5

Linear Algebra (MT1004)

Final Exam

Date: Ist January, 2024

3 **Total Time (Hrs):**

Course Instructor(s)

90 **Total Marks:**

Dr. Akhlaq Ahmad

Total Questions:

Dr. Tayyaba Naz

Dr. Nazish Iftikhar

Dr. Nasir Ali

Dr. Sonia Hanif

Dr. Komal Hassan

Dr. Muhammad Rizwan

Ms. Maria Shabir

Section

Student Signature

Do not write below this line

Instruction/Notes:

1. Programmable calculators are not allowed.

2. Wrong calculation work found (if any) at a step will not be further marked. Marks will be awarded till the correct calculations.

3. Attempt all question parts together. Question attempted in separate parts will not be marked.

CLO #1: Use concept of elementary row operations to find the inverse of square matrices, determinant of a matrix and solving the system of linear equations.

CLO #5: Express a linear transformation graphically using matrices and to solve problems.

Application in Computer Graphics:

Ouestion#1: [3+2 +3+5+2+5 marks]

- a) Use Inversion Algorithm to find the Inverse of matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix}$. Write down A^{-1} as a product of elementary matrices $A^{-1} = E_k E_{k-1} \dots E_3 E_2 E_1$. $\begin{bmatrix} 9 & -4 \\ -2 & 1 \end{bmatrix}$ b) Verify that $A = E_1^{-1} E_2^{-1} E_3^{-1} \dots E_{k-1}^{-1} E_k^{-1}$ for some k.
- c) Sketch the image of the triangle with vertices (0,0), (1.5,2), (3,1) under multiplication by the invertible matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix}$.
- d) Discuss the Geometric Effect on the triangle of multiplication by the given matrix A, using the following steps:
- Show the effect of E_1^{-1} E_2^{-1} E_3^{-1} ... E_{k-1}^{-1} E_k^{-1} on the triangle with vertices (0,0), (1.5,2), (3,1)step by step.
- Show mathematically action of each elementary matrix on the end points of the edges and ii) graphically show the output images at each step.
- e) Show that succession of shears, compressions, expansions, and reflections that obtained in part (d) produces the same image as obtained in part (c).
- f) Find an equation for the image of the line y = -4x + 3 under multiplication by the matrix

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix}.$$

National University of Computer and Emerging Sciences Lahore Campus

0

CLO #2: Properties of vectors in 2-space, 3-space and n-space and recognize vector spaces and/or subspaces to compute their bases and its dimension.

Question#2: [5 +5+10 marks]

a) Let V be the set of all ordered pairs of real numbers, and consider the following addition and scalar multiplication operations on $u = (u_1, u_2)$ and $v = (v_1, v_2)$:

$$u + v = (u_{1+}v_1 - 3, u_2 + v_2 - 3), ku = (ku_1, 0).$$

- i) Show that Axiom 4 holds by producing a zero vector such that u + (0) = u for $u = (u_1, u_2)$.
- Show that Axiom 5 holds by producing a negative vector (-u) such that u + (-u) = 0 for $u = (u_1, u_2)$.
- iii) Show that Axiom 8, i.e. [(k+m)u = ku + mu] and Axiom 10 [1.u = u], fail and hence that V is not a vector space under the given operations.
- b) Consider the bases $B = \{u_1, u_2\}$ and $B' = \{u_1', u_2'\}$ for R^2 , where $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $u_1' = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \& u_2' = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ Find the transition matrix $P_{B \to B'}$.
- c) For the given matrix

$$A = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 4 & -2 & 2 \\ 3 & 6 & -3 & 3 \\ 4 & 8 & -4 & 4 \end{bmatrix}$$

- i) Find the basis for the row space of A.
- ii) Find the basis for the column space of A.
- iii) Find the basis for the null space of A and explain geometrically the solution space/sub-space/null space spanned by the basis for the null space of A. Hint: Write the solution space say "X" in Matrix column notation and then check cardinality of X to determine basis for null space.
- iv) Find rank and nullity for the given matrix A.

CLO #3: Perform Eigen Value analysis and use it to Diagonalize a matrix and/or find its powers.

Question#3: [5+2+8+5 marks]

- a) Find the geometric and algebraic multiplicity of each eigenvalue of the matrix A,
- b) Determine whether A is diagonalizable. If A is diagonalizable, then find a matrix P that diagonalizes A.
- c) Prove that $P^{-1}AP = D$.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 4 & -1 \\ -2 & -4 & 4 \end{bmatrix}$$

d) Check that matrix A and $P^{-1}AP$ have same trace by using the definition of similarity invariants.

CLO #4: Identify inner product spaces and/or perform Gram Schmidt process/QR decomposition using inner products.

Question#4:
$$[5+5 \text{ marks}]$$

$$\begin{cases} 0 & 2 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix} \text{ define the column vectors } u_1, u_2 \text{ and } u_3 \text{ as}$$

$$u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ & $u_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

- a) Use the Gram Schmidt process to find an orthogonal set of vectors $\{v_1, v_2, v_3\}$ and then find orthonormal Use the Gram – Schmidt process to find an orthogonal set of vectors $\{q_1, q_2, q_3\}$. Discuss the geometry of Eigen Spaces corresponding to each Eigen value.
- b) Find the QR-decomposition of the given matrix. Also verify that A = QR where, $Q = [q_1 \mid q_2 \mid q_3]$ consists of the column vectors obtained in part (a) and R is given below

$$R = \begin{bmatrix} \langle u_1, q_1 \rangle & \langle u_2, q_1 \rangle & \langle u_3, q_1 \rangle \\ 0 & \langle u_2, q_2 \rangle & \langle u_3, q_2 \rangle \\ 0 & 0 & \langle u_3, q_3 \rangle \end{bmatrix}.$$

Note: Consider standard dot product as standard inner product between vectors.

CLO #5: Express a linear transformation graphically using matrices and to solve problems.

General Linear Transformations:

Question # 5: [5+10+5 marks]

- a) Consider basis $S = \{v_1, v_2\}$ for R^2 , where $v_1 = (-2, 1)$ and $v_2 = (1, 3)$, and let $T: R^2 \to R^3$ be the linear transformation such that $T(v_1) = (-1, 2, 0)$ and $T(v_2) = (0, -3, 5)$. Find a formula for $T(x_1, x_2)$, and use that formula to find T(2, -3).
- b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined

$$T\left(\begin{bmatrix} x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix} -4x_1\\-x_1+2x_2\\-2x_1+5x_2\end{bmatrix}.$$

i) Find the matrix for the transformation T i.e. $[T]_{B',B} = [T(u_1)]_{B'} + [T(u_2)]_{B'}$ relative to the basis $B = \{u_1, u_2\}$ and $B' = \{v_1, v_2, v_3\}$, where

$$u_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, u_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, v_1 = \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Denote $T = [T]_{B',B}$ and find the following:

- ii) Find the Kernal of T i.e Ker(T).
- iii) Find the Range of T i.e R(T).

c) The following is the image of a triangle $\triangle MON$

Find standard matrices for the mentioned below parts and plot the final transformed image of a given triangle.

- i) Expand by a factor of 2 in the x -direction.
- ii) Reflect the given triangle about line y = x

Good Luck!