Spectral Theorem

Keng-Yu Chen

June 9, 2025

Theorem (Spectral Theorem). Every real symmetric matrix can be diagonalized by an orthonormal basis.

We prove this theorem through the following steps.

In the following, we consider a finite n-dimensional vector space V and a real symmetric matrix A for a linear transformation T on V.

Theorem 1. Eigenvalues of real symmetric matrices are real.

Proof. Let A be a real symmetric matrix. For any eigenvector $v \in V$ of A with corresponding eigenvalue λ ,

$$\langle Av, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle$$

= $\langle v, A^*v \rangle = \langle v, Av \rangle = \langle v, \lambda v \rangle = \bar{\lambda} \langle v, v \rangle$

Therefore, $\lambda = \bar{\lambda}$, λ is real.

Note that if A is a real symmetric matrix, then its eigenvectors are also real since they are in the kernel of $A - \lambda I$ for some real λ .

П

Theorem 2. Eigenvectors to distinct eigenvalues of real symmetric matrices are orthogonal

Proof. Let v, w be two eigenvectors of A, associated with real eigenvalues λ, μ .

$$\langle Av, w \rangle = \lambda \langle v, w \rangle$$

= $\langle v, A^*w \rangle = \langle v, Aw \rangle = \langle v, \mu w \rangle = \bar{\mu} \langle v, w \rangle$

Therefore, either $\lambda = \bar{\mu} = \mu$ or $\langle v, w \rangle = 0$.

Theorem 3. Let W be a T-invariant space in V, then its orthogonal complement W^{\perp} is also a T-invariant space.

Proof. For any $x \in W, y \in W^{\perp}$,

$$\langle x, Ay \rangle = \langle A^*x, y \rangle = \langle Ax, y \rangle = \lambda \langle x, y \rangle = 0,$$

which shows Ay also lies in W^{\perp} .

Note that this implies for any eigenvector v of a real symmetric A and $w \perp v$, $Aw \perp v$.

Now we can prove the spectral theorem.

Proof. We prove the theorem by induction. The case n=1 is trivial. For a general finite n-dimensional vector space V, by the fundamental theorem of algebra, there must exist a root of the characteristic polynomial, which is an eigenvalue. By Theorem 1, it is real, so we can find a 1-unit eigenvector v with a real eigenvalue λ .

Let $W = \operatorname{span}\{v\}$, W^{\perp} be the orthogonal complement of W. Since W^{\perp} is n-1-dimensional, by induction, we can find an orthonormal basis $\tilde{\mathcal{B}}$ for W^{\perp} . As W and W^{\perp} are both T-invariant, under the basis $\mathcal{B} = \{v\} \cup \tilde{\mathcal{B}}$, T corresponds to a block matrix,

$$A \sim \begin{bmatrix} \lambda & 0 \\ 0 & \tilde{A} \end{bmatrix},$$

¹The theorem and the proofs all hold for *self-adjoint* matrices, a more general class of complex matrices.

where \tilde{A} is the matrix representation of T under the basis \tilde{B} , restricted on the space W^{\perp} , and \tilde{A} is a diagonal matrix. Moreover, since W^{\perp} is the orthogonal complement of $W = \{v\}$, v is orthogonal to every vector in W^{\perp} , including all the basis vectors $\tilde{\mathcal{B}}$. Hence, \mathcal{B} is an orthonormal basis for V.

2