Arrays

Arrays – Definition

- Finite ordered collection of homogenous elements
- Static allocation
- Complexity of operations?
 - Access Sequential and Random
 - Insertion
 - Deletion
 - Searching

1D Array: Accessing array elements

Example

{1, 2, 3, 4, 5}

Code Segment

Complexity

O(n)

2D Array: Accessing array elements

Example

1	2	3	4	5
6	7	8	9	10

Code Segment

```
for(i = 0; i < n; i++)

for(j = 0; j < n; j++)

printf("%d ", a[i][j]);
```

Complexity

 $O(n^2)$

Storage Representation: 1D array

Example

data = { 1, 2, 3, 4, 5}

Elements of arrays stored sequentially starting from the base address

Element Address

data[0] 1004

data[1] 1006

data[2] 1008

Integer assumed to be 2 bytes; Little endian notation shown

Storage Representation: 1D array

Example

data = $\{1, 2, 3, 4, 5\}$

Elements of arrays stored sequentially starting from the base address

Element Address

data[0] 1004

data[1] 1006

data[2] 1008

data[i] = base + i * element_size

Integer assumed to be 2 bytes; Little endian notation shown

2D Array

- Logical Representation rows, columns
- Storage Representation Single dimension memory

Storage representation

10	
20	
30	
40	
50	
60	
70	
80	
	20 30 40 50 60 70

0	10
1	20
2	30
3	40
4	50
5	60
6	70
7	80

Base address = 100, size of integer is 2 bytes

Address of element at index 2 = 104 = 100 + 2(2)

Addressing function

Address of ith element = base address + i * size of the element

2D Array – Storage representation

Representing 2 dimensional arrays in single dimension storage

Row Major Order Representation

Column Major Order Representation

Row Major Order representation of 2D arrays

Matrix

10	20	30
40	50	60
70	80	90

ROWS = 3, COLS = 3

Address of the element (0,2) = 104Address of the element (1,2) = 110

Addressing function ?

100	10
102	20
104	30
106	40
108	50
110	60
112	70
114	80
116	90

Column order representation of 2D arrays

Matrix

10	20	30
40	50	60
70	80	90

ROWS = 3, COLS = 3

Address of the element (0,2) = 112Address of the element (1,2) = 114

Addressing function ?

100	10
102	40
104	70
106	20
108	50
110	80
112	30
114	60
116	90

Row Major Order representation of 2D arrays

Matrix

10	20	30
40	50	60
70	80	90

ROWS = 3, COLS = 3

Address of the element (0,2) = 104 = 100 + 2(2)Address of the element (1,2) = 110 = 100 + 1(3*2) + 2(2) = 100 + 2(1*3+2)

Addressing function = base address + size (i * COLS + j)

100	10
102	20
104	30
106	40
108	50
110	60
112	70
114	80
116	90

Storage representation of 3D arrays

Store layer by layer – row/column major order

Row Major order

Address of (i, j, k)?

Storage representation of 3D arrays

Store layer by layer – row/column major order

Row Major order

Address of (i, j, k) = base address + size (k*ROWS * COLS + i*COLS + j)

Multi-dimensional Arrays

Memory Storage

The memory address of a[i][0][0] is:

$$\alpha + i * upper_1 * upper_2$$

if the memory address of a[0][0][0] is α. Therefore, the memory address of a[i][j][k] becomes:

$$\alpha + i * upper_1 * upper_2 + j * upper_2 + k$$

The memory address of $a[i_0][i_1][i_2]...[i_{n-1}]$ is:

$$\alpha + \sum_{j=0}^{n-1} i_j a_j \begin{cases} a_j = \prod_{k=j+1}^{n-1} upper_k & 0 \le j \le n-1 \\ a_{n-1} = 1 \end{cases}$$

Special matrices

Diagonal Matrix

1	0	0	0
0	2	0	0
0	0	3	0
0	0	0	4

Row Major Order

Non zero elements : i = j

Addressing Function

```
Address of (i,j) = base address + i * element size ; if i = j

A[i][j] = 0 ; otherwise
```

Upper triangular matrices

1	2	3	4
0	5	6	7
0	0	8	9
0	0	0	10

4 x 4 matrix

1
2
3
4
5
6
7
8
9
10

Upper triangular matrices

1	2	3	4
0	5	6	7
0	0	8	9
0	0	0	10

4 x 4 matrix

8

10

Condition for non zero element $i \le j$

Address of (2,3)

No. of non-zero elements in rows 0 and 1 = (4 + 3) = 7No. of preceding non-zero elements in row 2 = 1Offset = 7 + 1 = 8

Address of (3,3)

No. of elements in rows 0,1 and 2 = (4 + 3 + 2) = 9No. of preceding non-zero elements in row 3 = 0Offset = 9 + 0 = 9

Addressing function of Upper triangular matrix

• Base address + element Size $(\sum_{k=0}^{i} (ROW - k) + (j - i))$

Lower triangular matrices

1	0	0	0
2	3	0	0
4	5	6	0
7	8	9	10

1
2
3
4
5
6
7
8
9
10

Lower triangular matrices

1	0	0	0
2	3	0	0
4	5	6	0
7	8	9	10

2
3
4
5
6
7
8

10

Condition for non zero element $i \ge j$

Address of (2,2)

No. of elements in rows 0.1 = (1 + 2) = 3No. of preceding non - zero elements in column 2 = 2Offset = 3 + 2 = 5

Address of (3,3)

No. of elements in rows 0,1,2 = (1+2+3) = 6No. of preceding non - zero elements in row 3 = 3Offset = 6+3=9

Lower triangular matrix - addressing function

• Base address + element size $(\sum_{k=0}^{i} k + j)$

Symmetric matrix

1	2	3	4	5
2	4	6	8	10
3	6	9	12	15
4	8	12	16	20
5	10	15	20	25

Band Matrix

1	2	0	0	0
3	4	5	0	0
0	6	7	8	0
0	0	9	10	11
0	0	0	12	13

Exchange Matrix

0	0	0	1
0	0	1	0
0	1	0	0
1	0	0	0

Upper Shift Matrix

0	1	0	0
0	0	1	0
0	0	0	1
0	0	0	0

Lower Shift Matrix

0	0	0	0
1	0	0	0
0	1	0	0
0	0	1	0

Toeplitz Matrix

- Elements on the same diagonal are same
- Example

10	2	3	4	5
6	10	2	3	4
7	6	10	2	3
8	7	6	10	2
9	8	7	6	10

Suggest efficient storage representation and write the corresponding addressing function

Sort an array with elements 0s and 1s

Sample input [1, 0, 0, 1, 1, 0, 1, 0]

Sample output [0, 0, 0, 0, 1, 1, 1, 1]

Sort an array of 0s, 1s and 2s

- Given an array of size N containing only 0s, 1s, and 2s; sort the array in ascending order.
- Expected Time Complexity: O(N)
 Expected Auxiliary Space: O(1)