

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Electrical 3: Applications and IP

Instructor: Dikun Yang Feb – May, 2019

Characterization of the Earth Using Resistivity

Environmental

Karst

- Air-filled
- Water-filled

Oil spill

Hydrocarbon: resistive

Archaeology

Volcano

3D Electrical Imaging for Mining Exploration

4D ERT for Hydrological Monitoring

Induced Polarization (IP)

Cause overvoltage in measured potentials

IP Effect in DC Data

- 1) Voltage applied by transmitter
 - \rightarrow instantaneous (V_{σ}) increase due to ρ
- 2) Voltage increases as ions accumulate:

$$V_{off}(t) = V_s\,e^{-t/ au}$$

- 3) Saturation of ionic charges
 - \rightarrow DC voltage ($V_m = V_{\sigma} + V_{s}$)
- 4) Voltage from transmitter removed \rightarrow instantaneous loss in secondary potential (equal to V_{σ})
- 5) IP voltage discharges during off-time

$$V_{on}(t) = V_{\sigma} + V_{s} \Big[1 - e^{-t/ au} \Big]$$

	Not chargeable	Chargeable
Source (Amps)		
Potential (Volts)		7

Chargeability – Capability of Holding Charges

Type 1: Membrane polarization - ions accumulate at pore throat

Equilibrium State

Voltage Applied

Separation of +ve and –ve ions

Chargeability – Capability of Holding Charges

Type 2: Electrode polarization: Ions accumulate at metals

- Pore space is blocked by metallic particles
- Metallic particles become electrically charged and attract nearby ions
- This is why the waveform of dc survey switches polarity

Electric double layer

Hypothetical anomalous ion distribution near a solid-liquid interface.

Net electric dipole moment

Chargeability – A Diagnostic Physical Property

Chargeability is not thoroughly understood in theory but it is often related to:

Clays

Pore-Water Salinity

Tortuosity

Use chargeability to characterize the earth:

- Environmental: Contamination, groundwater...
- Mining: Disseminated sulphides (porphyry)
- Oil/gas:

Time-domain IP Data

Intrinsic chargeability (dimensionless)

$$\eta = \frac{V_s}{V_m}$$

$$d_{IP} = \frac{V_s(t)}{V_m}$$
 mV/V

Integrate over the decay (discharge period)

$$d_{IP} = \frac{1}{V_m} \int_{t_1}^{t_2} V_s(t) dt \quad \text{(msec)}$$

Frequency-domain IP Data

Percent frequency effect:

$$d_{IP} = PFE = 100 \left(\frac{\rho_{a2} - \rho_{a1}}{\rho_{a1}} \right)$$

Phase:

 $d_{IP} = \text{phase (mrad)}$

IP Modeling

Chargeability: alter conductivity

$$\sigma = \sigma(1 - \eta)$$

$$\phi_{\eta} = \mathcal{F}_{dc}[\sigma(1 - \eta)]$$

Apparent chargeability

$$\eta_{a} = \frac{\phi_{s}}{\phi_{\eta}} = \frac{\phi_{\eta} - \phi_{\sigma}}{\phi_{\eta}}$$

$$\eta_{a} = \frac{\mathcal{F}_{dc}[\sigma(1-\eta)] - \mathcal{F}_{dc}[\sigma]}{\mathcal{F}_{dc}[\sigma(1-\eta)]}$$

IP Data of Chargeable Blocks

IP Inversion for Chargeability

IP Inversion for Chargeability

IP Inversion for Chargeability

Mt. Isa Mineral Exploration

Conductivity pseudo-section

Chargeability pseudo-section

3D DC/IP Inversion

Apparent resistivity data (ρ_a)

Resistivity model (ρ)

Integrated chargeability data (d_{IP})

Chargeability model (η)

Consistent Models?

Volume rendered resistivity model

Volume rendered chargeability model

Summary

- ERT applications
 - Environmental
 - Archaeology
 - Volcano
 - Mining
 - Hydrological
- IP effect
 - Physical intuition
 - Mechanism of IP
 - IP effect in data
 - Chargeability inversion