

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

ДОМАШНЯЯ РАБОТА ПО КУРСУ

«Математические модели прикладной механики» НА ТЕМУ:

Раскрытие статической неопределимости балки при поперечном изгибе Вариант 15

Студент	ФН2-71Б		В. Г. Пиневич
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Е.А. Максимова
преподав	атоль	(Подпись, дата)	(И.О. Фамилия)

Оглавление 2

Оглавление

O6	бозначения	3
1.	Постановка задачи	4
2.	Схема нагружения в соответствии с индивидуальным заданием	5
3.	Степень статической неопределимости балки	5
4.	Переход к статически определимой балке	5
5.	Балка под действием только реакции R_3	6
6.	Прогиб балки только при реакции $R_3 \ldots \ldots \ldots \ldots$	8
7.	Статически определимая балка без реакции R_3	9
8.	Прогиб балки только без реакции R_0	10
9.	Определение силы реакции R_3	10
10	. Расчёт статически неопределимой балки	11
	10.1. Изгибающий момент и перерезывающая сила	11
	10.2. Прогиб исходной балки	12
11	.Наибольшее растягивающее напряжение	13
12	.Заключение	14
C-	MACK MATICAL DODOUGLEY MATICALITY OF	15

Обозначения 3

Обозначения

- L длина трети балки, м;
- b основание прямоугольного поперечного сечения балки, м;
- h высота прямоугольного поперечного сечения балки, м;
- E продольный модуль упругости (модуль Юнга), Π а;
- J_3 осевой момент инерции относительно нейтральной оси, м⁴;
- W_3 момент сопротивления сечения при изгибе, м 3 ;
- R_3 сила реакции, приложенная вместо отброшеной связи, H;
- M_i момент, $\mathbf{H} \cdot \mathbf{M}$;
- P_i сила или реакция, H;
- q° равномерно распределённая нагрузка, H/M;
- M_3 изгибающий момент, Н·м;
- Q перерезывающая сила, H;
- w величина прогиба балки, м;
- σ_{11}^{max} максимальное растягивающее напряжение, Π а.

1. Постановка задачи

Рис. 1. Общая схема нагружения статически неопределимой балки

В соответствии с индивидуальным заданием необходимо использовать тип связи R_3 . Это означает, что при раскрытии статической неопределимости шарнирную опору балки при $x_1 = 3L$ следует заменить подлежащей определению реакцией R_3 с положительным направлением вдоль положительного направления координатной оси Ox_2 . Положительные направления нагружающих силовых факторов соответствуют их направлениям, отмеченным на рис. 1 стрелками.

Для индивидуального варианта заданы моменты $M_0=M,\ M_1=-M,\ M_2=0,$ прикладываемая сила $P_2=-P$ и распределённая нагрузка $q(x_1)=q^\circ,\ x_1\in(0,2L).$

При этом $M=2000~{\rm H\cdot m},~P=1000~{\rm H},~q^\circ=1000~{\rm H/m},~L=1~{\rm m}.$ Прямоугольное поперечное сечение балки имеет основание $b=30~{\rm mm}$ и высоту $h=65~{\rm mm}.$ Балка выполнена из малоуглеродистой стали с продольным модулем упругости (модулем Юнга) $E=210~{\rm \Gamma\Pi a}.$

2. Схема нагружения в соответствии с индивидуальным заданием

Рис. 2. Схема нагружения балки для заданного варианта

3. Степень статической неопределимости балки

Для полученной системы неизвестными являются 3 реакции в шарнирах. Однако можем записать всего 2 уравнения равновесия, а именно уравнение равновесия сил в проекции на вертикальную ось и уравнение равновесия моментов относительно точки. Значит, система является 1 раз статически неопределимой, то есть для определения всех возникающих реакций недостаточно только уравнений статики.

4. Переход к статически определимой балке

В соответствии с индивидуальным вариантом отбросим указанную в задании наложенную связь P_3 и заменим её соответствующей реакцией R_3 . Таким образом осуществим переход к статически определимой балке.

Рис. 3. Нагружение для статически определимой балки

 ${
m V}$ равнение равновесия сил в проекции на вертикальную ось Ox_2 имеет вид

$$\sum P = 0 \implies R_3 + P_1 + P_2 + P_0 - 2L \cdot q^{\circ} = 0.$$

Аналогично уравнение равновесия моментов относительно точки O

$$\sum M = 0 \implies M_0 - M_1 + L \cdot P_1 + 2L \cdot P_2 + 3L \cdot R_3 - L^2 \cdot q^\circ = 0.$$

Откуда получим

$$\begin{cases}
P_1 = \frac{(M_1 - M_0) + L(-2P_2 + 2L \cdot q^\circ - 3R_3)}{,} \\
P_0 = \frac{(M_0 - M_1) + 2LR_3 + LP_2}{L}.
\end{cases}$$
(1)

5. Балка под действием только реакции R_3

Будем считать, что на балку действует только реакция R_3 , приложенная вместо отброшенной связи, а все остальные нагружающие силовые факторы отсутствуют.

Рис. 4. Нагружение балки только реакцией R_3

Уравнения равновесия сил в проекции на вертикальную ось Ox_2 и моментов относительно точки B в этом случае имеют вид

$$\begin{cases} R_3 + P_1 + P_0 = 0, \\ L \cdot P_1 + 3L \cdot R_3 = 0. \end{cases}$$

Откуда получим

$$\begin{cases} P_1 = -3R_3, \\ P_0 = 2R_3. \end{cases}$$
 (2)

Для упрощения выкладок введём функции

$$f_n(x) = \begin{cases} \frac{x^n}{n!}, & x > 0, \\ 0, & x \le 0, \end{cases} \quad n \in \mathbb{Z}_+.$$

Эти функции для $a \ge 0$ обладают свойствами:

1) $f_n'(x-a) = f_{n-1}(x-a)$ для $n \in \mathbb{N}$, причём $f_0'(x-a) = 0$.

2)
$$\int_{0}^{x} f_{n}(\xi - a) d\xi = f_{n+1}(x - a)$$
 для $n \in \mathbb{Z}_{+}$.

Тогда можно записать выражение для изгибающего момента

$$M(x_1) = R_3 f_1(x_1) + P_1 f_1(x_1 - L).$$

Перерезывающая сила связана с изгибающим моментом следующим образом:

$$Q(x_1) = \frac{\mathrm{d}M_3(x_1)}{\mathrm{d}x_1}.\tag{3}$$

Тогда

$$Q(x_1) = R_3 f_0(x_1) + P_1 f_0(x_1 - L).$$

С учётом (2) имеем

$$\begin{cases}
M_3(x_1) = R_3 \left(f_1(x_1) - 3f_1(x_1 - L) \right), \\
Q(x_1) = R_3 \left(f_0(x_1) - 3f_0(x_1 - L) \right).
\end{cases} \tag{4}$$

Построим в безразмерных переменных эпюры изгибающего момента и перерезывающей силы в случае, когда действует только сила реакции R_3 , приложенная вместо отброшенной связи.

Рис. 5. Эпюра изгибающего момента при действии только R_3

Рис. 6. Эпюра перерезывающей силы при действии только R_3

6. Прогиб балки только при реакции R_3

Дифференциальное уравнение для прогиба балки

$$\frac{\mathrm{d}^2 w(x_1)}{\mathrm{d}x_1^2} = \frac{M_3(x_1)}{EJ_3}.$$

Общее решение имеет вид

$$w(x_1) = w(0) + w'(0)x_1 + \int_0^{x_1} dt \int_0^t \frac{M_3(\xi)}{EJ_3} d\xi.$$
 (5)

Ранее была отброшена одна связь в точке $x_1 = 3L$. Тогда остаётся 2 закрепления в точках $x_1 = L$ и $x_1 = 0$, в которых балка не должна прогибаться. В этом случае имеем следующие граничные условия:

$$w(L) = 0, \quad w(0) = 0.$$
 (6)

С учётом (4) прогиб балки под действием только реакции R_3

$$w(x_1) = \frac{R_3}{EJ_3} \left(f_3(x_1) - 3f_3(x_1 - L) - \frac{L^2}{6} \right), \text{ где } J_3 = \frac{hb^3}{12}.$$
 (7)

7. Статически определимая балка без реакции R_3

Будем считать, что на балку действуют все силовые факторы, кроме реакции R_3 , приложенной вместо отброшенной связи.

Рис. 7. Нагружение балки без учёта реакции R_3

Уравнения равновесия сил в проекции на вертикальную ось Ox_2 и моментов относительно точки O в этом случае имеют вид

$$\begin{cases} P_1 + P_2 + P_0 - 2L \cdot q^{\circ} = 0, \\ M_0 - M_1 + L \cdot P_1 + 2L \cdot P_2 - 2L^2 \cdot q^{\circ} = 0. \end{cases}$$

Откуда получим

$$\begin{cases}
P_1 = \frac{M_1 - M_0 + 2L (L \cdot q^{\circ} - P_2)}{L}, \\
P_0 = \frac{M_0 - M_1 + LP_2}{L}.
\end{cases}$$
(8)

В этом случае выражение для изгибающего момента имеет вид

$$M_3(x_1) = M_1 f_0(x_1 - L) - M_0 f_0(x_1) + P_1 f_1(x_1 - L) + + P_2 f_1(x_1 - 2L) - q^{\circ} f_2(x_1) + q^{\circ} f_2(x_1 - 2L).$$
(9)

С учётом (3) перерезывающая сила

$$Q(x_1) = P_1 f_0(x_1 - L) + P_2 f_0(x_1 - 2L) - q^{\circ} f_1(x_1) + q^{\circ} f_1(x_1 - 2L). \tag{10}$$

Построим эпюры изгибающего момента и перерезывающей силы для статически определимой балки в случае, когда действуют все силовые факторы, кроме реакции R_3 , приложенной вместо отброшенной связи, с учётом (8) при значениях параметров в соответствии с индивидуальным заданием.

Рис. 8. Эпюра изгибающего момента без учёта реакции R_3

Рис. 9. Эпюра перерезывающей силы без учёта реакции R_3

8. Прогиб балки только без реакции R_0

С учётом (5), (6) и (9) прогиб статически определимой балки без реакции R_0

$$w(x_1) = \frac{1}{EJ_3} \left(M_1 f_2(x_1 - L) - M_0 f_2(x_1) + P_1 f_3(x_1 - L) + P_2 f_3(x_1 - 2L) - q^{\circ} f_4(x_1) + q^{\circ} f_4(x_1 - 2L) + \frac{12LM_0 + L^3 q^{\circ}}{24} x_1 \right)$$
(11)

9. Определение силы реакции R_3

Для статически неопределимой балки в точке $x_1=0$ имеем закрепление, поэтому прогиб в этой точке отсутствует. Тогда для определения силы реакции R_3 можно воспользоваться условием

$$w_{R_3} + w_0 = 0.$$

С учётом (7) и (11) имеем

$$R_3 = \frac{72L^2M_0 - 48L^2M_1 - 4L^3P_2 + 77L^4q^{\circ}}{12L^3 - 4L^2}.$$

Тогда из (1) получим силы реакции для статически неопределимой балки

$$\begin{cases} P_1 = \frac{M_1 - M_0 + L(-45375 - 2P_2 + 2Lq^\circ)}{L}, \\ P_0 = \frac{30250L + M_0 - M_1 + LP_2}{L}. \end{cases}$$

При значениях параметров в соответствии с индивидуальным заданием

$$R_3 = 15125 \text{ H}, \quad P_0 = 31250 \text{H}, \quad P_1 = -45375 \text{H}.$$

10. Расчёт статически неопределимой балки

10.1. Изгибающий момент и перерезывающая сила

Выражения для изгибающего момента и перерезывающей силы статически неопределимой балки можно получить путём сложения соответствующих выражений для балки под действием только силы реакции R_3 , приложенной вместо отброшенной связи, а также статически определимой балки без учёта силы реакции R_3 .

Построим эпюры полученных изгибающего момента и перерезывающей силы для статически неопределимой балки при значениях параметров в соответствии с индивидуальным заданием.

Рис. 10. Эпюра изгибающего момента статически неопределимой балки

Рис. 11. Эпюра перерезывающей силы статически неопределимой балки

10.2. Прогиб исходной балки

Выражения для прогиба статически неопределимой балки также можно получить путём сложения соответствующих выражений для балки под действием только силы реакции R_3 , а также статически определимой балки без учёта силы реакции R_3 .

Построим график зависимости прогиба для статически неопределимой балки при значениях параметров в соответствии с индивидуальным заданием.

Рис. 12. Прогиб статически неопределимой балки

11. Наибольшее растягивающее напряжение

Максимальное растягивающее напряжение в поперечном сечении, симметричном относительно нейтральной оси, можно определить по формуле

$$\sigma_{11}^{max} = \frac{M_3}{W_3}.$$

Для прямоугольного поперечного сечения момент сопротивления сечения при изгибе имеет вид

$$W_3 = \frac{bh^2}{6}.$$

Наибольшее по абсолютной величине значение изгибающего момента M_0 достигается при $x_1=0$. Тогда

$$\sigma_{11}^{max} = 6 \frac{|M_0|}{bh^2}.$$

При значениях параметров в соответствии с индивидуальным заданием

$$\sigma_{11}^{max} \approx 94,675 \text{ M}\Pi \text{a.}$$

12. Заключение

В данной работе для заданной пары металлов были получены следующие результаты:

- 1) изображена схема нагружения статически неопределимой балки в соответствии с индивидуальным заданием;
- 2) проверена степень статической неопределимости балки;
- 3) в соответствии с индивидуальным вариантом осуществлён переход к статически определимой балке путём отбрасывания указанной в задании наложенной связи P_0 и замены её соответствующей реакцией R_3 ;
- 4) построены эпюры изгибающего момента и перерезывающей силы только от действия указанной выше реакции, приложенной вместо отброшенной связи (шарнирной опоры);
- 5) найдена однозначная аналитическая зависимость величины прогиба балки под действием только реакции R_3 ;
- 6) построены эпюры изгибающего момента и перерезывающей силы для статически определимой балки без учёта отброшенной связи и её силы реакции;
- 7) для статически определимой балки найдена аналитическая зависимость величины прогиба от продольной координаты;
- 8) из равенства нулю алгебраической суммы полученных в пп. 5 и 7 прогибов балки в сечении, соответствующем отброшенной опоре, получена зависимость реакции R_3 в этом сечении от остальных заданных параметров;
- 9) для исходной статически неопределимой балки построены эпюры изгибающего момента и перерезывающей силы, а также определена зависимость прогиба балки от продольной координаты и построен график этой зависимости;
- 10) для поперечного сечения балки с наибольшим по абсолютному значению изгибающим моментом найдено наибольшее растягивающее напряжение.

Список использованных источников

- 1. Зарубин В.С., Кувыркин Г.Н. Математические модели механики и электродинамики сплошной среды. М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. 512 с.
- 2. Зарубин В. С., Кувыркин Г. Н., Станкевич И. В. Математические модели прикладной механики. М.: Изд-во МГТУ им Н. Э. Баумана, 2016. 282 с.
- 3. Феодосьев В.И. Сопротивление материалов. 15-е изд. М.: Изд-во МГТУ им Н.Э. Баумана, 2010. 590 с.