TEMPERATURE-STRESS MODELING

and the same of the

WESTINGHOUSE ELECTRIC CORP.

R. Seidensticker

Overall Goals

- Develop Higher Throughput Systems
- Clarify Limitations on Ultimate
 Throughput

Current Work

- Temperature/Stress Fields near Growth Front
- Effects of Lateral Temperature Gradients

PRECEDING PAGE BLANK NOT FILMED

Dependence of σ_V at Interface on A/B; w = 1.35 cm

Stress Fields at Growth Front

Model Representation

$$T(x) = \frac{A}{B^2} \exp(-Bx) + C + D$$

$$T^{-}(x) = A \exp(-Bx)$$

$$T'(0) = -\frac{A}{B} + C$$

Results:

Stress fields depend on A and B but \underline{not} on C and D

Lateral Temperature Variation

With Dr. R. F. Sekerka

Causes:

- 1. Variation in thermal environment across width of web
- 2. Variation in cross section across width of web

Modeling Representation

T(x,y) = T(x) g(y)

where

$$T(x) = \frac{A}{B^2} \exp(-Bx) + Cx + D$$

and

$$g(y) = \frac{1 + c_n(y/w)^n}{1 + c_n/(n+1)}$$

where w = ribbon half width

c > 0 concave upward (smiling)

c_< 0 concave downward (frowning)

n = 2 quadratic case

n = 4 quartic case

ORIGINAL PAGE IN SILICON SHEET

Interface Shape for Curved Isotherms

SILICON SHEET

SILICON SHEET

Lateral Temperature Variation: Summary

"Frowning" Isotherms:

- Inhibit buckling
- Should not affect residual stresses

The J460L configuration has been modified to produce more frowning" isotherms in the web