Bezkontextové jazyky

Jazyky typu 2

Definice 4.1 Gramatika $G=(N,\Sigma,P,S)$ si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar

$$A \to \alpha, \quad A \in \mathbb{N}, \quad \alpha \in (\mathbb{N} \cup \Sigma)^*$$

Lemma 4.1 Každý regulární jazyk je jazykem bezkontextovým.

Proč studujeme bezkontextové jazyky?

Příklad 4.1 Jazyk $L = \{a^nb^n \mid n \ge 0\}$, jak víme, není jazykem regulárním, je však jazykem bezkontextovým:

$$L=L(G)\;\mathrm{kde}$$

$$G=(\{S\},\{a,b\},\{S\rightarrow aSb,S\rightarrow \varepsilon\},S)$$

Příklad bezkontextové gramatiky

Pro účely demonstrace vysvětlovaných pojmů budeme v následujících příkladech používat následující gramatiku.

Příklad 4.2 $G = (\{S, A, B\}, \{a, b, c\}, P, S)$, kde P obsahuje pravidla

$$S \to AB$$

$$A \to aAb \mid ab$$

$$B \to bBc \mid bc$$

Gramatika G generuje bezkontextový jazyk $L(G) = \{a^m b^{m+n} c^n \mid n \geq 1, m \geq 1\}$

Derivační strom

Důležitým prostředkem pro grafické vyjádření struktury věty (její derivace) je strom, který se nazývá derivačním nebo syntaktickým stromem.

Definice 4.2 Nechť δ je věta nebo větná forma generovaná v gramatice $G = (N, \Sigma, P, S)$ a nechť $S = v_0 \Rightarrow v_1 \Rightarrow \ldots \Rightarrow v_k = \delta$ její derivace v G. Derivační strom příslušející této derivaci je vrcholově ohodnocený strom s těmito vlastnostmi:

- 1. Vrcholy derivačního stromu jsou ohodnoceny symboly z množiny $N \cup \Sigma$; kořen stromu je označen výchozím symbolem S.
- 2. Přímé derivaci $v_{i-1} \Rightarrow v_i, i = 0, 1, \dots, k$ kde
 - $v_{i-1} = \mu A \lambda, \ \mu, \lambda \in (N \cup \Sigma)^*, \ A \in N$
 - $v_i = \mu \alpha \lambda$
 - $A \to \alpha$, $\alpha = X_1 \dots X_n$ je pravidlo z P,

odpovídá právě n hran $(A, X_j), j = 1, \ldots, n$ vycházejících z uzlu A, jež jsou uspořádány zleva doprava v pořadí $(A, X_1), (A, X_2), \ldots, (A, X_n)$.

3. Ohodnocení koncových uzlů derivačního stromu vytváří zleva doprava větnou formu nebo větu δ (plyne z 1. a 2.).

Příklad derivačního stromu

Příklad 4.3 V gramatice z příkladu 4.2 můžeme generovat řetězec aabbbbcc např. derivací:

$$S \Rightarrow AB \Rightarrow aAbB \Rightarrow aAbbBc \Rightarrow aAbbbcc \Rightarrow aabbbbcc$$

Derivační strom odpovídající této derivaci vypadá takto (po stranách jsou uvedena použitá pravidla):

Levá a pravá derivace

- \bullet Ukažme si i jiné derivace věty aabbbbcc, které se liší v pořadí, v němž byly vybírány nonterminály pro přímé derivace.
 - 1. $S \Rightarrow AB \Rightarrow aAbB \Rightarrow aabbB \Rightarrow aabbbBc \Rightarrow aabbbbcc$
 - 2. $S \Rightarrow AB \Rightarrow AbBc \Rightarrow Abbcc \Rightarrow aAbbbcc \Rightarrow aabbbbcc$
- **Definice 4.3** Nechť $S\Rightarrow\alpha_1\Rightarrow\alpha_2\Rightarrow\ldots\Rightarrow\alpha_n=\alpha$ je derivace větné formy α . Jestliže byl v každém řetězci $\alpha_i, i=1,\ldots,n-1$ přepsán nejlevější (nejpravější) nonterminál, pak tuto derivaci nazýváme levou (pravou) derivací větné formy α .

Výše uvedené příklady derivací představují levou (1.) a pravou (2.) derivaci.

Lemma 4.2 Je-li $S \equiv \alpha_0 \Rightarrow \alpha_1 \Rightarrow \ldots \Rightarrow \alpha_n \equiv w$ levá, resp. pravá derivace věty w, pak každá z větných forem α_i , $i=1,2,\ldots,n-1$ má tvar:

$$x_i A_i \beta_i$$
 kde $x_i \in \Sigma^*, A_i \in N, \beta_i \in (N \cup \Sigma)^*$
 $\gamma_i B_i y_i$ kde $y_i \in \Sigma^*, B_i \in N, \gamma_i \in (N \cup \Sigma)^*$

t.j. větné formy levé, resp. pravé derivace mají terminální prefixy, resp. sufixy.

resp.

Fráze větné formy

Definice 4.4 Nechť $G=(N,\Sigma,P,S)$ je gramatika a nechť řetězec $\lambda=\alpha\beta\gamma$ je větná forma. Podřetězec β se nazývá frází větné formy vzhledem k nonterminálu A z N, jestliže platí:

$$S \Rightarrow^* \alpha A \gamma$$

$$A \Rightarrow^+ \beta$$

Podřetězec β je jednoduchou frází větné formy, jestliže platí:

$$S \Rightarrow^* \alpha A \gamma$$

$$A \Rightarrow \beta$$

Nejlevější jednoduchá fráze se nazývá l-frází.

Příklad 4.4 V gramatice z příkladu 4.1 nalezněte fráze věty aabbbcc.

Nejdříve vytvořme libovolnou derivaci této věty (Příklad 4.2). Na základě této derivace získáme následující fráze k příslušným nonterminálům:

	Nonterminál	
aabbbbcc	S	Fráze ab a bc jsou jednoduché, ab je I-fráze.
aabb	A^1	
ab	A^2	
bbcc	B^1	
aabbbbcc $aabb$ ab $bbcc$ bc	B^2	

Vztah fráze a derivačního stromu

Podstrom derivačního stromu odpovídá frázi příslušné větné formy. Fráze je tvořena koncovými uzly podstromu. Jednoduchá fráze odpovídá podstromu, jenž je výsledkem přímé derivace $A \Rightarrow \beta$, a jeho hloubka je rovna jedné. Situaci ilustruje následující obrázek.

Příklad 4.5 Podstromy derivačního stromu věty aabbbbcc (příklad 4.3) jsou následující stromy odpovídající též frázím z předchozího příkladu.

Víceznačnost gramatik

Definice 4.5 Nechť G je gramatika. Říkáme, že věta w generovaná gramatikou G je víceznačná, existují-li alespoň dva různé derivační stromy s koncovými uzly tvořícími větu w. Gramatika G je víceznačná, pokud generuje alespoň jednu víceznačnou větu. V opačném případě mluvíme o jednoznačné gramatice.

Jazyky, které lze generovat víceznačnou gramatikou, ale které nelze generovat jednoznačnou gramatikou, se nazývají jazyky s inherentní víceznačností.

- Problém víceznačnosti gramatik je nerozhodnutelný, tj. neexistuje algoritmus, který by byl schopen v konečném čase rozhodnout, zda daná gramatika je nebo není víceznačná.
- Víceznačnost gramatiky je pokládána za negativní rys (vede k větám, které mají několik interpretací). Na druhé straně může být víceznačná gramatika jednodušší než odpovídající jednoznačná gramatika.

Víceznačnost gramatik

Příklad 4.6 Uvažujme gramatiku $G=(\{E\},\{+,-,*,/,(,),P,E),$ kde P je množina pravidel

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid i$$

Jazyk L(G) je tvořen aritmetickými výrazy s binárními operacemi. Gramatika G je na rozdíl od gramatiky z příkladu 4.2 víceznačná. Vezměme například větu i+i*i a uvažujme všechny možné derivační stromy.

Není jasné, zda první operací bude násobení (derivační strom vlevo), nebo sčítání (derivační strom vpravo).

Příklad 4.7 Jednoznačnou gramatikou generující tentýž jazyk je gramatika $G = (\{E, T, F\}, \{+, -, *, /, (,), i\}, P, E)$ s množinou přepisovacích pravidel P definovanou následujícím způsobem:

$$\begin{split} E &\to T \mid E + T \mid E - T \\ T &\to F \mid T * F \mid T/F \\ F &\to (E) \mid i \end{split}$$

Zásobníkové automaty

Základní schéma

Schéma zásobníkového automatu:

konečné stavové řízení

Základní definice

Definice 4.6 Zásobníkový automat P je n-tice $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

- 1. Q je konečná množina vnitřních stavů
- 2. Σ je konečná vstupní abeceda
- 3. Γ je konečná zásobníková abeceda
- 4. δ je přechodová funkce ve tvaru $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$
- 5. $q_0 \in Q$ je počáteční stav
- 6. $Z_0 \in \Gamma$ je startovací symbol zásobníku
- 7. $F \subseteq Q$ je množina koncových stavů

Konfigurace a přechod ZA

Definice 4.7 Nechť $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ je zásobníkový automat. Konfigurací automatu P nazveme trojici $(q,w,\alpha)\in Q\times \Sigma^*\times \Gamma^*$, kde

- 1. q je přítomný stav vnitřního řízení
- 2. w je dosud nezpracovaná část vstupního řetězce
- 3. α je obsah zásobníku ($\alpha = Z_{i_1} Z_{i_2} \dots Z_{i_k}$, Z_{i_1} je vrchol)

Přechod ZA P je binární relace \vdash_P definovaná na množině konfigurací:

$$(q, w, \beta) \vdash_P (q', w', \beta') \stackrel{def}{\iff} w = aw' \land \beta = Z\alpha \land \beta' = \gamma\alpha \land (q', \gamma) \in \delta(q, a, Z),$$

 $\mathsf{kde}\ q,q'\in Q,\, a\in\Sigma\cup\{\varepsilon\},\, w,w'\in\Sigma^*,\, Z\in\Gamma\ \mathsf{a}\ \alpha,\beta,\beta',\gamma\in\Gamma^*.$

- Je-li $a = \varepsilon$, pak odpovídající přechod nazýváme ε -přechodem.
- Relace $\vdash_P^i, \vdash_P^*, \vdash_P^+$ jsou definovány obvyklým způsobem.
- Platí-li pro řetězec $w \in \Sigma^*$ relace $(q_0, w, Z_0) \vdash_P^* (q, \varepsilon, \gamma)$, kde $q \in F$ a $\gamma \in \Gamma^*$, pak říkáme, že w je přijímán zásobníkovým automatem $P(q_0, w, Z_0)$, resp. (q, ε, γ) je počáteční, resp. koncová konfigurace.
- Definujeme jazyk přijímaný zásobníkovým automatem P: $L(P) = \{w | (q_0, w, Z_0) \vdash_P^* (q, \varepsilon, \gamma) \land q \in F\}.$

Příklad zásobníkového automatu

Příklad 4.8 Sestrojme zásobníkový automat, který přijímá jazyk $L = \{0^n 1^n \mid n \ge 0\}$.

- Řešením je $P=(\{q_0,q_1,q_2\},\{0,1\},\{Z,0\},\delta,q_0,Z,\{q_0\})$, kde

$$\delta(q_0, 0, Z) = \{(q_1, 0Z)\}$$

$$\delta(q_1, 0, 0) = \{(q_1, 00)\}$$

$$\delta(q_1, 1, 0) = \{(q_2, \varepsilon)\}$$

$$\delta(q_2, 1, 0) = \{(q_2, \varepsilon)\}$$

$$\delta(q_2, \varepsilon, Z) = \{(q_0, \varepsilon)\}$$

- Při přijetí řetězce 0011 projde P těmito konfiguracemi:

$$(q_0, 0011, Z) \vdash (q_1, 011, 0Z) \vdash (q_1, 11, 00Z) \vdash (q_2, 1, 0Z) \vdash (q_2, \varepsilon, Z) \vdash (q_0, \varepsilon, \varepsilon)$$

 Zásobníkové automaty lze také popsat přechodovým diagramem, jak je ilustrováno níže na právě sestrojeném automatu P:

Varianty zásobníkových automatů

Rozšířený zásobníkový automat

Definice 4.8 Rozšířený zásobníkový automat P je sedmice $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$, kde δ je přechodová funkce definovaná takto:

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma^* \to 2^{Q \times \Gamma^*}$$

Ostatní složky mají stejný význam jako v definici 5.2.

Příklad 4.9 Rozšířený zásobníkový automat $P=(\{p,q\},\{a,b\},\{a,b,S,Z\},\delta,q,Z,\{p\}),$ kde

$$\begin{array}{ll} \delta(q,a,\varepsilon) = \{(q,a)\} & \delta(q,b,\varepsilon) = \{(q,b)\} & \delta(q,\varepsilon,\varepsilon) = \{(q,S)\} \\ \delta(q,\varepsilon,aSa) = \{(q,S)\} & \delta(q,\varepsilon,bSb) = \{(q,S)\} & \delta(q,\varepsilon,SZ) = \{(p,\varepsilon)\} \end{array}$$

přijímá jazyk $L = \{ww^R | w \in \{a, b\}^+\}.$

 $\begin{array}{l} \mathsf{Nap\check{r}:} \ (q,aabbaa,Z) \vdash (q,abbaa,aZ) \vdash (q,bbaa,aaZ) \vdash (q,baa,baaZ) \vdash (q,baa,SbaaZ) \vdash (q,aa,bSbaaZ) \vdash (q,aa,SaaZ) \vdash (q,a,aSaaZ) \vdash (q,a,SaZ) \vdash (q,\varepsilon,aSaZ) \vdash (q,\varepsilon,SZ) \vdash (p,\varepsilon,\varepsilon) \end{array}$

Ekvivalence RZA a ZA

Věta 4.1 Nechť $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ je rozšířený zásobníkový automat. Pak existuje zásobníkový automat P_1 takový, že $L(P_1)=L(P)$.

Důkaz. Položme $m = max\{|\alpha| \mid \delta(q, a, \alpha) \neq \emptyset$ pro nějaké $q \in Q, a \in \Sigma \cup \{\varepsilon\}$ a $\alpha \in \Gamma^*\}$.

Zásobníkový automat P_1 budeme konstruovat tak, aby simuloval automat P.

Protože automat P neurčuje přechody podle vrcholu zásobníku, ale podle vrcholového řetězce zásobníku, bude automat P_1 ukládat m vrcholových symbolů v jakési vyrovnávací paměti řídící jednotky tak, aby na počátku každého přechodu věděl, jakých m vrcholových symblů je v zásobníku automatu P.

Nahrazuje-li automat P k vrcholových symboů řetězcem délky l, pak se totéž provede ve vyrovnávací paměti automatu P_1 .

Jestliže l < k, pak P_1 realizuje k - l ε -přechodů, které přesouvají k - l symbolů z vrcholu zásobníku do vyrovnávací paměti. Automat P_1 pak může simulovat další přechod automatu P.

Je-li $l \geq k$ pak se symboly přesouvají z vyrovnávací paměti do zásobníku.

Formálně můžeme konstrukci zásobníkového automatu P_1 popsat takto:

$$P_1 = (Q_1, \Sigma_1, \Gamma_1, \delta_1, Z_1, F_1)$$
, kde

- 1. $Q_1 = \{ [q, \alpha] | q \in Q, \alpha \in \Gamma_1^* \land 0 \le |\alpha| \le m \}$
- 2. $\Gamma_1 = \Gamma \cup \{Z_1\}$
- 3. Zobrazení δ_1 je definováno takto:
 - (a) Předpokládejme, že $\delta(q, a, X_1 \dots X_k)$ obsahuje $(r, Y_1 \dots Y_l)$.
 - i. Jestliže $l \geq k$, pak pro všechna $Z \in \Gamma_1$ a $\alpha \in \Gamma_1^*$ taková, že $|\alpha| = m k$, pak $\delta_1([q, X_1 \dots X_k \alpha], a, Z)$ obsahuje $([r, \beta], \gamma Z)$, kde $\beta \gamma = Y_1 \dots Y_l \alpha$ a $|\beta| = m$.
 - ii. Je-li l < k, pak pro všechna $Z \in \Gamma_1$ a $\alpha \in \Gamma_1^*$ taková, že $|\alpha| = m k$, pak $\delta_1([q, X_1 \dots X_k \alpha], a, Z)$ obsahuje $([r, Y_1 \dots Y_l \alpha Z], \varepsilon)$.
 - (b) Pro všechna $q \in Q, Z \in \Gamma_1$ a $\alpha \in \Gamma_1^*$ taková, že $|\alpha| < m$, platí $\delta_1([q,\alpha],\varepsilon,Z) = \{([q,\alpha Z],\varepsilon)\}$. Tato pravidla vedou k naplnění vyrovnávací paměti.

- 4. $q_1=[q_0,Z_0,Z_1^{m-1}]$. Vyrovnávací paměť obsahuje na počátku symbol Z_0 na vrcholu a m-1 symbolů Z_1 na dalších místech. Symboly Z_1 jsou speciální znaky pro označení dna zásobníku.
- 5. $F_1 = \{[q,\alpha] \mid q \in F, \alpha \in \Gamma_1^*\}$ Lze ukázat, že $(a,aw,X_1\ldots X_k X_{k+1}\ldots X_n) \vdash_P (r,w,Y_1\ldots Y_l X_{k+1}\ldots X_n)$ platí, právě když $([q,\alpha],aw,\beta) \vdash_{P_1}^+ ([r,\alpha'],w,\beta')$ kde $\alpha\beta = X_1\ldots X_n Z_1^m$ $\alpha'\beta' = Y_1\ldots Y_l X_{k+1}\ldots X_n Z_1^m$ $|\alpha| = |\alpha'| = m$

a mezi těmito dvěma konfiguracemi automatu P_1 není žádná konfigurace, ve které by druhý člen stavu (vyrovnávací paměť) měl délku m.

Tedy relace $(q_0, w, Z_0) \vdash_P (q, \varepsilon, \alpha)$ pro $q \in F, \alpha \in \Gamma^*$ platí, právě když $([q_0, Z_0, Z_1^{m-1}], w, Z_1) \vdash_{P_1}^* ([q, \beta], \varepsilon, \gamma)$, kde $|\beta| = m$ a $\beta \gamma = \alpha Z_1^m$. Tedy $L(P) = L(P_1)$. \square

ZA přijímající s vyprázdněním zás.

Definice 4.9 Zásobníkový automat nebo rozšířený zásobníkový automat $P=(Q,\Sigma,\Gamma,\delta,q_0,Z,\emptyset)$ přijímá s vyprázdněním zásobníku, pokud

$$L(P) = \{ w \mid (q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon), q \in Q \}$$

Věta 4.2 Ke každému ZA (resp. RZA) P existuje ZA (resp. RZA) P', který přijímá s vyprázdněním zásobníku, takový, že L(P) = L(P').

 $D\mathring{u}kaz$. (Hlavní myšlenka) Opět budeme konstruovat automat P' tak, aby simuloval automat P. Kdykoli automat P dospěje do koncového stavu, přejde automat P' do speciálního stavu q_{ε} , který způsobí vyprázdnění zásobníku. Musíme však uvážit situaci, kdy automat P je v konfiguraci s prázdným zásobníkem, nikoli však v koncovém stavu. Abychom zabránili případům, že automat P' přijímá řetězec, který nemá být přijat, přidáme k zásobníkové abecedě automatu P' znak, jenž bude označovat dno zásobníku a může být vybrán pouze tehdy, je-li automat P' ve stavu q_{ε} .

Ekvivalence bezkontextových jazyků a jazyků přijímaných zásobníkovým automatem

Označme třídu všech jazyků přijímaných zásobníkovými automaty symbolem \mathcal{L}_P . Dokážeme, že $\mathcal{L}_2 = \mathcal{L}_P$ postupem analogickým s důkazem tvrzení $\mathcal{L}_3 = \mathcal{L}_M$. Ukážeme tedy, že

- ke každé bezkontextové gramatice existuje ekvivalentní zásobníkový automat, tj. $\mathcal{L}_2 \subseteq \mathcal{L}_P$
- a ke každému zásobníkovému automatu existuje ekvivalentní gramatika typu 2, tj. $\mathcal{L}_P \subseteq \mathcal{L}_2$

Pro důkaz inkluze $\mathcal{L}_2 \subseteq \mathcal{L}_P$ zkonstruujeme (redundantně) automaty modelující oba typy syntaktické analýzy příslušného bezkontextového jazyka.

$\mathcal{L}_2 \subseteq \mathcal{L}_P$

Věta 4.3 Nechť $G=(N,\Sigma,P,S)$ je bezkontextová gramatika. Pak existuje zásobníkový automat P, který přijímá s vyprázdněním zásobníku takový, že L(G)=L(P).

 $D\mathring{u}kaz$. Zásobníkový automat P vytvoříme tak, aby vytvářel levou derivaci vstupního řetězce v gramatice G (modeloval syntaktickou analýzu shora dolů). Nechť P je ZA:

$$P = (\{q\}, \Sigma, N \cup \Sigma, \delta, q, S, \emptyset)$$
, kde δ je určena takto:

- Je-li $A \to \alpha$ pravidlo z P, pak $(q, \alpha) \in \delta(q, \varepsilon, A)$
- $\delta(q, a, a) = \{(q, \varepsilon)\}$ pro všechna $a \in \Sigma$

Indukcí lze dokázat ekvivalenci

$$A \Rightarrow^m w \Leftrightarrow (q, w, A) \vdash^n (q, \varepsilon, \varepsilon), m, n \geq 1, w \in \Sigma^*$$

což pro případ A=S znamená L(G)=L(P).

Příklad 4.10 Ke gramatice

$$G = (\{S\}, \{0, 1\}, \{S \to 0S1, S \to 01\}, S),$$

sestrojíme zásobníkový automat P, který modeluje syntaktickou analýzu shora dolů:

$$P = (\{q\}, \{0,1\}, \{S,0,1\}, q,S,0), \, \text{kde}$$

$$\delta(q,\varepsilon,S) = \{(q,0S1), (q,01)\}$$

$$\delta(q,0,0) = \{(q,\varepsilon)\}$$

$$\delta(q,1,1) = \{(q,\varepsilon)\}$$

Skutečně, např. derivaci

$$S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000111$$

odpovídá posloupnost přechodů automatu P:

$$(q,000111,S) \vdash (q,000111,0S1) \vdash (q,00111,S1) \vdash (q,00111,0S11) \vdash (q,0111,S11) \vdash (q,0111,0111) \vdash (q,111,111) \vdash (q,11,11) \vdash (q,1,1) \vdash (q,\varepsilon,\varepsilon)$$

Věta 4.4 Nechť $G=(N,\Sigma,P,S)$ je bezkontextová gramatika. Pak lze ke gramatice G sestrojit RZA P takový, že L(G)=L(P).

 $D\mathring{u}kaz$. RZA P sestrojme tak, aby modeloval syntaktickou analýzu zdola nahoru. Nechť P je RZA

$$P = (\{q, r\}, \Sigma, N \cup \Sigma \cup \{\#\}, \delta, q, \#, \{r\})$$

kde δ je určena takto:

- 1. Je-li $A \to \alpha$ pravidlo z P, pak $\delta(q, \varepsilon, \alpha)$ obsahuje (q, A^R) . redukce
- 2. $\delta(q, a, \varepsilon) = \{(q, a)\}$ pro všechna $a \in \Sigma$ shift
- 3. $\delta(q, \varepsilon, S\#) = \{(r, \varepsilon)\}$

Indukcí lze opět dokázat L(G) = L(P).

Příklad 4.11 Na gramatiku

$$G = (\{S\}, \{0, 1\}, \{S \to 0S1, S \to 01\}, S)$$

aplikujeme nyní větu 5.4. Výsledný RZA bude mít tvar:

$$P = (\{q, r\}, \{0, 1\}, \{0, 1, S, \#\}, \delta, q, \#, \{r\})$$

kde δ je definována takto

$$\begin{split} &\delta(q,\varepsilon,0S1) = \{(q,S)\} & \text{redukce} \\ &\delta(q,\varepsilon,01) = \{(q,S)\} & \text{redukce} \\ &\delta(q,0,\varepsilon) = \{(q,0)\} & \text{shift} \\ &\delta(q,1,\varepsilon) = \{(q,1)\} & \text{shift} \\ &\delta(q,\varepsilon,\#S) = \{(r,\varepsilon)\} \end{split}$$

Derivaci $S\Rightarrow 0S1\Rightarrow 0011$ odpovídá posloupnosti konfigurací $(q,0011,\#)\vdash (q,011,\#0)\vdash (q,11,\#00)\vdash (q,1,\#001)\vdash (q,1,\#0S)\vdash (q,\varepsilon,\#0S1)\vdash (q,\varepsilon,\#S)\vdash (r,\varepsilon,\varepsilon)$

Poznámka 4.1 Vrchol zásobníku uvádíme, pro lepší čitelnost, vpravo

$\mathcal{L}_P \subseteq \mathcal{L}_2$

Věta 4.5 Nechť $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\emptyset)$ je zásobníkový automat přijímající s vyprázdněním zásobníku. Pak existuje gramatika $G=(N,\Sigma,P,S)$ taková, že

$$L(P) = L(G).$$

Důkaz. Gramatiku G budeme definovat formálně takto:

- $N = \{ [qZr] \mid q, r \in Q, Z \in \Gamma \} \cup \{S \}$
- Jestliže $(r, X_1 X_2 \dots X_k) \in \delta(q, a, Z)$, $k \ge 1$, pak k P přidej pravidla tvaru

$$[qZs_k] \to a[rX_1s_1][s_1X_2s_2]\dots[s_{k-1}X_ks_k]$$

pro každou posloupnost stavů s_1, s_2, \ldots, s_k z množiny Q

- Jestliže $(r, \varepsilon) \in \delta(q, a, Z)$, pak k P přidej pravidlo $[qZr] \to a$ (pro $a \in \Sigma \cup \{\varepsilon\}$)
- Pro každý stav $q \in Q$ přidej k P pravidlo $S \to [q_0 Z_0 q]$

Indukcí lze dokázat $S \Rightarrow [q_0 Z_0 q] \Rightarrow^+ w$ právě když $(q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon)$

П

Ekvivalence $\mathcal{L}_2 = \mathcal{L}_P$

Věta 4.6 Třída bezkontextových jazyků a třída jazyků přijímaných zásobníkovými automaty jsou totožné.

Důkaz. Přímý důsledek vět 5.4 a 5.5.

