Algorithmique et structures de données

CM 5 - structures arborescentes

Introduction

Nœuds, nœuds internes et feuilles

Chemins et branches

Définition d'un arbre binaire

Parcours des nœuds

Plan du CM 5

Introduction

Nœuds, nœuds internes et feuille

Chemins et branches

Définition d'un arbre binaire

Parcours des nœuds

Préambule

Manipulation de données

On souhaite stocker des données et pouvoir les récupérer. Les fonctions principales sont

- la recherche : on souhaite récupérer une donnée stockée
- l'insertion : on souhaite ajouter une nouvelle donnée
- la suppression : on souhaite supprimer une donnée

structures linéaires

Les structures linéaires telles que les tableaux et les listes chaînées permettent ces opérations, mais elles ne sont pas efficaces (voir le CM et le TD sur les complexités).

Structures arborescentes

Manipulation de données

Les structures arborescentes comme les arbres binaires, les arbres généreaux et les forêts peuvent permettre d'effectuer les opérations de recherche, d'insertion et de suppression de manière efficace.

De nombreuses utilisations en informatique

- systèmes d'exploitation
 - $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ architecture, organisation des fichiers. . .
- document XML
- linguistique
 - → arbres syntaxiques, grammaires...
- Mathématiques
 - → expressions arithmétique et logique
- Imagerie
 - → quadtree

Répertoires

Exemple d'arbre de répertoires Windows

Exemple d'arbre XML

Introduction 000000000

Expressions arithmétiques et logiques

Expression arithmétique

Expression logique

(p ou q) et (r et p)

Jeu

Tic tac toe ou morpion

Schéma d'induction

Introduction 000000000

Construction inductive des arbres généraux

- (i) l'arbre vide ∅ est un arbre général.
- (ii) L'arbre constitué
 - d'une racine •
 - \triangleright et d'une suite finie de sous-arbres généraux non vides A_1, \ldots, A_k est un arbre général.

La suite finie peut être vide, on construit ainsi l'arbre racine •

Schéma d'induction

Introduction 00000000

Construction inductive des arbres binaires

- (i) l'arbre vide ∅ est un arbre binaire.
- (ii) L'arbre constitué d'une racine ●, d'un arbre binaire gauche A_G et d'un arbre binaire droit A_D est un arbre binaire.

Exemple (l'arbre vide est noté N)

Nœuds, nœuds internes et feuilles

Nœuds, nœuds internes et feuilles

Soit x un nœud d'un arbre (général ou binaire).

Descendants et ascendants

- descendant
 - Les descendants de x sont les nœuds du sous-arbre de racine x (sauf x)
- ascendant
 - x est un ascendant de y lorsque y est un descendant de x.

Parents et enfants

- enfant
 - un nœud y est un enfant (ou fils, ou fille) de x lorsque c'est son descendant direct
- parent
 - un nœud y est un parent (ou père, ou mère) de x lorsque c'est son ascendant direct

La racine est le seul nœud sans parent.

Nœud interne

Un nœud interne est un nœud ayant au moins un enfant.

Feuille

Une feuille est un nœud sans enfant.

Nombre de nœuds

Nous noterons

- N(A) le nombre de nœuds de A
- N_i(A) le nombre de nœuds internes de A
- $N_f(A)$ le nombre de feuilles de A

Taille d'un arbre : nombre de nœuds

Nœuds, nœuds internes et feuilles

Partition

Les feuilles et les nœuds internes forment une partition des nœuds d'un arbre.

Relation

On en déduit une relation reliant le nombre de nœuds, le nombre de nœuds internes et le nombre de feuilles.

$$N(A) = N_i(A) + N_f(A).$$

Répertoires

Exemple d'arbre de répertoires Windows

Nœuds

- nœuds internes répertoires ou dossiers
- feuilles fichiers (texte, image, vidéo...)

Arbre XML

Exemple d'arbre XML

```
- <mployees>
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
-
```

Nœuds

- nœuds internes balises
- feuilles contenu

Expressions arithmétiques et logiques

Expression arithmétique

Expression logique

- nœuds internes

 opérateurs arithmétiques
- feuilles nombres

- nœuds internes opérateurs logiques
- feuilles

 variables propositionnelles

Tic tac toe ou morpion

Nœuds

- nœuds internes coups pendant la partie
- feuilles fin de partie

Introduction

Nœuds, nœuds internes et feuilles

Chemins et branches

Définition d'un arbre binaire

Parcours des nœuds

Chemin

Soient x_1, x_2, \ldots, x_k k nœuds d'un arbre.

- (x_1, \ldots, x_k) forme un chemin lorsque
 - \triangleright x_2 est l'enfant de x_1 ,
 - $ightharpoonup x_3$ est l'enfant de x_2 ,

 - x_{k-1} est l'enfant de x_k .

Longueur d'un chemin

 (x_1, \ldots, x_k) est alors un chemin de longueur k-1.

Profondeur d'un nœud

La profondeur d'un nœud –notée p(x) – est la longueur du chemin allant de la racine jusqu'à x.

Définition inductive de la profondeur

- (i) la racine est de profondeur 0.
- (ii) si x est le parent de y, alors

$$p(y) = p(x) + 1.$$

Exemple

Niveau d'un arbre

Soit $i \in \mathbb{N}$, le niveau i est formé de tous les nœuds de profondeur i.

Exemple

Hauteur d'un arbre

La hauteur d'un arbre A est la plus grande profondeur d'un nœud de A.

$$h(A) = Sup\{p(x) \mid x \text{ nœud de } A\}.$$

Sur l'exemple, l'arbre est de hauteur 4.

longueur de cheminement

La longueur de cheminement d'un arbre A est la somme des profondeurs de ses nœuds.

$$LC(A) = \sum_{x \text{ nœud de } A} p(x).$$

Exemple

$$\begin{array}{rcl} \textit{LC(A)} & = & 0+1+1+2+2+2\\ & + & 3+3+3+4\\ & = & 21 \end{array}$$

longueur de cheminement externe

La longueur de cheminement externe d'un arbre A est la somme des profondeurs de ses feuilles.

$$LCE(A) = \sum_{x \text{ feuille de } A} p(x).$$

Exemple

$$LCE(A) = 2+3+3+4$$

= 12

Chemins et branches

Branche d'un arbre

chemin allant de la racine jusqu'à une feuille

Nombre de branches

nous avons autant de branches que de feuilles

Hauteur de l'arbre

• la hauteur de l'arbre est la longueur d'une des plus longues branches de l'arbre.

Branche d'un arbre

• chemin allant de la racine jusqu'à une feuille

Exemple sur un arbre général

Chomino de branono

Branche d'un arbre

• chemin allant de la racine jusqu'à une feuille

Exemple sur un arbre binaire

Introduction

Nœuds, nœuds internes et feuille:

Chemins et branches

Définition d'un arbre binaire

Parcours des nœuds

Schéma d'induction

Construction inductive des arbres binaires

- (i) l'arbre vide ∅ est un arbre binaire.
- (ii) L'arbre constitué d'une racine \cdot , d'un arbre gauche A_G et d'un arbre droit A_D est un arbre binaire.

Exemple

Nombre de nœuds

On utilise la définition inductive des arbres binaires.

- (i) Base ou initialisation
 - l'arbre vide ∅ contient 0 nœud

(ii) Induction

On calcule inductivement le nombre de nœuds.

Soit $A = (\bullet, A_G, A_D)$ un arbre binaire différent de l'arbre vide.

$$N(A) = N(A_a) + N(A_d) + 1.$$

Nombre de feuilles

(i) Base ou initialisation

- l'arbre vide ∅ contient 0 feuille
- l'arbre racine contient une feuille

(ii) Induction

On calcule inductivement le nombre de feuilles.

Soit $A = (\bullet, A_G, A_D)$ un arbre binaire différent de l'arbre vide et de l'arbre racine.

$$N_f(A) = N_f(A_g) + N_f(A_d).$$

Nombre de nœuds internes

(i) Base ou initialisation

- l'arbre vide ∅ contient 0 nœud interne
- l'arbre racine contient 0 nœud interne

(ii) Induction

On calcule inductivement le nombre de nœuds internes.

Soit $A = (\bullet, A_G, A_D)$ un arbre binaire différent de l'arbre vide et de l'arbre racine.

$$N_i(A) = 1 + N_i(A_a) + N_i(A_d).$$

Hauteur d'un arbre binaire

Définition inductive

- l'arbre racine est de hauteur 0
- par convention, l'arbre vide \emptyset est de hauteur -1.
- soit A un arbre binaire de sous-arbre gauche A_q et de sous-arbre droit A_d .

$$h(A) = 1 + \sup(h(A_g), h(A_d)).$$

Exemple

Structure de nœud et type arbreBinaire

Structure de nœud

Un nœud est constitué d'une valeur (ici un entier), d'un pointeur sur le sous-arbre gauche et d'un pointeur sur le sous-arbre droit.

```
structure noeud{
    valeur : entier
    gauche : pointeur sur noeud
    droit : pointeur sur noeud
```

type arbreBinaire = pointeur sur noeud

Exemple

Plan du CM 5

Introduction

Nœuds, nœuds internes et feuille

Chemins et branches

Définition d'un arbre binaire

Parcours des nœuds

Objectif

Il s'agit de parcourir systématiquement tous les nœuds d'un arbre dans un ordre préablement fixé.

Parcours en largeur

On parcourt d'abord les nœuds de niveau 0, puis de niveau 1, de niveau 2, ... Chaque niveau est parcouru de gauche à droite.

Parcours en profondeur

On part de la racine, on descend le plus à gauche possible et on retourne en arrière pour explorer les autres branches.

Parcours en largeur

Méthode

- on parcourt d'abord les nœuds de niveau 0, puis de niveau 1, de niveau 2, ...
- chaque niveau est parcouru de gauche à droite.

Ordre de parcours

7 4 2 12 9 20 1 5 11

Parcours en profondeur

- on part de la racine
- on descend le plus à gauche possible
- on retourne en arrière pour explorer les autres branches.

Ordre de parcours

Chaque nœud est visité trois fois

- 1. première visite premier passage sur le nœud
- 2. seconde visite après l'exploration du sous-arbre gauche
- 3. troisième visite après l'exploration du sous-arbre droit

Ordre préfixe

Ordre préfixe

On effectue le traitement à la première visite.

Ordre infixe

Ordre infixe

On effectue le traitement à la seconde visite.

Ordre suffixe ou postfixe

Ordre suffixe ou postfixe

On effectue le traitement à la troisième visite.

Définir des procédures pour effectuer des opérations sur les arbres

- parcourir les nœuds d'un arbre (affichage, traitement...)
- recherche un nœud d'une certaine valeur dans un arbre
- ajouter un nœud dans un arbre
- supprimer un nœud d'un arbre

