Exercises 5.1.3 — Problem 1

Problem. Show that $f(x) = O(|x - x_0|^2)$ as $x \to x_0$ implies $f(x) = o(|x - x_0|)$ as $x \to x_0$, but give an example to show that the converse is not true.

Proof. So we know that $f(x) = O(|x-x_0|^2)$ as $x \to x_0$ and we want to show that $f(x) = o(|x-x_0|)$ as $x \to x_0$. Equivalently, we could show that $\lim_{x\to x_0} f(x)/|x-x_0|=0$. From the definition of big-O, we can say that as $x \to x_0$, there exists 1/n and a positive constant c such that $|x-x_0| < 1/n$ implies that $|f(x)| \le c * |x-x_0|^2$. Then for the same neighborhood $(x_0-1/n,x_0+1/n)$, we must have $|f(x)|/|x-x_0| \le c * |x-x_0|$. And since non-strict inequalities are preserved by limits, $\lim_{x\to x_0} |f(x)|/|x-x_0| \le \lim_{x\to x_0} c * |x-x_0| = 0$ for $x \ne x_0$. Since $\lim_{x\to x_0} |f(x)|/|x-x_0|$ cannot be negative, it must equal 0. Then $f(x) = o(|x-x_0|)$ as $x \to x_0$, which was the goal.

A counterexample of the converse is $f(x) = |x - x_0|^{3/2}$. Certainly $|x - x_0|^{3/2} = o(|x - x_0|)$ since

$$\lim_{x \to x_0} \frac{|x - x_0|^{3/2}}{|x - x_0|} = \lim_{x \to x_0} |x - x_0|^{1/2} = 0$$

But, we do not have $|x-x_0|^{3/2}=O(|x-x_0|^2)$. To verify this, let's unpack the definition of big-O. $|x-x_0|^{3/2}=O(|x-x_0|^2)$ only if for all 1/n there exists a positive constant c such that $|x-x_0|<1/n$ implies that $|x-x_0|^{3/2}\leq c|x-x_0|^2$. Then for $x\neq x_0$ (which is trivially true), we must have $1\leq c|x-x_0|^{1/2}$. However, this condition fails if $|x-x_0|^{1/2}<1/c$. But since we are considering a neighborhood of x_0 , the value of $|x-x_0|^{1/2}$ can be made arbitrarily small with an appropriate choice of x. So no c exists to staisfy the definition of big-O and we have found a counterexample to the converse.