JP 60-24753

SPECIFICATION

1. TITLE OF THE INVENTION MUTING CIRCUIT

2. CLAIMS

(1) A sound signal muting circuit of a digital communication device comprising a carrier regenerator circuit to regenerate a carrier from a modulated wave signal modulated by a digital signal, a multiplying circuit to multiply the carrier regenerated in the circuit with the modulated wave signal, a low pass filter connected to the output of the multiplying circuit, a zero cross discrimination circuit to convert the output signal of the low pass filter to 2-value signal, a decoder circuit to decode a digital data from the output of the discrimination circuit, a digital/analog converter circuit connected to the output of the decoder circuit, a switch circuit connected between the output end of the digital/analog converter circuit and output terminal, an amplitude discrimination circuit to identify the amplitude of the output signal of the low pass filter, and an integrator circuit connected to the discrimination circuit, characterized in that the switch circuit is opened or closed by the output of the integrator circuit.

3. DETAILED DESCRIPTION OF THE INVENTION

Industrial Field of Utilization

The present invention relates to a muting circuit of a sound signal in a digital communication device of a sound using a carrier wave.

Related Art

A digital communication method of a sound includes a PCM subcarrier method disclosed in "Report for sound signal in 12GHz band satellite broadcasting" (Telecommunications Technology Council in fourth Committee in November, 1982). According to the above method, as shown in Fig. 1(a) and (b), sound signals inputted to sound input terminals (1), (2), (3) and (4) are converted to digital signals by an A/D converter (5) and then encoded by an encoder (6) including an error corrector circuit, a scramble circuit and the like. The coded signal is converted to a subcarrier signal by a 4 phase DPSK (Differential Phase Shift Keying) circuit (7) and then mixed with a video signal inputted from a video signal input terminal (8) and converted to a FM signal by a frequency converter (9). This FM signal is sent from a parabolic antennal (11) by a transmitter (10) in a 12GHz band as an electric wave. The electric wave sent from the parabolic antenna is received by a receiver through a broadcast satellite (12).

On the receiver side, the electric wave is received by a receiving parabolic antenna (13) and then supplied to a receiver (14) in a 12GHz band and applied to an FM demodulator (15) as a middle frequency signal. The signal demodulated by the demodulator is divided into a video signal and 4 phase DPSK subcarrier signal and outputted from the output terminals (17) and (16), respectively. The subcarrier signal is further demodulated by a 4 phase DPSK demodulator circuit (18) and returned to a digital signal in a base band and returned to the original sound signal through a decoder (19) including a descramble circuit, an error corrector circuit and the like and a

D/A converter circuit (20) and outputted from audio output terminals (21), (22), (23) and (24).

According to the above audio digital communication method, there is a problem with a digital data error after the 4 phase DPSK demodulation due to the lowering of S/N (Signal/Noise) in the subcarrier after the FM demodulation caused by the lowering of the received carrier signal level. The data error can be corrected to some extent by the error correction circuit of the decoder (19) in Fig. 1(b). However, when the data error is frequently generated, correction error is frequently generated and a very loud noise is generated in the sound signal. Since the noise reaches the maximum output level of the sound signal and very harmful in hearing, as measures against it, an output sound signal is suppressed by a muting circuit in general. This will be briefly described with reference to Fig. 2. The digital data demodulated by the 4 phase DPSK demodulator circuit (18) is inputted to the decoder surrounded by a broken line. In the decoder (19), a synchronous signal in the data is detected every frame by a synchronous detector circuit (25) and the scrambled state of data is descrambled by a descramble circuit (26) and then inputted to an error corrector circuit (27) and an error detector circuit (28). The data error is detected by the error detector circuit (28) and the correction is made by the error corrector circuit (27) by the detected signal and when the data error is frequently generated, the sound signal outputted from the D/A converter (20) through the error corrector circuit (27) and a data extractor circuit (29) is cut off by switches (30), (31), (32) and (33) controlled by the error detector circuit (28) and its outputted state is made to be a no signal state by the audio output terminals

(21), (22), (23) and (24). In addition, it is assumed that the error detector circuit is provided with both error detection function at each time and error frequency detection function in a certain time.

According to the above constitution, when the data error is frequently generated, since the outputted sound signal is cut off by the output terminal, the acoustically harmful loud noise can be avoided. However, when the error frequency is further increased, that is, when it is difficult to detect the synchronous signal by the synchronous detector circuit (25), for example, a detection error is generated in the error detector circuit (28) and accordingly an error is generated in the operation of the switches (30), (31), (32) and (33) operated by the error detection signal, so that the loud noise could be outputted to the audio output terminals (21), (22), (23) and (24).

Object

In order to solve such problems, an object of the present invention is to provide a muting circuit of a voice output signal that can prevent a sound signal from being outputted to an output terminal without any error operation even in a bad receiving condition in which error frequency is extremely high.

Constitution

According to the present invention, it is constituted such that an accurate muting operation signal is provided by detecting a receiving condition in the 4 phase DPSK demodulator circuit (18) shown in Fig. 2

instead of the method of operating the muting circuit by the error detection signal of the error detector circuit (28) in the decoder (19) shown in Fig. 2.

Embodiment

One embodiment of the present invention will be described with reference to Fig. 3. A 4 phase DPSK signal from an input terminal (16) is inputted in a 4 phase DPSK demodulator circuit (18) surrounded by a broken line. First, the 4 phase DPSK signal is inputted to a carrier regenerator circuit (41) and two kinds of carriers with a phase of + pi/2 and - pi/2 are regenerated in the circuit. The regenerated carriers are multiplied by the 4 phase DPSK signal in multiplying machines (34) and (37), respectively. Double components of the carrier and a carrier frequency of the carrier multiplied signals are removed by low-pass filters (35) and (38) and then identified by a zero cross discriminations (36) and (39), so that they are converted to 2-value signals. The original data is regenerated from this two kinds of 2-value signals by a data regenerator circuit (Code Regenerator Circuit) (40). A bit clock at this time is regenerated by a timing regenerator circuit (Retiming Circuit) (12) in response to the output signal of the zero cross discrimination (39). The digital data is inputted to a decoder (19) similar to the above example and then it is restored to a sound signal by a D/A converter circuit (20) and outputted from output terminals (21), (22), (23) and (24) through switches (30), (31), (32) and (33). The switches (30), (31), (32) and (33) are muting switches for the sound signal and they are constituted such that they are opened or closed by a signal that is provided by smoothing the output signal of an amplitude discrimination circuit (43)

for identifying the amplitude of the signal outputted from the low-pass filter (38), in an integrator circuit (44).

The muting operation according to the present invention will be further described with reference to Fig. 4. When the phase relation between the carrier in the multiplying machine (37) shown in Fig. 3 and the 4 phase DPSK signal is normal, that is, it is pi/4, the multiplied signal after passed through the low-pass filter (38) has a waveform shown in Fig. 4(a) and its amplitude is an approximately constant value (Vh). That is, when it is assumed that the 4 phase DPSK signal is S(t), the carrier signal having the phase relation of pi/4 with that signal is C(t) and these signals are represented by formulas (1) and (2), respectively, their multiplied result is represented by formula (3). In addition, ω and c designate a carrier frequency and ℓ designates a 4 phase state of 0, 1, 2, and 3.

$$S(t) = A \cos \theta (\cot t + \ell \pi / 2) \dots (1)$$

$$C(t) = B \cos \theta (\cot t + \pi / 4) \dots (2)$$

$$S(t) \cdot C(t) = (A \cos (\cot t + \ell \pi / 2)) (B \cos \theta (\cot t + \pi / 4)) = \frac{1}{2} AB(\cos \theta (2 \cot t + \frac{\pi / 4}{4}\pi) + \cos \frac{2\ell + 1}{4}\pi) \dots (3)$$

When double component of the carrier frequency in the formula (3) is removed, its result is represented by formula (4).

S (t) - C (t) =
$$\frac{1}{2}$$
 AB c o B $\frac{2\ell+1}{4}$ x (4)

When it is assigned such that A=B=1 and $\ell=0$, 1, 2 and 3, the amplitude of the signal represented by the formula (4) is $1/\sqrt{2}$. That is, the above (Vh) is **1**/√2.

Meanwhile, when the phase of the carrier signal is pi/2 with respect to the 4 phase DPSK signal, its result is represented by formula (5) by the

similar calculation.

$$S(t) \cdot C(t) = \{ A c o s (w c t + \ell \pi/2) \} \{ B c o s (w c t + \ell \pi/2) \} \{ B c o s (w c t + \ell \pi/2) \} \{ B c o s (w c t + \ell \pi/2) \} + c o s \ell \pi/2 \}$$

In the formula (5), when double component of the carrier is removed and then it is assigned such that A=B=1 and $\ell=0$, 1, 2 and 3, the amplitude of the signal represented by the formula (5) is 1. The output signal of the low-pass filter (38) in this phase state is shown in Fig. 4(b). That is, the amplitude Vh' is 1.

In addition, the state shown in Fig. 4(b) is generated due to the phase shift of the regenerated carriers in a carrier regenerator circuit (41) in Fig. 3 and the phase shift causes the S/N of the 4 phase DPSK signal to be lowered due to the deterioration of the receiving condition, so that the phase lock in the carrier regenerator circuit (41) becomes off. In a receiver using the 4 phase DPSK, the error caused by this state generates vary loud noise.

Therefore, when the switches (30), (31), (32) and (33) are opened by detecting the variation of the demodulated signal amplitude due to the phase shift, the aforementioned noise can be avoided. In a real operation, since the signal shown in Fig. 4(b) is not generated all the time and the signals shown in Figs. 4(a) and (b) and a signal having the middle amplitude between them are generated, a threshold Vt of the amplitude discrimination (43) shown in Fig. 3 is preferably set to a value shown in the next formula.

$$Vh < Vt < Vh'$$
 (6)

In addition, the input signal to the amplitude discrimination (43) is the output of the low-pass filter (38) in Fig. 3. That is, it is needless to say that

this may be the output of the low-pass filter (35). In addition, the present invention has been described by the phase modulation method of the 4 phases, but it can be applied to the case of 2 phases.

Effect

According to the present invention, when the phase lock becomes off in the carrier regenerator circuit, the unlocked state of the phase is detected and the sound signal is cut off by the muting circuit. In the normal digital communication method, the carrier regenerator circuit does not operate normally when the S/N deteriorates due to the lowering of the reception signal level and the abnormal operating condition generates a loud noise in the sound signal after demodulated. However, according to the muting circuit of the sound signal of the present invention, even when the receiving condition extremely deteriorates, acoustically harmful loud noise can be completely avoided.

BRIEF DESCTION OF THE DRAWINGS

Fig. 1 is a block circuit diagram to explain a digital communication method of sound, Fig. 2 shows a conventional example of a muting method of an sound signal, Fig. 3 is a block circuit diagram showing a muting circuit of a sound signal according to the present invention, and Fig. 4 is a view to explain the operation of the present invention.

(16) ... input terminal, (34), (37) ... multiplying circuit, (35), (38) ... LPF, (36), (39) ... zero cross discrimination circuit, (40) ... data regenerator circuit, (41) ... carrier regenerator circuit, (42) ... timing regenerator circuit,

JP60-24753

(43) ... amplitude discrimination circuit, (44) ... integrator circuit.

MUTING CIRCUIT

Publication number: JP60024753

Publication date:

1985-02-07

Inventor:

SATOU KENICHI

Applicant:

SANYO ELECTRIC CO

Classification:

- International:

H04B1/10; H03G3/34; H04B14/04; H04L27/18; H04L27/22;

H04L27/227; H04L27/18; H04B1/10; H03G3/34; H04B14/04; H04L27/18; H04L27/22; H04L27/227; H04L27/18; (IPC1-7):

H04B14/04; H04L27/18; H04L27/22

- European:

H03G3/34; H04L27/227C

Application number: JP19830132382 19830719

Priority number(s): JP19830132382 19830719

Report a data error here

Abstract of JP60024753

PURPOSE:To cut off sound signals by obtaining precise muting action signals by detecting the receiving conditions in 4 phase DPSK demodulation circuit, in the voice digital stransmitter using carriers. CONSTITUTION: The 4 phase DPSK signals from an input terminal 16 are inputted in a demodulation circuit 18, also in a carrier regenerative circuit 41, and two kinds of carriers with a phase of pi/62 or -pi/2 will generate. After these carriers are multiplied with input signals by multiplying machines 34, 37, carrier components are removed by filters 35, 38 changed into 2-value signals, and digital signals are regenerated. The digital signals are restored to voice signals by a D/A conversion circuit via a decoder 19, and inputted via muting switches 30 to 33. The signals outputted from the low-pass filter 38 are identified in amplitude by an amplitude discrimination circuit 43, the signals outputted through an integrator 44 represent changes in demodulation signals amplitude generated by phase distortion. Under this condition, errors occur and therefore the muting switches 30 to 33 are turned off because of making a big noise.

Data supplied from the esp@cenet database - Worldwide

(19 日本国特許庁 (JP)

⑩特許出願公開

⑫ 公開特許 公報 (A)

昭60-24753

⑤Int. Cl.¹H 04 L 27/22H 04 B 14/04

H 04 L 27/18

識別記号

庁内整理番号 Z. 7240-5K 7830-5K ❸公開 昭和60年(1985)2月7日

7830-5K A 7240-5K 発明の数 1 審査請求 未請求

(全 5 頁)

③ミユーテイング回路

20特

願 昭58-132382

❷出:

類 昭58(1983)7月19日

仍発 明 者 佐藤憲一

守口市京阪本通2丁目18番地三 洋電機株式会社内

勿出 願 人 三洋電機株式会社

守口市京阪本通2丁目18番地

9代 理 人 弁理士 佐野静夫

兜 細 寒

- 1. 発明の名称 ミューティング回路
- 2. 特許請求の範囲

(1) デイジタル信号により変調された被変調波 信号からキャリアを再生する為のキャリア再生回 路と、陂回路により将生されたキャリアと被変調 波信号を乗算する為の乗算団路と、鼓乗算回路の 出力に接続されたローパスフイルタと、跛ローパ スフイルタの出力信号を2額信号に変換する為の ゼロクロス識別回路と、該職別回路の出力を受け てデイジタルデータを復号する為の復号回路と、 **該復号国路の出力に接続されたデイジタル・アナ** ログ変換回路と、眩デイジタル・アナログ変換回 路の出力端と出力端子間に接続されるスイッチ国 路と、前間ローパスフイルタの出力信号の損福を 職別する為の振幅職別回路と、践識別回路に接続 される統分回路とを備え、前記統分回路の出力に より前配スイッチ回路を誘閉制御するととを特徴 とするデイジタル通信装置の音声信号ミューテイ ング回路。

3. 発明の詳細な説明

(イ) 産業上の利用分野

本発明は撤送波を利用した音声のデイジタル 通信装置に於ける音声信号のミューティング回路 に関する。

(4) 従来技術

音声のデイジタル通信方式としては、例えば「12GHz帝衛星放送にかける音声信号に対する等申」(電技審解4部会 1982年11月)に示されたPCM副撤送波方式があり、酸方式は第1図(A)(A)に示されるように、音声入力端子(I)(2)(3)(4)に入力された音声信号をA/D変換器(5)によりデイジタル信号に変換した後、誤り訂正の路等から成るエンコーダ(6)によりコード化する。コード化された信号は、4相DPBK(4相Differencial Phase Shift Keying) 回路(7)により副搬送波信号に充決映像信号と加え合わされ、周波数変調器(9)によりFM信号に変換される。このFM信号は12GEz符

特開昭60- 24753 (2)

の送信機心により電波として、パラポラアンテナ ロリより送出される。 はパラポラアンテナロより送 出される電波は放送衛星四を介して受信機で受信 される。

さて、斯かる音声のデイジタル通信方式では、 受信遊送故信号レベルの低下に伴うFM復開後の 開搬送故でのS/N(信号対報音比)低下の為、 4相DPSK復調後のデインタルデータ譲りが問

号を、関り検出回路際により制御されるスイッチ 50505255により適所し、音戸出力端子即2020520で の出力状態を無偶号状態にする。尚、前配肌り検 山岡路磯は瞬時瞬時の與り検出機能と一定時間内 の肌り頻度検出機能とを両方備えているものとす る。

斯かる構成によれば、データ限りの頻度が大きくなった場合、出力音声信号が出力端子で適断される為、聴感上有害な別大雄音を避けることとが可能となる。しかし、関り頻度が更に増大する登場が関係となった場合は、関り検出回路のでの財偶号を出てる。 を放出限りが生じ、従って酸関り検出信号により、 動作するスイッチ例3030の助作にも関りが生じる為、強大雄音が音声出力端子の四級のに出力される可能性がでてくる。

付目 的

本発明は斯かる問題を解決するべく、限り頻 度が極めて多い受信状態に於いても誤励作するこ となく、出力端子への音声信号の遮断を可能にす

題となる。彼データ限りは第1図的に於けるデコ ーダ四の関り訂正回路で或る程度の訂正が可能で はあるが、データ限りの頻度が増大した場合、盯 正もれが多発し、音戸信号に強大な雑音が発生す る。該維音は音声信号の最大出力レベルにまで遊 する為、聴感上極めて有害であり、斯かる対策と して、通常、ミユーテイング回路による出力音声 個号の抑圧が行なわれる。 これを第2図によって 簡単に説明する。4相DPSK復興回路略により 復調されたデイジタルデータは破離内は9で示され るデコーダに入力される。デコーダ19では、ます、 同期検出回路CDによりデータに於けるフレームと との何期信号が検出され、デイスクランブル回路 四によりデータのスクランブル状態 が解かれた後、 誤り訂正回路の及び誤り検出回路网に入力される。 データ誤りは該誤り検出囲路図により検出され、 該検出信号により誤り訂正回路ので訂正動作が行 なわれると共に、データ誤りの頻度が大きい場合 には、誤り訂正回路のおよびデータ抜き出し回路 CSIを経て。D/A変換器CSIより出力される音声信

る所謂音声出力信号のミューテイング回路を提供 するものである。

(+) 榜 成

本発明では前述の第2図に示すデコーが四の 関り検出回時間の関り検出信号によりミューティ ング回路を動作させる方法ではなく、第2図に於 ける4相DPSK復関回路08での受傷状態を検山 することにより正確なミューティング動作信号を 得るより構成している。

份 與施例

第3図に従って本発明の一段施例を説明する。 入力簿子協から入力された4相DPSK信号は破 線内ので示される4相DPSK復調回路に入力さ れる。まず、4相DPSK信号がキャリア再生回 路(Carrier Regenerator Circult) 切に入力され、破回路で、位相が一定値+ボ/2ま たは一ボ/2である2 種類のキャリアが再生される。 該再生されたキャリアは果算器の間によりそれぞ れ入力4相DPSK信号と乗算される。該被乗算 信号はそれぞれローバスフイルを950%によりキャ

特開昭60-24753(3)

リア成分及びキャリア周波数の2倍の成分が除去 された役、それぞれセロクロス識別器の別により 敵別されることにより、2億倍母に変換される。 との2系列の2値信号はデータ再生回路(Cqde Regenerator Circuit) 似により元のデ イジタルデータが再生される。この時のヒットク ロンクはゼロクロス酸別器のの出力個号を受けて タイミング再生回路 (Retiming Circuit) 似化より再生される。前記デイジタルデータは前 水同様にデコーダ0gに入力された後、D/A変換 国路四により音声信号に復元され、スイッチEDBD B3 B3 を介して出力端子20123 B3 B4 より出力される。 . 而して彼スイッチ側別の2011は音声信号のミューテ イングスイッチであり、ローパスフイルタ(8)より 出力される信号の振幅を識別する振幅識別器(43の 山力信号を积分線Walk より平滑した信号により開 閉されるよう構成されている。

本務明によるミューテイング動作をさらに第4 図によって説明すると、第3.図に於ける乗算器の のサヤリアと4相DPSK銀号が通常の位相関係、 即ちゃ/4 の場合は被乗算信号のローバスフイルタの通過後の信号は第4回(A)に示す放形となり、その振幅は反ぼ一定値(Vh)をとる。即ち、4相DPSK信号をS(t)、又数信号とま/4の位相関係を持つキャリア信号をC(t)とし、とれら信号はそれぞれ(1)式かよび(2)式で設わされるものとすると、それらの乗算結果は、(3)式で設わされる。尚、。 にはキャリア周波数、とはロ、1、2、3の4位相状態を設わす。

$$S(t) = A \cos(\cot t + \ell \pi / 2)$$
 (1)

$$C(t) = B \cos(\omega c t + \kappa/4)$$
 (2)

$$S(t) \cdot C(t) = \{A\cos(\omega c t + \ell\pi/2)\}\{B\cos \theta$$

$$(\infty ct + \pi/4) = \frac{1}{2} AB \{\cos(2 \infty ct + \frac{2\ell-1}{4}\pi) + \cos(2\ell+1)\pi\}$$
 (3)

(3)式に於けるキャリア周波数の2倍成分を除去すると、その結果は(4)式で扱わされる。即ち

は1/12となる。

一方、キャリア信号の位相を4相DPSK信号に対してエ/2 とした場合は、同様の計算により(6)式で表わされる結果となる。

$$S(t) \cdot C(t) = (A \cos (\omega \cot t + \ell \pi/2)) (B \cos (\omega \cot t + \frac{\pi}{2})) = \frac{1}{2} AB(\cos (2 \cot t + \frac{\ell+1}{2}\pi)) + \cos (\frac{\ell-1}{2}\pi) \qquad (5)$$

「「「式に於いて、キャリアの2倍成分を除去した 後、 A = B = 1 とし、ℓ = 0 , 1 , 2 , 3を代入 すると、「「式で表わされる個号の振幅は1となる。 との位相状態に於けるローパスフィルタ間の出力 の個号を餌4図(の)に示す。即ち振幅 V h'は1となる。

さて、第4図的に示す状態は第3図に於いてキャリア再生回路(Carrier Regenerator)(4)での再生キャリアの位相ズレによって生じるものであり、且つ該位相ズレは受信状態の悪化により4相DPSK信号のS/Nが低下し、キャリア再生回路(4)での位相ロックがはずれることによる。4祖DPSKを利用した受信機に於いては、この

状態により発生するエラーが強大雑音を引き起こす。従って、位相ズレによる復調信号振幅の変化を検出することにより、スインチののIOMのIPを開たすれば、前配維音を避けることができる。実際の動作では、常時第4図(D)に示す信号が得られるわけではをく、第4図(B)と第4図(D)に示す信号及びその中間的振幅を有する信号が混在する為、第3図に示す振幅散別器(MOスレンショルドVtは、次式で示す値とするのが望ましい。

尚、第3図では揺幅機別器似への入力信号はローパスフイルを図の出力としているが、とれはローパスフイルを図の出力でもよいことは貰うまでもない。また本発明を4相の位相変調方式により説明したが、2相の場合でも応用可能である。

(1) 効 果

とのように本発明によれば、キャリア再生回 路での位相ロックはずれを起とした場合、その位 相ロックはずれの状態が検出され、音声倡号がミ ユーテイング回路により遮断される。通常のディ ジタル通信方式に於いては受信信号レベルの低下 に伴うS/Nの悪化によりキャリア再生回路が正 常に動作しなくなり、正常でない動作状態が復調 後の音声信号に強大維済を発生させるが、本発明 の音声信号のミューティング国路によれば、受信 状態が振端に悪化しても聴感上有害な強大維音を 完全に避けることができる。

4 図面の簡単な説明

第1図は音声のデイジタル流信方式を説明する ためのブロック回路図、第2図は音声信号のミュ ーテイング方法の従来例、第3図は本発明による 音声信号のミューテイング回路を示すブロック回 路図、第4図は本発明の動作説明図である。

16 …入力端子、0450 … 梨抹回路、1500 … LPF、1500 9 … ゼロクロス数別回路、10 … データ再生回路、10 … キャリア再生回路、10 … タイミング再生回路、13 … 投稿線別回路、140 … 複分回路。

出版人 三洋電機株式会社 (C)理人 弁理士 佐 野 静 失

