Topologie et Calcul différentiel – TD 5: Topologie : ouvert, intérieur, frontière, voisinages, points isolés

Le but de ce TD est d'apprendre à manier les outils de topologie qui nous serviront plus tard.

Exercice 1:

Soit E un espace-vectoriel normé. Soit F un sous-espace vectoriel de E tel que l'intérieur de F est non-vide.

1. Montrer que F = E.

Soit $x \in Int(F)$. Il existe r > 0 tel que $BO(x, r) \subset F$.

Montrons que $BO(0,r)\subseteq F$. Soit $y\in BO(0,r)$. Alors $y=x-(x-y)\in F$ car $x\in F$, $x-y\in BO(x,r)\subset F$ et F est un espace vectoriel. Donc, $BO(0,r)\subseteq F$.

 $\text{Montrons que } E = F. \text{ Soit } z \in E \backslash BO(0,r). \text{ Alors } ||z|| \geqslant r > 0. \text{ Donc, } z = \frac{2 \cdot ||z||}{r} \cdot \left(\frac{r}{2} \cdot \frac{z}{||z||}\right) \in F \\ \text{car } \frac{r}{2} \cdot \frac{z}{||z||} \in BO(0,r) \text{ et } F \text{ est un espace vectoriel. Donc } E = BO(0,r) \cup (E \backslash BO(0,r)) = F.$

Exercice 2:

Soit $(E, \|.\|)$ un espace vectoriel normé. Soit A une partie non vide de E.

1. Montrer que A est bornée si et seulement s'il existe M>0 tel que : $\forall x\in A, \|x\|\leqslant M$.

 \triangleright On suppose que A est bornée. Il existe $x_0 \in E$ et r > 0 tel que $A \subset BO(x_0, r)$. Alors pour tout $x \in A$,

$$||x|| \le ||x - x_0|| + ||x_0|| \le r + ||x_0||.$$

 \triangleright Supposons qu'il existe M>0 tel que : $\forall x\in A, \|x\|\leqslant M$. Alors $A\subset BO(0_E,M+1)$, donc A est bornée.

Dans la suite, on suppose que A est bornée.

- 2. Montrer que \overline{A} et ∂A sont bornées.
 - ightharpoonup Comme A est bornée, il existe M>0 tel que : $\forall x\in A, \|x\|\leqslant M$.
 - \triangleright Soit $x \in \overline{A}$. Il existe une suite $(x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ telle que $x_n \xrightarrow[n \to +\infty]{} x$. On a alors, pour tout $n \in \mathbb{N}$:

$$||x|| \leqslant \underbrace{||x_n - x||}_{x \to +\infty} + \underbrace{||x_n||}_{\leqslant M}$$

Donc $||x|| \leq M$. Ainsi

 \overline{A} est bornée.

ightharpoonup Comme ∂A est inclus dans \overline{A} ,

 ∂A est bornée.

- 3. Lorsque $\overset{\circ}{A} \neq \emptyset$, montrer que diam $\overset{\circ}{(A)} \leqslant \text{diam}(A)$. Donner un exemple où il n'y a pas égalité.
 - $\,\rhd\,$ Comme $\overset{\circ}{A}\subset A,$ on a $d(x,y)\leqslant {\rm diam}(A)$ pour tout $(x,y)\in (\overset{\circ}{A})^2.$ Donc

$$\operatorname{diam}(\overset{\circ}{A})\leqslant\operatorname{diam}(A).$$

ightharpoonup Dans $\mathbb R$ muni de sa norme usuelle, posons $A=[1,2]\cup\{3\}$. Alors

$$diam(\mathring{A}) = diam(]1, 2[) = 1 < 2 = diam(A).$$

- 4. Montrer que $diam(A) = diam(\overline{A})$.
 - ightharpoonup Comme $A \subset \overline{A}$, on a diam $(A) \leqslant \text{diam}(\overline{A})$.
 - ightharpoonup Soit $(x,y) \in \overline{A}^2$. Il existe des suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ d'éléments de A telles que $x_n \xrightarrow[n \to +\infty]{} x$ et $y_n \xrightarrow[n \to +\infty]{} y$. On a alors, pour tout $n \in \mathbb{N}$,

$$d(x,y) \leqslant \underbrace{d(x,x_n)}_{n \to +\infty} + \underbrace{d(x_n,y_n)}_{\leqslant \operatorname{diam}(A)} + \underbrace{d(y_n,y)}_{n \to +\infty} 0$$

Donc $d(x, y) \leq \operatorname{diam}(A)$. Finalement, $\operatorname{diam}(\overline{A}) \leq \operatorname{diam}(A)$ et

$$\operatorname{diam}(A) = \operatorname{diam}(\overline{A}).$$

5. (a) Montrer que $diam(\partial A) \leq diam(A)$.

Comme $\partial A \subset \overline{A}$ et diam $(A) = \text{diam}(\overline{A})$, on a

$$\operatorname{diam}(\partial A) \leqslant \operatorname{diam}(A)$$
.

(b) Soit $x \in A$ et $u \in E \setminus \{0\}$. On considère l'ensemble $X = \{t \ge 0, x + t . u \in A\}$. Montrer que $t_{x,u} = \sup X \in \mathbb{R}$ est bien défini.

ightharpoonup Comme A est bornée, il existe M>0 tel que $\forall y\in A, \|y\|\leqslant M$.

 \triangleright Soit $t \in X$. On a

$$|t|.||u|| = ||t.u|| \le ||x + t.u|| + ||x|| \le M + ||x||.$$

Donc $t \leq \frac{M + ||x||}{||u||}$. Ainsi, X est une partie majorée de \mathbb{R} .

 \triangleright De plus, X est non vide car $0 \in X$. Donc

$$t_{x,u} = \sup X \in \mathbb{R}$$
 est bien défini.

(c) Montrer que $x + t_{x,u}u \in \partial A$.

 \triangleright Pour $n \in \mathbb{N}$, posons $y_n = x + (t_{x,u} + \frac{1}{n})u$. Par définition de $t_{x,u}, y_n \notin A$. On a de plus $y_n \xrightarrow[n \to +\infty]{} x + t_{x,u}u$, donc $x + t_{x,u}u \in \overline{E \setminus A}$.

Par définition de $t_{x,u}$, il existe une suite $(t_n)_{n\in\mathbb{N}}$ ∈ $(\mathbb{R}_+)^{\mathbb{N}}$ telle que $t_n \xrightarrow[n\to+\infty]{} t_{x,u}$ et $x+t_n.u\in A$ pour tout $n\in\mathbb{N}$. On a alors $x+t_n.u\xrightarrow[n\to+\infty]{} x+t_{x,u}.u$, donc $x+t_{x,u}u\in\overline{A}$.

$$x + t_{x,u}u \in \partial A.$$

(d) Soit $(x,y) \in A^2$. Montrer qu'il existe x' et y' alignés avec x et y tels que $x' \in \partial A$, $y' \in \partial A$ et $||x' - y'|| \ge ||x - y||$.

 \triangleright Posons u = y - x. On a alors $1 \in X$, donc $t_{x,y-x} \ge 1$. On pose $x' = x + t_{x,y-x} \cdot (y - x) \in \partial A$.

 \triangleright De même, pour y et u=x-y, on a $t_{y,x-y}\geqslant 1$ et on pose $y'=y+t_{y,x-y}.(x-y)\in\partial A$.

▷ On a alors

$$||y'-x'|| = ||y+t_{y,x-y}.(x-y)-x-t_{x,y-x}.(y-x)|| = |t_{y,x-y}+t_{x,y-x}-1|.||x-y|| \geqslant ||x-y||.$$

(e) Montrer que $diam(\partial A) = diam(A)$.

 \triangleright Par définition du diamètre, il existe des suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ d'éléments de A telles que $d(x_n,y_n)\xrightarrow[n\to+\infty]{}$ diam(A).

 \triangleright D'après la question précédente, il existe ainsi des suites $(x'_n)_{n\in\mathbb{N}}$ et $(y'_n)_{n\in\mathbb{N}}$ d'éléments de ∂A telles que pour tout $n\in\mathbb{N}, d(x'_n,y'_n)\geqslant d(x_n,y_n)$.

 \triangleright Pour tout $n \in \mathbb{N}$, on a donc $d(x_n, y_n) \leq \operatorname{diam}(\partial A)$. Par passage à la limite, on obtient $\operatorname{diam}(A) \leq \operatorname{diam}(\partial A)$.

 \triangleright D'après la question 5.(a), on a diam $(\partial A) \leq \text{diam}(A)$. Finalement,

$$\operatorname{diam}(\partial A) = \operatorname{diam}(A).$$

Exercice 3:

Soit $E = \mathscr{C}^0([0,1],\mathbb{R})$ muni de la norme infinie et $F = \{f \in E, f \text{ croissante}\}.$

1. Soit $(f_n) \in E^{\mathbb{N}}$ et $f \in E$ tels que $f_n \xrightarrow[n \to +\infty]{\|\cdot\|_{\infty}} f$. Montrer que pour tout $x \in [0,1]$, on a $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$.

Soit $x \in [0, 1]$. On a, pour $n \in \mathbb{N}$,

$$0 \leqslant |f_n(x) - f(x)| \leqslant \underbrace{\|f_n - f\|_{\infty}}_{n \to +\infty}.$$

Donc

$$f_n(x) \xrightarrow[n \to +\infty]{} f(x).$$

2. Montrer que F est fermé dans E.

Soit $(f_n)_{n\in\mathbb{N}}\in F^{\mathbb{N}}$ telle que $f_n\xrightarrow[n\to+\infty]{\|\cdot\|_{\infty}} f\in E$. Soit $(x,y)\in[0,1]^2$ tel que $x\leqslant y$. Pour tout $n\in\mathbb{N}$, on a

$$f_n(x) \leqslant f_n(y)$$
.

D'après la question 1, on en déduit par passage à la limite :

$$f(x) \leqslant f(y)$$
.

Donc f est croissante.

F est fermé dans E.

3. Montrer que $\overset{\circ}{F} = \emptyset$.

Soit $f \in F$ et $\varepsilon > 0$. Comme f est continue en 0, il existe $\eta > 0$ tel que

$$\forall x \in [0, \eta], |f(x) - f(0)| < \varepsilon.$$

Comme f est croissante, on a même

$$\forall x \in [0, \eta], f(0) \leqslant f(x) \leqslant f(\eta) < f(0) + \varepsilon.$$

On définit la fonction

$$g: \begin{array}{ccc} [0,1] & \rightarrow & \mathbb{R} \\ g: & & \\ x & \mapsto & \left\{ \begin{array}{ll} f(0) + 2\varepsilon + \frac{f(\eta) - 2\varepsilon - f(0)}{\eta} x & \text{si } x \in [0,\eta[\\ f(x) & & \text{si } x \in [\eta,1] \end{array} \right. \end{array}$$

 \triangleright La fonction g est continue sur [0,1]. Elle n'est pas croissante car $g(0)=2\varepsilon > f(\eta)=g(\eta)$. \triangleright Soit $x\in [0,\eta]$. Comme f est croissante sur $[0,\eta]$ et g est décroissante sur $[0,\eta]$, on a

$$g(\eta) - f(\eta) \leqslant g(x) - f(x) \leqslant g(0) - f(0)$$

d'où

$$0 \leqslant g(x) - f(x) \leqslant 2\varepsilon$$
.

De plus, pour tout $x \in [\eta, 1]$, on a g(x) = f(x). On en déduit que $||g - f||_{\infty} \leq 2\varepsilon$.

ightharpoonup Finalement, on a montré que : pour tout $\varepsilon > 0$, il existe $g \in BO(f, 2\varepsilon) \setminus F$. Donc $f \notin F$. Comme $F \subset F$, on en déduit

$$\overset{\circ}{F} = \emptyset.$$

Exercice 4

Soit $E = \mathcal{C}([0,1], \mathbb{R}), C_1 = \{ f \in E, f([0,1]) \subset \mathbb{R}_+ \}, C_2 = \{ f \in E, f(0) = f(1) \}.$

- 1. On munit E de la norme infinie, préciser alors $\overline{C_k}$ et \mathring{C}_k pour $k \in \{1, 2\}$.
 - $-\bar{C}_1$

Soit $f \in \overline{C}_1$, et soit $(f_n)_{n \in \mathbb{N}} \in C_1^{\mathbb{N}}$ telle que $\lim_{n \to \infty} \|f - f_n\|_{\infty} = 0$. Soit $x \in [0, 1]$, on a $|f(x) - f_n(x)| \leq \|f - f_n\|_{\infty}$. D'où $f(x) \lim_{n \to \infty} f_n(x)$. Comme $f_n(x) \geq 0$ pour tout entier $n \in \mathbb{N}$ on a alors $f(x) \geq 0$. D'où $f \in C_1$. L'ensemble C_1 est donc fermé,

$$\bar{C}_1 = C_1$$

— Č₁

Soit $f \in \mathring{C}_1$, il existe r > 0 tel que, $||f - g||_{\infty} < r \Rightarrow g \in \mathring{C}_1 \subset C_1$. En particulier $x \mapsto f(x) - \frac{r}{2} \in \mathring{C}_1 \subset C_1$, par conséquent,

$$\forall x \in [0,1], \ f(x) \geqslant \frac{r}{2} > 0$$

On a donc $\mathring{C}_1 \subset \{f \in E, f([0,1]) \subset \mathbb{R}_+^*\}.$

Soit maintenant $f \in \{f \in E, f([0,1]) \subset \mathbb{R}_+^*\}$. Soit $\delta = \inf_{x \in [0,1]} f(x)$. Comme f est continue, elle est bornée et atteint ses bornes, on a donc $\delta > 0$. Alors la boule ouverte $BO(f, \frac{\delta}{2})$ est incluse dans $\{f \in E, f([0,1]) \subset \mathbb{R}_+^*\}$. On en conclut que l'ensemble $\{f \in E, f([0,1]) \subset \mathbb{R}_+^*\}$ est un ouvert de E inclus dans C_1 .

 \mathring{C}_1 est le plus grand ouvert inclus dans C_1 , d'où $\{f \in E, f([0,1]) \subset \mathbb{R}_+^*\} \subset C_1$. En conclusion, on a

$$\mathring{C}_1 = \{ f \in E, \ f([0,1]) \subset \mathbb{R}_+^* \}$$

- \bar{C}_2 .

Soit $f \in \overline{C}_2$, on a $|f(0) - f_n(0)| \leq ||f - f_n||_{\infty}$. D'où $f(0) = \lim_{n \to \infty} f_n(0) = 0$, on a alors f(0) = 0 et de même f(1) = 1. D'où $f \in C_2$. L'ensemble C_2 est donc fermé,

$$\bar{C}_2 = C_2$$

 $-\mathring{C}_2$

Soit $f \in \mathring{C}_2$, il existe r > 0 tel que, $||f - g||_{\infty} < r \Rightarrow g \in \mathring{C}_2 \subset C_2$. En particulier $g: x \mapsto f(x) - \frac{r}{2} \in \mathring{C}_2 \subset C_2$, ce qui est absurde car $g(0) = -\frac{r}{2} \neq 0$ Ainsi C_2 est d'intérieur vide

$$\mathring{C}_2 = \emptyset$$

2. On munit E de la norme 1, déterminer $\overline{C_2}$ et $\overset{\circ}{C_2}$.

Montrons que $\overline{F} = E$. Soit $f \in E$, montrons qu'il existe $(f_n)_{n \in \mathbb{N}^*} \in C_2^{\mathbb{N}^*}$ telle que : $||f_n - f||_{1,[0,1]} \xrightarrow[n \to +\infty]{} 0$. Posons :

$$f_n(x) = \begin{cases} f(1) + n \times \left(f\left(\frac{1}{n}\right) - f(1) \right) \times x & \text{si } x \in \left[0, \frac{1}{n}\right] \\ f(x) & \text{si } x \in \left[\frac{1}{n}, 1\right] \end{cases}$$

Alors, pour tout $n \in \mathbb{N}^*$, $f_n \in E$ et $f_n(0) = f_n(1) = f(1)$. Donc, $(f_n)_{n \in \mathbb{N}^*} \in C_2^{\mathbb{N}^*}$. De plus, f est continue sur [0,1] donc est bornée (il existe $M \ge 0$ telle que, pour tout $t \in [0,1]$, $|f(t)| \le M$). D'où, d'après l'inégalité triangulaire,

$$||f_n - f||_{1,[0,1]} = \int_0^{\frac{1}{n}} \left| f(x) - f(1) - n \times \left(f\left(\frac{1}{n}\right) - f(1) \right) \times x \right| dx \leqslant \frac{2M}{n} + \frac{2M}{2n} \leqslant \frac{3M}{n}.$$

Or, f est continue en 0, donc : $||f_n - f||_{1,[0,1]} \xrightarrow[n \to +\infty]{} 0$. Ainsi, $f \in \overline{C_2}$, autrement dit : $E \subset \overline{C_2}$. L'autre inclusion est claire, donc,

$$\overline{C_2} = E$$
.

Remarque: Pour la norme 1, C_2 est dense dans E.

Déterminons $\overset{\circ}{C_2}$. Soit $f \in \overset{\circ}{C_2}$. Par définition, $f \in E$ et il existe r > 0 tel que : $BO(f,r) \subset \overset{\circ}{C_2} \subset C_2$. La fonction $g: x \mapsto f(x) + r \times x$ appartient à BO(f,r) car :

$$||g - f||_{1,[0,1]} = \int_0^1 r \times x \, \mathrm{d}x = \frac{r}{2} < r.$$

D'où, $g \in C_2$ et f(0) = f(1) + r. Or, $\overset{\circ}{C}_2 \subset C_2$, donc f(0) = f(1). D'où r = 0, ce qui n'est pas. Donc il n'existe pas de fonction $f \in \overset{\circ}{C}_2$. Autrement dit,

$$\overset{\circ}{C}_2 = \emptyset.$$

Exercice 5

Soit $E = l^{\infty}(\mathbb{R})$ l'ensemble des suites à valeurs réelles bornées. On munit E de la norme $||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$. Déterminer l'adhérence et l'intérieur des ensembles suivants

1. Les suites presque nulles $\{u \in l^{\infty}(\mathbb{R}), \exists N \geq 0, \forall n \geq N, u_n = 0\}.$

Notons $P = \{ u \in l^{\infty}(\mathbb{R}) , \exists N \geqslant 0, \forall n \geqslant N, u_n = 0 \}.$

Soit $u \in E$ une suite qui tend vers 0 à l'infini. Pour tout entier $N \in \mathbb{N}$ il existe alors un indice $\varphi(N)$ tel que

$$\forall k \geqslant \varphi(N) \quad |u_k| \leqslant \frac{1}{N}$$

Posons alors u^N la suite définie par

$$u_k^{(N)} = \begin{cases} u_k & \text{si } k \leqslant \varphi(N) \\ 0 & \text{si } k > \varphi(N) \end{cases}$$

La suite $u^{(N)}$ est alors une suite presque nulle et on a $||u-u^{(N)}|| \leq \frac{1}{N}$. Ainsi la suite de suites $(u^{(N)})_{N\in\mathbb{N}}$ converge vers u pour la norme $||\bullet||_{\infty}$.

D'où $\{u \in l^{\infty}(\mathbb{R}), \lim_{n \to \infty} u_n = 0\} \subset \bar{P}.$

Soit maintenant $v \in E \setminus \{u \in l^{\infty}(\mathbb{R}) , \lim_{n \to \infty} u_n = 0\}$. Montrons que $v \notin \bar{A}$. Par l'absurde supposons qu'il existe une suite de suites presque nulles $(v^{(N)})_{N \in \mathbb{N}}$ qui converge vers v pour la norme $\| \bullet \|_{\infty}$. La suite v est bornée, on peut donc en extraire une sous-suite qui converge, comme v ne converge pas vers 0 il existe une sous-suite qui converge vers un réel $x \neq 0$. Soit φ une extraction telle que $\lim_{n \to \infty} v_{\varphi(n)} = x$. Soit M tel que $\forall N \geqslant M$, $\|v - v^{(N)}\|_{\infty} < \frac{|x|}{2}$. On a alors, pour $N \geqslant M$

$$|v_{\varphi(n)} - v_{\varphi(n)}^{(N)}| \le ||v - v^{(N)}||_{\infty} < \frac{|x|}{2}$$

D'où

$$\lim_{n \to \infty} |v_{\varphi(n)} - v_{\varphi(n)}^{(N)}| \leqslant \frac{|x|}{2}$$

C'est-à-dire

$$|x - 0| \leqslant \frac{|x|}{2}$$

ce qui est absurde.

Ainsi on a bien

$$\{u \in l^{\infty}(\mathbb{R}) , \lim_{n \to \infty} u_n = 0\} = \bar{P}$$

Soit $u \in P$, soit $\varepsilon > 0$ et soit v la suite constante égale à ε . Alors $u+v \in BO(u,2\varepsilon)$ et $u+v \notin P$. D'où $u \notin \mathring{P}$. Ainsi $\mathring{P} = \emptyset$

2. Les suites convergentes.

Notons C l'ensemble des suites convergentes

Soit $(v^{(p)})_{p\in\mathbb{N}}$ une suite de suites convergentes qui converge vers une suite u. On a donc:

(a) Chaque $v^{(p)}$ converge, donc, il existe un réel λ_p tel que :

$$\forall \epsilon > 0, \ \exists N_p \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \ge N_p \ \Rightarrow \ |v_n^{(p)} - \lambda_p| \le \epsilon.$$

(b) La suite $(v^{(p)})_{p\in\mathbb{N}}$ converge vers u. On a donc :

$$\forall \epsilon > 0, \ \exists P \in \mathbb{N}, \ \forall p \ge P \ \Rightarrow \ \|v^{(p)} - u\|_{\infty} \le \epsilon.$$

Notre objectif est de montrer que u converge. Mais quelle peut être la limite? Très probablement la limite de la suite $(\lambda_p)_{p\in\mathbb{N}}$.

(a) Montrons que la suite $(\lambda_p)_{p\in\mathbb{N}}$ est bornée.

En effet, on a, pour $p \in \mathbb{N}$ et $n \in \mathbb{N}$:

$$|\lambda_p| \le |\lambda_p - v_n^{(p)}| + |v_n^{(p)} - u_n| + |u_n|.$$

Le troisième terme est majoré par $||u||_{\infty}$ (et donc indépendamment de n), le deuxième par $||v^{(p)}-u||_{\infty}$, terme général d'une suite convergente vers 0 et donc borné indépendamment de p. Si l'on prend $n \geq N_p$, on obtient :

$$\forall p \in \mathbb{N}, \ |\lambda_p| \le \epsilon + \sup_{p \in \mathbb{N}} \left(\|v^{(p)} - u\|_{\infty} \right) + \|u\|_{\infty}.$$

Or, le théorème de Bolzano-Weierstraß nous assure qu'alors la suite $(\lambda_p)_{p\in\mathbb{N}}$ admet au moins une valeur d'adhérence μ . Soit φ une fonction de \mathbb{N} dans \mathbb{N} strictement croissante telle que :

$$\lambda_{\varphi(p)} \xrightarrow[p \to +\infty]{} \mu.$$

(b) Montrons que u converge vers μ .

On a:

$$|u_n - \mu| \le |u_n - v_n^{(\varphi(p))}| + |v_n^{(\varphi(p))} - \lambda_{\varphi(p)}| + |\lambda_{\varphi(p)} - \mu|.$$

Le premier terme est majoré par $||u-v^{(\varphi(p))}||_{\infty}$ (donc indépendamment de n), pour un $\epsilon > 0$ fixé, on peut trouver P_1 tel que :

$$\forall p \ge P_1, \ \|u - v^{(\varphi(p))}\|_{\infty} \le \epsilon.$$

Le troisième terme tend vers 0 lorsque p tend vers $+\infty$, on peut donc trouver un P_2 tel que :

$$\forall p \geq P_2, \ |\lambda_{\varphi(p)} - \mu| \leq \epsilon.$$

Prenons $p = \max(P_1, P_2)$, on peut alors trouver un N tel que :

$$\forall n \ge N, |v_n^{(\varphi(p))} - \lambda_{\varphi(p)}| \le \epsilon.$$

On a finalement:

$$\forall n > N, |u_n - \mu| < 3\epsilon.$$

En conclusion C est fermé, $\bar{C} = C$.

Déterminons les points intérieurs de l'ensemble des suites convergentes. Soit u une suite convergente et soit $\varepsilon > 0$. Posons alors v la suite définie par $v_n = u_n + (-1)^n \times \frac{\varepsilon}{2}$. On a alors $||u-v||_{\infty} < \varepsilon$, c'est-à-dire $v \in BO(u,\varepsilon)$ et la suite v ne converge pas. On en déduit que $\mathring{C} = \emptyset$

Exercice 6:

Soit A un sous-ensemble de $(\mathbb{R}, | |)$ tel que tous les points de A sont isolés. Montrer que A est au plus dénombrable.

Soit $a \in A$. On sait que A est un point isolé, donc il existe $r_a > 0$ tel que $A \cap BO(a, r_a) = \{a\}$. De plus, dans \mathbb{R} , on a $BO(a, r_a) =]a - r_a, a + r_a[$. Ainsi, $A \cap]a - r_a, a + r_a[= \{a\}$. De plus, il existe $q_a \in \mathbb{Q} \cap]a - \frac{r_a}{2}, a + \frac{r_a}{2}[$. Comme A ne possède que des points isolés, on peut définir l'application :

$$f: \left\{ \begin{array}{ccc} A & \mapsto & \mathbb{Q} \\ a & \mapsto & q_a. \end{array} \right.$$

Montrons que f est injective. Supposons que $f(a_1) = f(a_2)$ où a_1 et a_2 sont dans A. Par définition de f, on a :

$$|a_1 - f(a_1)| < \frac{r_{a_1}}{2}$$
 et $|a_2 - f(a_2)| < \frac{r_{a_2}}{2}$.

D'après l'inégalité triangulaire, on en déduit que :

$$|a_1 - a_2| \le |a_1 - f(a_1)| + |f(a_1) - a_2| = |a_1 - f(a_1)| + |f(a_2) - a_2| < \frac{r_{a_1} + r_{a_2}}{2}.$$

Sans perdre de généralité, on peut supposer $r_{a_2} \leqslant r_{a_1}$. Donc,

$$|a_1 - a_2| < r_{a_1}$$
.

D'où $a_2 \in A \cap]a_1 - r_{a_1}, a_1 + r_{a_1}[=\{a_1\}]$. Autrement dit $a_1 = a_2$. La fonction f est bien injective, ce qui montre que :

A est au plus dénombrable.

Remarque : Afin d'éviter les calculs, on aurait pu choisir $q_a \in]a, r_a[$.

Remarque: On pouvait aussi démontrer l'injectivité par contraposée, ou par surjectivité.