGGCCTCGGCTGCTGACTTCTTCCTGCTGCTGCTTTCTAGGGGCTGCCTGATAGGGGCTGTAAATC
TCAAATCCAGCAATCGAACCCCAGTGGTACAGGAATTGAAAGTGTGGAACTGTCTTGATCATTACGGATTGCG
AGACAAGTGACCCAGGATCGAGTGGAAAGAAAATTCAAGATGAACAAACCACATATGTGTTTTGACAACAAAA
TTCAGGGAGACTTGGCGGGCTCGTGCAGAAATACTGGGAAAGACATCCCTGAAGATCTGGAATGTGACACGGAGAG
ACTCAGCCCTTATCGCTGTGAGGTCGTTGCTGAAATGACCGCAAGGAATTGATGAGATTGTGATCGAGTTAA
CTGTGCAAGTGAAGCCAGTGACCCCTGCTGTAGAGTGGCAAGGCTGTACCAAGTAGGCAAGATGGCAACACTGC
ACTGCCAGGAGAGTGAGGGCCACCCCCGGCCTCACTACAGCTGGTATCGAATGATGTACCAACTGCCACGGATT
CCAGAGCCAATCCCAGATTGCAATTCTTCCACTTAAACTCTGAAACAGGACTTTGGTGTCACTGCTG
TTCACAAGGACACTCTGGCAGTACTACTGCATTGCTTCCAATGACGCAAGGCTCAGCCAGGTGTGAGGAGCAGG
AGATGGAAGTCTATGACCTGAACATTGGCGGAATTATTGGGGGGTTCTGGTTGCTCTTGCTGTACTGGCCCTGA
TCACGTTGGCATCTGCTGTGCATACAGACGTGGCTACTTCATCAACAATAACAGGATGGAGAAAGTTACAAGA
ACCCAGGAAACCAAGATGGAGTTAACTACATCCGCACTGACGAGGGGCACTTCAGACACAAGTCATGTTTG
TGATCTGAGACCCGCGGTGCTGAGAGCGCACAGAGCGCACGTGCACATACCTCTGCTAGAAACTCCTGCTAA
GGCAGCGAGAGCTGATGCACTCGGACAGAGCTAGACACTCATTCAAGGCTTTGCTTGGCCAAAGTTGACCA
CTACTCTTCACTCTAACACGCCACATGAATAGAAGAATTTCCTCAAGATGGACCCGGTAATATAACCAA
GGAAAGGAAACTGGGTGCGTTCACTGAGTTGGGTTCTAATCTGTTCTGGCTGATTCGGCCATGAGTTAGG
GTGATCTTAAAGAGTTGCTCACGTAACAGCCCCTGAGGCTGGACAGCACCAGCAGCGCATCCGGGGAAACCA
GAAAAGGCTTCTACACAGCAGCCTTACTTCATCGGCCCACAGACACCACCGCAGTTCTTAAAGGCTCTGC
TGATCGGTGTTGCACTGCTTCACTGAGGCTGGGATCAGCAGGTTGTTCAAGGCTTAAAGGCTCTGC
GTAAATTGGTTGCTGGAAGAGGGATCTTGCTGAGGAACCCCTGCTGCTTCAACAGGGTGTCAAGGATTTAAGGAAA
ACCTTCGTCTTAGGCTAAGTCTGAAATGGTACTGAAATATGCTTTCTATGGGTCTGTTATTATAAAATT
TACATCTAAATTGGTCAAGGATGTATTGATTATTGAAAAGAAAATTCTATTTAAACTGTAATATATTGT
CATACAATGTTAAATAACCTATTGGTAAAGGCTTCAACTTAAGGTTAGAAGTCTAACGCTACTAGTGTAAAT
TGGAAAATATCAATAATTAGAGTTGGGTTACCAAGGAATCCTCTCATGGAAGTTACTGTGATGTTCTTCT
CACACAAGTTTACGCTTTTACAAGGAACTCATACTGTCTACACATCAGACCATAGTTGCTTAGGAAACCTT
TAAAATTCCAGTTAACGAAATGTTGAAATCAGTTGCTCTCTTCAAAAGAAACCTCTCAGGTTAGCTTGA
GCCTCTTCTGAGATGACTAGGACAGTCTGTACCCAGAGGCCACCCAGAAGCCTCAGATGTACATACAGATG
CCAGTCAGCTCTGGGTTGCGCCAGGCGCCCCGCTCTAGCTACTGTCCTGCTGCTGCCAGGAGGCCCT
GCCATCCTGGCCCTGGCAGTGGCTGTGCTCCAGTGAGCTTACTCACGTGCCCTTGCTCATCCAGCACAGC
TCTCAGGTGGCACTGCAGGGACACTGGTGTCTTCCATGCTAGCGTCCCAGCTTGGCTCTGTAACAGACCTCT
TTTGGTTATGGATGGCTCACAAATAGGGCCCCCAATGCTATTGGTTAAAGTTGTTAATTATTGTT
AAGATTGCTAACGGCAAAGGAAATGCGAAATCAAGTCTGTCAGTACAATAACATTGTTAAAGAAAATGGAT
CCCACTGTTCTTGGCTTGCACAGAGAAAGCACCAGCCAGGCTCTGCTGCTTCAAAACAAACCATGAT
GGAGTGGCGGCCAGTCCAGCCTTTAAAGAACGTCAGGTGGAGCAGCCAGGTGAAAGGCTGGGGAGGAAAG
TGAAAAGCCTGAATCAAAGCAGTTCTAATTGACTTTCAATTGGTACATCCGCGGAGACACTGCTCCATT
TGTGGGGGACATTAGCAACATCACTCAGAACGCTGTGTTCTCAAGAGCAGGTGTTCTCAGCCTCACATGCCCT
GCCGTGCTGGACTCAGGACTGAAGTGTAAAGCAAGGAGCTGCTGAGAAGGAGCACTCCACTGTGCTGG
GAATGGCTCTCACTACTCACCTGCTTCACTGCTTCAAGGCTCTGCTTGGTTTTTATACATTGACAGCTTTTTT
AATTGCTACATGAGACTGTGTTGACTTTTTAGTTATGAAACACTTGGCGCAGGCCGCTGGCAGAGGCA
GGAAATGCTCCAGCAGTGGCTCAGTGCTCCCTGGTGTCTGCTGATGGCATCTGGATGCTTAGCATGCAAGTTC
CCTCCATCATTGCCACCTGGTAGAGAGGGATGGCTCCCCACCCCTCAGCGTTGGGATTACCGCTCCAGCCTCCT
TCTTGGTTGTCAGTGATAGGGTAGCCTTATTGCCCCCTTCTTACACCTTACACTAGTGCA
TGGGAAACCAGGCTGAAAAGTAGAGAGAAGTGAAGTAGAGTCTGGGAAGTAGCTGCTTACACTGAGACTAGA
CGGAAAAGGAATACTGTTGATTTAAGATATGAATGTGACTCAAGACTCGAGGCCGATACGAGGCTGTGATTCT
GCCTTGGATGGATGTTGCTGTACACAGATGCTACAGACTTGTACTAACACACCGTAATTGGCATTGTTAAC
CTCATTATAAAAGCTTCAAAAAACCCA

FIGURE 124

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77624
><subunit 1 of 1, 310 aa, 1 stop
><MW: 35020, pI: 7.90, NX(S/T): 3
MALRRPPRRLCARLPDFFLLLFRGCLIGAVNLKSSNRTPVVQEFESVELSCIITDSQTSD
PRIEWKKIQDEQTTYVFFDNKIQGDLAGRAEILGKTSLSKIWNVTRRDSALYRCEVVARNDRK
EIDEIVIELTVQVKPVTVPVCRVPKAVPGKMATLHCQESEGHPRPHYSWYRNDVPLPTDSRA
NPRFRNSSFHLNSETGTLVFTAVHKDDSGQYYCIASNDAGSARCEEQEMEVYDLNIGGIIGG
VLVVLAVLALITLGICCAYRRGYFINNKQDGESYKNPGKPDGVNYIRTDEEGDFRHKSFVI
```

Important features of the protein:

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 243-263

N-glycosylation sites.

amino acids 104-107, 192-195

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 107-110

Casein kinase II phosphorylation site.

amino acids 106-109, 296-299

Tyrosine kinase phosphorylation site.

amino acids 69-77

N-myristoylation sites.

amino acids 26-31, 215-220, 226-231, 243-248, 244-249, 262-267