- 1 (10pts) Poisson/Gamma model
 - a) Suppose that x_i is number of snow falls in Chicago in year i, i = 1, 2, ..., n = 10. Assume $x_i \mid \lambda \sim Poisson(\lambda)$. Find the conjugate prior distribution of λ , and the posterior distribution in closed forms.
 - b) Suppose the data are x = (5, 4, 6, 5, 5, 6, 5, 7, 3, 6), find the posterior mean and variance of λ assuming the conjugate prior in a) with prior mean 5 and variance 5.
- **2 (10pts)** Let $x_1, ..., x_n$ be i.i.d. data from a normal distribution with known mean 0 and unknown variance τ .
 - a) Write the likelihood $L(\tau|\mathbf{x})$, where $\mathbf{x} = (x_1, \dots, x_n)$.
 - b) Derive the Jeffreys prior for τ .
 - c) Suppose we observe the 6 data values $x_1 = 2.72, x_2 = 1.65, x_3 = 0.44, x_4 = -1.62, x_5 = 0.27, x_6 = -2.22$. Write the posterior distribution, using your Jeffreys prior from part (b). Do you recognize the form of this posterior? Specify exactly what distribution it is, including the parameter values.
- **3.** (15pts) The "California rain data set" contains data for 30 California cities. Read in the data set by (don't copy paste the command in R, as the breaks will create problems).

```
rain.data<-read.table("https://ccte.uchicago.edu/Bayes2017/Homework/calirain.txt",
header=F, col.names = c("number", "city", "precip",
   "altitude", "latitude", "distance")); attach(rain.data)</pre>
```

will read in the data correctly. The variables are: x_1 = 'altitude', x_2 = 'latitude', x_3 = 'distance from coast', y = 'annual precipitation (in inches)'. Use "precipitation" as the response variable in the regression model.

- (a) Adapt the model selection code on the course web page to perform a Bayesian model selection based on response variable Y and candidate predictor variables X_1, X_2, X_3 . Which model or models appear best based on their posterior probabilities?
- (b) Fit your "best" model (with noninformative priors on β and σ^2) using a Bayesian approach and write the estimated linear regression function for predicting precipitation. Use the posterior mean of β and σ^2 for the estimated linear regression.
- (c) Now consider interaction (cross-product) terms X_1X_2 , X_1X_3 , X_2X_3 as other candidate predictors. Perform a Bayesian model selection using all six candidate predictors (first-order and interaction terms), using the convention that no interaction term should appear in the model without each of its component variables appearing as first-order terms. Does the "best" model change from the one chosen in part (a)? Explain.
- **4.** (15pts) Suppose $X \mid \theta \sim N(\theta, \sigma^2)$ with unknown θ but known σ^2 . We want to test $H_0 : \theta = 0$ vs. $H_1 : \theta \sim N(0, \Sigma^2)$. Assume we observe $x = \lambda \cdot \sigma$ for some positive λ , derive the closed-form solution of BF_{01} ? Which model is favored if $\lambda \gg 1$, or if $\lambda \approx 1$ and $\sigma/\Sigma \gg 1$?