1、实验名称及目的

传感器标定实验: 使用 Levenberg-Marquardt(LM)算法实现三轴加速度计的标定。

2、实验效果

通过建立误差模型和 LM 算法, 最终得到标定后的参数如下图:

3、文件目录

文件夹/文件名称		说明
rawdataFile	e_acc_A.bin	飞控飞行日志文件。
px4_read_binary_file.m		MATLAB 飞行日志读取处理函数。
acquire_data_ag.slx		获取飞控中加速度计数据模型文件。
calFunc.m		加速度计误差模型函数
calLM.m		对飞控中采集到的数据基于误差模型进行计算并标定。
lm.m		Levenberg-Marquardt 求解最小值函数。
Methods for Non-Linear Least Squares P roblems.pdf		非线性最小二乘问题的方法介绍文档, 其中有对 The L
		evenberg-Marquardt Method 的详细讲解。
calP9_8.mat		标定后的尺度因子和偏移的 mat 文件, 用于 e3.2 小
		节。
AccRaw.mat		采集的特征点 mat 文件,用于 e3.2 小节。
accdata.mat		原始的加速度计数值,用于 e3.2 小节。

4、运行环境

序号	软件要求	硬件要求	
	秋日安本	名称	数量(个)
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版及以上	卓翼 H7 飞控 ^②	1
3	MATLAB 2017B 及以上	遥控器 [®]	1
4		遥控器接收器	1
5		数据线、杜邦线等	若干

- ① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②:须保证平台安装时的编译命令为: droneyee_zyfc-h7_default, 固件版本为: 1.12.1。其他

配套飞控请见: http://doc.rflysim.com/hardware.html

③: 本实验演示所使用的遥控器为: 福斯 FS-i6S、配套接收器为: FS-iA6B。遥控器相关配置见: http://doc.rflysim.com/hardware.html

5、实验步骤

Step 1:

打开 MATLAB 软件, 在 MATLAB 中打开 acquire_data_ag.slx 文件, 在 Simulink 中, 点击编译命令。

Step 2:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图为生成的编译报告。

Step 3:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行或 点击 PX4 PSP: Upload code to Px4FMU, 弹出 CMD 对话框,显示正在上传固件至飞控中, 等待上传成功。

Step 4:

上传成功后,打开 QGroundControl 软件。确认无人机机架及遥控器通设置如下:

Step 5:

遥控器的设置如下图。注:遥控器设置中, CH5 通道需设置为二段式开关, CH6 通道设置为三段式开关。

Step 6:

拨动遥控器的 CH5 到最底部,即: CH5>1500,自驾仪开始往 SD 卡中写入数据,模型中设置的是采集十个特征点,所以需要将自驾仪面向十个方向放置,将飞控分别按照下

图进行摆放,每次放置的时候保持自驾仪不动,红灯慢闪说明采集到一个特征点,采集到全部特征点时红灯将快闪。采集完成后将遥控器 CH5 拨到最底部,即: CH5<1500,停止写数据到 SD 卡。

注:若暂时无法采集到飞控中的数据,可使用本实验文件夹中的"rawdataFile/e3_A.bi n"文件,也可进行下一步实验,但需将 e3 A.bin 文件复制到本实验文件夹中。

Step 7:

读取数据。将 SD 卡取出,使用读卡器将文件"log/e_acc_A.bin"复制到目录到本实验文件夹中,使用本实验所提供的函数,在 MATLAB 命令行中依次逐行输入:

clear;clc; [datapoints, numpts]=px4_read_binary_file('e_acc_A.bin'); acc_acq_num = size(find(datapoints(4, :)),2)

最终数据保存在"datapoints"中,数据个数保存在"numpoints"中,采集到的特征点将保存到"acc_acq"中。注:若依次运行完上述命令后,得出的"acc_acq_num" \neq 10,即表示 Step 6 中未完全采集所有特征点,需重复 Step 6 或使用"rawdataFile/e3_A.bin"文件

Step 8:

打开 QGC 软件,在飞控与电脑正常连接的情况下,在"Vehicle Setup"-"参数"中,进行如下图的操作。

将记录的数值对应填写在 calLM.m 文件中,如下所示:

```
% 程序第 18 行
CAL_ACC_SCALE= [1;1;1]; % 3*1
CAL_ACC_OFF=[0;0;0]; % 3*1
% 确认第 21 行程序中的 bin 文件名称是否与采集到的文件名称对应。
[datapoints, numpoints] = px4_read_binary_file('e_acc_A.bin');
```

Step 9

在 MATLAB 中,运行 calLM.m 文件,MATLAB 将会弹出如下图像,其中第 1 行分别是: X、Y、Z 轴的加速度计的采集数据和特征点,第 2 行分别是: LM 算法的迭代次数、标定前后的对比图、标定前后的数据指标图。

MATLAB 命令行中也将弹出, 最终标定后的参数, 如下图所示。

6、参考文献

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版 社,2018.
- [2]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社, 2020.