Notes - January 24th Math 32A

Limit of a vector-valued function. We say that the limit of a vector-valued function $\mathbf{r}(t)$, as t goes to t_0 , is the vector \mathbf{u} if

$$\lim_{t \to t_0} \|\mathbf{r}(t) - \mathbf{u}\| = 0.$$

In this case, we write

$$\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{u}.$$

To compute the limit of a vector-valued function, it is enough to compute the limit of each of its components. If $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, then

A vector-valued function $\mathbf{r}(t)$ is said to be continuous at t_0 if

$$\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{r}(t_0).$$

Because we can compute limits using the components of the vector, then the function $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ is continuous if and only if x(t), y(t) and z(t) are continuous.

Derivative of a vector-valued function. The derivative of $\mathbf{r}(t)$ is

$$\mathbf{r}'(t) = \frac{d}{dt}\mathbf{r}(t) = \lim_{h \to 0} \frac{1}{h} \left(\mathbf{r}(t+h) - \mathbf{r}(t)\right)$$

We say that \mathbf{r} is differentiable at t if the limit exists, and \mathbf{r} is differentiable if it is differentiable at all t in its domain. As before, if $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, then

We define higher order derivatives as expected:

$$\mathbf{r}''(t) = \frac{d}{dt}\mathbf{r}'(t), \quad \mathbf{r}'''(t) = \frac{d}{dt}\mathbf{r}''(t), \quad \text{and so on...}$$

Differentiation rules. Assume that $\mathbf{r}_1(t)$ and $\mathbf{r}_2(t)$ are two differentiable vector-valued function, and f(t) a differentiable scalar-valued function.

- Sum rule: $\frac{d}{dt} (\mathbf{r}_1(t) + \mathbf{r}_2(t)) = \mathbf{r}'_1(t) + \mathbf{r}'_2(t)$
- Constant scalar multiplication rule: $\frac{d}{dt} \left(c \mathbf{r}_1(t) \right) = c \mathbf{r}_1'(t)$
- Scalar product rule:
- Chain rule:
- Dot product rule: $\frac{d}{dt} \left(\mathbf{r}_1(t) \cdot \mathbf{r}_2(t) \right) = \left(\mathbf{r}_1'(t) \cdot \mathbf{r}_2(t) \right) + \left(\mathbf{r}_1(t) \cdot \mathbf{r}_2'(t) \right)$
- Cross product rule: $\frac{d}{dt} \left(\mathbf{r}_1(t) \times \mathbf{r}_2(t) \right) = \left(\mathbf{r}_1'(t) \times \mathbf{r}_2(t) \right) + \left(\mathbf{r}_1(t) \times \mathbf{r}_2'(t) \right)$

Exercise 1. Let $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$. Show $\mathbf{r}'(t)$ is orthogonal to $\mathbf{r}''(t)$.

Integral of vector-valued functions. The integral of a vector-valued function can be defined componentwise:

$$\int_{a}^{b} \mathbf{r}(t) dt = \left\langle \int_{a}^{b} x(t) dt, \int_{a}^{b} y(t) dt, \int_{a}^{b} z(t) dt \right\rangle$$

We can define the indefinite integral of $\mathbf{r}(t)$ in the same way. From this we get that, if $\mathbf{r}_1(t)$ and $\mathbf{r}_2(t)$ are differentiable, with $\mathbf{r}'_1(t) = \mathbf{r}'_2(t)$, then

$$\mathbf{r}_1(t) = \mathbf{r}_2(t) + \mathbf{c},$$

with \mathbf{c} a constant vector.

Fundamental theorem of calculus for vector-valued functions.

1. Assume that $\mathbf{r}(t)$ is continuous on the interval [a, b], and $\mathbf{R}(t)$ is a function such that $\mathbf{R}'(t) = \mathbf{r}$ on [a, b], then

$$\int_{a}^{b} \mathbf{r}(t) dt = \mathbf{R}(b) - \mathbf{R}(a)$$

2. Assume that $\mathbf{r}'(t)$ is continuous on an open interval I, and let a be in I. Then

$$\frac{d}{dt} \int_{a}^{t} \mathbf{r}(s) \, ds = \mathbf{r}(t)$$

Exercise. A particle starts out at the point (1, 1, 1) at time t = 0 and travels through the space with velocity vector $\mathbf{r}'(t) = \langle 1 - 4\sin 2t, 6t^2, 3 \rangle$. Determine the vector-valued function $\mathbf{r}(t)$ corresponding to the position of the particle.