

Jashore University of Science and Technology

Department of Computer Science and Engineering

Course Name: Machine Learning with Python

Project Report on Used Car Price Predictor

Submitted by

Mahmudul Amin Shakil ID: 200106

Introduction:

The "Used Car Price Predictor" is a project aimed at helping users estimate the selling price of a used car based on its features. This tool utilizes machine learning and a user-friendly web interface to provide accurate predictions. The project involves the integration of several technologies including Flask for backend development, Bootstrap for UI design and Scikit-learn, Linear Regression for machine learning. The dataset for this model was curated from the Quikr website, which provides a rich source of used car data.

Features:

1. Web Interface:

A web application created using Flask.

Designed to allow users to input car details such as Company, Model,
 Year, Fuel Type and Number of kilometers that the car has travelled.

2. Responsive Design:

- The interface uses Bootstrap for a clean, responsive design.
- Ensures accessibility across different devices, including mobile phones and desktops.

3. Machine Learning Model:

Built using Scikit-learn.

 Linear Regression was chosen as the algorithm due to its simplicity and effectiveness in predicting numerical values.

```
lr=LinearRegression()

✓ 0.0s
```

4. Making a pipeline

```
pipe=make_pipeline(column_trans,lr)

v 0.0s
```

5. Fitting the model

```
pipe.fit(X_train,y_train)
✓ 0.1s
```

Implementation:

1. Dataset Creation:

 Data was collected and cleaned from the Quikr website, focusing on key attributes influencing used car prices.

 Steps included handling missing values, encoding categorical data, and normalizing numerical features.

2. Model Development:

- Linear Regression was implemented using Scikit-learn.
- The dataset was split into training and testing subsets (e.g., 80% training, 20% testing).

```
from sklearn.model selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)

[33] $\square$ 0.7s
```

Model evaluation metrics such as Mean Squared Error (MSE) and R-squared (R²) were used to assess performance.

3. Website Development:

- Flask served as the web framework for the backend.
- Routes were defined for home, input form submission, and displaying results.
- The trained model was loaded and used to generate price predictions based on user input.

4. Frontend Design:

- Bootstrap was utilized for a responsive and aesthetically pleasing user interface.
- Features included navigation bars, input forms and result display sections.
- Html, CSS was utilized for a responsive and aesthetically pleasing user interface.

```
<head xmlns="http://www.w3.org/1999/xhtml">
<body class="bg-dark">
    <div class="row"
       <h1>Welcome to Car Price Predictor</h1>
            <div class="card-body">
                  <h5>This app predicts the price of a car you want to sell. Try filling the details below: </h5>
               <form method="post" accept-charset="utf-8" name="Modelform">
                   <div class="col-md-10 form-group" style="text-align: center">
                       <label><b>Select the company:</b> </label><br>
                       <select class="selectpicker form-control" id="company" name="company" required="1"</pre>
                              onchange="load_car_models(this.id,'car_models')">
                           {% for company in companies %}
<option value="{{ company }}">{{ company }}</option>
                           {% endfor %}
                       <label><b>Select the model:</b> </label><br>
                       <select class="selectpicker form-control" id="car_models" name="car_models" required="1">
                   <div class="col-md-10 form-group" style="text-align: center">
                       <label><b>Select Year of Purchase:</b> </label><br>
                       <select class="selectpicker form-control" id="year" name="year" required="1">
                           {% for year in years %}
                           <option value="{{ year }}">{{ year }}</option>
                            {% endfor %}
```

Workflow:

1. User visits the website and inputs car details.

- 2. The input data is validated and sent to the Flask backend.
- **3.** Flask passes the data to the trained model for prediction.
- **4.** The predicted price is displayed on the website.

Predict Price

Prediction: BDT: 1473090.88

Results:

- The predictor demonstrated an R² score of approximately 0.85 on test data, indicating good performance.
- It provided reasonable price estimates for most input scenarios, highlighting the effectiveness of Linear Regression for this task.

Conclusion:

The "Used Car Price Predictor" is a practical application of machine learning that simplifies the process of estimating car prices. By integrating Flask, Bootstrap, Scikit-learn and Linear Regression, the project effectively demonstrates how technology can be leveraged to create user-friendly and functional tools. Future enhancements can further refine its accuracy and scalability.