Chapter 5 Inferences in the LS Estimation II

남준우·허인(2018), 제4장

Gujarati/Porter92018), 제 4 장, 5 장

- 1. Hypothesis Testing
- 2. 2-t Rule of Thumb
- 3. P-value
- 4. Implications of Hypothesis Testing
- 5. Statistical Significance vs. Economic Significance
- 6. Prediction
- 7. Reporting Regression Results

Assumptions Revisited

- ① (Linear model) $y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$
- ② (Nonstochastic Independent variables) X is nonstochastic.
- (4) (Zero mean of error term) $E(\varepsilon_i) = 0$.
- (5) (Equal variance of error term) $V(\varepsilon_i) = \sigma^2$ for all i.
- 6 (No autocorrelation) $Cov(\varepsilon_i, \varepsilon_j) = 0$ for $i \neq j$.

+

- \bigcirc (Normality Assumption) $\varepsilon_i \sim N(0, \sigma^2)$.
- ► With ass. ②, $y_i \sim N(\beta_1 + \beta_2 X_i, \sigma^2)$.

1. Hypothesis Testing

$$H_0: \beta_2 = \beta_2^*, \qquad H_1: \beta_2 \neq \beta_2^*$$

(1) Confidence Interval Approach

Since $100(1-\alpha)\%$ C.I. for β_2 is $\left[b_2 \pm t_{(n-2;\alpha/2)} S_{b_2}\right] \equiv CI$, if $\beta_2 * \in CI$, then do not reject H_0

if $\beta_2 * \notin CI$, then reject H_0 .

(2) Testing Procedure

- ① Set up null and alternative hypotheses:
- 2 Configure test statistics, and its probability distribution:
- 4 At given α , find the critical value:
- ⑤ Find rejection region:
- 6 Decision

$$H_0: \beta_2 = \beta_2^*, \qquad H_1: \beta_2 \neq \beta_2^*.$$

$$\frac{b_2-\beta_2}{s_{b_2}}\sim t(n-2).$$

$$\frac{b_2 - \beta_2 *}{s_{b_2}} \equiv t.$$

$$t_{(n-2;\alpha/2)}$$

If
$$|t| \ge t_{(n-2;\alpha/2)}$$
, reject H_0 .

If $|t| < t_{(n-2;\alpha/2)}$, do not reject H_0 .

(Intuition)

(Example) In the consumption example,

$$b_2 = 0.509$$
, $n = 10$, $s_{b_2} = \sqrt{0.0013} = 0.036$

95% C.I. for β_2 is $(0.509 \pm 2.306 \times 0.0357)$.

► Suppose $H_0: \beta_2 = 0.8$, $H_1: \beta_2 \neq 0.8$.

Then
$$t = \frac{b_2 - \beta_2 *}{s_{b_2}} = \frac{0.509 - 0.8}{0.0357} = -8.1512$$
 and $t_{(10-2;0.05/2)} = 2.306$.

Since $|t| = 8.1512 \ge t_{(n-2;\alpha/2)} = 2.306$, reject H_0 .

(3) Type 1 Error and Type 2 Error

- ► There is a chance that we can make a mistake; 2 errors.
- Type 1 error: Reject H_0 when H_0 is true.
- Type 2 error: Do not reject H_0 when H_0 is false.
- ► P(Type 1 error)=P(reject $H_0 | H_0$ is true)=level of significance $\equiv \alpha$. Usually, set $\alpha = 0.01, 0.05$ or 0.1 a priori.
- ► P(Type 2 error)=P(Do not reject $H_0|H_0$ is false).
- 1-P(Type 2 error)= P(reject $H_0|H_0$ is false)=power.
- Trade-off between P(Type 1 error) and P(Type 2 error).
- ► As $n \uparrow$, at given α , P(Type 2 error) \downarrow .

(4) One-tailed test

① $H_0: \beta_2 = \beta_2^*, \qquad H_1: \beta_2 < \beta_2^*$

Reject H_0 if $t \leq -t_{(n-2;\alpha)}$.

(Example) In the consumption function example, $H_0: \beta_2 = 0.8$, $H_1: \beta_2 < 0.8$ $t = -8.1512 \le -t_{(n-2;\alpha)} = -1.860$, reject H_0 .

② $H_0: \beta_2 = \beta_2^*, \qquad H_1: \beta_2 > \beta_2^*$ Reject H_0 if $t \ge t_{(n-2;\alpha)}$.

(Example) In the consumption function example, $H_0: \beta_2 = 0.8$, $H_1: \beta_2 > 0.8$ $t = -8.1512 \le t_{(n-2;\alpha)} = 1.860$, do not reject H_0 .

2. 2-t Rule of Thumb

Consider $H_0: \beta_2 = 0$, $H_1: \beta_2 \neq 0$.

- $ightharpoonup H_0: eta_2 = 0 \implies X$ is NOT important variables in explaining Y.
- ► $H_1: \beta_2 \neq 0$ \Rightarrow X is important variables in explaining Y.

- To test $H_0: \beta_2 = 0$, $H_1: \beta_2 \neq 0$,
- ► calculate $t = \frac{b_2 0}{s_{b_2}} = \frac{b_2}{s_{b_2}}$; t-ratio, and
- ▶ at $\alpha = 0.05$, compare with $t_{(n-2;0.05/2)} \rightarrow 1.96 \approx 2$ when $n \rightarrow \infty$.
- •So, if $|t| \ge 2$, reject $H_0: \beta_2 = 0$ $\Rightarrow X$ is important variables in explaining Y. if |t| < 2, do not reject $H_0: \beta_2 = 0$ $\Rightarrow X$ is NOT important variables in explaining Y.

- ► This is procedure is called as '2-t rule of thumb'.
- ► Note that 2-t rule of thumb is approximate decision.

Most computer software report the value of t-ratio at output.

(Example) In the consumption function example, t-ratio=14.257.

So, <u>roughly</u>, income is important variable in explaining consumption variation.

<gretl example> Firm data file

Model 1: OLS, using observations 1-75 Dependent variable: SALES

	Coefficient	Std. E	rror	t-ratio	p-value	
const	496617	2329	42	<mark>2.132</mark>	0.0364	**
ADV	73.8115	9.939	15	<mark>7.426</mark>	< 0.0001	***
Mean dependent var	116	1059	S.D. de	pendent var	24	51108
Sum squared resid	2.536	e+14	S.E. of	regression	18	62593
R-squared	0.430	0358	Adjuste	ed R-squared	0.4	22554
F(1, 73)	55.1:	5056	P-value	(F)	1.6	57e-10
Log-likelihood	-1188	3.218	Akaike	criterion	238	30.436
Schwarz criterion	2385	5.071	Hannan	-Quinn	238	32.286

- 3. <u>P-value</u>(marginal significance level)
- (1) What is p-value?

(Definition) Given the value of a test statistic(say t), the <u>p-value(marginal</u> significance level) is the <u>lowest</u> α for which one would have to reject $H_0: \beta_2 = 0$.

- p-value= $2 \cdot P(t(n-2) > |t|) = 2(1 F(|t|))$, where $F(\cdot)$: cdf of underlying distribution(t(n-2) our case).
- (*) <u>Underlying distribution</u> means the distribution of the test statistics under H_0 .
- ► So, p-value means the probability that the underlying distribution has more extreme values than the <u>observed</u> test-statistics.

(Examples)

- (a) (When σ^2 is known) If $t = \frac{b_2}{\sigma_{b_2}} = 1.96$, then p-value=0.05 (underlying distribution is N(0,1)).
- (b) If $t = \frac{b_2}{\sigma_{b_2}} = 1.87$, then p-value=0.061 (underlying distribution is N(0,1)).
- (c) If $t = \frac{b_2}{\sigma_{b_2}} = -1.87$, then p-value=0.061 (underlying distribution is N(0,1)).
- (d) (When σ^2 is UNknown) If $t = \frac{b_2}{S_{b_2}} = -1.87$ for n = 25, then p-value=0.074. (underlying distribution is t(n-2)).
- (e) If $t = \frac{b_2}{s_{b_2}} = 2.02$ for n = 13, then p-value=0.068.

(underlying distribution is t(n-2)).

(2) Hypothesis Testing based on P-value

- ► If p-value $\leq \alpha$, reject $H_0: \beta_2 = 0$.
- ► If p-value > α , do not reject $H_0: \beta_2 = 0$.

(Example) Consumption function example,

t-ratio = 0.509 / 0.0357 = 14.257.

p-value=0.

• What's difference with the conventional(Neymann-Pearson) testing procedure?

Consider N(0, 1) distribution and suppose test statistics=1.87. P-value=0.061.

① At $\alpha = 0.05$,

Conventional method:

critical value $z_{0.05/2} = 1.96 > \text{test-statistics} = 1.87$, do not reject $H_0: \beta_2 = 0$.

P-value method: p-value = $0.061 > \alpha = 0.05$, do not reject $H_0: \beta_2 = 0$.

② At $\alpha = 0.10$,

Conventional method: critical value $z_{0.05/2} = 1.645 < \text{test-statistics} = 1.87$, reject $H_0: \beta_2 = 0$.

P-value method: p-value = $0.061 > \alpha = 0.10$, reject $H_0: \beta_2 = 0$.

► Same decision.

- (3) What's advantage of using p-value?
- ① Sometimes, knowing the value of test-statistics does not give us any information before you look into the statistical table.
- ② We leave it up to the reader to pick his own α ? (Example) Consider p-value=0.061 in N(0,1) distribution and suppose test statistics=1.87.

(Example) For
$$X \sim N(\mu, \sigma^2)$$
, $\hat{\theta} = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = 1.78$,

- ightharpoonup lpha = 0.05, $z_{\alpha/2} = 1.96$, do not reject H_0 .
- Arr $\alpha = 0.10$, $z_{\alpha/2} = 1.645$, reject H_0 .

What do we set for α ?

► Since p-value=0.075 for $\hat{\theta} = 1.78$, we can leave it up to the reader to pick his own α .

- 3 The p-value method provides a measure of how decisive a test result is.
- ightharpoonup Conventional method only tells us whether t is just inside or outside the critical region for a given α .

(Example) Suppose there are two different regression results:

n = 16, with t – distribution,

(case 1) $t_1 = 2.13$, p-value₁ = 0.051.

(case 2) $t_1 = 1.85$, p-value₁ = 0.086.

(4) P-value for one-sided test:

- ① $H_0: \beta_2 = 0$, $H_1: \beta_2 < 0$.
- ▶ p-value = F(t).
- ② $H_0: \beta_2 = 0, H_1: \beta_2 > 0$
- ▶ p-value = 1 F(t).

<gretl example>

Model 1: OLS, using observations 1-75 Dependent variable: SALES

	Coefficient	Std. Er	rror	t-ratio	p-value	
const	496617	2329	42	2.132	<mark>0.0364</mark>	**
ADV	73.8115	9.939	15	7.426	<0.000 <mark>1</mark>	***
Mean dependent var	116	1059	S.D. de	pendent var	2	451108
Sum squared resid	2.536	e+14	S.E. of	regression	1	862593
R-squared	0.430	0358	Adjuste	ed R-squared	0.	422554
F(1, 73)	55.13	5056	P-value	e(F)	1	.67e-10
Log-likelihood	-1188	.218	Akaike	criterion	23	380.436
Schwarz criterion	2385	.071	Hannar	n-Quinn	23	382.286

- 4. Implications of Hypothesis Testing
- Accepting or rejecting.
- ② Forming null and alternative hypothesis.

- 5. <u>Statistical Significance vs. Economic Significance</u>
- It has been noted that the hypothesis is widely abused.
- ► Many researcher emphasize the statistical significance rather than economic significance. (Example ①) For testing $H_0: \beta_2 = 1$, with test-statistics $b_2 = 1.1$.
- ► Suppose that the null hypothesis is rejected (a coefficient estimate may be "very significantly different with 1"). However, the difference may be economically trivial.
- ► Or, by the statistically testing, it may not significantly different from 1 but have an economically substantial magnitude.

(Example) $b_2 = 0.7218$, 95% C.I.=(0.7129, 0.7306).

Then, $\beta_2 = 0.74$ is rejected?

(Example)

$$\hat{y} = 50 - 1 \cdot X_3$$
, ()한는t-ratio. (-2)

where y: weight(g), X_3 : exercise(hour).

Is X_3 important variable in reducing weight?

• There is a common practice of indiscriminately reporting all the t-statistics and it encourages rank-ordering of the independent variables with respect to their importance.

(Example)

$$\hat{y} = 50 + 2 \cdot X_2 - 1 \cdot X_3$$
, ()한는t-ratio. (4) (-2)

where y: weight, X_2 : height, X_3 : exercise.

Is X_2 more important than X_3 in reducing weight?

6. Prediction

- Suppose, for observation f, the value of $X = X_f$ is known, what is the best predictor of y_f ?
- ► actual: $y_f = \beta_1 + \beta_2 X_f + \varepsilon_f$.
- ► predicted: $\hat{y}_f = b_1 + b_2 X_f$.
- prediction error: $e_f = y_f \hat{y}_f$
- $ightharpoonup E(e_f) = 0$.

$$V(e_f) = V(b_1) + V(b_2)X_f^2 + V(\varepsilon_f)$$

+ $2X_f \cdot Cov(b_1, b_2) - Cov(b_1, \varepsilon_f) - 2X_f \cdot Cov(b_2, \varepsilon_f).$

$$ightharpoonup Cov(\underline{b}_1, \varepsilon_f) = 0$$
, $Cov(\underline{b}_2, \varepsilon_f) = 0$, why?

$$V(e_f) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right) + \frac{\sigma^2 X_f^2}{\sum_{i=1}^n (X_i - \bar{X})^2} + \sigma^2 + 2X_f \frac{\sigma^2 (-\bar{X})}{\sum_{i=1}^n (X_i - \bar{X})^2}.$$

So,
$$V(e_f) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(X_f - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \right) \equiv \sigma_{e_f}^2$$
.

► Since $e_f \sim N(0, V(e_f))$, why?

$$\frac{e_f}{\sqrt{V(e_f)}} = \frac{y_f - \hat{y}_f}{\sigma_{e_f}} \sim N(0,1).$$
 (*)

► 100(1- α)% C.I. for y_f is $(\hat{y}_f \pm z_{\alpha/2}\sigma_{e_f})$.

- However, σ_{e_f} (or $\sigma_{e_f}^2$) is unknown.
- ► Estimator of $\sigma_{e_f}^2$, $\hat{\sigma}_{e_f}^2 = \hat{\sigma}^2 \left(1 + \frac{1}{n} + \frac{(X_f \overline{X})^2}{\sum_{i=1}^n (X_i \overline{X})^2} \right) \equiv s_{e_f}^2$,

where
$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} e_i^2$$
.

- $ightharpoonup s_{e_f}$ is called as <u>standard error of prediction error</u>.
- Then, (*) becomes $\frac{y_f \hat{y}_f}{s_{e_f}} \sim t(n-2)$.
- ► 100(1- α)% C.I. for y_f is $(\hat{y}_f \pm t_{(n-2;\alpha/2)} s_{e_f})$.

(Example) In the consumption example,

when $X_f = 200$, $\hat{y}_f = 24.5 + 0.51 \times 200 = 126.25$.

$$s_{e_f}^2 = 42.16 \left(1 + \frac{1}{10} + \frac{(200 - 170)^2}{33000} \right) = 47.52$$
.
 $s_{e_f} = 6.89$

Therefore, 95% C.I. for y_f when $X_f = 200$ is $(126.25 \pm 2.306 \cdot 6.89)$.

(Note)

When $|X_f - \overline{X}| \uparrow$, then C.I. gets wider.

- ightharpoonup Less informative for y_f .
- ► Which case is $|X_f \overline{X}| \uparrow$?

7. Reporting Regression Results

1

$$\hat{Y}_i = -0.036 + 0.046X_i$$

$$(0.548) (0.016) R^2 = 0.095$$

()안은 표준오차.

2

$$\hat{Y}_i = -0.036 + 0.046 X_i$$

$$(-0.066) (2.950) \qquad R^2 = 0.095$$
 ()안은 t-값.

► And mostly, use tables for reporting several regression results.

<표6> 회귀 분석 추정 결과

	모형(A)	모형 (B)	모형 (C)	모형 (D)
AGE			0.002*	0.002
			(0.077)	(0.116)
ORDER	0.003***		0.004***	
	(0.0088)		(0.0006)	
OrderLast		0.025***		0.028***
		(0.006)		(0.001)
ROUND=3	0.024***	0.020***	0.022***	0.018**
	(0.001)	(0.005)	(0.001)	(0.011)
Constant	5.562***	5.577***	5.480***	5.500***
	(0.000)	(0.000)	(0.000)	(0.000)
R^2	0.793	0.792	0.3457	0.3081

괄호안은 임의확률(p-value)을 나타냄.

^{*:} p-value<0.10, **: p-value<0.05, ***: p-value<0.01