SR University warangal Advance Data Science October 21, 2025

Submitted by: Elijah M. Flomo

Enrol_No: 2506B09602

1.

 (a) Derive the regression equation=a+bx using the least square method and calculate a (intercept) and b (slope). Also compute the value of (ΣΧ, ΣΥ, ΣΧΥ, ΣΧΥ),

Temperature	Power	ΣΧΥ	ΣX^2
(X)	Consumption		
	(Y)		
10	300	3000.00	100.00
12	310	3720.00	144.00
14	320	4480.00	196.00
16	330	5280.00	256.00
18	345	6210.00	324.00
20	360	7200.00	400.00
22	370	8140.00	484.00
24	390	9360.00	576.00
26	420	10920.00	676.00
28	450	12600.00	784.00
ΣΧ 190.00	ΣΥ 3595.00	ΣΧΥ 70910.00	ΣX ² 3940.00

Number of observations, n = 10

 $\Sigma X = 190.00$

 $\Sigma Y = 3595.00$

 $\Sigma XY = 70910.00$

 $\Sigma X^2 = 3940.00$

Mean of X = 19.0000

Mean of Y = 359.5000

Regression equation: $\hat{Y} = 209.515152 + (7.893939) X$

Slope (b) formula: $b = (n*\Sigma XY - \Sigma X*\Sigma Y) / (n*\Sigma X^2 - (\Sigma X)^2)$

Compute numerator: $n*\Sigma XY - \Sigma X*\Sigma Y = 10*70910.00 - 190.00*3595.00 = 26050.0000$

Compute denominator: $n*\Sigma X^2 - (\Sigma X)^2 = 10*3940.00 - (190.00)^2 = 3300.0000$

Slope (b) = numerator / denominator = 26050.0000 / 3300.0000 = 7.893939

Intercept (a) formula: a = mean(Y) - b * mean(X)

Intercept (a) = 359.500000 - (7.893939)*19.000000 = 209.515152

Predicted values (Ŷ) and R²

X	Y (actual)	Ŷ (predicted)	$(Y - \hat{Y})^2$
10	300.00	288.4545	133.2975
12	310.00	304.2424	33.1497
14	320.00	320.0303	0.0009
16	330.00	335.8182	33.8512
18	345.00	351.6061	43.6400
20	360.00	367.3939	54.6703
22	370.00	383.1818	173.7603
24	390.00	398.9697	80.4555
26	420.00	414.7576	27.4830

28	450.00	430.5455	378.4793
20	+30.00	+30.3+33	370.7733

Residual sum of squares (SS_res) = 958.787879

Total sum of squares (SS_tot) = 21522.500000

b.
$$R^2 = 1 - SS_{res} / SS_{tot} = 0.955452$$

2. Regression equation (Final) Code:

link:

https://colab.research.google.com/drive/189ohStTkZDI3gs Wpr1nVeZU isg4RrUe?usp=sharing

Estimated regression line: $\hat{Y} = 209.515152 + (7.893939) X$

Interpretation: The slope is positive, which means power consumption increases with temperature in this dataset

• Statsmodels OLS (for comparison)

Below is the key output from statsmodels OLS fit (model summary):

Dep. Variable:	Power Consumption (kWh)		R-squar	red:		0.955	
Model:		OLS		Adj. R-squared:		0.950	
Method:	I			F-statistic:	171.6		
Date:	Tue	, 21 Oct 2	025	Prob (F	-statistic):		1.10e-06
Time:		19:18	:29	Log-Lik	celihood:		-37.005
No. Observations:			10	AIC:			78.01
Df Residuals:			8	BIC:			78.61
Df Model:			1				
Covariance Type:		nonrob	ust				
===========	coef	std err	====	t	P> t	[0.025	0.975]
const	209.5152	11.962		 17 . 515	0.000	181.931	237.100
Temperature (°C)	7.8939	0.603	1	13.099	0.000	6.504	9.284
======== Omnibus:		1.026	==== Durl	====== bin-Watso	 on:	======= 0	==== .581
Prob(Omnibus):		0.599			0.781		
Skew:		0.568	Prob(JB):		0.677		
Kurtosis:		2.236		d. No.			68.7
=======================================			====				====

The derived linear model confirms a direct relationship (positive slope), demonstrating that rising temperatures lead to increased power consumption.

The regression equation, $\hat{Y} = 209.5152 + 7.893939 X$, precisely describes this trend.

Furthermore, a highly robust \$\mathbf{R}^2\$ value of 0.9555 suggests that temperature accounts for 95.55% of the variability observed in power consumption.

This completes the rigorous least squares derivation and the Python validation .

3. code: https://github.com/Kpellehboy/Advance-Data-Science Lab 1 Assig.git