

# **RAIO**

# RA8876\_Lite User Guide

Apr 22, 2015



| Revise History |      |                 |
|----------------|------|-----------------|
| Version        | Date | Description     |
| 1.0            |      | Initial Release |



| Chapter 1   | RA8876_Lite introduction      | 4   |
|-------------|-------------------------------|-----|
| Chapter 2   | Initialization                |     |
| Chapter 3   | Memory Configuration & Window | 17  |
| Chapter 4   | Graphic                       | 23  |
| Chapter 5   | Text and Value                |     |
| Chapter 6   | Geometric Draw                | 47  |
| Chapter 7   | BTE                           | 58  |
| Chapter 8   | DMA                           | 81  |
| Chapter 9   | PWM                           | 87  |
| Chapter 10  | Arduino SD                    | 91  |
| Appendix A. |                               | 100 |



# Chapter 1 RA8876\_Lite introduction

RA8876\_Lite provides GUI application source code that based on the Arudino Due development board, and it can be connected to RA8876 driver board and SD card adapter. This document will help users to rapidly realize how to apply the Arduino Due development environment with RA8876 (Parallel RGB output) /RA8877 (LVDS output) for the TFT – LCD solutions.

# Hardware requirements

1. Arduino Due development board



2. RA8876 or RA8877's evaluation board (mounted SPI FLASH ROM and Genitop Font ROM IC on board)





- RA8876 Chip
- Select SPI 4 wire interface
- Serial Flash ROM for DMA function
- Genitop Font ROM
- SDRAM

# 3. SD card adapter



4. SD card (maximum 4GB)





# Software requirements

Arduino IDE 1.5.7 <a href="http://arduino.cc/en/Main/Software">http://arduino.cc/en/Main/Software</a>
RA8876 Image Tool 1.0 <a href="http://arduino.cc/en/Main/Software">www.raio.com.tw</a>

# RA8876 Lite features

RA8876\_Lite provides application interface (API) that is used for the major built-in functions of RA8876 TFT LCD controller, all demonstration in this document is based on the SPI interface of Arduino Due development board, that it is used with RA8876 for displaying the 16BPP color depth image on the TFT-LCD. The following is the demo features in this document:

#### Initialization

RA8876's initialized procedures.

#### **Memory configuration & Window**

Describe how to configure the external memory of RA8876 which is corresponded to the distinct operating windows.

#### Graphic

RA8876 is in Graphic Mode, the Arduino Due writes the color image data.

RA8876 is in Graphic Mode, the Arduino Due writes user's customized ASCII fonts.

#### **Text**

RA8876 is in Text Mode, the Arduino Due writes built-in the ASCII fonts with RA8876's text function, illustrate the font enlarge function of RA8876.

Display ASCII code, BIG5 and GB2312 fonts. Please note that fonts are provided by the Genitop's Font ROM.

#### **Geometric Draw**



RA8876 is in Graphic Mode, the Arduino Due draws line, square, square fill, circle square, circle square fill, triangle, triangle fill, circle, circle fill, ellipse, ellipse fill on the display through the particular functions of RA8876.

#### **BTE**

RA8876 is in Graphic Mode, the Arduino Due shows RA8876 BTE functions on the display:

- ♦ BTE memory copy
- ♦ BTE memory ROP logic operation and copy
- ♦ BTE memory copy with chroma key
- ◆ Arduino Due executes memory write with ROP logic operation through BTE engine
- Arduino Due executes memory write with chroma key through BTE engine
- ♦ Arduino Due executes memory write with color expansion through BTE engine
- Arduino Due executes memory write with color expansion and chroma key through BTE engine
- ♦ BTE pattern fill
- BTE pattern fill with chroma key

#### **DMA**

RA8876 is in Graphic Mode, the RA8876 reads image data from serial flash directly, and then writes into the external memory of RA8876 through the DMA engine.

#### **PWM**

RA8876 PWM initial setup and frequency calculations, duty cycle configure. (Need an oscilloscope to measure the produced frequency)

#### **Arduino SD**

Arduino Due reads image data from SD card and then writes data into the RA8876 external memory.

Arduino Due reads image data from SD card and then writes into RA8876 external memory through BTE function.

#### Note:

**1.** Display coordinate system in this document:





- **2.** The display resolution is 800 \* 600 in this document, for other resolutions, please refer to Chapter 2 Initialization and Chapter 3 Memory configuration & Window.
- 3. RA8876\_Lite user defines variables type as following:

| typedef | signed char    | s8;   |  |
|---------|----------------|-------|--|
| typedef | signed short   | s16;  |  |
| typedef | signed long    | s32;  |  |
| typedef | unsigned char  | ru8;  |  |
| typedef | unsigned short | ru16; |  |
| typedef | unsigned long  | ru32; |  |

4. Circuitry connection please refer to appendix A:

Figure A-1

Figure A-2



# **Chapter 2** Initialization

# RA8876 initial process is as follows:

RA8876 hardware reset



RA8876 PLL initialization



**RA8876 SDRAM initialization** 



RA8876 General setting



RA8876 TFT timing setting



RA8876 Image display memory and windows initialized setting



RA8876 TFT Display on

#### 2.1 Hardware reset

# begin()

RA8876 hardware reset program is included in the function begin().

When the function begin() return "true", indicates hardware reset successful and connect RA8876 or RA8877 correctly, if return "false", indicates connect fail, please check the Arduino SPI bus is correctly connected to RA8876 driver board or not?

#### 2.2 PLL initialization



#### ra8876PIIInitial()

This PLL initialized subroutine will automatically finish the related initialization works depending on the parameters which defined in the RA8876\_Lite.h. So according to their display requirement, users just need to define the parameters as the following.

```
#define OSC_FREQ 10 // OSC clock frequency, unit: MHz.

#define DRAM_FREQ 120 // SDRAM clock frequency, unit: MHz.

#define CORE_FREQ 120 // Core (system) clock frequency, unit: MHz.

#define SCAN_FREQ 40 // Panel Scan clock frequency, unit: MHz.
```

| Define    | Description                                              |
|-----------|----------------------------------------------------------|
| OSC_FREQ  | Crystal resonator for RA8876, suggested 10MHz            |
| DRAM_FREQ | SDRAM access clock, suggested 50~160MHz                  |
| CORE_FREQ | RA8876 system core clock, suggested 50~130MHz            |
| SCAN_FREQ | TFT driving clock PCLK, refer to LCD SPEC specified PCLK |
|           | frequency requirements                                   |

Note: DRAM\_FREQ >= CORE\_FREQ CORE FREQ >= 2 \* SCAN FREQ

#### 2.3 SDRAM initialization

RA8876 does not have the built-in memory, so RA8876 must expand an external SDRAM as the image operating buffer and display memory.

#### ra8876SdramInitial()

The function will refer to RA8876\_Lite.h define as following, and execute SDRAM initialize automatically, users only need to select one of the following defined SDRAM part number. If the following parts do not meet your device, please refer to the contents of this subroutine and create your own one.

#define IS42SM16160D

#define IS42S16320B

#define IS42S16400F

#define M12L32162A

#define M12L2561616A

#define M12L64164A

#define W9825G6JH

#define W9812G6JH



#define MT48LC4M16A #define K4S641632N #define K4S281632K

# 2.4 General setting

According to customer's display requirement, the following registers should be set during executing the initialization for RA8876 or RA8877. The relevant information please refer to RA8876 or RA8877's specification and the bit definition of each register in the RA8876 Lite.h

IcdRegWrite(RA8876\_CCR);//01h

IcdDataWrite(RA8876\_PLL\_ENABLE<<7|RA8876\_WAIT\_NO\_MASK<<6|RA8876\_KEY\_SCAN\_DISABLE<<5|RA8876\_TFT\_OUTPUT24<<3|RA8876\_I2C\_MASTER\_DISABLE<<2|RA8876\_SERIAL IF ENABLE<<1|RA8876\_HOST\_DATA\_BUS\_SERIAL);

IcdRegWrite(RA8876 MACR);//02h

IcdDataWrite(RA8876\_DIRECT\_WRITE<<6|RA8876\_READ\_MEMORY\_LRTB<<4|RA8876\_W RITE MEMORY LRTB<<1);

IcdRegWrite(RA8876\_ICR);//03h

IcdDataWrite(RA8877\_LVDS\_FORMAT<<3|RA8876\_GRAPHIC\_MODE<<2|RA8876\_MEMOR Y\_SELECT\_IMAGE);

IcdRegWrite(RA8876 MPWCTR);//10h

IcdDataWrite(RA8876\_PIP1\_WINDOW\_DISABLE<<7|RA8876\_PIP2\_WINDOW\_DISABLE<<6 |RA8876\_SELECT\_CONFIG\_PIP1<<4|RA8876\_IMAGE\_COLOCR\_DEPTH\_16BPP<<2|TFT\_MODE):

IcdRegWrite(RA8876 PIPCDEP);//11h

lcdDataWrite(RA8876\_PIP1\_COLOR\_DEPTH\_16BPP<<2|RA8876\_PIP2\_COLOR\_DEPTH\_16BPP);

lcdRegWrite(RA8876 AW COLOR);//5Eh

lcdDataWrite(RA8876\_CANVAS\_BLOCK\_MODE<<2|RA8876\_CANVAS\_COLOR\_DEPTH\_16BPP);

lcdRegDataWrite(RA8876\_BTE\_COLR,RA8876\_S0\_COLOR\_DEPTH\_16BPP<<5|RA8876\_S



1 COLOR DEPTH 16BPP<<2|RA8876 S0 COLOR DEPTH 16BPP);//92h

# 2.5 TFT timing setting

According to the TFT LCD's datasheet, the relevant timing should be set for RA8876 as below. The following definitions are defined in the RA8876\_Lite.h.

```
#define TFT MODE
                     0 //0:SYNC_mode(SYNC+DE mode), 1: DE mode
//if sync only mode do not connect DE signal or set XDE_INV to 1
#define XHSYNC INV 0 // 0:no inversion, 1:inversion
#define XVSYNC INV 0 // 0:no inversion, 1:inversion
#define XDE INV
                     0 // 0:no inversion, 1:inversion
#define XPCLK INV 1 // 0:no inversion, 1:inversion
#define HPW
                  8 //
#define HND
                  38
#define HDW
                  800
#define HST
                  16
#define VPW
                   8
#define VND
                   15
#define VDH
                   600
#define VST
                   12
```

//use RA8877 need to set LVDS output data format, set to 0 when use RA8876 #define RA8877\_LVDS\_FORMAT 0 // 0:Format1(VESA format), 1:Format2 =(JEIDA format)

# **RA8876 Output Timing Reference**





The TFT LCD AT080TN52, TFT timing requirements as below:

|                         | Symbol | Values          |      |      | 11-14 | D      |
|-------------------------|--------|-----------------|------|------|-------|--------|
| Item                    |        | Min.            | Тур. | Max. | Unit  | Remark |
| Horizontal Display Area | thd    | -               | 800  | 4    | DCLK  |        |
| DCLK Frequency          | fclk   | <del>-</del> -1 | 40   | 50   | MHz   |        |
| One Horizontal Line     | th     | 862             | 1056 | 1200 | DCLK  |        |
| HS pulse width          | thpw   | 1               | -    | 40   | DCLK  |        |
| HS Back Porch(Blanking) | thb    | 46              | 46   | 46   | DCLK  |        |
| HS Front Porch          | thfp   | 16              | 210  | 354  | DCLK  |        |

| Itom                    | Sumbal | Values |          |      | Unit | Remark |
|-------------------------|--------|--------|----------|------|------|--------|
| Item                    | Symbol | Min.   | Тур.     | Max. | Onit | Remark |
| Vertical Display Area   | tvd    | - 4    | 600      | 1    | тн   |        |
| VS period time          | tv     | 624    | 635      | 700  | тн   |        |
| VS pulse width          | tvpw   | 1      | <b>-</b> | 20   | TH   |        |
| VS Back Porch(Blanking) | tvb    | 23     | 23       | 23   | тн   |        |
| VS Front Porch          | tvfp   | 1      | 12       | 77   | тн   |        |





# TFT timing initialization setup program:

lcdRegWrite(RA8876\_DPCR);//12h lcdDataWrite(XPCLK\_INV<<7|RA8876\_DISPLAY\_OFF<<6|RA8876\_OUTPUT\_RGB);</pre>

lcdRegWrite(RA8876\_PCSR);//13h lcdDataWrite(XHSYNC\_INV<<7|XVSYNC\_INV<<6|XDE\_INV<<5);</pre>

IcdHorizontalWidthVerticalHeight(HDW,VDH);

IcdHorizontalNonDisplay(HND);

IcdHsyncStartPosition(HST);

IcdHsyncPulseWidth(HPW);

IcdVerticalNonDisplay(VND);

IcdVsyncStartPosition(VST);

IcdVsyncPulseWidth(VPW);

# 2.6 Image display memory initialization setting

Please refer to RA8876\_Lite.h's definitions as the following, user need to define the following values:

// define screen resolution
#define SCREEN\_WIDTH 800
#define SCREEN\_HEIGHT 600



// user image memory buffer page configure

// the maximum number of pages depending on the capacity of the SDRAM and what the page //use of color depth, width, height.

// for example, the paper selects the SDRAM model W9825G6JH its capacity = 32Mbyte //page\_size = 800\*600\*2byte(16bpp) = 960000byte

//maximum number = 32/0.96 = 33.3

//so maximum configure page is 33 for application

// this article is configure 10 pages to display applications such as the following, the size of //each page is the same to the display size 800 \* 600, 16bpp color depth, that is configure for //vertical direction and mulit-page buffer application

```
#define PAGE1_START_ADDR 0

#define PAGE2_START_ADDR 800*600*2

#define PAGE3_START_ADDR 800*600*2*2

#define PAGE4_START_ADDR 800*600*2*3

#define PAGE5_START_ADDR 800*600*2*4

#define PAGE6_START_ADDR 800*600*2*5

#define PAGE7_START_ADDR 800*600*2*6

#define PAGE8_START_ADDR 800*600*2*7

#define PAGE9_START_ADDR 800*600*2*8

#define PAGE10 START_ADDR 800*600*2*9
```

# Windows initialization program:

```
displayImageStartAddress(PAGE1_START_ADDR);
displayImageWidth(SCREEN_WIDTH);
displayWindowStartXY(0,0);
canvasImageStartAddress(PAGE1_START_ADDR);
canvasImageWidth(SCREEN_WIDTH);
activeWindowXY(0,0);
activeWindowWH(SCREEN_WIDTH,SCREEN_HEIGHT);
```

# 2.7 TFT display on

After running the RA8876 initialization setting, usually executes writing image data into display memory firstly, then turn the display on. RA8876 TFT LCD timing controller will fetch the image



data from the display windows block of the image display memory and then output to the LCD to display automatically, after turning on the display.

# **Description:**

Display on/off.

# **Function prototype:**

void displayOn(boolean on);

| Parameter | Description |
|-----------|-------------|
|           | = true      |
|           | Display on  |
| on        | = false     |
|           | Display off |

RAiO TECHNOLOGY INC. 16/101 www.raio.com.tw



# **Chapter 3** Memory Configuration & Window

In this document, the memory be configured to 10 pages, the first page is assigned to image display memory, the others are used for image buffer; for example, update image to image buffer page 2, and then use BTE memory copy function, copy the image data from page2 to page1 image display memory. This method can avoid to lead to the flicker effect or the overlap effect when updating the display data to image display memory directly.

# **Memory configuration diagram:**





display image image buffer

The related functions for Memory and Windows are shown as below:



| Function                   | Description                                                 |
|----------------------------|-------------------------------------------------------------|
| displayImageStartAddress() | Set the start address of the image display memory           |
| displayImageWidth()        | Set the width of image display memory                       |
| displayWindowStartXY()     | Set the display window start point of the upper left corner |
|                            | of the image display memory                                 |
| canvasImageStartAddress()  | Set the start address of the canvas image memory            |
| canvasImageWidth()         | Set the width of the canvas image memory                    |
| activeWindowXY()           | Set the active window start point of the upper left corner  |
|                            | of canvas                                                   |
| activeWindowWH()           | Set the width and height of the active window               |

# displayImageStartAddress()

# **Description:**

Set the start address of the image display memory.

# **Function prototype:**

void displayImageStartAddress(ru32 addr);

| Parameter | Description                           |
|-----------|---------------------------------------|
| addr      | Start address of image display memory |

# Note and example:

Image display memory is the data source of the display window, the start address is recommended to address at 0. In this document, the memory is configured to 10 pages, the first page is assigned for image display memory, the initialization setting is shown as the following:

displayImageStartAddress(PAGE1 START ADDR);

# displayImageWidth()

# **Description:**

Set the width of image display memory.

# **Function prototype:**

void displayImageWidth(ru16 width);



| Parameter | Description                       |
|-----------|-----------------------------------|
| width     | Width of the image display memory |

# Note and example:

Width of the image display memory must be set to equal to the page (canvas) width. Set each page (canvas) width to 800(=SCREEN\_WIDTH), so initialization is set as the following:

displayImageWidth(SCREEN WIDTH);

This function need to set one time only during the initialization.

User can also configure the page (canvas) width> SCREEN\_WIDTH

For example:

//configure image display page (canvas) start point to address 0 of the memory, width is 1600, //height is 600.

displayImageStartAddress(0)

displayImageWidth(1600);

//start point of the memory address of the next page = 1600\*600\*2(byte)

#### displayWindowStartXY()

#### **Description:**

Set the display window start point on the upper left corner of the image display memory.

# **Function prototype:**

void displayWindowStartXY(ru16 x0,ru16 y0);

| Parameter | Description                         |
|-----------|-------------------------------------|
| x0        | Upper left corner X-axis coordinate |
| y0        | Upper left corner Y-axis coordinate |

#### Note and example:

Width and height of the display window are referenced to the TFT display timing setting HDW and VDH, user only need to set display window start point of the upper left corner of the image display memory.

Setting is shown as the following:

displayWindowStartXY(0,0);



When width and height of the image display memory page (canvas) > width and height of the LCD resolution, X-axis and Y-axis coordinates can be changed, The minimum X-axis offset is multiples of 4, the minimum offset of the Y-axis is 1.

The corresponding relation between the display window and the current image display memory is like child and parent, the display window (child) is always attached to the current specified image display memory (parent).

The Contents of display window will output to the TFT-LCD display by RA8876 TFT timing controller, after setting displayOn (true).

# canvasImageStartAddress()

# **Description:**

Set the start address of the canvas image memory.

# Function prototype:

void canvasImageStartAddress(ru32 addr);

| Parameter | Description                              |
|-----------|------------------------------------------|
| addr      | Start address of the canvas image memory |

#### canvasImageWidth()

#### **Description:**

Set the width of the canvas image memory.

#### **Function prototype:**

void canvasImageWidth(ru16 width);

| Parameter | Description                      |
|-----------|----------------------------------|
| width     | Width of the canvas image memory |

#### Note and example:

With the operations of the Graphic, Text, Draw or DMA, all the display manipulations must be executed in the area of the active window of the current canvas, in this document, the memory is configured to 10 pages, each and all pages can be specified as the current canvas, for

RAio TECHNOLOGY INC. 20/101 www.raio.com.tw



#### example:

```
// specify the page 1 for the current canvas ra8876lite.canvasImageStartAddress(PAGE1_START_ADDR); ra8876lite.canvasImageWidth(SCREEN_WIDTH);
```

// specify the page 2 for the current canvas ra8876lite.canvasImageStartAddress(PAGE2\_START\_ADDR);

// specify the page 3 for the current canvas ra8876lite.canvasImageStartAddress(PAGE3\_START\_ADDR);

# activeWindowXY()

# **Description:**

Set the active window start point on the upper left corner of canvas.

# **Function prototype:**

void activeWindowXY(ru16 x0,ru16 y0);

| Parameter | Description                         |
|-----------|-------------------------------------|
| x0        | Upper left corner X-axis coordinate |
| y0        | Upper left corner Y-axis coordinate |

# activeWindowWH()

# **Description:**

Set the width and height of the active window.

# **Function prototype:**

void activeWindowWH(ru16 width,ru16 height);

| Parameter | Description                 |
|-----------|-----------------------------|
| width     | Width of the active window  |
| height    | height of the active window |

# Note and example:



With the operations of the Graphic, Text, Draw or DMA, all the display manipulations must be executed in the area of the active window of the current canvas. The corresponding relation between the active window and the current canvas is like child and parent, the active window (child) is always attached to the current canvas (parent).

Active window must be set in the current canvas area.



# Chapter 4 Graphic

| Function           | Description                                               |
|--------------------|-----------------------------------------------------------|
| graphicMode()      | Switch to graphics mode or text mode                      |
| setPixelCursor()   | Set the pixel cursor coordinate                           |
| ramAccessPrepare() | Pre instruction of the memory access                      |
| putPixel_16bpp()   | Draw a pixel at the specified coordinate                  |
| putPicture_16bpp() | Specify coordinate and width, height and then write image |
|                    | data                                                      |
| putPicture_16bpp() | Specify coordinate and width, height image data pointer   |
|                    | (Byte format)                                             |
| putPicture_16bpp() | Specify coordinate and width, height image data pointer   |
|                    | (Word format)                                             |

#### Note:

Please refer to "RA8876 Arduino Wire Sketch.jpg" circuitry connection or appendix Figure A-1. The image data is converted by using "Image\_Tool\_V1.0" image tool.

# graphicMode()

# **Description:**

Option for selecting that RA8876 is worked in the graphics mode or text mode.

# **Function prototype:**

void graphicMode(boolean on);

| Parameter | Description         |
|-----------|---------------------|
|           | = true              |
|           | Set to graphic mode |
| on        | = false             |
|           | Set to Text mode    |

#### Note:

The default value for RA8876 is stayed in graphic mode.

# setPixelCursor()



# **Description:**

Set the pixel cursor's coordinate.

# **Function prototype:**

void setPixelCursor(ru16 x,ru16 y);

| Parameter | Description       |
|-----------|-------------------|
| X         | X-axis coordinate |
| у         | Y-axis coordinate |

# ramAccessPrepare()

# **Description:**

Pre-instruction for the memory access

# **Function prototype:**

void ramAccessPrepare(void);

# Note:

This function must be called before the memory access.

# putPixel\_16bpp()

# **Description:**

Draw a pixel at the specified coordinate.

# **Function prototype:**

void putPixel\_16bpp(ru16 x,ru16 y,ru16 color);

|           | Description       |  |
|-----------|-------------------|--|
| Parameter |                   |  |
| Х         | X-axis coordinate |  |
| у         | Y-axis coordinate |  |
| color     | RGB565 data       |  |



# Note and example:

//clean current canvas page1 specified active window to color blue ra8876lite.canvasImageStartAddress(PAGE1\_START\_ADDR); ra8876lite.canvasImageWidth(SCREEN\_WIDTH); ra8876lite.activeWindowXY(0,0); ra8876lite.activeWindowWH(SCREEN\_WIDTH,SCREEN\_HEIGHT); ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K\_BLUE);

// draw a color red pixel dot to specified coordinate (20, 20) of the current canvas ra8876lite.setPixelCursor(20,20);

ra8876lite.ramAccessPrepare();

ra8876lite.lcdDataWrite(0x00);//RGB565 LSB data

ra8876lite.lcdDataWrite(0xf8); //RGB565 MSB data

// draw a color white pixel dot to specified coordinate (30, 20) of the current canvas ra8876lite.setPixelCursor(30,30);

ra8876lite.ramAccessPrepare();

ra8876lite.lcdDataWrite16bbp(COLOR65K\_WHITE);//RGB565 16bpp data

// draw a color magenta pixel dot to specified coordinate (40, 30) of the current canvas ra8876lite.putPixel\_16bpp(40,40,COLOR65K\_MAGENTA);

# Screenshot of the example:



putPicture\_16bpp()



# **Description:**

Set the start coordinate of the upper left corner width and height for the intended image, after setting the relevant parameters, user is able to proceed with writing image data.

# **Function prototype:**

void putPicture\_16bpp(ru16 x,ru16 y,ru16 width, ru16 height);

| Parameter | Description                         |
|-----------|-------------------------------------|
| X         | Upper left corner X-axis coordinate |
| у         | Upper left corner Y-axis coordinate |
| width     | Image width(horizontal pixel size)  |
| height    | Image height(vertical pixel size)   |

# putPicture\_16bpp()

# **Description:**

Set the coordinate, width and height of the image and the image data pointer (Byte format), after the previous settings, the function will depend on the data pointer and then starting to automatically write the image data to the specified address which is defined within the current active window of the current canvas.

# **Function prototype:**

void putPicture\_16bpp(ru16 x,ru16 y,ru16 width, ru16 height, const unsigned char \*data);

| Parameter | Description                         |
|-----------|-------------------------------------|
| X         | Upper left corner X-axis coordinate |
| у         | Upper left corner Y-axis coordinate |
| width     | Image width(horizontal pixel size)  |
| height    | Image height(vertical pixel size)   |
| *data     | Byte format image data pointer      |

#### Note:

Image data is converted by using "Image\_Tool\_V1.0" image tool.

# putPicture\_16bpp()



# **Description:**

Set the coordinate, width and height of the image and the image data pointer (Word format), after the previous settings, the function will depend on the data pointer and then starting to automatically write the image data to the specified address which is defined within the current active window of the current canvas.

# **Function prototype:**

void putPicture\_16bpp(ru16 x,ru16 y,ru16 width, ru16 height, const unsigned short \*data);

| Parameter | Description                         |
|-----------|-------------------------------------|
| X         | Upper left corner X-axis coordinate |
| у         | Upper left corner Y-axis coordinate |
| width     | Image width(horizontal pixel size)  |
| height    | Image height(vertical pixel size)   |
| *data     | Word format image data pointer      |

#### Note:

Image data is converted by using "Image\_Tool\_V1.0" image tool.

# Note and example:

```
//clean current canvas page1 specify active window to color blue
ra8876lite.canvasImageStartAddress(PAGE1_START_ADDR);
ra8876lite.canvasImageWidth(SCREEN_WIDTH);
ra8876lite.activeWindowXY(0,0);
ra8876lite.activeWindowWH(SCREEN_WIDTH,SCREEN_HEIGHT);
ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K_BLUE);

//write 128*128 image to the specified coordinate of the current canvas
ra8876lite.putPicture_16bpp(50,50,128,128);
for(i=0;i<16384;i++)
{
    ra8876lite.lcdDataWrite16bbp(COLOR65K_YELLOW);//RGB565 16bpp data
}
// write 128*128 image to the specified coordinate of the current canvas
ra8876lite.putPicture 16bpp(50+128,50+128,128,128,pic16bpp byte);
```



// write 128\*128 image to the specified coordinate of the current canvas ra8876lite.putPicture\_16bpp(50+128+128,50+128+128,128,128,128,pic16bpp \_word);

# Screenshot of the example:



# Additional functions and examples

| Function            | Description                |
|---------------------|----------------------------|
| lcdPutChar8x12()    | Draw 8x12 ASCII character  |
| IcdPutString8x12()  | Draw 8x12 ASCII string     |
| lcdPutChar16x24()   | Draw 16x24 ASCII character |
| IcdPutString16x24() | Draw 16x24 ASCII string    |
| lcdPutChar32x48()   | Draw 32x48 ASCII character |
| IcdPutString32x48() | Draw 32x48 ASCII string    |

# Note:

Please refer to the file "RA8876\_Lite\_Graphic.ino" for getting the relevant information of the above functions. If user needs the functions for their display requirement, please migrate the needed functions to their own firmware project.

IcdPutChar8x12()
IcdPutChar16x24()
IcdPutChar32x48()



#### **Description:**

Show ASCII character at specified coordinate which is located in the current active window of the current canvas.

# **Function prototype:**

void lcdPutChar8x12(unsigned short x,unsigned short y,unsigned short fgcolor, unsigned short bgcolor, boolean bg\_transparent, unsigned char code)

void lcdPutChar16x24(unsigned short x, unsigned short y, unsigned short fgcolor, unsigned short bgcolor, boolean bg\_transparent, unsigned char code);

void lcdPutChar32x48(unsigned short x, unsigned short y, unsigned short fgcolor, unsigned short bgcolor, boolean bg\_transparent, unsigned char code);

| Parameter      | Description                                             |
|----------------|---------------------------------------------------------|
| X              | Upper left corner X-axis coordinate                     |
| у              | Upper left corner Y-axis coordinate                     |
| fgcolor        | Text foreground color                                   |
| bgcolor        | Text background color                                   |
| bg_transparent | = ture : select background transparent, =false : select |
|                | background color                                        |
| code           | ASCII code                                              |

IcdPutString8x12()
IcdPutString16x24()
IcdPutString32x48()

# **Description:**

Show ASCII string at specified coordinate which is located in the current active window of the current canvas.

# **Function prototype:**

void lcdPutString8x12(unsigned short x, unsigned short y, unsigned short fgcolor, unsigned short bgcolor, boolean bg transparent, char \*ptr)

void lcdPutString16x24(unsigned short x, unsigned short y, unsigned short fgcolor, unsigned



short bgcolor, boolean bg transparent, char \*ptr)

void lcdPutString32x48(unsigned short x, unsigned short y, unsigned short fgcolor, unsigned short bgcolor, boolean bg transparent, char \*ptr)

| Parameter      | Description                                              |
|----------------|----------------------------------------------------------|
| X              | Upper left corner X-axis coordinate                      |
| у              | Upper left corner Y-axis coordinate                      |
| fgcolor        | Text foreground color                                    |
| bgcolor        | Text background color                                    |
| bg_transparent | = ture : select background transparent , =false : select |
|                | background color                                         |
| *ptr           | String or data pointer                                   |

# Note and example:

```
//clean current canvas page1 specified active window to color blue
ra8876lite.canvasImageStartAddress(PAGE1_START_ADDR);
ra8876lite.canvasImageWidth(SCREEN_WIDTH);
ra8876lite.activeWindowXY(0,0);
ra8876lite.activeWindowWH(SCREEN_WIDTH,SCREEN_HEIGHT);
ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K_BLUE);

// draw 8*12 ASCII character to specified coordinate in the active window of the current canvas.
#ifdef DEMO_ASCII_8X12
IcdPutString8x12(0,0,0xFFFF,0x0000,true," !\"#$%&'()*+,-./012345678");
IcdPutString8x12(0,12,0xFFFF,0x0000,true,"9:;<=>?@ABCDEFGHIJKLMNOPQ");
IcdPutString8x12(0,24,0xFFFF,0x0000,true,"RSTUVWXYZ[\\]^_`abcdefghij");
IcdPutString8x12(0,36,0xFFFF,0x0000,true,"klmnopqrstuvwxyz{|}~");
#endif
```

// draw 16\*24 ASCII character to specified coordinate in the active window of the current //canvas.

```
#ifdef DEMO_ASCII_16X24
IcdPutString16x24(0,48,0xFFFF,0x0000,true," !\"#$%&'()*+,-./012345678");
IcdPutString16x24(0,72,0xFFFF,0x0000,true,"9:;<=>?@ABCDEFGHIJKLMNOPQ");
```



 $\label{local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_loc$ 

// draw 32\*48 ASCII character to specified coordinate in the active window of the current //canvas.

lcdPutString32x48(0,240,0xFFFF,0x0000,false,"RSTUVWXYZ[\\]^ `abcdefghij");

lcdPutString32x48(0,288,0xFFFF,0x0000,false,"klmnopqrstuvwxyz{|}~");
#endif

# Screenshot of the example:



# Chapter 5 Text and Value

| Function                       | Description                                        |
|--------------------------------|----------------------------------------------------|
| textMode()                     | Switch to text mode or graphic mode                |
| textColor()                    | Set the text foreground color and background color |
| setTextCursor()                | Set the text cursor coordinate                     |
| setTextParameter1()            | Set the text function parameter1                   |
| setTextParameter2()            | Set the text function parameter2                   |
| genitopCharacterRomParameter() | Set the Genitop font function parameter            |
| putString()                    | Write string to specified coordinate               |
| putDec()                       | Write decimal value to specified coordinate        |
| putFloat()                     | Write floating value to specified coordinate       |
| putHex()                       | Write hexadecimal value to specified coordinate    |

#### Note:

Please refer to" *RA8876 Arduino Wire Sketch.jpg*" for the circuitry connection or please refer to the appendix <u>Figure A-1</u>

# textMode()

# **Description:**

Option for selecting that RA8876 is worked in the graphics mode or text mode.

# **Function prototype:**

void textMode (boolean on);

| Parameter | Description         |
|-----------|---------------------|
|           | = true              |
|           | Set to text mode    |
| on        | = false             |
|           | Set to graphic mode |

# Note:

It is recommended that set the operating mode of RA8876 back to the graphic mode after each time user finished the text mode operation in text mode.

# textColor()



# **Description:**

Set the foreground color and the background color for text.

# **Function prototype:**

void textColor(ru16 foreground\_color, ru16 background\_color);

| Parameter        | Description               |
|------------------|---------------------------|
| foreground_color | Color for text foreground |
| background_color | Color for text background |

# setTextCursor()

# **Description:**

Set the coordinate for text cursor .

# **Function prototype:**

void setTextCursor(ru16 x, ru16 y);

| Parameter | Description       |
|-----------|-------------------|
| X         | X-axis coordinate |
| у         | Y-axis coordinate |

# setTextParameter1()

# **Description:**

Set the text function's parameter1.

# **Function prototype:**

void setTextParameter1(ru8 source\_select, ru8 size\_select, ru8 iso\_select);

| Parameter     | Description                  |
|---------------|------------------------------|
| source_select | RA8876_SELECT_INTERNAL_CGROM |
|               | RA8876_SELECT_EXTERNAL_CGROM |
|               | RA8876_SELECT_USER_DEFINED   |



| size_select | RA8876_CHAR_HEIGHT_16 |
|-------------|-----------------------|
|             | RA8876_CHAR_HEIGHT_24 |
|             | RA8876_CHAR_HEIGHT_32 |
| iso_select  | RA8876_SELECT_8859_1  |
|             | RA8876_SELECT_8859_2  |
|             | RA8876_SELECT_8859_4  |
|             | RA8876_SELECT_8859_5  |

# setTextParameter2()

# **Description:**

Set the text function's parameter2.

# **Function prototype:**

void setTextParameter2(ru8 align, ru8 chroma\_key, ru8 width\_enlarge, ru8 height\_enlarge);

| Parameter      | Description                                  |
|----------------|----------------------------------------------|
| align          | RA8876_TEXT_FULL_ALIGN_DISABLE               |
|                | RA8876_TEXT_FULL_ALIGN_ENABLE                |
|                | Full-width font aligment enable bit          |
| chroma_key     | RA8876_TEXT_CHROMA_KEY_DISABLE               |
|                | RA8876_TEXT_CHROMA_KEY_ENABLE                |
|                | Text background color transparent enable bit |
| width_enlarge  | RA8876_TEXT_WIDTH_ENLARGEMENT_X1             |
|                | RA8876_TEXT_WIDTH_ENLARGEMENT_X2             |
|                | RA8876_TEXT_WIDTH_ENLARGEMENT_X3             |
|                | RA8876_TEXT_WIDTH_ENLARGEMENT_X4             |
|                | Text horizontal enlarge select               |
| height_enlarge | RA8876_TEXT_HEIGHT_ENLARGEMENT_X1            |
|                | RA8876_TEXT_HEIGHT_ENLARGEMENT_X2            |
|                | RA8876_TEXT_HEIGHT_ENLARGEMENT_X3            |
|                | RA8876_TEXT_HEIGHT_ENLARGEMENT_X4            |
|                | Text vertical enlarge select                 |

# genitopCharacterRomParameter()



# **Description:**

Set the parameters for Genitop font function.

# **Function prototype:**

void genitopCharacterRomParameter(ru8 scs\_select, ru8 clk\_div, ru8 rom\_select, ru8 character\_select, ru8 gt\_width);

| Parameter        | Description                                    |
|------------------|------------------------------------------------|
|                  | RA8876_SERIAL_FLASH_SELECT0                    |
| scs_select       | RA8876_SERIAL_FLASH_SELECT1                    |
|                  | Select use SPI0 or SPI1                        |
|                  | RA8876_SPI_DIV2                                |
|                  | RA8876_SPI_DIV4                                |
|                  | RA8876_SPI_DIV6                                |
| clk_div          | RA8876_SPI_DIV8                                |
|                  | RA8876_SPI_DIV10                               |
|                  | Set Genitop font SPI clock divider             |
|                  | RA8876_GT21L16T1W                              |
|                  | RA8876_GT30L16U2W                              |
|                  | RA8876_GT30L24T3Y                              |
| rom_select       | RA8876_GT30L24M1Z                              |
|                  | RA8876_GT30L32S4W                              |
|                  | RA8876_GT20L24F6Y                              |
|                  | RA8876_GT21L24S1W                              |
|                  | Select Genitop font                            |
|                  | RA8876_GB2312                                  |
|                  | RA8876_GB12345_GB18030                         |
|                  | RA8876_BIG5                                    |
|                  | RA8876_ASCII                                   |
|                  | RA8876_UNICODE                                 |
|                  | RA8876_UNI_JAPANESE                            |
|                  | RA8876_JIS0208                                 |
|                  | RA8876_LATIN_GREEK_CYRILLIC_ARABIC_THAI_HEBREW |
|                  | RA8876_ISO_8859_1_AND_ASCII                    |
|                  | RA8876_ISO_8859_2_AND_ASCII                    |
| character_select | RA8876_ISO_8859_3_AND_ASCII                    |



|          | RA8876_ISO_8859_4_AND_ASCII          |
|----------|--------------------------------------|
|          | RA8876_ISO_8859_5_AND_ASCII          |
|          | RA8876_ISO_8859_7_AND_ASCII          |
|          | RA8876_ISO_8859_8_AND_ASCII          |
|          | RA8876_ISO_8859_9_AND_ASCII          |
|          | RA8876_ISO_8859_10_AND_ASCII         |
|          | RA8876_ISO_8859_11_AND_ASCII         |
|          | RA8876_ISO_8859_13_AND_ASCII         |
|          | RA8876_ISO_8859_14_AND_ASCII         |
|          | RA8876_ISO_8859_15_AND_ASCII         |
|          | RA8876_ISO_8859_16_AND_ASCII         |
|          | Select font decoder                  |
|          | RA8876_GT_FIXED_WIDTH                |
|          | RA8876_GT_VARIABLE_WIDTH_ARIAL       |
| gt_width | RA8876_GT_VARIABLE_FIXED_WIDTH_ROMAN |
|          | RA8876_GT_BOLD                       |
|          | Select font                          |

# Note:

RA8876 provides 2 SPI master interfaces are the IF0 and the IF1. It is recommended to use the IF0 for the GENITOP's font ROM, and use the IF1 for the serial flash memory, please refer to the datasheet of RA8876 for the detailed information.

# putString()

# **Description:**

Write a string to specified coordinate within the current active window of the current canvas.

# **Function prototype:**

void putString(ru16 x0, ru16 y0, char \*str);

|           | Description                         |
|-----------|-------------------------------------|
| Parameter |                                     |
| x0        | Upper left corner X-axis coordinate |
| y0        | Upper left corner Y-axis coordinate |
| *str      | String or data pointer              |



#### **Example:**

```
//clean current canvas page1 specified active window to color blue
 ra8876lite.canvasImageStartAddress(PAGE1 START ADDR);
 ra8876lite.canvasImageWidth(SCREEN WIDTH);
 ra8876lite.activeWindowXY(0,0);
 ra8876lite.activeWindowWH(SCREEN_WIDTH,SCREEN_HEIGHT);
 ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K BLUE);
//set the text function parameter
//set the text color
//write build-in font 8x16 ASCII string to specified coordinate
ra8876lite.setTextParameter1(RA8876 SELECT INTERNAL CGROM,RA8876 CHAR HEIG
 HT 16,RA8876 SELECT 8859 1);//cch
 ra8876lite.setTextParameter2(RA8876 TEXT FULL ALIGN DISABLE,
RA8876 TEXT CHROMA KEY DISABLE, RA8876 TEXT WIDTH ENLARGEMENT X1, RA
8876 TEXT HEIGHT ENLARGEMENT X1);
 ra8876lite.textColor(COLOR65K WHITE,COLOR65K BLACK);
 ra8876lite.putString(10,0,"Show internal font 8x16");
// set the text function parameter
// set the text color
// write build-in font 12x24 ASCII string to specified coordinate
ra8876lite.setTextParameter1(RA8876 SELECT INTERNAL CGROM,RA8876 CHAR HEIG
 HT 24,RA8876 SELECT 8859 1);//cch
 ra8876lite.setTextParameter2(RA8876_TEXT_FULL_ALIGN_DISABLE,
RA8876 TEXT CHROMA KEY DISABLE, RA8876 TEXT WIDTH ENLARGEMENT X1, RA
8876 TEXT_HEIGHT_ENLARGEMENT_X1);
 ra8876lite.textColor(COLOR65K BLUE,COLOR65K MAGENTA);
 ra8876lite.putString(10,26,"Show internal font 12x24");
// set the text function parameter
// set the text color
// write build-in font 16x32 ASCII string to specified coordinate
ra8876lite.setTextParameter1(RA8876 SELECT INTERNAL CGROM,RA8876 CHAR HEIG
 HT 32,RA8876 SELECT 8859 1);//cch
 ra8876lite.setTextParameter2(RA8876 TEXT FULL ALIGN DISABLE,
RA8876_TEXT_CHROMA_KEY_DISABLE,RA8876_TEXT_WIDTH_ENLARGEMENT_X1,RA
```



```
8876 TEXT HEIGHT ENLARGEMENT X1);
 ra8876lite.textColor(COLOR65K RED,COLOR65K YELLOW);
 ra8876lite.putString(10,60,"Show internal font 16x32");
// set the text function parameter
// set the text color
// write build-in font and enlarge 2 times to specified coordinate
ra8876lite.setTextParameter1(RA8876 SELECT INTERNAL CGROM,RA8876 CHAR HEIG
HT 16,RA8876 SELECT 8859 1);//cch
 ra8876lite.setTextParameter2(RA8876 TEXT FULL ALIGN DISABLE,
RA8876 TEXT CHROMA KEY ENABLE, RA8876 TEXT WIDTH ENLARGEMENT X2, RA8
876 TEXT HEIGHT ENLARGEMENT X2);
 ra8876lite.textColor(COLOR65K WHITE,COLOR65K RED);
 ra8876lite.putString(10,102,"font enlarge x2");
// set the text function parameter
// set the text color
// write build-in font and enlarge 3 times to specified coordinate
ra8876lite.setTextParameter1(RA8876 SELECT INTERNAL CGROM,RA8876 CHAR HEIG
HT 16,RA8876 SELECT 8859 1);//cch
 ra8876lite.setTextParameter2(RA8876_TEXT_FULL_ALIGN_DISABLE,
RA8876_TEXT_CHROMA_KEY_DISABLE,RA8876_TEXT_WIDTH_ENLARGEMENT_X3,RA
8876 TEXT HEIGHT ENLARGEMENT X3);
 ra8876lite.textColor(COLOR65K WHITE,COLOR65K RED);
 ra8876lite.putString(10,144,"font enlarge x3");
// set the text function parameter
// set the text color
// write build-in font and enlarge 4 times to specified coordinate
ra8876lite.setTextParameter1(RA8876 SELECT INTERNAL CGROM,RA8876 CHAR HEIG
 HT 16,RA8876 SELECT 8859 1);//cch
 ra8876lite.setTextParameter2(RA8876_TEXT_FULL_ALIGN_DISABLE,
RA8876_TEXT_CHROMA_KEY_DISABLE,RA8876_TEXT_WIDTH_ENLARGEMENT_X4,RA
8876 TEXT HEIGHT ENLARGEMENT X4);
 ra8876lite.textColor(COLOR65K WHITE, COLOR65K LIGHTCYAN);
 ra8876lite.putString(10,202,"font enlarge x4");
```



```
// set the text function parameter
```

// set the Genitop font function parameter

// set the text color

// write string of the Genitop font to specified coordinate

ra8876lite.setTextParameter1(RA8876\_SELECT\_EXTERNAL\_CGROM,RA8876\_CHAR\_HEIGHT\_16,RA8876\_SELECT\_8859\_1);//cch

ra8876lite.setTextParameter2(RA8876\_TEXT\_FULL\_ALIGN\_DISABLE,

RA8876\_TEXT\_CHROMA\_KEY\_ENABLE,RA8876\_TEXT\_WIDTH\_ENLARGEMENT\_X1,RA8 876 TEXT HEIGHT ENLARGEMENT X1);

ra8876lite.genitopCharacterRomParameter(RA8876\_SERIAL\_FLASH\_SELECT0,RA8876\_SP I\_DIV4,RA8876\_GT30L24T3Y,RA8876\_BIG5,RA8876\_GT\_FIXED\_WIDTH); ra8876lite.textColor(COLOR65K\_BLACK,COLOR65K\_RED);

ra8876lite.putString(10,276,"show external GT font 16x16");

// set the text function parameter

// set the Genitop font function parameter

// set the text color

// write string of the Genitop font to specified coordinate

ra8876lite.setTextParameter1(RA8876\_SELECT\_EXTERNAL\_CGROM,RA8876\_CHAR\_HEIG HT\_24,RA8876\_SELECT\_8859\_1);//cch

ra8876lite.setTextParameter2(RA8876\_TEXT\_FULL\_ALIGN\_DISABLE,

RA8876\_TEXT\_CHROMA\_KEY\_ENABLE,RA8876\_TEXT\_WIDTH\_ENLARGEMENT\_X1,RA8876\_TEXT\_HEIGHT\_ENLARGEMENT\_X1);

ra8876lite.genitopCharacterRomParameter(RA8876\_SERIAL\_FLASH\_SELECT0,RA8876\_SP I\_DIV4,RA8876\_GT30L24T3Y,RA8876\_BIG5,RA8876\_GT\_VARIABLE\_WIDTH\_ARIAL); ra8876lite.putString(10,302,"show external GT font 24x24 with Arial font");

ra8876lite.putString(10,336,string1);

ra8876lite.setTextParameter1(RA8876\_SELECT\_EXTERNAL\_CGROM,RA8876\_CHAR\_HEIG HT\_24,RA8876\_SELECT\_8859\_1);//cch

ra8876lite.genitopCharacterRomParameter(RA8876\_SERIAL\_FLASH\_SELECT0,RA8876\_SP I\_DIV4,RA8876\_GT30L24T3Y,RA8876\_GB2312,RA8876\_GT\_FIXED\_WIDTH); ra8876lite.putString(10,370,string2);



# Screenshot of the example:



# putDec()

## **Description:**

Write decimal number to specified coordinate within the current active window of the current canvas.

## **Function prototype:**

void putDec(ru16 x0,ru16 y0,rs32 vaule,ru8 len,const char \*flag);

| Parameter | Description                                         |
|-----------|-----------------------------------------------------|
| x0        | Upper left corner X-axis coordinate                 |
| y0        | Upper left corner Y-axis coordinate                 |
| vaule     | Input value -2147483648(-2^31) ~ 2147483647(2^31-1) |
| len       | Minimum display number of bits(1~11)                |
| *flag     | = "n" : Display to the right                        |
|           | = "-" : Display to the left                         |
|           | = "+" : Output sign                                 |
|           | = "0" : fill 0 at the beginning, not fill space     |

## **Example:**

//clean current canvas page1 specified active window to color blue ra8876lite.canvasImageStartAddress(PAGE1\_START\_ADDR);



```
ra8876lite.canvasImageWidth(SCREEN WIDTH);
ra8876lite.activeWindowXY(0,0);
ra8876lite.activeWindowWH(SCREEN_WIDTH,SCREEN_HEIGHT);
ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K BLUE);
// set text function parameter
// set text color
//write build-in font 16x32 ASCII string to specified coordinate
ra8876lite.setTextParameter1(RA8876 SELECT INTERNAL CGROM,RA8876 CHAR HEIG
HT_32,RA8876_SELECT_8859_1);//cch
ra8876lite.setTextParameter2(RA8876_TEXT_FULL_ALIGN_DISABLE,
RA8876 TEXT CHROMA KEY DISABLE, RA8876 TEXT WIDTH ENLARGEMENT X1, RA
8876 TEXT HEIGHT ENLARGEMENT X1);
ra8876lite.textColor(COLOR65K WHITE,COLOR65K BLACK);
//display value
ra8876lite.putDec(10,10,1,2,"n");
ra8876lite.putDec(10,44,2147483647,11,"n");
ra8876lite.putDec(10,78,-12345,10,"n");
ra8876lite.putDec(10,112,-2147483648,11,"n");
ra8876lite.putDec(10,146,1,2,"-");
ra8876lite.putDec(10,180,2147483647,11,"-");
ra8876lite.putDec(10,214,-12345,10,"-");
ra8876lite.putDec(10,248,-2147483648,11,"-");
ra8876lite.putDec(10,282,1,2,"+");
ra8876lite.putDec(10,316,2147483647,11,"+");
ra8876lite.putDec(10,350,-12345,10,"+");
ra8876lite.putDec(10,384,-2147483648,11,"+");
ra8876lite.putDec(10,418,1,2,"0");
ra8876lite.putDec(10,452,2147483647,11,"0");
ra8876lite.putDec(10,486,-12345,10,"0");
ra8876lite.putDec(10,520,-2147483648,11,"0");
```



```
1
2147483647
-12345
-2147483648
1
2147483647
-12345
-2147483648
+1
+2147483647
-12345
-2147483648
01
02147483647
-000012345
-2147483648
```

## putFloat()

## **Description:**

Write floating value to specified coordinate within the current active window of the current canvas.

## **Function prototype:**

void putFloat (ru16 x0,ru16 y0, double vaule,ru8 len, ru8 precision,const char \*flag);

| Parameter | Description                                                  |
|-----------|--------------------------------------------------------------|
| x0        | Upper left corner X-axis coordinate                          |
| y0        | Upper left corner Y-axis coordinate                          |
| vaule     | Input value (3.4E-38 ~ 3.4E38)                               |
| len       | Minimum display number of bits (1~11)                        |
| precision | The precise number of bits to the right of the decimal point |
|           | (1~4bits)                                                    |
| *flag     | = "n" : Display to the right                                 |
|           | = "-" : Display to the left                                  |
|           | = "+" : Output sign                                          |
|           | = "0" : fill 0 at the beginning, not fill space              |

### Note:

Use a double for getting more precision accuracy.

### **Example:**

//clean current canvas page1 specified active window to color blue



```
ra8876lite.canvasImageStartAddress(PAGE1 START ADDR);
ra8876lite.canvasImageWidth(SCREEN WIDTH);
ra8876lite.activeWindowXY(0.0);
ra8876lite.activeWindowWH(SCREEN WIDTH,SCREEN HEIGHT);
ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K BLUE);
//set text function parameter
//set text color
//write build-in font 16x32 ASCII string to specified coordinate
ra8876lite.setTextParameter1(RA8876 SELECT INTERNAL CGROM,RA8876 CHAR HEIG
HT 32,RA8876 SELECT 8859 1);//cch
ra8876lite.setTextParameter2(RA8876 TEXT_FULL_ALIGN_DISABLE,
RA8876_TEXT_CHROMA_KEY_DISABLE,RA8876_TEXT_WIDTH_ENLARGEMENT_X1,RA
8876 TEXT HEIGHT ENLARGEMENT X1);
ra8876lite.textColor(COLOR65K WHITE,COLOR65K BLACK);
//display value
ra8876lite.putFloat(10,10,1.1,7,1,"n");
ra8876lite.putFloat(10,44,483647.12,11,2,"n");
ra8876lite.putFloat(10,78,-12345.123,11,3,"n");
ra8876lite.putFloat(10,112,-123456.1234,11,4,"n");
ra8876lite.putFloat(10,146,1.1234,7,1,"-");
ra8876lite.putFloat(10,180,483647.12,11,2,"-");
ra8876lite.putFloat(10,214,-12345.123,11,3,"-");
ra8876lite.putFloat(10,248,-123456.1234,11,4,"-");
ra8876lite.putFloat(10,282,1.1,7,1,"+");
ra8876lite.putFloat(10,316,483647.12,11,2,"+");
ra8876lite.putFloat(10,350,-12345.123,11,3,"+");
ra8876lite.putFloat(10,384,-123456.1234,11,4,"+");
ra8876lite.putFloat(10,418,1.1,7,1,"0");
ra8876lite.putFloat(10,452,483647.12,11,2,"0");
ra8876lite.putFloat(10,486,-12345.123,11,3,"0");
ra8876lite.putFloat(10,520,-123456.1234,11,4,"0");
```



### Screenshot of the example:

```
1.1

483647.12

-123456.123

-123456.1234

1.1

483647.12

-123456.123

-123456.1234

+1.1

+483647.12

-123456.123

-123456.1234

00001.1

00483647.12

-123456.1234

-123456.1234
```

## putHex()

### **Description:**

Write hexadecimal value to specify coordinate within the current active window of the current canvas.

## **Function prototype:**

void putHex(ru16 x0,ru16 y0,ru32 vaule,ru8 len,const char \*flag);

| Parameter | Description                                      |
|-----------|--------------------------------------------------|
| x0        | Upper left corner X-axis coordinate              |
| y0        | Upper left corner Y-axis coordinate              |
| vaule     | Input value 0x0000000~0xffffffff                 |
| len       | Minimum display number of bits (1~10)            |
| *flag     | = "n" : Display to the right                     |
|           | = "#" : Force output 0x as the beginning         |
|           | = "0" : fill 0 at the beginning, not fill space  |
|           | = "x" : Force output 0x as the beginning, fill 0 |

### **Example:**

//clean current canvas page1 specified active window to color blue ra8876lite.canvasImageStartAddress(PAGE1\_START\_ADDR); ra8876lite.canvasImageWidth(SCREEN\_WIDTH); ra8876lite.activeWindowXY(0,0); ra8876lite.activeWindowWH(SCREEN\_WIDTH,SCREEN\_HEIGHT); ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K\_BLUE);



```
// set text function parameter
// set text color
//write build-in font 16x32 ASCII string to specified coordinate
ra8876lite.setTextParameter1(RA8876 SELECT INTERNAL CGROM,RA8876 CHAR HEIG
HT 32,RA8876 SELECT 8859 1);//cch
ra8876lite.setTextParameter2(RA8876_TEXT_FULL_ALIGN_DISABLE,
RA8876_TEXT_CHROMA_KEY_DISABLE,RA8876_TEXT_WIDTH_ENLARGEMENT_X1,RA
8876 TEXT HEIGHT ENLARGEMENT X1);
ra8876lite.textColor(COLOR65K WHITE,COLOR65K BLACK);
//display value
ra8876lite.putHex(10,10,1,4,"n");
ra8876lite.putHex(10,44,255,6,"n");
ra8876lite.putHex(10,78,0xa7c8,6,"n");
ra8876lite.putHex(10,112,0xdd11ff55,10,"n");
ra8876lite.putHex(10,146,1,4,"0");
ra8876lite.putHex(10,180,255,6,"0");
ra8876lite.putHex(10,214,0xa7c8,6,"0");
ra8876lite.putHex(10,248,0xdd11ff55,10,"0");
ra8876lite.putHex(10,282,1,4,"#");
ra8876lite.putHex(10,316,255,6,"#");
ra8876lite.putHex(10,350,0xa7c8,6,"#");
ra8876lite.putHex(10,384,0xdd11ff55,10,"#");
ra8876lite.putHex(10,418,1,4,"x");
ra8876lite.putHex(10,452,255,6,"x");
ra8876lite.putHex(10,486,0xa7c8,6,"x");
ra8876lite.putHex(10,520,0xdd11ff55,10,"x");
```







# **Chapter 6** Geometric Draw

| Function               | Description               |
|------------------------|---------------------------|
| drawLine()             | Draw a line               |
| drawSquare()           | Draw a square             |
| drawSquareFill()       | Draw a square fill        |
| drawCircleSquare()     | Draw a circle square      |
| drawCircleSquareFill() | Draw a circle square fill |
| drawTriangle()         | Draw a triangle           |
| drawTriangleFill()     | Draw a triangle fill      |
| drawCircle()           | Draw a circle             |
| drawCircleFill()       | Draw a circle fill        |
| drawEllipse()          | Draw a ellipse            |
| drawEllipseFill()      | Draw a ellipse fill       |

#### Note:

Please refer to *RA8876 Arduino Wire Sketch.jpg* for the circuitry connection or please refer to the appendix <u>Figure A-1</u>

## drawLine()

# **Description:**

Specify any two points to draw a color line in the active window of the current canvas.

## **Function prototype:**

void drawLine(ru16 x0, ru16 y0, ru16 x1, ru16 y1, ru16 color);

| Parameter | Description                  |
|-----------|------------------------------|
| x0        | X-axis coordinate of point 1 |
| y0        | Y-axis coordinate of point 1 |
| x1        | X-axis coordinate of point 2 |
| y1        | Y-axis coordinate of point 2 |
| color     | Set color(RGB565)            |

## **Example:**

ra8876lite.drawLine(40,40,159,159,COLOR65K\_RED); ra8876lite.drawLine(40,159,159,40,COLOR65K\_LIGHTRED);



# Screenshot of the example:



# drawSquare()

# **Description:**

Specify any two points to draw a color square in the active window of the current canvas.

# **Function prototype:**

void drawSquare(ru16 x0, ru16 y0, ru16 x1, ru16 y1, ru16 color);

| Parameter  | Description                  |
|------------|------------------------------|
| x0         | X-axis coordinate of point 1 |
| y0         | Y-axis coordinate of point 1 |
| <b>x</b> 1 | X-axis coordinate of point 2 |
| y1         | Y-axis coordinate of point 2 |
| color      | Set color(RGB565)            |

## **Example:**

ra8876lite.drawSquare(200+30, 50, 399-30, 199-50, COLOR65K\_GRAYSCALE23);





# drawSquareFill()

# **Description:**

Specify any two points to draw a color square fill in the active window of the current canvas.

# **Function prototype:**

void drawSquareFill(ru16 x0, ru16 y0, ru16 x1, ru16 y1, ru16 color);

| Parameter  | Description                  |
|------------|------------------------------|
| x0         | X-axis coordinate of point 1 |
| y0         | Y-axis coordinate of point 1 |
| <b>x</b> 1 | X-axis coordinate of point 2 |
| y1         | Y-axis coordinate of point 2 |
| color      | Set color(RGB565)            |

# **Example:**

ra8876lite.drawSquareFill(420, 20, 579, 179, COLOR65K\_GREEN);





## drawCircleSquare()

# **Description:**

Specify any two points to draw a color circle square in the active window of the current canvas.

# **Function prototype:**

void drawCircleSquare(ru16 x0, ru16 y0, ru16 x1, ru16 y1, ru16 xr, ru16 yr, ru16 color);

| Parameter | Description                             |
|-----------|-----------------------------------------|
| x0        | X-axis coordinate of point 1            |
| y0        | Y-axis coordinate of point 1            |
| x1        | X-axis coordinate of point 2            |
| y1        | Y-axis coordinate of point 2            |
| xr        | Horizontal radius of the rounded corner |
| yr        | Vertical radius of the rounded corner   |
| color     | Set color(RGB565)                       |

## **Example:**

ra8876lite.drawCircleSquare(600+30,0+50, 799-30, 199-50, 20, 20, COLOR65K\_BLUE2);

# Screenshot of the example:



# drawCircleSquareFill()

## **Description:**

Specify any two points to draw a color circle square fill in the active window of the current



canvas.

## **Function prototype:**

void drawCircleSquareFill(ru16 x0, ru16 y0, ru16 x1, ru16 y1, ru16 xr, ru16 yr, ru16 color);

| Parameter | Description                             |
|-----------|-----------------------------------------|
| x0        | X-axis coordinate of point 1            |
| y0        | Y-axis coordinate of point 1            |
| x1        | X-axis coordinate of point 2            |
| y1        | Y-axis coordinate of point 2            |
| xr        | Horizontal radius of the rounded corner |
| yr        | Vertical radius of the rounded corner   |
| color     | Set color(RGB565)                       |

# Example:

ra8876lite.drawCircleSquareFill(50,200, 149, 399, 10, 10, COLOR65K\_BLUE);

## Screenshot of the example:



# drawTriangle()

## **Description:**

Specify any three points to draw a color triangle in the active window of the current canvas.

## **Function prototype:**

void drawTriangle(ru16 x0,ru16 y0,ru16 x1,ru16 y1,ru16 x2,ru16 y2,ru16 color);

| Parameter | Description                  |
|-----------|------------------------------|
| x0        | X-axis coordinate of point 1 |

RAIO TECHNOLOGY INC. 51/101 www.raio.com.tw



| y0    | Y-axis coordinate of point 1 |
|-------|------------------------------|
| x1    | X-axis coordinate of point 2 |
| y1    | Y-axis coordinate of point 2 |
| x2    | X-axis coordinate of point 3 |
| y2    | Y-axis coordinate of point 3 |
| color | Set color(RGB565)            |

# Example:

ra8876lite.drawTriangle(220,250,360,360,250,380,COLOR65K\_MAGENTA);

# Screenshot of the example:



# drawTriangleFill()

# **Description:**

Specify any three points to draw a color triangle fill in the active window of the current canvas.

# **Function prototype:**

void drawTriangleFill(ru16 x0,ru16 y0,ru16 x1,ru16 y1,ru16 x2,ru16 y2,ru16 color);

| Parameter  | Description                  |
|------------|------------------------------|
| <b>x</b> 0 | X-axis coordinate of point 1 |
| y0         | Y-axis coordinate of point 1 |
| x1         | X-axis coordinate of point 2 |
| y1         | Y-axis coordinate of point 2 |
| x2         | X-axis coordinate of point 3 |
| y2         | Y-axis coordinate of point 3 |
| color      | Set color(RGB565)            |



### **Example:**

ra8876lite.drawTriangleFill(500,220,580,380,420,380,COLOR65K\_LIGHTMAGENTA);

### Screenshot of the example:



# drawCircle()

# **Description:**

Specify any points as a center and define the radius for drawing a color circle in the active window of the current canvas.

# **Function prototype:**

void drawCircle(ru16 x0,ru16 y0,ru16 r,ru16 color);

| Parameter | Description                     |
|-----------|---------------------------------|
| x0        | X-axis coordinate of the center |
| y0        | Y-axis coordinate of the center |
| r         | Radius                          |
| color     | Set color(RGB565)               |

# Example:

ra8876lite.drawCircle(700,300,80,COLOR65K\_YELLOW);





# drawCircleFill()

# **Description:**

Specify any points as a center and define the radius for drawing a color filled circle in the active window of the current canvas.

# **Function prototype:**

void drawCircleFill(ru16 x0,ru16 y0,ru16 r,ru16 color);

| Parameter  | Description                     |
|------------|---------------------------------|
| <b>x</b> 0 | X-axis coordinate of the center |
| y0         | Y-axis coordinate of the center |
| r          | Radius                          |
| color      | Set color(RGB565)               |

## **Example:**

ra8876lite.drawCircleFill(100,500,60,COLOR65K\_LIGHTYELLOW);





## drawEllipse()

## **Description:**

Specify any points as a center and define the horizontal radius and the vertical radius for drawing a color ellipse in the active window of the current canvas.

# **Function prototype:**

void drawEllipse(ru16 x0,ru16 y0,ru16 xr,ru16 yr,ru16 color);

| Parameter | Description                     |
|-----------|---------------------------------|
| x0        | X-axis coordinate of the center |
| y0        | Y-axis coordinate of the center |
| xr        | Horizontal radius               |
| yr        | Vertical radius                 |
| color     | Set color(RGB565)               |

# Example:

ra8876lite.drawEllipse(300,500,50,80,COLOR65K\_CYAN);





# drawEllipseFill()

## **Description:**

Specify any points as a center and define the radius for drawing a color filled ellipse in the active window of the current canvas.

# **Function prototype:**

void drawEllipseFill(ru16 x0,ru16 y0,ru16 xr,ru16 yr,ru16 color);

| Parameter | Description                     |
|-----------|---------------------------------|
| x0        | X-axis coordinate of the center |
| y0        | Y-axis coordinate of the center |
| xr        | Horizontal radius               |
| yr        | Vertical radius                 |
| color     | Set color(RGB565)               |

# Example:

ra8876lite.drawEllipseFill(500,500,80,50,COLOR65K LIGHTCYAN);







# Chapter 7 BTE

Block Transfer Engine is a 2D acceleration engine, provides fast memory data transfer with copy and logic operation, chroma key color data ignored, monochrome (1bpp) data convert to color data with color expansion and color expansion with chroma key color, pattern image fill and fill with chroma key color.

Amount of data for color display is huge, if the operation speed of MPU write is not fast enough, you can see the update scan line on the display is shown like a waterfall. Or in the other operation, you need dynamic effects to the display, such as a background image static (such as wallpaper), and the foreground text or image is changed. For this effect in the regular coding case, programmer must re-write the background data and then refresh the foreground text or image data, if we directly execute the current contents of the display memory, it will leaded to the screen flicker cause by updating the background data. If you update foreground text or image data directly without re-write the background data, will result the image overlay, so if you want to get a better display effect, you can take advantage of the BTE function, the image data can be written to the non-display area of the display memory through the MPU interface or DMA interface firstly, and then use BTE memory copy function to duplicate and move the image data to the display memory area, to avoids the bad display effect which is described above.

Color expansion function can convert monochrome data like 0 or 1 to the specified color data, due to the MPU's ROM is limited, typically is under 512Kbyte, if we convert the image data from 16bpp to 1bpp format and store the converted image data into the MPU's ROM, therefore we can reduce the ROM usage of MPU/MCU. For example, users may need 64 \* 128 resolution numeric digits 0-9 for display; they can convert the numeric image data to 1bpp data format, and store them in the MPU ROM. If we want to show a color and customized members on the display, use BTE color expansion function, the BTE function will automatically take the image data from the MPU/MCU's ROM, convert the monochrome image data to specified color image data, and write the color image data into the memory of RA8876.

Pattern fill function allows user to use a color image (16bpp) in size 8\*8 or 16\*16 to fill a specified block.

The detailed information for all of BTE functions, please refer to the description in the following sections, or refer to the datasheet.

| Function | Description |
|----------|-------------|
|----------|-------------|

RAiO TECHNOLOGY INC. 58/101 www.raio.com.tw



| bteMemoryCopy()               | Memory data copy and move                         |
|-------------------------------|---------------------------------------------------|
| bteMemoryCopyWithROP()        | Memory data copy and move with logic operation    |
| bteMemoryCopyWithChromakey()  | Memory data copy and move with chroma key         |
|                               | color ignore                                      |
| bteMpuWriteWithROP()          | MPU write data with logic operation(included data |
|                               | pointer ,Byte format)                             |
| bteMpuWriteWithROP()          | MPU write data with logic operation(included data |
|                               | pointer, Word format)                             |
| bteMpuWriteWithROP()          | MPU write data with logic operation               |
| bteMpuWriteWithChromaKey()    | MPU write data with chroma key color              |
|                               | ignore(included data pointer ,Byte format)        |
| bteMpuWriteWithChromaKey()    | MPU write data with chroma key color              |
|                               | ignore(included data pointer, Word format)        |
| bteMpuWriteWithChromaKey()    | MPU write data with chroma key color ignor        |
| bteMpuWriteColorExpansion()   | MPU write data with color expansion(included data |
|                               | pointer)                                          |
| bteMpuWriteColorExpansion()   | MPU write data with color expansion               |
| bteMpuWriteColorExpansionWith | MPU write data with color expansion and chroma    |
| ChromaKey()                   | key color ignore (included data pointer)          |
| bteMpuWriteColorExpansionWith | MPU write data with color expansion and chroma    |
| ChromaKey()                   | key color ignore                                  |
| btePatternFill()              | Pattern image fill                                |
| btePatternFillWithChromaKey() | Pattern image fill with chroma key color ignore   |
|                               |                                                   |

### Note:

Please refer to *RA8876 Arduino Wire Sketch.jpg* for the circuitry connection or please refer to the appendix <u>Figure A-1</u>

## bteMemoryCopy()

## **Description:**

Perform memory data copy means that duplicate the memory data from the specified memory source to the specified memory destination, the memory data moving range is specified within the current canvas or is specified between two canvases.

## **Function prototype:**

void bteMemoryCopy(ru32 s0\_addr, ru16 s0\_image\_width, ru16 s0\_x, ru16 s0\_y, ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 copy\_width, ru16



### copy height);

| Parameter       | Description                                           |
|-----------------|-------------------------------------------------------|
| s0_addr         | Start address memory of the source 0 canvas           |
| s0_image_width  | Width of the image memory of the source 0 canvas      |
| s0_x            | Source 0 image X-axis coordinate of the canvas        |
| s0_y            | Source 0 image Y-axis coordinate of the canvas        |
| des_addr        | Start address of the memory of the destination canvas |
| des_image_width | Width of the image memory of the destination canvas   |
| des_x           | Destination image X-axis coordinate of the canvas     |
| des_y           | Destination image Y-axis coordinate of the canvas     |
| copy_width      | Image width for copy                                  |
| copy_height     | Image height for copy                                 |

#### Note:

Image data is converted by using the "Image\_Tool\_V1.0" image tool.

### Reference picture:

Pic16bpp\_word.bmp



Before performing the following example, we will need an image data source, so user should prepare a converted 16bpp image data file (such as pic16bpp\_word.h) and then include the relevant header files to the main programming project.

### **Example:**

//clean current canvas page1 specified active window to color blue ra8876lite.canvasImageStartAddress(PAGE1\_START\_ADDR); ra8876lite.canvasImageWidth(SCREEN\_WIDTH); ra8876lite.activeWindowXY(0,0); ra8876lite.activeWindowWH(SCREEN\_WIDTH,SCREEN\_HEIGHT); ra8876lite.drawSquareFill(0, 0, SCREEN\_WIDTH-1, SCREEN\_HEIGHT-1, COLOR65K\_BLUE);

//clean current canvas page2 specified active window to color red



ra8876lite.canvasImageStartAddress(PAGE2\_START\_ADDR); ra8876lite.drawSquareFill(0, 0, SCREEN\_WIDTH-1, SCREEN\_HEIGHT-1, COLOR65K\_RED);

//write image data to current canvas page2 specified position ra8876lite.putPicture\_16bpp(50,50,128,128,pic16bpp\_word);

//write string to current canvas page1 specified position ra8876lite.canvasImageStartAddress(PAGE1\_START\_ADDR); ra8876lite.textColor(COLOR65K WHITE,COLOR65K BLACK);

ra8876lite.setTextParameter1(RA8876\_SELECT\_INTERNAL\_CGROM,RA8876\_CHAR\_HEIG HT\_24,RA8876\_SELECT\_8859\_1);//cch

ra8876lite.setTextParameter2(RA8876\_TEXT\_FULL\_ALIGN\_ENABLE,

RA8876\_TEXT\_CHROMA\_KEY\_ENABLE,RA8876\_TEXT\_WIDTH\_ENLARGEMENT\_X1,RA8 876\_TEXT\_HEIGHT\_ENLARGEMENT\_X1);

ra8876lite.putString(0,0,"BTE memory copy,copy page2 picture to page1 display");

//copy image data from page2 canvas(source) and written to page1 canvas (destination)
ra8876lite.bteMemoryCopy(PAGE2\_START\_ADDR,SCREEN\_WIDTH,50,50,PAGE1\_START\_ADDR,SCREEN\_WIDTH, 50,50,128,128);

ra8876lite.bteMemoryCopy(PAGE2\_START\_ADDR,SCREEN\_WIDTH,50,50,PAGE1\_START\_ADDR,SCREEN\_WIDTH, (50+128),50,128,128);

ra8876lite.bteMemoryCopy(PAGE2\_START\_ADDR,SCREEN\_WIDTH,50,50,PAGE1\_START\_ADDR,SCREEN\_WIDTH, (50+128+128),50,128,128);





### bteMemoryCopyWithROP()

## **Description:**

Perform the memory data copy with ROP function means that duplicate the memory data from specified memory source to the specified memory destination with the ROP logic operation, the memory moving range is specified within the current canvas or is specified between two canvases.

## **Function prototype:**

void bteMemoryCopy WithROP (ru32 s0\_addr, ru16 s0\_image\_width, ru16 s0\_x, ru16 s0\_y, ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 copy\_width, ru16 copy\_height, ru8 rop\_code);

|                 | Description                                           |
|-----------------|-------------------------------------------------------|
| Parameter       |                                                       |
| s0_addr         | Start address of the memory of the source 0 canvas    |
| s0_image_width  | Width of the image memory of the source 0 canvas      |
| s0_x            | Source 0 image X-axis coordinate of the canvas        |
| s0_y            | Source 0 image Y-axis coordinate of the canvas        |
| des_addr        | Start address of the memory of the destination canvas |
| des_image_width | Width of the image memory of the destination canvas   |
| des_x           | Destination image X-axis coordinate of the canvas     |
| des_y           | Destination image Y-axis coordinate of the canvas     |
| copy_width      | Image width for copy                                  |
| copy_height     | Image height for copy                                 |
| rop_code        | Select of the logic operation                         |
|                 | RA8876_BTE_ROP_CODE_0                                 |
|                 | ( Blackness )                                         |
|                 | RA8876_BTE_ROP_CODE_1                                 |
|                 | ~S0 · ~S1 or ~ ( S0+S1 )                              |
|                 | RA8876_BTE_ROP_CODE_2                                 |
|                 | ~S0 · S1                                              |
|                 | RA8876_BTE_ROP_CODE_3                                 |
|                 | ~\$0                                                  |
|                 | RA8876_BTE_ROP_CODE_4                                 |
|                 | S0 · ~S1                                              |
|                 | RA8876_BTE_ROP_CODE_5                                 |
|                 | ~S1                                                   |



```
RA8876 BTE ROP CODE 6
S0<sup>^</sup>S1
RA8876 BTE ROP CODE 7
\simS0+\simS1 or \sim (S0 · S1)
RA8876 BTE ROP CODE 8
S0 · S1
RA8876 BTE ROP CODE 9
~ (S0^S1)
RA8876 BTE ROP CODE 10
S1
RA8876 BTE ROP CODE 11
~S0+S1
RA8876_BTE_ROP_CODE_12
S<sub>0</sub>
RA8876 BTE ROP CODE 13
S0+~S1
RA8876_BTE_ROP_CODE_14
S0+S1
RA8876 BTE ROP CODE 15
(Whiteness)
```

### Note:

Image data is converted by using the "Image\_Tool\_V1.0" image tool.

### Reference picture:

Pic16bpp word.bmp



Before performing the following example, we will need an image data source, so user should prepare a converted 16bpp image data file (such as pic16bpp\_word.h) and then include the relevant header files to the main programming project.

### Example:

//write string to current canvas page1 specified position



ra8876lite.canvasImageStartAddress(PAGE1\_START\_ADDR);

ra8876lite.putString(0,178,"BTE memory copy with ROP, copy page2 picture to page1 display"); //copy image data from page2 canvas(source) and logic operation with page1

//canvas(destination) and then written to page1 canvas (destination)

ra8876lite.bteMemoryCopyWithROP(PAGE2\_START\_ADDR,SCREEN\_WIDTH,50,50,PAGE1 START ADDR,SCREEN WIDTH,50,228,

PAGE1 START ADDR, SCREEN WIDTH, 50, 228, 128, 128, RA8876 BTE ROP CODE 1);

ra8876lite.bteMemoryCopyWithROP(PAGE2\_START\_ADDR,SCREEN\_WIDTH,50,50,PAGE1 \_START\_ADDR,SCREEN\_WIDTH,(50+128),228,PAGE1\_START\_ADDR,SCREEN\_WIDTH,(50+128),228,128,128,RA8876\_BTE\_ROP\_CODE\_2);

ra8876lite.bteMemoryCopyWithROP(PAGE2\_START\_ADDR,SCREEN\_WIDTH,50,50,PAGE1\_START\_ADDR,SCREEN\_WIDTH,(50+128+128),228,PAGE1\_START\_ADDR,SCREEN\_WIDTH,(50+128+128),228,128,128,RA8876\_BTE\_ROP\_CODE\_3);

# Screenshot of the example:



### bteMemoryCopyWithChromaKey()

### **Description:**

Perform the memory data copy with chroma key function, the chroma key means that RA8876 will ignore the indicated background data and the memory data copy function will move the front ground display data from the specified memory source to the specified memory destination. The memory moving range is specified within the current canvas or is specified between the two canvases.

### **Function prototype:**

void bteMemoryCopyWithChromaKey(ru32 s0\_addr, ru16 s0\_image\_width, ru16 s0\_x, ru16 s0\_y, ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 copy\_width, ru16

RAIO TECHNOLOGY INC. 64/101 www.raio.com.tw



### copy height, ru16 chromakey color);

|                 | Description                                           |  |
|-----------------|-------------------------------------------------------|--|
| Parameter       |                                                       |  |
| s0_addr         | Start address of the memory of the source 0 canvas    |  |
| s0_image_width  | Width of the image memory of the source 0 canvas      |  |
| s0_x            | Source 0 image X-axis coordinate of the canvas        |  |
| s0_y            | Source 0 image Y-axis coordinate of the canvas        |  |
| des_addr        | Start address of the memory of the destination canvas |  |
| des_image_width | Width of the image memory of the destination canvas   |  |
| des_x           | Destination image X-axis coordinate of the canvas     |  |
| des_y           | Destination image Y-axis coordinate of the canvas     |  |
| copy_width      | Image width for copy                                  |  |
| copy_height     | Image height for copy                                 |  |
| chromakey_color | Data of chroma key color                              |  |

### Note:

Image data is converted by using the "Image\_Tool\_V1.0" image tool.

## Reference picture:

Pic16bpp word.bmp



Before performing the following example, we will need an image data source, so user should prepare a converted 16bpp image data file (such as pic16bpp\_word.h) and then include the relevant header files to the main programming project.

### **Example:**

//write string to current canvas page1 specified position ra8876lite.putString(0,356,"BTE memory copy with ChromaKey, copy page2 picture to page1 display");

//copy image data from page2 canvas(source) and then written to page1 canvas (destination) //with chroma key color ignore.



ra8876lite.bteMemoryCopyWithChromakey(PAGE2\_START\_ADDR,SCREEN\_WIDTH,50,50, PAGE1\_START\_ADDR,SCREEN\_WIDTH,50,406,128,128,0xf800);

ra8876lite.bteMemoryCopyWithChromakey(PAGE2\_START\_ADDR,SCREEN\_WIDTH,50,50, PAGE1 START ADDR,SCREEN WIDTH,50+128,406,128,128,0xf800);

ra8876lite.bteMemoryCopyWithChromakey(PAGE2\_START\_ADDR,SCREEN\_WIDTH,50,50, PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128+128,406,128,128,0xf800);

### Screenshot of the example:



### bteMpuWriteWithROP()

### **Description:**

For this function, the image data written by MCU will be regard as the source 0, these data will be performed the logic operation with the source1 image data, and then the results of the operations will be moved into the specified memory destination.

### **Function prototype:**

void bteMpuWriteWithROP(ru32 s1\_addr,ru16 s1\_image\_width,ru16 s1\_x,ru16 s1\_y,ru32 des\_addr,ru16 des\_image\_width,ru16 des\_x,ru16 des\_y,ru16 width,ru16 height,ru8 rop\_code,const unsigned char \*data):

void bteMpuWriteWithROP(ru32 s1\_addr,ru16 s1\_image\_width,ru16 s1\_x,ru16 s1\_y,ru32 des\_addr,ru16 des\_image\_width,ru16 des\_x,ru16 des\_y,ru16 width,ru16 height,ru8 rop\_code,const unsigned short \*data);

void bteMpuWriteWithROP(ru32 s1\_addr,ru16 s1\_image\_width,ru16 s1\_x,ru16 s1\_y,ru32 des addr,ru16 des image width,ru16 des x,ru16 des y,ru16 width,ru16 height,ru8 rop code);

RAIO TECHNOLOGY INC. 66/101 www.raio.com.tw



|                 | Description                                           |
|-----------------|-------------------------------------------------------|
| Parameter       |                                                       |
| s1_addr         | Start address of the memory of the source 1 canvas    |
| s1_image_width  | Width of the image memory of the source 1 canvas      |
| s1_x            | Source 1 image X-axis coordinate of the canvas        |
| s1_y            | Source 1 image Y-axis coordinate of the canvas        |
| des_addr        | Start address of the memory of the destination canvas |
| des_image_width | Width of the image memory of the destination canvas   |
| des_x           | Destination image X-axis coordinate of the canvas     |
| des_y           | Destination image Y-axis coordinate of the canvas     |
| width           | Image width for write                                 |
| height          | Image height for write                                |
| rop_code        | Select of the logic operation RA8876_BTE_ROP_CODE_0   |
|                 | ( Blackness )                                         |
|                 | RA8876_BTE_ROP_CODE_1                                 |
|                 | ~S0 · ~S1 or ~ ( S0+S1 )                              |
|                 | RA8876_BTE_ROP_CODE_2                                 |
|                 | ~S0 · S1                                              |
|                 | RA8876_BTE_ROP_CODE_3 ~S0                             |
|                 | RA8876 BTE ROP CODE 4                                 |
|                 | S0 · ~S1                                              |
|                 | RA8876_BTE_ROP_CODE_5 ~S1                             |
|                 | RA8876 BTE ROP CODE 6                                 |
|                 | S0^S1                                                 |
|                 | RA8876_BTE_ROP_CODE_7                                 |
|                 | ~\$0+~\$1 or ~ (\$0 · \$1)                            |
|                 | RA8876 BTE ROP CODE 8                                 |
|                 | S0 · S1                                               |
|                 | RA8876_BTE_ROP_CODE_9                                 |
|                 | ~(S0^S1)                                              |
|                 | RA8876_BTE_ROP_CODE_10                                |
|                 | S1                                                    |
|                 | RA8876_BTE_ROP_CODE_11                                |
|                 | ~\$0+\$1                                              |
|                 | RA8876_BTE_ROP_CODE_12                                |



|       | S0                                 |
|-------|------------------------------------|
|       | RA8876_BTE_ROP_CODE_13             |
|       | S0+~S1                             |
|       | RA8876_BTE_ROP_CODE_14             |
|       | S0+S1                              |
|       | RA8876_BTE_ROP_CODE_15             |
|       | (Whiteness)                        |
| *data | Data pointer (Byte or Word format) |

#### Note:

Function of BTE with MPU data write related, S0(Source0) = MPU data write.

S1 (Source1) can be set the same with Des (destination).

User can continuously write the image data after calling the function which without pointer. Image data is converted by using the "Image\_Tool\_V1.0" image tool.

# Reference picture:

Pic16bpp\_byte.bmp



Pic16bpp word.bmp



Before performing the following example, we will need an image data source, so user should prepare the converted 16bpp image data files (such as pic16bpp\_byte.h and pic16bpp\_word.h) and then include the relevant header files to the main programming project.

## **Example:**

//clean current canvas page1 specified active window to color blue ra8876lite.canvasImageStartAddress(PAGE1\_START\_ADDR); ra8876lite.canvasImageWidth(SCREEN\_WIDTH);



ra8876lite.activeWindowXY(0,0); ra8876lite.activeWindowWH(SCREEN\_WIDTH,SCREEN\_HEIGHT); ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K\_BLUE);

//write string to current canvas page1 specified position ra8876lite.textColor(COLOR65K WHITE,COLOR65K BLACK);

ra8876lite.setTextParameter1(RA8876\_SELECT\_INTERNAL\_CGROM,RA8876\_CHAR\_HEIG HT 24,RA8876 SELECT 8859 1);//cch

ra8876lite.setTextParameter2(RA8876\_TEXT\_FULL\_ALIGN\_ENABLE,

RA8876\_TEXT\_CHROMA\_KEY\_ENABLE,RA8876\_TEXT\_WIDTH\_ENLARGEMENT\_X1,RA8 876 TEXT HEIGHT ENLARGEMENT X1);

ra8876lite.putString(0,0,"BTE MPU write with ROP, write picture to page1, format byte");

//MPU(Source0) written data to destination canvas(Destination) through BTE engine after //execute logic operation with specified block of canvas(Source1).

ra8876lite.bteMpuWriteWithROP(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50,50,PAGE1\_START\_ADDR,SCREEN\_WIDTH,50,50,128,128,RA8876\_BTE\_ROP\_CODE\_4,pic16bpp\_byte);

ra8876lite.bteMpuWriteWithROP(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128,50,PAGE 1\_START\_ADDR,SCREEN\_WIDTH,50+128,50,128,128,RA8876\_BTE\_ROP\_CODE\_5,pic16b pp\_byte);

ra8876lite.bteMpuWriteWithROP(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128+128,50,P AGE1\_START\_ADDR,SCREEN\_WIDTH,50+128+128,50,128,128,RA8876\_BTE\_ROP\_CODE \_6,pic16bpp\_byte);

ra8876lite.putString(0,178,"BTE MPU write with ROP, write picture to page1, format word");

raA8876lite.bteMpuWriteWithROP(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50,228,PAGE1\_START\_ADDR,SCREEN\_WIDTH,50,228,128,128,RA8876\_BTE\_ROP\_CODE\_7,pic16bpp\_word);

ra8876lite.bteMpuWriteWithROP(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128,228,PAG E1\_START\_ADDR,SCREEN\_WIDTH,50+128,228,128,128,RA8876\_BTE\_ROP\_CODE\_8,pic1 6bpp\_word);

RAio TECHNOLOGY INC. 69/101 www.raio.com.tw



ra8876lite.bteMpuWriteWithROP(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128+128,228, PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128+128,228,128,128,RA8876\_BTE\_ROP\_CO DE\_9,pic16bpp\_word);

### Screenshot of the example:



### bteMpuWriteWithChromaKey()

### **Description:**

MPU write data to the destination with the chroma key function.

### **Function prototype:**

void bteMpuWriteWithChromaKey(ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 width, ru16 height, ru16 chromakey\_color, const unsigned char \*data);

void bteMpuWriteWithChromaKey(ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 width, ru16 height, ru16 chromakey color, const unsigned short \*data);

void bteMpuWriteWithChromaKey(ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 width, ru16 height, ru16 chromakey color);

| Parameter       | Description                                           |
|-----------------|-------------------------------------------------------|
| des_addr        | Start address of the memory of the destination canvas |
| des_image_width | Width of the image memory of the destination canvas   |
| des_x           | Destination image X-axis coordinate of the canvas     |



| des_y           | Destination image Y-axis coordinate of the canvas |
|-----------------|---------------------------------------------------|
| width           | Image width for write                             |
| height          | Image height for write                            |
| chromakey_color | Data of chroma key color                          |
| *data           | Data pointer                                      |

#### Note:

User can continuously write the image data after calling the function which without pointer. Image data is converted by using the "Image\_Tool\_V1.0" image tool.

### Reference picture:

Pic16bpp\_byte.bmp



Pic16bpp\_word.bmp



Before performing the following example, we will need an image data source, so user should prepare the converted 16bpp image data files (such as pic16bpp\_byte.h and pic16bpp\_word.h) and then include the relevant header files to the main programming project.

### **Example:**

//write string to current canvas page1 specified position ra8876lite.putString(0,356,"BTE MPU write with Chroma Key, write picture to page1, format byte,word");

// MPU write data to destination canvas(page1) through BTE with chroma key color ignore. ra8876lite.bteMpuWriteWithChromaKey(PAGE1\_START\_ADDR,SCREEN\_WIDTH,



50,406,128,128,0xf800,pic16bpp\_byte); ra8876lite.bteMpuWriteWithChromaKey(PAGE1\_START\_ADDR,SCREEN\_WIDTH, 50+128,406,128,128,0xf800,pic16bpp\_word);

### Screenshot of the example:



### bteMpuWriteColorExpansion()

### **Description:**

MPU writes 1bpp data to the specified block of destination canvas through using BTE color expansion.

### **Function prototype:**

void bteMpuWriteColorExpansion(ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 width, ru16 height, ru16 foreground\_color, ru16 background\_color, const unsigned char \*data);

void bteMpuWriteColorExpansion(ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 width, ru16 height, ru16 foreground\_color, ru16 background\_color);

| Parameter        | Description                                           |
|------------------|-------------------------------------------------------|
| des_addr         | Start address of the memory of the destination canvas |
| des_image_width  | Width of the image memory of the destination canvas   |
| des_x            | Destination image X-axis coordinate of the canvas     |
| des_y            | Destination image Y-axis coordinate of the canvas     |
| width            | Image width for write                                 |
| height           | Image height for write                                |
| foreground_color | Foreground color                                      |
| background_color | Background color                                      |
| *data            | Data pointer(Byte format)                             |

### Note:



User can continuously write the image data after calling the function which without pointer. Image data is converted by using the "Image\_Tool\_V1.0" image tool.

#### Reference picture:

Bw.bmp



Before performing the following example, we will need an 1bpp image data source, so user should prepare a converted 1bpp image data file (such as bw.h) and then include the relevant header file to the main programming project.

#### **Example:**

//clean current canvas page1 specify active window to color blue ra8876lite.canvasImageStartAddress(PAGE1\_START\_ADDR); ra8876lite.canvasImageWidth(SCREEN\_WIDTH); ra8876lite.activeWindowXY(0,0); ra8876lite.activeWindowWH(SCREEN\_WIDTH,SCREEN\_HEIGHT); ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K\_BLUE);

//write string to current canvas page1 specified position
ra8876lite.textColor(COLOR65K\_WHITE,COLOR65K\_BLACK);
ra8876lite.setTextParameter1(RA8876\_SELECT\_INTERNAL\_CGROM,RA8876\_CHAR\_HEIG
HT\_24,RA8876\_SELECT\_8859\_1);//cch
ra8876lite.setTextParameter2(RA8876\_TEXT\_FULL\_ALIGN\_ENABLE,
RA8876\_TEXT\_CHROMA\_KEY\_ENABLE,RA8876\_TEXT\_WIDTH\_ENLARGEMENT\_X1,RA8
876\_TEXT\_HEIGHT\_ENLARGEMENT\_X1);
ra8876lite.putString(0,0,"BTE MPU write with color expansion, write black and white picture
data to page1");

// MPU written 1bpp data to specified block of destination canvas through BTE after excute //color expansion.

ra8876lite.bteMpuWriteColorExpansion(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50,50,128,1



28, COLOR65K BLACK, COLOR65K WHITE, bw);

ra8876lite.bteMpuWriteColorExpansion(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128,50, 128,128,COLOR65K WHITE,COLOR65K BLACK,bw);

ra8876lite.bteMpuWriteColorExpansion(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128+128,50,128,128,COLOR65K\_YELLOW,COLOR65K\_CYAN,bw);

#### Screenshot of the example:



# bteMpuWriteColorExpansionWithChromaKey()

### **Description:**

MPU writes 1bpp data to the specified block of destination canvas through using BTE color expansion with chroma key function.

### **Function prototype:**

void bteMpuWriteColorExpansionWithChromaKey(ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 width, ru16 height, ru16 foreground\_color, ru16 background\_color, const unsigned char \*data);

void bteMpuWriteColorExpansionWithChromaKey(ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 width, ru16 height, ru16 foreground\_color, ru16 background\_color);

| Parameter       | Description                                           |  |
|-----------------|-------------------------------------------------------|--|
| des_addr        | Start address of the memory of the destination canvas |  |
| des_image_width | Width of the image memory of the destination canvas   |  |
| des_x           | Destination image X-axis coordinate of the canvas     |  |
| des_y           | Destination image Y-axis coordinate of the canvas     |  |
| width           | Image width for write                                 |  |

RAIO TECHNOLOGY INC. 74/101 www.raio.com.tw



| height           | Image height for write    |
|------------------|---------------------------|
| foreground_color | Foreground color          |
| background_color | Background color          |
| *data            | Data pointer(Byte format) |

#### Note:

The foreground\_color and the background\_color must be set to the different color data. User can continuously write the image data after calling the function which without pointer. Image data is converted by using the "Image Tool V1.0" image tool.

#### Reference picture:

Bw.bmp



Before performing the following example, we will need an 1bpp image data source, so user should prepare a converted 1bpp image data file (such as bw.h) and then include the relevant header file to the main programming project.

### **Example:**

//write string to current canvas page1 specified position ra8876lite.textColor(COLOR65K\_WHITE,COLOR65K\_BLACK); ra8876lite.putString(0,178,"BTE MPU write with color expansion with chroma key, write black and white picture data to page1");

//MPU written 1bpp data to specified block of destination canvas through BTE after execute color //expansion with chroma key

ra8876lite.bteMpuWriteColorExpansionWithChromaKey(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50,228,128,128,COLOR65K\_BLACK,COLOR65K\_WHITE,bw);

ra8876lite.bteMpuWriteColorExpansionWithChromaKey(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128,228,128,128,COLOR65K WHITE,COLOR65K BLACK,bw);



ra8876lite.bteMpuWriteColorExpansionWithChromaKey(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128+128,228,128,128,COLOR65K\_YELLOW,COLOR65K\_BLACK,bw);

#### Screenshot of the example:



# btePatternFill()

# **Description:**

Use an indicated pattern to fill the specified block of the canvas.

# Function prototype:

void btePatternFill(ru8 p8x8or16x16, ru32 s0\_addr, ru16 s0\_image\_width, ru16 s0\_x, ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 width, ru16 height);

| Parameter       | Description                                               |
|-----------------|-----------------------------------------------------------|
| p8x8or16x16     | Pattern size select, 0 = 8*8, 1=16*16                     |
| s0_addr         | Start address of the memory of the pattern image source 0 |
|                 | canvas                                                    |
| s0_image_width  | Width of the image memory of the pattern image source 0   |
|                 | canvas                                                    |
| s0_x            | Pattern image X-axis coordinate of the source 0 canvas    |
| s0_y            | Pattern image Y-axis coordinate of the source 0 canvas    |
| des_addr        | Start address of the memory of the destination canvas     |
| des_image_width | Width of the image memory of the destination canvas       |
| des_x           | Destination image X-axis coordinate of the canvas         |
| des_y           | Destination image Y-axis coordinate of the canvas         |
| width           | Image width for fill                                      |
| height          | Image height for fill                                     |

#### Note:

The indicated pattern must be pre-write to the specified address of memory by user.



Image data is converted by using the "Image\_Tool\_V1.0" image tool.

#### Reference picture:

pattern6.bmp



pattern11.bmp



Before performing the following example, we will need an image data source, so user should prepare the converted 16bpp image data files (such as pattern6.h and pattern11.h) and then include the relevant header files to the main programming project.

### **Example:**

```
ra8876lite.canvasImageStartAddress(PAGE1 START ADDR);
ra8876lite.canvasImageWidth(SCREEN WIDTH);
ra8876lite.activeWindowXY(0,0);
ra8876lite.activeWindowWH(SCREEN WIDTH,SCREEN HEIGHT);
ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K BLUE);
//write picture to pattern1 ram
ra8876lite.canvasImageStartAddress(PATTERN1 RAM START ADDR);
ra8876lite.canvasImageWidth(16);
ra8876lite.activeWindowXY(0,0);
ra8876lite.activeWindowWH(16,16);
ra8876lite.putPicture 16bpp(0,0,16,16,pattern6);
//write picture to pattern2 ram
ra8876lite.canvasImageStartAddress(PATTERN2 RAM START ADDR);
ra8876lite.putPicture_16bpp(0,0,16,16,pattern11);
//write picture to pattern3 ram
ra8876lite.canvasImageStartAddress(PATTERN3 RAM START ADDR);
ra8876lite.putPicture 16bpp(0,0,16,16,bug1);
//set canvas and active window back
ra8876lite.canvasImageStartAddress(PAGE1 START ADDR);
```



ra8876lite.canvasImageWidth(SCREEN\_WIDTH); ra8876lite.activeWindowWH(SCREEN\_WIDTH,SCREEN\_HEIGHT);

ra8876lite.textColor(COLOR65K WHITE,COLOR65K BLACK);

ra8876lite.setTextParameter1(RA8876\_SELECT\_INTERNAL\_CGROM,RA8876\_CHAR\_HEIG HT 24,RA8876 SELECT 8859 1);//cch

ra8876lite.setTextParameter2(RA8876\_TEXT\_FULL\_ALIGN\_ENABLE,

RA8876\_TEXT\_CHROMA\_KEY\_ENABLE,RA8876\_TEXT\_WIDTH\_ENLARGEMENT\_X1,RA8 876 TEXT HEIGHT ENLARGEMENT X1);

ra8876lite.putString(0,0,"BTE pattern fill, fill 16x16 pattern to page1");

ra8876lite.btePatternFill(1,PATTERN1\_RAM\_START\_ADDR,16,0,0,PAGE1\_START\_ADDR,S CREEN\_WIDTH, 50,50,700,128);

ra8876lite.btePatternFill(1,PATTERN2\_RAM\_START\_ADDR,16,0,0,PAGE1\_START\_ADDR,S CREEN\_WIDTH, 50,228,700,128);

### Screenshot of the example:



#### btePatternFillWithChromaKey()

#### **Description:**

Use an indicated pattern with chroma key function to fill specified block of the canvas.

#### **Function prototype:**



void btePatternFill(ru8 p8x8or16x16, ru32 s0\_addr, ru16 s0\_image\_width, ru16 s0\_x, ru32 des\_addr, ru16 des\_image\_width, ru16 des\_x, ru16 des\_y, ru16 width, ru16 height, ru16 chromakey\_color);

| Parameter       | Description                                               |
|-----------------|-----------------------------------------------------------|
| p8x8or16x16     | Pattern size select, 0 = 8*8, 1=16*16                     |
| s0_addr         | Start address of the memory of the pattern image source 0 |
|                 | canvas                                                    |
| s0_image_width  | Width of the image memory of the pattern image source 0   |
|                 | canvas                                                    |
| s0_x            | Pattern image X-axis coordinate of the source 0 canvas    |
| s0_y            | Pattern image Y-axis coordinate of the source 0 canvas    |
| des_addr        | Start address of the memory of the destination canvas     |
| des_image_width | Width of the image memory of the destination canvas       |
| des_x           | Destination image X-axis coordinate of the canvas         |
| des_y           | Destination image Y-axis coordinate of the canvas         |
| width           | Image width for fill                                      |
| height          | Image height for fill                                     |
| chromakey_color | Data of the chroma key color                              |

#### Note:

The indicated pattern must be pre-write to the specified address of memory by user. Image data is converted by using the "Image\_Tool\_V1.0" image tool.

#### Reference picture:

Bug1.bmp



Before performing the following example, we will need an image data source, so user should prepare a converted 16bpp image data file (such as bug1.h) and then include the relevant header files to the main programming project.

#### **Example:**

ra8876lite.putString(0,356,"BTE pattern fill with chroma key, fill with chroma key 16x16 pattern to page1");

ra8876lite.btePatternFillWithChromaKey(1,PATTERN3\_RAM\_START\_ADDR,16,0,0,PAGE1\_S



TART ADDR, SCREEN WIDTH, 50,406,700,128,0xe8e4);

# Screenshot of the example:

RAio TECHNOLOGY INC. 80/101 www.raio.com.tw



# Chapter 8 DMA

RA8876 provides the DMA function, DMA function can read image data from serial flash of the RA8876 expanded and written to specified block of the canvas quickly, external expansion of serial flash provides space to store user image data, the amount of the color image data is huge, built-in ROM of low-end MPU usually less than 512Kbyte, can store a small amount of image data only, clock of the low-end MPU is usually less than 50MHz, If writing huge amounts of data need to spend a long time, so user can choose to use DMA function, to program the image data into the Serial Flash first, then use DMA function performs fast image access.

| Function                    | Description                             |
|-----------------------------|-----------------------------------------|
| setSerialFlash4BytesMode()  | Set serial flash to 4Bytes mode         |
| dma_24bitAddressBlockMode() | DMA read 24bit serial flash, block mode |
| dma_32bitAddressBlockMode() | DMA read 32bit serial flash, block mode |

#### Note:

Please refer to" *RA8876 Arduino Wire Sketch.jpg*" for the circuitry connection or please refer to the appendix Figure A-1

Regarding the serial flash programming, please refer to

"ArduinoDue\_SpiFlashProgramWithSdCard" demonstration and explanation.

Before performing all of the demonstrated examples in this chapter, user has to pre-program the file "ALL\_Pic.bin" into the serial flash memory. The file "ALL\_Pic.bin" is stored in the folder "file2sdcard" of the demonstrated project "ArduinoDue\_SpiFlashProgramWithSdCard". Image data is converted by using the "Image\_Tool\_V1.0" image tool.

#### setSerialFlash4BytesMode()

#### **Description:**

When using the 32bit address serial flash memory, user must call the function "setSerialFlash4BytesMode()" first for setting the serial flash memory as 4Bytes mode.

#### **Function prototype:**

void setSerialFlash4BytesMode(ru8 scs select);

| Parameter  | Description                     |
|------------|---------------------------------|
| scs_select | Select serial IF0 or serial IF1 |

#### Note:

RA8876 provides 2 SPI master interfaces are the IF0 and the IF1. It is recommended to use the



IF0 for the GENITOP's font ROM, and use the IF1 for the serial flash memory (as image data source for DMA function), please refer to the datasheet of RA8876 for the detailed information.

# dma\_24bitAddressBlockMode()

#### **Description:**

Read the image data from a 24bit address serial flash memory via the specified serial I/F, and the write them into the specified memory block of the current canvas.

#### **Function prototype:**

void dma\_24bitAddressBlockMode(ru8 scs\_selct, ru8 clk\_div, ru16 x0, ru16 y0, ru16 width, ru16 height, ru16 picture width, ru32 addr);

| Parameter     | Description                                  |
|---------------|----------------------------------------------|
| scs_selct     | RA8876_SERIAL_FLASH_SELECT0                  |
|               | RA8876_SERIAL_FLASH_SELECT1                  |
|               | Select serial IF0 or serial IF1              |
| clk_div       | RA8876 _SPI_DIV2                             |
|               | RA8876 _SPI_DIV4                             |
|               | RA8876 _SPI_DIV6                             |
|               | RA8876 _SPI_DIV8                             |
|               | RA8876 _SPI_DIV10                            |
|               | Select SPI clock divider                     |
| <b>x</b> 0    | X-axis coordinate of the current canvas      |
| y0            | Y-axis coordinate of the current canvas      |
| width         | Width of the DMA block                       |
| height        | Height of the DMA block                      |
| picture_width | Image width of the Serial Flash              |
| addr          | Image data start address of the Serial Flash |

# Example:

DMA function can be executed to read the entire image data or read the partial block data of the image, and then write the data into the specified memory block of the current canvas.

Example, the entire image data read and write:

//set current canvas



//clean current canvas page1 specify active window to color blue
//DMA reads image data from Serial Flash and writes to specified block of the current canvas

const int WP2=960000;

ra8876lite.canvasImageStartAddress(PAGE1\_START\_ADDR); ra8876lite.canvasImageWidth(SCREEN\_WIDTH); ra8876lite.activeWindowXY(0,0); ra8876lite.activeWindowWH(SCREEN\_WIDTH,SCREEN\_HEIGHT); ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K\_BLUE);

//demo 24bit address Serial Flash DMA function ra8876lite.dma\_24bitAddressBlockMode(RA8876 \_SERIAL\_FLASH\_SELEC1,RA8876 SPI\_DIV2,0,0,800,600,800,WP2);

### Screenshot of the example:



Example, the partial block data read and write of the image:

//demo 24bit address serial flash DMA partial //set current canvas

// clean current canvas page1 specify active window to color light cyan ra8876lite.canvasImageStartAddress(PAGE1\_START\_ADDR); ra8876lite.canvasImageWidth(SCREEN\_WIDTH); ra8876lite.activeWindowXY(0,0); ra8876lite.activeWindowWH(SCREEN\_WIDTH,SCREEN\_HEIGHT);

RAIO TECHNOLOGY INC. 83/101 www.raio.com.tw



ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K LIGHTCYAN);

//DMA read partial block (400,300) to (799,599) of the "WP2" from serial flash, then written to the //specified block of the current canvas.

```
// x0 = 50

// y0 = 60

// width = 400

// height = 300

// picture_width = 800

// addr = WP2+(800*2*300)+(400*2)=960000+480000+800 = 1440800

ra8876lite.dma_24bitAddressBlockMode(RA8876_SERIAL_FLASH_SELECT1,RA8876_SPI_DIV2,50,60,400,300,800,1440800);
```

### Screenshot of the example:



#### dma\_32bitAddressBlockMode()

#### **Description:**

Read the image data from a 32bit address serial flash memory via the specified serial I/F, and the write them into the specified memory block of the current canvas.

#### **Function prototype:**

void dma\_32bitAddressBlockMode(ru8 scs\_selct, ru8 clk\_div, ru16 x0, ru16 y0, ru16 width, ru16 height, ru16 picture width, ru32 addr);

| Parameter | Description                 |
|-----------|-----------------------------|
| scs_selct | RA8876_SERIAL_FLASH_SELECT0 |

RAio TECHNOLOGY INC. 84/101 www.raio.com.tw



|               | RA8876_SERIAL_FLASH_SELECT1                  |
|---------------|----------------------------------------------|
|               | Select serial IF0 or serial IF1              |
| clk_div       | RA8876_SPI_DIV2                              |
|               | RA8876_SPI_DIV4                              |
|               | RA8876_SPI_DIV6                              |
|               | RA8876_SPI_DIV8                              |
|               | RA8876_SPI_DIV10                             |
|               | Select SPI clock divider                     |
| x0            | X-axis coordinate of the current canvas      |
| y0            | Y-axis coordinate of the current canvas      |
| width         | Width of the DMA block                       |
| height        | Height of the DMA block                      |
| picture_width | Image width of the serial flash              |
| addr          | Image data start address of the serial flash |

# Example:

```
const int WP10=8640000;
//DMA demo 32bit address
//when using the 32bit address serial flash, must be setting serial flash to 4Bytes mode
//only needs set one times after power on
ra8876lite.setSerialFlash4BytesMode(1);
while(1)
{
//set current canvas
// clean current canvas page1 specify active window to color light cyan
ra8876lite.canvasImageStartAddress(PAGE1 START ADDR);
ra8876lite.canvasImageWidth(SCREEN_WIDTH);
ra8876lite.activeWindowXY(0,0);
ra8876lite.activeWindowWH(SCREEN WIDTH,SCREEN HEIGHT);
ra8876lite.drawSquareFill(0, 0, 799, 599, COLOR65K_LIGHTCYAN);
//DMA read image data from Serial Flash and write to specified block of the current canvas
ra8876lite.dma_32bitAddressBlockMode(RA8876_SERIAL_FLASH_SELECT1,RA8876_SPI_
DIV2,0,0,800,600,800,WP10);
delay(2000);
```



# Screenshot of the example:





# Chapter 9 PWM

| Function               | Description                                          |
|------------------------|------------------------------------------------------|
| pwm_Prescalar()        | Set Prescalar                                        |
| pwm_ClockMuxReg()      | PWM frequency divider and the PWM pin function       |
|                        | selection                                            |
| pwm_Configuration()    | Setting and start PWM function                       |
| pwm0_ClocksPerPeriod() | Setting amount of the each duty cycle clock for PWM0 |
| pwm0_Duty()            | PWM0 duty cycle                                      |
| pwm1_ClocksPerPeriod() | Setting amount of the each duty cycle clock for PWM1 |
| pwm1_Duty()            | PWM1 duty cycle                                      |

Please refer to *RA8876 Arduino Wire Sketch.jpg* for the circuitry connection or please refer to the appendix <u>Figure A-1</u>

pwm\_Prescalar()

# **Description:**

Set prescalar.

# **Function prototype:**

void pwm\_Prescalar(ru8 Prescalar);

| Parameter | Description      |
|-----------|------------------|
| Prescalar | RA8876_PRESCALAR |

#### Note:

Base frequency of the PWM0 and PWM1 = Core\_Freq / (Prescalar + 1)

# pwm\_ClockMuxReg()

# **Description:**

It is used for decided the PWM frequency divider and the PWM pin function selection

#### **Function prototype:**

void pwm\_ClockMuxReg(ru8 pwm1\_clk\_div, ru8 pwm0\_clk\_div, ru8 xpwm1\_ctrl, ru8
xpwm0\_ctrl);

| /         |             |
|-----------|-------------|
| Parameter | Description |

RAio TECHNOLOGY INC. 87/101 www.raio.com.tw



| pwm1_clk_div | PWM1 base frequency divider setting |
|--------------|-------------------------------------|
|              | RA8876_PWM_TIMER_DIV1               |
|              | RA8876_PWM_TIMER_DIV2               |
|              | RA8876_PWM_TIMER_DIV4               |
|              | RA8876_PWM_TIMER_DIV8               |
| pwm0_clk_div | PWM0 base frequency divider setting |
|              | RA8876_PWM_TIMER_DIV1               |
|              | RA8876_PWM_TIMER_DIV2               |
|              | RA8876_PWM_TIMER_DIV4               |
|              | RA8876_PWM_TIMER_DIV8               |
| xpwm1_ctrl   | PWM1 pin function selection         |
|              | RA8876_XPWM1_OUTPUT_ERROR_FLAG      |
|              | RA8876_XPWM1_OUTPUT_PWM_TIMER1      |
|              | RA8876_XPWM1_OUTPUT_OSC_CLK         |
| xpwm0_ctr    | PWM0 pin function selection         |
|              | RA8876_XPWM0_GPIO_C7                |
|              | RA8876_XPWM0_OUTPUT_PWM_TIMER0      |
|              | RA8876_XPWM0_OUTPUT_CORE_CLK        |

# pwm\_Configuration()

# **Description:**

Set and start PWM function

# **Function prototype:**

void pwm\_Configuration(ru8 pwm1\_inverter, ru8 pwm1\_auto\_reload, ru8 pwm1\_start,ru8
pwm0\_dead\_zone, ru8 pwm0\_inverter, ru8 pwm0\_auto\_reload,ru8 pwm0\_start);

| Parameter        | Description                         |
|------------------|-------------------------------------|
| pwm1_inverter    | PWM1 output inverter off or on      |
|                  | RA8876_PWM_TIMER1_INVERTER_OFF      |
|                  | RA8876_PWM_TIMER1_INVERTER_ON       |
| pwm1_auto_reload | PWM1 output one shot or auto reload |
|                  | RA8876_PWM_TIMER1_ONE_SHOT          |
|                  | RA8876_PWM_TIMER1_AUTO_RELOAD       |
| pwm1_start       | PWM1 stop or start                  |
|                  | RA8876_PWM_TIMER1_STOP              |



|                  | Ţ                                   |
|------------------|-------------------------------------|
|                  | RA8876_PWM_TIMER1_START             |
| pwm0_dead_zone   | PWM0 dead zone disable or enable    |
|                  | RA8876_PWM_TIMER0_DEAD_ZONE_DISABLE |
|                  | RA8876_PWM_TIMER0_DEAD_ZONE_ENABLE  |
| pwm0_inverter    | PWM0 output inverter off or on      |
|                  | RA8876_PWM_TIMER0_INVERTER_OFF      |
|                  | RA8876_PWM_TIMER0_INVERTER_ON       |
| pwm0_auto_reload | PWM0 output one shot or auto reload |
|                  | RA8876_PWM_TIMER0_ONE_SHOT          |
|                  | RA8876_PWM_TIMER0_AUTO_RELOAD       |
| pwm0_start       | PWM0 stop or start                  |
|                  | RA8876_PWM_TIMER0_STOP              |
|                  | RA8876_PWM_TIMER0_START             |

pwm0\_ClocksPerPeriod() pwm1\_ClocksPerPeriod()

#### **Description:**

The function "pwm0\_ClocksPerPeriod()" sets the clock amount of each duty cycle of the PWM0. The function "pwm1\_ClocksPerPeriod()" sets the clock amount of each duty cycle of the PWM1.

# **Function prototype:**

void pwm0\_ClocksPerPeriod(ru16 clocks\_per\_period); void pwm1\_ClocksPerPeriod(ru16 clocks\_per\_period);

| Parameter         | Description                                   |
|-------------------|-----------------------------------------------|
| clocks_per_period | Amount of the each duty cycle clock (1~65535) |

#### Note:

Another meaning for the setting is PWM resolution, for example, the setting is 1000, then the duty cycle range can be adjusted from 0 to 1000.

pwm0\_Duty()
pwm1\_Duty()

# **Description:**



"pwm0\_Duty()" is the duty cycle setting for PWM0.

"pwm1\_Duty()" is the duty cycle setting for PWM1.

### **Function prototype:**

void pwm0\_Duty(ru16 duty);
void pwm1 Duty(ru16 duty);

| Parameter | Description             |
|-----------|-------------------------|
| duty      | Value of the duty cycle |

#### Note:

Duty cycle's duty range is decided by clocks\_per\_period setting value.

### **Example:**

//pwm demo please measure by oscilloscope
ra8876lite.pwm\_Prescalar(RA8876\_PRESCALAR); //if core\_freq = 120MHz, pwm base clock =
//120/(3+1) = 30MHz

ra8876lite.pwm\_ClockMuxReg(RA8876\_PWM\_TIMER\_DIV4,RA8876\_PWM\_TIMER\_DIV4,RA 8876\_XPWM1\_OUTPUT\_PWM\_TIMER1,RA8876\_XPWM0\_OUTPUT\_PWM\_TIMER0);
//pwm timer clock = 30 MHz /4 = 7.5MHz

ra8876lite.pwm0\_ClocksPerPeriod(1024); // pwm0 = 7.5MHz/1024 = 7.3KHz ra8876lite.pwm0\_Duty(10);//pwm0 set 10/1024 duty

ra8876lite.pwm1\_ClocksPerPeriod(256); // pwm1 = 7.5MHz/256 = 29.2KHz ra8876lite.pwm1\_Duty(5); //pwm1 set 5/256 duty

ra8876lite.pwm\_Configuration(RA8876\_PWM\_TIMER1\_INVERTER\_ON,RA8876\_PWM\_TIME R1\_AUTO\_RELOAD,RA8876\_PWM\_TIMER1\_START,RA8876\_PWM\_TIMER0\_DEAD\_ZON E\_DISABLE ,RA8876\_PWM\_TIMER0\_INVERTER\_ON,RA8876\_PWM\_TIMER0\_AUTO\_REL OAD,RA8876\_PWM\_TIMER0\_START);



# Chapter 10 Arduino SD

In this section, we use a SD card as image data source for RA8876 and it connected with Arduino Due board. So before we use this kind of application, user needs to prepare the converted image file (such as \*\*\*.bin) and store the "\*\*\*.bin" file into the SD card via PC. If the image file has stored into the SD card already, and then RA8876 is able to get the image data from the SD card through Arduino Due's access.

| Function                        | Description                                      |
|---------------------------------|--------------------------------------------------|
| sdCardShowPicture16bpp()        | Read image data with specified filename from     |
|                                 | SD card and written to specified location of the |
|                                 | current canvas                                   |
| sdCardShowPicture16bppBteMpuWri | Read image data with specified filename from     |
| teWithROP()                     | SD card, and then written to specified location  |
|                                 | of the destination canvas through BTE MPU        |
|                                 | write with logic operation.                      |
| sdCardShowPicture16bppBteMpuWri | Read image data with specified filename from     |
| teWithChromaKey()               | SD card, and then written to specified location  |
|                                 | of the destination canvas through BTE MPU        |
|                                 | write with chroma key color ignore.              |
| sdCardShowPicture16bppBteMpuWri | Read (1bpp) image data with specified            |
| teColorExpansion()              | filename from SD card, and then written to       |
|                                 | specified location of the destination canvas     |
|                                 | through BTE MPU write with color expansion.      |
| sdCardShowPicture16bppBteMpuWri | Read (1bpp) image data with specified            |
| teColorExpansionWithChromaKey() | filename from SD card, and then written to       |
|                                 | specified location of the destination canvas     |
|                                 | through BTE MPU write with color expansion       |
|                                 | and chroma key color ignore.                     |

#### Note:

These subroutines are additionally provided, it is not included in RA8876\_Lite.cpp, if user needs the relevant application, please refer to "RA8876\_Lite\_Arduino\_SD.ino", and copy the needed functions to your own programming project.

The circuitry connection between Arduino board, SD card and RA8876, please refer to "RA8876ArduinoDueSD Wire Sketch.jpg" or appendix Figure A-2.

Image data is converted by using the "Image\_Tool\_V1.0" image tool.



# sdCardShowPicture16bpp()

#### **Description:**

Read the image data of the specified file from SD card, and then write the image data on the location of the specified canvas.

# **Function prototype:**

void sdCardShowPicture16bpp(unsigned short x, unsigned short y, unsigned short width, unsigned short height, char \*filename);

| Parameter | Description         |
|-----------|---------------------|
| X         | X-axis coordinate   |
| у         | Y-axis coordinate   |
| width     | Width of the image  |
| height    | Height of the image |
| *filename | Image filename      |

# **Example:**

ra8876lite.canvasImageStartAddress(PAGE1\_START\_ADDR); ra8876lite.canvasImageWidth(SCREEN\_WIDTH); ra8876lite.activeWindowXY(0,0); ra8876lite.activeWindowWH(SCREEN\_WIDTH,SCREEN\_HEIGHT);

sdCardShowPicture16bpp(0,0,800,600,"wp2.bin");

# Screenshot of the example:





# sdCardShowPicture16bppBteMpuWriteWithROP()

# **Description:**

Read the image data of the specified file from SD card, and then write the image data on the destination of the specified canvas through the BTE MPU write with ROP function.

# **Function prototype:**

void sdCardShowPicture16bppBteMpuWriteWithROP(unsigned long s1\_addr, unsigned short s1\_image\_width, unsigned short s1\_x, unsigned short s1\_y, unsigned long des\_addr, unsigned short des\_image\_width, unsigned short des\_x, unsigned short des\_y, unsigned short width, unsigned short height, unsigned char rop\_code, char

\*filename);

| Parameter       | Description                                           |
|-----------------|-------------------------------------------------------|
| s1_addr         | Start address of the memory of the source 1 canvas    |
| s1_image_width  | Width of the image memory of the source 1 canvas      |
| s1_x            | Source 1 image X-axis coordinate of the canvas        |
| s1_y            | Source 1 image Y-axis coordinate of the canvas        |
| des_addr        | Start address of the memory of the destination canvas |
| des_image_width | Width of the image memory of the destination canvas   |
| des_x           | Destination image X-axis coordinate of the canvas     |
| des_y           | Destination image Y-axis coordinate of the canvas     |
| width           | Image width for write                                 |
| height          | Image height for write                                |
| rop_code        | Select of the logic operation                         |
|                 | RA8876_BTE_ROP_CODE_0                                 |
|                 | ( Blackness )                                         |
|                 | RA8876_BTE_ROP_CODE_1                                 |
|                 | ~S0 · ~S1 or ~ ( S0+S1 )                              |
|                 | RA8876_BTE_ROP_CODE_2                                 |
|                 | ~S0 · S1                                              |
|                 | RA8876_BTE_ROP_CODE_3                                 |
|                 | ~S0                                                   |
|                 | RA8876_BTE_ROP_CODE_4                                 |
|                 | S0 · ~S1                                              |



|           | DAGGZC DIE DOD CODE E    |
|-----------|--------------------------|
|           | RA8876_BTE_ROP_CODE_5    |
|           | ~S1                      |
|           | RA8876_BTE_ROP_CODE_6    |
|           | S0^S1                    |
|           | RA8876_BTE_ROP_CODE_7    |
|           | ~S0+~S1 or ~ ( S0 · S1 ) |
|           | RA8876_BTE_ROP_CODE_8    |
|           | S0 · S1                  |
|           | RA8876_BTE_ROP_CODE_9    |
|           | ~ ( S0^S1 )              |
|           | RA8876_BTE_ROP_CODE_10   |
|           | S1                       |
|           | RA8876_BTE_ROP_CODE_11   |
|           | ~S0+S1                   |
|           | RA8876_BTE_ROP_CODE_12   |
|           | S0                       |
|           | RA8876_BTE_ROP_CODE_13   |
|           | S0+~S1                   |
|           | RA8876_BTE_ROP_CODE_14   |
|           | S0+S1                    |
|           | RA8876_BTE_ROP_CODE_15   |
|           | (Whiteness)              |
| *filename | Image filename           |

#### Note:

Regarding the related MPU data write functions of BTE, the S0 (source0) can be regarded as the MPU write data and the S1 (Source1) can be set as the destination.

### **Example:**

ra8876lite.activeWindowXY(0,0);

ra8876lite.activeWindowWH(SCREEN\_WIDTH,SCREEN\_HEIGHT);

ra8876lite.textColor(COLOR65K\_WHITE,COLOR65K\_BLACK);

ra8876lite.setTextParameter1(RA8876\_SELECT\_INTERNAL\_CGROM,RA8876\_CHAR\_HEIG HT\_24,RA8876\_SELECT\_8859\_1);//cch

ra8876lite.setTextParameter2(RA8876\_TEXT\_FULL\_ALIGN\_ENABLE,

RA8876\_TEXT\_CHROMA\_KEY\_ENABLE,RA8876\_TEXT\_WIDTH\_ENLARGEMENT\_X1,RA 8876\_TEXT\_HEIGHT\_ENLARGEMENT\_X1);

ra8876lite.putString(0,10,"Read picture from sd card and write to RA8876 with BTE ROP");



sdCardShowPicture16bppBteMpuWriteWithROP(PAGE1\_START\_ADDR, SCREEN\_WIDTH, 50, 50, PAGE1\_START\_ADDR, SCREEN\_WIDTH, 50, 50, 128, 128,RA8876 BTE ROP CODE 3,"home.bin");

sdCardShowPicture16bppBteMpuWriteWithROP(PAGE1\_START\_ADDR, SCREEN\_WIDTH, 50+128, 50, PAGE1\_START\_ADDR, SCREEN\_WIDTH, 50+128, 50, 128, 128,RA8876\_BTE\_ROP\_CODE\_6,"appli.bin");

sdCardShowPicture16bppBteMpuWriteWithROP(PAGE1\_START\_ADDR, SCREEN\_WIDTH,50+128+128,50,PAGE1\_START\_ADDR,SCREEN\_WIDTH, 50+128+128, 50, 128, 128,RA8876\_BTE\_ROP\_CODE\_8,"sound.bin");

# Screenshot of the example:



#### sdCardShowPicture16bppBteMpuWriteWithChromaKey()

#### **Description:**

Read the image data of the specified file from SD card, and then write the image data on the destination of the specified canvas through the BTE MPU write with chroma key function.

#### **Function prototype:**

void sdCardShowPicture16bppBteMpuWriteWithChromaKey(unsigned long des\_addr, unsigned short des\_image\_width, unsigned short des\_x, unsigned short des\_y, unsigned short width, unsigned short chromakey\_color, char \*filename);

| Parameter       | Description                                           |
|-----------------|-------------------------------------------------------|
| des_addr        | Start address of the memory of the destination canvas |
| des_image_width | Width of the image memory of the destination canvas   |
| des_x           | Destination image X-axis coordinate of the canvas     |
| des_y           | Destination image Y-axis coordinate of the canvas     |

RAIO TECHNOLOGY INC. 95/101 www.raio.com.tw



| width           | Image width for write    |
|-----------------|--------------------------|
| height          | Image height for write   |
| chromakey_color | Data of chroma key color |
| * filename      | Image filename           |

#### **Example:**

ra8876lite.putString(0,50+128+10,"Read picture from sd card and write to RA8876 with BTE Chroma Key");

sdCardShowPicture16bppBteMpuWriteWithChromaKey(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50, 50+128+50,128,128,0xf800,"home.bin");

sdCardShowPicture16bppBteMpuWriteWithChromaKey(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128, 50+128+50,128,128,0xf800,"appli.bin");

sdCardShowPicture16bppBteMpuWriteWithChromaKey(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128+128,50+128+50,128,128,0xf800,"sound.bin");

### Screenshot of the example:



#### sdCardShowPicture16bppBteMpuWriteColorExpansion()

#### **Description:**

Read the image data (1bpp) of the specified file from SD card, and then write the image data on the destination of the specified canvas through the BTE MPU write with color expansion function.

### **Function prototype:**

void sdCardShowPicture16bppBteMpuWriteColorExpansion(unsigned long des\_addr, unsigned short des\_image\_width, unsigned short des\_x, unsigned short des\_y, unsigned short width,

RAio TECHNOLOGY INC. 96/101 www.raio.com.tw



unsigned short height, unsigned short foreground\_color, unsigned short background\_color, char \*filename);

| Parameter        | Description                                           |
|------------------|-------------------------------------------------------|
| des_addr         | Start address of the memory of the destination canvas |
| des_image_width  | Width of the image memory of the destination canvas   |
| des_x            | Destination image X-axis coordinate of the canvas     |
| des_y            | Destination image Y-axis coordinate of the canvas     |
| width            | Image width for write                                 |
| height           | Image height for write                                |
| foreground_color | Foreground color                                      |
| background_color | Background color                                      |
| * filename       | Image filename                                        |

#### **Example:**

sdCardShowPicture16bpp(0,0,800,600,"wp23.bin");

ra8876lite.activeWindowXY(0.0);

ra8876lite.activeWindowWH(SCREEN WIDTH,SCREEN HEIGHT);

ra8876lite.textColor(COLOR65K\_WHITE,COLOR65K\_BLACK);

ra8876lite.setTextParameter1(RA8876\_SELECT\_INTERNAL\_CGROM,RA8876\_CHAR\_HEIG HT 24,RA8876 SELECT 8859 1);//cch

ra8876lite.setTextParameter2(RA8876 TEXT FULL ALIGN ENABLE,

RA8876\_TEXT\_CHROMA\_KEY\_ENABLE,RA8876\_TEXT\_WIDTH\_ENLARGEMENT\_X1,RA 8876\_TEXT\_HEIGHT\_ENLARGEMENT\_X1);

ra8876lite.putString(0,10,"Read picture from sd card and write to RA8876 with BTE color expansion");

sdCardShowPicture16bppBteMpuWriteColorExpansion(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50,50,128,128,COLOR65K\_CYAN,COLOR65K\_MAGENTA,"sun.bin");

sdCardShowPicture16bppBteMpuWriteColorExpansion(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128,50,128,128,COLOR65K BLACK,COLOR65K WHITE,"cloud.bin");

sdCardShowPicture16bppBteMpuWriteColorExpansion(PAGE1\_START\_ADDR,SCREEN\_WIDTH,50+128+128, 50, 128, 128, COLOR65K\_BLUE,COLOR65K\_RED,"rain.bin");

#### Screenshot of the example:





# sdCardShowPicture16bppBteMpuWriteColorExpansionWithChromaKey()

# **Description:**

Read the image data (1bpp) of the specified file from SD card, and then write the image data on the destination of the specified canvas through the BTE MPU write with color expansive and chroma key function.

### **Function prototype:**

void sdCardShowPicture16bppBteMpuWriteColorExpansionWithChromaKey (unsigned long des\_addr, unsigned short des\_image\_width, unsigned short des\_x, unsigned short des\_y, unsigned short width, unsigned short height, unsigned short foreground\_color, unsigned short background\_color, char \*filename);

| Parameter        | Description                                           |
|------------------|-------------------------------------------------------|
| des_addr         | Start address of the memory of the destination canvas |
| des_image_width  | Width of the image memory of the destination canvas   |
| des_x            | Destination image X-axis coordinate of the canvas     |
| des_y            | Destination image Y-axis coordinate of the canvas     |
| width            | Image width for write                                 |
| height           | Image height for write                                |
| foreground_color | Foreground color                                      |
| background_color | Background color                                      |
| * filename       | Image filename                                        |

foreground color and background color must be set to different color data.

#### **Example:**

ra8876lite.putString(0,50+128+10,"Read picture from sd card and write to RA8876 with BTE color expansion with chroma key");

RAio TECHNOLOGY INC. 98/101 www.raio.com.tw



sdCardShowPicture16bppBteMpuWriteColorExpansionWithChromaKey(PAGE1\_START\_ADD R,SCREEN\_WIDTH, 50, 50+128+50+10, 128,

128,COLOR65K\_WHITE,COLOR65K\_BLACK,"sun.bin");

sdCardShowPicture16bppBteMpuWriteColorExpansionWithChromaKey(PAGE1\_START\_ADD R,SCREEN\_WIDTH, 50+128, 50+128+50+10, 128, 128,COLOR65K\_WHITE,COLOR65K\_BLACK,"cloud.bin");

sdCardShowPicture16bppBteMpuWriteColorExpansionWithChromaKey(PAGE1\_START\_ADD R,SCREEN\_WIDTH,50+128+128,50+128+50+10,128,128,COLOR65K\_WHITE,COLOR65K\_BLACK,"rain.bin");

#### Screenshot of the example:



RAio TECHNOLOGY INC. 99/101 www.raio.com.tw



# Appendix A



Figure A-1





Figure A-2

**End**