Neural-network based models in chemistry

Summer School 2025: Machine Learning and Artificial Intelligence in Synthetic Chemistry

University of Helsinki and the Finnish Society for Synthetic Chemistry

Lucía Morán González

Outline

- 1. Idea of Neural Network (NN)
- 2. Components of a NN
- 3. Training a NN model
- 4. Play with them playground tensorflow
- 5. NN APIs
- 6. Jupyter notebook

pubs.acs.org/jcim

http://pubs.acs.org/journal/acscii

Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks

Shuangjia Zheng,†,‡,10 Jiahua Rao,‡,1 Zhongyue Zhang,‡ Jun Xu,*,†,80 and Yuedong Yang*,†,||0

Neural Networks for the Prediction of Organic Chemistry Reactions

Jennifer N. Wei, David Duvenaud, and Alán Aspuru-Guzik*,

ARTICLE

https://doi.org/10.1038/s41467-019-12875-2

OPEN

Unifying machine learning and quantum chemistry with a deep <u>neural network for molecular</u> wavefunctions

K.T. Schütt 6 1, M. Gastegger 1, A. Tkatchenko 2 +, K.-R. Müller 1,3,4 + & R.J. Maurer 5 +

SCIENCE ADVANCES | RESEARCH ARTICLE

MATERIALS SCIENCE

Inverse design of porous materials using artificial neural networks

Baekjun Kim*, Sangwon Lee*, Jihan Kim¹

ARTICLE

doi:10.1038/nature25978

Planning chemical syntheses with deep neural networks and symbolic AI

Marwin H. S. Segler^{1,2}, Mike Preuss³ & Mark P. Waller⁴

- NN can model complex mathematical functions
- Flexible: adaptability to complex, high-dimensional data

- NN can model complex mathematical functions
- Flexible: adaptability to complex, high-dimensional data

'Ideal' simple maths

- NN can model complex mathematical functions
- Flexible: adaptability to complex, high-dimensional data

'Ideal' simple maths

Reality is more complex

Core concept of NN

Information flows through connected neurons

Supervised ML: X and $y \rightarrow \widehat{y}$

Supervised ML: X and $y \rightarrow \widehat{y}$

target property

features

Dataset

Reactions	X = sterics of R, Hammet σ, T,	y = %yield
Reaction 1	Volume(-Ph ₃), σ (-Ph ₃), 100°C, 1mM	80%
Reaction 2	Volume(-Me), σ(-Me), 100°C, 3mM	20%
Reaction 3	Volume(- CF_3), σ (- CF_3), 25 $^{\rm o}$ C, 5mM	67%
Reaction n	Volume(- NO_2), σ (- NO_2), 25°C, 3mM	45%

Goal

New reactions	X = sterics of R, Hammet σ, T,	y = pred(%yield)
Reaction	Volume(-R), σ(-R), 120°C, 2mM	%

NN training

u =
$$W \cdot X = w_1 x_1 + w_2 x_2 + ... + w_m x_m = \sum_{i=1}^m w_i x_i$$

• **Weights**: Initially they are random values that need to be adjust

y = ax + b

u =
$$W \cdot X = w_1 x_1 + w_2 x_2 + ... + w_m x_m = \sum_{i=1}^m w_i x_i$$

y = ax

Linear Functions

u =
$$W \cdot X = w_1 x_1 + w_2 x_2 + ... + w_m x_m = \sum_{i=1}^m w_i x_i$$

y = ax

Combiner

NN training

u =
$$W \cdot X = w_1 x_1 + w_2 x_2 + ... + w_m x_m = \sum_{i=1}^m w_i x_i$$
 y = ax

$$y = ax + b$$

$$f(y) = f(ax + b)$$

tanh

Sigmoid

ReLU $\max(0,x)$

tanh(x)

Leaky ReLU $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

Linear

Combiner

Weights

NN training

u =
$$W \cdot X = w_1 x_1 + w_2 x_2 + ... + w_m x_m = \sum_{i=1}^m w_i x_i$$
 y = ax

$$y = ax + b$$

Combiner

NN training

u =
$$W \cdot X = w_1 x_1 + w_2 x_2 + ... + w_m x_m = \sum_{i=1}^m w_i x_i$$

Weights

Combiner

u =
$$W \cdot X = w_1 x_1 + w_2 x_2 + ... + w_m x_m = \sum_{i=1}^m w_i x_i$$

NN training

- Deep NN: neural network with one or more hidden layers
- The number of parameters increase exponentially
- Decisions to make for NN architecture: number of hidden layers, number of nodes per layer, the activation function → Hyperparameters, which are not trainable, there are MORE!

Hyperparameter	Chemistry n>1000	Comments
Number of hidden layers	2 - 3	
Number of hidden nodes	32, 64, 128, 256 based on heuristics	Between the input number of features and the output feature. NB! Over- and under- fitting
Activation function	ReLu	
Random state	42	Initialize the weights (W) and biases (b)

Hyperparameter	Chemistry n>1000	Comments
Number of hidden layers	2 - 3	
Number of hidden nodes	32, 64, 128, 256 based on heuristics	Between the input number of features and the output feature. NB! Over- and under- fitting
Activation function	ReLu	
Random state	42	Initialize the weights (W) and biases (b)

Hyperparameter	Chemistry n>1000	Comments
Number of hidden layers	2 - 3	
Number of hidden nodes	32, 64, 128, 256 based on heuristics	Between the input number of features and the output feature. NB! Over- and under- fitting
Activation function	ReLu	
Random state	42	Initialize the weights (W) and biases (b)

5 nodes per hidden layer

Hyperparameter	Chemistry n>1000	Comments	
Number of hidden layers	2 - 3		
Number of hidden nodes	32, 64, 128, 256 based on heuristics	Between the input number of features and feature. NB! Over- and under- fitting	d the output
Activation function	ReLu		
Random state	42	Initialize the weights (W) and biases (b)	DOUGLAS ADAMS
La ini a Langua de la come de la come	100 (1 w/lino)		THE

Initial random **w** values (1 w/line)

Hyperparameter	Chemistry n>1000	Comments
Number of hidden layers	2 - 3	
Number of hidden nodes	32, 64, 128, 256 based on heuristics	Between the input number of features and the output feature. NB! Over- and under- fitting
Activation function	ReLu	
Random state	42	Initialize the Weights (W) and biases (b)
Number of epochs		
Loss function		
Learning rate		
Solver		
Batch size (optional)		
Validation (optional)		

NN training

Training set: X, y_{real} 80% Valid. set X, y_{real} 10% Test set X, y_{real} 10%

Already known information – dataset

Reactions	X = sterics of R, Hammet σ, T,	y = %yield
Reaction 1	Volume(-Ph ₃), σ (-Ph ₃), 100°C, 1mM	80%
Reaction 2	Volume(-Me), σ(-Me), 100°C, 3mM	20%
Reaction 3	Volume(- CF_3), σ (- CF_3), 25°C, 5mM	67%
		•••
Reaction n	Volume(- NO_2), σ (- NO_2), 25°C, 3mM	45%

New reactions	X = sterics of R, Hammet σ, T,	y = pred(%yield)
Reaction	Volume(-R), σ(-R), 120°C, 2mM	%

NN training

Training set: X, y_{real} 80%

Valid. set X, y_{real} 10%

Test set X, y_{real} 10%

Reactions	X = sterics of R, Hammet σ, T,	y = %yield	
Reaction 1	Volume(-Ph ₃), σ (-Ph ₃), 100°C, 1mM	80%	
Reaction 2	Volume(-Me), σ(-Me), 100°C, 3mM	20%	
Reaction 3	Volume(- CF_3), σ (- CF_3), 25 $^{\circ}$ C, 5 $^{\circ}$ M	67%	
		•••	
Reaction n	Volume(- NO_2), σ (- NO_2), 25°C, 3mM	Training of the	model

Already known information – dataset

New reactions	X = sterics of R, Hammet σ, T,	y = pred(%yield)
Reaction	Volume(-R), σ(-R),°C,mM	%

NN training

EPOCH 1

(each iteration)

Known info

Training set: *X*,

Yreal

Valid. set X, y_{real}

Test set X, y_{real}

NN training

Test set X, y_{real}

NN training

Loss function: quantifies the error of the model: $\hat{y} - y_{real}$ E.g. mean squared error (MSE) **GOAL:** reduce loss during the training

Test set X, y_{real}

NN training

Loss function: quantifies the error of the model. $\hat{y} - y_{real}$ E.g. mean squared error (MSE) **GOAL:** reduce loss during the training

Optimizer determines the direction in which to optimize the trainable parameters. Updates W and b based on the learning rate (η)

$$w_{new} = w - \eta * \frac{\partial out}{\partial w}$$

GOAL: smoothly reduce the performance error

NN training

 y_{real} (val real)

Loss function: quantifies the error of the model. $\hat{y} - y_{real}$ E.g. mean squared error (MSE) **GOAL:** reduce loss during the training

Optimizer determines the direction in which to optimize the trainable parameters. Updates W and b based on the learning rate (η)

$$w_{new} = w - \eta * \frac{\partial out}{\partial w}$$

GOAL: smoothly reduce the performance error

- Early stopping: if the updated W and b are worse after the training, the training is stopped.
- Fine tunning hyperparameters: η
- Not completely blind

GOAL: track the overfitting

NN training

 \hat{y} (test pred)

 y_{real} (test real)

Test error

Loss function: quantifies the error of the model. $\hat{y} - y_{real}$ E.g. mean squared error (MSE) **GOAL:** reduce loss during the training

Optimizer determines the direction in which to optimize the trainable parameters. Updates W and b based on the learning rate (η)

$$w_{new} = w - \eta * \frac{\partial out}{\partial w}$$

GOAL: smoothly reduce the performance error

- Early stopping: if the updated W and b are worse after the training, the training is stopped.
- Fine tunning hyperparameters: η
- Not completely blind

GOAL: track the overfitting

Test assesses the generalization of the model to unseen data.

NN training

 \hat{y} (test pred)

 y_{real} (test real)

Test error

Loss function: quantifies the error of the model. $\hat{y} - y_{real}$ E.g. mean squared error (MSE) **GOAL:** reduce loss during the training

Optimizer determines the direction in which to optimize the trainable parameters. Updates W and b based on the learning rate (η)

$$w_{new} = w - \eta * \frac{\partial out}{\partial w}$$

GOAL: smoothly reduce the performance error

- Early stopping: if the updated W and b are worse after the training, the training is stopped.
- Fine tunning hyperparameters: η
- Not completely blind

GOAL: track the overfitting

Test assesses the generalization of the model to unseen data.

NN training

NN training

Hyperparameter	Chemistry n>1000	Comments
Number of hidden layers	2 - 3	
Number of hidden nodes	32, 64, 128, 256 based on heuristics	Between the input number of features and the output feature. NB! Over- and under- fitting
Activation function	ReLu	
Random state	42	Initialize the Weights (W) and biases (b)
Number of epochs	50-200	Training iterations
Loss function	Mean-squared error	Measure the error
Learning rate (η)	0.0001 to 0.1	Adam: 0.001
Solver	Adam	Commonly used
Batch size (optional)	32, 64, 128, 256	Divide training set to speed up the training process
Validation (optional)	Early stopping	Stop if validation loss does not improve for 10 consequtive epochs

NN training

Validation:

- Early stopping: if the updated W and b are worse after the training, the training is stopped.
- Fine tunning hyperparameters: η
- Not completely blind

GOAL: track the overfitting

Play around – NN model

https://playground.tensorflow.org/

Playground.tensorflow.org

ML API

Types of NN

■ Feed forward NN (FNN): fixed-length vector

Types of NN

■ Feed forward NN (FNN): fixed-length vector

 Graph NN (GNN): input is a graph – molecular graph (consider all the connections)

Convolutional NN: grid of pictures

Variational autoenconder (VAEs)

Example in chemistry (

Chemical space 1947 Ir complexes

Too computationally demanding

Prediction with NN model

Target properties (y)

Input properties (X)

Generic properties

$$x_1, x_2, \dots, x_n$$