Deep Learning and Convolutional Neural Network (42028)

Convolutional Neural Network (CNN) - 3

Optimizers

- SGD with momentum
- RMSProp
- Adam

- One of the popular algorithm for smoothing sequential data
- Also called Moving Average
- Weight the number of observations and using their average

• Example: Temperature over $oldsymbol{ heta}$ days

V_t: Moving average on day 't'

$$V_t = 0.9 \ V_{t-1} + 0.1 \ \theta_t$$
 If $\beta = 0.9$,

$$V_{t} = \beta V_{t-1} + (1-\beta) \theta_{t}$$

This equation gives the moving average shown by the red line.

$$V_{t} = \beta V_{t-1} + (1-\beta) \theta_{t}$$

V_t is approximate average over

$$\approx \frac{1}{1-\beta}$$
 days

So,

 β = 0.9 is closer to 10 days temperature

 β = 0.98 is closer to 50 days temperature

 β = 0.5 is closer to 2 days temperature

What is Exponentially Weighted Averages doing?

$$V_t = \beta V_{t-1} + (1-\beta) \theta_t$$

```
For,

V_{100} = 0.9 V_{99} + 0.1 \theta_{100}

V_{99} = 0.9 V_{98} + 0.1 \theta_{99}
```

```
Substituting, V_{99}

V_{100} = 0.1 \,\theta_{100} + 0.9 \,(0.9 \,V_{98} + 0.1 \,\theta_{99})

V_{100} = 0.1 \,\theta_{100} + 0.9 \,(0.1 \,\theta_{99} + 0.9 \,(0.9 \,V_{97} + 0.1 \,V_{98}))...
```

Optimizers – SGD with Momentum

- "Compute the Exponentially weighted average of the gradients and use that gradient to update weights" - Andrew NG
- One of the most popular algorithms
- Helps to accelerate the gradient vectors in right direction and reduces oscillation
- Always faster than the SGD

Optimizers – SGD with Momentum

Algorithm:

At iteration t:

Calculate dw and db on the current mini-batch

$$V_{dw} = \beta V_{dw} + (1 - \beta) dw \rightarrow V_{t} = \beta V_{t-1} + (1 - \beta) \theta_{t}$$

$$V_{db} = \beta V_{db} + (1 - \beta) db$$

Update w and b:

$$w = w - \alpha V_{dw}$$
, $b = b - \alpha V_{db}$

Hyper-parameters: α , β

Optimizers – SGD with Momentum

SGD Without Momentum

SGD With Momentum

Faster convergence and reduced oscillation

Optimizers – RMSProp

- Root Mean Square Propagation
- Unpublished adaptive learning method by Geoffery Hinton
- RMSProp also reduces oscillation but in a different way than Momentum
- RMSprop as well divides the learning rate by an exponentially decaying average of squared gradients.

Optimizers – RMSProp

Algorithm:

At iteration t:

Calculate dw and db on the current mini-batch

$$S_{dw} = \beta_2 S_{dw} + (1 - \beta_2) dw^2$$

$$S_{db} = \beta_2 S_{db} + (1 - \beta_2) db^2$$
Squaring the derivatives

Update w and b:

$$w = w - \alpha \frac{dw}{\sqrt{S_{dw}}} b = b - \alpha \frac{db}{\sqrt{S_{db}}}$$

Square root of derivatives

Optimizers – RMSProp

Intuition:

 $S_{dw} \rightarrow Smaller number expected$

 $S_{db} \rightarrow Larger number expected$

So,

$$w = w - \alpha \frac{dw}{\sqrt{S_{dw}}}, b = b - \alpha \frac{db}{\sqrt{S_{db}}}$$

Smaller number So, w is larger

Larger number So, b is small

In Practice add ε:

$$w = w - \alpha \frac{dw}{\sqrt{S_{dw}} + \varepsilon}$$
, $b = b - \alpha \frac{db}{\sqrt{S_{db}} + \varepsilon}$

 $\epsilon \rightarrow$ small number, 10^{-8}

- Adam → Adaptive Moment Estimation
- Combination of RMSProp and Momentum
- Work well for a wide range of deep learning architecture

Algorithm:

Initialize
$$V_{dw} = 0$$
, $V_{db} = 0$, $S_{dw} = 0$, $S_{db} = 0$

At iteration t:

Calculate dw and db on the current mini-batch

$$V_{dw} = \beta_1 V_{dw} + (1 - \beta_1) dw$$
, $V_{db} = \beta_1 V_{db} + (1 - \beta_1) db \leftarrow$ From Momentum, $\beta_1 S_{dw} = \beta_2 S_{dw} + (1 - \beta_2) dw^2$, $S_{db} = \beta_2 S_{db} + (1 - \beta_2) db^2 \leftarrow$ From RMSProp, $\beta_2 S_{dw} = \beta_2 S_{dw} + (1 - \beta_2) dw^2$, $S_{db} = \beta_2 S_{db} + (1 - \beta_2) db^2 \leftarrow$ From RMSProp, $\beta_2 S_{dw} = \beta_2 S_{dw} + (1 - \beta_2) dw^2$, $S_{db} = \beta_2 S_{db} + (1 - \beta_2) db^2 \leftarrow$ From RMSProp, $\beta_2 S_{dw} = \beta_2 S_{dw} + (1 - \beta_2) dw^2$, $S_{db} = \beta_2 S_{db} + (1 - \beta_2) db^2 \leftarrow$ From RMSProp, $\beta_2 S_{dw} = \beta_2 S_{dw} + (1 - \beta_2) dw^2$, $S_{db} = \beta_2 S_{db} + (1 - \beta_2) db^2 \leftarrow$ From RMSProp, $\beta_2 S_{dw} = \beta_2 S_{dw} + (1 - \beta_2) dw^2$, $S_{db} = \beta_2 S_{db} + (1 - \beta_2) db^2 \leftarrow$ From RMSProp, $\beta_2 S_{dw} = \beta_2 S_{dw} + (1 - \beta_2) dw^2$, $S_{db} = \beta_2 S_{dw} + (1 - \beta_2) db^2 \leftarrow$ From RMSProp, $\beta_2 S_{dw} = \beta_2 S_{dw} + (1 - \beta_2) dw^2$, $S_{db} = \beta_2 S_{dw} + (1 - \beta_2) dw^2$

Update w and b:

$$w = w - \alpha \frac{V_{dw}}{\sqrt{S_{dw}} + \epsilon}$$
, $b = b - \alpha \frac{V_{db}}{\sqrt{S_{db}} + \epsilon}$

Source and reference: https://www.youtube.com/watch?v=JXQT vxqwls

In practice: Bias correction is required as V_{dw} , V_{db} , S_{dw} , S_{db} are initialized to 0 and are biased towards zero. Hence, a bias correction is required as follows:

$$V'_{dw} = \frac{V_{dw}}{(1 - \beta_1)}, \ V'_{db} = \frac{V_{db}}{(1 - \beta_1)}$$
$$S'_{dw} = \frac{S_{dw}}{(1 - \beta_2)}, \ S'_{db} = \frac{S_{db}}{(1 - \beta_2)}$$

Update w and b:

$$w = w - \alpha \frac{V'_{dw}}{\sqrt{S'_{dw}} + \epsilon}$$
, $b = b - \alpha \frac{V'_{db}}{\sqrt{S'_{db}} + \epsilon}$

Hyper parameter guide:

```
\alpha (Learning rate) \rightarrow should be tunned, start with 0.001
```

$$\beta_1$$
 (Momentum term) \rightarrow 0.9 (dw)

$$\beta_2$$
 (moving weighted average) \rightarrow 0.999 (dw²)

$$\varepsilon \rightarrow 10^{-8}$$

Optimization Demo:

https://vis.ensmallen.org/

ImageNet Dataset:

- 15+ million labelled high-resolution images
- 22000 categories
- ILSVRC (Large Scale Visual Recognition Challenge) used a subset of ImageNet:
 - ~1000 images per category
 - 1000 categories
 - Train: 1.2 million images
 - Validation: 50k images
 - Test: 150k images

ImageNet Dataset:

ImageNet Dataset Results:

Transfer Learning

- Knowledge acquired while solving one task, can be used to solve related tasks.
- Example:
 - You know how to ride a Bi-cycle

 You can learn how to ride a Motorbike
 - You know how to use a Tablet -> You can easily learn how to use a Laptop/desktop
- Similar to the way humans apply knowledge acquired from one task to solve a new but similar/related task.
- We learned how to read in Year-1 in literacy class. Reading skills acquired in the literacy classes made it easy to understand Physics in Year-9.

Transfer Learning Benefits

1. Less training data required: Don't have enough data to train a Deep Learning model from scratch. Model trained using a large (similar) dataset can be used.

2. Faster training: Training can converge faster, due the use to existing knowledge (weights) to start with rather than from scratch.

3. Better model generalization: Model is trained to identify features which can be applied to new contexts.

Option-1: (VGG-16 considered as an example)

Use pre-trained (ImageNet) model for prediction, without any training.

→Useful when your dataset distribution is similar to ImageNet, with small number of samples.

Option-2: (VGG-16 considered as an example)

Train Full-Connected layer, Use CONV layers for feature extraction

→Useful when your dataset distribution is similar to ImageNet (or original dataset), but number of classes are different and your dataset is small.

Option-3: (VGG-16 considered as an example)

Partially Train CONV layers (usually last layer(s) which have specialised features) + Full Connection (FC) layer (with modifications)

→ Useful when your dataset distribution is not similar to ImageNet (or original dataset), number of classes are different and your dataset is small.

Option-4: (VGG-16 considered as an example)

Train all the CONV layers + Full Connection (FC) layer (with modifications)

→ Useful when your dataset distribution is not similar to ImageNet, number of classes are different, your is dataset large and the task is complex.

Classic CNN Architectures

Case Study: AlexNet

- Similar architecture as LeNet by Yann LeCunn et al. but deeper with more layers
- Simple architecture:
 - CONV: 5 layers
 - FC: 3 layer
 - Max pooling
 - Dropout
- Accuracy: top-5 test error rate of 15.3%
- Winner of ILSVRC 2012!
- First CNN to be successful on a very big dataset!

Case Study: AlexNet

Case Study: AlexNet

Input: 224x224x3 image

 $CONV1 \rightarrow CONV2 \rightarrow CONV3 \rightarrow CONV4 \rightarrow CONV5 \rightarrow FC1 \rightarrow FC2 \rightarrow FC3$

Filters: 96
Dim: 11x11
Stride: 4
Pad: 0

Filters: 256 Dim: 5x5 Stride: 1 Pad: 2 Filters: 384 Dim: 3x3 Stride: 1 Pad: 1

Filters: 384
Dim: 3x3
Stride: 1
Pad: 1

Filters: 256
Dim: 3x3
Stride: 1
Pad: 1

4096 Neuron

4096 Neuron 1000 Neuron

Activations: Relu after each CONV and FC layer

Optimizer: SGD with Momentum

Regularization: Dropout in FC1 and FC2

Total Trainable parameter: ~60Million

Training settings: 2 X Nvidia GTX 580 3GB GPUs for 5-6days!

Case Study: GoogleNet/Inception(2014)

- Accuracy: top-5 test error rate of 6.7%
- Close to human level performance
- Winner of ILSVRC 2014!
- 22 layer Deep CNN
- Number of trainable parameters: 4 Million (Alexnet ~ 60M), Significantly reduced
- A novel inception module was introduced.
- Optimizer: RMSProp

Case Study: GoogleNet/Inception(2014)

Pooling

Other

Case Study: GoogleNet/Inception(2014)

Inception Module

