杭州电子科技大学学生考试卷(A)卷

考试课程	高等数学 A2		考试日期 20		202	2020年 月 日		成		
课程号	A0714202	任	任课教师姓名						绩	
考生姓名			学号 (8 位)			专	业			

题号	- 1-8	= 9-12	三 13-16	四 17-19	五 20	六 21
得分						

注意: 本卷总共 4 页, 总分 100 分, 时间 120 分钟

得分	

一、选择题 (本题共8小题,每小题3分,共24分)

- 1、向量 \vec{a} = (6,-1,2)在向量 \vec{b} = (7,-4,4)上的投影为(B)
 - (A) 3:
- (B) 6:
- (C) -2; (D) -4.
- 2、直线 $\frac{x}{3} = \frac{y}{-2} = \frac{z}{7}$ 和平面3x 2y + 7z 8 = 0的位置关系是(B)
 - (A) 平行; (B) 垂直; (C) 斜交;
- (D) 直线在平面上.
- 3、极限 $\lim_{(x,y)\to(2,0)} \frac{\sin(xy)}{v} = (C)$

- (A) 0; (B) 1; (C) 2; (D) 不存在.
- 4、二元函数 f(x,y) 在点 (x_0,y_0) 处的偏导数存在是函数在该点连续的 (D)
 - (A) 充分非必要条件;(B) 必要非充分条件;(C) 充要条件;(D) 以上都不对.

- 5、函数 z = z(x, y) 由方程 $z^3 3xyz = a^3$ 所确定,则 $\frac{\partial z}{\partial x} = (A)$

- (A) $\frac{yz}{z^2 xy}$; (B) $\frac{yz}{xy z^2}$; (C) $\frac{xy z^2}{yz}$; (D) $\frac{z^2 xy}{yz}$.
- 6、已知 $\iint \sqrt{a^2 x^2 y^2} d\sigma = \pi$,其中 $D: x^2 + y^2 \le a^2$,则a = (D)

- (A) 1; (B) $\sqrt[3]{\frac{1}{2}}$; (C) $\sqrt[3]{\frac{3}{4}}$; (D) $\sqrt[3]{\frac{3}{2}}$.

 $(7. \, \, \mathrm{i})$ α 为常数,则级数 $\sum_{n=1}^{\infty} \left(\frac{\sin n}{n^3} - \frac{\alpha}{\sqrt[3]{n}}\right)$ (C)

- (A) 绝对收敛;
- (B) 条件收敛; (C) 敛散性与有 α 关;

8、
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$$
在 $(-\infty, +\infty)$ 内的和函数是(A)

- (A) e^{-x^2} ; (B) e^{x^2} ; (C) $-e^{-x^2}$; (D) $-e^{x^2}$.

得分

二、填空题 (本题共4小题,每小题3分,共12分)

- 9、函数 u = 2xy + 2z 在点 (1,1,2) 处的方向导数的最大值为______. ($2\sqrt{3}$)
- 10、交换积分次序 $\int_0^1 dx \int_0^{x^2} f(x,y) dy + \int_1^{\sqrt{2}} dx \int_0^{2-x^2} f(x,y) dy = \int_0^1 dy \int_{\sqrt{y}}^{\sqrt{2-y}} f(x,y) dx$.
- 11、设 L 为 $\frac{x^2}{2} + \frac{y^2}{3} = 1$,其周长 a,则 $\iint_L (3x^2 4xy + 2y^2) ds = ______.$ (6a)
- 12、设 $f(x) = \begin{cases} -1, & -\pi < x \le 0 \\ 1 + x^2, & 0 < x \le \pi \end{cases}$,则其以 2π 为周期的傅里叶级数在点 $x = \pi$ 处 收敛于_____. $\left(\frac{1}{2}\pi^2\right)$

三、计算题(共4小题,每题6分,共24分)

15、求 $\iint_{D} \frac{x^{2}}{y^{3}} dx dy$, 其中 D 是由 x = 2 , $y = \sqrt{x}$, xy = 1 围成.

14、求曲线 $\begin{cases} x^2 + z^2 = 10 \\ y^2 + z^2 = 10 \end{cases}$ 在点(1,1,3)处的切线和法平面方程.

13、设 $z = x \ln(x + \ln y)$,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, dz$.

16、设 $\int_L (x^2 - y) dx - (x + \sin^2 y) dy$,其中 L 是沿曲线 $y = \sqrt{2x - x^2}$ 从点 (0,0) 到点 (1,1) 的一段弧,证明积分与路径无关,并求积分值.

四、综合计算题(共 3 小题, 17 题 8 分, 18-19 各 9 分, 共 26 分) $[9\ \beta]$ 19、求平面 $\frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1$ 和柱面 $x^2 + y^2 = 1$ 的交线上与 xoy 平面距离最短的点.

[8分] 17、求双曲抛物面 z = xy 被柱面 $x^2 + y^2 = 2$ 所截得的曲面面积.

[9分] 18、求 $\sum_{n=1}^{\infty} \frac{n}{2^n} x^{n-1}$ 的收敛域与和函数.

得分	- 1	
10 70	- 1	
	- 1	
	- 1	
	- 1	

五、计算题(本题9分)

20、求 $\iint_{\Sigma} (z^2 - 1)x \, dy dz + xy \, dz dx + z \, dx dy$,其中 $\Sigma : x^2 + y^2 = z$,(0 $\leq z \leq 4$)取下侧.

六、分析题 (本题5分)

21、已知,阿贝尔判别法是这样描述的:设 $\{b_n\}$ 为单调有界数列,且 $\sum_{n=1}^{\infty}a_n$ 收敛,则

 $\sum_{n=1}^{\infty} a_n b_n$ 收敛. 下面讨论级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{\frac{p+\frac{1}{n}}{n}}}$ $(p \in R)$ 的敛散性,如果收敛请判断绝对收敛与条件收敛.

2019-2020-2 高等数学 A2 期末考卷 (A)-参考答案

一、选择题: BBCD ADCA

二、填空题: 9、
$$2\sqrt{3}$$
 10、 $\int_0^1 dy \int_{\sqrt{y}}^{\sqrt{2-y}} f(x,y) dx$ 11、6a 12、 $\frac{\pi^2}{2}$

三、计算题 (每题6分)

13.
$$\frac{\partial z}{\partial x} = \ln(x + \ln y) + \frac{x}{x + \ln y} \dots 2$$

$$\frac{\partial z}{\partial y} = \frac{x}{x + \ln y} \cdot \frac{1}{y} \dots 2$$

$$\frac{\partial z}{\partial y} = \frac{x}{x + \ln y} \cdot \frac{1}{y} \dots 2$$

$$\frac{\partial z}{\partial y} = \frac{x}{x + \ln y} \cdot \frac{1}{y} \dots 2$$

14.
$$\Leftrightarrow F(x, y, z) = x^2 + z^2 - 10$$
, $G(x, y, z) = y^2 + z^2 - 10$

$$\vec{T} = \begin{vmatrix} i & j & k \\ 2x & 0 & 2z \\ 0 & 2y & 2z \end{vmatrix} = \begin{vmatrix} i & j & k \\ 2 & 0 & 6 \\ 0 & 2 & 6 \end{vmatrix} = (-12, -12, 4) \vec{x}(3, 3, -1) \dots 2$$

$$3(x-1)+3(y-1)-(z-3)=0$$
,

四、综合计算题(17题8分,18-19题各9分)

故R=2, 当x=±2时,级数发散. 收敛域为(-2,2)2分

可得
$$L_x = \frac{1}{3}\lambda + 2\mu x = 0$$

$$L_y = \frac{1}{4}\lambda + 2\mu y = 0$$

$$L_z = 2z + \frac{1}{5}\lambda = 0$$

$$\frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1$$

$$x^2 + y^2 = 1$$

解得,
$$x = \frac{4}{5}, y = \frac{3}{5}, z = \frac{35}{12}$$
 或 $x = -\frac{4}{5}, y = -\frac{3}{5}, z = \frac{85}{12}$ 2分

五、计算题 (本题 9 分)

六、分析题(本题5分)

21、解答要点

②
$$p > 1$$
 , $\left| \frac{(-1)^{n-1}}{n^{p+\frac{1}{n}}} \right| = \frac{1}{n^{p+\frac{1}{n}}} < \frac{1}{n^p}$, $\bar{m} \sum_{n=1}^{\infty} \frac{1}{n^p}$ 收敛 , 故级数绝对收敛 ;1 分

③
$$0 , $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$ 收敛 , 而数列 $\left\{\frac{1}{\frac{1}{n^n}}\right\}$ 是单减有下界(极限为 1),由到贝尔判别法,得 题中级数收敛$$

阿贝尔判别法,得题中级数收敛,

另外由于
$$\left|\frac{\left(-1\right)^{n-1}}{n^{\frac{1}{p+\frac{1}{n}}}}\right|$$
 $\rightarrow 1 \ (n \rightarrow \infty)$,而 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 发散,故级数 $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{p+\frac{1}{n}}}}$ 发散,

所以,题中级数为条件收敛。

杭州电子科技大学学生考试卷(B)卷

考试课程	高等数学 A2		考证	代日期	期 2020年		年 9 月 14 日		成	
课程号	A0714202	任课教师姓名					绩			
考生姓名			学号 (8 位)			专业				

题号	_	1-	11	四	五	六
得分						

注意: 本卷总共 4 页, 总分 100 分, 时间 120 分钟

得分

一、选择题 (本题共8小题,每小题3分,共24分)

- 1、向量 $\vec{a} = (6, -1, 2)$ 在向量 $\vec{b} = (7, -4, 4)$ 上的投影 $\Pr_{\vec{b}}\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = ($ B).
 - (A) 3:
- (B) 6;
- (C) -2:
- 2、已知 $z = x + (y-1)\sin(x^2y^3)$,则偏导数 $\frac{\partial z}{\partial x}$ 在 (1,1) 的值为 (D).
 - (A) 0:
- (B) -1:
- (C) 2:
- 3、函数 u = 2xy + 2z 在 (1,1,2) 处的梯度的模为 (A).

 - (A) $2\sqrt{3}$ (B) $2\sqrt{6}$ (C) $2\sqrt{2}$
- $(\mathbf{D}) \mathbf{0}$
- 4、交换积分次序, $\int_0^1 dy \int_{\sqrt{y}}^{\sqrt{2-y}} f(x,y) dx = ($ **A**).
- (A) $\int_0^1 dx \int_0^{x^2} f(x, y) dy + \int_1^{\sqrt{2}} dx \int_0^{2-x^2} f(x, y) dy$ (B) $\int_0^{\sqrt{2}} dx \int_0^{2-x^2} f(x, y) dy$
- (C) $\int_0^1 dx \int_0^{x^2} f(x, y) dy + \int_1^{\sqrt{2}} dx \int_0^1 f(x, y) dy$ (D) $\int_0^1 dx \int_0^{2-x^2} f(x, y) dy$

- 5、母线平行于 x 轴,且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16 \\ x^2 v^2 + z^2 = 0 \end{cases}$ 的柱面方程为 (C)
 - (A) 椭圆柱面 $3x^2 + 2z^2 = 16$; (B) 椭圆柱面 $x^2 + 2y^2 = 16$;
- - (C) 双曲柱面 $3y^2 z^2 = 16$; (D) 抛物柱面 $3y^2 z = 16$.
- 6、设 Ω 是由 $z = \sqrt{2 x^2 y^2}$ 和 $z = x^2 + y^2$ 围成的闭区域,则 $\iiint_{\Omega} (xy^2 + yz^2 + zx^2) dv = ($ D

- (A) 0; (B) $\iiint_{\Omega} xy^2 dv$; (C) $\iiint_{\Omega} yz^2 dv$; (D) $\iiint_{\Omega} zx^2 dv$.
- 7、设 $L: \frac{x^2}{4} + \frac{y^2}{5} = 1$ 周长为a,则 $\oint_L (5x^2 + 3xy + 4y^2) ds = ($ A)
 - (A) 20*a*;
- (B) 0; (C) 30a; (D) 40a.
- 8、若 $\sum_{i=1}^{\infty} a_n (x-1)^n$ 在 x = -1 处收敛,则此级数在 x = 2 处 (**B**)
 - (A) 发散;
- (B) 绝对收敛;
- (C) 条件收敛:
- (D) 无法确定.

二、填空题 (本题共4小题,每小题3分,共12分)

- 9. $\lim_{(x,y)\to(1,0)} \frac{e^{x \tan y} 1}{\sqrt[3]{2 + x^3 y} 1} = 0$
- 10、过点(1,0,1) 与平面x+y+z+1=0平行的平面方程 x+y+z-2=0.
- 11、幂级数 $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ 的收敛半径R = 1______.
- 12、设 f(x) 是以 2π 为周期的周期函数, 在 $0 \le x \le \pi$ 上 $f(x) = x^2$, 它的傅里叶级数为正弦级数,

和函数为s(x),则 $s(\pi) = 0$.

三、简单计算题(共5小题,每题7分,共35分)

13. 设
$$z = (x^2 + y^2)e^{xy}$$
, 求偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 和全微分 dz .

解析:
$$\frac{\partial z}{\partial x} = 2xe^{xy} + (x^2 + y^2)ye^{xy}, \qquad 2 \%$$
$$\frac{\partial z}{\partial y} = 2ye^{xy} + (x^2 + y^2)xe^{xy}; \qquad 2 \%$$
$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy \qquad 2 \%$$
$$= (2xe^{xy} + (x^2 + y^2)ye^{xy})dx + (2ye^{xy} + (x^2 + y^2)xe^{xy})dy \dots 1 \%$$

14.
$$f(x,y) = 2x^2 + ax + xy^2 + 2y$$
 在点(1,-1) 处取得极值,求 a.

15. 求直线
$$x-2=y-3=\frac{z-4}{2}$$
 与平面 $x+y+z-1=0$ 的交点.

带入平面方程得到

得到t = -2,

16. 求曲面
$$z = \frac{x^2}{2} + y^2$$
 平行于平面 $2x + 2y - z = 0$ 的切平面方程.

切平面与已知平面平行,

17. 计算二重积分 $\iint_D \ln(1+x^2+y^2) dx dy$, 其中 D 是由圆周 $x^2+y^2=1$ 及坐标轴所围成的第二象限内的闭区域.

$$\therefore 积分 = \int_{\frac{\pi}{2}}^{\pi} d\theta \int_{0}^{1} \ln(1+\rho^{2})\rho d\rho \qquad 3 分$$

$$= \frac{\pi}{4} (2\ln 2 - 1). \qquad 2 分$$

四、综合计算题(共2小题,每题8分,共16分)

- 18. 求幂级数 $\sum_{n=0}^{\infty} (n+2)x^n$ 的收敛域及和函数.
 - 解析: $\lim_{n\to\infty} \frac{n+3}{n+2} = 1$, 所以幂级数收敛半径是 R = 1, 收敛区间为 (-1,1),

当 $x = \pm 1$ 时,级数发散,所以原级数收敛域为(-1,1); 3分

设幂级数的和函数为s(x),则

$$s(x) = \sum_{n=0}^{\infty} (n+2)x^n = \sum_{n=0}^{\infty} (n+1)x^n + \sum_{n=0}^{\infty} x^n = (\sum_{n=0}^{\infty} x^{n+1})' + \sum_{n=0}^{\infty} x^n$$

$$= (\frac{x}{1-x})' + \frac{1}{1-x} \qquad 3 \text{ }$$

$$= \frac{2-x}{(1-x)^2}, \quad x \in (-1,1). \qquad 2 \text{ }$$

19. 设 L 是从 $A(1,\frac{1}{2})$ 沿曲线 $2y = x^2$ 到 B(2,2) 的弧段,求 $\int_L \frac{2x}{y} dx - \frac{x^2}{y^2} dy$.

选折线 ACB,其转折的点 $C(2,\frac{1}{2})$,则

五、应用计算题(本题8分)

20、计算曲面积分 $I = \iint_{\Sigma} xz^2 dydz + yx^2 dzdx + zy^2 dxdy$, 其中

Σ为曲面 $z = \sqrt{R^2 - x^2 - y^2}$ 的外侧.

得分

六、综合计算题 (本题5分)

21、设曲面 Σ 的方程为F(z-ax,z-by)=0,其中F(u,v)具有一阶连续偏导数,且 $F_u+F_v\neq 0$,证明: 曲面 Σ 上任一点处的法线恒与一常向量垂直。

证明:
$$\diamondsuit G(x, y, z) = F(u, v) = F(z - ax, z - by)$$

曲面Σ上任一点处的法向量为

$$\vec{n} = (G_x, G_y, G_z)$$

$$= (-aF_u, -bF_y, F_u + F_y) \qquad \dots \qquad 2 \ \text{?}$$