Skriftlig eksamen på Økonomistudiet Sommeren 2017

MATEMATIK A

Torsdag den 17. august 2017

2 timers skriftlig prøve uden hjælpemidler

Dette sæt omfatter 2 sider med 3 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet og blive registeret som syg af vedkommende eksamensvagt. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

1. årsprøve 2017 S-1A rx

Skriftlig eksamen i Matematik A

Torsdag den 17. august 2017

2 sider med 3 opgaver.

Løsningstid: 2 timer.

Ingen hjælpemidler må medbringes ved eksamen.

Opgave 1. Integration.

Lad $I\subseteq \mathbf{R}$ være et åbent, ikke-tomt interval, og lad $f,g:I\to \mathbf{R}$ være to kontinuerte funktioner.

(1) Vis, at formlerne

$$\int (f+g)(x) dx = \int f(x) dx + \int g(x) dx$$

og

$$\int (\lambda f)(x) dx = \lambda \int f(x) dx, \quad \forall \lambda \in \mathbf{R}$$

er opfyldt.

(2) Udregn følgende ubestemte integraler

$$\int \left(x^2 + 7x^3 - \frac{2x}{1+x^2}\right) dx, \int \frac{5}{1+x^2} dx \text{ og } \int \frac{18x^2}{1+x^6} dx.$$

Vi betragter funktionen $f: \mathbf{R} \to \mathbf{R}$, som har forskriften

$$f(x) = \begin{cases} 1 + 3x^2, & \text{for } x \ge 0 \\ e^{-x}, & \text{for } x < 0 \end{cases}$$

(3) Udregn integralet

$$\int_{-2}^{2} f(x) \, dx.$$

Opgave 2. Vi betragter den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^3 + x^2 - y + y^2 + xy.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

- (2) Vis, at funktionen f ikke har nogen stationære punkter.
- (3) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (4) Bestem værdimængden for funktionen f.

Vi betragter mængden

$$K = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le 1 \ \land \ 0 \le y \le 1\}.$$

(5) Godtgør, at restriktionen af funktionen f til mængden K har både en størsteværdi og en mindsteværdi på K, og bestem disse værdier.

Opgave 3. Vi betragter den uendelige række

$$(\S) \qquad \qquad \sum_{n=1}^{\infty} e^{-2xn}.$$

- (1) Bestem mængden C af de $x \in \mathbf{R}$, hvor den uendelige række (§) er konvergent.
- (2) Bestem en forskrift for sumfunktionen

$$f(x) = \sum_{n=1}^{\infty} e^{-2xn}, \quad \forall x \in C.$$

- (3) Bestem den afledede funktion f'(x) og elasticiteten $f^{\epsilon}(x)$ for et vilkårligt $x \in C$.
- (4) Bestem værdimængden for funktionen f.