Токмаков Александр, группа БПМИ165 Домашняя работа 2

№1

Нельзя утверждать, что $SAT \notin P$ только потому, что приведён экспоненциальный алгоритм решения. Возможно, существует полиномиальный алгоритм (нужно доказать, что не существует такого алгоритма).

№2

 $SAT \leq_p \overline{TAUT}$ (если отрицание формулы выполнимо, то она не тавтология и наоборот) и $SAT \in NPC \Rightarrow \overline{TAUT} \in NPC \subset NP \Rightarrow TAUT \in coNP$. Более того, $TAUT \in coNPC$ т.к. если некоторый язык $L \in coNP$, то $\overline{L} \in NP$ и тогда $\overline{L} \leq_p \overline{TAUT} \Rightarrow L \leq_p TAUT$ т.е. любой coNP язык сводится к TAUT.

Пусть $3SAT \leq_p \hat{T}AUT$ и $TAUT \leq_p 3SAT$. Возьмём некоторый язык $L \in NP$:

 $3SAT \in NPC \implies L \leq_p 3SAT \leq_p TAUT \implies L \in coNP \implies NP \subset coNP.$

Аналогично для некоторого языка $L \in coNP$:

 $TAUT \in coNPC \implies L \leq_p TAUT \leq_p 3SAT \implies L \in NP \implies coNP \subset NP.$

Таким образом, NP = coNP.

Пусть NP=coNP. Тогда $TAUT\in coNP=NP\Rightarrow TAUT\leq_p 3SAT$ т.к. $3SAT\in NPC$. Аналогично $3SAT\in NP=coNP\Rightarrow 3SAT\leq_p TAUT$ т.к. $TAUT\in coNPC$.

№3

Не верно, т.к. в таком случае на словах из \overline{L} машина Тьюринга может работать более чем полиномиальное время или вообще не остановиться т.е. \overline{L} не разрешим за полиномиальное время, значит L тоже не разрешим за полиномиальное время.

№4

Рассмотрим алгоритм разрешения T:

```
\begin{array}{c} \text{def inT(n):} \\ m=1 \\ \text{while } m < n: \\ m=m * 3 \\ \text{return } m == n \end{array}
```

Все операции (умножение на 3 и сравнения) выполняются за полиномиальное время от len(m) (длины слова m), $len(m) \leq len(3n) \leq len(n) + 1$. Цикл выполнится ровно $k = \lceil \log_3(n) \rceil = \lceil \frac{\log_{10}(n)}{\log_{10}(3)} \rceil$ раз, $\log_{10}(n) \leq len(n)$. Таким образом, алгоритм работает за полиномиальное время от длины входа.

№5

Если в графе есть гамильтонов цикл, то последовательность вершин, образующих этот цикл, будет сертификатом: длина такого сертификата полиномиальна от длины входного слова (длина цикла равна числу вершин) и можно за полиномиальное время проверить, что такой цикл действительно есть в графе просто пройдя по нему. И наоборот: если существует сертификат — такая последовательность не повторяющихся вершин, что каждая из них смежна со следующей и последняя смежна с первой, то в графе очевидно есть гамильтонов цикл.

№6

Если таблица как-то заполнена, то можно за полиномиальное время проверить, что она заполнена нужным образом: для каждой из n^4 клеток проверить, что такого числа нет в строке (n^2 клеток), столбце (n^2 клеток) и малом квадрате (n^2 клеток). Правильное заполнение таблицы будет сертификатом: оно полиномиально от размера входа и оно же будет решением судоку. Таким образом, это задача класса NP, значит $SUDOKU \leq_p SAT$ т.к. $SAT \in NPC$.