(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-195830 (P2001-195830A)

(43)公開日 平成13年7月19日(2001.7.19)

(51) Int.Cl.⁷
G 1 1 B 20/10

識別記号 321

F I G 1 1 B 20/10

テーマコート*(参考) 321A 5D044

審査請求 有 請求項の数32 OL (全 46 頁)

(21)出願番号

特願2000-8021(P2000-8021)

(22)出顧日

平成12年1月17日(2000.1.17)

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72) 発明者 小倉 洋一

香川県高松市古新町8番地の1 松下寿電

子工業株式会社内

(72)発明者 瓜田 耕一

香川県高松市古新町8番地の1 松下寿電

子工業株式会社内

(74)代理人 100081813

弁理士 早瀬 憲一

最終頁に続く

(54) 【発明の名称】 デジタル記録データ再生装置

(57) 【要約】

【課題】PRML信号処理を適用したデジタル記録データ再生において、オフセット補正と、位相補間型デジタル位相同期ループにより、再生信号品質の向上、及び異常信号に対してのプレイアビリティを向上させることを目的とする。

【解決手段】波形等化手段2により再生信号の所定の周波数帯域を強調し、その出力信号を非同期クロックによりアナログ・デジタルコンバータ3で標本化する。標本化信号にオフセット補正を施した後、トランスバーサルフィルタ6及びLMSアルゴリズムを適用したタップ重み係数制御手段8によりPR等化し、その出力信号を高次補間フィルタ7により、デジタル位相同期ループ11を用いて、正規標本化位相の信号を再現する。再現された正規位相における信号を最尤復号器12により復調することにより、媒体に記録されたデジタルデータを再生する。

【特許請求の範囲】

【請求項1】 記録媒体の再生信号を、該信号に含まれるクロック成分の位相とは非同期にデジタルデータに標本化するアナログ・デジタル変換手段と、

該標本化された信号からオフセット成分および振幅を補 正するデジタルデータ補正手段と、

該補正がなされた信号にパーシャルレスポンス等化を行 なう等化フィルタと、

該パーシャルレスポンス等化された信号から正規の標本 化位相における信号を補間により再生する補間フィルタ と、

該補間フィルタの出力信号に基づき前記等化フィルタの フィルタ係数を等化誤差が最小になるように適応的に制 御するフィルタ係数制御手段と、

前記補間フィルタの出力信号に基づき位相誤差を検出し前記補間フィルタのフィルタ係数を更新する位相同期ループと、

前記補間フィルタの出力信号を前記等化フィルタで等化 したパーシャルレスポンスの型に応じて最尤復号を行な うことによりデータ復調を行なう最尤復号器とを備えた ことを特徴とするデジタル記録データ再生装置。

【請求項2】 記録媒体の再生信号を、該信号に含まれるクロック成分の位相とは非同期にデジタルデータに標本化するアナログ・デジタル変換手段と、

該標本化された信号からオフセット成分および振幅を補 正するデジタルデータ補正手段と、

該補正がなされた信号にパーシャルレスポンス等化を行 なう等化フィルタと、

前記等化フィルタの出力信号に基づき位相誤差を検出する位相同期ループと、

該等化フィルタの出力信号に基づき前記等化フィルタのフィルタ係数を等化誤差が最小になるように適応的に制御するとともに前記位相同期ループの出力に基づき位相誤差をなくするようにフィルタ係数を制御するフィルタ係数制御手段と、

前記等化フィルタで等化したパーシャルレスポンスの型 に応じて最尤復号を行なうことによりデータ復調を行な う最尤復号器とを備えたことを特徴とするデジタル記録 データ再生装置。

【請求項3】 請求項1または2記載のデジタル記録データ再生装置において、

前記記録媒体の再生信号に含まれるクロック信号とは位相が非同期のクロックを発生するクロック発生手段と、前記位相同期ループの出力に基づいて前記クロック発生手段が発生するクロックの周波数を制御する周波数制御手段と、

前記位相同期ループの出力に基づいて前記クロック発生 手段が発生するクロックの位相が同期状態を維持するよ うに制御を行う位相同期維持手段とを備えたことを特徴 とするデジタル記録データ再生装置。 【請求項4】 請求項3記載のデジタル記録データ再生 装置において、

2

前記周波数制御手段および前記位相同期維持手段からの 制御信号に対しデルタ・シグマ変調を行うデルタ・シグ マ変調手段と、

該デルタ・シグマ変調手段の出力信号の高域成分を除去する低域通過型フィルタとを備えたことを特徴とするデジタル記録データ再生装置。

【請求項5】 請求項4記載のデジタル記録データ再生 装置において、

前記低域通過型フィルタの時定数を変化させる時定数可 変手段を備えたことを特徴とするデジタル記録データ再 生装置。

【請求項6】 請求項1または2記載のデジタル記録データ再生装置において、

前記デジタルデータ補正手段は、オフセット調整を行う際に、標本化された波形のセンターラインがゼロレベルとクロスするポイントに関してはそのポイントの振幅成分を加算し、それ以外の符号が確定しているポイントに関しては、再生符号に従ってその極性に応じた所定値を加算するものであることを特徴とするデジタル記録データ再生装置。

【請求項7】 請求項1または2記載のデジタル記録データ再生装置において、

前記デジタルデータ補正手段は、オフセット調整を行う際に、標本化された波形のセンターラインがゼロレベルとクロスするポイントに関してはそのポイントの振幅成分を加算し、それ以外の符号が確定しているポイントに関しては、再生符号に従ってその極性に応じた値を加算するものであり、かつその加算値をシーク動作時とそれ以外とで異ならせることを特徴とするデジタル記録データ再生装置。

【請求項8】 請求項7記載のデジタル記録データ再生 装置において、

前記デジタルデータ補正手段は、シーク動作時には前記 加算値の値を大きくし、位相同期状態には前記加算値の 値を小さくすることを特徴とするデジタル記録データ再 生装置。

【請求項9】 請求項1または2記載のデジタル記録データ再生装置において、

前記デジタルデータ補正手段は、オフセット調整を行う際に、標本化された波形の各ポイントでの所定時間分の累積加算値をモニタし、その直流分の誤差量を離散的に直流分にフィードバックするものであることを特徴とするデジタル記録データ再生装置。

【請求項10】 請求項2記載のデジタル記録データ再 生装置において、

前記フィルタ係数制御手段は、位相同期引き込みを行った後、パーシャルレスポンス等化を連続的に行い、かつ そのループゲインを位相同期ループに比し十分低く設定

し、その後等化誤差が小さくなると間欠的な制御動作に 切り替えることを特徴とするデジタル記録データ再生装 置。

【請求項11】 記録媒体からの再生信号の出力振幅を 強調するプリアンプと、

該強調された信号の所定の周波数帯域を強調する波形等 化手段と、

発振器で生成されるクロックにより、該等化された信号 を該信号に含まれるクロック成分の位相とは非同期に多 ビットのデジタルデータに標本化するアナログ・デジタ ル変換手段と、

該標本化された信号からオフセット成分を低減するオフセット補正手段と、

該出力信号の振幅を所要のレベルに調整するオートゲインコントロール手段と、

該振幅調整がなされた信号にパーシャルレスポンス等化 を行なうトランスバーサルフィルタと、

該パーシャルレスポンス等化された信号から正規の標本 化位相における信号を高次補間により再生する高次補間 フィルタと、

該補間出力信号から前記トランスバーサルフィルタのタップの重み係数を等化誤差が最小になるように適応的に制御するタップ重み係数制御手段と、

前記補間出力信号から位相誤差を検出するための位相比較器と、

該位相誤差信号を平滑化するためのループフィルタと、 前記補間出力信号を前記トランスバーサルフィルタで等 化したパーシャルレスポンスの型に応じて最尤復号を行 なうことによりデータ復調を行なう最尤復号器とを備 え、

非同期に標本化した信号をパーシャルレスポンス等化し、位相補間型のデジタルフェーズロックドループにより位相同期を補償し、データ復調を行なうことを特徴とするデジタル記録データ再生装置。

【請求項12】 記録媒体からの再生信号の出力振幅を 強調するプリアンプと、

該強調された信号の所定の周波数帯域を強調する波形等 化手段と、

発振器で生成されるクロックにより、該等化された信号 を該信号に含まれるクロック成分の位相とは非同期に多 ビットのデジタルデータに標本化するアナログ・デジタ ル変換手段と、

該標本化された信号からオフセット成分を低減するオフセット補正手段と、

該出力信号の振幅を所要のレベルに調整するオートゲインコントロール手段と、

トランスバーサルフィルタと高次補間フィルタとの機能 を併せ持ち、前記振幅調整がなされた信号にパーシャル レスポンス等化を行ない、該パーシャルレスポンス等化 された信号から正規の標本化位相における信号を高次補 間により再生する位相補間型トランスバーサルフィルタと、

該出力信号から位相誤差を検出する位相比較器と、

該位相誤差信号を平滑化して位相情報を得るためのルー プフィルタと、

該位相情報及び前記位相補間型トランスバーサルフィルタの出力信号から、等化誤差が最小であり、かつ正規の標本化信号を再現するための、前記位相補間型トランスバーサルフィルタのタップの重み係数設定を設定するタップ重み係数設定手段と前記補間出力信号を前記位相補間型トランスバーサルフィルタで等化したパーシャルレスポンスの型に応じて最尤復号を行なうことによりデータ復調を行なう最尤復号器とを備え、

パーシャルレスポンス等化とデジタルフェーズロックドループを同一のフィルタで実現したことを特徴とするデジタル記録データ再生装置。

【請求項13】 請求項12記載のデジタル記録データ 再生装置において、

前記タップ重み係数設定手段は、

20 位相方向に分割化された各位相毎のフィルタ係数を有 し、

前記ループフィルタより出力される位相情報にしたがって該位相制御用のフィルタ係数を更新し、

前記位相補間型トランスバーサルフィルタの出力信号を 基に、等化誤差を最小にするようにパーシャルレスポン ス等化用のフィルタ係数を更新し、

該位相制御用フィルタ係数と、該パーシャルレスポンス等化用フィルタ係数を重畳することにより、前記位相補間型トランスバーサルフィルタのタップの重み係数を設定することを特徴とするデジタル記録データ再生装置。

【請求項14】 請求項12記載のデジタル記録データ 再生装置において、

前記タップ重み係数設定手段は、

前記トランスパーサルフィルタの出力信号に基づきパーシャルレスポンス方式に対応した等化目標値を検出する 仮判定回路と、

該等化目標値と前記高次補間フィルタの出力信号とに基づき等化誤差を検出する等化誤差検出器と、

前記等化誤差と前記高次補間フィルタの出力信号との相 関を検出する相関器と、

該相関器の出力をゲインと同数倍してフィードバックゲインを調整するフィードバックゲイン調整器と、

該フィードバックゲイン調整器の出力を各タップの重み 係数に加算しタップ係数を更新するタップ係数更新部 と、

ナイキスト特性のチャネルレートを時間方向に分割した ときの各々の振幅値を各タップに対応させて格納する第 1のレジスタと、

前記第1のレジスタに格納された各タップおよび各位相 50 でのナイキスト補間係数と前記タップ係数更新部から出

, **1** è

力されるパーシャルレスポンス等化用のタップの重み係数を重畳するタップ係数畳み込み手段と、

初段の遅延素子に前記パーシャルレスポンス等化がなされた信号が入力される、相互に直列接続された,単位遅 延時間の遅延量を有する複数個の遅延素子と、

該複数個の単位遅延素子の中の初段の遅延素子の入力、 遅延素子同士の接続点および最終段の遅延素子の出力に 対応して設けられた乗算器と、

該乗算器の出力の総和をとり本タップ重み係数設定手段 の出力を生成する加算器と、

前記乗算器に対応して設けられた第2のレジスタと、 前記タップ係数畳み込み手段の出力に基づき前記第2の レジスタの値を更新するレジスタ値更新手段と、

前記第2のレジスタに対応して設けられ前記ループフィルタの出力位相情報に応じて前記第2のレジスタに格納された振幅値を選択し対応する前記乗算器に出力するセレクタとを備えたものであることを特徴とするデジタル記録データ再生装置。

【請求項15】 請求項12記載のデジタル記録データ 再生装置において、

前記トランスバーサルフィルタの出力から周波数誤差を検出する周波数誤差検出器と、

該検出された周波数誤差を平滑し前記発振器に制御信号 として与える周波数制御用ループフィルタとをさらに備 え、

前記周波数誤差が所定値以下となった状態で前記周波数 制御用ループフィルタを含む周波数制御用ループのゲインを低下せしめて、周波数引き込み制御から位相同期引 き込み制御に移行し、

同期パターンが所定数検出された場合に前記位相比較器 を含む位相制御用ループのループゲインを低下せしめ て、前記位相補間型タップ重み係数制御手段によるパー シャルレスポンス適応自動等化制御に移行し、

該パーシャルレスポンス適応自動等化制御による等化誤差が所定値以下となった状態で、等化誤差量の累積加算値を離散的にタップの重み係数に反映させるインターバル制御型パーシャルレスポンス適応自動等化制御に移行することを特徴とするデジタル記録データ再生装置。

【請求項16】 請求項12に記載のデジタル記録データ再生装置において、

前記タップ重み係数設定手段は、

前記位相制御用フィルタ係数の更新時のフィードバック ゲインを、前記パーシャルレスポンス等化用フィルタ係 数の更新時のフィードバックゲインよりも充分に大きく 設定し、前記パーシャルレスポンス等化用フィルタ係数 を離散的に更新するものであることを特徴とするデジタ ル記録データ再生装置。

【請求項17】 記録媒体からの再生信号の出力振幅を 強調するプリアンプと、

該強調された信号の所定の周波数帯域を強調する波形等

化手段と、

発振器で生成されるクロックにより、該等化された信号 を該信号に含まれるクロック成分の位相とは非同期に多 ビットのデジタルデータに標本化するアナログ・デジタ ル変換手段と、

6

該標本化された信号からオフセット成分を低減するオフ セット補正手段と、

該出力信号の振幅を所要のレベルに調整するオートゲインコントロール手段と、

10 該振幅調整がなされた信号にパーシャルレスポンス等化を行なうトランスバーサルフィルタと、

該パーシャルレスポンス等化された信号から正規の標本 化位相における信号を高次補間により再生する高次補間 フィルタと、

該補間出力信号から前記トランスバーサルフィルタのタップの重み係数を等化誤差が最小になるように適応的に 制御するタップ重み係数制御手段と、

前記補間出力信号から位相誤差を検出するための位相比較器と、

20 該位相誤差信号を平滑化するためのループフィルタと、 前記補間出力信号を前記トランスバーサルフィルタで等 化したパーシャルレスポンスの型に応じて最尤復号を行 なうことによりデータ復調を行なう最尤復号器とを備え るとともに、

前記発振器の出力クロックの周波数を制御する手段として、

記録データに含まれる同期パターンの周期と該同期パターンの検出される時間幅を基に制御を行なう周波数制御手段と、

周波数と再生信号に含まれるクロック成分の周波数が近傍まで引き込まれた後に、前記ループフィルタの制御範囲をモニタし、該位相制御信号が位相同期制御不能領域に達する前に、正常動作範囲に戻るようにクロック周波数のアップ・ダウン制御を行なう位相同期維持手段と、前記周波数制御手段の出力信号及び前記位相同期維持手段の出力信号を基に、前記発振器を制御するための発振器制御手段とを備えたことを特徴とするデジタル記録データ再生装置。

【請求項18】 請求項17記載のデジタル記録データ 40 再生装置において、

前記発振器制御手段は、

前記位相同期維持手段によるアップ・ダウン制御時に、該制御信号を変調するデルタ・シグマ変調器と、

該出力信号を平滑化する低域通過型フィルタとを備え、 該出力信号により前記発振器を制御するものであること を特徴とするデジタル記録データ再生装置。

【請求項19】 請求項18記載のデジタル記録データ 再生装置において、

前記低域通過型フィルタのカットオフ周波数を、デジタ 50 ル記録データの再生速度に応じて切替えるカットオフ周

波数可変手段をさらに備えたものであることを特徴とするデジタル記録データ再生装置。

【請求項20】 請求項11,12または17のいずれかに記載のデジタル記録データ再生装置において、

前記オフセット補正手段は、

前記標本化された信号が有するオフセット成分を検出するオフセット検出手段と、

該検出されたオフセット成分を平滑化する平滑化手段 と、

該平滑化された信号を前記標本化された信号より減算する減算手段とを備えたものであることを特徴とするデジタル記録データ再生装置。

【請求項21】 記録媒体からの再生信号の出力振幅を 強調するプリアンプと、

該強調された信号の所定の周波数帯域を強調する波形等 化手段と、

発振器で生成されるクロックにより、該等化された信号を該信号に含まれるクロック成分の位相とは非同期に多ビットのデジタルデータに標本化するアナログ・デジタル変換手段と、

該標本化された信号からオフセット成分を低減するオフセット補正手段と、

該出力信号の振幅を所要のレベルに調整するオートゲインコントロール手段と、

該振幅調整がなされた信号にパーシャルレスポンス等化 を行なうトランスバーサルフィルタと、

該パーシャルレスポンス等化された信号から正規の標本 化位相における信号を高次補間により再生する高次補間 フィルタと、

該補間出力信号から前記トランスバーサルフィルタのタップの重み係数を等化誤差が最小になるように適応的に 制御するタップ重み係数制御手段と、

前記補間出力信号から位相誤差を検出するための位相比較器と、

該位相誤差信号を平滑化するためのループフィルタと、 前記補間出力信号を前記トランスバーサルフィルタで等 化したパーシャルレスポンスの型に応じて最尤復号を行 なうことによりデータ復調を行なう最尤復号器とを備 え、

非同期に標本化した信号をパーシャルレスポンス等化し、位相補間型のデジタルフェーズロックドループにより位相同期を補償し、データ復調を行なうとともに、前記オフセット補正手段は前記高次補間フィルタの出力を参照してオフセット補正を行うことを特徴とするデジタル記録データ再生装置。

【請求項22】 請求項21記載のデジタル記録データ 再生装置において、

前記オフセット補正手段は、

前記高次補間フィルタの出力信号がゼロクロスする位置 の標本化信号については、その振幅方向の成分を出力す 50 るゼロクロス振幅出力手段と、

ゼロクロス位置でない標本化信号に関しては、該信号の 符号の極性に応じて一定量の極性が異なる値を出力する 極性値出力手段と、

前記ゼロクロス振幅出力手段の出力信号及び前記極性値 出力手段の出力信号を平滑化するためのオフセット補正 用ループフィルタと、

該出力信号を前記アナログ・デジタルコンバータの出力 信号から直接減算することにより、オフセット除去を施 すオフセット除去手段とを備えたものであることを特徴 とするデジタル記録データ再生装置。

【請求項23】 請求項22記載のデジタル記録データ 再生装置において、

前記オフセット補正手段は、

前記極性値出力手段の出力値を可変し、前記ゼロクロス 振幅出力手段の出力値との比率を調整する極性値出力可 変手段を備えたものであることを特徴とするデジタル記 録データ再生装置。

【請求項24】 請求項22記載のデジタル記録データ 20 再生装置において、

前記オフセット補正手段は、

シーク時には、前記極性値出力手段の出力値を前記ゼロクロス振幅出力手段の出力値に比べて大きくし、連続データ再生時には、前記極性値出力手段の出力値を前記ゼロクロス振幅出力手段の出力値に比べて小さくすることにより、デジタル記録データ再生装置の動作状況に応じて出力値を切り替える出力値切替手段を備えたものであることを特徴とするデジタル記録データ再生装置。

【請求項25】 請求項22記載のデジタル記録データ 30 再生装置において、

前記オフセット補正手段は、

一定の時間をカウントするカウンタと、

前記カウンタから出力されるフラグ間の前記極性値出力 手段の出力値と前記ゼロクロス振幅出力手段の出力値を 累積加算する累積加算手段と、

該出力信号を前記カウンタから出力されるフラグのタイミングで、累積加算手段の出力をモニタし、疑似位相同期状態であると判断された場合は、前記極性値出力手段の比率を高くした制御に切替え、正常位相同期状態に復40 帰させる累積加算結果モニタ手段とを備えたものであることを特徴とするデジタル記録データ再生装置。

【請求項26】 請求項11,12,17,21のいずれかに記載のデジタル記録データ再生装置において、

前記トランスバーサルフィルタは、

前記初段の遅延素子に前記振幅調整がなされた信号が入力される、相互に直列接続された,単位遅延時間の遅延 量を有する複数個の遅延素子と、

該複数個の単位遅延素子の中の初段の遅延素子の入力、 遅延素子同士の接続点および最終段の遅延素子の出力に 対応して設けられた乗算器と、

該乗算器の出力の総和をとり本フィルタの出力を生成する加算器とを備え、

前記乗算器の他方の入力に入力する重み係数を可変させることで所要の等化特性を実現することを特徴とするデジタル記録データ再生装置。

【請求項27】 請求項11,17,21のいずれかに 記載のデジタル記録データ再生装置において、

前記高次補間フィルタは、

初段の遅延素子に前記パーシャルレスポンス等化がなされた信号が入力され、相互に直列接続された,単位遅延時間の遅延量を有する複数個の遅延素子と、

該複数個の単位遅延素子の中の初段の遅延素子の入力、 遅延素子同士の接続点および最終段の遅延素子の出力に 対応して設けられた乗算器と、

該乗算器の出力の総和をとり本フィルタの出力を生成する加算器とを備え、

前記乗算器の他方の入力に入力する重み係数を可変させることで所要の等化特性を実現することを特徴とするデジタル記録データ再生装置。

【請求項28】 請求項27記載のデジタル記録データ 再生装置において、

前記高次補間フィルタは、

ナイキスト特性に基づき補間を行うものであることを特 徴とするデジタル記録データ再生装置。

【請求項29】 請求項27記載のデジタル記録データ 再生装置において、前記高次補間フィルタは、

前記乗算器に対応して設けられ、ナイキスト特性のチャネルレートを時間方向に分割したときの各々の振幅値を 格納するレジスタと、

前記レジスタに対応して設けられ前記ループフィルタの 出力位相情報に応じて前記レジスタに格納された振幅値 を選択し対応する前記乗算器に出力するセレクタとを備 えたものであることを特徴とするデジタル記録データ再 生装置。

【請求項30】 請求項11,17,21のいずれかに 記載のデジタル記録データ再生装置において、

前記タップ重み係数制御手段は、

最小二乗平均アルゴリズムにより前記トランスバーサルフィルタの重み係数を決定するものであることを特徴とするデジタル記録データ再生装置。

【請求項31】 請求項30記載のデジタル記録データ 再生装置において、

前記タップ重み係数制御手段は、

前記高次補間フィルタの出力信号に基づきパーシャルレスポンス方式に対応した等化目標値を検出する仮判定回路と、

該等化目標値と前記高次補間フィルタの出力信号とに基 づき等化誤差を検出する等化誤差検出器と、

前記等化誤差と前記高次補間フィルタの出力信号との相 関を検出する相関器と、 該相関器の出力をゲインと同数倍してフィードバックゲインを調整するフィードバックゲイン調整器と、

10

該フィードバックゲイン調整器の出力を各タップの重み 係数に加算しタップ係数を更新するタップ係数更新部と を備えたものであることを特徴とするデジタル記録デー タ再生装置。

【請求項32】 請求項15記載のデジタル記録データ 再生装置において、

前記周波数誤差検出器は、

10 前記高次補間フィルタの出力信号がゼロレベルとクロス する間隔を検出するゼロクロス長検出器と、

隣接するゼロクロス長の比率に基づきこれが所定の同期 パターン長と一致しているか否かを検出し、前記記録媒 体の再生速度を反映した第1の周期情報を得る同期パタ ーン長検出器と、

前記同期パターンが検出されるまでの間隔を検出し、これと所定の期間とに基づく第2の同期情報を検出する同期パターン間隔検出器とを備えたものであることを特徴とするデジタル記録データ再生装置。

20 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、記録媒体に記録されたデジタルデータを再生するデジタル記録データ再生装置に関するものであり、特に、そのフェーズロックドループ及びオフセット補正の改良を図ったものに関し、チルトによる再生波形の品質劣化、信号雑音比が悪い条件での再生、及びディフェクト等が頻繁に発生する等の悪条件下において、再生デジタルデータ品質が改善されるだけでなく、プレイアビリティが向上する等の特徴を有するものに関する。

[0002]

【従来の技術】光ディスク媒体にデジタルデータを記録する方式として、コンパクトディスク(Compact Disk)やDVDに見られるように線速度を一定にして記録媒体上の記録密度を一様にする方式が多く用いられている。

線記録密度が一定となるようにマーク幅変調してデジタル変調記録された光ディスクの再生信号に基づいて、これよりデジタルデータを再生する場合、従来、再生信号が有するクロック成分の位相を検出し、位相同期ループを構成することにより、位相同期引き込みを行なっていた。

【0003】その際、再生信号が有するクロック成分の周波数と、位相同期ループにより生成されるクロックの周波数が大きく異なっている場合は、位相同期引き込みが完了しなくなる可能性や、異なった周波数に疑似引き込みする可能性が大きい。そこで、このような不具合を回避する手段として、従来より、再生線速度周期を再生信号に含まれる特定のパルス長やパルス間隔により検出して、200回転車所の制御の位担日期は、プロウェ

周波数の制御を行うことにより、正常な位相同期引き込みを可能とすることが行われている。

【0004】例えば、図23に示すような、ディスク再生系がある。光ディスク55には、図24(a)に示すようなデジタル記録符号が、線記録密度一定となるように記録されている。記録されたデータは、例えば、8-16変調方式のように、連続する"0"あるいは"1"が3個以上かつ14個以下となるように規制されたデータであるとする。光ピックアップ等の再生手段56で再生して得られた信号は、図24(a)に示すように、記録データの線方向の記録密度が高密度化するにしたがって、高域の周波数成分になるほど振幅が減衰する。これは記録密度が高密度化するに従って、干渉の影響が顕著に現われるためであり、再生して得られた信号を図示しないプリアンプにより増幅した後、波形等化手段2により、高域の周波数成分を強調するような補正を施す。

【0005】図24(b)に示すように高域強調がなされた再生信号は、アナログ信号をデジタル信号に変換する手段としてのアナログ・デジタルコンバータ3により多ビットのデジタル信号に標本化される。この時、VCO(電圧制御型オシレータ)40により生成される再生クロックを標本化クロックとして用いるが、VCO40による再生クロックの位相と再生手段56による再生信号が有するクロック成分の位相とが同期していれば、図24(c)に示すような標本化データが得られる。

【0006】図24(c)は、特に、パーシャルレスポンス・マキシマムライクリフッド (Partial Response Maximum Likelihood:以下、PRMLと略する)信号処理方式に適した標本化データである。PRML信号処理方式とは、線記録方向の記録密度の増大に伴い、信号の高域成分の振幅が劣化し、信号雑音比が増大する再生系において、意図的に波形干渉を付加することにより、再生信号に高域成分を必要とせず、かつ前記波形干渉を考慮した確率計算により尤も確からしい系列を復調する最尤復号法を併用することにより、再生データのエラーレートを向上させる方式である。

【0007】この標本化された多ビットのデジタル信号をオフセット補正手段4に入力することにより、再生デジタル信号に含まれるオフセット成分を補正する。そしてこのオフセット補正を施された再生デジタル信号をトランスバーサルフィルタ6に入力し、パーシャルレスポンス等化を行う。

【0008】この時、パーシャルレスポンス等化を適用したことにより、図24(d)に示すように、等化出力信号が多値化するという特徴を有する。そのトランスバーサルフィルタ6のタップの重み係数は、等化誤差の二乗平均値を最小にする最小二乗平均(Least Mean Square;以下、LMSと称す)アルゴリズムを用いて、これらを設定するタップ重み係数設定手段57により供給される。この多値化したトランスバーサルフィルタ6の出力

信号を、最尤復号器の一種であるビタビ復号器58により復調し、2値化デジタルデータを得る。

12

【0009】また、アナログ・デジタルコンバータ3により標本化を行なう際に使用する、位相同期再生クロックは、以下のようにして制御される。即ち、オフセット補正手段4の出力信号から、この出力信号がゼロレベルをクロスする位置を連続して検出し、隣接するゼロクロス間の標本数をカウントするゼロクロス長検出器59の出力を用いて、1フレーム以上の特定の期間における同期パターン長を検出し、さらに、周波数誤差検出器13により同期パターンの検出周期を検出することにより、再生クロックの周波数制御を行うための周波数誤差量が決定される。また、再生デジタルデータの位相情報は、オフセット補正手段4の出力信号を用いて位相比較器9により検出され、再生クロックと再生デジタルデータの位相同期制御を行うための位相誤差量が決定される。

【0010】そして、前記周波数誤差検出器13から出力された周波数誤差量を用いて、再生クロックが再生デジタル信号と同期可能となる領域まで周波数の制御を行うように、周波数制御用ループフィルタ14とデジタル・アナログコンバータ42bによりVCO40を制御する。一方、位相比較器9から出力された位相誤差量を用いて、再生クロックが再生デジタル信号に同期するように、位相制御用ループフィルタ60とデジタル・アナログコンバータ42aによりVCO40を制御する。即ち、VCO40はこれらデジタル・アナログコンバータ42bの出力を加算器61で加算したものがその制御入力として入力される。

【0011】このような一連の動作により、再生クロックの位相と再生デジタルデータの有するクロック成分の位相を同期させることが可能となり、光ディスク媒体に記録されたデジタルデータを安定かつ精度良く再生することが可能となる。

[0012]

【発明が解決しようとする課題】しかしながら、上述したように、位相同期ループの一端である位相誤差検出をパーシャルレスポンス等化処理前の信号に基づいて行なう場合、チルトによる再生信号の劣化や、前記波形等化手段の等化特性が不十分である等の条件下では、位相誤が不正確となるため、位相同期ループのジッタが増大する。それにより、前記アナログ・デジタルコンバータにより標本化される信号が正規の位相状態ではなくなるため、前記トランスバーサルフィルタによるパーシャルレスポンス等化において、その性能を十分に発揮できないことになる。そのため、再生信号の信号品質が劣化し、エラーレートの悪化を引き起こす可能性がある。【0013】また、こうした状態を回避する手段として、前記トランスバーサルフィルタの出力信号に基づいて位相誤差検出を行なうことが既に提案されているが、

この方法によれば、位相同期ループにおけるループ遅延が大きくなり、位相同期引き込み範囲が低減したり、位相同期の安定性が損なわれたりするため、有効な回避手段にはなり得ない。

【0014】本発明は、このような事情に鑑みてなされたもので、チルトによる特性劣化やアナログ等化が不十分な条件においても、パーシャルレスポンス等化に最適で、かつ位相同期引き込み能力も高く、エラーレートの向上が可能な、デジタル記録データ再生装置を提供することを目的とする。

[0015]

【課題を解決するための手段】本願の請求項1に記載の 発明に係るデジタル記録データ再生装置は、記録媒体の 再生信号を、該信号に含まれるクロック成分の位相とは 非同期にデジタルデータに標本化するアナログ・デジタ ル変換手段と、該標本化された信号からオフセット成分 および振幅を補正するデジタルデータ補正手段と、該補 正がなされた信号にパーシャルレスポンス等化を行なう 等化フィルタと、該パーシャルレスポンス等化された信 号から正規の標本化位相における信号を補間により再生 する補間フィルタと、該補間フィルタの出力信号に基づ き前記等化フィルタのフィルタ係数を等化誤差が最小に なるように適応的に制御するフィルタ係数制御手段と、 前記補間フィルタの出力信号に基づき位相誤差を検出し 前記補間フィルタのフィルタ係数を更新する位相同期ル ープと、前記補間フィルタの出力信号を前記等化フィル タで等化したパーシャルレスポンスの型に応じて最尤復 号を行なうことによりデータ復調を行なう最尤復号器と を備えるようにしたものである。これにより、正規のサ ンプリング位相での補間データに基づいて最尤復号を行 うことが可能となり、再生信号のチルトによる波形劣化 等に影響されない、パーシャルレスポンス最尤復号に適 したデジタルデータ復調が可能となる、という作用を有 する。

【0016】また、本願の請求項2に記載の発明に係る デジタル記録データ再生装置は、記録媒体の再生信号 を、該信号に含まれるクロック成分の位相とは非同期に デジタルデータに標本化するアナログ・デジタル変換手 段と、該標本化された信号からオフセット成分および振 幅を補正するデジタルデータ補正手段と、該補正がなさ れた信号にパーシャルレスポンス等化を行なう等化フィ ルタと、前記等化フィルタの出力信号に基づき位相誤差 を検出する位相同期ループと、該等化フィルタの出力信 号に基づき前記等化フィルタのフィルタ係数を等化誤差 が最小になるように適応的に制御するとともに前記位相 同期ループの出力に基づき位相誤差をなくするようにフ イルタ係数を制御するフィルタ係数制御手段と、前記等 化フィルタで等化したパーシャルレスポンスの型に応じ て最尤復号を行なうことによりデータ復調を行なう最尤 復号器とを備えるようにしたものである。これにより、

14

正規のサンプリング位相での補間データに基づいて最尤 復号を行うことが可能となり、再生信号のチルトによる 波形劣化等に影響されない、パーシャルレスポンス最尤 復号に適したデジタルデータ復調が可能になる。また、 回路規模やコストの削減、低消費電力化や再生データの エラーレートの向上にも有効である、という作用を有する。

【0017】また、本願の請求項3に記載の発明に係る デジタル記録データ再生装置は、請求項1または2記載 のデジタル記録データ再生装置において、前記記録媒体 の再生信号に含まれるクロック信号とは位相が非同期の クロックを発生するクロック発生手段と、前記位相同期 ループの出力に基づいて前記クロック発生手段が発生す るクロックの周波数を制御する周波数制御手段と、前記 位相同期ループの出力に基づいて前記クロック発生手段 が発生するクロックの位相が同期状態を維持するように 制御を行う位相同期維持手段とを備えるようにしたもの である。これにより、クロック発生手段の発振制御が、 ラフな周波数制御と同期周波数近傍のアップダウン制御 のみで済ませることができ、精度のよい位相同期ループ を実現できるとともに、アナログ素子の大幅な削減が可 能となる。また、高周波動作もしなくてよいため、ノイ ズの発生対策が不要となる、作用を有する。

【0018】また、本願の請求項4に記載の発明に係るデジタル記録データ再生装置は、請求項3記載のデジタル記録データ再生装置において、前記周波数制御手段および前記位相同期維持手段からの制御信号に対しデルタ・シグマ変調手段の出力信号の高域成分を除去する低域通過型フィルタとを備えるようにしたものである。これにより、ラフ制御からアップダウン制御に切り替わる際の位相同期ループの乱れを抑制でき、滑らかな周波数追従を行うことが可能となり、より安定した位相同期引き込みを実現でき、再生データのエラーレートを向上できる。また、クロック発生手段の制御も主にラフ制御の制御性能の向上を考えて設計すればよいため、アナログ回路の簡略化が可能となる、作用を有する。

【0019】また、本願の請求項5に記載の発明に係る デジタル記録データ再生装置は、請求項4記載のデジタ ル記録データ再生装置において、前記低域通過型フィル タの時定数を変化させる時定数可変手段を備えるように したものである。これにより、記録媒体の再生速度が変 化した場合にその速度に応じて時定数を可変させること ができ、記録媒体の倍速での再生モードを有するデータ 再生系において、再生速度に依存せずに滑らかな周波数 追従を行うことが可能となる、作用を有する。

【0020】また、本願の請求項6に記載の発明に係る デジタル記録データ再生装置は、請求項1または2記載 のデジタル記録データ再生装置において、前記デジタル 50 データ補正手段は、オフセット調整を行う際に、標本化

された波形のセンターラインがゼロレベルとクロスするポイントに関してはそのポイントの振幅成分を加算し、 それ以外の符号が確定しているポイントに関しては、再 生符号に従ってその極性に応じた所定値を加算するよう にしたものである。これにより、オフセット誤差情報の

15

確度が高まり、高周波成分を含んだ直流変動に対してオフセット調整を応答させる場合にも、動作の安定化と調整後のノイズの低減が可能となり、直流変動に対して有効なデータ再生手段を実現できる、作用を有する。

【0021】また、本願の請求項7に記載の発明に係る デジタル記録データ再生装置は、請求項1または2記載 のデジタル記録データ再生装置において、前記デジタル データ補正手段は、オフセット調整を行う際に、標本化 された波形のセンターラインがゼロレベルとクロスする ポイントに関してはそのポイントの振幅成分を加算し、 それ以外の符号が確定しているポイントに関しては、再 生符号に従ってその極性に応じた値を加算するものであ り、かつその加算値をシーク動作時とそれ以外とで異な らせるようにしたものである。これにより、オフセット 誤差情報の確度が高まり、高周波成分を含んだ直流変動 に対してオフセット調整を応答させる場合にも、動作の 安定化と調整後のノイズの低減が可能となり、直流変動 に対して有効なデータ再生手段を実現できるとともに、 動作状況に応じた制御を行うことが可能となり、プレイ アビリティーの向上が可能となる、作用を有する。

【0022】また、本願の請求項8に記載の発明に係るデジタル記録データ再生装置は、請求項7記載のデジタル記録データ再生装置において、前記デジタルデータ補正手段は、シーク動作時には前記加算値の値を大きくし、位相同期状態には前記加算値の値を小さくするようにしたものである。これにより、シーク動作中は追従性を高め、位相同期状態になると制御雑音を抑えることができ、最適なオフセット制御が可能となる、作用を有する。

【0023】また、本願の請求項9に記載の発明に係るデジタル記録データ再生装置は、請求項1または2記載のデジタル記録データ再生装置において、前記デジタルデータ補正手段は、オフセット調整を行う際に、標本化された波形の各ポイントでの所定時間分の累積加算値をモニタし、その直流分の誤差量を離散的に直流分にフィードバックするようにしたものである。これにより、異常状態である疑似ロック状態からの復旧を高速に行うことが可能となり、プレイアビリティーの向上が可能となる、作用を有する。

【0024】また、本願の請求項10に記載の発明に係るデジタル記録データ再生装置は、請求項2記載のデジタル記録データ再生装置において、前記フィルタ係数制御手段は、位相同期引き込みを行った後、パーシャルレスポンス等化を連続的に行い、かつそのループゲインを位相同期ループに比し十分低く設定し、その後等化誤差

が小さくなると間欠的な制御動作に切り替えるようにしたものである。これにより、姿勢データの品質が向上し、同期引き込み速度の向上が可能となる、作用を有する。

【0025】また、本願の請求項11に記載の発明に係 るデジタル記録データ再生装置は、記録媒体からの再生 信号の出力振幅を強調するプリアンプと、該強調された 信号の所定の周波数帯域を強調する波形等化手段と、発 振器で生成されるクロックにより、該等化された信号を 該信号に含まれるクロック成分の位相とは非同期に多ビ ットのデジタルデータに標本化するアナログ・デジタル 変換手段と、該標本化された信号からオフセット成分を 低減するオフセット補正手段と、該出力信号の振幅を所 要のレベルに調整するオートゲインコントロール手段 と、該振幅調整がなされた信号にパーシャルレスポンス 等化を行なうトランスバーサルフィルタと、該パーシャ ルレスポンス等化された信号から正規の標本化位相にお ける信号を高次補間により再生する高次補間フィルタ と、該補間出力信号から前記トランスバーサルフィルタ のタップの重み係数を等化誤差が最小になるように適応 的に制御するタップ重み係数制御手段と、前記補間出力 信号から位相誤差を検出するための位相比較器と、該位 相誤差信号を平滑化するためのループフィルタと、前記 補間出力信号を前記トランスバーサルフィルタで等化し たパーシャルレスポンスの型に応じて最尤復号を行なう ことによりデータ復調を行なう最尤復号器とを備え、非 同期に標本化した信号をパーシャルレスポンス等化し、 位相補間型のデジタルフェーズロックドループにより位 相同期を補償し、データ復調を行なうようにしたもので ある。これにより、チルトによる再生信号の特性劣化や アナログ等化が不十分な条件においても、パーシャルレ スポンス等化後に位相誤差情報を検出することにより、 位相同期ループにおけるジッタの低減と最適なパーシャ ルレスポンス等化信号が再現できるため、エラーレート の向上につながるだけでなく、位相同期引き込み能力も 高く、安定したデジタルデータ再生を行なえる、という 作用を有する。

【0026】また、本願の請求項12に記載の発明に係るデジタル記録データ再生装置は、記録媒体からの再生信号の出力振幅を強調するプリアンプと、該強調された信号の所定の周波数帯域を強調する波形等化手段と、発振器で生成されるクロックにより、該等化された信号を該信号に含まれるクロック成分の位相とは非同期に多ビットのデジタルデータに標本化するアナログ・デジタル変換手段と、該標本化された信号からオフセット成分を低減するオフセット補正手段と、該出力信号の振幅を所要のレベルに調整するオートゲインコントロール手段と、トランスバーサルフィルタと高次補間フィルタとの機能を併せ持ち、前記振幅調整がなされた信号にパーシャルレスポンス等化を行ない、該パーシャルレスポンス

18

等化された信号から正規の標本化位相における信号を高 次補間により再生する位相補間型トランスパーサルフィ ルタと、該出力信号から位相誤差を検出する位相比較器 と、該位相誤差信号を平滑化して位相情報を得るための ループフィルタと、該位相情報及び前記位相補間型トラ ンスバーサルフィルタの出力信号から、等化誤差が最小 であり、かつ正規の標本化信号を再現するための、前記 位相補間型トランスバーサルフィルタのタップの重み係 数設定を設定するタップ重み係数設定手段と、前記補間 出力信号を前記位相補間型トランスバーサルフィルタで 等化したパーシャルレスポンスの型に応じて最尤復号を 行なうことによりデータ復調を行なう最尤復号器とを備 え、パーシャルレスポンス等化とデジタルフェーズロッ クドループを同一のフィルタで実現するようにしたもの である。これにより、回路規模が大きいとされるトラン スパーサルフィルタと高次補間フィルタをトランスバー サルフィルタのみで共用化できるため、回路規模の削 減、及び特に、高速再生時における低消費電力化を図れ る、という作用を有する。

【0027】また、本願の請求項13に記載の発明に係 るデジタル記録データ再生装置は、請求項12記載のデ ジタル記録データ再生装置において、前記タップ重み係 数設定手段が、位相方向に分割化された各位相毎のフィ ルタ係数を有し、前記ループフィルタより出力される位 相情報にしたがって該位相制御用のフィルタ係数を更新 し、前記位相補間型トランスバーサルフィルタの出力信 号を基に、等化誤差を最小にするようにパーシャルレス ポンス等化用のフィルタ係数を更新し該位相制御用フィ ルタ係数と、該パーシャルレスポンス等化用フィルタ係 数を重畳することにより、前記位相補間型トランスバー サルフィルタのタップの重み係数を設定するようにした ものである。これにより、位相制御用のフィルタ係数の 設定手段と、パーシャルレスポンス等化用のタップの重 み係数設定手段を独立に操作することができるため、前 記位相補間型トランスバーサルフィルタのみで、パーシ ヤルレスポンス等化と正規位相でのデータ補間を共用化 した場合でも、双方の特性を損なうことなく精度が良く 効率的な制御が可能である、という作用を有する。

【0028】また、本願の請求項14に記載の発明に係るデジタル記録データ再生装置は、請求項12記載のデジタル記録データ再生装置において、前記タップ重み係数設定手段は、前記トランスバーサルフィルタの出力信号に基づきパーシャルレスポンス方式に対応した等化目標値を検出する仮判定回路と、該等化目標値と前記高次補間フィルタの出力信号とに基づき等化誤差を検出する等化誤差検出器と、前記等化誤差と前記高次補間フィルタの出力信号との相関を検出する相関器と、該相関器の出力をゲインと同数倍してフィードバックゲインを調整するフィードバックゲイン調整器と、該フィードバックゲイン調整器の出力を各タップの重み係数に加算しタッゲイン調整器の出力を各タップの重み係数に加算しタッ

プ係数を更新するタップ係数更新部と、ナイキスト特性 のチャネルレートを時間方向に分割したときの各々の振 幅値を各タップに対応させて格納する第1のレジスタ と、前記第1のレジスタに格納された各タップおよび各 位相でのナイキスト補間係数と前記タップ係数更新部か ら出力されるパーシャルレスポンス等化用のタップの重 み係数を重畳するタップ係数畳み込み手段と、初段の遅 延素子に前記パーシャルレスポンス等化がなされた信号 が入力される、相互に直列接続された、単位遅延時間の 遅延量を有する複数個の遅延素子と、該複数個の単位遅 延素子の中の初段の遅延素子の入力、遅延素子同士の接 続点および最終段の遅延素子の出力に対応して設けられ た乗算器と、該乗算器の出力の総和をとり本タップ重み 係数設定手段の出力を生成する加算器と、前記乗算器に 対応して設けられた第2のレジスタと、前記タップ係数 畳み込み手段の出力に基づき前記第2のレジスタの値を 更新するレジスタ値更新手段と、前記第2のレジスタに 対応して設けられ前記ループフィルタの出力位相情報に 応じて前記第2のレジスタに格納された振幅値を選択し 対応する前記乗算器に出力するセレクタとを備えるよう にしたものである。これにより、前記位相補間型トラン スバーサルフィルタのみで、パーシャルレスポンス等化 と正規位相でのデータ補間を共用化した場合でも、双方 の特性を損なうことなく精度が良く効率的な制御を可能 にするためのタップ係数の畳み込みを実現する具体的な 構成が得られる、という作用を有する。

【0029】また、本願の請求項15に記載の発明に係 るデジタル記録データ再生装置は、請求項12記載のデ ジタル記録データ再生装置において、前記トランスバー サルフィルタの出力から周波数誤差を検出する周波数誤 差検出器と、該検出された周波数誤差を平滑し前記発振 器に制御信号として与える周波数制御用ループフィルタ とをさらに備え、前記周波数誤差が所定値以下となった 状態で前記周波数制御用ループフィルタを含む周波数制 御用ループのゲインを低下せしめて、周波数引き込み制 御から位相同期引き込み制御に移行し、同期パターンが 所定数検出された場合に前記位相比較器を含む位相制御 用ループのループゲインを低下せしめて、前記位相補間 型タップ重み係数制御手段によるパーシャルレスポンス 適応自動等化制御に移行し、該パーシャルレスポンス適 応自動等化制御による等化誤差が所定値以下となった状 態で、等化誤差量の累積加算値を離散的にタップの重み 係数に反映させるインターバル制御型パーシャルレスポ ンス適応自動等化制御に移行するようにしたものであ る。これにより、ラフ制御から位相同期状態に移行した 後に、安定した位相同期ループを実現でき、かつ制御不 可能な状態に陥るのを防止できる、という作用を有す る。

【0030】また、本願の請求項16に記載の発明に係るデジタル記録データ再生装置は、請求項12に記載の

デジタル記録データ再生装置において、前記タップ重み 係数設定手段は、前記位相制御用フィルタ係数の更新時 のフィードバックゲインを、前記パーシャルレスポンス 等化用フィルタ係数の更新時のフィードバックゲインよ りも充分に大きく設定し、前記パーシャルレスポンス等 化用フィルタ係数を離散的に更新するものとしたもので ある。これにより、位相制御用のフィルタ係数制御と、 パーシャルレスポンス等化用のタップの重み係数制御と の競合化を防ぎ、位相制御を優先させることにより、安 定した位相同期ループを実現し、かつパーシャルレスポ ンス等化の精度を損なわないとともに、異常信号に対し て制御不能状態に陥らないため、プレイアビリティが向 上する、という作用を有する。

【0031】また、本願の請求項17に記載の発明に係 るデジタル記録データ再生装置は、記録媒体からの再生 信号の出力振幅を強調するプリアンプと、該強調された 信号の所定の周波数帯域を強調する波形等化手段と、発 振器で生成されるクロックにより、該等化された信号を 該信号に含まれるクロック成分の位相とは非同期に多ビ ットのデジタルデータに標本化するアナログ・デジタル 変換手段と、該標本化された信号からオフセット成分を 低減するオフセット補正手段と、該出力信号の振幅を所 要のレベルに調整するオートゲインコントロール手段 と、該振幅調整がなされた信号にパーシャルレスポンス 等化を行なうトランスバーサルフィルタと、該パーシャ ルレスポンス等化された信号から正規の標本化位相にお ける信号を高次補間により再生する高次補間フィルタ と、該補間出力信号から前記トランスパーサルフィルタ のタップの重み係数を等化誤差が最小になるように適応 的に制御するタップ重み係数制御手段と、前記補間出力 信号から位相誤差を検出するための位相比較器と、該位 相誤差信号を平滑化するためのループフィルタと、前記 補間出力信号を前記トランスバーサルフィルタで等化し たパーシャルレスポンスの型に応じて最尤復号を行なう ことによりデータ復調を行なう最尤復号器とを備えると ともに、前記発振器の出力クロックの周波数を制御する 手段として、記録データに含まれる同期パターンの周期 と該同期パターンの検出される時間幅を基に制御を行な う周波数制御手段と、周波数と再生信号に含まれるクロ ック成分の周波数が近傍まで引き込まれた後に、前記ル ープフィルタの制御範囲をモニタし、該位相制御信号が 位相同期制御不能領域に達する前に、正常動作範囲に戻 るようにクロック周波数のアップ・ダウン制御を行なう 位相同期維持手段と、前記周波数制御手段の出力信号及 び前記位相同期維持手段の出力信号を基に、前記発振器 を制御するための発振器制御手段とを備えるようにした ものである。これにより、再生信号を標本化する際の非 同期なクロックの周波数を、常に、デジタル位相同期ル ープの制御可能範囲内に維持できることになる。したが

って、位相同期制御時に不連続点が生じることなく、安

定したデジタル記録データ再生が可能となるだけでな く、周波数制御と位相制御を分離して考えることが可能 となるため、発振器の制御手段も単純な構成で実現でき る、という作用を有する。

【0032】また、本願の請求項18に記載の発明に係 るデジタル記録データ再生装置は、請求項17記載のデ ジタル記録データ再生装置において、前記発振器制御手 段は、前記位相同期維持手段によるアップ・ダウン制御 時に、該制御信号を変調するデルタ・シグマ変調器と、 該出力信号を平滑化する低域通過型フィルタとを備え、 該出力信号により前記発振器を制御するようにしたもの である。これにより、再生信号の標本化に用いる非同期 なクロックの周波数を、デジタル位相同期ループの制御 可能範囲内に維持する際に、発振器の最小周波数制御分 解能が荒く、アップ・ダウン制御時に発振周波数が大き く変動する場合においては、位相同期ループに乱れが生 ずる危険性があったが、このように時間方向に変調をか けて発振器の発振周波数を本来の分解能よりも細かく制 御することにより、アップ・ダウン時に乱れることなく 連続再生が可能となるため、再生品質が向上する、とい う作用を有する。

【0033】また、本願の請求項19に記載の発明に係 るデジタル記録データ再生装置は、請求項18記載のデ ジタル記録データ再生装置において、前記低域通過型フ ィルタのカットオフ周波数を、デジタル記録データの再 生速度に応じて切替えるカットオフ周波数可変手段をさ らに備えるようにしたものである。これにより、デジタ ル記録データを再生する際に、複数の再生速度を補償し なければならない場合や、ディスク媒体における内外周 差、及び記録媒体の種類が異なるため広範囲の周波数制 御帯域を有する場合において、それぞれの再生速度に適 した応答特性を実現できるため、再生速度が大きく変化 する条件下においても再生特性を維持できる、という作 用を有する。

【0034】また、本願の請求項20に記載の発明に係 るデジタル記録データ再生装置は、請求項11,12ま たは17のいずれかに記載のデジタル記録データ再生装 置において、前記オフセット補正手段は、前記標本化さ れた信号が有するオフセット成分を検出するオフセット 検出手段と、該検出されたオフセット成分を平滑化する 平滑化手段と、該平滑化された信号を前記標本化された 信号より減算する減算手段とを備えるようにしたもので ある。これにより、チルトによる再生信号の特性劣化や アナログ等化が不十分な条件においても、エラーレート の向上につながるだけでなく、位相同期引き込み能力も 高く、安定したデジタルデータ再生を行なえるものにお いて、オフセット補正を行う構成を実現できる、という 作用を有する。

【0035】また、本願の請求項21に記載の発明に係 るデジタル記録データ再生装置は、記録媒体からの再生

るデジタル記録データ再生装置は、請求項22記載のデジタル記録データ再生装置において、前記オフセット補正手段は、前記極性値出力手段の出力値を可変し、前記ゼロクロス振幅出力手段の出力値との比率を調整する極性値出力可変手段を備えるようにしたものである。これにより、再生信号の精度よりもレベル変動への追従性が必要となるシーク時には、符号の極性を主として制御を

行ない、再生信号の精度が必要である連続データの再生

時には、ゼロクロス振幅を主として制御を行なうとい

22

う、状況に応じて最適なオフセット補正が可能となり、 また、制御の収束性にも関わってくるため、シーク後の 高速な位相同期引き込みが可能となる、という作用を有 する。

【0038】また、本願の請求項24に記載の発明に係るデジタル記録データ再生装置は、請求項22記載のデジタル記録データ再生装置において、前記オフセット補正手段は、シーク時には、前記極性値出力手段の出力値を前記ゼロクロス振幅出力手段の出力値に比べて大きくし、連続データ再生時には、前記極性値出力手段の出力値を前記ゼロクロス振幅出力手段の出力値に比べて小さくすることにより、デジタル記録データ再生装置の動作状況に応じて出力値を切り替える出力値切替手段を備えるようにしたものである。これにより、疑似位相同期の発生を回避するとともに、特定条件下において疑似位相同期が発生した場合にも、早期に自己修復することが可能となり、プレイアビリティの向上が図れる、という作用を有する。

【0039】また、本願の請求項25に記載の発明に係 るデジタル記録データ再生装置は、請求項22記載のデ ジタル記録データ再生装置において、前記オフセット補 正手段は、一定の時間をカウントするカウンタと、前記 カウンタから出力されるフラグ間の前記極性値出力手段 の出力値と前記ゼロクロス振幅出力手段の出力値を累積 加算する累積加算手段と、該出力信号を前記カウンタか ら出力されるフラグのタイミングで、累積加算手段の出 力をモニタし、疑似位相同期状態であると判断された場 合は、前記極性値出力手段の比率を高くした制御に切替 え、正常位相同期状態に復帰させる累積加算結果モニタ 手段とを備えるようにしたものである。これにより、チ 40 ルトによる再生信号の特性劣化やアナログ等化が不十分 な条件においても、エラーレートの向上につながるだけ でなく、位相同期引き込み能力も高く、安定したデジタ ルデータ再生を行なえるものにおいて、オフセット補正 を行う構成を実現できる、という作用を有する。

【0040】また、本願の請求項26に記載の発明に係るデジタル記録データ再生装置は、請求項11,12,17,21のいずれかに記載のデジタル記録データ再生装置において、前記トランスバーサルフィルタは、前記初段の遅延素子に前記振幅調整がなされた信号が入力される、相互に直列接続された、単位遅延時間の遅延量を

信号の出力振幅を強調するプリアンプと、該強調された 信号の所定の周波数帯域を強調する波形等化手段と、発 振器で生成されるクロックにより、該等化された信号を 該信号に含まれるクロック成分の位相とは非同期に多ビ ットのデジタルデータに標本化するアナログ・デジタル 変換手段と、該標本化された信号からオフセット成分を 低減するオフセット補正手段と、該出力信号の振幅を所 要のレベルに調整するオートゲインコントロール手段 と、該振幅調整がなされた信号にパーシャルレスポンス 等化を行なうトランスパーサルフィルタと、該パーシャ ルレスポンス等化された信号から正規の標本化位相にお ける信号を高次補間により再生する高次補間フィルタ と、該補間出力信号から前記トランスバーサルフィルタ のタップの重み係数を等化誤差が最小になるように適応 的に制御するタップ重み係数制御手段と、前記補間出力 信号から位相誤差を検出するための位相比較器と、該位 相誤差信号を平滑化するためのループフィルタと、前記・ 補間出力信号を前記トランスバーサルフィルタで等化し たパーシャルレスポンスの型に応じて最尤復号を行なう ことによりデータ復調を行なう最尤復号器とを備え、非 同期に標本化した信号をパーシャルレスポンス等化し、 位相補間型のデジタルフェーズロックドループにより位 相同期を補償し、データ復調を行なうとともに、前記オ フセット補正手段は前記高次補間フィルタの出力を参照 してオフセット補正を行うようにしたものである。これ により、再生信号の符号の極性のみでオフセット補正を 施すよりも、精度の良いオフセット検出できるため、オ フセット補正後の制御雑音の低減がなされるとともに、 フィードバックゲインをより大きく設定することが可能 となる。それにより高い周波数成分を有するレベル変動 にも追従できるため、ディフェクト等の異常条件下での 再生時にもプレイアビリティの向上が図れる、という作 用を有する。

【〇〇36】また、本願の請求項22に記載の発明に係 るデジタル記録データ再生装置は、請求項21記載のデ ジタル記録データ再生装置において、前記オフセット補 正手段は、前記高次補間フィルタの出力信号がゼロクロ スする位置の標本化信号については、その振幅方向の成 分を出力するゼロクロス振幅出力手段と、ゼロクロス位 置でない標本化信号に関しては、該信号の符号の極性に 応じて一定量の極性が異なる値を出力する極性値出力手 段と、前記ゼロクロス振幅出力手段の出力信号及び前記 極性値出力手段の出力信号を平滑化するためのオフセッ ト補正用ループフィルタと、該出力信号を前記アナログ ・デジタルコンバータの出力信号から直接減算すること により、オフセット除去を施すオフセット除去手段とを 備えるようにしたものである。これにより、異なる記録 媒体を再生する場合においても、それら記録媒体に応じ たオフセット補正が可能となる、という作用を有する。

【0037】また、本願の請求項23に記載の発明に係 50

24

有する複数個の遅延素子と、該複数個の単位遅延素子の 中の初段の遅延素子の入力、遅延素子同士の接続点およ び最終段の遅延素子の出力に対応して設けられた乗算器 と、該乗算器の出力の総和をとり本フィルタの出力を生 成する加算器とを備え、前記乗算器の他方の入力に入力 する重み係数を可変させることで所要の等化特性を実現 するようにしたものである。これにより、チルトによる 再生信号の特性劣化やアナログ等化が不十分な条件にお いても、エラーレートの向上につながるだけでなく、位 相同期引き込み能力も高く、安定したデジタルデータ再 生を行なえるものにおいて、パーシャルレスポンス等化 を行う構成を実現できる、という作用を有する。

【0041】また、本願の請求項27に記載の発明に係 るデジタル記録データ再生装置は、請求項11,17, 21のいずれかに記載のデジタル記録データ再生装置に おいて、前記高次補間フィルタは、初段の遅延素子に前 記パーシャルレスポンス等化がなされた信号が入力さ れ、相互に直列接続された,単位遅延時間の遅延量を有 する複数個の遅延素子と、該複数個の単位遅延素子の中 の初段の遅延素子の入力、遅延素子同士の接続点および 最終段の遅延素子の出力に対応して設けられた乗算器 と、該乗算器の出力の総和をとり本フィルタの出力を生 成する加算器とを備え、前記乗算器の他方の入力に入力 する重み係数を可変させることで所要の等化特性を実現 するようにしたものである。これにより、チルトによる 再生信号の特性劣化やアナログ等化が不十分な条件にお いても、エラーレートの向上につながるだけでなく、位 相同期引き込み能力も高く、安定したデジタルデータ再 生を行なえるものにおいて、正規の標本化位相における 信号を補間する構成を実現できる、という作用を有す る。

【0042】また、本願の請求項28に記載の発明に係 るデジタル記録データ再生装置は、請求項27記載のデ ジタル記録データ再生装置において、前記高次補間フィ ルタは、ナイキスト特性に基づき補間を行うようにした ものである。これにより、チルトによる再生信号の特性 劣化やアナログ等化が不十分な条件においても、エラー レートの向上につながるだけでなく、位相同期引き込み 能力も高く、安定したデジタルデータ再生を行なえるも のにおいて、正規の標本化位相における信号を補間する 構成を実現できる、という作用を有する。

【0043】また、本願の請求項29に記載の発明に係 るデジタル記録データ再生装置は、請求項27記載のデ ジタル記録データ再生装置において、前記高次補間フィ ルタは、前記乗算器に対応して設けられ、ナイキスト特 性のチャネルレートを時間方向に分割したときの各々の 振幅値を格納するレジスタと、前記レジスタに対応して 設けられ前記ループフィルタの出力位相情報に応じて前 記レジスタに格納された振幅値を選択し対応する前記乗 算器に出力するセレクタとを備えるようにしたものであ

る。これにより、チルトによる再生信号の特性劣化やア ナログ等化が不十分な条件においても、エラーレートの 向上につながるだけでなく、位相同期引き込み能力も高 く、安定したデジタルデータ再生を行なえるものにおい て、正規の標本化位相における信号を補間する構成を実 現できる、という作用を有する。

【0044】また、本願の請求項30に記載の発明に係 るデジタル記録データ再生装置は、請求項11,17, 21のいずれかに記載のデジタル記録データ再生装置に おいて、前記タップ重み係数制御手段は、最小二乗平均 アルゴリズムにより前記トランスバーサルフィルタの重 み係数を決定するようにしたものである。これにより、 チルトによる再生信号の特性劣化やアナログ等化が不十 分な条件においても、エラーレートの向上につながるだ けでなく、位相同期引き込み能力も高く、安定したデジ タルデータ再生を行なえるものにおいて、トランスバー サルフィルタが行うべきパーシャルレスポンス等化機能 を実現するよう重み係数を設定する構成を実現できる、 という作用を有する。

【0045】また、本願の請求項31に記載の発明に係 るデジタル記録データ再生装置は、請求項30記載のデ ジタル記録データ再生装置において、前記タップ重み係 数制御手段は、前記高次補間フィルタの出力信号に基づ きパーシャルレスポンス方式に対応した等化目標値を検 出する仮判定回路と、該等化目標値と前記高次補間フィ ルタの出力信号とに基づき等化誤差を検出する等化誤差 検出器と、前記等化誤差と前記高次補間フィルタの出力 信号との相関を検出する相関器と、該相関器の出力をゲ インと同数倍してフィードバックゲインを調整するフィ 30 ードバックゲイン調整器と、該フィードバックゲイン調 整器の出力を各タップの重み係数に加算しタップ係数を 更新するタップ係数更新部とを備えるようにしたもので ある。これにより、チルトによる再生信号の特性劣化や アナログ等化が不十分な条件においても、エラーレート の向上につながるだけでなく、位相同期引き込み能力も 高く、安定したデジタルデータ再生を行なえるものにお いて、トランスバーサルフィルタが行うべきパーシャル レスポンス等化機能を実現するよう重み係数を設定する 構成を実現できる、という作用を有する。

【0046】また、本願の請求項32に記載の発明に係 るデジタル記録データ再生装置は、請求項15記載のデ ジタル記録データ再生装置において、前記周波数誤差検 出器は、前記高次補間フィルタの出力信号がゼロレベル とクロスする間隔を検出するゼロクロス長検出器と、隣 接するゼロクロス長の比率に基づきこれが所定の同期パ ターン長と一致しているか否かを検出し、前記記録媒体 の再生速度を反映した第1の周期情報を得る同期パター ン長検出器と、前記同期パターンが検出されるまでの間 隔を検出し、これと所定の期間とに基づく第2の同期情 報を検出する同期パターン間隔検出器とを備えるように

したものである。これにより、ラフ制御から位相同期状 態に移行した後に、安定した位相同期ループを実現で き、かつ制御不可能な状態に陥るのを防止できるものに おいて、周波数誤差を検出する構成を実現できる、とい う作用を有する。

[0047]

【発明の実施の形態】(実施の形態1)本実施の形態1 は、アナログ・デジタルコンバータでの標本化に非同期 クロックを用い、トランスバーサルフィルタによりパー シャルレスポンス等化を行った信号を、高次補間フィル 10 タによって正規の標本化位相における信号を再現し、そ の出力信号に基づき位相誤差検出を行ない、位相誤差が 小さくなるように前記高次補間フィルタのフィルタ係数 を制御するデジタル位相同期ループを構成するようにし たものである。

【0048】以下、本発明の請求項1,請求項11,請 求項20,請求項26ないし請求項32に記載されたデ ジタル記録データ再生装置に対応する実施の形態1につ いて、図1ないし図9を用いて説明する。図1におい て、図示しない再生手段(光ピックアップ等)により得 20 られた光ディスク再生信号をプリアンプ1で出力振幅を 強調した後、波形等化手段2で高域を強調するような補 正を施す。波形等化手段2は、例えば、高次等リップル フィルタ等の, ブースト量とカットオフ周波数を任意に 設定できるフィルタで構成される。波形等化手段2の出 力信号をアナログ信号をデジタル信号に変換する手段と してのアナログ・デジタルコンバータ3により、多ビッ トのデジタル信号に標本化する。その際、発振器15に より生成されるクロックであって、再生信号が有するク ロック成分とは非同期のクロックを用いる。このアナロ グ・デジタルコンバータ3により標本化された多ビット のデジタル信号をオフセット補正手段4に入力すること により、再生デジタル信号に含まれるオフセット成分を 補正する。

【0049】このオフセット補正手段4は、例えば、図 2に示すような構成のものでもよい。この図2のもの は、再生デジタル信号の有するオフセット成分を検出す るオフセット検出手段16と、それにより検出されたオ フセット信号を平滑化するための平滑化手段17と、平 る減算手段18により構成されるものである。

【0050】そして、オフセット補正手段4の出力信号 は、オートゲインコントロール5に入力されることによ り、再生デジタル信号の振幅が所要の値に一致するよう に調整される。オートゲインコントロール5は、例え ば、信号波形のエンベロープを検出し、任意の設定値と エンベロープ信号の差が零となるように制御するもので あっても良い。

【0051】次に、オートゲインコントロール5の出力

ャルレスポンス等化を行なう。ここで、パーシャルレス ポンス等化は、例えば、片面1層で4.7Gバイトのデ ジタル記録が可能なDVD-ROM(Read Only Memor y) では、図3(c)に示すように、等化後の波形振幅 が、 5 値 (0, 4×A, 7×A, -4×A, -7×A) に分かれるようなPR(3,4,4,3)方式を用いる ものとする。

26

【0052】そして、従来、リードチャネルにおいて は、図3(a)に示すような波形等化出力信号から、ス ライスレベルを用いた2値化判別により、デジタルデー タ復調を行なっていた。また、標本化する場合も、図3 (b) に示すように標本化し、その多ビットデジタル信 号をスライスレベルを用いて2値化判別を行なってい た。

【0053】これに対して、PR(3,4,4,3)方 式とは、異なる4つの時間の標本化データを、3:4: 4:3の比率で足し合わせた特徴(3+4*D+4*D 2+3*D4) を有しており、再生信号に対して、図4 に示すような、低域通過型フィルタの特性を付加するも のである。

【0054】図4において、MTFとはDVD-ROM における光再生特性を示すものであり、この周波数特性 に近いほど、有利なパーシャルレスポンス方式であると いうことが可能である。図4に示す方式だけでなく、P R(3,4,4,3)方式以外にも、多種多様なパーシ ャルレスポンスの型が存在するが、これは特定の方式に 限られるものではなく、要求される性能に見合ったもの が実現可能であれば、他の方式を用いても問題はない。 これら再生データの時間方向に相関性を付加するパーシ ャルレスポンス方式と、後述する最尤復号法(マキシマ ムライクリフッド)の一つであり、付加したデータの相 関性を利用して尤も確からしい系列を復調するビタビ復 号器とを組合わせることにより、線記録方向の髙記録密 度再生に有利とされるPRML信号処理を実現してい る。

【0055】上述したように、PRML信号処理方式 は、再生波形の特性や変調符号により、様々な組み合わ せが存在するため、各種記録再生系に対して、適切な方 式を選択することが必要である。トランスバーサルフィ 滑化手段17の出力信号を再生デジタル信号より減算す 40 ルタ6は、有限のタップで構成される、例えば、FIR (Finite Impulse response Filter) フィルタである。 このFIRフィルタによる等化特性は、タップの重み係 数を可変させることで実現されるものである。トランス バーサルフィルタ6によりパーシャルレスポンス等化さ れた信号を高次補間フィルタ7により、正規の標本化位 相における信号に変換する。高次補間フィルタ7は、例 えば、図5に示すようなナイキスト補間特性に基づくも のであっても良い。

【0056】図5に示すようなナイキスト特性におい 信号をトランスバーサルフィルタ6に入力して、パーシ 50 て、チャネルレート(1 T)を時間方向にN分割した時 の、各々の振幅値をレジスタに格納しておき、位相制御情報に応じて、それが示す位相の係数を設定するように 選択するレジスタを切替えながら位相補間を行なってい く。これにより、非同期に標本化した再生信号が、正規 の標本化位相と同等の再生等化信号に変換されることに なる。

【0057】高次補間フィルタ7は、図6に示すような、遅延素子19aないし19fをシリーズに接続し、これから取り出したタップ、即ち遅延素子19aないし19fの入力および遅延素子19fの出力にタップ係数S1ないしS6およびS7を乗算する乗算素子20aないし20fおよび20gと、これら乗算素子20aないし20fおよび20gの出力を加算する加算手段21により構成されるFIRフィルタであってもよい。

【0058】この時、位相補間を行なうに際して、ループフィルタ10の出力信号である位相制御情報を基に、図6に示すような、レジスタ22aから22gに保持されているフィルタ係数を、セレクタ23aから23gにより切替えながら、S1からS7までのタップ係数を設定していく。ここで、レジスタ22aから22gの係数は、図5の各位相毎のナイキスト特性値をN分割、例えば図5に示すように、各チャネルレートTをaからhまで8分割し、さらに1から7のエリアを、図6に示すように、各チャネルレートであからhまで8分割し、さらに1から7のエリアを、図6に示すドIRフィルタの各タップに対応させて予め格納しておく。例えば、ループフィルタ10から得られる現時点での位相制御情報が、正規の位相と180°異なる標本化位相であった場合、図5に示すエリア1から7までの

"●"、即ちeの位相でのフィルタ係数がS1からS7のタップ係数として設定されることになる。ここで、時間方向の分割数Nは大きいほど位相制御の精度は向上するが、分割数Nの増加は回路規模の増加に結びつくため、性能と回路規模が相容れる条件にて設定されるものである。高次補間フィルタ7の出力信号は、タップ重み係数制御手段8に入力され、等化誤差を最小にするようにトランスバーサルフィルタ6のタップの重み係数を適応的に制御する。

【0059】タップ重み係数制御手段8は、例えば、図7に示すような、最小二乗平均アルゴリズムを用いたものであってもよい。即ち、高次補間フィルタ7の出力信号から仮判定回路24によりパーシャルレスポンス方式に対応した等化目標値を検出し、その等化目標値と高次補間フィルタ7の出力信号を減算して等化誤差を検出する等化誤差検出器25と、等化誤差検出器25の出力信号との相関を演算する相関器26と、相関器26の出力をゲインと同数倍してフィードバックゲインを調整するフィードバックゲインを調整するフィードバックゲインを調整するフィードバックゲインに調整器27と、その出力を各タップの重み係数に加算し、タップ係数を更新するタップ係数更新部28とから構成されるものである。

【0060】次に、高次補間フィルタ7の出力信号から

位相誤差を検出するための位相比較器 9 と、位相比較器 9 から出力される位相誤差信号を平滑化するためのループフィルタ 1 0 と、その出力信号を位相制御情報として、前記高次補間フィルタ 7 のフィルタ係数を制御するフィードバックループにより、デジタル位相同期ループ 1 1 を構成する。

28

【0061】以上、一連の動作により出力された、正規の位相でのパーシャルレスポンス等化波形を用いて、パーシャルレスポンスの型に応じて復号を行なう最尤復号器12を通してデータ復調を行なう。ここで、最尤復号器12は、例えば、ビタビ復号器であってもよい。ビタビ復号器は、パーシャルレスポンスの型に基づいて、意図的に付加された符号の相関の法則にしたがって確率計算を行ない、尤も確からしい系列を再現するものである。例えば、適用したパーシャルレスポンスの型がPR(3、4、4、3)方式の場合、図8(a)に示すような、状態遷移図に基づいて状態が変化する。これは、特に、DVDで用いられている8-16変調符号を考慮したものとなっており、ランレングス長を2に制限していることも関係しており、S0からS5までの6つの状態の状態遷移で表現可能となっている。

【0062】図8(a)において、X/Yは、Xが記録符号の遷移を、Yがその時の信号振幅を示している。また、或る1つの状態は、異なる3つの時間の符号で表わされ、例えば、S4「110」からS3「100」への状態遷移では、「110」に符号"0"が加わり左にシフトされることにより、左端の"1"が消え、状態S3「100」となることを意味している。

【0063】その時間的変化は、図8(b)に示すように、トレリス線図で表わされる。そこで、この各パスの確率的な長さ1kab(以下、ブランチメトリックと称す)を計算し、それぞれの状態に推移する場合に、ブランチメトリックを加算していく。ここで、kは時間的な推移を、abは、状態SaからSbへの遷移でのブランチメトリックを表わすこととする。そのブランチメトリックの各状態における加算値は、メトリックと呼ばれ、このメトリックが最小となるパスを生き残りパスとして、順次出力していくことにより、2値デジタルデータに復調していくものである。つまり、図8(b)の記録符号にしたがって復調されるとすれば、実線で示したパスが生き残りパスということになる。

【0064】また、アナログ・デジタルコンバータ3の標本化クロックを制御する手段は、高次補間フィルタ7の出力信号から、同期パターンのパターン長、あるいは、同期パターンが発生する間隔を検出し、周期情報に変換することにより周波数誤差信号を出力する手段としての周波数誤差検出器13と、周波数誤差検出器13から出力される周波数誤差信号を平滑化する手段としての周波数制御用ループフィルタ14と、アナログ・デジタルコンバータ3にクロックを供給する発振器15により

構成される周波数制御ループにより実現される。

【0065】ここで、周波数誤差検出器13は、例え ば、図9に示すような構成のものであってもよい。即 ち、高次補間フィルタ7の出力信号から信号がゼロレベ ルをクロスする位置を連続して検出し、隣接するゼロク ロス間の標本数をカウントしてレジスタに保持する手段 により構成されるゼロクロス長検出器29の出力を用い て、1フレーム以上の特定の期間をカウントする手段に より構成されるフレームカウンタ30で制定された期間 内における、隣接するゼロクロス長の比率が、同期パタ ーンの比率、例えば、DVD-ROMにおいては、1 4:4を満足している場合のみ、カウント値を加算した 最大値を検出してレジスタに保持する手段により構成さ れる同期パターン長検出器31により再生デジタルデー タの線速度周期に反比例する周期情報1を得る。また、 同期パターン長により、ある程度まで周波数を引き込ん だ後、さらに再生クロックの有するクロック成分の周波 数に近づけるために、同期パターン長検出器31で同期 パターンであると判断された位置で同期パターンフラグ を出力し、次に同期パターンフラグが検出されるまでの 間隔をカウントする手段により構成される同期パターン 間隔検出器32により、同期パターンが発生する周期を 検出し、例えば、DVD-ROMでは、1488T (こ こで、Tは1チャネルビットを示す)との差を周期情報 2として得る。これら周期情報1と周期情報2により、 位相同期可能な周波数領域まで発振器15の発振クロッ クを制御する。

【0066】このような、非同期に標本化した信号をパーシャルレスポンス等化し、位相補間型のデジタル位相同期ループにより位相同期を補償し、データ復調を行なうことを特徴とするデジタル記録データ再生装置を用いて、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、パーシャルレスポンス等化後に位相誤差情報を検出することにより、位相同期ループにおけるジッタの低減と最適なパーシャルレスポンス等化信号が再現できるため、エラーレートの向上につながるだけでなく、位相同期引き込み能力も高く、安定したデジタル記録データ再生が可能となる。

【0067】即ち、非同期に標本化した信号をパーシャルレスポンス等化し、位相補間型のデジタルフェーズロックドループにより位相同期を補償し、データ復調を行なうことを特徴とするデジタル記録データ再生装置を用いることにより、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、パーシャルレスポンス等化後に位相誤差情報を検出することから、位相同期ループにおけるジッタの低減と最適なパーシャルレスポンス等化信号が再現できるため、エラーレートの向上につながるだけでなく、位相同期引き込み能力も高く、安定したデジタル記録データ再生が可能となるデジタル記録データ再生表置を実現することができる。

【0068】 (実施の形態2)以下、本発明の請求項 2,請求項12ないし請求項16,請求項20,請求項 26,請求項32に記載されたデジタル記録データ再生 装置に対応する実施の形態2について、図10から図1 2を用いて説明する。図10において、図示しない再生 手段(光ピックアップ等)により得られた光ディスク再 生信号をプリアンプ1で出力振幅を強調した後、波形等 化手段2で高域を強調するような補正を施す。波形等化 手段2は、例えば、高次等リップルフィルタ等の,ブー スト量とカットオフ周波数を任意に設定できるフィルタ で構成される。波形等化手段2の出力信号をアナログ信 号をデジタル信号に変換する手段としてのアナログ・デ ジタルコンバータ3により、多ビットのデジタル信号に 標本化する。その際、発振器15により生成されるクロ ックであって、再生信号が有するクロック成分とは非同 期のクロックを用いる。このアナログ・デジタルコンバ

30

【0069】オフセット補正手段4は、例えば、図2に示すような構成のものでもよい。即ち、再生デジタル信号の有するオフセット成分を検出するオフセット検出手段16と、それにより検出されたオフセット信号を平滑化するための平滑化手段17と、平滑化手段17の出力信号を再生デジタル信号より減算する減算手段18により構成されるものである。

ータ3により標本化された多ビットのデジタル信号をオ

フセット補正手段4に入力することにより、再生デジタ

ル信号に含まれるオフセット成分を補正する。

【0070】オフセット補正手段4の出力信号は、オートゲインコントロール5に入力されることにより、再生デジタル信号の振幅が任意の値に調整される。オートゲインコントロール5は、例えば、信号波形のエンベロープを検出し、任意の設定値とエンベロープ信号の差が零になるように制御するものであっても良い。

【0071】次に、オートゲインコントロール5の出力信号をトランスバーサルフィルタ6に入力して、位相同期を実現するための位相補間とパーシャルレスポンス等化を行なう。ここで、パーシャルレスポンス等化は、実施の形態1に記載した、PR(3,4,4,3)方式を用いてもよい。

【0072】トランスバーサルフィルタ6は、有限タップで構成されるものであり、例えば、図6に示すような、FIR(Finite Impulse response Filter)フィルタであってもよい。このFIRフィルタによる等化特性及び位相補間特性は、タップの重み係数を可変させることで実現されるものである。そしてそのタップの重み係数を制御する手段として、位相補間型タップ重み係数制御手段33を有する構成となっている。即ち、トランスバーサルフィルタ6は、その等化出力信号に基づき、パーシャルレスポンス等化誤差が最小となるようにタップの重み係数を制御する手段としての位相補間型タップ重の重み係数を制御する手段としての位相補間型タップ重の重み係数制御手段33を有する適応制御ループと、トラン

スパーサルフィルタ6の出力の位相誤差を検出するための位相比較器9と、位相比較器9から出力される位相誤差信号を平滑化するためのループフィルタ10と、位相補間型タップ重み係数制御手段33とを有し、ループフィルタ10の出力信号を位相制御情報として、位相補間型タップ重み係数制御手段33のフィルタ係数を制御する手段としてのデジタル位相同期ループ、の2種類の制御ループにより制御されるものである。

【0073】以上、一連の動作により出力された、正規の位相でのパーシャルレスポンス等化波形を用いて、パーシャルレスポンスの型に応じて復号を行なう最尤復号器12を通してデータ復調を行なう。ここで、最尤復号器12は、例えば、ビタビ復号器であってもよい。ビタビ復号器は、パーシャルレスポンスの型にしたがって、意図的に付加された符号の相関の法則にしたがって、確率計算を行ない、尤も確からしい系列を再現するものであり、例えば、PR(3,4,4,3)があるPRML方式であってもよい。

【0074】なお、位相補間型タップ重み係数制御手段33は、例えば、図11に示すような構成を有するものであってもよい。即ち、位相補間制御を行なうに際して、ループフィルタ10の出力信号である位相制御情報を基に、図11に示すような、レジスタ22aから22gに保持されているフィルタ係数を、セレクタ23aから23gにより切替えながら、図6に示すような、S1からS7までのFIRフィルタの各タップ係数を設定していく。ここで、レジスタ22aから22gの係数は、パーシャルレスポンス適応自動等化による係数制御と、ナイキスト位相補間制御による係数制御の双方により決定されるものである。

【0075】このパーシャルレスポンス適応自動等化による係数制御は、例えば、図11に示すような、最小二乗平均アルゴリズムを用いたものであってもよい。即ち、トランスバーサルフィルタ6の出力信号から仮判定回路24によりパーシャルレスポンス方式に対応した等化目標値を検出し、その等化目標値とトランスバーサルフィルタ6の出力信号を減算して等化誤差を検出する等と、等化誤差検出器25の出力信号との相関をと、トランスバーサルフィルタ6の出力信号との相関を演算する相関器26と、相関器26の出力をゲインと同数倍してフィードバックゲインを調整する手段としてのフィードバックゲイン調整器27と、その出力を各タップの重み係数に加算し、タップ係数を更新する手段としてのタップ係数更新部28とから構成されるものである。

【0076】一方、ナイキスト位相補間制御による係数制御は、例えば、図5に示すように、ナイキスト特性をaからgまで8分割し、さらに1から7のエリアを、図6に示すFIRフィルタの各タップに対応させてレジス

タ35に格納しておく。図11のレジスタ35に格納されている各タップ及び各位相でのナイキスト補間係数EmからDmと(mは、タップ番号、及びエリア番号に相当するものである)、タップ係数更新部28の出力信号であるパーシャルレスポンス等化用のタップの重み係数を、タップ係数畳み込み手段34により重畳させ、レジスタ値更新手段36によりレジスタ22aから22gの各レジスタ値を更新することにより、パーシャルレスポンス適応自動等化による係数制御と、ナイキスト位相補間制御による係数制御の双方を満足するタップの重み係数を設定することが可能となる。

【0077】また、アナログ・デジタルコンバータ3の 標本化クロックを制御する手段は、トランスバーサルフ ィルタ6の出力信号から、同期パターンのパターン長、 あるいは、同期パターンが発生する間隔を検出し、周期 情報に変換することにより周波数誤差信号を出力する手 段としての周波数誤差検出器13と、周波数誤差検出器 13から出力される周波数誤差信号を平滑化する手段と しての周波数制御用ループフィルタ14と、アナログ・ デジタルコンバータ3にクロックを供給する発振器15 により構成される周波数制御ループにより実現される。 【0078】ここで、周波数誤差検出器13は、例え ば、図9に示すような構成のものであってもよい。即 ち、トランスバーサルフィルタ6の出力信号から信号が ゼロレベルをクロスする位置を連続して検出し、隣接す るゼロクロス間の標本数をカウントしてレジスタに保持 する手段により構成されるゼロクロス長検出器29の出 力を用いて、1フレーム以上の特定の期間をカウントす る手段により構成されるフレームカウンタ30で制定さ れた期間内における、隣接するゼロクロス長の比率が、 同期パターンの比率、例えば、DVD-ROMにおいて は、14:4を満足している場合のみ、カウント値を加 算した最大値を検出してレジスタに保持する手段により 構成される同期パターン長検出器31により再生デジタ ルデータの線速度周期に反比例する周期情報1を得る。 また、同期パターン長により、ある程度まで周波数を引 き込んだ後、さらに再生クロックの有するクロック成分 の周波数に近づけるために、同期パターン長検出器31 で同期パターンであると判断された位置で同期パターン フラグを出力し、次に同期パターンフラグが検出される までの間隔をカウントする手段により構成される同期パ ターン間隔検出器32により、同期パターンが発生する 周期を検出し、例えば、DVD-ROMでは、1488 T(ここで、Tは1チャネルビットを示す)との差を周 期情報2として得る。これら周期情報1と周期情報2に より、位相同期可能な周波数領域まで発振器15の発振 クロックを制御する。

【0079】このような、非同期に標本化した信号を一系統のトランスバーサルフィルタにより、パーシャルレスポンス等化、及び位相補間型のデジタルフェーズロッ

ープゲインに対して、十分に低いものであったほうが、 競合が起こらず、安定した制御が可能となる。

クドループを実現し、データ復調を行なうことを特徴とするデジタル記録データ再生装置を用いることにより、回路規模として全体に占める割合が大きいトランスバーサルフィルタと高次補間フィルタを共用化できるため、回路規模の削減、及び特に、高速再生時における低消費電力化を図れるだけでなく、位相制御用のフィルタ係数の設定手段を独立に操作するように構成しておくことにより、パーシャルレスポンス等化と正規標本化位相におけるデータ再生補間の双方の特性を損なうことなく精度良く効率的な制御が可能となる。また、実施の形態1の2種類の制御ループを統合化し、回路規模として占める割合が大きいトランスバーサルフィルタと高次補間フィルタを共用化することにより、回路規模の削減、及び特に、高速再生時における低消費電力化を図れる。

【0080】なお、実施の形態2における、周波数制御、位相同期制御、及びパーシャルレスポンス適応自動制御の制御方法は、例えば、図12のフローチャートに示すようなものであってもよい。制御が開始された場合、第一段階として、周波数制御ループにより、周波数引き込みを行なう(ステップ101)。その結果として得られる再生信号が有するクロック成分の周波数と、発振器15から生成されるクロック周波数の偏差量が、生A%以内であれば(ステップ102)、第二段階の位相同期引き込み制御に移行し(ステップ103)、周波数引き込みにおけるループゲインを低ゲインモードに切替える。周波数偏差量が、生A%以内に収まっていない場合は、引き続き周波数引き込み制御を継続する。

【0081】第二段階の位相同期引き込み制御に移行し ている場合、その結果として検出される同期パターン が、ある一定数連続して確認できれば (ステップ10 4)、第三段階のLMSアルゴリズムPR適応自動等化 制御に移行し(ステップ105)、位相同期引き込みに おけるループゲインを低ゲインモードに切替える。同期 パターンが、ある一定数連続して確認できなければ、引 き続き位相同期引き込み制御を継続する。第三段階のL MSアルゴリズムPR適応自動等化制御に移行している 場合、その結果として得られる等化誤差が、±B%以内 であれば(ステップ106)、第四段階のインターバル 制御型PR適応自動等化制御に移行し、±B%以内に収 まっていなければ、LMSアルゴリズムPR適応自動等 化制御を低ゲインモードで連続して行なう (ステップ1 07)。ここで、インターバル制御型PR適応自動等化 制御とは、逐次、パーシャルレスポンス等化用のタップ の重み係数をフィードバックするのではなく、ある一定 期間における各々のタップでの相関性を持った等化誤差 量の累積加算値を、離散的にタップの重み係数に反映さ せる制御方法である。ここで、LMSアルゴリズムPR 適応自動等化制御と、インターバル制御型PR適応自動 等化制御のループゲインは、位相同期引き込み制御のル

【0082】このような一連の制御方法をとることにより、位相制御用のフィルタ係数制御と、パーシャルレスポンス適応自動等化用のタップの重み係数制御との競合化を防ぎ、位相制御を優先させることにより、安定した位相同期ループを実現し、かつ、パーシャルレスポンス等化の精度を損なわない制御が可能となる。また、インターバル制御を用いることにより、異常信号が発生した場合においても、制御不能状態に陥ることを回避することが可能であるため、プレイアビリティも向上するデジタル記録データ再生装置が得られる効果がある。

【0083】 (実施の形態3)以下、本発明の請求項3 ないし請求項5,請求項17ないし請求項20,請求項 26ないし請求項31に記載されたデジタル記録データ 再生装置に対応する実施の形態3について、図13から 図16を用いて説明する。図13において、図示しない 再生手段(光ピックアップ等)により得られた光ディス ク再生信号をプリアンプ1で出力振幅を強調した後、波 形等化手段2で高域を強調するような補正を施す。波形 等化手段2は、プースト量とカットオフ周波数を任意に 設定できるフィルタで構成される。例えば、高次等リッ プルフィルタ等である。波形等化手段2の出力信号をア ナログ信号をデジタル信号に変換する手段としてのアナ ログ・デジタルコンバータ3により、多ビットのデジター ル信号に標本化する。その際、VCO40により生成さ れるクロックであって、再生信号が有するクロック成分 とは非同期のクロックを用いる。この標本化された多ビ ットのデジタル信号をオフセット補正手段4に入力する 30 ことにより、再生デジタル信号に含まれるオフセット成 分を補正する。

【0084】このオフセット補正手段4は、例えば、図2に示すような構成のものでもよい。即ち、再生デジタル信号の有するオフセット成分を検出するオフセット検出手段16と、それにより検出されたオフセット信号を平滑化するための平滑化手段17と、平滑化手段17の出力信号を再生デジタル信号より減算する減算手段18により構成されるものである。

【0085】オフセット補正手段4の出力信号は、オートゲインコントロール5に入力されることにより、再生デジタル信号の振幅が任意の値に調整される。オートゲインコントロール5は、例えば、信号波形のエンベロープを検出し、任意の設定値とエンベロープ信号の差が零になるように制御するものであっても良い。

【0086】次に、オートゲインコントロール5の出力信号をトランスバーサルフィルタ6に入力して、パーシャルレスポンス等化を行なう。ここで、パーシャルレスポンス等化は、例えば、片面1層で4.7Gバイトのデジタル記録が可能なDVD-ROM (Read Only Memory)では、図3 (c)に示すように、等化後の波形振幅

36

が、5値(0、4×A、7×A、-4×A、-7×A)に分かれるようなPR(3、4、4、3)方式を用いるものとする。PR(3、4、4、3)方式以外にも、多種多様なパーシャルレスポンスの型は存在するが、特定の方式に限定するだけでなく、性能に見合うものが可能であれば、他の方式を用いても問題はない。これら再生データの時間方向に相関性を付加するパーシャルレスポンス方式と、後述する最尤復号法(マキシマムライクリフッド)の一つであり、付加したデータの相関性を利用して尤も確からしい系列を復調するビタビ復号器とを組合わせて、線記録方向の高記録密度再生に有利とされるPRML信号処理を実現している。

【0087】上述したように、PRML信号処理方式は、再生波形の特性や変調符号により、様々な組み合わせが存在するため、各種記録再生系に対して、適切な方式を選択することが必要である。トランスバーサルフィルタ6は、有限タップで構成される、例えば、FIR(Finite Impulse response Filter)フィルタである。このFIRフィルタによる等化特性は、タップの重み係数を可変させることで実現されるものである。トランスパーサルフィルタ6によりパーシャルレスポンス等化された信号を高次補間フィルタ7により、正規の標本化位相における信号に変換する。

【0088】高次補間フィルタ7は、例えば、図5に示すようなナイキスト補間特性に基づくものであっても良い。図5に示すようなナイキスト特性において、チャネルレート(1T)を時間方向にN分割した時の、各々の振幅値をレジスタに格納しておき、位相制御情報に応じて、それが示す位相の係数を設定するように選択するレジスタを切替えながら位相補間を行なっていく。これにより、非同期に標本化した再生信号が、正規の標本化位相と同等の再生等化信号に変換されることになる。

【0089】高次補間フィルタ7は、図6に示すよう な、遅延素子19aから遅延素子19fと、乗算素子2 Oaから20gと、加算手段21により構成されるFI Rフィルタであってもよい。この時、位相補間を行なう に際して、ループフィルタ10の出力信号である位相制 御情報を基に、図6に示すような、レジスタ22aから 22gに保持されているフィルタ係数を、セレクタ23 aから23gにより切替えながら、S1からS7までの タップ係数を設定していく。ここで、レジスタ22aか ら22gの係数は、図5の各位相毎のナイキスト特性値 をN分割、例えば図5に示すように、aからgまで8分 割し、さらに1から7のエリアを、図6に示すFIRフ イルタの各タップに対応させて格納しておく。例えば、 ループフィルタ10から得られる現時点での位相制御情 報が、正規の位相と180°異なる標本化位相であった 場合、図5に示すエリア1から7までの"●"、即ちe の位相でのフィルタ係数がS1からS7のタップ係数と して設定されることになる。ここで、時間方向の分割数

Nは大きいほど位相制御の精度は向上するが、分割数N の増加は回路規模の増加に結びつくため、性能と回路規 模が相容れる条件にて設定されるものである。高次補間 フィルタ7の出力信号は、タップ重み係数制御手段8に 入力され、等化誤差を最小にするようにトランスバーサ ルフィルタ6のタップの重み係数を適応的に制御する。 【0090】タップ重み係数制御手段8は、例えば、図 7に示すような、最小二乗平均アルゴリズムを用いたも のであってもよい。即ち、高次補間フィルタ7の出力信 号から仮判定回路 2 4 によりパーシャルレスポンス方式 に対応した等化目標値を検出し、その等化目標値と高次 補間フィルタ7の出力信号を減算して等化誤差を検出す る等化誤差検出器25と、等化誤差検出器25の出力信 号と、高次補間フィルタ7の出力信号との相関を演算す る相関器26と、相関器26の出力をゲインと同数倍し てフィードバックゲインを調整する手段としてのフィー ドバックゲイン調整器27と、その出力を各タップの重 み係数に加算し、タップ係数を更新する手段としてのタ

【0091】次に、高次補間フィルタ7の出力信号から 位相誤差を検出するための位相比較器9と、位相比較器 9から出力される位相誤差信号を平滑化するためのルー プフィルタ10と、その出力信号を位相制御情報とし て、前記高次補間フィルタ7のフィルタ係数を制御する フィードバックループにより、デジタル位相同期ループ 11を構成する。

ップ係数更新部28とから構成されるものである。

【0092】以上、一連の動作により出力された、正規の位相でのパーシャルレスポンス等化波形を用いて、パーシャルレスポンスの型に応じて復号を行なう最尤復号器12を通してデータ復調を行なう。ここで、最尤復号器12は、例えば、ビタビ復号器であってもよい。ビタビ復号器は、パーシャルレスポンスの型にしたがって、意図的に付加された符号の相関の法則にしたがって、確率計算を行ない、尤も確からしい系列を再現するものである。

【0093】また、アナログ・デジタルコンバータ3の標本化クロックを制御する手段は、高次補間フィルタ7の出力信号から、同期パターンのパターン長、あるいは、同期パターンが発生する間隔を検出し、周期情報に変換することにより周波数誤差信号を出力する手段としての周波数誤差検出器13と、周波数誤差検出器13と、周波数誤差検出器13から出力される周波数誤差信号を平滑化する手段としての周波数制御を司る周波数制御手段37と、周波数と再生信号に含まれるクロック成分の周波数が近傍まで引き込まれた後に、ループフィルタ10から出力される位相制御情報をモニタし、その位相制御信号が位相同期制御不能領域に達する前に、正常動作範囲に戻るようにクロック周波数のアップ・ダウン制御を行なう位相同期維持手段38と、それら、周波数のラフ制御信号とアップ・

いてもよい。

ダウン制御信号を基に、アナログ・デジタルコンバータ 3にクロックを供給するVCO40の発振周波数を制御 するVCO制御手段38により構成される周波数制御ル ープにより実現される。

【0094】ここで、周波数制御手段37は、例えば、 図9に示すような構成のものに周波数制御用ループフィ ルタ14を接続したものであってもよい。即ち、高次補 間フィルタ7の出力信号から信号がゼロレベルをクロス する位置を連続して検出し、隣接するゼロクロス間の標 本数をカウントしてレジスタに保持する手段により構成 されるゼロクロス長検出器29の出力を用いて、1フレ 一ム以上の特定の期間をカウントする手段により構成さ れるフレームカウンタ30で制定された期間内におけ る、隣接するゼロクロス長の比率が、同期パターンの比 率、例えば、DVD-ROMにおいては、14:4を満 足している場合のみ、カウント値を加算した最大値を検 出してレジスタに保持する手段により構成される同期パ ターン長検出器31により再生デジタルデータの線速度 周期に反比例する周期情報1を得る。また、同期パター ン長により、ある程度まで周波数を引き込んだ後、さら に再生クロックの有するクロック成分の周波数に近づけ るために、同期パターン長検出器31で同期パターンで あると判断された位置で同期パターンフラグを出力し、 次に同期パターンフラグが検出されるまでの間隔をカウ ントする手段により構成される同期パターン間隔検出器 32により、同期パターンが発生する周期を検出し、例 えば、DVD-ROMでは、1488T (ここで、Tは 1チャネルビットを示す)との差を周期情報2として得 る。これら周期情報1と周期情報2により、周波数制御 用のループフィルタ14を介して、位相同期可能な周波 数領域までVCO40の発振クロックを制御する。

【0095】また、位相同期維持手段38は、例えば、 図14に示すような制御方法に基づくものであってもよ い。周波数制御手段37により、位相同期可能な周波数 領域までVCOの発振クロックの周波数が引き込まれて いる場合、図14(a)に示すような、ループフィルタ 10の出力信号である位相制御信号が、位相制御限界に 達する前に、ある任意の位相維持レベルを、位相の進み 方向と遅れ方向の双方に設けておき、位相制御信号が、 進み方向の位相維持レベルを超える場合はアップ制御信 号を、遅れ方向の位相維持レベルを超える場合はダウン 制御信号を、VCO制御手段39に供給する。この周波 数のアップ・ダウン制御により、VCO40の発振クロ ックの周波数は、位相同期可能な領域内にとどまるよう に制御されるため、位相の不連続点が存在しない滑らか な位相同期制御が可能となる。この時、VCO40の発 振周波数の制御は、図14(b)に示すような周波数曲 線を描くことになる。

【0096】このような一連の周波数制御を行なうことにより、再生信号を標本化する際の非同期なクロックの

周波数を、常に、デジタル位相同期ループの制御可能範囲内に維持できることになる。したがって、位相同期制御時に不連続点が生じることなく、安定したデジタル記録データ再生が可能となるだけでなく、周波数制御と位相制御を分離して考えることが可能となるため、発振器の回路及び制御手段も単純な構成で実現できる。特に、VCO等のアナログ回路においては、経年変化や性能面でのバラツキがあるため、その補償回路等が必要となっ

38

てくるが、本発明の制御方式を用いれば、回路構成を簡略化することが可能となり、コスト削減、及び低消費電力化に効果がある。

【0097】なお、トランスバーサルフィルタ6,高次補間フィルタ7,タップ重み係数制御手段8,位相比較器9及びループフィルタ10の代わりに、図10のトランスバーサルフィルタ6,位相比較器9,ループフィルタ10及び位相補間型タップ重み係数制御手段33を用

【0098】なお、VCO制御手段39は、例えば、図15(a)に示すようなものであってもよい。即ち、周波数制御手段37から出力される周波数ラフ制御信号と、位相同期維持手段38から出力される周波数アップ・ダウン制御信号を、それぞれデルタ・シグマ変調器41に入力し、オーバーサンプリングを利用し、時間方向に変調をかけた後、その出力をデジタル・アナログコンバータ42に入力して、デジタル制御信号を電圧値に変換する。変換された電圧値を、平滑化する手段としての低域通過型フィルタ43に入力して、滑らかなVCO制御電圧に整形し直すことにより、本来、VCO40が持つ発振周波数の最小制御量よりも細かい制御が可能となる。その時の、VCO制御電圧とデルタ・シグマ変調器41の出力の関係は、図15(b)に示すようになっている。

【0099】再生信号の標本化に用いる非同期なクロックの周波数を、デジタル位相同期ループの制御可能範囲内に維持する際に、発振器の最小周波数制御分解能が荒く、アップ・ダウン制御時に発振周波数が大きく変動する場合においては、位相同期ループに乱れが生ずる危険性があったが、このように時間方向に変調をかけて発振器の発振周波数を本来の分解能よりも細かく制御することにより、アップ・ダウン時に乱れることなく連続再生が可能となるため、再生品質が向上する。

【0100】なお、VCO制御手段39は、例えば、図16(a)に示すようなものであってもよい。即ち、周波数制御手段37から出力される周波数ラフ制御信号と、位相同期維持手段38から出力される周波数アップ・ダウン制御信号を、それぞれデルタ・シグマ変調器41に入力し、オーバーサンプリングを利用し、時間方向に変調をかけた後、その出力をデジタル・アナログコンバータ42に入力して、デジタル制御信号を電圧値に変りある。変換された電圧値を、平滑化する手段としての

低域通過型フィルタ43に入力して、滑らかなVCO制御電圧に整形し直すことにより、本来、VCO40が持つ発振周波数の最小制御量よりも細かい制御が可能となる。その際、再生する倍速モードや、ディスク再生時の内外周差等、再生速度の変化量に応じて、低域通過型フィルタ43のカットオフ周波数を切替える手段としてのカットオフ周波数設定手段44を擁するものである。

【0101】ここで、カットオフ周波数は、再生クロックの周波数に連動させて変化させていくことが可能であれば、さらに性能向上につながる。その時の、VCO制御電圧とデルタ・シグマ変調器41の出力の関係は、図16(b)に示すようになっている。低域通過型フィルタのカットオフ周波数を固定すると、2倍速で正常な再生が行なえていたものが、1倍速、つまり再生チャネルレート2倍の長さになると、VCO制御電圧は乱れることになる。しかしながら、2倍速再生から1倍速再生に切替える時点で、カットオフ周波数を低く設定することにより、図16(b)に示すように、滑らかな制御が維持できる。これは、ディスク再生時にスピンドルモータの回転数を一定に保つ方式であるCAV再生方式において存在する、再生速度の内外周差にも同様の効果が得られる。

【0102】これにより、デジタル記録データを再生する際に、複数の再生速度を補償しなければならない場合や、ディスク媒体における内外周差、及び記録媒体の種類が異なるため広範囲の周波数制御帯域を有する場合において、それぞれの再生速度に適した応答特性を実現できるため、多種多様の再生倍速モードに対しても対応することが容易になり、再生速度が大きく変化する条件下においても再生特性を維持することが可能なデジタル記録データ再生装置を得ることができる。さらに、デジタルデータ再生装置に占めるアナログ素子を軽減し、回路構成を単純化した場合にも安定したデータ再生が可能となるため、さらなる、コスト低減につながる効果がある。

【0103】(実施の形態4)以下、本発明の請求項6ないし請求項9,請求項21ないし請求項32に記載されたデジタル記録データ再生装置に対応する実施の形態4について、図17から図22を用いて説明する。

【0104】図17において、図示しない再生手段(光ピックアップ等)により得られた光ディスク再生信号をプリアンプ1で出力振幅を強調した後、波形等化手段2で高域を強調するような補正を施す。波形等化手段2は、例えば、高次等リップルフィルタ等の、ブースト量とカットオフ周波数を任意に設定できるフィルタで構成される。波形等化手段2の出力信号をアナログ信号をデジタル信号に変換する手段としてのアナログ・デジタルコンバータ3により、多ビットのデジタル信号に標本化する。その際、発振器15により生成されるクロックであって、再生信号が有するクロック成分とは非同期のク

ロックを用いる。この標本化された多ビットのデジタル 信号と、高次補間フィルタ7の出力信号を、オフセット 補正手段4に入力することにより、再生デジタル信号に 含まれるオフセット成分を補正する。

【0105】オフセット補正手段4は、例えば、図18 に示すような構成のものでもよい。即ち、高次補間フィ ルタ7の出力信号から、信号がゼロレベルをクロスする 位置を検出し、ゼロクロスフラグを出力する機能により 構成されるゼロクロス位置検出手段45と、図19にお いて"●"で示すような、ゼロクロス位置の標本化信号 については、図19に示す、真のDCレベルと、偽のD Cレベルの振幅差(図中ではE)を出力する機能により 構成されるゼロクロス振幅出力手段46と、ゼロクロス 位置でない標本化信号については、その信号の極性に応 じて、ある任意の値X、あるいは-Xを出力する機能に より構成される極性値出力手段47と、ゼロクロス振幅 出力手段46と極性値出力手段47の出力信号を、ゼロ クロスフラグにより切替えて出力する手段であるセレク タ48により、オフセット誤差信号として統合した後、 平滑化するためのオフセット補正用ループフィルタ49 に入力される。最後に、減算手段18により、アナログ ・デジタルコンバータ3の出力信号から、オフセット補 正用ループフィルタ49の出力信号を直接減算し、オフ セット補正を行なうものである。

【0106】従来の、信号の符号のみに注目して制御を 行なう方法であれば、高い周波数成分のDCレベル変動 に追従させるために、ループゲインを大きくした場合、 検出したオフセット情報の不確かさから発生する制御雑 音により、再生信号品質が劣化していた。しかしなが ら、図18に示すようなオフセット補正手段4を用いれ ば、図19に示すXの値を、適切に選ぶことにより、オ フセット誤差量を時間方向に展開することができるた め、信号の極性だけでは得られなかった、より精度良い オフセット誤差信号を検出することが可能となる。した がって、従来に比べると、ループゲインを大きくして も、制御雑音が増加しないため、オフセット補正に伴う 再生信号品質の劣化を抑えることが可能となるだけでな く、より高い周波数成分を有するDCレベル変動や、振 幅変調、及びスクラッチ等により発生する異常信号に対 し、高い追従性と安定した動作が保証される。オフセッ ト補正手段4の出力信号は、オートゲインコントロール 5に入力されることにより、再生デジタル信号の振幅が 任意の値に調整される。オートゲインコントロール5 は、例えば、信号波形のエンベロープを検出し、任意の 設定値とエンベロープ信号の差が零になるように制御す るものであっても良い。

【0107】次に、オートゲインコントロール5の出力信号をトランスバーサルフィルタ6に入力して、パーシャルレスポンス等化を行なう。ここで、パーシャルレスポンス等化は、例えば、片面1層で4.7Gバイトのデ

ジタル記録が可能なDVD-ROM (Read Only Memor y) では、図3(c)に示すように、等化後の波形振幅 が、 5 値 (0, 4×A, 7×A, -4×A, -7×A) に分かれるようなPR(3,4,4,3)方式を用いる ものとする。PR (3, 4, 4, 3) 方式以外にも、多 種多様なパーシャルレスポンスの型は存在するが、特定 の方式に限定するだけでなく、性能に見合うものが実現 可能であれば、他の方式を用いても問題はない。これら 再生データの時間方向に相関性を付加するパーシャルレ スポンス方式と、後述する最尤復号法(マキシマムライ クリフッド)の一つであり、付加したデータの相関性を 利用して尤も確からしい系列を復調するビタビ復号器と を組合わせて、線記録方向の高記録密度再生に有利とさ れるPRML信号処理を実現している。上述したよう に、PRML信号処理方式は、再生波形の特性や変調符 号により、様々な組み合わせが存在するため、各種記録 再生系に対して、適切な方式を選択することが必要であ る。トランスバーサルフィルタ6は、有限タップで構成 される、例えば、FIR(Finite Impulse response Fi Iter)フィルタである。このFIRフィルタによる等化 特性は、タップの重み係数を可変させることで実現され るものである。トランスバーサルフィルタ6によりパー シャルレスポンス等化された信号を高次補間フィルタ7 により、正規の標本化位相における信号に変換する。高 次補間フィルタ7は、例えば、図5に示すようなナイキ スト補間特性に基づくものであっても良い。図5に示す ようなナイキスト特性において、チャネルレート(1 T)を時間方向にN分割した時の、各々の振幅値をレジ スタに格納しておき、位相制御情報に応じて、それが示 す位相の係数を設定するように選択するレジスタを切替 えながら位相補間を行なっていく。これにより、非同期 に標本化した再生信号が、正規の標本化位相と同等の再 生等化信号に変換されることになる。

【0108】高次補間フィルタ7は、図6に示すよう な、遅延素子19aから遅延素子19fと、乗算素子2 Oaから20gと、加算手段21により構成されるFI Rフィルタであってもよい。この時、位相補間を行なう に際して、ループフィルタ10の出力信号である位相制 御情報を基に、図6に示すような、レジスタ22aから 22gに保持されているフィルタ係数を、セレクタ23 aから23gにより切替えながら、S1からS7までの タップ係数を設定していく。ここで、レジスタ22aか ら22gの係数は、図5の各位相毎のナイキスト特性値 をN分割、例えば図5に示すように、aからgまで8分 割し、さらに1から7のエリアを、図6に示すFIRフ イルタの各タップに対応させて格納しておく。例えば、 ループフィルタ10から得られる現時点での位相制御情 報が、正規の位相と180°異なる標本化位相であった 場合、図5に示すエリア1から7までの"●"、即ちe の位相でのフィルタ係数がS1からS7のタップ係数と

して設定されることになる。ここで、時間方向の分割数 Nは大きいほど位相制御の精度は向上するが、分割数N の増加は回路規模の増加に結びつくため、性能と回路規 模が相容れる条件にて設定されるものである。高次補間

42

模が相容れる条件にて設定されるものである。高次補間フィルタ7の出力信号は、タップ重み係数制御手段8に入力され、等化誤差を最小にするようにトランスバーサルフィルタ6のタップの重み係数を適応的に制御する。

【0109】タップ重み係数制御手段8は、例えば、図7に示すような、最小二乗平均アルゴリズムを用いたものであってもよい。即ち、高次補間フィルタ7の出力信号から仮判定回路24によりパーシャルレスポンス方式に対応した等化目標値を検出し、その等化目標値と高次補間フィルタ7の出力信号を減算して等化誤差を検出する等化誤差検出器25と、等化誤差検出器25の出力信号との相関を演算する相関器26と、相関器26の出力をゲインと同数倍してフィードバックゲインを調整する手段としてのフィードバックゲイン調整器27と、その出力を各タップの重み係数に加算し、タップ係数を更新する手段としてのタップ係数更新部28とから構成されるものである。

【0110】次に、高次補間フィルタ7の出力信号から位相誤差を検出するための位相比較器9と、位相比較器9から出力される位相誤差信号を平滑化するためのループフィルタ10と、その出力信号を位相制御情報として、前記高次補間フィルタ7のフィルタ係数を制御するフィードバックループにより、デジタル位相同期ループ11を構成する。

【0111】以上、一連の動作により出力された、正規の位相でのパーシャルレスポンス等化波形を用いて、パ つシャルレスポンスの型に応じて復号を行なう最尤復号器12を通してデータ復調を行なう。ここで、最尤復号器12は、例えば、ビタビ復号器であってもよい。ビタビ復号器は、パーシャルレスポンスの型にしたがって、意図的に付加された符号の相関の法則にしたがって、確率計算を行ない、尤も確からしい系列を再現するものである。

【0112】また、アナログ・デジタルコンバータ3の標本化クロックを制御する手段は、高次補間フィルタ7の出力信号から、同期パターンのパターン長、あるいは、同期パターンが発生する間隔を検出し、周期情報に変換することにより周波数誤差信号を出力する手段としての周波数誤差検出器13から出力される周波数誤差信号を平滑化する手段としての周波数制御用ループフィルタ14と、アナログ・デジタルコンバータ3にクロックを供給する発振器15により構成される周波数制御ループにより実現される。

【0113】ここで、周波数誤差検出器13は、例えば、図9に示すような構成のものであってもよい。即ち、高次補間フィルタ7の出力信号から信号がゼロレベ 50 ルをクロスする位置を連続して検出し、隣接するゼロク

ロス間の標本数をカウントしてレジスタに保持する手段 により構成されるゼロクロス長検出器29の出力を用い て、1フレーム以上の特定の期間をカウントする手段に より構成されるフレームカウンタ30で制定された期間 内における、隣接するゼロクロス長の比率が、同期パタ ーンの比率、例えば、DVD-ROMにおいては、1 4:4を満足している場合のみ、カウント値を加算した 最大値を検出してレジスタに保持する手段により構成さ れる同期パターン長検出器31により再生デジタルデー タの線速度周期に反比例する周期情報1を得る。また、 同期パターン長により、ある程度まで周波数を引き込ん だ後、さらに再生クロックの有するクロック成分の周波 数に近づけるために、同期パターン長検出器31で同期 パターンであると判断された位置で同期パターンフラグ を出力し、次に同期パターンフラグが検出されるまでの 間隔をカウントする手段により構成される同期パターン 間隔検出器32により、同期パターンが発生する周期を 検出し、例えば、DVD-ROMでは、1488T (こ こで、Tは1チャネルビットを示す)との差を周期情報 2として得る。これら周期情報1と周期情報2により、 位相同期可能な周波数領域まで発振器15の発振クロッ クを制御する。

【0114】このように、オフセット誤差量を時間方向に展開する手法を用いることにより、信号の極性だけでは得られなかった、より精度良いオフセット誤差信号を検出することが可能となる。したがって、従来に比べると、ループゲインを大きくしても、制御雑音が増加しないため、オフセット補正に伴う再生信号品質の劣化を抑えることが可能となるだけでなく、より高い周波数成分を有するDCレベル変動や、振幅変調、及びスクラッチ 30等により発生する異常信号に対し、高い追従性と安定した動作が保証される。これにより、異常条件下での再生時にもプレイアビリティの向上が可能となる。

【0115】即ち、信号波形にアシンメトリが存在する だけでなく、スクラッチやディフェクト等により引き起 こされる、急激な振幅変調やオフセットレベル変動等が 起こる可能性を有する光ディスク系のデジタルデータ再 生において、記録変調符号の特徴を生かした符号極性成 分によるオフセット補正と、ゼロクロス近傍の標本化位 相における振幅成分によるオフセット補正の比率を適応 的に変化させることにより、制御状況に応じて最適なオ フセット補正が可能となるため、スクラッチやディフェ クト等により引き起こされる異常信号に対しての追従 性、及び復旧性能が向上する。また、周波数引き込みや 位相同期引き込み制御に対しても有利な状況となるた め、シーク後の高速な位相同期引き込みが可能となる。 【0116】なお、トランスバーサルフィルタ6、高次 補間フィルタ7, タップ重み係数制御手段8, 位相比較 器9及びループフィルタ10の代わりに、図10のトラ ンスバーサルフィルタ6,位相比較器9,ループフィル タ10及び位相補間型タップ重み係数制御手段33を用いてもよい。

44

【0117】なお、オフセット補正手段4は、図20に示すような構成のものであってもよい。即ち、高次補間フィルタ7の出力信号から、信号がゼロレベルをクロスする位置を検出し、ゼロクロスフラグを出力する機能により構成されるゼロクロス位置検出手段45と、図19において"●"で示すような、ゼロクロス位置の標本化信号については、図19に示す、真のDCレベルと、偽のDCレベルの振幅差(図中ではE)を出力する機能により構成されるゼロクロス振幅出力手段46と、ゼロクロス位置でない標本化信号については、その信号の極性に応じて、ある任意の値X、あるいは一Xを出力する機能により構成される極性値出力手段47を有し、極性値出力手段47の出力信号に対して、ゲイン調整手段50により、任意のゲインが設定できるものである。

【0118】つまり、図19で示すXが、任意の値に設定可能となるため、ゼロクロス位置における振幅誤差量との比率を変えることにより、オフセット補正制御を、ゼロクロス振幅出力手段46と極性値出力手段47の出力信号のどちらを主として制御するかを調整することが可能となる。ゼロクロス振幅出力手段46の出力信号を主とした場合は、位相同期引き込み後のDCレベル変動に対し有利な制御が行なえるが、位相同期引き込みが崩れた場合には、同時にオフセット補正制御も崩れる。反対に、極性値出力手段47の出力信号を主とした場合は、制御雑音は大きくなるが、高速かつ確実にオフセット補正を行なうことが可能である。

【0119】以上のようにして得られた、ゼロクロス振幅出力手段46とゲイン調整手段50の出力信号を、ゼロクロフラグにより切替えて出力する手段であるセレクタ48により、オフセット誤差信号として統合した後、平滑化するためのオフセット補正用ループフィルタ49に入力される。最後に、減算手段18により、アナログ・デジタルコンバータ3の出力信号からオフセット補正用ループフィルタ49の出力信号を直接減算し、オフセット補正を行なうものである。

【0120】このように、ゼロクロス振幅出力手段と極性値出力手段の出力信号のどちらを主とするかにより、制御に、応答速度や、制御雑音等の面で、様々なバリエーションを持たすことが可能となるため、異なる記録媒体の再生や、波形条件により、それらの条件に適したオフセット補正が可能となる。

【0121】なお、オフセット補正手段4は、図21に示すような構成のものであってもよい。高次補間フィルタ7の出力信号から、信号がゼロレベルをクロスする位置を検出し、ゼロクロスフラグを出力する機能により構成されるゼロクロス位置検出手段45と、図19において"●"で示すような、ゼロクロス位置の標本化信号については、図19に示す、真のDCレベルと、偽のDC

レベルの振幅差(図中ではE)を出力する機能により構 成されるゼロクロス振幅出力手段46と、ゼロクロス位 置でない標本化信号については、その信号の極性に応じ て、ある任意の値X、あるいは-Xを出力する機能によ り構成される極性値出力手段47を有し、極性値出力手 段47の出力信号に対して、ゲイン調整手段50によ り、任意のゲインが設定できるものである。また、ゲイ ン調整手段50を制御する手段として、モード制御手段 51を有する構成になっている。モード制御手段51に より、例えば、シーク時は、応答性能を上げるため、極 性値出力手段47の出力信号を主として制御するモード にし、位相同期引き込みを行なった時点で、ゼロクロス 振幅出力手段46の出力信号を主として制御するモード に切替えることが可能となる。以上のようにして得られ た、ゼロクロス振幅出力手段46とゲイン調整手段50 の出力信号を、ゼロクロフラグにより切替えて出力する 手段であるセレクタ48により、オフセット誤差信号と して統合した後、平滑化するためのオフセット補正用ル ープフィルタ49に入力される。最後に、減算手段18 により、アナログ・デジタルコンバータ3の出力信号か らオフセット補正用ループフィルタ49の出力信号を直 接減算し、オフセット補正を行なうものである。

【0122】このように制御モードに応じて、オフセット補正制御の特徴を切替えることにより、再生信号の精度よりもレベル変動への追従性が必要となるシーク時には、符号の極性を主として制御を行ない、再生信号の精度が必要である連続データの再生時には、ゼロクロス振幅を主として制御を行なうという、状況に応じて最適なオフセット補正が可能となる。また、制御の収束性にも関わってくるため、シーク後の高速な位相同期引き込みが可能となる。なお、オフセット補正手段4は、図22に示すような構成のものであってもよい。

【0123】高次補間フィルタ7の出力信号から、信号 がゼロレベルをクロスする位置を検出し、ゼロクロスフ ラグを出力する機能により構成されるゼロクロス位置検 出手段45と、図19において"●"で示すような、ゼ ロクロス位置の標本化信号については、図19に示す、 真のDCレベルと、偽のDCレベルの振幅差(図中では E)を出力する機能により構成されるゼロクロス振幅出 カ手段46と、ゼロクロス位置でない標本化信号につい 40 ては、その信号の極性に応じて、ある任意の値X、ある いは-Xを出力する機能により構成される極性値出力手 段47を有し、極性値出力手段47の出力信号に対し て、ゲイン調整手段50により、任意のゲインが設定で きるものである。また、疑似位相同期状態で制御が安定 した場合に、正常な位相同期状態に復旧させる手段とし て、カウンタ52により設定される任意の一定時間にお いて、極性値出力手段47の出力信号を累積加算手段に より加算し、疑似位相同期判定手段54により、その出 力信号レベルをモニタし、疑似位相同期状態であるか否 50

かを判定する。疑似位相状態であると判断された場合に は、ゲイン調整手段50を用いて、符号の極性成分によ るオフセット補正を強化することにより、正常位相同期 状態に復旧させる構成になっている。以上のようにして 得られた、ゼロクロス振幅出力手段46とゲイン調整手 段50の出力信号を、ゼロクロフラグにより切替えて出 力する手段であるセレクタ48により、オフセット誤差 信号として統合した後、平滑化するためのオフセット補 正用ループフィルタ49に入力される。最後に、減算手 段18により、アナログ・デジタルコンバータ3の出力 信号からオフセット補正用ループフィルタ49の出力信 号を直接減算し、オフセット補正を行なうものである。 【0124】このような構成をとることにより、スクラ ッチやディフェクト等により発生する、急激なオフセッ トレベル変動や振幅変調をきっかけとして疑似位相同期 が発生した場合においても、早期に自己修復し本来の位 相同期状態に復帰することが可能となるため、プレイア ビリティの向上が図れるデジタル記録データ再生装置が

46

20 [0125]

得られる効果がある。

【発明の効果】以上のように、本願の請求項1に記載の 発明に係るデジタル記録データ再生装置によれば、記録 媒体の再生信号を、該信号に含まれるクロック成分の位 相とは非同期にデジタルデータに標本化するアナログ・ デジタル変換手段と、該標本化された信号からオフセッ ト成分および振幅を補正するデジタルデータ補正手段 と、該補正がなされた信号にパーシャルレスポンス等化 を行なう等化フィルタと、該パーシャルレスポンス等化 された信号から正規の標本化位相における信号を補間に より再生する補間フィルタと、該補間フィルタの出力信 号に基づき前記等化フィルタのフィルタ係数を等化誤差 が最小になるように適応的に制御するフィルタ係数制御 手段と、前記補間フィルタの出力信号に基づき位相誤差 を検出し前記補間フィルタのフィルタ係数を更新する位 相同期ループと、前記補間フィルタの出力信号を前記等 化フィルタで等化したパーシャルレスポンスの型に応じ て最尤復号を行なうことによりデータ復調を行なう最尤 復号器とを備えるようにしたので、正規のサンプリング 位相での補間データに基づいて最尤復号を行うことが可 能となり、再生信号のチルトによる波形劣化等に影響さ れない、パーシャルレスポンス最尤復号に適したデジタ ルデータ復調が可能となる効果がある。

【0126】また、本願の請求項2に記載の発明に係るデジタル記録データ再生装置によれば、記録媒体の再生信号を、該信号に含まれるクロック成分の位相とは非同期にデジタルデータに標本化するアナログ・デジタル変換手段と、該標本化された信号からオフセット成分および振幅を補正するデジタルデータ補正手段と、該補正がなされた信号にパーシャルレスポンス等化を行なう等化フィルタと、前記等化フィルタの出力信号に基づき位相

50

誤差を検出する位相同期ループと、該等化フィルタの出 力信号に基づき前記等化フィルタのフィルタ係数を等化 誤差が最小になるように適応的に制御するとともに前記 位相同期ループの出力に基づき位相誤差をなくするよう にフィルタ係数を制御するフィルタ係数制御手段と、前 記等化フィルタで等化したパーシャルレスポンスの型に 応じて最尤復号を行なうことによりデータ復調を行なう 最尤復号器とを備えるようにしたので、正規のサンプリ ング位相での補間データに基づいて最尤復号を行うこと が可能となり、再生信号のチルトによる波形劣化等に影 響されない、パーシャルレスポンス最尤復号に適したデ ジタルデータ復調が可能になる。また、回路規模やコス トの削減、低消費電力化や再生データのエラーレートの 向上にも有効である、という効果がある。

【0127】また、本願の請求項3に記載の発明に係る デジタル記録データ再生装置によれば、請求項1または 2記載のデジタル記録データ再生装置において、前記記 録媒体の再生信号に含まれるクロック信号とは位相が非 同期のクロックを発生するクロック発生手段と、前記位 相同期ループの出力に基づいて前記クロック発生手段が 発生するクロックの周波数を制御する周波数制御手段 と、前記位相同期ループの出力に基づいて前記クロック 発生手段が発生するクロックの位相が同期状態を維持す るように制御を行う位相同期維持手段とを備えるように したので、クロック発生手段の発振制御が、ラフな周波 数制御と同期周波数近傍のアップダウン制御のみで済ま せることができ、精度のよい位相同期ループを実現でき るとともに、アナログ素子の大幅な削減が可能となる。 また、高周波動作もしなくてよいため、ノイズの発生対 策が不要となる効果がある。

【0128】また、本願の請求項4に記載の発明に係る デジタル記録データ再生装置によれば、請求項3記載の デジタル記録データ再生装置において、前記周波数制御 手段および前記位相同期維持手段からの制御信号に対し デルタ・シグマ変調を行うデルタ・シグマ変調手段と、 該デルタ・シグマ変調手段の出力信号の高域成分を除去 する低域通過型フィルタとを備えるようにしたので、ラ フ制御からアップダウン制御に切り替わる際の位相同期 ループの乱れを抑制でき、滑らかな周波数追従を行うこ とが可能となり、より安定した位相同期引き込みを実現 でき、再生データのエラーレートを向上できる。また、 クロック発生手段の制御も主にラフ制御の制御性能の向 上を考えて設計すればよいため、アナログ回路の簡略化 が可能となる効果がある。

【0129】また、本願の請求項5に記載の発明に係る デジタル記録データ再生装置によれば、請求項4記載の デジタル記録データ再生装置において、前記低域通過型 フィルタの時定数を変化させる時定数可変手段を備える ようにしたので、記録媒体の再生速度が変化した場合に その速度に応じて時定数を可変させることができ、記録 50 る。

媒体の倍速での再生モードを有するデータ再生系におい て、再生速度に依存せずに滑らかな周波数追従を行うこ とが可能となる効果がある。

48

【0130】また、本願の請求項6に記載の発明に係る デジタル記録データ再生装置によれば、請求項1または 2記載のデジタル記録データ再生装置において、前記デ ジタルデータ補正手段は、オフセット調整を行う際に、 標本化された波形のセンターラインがゼロレベルとクロ スするポイントに関してはそのポイントの振幅成分を加 算し、それ以外の符号が確定しているポイントに関して は、再生符号に従ってその極性に応じた所定値を加算す るようにしたので、オフセット誤差情報の確度が高ま り、高周波成分を含んだ直流変動に対してオフセット調 整を応答させる場合にも、動作の安定化と調整後のノイ ズの低減が可能となり、直流変動に対して有効なデータ 再生手段を実現できる効果がある。

【0131】また、本願の請求項7に記載の発明に係る デジタル記録データ再生装置によれば、請求項1または 2記載のデジタル記録データ再生装置において、前記デ ジタルデータ補正手段は、オフセット調整を行う際に、 標本化された波形のセンターラインがゼロレベルとクロ スするポイントに関してはそのポイントの振幅成分を加 算し、それ以外の符号が確定しているポイントに関して は、再生符号に従ってその極性に応じた値を加算するも のであり、かつその加算値をシーク動作時とそれ以外と で異ならせるようにしたので、オフセット誤差情報の確 度が高まり、高周波成分を含んだ直流変動に対してオフ セット調整を応答させる場合にも、動作の安定化と調整 後のノイズの低減が可能となり、直流変動に対して有効 なデータ再生手段を実現できるとともに、動作状況に応 じた制御を行うことが可能となり、プレイアビリティー の向上が可能となる効果がある。

【0132】また、本願の請求項8に記載の発明に係る デジタル記録データ再生装置によれば、請求項7記載の デジタル記録データ再生装置において、前記デジタルデ ータ補正手段は、シーク動作時には前記加算値の値を大 きくし、位相同期状態には前記加算値の値を小さくする ようにしたので、シーク動作中は追従性を高め、位相同 期状態になると制御雑音を抑えることができ、最適なオ フセット制御が可能となる効果がある。

【0133】また、本願の請求項9に記載の発明に係る デジタル記録データ再生装置によれば、請求項1または 2記載のデジタル記録データ再生装置において、前記デ ジタルデータ補正手段は、オフセット調整を行う際に、 標本化された波形の各ポイントでの所定時間分の累積加 算値をモニタし、その直流分の誤差量を離散的に直流分 にフィードバックするようにしたので、異常状態である 疑似ロック状態からの復旧を高速に行うことが可能とな り、プレイアビリティーの向上が可能となる効果があ

49

【0134】また、本願の請求項10に記載の発明に係るデジタル記録データ再生装置によれば、請求項2記載のデジタル記録データ再生装置において、前記フィルタ係数制御手段は、位相同期引き込みを行った後、パーシャルレスポンス等化を連続的に行い、かつそのループゲインを位相同期ループに比し十分低く設定し、その後等化誤差が小さくなると間欠的な制御動作に切り替えるようにしたので、姿勢データの品質が向上し、同期引き込み速度の向上が可能となる効果がある。

【0135】また、本願の請求項11に記載の発明に係 るデジタル記録データ再生装置によれば、記録媒体から の再生信号の出力振幅を強調するプリアンプと、該強調 された信号の所定の周波数帯域を強調する波形等化手段 と、発振器で生成されるクロックにより、該等化された 信号を該信号に含まれるクロック成分の位相とは非同期 に多ビットのデジタルデータに標本化するアナログ・デ ジタル変換手段と、該標本化された信号からオフセット 成分を低減するオフセット補正手段と、該出力信号の振 幅を所要のレベルに調整するオートゲインコントロール 手段と、該振幅調整がなされた信号にパーシャルレスポ ンス等化を行なうトランスバーサルフィルタと、該パー シャルレスポンス等化された信号から正規の標本化位相 における信号を高次補間により再生する高次補間フィル タと、該補間出力信号から前記トランスバーサルフィル タのタップの重み係数を等化誤差が最小になるように適 応的に制御するタップ重み係数制御手段と、前記補間出 力信号から位相誤差を検出するための位相比較器と、該 位相誤差信号を平滑化するためのループフィルタと、前 記補間出力信号を前記トランスバーサルフィルタで等化 したパーシャルレスポンスの型に応じて最尤復号を行な うことによりデータ復調を行なう最尤復号器とを備え、 非同期に標本化した信号をパーシャルレスポンス等化 し、位相補間型のデジタルフェーズロックドループによ り位相同期を補償し、データ復調を行なうようにしたの で、チルトによる再生信号の特性劣化やアナログ等化が 不十分な条件においても、パーシャルレスポンス等化後 に位相誤差情報を検出することにより、位相同期ループ におけるジッタの低減と最適なパーシャルレスポンス等 化信号が再現できるため、エラーレートの向上につなが るだけでなく、位相同期引き込み能力も高く、安定した デジタルデータ再生を行なえるという効果がある。

【0136】また、本願の請求項12に記載の発明に係るデジタル記録データ再生装置によれば、記録媒体からの再生信号の出力振幅を強調するプリアンプと、該強調された信号の所定の周波数帯域を強調する波形等化手段と、発振器で生成されるクロックにより、該等化された信号を該信号に含まれるクロック成分の位相とは非同期に多ビットのデジタルデータに標本化するアナログ・デジタル変換手段と、該標本化された信号からオフセット成分を低減するオフセット補正手段と、該出力信号の振

幅を所要のレベルに調整するオートゲインコントロール 手段と、トランスバーサルフィルタと高次補間フィルタ との機能を併せ持ち、前記振幅調整がなされた信号にパ ーシャルレスポンス等化を行ない、該パーシャルレスポ ンス等化された信号から正規の標本化位相における信号 を高次補間により再生する位相補間型トランスバーサル フィルタと、該出力信号から位相誤差を検出する位相比 較器と、該位相誤差信号を平滑化して位相情報を得るた めのループフィルタと、該位相情報及び前記位相補間型 トランスバーサルフィルタの出力信号から、等化誤差が 最小であり、かつ正規の標本化信号を再現するための、 前記位相補間型トランスパーサルフィルタのタップの重 み係数設定を設定するタップ重み係数設定手段と、前記 補間出力信号を前記位相補間型トランスバーサルフィル タで等化したパーシャルレスポンスの型に応じて最尤復 号を行なうことによりデータ復調を行なう最尤復号器と を備え、パーシャルレスポンス等化とデジタルフェーズ ロックドループを同一のフィルタで実現するようにした ので、回路規模が大きいとされるトランスバーサルフィ ルタと高次補間フィルタをトランスバーサルフィルタの みで共用化できるため、回路規模の削減、及び特に、高 速再生時における低消費電力化を図れる効果がある。

50

【0137】また、本願の請求項13に記載の発明に係 るデジタル記録データ再生装置によれば、請求項12記 載のデジタル記録データ再生装置において、前記タップ 重み係数設定手段は、位相方向に分割化された各位相毎 のフィルタ係数を有し、前記ループフィルタより出力さ れる位相情報にしたがって該位相制御用のフィルタ係数 を更新し、前記位相補間型トランスバーサルフィルタの 出力信号を基に、等化誤差を最小にするようにパーシャ ルレスポンス等化用のフィルタ係数を更新し該位相制御 用フィルタ係数と、該パーシャルレスポンス等化用フィ ルタ係数を重畳することにより、前記位相補間型トラン スパーサルフィルタのタップの重み係数を設定するよう にしたので、位相制御用のフィルタ係数の設定手段と、 パーシャルレスポンス等化用のタップの重み係数設定手 段を独立に操作することができるため、前記位相補間型 トランスバーサルフィルタのみで、パーシャルレスポン ス等化と正規位相でのデータ補間を共用化した場合で も、双方の特性を損なうことなく精度が良く効率的な制 御が可能となる効果がある。

【0138】また、本願の請求項14に記載の発明に係るデジタル記録データ再生装置によれば、請求項12記載のデジタル記録データ再生装置において、前記タップ重み係数設定手段は、前記トランスバーサルフィルタの出力信号に基づきパーシャルレスポンス方式に対応した等化目標値を検出する仮判定回路と、該等化目標値と前記高次補間フィルタの出力信号とに基づき等化誤差を検出する等化誤差検出器と、前記等化誤差と前記高次補間フィルタの出力信号との相関を検出する相関器と、該相

関器の出力をゲインと同数倍してフィードバックゲイン を調整するフィードバックゲイン調整器と、該フィード バックゲイン調整器の出力を各タップの重み係数に加算 しタップ係数を更新するタップ係数更新部と、ナイキス ト特性のチャネルレートを時間方向に分割したときの各 々の振幅値を各タップに対応させて格納する第1のレジ スタと、前記第1のレジスタに格納された各タップおよ び各位相でのナイキスト補間係数と前記タップ係数更新 部から出力されるパーシャルレスポンス等化用のタップ の重み係数を重畳するタップ係数畳み込み手段と、初段 の遅延素子に前記パーシャルレスポンス等化がなされた 信号が入力される、相互に直列接続された, 単位遅延時 間の遅延量を有する複数個の遅延素子と、該複数個の単 位遅延素子の中の初段の遅延素子の入力、遅延素子同士 の接続点および最終段の遅延素子の出力に対応して設け られた乗算器と、該乗算器の出力の総和をとり本タップ 重み係数設定手段の出力を生成する加算器と、前記乗算 器に対応して設けられた第2のレジスタと、前記タップ 係数畳み込み手段の出力に基づき前記第2のレジスタの 値を更新するレジスタ値更新手段と、前記第2のレジス タに対応して設けられ前記ループフィルタの出力位相情 報に応じて前記第2のレジスタに格納された振幅値を選 択し対応する前記乗算器に出力するセレクタとを備える ようにしたので、前記位相補間型トランスバーサルフィ ルタのみで、パーシャルレスポンス等化と正規位相での データ補間を共用化した場合でも、双方の特性を損なう ことなく精度が良く効率的な制御を可能にするためのタ ップ係数の畳み込みを実現する具体的な構成が得られる 効果がある。

【0139】また、本願の請求項15に記載の発明に係 るデジタル記録データ再生装置によれば、請求項12記 載のデジタル記録データ再生装置において、前記トラン スパーサルフィルタの出力から周波数誤差を検出する周 波数誤差検出器と、該検出された周波数誤差を平滑し前 記発振器に制御信号として与える周波数制御用ループフ イルタとをさらに備え、前記周波数誤差が所定値以下と なった状態で前記周波数制御用ループフィルタを含む周 波数制御用ループのゲインを低下せしめて、周波数引き 込み制御から位相同期引き込み制御に移行し、同期パタ ーンが所定数検出された場合に前記位相比較器を含む位 相制御用ループのループゲインを低下せしめて、前記位 相補間型タップ重み係数制御手段によるパーシャルレス ポンス適応自動等化制御に移行し、該パーシャルレスポ ンス適応自動等化制御による等化誤差が所定値以下とな った状態で、等化誤差量の累積加算値を離散的にタップ の重み係数に反映させるインターバル制御型パーシャル レスポンス適応自動等化制御に移行するようにしたの で、ラフ制御から位相同期状態に移行した後に、安定し た位相同期ループを実現でき、かつ制御不可能な状態に 陥るのを防止できる効果がある。

【0140】また、本願の請求項16に記載の発明に係るデジタル記録データ再生装置によれば、請求項12に記載のデジタル記録データ再生装置において、前記タップ重み係数設定手段は、前記位相制御用フィルタ係数の更新時のフィードバックゲインを、前記パーシャルレスポンス等化用フィルタ係数を離散的に更新するものとしたが、立まりも充分に大きく設定し、前記パーシャルレスポンス等化用フィルタ係数を離散的に更新するものとしたので、位相制御用のフィルタ係数制御と、パーシャルレスポンス等化用のタップの重み係数制御との競合化を防ぎ、位相制御を優先させることにより、安定した位相同期ループを実現し、かつパーシャルレスポンス等化の精度を損なわないとともに、異常信号に対して制御不能状態に陥らないため、プレイアビリティが向上する効果がある。

【0141】また、本願の請求項17に記載の発明に係 るデジタル記録データ再生装置によれば、記録媒体から の再生信号の出力振幅を強調するプリアンプと、該強調 された信号の所定の周波数帯域を強調する波形等化手段 と、発振器で生成されるクロックにより、該等化された 信号を該信号に含まれるクロック成分の位相とは非同期 に多ビットのデジタルデータに標本化するアナログ・デ ジタル変換手段と、該標本化された信号からオフセット 成分を低減するオフセット補正手段と、該出力信号の振 幅を所要のレベルに調整するオートゲインコントロール 手段と、該振幅調整がなされた信号にパーシャルレスポ ンス等化を行なうトランスパーサルフィルタと、該パー シャルレスポンス等化された信号から正規の標本化位相 における信号を高次補間により再生する高次補間フィル タと、該補間出力信号から前記トランスバーサルフィル タのタップの重み係数を等化誤差が最小になるように適 応的に制御するタップ重み係数制御手段と、前記補間出 力信号から位相誤差を検出するための位相比較器と、該 位相誤差信号を平滑化するためのループフィルタと、前 記補間出力信号を前記トランスバーサルフィルタで等化 したパーシャルレスポンスの型に応じて最尤復号を行な うことによりデータ復調を行なう最尤復号器とを備える とともに、前記発振器の出力クロックの周波数を制御す る手段として、記録データに含まれる同期パターンの周 期と該同期パターンの検出される時間幅を基に制御を行 なう周波数制御手段と、周波数と再生信号に含まれるク ロック成分の周波数が近傍まで引き込まれた後に、前記 ループフィルタの制御範囲をモニタし、該位相制御信号 が位相同期制御不能領域に達する前に、正常動作範囲に 戻るようにクロック周波数のアップ・ダウン制御を行な う位相同期維持手段と、前記周波数制御手段の出力信号 及び前記位相同期維持手段の出力信号を基に、前記発振 器を制御するための発振器制御手段とを備えるようにし たので、再生信号を標本化する際の非同期なクロックの 50 周波数を、常に、デジタル位相同期ループの制御可能範

囲内に維持できることになる。したがって、位相同期制 御時に不連続点が生じることなく、安定したデジタル記 録データ再生が可能となるだけでなく、周波数制御と位 相制御を分離して考えることが可能となるため、発振器 の制御手段も単純な構成で実現できる効果がある。

【0142】また、本願の請求項18に記載の発明に係 るデジタル記録データ再生装置によれば、請求項17記 載のデジタル記録データ再生装置において、前記発振器 制御手段は、前記位相同期維持手段によるアップ・ダウ ン制御時に、該制御信号を変調するデルタ・シグマ変調 器と、該出力信号を平滑化する低域通過型フィルタとを 備え、該出力信号により前記発振器を制御するようにし たので、再生信号の標本化に用いる非同期なクロックの 周波数を、デジタル位相同期ループの制御可能範囲内に 維持する際に、発振器の最小周波数制御分解能が荒く、 アップ・ダウン制御時に発振周波数が大きく変動する場 合においては、位相同期ループに乱れが生ずる危険性が あったものが、このように時間方向に変調をかけて発振 器の発振周波数を本来の分解能よりも細かく制御するこ とにより、アップ・ダウン時に乱れることなく連続再生 が可能となるため、再生品質が向上する効果がある。

【0143】また、本願の請求項19に記載の発明に係るデジタル記録データ再生装置によれば、請求項18記載のデジタル記録データ再生装置において、前記低域通過型フィルタのカットオフ周波数を、デジタル記録データの再生速度に応じて切替えるカットオフ周波数可変手段をさらに備えるようにしたので、デジタル記録データを再生する際に、複数の再生速度を補償しなければならない場合や、ディスク媒体における内外周差、及び記録媒体の種類が異なるため広範囲の周波数制御帯域を有する場合において、それぞれの再生速度に適した応答特性を実現できるため、再生速度が大きく変化する条件下においても再生特性を維持できる、という効果がある。

【0144】また、本願の請求項20に記載の発明に係るデジタル記録データ再生装置によれば、請求項11,12または17のいずれかに記載のデジタル記録データ再生装置において、前記オフセット補正手段は、前記標本化された信号が有するオフセット成分を検出するオフセット検出手段と、該検出されたオフセット成分を平滑化する平滑化手段と、該平滑化された信号を前記標本化された信号より減算する減算手段とを備えるようにしたので、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの向上につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、オフセット補正を行う構成を実現できる効果がある。

【0145】また、本願の請求項21に記載の発明に係るデジタル記録データ再生装置によれば、記録媒体からの再生信号の出力振幅を強調するプリアンプと、該強調された信号の所定の周波数帯域を強調する波形等化手段

54 と、発振器で生成されるクロックにより、該等化された 信号を該信号に含まれるクロック成分の位相とは非同期 に多ビットのデジタルデータに標本化するアナログ・デ ジタル変換手段と、該標本化された信号からオフセット 成分を低減するオフセット補正手段と、該出力信号の振 幅を所要のレベルに調整するオートゲインコントロール 手段と、該振幅調整がなされた信号にパーシャルレスポ ンス等化を行なうトランスバーサルフィルタと、該パー シャルレスポンス等化された信号から正規の標本化位相 における信号を高次補間により再生する高次補間フィル タと、該補間出力信号から前記トランスバーサルフィル タのタップの重み係数を等化誤差が最小になるように適 応的に制御するタップ重み係数制御手段と、前記補間出 力信号から位相誤差を検出するための位相比較器と、該 位相誤差信号を平滑化するためのループフィルタと、前 記補間出力信号を前記トランスバーサルフィルタで等化 したパーシャルレスポンスの型に応じて最尤復号を行な うことによりデータ復調を行なう最尤復号器とを備え、 非同期に標本化した信号をパーシャルレスポンス等化 し、位相補間型のデジタルフェーズロックドループによ り位相同期を補償し、データ復調を行なうとともに、前 記オフセット補正手段は前記高次補間フィルタの出力を 参照してオフセット補正を行うようにしたので、再生信 号の符号の極性のみでオフセット補正を施すよりも、精 度の良いオフセット検出できるため、オフセット補正後 の制御雑音の低減がなされるとともに、フィードバック

【0146】また、本願の請求項22に記載の発明に係 るデジタル記録データ再生装置によれば、請求項21記 載のデジタル記録データ再生装置において、前記オフセ ット補正手段は、前記高次補間フィルタの出力信号がゼ ロクロスする位置の標本化信号については、その振幅方 向の成分を出力するゼロクロス振幅出力手段と、ゼロク ロス位置でない標本化信号に関しては、該信号の符号の 極性に応じて一定量の極性が異なる値を出力する極性値 出力手段と、前記ゼロクロス振幅出力手段の出力信号及 び前記極性値出力手段の出力信号を平滑化するためのオ フセット補正用ループフィルタと、該出力信号を前記ア ナログ・デジタルコンバータの出力信号から直接減算す ることにより、オフセット除去を施すオフセット除去手 段とを備えるようにしたので、異なる記録媒体を再生す る場合においても、それら記録媒体に応じたオフセット 補正が可能となる効果がある。

ゲインをより大きく設定することが可能となる。それに

より高い周波数成分を有するレベル変動にも追従できる

ため、ディフェクト等の異常条件下での再生時にもプレ

イアビリティの向上が図れる効果がある。

【0147】また、本願の請求項23に記載の発明に係るデジタル記録データ再生装置によれば、請求項22記載のデジタル記録データ再生装置において、前記オフセット補正手段は、前記極性値出力手段の出力値を可変

し、前記ゼロクロス振幅出力手段の出力値との比率を調整する極性値出力可変手段を備えるようにしたので、再生信号の精度よりもレベル変動への追従性が必要となるシーク時には、符号の極性を主として制御を行ない、再生信号の精度が必要である連続データの再生時には、ゼロクロス振幅を主として制御を行なうという、状況に応じて最適なオフセット補正が可能となり、また、制御の収束性にも関わってくるため、シーク後の高速な位相同期引き込みが可能となる効果がある。

【0148】また、本願の請求項24に記載の発明に係るデジタル記録データ再生装置によれば、請求項22記載のデジタル記録データ再生装置において、前記オフセット補正手段は、シーク時には、前記極性値出力手段の出力値を前記ゼロクロス振幅出力手段の出力値に比べて大きくし、連続データ再生時には、前記極性値出力手段の出力値を前記ゼロクロス振幅出力手段の出力値に比べて小さくすることにより、デジタル記録データ再生装置の動作状況に応じて出力値を切り替える出力値切替手段を備えるようにしたので、疑似位相同期の発生を回避するとともに、特定条件下において疑似位相同期が発生した場合にも、早期に自己修復することが可能となり、プレイアビリティの向上が図れる効果がある。

【0149】また、本願の請求項25に記載の発明に係 るデジタル記録データ再生装置によれば、請求項22記 載のデジタル記録データ再生装置において、前記オフセ ット補正手段は、一定の時間をカウントするカウンタ と、前記カウンタから出力されるフラグ間の前記極性値 出力手段の出力値と前記ゼロクロス振幅出力手段の出力 値を累積加算する累積加算手段と、該出力信号を前記カ ウンタから出力されるフラグのタイミングで、累積加算 手段の出力をモニタし、疑似位相同期状態であると判断 された場合は、前記極性値出力手段の比率を高くした制 御に切替え、正常位相同期状態に復帰させる累積加算結 果モニタ手段とを備えるようにしたので、チルトによる 再生信号の特性劣化やアナログ等化が不十分な条件にお いても、エラーレートの向上につながるだけでなく、位 相同期引き込み能力も高く、安定したデジタルデータ再 生を行なえるものにおいて、オフセット補正を行う構成 を実現できる効果がある。

【0150】また、本願の請求項26に記載の発明に係 40 るデジタル記録データ再生装置によれば、請求項11, 12, 17, 21のいずれかに記載のデジタル記録データ再生装置において、前記トランスバーサルフィルタは、前記初段の遅延素子に前記振幅調整がなされた信号が入力される、相互に直列接続された、単位遅延時間の遅延量を有する複数個の遅延素子と、該複数個の単位遅延素子の中の初段の遅延素子の入力、遅延素子同士の接続点および最終段の遅延素子の出力に対応して設けられた乗算器と、該乗算器の出力の総和をとり本フィルタの出力を生成する加算器とを備え、前記乗算器の他方の入 50

力に入力する重み係数を可変させることで所要の等化特性を実現するようにしたので、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの向上につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、パーシャルレスポンス等化を行う構成を実現できる効果がある。

56

【0151】また、本願の請求項27に記載の発明に係 るデジタル記録データ再生装置によれば、請求項11, 17,21のいずれかに記載のデジタル記録データ再生 装置において、前記高次補間フィルタは、初段の遅延素 子に前記パーシャルレスポンス等化がなされた信号が入 力され、相互に直列接続された,単位遅延時間の遅延量 を有する複数個の遅延素子と、該複数個の単位遅延素子 の中の初段の遅延素子の入力、遅延素子同士の接続点お よび最終段の遅延素子の出力に対応して設けられた乗算 器と、該乗算器の出力の総和をとり本フィルタの出力を 生成する加算器とを備え、前記乗算器の他方の入力に入 力する重み係数を可変させることで所要の等化特性を実 現するようにしたので、チルトによる再生信号の特性劣 化やアナログ等化が不十分な条件においても、エラーレ ートの向上につながるだけでなく、位相同期引き込み能 力も高く、安定したデジタルデータ再生を行なえるもの において、正規の標本化位相における信号を補間する構 成を実現できる効果がある。

【0152】また、本願の請求項28に記載の発明に係るデジタル記録データ再生装置によれば、請求項27記載のデジタル記録データ再生装置において、前記高次補間フィルタは、ナイキスト特性に基づき補間を行うようにしたので、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの向上につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、正規の標本化位相における信号を補間する構成を実現できる効果がある。

【0153】また、本願の請求項29に記載の発明に係るデジタル記録データ再生装置によれば、請求項27記載のデジタル記録データ再生装置において、前記高次補間フィルタは、前記乗算器に対応して設けられ、ナイキスト特性のチャネルレートを時間方向に分割したときの各々の振幅値を格納するレジスタと、前記レジスタに対応して設けられ前記ループフィルタの出力位相情報に応じて前記レジスタに格納された振幅値を選択し対応する前記乗算器に出力するセレクタとを備えるようにしたので、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの向上につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、正規の標本化位相における信号を補間する構成を実現できる効果がある。

-29-

【0154】また、本願の請求項30に記載の発明に係るデジタル記録データ再生装置によれば、請求項11,17,21のいずれかに記載のデジタル記録データ再生装置において、前記タップ重み係数制御手段は、最小二乗平均アルゴリズムにより前記トランスバーサルフィルタの重み係数を決定するようにしたので、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの向上につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、トランスバーサルフィルタが行うべきパーシャルレスポンス等化機能を実現するよう重み係数を設定する構成を実現できる効果がある。

【0155】また、本願の請求項31に記載の発明に係 るデジタル記録データ再生装置によれば、請求項30記 載のデジタル記録データ再生装置において、前記タップ 重み係数制御手段は、前記高次補間フィルタの出力信号 に基づきパーシャルレスポンス方式に対応した等化目標 値を検出する仮判定回路と、該等化目標値と前記高次補 間フィルタの出力信号とに基づき等化誤差を検出する等 化誤差検出器と、前記等化誤差と前記高次補間フィルタ の出力信号との相関を検出する相関器と、該相関器の出 力をゲインと同数倍してフィードバックゲインを調整す るフィードバックゲイン調整器と、該フィードバックゲ イン調整器の出力を各タップの重み係数に加算しタップ 係数を更新するタップ係数更新部とを備えるようにした ので、チルトによる再生信号の特性劣化やアナログ等化 が不十分な条件においても、エラーレートの向上につな がるだけでなく、位相同期引き込み能力も高く、安定し たデジタルデータ再生を行なえるものにおいて、トラン スパーサルフィルタが行うべきパーシャルレスポンス等 30 化機能を実現するよう重み係数を設定する構成を実現で きる効果がある。

【0156】また、本願の請求項32に記載の発明に係るデジタル記録データ再生装置によれば、請求項15記載のデジタル記録データ再生装置において、前記周波数誤差検出器は、前記高次補間フィルタの出力信号がゼロレベルとクロスする間隔を検出するゼロクロス長検出器と、隣接するゼロクロス長の比率に基づきこれが所定の同期パターン長と一致しているか否かを検出し、前記記録媒体の再生速度を反映した第1の周期情報を得る同期パターン長検出器と、前記同期パターンが検出されるまでの間隔を検出し、これと所定の期間とに基づく第2の同期情報を検出する同期パターン間隔検出器とを備えるようにしたので、ラフ制御から位相同期状態に移行した後に、安定した位相同期ループを実現でき、かつ制御不可能な状態に陥るのを防止できるものにおいて、周波数誤差を検出する構成を実現できる効果がある。

【図面の簡単な説明】

【図1】本発明の実施の形態1によるデジタル記録データ再生装置の構成を示すブロック図である。

【図2】実施の形態1におけるオフセット補正手段4の 構成を示すブロック図である。

58

【図3】実施の形態1においてトランスバーサルフィルタ6で実現する、PR(3,4,4,3)等化方式と、一般的な、2値化判別方式の違いについての説明図である。

【図4】実施の形態1においてトランスバーサルフィルタ6で実現する、各種パーシャルレスポンス方式の周波数特性を示す図である。

10 【図5】実施の形態1における高次補間フィルタ7のフィルタ係数設定に関係するナイキスト特性の説明図である。

【図6】実施の形態1における高次補間フィルタ7の構成を示すプロック図である。

【図7】実施の形態1におけるタップ重み係数制御手段8の構成を示すブロック図である。

【図8】実施の形態1における最尤復号器12の一つであるビタビ復号器の原理の説明図である。

【図9】実施の形態1における周波数誤差検出器13の 20 構成を示すブロック図である。

【図10】本発明の実施の形態2によるデジタル記録データ再生装置の構成を示すプロック図である。

【図11】実施の形態2における位相補間型タップ重み 係数制御手段33の構成を示すプロック図である。

【図12】実施の形態2における周波数制御、位相同期制御、及びLMS適応自動等化制御の制御方法を示すフローチャートを示す図である。

【図13】本発明の実施の形態3によるデジタル記録データ再生装置の構成を示すブロック図である。

0 【図14】実施の形態3における位相同期維持手段38 とVCO制御手段39の動作原理の説明図である。

【図15】実施の形態3におけるVCO制御手段39の構成を示すブロック図、及び動作原理の説明図である。

【図16】実施の形態3におけるVCO制御手段39の構成を示すブロック図、及び異なる再生速度に対する動作原理の説明図である。

【図17】本発明の実施の形態4によるデジタル記録データ再生装置の構成を示すブロック図である。

【図18】実施の形態4におけるオフセット補正手段4 の構成を示すブロック図である。

【図19】実施の形態4におけるオフセット補正手段4の動作原理の説明図である。

【図20】実施の形態4におけるオフセット補正手段4 の構成を示すブロック図である。

【図21】実施の形態4におけるオフセット補正手段4 の構成を示すプロック図である。

【図22】実施の形態4におけるオフセット補正手段4の構成を示すブロック図である。

【図23】従来の光ディスク再生装置の構成を示すプロ ック図である。

【図24】従来の光ディスク再生装置の記録データ及び 各機能ブロックでの出力信号波形を示す図である。

【符号の説明】

- 1 プリアンプ
- 2 波形等化手段
- 3 アナログ・デジタルコンバータ
- 4 オフセット補正手段
- 5 オートゲインコントロール
- 6 トランスバーサルフィルタ
- 7 高次補間フィルタ
- 8 タップ重み係数制御手段
- 9 位相比較器
- 10 ループフィルタ
- 11 デジタル位相同期ループ
- 12 最尤復号器
- 13 周波数誤差検出器
- 14 周波数制御用ループフィルタ
- 15 発振器
- 16 オフセット検出手段
- 17 平滑化手段
- 18 減算手段
- 19a, 19b, 19c, 19d, 19e, 19f 遅 延素子
- 20a, 20b, 20c, 20d, 20e, 20f, 2
- 0g 乗算素子
- 21 加算手段
- 22a, 22b, 22c, 22d, 22e, 22f, 2
- 2g レジスタ
- 23a, 23b, 23c, 23d, 23e, 23f, 2
- 3g セレクタ
- 2 4 仮判定回路
- 25 等化誤差検出器
- 26 相関器
- 27 フィードバックゲイン調整器

28 タップ係数更新部

- 29 ゼロクロス長検出器
- 30 フレームカウンタ
- 31 同期パターン長検出器
- 32 同期パターン間隔検出器
- 33 位相補間型タップ重み係数制御手段

60

- 34 タップ係数畳み込み手段
- 35 レジスタ
- 36 レジスタ値更新手段
- 10 37 周波数制御手段
 - 38 位相同期維持手段
 - 39 VCO制御手段
 - 40 VCO
 - 41 デルタ・シグマ変調器
 - 42a, 42b デジタル・アナログコンバータ
 - 43 低域通過型フィルタ
 - 44 カットオフ周波数設定手段
 - 45 ゼロクロス位置検出手段
 - 46 ゼロクロス振幅出力手段
- 20 47 極性値出力手段
 - 48 セレクタ
 - 49 オフセット補正用ループフィルタ
 - 50 ゲイン調整手段
 - 51 モード制御手段
 - 52 カウンタ
 - 53 累積加算手段
 - 5 4 疑似位相同期判定手段
 - 55 光ディスク
 - 56 再生手段
- 30 57 タップの重み係数設定手段
 - 58 ビタビ復号器
 - 59 ゼロクロス長検出器
 - 60 位相制御用ループフィルタ

【図2】

[図4]

【図1】

【図3】

【図10】

【図11】

【図18】

制御開始 101 周波数引込み制御 102 低ゲインに NO 周波数偏差±A% 切り替え YES 103 位相同期引き込み制御 低ゲインに 同期パターン確認 切り替え YES 105 LMSアルゴリズム PR適応自動等化制御 低ゲイン 連続制御 106

等化誤差±B%

インターバル制御型 PR適応自動等化制知

制御終了

YES

【図12】

【図15】

【図13】

【図19】

【図14】

【図16】

(b) VCO制御手段

(b) VCO制御信号

デルタ・シグマ変調信号

【図17】

【図20】

【図21】

[図22]

【図23】

【図24】

【手続補正書】

【提出日】平成13年2月6日(2001.2.6)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】 0 0 0 1

【補正方法】変更

【補正内容】

[0001]

【発明の属する技術分野】本発明は、記録媒体に記録されたデジタルデータを再生するデジタル記録データ再生装置に関するものであり、特に、そのフェーズロックドループ及びオフセット補正の改良を図ったものに関し、チルトによる再生波形の品質劣化、信号雑音比が悪い条件での再生、及びディフェクト等が頻繁に発生する等の

悪条件下において、再生デジタルデータ品質が改善されるだけでなく、プレイアビリティ、即ち再生可能性が向上する等の特徴を有するものに関する。なお、チルトは周知のごとく、光ディスクの信号面に立てた垂線とレーザ光線の光軸とのなす角度のずれのことであり、ディフェクトは光ディスクの信号面のひっかき傷や指紋の付着等の再生波形の擾乱要因のことである。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0014

【補正方法】変更

【補正内容】

【0014】本発明は、このような事情に鑑みてなされ

たもので、チルトによる特性劣化やアナログ等化が不十 分な条件においても、パーシャルレスポンス等化に最適 で、かつ位相同期引き込み能力も高く、エラーレートの 低下が可能な、デジタル記録データ再生装置を提供する ことを目的とする。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0016

【補正方法】変更

【補正内容】

【0016】また、本願の請求項2に記載の発明に係る デジタル記録データ再生装置は、記録媒体の再生信号 を、該信号に含まれるクロック成分の位相とは非同期に デジタルデータに標本化するアナログ・デジタル変換手 段と、該標本化された信号からオフセット成分および振 幅を補正するデジタルデータ補正手段と、該補正がなさ れた信号にパーシャルレスポンス等化を行なう等化フィ ルタと、前記等化フィルタの出力信号に基づき位相誤差 を検出する位相同期ループと、該等化フィルタの出力信 号に基づき前記等化フィルタのフィルタ係数を等化誤差 が最小になるように適応的に制御するとともに前記位相 同期ループの出力に基づき位相誤差をなくするようにフ イルタ係数を制御するフィルタ係数制御手段と、前記等 化フィルタで等化したパーシャルレスポンスの型に応じ て最尤復号を行なうことによりデータ復調を行なう最尤 復号器とを備えるようにしたものである。これにより、 正規のサンプリング位相での補間データに基づいて最尤 復号を行うことが可能となり、再生信号のチルトによる 波形劣化等に影響されない、パーシャルレスポンス最尤 復号に適したデジタルデータ復調が可能になる。また、 回路規模やコストの削減、低消費電力化や再生データの エラーレートの低下にも有効である、という作用を有す る。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0025

【補正方法】変更

【補正内容】

【0025】また、本願の請求項11に記載の発明に係るデジタル記録データ再生装置は、記録媒体からの再生信号の出力振幅を強調するプリアンプと、該強調された信号の所定の周波数帯域を強調する波形等化手段と、発振器で生成されるクロックにより、該等化された信号を該信号に含まれるクロック成分の位相とは非同期に多ビットのデジタルデータに標本化するアナログ・デジタル変換手段と、該標本化された信号からオフセット成分を低減するオフセット補正手段と、該出力信号の振幅を所要のレベルに調整するオートゲインコントロール手段と、該振幅調整がなされた信号にパーシャルレスポンス等化を行なうトランスバーサルフィルタと、該パーシャ

ルレスポンス等化された信号から正規の標本化位相にお ける信号を高次補間により再生する高次補間フィルタ と、該補間出力信号から前記トランスバーサルフィルタ のタップの重み係数を等化誤差が最小になるように適応 的に制御するタップ重み係数制御手段と、前記補間出力 信号から位相誤差を検出するための位相比較器と、該位 相誤差信号を平滑化するためのループフィルタと、前記 補間出力信号を前記トランスバーサルフィルタで等化し たパーシャルレスポンスの型に応じて最尤復号を行なう ことによりデータ復調を行なう最尤復号器とを備え、非 同期に標本化した信号をパーシャルレスポンス等化し、 位相補間型のデジタルフェーズロックドループにより位 相同期を補償し、データ復調を行なうようにしたもので ある。これにより、チルトによる再生信号の特性劣化や アナログ等化が不十分な条件においても、パーシャルレ スポンス等化後に位相誤差情報を検出することにより、 位相同期ループにおけるジッタの低減と最適なパーシャ ルレスポンス等化信号が再現できるため、エラーレート の低下につながるだけでなく、位相同期引き込み能力も 高く、安定したデジタルデータ再生を行なえる、という 作用を有する。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0034

【補正方法】変更

【補正内容】

【0034】また、本願の請求項20に記載の発明に係るデジタル記録データ再生装置は、請求項11,12または17のいずれかに記載のデジタル記録データ再生装置において、前記オフセット補正手段は、前記標本化された信号が有するオフセット成分を検出するオフセット検出手段と、該検出されたオフセット成分を平滑化する平滑化手段と、該平滑化された信号を前記標本化された信号より減算する減算手段とを備えるようにしたものである。これにより、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの低下につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、オフセット補正を行う構成を実現できる、という作用を有する。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 5

【補正方法】変更

【補正内容】

【0035】また、本願の請求項21に記載の発明に係るデジタル記録データ再生装置は、記録媒体からの再生信号の出力振幅を強調するプリアンプと、該強調された信号の所定の周波数帯域を強調する波形等化手段と、発振器で生成されるクロックにより、該等化された信号を

該信号に含まれるクロック成分の位相とは非同期に多ビ ットのデジタルデータに標本化するアナログ・デジタル 変換手段と、該標本化された信号からオフセット成分を 低減するオフセット補正手段と、該出力信号の振幅を所 要のレベルに調整するオートゲインコントロール手段 と、該振幅調整がなされた信号にパーシャルレスポンス 等化を行なうトランスバーサルフィルタと、該パーシャ ルレスポンス等化された信号から正規の標本化位相にお ける信号を高次補間により再生する高次補間フィルタ と、該補間出力信号から前記トランスバーサルフィルタ のタップの重み係数を等化誤差が最小になるように適応 的に制御するタップ重み係数制御手段と、前記補間出力 信号から位相誤差を検出するための位相比較器と、該位 相誤差信号を平滑化するためのループフィルタと、前記 補間出力信号を前記トランスバーサルフィルタで等化し たパーシャルレスポンスの型に応じて最尤復号を行なう ことによりデータ復調を行なう最尤復号器とを備え、非 同期に標本化した信号をパーシャルレスポンス等化し、 位相補間型のデジタルフェーズロックドループにより位 相同期を補償し、データ復調を行なうとともに、前記オ フセット補正手段は前記高次補間フィルタの出力を参照 してオフセット補正を行うようにしたものである。これ により、再生信号の符号の極性のみでオフセット補正を 施すよりも、精度の良いオフセット検出ができるため、 オフセット補正後の制御雑音の低減がなされるととも に、フィードバックゲインをより大きく設定することが 可能となる。それにより高い周波数成分を有するレベル 変動にも追従できるため、ディフェクト等の異常条件下 での再生時にもプレイアビリティの向上が図れる、とい う作用を有する。

【手続補正7】

【補正対象醬類名】明細書

【補正対象項目名】 0 0 3 9

【補正方法】変更

【補正内容】

【0039】また、本願の請求項25に記載の発明に係るデジタル記録データ再生装置は、請求項22記載のデジタル記録データ再生装置において、前記オフセット補正手段は、一定の時間をカウントするカウンタと、前記カウンタから出力されるフラグ間の前記極性値出力手段の出力値を累積加算する累積加算手段と、該出力信号を前記カウンタから出力されるフラグのタイミングで、累積加算手段の出力をモニタし、疑似位相同期状態であると判断された場合は、前記極性値出力手段の比率を高くした制御に切替え、正常位相同期状態に復帰させる累積加算結果モニタ手段とを備えるようにしたものである。これにより、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの低下につながるだけでなく、位相同期引き込み能力も高く、安定したデジタ

ルデータ再生を行なえるものにおいて、オフセット補正 を行う構成を実現できる、という作用を有する。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0040

【補正方法】変更

【補正内容】

【0040】また、本願の請求項26に記載の発明に係 るデジタル記録データ再生装置は、請求項11,12, 17,21のいずれかに記載のデジタル記録データ再生 装置において、前記トランスパーサルフィルタは、前記 初段の遅延素子に前記振幅調整がなされた信号が入力さ れる、相互に直列接続された, 単位遅延時間の遅延量を 有する複数個の遅延素子と、該複数個の単位遅延素子の 中の初段の遅延素子の入力、遅延素子同士の接続点およ び最終段の遅延素子の出力に対応して設けられた乗算器 と、該乗算器の出力の総和をとり本フィルタの出力を生 成する加算器とを備え、前記乗算器の他方の入力に入力 する重み係数を可変させることで所要の等化特性を実現 するようにしたものである。これにより、チルトによる 再生信号の特性劣化やアナログ等化が不十分な条件にお いても、エラーレートの低下につながるだけでなく、位 相同期引き込み能力も高く、安定したデジタルデータ再 生を行なえるものにおいて、パーシャルレスポンス等化 を行う構成を実現できる、という作用を有する。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 1

【補正方法】変更

【補正内容】

【0041】また、本願の請求項27に記載の発明に係 るデジタル記録データ再生装置は、請求項11,17, 21のいずれかに記載のデジタル記録データ再生装置に おいて、前記高次補間フィルタは、初段の遅延素子に前 記パーシャルレスポンス等化がなされた信号が入力さ れ、相互に直列接続された,単位遅延時間の遅延量を有 する複数個の遅延素子と、該複数個の単位遅延素子の中 の初段の遅延素子の入力、遅延素子同士の接続点および 最終段の遅延素子の出力に対応して設けられた乗算器 と、該乗算器の出力の総和をとり本フィルタの出力を生 成する加算器とを備え、前記乗算器の他方の入力に入力 する重み係数を可変させることで所要の等化特性を実現 するようにしたものである。これにより、チルトによる 再生信号の特性劣化やアナログ等化が不十分な条件にお いても、エラーレートの低下につながるだけでなく、位 相同期引き込み能力も高く、安定したデジタルデータ再 生を行なえるものにおいて、正規の標本化位相における 信号を補間する構成を実現できる、という作用を有す る。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】0042

【補正方法】変更

【補正内容】

【0042】また、本願の請求項28に記載の発明に係るデジタル記録データ再生装置は、請求項27記載のデジタル記録データ再生装置において、前記高次補間フィルタは、ナイキスト特性に基づき補間を行うようにしたものである。これにより、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの低下につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、正規の標本化位相における信号を補間する構成を実現できる、という作用を有する。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】0043

【補正方法】変更

【補正内容】

【0043】また、本願の請求項29に記載の発明に係るデジタル記録データ再生装置は、請求項27記載のデジタル記録データ再生装置において、前記高次補間フィルタは、前記乗算器に対応して設けられ、ナイキスト特性のチャネルレートを時間方向に分割したときの各々の振幅値を格納するレジスタと、前記レジスタに対応して設けられ前記ループフィルタの出力位相情報に応じて前記レジスタに格納された振幅値を選択し対応する前記乗算器に出力するセレクタとを備えるようにしたものである。これにより、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの低下につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、正規の標本化位相における信号を補間する構成を実現できる、という作用を有する。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】0044

【補正方法】変更

【補正内容】

【0044】また、本願の請求項30に記載の発明に係るデジタル記録データ再生装置は、請求項11,17,21のいずれかに記載のデジタル記録データ再生装置において、前記タップ重み係数制御手段は、最小二乗平均アルゴリズムにより前記トランスバーサルフィルタの重み係数を決定するようにしたものである。これにより、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの低下につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、トランスバーサルフィルタが行うべきパーシャルレスポンス等化機能

を実現するよう重み係数を設定する構成を実現できる、という作用を有する。

【手続補正13】

【補正対象書類名】明細書

【補正対象項目名】0045

【補正方法】変更

【補正内容】

【0045】また、本願の請求項31に記載の発明に係 るデジタル記録データ再生装置は、請求項30記載のデ ジタル記録データ再生装置において、前記タップ重み係 数制御手段は、前記高次補間フィルタの出力信号に基づ きパーシャルレスポンス方式に対応した等化目標値を検 出する仮判定回路と、該等化目標値と前記高次補間フィ ルタの出力信号とに基づき等化誤差を検出する等化誤差 検出器と、前記等化誤差と前記高次補間フィルタの出力 信号との相関を検出する相関器と、該相関器の出力をゲ インと同数倍してフィードバックゲインを調整するフィ ードバックゲイン調整器と、該フィードバックゲイン調 整器の出力を各タップの重み係数に加算しタップ係数を 更新するタップ係数更新部とを備えるようにしたもので ある。これにより、チルトによる再生信号の特性劣化や アナログ等化が不十分な条件においても、エラーレート の低下につながるだけでなく、位相同期引き込み能力も 高く、安定したデジタルデータ再生を行なえるものにお いて、トランスバーサルフィルタが行うべきパーシャル レスポンス等化機能を実現するよう重み係数を設定する 構成を実現できる、という作用を有する。

【手続補正14】

【補正対象書類名】明細書

【補正対象項目名】0061

【補正方法】変更

【補正内容】

【0061】以上、一連の動作により出力された、正規の位相でのパーシャルレスポンス等化波形を用いて、パーシャルレスポンスの型に応じて復号を行なう最尤復号器12を通してデータ復調を行なう。ここで、最尤復号器12は、例えば、ビタビ復号器であってもよい。ビタビ復号器は、パーシャルレスポンスの型に基づいて確率計算を行ない、尤も確からしい系列を再現するものである。例えば、適用したパーシャルレスポンスの型がPR(3,4,4,3)方式の場合、図8(a)に示すような、状態遷移図に基づいて状態が変化する。これは、特に、DVDで用いられている8-16変調符号を考慮したものとなっており、ランレングス長を2に制限していることも関係しており、再生された系列S0からS5までの6つの状態の状態遷移で表現可能となっている。

【手続補正15】

【補正対象書類名】明細書

【補正対象項目名】0066

【補正方法】変更

【補正内容】

【0066】このような、非同期に標本化した信号をパーシャルレスポンス等化し、位相補間型のデジタル位相同期ループにより位相同期を補償し、データ復調を行なうことを特徴とするデジタル記録データ再生装置を用いて、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、パーシャルレスポンス等化後に位相誤差情報を検出することにより、位相同期ループにおけるジッタの低減と最適なパーシャルレスポンス等化信号が再現できるため、エラーレートの低下につながるだけでなく、位相同期引き込み能力も高く、安定したデジタル記録データ再生が可能となる。

【手続補正16】

【補正対象書類名】明細書

【補正対象項目名】0067

【補正方法】変更

【補正内容】

【0067】即ち、非同期に標本化した信号をパーシャルレスポンス等化し、位相補間型のデジタルフェーズロックドループにより位相同期を補償し、データ復調を行なうことを特徴とするデジタル記録データ再生装置を用いることにより、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、パーシャルレスポンス等化後に位相誤差情報を検出することから、位相同期ループにおけるジッタの低減と最適なパーシャルレスポンス等化信号が再現できるため、エラーレートの低下につながるだけでなく、位相同期引き込み能力も高く、安定したデジタル記録データ再生が可能となるデジタル記録データ再生装置を実現することができる。

【手続補正17】

【補正対象書類名】明細書

【補正対象項目名】0076

【補正方法】変更

【補正内容】

【0076】一方、ナイキスト位相補間制御による係数制御は、例えば、図5に示すように、ナイキスト特性を a から上まで8分割し、さらに1から7のエリアを、図6に示すFIRフィルタの各タップに対応させてレジスタ35に格納しておく。図11のレジスタ35に格納しておく。図11のレジスタ35に格納とおる各タップ及び各位相でのナイキスト補間係数E mからDmと(mは、タップ係数更新部28の出力信号であるパーシャルレスポンス等化用のタップの重み係数を スタ値更新手段36によりレジスタ22aから22gの各レジスタ値を更新することにより、パーシャルレスポンス適応自動等化による係数制御と、ナイキスト位相補間制御による係数制御の双方を満足するタップの重み係数を設定することが可能となる。

【手続補正18】

【補正対象書類名】明細書

【補正対象項目名】 0089

【補正方法】変更

【補正内容】

【0089】高次補間フィルタ7は、図6に示すよう な、遅延素子19aから遅延素子19fと、乗算素子2 Oaから20gと、加算手段21により構成されるFI Rフィルタであってもよい。この時、位相補間を行なう に際して、ループフィルタ10の出力信号である位相制 御情報を基に、図6に示すような、レジスタ22aから 22gに保持されているフィルタ係数を、セレクタ23 aから23gにより切替えながら、S1からS7までの タップ係数を設定していく。ここで、レジスタ22aか ら22gの係数は、図5の各位相毎のナイキスト特性値 をN分割、例えば図5に示すように、aからhまで8分 割し、さらに1から7のエリアを、図6に示すFIRフ イルタの各タップに対応させて格納しておく。例えば、 ループフィルタ10から得られる現時点での位相制御情 報が、正規の位相と180°異なる標本化位相であった 場合、図5に示すエリア1から7までの"●"、即ちe の位相でのフィルタ係数がS1からS7のタップ係数と して設定されることになる。ここで、時間方向の分割数 Nは大きいほど位相制御の精度は向上するが、分割数N の増加は回路規模の増加に結びつくため、性能と回路規 模が相容れる条件にて設定されるものである。高次補間 フィルタ7の出力信号は、タップ重み係数制御手段8に 入力され、等化誤差を最小にするようにトランスバーサ ルフィルタ6のタップの重み係数を適応的に制御する。

【手続補正19】

【補正対象書類名】明細書

【補正対象項目名】0093

【補正方法】変更

【補正内容】

【0093】また、アナログ・デジタルコンバータ3の 標本化クロックを制御する手段は、高次補間フィルタ7 の出力信号から、同期パターンのパターン長、あるい は、同期パターンが発生する間隔を検出し、周期情報に 変換することにより周波数誤差信号を出力する手段とし ての周波数誤差検出器13と、周波数誤差検出器13か ら出力される周波数誤差信号を平滑化する手段としての 周波数制御用ループフィルタ14により構成される、ラ フな周波制御を司る周波数制御手段37と、周波数と再 生信号に含まれるクロック成分の周波数が近傍まで引き 込まれた後に、ループフィルタ10から出力される位相 制御情報をモニタし、その位相制御信号が位相同期制御 不能領域に達する前に、正常動作範囲に戻るようにクロ ック周波数のアップ・ダウン制御を行なう位相同期維持 手段38と、それら、周波数のラフ制御信号とアップ・ ダウン制御信号を基に、アナログ・デジタルコンバータ

3にクロックを供給するVCO40の発振周波数を制御するVCO制御手段3<u>9</u>により構成される周波数制御ループにより実現される。

【手続補正20】

【補正対象書類名】明細書

【補正対象項目名】 0 1 0 1

【補正方法】変更

【補正内容】

【0101】ここで、カットオフ周波数は、再生クロックの周波数に連動させて変化させていくことが可能であれば、さらに性能向上につながる。その時の、VCO制御電圧とデルタ・シグマ変調器41の出力の関係は、図16(b)に示すようになっている。低域通過型フィルタのカットオフ周波数を固定すると、2倍速で正常なルレートが2倍の長さになると、VCO制御電圧は乱れることになる。しかしながら、2倍速再生から1倍速レートが2倍の長さになると、VCO制御電圧は乱れることになる。しかしながら、2倍速再生から1倍速することにより、図16(b)に示すように、滑らかな制御が維持できる。これは、ディスク再生時にスピンドルモタの回転数を一定に保つ方式であるCAV再生方式において存在する、再生速度の内外周差にも同様の効果が得られる。

【手続補正21】

【補正対象書類名】明細書

【補正対象項目名】 0 1 0 2

【補正方法】変更

【補正内容】

【0102】これにより、デジタル記録データを再生する際に、複数の再生速度を補償しなければならない場合や、ディスク媒体における内外周差、即ち内、外周における周波数の偏差、及び記録媒体の種類が異なるため広範囲の周波数制御帯域を有する場合において、それぞれの再生速度に適した応答特性を実現できるため、多種多様の再生倍速モードに対しても対応することが容易になり、再生速度が大きく変化する条件下においても再生特性を維持することが可能なデジタル記録データ再生装置を得ることができる。さらに、デジタルデータ再生装置を得ることができる。さらに、デジタルデータ再生装置に占めるアナログ素子を削減でき、回路構成を単純化した場合にも安定したデータ再生が可能となるため、さらなる、コスト低減につながる効果がある。

【手続補正22】

【補正対象書類名】明細書

【補正対象項目名】 0 1 0 8

【補正方法】変更

【補正内容】

【0108】高次補間フィルタ7は、図6に示すような、遅延素子19aから遅延素子19fと、乗算素子20aから20gと、加算手段21により構成されるFIRフィルタであってもよい。この時、位相補間を行なう

に際して、ループフィルタ10の出力信号である位相制 御情報を基に、図6に示すような、レジスタ22aから 22gに保持されているフィルタ係数を、セレクタ23 aから23gにより切替えながら、S1からS7までの タップ係数を設定していく。ここで、レジスタ22aか ら22gの係数は、図5の各位相毎のナイキスト特性値 をN分割、例えば図5に示すように、aからhまで8分 割し、さらに1から7のエリアを、図6に示すFIRフ ィルタの各タップに対応させて格納しておく。例えば、 ループフィルタ10から得られる現時点での位相制御情 報が、正規の位相と180°異なる標本化位相であった 場合、図5に示すエリア1から7までの"●"、即ちe の位相でのフィルタ係数がS1からS7のタップ係数と して設定されることになる。ここで、時間方向の分割数 Nは大きいほど位相制御の精度は向上するが、分割数N の増加は回路規模の増加に結びつくため、性能と回路規 模が相容れる条件にて設定されるものである。高次補間 フィルタ7の出力信号は、タップ重み係数制御手段8に 入力され、等化誤差を最小にするようにトランスバーサ ルフィルタ6のタップの重み係数を適応的に制御する。

【手続補正23】

【補正対象書類名】明細書

【補正対象項目名】 0 1 2 3

【補正方法】変更

【補正内容】

【0123】高次補間フィルタ7の出力信号から、信号 がゼロレベルをクロスする位置を検出し、ゼロクロスフ ラグを出力する機能により構成されるゼロクロス位置検 出手段45と、図19において"●"で示すような、ゼ ロクロス位置の標本化信号については、図19に示す、 真のDCレベルと、偽のDCレベルの振幅差(図中では E)を出力する機能により構成されるゼロクロス振幅出 **力手段46と、ゼロクロス位置でない標本化信号につい** ては、その信号の極性に応じて、ある任意の値X、ある いは一Xを出力する機能により構成される極性値出力手 段47を有し、極性値出力手段47の出力信号に対し て、ゲイン調整手段50により、任意のゲインが設定で きるものである。また、疑似位相同期状態で制御が安定 した場合に、正常な位相同期状態に復旧させる手段とし て、カウンタ52により設定される任意の一定時間にお いて、極性値出力手段47の出力信号を累積加算手段5 3により加算し、疑似位相同期判定手段54により、そ の出力信号レベルをモニタし、疑似位相同期状態である か否かを判定する。疑似位相状態であると判断された場 合には、ゲイン調整手段50を用いて、符号の極性成分 によるオフセット補正を強化することにより、正常位相 同期状態に復旧させる構成になっている。以上のように して得られた、ゼロクロス振幅出力手段46とゲイン調 整手段50の出力信号を、ゼロクロフラグにより切替え て出力する手段であるセレクタ48により、オフセット

誤差信号として統合した後、平滑化するためのオフセッ ト補正用ループフィルタ49に入力される。最後に、減 算手段18により、アナログ・デジタルコンバータ3の 出力信号からオフセット補正用ループフィルタ49の出 力信号を直接減算し、オフセット補正を行なうものであ

【手続補正24】

【補正対象書類名】明細書

【補正対象項目名】0126

【補正方法】変更

【補正内容】

【0126】また、本願の請求項2に記載の発明に係る デジタル記録データ再生装置によれば、記録媒体の再生 信号を、該信号に含まれるクロック成分の位相とは非同 期にデジタルデータに標本化するアナログ・デジタル変 換手段と、該標本化された信号からオフセット成分およ び振幅を補正するデジタルデータ補正手段と、該補正が なされた信号にパーシャルレスポンス等化を行なう等化 フィルタと、前記等化フィルタの出力信号に基づき位相 誤差を検出する位相同期ループと、該等化フィルタの出 力信号に基づき前記等化フィルタのフィルタ係数を等化 誤差が最小になるように適応的に制御するとともに前記 位相同期ループの出力に基づき位相誤差をなくするよう にフィルタ係数を制御するフィルタ係数制御手段と、前 記等化フィルタで等化したパーシャルレスポンスの型に 応じて最尤復号を行なうことによりデータ復調を行なう 最尤復号器とを備えるようにしたので、正規のサンプリ ング位相での補間データに基づいて最尤復号を行うこと が可能となり、再生信号のチルトによる波形劣化等に影 響されない、パーシャルレスポンス最尤復号に適したデ ジタルデータ復調が可能になる。また、回路規模やコス トの削減、低消費電力化や再生データのエラーレートの 低下にも有効である、という効果がある。 【手続補正25】

【補正対象書類名】明細書

【補正対象項目名】0135

【補正方法】変更

【補正内容】

【0135】また、本願の請求項11に記載の発明に係 るデジタル記録データ再生装置によれば、記録媒体から の再生信号の出力振幅を強調するプリアンプと、該強調 された信号の所定の周波数帯域を強調する波形等化手段 と、発振器で生成されるクロックにより、該等化された 信号を該信号に含まれるクロック成分の位相とは非同期 に多ビットのデジタルデータに標本化するアナログ・デ ジタル変換手段と、該標本化された信号からオフセット 成分を低減するオフセット補正手段と、該出力信号の振 幅を所要のレベルに調整するオートゲインコントロール 手段と、該振幅調整がなされた信号にパーシャルレスポ ンス等化を行なうトランスバーサルフィルタと、該パー

シャルレスポンス等化された信号から正規の標本化位相 における信号を高次補間により再生する高次補間フィル タと、該補間出力信号から前記トランスバーサルフィル タのタップの重み係数を等化誤差が最小になるように適 応的に制御するタップ重み係数制御手段と、前記補間出 力信号から位相誤差を検出するための位相比較器と、該 位相誤差信号を平滑化するためのループフィルタと、前 記補間出力信号を前記トランスバーサルフィルタで等化 したパーシャルレスポンスの型に応じて最尤復号を行な うことによりデータ復調を行なう最尤復号器とを備え、 非同期に標本化した信号をパーシャルレスポンス等化 し、位相補間型のデジタルフェーズロックドループによ り位相同期を補償し、データ復調を行なうようにしたの で、チルトによる再生信号の特性劣化やアナログ等化が 不十分な条件においても、パーシャルレスポンス等化後 に位相誤差情報を検出することにより、位相同期ループ におけるジッタの低減と最適なパーシャルレスポンス等 化信号が再現できるため、エラーレートの低下につなが るだけでなく、位相同期引き込み能力も高く、安定した デジタルデータ再生を行なえるという効果がある。 【手続補正26】

【補正対象書類名】明細書

【補正対象項目名】0144

【補正方法】変更

【補正内容】

【0144】また、本願の請求項20に記載の発明に係 るデジタル記録データ再生装置によれば、請求項11, 12または17のいずれかに記載のデジタル記録データ 再生装置において、前記オフセット補正手段は、前記標 本化された信号が有するオフセット成分を検出するオフ セット検出手段と、該検出されたオフセット成分を平滑 化する平滑化手段と、該平滑化された信号を前記標本化 された信号より減算する減算手段とを備えるようにした ので、チルトによる再生信号の特性劣化やアナログ等化 が不十分な条件においても、エラーレートの<u>低下</u>につな がるだけでなく、位相同期引き込み能力も高く、安定し たデジタルデータ再生を行なえるものにおいて、オフセ ット補正を行う構成を実現できる効果がある。 【手続補正27】

【補正対象書類名】明細書

【補正対象項目名】0149

【補正方法】変更

【補正内容】

【0149】また、本願の請求項25に記載の発明に係 るデジタル記録データ再生装置によれば、請求項22記 載のデジタル記録データ再生装置において、前記オフセ ット補正手段は、一定の時間をカウントするカウンタ と、前記カウンタから出力されるフラグ間の前記極性値 出力手段の出力値と前記ゼロクロス振幅出力手段の出力 値を累積加算する累積加算手段と、該出力信号を前記力

ウンタから出力されるフラグのタイミングで、累積加算 手段の出力をモニタし、疑似位相同期状態であると判断 された場合は、前記極性値出力手段の比率を高くした制 御に切替え、正常位相同期状態に復帰させる累積加算結 果モニタ手段とを備えるようにしたので、チルトによる 再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの低下につながるだけでなく、位 相同期引き込み能力も高く、安定したデジタルデータ再 生を行なえるものにおいて、オフセット補正を行う構成 を実現できる効果がある。

【手続補正28】

【補正対象書類名】明細書

【補正対象項目名】 0 1 5 0

【補正方法】変更

【補正内容】

【0150】また、本願の請求項26に記載の発明に係 るデジタル記録データ再生装置によれば、請求項11, 12, 17, 21のいずれかに記載のデジタル記録デー タ再生装置において、前記トランスバーサルフィルタ は、前記初段の遅延素子に前記振幅調整がなされた信号 が入力される、相互に直列接続された, 単位遅延時間の 遅延量を有する複数個の遅延素子と、該複数個の単位遅 延素子の中の初段の遅延素子の入力、遅延素子同士の接 続点および最終段の遅延素子の出力に対応して設けられ た乗算器と、該乗算器の出力の総和をとり本フィルタの 出力を生成する加算器とを備え、前記乗算器の他方の入 力に入力する重み係数を可変させることで所要の等化特 性を実現するようにしたので、チルトによる再生信号の 特性劣化やアナログ等化が不十分な条件においても、エ ラーレートの低下につながるだけでなく、位相同期引き 込み能力も高く、安定したデジタルデータ再生を行なえ るものにおいて、パーシャルレスポンス等化を行う構成 を実現できる効果がある。

【手続補正29】

【補正対象書類名】明細書

【補正対象項目名】 0 1 5 1

【補正方法】変更

【補正内容】

【0151】また、本願の請求項27に記載の発明に係るデジタル記録データ再生装置によれば、請求項11,17,21のいずれかに記載のデジタル記録データ再生装置において、前記高次補間フィルタは、初段の遅延素子に前記パーシャルレスポンス等化がなされた信号が入力され、相互に直列接続された、単位遅延時間の遅延量を有する複数個の遅延素子と、該複数個の単位遅延素子の中の初段の遅延素子の入力、遅延素子同士の接続点および最終段の遅延素子の出力に対応して設けられた乗算器と、該乗算器の出力の総和をとり本フィルタの出力を生成する加算器とを備え、前記乗算器の他方の入力に入力する重み係数を可変させることで所要の等化特性を実

現するようにしたので、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの低下につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、正規の標本化位相における信号を補間する構成を実現できる効果がある。

【手続補正30】

【補正対象書類名】明細書

【補正対象項目名】 0 1 5 2

【補正方法】変更

【補正内容】

【0152】また、本願の請求項28に記載の発明に係るデジタル記録データ再生装置によれば、請求項27記載のデジタル記録データ再生装置において、前記高次補間フィルタは、ナイキスト特性に基づき補間を行うようにしたので、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの低下につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、正規の標本化位相における信号を補間する構成を実現できる効果がある。

【手続補正31】

【補正対象書類名】明細書

【補正対象項目名】0153

【補正方法】変更

【補正内容】

【0153】また、本願の請求項29に記載の発明に係るデジタル記録データ再生装置によれば、請求項27記載のデジタル記録データ再生装置において、前記高次補間フィルタは、前記乗算器に対応して設けられ、ナイキスト特性のチャネルレートを時間方向に分割したときの各々の振幅値を格納するレジスタと、前記レジスタに対応して設けられ前記ループフィルタの出力位相情報に応じて設けられ前記ループフィルタの出力位相情報に応じて前記レジスタに格納された振幅値を選択し対応で、が記乗算器に出力するセレクタとを備えるようにしたので、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの低下につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、正規の標本化位相における信号を補間する構成を実現できる効果がある。

【手続補正32】

【補正対象書類名】明細書

【補正対象項目名】 0 1 5 4

【補正方法】変更

【補正内容】

【0154】また、本願の請求項30に記載の発明に係るデジタル記録データ再生装置によれば、請求項11, 17,21のいずれかに記載のデジタル記録データ再生 装置において、前記タップ重み係数制御手段は、最小二 乗平均アルゴリズムにより前記トランスバーサルフィルタの重み係数を決定するようにしたので、チルトによる再生信号の特性劣化やアナログ等化が不十分な条件においても、エラーレートの低下につながるだけでなく、位相同期引き込み能力も高く、安定したデジタルデータ再生を行なえるものにおいて、トランスバーサルフィルタが行うべきパーシャルレスポンス等化機能を実現するよう重み係数を設定する構成を実現できる効果がある。

【手続補正33】

【補正対象書類名】明細書

【補正対象項目名】 0 1 5 5

【補正方法】変更

【補正内容】

【0155】また、本願の請求項31に記載の発明に係るデジタル記録データ再生装置によれば、請求項30記載のデジタル記録データ再生装置において、前記タップ重み係数制御手段は、前記高次補間フィルタの出力信号

に基づきパーシャルレスポンス方式に対応した等化目標 値を検出する仮判定回路と、該等化目標値と前記高次補 間フィルタの出力信号とに基づき等化誤差を検出する等 化誤差検出器と、前記等化誤差と前記高次補間フィルタ の出力信号との相関を検出する相関器と、該相関器の出 力をゲインと同数倍してフィードバックゲインを調整す るフィードバックゲイン調整器と、該フィードバックゲ イン調整器の出力を各タップの重み係数に加算しタップ 係数を更新するタップ係数更新部とを備えるようにした ので、チルトによる再生信号の特性劣化やアナログ等化 が不十分な条件においても、エラーレートの低下につな がるだけでなく、位相同期引き込み能力も高く、安定し たデジタルデータ再生を行なえるものにおいて、トラン スパーサルフィルタが行うべきパーシャルレスポンス等 化機能を実現するよう重み係数を設定する構成を実現で きる効果がある。

フロントページの続き

(72) 発明者 佐藤 慎一郎

香川県髙松市古新町8番地の1 松下寿電 子工業株式会社内 (72) 発明者 小田 祥正

香川県高松市古新町8番地の1 松下寿電 子工業株式会社内

F ターム(参考) 5D044 BC02 CC04 FG02 FG05 GL02 GL31 GL32 GM12