STRONGLY SINGULAR CONVOLUTION OPERATORS ON Rd

NEIL LYALL

These are convolution operators whose kernels are too singular at the origin to fall under the theory of Calderón and Zygmund, and clearly must have built-in oscillation in order to extend to bounded operators on $L^2(\mathbf{R}^d)$. What is of interest here is the precise relationship between the size of the singularity and the size of the oscillation.

Let K_{α} be a distribution on \mathbf{R}^d that away from the origin agrees with the function

$$K_{\alpha}(x) = |x|^{-d-\alpha} e^{i|x|^{-\beta}} \chi(|x|),$$

where $\beta > 0$ and χ is smooth and compactly supported in a small neighborhood of the origin (say where $|x| \leq \frac{1}{10}$). The distribution-valued function $\alpha \mapsto K_{\alpha}$, initially defined for Re $\alpha < 0$, continues analytically to the entire complex plane¹.

Theorem [7],[2]. If $\alpha > 0$, then the operator $T_E f(x) = f * K_{\alpha}(x)$, defined initially for test functions, extends to a bounded operator on $L^p(\mathbf{R}^d)$ whenever $\left|\frac{1}{p} - \frac{1}{2}\right| \leq \frac{1}{2} - \frac{\alpha}{d\beta}$.

The counterexample showing that this result is sharp is due to Wainger as is sufficiency up to the endpoints. The endpoint questions were settled later; for $\alpha = 0$ Fefferman in [1] showed that T_E extends to an operator of weak type (1,1) and later in [2] Fefferman and Stein showed that T_E in fact extends to a bounded operator from $H^1(\mathbf{R}^d)$ to $L^1(\mathbf{R}^d)$. The sufficient half of the Theorem then follows by interpolation with the $L^2(\mathbf{R}^d)$ result below (and duality).

Lemma 1. If $\alpha \leq \frac{d\beta}{2}$ then T_E extends to a bounded operator from $L^2(\mathbf{R}^d)$ to itself.

Sketch of proof. Since T_E is translation invariant it may be realized as a Fourier multiplier,

$$\widehat{T_E f}(\xi) = \widehat{f}(\xi) \cdot m(\xi),$$

where $\widehat{}$ denotes the Fourier transform and $m = \widehat{K_{\alpha}}$, the fact that K_{α} is a compactly supported distribution ensures that $m(\xi)$ is a function. Plancherel's theorem then implies that

$$||T_E f||_{L^2(\mathbf{R}^d)} \le C||f||_{L^2(\mathbf{R}^d)}$$
 if and only if $|m(\xi)| \le C$, uniformly in ξ .

Since K_{α} is also radial we have

$$m(\xi) = (2\pi)^{\frac{d}{2}} |\xi|^{\frac{2-d}{2}} \int_0^\infty K_0(r) J_{\frac{d-2}{2}}(r|\xi|) r^{\frac{d}{2}} dr,$$

where $J_{\frac{d-2}{2}}$ is a Bessel function; see [6]. Using the well known asymptotic properties of these functions it follows that for large $|\xi|$,

$$m(\xi) = c_1 |\xi|^{\frac{\alpha - \frac{d\beta}{\beta}}{\beta + 1}} e^{ic_2 |\xi|^{\frac{\beta}{\beta + 1}}} + O(|\xi|^{\frac{\alpha - \frac{d+1}{\beta}\beta}{\beta + 1}}),$$

and in particular, since $m(\xi)$ remains bounded for small ξ , that $|m(\xi)| \leq C(1+|\xi|)^{\frac{\alpha-\frac{d\beta}{2}}{\beta+1}}$.

We have in fact shown that $||T_E f||_{L^2(\mathbf{R}^d)} \leq C||f||_{L^2(\mathbf{R}^d)}$ if and only if $\alpha \leq \frac{d\beta}{2}$.

Lemma 2. If $\alpha = 0$ then T_E extends to a bounded operator from $H^1(\mathbf{R}^d)$ to $L^1(\mathbf{R}^d)$.

¹ Continue analytically the function $K_z^{\varepsilon}(x) = e^{-\varepsilon |x|^{-\beta}} K_z(x)$ via integration by parts and then let $\varepsilon \to 0$.

2 NEIL LYALL

Sketch of proof. For any f in $H^1(\mathbf{R}^d)$ we have the atomic decomposition

$$f = \sum_{Q} \lambda_Q a_Q$$
 where $\sum_{Q} |\lambda_Q| \sim ||f||_{H^1(\mathbf{R}^d)}$,

and the individual atoms satisfy the following;

(i) supp
$$a_Q \subset Q$$
 (ii) $||a_Q||_{\infty} \le |Q|^{-1}$ (iii) $\int a_Q(x)dx = 0$.

As a consequence of this characterization of H^1 it suffices to check that for an individual atom a_Q

$$\int |Ta_Q(x)|dx \le C,$$

where C is independent of a_Q . Since T is translation–invariant, we assume that $a=a_Q$ is supported in a cube centered at the origin. If $Q^*=2Q$, then Cauchy–Schwarz and Lemma 1 imply that

$$\int_{Q^*} |Ta(x)| dx \le C|Q^*|^{\frac{1}{2}} ||a||_2 \le C|Q^*|^{\frac{1}{2}} |Q|^{-\frac{1}{2}} \le C.$$

Let $\ell = \ell(Q)$ denote the sidelength of Q. Now if $\ell \geq 1$ then it follows from the compact support of our kernel K that supp $Ta \subset Q^*$, from the argument above our result follows in this case. We may now assume that $\ell < 1$.

Let us first look at x in the complement of the following, yet to be determined, exceptional set

$$\mathcal{E}_O = \{x : |x| \le \ell^\gamma\}.$$

Now it is straightforward to see, using the cancellation of our atom a, that

$$\int_{x\notin\mathcal{E}_Q}|Ta(x)|dx\leq\int|a(y)|\int_{x\notin\mathcal{E}_Q}|K(x-y)-K(x)|dx\,dy\leq C\ell\int_{x\notin\mathcal{E}_Q}|x|^{-d-\beta-1}dx\leq C\ell^{1-\gamma(\beta+1)}.$$

In view of the calculation above we now fix our exceptional set \mathcal{E}_Q with $\gamma = \frac{1}{\beta+1}$. It remains to consider those x in \mathcal{E}_Q , we shall as usual use an L^2 result, namely Lemma 1.

$$\int_{\mathcal{E}_{Q}} |Ta(x)| dx \leq |\mathcal{E}_{Q}|^{\frac{1}{2}} ||Ta||_{2} \leq C|Q|^{\frac{1}{2}\frac{1}{\beta+1}} ||T\Lambda_{\frac{d\beta}{2(\beta+1)}} \Lambda_{-\frac{d\beta}{2(\beta+1)}} a||_{2} \leq C|Q|^{\frac{1}{2}\frac{1}{\beta+1}} ||\Lambda_{-\frac{d\beta}{2(\beta+1)}} a||_{2},$$

where Λ_n is the Bessel potential of order n defined on the transform side by $\widehat{\Lambda_n f}(\xi) = (1+|\xi|^2)^{\frac{n}{2}} \widehat{f}(\xi)$. Now, as $\frac{d\beta}{2(\beta+1)} < d$, we can dominate $\Lambda_{-\frac{d\beta}{2(\beta+1)}} f$ by the fractional integral $f * |x|^{-d+\frac{d\beta}{2(\beta+1)}}$. Therefore, by the Hardy–Littlewood–Sobolev inequality, we have that

$$\|\Lambda_{-\frac{d\beta}{2(\beta+1)}}a\|_2 \le C\|a\|_{p(d)}$$
 where $\frac{1}{p(d)} = \frac{1}{2} + \frac{1}{2}\frac{\beta}{\beta+1}$,

and hence

$$\int_{\mathcal{E}_Q} |Ta(x)| dx \le C|Q|^{\frac{1}{2}\frac{1}{\beta+1}} ||a||_{p(d)} \le C|Q|^{\frac{1}{2}\frac{1}{\beta+1}} |Q|^{-1+\frac{1}{p(d)}} \le C.$$

REFERENCES

- 1. Fefferman, C., Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36.
- Fefferman, C. and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137–193.
- 3. Hirschman, I. I., Multiplier Transforms I, Duke Math. J. 26 (1956), 222–242.
- Seeger, A., C. D. Sogge and E. M. Stein, Regularity properties of Fourier integral operators, Ann. of Math. 134 (1991), 231–251.
- 5. Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press (1993).
- 6. Stein, E. M. and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press (1971).
- 7. Wainger, S., Special Trigonometric Series in k Dimensions, Memoirs of the AMS #59, American Math. Society.