9200 WO

31

CLAIMS

1. A block copolymer comprising the unit (I)

$$\frac{\left\{ \left(R^{3} - O \right)_{n} \right\} - L - \left\{ \left(\begin{matrix} H & R^{1} \\ C & C \end{matrix} \right)_{m} \right\} }{\left(\begin{matrix} R^{3} - O \end{matrix} \right)_{n} } \qquad (I)$$

wherein R is selected from the group consisting of hydrogen, C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, C₇-C₁₈ aralkyl, C₇-C₁₈ alkaryl, C₆-C₁₈ aryl, carboxylic acid, C₂-C₁₈ alkoxycarbonyl, C₂-C₁₈ alkaminocarbonyl, or any one of C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, C₇-C₁₈ aralkyl, C₇-C₁₈ alkaryl, C₆-C₁₈ aryl, C₂-C₁₈ alkoxycarbonyl and C₂-C₁₈ alkaminocarbonyl substituted with a heteroatom within, or attached to, the carbon backbone; R¹ is selected from the group consisting of hydrogen and C₁-C₆ alkyl groups; R² is a linking group; X is an electron withdrawing group; R³ is selected from the group consisting of C₁-C₁₈ alkylene, C₂-C₁₈ alkenylene, C₇-C₁₈ aralkylene, C₇-C₁₈ alkarylene and C₆-C₁₈ arylene; L is a divalent linker joining the blocks; and m and n are each an integer of greater than 1.

- 2. A block copolymer according to claim 1 in which m and n are integers of 5 to 300, more preferably 10 to 200, most preferably 25 to 150.
 - 3. A block copolymer according to claim 1 or claim 2 which has a polydispersity of less than 1.4, preferably less than 1.2 and a molecular weight (Mw) of less than 100,000.
- 4. A block copolymer according to any preceding claim which is water soluble.
- A block copolymer according to any preceding claim in which X is a carboxylate activating group, and is preferably selected from the group consisting of N-succinimidyl, pentachlorophenyl, pentafluorophenyl, paranitrophenyl, dinitrophenyl, N-phthalimido, norbornyl, cyanomethyl, N-pyridyl, N-trichlorotriazine, 5-chloroquinilino, and N-imidazole, more preferably an N-succinimidyl or imidazole moiety.

WO 03/059973 PCT/GB02/05932

6. A block copolymer according to any preceding claim in which R is selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkeryl, C_2 - C_8 alkoxycarbonyl, C_2 - C_8 alkoxycarbonyl, C_2 - C_8 alkaminocarbonyl, preferably hydrogen and methyl.

7. A block copolymer according to any preceding claim in which R¹ is selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, pentyl or isomers thereof, preferably hydrogen and methyl.

5

10

15

20

25

- 8. A block copolymer according to any preceding claim in which R^2 is a bond or a divalent group selected from a carbonyl, C_1 - C_{18} alkylene and/or C_6 - C_{18} arylene group which may be substituted with 1 or more heteroatoms.
- 9. A block copolymer according to claim 8 in which R^2 is selected from the group consisting of C_1 - C_6 alkylene, C_6 - C_{12} arylene, C_1 - C_{12} oxyalkylene and carbonyl- C_1 - C_6 alkylene.
- 10. A block copolymer according to claim 9 in which R² is methylene, 1,2-ethylene, 1,3-propylene, hexylene, octylene, benzylene, tolylene or xylylene.
- 11. A block copolymer according to any preceding claim in which the groups R^3 , which may be the same or different, are selected from the group consisting of C_1 - C_8 alkylene groups, preferably 1,2-alkylene, and C_6 - C_{12} arylene groups, most preferably methylene, ethylene, 1,2-propylene and 1,3-propylene.
- 12. A block copolymer according to claim 11 in which all R³ groups are the same and are preferably all 1, 2-ethylene or 1,2-propylene.
- 13. A block copolymer according to any preceding claim in which L comprises a C₁-C₁₈ alkylene or C₆-C₁₈ arylene group which may be substituted and/or interrupted with 1 or more heteroatoms.
- 14. A block copolymer according to claim 13 in which L is selected from the group consisting of C_1 - C_6 alkylene, C_6 - C_{12} arylene, C_1 - C_{12} oxyalkylene and C_1 - C_6 acyl.
- 15. A block copolymer according to claim 14 in which L comprises a 30 COR^a group, wherein R^a is selected from the group consisting of C₁-C₆
 alkylene or C₆-C₁₂ arylene, preferably methylene, 1,2-ethylene, 1,2propylene, 1,3-propylene, ^{tert}butylene and ^{sec}butylene.

16. A block copolymer according to claim 1 which comprises the structure (II)

wherein R4 is selected from the group consisting of hydrogen, C1-C18 alkyl, C_2 - C_{18} alkenyl, C_7 - C_{18} aralkyl, C_7 - C_{18} alkaryl, C_6 - C_{18} aryl, carboxylic acid, C_2 -10 C_{18} alkoxycarbonyl, C_2 - C_{18} alkaminocarbonyl, or any one of C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_7 - C_{18} aralkyl, C_7 - C_{18} alkaryl, C_6 - C_{18} aryl, C_2 - C_{18} alkoxycarbonyl, and C2-C18 alkaminocarbonyl substituted with a heteroatom within, or attached to, the carbon backbone; R5 is selected from the group consisting of hydrogen and C₁-C₆ alkyl groups; R⁶ is a linking group; Q is a solubilising 15 group selected from the group consisting of hydroxyl, C_1 , C_{12} alkyl, C_2 - C_{12} alkenyl, C₇-C₁₂ aralkyl, C₇-C₁₂ alkaryl, C₁-C₁₂ alkoxy, C₁-C₁₂ hydroxyalkyl, C₁- C_{12} alkylamino, C_1 - C_{12} hydroxyalkylamino, or any of C_1 C_{12} alkyl, C_2 - C_{12} alkenyl, C_7 - C_{12} aralkyl, C_7 - C_{12} alkaryl, C_1 - C_{12} alkoxy, C_1 - C_{12} hydroxyalkyl, C_1 -C₁₂ alkylamino, C₁-C₁₂ alkylamino substituted with an amine, hydroxyl, carbonyl or thiol group; R7 is selected from the group consisting of C1-C18 alkylene, C_2 - C_{18} alkenylene, C_7 - C_{18} aralkylene, C_7 - C_{18} alkarylene and C_6 - C_{18} arylene; n, m and p are each an integer of greater than 1; R12 is selected from the group consisting of hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_7 - C_{18} aralkyl, C_7 - C_{18} alkaryl, C_6 - C_{18} aryl, carboxylic acid, C_2 - C_{18} alkoxycarbonyl, C_2 -25 C_{18} alkaminocarbonyl, or any one of C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_7 - C_{18} aralkyl, C_7 - C_{18} alkaryl, C_6 - C_{18} aryl, C_2 - C_{18} alkoxycarbonyl, and C_2 - C_{18} alkaminocarbonyl substituted with a heteroatom within, or attached to, the carbon backbone; R13 is selected from the group consisting of hydrogen and C₁-C₆ alkyl groups; R¹⁴ is a linking group; L¹ is a divalent linker joining the 3.0 blocks; Z is a pendent group selected from the group consisting of OM_{1/6} , NR8R9, SR10, OR11 and OX, wherein X is defined above, M is a metal ion and

d is an integer of 1 or 2, R^8 comprises an alkyl group, preferably an aminoacyl substituted alkyl group, more preferably oligopeptidyl group; R^9 is selected from hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_7 - C_{18} aralkyl, C_7 - C_{18} alkaryl; R^{10} and R^{11} comprise a group which is individually selected from the group consisting of hydrogen, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_7 - C_{12} aralkyl, C_7 - C_{12} alkaryl and C_1 - C_{12} hydroxyalkyl, and may contain one or more cleavable bonds and may comprise a bioactive agent.

- 17. A block copolymer according to claim 16 in which Z comprises one or more aminoacyl groups, preferably 2-6 aminoacyl groups, most preferably 4 aminoacyl groups.
- 18. A block copolymer according to claim 17 in which Z comprises a glycine-leucine-phenylalanine-glycine linker.
- 19. A block copolymer according to claim 16 in which Z comprises a cisaconityl group.
- 20. A block copolymer according to any of claims 16 to 19 in which Z comprises a bioactive agent or linker.
 - 21. A block copolymer according to claim 20 in which the bioactive agent is selected from anti-cancer agents.
- 22. A block copolymer according to any of claims 16 to 21 in which Q comprises an amine group attached to the R⁶CO carbonyl carbon, preferably a C₁-C₁₂ hydroxyalkylamino group, most preferably a 2-hydroxypropylamino group.
 - 23. A process for the production of a block copolymer, comprising the polymerisation of ethylenically unsaturated monomers including a compound (III)

HRC
$$\mathbb{R}^1$$
 (III)

30

25

10

15

25

30

wherein R is selected from the group consisting of hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_7 - C_{18} aralkyl, C_7 - C_{18} alkaryl, C_6 - C_{18} aryl, carboxylic acid, C_2 - C_{18} alkoxycarbonyl, C_2 - C_{18} alkaminocarbonyl, or any one of C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_7 - C_{18} aralkyl, C_7 - C_{18} alkaryl, C_6 - C_{18} aryl, C_2 - C_{18} alkoxycarbonyl, and C_2 - C_{18} alkaminocarbonyl substituted with a heteroatom within, or attached to, the carbon backbone; R^1 is selected from the group consisting of hydrogen and C_1 - C_6 alkyl groups; R^2 is a linking group; X is an electron withdrawing group; in the presence of an initiator compound (IV)

$$R^{15}(R^3O)_{n}^{-}Y \qquad (IV)$$

wherein n is an integer of 1 or more and Y is a radical initiating group; R^3 is selected from the group consisting of C_{7} - C_{18} alkylene, C_{2} - C_{18} alkenylene, C_{7} - C_{18} aralkylene, C_{7} - C_{18} alkarylene and C_{6} - C_{18} arylene; R^{15} comprises a group selected from the group consisting of hydrogen, C_{1} - C_{18} alkyl, C_{2} - C_{18} alkenyl, C_{7} - C_{18} aralkyl, C_{7} - C_{18} alkaryl and C_{6} - C_{18} aryl, C_{1} - C_{18} alkoxy, C_{2} - C_{18} alkeneyloxy, C_{7} - C_{18} aralkoxy, C_{7} - C_{18} alkaryloxy, C_{6} - C_{18} aryloxy and -O-Y; to produce a block copolymer comprising the unit (V)

$$R^{15} = \left(R^3 - O \right)_n = L^2 = \left(\begin{matrix} H & R^1 \\ C & C \\ R & R^2 \end{matrix} \right)_m$$
 (V)

wherein m and n are as defined above and L² is a divalent linking group derived from Y and R¹⁵ is R¹⁵, or where R¹⁵ is -O-Y, R¹⁵ is

$$-L^{2} \left[\begin{pmatrix} H & R^{1} \\ C & C \\ R & R^{2} \end{pmatrix}_{m} \right]$$

SUBSTITUTE SHEET (RULE 26)

15

25

- 24. A process according to claim 23 in which the groups X, R, R¹, R² and R³ are as defined in any of claims 2 to 15.
- 25. A process according to claim 23 or 24 in which Y is a -COR^y group, wherein R^y is selected from the group consisting of halogen substituted C₁-C₆ alkyl or C₆-C₁₂ aryl, preferably methyl, ethyl, propyl,, ^{tert}butyl and ^{sec}butyl preferably CO^{tert}butylbromide.
- 26. A process according to any of claims 23 to 25 in which L^2 is selected from the group consisting of C_1 – C_6 alkylene, C_6 – C_{12} arylene, C_1 – C_{12} oxyalkylene and carbonyl- C_1 – C_6 alkylene, preferably a – COR^a group, wherein R^a is selected from the group consisting of C_1 – C_6 alkylene or C_6 – C_{12} arylene, preferably methylene, 1,2-ethylene, 1,2-propylene, 1,3-propylene, ^{tert}butylene and ^{sec}butylene.
- 27. A process according to any of claims 23 to 26 in which R^{15} is selected from hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_{10} alkenyl, C_7 - C_{10} aralkyl, C_7 - C_{10} alkaryl and C_6 - C_{10} aryl and -O-Y, preferably methoxy or OY.
- 28. A process according to any of claims 23 to 27 which is a controlled radical polymerisation process, preferably an atom transfer radical polymerisation process, more preferably carried out in the presence of a polymerisation mediator comprising a Cu(I) complex.
- 29. A process according to any of claims 23 to 28 in which comonomers are copolymerised with the monomer of the formula III.
 - 30. A process according to any of claims 23 to 29 in which the block copolymer of the formula V is reacted further with a reagent HR*, wherein R* is selected from the group consisting of NR¹⁹R²⁰, SR²¹ and OR²², wherein R¹⁹ is or comprises a linker group, preferably a substituted alkyl group, more preferably a peptidic group; R²⁰ is selected from hydrogen, C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, C₇-C₁₈ aralkyl, C₇-C₁₈ alkaryl, C₆-C₁₈ aryl; R²¹ and R²² are selected from the group consisting of hydrogen, C₁-C₁₂ alkyl, C₁-C₁₂ alkenyl, C₁-C₁₂ aralkyl, C₁-C₁₂ alkaryl, C₁-C₁₂ alkoxy and C₁-C₁₂ hydroxyalkyl, any of
- which may comprise a bioactive agent substituent and/or may contain one or more cleavable bonds, to form a derivatised block copolymer having the structure (VI)

$$R^{15} = \left(\begin{array}{ccccc} R^3 & O \end{array} \right) = L^2 = \left(\begin{array}{ccccc} H & R^1 & H & R^1 \\ C & C & C & C \\ R & R^2 & P & R & R^2 & m-p \end{array} \right)$$

$$O = \left(\begin{array}{ccccc} H & R^1 & H & R^1 \\ C & C & C & C \\ R & R^2 & M-p \end{array} \right)$$

$$O = \left(\begin{array}{ccccc} H & R^1 & H & R^1 \\ C & C & C & C \\ R & R^2 & M-p \end{array} \right)$$

$$O = \left(\begin{array}{ccccc} H & R^1 & H & R^1 \\ C & C & C & C \\ R & R^2 & M-p \end{array} \right)$$

$$O = \left(\begin{array}{ccccc} H & R^1 & H & R^1 \\ R & R^2 & M-p \end{array} \right)$$

$$O = \left(\begin{array}{ccccc} H & R^1 & H & R^1 \\ R & R^2 & M-p \end{array} \right)$$

$$O = \left(\begin{array}{ccccc} H & R^1 & H & R^1 \\ R & R^2 & M-p \end{array} \right)$$

wherein 1≤p≤m.

- 31. A process according to claim 30 in which HR^x is H₂NR² in which R² comprises an aminoacyl linker or a cis-aconityl linker and a bioactive agent or a ligand.
- 32. A process according to claim 30 or 31 in which the block copolymer of the formula VI is quenched by reacting remaining groups -COOX with an amine-group containing compound, preferably-hydroxypropylamine.
- 33. A process for the production of a block copolymer, comprising the
 steps of (39) polymerising ethylenically unsaturated monomers comprising a compound (VIII)

$$\begin{array}{c} \mathsf{HR}^{23}\mathsf{C} \\ \mathsf{R}^{25} \\ \mathsf{O} \\ \mathsf{O} \\ \mathsf{X}^{1} \end{array} \qquad (\mathsf{VIII})$$

20

25

30

5

10

wherein R^{23} is selected from the group consisting of hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_7 - C_{18} aralkyl, C_7 - C_{18} alkaryl, C_6 - C_{18} aryl, carboxylic acid, C_2 - C_{18} alkoxycarbonyl, C_2 - C_{18} alkaminocarbonyl, or any one of C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_7 - C_{18} aralkyl, C_7 - C_{18} alkaryl, C_8 - C_{18} aryl, C_2 - C_{18} alkoxycarbonyl, and C_2 - C_{18} alkaminocarbonyl substituted with a heteroatom within, or attached to, the carbon backbone; R^{24} is selected from the group consisting of hydrogen and C_1 - C_6 alkyl groups; R^{25} is a linking group; X^1 is selected from the group consisting of carboxyl activating groups, hydrogen, $M^1_{1/d}$ and carboxyl protecting groups, wherein M^1 is a metal ion and d is an integer of 1 or 2; R^{26} is selected from the group consisting of C_1 - C_{18} alkylene,

 C_2 - C_{18} alkenylene, C_7 - C_{18} aralkylene, C_7 - C_{18} alkarylene and C_8 - C_{18} arylene; in the presence of an initiator compound (VIII)

$$R^{27}(R^{28}O)_0 - Y^1$$
 (IX)

5

wherein n is an integer of 1 or more and Y¹ is a radical initiating group, R^{27} comprises a group selected from the group consisting of hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_7 - C_{18} aralkyl, C_7 - C_{18} alkaryl and C_6 - C_{18} aryl, C_1 - C_{18} alkoxy, C_2 - C_{18} alkeneyloxy, C_7 - C_{18} aralkoxy, C_7 - C_{18} alkaryloxy, C_6 - C_{18} aryloxy and -O-Y¹; and R^{28} is selected from the group consisting of C_1 - C_{18} alkylene, C_2 - C_{18} alkenylene, C_7 - C_{18} aralkylene, C_7 - C_{18} alkarylene and C_6 - C_{18} arylene; to produce a block copolymer comprising the unit (X)

15

10

e a block copolymer comprising the unit (X)
$$R^{27} = \left(\left(R^{28} - O \right)_{n} \right) = L^{3} = \left(\left(\left(\frac{H}{C} - \left(\frac{R^{24}}{C} \right)_{m} \right) \right) = \left(\frac{R^{24}}{R^{23}} \right) = \left(\frac{R$$

wherein m is an integer of greater than 1 and L^3 is a divalent linking group derived from L^3 ; and R^{27} is R^{27} , or where R^{27} is $-0-Y^1$, R^{27} is

$$-L^{3} = \begin{bmatrix} \begin{pmatrix} H & R^{24} \\ C & C \\ R^{23} & R^{25} \end{pmatrix}_{m} \end{bmatrix}$$

. 25

30

20

39. reacting (X) with a reagent HR xx , wherein R xx is selected from the group consisting of NR 29 R 30 , SR 31 and OR 32 , wherein R 29 is a linker group, preferably a peptidic group; R 30 is selected from hydrogen, C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, C₇-C₁₈ aralkyl, C₇-C₁₈ alkaryl, C₆-C₁₈ aryl; R 31 and R 32 are individually selected from the group consisting of hydrogen, C₁-C₁₂ alkyl, C₁-C₁₂ alkenyl, C₁-C₁₂ aralkyl, C₁-C₁₂ alkaryl, C₁-C₁₂ alkoxy and C₁-C₁₂

hydroxyalkyl, and may contain one or more cleavable bonds, to form a derivatised block copolymer having the structure (XI)

$$R^{27} = \left(\left(R^{28} - O \right) \right) - L^{3} = \left(\left(\left(C \right) - C \right) \right) - \left(\left(C \right) - C \right) - \left(C \right$$

10 wherein 1≤p≤m.

34. A process according to claim 23 or claim 33 in which the ethylenically unsaturated monomer compound is

and the initiator is

20

25 in which a is 1 to 500.

35. A process according to claim 34 in which the copolymer is reacted with a compound

H2N-Gly-Len-Phe-Gly-Doxorubicin

and in which the product is reacted with 2-hydroxy-propylamine.

36. A block copolymer according to any of claims 1 to 22 having the structure (XII)

WO 03/059973 PCT/GB02/05932

40

$$\begin{array}{c|c} & & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\$$

wherein a and b are integers of up to 500.

5

37. A block copolymer which is obtainable by reaching the block
 10 copolymer of claim 36 and a reagent selected to provide a pendant group comprising an aminoacyl linker or a cis-aconityl linker and a bioactive agent.