Langages Formels - TD2 - Automates

1 Automates et langages reconnaissables

Exercice 1.1 1. Dessiner l'automate $\langle A, Q, D, F, \delta \rangle$ où

- $--A = \{a, b, c\},\$
- $-Q = \{1, 2, 3, 4, 5\},\$
- $-D = \{1, 2\},\$
- $-F = \{1, 3\},\$
- $-- \delta = \{(1, a, 2), (1, a, 4), (2, a, 3), (3, b, 1), (4, b, 1)\}$
- 2. Les mots suivants sont-ils reconnus par cet automate (si oui, donnez un chemin le reconnaissant. Si non, expliquez pourquoi il n'est pas reconnu) : ε , a, b, aa, aba, abb, abab.
- 3. Quels sont les mots de longueur 4 reconnus par cet automate?

Exercice 1.2 Décrivez de manière formelle, l'automate dessiné suivant :

Est-ce que les mots suivants sont reconnus : ε , ab, 0001001^2 , $0^510^{1453}100$?

Remarque : pour u un mot et n un entier, on note u^n la concaténation de n occurrences consécutives du mot u.

Exercice 1.3 Donnez une condition nécessaire et suffisante pour que le mot vide soit reconnu par un automate.

Exercice 1.4 Donnez un automate reconnaissant le langage des mots de longueur paire sur l'alphabet $\{a,b\}$.

Exercice 1.5 Donnez un automate reconnaissant le langage:

$$\{u \in \{a,b\}^* \mid |u| \bmod 2 = 0\}$$

Exercice 1.6 Donner un automate Aut sur l'alphabet $\{a, e, r, m\}$ qui reconnaît les mots et uniquement les mots arme, are et ame. (i.e. qui reconnaît le langage $\{arme, are, ame\}$)

Existe-t-il un automate plus petit qui reconnaît le même langage? (i.e. existe-t-il un automate plus petit équivalent à Aut?) Si oui, donnez le plus petit possible. Justifiez.

Exercice 1.7 Donnez un automate reconnaissant le langage:

$$\{u \in \{a,b\}^* \mid |u|_a \mod 3 = 1, |u|_b \mod 2 = 0\}$$

Exercice 1.8 Donnez un automate reconnaissant les nombres entiers écrits sur l'alphabet $\{0, 1, 2, \dots, 9\}$ de manière normalisée, c'est-à-dire sans 0 inutile.

Exercice 1.9 Donnez un automate reconnaissant les nombres entiers écrits sur l'alphabet $\{0, 1, 2, \dots, 9\}$ multiples de 3.

Rappel. Un nombre entier écrit en base 10 est un multiple de 3 si et seulement si la somme de ses chiffres est un multiple de 3.