CS 480 – Introduction to Artificial Intelligence

TOPIC: INTRODUCTION

CHAPTER: 1

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

AI is Everywhere Now

EMAIL FILTERING

SEARCH ENGINES

RECOMMENDER SYSTEMS

The Green Mile

Because you enjoyed:

The Shawshank

Redemption: Special

Edition

Forrest Gump

Rain Man

FACE DETECTION & RECOGNITION

MEDICAL DIAGNOSIS

Intelligent Personal Assistants

IMAGE RECOGNITION + TRANSLATION

SELF-DRIVING CARS

... and of course Games!

KASPAROV VS DEEP BLUE –1997

IBM WATSON – JEOPARDY – 2011

GOOGLE DEEPMIND - GO - 2016

CMU - Poker - 2017

So, What is Artificial Intelligence?

- First, what is "intelligence"?
- Let's ask Google

WHAT IS AI?

- https://www.lexico.com/en/definition/artificial_intelligence
 - "The theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages."
- https://www.merriam-webster.com/dictionary/artificial%20intelligence
 - "a branch of computer science dealing with the simulation of intelligent behavior in computers"
 - "the capability of a machine to imitate intelligent human behavior"
- https://www.britannica.com/technology/artificial-intelligence
 - "the ability of a digital computer or computer-controlled robot to perform tasks commonly associated with intelligent beings."
- https://en.wikipedia.org/wiki/Artificial_intelligence
 - "is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans and animals"

• Calculators?

• Search engines?

• Trees?

• Ants?

This Photo by Unknown Author is licensed under CC BY

• Human babies?

INTELLIGENCE AND

- Consciousness
- Emotions
- Kindness
- Sense of humor
- Tell right from wrong
- Love
- Creativity
- Learning

A GREAT READ

- Turing, A. (1950). Computing machinery and intelligence. *Mind*, 59, 433-460.
- Next week's discussion will be about this paper

CAN MACHINES THINK?

"The question of whether machines can think ... is about as relevant as the question of whether submarines can swim."

Edsger Dijkstra (1984)

THE AI EFFECT

- "Every time we figure out a piece of it, it stops being magical; we say, 'Oh, that's just a computation."
- "AI is whatever hasn't been done yet."

HUMANLY VS. RATIONALLY & THINKING VS. ACTING

Humanly Rationally

Think

Act

Thinking humanly	Thinking rationally
Acting humanly	Acting rationally

ACTING HUMANLY – THE TURING TEST

- The imitation game
 - An operational test

- The AI system needs to have:
 - Natural language processing
 - Knowledge representation
 - Automated reasoning
 - Machine learning

THINKING HUMANLY - COGNITIVE MODELING

- Need to know how humans think
 - Introspection
 - Psychological experiments
 - Brain imaging
- Cognitive science
 - Based on experimental investigation of humans and animals

THINKING RATIONALLY – LAWS OF THOUGHT

- Codify "right thinking"
 - Aristotle

Logic

- "Socrates is a man; all men are mortal; therefore, Socrates is mortal"
- Two main challenges
 - It is hard to encode esp. uncertain knowledge in formal logic
 - Can be computationally very demanding, unless it is provided some guidance

ACTING RATIONALLY

- A **rational agent** is an agent that acts so as to achieve the best outcome, or when there is uncertainty, the best expected outcome.
- Two advantages
 - More general than thinking rationally, because acting rationally requires thinking rationally
 - More amenable to scientific development than the approaches based on human

THIS COURSE

	Humanly	Rationally
Think	Thinking humanly	Thinking rationally
Act	Acting humanly	Acting rationally

Weak vs Strong AI

- Weak AI (Narrow AI)
 - Build AI systems that are really good at one task
 - Most, if not all, of the current systems
- Strong AI (Artificial General Intelligence)
 - Build AI systems that are generally intelligent
 - Challenge: the whole is greater than the sum of its parts

THE FOUNDATIONS - I

- Philosophy
 - Logic, induction, rationalism, empiricism
- Mathematics
 - Probability, statistics
- Computing
 - Algorithms, data
- Engineering
 - Chips, sensors, robotics

THE FOUNDATIONS - II

- Economics
 - Utility, decision theory, game theory
- Neuroscience
 - The study of the brain
- Psychology
 - Behaviorism, cognitive psychology, how humans and animals think and act
- Linguistics
 - Grammar, syntax, how language relates to thinking

SUBFIELDS OF AI

- 1. Communication and Perception
 - Language, speech, vision, robotics
- 2. Knowledge representation and reasoning
 - Logic, probability, planning, decision making
- 3. Learning
 - Machine learning
- 4. Problem solving
 - Search, constraint satisfaction, game playing

AI vs ML vs DL

- A common misconception
 - AI = Machine Learning = Deep Learning
- Reality
 - Deep Learning ⊂ Machine Learning ⊂ AI

MACHINE LEARNING

Developing programs that improve their <u>performance</u> through <u>experience</u> at a given <u>task</u> *Tom Mitchell, Machine Learning*

A FEW ML EXAMPLES

- Face recognition
- Speech recognition
- Game playing
- Medical diagnosis
- Scientific data analysis
- Behavior analysis
- Product recommendations
- Ad placements
- Personalization
- Credit scoring
- Fraud detection

O ...

HISTORY - I

- o Gestation:1943 − 1955
 - Based on:
 - Physiology and function of the neurons in the brain
 - Formal analysis of propositional logic
 - Theory of computation
 - First neural network computer 1950
 - Turing test 1950
- o Birth: 1956
 - Darthmouth workshop: the term AI was coined
 - Logic Theorist was able to prove most theorems in Chapter 2 of *Principia Mathematica*

HISTORY - II

- Early enthusiasm: 1950s 1960s
 - General Problem Solver (GPS) imitate human problemsolving protocols – thinking humanly approach
 - Geometry Theorem Prover was able to prove theorems that many math students found to be tricky
 - Checkers the program that learned to play checkers using reinforcement learning disproved the idea that the computers can do only what they are told to do
 - Lisp the dominant AI programming language for about 30 years
 - Many microworlds limited domains
 - SAINT solved closed-form calculus integration problems
 - ANALOGY solved geometric analogy problems that appear in IQ tests
 - STUDENT solved algebra story problems
 - Perceptron convergence theorem

HISTORY - III

- \circ A dose of reality: 1960s 1970s
 - There were several predictions that did not come to pass
 - Merely syntactic manipulations
 - "The spirit is willing but the flesh is weak" => "The vodka is good but the meat is rotten"
 - Intractability
 - Tried many possible combinations till worked
 - Worked initially because microworlds contained very few objects and actions
 - Representation limitations of perceptrons
 - Almost killed the neural net research until 80s

HISTORY - IV

- o Knowledge-based systems: 1970s − 1980s
 - Narrow areas of expertise with domain knowledge integration
 - DENDRAL inferred molecular structure
 - Integrated domain knowledge to guide and limit the search
 - MYCIN diagnosed blood infections
 - Was better than junior doctors
 - Was able to handle uncertain knowledge
 - Developments in knowledge representation

HISTORY - V

- Return of neural networks: 1980s present
 - Rediscovery of the backpropagation algorithm
- Probabilistic reasoning: 1980s present
 - Hidden Markov Models, Bayesian networks, ...
- Big data: 2000s present
 - World Wide Web, ...
- Deep learning: 2010s present
 - Neural networks with multiple layers

THE STATE OF THE ART

- Whatever I put in this slide has the potential to become stale in a few years
- Check out aiindex.org
- AI has met or exceeded human benchmarks on
 - Chess, Go, Poker, Pac-Man, Jeopardy, ImageNet object detection, speech recognition in limited domains, Chinese to English translation in limited domains, Quake III, Dota 2, Starcraft II, various Atari games, skin cancer detection, prostate cancer detection, protein folding, and diabetic retinopathy diagnosis

AI WINTER(S)?

1966

• National Research Council report: "machine translation was more expensive, less accurate and slower than human translation"

1969

• "Perceptrons" book; showed the limits of perceptrons, the building blocks of neural networks

o 1970s

- The Lighthill report at UK; the problem of combinatorial explosion and intractability
- Amendment to DARPA's funding; required "mission-oriented" research rather than "basic" research

1987

- The beginning of the collapse of the LISP machine and expert systems
- o 2020s

WHAT IS NEW?

- 1. Data
 - We generate **so** much data
 - We can and do store all of it
- 2. Computing power
 - Moore's law: "the number of transistors in a integrated dense circuit doubles about every two years"
 - GPU computation

DATA NEVER SLEEPS 6.0

How much data is generated every minute?

There's no way around it: big data just keeps getting bigger. The number's are staggering, but they're not slowing down. By 2020, it's estimated that for every person on earth, 1.7 MB of data will be created every second. In our 6th edition of Data Never Sleeps, we once again take a look at how much data is being created all around us every single minute of the day—and we have a feeling things are just getting stareted.

DATA NEVER SLEEPS 7.0

DATA NEVER SLEEPS 8.0

How much data is generated every minute

In 2000, the world changed fundamentally—and so did the data that makes the world go round. As COVID-19 swept the globe, nearly sery aspect of life-from work to working out—moved online, and people depended more and more on apps and the Internet to socialize, educate and entertain ourselves. Before quarantine, just 15% of Americans worked from home. Now over half do. And that's not the only big shift. In our 8th edition of Data Never Sleeps, we bring you th latest stats on how much data to being created in every digital minute—a trend that shows no sign of stopped.

GLOBAL INTERNET POPULATION GROWTH 2014–2020

Learn more at domo.com

URCES: STATISTA, VISUAL CAPITALIST, BUSINESS INSIDER, GAMESPOT, TECHCIUNCH, OMNICORE AGENCY, DOORDASH, BUSINESS OF APPS, NEW YIRDE TIMES, MERCH BUSINESS WIRDE INAMER INC. THE URBOS INC. HICKSTEFF DESTIN STOLET BEFORE THE AMAZONI VICE

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Our World in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

RISKS AND BENEFITS

- AI is a tool
- Benefits
 - Solve challenging problems (diseases, climate change, resource shortages, ...)
- Risks
 - Lethal autonomous weapons
 - Surveillance
 - Manipulation
 - Biased decision making (race, gender, religion, ...)
 - Unemployment
 - Safety (driving cars)
 - Cybersecurity
 - ...

Rest of the semester - I

- Intelligent agents Chapter 2
 - Environment, performance, agent programs
- Search Chapter 3, 5, & 6
 - Problem solving through uninformed and informed search
 - Game playing
 - Constraint satisfaction

REST OF THE SEMESTER - II

- Knowledge representation and reasoning Chapters 7, 8, & 9
 - Propositional logic
 - First-order logic
 - Resolution algorithm

REST OF THE SEMESTER - III

- Uncertainty and Probabilistic Reasoning –
 Chapter 13
 - Probability theory
 - Bayesian networks
- o Decision making Chapters 16, 17
 - Utility theory
 - Value of information

REST OF THE SEMESTER - IV

- Learning Chapters 19, 20, 21, 22
 - Supervised learning
 - Decision trees
 - Naïve Bayes
 - Logistic regression
 - Neural networks
 - Deep learning
 - Reinforcement learning

Rest of the semester - V

- Ethics Chapter 27
- Future? Chapter 28