CHUONG 2:

QUẢN TRỊ VẬN HÀNH HẠ TẦNG MẠNG

WORKSTATION – SERVER - SERVICE

Trình bày: Bùi Minh Quân

Email: bmquan@cit.ctu.edu.vn

Workstation

- Vòng đời máy trạm
- Cài đặt
- Cập nhật
- Cấu hình
- Lập hồ sơ

Workstation

- Máy trạm còn gọi là máy tính cá nhân, có có tác dụng đáp ứng các yêu cầu công việc của một người dùng trong hệ thống mạng
- * Các máy trạm có đặc điểm:
 - ☐ Cấu hình thấp
 - ☐ Làm việc theo giờ
 - ☐ Cài đặt nhiều phần mềm trên một máy

Vòng đời máy trạm – life cycle

- ❖ Vòng đời máy trạm − life cycle
- * Các trạng thái chính:
 - ☐ New: lắp đặt máy mới
 - Clean: cài đặt hệ điều hành, phần mềm, vẫn chưa cấu hình
 - ☐ Configured: cấu hình phần mềm phù hợp với công việc
 - ☐ Unknow: máy tính xảy ra lỗi hệ thống
 - ☐ Off: thu hồi máy tính không sử dụng

Các hoạt động chính

- ❖ Build: cài đặt mới hệ điều hành, cài đặt mới phần mềm
- ❖ Initialize: cấu hình hệ điều hành, phần mềm
- **Updates:** thay đổi cấu hình, thay đổi cài đặt phần mềm
- **Entropy:** là khả năng làm cho máy tính không hoạt động
- Debug: dò tìm và khắc phục lỗi (update, reconfigure)
- * Rebuild: thực hiện cài đặt lại bắt đầu từ hệ điều hành
- * Retire: tiến hành thải loại máy tính

Các công việc chính quản lý máy trạm

- Cài đặt mới hệ điều hành và các ứng dụng
 - ☐ Cài đặt tự động
 - ☐ Cài đặt từng bước
- Cập nhập hệ điều hành và các ứng dụng
- Cấu hình tham số hệ thống mạng

Cài đặt mới hệ điều hành và các ứng dụng

- Cài đặt từng bước
 - ☐ Số lượng máy tính nhỏ
 - ☐ Hệ điều hành có tính chất đặt biệt
- Cài đặt tự động
 - ☐ Số lượng máy tính lớn
 - ☐ Cấu hình máy tính đồng bộ
 - ☐ Phần mềm hỗ trợ
 - ☐ Lợi ích của cài đặt tự động:
 - ≻Đảm bảo tính đồng nhất, giảm tỷ lệ lỗi cài đặt
 - ➤ Tiết kiểm thời gian
 - ➤ Phục hồi hệ thống nhanh

Các kiểu cài đặt

- Hard Disk Imaging
 - ☐ Nhân bản hard disk của hệ thống
 - ☐ Ưu điểm: nhanh, đơn giản
 - ☐ Nhược điểm: cần phần cứng phải giống nhau, phải cập nhật bằng tay khi có thay đổi
- ❖ Scripted Installs (tạo kịch bản cài đặt)
 - ☐ Thiết lập các tham số cho kịch bản
 - ☐ Ưu điểm: linh hoạt, hệ thống có thể khác
 - ☐ Nhược điểm: nhiều công sức tạo file kịch bản

Đặc trưng của cài đặt tự động

- Không giám sát
 - ☐ Yêu cầu ít hoặc không có sự tương tác của con người.
- Dồng thời
 - ☐ Nhiều cài đặt có thể được thực hiện cùng một lúc.
- Có thể mở rộng
 - ☐ Máy client mới được thêm vào dễ dàng.

Các thành của cài đặt tự động

- Thành phần boot (khởi động)
 - ☐ Media (đĩa CD/USB)
 - ☐ Mạng (PXE)
- Cấu hình mạng
 - ☐ DHCP: địa chỉ IP, mặt nạ mạng, DNS
- * Cài đặt dữ liệu và chương trình
 - ☐ Mạng (tftp, ftp, http, NFS)

PXE

- Môi trường thực thi trước khi khởi động
 - ☐ Tiêu chuẩn khởi động qua mạng của Intel.
 - ☐ PXE BIOS tải hạt nhân qua mạng.
- Các ứng dụng
 - ☐ Máy trạm không đĩa (sử dụng NFS cho đĩa gốc).
 - ☐ Khởi động chương trình cài đặt.
- Làm thế nào nó hoạt động
 - ☐ Hỏi máy chủ DHCP cho cấu hình (ip, net, tftp)
 - ☐ Tải về pxelinux từ máy chủ tftp.
 - ☐ Khởi động hạt nhân pxelinux.
 - ☐ Hạt nhân sử dụng image (ảnh) hệ thống tập tin tftp hoặc NFS

Disk Imaging (ảnh đĩa)

- 1. Thiết lập máy chủ ftp.
- 2. Cài đặt ảnh hệ điều hành trên test client
- 3. Xác minh ảnh (image) trên client
- 4. Sao chép ảnh vào máy chủ.
- 5. Khởi động client kết nối qua mạng
- 6. Client kéo hình ảnh từ ftp server

Disk Imaging Tools

- * Acronis TrueImage
- Clonezilla (free)
- **\$** g4u: Ghost for UNIX (free)
- Symantec GHOST
- **System Imager (free)**

Kịch bản cài đặt

- Cài đặt tự động hoàn toàn
 - ☐ Hệ thống tự trả lời câu hỏi
 - Người cài đặt: đặt giá trị một số tham số
 - ☐ Thiết lập một khung cài đặt
- Cài đặt tự động một phần
 - ☐ Các phần mềm không cùng nhà cung cấp
 - ☐ Cần các thiết lập mang tính cục bộ
 - ☐ Phần mềm không hỗ trợ cài đặt tự động
- ❖ Bán tự động tốt hơn là không tự động

Kịch bản cài đặt

- ❖ Danh sách thao tác cài đặt Checklist
 - Liệt kê các phần mềm cài đặt
 - ☐ Thao tác cài đặt cần thiết
 - ☐ Tham số môi trường cần thiết
 - ☐ Trạng thái cài đặt
- * Checklist là công cụ hỗ trợ kiếm soát quá trình cài đặt

Cấu hình thông tin mạng (Configure)

- * Kết nối mạng là bắt buộc?
- * Khó khăn khi cấu hình thủ công
 - ☐ Chỉ quản lý số lượng giới hạn IP
 - ☐ Khó khăn khi thay đổi
- Thuận lợi khi cấu hình tự động
 - ☐ Mọi thứ thay đổi tại server
 - Dễ dạng thay đổi hiện trạng mạng
 - ☐ Có thể áp dụng cho địa chỉ tĩnh và địa chỉ động
- ❖ Phần mềm hỗ trợ: DHCP Server

Lập hồ sơ máy tính

- * Thông tin cấu hình phần cứng
- * Thông tin cấu hình phần mềm
 - ☐ Tên máy
 - ☐ Hệ điều hành
 - ☐ Danh sách phần mềm cài đặt
- * Thông tin cấu hình mạng
- ❖ Thông tin người dùng chức năng sử dụng máy
- Thường xuyên cập nhập trạng thái

SERVER

Nội dung

- * Tổng quan máy chủ (Server)
- Phần cứng máy chủ
- Những vấn đề khác

Tổng quan về Server

- Server phục vụ cho nhiều người dùng.
- Server vận hành với độ tin cậy cao.
- Server có mức độ bảo mật chặt chẽ.
- Server có thời gian sử dụng lâu hơn
- Server có năng lực xử lý thông tin cao
- * Các loại máy chủ:
 - ☐ Máy chủ riêng (Dedicated Server)
 - ☐ Máy chủ ảo (Virtual Private Server VPS):
 - ☐ Máy chủ đám mây (Cloud Server)

Đặc điểm phần cứng Server

- Khả năng mở rộng
- ❖ Bộ xử lý trung tâm có hiệu năng cao
- ❖ Xuất nhập với hiệu suất cao − tốc độ
- Có khả năng nâng cấp hệ thống
- ❖ Có khả năng lắp vào tủ kỹ thuật − Rack
- Có khả năng sẵn sàng cao
- Có công cụ quản trị từ xa hoặc tại chổ

Đặc điểm phần cứng Server

- * Khả năng mở rộng:
 - ☐ Nhiều vị trí lắp CPU
 - ☐ Nhiều vị trí lắp HDD
 - ☐ Nhiều vị trí lắp RAM
- Có khả năng gắn kết với các máy chủ khác
- Có khả năng gắn kết với các thiết bị lưu trữ ngoài
- Có khả năng ảo hóa

Đặc điểm Server - Memory

- * Máy chủ cần RAM nhiều hơn máy tính để bàn.
 - □ x86 hỗ trợ lên tới 64GB với PAE.
 - □ x86-64 hỗ trợ 1 PB (1024 TB)
- * Máy chủ cần RAM nhanh hơn máy tính để bàn.
 - Tốc độ bộ nhớ cao hơn.
 - ☐ Nhiều DIMM truy cập song song.
 - ☐ Cache CPU lớn hơn.

Đặc điểm Server - CPU

- ❖ Bộ xử lý trung tâm có hiệu năng cao.
 - ☐ Số lượng CPU
 - ☐ Tốc độ CPU
- * Khả năng phân phối tác vụ giữa các CPU
- Chia sẽ tài nguyên giữa các CPU
- Cache CPU nhanh hơn / lớn hơn
- * Hỗ trợ RAM nhanh hơn / lớn hơn

Đặc điểm Server - HDD

- Máy chủ có khả năng mở rộng
 - ☐ Nhiêu đĩa cứng
 - ☐ Tốc độ đọc cao
- Lựa chọn công nghệ Raid
- Tối ưu công suất của RAID các đĩa cứng nên:
 - ☐ Nên có cùng kiểu dáng và nhãn hiệu
 - ☐ Cùng dung lượng và hiệu suất

RAID (Redundant Array of Inexpensive Disks)

- * RAID (Hệ thống đĩa dự phòng): hoạt động bằng cách kết nối một dãy các ổ cứng lại với nhau để hình thành một thiết bị nhớ đơn có dung lượng lớn.
- * Hỗ trợ lưu trữ hiệu quả cao và đáng tin cậy hơn
- Có 3 lý do chính để áp dụng RAID:
 - Dự phòng
 - ☐ Hiệu quả cao
 - ☐ Giá thành thấp

Đặc điểm Server - Rack

- * Khả năng lắp đặt trong tủ kỹ thuật cabinet RACK.
- Server phải có khả năng lắp vào tủ
 - ☐ Tiết kiệm không gian
 - ☐ Hỗ trợ công tác lắp nguồn điện
 - ☐ Hỗ trợ công tác lắp dây mạng

Server trong RACK dễ bảo trì, bảo quản hơn

Đặc điểm Server

- ❖ Khả năng dự phòng tính sẵn dùng cao.
 - ☐ Chọn lựa RAID cho ổ cứng
 - ☐ Chọn lựa phương pháp dự phòng CPU
 - ☐ Chọn lựa phương pháp dự phòng nguồn điện
 - ☐ Tìm hiểu thuật ngữ Redundancy: hỗ trợ
 - ➤ Raid: tăng hiệu suất hoặc khắc phục lỗi (Raid 0,1, 5, 6,10)
 - ≻Hot Swap (hoán đổi nóng)
 - ✓ Thành phần có thể được thay thế trong khi chạy.
 - ✓ Cần sự hỗ trợ n + 1 thiết bị dự phòng

Hot Plug và Hot Spare

- Hot Plug (cắm nóng)
 - ☐ An toàn điện để thay thế linh kiện.
 - ☐ Phần có thể không được nhận ra cho đến khi khởi động lại
 - ☐ Yêu cầu thời gian chết, không giống như trao đổi nóng.
- Hot Spare (phụ tùng nóng)
 - Phụ tùng đã được cắm vào hệ thống.
 - ☐ Hệ thống tự động sử dụng phụ nóng khi bị hỏng (HDD/CPU)
 - \square Cung cấp n + 2 thiết bị dự phòng.

Đặt máy chủ trong Data Center

- Trung tâm dữ liệu cần thiết cho độ tin cậy của máy chủ.
 - ☐ Nguồn (đủ điện, UPS)
 - Diều khiển khí hậu (nhiệt độ, độ ẩm)
 - ☐ Hệ thống báo cháy, chữa cháy
 - ☐ Mạng tốc độ cao
 - ☐ Bảo mật vật lý
 - ☐ Hệ thống chống sét
 - .v.v.

Tách riêng mạng quản trị (Separate Administrative Network)

- ❖ Độ tin cậy (Reliability)
 - ☐ Cho phép truy cập vào các máy khi mạng ngưng phục vụ
- Hiệu năng (Performance)
 - ☐ Backup cần nhiều băng thông nên thực hiện qua mạng riêng
- ❖ Bảo mật
 - Dữ liệu giám sát và nhật ký nên đi qua mạng riêng

Quản trị từ xa (Remote Administration)

- Quản trị từ xa
 - ☐ Máy chủ phải được truy cập từ xa.
 - Cho phép SA giải quyết vấn đề nhanh vào bất kỳ thời điểm nào.
 - Cho phép SA làm việc bên ngoài phòng máy.
 - ☐ Một số công cụ quản trị máy từ xa
 - ➤ Remote Desktop
 - >VNC Free Edition
 - ➤ PuTTY: SSH, Telnet

SERVICE

Dịch vụ mạng (Service)

- * Tổng quan về dịch vụ
- Đáp ứng yêu cầu khách hàng
- Kiến trúc mở
- Nguyên tắc thiết kế dịch vụ

Tổng quan dịch vụ

- * Một dịch vụ là chức năng được cung cấp bởi một hoặc nhiều máy chủ
- ❖ Một dịch vụ được xây dựng trên cơ sở nhu cầu của khách hàng (người dùng).
- * Một dịch vụ được xây dựng phần lớn phải dựa trên một hoặc nhiều dịch vụ khác.
- ❖ Giới hạn hoạt động truy cập, cấu hình hệ thống máy chủ có cài đặt dịch vụ đảm bảo an toàn tối đa hệ thống.

Tổng quan dịch vụ

- * Các dịch vụ khi cài đặt phải
 - Dơn giản nhất có thể
 - Dộc lập nhất có thể tối thiểu hoá sự phụ thuộc
 - ☐ Tăng cường độ tin cậy
 - Dễ dàng cho việc bảo trì
 - Dễ dàng cho việc hướng dẫn
 - ☐ Đa ngôn ngữ, đa vùng miền.

Tổng quan dịch vụ

- * Các dịch vụ khi vận hành phải:
 - Dáp ứng yêu cầu của khách hàng
 - ☐ Kiến trúc mở của dịch vụ
 - ☐ Tính đơn giản
 - ☐ Nhà cung cấp
 - ☐ Triển khai dịch vụ
 - ☐ Môi trường vận hành

Đáp ứng yêu cầu của khách hàng

- 1. Yêu cầu chức năng
 - Đáp ứng nhu cầu sử dụng dịch vụ của khách hàng
 - Các chức năng chính cần thiết
 - Phát triển các chức năng muốn có
- 2. Yêu cầu chất lượng dịch vụ
- 3. Yêu cầu hoạt động

Yêu cầu khách hàng về chất lượng dịch vụ

- Thoả thuận mức dịch vụ (SLA-Service level agreement) là hợp đồng giữa một nhà cung cấp dịch vụ và người dùng cuối xác định mức dịch vụ mong đợi.
- SLA là một phương pháp để hiểu rõ về khách hàng.
- * Các mức độ dịch vụ cần được xác định là:
 - ☐ Số lượng dịch vụ
 - □ Độ tin cậy
 - Hiệu suất của dịch vụ: thời gian đáp ứng
 - □ .v.v.

SLA (Service Level Agreement)

- * Xây dựng SLA với khách hàng:
 - ☐ Liệt kê các dịch vụ hỗ trợ
 - ☐ Xác định các mức độ hỗ trợ
 - ☐ Thời gian đáp ứng các vấn đề phát sinh
 - ☐ Thủ tục báo cáo vấn đề phát sinh:
 - ► Liên lạc với ai?
 - Các vấn đề sẽ được báo cáo như thế nào?

Yêu cầu khách hàng - Yêu cầu hoạt động

- Thiết kế một dịch vụ đáng tin cậy cần xác định:
 - Dịch vụ phụ thuộc vào những dịch vụ nào
 - ☐ Những dịch nào phụ thuộc vào nó
 - Làm thế nào cộng tác với những dịch vụ khác
 - ☐ Làm thế nào để tích hợp với những dịch vụ khác
 - Làm thế nào tăng giảm tải của dịch vụ
 - ☐ Nâng cấp dịch vụ như thế nào
 - ➤ Yêu cầu thời gian chết
 - Các dịch vụ nào bị ảnh hưởng

Yêu cầu hoạt động

- * Các chức năng khác:
 - ☐ Khả năng dự phòng
 - ☐ Khả năng phân cụm xử lý (clustering)
 - ☐ Tính năng sẵn sàng phục vụ.
 - ☐ Các ràng buộc, điều kiện trong quá trình sử dụng
 - ☐ Yêu cầu hỗ trợ kỹ thuật

Kiến trúc mở

- Giao thức giao tiếp
 - Uu tiên cho các chuẩn giao tiếp quốc tế
 - ➤ Internet Engineering Task Force (IETF)
 - ➤ Institute of Electrical and Electronic Engineers (IEEE)
- * Phần mềm có khả năng mềm đẻo trong cấu hình
- * Không phụ thuộc sâu vào một nhà cung cấp.

Nguyên tắc thiết kế dịch vụ tin cậy

- ❖ Đơn giản hoá Simplicity
 - ☐ Dễ dàng cho bảo trì
 - Dễ dàng cho triển khai
 - ☐ Dễ dàng trong tích hợp
 - ☐ Tiết giảm các chi phí cho vận hành dịch vụ
- Nhà cung cấp Vendor Relations
 - ☐ Hướng dẫn cấu hình dịch vụ
 - Lựa chọn giá thấp từ nhiều nhà cung cấp

Nguyên tắc thiết kế một dịch vụ đáng tin cậy

- * Các thành phần dịch vụ phải được gắn kết chặt chẽ.
- Dự phòng các thành phần
- ❖ Giảm phụ thuộc dịch vụ (một thành phần thất bại)
- * Tập trung quản lý dịch vụ
 - Quản lý bởi một nhóm SAs.
 - ☐ Hỗ trợ dịch vụ bởi một helpdesk duy nhất.
 - ☐ Cung cấp tài liệu hỗ trợ

Nguyên tắc thiết kế một dịch vụ đáng tin cậy

- Giám sát hệ thống:
 - ☐ Tính khả dụng—hiệu năng
 - ☐ Các sự cố phát sinh và cảnh báo
 - ☐ Năng lực của máy: Ram, CPU, HDD .v.v.
 - ☐ Người dùng không được phép nhận ra vấn đề trước SA
- Triển khai dịch vụ
 - ☐ Ân tượng ban đầu rất khó thay đổi
 - ☐ Hãy sẵn sàng hỗ trợ: tài liệu, đào tạo
 - ☐ Kỹ thuật triển khai: một, một số, nhiều.

Triển khai dịch vụ

- Dùng tên miền ánh xạ địa chỉ IP
- Sử dụng tên miền thể hiện chức năng
- Hạn chế triển khai nhiều dịch vụ trên một máy chủ.
- * Kế hoạch dự phòng: triển khai dịch vụ trên máy khác
- Dảm bảo môi trường vận hành: điện, mạng, an ninh
- * Đánh giá khả năng chịu tải của dịch vụ:
 - □ 100 qps, 200 qps, .v.v
 - Giám sát hiệu năng: độ trễ, băng thông, thời gian đáp
 - Dè xuất nâng cấp năng lực server, số lượng server.

Information Technology Infrastructure Library

- ❖ ITIL là tập các "best practice" (qui định, qui trình, checklist, ...) giúp bộ phận IT cung cấp các dịch IT (IT Service) phục vụ yêu cầu của Business.
- ❖ ITIL được phát triển bởi chính phủ Anh những năm 1980 để phục vụ cho việc quản lý hạ tầng Công nghệ thông tin.
 - ☐ Phiên bản 1.0 của ITIL được sử dụng từ 1989-1996.
 - ☐ Phiên bản 2.0 được xuất bản vào năm 2006.
 - ☐ Phiên bản 3.0 cải tiến được xuất bản vào năm 2007.
 - ☐ Phiên bản mới nhất của ITIL đang được sử dụng rộng rãi trên toàn thế giới hiện nay là phiên bản ITIL 2011

Các thành phần trong vòng đời ITIL

- Lập chiến lược cho dịch vụ (Service strategy)
- Thiết kế dịch vụ (Service Design)
- * Chuyển đổi dịch vụ (Service Transition)
- ❖ Vận hành dịch vụ (Service Operation)
- Cải thiện dịch vụ liên tục (Continual Service Improvement)

Tài liệu tham khảo

- Principles of Network and System Administration, Mark Burgess, Oslo University College, Norway, Second Edition
- Network Management Fundamentals, Alexander Clemm Ph.D., Copyright© 2007 Cisco Systems, Inc.
- ❖ Best Management Practices, 2011. *Introduction to ITIL lifecycle*. The Stationery Office. ISBN 9780113313099.
- http://www.slideshare.net/trunglt/itil-in-practice-public-version