Tarea-Examen 1: Regresión Lineal

Curso Avanzado de Estadística. Profa. Guillermina Eslava Gómez.

Aldo Sayeg Pasos Trejo.

Posgrado en Ciencias Matemáticas. Universidad Nacional Autónoma de México.

21 de febrero de 2020

1. Ejercicio 1: Problema 10, capítulo 3 [1]

1.1. Inciso a)

Primero visualizamos la tabla de datos

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US
0	9.50	138	73	11	276	120	Bad	42	17	Yes	Ye
1	11.22	111	48	16	260	83	Good	65	10	Yes	Ye
2	10.06	113	35	10	269	80	Medium	59	12	Yes	Υe
3	7.40	117	100	4	466	97	Medium	55	14	Yes	Ye
4	4.15	141	64	3	340	128	Bad	38	13	Yes	No

Tabla 1: Datos para el ejercicio

Queremos realizar un ajuste lineal para predecir Sales con las variables Price, Urban y US. El código del modelo se puede encontrar en el anexo 2 y su parámetros se muestran en la siguiente tabla

	Coef.	Std.Err.	t	\$P (¿—t—)\$	[0.025	0.975]
Intercept	13.043469	0.651012	20.035674	3.626602 e - 62	11.763597	14.323341
Urban)[T.Yes] [T.Yes]	-0.021916	0.271650	-0.080678	9.357389 e-01	-0.555973	0.512141
US)[T.Yes] [T.Yes]	1.200573	0.259042	4.634673	4.860245 e - 06	0.691304	1.709841
Price	-0.054459	0.005242	-10.389232	1.609917e-22	-0.064764	-0.044154

Tabla 2: Parámetros del modelo lineal de la ecuación ??

1.2. Incisos b),c)

El modelo tiene la siguiente forma:

$$Sales = \beta_0 + \beta_1 \cdot Price + \beta_2 I_{Urban=NO}(Urban) + \beta_3 I_{US=NO}(US)$$
 (1)

Dónde $I_{\text{Urban}=\text{NO}}(\text{Urban})$ es una variable indicadora que toma el valor 1 si Urban = Yes y 0 en el caso contrario. De igual manera, $I_{\text{US}=\text{NO}}(\text{US})$ toma el valor 1 si US = NO.

Notemos que, de inmediato, podemos interpretar a β_0 como el valor promedio de Sales cuando US = NO y Urban = NO. β_1 es la pendiente de Price, es decir, el cambio unitario en Sales por un cambio unitario en Price. β_2 es una penalización o un cambio del valor promedio de Price para cuando Urban = Yes y, análogamente, β_3 es otro cambio al valor promedio de Price para cuando US = NO.

1.3. Inciso d)

Para hacer la prueba de hipótesis $\beta_i = 0$ para cada coeficiente, podemos fijarnos en el p-value de cada variable en la tabla 2.

Se puede ver de manera clara que la variable Urban tiene un p-value demasiado alto, lo que nos invita a aceptar la hipótesis de que $\beta_2 = 0$. Las demás variables si parecen ser repsentativas debido al bajo valor.

1.4. Inciso e)

Al ajustar un modelo ahora usando solo las variables Price y US, los coeficientes se muestran en la tabla ??

	Coef.	Std.Err.	t	\$P (¿—t—)\$	[0.025	0.975]
Intercept	13.030793	0.630976	20.651794	7.001379e-65	11.79032	14.271265
US)[T.Yes] [T.Yes]	1.199643	0.258461	4.641485	4.707187e-06	0.69152	1.707766
Price	-0.054478	0.005230	-10.416123	1.272157e-22	-0.06476	-0.044195

Tabla 3: Parámetros del modelo lineal sin la variable Urban

1.5. Inciso f)

Podemos comparar ambos modelos al analizar sus estadísticas, que se muestran en la tabla 4

	Model	R-squared	AIC	BIC	Log-Likelihood	F-statistic
0	Sales $^{\sim}$ Price + C(Urban) + C(US)		1863.312074		-927.656037	
1	Sales $^{\sim}$ Price + C(US)	0.239263	1861.318648	1873.293042	-927.659324	62.431138

Tabla 4: Comaparción de modelos

Notemos que el coeficiente R^2 de ambos tiene el mismo valor en tres cifras significativas. Fijándonos solo en ese indicador, podríamos pensar que no hay una mejora sustancial del modelo. Explícitamente, su diferencia tiene el valor de $1.25\cdot 10^{-5}$

Por otro lado, la estadística F tiene un cambio sustancial, que en su pobabilidad se ve reflejada en un orden de magnitud. Nuevamente, eso podría parecer significativo pero el cambio en los ordenes de magnitud de $\mathbb{P}(F)$ va de 10^{-23} a 10^{-24} , lo cual, tomando en cuenta el error numérico de la aritmética de punto flotante, no es realmente representativo.

En cuanto a los p-values de ambos modelos, notamos que el modelo sin la variable US al menos cuenta con la propiedad de que todos sus p-values son muy bajos.

En resumen, concluyo que no hay una mejora sustancial en el nuevo modelo.

1.6. Inciso g)

Los intervalos de confianza para $\alpha=0.05$ para el modelo sin la variable Urban se pueden encontrar en la tabla 5

	L	U
Intercept	11.790320	14.271265
C (US)[T.Yes]	0.691520	1.707766
Price	-0.064760	-0.044195

Tabla 5: Intervalos de confianza para el modelo sin Urban

1.7. Inciso h)

Para analizar si existen outliers o puntos de alta influencia, podemos analizar las gráficas de residuales que se muestran a continuación.

Figura 1: Residuales como función del valor ajustado

Figura 2: Residuales como función del índice

En principio, aunque hay una gran cantidad de puntos que tienen un residuo grande, no hay ninguo que destaque en particular por tener un residuo demasiado alejado de los otros. Pensando que este es uno de los mejores criterios para encontrar outliers, podemos concluir que en realidad no existen dichos puntos en nuestro conjunto de datos.

Podemos ver más figuras del sistema para confirmar dicho hecho:

Figura 3: Ajuste y CCPR

Component-Component Residuals

Figura 4: Residuales para cada variable

Figura 5: qq-plot para los cuantiles de los residuales

En ninguno de estos puntos detectamos outliers en nuestros datos. Por otro lado, para intentar verificar si existen puntos de alta influencia podemos ver la gráfica del coeficiente H en la figura 6

Figura 6: qq-plot para los cuantiles de los residuales

Pensando en la gráfica del coeficiente H, aunque tienen un valor pequeño, nos señala a los puntos de datos 42,174 y 165 como posibles puntos de alta influencia. Podemos ver explícitamente sus valores en la base de datos en la tabla 6

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban
42	10.43	77	69	0	25	24	Medium	50	18	Yes
174	0.00	139	24	0	358	185	Medium	79	15	No
165	0.37	147	58	7	100	191	Bad	27	15	Yes

Tabla 6: Posibles puntos de alta influencia

Es claro que todos tiene un valor inusual de Price, pero no afirmaría que ninguno es de alta influencia debido a que su coeficiente H sigue siendo bastante pequeño relativo a los valores esperados para puntos de alto impacto $(H \ge 0.2)$ [1].

2. Ejercicio 1: Problema 10, capítulo 3 [1]

2.1. Inciso a)

Generamos los datos de manera aleatoria como indica el problema y como se muestra en el anexo 2 del reporte, para obtener los datos que muestra en la tabla 7

	x1	x2	У
0	0.417022	0.240074	2.949735
1	0.720324	0.157942	3.261717
2	0.000114	-0.030563	3.322517
3	0.302333	0.233964	2.387546
4	0.146756	0.096387	3.002498

Tabla 7: Posibles puntos de alta influencia

Nosotros sabemos que los datos tienen la forma:

$$y = \beta_0 + \beta_1 \cdot x1 + \beta_2 \cdot x2 + \epsilon$$

$$= 2 + 2 \cdot x1 + 0.3 \cdot x2 + \epsilon$$

$$= 2 + 2 \cdot x1 + 0.3 \cdot 0.5 \cdot x1 + \epsilon$$

$$= 2 + 2.15 \cdot x1 + \epsilon$$
(2)

2.2. Inciso b)

La figura 7 muestra un scatter plot entre x1 y x2 así como su correlación

Figura 7: Correlación entre x1 y x2

Aunque, debido a la escala, en la gráfica no se vea de manera muy clara, existe una alta correlación entre ambos puntos, Esto se asenta como un hecho cuando vemos que el valor de \mathbb{R}^2 es sumamente alto.

2.3. Inciso c)

Procedemos a realizar una regresión lineal tomando en cuenta ambas variables, para obtener los coeficientes de la tabla 8

	Coef.	Std.Err.	t	\$P (¿—t—)\$	[0.025	0.975]
Intercept	2.189284	0.198655	11.020556	8.532403e-19	1.795010	2.583559
x1	0.704629	0.636765	1.106575	2.712146e-01	-0.559175	1.968432
x2	2.502405	1.140433	2.194259	3.060418e-02	0.238962	4.765848

Tabla 8: Coeficientes para el modelo lineal de ambas variables

El valor de los coeficientes obtenidos es sumamente distinto de la ecuación 2. En particular, β_1 está muy lejos en valor porcentual del verdadero valor. Fijandonos en los p-values, podríamos aceptar

la hipótesis de $\beta_1 = 0$ y quizá también la de $\beta_2 = 0$. Sin embargo, aunque no es suficientemente bajo, el p-value de β_2 esta un orden de magnitud abajo del de β_1 , lo que complica la desición de aceptar $\beta_2 = 0$.

2.4. Inciso d)

Tomando en cuenta solo a x1, obtenemos los coeficientes de la tabla 9

	Coef.	Std.Err.	t	\$P (¿—t—)\$	[0.025	0.975]
Intercept x1				2.942644e-19 6.683125e-07		

Tabla 9: Coeficientes para el modelo lineal de x1

Es claro que los p-values son sumamente bajos, lo que implica rechazar la hipótesis de que $\beta_1 = 0$.

2.5. Inciso e)

Por último, tomando en cuenta solo a x2, obtenemos los coeficientes de la tabla 10

	Coef.	Std.Err.	t	\$P (¿—t—)\$	[0.025	0.975]
Intercept x2				2.952030e-21 1.090964e-07		

Tabla 10: Coeficientes para el modelo lineal de x2

Nuevamente nos inclinamos a rechazar $\beta_1 = 0$ debido al bajo p-value.

2.6. Inciso f)

Para comparar los tres modelos, podemos ver la tabla ?? que compara las estadísticas imporantes de los tres modelos

Model	R-squared	AIC	BIC	Log-Likelihood	F-statistic	Prob (F-statistic)
y~x1 +x2	0.260508	290.679208	298.494719	-142.339604	17.085577	4.398146e-07
y~x1	0.223802	293.523632	298.733973	-144.761816	28.256462	6.683125 e-07
y ~x2	0.251173	289.933686	295.144026	-142.966843	32.871342	1.090964 e-07

Tabla 11: Comparación de modelos

Notemos que ni el \mathbb{R}^2 ni el logaritmo de la verosimilitud muestran una mejora sustancial entre los modelos, aunque cabe señalar que el de dos variables tiene el mayor valor. El valor de la estadística F para los tres si tiene un valor distinto, pero la prueba P(>F) no cambia sustancialmente, por lo que nuevamente no encontramos diferencia significativa entre los modelos

La respuesta a la pregunta de si estos resultados de los tres incisos anteriores son consistentes entre sí, en principio, pareciera ser que no, que existe una inconsistencia entre ambos.

Sin embargo, retomando el hecho de que los puntos son colineales y fueron generados añadiendo números aleatorios con distribución normal, se puede explicar que la alta correlación entre sus variables hace más inestable la regresión y hace difícil de comparar la aceptación u rechazo de hipótesis entre los tres casos.

2.7. Inciso g)

Si añadimos una observación (x1, x2, y) = (0.1, 0.8, 0.6), podemos primero visualizar el valor en el plano x1 - x2, mostrado en la figura 8, para entender si será un punto de alta influencia.

Figura 8: Nueva observación

Parece ser un dato muy alejado de los valores normales de las otras observaciones, por lo que podría considerarse de alta influencia. Para ver si también es un outlier, podemos realizar los mismos ajustes anteriores:

	Coef.	Std.Err.	t	\$P (¿—t—)\$	[0.025	0.975]
Intercept	2.167608	0.205090	10.569045	7.071833e-18	1.760613	2.574603
x1	1.725411	0.535528	3.221884	1.729105e-03	0.662672	2.788149
x2	0.529136	0.917938	0.576440	5.656396e-01	-1.292483	2.350755

Tabla 12: Coeficientes para el nuevo modelo lineal de ambas variables

	Coef.	Std.Err.	t	\$P (¿—t—)\$	[0.025	0.975]
Intercept	2.192032	0.199988	10.960836	8.877601e-19	1.795213	2.588851
x1	1.956577	0.353723	5.531375	2.595173e-07	1.254713	2.658441

Tabla 13: Coeficientes para el nuevo modelo lineal de x1

	Coef.	Std.Err.	t	\$P (¿—t—)\$	[0.025	0.975]
Intercept x2				9.275744e-22 3.849638e-05		

Tabla 14: Coeficientes para el nuevo modelo lineal de x2

Analizamos ahora el residual estandarizado del nuevo punto en todos los modelos:

Modelo	Residual estandarizado
$y \sim x1 + x2$	-20.8429
$y \sim x1$	-17.1936
$y \sim x2$	-36.8806

Tabla 15: Residual estandarizado

El valor de su residual estandarizado es muy alto para todos los ajustes, cosa que nos indica también que el punto parece ser un outlier. De ambos valores, podemos concluir que el punto es tanto un outlier como un punto de alta influencia: sus valores tanto en y como en x1,x2 son inusuales para los del conjunto de datos.

En general, también observamos que R^2 y la estadística F no mejoraron mucho para estos ajustes en comparación con los anteriores. La diferencia más interesante entre estos ajustes y los realizados anteriormente se encuentra en los p-values del ajuste de las dos variables, pues aquí ya no nos permite rechazar la hipótesis de que $\beta_1 = 0$ de manera tan sencilla.

Los coeficientes del modelo de dos variables también mejoran, aunque no sustancialemente, para asemejarse al modelo original.

3. Ejercicio 2

Tenemos 23137 observaciones de 14 variables, de las cuales queremos usar 13, todas categóricas, para estimar 1 llamada "Crash_Score". Los datos se pueden observar en la tabla 17

	Crash_Score	year	Month	Time_of_Day	Rd_Feature	Rd_Character Rd_	.Class Rd_Configu	rat Rod _S
0	6.56	2016	6	2	NONE	STRAIGHT- STA		SMO
						LEVEL HW	Y WAY- PROTECT MEDIAN	ASPI ED-
1	6.53	2016	6	3	NONE	STRAIGHT- OTI LEVEL	HER TWO- WAY-NO- MEDIAN	COA ASPI
2	1.58	2016	6	5	NONE	STRAIGHT- STA LEVEL HW	ATE TWO-	SMO ASPI
3	7.15	2016	6	3	NONE	STRAIGHT- OTI LEVEL		SMO ASPI
4	9.57	2016	6	6	NONE	STRAIGHT- OTI LEVEL		COA ASPI

Tabla 16: Conjunto de datos

Queremos encontrar un modelo lineal que ajuste de manera buena los datos. Antes de querer tomar un modelo arbitrario, al estar tratando con variables categóricas, debemos tomar alguna como referencia para cada categoría.

Ya que en principio las distribución del Crash_Score puede cambiar entre categorías de la misma variable, realizamos boxplots e histogramas de el valor del Crash_Score para cada categoría. A continuación mostramos dos gráficas para categorías distintas en las figuras 9 y 10

Figura 9: Boxplot e histograma para variable year

Figura 10: Boxplot e histograma para variable Weather

Antes que cualquier cosa, la forma del boxplot nos indica que la distribución de la variable no es simétrica. Esto provoca que el análisis inmediato de dichas gráficas no sea tan sencillo. En la figura 9 se ve claramente que la distribución por año no tiene ninguna diferencia observable, mientras que en la figura 10 la única distribución que destaca es la de la categoría "OTHER", lo cual se explica en el hecho de que ahí puede haber observaciones o bien mal catalogadas o difíciles de predecir.

Para ver si existe alguna influencia del tiempo, podemos ver el valor del Crash_Score como función del tiempo para una variable de tiempo en unidades arbitrarias definida como (year -2014) · $12 \cdot 6 + \text{Month} \cdot 6 + \text{Time_of_Day}$. La figura 11 muestra dicha gráfica.

Figura 11: Crash_Score como función del tiempo

Es claro que no parece haber ninguna relación simple entre el tiempo y el valor del Crash_Score. Así, dado que estas observaciones no permiten escoger objetivamente categorías de referencia, se tuvieron que escoger con justificaciones arbitrarias o de sentido común. La tabla ?? muestra la

categoría de referencia para todas las variables

Variable	Referencia	Justificación		
year	2014	Arbitrario		
Month	10	Mes sin vacacio- nes escolares o personales		
Time_of_Day	4	Horario con hora de comida y no sobrecargado		
Rd_Feature	NONE	Comparar con caminos normales		
Rd_Character	STRAIGHT-LEVEL	Compara con caminos sin peralte o curvas		
Rd_Class	OTHER	Arbitrario		
Rd_Configuration	TWO-WAY-UNPROTECTED-MEDIAN	Camino más representativo		
$Rd_Surface$	SMOOTH ASPHALT	Material más representativo		
$Rd_Conditions$	OTHER	Arbitrario		
Light	DAYLIGHT	Luz más estándar		
Weather	CLEAR	Clima más estándar		
$Traffic_Control$	NONE	Arbitrario		
$Work_Area$	NO	Quitar influencia por tráfico		

Tabla 17: Referencias para cada variable categórica

Se ajustaron en total 7 modelos a los datos, cuyas ecuaciones mostramos a continuación

Modelo	Ecuación								
0									
	+ Rd_Configuration + Rd_Surface T + Rd_Conditions + Light + Weather + Traf-								
	fic_Control + Work_Area								
1	Crash_Score_boxcox_0_27 + year + Month + Time_of_Day + Rd_Feature + Rd_Character								
	$+ Rd_{-}Class + Rd_{-}Configuration + Rd_{-}Surface T + Rd_{-}Conditions + Light + Weather +$								
	Traffic_Control + Work_Area								
2	Crash_Score_boxcox_0_27 + Time_of_Day + Rd_Feature + Rd_Character + Rd_Class +								
	Rd_Surface T + Light + Traffic_Control								
3	Crash_Score_boxcox_0_27 + Rd_Class + Traffic_Control + Time_of_Day*Light +								
	Rd_Feature*Rd_Character*Rd_Surface								
4	Crash_Score_boxcox_0_27 + Rd_Class + Traffic_Control								
	+ Rd_Feature*Rd_Character*Rd_Surface*Time_of_Day +								
-	Rd_Feature*Rd_Character*Rd_Surface*Light								
5	Crash_Score_boxcox_0_27 + Rd_Class + Traffic_Control + Rd_Feature+ Rd_Character+								
	Rd_Surface+ Time_of_Day+ Light+ Rd_Feature:Rd_Character+ Rd_Feature:Rd_Surface+ Rd_Feature:Time_of_Day+ Rd_Character:Time_of_Day+ Rd_Surface:Time_of_Day+								
	Rd_Feature:Light+ Rd_Character:Light+ Rd_Feature:Rd_Character:Rd_Surface+								
	Rd_Feature:Rd_Surface:Time_of_Day+ Rd_Feature:Rd_Character:Light+								
	Rd_Feature:Rd_Character:Rd_Surface:Light								
6	Crash_Score_boxcox_0_27 + Rd_Class + Traffic_Control + Rd_Feature+ Rd_Character+								
Ü	Rd_Surface+ Time_of_Day+ Light+ Rd_Feature:Rd_Character+ Rd_Feature:Rd_Surface+								
	Rd_Surface:Time_of_Day+ Rd_Character:Light+ Rd_Feature:Rd_Surface:Time_of_Day+								
	Rd_Feature:Rd_Character:Rd_Surface:Light								
	· · · · · · · · · · · · · · · · · · ·								

Tabla 18: Ecuaciones de cada modelo

La variable "Crash_Score_boxcox_0_27" representa a "Crash_Score" después de haber realizado un transformación Box-Cox con $\lambda=0.27$. Se tomó ese valor de lambda pues ese era el que maximizaba el logaritmo de la verosimilitud, como se muestra en la figura 12

Figura 12: verosimilitud como función de λ para transformaciones boxcox de la variable Crash_Score

Empezamos en el modelo 0, un modelo lineal normal, y luego pasamos al modelo 1 haciendo la transformación boxcox. Para pasar al modelo 2, buscábamos reducir las variables.

Para reducir variables, se utilizó también un script de R que, utilizando la función stepstats, reducía las variables de modelo hasta obtener un conjunto más pequeño fijándose en el criterio AIC. Las variables que quedaron en el modelo fueron Time_of_Day, Rd_Feature, Rd_Character, Rd_Class, Rd_Surface T, Light y Traffic_Control. Este resultado también era consistente con el análisis ANOVA de las variables para el modelo 1. El modelo 2 trabajaba exactamente con estas variables de manera lineal.

Los modelos 3-6 trabajan con las mismas variables pero realizando distintas interacciones. Las interacciones fueron definidas de manera arbitraria, aunque se buscó que interactuaran entre ellas variables que no tiene mucha relación en el plano semántico (Time_of_Day con las características del camino, por ejemplo)

Para analizar a fondo la representabilidad de las variables de cada modelo, remitimos al lector al anexo 1 del presente trabajo donde se muestran las tablas ANOVA de cada modelo. No se pueden presentar las tablas de los p-values e intervalos de confianza de todas las variables ya que, al codificarse en variables dummies, el número de variables crece considerablemente y no es posible incluir esa información en el presente trabajo

Finalmente, presentamos la siguiente tabla comparando todos los modelos realizados

	R-squared	AIC	BIC	Log-Likelihood	F-statistic	Prob (F-statistic)
model						
0	0.017116	132646.376793	133121.278906	-66264.188397	6.929017	2.266000e-52
1	0.019800	67662.540049	68137.442161	-33772.270024	8.037371	2.602486e-64
2	0.018763	67630.995836	67880.520674	-33784.497918	14.727664	5.746884e-74
3	0.026283	67707.006692	68978.778451	-33695.503346	3.950638	2.687955e-55
4	0.048653	68165.253070	73445.520625	-33426.626535	1.755272	1.614963e-28
5	0.040874	67983.678981	71774.846693	-33520.839491	2.055153	2.346331e-35
6	0.039879	67953.659358	71527.498984	-33532.829679	2.127681	4.934881e-37

Tabla 19: Comparación de modelos

Fijándo la atención en el parámetro R^2 , es claro que el modelo 4 presenta el valor más grande de este parámetro. Para P(>F), dicho modelo no presenta el mejor valor. En cuanto al logaritmo de la verosimilitud, es claro que el modelo 4 también presenta el máximo valor de todos los otros modelos. Revisando su qaplot en la figura 13, confirmamos su adecuación.

Figura 13: Q-Q Plot de los residuales del modelo 4

Así, podemos concluir que el modelo 4 presenta el mejor ajuste y, tomando en cuenta el valor \mathbb{R}^2 , es el que presenta mayor estabilidad para predicción. Lo distintivo del model es que toma en cuenta las interacciones de la luz del día y la hora con las características del camino. Podemos interpretar que estas interacciones son las más significativas a la hora de predecir cuando puede darse un accidente de tráfico: cuando las características climáticas y la visibilidad, representadas por la luz del día, al igual que el tráfico, representado por la hora, interactúan con las características del camino.

Anexo 1: Tablas Anova y de Coeficientes de los modelos del ejercicio $\mathbf 2$

${\bf Modelo} \ {\bf 0}$

	df	sum_sq	mean_sq	F	\$P (¿F\$)
Variable					
year	5.0000	61.5800	12.3160	0.6827	0.6366
Month	11.0000	101.7591	9.2508	0.5128	0.8962
$Time_of_Day$	5.0000	751.2592	150.2518	8.3282	0.0000
Rd_Feature	4.0000	2485.7422	621.4356	34.4453	0.0000
Rd_Character	6.0000	292.0400	48.6733	2.6979	0.0128
$Rd_{-}Class$	2.0000	2045.5863	1022.7931	56.6919	0.0000
Rd_Configuration	4.0000	17.1126	4.2781	0.2371	0.9175
Rd_Surface	4.0000	188.2856	47.0714	2.6091	0.0337
Rd_Conditions	3.0000	20.4264	6.8088	0.3774	0.7693
Light	5.0000	661.0898	132.2180	7.3286	0.0000
Weather	4.0000	119.5621	29.8905	1.6568	0.1570
Traffic_Control	4.0000	400.3357	100.0839	5.5475	0.0002
Work_Area	1.0000	105.6916	105.6916	5.8583	0.0155
Residual	23078.0000	416355.9220	18.0412	NaN	NaN

Tabla 21: ANOVA para modelo 0

${\bf Modelo}~{\bf 1}$

	df	sum_sq	mean_sq	F	\$P (¿F\$)
Variable		_			ν- ,
year	5.0000	2.6001	0.5200	0.4781	0.7929
Month	11.0000	4.5389	0.4126	0.3794	0.9646
Time_of_Day	5.0000	69.2948	13.8590	12.7423	0.0000
Rd_Feature	4.0000	165.8339	41.4585	38.1180	0.0000
Rd_Character	6.0000	30.6552	5.1092	4.6975	0.0001
Rd_Class	2.0000	111.0778	55.5389	51.0639	0.0000
$Rd_{-}Configuration$	4.0000	0.9758	0.2439	0.2243	0.9250
$Rd_Surface$	4.0000	15.9737	3.9934	3.6717	0.0054
$Rd_{-}Conditions$	3.0000	1.4278	0.4759	0.4376	0.7261
Light	5.0000	55.8626	11.1725	10.2723	0.0000
Weather	4.0000	8.6196	2.1549	1.9813	0.0944
Traffic_Control	4.0000	38.0889	9.5222	8.7550	0.0000
$Work_Area$	1.0000	2.0712	2.0712	1.9043	0.1676
Residual	23078.0000	25100.4577	1.0876	NaN	NaN

Tabla 23: ANOVA para modelo 1

Modelo 2

	df	sum_sq	mean_sq	F	\$P (¿F\$)
Variable					
Time_of_Day	5.0000	68.4482	13.6896	12.5886	0.0000
$Rd_{-}Feature$	4.0000	166.2881	41.5720	38.2283	0.0000
Rd_Character	6.0000	30.1610	5.0268	4.6225	0.0001
$Rd_{-}Class$	2.0000	111.2879	55.6439	51.1684	0.0000
Rd_Surface	4.0000	15.0100	3.7525	3.4507	0.0080
Light	5.0000	51.9180	10.3836	9.5484	0.0000
$Traffic_Control$	4.0000	37.3621	9.3405	8.5893	0.0000
Residual	23106.0000	25127.0029	1.0875	NaN	NaN

Tabla 25: ANOVA para modelo $2\,$

Modelo 3

	df	sum_sq	mean_sq	F	\$P (¿F\$)
Variable					ν- ,
Rd_Class	2.0000	174.9344	87.4672	80.6077	0.0000
$Traffic_Control$	4.0000	112.3334	28.0833	25.8809	0.0000
Time_of_Day	5.0000	65.1064	13.0213	12.0001	0.0000
Light	5.0000	51.4740	10.2948	9.4874	0.0000
$Rd_Feature$	4.0000	39.8064	9.9516	9.1712	0.0000
$Rd_{-}Character$	6.0000	23.6664	3.9444	3.6351	0.0013
$Rd_Surface$	4.0000	13.1543	3.2886	3.0307	0.0165
: Time_of_Day : Light	25.0000	41.8994	1.6760	1.5445	0.0404
$: Rd_Feature : Rd_Character$	24.0000	39.1408	1.6309	1.5030	0.0542
$: Rd_Feature : Rd_Surface$	16.0000	30.5494	1.9093	1.7596	0.0304
: Rd_Character : Rd_Surface	24.0000	18.2593	0.7608	0.7011	0.8559
: Rd_Feature : Rd_Character :	96.0000	120.3806	1.2540	1.1556	0.1419
Rd_Surface					
Residual	22979.0000	24934.4466	1.0851	NaN	NaN

Tabla 27: ANOVA para modelo 3

Modelo 4

	df	sum_sq	mean_sq	F	\$P (¿F\$)
Variable		_	_		ν- ,
Rd_Class	2.0000	174.9344	87.4672	80.7151	0.0000
Traffic_Control	4.0000	112.3334	28.0833	25.9154	0.0000
Rd_Feature	4.0000	40.4497	10.1124	9.3318	0.0000
Rd_Character	6.0000	29.5477	4.9246	4.5445	0.0001
Rd_Surface	4.0000	13.3979	3.3495	3.0909	0.0149
Time_of_Day	5.0000	61.2545	12.2509	11.3052	0.0000
Light	5.0000	48.5578	9.7116	8.9619	0.0000
: Rd_Feature : Rd_Character	24.0000	39.9091	1.6629	1.5345	0.0456
: Rd_Feature : Rd_Surface	16.0000	26.0955	1.6310	1.5051	0.0879
$: Rd_Character : Rd_Surface$	24.0000	22.6416	0.9434	0.8706	0.6450
: Rd_Feature : Time_of_Day	20.0000	27.7317	1.3866	1.2795	0.1799
: Rd_Character : Time_of_Day	30.0000	38.7420	1.2914	1.1917	0.2165
: Rd_Surface : Time_of_Day	20.0000	30.8236	1.5412	1.4222	0.0994
: Rd_Feature : Light	20.0000	30.3820	1.5191	1.4018	0.1087
: Rd_Character : Light	30.0000	50.4859	1.6829	1.5530	0.0274
: Rd_Surface : Light	20.0000	18.9922	0.9496	0.8763	0.6186
$: Rd_Feature : Rd_Character : \\$	96.0000	106.9679	1.1142	1.0282	0.4047
Rd_Surface					
: Rd_Feature : Rd_Character : Ti-	120.0000	127.7655	1.0647	0.9825	0.5371
me_of_Day					
: Rd_Feature : Rd_Surface : Ti-	80.0000	111.8225	1.3978	1.2899	0.0419
me_of_Day					
: Rd_Character : Rd_Surface : Ti-	120.0000	120.3298	1.0027	0.9253	0.7085
me_of_Day					
$: Rd_Feature : Rd_Character : Light \\$	120.0000	135.3034	1.1275	1.0405	0.3627
$: Rd_Feature : Rd_Surface : Light$	80.0000	82.2389	1.0280	0.9486	0.6093
$: Rd_Character : Rd_Surface : Light \\$	120.0000	124.2919	1.0358	0.9558	0.6193
: $Rd_Feature$: $Rd_Character$:	480.0000	484.3093	1.0090	0.9311	0.8557
Rd_Surface : Tim					
: $Rd_Feature$: $Rd_Character$:	480.0000	594.1913	1.2379	1.1423	0.0177
Rd_Surface : Light					
Residual	22481.0000	24361.5993	1.0837	NaN	NaN

Tabla 29: ANOVA para modelo $4\,$

Modelo 5

	df	$\operatorname{sum_sq}$	mean_sq	F	\$P (¿F\$)
Variable					
Rd_Class	2.0000	174.9344	87.4672	80.7193	0.0000
Traffic_Control	4.0000	112.3334	28.0833	25.9168	0.0000

	df	sum_sq	mean_sq	F	\$P (¿F\$)
Variable					
$Rd_{-}Feature$	4.0000	40.4497	10.1124	9.3323	0.0000
Rd_Character	6.0000	29.5477	4.9246	4.5447	0.0001
Rd_Surface	4.0000	13.3979	3.3495	3.0911	0.0149
Time_of_Day	5.0000	61.2545	12.2509	11.3058	0.0000
Light	5.0000	48.5578	9.7116	8.9623	0.0000
$: Rd_Feature : Rd_Character$	24.0000	39.9091	1.6629	1.5346	0.0456
$: Rd_Feature : Rd_Surface$	16.0000	26.0955	1.6310	1.5051	0.0878
: Rd_Feature : Time_of_Day	20.0000	27.0867	1.3543	1.2499	0.2017
: Rd_Character : Time_of_Day	30.0000	27.9352	0.9312	0.8593	0.6862
: Rd_Surface : Time_of_Day	20.0000	33.3872	1.6694	1.5406	0.0578
: Rd_Feature : Light	20.0000	29.9218	1.4961	1.3807	0.1190
: Rd_Character : Light	30.0000	47.6300	1.5877	1.4652	0.0483
$: Rd_Feature : Rd_Character :$	120.0000	131.8752	1.0990	1.0142	0.4397
Rd_Surface					
: Rd_Feature : Rd_Surface : Ti-	80.0000	112.4661	1.4058	1.2974	0.0385
me_of_Day					
: Rd_Feature : Rd_Character : Light	120.0000	134.2030	1.1184	1.0321	0.3867
: Rd_Feature : Rd_Character :	700.0000	681.6559	0.9738	0.8987	0.9725
Rd_Surface : Light					
Residual	22666.0000	24560.8083	1.0836	NaN	NaN

Tabla 31: ANOVA para modelo $5\,$

Modelo 6

	df	sum_sq	mean_sq	F	\$P (¿F\$)
Variable					. ,
Rd_Class	2.0000	174.9344	87.4672	80.7317	0.0000
Traffic_Control	4.0000	112.3334	28.0833	25.9208	0.0000
Rd_Feature	4.0000	40.4497	10.1124	9.3337	0.0000
Rd_Character	6.0000	29.5477	4.9246	4.5454	0.0001
Rd_Surface	4.0000	13.3979	3.3495	3.0916	0.0148
Time_of_Day	5.0000	61.2545	12.2509	11.3075	0.0000
Light	5.0000	48.5578	9.7116	8.9637	0.0000
: Rd_Feature : Rd_Character	24.0000	39.9091	1.6629	1.5348	0.0456
: Rd_Feature : Rd_Surface	16.0000	26.0955	1.6310	1.5054	0.0878
: Rd_Surface : Time_of_Day	20.0000	32.7552	1.6378	1.5116	0.0663
: Rd_Character : Light	30.0000	44.8885	1.4963	1.3811	0.0802
: Rd_Feature : Rd_Surface : Ti-	100.0000	139.8376	1.3984	1.2907	0.0271
me_of_Day					

Continued on next page

Variable	df	sum_sq	mean_sq	F	\$P (¿F\$)
: Rd_Feature : Rd_Character : Rd_Surface : Light	960.0000	1056.2630	1.1003	1.0155	0.3646
Residual	22693.0000	24586.2776	1.0834	NaN	NaN

Tabla 33: ANOVA para modelo 6

Anexo 2: código en Python de los problemas

```
2 # ## Librerias y definiciones necesarias
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import pandas as pd
6 import statsmodels.api as sm
7 import statsmodels.formula.api
                                    as smf
8 import os
9 if not(os.path.isdir("tarea")):
      os.mkdir("tarea")
 def cleanVarName(var):
      if len(var) > 1:
13
          if var[0] == "C" and var[1] == "(":
               if len(var.split("[")) > 1:
15
                   return var.split(",")[0][2:] + " [" + var.split
    ("[")[1]
               else:
17
                   return var.split(",")[0][2:]
18
          elif len(var.split(":")) > 1:
19
              fin = ""
               for v in var.split(":"):
21
                   fin += " : " + v
              return fin
          else:
              return var
25
      else:
26
          return var
 def significanceTable(fit):
      df = pd.DataFrame(columns = ["R-squared",
2.9
                                     "AIC",
30
                                     "BIC",
                                     "Log-Likelihood",
                                     "F-statistic",
```

```
"Prob (F-statistic)"])
34
      df.loc[0]=[fit.rsquared,
35
      fit.aic,
36
      fit.bic,
37
      fit.llf,
      fit.fvalue,
39
      fit.f_pvalue]
40
      return df
 def coefficientTable(fit):
      df = fit.summary2().tables[1]
43
      df = df.rename(columns = {"P>|t|":"$P(> |t|)$"})
      df.index = [cleanVarName(var) for var in df.index]
      return df
 def anovaTable(fit):
      df = sm.stats.anova_lm(fit)
      df = df.rename(columns={"PR(>F)":"$P (> F$)"})
50
      df.index = [cleanVarName(var) for var in df.index]
51
      df.index.name = "Variable"
      return df
 def comparisonTable(fits):
      dfs = [significanceTable(fit) for fit in fits]
      df = dfs[0]
      for i in range(1,len(dfs)):
          df.loc[i] = dfs[i].iloc[0]
      formulas = [fit.model.formula for fit in fits]
      df.insert(loc=0,column="Model",value=formulas)
      return df
61
62
64 # ## Ejercicio 1. Problema 10
65 df = pd.read_csv("carseats.csv", header=0)
 df.head().to_latex("tarea/1-data.tex")
68 fit = smf.ols(formula="Sales ~ Price + C(Urban) + C(US)",
                data=df).fit()
 print(fit.summary())
71
 coefficientTable(fit)
 coefficientTable(fit).to_latex(buf="tarea/1-mod1.tex")
75
_{76} fit2 = smf.ols(
      formula="Sales ~ Price + C(US)",
      data=df).fit()
79 print(fit2.summary())
```

```
s1 coefficientTable(fit2).to_latex(buf="tarea/1-mod2.tex")
comparisonTable([fit,fit2]).to_latex(buf="tarea/1-modCompar.tex
84 abs(fit.rsquared - fit2.rsquared)
86 print(fit2.conf_int(alpha = 0.05))
a = 0.5
89 fig = plt.figure(figsize=(6,4))
90 plt.scatter(fit2.predict(),fit2.resid.tolist(),alpha = a)
91 plt.ylabel("Residuals")
92 plt.xlabel("Fitted Sales")
93 plt.title("Residual Plot")
94 plt.grid()
95 plt.tight_layout()
96 plt.savefig("tarea/1-resplot.pdf")
97 plt.show()
99 fig = plt.figure(figsize=(10,4))
100 n = len(fit2.resid.tolist())
plt.scatter(range(n), fit2.resid.tolist(), alpha = a)
102 \text{ plt.plot}([0,n],[0,0],c="k",lw=3,ls="--", alpha = a)
103 plt.ylabel("Residuals")
104 plt.xlabel("Index")
105 plt.title("Residual Series")
106 plt.grid()
107 plt.tight_layout()
plt.savefig("tarea/1-restimeplot.pdf")
109 plt.show()
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_ccpr_grid(fit2,fig=fig)
113 for ax in fig.axes:
      ax.grid()
115 fig.suptitle("Component-Component Residuals", x=0.5, y=1.05,
     fontsize=20, ha="center")
plt.tight_layout()
fig.savefig("tarea/1-compcomp.pdf",bbox_inches="tight")
fig = plt.figure(figsize=(12,8))
120 fig = sm.graphics.plot_regress_exog(fit2,"Price",fig=fig)
121 for ax in fig.axes:
      ax.grid()
123 plt.tight_layout()
```

```
plt.savefig("tarea/1-regdiag.pdf")
126 fig, ax = plt.subplots(figsize=(12,8))
127 fig = sm.graphics.influence_plot(fit2, ax=ax)
128 plt.grid()
129 plt.tight_layout()
plt.savefig("tarea/1-influence.pdf")
131 plt.show()
sm.graphics.qqplot(fit2.resid)
134 plt.title("Q-Q plot of predicted values")
135 plt.grid()
136 plt.tight_layout()
plt.savefig("tarea/1-qqplot.pdf")
138 plt.show()
140 df.iloc[[42,174,165],:].to_latex(buf="tarea/1-outliers.tex")
141
143 # ## Ejercicio 1. Problema 14
144 np.random.seed(1)
145 x1 = np.random.uniform(size=100)
146 \times 2 = 0.5 \times 1 + np.random.randn(100)/10
y = 2 + 2*x1 + 0.3*x2 + np.random.randn(100)
148 df = pd.DataFrame()
_{149} df["x1"] = x1
_{150} df["x2"] = x2
df["y"] = y
df.head().to_latex(buf="tarea/2-data.tex")
print(df.head())
155 df.plot.scatter(x="x1",y="x2")
156 plt.grid()
157 plt.title(u"Correlaci n entre x1 y x2")
plt.savefig("tarea/2-corr.pdf")
_{159} cor = np.corrcoef(x1,x2)[0][1]
  plt.text(0.8,0.0, "R^2={0}".format(round(cor,5)),
           va = "top",
161
           ha = "center",
162
      bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))
164 plt.tight_layout()
plt.savefig("tarea/2-corr.pdf")
166 plt.show()
168 formulas = ["y ~ x1 +x2", "y ~ x1", "y ~x2"]
169 fits = [ smf.ols(formula = form , data=df).fit() for form in
```

```
formulasl
  for fit in fits:
      print(fit.summary())
171
      print()
172
      print()
      print(fit.pvalues)
174
      print()
      print()
      coefficientTable(fit).to_latex(buf = "tarea/2-mod{0}.tex".
177
     format(fits.index(fit)+1))
178
  comparisonTable(fits).to_latex(buf="tarea/2-modComp.tex",index=
     False)
180
df.loc[100] = [0.1,0.8,0.6]
182 df.tail()
183
184 df.iloc[1:100].plot.scatter(x="x1",y="x2",label="data")
plt.scatter([0.1],[0.8],c="C1",label="New point")
186 plt.legend()
187 plt.grid()
188 plt.title("Plano x-y")
189 plt.tight_layout()
plt.savefig("tarea/2-newData.pdf")
  plt.show()
  fit.resid
194
195 fits = [ smf.ols(formula = form , data=df).fit() for form in
     formulas]
  for fit in fits:
196
      print(fit.summary())
      print()
      print()
199
      print(fit.pvalues)
200
      print()
201
      print()
202
      print( fit.resid[100] / ( fit.resid.std() / np.sqrt(101) )
203
      coefficientTable(fit).to_latex(buf = "tarea/2-newMod{0}.tex
204
     ".format(fits.index(fit)+1))
205
206
207 # ## Problema 2
208 df = pd.read_csv("June_13_data.csv",header=0)
209 df=df.astype({'year': 'object', "Month": "object", "Time_of_Day":"
```

```
object"})
  df
211
_{212} par = ["p{2cm}" for i in range(10)]
213 colFormat = "ccccc"
214 for p in par:
       colFormat += p
  df.head().to_latex(buf="tarea/3-data.tex",column_format=
     colFormat)
217
218 cols = df.columns.tolist()
  for col in cols:
       if col != "Crash_Score":
            nb = 30
221
            fig, ax = plt.subplots(ncols=2,nrows=1,figsize=(12,6))
            df.boxplot(column="Crash_Score",
223
                                  by=col,
224
                                   fontsize=16,
225
                                  figsize = (10, 10),
                                  rot = 45,
227
                                   ax = ax[0]
228
            )
229
            for value in set(df[col]):
230
                 df[df[col] == value]["Crash_Score"].hist(alpha=0.5,
231
                                                               ax=ax[1],
232
                                                               label=str(
233
     value),
                                                               bins = nb,
234
                                                               density=True
235
                 )
236
            ax[1].legend()
237
            ax[1].set_title("Histogram")
238
            plt.tight_layout()
            plt.savefig("tarea/3-{0}Hist.pdf".format(col))
240
            plt.show()
            plt.close()
242
            \Pi \cap \Pi \cap \Pi
243
            hist = df.hist(column="Crash_Score",
244
                               by=col,
245
                               figsize = (8,8),
246
                               bins=nb,
247
                               sharex=True,
248
                               sharey=True,
249
                               density = True,
251
            for a in hist.flat:
252
```

```
a.grid()
           plt.tight_layout()
254
           plt.show()
           plt.close()
256
           \Pi_{-}\Pi_{-}\Pi
258
  df1 = df[["Crash_Score","year","Month","Time_of_Day"]]
  df1["time"]=(df1["year"]-df1["year"].min())*12*6 + (df1["Month"
     ]-1)*6 + df["Time_of_Day"]-1
261 df1.plot.scatter(y="Crash_Score",x="time",figsize=(14,6),alpha
     =0.3)
262 times = list(set(df1["time"]))
  cs_avg = []
  for t in times:
      avg = df1[df1["time"]==t]["Crash_Score"].mean()
      cs_avg.append(avg)
plt.plot(times,cs_avg,color = "C1",alpha=0.8)
268 plt.grid()
269 plt.title("Serie de tiempo", fontsize=24)
270 plt.xlabel("Tiempo",fontsize=20)
plt.ylabel("Crash_Score",fontsize=20)
272 plt.xticks(fontsize=18)
273 plt.yticks(fontsize=18)
274 plt.tight_layout()
plt.savefig("tarea/3-timeplot.pdf")
276 plt.show()
  refers = {
278
       "year": "2014",
       "Month": "10",
280
       "Time_of_Day":"4",
281
       "Rd_Feature": "NONE",
282
       "Rd_Character": "STRAIGHT-LEVEL",
       "Rd_Class": "OTHER",
284
       "Rd_Configuration": "TWO-WAY-UNPROTECTED-MEDIAN",
285
       "Rd_Surface": "SMOOTH ASPHALT",
286
       "Rd_Conditions":"OTHER",
       "Light": "DAYLIGHT",
288
       "Weather": "CLEAR",
289
       "Traffic_Control": "NONE"
       "Work_Area":"NO"
291
292
294 cols = df.columns.tolist()
295 model = "Crash_Score
296 for col in cols:
```

```
if col != "Crash_Score":
                               if col == "year" or col =="Month" or col=="Time_of_Day"
298
                                          model+=(" + C({0}, Treatment({1}))".format(col,
299
               refers[col]))
                               else:
300
                                           model += (" + C({0}, Treatment('{1}'))".format(col,
301
               refers[col]))
302
303
304 print("Model to try:")
      print()
      print(model)
306
307
308 \text{ models} = []
mod = smf.ols(formula=model,data=df)
      models.append(mod.fit())
311
      print(models[-1].summary().tables[0])
      print(anovaTable(models[-1]))
314
      import scipy.stats as st
st.boxcox_normplot(df["Crash_Score"],-3.0,4.0,plot=plt)
318 plt.grid()
319 plt.tight_layout()
graph strain strai
      plt.show()
322
      st.boxcox_normmax(df["Crash_Score"],brack=(-3.0,4.0))
324
325 lmax = st.boxcox(df["Crash_Score"])[1]
326 df1 = df.copy()
      df1["Crash_Score"] = st.boxcox(df1["Crash_Score"],lmax)
      df1.rename(columns={'Crash_Score':'Crash_Score_boxcox_0_27'},
               inplace=True)
      cols = df1.columns.tolist()
      model = "Crash_Score_boxcox_0_27
      for col in cols:
                  if col != "Crash_Score_boxcox_0_27":
333
                               if col == "year" or col =="Month" or col=="Time_of_Day"
334
                                          model+=(" + C({0}, Treatment({1}))".format(col,
               refers[col]))
                               else:
336
```

```
model += (" + C({0}, Treatment('{1}'))".format(col,
     refers[col]))
338
  print("Model to try:")
  print()
  print(model)
342
mod = smf.ols(formula=model,data=df1)
344 models.append(mod.fit())
  print(models[-1].summary().tables[0])
  print(anovaTable(models[-1]))
348 necesary = ["Time_of_Day",
349 "Rd_Feature",
350 "Rd_Character",
351 "Rd_Class",
352 "Rd_Surface",
353 "Light",
354 "Traffic_Control"]
355 model = "Crash_Score_boxcox_0_27 ~ "
356 model1= ""
  for col in necesary:
       if col == "year" or col == "Month" or col == "Time_of_Day":
           model+=(" + C({0}, Treatment({1}))".format(col, refers[
359
     col]))
       else:
           model+=(" + C({0}, Treatment('{1}'))".format(col, refers[
361
     col]))
362 model1 = model1[1:]
  print("Model to try:")
  print()
  print(model)
367
368 mod = smf.ols(formula=model,data=df1)
369 models.append(mod.fit())
  models[-1].summary().tables[0]
371
372 necesary = [#"Time_of_Day",
373 #"Rd_Feature",
374 #"Rd_Character",
375 "Rd_Class",
376 #"Rd_Surface",
377 #"Light",
378 "Traffic_Control"]
379 inter1 = "Time_of_Day*Light"
```

```
380 inter2 = "Rd_Feature*Rd_Character*Rd_Surface"
381 model = "Crash_Score_boxcox_0_27 ~ "
382 model1= ""
  for col in necesary:
       if col == "year" or col =="Month" or col=="Time_of_Day":
           model+=(" + C({0}, Treatment({1}))".format(col, refers[
385
     col]))
      else:
           model+=(" + C({0}, Treatment('{1}'))".format(col, refers[
     col]))
388
389 model1 = inter1 + " + " + inter2
  model += " + " + model1
391
392 print("Model to try:")
393 print()
394 print(model)
  mod = smf.ols(formula=model,data=df1)
  models.append(mod.fit())
398
  models[-1].summary().tables[0]
400
  sm.stats.anova_lm(models[-1])
401
402
403 necesary = [#"Time_of_Day",
404 #"Rd_Feature",
405 #"Rd_Character",
406 "Rd_Class",
407 #"Rd_Surface",
408 #"Light",
409 "Traffic_Control"]
410 inter1 = "Rd_Feature*Rd_Character*Rd_Surface*Time_of_Day"
411 inter2 = "Rd_Feature*Rd_Character*Rd_Surface*Light"
412 model = "Crash_Score_boxcox_0_27 ~ "
413 model1= ""
414 for col in necesary:
       if col == "year" or col =="Month" or col=="Time_of_Day":
415
           model+=(" + C({0}, Treatment({1}))".format(col, refers[
416
     col]))
      else:
417
           model+=(" + C({0}, Treatment('{1}'))".format(col, refers[
418
     col]))
_{420} \text{ model1} = \text{inter1} + " + " + \text{inter2}
_{421} \text{ model} += " + " + \text{model1}
```

```
422 print("Model to try:")
423 print()
424 print (model)
  mod = smf.ols(formula=model,data=df1)
  models.append(mod.fit())
428
  models[-1].summary().tables[0]
  tab = sm.stats.anova_lm(models[-1])
431
  print(tab)
434 sm.graphics.qqplot(models[-1].resid)
435 plt.title("Q-Q plot of predicted values")
436 plt.grid()
437 plt.tight_layout()
438 plt.savefig("tarea/3-qqplot4.pdf")
439 plt.show()
441 model = ""
442 for var in tab.index.tolist():
      if tab.loc[var, "PR(>F)"] <= 0.5:</pre>
           model += "+ " + var
445 model = "Crash_Score_boxcox_0_27 ~ " + model
446
447 print("Model to try:")
448 print()
449 print(model)
450
  mod = smf.ols(formula=model,data=df1)
  models.append(mod.fit())
453
  models[-1].summary().tables[0]
455
456 model = ""
  for var in tab.index.tolist():
      if tab.loc[var, "PR(>F)"] <= 0.1:</pre>
           model += "+ " + var
459
  model = "Crash_Score_boxcox_0_27 ~ " + model
460
462 print("Model to try:")
463 print()
  print(model)
466 mod = smf.ols(formula=model,data=df1)
467 models.append(mod.fit())
```

```
models[-1].summary().tables[0]
469
470
  for model in models:
471
      i = models.index(model)
      coefficientTable(model).to_latex(buf="tarea/3-mod{0}Cof.tex
473
     ".format(i),column_format="p{4cm}cccccc",longtable=True,
     float_format = "%.4f")
      anovaTable(model).to_latex(buf="tarea/3-mod{0}Anova.tex".
     format(i),column_format="p{6cm}lccccc",longtable=True,
     float_format = "%.4f")
476 tab = comparisonTable(models).drop("Model",axis="columns")
477 tab.index.name="model"
478 tab.to_latex(buf="tarea/3-comparison.tex",column_format="
     lrrrrrr")
```

Referencias

[1] Hastie et al. An Introduction to Statitistical Learning. Editorial Springer. Séptima edición. 2013.