1 目的

実験 C で調整したプラスミド DNA を制限酵素により切断し、アガロースゲル電気泳動法により分離する。電気泳動の際には、サイズが既知のサンプルと同時に流すことで、DNA 断片のサイズを求め、プラスミド DNA の全長を推定する。

2 原理

制限酵素とは DNA 中の特定の塩基配列を認識して、そこに切れ目を入れる酵素である。 そして制限酵素の種類によって切断する回数も違う。今回は pBR322DNA に 2 種類の制限 酵素を入れ、電気泳動をする。

アガロースゲル電気泳動は、寒天の主成分であるアガロースを使用する電気泳動である。 その移動距離は、分子量が大きいほど流れにくいために短くなり、小さいものほど流れやすいので長くなる。この時、色素は DNA の隙間に入り込み、紫外線等の励起光を照射すると 蛍光を発する。この蛍光の強さは DNA の分子の長さと量に比例する。

3 実験方法

3.1 使用器具、使用機器

- ・アイスバス(発泡スチロール) 1個/4人
- ・サンプルチューブ(1.5ml) 3本/1人
- ・ピペットマン(マイクロピペッター) 20μL用1本/2人
- ・ピペットマン用イエローチップ
- ・卓上遠心分離機

·湯浴(37°C)

・ポロライドカメラ

· 電気泳動装置

・4単位の片対数グラフ

・定規

3.2 試薬

・M 緩衝液

10mM トリス塩酸緩衝液

10mM 塩化マグネシウム

1mM DTT(還元剤)

50mM 塩化ナトリウム

· 色素水溶液(電気泳動用緩衝液)

0.05% BPB

1% SDS

30% グリセロール

- ·制限酵素 HincII、PvuII
- ・減菌水
- ・1%アガロースゲル $(1 \mu g/mL)$

3.3 実験操作

- ①実験 C で単離した DNA サンプルは室温で解凍した後、よく混合し、軽くスピンダウンした。
- ②下記の組成で、37°Cの湯浴中で30分間切断を行い、終了したら色素水溶液を 3μ L加え、よく混合し、軽く遠心した後、氷上に置いておいた。

実験 C で単離した D	NA サンプル	$7.5\mu\mathrm{L}$
10 倍濃度(10x)M 緩衝液		$1.5\mu\mathrm{L}$
制限酵素 HincII ま	たは <i>Pvu</i> II	$0.75\mu\mathrm{L}$
減菌水		$5.25\mu\mathrm{L}$
Total		

- ③サイズマーカーDNA($10\,\mu$ L)とともに 1%アガロースゲル電気泳動(100V、1 時間程度)を行った。この時、未切断 DNA5 μ L+色素水溶液 $2\,\mu$ L も横に流した。
- ④イメージアナライザーImageQuant LAS4000 で画像を撮影していただいた。
- ⑤サイズマーカー・レーン及び切断 DNA サンプルを流したレーンの DNA 断片の移動度 (cm)を定規で測定した。
- ⑥片対数グラフの横軸を電気泳動の移動度(cm)、縦軸を DNA の大きさ(bp)として、サイズマーカーDNA の検量線を作成した。
- ⑦検量線の直線領域を求めた。pBR322 の各切断 DNA 断片の大きさ(bp)を検量線から読み取り、pBR322 の全長(bp)を求めた。

4 実験結果

実験操作④について、画像はレポート末尾に添付した。 実験操作⑤における、DNA 断片の移動度(cm)の測定結果は、以下の表にまとめた。

表 1. DNA 断片の移動距離

24		
塩基対数(bp)	移動距離(cm)	
10000	1.38	
8000	1.50	
6000	1.73	
5000	1.92	
4000	2.11	
3000	2.49	
2500	2.74	
2000	3.08	
1500	3.58	
1000	4.18	
750	4.59	
500	5.12	
250	5.85	

これを元に作成した検量線はこのレポートの末尾に添付した(図1)。

これから読み取ると、検量線の直線領域は、700bp~3500bpであった。

また、各切断 DNA 断片の移動距離は、未切断のものは 2.75cm、HincII で切断したものは 2.30cm と 3.95cm、PvuII で切断したものは 2.00cm であった。これらのそれぞれの DNA 断片大きさを検量線から読み取った結果を以下の表にまとめた。

表 2. 各 DNA 断片の大きさ

DNA の状況	移動距離(cm)	塩基対数(bp)
未切断	2.75	2550
<i>Hin</i> cII で切断	2.30	3380
	3.95	1120
<i>Pvu</i> II で切断	2.00	4400

これより、 Hinc II で切断したものは 2 カ所で切断され、DNA 断片は二つあることが分かり、元の pBR322 の全長は、

3380 + 1120 = 4500 bp

である。これは PvulI で切断したものとほぼ一致する。

5 考察

5.1 DNA の構造

原理より、CCC(閉環状)、OC(開環状)、直線状のうち、直線状のものが一番大きいために、電流は流れにくいと言える。これは実験結果より、*Pvu*II で切断したものが直線状であると考えられる。また、*Hin*cII で切断したものも直線状であると考えられる。*Hin*cII で切断した DNA の二つの塩基対数の数を足し合わせると *Pvu*II で切断したものとほぼ一致するからだ。

未切断 DNA は、は電気泳動をしたものの中で一番塩基対数が小さく、その色の濃さは HincII で切断したもののうち、塩基対数が小さい方とほぼ同じである。未切断にもかかわらず塩基対数が 2550bp であるのに対し、直線状である PvuII で切断した DNA は 4400bp であることから、直線状ではないことは明らかである。色素は DNA の隙間に入り込むということだが、CCC と OC では、その構造の複雑さから CCC はあまり入り込めず、OC は直線状と同じくらい入り込めると考えられる。電気泳動は、未切断 DNA は 5μ L、切断した DNA は 7.5μ L で行った。それを考慮しても未切断 DNA のバンドの色の濃さは直線状のものより非常に薄い。これは DNA の構造が複雑だったために色素が入り込めなかったためである。したがって、未切断 DNA は閉環状であると考えた。

5.2 検量線について

検量線は、直線領域と、そうでないずれている領域がある。図1をみると、移動距離が短いほど、塩基対数は大きいほうにずれ、移動距離が長いほど、塩基対数は小さいほうにずれている。

写真や検量線をみると、塩基対数、つまり分子の大きさが大きくなると、その移動距離は短く、ほぼ変わらなくなっている。オームの法則I = V/Rより、抵抗すなわち分子の大きさが大きくなると、反比例的に電流が流れなくなり移動距離は小さくなる。これが、検量線が移動距離が短い領域は、塩基対数は大きいほうにずれている理由である。

これに対し、塩基対数、つまり分子の大きさが小さくなると、その移動距離は長くなっている。これもオームの法則I=V/Rと照らし合わせると、分子の大きさすなわち抵抗が小さ

くなると、反比例的に電流値はおおきくなり、移動距離は長くなる。これが、移動距離が長い領域が、塩基対数は小さいほうにずれている一因であると考えた。

また、マーカー色素移動度も影響していると考えた。株式会社ニッポン・ジーンの HP に記載されている、ゲル電気泳動マーカー色素移動度の目安によると、1%アガロースゲル電気泳動における BPB の移動度の目安は約 900bp とあった。タカラバイオ株式会社の HP に記載されている、BPB および XC のアガロース各濃度における移動度によると、1%アガロースゲル電気泳動における BPB の移動度は 650bp とあった。図1をみると、直線領域は700~3500bp である。塩基対数が小さい領域が直線でないのは、色素の移動度外であるという理由もあるのではないかと考えた。

6 参考文献・HP

- ·『Essential 細胞生物学 原書第 4 版』 南江堂出版
- ・コスモ・バイオ株式会社

URL: http://www.cosmobio.co.jp/product/detail/agarose-gel-electrophoresis.asp?entry_id = 14478

- ・株式会社ニッポン・ジーン 遺伝子工学研究用試薬
 URL:https://www.nippongene.com/siyaku/product/buffer/electrophoresis/data_mobilities-dyes.html
- ・タカラバイオ株式会社

URL: http://catalog.takara-bio.co.jp/product/basic_info.php?unitid=U100007890