Sandipan Choudhuri

[+1] 480-300-9385 | Schoudhuri@asu.edu | Schoudhuri.github.io | Schoudhuri | Schoudhuri

FDUCATION

PHD | COMPUTER SCIENCE

Dissertation: "Domain Adaptation in Unconstrained Label Spaces."

Arizona State University

MASTERS | Computer Science & Engineering

Thesis: "A Quality-Concordance Measure-Based Approach to Edge Detection." Jadavpur University

BACHELORS | Computer Science & Engineering

West Bengal University of Technology

USA | Aug 2017 - Summer 2023 [tentative]

C.GPA: 4/4

India | Aug 2013 - Jul 2015

CGPA: 8.44/10

India | Aug 2009 - Jul 2013

CGPA: 8.60/10

PROFESSIONAL EXPERIENCE

ROVICARE | Machine Learning Intern

USA | May 2022 - Aug 2022

- Developed a layout-agnostic pipeline for seamless extraction of selective information from scanned patient intake forms, using Azure Form Recognizer Service and deep-learning routines, with 92% field-value extraction accuracy.
- Built an efficient word search module for scanned records, with **Azure Cognitive Service**, to expedite the patient intake process.
- Deployed machine learning models as Python RESTful APIs on the Azure App Services with Docker runtime.
- Streamlined **HubSpot** operations by automating deal pipeline stages, developing ticketing system add-ons for analyzing support responses to find actionable insights, and devising an automated contract filling system through PandaDoc integration.

INTERBIZ | Machine Learning Intern

- Reduced the processing time for auto insurance collision claims by 45% through the development of category detectors and form-processors for the scanned estimates, using Google Document AI, Google Cloud Vision API, and deep-learning modules.
- Developed a health insurance claim form parser with Google Cloud Vision API and field-value pair extractors, yielding 94% extraction accuracy. Communicated with the stakeholders for requirements gathering, workflow designing, and documentation.
- Built a Google Cloud Web Application with OAuth 2.0 framework authentication (conforming to HIPAA security and privacy standards) for secured access to healthcare documents from Google Drive and Google Cloud Storage.

NETXT LAB | RESEARCH ASSISTANT

USA | Aug 2019 - Present

- Developing predictive models for Arizona Health Care Cost Containment System (AHCCCS) to combat the state's opioid crisis.
- Built a framework for forecasting future opioid overdose incidence volumes over a geographic region and strategically determining optimal locations (demand points) for setting up Medically Assisted Treatment (MAT) facilities under budgetary constraints.
- Evaluated the effectiveness of Twitter data as a viable indicator of opioid overdose incidence volumes by developing a pipeline for their characterization and analysis (using RoBERTa). A framework for detecting illicit online opioid sales is currently underway.

CMATER LAB | Junior Research Fellow

India | Aug 2015 - Mar 2017

- Served as the technical lead for the Breast Cancer Diagnostic System development program on Fine-Needle Aspiration Cytology images; duties involved research and development, communicating with the expert groups at diagnostic units, and the project management team at Jadavpur University for requirements gathering, data acquisition, and configuring access controls.
- Conducted research, development and evaluation of models for Object Localization, Semantic Contour Detection and Image Segmentation tasks on natural scene (BSDS500, PASCAL-VOC, Stanford B.) and near-Infrared image (RGB-NIR Scene) datasets.

SKILLS

RESEARCH Domain Adaptation (Closed-Set/Partial/Open-Set/Source-Free) • Contour Detection • Object Localization

Semantic Image Segmentation • Unsupervised Learning • Time-Series Analysis

PLATFORM Google Cloud Platform (GCP) • Microsoft Azure

LANGUAGE Python • Java • C++ • C • SQL • JavaScript • HTML • CSS

TECHNOLOGY Docker • Apache Spark • Tableau • Matlab • Git • ClickUp

LIBRARY Pytorch • Keras • Pandas • Scikit-learn • OpenCV • Apache Spark MLlib • Seaborn • Flask • D3.js

AWARDS & SERVICES

- Recipient of the **Engineering Graduate Fellowship** for "strong academic work and research progress."
- Recipient of the **Department Travel Grants**.
- **Top 0.5%** of 0.25 million applicants who took the 2013 Graduate Aptitude Test in Engineering (GATE-2013) in Computer Science (conducted by the Indian Ministry of Human Resource Department).
- Served as the **Web chair** for the *International Workshop on Network Science for Quantum Communication Networks*, 2022 (**NETSCIQ-COM-INFOCOM**). Duties involved designing, updating, and stress-testing the conference website, managing submissions, providing tech support, and reviewing workshop live streams.
- Co-wrote proposals and was awarded AHCCCS Research Grant for the Arizona State Opioid Response Data Project.
- Teaching and Research Awards reviewer for the Graduate and Professional Student Association at Arizona State University.

PUBLICATIONS

V CIT OM V D	Domain Invariant Foature Alignment Heing Va	riational Inference For Partial Domain Adaptation
ASILOMAR	Domain-invariant Feature Alignment Using va	iriational inference For Partial Domain Adaptation

2022 S.Choudhuri, S. Adeniye, H Venkateswara, A.Sen (accepted)

ADVML@KDD Coupling Adversarial Learning with Selective Voting Strategy for Distribution Alignment in Partial Domain

Adaptation

2022 **S.Choudhuri**, H Venkateswara, A. Sen

GLOBECOM Optimal Cost Network Design for Bounded Delay Data Transfer from PMU to Control Center

2021 A. Sen, S. Roy, K. Basu, S. Adeniye, **S. Choudhuri**, A. Pal

DRCN Structural Dependency Aware Service Chain Mapping for Network Function Virtualization

2020 A Sen, **S Choudhuri**, K Basu

ASILOMAR Partial Domain Adaptation Using Selective Representation Learning For Class-Weight Computation

2020 S.Choudhuri*, R. Paul*, A.Sen, B.Li, H Venkateswara

RDMLDA Combining Multilevel Contexts of Superpixel using Convolutional Neural Networks to Perform Natural

Scene Labeling

2019 A Das, S Ghosh, R Sarkhel, **S Choudhuri**, N Das, M Nasipuri

EPIDAMIK@KDD Identification of At-Risk Groups for Opioid Addiction Through Web Data Analysis

2018 K Basu, **S Choudhuri**, A Sen, A Majumdar, D Dey

MMTC User Satisfaction-Driven Bandwidth Allocation for Image Transmission in a Crowded Environment

2018 **S Choudhuri**, K Basu, A Sen

IJPRAI Object Localization on Natural Scenes: A Survey

2018 **S Choudhuri**, N Das, R Sarkhel, M Nasipuri

FICTA A Quality-Concordance Metric Based Contour Detection by Utilizing Composite-Cue Information and

Particle Swarm Optimisation

2017 **S Choudhuri**, N Das, M Nasipuri

ICACCI A Multi-Cue Information Based Approach to Contour Detection by Utilizing Superpixel Segmentation

2016 **S Choudhuri**, N Das, S Ghosh, M Nasipuri

NOTABLE PROJECTS.

TIME-SERIES ANALYSIS

PYTHON, STATSMODELS, PANDAS, SCIKIT-LEARN, SEABORN

Developed a pipeline for predicting opioid overdose incidence volumes in a future time frame using time-series analysis and forecasting over *Arizona EMS data*, *opioid overdose records* and *demographic* information. Tasks involved time-series decomposition, stationarity testing using *unit-root tests*, transforming the time series to stationary, testing for seasonality, addressing missing values, computing partial autocorrelation and estimating the series forecastability, running *Granger Causality tests* to gauge the effectiveness of the time series in forecasting another, and developing forecasting models using *ARIMA*, *SARIMA*, *SARIMAX*, *VARMA*, and *VARMAX*.

DEEPVID++

PYTHON, KERAS, FLASK, D3, JAVASCRIPT, KNOWLEDGE DISTILLATION

The reliability of a deep-learning model is majorly dependent on the interpretability of its internal operations. Citing this, the *DeepVID* framework is improved to train a basic network using a complex deep-neural model such that its behavior is visually interpretable. This is accomplished by utilizing *variational information* to generate neighbors around data instances and training a linear network to replicate the complex network's behavior on the generated samples through *knowledge distillation*.

DOMAIN ADAPTATION FRAMEWORKS

PYTHON, PYTORCH, KERAS, ADVERSARIAL LEARNING

Developed frameworks for cross-domain image translation, data augmentation and classification tasks under a domain adaptation setup, with *constrained* and *unconstrained* label-space assumptions between the source and target domains (*closed-set*, *partial* and *open-set* scenarios); built adaptation models for scenarios where access to source data is prohibited during the adaptation process (*source-free* scenario).

OBJECT LOCALIZATION

PYTHON, KERAS, OPENCV, MATLAB, COMPUTER VISION

Formulated an approach for object localization and semantic image segmentation in natural scenes, using image *super-pixelization* and *deep supervised classification*. Context-based information is captured through patches formed by the first and second neighbor superpixels (atomic units of an image formed by a perceptual grouping of pixels). These are then mapped to the corresponding object labels using deep classifier networks. A consensus-based labeling strategy is subsequently employed by ensembling the output probabilities at different scales through multiple voting routines.

IMAGE SEGMENTATION

PYTHON, PYTORCH, BIO-MEDICAL IMAGE PROCESSING

Developed a framework for polyp segmentation in optical colonoscopic video sequences by coupling *deep-siamese networks* with a clustering policy using *balanced entropy-based random walks* to identify informative frames and segment out existing polyps (precursors to colon cancer).

SEMANTIC CONTOUR DETECTION Python, Keras, C++, OpenCV, Game Theory, Computer Vision

A multi-scale feature-based contour detection approach is presented here from a game-theoretic standpoint. A mixed strategy Nash Equilibrium is searched in a two-player game (*texture* and *color*-based feature extractors acting as players, with strategies involving *extraction at different scales*). The objective centers around finding a weighted balance of these strategies to minimize the false positives (highlighting spurious edges) and false negatives (missing salient contours).

TI	_ ^		1 1		
	$ \bowtie$. (Н	$\Pi \Lambda$	Г л

Foundation of Algorithms (TA¹, Spring & Fall 2018-2021) • Data Mining (TA¹, Fall 2019) • Object-Oriented Programming and Data Structures (TA¹, Fall 2017, Spring 2018) • Principles of Programming (TA¹, Fall 2017)

RELEVANT COURSEWORK

Artificial Intelligence • Deep Learning • Statistical Machine Learning • Image Processing • Natural Language Processing • Data Visualization • Pattern Recognition • Vision & Language Frontiers • Data Mining • Information Assurance & Security • Soft Computing • Game Theory • Mobile Computing

¹TA: Teaching Assistant