

Minimum Spanning Trees

Paolo Camurati and Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Problem definition

- Given an electronic circuit, designers often need to make the pins of several components elettrically equivalent by wiring them togheter
- ➤ To interconnect n pins we can use n-1 connections
- Of all such arrangements the one that uses the least amount of wire is usually the most desiderable
- Such a problem can be mapped as a Minimum Spanning Tree problem

Minimum Spanning Trees

- Given a graph G=(V,E)
 - Connected
 - Undirected
 - Weighted
 - With a positive real-value weight function w: $E \rightarrow R$
- ❖ A Minimum-weight Spanning Tree (MST) G' is a graph such that
 - ightharpoonup G'=(V, T) with $T\subseteq E$
 - ➤ G' is acyclic
 - \succ G' minimizes w(T)= $\Sigma_{(u,v)\in T}$ w(u,v)

Properties

- MST properties
 - > As G' is acyclic and cover all vertices
 - G' is a tree
 - > The MST is generally not unique
 - It is unique only iff all weights are distinct
 - > A MST may be represented as
 - An adjacency matrix or list
 - A list of edges plus weights
 - A list of parents plus weights

Representation

Adjacency list

Representation

List of edges (and weights) stored in a static (or dynamic) array

edge	weight
0-2	0.29
4-3	0.34
5-3	0.18
7-4	0.46
7-0	0.31
7-6	0.25
7-1	0.21

Specifically used for the Kruskal's algorithm

Representation

List of parents (and weights) stored in a static (or dynamic) array

	parent	weight	
0	0	0	
1	7	0.21	
2	0	0.29	
3	4	0.34	
4	7	0.46	
5	3	0.18	
6	7	0.25	
7	0	0.31	

Specifically used for the Prim's algorithm

Algorithms

- We will analyze two greedy algorithms
 - Greedy algorithms do not generally guarantee globally optimal soluzions, but for the MST they do
- Both algorithms
 - Kruskal's algorithm
 - Prim's algorithm

are based on a generic method

The generic method grows a spanning tree by adding one edge at a time

Generic algorithm

Pseudo-code

A is a subset of the MST (initially empty)

generic_MST (G, w)
A = φ
while A is not a MST do
 find a safe edge (u,v) for A
A = A U (u, v)
return A

While A is not a MST

Add a safe edge (u,v) to A

IFF edge (u,v) is safe, adding (u,v) to a subset A of the MST let A as a subset of the MST

Generic algorithm

- Given a set A
 - > Set of edges, i.e., a sub-set of a MST
 - > Initially empty
- While A is not a MST
 - > Find a safe edge
 - Add this edge to A
- Invariant
 - ➤ The edge (u,v) is **safe** if and only if added to a sub-set of the MST it produces another sub-set of the MST

Definitions

- ❖ G=(V,E) connected, undirected, and weighted
 - > Cut
 - A partition of V into S and V-S such that
 - $V = S \cup (V-S) \&\& S \cap (V-S) = \emptyset$
 - Crossing edge
 - An edge (u,v) ∈ E crosses the cut if and only if
 - $u \in S \&\& v \in (V-S)$ or vice-versa
 - > A cut respecting a set of edges
 - A cut respect a set A of edges if no edge of A crosses the cut
 - ➤ A light edge
 - An edge if a light edge if its weight is minimum among the edges crossing the cut

Safe Edges: Theorem

- ❖ G=(V,E) connected, undirected, and weighted
- Let
 - > A be a subset of E including a MST
 - Initially A is empty
 - > (S, V-S) be any cut of G that respects A
 - > (u, v) be a light edge crossing the cut (S, V-S)
- Then
 - > Edge (u,v) is **safe** for A

Prim's Algorithm

- Known as DJP algorithm, Jarnik's algorithm, Prim-Jarnik algorithm, Prim-Dijkstra algorithm
 - > Developed in 1930 by Vojtech Jarnik
 - Rediscovered in 1957 by Robert Prim
 - Redicoverd 1959 by Edsger Dijkstra
- Based on the generic algorithm
- Use the theorem to select the safe edge

Implementation

fields of all adjacency nodes

Pseudo-code

Source = starting vertex

```
v.key is the minimum weight of any edge
mst_Prim (G, w, source)
                                      connecting v to a vertex in the tree
  for each v \in V
     v.key = \infty
                                                v.Pred is the vertex parent
     v.pred = NULL
  source.key = 0
                                                Extract the vertex from O
  Q = V
                                                 and insert it in the MST
  while Q \neq \phi
     u = extract min (Q)
     for each v \in adjacency list of u
       if v \in Q and w(u,v) < v.key
          v.pred = u
          v.key = w(u,v)
                                                Update the key and pred
```

Implementation

Pseudo-code

```
mst_Prim (G, w, source)
  for each v \in V
    v.key = \infty
    v.pred = NULL
  source.key = 0
  Q = V
  while Q \neq \emptyset
    u = extract min (Q)
    for each v \in adjacency list of u
       if v \in Q and w(u,v) < v.key
         v.pred = u
         v.key = w(u,v)
```

End when all vertices belong to the same tree

> Select all edges crossing the cut Among those, select the edge with minimun weight and add it to A

Adjust S and the set of edges crossing the cut depending on the selected edge

Complexity

```
mst_Prim (G, w, source)
                                       O(|V|)
  for each v \in V
     v.key = \infty
                                      Executed |V| times
     v.pred = NULL
  source.key = 0
  o = v
                                           O(|g|V|) \rightarrow O(|V| \log |V|)
  while Q \neq \emptyset
     u = extract min (Q)
                                                           Executed |E|
     for each v \in adjacency list of u
                                                         times altogether
        if v \in Q and w(u,v) < v.key
          v.pred = u
          v.key = w(u,v)
                                             O(|g|V|) \rightarrow O(|E| \log |V|)
```

Overall running time complexity $T(n) = O(|V| \cdot \log|V| + |E| \cdot \lg|V|)$

Complexity

In general

$$ightharpoonup T(n) = O(|V| \cdot |g|V| + |E| \cdot |g|V|)$$
 that is

$$ightharpoonup T(n) = O(|E| \cdot |g||V|)$$

With an efficient data structure, such as a Fibonacci-Heap the running time can be improved to

$$T(n) = O(|E| + |V| \cdot |g|V|)$$

Safe Edges: Corollary

- ❖ G=(V,E) connected, undirected, and weighted
- Let A be such that
 - > A is a subset of E that is included in a MST
 - Initially A is empty
 - \triangleright C is a tree in the forest $G_A = (V, A)$
 - \triangleright (u,v) is a light edge connecting C to another component of G_A
- Then
 - > Edge (u,v) is **safe** for A

Kruskal's Algorithm

- Algorithm proposed by Joseph Kruskal in 1956
- Based on the generic algorithm
- Use the corollary to select the safe edge
 - > Forest of tree, initially single vertices
 - Sort edges into nondecreasing order by weigth w
 - > Iteration
 - Select a safe edge, i.e., an edge with minimum weight connecting two trees and generating one single tree (Union-Find)
 - > End
 - All vertices belong to the same tree

Implementation

Pseudo-code

```
A is initially the empty set
mst_Kruskal (G, w)
                                              For each v create a
  A = \phi
                                                    set
  for each vertex v \in V
    make set (v)
sort E into non-decreasing order by weight w
for each edge (u,v) \in E
                                                 taken in nondecreasing
  if find (u) \neq find (v)
                                                    order by weight
     A = A \cup (u,v)
     union (u,v)
                                          Find representative of u and v
return A
                            Union set
```


Complexity

```
0(1)
mst_Kruskal (G, w)
                                           Executed V times
  A = \phi
  for each vertex v \in V
                                                   O(1) \rightarrow O(|V|)
     make set (v)
sort E into non-decreasing order by weight w
for each edge (u,v) \in E
                                                        O(|E| |g |E|)
  if find (u) \neq find (v)
                                     Executed E times
     A = A \cup (u,v)
     union (u,v)
return A
                                    Union and find takes O(lg |E|)
                                         \rightarrow O(E log |E|)
```

Overall running time complexity $T(n) = O(|E| \cdot |g|E|)$

Complexity

- In general
 - $ightharpoonup T(n) = (|E| \cdot |g||E|)$
- Asintotically, for dense graph, Prim is more efficient than Kruskal
 - > Prim

•
$$T(n) = (|E| + |V| \cdot |g| |V|)$$

Kruskal

•
$$T(n) = (|E| \cdot |g| |E|)$$

For dense graph $E = \frac{|V| \cdot (|V| - 1)}{2}$ then |E| > |V|