Coen/Elen 21c Homework 5 Solution

Problem 1. Text Problem 3.12b (b only)

Min term	List 1 ABCD	Flags		Min- terms	List 2 ABCD	Flags		Min- terms	List 3 ABCD	Flags	
2	0010	α	√	2.3	001-	a	PI_5	4,5.6.7	01	β	PI_1
4	0100	β	1	4.5	010-	β	\checkmark	4,6.12.14	-1-0	β	PI_2
3	0011	a	1	6	01-0	β	V	5,7.13.15	-1-1	α	PI_3
5	0101	αβ	V	4.12	-100	В	V	12,13,14.15	11	α	PI_4
6	0110	B	V	3.7	0-11	α	PI_6				
12	1100	$\alpha \beta$	V	5.7	01-1	αβ	PI_7				
7	0111	αβ	V	5.13	-101	α	\checkmark				
13	1101	α	J	6.7	011-	B	\checkmark				
14	1110	$\alpha\beta$	V	6.14	-110	β	\checkmark				
15	1111	α	V	12.13	110-	α	V				
 			100	12.14	11-0	$\alpha\beta$	PI_8				
				7,15	-111	α	V	8			
				13.15	11-1	α	\checkmark				
				14.15	111-	α	V				

$$\begin{array}{lll} PI_{\alpha\beta} & = & \{PI_7 = \dot{A}BD, PI_8 = AB\bar{D}\} \\ PI_{\alpha} & = & \{PI_3 = BD, PI_4 = AB, PI_5 = A\bar{B}C, PI_6 = ACD\} \\ PI_{B} & = & \{PI_1 = AB, PI_2 = B\bar{D}\} \end{array}$$

Problem 2. Text Problem 3.14

3.14 Use the Quine-McCluskey method to minimize the following functions with don't cares: (a) $f(A, B, C, D) = \sum m(0, 6, 9, 10, 13) + d(1, 3, 8)$

Lis	: 1		List	2		List	3	
Minterm	ABCD		Minterms	ABCD		Minterms	ABCD	
0	0000	√	0,1	000-	\checkmark	0,1,8,9	-00-	PI_1
1	0001	√	0,8	-000	√	-1		
8	1000	\checkmark	1,3	00-1	PI_2			
3	0011	V	1,9	-001	\checkmark			
6	0110	PI_5	8,9	100-	\checkmark			
9	1001	\checkmark	8,10	10-0	PI_3	_		
10	1010	√	9,13	1-01	PI_4			
13	1101	V	_					

	√ 0	$\begin{vmatrix} \sqrt{} \\ 6 \end{vmatrix}$	√ 9	√ 10	√ 13
$*PI_1$	8		×		
PI_2					
* <i>PI</i> ₃				\otimes	
$*PI_4$			×		8
$*PI_5$		8			

$$PI_{\alpha\beta} = PI_1 + PI_3 + PI_4 + PI_5$$

= $\bar{B}\bar{C} + A\bar{B}\bar{D} + A\bar{C}D + \bar{A}BC\bar{D}$

(b)
$$f(A, B, C, D) = \sum m(1, 4, 7, 10, 13) + d(5, 14, 15)$$

List	List 1			List 2			List 3		
Minterm	ABCD		Minterms	ABCD		Minterms	ABCD		
1	0001		1,5	0-01	PI_2	5,7,13,15	-1-1	PI_1	
4	0100	\checkmark	4,5	010-	PI_3			_	
5	0101		5,7	01-1		-			
_10	1010	\checkmark	5,13	-101	\checkmark				
7	0111	\checkmark	10,14	1-10	PI_4				
13	1101	\checkmark	7,15	-111	V				
14	1110	\checkmark	13,15	11-1	\checkmark				
15	1111	V	14,15	111-	PI_5				

	1	√ 4	√ 7	√ 10	√ 13
$*PI_1$	-	7	8	10	⊗
$*PI_2$	8				
$*PI_3$		8			
$*PI_4$				8	
PI_5					

$$PI_{\alpha\beta} = PI_1 + PI_2 + PI_3 + PI_4$$

= $BD + \bar{A}\bar{C}D + \bar{A}B\bar{C} + AC\bar{D}$

Problem 3. Text Problem 3.45 (a & b)

3.45 Find the minimum POS form for the following functions.

(a)
$$f(A, B, C, D) = \prod_{\bar{B}} M(2, 3, 4, 5, 7, 12, 13)$$

= $(\bar{B} + C)(A + B + \bar{C})(A + \bar{C} + \bar{D})$ - Option 1
= $(\bar{B} + C)(A + B + \bar{C})(A + \bar{B} + \bar{D})$ - Option 2

(b)
$$f(A,B,C,D) = \prod_{\bar{D}} M(1,2,5,7,11,13,15)$$

= $(\bar{B}+\bar{D})(A+C+\bar{D})(\bar{A}+\bar{C}+\bar{D})(A+B+\bar{C}+D)$

Problem 4. Text Problem 3.55

3.55 Find the minimum POS form for the following function.

$$f(A, B, C, D, E) = \prod_{\substack{M \in A, B, C, D, E \\ = (A + B + C + E)(B + \bar{C} + D + \bar{E})(A + \bar{C} + \bar{D} + E)(\bar{B} + \bar{C} + D + E) \\ \cdot (\bar{B} + \bar{C} + \bar{D} + \bar{E})(A + \bar{B} + D + \bar{E})} - \text{Opt } 1$$

$$= (A + B + C + E)(B + \bar{C} + D + \bar{E})(A + \bar{C} + \bar{D} + E)(\bar{B} + \bar{C} + D + E) \\ \cdot (\bar{B} + \bar{C} + \bar{D} + \bar{E})(\bar{B} + C + D + \bar{E})} - \text{Opt } 2$$

Problem 5

. Please indicate which of the following are or are not XOR or XNOR functions.

For those functions that are XOR or XNOR, write their the algebraic expression for that function.

a.
$$f(A,B,C) = \sum m(1,3,4,6)$$

b. $f(A,B,C,D) = \sum m(0,2,5,7,8,13,15)$

ABCD	00	01	11	10
00	1	0	0	1
01	0	1	1	0
11	0	1	1	0
10	1	0	0	0

NO, it is not XOR or XNOR. If minterm m10 were = 1, it would be an **XNOR** = **(B** $^{\wedge}$ **D)**'

c. $f(A,B,C,D) = \sum m(2,3,4,5,10,11,12,13)$

ABCD	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	1	1	0	0
10	0	0	1	1

YES, it is an XOR function: $f(A,B,C,D) = B \land C$

d. $f(A,B,C,D) = \sum m(1,3,4,6,8,10,13,15)$

ABCE	00	01	11	10
00	0			0
01	1	0	0	1
11	0	1		0
10	1	0	0	1

Signature checkerboard pattern in groups of two 1's gives an XOR pattern (since 0000 cell = 0)

$$F(A,B,C,D) = A \wedge B \wedge D$$

e. $f(A,B,C) = \sum m(0,2,4,6)$

NO. This function is not an XOR or XNOR pattern.

$$\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C}) = \mathbf{C}$$

4.4 Realize each of the following sets of functions using only a single 74154 decoder module and output logic gates (choose NAND or AND gates to minimize the fan-in of the output gates).

(a)
$$f_1(a,b,c,d) = \sum m(2,4,10,11,12,13)$$

 $f_2(a,b,c,d) = \prod M(0-3,6-9,12,14,15) = \sum m(4,5,10,11,13)$
 $f_3(a,b,c,d) = \bar{b}c + \bar{a}\bar{b}d = \sum m(1,2,3,10,11)$

(b)
$$f_1(a,b,c,d) = \sum m(0,1,7,13)$$

 $f_2(a,b,c,d) = ab\bar{c} + acd = \sum m(11,12,13,15)$
 $f_3(a,b,c,d) = \prod M(0-2,5-9,11,12,15) = \sum m(3,4,10,13,14)$

c. Repeat part (a) for the complements of the three functions.

d. Repeat part (b) for the complements of the three functions.

4.15 Design an 8-to-1 multiplexer, using only 4-to-1 multiplexer modules without enable lines. (Do not use any additional gates.)

