Assignment – 3

Python Programming

Assignment Date	
Student Name	GATTAM POOJITHA
Student Roll Number	111519104030
Maximum Marks	2 Marks

Problem Statement: Abalone Age Prediction

Description:

Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope -- a boring and time-consuming task. Other measurements, which are easier to obtain, are used to predict age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem.

Importing Modules

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

1. Dataset has been downloaded

```
In []: #Name of the dataset: abalone.csv
```

2. Load the dataset into the tool

```
In [ ]: data=pd_read_csv("abalone.csv")
data_head()
```

Ou t []:	[]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
	4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

Let's know the shape of the data

```
In []: data_shape
Out[]: (4177, 9)
```

One additional task is that, we have to add the "Age" column using "Rings" data. We just have to add '1.5' to the ring data

```
In []: Age=1.5+data_Rings
   data["Age"]=Age
   data=data_rename(columns = {'Whole weight':'Whole_weight','Shucked weight': 'Shell_weight': 'Shell_weight'})
   data=data_drop(columns=["Rings"],axis=1)
   data_head()
```

Ou t[]:		Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weig
	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1
	4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0
	4								•

3. Perform Below Visualizations.

(i) Univariate Analysis

#

The term univariate analysis refers to the analysis of one variable. You can remember this because the prefix "uni" means "one." There are three common ways to perform univariate analysis on one variable: 1. Summary statistics – Measures the center and spread of values.

Histogram

In []: sns_histplot(y=data_Age,color='pink')

Out[]: <AxesSubplot:xlabel='Count', ylabel='Age'>

In []:
sns_histplot(x=data_Age,color='green')

Out[]: <AxesSubplot:xlabel='Age', ylabel='Count'>

Boxplot

In []: sns_boxplot(x=data_Age,color='pink')

Out[]: <AxesSubplot:xlabel='Age'>

Countplot

In []: sns_countplot(x=data_Age)

Out[]: <AxesSubplot:xlabel='Age', ylabel='count'>

(ii) Bi-Variate Analysis

Image result for bivariate analysis in python It is a methodical statistical technique applied to a pair of variables (features/ attributes) of data to determine the empirical relationship between them. In order words, it is meant to determine any concurrent relations (usually over and above a simple correlation analysis).

Barplot

Linearplot

```
In [ ]: sns_lineplot(x=data_Age,y=data_Height, color='purple')
```



```
5 10 15 20 25 30
```

Scatterplot

```
In [ ]: sns_scatterplot(x=data_Age,y=data_Height,color='green')
```

Out[]: <AxesSubplot:xlabel='Age', ylabel='Height'>

Pointplot

```
In [ ]: sns_pointplot(x=data_Age, y=data_Height, color="blue")
```

Out[]: <AxesSubplot:xlabel='Age', ylabel='Height'>

Regplot

```
In [ ]: sns_regplot(x=data_Age,y=data_Height,color='orange')
```

Out[]: <AxesSubplot:xlabel='Age', ylabel='Height'>

(iii) Multi-Variate Analysis

Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest.

Pairplot

In []: sns_pairplot(data=data[["Height","Length","Diameter","Age","Whole_weight","Shuc

Out[]: <seaborn.axisgrid.PairGrid at 0x7fd39840c790>

4. Perform descriptive statistics on the dataset

In []:	data_describe(include='all')											
Ou t[] :	Sex		Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_				
	count 4177		4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.				
	unique 3		NaN	NaN	NaN	NaN	NaN					
	top M		NaN	NaN	NaN	NaN	NaN					
	freq 1528		NaN	NaN	NaN	NaN	NaN					
	mean NaN		0.523992	0.407881	0.139516	0.828742	0.359367	0.				
	std NaN		0.120093	0.099240	0.041827	0.490389	0.221963	0.				
	min	NaN	0.075000	0.055000	0.000000	0.002000	0.001000	0.				
	25%	NaN	0.450000	0.350000	0.115000	0.441500	0.186000	0.				
	50 % NaN		0.545000	0.425000	0.140000	0.799500	0.336000	0.				
	75% NaN		0.615000	0.480000	0.165000	1.153000	0.502000	0.				
	max NaN		0.815000	0.650000	1.130000	2.825500	1.488000	0.				
	4							•				

5. Check for Missing values and deal with them

6. Find the outliers and replace themoutliers

In []:	<pre>outliers=data_quantile(q=(0.25,0.75)) outliers</pre>										
Out[]:		Length Dia	meter He	eight Whole	e_weight Shucked	_weight Viscera_	weight Shell_w	eight			
	0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130			
	0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329			

```
In []:
         a = data_Age_quantile(0.25)
         b = data_Age_quantile(0.75)
         c = b - a
         lower_limit = a - 1.5 * c
         data_median(numeric_only=True)
        Length
                            0.5450
Out[]:
         Diameter
                            0.4250
        Height
                            0.1400
        Whole_weight
                            0.7995
         Shucked_weight
                            0.3360
         Viscera_weight
                            0.1710
         Shell_weight
                            0.2340
         Age
                           10.5000
         dtype: float64
In [ ]:
         data['Age'] = np_where(data['Age'] < lower_limit, 7, data['Age'])</pre>
         sns_boxplot(x=data_Age,showfliers = False)
        <AxesSubplot:xlabel='Age'>
Out[]:
                            10
                                    12
                                            14
                                                    16
                                Age
```

7. Check for Categorical columns and perform encoding

ln []:	data_head()										
0u t[]:		Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weig		
		0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1		
		1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0		
		2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2		
		3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1		
		4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0		

```
In [ ]:
           from sklearn.preprocessing import LabelEncoder
           lab = LabelEncoder()
           data_Sex = lab_fit_transform(data_Sex)
           data_head()
                                       Height Whole_weight Shucked_weight Viscera_weight Shell_weig
Out[]:
             Sex
                   Length
                            Diameter
          0
               2
                     0.455
                                0.365
                                        0.095
                                                       0.5140
                                                                        0.2245
                                                                                         0.1010
                                                                                                       0.1
               2
                     0.350
                                0.265
                                        0.090
                                                       0.2255
                                                                         0.0995
                                                                                         0.0485
                                                                                                       0.0
          2
               0
                     0.530
                                0.420
                                        0.135
                                                                                                       0.2
                                                       0.6770
                                                                         0.2565
                                                                                         0.1415
               2
                     0.440
                                0.365
                                        0.125
                                                       0.5160
                                                                         0.2155
                                                                                         0.1140
                                                                                                       0.1
                                0.255
                                                                         0.0895
                                                                                                       0.0
                     0.330
                                        0.080
                                                       0.2050
                                                                                         0.0395
```

8. Split the data into dependent and independent variables

```
In []:
           y = data["Sex"]
           y_head()
                2
Out[]:
                2
          2
                0
          3
          Name: Sex, dtype: int64
In [ ]:
           x=data_drop(columns=["Sex"],axis=1)
           x_head()
Out[]:
                                 Height Whole_weight Shucked_weight Viscera_weight
                                                                                            Shell_weight A
              Length
                       Diameter
          0
                0.455
                           0.365
                                   0.095
                                                  0.5140
                                                                    0.2245
                                                                                    0.1010
                                                                                                   0.150
           1
                0.350
                           0.265
                                   0.090
                                                  0.2255
                                                                    0.0995
                                                                                    0.0485
                                                                                                   0.070
          2
                0.530
                           0.420
                                   0.135
                                                  0.6770
                                                                    0.2565
                                                                                    0.1415
                                                                                                   0.210
           3
                           0.365
                                                  0.5160
                                                                                                   0.155
                0.440
                                   0.125
                                                                    0.2155
                                                                                    0.1140
                0.330
                           0.255
                                   0.080
                                                  0.2050
                                                                    0.0895
                                                                                    0.0395
                                                                                                   0.055
```

9. Scale the independent variables

```
X_Scaled = pd_DataFrame(scale(x), columns=x_columns)
          X_Scaled_head()
Out[ ]:
               Length Diameter
                                    Height Whole_weight Shucked_weight Viscera_weight
                                                                                          Shell_weigh
          0 -0.574558
                       -0.432149 -1.064424
                                                -0.641898
                                                                 -0.607685
                                                                                -0.726212
                                                                                             -0.63821
          1 -1.448986
                                                                 -1.170910
                      -1.439929 -1.183978
                                                -1.230277
                                                                                -1.205221
                                                                                             -1.21298
            0.050033 0.122130
                                                                 -0.463500
                                                                                -0.356690
                                -0.107991
                                                -0.309469
                                                                                             -0.20713
          3 -0.699476
                      -0.432149
                                 -0.347099
                                                -0.637819
                                                                 -0.648238
                                                                                -0.607600
                                                                                             -0.60229
          4 -1.615544
                      -1.540707 -1.423087
                                                -1.272086
                                                                 -1.215968
                                                                                -1.287337
                                                                                             -1.32075
                                                                                                  •
         10. Split the data into training and testing
In [ ]:
          from sklearn.model_selection import train_test_split
          X_Train, X_Test, Y_Train, Y_Test = train_test_split(X_Scaled, y, test_size=0.2,
In [ ]:
          X_Train_shape,X_Test_shape
         ((3341, 8), (836, 8))
Out[ ]:
In []:
          Y_Train_shape,Y_Test_shape
         ((3341,), (836,))
Out[ ]:
In [ ]:
          X_Train_head()
Out[ ]:
                  Length Diameter
                                       Height Whole_weight Shucked_weight Viscera_weight Shell_w
                -2.864726 -2.750043 -1.423087
                                                   -1.622870
                                                                    -1.553902
                                                                                   -1.583867
                                                                                                 -1.64
          3141
          3521
                -2.573250 -2.598876 -2.020857
                                                   -1.606554
                                                                    -1.551650
                                                                                   -1.565619
                                                                                                 -1.62
           883
                 1.132658
                          1.230689 0.728888
                                                     1.145672
                                                                     1.041436
                                                                                    0.286552
                                                                                                 1.53
          3627
                 1.590691
                           1.180300
                                    1.446213
                                                     2.164373
                                                                     2.661269
                                                                                    2.330326
                                                                                                 1.37
                                                                                    0.272866
                                                                                                 0.90
          2106
                 0.591345
                           0.474853 0.370226
                                                     0.432887
                                                                     0.255175
                                                                                                  In [ ]:
          X_Test_head()
Out[ ]:
                                       Height Whole_weight Shucked_weight Viscera_weight
                  Length
                          Diameter
                                                                                              Shell w
           668
                 0.216591
                           0.172519
                                     0.370226
                                                     0.181016
                                                                    -0.368878
                                                                                    0.569396
                                                                                                 0.6
          1580 -0.199803
                          -0.079426 -0.466653
                                                    -0.433875
                                                                    -0.443224
                                                                                   -0.343004
                                                                                                 -0.3
```

from sklearn.preprocessing import scale

```
3784 0.799543 0.726798
                                  0.370226
                                                0.870348
                                                              0.755318
                                                                             1.764639
                                                                                         0.56
          463 -2.531611 -2.447709 -2.020857
                                               -1.579022
                                                              -1.522362
                                                                            -1.538247
                                                                                        -1.57
         2615 1.007740 0.928354
                                  0.848442
                                                1.390405
                                                              1.415417
                                                                             1.778325
                                                                                         0.99
In [ ]:
         Y_Train_head()
        3141
                 1
Out[]:
         3521
                 1
         883
                 2
         3627
                 2
                 2
         2106
         Name: Sex, dtype: int64
In []:
         Y_Test_head()
                 2
        668
Out[]:
         1580
                1
         3784
                 2
         463
                 1
         2615
                 2
        Name: Sex, dtype: int64
        11. Build the Model
In []:
         from sklearn.ensemble import RandomForestClassifier
         model = RandomForestClassifier(n_estimators=10,criterion='entropy')
In [ ]:
         model_fit(X_Train,Y_Train)
        RandomForestClassifier(criterion='entropy', n_estimators=10)
Out[ ]:
In []:
         y_predict = model_predict(X_Test)
In []:
         y_predict_train = model_predict(X_Train)
        12. Train the Model
In []:
         from sklearn.metrics import accuracy_score,confusion_matrix,classification_repo
In []:
         print('Training accuracy: ',accuracy_score(Y_Train,y_predict_train))
        Training accuracy: 0.9787488775815624
```

13. Test the Model

```
In []: print('Testing accuracy: ',accuracy_score(Y_Test,y_predict))
```

Testing accuracy: 0.5526315789473685

98

14. Measure the performance using Metrics

1 37 217 37 **2** 120 53 123

0 122

In []: print(classification_report(Y_Test,y_predict))

	precision	reca	f1-score	suppo rt
	•			
0	0.44	0.49	0.46	249
1	0.73	0.75	0.74	291
2	0.48	0.42	0.44	296
accuracy			0.55	836
mac r o avg	0.55	0.55	0.55	836
weighted avg	0.55	0.55	0.55	836