

Riri Fifi Loulou December 4, 2018 ENAC

Introduction

L'article présente une optimisation de trajectoire d'un drone qui doit transmettre, i.e. disséminer, i.e multicaster, en un minimum de temps un même fichier à des récepteurs terrestres via une communication sans fil.

Plan

- Introduction
- 2 Modélisation du système et du problème
- 3 Borne inférieure de la probabilité de bonne réception du fichier et reformulation du problème
- 4 Proposition de conception de trajectoire
- 5 Résultats numériques
- **6** Conclusion
- Perspectives

- Bullets that
 - one
 - 1 two

- Bullets that
 - one
 - 1 two
- Come up
 - one
 - 2 two and three

- Bullets that
 - one
 - 1 two
- Come up
 - one
 - 2 two and three
- One by one
 - one
 - 3 two

Borne inférieure de la probabilité de bonne réception du fichier et reformulation du

problème

Equations

Equations are easy

Just copy/paste equations

problème

Equations

Equations are easy

- Just copy/paste equations
- From the paper!

$$\mathbf{p}^* = \underset{\mathbf{p}}{\operatorname{argmin}} \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right]^2$$

Liste des paramètres

Information file size	W bits
Packet size	R_p bits
Number of information packets	$N' = W/R_p$
Number of network coded packets	N > N'
UAV transmission rate	R bits/second
Time for transmitting one packet	$T_p = R_p/R$ seconds
Mission completion time	$T = NT_p = \frac{W}{R} \frac{N}{N'}$
	seconds
Time slot length	δ_t seconds
Number of time slots	$M = T/\delta_t$
Number of transmitted packets per	$L = \delta_t / T_p = N/M$
slot	

Figure – Parametres

Some block

- Movies only seem to work in Adobe Reader
- Movie file is not embedded, it must be on the computer

Some block

- Movies only seem to work in Adobe Reader
- Movie file is not embedded, it must be on the computer

Some more block

Movies only seem to work in Adobe Reader Movie file is not embedded, it must be on the computer

Some block

- Movies only seem to work in Adobe Reader
- Movie file is not embedded, it must be on the computer

Some more block

Movies only seem to work in Adobe Reader Movie file is not embedded, it must be on the computer

Some text in here.

• Movies only seem to work in Adobe Reader

Some block

- Movies only seem to work in Adobe Reader
- Movie file is not embedded, it must be on the computer

Some more block

Movies only seem to work in Adobe Reader Movie file is not embedded, it must be on the computer

Some text in here.

- Movies only seem to work in Adobe Reader
- Movie file is not embedded, it must be on the computer and what happe with a very long item?

Cet article a donc présenté une solution au problème de conception de trajectoire d'un drone équipés de système de communication sans fil en vu de transmettre un fichier à un ensemble de récepteurs i.e. Terminaux Terrestres. La mission doit être accomplie en un temps minimum tout en assurant une bonne réception du message avec une probabilité minimale.

• Reformulation du problème en utilisant une seule contrainte de temps minimum de connexion entre le drone et le terminal terrestre.

- Reformulation du problème en utilisant une seule contrainte de temps minimum de connexion entre le drone et le terminal terrestre.
- Les auteurs ont ensuite montré que la trajectoire optimale peut-être constituée uniquement de segments de droites reliant des waypoints dont la position est optimisée.

- Reformulation du problème en utilisant une seule contrainte de temps minimum de connexion entre le drone et le terminal terrestre.
- Les auteurs ont ensuite montré que la trajectoire optimale peut-être constituée uniquement de segments de droites reliant des waypoints dont la position est optimisée.
- 3 Ils ont calculé la position optimale de ces waypoints. Ce qui définit une trajectoire optimale.

- Reformulation du problème en utilisant une seule contrainte de temps minimum de connexion entre le drone et le terminal terrestre.
- Les auteurs ont ensuite montré que la trajectoire optimale peut-être constituée uniquement de segments de droites reliant des waypoints dont la position est optimisée.
- 3 Ils ont calculé la position optimale de ces waypoints. Ce qui définit une trajectoire optimale.
- Puis ils optimisent la vitesse en fonction du temps le long de la trajectoire obtenue en utilisant la programmation linéaire(LP).

- Reformulation du problème en utilisant une seule contrainte de temps minimum de connexion entre le drone et le terminal terrestre.
- Les auteurs ont ensuite montré que la trajectoire optimale peut-être constituée uniquement de segments de droites reliant des waypoints dont la position est optimisée.
- 3 Ils ont calculé la position optimale de ces waypoints. Ce qui définit une trajectoire optimale.
- Puis ils optimisent la vitesse en fonction du temps le long de la trajectoire obtenue en utilisant la programmation linéaire(LP).
- Les résultats numériques ont mis en évidence des performances significativement améliorées par rapport à une approche heuristique de conception de trajectoires ou un système multicast statique.

- Reformulation du problème en utilisant une seule contrainte de temps minimum de connexion entre le drone et le terminal terrestre.
- Les auteurs ont ensuite montré que la trajectoire optimale peut-être constituée uniquement de segments de droites reliant des waypoints dont la position est optimisée.
- 3 Ils ont calculé la position optimale de ces waypoints. Ce qui définit une trajectoire optimale.
- Puis ils optimisent la vitesse en fonction du temps le long de la trajectoire obtenue en utilisant la programmation linéaire(LP).
- Les résultats numériques ont mis en évidence des performances significativement améliorées par rapport à une approche heuristique de conception de trajectoires ou un système multicast statique.
- Ce qui tend à montrer le grand potentiel des drones de télécommunication à usage de transmetteurs multicast dans les réseaux sans-fil.

Dans les systèmes multicast, on peut utiliser un processus de partage de fichiers, dit device to device (D2D), durant lequel les terminaux terrestres s'échangent des paquets reçu pendant la phase multicast pour reconstituer leurs messages respectifs dans leur totalité.

Phase II: D2D file sharing

Cet article n'a pris en compte que la phase multicast. L'étude conjointe des deux phases multicast et D2D serait probablement intéressante à entreprendre. En lien avec des techniques de clustering pour les stations sol, l'optimisation conjointe pourrait permettre de réduire davantage les coûts de transmission et donc la taille des drones utilisés.

whereas a joint investigation of the UAV multicasting and D2D file sharing would be an interesting problem for future research