

Gene expression as a readout of cell state

- Cells use signaling cascades to process information from their environment.
 - A typical cascade involves a extracellular receptor that triggers a transcriptional response
- What is the effect of the loss of function of a cellular component?
 - Map the function of a gene by measuring its impact on transcriptional output.

Sample dataset: Fat diet makes you fat...

Why? Why not to everyone?

In particular JNK signaling is key

Experimental approach

24 samples: 4 Genotypes x 2 Diets x 3 replicates

Figure S3. Analysis of hepatic genes differentially regulated by high fat diet in control and liver-specific JNK-deficient mice, Related to Figure 3.

Measuring gene expression by sequencing

Let's pause for a moment and look at what we are doing

- Goal: quantifying nucleic acid species in a sample
- Collected nucleic acids all mixed up
- Sheared it into roughly equally large pieces all mixed up
- Added adapters so that we can read the pieces in the sequencer
- We sequence a small fraction (70 bases) of the pieces
- **Objective**: Given the 70 bases read from each piece, can we determine:
 - what nucleic acids sequenced were there to begin with?
 - in what proportion?
- Strategy: Try to find the place were the 70 base read originated by finding the best place were it matches the genome
- Difficulties:
 - The genome is large!
 - The genome is complicated lots of *repetitive* sequence

Our typical RNA quantification pipeline

Alignment requires pre-processing


```
bowtie2-build -f mm10.fa mm10

rsem-prepare-reference \
--gtf ucsc.gtf --transcript-to-gene-map ucsc_into_genesymbol.rsem \
mm10.fa mm10.rsem
```

Why do we create an "index" of the genome?

ACTTGACCTACT**N**GGACCCT

 ${\tt TGGGTGGGATTAAATATATTCACAATGTGATTAGGAATTTTCATAAATATACACGATTTTGGTGTAAATCTCATTTTGCGATACAAGTTAGGAGAACTAC$ TTTTTTGTTTTTTTTTTTTTTTCGCCTGTGATAAATTGGTTTTCTGTTTTTAAAAAATAATTTTATACGTATTTGGTGAAATACTTAAAATTACCTAATTTA TTACACAAAATTTTGTAGGAACTTCATTTGTTACAATTTTTGTCACTTTGAAATTTTTCCGAAAATTATTCCGTTCTCAAAATTACTTCCATATTTTT $\tt GGGGTCTTGAGCTGAAGACTCTGGATAATCGGATTTTTTTAGTAATATGGATTTTTAGTAATAACTGATTAAATTATGGTATTAGTTTTTCTGTTCCAATTA$ ACAACTTAAAAAACTTATTCAATTCTAAAATGTTTAATAAAGTTTCAGGAAAATAAAAATGCTGGGACTCGTTTGCAAAATACTCGTTGTGCTCTGCTTG ${\tt TCTGTGCTCTGCCTCACAGTCTCAGGTGCTCCAGGTCAGTTTTTTTCCGTTGTTTTGAAGTTTTTTGAGATACTGTAACAGTGGTTTTAAGTGTGTCTGGAA$ ${\tt TTTAGAATACAAATTTGCTCAACATTTTCTTTAAAGGAAAGATGGACGGAATTTTAATTTGCACCAAATGTCTTTTTTTCGGTTGACTCATTCACTAAAGT$ TAATTAAACAAAAATTACCTTTTTTTTTTTTTTTCTGAAATTTCAGTCAACTTTGCTACCGTAGTCACTTTTACGTAAACACTCAGATATGTTAGTACTTTTTT $\mathtt{CTTCCGAATAAGGCAAAAATTGAAAAATTCTAAGAATCTCGGAACGGAACGAGAATTTTCTAACATTTAAATATTTCATGATTTTTTTGCGTCGTCGTTTTTTT$ TAGCAAGATGCCACGAAAATTTTTTTTGAAAAAATAATAAACAATTTCCCGAAAATCCACACAAAATTTTGTCTGTAGAACCTGAAATATTTGTCAAAAACAAA ACAAGAACGAATTCTGATAATTTATAAAATTTTTGCAAAATGAGAGAATTATTTGTCGTCGCCGCTAATAAATCGTTTTTTACATGTTTTTTAAAATGTTTTTA GAATAAAATTTAAAAAATTTTTATTGGACTAAAAAAATTTCAGTCAATTTCAGCGGGGTTTATGACAAAAGTCCGAGAAAAATGAATAAAAAGTGGTGCGAT ${\tt TTTAACAAACAAAAAAAAACACGAACAAAATAAATAGGTAATATACAACAAAAACTTTTTTTCGGCGCCCAAAACAATCATCGTTCCAAATCTTTTCCCGATT$ ${f TTCCCTTATTCTTCGGCATTTTCTTGTTCGTCGCGTCTTCCAGTTCTCGACCCTGGAATAAAATTGTTAAATTAAAAATTTCGGGTATTTTTTCTACTTTT$

Why do we create an "index" of the genome?

Step1: hash/index the genome

Toy genome (16 bp)

Step1: hash/index the genome

CATGGTCATTGGTTCC

k = 3 Kmer/Hash Genome Positions

CAT 1

Step1: hash/index the genome

k = 3	<u>Kmer/Hash</u>	<u>Genome Positions</u>
	CAT	1
	ATG	2

Step1: hash/index the genome

k = 3	<u>Kmer/Hash</u>	Genome Positions
	CAT	1
	ATG	2
	TGG	3

Step1: hash/index the genome

k = 3	Kmer/Hash	Genome Positions
	CAT	1
	ATG	2
	TGG	3
	GGT	4

Step1: hash/index the genome

k = 3	<u>Kmer/Hash</u>	Genome Positions
	CAT	1
	ATG	2
	TGG	3
	GGT	4
	GTC	5

Step1: hash/index the genome

k = 3	<u>Kmer/Hash</u>	Genome Positions
	CAT	1
	ATG	2
	TGG	3
	GGT	4
	GTC	5
	TCA	6

Step1: hash/index the genome

k = 3	<u>Kmer/Hash</u>	Genome Positions
	CAT	1,7
	ATG	2
	TGG	3
	GGT	4
	GTC	5
	TCA	6
	ICA	O

Step1: hash/index the genome

CATGGTCATTGGTTCC

k = 3	<u>Kmer/Hash</u>	Genome Positions
	CAT	1,7
	ATG	2
	TGG	3,10
	GGT	4,11
	GTC	5
	TCA	6
	ATT	8
	TTG	9
	GTT	12
	TTC	13
	TCC	14

Complete hash/kmer index of our toy genome (forward strand only)

What is a good choice of hash size?

k = 10?4¹⁰ (1,048.576) Every one of these is present in the human genome at least once

It takes a very long k-mer to be unique in most genomes!

Step2: use the index to map (i.e., find alignment locations) reads

Toy genome	CATGGTCATTGGTTCC	<u>Kmer/Hash</u>	Genome Positions
		CAT	1,7
		ATG	2
		TGG	3,10
		GGT	4,11
		GTC	5
		TCA	6
		ATT	8
		TTG	9
→	Read TGGTCA	GTT	12
		TTC	13
		TCC	14

kmer index is used to quickly find candidate alignment locations in genome.

Toy genome	CATGGTCATTGGTTCC	<u>Kmer/Hash</u>	Genome Positions
		CAT	1,7
		ATG	2
		TGG	3,10
		GGT	4,11
		GTC	5
		TCA	6
		ATT	8
		TTG	9
\rightarrow	Read TGGTCA	GTT	12
		TTC	13
		TCC	14

Mapping quality (MAPQ)

What is the probability that the sequence should be mapped here and only here?

MAPQ uses the Phred (log) scale: $MAPQ = -10*log_{10}(P_{map_loc_wrong})$

$(P_{map_loc_wrong})$	$\log_{10}(P_{\text{map_loc_wrong}})$	MAPQ
1	0	0
0.1	-1	10
0.01	-2	20
0.001	-3	30
0.0001	-4	40

Trapnell, Salzberg, Nature Biotechnology 2009

Read alignment relies on a dictionary

- Once loaded onto memory, they can process thousands of reads/second
- Different aligners offer different advantages:
 - Sensitivity to variability (aligning to highly variable organisms)
 - Speed
 - Memory
 - Specificity (at some cost of sensitivity)
- It is NOT a solved problem
- You really do not know which region was sequenced you only know what
 is the best match to the reference.
 - There could be sequencing errors
 - Variability
 - Non unique alignments

Short read aligners

Table 2. Alignment algorithms and software tools.

Name	Website	Reference	Remark
SOAP *	soap.genomics.org.cn	[32–35]	k-mer inexact match seed; support at most 3 mismatches; GPU calculation supported
CUSHAW \$	cushaw3.sourceforge.net/home page.htm#downloads	[36–39]	k-mer inexact match, maximal exact match and hybrid seeds; GPU supported
Bowtie &	bowtie-bio.sourceforge.net	[40,41]	k-mer inexact match seed; high speed; double-index; up to 3 mismatches
BWA	bio-bwa.sourceforge.net	[42,43]	k-mer inexact match and maximal exact match seed
GASSST	www.irisa.fr/symbiose/projects/ gassst/	[44]	k-mer exact match seed; it currently has been tested for reads up to 500 bp
GNUMAP	dna.cs.byu.edu/gnumap/	[45]	k-mer exact match seed; probabilistically mapping reads to repeat regions
MOSAIK	gkno.me/pipelines.html#mosaik	[46]	k-mer exact match seed
NextGenMap	cibiv.github.io/NextGenMap/	[47]	q-gramq-gram filter; GPU calculation supported
QPALMA	www.raetschlab.org/suppl/qpal ma	[48]	k-mer inexact match; incorporate read quality score and splice site
RMAP	rulai.cshl.edu/rmap/	[49,50]	k-mer inexact match seed; 10 mismatches allowed; incorporate read quality score
Segemehl	www.bioinf.uni- leipzig.de/Software/segemehl/	[51]	k-mer inexact match seed; enhanced suffix arrays
SeqMap	www-personal.umich.edu/ ~jianghui/seqmap/	[52]	k-mer inexact match; support windows, linux, Mac OS

Table 2. Cont.

Name	Website	Reference	Remark	
Stampy	www.well.ox.ac.uk/project- stampy	[53]	k-mer inexact match; support up to 30 bp indels in paired-end reads alignment	
Cloudburst	sourceforge.net/projects/cloudb urst-bio/	[54]	Highly sensitive read mapping with MapReduce.	
drFA ST	drfast.sourceforge.net/	[55]	k-mer inexact match; specially designed for better delineation of structural variants	
BFAST	sourceforge.net/projects/bfast/	[56]	k-mer spaced seeds	
MAQ	maq.sourceforge.net	[57]	k-mer spaced seeds; incorporate quality scores of reads in alignment	
MOM	go.vcu.edu/mom	[58]	k-mer spaced seeds; unlimited mismatches in the 3' and 5' flanking regions.	
PASS	pass.cribi.unipd.it	[59]	k-mer spaced seeds; implemented in C++ and supported on Linux and Windows	
PerM	code.google.com/p/perm/	[60]	k-mer spaced seeds; 9 mismatches are allowed	
SHRiMP2	compbio.cs.toronto.edu/shrimp/	[61,62]	combined k-mer spaced seeds and q-gram filter	
ZOOM	www.bioinfor.com/zoom/gener al/overview.html	[63]	k-mer spaced seeds; tolerate 2 mismatches by default	
BarraCUDA	seqbarracuda.sourceforge.net/	[64]	Incorporate GPU to speed up BWA	
GEM	gemlibrary.sourceforge.net/	[65]	q-gram filter	
MPSCAN	www.atge- montpellier.fr/mpsean/	[66]	q-gram filter; support Windows, linux, Mac OS	
ERNE	iga-ma.sourceforge.net/	[67]	long gap support; Works on Windows, Mac OS X, linux	
SARUMAN	www.cebitec.uni-bielefeld.de/ brf/saruman/saruman.html	[68]	k-mer inexact matched seed; support GPU calculation	
LAST	last.ebre.jp/	[69]	adaptive seed	
Genalice MAP	www.genalice.com/product/gen alice-map/	NA	cloud calculation; High sensitivity for SNPs and long INDELS	
Novoalign	www.novocraft.com/	NA	support up to 7 and 16 mismatches in single-end and pair-end reads.	
PRIMEX	bioinformatics.cribi.unipd.it/pri mex	[70]	k-mer inexact match seed; written in C++; lookup table and server functionality	
SOCS	solidsoftwaretools.com/gf/proje ct/socs/	[71]	good at align CpG methylation-enriched reads	
SToRM	bioinfo.lifl.fr/yass/iedera_solid/ storm/	[72]	doesn't support pair-end reads	
iSAAC	https://github.com/sequencing/i saac_aligner	[73]	k-mer inexact match seed; high speed	
RazerS	www.seqan.de/projects/razers/	[74]	q-gram filter; support Windows, linux, Mac OS X	
SSAHA2	www.sanger.ac.uk/resources/so ftware/ssaha2/	[75]	k-mer inexact match seed; support various output formats	
UGENE	ugene.unipro.ru/	[76]	works on Windows, linux and Mac OS X	

^{*} Include SOAP, SOAP2, SOAP3 and SOAP3-dp; \$ Include CUSHAW (k-mer inexact match seed), CUSHAW2 (maximal exact match seed) and CUSHAW3 (hybrid seeds); & Include Bowtie and Bowtie 2.

Sequence alignment software

<u>Aligner</u>	<u>Approach</u>	<u>Applications</u>	<u>Availability</u>
BWA-mem	Burrows-Wheeler	DNA, SE, PE, SV	open-source
Bowtie2	Burrows-Wheeler	DNA, SE, PE, SV	open-source
Novoalign	hash-based	DNA, SE, PE	free for academic use
STAR	hash-based (reads)	RNA-seq	open-source
GSNAP	hash-based (reads)	RNA-seq	open-source
TopHat2	Burrows-Wheeler	RNA-seq	open-source
HISAT2	Burrows-Wheeler	RNA-seq	open-source

The RNA-Seq alignment problem

Challenges:

- Genes exist at many different expression levels, spanning several orders of magnitude.
- Reads originate from both mature mRNA (exons) and immature mRNA (introns) and it can be problematic to distinguish between them.
- Reads are short and genes can have many isoforms making it challenging to determine which isoform produced each read.

Mapping RNA-Seq reads: Exon-first spliced alignment (e.g. TopHat)

A desktop application

for the visualization and interactive exploration of genomic data

Visualizing read alignments with IGV — RNASeq

Visualizing read alignments with IGV — zooming out

Or to troubleshoot

Quantification is the next problem

