

- Prim's algorithm starts with a null Spanning Tree(MST).
- At any given time, It adds a least cost edge(selection) to the spanning tree such that
 - the resulting spanning tree continues to be a tree (feasible:no cycles are formed by adding the new edge).
 - The cost of spanning tree continues to be minimum.

- The outline of the algorithm is:
- Initially, add the least cost edge to the spanning tree.

- Prim's algorithm maintains two sets of vertices to accomplish this.
- One set contains tree vertices that are in the spanning tree.
- The other set contains the pending vertices yet to join the spanning tree.

Initially add the least cost edge

- $t = \{1,6\}$ is the tree vertex set.
- $v = \{2,3,4,5,7\}$ is the pending vertex set.
- Choose a least cost edge (i, j)
 - $-i \in t, j \in v$.
 - the resulting spanning tree continues to be a tree (no cycles are formed by adding the new edge).
 - The cost of spanning tree continues to be minimum.

25

 ∞

28

 ∞

 ∞

- $t = \{1,5,6\}$ is the tree vertex set.
- $v = \{2,3,4,7\}$ is the pending vertex set.
- Choose a least cost edge (i, j)
 - $-i \in t, j \in v$.
 - the resulting spanning tree continues to be a tree (no cycles are formed by adding the new edge).
 - The cost of spanning tree continues to be minimum.

1	2	3	4	5	6	7
0	1	1	5	0	0	5
	28	∞	22			24

- $t = \{1,4,5,6\}$ is the tree vertex set.
- $v = \{2,3,7\}$ is the pending vertex set.
- Choose a least cost edge (i, j)
 - $-i \in t, j \in v$.
 - the resulting spanning tree continues to be a tree (no cycles are formed by adding the new edge).
 - The cost of spanning tree continues to be minimum.

1	2	3	4	5	6	7
0	1	4	0	0	0	4
	28	12				18

- 1. near[i]:=0 if i is a
 tree vertex.
- 2. For each pending
 vertex i, near[i] is
 a tree vertex such
 that cost[i,near[i]]
 is the least cost
 edge connecting i to
 tree vertex near[i].

3

6

Whenever a new vertex joins the tree vertex set, update the near array so that it maintains the least cost edges connecting a pending vertex to a tree vertex.

if (cost[i,j]<cost[i,near[i])then
 near[i]:=j;</pre>

vertex

1 2 3 4 5 6 7
near

G

	1	2	3	4	5	6	7
1		28				10	
2	28		16				14
3		16		12			
4			12		22		18
5				22		25	24
6	10				25		
7		14		18	24		

Choose the least cost edge.

Add it to the spanning tree.

Initialize the near array

near

1	2	3	4	5	6	7
0	1(28)	1(∞)	1(∞)	6(25)	0	1(∞)

G

	1	2	3	4	5	6	7
1		28				10	
2	28		16				14
3		16		12			
4			12		22		18
5				22		25	24
6	10				25		
7		14		18	24		

mincost:=10;

t		
1	1	6
2		
3		
4		
5		
6		

Choose the nearest pending vertex.
Add to the spanning tree.

6

mincost:=35;

Choose the nearest pending vertex.

Add to the spanning tree.

Update the near array.

near

1	2	3	4	5	6	7
0	1(26)	1(∞)	1(∞)	6(25)	0	1(∞)
0	1(28)	1(∞)	5(22)	0	0	5(24)
	1					

3

	1	2	3	4	5	6	7
1		28				10	
2	28		16				14
3		16		12			
4			12		22		18
5				22		25	24
6	10				25		
7		14		18	24		

mincost:=57	;

t

1	1	6
2	5	6
3	4	5
1		
5		
5		

Choose the nearest pending vertex.

Add to the spanning tree.

near

1	2	3	4	5	6	7
0	1(28)	1(∞)	1(∞)	6(25)	0	1(∞)
0	1(28)	1(∞)	5(22)	0	0	5(24)
0	1(28)	4(12)	0	0	0	4(18)
	1					

3

	1	2	3	4	5	6	7
1		28				10	
2	28		16				14
3		16		12			
4			12		22		18
5				22		25	24
6	10				25		
7		14		18	24		·

mincost:=69;

t		
1	1	6
2	5	6
3	4	5
4	3	4
5		
6		

Choose the nearest pending vertex.

Add to the spanning tree.

near

1	2	3	4	5	6	7
0	1(28)	1(∞)	1(∞)	6(25)	0	1(∞)
0	1(28)	1(∞)	5(22)	0	0	5(24)
0	1(28)	4(12)	0	0	0	4(18)
0	3(16)	0	0	0	0	4(18)
			ı			

G

	1	2	3	4	5	6	7
1		28				10	
2	28		16				14
3		16		12			
4			12		22		18
5				22		25	24
6	10				25		
7		14		18	24		

mincos	t: :	=85	;
	•	•	,

t

1	1	6
2	5	6
3	4	5
4	3	4
5	2	3
6		

Choose the nearest pending vertex.

Add to the spanning tree.

near

1	2	3	4	5	6	7
0	1(26)	1(∞)	1(∞)	6(25)	0	1(∞)
0	1(26)	1(∞)	5(22)	0	0	5(24)
0	1(26)	4(12)	0	0	0	4(18)
0	3(16)	0	0	0	0	4(18)
0	0	0	0	0	0	2(14)
	1					1

G

	1	2	3	4	5	6	7
1		28				10	
2	28		16				14
3		16		12			
4			12		22		18
5				22		25	24
6	10				25		
7		14		18	24		

mincos	t:	=99;
--------	----	------

t

3

5

1	6
5	6
4	5
3	4
2	3
7	2

١	Γ∞	6	1	5	∞	∞
	6	∞	5	∞	3	∞
	1	5	∞	5	4	1
	5	∞	5	∞	∞	2
	∞	3	4	∞	∞	6
	Γ^{∞}	∞	1	2	6	∞

near

1	2	3	4	5	6 j
0	3(5)	0	1(5)	3(4)	3(1)

∞	6	1	5	∞	∞
6	∞	5	∞	3	∞
1	5	∞	5	4	1
5	∞	5	∞	∞	2
∞	3	4	∞	∞	6
$-\infty$	∞	1	2	6	∞]

1

t	1	3

Choose j such that near[j]≠
0 and cost[j,near[j]] is minimum
near[j]:=0

near

1	2	3	4	5	6 j
0	3(5)	0	1(5)	3(4)	3(1)

∞	6	1	5	∞	∞]
6	∞	5	∞	3	∞
1	5	∞	5	4	1
5	∞	5	∞	∞	2
∞	3	4	∞	∞	6
$-\infty$	∞	1	2	6	∞]

1

1	3
6	3

```
3)
1
6
```

near

1	2	3	4 j	5	6
0	3(5)	0	1(5)	3(4)	3(1)
0	3(5)	0	6(2)	3(4)	0

\sim	6	1	5	∞	∞]
6	∞	5	∞	3	∞
1	5	∞	5	4	1
5	∞	5	∞	∞	2
∞	3	4	∞	∞	6
$\lceil \infty \rceil$	∞	1	2	6	$^{\infty}$]

1

1	3
6	3

1 1 6

Choose j such that near[j]≠
0 and cost[j,near[j]] is minimum
near[j]:=0

near

1	2	3	4 j	5	6
0	3(5)	0	1(5)	3(4)	3(1)
0	3(5)	0	6(2)	3(4)	0

$L\infty$	6	1	5	∞	∞
6	∞	5	∞	3	∞
1	5	∞	5	4	1
5	∞	5	∞	∞	2
∞	3	4	∞	∞	6
$^{-\infty}$	∞	1	2	6	∞

t

1	3
6	3
4	6

near

1	2	3	4	<u>(5)</u> j	6
0	3(5)	0	1(5)	3(4)	3(1)
0	3(5)	0	6(2)	3(4)	0
0	3(5)	0	0	3(4)	0

$L\infty$	6	1	5	∞	∞]
6	∞	5	∞	3	∞
1	5	∞	5	4	1
5	∞	5	∞	∞	2
∞	3	4	∞	∞	6
L_∞	∞	1	2	6	∞]

t

1	3
6	3
4	6

Choose j such that near[j] \(\neq 0 \) and cost[j,near[j]] is minimum near[j]:=0

near

1	2	3	4	<u>(5)</u> j	6
0	3(5)	0	1(5)	3(4)	3(1)
0	3(5)	0	6(2)	3(4)	0
0	3(5)	0	0	3(4)	0

Γ∞	6	1	5	∞	∞ 7	ļ
6	∞	5	∞	3	∞	
1	5	∞	5	4	1	
5	∞	5	∞	∞	2	
∞	3	4	∞	∞	6	
L_∞	∞	1	2	6	∞	

1	3
6	3
4	6
5	3

```
1
1
4
2
5
6
```

near

1	(2) j	3	4	5	6
0	3(5)	0	1(5)	3(4)	3(1)
0	3(5)	0	6(2)	3(4)	0
0	3(5)	0	0	3(4)	0
0	5(3)	0	0	0	0

ſ	$-\infty$	6	1	5	∞	∞]
	6	∞	5	∞	3	∞
	1	5	∞	5	4	1
	5	∞	5	∞	∞	2
	∞	3	4	∞	∞	6
	- ∞	∞	1	2	6	$^{\infty}$]

1

1	3
6	3
4	6
5	3

```
1
1
4
2
5)
6
```

Choose j such that near[j]≠
0 and cost[j,near[j]] is minimum
near[j]:=0

near

1	2 j	3	4	5	6
0	3(5)	0	1(5)	3(4)	3(1)
0	3(5)	0	6(2)	3(4)	0
0	3(5)	0	0	3(4)	0
0	5(3)	0	0	0	0

L∞	6	1	5	∞	∞	!
6	∞	5	∞	3	∞	
1	5	∞	5	4	1	
5	∞	5	∞	∞	2	
∞	3	4	∞	∞	6	
L_∞	∞	1	2	6	∞	

1	3
6	3
4	6
5	3
2	5

```
1
1
4
3
4
3
1
6
```

```
Algorithm Prim(E,cost,n,t) 
//E is the set of edges. N is the number of vertices 
//cost is 2-d array of size nxn such that cost[i,j] is the cost 
//of the edge between the vertices i and j if exists else \infty 
//t is a 2-d array of size (n-1)x2. if (p,q) is the ith edge 
//included in the minimum cost spanning tree, then t[i,1=:=p 
//and t[i,2]:=q;
```

```
Let (u,v) be the minimum cost edge in E;
mincost:=cost[u,v];
t[1,1]:=u;t[1,2]:=v;
for i:=1 to n do
   if(cost[i,u]<cost[i,v]) then near[i]:=u;</pre>
   else near[i]:=v;
near[u]:=0;near[v]:=0;
for i := 2 to n do
   choose j such that near[j] \neq 0 and cost[j,near[j]) is
   the minimum;
   near[j]=0;
   mincost:=mincost+cost[j,near[j];
   t[i,1]:=j;t[i,2]:=near[j];
   for k:=1 to n do
       if (near[k] \neq 0 \text{ and } cost[k,j] < cost[k,near[k]) \text{ then }
           near[k]:=j;
}
return mincost;
```

```
Let (k,1) be the minimum cost edge in E; O(|E|)
   mincost:=cost[k,1];
   t[1,1]:=k;t[1,2]:=1;
   for i:=1 to n do O(n)
       if(cost[i,k]<cost[i,l]) then near[i]:=k;</pre>
       else near[i]:=1;
   near[k]:=0;near[1]:=0;
   for i := 2 to n-1 doO(n)
       choose j such that near[j] \neq 0 and cost[j,near[j]) is
       minimum;
       near[j]=0;
       mincost:=mincost+cost[j,near[j];
       t[i,1]:=j;t[i,2]:=near[j];
       for k:=1 to n do O(n)
           if (near[k] \neq 0 \text{ and } cost[k,j] < cost[k,near[k]) \text{ then }
              near[k]:=j;
                                                        O(n^2)
return mincost;
```