Atmospheric Stability

Lapse Rate:

Lapse rate is the rate of change of temperature with height Lapse rate is defined as $\Gamma = -\delta T/\delta z$

Stable condition (ELR<ALR) Unstable Condition (ELR>ALR)

ONeutral Condition

Inversion

- •Radiation Inversion It usually occurs at night, When earth loses heat by radiation and cools the air in contact with it.
- Subsidence Inversion It is caused by sinking of air in anti cyclones (high pressure area surrounded by low pressure area)
- ✓ It occurs at modest altitude and often remains for several days

Mixing Height

- •The height above which the earth surface to which related pollutants will extend, primarily though the action of atmospheric turbulence.
- •It may related to one or more of the following factors wind direction wind speed wind turbulence

Meteorological Parameter: Secondary Parameter

o Precipitation

■ It accelerates the deposition of particular matter on the ground and removed from the atmosphere.

Humidity

- Influence the corrosive action of the air pollutants.
- Relative humidity is most frequently used to represent humidity.

o Solar Radiation

■ Depending on the location, solar radiation can have effect on the type and rate of chemical reactions in the atmosphere.

Plume Behaviour

- Dispersion of pollutants
 - Wind carries pollution downstream from source
 - Atmospheric turbulence causes pollutants to fluctuate
 from mainstream in vertical and cross-wind directions.

•Plume behaviour

- •The mixing or dispersion of the waste gases and products into the atmosphere is called plume behaviour.
- •Depending on the conditions close to the plume source, the plume may acquire shapes very different from the regular diffusion shape.

Plume Behaviour

Various plume shapes and associated phenomena

are described below.

- a. Looping plume:
- b. Conning plume
- c. fanning plume;
- d. Fumigation;
- e. Lofting
- f. Trapped plume

Six Classes of Plume Behavior

Looping:

- Plume has wavy character.
- · Occurs in highly unstable conditions because of rapid mixing.
- High turbulence helps dispersing plume rapidly.
- High conc. may occur close to stack if plume touches ground.

Figure 4-19. Looping plume

Coning:

- Plume shaped like a cone
- Takes place in neutral atmosphere, when wind velocity > 32 km/hr.
- Plume reaches ground at greater distance than looping.

Fanning:

- In stable air, and where the vertical movement of the plume is slow, a fanning plume is produced.
- This wide, shallow, spreading plume is very common after calm clear nights.
- A layer of warm air limits the rise of the plume into the upper atmosphere, and creates a higher concentration of polluted air at lower levels. This plume exists for several hours.

Figure 4-20. Fanning plume

Fumigation:

- Fan or cone with well defined cone.
- Pollutants are loft in air are brought rapidly to ground level when air destabilizes.
- Little turbulence in upperlayer.
- Large probability of ground contact.

Figure 4-23 Fumigation

Lofting:

- Loops or cone with well defined bottom.
- Occurs when strong lapse rate above surface inversion.
- Moderate winds.
- Ground contact small.
- Best condition for pollutant dispersion.

Trapping:

- Inversion above and below stack
- Diffusion of pollutants is limited to layer between inversions
- Very critical from point of ground level pollutant.

Plume Behaviour

Various plume shapes and associated phenomena

are described below.

- a. Looping plume:
- b. Conning plume
- c. fanning plume;
- d. Fumigation;
- e. Lofting
- f. Trapped plume

