Anomaly Detection Activity

х	у
1	1
1	1.5
2	1
5	4
0.5	1
0.5	0.5

For simplicity, first, we can calculate the Euclidean distance of each points to others:

	P1	P2	Р3	P4	P5	Р6
P1=(1,1)	0	0.5	1.0	5.0	0.5	0.7
P2=(1,1.5)	0.5	0	1.1	4.7	0.7	1.1
P3=(2,1)	1.0	1.1	0	4.2	1.5	1.6
P4=(5,4)	5.0	4.7	4.2	0	5.4	5.7
P5=(0.5,1)	0.5	0.7	1.5	5.4	0	0.5
P6=(0.5,0.5)	0.7	1.1	1.6	5.7	0.5	0

Let's calculate the anomaly score for P1=(1,1) when K=2. For the other points the procedure is the same:

K = <mark>2</mark> A)

- 1) Calculate 2-NN list of P1 = [P2=(1,1.5), P5=(0.5,1)]
- 2) Calculate density of (1,1) based definition (A): Density of P1 = $1/0.5 = \frac{2.0}{0.5}$ (0.5 is distance to P5)
- 3) Calculate the density of elements in the list [P2=(1,1.5), P5=(0.5,1)] based on definition (A):

d = 0.5 d=0.7
2-NN list of P2 = [P1=(1,1), P5=(0.5,1)]
Density of P2 =
$$1/0.7 = 1.4$$
 (0.7 is distance to P5)
d = 0.5 d=0.5
2-NN list of P5 = [P1=(1,1), P6=(0.5,0.5)]
Density of P5 = $1/0.5 = 2.0$ (0.5 is distance to P6)

Relative density = $((\frac{1.4}{2.0})/\frac{2}{2})/\frac{2.0}{2.0} = 0.85$

B)

Let's calculate the anomaly score for P1=(1,1). For other points the procedure is the same:

$$d = 0.5$$
 $d = 0.5$

- 1) Calculate 2-NN list of P1 = [P2=(1,1.5), P5=(0.5,1)]
- 2) Calculate density of P1 <u>based definition (B)</u>: Density of $(1,1) = 1/\text{Average}(0.5,0.5) = \frac{2.0}{1.00}$
- 3) Calculate the density of elements in the list [P2=(1,1.5), P5=(0.5,1)] based on definition (B):

$$d = 0.5$$
 $d = 0.7$
2-NN list of P2 = [P1=(1,1), P5=(0.5,1)]
Density of P2 = 1/Average(0.5,0.7) = 1.7

$$d = 0.5$$
 $d=0.5$
2-NN list of P5 = [P1=(1,1), P6=(0.5,0.5)]
Density of P5 = 1/Average(0.5,0.5) = $\frac{2.0}{100}$

Relative density = $((\frac{1.7}{2.0})/\frac{2}{2})/\frac{2.0}{2.0} = 0.93$