

Association Rule Learning Apriori Intuition

ARL - Movie Recommendation

User ID		Movies liked
46578		Movie1, Movie2, Movie3, Movie4
98989		Movie1, Movie2
71527		Movie1, Movie2, Movie4
78981		Movie1, Movie2
89192		Movie2, Movie4
61557		Movie1, Movie3
	Movie1	Movie2
Potential Rules:	Movie2	Movie4
	Movie1	Movie3

ARL - Market Basket Optimisation

Transaction ID	Products purchased
46578	Burgers, French Fries, Vegetables
98989	Burgers, French Fries, Ketchup
71527	Vegetables, Fruits
78981	Pasta, Fruits, Butter, Vegetables
89192	Burgers, Pasta, French Fries
61557	Fruits, Orange Juice, Vegetables
87923	Burgers, French Fries, Ketchup, Mayo
В	rgers French Fries
Potential Rules: Veget	rables Fruits
Burgers, French	r Fries Ketchup

Apriori - Support

Movie Recommendation: support(\mathbf{M}) = $\frac{\text{# user watchlists containing } \mathbf{M}}{\text{# user watchlists}}$

Market Basket Optimisation: support(I) = $\frac{\# \text{ transactions containing } I}{\# \text{ transactions}}$

Apriori - Confidence

Movie Recommendation: confidence $(M_1 \rightarrow M_2) = \frac{\text{# user watchlists containing } M_1 \text{ and } M_2}{\text{# user watchlists containing } M_1}$

Market Basket Optimisation: confidence $(I_1 \rightarrow I_2) = \frac{\# \text{ transactions containing } I_1 \text{ and } I_2}{\# \text{ transactions containing } I_1}$

Apriori - Algorithm

Step 1: Set a minimum support and confidence

Step 2: Take all the subsets in transactions having higher support than minimum support

Step 3: Take all the rules of these subsets having higher confidence than minimum confidence

Step 4: Sort the rules by decreasing lift

- The Apriori Algorithm is an algorithm for mining frequent itemsets for Boolean association rules.
- Apriori uses a "bottom up" approach, where frequent subsets are extended one item at a time which is known as candidate generation, and groups of candidates are tested against the data.

Example

Design the association rules for the given table using Apriori Algorithm.

Transaction ID	Itemsets
1	A,B,C
2	A,C
3	A,D
4	B,E,F

Support = 2 Confidence = 50%

Candidate C1

Transaction ID	Itemsets
1	A,B,C
2	A,C
3	A,D
4	B,E,F

Itemset	Support
{A}	3
{B}	2
{C}	2
{D}	1
{E}	1
{F}	1

Support = 2 Confidence = 50%

_

Itemset	2 Support		
{A,C}	2		
Associative Rule	Support	Confidence	Confidence %
A -> C	2	2/3 = 0.66	66%
C -> A	2	2/2 = 1	100%

Example 2

- A database has 5 transactions
- **M**inimum support = 60%
- Minimum confidence = 80%

T_ID	Itemsets	
T_1000	M,O,N,K,E,Y	
T_1001	D,O,N,K,E,Y	
T_1002	M,A,K,E	
T_1003	M,U,C,K,Y	
T_1004	C,O,O,K,E	

,		
Candidate C2	Itemset	Support
	{1,2}	3
	{1,3}	5
	{1,4}	1
	{1,5}	2
	{2,3}	3
	{2,4}	2
	{2,5}	2
	{3,4}	
	{3,5}	1
	{4,5}	

	Itemset	Support
Candidate C3		Support
	{1,2,3}	2
	{1,2,5}	2
	{1,2,4}	1
	{1,3,5}	• 1
	{1,2,3,4}	-
	{1,2,4,5}	1
	{1,2,3,5}	i 🥷
	{2,3,4}	(6
	{2,3,5}	1
	{2,4,5}	-

Association	rules		
Association Rules	Support	Confidence	Confidence %
1 → 2^3	2	2/7= 0.28	28
2 → 1^3	2	2/6= 0.33	33
3 → 1^2	2	2/6= 0.33	33
1 → 2^5	2	2/7= 0.28	28
2 → 1^5	2	2/6= 0.33	33
5 → 1 [^] 2	2	2/2=1.00	100