

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROJETO DE CIRCUITOS FOTÔNICOS EM SILÍCIO

Professor: Adolfo Herbster

Aluno: Caio Rodrigues Correia de Oliveira

Laboratório 06: Y branch

Pasta do experimento:

TEEE-2021.1/Subject Exercises/Laboratório/Lab06 (Github.com)

Atividade 6

Para a realização da atividade, montou-se o seguinte layout para extração de dados do Y-splitter

Utilizando o varFDTD, registra-se as relações da intensidade de campo e comprimento de onda pelo eixo z, dispondo de 20 amostras

a) Utilizando o solver FDE, determine os modos propagantes no guia;

Analisando a banda de $1.5\mu m - 1.6\mu m$, temos que o material do substrato (Óxido de silício) varia seu índice de refração entre 1,4446 a 1,4434.

Tomando o índice efetivo do terceiro modo do propagante em cada comprimento de onda na banda estabelecida, tem-se:

Como todos os índices são maiores que os índices de refração do substrato, é teoricamente implicado que toda a banda propaga pelo menos 3 modos pelo guia. Conclui-se posteriormente com a análise modal do FDE solver que o quarto modo não é propagado, pois a onda mais confinada (1.5 μ m) não propaga pela entrada do y-splitter.

mode #	effective index	wavelength (µm)	loss (dB/cm)	group index	TE polarization fraction (Ey)	waveguide TE/TM fraction (%)	effective area (µm^2)
1	2.501493	1.5	0.0000	4.146499	99	77.59 / 82.21	0.176135
2	1.841074	1.5	0.0000	3.998936	4	66.4 / 89.13	0.313097
3	1.529929	1.5	0.0000	2.778264	71	82.01 / 94.93	0.630158
4	1.385047	1.5	0.0000	1.895190	5	98.12 / 77.8	3.29359

b) Utilizando o monitor "Frequency-domain field profile" (com auxilio do monitor tipo "Movie"), estime a porcentagem de potência nas portas de saída do dispositivo. Há perda? Qual a fonte principal de perda?

Visualizando o monitor de *Frequency-domain field profile* tem-se o seguinte espectograma:

É estimável a partir da amplitude de campo (E_{abs}) linearmente demonstrada na figura, que ambas as saídas possuem aproximadamente, nesta escala, 0.52 de amplitude, enquanto a entrada, aproximadamente 1.08. Isso implica em uma razão de 0.48 / 1.08 = 0.444, o que implica em uma porcentagem de 44% de potência aplicada nas saídas do y-splitter.

Realizando a comparação utilizando uma visualização de um espectograma de potência, estima-se uma razão de saída/entrada de 0.0035/0.008 = 0.4375, que equivale a 43,8% aproximadamente.

As fontes de perdas são variadas, as principais podem ser localizadas utilizando o monitor *movie*:

Percebe-se que as principais fontes de perdas são pela brecha entre os braços do y-splitter e os pontos de transição entre as secções retas e curvas.

c) Ilustre a transmissão das portas analisadas. Descreva seus resultados.

Utilizando os monitores de *Frequency-domain field and power*, geram-se os gráficos de transmissão abaixo:

Observa-se que a razão de saída/entrada se aproxima em média de 42,5%, e em particular, os comprimentos de onda com as melhores eficiências são os menores da banda.

d) Otimize seus resultados (procurando reduzir a perda) alterando os parâmetros do dispositivo ("Ls" e "y span").

Para a otimização da transmissão das frequências da banda pelo y-splitter, utilizou-se como parâmetro avaliativo o ponto médio da banda $1.5\mu m-1.6\mu m$, ou seja, o ponto $1.55\mu m$. Desse modo, atribuindo uma varredura simultânea nos parâmetros Ls e y span do splitter (que são respectivamente, x span e o y span das secções curvadas), gera-se o seguinte gráfico para a razão de transmissão output/input para o comprimento $1.55\mu m$.

Conclui-se que a razão de transmissão cresce proporcionalmente ao Ls e proporcionalmente inverso ao y span do y-splitter. Dessa forma, como comparativo, simulando com os valores de pico do gráfico (Ls = $10\mu m$ e y span = $2\mu m$), gera-se:

O que confirma os resultados.