PHY-112 IPLES OF PHYSICS-II

Principles of Physics-II
Akiful Islam (AZW)

Spring-24 | Class-2

ELECTROSTATIC FORCE AND COULOMB'S LAW

Like charges repel

Opposite charges attract

$$\vec{F}_E = \left(\frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^3}\right) \vec{r}.$$
$$= \left(\frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}\right) \hat{r}$$

The Superposition Principle for \vec{F}_E

 $q_1 = +2C$

Q: Net Force on q_3 20 cm 20 cm

 $q_2 = -2\mathrm{C}$

 $q_3 = +3$ C

The Superposition Principle for $ec{F}_E$

Q: Net Force at the center.

The Superposition Principle for $ec{F}_E$: Discrete

The Superposition Principle for $ec{F}_E$: Discrete

The total force on Q is:

$$\vec{F}_{Q} = \vec{F}_{1Q} + \vec{F}_{2Q} + \vec{F}_{3Q} + \dots \vec{F}_{nQ}$$

$$= \frac{Qq_{1}}{4\pi\epsilon_{0}r_{1Q}^{2}}\hat{r}_{1Q} + \frac{Qq_{2}}{4\pi\epsilon_{0}r_{2Q}^{2}}\hat{r}_{2Q} + \dots \frac{Qq_{n}}{4\pi\epsilon_{0}r_{nQ}^{2}}\hat{r}_{nQ}$$

$$= \sum_{i}^{N} \frac{Qq_{i}}{4\pi\epsilon_{0}r_{iQ}^{2}}\hat{r}_{iQ},$$

where $\vec{r}_{iQ} = \vec{r}_Q - \vec{r}_i$. \vec{r}_Q is the position vector of the observer charge. \vec{r}_i is the position vector of the i^{th} charge in the distribution, measured in the Cartesian coordinate system.

Testing Concepts (1)

Q: Charged spheres A and B exert repulsive forces on each other. $q_A=4q_B$. Which statement is true?

(a)
$$F_{A \text{ on } B} > F_{B \text{ on } A}$$
, (b) $F_{A \text{ on } B} = F_{B \text{ on } A}$, (c) $F_{A \text{ on } B} < F_{B \text{ on } A}$

Testing Concepts (2)

Q: Charged spheres A and B exert repulsive forces on each other. $q_A=5q_B$. They are brought together to make contact for a minute. F_{AB} is measured. Sphere B is then brought close to Sphere C for a minute. F_{BC} is measured. What is the \vec{F}_E ratio in these 2 cases? Sphere C is initially uncharged. Take unit values for simplicity.

Testing Concepts (3)

Q: Find the zero force location.

DISCRETE VERSUS CONTINUOUS CHARGE DISTRIBUTION

$$Q = \sum_{i}^{N} q_{i}$$
 (Discrete)
$$Q = \int dq$$
 (Continuous)

The Superposition Principle for $ec{F}_E$: Continuous

The Superposition Principle for $ec{F}_E$: Continuous

The total force on Q is:

$$\vec{F}_Q = \int \frac{Qdq}{4\pi\epsilon_0 r_{dqQ}^2} \hat{r}_{dqQ},$$

where $\vec{r}_{dqQ} = \vec{r}_Q - \vec{r}_{dq}$. \vec{r}_Q is the position vector of the observer charge. \vec{r}_{dq} is the position vector of the charge element dq in the distribution, measured in the Cartesian coordinate system.

ELECTRIC CHARGE DENSITIES

A line charge λ [C m⁻¹], is a charge per unit length:

$$\lambda = \frac{dq}{dl}$$

A surface charge σ [C m⁻²], is a charge per unit area:

$$\sigma = \frac{dq}{da}$$

A volume charge ρ [C m⁻³], is a charge per unit volume:

$$\rho = \frac{dq}{dV}$$

ELECTRIC CHARGE DENSITIES

$$\mbox{distribution} \equiv \begin{cases} \frac{dq}{dl} & \mbox{in one dimension (1D)} \\ \frac{dq}{da} & \mbox{in two dimension (2D)} \\ \frac{dq}{dV} & \mbox{in three dimension (3D)} \end{cases}$$

$$Q = \int dq = \begin{cases} \lambda dl & \text{in one dimension (1D)} \\ \sigma da & \text{in two dimension (2D)} \\ \rho dV & \text{in three dimension (3D)} \end{cases}$$

ELECTRIC FIELD DEFINITION

ELECTRIC FIELD INTENSITY

Electric Field \vec{E} [N C⁻¹ or V m⁻¹] is defined as the force per unit positive charge exerted on the test charge.

$$\vec{E} = \lim_{q_0 \to 0} \frac{\vec{F}}{q_0}$$

$$= \left(\frac{1}{4\pi\epsilon_0} \frac{q}{r^3}\right) \vec{r}$$

$$= \left(\frac{1}{4\pi\epsilon_0} \frac{q}{r^2}\right) \hat{r},$$

The limit is there to ensure the existence of the field even in the absence of Q.

ELECTRIC FIELD DIRECTION

The direction of the electric field at a given point is **the direction** in which a positive test charge would experience a force if placed at that point.

$$\vec{F}_E = q\vec{E},$$

where $ec{F}_E o$ Coulomb force felt by the charge q in presence of $ec{E}.$

TESTING CONCEPTS (4)

Q: Net Field on q_3 20 cm 20 cm $q_1 = +2$ $q_2 = -2$ $q_3 = +3$ C

TESTING CONCEPTS (5)

Q: Net Field at the center.

The Superposition Principle for $ec{E}$: Discrete

The electric field experienced by a point charge Q due to a charge distribution q_i or dq is given by:

$$\vec{E} = \frac{\vec{F}}{Q} = \frac{q_1}{4\pi\epsilon_0 r_{1r}^2} \hat{r}_{1r} + \frac{q_2}{4\pi\epsilon_0 r_{2r}^2} \hat{r}_{2r} + \dots \frac{q_n}{4\pi\epsilon_0 r_{nr}^2} \hat{r}_{nr}$$
$$= \sum_{i}^{N} \frac{q_i}{4\pi\epsilon_0 r_{ir}^2} \hat{r}_{ir},$$

where $\vec{r}_{ir} = \vec{r} - \vec{r}_i$ are the separation coordinates. \vec{r} is the position vector of the point where the observation is being made. \vec{r}_i is the position vector of the i^{th} source charge, measured in the Cartesian coordinate system.

The Superposition Principle for $ec{E}$: Continuous

The total field measured by Q is:

$$\vec{E} = \int \frac{dq}{4\pi\epsilon_0 r_{dqr}^2} \hat{r}_{dqr},$$

where $\vec{r}_{dqr} = \vec{r} - \vec{r}_{dq}$ are the separation coordinates. \vec{r} is the position vector of the point where the observation is being made.

ELECTRIC FIELD LINES

They are imaginary lines used to visualize and represent the direction and strength of an electric field.

Note: Electric field lines are not trajectories. No two electric field lines will intersect.

ELECTRIC FIELD DUE TO A CHARGED PARTICLE

TESTING CONCEPTS (6)

Q: Find the net Field direction at the dot.

Testing Concepts (7)

Q: What magnitude charge creates a $1.0 \,\mathrm{N}\,\mathrm{C}^{-1}$ electric field at a point $1.0 \,\mathrm{m}$ away?

Q: At an arbitrary point in space $\vec{E} = (400\hat{i} + 100\hat{j})~{\rm N}~{\rm C}^{-1}$ is found.

- (a) What is the electric force on p^+ and e^- at this point? Give your answer in component form.
- (b) What is the magnitude of the p^+ and e^- 's acceleration if placed from rest at this point?