GEOMETRIA ANALÍTICA :: PROVA 03

PROF. TIAGO MACEDO

Nome:		Assinatura: _			RA	A:
Questão 1 (2.0 $r = \{(1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	pontos). Calcule $0)+t(0,1,-1)\mid t$					$\in \mathbb{R}\}.$
O a	ngulo entri	c r e s	e (dodo	pelo	angulo
entre seus	vetores	diretores,	lo,	r'-7) s	(7,7,0). Assim,
(€(5,5)	= arc cos	160,7,-7)11	11(1,1	, 0)		
,	= arc cos (1/12 12)				
=	= arc eas $(1/2)$	2)				
	= Ty3 rad	on 60°.	*			

Observe que, como $\theta(r,s) \neq 0$, entadas retas su podem ser concorrentes ou reversas. Como o vetor que liga os pontos iniciais é (0,1,5) e o conj. $\frac{1}{2}(0,1,5)$, $\frac{1}{2}(0,1,-1)$, $\frac{1}{2}(1,1,0)$, $\frac{1}{2}(1,1,0)$, $\frac{1}{2}(1,1,0)$, entada respectada. De Fato:

del $\binom{0}{2} \stackrel{1}{1} \stackrel{1}{2} = -6 \neq 0$.

Como r e s soo reversas, a distància entre eles é dada pela projeção do vetor (0,1,1) sobre (0,1,-1) x (1,1,2), que é normal às duas retes. Assimo,

$$= 513$$

$$= \frac{(3)}{(-1)^{2}}$$

$$= \frac{(4)}{(-1)^{2}}$$

$$= \frac{(4)}{(-1)^{2}} = \frac{(4)^{2}}{(-1)^{2}} = (7^{1} - 7^{1} - 7^{2})$$

$$= \frac{(4)^{2}}{(-1)^{2}} = \frac{(4)^{2}}{(-1)^{2}} = (7^{1} - 7^{2} - 7^{2})$$

$$= \frac{(4)^{2}}{(-1)^{2}} = \frac{(4)^{2}}{(-1)^{2}} = (7^{1} - 7^{2} - 7^{2})$$

$$= \frac{(4)^{2}}{(-1)^{2}} = \frac{(4)^{2}}{(-1)^{2}} = (7^{1} - 7^{2} - 7^{2})$$

$$= \frac{(4)^{2}}{(-1)^{2}} = \frac{(4)^{2}}{(-1)^{2}} = (7^{1} - 7^{2} - 7^{2})$$

$$= \frac{(4)^{2}}{(-1)^{2}} = \frac{(4)^{2}}{(-1)^{2}} = (7^{1} - 7^{2} - 7^{2})$$

$$= \frac{(4)^{2}}{(-1)^{2}} = \frac{(4)^{2}}{(-1)^{2}} = (7^{1} - 7^{2} - 7^{2})$$

$$= \frac{(4)^{2}}{(-1)^{2}} = \frac{(4)^{2}}{(-1)^{2}} = (7^{1} - 7^{2} - 7^{2})$$

$$= \frac{(4)^{2}}{(-1)^{2}} = \frac{(4)^{2}}{(-1)^{2}} = (7^{1} - 7^{2} - 7^{2})$$

$$= \frac{(4)^{2}}{(-1)^{2}} = \frac{(4)^{2}}{(-1)^{2}} = (7^{2} - 7^{2})$$

$$= \frac{(4)^{2}}{(-1)^{2}} = \frac{(4)^{2}}{(-1)^{2}} =$$

 ${f Quest{ ilde ao}}$ 2 (2.0 pontos). Calcule a distância e o ângulo entre a reta

$$R = \{(0, 1, 0) + t(-1, -1, 0) \mid t \in \mathbb{R}\}\$$

e o plano

$$\mathsf{P} = \{ (x, y, z) \in \mathbb{R}^3 \mid y + z = 10 \}.$$

O ângulo entre $R \in \mathbb{P}$ e' dado pelo comple mentar do ângulo entre o vetur diretor de R, (-1,-1,0), e o vetur normal de P, (0,1,1). Assim,

$$\theta(R, P) = \arcsin \left(\frac{|(-1, -1, 0) - (0, 1, 1)|}{||(-1, -1, 0)||} \right)$$

$$= \arccos \left(\frac{|-1|}{||\overline{z}||} \right)$$

$$= \arcsin (1/2)$$

$$= 17/6 rad on 30°.$$

Como $G(R,P) \neq 0$, entas Re P sus concurrentes, Logo: dist(R,P) = 0. Questão 3 (4.0 pontos). Considere dois números $\alpha, \beta \in \mathbb{R}$ e as retas

$$r_1: \frac{x-1}{2} = y - 3 = \frac{z-4}{-1}$$
 e $r_2: X = (-1, 2, \alpha) + \lambda(4, 2, \beta).$

Determine todos os $\alpha, \beta \in \mathbb{R}$ tais que:

- (a) r₁ e r₂ sejam iguais.
- (b) r₁ e r₂ sejam paralelas e distintas.
- (c) r₁ e r₂ sejam reversas.
- (d) r_1 e r_2 sejam concorrentes ($r_1 \cap r_2$ é um ponto).

Primeiro, vamos escrever uma eq. vetorial para
$$\zeta_1$$
:
 $X = (1,3,4) + \pm (2,1,-1)$, $\xi \in \mathbb{R}$.

- a) Para que ri=rz, temos que ter:
 - · (-1,2,0) E rx
 - {(4,2,B), (2,1,-1)} : L.D.

Para que (+1,2,4) Err, dere existir te IR, tal que:

$$\begin{cases} -1 = 1 + 2t \\ 2 = 3 + t \end{cases} \iff \begin{cases} -2 = 2t \\ -1 = t \\ t = 4 - d \end{cases} \iff \begin{cases} t = -1 \\ t = -1 \\ -1 = t = 4 - d \end{cases} \iff \begin{cases} t = -1 \\ t = -1 \end{cases}$$

De Fato, (-1,2,5) = (1,3,4) - (2,1,-1).

Para que ((4,2,13), (2,1,-1)) seja L.D, temos que ter:

DE feto, (4.2,-2) = 2. (2,1,-1).

b) Para que re e re sejam paralelas distintas, temos que ter: (-1,2,4) ∉ re . ((4,2,1), (2,1,-1)) :LD.

Usando os cálculos do tem cal, esneluimos que:

- · (-1,2, α) ¢ r. ⇔ 1 a ≠ 5 1
- · {4,2, B), (2,1,-1)}: LD (=> | B=-2).

c) Para que re e re sejam reversas, temos que ter: {(4,2,8), (2,1,-1), (2,1,4-1)! LI. Usando o determinante,

$$\{(4,2,\beta),(2,1,-1),(2,1,4x)\}$$
:LI

$$\det\begin{pmatrix} 4 & 2 & \beta \\ 2 & 1 & -1 \\ 2 & 1 & 4x \end{pmatrix} \neq 0$$

4(4-1)-4+213-213+4-4(4-4) #0.

Como det (4 2 B) = 0 Y « BEIR, entas rierz nunca sit reversas.

d) Para que ri eri sejam concorrentes, temos que ter: « ((1,2,3), (2,1,-1)) : LI - ((4,2,3), (2,1,-1), (2,1,4-1): LD.

Pelos celeulos do item (a), {(4,2,p), (2,1,-1)/e'}
LI YB\$=-2; e pelos celeulos do item (c),
{(4,2,p), (2,1,-1), (2,1,4-1) é LD. IV « EIR III

Questão 4 (2.0 pontos). Calcule a posição relativa e a interseção entre os planos $\mathsf{P}_1 = \{(x,y,z) \in \mathbb{R}^3 \mid x-y+2z=2\} \quad \text{e} \quad \mathsf{P}_2 = \{(0,0,1)+\lambda(1,0,3)+\mu(-1,1,1) \mid \lambda,\mu \in \mathbb{R}\}.$

Primeiro observe que um veter normal à P. é (1,-1,2) =: n.; e um veter normal à P. é:

$$(1,0,3) \wedge (1,1,1) = \begin{vmatrix} 1 & j & k \\ 1 & 0 & 3 \end{vmatrix} = (3,-4,1) = n_c$$

(DE fouto, (-3,-4,1)-(1,0,3)=-3+0+3=0 e (-3,-4,1).(-1,1,1)
= 3-4+1=0.) Como {(1,-1,2); (-3,-4,1) le' L.I.
ento P1 e P2 só podem ser concorrentes.

Agora, vamos calcular P. P_2 . Para isso, vamos excrever a eq. geral de P_2 : -3x-4y+2=(-3,-4,1)*(0,0,1)=1.

Resolvendo o sistema:

$$\begin{cases} x - y + 22 = 2 \\ -3x - 4y + 2 = 1 \end{cases} \iff \begin{cases} x - y + 22 = 2 \\ -7y + 7z = 7 \end{cases}$$

$$\iff \begin{cases} x - y + 22 = 2 \\ y - 2 = -1 \end{cases}$$

$$\iff \begin{cases} x \\ y - 2 = -1 \end{cases}$$

$$\iff \begin{cases} x = 2 - 2 \\ y = 2 = 1 \end{cases}$$

$$\iff \begin{cases} x = 2 - 2 \\ y = 2 = 1 \end{cases}$$

Ento P, $P_2 = \{(1-2, 2-1, 2) | 2 \in \mathbb{R}\}.$ = $\{(1,-1,0)+2(-1,1,1) | 2 \in \mathbb{R}\}.$