Exercise 1 (DF 9.2: 5). Exhibit all the ideals in the ring F[x]/(p(x)), where F is a field and $p(x) \in F[x]$ (describe them in terms of the factorization of p(x)).

By the fourth isomorphism theorem for rings, a subring A of F[x] containing (p(x)) is an ideal of F[x] if and only if A/(p(x)) is an ideal of F[x]/(p(x)). Thus this problem reduces to describing the ideals of F[x].

Since F is a field, F[x] is a unique factorization domain and a principal ideal domain. Then we can write p(x) as

$$p(x) = \prod_{i=1}^{m} p_i(x)$$

for some m, and we can generate any ideal of F[x] with a single polynomial. Now $(p(x)) \subset (q(x))$ if and only if q(x) divides p(x), so all ideals of F[x] containing (p(x)) can be generated the factors of p(x). Thus the ideals of F[x] are of the form $(p_{i_1} \cdots p_{i_k})$ for $k \leq m$, and the ideals of F[x]/(p(x)) are of the form

$$(p_{i_1}\cdots p_{i_k})/(p(x)).$$

Exercise 2 (DF 9.4: 1). Determine whether the following polynomials are irreducible in the rings indicated. For those that are reducible, determine their factorization into irreducibles.

- a. $x^2 + x + 1$ in $\mathbb{F}_2[x]$.
- b. $x^3 + x + 1$ in $\mathbb{F}_3[x]$.
- c. $x^4 + 1$ in $\mathbb{F}_5[x]$.
- d. $x^4 + 10x^2 + 1$ in $\mathbb{Z}[x]$.
- a. Since this polynomial is degree 2, its reducibility coincides with the existence of roots in \mathbb{F}_2 . Since the polynomial is nonzero when evaluated at both 0 and 1, it is irreducible.
- b. This polynomial has the root $1 \in \mathbb{F}_3$, so we can write it as $x^3 + x + 1 = (x-1)(x^2+x+2)$. Then since x^2+x+2 has no roots in \mathbb{F}_3 , we have expressed the original polynomial in terms of irreducibles.
- c. We can write this polynomial as $(2x^2 + 1)(3x^2 + 1)$. Neither of these quadratics have roots in \mathbb{F}_5 , so they are both irreducible.
- d. This polynomial is irreducible in $\mathbb{Q}[x]$ (and by extension in $\mathbb{Z}[x]$) by Eisenstein's criterion for p=2.

Exercise 3 (DF 13.1: 1). Show that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of p(x). Find the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.

The polynomial p(x) is irreducible in $\mathbb{Q}[x]$ by Eisenstein's criterion for the prime 3. We can use the fact that $\theta^3 + 9\theta + 6 = 0$ to calculate the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.

Any element in $\mathbb{Q}(\theta)$ can be written

$$a_0 + a_1\theta + a_2\theta^2$$

for $a_i \in \mathbb{Q}$. We wish to find such an element of $\mathbb{Q}(\theta)$ such that it multiplies with $1 + \theta$ to yield 1. We have

$$1 = (1 + \theta)(a_0 + a_1\theta + a_2\theta^2)$$

$$0 = (a_0 - 1) + (a_0 + a_1)\theta + (a_1 + a_2)\theta^2 + a_2\theta^3.$$

Since, as noted earlier, $\theta^3 = -9\theta - 6$, this becomes

$$0 = (a_0 - 6a_2 - 1) + (a_0 + a_1 - 9a_2)\theta + (a_1 + a_2)\theta^2.$$

This gives a system in $(a_0 - 6a_2 - 1)$, $(a_0 + a_1 - 9a_2)$, and $(a_1 + a_2)$ all equal 0. Solving the system yields

$$a_0 = \frac{5}{2}$$
, $a_1 = -\frac{1}{4}$, and $a_2 = \frac{1}{4}$.

Thus the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$ is

$$\frac{5}{2} - \frac{1}{4}\theta + \frac{1}{4}\theta^2.$$

Exercise 4 (DF 13.1: 3). Show that $x^3 + x + 1$ is irreducible over \mathbb{F}_2 and let θ be a root. Compute the powers of θ in $\mathbb{F}_2(\theta)$.

Let $p(x) = x^3 + x + 1$, then since p(0) and p(1) are both nonzero, p(x) has no roots in \mathbb{F}_2 , so it is irreducible in $\mathbb{F}_2[x]$. Since p(x) has degree 3, the field $\mathbb{F}_2(\theta)$ has basis $\{1, \theta, \theta^2\}$. Thus we need only compute the powers of θ that are greater than 2.

- Since $p(\theta) = \theta^3 + \theta + 1 = 0$, we have $\theta^3 = -\theta 1 = \theta + 1$.
- $\bullet \ \theta^4 = \theta^3 \theta = \theta^2 + \theta.$
- $\theta^5 = \theta^4 \theta = \theta^3 + \theta^2 = 1 + \theta + \theta^2$.
- $\theta^6 = \theta + \theta^2 + \theta^3 = 1 = \theta^2$.
- $\theta^7 = \theta + \theta^3 = 1$.

From here the pattern repeats.

Exercise 5 (DF 13.1: 7). Prove that $x^3 - nx + 2$ is irreducible for $n \neq -1, 3, 5$.

Let $f_n(x) = x^3 - nx + 2$. If a rational root c/d of $f_n(x)$ exists, then it satisfies $c \mid a_0 = 2$ and $d \mid a_n = 1$. This means that the possible values of c and d are $c = \pm 1, \pm 2$ and $d = \pm 1$, so the possible rational roots are ± 1 and ± 2 . Evaluating $f_n(x)$ at these points yields

$$f_n(1) = 3 - n$$

$$f_n(-1) = 1 + n$$

$$f_n(2) = 2(5 - n)$$

$$f_n(-2) = -2(3 - n)$$

We are given that $n \neq -1, 3, 5$, however, so these quantities can never be 0. Thus $f_n(x)$ is irreducible over \mathbb{Q} .

Exercise 6 (DF 13.2: 1). Let \mathbb{F} be a finite field of characteristic p. Prove that $|\mathbb{F}| = p^n$ for some positive integer n.

We know that any field \mathbb{F} is an extension of it prime subfield F, and since the character of \mathbb{F} is p, F is isomorphic to \mathbb{F}_p . Since \mathbb{F} is finite, there is some basis $\{\alpha_i\}_{i=1}^n$ for \mathbb{F} as an F- vector space. This means we can write all elements of \mathbb{F} uniquely as

$$\sum_{i=1}^{n} f_i \alpha_i,$$

where $f_i \in F$. Since there are p different f_i , there are p^n different ways of assigning the f_i , so this means that $|\mathbb{F}| = p^n$.

Exercise 7 (DF 13.2: 3). Determine the minimal polynomial over \mathbb{Q} for the element 1+i.

The element 1+i is a root of x-1+i, but this is not over \mathbb{Q} . We can remove the i by multiplying by the polynomial with the conjugate 1-i as a root, which will give us a polynomial which is over \mathbb{Q} instead of \mathbb{C} . We get

$$(x-(1-i))(x-(1+i)) = x^2-2x+2$$
,

which is over \mathbb{Q} and contians 1-i as a root. As it turns out, this is the exact polynomial we're looking for. By Eisenstein's criterion for p=2, it is irreducible over \mathbb{Q} . Thus it is the minimal polynomial over \mathbb{Q} for 1+i.

Exercise 8 (DF 13.2: 16). Let K/F be an algebraic extension and let R be a ring contained in K and containing F. Show that R is a subfield of K containing F.

Let $r \in R$ be nonzero, then r is necessarily in K, so it is algebraic over F. Then there exists a minimal polynomial $m_r(x) = \sum_{i=0}^n c_0 k^i$ over F with r as a root. Now c_0 must be nonzero, since otherwise we could factor out an x from it $m_r(x)$, meaning it wouldn't be irreducible. Since c_0 is nonzero and is an element of a field, it has an inverse c_0^{-1} . We can then use this inverse to calculate an inverse for r:

$$c_0 + c_1 r + \dots + c_n r^n = 0$$

$$(-c_0^{-1})(c_0 + c_1 r + \dots + c_n r^n) = 0$$

$$(-c_0^{-1})(c_1 r + \dots + c_n r^n) = 1$$

$$r(-c_0^{-1})(c_1 + \dots + c_n r^{n-1}) = 1$$

Since we have found an inverse for an arbitrary nonzero element of R, it must be a field.

Exercise 9. If a_0, \ldots, a_n are distinct elements of a field F and b_0, \ldots, b_n are any elements of F, then there is at most one polynomial $f \in F[x]$ with $\deg f \leq n$ such that $f(a_i) = b_i$ for $i = 0, 1, \ldots, n$.

We will show this by contradiction. Suppose f and g are both polynomials of degree no greater than n satisfying $f(a_i) = g(a_i) = b_i$ for all i. Then $(f - g)(a_i) = 0$ for all i, meaning that it has n + 1 roots; however, f - g has degree no greater than n, so it can have no more than n roots if it is nonzero. Thus f - g is actually the zero polynomial, so f = g, so we can have no more than 1 polynomial satisfying the given condition.

Exercise 10. Construct a field of 27 elements.

Let $p(x) = x^3 + x^2 + 2$ be a polynomial over \mathbb{F}_3 , then we claim that $F = \mathbb{F}_3/(p(x))$ is a field with 27 elements. The polynomial p(x) is irreducible over \mathbb{F}_3 since it has no roots in \mathbb{F}_3 , so the quotient F is a degree 3 field extension of \mathbb{F}_3 . This means the elements of F can all be uniquely written in the form

$$f_1 + f_2\theta + f_3\theta^2$$
,

where $f_i \in \mathbb{F}_3$ and θ is a root of p(x). Since there are $3^3 = 27$ possible ways of assigning the f_i , there are 27 elements of F.