Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Вычислительная математика

Лабораторная работа №4

Вариант 3

Группа: Р3269

Выполнили:

Грибкова В.Е

Долганова О.А

Проверил:

Машина Е. А.

- 1. Цель лабораторной работы: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.
- 2. Рабочие формулы используемых методов.
- 3. Вычислительная часть. Функция:

$$y = \frac{4x}{x^4 + 3}$$

Исследуемый интервал:

$$x \in [-2, 0]$$
 $h = 0,2$

1. Сформируем таблицу табулирования заданной функции на указанном интервале

х	у
-2.00	-0.421
-1.80	-0.533
-1.60	-0.670
-1.40	-0.819
-1.20	-0.946
-1.00	-1.000
-0.80	-0.939
-0.60	-0.767
-0.40	-0.529
-0.20	-0.267
0	0.000

2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала.

Используем метод наименьших квадратов для нахождения коэффициентов линейной и квадратичной функций, которые будут наилучшим образом приближать заданные точки.

Для построения **линейного** приближения воспользуемся формулой уравнения прямой у = ax + b, где m - коэффициент наклона прямой, b - коэффициент сдвига по оси у.

Эти коэффициенты можно найти, используя формулы:

$$a = (n\sum xy - \sum x\sum y) / (n\sum x^2 - (\sum x)^2)$$

$$b = (\sum y - m\sum x) / n$$

где n - количество точек, x и y - координаты точек.

$$a = (11*7.632 - (-11)*(-6,891)) / (11*15,4 - (-11)^2)=0.168$$

 $b = ((-6,891) - 0.168*(-11)) / 11=-0.458$

Уравнения прямой y1 = 0.168*x -0.458

Для построения **квадратичного** приближения воспользуемся формулой уравнения параболы y = ax^2 + bx + c, где a, b, c - коэффициенты уравнения параболы. Эти коэффициенты можно найти, используя формулы:

$$a = (n\sum xy - \sum x\sum y) / (n\sum x^2 - (\sum x)^2)$$

$$b = (\sum y\sum x^2 - \sum x\sum xy) / (n\sum x^2 - (\sum x)^2)$$

$$c = (\sum y - a\sum x^2 - b\sum x) / n$$

$$a = (11*7.632 - (-11)*(-6,891)) / (11*15,4 - (-11)^2) = 0.168$$

$$b = ((-6,891)*15,4 - (-11)*7.632) / (11*15,4 - (-11)^2) = -0,458$$

$$c = ((-6,891) - 0.168*15,4 - (-0,458)*(-11)) / 11 = -1,320$$

Уравнение параболы y2= 0.168*x^2 -0,458*x -1,320

3. Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Выбрать наилучшее приближение

х	у	у1 (линейная)	у2 (квадр)	(y1-y)^2	(y2-y)^2
-2.00	-0.421	-0,794	0,268	0,139	0,475
-1.80	-0.533	-0,760	0,049	0,052	0,338
-1.60	-0.670	-0,727	-0,157	0,003	0,263
-1.40	-0.819	-0,693	-0,350	0,016	0,220
-1.20	-0.946	-0,660	-0,528	0,082	0,174
-1.00	-1.000	-0,626	-0,694	0,140	0,094

	-0.80	-0.939	-0,592	-0,846	0,120	0,009
	-0.60	-0.767	-0,559	-0,985	0,043	0,047
	-0.40	-0.529	-0,525	-1,110	0,000	0,337
	-0.20	-0.267	-0,492	-1,222	0,050	0,911
	0	0.000	-0,458	-1,320	0,210	1,742
Σ					0,855	4,612

СКО:

для линейной функции:
$$\sqrt{\frac{\Sigma(y^1-y)^2}{11}}=\sqrt{\frac{0,855*0,855}{11}}=0$$
, 258

для квадратичной функции:
$$\sqrt{\frac{\Sigma(y^2-y)^2}{11}} = \sqrt{\frac{4,612*4,612}{11}} = 1,391$$

Из расчетов следует, что наилучшее приближение у линейной аппроксимирующей функции

4. Построим графики заданной функции, а также полученные линейное и квадратичное приближения

4. Листинг программы.

```
import inspect
from math import sqrt, exp, log
import matplotlib.pyplot as plt

# Функция для вычисления определителя 2x2 матрицы
def calculate_determinant_2x2(matrix):
    return matrix[0][0] * matrix[1][1] - matrix[0][1] *
matrix[1][0]

# Функция для решения системы линейных уравнений 2x2
```

```
def solve linear system 2x2(matrix, constants):
  x2 = det2 / det
  return x1, x2
def calculate determinant 3x3(matrix):
  return positive sum - negative sum
def solve linear system 3x3(matrix, constants):
matrix[r][2]] for r in range(n)])
constants[r]] for r in range(n)])
  x1 = det1 / det
  x2 = det2 / det
def calculate determinant 4x4(matrix):
  result = 0
column] for r in range(n) if r != row]
calculate determinant 3x3(submatrix)
```

```
return result
def solve linear system 4x4(matrix, constants):
det2 = calculate determinant 4x4([[matrix[r][0], constants[r],
constants[r], matrix[r][3]] for r in range(n)])
matrix[r][2], constants[r]] for r in range(n)])
  x1 = det1 / det
  x4 = det4 / det
  return x1, x2, x3, x4
def linear approximation(xs, ys, n):
      [sum y, sum xy])
def quadratic approximation(xs, ys, n):
         [sum x squared, sum x cubed, sum x quad]
```

```
def cubic approximation(xs, ys, n):
  sum x squared = sum(x ** 2 for x in xs)
           [n, sum x, sum x squared, sum x cubed],
           [sum x squared, sum x cubed, sum x quad, sum x quint],
def exponential approximation(xs, ys, n):
  , a, b = linear approximation(xs, log ys, n)
def logarithmic approximation(xs, ys, n):
  , a, b = linear approximation(log xs, ys, n)
  return lambda x: a + b * log(x), a, b
def power_approximation(xs, ys, n):
  , a, b = linear approximation(log xs, log ys, n)
```

```
def calculate deviation(xs, ys, approximation func, n):
  errors = [approximation func(x) - y for x, y in zip(xs, ys)]
def calculate standard deviation(xs, ys, approximation func, n):
   return sqrt(sum(((approximation func(x) - y) ** 2 for x, y in
zip(xs, ys))) / n)
def calculate pearson correlation(xs, ys, n):
# Вычисление коэффициента детерминации
def calculate coefficient of determination(xs, ys,
approximation func, n):
   return 1 - sum((y - approximation func(x)) ** 2 for x, y in
zip(xs, ys)) / sum((y - avg fi) ** 2 for y in ys)
def get function string(func):
  func str = inspect.getsourcelines(func)[0][0]
def plot graph(start, end, func, step=0.1):
   x = start
      xs.append(x)
      ys.append(func(x))
def main(xs, ys, n):
```

```
approximation funcs = [
        logarithmic approximation,
        cubic approximation
    approximation funcs = [
        linear approximation,
        quadratic approximation,
for approximation func in approximation funcs:
   print(approximation func. name , ": ")
   fi, *coeffs = approximation func(xs, ys, n)
   deviation = calculate deviation(xs, ys, fi, n)
   coeff format = '(a, b, c)' if len(coeffs) == 3 else '(a,
   plt.title(approximation func. name )
   plt.xlabel("X")
```

```
if __name__ == '__main__':
    case = 4
    if case == 0:
        n = int(input('Введите n: '))
        xs = list(map(float, input('Введите xs: ').split()))
        ys = list(map(float, input('Введите ys: ').split()))
    elif case == 1:
        xs = [1.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
        ys = [8.0, 10.0, 11.5, 13.0, 15.0, 17.0, 18.0, 20.0]
    elif case == 2:
        xs = [2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0]
        ys = [7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0]
    elif case == 3:
        xs = [0.6, 1.4, 1.8, 2.6, 2.8, 3.5, 3.9, 4.5]
        ys = [5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
    else:
        h = 0.2
        x0 = -2
        n = 11
        xs = [round(x0 + i * h, 2) for i in range(n)]
        f = lambda x: 4 * x / (x ** 4 + 3)
        ys = [round(f(x), 2) for x in xs]
    n = len(xs)
    main(xs, ys, n)
```

5. Результаты выполнения программы

6. Выводы

В ходе лабораторной работы мы изучили аппроксимацию функции методом наименьших квадратов.