# 스마트시스텝입문

2018년 1학기

# **Summary of previous lecture**

#### Definition of "Smart systems"

•Smart systems are independent intelligent technical systems which collect information over sensors, make decisions based on this information, and act upon it accordingly.

#### Objective of the course

•This course introduces basic principles of smart systems and students learn how to design and implement smart systems for IoT services using Arduino as a platform.

## What is Smart Systems?

- •Smart systems are independent intelligent technical systems which collect information over sensors, make decisions based on this information, and act upon it accordingly.
- They can also be defined in different ways.
- We will focus on the smart systems based on IoT technology

"Any device that is **connected** is smart. Any device that is not connected is dumb. In the future, everything's going to be smart."

(The Silent Intelligence)

#### **Smart Home**



http://www.dt.co.kr/contents.html?article\_no=2017101702109923811011

**Smart home (home automation)**: the control and automation of lighting, heating, ventilation, air conditioning, and security (such as smart locks), as well as home appliances such as washer/dryers, ovens or refrigerators/freezers

# 사물 인터넷, Internet of Things (IoT)

- •IoT is the inter-networking of physical devices or things embedded with electronics, software, sensors, actuators, and network connectivity that enable these objects to collect and exchange data (Wikipedia).
- •인간과 사물, 서비스 세 가지 분산된 환경 요소에 대해 인간의 명시적 개입 없이 상호 협력적으로 센싱, 네트워킹, 정보 처리 등 지능적 관계를 형성하는 사물 공간 연결망 (민경식, NET Term, 한국인터넷진흥원)



### **Examples of IoT technology**

- Remote monitoring of industrial machinery
- Wearable electronics: emergency response, Alzheimer's
- Smart electric meters: thermostat
- RFID
- Connected cars: navigate traffic, insurance rate
- Small tracking devices for children, pets, cargos...

#### Has anyone used one of these examples?

D. Kellmereit and D. Obodovski, "The Silent Intelligence - The Internet of Things"

## **Examples of IoT technology**

Real-life examples

Spend 10 min to find IoT products in the market.

This can be the first article topic of the presentation.

Which product would you want to buy?

## **Examples of IoT technology**

#### Real-life examples



#### **Nest Learning Thermostat**

Remote control
Thermostat learn from our preferences
Energy saving

- It is cool but still expensive: ~ \$250
- Do you still want to use it?
- What is the benefits of IoT?
- Are there any reasons that you don't want to use besides the price?

#### Benefits and risks of the IoT

#### Benefits

- "Machine telepathy": utilize all the benefits of <u>digital & wireless</u> communication in connecting the analog world around us (e.g., machines, people, environments, etc)
- Fast speed, easy multiplication, easy integration
- Eliminate guess work: data-driven service (e.g., insurance)

#### Risks

- Privacy
- Cybersecurity
- Liability

D. Kellmereit and D. Obodovski, "The Silent Intelligence - The Internet of Things"

# **Ethical issues**



"Why Self-Driving Cars Must Be Programmed to Kill", MIT Tech Review

https://www.technologyreview.com/s/542626/why-self-driving-cars-must-be-programmed-to-kill/

# **IoT** is getting popular



### Predicting future: exponential growth

IoT is trending these days. Would you be able to predict it?



### **Growth of the IoT technology**

- Rapid growth of the IoT was based on...
  - The overall development of computing and telecommunication technology
  - Killer apps
    - Spreadsheet, word processor → PC
    - Voice communication → Phone
    - $??? \rightarrow$  Wearables
  - Critical mass of infrastructure
    - Long-term investments

## **Driving force of the IoT**

#### Miniaturization

- Smaller but more powerful (Moore's law)
- Power management
- Affordability
  - Cost (Moore's law)
- De-wireization
  - Wireless power
  - Power management

## **Driving force of the IoT**



- The first iPhone (2007)
- iPod + Phone + Internet
- At that time, each technology was widely used in general population
- iPhone is now available for everyone since it is small, not too expensive, and wireless
- "Once the necessary prerequisites are in place, the technology adoption that follows happens extremely fast" (The Silent Intelligence)

## Challenges in getting products to market

- Availability of networks and equipment, and cost
  - Price of cellular wireless module: \$1400 → \$20
  - Long-term investment on infrastructure for cellular and wireless communication
  - More pervasive networks and cheaper hardware have enabled new services
- Simplicity of use is required
- How much value you get by using new IoT services? Are they really useful?
  - Health
  - Safety
  - Saving money

#### **Summary**

- Definition of the IoT
- Examples of IoT services
- Benefits and Risks of the IoT
- Importance of killer apps and pre-installed infrastructure for exponential growth of technology
- Driving force of the IoT development
  - Miniaturization
  - Affordability
  - De-wireization

#### What is Arduino?

- 오픈소스를 기반으로 한 microcontroller로 완성된 보드와 관련 개발 도구 및 환경
- Arduino is an open-source electronics platform based on easy-to-use hardware and software.
- Arduino boards are able to read inputs light on a sensor, a finger on a button, or a Twitter message - and turn it into an output - activating a motor, turning on an LED, publishing something online.
- You can tell your board what to do by sending a set of instructions to the microcontroller on the board.
- To do so you use the Arduino programming language (based on Wiring), and the Arduino Software (IDE), based on Processing.

https://www.arduino.cc/en/Guide/Introduction

## Arduino vs. Raspberry Pi

• The biggest difference: **OS** 





- The Arduino
  - A microcontroller
  - Good for controlling small devices
  - Best used for projects like building a wake-up light, motion detector alarm, or a small robot.

## Arduino vs. Raspberry Pi

- Raspberry Pi
  - Fully functional computer with its own OS
  - Great at acting as a server
  - Communicate with other computers
- Raspberry Pi can be used as an independent computer which runs an OS



Supercomputer made from Pis

HTTP://WWW.ZDNET.COM/ARTICLE/BUILD-YOUR-OWN-SUPERCOMPUTER-OUT-OF-RASPBERRY-PI-BOARDS/

#### **Arduino Uno**

- ATmega328P
- 14 digital input/output pins (of which 6 can be used as PWM outputs),
- 6 analog inputs
- 16 MHz quartz crystal
- A USB connection
- A power jack
- An ICSP header and a reset button

https://store.arduino.cc/usa/arduino-uno-rev3

#### **Arduino Uno**



# **Arduino Uno**

| Microcontroller                               | ATmega328P                                            |  |  |  |
|-----------------------------------------------|-------------------------------------------------------|--|--|--|
| Operating Voltage                             | 5V                                                    |  |  |  |
| Input Voltage (recommended)                   | 7-12V                                                 |  |  |  |
| Input Voltage (limit)                         | 6-20V                                                 |  |  |  |
| Digital I/O Pins                              | 14 (of which 6 provide PWM output)                    |  |  |  |
| PWM Digital I/O Pins                          | 6                                                     |  |  |  |
| Analog Input Pins                             | 6                                                     |  |  |  |
| DC Current per I/O Pin                        | 20 mA                                                 |  |  |  |
| DC Current for 3.3V Pin                       | 50 mA                                                 |  |  |  |
| Flash Memory                                  | 32 KB (ATmega328P) of which 0.5 KB used by bootloader |  |  |  |
| SRAM                                          | 2 KB (ATmega328P)                                     |  |  |  |
| EEPROM                                        | 1 KB (ATmega328P)                                     |  |  |  |
| Clock Speed                                   | 16 MHz                                                |  |  |  |
| LED_BUILTIN                                   | 13                                                    |  |  |  |
| Length                                        | 68.6 mm                                               |  |  |  |
| Width                                         | 53.4 mm                                               |  |  |  |
| Weight                                        | 25 g                                                  |  |  |  |
| https://store.arduino.cc/usa/arduino-uno-rev3 |                                                       |  |  |  |

# **Various types of Arduino boards**



\$22.00 Arduino Uno Rev3



\$15.40 Arduino Mini 05



\$19.80 Arduino Micro



\$22.00 Arduino Nano



\$43.89 Arduino Esplora



\$38.50 Arduino Mega 2560 Rev3

### **Arduino projects**



https://www.hackster.i o/arduino/projects

https://maker.pro/proj
ects/arduino

#### 130+ Arduino Projects with Source Code, Schematics & Complete DIY ...

https://circuitdigest.com/arduino-projects ▼

Explore interesting arduino based projects and tutorials based on different types of arduino baords like Arduino Uno, Arduino Pro Mini, etc. These simple **arduino projects** are explained well and you can find the complete guide to DIY these projects with the help of circuit diagrams, source codes and videos.

#### Arduino Projects - Instructables

www.instructables.com > technology > arduino ▼

Sep 20, 2013 - **Arduino Projects**. The **Arduino** micrcontroller has a nearly limitless array of innovative applications for everything from robotics and lighting to games and gardening! It's a fun way to automate everything, enabling you to control simple devices or manage complex Halloween displays.

### **Arduino projects**

Alexa, Launch a Paper Plane

https://www.hackster.io/jonathanmv/alexa-launch-a-paper-plane-acf175

Arduino Uno-Based, Easy-to-Build Pet Feeder

https://www.hackster.io/edr1924/arduino-uno-based-easy-to-build-pet-feeder-86c1ef

#### <u>아두이노를 사용하는 이유와 아두이노의 역할은?</u>

### **Arduino projects**

#### 아두이노를 사용하는 이유와 아두이노의 역할은?

- Arduino boards are able to read inputs light on a sensor, a finger on a button, or a Twitter message - and turn it into an output - activating a motor, turning on an LED, publishing something online.
- You can tell your board what to do by sending a set of instructions to the microcontroller on the board.



http://doolox.com/p/0304/

모터를 전원과 바로 연결하는 경우와의 차이점은?

<u>모터의 제어가 가능</u> 제어를 위한 인터페이스 제공

### MCU, microcontroller unit

- ATmega328P
- MCU란?
  - PC를 소형화시켜 칩 하나에 제작한 형태
  - PC의 CPU를 사용하기 위해서는 메인보드, 비디오 카드, 램, 하드디스크, 파워 등의 주변장치들 필요하지만 MCU는 칩 그 자체 하나로 작동이 가능함.
  - 기본적인 작동을 위한 회로가 MCU 칩 안에 모두 구현되어 있음 (CPU, 내장메모리, 산술/논리회로, 입출력 인터페이스 등)
  - PC 만큼의 성능이 필요 없는 특수한 목적으로 제작되며 저가 생산, 저전력이 가능함.

#### Inside a Modern PC



Case
Motherboard
CPU
Fans
Heatsink
RAM
Opt. Drive
Hard Drive
Video Card
Other Exp. Cards
Cables



https://image.slidesharecdn.com/takecarecomputer-2012-05-24-120605111952-phpapp01/95/take-care-of-your-computer-part-5-how-to-work-on-your-own-pc-15-728.jpg?cb=1338895259

http://maxembedded.com/2011/06/mcu-vs-mpu/

### MCU, microcontroller unit



Inside a Modern PC



Motherboard

Fans

Heatsink

RAM

Opt. Drive

**Hard Drive** 

Video Card
Other Exp. Cards

Cables

https://image.slidesharecdn.com/takecarecomputer-2012-05-24-120605111952-phpapp01/95/take-care-of-your-computer-part-5-how-to-work-on-your-own-pc-15-728.jpg?cb=1338895259

모터 제어, LED 제어 등 제한적이고 특수한 목적이 있는 경우 MCU를 사용하면 간편하게 기능을 구현할 수 있다.

- •발표 주제: 스마트시스템 혹은 IoT 기술의 예
- •참고 문헌: DBPIA, IEEE Xplore, Google Scholar 등에서 검색 가능한 *논문***으로 제한 (학교에서 접속 가능)**
- •발표 시간: 10분
  - •핵심 기술에 대한 설명 포함
  - •기술의 장·단점은?
  - •보완 사항 제안
  - •수식, 이론 등을 모두 이해할 필요 없음
- •수업 시간 전까지 이러닝에 발표자료 제출
- •발표자: 4명 선발

인천대학교 님 개인화기능 이용 | 개인회원 가입 | 고객센

| 2   | N'USPIA                                                                                                                                                                                                                        | 본문포함 iot 형        | 텔스케어<br>간행물명     | 발행기관명 | 검색 | 상세검<br>다국어(       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|-------|----|-------------------|
|     | 주제 <del>분</del> 류                                                                                                                                                                                                              | 간행물               | 발행기관             | 저자    | 개  | 인 맞춤 <sup>#</sup> |
| _   | 패션 웨어러블 디바이스 개발 사례 연구 [kg 양진숙 씨, 김주연 씨 한국디자인문화학회, 한국디자인문화학회지 및 원문저장 │ 圓 PDFView 및 │ 및 Quic                                                                                                                                     | 21(2), 2015.6, 3  | Ser to Scott Zei |       |    |                   |
| _   | <ul> <li>★미디어 시대의 웨어러블 디바이스 사례분석 연구: 휴대형 디바이스를 중심으로 [KCI등재]</li> <li>양진숙 씨, 김주연 씨</li> <li>한국디자인문화학회, 한국디자인문화학회지 20(2), 2014.6, 354-364 (11 pages)</li> <li>원문저장   ■ PDF View №   QuickView   日 TextView №   V 상세보기</li> </ul> |                   |                  |       |    |                   |
|     | 사물인터넷 기반의 낙상 감지 시스템 [KCI원<br>정필성, 조양현 ♪<br>한국정보통신학회, 한국정보통신학회논문지<br>▶ 원문저장   ■ PDFView ■   □ Quic                                                                                                                              | 19(11), 2015.11   | 32               |       |    |                   |
| 100 | BLE 네트워크 상에서 사물인터넷 서비스 제<br>김철민, 강형우, 최상일 , 고석주<br>한국방송·미디어공학회, 방송공학회논문지<br>원문저장    PDFView  Quic                                                                                                                              | 21(3), 2016.5, 29 | 8-306 (9 pages)  |       |    |                   |



Journal of the Korea Institute of Information and Communication Engineering

한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 11: 2546~2553 Nov. 2015

#### 사물인터넷 기반의 낙상 감지 시스템

정필성<sup>1</sup> · 조양현<sup>2\*</sup>

#### Fall Detection System based Internet of Things

Pil-Seong Jeong1 · Yang-Hyun Cho2\*

<sup>1</sup>FNS Value Corporation, 358-25, Hosu-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea

<sup>2</sup>\*Division of Computer Science, Sahmyook University, Seoul 139-742, Korea

#### Ⅱ. 관련 이론

#### 2.1. 낙상 감지 기법

낙상을 감지하는 방법은 영상 정보를 분석하여 낙상 을 검출하는 방법과 센서 정보를 이용하여 낙상 감지 대상자의 움직임을 판별하여 낙상을 검출하는 방법으 로 분류될 수 있다. 영상 정보를 분석하는 방법은 감지 대상의 움직임과 넘어지는 모양을 분석하여 낙상 여부 를 판별하게 된다.

#### 3.1. 시스템 모델

본 논문에서 제안하는 낙상 감지 시스템 모델은 그림 1과 같다. 센서 모듈은 가속도 센서 모듈과 결합한 아두 이노 기반의 블루이노 센서 모듈로 이루어진다. 장기간



Fig. 1 System Model

정필성, 조양현, "사물인터넷 기반의 낙상 감지 시스템 "