

# Kurs:Mathematik für Anwender/Teil I/56/Klausur







Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Punkte 330251233104 2 3 0 3 4 3 0 3 54

#### Aufgabe \* (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Eine Abbildung  $oldsymbol{F}$  von einer Menge  $oldsymbol{L}$  in eine Menge  $oldsymbol{M}$ .
- 2. Ein *Polynom* über einem Körper  $m{K}$  in einer Variablen  $m{X}$ .

3. Das Maximum der Funktion

$$f:M\longrightarrow \mathbb{R}$$

wird im Punkt  $x \in M$  angenommen.

4. Eine Treppenfunktion

$$f:I\longrightarrow \mathbb{R}$$

auf einem beschränkten reellen Intervall  $I\subseteq\mathbb{R}$ .

- 5. Eine *Linearkombination* in einem K-Vektorraum.
- 6. Die geometrische Vielfachheit von einem Eigenwert  $\lambda$  zu einer linearen Abbildung

$$arphi \colon V \longrightarrow V$$

auf einem endlichdimensionalen K-Vektorraum V.

## Aufgabe \* (3 Punkte)

Formuliere die folgenden Sätze.

1. Das Folgenkriterium für die Stetigkeit einer Abbildung

$$f:D\longrightarrow \mathbb{R}$$

in einem Punkt

$$x \in D$$
.

2. Die wichtigsten Eigenschaften des natürlichen Logarithmus.

3. Die Formel für die Stammfunktion der Umkehrfunktion.

## **Aufgabe** (0 Punkte)

## Aufgabe \* (2 Punkte)

Bestimme, welche der beiden rationalen Zahlen p und q größer ist.

$$p = rac{573}{-1234} ext{ und } q = rac{-2007}{4322}.$$

# Aufgabe \* (5 Punkte)

Zeige, dass die komplexen Zahlen einen Körper bilden.

#### Aufgabe \* (1 Punkt)

Bestimme die Lösungsmenge des Ungleichungssystems

$$3x \geq -8$$

und

$$7x \leq 10$$

über Q.

## Aufgabe \* (2 Punkte)

Bestimme den minimalen Wert der reellen Funktion

$$f(x) = x^2 - 3x + \frac{4}{3}$$
.

#### Aufgabe \* (3 Punkte)

Es sei  $c\in K_+$  ein Element in einem angeordneten Körper K und sei  $(x_n)_{n\in\mathbb{N}}$  die Heron-Folge zur Berechnung von  $\sqrt{c}$  mit dem Startwert  $x_0\in K_+$ . Sei  $u\in K_+$ ,  $d=c\cdot u^2$ ,  $y_0=ux_0$  und  $(y_n)_{n\in\mathbb{N}}$  die Heron-Folge zur Berechnung von  $\sqrt{d}$  mit dem Startwert  $y_0$ . Zeige

$$y_n=ux_n$$

für alle  $n \in \mathbb{N}$ .

## Aufgabe \* (3 Punkte)

Bestimme die Schnittpunkte des Einheitskreises mit der Standardparabel.

## Aufgabe \* (10 (1+1+1+3+2+2) Punkte)

Wir betrachten die Abbildung

$$f: \mathbb{R}_{\geq 1} \longrightarrow \mathbb{R}_{\geq 1},$$

die durch

$$f(x) := \left\{ egin{array}{l} rac{2}{x} \,, ext{ falls } x \leq 2 \,, \ rac{x}{2} \,, ext{ falls } x > 2 \,, \end{array} 
ight.$$

definiert ist.

- 1. Skizziere den Graphen der Funktion.
- 2. Zeige, dass  $\boldsymbol{f}$  wohldefiniert ist.
- 3. Bestimme die Fixpunkte von f.
- 4. Bestimme die Fixpunkte von der Hintereinanderschaltung  $f \circ f$ .
- 5. Zeige, dass  $m{f}$  stetig ist.
- 6. Was hat die Abbildung mit der Halbierung eines Blatt Papieres zu tun?

# Aufgabe \* (4 Punkte)

Von einem Rechteck sind der Umfang  $oldsymbol{U}$  und die Fläche  $oldsymbol{A}$  bekannt. Bestimme die Längen der Seiten des Rechtecks.

## Aufgabe \* (2 Punkte)

Bestimme den Grenzwert

$$\lim_{x\to 1} \frac{x-1}{\ln x}$$
.

# Aufgabe \* (3 Punkte)

Berechne das bestimmte Integral

$$\int_0^1 rac{r}{\sqrt{1-r^2}} dr.$$

# **Aufgabe** (0 Punkte)

## Aufgabe \* (3 Punkte)

Beweise die Additionstheoreme für den Sinus und den Kosinus unter Verwendung von Drehmatrizen.

#### Aufgabe \* (4 Punkte)

Beweise das Eliminationslemma für ein inhomogenes lineares Gleichungssystem in  $m{n}$  Variablen über einem Körper  $m{K}$ .

#### **Aufgabe (3 Punkte)**

Es sei K ein Körper und V ein K-Vektorraum mit endlicher Dimension  $n=\dim(V)$ . Es seien n Vektoren  $v_1,\ldots,v_n$  in V gegeben. Zeige, dass die folgenden Eigenschaften äquivalent sind.

- 1.  $v_1, \ldots, v_n$  bilden eine Basis von V.
- 2.  $v_1, \ldots, v_n$  bilden ein Erzeugendensystem von V.
- 3.  $v_1, \ldots, v_n$  sind linear unabhängig.

#### **Aufgabe (0 Punkte)**

## Aufgabe \* (3 Punkte)

Es sei  $\varphi: V \to V$  eine lineare Abbildung auf dem K-Vektorraum V, es seien  $a,b \in K$  mit  $a \neq 0$  und es sei  $a \operatorname{Id}_V$  die Streckung zu a. Zeige, dass b genau dann ein Eigenwert zu  $\varphi$  ist, wenn ab ein Eigenwert zur Hintereinanderschaltung  $a \operatorname{Id}_V \circ \varphi$  ist.

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ₺, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht