Khôlles de Mathématiques - Semaine 9

Kylian Boyet, George Ober, Hugo Vangilluwen, Felix Rondeau

24 Novembre 2024

1 Montrer que si A et B sont deux parties non vides majorées de \mathbb{R} , alors $\sup(A+B) = \sup A + \sup B$

 $D\acute{e}monstration$. Soient A et B deux parties non vides et majorées de \mathbb{R} . On note A+B l'ensemble

$$A + B = \{a + b \mid (a, b) \in A \times B\}$$

C'est aussi une partie non vide de \mathbb{R} .

Soit $x \in (A+B)$ fixé quelconque. Par définition de $A+B, \exists (a,b) \in A \times B : x=a+b$

$$\left. \begin{array}{l} a \leqslant \sup A \\ b \leqslant \sup B \end{array} \right\} \implies x = a + b \leqslant \sup A + \sup B$$

donc $\sup A + \sup B$ est un majorant de A + B. Ainsi, comme l'ensemble A + B est une partie non vide et majorée de $\mathbb R$, il admet une borne supérieure, plus petite que tous les majorants et en particulier que $\sup A + \sup B$:

$$\sup(A+B) \leqslant \sup A + \sup B$$

De plus, $\sup(A+B)$ est un majorant de A+B donc, pour $(a,b) \in A \times B$ fixés, on a

$$a + b \le \sup(A + B) \iff a \le \sup(A + B) - b$$

en relâchant le caractère fixé de a, on a

$$\forall a \in A, a \leq \sup(A+B) - b$$

donc $\sup(A+B)-b$ est un majorant de A, donc plus petit que $\sup A$, d'où

$$\sup A \leqslant \sup(A+B) - b \iff b \leqslant \sup(A+B) - \sup A$$

Donc en relâchant le caractère fixé de b on a

$$\forall b \in B, b \leq \sup(A+B) - \sup A$$

 $\operatorname{donc}\,\sup(A+B)-\sup A$ est un majorant de B donc plus petit que $\sup B$ d'où

$$\sup B \leqslant \sup(A+B) - \sup A \iff \sup A + \sup B \leqslant \sup(A+B)$$

Ainsi, par double inégalité

$$\sup A + \sup B = \sup(A + B)$$

2 Preuve de la caractérisation de la propriété de la borne supérieure dans $\mathbb R$ avec des ε

Démonstration.

 (\Longrightarrow) Supposons que $\sigma = \sup A$.

— Par définition, la borne supérieure est le plus petit majorant donc $\forall a \in A, \leq \sigma$.

— Soit $\varepsilon \in \mathbb{R}_+^*$ fixé quelconque. Par l'absurde, supposons que pour tout $a \in A$, $\sigma - \varepsilon \geqslant a$. Alors, $\sigma - \varepsilon \geqslant \sup A = \sigma$ d'où $-\varepsilon \geqslant 0$ ce qui contredit la définition de ε .

Ainsi, $\exists a \in A : \sigma - \varepsilon < a$.

(← Supposons

$$\begin{cases} \forall a \in A, a \leqslant \sigma \\ \forall \varepsilon \in \mathbb{R}_{+}^{*}, \exists a \in A : \sigma - \varepsilon < a \end{cases}$$
 (1)

- $\sigma \in M(A)$ par conséquence directe de (??)
- σ est plus petit que tout autre majorant : Soit $M \in M(A)$ fixé quelconque. Par l'absurde, supposons que $M < \sigma$. Appliquons (??) pour $\varepsilon \leftarrow \sigma - M$ (ce qui est autorisé car $M < \sigma$ donc $\sigma - M > 0$) :

$$\exists a_0 \in A : \sigma - (\sigma - M) < a_0$$

Donc $M < a_0$ ce qui contredit $M \in M(A)$. Ainsi, $\sigma \leq M$, si bien que M(A) admet σ comme plus petit élément donc A admet σ comme borne supérieure.

3 Preuve de la caractérisation de la densité

Soient $(A, B) \in \mathcal{P}(\mathbb{R})^2$ fq. Définition de la densité

$$A \text{ est dense dans } B \text{ si } \begin{cases} A \subset B \\ \text{ et} \\ \forall (u,v) \in \mathbb{R}^2, B \cap]u; v[\neq \emptyset \implies A \cap]u; v[\neq \emptyset \end{cases}$$
 (3)

Caractérisation de la densité par les ε

$$A \text{ est dense dans } B \iff \begin{cases} A \subset B \\ \text{et} \\ \forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b - a| < \varepsilon \end{cases}$$
 (4)

Démonstration. Montrons la caractérisation de la densité Sens Direct Supposons A dense dans B

- Par déf $A \subset B$
- Soit $b \in B$ et $\varepsilon \in \mathbb{R}_+^*$ fq

Appliquons le (ii) de la déf de Densité pour $u \leftarrow b - \varepsilon$ et $v \leftarrow b + \varepsilon$

$$B \cap [b-\varepsilon, b+\varepsilon] \neq \emptyset \implies A \cap [b-\varepsilon, b+\varepsilon] \neq \emptyset$$

Or, $B \cap [b - \varepsilon, b + \varepsilon] \neq \emptyset$ est vraie donc $A \cap [b - \varepsilon, b + \varepsilon] \neq \emptyset$

Ce qui permet de choisir $a \in A \cap]b - \varepsilon, b + \varepsilon[$. Un tel a vérifie $a \in A$ et $a \in]b - \varepsilon, b + \varepsilon[\iff |b - a| < \varepsilon$

Sens réciproque. Supposons

$$\left\{ \begin{array}{l} A \subset B \\ \text{et} \\ \forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b-a| < \varepsilon \end{array} \right.$$

- On a donc $A \subset B$
- Soient $(u, v) \in \mathbb{R}^2$ fq tq $B \cap]u, v \neq \emptyset$

Soit $b \in B \cap]u,v[$ fq. Appliquons l'hypothèse pour $b \leftarrow b$ et $\varepsilon \leftarrow \min\{v-b,b-u\}$, qui est autorisé v-b et b-u sont positifs

Donc $\exists a \in A : |b - a| < \varepsilon$

Fixons un tel a, alors:

$$b - \varepsilon < a < b + \varepsilon$$

Donc

$$\left\{ \begin{array}{l} a < b + \varepsilon = b + \underbrace{\min\{v - b, b - u\}}_{\leqslant v - b} \leqslant b + v - b = v \\ \\ \text{et} \\ a > b - \varepsilon = b - \underbrace{\min\{v - b, b - u\}}_{\leqslant b - u} \geqslant b - (b - u) = u \end{array} \right.$$

Donc $a \in]u, v[$.

Donc $A \cap]u, v \neq \emptyset$

Montrer que \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R}

Démonstration. Soit $x \in \mathbb{R}$ fq. Posons $\forall n \in \mathbb{N}, a_n = \frac{\lfloor 2^n x \rfloor}{2^n}$. Soit $n \in \mathbb{N}$ fq.

 $-a_n \in \mathbb{Q} \text{ car } |2^n x| \in \mathbb{Z} \text{ et } 2^n \in \mathbb{N}.$

 $a_n = \frac{\lfloor 2^n x \rfloor}{2^n} \implies \frac{2^n x - 1}{2^n} \leqslant a_n \leqslant \frac{2^n x}{2^n} \implies x - \frac{1}{2^n} \leqslant a_n \leqslant x$

Or $1/2^n \xrightarrow[n \to +\infty]{n \to +\infty} 0$ donc d'après le théorème d'existence de limite par encadrement, $a_n \xrightarrow[n \to +\infty]{n \to +\infty} x$.

Donc d'après la caractérisation séquentielle de la densité, $\mathbb Q$ est dense dans $\mathbb R$.

Soit $x \in \mathbb{R}$ fq. Alors $x + \sqrt{2} \in \mathbb{R}$. D'après la démonstration précédente, $\exists b \in \mathbb{Q}^{\mathbb{N}} : b_n \xrightarrow[n \to +\infty]{} x + \sqrt{2}$.

Fixons un telle suite b. Considérons $c = b - \sqrt{2}$.

Soit $n \in \mathbb{N}$ fq.

 $-c_n \in \mathbb{R} \setminus \mathbb{Q} \text{ car } b_n \in \mathbb{Q} \text{ et } \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}.$

$$\begin{vmatrix}
b_n & \xrightarrow{n \to +\infty} & x + \sqrt{2} \\
c_n & = b_n - \sqrt{2}
\end{vmatrix} \implies c_n \xrightarrow[n \to +\infty]{} x$$

Donc d'après la caractérisation séquentielle de la densité, $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .

Caractérisation séquentielle de la densité 5

Démonstration.

 (\Longrightarrow) Supposons que A est dense dans B.

- $A \subset B$ par définition.
- Soit $b \in B$ fixé quelconque. D'après la caractérisation de la densité appliqué pour $b \leftarrow b$ et $\varepsilon \leftarrow \frac{1}{2^n}$

$$\exists a \in A : |b - a| \leqslant \frac{1}{2^n}$$

Notons un tel a a_n . On vient de construire la suite $(a_n) \in A^{\mathbb{N}}$ telle que

$$\forall n \in N, |b - a_n| \leqslant \frac{1}{2^n}$$

or $\lim_{n\to+\infty}\frac{1}{2^n}=0$ donc, par le théorème sans nom, la suite $(a_n)_{n\in\mathbb{N}}$ converge vers b.

 (\Leftarrow) Supposons que tout élément de B est limite d'une suite d'éléments de A.

— $A \subset B$ par hypothèse.

Soient $\varepsilon \in \mathbb{R}_+^*$ et $b \in B$ fixés quelconques. Soit $(a_n) \in A^{\mathbb{N}}$ une suite qui converge vers b(elle existe par hypothèse). Appliquons la définition de sa convergence pour $\varepsilon \leftarrow \frac{\varepsilon}{2} > 0$:

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \implies |a_n - b| \leqslant \frac{\varepsilon}{2}$$

Fixons un tel N. On a alors

$$|a_N - b| \le \frac{\varepsilon}{2}$$
 donc $|a_N - b| < \varepsilon$ donc $\exists a \in A : |b - a| < \varepsilon$

Caractérisation séquentielle de la borne supérieure

Soit $A \in \mathcal{P}(\mathbb{R})$ non vide et majorée. Soit $\sigma \in \mathbb{R}$

$$\sigma = \sup A \iff \left\{ \begin{array}{l} \sigma \in M(A) \\ \exists (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} : \lim_{n \to +\infty} a_n = \sigma \end{array} \right.$$

Démonstration.

- \star Supposons que $\sigma = \sup A$.
 - Par définition d'une borne sup, $\sigma \in M(A)$.
 - Soit $n \in \mathbb{N}$. Appliquons la caractérisation de la borne sup par les epsilon pour $\varepsilon \leftarrow \frac{1}{2^n}$. $\exists c \in A : \sigma - \frac{1}{2^n} < c \leqslant \sigma$. Fixons un tel c et notons le a_n . En relâchant le caractère fixé de n, on a crée la suite $(a_n)_{n\in\mathbb{N}}$ telle que

$$\forall n \in \mathbb{N}, \sigma - \frac{1}{2^n} < a_n \leqslant \sigma$$

Cette suite converge vers σ par encadrement.

- * Réciproquement, supposons que $\sigma \in M(A)$ et qu'il existe une suite $(a_n)_{n \in \mathbb{N}}$ d'éléments de A qui converge vers σ . Montrons que $\sigma = \sup A$ d'après la caractérisation par les ε .
 - $\sigma \in M(A)$
 - Soit $\varepsilon > 0$. Appliquons la définition de la convergence de a pour $\varepsilon \leftarrow \frac{\varepsilon}{2}$

$$\exists N \in \mathbb{N} : \forall n \geqslant N, |a_n - \sigma| \leqslant \frac{\varepsilon}{2} \implies \sigma - \frac{\varepsilon}{2} \leqslant a_n$$

En particulier $a_N \in A$ vérifie

$$\sigma - \varepsilon < \sigma - \frac{\varepsilon}{2} \leqslant a_N \underbrace{\leqslant}_{\sigma \in M(A)} \sigma$$

Ce qui permet de conclure. Donc $\sigma = \sup A$.

Preuve de l'unicité de la limite d'une suite convergente

Soit $u \in \mathbb{K}^{\mathbb{N}}$, $(\ell_1, \ell_2) \in \mathbb{K}^2$ Si u converge vers ℓ_1 et ℓ_2 , alors $\ell_1 = \ell_2$

Démonstration. Par l'absurde, supponsons que u converge vers ℓ_1 et ℓ_2 , et $\ell_1 \neq \ell_2$. On prendra $\varepsilon_0 = \varepsilon_1 = \varepsilon_2$ assez petit pour que les tubes soient disjoints. Posons donc $\varepsilon_0 = \frac{|\ell_1 - \ell_2|}{3}$

— Appliquons la définition de la convergence de u vers ℓ_1 , pour $\varepsilon \leftarrow \varepsilon_0$, ce qui est autorisé car $\varepsilon_0 \in \mathbb{R}_+^*$

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_1 \implies |u_n - \ell_1| \leqslant \varepsilon_0 \tag{5}$$

$$\exists N_2 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_2 \implies |u_n - \ell_2| \leqslant \varepsilon_0 \tag{6}$$

Fixons de tels N_1 et N_2 .

— Posons
$$n_0 = N_1 + N_2$$

— $n_0 \geqslant N_1$, donc (??) s'applique : $|u_{n_0} - \ell_1| \leqslant \varepsilon_0$
— $n_0 \geqslant N_2$, donc (??) s'applique : $|u_{n_0} - \ell_2| \leqslant \varepsilon_0$

$$\begin{aligned} |\ell_1 - \ell_2| &= |\ell_1 - u_{n_0} + u_{n_0} - \ell_2| \\ &\leqslant \underbrace{|\ell_1 - u_{n_0}|}_{\leqslant \varepsilon_0} + \underbrace{|u_{n_0} - \ell_2|}_{\leqslant \varepsilon_0} \\ &\leqslant 2\frac{|\ell_1 - \ell_2|}{3} \\ &\Longrightarrow 1 \leqslant \frac{2}{3} \end{aligned}$$

Contradiction

FIGURE 1 – À partir du rang n_0 , supérieur à N_1 et N_2 , tous les termes de la suite doivent être contenus dans les deux tubes disjoints, ce qui est impossible.

8 Toute suite convergente est bornée

Démonstration. Soit $u \in \mathbb{K}^{\mathbb{N}}$ convergente. Posons $\ell = \lim u$ Appliquons la définition de la convergence pour $\varepsilon \leftarrow 1$

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_1 \implies |u_n - \ell| \leqslant 1$$

Fixons un tel N_1 Posons alors $M = \max\{|u_0|, |u_1|, |u_2| \dots |u_{N_1}|, |\ell| + 1\}$, qui est bien défini, car toute partie finie, non vide d'un ensemble totalement ordonné (ici (\mathbb{R}, \leq)) admet un pgE.

Soit $n \in \mathbb{N}$ fq.

- Si $n \in [0, N_1], |u_n| \in \{|u_0|, |u_1|, |u_2| \dots |u_{N_1}|, |\ell| + 1\} \text{ donc } |u_n| \leq M$
- Sinon,

$$\begin{array}{l} n > N_1 \implies |u_n - \ell| \leqslant 1 \\ \implies |u_n| - |\ell| \leqslant 1 \\ \implies |u_n| \leqslant 1 + |\ell| \leqslant M \end{array}$$

Ainsi, $\forall n \in \mathbb{N}, |u_n| \leq M$.

9 Dans un ensemble totalement ordonné, toute partie finie non vide possède un plus grand élément et un plus petit élément.

Démonstration. Soit (E, \preccurlyeq) un ensemble totalement ordonné, considérons pour tour $n \in \mathbb{N}^*$ la propriété.

 \mathcal{H}_n : toute partie de E de cardinal n admet un plus petit et un plus grand élément

- * Initialisation $n \leftarrow 1$ Soit $A \in \mathcal{P}(E)$ fixée telle que |A| = 1 A est non vide, donc $\exists a \in A : A = \{a\}$ a est le plus petit et le plus grand élément, donc \mathcal{H}_1 est vraie.
- * Hérédité Soit $n \in \mathbb{N}^*$ fixé quelconque tel que \mathcal{H}_n est vraie. Soit $A \in \mathcal{P}(E)$ fixée quelconque tel que |A| = n + 1

$$A \neq \emptyset \implies \exists a \in A : A = (A \setminus \{a\}) \cup \{a\}$$

Or, $|A \setminus \{a\}| = n$ donc \mathcal{H}_n s'applique et $A \setminus \{a\}$ possède un plus grand et plus petit élément

$$\begin{cases} m &= \min A \setminus \{a\} \\ M &= \max A \setminus \{a\} \end{cases}$$

- \Diamond Construisons le plus grand élément de A
 - Supposons $M \preccurlyeq a$ D'une part $a \in A$ D'autre part

$$\forall x \in A, \quad \text{si } x = a, x \preccurlyeq a \text{ (r\'eflexivit\'e)} \\ \text{sinon } x \in A \setminus \{a\} \implies x \preccurlyeq M \preccurlyeq a \implies x \preccurlyeq a \\ \right\} \implies \forall x \in A, x \preccurlyeq a$$

Donc A admet un plus grand élément, et c'est a.

• Sinon, si $M \succ a$, mais $M \in A$ et

$$\forall x \in A, \quad \begin{array}{l} \text{si } x = a, x \preccurlyeq M \\ \text{sinon } x \in A \setminus \{a\} \implies x \preccurlyeq \max(A \setminus \{a\}) = M \end{array} \right\} \implies \forall x \in A, x \preccurlyeq a$$

Donc A admet un plus grand élément, et c'est M

 \Diamond On procède de même pour construire le le plus petit élément de A avec m.

Donc \mathcal{H}_{n+1} est vraie. Donc toute partie finie non vide d'un ensemble totalement ordonné possède un plus petit et un plus grand élément.

Étudions l'importance des hypothèses :

- * Importance de la finitude de la partie :
 - On sait qu'une partie infinie d'un ensemble totalement ordonné n'admet pas de plus grand élément : [0,1[dans $(\mathbb{R},\leq), \mathbb{N}$ dans (\mathbb{R},\leq) .
- * Importance du caractère total de l'ordre : on connait des ensembles finis partiellement ordonnés qui n'ont pas de plus grand élément :
 - $\{3,12\}$ dans $(\mathbb{R},=)$ n'admet pas de plus grand élément
 - $\{[1,2],[3,4]\}$ dans $(\mathcal{P}(\mathbb{R}),\subset)$ n'admet pas de plus grand élément
 - $\{2,3\}$ dans $(\mathbb{N},|)$ non plus.

10 Si A admet un plus grand élément c'est aussi sa borne supérieure. Si A admet une borne supérieure dans A c'est son plus grand élément.

Soit (E, \leq) un ensemble ordonné, et A une partie non-vide de E.

Si A admet un plus grand élément alors A admet une borne supérieure et sup $A = \max A$.

Si A admet une borne supérieure appartenant à elle-même alors A admet un plus grand élément et $\max A = \sup A$.

6

Démonstration. Soient un tel ensemble E et une telle partie A et notons M son plus grand élément. Posons l'ensemble des majorants de A, $M(A) = \{m \in E \mid \forall a \in A, \ a \leqslant m\}$. Par définition :

$$\forall m \in M(A), M \leqslant m,$$

car $M \in A$, mais comme $M \in M(A)$, on a directement que $M = \min M(A) = \sup A$.

Pseudo-réciproquement, soit A une partie de E admettant une borne supérieure dans elle même, notons cette borne S.

Comme $S \in M(A)$, par définition, S est plus grand que tous les éléments de A mais appartient à A, donc de tous les éléments de A, S est le plus grand.

11 Caractérisation par les ε de la borne supérieure

Soit $A \in \mathcal{P}(\mathbb{R})$ une partie non vide et majorée. Soit $\sigma \in \mathbb{R}$

$$\sigma = \sup A \iff \left\{ \begin{array}{l} \forall a \in A, a \leqslant \sigma \\ \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : \sigma - \varepsilon < a \leqslant \sigma \end{array} \right.$$

 $D\acute{e}monstration.$ \star Supposons $\sigma = \sup A$

- Par définition sup $A = \min M(A)$ donc $\sigma \in M(A)$ donc $\forall a \in A, a \leq \sigma$
- Soit $\varepsilon > 0$ fixé quelconque

$$\sigma = \min M(A) \iff \sigma - \varepsilon \not\in M(A) (\operatorname{sinon} \sigma - \varepsilon \geqslant \min M(A) = \sigma \implies \varepsilon \leqslant 0)$$
$$\iff \exists a \in A : \sigma - \varepsilon < a \leqslant \sigma$$

 \star Réciproquement, supposons

$$\left\{ \begin{array}{l} \forall a \in A, a \leqslant \sigma \\ \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : \sigma - \varepsilon < a \leqslant \sigma \end{array} \right.$$

- D'après la première propriété, $\sigma \in M(A)$
- Montrons que σ est le plus petit des minorants par l'absurde en supposant qu'il existe $M \in M(A)$ tel que $M < \sigma$. On a $\sigma M > 0$ donc on peut appliquer la deuxième propriété pour $\varepsilon \leftarrow \sigma M$

$$\exists a \in A : \sigma - (\sigma - M) < a$$

Fixons un tel a. On a donc trouvé un $a \in A$ tel que M < a ce qui contredit le fait que M soit un majorant de A. Donc il n'existe pas de majorant plus petit que σ . Donc A admet une borne supérieure qui est σ .