
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Tue May 29 13:50:20 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: 10578839 Version No: 1.0

Input Set:

Output Set:

Started: 2007-05-25 20:45:23.036 **Finished:** 2007-05-25 20:45:24.394

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 358 ms

Total Warnings: 10

Total Errors: 0

No. of SeqIDs Defined: 11

Actual SeqID Count: 11

Error code		or code	Error Descript	ion								
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)

SEQUENCE LISTINGS

<110>	INJE UNIVERSITY	
<120>	CANCER CELL TARGETING GENE DELIVERY METHOD	
<130>	Q94769	
<140>	10578839	
<150>	US 10/578,839	
<151>	2006-05-10	
<150>	KR 10-2003-0079897	
<151>	2003-11-12	
<150>	PCT/KR2004/000545	
<151>	2004-03-15	
<160>	11	
<170>	KopatentIn 1.71	
<210>	1	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Env F primer	
<400>		36
egeggat	ccg aattccatac ctggtgttgc tgacta	30
<210>	2	
<211>	47	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	597LN primer	
. 100		
<400>		47
agetgga	acct ggctgccacc acctccgcta ttttggtccc attttac	4 /
<210>	3	
<211>	49	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	LC597 primer	

```
<400>
        3
caaccccgcc gcaggtggag gaggcagtga atggactcaa aaatttcaa
                                                                   49
<210>
        4
        35
<211>
<212>
      DNA
<213>
        Artificial Sequence
<220>
<223>
        Spike R2 primer
<400>
         4
tgctctagaa ttcttaaagg ttaccttcgt tctct
                                                                   35
<210>
        5
<211>
        36
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
       LnkNScFv primer
<400>
ggaggtggtg gcagccaggt ccagctagtg cagtct
                                                                   36
<210>
        6
<211>
        36
<212>
        DNA
<213>
      Artificial Sequence
<220>
<223>
        ScFvLnkC primer
<400>
        6
                                                                   36
actgcctcct ccacctgcgg cggggttgaa gtccca
<210>
        7
        2058
<211>
<212>
        DNA
<213>
        Gibbon Ape leukemia virus
<220>
<221>
        sig_peptide
<222>
        (1)..(126)
<220>
<221>
      misc_feature
<222>
        (127)..(1467)
```

<220>

<221> misc_feature

<222> (1468)..(2025)

<223> transmembrain domain

<400> 7

atggtattgc tgcctgggtc catgcttctc acctcaaacc tgcaccacct tcggcaccag 60 atgagtcctg ggagctggaa aagactgatc atcctcttaa gctgcgtatt cggcggcggc gggacgagtc tgcaaaataa gaacccccac cagcccatga ccctcacttg gcaggtactg teceaaactg gagaegttgt etgggataea aaggeagtee ageeecettg gaettggtgg 240 cccacactta aacctgatgt atgtgccttg gcggctagtc ttgagtcctg ggatatcccg 300 ggaaccgatg tetegteete taaacgagte agaceteegg aeteagaeta taetgeeget 360 tataagcaaa tcacctgggg agccataggg tgcagctacc ctcgggctag gactagaatg 420 gcaagctcta ccttctacgt atgtccccgg gatggccgga ccctttcaga agctagaagg 480 tgcggggggc tagaatccct atactgtaaa gaatgggatt gtgagaccac ggggaccggt 540 tattggctat ctaaatcctc aaaagacctc ataactgtaa aatgggacca aaatagcgaa 600 tggactcaaa aatttcaaca gtgtcaccag accggctggt gtaaccccct taaaatagat ttcacagaca aaggaaaatt atccaaggac tggataacgg gaaaaacctg gggattaaga 720 ttctatgtgt ctggacatcc aggcgtacag ttcaccattc gcttaaaaat caccaacatg 780 ccagctgtgg cagtaggtcc tgacctcgtc cttgtggaac aaggacctcc tagaacgtcc 840 ctcgctctcc cacctcctct tcccccaagg gaagcgccac cgccatctct ccccgactct 900 aactccacag ccctggcgac tagtgcacaa actcccacgg tgagaaaaac aattgttacc ctaaacactc cgcctcccac cacaggcgac agactttttg atcttgtgca gggggccttc 1020 ctaaccttaa atgctaccaa cccaggggcc actgagtctt gctggctttg tttggccatg 1080 ggccccctt attatgaagc aatagcctca tcaggagagg tcgcctactc caccgacctt 1140 1200 gaccggtgcc gctgggggac ccaaggaaag ctcaccctca ctgaggtctc aggacacggg ttgtgcatag gaaaggtgcc ctttacccat cagcatctct gcaatcagac cctatccatc 1260 aatteeteeg gagaecatea gtatetgete eeeteeaace atagetggtg ggettgeage 1320 actggcctca ccccttgcct ctccacctca gtttttaatc agactagaga tttctgtatc 1380 caggtccagc tgattcctcg catctattac tatcctgaag aagttttgtt acaggcctat 1440

```
gacaattete acceeaggae taaaagagag getgteteae ttaceetage tgttttaetg 1500
gggttgggaa tcacggcggg aataggtact ggttcaactg ccttaattaa aggacctata
                                                                   1560
gacctccagc aaggcctgac aagcctccag atcgccatag atgctgacct ccgggccctc
                                                                   1620
caagactcag tcagcaagtt agaggactca ctgacttccc tgtccgaggt agtgctccaa
                                                                   1680
aataggagag gccttgactt gctgtttcta aaagaaggtg gcctctgtgc ggccctaaag
                                                                   1740
gaagagtgct gtttttacat agaccactca ggtgcagtac gggactccat gaaaaaactc
                                                                   1800
aaagaaaaac tggataaaag acagttagag cgccagaaaa gccaaaactg gtatgaagga
                                                                   1860
tggttcaata actccccttg gttcactacc ctgctatcaa ccatcgctgg gcccctatta
                                                                   1920
ctcctccttc tgttgctcat cctcgggcca tgcatcatca ataagttagt tcaattcatc
                                                                  1980
aatgatagga taagtgcagt taaaattctg gtccttagac aaaaatatca ggccctagag
                                                                   2040
                                                                   2058
aacgaaggta acctttaa
<210>
<211>
        786
<212>
        DNA
<213>
        Artificial sequence
<220>
<223>
        Single-chain antibody Tag-72pS1 specific for Tag-72 surface
         antigen
<220>
<221> misc_feature
<222>
        (1)..(345)
<223>
        heavy chain (H) variable region
<220>
<221>
      misc_feature
<222>
        (346)..(390)
        (Gly4Ser)3 linker
<223>
<220>
<221>
       misc_feature
<222>
        (391)..(738)
<223>
        light chain (L) variable region
<220>
<221>
       misc_feature
<222>
        (739)..(777)
<223>
        PreS1 Tag
<220>
```

<221>

misc feature

<222> (778)..(786) <223> C-terminal extra termination sequence

<400> caggtccagc tagtgcagtc tggggctgaa gtgaagaagc ctggggcttc agtgaaggtg 60 tectgeaagg ettetggeta eacetteact gaecatgeaa tteactgggt gegeeaggee cctggacaac gccttgagtg gatgggatat ttttctcctg gcaacgatga ttttaaatac 180 teccagaagt tecagggaeg egtgaeaate aetgeagaea aateegegag eacageetae 240 atggagetga geageetgag atetgaggae acggeggtet attactgtge aagategttg 300 aacatggcat actggggcca agggactctg gtcactgtct cttcaggtgg aggcggttca 360 ggcggaggtg gctctggcgg tggcggatcg gacattgtga tgacccagtc tccagactcc 420 ctggctgtgt ctctgggcga gagggccacc atcaactgca agtccagcca gagtgtttta 480 tacagcagca acaataagaa ctacttagct tggtaccagc agaaaccagg acagcctcct 540 aagctgctca tttactgggc atctacccgg gaatccgggg tccctgaccg attcagtggc 600 agcgggtctg ggacagattt cactctcacc atcagcagcc tgcaggctga agatgtggca 660 gtttattact gtcagcaata ttattcctat ccgttgacgt tcggccaagg gaccaaggtg 720 qaaatcaaaq cqqccqcaqq aqccaacqca aacaatccaq attqqqactt caaccccqcc 786 gcatag <210> 9

<210> 10
<211> 2871
<212> DNA
<213> Artificial Sequence
<220>
<223> ScFv-GaLV Env GP chimeric peptide (FvGEL199) DNA

<400> 10

atggtattgc tgcctgggtc catgcttctc acctcaaacc tgcaccacct tcggcaccag 60 atgagteetg ggagetggaa aagaetgate ateetettaa getgegtatt eggeggegge gggacgagtc tgcaaaataa gaacccccac cagcccatga ccctcacttg gcaggtactg teceaaactg gagaegttgt etgggataea aaggeagtee ageeeettg gaettggtgg cccacactta aacctgatgt atgtgccttg gcggctagtc ttgagtcctg ggatatcccg ggaaccgatg tctcgtcctc taaacgagtc agacctccgg actcagacta tactgccgct 360 tataagcaaa tcacctgggg agccataggg tgcagctacc ctcgggctag gactagaatg 420 gcaagctcta ccttctacgt atgtccccgg gatggccgga ccctttcaga agctagaagg 540 tgcggggggc tagaatccct atactgtaaa gaatgggatt gtgagaccac ggggaccggt tattggctat ctaaatcctc aaaagacctc ataactgtaa aatgggacca aaatagcgga 600 ggtggtggca gccaggtcca gctagtgcag tctggggctg aagtgaagaa gcctggggct 660 tcagtgaagg tgtcctgcaa ggcttctggc tacaccttca ctgaccatgc aattcactgg 720 gtgcgccagg cccctggaca acgccttgag tggatgggat atttttctcc tggcaacgat gattttaaat actcccagaa gttccaggga cgcgtgacaa tcactgcaga caaatccgcg 900 agcacagcct acatggagct gagcagcctg agatctgagg acacggcggt ctattactgt gcaagatcgt tgaacatggc atactggggc caagggactc tggtcactgt ctcttcaggt ggaggcggtt caggcggagg tggctctggc ggtggcggat cggacattgt gatgacccag 1020 tetecagaet eeetggetgt gtetetggge gagagggeea eeateaaetg eaagteeage cagagtgttt tatacagcag caacaataag aactacttag cttggtacca gcagaaacca 1140 ggacagcete etaagetget catttactgg gcatetacce gggaateegg ggteeetgae 1200 cgattcagtg gcagcgggtc tgggacagat ttcactctca ccatcagcag cctgcaggct 1260 gaagatgtgg cagtttatta ctgtcagcaa tattattcct atccgttgac gttcggccaa 1320 1380 gggaccaagg tggaaatcaa agcggccgca ggagccaacg caaacaatcc agattgggac ttcaaccccg ccgcaggtgg aggaggcagt gaatggactc aaaaatttca acagtgtcac 1440 cagaccggct ggtgtaaccc ccttaaaata gatttcacag acaaaggaaa attatccaag 1500 gactggataa cgggaaaaac ctggggatta agattctatg tgtctggaca tccaggcgta 1560 cagttcacca ttcgcttaaa aatcaccaac atgccagctg tggcagtagg tcctgacctc 1620 gteettgtgg aacaaggace teetagaacg teeetegete teecacetee tetteeecca 1680

agggaagcgc	caccgccatc	teteceegae	tctaactcca	cagccctggc	gactagtgca	1740
caaactccca	cggtgagaaa	aacaattgtt	accctaaaca	ctccgcctcc	caccacaggc	1800
gacagacttt	ttgatcttgt	gcagggggcc	ttcctaacct	taaatgctac	caacccaggg	1860
gccactgagt	cttgctggct	ttgtttggcc	atgggccccc	cttattatga	agcaatagcc	1920
tcatcaggag	aggtcgccta	ctccaccgac	cttgaccggt	gccgctgggg	gacccaagga	1980
aagctcaccc	tcactgaggt	ctcaggacac	gggttgtgca	taggaaaggt	gccctttacc	2040
catcagcatc	tctgcaatca	gaccctatcc	atcaattcct	ccggagacca	tcagtatctg	2100
ctcccctcca	accatagctg	gtgggcttgc	agcactggcc	tcaccccttg	cctctccacc	2160
tcagttttta	atcagactag	agatttctgt	atccaggtcc	agctgattcc	tcgcatctat	2220
tactatcctg	aagaagtttt	gttacaggcc	tatgacaatt	ctcaccccag	gactaaaaga	2280
gaggctgtct	cacttaccct	agctgtttta	ctggggttgg	gaatcacggc	gggaataggt	2340
actggttcaa	ctgccttaat	taaaggacct	atagacctcc	agcaaggcct	gacaagcctc	2400
cagatcgcca	tagatgctga	cctccgggcc	ctccaagact	cagtcagcaa	gttagaggac	2460
tcactgactt	ccctgtccga	ggtagtgctc	caaaatagga	gaggccttga	cttgctgttt	2520
ctaaaagaag	gtggcctctg	tgcggcccta	aaggaagagt	gctgtttta	catagaccac	2580
tcaggtgcag	tacgggactc	catgaaaaaa	ctcaaagaaa	aactggataa	aagacagtta	2640
gagcgccaga	aaagccaaaa	ctggtatgaa	ggatggttca	ataactcccc	ttggttcact	2700
accctgctat	caaccatcgc	tgggccccta	ttactcctcc	ttctgttgct	catcctcggg	2760
ccatgcatca	tcaataagtt	agttcaattc	atcaatgata	ggataagtgc	agttaaaatt	2820
ctggtcctta	gacaaaaata	tcaggcccta	gagaacgaag	gtaaccttta	a	2871

<210> 11

<211> 956

<212> PRT

<213> Artificial Sequence

<220>

<223> ScFv-GaLV Env GP chimeric ligand (FvGEL199)

<400> 11

Met Val Leu Leu Pro Gly Ser Met Leu Leu Thr Ser Asn Leu His His $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Leu Arg His Gln Met Ser Pro Gly Ser Trp Lys Arg Leu Ile Ile Leu

20 25

Leu	Ser	Суs 35	Val	Phe	Gly	Gly	Gly 40	Gly	Thr	Ser	Leu	Gln 45	Asn	Lys	Asn
Pro	His 50	Gln	Pro	Met	Thr	Leu 55	Thr	Trp	Gln	Val	Leu 60	Ser	Gln	Thr	Gly
Asp 65	Val	Val	Trp	Asp	Thr 70	Lys	Ala	Val	Gln	Pro 75	Pro	Trp	Thr	Trp	Trp 80
Pro	Thr	Leu	Lys	Pro 85	Asp	Val	Cys	Ala	Leu 90	Ala	Ala	Ser	Leu	Glu 95	Ser
Trp	Asp	Ile	Pro 100	Gly	Thr	Asp	Val	Ser 105	Ser	Ser	Lys	Arg	Val 110	Arg	Pro
Pro	Asp	Ser 115	Asp	Tyr	Thr	Ala	Ala 120	Tyr	Lys	Gln	Ile	Thr 125	Trp	Gly	Ala
Ile	Gly 130	Суз	Ser	Tyr	Pro	Arg 135	Ala	Arg	Thr	Arg	Met 140	Ala	Ser	Ser	Thr
Phe 145	Tyr	Val	Cys	Pro	Arg 150	Asp	Gly	Arg	Thr	Leu 155	Ser	Glu	Ala	Arg	Arg 160
Суз	Gly	Gly	Leu	Glu 165	Ser	Leu	Tyr	Cys	Lys 170	Glu	Trp	Asp	Суз	Glu 175	Thr
Thr	Gly	Thr	Gly 180	Tyr	Trp	Leu	Ser	Lys 185	Ser	Ser	Lys	Asp	Leu 190	Ile	Thr
Val	Lys	Trp 195	Asp	Gln	Asn	Ser	Gly 200	Gly	Gly	Gly	Ser	Gln 205	Val	Gln	Leu
Val	Gln 210	Ser	Gly	Ala	Glu	Val 215	Lys	Lys	Pro	Gly	Ala 220	Ser	Val	Lys	Val
Ser 225	Cys	Lys	Ala	Ser	Gly 230	Tyr	Thr	Phe	Thr	Asp 235	His	Ala	Ile	His	Trp 240
Val	Arg	Gln	Ala	Pro 245	Gly	Gln	Arg	Leu	Glu 250	Trp	Met	Gly	Tyr	Phe 255	Ser
Pro	Gly	Asn	Asp 260	Asp	Phe	Lys	Tyr	Ser 265	Gln	Lys	Phe	Gln	Gly 270	Arg	Val
Thr	Ile	Thr 275	Ala	Asp	Lys	Ser	Ala 280	Ser	Thr	Ala	Tyr	Met 285	Glu	Leu	Ser
Ser	Leu 290	Arg	Ser	Glu	Asp	Thr 295	Ala	Val	Tyr	Tyr	Суs 300	Ala	Arg	Ser	Leu
Asp 305	Met	Ala	Tyr	Trp	Gly 310	Gln	Gly	Thr	Leu	Val 315	Thr	Val	Ser	Ser	Gly 320
Gly	Gly	Gly	Ser	Gly 325	Gly	Gly	Gly	Ser	Gly 330	Gly	Gly	Gly	Ser	Asp 335	Ile

Val	Met	Thr	Gln 340	Ser	Pro	Asp	Ser	Leu 345	Ala	Val	Ser	Leu	Gly 350	Glu	Arg
Ala	Thr	Ile 355	Asn	Суз	Lys	Ser	Ser 360	Gln	Ser	Val	Leu	Tyr 365	Ser	Ser	Asn
Asn	Lys 370	Asn	Tyr	Leu	Ala	Trp 375	Tyr	Gln	Gln	Lys	Pro 380	Gly	Gln	Pro	Pro
Lys 385	Leu	Leu	Ile	Tyr	Trp 390	Ala	Ser	Thr	Arg	Glu 395	Ser	Gly	Val	Pro	Asp 400
Arg	Phe	Ser	Gly	Ser 405	Gly	Ser	Gly	Thr	Asp 410	Phe	Thr	Leu	Thr	Ile 415	Ser
Ser	Leu	Gln	Ala 420	Glu	Asp	Val	Ala	Val 425	Tyr	Tyr	Cys	Gln	Gln 430	Tyr	Tyr
Ser	Tyr	Pro 435	Leu	Thr	Phe	Gly	Gln 440	Gly	Thr	Lys	Val	Glu 445	Ile	Lys	Ala
Ala	Ala 450	Gly	Ala	Asn	Ala	Asn 455	Asn	Pro	Asp	Trp	Asp 460	Phe	Asn	Pro	Ala
Ala 465	Gly	Gly	Gly	Gly	Ser 470	Glu	Trp	Thr	Gln	Lys 475	Phe	Gln	Gln	Суз	His 480
Gln	Thr	Gly	Trp	Cys 485	Asn	Pro	Leu	Lys	Ile 490	Asp	Phe	Thr	Asp	Lys 495	Gly
Lys	Leu	Ser	Lys 500	Asp	Trp	Ile	Thr	Gly 505	Lys	Thr	Trp	Gly	Leu 510	Arg	Phe
Tyr	Val	Ser 515	Gly	His	Pro	Gly	Val 520	Gln	Phe	Thr	Ile	Arg 525	Leu	Lys	Ile
Thr	Asn 530	Met	Pro	Ala	Val	Ala 535	Val	Gly	Pro	Asp	Leu 540	Val	Leu	Val	Glu
Gln 545	Gly	Pro	Pro	Arg	Thr 550	Ser	Leu	Ala	Leu	Pro 555	Pro	Pro	Leu	Pro	Pro 560
Arg	Glu	Ala	Pro	Pro 565	Pro	Ser	Leu	Pro	Asp 570	Ser	Asn	Ser	Thr	Ala 575	Leu
Ala	Thr	Ser	Ala 580	Gln	Thr	Pro	Thr	Val 585	Arg	Lys	Thr	Ile	Val 590	Thr	Leu
Asn	Thr	Pro 595	Pro	Pro	Thr	Thr	Gly 600	Asp	Arg	Leu	Phe	Asp 605	Leu	Val	Gln
Gly	Ala 610	Phe	Leu	Thr	Leu	Asn 615	Ala	Thr	Asn	Pro	Gly 620	Ala	Thr	Glu	Ser
Cys 625	Trp	Leu	Суз	Leu	Ala 630	Met	Gly	Pro	Pro	Tyr 635	Tyr	Glu	Ala	Ile	Ala 640

Ser	Ser	Gly	Glu	Val 645	Ala	Tyr	Ser	Thr	Asp 650	Leu	Asp	Arg	Cys	Arg 655	Trp
Gly	Thr	Gln	Gly 660	Lys	Leu	Thr	Leu	Thr 665	Glu	Val	Ser	Gly	His 670	Gly	Leu
Cys	Ile	Gly 675	Lys	Val	Pro	Phe	Thr 680	His	Gln	His	Leu	Cys 685	Asn	Gln	Thr
Leu	Ser 690	Ile	Asn	Ser	Ser	Gly 695	Asp	His	Gln	Tyr	Leu 700	Leu	Pro	Ser	Asn
His 705	Ser	Trp	Trp	Ala	Cys 710	Ser	Thr	Gly	Leu	Thr 715	Pro	Суз	Leu	Ser	Thr 720
Ser	Val	Phe	Asn	Gln 725	Thr	Arg	Asp	Phe	Cys 730	Ile	Gln	Val	Gln	Leu 735	Ile
Pro	Arg	Ile	Tyr 740	Tyr	Tyr	Pro	Glu	Glu 745	Val	Leu	Leu	Gln	Ala 750	Tyr	Asp
Asn	Ser	His 755	Pro	Arg	Thr	Lys	Arg 760	Glu	Ala	Val	Ser	Leu 765	Thr	Leu	Ala
Val	Leu 770	Leu	Gly	Leu	Gly	11e 775	Thr	Ala	Gly	Ile	Gly 780	Thr	Gly	Ser	Thr
Ala 785	Leu	Ile	Lys	Gly	Pro 790	Ile	Asp	Leu	Gln	Gln 795	Gly	Leu	Thr	Ser	Leu 800
Gln	Ile	Ala	Ile	805	Ala	Asp	Leu	Arg	Ala 810	Leu	Gln	Asp	Ser	Val 815	Ser
-			820		Leu			825					830		
-	,	835		-	Leu		840		-		-	845		-	
	850				Cys	855		_		_	860		_		
865					Lys 870					875					880
Glu	Arg	Gln	Lys	Ser 885	Gln	Asn	Trp	Tyr	Glu 890	Gly	Trp	Phe	Asn	Asn 895	Ser
Pro	Trp	Phe	Thr 900	Thr	Leu	Leu	Ser	Thr 905	Ile	Ala	Gly	Pro	Leu 910	Leu	Leu
Leu	Leu	Leu 915	Leu	Leu	Ile	Leu	Gly 920	Pro	Суз	Ile	Ile	Asn 925	Lys	Leu	Val
Gln	Phe 930	Ile	Asn	Asp	Arg	Ile 935	Ser	Ala	Val	Lys	Ile 940	Leu	Val	Leu	Arg

Gln Lys Tyr Gln Ala Leu Glu Asn Glu Gly Asn Leu 945 950 955