1. Revurrent Neural Network for Classification:

Network Architecture and Performance with Confusion Matrix:

Parametors :

Batch_size	20
learning_rate	0.0001
L	7

◆ Step of Experiment :

Step 1 :

將蒐集的資料包成矩陣,再用 numpy 的 diff 進行運算,numpy 的 diff 是將下一個 column 減去上一個 column 的值,因此藉由 numpy diff 算出來的矩陣的物理意義可視為「增加趨勢」的矩 陣,利用此矩陣進行訓練才有趨勢的 pattern 可以學。

• Step 2:

將 step 1 求出來的矩陣用 numpy 的 corrcoef 算出 correlation 所形成的矩陣,矩陣求出後得到如下所示的圖形。

• Step 3:

利用 correlation 所形成的矩陣進行國家的挑選,我用一個 loop 對此矩陣的每一個 row 去 loop 完一輪,在 loop 每一個 row 時挑出大於 0.55 的元素,將這些元素集合成一個 list,若此 row 的元素個數大於一個 threshold(ex.在此中我設 40),代表這個國家與其他40 個國家有正相關,且相關係數會大於 0.55,所以就將這個國家選起來放進去我待會要用於 train 的 list 內。

• Step4:

將這些選起來的國家以L切割成片段放入學習的模型內。

Accuracy performance :

在此之中模型可以很快的學到是否有增加的 Pattern,但是結果其實出乎意料的有點讓人沮喪,如下結果所示。(我試了蠻多方法,整理如下)

Result :

- 因為 csv 讀進來的國家事後看了一下,其實準確度不太高,我利用 pygal 提供的 COUNTRIES 以名稱的相符程度做出對應的簡稱 list 並放入用於指示 list 中,在該 list 中其實錯誤率很高。
- 正確率的 pattern 其實正確率上升得太快而且上升之後幾乎水平不動,我檢查過 training data 應是正確的,模型也沒有問題,嘗試改掉 time step 就 train 不動了 QQ。

2. Variational Autoencode for Image Generation:

- Network Architecture:
 - ◆ Encoder

◆ Decoder:

Preprocessing Method :

- ◆ Step-1: 先利用 PIL 將 image 轉換成 RGB 格式
- ◆ Step-2:為了統一訓練資料間的平衡,將資料 reshape 成模型 input 的大小,並將資料整理成一個 numpy 的 matrix
- ◆ Step-3:圖形集合成一個 matrix 後,再利用一個 random list 進行 matrix 的 shuffle。
- ◆ Step-4:將 data normalize後再餵人 model 內進行訓練。

■ Loss function design :

使用 MSE Loss 與 KL Divergence,KL Divergence 使用[1]所提到的,其物理意義是使 encoder 的 lantent 經過 decoder 後的 output 與原來資料的分布接近的方法。KL Divergence 就是在降低此兩分佈的距離間的量測指標。

- Experiment Result & Analysis : (使用 test.py 繪製)
- ◆ KL *1 + MSE *1:

■ Patametor :

Batch_size	30
learning_rate	0.001
Training_data	10000

■ Loss performance :

對於此 Modle 來說 Loss 的 Lower bound 大約在 150 附近。抓在此附近的 Loss 經驗上來看表現較其他的好,所以可以將 Epoch 拉長與 Loss function 上進行設計,以達到此 Loss。

■ Graph Result:

		Example	Synthesis	
	Example and	15-25		
圖形	Synthesis	-		
	Interpolated	F发发发发	大大大大大ツ	
			顯改變髮色與人物的輪	
Analysis		廓。		
		2. 基於 Synthesis 的特性,利用將 latent variable 進		
		行線性轉換,將圖形轉換成其他風格。在		
		Interpolated 的部分我使用兩張圖做內插。兩張		
Analysis	圖人物的髮色差異極大,分別為深咖啡與淺粉			
		色,利用內插值的連續分布特性,可將兩圖所		
		得到的圖形之間用連	續分布的方式展現出漸漸	
		變化的效果,這是常	見的風格轉換應用的方法	
		之一。		

◆ KL *70 + MSE *1 與 KL *100 + MSE *1:

■ Patametor :

Batch_size		50
learning_rate		0.0001
Т	raining_data	12000

■ Loss performance :

隨著 KL Divergence 的占比越高,Loss 的 Lower bound 也越來越高,代表模型的優化能力較差,因為降低一小點的 Loss 在 Loss function 所形成的平面上移動的速度較快,所以容易產生在訓練時 Loss 的 Variance 越來越高的現象。

■ Graph Result:

- Graph result.			
		Example	Synthesis
Example and Synthesis	KL *70		
	KL *100	2	•
KL*70		COUCO	
Interpolated	KL *100		
		● Loss 越高可使匯出的圖形較為 Smooth,但是對	
Analysis		Latent 的線性轉換變化的敏感度降低,導致相同	
		的 Synthesis 中,髮色與肌膚變化較小。	
		● 在 Interpolated 的部分使用兩張圖做內插。因為	
		對 Latent Variable 的線性變化反應的靈敏度隨著	
		KL 佔比大越來越下降,所以做 Interpolated 變化	
		越來越不明顯。	

◆ KL *0 + MSE *1:

■ Patametor :

Batch_size	50
learning_rate	0.0001
Training_data	12000

■ Loss performance :

隨著 KL Divergence 的佔比下降,Loss 的 Lower bound 越來越下降,遠比前面的三個 Case 都還要來的小,代表 loss function 所形成的平面較緩,所以訓練過程中的 variance 也非常的小。

■ Graph Result:

		Example	Synthesis
圖形	Example and Synthesis		
	Interpolated	TULLITE THE THE THE	
Analysis Analysis		髮色與人物的輪廓面的 case 還要來的 ● 基於 Synthesis 的特 進行線性轉換,但是 度下降太多,而使的 好,推測原因是因為 docode 的分佈與原	校於前面的例子可明顯改變,但是圖形的解析度遠比前差。 性,利用將 latent variable 是此處遺憾的點是因為解析 的實驗看起來沒有前面的 為 Loss 佔比下降,所以 圖形分佈的差異較大,造 大差,而使得圖形的解析度

Reference :

[1] Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014