Starcraft Player's Rank Prediction

TOC:

- 1. Preprocessing
 - A. Address missing/inappropriate values
 - B. Address outliers
- 2. Feature Selection
- 3. Model Selection
- 4. Model Evaluation
- 5. Room for Improvement

```
In []: import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.metrics import confusion_matrix, recall_score

from util_functions import *
```

1. Preprocessing

At first, import dataset and check the fundamental information.

```
In [ ]: df = pd.read_csv('./data/starcraft_player_data.csv')
       df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 3395 entries, 0 to 3394
      Data columns (total 20 columns):
                               Non-Null Count Dtype
       # Column
       0 GameTD
                               3395 non-null
                                               int64
       1
          LeagueIndex
                               3395 non-null
                                               int64
           Age
                                3395 non-null
                                               object
       3
           HoursPerWeek
                                3395 non-null
                                               object
           TotalHours
                                3395 non-null
                                               object
                               3395 non-null
                                               float64
           SelectByHotkeys
                               3395 non-null
                                               float64
           AssignToHotkeys
                              3395 non-null
                                               float64
                               3395 non-null
       8
          UniqueHotkevs
                                               int64
          MinimapAttacks
                               3395 non-null
                                               float64
       10 MinimapRightClicks
                               3395 non-null
                                               float64
       11 NumberOfPACs
                                3395 non-null
                                               float64
       12 GapBetweenPACs
                               3395 non-null
                                               float64
       13 ActionLatency
                                3395 non-null
                                               float64
       14 ActionsInPAC
                               3395 non-null
                                               float64
       15 TotalMapExplored
                                3395 non-null
                                               int64
       16 WorkersMade
                               3395 non-null
                                               float64
       17 UniqueUnitsMade
                                3395 non-null
                                               int64
       18 ComplexUnitsMade
                                3395 non-null
                                               float64
       19 ComplexAbilitiesUsed 3395 non-null
                                               float64
      dtypes: float64(12), int64(5), object(3)
      memory usage: 530.6+ KB
```

The table above shows that

- there is no null value in the dataset, but
- there might be something wrong in Age, HoursPerWeek and TotalHours columns because their dtypes are object though they should be numerical values.

From here, we use train/test dataset created from original data so that test data is not affected by training process.

```
In []: df_train, df_test = train_test_split(df, test_size=0.1, random_state=42, stratify=df['LeagueIndex'], shuffle=True)
    combine = [df_train, df_test]
    df_train.shape, df_test.shape
Out[]: ((3055, 20), (340, 20))
```

1.1. Address missing/inappropriate values

Three columns whose dtype are object include non-numerical characters "?", as below.

 $Besides, almost \ all \ "?" \ are included in the rows of players in the Professional leagues \ (LeagueIndex=8), \ and \ (LeagueIndex=8), \ and$

those three variables for the professional league players are all unknown, at least when it comes to the given dataset.

```
In []: object_column = df_train.select_dtypes(include='object').columns
for column in object_column:
```

```
nonnum\_train = df\_train[column].str.extract(r'([^0-9])').value\_counts().rename('count\_traindata')
             nonnum_test = df_test[column].str.extract(r'([^0-9])').value_counts().rename('count_testdata')
             nonnum = pd.concat([nonnum_train, nonnum_test], axis=1)
             print('# of rows including non-numerical data in "', column, '":')
             print(nonnum)
             print()
       \mbox{\it\#} of rows including non-numerical data in " Age ":
          count_traindata count_testdata
                        49
                                          6
       # of rows including non-numerical data in " HoursPerWeek ":
          count_traindata count_testdata
                                          6
                        50
       # of rows including non-numerical data in " TotalHours ":
          count_traindata count_testdata
                        51
In [ ]: print('Part of rows with TotalHours="?"')
         df_train[(df_train['TotalHours']=='?')][['LeagueIndex', 'Age', 'HoursPerWeek', 'TotalHours']].sort_index().head(10)
       Part of rows with TotalHours="?"
Out[]:
               LeagueIndex Age HoursPerWeek TotalHours
          358
                         5
                                            20
         1841
                              18
                              ?
                                             ?
         3340
                         8
                                                         ?
         3341
                         8
                                             ?
         3342
                                                         ?
         3343
                         8
                              ?
                                             ?
         3344
                         8
                                                         ?
         3345
         3346
                         8
                              ?
                                             ?
                                                         ?
         3347
                         8
In [ ]: print('Count of rows for each LeagueIndex with no "?" in the Age column')
         df_train[df_train['Age']!='?'].groupby('LeagueIndex').count()['Age']
       Count of rows for each LeagueIndex with no "?" in the Age column
Out[]: LeagueIndex
              150
              312
              498
         3
              730
         4
         5
              725
         6
              559
         Name: Age, dtype: int64
         These inappropriate data "?", are explicitly biased in rows with LeagueIndex=8, so I will drop the three columns.
         Instead, I will create a new variable "AgeMissing" which is 1 if "Age" equals "?" otherwise 0.
```

1.2. Address outliers

Next, we checked if each variable had an outlier visually.

In the boxplots below, you can see that some data points exceed the lower/highrer outlier thresholds.

```
In []: columns = df_train.columns[2:-1]
    draw_boxplots(df_train, x=columns, vertical=False, figsize=(12, 20), hspace=0.6)
```


ComplexAbilitiesUsed

While many data points are regarded as outliers by the boxplots, I will focus only on extreme ones.

To avoid the effect of extreme outliers, I implemented winsorization with upper limit of 0.1%, which will mitigate the outliers.

```
In []: columns = df_train.columns[2:-1]

# Winsorization: applying train data's limit to test data
for column in columns:
    limit = np.percentile(df_train[column], 99.9)
    df_train[column] = df_train[column].where(df_train[column]limit, limit)
    df_test[column] = df_test[column].where(df_test[column]limit, limit)

combine = [df_train, df_test]

draw_boxplots(df_train, x=columns, vertical=False, figsize=(12, 20), hspace=0.6)
```


ComplexAbilitiesUsed

2. Feature Selection

Since we have more than 10 features in the given dataset, we should reduce the number of features to avoid some problems such as overfitting and computational efficiency.

I drew boxplots to see the relationships between LeagueIndex and other features, and I concluded that variables which have an explicit slope of boxes should be included in a classification model.

```
In []: columns = df_train.columns[2:]
    draw_boxplots(df_train, x='LeagueIndex', y=columns, vertical=True, figsize=(10, 20), hspace=0.6, wspace=0.4)
```


Finally, I chose 9 variables as a feature variable as below. I think the biggest factor that makes players with higer rank differ from those with lower rank is how promptly and efficiently they make actions in a game, with the help of hotkeys and minimap. All variables except for AgeMissing are related to the promptness, that is, we can expect a player to have higher rank as his/her values of those variables are larger(smaller for GapBetweenPACs and ActionLatency).

Therefore, this feature selection seems to be reasonable.

3. Model Selection

In order to predict player's rank, I applied Random Forest and Gradient Boosting classifier and compared their scores to select a model finally used. Specifically, I figured out the best hyperparameters for each classifier using GridSearchCV, and then chose a model with the best score as the best.

```
In [ ]: # Assign X and v
        X_train = df_train[features]
        y_train = df_train['LeagueIndex']
        X test = df test[features]
        y_test = df_test['LeagueIndex']
         # Search best hyperparameter/model by GridSearchCV
         score_metrics = 'f1_weighted'
         param_rf = {
             'n_estimators': [10, 100, 200],
             'max_depth': [3, 6, 9],
             'max_features': ['sqrt', 'log2', None]
         param qb = {
              'n_estimators': [10, 100, 200],
             'max_depth': [3, 6, 9],
'max_features': ['sqrt', 'log2', None],
'learning_rate': [0.01,0.1,1,10]
         rf = build_classifier(RandomForestClassifier(random_state=42))
        print('Random Forest:')
         rf.TuneHParam(X_train, y_train, params=param_rf, cv=3, scoring=score_metrics)
        print()
         gb = build_classifier(GradientBoostingClassifier(random_state=42))
        print('Gradient Boosting:')
         gb.TuneHParam(X_train, y_train, params=param_gb, cv=3, scoring=score_metrics)
         print()
       Random Forest:
       Best Parameters for RandomForestClassifier(random_state=42): {'max_depth': 6, 'max_features': 'sqrt', 'n_estimators': 100}
       Best Score RandomForestClassifier(random_state=42): 0.384
       Gradient Boosting:
       Best Parameters for GradientBoostingClassifier(random_state=42): {'learning_rate': 0.01, 'max_depth': 6, 'max_features': 'sqrt',
        'n_estimators': 200}
       Best Score GradientBoostingClassifier(random state=42): 0.381
```

As a result, I selected Random Forest classifier with max_depth=6, max_features='sqrt' and n_estimators=100 as the best model, though there is no big difference between those two classifiers in terms of scores.

```
In []: best_model = rf.best_model
best_model.fit(X_train, y_train)
```

Out[]: RandomForestClassifier(max_depth=6, max_features='sqrt', random_state=42)

4. Model Evaluation

Finally, I evaluated the constructed model using scores and confusion matrix. The facts that we can see are:

- Accuracy score on test data was 40.9%, that is, this model can predict player's rank correctly with the probability of 40%.
- Confusion Matrix shows that while not few palyers were mistakenly classified, most of them are aligned on/near the diagonal elements.
- LeagueIndex with small sample size tend to have lower recall score.

```
In []: y_pred = best_model.predict(X_test)
print('Accuracy Score: %.3f' % best_model.score(X_test, y_test))

# Plot Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
cm_df = pd.DataFrame(cm, columns=range(1, 9), index=range(1, 9))

plt.figure(figsize=(8, 6))
sns.heatmap(cm_df, annot=True)
plt.title('Confusion Matrix')
plt.xlabel('Predicted Class')
plt.ylabel('Actual Class')
plt.show()
```

Accuracy Score: 0.409

Out[]:		LeagueIndex	NumSampleInTrain	Recall
	0	1	150	0.294
	1	2	312	0.171
	2	3	498	0.327
	3	4	730	0.506
	4	5	725	0.309
	5	6	559	0.613
	6	7	32	0.000
	7	8	49	1.000

In conclusion, I think that we can use this model to predict player's rank, but I need to improve it by obtaining additional data.

5. Room for Improvement

If I can ask advice to my collegue and obtain more data, I will ask/confirm:

- why "?" appears in three columns (Age, HoursPerWeek, TotalHours), especially of players with LeagueIndex=8.
- whether I can get more sample so that we will have samples for each LeagueIndex at the same amount.

Once I can clarify them, I will be able to:

- use three columns with confidence to build a model.
- build more accurate model because the variance of each feature variable will decrease as the number of sample increases.