(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 27. Mai 2004 (27.05.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/043890 A2

(51) Internationale Patentklassifikation7: B01J 23/656, 23/42

C07C 29/17,

(21) Internationales Aktenzeichen:

PCT/EP2003/012378

(22) Internationales Anmeldedatum:

6. November 2003 (06.11.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

DE

(30) Angaben zur Priorität:

102 52 280.4

11. November 2002 (11.11.2002)

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SCHUBERT, Markus [DE/DE]; Alwin-Mittasch-Platz 11, 67063 Ludwigshafen (DE). HUBER-DIRR, Sylvia [DE/DE]; Jungenheimer Strasse 12g, 64673 Zwingenberg (DE). HESSE, Michael [DE/DE]; Weinbietstr.10, 67549 Worms (DE). PFEIFER, Jochen [DE/DE]; Oberdorfstr. 41a, 76831 Ilbesheim (DE). FISCHER, Rolf-Hartmuth [DE/DE]; Bergstr.98, 69121 Heidelberg (DE). RÖSCH, Markus [DE/DE]; Friedrich-Ebert-Strasse 115A, 55276 Oppenheim (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: IMPROVED CATALYST AND METHOD FOR PRODUCING ALCOHOL BY HYDROGENATION ON SAID CAT-ALYST

(54) Bezeichnung: VERBESSERTER KATALYSATOR UND VERFAHREN ZUR HERSTELLUNG VON ALKOHOLEN **DURCH HYDRIERUNG AN DIESEM KATALYSATOR**

O Beisplel 15

- (57) Abstract: The invention relates to a catalyst containing from 0.1 to 20 mass % rhenium and 0.05 to 10 mass % platinum in relation to the total mass thereof. The inventive method for producing a support for said catalyst consists in a) treating a support which can be eventually pre-treated with the aid of a solution of rhenium compound, b) drying and annealing said support at a temperature ranging from 80 to 600 °C, and c) impregnating the support with a solution of platinum compound and in drying it. The inventive method for producing alcohol by catalytic hydrogenation of carbonyl compound on said catalyst is also disclosed.
- (57) Zusammenfassung: Gegenstand der vorliegenden Erfindung ist ein Katalysator enthaltend 0,1 bis 20 Gew.-% Rhenium und 0.05 bis 10 Gew.-% Platin, bezogen auf die Gesamtmasse des Katalysators, auf einem Träger, erhältlich durch ein Verfahren, bei dem man a) den gegebenenfalls vorbehandelten Träger mit einer Lösung

A ... INPUT INTO H₂O/H₂

B ... BDO YIELD %

C ... DIRECT START

D ... EXAMPLE 14

E ... EXAMPLE 15

BOTTKE, Nils [DE/DE]; Werderstr. 12, 68165 Mannheim (DE). WECK, Alexander [DE/DE]; Buttstaedter Str. 9, 67251 Freinsheim (DE). WINDECKER, Gunther [DE/DE]; Von-Sturmfeder-Strasse 7, 67067 Ludwigshafen (DE). HEYDRICH, Gunnar [DE/DE]; Kirchenstr. 43, 67117 Limburgerhof (DE).

- (74) Gemeinsamer Vertreter: BASF AKTIENGE-SELLSCHAFT; 67056 LUDWIGSHAFEN (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

einer Rheniumverbindung behandelt, b) trocknet und in einer reduktiven Atmosphäre bei 80 bis 600oC tempert, c) mit einer Lösung einer Platinverbindung imprägniert und erneut trocknet,sowie ein Verfahren zur Herstellung von Alkohohlen durch katalytische Hydrierung von Carbonylverbindungen an diesem Katalysator.

WO 2004/043890

Verbesserter Katalysator und Verfahren zur Herstellung von Alkoholen durch Hydrierung an diesem Katalysator

Beschreibung

5

25

Die Erfindung betrifft ein Verfahren zur Herstellung von Alkoholen durch Hydrierung von Carbonylgruppen enthaltende Verbindungen an rheniumhaltigen Trägerkatalysatoren sowie die verbesserten rheniumhaltigen Trägerkatalysatoren.

- Die industrielle Hydrierung von Carbonygruppen enthaltenden Edukten wie Aldehyden, Ketonen, Carbonsäuren, Carbonsäureanhydriden und Estern an rheniumhaltigen Katalysatoren zu Alkoholen ist an sich bekannt.
- DE-A 2 519 817 beschreibt Katalysatoren für die die Hydrierung von Maleinsäureanhydrid, Maleinsäure oder deren Mischungen, die gleichzeitig Elemente der VII und VIII
 Nebengruppe des Periodensystems der Elemente enthalten. Bevorzugt weisen die
 Katalysatoren Rhenium und Palladium auf, die im Verlauf der Katalysatorherstellung
 gemäß den Ausführungsbeispielen bevorzugt, gleichzeitig auf den Träger aufgebracht
 werden. Es ist gemäß der Offenbarung der DE-A 2 519 817 auch möglich die Palladiumverbindung zuerst auf den Träger aufzubringen.
 - Nach einem Trocknungsschritt entstehen so geträgerte Palladium-Rhenium-Katalysatoren, deren Aktivität in Hydrierungen von Carbonylgruppen enthaltenden Verbindung so gering ist, dass die gleichzeitige Anwendung von hohen Drucken und hohen Temperaturen von 215 bis 230°C erforderlich wird. Die Durchführung der Hydrierungen bei hohen Drucken und hohen Temperaturen ist bedingt durch hohe Energie- und Materialkosten wenig wirtschaftlich. Zudem nimmt die Korrosivität insbesondere bei Einsatz von Carbonsäure-Lösungen unter diesen Bedingungen zu.
- Palladium-Rhenium-Katalysatoren weisen bei einigen Hydrierreaktionen, wie beispielsweise der Hydrierung von Carbonsäuren oder deren Derivaten zu Alkoholen, weiterhin den Nachteil auf, dass durch das Palladium Nebenreaktionen wie die Etherbildung begünstigt werden.
- Die Vermeidung von Ethern als Nebenprodukt technischer Hydrierprozesse hat sich DE-A 100 09 817 zum Ziel gesetzt. Die durch dass gleichzeitige Aufbringen von Rhenium- und Palladiumverbindungen auf einen Aktivkohleträger und anschließende Trocknungsschritte hergestellten Katalysatoren erweisen sich als wesentlich selektiver. Die erhaltenen Katalysatoren sind jedoch so inaktiv, dass sehr hohe Edelmetallbeladungen des Trägers von mehr als 8 Gew.-% Platin und mehr als 14,5 Gew.-% Rheni-

30

35

40

um erforderlich sind, um die gewünschte Aktivität zu erhalten, was das in DE-A 100 09 817 offenbarte Verfahren insgesamt unwirtschaftlich erscheinen lässt.

Eine Aufgabe der vorliegenden Erfindung war es, Verfahren zur katalytischen Hydrierung von Carbonylverbindungen zu Alkoholen sowie Katalysatoren bereitzustellen, die
die Nachteile des Standes der Technik nicht aufzuweisen. Weiterhin sollen die Katalysatoren geeignet sein, mit hoher Ausbeute und Selektivität Carbonylverbindungen in
der Flüssigphase zu Alkoholen zu hydrieren.

- Demgemäss betrifft die vorliegende Erfindung einen Katalysator enthaltend 0,1 bis 20 Gew.-% Rhenium und 0,05 bis 10 Gew.-% Platin, bezogen auf die Gesamtmasse des Katalysators aus Trägermaterial und katalytischer Aktivmasse, auf einem Träger, erhältlich durch ein Verfahren, bei dem man
- 15 a) den gegebenenfalls vorbehandelten Träger mit einer Lösung einer Rheniumverbindung behandelt,
 - b) trocknet und in einer reduktiven Atmosphäre bei 80 bis 600°C tempert,
 - 20 c) mit einer Lösung einer Platinverbindung imprägniert und erneut trocknet.

Als Träger bzw. Trägermaterial werden in den erfindungsgemäßen Katalysator im allgemeinen Metalloxide wie die Oxide des Aluminiums und Titans, Zirkondioxid, Hafniumdioxid, Siliciumdioxid, gegebenenfalls vorbehandelte Aktivkohle auch oder gegebenenfalls vorbehandelte graphitische Kohleträger, Nitride, Silicid, Carbid oder Borid, verwendet. Bei der erwähnten Vorbehandlung kann es sich um eine oxidative Vorbehandlung, wie sie beispielsweise im EP-A 848 991 beschrieben ist, handeln. Eine nicht oxidative Vorbehandlung des Trägermaterials, beispielsweise mit Phosphorsäure, ist aus DE-A 100 09 817 bekannt. Bevorzugt werden Träger aus Titandioxid, Zirkondioxid, Hafniumdioxid, gegebenenfalls vorbehandelter Aktivkohle und/oder graphitischem Kohlenstoff verwendet.

Als Rheniumkomponente wird üblicherweise (NH₄)ReO₄, Re₂O₇, ReO₂, ReCl₃, ReCl₅, Re(CO)₅CI, Re(CO)₅Br oder Re₂(CO)₁₀ verwendet, ohne dass diese Aufzählung ausschließlich gemeint ist. Bevorzugt wird Re₂O₇ eingesetzt.

Es wird neben Rhenium vorzugsweise noch Platin auf den Katalysator aufgebracht. Das Platin kann als z.B. Platinpulver, Oxid, Oxidhydrat, Nitrat, Platin(II)- oder –(IV)-chlorid, Platin(IV)-chlorwasserstoffsäure, Platin(II)- oder –(IV)-Bromid, Platin(II)-jodid, cis- bzw. trans-Platin(II)-diamin-chlorid, cis- bzw. trans-Platin(IV)-diamin-chlorid, Pla-

tin(II)diamin-nitrit, Platin(II)-ethylendiamin-chlorid, Platin(II)-tetraminchlorid bzw. chlorid-Hydrat, Platin(II)-tetraminnitrat, Platin(II)-ethylendiamin-chlorid, Platin(0)tetrakis-(triphenylphosphin), cis- bzw. trans-Platin(II)-bis-(triethylphosphin)-chlorid, cisbzw. trans-Platin(II)-bis-(triethylphosphin)oxalat, cis-Platin(II)-bis-(triphenylphosphin)chlorid, Platin(IV)-bis-(triphenylphosphin)-oxid, Platin(II)(-2,2'-6',2"-terpyridin)chlorid-Dihydrat, cis-Platin-bis-(acetonitril)-dichlorid, cis-Platin-bis-(benzonitril)-dichlorid, Platin(II)-acetylacetonat, Platin(II)-1c,5c-cyclooctadien-chlorid bzw. -bromid, Platinnitrosylnitrat, bevorzugt als Platinoxid oder -nitrat, besonders bevorzugt als Platinnitrat aufgebracht werden, ohne daß diese Aufzählung ausschließlich gemeint ist.

10

15

20

25

30

35

40

Rhenium (als Metall gerechnet) ist in einer Menge von 0,1 bis 20 Gew.-%, bevorzugt 0,5 bis 13 Gew.-%, besonders bevorzugt 2 und 7 Gew.-%, bezogen auf die Gesamtmasse des Katalysators aus katalytischer Aktivmasse und Trägermaterial, vorhanden. Der erfindungsgemäße Katalysator weist Platin (als Metall gerechnet) in einer Menge von 0,05 bis 10 Gew.-%, bevorzugt 0,1 bis 8 Gew.-%, besonders bevorzugt 0,3 bis 4 Gew.-%, bezogen auf die Gesamtmasse des Katalysators aus katalytischer Aktivmasse und Trägermaterial, auf.

Das Gewichtsverhältnis von Rhenium zu Platin (als Metalle gerechnet) liegt in einem Bereich von 0,01 - 100. Bevorzugt 0,05 bis 50, besonders bevorzugt 0,1 bis 10.

Es können auf dem Katalysator noch weitere Elemente vorhanden sein. Beispielhaft seien Sn, Zn, Cu, Ag, Au, Ni, Fe, Ru, Mn, Cr, Mo, W und V genannt. Diese Elemente modifizieren den Katalysator im wesentlichen bzgl. Aktivität und Selektivität (Hydrogenolyseprodukte) sind aber nicht essentiell. Ihr Gewichtsverhältnis zu Re kann 0 bis 100, bevorzugt 0,5 bis 30, besonders bevorzugt 01, bis 5 betragen.

Die Aufbringung der Aktivkomponenten Rhenium (Re) und gegebenenfalls Platin (Pt) kann durch Imprägnierung in jeweils einem oder mehreren Schritten innerhalb der Verfahrensstufen a) oder c) mit einer wässrigen, alkoholischen oder mit anderen organischen Lösungsmitteln hergestellten Lösung der jeweiligen gelösten Verbindungen (beispielsweise Salze, Oxide, Hydroxide), Imprägnierung mit einer Lösung von gelöstem oxidischen oder metallischen Kolloid der Aktivkomponente, Gleichgewichtsadsorption in einem oder mehreren Schritten der in wässriger oder alkoholischer Lösung gelösten Salze oder Gleichgewichtsadsorption von gelöstem metallischem oder oxidischem Kolloid an der vorbehandelten Aktivkohle vorgenommen werden.

Das Imprägnieren selbst kann dabei sowohl durch Tränken mit den Lösungen als auch durch Aufsprühen erfolgen. Weiterhin kann der Träger mit Lösungen thermisch leicht zersetzbarer Salze, z.B. mit Nitraten oder thermisch leicht zersetzbaren Komplexver-

10

15

20

25

30

35

40

bindungen, z.B. Carbonyl- oder Hydrido-Komplexen der katalytisch aktiven Elemente, zu imprägnieren und den so getränkten Träger zwecks thermischer Zersetzung der adsorbierten Metallverbindungen auf Temperaturen von 300 bis 600°C zu erhitzen. Diese thermische Zersetzung kann unter einer Schutzgasatmosphäre vorgenommen. Geeignete Schutzgase sind z.B. Stickstoff, Kohlendioxid, Wasserstoff oder die Edelgase.

Die Trocknungsschritte in den Stufen a) bis c) werden im allgemeinen bei Raumtemperatur bis 120°C durchgeführt. Getempert wird vorzugsweise bei 150 bis 450°C, besonders bevorzugt bei 250 bis 375°C. Unter reduktiver Atmosphäre wird in dieser Anmeldung eine Atmosphäre verstanden, die zumindest einen Anteil an einem reduzierend wirkenden Gas wie Ammoniak, Hydrazin, C₂- bis C₆-Olefin, Kohlenmonoxid und/oder Wasserstoff aufweist, wobei Wasserstoff bevorzugt ist. Besonders bevorzugt werden als reduzierende Atmosphäre Wasserstoff/Stickstoff-Gemische eingesetzt, deren Wasserstoffanteil 10 bis 50 Gew.-% beträgt.

Es hat sich als wirtschaftlich erwiesen und ist daher bevorzugt nach Schritt b) des Verfahrens den erhaltenen Katalysatorrohling mit einem sauerstoffhaltigen Gas zu passivieren. Die Temperatur ist für den Passivierungsvorgang nicht kritisch, sollte jedoch 120°C nicht übersteigen. Im allgemeinen wird bei Raumtemperatur passiviert.

Die Katalysatoren werden üblicherweise vor ihrem Einsatz aktiviert. Diese Aktivierung kann durch Anwendung einer reduzierend wirkenden Gasatmosphäre auf den Katalysator geschehen. Bevorzugt wird eine Aktivierung mit Hilfe von Wasserstoff angewendet. Die Aktivierungstemperatur liegt dabei üblicherweise bei 100 – 500°C, bevorzugt 150 – 450 °C, besonders bevorzugt 200 – 400 °C. Alternative Reduktionsmethoden sind die Reduktion der metallischen Komponenten durch in Kontaktbringen mit einem flüssigen Reduktionsmittel wie Hydrazin, Formaldehyd oder Natriumformiat. Dabei werden die flüssigen Reduktionsmittel üblicherweise bei Temperaturen zwischen 10 und 100 °C in Kontakt gebracht. Besonders bevorzugt ist das Inkontaktbringen bei Temperaturen zwischen 20 bis 80 °C.

Als Ausgangsstoffe für die Hydrierung sind im allgemeinen Carbonylverbindungen geeignet, die zusätzlich C-C-Doppel- oder Dreifachbindungen enthalten können. Beispiel für Aldehyde sind Propionaldehyd, Butyraldehyde, Crotonaldehyd, Ethylhexanal, Nonanal und Glucose. Beispiele für Carbonsäuren sind Bernsteinsäure, Fumarsäure, Maleinsäure, Glutarsäure, Adipinsäure, 6-Hydroxycapronsäure, Octandisäure, Dodecandisäure, 2-Cyclododecylpropionsäure und gesättigte oder ungesättigte Fettsäuren. Als Ester sind Ester der vorgenannten Säuren, z.B. als Methyl-, Ethyl-, Propyl- oder Butylester zu nennen, ferner sind Lactone, z.B. gamma-Butyrolacton, delta-

40

Valerolacton oder Caprolacton einsetzbar. Außerdem können Anhydride wie Bernsteinsäureanhydrid oder Maleinsäureanhydrid verwendet werden. Bevorzugte Ausgangsstoffe sind Bernsteinsäure, Maleinsäure, Glutarsäure, Adipinsäure, 2-Cyclododecylpropionsäure, Bernsteinsäureanhydrid, Maleinsäureanhydrid sowie die Ester dieser Säuren und gamma-Butyrolacton. Es können selbstverständlich auch Gemische von Aldehyden, Carbonsäuren, Estern, Anhydriden und/oder Lactonen, bevorzugt Gemische von Carbonsäuren, besonders bevorzugt Gemische aus Maleinsäure, Glutarsäure und/oder Adipinsäure, eingesetzt werden.

Die zu hydrierenden Verbindungen können in Substanz oder in Lösung hydriert werden. Als Lösungsmittel bieten sich bevorzugt Zwischen- und Hydrierprodukte selbst, wie zum Beispiel gamma-Butyrolacton, an, oder es werden Stoffe eingesetzt wie Alkohole wie Methanol, Ethanol, Propanol oder Butanol, ferner sind Ether wie THF oder Ethylenglycolether geeignet. Ein bevorzugtes Lösungsmittel ist Wasser, insbesondere bei der Hydrierung von Carbonsäuren.

Die Hydrierung kann in der Gas- oder Flüssigphase, ein- oder mehrstufig ausgeübt werden. In der Flüssigphase ist sowohl die Suspensions- als auch die Festbettfahrweise möglich. Die Durchführung in der Flüssigphase ist bevorzugt. Bei exothermen Reaktionen kann die Wärme durch außenliegende Kühlmittel abgeführt werden (z.B. Röhrenreaktor). Ferner ist Siedekühlung im Reaktor möglich, vor allem wenn ohne Produktrückführung hydriert werden. Bei Produktrückführung bietet sich ein Kühler im Rückführstrom an.

Erfindungsgemäß wurde erkannt, dass besonders vorteilhafte Ergebnisse bei der Herstellung von Alkoholen durch katalytische Hydrierung von Carbonylverbindungen im erfindungsgemäßen Verfahren erzielt werden, wenn der mit dem Katalysator befüllte Hydrierreaktor mit Wasser oder einer verdünnten wässrigen Lösung der Carbonylverbindung, die auch andere unter Reaktionsbedingungen inerte Lösungsmittel enthalten kann, unter Hydrierbedingungen angefahren wird. Unter Anfahren wird dabei die Inbetriebnahme des Katalysators verstanden. Dabei kann es sich bei der Inbetriebnahme um die erstmalige eines Reaktors, aber auch um ein Wiederinbetriebnehmen, beispielsweise nach Anlagenstillstand zum Zweck der Wartung mit frischem oder regenerierten Katalysator, handeln. Das Anfahren wird dabei unter den Reaktionsbedingungen der Hydrierung bezüglich Druck und Temperatur durchgeführt und erfordert im allgemeinen 30 min. bis 20 h, bevorzugt 1 bis 5 h. Die verdünnte wässrige Lösung der Carbonylverbindung enthält maximal 5 Gew.-% derselben.

Die Hydrierung wird üblicherweise bei 80 bis 210°C, bevorzugt bei 80 bis 170°C, besonders bevorzugt bei 100 bis 150°C, durchgeführt. Dabei wird üblicherweise bei ei-

nem Reaktionsdruck zwischen 20 und 230 bar, bevorzugt 50 und 220 bar, besonders bevorzugt 70 bis 160 bar, hydriert. Die Katalysatorbelastung ist abhängig von der Edelmetallkonzentration des Katalysators, liegt aber im allgemeinen höher als 0,05 g/m·h.

5

Die im erfindungsgemäßen Verfahren erhaltenen Alkohole werden z.B. als Lösemittel und Zwischenprodukte eingesetzt. Diole wie Butandiol finden als Diolkomponente in Polyestern Verwendung.

10 Das erfindungsgemäße Verfahren wird anhand der nachstehenden Beispiele näher erläutert.

Beispiele

Die angegebenen Gehalte der einzelnen Komponenten in den Hydrierausträgen sind gaschromatographisch ermittelt worden. Sie sind, wenn nicht anderes angegeben, lösungsmittelfrei gerechnet.

Verwendete Abkürzungen

MS = Maleinsäure, MSA = Maleinsäureanhydrid, BS = Bernsteinsäure, BSA = Bernstein-säureanhydrid, GBL = gamma-Butyrolacton, BDO = 1,4-Butandiol, THF = Tetrahydrofuran, BuOH = Butanol, C-Bilanz: Geringere Werte als 100% ergeben sich vor allem durch gasförmige Nebenprodukte, die nicht durch die Analytik erfasst werden, hauptsächlich n-Butan. Bei höheren Anteilen MS/MSA oder BS/BSA wird die Analytik dieser Komponenten verfälscht, so dass hier ein zu hoher BS/BSA-Werte angezeigt wird, was zu einer C-Bilanz von deutlich über 100% führt. Die Analytik der übrigen Komponenten bleibt hiervon unberührt. In den Beispielen wurden überhöhte BS/BSA-Werte nicht korrigiert, sondern wie gemessen angegeben.

30 Beispiel 1: Katalysator A

ZrO₂ Stränge (XZ 16509 der Firma Norton, Chem Process Prod. Corp., Akron (OH), USA, BET-Oberfläche 82 m²/g, Porenvolumen 0,28 cm³/g) wurden zu 1.2 - 2 mm großem Splitt gebrochen. 200 g dieses Trägermaterials wurde mit 40 ml einer wässrigen
Lösung von Re₂O₇ (10 Gew.-% Re₂O₇) unter Zusatz von weiteren 140 ml Wasser 3 h behandelt. Sodann wurde das Material bei 111°C und einem Druck von 30 – 50 mbar 2 h getrocknet. Danach wurde 30 min unter 200 Nl/h N₂ auf 150°C aufgeheizt und 60 min gehalten. Anschließend wurde für 60 min ein Gemisch aus 100 Nl/h H₂ und 100 Nl/h N₂ zugeführt, binnen 30 min auf 300°C aufgeheizt und die Bedingungen für weitere 3 h gehalten. Sodann wurde der Vorkatalysator in dieser reduzierenden Atmosphäre

aus auf 50°C und anschließend in reinem N₂ (200 NI/h) bis auf Raumtemperatur abgekühlt. Das Material wurde mit einem Gemisch von 10 NI/h 0₂ in 180 NI/h N₂ während 14 h passiviert und schließlich mit 39,24 g einer Platin-Nitrat-Lösung (16,25 Gew.-% Pt) mit Wasser auf 160 ml getränkt. Nach 3 h Einwirkzeit wurde bei 100°C und einem 5 Druck von 30 bis 50 mbar 2 h getrocknet. Der fertige Katalysator wurde reduziert. Der Katalysator A enthielt 2,9 Gew.% Rhenium und 2,9 Gew.-% Platin.

Beispiele 2 und 3, Vergleichsbeispiel 1

25 ml des Katalysators A wurden in einen kontinuierlichen Rohrreaktor eingebaut. Der Feed (Eduktgemisch) bestand aus einer Maleinsäurelösung (10 Gew.-% Maleinsäure) und 50 Nl/h Wasserstoff. Die Hydrierung wurde bei 160°C und 80 bar durchgeführt. Der Flüssigaustrag wurde mittels Gaschromatographie analysiert. Die Werte in Tabelle 1 sind jeweils als Ausbeuten in [%] pro mol Maleinsäure angegeben.

Tabelle 1:

15

20

25

30

Bsp.	1	Umsatz	BDO	GBL	THF	BuOH	BS/BSA	C-Bilanz
	[g _(MS) /ml _(Kat) *h]	MS [%]	[%]	[%]	[%]	[%]	[%]	[%]
V1	0,05	100	58,6	0,0	0,7	17,9	0,0	79,4
2	0,1	100	88,8	0,1	0,1	8,7	0,0	99,5
3	0,2	100	72,5	14,4	0,9	6,3	0,0	97,5

Beispiel 4: Katalysator B

ZrO₂ Stränge (XZ 16509, der Firma Norton Process Prod. Corp., Akron (OH), USA, 82 m²/g, Porenvolumen 0,28 cm³/g) wurden zu 0,1 - 1 mm großem Splitt gebrochen. 200 g des Trägermaterials wurden mit 8 g Re₂O₇ in 360 ml Wasser 2 h bei 100°C behandelt und bei einem Druck von 50 mbar getrocknet. Sodann wurde das Material 60 min unter 50 Nl/h N₂ auf 300°C aufgeheizt. Ab einer Innentemperatur von 280°C wurden zusätzlich 10 Nl/h H₂ zudosiert. Nach 90 min wurde der H₂-Strom auf 25 Nl/h erhöht. Die Temperatur wurde noch 2 h gehalten, danach wurde der Vorkatalysator in dieser reduzierenden Atmosphäre auf Raumtemperatur abgekühlt. Nach Spülen mit 100 Nl/h Stickstoff für 1 h wurde das Material abschließend mit einem Gemisch von 5 Nl/h Sauerstoff in 100 Nl/h N₂ 2 h passiviert. Dann wurden 36,9 g einer Platin-Nitrat-Lösung (16,25 Gew.-% Pt) mit Wasser auf 320 ml aufgefüllt und der Vorkatalysator mit dieser Lösung getränkt. Bei 100°C und einem Druck von 50 mbar wurde das

Lösungsmittel, abgetrennt und der fertige Katalysator reduziert. Der Katalysator enthielt 2.0 Gew.-% Re und 2,3 Gew.-% Pt.

Beispiele 5 und 6

5

10

25 ml des Katalysators B wurden in einen kontinuierlichen Rohrreaktor eingebaut. Der Feed bestand aus einer Maleinsäurelösung (10 Gew.-% Maleinsäure) und wurde mit 25 g/h dosiert. Es wurde bei 160°C und 80 bar hydriert. Der Flüssigaustrag wurde mittels Gaschromatographie analysiert. Die Werte in Tabelle 2 sind jeweils als Ausbeuten in [%] pro mol Maleinsäure angegeben.

Tabelle 2:

Bsp.	Р	T	H ₂	Umsatz	BDO	GBL	THF	BuOH	BS/BSA	C-Bilanz
	[bar]	[°C]	[NI/h]	MS	[%]	[%]	[%]	[%]	[%]	[%]
				[%]						·
5	80	160	50	100	· 91,4	0,7	0,1	4,4	0	98,3.
6	90	150	25	100	91,1	1,8	0,3	6,6	Ο.	.101,9

15 Vergleichsbeispiel 2: Katalysator V2

658 g ZrO₂ Stränge (XZ 16509 der Firma Norton Process Prod. Corp., Akron (OH), USA, 82 m²/g, Porenvolumen 0,28 cm³/g) wurden mit einem Gemisch aus 27,3 g Re₂O₇ und 131,3 g Pt-Nitratlösung (16 Gew.-% Pt) in 90 ml Wasser belegt. Das Material wird bis zur Antrocknung gut durchmischt und anschließend 16 h bei 120°C getrocknet. Danach wurde das Material in einer Reduktionskolonne bei 270°C in einem Gemisch aus 10 Nl/h Wasserstoff und 50 Nl/h Stickstoff 8 h lang reduziert, in dem Reaktionsgemisch abgekühlt und unter fließendem Stickstoff in Wasser-ausgebaut. Der Katalysator enthielt 2,7 Gew.-% Re und 2.4 Gew.-% Platin.

25

30

20

Vergleichsbeispiel 3

25 ml des Katalysators V2 wurden zu 0,1 - 1 mm großem Splitt gebrochen und in einen kontinuierlichen Rohrreaktor eingebaut. Der Feed bestand aus einer Maleinsäurelösung (10 % Maleinsäure) und wurde mit 25 g/h dosiert. 50 Nl/h Wasserstoff wurden zugegeben. Die Reaktionsbedingungen sind 160°C und 80 bar. Der Flüssigaustrag wurde mittels Gaschromatographie analysiert. Die Werte in Tabelle 4 sind jeweils als Ausbeuten in [%] pro mol Maleinsäure angegeben.

Tabelle 4:

Bsp.	Umsatz	BDO	GBL	THF	BuOH	BS/BSA	C-Bilanz
	MS	[%]	[%]	[%]	[%]	[%]	[%]
	[%]						
V3	100	19,7	0,0	20,3	0,1	0	41,3

Vergleichsbeispiel 4: Katalysator V4

5

10

15

20

ZrO₂ Stränge (XZ 16509 der Firma Norton Process Prod. Corp., Akron (OH), USA, 82 m²/g, Porenvolumen 0,28 cm³/g) wurden zu 1.2 - 2 mm großem Splitt gebrochen. 200 g des Trägers wurden mit 39,24 g einer Platin-Nitrat-Lösung (16,25 Gew.-% Pt), die zuvor mit Wasser auf 160 ml aufgefüllt worden war, belegt. Nach 3 h Einwirkzeit wurde das Material bei 100°C und einem Druck von: 30-50 mbar 2 h getrocknet. Danach wurde 30 min unter 200 NI/h N2 auf 150°C aufgeheizt, 60 min gehalten und anschlie-Bend für 60 min bei dieser Temperatur ein Gemisch aus 100 NI/h H2 und 100 NI/h N2 zugeführt, binnen 30 min auf 300°C aufgeheizt und die Bedingungen für weitere 3 h gehalten. Sodann wurde der Vorkatalysator in dieser reduzierenden Atmosphäre auf 50°C und anschließend in reinem N₂ (200 NI/h) bis auf Raumtemperatur abgekühlt. Das erhaltene Material wurde mit einem Gemisch von 10 NI/h O2 in 180 NI/h N2 während 14 h passiviert. Im nächsten Schritt wurde dieser Vorkatalysator mit 40 ml einer wässrigen Lösung von Re₂O₇ (10 Gew.-% Re₂O₇) unter Zusatz von weiteren 140 ml Wasser belegt. Die Einwirkzeit betrug 3 h. Im Anschluss wurde das Material bei 100°C und einem Druck von 30 - 50 mbar während 2 h getrocknet. Der fertige Katalysator wurde ebenso wie der Vorkatalysator reduziert. Der Katalysator enthielt 2,9 Gew.-% Re und 2,5 Gew.-% Pt.

Vergleichsbeispiel 5

25

30

25 ml des Katalysators V4 wurden in einen kontinuierlichen Rohrreaktor eingebaut. Der Feed bestand aus einer Maleinsäurelösung (10 % Maleinsäure) und wurde mit 25 g/h dosiert. 50 NI/h Wasserstoff wurden zugegeben. Es wurde bei 160°C und 80 bar hydriert. Der Flüssigaustrag wurde mittels Gaschromatographie analysiert. Die Werte in Tabelle 5 sind jeweils als Ausbeuten in [%] pro mol Maleinsäure angegeben.

Tabelle 5:

Bsp.	Umsatz	BDO	GBL	THF	BuOH	BS/BSA	C-Bilanz
	MS	[%]	[%]	[%]	[%]	[%]	[%]
	[%]						
V5	100	15,3	46,6	20,3	0,2	22,2	107,7

Beispiel 7: Katalysator D

658 g ZrO₂ Stränge (XZ 16509 der Firma Norton Process Prod. Corp., Akron (OH), USA, 82 m²/g, Porenvolumen 0,28 cm³/g) wurden unter Rühren mit 27,3 g Re₂O₇ in 180 ml Wasser belegt. Das Material wurde bei 120°C getrocknet und danach in 30 min unter 200 Nl/h N₂ auf 150°C aufgeheizt und 60 min bei dieser Temperatur gehalten. Anschließend wurde für 60 min ein Gemisch aus 100 Nl/h H₂ und 100 Nl/h N₂ zugeführt, binnen 30 min auf 300°C aufgeheizt und diese Bedingungen für weitere 3 h gehalten. Sodann wurde der Vorkatalysator in dieser reduzierenden Atmosphäre auf 50°C und anschließend in reinem N₂ (200 Nl/h) bis auf Raumtemperatur abgekühlt. Abschließend wurde das Material mit einem Gemisch von 10 Nl/h Sauerstoff in 180 Nl/h N₂ während 14 h passiviert. Im nächsten Schritt wurden 131,3 g einer Platin-Nitrat-Lösung (16 Gew.-% Pt) mit 70 ml Wasser verdünnt und der Vorkatalysator unter Rühren mit dieser Lösung getränkt. Nach Trocknung bei 120°C für 16 h wurde der fertige Katalysator ebenso wie der Vorkatalysator reduziert. Der Katalysator enthielt 2.8 Gew.-% Re und 2.9 Gew.-% Pt.

Beispiel 8

20

5

10

15

25 ml des Katalysators D wurden zu 0,1 - 1 mm großem Splitt zerkleinert und in einen kontinuierlichen Rohrreaktor eingebaut. Der Feed bestand aus einer Maleinsäurelösung (10 Gew.-% Maleinsäure) und wurde mit 25 g/h dosiert. 50 NI/h Wasserstoff wurden zugegeben. Es wurde bei 140°C und 80 bar hydriert. Der Flüssigaustrag wurde mittels Gaschromatographie analysiert. Die Werte in Tabelle 6 sind jeweils als Ausbeuten in [%] pro mol Maleinsäure angegeben.

Tabelle 6:

30

25

Bsp.	Umsatz	BDO	GBL	THF	BuOH	BS/BSA	C-Bilanz
	MS	[%]	[%]	[%]	[%]	[%]	[%]
	[%]						
8	100	87,9	0,0	0,0	3,1	0,0	91,5

10

15

20

Beispiel 9: Katalysator E

8.2 kg TiO2-Pulver (Degussa P25 der Firma Degussa AG, Düsseldorf, 39 m²/g) wurden mit verdünnter Ameisensäure (47,1 g 85%ige HCOOH in 1350 g Wasser) versetzt und unter Zugabe von 2,86 kg Wasser 2 h. im Koller verknetet. Die fertige Masse wurde in einem Extruder mit 25 - 60 bar durch eine Matrize gepresst, so dass 4.5 mm starke Stränge entstanden. Die Stränge wurden bei 120°C 16 h getrocknet und dann zunächst 140 min bei 470°C und abschließend 3 h bei 500°C kalziniert. 8 g Re₂07 in 360 ml Wasser wurde im Rotationsverdampfer über 200 g des in 0.1 - 1 mm großen Splitt gebrochenen Ti02-Trägers gegeben und nach 15 min Einwirkzeit der Katalysatorvorläufer bei 100°C und 10 mbar 2 h lang getrocknet. Das Material wurde am Drehrohrofen unter 50 NI/h N₂ auf 300°C aufgeheizt und 1 h getempert. Anschließend wurden für 1.5 h zusätzlich 10 NI/h Wasserstoff und für weitere zwei Stunden 25 NI/h Wasserstoff dem Stickstoff hinzugefügt. Der Katalysatorvorläufer wurde unter N₂ abgekühlt und mit einem Gemisch aus 5 NI/h Luft in 100 NI/h N₂ bei Raumtemperatur über Nacht für die weitere Verarbeitung passiviert. Nachfolgend wurde ein Ansatz von 37,5 g einer Platin-Nitrat-Lösung (16 Gew.-% Pt) mit 320 ml Wasser verdünnt und über den Katalysatorvorläufer gegeben. Nach 15 min Einwirkzeit wurde bei 100°C und 10 mbar 2 h lang getrocknet. Das Material wurde am Drehrohrofen unter 50 NI/h N2 auf 300°C aufgeheizt und 1 h getempert. Anschließend wurden für 1,5 h zusätzlich 10 NI/h Wasserstoff und für weitere zwei Stunden 25 NI/h Wasserstoff dem Stickstoff hinzugefügt. Der Katalysator wurde unter N₂ abgekühlt und unter fließendem Stickstoff in Wasser ausgebaut. Der fertige Katalysator enthielt 2,4 Gew.% Platin und 2,9 Gew.-% Rhenium.

25 Beispiel 10

12 ml des Katalysators E wurden mit 80 ml wässriger Maleinsäurelösung (5 Gew.-% Maleinsäure) in einen Autoklaven eingebaut. Es wurden bei Raumtemperatur 75 bar Wasserstoff aufgepresst. Die Temperatur wurde auf 160°C angehoben. Nach 1 h wurde die Reaktion abgebrochen. Der Flüssigaustrag wurde mittels Gaschromatographie analysiert. Die Werte in Tabelle 7 sind jeweils als Ausbeuten in [%] pro mol Maleinsäure angegeben.

Tabelle 7:

35

30

Bsp.	Umsatz	BDO	GBL	THF	BuOH	BS/BSA	C-Bilanz
	MS	[%]	[%]	[%]	[%]	[%]	[%]
	[%]						
10	100	60,1	0,1	1,1	19,8	0,0	85,1

10

15

20

25

30

35

Beispiel 11: Katalysator F

Zur Vorbehandlung werden 2000 ml des Aktivkohleträgers (Eco Sorb BG09, Splitt der Firma F.A.W. Jacobi AB, Stockholm, Schweden) 40 h mit 3800 g einer 41%igen Phosphorsäure unter Rückfluss gekocht. Nach Abkühlen wird mit Wasser gewaschen, bis ein pH-Wert von 5 erreicht ist. Die Aktivkohle wird abschließend bei 120°C für 14 h getrocknet. 150 g des Trägers wurden mit 150 ml einer wässrigen Lösung von 15,2 g Re₂0₇, unter Rühren belegt und bei 120°C in 16 h getrocknet. Danach wurde das Material 30 min unter 200 NI/h N2 auf 150°C aufgeheizt und 60 min gehalten, anschlie-Bend wurde für 60 min ein Gemisch aus 100 NI/h H2 und 100 NI/h N2 zugeführt, binnen 30 min auf 300°C aufgeheizt und die Bedingungen für weitere 3 h gehalten. Sodann wurde der Vorkatalysator in dieser reduzierenden Atmosphäre auf 50°C und anschließend in reinem N2 (200 NI/h) bis auf Raumtemperatur abgekühlt. Abschließend wurde das Material mit einem Gemisch von 10 NI/h Sauerstoff in 180 NI/h N2, während 14 h für die weitere Verarbeitung passiviert. Im nächsten Schritt wurden 31,3 g einer Platin-Nitrat-Lösung (16 Gew.-% Pt) mit 120 ml Wasser verdünnt und der Vorkatalysa-.. tor mit dieser Lösung unter Rühren getränkt. Danach wurde das Material bei 120°C 16 h getrocknet. Der fertige Katalysator wurde ebenso wie der Vorkatalysator reduziert. Der Katalysator enthielt 6,8 Gew.-% Rhenium und 2,8 Gew.-% Platin.

Vergleichsbeispiel 6: Katalysator V6

150 g des Trägers aus Beispiel 13 wurden mit 31,3 g einer Platin-Nitrat-Lösung (16 Gew.-% Pt), verdünnt mit 120 ml Wasser unter Rühren getränkt. Danach wurde das Material bei 120°C 16 h getrocknet und in 30 min unter 200 Nl/h N₂ auf 150°C aufgeheizt und 60 min gehalten. Anschließend wurde für 60 min ein Gemisch aus 100 Nl/h H₂ und 100 Nl/h N₂ zugeführt, binnen 30 min auf 300°C aufgeheizt-und die Bedingungen für weitere 3 h gehalten. Sodann wurde der Vorkatalysator in dieser reduzierenden Atmosphäre auf 50°C und anschließend in reinem N₂ (200 Nl/h) bis auf Raumtemperatur abgekühlt. Abschließend wurde das Material mit einem Gemisch von 10 Nl/h Sauerstoff in 180 Nl/h N₂ während 14 h passiviert. Im nächsten Schritt wurde das mit Platin vorbelegte Material mit 150 ml einer wässrigen Lösung von 15,2 g Re₂O₇ unter Rühren getränkt und bei 120°C in 16 h getrocknet. Der fertige Katalysator wurde ebenso wie der Vorkatalysator reduziert. Der Katalysator enthielt 6,5 Gew.-% Rhenium und 2,7 Gew.-% Platin.

Beispiele 12 und 13, Vergleichsbeispiel 7

Jeweils 25 ml Katalysator wurden in einen kontinuierlichen Rohrreaktor eingebaut. Der Feed bestand aus einer wässrigen Maleinsäurelösung (10 Gew.-% Maleinsäure). 50 Nl/h Wasserstoff wurden zugegeben. Der Flüssigaustrag wurde mittels Gaschromatographie analysiert. Die Werte in Tabelle 8 sind jeweils als Ausbeuten in [%] pro mol Maleinsäure angegeben.

Tabelle 8:

10	
----	--

15

20

5

Bsp.	Kat	р	Т	Feed	Umsatz	BDO	GBL	THF	BuOH	BS/BSA	C-
		[bar]	[°C]	[g/h]	MS	[%]	[%]	[%]	[%]	[%]	Bilanz
					[%]						[%]
12	F	80	160	25	94,9	93,1	1,1	0,5	4,0	0,0	105,2
13	F	80	180	37,5	86,4	73,3	6,0	1,0	3;4	0,0	98,2
V7:	V6	80	160	25	89,9	34,5	55,1	0,1	0,6	17,8	118,3

Beispiel 14

25 ml des Katalysators A wurden in einen kontinuierlich zu betreibenden Rohrreaktor eingebaut. Der Feed bestand aus ein 10 gew.-%igen wässrigen Maleinsäurelösung und wurde mit 25 g/h zudosiert. Der Katalysator wurde mit dieser Lösung angefahren. Bei 160°C und 80 bar wurde mit 50 Nl/h Wasserstoff hydriert. Der flüssige Reaktionsaustrag wurde mittels Gaschromatographie nach verschiedenen Reaktionszeiten auf seinen 1,4-Butandiol-Gehalt hier analysiert und in Auftragung 1 gegen die Zeit aufgetragen.

Beispiel 15

Die Hydrierung wurde analog Beispiel 16 durchgeführt, jedoch wurde Katalysator 12 h mit reinem Wasser angefahren. Sodann wurden Maleinsäurelösung und Wasserstoff zudosiert. Die ermittelten 1,4-Butandiolgehalte wurden als zweiter Graph in Auftragung 1 eingefügt.

30

Patentansprüche

- Katalysator, enthaltend 0,1 bis 20 Gew.-% Rhenium und 0,05 bis 10 Gew.-% Platin, bezogen auf die Gesamtmasse des Katalysators, auf einem Träger, erhältlich durch ein Verfahren, bei dem man
 - a) den gegebenenfalls vorbehandelten Träger mit einer Lösung einer Rheniumverbindung behandelt,
- 10 b) trocknet und in einer reduktiven Atmosphäre bei 80 bis 600°C tempert,
 - c) mit einer Lösung einer Platinverbindung imprägniert und erneut trocknet.
- 15 2. Katalysator nach Anspruch 1, dadurch gekennzeichnet, dass der Träger ein Metalloxid, eine gegebenenfalls vorbehandelte Aktivkohle oder ein graphitischer Kohleträger, ein Nitrid, Silicid, Carbid oder Borid ist.
- Katalysator nach Anspruch 2, dadurch gekennzeichnet, dass der Träger
 ausgewählt ist aus Titandioxid, Zirkondioxid, Hafniumdioxid, gegebenenfalls vorbehandelter Aktivkohle oder graphitischem Kohleträger.
- Katalysator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die reduktive Atmosphäre mindestens einen Anteil gasförmigen Ammoniak,
 Hydrazin, C₂- bis C₆-Olefin, Kohlenmonoxids und/oder Wasserstoff aufweist.
 - Katalysator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass nach Schritt b) der erhaltene Katalysatorrohling mit einem sauerstöffhaltigen Gas passiviert wird.
 - 6. Katalysator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er durch Anwendung einer reduzierend wirkenden Gasatmosphäre oder einer eines flüssigen Reduktionsmittels aktiviert wird.
- 7. Verfahren zur Herstellung von Alkoholen durch katalytische Hydrierung von Carbonylverbindungen zu Alkoholen, dadurch gekennzeichnet, dass ein Katalysator nach einem der Ansprüche 1 bis 6 verwendet wird.

- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Carbonylverbindung ausgewählt ist aus Aldehyden, Carbonsäuren oder Estern, Anhydriden und/oder Lactonen.
- 5 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Carbonylverbindung ausgewählt ist aus Maleinsäure, Glutarsäure, Adipinsäure, Fumarsäure, Bernsteinsäure oder Estern oder Anhydriden davon, oder gamma-Butyrolacton, und zu 1,4-Butandiol hydriert wird.
- 10 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Carbonylverbindung ausgewählt ist aus Adipinsäure, 6-Hydroxycapronsäure oder Estern davon, oder Caprolacton, und zu 1,6-Hexandiol hydriert wird.
- Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass
 die Hydrierung ist der Flüssigphase an fest angeordneten Katalysatoren bei einem Druck im Bereich von 20 bis 230 bar und einer Temperatur im Bereich von 80 bis 210 C durchgeführt wird.
- 12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass der mit dem Katalysator befüllte Hydrierreaktor mlt Wasser oder einer verdünnten wässrigen Lösung der Carbonylverbindung unter Hydrierbedingungen angefahren wird.

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

I CONTO STATUTO IL CUSTA CALI CUSTA CUSTA CUSTA DALLI CONTO

(43) Internationales Veröffentlichungsdatum 27. Mai 2004 (27.05.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/043890 A3

(51) Internationale Patentklassifikation⁷: C07C 29/17, B01J 23/656, 23/42

HEYDRICH, Gunnar [DE/DE]; Kirchenstr. 43, 67117 Limburgerhof (DE).

(21) Internationales Aktenzeichen: PCT/EP2003/012378

(74) Gemeinsamer Vertreter: BASF AKTIENGE-SELLSCHAFT; 67056 LUDWIGSHAFEN (DE).

(22) Internationales Anmeldedatum:

6. November 2003 (06.11.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 102 52 280.4 11. November 2002 (11.11.2002) DE (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE). (84) Bestimmungsstaaten (regional): ARIPO Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SCHUBERT, Markus [DE/DE]; Alwin-Mittasch-Platz 11, 67063 Ludwigshafen (DE). HUBER-DIRR, Sylvia [DE/DE]; Jungenheimer Strasse 12g, 64673 Zwingenberg (DE). HESSE, Michael [DE/DE]; Weinbietstr.10, 67549 Worms (DE). PFEIFER, Jochen [DE/DE]; Oberdorfstr. 41a, 76831 Ilbesheim (DE). FISCHER, Rolf-Hartmuth [DE/DE]; Bergstr.98, 69121 Heidelberg (DE). RÖSCH, Markus [DE/DE]; Sours-Allee 13, 55276 Dienheim (DE). BOTTKE, Nils [DE/DE]; Werderstr. 12, 68165 Mannheim (DE). WECK, Alexander [DE/DE]; Buttstaedter Str. 9, 67251 Freinsheim (DE). WINDECKER, Gunther [DE/DE]; Von-Sturmfeder-Strasse 7, 67067 Ludwigshafen (DE).

Veröffentlicht:

mit internationalem Recherchenbericht

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 29. Juli 2004

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: IMPROVED CATALYST AND METHOD FOR PRODUCING ALCOHOL BY HYDROGENATION ON SAID CATALYST

(54) Bezeichnung: VERBESSERTER KATALYSATOR UND VERFAHREN ZUR HERSTELLUNG VON ALKOHOLEN DURCH HYDRIERUNG AN DIESEM KATALYSATOR

(57) Abstract: The invention relates to a catalyst containing from 0.1 to 20 mass % rhenium and 0.05 to 10 mass % platinum in relation to the total mass thereof. The inventive method for producing a support for said catalyst consists in a) treating a support which can be eventually pre-treated with the aid of a solution of rhenium compound, b) drying and annealing said support at a temperature ranging from 80 to 600 °C, and c) impregnating the support with a solution of platinum compound and in drying it. The inventive method for producing alcohol by catalytic hydrogenation of carbonyl compound on said catalyst is also disclosed.

(57) Zusammenfassung: Gegenstand der vorliegenden Erfindung ist ein Katalysator enthaltend 0,1 bis 20 Gew.-% Rhenium und 0,05 bis 10 Gew.-% Platin, bezogen auf die Gesamtmasse des Katalysators, auf einem Träger, erhältlich durch ein Verfahren, bei dem man a) den gegebenenfalls vorbehandelten Träger mit einer Lösung einer Rheniumverbindung behandelt, b) trocknet und in einer reduktiven Atmosphäre bei 80 bis 600oC tempert, c) mit einer Lösung einer Platinverbindung imprägniert und erneut trocknet, sowie ein Verfahren zur Herstellung von Alkohohlen durch katalytische Hydrierung von Carbonylverbindungen an diesem Katalysator.

Interna	pplication No
PCT/ET	03/12378

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C29/17 B01J23/656 B01J23/42

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07C B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Α	DE 100 09 817 A (BASF AG) 6 September 2001 (2001-09-06) cited in the application	
A	DE 25 19 817 A (HOECHST AG) 11 November 1976 (1976-11-11) cited in the application	
Α	EP 0 848 991 A (STANDARD OIL CO OHIO) 24 June 1998 (1998-06-24) cited in the application	
A	US 4 149 962 A (ANTOS GEORGE J) 17 April 1979 (1979-04-17)	·
	-/	

Pulling documents are listed in the continuation of box C.	X Patent tamily members are listed in annex.
° Special categories of cited documents :	"T" later document published after the International filing date
"A" document defining the general state of the art which is not considered to be of particular relevance	or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the
"O" document referring to an oral disclosure, use, exhibition or other means	document is combined with one or more other such docu- ments, such combination being obvious to a person skilled
"P" document published prior to the International filing date but later than the priority date claimed	in the art. "%" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the International search report
23 April 2004	04/05/2004
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Holzwarth, A

Internal pplication No PCT/EP 03/12378

tion) DOCUMENTS CONSIDERED TO BE RELEVANT	101/11 03/123/6
Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
BAZIN D ET AL: "In situ study by XAS of the sulfidation of industrial catalysts: The Pt and PTRe/A1203 systems" APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 162, no. 1-2, 18 November 1997 (1997-11-18), pages 171-180, XP004338233 ISSN: 0926-860X	
•	
•	
	·
·	
•	
	BAZIN D ET AL: "In situ study by XAS of the sulfidation of industrial catalysts: The Pt and PTRe/Al203 systems" APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 162, no. 1-2, 18 November 1997 (1997-11-18), pages 171-180, XP004338233

Internal Application No
PCT/EP 03/12378

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
DE 10009817 A	06-09-2001	DE	10009817 A1	06-09-2001
	• • • • • • • • • • • • • • • • • • • •	WO	0164338 A1	07-09-2001
		EP	1261423 A1	04-12-2002
		ŪS	2003114719 A1	19-06-2003
DE 2519817 A	11-11-1976	DE	2519817 A1	11-11-1976
		BE	841409 A1	03-11-1976
		CA	1070711 A1	29-01-1980
		FR	2310331 A1	03-12-1976
		GB	1551741 A	30-08-1979
		JP	51133212 A	18-11-1976
		NL	7604539 A	05-11-1976
EP 0848991 A	24-06-1998	AT	262376 T	15-04-2004
	. 2. 00 1550	ΑÜ	720496 B2	01-06-2000
		AU	4363197 A	25-06-1998
		CN	1185993 A ,B	01-07-1998
		EP	0848991 A1	24-06-1998
		JP	10192709 A	28-07-1998
		SG	74602 A1	22-08-2000
		TW	415938 B	21-12-2000
		ÜS	5969164 A	19-10-1999
US 4149962 A	17-04-1979	DE	2910938 A1	27-09-1979
		FR	2454839 A1	21-11-1980
		GB	2018613 A ,B	24-10-1979
		JP	54130492 A	09-10-1979
		US	4210523 A	01-07-1980
		US	4176088 A	27-11-1979

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07C29/17 B01J23/656 B01J23/42 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) CO7C B01J IPK 7 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Α DE 100 09 817 A (BASF AG) 6. September 2001 (2001-09-06) in der Anmeldung erwähnt DE 25 19 817 A (HOECHST AG) Α 11. November 1976 (1976-11-11) in der Anmeldung erwähnt Α EP 0 848 991 A (STANDARD OIL CO OHIO) 24. Juni 1998 (1998-06-24) in der Anmeldung erwähnt Α US 4 149 962 A (ANTOS GEORGE J) 17. April 1979 (1979-04-17) Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie "T" Spätere Veröffentlichung, die nach dem internationalen Anmeidedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeidung nicht koliidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geelgnet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *& Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 23. April 2004 04/05/2004 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter

Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

Holzwarth, A

	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	Tools And to the
(ategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.
A	BAZIN D ET AL: "In situ study by XAS of the sulfidation of industrial catalysts: The Pt and PTRe/Al203 systems" APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, Bd. 162, Nr. 1-2, 18. November 1997 (1997-11-18), Seiten 171-180, XP004338233 ISSN: 0926-860X	
		*

Im Recherchenbericht ngeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 10009817	Α	06-09-2001	DE WO EP	10009817 A1 0164338 A1 1261423 A1	06-09-2001 07-09-2001 04-12-2002
DE 0510017		11 11 1076	US	2003114719 A1	19-06-2003
DE 2519817	Α	11-11-1976	DE BE	2519817 A1 841409 A1	11-11-1976 03-11-1976
			CA	1070711 A1	29-01-1980
			FR GB	2310331 A1 1551741 A	03-12-1976 30-08-1979
			JP	51133212 A	18-11-1976
			NL	7604539 A	05-11-1976
EP 0848991	Α.	24-06-1998	AT	262376 T	15-04-2004
			ΑU	720496 B2	01-06-2000
			AU CN	4363197 A 1185993 A ,B	25-06-1998 01-07-1998
			EP	0848991 A1	24-06-1998
			JP	10192709 A	28-07-1998
			SG	74602 A1	22-08-2000
			TW US	415938 B 5969164 A	21-12-2000 19-10-1999
UC 4140060		17 04 1070			
US 4149962	Α	17-04-1979	DE FR	2910938 A1 2454839 A1	27-09-1979 21-11-1980
			GB	2018613 A ,B	24-10-1979
			JP	54130492 A	09-10-1979
			US	4210523 A	01-07-1980
			US	4176088 A	27-11-1979