

AGR5201 Advanced Statistical Methods

Factorial experiments

Topic outline

- 1.0 Factorial experiment
- 1.1 Two factors experiment
- 1.2 Interaction
- 1.3 Result presentation
- 1.4 Three factors experiment
- 1.5 Two-factorial example
- 1.6 Review question

Gomez and Gomez (page 84)

So far...

- We have seen experiments with single factor only (rate of nitrogen, variety, etc.)
- The result can only be recommended in condition used in those experiment.
- If a different rate of fertilizer were tested using a different variety, the result will be different.
- Thus, a factorial experiment is conducted to study two (or more) factors at once.

Single factor experiment

In a single factor ANOVA, the effect of nitrogen and variety is determined using separate ANOVA table as shown below:

Nitrogen experiment

- Blocks = 4
- Nitrogen rates: 5
- Variety = 1

Source	DF
Blocks	3
Nitrogen	4
Error	12
Total	19

Variety experiment

- Blocks = 7
- Variety: 3
- Nitrogen rate: 1

Source	DF
Blocks	6
Variety	2
Error	12
Total	20

Definition

- A method for designing treatments, which allows testing and estimation of main effects and interaction effects.
- An experiment which looks at the effects of more than one factor (independent variable=IV)
- The interaction effects is measured from experiment that involves at least two factors with at least two levels each factor.
- Example:
 - i. Factor A (a1, a2)
 - ii. Factor B (b1, b2)

FACTOR

A specific type of treatment.

- Alfalfa cultivar (A)
- Methods of weed control (W)
- Rates of N fertilizer (N)
- Diet feds to animal (D)

LEVEL

A specific state of a factor.

- Alfalfa cultivars (A) \rightarrow Saranac, Arc, Oneida (a=3)
- Methods of weed control (W) \rightarrow herbicide, tillage, none, hand (w=4)
- Rates of N fertilizer (N) \rightarrow 0, 50, 100, 150, 200 kg/ha (n=5)
- Diets fed to animals (D) \rightarrow 100% hay, 70% hay, 30% hay (d=3)

- Single factor only one factor (independent variable)
 - effect of watering: 100% FC, 50% FC, 20% FC
- Two factors two factors (independent variables)
 - Effect of watering: 100% FC, 50% FC, 20% FC
 - Effect of Nitrogen: 0 kg/ha, 50 kg/ha, 100 kg/ha
- Three factors three factors (independent variables)
 - Effect of watering: 100% FC, 50% FC, 20% FC
 - Effect of Nitrogen: 0 kg/ha, 50 kg/ha, 100 kg/ha
 - Effect of variety: A, B, C.

Factorial experiment

Factorial treatment

- A treatment defined by the combination of one level of each factor.
- Factorial treatment designs have one main purpose:

→ TO INCREASE THE SCOPE OF INFERENCE.

- Identify important factors.
- Identify optimum or suboptimum levels of a factor.
- Identify and study interactions between factors.

Single factor ANOVA

1 factor: 3 levels 4 reps = 12 Experimental units (3 levels x 4 reps)

Source	df	SS	MS	F	Pr>F
Water	2				
Error	9				
Total	11				

- Water: 3 levels; Nitrogen: 3 levels; Rep = 4.
- Design RCBD = $3 \times 3 \times 4 = 36$ experimental units

Nitrogen

		N O	N 50	N 100	
_	20% FC	N0W1	N50W1	N100W1	Block 1
אפוב	50% FC	N0W2	N50W2	N100W2	
•	100% FC	N0W3	N50W3	N100W3	
1					Block 2
			combinations a th different rand	•	Block 3 Block 4

Linear model (RCBD)

$$Y_{ijk} = \mu + \rho_k + \nu_i + \pi_j + (\nu \pi)_{ij} + \varepsilon_{ijk}$$

Where,

```
Y_{iik} = observation
```

 μ = overall mean

 ρ_k = the effect of the k^{th} block

 v_i = the effect of the ith level of factor 1

 π_i = the effect of the jth level of factor 2

 $(v\pi)_{ij}$ = the interaction effect of the ijth factorial treatment.

 ε_{iik} = random error

 $v_i + \pi_j + (v\pi)_{ij} = \tau_i$ if we were to ignore the factorial structure.

ANOVA table

• Water (3 levels) Nitrogen (3 levels) Blocks (4)

	Source	df	SS	MS	F	Pr>F
	Block	3				
Main effect	Water (W)	2				
Main effect ——	Nitrogen (N)	2				
Interaction	$W \times N$	4				
enect	Error	24				
	Total	35				

ANOVA table - CRD

Linear model: $Y_{ij} = \mu + v_i + \pi_j + (v\pi)_{ij} + \epsilon_{ij}$

Source	df	SS	MS	F
Factor A	a-1	SSA	MSA=SSA/(a-1)	F _A = MSA/MSE
Factor B	b-1	SSB	MSB=SSB/(b-1)	$F_B = MSB/MSE$
A x B (interaction)	(a-1)(b-1)	SSAB	MSAB= SSAB/(a-1)(b-1)	F _{AB} = MSAB/MSE
Error	ab(r-1)	SSE	MSE= SSE/(r-1)(ab-1)	
Total	rab-1	SSTot		

ANOVA table - RCBD

Linear model:

$$Y_{ijk} = \mu + \rho_k + v_i + \pi_j + (v\pi)_{ij} + \epsilon_{ijk}$$

Source	df	SS	MS	F
Block	r-1	SSR	MSR=SSR/(r-1)	F _R = MSR/MSE
Factor A	a-1	SSA	MSA=SSA/(a-1)	F _A = MSA/MSE
Factor B	b-1	SSB	MSB=SSB/(b-1)	F _B = MSB/MSE
A x B (interaction)	(a-1)(b-1)	SSAB	MSAB= SSAB/(a-1)(b-1)	F _{AB} = MSAB/MSE
Error	(r-1)(ab-1)	SSE	MSE= SSE/(r-1)(ab-1)	
Total	rab-1	SSTot		

Definition formulae

$$\begin{split} & \text{SSTot} = \sum_{i} \sum_{j} \sum_{k} \left(\overrightarrow{Y}_{ijk} - \overline{\overrightarrow{Y}} \right)^{2} \\ & \text{SSR} = ab \sum_{k} \left(\overline{Y}_{..k} - \overline{\overline{Y}} \right)^{2} \\ & \text{SSA} = rb \sum_{i} \left(\overline{Y}_{i..} - \overline{\overline{Y}} \right)^{2} \\ & \text{SSB} = ra \sum_{j} \left(\overline{Y}_{.j.} - \overline{\overline{Y}} \right)^{2} \\ & \text{SSAB} = r \sum_{i} \sum_{j} \left(\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{\overline{Y}} \right)^{2} \\ & \text{SSE} = \text{SSTot} - \text{SSR} - \text{SSA} - \text{SSB} - \text{SSAB} \end{split}$$

- If there are interactions, we should be able to measure and test them.
 - We cannot do this if we vary only one factor at a time
- We can combine two or more factors at two or more levels of each factor
 - Each level of every factor occurs together with each level of every other factor
 - Total number of treatments = the product of the levels of each factor

This has to do with the selection of treatments:

- Can be used in any design CRD, RCBD, Latin Square etc.
- "Designs" generally refer to the layout of replications or blocks in an experiment
- A "factorial" refers to the treatment combinations

Interaction between two factors:

The effect of one factor changes as the level of the other factor changes

Example:

As we move from b1 to b2, there is a change in the differences between a1 and a2 (blue arrow)

• Factor A (a1, a2)

factor. Example:

• Factor B (b1, b2)

INTERACTION

 The effect of one factor **DOES** affect the other factor

Yield as affected by water and nitrogen

NO INTERACTION

 the effect of one factor DOES NOT affect of the other factor

Yield as affected by water and nitrogen

Types of interaction

Non-crossover 1

Crossover

No interaction

Non-crossover 2

Interaction graphs

Consider 3 varieties at four rates of nitrogen

No interaction

Relative yield of varieties is the **same** at all fertilizer levels

Non-crossover Interactions

Magnitude of differences among varieties depends on fertilizer level

Crossover Interactions

Ranks of varieties depend on fertilizer level

Numerical examples of interaction

Effect of two levels of phosphorus and potassium on crop yield

- ✓ Main effects are determined from the marginal means
- ✓ Simple effects refer to differences among treatment means at a single level of another factor

No interaction

	P_0	P_1	Mean
K_0	10	18	14
K ₁	14	22	18
Mean	12	20	

$$(22-14)$$
- $(18-10)$ = 0

Positive interaction

	P_0	P_1	Mean
K_0	10	18	14
K ₁	12	26	19
Mean	11	22	

$$(26-12)-(18-10) = +6$$

Negative interaction

	P_0	P_1	Mean
K_0	10	18	14
K ₁	16	14	15
Mean	13	16	

$$(26-12)-(18-10) = +6$$
 $(14-16)-(18-10) = -10$

Interpretation

- If the AB interaction IS significant:
 - the main effects may have no meaning whether or not they test significant
 - Data summary:
 - Table: A two-way table of means for the various AB combinations
 - Figure: A bar chart of means for the various AB combination
- If the AB interaction IS NOT significant:
 - test the independent factors for significance
 - Data summary:
 - Table: A one-way table of means for the significant main effects
 - Figure: A bar chart of means for main effects only

Interaction and statistical test

No Interaction

 Tests for <u>main effects are meaningful</u> because differences are constant across all levels of factor B

Interaction

- Tests for main effects may be misleading
- In this case the test would show no differences between varieties, when in fact their response to factor B is very different

Factor B

Factor A

Non-significant interaction

Look at the MAIN EFFECTS ONLY

Figure 1.1. The effect of nitrogen rate on yield.

Figure 1.2. The effect of watering on yield.

Significant interaction

- Significant interaction means:
 - The effect of one factor influences the effect of the other factor.
- Data must be SORTED by one factor and comparisons must be made within a SORTED factor

Main vs. interaction effects

Main effects

Interaction effects

Yield and quality of two kenaf varieties as affected by harvesting age.

Masnira.M.Y¹., Halim. R. A.^{2*}, Rafii M.Y.², Mohd Jani, S.¹ and Martini, M. Y.²

¹Rice and Industrial Research Crop Centre, MARDI Headquaters, Serdang, P.O Box 12301, 50774 Kuala Lumpur Malaysia.

²Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang Selangor Malaysia

*Corresponding author: ridzwan@upm.edu.my

Factors:

- 1. Varieties: MHC 123 and V 36
- 2. Harvesting age: 8, 12, 16 and 20 weeks after planting (WAP)

1.3 Result presentation | Non-significant interaction

Table 1: Dry matter yield based on harvest age and variety

Treatment	Dry matter (kg plot ⁻¹)	Yield (t ha ⁻¹)	_
Harvest age (H)			_
8 WAP	1.71b	8.5b	
12 WAP	2.24a	11.2a	
16 WAP	2.18a	10.9a	
20 WAP	2.03a	10.2a	Main effects
Variety (V)			
MHC 123	2.34a	11.7a	
V 36	1.74b	8.7b)
Significance level			
Harvest age	**	**	
Variety	**	**	ANOVA
HxV	ns	ns	(simplified)
Mean	2.43	12.15	(simplified)
CV	13.66	13.66	_ ノ

Means with the same letter were not significantly different among harvest age and variety (p>0.05) using LSD

** p<0.01, ns: not significant.

Note:

The results can be presented using a table or a figure (graph).

1.3 Result presentation | Significant Interaction (Crossover)

Main effects and ANOVA

Table 2: Mean crude protein content

CP (%)
20.3a
14.3b
18.1a
16.5a

Significance level

Harvest age	**
Variety	ns
HxV	**
Mean	17.29
CV	9.62

Means with the same letter were not significantly different among harvest age and variety p>0.05 using LSD.

Interaction effect: Graph

Figure 1. The effect of variety and harvest age on crude protein %.

Interpretation:

When the interaction is significant, the interpretation should focus on the interaction effect as shown in the graph.

1.3 Result presentation | Significant interaction (non-crossover)

Main effects and ANOVA

Table 3: Mean acid detergent fiber content

	9	
Treatment	ADF (%)	
Harvest age (H)		
8 WAP	35.6b	
12 WAP	46.2a	
Variety (V)		
MHC 123	34.3b	
V 36	47.6a	
Significance level		
Harvest age	**	
Variety	**	
HxV	**	
Mean	40.93	
CV	7.61	

Means followed by the different letters were significantly different among harvest age and variety using the LSD (P<0.05)

** P<0.01

Interaction effect: Graph

Figure 2. The effect of variety and harvest age on ADF %

Interpretation:

When the interaction is significant, the interpretation should focus on the interaction effect as shown in the graph.

1.4 Three-factor experiment

- Three factors three IV
 - Effect of watering: 100% FC, 50% FC, 20% FC
 - Effect of Nitrogen: 0 kg/ha, 50 kg/ha, 100 kg/ha
 - Effect of variety: A, B, C.

1.4 Three factor experiment

ANOVA of 3 factor experiment - CRD

Source	df	SS	MS	F
Water (W)	2			
Nitrogen (N)	2			
Variety (V)	2			
$W \times N$	4			
WxV	4			
$N \times V$	4			
$W \times N \times V$	8			
Error	9			
Total	35			

3 main effects 4 interaction terms

- To study the effect of row spacing and phosphate on the yield of bush beans
 - 3 spacings: 45 cm, 90 cm, 135 cm
 - 2 phosphate levels: 0 and 25 kg/ha

S2P1	S1P2	S1P1
60	45	55
S1P1	S3P1	S3P1
65	55	51
S3P2	S3P2	S1P2
66	57	43
S3P1	S1P1	S2P1
59	58	54
S1P2	S2P2	S2P2
56	50	45
S2P2	S2P1	S3P2
62	59	50

Tables of Means

Treatment Means

	S			
Phosphate	S1	S2	S3	Mean
P1	59.3	57.7	55.0	57.3
P2	48.0	52.3	57.7	52.7
Mean	53.7	55.0	56.3	55.0

Block Means

Block	I	Ш	Ш	Mean
Mean	61.3	54.0	49.7	55.0

ANOVA table

Source	df	SS	MS	F
Block	2	417.33	208.67	31.00**
Spacing	2	21.33	10.67	1.58
Phosphate	1	98.00	98.00	14.56**
SXP	2	148.00	74.00	11.00**
Error	10	67.33	6.73	
Total	17	752.00		

** Significant at the 1% level. CV = 4.7% StdErr Spacing Mean = 1.059 StdErr Phosphate Mean = 0.865 StdErr Treatment (SxP) Mean = 1.498

Report of statistical analysis | Table (A two-way table)

Table 1. The effect of phosphate and spacing on yield of bush bean (kg/ha)

Phosphate)	
(kg/ha)	45	90	135
0	59.33a	57.67ab	55.00b
25	48.00c	52.33b	57.67a

Within phosphate (row), the means with different letters are significantly different at P<0.05 using LSD

Interpretation:

- Yield response depends on whether or not phosphate was supplied
- If no phosphate yield decreases as spacing increases
- If phosphate is added yield increases as spacing increases
- Blocking was effective

The explanation is based on "phosphate" level (separated by phosphate)

Report of statistical analysis | Figure (Line graph)

Figure 1. The interaction between spacing and rate of P on bush bean yield (kg/plot). Within phosphate, means with different letters are significantly different at P<0.05 using LSD.

1.6 Review question

1.2 Interaction

Consider 3 varieties at four rates of nitroger

- 1. Two-factorial experiment is an experimental design. True of false? Explain your answer.
- 2. Explain the requirement in an experiment to test the interaction effects between factors.
- 3. List the interaction types and explain each of the interaction. see the figure below
- 4. How do you proceed with mean comparison if the interaction is significant in ANOVA (p-value < alpha (e.g., 0.05))? see the figure below
- 5. Explain why the approach for mean comparison is different when the interaction term in ANOVA is significant compared to when the

interaction is not significant. Q5

