**Lemma 5.3.** There is an  $n_0$  such that the following holds for all  $n \ge n_0$ ,  $2^{-9} < \varepsilon < 1$ , c > 0,  $r, t \ge (\log n)^2$  and  $s \ge 20rt$ . Let G be an n-vertex  $(\varepsilon, c, s)$ -expander, let  $U \subseteq V(G)$  satisfy  $|U| \le 2n/3$ . Then, in G we can find either

- (a)  $\frac{|U|}{10r}$  pairwise vertex-disjoint stars of size t, whose centers are in U and whose leaves are in V(G) U, or
- (b) a bipartite subgraph H with vertex classes U and  $X \subseteq V(G) U$  such that
  - $|X| \ge \frac{\varepsilon |U|}{2(\log n)^c}$  and
  - every vertex in X has degree at least r in H and every vertex in U has degree at most 2t in H.

**Proof.** Take a maximal collection  $\mathcal{C}$  of pairwise vertex-disjoint stars in G with t leaves, centres in U and leaves outside of U. Let  $C \subseteq U$  be the set of centres of these stars and  $L \subseteq V(G) - U$  be the set consisting of all their leaves. Suppose **a)** does not hold. Then we can assume that  $|C| \leq \frac{|U|}{10r}$  and thus  $|L| = |C| \cdot t \leq \frac{|U|}{10r} \cdot t$ , and, by the maximality of  $\mathcal{C}$ , that there is no vertex in U - C with at least t neighbours in G in  $V(G) - (U \cup L)$ . Thus,

$$|N_G(U-C)| \le |C| + |L| + |U-C| \cdot t \le \frac{|U|}{10r} + |C| \cdot t + |U-C| \cdot t < 2|U| \cdot t. \tag{6}$$

We now construct a set  $X \subseteq V(G) - U$  and a bipartite subgraph H with vertex classes U and X using the following process, starting with  $X_0 = \emptyset$  and setting  $H_0$  to be the graph with vertex set  $U \cup X_0$  and no edges. Let k = |V(G) - U| and label the vertices of V(G) - U arbitrarily as  $v_1, \ldots, v_k$ . For each  $i \ge 1$ , if possible, pick a star  $S_i$  in G with centre  $v_i$  and r leaves in U such that the vertices in U in the graph  $H_{i-1} \cup S_i$  have degree at most 2t, and let  $H_i = H_{i-1} \cup S_i$  and  $X_i = X_{i-1} \cup \{v_i\}$ , while otherwise we set  $H_i = H_{i-1}$  and  $X_i = X_{i-1}$ . Finally, let  $H = H_k$  and  $X = X_k = V(H_k) - U$ . We will now show that **b**) holds for this choice of H (with vertex classes U and X).

Firstly, observe that every vertex of U has degree at most 2t in  $H_i$  for each  $i \in [k]$  by construction, and that every vertex  $v_i$  in X has degree exactly r in H, so the second condition in **b**) holds. Thus, we only need to show that  $|X| \ge \frac{\varepsilon |U|}{2(\log n)^c}$  holds.

To see this, let U' be the set of vertices in U-C with degree exactly 2t in H. As each vertex in U-C has fewer than t neighbours in G in X-L (due to the maximality of the collection of stars C), the vertices in U' must have at least t neighbours in H in  $X \cap L$ . As each vertex in  $X \cap L$  has r neighbours in H, we have

$$|U'| \le \frac{r|X \cap L|}{t} \le \frac{r}{t} \cdot |L| \le \frac{r}{t} \cdot \frac{|U| \cdot t}{10r} = \frac{|U|}{10}.$$

Let  $B = C \cup U'$ , so that

$$|B| \le \frac{|U|}{10r} + \frac{|U|}{10} \le \frac{|U|}{2},$$

and, thus,  $|U - B| \ge \frac{|U|}{2}$ .

Then, by Proposition 5.2 applied to U-B with d=r, we have either  $|N_G(U-B)| \ge \frac{s|U-B|}{2r}$  or  $|N_{G,r}(U-B)| \ge \frac{\varepsilon|U-B|}{(\log n)^c}$ . As

$$\frac{s|U - B|}{2r} \ge \frac{s|U|}{4r} \ge 5t|U|,$$

the former inequality contradicts (6), so we have that  $|N_{G,r}(U-B)| \ge \frac{\varepsilon |U-B|}{(\log n)^c}$ . Every vertex  $v_i$  in  $N_{G,r}(U-B)$  has at least r neighbours in G in U-B, and vertices of U-B must all have degree strictly less than 2t in H (as they are not in U'). This implies that every  $v_i$  in  $N_{G,r}(U-B)$ , satisfies  $v_i \in X$ , since we could add it along with some r of its neighbours while constructing H. Hence,  $N_{G,r}(U-B) \subseteq X$ , and

$$|X| \ge |N_{G,r}(U-B)| \ge \frac{\varepsilon |U-B|}{(\log n)^c} \ge \frac{\varepsilon |U|}{2(\log n)^c},$$

as required.