

September 20th, 2025

Container Live Migration

Moving workloads without downtime

Kunal Das Developer Advocate APAC, CAST Al

Organizer of
CNCF Kolkata,
Cloud Computing Circle,
Hashicorp User Group Bangalore

7x Azure,1x Hashicorp Certified, FinOps Certified Engineer

Kubernetes is easy

Isn't it?

MEMBERS

@CAST AI

MEMBERS CARROL COSCO RATES CONTROL HOLDON BRIEFE WWW IRM INDES INTEL MINER CONTRA CONTR NEC BROKE Splinks Thatte & Street Plants ZTE Shall OFM CHARLE CAPITAL CHARLE OF STATE OF STAT 💆 👶 🔛 and a second discrete 🚉 and the contract of the cont 🔤 --- 🙏 Sing 🚣 Sing range (Sing Age of the Sing Age of the 100 miles 100 mi me @ - SIL M 1 11 1 and 1 CERTIFIED PARTNERS AND PROVIDERS E TON -- THE RES -- E D 10 & THE E D 10 A THE E

⊗CASTAI

CERTIFIED PARTNERS AND PROVIDERS

Cli ninja skills

Automation

Automation kills my job

NO WAY..!

These culprits exist because managing cloud-native infrastructure manually is nearly impossible.

Automation tools:

- Select the type, size, and number of compute instances your K8s workloads actually need
- Bin-pack pods into nodes to maximize resource utilization
- Manage the entire Spot instance lifecycle,
- Set the right requests to fight cloud waste while maintaining performance (rightsize workloads)

Kubernetes is efficient per default, no?

Menti

CNCG KOLKATA

Choose a slide to present

Key findings

CPU and memory utilization

10%

CPU utilization across clusters is worse this year

AVERAGE CPU UTILIZATION

23%

AVERAGE MEMORY UTILIZATION

Surprisingly, the average CPU utilization across clusters is **worse** this year than last year by a lot more than we expected: now at 10% (23% worse than in 2024), while average memory utilization was marginally better at 23%, indicating no significant year-over-year improvement in resource efficiency across cloud platforms compared to our previous report from 2024.

Link

Let's talk about infrastructure

Autoscaling with efficient compaction

Kubernetes distribute Workloads on nodes

Distribution is adjusted based on need, configuration, workload

Only nodes cost money! (ok also traffic and control plane)

Cost saving is not so complicated!

m5.large

m5.large

m5.large

Autoscaling with efficient compaction

Internal Scheduling and scaling is cost neutral

Resource sharing makes Kubernetes efficient

Underutilized nodes are expensive

Make use of the elasticity of the cloud

Make sure you have a bin-packing solution

Reducing the gap between provisioned and used resources

Before optimization

After optimization

What about workload?

Horizontal Pod Autoscaler

Adjust number of pods for load (CPU,

requests)

Requirement for efficient nodes scaling

Vertical Pod Autoscaler

Adjust pod resource request

Dangerous side effects (pod too big to

schedule)

Combining all of it - Before

Combining all of it - After

What does "Container Live Migration" means?

The ability to move containers (pods) in the **SAME** cluster between nodes without interruption and restarts.

How does it work?

Node A

POD

Name: foo-123 IP: 192.168.100.15

Kubernetes node with CLM enabled

Node B

Kubernetes node with CLM enabled

Cast Al Migration Event

No interruption, no downtime, no restart

Let's live migrate a Minecraft server during we're playing

But wait..... Why do i need this in Kubernetes environments?

Some of the use cases

Stateful workloads **Extend Spot footprint** Legacy workloads Operation headache Migrate the state Running non-spot JVM monoliths Bin-packing of Single instead of restart the ready workloads on Lift and shift replicas workloads, which are InPlaceVertivalPodRig Spot pod Keep (TCP) sessions Running (longnot designed for K8s htsizing for Ease of operation running) jobs on Spot and cannot benefit for Kubernetes version < K8s (single replicas, 1.33 no vertical scaling, long startup times, etc)

When is it GA?

AWS EKS

GCP GKE

Q4 / 2025 😀

Azure AKS

2026 😔

THANK YOU

