EstEID

Turvakiibi rakenduse kasutusjuhend

Dokumendi versioon: 01.11.2003

Sisukord

Sisukord	2
1 Kellele on dokument suunatud	3
2 Kasutatud lühendid	3
3 Kaardi äratundmine	3
4 T=0 või T=1?	4
5 PIN1, PIN2 ja PUK koodi muutmine	5
6 PIN1 ja PIN2 koodide lahtiblokeerimine	
7 Andmete lugemine isikuandmete failist	
8 Loendurite lugemine kaardilt	
9 Sertifikaatide lugemine kaardilt	
10 SSL kutsungile vastuse arvutamine	
11 Elektronallkirja arvutamine	
11.1 Elektronallkirja arvutamine, kui räsi on valmis	
11.1 Elektronalikirja arvutamine, kui rasi on vaimis	
12 Sessioonivõtme dekrüptimine	
13 Sertifikaatide uuendamine	
	24
14. Paroollausete seadmine ja muutmine, operatsioonide teostamine, tuvastades kasutaja paroollausega	25
14.1. Paroollause kasutamise põhimõte	
14.2. Võtme tuletamine paroollausest	
14.3. Paroollausete seadmine kaardile	27
14.3.1. Paroollause seadmine PIN2-koodiga autoriseerides	27
14.3.2. Paroollause seadmine senise paroollausega autoriseerides	
14.4. Operatsioonide teostamine paroollausega autoriseerides	32
14.4.1. SSL-kutsungile vastuse arvutamine	
14.4.2. Elektroonse allkirja arvutamine	35
14.4.3. Sessioonivõtmete dekrüptimine	35
15. Sessioonivõtme dekrüptimine juhul, kui kaardil on pärast personaliseerimist	
genereeritud uus võtmepaar	
16. Operatsioonid võtmete eelmiste versioonidega	
16.1. SSL-kutsungile vastuse arvutamine võtme eelmise versiooniga	
16.2. Elektronallkirja arvutamine võtme eelmise versiooniga	
16.4. Sessioonivõtme dekrüptimine võtme eelmise versiooniga	41
17. Kaardihalduse operatsioonid	41
17.1. Operatsioonidest üldiselt	
17.2. Kaardikohaste võtmete tuletamine	
17.3. Uute võtmepaaride genereerimine	43
17.4. Sertifikaatide laadimismoodulite genereerimine	49
17.5. PIN-koodide asendamine	
17.6. Lisarakenduste laadimismoodulite genereerimine	56
18. EstEID kaardi sümmeetrilised krüptooperatsioonid	57
18.1. 3DES krüptimine CBC režiimis	

18.2. 3DES MAC CBC režiimis	
19. EstEID kaardi veateated	

1 Kellele on dokument suunatud

See dokument on mõeldud programmeerijaile, kes programmeerivad EstEID kaardiga vahetult suhtlevaid rakendusi või ohjureid, mis suhtlevad kaardiga kaardilugeja ohjuri, näiteks PC/SC, CT-API vms, kaudu. Dokumendis antakse üksikasjalik kirjeldus kaardi käsustiku kasutamise kohta.

Dokument ei ole vajalik neile, kes kirjutavad rakendusi, mis kasutavad EstEID kaarti olemasoleva kõrge taseme ohjuri (näit. Cryptoki või Microsoft CSP) kaudu.

Dokumendist arusaamine eeldab, et lugeja on tuttav kiipkaartidega suhtlemise üldiste põhimõtetega.

2 Kasutatud lühendid

MF	Juurkataloog turvakiibi failisüsteemis (ingl. k. Master File)
APDU	Kiibi rakendusprotokolli ühik
Kaardihalduskeskus	Institutsioon, kes teostab EstEID kaartide haldamise operatsioone kiibi haldaja volitusel
ICV	3DES algoritmi initsialisatsioonivektor
MAC	krüptograafiline kontrollsumma (ingl k. Message Authentication Code)
SK1, SK2	Sessioonivõtmed
SSC	sõnumiloendur (ingl. k. Send Sequence Counter)

3 Kaardi äratundmine

Kaardi äratundmiseks kasutatakse ATR stringi, mille kaart väljastab alglaadimisel. EstEID kaardil on kaks ATR stringi, nn. "külm ATR", mille kaart väljastab pärast pingestamist (st lugejasse sisestamist) ja nn "soe ATR", mille kaart väljastab pärast kaardilugeja algatatud alglaadimist.

EstEID kaardi "külm ATR" on järgmine¹:

Bait nr.	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	10
Väärtus	3B	FE	94	00	FF	80	B1	FA	45	1F	03	45	73	74	45	49	44

11	12	13	14	15	16	17	18	19
20	76	65	72	20	31	2E	30	43

¹ Siin ja edaspidi kasutatakse kuueteistkümnendsüsteemi numbreid, kui ei ole märgitud kümnendsüsteemi kasutamist märkega (dec).

EstEID kaardi "soe ATR" on järgmine:

Bait nr.	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	10	11
Väärtus	3B	6E	00	FF	45	73	74	45	49	44	20	76	65	72		31	2E	30

ATR stringi baitide tähendused on defineeritud standardis ISO 7816-3. Baidid 0..A külmas ATR's ja baidid 0..3 soojas ATR's sisaldavad kaardi kommunikatsiooniprotokolli parameetreid. Rakendustele, mis suhtlevad kaardiga läbi olemasolevate ohjurite (n PC/SC, CT-API) ei oma need parameetrid tähendust, kuna nendega tegeleb ohjur.Tähtsad on baidid B..18 külmas ATR's ja 4..10 soojas ATR's. Need on nn. "ajaloolised baidid" (ingl. "historical bytes "), mille järgi rakendus teeb kindlaks, mis tüüpi kaardiga on tegemist. EstEID kaardil on need baidid järgmised:

EstEID\u2010ver\u20101.0, kus

∪ on tühik

Märkus: ATR ajaloolised baidid ei ole standardiseeritud (ISO 7816-4 teeb küll katse neid baite standardiseerida, kuid praktikas ei ole see kasutust leidnud). Järelikult ei tähenda see, kui kiipkaart väljastab EstEID kaardi ATR 'ga sarnase ATR, et tegemist on EstEID kaardiga.. Veelgi enam, alati võib programmeerida mõne muu kiipkaardi nii, et see käitub sarnaselt EstEID kaardiga.. EstEID kaardi elektroonne atribuut on kaardil paiknevad salajased võtmed, mille avaliku poole on sertifitseerinud riiklik sertifitseerimiskeskus ning visuaalsed atribuudid on personaliseerimisel kaardile kantud turvaelemendid ja valdaja andmed. Küll võib aga väita, et kui kaardi ATR ei vasta EstEID kaardi ATR 'le, siis ei ole tegemist EstEID kaardiga.

4 T=0 või T=1?

Standard ISO 7816-3 ja selle lisa 1 näevad kiipkaartidega suhtlemiseks ette kaks protokolli - T=0 ja T=1, kusjuures protokollide erinevusega tuleb arvestada mitte ainult madala taseme ohjuri sees, vaid ka rakenduses, mis suhtleb kaardiga näiteks PC/SC tasemel.

EstEID kaart toetab mõlemat protokolli, kusjuures pärast alglaadimist lülitab kaart sisse T=0 protokolli. Kaarti kasutav rakendus võib vahetult pärast alglaadimist lülitada kaardi ümber T=1 protokollile. PC/SC käsustikus puuduvad mugavad võimalused sellise operatsiooni teostamiseks, küll aga suudavad seda mõnede lugejate PC/SC ohjurid, kui neilt on initsialiseerimisel nõutud kaardiga suhtlemist T=1 abil.

T=0 ja T=1 protokollide erinevusega tuleb kaarti kasutavas rakenduses arvestada selliste käskude puhul, kus käsk kaardile sisaldab andmeid ning ka kaardi vastus sisaldab andmeid. Niisugused käsud on failide lugemine kaardilt, SSL-kutsungile vastuse arvutamine, allkirja arvutamine ja sessioonivõtme dekrüptimine. Protokolli eripäraga mittearvestamine viib nende käskude juures veasituatsiooni.

Kuna T=0 protokollis saab EstEID kaardiga teostada kõiki operatsioone, siis puudub üldjuhul vajadus T=1 kasutamiseks, kuigi ka selle protokolli all on kõik operatsioonid teostatavad.

Samas tuleb T=0 jaoks programmeerides arvestada, et kaart võib saadetud käsule positiivse vastusena vastata koodiga "61 L". L (üks bait) näitab siin, kui mitu baiti andmeid on kaardil väljastamist ootamas. Nende baitide lugemiseks tuleb kaardile anda uus käsk:

Ì	CLA	INS	P1	P2	Le
	00	C0	00	00	L

Näide: Kaart vastas käsule koodidega "61 0A", mis tähendab, et kaardil on ootamas 10 (dec) baiti. Nende baitide lugemiseks saadame:

CLA	INS	P1	P2	Le
00	C0	00	00	0A

Kaart vastab:

Väljastatavad baidid	OK tra	iler
00 00 00 00 00 00 00 00 00 00	90	00

5 PIN1, PIN2 ja PUK koodi muutmine

PIN1, PIN2 ja PUK koodi muutmine toimub järgmise käsuga:

CLA	INS	P1	P2	Lc	Senine PIN	Uus PIN või
					või PUK	PUK
00	24		PIN-koodi number. PUK = 00 PIN1 = 01 PIN2 = 02			ASCII koodidena

Näide: Olgu senine PIN1 "1234" ja uus PIN1 "54321". Muudame PIN1-koodi järgmise käsuga:

CLA	INS	P1	P2	Lc	Senine PIN1	Uus PIN1
00	24	00	01	09	3132 33 34	35 34 33 32 31

Näide: Olgu senine PUK "12345678" ja uus PUK "1234567890". Muudame PUK-koodi järgmise käsuga:

CLA	INS	P1	P2	Lc	Senine PUK	Uus PUK
00	24	00	00	12	3132 33 34 35 36 37 38	31 32 33 34 35 36 37 38 39 30

6 PIN1 ja PIN2 koodide lahtiblokeerimine

PIN1, PIN2 ja PUK koodidel on EstEID kaardis valesisestuste loendurid (ingl. retry counters), mille algväärtus on 3. See tähendab, et pärast kolme järjestikust valesisestust koodid lukustuvad (igal koodil on eraldi loendur, ühe koodi valesti sisestamine ei muuda teiste koodide loendureid, st PIN1 valesti sisestamine ei muuda PIN2 ega PUK valesisestuste loendurit ega blokeeri neid).

Blokeerunud PIN1 ja PIN2 võib lahti blokeerida PUK-koodi abil. Blokeerunud PUK-koodi ei ole kaardi kasutajal võimalik lahti blokeerida. Blokeerunud PUK-koodiga kaardi taas kasutuskõlblikuks muutmiseks tuleb pöörduda vastava teenuse pakkuja poole.

PIN-koode võib EstEID kaardil lahti blokeerida kahte moodi:

- 1) jättes lahtiblokeeritava PIN-koodi samaks või
- 2) ühtlasi asendades lahtiblokeeritava PIN-koodi uuega.

PIN-koodi lahtiblokeerimine, jättes koodi samaks, toimub järgmiste

käskudega: 1) Verifitseerime PUK- koodi:

CLA	INS	P1	P2	Lc	PUK
00	20		PUK-koodi number = 00	PUK-koodi pikkus	ASCII koodidena

2) Blokeerime PIN-koodi lahti:

CLA	INS	P1	P2
00	2C		PIN-koodi number, PIN1 = 01 PIN2 = 02

Näide: Olgu PUK "12345678" ja blokeerunud PIN1. Lahtiblokeerimiseks

saadame: 1) Verifitseerime PUK- koodi:

CLA	INS	P1	P2	Lc	PUK
00	20	00	00	08	3132 33 34 35 36 37 38

2) Blokeerime PIN1 lahti:

CLA	INS	P1	P2
00	2C	03	01

PIN-koodi lahtiblokeerimine, asendades ühtlasi senise koodi uuega, toimub järgmise käsuga:

CLA	INS	P1	P2	Lc	PUK	Uus PIN
00	2C	00	PIN-koodi	PUK-koodi	ASCII	ASCII
			number,	pikkus + uue	koodidena	koodidena
			PIN1 = 01	PIN pikkus		
			PIN2 = 02			

Näide: Olgu PUK "12345678" ja blokeerunud PIN1, millele pärast lahtiblokeerimist soovime anda väärtuse "1234". Lahtiblokeerimiseks saadame:

CLA	INS	P1	P2	Lc	PUK	Uus PIN1
00	2C	00	01	0C	31 32 33 34 35 36 37 38	31 32 33 34

Märkus: Kui PIN-kood ei ole blokeerunud (st seda ei ole kolm korda järjest valesti sisestatud), siis vastab EstEID kaart lahtiblokeerimise käsule veateatega.

7 Andmete lugemine isikuandmete failist

EstEID kaardil on isikuandmete fail, mille FID (ingl. File Identifier) on 'PD' ehk '50 44'. See on muutuva kirjepikkusega fail (ingl. variablelength recordfile), mis sisaldab kaardile personaliseerimisel kantud infot elektroonsel kujul (va foto ja allkirja kujutis) ja on hetkel defineeritud järgnevalt:

Kirje number	Sisu	Maksimaalne pikkus
Hamber		(baiti,
1	Perenimi	28
2	Eesnimede rida 1	15
3	Eesnimede rida 2	15
4	Sugu	1
5	Kodakondsus (3 tähte, alati EST)	3
6	Sünnikuupäev (pp.kk.aaaa)	10
7	Isikukood	11
8	Dokumendi number	8
9	Kehtivuse viimane päev (pp.kk.aaaa)	10
10	Sünnikoht	35
11	Väljaandmise kuupäev (pp.kk.aaaa)	10
12	Elamisloa tüüp	50
13	Märkuste rida 1	50

14	Märkuste rida 2	50
15	Märkuste rida 3	50
16	Märkuste rida 4	50

Hetkel sisaldab fail 16 kirjet ning kirje maksimaalne pikkus on 50 (dec) baiti.

On olemas tehnilised võimalused, et personaliseerimisprotsessi käigus täiendatakse faili uute kirjete lisamisega faili lõppu. Samuti võidakse muuta kirje maksimaalset pikkust.

Andmete lugemiseks failist toimime järgnevalt:

1) Valime juurkataloogi (MF - *ingl. Master File*) käsuga SELECT FILE. Pärast kaardi alglaadimist võib selle käsu ka ära jätta, sest juurkataloog on siis vaikimisi valitud.

CLA	INS	P1	P2
00	A4	00	OC

2) Valime kataloogi EEEE käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	01	0C	02	EEEE

3) Valime faili 5044 käsuga SELECT FILE. Käsu anname sellisel kujul, et EstEID kaart annab vastuseks faili päise:

T=0 korral saadame:

CLA	INS	P1	P2	Lc	FID
00	A4	02	04	02	50 44

T=1 korral saadame:

CLA	INS	P1	P2	Lc	FID	Le
00	A4	02	04	02	50 44	00

Faili päise pikkus ei ole üldjuhul eelnevalt teada. Seetõttu anname Le baidi ette väärtusega 0.

Kaart vastab:

Bait nr.	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	10	
Väärtus	62	17	82	05	04	41	00	32	10	83	02	50	44	85	02	01	00	

11							
8A	01	05	Α1	03	8B	01	01

Kirje maksimaalne pikkus on baidis nr 7 ja kirjete arv baidis nr 8 (nb! kuueteistkümnendväärtused).

Märkus: EstEID kaart hoiab informatsiooni failipäistes TLV (Tag Length Value) objektide kujul. Kirje maksimaalne pikkus on konteinerobjektis (ingl. compound data object) 62 sisalduva objekti 82 baidis 3 (loendus algab ühest) ja kirjete arv baidis 4. Korrektne oleks kirje maksimaalse pikkuse ja kirjete arvu leidmiseks parsida failipäise sisu. Kuna agafailipäis EstEID kaardis (tõenäoliselt) ei muutu, annab lihtsalt 7.ja 8. baidi lugemine ka (tõenäoliselt) õige tulemuse.

4) Loeme kirje 1 sellest failist:

CLA	INS	P1 (kirje number)	P2	Le
00	B2	01	04	00

Kui kasutusel on protokoll T=0, siis võib Le ka ära jätta. Le on jällegi 0, kuna kirje pikkus ei ole eelnevalt teada.

Kasutades protokolli T=0 vastab kaart:

Kaardis on baite ootel	Ootel baitide arv (perenime pikkus)
61	

Loeme kaardilt perenime:

CLA	INS	P1	P2	Le
00	C0	00	00	Perenime pikkus

Kaart vastab (kasutades T=1 protokolli, saame sellise vastuse kohe):

Perenimi	OK Trailer
	90 00

Teised kirjed loetakse analoogselt.

8 Loendurite lugemine kaardilt

EstEID kaardil on järgmised loendurid:

- 1) PIN1 valesisestuste loendur
- 2) PIN2 valesisestuste loendur
- 3) PUK valesisestuste loendur
- 4) Paroollause 12 valesisestuste loendur

² Paroollaused (*ingl. passphase*) on EstEID kaardil kasutaja autentimiseks kasutatavad objektid, mida saab kasutada sarnaselt PIN1 ja PIN2'ga. Nende kasutamist vaadeldakse juhendi

- 5) Paroollause 2 valesisestuste loendur
- 6) Signeerimisvõtme versiooni 1³ kasutuskordade loendur
- 7) Signeerimisvõtme versiooni 2 kasutuskordade loendur
- 8) Autentimisvõtme versiooni 1 kasutuskordade loendur
- Autentimisvõtme versiooni 2 kasutuskordade loendur

PIN- ja PUK-koodide valesisestuste loendurid on kaardi juurkataloogi failis, mille FID (File Identifikator) on 0016. PIN1 kohta käib selle faili kirje 1, PIN2 kohta kirje 2 ja PUK kohta kirje 3. Valesisestuste loendurite väärtuste leidmiseks toimime nii:

1) Valime juurkataloogi (MF - ingl. Master File) käsuga SELECT FILE. Pärast kaardi alglaadimist võib selle käsu ka ära jätta, sest juurkataloog on siis vaikimisi valitud.

CLA	INS	P1	P2
00	A4	00	0C

2) Valime faili 0016 käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	02	0C	02	00 16

3) Loeme kirje 1 sellest failist:

CLA	INS	P1 (kirje number)	P2	Le
00	B2	01	04	00

Kuna fail 0016 on muutuva kirjepikkusega struktureeritud fail (ingl. variable record lengthfile), siis ei ole võimalik ette teada kaardilt loetavate baitide hulka. Seetõttu anname Le baidi ette väärtusega 0. Kasutades protokolli T=0 võib Le ka ära jätta, T=1 korral peab Le bait olema.

Kaardilt loetakse kirje:

Bait nr.	0	1	2	3	4	5	6	7	8	9
Väärtus	80	01	03	90	01	03	83	02	00	00

PIN1 valekasutuste loendur on baidis nr 5.

Valekasutuste loenduri algväärtus on 3 ning blokeerunud kaardil on NB! selle väärtus 0, seega näitab loendur, mitu PIN sisestuskatset on veel järel.

Märkus: EstEID kaart hoiab informatsiooni failikirjetes TLV (Tag Length Value)

järgnevas osas

EstEID kaart võimaldab (pärast teatud autentimisoperatsioone) genereerida uued võtmepaarid. Eelmised võtmepaarid säilitatakse. Uute võtmepaaride genereerimist vaadeldakse allpool. Pärast personaliseerimist (ja kuni uute võtmepaaride genereerimiseni) on kasutusel võtmete versioon 1

objektide kujul. PIN valesisestuste loendur on objektis tagiga 90 ja pikkusega 01. Korrektne oleks lugeda loenduri väärtus, parsides kirje sisu. Kuna aga kirje kuju kaardi kasutusaja jooksul(tõenäoliselt) ei muutu, annab lihtsalt 5. baidi lugemine ka (tõenäoliselt) õige tulemuse.

4) Analoogse käsuga loeme kirje 2, milles sisaldub PIN2 valesisestuste loendur:

CLA	INS	P1 (kirje number)	P2	Le
00	B2	02	04	00

5) PUK valesisestuste loenduri teadasaamiseks loeme kirje 3:

CLA	INS	P1 (kirje number)	P2	Le
00	B2	03	04	00

Loetud kirje on järgmine:

Bait nr.	0	1	2	3	4	5
Väärtus	80	01	03	90	01	03

Valesisestuste loendur on jällegi baidis nr 5.

Paroollausete valesisestuste loendurid on juurkataloogi failis 0013 kirjetes 5 (paroollause 1) ja 6 (paroollause 2).

Paroollause 5 valesisestuste loenduri lugemiseks toimime nii:

 Valime juurkataloogi (MF - ingl. Master File) käsuga SELECT FILE. Pärast kaardi alglaadimist võib selle käsu ka ära jätta, sest juurkataloog on siis vaikimisi valitud.

CLA	INS	P1	P2
00	A4	00	0C

2) Valime faili 0013 käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	02	0C	02	00 13

3) Loeme kirje 5 sellest failist:

CLA	INS	P1 (kirje number)	P2	Le
00	B2	05	04	00

Fail 0013 on samuti muutuva kirjepikkusega struktureeritud fail. Kasutades protokolli T=0 võib Le ka ära jätta, T=1 korral peab Le bait olema.

Kaardilt loetakse kirje:

•	Bait nr.	0	1	2	3	4	5	6	7	8	9		kirje kogupikkus on 28(hex) baiti
	Väärtus	83	02	04	00	C1	02	81	10	90	01	FF	

Paroollause valekasutuste loendur on baidis nr A. Selle algväärtus on FF ning igal paroollause 1 valesisestusel väheneb loendur ühe võrra. Kui loendur on jõudnud nulli, ei ole paroollause enam kasutatav ning kaardi kasutamisel tuleb autentida PIN-koodidega või kaart vahetada. Paroollause valekasutuste loendur ei uuene paroollause õigel sisestamisel.

Paroollause 2 loendur on analoogselt kirjes nr 6.

Salajaste võtmete kasutuskordade loendurid on kataloogis EEEE failis 0013 järgmistes kirjetes:

Võtmeversioon	Faili EF/EEEE/0013 kirje number
Signeerimisvõtme versioon 1	1
Signeerimisvõtme versioon 2	2
Autentimisvõtme versioon 1	3
Autentimisvõtme versioon 2	4

Selleks, et teada saada, mitu korda on kasutatud signeerimisvõtme versiooni 1, toimime järgmiselt:

5) Valime juurkataloogi (MF - *ingl. Master File*) käsuga SELECT FILE. Pärast kaardi alglaadimist võib selle käsu ka ära jätta, sest juurkataloog on siis vaikimisi valitud.

CLA	INS	P1	P2
00	A4	00	0C

6) Valime kataloogi EEEE käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	01	0C	02	EEEE

7) Valime faili 0013 käsuga SELECT FILE:

CLA	INS	P1	P2		Lc		FID	
00	A4	02	0C		02		00 13	
8)	INS	P1 (kirje number	P2		Le			
00	B2	01	04		00			

Fail 0013 on selles kataloogis fikseeritud kirjepikkusega struktureeritud fail (kirje pikkus on 4F), kuid kehtima jääb sama reegel: kasutades protokolli T=0, võib Le ka ära jätta, T=1 korral peab Le bait olema.

Kaardilt loetakse kirje:

Bait nr.	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	
Väärtus	83	04	01	00	10	01	C0	02	81	80	91	03	FF	FF	FF	

Võtme kasutuskordade loendur on kolmebaidilise väärtusena baitides nr C..E, kusjuures vanem bait on vasakul. Seega saadakse loenduri väärtus järgmiselt:

<Bait C väärtus>*10² + <Bait D väärtus>*10 + <Bait E väärtus>

Võtme kasutuskordade loenduri algväärtus on FFFFF ning võtme igal kasutusel lahutatakse sellest 1. Selleks, et saada teada, mitu korda on võtit kasutatud, tuleb kaardilt loetud väärtus lahutada FFFFFF'st.

Teiste võtmete kasutuskordade arv loetakse kaardilt analoogselt.

9 Sertifikaatide lugemine kaardilt

Sertifikaadid on EstEID kaardil kataloogis EEEE jadafailide (ingl. transparent file) kujul. Kuna planeeritud on sertifikaatide uuendamine kaardi kastusaja jooksul, reserveeritakse personaliseerimise käigus sertifikaatide jaoks fikseeritud suurusega failid, et garanteerida uute (ja võimalik, et mahult suuremate) sertifikaatide kaardile kirjutamise võimalikkus. Ülejäänud osa failist täidetakse järgneva skeemi järgi:

|--|

st sertifikaadi lõppu lisatakse bait 80 ning ülejäänud osa faili lõpuni täidetakse nullbaitidega.

Sertifikaadid on järgmistes failides:

Sertifikaat	FID	Maht (hex baiti)
Digitaalset isikutuvastamist võimaldav sertifikaat	EF/EEEE/AACE	600
Digitaalset allkirjastamist võimaldav sertifikaat	EF/EEEE/DDCE	600

Failide mahud võivad muutuda. Allpool on näidatud, kuidas teha kindlaks kaardil asuva faili tegelik suurus.

Digitaalset isikutuvastust võimaldava sertifikaadi (analoogselt ka teiste sertifikaatide) lugemiseks kaardilt toimime nii:

1) Valime juurkataloogi (MF - *ingl. Master File*) käsuga SELECT FILE. Pärast kaardi alglaadimist võib selle käsu ka ära jätta, sest juurkataloog on siis vaikimisi valitud.

CLA	INS	P1	P2
00	A4	00	0C

2) Valime kataloogi EEEE käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	01	0C	02	EEEE

3) Valime faili AACE käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	02	0C	02	AACE

Kaart vastab:

Bait nr.	0	1	2	3	4	5	6	7	8	9	Α	В	С	vastuse kogupikkus on 1A baiti
Väärtus	62	18	82	01	01	83	02	AA	CE	85	02	06	00	

Faili maht on vastuse baitides B ja C, antud

juhul 600 (hex).

4) Loeme faili sisu käsuga READ BINARY:

CLA	INS	P1(offsetMSB)	P2(offsetLSB)	Le (number of bytes to read)
00	B0	00	00	64

See käsk loeb 64 (hex) baiti faili algusest. Le on siin vajalik nii T=0 kui T=1 korral, sest ta näitab, mitu baiti tuleb lugeda. P1 ja P2 näitavad aadressi failis, millelt lugeda. Näiteks lugemiseks aadressilt 120 (hex) P1=01 ja P2=20. Le maksimumväärtus on FE.

10 SSL kutsungile vastuse arvutamine

SSL kutsungile (*ingl. SSL challenge*) vastuse arvutamine on PKCS#1 ver. 1.5 block type 1 järgi formateeritud kutsungi dekrüptimine RSA salajase võtmega. Vastuse arvutamiseks EstEID kaardis tuleb toimida nii:

1) Valime juurkataloogi (MF - *ingl. Master File*) käsuga SELECT FILE. Pärast kaardi alglaadimist võib selle käsu ka ära jätta, sest juurkataloog on siis vaikimisi valitud.

CLA	INS	P1	P2
00	A4	00	0C

2) Valime kataloogi EEEE käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	01	0C	02	EE EE

3) Seame kaardisisese turvakeskkonna (ingl. security environment) nr 1:

CLA INS	P1	P2
---------	----	----

100 22 13 01	00	22	F3	01
-----------------	----	----	----	----

4) Verifitseerime PIN1:

CLA	INS	P1	P2	Lc	PIN1
00	20		PIN1-koodi number = 01	PIN1-koodi pikkus	ASCII koodidena

5) Saadame kaardile käsu kutsungi vastuse

arvutamiseks: a) T=0 korral saadame:

CLA	INS	P1	P2	Lc (kutsungi pikkus)	Kutsung
00	88	00	00	24	

b) T= 1 korral saadame

CLA	INS	P1	P2	Lc (kutsungi pikkus)	Kutsung	Le
00	88	00	00	24		80

EstEID kaart väljastab 80 (hex) baiti, mis on PKCS#1 ver. 1.5 block type 1 järgi formateeritud ja seejärel autentimisvõtmega krüptitud kutsung.

SSL standardi järgi on kutsungi pikkus 24 (hex) baiti, kuid EstEID kaart võimaldab arvutada vastuseid ka teistsuguste pikkustega kutsungitele.

11 Elektronallkirja arvutamine

Elektroonse allkirja arvutamine on PKCS#1 ver. 1.5 block type 1 järgi formateeritud räsiobjekti dekrüptimine RSA salajase võtmega.

EstEID kaart võimaldab arvutada elektroonset allkirja kahel viisil:

- a) andes ette allkirjastatava teksti räsi sisaldava objekti või
- saates kaardile blokkide kaupa allkirjastatava teksti ning lastes kaardil selle räsida.

Räsimisega kaardil võib allkirja arvutada siis, kui operatsioon toimub piiratud ressursiga seadmes, milles pole räsimise funktsiooni, näiteks POS-terminalis.

11.1 Elektronallkirja arvutamine, kui räsi on valmis

Selleks tuleb toimida nii:

 Valime juurkataloogi (MF - ingl. Master File) käsuga SELECT FILE. Pärast kaardi alglaadimist võib selle käsu ka ära jätta, sest juurkataloog on siis vaikimisi valitud.

CLA	INS	P1	P2
00	A4	00	0C

2) Valime kataloogi EEEE käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	01	0C	02	EEEE

3) Seame kaardisisese turvakeskkonna (ingl. security environment) nr 1:

CLA	INS	P1	P2
00	22	F3	01

4) Verifitseerime PIN2:

CLA	INS	P1	P2	Lc	PIN2
00	20		PIN2-koodi number = 02	PIN2-koodi pikkus	ASCII koodidena

5) Saadame kaardile käsu allkirja arvutamiseks:

a) T=0 korral saadame:

CLA	INS	P1	P2	Lc (räsiobjekti pikkus)	Räsiobjekt
00	2A	9E	9A	23	

b) T=1 korral saadame:

CLA	INS	P1	P2	Lc (räsiobjekti pikkus)	Räsiobjekt	Le
00	2A	9E	9A	23		80

EstEID kaart väljastab 80 (hex) baiti, mis on PKCS#1 ver. 1.5 block type 1 järgi formateeritud ja seejärel autentimisvõtmega krüptitud räsiobjekt.

Näide: Olgu allkirjastatava teksti SHA-1 räsi 0102030405060708090A0B0C0D0E0F1012131415 (hex), PIN2 "12345" ja kasutusel protokoll T=0. Arvutame elektroonse allkirja:

1) Valime juurkataloogi:

CLA	INS	P1	P2
00	A4	00	0C

2) Valime kataloogi EEEE:

CLA	INS	P1	P2	Lc	FID
00	A4	01	0C	02	EEEE

3) Seame kaardisisese turvakeskkonna nr. 1:

CLA	INS	P1	P2
00	22	F3	01

4) Verifitseerime PIN2:

CLA	INS	P1	P2	Lc	PIN2
00	20	00	02	05	31 32 33 34 35

5) Saadame kaardile käsu allkirja arvutamiseks:

CLA	INS	P1	P2	Lc	Räsiobjekt
00	2A	9E	9A		30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 14 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 12 13 14 15

Kaart vastab:

	Ootel baitide arv
61	80

6) Loeme ootel baidid:

CLA	INS	P1	P2	Le
00	C0	00	00	80

Kaart vastab:

Elektroonne allkiri: 80 (hex) baiti	OK trailer		
_	90	00	

11.2 Elektronallkirja arvutamine räsimisega kaardis

Elektronallkirja arvutamisel räsimisega kaardis on esimesed neli operatsiooni samad:

 Valime juurkataloogi (MF - ingl. Master File) käsuga SELECT FILE. Pärast kaardi alglaadimist võib selle käsu ka ära jätta, sest juurkataloog on siis vaikimisi valitud.

CLA	INS	P1	P2
00	A4	00	0C

2) Valime kataloogi EEEE käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	01	0C	02	EEEE

3) Seame kaardisisese turvakeskkonna (ingl. security environment) nr. 1:

CLA	INS	P1	P2
00	22	F3	01

4) Verifitseerime PIN2:

CLA	INS	P1	P2	Lc	PIN2
00	20		PIN2-koodi number = 02	PIN2-koodi pikkus	ASCII koodidena

5) Räsime allkirjastatava teksti kaardis.

Räsimiseks tuleb tekst saata kaardile 40 (hex)-baidiste blokkidena, kusjuures viimane blokk võib olla lühem.

Blokid, viimane välja arvatud, on niisugusel kujul:

CLA	INS	P1	P2	Lc	Andmed: 80 40 <40(hex)-baidine andmeblokk>
10	2A	90	A0	42	80 40

Viimane blokk on kujul:

CLA	INS	P1	P2	Lc	Andmed: 80 <viimase bloki="" pikkus=""><viimane andmeblokk=""></viimane></viimase>
00	2A	90	A0	Viimase bloki pikkus + 2	80L

Viimase bloki pikkus võib olla ka 40(hex)

baiti. Kui kasutusel on protokoll T=0, siis

vastab kaart

Kaardis on baite ootel	Ootel baitide arv - SHA-1 räsi pikkus
61	14

ning kaardil arvutatud räsi võib välja lugeda käsuga

CLA	INS	P1	P2	Le
00	C0	00	00	14

Kui kasutusel on protokoll T=1, võib viimast blokki kaardile saatva käsu lõppu lisada Le=14, mispeale kaart saadab tagasi arvutatud räsi. Kui Le käsu lõppu lisatud ei ole, vastab kaart T=1 protokolli all lihtsalt 90 00.

6) Saadame kaardile käsu arvutada allkiri kaardil oleva räsi kohta. Kaart lisab ise 20(dec) baidise räsi ette ASN.1 SHA-1 räsiobjekti moodustamiseks vajalikud baidid.

a) T=0 korral saadame:

CLA	INS	P1	P2
00	2A	9E	9A

b) T=1 korral saadame:

CLA	INS	P1	P2	Le
00	2A	9E	9A	80

Näide: Olgu vaja arvutada allkiri järgmisele tekstile (teksti pikkus on 8A baiti, ∪ tähistab tühikut), olgu PIN2="12345" ja kasutusel olgu protokoll T=0.

AutoUonUsõitjateUvõiUveosteUveoksUvõiUsõidukiteU haakesUvedamiseksUvõiUeritöödeUtegemiseksUettenähtudUvähe maltUneljarattalineUmootorsõiduk.

1) Valime juurkataloogi:

CLA	INS	P1	P2
00	A4	00	0C

2) Valime kataloogi EEEE:

CLA	INS	P1	P2	Lc	FID
00	A4	01	0C	02	EEEE

3) Seame kaardisisese turvakeskkonna nr 1:

CLA	INS	P1	P2
00	22	F3	01

4) Verifitseerime PIN2:

CLA	INS	P1	P2	Lc	PIN2
00	20	00	02	05	31 32 33 34 35

5) Kuna teksti pikkus on 8A baiti, tuleb räsi arvutada kolmes blokis, millest kahe esimese pikkus on 40(hex) baiti ja viimase pikkus on A.

Blokk1:

CLA	INS	P1	P2	Lc	80 40 <esimene 40(hex)-baidine="" andmeblokk=""></esimene>
10	2A	90	A0	42	80 40
					A utoUonUsõitjateUvõiUveosteUveoksUv
					õi∪sõidukite∪ haakes∪vedamisek

Blokk 2:

CLA	INS	P1	P2	Lc	80 40 <teine 40(hex)-baidine="" andmeblokk=""></teine>

10	2A	90	A0	42	80 40
					s∪või∪eritööde∪tegemiseks∪ettenähtud∪v
					ähemalt∪neljarattaline∪mootorsõiduk

Blokk 3:

CLA	INS	P1	P2		80 L <viimane 40(hex)-="" baidine="" lühem<br="" või="">andmeblokk></viimane>
00	2A	90	A0	0C	80 0A torsõiduk.

Kaart vastab:

	Ootel baitide arv
61	14

7) Loeme kaardilt arvutatud räsi (selle operatsiooni võib ka ära jätta):

CLA	INS	P1	P2	Le
00	C0	00	00	14

8) Arvutame elektroonse allkirja:

CLA	INS	P1	P2
00	2A	9E	9A

Kaart vastab:

	Ootel baitide arv
61	80

9) Loeme kaardilt elektroonse allkirja:

CLA	INS	P1	P2	Le
00	C0	00	00	80

Kaart vastab:

80 (hex baiti)	OK trailer
	90 00

12 Sessioonivõtme dekrüptimine

Sessioonivõtme dekrüptimisel dekrüptitakse salajase võtmega RSA krüptoblokk, mis on saadud PKCS#1 ver. 1.5 block type 2 järgi formateeritud andmebloki

krüptimisel vastava avaliku võtmega. Ühtlasi parsib EstEID kaart dekrüptimise tulemusel saadud andmebloki ning saadab välja vaid selles sisaldunud andmed.

Seega, NB!: Kui dekrüptimiseks etteantud andmeblokk ei ole vastava avaliku võtmega

krüptitud PKCS#1 ver. 1.5 block type 2 järgi krüptitud andmeblokk, siis tekib EstEID kaardis veasituatsioon.

Dekrüptimise operatsioon on võimalik nii autentimis- kui signeerimisvõtmega.

Sessioonivõtme dekrüptimiseks tuleb toimida nii:

1) Valime juurkataloogi (MF - *ingl. Master File*) käsuga SELECT FILE. Pärast kaardi alglaadimist võib selle käsu ka ära jätta, sest juurkataloog on siis vaikimisi valitud.

CLA	INS	P1	P2
00	A4	00	0C

2) Valime kataloogi EEEE käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	01	0C	02	EEEE

3) Seame kaardisisese turvakeskkonna (ingl. security environment) nr. 6:

CLA	INS	P1	P2
00	22	F3	06

4) Modifitseerime kaardisisest turvakeskkonda, kustutades viida autentimisvõtmele, st. ütleme kaardile, et autentimise operatsioone ei ole järgnevalt vaja teha⁴:

CLA	INS	P1	P2	Lc	Võtmeviit
00	22	41	A4	02	83 00

5) Modifitseerime kaardisisest turvakeskkonda, kustutades viida signeerimisvõtmele, st ütleme kaardile, et signeerimise operatsioone ei ole järgnevalt vaja teha:

CLA	INS	P1	P2	Lc	Võtmeviit
00	22	41	B6	02	83 00

6) Modifitseerime kaardisisest turvakeskkonda, seades viida võtmele, millega soovime dekrüptimise operatsiooni sooritada.

⁴ Nende operatsioonide olemuse kohta võib lähemat infot saada MICARDO User Manual'st

Kui soovime dekrüptida autentimisvõtmega, saadame järgneva käsu⁵:

CL	Α	INS	P1	P2	Lc	Võtmeviit
00		22	41	B8	05	83 03 80 11 00

Kui soovime dekrüptida signeerimisvõtmega, saadame järgneva käsu:

CLA	INS	P1	P2	Lc	Võtmeviit
00	22	41	B8	05	83 03 80 01 00

7) Kui soovime dekrüptida autentimisvõtmega, verifitseerime PIN1-koodi:

CLA	INS	P1	P2	Lc	PIN1
00	20		PIN1-koodi number = 01	PIN1-koodi pikkus	ASCII koodidena
			number – or	pikkus	Koodidena

Kui soovime dekrüptida signeerimisvõtmega, verifitseerime PIN2-koodi:

CLA	INS	P1	P2	Lc	PIN2
00	20		PIN2-koodi number = 02	PIN2-koodi pikkus	ASCII koodidena

- 8) Saadame kaardile käsu bloki dekrüptimiseks. Krüptitud bloki pikkus on 80(hex) baiti, kuna kasutatavad võtmed on 1024 bitti pikad:
 - a) T=0 korral saadame:

CLA	INS	P1	P2	Lc (1+80 baiti)		Krüptitud blokk
00	2A	80	86	81	00	

b) T=1 korral saadame:

CLA	INS	P1	P2	Lc (1+80 baiti)	1bait väärtusega 00	Krüptitud blokk	Le
00	2A	80	86	81	00		00

Le anname jällegi ette 00, kuna krüptoblokis oleva dekrüptitud andmebloki pikkus ei ole teada.

EstEID kaart vastab krüptoblokis sisaldunud andmeblokiga.

Näide: Olgu vaja dekrüptida blokk signeerimisvõtmega, olgu PIN2="12345" ja kasutusel protokoll T=0.

1) Valime juurkataloogi (MF - ingl. Master File) käsuga SELECT FILE. Pärast

⁵ Sellisel kujul on see käsk siis, kui kaardil ei ole pärast personaliseerimist genereeritud uut võtmepaari. Kui sellist eeldust ei ole võimalik kasutada, siis tuleb teostada veel mõned lisaoperatsioonid. Seda kirjeldatakse täpsemalt allpool

kaardi alglaadimist võib selle käsu ka ära jätta, sest juurkataloog on siis vaikimisi valitud.

CLA	INS	P1	P2
00	A4	00	0C

2) Valime kataloogi EEEE käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	01	0C	02	EEEE

3) Seame kaardisisese turvakeskkonna nr 6:

CLA	INS	P1	P2
00	22	F3	06

4) Modifitseerime kaardisisest turvakeskkonda, saates järgnevad kolm käsku:

CLA	INS	P1	P2	Lc	Võtmeviit
00	22	41	A4	02	83 00

CLA	INS	P1	P2	Lc	Võtmeviit
00	22	41	B6	02	83 00

Seame signeerimisvõtme dekrüptimise operatsiooni teostamiseks, st ütleme kaardile, et järgnevad dekrüptimisoperatsioonid tuleb teostada signeerimisvõtmega. Selleks saadame:

CLA	INS	P1	P2	Lc	Võtmeviit
00	22	41	B8	05	83 03 80 01 00

5) Verifitseerime PIN2-koodi:

CLA	INS	P1	P2	Lc	PIN2
00	20	00	02	05	3132 33 34 35

6) Saada kaardile käsu bloki dekrüptimiseks: me

CLA	INS	P1	P2	Lc (1+80 baiti)	1 bait väärtusega 00	Krüptitud blokk
00	2A	80	86	81	00	

Kaart vastab:

	Ootel baitide arv (krüptoblokis sisaldunud andmete hulk baitides)
61	

7) Loeme kaardilt elektroonse allkirja:

CLA	INS	P1	P2	Le (ootel baitide arv)
00	C0	00	00	

Kaart vastab:

Krüptoblokis sisaldunud andmed	OK Trailer
	90 00

13 Sertifikaatide uuendamine

EstEID kaardil on uuendatavad nii kasutajasertifikaadid (autentimissertifikaat ja signeerimissertifikaat) kui juursertifikaat (juhul, kui see on kaardile kirjutatud). Turvakaalutlustel ei ole lubatud sertifikaatide ülekirjutamine "otse" - ülekirjutamine on kaitstud turvamehhanismidega, mis ühtlasi tagavad ka, et sertifikaate on võimalik laadida vaid sellesse EstEID kaarti, millesse need kuuluvad. Katse laadida sertifikaat mõnesse teise EstEID kaarti, viib veasituatsiooni.

Rakendatav turvamehhanism seisneb selles, et kaardihalduskeskus ehk TMC (ingl. Token Mangement Centre) konverteerib sertifikaadi koodi käskudesse, mis sisaldavad vastavat MAC-koodi. Niisugusel kujul võtab see EstEID kaart, millesse sertifikaat kuulub selle ka vastu.

Sertifikaadi laadimise protseduur seisneb järgnevates operatsioonides:

- 1 Valida kaardil MF.
- 2. Seada kaardisisene turvakeskkond nr. 3.
- 3. Valida kaardil kataloog EE EE.
- 4. Verifitseerida PIN1-kood. PIN1-koodi verifitseerimine on mõeldud selleks,
 - et garanteerida sertifikaadi uuendamine kaardil vaid kaardi kasutaja teadmisel.
- 5. Lugeda järjest käsud TMC poolt antud sertifikaadi laadimiskoodi failist ning saata need kaardile.

Sertifikaadi laadimiskoodi failides on käsud HEX (ehk BCD) vormingus, igal real üks käsk (ridade eraldaja on LF - 0x0A).

Sertifikaadi uuendamise protseduur käskude tasemel näeb välja nii:

1) Valime juurkataloogi (MF - ingl. Master File) käsuga SELECT FILE.

CLA	INS	P1	P2
00	A4	00	0C

2) Seame kaardisisese turvakeskkonna (ingl. security environment) nr 3:

С	LA	INS	P1	P2
0	0	22	F3	03

3) Valime kataloogi EEEE käsuga SELECT FILE:

CLA	INS	P1	P2	Lc	FID
00	A4	01	0C	02	EEEE

4) Seame kataloogis EE EE uuesti kaardisisese turvakeskkonna (ingl. security environment) nr 3:

CLA	INS	P1	P2
00	22	F3	03

5) Verifitseerime PIN1-koodi:

CLA	INS	P1	P2	Lc	PIN1
00	20			PIN1-koodi pikkus	ASCII koodidena

6) Laeme uue sertifikaadi kaardile järgmise algoritmi järgi:

```
While (! EndOfFile)
{
    Line = ReadLineFromFile;
    Convert Line from BCD to Binary;
    If Protocol == T0 Remove Le byte;
    Transmit Line to EstEID card;
    }
}
```

Kui kõik sertifikaadi laadimiskoodi failis sisaldunud käsud on saadetud kaardile, ongi sertifikaat uuendatud.

14. Paroollausete seadmine ja muutmine, operatsioonide teostamine, tuvastades kasutaja paroollausega

14.1. Paroollause kasutamise põhimõte

Paroollause on piiramatu pikkusega märkide jada, mida kasutatakse 3DES võtme tuletamiseks. Sama 3DES võti on salvestatud EstEID kaardile. Seda võtit on võimalik kasutada turvalise ühenduse loomiseks EstEID kaardi ja hostrakenduse vahel, kuid ka kasutaja tuvastamiseks, sest paroollauset, nagu PIN-koodigi, teab ainult kaardi õiguspärane kasutaja. Seega suudab ainult tema sisestada host-rakendusse (paroollause kaudu) salajase võtme, mille abil saab sooritada EstEID PKI operatsioone.

Paroollausega tuvastamise korral on operatsiooni sooritamise protseduuri sammude järjekord järgmine:

- 1. Kasutaja sisestab paroollause;
- 2. Host-rakendus tuletab paroollausest 3DES võtme;

- 3. Vastastikuse interaktsiooni käigus tuletavad kaart ja host-rakendus unikaalse sessioonivõtme:
- 4. Sessioonivõtmega krüptitakse kaardile saadetavate käskude sisu ning arvutatakse krüptograafilised kontrollsummad. Katse sooritada operatsiooni ebaõige võtmega viib veasituatsiooni. EstEID kaardilt saabuvad vastused on samuti krüptitud ning sisaldavad krüptograafilisi kontrollsummasid.

Allpool vaatleme näite varal iga sammu üksikasjalikult.

EstEID kaardil on kaks paroollausest tuletatavat võtit – 3DESKey1 ja 3DESKey2, millest esimene võimaldab sooritada operatsioone autentimisvõtmega ja teine allkirjastamisvõtmega. Katse sooritada operatsiooni teise 3DES võtmega (näiteks - arvutada elektroonilist allkirja 3DESKey1 abil), viib veasituatsiooni.

14.2. Võtme tuletamine paroollausest

Paroollausest võtme tuletamise protseduur on kokkuleppeline, mitte EstEID kaardi omadus. Vajadus ühtse protseduuri järele on tingitud sellest, et tagada sama paroollause kehtivus erinevates rakendustes.

Välja on pakutud järgmine protseduur: arvutatakse paroollause SHA-1 räsi; võetakse saadud räsi 16 vasakpoolsemat baiti; iga baidi noorim bitt seatakse nii, et bait oleks paaritu, sest EstEID kaart nõuab seda. Vale paarsusega baidi sisaldumine EstEID kaardi võtmes viib veasituatsiooni.

Märkus: Valmistamise ajal seatakse EstEID kaardi mõlema 3DESKey väärtuseks 00..00 (kõik nullbaidid). Seda võtit ei sa kasutada, kuna nullbaidid on paarisbaidid.

Olgu paroollause1 (3DESKey1 tuletamiseks) järgmine:

Kaks\u00c4kurja\u00c4kukke\u00c4kaklevad\u00c4kuudi\u00c4katusel.

ja paroollause2 (3DESKey2 tuletamiseks) järgmine (ka edaspidistes näidetes kasutatakse neid lauseid):

See on minu parollause 2.

kus ∪ tähistab tühikut.

Arvutame nende lausete SHA-1 räsid:

Paroollause1 räsi:

63	F0	EA	AD	E2	7E	5F	CA	D2	5A	09	СВ	3F	E3	96	5E	43	7B	DA	F9
	_					_			_			_	_		_				

Paroollause2 räsi:

30	Δ1	DB	94	DF	29	BC.	65	Δ8	17	25	2R	Δ6	73	88	FF	9R	7R	D6	43
00	/ \ 1	טט	J-T	וטו	20	00	00	7.0	.,	20	20	7.0	70	00	. –	00	10	00	70

Võtame räsidest 16 vasakpoolsemat baiti ning seame iga baidi noorema biti nii, et bait oleks paaritu. Tulemuseks saame:

3DESKey1:

3DESKey2:

Neid võtmeid kasutatakse ka edaspidistes näidetes.

14.3. Paroollausete seadmine kaardile

3DESKey1 asub juurkataloogi (MF) failis FID=0010 kirjes nr 1 ja 3DESKey2 asub sama faili kirjes nr 2.

3DESKey seadmine seisneb võtme väärtuse kirjutamisel vastavasse kirjesse järgmise nüansiga:

3DESKey1 võtme väärtuse ette tuleb lisada baidid '04 00' ja 3DESKey2 väärtuse ette tuleb lisada baidid '05 00'⁶. Seega on kummagi võtmekirje pikkuseks 0x12 baiti.

14.3.1. Paroollause seadmine PIN2-koodiga autoriseerides

Paroollause1 seadmiseks autoriseerimisel PIN2-koodiga toimime järgmiselt:

1. Seame kaardisisese turvakeskkonna nr 1:

CLA	INS	P1	P2
00	22	F3	01

2. Verifitseerime PIN2-koodi:

CLA	INS	P1	P2	Lc	PIN2				
00	20	00	02	05	31	32	33	34	35

3. Valime juurkataloogi ja seejärel faili FID=0010

CLA	INS	P1	P2
00	A4	00	0C

CLA	INS	P1	P2	Lc	FID	
00	A4	02	0C	02	00	10

4. Kirjutame selle faili kirje nr 1 üle järgmise käsuga (P1 = kirje number):

CLA	INS	P1	P2	Lc	Võt ID	me	Võti	me va	äärtus	3												
00	DC	01	04	12	04	00	62	F1	EA	AD	E3	7F	5E	CB	D3	5B	80	CB	3E	E3	97	5E

Paroollause2 seadmiseks kirjutame võtme väärtuse sama faili kirjesse nr 2:

⁶ Need on võtmete (järjekorra)numbrid EstEID kaardi sisemise struktuuri tarvis. Lähemalt vaata MICARDO kaardi juhendist.

CLA	INS	P1	P2	Lc	Võtı	me	Võt	me vä	äärtus													
					ID																	
00	DC	02	04	12	05	00	31	A1	DA	94	DF	29	ВС	64	A8	16	25	2A	A7	73	89	FE

14.3.2. Paroollause seadmine senise paroollausega autoriseerides

Paroollauset on võimalik seada (st kirjutada kaardile juurkataloogi faili FID=0010 võtme uus väärtus) ka autoriseerides senise (st momendil juurkataloogi failis FID=0010 oleva) võtmega.

Tuleb tunnistada, et see operatsioon on keerulisem, kui paroollause seadmine PIN2-ga autoriseerimisega, kuna eeldab EstEID turvalise kommunikatsiooni ülesseadmist kaardi ja host-rakenduse vahel.

NB! Kui PIN2-ga autoriseerides saame seada nii paroollause1 kui parollause2, siis senise paroollausega autoriseerides tuleb autoriseerida senise paroollausega1 uue parollause1 seadmiseks ja senise parollausega2 uue paroollause2 seadmiseks.

Olgu kehtivad paroollaused eelmises peatükis seatud paroollause1 = "Kaks kurja kukke kaklevad kuudi katusel." ja paroollause2 = "See on minu paroollause2.".

Olgu uus paroollause1 järgmine:

Kured∪läinud∪-∪kurjad∪ilmad.

kus ∪ tähistab tühikut.

Sellest paroollausest tuletatud võti 3DESKey1 on järgmine:

3DESKey1-le uue väärtuse seadmiseks toimime nii:

1) Valime juurkataloogi ja seejärel faili FID=0010:

CLA	INS	P1	P2
00	A4	00	0C

CLA	INS	P1	P2	Lc	FID	
00	A4	02	0C	02	00	10

2) Seame kaardisisese turvakeskkonna nr 2:

CLA	INS	P1	P2
00	22	F3	02

3) Saadame kaardile käsu GET CHALLENGE, et saada kutsung, mis koosneb kaheksast juhuslikult genereeritud baidist:

1	CLA	INS	P1	P2	Le
Ì	00	84	00	00	08

Märkus: Siit alates ei ole see näide enam täpselt korratav, kuna kaardi poolt väljastatav kutsung on iga kord erinev.

Näites kasutatud juhul vastas kaart järgmiselt:

Kutsu	ıng							OK tra	iler
06	F3	22	BD	D4	84	88	A3	90	00

4) Järgmisena genereerime 2 juhuslikku väärtust, millest esimene – RND_IFD – on 8 baiti pikk ja teine – K_IFD – on 32 baiti pikk. Olgu meie näites need väärtused

RND_IFD = **01 02 03 04 05 06 07 08**ja

K_IFD = **11 12 13 14 15 16 17 18**21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

Märkus: Praktikas töötavad rakendused peavad maksimaalse turvalisuse tagamiseks kasutama paremaid juhuslike väärtuste genereerimise meetodeid.

5) Moodustame bloki RND_IFD || Kaardilt saadud kutsung || K_IFD, meie näites:

RND_IFD, 8 baiti	Kaardi kutsung, 8 baiti	K_IFD, 32 baiti
0108	06A3	1148

6) Krüptime selle bloki momendil kehtiva 3DESKey1-ga (see on tuletatud paroollausest "Kaks kurja kukke kaklevad kuudi katusel.") 3DES CBC režiimis, kusjuures ICV="00 00 00 00 00 00 00 00". Tulemus on:

F2 C9 DC DE 89 96 5D 10 8E 88 58 10 FΒ 3D C5 D6 9B 2E 20 1E 8C **E6** D7 36 **B5** C8 BB **C7** 1F **E4** C9 D₅ 74 10 C1 **7D** 10 E9 F4 **E8** F3 FF 7E D5 ΑE **A8** 90 17

7) Moodustame käsu MUTUAL AUTHENTICATE ja saadame kaardile. P2 = võtme number, mis 3DESKey1 puhul on 04:

CLA	INS	P1	P2	Lc	Moodustatud blokk	Le
00	82	00	04	30	F217	30

Kaart vastab järgmiselt:

Vastusblokk, 0x30 bai	ti OK t	railer
	90	00

Meie näites on vastusblokk järgmine:

2B CF 2B FD 2B 4A 0B **E2** C1 ED FA 5F **D8** FΕ F2 73 74 BA AB D0 17 48 DA 29 41 FF **B8** 33 47 2C 77 35 **3B** 56 C3 **5A** EA **B6** 31 70 D5 EA 6A 45 CA C4

8) Vastusblokk on krüptitud 3DESKey1-ga 3DES CBC-režiimis, kus ICV="00 00 00 00 00 00 00". Dekrüptime selle bloki, tulemus on järgmine:

06 F3 22 BD **D4** 84 88 **A3** 01 02 03 04 05 06 07 80 69 DA 9F 6F F4 27 **A7** 8B **B6** DB 43 **8B B7 7A C7** 89 6F 33 DB **B5** 9D 79 9F F2 **C1** AB EΑ **1B B8** 81 48

9) Sooritame järgmise operatsiooni:

(K_IFD) XOR (dekrüptitud vastusblokk[0x10..0x2F])

seega, XOR-me K_IFD dekrüptitud vastusbloki baitidega 16(dec)...47(dec). Tulemus on järgmine:

78 C8 8C 7B **E1** 31 B₀ 93 97 **A9** F8 93 5F E1 ΑE **6B** 01 **E8** 81 **A8** 4F **A8** CA 80 **E9 A9** 5F FD 02 C6 00

Siinkohal olemegi saanud esmase tulemuse – on tuletatud 2 EstEID turvalise kommunikatsiooni sessioonivõtit ja 8-baidine sõnumiloendur (ik 'send sequence counter').

Ülaltoodud tabeli ülemine rida, "78...6B" on sessioonivõti1 – SK1 – ja alumine rida "5E...00" on sessioonivõti2 – SK2.

Sõnumiloenduri algväärtuse saame järgmiselt: sõnumiloenduri baidid 0..3 on kaardilt saadud dekrüptitud vastusbloki (vt punkt 8 eelpool) baidid 0xC kuni 0x10 ja sõnumiloenduri baidid 4..7 on sama bloki baidid 4..7. Seega on sõnumiloendur meie näites:

SSC = 05 06 07 08 D4 84 88 A3

Järgnevalt võime asuda operatsiooni sooritamisele EstEID turvakommunikatsiooni all.

10) Sõnumiloendurit tuleb suurendada ühe võrra **enne iga** sessioonivõtmetega sooritatavat operatsiooni. **Sõnumiloenduri noorim bait on kõige parempoolsem**. Seega, suurendades sõnumiloendurit ühe võrra, saame

SSC = 05 06 07 08 D4 84 88 A4

11) Moodustame faili FID=0010 kirje nr 1 ülekirjutamise käsu sarnaselt juhule, kui autoriseeritakse PIN2 abil:

	CLA	INS	P1	P2	Lc	Võt II	me D	Võtme väärtus uuest paroollauses "Kured läinud – kurjad ilmad." 85 92 9D 57 D9 40 76 7A 97 89 E6 32 DC 07 BA 70															
Ī	00	DC	01	04	12	04	00	85	92	9D	57	D9	40	76	7A	97	89	E6	32	DC	07	BA	70

Seda käsku ei saa aga saata otse kaardile. Andmevälja (so 'Võtme ID' + 'Võtme väärtus') tuleb töödelda sessioonivõtmete ja sõnumiloenduriga.

Selle käsu andmeväli tuleb krüptida 3DES algoritmiga. Selleks tuleb lisada blokile lõppu bait 0x80 ja seejärel nii mitu nullbaiti, et baitide arv blokis oleks 8 kordne.

Märkus: Kui bloki pikkus on kaheksa kordne juba ilma täiendavaid baite lisamata, siis lisame 8 baiti: "80 00 00 00 00 00 00 00".

Käesoleval juhul nii:

Г	04	00	85	92	9D	57	D9	40	76	7A	97	89	E6	32	DC	07	ВА	70	80	00	00	00	00	00

Järgnevalt krüptime selle bloki SK1-ga 3DES CBC režiimis, kusjuures ICV-na kasutame sõnumiloendurit. Tulemus on:

08 BB 57 9A AB 1B A2 B5 D5 BB 1E 83 16 F0 AC F8 94 DD 24 7F CF 16 F9 FB

14) Konstrueerime punktis 11 moodustatud käsu uuesti järgmiselt:

CLA	INS	P1	P2	Lc	Püsiväärtus	Järgneva	Püsiväärtus	Eelmises punktis saadud krüptoblokk
						bloki		
						pikkus		
0C	DC	01	04	Lahtine	87	19	01	08FB

NB! $CLA\ bait = 0x0C$, mis tähendab, et käsus kasutatakse turvakommunikatsiooni.

15) Moodustame ajutiselt järgmise bloki:

Käsu päis, laiendatud pikkuseni 8 baiti

Käsu andmeväli, laiendatud pikkuseni, mis on 8 kordne

Antud juhul seega:

0C	DC	01	04	80	00	00	00
87	19	01	80	BB	57	9A	AB
1B	A2	B5	D5	BB	1E	83	16
F0	AC	F8	94	DD	24	7F	CF
16	F9	FB	80	00	00	00	00

16) Arvutame saadud bloki MAC-koodi 3DES CFB režiimis, kasutades võtmena SK1 ja ICV-na sõnumiloendurit. Tulemus on:

MAC = 87 94 E4 7E E2 CB 00 1F

17) Moodustame lõpliku käsu, lisades punktis 14 koostatule arvutatud MAC-koodi ning seades paika Lc väärtuse. Vajadusel (kasutades T=1 protokolli) lisame ka Le, **mis on alati 0**:

CLA	INS	P1	P2	Lc	Püsi- väärtus	Järgneva bloki pikkus	Püsi- väärtu s	Punktis 13 saadud krüptoblokk	Püsi- väärtus	Püsi- väärtu s	Arvutatud MAC- kood	Le
0C	DC	01	04	25	87	19	01	08FB	8E	08	871F	0

Selle käsu saadame kaardile.

Kaart vastab:

Püsiväärtused		OK Trail	Püsiväärtused er'		Vastuse MAC							OK Trailer			
99	02	90	00	8E	08	51	СВ	48	70	4D	6C	DA	4C	90	00

OK Trailer "90 00" näitab, et turvakommunikatsioon töötas korrektselt, OK Trailer "90 00" näitab, et ka turvakommunikatsiooni all edastatud kaardi käsk töötas korrektselt.

Järgnevalt seisab ees kaardilt saadud vastuse autentsuse kontroll vastuse MAC-koodi abil. Selleks:

18) Suurendame ühe võrra sõnumiloendurit:

SSC = 05 06 07 08 D4 84 88 A5

19) Laiendame vastuses sisaldunud andmed pikkuseni, mis on 8 kordne:

99 02 90 00 80 00 00 00

20) Arvutame selle bloki MAC-koodi 3DES CFB režiimis, kasutades võtmena SK1 ja ICV-na sõnumiloendurit (analoogselt punktis 16 tehtule). Tulemus on:

MAC = 51 CB 48 70 4D 6C DA 4C

Seega võrdub arvutatud MAC-kood kaardilt saadud MAC-koodiga.

Sellega on paroollause1 asendamine, autoriseerides senise paroollausega, edukalt lõpule viidud. Uus paroollause on "Kured läinud - kurjad ilmad."

Paroollause2 asendamine senise paroollausega autoriseerides toimub analoogselt järgmiste variatsioonidega:

- Sessioonivõtmete ja sõnumiloenduri tuletamine toimub 3DESKey2 abil, mille järjekorranumber EstEID kaardil on 5 (P2 = 5 punktis 7)
- 2. Üle kirjutada tuleb kirje nr 2, st P1 = 2 punktis 11 moodustatud käsus.

Märkus:

Viga sessioonivõtmete ja sõnumiloenduri tuletamisel (näiteks vale võtme kasutamine host-rakenduses) viib vastava 3DESKey valesisestuste loenduri vähenemisele ühe võrra. Loenduri algväärtus on 0xFF ning loendurit uuendada ei ole võimalik. Kui loenduri väärtus on jõudnud nulli, ei ole selle paroollausega autoriseerimist enam võimalik kasutada.

3DESKey valekasutuskordade loendurite väärtuste kaardilt lugemise kohta vaata juhendi esimesest osast.

14.4. Operatsioonide teostamine paroollausega autoriseerides

Nende operatsioonide teostamine paroollausega autoriseerides on analoogne paroollause seadmisele senise paroollausega autoriseerides (vt punkt 3.3.1), koosnedes järgmistest sammudest:

- 1. Tuletatakse sessioonivõtmed ja sõnumiloendur vastavast 3DESkey-st.
- 2. Konstrueeritakse käsk analoogselt PIN-koodiga autoriseerimise juhule.
- Turvatakse see käsk sessioonivõtmete ja sõnumiloenduriga.
 Saadetakse käsk kaardile ning loetakse vastus.
- 5. Kontrollitakse vastuse autentsust.

Allpool vaatleme iga operatsiooni näite varal eraldi.

Järgnev tabel näitab, missugust paroollauset tuleb erinevateks operatsioonideks kasutada:

	SSL-kutsungile vastuse arvutamine	Elektronallkirja arvutamine	Sessioonivõtme dekrüptimine autentimisvõtmega	Sessioonivõtme dekrüptimine allkirjavõtmega
Paroollause1	Jah		Jah	
Paroollause2		Jah		Jah

14.4.1. SSL-kutsungile vastuse arvutamine

Olqu meil paroollause1 "Kured läinud - kurjad ilmad" ning SSL-kutsung "30 31 32 33 34 35 36 37 38 39" (kasutame siin ülevaatlikkuse huvides lühendatud kutsungit).

Paroollausest tuletatud 3DESKey1 on, nagu eelmises peatükis arvutatud:

85 92 9D 57 D9	40 76 7A 97	89 E6 32	DC 07 BA	70
------------------------	-------------------	----------	----------	----

1) Seame turvakeskkonna 2 nii juurkataloogis kui EEEE kataloogis. Selleks:

Valime juurkataloogi:

CLA	INS	P1	P2
00	A4	00	0C

Seame kaardisisese turvakeskkonna nr 2:

CLA	INS	P1	P2
00	22	F3	02

Valime kataloogi EEEE:

CLA	INS	P1	P2	Lc	F	D
00	A4	01	0C	02	EE	EE

Seame **uuesti** kaardisisese turvakeskkonna nr 2:

CLA	INS	P1	P2
00	22	F3	02

2) Tuletame sessioonivõtmed SK1, SK2 ja sõnumiloenduri SSC sarnaselt peatükis 3.3.2 "Paroollause seadmine senise paroollausega autoriseerides" tehtuga, vt punktid 3..9.

Märkus: Siit alates ei ole see näide enam täpselt korratav, kuna tuletatud sessioonivõtmed SK1, SK2 ja sõnumiloendur SSC on iga kord erinevad..

Olgu selles näites

SK1 = BA DA 02 DE 36 FB A7 BE 17 1D 8E A8 77 22 0D 78

SK2 = 44 76 34 30 52 2B 5D A3 76 90 84 B2 DD F4 60 37

ja SSC = **05 06 07 08 F9 2D E6 B3**

3) Suurendame sõnumiloendurit ühe võrra:

SSC = 05 06 07 08 F9 2D E6 B4

4) Lisame kutsungile paremalt baidi 0x80 ja seejärel nii mitu nullbaiti, et saadud bloki pikkus oleks 8 kordne.

Märkus: Kui kutsungi bloki pikkus on kaheksa kordne juba ilma täiendavaid baite lisamata, siis lisame ikkagi 8 baiti: "80 00 00 00 00 00 00 00".

Antud juhul saame:

30 31 32 33 34 35 36 37 38 39 80 00 00 00 00 00	30	31	32	33	34	35	36	37	38	39	80	00	00	00	00	00
---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

5) Krüptime selle bloki 3DES CBC režiimis võtmega SK1, kusjuures ICV-na kasutame sõnumiloendurit (mida sai punktis 3 ühe võrra suurendatud). Tulemuseks saame:

29	5E	DE	E3	41	2A	82	30	0E	F8	74	C8	23	7E	6C	CD

6) Moodustame käsubloki järgnevalt:

	Püsi- väärtu s	Järgnevate andmete pikkus	Püsi- väärtus	Eelmisel sammul saadud blokk, pikkus 0x10 baiti	Püsi- väärtus	Püsi- väärtus	Püsi- väärtus
	3	pikkus					
ſ	87	11	01	29CD	97	01	80

Lõppu lisatud baidid "97 01 80" tähendavad, et oodatav vastuse pikkus on 0x80 baiti – 1024-bitine RSA krüptoblokk.

7) Moodustame SSL-kutsungile vastuse arvutamise käsu päise. See on analoogne PIN1-ga autoriseerimisel kasutatava käsu päisega, erinedes vaid CLA baidi osas, mille väärtus on 0x0C:

CLA	INS	P1	P2
0C	88	00	00

8) Moodustame ajutiselt järgmise bloki:

Käsu päis, laiendatud pikkuseni 8 baiti

Sammul 6 moodustatud andmeväli, laiendatud pikkuseni, mis on 8 kordne

Meie näites:

Päis	Päise laiendus pikkuseni 8	Sammul 6 saadud blokk	Sammul 6 saadud bloki laiendus pikkuseni, mis on 8 kordne
0C 88 00 00	80 00 00 00	8780	80 00

9) Arvutame eelmisel sammul saadud bloki MAC-koodi 3DES CFB režiimis, kasutades võtmena SK2 ja ICV-na sõnumiloendurit. Tulemus on:

MAC = 20 10 A7 C3 10 84 A0 59

10) Koostame käsu kaardile saatmiseks. Kui protokoll on T=1, tuleb lõppu lisada ka Le=0:

CLA	INS	P1	P2	Lc	Püsi- väärtu s	Järgneva bloki pikkus	Püsi- väärtu s	Punktis 5 saadud krüptoblokk	Püsi- väärtu s	Püsi- väärtu s	Arvutatud MAC- kood	Le
0C	88	00	00	20	87	11	01	29CD	8E	08	2059	00

Kaart vastab:

F	Püsiväärtused			Krüptitud kutsungivastus, 0x88 baiti	Püsivä	ärtused	MAC, 8 baiti	OK Trailer
87	81	89	01	8E 08		08	1E E7 D9 C2 42 41 D6 63	90 00

EstEID kaart lisab kaardilt väljasaadetavatele krüptitud andmeobjektidele samasuguse pikenduse (et pikkus oleks 8 kordne) kui tuleb lisada kaardile saadetavatele objektidele (vt punkt 4 ülalpool). Kuna kutsungivastuse pikkus on 0x80 baiti, mis on 8 kordne, siis lisab kaart sellele lõppu veel 8 baiti: "80 00 00 00 00 00 00".

Järgnevalt tuleb kontrollida kaardilt saadud vastuse autentsust, arvutades MAC-koodi ning võrreldes seda kaardilt saabunud MAC-koodiga.

11) Suurendame sõnumiloendurit ühe võrra:

SSC = 05 06 07 08 F9 2D E6 B5

12) Moodustame kaardilt saabunud vastusest ajutiselt järgmise bloki, kust jätame lõpust ära MAC-objekti (tagi 0x8E, pikkuse 0x08 ja MAC väärtuse) ning lisame selle asemele "80 00 00 00", et saadud bloki pikkus oleks 8 kordne.

F	Püsivää	rtused		Krüptitud kutsungivastus, pikkus 0x88 baiti	Püsiväärtused		
87	87 81 89 01				80 00 00 00		

13) Arvutame eelmisel sammul saadud bloki MAC-koodi 3DES CFB režiimis, kasutades võtmena SK2 ja ICV-na sõnumiloendurit. Meie näites on tulemus:

MAC = 1E E7 D9 C2 42 41 D6 63

See on võrdne kaardilt saabunud MAC-koodiga.

14) Dekrüptime kutsungivastuse võtmega SK1 3DES CBC režiimis. Tulemus on järgmine:

Kutsungivastus, pikkus 0x80 baiti	Laiendus pikkusega 8 baiti
	80 00 00 00 00 00 00 00

Jätame lõpust laienduse ära ning arvutatud kutsungivastus ongi käes.

14.4.2. Elektroonse allkirja arvutamine

Elektroonse allkirja arvutamine paroollausega autoriseerides on sarnane SSL-kutsungile vastuse arvutamisega. Erinevused on järgmised:

- Kasutada tuleb paroollauset2 (3DESKey2); katse autoriseerida paroollause1-ga viib veasituatsiooni.
- 2) Käsu päis on järgmine (vt punkt 7 peatükis 3.4.1):

CLA	INS	P1	P2
0C	2A	9E	9A

ning (turvamata) andmeväljale tuleb kutsungi asemele paigutada räsiobjekt (vt punkt 4 peatükis 3.4.1).

Loe elektroonse allkirja arvutamise kohta ka juhendi esimese osa peatükist 11.1 "Elektronallkirja arvutamine, kui räsi on valmis"⁷.

14.4.3. Sessioonivõtmete dekrüptimine

Ka sessioonivõtme dekrüptimise käskude turvamine paroollausega autoriseerimise korral on analoogne SSL kutsungile vastuse ja elektronallkirja arvutamise käskude turvamisega, kuid siiski mitmete määravate nüanssidega. Seetõttu vaatleme seda operatsiooni lähemalt.

Sessioonivõtme dekrüptimiseks autentimisvõtmega tuleb autoriseerimiseks kasutada paroollauset1 ja dekrüptimisel signeerimisvõtmega tuleb autoriseerimiseks kasutada paroollauset2. Vastupidine viib veasituatsiooni.

Olgu meie paroollause2 "See on minu paroollause2." Ja sessioonivõtit sisaldav krüptoblokk pikkusega 0x80 baiti järgmine:

Paroollausest tuletatud 3DESKey2 on, nagu peatükis 3.2 arvutatud:

⁷ Elektronallkirja arvutamise võimaluse kohta paroollausega autoriseerides ja kasutades räsimist kaardil, info puudub. Samas puudub ka nähtav vajadus selle operatsiooni järele, sest paroollauset kasutatakse suuremates, täisklaviatuuriga seadmetes, kus räsifunktsioon on olemas süsteemses tarkvaras ning kaardil räsimiseks puudub vajadus.

30	Δ1	DB	94	DF	29	BC	65	Δ8	17	25	2B	Δ6	73	88	FF	9R	7B	D6	43
00	\sim 1	טט	J-T	וטו	23		00	70			20	70	, ,	UU		30	, 0	יט	TO

 Seame turvakeskkonna 2 juurkataloogis ja turvakeskkonna 7 EEEE kataloogis. Selleks:

Valime juurkataloogi:

CLA	INS	P1	P2
00	A4	00	0C

Seame kaardisisese turvakeskkonna nr 2:

CLA	INS	P1	P2		
00	22	F3	02		

Valime kataloogi EEEE:

CLA	INS	P1	P2	Lc	F	D
00	A4	01	0C	02	EE	EE

Seame kaardisisese turvakeskkonna nr 7:

CLA	INS	P1	P2
00	22	F3	07

2) Järgnevalt tuleb modifitseerida kaardisisest turvakeskkonda. Need operatsioonid on analoogsed sessioonivõtme dekrüptimisega PIN-koodiga autoriseerides (vt juhendi esimese osa peatüki 12 punktid 4..6).

Modifitseerime kaardisisest turvakeskkonda, kustutades viida autentimisvõtmele, st ütleme kaardile, et autentimise operatsioone ei ole järgnevalt vaja teha:

CLA	INS	P1	P2	Lc	Võtmeviit
00	22	41	A4	02	83 00

Modifitseerime kaardisisest turvakeskkonda, kustutades viida signeerimisvõtmele, st ütleme kaardile, et signeerimise operatsioone ei ole järgnevalt vaja teha:

CLA	INS	P1	P2	Lc	Võtmeviit
00	22	41	B6	02	83 00

Modifitseerime kaardisisest turvakeskkonda, seades viida võtmele, millega soovime dekrüptimise operatsiooni sooritada. Kui soovime dekrüptida signeerimisvõtmega, saadame järgneva käsu⁸:

CLA	INS	P1	P2	Lc	Võtmeviit
00	22	41	B8	05	83 03 80 01 00

Märkus: Autentimisvõtmega dekrüptimiseks oleks võtmeviit "83 03 80 11 00".

3) Tuletame sessioonivõtmed SK1, SK2 ja sõnumiloenduri SSC sarnaselt peatükis 3.3.2 "Paroollause seadmine senise paroollausega autoriseerides" tehtuga, vt punktid 3..9. Kasutada tuleb 3DESKey2, st võtme järjekorranumber EstEID kaardis on **5** (3DESKey1 korral 4).

⁸ Sellisel kujul on see käsk siis, kui kaardil ei ole pärast personaliseerimist genereeritud uut võtmepaari. Kuidas toimida siis, kui sellist eeldust ei ole võimalik kasutada, vaata järgmisest peatükist.

Olgu selles näites

SK1 = EB 08 02 E5 4A 25 07 2B B6 98 33 6F 6C B3 E9 E5

SK2 = D9 B1 E7 B0 04 21 4F 42 E8 8D 9D CD 50 1D FD 82

ja SSC = **05 06 07 08 B6 E4 C8 2C**

4) Suurendame sõnumiloendurit ühe võrra:

SSC = 05 06 07 08 B6 E4 C8 2D

5) Lisame krüptoblokile ette (vasakule) ühe nullbaidi, nii et bloki pikkus on nüüd 0x81 baiti:

00 21 A6 ... B9 E1

6) Lisame kutsungile paremalt baidi 0x80 ja seejärel nii mitu nullbaiti, et saadud bloki pikkus oleks 8 kordne. Kuna eelmine operatsioon andis bloki pikkuseks 0x81 baiti, siis selle operatsiooni tulemusena on blokk selline

1 nullbait	Krüptoblokk, pikkus 0x80 baiti	Laiendus
00	21 A6B9 E1	80 00 00 00 00 00 00

7) Krüptime selle bloki 3DES CBC režiimis võtmega SK1, kusjuures ICV-na kasutame sõnumiloendurit (mida sai punktis 4 ühe võrra suurendatud). Tulemusena saame:

Krüptitud blokk, pikkus 0x88 baiti	
36 0D E2 53	

8) Moodustame käsubloki järgnevalt:

Püsiväärtused	Eelmisel sammul saadud blokk, pikkus 0x88 baiti	Püsi- väärtus	Püsi- väärtus	Püsi- väärtus (Le')
87 81 89 01	36 0DE2 53	97	01	00

Lõppu lisatud baidid "97 01 00" tähendavad, et oodatav vastuse pikkus ei ole teada ja seega antakse pikkuse väärtuseks 0. Krüptoblokis sisaldub tavaliselt SSL sessiooni andmete krüptimise salajase võtme ASN.1 järgi kodeeritud objekt, kusjuures kasutada võidakse väga mitmesuguseid ja erineva võtmepikkusega krüptoalgoritme. Seetõttu ei ole võimalik ette teada krüptoblokis sisalduva võtmeobjekti pikkust ning kaardilt oodatavate andmete pikkuseks seatakse Le'=0.

9) Moodustame SSL-kutsungile vastuse arvutamise käsu päise. See on analoogne PIN1-ga autoriseerimisel kasutatava käsu päisega, erinedes vaid CLA baidi osas, mille väärtus on 0x0C:

CLA	INS	P1	P2		
0C	2A	80	86		

10) Moodustame ajutiselt järgmise bloki:

Käsu päis, laiendatud pikkuseni 8 baiti

Sammul 8 moodustatud andmeväli, laiendatud pikkuseni, mis on 8 kordne

Meie juhul:

Päis	Päise laiendus pikkuseni 8	Sammul 8 saadud blokk	Sammul 8 saadud bloki laiendus pikkuseni, mis on 8 kordne
0C 2A 80 86	80 00 00 00	87 81 89 01 36 53 97 01 00	80

11) Arvutame eelmisel sammul saadud bloki MAC-koodi 3DES CFB režiimis kasutades võtmena SK2 ja ICV-na sõnumiloendurit. Antud juhul on tulemus:

MAC = 53 2B 42 7E 06 87 29 7A

12) Koostame käsu kaardile saatmiseks. Kui protokoll on T=1, siis tuleb lõppu lisada ka **Le=0**:

CLA	INS	P1	P2	Lc	Püsiväärtused	Punktis 7 saadud krüptoblokk, pikkus 0x88	Püsi- väärtuse d	Arvutatud MAC-kood	Le	
0C	2A	80	86	99	87 81 89 01	36 0D E2 53	8E 08	537A	0	

Kaart vastab:

Püsi- väärtu s	Järgneva andmebloki pikkus	Püsi- väärtus	Krüptitud sessioonivõti	Pü väärt	si- used	MAC, 8 baiti	OK Trailer
87	11	01	F7 32 40 48 18 D5 67 96 26 1E 5B B8 6C BB 4D 14	8E	80	60 19 E8 61 7C 6D 88 25	90 00

Järgnevalt tuleb kontrollida kaardilt saadud vastuse autentsust, arvutades MAC-koodi ning võrreldes seda kaardilt saabunud MAC-koodiga.

13) Suurendame sõnumiloendurit ühe võrra:

SSC = 05 06 07 08 B6 E4 C8 2E

14) Moodustame kaardilt saabunud vastusest ajutiselt järgmise bloki: jätame lõpust ära MAC-objekti (tagi 0x8E, pikkuse 0x08 ja MAC väärtuse) ning lisame selle asemele "80 00 00 00", et saadud bloki pikkus oleks 8 kordne.

Ρί	isiväärtu	ısed	Krüptitud sessioonivõti	Püsiväärtused		
87	11	01	F7 32 40 48 18 D5 67 96 26 1E 5B B8 6C BB 4D 14	80 00 00 00 00		

15) Arvutame eelmisel sammul saadud bloki MAC-koodi 3DES CFB režiimis, kasutades võtmena SK2 ja ICV-na sõnumiloendurit. Meie juhul on tulemus:

MAC = 60 19 E8 61 7C 6D 88 25

16) Dekrüptime kaardilt saadud andmebloki, kasutades 3DES-võtmena SK1 ja ICV-na sõnumiloendurit. Tulemuseks saame:

30 31 32 33 34 35 36 37 38 39 80 00 00 00 00 00

17) Jätame lõpust ära laienduse, saame sessioonivõtme objekti väärtuseks ASCII kujul "0123456789".

15. Sessioonivõtme dekrüptimine juhul, kui kaardil on pärast personaliseerimist genereeritud uus võtmepaar

EstEID kaardil on võimalik genereerida uus RSA võtmepaar nii autentimisvõtmele kui ka signeerimisvõtmele. Käesoleva juhendi koostamise hetkel ei olnud teada, kas üldse ja kui, siis mis asjaoludel hakatakse kaartidel uusi võtmepaare genereerima, kuid selline tehniline võimalus on olemas (võtmepaaride genereerimise protseduuri enese kohta vt peatükki 6.3 selles juhendis).

SSL-kutsungile vastuse arvutamise protseduur ja elektronallkirja arvutamise protseduur ei muutu sellest, kui kaardil genereeritakse uus võtmepaar, sest võtmete genereerimisel või uute sertifikaatide laadimisel muudetakse kaardil ka võtmeviitasid. Sessioonivõtme dekrüptimise operatsioonidel see aga nii ei ole. Kui ei ole võimalik eeldada, et kaardil pärast personaliseerimist uusi võtmeid genereeritud ei ole, siis tuleb enne dekrüptimisoperatsiooni teostamist sooritada mõned lisaoperatsioonid.

EstEID kaardil on järgmised võtmepaarid:

Võtme ID (HEX BCD)	Kirjeldus
0100	Signeerimisvõti1
1100	Autentimisvõti1
0200	Signeerimisvõti2
1200	Autentimisvõti2

Kaardi personaliseerimisel genereeritakse Autentimisvõti1 ja Signeerimisvõti1 ning Signeerimisvõti2 ja Autentimisvõti2 jäävad tühjaks (nende poole pöördumine viib veasituatsiooni).

Kui nüüd genereeritakse uued võtmepaarid, siis paigutatakse uued salajased võtmed vastavalt Autentimisvõti2 ja Signeerimisvõti2 kohtadele ning senised võtmed säilivad. Järgmisel genereerimisel paigutatakse uued salajased võtmed Signeerimisvõti1 ja Autentimisvõti1 kohtadele ning senised võtmed säilivad kohtadel Signeerimisvõti1 ja Autentimisvõti1. Personaliseerimisel moodustatud võtmed viimasel operatsioonil hävivad. Uute võtmepaaride genereerimise kordade arv piiratud ei ole.

Kataloogi EEEE failis FID=0033 on kirjas, missugused võtmed momendil kehtivad. See on struktureeritud fail ning sisaldab ühe kirje, mis pärast personaliseerimist on järgmine:

Bait nr	0	1	2	3	4	5	6	7	8	9	Α	В	O	ם	Е	F	10	11	12	13	14
Väärtus	00	A4	80	95	01	40	83	03	80	11	00	В6	80	95	01	40	83	03	80	01	00

Jooksva autentimisvõtme viit on baitides nr 9..A ja signeerimisvõtme viit baitides nr 0x13..0x14.

Selleks, et sooritada dekrüptimise operatsioon võtme jooksva versiooniga, tuleb esmalt teha kindlaks, missugune võtmetest on jooksev, lugedes kirje nr 1 failist EEEE/0033. Seejärel tuleb modifitseerida kaardisisest turvakeskkonda, öeldes kaardile, et operatsioon tuleb teostada just selle võtmega.

Seega tuleb juhendi esimeses osas peatükis 12 "Sessioonivõtme dekrüptimine" toodud protseduuri punkti 6 täiendada ning sõnastada see nii:

 Modifitseerime kaardisisest turvakeskkonda, seades viida võtmele, millega soovime dekrüptimise operatsiooni sooritada.

Loeme kirje nr 1 failist FID=0033.

Kui soovime dekrüptida autentimisvõtmega, saadame järgneva käsu:

CLA	INS	P1	P2	Lc	Võtmeviit					
00	22	41	B8	05	83 03 80 Bait nr 9 kirjest nr Bait nr A kirje					
					1 failis		1 failis			
					EEEE/0033 EEEE/003					

Kui soovime dekrüptida signeerimisvõtmega, saadame järgneva käsu:

CLA	INS	P1	P2	Lc	Võtmeviit					
00	22	41	B8	05	83 03 80 Bait nr 0x13 Bait nr 0x1					
					kirjest nr 1 failis		kirjest nr 1 failis			
					ÉEEE/0033 ÉEEE/00					

Sama kehtib ka siis, kui kasutaja autoriseeritakse paroollausega.

16. Operatsioonid võtmete eelmiste versioonidega

EstEID kaardil on võimalik sooritada operatsioone võtmete eelmiste versioonidega. Need protseduurid on sarnased jooksvate võtmetega sooritatavate vastavate operatsioonidega, kuid lisaks tuleb failist EEEE/0033 lugeda välja, missugune on võtme jooksev versioon ning modifitseerida kaardisisest turvakeskkonda, seades viidad võtme eelmisele versioonile.

16.1. SSL-kutsungile vastuse arvutamine võtme eelmise versiooniga

SSL-kutsungile vastuse arvutamisel autentimisvõtme eelmist versiooni kasutades tuleb toimida nii (vt ka peatükki 10 "SSL kutsungile vastuse arvutamine" juhendi I osas):

- 1) Valime juurkataloogi.
- 2) Valime kataloogi EEEE.
- 3) Seame kaardisisese turvakeskkonna nr 1.
- 4) Loeme kirje nr 1 failist FID=0033.
- 5) Seame võtmeviida käsuga

CLA	INS	P1	P2	Lc	Võtmeviit	
00	22	41	A4	05	83 03 80	Võtmeviida väärtus

Kui baidid nr 9 ja A failist FID=0033 on "1100", siis on seatava võtmeviida väärtuseks "1200" ja vastupidi, et saavutada võtme mittejooksva versiooni kasutamine operatsiooni sooritamiseks.

- 6) Verifitseerime PIN1.
- 7) Saadame kaardile käsu kutsungi vastuse arvutamiseks:

CLA	INS	P1	P2	Lc (kutsungi pikkus)	Kutsung	Le
00	88	00	00	24		80

 Kaardi vastuse vorming ei erine jooksva võtmega sooritatud operatsioonil saadava vastuse omast.

Kui autoriseerimiseks kasutatakse paroollauseid, siis tuleb faili FID=EEEE/0033 lugemine ja võtmeviitade seadmine sooritada protseduuri punktide 1 ja 2 vahel (vt peatükki 3.4.1), st pärast turvakeskkondade seadmist ja enne sessioonivõtmete tuletamist.

16.2. Elektronallkirja arvutamine võtme eelmise versiooniga

Elektronallkirja arvutamiseks võtme eelmise versiooniga tuleb toimida järgmisel viisil (vt ka peatükki 11 "Elektronallkirja arvutamine" juhendi I osas):

- 1) Valime juurkataloogi.
- 2) Valime kataloogi EEEE.
- 3) Seame kaardisisese turvakeskkonna nr 1.
- 4) Loeme kirje nr 1 failist FID=0033.
- 5) Seame võtmeviida käsuga

CLA	INS	P1	P2	Lc	Võtmeviit	
00	22	41	В6	05	83 03 80	Võtmeviida väärtus

Kui baidid nr 0x13 ja 0x14 failist FID=0033 on "0100", siis on seatava võtmeviida väärtuseks "0200" ja vastupidi, et saavutada võtme mittejooksva versiooni kasutamine operatsiooni sooritamiseks.

- 6) Verifitseerime PIN2.
- 7) Saadame kaardile käsu elektronallkirja arvutamiseks:

CLA	INS	P1	P2	Lc (räsiobjekti pikkus)	Räsiobjekt	Le
00	2A	9E	9A	23		80

 Kaardi vastuse vorming ei erine jooksva võtmega sooritatud operatsioonil saadava vastuse omast.

Kui autoriseerimiseks kasutatakse paroollauseid, tuleb faili FID=EEEE/0033 lugemine ja võtmeviitade seadmine sooritada (analoogselt SSL-kutsungile vastuse arvutamise protseduuriga) pärast turvakeskkondade seadmist ja enne sessioonivõtmete tuletamist.

16.4. Sessioonivõtme dekrüptimine võtme eelmise versiooniga

Kui soovitakse sooritada dekrüptimisoperatsioon võtme eelmise versiooniga, tuleb operatsioon sooritada samuti kui võtme jooksva versiooniga dekrüptimisel, kuid võtmeviit tuleb seada vastupidine sellele, mis on kirjas failis EEEE/FID=0033. Kui autentimisvõtme väärtus failis on "1100", siis seame kaardis "1200" ja vastupidi. Kui signeerimisvõtme väärtus failis on "0100", siis seame kaardis "0200" ja vastupidi.

17. Kaardihalduse operatsioonid

17.1. Operatsioonidest üldiselt

Kaardihaldusoperatsioonide all mõistetakse EstEID kiibiga sooritatavaid operatsioone, mis ei toimu kaardi kasutaja äranägemisel, vaid mille sooritamiseks annab loa Kaardihalduskeskus. Loa andmine realiseeritakse krüptograafiliste meetoditega.

Kaardihalduse süsteem võimaldab sooritada nelja tüüpi EstEID kaardiga seotud operatsioone:

- Sertifikaatide laadimiskoodide genereerimine selleks, et asendada EstEID kaardil sertifikaat, näiteks senise sertifikaadi kehtetuksmuutumise ja uue väljastamise tõttu, tuleb sertifikaat konverteerida erilisse nn laadimiskoodi. Laadimiskoode suudab genereerida vaid vastavat salajast võtit omav kaardihalduskeskus.
- 2. Autoriseeringute andmine kaardile uute PIN-koodide seadmiseks juhul, kui kaardi PUK-kood on hävinud selle operatsiooni käigus seatakse kaardile uued PIN- ja PUK-koodid, kusjuures seniseid koode teada ei ole vaja. Kaardi valdaja isikusamasus tuvastatakse mitteelektrooniliste vahenditega ning operatsiooni

väärkasutuse vältimiseks on vajalik luua vastav organisatsiooniliste meetmete süsteem.

- 3. Lisarakenduste kaardile laadimise moodulite genereerimine EstEID kaardile on võimalik laadida ka muid rakendusi, kuid see saab toimuda ainult vastavat pädevust omava institutsiooni loal. Tehniliselt kontrollib lisarakenduste laadimist Kaardihalduskeskus. EstEID kaart võtab lisarakendusi vastu ainult teatud protseduuri abil laadimiskoodi konverteeritult. Konverteerimise operatsiooni teostab Kaardihalduskeskus, kes omab vastavat salajast võtit.
- 4. EstEID kaardil uute võtmepaaride genereerimiseks autoriseeringute andmine
 EstEID kaart võimaldab genereerida uusi salajaste võtmete paare. Uue
 võtmepaari genereerimine saab toimuda Kaardihalduskeskuse poolt
 autoriseerituna.

EstEID kaardihalduse süsteemi turvalisuse aluseks on neli salajast 3DES võtit:

CMK1 – kasutatakse PIN-koodide asendamiseks

CMK2a – kasutatakse uute võtmepaaride genereerimisel

CMK2b – kasutatakse sertifikaatide laadimismoodulite moodustamiseks ja

võtmeviitade seadmiseks pärast võtmete genereerimist

CMK3 – kasutatakse lisarakenduste laadimismoodulite moodustamiseks.

Selles juhendis kasutatavad näidisvõtmed on järgmised:

17.2. Kaardikohaste võtmete tuletamine

Kuna 3DES on sümmeetriline krüptoalgoritm, siis peavad salajased võtmed olema kirjutatud ka igale EstEID kaardile. Turvakaalutlustel ei kirjutata kaartidele Kaardihalduskeskuses hoitavaid peavõtmeid, vaid peavõtmest ja kaardivaldaja isikukoodist tuletatud kaardikohased võtmed. Tuletamise protseduur on järgmine:

- 1. Arvutatakse kaardi kasutaja isikukoodi SHA-1 räsi.
- 2. Võetakse saadud räsist 16 vasakpoolset baiti.
- 3. Krüptitakse need baidid vastava peavõtmega 3DES CBC režiimis, kus ICV="00 00 00 00 00 00 00 00".
- 4. Seatakse iga baidi noorim bitt nii, et bait oleks paaritu.

Näide: Olgu kaardi kasutaja isikukood (ASCII) "01234567890". Arvutame kaardikohased võtmed peatükis 6.1 toodud näidispeavõtmetega.

1. Selle isikukoodi SHA-1 räsi on:

7E D1 0E 4A 58 9C 87 F9 E6 A8 5C 22 E4 B0 C3 8E CF 5F 50 59

2. Krüptime 16 vasakpoolset baiti võtmega CMK1 3DES CBC režiimis, ICV=0:

41 F9 AE 35 48 53 6F 19 B9 3F ED 4E F8 90 C9 3B

3. Seame noorimad bitid nii, et baidid oleksid paaritud:

Kaardi CMK1 = 40 F8 AE 34 49 52 6E 19 B9 3E EC 4F F8 91 C8 3B

Samuti arvutame:

Kaardi CMK2a = 89 FB 5D 9B B0 83 D0 97 AB 13 5E BF 70 DF FD 86 Kaardi CMK2b = 3B 8A BC 9B 98 1F 29 AB B3 0D 97 15 64 29 43 62 Kaardi CMK3 = 6E DC 2A 25 D6 64 7C D0 C1 BF 01 16 08 51 F7 04

17.3. Uute võtmepaaride genereerimine

Uue võtmepaari genereerimine EstEID kaardil toimub nii:

1) Loeme kaardi kasutaja isikukoodi, mis on kirjas isikuandmete failis FID=EEEE/5044 kirjes nr 7. Olgu isikukoodiks (ASCII) 01234567890.

- 2) Loeme kirje 1 failist FID=EEEE/0033, et teada saada, missuguste viitadega võtmed on kaardis momendil jooksvad. Jooksva autentimisvõtme viit on loetud kirje baitides 0x9..0xA ja signeerimisvõtme viit baitides 0x13..0x14 (baitide loendus algab nullist). Uus võti tuleb genereerida sellesse võtmesse, mis pole momendil jooksev. Seega säilib jooksev võti juhuks, kui seda peaks hiljem vaja minema. Kui autentimisvõtme viit on failis FID=EEEE/0033 "1100", siis genereeritava võtme viit on "1200" ja vastupidi. Kui signeerimisvõtme viit on failis FID=EEEE/0033 "0100", siis genereeritava võtme viit on "0200" ja vastupidi. Tehniliselt pole ka takistust võtme jooksva versiooni ülegenereerimiseks.
- 3) Seame turvakeskkonna nr 3 nii juurkataloogis kui EEEE kataloogis:

Valime juurkataloogi:

CLA	INS	P1	P2
00	A4	00	0C

Seame kaardisisese turvakeskkonna nr 3:

CLA	INS	P1	P2
00	22	F3	03

Valime kataloogi EEEE:

CLA	INS	P1	P2	Lc	F	D
00	A4	01	0C	02	EE	EE

Seame uuesti kaardisisese turvakeskkonna nr 3:

CLA	INS	P1	P2
00	22	F3	03

- 4) Verifitseerime PIN1-koodi. PIN1-koodi verifitseerimine on mõeldud selleks, et tagada operatsiooni toimumine kaardi kasutaja teadmisel.
- 5) EstEID kaardi kataloogis EEEE on fail FID=EEEE/0013, milles hoitakse salajasi võtmeid puudutavat teeninduslikku infot⁹. See on fikseeritud kirjepikkusega struktureeritud fail (kirje pikkus 0x4F), milles sisaldub neli kirjet iga kirje kuulub ühe salajase võtme juurde:

Võti	Võtme ID	Kirje nr failis FID=EEEE/0013
Signeerimisvõti1	0100	1

⁹ Selles failis sisalduva info sisu kohta loe MICARDO 2.1 kasutusjuhendist.

Signeerimisvõti2	0200	2
Autentimisvõti1	1100	3
Autentimisvõti2	1200	4

Uue võtme genereerimist juhib kirje bait nr 0x32 (loendus algab nullist). Selle väärtused on autentimis- ja signeerimisvõtmetel erinevad:

Võti	Baidi nr 0x32 väärtus faili FID=EEEE/0013 vastavas kirjes	Võtme olek
Signeerimisvõti1 ja Signeerimisvõti2	F6	Võti puudub - tuleb genereerida.
	В6	Võti on genereeritud – tööks valmis.
Autentimisvõti1 ja Autentimisvõti2	E4	Võti puudub - tuleb genereerida.
	A4	Võti on genereeritud – tööks valmis.

Uue võtmepaari genereerimiseks tuleb selle baidi väärtus seada nii, et võtme genereerimine oleks lubatud. Seda on võimalik teha näiteks, lugedes selle kirje välja käsuga READ BINARY (kirjed on vabalt loetavad), muuta väljaloetud kirjes baidi nr 0x32 väärtus selliseks, et võtme genereerimine oleks lubatud ning kirjutada kirje siis tagasi faili.

Selleks aga, et kirje failis FID=EEEE\0013 üle kirjutada, on vaja Kaardihalduskeskuse autoriseeringut. Edasi toimime nii:

6) Moodustame käsu faili FID=EEEE\0013 kirje ülekirjutamiseks. Alljärgnev on käsk faili kirje nr 4 (puudutab Autentimisvõti2) ülekirjutamiseks:

Päis	Lc	Andmed
00 DC 04 04	4F	830412001012C00281809103FFFFFF7B
		18800100A10A8B080030010302040305
		E4 07950140890221137B11800106A103
		8B010BB807950140890211307B118001
		07A1038B010CB80795014089021130

7) Muudame käsu päist järgnevalt:

Päis	
0C DC 04 04	

CLA = 0C tähendab, et käsk edastatakse EstEID kaardile turvalise kommunikatsiooni all. Sellel operatsioonil ei kasutata aga sessioonivõtmete tuletamist ega krüptimist. Arvutatakse vaid MAC-kood.

8) Moodustame järgmise bloki:

Püsiväärtus	Andmebloki pikkus = Lc	Andmeblokk
81	4F	83 0411 30

9) Moodustame ajutiselt järgmise bloki:

Käsu päis	Käsu päise laiendus pikkuseni 8	Eelmisel sammul moodustatud blokk	Eelmisel sammul moodustatud bloki laiendus pikkuseni, mis 8 kordne
0C DC 04 04	80 00 00 00	81 4F 83 0411 30	80 00 00 00 00 00 00

10) Arvutame selle bloki MAC-koodi 3DES CBC režiimis **kaardikohase võtmega CMK2b**, kus ICV="00 00 00 00 00 00 00 00". Meie juhul on tulemus:

9F 7F CD 8B 02 F8 56 C4

11) Moodustame järgmise käsu:

Päis	Lc	Sammul 8 moodustatud blokk	Püsiväärtused	Sammul 10 arvutatud MAC	Le
0C DC 04 04	5B	81 4F 83 0411 30	8E 08	9F 7F CD 8B 02 F8 56 C4	00

12) Saadame selle käsu kaardile. Kui kasutatakse protokolli T=1, siis peab lõpus olema Le=0. Kaart vastab:

Püsiväärtused	OK Trailer'	Püsiväärtused	MAC	OK Trailer
99 02	90 00	8E 08	F9 5D 3F 23 71 D5 B7 11	90 00

Kui OK Trailer ja OK Trailer' on mõlemad "90 00", võime jätkata.

Märkus: Pärast seda operatsiooni ei ole käsitletav salajane võti enam kasutatav. Kui operatsioon edaspidi mingil põhjusel katkeb, tuleb seda uuesti otsast alustada.

Märkus: Sammul 11 moodustatud käsk on kasutatav korduvalt, kuna ei sisalda sessiooni-spetsiifilist elementi.

13) Järgnevalt tuletame sessioonivõtme analoogselt peatükis 3.3.2 punktides 3..9 tehtuga. 3DES võtmena kasutame kaardi **CMK2a**, mille kaardisisene järjekorranumber on **2**.

Olgu meie juhul:

SK1 = 95 CC 39 2F 24 38 AA 24 1F B9 DC F4 77 77 30 FD SK2 = 30 FD B4 B6 7B A8 74 6E 0E 67 43 A3 72 90 E9 5D SSC = 05 06 07 08 4E 56 55 CB

14) Võtme genereerimiseks on vajalikud spetsiifilised muudatused kaardisiseses turvakeskkonnas. Need muudatused on erinevad autentimisvõtme ja signeerimisvõtme genereerimiseks.

Autentimisvõtme genereerimisel seame turvakeskkonna nii:

a) Kustutame viida signeerimisvõtmele:

CLA	INS	P1	P2	Lc	Data
00	22	41	B6	02	83 00

b) Seame viida genereeritavale autentimisvõtmele:

CLA	INS	P1	P2	Lc	Data	
					Püsiväärtused	Võtmeviit
00	22	41	A4	05	83 00 80	12 00

Signeerimisvõtme genereerimisel seame turvakeskkonna nii:

a) Seame viida genereeritavale signeerimisvõtmele

CLA	INS	P1	P2	Lc	Data	
					Püsiväärtused	Võtmeviit
00	22	41	B6	05	83 00 80	02 00

b) Seame viida autentimisvõtmele:

CLA	INS	P1	P2	Lc	Data	
					Püsiväärtused	Võtmeviit
00	22	41	A4	05	83 00 80	12 00

Autentimisvõtme viida seadmine signeerimisvõtme genereerimisel on vajalik selleks, et EstEID kaart arvutab genereeritud avalikule võtmele allkirja, kasutades selleks nii autentimisvõtme kui signeerimisvõtme korral autentimisvõtit (autentimisvõtme korral seega iseennast). Seetõttu genereeritakse siis, kui uuendatakse mõlemaid võtmeid, esmalt autentimisvõti ja seejärel signeerimisvõti.

Märkus:

Signeerimisvõtme genereerimisel tuleb seada viit varem genereeritud autentimisvõtmele. Viida seadmine autentimisvõtmele, mida pole kunagi genereeritud, viib veasituatsiooni.

15) Moodustame käsu võtme genereerimiseks:

CLA	INS	P1	P2	Lc	Püsiväärtused	Avaliku võtme faili FID
						(püsiväärtus)
00	46	00	00	04	8302	1000

Võtmepaari genereerimisel moodustatud avalik võti paigutub faili FID=1000.

Järgnevalt tuleb see käsk edastada kaardile EstEID turvakommunikatsiooni all, kasutades sammul 13 moodustatud sessioonivõtmeid ja sõnumiloendurit. Turvakommunikatsioonis kasutatakse ainult kaitset MAC-koodidega, krüptimist ei kasutata.

16) Suurendame sõnumiloendurit 1 võrra:

SSC = 05 06 07 08 4E 56 55 CC

17) Muudame käsu päist järgmiselt:

CLA	INS	P1	P2	
0C	46	00	00	

18) Moodustame ajutiselt järgmise bloki:

Päis	Päise laiendus pikkuseni 8	Andmed	Andmebloki laiendus pikkuseni 8
0C 46 00 00	80 00 00 00	81 04 83 02 10 00	80 00

19) Arvutame moodustatud bloki MAC-koodi kaardi võtmega CMK2b 3DES CFB režiimis, kus ICV="00 00 00 00 00 00 00 00". Tulemus on:

MAC = 2B 08 D5 EF B2 53 FC C6

20) Moodustame käsu, mille saadame kaardile:

Päis	Lc	Püsiväärtused	Püsiväärtused	Püsiväärtused	Eelmisel sammul arvutatud MAC	Le
0C 46 00 00	10	81 04	83 02 10 00	8E 08	2B 08 D5 EF B2 53 FC C6	00

Kaart vastab:

Püsiväärtused	OK Trailer'	Püsiväärtused	MAC	OK Trailer
99 02	90 00	8E 08	69 CA B6 19 A6 EC 60 C9	90 00

Järgnvalt kontrollime saadud vastuse autentsust.

21) Suurendame sõnumiloendurit ühe võrra:

SSC = 05 06 07 08 4E 56 55 CD

22) Moodustame ajutiselt bloki:

Kaardi vastus	Kaardi vastuse laiendus pikkuseni 8
99 02 90 00	80 00 00 00

23) Arvutame moodustatud bloki MAC-koodi kaardi võtmega CMK2b 3DES CFB režiimis, kus ICV="00 00 00 00 00 00 00 00". Tulemus on:

MAC = 69 CA B6 19 A6 EC 60 C9

Kuna see tulemus on võrdne kaardilt saabunud MAC-koodiga, siis võib lugeda võtme edukalt genereerituks.

Järgnevalt tuleb kaardilt välja lugeda avalik võti, et kasutada seda näiteks sertifikaadipäringu moodustamiseks.

Märkus: Ava

Avalik võti tuleb kaardilt välja lugeda hiljemalt enne järgmist võtmegenereerimise operatsiooni, sest EstEID kaardil on ainult üks avaliku võtme fail (FID=EEEE\1000) ning järgmisel võtmegenereerimise operatsioonil kirjutatakse selle faili sisu üle.

24) Loeme kaardilt välja avaliku võtme. Avalik võti on failis FID=EEEE\1000. See on jadafail pikkusega on 0x12C baiti. Faili struktuur on järgmine:

Baidid	Sisu
00x19	Püsiväärtused
0x200x9F	Moodul
0xA00xA1	Püsiväärtused
0xA1	Avaliku eksponendi pikkus, 0x3 või 0x4
	baiti
0xA20xA4 või 0xA20xA5	Avalik eksponent
0xA60xAB	Püsiväärtused
0xAC0x12B	Autentimisvõtmega arvutatud võtme allkiri
	(RSA, SHA-1, PKCS#1)

Selle võtme seadmiseks jooksvaks võtmeks tuleb modifitseerida faili FID=EEEE\0033 kirjet nr 1 (ainsat kirjet selles failis). See võib toimuda näiteks pärast genereeritud võtme kohta väljastatud sertifikaadi laadimist kaardile.

Faili FID=EEEE\0033 kirje nr 1 modifitseerimine võib toimuda sel viisil, et kirje loetakse failist välja, asendatakse väljaloetud kirjesse genereeritud võtme viit ning seejärel kirjutatakse kirje sisu faili tagasi. See kirje on failist vabalt loetav, kuid ülekirjutamiseks on

vajalik Kaardihalduskeskuse autoriseering.

Autoriseeringu saamiseks toimime järgnevalt:

Olgu kirje uus sisu järgmine:

Püsiväärtused	Autentimisvõtme	Püsiväärtused Signeerimisvõt	
	viit		viit
00 A4 08 95 01 40 83 03	12 00	B6 08 95 01 40 83 03	02 00
80		80	

Selline kirje sisu tekib näiteks siis, kui pärast kaardi personaliseerimist on genereeritud uus autentimisvõti ja uus signeerimisvõti.

25) Seame kaardisisese turvakeskkonna nr 3 nii juurkataloogis kui EEEE kataloogis:

Valime juurkataloogi:

CLA	INS	P1	P2
00	A4	00	0C

Seame kaardisisese turvakeskkonna nr 3:

CLA	INS	P1	P2
00	22	F3	03

Valime kataloogi EEEE:

CLA INS		P1	P2	Lc	F	D
00	A4	01	0C	02	EE	EE

Seame uuesti kaardisisese turvakeskkonna nr 3:

CLA INS		P1	P2	
00	22	F3	03	

- 26) Valime faili FID=0033.
- 27) Verifitseerime PIN1.
- 28) Moodustame järgmise käsu:

Päis	Lc	Kirje sisu	Le
00 DC 01 04	15	00 A4 08 95 01 40 83 03 80 12 00 B6 08 95 01 40 83	00
		03 80 02 00	

29) Modifitseerime kirje päist nii:

Päis	
0C DC 01 04	

30) Moodustame järgmise bloki:

Püsiväärtused	Kirje sisu
81 15	00 A4 08 95 01 40 83 03 80 12 00 B6 08 95 01 40 83 03 80 02 00

31) Moodustame ajutiselt järgmise bloki:

Päis	Päise laiendus pikkuseni 8	Eelmisel sammul moodustatud andmeblokk	Eelmisel sammul moodustatud andmebloki laiendus pikkuseni, mis on 8 kordne
0C DC 01 04	80 00 00 00	81 1502 00	80

32) Arvutame selle bloki MAC-koodi 3DES CBC režiimis **kaardikohase võtmega CMK2b**, kus ICV="00 00 00 00 00 00 00 00". Meie näites on tulemus:

MAC = 4C C0 4E A0 22 E6 2D 9F

33) Moodustame järgmise käsu, mille saadame kaardile:

Päis	Lc	Sammul 30 moodustatud blokk	Püsiväärtused	Sammul 32 arvutatud MAC	Le
0C DC 01 04	21	81 15 02 00	8E 08	4C C0 4E A0 22 E6 2D 9F	00

Märkus: Analoogselt sammul 11 moodustatud käsuga on ka see käsk kasutatav korduvalt, kuna ei sisalda sessiooni-spetsiifilist elementi.

Kaart vastab:

Püsiväärtused	OK Trailer'	Püsiväärtused	MAC	OK Trailer
99 02	90 00	8E 08	F9 5D 3F 23 71 D5 B7 11	90 00

Kui OK Trailer ja OK Trailer' on mõlemad "90 00", siis on faili FID=EEEE\0033 kirje nr 1 sisu edukalt üle kirjutatud ning näidatud viitadega võtmed seatud jooksvateks võtmeteks.

17.4. Sertifikaatide laadimismoodulite genereerimine

Sertifikaadi laadimismoodul sisaldab APDU-käsujadasid, mis EstEID kaardile saadetuna laevad sellele uue sertifikaadi (vt ka peatükki 13 "Sertifikaatide uuendamine" juhendi esimeses osas). Faili struktuur on järgmine:

Rida 1: Käsk SELECT FILE, mis valib ülekirjutamiseks õige faili. Read 2..N: Käsud UPDATE BINARY, mis kirjutavad valitud faili uue sertifikaadi.

Käsud on kodeeritud BCD HEX kujul.

UPDATE BINARY käsud ridadel 2..N tuleb turvata, kasutades kaardikohast võtit CMK2b. Käsku SELECT FILE real 1 turvata ei tule.

Setifikaadifailide suurus EstEID kaardil on 0x600 baiti (seda võidakse edaspidi vastava vajaduse tekkimisel pädeva institutsiooni korraldusega suureneda). Failis pärast sertifikaadi kirjutamist vabaks jääv ruum tuleb täita järgmiselt:

0x600 baiti						
Sertifikaat	Bait 0x80	Nullbaidid sertifikaadi lõpuni				
		0000				

Turvatud UPDATE BINARY käskude lõppu tuleb lisada Le=0. Sertifikaati kaardile laadiv tarkvara, mis kasutab protokolli T=0, peab seda baiti ignoreerima.

Vaatame sertifikaadi laadimismooduli genereerimist järgmise näite varal. Olgu meil uus autentimissertifikaat (sertifikaat on näite selguse huvides lühendatud):

Baidid nr	Vä	ärtu	sed													
0F	30	82	04	Α5	30	82	03	8 D	A0	03	02	01	02	02	04	3C
101F	02	31	6F	30	0 D	06	09	2A	86	48	86	F7	0 D	01	01	05
202F	05	00	30	68	31	0В	30	09	06	03	55	04	06	13	02	45
303F	45	31	22	30	20	06	03	55	04	0A	13	19	41	53	20	53
404F	65	72	74	69	66	69	74	73	65	65	72	69	6D	69	73	6B
505F	65	73	6В	75	73	31	10	30	ΟE	06	03	55	04	0B	13	07
606F	54	45	53	54	2D	53	4B	31	0A	30	08	06	03	55	04	04
707F	13	01	31	31	17	30	15	06	03	55	04	03	13	ΟE	54	45
808F	53	54	2D	45	53	54	45	49	44	2D	53	4B	30	1E	17	0 D
909F	30	31	31	31	32	36	31	32	31	31	32	37	5A	17	0 D	30
• •	.															
40040F	C0	88	E9	94	DB	6C	DE	FD	2A	С8	5E	45	24	05	06	31
41041F	04	25	69	D3	BF	74	38	7в	03	1C	12	D0	21	В6	A2	13
42042F	58	5A	37	FE	1C	В1	D9	3F	6E	F7	E6	27	Α1	EC	В2	3C
43043F	02	59	85	F3	36	7в	7в	14	A2	14	80	33	67	51	24	43
44044F	В3	A2	55	8E	F2	37	9C	6В	38	D0	EC	24	9 D	37	5F	73
45045F	99	E2	CE	ΕO	5В	82	00	1в	69	4B	ΑE	04	53	CA	39	EC
46046F	42	1F	77	ΟE	F1	44	10	C0	33	61	8D	СЗ	В5	43	90	F7
47047F	1E	6E	EC	EE	3F	вЗ	8F	С7	А9	CC	1F	07	В5	15	DD	C8
48048F	6F	4C	C4	40	2A	C0	A4	FF	В7	2E	6D	98	FE	5A	06	D2
49049F	DD	52	48	В9	F6	2A	DE	9C	DE	0C	8B	1F	84	44	5A	D3
4A04A8	08	A8	AB	02	53	53	6D	80	5D							

1) Moodustame faili kirjutatava andmebloki pikkusega 0x600 baiti:

Baidid nr	Vä	ärtu	sed													
0F	30	82	04	Α5	30	82	03	8 D	A0	03	02	01	02	02	04	3C
101F	02	31	6F	30	0 D	06	09	2A	86	48	86	F7	0 D	01	01	05
202F	05	00	30	68	31	0В	30	09	06	03	55	04	06	13	02	45
303F	45	31	22	30	20	06	03	55	04	0A	13	19	41	53	20	53
404F	65	72	74	69	66	69	74	73	65	65	72	69	6D	69	73	6B
505F	65	73	6В	75	73	31	10	30	0E	06	03	55	04	0В	13	07
606F	54	45	53	54	2D	53	4B	31	0A	30	08	06	03	55	04	04
707F	13	01	31	31	17	30	15	06	03	55	04	03	13	0E	54	45
808F	53	54	2D	45	53	54	45	49	44	2D	53	4B	30	1E	17	0 D
909F	30	31	31	31	32	36	31	32	31	31	32	37	5A	17	0 D	30
• •	•															
40040F	C0	88	E9	94	DB	6C	DE	FD	2A	С8	5E	45	24	05	06	31
41041F	04	25	69	D3	BF	74	38	7в	03	1C	12	D0	21	В6	A2	13
42042F	58	5A	37	FE	1C	В1	D9	3F	6E	F7	E6	27	Α1	EC	В2	3C
43043F	02	59	85	F3	36	7В	7В	14	A2	14	80	33	67	51	24	43
44044F	В3	A2	55	8E	F2	37	9C	6В	38	D0	EC	24	9 D	37	5F	73
45045F	99	E2	CE	ΕO	5В	82	00	1в	69	4B	ΑE	04	53	CA	39	EC
46046F	42	1F	77	ΟE	F1	44	10	C0	33	61	8D	СЗ	В5	43	90	F7
47047F	1E	6E	EC	EE	3F	вЗ	8F	С7	Α9	CC	1F	07	В5	15	DD	C8
48048F	6F	4C	C4	40	2A	C0	A4	FF	В7	2E	6D	98	FE	5A	06	D2
49049F	DD	52	48	В9	F6	2A	DE	9C	DE	0C	8B	1F	84	44	5A	D3
4A04A8	08	Α8	AB	02	53	53	6D	80	5D	80	00	00	00	00	00	00
4B04BF	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
•	•															
59059F	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

2) Moodustame 1. rea – käsu SELECT FILE:

Päis	Lc	Sertifikaadi faili FID
00 A4 02 0C	02	AA CE

Signeerimissertifikaadi FID on DDCE.

Moodustame turvatud UPDATE BINARY käsud sertifikaadi kirjutamiseks kaardile. Soovitatav on ühe käsuga saata kaardile 0x40 või 0x40 kordne hulk baite (so. 0x80 või

0xC0), sest need väärtused on EstEID kiibi riistvara jaoks optimaalsed.

Alljärgnevalt vaatleme turvatud UPDATE BINARY käsu moodustamist sertifikaadi baitidest 0...0x40.

3) Moodustame käsu päise:

0C	D6	00	00
		ofseti vanem bait	ofseti noorem bait
CLA	INS	P1	P2

4) Moodustame järgmise bloki

Püsiväärtus	Järgneva andmebloki pikkus	Sertifikaadi baidid 00x40
81	40	30 82 04 A5 41 53 20 53

Märkus: Kui saadame ühe käsuga 0x80 või 0xC0 baiti, siis tuleb see andmeblokk moodustada järgmiselt (0x80 baidi korral):

Püsiväärtus	Püsiväärtus	Järgneva andmebloki pikkus	Sertifikaadi baidid 00x80
81	81	80	30 82 04 A5 03 55 04 04

5) Moodustame ajutiselt järgmise bloki:

0C D6 00 00	pikkuseni 8 80 00 00 00	81 40 30 82 04 A5 41 53	laiendus pikkuseni, mis on 8 kordne 80 00 00 00 00 00
Päis	Päise	Eelmisel sammul	Eelmisel sammul
	laiendus	moodustatud blokk	moodustatud bloki

6) Arvutame selle bloki MAC-koodi 3DES CBC režiimis **kaardikohase võtmega CMK2b**, kus ICV="00 00 00 00 00 00 00 00". Tulemus on:

MAC = 91 18 2F 52 15 BA 44 74

7) Moodustame käsu järgmiselt:

Päis	Lc	Sammul 4 moodustatud blokk	Püsi- väärtuse d	Eelmisel sammul arvutatud MAC	Le
0C D6 00 00	4C	81 40 30 82 04 A5 41 53 20 53	8E 08	91 18 2F 52 15 BA 44 74	00

NB! Käsu lõppu tuleb lisada bait Le=0. Sertifikaadi laadimise tarkvara, mis töötab protokolliga T=0, peab selle baidi enne käsu kaardile saatmist kõrvaldama.

Laadimiskoodi faili teine rida (esimene on käsk SELECT FILE) on seega valmis.

Samuti arvutame järgnevad read. Tulemus on:

Rida nr	Päis	Lc	Data	Le
1	00A4020C	02	AACE	
2	0CD60000	4C	8140308204A53082038DA00302010202043C02316F300D06092 A864886F70D01010505003068310B30090603550406130245453 1223020060355040A1319415320538E0891182F5215BA4474	00
3	0CD60040	4C	81406572746966697473656572696D69736B65736B7573311030 0E060355040B1307544553542D534B310A30080603550404130 131311730150603550403130E54458E08A0CA8956185B8EFC	00
4	0CD60080	4C	814053542D4553544549442D534B301E170D303131313236313 2313132375A170D3032303431343132353434355A308191310B 3009060355040613026565310F300D8E08716286E53AF42D1C	00
5	0CD600C	04	C8140060355040A130645535445494431173015060355040B130 E61757468656E7469636174696F6E3121301F060355040313184 5494B454547492C454556492C30308E0809AA438B73B3F7BC	00
6	0CD60100	4C	8140303030303030303030303110300E0603550404130745494B45 454749310D300B060355042A1304454556493114301206035504 05130B30303030303030303030308E08318588C51D157F1F	00
7	0CD60140	4C	81403081A0300D06092A864886F70D010101050003818E00308 18A02818100BF588CF11BC7CA7D97A3D2F60CA8AF34212A76 A6BEDB0A2FB6BA4D6620347A605A0F7B8E0851A8E38B4BA8 9D6F	00
8	0CD60180	4C	81409761BB66846A6B82016F6558E580404D4DF4ECE49035D9 207ADE4C7A2497507D1AEF587CAE644705A7F6C145BF61C48 D7CA0E4943200EFFBB5096A8A86D71E7A8E084DDE851D9D4 FEECD	00
9	0CD601C0	4C	814052F615B815AE33E2E81D4C10CCF11A4ADD86867FA87A B5B5E41604397F02040231763FA38201AE308201AA300E0603 551D0F0101FF0404030204B0301D0603558E08ABDCB9BD898 95124	00
0xA	0CD60200	4C	81401D250416301406082B0601050507030206082B0601050507 030430380603551D1F0431302F302DA02BA0298627687474703 A2F2F7777772E736B2E65652F74658E08ADF4F99806354632	00
0xB	0CD60240	4C	8140737463726C2F6573746569642F63726C2E63726C300F060 3551D110408300681046E6F6E653082012C0603551D20048201 233082011F3082011B06092B0604018E080A4D5D4A7ECB547E	00
0xC	0CD60280	4C	8140CE1F0201023082010C3081E206082B06010505070202308 1D51E81D20053006500650020007300650072007400690066006 9006B0061006100740020006F006E8E089CB18AF02C3142E2	00
0x14	0CD60480	4C	81406F4CC4402AC0A4FFB72E6D98FE5A06D2DD5248B9F62A DE9CDE0C8B1F84445AD308A8AB0253536D805D8000000000 000000000000000000000000	00
0x15	0CD604C0	4C	814000000000000000000000000000000000000	00
0x19	0CD605C0	4C	814000000000000000000000000000000000000	00

17.5. PIN-koodide asendamine

PIN-koodide asendamine toimub järgmise kahe operatsiooni abil:

- 1. Kirjutatakse üle faili kirjed, kus hoitakse PIN-koodide väärtusi.
- 2. Initsialiseeritakse järjestikuste valesisestuste loendurid.

Vaatleme PIN-koodide asendamise protseduuri järgmise näite varal:

Olgu kaardi kasutaja isikukood "01234567890", uus PIN1="1234", uus PIN2="12345" ja uus PUK="12345678".

- Järjestikuste valesisestuste loendurit saab initsialiseerida ainult siis, kui selle väärtus on 0 (kaart on blokeerunud). Seetõttu tuleb lugeda kaardilt järjestikuste valesisestuste loendurite väärtused (vt peatükk 8 "Loendurite lugemine kaardilt" juhendi I osas) ning kui need ei ole nullid, siis sooritada PIN-kontrolli operatsiooni vale PIN-koodiga, kuni nende loendurite väärtusteks saavad nullid.
- 2) Valime juurkataloogi:

CL	Α.	INS	P1	P2
0	0	A4	00	0C

3) Valime FID=0012 (selles failis hoitakse PIN-koodide väärtusi)

CLA	INS	P1	P2	FID
00	A4	02	0C	00 12

4) Seame kaardisisese turvakeskkonna nr 4 juurkataloogis:

CLA	INS	P1	P2
00	22	F3	04

5) Järgnevalt tuletame sessioonivõtme analoogselt peatükis 3.3.2 punktides 3..9 tehtuga. 3DES võtmena kasutame kaardi **CMK1**, mille kaardisisene järjekorranumber on **1**.

Olgu meie juhul:

SK1 = 19 EB A2 29 ED EC 4F E9 E9 27 B4 FC 35 9E 8F DF SK2 = 36 C3 42 23 9C B6 7F 0B EC 3B 04 8D C5 66 F2 30 SSC = 05 06 07 08 D2 86 CA 6F

6) PIN-koode ei hoita EstEID kaardil lahtisel kujul (vaatamata sellele, et nende faili FID=0012 lugemine on keelatud). Faili FID=0012 kirje on 9 baiti pikk ja selle struktuur on järgmine:

Bait	0	1	2	3	4	5	6	7	8
nr.									
Sisu	PIN-koodi	See blok	k saadal	kse järg	miselt:				
	pikkus	See blokk saadakse järgmiselt: 1. PIN-kood viiakse BCD HEX kujule ja lisatakse paremale väärtusi F pikkuseni 7 baiti. 2. Ette (vasakule) lisatakse bait väärtusega 0x20 + PIN-koodi pikkus 3. Krüptitakse see blokk DES algoritmiga, kasutades võtmena iseennast.							

Antud näites toimime PIN1-koodiga nii:

PIN blokk BCD HEX kujul:

Bait nr	0	1	2	3	4	5	6	7
Väätrus	24	12	34	FF	FF	FF	FF	FF

See blokk DES-krüptitult iseendaga: 7E B3 98 5F 23 22 9E 91

Seega on PIN1 = "1234" kirje järgmine:

Bait nr.	0	1	2	3	4	5	6	7	8
Väärtus	04	7E	В3	98	5F	23	22	9E	91

PIN2 = "12345" blokk on: **05 1F 8A 25 12 DC EF 34 6C**. PUK = "12345678" blokk on: **08 E6 76 6E 41 75 43 43 D5**.

Edasi vaatleme operatsiooni PIN1 näitel. PIN2- ja PUK-koodidega on operatsioon sarnane, erinevused on eraldi ära märgitud.

Järgnevalt sooritame operatsiooni UPDATE RECORD.

7) Moodustame käsu päise:

CLA	INS	P1 – PIN kirje number failis	P2 – püsiväärtus
0C	DC	PIN1: 01	04
		PIN2: 02	
		PUK: 03	

PIN1 korral:

CLA	INS	P1	P2
0C	DC	01	04

8) Suurendame sõnumiloendurit 1 võrra:

SSC = 05 06 07 08 D2 86 CA 70

9) Moodustame järgmise bloki:

PIN-faili kirje	PIN-faili kirje laiendus
	pikkuseni, mis on 8 kordne
04 7E B3 98 5F 23 22 9E 91	80 00 00 00 00 00

10) Krüptime selle bloki võtmega SK1 3DES CBC režiimis, kus ICV="00 00 00 00 00 00 00 00 00". Tulemus on:

05 F0 E5 98 6D AD 9A 7E 92 02 27 EA B6 5A 75 5E

11) Moodustame järgmise bloki

Püsiväärtused	Eelmisel sammul saadud krüptoblokk
87 11 01	05 F0 E5 98 6D AD 9A 7E 92 02 27 EA B6 5A 75 5E

12) Moodustame ajutiselt järgmise bloki:

Päis	Päise laiendus pikkuseni 8	Eelmisel sammul moodustatud blokk	Eelmisel sammul moodustatud bloki laiendus pikkuseni, mis on 8 kordne
0C DC 01 04	80 00 00 00	87 11 01 5A 75 5E	80 00 00 00 00

13) Arvutame selle bloki MAC-koodi 3DES CFB režiimis võtmega **SK2**, kus ICV on sõnumiloendur. Tulemus on:

MAC = AA 51 BE C6 12 AE 73 32

14) Moodustame käsu, mille saadame kaardile (kui protokoll on T=0, ei ole Le vaja saaata):

Päis	Lc	Sammul 11 moodustatud blokk	Püsiväärtused	Eelmisel sammul saadud MAC	Le
0C DC 01 04	1D	87 11 01 5A 75 5E	8E 08	AA 51 BE C6 12 AE 73 32	00

Kaart vastab:

Püsiväärtused	OK Trailer'	Püsiväärtused	MAC	OK Trailer
99 02	90 00	8E 08	EC 51 2D D9 B1 23	90 00
			65 16	

Järgnevalt kontrollime kaardilt tulnud vastust.

15) Suurendame sõnumiloendurit 1 võrra:

SSC = 05 06 07 08 D2 86 CA 71

16) Moodustame ajutiselt järgmise bloki:

Kaardilt tulnud vastus	Kaardilt tulnud vastuse laiendus pikkuseni 8
99 02 90 00	80 00 00 00

17) Arvutame selle bloki MAC-koodi 3DES CFB režiimis võtmega **SK2**, kus ICV on sõnumiloendur. Tulemus on:

MAC = EC 51 2D D9 B1 23 65 16

Kuna kaardilt saabunud MAC-kood võrdub arvutatud MAC-koodiga, siis võime lugeda faili FID=0012 (PIN-koodide fail) kirje edukalt ülekirjutatuks.

Järgnevalt tuleb veel taastada PIN-koodi järjestikuste valesisestuste loenduri väärtus. Seda teeme käsuga RESET RETRY COUNTER.

18) Moodustame käsu päise:

CLA	INS	P1 – püsiväärtus	P2 – PIN järjekorranumber kaardis
0C	2C	03	PIN1: 01
			PIN2: 02
			PUK: 00

PIN1 korral:

CLA	INS	P1	P2
0C	2C	03	01

19) Suurendame sõnumiloendurit 1 võrra:

SSC = 05 06 07 08 D2 86 CA 72

20) Moodustame ajutiselt järgmise bloki:

Päis	Päise laiendus
	pikkuseni 8
0C 2C 03 01	80 00 00 00

21) Arvutame selle bloki MAC-koodi 3DES CFB režiimis võtmega **SK2**, kus ICV on sõnumiloendur. Meie näites on tulemus:

MAC = 45 F6 E8 BB 84 DE C8 35

22) Moodustame käsu, mille saadame kaardile (kui protokoll on T=0, ei ole Le vaja saata):

Päis	Lc	Püsiväärtused	Eelmisel sammul saadud MAC	Le
0C 2C 03 01	0A	8E 08	45 F6 E8 BB 84 DE C8 35	00

Kaart vastab:

Püsiväärtused	OK Trailer'	Püsiväärtused	MAC	OK Trailer
99 02	90 00	8E 08	4A EC FC D6 EB 6D	90 00
			BF 0A	

Järgnevalt kontrollime kaardilt tulnud vastust.

23) Suurendame sõnumiloendurit 1 võrra:

SSC = 05 06 07 08 D2 86 CA 73

24) Moodustame ajutiselt järgmise bloki:

Kaardilt tulnud vastus	Kaardilt tulnud vastuse laiendus pikkuseni 8
99 02 90 00	80 00 00 00

25) Arvutame selle bloki MAC-koodi 3DES CFB režiimis võtmega SK2, kus ICV on sõnumiloendur. Tulemus on:

MAC = 4A EC FC D6 EB 6D BF 0A

Kuna kaardilt tulnud MAC-kood võrdub arvutatud MAC-koodiga, siis on järjestikuste valesisestuste loenduri algväärtus edukalt taastatud.

Kui soovime korraga asendada ka PIN2- ja PUK-koodid, tuleb korrata samme 7..25 neile vastavate väärtustega.

17.6. Lisarakenduste laadimismoodulite genereerimine

EstEID kaardile võib laadida lisarakendusi, kuid kaart võtab neid vastu vaid kaardikohase CMK3 võtmega turvatult.

Vaatleme lisarakenduse laadimismooduli loomist näite varal. Järgmine APDU-käsk laeb kaardile rakenduse, milles on üks 0x100 baiti pikk fail. See fail on alati loetav, kuid faili kirjutamiseks on vaja, et oleks kontrollitud PIN110.

Päis	Lc	Data
00E03800	77	62218201388302FFDD8410D23300000100000100000000000000018A010
		5A1038B0101640062178205044100110283020030850200168A0105A103
		8B01016400731E830200308505800101900085118001019000800102A407
		9501088302000162138201018302000A850201008A0105A1038B0102640
		0

Käsu turvamiseks toimime nii:

1) Moodustame järgmise bloki:

Püsiväärtus Andmebloki pikk	us APDU-käsu andmeblokk
Fusivaartus Ariumebioki pikk	us APDO-kasu anumebiokk

2) Modifitseerime käsu päist järgmiselt:

¹⁰ Rakenduste programmeerimist selle<u>s juhendis e</u>i käsitleta.

CLA	INS	P1	P2
0C	E0	38	00

3) Moodustame ajutiselt järgmise bloki:

Päis	Päise	Sammul 1 moodustatud	Sammul 1 moodustatud
	laiendus	blokk	bloki laiendus pikkuseni,
	pikkuseni 8		mis on 8 kordne
0C E0 38 00	80 00 00 00	81 77 62 02 64 00	80 00 00 00 00 00

4) Arvutame selle bloki MAC-koodi 3DES CBC režiimis **kaardikohase võtmega CMK3**, kus ICV="00 00 00 00 00 00 00 00". Meie näites on tulemus:

MAC = 4B 5A F7 09 E8 53 10 1C

5) Moodustame käsu järgmiselt:

Päis	Lc	Sammul 3moodustatud blokk	Püsi- väärtuse d	Eelmisel sammul arvutatud MAC	Le
0C E0 38 00	83	81 77 62 02 64 00	8E 08	4B 5A F7 09 E8 53 10 1C	00

NB! Käsu lõppu tuleb lisada bait Le=0. Lisarakenduse laadimise tarkvara, mis töötab protokolliga T=0, peab selle baidi enne käsu kaardile saatmist kõrvaldama.

Lisarakenduse laadimine on sarnane sertifikaadi laadimisega (vt peatükki 13 "Sertifikaatide uuendamine" juhendi I osas), kuid kataloogi EEEE ei ole vaja valida ning seada tuleb kaardisisene turvakeskkond nr 5.

18. EstEID kaardi sümmeetrilised krüptooperatsioonid

18.1. 3DES krüptimine CBC režiimis

3DES krüptimine CBC režiimis toimub järgnevalt (siin ICV on initsialisatsioonivektor ja 3DESKey on võti):

```
for ( i = 0 ; i < BlokkideArv; i++ )
{
    if ( i == 0 ) XOR(Blokk[0], ICV);
    else XOR( Blokk[i], Blokk[i-1]);
    3DESEncrypt ( Blokk[i], 3DESKey);
}</pre>
```

18.2. 3DES MAC CBC režiimis

3DES MAC-koodi arvutamine CBC režiimis toimub järgnevalt (siin 3DESKey on võti ja CalculaedMAC saab lõpptulemuse):

```
CalculatedMAC = Blokk[0];
for ( i = 0; i < NumBlocks; i++ )
{
    if ( i == (NumBlocks - 1) ) // Viimane blokk
    {</pre>
```

```
// 3DES ainult viimase blokiga
3DESEncrypt (CalculatedMAC, 3DESKey);
}
else
{
    // kõigi teiste blokkidega ühekordne DES
    // 3DES võtme vasakpoolse osaga
    DESEncrypt (3DESKey[K1], CalculatedMAC);
    XOR ( CalculatedMAC, Blokk[i+1] );
}
```

18.3. 3DES MAC CFB režiimis

3DES MAC-koodi arvutamine CBC režiimis toimub järgnevalt (siin 3DESKey on võti, MACICV on initsialisatsioonivektor ja CalculaedMAC saab lõpptulemuse):

```
CalculatedMAC = MACICV;
DESEncrypt (CalculatedMAC, 3DESKey[K1]); // Ühekordne DES
                                                // 3DES-võtme
                                                // vasakpoolse osaga
XOR(CalculatedMAC, Blokk[0]);
for (i = 0; i < NumBlocks; i++)
     if ( i == (NumBlocks - 1) ) // Viimane blokk
             // 3DES ainult viimase blokiga
             3DESEncrypt (CalculatedMAC, 3DESKey);
     }
     else
     {
             // kõigi teiste blokkidega ühekordne DES
             // 3DES võtme vasakpoolse osaga
             DESEncrypt (3DESKey[K1], CalculatedMAC);
             XOR ( CalculatedMAC, Blokk[i+1] );
```

19. EstEID kaardi veateated

Veakood	Mnemoonika	Seletusi
62 81	CorruptDataWarning	Kontrollsumma on vale - viitab enamasti kaardi riknemisele
62 82	EndOfFileWarning EndOfRecordWarning	Le on liiga suur. Viitab katsele lugeda failist liiga palju baite korraga (maksimaalne on FE).
62 83	FileInvalidWarning	Valitav fail on deaktiveeritud (EstEID ei esine)

Veakood	Mnemoonika	Seletusi	
64 00	CorruptDataError ExecutionError InconsistentDataError FileInvalidError UndefinedTechnicalProblemError	Viitab tõsisele andmete mittekonsistentsusele kas kaardirakenduses või kaardile saadetud käsus. Samuti võib see veateade tulla siis, kui proovitakse teha mitteettenähtud operatsiooni, näiteks kaardilt salajast võtit välja lugeda. Mittekonsistentsuse tekkepõhjuseks võib olla ka kaardi riknemine.	
65 81	MemoryFailureError	EstEID kaardi EEPROM kirjutamine ebaõnnestus, kaart on riknenud.	
67 00	TinyLeError	Le on liiga väike. See viga tekib ka siis, kui T=1 protokolli kasutades on Leära jäänud.	
69 00	NoChvReferenceError NoKeyreferenceError	Kaardile saadetud käsk viitab PIN- koodile või võtmele, mida pole kaardil olemas.	
69 81	IncompatibleFileStructureError	Kaardil olev failistruktuur ei võimalda saadetud käsku täita. N Näiteks - püütakse lisada kirjet faili, mis juba sisaldab maksimaalse lubatud kirjete arvu.	
69 82	SecurityStatusNotSatisfiedError	Kaardile saadetud käsk nõuab, et eelnevalt oleks sooritatud kaardi kasutaja autoriseerimine. Näiteks PIN kontroll, mida aga tehtud ei ole. See viga tekib ka siis, kui PIN-koodi kontrolliti, kuid PIN oli vale.	
69 83	AuthenticationBlockedError	PIN lubatud järjestikuste valesisestuste arv on täis. PIN on blokeeritud.	
69 84	ReferencedDataInvalidatedError	PIN-koodi või võtit vms ei saa enam kasutada.	
69 85	CommandExecutionOrderError, ConditionOfUseNotSatisfiedError	Kaardile saadetud käsk nõuab sellise objekti (tavaliselt võtme) kasutamist, mida antud tingimustes ei ole lubatud kasutada. Tavaliselt tekib siis, kui on määratud vale turvakeskkond (ingl. security environment).	

Veakood	Mnemoonika	Seletusi	
69 86	CommandNotAllowedError	Kaardile saadetud käsk ei ole antud tingimustes lubatud.	
69 87	SmDataObjectsMissingError	Kaardile saadetud käsus puuduvad mõned turvatud kommunikatsiooni (ingl. secure messaging) teostamiseks vajalikud andmed.	
69 88	SmDataObjectsIncorrectError	Kaardile saadetud turvatud käsus sisalduvad andmed on valed. See viga võib antud juhendis toodud operatsioonide juures esineda sertifikaadi laadimisel, kui kas käsk on moodustatud valesti või püütakse sertifikaati laadida valesse kaarti.	
69 89	SmWithoutSessionkeysError	Puuduvad turvalise kommunikatsiooni jaoks vajalikud sessioonivõtmed.	
6A80	IncorrectParametersDatafieldError	Vigased andmed käsus.	
6A82	FileNotFoundError	Faili ei leitud	
6A83	RecordNotFoundError	Kirjet ei leitud.	
6A84	NotEnoughMemorySpaceError	Kaardi mälu on otsas (ei tohiks siin juhendis toodud operatsioonide piires esineda).	
6A86	IncorrectParameterError	Valed parameetrid käsus.	
6A87	LcInconsistentWithP1P2Error	Selline Lc ei ole selles käsus võimalik.	
6A88	ReferencedDataNotFoundError	Viidatud andmed puuduvad.	
6A89	FileExistError	Fail on juba olemas.	
6A8A	DfNameExistError	Kataloog on juba olemas.	
6B00	WrongParametersError	Valed parameetrid käsus.	
6D00	InstructionCodeNotSupportedError	Saadetud käsus antud instruktsioonibaiti (INS) kaart ei tunne.	
6E00	ClassNotSupportedError	Saadetud käsus antud klassibaiti (INS) kaart ei tunne.	
6F00	NoPreciseDiagnosisError	Viitab sellele, et kaart ei sobi kokku antud lugeja või liidesega.	