Reliable ML

Dmitry Kolodezev & Irina Goloshchapova

CONTENTS

I	Введение	3
1	Концепция Reliable ML	5
II	Reliable ML: бизнес	7
2	Выбор МL-проекта	9
3	ML System Design 3.1 What is MyST?	11 11
4	Разработка прототипа 4.1 What is MyST?	13
5	Пилотирование и оценка эффекта 5.1 What is MyST?	15
6	Внедрение решения 6.1 What is MyST?	1 7 17
7	Мониторинг модельного риска 7.1 What is MyST?	19 19
III	I Reliable ML: техника	21
8	Объяснимое машинное обучение	23
9	Causal Inference in ML 9.1 What is MyST?	25 25
10	MLOps 10.1 What is MyST?	27 27
11	Data Centric AI	29
IV	ReliableML: тренды	31
12	Тренд Номер Один 12.1 What is MyST?	33

V	Приложения	35
	Шаблон дизайн-документа 13.1 What is MyST?	37 37
14	Литература	39
Bi	bliography	41

Концепция Reliable ML рассказывает о том, что делать, чтобы результат работы data команд был, во-первых, применим в бизнес-процессах компании-заказчика, а, во-вторых, приносил этой компании пользу.

Для этого нужно уметь: правильно собрать портфель проектов, продумать дизайн системы каждого проекта, преодолеть разные трудности при разработке прототипа, создать заслуживающий боевого тестирования MVP, провести пилотный эксперимент, внедрить ваше решение в бизнес-процессы, настроить мониторинг решения в проде.

В книге авторы делятся фреймворком работы с ML-проектами, основанном на широкой практике разработки и внедрения ML-решений в бизнес, приносящих крупную прибыль, несмотря на множество набитых шишек.

- Введение
 - Концепция Reliable ML
- Reliable ML: бизнес
 - Выбор ML-проекта
 - ML System Design
 - Разработка прототипа
 - Пилотирование и оценка эффекта
 - Внедрение решения
 - Мониторинг модельного риска
- Reliable ML: техника
 - Объяснимое машинное обучение
 - Causal Inference in ML
 - MLOps
 - Data Centric AI
- ReliableML: тренды
 - Тренд Номер Один
- Приложения
 - Шаблон дизайн-документа
 - Литература

CONTENTS 1

2 CONTENTS

Part I

Введение

CHAPTER	
ONE	

КОНЦЕПЦИЯ RELIABLE ML

Удачные и неудачные ML-проекты и где они обитают. О том, как появилась концепция Reliable ML.

Part II

Reliable ML: бизнес

TWO

ВЫБОР ML-ПРОЕКТА

Как выбрать направление работы, которое будет наиболее полезно компании.

Правильно собрать портфель проектов.

Идентифицировать стейкхолдеров?

Роли в команде.

THREE

ML SYSTEM DESIGN

Whether you write your book's content in Jupyter Notebooks (.ipynb) or in regular markdown files (.md), you'll write in the same flavor of markdown called **MyST Markdown**. This is a simple file to help you get started and show off some syntax.

3.1 What is MyST?

FOUR

РАЗРАБОТКА ПРОТОТИПА

Whether you write your book's content in Jupyter Notebooks (.ipynb) or in regular markdown files (.md), you'll write in the same flavor of markdown called **MyST Markdown**. This is a simple file to help you get started and show off some syntax.

4.1 What is MyST?

FIVE

ПИЛОТИРОВАНИЕ И ОЦЕНКА ЭФФЕКТА

Whether you write your book's content in Jupyter Notebooks (.ipynb) or in regular markdown files (.md), you'll write in the same flavor of markdown called **MyST Markdown**. This is a simple file to help you get started and show off some syntax.

5.1 What is MyST?

SIX

ВНЕДРЕНИЕ РЕШЕНИЯ

Whether you write your book's content in Jupyter Notebooks (.ipynb) or in regular markdown files (.md), you'll write in the same flavor of markdown called **MyST Markdown**. This is a simple file to help you get started and show off some syntax.

6.1 What is MyST?

SEVEN

МОНИТОРИНГ МОДЕЛЬНОГО РИСКА

Whether you write your book's content in Jupyter Notebooks (.ipynb) or in regular markdown files (.md), you'll write in the same flavor of markdown called **MyST Markdown**. This is a simple file to help you get started and show off some syntax.

7.1 What is MyST?

Part III

Reliable ML: техника

EIGHT

ОБЪЯСНИМОЕ МАШИННОЕ ОБУЧЕНИЕ

Разрабатывая и внедряя ML-модели, мы фактически перепоручаем алгоритмам приняние решений. Нам нужно объяснять принятые решения другим участникам бизнес-процесса. Нам нужно контролировать качество принятых решения, а для этого хорошо бы понимать - как они были приняты. И - нам нужно разбираться с ошибками, работать над качеством моделей, данных и процессов.

eXplainable AI (XAI) - набор подходов и библиотек, позволяющих объяснять предсказания моделей машинного обучения и исследовать то, как они принимают решения. Иногда разделяют Explaination - т.е. объяснение процесса принятия решения, и Interpretation - аттрибутирование принятого решения входными признаками. Разницу можно понять на следующем примере:

Нейронная сеть - функция, вычислимая через последовательные матричные преобразования входных данных, и в этом смысле она полностью объяснима - мы можем проследить путь от входного признака до результата, но таких преобразований слишком много, они "не уместятся в голове" пользователей. С другой стороны, интерпретация может звучать как "эта нейронная сеть определяет пол взрослых животных по их окраске, а детенышей она различает по силуэту" - что будет, скорее всего, очень вольным описанием происходящего - зато понятным для пользователя.

Инструменты XAI постоянно развиваются. За подробным описанием мы отсылаем читателя к книге Кристофа Мольнара [Mol22]. Здесь мы хотели бы остановиться на некоторых основополагающих подходах, которые полезно понимать и использовать.

NINE

CAUSAL INFERENCE IN ML

Whether you write your book's content in Jupyter Notebooks (.ipynb) or in regular markdown files (.md), you'll write in the same flavor of markdown called **MyST Markdown**. This is a simple file to help you get started and show off some syntax.

9.1 What is MyST?

TEN

MLOPS

Whether you write your book's content in Jupyter Notebooks (.ipynb) or in regular markdown files (.md), you'll write in the same flavor of markdown called **MyST Markdown**. This is a simple file to help you get started and show off some syntax.

10.1 What is MyST?

DATA CENTRIC AI

Датацентричный подход (Data Centric AI) - набор подходов и техник, позволяющий улучшить набор данных, на котором учится наша модель. Часто работа над качеством данных - самый надежный путь для улучшения качества ML-модели.

Алгоритмы для поиска и исправления типичных проблем в данных, в основном в данных для обучения с учителем.

Классический подход Model Centric AI концентрируется на том, чтобы подобрать лучшую модель для имеющегося датасета, используя разные типы моделей (нейронные сети, решающие деревья и т.д.), техники (регуляризация, оптимизаторы функции потерь), техники подбора гиперпараметров и ансамблирование моделей. Все это делается исходя из предположения, что данные для обучения фиксированы и повлиять на них нельзя.

В реальных приложениях данные чаще всего не фиксированы - мы можем модифицировать датасет, собирать дополнительные данные, перепроверять разметку и исключать данные, вносящие шум.

Данные в реальных проектах часто грязные, и содержат столько проблем, что улучшение набора данных обычно - обязательный шаг на пути к хорошей модели. Как часто говорят, мусор на входе - мусор на выходе.

Data Centric AI - систематический подход к работе с данными для того, чтобы модели на них обучались лучше.

Два основных подхода:

- 1) Алгоритмы, анализирующие данные и использующие эту информацию для улучшения модели. Например, Curriculum Learning обучение модели сначала на простых данных, а потом на сложных.
- 2) Алгоритмы, модифицирующие данные для того, чтобы улучшить модель. Confident Learning пример такого подхода, в котором модель учится на данных, из которых удалены ошибочно размеченные данные.

Определение "легких для обучения" и ошибочно размеченных данных выполняется автоматическм с помощью алгоритма, анализирующего работу обученной ML - модели.

Задача Model Centric AI - построить наилучшую модель для имеющегося датасета. Задача Data Centric AI - систематически и алгоритмически улучшать датасет, чтобы сделать его более полезным для модели. Для получения хорошего результата нужно сочетать оба подхода.

Например, процесс построения ML-модели может выглядеть так:

- 1. Проводим разведочный анализ данных (Exploratory Data Analysis). Исправляем основые проблемы данных. Преобразуем их в формат, удобный для моделирования.
- 2. Обучаем черновую (baseline) версию модели.
- 3. Используя модель, улучшаем набор данных.
- 4. Обучаем модель на улучшенном датасете. При необходимости возвращаемся на шаг 3 и пробуем сделать данные еще лучше.

Пример техник, используемых в датацентричном подходе:

Reliable ML

- Детектирование и исключение аномалий
- Выявление и коррекция ошибок разметки
- Поиск консенсуса в разметке, полученной из разных источников
- Аугментация данных (добавление данных в модель на основе априорного знания о природе данных)
- Генерация и отбор признаков
- Активное обучение выбор наиболее информативных данных для доразметки
- Cirriculum Learning упорядочивание примеров для обучения от простого к сложному

Надежность ML-модели в значительной степени зависит от качества данных, на которых она обучалась.

Part IV

ReliableML: тренды

TWELVE

ТРЕНД НОМЕР ОДИН

Whether you write your book's content in Jupyter Notebooks (.ipynb) or in regular markdown files (.md), you'll write in the same flavor of markdown called **MyST Markdown**. This is a simple file to help you get started and show off some syntax.

12.1 What is MyST?

Part V

Приложения

THIRTEEN

ШАБЛОН ДИЗАЙН-ДОКУМЕНТА

Whether you write your book's content in Jupyter Notebooks (.ipynb) or in regular markdown files (.md), you'll write in the same flavor of markdown called **MyST Markdown**. This is a simple file to help you get started and show off some syntax.

13.1 What is MyST?

CHAPTER FOURTEEN

ЛИТЕРАТУРА

BIBLIOGRAPHY

[Mol22] Christoph Molnar. *Interpretable Machine Learning*. 2 edition, 2022. URL: https://christophm.github.io/interpretable-ml-book.