Algebraic Number Theory Homework 2

Michael Nelson

Problem 2

Let α be an algebraic integer of degree n, and let f(x) be its minimal polynomial over \mathbb{Q} . Define the discriminant of α , denoted $\Delta(\alpha)$, to be the discriminant of the basis $\{1, \alpha, \dots, \alpha^{n-1}\}$ for $\mathbb{Q}(\alpha)/\mathbb{Q}$, and let $\alpha_1, \dots, \alpha_n$ be the conjugates of α .

Problem 2.a

Exercise 1. Show that

$$\Delta(\alpha) = (-1)^{\binom{n}{2}} \prod_{1 \le i \le n} f'(\alpha_i). \tag{1}$$

Solution 1. The discriminant is of $\{1, \alpha, \dots, \alpha^{n-1}\}$ for $\mathbb{Q}(\alpha)/\mathbb{Q}$ is, by definition, given by

$$\Delta(\alpha) = \det \begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ 1 & \alpha_2 & \alpha_3^2 & \cdots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \cdots & \alpha_n^{n-1} \end{pmatrix}^2 = \prod_{1 \le i < j \le n} (\alpha_j - \alpha_i)^2.$$

To show (1), write

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_n).$$

By the product rule, observe that

$$f'(\alpha_i) = \prod_{\substack{1 \le j \le n \\ i \ne i}} (\alpha_i - \alpha_j).$$

Multiplying these over all *i* gives us

$$\prod_{\substack{1 \le i \le n \\ i \ne i}} \prod_{\substack{1 \le j \le n \\ i \ne i}} (\alpha_i - \alpha_j) = \prod_{\substack{1 \le i \le n \\ 1 \le i \le n}} f'(\alpha_i).$$

The product of $\alpha_i - \alpha_j$ runs over sets of distinct indices i and j. To rewrite thie product over index pairs where i < j, collect $\alpha_i - \alpha_j$ and $\alpha_j - \alpha_i$ together as $-(\alpha_j - \alpha_i)^2$. There are $\binom{n}{2}$ such pairs, so

$$\Delta(\alpha) = \prod_{1 \le i < j \le n} (\alpha_j - \alpha_i)^2 = (-1)^{\binom{n}{2}} \prod_{1 \le i \le n} f'(\alpha_i).$$

Problem 2.b

Exercise 2. Use part (a) to compute the discriminant of α if α is a root of the polynomial $f(x) = x^n + ax + b$ where $a, b \in \mathbb{Z}$ are chosen so that f(x) is irreducible.

Solution 2. Let $\alpha_1, \ldots, \alpha_n$ be the distinct roots of f(x). For each $k, n \in \mathbb{N}$ the kth elementary symmetric polynomial in the variables t_1, \ldots, t_n , denoted $e_k(t_1, \ldots, t_n)$, is defined by

$$e_k(t_1,\ldots,t_n) = \begin{cases} 1 & \text{if } k = 0\\ \sum_{1 \le i_1 < \cdots < i_k \le n} t_{i_1} \cdots t_{i_k} & \text{if } k \le n\\ 0 & \text{if } k > n \end{cases}$$

In particular, we have

$$x^{n} + ax + b = f(x)$$

$$= \prod_{k=1}^{n} (x - \alpha_{k})$$

$$= x^{n} + \sum_{k=1}^{n} (-1)^{k} e_{k}(\alpha_{1}, \dots, \alpha_{n}) x^{n-k}.$$

Equating coefficients gives us

$$e_k(\alpha_1, \dots, \alpha_n) = \begin{cases} (-1)^n b & \text{if } k = n \\ (-1)^{n-1} a & \text{if } k = n - 1 \\ 0 & \text{if } k < n - 1 \end{cases}$$

Now since $f'(x) = nx^{n-1} + a$, we have

$$\Delta(\alpha) = (-1)^{\binom{n}{2}} \prod_{i=1}^{n} f'(\alpha_i)$$

$$= (-1)^{\binom{n}{2}} \prod_{i=1}^{n} (n\alpha_i^{n-1} + a)$$

$$= (-1)^{\binom{n}{2}} \left(\sum_{k=0}^{n} (n-k)^{n-k} a^k e_{n-k}(\alpha_1, \dots, \alpha_n)^{n-1} \right)$$

$$= (-1)^{\binom{n}{2}} \left(n^n e_n(\alpha_1, \dots, \alpha_n)^{n-1} + (n-1)^{n-1} e_{n-1}(\alpha_1, \dots, \alpha_n)^{n-1} a \right)$$

$$= (-1)^{\binom{n}{2}} \left(n^n (-1)^{n(n-1)} b^{n-1} + (n-1)^{n-1} (-1)^{(n-1)(n-1)} a^n \right)$$

$$= (-1)^{\binom{n}{2}} \left(n^n b^{n-1} + (n-1)^{n-1} (-1)^{(n-1)} a^n \right).$$

Problem 2.c

Exercise 3. Find an integral basis for the ring of integers $\mathbb{Q}(\theta)$ where θ is a root of the polynoimal $x^3 - 2x + 3$.

Solution 3. First note that $x^3 - 2x + 3$ is irreducible over \mathbb{Q} since it is irreducible over \mathbb{F}_5 . Indeed, if $x^3 - 2x + 3$ were reducible over \mathbb{F}_5 , then it must have a root in \mathbb{F}_5 , but a brute force calculation shows that it doesn't:

$$0^{3} - 2 \cdot 0 + 3 \equiv 3 \mod 5$$

 $1^{3} - 2 \cdot 1 + 3 \equiv 2 \mod 5$
 $2^{3} - 2 \cdot 2 + 3 \equiv 2 \mod 5$
 $3^{3} - 2 \cdot 3 + 3 \equiv 4 \mod 5$
 $4^{3} - 2 \cdot 4 + 3 \equiv 4 \mod 5$

Using the formula above, we calculate

$$\Delta(\theta) = (-1)^{\binom{3}{2}} \left(3^3 \cdot 3^2 + 2^2 \cdot (-1)^{(3-1)} (-2)^3 \right)$$
$$= -\left(3^5 - 2^5 \right)$$
$$= -211.$$

Since 211 has no square factors, it follows from

$$\Delta(\theta) = |\mathcal{O}_{\mathbb{Q}(\theta)}/\mathbb{Z}[\theta]|^2 \Delta_{\mathbb{Q}(\theta)}$$

 $\text{that } |\mathcal{O}_{\mathbb{Q}(\theta)}/\mathbb{Z}[\theta]|^2 = 1. \text{ In other words, } \mathcal{O}_{\mathbb{Q}(\theta)} = \mathbb{Z}[\theta]. \text{ In particular, } \{1, \theta, \theta^2\} \text{ gives an integral basis for } \mathbb{Q}(\theta).$

Problem 2.d

Exercise 4. Find an integral basis for the ring of integers of $\mathbb{Q}(\theta)$ where θ is a root of the polynomial $x^3 - x - 4$.

Solution 4. First note that $x^3 - x - 4$ is irreducible over \mathbb{Q} since it is irreducible over \mathbb{F}_3 . Indeed, if $x^3 - x - 4$ were reducible over \mathbb{F}_3 , then it must have a root in \mathbb{F}_3 , but a brute force calculation shows that it doesn't:

$$0^3 - 0 - 4 \equiv 2 \mod 3$$

 $1^3 - 1 - 4 \equiv 2 \mod 3$
 $2^3 - 2 - 4 \equiv 2 \mod 3$

Using the formula above, we calculate

$$\Delta(\theta) = (-1)^{\binom{3}{2}} \left(3^3 \cdot (-4)^2 + 2^2 \cdot (-1)^{(3-1)} \cdot (-1)^3 \right)$$

$$= -\left(3^3 \cdot 16 - 2^2 \right)$$

$$= -428$$

$$= -2^2 \cdot 107.$$

Since 4 is the only square factor of $\Delta(\theta)$, it follows from

$$\Delta(\theta) = |\mathcal{O}_{\mathbb{Q}(\theta)}/\mathbb{Z}[\theta]|^2 \Delta_{\mathbb{Q}(\theta)}$$

that either $|\mathcal{O}_{\mathbb{Q}(\theta)}/\mathbb{Z}[\theta]|^2 = 1$ or $|\mathcal{O}_{\mathbb{Q}(\theta)}/\mathbb{Z}[\theta]|^2 = 2$. We will show that $|\mathcal{O}_{\mathbb{Q}(\theta)}/\mathbb{Z}[\theta]| = 2$ by finding an algebraic integer contained in $\mathbb{Q}(\theta)$ but which is not contained in $\mathbb{Z}[\theta]$. First note by a direct calculation, we have

$$(\theta^2 + \theta + 2)^2(\theta^2 + \theta + 2)^3 = 8(5\theta^2 + 9\theta + 11)$$
 and $(\theta^2 + \theta + 2)^2 = 2(3\theta^2 + 5\theta + 6)$.

Therefore

$$\left(\frac{\theta^2 + \theta + 2}{2}\right)^3 - 4\left(\frac{\theta^2 + \theta + 2}{2}\right)^2 + 2\left(\frac{\theta^2 + \theta + 2}{2}\right) - 1 = (5\theta^2 + 9\theta + 11) - (6\theta^2 + 10\theta + 12) + (\theta^2 + \theta + 2) - 1$$

$$= (5 - 6 + 1)\theta^2 + (9 - 10 + 1)\theta + (11 - 12 + 2 - 1)$$

$$= 0.$$

Thus $(\theta^2 + \theta + 2)/2$ is a root of the monic $x^3 - 4x^2 + 2x - 1$, so $(\theta^2 + \theta + 2)/2 \in \mathcal{O}_{\mathbb{Q}(\alpha)}$. Finally, since

$$\operatorname{disc}\left\{1, \theta, \frac{\theta^2 + \theta + 1}{2}\right\} = \frac{1}{4} \cdot \operatorname{disc}\{1, \theta, \theta^2\}$$
$$= -107.$$

and 107 has no square factors, it follows that $\{1, \theta, (\theta^2 + \theta + 1)/2\}$ is an integral basis for the ring of integers of $\mathbb{Q}(\theta)$.

Problem 4

Exercise 5. Let *I* be an ideal in a Dedekind ring *R*. Show that *I* can be generated by 2 elements.

Solution 5. Write $I = \prod \mathfrak{p}_i^{a_i}$ with the \mathfrak{p}_i 's being pairwise distinct prime ideals and let $\alpha \in I$. If $I = (\alpha)$ then we are done, so assume $(\alpha) \subset I$. Since $(\alpha) \subset I$, we must have $(\alpha)I^{-1} \subseteq R$. In particular, $(\alpha)I^{-1}$ is an ideal, so it has a unique factorization in R, say

$$(\alpha)I^{-1} = \left(\prod \mathfrak{p}_i^{m_i}\right) \left(\prod \mathfrak{q}_i^{c_j}\right) \tag{2}$$

where the collection of all \mathfrak{p}_i 's and \mathfrak{q}_j 's and where $m_i \geq 0$ and $c_j \geq 1$. Multiplying both sides of (??) by $I = \prod \mathfrak{p}_i^{a_i}$ gives us

$$(lpha) = \left(\prod \mathfrak{p}_i^{a_i + m_i}\right) \left(\prod \mathfrak{q}_j^{c_j}\right).$$

For each i, choose $\beta_i \in \mathfrak{p}_i^{a_i} \backslash \mathfrak{p}_i^{a_i+1}$. Since the $\mathfrak{p}_i^{a_i+1}$ and \mathfrak{q}_j are pairwise relatively prime, the Chinese Remainder Theorem tells us that we can find a $\beta \in R$ such that $\beta \equiv \beta_i \mod \mathfrak{p}_i^{a_i+1}$ for all i and $\beta \equiv 1 \mod \mathfrak{q}_j$ for all j. In particular, $\beta \in \mathfrak{p}_i^{a_i} \backslash \mathfrak{p}_i^{a_i+1}$ and $\beta \notin \mathfrak{q}_j$ for all i, j. Indeed, it is clear that $\beta \notin \mathfrak{q}_j$ since $\beta \equiv 1 \mod \mathfrak{q}_j$. To see that $\beta \in \mathfrak{p}_i^{a_i} \backslash \mathfrak{p}_i^{a_i+1}$, observe that $\beta \equiv \beta_i \mod \mathfrak{p}_i^{a_i+1}$ implies

$$\beta = \beta_i + \alpha_i$$

for some $\alpha_i \in \mathfrak{p}_i^{a_i+1}$. Then $\beta \in \mathfrak{p}_i^{a_i}$ since $\alpha_i \in \mathfrak{p}_i^{a_i+1} \subseteq \mathfrak{p}_i^{a_i}$ and $\beta_i \in \mathfrak{p}_i^{a_i}$, and $\beta \notin \mathfrak{p}_i^{a_i+1}$ since $\alpha_i \in \mathfrak{p}_i^{a_i+1}$ and $\beta_i \notin \mathfrak{p}_i^{a_i+1}$. Note that since $\beta \in \mathfrak{p}_i^{a_i}$ for all i, we have

$$eta \in \bigcap_i \mathfrak{p}_i^{a_i} \ = \prod_i \mathfrak{p}_i^{a_i} \ = I$$

By a similar argument as for (α) above, we can write

$$(eta) = \left(\prod \mathfrak{p}_i^{a_i + n_i} \right) \left(\prod \mathfrak{q'}_{j'}^{c'_{j'}} \right).$$

However we must have $n_i = 0$ since $\beta \notin \mathfrak{p}_i^{a_i+1}$ and we cannot have $\mathfrak{q}'_{j'} = \mathfrak{q}_j$ for some j, j' since $\beta \notin \mathfrak{q}_j$. It follows that

$$(\alpha, \beta) = \left(\prod \mathfrak{p}_{i}^{\min(a_{i}+m_{i},a_{i}+n_{i})}\right) \left(\prod \mathfrak{q}_{j}^{\min(c_{j},0)}\right) \left(\prod \mathfrak{q}_{j'}^{\min(0,c'_{j'})}\right)$$

$$= \left(\prod \mathfrak{p}_{i}^{\min(a_{i}+m_{i},a_{i})}\right) \left(\prod \mathfrak{q}_{j}^{\min(c_{j},0)}\right) \left(\prod \mathfrak{q}_{j'}^{\prime}^{\min(0,c'_{j'})}\right)$$

$$= \prod \mathfrak{p}_{i}^{a_{i}}$$

$$= I$$

Problem 7

Let $K = \mathbb{Q}(\theta)$ where θ is a root of $f(x) = x^3 - 2x - 2$.

Problem 7.a

Exercise 6. Show that $[K:\mathbb{Q}]=3$ and that $\mathbb{Z}(\theta)$ is the ring of integers in K.

Solution 6. Observe that f is irreducible over $\mathbb Q$ since it is Eisenstein at 2. Thus f is the minimal polynomial of θ over $\mathbb Q$. In particular we have $[K:\mathbb Q]=\deg f=3$. To show that $\mathbb Z(\theta)$ is the ring of integers in K, we first calculate

$$\Delta(\theta) = (-1)^{\binom{3}{2}} \left(3^3 \cdot (-2)^2 + 2^2 \cdot (-1)^2 \cdot (-2)^3 \right)$$

$$= -(27 \cdot 4 - 4 \cdot 8)$$

$$= -76$$

$$= -2^2 \cdot 19$$

Since 4 is the only square factor of $\Delta(\theta)$, it follows from

$$\Delta(\theta) = |\mathcal{O}_K/\mathbb{Z}[\theta]|^2 \Delta_K$$

that either $|\mathcal{O}_K/\mathbb{Z}[\theta]|^2 = 1$ or $|\mathcal{O}_K/\mathbb{Z}[\theta]|^2 = 2$. Since f is Eisenstein at 2, we can't have $|\mathcal{O}_K/\mathbb{Z}[\theta]|^2 = 2$, hence $|\mathcal{O}_K/\mathbb{Z}[\theta]|^2 = 1$. In other words, $\mathcal{O}_K = \mathbb{Z}[\theta]$.

Problem 7.b

Exercise 7. Show that $Cl(\mathcal{O}_K)$ is trivial.

Proof. First we calculate the Minkowski bound:

$$M_K = \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^{r_2} \sqrt{|\Delta_K|}$$
$$= \frac{3!}{3^3} \left(\frac{4}{\pi}\right)^1 \sqrt{2^2 \cdot 19}$$
$$\approx 2.467.$$

Thus every ideal class can be represented by a nonzero ideal of norm ≤ 2 . Since f is Eisenstein at 2, we see that 2 is totally ramified in \mathcal{O}_K . Let $\mathfrak p$ be the prime ideal in \mathcal{O}_K which sits over 2 (so $(2) = \mathfrak p^3$). Since every ideal class can be represented by a nonzero ideal of norm ≤ 2 , we see that either $\mathrm{Cl}(\mathcal{O}_K) = \{[1], [\mathfrak p]\}$ or $\mathrm{Cl}(\mathcal{O}_K)$ is trivial. Assume for a contradiction that $\mathrm{Cl}(\mathcal{O}_K)$ is not trivial, so $[\mathfrak p] \neq [1]$. It follows that $[\mathfrak p]^2 = [1]$ by Lagrange's Theorem. However we also know that $[\mathfrak p]^3 = [1]$ since $(2) = \mathfrak p^3$. In particular,

$$\operatorname{ord}[\mathfrak{p}] \mid \gcd(2,3)$$

= 1.

It follows that $[\mathfrak{p}] = [1]$, which is a contradiction.

Problem 8

Exercise 8. Let $K = \mathbb{Q}(\sqrt{-6})$ and $\theta = \sqrt{-6}$. Determine which rational primes p split, ramify, and remain inert in K.

Solution 7. The minimal polynomial of θ over \mathbb{Q} is $f(x) = x^2 + 6$, which has discriminant $-2^3 \cdot 3$. Since 4 is the only square factor of $\Delta(\theta)$, it follows from

$$\Delta(\theta) = |\mathcal{O}_K/\mathbb{Z}[\theta]|^2 \Delta_K$$

that either $|\mathcal{O}_K/\mathbb{Z}[\theta]|^2 = 1$ or $|\mathcal{O}_K/\mathbb{Z}[\theta]|^2 = 2$. Since f is Eisenstein at 2, we can't have $|\mathcal{O}_K/\mathbb{Z}[\theta]|^2 = 2$, hence $|\mathcal{O}_K/\mathbb{Z}[\theta]|^2 = 1$. In other words, $\mathcal{O}_K = \mathbb{Z}[\theta]$.

Now let p be a rational prime. Since $|\mathcal{O}_K/\mathbb{Z}[\theta]| = 1$, we can determine how p factors in \mathcal{O}_K by studying how f(x) factors over \mathbb{F}_p . First note that since $\mathrm{disc}(f(x)) = -2^3 \cdot 3$, we see that the only primes which ramifies in K is either p = 2 or p = 3. Both primes ramify in K since f(x) is Eisenstein at both p = 2 and p = 3. To see which primes split, observe that

$$p ext{ splits } \iff f(x) ext{ splits over } \mathbb{F}_p$$
 $\iff f(x) ext{ has a solution modulo } p$
 $\iff \left(\frac{-6}{p}\right) = 1$
 $\iff \left(\frac{-1}{p}\right) \left(\frac{2}{p}\right) \left(\frac{3}{p}\right) = 1$
 $\iff (-1)^{\frac{p-1}{2}} (-1)^{\frac{p^2-1}{8}} (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right) = 1$
 $\iff p \equiv 1, 5, 7, 11 ext{ mod } 24.$

Thus we have the following cases:

$$\begin{cases} \text{ramifies} & \text{if } p = 2,3\\ \text{splits} & \text{if } p \equiv 1,5,7,11 \mod 24\\ \text{inert} & \text{else} \end{cases}$$