Comprehension Check due May 18, 2021 14:59 +03

Part 1 consists of 8 questions are conceptual questions about tidy data and reshaping data. They do not necessarily require R, but you may benefit from checking your work on the console.

Part 2 consists of 7 questions which require you to write code in R to apply the new concepts about tidy data and reshaping data.

Question 1

1/1 point (graded)

A collaborator sends you a file containing data for three years of average race finish times.

age_group,2015,2016,2017
20,3:46,3:22,3:50
30,3:50,3:43,4:43
40,4:39,3:49,4:51
50,4:48,4:59,5:01

Are these data considered "tidy" in R? Why or why not?

	Yes.	These data are	considered	"tidy"	because ther	e are no	missing	data in	the data	frame.
--	------	----------------	------------	--------	--------------	----------	---------	---------	----------	--------

No. These data are not considered "tidy" because there are not an equal number of columns and rows.

Answer

Correct: The year is a variable and should be stored as a column instead of across multiple columns in the header.

Explanation

These data are not tidy because year is a variable and should be stored as a column instead of across multiple columns in the header.

Submit

You have used 1 of 2 attempts

Answers are displayed within the problem

Question 2

1/1 point (graded)

Below are four versions of the same dataset. Which one is in a tidy format?


```
state abb region var people
Alabama AL South population 4779736
Alabama AL South total
                             135
Alaska AK West population 710231
Alaska AK West total 19
Arizona AZ West population 6392017
Arizona AZ West total 232
```

state	abb Nor	theast S	outh No	rth Cen	tral West		
Alabama	AL	NA 4	779736	NA	NA		
Alaska	AK	NA	NA	NA	710231		
Arizona	AZ	NA	NA	NA	6392017		
Arkansas	AR	NA 2	915918	NA	NA		
California	CA	NA	NA	NA	37253956		
Colorado	CO	NA	NA	NA	5029196		

state	abb	region	rate				
Alabama	AL	South	2.82e-05				
Alaska	AK	West	2.68e-05				
Arizona	ΑZ	West	3.63e-05				
Arkansas	AR	South	3.19e-05				
California	CA	West	3.37e-05				
Colorado	CO	West	1.29e-05				

Explanation

In tidy format, each observation has its own row, and each variable has its own column.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Question 3

1/1 point (graded)

Your file called "times.csv" has age groups and average race finish times for three years of marathons.

```
age_group,2015,2016,2017
20,3:46,3:22,3:50
30,3:50,3:43,4:43
40,4:39,3:49,4:51
50,4:48,4:59,5:01
```

You read in the data file using the following command.

```
d <- read_csv("times.csv")
```

Which commands will help you "tidy" the data?

```
tidy_data <- d %>%
gather(year, time, `2015`:`2017`)
```

```
tidy_data <- d %>%
spread(year, time, `2015`:`2017`)
```

```
tidy_data <- d %>%
gather(age_group, year, time, `2015`:`2017`)
```

```
tidy_data <- d %>%
gather(time, `2015`:`2017`)
```


Answer

Correct:

This code will gather the years from 2015 to 2017 into a single column and create a single column called "time" that contains the time for each age group and each year.

Explanation

```
tidy_data <- d %>%
gather(year, time, `2015`:`2017`)
```

This code will gather the years from 2015 to 2017 into a single column and create a single column called "time" that contains the time for each age group and each year.

Submit

You have used 1 of 2 attempts

• Answers are displayed within the problem

Question 4

1/1 point (graded)

You have a dataset on U.S. contagious diseases, but it is in the following wide format:

```
> head(dat_wide)
state year population HepatitisA Mumps Polio Rubella
Alabama 1990    4040587    86    19    76    1
Alabama 1991    4066003    39    14    65    0
Alabama 1992    4097169    35    12    24    0
Alabama 1993    4133242    40    22    67    0
Alabama 1994    4173361    72    12    39    0
Alabama 1995    4216645    75    2    38    0
```

You want to transform this into a tidy dataset, with each row representing an observation of the incidence of each specific disease (as shown below):

Which of the following commands would achieve this transformation to tidy the data? Pay attention to the column names.

```
dat_tidy <- dat_wide %>%
gather (key = count, value = disease, HepatitisA, Rubella)
```

```
dat_tidy <- dat_wide %>%
gather(key = count, value = disease, -state, -year, -population)
```

```
dat_tidy <- dat_wide %>%
gather(key = disease, value = count, -state)
```

```
dat_tidy <- dat_wide %>%
gather(key = disease, value = count, HepatitisA:Rubella)
```


Answer

Correct:

In this command, you properly specified that the "key" column will be called "disease", the value of each entry will be called "count", and that the columns HepatitisA through Rubella will all be included in the gather command.

Submit

You have used 1 of 2 attempts

Question 5

1/1 point (graded)

You have successfully formatted marathon finish times into a tidy object called tidy_data. The first few lines are shown below.

Select the code that converts these data back to the wide format, where each year has a separate column.

```
tidy_data %>% spread(time, year)

tidy_data %>% spread(year, time)

tidy_data %>% spread(year, age_group)

tidy_data %>% spread(time, year, `2015`:`2017`)
```


Answer

Correct:

This code tells the function to create new columns for each year and spread the time values over those cells.

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

Question 6

1/1 point (graded)

You have the following dataset:

```
> head(dat)
state abb region var people
Alabama AL South population 4779736
Alabama AL South total 135
Alaska AK West population 710231
Alaska AK West total 19
Arizona AZ West population 6392017
Arizona AZ West total 232
```

You would like to transform it into a dataset where population and total are each their own column (shown below):

ate	abb)	region	region population
abama	ΑL		South	South 4779736
aska	AF	Κ	K West	K West 710231
izona	A	Z	Z West	Z West 6392017
kansas	A	R	R South	R South 2915918
lifornia	C.	A	A West	A West 37253956
				West 5029196

Which code would best accomplish this?

```
dat_tidy <- dat %>% spread(key = var, value = people)
```

```
dat_tidy <- dat %>% spread(key = state:region, value = people)
```

```
dat_tidy <- dat %>% spread(key = people, value = var)
```

```
dat_tidy <- dat %>% spread(key = region, value = people)
```


Answer

Correct:

In this command, you properly specify that the column "var" will be used as the new column names, and that the column "people" should be spread into these two columns.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Question 7

1/1 point (graded)

A collaborator sends you a file containing data for two years of average race finish times, "times.csv":

```
age_group,2015_time,2015_participants,2016_time,2016_participants
20,3:46,54,3:22,62
30,3:50,60,3:43,58
40,4:39,29,3:49,33
50,4:48,10,4:59,14
```

You read in the data file:

```
d <- read_csv("times.csv")</pre>
```

Which of the answers below best makes the data tidy?

```
tidy_data <- d %>%
gather(key = "key", value = "value", -age_group) %>%
separate(col = key, into = c("year", "variable_name"), sep = ".") %>%
spread(key = variable_name, value = value)
```

```
tidy_data <- d %>%
gather(key = "key", value = "value", -age_group) %>%
separate(col = key, into = c("year", "variable_name"), sep = "_") %>%
spread(key = variable_name, value = value)
```

```
tidy_data <- d %>%
gather(key = "key", value = "value") %>%
separate(col = key, into = c("year", "variable_name"), sep = "_") %>%
spread(key = variable_name, value = value)
```

```
tidy_data <- d %>%
gather(key = "key", value = "value", -age_group) %>%
separate(col = key, into = "year", sep = "_") %>%
spread(key = year, value = value)
```


Answer

Correct:

This column gathers the column names 2015_time, 2015_participants, 2016_time, and 2016_participants into one column called "key", with the values for each stored in the column "value." The key column is then separated into two columns, "year" and "variable_name". The two entries for "variable_name", time and participants, are then spread into their own columns.

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

Question 8

1/1 point (graded)

You are in the process of tidying some data on heights, hand length, and wingspan for basketball players in the draft. Currently, you have the following:

Select all of the correct commands below that would turn this data into a "tidy" format with columns "height", "hand_lengt and "wingspan".

~...g~~~...


```
tidy_data <- stats %>%
separate(col = key, into = c("player", "variable_name"), sep = "_", extra = "merge") %>%
spread(key = variable_name, value = value)
```

```
tidy_data <- stats %>%
separate(col = key, into = c("player", "variable_name1", "variable_name2"), sep = "_", fill = "right") %>%
unite(col = variable_name, variable_name1, variable_name2, sep = "_") %>%
spread(key = variable_name, value = value)
```

```
tidy_data <- stats %>%
separate(col = key, into = c("player", "variable_name"), sep = "_") %>%
spread(key = variable_name, value = value)
```


Answer

Correct:

This is an efficient way to separate the key column into two new columns, "player" and "variable_name", while keeping the full variable names using the extra command.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem