

N-channel 650 V, 0.042 Ω typ., 60 A MDmesh™ DM2 Power MOSFET in a TO-247 long leads package

Features

Order code	V _{DS}	R _{DS(on)} max.	l _D	P _{TOT}
STWA63N65DM2	650 V	0.050 Ω	60 A	446 W

- Fast-recovery body diode
- · Extremely low gate charge and input capacitance
- · Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

· Switching applications

Description

This high-voltage N-channel Power MOSFET is part of the MDmesh $^{\text{TM}}$ DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low $R_{DS(on)}$, rendering it suitable for the most demanding high-efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Product status link
STWA63N65DM2

Product summary			
Order code	STWA63N65DM2		
Marking	63N65DM2		
Package TO-247 long le			
Packing	Tube		

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±25	V
I_	Drain current (continuous) at T _{case} = 25 °C	60	^
Ι _D	Drain current (continuous) at T _{case} = 100 °C	38	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	240	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	446	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50	V/ns
dv/dt ⁽³⁾	tt ⁽³⁾ MOSFET dv/dt ruggedness		V/IIS
T _{stg}	Storage temperature range	-55 to 150	°C
Tj	Operating junction temperature range	-55 to 150	

- 1. Pulse width is limited by safe operating area.
- 2. $I_{SD} \le 60~A,~di/dt = 800~A/\mu s,~V_{DS}~peak < V_{(BR)DSS},~V_{DD} = 80\%~V_{(BR)DSS}$
- 3. $V_{DS} \le 520 \text{ V}$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.28	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	50	

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or non-repetitive	8	Α
E _{AS} (1)	Single pulse avalanche energy	1100	mJ

1. Starting $T_i = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V.

DS12555 - Rev 1 page 2/12

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	650			V
	Zana mata walta na duain	V _{GS} = 0 V, V _{DS} = 650 V			10	
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 650 V, T _{case} = 125 °C ⁽¹⁾			100	μА
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±5	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 30 A		0.042	0.050	Ω

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	5500	-	
C _{oss}	Output capacitance	V_{DS} = 100 V, f = 1 MHz, V_{GS} = 0 V	-	210	-	pF
C _{rss}	Reverse transfer capacitance		-	3	-	
C _{oss eq.} (1)	Equivalent output capacitance	$V_{DS} = 0$ to 520 V, $V_{GS} = 0$ V	-	456	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	3.3	-	Ω
Qg	Total gate charge	$V_{DD} = 520 \text{ V}, I_D = 60 \text{ A}, V_{GS} = 0 \text{ to}$	-	120	-	
Q _{gs}	Gate-source charge	10 V (see Figure 14. Test circuit for	-	27	-	nC
Q _{gd}	Gate-drain charge	gate charge behavior)	-	58	-	

^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 325 V, I_{D} = 30 A R_{G} = 4.7 Ω , V_{GS} = 10 V (see Figure 13. Test circuit for resistive load switching times and Figure 18. Switching time waveform)	-	33	-	
t _r	Rise time		-	13.5	-	
t _{d(off)}	Turn-off delay time		-	114	-	ns
t _f	Fall time		-	11.5	-	

DS12555 - Rev 1 page 3/12

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		60	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		240	Α
V _{SD} (2)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 60 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 60 A, di/dt = 100 A/µs, V _{DD} = 60 V (see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	154		ns
Q _{rr}	Reverse recovery charge		-	0.94		μC
I _{RRM}	Reverse recovery current		-	12.2		Α
t _{rr}	Reverse recovery time	I _{SD} = 60 A, di/dt = 100 A/μs, V _{DD} = 60 V, T _j = 150 °C (see Figure	-	288		ns
Q _{rr}	Reverse recovery charge		-	3.65		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times)	-	25.4		Α

^{1.} Pulse width is limited by safe operating area.

DS12555 - Rev 1 page 4/12

^{2.} Pulse test: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

DS12555 - Rev 1 page 5/12

Figure 7. Capacitance variations C (pF) GIPG270715FQF9WCVR 10 C _{ISS} 103 C oss 10² f = 1 MHz C_{RSS} 10 10 0 10 º 10 ² $\overline{V}_{DS}(V)$ 10 1 10 -1

temperature

V GS(th) GIPG270715FQF9WVTH

1.1

1.0

0.9

0.8

0.7

0.6

-75 -25 25 75 125 T_j (°C)

Figure 8. Normalized gate threshold voltage vs

DS12555 - Rev 1 page 6/12

3 Test circuits

AM01468v1

Figure 15. Test circuit for inductive load switching and diode recovery times

M01470v1

Figure 16. Unclamped inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

DS12555 - Rev 1 page 7/12

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 TO-247 long leads package information

Figure 19. TO-247 long leads package outline

8463846_2_F

DS12555 - Rev 1 page 8/12

Table 8. TO-247 long leads package mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.26
b2			3.25
b3			2.25
С	0.59		0.66
D	20.90	21.00	21.10
E	15.70	15.80	15.90
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	5.34	5.44	5.54
L	19.80	19.92	20.10
L1			4.30
Р	3.50	3.60	3.70
Q	5.60		6.00
S	6.05	6.15	6.25

DS12555 - Rev 1 page 9/12

Revision history

Table 9. Document revision history

Date	Revision	Changes
16-Apr-2018	1	Initial release.
	'	The document status is production data.

DS12555 - Rev 1 page 10/12

Contents

1	Elec	ctrical ratings	2
2			
		Electrical characteristics (curves)	
3	Test	t circuits	7
4	Package information		8
	4.1	TO-247 long leads package information	8
Rev	ision	history	10
Coi	ntents	.	11

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12555 - Rev 1 page 12/12