MTH1102D Calcul II

Chapitre 6, section 4 : Les intégrales doubles en coordonnées polaires

Exemple 3: calcul d'une aire

Exemple 3 : calcul d'une aire

Calculer l'aire de la région délimitée par la cardioïde $r = 1 + \cos(\theta)$.

Exemple 3: calcul d'une aire

Calculer l'aire de la région délimitée par la cardioïde $r = 1 + \cos(\theta)$.

L'aire d'une région plane D est donnée par

$$\mathsf{aire}(D) = \iint_D 1 \, dA.$$

 $\it E$: région sous le plan $\it z=1$ au-dessus de $\it D$

$$\mathsf{aire}(D) = \mathsf{aire}(D) \cdot 1 = \mathsf{vol}(E) = \iint_D 1 \, dA$$

Exemple 3 : calcul d'une aire

Calculer l'aire de la région délimitée par la cardioïde $r = 1 + \cos(\theta)$.

$$D = \{(r,\theta) \mid 0 \le r \le 1 + \cos(\theta), 0 \le \theta \le 2\pi\}$$

Exemple 3: calcul d'une aire

Calculer l'aire de la région délimitée par la cardioïde $r = 1 + \cos(\theta)$.

aire(D) =
$$\iint_{D} dA = \int_{0}^{2\pi} \int_{0}^{1+\cos\theta} r \, dr d\theta$$

$$= \int_{0}^{2\pi} \left[\frac{r^{2}}{2} \right]_{0}^{1+\cos\theta} \, d\theta = \frac{1}{2} \int_{0}^{2\pi} (1+\cos\theta)^{2} \, d\theta$$

$$= \frac{1}{2} \int_{0}^{2\pi} (1+2\cos\theta+\cos^{2}\theta) \, d\theta$$

$$= \pi + 0 + \frac{1}{2} \int_{0}^{2\pi} \frac{1+\cos(2\theta)}{2} \, d\theta = \frac{3\pi}{2}.$$

Exemple 3 : calcul d'une aire

- Formule de calcul de l'aire d'une région plane par une intégrale double.
- Calcul de l'aire délimitée par une cardioïde.