

Bayesian Convolutional neural network

Bruno Bonaiuto Bolivar Probabilistic Machine Learning 2022-2023

Introduction

- Artificial Neural Networks
- Layers
- •MLP vs Convolutional neural networks
- Convolution Layer

1,	1 _{×0}	1,	0	0
0 ×0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

The Probabilistic Approach

- Variational Inference
 - The predictive distribution

$$p(y^*|x^*, X, Y) = \int p(y^*|f^*)p(f^*|x^*, w)p(w|X, Y)df^*dw.$$

The KL divergence

$$q(y^*|x^*) = \int p(y^*|f^*)p(f^*|x^*, w)q(w)df^*dw.$$

 Minimising the KL divergence is equivalent to maximising the log evidence lower bound

$$KL_{VI} := \int q(w)p(F|X, w)\log p(Y|F)dFdw - KL(q(w)||p(w))$$

The Probabilistic Approach

- Bayesian approach for Neural Networks
 - Bayes by backprop.

$$\theta^{opt} = \underset{\theta}{\operatorname{arg \ min}} \ \operatorname{KL} \left[q_{\theta}(w|\mathcal{D}) || p(w|\mathcal{D}) \right]$$
$$= \underset{\theta}{\operatorname{arg \ min}} \ \operatorname{KL} \left[q_{\theta}(w|\mathcal{D}) || p(w) \right]$$
$$- \mathbb{E}_{q(w|\theta)} [\log p(\mathcal{D}|w)] + \log p(\mathcal{D})$$

KL
$$[q_{\theta}(w|\mathcal{D})||p(w)] = \int q_{\theta}(w|\mathcal{D}) \log \frac{q_{\theta}(w|\mathcal{D})}{p(w)} dw.$$

- Some Related work
 - Gal and Ghahramani (2015) framework for modelling Bayesian uncertainty.

Bayesian Convolutional Neural Network

The local reparameterization trick

- Applying two sequential convolutional operations (Mean and Variance)
- Model pruning

Bayesian Convolutional Neural Network

- The Data sets
 - MNIST

MNIST_corrupted

The deterministic approach

The probabilistic approach

Bayesian Convolutional Neural Network

•B-CNN

References

- [1] Y. Gal and Z. Ghahramani, "Bayesian convolutional neural networks with bernoulli approximate variational inference," 2016.
- [2] Z. Ul Abideen, M. Ghafoor, K. Munir, M. Saqib, A. Ullah, T. Zia, S. A. Tariq, G. Ahmed, and A. Zahra, "Uncertainty assisted robust tuberculosis identification with bayesian convolutional neural networks," *IEEE Access*, vol. 8, pp. 22812–22825, 2020.
- [3] K. Shridhar, F. Laumann, and M. Liwicki, "A comprehensive guide to bayesian convolutional neural network with variational inference," 2019.