THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH2241 Introduction to Mathematical Analysis

Tutorial 2

1. Use the definition of convergence of a sequence to prove that

$$\lim_{n \to \infty} \frac{n^2 + n + 1}{3n^2 + 2} = \frac{1}{3}.$$

- 2. (a) Prove that if $\{a_n\}$ is a sequence converging to L, then the sequence $\{|a_n|\}$ of absolute values converges to |L|.
 - (b) Suppose now that the sequence $\{|a_n|\}$ of absolute values converges to |L|. Is it necessarily that $\{a_n\}$ converges to L? (*Hint*: Consider separately the cases L=0 and $L\neq 0$.)
- 3. (a) Let $\{a_n\}$ and $\{b_n\}$ be sequences. Prove that if $\lim_{n\to\infty}a_n=0$ and if $\{b_n\}$ is bounded, then $\lim_{n\to\infty}a_nb_n=0$.
 - (b) Suppose now that $\lim_{n\to\infty}a_n=L\neq 0$ and that $\{b_n\}$ is bounded. What can we conclude about the convergence of the sequence $\{a_nb_n\}$?
- 4. Give an example of each of the following, or prove that such a situation is impossible:
 - (a) sequences $\{a_n\}$ and $\{b_n\}$, where $\{a_n\}$ converges, $\{b_n\}$ unbounded and $\{a_nb_n\}$ converges.
 - (b) sequences $\{a_n\}$ and $\{b_n\}$, where $\{a_n\}$ unbounded, $\{b_n\}$ converges and $\{a_n-b_n\}$ bounded.
 - (c) sequences $\{a_n\}$ and $\{b_n\}$, where $\{a_n\}$ converges, $\{b_n\}$ diverges and $\{a_n+b_n\}$ converges.
 - (d) sequences $\{a_n\}$ and $\{b_n\}$, which both diverge, but $\{a_n+b_n\}$, $\{a_nb_n\}$ and $\{a_n/b_n\}$ all converge.
- 5. Use the Sandwich Theorem to prove that

$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0.$$

1