Apresentação

DESENVOLVIMENTO DE UM SOFTWARE EDUCACIONAL PARA AUXÍLIO NA APRENDIZAGEM DE GRAFOS EM DISCIPLINAS DE COMPUTAÇÃO

Jonathas Gonçalves Picoli Orientador: Rafael Vargas Mesquita

Instituto Federal do Espirito Santo - Ifes Campus Cachoeiro de Itapemirim

15 de outubro de 2018

Sumário

- Introdução
- Objetivo Geral
- Objetivos Específicos
- Teoria dos Grafos
- 5 Aplicabilidade
- Trabalhos relacionados
- Metodologia da Pesquisa

ENSINO SUPERIOR

- Requisito mínimo
- Em 2017 haviam 8,3 milhões de alunos matriculados em IES no Brasil (INEP, 2018)

SALA DE AULA

- A influência da tecnologia torna o cotidiano mais dinâmico
- Utilização de métodos rígidos e com poucas variações
- Faz-se necessária uma educação permanente, dinâmica e desafiadora visando o desenvolvimento de habilidades para a obtenção e utilização das informações (MORATORI, 2003)

OBJETIVO GERAL

Desenvolver um software educacional para auxílio na aprendizagem de grafos em disciplinas de programação, tendo como objetivo principal possibilitar ao aluno a capacidade de atingir o grau de abstração necessário para compreender os conceitos e os algoritmos da teoria dos grafos, demandando menos tempo do professor e assim otimizando seu trabalho.

Objetivos Específicos

- Ilustrar de forma gráfica a ação dos algoritmos no grafo, bem como, o status de suas variáveis.
- Associar cada linha do código fonte do algoritmo escolhido com uma ação na interface gráfica.
- Disponibilizar controles para gerar um modo debug.

Conceito

 Um grafo pode ser definido como uma estrutura não linear composta de pontos e ligações entre eles (MELO; SILVEIRA; JURKIEWICZ, 2009)

FIGURA: Representação gráfica de um grafo

Contexto Histórico

 O primeiro estudo que se caracterizou como teoria dos grafos, ocorreu em 1736 na cidade de Konigsberg, e foi realizado pelo matemático suíço Leonhard Euler (COSTA, 2011)

FIGURA: As sete pontes de königsberg

As pontes de Königsberg

Principais Aplicações

TABELA: Exemplos de aplicação de grafos

grafo	vértice	aresta		
comunicação	telefone, computador	cabo de fibra óptica		
circuito	porta, processador	corrente		
mecânica	articulação	haste, viga, mola		
financeiro	estoque, moeda	transações		
transporte	intercessão	rua		
internet	rede de classe C	conexão		
jogos	posição do tabuleiro	movimento legal		
rede social	pessoa	amizade		
rede neural	neurônio	sinapse		
rede proteica	proteína	interação proteína-proteína		
molécula	átomo	ligação		

Fonte: Material da disciplina de TPA

Caminho mínimo entre dois pontos

FIGURA: Distância entre dois pontos no Google Maps

Fonte: Google imagens

ÁRVORE GERADORA MÍNIMA

FIGURA: Diagrama da estrutura do Ifes Campus Cachoeiro de Itapemirim

ÁRVORE GERADORA MÍNIMA

FIGURA: Possibilidades de caminho entre os blocos do Ifes

ÁRVORE GERADORA MÍNIMA

FIGURA: Possível resultado do Caminho mínimo entre os blocos do Ifes

Trabalhos Relacionados

TABELA: Comparativo entre ferramentas similares

Característica/Software	WarGrafos	TBC-Grafos	AlgoDeGrafos	A-Graph	Tgrafo	EasyGrafos
Interface para manipulação e análise dos grafos		×	X	Х	Х	Х
Criar os próprios grafos			Х	Х	Х	Х
Executar algoritmos da disciplina nos grafos		×	X	Х	Х	Х
Execução em modo debug		Х	Х			Х
Associação do código fonte do algoritmo em estudo ao grafo						Х
Utilização de técnicas de gameficação	Х					

Tecnologias e ferramentas

- Linguagem de programação Java 8
- Bibliotecas gráficas do JavaFX
- Elementos gráficos baseados em listas de exercícios utilizadas na disciplina de técnicas de programação avançada(TPA)

Diagrama de caso de uso

FIGURA: Diagrama de caso de uso

ESTRUTURA DO CÓDIGO

- Classes de modelo: Grafo, Aresta, Vertice
- Classes do algoritmo: AlgoritmoDFS, AlgoritmoBFS
- Classes Thread: RunnableDFS, RunnableBFS

EASYGRAFOS

FIGURA: Resultado final do algoritmo DFS

BIBLIOGRAFIA

- INEP. Resumo técnico censo da educação superior 2015. 2015. Disponível em http://download.inep.gov.br/educacao superior/censo superior/resumo tecnico/resumo tecnico censo da educacao superior 2015.pdf. Acesso em: 20 Abril 2018.
- SANTOS, R. P. et al. O uso de ambientes gráficos para ensino e aprendizagem de estruturas de dados e de algoritmos em grafos. In: Anais do XVI Workshop sobre Educação em Computação, XXVIII Congresso da Sociedade Brasileira de Computação. [S.l.: s.n.], 2008. p. 157–166.
- MORATORI, P. B. Por que utilizar jogos educativos no processo de ensino aprendizagem. UFRJ. Rio de Janeiro, 2003.

BIBLIOGRAFIA

- JURKIEWICZ, S. Grafos-uma introdução ao Programa de Iniciação Científica da UFRJ, 2009.
- COSTA, P. P. d. Teoria dos grafos e suas aplicações.
 Universidade Estadual Paulista (UNESP), 2011.
- MORATORI, P. B. Por que utilizar jogos educativos no processo de ensino aprendizagem. UFRJ. Rio de Janeiro, 2003.
- MORAN, J. M. Novas tecnologias e mediação pedagógica.
 [S.I.]: Papirus Editora, 2000.

Bibliografia

- BRAGA, M. J. d. C.; GOMES, L. F. A. M.; RUEDIGER, M. A. Mundos pequenos, produção acadêmica e grafos de colaboração: um estudo de caso dos enanpads. Revista de Administração Pública-RAP, Scielo Public Health, v. 42, n. 1, 2008.
- JR, C. A. D. Aumentando a eficiência da solução de problemas de caminho mínimo em sig. Empresa de Informática e Informação do Município de Belo Horizonte, 1997.
- MORATORI, P. B. Por que utilizar jogos educativos no processo de ensino aprendizagem. UFRJ. Rio de Janeiro, 2003.
- SEDGEWICK, Robert; WAYNE, Kevin. Algorithms, 4th Edition. 2011. Disponível em https://algs4.cs.princeton.edu. Acesso em: 29 05 2018.

DÚVIDAS

DÚVIDAS

Dúvidas?