4.5 Rates of Change in Trigonometric Functions

(1) Average Rate of Change

Average Rate of Change = $\frac{f(x_2) - f(x_1)}{x_2 - x_1}$

(2) Instantaneous Rate of Change

Instantaneous Rate of Change= $\frac{f(a+h)-f(a)}{h}$, $h \rightarrow o$

Example #1: Consider the trigonometric function $y = -3\sin\left[\frac{1}{2}\left(x - \frac{\pi}{3}\right)\right]$.

- (b) Determine an interval where the avg. rate of change is:
 (i) positive
 (ii) negative
 (iii) zero
- (c) Determine a point where the inst. rate of change is:
 (i) positive
 (ii) negative
 (iii) zero
- (d) Calculate the average rate of change for $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$.

(e) Describe how the instantaneous rate of change varies over the interval $[0, 4\pi]$.

Example #2: The position of a particle as it moves horizontally is described by the equation $s(t) = 12\sin\left(\frac{\pi t}{90}\right) + 15$, where *s* is the displacement, in metres, and *t* is the time, in seconds.

(a) Calculate the average rate of change of s(t) for the following intervals:

(i) 5 s to 10 s

(ii) 9 s to 10 s

(b) Estimate the instantaneous rate of change of s(t) at t = 10s.

(c) What physical quantity does this instantaneous rate of change represent?