Cooling performance optimization of air cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle

Widmark Kauê Silva Cardoso

Engenharia Aeroespacial | Centro Tecnológico de Joinville

Overview

1. Caracterização do problemas

4. Conclusão

- 1. Refrigeração de baterias
- 2. Objetivos do trabalho
- 2. Metodologia
 - 1. Geração da Malha
 - 2. Computational fluid dynamics (CFD)
- 3. Resultados
 - 1. Validação do modelo de simulação
 - 2. Análise do número de saídas secundárias
 - 3. Efeito da largura das saídas

Caracterização do problema

Refrigeração de baterias

- Substituição de véiculos movidos a combustão por veículos elétricos
- Pack de Baterias
- Diversos estudos na área de BTMS (*Battery thermal management systems*)
- Diversos modelos de refrigeração vem sendo testados
- Refrigeração a ar

Caracterização do problema

Objetivo do trabalho

 Avaliar a influência da quantidade de saídas secundárias na refrigeração do pack de Baterias.

• Investigar influência a influência dos parâmetros da arquitetura do BTMS na

refrigeração.

Geração da Malha

- Software ANSYS ICEM
 - Malha estruturada
 - 0.1 mm na primeira linha → precisão + custo computacional
 - 1,05x10⁶ volumes → precisão + custo computacional
- Escoamento turbulento → y+ próximo de 1

Ref [1]

Geração da Malha

Ref [1]

Computational fluids dynamics (CFD)

- Software ANSYS Fluent → método dos volumes finitos
- Modelo κ-ε de turbulência
- Equações Governantes
 - Conservação da massa
 - Conservação da quantidade de movimento (Navier-Stokes)
 - Conservação da energia
- SIMPLE → Acoplamento pressão velocidade
- Esquema de segunda ordem Upwind de interpolação
- Resíduo de convergência → 10 ⁶

Computational fluids dynamics (CFD)

• As propriedades do fluido são apresentadas abaixo

Table 3
Properties of air, battery [38], and acrylic wall.

Property	Air	Battery (lithium)	Battery (aluminum)	Acrylic wall
Density (kg⋅m ⁻³)	1.165	2136.8	2700	1.2 × 10 ³
Specific heat (J·kg ⁻¹ ·K ⁻¹)	1005	1633	900	0.35
Dynamic viscosity (kg·m ⁻¹ ·s ⁻¹)	1.86×10^{-5}	-	-	-
Thermal conductivity (W·m ⁻¹ ·K ⁻¹)	0.0267	1 ($\lambda_{b,z}$), 29 ($\lambda_{b,y}$), 29 ($\lambda_{b,y}$)	240	1.4
Volume heat source (W⋅m ⁻³)	-	60,439.56	60,439.56	-
Size ((H ₁) mm \times (W ₁) mm \times (L ₁) mm)	-	$18\times65\times140$	$18\times65\times140$	-

Ref [1]

Computational fluids dynamics (CFD)

- As condições de contorno utilizadas foram:
 - Velocidade na entrada: 4 m/s
 - Velocidade na saída igual a velocidade atmosférica
 - Temperatura ambiente : 25°C
 - Temperatura de entrada do fluido igual a temperatura ambiente
 - Condição não escorregamento nas paredes
- Foi utilizado função parede por conta do baixo y+

Resultados

Validação do modelo de simulação

- Bancada de testes → utilizando alumínio no lugar das baterias de lítio
- Erro máximo de 2,6%

Resultados

Análise do número de saídas secundárias

- A saída aumenta o desempenho da refrigeração da bateria
- Saída com 3 mm de largura
- Quanto maior o número de saída melhor o desempenho

Resultados

Efeito da largura das saídas

- Para algumas larguras, houve o aumento de temperatura em determinadas baterias e diminuição em outras
- Efeito mais complexo

Ref [1]

Conclusão

- A confiabilidade do método CFD foi comprovada pelo experimento de resfriamento a ar da bateria.
- O número de saídas secundárias teve um efeito notável na propriedade de resfriamento do BTMS. Quando o número de saídas de ar secundárias foi 6, o BTMS obteve ótimo desempenho de refrigeração.
- O efeito das larguras resultou num comportamento complexo que, apesar de abordado no trabalho, não foi tratado aqui.

Referências

[1] Zhang, F., Liu, P., He, Y., & Li, S. (2022). Cooling performance optimization of air cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle. Journal of Energy Storage, 52

Contato

E-mail: widmarkkaue.s.c@gmail.com

Telefone: (98) 98833-9138

