SAYISAL ANALIZ

Doç. Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ

1. Hafta

SAYISAL ANALIZE GIRIŞ

AMAÇ

Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında gerçekleştirilmesine ilişkin temel yeterlikleri kazandırmaktır.

Sayısal Analiz Nedir?

- Sayısal Analiz
 - Nümerik Analiz (Numeric Analysis)
 - Sayısal Çözümleme
 - Mühendislikte Sayısal Yöntemler olarak ta bilinir.
- Genel olarak sayısal analiz;
 - Matematiksel (analitik) yöntemlere karşı tekrarlı (temel aritmetik) işlemler ile sonuca ulaşılan alternatif bir yöntemdir.
 - Örnek:
 - Analitik hesaplama: 5*5= 25
 - ☐ Bilgisayarlı hesaplama (tekrarlı yapı): 5*5=5+5+5+5+5=25

Sayısal Analizin Amacı

- Matematiksel hesaplamaları ve problemleri tekrarlı (aritmetik) işlemler ile bilgisayarlar (programlar) aracılığı ile çözmektir.
- Belirli bir sıra ve sayıdaki işlemler bilgisayar programları aracılığı ile çözülür.
- □ Özellikle, yüksek dereceli integral, türev ya da çok bilinmeyenli denklemler gibi analitik olarak çözümleri çok zor ya da imkansız olan problemleri, istenilen hassasiyette (hata oranları içerisinde) çözmektir.

Sayısal Analizde Temel Kavramlar

- Rasyonel, irrasyonel vb. sayı kavramı yerine sonlu basamak ile ifade edilen sayılar vardır.
 - π gibi sayılar bilgisayar kelime uzunluğuna bağlı olarak ilgili basamak sayısına kadar yuvarlatılarak hesaplama gerçekleştirilir.
- Sonsuz şeklinde bir ifade yoktur.
- Bir problemin bağımsız değişken ve parametrelere bağlı genel çözümünü değil, verilen değerler için çözümünü verir.
- Çözümün kesinliği ile değil, istenilen hassasiyette (verilen sınırlar içerisinde) yaklaşık çözümler ile uğraşır.

Neden Sayısal Analiz

- Sayısal analiz yöntemleri güçlü ve esnek problem çözme araçlarıdır.
- Platform ve programlama dili bağımsız olarak uygulanabilir. Ayrıca hazır paket programlar şeklinde örnekleri de mevcuttur. Programlama becerisini geliştirir.
- Matematiksel bilgi, yetenek ve anlayışınızı geliştirir.
- □ Birçok problemin çözümü sayısal analiz yöntemleri olmadan oldukça zor ya da mümkün değildir.

Sayısal Analiz Nerelerde Kullanılabilir?

Çok geniş bir kullanım alanına sahiptir:

- Sayısal işaret işleme,
- Bilgisayarlı ve sayısal görüntü işleme,
- Bilgisayarlı sayısal kontrol,
- Bilgisayar destekli tasarım ve analiz,

Tüm Sayısal Analiz Yöntemlerinde İzlenilecek Genel Yol

Serhat Yılmaz'ın Sunusundan Alınmıştır.

Sayısal Analiz Dersinde Neler Göreceğiz

- 1. Sayısal Analize Giriş
- 2. Sayısal Analiz İçin Gerekli MATLAB İşlemleri
 - ☐ Temel MATLAB işlemleri
 - ☐ Dizi (vektör) işlemleri
 - ☐ Grafik Çizimleri
- 3. Sayısal Hesaplamalarda Hata Kavramı ve Analizi
- 4. Doğrusal Denklem Takımlarının Çözümü
 - ☐ Cramer yöntemi
 - ☐ Gauss yöntemi
 - ☐ LU ayrıştırma yöntemi

- ☐ Bisection (yarılama) metodu,
- Regula falsi metodu,
- Newton-Raphson metodu,
- Secant metodu

Sayısal Analiz Dersinde Neler Göreceğiz

6. Eğri Uydurma

- En küçük kareler metodu ile doğrusal eğri uydurma (**)
- ☐ Genelleştirilmiş eğri uydurma
- Doğrusal olmayan eğri uydurma

7. Ara Değer Bulma Yöntemleri

- Lagrange polinom interpolasyonu
- □ Newton-farklar bölümü yöntemi,
- **□** Kübik-spline interpolasyonu
- Ekstrapolasyon

8. Sayısal Türev

- Geri farklar yöntemi,
- Merkezi farklar yöntemi,
- İleri farklar yöntemi

Sayısal Analiz Dersinde Neler Göreceğiz

- 9. Sayısal İntegral
 - ☐ Trapez (yamuklar) yöntemi,
 - Simpson yöntemi,

- 10. Difrensiyel Denklemlerin Çözümü
 - Taylor seri açılımı,
 - ☐ Euler yöntemi,
 - Runge-Kutta yöntemi,

11. Kompleks Sayılar

DEĞERLENDİRME

Yarıyıl İçi Çalışmaları:

	Sayısı	Yıl içine katkı oranı
Ara Sınav	1	% 80
Kısa Sınav	2	% 10
Ödev	1	% 10

Başarı Notu: Yarıyıl içi (% 50) + Yarıyıl Sonu Sınavı (% 50)

KAYNAKLAR

❖ Temel Kaynaklar

Ders Notları – Sunular

❖ Diğer Kaynaklar

- Steven C. Chapra, Raymond P. Canale (Çev. H. Heperkan ve U. Kesgin), "Yazılım ve Programlama Uygulamalarıyla Mühendisler İçin Sayısal Yöntemler", Literatür Yayıncılık.
- Serhat YILMAZ, "Bilgisayar İle Sayısal Çözümleme", Kocaeli Üniv. Yayınları, No:168, Kocaeli, 2005.
- İlyas ÇANKAYA, Devrim AKGÜN, Sezgin KAÇAR "Mühendislik Uygulamaları İçin MATLAB", Seçkin Yayıncılık
- Mehmet Bakioğlu, "Sayısal Analiz", Birsen Yayınevi, 2004.
- Yüksel YURTAY, Sayısal Analiz Ders Notları, Sakarya Üniversitesi
- Fahri VATANSEVER, "İleri Programlama Uygulamaları", Seçkin Yayıncılık
- İrfan Karagöz, "Sayısal Analiz ve Mühendislik Uygulamaları", VİPAŞ Yayınevi, 2001.

