POMIAR SKŁADOWEJ POZIOMEJ ZIEMSKIEGO POLA MAGNETYCZNEGO

1. Opis teoretyczny do ćwiczenia

zamieszczony jest na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

2. Opis układu pomiarowego

Przyrządy wykorzystywane do pomiarów to:

- busola z zespołem uzwojeń prostopadłych do płaszczyzny, w której może poruszać się igła magnetyczna,
- zasilacz z regulacją prądu lub zasilacz z zewnętrznym potencjometrem,
- amperomierz.

Przyrządy należy połączyć tak, by uzyskać zewnętrzne pole magnetyczne prostopadłe do igły magnetycznej. Pole to powstaje w związku z przepływem prądu przez *n* zwojów przewodnika umieszczonych blisko siebie na kole o średnim promieniu *R* . Jeżeli płaszczyzna uzwojenia busoli leży w płaszczyźnie ziemskiego południka magnetycznego, to kierunek pola magnetycznego wytworzonego przez prąd płynący w uzwojeniu jest prostopadły do kierunku ziemskiego pola magnetycznego. Pod igłą magnetyczną umieszczona jest pozioma podziałka kątowa, na której można odczytywać kat *α*, jaki tworzy wskazówka z płaszczyzną uzwojenia.

3. Przeprowadzenie pomiarów

- 1. Przyrządy wykorzystywane do pomiarów należy połączyć ze sobą. Stolik podstawy busoli ustawić w płaszczyźnie poziomej. Ustawić poziomicę na podstawie i regulować tak, aby przy układaniu poziomicy wzdłuż i w poprzek podstawy położenie jej było dokładnie poziome.
- 2. Ustawić uzwojenie busoli w płaszczyźnie południka magnetycznego tzn. w jednej płaszczyźnie z igłą magnetyczną. Najlepiej jest przyłożyć linijkę i sprawdzić, czy oś igły jest równoległa do linijki i czy igła znajduje się nad podziałką w położeniu 0°.
- 3. Włączyć zasilacz i ustawić taki prąd, aby wskazówka busoli wychyliła się o kąt 45°. W celu uniknięcia błędu paralaksy przy odczycie położenia wskazówki, odczyt należy dokonywać jednym okiem, żeby wskazówka pokrywała się z obudową na którą nawinięte jest uzwojenie. Wyłączyć zasilacz.
- 4. Zmienić kierunek przepływu prądu na zasilaczu. Włączyć zasilacz i ustawić prąd jak w punkcie 3. Sprawdzić, czy wychylenie wskazówki w drugą stronę jest symetryczne, tzn. czy ustawiła się ona tym razem również na podziałce 45°.
- 5. Asymetryczne wychylenia wskazówki świadczą o niedokładnym ustawieniu uzwojenia busoli w płaszczyźnie południka magnetycznego. Powtarzać czynności z punktów 2 4 do uzyskania symetrii ustawienia igły przy zmianie kierunku prze pływu prądu.
- 6. Włączyć zasilacz i ustawić taki prąd, aby wskazówka busoli wychyliła się o kąt np. 5°. Jeżeli tak mały kąt nie jest dostępny ustawić najmniejszy z możliwych kątów będący wielokrotnością 5°.
- 7. Dobrać taką wartość natężenia prądu przepływającego przez uzwojenie busoli, aby wychylenie północnego końca wskazówki było wielokrotnością kąta 5°. Odczytać i zapisać położenie obu końców wskazówki.
- 8. Powtórzyć pomiary według punktów 6 7 dla kolejnych odchyleń położenia wskazówki aż do 80° (jeżeli jest osiągalny).
- 9. Wyłączyć zasilacz. Zmienić kierunek prądu na przeciwny. Wykonać pomiary jak w punktach 6 8.
- 10. Oszacować niepewność maksymalną kąta wychylenia wskazówki oraz niepewność maksymalną wyznaczenia prądu.

4. Opracowanie wyników pomiarów

Wyznaczenie wartości średnich wielkości mierzonych oraz ich niepewności

Obliczenia wykonać dla wszystkich badanych przypadków ilości zwojów cewki.

- 1. Obliczyć średnie wychylenie wskazówki dla obu kierunków płynięcia prądu ze wzoru $\bar{\alpha} = \frac{\alpha_N + \alpha_S + \alpha_{1N} + \alpha_{1N}}{4}$.
- 2. Dla niepewności maksymalnej $\Delta \alpha = 1^0$ przyjąć niepewność maksymalną $\Delta t g(\alpha) = 0.1$. Dla większych niepewności przyjąć proporcjonalnie. Przeliczyć na niepewność standardową zgodnie z zależnością $u(tg(\bar{\alpha})) = \frac{\Delta t g(\alpha)}{\sqrt{3}}$.
- 3. Wyznaczyć niepewność standardową względną $u_r(tg(\bar{\alpha})) = \frac{u(tg(\bar{\alpha}))}{tg(\bar{\alpha})}$ dla kątów: 40°, 45°, 50°.
- 4. Obliczyć średnią wartość natężenia prądu dla obu kierunków jego płynięcia ze wzoru $\bar{I} = \frac{|I'| + |I''|}{2}$.
- 5. Niepewność maksymalną przeliczyć na niepewność standardową zgodnie z zależnością $u(\bar{I}) = \frac{\Delta I}{\sqrt{3}}$.
- 6. Wyznaczyć niepewność standardową względną $u_r(\bar{I}) = \frac{u(\bar{I})}{\bar{I}}$ dla prądów odpowiadającym kątom: 40°, 45°, 50°.
- 7. Sporządzić wykres zależności funkcyjnej $tg\bar{\alpha} = f(\bar{I})$ z naniesieniem niepewności standardowych.

Jeden wykres wykonać dla wszystkich badanych przypadków.

Wyznaczanie lokalnej składowej poziomej ziemskiego pola magnetycznego i jej niepewności Obliczenia wykonać dla każdego przypadku ilości zwojów cewki.

- 8. Obliczyć wartość B_z dla trzech kątów wychyleń $B_z = \frac{n \cdot \mu_0}{2 \cdot R} \cdot \frac{\bar{I}}{\operatorname{tg}\bar{\alpha}}$ gdzie: n – liczba zwojów przewodnika stanowiących uzwojenie busoli stycznych, \bar{I} – natężenie prądu płynącego przez zwoje, R – promień zwojów, $\bar{\alpha}$ – kąt wychylenia igły magnetycznej (40°, 45°, 50°).
- 9. Obliczyć niepewność standardową złożoną $u_{c,r}(B_z) = \sqrt{[u_r(\bar{I})]^2 + [u_r(R)]^2 + [u_r(tg(\bar{\alpha}))]^2}$.
- 10. Do dalszych analiz wybrać jeden z przypadków wartości $B_z(\alpha)$, wybór uzasadnić.
- 11. Obliczyć niepewność standardową złożoną $u_c(B_z) = u_{c,r}(B_z) \cdot B_z$.
- 12. Obliczyć niepewność rozszerzoną $U(B_z) = 2 \cdot u_c(B_z)$.

5. Podsumowanie

- 1. Zgodnie z regułami prezentacji wyników zestawić wyznaczone parametry $\left(B_z,u_c(B_z),u_{c,r}(B_z),U(B_z)\right)$ oraz wartością odniesienia $B_{z-teoria}$. Uzasadnić wybór kąta dla którego przedstawiono B_z .
- 2. Przeanalizować uzyskane rezultaty:
- a) która z niepewności wnosi największy wkład do niepewności złożonej $u_c(B_Z)$,
- b) czy spełniona jest relacja $u_{c,r}(B_z) < 0.1$,
- c) czy spełniona jest relacja $|B_{z-teoria} B_z| < U(B_z)$, pod kątem występowania i przyczyn błędów grubych, systematycznych i przypadkowych.
- 3. Wnioski z analizy rezultatów (w tym i wykresów).
- a) Wyciągnąć wnioski pod kątem występowania błędów grubych, systematycznych i przypadkowych i ich przyczyn.
- b) Zaproponować działania zmierzające do podniesienia dokładności wykonywanych pomiarów.
- c) Wyjaśnić czy cele ćwiczenia (które?) zostały osiągnięte.

6. Przykładowe pytania

Zamieszczone są na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

- 1. Omówić podział ciał stałych ze względu na właściwości magnetyczne.
- 2. Jak powstaje pole magnetyczne.
- 3. Na co oddziałuje pole magnetyczne.
- 4. Omówić właściwości pole magnetycznego od przewodnika prostoliniowego.
- 5. Omówić właściwości pole magnetycznego od przewodnika kołowego.
- 6. Wyprowadzić wyrażenie na indukcję pola magnetycznego w środku kołowego obwodu z prądem.
- 7. Omówić prawo Biota-Savarta.
- 8. Omówić prawo Ampera.

Zadania dodatkowe do wyznaczenia i analizy:

- Wyznaczyć współczynnik korelacji liniowej $R^2 = \frac{\left[\sum_{i=1}^n (x_i \bar{x})(y_i \bar{y})\right]^2}{\left[\sum_{i=1}^n (x_i \bar{x})^2\right] \cdot \left[\sum_{i=1}^n (y_i \bar{y})^2\right]}$ dla funkcji, zapisać go na wykresie. Wynik poddać analizie i wyciągnąć wnioski.
- Osobno poddać analizie wyznaczone B_z dla wychyleń o kąt 40° , 45° i 50° . Wyciągnąć wnioski.
- Dokonać pomiaru i opracować więcej niż dwóch przypadków ilości zwojów cewki. Przeanalizować zmiany parametrów wyznaczanych prostych. Wyciągnąć wnioski.

sprawdził dr inż. Zbigniew Krajewski dnia 6.10.2022

Zespół w składzie										
 wyznaczyć lokalną składową poziomą ziemskiego pola magnetycznego, wykazać, że pomiar wielkości porównywalnych obarczony jest najmniejszą niepewnością, sprawdzić jak zależą wyznaczana wielkości i jej niepewności od ilości zwojów cewki. 										
I. Wartości teoretyczne wielkości wyznaczanych lub określanych.										
składowa pozioma ziemskiego pola magnetycznego dla Warszawy to około 18,7 μT										
(według modelu IGRF2020).										
2. Parametry stanowiska (wartości i niepewności), które należy potwierdzić na stanowisku:										
promień zwojów R= 12,0 cm ± 0,5 cm, liczba zwojów N = 1 , 2 , 3 , 4 , 5										
promień zwojów R= 14,8 cm ± 0,2 cm, liczba zwojów N = 126										
3. Pomiary i uwagi do ich wykonania.										
niepewność pomiaru natężenia prądu										
niepewność pomiaru kąta wychylenia igły										

Liczba zwojów					Liczba zwojów						
Kąt wychylenia igły [stopnie]		Prąd w uzwojeniu (+) [A]	Kąt wychylenia igły [stopnie]		Prąd w uzwojeniu (-) [A]	Kąt wychylenia igly [stopnie]		Prąd w uzwojeniu (+) [A]	Kąt wychylenia igły [stopnie]		Pr uzw (-
α_N	α_S	I'	α'_{N}	α'_{S}	<i>I''</i>	α_N	α_S	I'	α'_{N}	α'_{S}	
10 ⁰			10 ⁰			10^{0}			10 ⁰		
15 ⁰			15 ⁰			15 ⁰			15 ⁰		
20 ⁰			200			20^{0}			20^{0}		
25 ⁰			25 ⁰			25 ⁰			25 ⁰		
30 ⁰			30 ⁰			300			30 ⁰		
35 ⁰			35 ⁰			35 ⁰			35 ⁰		
40 ⁰			400			40^{0}			400		
45 ⁰	450		45 ⁰	450		45 ⁰	45 ⁰		450	450	
50 ⁰			50 ⁰			50 ⁰			50 ⁰		
55 ⁰			55 ⁰			55 ⁰			55 ⁰		
60 ⁰			60 ⁰			60^{0}			600		
65 ⁰			65 ⁰			65 ⁰			65 ⁰		
70 ⁰			700			70^{0}			700		
75 ⁰			75 ⁰			75 ⁰			75 ⁰		
80 ⁰			800			80^{0}			800		