

Natural Computation Methods in Machine Learning (NCML)

Lecture 5: More on Backprop, extensions and variants

Challenges From the previous lecture

- The loss function could be any differentiable function, but is <u>very</u> often assumed to be the squared error
 - Which part of the update equations would change, if we replaced the loss function?
- If we use pattern learning, why don't we update the weight directly, in step 4?
- What would happen if we initialized all weights to zero, instead of small random values?
- In a deep network (many layers) the chain of partial derivatives gets very long. A problem?

Super Challenge From the previous lecture

As shown in the previous lecture and this one:

$$ab, \overline{ab}, a+b, \overline{a+b}$$
, are all linearly separable, $(a+b)\overline{c}$ (the three input solution to XOR) is too, but $a \oplus b = a\overline{b} + \overline{a}b = (a+b)\overline{a}b$ is not!

 Where is the limit? Under which condition(s) is a Boolean expression linearly separable, when viewed as a classification problem?

How to use Backprop

and when to stop training

- Decide network structure/size
 - Common naming convention: N-M-K

- Collect data a set of input-target pairs, $\langle \overline{x}, \overline{d} \rangle$
- Split the data in two:
 - a training set (larger), used to update weights
 - a test set (smaller), left-out during training
- After training, measure how well the network generalizes, by computing the error of the examples in the test set

Overfitting/overtraining

- Problem: The algorithm tries to minimize the error of the training set
- We may start to overfit, storing information instead of finding the underlying generating function

 Worst case: A network with too many weights, which is trained for too long, on too little data

Early Stopping

A common regularization technique

- Split data in three sets
 - a training set for training

Largest

Smallest

- a validation set to decide when to stop (when E is at minimum)
- a test set, as before, to evaluate the result (test for generalization)
- Requires lots of data
- Why not use the test set to decide when to stop?
 - It was used to select a solution
 - Not fair to use also to evaluate

Training set size

- The number of training samples should be <u>much</u> larger than the number of weights (N).
 - Aim for at least N^2 (with a very large grain of salt)
- What to do if too little data?
 - Get more! (if possible)
 - Reduce number of weights (, nodes and layers)
 - Data augmentation
 - Noise injection. Add some noise to the input values!
 - If inputs are images, make rotation/mirror/scaling variants
 - Other regularization techniques

Network size

- With sufficiently many hidden nodes and layers, the MLP can approximate any function to any degree of accuracy (Hornik et al, 1989)
- In theory, we only need one hidden layer!
 - though that layer may have to be very large
- In practice, you <u>may</u> need two hidden layers
 - Reduces the required number of nodes in each
 - Solutions with more than two hidden layers were <u>very</u> rare before the Deep Learning era
 - The power of Deep Learning is not in that it can represent more complex functions.
 - It provably can't! (More on this later)
- To get a feeling for how many nodes we need we should discuss what a hidden layer really does

Hidden nodes in a classifier

- MLPs consist of sigmoidal weighted summation units
- The discriminant formed by a single unit is a hyperplane

- It's the <u>weighted sum</u> which makes it a hyperplane, not the activation function!
 - The discriminant is linear even if the node is non-linear
- The sigmoid makes the border 'grey' (0.5), but does not (alone) change the shape

Output nodes in a classifier

- The output nodes combine the hyperplanes into regions
 - With binary hidden nodes, the result is a polygon (ish)
 - How many binary hidden nodes to separate A from B?

- What if the hidden nodes have sigmoids?
 - With sigmoidal hidden nodes, the corners get rounded
 - Three sigmoids can be combined into a circle! (extreme case of rounded triangle)
 - So, only three hidden nodes required above

Function approximation Regression

- Conventional MLPs consist of sigmoidal weighted summation units
 - A sigmoid is a monotonic function

- The output layer combines them
 - So each hidden node should correspond to a monotonic region of the target function
- No hyperplanes here!
 - Regression is not about border decisions

Network size

- The ability to <u>represent</u> a function is not a guarantee that the algorithm will find it!
 - The required number of hidden nodes is greater in practice than in theory
 - More nodes → solutions easier to find (but more overfitting)
- Tip: Output nodes do not have to be non-linear!
 - The network is still a universal approximator
 - In function approximation they should be linear!
 - Or at least not bounded, to be able to output any value
 - In classification they should be sigmoidal!
 - Helps interpretation of output values as probabilities

K-fold cross validation How good is your model?

- Having decided on a model (network type/size, algorithm, parameters, etc.), how to evaluate it?
- Shuffle the data and split into K subsets *
- For all subsets, i:
 - Train on all data except subset i
 - Test on subset i

- Data $1 2 \cdots i \cdots K$
- Result: The average error of the K tests
- Note that we use all the data for both training and testing, but still get a fair generalization measure
- This is model checking, not model building
 - See https://machinelearningmastery.com/train-final-machine-learning-model/ for a good explanation

^(*) The 'leave-one-out' principle is a special case, where K = number of examples

Optimizing for speed

Backprop implements gradient descent

From last lecture. The 'ball' moves in the direction of steepest slope $(\frac{\partial E}{\partial w})$ with a step length controlled by η .

- Idea: Increase training speed by on-line adjustments of the step length. Examples:
 - Backprop with momentum (previous lecture)
 - Start with large η and reduce over time
 - Consider gradient history. Has it changed? If so, decrease η , else increase it
 - This can be done locally for each weight

RPROP: Resilient Backpropagation

Riedmiller, 1992 (MSc thesis)

- Requires epoch learning
- Adaptive step length, local for each weight
- Idea: Let $E' = \frac{\partial E}{\partial w}$ decide direction only
 - i.e. we only consider it's sign
- Step length instead decided by a new parameter, Δ_{ji} (replaces η)

$$\Delta w_{ji} = -\Delta_{ji} \operatorname{sign}\left(\frac{\partial E}{\partial w_{ji}}\right)$$

- $-\Delta_{ii}$ is updated (within a specified interval), so that:
 - If E' keeps its sign, Δ is increased by factor $\eta^+ > 1$
 - If E' changes sign, Δ is decreased by factor $\eta^- < 1$
 - and the weight change is discarded

RPROP: Resilient Backpropagation Riedmiller, 1992

 Effect: Accelerates down slopes. Breaks if we overshoot a minimum (or would have ...)

See the short-paper (2 pages) by Riedmiller for details

Backprop v.s. RPROP

- RPROP can be <u>very</u> fast, but it's not because it has fewer things to compute than Backprop!
 - RPROP does not care how steep the slope is, only its direction (sign)
 - But it still has to compute and backpropagate the same δ-values as Backprop does, to extract that sign!
- You will compare them, both for classification and for function approximation, in Lab 1
 - Play around with both Backprop and RPROP!
 - Take your time! (Deadline is a week after the lab)
 - You are payed (in credits) for 20h/lab, so don't expect to finish it in the 4 hours scheduled for it

From last lecture

- The loss function could be any differentiable function, but is <u>very</u> often assumed to be the squared error
 - Which part of the update equations would change, if we replaced the loss function?

$$\Delta w_{ji} = \eta \delta_j x_i$$

$$\delta_j = \begin{cases} \lambda y_j (1 - y_j) (d_j - y_j), & \text{if } y_j \text{ is an output node} \\ \lambda y_j (1 - y_j) \sum_k w_{kj} \delta_k, & \text{if } y_j \text{ is a hidden node} \end{cases}$$

From last lecture

- If we use pattern learning, why don't we update the weight directly, in step 4?
 - 4. Compute weight changes iteratively, layer by layer, from the outputs to the first hidden layer:

$$\Delta w_{ji} = \eta \delta_j x_i$$

$$\delta_j = \begin{cases} \lambda y_j (1 - y_j) (d_j - y_j), & \text{if } y_j \text{ is an output node} \\ \lambda y_j (1 - y_j) \sum_k w_{kj} \delta_k, & \text{if } y_j \text{ is a hidden node} \end{cases}$$

– Because the hidden layer δ -values depend on them! If we update the hidden-to-output weights too early, the output layer δ -values will be backpropagated through the wrong set of weights

From last lecture

- What would happen if we initialized all weights to zero, instead of small random values?
 - Hint: The problem is not that they are zero
 - The problem is that they are all equal
 - Let's assume just one hidden layer
 - If all weights are equal, all hidden nodes contribute to the output error by the same amount. They will therefore all be updated the same way. They will remain equal
 - There is no point having a committee, if all its members always agree on everything! (True also IRL)
 - The network will in effect only have one hidden node (which is like having no hidden layer at all)

From last lecture

- In a deep network (many layers) the chain of partial derivatives gets very long. A problem?
 - We multiply very many partial derivatives
 - If they tend to be <1 the product may become very small
 - 'Vanishing gradients'
 - Very small weight changes the network does not learn
 - If they tend to be >1 the product may become very large
 - 'Exploding gradients'
 - Very large weight changes the network will oscillate

Super Challenge

As shown in the previous lecture and this one:

 $ab, \overline{ab}, a+b, \overline{a+b}$, are all linearly separable, $(a+b)\overline{c}$ (the three input solution to XOR) is too, but $a \oplus b = a\overline{b} + \overline{a}b = (a+b)\overline{ab}$ is not!

- Where is the limit? Under which condition(s) is a Boolean expression linearly separable, when viewed as a classification problem?
- Either a conjunction where at most one term is a disjunction, or a disjunction where at most one term is a conjunction
- In geometrical terms: The region formed by an output node, combining the hyperplanes formed by hidden nodes, does not have to be convex, but it may not contain more than one concavity