Shallow Water Waves GUI

Overview

This program computes local shallow-foreshore wave-height distribution parameters using a model based on the Composed Weibull distribution as described in:

• "Shallow foreshore wave height statistics" by H. Groenendijk, Master's Thesis, Delft University of Technology, 1998.

The program is implemented as a Windows GUI application using only the native Win32 API and standard C++ (with OpenMP directives for parallelism). It allows the user to input three key parameters:

- 1. Hm0 (in meters) The local significant spectral wave height.
- 2. d (in meters) The local water depth.
- 3. **Beach slope (1:m)** The beach slope expressed as "1:m". (For example, enter 20 for a slope of 1/20 = 0.05.)

Shallow Water Waves Calculation Process

Computations

Based on these inputs, the program computes:

• Free-surface variance:

$$m 0 = (H m 0 / 4)^{2}$$

· Mean square wave height:

$$Hrms = (3.00 + 3.50 * sqrt(m0)/d) * sqrt(m0)$$

(Empirical coefficients have been slightly increased relative to the original deep-water formula to better capture the shallow-water distribution of extreme waves.)

· Dimensional transitional wave height:

$$H\ t\ r = (\ 0.35 + 5.8 * (\ 1\ /\ m\)\) *\ d\ .$$
 (For example, if m = 20 then tan(alpha) = 1/20 = 0.05 and

$$H t r = (0.35 + 5.8 * 0.05) * d = 0.64 * d.'')$$

Dimensionless transitional parameter:

If $\tilde{\text{H}}_{\text{tr}}$ is above 3.5, then it is set to 3.5 and Htr is recalculated as Htr = 3.5 * Hrms.

Using a 70-row table (with columns for H1/Hrms, H2/Hrms, etc.), a natural cubic spline interpolation is performed at \tilde{H}_{-} tr to obtain dimensionless wave-height ratios. These are then converted to dimensional quantities (in meters) by multiplying with Hrms.

A detailed report is then generated (and written to report.txt) with the input parameters, intermediate values, interpolated ratios, and computed dimensional wave heights, as well as diagnostic ratios.

Compilation Instructions

To compile the program using g++ on Windows with OpenMP, you can use the following command:

```
g++ -03 -Wall -municode shallow-water-waves_gui.cpp -o shallow-water-waves_gui \
-mwindows -static -static-libgcc -static-libstdc++ -fopenmp
```

References

- Groenendijk, H.W. (1998). "Shallow foreshore wave height statistics." M.Sc. thesis, Delft University of Technology (also Delft Hydraulics Rep. H3245). (https://repository.tudelft.nl/record/uuid:fe03dda9-40d9-4046-87fb-459f01fcd3d3)
- Groenendijk, H.W. & Van Gent, M.R.A. (1998/1999). "Shallow foreshore wave height statistics: predictive model for probability of exceedance of wave heights." Delft Hydraulics Rep. H3351. (http://dx.doi.org/10.13140/RG.2.2.14180.68486)
- 3. Battjes, J.A. & Groenendijk, H.W. (2000). "Wave height distributions on shallow foreshores." Coastal Engineering, 40(3):161–182. (http://dx.doi.org/10.1016/S0378-3839(00)00007-7)
- 4. Van Gent, M.R.A. (2001). "Wave runup on dikes with shallow foreshores." J. Waterway, Port, Coastal, Ocean Eng., 127(5):254–262. (http://dx.doi.org/10.1061/(ASCE)0733-950X(2001)127:5(254))
- Mai, S. et al. (2011). "Wave height distributions in shallow waters." Coastal Engineering Proceedings 1(32), paper 57. (Field validation of BG model; recommends coefficient recalibration) (http://dx.doi.org/10.9753/icce.v32.waves.63)
- Verhagen, H.J. et al. (2008). "A practical method for the design of coastal structures in shallow water." (Conference paper; emphasizes using Tm-1,0 and H2% for shallow-water design). (http://dx.doi.org/10.1142/9789814277426 0241)