

LIBRARY OF THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

510.84

Il6r

no.111-130

cop.3

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the **Latest Date** stamped below.

Theft, mutilotion, and underlining of books are reasons for disciplinary action and may result in dismissol from the University.

To renew coll Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

BUILDING USE ONLY
SEP 2 1 1980
SEP 2 0 1980

Il6r no.113 cop. 3

UNIVERSITY OF ILLINOIS

GRADUATE COLLEGE

DIGITAL COMPUTER LABORATORY

REPORT NO. 113

REMARKS ON ERRORS IN FIRST ORDER ITERATIVE PROCESSES WITH FLOATING-POINT COMPUTERS

by

J. Descloux

March 22, 1962

This work was supported in part by the National Science Foundation under grant G16489

Digitized by the Internet Archive in 2013

1261

REMARKS ON ERRORS IN FIRST ORDER ITERATIVE PROCESSES WITH FLOATING-POINT COMPUTERS

We consider the iterative process given by

$$x_{n+1} = x_n + G(x_n) \tag{1}$$

with limit r. All quantities are scalar. We suppose the convergence linear, i.e. there exists 0 < b < 1 such that

$$|x + G(x) - r| < b |x - r|$$
 for every x (2)

Although analogous results can be probably obtained for other types of floating-point arithmetic, we suppose we are dealing with a binary computer with following properties:

- 1. All numbers, but 0, are of the form α 2^{β} , where α is an exact binary fraction of N bits and the sign, β is an integer and $0.5 < \alpha < 1$.
- 2. There is a real zero represented for example by $\alpha=0$, $\beta=-P$, where -P is the smallest value of β ; consequently the smallest non-zero numbers in absolute value are $\pm 2^{-P-1}$.

All these numbers, including zero, will be called "normalized".

Suppose that (1) is realized on this computer under the following assumptions:

- 1. The value effectively computed instead of G(x) is $\overline{G}(x)$ with $\overline{G}(x) = (1 + y) G(x) + \zeta \mid \eta \mid \leq d \mid \zeta \mid \leq a$ (3) ζ and ζ are independent of x.
- 2. $\overline{G}(x)$ and the successive approximations are always represented on the computer as normalized numbers.

The effective process can be written

$$Y_{n+1} = [Y_n + \overline{G}(Y_n)]_R \tag{4}$$

indeed by using multiple precision $Y_n + \overline{G}(Y_n)$ can be represented exactly, since it is a multiple of 2^{-P-1} ; however, by assumption 2, the mantissa of Y_{n+1} has no more than N digits and $Y_n + \overline{G}(Y_n)$ must be rounded as indicated by $[\]_R$.

We concentrate on attention on the rounding procedure in (4). We consider two types of rounding procedures:

1. Normal rounding: $Y_{n+1} = [Y_n + \overline{G}(Y_n)]_N$; Y_{n+1} is a normalized number such that $|Y_{n+1} - (Y_n + \overline{G}(Y_n))| = \min$;

When two different normalized numbers satisfy the above relation, any of them can be chosen as \mathbf{Y}_{n+1} .

2. Anormalous rounding: $Y_{n+1} = [Y_n + \overline{G}(Y_n)]_A$; if $\overline{G}(Y_n) \ge 0$ let

Z be the smallest normalized number such that $Z \ge Y_n + \overline{G}(Y_n)$

W be the greatest normalized number such that W \leq Y $_n$ + $\overline{G}(Y_n)$; If $\overline{G}(Y_n) \leq 0$ let

Z be the greatest normalized number such that $Z \leq Y_n + \overline{G}(Y_n)$

W be the smallest normalized number such that $W \geq Y_n + \overline{G}(Y_n)$

then
$$[Y_n + \overline{G}(Y_n)]_A = W$$
 if $W \neq Y_n$
 $[Y_n + \overline{G}(Y_n)]_A = Z$ if $W = Y_n$

The following relations are rather evident:

1.
$$|Y_{n+1} - [Y_n + \overline{G}(Y_n)]_N| \le 2^{-N} (Y_n + \overline{G}(Y_n))$$
 (5)

2.
$$|Y_{n+1} - [Y_n + \overline{G}(Y_n)]_A | \le 2^{-N+1} (Y_n + \overline{G}(Y_n))$$
 (6)

3. if
$$Y_n < Y_n + \overline{G}(Y_n) < p$$
, then $Y_n < [Y_n + \overline{G}(Y_n)]_A < p$ (7)

if
$$p < Y_n + \overline{G}(Y_n) < Y_n$$
, then $p < [Y_n + \overline{G}(Y_n)]_A < Y_n$ (8)

where p is any number and provided there is a normalized number s such that $Y_n < s < p$ for (7) and $p < s < Y_n$ for (8).

Theorem a) By using the normal rounding for any Y , there exists a finite number M such that \mid Y $_{\rm n}$ - r \mid \leq B $_{\rm N}$ =

$$\frac{2^{-N} | r | + a (1 + 2^{-N})}{2 + 2^{-N} - (1 + d) (1 + b) (1 + 2^{-N})} \le \frac{2^{-N} | r | + a}{1 - b - 2d - 2^{-N}}$$

for n > M.

b) By using the anormalous rounding, for any $\mathbf{Y}_{\mathbf{O}}$, there exists a finite number M such that

$$|Y_n - r| < B_A = (2^{-N+1} | r| + 2^{-P-1} + \frac{a(1+2^{-N+1})}{2 - (1+d)(1+b)})$$

for n > M.

In both cases, if the bounds $\mathbf{B}_{\mathbb{N}}$ or $\mathbf{B}_{\mathbb{A}}$ are non-positive, they must be replaced by + $\infty.$

Truncation errors Suppose we compute with infinite precision, i.e. without rounding errors.

The remaining inaccuracy of the process will be called the <u>truncation</u> error and comes from the errors η and ζ in equation 3.

We consider the limits of $\mathbf{B}_{\mathbf{N}}$ and $\mathbf{B}_{\mathbf{A}}$ when $\mathbf{N}\!\!\to\infty$ and $\mathbf{P}\!\!\to\infty$

$$B = \lim_{N \to \infty} B_{N} = \lim_{N \to \infty} B_{A} = \frac{a}{2 - (1 + d) (1 + b)}$$

$$P \to \infty$$

Using analog agruments to these in the proof of the theorem, one can find the following result:

Let for any V_0 , the sequence V_n be defined by

$$V_{n+1} = V_n + \overline{G}(V_n)$$

then any point of accumulation V of the sequence satisfy the relation \mid V - r \mid \leq B. We give an example where the bound is reached; let

$$G(x) = - (1 + b) (x - r)$$

$$G(x) = -(1 + d)(1 + b)(x - r) - a \frac{x - r}{|x - r|}$$

First we remark that if a = 0, the sequence will converge if and only if | 1 - (1 + d) (1 + b) | < 1, i.e. 2 - (1 + d) (1 + b) > 0, since d and b are non-negative numbers; if the condition is not satisfied, the sequence diverges to infinity.

For a \neq 0, it is easy to verify that if

$$V_0 = r + \frac{a}{2 - (1 + d)(1 + b)}$$

then
$$V_1 = r - \frac{a}{2 - (1 + d) (1 + b)}$$

$$V_2 = r + \frac{a}{2 - (1 + d) (1 + b)}$$

In order to compare the results of the theorem, i.e. to compare B_A and B_N , first suppose that a=0; then

$$B_{A} = |r| 2^{-N+1} + 2^{-P-1}; B_{N} = \frac{|r| 2^{-N}}{2 + 2^{-N} - (1+d)(1+b)(1+2^{-N})};$$

Since $d \ge 0$, $b \ge 0$ it follows $B_N \ge 1/2$ $B_A - 2^{-P-1}$; B_A is independent of d and b and remain very small; for $d \cong 0$, $b \cong 0$, B_N is slightly smaller than B_A , but if $b \cong 1$, i.e. when the convergence is very slow, B_N can become very large. For reasonable values of b and d, the increase of value of the bounds B_A and B_N due to a $\ne 0$ are almost equal (i.e. if one neglects the effects of the rounding, i.e. if $N \to \infty$). Consequently the anomalous rounding can be considered as safer than the normal rounding.

Example The bounds B_A or B_N can be reached only in trivial cases. However, for the general case, they remain realistic; that is true for B_A since B_A is not much greater than the truncation error; as for B_N , let us consider the following example:

Let b =
$$3/4$$
, d = $1/8$, a = $5 \cdot 2^{-35}$, N = 32 ; r = $3/4$

$$G(x) = -7/4 (x - 3/4)$$

$$\overline{G}(x) = -9/8 \cdot 7/4 (x - 3/4) - 5 \cdot 2^{-35} \cdot \text{sign} (x - 3/4)$$

$$B_N = 44 \cdot 2^{-32}$$
; $B_A = 21.5 \cdot 2^{-32}$; $B = 20.2^{-32}$,

it is easy to check the following computations:

$$Y_0 = 3/4 + 32 \cdot 2^{-32}$$

 $Y_1 = [Y_0 + \overline{G}(Y_0)]_N = 3/4 - 32 \cdot 2^{-32}$
 $Y_2 = [Y_1 + \overline{G}(Y_1)]_N = 3/4 + 32 \cdot 2^{-32}$

Lemma 1 Let W, and W satisfy the relation

$$W_{\eta} = (1 + \epsilon) (W_{\Omega} + (1 + \eta) (G(W_{\Omega}) + \zeta))$$

where $|\zeta| < e = \text{constant}$ and η , G(W), ζ satisfy the hypothesis given by the equation 2 and 3.

Let
$$K = \frac{e | r | + a (1 + e)}{2 + e - (1 + d) (1 + b) (1 + e)}$$
;

then: l. if
$$|W_0 - r| > K$$
, then $|W_1 - r| < |W_0 - r|$
2. if $|W_0 - r| \le K$, then $|W_1 - r| \le K$

Proof:

$$\begin{split} & W_{1} - r = (1 + \epsilon) (W_{0} + (1 + \eta) (G(W_{0}) + \zeta)) - r \\ & = (1 + \epsilon) (1 + \eta) (W_{0} + G(W_{0}) - r) - \eta (1 + \epsilon) (W_{0} - r) + r\epsilon + \zeta (1 + \epsilon); \end{split}$$

by equation 2:

$$|W_1 - r| \le |W_0 - r| \{(1+e)(1+d)(1+b) - 1 - e\} + |r|e+$$

$$a(1+c)$$
(9)

First suppose \mid W $_{1}$ - r \mid > K; by 4:

$$|W_1 - r| \le |W_0 - r| - (2 + e - (1 + e) (1 + d) (1 + b)) |W_0 - r| + |r| e + a (1 + e)$$

$$< |W_0 - r| - (2 + e - (1 + c) (1 + d) (1 + b))K + |r| e + a (1 + c) \le |W_0 - r|$$
 q.e.d.

Now suppose $|W_1 - r| \le K$; by 4:

$$|W_1 - r| \le K \{(1+e)(1+d)(1+b) - 1 - e\} + |r| e + a(1+c)$$

$$\leq$$
 K - K (2 + e - (1 + e) (1 + d) (1 + b)) + | r | e + a (1 + c) \leq K q.e.d.

Lemma 2 $B_N \le \frac{2^{-N} |r| + a}{1 - b - 2d - 2^{-N}}$ (if the denominator ≤ 0 , the expression must be replaced by $+ \infty$).

Proof

$$\frac{2^{-N} | r | + a}{1 - b - 2d - 2^{-N}} = \frac{(2^{-N} | r | + a) (1 + 2^{-N})}{(1 - b - 2d - 2^{N}) (1 + 2^{-N})}$$

$$= \frac{(2^{-N} | r | + a) (1 + 2^{-N})}{2 + 2^{-N} - (1 + b) (1 + d) (1 + 2^{-N}) - d (1 - b) (1 + 2^{-N}) - 2^{-2N}}$$

$$\geq \frac{2^{-N} | r | + (1 + 2^{-N}) a}{2 + 2^{-N} - (1 + b) (1 + d) (1 + 2^{-N})} = B_{N} \quad q \cdot e.d.$$

Proof of theorem a By equation 5:

$$Y_{n+1} = (1 + \epsilon) (Y_n + (1 + \eta) G(Y_n) + \zeta) \text{ with } | \epsilon | \leq 2^{-N}$$

by replacing in lemma 1 e by
$$2^{-N}$$
, we find $K = \frac{2^{-N} | r | + a (1 + 2^{-N})}{2 + 2^{-N} - (1 + d) (1 + b) (1 + 2^{-N})}$

then the theorem a and the lemma 1 are equivalent, since there exists only a finite number of normalized numbers.

The lemma 2 completes the proof.

<u>Proof of theorem b</u> Since there exists only a finite number of normalized numbers, the theorem b is equivalent to the following assertions:

I. If
$$|Y_0 - r| \le \frac{a}{2 - (1 + d)(1 + b)}$$
, then $|Y_1 - r| < B_A$

II. If
$$\frac{a}{2 - (1 + d) (1 + b)} < |Y_0 - r| < B_A$$
, then $|Y_1 - r| < B_A$

III. If
$$|Y_0 - r| \ge B_A$$
, then $|Y_1 - r| < |Y_0 - r|$

I. By lemma 1,
$$r - \frac{a}{2 - (1 + d)(1 + b)} \le Y_0 + \overline{G}(Y_0) \le r + \frac{a}{2 - (1 + d)(1 + b)}$$

since $2^{-N+1} (Y_0 + \overline{G}(Y_0)) \le (|r| + \frac{a}{2 - 1(1 + d)(1 + b)}) 2^{-N+1}$, by

equation 6, we have:

$$r - \frac{a}{2 - (1 + d)(1 + b)} - (|r| + \frac{a}{2 - (1 + d)(1 + b)}) 2^{-N+1} \le Y_1$$

$$\leq r + \frac{a}{2 - (1 + d) (1 + b)} + (|r| + \frac{a}{2 - (1 + d) (1 + b)}) 2^{-N+1}$$

and consequently
$$| Y_1 - r | \le | r | 2^{-N+1} + \frac{a}{2 - (1 + d) (1 + b)} < B_A$$

II. Suppose that
$$r + \frac{a}{2 - (1 + d)(1 + b)} < Y_0 < r + B_A$$
 (the proof is

analogous when
$$r$$
 - $B_A < Y_O < r$ - $\frac{a}{2 - (1 + d)(1 + b)}$). By lemma 1

$$2r - Y_{\circ} < Y_{\circ} + \overline{G}(Y_{\circ}) < Y_{\circ},$$

$$r - B_{\Delta} < Y_{\Omega} + \overline{G}(Y_{\Omega}) < Y_{\Omega};$$

but r - $B_A \le r$ - $|r| 2^{-N+1}$ - $2^{-P-1} < r < Y_0$ and there exists a normalized number s such that r - $|r| 2^{-N+1}$ - $2^{-P-1} < s \le r$; we apply equation 8:

$$r$$
 - B_A < $[Y_o + \overline{G}(Y_o)]_A$ < Y_o < r + B_A , i.e. $|Y_l - r| < B_A$ q.e.d.

III. Suppose $Y_0 > r + B_A$ (the proof is analogous when $Y \le r - B_A$). By lemma 1: $2 r - Y_0 < Y_0 + \overline{G}(Y_0) < Y_0;$

but $2r - Y_0 \le r - 2^{-N+1} \mid r \mid - 2^{-P-1} < r < Y_0$ and there exists a normalized number s such that $r - \mid r \mid 2^{-N+1} - 2^{-P-1} < s \le r$; we apply equation 8:

$$2r - Y_0 < [Y_0 + \overline{G}(Y_0)]_A < Y_0$$
, i.e. $|Y_1 - r| < |Y_0 - r|$ q.e.d.

UNIVERSITY OF ILLINOIS-URBANA 510.84 ILSR v.1 C002 v.111-130(1961) Some memory elements used in ILLIAC II /

3 0113 09940