## Nome: Bárbara Braga Gualberto Correa e Julia Mello Lopes Gonçalves

1. Tanto a medida de desempenho quanto a função de utilidade medem o desempenho de um agente. Explique a diferença entre as duas medidas.

Medida de Desempenho: É o critério que define o grau de sucesso de um agente na realização de uma dada tarefa, em suma, sendo mais focada e objetiva. A escolha errada da medida de desempenho pode acarretar em um comportamento indesejado. Não considera as preferências individuais do agente, apenas se a tarefa foi corretamente concluída.

Função de Utilidade: Atribui um número para expressar a desejabilidade de um estado para o agente, ou seja, mapeia um estado (ou sequência de estados) em um número real que descreve o grau de satisfação associado ao estado. As utilidades são combinadas com probabilidades dos estados para tomada de decisão, além de considerar se a tarefa foi concluída considera também o quão desejável foi para o agente.

- Vamos examinar a racionalidade de várias funções do agente aspirador de pó.
   Mostre que a função do agente aspirador de pó simples descrito na Figura 1 é realmente racional, conforme as suposições listadas abaixo.
- Suposição 1: medida de desempenho um ponto para cada quadrado limpo em um período de tempo no total de 1000 períodos de tempo.
- Suposição 2: Geografia do ambiente é conhecida a priori, mas não se conhece a distribuição da sujeira e posição inicial do agente e desconhecida.
- Suposição 3: ações esquerda, direita, aspirar e NoOp (não fazer nada).
- Suposição 4: sensores agente percebe corretamente local e sujeira.
- Estratégia: função do agente limpar se o quadrado tem sujeira e ir para o outro quadrado, caso contrário.



| Sequência de percepts              | Ação  |
|------------------------------------|-------|
| [A, Clean]                         | Right |
| [A, Dirty]                         | Suck  |
| [B, Clean]                         | Left  |
| [B, Dirty]                         | Suck  |
| [A, Clean], [A, Clean]             | Righ  |
| [A, Clean], [A, Dirty]             | Suck  |
| :                                  | :     |
| [A, Clean], [A, Clean], [A, Clean] | Righ  |
| [A, Clean], [A, Clean], [A, Dirty] | Such  |
| :                                  | :     |

Figure 1. Agente aspirador de pó.

O agente aspirador de pó demonstra racionalidade, maximizando a medida de desempenho específica definida pela quantidade de quadrados limpos em 1000 períodos de tempo (Suposição 1). Além disso, mantém uma história perceptiva, registrando a sequência de percepções e ações tomadas (Figura 1), o que permite ao agente conhecer o ambiente e planejar sua rota, mesmo sem conhecer a distribuição inicial de sujeira e sua posição inicial (Suposição 2). Com uma variedade de ações disponíveis, incluindo a capacidade de aspirar e perceber corretamente o ambiente (Suposição 3 e 4), o agente assegura que tome as ações necessárias para limpar os quadrados sujos. Assim, o agente aspirador de pó atende plenamente aos critérios de racionalidade.

## 3. Desenvolva uma descrição PEAS do ambiente de tarefa de um robô jogador de futebol.

| Tipo de Agente             | Performance                                                                                   | Environment                                                                               | Actuators                                                 | Sensors                                                                                                  |
|----------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Robô Jogador<br>de Futebol | Número de gols<br>a favor, número<br>de defesas<br>(caso seja<br>goleiro), passes<br>corretos | Campo de<br>Futebol,<br>técnico, colegas<br>de equipe,<br>outros<br>jogadores,<br>árbitro | Bola, tênis,<br>uniforme, luvas<br>(caso seja<br>goleiro) | câmera, sensor<br>de distância,<br>sensor de<br>toque, GPS,<br>microfone,<br>acelerômetro,<br>giroscópio |

4. Considere uma versão modificada do ambiente do aspirador de pó, onde o agente é agora penalizado com um ponto para cada movimento que faz. Um agente reativo simples pode ser perfeitamente racional para esse ambiente? Explique.

Se alterarmos a medida de desempenho do aspirador de pó para penalizar cada movimento, isso redefinirá o método de desempenho. Nessa nova versão, o agente considerará que a melhor estratégia é minimizar os movimentos, priorizando a imobilidade. Portanto, essa modificação na medida de desempenho pode comprometer a eficácia do agente em cumprir sua função primária de limpeza.

5. Implemente um agente reativo simples para o ambiente do aspirador. Execute o ambiente com este agente para todas as configurações iniciais de sujeira possíveis e locais dos agentes. Registre a pontuação de desempenho para cada configuração e a pontuação média geral.

## function REFLEX-VACUUM-AGENT([location,status]) returns an action

```
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left
```

Figure 2. Pseudocódigo do agente reativo.

Figure 2. Pseudocódigo do agente reativo.



Figure 3. Possíveis estados do agente aspirador de pó.

```
main.py
import json

# função do agente aspirador

def reactive_vacuum_agent(location, status, performance):
    #se a sala estiver suja, muda o status para limpo
    if status == "Dirty":
        performance += 1
        status = "Clean"
        # print("Suck")

    #se o aspirador estiver na localização A, muda para a localização B
    if location == "A":
        location = "B"
        # print("Right")
        return location, status, performance
    #de o aspirador estiver na localização B, muda para a localização A
    elif location == "B":
```

```
location = "A"
        return location, status, performance
#abre o arquivo .json com os estados iniciais (1 a 8)
with open("initial states.json", "r") as f:
    initial states = json.load(f)
total performance = 0 #variável que armazena todas os métodos de
desempenho
num configurations = len(initial states) #obtem o tamanho do
dicionário initial states
for state key, state values in initial states.items():
   print("\nState:", state_key)
   performance = 0 #inicializa o desempenho para o estado atual para
   for location status in state values:
        for location, status in location status.items():
agente do aspirador
            location, status, performance =
reactive vacuum agent(location, status, performance)
            total performance += performance #atualiza o método de
desempenho total
           print("Performance:", performance) #printa o desempenho de
#calcula e printa a média geral do desempenho
print("Media geral:", total performance / num configurations)
```

```
{"B": "Clean"}
```