Cosets

Definition

Let $H \leq G$. The *left* and *right* relations on G are defined as follows:

$$a \sim_L b \iff a^{-1}b \in H$$

 $a \sim_R b \iff ba^{-1} \in H$

Theorem

 \sim_L and \sim_R are equivalence relations.

Proof

R: Assume
$$a \in G$$

$$a^{-1} \in G$$

$$e \in H$$

$$a^{-1}a = e \in H$$

$$\therefore a \sim_L a$$
S: Assume $a \sim_L b$

$$a^{-1}b \in H$$

$$(a^{-1}b)^{-1} \in H$$

$$b^{-1}a \in H$$

$$\therefore b \sim_L a$$
T: Assume $a \sim_L b$ and $b \sim_L c$

$$a^{-1}b \in H \text{ and } b^{-1}c \in H$$

$$(a^{-1}b)(b^{-1}c) \in H$$

$$a^{-1}c \in H$$

$$\therefore a \sim_L c$$

Assume
$$a \in G$$

Assume $g \in G, a \sim_L g$
 $a^{-1}g \in H$
 $\exists \, h \in H, a^{-1}g = h$
 $g = ah$

R: Assume
$$a \in G$$

$$a^{-1} \in G$$

$$e \in H$$

$$aa^{-1} = e \in H$$

$$\therefore a \sim_R a$$
S: Assume $a \sim_R b$

$$ba^{-1} \in H$$

$$(ba^{-1})^{-1} \in H$$

$$ab^{-1} \in H$$

$$\therefore b \sim_R a$$
T: Assume $a \sim_R b$ and $b \sim_R c$

$$ba^{-1} \in H \text{ and } cb^{-1} \in H$$

$$(cb^{-1})(ba^{-1}) \in H$$

$$ca^{-1} \in H$$

$$\therefore a \sim_R c$$

Assume
$$a \in G$$

Assume $g \in G, a \sim_R g$
 $ga^{-1} \in H$
 $\exists h \in H, ga^{-1} = h$
 $g = ha$

Definition

Let $H \leq G$ and $a \in G$:

 $aH = \{ah \mid h \in H\}$ is called the *left coset* of H containing a $Ha = \{ha \mid h \in H\}$ is called the *right coset* of H containing a

Note that if G is abelian then aH = Ha.

Theorem

Let $H \leq G$ and $a \in G$:

$$|aH| = |Ha| = |H|$$

Proof

Let $\phi: H \to aH$ be defined by $\phi(h) = ah$

Assume $\phi(h_1) = \phi(h_2)$ Assume $h' \in aH$ Let $h = a^{-1}h'$ $h_1 = h_2$ $a \sim_L h'$, so $h \in H$ $\phi(h) = ah = a(a^{-1}h') = h'$ ϕ is onto

 $\therefore \phi$ is a bijection and |H| = |aH|

Now let $\phi: H \to Ha$ be defined by $\phi(h) = ha$

Assume $\phi(h_1) = \phi(h_2)$ Assume $h' \in Ha$ Let $h = h'a^{-1}$ $h_1 = h_2$ $a \sim_R h'$, so $h \in H$ \therefore ϕ is one-to-one. $\phi(h) = ha = (h'a^{-1})a = h'$ \therefore ϕ is onto

 $\therefore \phi$ is a bijection and |H| = |Ha|

So if $H \leq G$, then aH (\sim_L) and Ha (\sim_R) partition G into equivalence classes of order |H|:

Theorem: Lagrange

Let H be the subgroup of a finite group G:

$$|H|$$
 divides $|G|$

Proof

Let |H| = m and |G| = n

Every coset of H has n elements

The cosets are the equivalence classes of a relation that partition ${\cal G}$

Assume there are r such equivalence classes

n = rm $\therefore m \mid n$

Definition

Let $H \leq G$. The *index* of H in G, denoted (G:H), is the number of left cosets of H in G:

$$(G:H) = \frac{|G|}{|H|}$$

When determining all of the left (right) cosets of *G*:

1).
$$(G:H) = \frac{|G|}{|H|}$$

2). $a,b \in G$ are in the same coset if $a \sim_L b$ ($a \sim_R b$)

Example

$$S_3 = \{(), (12), (13), (23), (123), (132)\}$$

Let
$$H = \{(), (23)\}$$

$$(S_3:H)=\frac{6}{2}=3$$

$$(12) \notin H$$

$$(12)^{-1}(13) = (12)(13) = (132) \notin H$$

$$(12)^{-1}(123) = (12)(123) = (23) \in H$$

$$()H = \{(), (23)\}$$

$$(12)H = \{(12), (123)\}\$$

$$(13)H={(13),(132)}$$

$$()H = (23)H$$

$$(12)H = (123)H$$

$$(13)H = (132)H$$

Theorem

Every group of prime order is cyclic.

Proof

Let |G| = p, where p is prime

Let
$$a \in G, a \neq e$$

$$\langle a \rangle \leq G \text{ and } |a| \geq 2$$

By Lagrange, |a| divides |G|=p

But p is prime

So
$$|a|=p$$
 and thus $\langle a\rangle=G$

 $\therefore G$ is cyclic

Theorem

Let H, K, G be finite groups such that $K \leq H \leq G$:

$$(G:K) = (G:H)(H:K)$$

Proof

$$(G:H)(H:K) = \left(\frac{|G|}{|H|}\right) \left(\frac{|H|}{|K|}\right) = \frac{|G|}{|K|} = (G:K)$$