STAT 672 Statistical Learning & Data Analytics

Spring 2018

George Mason University Instructor: Martin Slawski

Homework 2

Pencil-and-paper part due Thursday, March 1st, in class. Code and relevant output has to be submitted via Blackboard. Please follow the following format for the filename of your submission: Lastname_Firstname_HWx.zip, where x needs to be substituted by the homework #.

Maximum possible points to earn: 20; 100% = 15 points, rest counts as bonus.

Problem 1

Binary classification. Let us re-consider the following setup discussed in class.

- $\mathcal{X} = [0, 1], \ \mathcal{Y} = \{-1, 1\},\$
- \bullet The marginal distribution of X is the uniform distribution on [0,1],

•
$$\mathbb{P}(Y=1|X=x) = \begin{cases} 0.9, & x < 0.2, \\ 0.2, & 0.2 \le x \le 0.8, \\ 0.9, & x > 0.8. \end{cases}$$

3 Points:

a) Verify that the Bayes risk R^* of the classification problem is given by $R^* = 0.16$.

Consider the function classes $\mathcal{F}_d = \mathcal{P}_d$, $d \in \{0,1,2,\ldots\}$, where \mathcal{P}_d is the space of polynomials of degree d on \mathbb{R} : $\mathcal{P}_d := \{f: x \mapsto f(x) = \sum_{k=0}^d \alpha_k x^k, \ \{\alpha_k\}_{k=0}^d \subset \mathbb{R}\}$.

6 Points:

b) Show that the excess risk (with respect to the 0-1 loss)

$$\min_{f \in \mathcal{F}_d} R(f) - R(f^*)$$

is zero if and only if $d \geq 2$, where f^* denotes the Bayes classifier.

Hint. Consider the polynomial $\bar{f}(x)=(x-0.2)(x-0.8)$ and show that $\mathrm{sign}(\bar{f}(x))=\mathrm{sign}(f^*(x))$ for all $x\in[0,1]$. Note that you need to consider the "if" part and the "only if" part separately.

2 Points:

c) Write code to to generate a random pair (X,Y) according to the setup given above. Hint. First draw X, then Y|X=x.

We now want to learn a classifier $x \mapsto \operatorname{sign}(f(x))$ given a sample $\mathcal{D}_n = \{(X_i, Y_i)\}_{i=1}^n$ for $f \in \mathcal{F}_d$. More specifically, given \mathcal{D}_n we want to learn f via empirical risk minimization, i.e. via

$$\min_{f \in \mathcal{F}_d} R_{\sf emp}(f).$$

Step 1:

Since minimizing $R_{\text{emp}}(f)$ with respect to the 0-1 loss is computationally not tractable, we choose the logistic loss instead. This yields:

$$\min_{f \in \mathcal{F}_d} \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-Y_i f(X_i))).$$

STEP 2:

Minimizing over $f \in \mathcal{F}_d$ is equivalent to minimize over the coefficients $\{\alpha_k\}_{k=0}^d$ defining the polynomial. This yields

$$\min_{\alpha_0,\dots,\alpha_d} \frac{1}{n} \sum_{i=1}^n \log(1 + \exp\left(-Y_i(\alpha_0 + \alpha_1 X_1 + \alpha_2 X_i^2 + \dots + \alpha_d X_i^d)\right).$$

Step 3:

We can solve the optimization problem in the previous step by using existing implementations of logistic regression (function glm in R, function linear_model.LogisticRegression in scikit-learn, ...). The output of these implementations yields

$$\widehat{f}(x) = \widehat{\alpha}_0 + \widehat{\alpha}_1 x + \widehat{\alpha}_2 x^2 + \ldots + \widehat{\alpha}_d x^d,$$

where $(\widehat{\alpha}_0, \dots, \widehat{\alpha}_d)$ minimize the empirical risk above. Given a datum (X, Y), our prediction is $\operatorname{sign}(\widehat{f}(X))$ (which may be different from Y).

To make this work, we have to consider a few things:

• \mathcal{D}_n has to be a converted to a feature (or design) matrix

$$\mathbf{X} = \begin{pmatrix} 1 & X_1 & X_1^2 & \dots & X_1^d \\ \vdots & \dots & \dots & \vdots \\ 1 & X_n & X_n^2 & \dots & X_n^d \end{pmatrix}$$

• (\mathbf{X}, \mathbf{y}) are fed into the implementation of logistic regression, where $\mathbf{y} = (Y_1, \dots, Y_n)^{\mathsf{T}}$.

- Depending on the implementation/software that you use, you may need to do the following:
 - convert Y to 0/1 instead of -1/1.
 - remove the first column in X if an intercept is included by default, or set the option to fit a model without intercept.
 - In the Python implementation, set the parameter C to a large value (like 1e5)).

4 Points:

d) Using simulated data from c), produce code realizing the above steps for, say, $d \in \{1, 2, 5\}$.

5 Points: Advanced simulation

- e) For $d \in \{1, 2, 5\}$ and $n \in \{10, 20, 50, 100, 200, 500, 1000\}$, do the following:
 - 1. Generate a training sample \mathcal{D}_n of size n and a second independent sample $\mathcal{D}' = \{(X'_i, Y'_i)\}$ of size 1000.
 - 2. Train a classifier \hat{f} according to d), using \mathcal{D}_n only and compute the misclassification error on both \mathcal{D}_n and \mathcal{D}' :

$$\mathsf{err}_{\mathsf{emp}} = \frac{1}{n} \sum_{i=1}^n I(Y_i \neq \mathsf{sign}(\widehat{f}(X_i))), \qquad \mathsf{err}_{\mathsf{gen}} = \frac{1}{|\mathcal{D}'|} \sum_{i=1}^{|\mathcal{D}'|} I(Y_i' \neq \mathsf{sign}(\widehat{f}(X_i'))).$$

3. Repeat 1. and 2. 50 times and compute the average over the above two errors.

Plot the averages of err_{emp} and err_{emp} in dependency of n in the same plot, separately for each d, and try to interpret the results.