# 半导体物理

杨一鸣 张贺秋 教授

微电子学院

大连理工大学

Email: ymyang@dlut.edu.cn hqzhang@dlut.edu.cn

# 半导体物理

绪论

# 半导体物理的重要性

• 微电子/半导体行业的门槛

• 研究生入学考试笔试/面试必考

• 半导体器件/集成电路/芯片的"语言"

上课时间

#### 三四节课 2021~2022学年 第二学期 五六节课

| 周次  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 月 份 | 8  | Ξ  |    |    |    | 四  |    |    |    | 五  |    |    |    | 六  |    |    |    |
| 星期一 | 28 | 7  | 14 | 21 | 28 | 4  | 11 | 18 | 25 | 2  | 9  | 16 | 23 | 30 | 6  | 13 | 20 |
| 星期二 | 1  | 8  | 15 | 22 | 29 | 5  | 12 | 19 | 26 | 3  | 10 | 17 | 24 | 31 | 7  | 14 | 21 |
| 星期三 | 2  | 9  | 16 | 23 | 30 | 6  | 13 | 20 | 27 | 4  | 11 | 18 | 25 | 1  | 8  | 15 | 22 |
| 星期四 | 3  | 10 | 17 | 24 | 31 | 7  | 14 | 21 | 28 | 5  | 12 | 19 | 26 | 2  | 9  | 16 | 23 |
| 星期五 | 4  | 11 | 18 | 25 | 1  | 8  | 15 | 22 | 29 | 6  | 13 | 20 | 27 | 3  | 10 | 17 | 24 |
| 星期六 | 5  | 12 | 19 | 26 | 2  | 9  | 16 | 23 | 30 | 7  | 14 | 21 | 28 | 4  | 11 | 18 | 25 |
| 星期日 | 6  | 13 | 20 | 27 | 3  | 10 | 17 | 24 | 1  | 8  | 15 | 22 | 29 | 5  | 12 | 19 | 26 |
| 环 节 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |

## 课程信息

- 上课时间: 周一3,4节、周五5,6节,第1-16周
- 答疑时间: 随堂QQ群答疑(可匿名)
- 作业提交:每周五布置/上交,迟交最多计50%分数
  - 提交方式: 手写, 拍照上传超星平台
- 考试时间: 第8周期中考试, 闭卷笔试
- 成绩组成: 10%章节测试+10%作业+10%大作业+26%期中考试
  - +44%期末考试
- •课堂考勤:随机点名,无故缺席每次扣除总成绩10分

## 课程信息: 大作业

#### • 题目要求:

- 1. 组成6人或7人学习小组
- 2. 聚焦与半导体物理相关的热点或前沿问题,每人查找与半导体物理相关的近3年期刊论文2篇及以上(每人至少阅读一篇英文期刊论文,国内的期刊需要为核心期刊,国外的期刊影响因子5以上,最好阅读Nature或Science的论文)。

## 课程信息: 大作业

#### • 考核方式:

- 1. 讨论汇总每个人的阅读资料,总结确定的热点或前沿问题的研究背景,在此前沿或热点问题上有哪些研究方向,采用哪些软件、硬件工具进行分析,与哪些半导体物理知识相关,制作成PPT。
- 2. 在课堂上做5分钟汇报。
- 3. 组内成员互相打分,主要考察对所研究问题的讨论情况。(50分)
- 4. 其他班级成员打分,主要考察PPT汇报结构完整性,报告语言表达流利性。(20分)
- 5. 任课教师打分,主要考察题目与半导体物理的相关性、PPT结构、 汇报表达。(30分)

### 主要参考书

- 1. 胡礼中教授编写的《半导体物理》讲义
- 2. 黄昆原著,韩汝琦改编,《固体物理学》,高等教育出版社
- 3. 刘恩科等 《半导体物理学》,国防工业出版社,第7版
- 4. 黄昆, 韩汝琦 《半导体物理基础》, 科学出版社
- 5. 叶良修 《半导体物理学》, 高等教育出版社, 1987年

# 黄昆院士简介







朱邦芬院士



杨老师

黄昆(1919.9.2-2005.7.6),浙江嘉兴人,世界著名物理学家、中国固体物理学和半导体物理学奠基人之一。

#### 主要贡献:

黄昆完成了两项开拓性的学术贡献。一项是提出著名的"黄方程"和"声子极化激元"概念,另一项是与后来成为他妻子的共同提出的"黄一里斯理论"。提出固体中杂质缺陷导致x射线漫散射的理论,被称为"黄散射",与里斯共同提出了多声子的辐射和无辐射跃迁的量子理论;同期佩卡尔发表了相平行的理论,被国际上称为"黄-佩卡尔理论"或"黄-里斯理论";提出了晶体中声子与电磁波的耦合振荡模式,当时提出的方程,被称为"黄方程";研究半导体量子阱超晶格物理。建立超晶格光学振动的理论,发表了后来被国际物理学界称为"黄一朱模型"的理论。

# 本课程内容

• 第一章: 绪论

• 第二章: 晶体结构

• 第三章: 晶格振动和晶格缺陷

• 第四章: 半导体中的电子状态

• 第五章: 半导体中载流子的统计分布

• 第六章: 半导体中的电导现象和霍尔效应

• 第七章: 非平衡载流子

• 第八章: 半导体表面

电子

# 怎样学好半导体物理

- 半导体物理内容范围广,知识体系庞大,涉及众多量子 力学与统计物理的内容,对大二本科生来说难度较大。
- 建议一: 重心放在概念的理解与物理图像的建立
- **建议二**: "书读百遍,其义自见。"至少读两本以上参 考书、读第一遍弄懂概念,第二遍再关注公式推导。
- **建议三**:独立思考,培养"批判性思维"。课本上有没有错误?假设能不能成立?

## 半导体的定义

导体

半导体

绝缘体







电阻率: 10<sup>-7</sup> to 10<sup>-8</sup> Ω·m 电阻率: 10<sup>-6</sup> to 10<sup>2</sup> Ω·m 电阻率: 10<sup>10</sup> to 10<sup>14</sup> Ω·m

单纯通过导电性定义的半导体并不准确

### 为什么需要半导体?

计算

储存



导电: 1

不导电:0

高阻态: 1

低阻态: 0

### 因为半导体的导电性可以调控!

### 半导体的一些常见特性



- 1. 导电性
- 2. 电阻随温度变化
- 3. 掺杂可在很大范围内 改变半导体的导电性
- 4. 光照下电阻发生变化

### 半导体材料分类

- 1. 第一代半导体: Si、Ge
- 2. 第二代半导体: GaAs, InP等III-V族材料
- 3. 第三代半导体: GaN、SiC等宽禁带材料
- 4. 新型半导体: 纳米材料、

碳材料、柔性材料等

| 11        | Ш  | IV | V  | VI        |  |
|-----------|----|----|----|-----------|--|
| 4         | 5  | 6  | 7  | 8         |  |
| Be        | B  | C  | N  | O         |  |
| 12        | 13 | 14 | 15 | 16        |  |
| Mg        | Al | Si | P  | S         |  |
| 30        | 31 | 32 | 33 | 34        |  |
| <b>Zn</b> | Ga | Ge | As | <b>Se</b> |  |
| 48        | 49 | 50 | 51 | 52        |  |
| Cd        | In | Sn | Sb | Te        |  |
| 80        | 81 | 82 | 83 | 84        |  |
| Hg        | Tl | Pb | Bi | Po        |  |

# 第一章

# 晶体结构

### 认识晶体

#### 天然晶体大多具有规则的几何形状





#### 微观原子或分子排列有序

想一想, 生活中常见的晶体有哪些?

### 固体的分类



长程有序: 一般在微米量级范围内原子排列具有周期性。

### § 1.1 一些晶体的实例

晶格 —— 晶体中原子排列的具体形式

原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格,如Cu和Ag; Ge和Si等等

#### 1. 简单立方晶格

——原子球在一个平面 内呈现为正方排列

——平面的原子层叠加起 来得到简单立方格子





#### 用圆点表示原子的位置 —— 得到简单立方晶格结构



#### 2. 体心立方晶格

体心立方晶格

原子球排列形式





体心立方原子球排列方式表示为 AB AB AB ......

### 密排堆积



二维密排堆积



密排堆积 —— 晶体由同一种粒子组成,将粒子看作小圆球 这些全同的小圆球最紧密的堆积

### 两种密排堆积方式



#### 原子球排列为: ABABAB ......

3. 六角密排晶格

Be, Mg, Zn, Cd



#### 原子球排列为: ABC ABC ABC ......

4. 面心立方晶格

Cu, Ag, Au, Al





#### 5. 金刚石晶格结构

—— 碳原子构成的一个面心立 方原胞内还有四个原子,分别 位于四个空间对角线的1/4处

——一个碳原子和其它四个碳原子构成一个正四面体

——金刚石结构的半导体晶体

Ge、Si等



#### 6. 几种化合物晶体的晶格

#### 1) NaCl晶体的结构

氯化钠由Na+和Cl-结合而成 ,是 一种典型的离子晶体 Na+构成面心立方格子; Cl-也构成面心立方格子





#### 2) CsCl晶体的结构

CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对角线位移1/2的长度套构而成





3) ZnS晶体的结构 —— 闪锌矿结构

立方系的硫化锌 —— 具有金刚石类似的结构

化合物半导体 —— 锑化铟、砷化镓、磷化铟





### § 1.2 晶格的周期性

1. 晶格周期性的描述 —— 原胞和基矢

晶格共同特点 —— 周期性,可以用原胞和基矢来描述

原胞 ——一个晶格中最小重复单元

基矢 —— 原胞的边矢量

——三维晶格的重复单 元是平行六面体

—— 重复单元的边长矢量



- 2. 简单晶格
- —— 由完全等价的一种原子构成的晶格
- 1) 简单立方晶格 —— 原胞为简单立方晶格的立方单元

基矢 
$$\vec{a}_1 = a\vec{i}$$
  
 $\vec{a}_2 = a\vec{j}$   
 $\vec{a}_3 = a\vec{k}$ 

原胞体积  $\Omega = a^3$ 

—— 原胞中只包含一个原子



#### 2) 面心立方晶格

#### 立方体的顶点到三个近邻的面心引三个基矢

#### 基矢

$$\vec{a}_1 = \frac{a}{2} (\vec{j} + \vec{k})$$

$$\vec{a}_2 = \frac{a}{2} (\vec{i} + \vec{k})$$

$$\vec{a}_3 = \frac{a}{2} (\vec{i} + \vec{j})$$

#### 原胞体积

$$\Omega = \overrightarrow{a}_1 \cdot \left(\overrightarrow{a}_2 \times \overrightarrow{a}_3\right) = \frac{1}{4}a^3$$



—— 原胞中只包含一个原子

#### 3) 体心立方晶格

#### 由立方体的中心到三个顶点引三个基矢

#### 基矢

$$\vec{a}_1 = \frac{a}{2} \left( -\vec{i} + \vec{j} + \vec{k} \right)$$

$$\vec{a}_2 = \frac{a}{2} \left( \vec{i} - \vec{j} + \vec{k} \right)$$

$$\vec{a}_3 = \frac{a}{2} \left( \vec{i} + \vec{j} - \vec{k} \right)$$



#### 原胞体积

$$\Omega = \stackrel{\rightarrow}{a_1} \cdot \left( \stackrel{\rightarrow}{a_2} \times \stackrel{\rightarrow}{a_3} \right) = \frac{1}{2} a^3$$

——原胞中只包含一个原子

#### 3. 复式晶格

——复式格子包含两种或两种以上的等价原子

1) 不同原子或离子构成的晶体

NaCl、CsCl、ZnS等





#### 2) 相同原子但几何位置不等价的原子构成的晶体

金刚石结构的C、Si、Ge

六角密排结构Be、Mg、Zn





3) 复式格子的特点:不同等价原子各自构成相同的简单晶格 (子晶格),复式格子由它们的子晶格相套而成

NaCl 晶格 ——  $Na^+$ 和 $Cl^-$ 各有一个相同的面心立方晶格





### CsCl的复式晶格

—— CsCl结构是由两个简立方的子晶格彼此沿立方体空间 对角线位移1/2的长度套构而成





#### ZnS的复式晶格

立方系的ZnS —— S和Zn分别组成面心立方结构的子晶格沿空间对角线位移 1 / 4 的长度套构而成





#### 六角密排晶格的原胞基矢选取

—— 一个原胞中包含A层 和B层原子各一个

—— 共两个原子



单胞 —— 为了反映晶格的对称性,常取最小重复单元的几倍 作为重复单元,又称作晶胞

单胞的边在晶轴方向,边长等于该方向上的一个周期

—— 代表单胞三个边的矢量称为单胞的基矢

# 单胞基矢 $\overline{a}_1, \overline{a}_2, \overline{a}_3$

- 一些情况下,单胞就是原胞
- 一些情况下,单胞不是原胞

简单立方晶格 — 单胞是原胞

面心立方晶格 — 单胞不是原胞



## 4. 晶格周期性的数学描述 —— 布拉伐格子

简单晶格,任一原子A的位矢 
$$\vec{R}_1 = l_1 \vec{a}_1 + l_2 \vec{a}_2 + l_3 \vec{a}_3$$

二维晶格



三维晶格



可以用  $l_1\vec{a}_1 + l_2\vec{a}_2 + l_3\vec{a}_3$  表示一个空间格子

-- 一组 $I_1$ , $I_2$ , $I_3$ 的取值可以囊括所有的格点

## -- 布拉伐格子

$$\pm l_1\vec{a}_1 + l_2\vec{a}_2 + l_3\vec{a}_3$$

确定的空间格子



—— 晶体可以看作是在布拉伐格子(Lattice)的每一个格点 上放上一组原子基元(Basis )构成的





简单晶格 —— 基元是一个原子

复式晶格 —— 基元是一个以上原子





复式晶格: 任一原子A的位矢

$$\vec{R}_l = \vec{r}_a + l_1 \vec{a}_1 + l_2 \vec{a}_2 + l_3 \vec{a}_3, \quad \alpha = 1, 2, 3....$$

原胞中各种等价原子之间的相对位移

——金刚石晶格

——碳**1**位置 
$$l_1\bar{a}_1 + l_2\bar{a}_2 + l_3\bar{a}_3$$

—— 碳2位置

$$\vec{\tau} + l_1 \vec{a}_1 + l_2 \vec{a}_2 + l_3 \vec{a}_3$$

对角线位移

$$|\vec{\tau}| = 1/4$$



# § 1.3 晶向 晶面和它们的标志

布拉伐格子的特点 —— 所有格点周围的情况都是一样的

——晶体的晶列

—— 在布拉伐格子中 作一簇平行的直线, 这些平行直线可以将 所有的格点包括无遗

平行直线 —— 晶列



——在一个平面里,相邻晶列之间的距离相等 ——每一簇晶列定义了一个方向——晶向



### 晶向的标志

取某一原子为原点O,原胞的三个基矢  $\bar{a}_1, \bar{a}_2, \bar{a}_3$ 

—— 沿晶向到最近的一个格点的位矢  $l_1\bar{a}_1 + l_2\bar{a}_2 + l_3\bar{a}_3$ 

 $l_1, l_2, l_3$  —— 一组整数

晶向指数  $[l_1 l_2 l_3]$ 

——对于单胞,也有类 似的晶向指数



$$\vec{R}_A = 3\vec{a}_1 + \vec{a}_2 + \vec{a}_3$$

$$\vec{R}_A = 2\vec{a}_1 + 3a_2$$





晶向指数 [311]

晶向指数 [230]

## 简单立方晶格的晶向标志

立方边OA的晶向 [100]

立方边共有6个不同的晶向

 $[100], [\overline{1}00], [010]$  $[0\overline{1}0], [001], [00\overline{1}]$ 

统称<100>



# 面对角线OB的晶向 [110]

面对角线晶向共有12个

统称<110>



体对角线OC的晶向

[111]

体对角线晶向共有8个

统称<111>



晶面的标志

晶体的晶面 —— 在布拉伐格子中作一簇平行的平面,这些相互平行、等间距的平面可以将所有的格点包括无遗

—— 这些相互平行的平 面称为晶体的晶面



## 同一个格子,两组不同的晶面族





取某一原子为原点O,原胞的三个基矢  $\bar{a}_1, \bar{a}_2, \bar{a}_3$ 

为坐标系的三个轴,不一定相互正交

—— 晶格中一族的晶面 不仅平行,并且等距

——一族晶面必包含了 所有格点而无遗漏

