Espaces métriques, notions de topologie

Ivan Lejeune*

29 janvier 2024

1 Espaces métriques

Definition 1.1. Un espace métrique est un ensemble X munit d'une application

$$d \coloneqq X \times X \to \mathbb{R}$$

tel que pour tout $x, y \in X$ on a

- (i) $d(x,y) \ge 0$;
- (ii) $d(x,y) = 0 \iff x = y \text{ (séparation)};$
- (iii) d(x,y) = d(y,x) (symétrie);
- (iv) $\forall z \in X, d(x, y) + d(y, z) \ge d(x, z)$ (inégalité triangulaire);

On appelle d la **distance** (ou métrique) sur X.

Exemple 1.1. Soit X un ensemble, on considère

$$\delta(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{si } x \neq y \end{cases}$$

C'est une distance, appelée la distance discrète, qu'on verra en TD.

Definition 1.2. Une **norme** sur E est une application

$$\mathcal{N} \coloneqq E \to \mathbb{R}^+$$

telle que pour tout $x, y \in E, \lambda \in \mathbb{R}$, on a

- (i) $\mathcal{N}(x) = 0 \iff x = 0$;
- (ii) $\mathcal{N}(\lambda x) = |\lambda| \mathcal{N}(x)$;
- (iii) $\mathcal{N}(x+y) \leq \mathcal{N}(x) + \mathcal{N}(y)$;

Pour $E = \mathbb{R}$ -ev, on a (E, \mathcal{N}) espace vectoriel normé.

Exercice 1.1. Montrer que $d(x,y) = \mathcal{N}(y-x)$ est une distance sur E.

Remarque 1.1. Si (E, \mathcal{N}) est un evn, alors (E, \mathcal{N}) est un espace métrique

Exercice 1.2. Montrer que evn ⇒ espace métrique pour

• $(\mathbb{R}^n \text{ euclidiens})$

^{*}Cours inspiré de M. Charlier et M. Akrout

• ({fonctions bornées sur [0,1]})

$$\Rightarrow ||f||_{\infty} = \sup |f|$$

 $\Rightarrow ||f||_p = \left(\int_0^1 |f(t)|^p \det\right)^{\frac{1}{p}} \text{ pour } f \text{ continue bornée}$

Exemple 1.2. Soit (X,d) un espace métrique et $A \subset X$. On a $(A,d|_{A\times A})$ espace métrique.

Exercice 1.3. Le montrer pour $S^2 \subset \mathbb{R}^3$.

Rappel 1.1.

$$S^2 = \left\{ x^2 + y^2 + z^2 = 1 \right\}$$

Definition 1.3. Pour $x \in X$ et $\varepsilon \ge 0$:

• La **boule ouverte** de centre x et de rayon ε est

$$B(x,\varepsilon) = \{y \in X, d(x,y) < \varepsilon\}$$

• La boule fermée de centre x et de rayon ε est

$$B(x,\varepsilon) = \{y \in X, d(x,y) \le \varepsilon\}$$

Exemple 1.3. Pour $X = \mathbb{R}$ et d(x,y) = |x-y|, on a

$$B(x,\varepsilon[=]x - \varepsilon, x + \varepsilon[$$

$$B(x,\varepsilon] = [x - \varepsilon, x + \varepsilon]$$

Definition 1.4. Soit X un ensemble et U une partie de X. Les assertions suivantes sont équivalentes :

- (i) U est un ouvert de X
- (ii) Pour tout $x \in U$, il existe $\varepsilon > 0$ tel que

$$B(x,\varepsilon) \subset U$$

Exemple 1.4. Une boule ouverte est un ouvert.

Preuve. Laissée en exercice.

Remarque 1.2. Si (X,d) est un espace métrique alors

- 1. \emptyset et X des ouverts;
- 2. toute intersection finie d'ouverts de X est un ouvert de X;
- 3. toute union quelconque d'ouverts de X est un ouvert de X.

Preuve. Il suffit de vérifier les 3 propriétés :

1. On a

$$\forall x \in X, B(x, 1[\subset X \text{ et }$$

 $\forall x \in \emptyset$, la propriété est toujours vrai

Donc (1) est vérifié.

2. Soient U_1, \ldots, U_n ouverts. On pose

$$U = \bigcap_{i=1}^{n} U_i$$

Soit $x \in U$, pour tout $i \in \{1, ..., n\}$ on a $x \in U_i$ ouvert donc il existe $\varepsilon_i > 0$ tel que

$$B(x, \varepsilon_i [\subset U_i)$$

On pose $\varepsilon = \inf(\varepsilon_1, \dots, \varepsilon_n) > 0$.

Pour tout $i \in \{1, ..., n\}$, on a alors

$$B(x,\varepsilon[\subset B(x,\varepsilon_i[\subset U_i$$

Et donc

$$B(x,\varepsilon[\subset U$$

Soit que U est ouvert, et donc (2) est vérifié.

3. Soient U_1, \ldots, U_n ouverts. On pose

$$U = \bigcup_{i=1}^{n} U_i$$

Soit $x \in U$, il existe $i \in \{1, ..., n\}$ tel que pour $x \in U_i$ ouvert, il existe $\varepsilon_i > 0$ tel que

$$B(x,\varepsilon[\subset U_i \subset U$$

Soit que U est ouvert, et donc (3) est vérifié.

Remarque 1.3. On note

$$\mathcal{T}_d = \{U \in \mathscr{P}(X), U \text{ est ouvert pour } d\}$$

2 Espaces topologiques

On considère X un ensemble quelconque.

Definition 2.1. On dit que $\mathcal{T} \subset \mathscr{P}(X)$ est une **topologie** sur X si :

- (i) $\emptyset \in \mathcal{T}$ et $X \in \mathcal{T}$
- (ii) \mathcal{T} est stable par intersection finie
- (iii) \mathcal{T} est stable par union quelconque

Les éléments de \mathcal{T} sont dit **ouverts**.

Exemple 2.1. Si (X,d) est métrique, \mathcal{T}_d est une topologie.

Exemple 2.2. Pour X est un ensemble, les ensembles suivants sont des topologies :

- $\mathcal{T} := \mathscr{P}(X)$ appelée topologie discrète;
- $\mathcal{T} \coloneqq \{\emptyset, X\}$ appelée topologie grossière ;
- \mathcal{T}_d , la topologie associée à la métrique d;
- Si $X = \{a, b\}$ on a aussi la topologie

$$\mathcal{T} = \{\{a,b\},\{a\},\varnothing\}$$

A partir de maintenant, on considère (X,T) un espace topologique avec T l'ensemble des ouverts de X.

Definition 2.2. Une partie $F \subset X$ est dite **fermée** si $X \setminus F$ est **ouvert**

Exemple 2.3. Pour (X,d) un espace métrique, on a B(x,r] fermée

Preuve. Laissée en exercice.

Remarque 2.1. On n'a pas F non ouvert $\Longrightarrow F$ fermé.

Exemple 2.4. Pour $I = [0,1] \subset \mathbb{R}$, on a

- 1. I n'est pas ouvert (problème en 0)
- 2. I n'est pas fermé (problème en 1)

Proposition 2.1. Les assertions suivantes sont vraies.

- 1. \emptyset et X sont fermés
- 2. Une union finie de fermés est fermé
- 3. Une intersection quelconque de fermés est fermé

Rappel 2.1.

$$X \smallsetminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} X \smallsetminus A_i$$

$$X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} X \setminus A_i$$

Remarque 2.2. Une topologie peut-être définie à partir de ses fermés (au lieu de ses ouverts).

2.1 Adhérence, intérieur (version topologique)

Proposition - Définition 2.1. Soit (X, \mathcal{T}) un espace topologique et $A \subset X$.

- 1. Il existe un plus grand ouvert (au sens de l'inclusion) noté \mathring{A} tel que $\mathring{A} \subset A$ \mathring{A} est appelé **intérieur** de A
- 2. Il existe un plus petit fermé (au sens de l'inclusion) noté \overline{A} tel que $A \subset \overline{A}$ \overline{A} est appelé adhérence de A

Proposition 2.2. On a

- 1. $x \in \mathring{A} \iff \text{il existe } \varepsilon > 0 \text{ tel que } B(x, \varepsilon) \subset A$
- 2. $x \in \overline{A} \iff \text{pour tout } \varepsilon > 0, B(x, \varepsilon) \cap A \neq \emptyset$

Preuve. Pour le 1., on commence par le sens direct :

 \implies On a $x \in \mathring{A}$ ouvert donc il existe $\varepsilon > 0$ tel que

$$B(x,\varepsilon[\ \subset \mathring{A}\ \underset{\mathrm{def}}{\subset}\ A$$

 \longleftarrow Par hypothèse, on a $B(x, \varepsilon) \subset A$ un ouvert de A pour $\varepsilon > 0$ donc

$$x \in B(x, \varepsilon) \subset \mathring{A}$$

Pour le 2. cela revient à montrer que

$$x \in \overline{A} \iff \exists \varepsilon > 0 \text{ tq } B(x, \varepsilon[\subset X \setminus A$$
$$x \in X \setminus \overline{A} \iff x \in \widehat{X \setminus A}$$

Il suffit de montrer que

$$X \setminus \overline{A} = \widehat{X \setminus A}$$

Lemme 2.1. Soit (X,T) espace topologique et $A \subset X$. Alors

$$X \setminus \overline{A} = \widehat{X \setminus A}$$

Preuve. On démontre le lemme pour démontrer la proposition précédente c \overline{A} fermé, $X \smallsetminus \overline{A}$ ouvert, $A \subset \overline{A}$ donc

$$X \smallsetminus A \supset X \smallsetminus \overline{A}$$

D'où

$$X \setminus \overline{A} \subset \widehat{X \setminus A}$$

 $\supset \ X \smallsetminus \left(\stackrel{\circ}{\widehat{X \smallsetminus A}} \right)$ fermé donc

$$X \setminus (\widehat{X \setminus A}) \supset X \setminus (X \setminus A) = A$$

 donc

$$X \smallsetminus \left(\overrightarrow{X \smallsetminus A}\right) \supset \overline{A} = X \smallsetminus \left(X \smallsetminus \overline{A}\right)$$

donc

$$\mathring{X \smallsetminus A} \subset X \smallsetminus \overline{A}$$

Donc 2. est vérifié.