

# Маятник Капицы

Исследовательская работа Грошева Максима МФТИ, Б01-206, 1 курс 2022 год

# Маятник Капицы —

Система из грузика, прикрепленного к легкой нерастяжимой спице, которая прикреплена к подвесу. Маятник получим своё название в честь одного из основателей МФТИ — К.П. Капицы.



Рис. 1. Схема маятника

# Энергия маятника



Рис. 2. Схема маятника

Кординаты по осям:  $\begin{cases} x = l \sin(\varphi) \\ y = -u \cos(\Omega t) - l \cos(\varphi) \end{cases}$  Тогда потенциальная энергия:

$$\Pi = -mg(l\cos(\varphi) + u\cos(\Omega t))$$

Кинетическая энергия:

$$K = \frac{m}{2}(\dot{x} + \dot{y}) =$$

$$K = \frac{m}{2}(\dot{x} + \dot{y}) =$$

$$\frac{ml^2}{2}\dot{\varphi}^2 + mul\Omega(\sin(\Omega t))(\sin(\varphi))\dot{\varphi} + \frac{mu^2\Omega^{\dot{2}}}{2}\sin^2(\Omega t)$$

Лагранжиан системы:

$$L = K - \Pi =$$

$$\frac{ml^2}{2}\dot{\varphi}^2 + mul\Omega(\sin(\Omega t))(\sin(\varphi))\dot{\varphi} + \frac{mu^2\Omega^{\frac{1}{2}}}{2}\sin^2(\Omega t) + mg(l\cos(\varphi) + u\cos(\Omega t))$$

# Уравнение движения маятника

 $\frac{d}{dt}\frac{\partial L}{\partial \dot{\varphi}} = \frac{\partial L}{\partial \varphi}$  - уравнение движения маятника будет удовлетворять условиям уравнения Эйлера — Лагранжа, тогда вычислим:

$$\frac{\partial L}{\partial \dot{\varphi}} = ml^2 \dot{\varphi} + mul\Omega(\sin(\Omega t))(\sin(\varphi))$$
$$\frac{\partial L}{\partial \varphi} = mul\Omega(\sin(\Omega t))(\cos(\varphi))\dot{\varphi} - mgl(\sin(\varphi))$$

После упрощения получаем:

$$\ddot{\varphi} = -\frac{u\Omega^2}{l}\cos(\Omega t)\left(\sin(\varphi)\right) - \frac{g}{l}(\sin(\varphi))$$



Рис. 3. Траектория движения маятника Капицы

# Момент инерциальной силы



Рис. 4. Момент инерциальной силы

В связи с тем, что в крайних положениях 1 и 2 модуль инерциальной силы  $F = m\Omega^2 y(t)$  одинаковый, а плечо разной длины. За период маятник начинает стремиться в положение равновесия в точке (0, l) т.к. средний момент инерциальной силы не отличен от нуля

$$M = \frac{m(lu\Omega)^2}{4}\sin(2\varphi)$$

# Симуляция колебаний при помощи приложения "Nonlinear oscillations"

## Зависимость траектории от угла начального отклонения

Рассмотрим три настройки маятника с различными углами отклонения.

#### Опыт 1:

| Таблица 1. Колебания при φ' << Ω |                          |     |                                                  |                                                      |           |                                            |  |
|----------------------------------|--------------------------|-----|--------------------------------------------------|------------------------------------------------------|-----------|--------------------------------------------|--|
| масса,<br>m (кг)                 | длина<br>спицы, I<br>(м) |     | частота<br>вынужденных<br>колебаний, Ω<br>(c^-1) | начальная частота собств.колеб., $\dot{\phi}$ (c^-1) | g (m/c^2) | угол<br>отклон<br>ения,<br>$\varphi$ (рад) |  |
| 1                                | 1                        | 0,1 | 40                                               | 0,1                                                  | 10        | 0                                          |  |
| 1                                | 1                        | 0,1 | 40                                               | 0,1                                                  | 10        | π/2                                        |  |
| 1                                | 1                        | 0,1 | 40                                               | 0,1                                                  | 10        | π                                          |  |
| 1                                | 1                        | 0,1 | 40                                               | 0,1                                                  | 10        | $\pi/180$                                  |  |

При углах отклонения  $\varphi = \pi n$  колебания маятника вдоль оси х малы. Кроме того (0,I) абсолютно неустойчивого равновесия для математического маятника, может оказаться точкой устойчивого равновесия для маятника Капицы.



Рис. 5. Траектории движения маятника а)  $\varphi = 0$  б)  $\varphi = \pi/2$  в)  $\varphi = \pi$  г)  $\pi/180$ 

# Зависимость колебаний от начально частоты $\dot{oldsymbol{\phi}}$

Настроим маятник так, чтобы амплитуда колебаний подвеса была мала. Частоту колебаний будем изменять.

#### Опыт 2:

| Таблица 2. Колебания при различных значения $\dot{\phi}$ |   |      |                                                  |                                                      |           |                                       |  |
|----------------------------------------------------------|---|------|--------------------------------------------------|------------------------------------------------------|-----------|---------------------------------------|--|
| масса,<br>m (кг)                                         |   |      | частота<br>вынужденных<br>колебаний, Ω<br>(c^-1) | начальная частота собств.колеб., $\dot{\phi}$ (c^-1) | g (m/c^2) | угол<br>откло<br>нения,<br>ф<br>(рад) |  |
| 1                                                        | 1 | 0,01 | 40                                               | 0,1                                                  | 10        | π/2                                   |  |
| 1                                                        | 1 | 0,01 | 40                                               | 5                                                    | 10        | π/2                                   |  |

При малых значениях амплитуда колебаний подвеса траектория колебаний маятника приобретает вид колебаний математического маятника.





Рис. 6. Траектории движения маятника a)  $\dot{\phi}$  = 0,1 б)  $\dot{\phi}$  = 5

# Колебания маятника при больших значениях амплитуды колебаний подвеса

Настроим маятник с различной амплитудой колебаний подвеса.

#### Опыт 3:

| Таблица 3. Колебания при различных амплитудах колебаний подвеса |     |     |                                                  |                                                      |           |                                       |  |
|-----------------------------------------------------------------|-----|-----|--------------------------------------------------|------------------------------------------------------|-----------|---------------------------------------|--|
| масса,<br>m (кг)                                                | • • |     | частота<br>вынужденных<br>колебаний, Ω<br>(c^-1) | начальная частота собств.колеб., $\dot{\phi}$ (c^-1) | g (м/c^2) | угол<br>откло<br>нения,<br>ф<br>(рад) |  |
| 1                                                               | 1   | 0,1 | 40                                               | 0,1                                                  | 10        | π/2                                   |  |
| 1                                                               | 1   | 0,3 | 40                                               | 0,1                                                  | 10        | π/2                                   |  |
| 1                                                               | 1   | 0,5 | 40                                               | 0,1                                                  | 10        | π/2                                   |  |

С увеличением амплитуды траектория движения маятника становится сложнее, при этом сам груз бывает в большем количестве точек координатного пространства.



Рис. 7. Колебания маятника при различных значениях амплитуды u a) u = 0,1 б) u = 0,3 в) u = 0,5

## Обоснование полученных результатов

- 1) Появление точки устойчивого равновесия (0, I) обусловлено возникновением вибрационного момента  $M=\frac{m(lu\Omega)^2}{4}\sin(2\varphi)$ , который при условии, что  $mu^2l\Omega^2/2$ gl >1 стремится привести колебания маятника вдоль оси колебаний подвеса, кроме того, при выполнении этого условия, маятник будет иметь две токи неустойчивого равновесия  $\pm \arccos(-\frac{2gl}{mu^2l\Omega^2})$ .
- 2) При малой амплитуде колебаний подвеса вибрационный момент мал, поэтому колебания маятника Капицы становятся похожими на колебания математического маятника, это связано с тем, что момент вибрационных сил мал.

### Вывод:

- 1) В данной работе был изучен маятник Капицы и получены формулы для вычисления положений его равновесия: два устойчивых (I, 0), (0, I) и два неустойчивых
- 2) При помощи компьютерного моделирования была изучена траектория движения маятника в зависимости от изменений различных параметров.