Семинар 4

- 1. Доказать, что неприводимое вещественное представление циклической группы имеет размерность не более двух.
- 2. Вручную опишите (с точностью до эквивалентности) все неприводимые комплексные представления группы диэдра D_6 (=группа симметрий правильного треугольника= S_3). Докажите, что размерность каждого неприводимого представления не превосходит двух (C: рассмотреть сужение представления группы D_6 на циклическую подгруппу вращений).
- 3. Доказать, что действие группы \mathbb{R} в пространстве вещественных многочленов от одной переменной по правилу : $p(x) \to p(x-t)$ задает линейное представление группы в пространстве многочленов степени, не выше данной. Будет ли это представление а) неприводимым, б) вполне приводимым?
- 4. Пусть U_1 и U_2 два подпредставления группы G. Дано, что каждое из них дополнительно к одному и тому же подпредставлению W. Тогда они эквивалентны. Доказать.
- 5. В пространстве функций на конечной группе G рассмотрим подпространство $F(\rho)$, порожденное матричными элементами ее представления ρ (почему это подпространство корректно определено?) Пусть ρ есть прямая сумма подпредставлений ρ_i . Доказать, что тогда пространство $F(\rho)$ есть сумма подпространств $F(\rho_i)$.
- 6. Доказать, что подпространство $F(\rho)$ инварианто относительно как левого, так и правого регулярного представления группы.
- 7. Доказать, что операторы левого регулярного представления являются сплетающими для правого регулярного представления и наоборот.