Lead Scoring Case Study

Hitha Mv Anandu Mv

Business Objective

- To understand X Education to select the most promising leads, i.e. promising customers.
- To develop a model to assign a lead score value between 0 and 100 to each of the customer and can be used by the company to target potential customers.
- Model should be able to adjust with companys future requirement

Problem Solving Methodology

Data Set & Data Preparation

Increasing data understandability and cleaning

Feature elimination

Using recursive feature elimination technique n to identify the best performing subset of features.

Analyze the RFE and VIF

Eliminating features for the best model

Prediction

Using model do prediction **Qptimim cutoff value** mdel evaluation need to b**and dependent** done **variables**

Perform model evaluation

Data Set & Data Preparation

Feature Elimination

Recursive feature elimination

```
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()

from sklearn.feature_selection import RFE
rfe = RFE(logreg, 20)  # running RFE with 15 variables as output
rfe = rfe.fit(X_train, y_train)
```

Predicting Probability

Predicted probabilities

In the given sce

	Converted	Converted_prob	Prospectio
0	0	0.001180	7551
1	1	0.923196	8564
2	0	0.027128	4354
3	1	0.997553	112
4	1	0.604931	7270

Converted Converted prob Droeport ID

	Converted	Converted_prob	Prospect ID	predicted
0	0	0.001180	7551	0
1	1	0.923196	8564	1
2	0	0.027128	4354	0
3	1	0.997553	112	1
4	- 1	0.604931	7270	1

Finding optimal probability curve

- The accuracy sensitivity and specificity was calculated for various values of probability threshold and plotted in the graph to the right.
- From the curve above, 0.33 is found to be the optimum point for cutoff probability.
- At this threshold value, all the 3 metrics accuracy sensitivity and specificity was found to be well above 80% which is a well acceptable value.

Plotting ROC

Receiver Operating Characteristics (ROC) Curve

Making predictions on data set

The final model on the train dataset is used to make predictions for the test dataset

	Prospect ID	Converted	Converted_prob	final_predicted
0	6233	0	0.009222	0
1	339	0	0.001551	0
2	2519	1	0.994833	1
3	2410	0	0.104106	0
4	1534	0	0.179586	0

Lead score calculation

- •The train and test dataset is concatenated to get the entire list of leads available.
- •Higher the lead score, higher is the probability of a lead getting converted and vice versa,

	Prospect ID	Converted	Converted_prob	final_predicted
0	6233	0	0.009222	0
1	339	0	0.001551	0
2	2519	1	0.994833	1
3	2410	0	0.104106	0
4	1534	0	0.179586	0