1. LAWS OF COMPOSITION

DEFINITION 1. Let E be a set. A mapping of $E \times E$ is called a law of composition on E. The value f(x,y) of f for an ordered pair $(x,y) \in E \times E$ is called the composition of x and y under this law. A set with a law of composition is called a magma.

The composition of x and y is usually denoted by writing x and y in a definite order and separating them by a characteristic symbol of the law in question (a symbol which it may be agreed to omit). Among the symbols most often used are + and \cdot , the usual convention being to omit the latter if desired; with these symbols the composition of x and y is written respectively as x+y, x.y or xy. A law denoted by the symbol + is usually called addition (the composition x+y beind called the sum of x and y) and we say that it is written additively; a law denoted by the symbol \cdot is usually called multiplication (the composition x.y = xy being called the product for x and y) and we say that it is written multiplicatively.

In the general arguments of paragraphs 1 to 3 of this chapter we shall generally use the symbols \top and \bot to denote arbitrary laws of composition.

By an abuse of language, a mapping of a *subset* of $E \times E$ into E is sometimes called a law of composition *not everywhere defined* on E.

Examples. (1) The mappings $(X,Y) \mapsto X \cup Y$ and $(X,Y) \mapsto X \cap Y$ are laws of composition on the set of subsets of a set E.

- (2) On the set **N** of natural numbers, addition, multiplication, and exponentiation are laws of composition (the compositions of $x \in \mathbf{N}$ and $y \in \mathbf{N}$ under these laws being denoted respectively by x + y, xy, or x.y and x^y) (Set Theory, III, $\P 3$, no. 4).
- (3) Let E be a set; the mapping $(X,Y) \mapsto X \circ Y$ is a law of composition on the set of subsets of $E \times E$ (Set Theory, II, ¶3, no. 3, Definition 6); the mapping $(f,g) \mapsto f \circ g$ is a law of composition on the set of mappings from E into E (Set Theory, II, ¶5, no. 2).