MATH 222, Week 3: Trig Sub and Partial Fractions

Name:		
rame:		

Integrals of Products of Sine and Cosine

Problem 1. Use trig identities and what we learned in class to calculate the following integrals.

- (a) $\int \sin^2(x) \cos^3(x) dx$
- (b) $\int \sin^3(x) \cos^3(x) dx$
- (c) $\int \sin^3(x) \cos^{2018}(x) dx$.

There's more to life than sine and cosine!

Problem 2. Calculate these integrals using trig identities:

- (a) $\int \sec(x) dx$
- (b) $\int \tan(x) dx$
- (c) $\int \tan^5(x) \sec^{2017}(x) dx$.
- (d) $\int \sec^6(x) \tan^{2018}(x) dx$
- (e) (Challenge) $\int \sec^3(x) dx$
- (f) (Challenge) $\int \frac{\sec^3(x)}{\tan(x)} dx$
- (g) (Challenge) $\int \sec(x) \tan^2(x) dx$ (Hint: Solving parts (a) and (e) can help)

Trig Substitution

Problem 3. Choose the best trig substitution (when all else fails) in each case:

- (a) $\int \sqrt{a^2 x^2} dx$: $x = a \sin \theta$
- $x = a \sec \theta$
- $x = a \tan \theta$

- (b) $\int \sqrt{x^2 a^2} dx$: $x = a \sin \theta$
- $x = a \sec \theta$ or
- $x = a \tan \theta$ \mathbf{or}

- (c) $\int \sqrt{a^2 + x^2} dx$: $x = a \sin \theta$
- $x = a \sec \theta$ \mathbf{or}
- \mathbf{or} $x = a \tan \theta$

Problem 4. Use trig substitution to eliminate the root in $\sqrt{1-4x-2x^2}$. (Hint: Complete the square)

Problem 5. If we have $x = \sin(\theta)$, then what is $\cos(\theta)$ and $\tan(\theta)$ in terms of x? What if $x = \cos(\theta)$, what is $\sin(\theta)$ and $\tan(\theta)$ in terms of x? This will be useful when doing trig sub. (Hint: Use Triangles!)

Problem 6. Compute the following integrals using trig sub (use Problems 3,4 and 5 as your guide):

(a)
$$\int t\sqrt{1-t^2} dt$$

(b)
$$\int \frac{1}{\sqrt{2x-x^2}} dx$$

(c)
$$\int t^3 (3t^2 - 4)^{3/2} dt$$

(a)
$$\int t\sqrt{1-t^2} dt$$

(b) $\int \frac{1}{\sqrt{2x-x^2}} dx$
(c) $\int t^3 (3t^2-4)^{3/2} dt$
(d) $\int \frac{ds}{(2+s^2)^{3/2}} ds$
(e) $\int \frac{e^t}{\sqrt{4-e^{2t}}} dt$

(e)
$$\int \frac{e^t}{\sqrt{4-e^{2t}}} dt$$

(f)
$$\int \frac{x^3}{\sqrt{4-x^2}} dx$$

(f)
$$\int \frac{x^3}{\sqrt{4-x^2}} dx$$

(g) $\int e^{4x} \sqrt{1-e^{2x}} dx$.

(h) (Semi-Challenge)
$$\int \frac{1}{(1+x^2)\sqrt{\arctan(x)^2-1}} dx$$

(i) (Challenge)
$$\int \sqrt{\frac{x}{1-x^3}} dx$$
. Hint: First make a usual kind of substitution.

(j) (Semi-Challenge)
$$\int \frac{x}{\sqrt{2x^2-4x-7}} dx$$
.

1 Partial Fractions

Problem 7. Fill in the appropriate numerators and denominators in the following partial fraction decomposition. (The first is an example.)

(a)
$$\frac{f(x)}{(x-1)(x-2)} = \begin{bmatrix} \frac{A}{x-1} + \frac{B}{x-2} \end{bmatrix}$$

(b)
$$\frac{f(x)}{(x-1)(x-2)(x-\pi)} = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \end{bmatrix}$$

(c)
$$\frac{f(x)}{(x+1)^3} = \left[- + - \right]$$

(d)
$$\frac{f(x)}{(x-1)(x^2+1)} = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$

Problem 8. Compute $\int \frac{dx}{(x^2-4)(x^2+1)^2}$

Problem 9. (a) Compute $\int_2^4 \frac{1}{x^2} dx$

- (b) Compute $\int_2^4 \frac{1}{x(x-h)} dx$ where h is any positive number.
- (c) What happens as $h \to 0$ in the integral for part (b)? How is this related to part (a)?

Problem 10. Compute $\int \frac{1}{x^2-a^2} dx$