- Contesta las preguntas en las hojas blancas que se te darán. Indica claramente el número de problema e inciso. No es necesario que copies la pregunta.
- Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.
- Justifica todas tus respuestas y afirmaciones. Redacta tus argumentos de la manera más clara posible, no es necesario que utilices símbolos lógicos.

Pregunta	1	2	3	Total
Puntos	8	4	6	18
Puntaje				

Nombre: _

- 1. Sean \vec{u} y \vec{v} dos vectores como en la imagen. Asume que Área $\dot{\vec{v}}(\vec{v},\vec{u})=3$, que $\|\vec{u}\|=1$, $\|\vec{v}\|=2$ y que $\langle \vec{u},\vec{v}\rangle=\frac{1}{2}$
 - (a) (1 Punto) Expresa a los vectores \vec{X} y \vec{Y} como combinación lineal de \vec{u} y \vec{v} .
 - (b) (1 Punto) Calcula $\vec{X} \vec{Y}$ y $2\vec{X}$ y $-\vec{X}$.
 - (c) (2 Puntos) Calcula Área $^{\pm}(\vec{X}, \vec{Y})$
 - (d) (2 Puntos) Calcula $\|\vec{X}\|, \|\vec{Y}\|$ y $\langle \vec{X}, \vec{Y} \rangle$
 - (e) (2 Puntos) Suponiendo que las coordenadas de \vec{u} sean (-1,1) y las de \vec{v} sean (2,1), calcula las coordenadas de \vec{X} y \vec{Y} .¹

- 2. (4 Puntos) Sea A=(2,0) y $B=(3\frac{\sqrt{3}}{2}+2,\frac{3}{2})$. Encuentra las coordenadas de un punto C de tal forma que ABC sea un triángulo equilátero.
- 3. (6 Puntos) Calcúla el área de un polígono regular de n lados inscrito en la circunferencia unitaria. Es decir, todos los vértices del polígono están a distancia 1 del origen. [Sugerencia: divide el polígono en n triángulos congruentes y calcula el área de cada triángulo]

Fin del exámen

¹No uses estas coordenadas para el resto de los incisos.