IN THE CLAIMS

What is claimed is:

ł	1.	A noise level detecting circuit, comprising:
2		a pedestal level detecting circuit coupled to receive a digital video
3		signal and providing a pedestal level signal; and
4 .		an absolute value circuit coupled to receive the pedestal level signal
5		and providing a positive pole component burst signal.
1.	2.	The noise level detecting circuit of claim 1, further including:
2	.*	an analog to digital converter coupled to receive an analog video
3	· .	signal and providing the digital video signal.
	•	
1 .	3.	The noise level detecting circuit of claim 1, further including:
2		a timing generating circuit coupled to receive a horizontal synchronous
3		signal and providing a burst gate pulse; and
4		an AND circuit coupled to receive the digital video signal and the
5		burst gate pulse and providing an extracted burst signal.
1	4.	The noise level detecting circuit of claim 1, further including:
2		a delay circuit coupled to receive the positive pole component burst
3	·	signal and provide a delayed signal.

1	5.	The noise level detecting circuit of claim 4, further including:
2		a comparator coupled to receive the positive pole component burst
3	•	signal and the delayed signal and providing a noise level detecting signal.
1	6.	The noise level detecting circuit of claim 5, wherein:
2		the delayed circuit delays the positive pole component burst signal by
3		one horizontal scanning unit to provide the delayed signal.
1	7. ·	The noise level detecting circuit of claim 5, further including:
2		a line integrating circuit coupled to receive the noise level detecting
3		signal and providing a line integrated noise level detection signal.
1	8.	The noise level detecting circuit of claim 7, further including:
2		a field integrating circuit coupled to receive the line integrated noise
3		level detection signal and providing a field integrated noise level detection
4	•	signal.
:	:	
1	9.	A noise level detecting circuit, comprising:
2		a pedestal level detecting circuit coupled to receive a digital video
3		signal and providing a pedestal level signal; and
4		an absolute value circuit coupled to receive the pedestal level signal
5		and an extracted burst signal and providing a positive pole component burst
6	-	signal:

7		wherein the pedestal level detecting circuit detects a pedestal level of
8		the digital video signal and the absolute value circuit converts the extracted
9		burst signal into the positive pole component burst signal.
1	10.	The noise level detecting circuit of claim 9, further including:
2		an analog to digital converter coupled to receive an analog video
3	•	signal and providing the digital video signal wherein the analog to digital
4		converter converts the analog video signal into the digital video signal.
1	11.	The noise level detecting circuit of claim 10, further including:
2		a timing generating circuit coupled to receive a horizontal synchronous
3		signal and providing a burst gate pulse; and
4	•	an AND circuit coupled to receive the digital video signal and the
5.	· .	burst gate pulse and providing the extracted burst signal;
6		wherein the timing generating circuit generates the burst gate pulse for
7		extracting a burst signal during a period where the burst signal exists in a
8 .		horizontal blanking period and the AND circuit extracts the burst signal from
9		the digital video signal when the burst gate pulse is provided.
1	12.	The noise level detecting circuit of claim 9, further including:
2		a delay circuit coupled to receive the positive pole component burst

signal and provide a delayed signal.

one horizontal scanning unit to provide the delayed signal	
-	•
1 14. The noise level detecting circuit claim 12, further including	ng:
a comparator coupled to receive the positive po	ole component burst
3 signal and the delayed signal and providing a noise level of	detecting signal
4 wherein the comparator compares the positive pe	ole component burst
signal with the delayed signal to provide a noise level dete	ecting signal.
1 15. The noise level detecting circuit of claim 14, further inclu	ding:
a line integrating circuit coupled to receive the	noise level detecting
3 signal and providing a line integrated noise level detection	n signal.
1 16. The noise level detecting circuit of claim 15, wherein:	
2 the line integrating circuit integrates signal com	nparison information
from the comparator by a given scanning line period.	
	•
1 17. The noise level detecting circuit of claim 15, further inclu	ding:
a field integrating circuit coupled to receive the	line integrated noise
level detection signal and providing a field integrated in	noise level detection
4 signal.	

The noise level detecting circuit of claim 12, wherein:

1 13.

1	18.	The noise level detecting circuit of claim 17, wherein:
2		the line integrating circuit integrates signal comparison information
3		from the comparator by a given scanning line period and the field integrating
4		circuit integrates the signal comparison information after the line integration
5		by a given field period.
1	19.	A noise level detecting circuit, comprising:
2		an analog to digital converter that converts an analog video signal into
3		a digital video signal;
4	·	a pedestal level detecting circuit that detects a pedestal level of the
5		digital video signal;
6		a timing generating circuit that generates a burst gate pulse for
7		extracting a burst signal during a period where the burst signal exists in a
8		horizontal blanking period;
9		an AND circuit that extracts the burst signal from the digital video
10	•	signal in a period of the burst gate pulse;
11.		an absolute value circuit that converts the burst signal to a positive
12		component burst signal with respect to the pedestal level;
13		a delay circuit that delays the positive component burst signal; and
14		a comparator that compares one positive component burst signal with
15		another positive component burst signal delayed by the delay circuit.

20. The noise level detecting circuit of claim 19, further including:

a line integrating circuit that integrates signal comparison information

from the comparator by a predetermined scanning line period; and

a field integrating circuit that integrates information after the line

integration by a predetermined field period.