Practical 2

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

CANDIDATE-ELIMINATION Learning Algorithm

The CANDIDATE-ELIMINTION algorithm computes the version space containing allhypotheses from H that are consistent with an observed sequence of training examples.

Initialize G to the set of maximally general hypotheses in H Initialize S to the set of maximally specific hypotheses in H For each training example d, do

- If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - Remove s from S
 - Add to S all minimal generalizations h of s such that
 - h is consistent with d, and some member of G is more general than h
 - Remove from S any hypothesis that is more general than another hypothesis in S
 - If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - Remove g from G
 - Add to G all minimal specializations h of g such that
 - h is consistent with d, and some member of S is more specific than h
 - Remove from G any hypothesis that is less general than another hypothesis in G

CANDIDATE- ELIMINTION algorithm using version spaces

Training Examples:

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Algorithmic steps:

Initially:
$$G0 = [[?, ?, ?, ?, ?, ?]]$$

 $S0 = [\phi, \phi, \phi, \phi, \phi, \phi]$

For instance 1 : <u>Positive</u> output (convert specific to general) **Instance 1:** <'sunny','warm','normal','strong','warm','same'>

For instance 2: <u>Positive</u> output (convert specific to general)
Previous hypothesis: <'sunny','warm','normal','strong','warm','same'>
Instance 2: <'sunny','warm','high','strong','warm','same'>

For instance 3: Negative output (convert general to specific) Previous hypothesis: <'sunny','warm',?,'strong','warm','same'> Instance 3: <'rainy','cold','high','strong','warm','change'> Instance 2: <'sunny','warm','high','strong','warm','same'>

For instance 4: Positive output (convert specific to general)

Previous hypothesis: <'sunny','warm',?,'strong','warm','same'>

Instance 4: <'sunny','warm','high','strong','cool','change'> (s4 compare with s3)

At last, by synchronizing the G4 and S4 algorithm produce the output.

Output:

Final Specific_h:

['sunny' 'warm' '?' 'strong' '?' '?']

Final General_h:

[['sunny', '?', '?', '?', '?', '?'],

['?', 'warm', '?', '?', '?', '?']]