

Error Back Propagation

Learning Algorithm (1)

- Preparation for Learning
 - Given input-output data of the target function to learn
 - Given structure of network (# of nodes in hidden layer)
 - Randomly initialized weights

Learning Algorithm (2)

Basic Idea of Learning

Find weights
$$\mathbf{w} = (w_1, w_2, ..., w_n)$$
 so that $NN(\mathbf{w}, \mathbf{x}) \approx \mathbf{t}$ for all (\mathbf{x}, t)

$$NN(w,x) \approx t$$
 for all (x,t)

$$\Leftrightarrow 0 \approx \sum_{(x,t) \in Data} |t - NN(w, x)|$$

$$\Leftrightarrow 0 \approx \sum_{(x,t) \in Data} (t - NN(w, x))^{2}$$

$$E(\mathbf{w}) = \sum_{(\mathbf{x}, t) \in Data} (t - NN(\mathbf{w}, \mathbf{x}))^{2}$$

is minimized

Learning Algorithm (3)

Basic Idea of Learning

Find weights $\mathbf{w} = (w_1, w_2, ..., w_n)$ which minimize

$$E(\mathbf{w}) = \sum_{(\mathbf{x}, t) \in Data} (t - NN(\mathbf{w}, \mathbf{x}))^2 \qquad \mathbf{w} = (w_1, w_2, \dots, w_n)$$

Gradient Descent Method (1)

• How?

Find weights $\mathbf{w} = (w_1, w_2, ..., w_n)$ which minimize

$$E(\mathbf{w}) = \sum_{(\mathbf{x},t)\in Data} (y - NN(\mathbf{x};\mathbf{w}))^{2}$$

Gradient Descent Method (2)

4. Repeat until the gradient is zero

$$w^{t+1} = w^t - \eta \left. \frac{\partial E}{\partial w} \right|_{w = w^t}$$

Gradient Descent Method (3)

- Training of a Simple Neural Network
 - Let's assume that there is one training data (x_t, y_t)

$$net_{1} = x_{t} \cdot w_{1}$$

$$h = sigmoid(net_{1})$$

$$net_{2} = h \cdot w_{2}$$

$$y = sigmoid(net_{2})$$

$$E = \frac{1}{2}(y_{t} - y)^{2}$$

$$\frac{\partial E}{\partial w_{1}} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial net_{2}} \frac{\partial net_{2}}{\partial w_{2}}$$

$$\frac{\partial E}{\partial w_{1}} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial net_{2}} \frac{\partial net_{2}}{\partial h} \frac{\partial h}{\partial net_{1}} \frac{\partial net_{1}}{\partial w_{1}}$$

Gradient Descent Method (4)

Multi-variable case

Randomly choose an initial solution, w_0^0 w_1^0

Repeat

$$\left. w_0^{t+1} = w_0^t - \eta \frac{\partial E}{\partial w_0} \right|_{w_0 = w_0^t, w_1 = w_1^t}$$

$$w_1^{t+1} = w_1^t - \eta \left. \frac{\partial E}{\partial w_1} \right|_{w_0 = w_0^t, w_1 = w_1^t}$$

Until stopping condition is satisfied

Example of Error Back Propagation (1)

Example : XOR

Iteration: 0

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1	1	0	0.52
1	0	1	0.50
0	1	11/	0.52
0	0	0	0.55

Iteration: 1000

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1	1	0	0.50
1	0	1	0.48
0	1	1	0.50
0	0	0	0.52

Example of Error Back Propagation (2)

Example : XOR

Iteration: 2000

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1	1,	0	0.53
1	0	1	0.48
0	1	11/	0.50
0	0	0	0.48

Iteration: 3000

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1	1_{rn}	0	0.30
1	0	1	0.81
0	1	11	0.81
0	0	0	0.11

Example of Error Back Propagation (3)

Example : XOR

Iteration: 5000

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1	1,	0	0.05
1	0	1	0.96
0	1	11	0.96
0	0	0	0.03

Iteration: 10000

x_{n1}	x_{n2}	t_{n1}	o_{n1}
1	1,	0	0.02
1	0	1	0.98
0	1	1	0.98
0	0	0	0.02

Example of Error Back Propagation (4)

- Example : XOR
 - Error graph

Example of Error Back Propagation (5)

• Example2:

Hidden nodes: 4

Iteration: 500,000

Learning rate: 0.7

$$f(x) = 4x * (1-x)$$

Input	Output
0.00	0.00
0.10	0.36
0.20	0.64
0.30	0.84
0.40	0.96
0.50	1.00
0.60	0.96
0.70	0.84
0.80	0.64
0.90	0.36
1.00	0.00

Example of Error Back Propagation (6)

Example 2

Generalization and Overfitting (1)

- We gave only 11 points
 - A NN learned only that 11 points

Can the NN answer to the un-learned points?

Generalization and Overfitting (2)

Yes, NNs generalize what they have learned

Generalization and Overfitting (3)

Which one is better?

Training data

Generalization and Overfitting (4)

Which is Better?

Generalization and Overfitting (5)

Which is Better?

Generalization and Overfitting (6)

Generalization and Overfitting (7)

Early Stopping

Generalization and Overfitting (8)

- To increase generalization accuracy
 - Find the optimal number of neurons
 - Find the optimal number of training iterations
 - Use regularization
 - Use more training data