Turning equations into quadratics 1

When there are three terms in an equation, we can often turn them into a quadratic, where the subject is not x but another expression that we substitute in.

For example, $e^{4x} - 5e^{2x} + 6 = 0$ can be solved by making it a quadratic in terms of e^{2x} .

$$u = e^{2x}$$

$$u^2 - 5u + 6 = 0$$

$$u = 2, 3$$

Then we just back-substitute and solve:

$$e^{2x} = 2$$

$$2x = \ln 2$$

$$x = \frac{\ln 2}{2}$$
$$e^{2x} = 3$$

$$e^{2x} = 3$$

$$2x = \ln 3$$

$$x = \frac{\ln 3}{2}$$

If all three terms contain a variable, we can also divide the equation through by something to turn one of those into a constant, enabling us to then solve it as a quadratic.

For example,
$$3(2^{3x}) - 11(2^{2x}) - 2^{x+2} = 0$$

If we divide each term by a common factor of 2^x , the equation changes to:

$$\frac{3(2^{3x})}{2^x} - \frac{11(2^{2x})}{2^x} - \frac{2^{x+2}}{2^x} = 0$$
$$3(2^{2x}) - 11(2^x) - 2^2 = 0$$

We can now make the substitution $u = 2^x$ to solve the equation:

$$3u^2 - 11u - 4 = 0$$

$$u = -\frac{1}{3}, 4$$

Since 2^x can clearly never be negative, we can disregard the first solution.

$$2^x = 4$$

$$x = 2$$

Questions

1. Solve
$$2^x + 4^x = 24$$

2. Solve
$$4^x + 6^x = 9^x$$

3. Solve
$$8(9^x) + 3(6^x) - 81(4^x) = 0$$

4. Solve
$$25^x + 2(15^x) - 24(9^x) = 0$$