EfficientViT: Lightweight Multi-Scale Attention for On-Device Semantic Segmentation

Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han Massachusetts Institute of Technology

Efficient Semantic Segmentation on Edge Device

Challenges:

- large gap between the computational cost required by SOTA semantic segmentation models and the limited resources of edge devices.
- semantic segmentation is a dense prediction task requiring high-resolution images and strong context information extraction ability to deliver good performances

Features	SegFormer [45]	HRFormer [49]	SegNeXt [17]	EfficientViT
Global receptive field Multi-scale learning	✓	√	√	√ √
Linear computational complexity Hardware efficiency		✓	✓	√ √

• Limitation of prior semantic segmentation models

Lightweight Multi-Scale Attention: Trade Slight Capacity Loss for Significant Efficiency Boost

Replace the similarity function in attention

$$Sim(Q, K) = \exp(\frac{QK^T}{\sqrt{d}}) \longrightarrow Sim(Q, K) = \phi(Q)\phi(K)^T = ReLU(Q)ReLU(K)^T$$

• Change the order of matrix multiplication without changing functionality

$$O_i = \frac{\sum_{j=1}^N \left[\mathsf{ReLU}(Q_i) \mathsf{ReLU}(K_j)^T \right] V_j}{\mathsf{ReLU}(Q_i) \sum_{i=1}^N \mathsf{ReLU}(K_j)^T} = \frac{\sum_{j=1}^N \mathsf{ReLU}(Q_i) \left[\left(\mathsf{ReLU}(K_j)^T V_j \right) \right]}{\mathsf{ReLU}(Q_i) \sum_{i=1}^N \mathsf{ReLU}(K_j)^T} = \frac{\mathsf{ReLU}(Q_i) \left(\sum_{j=1}^N \mathsf{ReLU}(K_j)^T V_j \right)}{\mathsf{ReLU}(K_j)^T}$$

Lower computational complexity
 Better hardware efficiency

Lightweight Multi-Scale Attention: Generate Multi-Scale Tokens

Aggregate nearby tokens to generate multi-scale tokens

Lightweight Multi-Scale Attention: Block Design

Components		mIoU↑	Params ↓	MACs ↓
Multi-scale	Global att.			1111205 4
		68.1	0.7M	4.4G
\checkmark		72.3	0.7M	4.4G
	\checkmark	72.2	0.7M	4.4G
√	✓	74.5	0.7M	4.4G

 Both global receptive field and multi-scale learning are essential for obtaining good semantic segmentation performance.

EfficientViT Macro Architecture

- Backbone: strong context information extraction capacity.
- Head: simple and lightweight.

Backbone Results on ImageNet

- 2.9x MACs reduction without performance loss on ImageNet compared with EfficientNet-B6.
- 7.9x measured speedup on Qualcomm Snapdragon 8Gen1 CPU over EfficientNet-B6 without accuracy loss.

Semantic Segmentation Results

- Cityscapes: 13x and 2.4x MACs reduction over SegFormer and SegNeXt.
- ADE20K: 4.2 mloU gain over SegNeXt.

- Cityscapes: **5.8x measured speedup and higher mloU** than SegNeXt.
- ADE20K: 7.4 mloU gain over SegNeXt with the same latency.