

DATA PREPARATION & CLEANING

Chapter 2: Data Extraction

Victor Christen

AGENDA

- General
- Characteristics of Data Extraction
- Internal vs External
- ETL vs ELT
- Data Warehousing
- Extraction methods
 - API
 - Web Crawler & Scraping
 - Content specific extraction
 - Extraction from unstructured data
- Summary

DATA EXTRACTION - GENERAL

"Data extraction is the process of **collecting** or **retrieving** disparate types of data from a **variety of sources**, many of which may be **poorly organized** or **completely unstructured**."[1]

- Internal vs external data source
- ETL vs ELT
- Structured
 - Standardized format, well defined access (query language)
- semi/unstructured
 - Websites, scanned and OCR-processed text documents, transcripted Audio Reports, etc.

Extraction methods depend on the data format and the type of data sources

[1] https://www.talend.com/resources/data-extraction-defined/

EXTERNAL VS INTERNAL DATA SOURCES

Internal

 Databases (CRM, ERP), documentations, Log-files, Emails

View on internal processes of a company

Completely autonomous w.r.t. the data source

flexible access possibilities

External

Context information for internal data sources

Websites, API, SPARQL-endpoints,...

 Access potentially limited by the functionality of an API, availability of resources

ETL VS ELT

Extraction

 Extract data from data sources

Transformation

Transform, clean and integrate data

Loading

 Load transformed, cleaned and integrated data in target database for analysis

ETL VS ELT (2)

Extraction

 Extract data from data sources

Loading

 Load the extracted unprocessed data in the target data source, e.g.,
 Data Lake

Transformation

 Transform and clean only the relevant data before analysis

ETL VS ELT – PROS & CONS

ETL

Target analysis tasks are known, e.g. product sales, human resources, production rate

- + Transformation before enables fast analysis
- Not scalable for large and complex transformation tasks
- Not flexible regarding changed analysis goals

ELT

Direction of analysis is known but not in detail

- + Flexible regarding analysis tasks and data evolution
- + Store all data → flexible regarding new analysis tasks
- High performance using cloud infrastructure by using additional resources on demand

ETL - DATA WAREHOUSING

- Specialized database to support company decisions
- Disconnected from operational systems
- Periodic ETL process
 - Support time dependent analysis
 - Initial loading after that mostly reading operations
- Focus on specific target analysis such as product sales, citation numbers, ...
 - Described by different dimensions

Reverse ETL

Use Analysis result in operational databases

DATAWAREHOUSE - COMPONENTS

- Data-Cube
 - Consisting of Dimensions and measures
- Measures are numerical values (counts, sales, etc.)
- sales, etc.)

 Context information by dimensions (e.g., Time, place, name of disease)
- Dimensions represent coordinates for measures
- Hierarchical structure of dimensions possible

DATAWAREHOUSING - OPERATIONS

Operators for analysis

- Roll-up (Aggregation of fine-granular hierarchies)
- Drill-down or Roll-down (detailed view)
- Slice and Dice (Restriction of one resp. multiple dimensions)
- Pivot (Switch orientation of dimensions)

Applications

- Generation of statistics, reports, charts, etc.)
- Base to generate Data Mining models

DATAWAREHOUSING - OPERATIONEN

Quelle: Han and Kamber, DM Book, 2 nd Ed. (Copyright © 2006 Elsevier Inc.)

TYPES OF EXTRACTION METHODS

simple complex

- Using a predefined Query Language
 - SQL, Cipher,
 SPARQL,
- Process relational data,
 e.g. CSV/TSV following_
 a strict schema using
 program specific
 libraries such as
 Pandas, tool
 connectors
- Structure is defined by the data itself, e.g., XML/JSON
- Arbitrary set of attributes
 - Potentially complex extraction methods required depending on the content of an attribute
 - Query Language, API,
 Web Crawler/Scraping

- Data is completely unstructured, e.g. free formatted text, Images, Audio
- Requires Advanced methods such as Named Entity Recognition, OCR, speech-to-text
- Content specific
 libraries → tables

REST - APPLICATION PROGRAMMING INTERFACE - REST API

- Website providers enable access to their resources by a REST-API
- Predefined set of access functionalities called by HTTP requests to retrieve the current state of resources

 Server responds by returning a semi-structured result formatted as JSON, XML, ...

API - GEOCODING

- Extraction of geo coordinates from address data for the visualization and analysis of location data
- Reverse determination of the corresponding address with regard to a geo coordinate

Applications

 Epidemiological research to determine disease spread clusters or analyze geographically related health problems

DATA PREPARATION & CLEANING

GEOCODING - METHODS

 Use of a reference data set with corresponding mapping → often not available

API

- Standardized access to geo location data
- e.g. GeoPy, geocoder

Abteilung Datenbanken

- Exact match
 - 1:1 mapping address-coordinate
- Fuzzy Match
 - Specification of a region if there is no exact match with address

DATA EXTRACTION FROM WEBSITES

Web- Crawler

 Collect & Process recursively links and the content from websites based on the hyperlink structure

Priority-Queue Score based on the Up-to-dateness

Periodical execution to notify changes of collected websites

WEB SCRAPING

WEB SCRAPING - LIBRARIES

Extraction of specified elements via libraries, e.g. Scrapemark¹, Scrapy²,
 BeautifulSoup³ and the definition of website-specific element patterns

```
from bs4 import BeautifulSoup
import requests

webFile = requests.get("https://dbs.uni-leipzig.de/de/person")
soup = BeautifulSoup(webFile.content, 'html.parser')
first_table = soup.select_one("div.w3-responsive table.w3-table-all.cols-3.responsive-enabled")
list = soup.select(
"tr:has(> td.readon.views-field.views-field-title) a")
```

- soup.tag returns the selected value with tags, without by using .string
- element.find_all(element_name) returns a list of specified
 elements regarding the selected ancestor element

¹ https://github.com/arshaw/scrapemark

² https://scrapy.org/

³ https://www.crummy.com/software/BeautifulSoup/bs4/doc/

WEB SCRAPING - CHALLENGES & RESTRICTIONS

- Evolution of websites → adaption of patterns
- Classical Scraping limited to static content, JavaScript content require evaluation
- Anti-Scraping mechanisms have to be considered and must not be circumvented
 - Access limitation (number of requests for a certain time interval)
 - Captcha
 - IP-Blocker

Legal restrictions

 Guarantee of copyrights depending on the use case → research vs commercialised application

WEB SCRAPING - TOOLS

User-Friendly Interface

Specify relevant elements through a graphical user interface

Proxy Support

Avoid IP bans by proxies and rotation mechanism

JavaScript Rendering

Extraction of JavaScript generated content requires rendering functionalities

Scheduled Scraping

Definition of crawling/scraping intervals

Compliance and Ethical Considerations

 Ensure compliance with website terms of service, legal regulations, ethical considerations, e.g., respecting robots.txt directives, avoiding excessive requests

EXTRACTION FROM SPECIFIC CONTENT TYPE

Tabular data

- Programming language specific libraries, e.g., tabulajava, tabula-py
 - Automatic extraction of table data in a PDF-document
 - specification of pages, area, output options

Programming language specific table representation

EXTRACTION FROM UNSTRUCTURED DATA

Manual

- Handcrafted rules and background knowledge, e.g.
 Extracting author information from publications
- High quality of extracted data being correct
- Potential high number of missing data
 - Depending on the heterogeneity
- Very sensitive regarding changing content structure → High adaption effort

AUTOMATIC EXTRACTION

Combine multiple extraction methods tailored to the certain task

AUTOMATIC EXTRACTION - EXAMPLE

- Processing medical documents such as electronic health record
- Enhance comparability by NER & EL

Standardized Entities

Unfied Medical Language System (UMLS)

C0701055

C0162723

C0360120

C0594492

SUMMARY

- Internal vs External data sources
- ETL vs ELT
 - ETL: for small projects, complex transformation tasks potentially decrease the efficiency depending on the amount of data and heterogeneity, e.g., Data warehousing
 - ELT: transformation on demand considering a subset, High scalability using cloud environments, e.g., Data Lakes
 - increase resources on demand
- Data Warehousing
- Various extraction methods depending on the data source and format
 - Querying, processing relational data
 - API data extraction by predefined functions, e.g., Geocoding
 - Web crawler/web scraping
 - Content depending extraction methods, tabular data
 - Unstructured data requires complex and sophisticated methods such NER and entity linking