ECE 509: Convex Optimization

Homework #6

March 21, 2024

Name: Ravi Raghavan Extension: No

Rutgers: Spring 2024

Problem 1. Pre-computation for line searches. For each of the following functions, explain how the computational cost of a line search can be reduced by a pre-computation. Give the cost of the pre-computation, and the cost of evaluating $g(t) = f(x + t\Delta x)$ and g'(t) with and without the pre-computation.

(a)
$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

Solution. In Exact Line Search, our goal is to minimize $\tilde{f}(t) = f(x + t\Delta x)$

$$\tilde{f}(t) = -\sum_{i=1}^{m} \log (b_i - a_i^T(x + t\Delta x))$$

$$\tilde{f}(t) = -\sum_{i=1}^{m} \log \left(b_i - a_i^T x - a_i^T t \Delta x\right)$$

$$\tilde{f}'(t) = -\sum_{i=1}^{m} \frac{-a_i^T \Delta x}{\log(b_i - a_i^T (x + t \Delta x)))}$$

$$\tilde{f}'(t) = -\sum_{i=1}^{m} \frac{-a_i^T \Delta x}{\log(b_i - a_i^T x - a_i^T t \Delta x))}$$

Let n be the size of each a_i and x. Let's say we are testing out k values of t.

Precomputation:

Computing $b_i - a_i^T x$ for $i \in [1, m]$ takes 2n operations per i.

Computing $a_i^T \Delta x$ for $i \in [1, m]$ takes 2n - 1 operations per i

Hence, there are a total of m(4n-1) = O(mn) operations in pre-computation

Cost without Precomputation($\tilde{f}(t)$):

Computing $x + t\Delta x$ takes a total of 2n operations. Computing $a_i^T(x + t\Delta x)$ takes a total of 4n - 1 operations. $b_i - (a_i^T(x + t\Delta x))$ takes 4n operations. $\log(b_i - a_i^T(x + t\Delta x))$ takes 4n + 1

 $\sum_{i=1}^{m} \log (b_i - a_i^T(x + t\Delta x))$ takes m(4n+1) operations.

Taking the inverse of this sum will require m(4n+1)+1 operations

Since we are testing out k values of t, this requires 4mnk + mk + k

Cost without Precomputation $(\tilde{f}'(t))$:

Computing $x + t\Delta x$ takes a total of 2n operations. Computing $a_i^T(x + t\Delta x)$ takes a total of 4n - 1 operations. $b_i - (a_i^T(x + t\Delta x))$ takes 4n operations. $\log(b_i - a_i^T(x + t\Delta x))$ takes 4n + 1. Computing $-a_i^T\Delta x$ takes 2n operations

Calculating $\frac{-a_i^T \Delta x}{\log (b_i - a_i^T (x + t \Delta x)))}$ takes 6n + 2

 $\sum_{i=1}^{m} \log (b_i - a_i^T(x + t\Delta x)) \text{ takes } m(6n+2) \text{ operations.}$

Taking the inverse of this sum will require m(6n + 2) + 1 operations

Since we are testing out k values of t, this requires 6mnk + 2mk + k

Cost with Precomputation($\tilde{f}(t)$):

Computing $\log(b_i - a_i^T x - a_i^T t \Delta x)$ takes 3 operations. $\sum_{i=1}^m \log(b_i - a_i^T x - a_i^T t \Delta x)$ takes 3m operations. Taking the inverse of this sum will require 3m+1 operations

Since we are testing out k values of t, this requires 3mk + k

Cost with Precomputation($\tilde{f}'(t)$):

 $\overline{\text{Computing } \frac{-a_i^T \Delta x}{\log(b_i - a_i^T x - a_i^T t \Delta x))} \text{ takes 5 operations.}}$

 $\sum_{i=1}^{m} \frac{-a_i^T \Delta x}{\log (b_i - a_i^T x - a_i^T t \Delta x)}$ takes 5m operations. Taking the inverse of this sum will require 5m + 1

Since we are testing out k values of t, this requires 5mk + k

(b)
$$f(x) = \log(\sum_{i=1}^{m} \exp(a_i^T x + b_i))$$

Solution. In Exact Line Search, our goal is to minimize $\tilde{f}(t) = f(x + t\Delta x)$

$$\tilde{f}(t) = \log(\sum_{i=1}^{m} \exp(a_i^T(x + t\Delta x) + b_i))$$

$$\tilde{f}(t) = \log(\sum_{i=1}^{m} \exp(a_i^T x + a_i^T t \Delta x + b_i))$$

$$\tilde{f}(t) = \log(\sum_{i=1}^{m} \exp(a_i^T x + b_i + a_i^T t \Delta x))$$

$$\tilde{f}'(t) = \log(\sum_{i=1}^{m} \exp(a_i^T(x + t\Delta x) + b_i)(a_i^T \Delta x))$$

$$\tilde{f}'(t) = \log(\sum_{i=1}^{m} \exp(a_i^T x + b_i + a_i^T t \Delta x)(a_i^T \Delta x))$$

Let n be the size of each a_i and x. Let's say we are testing out k values of t.

Precomputation:

Computing $a_i^T x + b_i$ for $i \in [1, m]$ takes 2n operations per i. Computing $a_i^T \Delta x$ for $i \in [1, m]$ takes 2n - 1 operations per i

Hence, there are a total of m(4n-1) = O(mn) operations in pre-computation

Cost without Precomputation($\tilde{f}(t)$):

Computing $x + t\Delta x$ takes a total of 2n operations. Computing $a_i^T(x + t\Delta x)$ takes a total of 4n - 1operations. $a_i^T(x+t\Delta x) + b_i$ takes 4n operations. $\exp(a_i^T(x+t\Delta x) + b_i)$ takes 4n+1

$$\sum_{i=1}^{m} \exp(a_i^T(x+t\Delta x) + b_i) \text{ takes } m(4n+1) \text{ operations.}$$

Taking the log of this sum will require m(4n+1)+1 operations

Since we are testing out k values of t, this requires 4mnk + mk + k

Cost without Precomputation($\tilde{f}'(t)$):

Computing $x + t\Delta x$ takes a total of 2n operations. Computing $a_i^T(x + t\Delta x)$ takes a total of 4n - 1operations. $a_i^T(x + t\Delta x) + b_i$ takes 4n operations. $\exp(a_i^T(x + t\Delta x) + b_i)$ takes 4n + 1. $\exp(a_i^T(x + t\Delta x) + b_i)(a_i^T\Delta x)$ takes 4n + 2

Calculating $\sum_{i=1}^{m} \exp(a_i^T(x+t\Delta x)+b_i)$ takes m(4n+2) operations.

Taking the log of this sum will require m(4n+2)+1 operations

Since we are testing out k values of t, this requires 4mnk + 2mk + k

Cost with Precomputation($\tilde{f}(t)$):

Computing $\exp(a_i^Tx + b_i + a_i^Tt\Delta x)$ takes 3 operations. $\sum_{i=1}^m \exp(a_i^Tx + b_i + a_i^Tt\Delta x)$ takes 3m operations. Taking the log of this sum will require 3m+1 operations

Since we are testing out k values of t, this requires 3mk + k

Cost with Precomputation($\tilde{f}'(t)$): Computing $\exp(a_i^T x + b_i + a_i^T t \Delta x)(a_i^T \Delta x)$ takes 4 operations.

 $(\sum_{i=1}^m \exp(a_i^Tx + b_i + a_i^Tt\Delta x)(a_i^T\Delta x))$ takes 4m operations. Taking the log of this sum will require 4m+1 operations

Since we are testing out k values of t, this requires 4mk + k

Problem 2. True or False.

- (a) False
- (b) True
- (c) False
- (d) True
- (e) False
- (f) True
- (g) False