1. Support Vector Machine

- a. Please point out the support vectors in the training points.
 - i. Point 2: $x_1 = 0.91$, $x_2 = 0.32$
 - ii. Point 18: $x_1 = 2.05$, $x_2 = 1.54$
 - iii. Point 19: $x_1 = 2.34$, $x_2 = 0.72$

b.
$$w = 0.9492 * [0.91 \ 0.32]^T - 0.3030 * [2.05 \ 1.54]^T - 0.9053 * [2.34 \ 0.72]^T$$

 $w = [0.86 \ 0.30]^T - [0.62 \ 0.47]^T - [2.12 \ 0.65]^T$
 $w = [-1.88 \ -0.72]^T$

c.
$$b = \frac{1}{3}((1 + [1.88 \ 0.72] \cdot [0.91 \ 0.32]^T) + (-1 + [1.88 \ 0.72] \cdot [2.05 \ 1.54]^T) + (-1 + [1.88 \ 0.72] \cdot [2.34 \ 0.72]^T)$$

 $b = \frac{1}{3}((1 + 1.97) + (-1 + 5.12) + (-1 + 4.99))$
 $b = 3.69$

- d. f(x) = [-1.88 0.82]x + 3.69
- e. $f([-1 \ 2]) = [-1.88 \ -0.82] \cdot [-1 \ 2]^T + 3.69$
- f. Plot of hyperplane:

2. Artificial Neural Network

a. Parameters: P + 3P + 3 + 12 + 4 + 4K = 4P + 4K + 19

b.

Unit, j	Net Input I_j	Output O_j
3	-0.3(0)+0.4+0.2 = 0.6	0.65
4	0.2(0)-0.1-0.4 = -0.5	0.38

5	0.2(0.65)-0.3(0.38)+0.1 = -0.144	0.46
---	---	------

C.

Unit, j	Err_j
5	(0.46)(1-0.46)(1-0.46) = 0.13
4	(0.38)(1-0.38)(0.13)(-0.3) = -0.0092
3	(0.65)(1-0.65)(0.13)(-0.2) = -0.0059

d.

Weight or Bias	New Value
w ₃₅	-0.2 + 0.8(0.13)(0.65) = -0.1324
w ₄₅	-0.3 + 0.8(0.13)(0.38) = -0.26
w_{13}	-0.3 + 0.8(-0.0059)(0) = -0.3
w_{14}	0.2 + 0.8(-0.0092)(0) = 0.2
w ₂₃	0.4 + 0.8(-0.0059)(1) = 0.395
w ₂₄	-0.1 + 0.8(-0.0092)(1) = 0.107
θ_5	0.1 + 0.8(0.13) = 0.204
θ_4	-0.4 + 0.8(-0.0092) = -0.407
θ_3	0.2 + 0.8(-0.0059) = 0.195

e.

3. K Nearest Neighbors

a. K = 7

b. K-Value vs Average Accuracy

c. We are performing cross validation and if K is large we overfit and are unable to classify other folds correctly. When K is smaller we have a model that is more general and so is more accurate.