import numpy as np

```
import pandas as pd

# Loading the dataset

df = pd.read_csv('/Railway Traffic in all regions.new.csv')
print(df.columns)
df.head()
```

	Port	Traffic in Eleventh Plan (MT) (2011- 12)Proj.	Traffic in Eleventh Plan (MT) (2011- 12) Ach.	Traffic in Eleventh Plan (MT) (2011- 12) %	Total Capacity in Eleventh Plan (MT) (2011-12) Proj.	Total Capacity in Eleventh Plan (MT) (2011-12) Ach.	Total Capacity in Eleventh Plan (MT) (2011-12)
0	Kolkata	1343	1223	9100	3145	1635	5100
1	Haldia	4450	3101	7000	6340	5070	7900
2	Paradeep	7640	5425	7100	10640	7650	7100
3	Visakhapatnam	8220	6742	8200	10810	7293	6700
4	Ennore	4700	1496	3200	6420	3100	4800

[#] Preprocessing the dataset

[#] Renaming the columns

df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12)Proj.':'Traffic_Projected','
df

	Port	Traffic_Projected	Traffic_Achieved	Traffic in Eleventh Plan (MT) (2011- 12) %	Total_Capacity_Pro
0	Kolkata	1343	1223	9100	
1	Haldia	4450	3101	7000	
2	Paradeep	7640	5425	7100	
3	Visakhapatnam	8220	6742	8200	
4	Ennore	4700	1496	3200	
5	Chennai	5750	5571	9700	
6	Tuticorin	3172	2810	8900	

Perparing the Calculations:

Traffic_Percent = round((df.Traffic_Achieved/df.Traffic_Projected)*100,2)

Traffic_Percent

- 0 91.06 1 69.69 2 71.01
- 3 82.02 4 31.83
- 5 96.89
- 88.59 6
- 7 52.66
- 8 67.49
- 9 87.54
- 10 79.07 99.56

11

- 12 95.13
- dtype: float64

Total_Percent = round((df.Total_Capacity_Achieved/df.Total_Capacity_Projected)*100,2) Total_Percent

- 0 51.99
- 1 79.97
- 2 71.90
- 3 67.47
- 4 48.29
- 5 110.26 6
- 52.11
- 7 74.85 84.25 8
- 9 62.63
- 48.45

11 66.95 12 71.12 dtype: float64

Replacing the existing columns with newly created columns
df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12) %':'Traffic_Percent','Total
df.iloc[:,3:4] = Traffic_Percent
df.iloc[:,6:] = Total_Percent
df

Port Traffic_Projected Traffic_Achieved Traffic_Percent Total_Capac

0	Kolkata	1343	1223	91.06	
1	Haldia	4450	3101	69.69	
2	Paradeep	7640	5425	71.01	
3	Visakhapatnam	8220	6742	82.02	
4	Ennore	4700	1496	31.83	
5	Chennai	5750	5571	96.89	
6	Tuticorin	3172	2810	88.59	
7	Cochin	3817	2010	52.66	
8	NMPT	4881	3294	67.49	
9	Mormugao	4455	3900	87.54	
10	Mumbai	7105	5618	79.07	
11	JNPT	6604	6575	99.56	
12	Kandla	8672	8250	95.13	
10+					

df.shape

(13, 7)

Checking for null values

df.isnull().sum()

```
Port 0
Traffic_Projected 0
Traffic_Achieved 0
Traffic_Percent 0
Total_Capacity_Projected 0
Total_Capacity_Achieved 0
Total Capacity in Eleventh Plan (MT) (2011-12) % 0
dtype: int64
```

Summary of Dataset
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13 entries, 0 to 12
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Port	13 non-null	object
1	Traffic_Projected	13 non-null	int64
2	Traffic_Achieved	13 non-null	int64
3	Traffic_Percent	13 non-null	float64
4	Total_Capacity_Projected	13 non-null	int64
5	Total_Capacity_Achieved	13 non-null	int64
6	Total Capacity in Eleventh Plan (MT) (2011-12) %	13 non-null	float64

dtypes: float64(2), int64(4), object(1)

memory usage: 856.0+ bytes

df.describe()

Traffic_Projected Traffic_Achieved Traffic_Percent Total_Capacity_Project

count	13.000000	13.000000	13.000000	13.00000
mean	5446.846154	4308.846154	77.887692	7705.30769
std	2133.280019	2212.894855	19.382398	2570.24267
min	1343.000000	1223.000000	31.830000	3145.00000
25%	4450.000000	2810.000000	69.690000	6340.00000
50%	4881.000000	3900.000000	82.020000	6690.00000
75%	7105.000000	5618.000000	91.060000	9560.00000
max	8672.000000	8250.000000	99.560000	12220.00000
7				
∀ †				•

#Finding Outliers anr replacing the outliers

```
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = [17.50, 3.50]
plt.rcParams["figure.autolayout"] = True
```

sns.boxplot(x='Port',y='Traffic_Projected',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3a8a1dbe90>

Visualization using various plots
import matplotlib.pyplot as plt
import seaborn as sns

import matplotlib.pyplot as plt
import seaborn as sns

plt.scatter(df.Port,df.Traffic_Projected)
sns.set()

plt.scatter(df.Port,df.Traffic_Achieved)
sns.set_style('white')
sns.set_context('notebook')

sns.boxplot(x='Port',y='Traffic_Projected',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3a87236190>

sns.relplot(data=df,x="Traffic_Projected",y='Traffic_Achieved',hue='Port')

<seaborn.axisgrid.FacetGrid at 0x7f3a870bf690>

sns.relplot(data=df,x="Traffic_Projected",y='Traffic_Achieved',hue='Port')

```
<seaborn.axisgrid.FacetGrid at 0x7f3a870c8850>
```

```
8000

7000

Port

Kolkata

Haldia
```

colors=['r','k','g','b','y']
plt.pie(df.Traffic Projected,labels=df.Port,colors=colors,startangle=135)

```
([<matplotlib.patches.Wedge at 0x7f3aa175e990>,
  <matplotlib.patches.Wedge at 0x7f3a8724b890>,
  <matplotlib.patches.Wedge at 0x7f3a8724b910>,
  <matplotlib.patches.Wedge at 0x7f3a87207790>,
  <matplotlib.patches.Wedge at 0x7f3a8713fc10>,
  <matplotlib.patches.Wedge at 0x7f3a877c5d90>,
  <matplotlib.patches.Wedge at 0x7f3a8711fcd0>,
  <matplotlib.patches.Wedge at 0x7f3a87125390>,
  <matplotlib.patches.Wedge at 0x7f3a8712a0d0>,
  <matplotlib.patches.Wedge at 0x7f3a870f5ed0>,
  <matplotlib.patches.Wedge at 0x7f3a8a036e50>,
  <matplotlib.patches.Wedge at 0x7f3a8a036f90>,
  <matplotlib.patches.Wedge at 0x7f3a8a036c10>],
 [Text(-0.8227559810574577, 0.7301182066173808, 'Kolkata'),
  Text(-0.9813250715975654, 0.49699205612769437, 'Haldia'),
  Text(-1.0974872598930092, -0.07430823892769065, 'Paradeep'),
  Text(-0.7887307236408752, -0.7667488803936667, 'Visakhapatnam'),
  Text(-0.24681684658019215, -1.0719521650914328, 'Ennore'),
  Text(0.2586200998460918, -1.0691658636318304, 'Chennai'),
  Text(0.6508775584042567, -0.8867685176897709, 'Tuticorin'),
  Text(0.8904218552781084, -0.6458706678918711, 'Cochin'),
  Text(1.068042956118005, -0.2632190036580062, 'NMPT'),
  Text(1.083660055487473, 0.18889384357592884, 'Mormugao'),
  Text(0.8515399364034199, 0.6963330644957625, 'Mumbai'),
  Text(0.3009306210259454, 1.058036275998578, 'JNPT'),
  Text(-0.4290148932653011, 1.0128900341876024, 'Kandla')])
```


plt.pie(df.Traffic Achieved,labels=df.Port,colors=colors,startangle=135)

```
([<matplotlib.patches.Wedge at 0x7f3a8a164f10>,
  <matplotlib.patches.Wedge at 0x7f3a872a12d0>,
  <matplotlib.patches.Wedge at 0x7f3a872a1fd0>,
  <matplotlib.patches.Wedge at 0x7f3a872a1d50>,
  <matplotlib.patches.Wedge at 0x7f3a872990d0>,
  <matplotlib.patches.Wedge at 0x7f3a870bbc50>,
  <matplotlib.patches.Wedge at 0x7f3a8727e150>,
  <matplotlib.patches.Wedge at 0x7f3a8727ef50>,
  <matplotlib.patches.Wedge at 0x7f3a8728f790>,
  <matplotlib.patches.Wedge at 0x7f3a87299290>,
  <matplotlib.patches.Wedge at 0x7f3a8728f990>,
  <matplotlib.patches.Wedge at 0x7f3a87245050>,
  <matplotlib.patches.Wedge at 0x7f3a87284f10>],
 [Text(-0.8292984732192152, 0.7226783809664425, 'Kolkata'),
  Text(-0.9785761523202932, 0.5023830352529937, 'Haldia'),
  Text(-1.0999917035067, -0.004272261278115301, 'Paradeep'),
  Text(-0.8509776584186843, -0.6970201036356506, 'Visakhapatnam'),
  Text(-0.4510472262335761, -1.0032728440992495, 'Ennore'),
 Text(-0.02876119418292548, -1.0996239328557615, 'Chennai'),
  Text(0.472408825560159, -0.9933931253702492, 'Tuticorin'),
  Text(0.720536507722156, -0.831160117570351, 'Cochin'),
 Text(0.932508592180857, -0.5834618458038848, 'NMPT'),
  Text(1.086706953339725, -0.1704933944852213, 'Mormugao'),
  Text(1.022266221308968, 0.406167173428238, 'Mumbai'),
  Text(0.535803745383295, 0.9606843115369551, 'JNPT'),
  Text(-0.3488393338981779, 1.0432215100952797, 'Kandla')])
```


plt.plot(df.Port,df.Total_Capacity_Projected,label='Cap Proj.')
plt.plot(df.Port,df.Total_Capacity_Achieved,label='Cap Ach.')
plt.legend()

plt.bar(df.Port,df.Total_Capacity_Projected)
sns.set_style('ticks')

plt.bar(df.Port,df.Total_Capacity_Achieved)
sns.set style('ticks')

plt.bar(df.Port,df.Total_Capacity_Projected,label='Total_capacity',color='g')
plt.bar(df.Port,df.Total_Capacity_Achieved,label='Achieved-capacity',color='k')
plt.legend()

<matplotlib.legend.Legend at 0x7f3a86ddb5d0>

Colab paid products - Cancel contracts here

✓ 0s completed at 3:12 PM

• X