Shenzhen Global Test Service Co.,Ltd.

1F, Building No. 13A, Zhonghaixin Science and Technology City, No.12,6 Road, Ganli Industrial Park, Buji Street, Longgang District, Shenzhen, Guangdong

FCC PART 15 SUBPART C TEST REPORT FCC PART 15.247

Report Reference No	.:	GTSR15120054-2.4G
FCC ID	:	2AG5D-XZ3-AMP50

Compiled by

(position+printed name+signature)..: File administrators Jimmy Wang

Supervised by

(position+printed name+signature)..: Test Engineer Peter Xiao

Approved by

(position+printed name+signature)..: Manager Sam Wang

Date of issue...... Jan. 04, 2016

Representative Laboratory Name.: Shenzhen Global Test Service Co.,Ltd.

1F, Building No. 13A, Zhonghaixin Science and Technology City,

Shenzhen, Guangdong

Applicant's name...... Wi Digital Systems,Inc.

Test specification:

Standard FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz

TRF Originator...... Shenzhen Global Test Service Co.,Ltd.

Master TRF...... Dated 2014-12

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Trade Mark /

Manufacturer SOYO Technology Development Co.,Ltd.

Model/Type reference...... XZ3-AMP50 (Transmitter)

Listed Models /

Operation Frequency...... From 2403MHz to 2479MHz

Hardware Version WI-AMP50-M-V1.6

Software Version SOYO-WM24G09-V1.3

Rating DC 5.0V from Adapter AC 120V/60Hz

Battery 3.7V

Result..... PASS

Report No.: GTSR15120054-2.4G Page 2 of 37

TEST REPORT

Tost Poport No :	Report No. : GTSR15120054-2.4G	Jan. 04, 2016
Test Report No. :	G131(13120034-2.4G	Date of issue

Equipment under Test : Stereo Digital Wireless Audio System Loudspeakers & DJ Gear

Model /Type : XZ3-AMP50 (Transmitter)

Listed Models : /

Applicant : Wi Digital Systems,Inc.

Address : Spectrum Cneter Drive,4th Floor,Suite 400 Irvine,CA 92618

Manufacturer : SOYO Technology Development Co.,Ltd.

Address : 4F,9Bldg,Longbi Industry Zone, Longgang Dist, Shenzhen City,

Guangdong Pro, China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: GTSR15120054-2.4G Page 3 of 37

Contents

Canara	I Domarko	_
	I Remarks t Description	5 5
	ent Under Test	5
	escription of the Equipment under Test (EUT)	5
	eration mode	5
	Diagram of Test Setup	6
	Submittal(s) / Grant (s)	6
Modifica	ations	6
NOTE		6
TEST	ENVIRONMENT	7
	s of the test laboratory	7
Test Fa	cility	7
Test Fac Environ	cility Imental conditions	7 7
Test Fac Environ Test De	cility nmental conditions escription	7 7 8
Test Fac Environ Test De Stateme	cility Imental conditions	7 7
Test Face Environ Test De Stateme Equipm	cility nmental conditions escription ent of the measurement uncertainty	7 7 8 8 9
Test Face Environ Test De Stateme Equipm	cility Immental conditions Inscription Ent of the measurement uncertainty Inserts Used during the Test CONDITIONS AND RESULTS	7 7 8 8 9
Test Face Environ Test De Stateme Equipm TEST 4.1.	cility Imental conditions Inscription Insc	7 7 8 8 9 10
Test Face Environ Test De Stateme Equipm TEST 4.1. 4.2.	cility Immental conditions Inscription Ins	10
Test Face Environ Test De Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4.	cility Immental conditions Inscription Insert of the measurement uncertainty Inserts Used during the Test CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Maximum Peak Output Power Power Spectral Density	7 7 8 8 9 10
Test Face Environ Test De Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4. 4.5.	cility Immental conditions Inscription Insert of the measurement uncertainty Inserts Used during the Test CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Maximum Peak Output Power Power Spectral Density 6dB Bandwidth	7 7 8 8 9 10
Test Face Environ Test De Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6.	cility Immental conditions Inscription Insert of the measurement uncertainty Inserts Used during the Test CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Maximum Peak Output Power Power Spectral Density 6dB Bandwidth Band Edge Compliance of RF Emission	7 7 8 8 9 10
Test Face Environ Test De Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	cility Immental conditions Inscription Insert of the measurement uncertainty Inserts Used during the Test CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Maximum Peak Output Power Power Spectral Density 6dB Bandwidth Band Edge Compliance of RF Emission Spurious RF Conducted Emission	7 7 8 8 9 10
Test Face Environ Test De Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6.	cility Immental conditions Inscription Insert of the measurement uncertainty Inserts Used during the Test CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Maximum Peak Output Power Power Spectral Density 6dB Bandwidth Band Edge Compliance of RF Emission	7 7 8 8 9 10

Report No.: GTSR15120054-2.4G Page 4 of 37

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB558074 D01 V03r04</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

Report No.: GTSR15120054-2.4G Page 5 of 37

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Dec. 21, 2015
Testing commenced on	:	Dec. 21, 2015
Testing concluded on	:	Jan. 04, 2016

2.2. Product Description

Name of EUT	Stereo Digital Wireless Audio System Loudspeakers & DJ Gear
Trade Mark:	1
Model Number	XZ3-AMP50 (Transmitter)
List Model:	1
FCC ID	2AG5D-XZ3-AMP50
Antenna Type	External antenna
Operation frequency	2403MHz to 2479MHz
Modulation	GFSK

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)

DC 5.0V from Adapter AC 120V/60Hz

2.4. Short description of the Equipment under Test (EUT)

This is a Stereo Digital Wireless Audio System Loudspeakers & DJ Gear.

For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The application provider specific test software to control sample in continuous TX (Duty Cycle >98%)

for testing meet KDB558074 test requirement.

Thirty channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2403	15	2447
1	2406	16	2450
2	2409	17	2453
3	2412	18	2455
4	2415	19	2458
5	2418	20	2461
6	2421	21	2463
7	2424	22	2465

Report No.: GTSR15120054-2.4G Page 6 of 37

8	2427	23	2467
9	2430	24	2469
10	2433	25	2471
11	2436	26	2473
12	2438	27	2475
13	2441	28	2477
14	2444	29	2479

2.6. Block Diagram of Test Setup

Input: 100-240V \sim 50/60Hz 0.2A

Output: 5.0V DC 0.5A Power Cable: 120cm

♦ Shielded

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AG5D-XZ3-AMP50** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

2.9. NOTE

	Test Standards	Reference Report
2.4GHz	FCC Part 15 Subpart C	GTSR15120054-2.4G
MPE	FCC Per 47 CFR 2.1093(d)	GTSR15120054-MPE

Report No.: GTSR15120054-2.4G Page 7 of 37

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

1F, Building No. 13A, Zhonghaixin Science and Technology City, No.12,6 Road, Ganli Industrial Park, Buji Street, Longgang District, Shenzhen, Guangdong

Shenzhen CTL Testing Technology Co., Ltd.

1/F.-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, Guangdong, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 964637

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 964637, Jul 24, 2015.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2018.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

Report No.: GTSR15120054-2.4G Page 8 of 37

3.4. Test Description

Test Specification clause	Test case	Test Mode	Test Channel	Record In Rep		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(e)	Power spectral density	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth - 6 dB bandwidth	GFSK	□ Lowest □ Middle □ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	 Lowest Middle Highest					complies
§15.247(d)	Band edge compliance conducted	GFSK		GFSK		\boxtimes				complies
§15.205	Band edge compliance radiated	GFSK		GFSK	☑ Lowest☑ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions conducted	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK	□ Lowest □ Middle □ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-	\boxtimes				complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	GFSK	-/-	GFSK	-/-					complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes				complies

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Report No.: GTSR15120054-2.4G Page 9 of 37

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2015/05/28	2016/05/27
LISN	R&S	ESH2-Z5	893606/008	2015/05/27	2016/05/26
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2015/06/02	2016/06/01
EMI Test Receiver	R&S	ESCI	101102	2015/06/26	2016/06/25
Spectrum Analyzer	Agilent	N9020A	MY48010425	2015/06/17	2016/06/16
Controller	EM Electronics	Controller EM 1000	N/A	2015/05/21	2016/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2015/05/19	2016/05/18
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2015/05/19	2016/05/18
Amplifier	Agilent	8349B	3008A02306	2015/05/19	2016/05/18
Amplifier	Agilent	8447D	2944A10176	2015/05/19	2016/05/18
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2015/05/20	2016/05/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	N/A	2015/05/20	2016/05/19
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	N/A	2015/05/20	2016/05/19
RF Cable	HUBER+SUHNE R	RG214	N/A	2015/05/20	2016/05/19

Note: The Cal.Interval was one year.

Report No.: GTSR15120054-2.4G Page 10 of 37

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC5V power from PC, the adapter of PC received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguency range (MHz)	Limit (dBuV)							
Frequency range (MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
* Decreases with the logarithm of the frequency.								

TEST RESULTS

Remark: We tested three positions in AC 120V/60Hz and AC 240V/60Hz, the worst case was recorded .

26.90

26.40

20.50

18.90

0.172500

0.177000

0.361500

0.595500

10.0

10.0 9.9 9.7 55

55

49

46

27.9 AV

28.2 AV 28.2 AV 27.1 AV GND

GND

GND

GND

N

N

N

N

Report No.: GTSR15120054-2.4G Page 13 of 37

4.2. Radiated Emission

TEST CONFIGURATION

Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: GTSR15120054-2.4G Page 14 of 37

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Report No.: GTSR15120054-2.4G

TEST RESULTS

Remark: We tested three positions in AC 120V/60Hz and AC 240V/60Hz, the worst case was recorded. Test site: Shenzhen CTL Testing Technology Co., Ltd

For 9 KHz-30MHz

Frequency (MHz)	Corrected Reading (dBuV/m)@3m	FCC Limit (dBuV/m) @3m	Margin (dB)	Detector	Result
0.36	54.26	96.48	42.22	QP	PASS
1.65	42.57	63.25	20.68	QP	PASS
20.51	53.34	69.54	16.20	QP	PASS
25.77	50.78	69.54	18.76	QP	PASS

For 30MHz-1GHz

For 1GHz to 25GHz

	Frequency(MHz):			2403		Polarity:			HORIZONTAL			
	No. Frequency (MHz)	Emiss	sion	Limit	Morgin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction	
No.		Lev	el	Limit	Margin	Height	Angle	Value	Factor	Factor	amplifi	Factor	
		(dBu\	//m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)	
1	4806.00	62.47	PK	74	11.53	1.00	86	64.57	31.6	7.00	36.5	2.10	
1	4806.00	45.56	AV	54	8.44	1.00	86	47.66	31.6	7.00	36.5	2.10	
2	7209.00	58.24	PK	74	15.76	1.00	162	69.17	37.33	8.90	35.3	10.93	
2	7209.00	39.56	AV	54	14.44	1.00	162	50.49	37.33	8.90	35.3	10.93	

	Frequency(MHz):		2403			Polarity:			VERTICAL		
	Frequency	Emission		Limit	Marain	Antenna	Table	Raw		Cable	Pre-	Correction
No.		el	(dBuV/m)	Margin (dB)	Height	Angle	Value	Factor	Factor	amplifi	Factor	
		(dBu\	//m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	4806.00	63.52	PK	74	10.48	1.00	116	65.62	31.60	7.00	36.50	2.10
1	4806.00	43.24	AV	54	10.76	1.00	116	45.34	31.60	7.00	36.50	2.10
2	7209.00	55.25	PK	74	18.76	1.00	185	66.18	37.33	8.90	35.30	10.93
2	7209.00	40.53	ΑV	54	13.47	1.00	185	51.46	37.33	8.90	35.30	10.93

	Frequency(MHz):		2447			Polarity:			HORIZONTAL		
	Frequency (MHz) Emission Level (dBuV/m)	Emission		Limit	Marain	Antenna	Table	Raw		Cable		Correction
No.		el	(dBuV/m)	Margin (dB)	Height	Angle	Value	Factor	Factor	amplifi	Factor	
		(dBuV	//m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	4894.00	62.24	PK	74.00	11.76	1.00	110	64.36	31.02	7.60	36.5	2.12
1	4894.00	43.42	ΑV	54.00	10.58	1.00	110	45.54	31.02	7.60	36.5	2.12
2	7341.00	58.34	PK	74.00	15.66	1.00	181	69.42	37.28	8.60	34.8	11.08
2	7341.00	40.65	AV	54.00	13.35	1.00	181	51.73	37.28	8.60	34.8	11.08

	Frequency(2447			Polarity:			VERTICAL			
No.	Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)		Pre- amplifi er	Correction Factor (dB/m)
1	4894.00	63.58	PK	74.00	10.42	1.00	105	65.70	31.02	7.60	36.5	2.12
1	4894.00	42.64	ΑV	54.00	11.36	1.00	105	44.76	31.02	7.60	36.5	2.12
2	7341.00	58.05	PK	74.00	68.95	1.00	75	69.13	37.28	8.60	34.8	11.08
2	7341.00	42.52	ΑV	54.00	11.48	1.00	75	53.60	37.28	8.60	34.8	11.08

	Frequency(MHz):				2479		Polarity:			HORIZONTAL		
No.	Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)		Pre- amplifi er	Correction Factor (dB/m)
1	4958.00	57.58	PK	74.00	16.42	1.00	130	60.78	31.58	7.82	36.2	3.20
1	4958.00	43.25	ΑV	54.00	10.75	1.00	130	46.45	31.58	7.82	36.2	3.20
2	7437.00	56.45	PK	74.00	17.55	1.00	120	68.39	38.51	8.73	35.3	11.94
2	7437.00	42.69	AV	54.00	11.31	1.00	120	54.63	38.51	8.73	35.3	11.94

	Frequency(MHz):			2479			Polarity:			VERTICAL		
No.	Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)		Pre- amplifi er	Correction Factor (dB/m)
1	4958.00	56.84	PK	74.00	17.16	1.00	36	60.04	31.58	7.82	36.2	3.20
1	4958.00	42.71	ΑV	54.00	12.29	1.00	36	45.91	31.58	7.82	36.2	3.20
2	7437.00	57.02	PK	74.00	16.98	1.00	98	68.96	38.51	8.73	35.3	11.94
2	7437.00	41.65	ΑV	54.00	12.35	1.00	98	53.59	38.51	8.73	35.3	11.94

Report No.: GTSR15120054-2.4G Page 17 of 37

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
 The other emission levels were very low against the limit.

Report No.: GTSR15120054-2.4G Page 18 of 37

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power,9.1.1. The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

<u>LIMIT</u>

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

Туре	Channel	Output power PK (dBm)	Output power AV (dBm)	Limit (dBm)	Result
	00	4.152	2.536		
GFSK	15	4.468	2.817	30.00	Pass
	29	4.136	2.498		

Note: 1.The test results including the cable lose.

Report No.: GTSR15120054-2.4G Page 19 of 37

4.4. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 558074 D01 V03 Method PKPSD (peak PSD) This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW ≥ 3 RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

Туре	Channel	Power Spectral Density (dBm/100KHz)	Limit (dBm/3KHz)	Result
	00	3.309		
GFSK	15	3.692	8.00	Pass
	29	3.292		

CH15

CH29

Report No.: GTSR15120054-2.4G Page 21 of 37

4.5. 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB558074 D01 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

LIMIT

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

Type	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result	
	00	0.6909			
GFSK	15	0.6822	≥500	Pass	
	29	0.6914			

CH00

CH15

CH29

Report No.: GTSR15120054-2.4G Page 23 of 37

4.6. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST PROCEDURE

According to KDB 558074 D01 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a
 EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low
 Channel and High Channel within its operating range, and make sure the instrument is operated in its
 linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=10Hz for average detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz,
 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship: E = EIRP 20log D + 104.8

where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

- 11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
- 12. Compare the resultant electric field strength level to the applicable regulatory limit.
- 13. Perform radiated spurious emission test dures until all measured frequencies were complete.

Report No.: GTSR15120054-2.4G Page 24 of 37

LIMIT

Below -20dB of the highest emission level in operating band. Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

4.6.1 For Radiated Bandedge Measurement

Frequency(MHz):				2403			Polarity:		H	HORIZO	NTAL
Frequency	Emiss	sion	Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction
Frequency (MHz)	Lev	-	(dBuV/m)	(dB)	Height	Angle	Value			amplifi	Factor
(1711 12)	(dBu\	//m)	(dbd v/iii)	(GD)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
2390.00	60.52	PK	74.00	13.48	1.00	135	55.21	27.49	3.32	36.12	-5.31
2390.00	41.06	ΑV	54.00	12.94	1.00	135	35.75	27.49	3.32	36.12	-5.31
Frequenc	y(MHz):			2403			Polarity:			VERTI	CAL
Fraguanay	Emiss	sion	Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction
Frequency (MHz)	Lev	el	Limit (dBuV/m)	Margin	Height	Angle	Value	Factor	Factor	amplifi	Factor
(1011 12)	(dBuV	//m)		(dB)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
2390.00	62.41	PK	74.00	11.59	1.00	50	57.10	27.49	3.32	36.12	-5.31
2390.00	43.15	AV	54.00	10.85	1.00	50	37.84	27.49	3.32	36.12	-5.31
Frequenc	y(MHz):		2479			Polarity:			HORIZONTAL		
Гиодиления	Emission		Manain	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction	
Frequency		Level				1 4510					
	Lev	el		Margin	Height	Angle	Value	Factor		amplifi	Factor
(MHz)	Lev (dBu\		(dBuV/m)	(dB)	Height (m)		Value (dBuV)	Factor (dB/m)		amplifi er	Factor (dB/m)
						Angle			Factor	-	
(MHz)	(dBuV	//m)	(dBuV/m)	(dB)	(m)	Angle (Degree)	(dBuV)	(dB/m)	Factor (dB)	er	(dB/m)
(MHz) 2483.50	(dBu\ 63.25 44.08	//m) PK	(dBuV/m) 74.00	(dB) 10.75	(m) 1.00	Angle (Degree) 175	(dBuV) 57.53	(dB/m) 27.45	Factor (dB) 3.38	er 36.55	(dB/m) -5.72 -5.72
(MHz) 2483.50 2483.50 Frequence	(dBu\ 63.25 44.08	//m) PK AV	(dBuV/m) 74.00 54.00	(dB) 10.75 9.92 2479	(m) 1.00	Angle (Degree) 175	(dBuV) 57.53 38.36	(dB/m) 27.45	Factor (dB) 3.38	er 36.55 36.55	(dB/m) -5.72 -5.72
(MHz) 2483.50 2483.50 Frequency	(dBu\) 63.25 44.08 y(MHz) :	//m) PK AV	(dBuV/m) 74.00 54.00 Limit	(dB) 10.75 9.92 2479 Margin	(m) 1.00 1.00	Angle (Degree) 175 175	(dBuV) 57.53 38.36 Polarity:	(dB/m) 27.45 27.45 Antenna	Factor (dB) 3.38 3.38 Cable	er 36.55 36.55 VERTI	(dB/m) -5.72 -5.72 CAL
(MHz) 2483.50 2483.50 Frequence	(dBu\) 63.25 44.08 y(MHz): Emiss	//m) PK AV sion	(dBuV/m) 74.00 54.00	(dB) 10.75 9.92 2479	(m) 1.00 1.00 Antenna	Angle (Degree) 175 175 Table	(dBuV) 57.53 38.36 Polarity: Raw	(dB/m) 27.45 27.45 Antenna	Factor (dB) 3.38 3.38 Cable	er 36.55 36.55 VERTI Pre-	(dB/m) -5.72 -5.72 CAL Correction
(MHz) 2483.50 2483.50 Frequency	(dBu\) 63.25 44.08 y(MHz): Emiss Lev	//m) PK AV sion	(dBuV/m) 74.00 54.00 Limit	(dB) 10.75 9.92 2479 Margin	(m) 1.00 1.00 Antenna Height	Angle (Degree) 175 175 Table Angle	(dBuV) 57.53 38.36 Polarity: Raw Value	(dB/m) 27.45 27.45 Antenna Factor	Factor (dB) 3.38 3.38 Cable Factor	er 36.55 36.55 VERTI Pre- amplifi	(dB/m) -5.72 -5.72 CAL Correction Factor

4.6.2 For Conducted Bandedge Measurement

Frequency (MHz)	Delta Peak to Band emission (dBc)	Limit (dBc)	Verdict
2390.00	-59.39	-20	PASS
2400.00	-49.42	-20	PASS
2483.50	-60.74	-20	PASS
### Agent Spectrum Analyzer . Swept SA	Avg Type Log Pur Avg Held St. 2016 Avg Type Log Pur Buck St.	Aglent Spectrum Analyzer - Swept SA Marker 2 2.483500000000 GHz PIO: Feet P Footback ov Trig: Free F Attent: 30 d	Avg Type: Log-Pwr TRACE DE COMMARKER tun Avg Hold>100/100 TVPE
Log 600	Normal	100	Normal
310 310 410	Delta	000 000 000	Delta
540 Manual Manual	TIME TO THE PROPERTY OF THE PR	600 700	Fixed
	Stop 2.43000 GHz Sweep 12.47 ms (1001 pts) TION FUNCTION WADTH FUNCTION WALKS (Start 2.45000 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 2.60000 GHz Sweep 14.40 ms (1001 pts) Function Function width Function value
1 N 1 f 2.49933 GHz 7.238 dBm 2 N 1 f 2.39000 GHz 52.188 dBm 3 N 1 f 2.400.00 GHz 42.196 dBm	Properties>	1 N 1 F 2.478 90 GHz 3.406 dBn 2 N 1 F 2.493 50 GHz 57.329 dBn 3 4 6	Properties>
9 9 10 11	More 1 of 2	7 8 9 10 11	More 1 of 2
240	81APUS.	Maco 2	2479

Report No.: GTSR15120054-2.4G Page 25 of 37

4.7. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and mwasure frequeny range from 9KHz to 25GHz.

<u>LIMIT</u>

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

TEST RESULTS

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

9KHz~30MHz

30M Hz~1GHz

8GHz~16GHz

16GHz~25GHz

9KHz~30MHz

30M Hz~1GHz

8GHz~16GHz

16GHz~25GHz

9KHz~30MHz

30M Hz~1GHz

8GHz~16GHz

16GHz~25GHz

Report No.: GTSR15120054-2.4G Page 32 of 37

4.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.For normal WLAN devices, the DSSS mode is used.

Measurement parameters

Measurement parameter					
Detector:	Peak				
Sweep time:	Auto				
Resolution bandwidth:	1MHz				
Video bandwidth:	3MHz				
Trace-Mode:	Max hold				

Limits

Antenna Gain	6 dBi

Results

T _{nom}	V_{nom}	Lowest Channel 2403 MHz	Middle Channel 2447 MHz	Highest Channel 2479 MHz	
	power [dBm] DSSS modulation	4.15	4.47	4.14	
	ower [dBm] SSS modulation	6.91	7.39	7.01	
	Gain [dBi] Calculated		2.92	2.87	
Measuremer	nt uncertainty	\pm 0.6 dB (cond.) / \pm 4.32 dB (rad.)			

Report No.: GTSR15120054-2.4G Page 33 of 37

5. Test Setup Photos of the EUT

6. External and Internal Photos of the EUT

External Photos

Report No.: GTSR15120054-2.4G Page 35 of 37

Report No.: GTSR15120054-2.4G Page 36 of 37

ADAPTER

Model:K05S050050U

INPUT:AC100-240V,50/60Hz,0.2A

OUTPUT: 5.0V---0.5A

Internal Photos

Report No.: GTSR15120054-2.4G Page 37 of 37

Antenna

.....End of Report.....