

YOLO 를 제외한 1-Stage Detector

산업인공지능학과 2021254013 유대건 2021254001 이용규

- 목 차 -

- 개요
- 1-Stage Detector, 2-Stage Detector
- SSD, RetinaNet, FCOS
- Performance
- Q & A

01. 개요

- □ Classification
 - Single Object 에 대해 Object 의 클래스를 분류하는 문제.
- ☐ Classification + Localization
 - Single Object 에 대해서 Object 의 위치를 Bounding Box 로 찾고 클래스를 분류하는 문제.
- □ Object Detection
 - Multiple Objects 에서 각각의 Object 에 대해 Classification + Localization 을 수행하는 것.
- Instance Segmentation
 - Object Detection 과 유사하지만 Bounding Box 가 아닌 실제 Edge 로 Object 를 검출하는 것.

02. 2-Stage Detector, 1-Stage Detector

□ 2-Stage Detector

- RCNN, Fast RCNN, Faster RCNN

□ 1-Stage Detector

- YOLO, SSD, Focal Loss, RetinaNet, RefineDet

02. 2-Stage Detector, 1-Stage Detector

2-Stage Detector

- Regional Proposal(위치정보) 과 Classification(분류) 을 순자적으로 적용
- Regional Proposal : 물체가 있을 만한 영역을 빠르게 찾아내는 알고리즘
 Selective search, Edge boxes
- 두 문제를 순차적으로 행하는 방법.
- 비교적 느리지만 정확도 높음.

02. 2-Stage Detector, 1-Stage Detector

□ 1-Stage Detector

- Localization 문제와 Classification 문제를 동시에 행하는 방법
- 비교적 빠르지만 정확도 낮음
- 전체 이미지에 대해 특징 추출, 객체 검출이 이루어짐.
- 영역을 추출하지 않고 전체 이미지를 보기 때문에 객체에 대한 맥락적 이해가 높음.

□ Overview

- SSD 이전 버전 YOLO의 문제점
 - 1) 7X7 그리드 영역으로 나눠 Bounding Box Prediction 진행(YOLO)
 - -> 그리드보다 작은 크기의 물체 검출 불가능.
 - -> 해결책 : Fully Convolution Network 사용
 - 2) 신경망을 통과하며 마지막 Feature 만 사용
 - -> 정확도 하락.
 - -> 해결책 : Faster RCNN의 Anchor 개념을 이용

□ 구조

- Input 은 512x512 또는 300x300
- Object Detection 단으로 넘어가는 Feature Map 의 크기가 38x38, 19x19, 10x10, 5x5, 3x3, 1x1 인 결과
- Classifier : Conv, 3x3x(4x(classes+4))
 - -> 3x3x(4x(classes+4)) : 3x3 필터를 사용.
 - -> 3x3x(4x(classes+4)) : 4개의 Anchor Box
 - -> 3x3x(4x(classes+4)) : 각 class 에 대한 Softmax 값, Bounding Box 좌표 값.
 - -> 3x3x(4x(classes+4)): Kernel 의 개수이자, Detection 결과 Output 의 Depth 값.

3x3 Kernel 의 Depth 는 각 Feature Map(38x38, 19x19, 10x10, 5x5, 3x3, 1x1) 의 Depth 값을 따름.

- 이렇게 Feature Map 을 통해 만들어지는 Box 개수는 다음과 같고 이것을 NMS 처리를 한다.

□ 특징

- Backbone 을 통과시키고 Feature map resolution 을 낮춰가면서 모든 Feature map 에 대해 Detection + Box regression 을 수행.
- Multi Scale Feature Layer
- Default (Anchor) Box
- Fully Connected Layer 대신 Convolution Layer 를 사용하여 속도 향상.

1. Multi Scale Feature Layer

- Image Pyramid 기법을 차용하여 Object Detection 을 수행.
- Feature Map 을 convNet 에 통과시켜 크기를 줄여가며 각각 Detection 을 수행.
- 32x32 에서는 작은 Object, 4x4 에서는 큰 Object 를 Detect 가능.

2. Default Box

- Faster RCNN 의 Anchor Box 와 유사.
- Feature map 의 각 cell 마다 서로 다른 scale, 비율을 가진 미리 정해진 box 생성.

- 모델은 총 8732 개의 Default Box 를 사용.

04. RetinaNet (Focal Loss for Dense Object Detection)

□ Overview

- 기존의 1-Stage Detector 가 가지고 있는 문제점을 해결한 모델.
- 1-Stage Detector 는 RPN(Region Proposal 이 없고 Grid별로 Bounding Box 를 무조건 예측.
 - -> Background 검출
- Class Imbalance
 - -> Positive Sample(객체) < Negative Sample(배경)

04. RetinaNet (Focal Loss for Dense Object Detection)

□ 구조

- 1. Feature Pyramid by ResNet + FPN
 - ResNet 구조에 FPN Backbone 을 사용, Multi-Scale Feature pyramid 를 생성, 각 pyramid level 은 256 채널.
 - 각 pyramid level 에 aspect ratio 를 사용하여 Anchor 를 할당, 하나의 Anchor 에는 K*4 의 vector 가 할당.
 - Input : image
 - Process : feature extraction by ResNet + FPN
 - Output : feature pyramid(P5~P7)
- 2. Classification by Classification subnetwork
 - Anchor 의 object class 를 예측하는 network.
 - 각 pyramid level 에 KA(K:class, A:anchor) 개 filter 를 지닌 3x3 conv layer 가 4개로 구성된 Conv Layer 를 부착.
 - classification subnet 의 출력값에 Focal Loss 를 적용.
 - Input : feature pyramid(P5~P7)
 - Process : classification by classification subnetwork
 - Output: 5 feature maps with KxA channel
- 3. Bounding Box Regression by Bounding Box Regression subnetwork
 - Anchor 와 ground-truth 의 offset 을 계산하는 network.
 - Classification subnet 과 동일하지만 마지막에 4A 길이를 출력.
 - Input : feature pyramid(P5~P7)
 - Process : bounding box regression by bounding box regression subnet
 - Output: 5 feature maps with 4xA channel

04. RetinaNet (Focal Loss for Dense Object Detection)

□ 특징

- Focal Loss
 - -> 1-Stage detector 모델에서 foreground 와 background class 사이에서 발생하는 극단적인 class imbalance 문제를 해결하는데 사용.
 - -> Cross Entropy(CE) 에 scaling factor 를 추가.

1) Pt 와 Modulating factor 와의 관계

example이 잘못 분류되고, *Pt* 가 작으면, modulating factor는 1과 가까워지며, loss는 영향을 받지 않습니다. 반대로 *Pt* 값이 크면 modulating factor는 0에 가까워지고, 잘 분류된 example의 loss는 down-weight됩니다.

2) focusing parameter γ 의 역할

focusing parameter γ 는 easy example을 down-weight하는 정도를 부드럽게 조정합니다. γ=0 인 경우, focal loss는 CE와 같으며, γ 가 상승할수록 modulating factor의 영향력이 커지게 됩니다.

05. FCOS (Fully Convolutional One Stage Object Detection)

□ Overview

- Anchor-based detector 에서 발생하는 단점을 개선하기 위해 제안.
- Anchor Box 설계 형태에 따라 모델의 성능에 영향.
- Anchor Box 크기와 다른 ground-truth 를 검출하기 어려움.
- 많은 수의 Anchor Box 가 negative 로 할당되므로 class imbalance 문제 발생.
- Anchor Box 와 ground-truth 와의 iou 를 계산해야 하므로 계산과정 복잡

05. FCOS (Fully Convolutional One Stage Object Detection)

ㅁ 구조

- 1. Fully Convolutional One-Stage Object Detection
 - 중심점(x,y)부터 예측한 Bounding Box 의 경계까지의 거리를 예측.
 - (x,y)가 gt(ground-truth) 범위 안에 존재하고 class 가 동일하면 positive 로 간주.
 - (x,y)가 여러 gt 안에 존재한다면 ambiguous sample 로 간주하며 multi-level prediction with FPN 에서 처리
- 2. Multi-Level Prediction with FPN for FCOS
 - C3, C4, C5 에 1x1 convolution 을 통해 feature 를 얻고 P5->P4->P3 의 top-down 방향으로 연결.
 - P6, P7 은 P5 부터 시작하여 stride 2를 차례로 적용하여 P5->P6->P7 순서로 생성.
 - P3=8, P4=16, P5=32, P6=64, P7=128 에 해당하는 stride 크기를 가지는 feature pyramid 를 형성.
 - 오른쪽 그림처럼 bounding box 가 overlap 된 경우 작은 박스는 P3, 큰 박스는 P6 에서 검출

3. Center-ness

- low-quality predicted bounding box 를 제거하기 위해 사용.
- center-ness 는 중심점과의 거리를 정규화.
- 중심점과 가까우면 1에 가까운 값, 중심점과 멀리 존재하면 0 에 가까운 값.
- center-ness 는 class score 와 곱하여 중심점에서 멀리 떨어진 bounding box 는 class score 값이 낮기 때문에 nms 에서 제거.

05. FCOS (Fully Convolutional One Stage Object Detection)

□ 특징

- 중심점에서 Bounding Box 경계까지의 거리 예측.
- Multi-lebel prediction with FPN.
- Center-ness
- Anchor Box 를 사용하지 않는 1-Stage Detector

□ Center-ness

center-ness 는 class score 와 곱하여 사용합니다. 중심점과 멀리 떨어진 bounding box 는 class score 값이 낮아지기 때문에 nms 에서 걸러지게 됩니다.

06. Performance

Method	Backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
Two-stage methods:		189	-				
Faster R-CNN w/ FPN [14]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [11]	Inception-ResNet-v2 [27]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w/ TDM [25]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods:							
YOLOv2 [22]	DarkNet-19 [22]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [18]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [5]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet [15]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
CornerNet [13]	Hourglass-104	40.5	56.5	43.1	19.4	42.7	53.9
FSAF [34]	ResNeXt-64x4d-101-FPN	42.9	63.8	46.3	26.6	46.2	52.7
FCOS	ResNet-101-FPN	41.5	60.7	45.0	24.4	44.8	51.6
FCOS	HRNet-W32-51 [26]	42.0	60.4	45.3	25.4	45.0	51.0
FCOS	ResNeXt-32x8d-101-FPN	42.7	62.2	46.1	26.0	45.6	52.6
FCOS	ResNeXt-64x4d-101-FPN	43.2	62.8	46.6	26.5	46.2	53.3
FCOS w/ improvements	ResNeXt-64x4d-101-FPN	44.7	64.1	48.4	27.6	47.5	55.6

17

```
mport tensorflow_hub as hub
def run_detector(detector, path):
 img = load_img(path)
 converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...]
 start_time = time.time()
 result = detector(converted_img)
 end_time = time.time()
 result = {key:value.numpy() for key,value in result.items()}
 print("Found %d objects." % len(result["detection_scores"]))
 print("Inference time: ", end_time-start_time)
 image_with_boxes = draw_boxes(
     img.numpy(), result["detection_boxes"],
     result["detection_class_entities"], result["detection_scores"])
 display_image(image_with_boxes)
#FasterRCNN+InceptionResNet V2: 높은 정확성
#ssd + mobilenet V2: 작고 빠름
#module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1" #FasterRCNN+InceptionResNet V2
detector = hub.load(module_handle).signatures['default']
run_detector(detector, downloaded_image_path)
```

```
def detect_img(image_url):
    start_time = time.time()
    image_path = download_and_resize_image(image_url, 640, 480)
    run_detector(detector, image_path)
    end_time = time.time()
    print("Inference time:"_eend_time-start_time)

detect_img(image_urls[0])
detect_img(image_urls[1])
detect_img(image_urls[2])
```

□ 사용 모듈

- 1. FasterRCNN+InceptionResNet V2:
 - https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1
- 2. ssd + mobilenet V2
 - https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1
- 3. 테스트 환경
 - OS: Windows 10
 - GPU: GeForce RTX 2060
 - CPU: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59 GHz
 - RAM: 16.0GB

인식 시간: 3.449643611907959

인식 시간: 0.3375563621520996

FasterRCNN

SSD

인식 시간: 1.5846748352050781

인식 시간: 0.32801294326782227

FasterRCNN SSD

인식 시간 1.585092544555664

인식 시간: 0.35207653045654297

Q&A

- **End** -