Data Science (Prof. Neff) Abgabedatum 01.12.2020

Versuch Konfidenzintervalle - Aufgaben zur schließenden Statistik

Gruppe 6: Benjamin Hamm (2060696), Jan Klotter (2060690),

Anna Kuhn (2051063), Michael Schulze (2061282)

1. Konfidenzintervalle

clear

1a) + 1b) Darstellen der Daten und Konfidenzintervalle Büroklammer

```
% Büroklammern
data_buero = readtable('Lebensdauer_Bueroklammer.csv')
```

data buero = 75×1 table

uata_	puero - /3×1
	Zyklen
1	9
2	61
3	3
4	2
5	4
6	7
7	25
8	16
9	97
10	4
11	5
12	50
13	2
14	2
15	13
16	17
17	6
18	19
19	117
20	6
21	19

	Zyklen
22	9
23	11
24	10
25	7
26	5
27	20
28	22
29	11
30	1
31	15
32	12
33	6
34	8
35	4
36	1
37	15
38	10
39	26
40	9
41	16
42	14
43	7
44	4
45	20
46	6
47	13
48	20
49	12
50	4
51	14
52	22
53	3
54	3
55	22

	Zyklen
56	21
57	9
58	11
59	12
60	2
61	13
62	1
63	13
64	19
65	1
66	8
67	11
68	4
69	4
70	11
71	14
72	2
73	15
74	113
75	21

[h0,p,t_ci_buero,t_stats_buero] = ttest(data_buero.Zyklen)

```
h0 = 1
p = 2.3904e-08
t ci buero = 2 \times 1
  10.6343
  20.5924
t stats buero = struct with fields:
   tstat: 6.2482
      df: 74
      sd: 21.6407
pd_weibull_buero = fitdist(data_buero.Zyklen, 'Weibull')
pd_weibull_buero =
 WeibullDistribution
 Weibull distribution
   A = 15.2792 [11.8995, 19.6187]
   B = 0.960767 [0.820185, 1.12545]
ci weibull = paramci(pd weibull buero, 'Alpha', 0.05)
ci weibull = 2x2
  11.8995 0.8202
   19.6187
            1.1254
pd = makedist('Weibull')
pd =
 WeibullDistribution
 Weibull distribution
   A = 1
   B = 1
figure(1)
qqplot(data buero.Zyklen,pd)
```

```
QQ Plot of Sample Data versus Distribution
  120
  100
Quantiles of Input Sample
    80
    60
    40
            20
     0
                1
      0
                                    3
                                                        5
                                                                  6
                     Quantiles of weibull Distribution
```

```
% bis 2,8 eindeutige Weibull-Verteilung, danach sind Outliner vorhanden.
% daher nehmen wir die Weibull-Verteilung als gute Näherung einer
% Verteilung an
[boot_buero, data_boot_buero]=bootstrp(10,@median,data_buero.Zyklen)
```

```
boot_buero = 10x1
    10
      9
    11
    11
    10
      9
    11
    12
    12
    11
data boot buero = 75 \times 10
    33
            54
                   38
                           23
                                  46
                                          1
                                                 45
                                                          5
                                                                72
                                                                       74
     1
            41
                   66
                           66
                                  44
                                         21
                                                 66
                                                          7
                                                                36
                                                                       38
                                  73
    17
             6
                   57
                           62
                                         50
                                                 56
                                                        44
                                                                54
                                                                        4
    30
            12
                   56
                           75
                                   5
                                         16
                                                 53
                                                         3
                                                                37
                                                                        9
    55
            52
                   64
                           29
                                  54
                                         52
                                                 65
                                                         8
                                                                28
                                                                       36
    58
            26
                   18
                           39
                                  68
                                          9
                                                        30
                                                                       13
                                                 11
                                                                47
    19
                           57
                                  15
                                                                       35
            64
                   26
                                         34
                                                 10
                                                        41
                                                                50
      3
                   73
                           30
                                  68
                                         10
                                                 35
                                                        17
                                                                17
                                                                       47
            72
    72
                                                        29
                                                                        9
            57
                   11
                           70
                                  62
                                         39
                                                 22
                                                                42
                                                                        7
    40
             3
                    8
                           33
                                  50
                                         20
                                                 51
                                                        69
                                                                72
```

```
%x-Daten, Anzahl Datenwerte etc.
anzahl = length(data_buero.Zyklen)
```

anzahl = 75

```
x = (min(data_buero.Zyklen)-2:0.1:max(data_buero.Zyklen)+2);
%histogram(data_buero.Zyklen)
figure(2)
histogram(data_buero.Zyklen,2*round(sqrt(anzahl)))
grid on
title('Histogram Lebensdauer Bueroklammer')
xlabel('Zyklen')
ylabel('relative Häufigkeit')
```



```
%histogram(data_buero.Zyklen(data_boot_buero),6)
figure(3)
histogram(data_buero.Zyklen(data_boot_buero),2*round(sqrt(anzahl)))
grid on
title('Histogram Lebensdauer Bueroklammer Bootstrap')
xlabel('Zyklen')
ylabel('relative Häufigkeit')
```



```
[ci, mean intervall bootstrap] = bootci(10, {@mean, data buero.Zyklen}, 'Alpha', 0.05)
ci = 2x1
  13.2506
  16.6800
mean intervall bootstrap = 10 \times 1
  12.8933
  16.0267
  13.6000
  16.4267
  16.1200
  14.2000
  16.6800
  14.6533
  15.3600
  14.2267
% Bootstrap vergrößert künstlich die Stichprobe, daher ist das
% Konvidenzintervall kleiner als bei den anderen Verfahren,
% daher nehmen wir das Bootstrap-Verfahren ebenfalls als geeignet an
matrix = [mean norm ci normal(1) ci normal(2);
```

mean_norm t_ci_buero(1) t_ci_buero(2);
mean norm ci weibull(1) ci weibull(2);

mean(mean intervall bootstrap) ci(1) ci(2)]

```
15.6133 11.8995 19.6187
15.0187 13.2506 16.6800
```

```
figure(4)
plot(matrix,'o')
title("Vergleich der Konfidenzintervalle")
legend( "Mean", "untere Intervallgrenze", "obere Intervallgrenze")
xlim([1 4])
xticks([1 2 3 4])
xticklabels({'Normal', 't-Verteilung', 'Weibull', 'Bootstrap'})
```


1c) Diskussion Verfahren Büroklammer

```
% Bootstrap und Weibull eignen sich am besten, da die Konvidenzintervall am
% kleinsten sind (im Gegensatz zur Normal- und t-Verteilung).
% Der qqPlot der Weibull ist annähernd linear bis 2,8
```

1a) + 1b) Darstellen der Daten und Konfidenzintervalle MSA1 Versuch

```
% Wasser MSA1 b)
data_msa = readtable('MSA_Verfahren1_200ml_Jan.csv')
```

	Gewicht_in_g	
1		199
2		213
3		185
4		198
5		205
6		191
7		184
8		193
9		199
10		206
11		207
12		210
13		213
14		197
15		205
16		203
17		196
18		206
19		197
20		204
21		210
22		193
23		195
24		196
25		196

```
mean_norm = mean(data_msa.Gewicht_in_g)

mean_norm = 200.0400

pd = makedist('Normal')

pd =
   NormalDistribution

   Normal distribution
        mu = 0
        sigma = 1
```

```
figure(5)
qqplot(data_msa.Gewicht_in_g,pd)
```

```
QQ Plot of Sample Data versus Distribution

215

215

216

217

218

219

180

219

Quantiles of normal Distribution

220

Quantiles of den Daten am genaust
```

```
% qqPlot der Normalverteilung nähert sich den Daten am genausten an
pd norm msa = fitdist(data msa.Gewicht in g, 'Normal')
pd norm msa =
 NormalDistribution
 Normal distribution
     mu = 200.04 [196.787, 203.293]
   sigma = 7.88184 [6.15436, 10.9648]
ci_normal_msa = paramci(pd_norm_msa, 'Alpha', 0.05)
ci_normal_msa = 2x2
 196.7865
           6.1544
 203.2935
           10.9648
[~,~,t_ci_msa,t_stats_msa] = ttest(data_msa.Gewicht_in_g)
t ci msa = 2 \times 1
 196.7865
 203.2935
t_stats_msa = struct with fields:
   tstat: 126.8994
      df: 24
      sd: 7.8818
```

```
pd weibull msa = fitdist(data msa.Gewicht in g,'Weibull')
pd weibull msa =
 WeibullDistribution
 Weibull distribution
   A = 203.71 [200.821, 206.64]
   B = 29.0413 [21.4884, 39.2491]
ci weibull msa = paramci(pd weibull msa, 'Alpha', 0.05)
ci_weibull_msa = 2x2
 200.8207 21.4884
          39.2491
 206.6400
[boot msa, data boot msa] = bootstrp(10,@median,data msa.Gewicht in g)
boot msa = 10 \times 1
  199
  205
  196
  204
  199
  196
  199
  199
  198
  197
data boot msa = 25 \times 10
   13 13 13 15 5 24 20 17 25
                                                24

    18
    18
    24
    5
    20
    8
    19
    10

    4
    12
    17
    25
    2
    25
    25
    1

                                           4 24
                                    1 10
                                                9
   12
       5 18 16
                       3 23 20
                                      3
                                           1
                                                24
   5 24 24 20 11 21 23 25 13 16
   11
       1 25 15 1 17
                                 9 7 16 17
   15 15 11 18
                      5 21 21
                                      2 4
                                               16
   22 25 20 21 25 2 25 19
                                           3
                                                2
      5 12 6 14 15 6
13 17 7 23 25 11
   23
                                6
                                      9 24 17
    4
                                     20 23
                                                25
figure(6)
histogram (data msa. Gewicht in g)
xlabel("g")
ylabel("Häufigkeit")
```



```
figure(7)
histogram(data_msa.Gewicht_in_g(data_boot_msa))
xlabel("g")
ylabel("Häufigkeit Bootstrap")
```



```
[ci,mean_intervall_bootstrap] = bootci(10,{@mean,data_msa.Gewicht_in_g},'Alpha',0.05)
ci = 2 \times 1
  197.1600
  201.1171
mean\_intervall\_bootstrap = 10x1
  200.3600
  197.1600
  200.4800
  197.9200
  199.5200
  202.0000
  200.3600
  201.2400
  200.8800
  200.1600
pd = makedist('Normal')
pd =
 NormalDistribution
  Normal distribution
      mu = 0
    sigma = 1
```

figure(8)

qqplot(data_boot_msa,pd)


```
matrix = [mean_norm ci_normal_msa(1) ci_normal_msa(2);
   mean_norm t_ci_msa(1) t_ci_msa(2);
   mean_norm ci_weibull_msa(1) ci_weibull_msa(2);
   mean(mean_intervall_bootstrap) ci(1) ci(2)]
```

```
matrix = 4x3
  200.0400  196.7865  203.2935
  200.0400  196.7865  203.2935
  200.0400  200.8207  206.6400
  200.0080  197.1600  201.1171
```


1c) Diskussion Verfahren MSA1 Versuch

```
% Die Normal und t-Verteilung zeigen gute Näherungen für die Daten.
% Das Bootstrap Verfahren hat jedoch ein kleineres Konfidenzintervall und
% ist somit noch besser geeignet als die anderen beiden.
% Weibull kann nicht angewandt werden, der Mittelwert liegt sogar außerhalb
% des Konfidenzintervalls
```

2. Hypothesentests

2a) Darstellen der Daten und Nullhypothese

```
% H0 = Medikament hat keine Auswirkung auf Cholesterinspiegel
% H1 = Medikament beeinflusst den Cholesterinspiegel
%Messwerte einlesen
data_cholesterin_senker = readtable('cholesterinsenker.csv')
```

data cholesterin senker = 10×2 table

aa ca.		00111101	
	А	В	
1	0	-22	

	А	В
2	-27	-14
3	-16	-15
4	-13	-32
5	-6	-22
6	-27	-34
7	-5	-38
8	-22	-16
9	-9	-25
10	-3	-26

```
figure(10)
histogram(data_cholesterin_senker.A)
title("Gruppe A")
xlabel("Differenz Cholesterin")
ylabel("Häufigkeit")
```



```
figure(11)
histogram(data_cholesterin_senker.B)
title("Gruppe B")
xlabel("Differenz Cholesterin")
```



```
% statistische Größen
mediana = median(data cholesterin senker.A)
mediana = -11
medianb = median(data cholesterin senker.B)
medianb = -23.5000
meana = mean(data_cholesterin_senker.A)
meana = -12.8000
meanb = mean(data_cholesterin_senker.B)
meanb = -24.4000
figure(12)
boxplot([data cholesterin senker.A,data cholesterin senker.B],...
    "Notch", "on", "Labels", { 'Gruppe A', 'Gruppe B'})
hold on
plot([mean(data cholesterin senker.A), mean(data cholesterin senker.B)], 'dg')
title("Boxplot Gruppe A und B")
hold off
```


2b) Test unter Annahme Grundgesamtheit normalverteilt

```
% t-Test
[h0_ttest,p_ttest,ci_ttest,stats_ttest]=...

h0_ttest = 0
p_ttest = 0.0107
ci_ttest = 2x1
    -0.1355
23.3355
stats_ttest = struct with fields:
    tstat: 2.8452
    df: 18
    sd: 9.1165

ttest2(data_cholesterin_senker.A,data_cholesterin_senker.B, 'alpha',0.01)
```

2c) Test unter Annahme Grundgesamtheit nicht normalverteilt

```
% Verteilungsfreien Test auf Median (Mann-Whitney Test):
[p_rank,h0_rank,stats_rank]=...
p rank = 0.0280
```

```
p_rank = 0.0280
h0_rank = logical
```

```
stats_rank = struct with fields:
    zval: 2.1972
    ranksum: 134.5000

ranksum(data_cholesterin_senker.A, data_cholesterin_senker.B, 'alpha', 0.01)
```

2d) Vergleich beider Tests

```
% Wir nehmen für beide Fälle die Nullhypothese HO an, da hO=O ist und p größer
% als alpha ist. Beim t-Test wird als Lagemaß der Mean verwendet und im
% Mann-Whitney-Test der Median. Da der Median und der Mean fast gleich sind,
% kann die Aussage getroffen werden, dass die Stichproben aus einer
% symmetrischen Verteilung stammen.
% % tstat liegt bei 2.8452 und zval bei 2.1972 und sind somit kleiner als
% t_kritisch 2.878 (zweiseitiger Test), welches ein weiteres Argument für
% die Annahme der hO ist.
% Da zval kleiner als tstat ist, liefert der Mann-Whitney Test ein sicheres
% Ergebnis.
```

2e) Annahme auf Normalverteilung der Stichprobe gerechtfertigt? qq-Plot auf Normalverteilung

```
pd = makedist('Normal')

pd =
   NormalDistribution

   Normal distribution
        mu = 0
        sigma = 1

figure(13)
qqplot(data_cholesterin_senker.A,pd)
```


figure(14)
qqplot(data_cholesterin_senker.B,pd)

\$ Anhand des qq-Plotes kann die Annahme getroffen werden, dass die Stichproben \$ aus einer Normalverteilung stammt.

Anderson Darling Test

2f) Schlussfolgerungen

- % Der t-Test und der Mann-Whitney-Test lieferte das Ergebnis, dass es keinen
- % Zusammenhang zwischen dem Medikament und dem Cholesterin-Wert gibt.
- % Als medizinische Laien erkennen wir den Zusammenhang, dass die Gruppe B
- % einen größeren Cholesterinwertrückgang hat als Gruppe A.
- % Daher würden wir eine weitere Studie mit einer größeren Stichprobe durchführen.
- % Jedoch wissen wir nicht, in welchem Spektrum sich eine Cholesterinsenkung
- % befinden muss, damit das Medikament als wirksam bezeichnet werden kann.