		Je	eu d'instru	ctions: x86	6				
			Architectu	re: 32 bits					
			OS: L	inux					
			Syntaxe: Ir	ntel/NASM					
			ention: Sys		i386				
	1		Compi	lation					
	a.asm(-g -F dwarf e a.o -m32(-ggdb)								
	M intel -r -S -lno-s	how-raw-insn -j .te							
	http://www.info.uni								
	https://software.int				n-vol-1-2abcd-3ab	cd.pdf			
Sources	https://www.felixclo								
	https://c9x.me/x86	<u> </u>							
	http://info.univ-ang								
	http://info.univ-ang	ers.fr/pub/richer/e	ens/l3info/ao/25366	67.pdf					
		Dortitio	nnomant	duproc	omma				
		Partitio	nnement						
.data	contient les defin	itions des variable	contient les es non-initialisées	s instructions: db,		(inetructions: rea	h resw reed \		
.bss .text	contient les defin	inona uca vanable		->uniquement allo de executé par le		turon actions, res	u, icow, icou)		
*****					,				
		Type	s de donr	nées					
Nom	Taille (octets)	Taille (bits)	signification	.555	Notes				
BYTE	1	8	Byte		1 char				
WORD	2	16	Word						
DWORD	4	32	Double Word		Taille d'un int				
QWORD TWORD	8	64 80	Quad Word	Taill	la d'un ragiatra fla	ttont			
IWORD	10	60	Ten bytes	Talli	le d'un registre flo	itani			
		Росия	do-instruc	tione					
N.	0: :5: ::	Pseuc		LIONS	- m				
Nom db	Signification Define Bytes		Description definit un octet		Taille 1 octet	db 'Hello', 10			
dw	Define Word		definit deux octets	3	2 octets	dw 746			
dd	Define Double		definit quatre octet		4 octets	dd 0x12345678			
dq	Define Quad	defin	it huit octets non-s	string	8 octets				
dt	Define Ten		octets flottants, n	-	10 octets	dt 1.234567e20			
ddq	Define Double Q Define Octo		ctets non-flottants, nit 8 octets non-st		8 octets 8 octets				
resb	Reserve Bytes		des octets non in		n octets	resb 64			
resw	Reserve Word		des octets non in		n*2 octets	resb 1			
resd	Reserve Double	declare	des octets non in	itialises	n*4 octets				
resq	Reserve Quad		des octets non in		n*8 octets	resq 10			
rest resdq	Reserve Ten Reserve Double Q		des octets non in des octets non in		n*10 octets n*8 octets				
reso	Reserve Octo		des octets non in		n*8 octets				
incbin	Include Binary		clut un fichier bina		petit fichier	incbin 'ex.dat'			
equ	Equal		efinit une constant		variable	len equ \$-msg			
times	Times	repete une	instruction ou de	s donnees	variable	times 64 db 0			
			lt	ati a sa					
			Instruc	ctions					
Nom	Signification		Description		Argu	ments	Exemple		
mov	move	transfert de do	Transfert des		dee	t, src	mov eax, 0		
	Move and sign	MOV + permet of	de convertir une va	aleur de 8 en 16			mov cax, u		
movsx	extend	bits ou de 16 e	en 32 bits en une	valeur signée	des	t, src			
movzx	Move and zero extend		de convertir une va 32 bits en une va		des	t, src	movzx eax, byte [esi]		
push	push stack		une valeur sur la		va	lue	push rdi		
рор	pop stack		de la stack et la s			eg	pop rdi		
popent	population count		mpte le nombre de			eg	popent eax		
xchg	exchange		le contenu des 2 d			, b	xchg ax, bx lea rsi,		
lea	load eff. addr.	charge	l'adresse de src da		des	t, src	[ebx+8*eax+4]		
			Arithme	tiques					
add	add		addition			t, src	add ax, bx		
		mu		ınée					
sub mul	subtract multiplication	mu	soustraction Itiplication non sig	née		t, src rg	sub ebx, 100 mul ecx		

imul	integer multiplication	m	nultiplication signe	ée	ar	rg	imul 2		
div	division	_	division non signé	e	ar	rq	div 2		
idiv	integer division		division signée		ar	_	idiv 2		
adc	add carry	dest + (src+retenue)		dest		adc ax, 8			
sbb	sub borrow		lest - (src+retenu		dest		sbb ax, 8		
inc	increment	_	incrementation	-,	re		inc ecx		
dec	decrement		decrementation		re		dec ecx		
neg	negate	réalise l	le complément à	2 (*= -1)	re		neg eax		
	nogato	10000	Logic			·9	nog cax		
and	and		ET	1400	dest	. src	and ax, bx		
or	or		OU		dest	,	or ax, bx		
xor	xor		OU-exclusif		dest		xor ax, ax		
not	not	ré	alise le compléme	ent	de		not ax		
			Decalage				not an		
shl	shift left	<< E0	uivalent a dest *=		dest	t. nb	shl 1, [ax]		
shr	shift right		quivalent a dest /=		dest		shr 1, [ax]		
sal	shift arithmetic left		shl signe	-	dest		sal ax, 2		
	shift arithmetic								
sar	right		shr signe		dest	i, nb	sal ax, 2		
rol	rotate left	shl faisant	rotate les bits qui	depassent	dest	i, nb	rol rax, 4		
ror	rotate right	shr faisant	rotate les bits qu	i depassent	dest	t, nb	ror rax, 4		
			Contro	l Flow					
jmp	jump	s	aut à l'adresse a	dr	ad	dr	jmp begin		
je	jump equal		jump si ZF = 1		ad	dr	je _done		
jne	jump not equal		jump si ZF = 0		ad	dr	jne _cwhile		
jz	jump zero		jump si ZF = 1		ad	dr	jz _done		
jnz	jump not zero		jump si ZF = 0 ?		ad	dr	jnz _cwhile		
jg	jump greater	jump si SF = OF && ZF = 0		ad	dr	jg _greater			
jge	jump greater		jump si SF = OF		adr		jge _greatereq		
	equal								
ji 	jump less		jump si SF != OF		a		jl _less		
jle	jump less equal	jum	o si SF != OF Z	F = 1	a		jle _lesseq		
jo	jump overflow		jump si OF = 1		a		jo _ov		
jno	jump not overflow		jump si OF = 0		a		jno _nov		
js	jump signed		jump si SF = 1		a		js _js 		
jns	jump not signed		jump si SF = 0		a		jns _njs		
стр	compare		les valeurs des 2		a,	b	cmp [var], 10		
test		⊨ffectue un ET b	inaire entre les d à jour le flag ZF	eux valeurs. Met			test ecx, ecx		
call	call	anne	el de sous-progra	mme	sous-pro	gramme	call hello		
ret	return		ur de sous-progra		30u3-pro	gramme	ret		
syscall	system call		service au kerne				syscall		
o y o o u ii	System dan	requiert un	SCIVICE da REITIE	r (mr oxoo)			- System		
	Mul	tiplication (eax *	1			Div	rision		
	Registre	Bits	Res		Registre	Bits	Quotient	Reste	
	AL	* 8 bits	AX		AX	/ 8 bits	AL	AH	
	AX	* 16 bits	DX:AX		DX:AX	/ 16 bits	AX	DX	
	EAX	* 32 bits	EDX:EAX		EDX:EAX	/ 32 bits	EAX	EDX	
	LAX	02 DIL3	LDA.LAA		LDA.LAA	/ 02 DIG	LAX	LDA	
				Decistor	o (lotal)				
				Registre	s (intel)				
	No			Signification			Description		
64 bits	32 bits	16 bits	8 bits	Gigriilication			Description		
				Registres	generaux				
RAX	EAX	AX	AH / AL	Accumulator		Réalisation d'o	pérations arithméti	ques et logiques	
RBX	EBX	BX	BH / BL	Base		Opér	ande ou registre po	ointeur	
RCX	ECX	CX	CH / CL	Counter		Ccompteu	ır dans les opératio	ns itératives	
RDX	EDX	DX	DH / DL	Data	Multiplicat	ions & divisions a	ainsi que l'accès au	x circuits d'entrée	es et sorties
				Registres poir	nteurs & index				
RSP	ESP	SP	SPL	Stack Pointer			Pointeur de pile		
RBP	EBP	BP	BPL	Base Pointer	Fait réf. aux p	aramètres des p	rocédures et foncti	ons qui sont pass	és dans la pile
RSI	ESI	SI	SIL	Source Index	Fai	t référence à la n	némoire (cf. MOVS	B, LOADSB, SCA	ASB)
RDI	EDI	DI	DIL	Destination Index	Fa	it référence à la l	mémoire (cf. MOVS	SB, STOSB, SCA	SB)
RIP	EIP			Instr. Pointer		Pointeu	r sur la prochaine i	nstruction	
				Registres d	e segments				
		cs		Code Segment	segment		(CS:EIP contient I		on à exec)
		DS		Data Segment		Segn	nent courant des de	onnées	
		ss		Stack Segment		Sec	gment courant de la	a pile	

SS

ES FS

GS

Stack Segment

Extra Segments

Registres d'etat (EFLAGS) @TODO ?

Segment courant de la pile

Segment additionnel

	Vectorisation (SEE2 & AVX2)						
	Registre						
Туре	Nom	Taille (bits)	In	fo complementa	ire		
MMX	mm0-7	64		Pas vu en TD!			
SSE	xmm0-7	128					
AVX	ymm0-7	256	3 opérandes pou	ır une instruction	: dest, src1, src2		
						Single Precision	Double Precision
pshufd	xmm2	xmm1	10 01 00 11			Float	Double
shufps						32 bits	64 bits
		11	1 0	0 1	0 0		
	xmm1	x1	x2	x3	x4		
	xmm2	x2	х3	x4	x1		

Instructions

Nom	Signification	Description	Arguments	Exemple
		Traitement des valeurs entières		
movd	Move Doubleword	r/m32 to xmm xmm register to r/m32	xmm, r/m32 r/m32, xmm	MOVD xmm, r/m32 MOVD r/m32, xmm
movq	Move Quadword	r/m64 to xmm xmm register to r/m64	xmm, r/m64 r/m64, xmm	MOVQ xmm, r/m64 MOVQ r/m64, xmm
movdqu	Move unaligned double quadword	mov entiers non alignés	xmmDst, xmmSrc/m128 (registre)	
movdqa	Move aligned double quadword	mov entiers alignés	kmmDst/m128, xmmSrc (mem/reg)	
movss	Move Scalar Single-Precision Floating-Point Values	Fusionne les floats de xmm2 à xmm1 Charge les floats de m32 à xmm1	xmm1, xmm2 xmm1, m32	MOVSS xmm1, xmm2 MOVSS xmm1, m32
paddB	Add packed Byte			PADDB xmm1, xmm2/m128
paddW	Add packed Word	Add		PADDW xmm1, xmm2/m128
paddD	Add packed Doubleword	Add		PADDD xmm1, xmm2/m128
paddQ	Add packed Quadword			PADDQ xmm1, xmm2/m128
pand	Logical AND	DEST = DEST AND SRC	xmm0, xmm1/m128	PAND xmm1, xmm2/m128
pcmpeqb	Compare Packed Bytes for Equal	Comparaison des octets compactés		PCMPEQB xmm1, xmm2/m128
pcmpeqd	Compare Packed Words for Equal	Comparaison des octets compactes		PCMPEQW xmm1, xmm2/m128
pmulld	Multiply Packed Integers and Store Low Result	Fait 4 multiplication 32 bits en parrallèle et stock les 32 bits inferieurs -> dst = dst * src		PMULLD xmm1, xmm2/m128
pmovmsk	Move Byte Mask	mov et les bits superieurs de r32 ou r64 sont à 0	reg, xmm	PMOVMSKB ebx, xmm0
		Traitement des valeurs réelles		
movups	Move Unaligned Packed Single	mov flottants non alignés	xmmDst, xmmSrc/m128 (registre)	
movaps	Move Aligned Packed Single	mov flottants alignés	kmmDst/m128, xmmSrc (mem/reg)	
addps	Add Packed Single Precision	xmmDst = xmmDst + xmmSrc		
addpd	Add Packed Double Precision	XIIIIIDSt - XIIIIIDSt + XIIIIISIC		
sqrtps	Square Root of Single-Precision Floating-Point Values	xmmDst = sgrt(xmmSrc)		
sqrtpd	Square Root of Double-Precision Floating-Point Values	XIIIIIDSL – SQLI(XIIIIISIC)	xmmDst, xmmSrc/m128	
minps	Minimum of Packed Single	retourne le min des 2 registres ds le 1er		MINPS xmm1, xmm2/m128
maxps	Maximum of Packed Single	retourne le max des 2 registres ds le 1er		MAXPS xmm1, xmm2/m128
xorps	Bitwise Logical XOR	xor		XORPS xmm1, xmm2/m128
		Conversion et manipulation		
cvtsi2ss	Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value	Converti des entiers en flottants simple précision.	xmmDst, r/m32	CVTSI2SS xmm1, ebx
cvtps2pd	Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values	Converti des flottants simple précision en flottants double précision.	xmmDst, xmmSrc	CVTPS2PD xmm1, xmm2/m64
haddps	Packed Single-FP Horizontal Add	xmm1 = x4 x3 x2 x1 xmm2 = y4 y3 y2 y1 xmm1 = x3 + x4 x1 + x2 y3 + y4 y1 + y2		HADDPS xmm1, xmm2/m128
pshufd	Shuffle Packed Doublewords			PSHUFD xmm1, xmm2/m128, imm8
shufps	Packed Interleave Shuffle of Quadruplets of Single-Precision Floating-Point Values	voir exemple ci-dessous	xmmDst, xmmSrc, imm8	SHUFPS xmm1, xmm2/m128, imm8
	Unpack and Interleave Low Packed	xmm1 = x7 x6 x5 x4 x3 x2 x1		

AVX2

(= SSE2 avec un ${\bf V}$ devant les instructions + xmm en ${\bf ymm}$)

Coprocesseur

8 registres (ST0 à ST7) de 80 bits que l'on utilise comme une pile (voire une file)

le coprocesseur comporte un registre de status qui indique les erreurs éventuelles

les nombres sont chargés au niveau des registres grâce à des instructions spécifiques

les instructions liées au coprocesseur commencent par la lettre ${\bf F}$

		Instructions		
Nom	Signification	Description	Arguments	Exemple
		Chargement		
fld	Load Floating Point Value	charge un nombre en virgule flottante depuis la mémoire et le stocke au sommet de la pile		
fild	Load Integer	de même, avec un nombre entier qui est convertit en virgule flottante	[mem]	
fldz		charge la valeur 0 ds ST0		
fld1	Load Constant	charge la valeur 1 ds ST0		
fldpi		charge la valeur de π (Pi) ds ST0		
		Stockage		
fst	0. 5. 5. 5. 11.	stocke le sommet de pile ST0 en mémoire ou dans un autre registre du coprocesseur		
fstp	Store Floating Point Value	agit comme FST mais la valeur en sommet de pile est dépilée	[mem]	
fist	Store Integer	comme FST mais convertit le nombre en virgule flottante en un entier		
fistp		comme FSTP pour les entiers		
		Manipulation de la pile		<u> </u>
fxch	Exchange Register Contents	échange les valeurs de ST0 et STn		
ffree	Free Floating-Point Register	libère un registre de la pile en le marquant comme inutilisé	STn	
		Addition		
fadd		ST0 += src, ou src est un nombre en mémoire ou un autre registre STn	[mem]/STi	
luuu	Add	STn += ŠT0	STn, ST0 STn	
faddp		dst += ST0, puis ST0 est dépilé STn += ST0, puis ST0 est dépilé	STn, ST0	faddp stn, st0
fiadd		ST0 += (float) src, ou src est un entier	[mem]/STi	
		Soustraction, multiplication, division (meme schema	que l'addition)	
fsub	Subtract	meme schema que l'addition		
fmul	Multiply	f / fp / fi		
fdiv	Divide			
		Comparaison		
fcom		Compare ST0 avec src	SrC	
fcomp	Compare Floating Point Values	Compare ST0 avec src, puis ST0 est dépilé		
fcompp		Compare ST0 avec ST1 -> ST0 & ST1 sont dépilés		
ficom	Compare Integer	Compare ST0 avec src	src	
ficomp	Compare integer	Compare ST0 avec src, puis ST0 est dépilé	Sic	
ftst	Test Floating Point Value	Compare ST0 avec 0.0		
fcomi	Compare ST0 avec STn Compare Floating Point Values & set le flag en conséquence		STn	
fcomip	and Set EFLAGS	Compare ST0 avec src & set le flag en conséquence, puis ST0 est dépilé	src	
		Autres fonctions		
fchs	Change Sign	changement de signe ST0 = -ST0		
fcos/sin/tan	cos / sin / tan	remplace ST0 par son sinus / cosinus / tangente		
fabs	Absolute Value	valeurs absolue de ST0		
fsqrt	Square Root	racine carrée de ST0		