O Deep Learning. Al

FORECASTING: UNA APROXIMACIÓN BASICA.

CASO DE USO: PREDICCIÓN DE LA DEMANDA ELECTRICA-.

Napoleón Alcides Pérez Arteaga | LinkedIn

Type of Machine Learning

Serie temporal

Una <u>serie temporal</u> (*time series*) es una sucesión de datos ordenados cronológicamente, espaciados a intervalos iguales o desiguales.

El proceso de <u>forecasting</u> consiste en predecir el valor futuro de una serie temporal, bien modelando la serie únicamente en función de su comportamiento pasado (autorregresivo) o empleando otras variables externa.

COMPUTER VISION

NATURAL LANGUAGE PROCESSING

SENTENCE	SENTIMENT
IT'S A GREAT DAY	POSITIVE
I DON'T LIKE MONDAYS	NEGATIVE

MODELOS MAS COMUNES DE FORECASTING

Seasonal **Exponential** Naïve, SNaïve decomposition smoothing (+ any model) ARIMA, **Dynamic linear GARCH SARIMA** models **Prophet NNETAR TBATS LSTM**

SEASONAL DESCOMPOSITION

DEMANDA DE FABRICACION

Manufacture of electrical equipment

 El conjunto de datos corresponde a la fabricación mensual de equipos eléctricos (productos informáticos, electrónicos y ópticos) en la zona del euro (17 países) en el período enero 1996-marzo 2012.

DETECTAR PATRONES ESTACIONALES

Pronóstico de series temporales

 La previsión de series temporales se produce cuando se realizan predicciones científicas basadas en datos históricos con marca de tiempo.

PROCESO GLOBAL

• El proceso de Forecasting consiste en predecir el valor futuro de una serie temporal, bien modelando la serie temporal únicamente en función de su comportamiento pasado (autorregresivo) o empleando otras variables externas a la serie temporal.

En conclusión, R² es la proporción entre lo bueno que es nuestro modelo y lo bueno que es el modelo medio ingenuo.

El R cuadrado se utiliza en la regresión múltiple para ver el grado de intensidad o efectividad que tienen las variables independientes en explicar la variable dependiente.

Multiple Regression
$$\rightarrow$$
 $y = m_1x_1 + m_2x_2 + b$

INTUICION MATEMATICA

$$AX + BY + CZ + D = 0$$

Plano con vector (A, B,C)

De las ecuaciones paramétricas tenemos:

$$x = x_0 + ta \rightarrow \frac{x - x_0}{a} = t$$

$$y = y_0 + tb \rightarrow \frac{y - y_0}{b} = t$$

$$z = z_0 + tc \rightarrow \frac{z - z_0}{c} = t$$

Finalmente,

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} = t$$

Ecuación de la recta en forma simétrica

FORECASTING RECURSIVO

Dado que, para predecir el momento tn se necesita el valor de t(n-1), y t(n-1) se desconoce, es necesario hacer predicciones recursivas en las que, cada nueva predicción, se basa en la predicción anterior

METRICAS DEL MODELO

CASO DE USO

 Se dispone de una serie temporal con la demanda eléctrica (MW) del estado de Victoria (Australia) desde 2011-12-31 al 2014-12-31. Se pretende generar un modelo de forecasting capaz de predecir la demanda energética del día siguiente a nivel horario.

RED NEURONAL

RED NEURONAL

- Combinación lineal y no lineal de transformaciones
- Lineal: $z^{[layer]} = W^{[layer]}x^T + b^{[layer]}$
 - Nonlinealesr: $a^{[layer]} = \sigma(z^{[layer]})$; FUNCION DE ACTIVACION
- Las neuronas tienen multiples capas.

Transforma el vector x sin procesar en características cada vez mejores, la capa lineal final puede hacer una predicción excelente

Neuron / perceptron

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$\hat{y} = \sigma(z)$$

No linearidad

ReLU idea here: Dibujar dos lineas y capturar La intersección

Neural net training

$$\Theta \doteq \{ \boldsymbol{W_h}, \boldsymbol{b_h}, \boldsymbol{W_y}, \boldsymbol{b_y} \}$$

$$J(\Theta) \doteq \mathcal{L}(\tilde{\boldsymbol{Y}}(\Theta), \boldsymbol{c}) \in \mathbb{R}^+$$

$$egin{align} rac{\partial J(\Theta)}{\partial oldsymbol{W_y}} &= rac{\partial J(\Theta)}{\partial ilde{oldsymbol{y}}} rac{\partial ilde{oldsymbol{y}}}{\partial oldsymbol{W_y}} rac{\partial ilde{oldsymbol{y}}}{\partial oldsymbol{W_h}} \ rac{\partial J(\Theta)}{\partial ilde{oldsymbol{y}}} &= rac{\partial J(\Theta)}{\partial ilde{oldsymbol{y}}} rac{\partial ilde{oldsymbol{y}}}{\partial oldsymbol{h}} rac{\partial ilde{oldsymbol{h}}}{\partial oldsymbol{h}} rac{\partial oldsymbol{h}}{\partial oldsymbol{W_h}} rac{\partial oldsymbol{h}}{\partial oldsymbol{W_h}} \ rac{\partial J(\Theta)}{\partial oldsymbol{h}} &= rac{\partial J(\Theta)}{\partial oldsymbol{y}} rac{\partial ilde{oldsymbol{y}}}{\partial oldsymbol{h}} rac{\partial oldsymbol{h}}{\partial oldsymbol{W_h}} rac{\partial oldsymbol{h}}{\partial oldsymbol{W_h}} \ rac{\partial J(\Theta)}{\partial oldsymbol{h}} &= rac{\partial J(\Theta)}{\partial oldsymbol{h}} rac{\partial ilde{oldsymbol{y}}}{\partial oldsymbol{h}} rac{\partial oldsymbol{h}}{\partial oldsymbol{W_h}} \ rac{\partial oldsymbol{h}}{\partial oldsymbol{W_h}} \ rac{\partial oldsymbol{h}}{\partial oldsymbol{h}} rac{\partial oldsymbol{h}}{\partial oldsymbol{h}} rac{\partial oldsymbol{h}}{\partial oldsymbol{W_h}} \ rac{\partial oldsymbol{h}}{\partial oldsymbol{h}} rac{\partial$$

PROBLEMAS CON LOS DATOS

FUNCIONES ACTIVACION

FUNCIONES DE **ACTIVACIONES NO**

LINEALES: se utilizan al final de una unidad oculta para introducir complejidades no lineales en el modelo.

Stanford(CS229)

Tanh

y = tanh (x)

Step Function

y = ln (1+ex)

ReLU

Softsign

 $y = \frac{x}{(1+|x|)}$

ELU

Log of Sigmoid

Leaky ReLU

Mish

y= max(0.1x,x)

y = x (tanh (softplus(x)))

Swish

Sinc

Mas neuranas: mayor complejidad de region de decisión

Likely overfit

Demasiada fuerza puede conducir a un sobreajuste

• Los modelos con demasiados parámetros se sobre ajustarán fácilmente si entrenamos durante mucho tiempo

```
model = nn.Sequential(
    nn.Linear(1, 1000),
    nn.ReLU(),
    nn.Linear(1000, 1)
)
```


Proceso de entrenamiento

Preparar los datos

Normalizar variables númericas

onehot para variables categoricas.

Proceso de entrenamiento

Separar al menos un conjunto de validación del conjunto de entrenamiento

Elegir la arquitectura de la red, y una adecuada función de perdida

Elegir hyper-parametros, como dropout rate.

Proceso de entrenamiento

Elige un ritmo de aprendizaje, número de epoca(Pasar los datos por toda la red)

Ejecutar ciclo de entrenamiento(hasta que el error de validación aumente o el número de épocas)

Interar pasos 3 a 5.

LSTM

Las redes LSTM son un tipo de red neuronal recurrente (RNN) que se desarrolló para hacer frente a las circunstancias en las que los RNN fallaron. Cuando se trata de RNN, son redes que funcionan con entradas de corriente teniendo en cuenta las salidas anteriores (retroalimentación) y manteniéndolas en la memoria durante un breve período de tiempo (memoria a corto plazo).