# **CSE3006 - Data Visualization**

# Lab Assignment 2

Name: Jai Gaurav

Reg No: 21BCE7193

Importing libraries

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Importing dataset

### Out[2]:

| _ |   | symboling | make            | fuel_type | aspiration | num_of_doors | body_style  | drive_wheels | engine_location | wheel_base | length | <br>engine_s |
|---|---|-----------|-----------------|-----------|------------|--------------|-------------|--------------|-----------------|------------|--------|--------------|
| _ | 0 | 3         | alfa-<br>romero | gas       | std        | 2            | convertible | rwd          | front           | 88.6       | 168.8  |              |
|   | 1 | 3         | alfa-<br>romero | gas       | std        | 2            | convertible | rwd          | front           | 88.6       | 168.8  |              |
|   | 2 | 1         | alfa-<br>romero | gas       | std        | 2            | hatchback   | rwd          | front           | 94.5       | 171.2  |              |
|   | 3 | 2         | audi            | gas       | std        | 4            | sedan       | fwd          | front           | 99.8       | 176.6  |              |
|   | 4 | 2         | audi            | gas       | std        | 4            | sedan       | 4wd          | front           | 99.4       | 176.6  |              |

5 rows × 25 columns

```
In [3]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 193 entries, 0 to 192
        Data columns (total 25 columns):
              Column
                                 Non-Null Count Dtype
              symboling
                                 193 non-null
                                                 int64
          1
              make
                                 193 non-null
                                                 object
          2
              fuel_type
                                 193 non-null
                                                 object
          3
              aspiration
                                 193 non-null
                                                 object
              num_of_doors
                                                 int64
          4
                                 193 non-null
              body_style
                                 193 non-null
                                                 object
          5
              drive_wheels
                                 193 non-null
                                                 object
             engine_location
          7
                                 193 non-null
                                                 object
              wheel_base
                                 193 non-null
                                                 float64
                                                 float64
              length
          9
                                 193 non-null
             width
          10
                                 193 non-null
                                                 float64
          11
             height
                                 193 non-null
                                                 float64
         12 curb_weight
                                 193 non-null
                                                 int64
             engine_type
                                 193 non-null
                                                 object
             num_of_cylinders
                                 193 non-null
                                                  int64
         15 engine_size
                                 193 non-null
                                                 int64
         16 fuel_system
                                 193 non-null
                                                 object
          17 bore
                                 193 non-null
                                                 float64
          18 stroke
                                 193 non-null
                                                 float64
             compression ratio 193 non-null
                                                 int64
          20
             horsepower
                                 193 non-null
                                                 int64
         21 peak_rpm
                                 193 non-null
                                                  int64
         22 city_mpg
                                 193 non-null
                                                  int64
          23 highway_mpg
                                 193 non-null
                                                 int64
          24 price
                                 193 non-null
                                                 int64
        dtypes: float64(6), int64(11), object(8)
         memory usage: 37.8+ KB
```

### Extract fields for clustering

```
In [4]: x = df['bore']
y = df['stroke']
```

#### Plot the points on a graph

```
In [5]: plt.scatter(x, y)
    plt.xlabel("Bore")
    plt.ylabel("Stroke")
    plt.title("Bore Vs Stroke (Scatter Plot)")
    plt.grid()
    plt.show()
```



Use scipy for clustering linkage

Plot the dendograms for the above linkages





24-01-2024, 17:37 6 of 8

## Dendogram for distribution of characters in a string

7 of 8 24-01-2024, 17:37

## Dendrogram based on Character Frequencies



In [ ]:

| DV Lab (25/01/24)                                                                               |
|-------------------------------------------------------------------------------------------------|
| A B C D E 1  B 0.6 0  C 0.2 0.5 0  D 0.4 0.3 0.7 0  E 0.7 0.8 0.4 0.2  F 10.3 0.1 0.6 0.5 0.9 0 |
| > Hanimum Clustering Linkage                                                                    |
| > Minimum Distance Clustering                                                                   |
| A BF C D E  BF 0.3 0  C 6.2 0.5 0  D 0.4 0.3 0.7  E 0.7 0.8 0.4 0                               |
| A BF C DE                                                                                       |
| BF 0-3 0<br>C 0-2 0-5 0<br>DE 0-14 0-3 0-4 0                                                    |
| AC BF DE                                                                                        |
| 11 0                                                                                            |
| BF 0-3 0                                                                                        |
| BF 0-3 0<br>DE 0.4 0-3 0                                                                        |
|                                                                                                 |



| 71      | Yaxim | ung    | dista. | 118 | · lus terin |
|---------|-------|--------|--------|-----|-------------|
|         | A     | B      | (      | D   | EF          |
|         | 0     |        |        |     |             |
|         | 0.6   |        |        |     |             |
| C       | 0-2   | 0-3    | 0-7    | 0   |             |
| EF      | 0.7   | 0.8    | 0.6    | 0.5 | 0           |
|         | A     | В,     | EF     | (   | D           |
| A       | 0     |        |        |     |             |
| B, EF   | 0.7   |        | 0      |     |             |
| C       | 0 - 2 | 2 (    | 0.6    | 0   |             |
| D       | 0 - 1 | f      | 0-5    | 0.7 | 0           |
|         | 1     |        |        |     |             |
|         | A     | В,     | EF     | (pk |             |
|         | 0-7   |        |        |     |             |
| CD      | 0 4   |        | 0-6    | 0   |             |
|         | ] A,( | B, EF, | )      | CD  |             |
| P, (BEF | ) (   |        |        |     |             |
| (0      | 0     | - 6    |        | 0   |             |
|         |       |        |        |     |             |

