IV. Multiple Regression.

- V. Extensions of Multiple Regression
 - A. Non-Linear Models (Chapter 9)
 - B. Dummy (Binary) Variables (Chapter 10)
 - C. Scaling Variables

VI. Problems and Specification Issues

- A. Model Selection/Specification
- B. Multicollinearity
- C. Heteroskedasticity
- D. Autocorrelation

4. Example – annual per capita demand for chicken.

Estimate the following model:

$$chikcons_t = \beta_0 + \beta_1 pchik_t + \beta_2 ppork_t + \beta_3 pbeef_t + \beta_4 disincom_t + u_t$$

$$g^{ol}$$
Model: MODEL1
Dependent Variable: chikcons chikcons

Dependent Variable: chikcons chikcons

Analysis of Variance DF Sum of Mean F Value Pr > F Fcale For model Squares Square Model 4 1127.25901 281.81475 18 68.66969 3.81498 Error **Corrected Total** 22 1195.92870 1.95320 **R-Square** 0.9426 Root MSE Dependent Mean 39.66957 Adj R-Sq 0.9298 Coeff Var 4.92367

		Parameter Estimates			Q = 0.05		
**		DE	Parameter			Tel.	
Variable	Label	DF	Estimate	Error	t Value Pr >		.W
Intercept	Intercept	1	37.23236	3.71770	10.01 < .00	01	mly
pchik	pchik	1	-0.61117	0.16285		15	٠, ٠,
ppork	ppork	1	0.19841	0.06372	3.11 0.00	60	کر کروہ
pbeef	pbeef	1	0.06950	0.05099	1.36 0.18	96 کی	m por
disincom	disincom	1	0.00501	0.00489	1.02 0.31	94	•

a. Classic Signs – look on your printout for the following *combination* – *a contradiction*:

Model is good: Fits well and is significant.

• BUT: Individual t_{calcs} suggest variables are not important. (Contradicts the high R² and F_{calc} values)

b. Correlation Coefficients

proc corr data=chicken;
 var pchik ppork pbeef disincom;
run;

P pop correlation a ceffretat

Ho: P = 0

Pair-wise correlations – any problems? Ha: P≠0

The CORR Procedure 4 Variables: pchik ppork pbeef disincom Pearson Correlation Coefficients, N = 23 Prob > |r| under H0: Rho=0 pchik ppork pbeef disincom pchik 1.00000 0.97011 0.92847 0.93168 <.0001 <.0001 <.0001 0.97011 1.00000 0.95713 0.94057 ppork <.0001 < .0001 < 0001 0.92847 0.94057 0.98588 pbeef <.0001 <.0001 <.0001 0.93168 0.95713 0.98588 1.00000 disincom <.0001 <.0001 < 0001

all very Nigh Statistically sign. Fireal

c. Auxilliary Regressions – are independent variables related?

Model: MODEL2 Dependent Variable: ppork

Analysis of Variance

Sum of

 Source
 DF
 Squares
 Square square
 F Value Pr > F

 Model
 3
 26356
 8785.33502
 177.66
 <.0001</td>

 Error
 19
 939.57493
 49.45131

 Root MSE
 7.03216
 R-Square
 0.9656
 ⇒
 VIF = 1 -0.9656

 1 -0.9656

 1 -0.9656

 ⇒
 VIF = 1 -0.9656

 1 -0.9656

 1 -0.9656

Mean

Parameter Estimates = 29.07

Parameter Standard Variable Label DF Estimate Error t Value Pr > |t|Intercept Intercept -17.30398 12.78269 -1.35 0.1917 pchik pchik 1 1.95988 0.37629 5.21 < .0001 pbeef pbeef 1 -0.22436 0.17621 -1.27 0.2183 -disincom disincom 1 0.04015 0.01502 2.67 0.0150

d. Regression results with VIFs:

Model: MODEL3

Dependent Variable: chikcons chikcons

Analysis of Variance

	° 00', \e' '				
Source	DF	Sum of	Mean	F Value Pr > F	o cople.
		Squares	Square		6,
Model	4	1127.25901	281.81475	73.87 < .0001	•
Error	18	68.66969	3.81498		
Corrected Total	22	1195,92870			

 Root MSE
 1.95320
 R-Square
 0.9426

 Dependent Mean
 39.66957
 Adj R-Sq
 0.9298

 Coeff Var
 4.92367

Parameter Estimates

Variable La	ıbel DF	Parameter	Standard	t Value	Pr > t	Variance	١
		Estimate	Error			Inflation	l
Intercept Int	tercept 1	37.23236	3.71770	10.01	<.0001	0	l
pchik pc	hik 1	-0.61117	0.16285	-3.75	0.0015	18.90128	l
ppork pp	ork 1	0.19841	0.06372	3.11	0.0060	29.05099	ŀ
pbeef pb	eef 1	0.06950	0.05099	1.36	0.1896	39.76141	l
disincom dis	sincom 1	0.00501	0.00489	1.02	0.3194	52.70104	J
							•

5. Solutions – fixing the problem

- a. Sample data problem get new sample data (Not a good suggestion the new sample will probably have the same problem ⊕)
- **b.** Eliminate the offensive variable (But your results will be biased if that variable was important ⊕)
- c. It's linear Association use non-linear forms (Ok this might work. Eg., try a log-log model (important need logs on right-hand side)
- *d. Data transformations try ratios of variables (This is often great, but the ratios must make sense!)
- e. Use "non-sample" information Restrictions (Great possible solution but you need to have some theoretical result to use as a restriction)

c. Use non-linear form:

Model: MODEL4 Dependent Variable: <u>Inqchik</u>

	Analysis of V	/ariance			
Source	DF Sum of	Mean	F ValuePr > F		
	Squares	Square			
Model	4 0.76105	0.19026	249.93<.0001	ام.	٠.٨
Error	18 0.013700	.00076127		1, Mex	rid
Corrected Tot	al 22 0.77475		0.0	u, Te,	did solve lem
			di.	MUX	20 %
Root MS	SE 0.027	59 R-Sq uai	e0.9823	10,	810
Depende	ent Mean3.663	89 Adj R-S	q 0.9784	12 1/2	•
Coeff Va	ar 0.753	06		•	

Parameter Estimates							
Variable Label DF	Parameter	Standard	t Value $Pr > t $	X ariance	' '		
elasticities	Estimate	Error		Inflation	}		
Intercept Intercept 1	2 18979	0.15571	14.06 < .0001	0	1		
lnpchik 1	-0.50459	0.11089	-4.55 0.0002	17.48577	1		
lnppork 1	0.14855	0.09967	1.49 0.1535	41.43312	l		
lnpbeef 1	0.09110	0.10072	0.90 0.3776	42.30710			
Indine 1	0.34256	0.08327	4.11 ¥ 0.0007	65.11460			
_							

Correlations for the log variables – no improvement

5

Correlations for relative prices – these look pretty good.

e. Use non-sample information - restricted least squares:

Non-sample information – theoretical restriction for population parameters.

Example: Consumer demands are homogeneous of degree zero – if all prices and income change by the same proportion, demand does not change.

- p_1 , p_2 , and I increase by same proportion (λ).
- What happens to q_1^* and q_2^* ?

e. Use non-sample information - restricted least squares:

• p_1, p_2 , and I increase by same proportion (λ) .

• What happens to q_1^* and q_2^* ?

Nothing l consumer demands are homoseneous of degree zero

What does that mean for the demand function for q_1 :

$$q_1 = q_1(p_1, p_2, I)$$

Totally differentiate the demand function:

$$\underbrace{(d \ q_1)} = \underbrace{\left(\frac{\partial \ q_1}{\partial \ p_1}\right)} \underbrace{d \ p_1} + \underbrace{\left(\frac{\partial \ q_1}{\partial \ p_2}\right)} \underbrace{d \ p_2} + \underbrace{\left(\frac{\partial \ q_1}{\partial \ I}\right)} \underbrace{d \ I}$$

Divide by q_1 and multiply by "1":

$$\frac{dq_1}{q_1} = \frac{\partial q_1}{\partial p_1} \frac{1}{q_1} \left(\frac{p_1}{p_1} \right) dp_1 + \frac{\partial q_1}{\partial p_2} \frac{1}{q_1} \left(\frac{p_2}{p_2} \right) dp_2 + \frac{\partial q_1}{\partial I} \frac{1}{q_1} \left(\frac{I}{I} \right) dI$$

$$\frac{dq_1}{q_1} = \left(\frac{\partial q_1}{\partial p_1} \frac{p_1}{q_1} \right) \left(\frac{\partial q_1}{p_1} \frac{p_2}{q_1} \right) \left(\frac{\partial q_1}{\partial p_2} \frac{p_2}{q_1} \right) \left(\frac{\partial q_1}{\partial I} \frac{I}{q_1} \right) \left(\frac{\partial q_1}{\partial I} \frac{I}{q_1}$$

$$\frac{d q_1}{q_1} = \left(\frac{\partial q_1}{\partial p_1} \frac{p_1}{q_1}\right) \frac{d p_1}{p_1} + \left(\frac{\partial q_1}{\partial p_2} \frac{p_2}{q_1}\right) \frac{d p_2}{p_2} + \left(\frac{\partial q_1}{\partial I} \frac{I}{q_1}\right) \frac{d I}{I}$$

The terms in parentheses are *elasticities*:

$$\frac{d q_1}{q_1} = \varepsilon_{p_1} \frac{d p_1}{p_1} + \varepsilon_{p_2} \frac{d p_2}{p_2} + \varepsilon \frac{d I}{I}$$

If all prices and income increase by the same proportion (λ) , there is no change in quantity demanded $(dq_1 = 0)$:

$$\frac{d q_1}{q_1} = \varepsilon_{p_1} \lambda + \varepsilon_{p_2} \lambda + \varepsilon_{I} \lambda = (\varepsilon_{p_1} + \varepsilon_{p_2} + \varepsilon_{I}) \lambda = 0$$

homogeneity tells in the sum of all prize and income elasticities must be 300

F-tests of the two restrictions:

1. Homogeneity:
$$H_0: \beta_1 + \beta_2 + \beta_3 + \beta_4 = 0$$
;

$$H_0: \beta_1 + \beta_2 + \beta_3 + \beta_4 \neq 0$$

The REG Procedure Model: MODEL4

Test 1 Results for Dependent Variable Inqchik

Mean F Value Pr > F Source DF Square

3.33 (0.0847) 0.00254 Numerator **Denominator** 18 0.00076127

2. Equal substitution effects:

 $H_0: \beta_2 - \beta_3 = 0;$

Same

above.

conclusions as

the "Beta" tests

Model: MODEL4 $H_0: \beta_2 - \beta_3 \neq 0$

Test 2 Results for Dependent Variable Inqchik Mean F Value Pr > F Source DF

Square 1 0.00023365 0.31 (0.5864) Numerator **Denominator** 18 0.00076127