Exercise 1

Let K be a finite field. Prove that the only absolute value on K is the trivial one.

Exercise 2

a. Let $(K, | \ |)$ be a valued field. Show that $| \ |^s$ is an absolute value on K for all $s \in]0, 1].$

b. What are the $s \in \mathbb{R}_+^*$ such that $| \cdot |_{\infty}^s$ is an absolute value on \mathbb{Q} ?

Exercise 3 : incompleteness of $\mathbb Q$

Let (K, | |) be a complete valued field such that | | is non-trivial. Using Baire's theorem, prove that K is uncountable. Deduce that \mathbb{Q} is non-complete for any of its non-trivial absolute values.

Exercise 4

Let (K, | |) be a valued field.

- a. Show that if $| \cdot |$ is ultrametric on a subfield of K, then it is ultrametric on K.
- b. Deduce that if $char(K) \neq 0$, then every absolute value on K is ultrametric.

Exercise 5

Let K be a field and v be a non-trivial valuation on K. Prove that the following are equivalent:

- (a) \mathcal{O}_v is a principal ideal domain;
- (b) \mathcal{O}_v is noetherian;
- (c) the ideal \mathcal{M}_v is principal;
- (d) $v(K^*)$ is a discrete subgroup of \mathbb{R} .

Exercise 6

Let $(K, | \cdot |)$ be an ultrametric valued field.

- a. Let $r \in]0,1]$. Show that the open ball B(1,r) is a subgroup of K^* .
- b. Prove that each open ball in K is closed.
- c. Deduce that the connected components of K are its points.

Exercise 7

Let $(K, | \cdot|)$ be a valued field. Let $(\widehat{K}, | \cdot|)$ be a complete valued field and $\iota: K \to \widehat{K}$ be a morphism of valued fields such that $\iota(K)$ is dense in \widehat{K} . Show that if $(L, | \cdot|)$ is a complete valued field and $f: K \to L$ a morphism of valued fields, then there exists a unique morphism of valued fields $\widehat{f}: \widehat{K} \to L$ such that $f = \widehat{f} \circ \iota$.

Exercise 8

Let (K, | |) be an ultrametric locally compact valued field such that | | isn't trivial. Prove that its residue field is finite and that $|K^*|$ is a discrete subgroup of \mathbb{R}_+^* .

Exercise 1

Let $(K, | \ |)$ be an ultrametric valued field. Prove that $|K^*| = |\widehat{K}^*|$ and that the residue fields of K and of \widehat{K} are isomorphic.

Exercise 2

Let p be a prime number. Show that the groups $\mathbb{Z}[p^{-1}]/\mathbb{Z}$ and $\mathbb{Q}_p/\mathbb{Z}_p$ are isomorphic.

Exercise 3

Find examples of two complete ultrametric valued fields whose respective residue fields and value groups are isomorphic, but which aren't isomorphic as fields.

Exercise 4

Let $(K, | \ |)$ be a valued field such that $| \ |$ is non-trivial. Let V be a K-vector space. Prove that two norms $\| \ \|_1, \| \ \|_2$ on V are equivalent if and only if there exist constants c, c' in \mathbb{R}_+^* such that $\forall v \in V \ c \|v\|_1 \leqslant \|v\|_2 \leqslant c' \|v\|_1$.

Exercise 5

Let K be a field endowed with the trivial absolute value $| |_0$.

a. Let $\rho \in]0,1[$; put $||f||_{\rho} = \rho^{v_X(f)}$ for all $f \in K[[K]]$. Check that $|| ||_{\rho}$ is a norm on the K-vector space K[[X]].

b. Let $(r,s) \in \mathbb{R}^2$ be such that 0 < r < s < 1. Show that $\| \cdot \|_r$ and $\| \cdot \|_s$ are equivalent, but that there doesn't exist $c \in \mathbb{R}_+^*$ such that $\| \cdot \|_s \le c \| \cdot \|_r$.

Exercise 6

Let $(V, || ||_1)$ and $(W, || ||_2)$ be normed vector spaces over a complete valued field (K, || |). Assume that V is finite dimensional.

 \swarrow a. Prove that any K-linear map $f: V \to W$ is continuous.

b. Show that any surjective K-linear map $f: V \to W$ is open.

Exercise 7

Let (K, | |) be a complete ultrametric valued field and $P \in \mathcal{O}_K[X]$ be a monic polynomial. Prove that if P is irreducible in $\mathcal{O}_K[X]$, its image in $\kappa_K[X]$ is the power of an irreducible polynomial.

Exercise 8

Consider $\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ as a \mathbb{Q} -vector space, endowed with the restriction $\| \ \|$ of the usual absolute value $\| \|_{\infty}$. Put $\|x+y\sqrt{2}\|' = \max(|x|_{\infty},|y|_{\infty})$ for all $(x,y) \in \mathbb{Q}^2$. Show that the norms $\| \ \|$ and $\| \ \|'$ aren't equivalent on $\mathbb{Q}(\sqrt{2})$.

Exercise 9

Let A be a local noetherian ring such that its maximal ideal \mathcal{M} is generated by a non-nilpotent element π . The goal of this exercise is to prove that A is a principal ideal domain.

a. Verify that $I = \{x \in A \mid \exists m \in \mathbb{N} \ \pi^m x = 0\}$ is an ideal of A and that there exists $N \in \mathbb{N}$ such that $\pi^N I = \{0\}$.

b. Show that $\bigcap_{n\in\mathbb{N}} \mathcal{M}^n = \{0\}$. Hint: if $y = \pi^n x_n$ for every $n \in \mathbb{N}$, then the sequence $(I + x_n A)_{n\in\mathbb{N}}$ is ascending.

c. Prove that any element $y \in A \setminus \{0\}$ can be written in a unique way $y = \pi^{v(y)}u$ with $v(y) \in \mathbb{N}$ and $u \in A^{\times}$, and that A is an integral domain.

d. Conclude.

Exercise 1

Let L be a finite extension of a field $K, x \in L$, and M be a finite extension of L. Show that $N_{M/K}(x) = N_{L/K}(x)^{[M:L]}$.

Exercise 2

Let p be a prime number.

a. Let $n \in \mathbb{N}$ and $n = \sum_{i=0}^r a_i p^i$ (with $a_i \in [[0, p-1]]$ for all i) be its writing in

base p. Prove that $v_p(n!) = \frac{n - s_n}{p - 1}$, where $s_n = \sum_{i=0}^r a_i$ (sum of the digits). b. Let $x \in \mathbb{C}_p$. Deduce that the series $\sum_{n \geqslant 0} \frac{x^n}{n!}$ converges if and only if $v_p(x) > 0$

Exercise 3

Let p be a prime number.

a. Let $u \in \mathbb{Q}_p^*$. Show that the following are equivalent :

- (a) $u \in \mathbb{Z}_p^{\times}$; (b) u^{p-1} is a *n*-th power in \mathbb{Q}_p for infinitely many $n \in \mathbb{N}^*$.

b. Prove that the only field endomorphism of \mathbb{Q}_p is $\mathrm{Id}_{\mathbb{Q}_p}.$

Exercise 4

Let p be a prime number. Show that $\mathbb{Q}_p^{*2} = \{x^2 ; x \in \mathbb{Q}_p^*\}$ is open in \mathbb{Q}_p .

Exercise 5

Let p be a prime number. Prove that $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid \exists y \in \mathbb{Q}_p \ y^2 = 1 + p^3 x^4 \}.$

Exercise 6

Let (K, | |) be an ultrametric valued field, and $\rho \in \mathbb{R}_+^*$. If $P = a_0 + a_1 X + \cdots + a_n X +$ $a_n X^n \in K[X]$, put $|P|_{\rho} = \max_{i \in [[0,n]]} |a_i| \rho^i$. Check that $|\cdot|_{\rho}$ extends into an absolute value on K(X). When are two such absolute values equivalent?

Exercise 7

Exercise 7

Show that $| \cdot |_{\infty}$ is the unique absolute value on $\mathbb C$ that extends the usual absolute value of \mathbb{R} .

Exercise 8: Ostrowski

Let $(K, | \cdot |)$ be a complete valued field such that |2| = 2. Assume that there exists $i \in K$ such that $i^2 = -1$.

a. Construct a morphism $(\mathbb{C}, | |_{\infty}) \to (K, | |)$ of valued fields. We identify \mathbb{C} with its image in K.

Let $a \in K$ and consider the map $f: \begin{array}{ccc} \mathbb{C} & \to & \mathbb{R}_+ \\ z & \mapsto & |z-a| \end{array}$. Let $r = \inf_{\mathbb{C}} f$.

b. Verify that $f^{-1}(r)$ is closed, bounded and non-empty.

c. Prove that if r > 0 and $\gamma_0 \in f^{-1}(r)$, then $B(\gamma_0, r) \subset f^{-1}(r)$. Hint: if $|\gamma - \gamma_0|_{\infty} < r$, consider $(\gamma_0 - a)^n - (\gamma_0 - \gamma)^n$.

d. Conclude that $K = \mathbb{C}$.

Exercise 1

Let A be an integral domain and $\alpha \in A \setminus \{0\}$. Assume that $A[\alpha^{-1}]$ is integrally closed and that $A/\alpha A$ is reduced. Prove that A is integrally closed.

Exercise 2

Let B be a commutative ring and A be a subring of B such that B is integral over A.

a. Assume that B is an integral domain. Show that A is a field if and only if B is a field.

b. Let $\mathcal{Q} \subset B$ be a prime ideal. Deduce that $\mathcal{Q} \cap A$ is a maximal ideal in A if and only if \mathcal{Q} is maximal in B.

c. Let $Q_1 \subset Q_2$ be prime ideals in B such that $Q_1 \cap A = Q_2 \cap A$. Prove that $Q_1 = Q_2$.

Exercise 3

Let $(K, | \cdot|)$ be a complete ultrametric valued field. Let $P = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0 \in K[X]$ be irreducible. Show that $|a_i|^n \leq |a_n|^i |a_0|^{n-i}$ for every $i \in [[0, n]]$ (hint: consider the splitting field of P over K). Deduce that $|P|_G = \max(|a_0|, |a_n|)$.

Exercise 4

Let (K, | |) be an ultrametric valued field, L be a finite extension of K and $| |_{L}$ be an absolute value on L extending | |.

a. Show that if $\alpha \in L$ is integral over \mathcal{O}_K , then $\alpha \in \mathcal{O}_L$ (in particular, \mathcal{O}_K is integrally closed).

b. Prove that the converse holds if K is complete.

Exercise 5

Let $(K, | \ |)$ be a complete ultrametric valued field, and L be a finite extension of K. Prove that if $\| \ \|$ is any norm on the K-vector space L, the map $x \mapsto \lim_{n \to +\infty} \|x^n\|^{1/n}$ coincides with the unique absolute value extending $| \ |$ on L.

Exercise 6

Let p be a prime number such that $p \equiv 3 \mod 4$. Let $\overline{\mathbb{Q}_p}$ be an algebraic closure of \mathbb{Q}_p .

a. Verify that $X^2 + 1$ is irreducible in $\mathbb{Q}_p[X]$.

Let $i \in \overline{\mathbb{Q}_p}$ be a root of X^2+1 , $K=\mathbb{Q}_p[i]$ and $|\cdot|_K$ be the extension of $|\cdot|_p$ to K.

b. If $(a,b) \in \mathbb{Q}_p^2$ and x = a + bi, show that $|x|_K = \max(|a|_p, |b|_p)$.

c. Determine the value group and the residue field of $(K, | |_K)$.

Exercise 7

Let $(K, | \cdot |)$ be a complete ultrametric valued field and $P \in K[X] \setminus K$.

a. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of elements in K such that $\lim_{n\to+\infty} |P(x_n)| = 0$. Prove that there is a subsequence of $(x_n)_{n\in\mathbb{N}}$ that converges to a root of P in K.

b. Deduce that if $F \subset K$ is closed, then its image P(F) is closed.

c. Show that if $C \subset K$ is compact, then its inverse image $P^{-1}(C)$ is compact.

Exercise 1

Let (K, | |) be an ultrametric valued field. Denote by $| |_{G}$ the Gauss absolute value on K(X). What is the residue field of $(K(X), | |_{G})$?

Exercise 2

Let (K, | |) be a complete valued field and L be a quadratic extension of K. The goal of this exercise is to prove that the map $x \mapsto |\mathcal{N}_{L/K}(x)|^{1/2}$ is an absolute value on L that extends | |.

a. Let $x \in L \setminus K$; put $\alpha = \text{Tr}_{L/K}(x)$ and $\beta = \text{N}_{L/K}(x)$. Assume that $4|\beta| < |\alpha|^2$. Consider the map $f: K^* \to K$ defined by $f(t) = \alpha - \frac{\beta}{t}$ for all $t \in K^*$ and the set $C = \{t \in K \mid 2|t| \geqslant |\alpha|\}$. Show that $f(C) \subset C$ and that $f_{|C|}$ is contractive, and use the fixed point theorem to contradict the hypothesis.

b. Conclude.

Exercise 3

Prove that a complete archimedean valued field is isomorphic to $(\mathbb{R}, | |_{\infty}^{s})$ or $(\mathbb{C}, | |_{\infty}^{s})$ for some $s \in]0, 1]$. Hint: use exercise 8 of sheet 3.

Exercise 4

Let A be a semi-local Dedekind ring. Show that A is a principal ideal domain. Hint: use the Chinese remainder theorem.

Exercise 5

Let $\overline{\mathbb{Q}_p}$ be an algebraic closure of \mathbb{Q}_p . Let $P = X^3 - 17$ and $j \in \overline{\mathbb{Q}_3}$ be a primitive cubic root of unity.

a. Verify that $j \notin \mathbb{Q}_3$.

b. What are the degrees of the irreducible factors of P in $\mathbb{Q}_3[X]$? Hint: compute P(5).

c. How many extensions to $\mathbb{Q}(\sqrt[3]{17})$ does the 3-adic absolute value have?

Exercise 6

Let p be a prime number. Let $x \in \mathbb{Q}_p^*$ and $x = \sum_{n=v_p(x)}^{+\infty} a_n p^n$ (with $a_n \in [[0, p-1]]$ for all n) be its p-adic development. What is the p-adic development of -x?

Exercise 7

The *p*-adic absolute value on \mathbb{Q}_p extends uniquely to an absolute value $| \cdot |_p$ on \mathbb{Q}_p . For $n \in \mathbb{N}^*$, put $H_n = \{x \in \mathbb{Q}_p \mid [\mathbb{Q}_p(x) : \mathbb{Q}_p] \leq n\}$.

a. Prove that H_n is closed. Hint: use the fact that \mathbb{Z}_p is compact.

b. Show that $H_n \neq \overline{\mathbb{Q}_p}$ for all $n \in \mathbb{N}^*$.

c. Verify that $H_n + H_m \subset H_{nm}$ for all $(n, m) \in \mathbb{N}^{*2}$.

d. Using Baire's theorem, deduce that $\overline{\mathbb{Q}_p}$ isn't complete for $|\cdot|_p$.