Ponte de Wheatstone

Gonçalo Coutinho Departamento de Física e Astronomia Universidade do Porto

Sumário

Este trabalho laboratorial foi dividido em duas componentes: a medição de resistências e verificação das leis de associação em série e e em paralelo e a determinação do comportamento térmico da resistência de um termómetro de platina, utilizando em ambas a ponte de Wheatstone, em equilíbrio para a primeira parte e fora do mesmo para a segunda. Na primeira parte foram medidos os valores de 3 resistências sendo obtidos os valores de 1200,4 Ω , 2166,6 Ω e 3292,3 Ω com erros relativos de 0,4%, 2% e 1% respetivamente. Na associação em série foi obtido um valor de 6658,2 Ω com 1% de erro relativo e na associação em série 625,4 Ω com 0,9% de erro relativo. Finalmente na segunda parte, com a gama dividida em 2, foram obtidos $\Delta V(\Delta R)$ de 0,1128 mV/ Ω e 0,1115 mV/ Ω com erros relativos entre 0,5% e 11% face ao esperado por 2 expressões teóricas.

1 Introdução

Este trabalho experimental foi realizado no âmbito da disciplina de Laboratório de Física I e teve como objetivo o estudo e a utilização da Ponte de Wheatstone. Além disso teve como objetivos mais concretos:

- Utilizar a ponte de Wheatstone no equilíbrio para estudar o valor de resistências e verificação das leis de associação em série e em paralelo.
- Utilizar a ponte de Wheatstone para determinar o comportamento térmico da resistência de um termómetro de platina.

1.1 Ponte de Wheatstone

A ponte de Wheatstone é um esquema de montagem normalmente utilizado para determinar o valor de uma resistência desconhecida. Esta é constituída por duas resistências de valor conhecido e escolhidas previamente, uma resistência variável, a resistência a determinar, um voltímetro e uma fonte de tensão.

Aplicando as leis de Kirchhoff, ao ser atingido o equilíbrio a tensão entre os pontos C e D do circuito será nula (o voltímetro mostrará o valor 0), e pode-se estabelecer a relação:

$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \tag{1}$$

E daí:

$$R_3 = R_4 \frac{R_1}{R_2} \tag{2}$$

E desta forma, regulando a resistência R_4 até o equilíbrio pertendido fica determinado o valor de resistência R_3 .

Figura 1: V - voltímetro; ϵ - fonte de tensão de corrente contínua; R_1, R_2 - resistências de valor conhecido; R_4 - resistência variável; R_3 - resistência a determinar

1.2 Leis da associação de resistências

A associação de resistências pode ser feita de duas formas: em paralelo e em série, existindo várias diferenças entre estes dois tipos de associações.

Associação em série Na associação em paralelo as resistências são ligadas sequêncialmente da seguinte forma:

Figura 2: Resistências associadas em série

Neste tipo de associação a corrente elétrica mantêm-se ao longo do circuito, enquanto a tensão gerada pela fonte é distribuída entre as resistências. Quando as resistências são associadas desta forma é possível relacionar a resistência equivalente (resistência total do circuito) com as resistências do circuito da seguinte forma:

$$R_s = R_a + R_b + R_c \tag{3}$$

Associação em paralelo Quando associadas em paralelo as resistências são colocadas da seguinte forma:

Figura 3: Resistências associadas em paralelo

Ao contrário da associação em série, neste caso, a tensão é a mesma em cada ramo do circuito enquanto a corrente e dividida por cada um dos ramos. Neste tipo de montagem a fórmula que relaciona a resistência equivalente e as resistências do circuito é a seguinte:

$$\frac{1}{R_p} = \frac{1}{R_a} + \frac{1}{R_b} + \frac{1}{R_c} \tag{4}$$

1.3 Comportamento térmico da resistência do termómetro de platina

Para o estudo do comportamento térmico da resistência de um termómetro de platina utilizase a mesma ponte de Wheatstone, porém, neste circuito a resistência anteriormente variável, R_4 , é mantida com um valor fixo conhecido e a resistência variável será a do termómetro que substitui a resistência R_3 do circuito anterior. Esta última vai variar em função da sua temperatura e será aquecida utilizando uma fonte de tensão.

Considerando que a fonte de tensão é ideal ($R\epsilon\approx0$) e que o voltímetro tem uma resistência interna que pode ser considerada infinita ($R_V\approx\infty$), no equilíbrio, ($V_{CD}=0$), $R_1=R_2$ e $R_3=R_4$, ao sofrer aquecimento R_3 será alterada passando a ser $R_3=R_{3i}+\Delta R$, podendo-se utilizar as leis de Kirchhoff para se obter a seguinte expressão:

$$\Delta V = \frac{\Delta R \epsilon}{4R_4 + 2\Delta R} \tag{5}$$

Caso ΔR seja pequeno em comparação a R_4 pode-se aproximar esta equação para:

$$\Delta V = \frac{\Delta R \epsilon}{4R_4} \tag{6}$$

Estabelecendo-se assim uma relação entre ΔV mostrado no voltímetro e a variação do valor da resistência R_3 .

2 Procedimento experimental

2.1 Medição de resistências e verificação das leis de associação de resistências

2.1.1 Material necessário

- 2 resistências de valor conhecido;
- Resistência de valor variável;
- 3 resistências a serem medidas;
- Voltímetro;
- Fonte de tensão;
- Ohmímetro;

A montagem está esquematizada na figura 1 da secção 1.1.

2.1.2 Execução

- a) Ligar o voltímetro e o ohmímetro para estabilizarem a sua temperatura. Verificar o valor do zero após alguns minutos de aquecimento;
- b) Registar o valor das resistências pelo código de cores das mesmas e utilizando um ohmímetro
- c) Montar o circuito, escolhendo o valor de R_1 e R_2 (foi utilizado $R_1=R_2=100\Omega$). Não exceder 5V na fonte de tensão
- d) Regular R_4 utilizando os botões da mesma, começando pelo valor mais elevado, até se anular a diferença de pontencial entre os pontos C e D (quando o voltímetro mostrar o valor 0).
- e) Repetir este processo para as outras resistências e para associações em paralelo e em série.
- f) Calcular R_3 para cada situação utilizando a equação 2.

2.2 Determinação do comportamento térmico da resistência de um termómetro de platina

2.2.1 Material necessário

- 2 termómetros de resistência de platina, Pt 1000 da classe B, com as seguintes caraterísticas:
 - $-R(\theta) = 1000 (1 + 3{,}9083.10^{-3} \theta 5{,}775.10^{-7} \theta 2)$, com R em ohm e θ em graus celsius.
 - A tolerância deste termómetro (em 0 C) é de 0,3 + 0,005 $|\theta|$. A conversão da resistência em terperatura na gama perto da temperatura ambiente pode ser obtida por $\theta = 10^{-5} \text{ R}^2 + 0,2358 \text{ R} 245,77$.
- Bloco de alumínio, onde se encontra inserida uma resistência de aquecimento ($\approx 20~\Omega$) que permite aquecer os dois termómetros de platina nele embutidos;
- 2 multímetros: um para funcionar como voltímetro V e outro como ohmímetro para medição da resistência de um dos termómetros de platina;
- 2 fontes de tensão, uma para alimentar a ponte de Wheatstone, outra para alimentar o aquecedor do bloco de alumínio;
- Placa-suporte do bloco de alumínio, com terminais de ligação para os dois termómetros de platina e para a resistência de aquecimento.

2.2.2 Montagem

Será utilizado o mesmo circuito que na primeira parte do trabalho substituindo apenas R_3 pela resistência do termómetro (Ver figura 1).

Figura 4: Esquematização do banho térmico

2.2.3 Execução

- a) Utilizar o circuito montado na primeira parte da experiência substituindo R_3 pela resistência de um dos termómetros e escolher $R_1 = R_2 = R_4 = 1000 \Omega$;
- b) Verificar se os termómetros estão devidimente inseridos no orifício do bloco;
- c) Ligar os terminais do outro termómetro ao ohmímetro;
- d) Registar o valor da diferença de potencial ϵ aplicada no circuito (recomenda-se $\epsilon < 1V$);
- e) Iniciar o aquecimento do bloco, ligando a fonte de tensão que alimenta a resistência de aquecimento (sugere-se uma tensão ≈ 30V) Não ultrapassar os 40^oC de forma a evitar acidentes;
- f) Registar periodicamente:
 - Instante de registo t;
 - Tensão no Voltíemtro ΔV ;
 - Resistência do termómetro indicada pelo ohmímetro $R_3(\theta)$.
- g) Calcular a menor variação de temperatura que se consegue medir com a montagem experimental.

Nota: Foi usado $\epsilon = 0.501 V$ na fonte de tensão utilizada para alimentar a ponte de Wheatstone.

3 Análise de dados

3.1 Medida de resistências e verificação das leis de associação de resistências

Do procedimento da primeira parte do trabalho foram obtidos e registados os seguintes dados:

	R3 Código de	R3 Ohmímetro	P (O)	P (O)	Erro de
	cores (Ω)	(Ω)	$R_4(\Omega)$	$R_{3exp}(\Omega)$	R_3
R_a	1200±5 %	1196±1	1200.4	1200.4	0.4 %
R_b	$2200 \pm 5 \%$	2130±10	2166.5	2166.5	2 %
R_c	$3300 \pm 5 \%$	$3250{\pm}10$	3292.3	3292.3	1 %
R_s	-	-	6658.2	6658.2	1 %
R_p	-	-	625.4	625.4	0.9 %

Tabela 1: Dados Experimentais

Desta tabela pode-se retirar que os valores medidos experimentalmente estiveram bastante próximos do indicado quer pelo ohmímetro quer pelo código de cores com erros relativos entre 0.4% e 2%. Também se confirmaram as leis da associação de resistências obtendo erros relativos de 1% e 0.9% quando comparados com o esperado pelas equações 3 e 4 respetivamente.

3.2 Determinação do comportamento térmico da resistência de um termómetro de platina

A partir dos dados experimentais foi realizado um gráfico ΔV em função de ΔR e, dado que o gráfico não tem uma tendência perfeitamente linear, separou-se a gama em 2 de forma a realizar ajustes de melhor qualidade e eliminar possíveis tendências nos resíduos.

Nota: Para consultar as matrizes dos ajustes ver anexo.

Figura 5: Gráfico de ΔV em função de ΔR

Analisando este gráfico constata-se que os dados seguem a tendência linear esperada e que a ordenada na origem tem um valor diferente de 0, o esperado para uma temperatura também diferente de 0° C.

Para se determinar a menor variação de temperatura que este sistema consegue medir utilizase a expressão da tolerância do termómetro, $0.3 + 0.005 |\theta|$, no intervalo de temperaturas experimental, obtendo-se assim uma temperatura de $0.4 \, ^{\circ}\text{C}$.

Figura 6: Resíduos de ΔV

Com o gráfico de resíduos, dado que não é apresentada nenhuma tendência da distribuição dos dados e que todos os valores se encontram próximos de 0, concluímos que a gama experimental foi bem escolhida e que os ajustes realizados foram satisfatórios.

Utilizando as equações 5 e 6 é possível realizar ajustes teóricos e compará-los aos dados obtidos experimentalmente:

Figura 7: Gráfico com ajustes teóricos

Observando este gráfico observa-se que as relações dadas pelos declives das duas equações são semelhantes à obtida experimentalmente, e assim para o cálculo de erros foram comparados os valores dos declives dados pelos diferentes ajustes teóricos e experimentais:

$$m_{aj1} = 0.1128$$

$$m_{aj2} = 0.1115$$

$$m_{eq5} = 0.1134$$

$$m_{eq6} = 0,1253$$

Erros utilizando equação 5:

Erro ajuste experimental 1: 0,5% Erro ajuste experimental 2: 1,6%

Erros utilizando equação 6:

Erro ajuste experimental 1: 10% Erro ajuste experimental 2: 11%

4 Resultados finais

4.1 1^a Parte: Resistências

 R_a : 1200,4 Ω Erro: 0,4%

 R_b : 2166,5 Ω Erro: 2%

 R_c : 3292,3 Ω Erro: 1%

 R_s : 6658,2 Ω Erro: 1%

 R_p : 625,4 Ω Erro: 0,9%

4.2 2ª Parte: Resistência do termómetro de paltina

 $\Delta V(\Delta R)_{aj1} = 0.1128 \text{ mV}/\Omega$ Erro_{eq5}: 0.5% Erro_{eq6}: 10% $\Delta V(\Delta R)_{aj2} = 0.1115 \text{ mV}/\Omega$ Erro_{eq5}: 1.6% Erro_{eq6}: 11%

5 Conclusão

Da primeira parte desta atividade laboratiorial, face aos resultados obtidos, confirmaram-se os valores das resistências esperados quer pelo indicado pelo código de cores, que pelo medido com o ohmímetro obtendo valores muito próximos do esperado com erros entre 0,4% e 2%. Com a realização desta primeira parte também se confirmaram as leis da associação de resistências, obtendo um erro de 1% face ao esperado pela lei de associação em série e 0,9% face ao esperado pela lei de associação em paralelo.

Já na segunda parte da atividade observamos que a diferença de potêncial aumenta com o aumento a resistência do termómetro, causado pelo aumento da temperatura, conforme o esperado pelas expressões teóricas, obtendo um erro maior face ao esperado pela equação 6, 10% e 11%, do que pela equação 5, 0,5% e 1,6%, isto porque a equação 6 é resultado de uma aproximação da equação 5 para $\theta \approx 0^{\circ}$ C, condições ambientais diferentes das em que se realizou esta experiência.

Referências

- 1. Protocolo 7B: Ponte de Wheatstone, Faculdade de Ciências da Universidade do Porto;
- 2. University Physics Volume 2, Samuel J. Ling, William Moebs, and Jeff Sanny, 2019.

Anexo

Parâmentros de ajuste 1			
m	0,1128	11,5379	b
sm	0,0001	0,0003	sb
r2	0,9999	0,0009	sy

Tabela 2: Matriz de ajuste 1

Parâmetros de ajuste 2			
m	0,1115	11,546	b
sm	0,0001	0,001	sb
r2	0,9999	0,001	sy

Tabela 3: Matriz de ajuste 2

Parâmetros de ajuste equação 5			
m	0,11340	11,4938	b
sm	0,00002	0,0001	sb
r2	0,99999	0,0006	sy

Tabela 4: Matriz de ajuste da equação 5

Parâmetros de ajuste equação 6			
m	0,1253	12,045293	b
sm	0,0000	2E-15	sb
r2	1,0000	8E-15	sy

Tabela 5: Matriz de ajsute da equação 6