1.

(a)

Substitute
$$u = \frac{1}{1+y^2}$$
, then

$$\begin{aligned} &A|_{X=0.5} \\ &= \int_{-\infty}^{\infty} \exp\left(-\frac{(0.5-y)^2}{2}\right) \times \frac{1}{1+y^2} dy \\ &= \int_{-\infty}^{0} \exp\left(-\frac{(0.5-y)^2}{2}\right) \times \frac{1}{1+y^2} dy + \int_{0}^{\infty} \exp\left(-\frac{(0.5-y)^2}{2}\right) \times \frac{1}{1+y^2} dy \\ &= \int_{0}^{1} \exp\left(-\frac{(0.5+\sqrt{\frac{1}{u}-1})^2}{2}\right) \cdot u \cdot \frac{1}{2\sqrt{u^3-u^4}} du \\ &+ \int_{1}^{0} \exp\left(-\frac{(0.5-\sqrt{\frac{1}{u}-1})^2}{2}\right) \cdot u \cdot \left(-\frac{1}{2\sqrt{u^3-u^4}}\right) du \\ &= \int_{0}^{1} \exp\left(-\frac{(0.5+\sqrt{\frac{1}{u}-1})^2}{2}\right) \cdot \frac{1}{2\sqrt{u-u^2}} du \\ &+ \int_{0}^{1} \exp\left(-\frac{(0.5-\sqrt{\frac{1}{u}-1})^2}{2}\right) \cdot \frac{1}{2\sqrt{u-u^2}} du \end{aligned}$$

$$\mathbb{E}[Y|X=0.5] = \int_{-\infty}^{\infty} y \cdot f_{Y|X=0.5} dy = \int_{-\infty}^{\infty} y \cdot \frac{1}{A} \exp\left(-\frac{(0.5-y)^2}{2}\right) \cdot \frac{1}{1+y^2} dy$$

$$= \int_{0}^{1} \frac{1}{A} \exp\left(-\frac{(0.5+\sqrt{\frac{1}{u}-1})^2}{2}\right) \cdot u \cdot \frac{-\sqrt{\frac{1}{u}-1}}{2\sqrt{u^3-u^4}} du$$

$$+ \int_{1}^{0} \frac{1}{A} \exp\left(-\frac{(0.5-\sqrt{\frac{1}{u}-1})^2}{2}\right) \cdot u \cdot \left(-\frac{\sqrt{\frac{1}{u}-1}}{2\sqrt{u^3-u^4}}\right) du$$

$$= -\int_{0}^{1} \frac{1}{A} \exp\left(-\frac{(0.5+\sqrt{\frac{1}{u}-1})^2}{2}\right) \cdot \frac{1}{2u} du$$

$$+ \int_{0}^{1} \frac{1}{A} \exp\left(-\frac{(0.5-\sqrt{\frac{1}{u}-1})^2}{2}\right) \cdot \frac{1}{2u} du$$

Using simple grid approximation,

$$A|_{X=0.5}$$

$$\approx \frac{1-0}{n} \sum_{i=1}^{n} \exp\left(-\frac{(0.5 + \sqrt{\frac{2n}{2i-1} - 1})^2}{2}\right) \cdot \frac{1}{2\sqrt{\frac{2i-1}{2n} - \frac{(2i-1)^2}{4n^2}}}$$

$$+ \frac{1-0}{n} \sum_{i=1}^{n} \exp\left(-\frac{(0.5 - \sqrt{\frac{2n}{2i-1} - 1})^2}{2}\right) \cdot \frac{1}{2\sqrt{\frac{2i-1}{2n} - \frac{(2i-1)^2}{4n^2}}}$$

$$= \sum_{i=1}^{n} \frac{1}{\sqrt{(2n-2i+1)(2i-1)}} \left(\exp\left(-\frac{(0.5 + \sqrt{\frac{2n}{2i-1} - 1})^2}{2}\right) + \exp\left(-\frac{(0.5 - \sqrt{\frac{2n}{2i-1} - 1})^2}{2}\right)\right)$$

$$\mathbb{E}[Y|X=0.5] \approx \frac{1-0}{nA} \sum_{i=1}^{n} \frac{1}{2(\frac{2i-1}{2n})} \left(-\exp\left(-\frac{(0.5+\sqrt{\frac{2n}{2i-1}-1})^2}{2}\right) + \exp\left(-\frac{(0.5-\sqrt{\frac{2n}{2i-1}-1})^2}{2}\right) \right)$$
(b)

```
n = Array{Int64, 1}(undef, 5);
    n[1] = 50; n[2] = 250; n[3] = 750; n[4] = 1500; n[5] = 3000;
3
    for j in 1:1:5
        f = Array{Float64, 1}(undef, n[j]);
        ee = Array{Float64, 1}(undef, n[j]);
        for i in 1:1:n[j]
6
            f[i] = (\exp(-(0.5+(2*n[j]/(2*i-1)-1)^0.5)^2/2) + \exp(-(0.5-(2*n[j]/(2*i-1)-1)^0.5)^2/2))/((2*i-1)-1)^0.5)^2/2)
                 *n[j]-2*i+1)*(2*i-1))^0.5;
            mean[i] = (-exp(-(0.5+(2*n[j]/(2*i-1)-1)^0.5)^2/2) + exp(-(0.5-(2*n[j]/(2*i-1)-1)^0.5)^2/2))
8
                 /2/((2*i-1)/2/n[j]);
        end
9
        A = sum(f);
10
        E = sum(ee)/A/n[j];
        println("For n = ", n[j], ", Normallized constant is A = ", A);
12
        println("For n = ", n[j], ", E[Y|X=0.5] = ", E);
```

```
For n = 50, Normallized constant is A = 1.4740494468809806

For n = 50, E[Y|X=0.5] = 0.27985682751798313

For n = 250, Normallized constant is A = 1.5157641526863064

For n = 250, E[Y|X=0.5] = 0.2721090661427476

For n = 750, Normallized constant is A = 1.530032204520519

For n = 750, E[Y|X=0.5] = 0.26956796784954773

For n = 1500, Normallized constant is A = 1.535741183073878

For n = 1500, E[Y|X=0.5] = 0.2685653225100145

For n = 3000, Normallized constant is A = 1.5397781152124015

For n = 3000, E[Y|X=0.5] = 0.2678610138806316

julia>
```

And we can complete the table

Grid size n	50	250	750	1500	3000
$\mathbb{E}[Y X=0.5]$	0.27986	0.27211	0.26957	0.26857	0.26786

(c)

Substitute
$$u = \frac{1}{1+y^2}$$
, then

$$\mathbb{E}[Y|X=0.5] = \int_{-\infty}^{\infty} y \cdot f_{Y|X=0.5} dy = \int_{-\infty}^{\infty} y \cdot \frac{1}{A} \exp\left(-\frac{(0.5-y)^2}{2}\right) \cdot \frac{1}{1+y^2} dy$$
$$= \frac{1}{A} \int_{0}^{1} \left(\exp\left(-\frac{(0.5-\sqrt{\frac{1}{u}-1})^2}{2}\right) - \exp\left(-\frac{(0.5+\sqrt{\frac{1}{u}-1})^2}{2}\right)\right) \cdot \frac{u}{2u^2} du$$

So our goal is to do direct sampling within [0,1] with distribution

$$f_U(u) = \frac{1}{B} \left(\exp\left(-\frac{(0.5 - \sqrt{\frac{1}{u} - 1})^2}{2}\right) - \exp\left(-\frac{(0.5 + \sqrt{\frac{1}{u} - 1})^2}{2}\right) \right) \cdot \frac{1}{2u^2}$$

the relation between the sample mean and the value we want is

$$\mathbb{E}[Y|X=0.5] = \frac{B}{A} \times \text{ sample mean}$$

where

$$A = \int_0^1 \left(\exp\left(-\frac{(0.5 + \sqrt{\frac{1}{u} - 1})^2}{2}\right) + \exp\left(-\frac{(0.5 - \sqrt{\frac{1}{u} - 1})^2}{2}\right) \right) \cdot \frac{1}{2\sqrt{u - u^2}} du$$

$$B = \int_0^1 \left(\exp\left(-\frac{(0.5 - \sqrt{\frac{1}{u} - 1})^2}{2}\right) - \exp\left(-\frac{(0.5 + \sqrt{\frac{1}{u} - 1})^2}{2}\right) \right) \cdot \frac{1}{2u^2} du$$

VE414 Jiang Yicheng Assignment 4 515370910224

(d)

```
using Distributions
   using Plotly
2
   a = 0; b = 1;
3
   n = 50;
   fA = Array{Float64, 1}(undef, n);
5
   fB = Array{Float64, 1}(undef, n);
   u_grid = Array{Float64, 1}(undef, n);
   for i in 1:1:n
       u_{grid}[i] = (b - a)/n * i-1/2/n;
9
       10
            [i]^2);
       \mathtt{fA[i]} = (\exp(-(0.5 + (1/u\_grid[i]-1)^0.5)^2/2) + \exp(-(0.5 - (1/u\_grid[i]-1)^0.5)^2/2))/2/(u\_grid[i]-1)^0.5)^2/2))/2/(u\_grid[i]-1)^0.5)^2/2)
           i]-u_grid[i]^2)^0.5;
12
   end
13
   posterior = fB/sum(fB);
   A = (b - a)/n*sum(fA);
14
   B = (b - a)/n*sum(fB);
16 m = 100;
   samples = Array{Float64, 1}(undef, m);
17
   distribution = Categorical(posterior);
   for i in 1:1:m
19
       samples[i] = u_grid[rand(distribution)];
20
21
   print(B/A*mean(samples))
```

Since sampling has some randomness, we do sampling with each pair of m, n for ten times, and take their meas as the final result. Here is the table recording all data

5	0	250 750		50	15	00	3000		
100	1000	100	1000	100	1000	100	1000	100	1000
0.25407	0.28465	0.26989	0.27480	0.25340	0.28065	0.25783	0.27283	0.29350	0.26621
0.29710	0.27444	0.25934	0.27351	0.26038	0.26688	0.28019	0.26942	0.31311	0.27620
0.29251	0.28342	0.27405	0.26962	0.26226	0.27495	0.26341	0.26737	0.28783	0.26712
0.28655	0.27720	0.31464	0.27332	0.26826	0.27843	0.25576	0.26294	0.28089	0.27435
0.29914	0.27558	0.25808	0.26695	0.27315	0.27570	0.28655	0.26410	0.27893	0.26982
0.28196	0.27715	0.26168	0.26916	0.27414	0.27181	0.27249	0.26014	0.26563	0.26494
0.26002	0.28125	0.27068	0.27022	0.27933	0.26869	0.28216	0.26647	0.25266	0.26133
0.28162	0.27710	0.28735	0.27678	0.24637	0.27080	0.30826	0.26613	0.27100	0.25781
0.27074	0.28215	0.23380	0.26571	0.25735	0.26624	0.27769	0.26630	0.27078	0.27256
0.30203	0.27808	0.25576	0.26957	0.28215	0.27368	0.28267	0.26346	0.23202	0.26955
0.28257	0.27910	0.26853	0.27096	0.26568	0.27278	0.27670	0.26592	0.27463	0.26799

And therefore

Grid size n	50		250		750		1500		3000	
Sample size m	100	1000	100	1000	100	1000	100	1000	100	1000
$\mathbb{E}[Y X=0.5]$	0.28257	0.27910	0.26853	0.27096	0.26568	0.27278	0.27670	0.26592	0.27463	0.26799

(e)

```
x = 0.5; a = -5; b = 5;
   n = Array{Int64, 1}(undef, 5);
   n[1] = 50; n[2] = 250; n[3] = 750; n[4] = 1500; n[5] = 3000;
3
   for j in 1:1:5
        if n[j] <= 1000
5
6
           y_grid = collect(
7
               range(a, length = n[j] , stop=b));
           newa = a ;
8
9
           1 = (b - a)/n[j];
       elseif n[j] > 1000 && n[j] <= 2000
10
           nm = 1000:
1.1
           na = round(Int, (n[j] - nm) / 2);
           l = (b - a) / (nm - 1);
13
           newa = a - 1 * na;
14
          y_grid = collect(
15
               range(newa, step=1, length=n[j]));
16
17
        else n[j] > 2000
          nm = round(Int, n[j] / 2);
18
           na = round(Int, (n[j] - nm) / 2);
19
20
           1 = (b - a) / (nm - 1);
           newa = a - 1 * na;
21
22
           y_grid = collect(
               range(newa, step=1, length=n[j]));
23
        end
24
25
        f = Array{Float64, 1}(undef, n[j]);
26
        for i in 1:1:n[j]
           f[i] = \exp(-(0.5 - y_{grid}[i])^{2/2})/(1 + y_{grid}[i]^{2});
27
        A = 1 * sum(f);
29
30
        for i in 1:1:n[j]
          f[i] = y_grid[i] * exp(-(0.5 - y_grid[i])^2/2)/(1 + y_grid[i]^2);
31
        end
32
33
        E = 1 * sum(f) / A;
        println("For n = ", n[j], ", E[Y|X=0.5] = ", E);
34
    end
```

```
For n = 50, E[Y|X=0.5] = 0.26617556413726473

For n = 250, E[Y|X=0.5] = 0.26617525294322397

For n = 750, E[Y|X=0.5] = 0.26617519291542174

For n = 1500, E[Y|X=0.5] = 0.2661761233904551

For n = 3000, E[Y|X=0.5] = 0.2661761233906986

julia> [
```

Here is the completed table

Grid size n	50	250	750	1500	3000
$\mathbb{E}[Y X=0.5]$	0.26618	0.26618	0.26618	0.26618	0.26618

and we can see that by using this method, $\mathbb{E}[Y|X=0.5]$ converges much more quickly than using variable transformation.