This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 1 076 094 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 14.02.2001 Bulletin 2001/07 (51) Int. Cl.7: C12N 15/74

(21) Application number: 00117225.3

(22) Date of filing: 11.08.2000

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 12.08.1999 JP 22839199

(71) Applicant: Ajinomoto Co., Inc. Tokyo 104 (JP)

(72) Inventors:

Matsuzaki, Yumi,
 c/o Ajinimoto Co., Inc.
 Kawasaki-shi, Kanagawa (JP)

 Kimura, Eiichiro, c/o Ajinimoto Co., Inc. Kawasaki-shi, Kanagawa (JP) Nakamatsu, Tsuyoshi,
 c/o Ajinimoto Co., Inc.
 Kawasaki-shi, Kanagawa (JP)

Kurahashi, Osamu,
 c/o Ajinimoto Co., Inc.
 Kawasaki-shi, Kanagawa (JP)

Kawahara, Yoshio,
 c/o Ajinimoto Co., Inc.
 Kawasaki-shi, Kanagawa (JP)

Sugimoto, Shinichi,
 c/o Ajinimoto Co., Inc.
 Kawasaki-shi, Kanagawa (JP)

(74) Representative: HOFFMANN - EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE)

(54) Plasmid capable of autonomous replication in coryneform bacteria

(57) A plasmid isolable from *Corynebacterium* thermoaminogenes, which comprises a gene coding for a Rep protein having the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having homology of 90% or more to the amino acid sequence shown in SEQ ID NO: 2, and has a size of about 4.4 kb or about 6 kb, or a derivative thereof.

Description

BACKGROUND OF THE INVENTION

The present invention relates to a novel plasmid derived from Corynebacterium thermoaminogenes. The plasmid of the present invention can be utilized for improving of coryneform bacteria, which are used as bacteria for producing useful substances such as L-amino acids.

Amino acids including L-glutamic acid and L-lysine are produced by fermentative methods using the socalled coryneform bacteria, which generally belong to the genus Brevibacterium, Corynebacterium or Microbacterium, or variant strains thereof (Amino Acid Fermentation, Gakkai Shuppan Center, pp.195-215, 1986).

In the industrial fermentative production of amino acids, besides improvement in yield relative to saccharides, shortening of culture time, improvement in amino acid accumulation concentration and so forth, use of an elevated culture temperature is considered important as a technical factor that raises economical efficiency. That is, culture is usually performed at optimum fermentation temperature, and the optimum temperature is 31.5°C for Corynebacterium glutamicum. After the culture is started, heat is generated during the fermentation, and hence amino acid production is markedly reduced if this heat output is not removed. Therefore, cooling equipment is required in order to maintain the temperature of the culture broth to be optimum. On the other hand, if the culture temperature can be elevated, it becomes possible to decrease energy required for cooling and the cooling equipment can be made small.

Among coryneform bacteria, Corynebacterium thermoaminogenes has been isolated as a coryneform bacterium that can grow in a high temperature region (Japanese Patent Application Laid-open (Kokai) No. 63-240779). Whereas growth of Corynebacterium glutamicum is markedly suppressed at 40°C, Corynebacterium thermoaminogenes can grow at a temperature of about 40°C or higher, and is considered to be suitable for high temperature fermen-

Currently, improving relying on DNA recombination techniques is progressing in Escherichia coli or coryneform bacteria. In order to improve microorganisms by DNA recombination techniques, even plasmids derived from microorganisms belonging to another species or genus or broad host spectrum vectors are often used. However, plasmids proper to objective microorganisms of improving are generally used. In particular, when optimum culture temperature for the objective microorganism of the improving is different from that of microorganisms of the same species or genus, it is preferable to use a plasmid proper to the microorganism.

So far obtained as plasmids derived from coryneform bacteria are pAM330 from Brevibacterium lactofermentum ATCC13869 (Japanese Patent Application Laid-open (Kokai) No. 58-67669), pBL1 from Brevibacte-[0006] rium lactofermentum ATCC21798 (Santamaria. R. et al., J. Gen. Microbiol., 130, pp.2237-2246, 1984), pHM1519 from Corynebacterium glutamicum ATCC13058 (Japanese Patent Application Laid-open (Kokai) No. 58-77895), pCG1 from Corynebacterium glutamicum ATCC31808 (Japanese Patent Application Laid-open (Kokai) No. 57-134500) and pGA1 from Corynebacterium glutamicum DSM58 (Japanese Patent Application Laid-open (Kokai) No. 9-2603011).

However, no plasmid proper to Corynebacterium thermoaminogenes has obtained at present.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a plasmid useful for improving of the coryneform bacterium [8000] that can grow at an elevated temperature, Corynebacterium thermoaminogenes.

The inventors of the present invention found that Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539), AJ12308 (FERM BP-1540), AJ12309 (FERM BP-1541) and AJ12310 (FERM BP-1542) each harbored a cryptic plasmid proper to each strain, and successfully isolated and identified each plasmid. Thus, they accomplished

That is, the present invention provides a plasmid isolable from Corynebacterium thermoaminogenes, which 45 the present invention. comprises a gene (rep gene) coding for a Rep protein having the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having homology of 90% or more to the foregoing amino acid sequence, and has a size of about 4.4 kb or about 6 kb, or a derivative thereof.

Examples of the aforementioned plasmid include a plasmid isolable from Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539), AJ12308 (FERM BP-1540) or AJ12310 (FERM BP-1542), which has a size of about 4.4 kb and is represented by the restriction map shown in Fig. 1, and a plasmid isolable from Corynebacterium thermoaminogenes AJ12309 (FERM BP-1541), which has a size of about 6 kb and is represented by the restriction map shown in Fig. 2.

Specific examples of the aforementioned plasmid include a plasmid which comprises a gene coding for a Rep protein having the amino acid sequence shown in SEQ ID NO: 2, 4 or 6, and a plasmid which comprises a gene [0012] coding for a Rep protein having the amino acid sequence shown in SEQ ID NO: 8.

BRIEF EXPLANATION OF THE DRAWINGS

[0013]

5

Fig. 1 is a restriction map of the plasmids pYM1, pYM2 and pYM3 of the present invention.

Fig. 2 is a restriction map of the plasmid pYM4 of the present invention.

Fig. 3 shows construction of pYMFK.

Fig. 4 shows construction of pYMK.

Fig. 5 shows construction of pYMC.

10 Fig. 6 shows construction of pK1.

DETAILED DESCRIPTION OF THE INVENTION

[0014] The plasmid of the present invention can be isolated form *Corynebacterium thermoaminogenes* AJ12340 (FERM BP-1539), AJ12308 (FERM BP-1540), AJ12309 (FERM BP-1541) or AJ12310 (FERM BP-1542) according to a usual method for preparing a plasmid such as the alkali method (Text for Bioengineering Experiments, Edited by the Society for Bioscience and Bioengineering, Japan, p.105, Baifukan, 1992). As for FERM BP-1539, its original deposition, which was deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology (postal code 305-8566, 1-3 Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) on March 13, 1987 and given an accession number of FERM P-9277, was transferred to an international deposition under the provisions of the . Budapest Treaty on October 27, 1987 and has been deposited at the same depository. As for FERM BP-1540, FERM BP-1541 and FERM BP-1542, their original depositions, which were deposited at the aforementioned depository on March 10, 1987 and given accession numbers of FERM P-9244, FERM P-9245 and FERM P-9246, were transferred to international depositions under the provisions of the Budapest Treaty on October 27, 1987 and have been deposited at the same depository.

[0015] The Inventors of the present invention isolated and identified plasmids each proper to each of the aforementioned *Corynebacterium thermoaminogenes* AJ12308 (FERM BP-1540), AJ12310 (FERM BP-1542), AJ12340 (FERM BP-1539) and AJ12309 (FERM BP-1541) from them, and designated as pYM1, pYM2, pYM3 and pYM4 in that order. These plasmids are plasmids that exist as double-stranded circular DNA in a cell of *Corynebacterium thermoaminogenes*. The nucleotide sequence of the *rep* gene contained in pYM1 is shown in SEQ ID NO: 1, the nucleotide sequence of the rep gene contained in pYM2 is shown in SEQ ID NO: 3, the nucleotide sequence of the rep gene contained in pYM4 is shown in SEQ ID NO: 7. The amino acid sequences that can be encoded by the *rep* genes contained in these plasmids are shown in SEQ ID NOS: 2, 4, 6 and 8. pYM1, pYM2 and pYM3 each have a size of about 4.4 kb. pYM4 has a size of about 6 kb.

[0016] Numbers and sizes of fragments that can be obtained when pYM1, pYM2 and pYM3 are digested with typical restriction enzymes are shown in Table 1. Numbers and sizes of fragments that can be obtained when pYM4 is digested with typical restriction enzymes are shown in Table 2. Further, a restriction map of pYM1, pYM2 and pYM3 is shown in Fig. 1, and a restriction map of pYM4 is shown in Fig. 2.

Table 1

Restriction enzyme	Number of digestion site	DNA fragment (kb)
Bg/III	0	-
<i>Bam</i> HI	2	1.8, 2.6
BstPl -	1	4.4
E∞RI	1	4.4
Hincl	4	0.3, 0.5, 2.0, 1.6
HindIII	0	-
Kpnl	0	•
Nael	2	0.1, 4.3
Ncol	1	4.4
Nhel	2	1.8, 2.6

55

45

Table 1 (continued)

Restriction enzyme	Number of digestion site	DNA fragment (kb)
PmaC1	1	4.4
Sacl	0	-
Sall	0	-
Sacil	3	0.1, 1.4, 2.9
Smal	3	0.1, 1.8, 2.5
Sphl	0	-
Tth1111	1	4.4
Xbal	0	-

Table 2

Restriction enzyme	Number of digestion site	DNA fragment (kb)
<i>Bgl</i> II	1	6.0
BamHI	2	3.8, 2.2
BstPl	2	1.2, 4.8
<i>Eco</i> RI	1	6.0
Hincll	4	0.3, 0.4, 1.2, 1.7, 2.4
HindIII	0	-
Kpnl	0	-
Nael	2	0.1, 5.9
Ncol	3	0.2, 2.8, 3.0
Nhel	3	0.1, 2.3, 3.6
PmaCl	0	-
Sacl	0	-
Sall	0	-
Sacil	5	0.1, 0.2, 0.9, 1.8, 3.0
Smal	2	0.1, 5.9
Sphl	0	-
Tth1111	0	
Xbal	0	·

[0017] Determination of the nucleotide sequence of the plasmid of the present invention revealed that pYM1, pYM2, and pYM3 contained 4368 bp, 4369 bp and 4369 bp, respectively, and they had substantially the same structure and showed homology of 99.9% to one another on the nucleotide sequence level. Further, pYM4 contained 5967 bp and it showed extremely high homology to pYM1, pYM2 and pYM3 for the region of about 4.4 kb except for the region of about 1.6 kb, while it showed homology of about 81% to them as a whole.

[0018] The plasmids contain respective *rep* genes which show high homology to one another. Homology was compared for the amino acid sequences of the Rep proteins encoded by the *rep* genes (SEQ ID NOS: 2, 4, 6 and 8) and the amino acid sequences of the Rep proteins encoded by rep genes of known plasmids derived from coryneform bacteria. Homology of 99% or more was observed among pYM1, pYM2 and pYM3, and homology of 81.91% was observed

between pYM2 and pYM4. On the other hand, they showed no homology to the known plasmid pAM330 of a coryneform bacterium, and they showed homology of 80% or less to pGA1 and pCG1. The results are shown in Table 3. Thus, the plasmid of the present invention and the known plasmids of coryneform bacteria are distinguishable based on the homology of the Rep protein.

[0019] The homology is calculated according to the method described in Takashi, K. and Gotoh, O., J. Biochem., 92, 1173-1177 (1984).

Table 3

15

Homology of amino acid sequences of Rep protein encoded by various plasmids													
	PYM2	pYM4	pGA1	pCG1									
PYM2	-	81.91%	68.01%	70.73%									
PYM4	-	-	69.39%	70.23%									
PGA1	-	-	-	75.31%									
PCG1	-	-		-									

20

35

[0020] Since the plasmid of the present invention can sufficiently replicate in cells of coryneform bacteria including *Corynebacterium thermoaminogenes*, genetic information of a foreign gene can be expressed in a host microorganism by inserting the foreign gene at any site of the plasmid or the derivative thereof, and transforming the host microorganism with the obtained recombinant plasmid.

5 [0021] Examples of coryneform bacteria are listed below.

Corynebacterium acetoacidophilum

Corynebacterium acetoglutamicum

Corynebacterium callunae

30 Corynebacterium glutamicum

Corynebacterium thermoaminogenes

Corynebacterium lilium (Corynebacterium glutamicum)

Corynebacterium melassecola

Brevibacterium divaricatum (Corynebacterium glutamicum)

Brevibacterium lactofermentum (Corynebacterium glutamicum)

Brevibacterium saccharolyticum

Brevibacterium immariophilum

Brevibacterium roseum

Brevibacterium flavum (Corynebacterium glutamicum)

40 Brevibacterium thiogenitalis

[0022] A derivative of the plasmid of the present invention means a plasmid composed of a part of the plasmid of the present invention, or a part of the plasmid of the present invention or the plasmid of present invention and another DNA sequence. The part means a part containing a region essential for the autonomous replication of the plasmid. The plasmid of the present invention can replicate in a host microorganism even if a region other than the region essential for the autonomous replication of the plasmid (replication control region), that is, the region other than the region containing the replication origin and genes necessary for the replication, is deleted. In addition, a plasmid including such a deletion has a smaller size. Therefore, a plasmid having such a deletion is preferred for use as a vector. Further, if a marker gene such as a drug resistance gene is inserted into the plasmid of the present invention or a part thereof, it becomes easy to detect transformants thanks to phenotype of the marker gene in the transformants. Examples of such a marker gene that can be used in the host include a chloramphenicol resistance gene, kanamycin resistance gene, streptomycin resistance gene, tetracycline resistence gene, trimethoprim resistance gene, erythromycin resistance

gene and so forth.

[0023] Further, if the plasmid of the present invention is made as a shuttle vector autonomously replicable in coryneform bacteria and other bacteria such as Escherichia coli by ligating the plasmid of the present invention or a part thereof with a plasmid autonomously replicable in the other bacteria such as Escherichia coli or a part thereof containing a replication control region thereof, manipulations such as preparation of plasmid and preparation of recombinant plasmid containing a target gene can be performed using Escherichia coli. Examples of the plasmid

autonomously replicable in Escherichia coli include, for example, pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, RSF1010, pMW119, pMW118, pMW219, pMW218 and so forth.

[0024] Although pYM1, pYM2, pYM3 and pYM4 themselves are characterized by the restriction maps shown in Figs. 1 and 2, the plasmid of present invention is not necessarily required to have these restriction maps, and any restriction site may be deleted so long as such deletion does not affect the autonomous replication ability. Further, the plasmid of the present invention may contain a restriction site that is not contained in pYM1, pYM2, pYM3 and pYM4. The derivative of the plasmid as described above can be constructed in the same manner as the conventionally known construction of cloning vectors, expression vectors and so forth. In order to construct the derivative, it is preferable to determine the nucleotide sequences of pYM1, pYM2, pYM3 and pYM4. The nucleotide sequence can be

determined by known methods such as the dideoxy method.

In order to insert a foreign gene into the plasmid or the derivative thereof of the present invention, it is convenient to insert it into a restriction site of the plasmid or the derivative thereof. As such a restriction site, one present as a single digestion site is preferred. In order to insert a foreign gene, the plasmid and a source of the foreign gene such as genome DNA can be partially or fully digested with one or more restriction enzymes that provide the same cohesive ends for the both, e.g., the same restriction enzyme, and they can be ligated under a suitable condition. They may also be ligated at blunt ends.

[0027] For preparation of plasmid DNA, digestion and ligation of DNA, transformation and so forth, those methods well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Fritsch, E.F., and J., Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., Well known to those skilled in the art may be employed. Such methods are described in Sambrook, J., The sambrook in the same skilled in the art may be employed. Su

[0028] According to the present invention, a novel plasmid derived from Corynebacterium thermoaminogenes is provided as described above.

EXAMPLES

25

[0029] Hereafter, the present invention will be explained in more detail with reference to the following examples.

Example 1

Isolation and characterization of plasmids from Corynebacterium thermoaminogenes (FERM BP-1539, FERM BP-1540, FERM BP-1541, FERM BP-1542)

[0030] Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539), AJ12308 (FERM BP-1540), AJ12309 (FERM BP-1541) and AJ12310 (FERM BP-1542) were cultured for 12 hours in CM28 liquid medium (Bacto-trypton (Difco): 1%, Bacto-yeast-extract (Difco): 1%, NaCl: 0.5%, biotin: 10 µg/L), and plasmid DNA fractions were obtained by the alkali method (Text for Bioengineering Experiments, Edited by the Society for Bioscience and Bioengineering, Japan, p.105, Baifukan, 1992). When these fractions were analyzed by agarose gel electrophoresis (Sambrook, J., Fritsch, E.F., and Maniatis, T., "Molecular Cloning: A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989)), DNA bands were detected for all of the cases, and hence it was demonstrated that the aforementioned strains harbored plasmids. The plasmids prepared from FERM BP-1540, FERM BP-1542 and FERM BP-1539 were designated as pYM1, pYM2 and pYM3, respectively. The plasmid prepared from FERM BP-1541 was designated as pYM4. The plasmids pYM1, pYM2 and pYM3 each had a length of about 4.4 kb, and the plasmid pYM4 had a length of about 6.0 kb.

of about 6.0 kb.
[0031] The plasmids pYM1, pYM2, pYM3 and pYM4 were digested with restriction enzymes Bg/II, BamHI, BsfPI,
[0031] The plasmids pYM1, pYM2, pYM3 and pYM4 were digested with restriction enzymes Bg/II, BamHI, BsfPI,
EcoRI, HincII, HindIII, KpnI, NaeI, NcoI, NheI, PmaCI, SacI, SacII, SalI, SmaI, SphI, Tth1111 and XbaI (produced by
EcoRI, HincII, HindIII, KpnI, NaeI, NcoI, NheI, PmaCI, SacI, SacII, SalI, SmaI, SphI, Tth1111 and XbaI (produced by
EcoRI, HincII, HindIII, KpnI, NaeI, NcoI, NheI, PmaCI, SacII, SalI, SmaI, SphI, Tth1111 and XbaI (produced by
EcoRI, HincII, HindIII, KpnI, NaeI, NcoI, NheI, PmaCI, SacII, SalI, SmaI, SphI, Tth1111 and XbaI (produced by
EcoRI, HincIII, HindIII, KpnI, NaeI, NcoI, NheI, PmaCI, SacII, SalI, SmaI, SphI, Tth1111 and XbaI (produced by
EcoRI, HincIII, HindIII, KpnI, NaeI, NcoI, NheI, PmaCI, SacII, SalI, SmaI, SphI, Tth1111 and XbaI (produced by
EcoRI, HincIII, HindIII, KpnI, NaeI, NcoI, NheI, PmaCI, SacII, SalI, SmaI, SphI, Tth1111 and XbaI (produced by
EcoRII, HindIII, HindIII, KpnI, NaeI, NcoI, NheI, PmaCI, SacII, SalII, SmaI, SphI, Tth1111 and XbaI (produced by
EcoRII, HindIII, HindIII, HindIII, NpIII and XbaI (produced by agarose gel electrophoresis. The electroTakara Co.), and lengths of the produced DNA fragments were measured by agarose gel electrophoresis. The electroTakara Co.), and lengths of the produced DNA fragments were measured by agarose gel electrophoresis. The electroTakara Co.), and lengths of the produced DNA fragments were measured by agarose gel electrophoresis. The electroTakara Co.), and lengths of the produced DNA fragments were measured by agarose gel electrophoresis. The electroTakara Co.), and lengths of the produced DNA fragments were measured by agarose gel electrophoresis. The electroTakara Co.), and lengths of the produced DNA fragments were measured by agarose gel electrophoresis. The electroTakara Co.), and lengths of the produced DNA fragments were measured by agarose gel electrophoresis. The electroTakara Co.), an

[0032] The results of nucleotide sequencing of pYM1, pYM2, pYM3 and pYM4 by the dideoxy method are shown in SEQ ID NOS: 1, 3, 5 and 7 in that order.

Example 2

Construction of shuttle vector pYMFK containing Km resistance gene derived from Streptococcus faecalis

[0033] As a region necessary for efficient replication of pYM2 in coryneform bacteria, there are present an AT-rich region upstream from *rep* and a region affecting copy number downstream from *rep*, besides the region coding for *rep*. [0034] Therefore, in order to obtain a shuttle vector that can replicate in coryneform bacteria and *E. coli* without impairing the replication ability of pYM2, a region enabling autonomous replication in *E. coli* and a selection marker were inserted into sites in the vicinity of the *BstPl* site of pYM2.

[0035] First, a vector having a drug resistance gene of *S. faecalis* was constructed. The kanamycin resistance gene of *S. faecalis* was amplified by PCR from a known plasmid containing that gene. The nucleotide sequence of the kanamycin resistance gene of the *S. faecalis* has already been elucidated (Trieu-Cuot, P. and Courvalin, P., *Gene*, 23 (3), pp.331-341 (1983)). Based on this sequence, the primers having the nucleotide sequences shown as SEQ ID NOS: 16 and 17 were synthesized, and PCR was performed by using pDG783 (Anne-Marie Guerout-Fleury et al., *Gene*, 167, pp.335-337 (1995)) as a template to amplify a DNA fragment containing the kanamycin resistance gene and its promoter.

[0036] The above DNA fragment was purified by using SUPREC02 produced by Takara Shuzo Co., Ltd., completely digested with restriction enzymes *Hind*III and *Hinc*II, and blunt-ended. The blunt-ending was performed by using Blunting Kit produced by Takara Shuzo Co., Ltd. This DNA fragment and an amplification product obtained by PCR utilizing the primers having the nucleotide sequences shown as SEQ ID NOS: 18 and 19 and pHSG399 (see S. Takeshita *et al.*, *Gene*, *61*, pp.63-74 (1987)) as a template and purification and blunt-ending of the PCR product were mixed and ligated. The ligation reaction was performed by using DNA Ligation Kit ver.2 produced by Takara Shuzo Co., Ltd. Competent cells of *Escherichia coli* JM109 (produced by Takara Shuzo Co., Ltd.) were transformed with the ligated DNA, and applied to L medium (10 g/L of Bacto trypton, 5 g/L of Bacto yeast extract, 5 g/L of NaCl, and 15 g/L of agar, pH 7.2) containing 10 μg/ml of IPTG (isopropyl-β-D-thiogalactopyranoside), 40 μg/ml of X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) and 25 μg/ml of kanamycin, and cultured overnight. Then, the formed blue colonies were picked up, and subjected to single colony isolation to obtain transformants.

[0037] Plasmids were prepared from the transformants by using the alkaline method (Text for Bioengineering Experiments, Edited by the Society for Bioscience and Bioengineering, Japan, p.105, Baifukan, 1992), and restriction maps were prepared. A plasmid having a restriction map equivalent to that shown at a lower position in Fig. 6 was designated as pK1. This plasmid is stably harbored in *Escherichia coli*, and imparts kanamycin resistance to a host. Moreover, since it contains the *lacZ* gene, it is suitable for use as a cloning vector.

[0038] Then, a region containing the replication origin was amplified by Pyrobest-Taq (Takara Shuzo Co., Ltd.) using pYM2 extracted from *C. thermoaminogenes* AJ12310 (FERM BP-1542) as a template (The entire nucleotide sequence of pYM2 is shown in SEQ ID NO: 9.) and the following primers prepared based on a sequence in pYM2 near the *Bst*PI site:

S1: 5'-AAC CAG GGG GAG GGC GCG AGG C-3' (SEQ ID NO: 10) S3: 5'-TCT CGT AGG CTG CAT CCG AGG CGG GG-3' (SEQ ID NO: 11)

The reaction condition was 94°C for 5 minutes, then a cycle of 98°C for 20 seconds and 68°C for 4 minutes, which was repeated for 30 cycles, and 72°C for 4 minutes. After the reaction, the mixture was stored at 4°C.

[0039] The obtained amplified fragment was purified by using MicroSpin TM S-400 HR columns produced by Amersham Pharmacia Biotech Co., blunt-ended by using DNA Blunting Kit produced by Takara Shuzo Co., Ltd., and then ligated to pK1 treated with *Hinc*II by using DNA Ligation Kit. ver. 2 produced by Takara Shuzo Co., Ltd. Competent cells of *Escherichia coli* JM109 (produced by Takara Shuzo) were transformed with the ligated DNA to obtain transformant strains.

[0040] Plasmids were prepared from the transformant strains using the alkali method (Text for Bioengineering Experiments, Edited by the Society for Bioscience and Bioengineering, Japan, p.105, Baifukan, 1992) and restriction maps of the plasmids were prepared. One showing a restriction map equivalent to that shown at a lower position in Fig. 3 was designated as pYMFK. pYMFK had a size of about 7.0 kb, and was able to autonomously replicate in *E. coli* and coryneform bacteria and impart Km resistance to a host.

Example 3

55

Construction of pYMK containing Km resistance gene derived from Tn903

[0041] A region containing the replication origin was amplified in the same manner as in Example 2 by using pYM2

extracted from C. thermoaminogenes AJ12310 (FERM BP-1542) as a template and the following primers:

S1Xbal: 5'-GCT CTA GAG CAA CCA GGG GGA GGG CGC GAG GC-3' (SEQ ID NO: 12) S3Xbal: 5'-GCT CTA GAG CTC TCG TAG GCT GCA TCG GAG GCG GGG-3' (SEQ ID NO: 13)

[0042] The obtained amplified fragment was purified by using MicroSpin TM S-400 HR columns produced by Amersham Pharmacia Biotech Co., digested with a restriction enzyme Xbal produced by Takara Shuzo Co., Ltd., and then ligated to a fragment obtained by fully digesting pHSG299 (Takara Shuzo Co., Ltd.) with Xbal by using DNA Ligation Kit. ver. 2 produced by Takara Shuzo Co., Ltd. Competent cells of Escherichia coli JM109 (produced by Takara Shuzo) were transformed with the ligated DNA to obtain transformant strains.

[0043] Plasmids were prepared from the transformant strains using the alkali method (Text for Bioengineering Experiments, Edited by the Society for Bioscience and Bioengineering, Japan, p.105, Baifukan, 1992) and restriction maps of the plasmids were prepared. One showing a restriction map equivalent to that shown at a lower position in Fig. 4 was designated as pYMK. pYMK had a size of about 7.0 kb, and was able to autonomously replicate in *E. coli* and coryneform bacteria and Impart Km resistance to a host.

Example 4

5

20

25

40

45

50

55

Construction of shuttle vector pYMC containing Cm resistance gene derived from Tn9

[0044] A region containing the replication origin was amplified in the same manner as in Example 2 by using pYM2 extracted from C. *thermoaminogenes* AJ12310 (FERM BP-1542) as a template and the following primers:

S1Xbal: 5'-GCT CTA GAG CAA CCA GGG GGA GGG CGC GAG GC-3' (SEQ ID NO: 14) S3Xbal: 5'-GCT CTA GAG CTC TCG TAG GCT GCA TCG GAG GCG GGG-3' (SEQ ID NO: 15)

[0045] The above DNA was purified by using MicroSpin TM S-400 HR columns produced by Amersham Pharmacia Biotech Co., digested with a restriction enzyme Xbal produced by Takara Shuzo Co., Ltd., and then ligated to a fragment obtained by treating pHSG399 (Takara Shuzo Co., Ltd.) with Xbal by using DNA Ligation Kit. ver. 2 produced by Takara Shuzo Co., Ltd. Competent cells of Escherichia coli JM109 (produced by Takara Shuzo) were transformed with the ligated DNA to obtain transformant strains.

[0046] Plasmids were prepared from the transformant strains using the alkali method (Text for Bioengineering Experiments, Edited by the Society for Bioscience and Bioengineering, Japan, p.105, Baifukan, 1992) and restriction maps of the plasmids were prepared. One showing a restriction map equivalent to that shown at a lower position in Fig. 5 was designated as pYMC. pYMC had a size of about 6.6 kb, and was able to autonomously replicate in *E. coli* and coryneform bacteria and impart Cm resistance to a host.

SEQUENCE LISTING

5	
	<110> Ajinomoto Co., Inc
•	<120> Plasmid Autonomously Replicable in Coryneform Bacteria
10	<130>
	<150> JP 11-228391 <151> 1999-08-12
15	<160> 19
	<170> PatentIn Ver. 2.0
20	<210> 1 <211> 1479 <212> DNA <213> Corynebacterium thermoaminogenes
25	<220> <221> CDS <222> (1)(1476)
<i>30</i>	<pre><400> 1 atg act cta gcg gat tcg cca gga aca tac aca gca gat gcg tgg aat</pre>
	tac tcc act gat ctg ttc gac acc cac cct gag ctg gct tta cgc tcc 96 Tyr Ser Thr Asp Leu Phe Asp Thr His Pro Glu Leu Ala Leu Arg Ser 20 25 30
35	cgg ggt tgg aat cac cag gac gcc gcc gag ttc ctg gcc cac ctg gat 14 Arg Gly Trp Asn His Gln Asp Ala Ala Glu Phe Leu Ala His Leu Asp 35 40 45
	cgc agc atg ttt cac ggg tgc ccc acc cgg gat ttc tcc gcg gcc tgg 19 Arg Ser Met Phe His Gly Cys Pro Thr Arg Asp Phe Ser Ala Ala Trp 50 55 60
40	gtc aaa gac cog gaa acc gga gaa acc cgc ccc aag ctg cac aga gtt 24 Val Lys Asp Pro Glu Thr Gly Glu Thr Arg Pro Lys Leu His Arg Val 65 70 75 80
45	ggc acc cgc tca ctt tcc cgg tgc cag tac gtt gcc ctg acc cac ccg 28 Gly Thr Arg Ser Leu Ser Arg Cys Gln Tyr Val Ala Leu Thr His Pro 85 90 95
45	cag cgc tcc gcg gtg ctg gtc tta gac atc gac atc ccc agc cac cag Gln Arg Ser Ala Val Leu Val Leu Asp Ile Asp Ile Pro Ser His Gln 100 105 110
50	gcc ggc ggg aac atc gag cac ctt cac ccg cag gtg tac gcc acc ttg 38 Ala Gly Gly Asn Ile Glu His Leu His Pro Gln Val Tyr Ala Thr Leu 115 120 125
	gag cgt tgg gca cgg gtg gag aaa gcg ccg gcc tgg atc ggg gtg aac 43 Glu Arg Trp Ala Arg Val Glu Lys Ala Pro Ala Trp Ile Gly Val Asn

										•							
5	Pro	130 ttg Leu	tcg	gga Gly	aag Lys	Cys	135 cag Gln	ctc Leu	atc []e	tgg Trp	Cys	140 att Ile	gac	ccg Pro	gtg Val	Phe	480
	gcc Ala	gcc Ala	gag Glu	ggc Gly	acc Thr 165	acc Thr	agc Ser	tcg Ser	aac Asn	acc Thr 170	155 cgc Arg	ctg Leu	cta Leu	gcg Ala	gcc Ala 175	160 acc Thr	528
10	inr	Glu	Glu	Met 180	ihr	Arg	Val	Phe	Gly 185	gct Ala	Asp	Gln	Ala	Phe 190	tcc Ser	His	576
	Arg	Leu	Ser 195	Arg	irp	Pro	Leu	His 200	Val	tct Ser	Asp	Asp	Pro 205	Thr	Ala	Tyr	624
15	Ser	1rp 210	HIS	Cys	Gin	His	Asn 215	Arg	Val		Ile	Leu 220	Asp	Glu	Leu	Met	672
,	225	vai	Ala	Arg	ihr	Met 230	Thr	Gly	Ser	aaa Lys	Lys 235	Pro	Arg	Glu	His	Ala 240	720
20	HIS	GIN	Glu	Phe	Ser 245	Ser	Gly	Arg	Ala	250	He	Glu	Ala	Ala	Arg 255	Lys	768
	Ala	ihr	Ala	G1u 260	Ala	Lys	Ala	Leu	Ala 265	gcc Ala	Leu	Asp	Ala	Thr 270	Leu	Pro	816
25	lhr	Ala	1eu 275	Glu	Ala	Ser	Gly	Asp 280	Leu	att Ile	Asp	Gly	Val 285	Arg	Val	Leu	864
30	Trp	Ala 290	Ala	Glu	Gly	Arg	Ala 295	Ala	Arg	gat Asp	Glu	Thr 300	Ala	Phe	Arg	His	912
30	305	Leu	Thr	Val	Gly	Ту <i>г</i> 310	Gln	Leu	Lys		Ala 315	Gly	Glu	Arg	Leu	Lys 320	960
35	gat Asp	Ala	Lys	He	11e 325	Asp	Ala	Tyr	Glu	Arg 330	Ala	Tyr	Asn	Val	Ala 335	Gln	1008
	gcg Ala	Val	Gly	A1a 340	Asp	Gly	Arg	Glu	Pro 345	Asp	Leu	Pro	Ala	Met 350	Arg	Asp	1056
40	cgt Arg	Gln	Thr 355	Met	Ala	Arg	Arg	Val 360	Arg	Ala	Tyr	Va]	Ala 365	Lys	ĞÎy	Gln	1104
	CCC Pro	Thr 370	Val	Ser	Ala	Arg	Ser 375	Thr	Gln	Thr	Gln	Ser 380	Ser	Arg	Ġly	Arg	1152
45	Lys 385	Ala	Leu	Ala	Thr	Met 390	Gly	Arg	Arg	ggc Gly	Gly 395	Gln	Lys	Ala	Ala	G1u 400	1200
	cgc Arg	tgg Trp	aaa Lys	acc Thr	gat Asp 405	cct Pro	aac Asn	ggc Gly	aaa Lys	tac Tyr 410	gcc Ala	caa G1n	gaa Glu	aac Asn	cgc Arg 415	caa Gln	1248
50	cga Arg	ctc Leu	gaa Glu	gct Ala 420	gca Ala	aac Asn	aag Lys	cga Arg	cgt Arg 425	caa Gln	gtc Val	agc Ser	tgg Trp	aac Asn 430	aaa	tac Tyr	1296
	gcg	agc	acg	aat	tct	ggc	tac	ggt	ttc	cga	cac	gta	tgg	gcc	agc	ttg	1344.

	Ala Ser	Thr A 435	Asn S	er (Gly	Туг	G1 y 440	Phe	Arg	His		Trp 445	Ala	Ser	Leu	
5	gaa aaa Glu Lys 450	Cys L	cta c Leu A	gc 9	Asp	gag Glu 455	caa Gln	atc Ile	atg Met	Glu	gaa Glu 460	aca Thr	999 G1 y	ctt Leu	tca Ser	1392
	cga gct Arg Ala 465	acc	gtg a Val T	hr i	cgc	cat	tgg Trp	gtg Val	cac His	tgc	gag	agg Arg	ctg Leu	gcc Ala	tgc Cys 480	1440
10	tgc caa Cys Glr	atc o	Leu A	igg (999	gct Ala	cac His	gcc Ala	gta Val 490	gac	aga Arg	taa			700	1479
15	<210> 2 <211> 4 <212> 8 <213> 0	192 PRT			m th	ermo	oami <i>i</i>	noger	nes							
	<400> 1 Met Th		Ala /	Asp 5	Ser	Pro	Gly	Thr	Tyr 10	Thr	Ala	Asp	Ala	Trp 15	Asn	
. 20	Tyr Se	r Thr	Asp t	Leu	Phe	Asp	Thr	His 25	Pro	Glu	Leu	Ala	Leu 30	Arg	Ser	
	Arg Gl	y Trp . 35		His	Gln	Asp	Ala 40		Gļu	Phe	Leu	Ala 45		Leu	Asp	
	Arg Se		Phe I	His	Gly	Cys		Thr	Arg	Asp	Phe 60	Ser	Ala	Ala	Trp	
25	Val Ly		Pro 1	Glu		Gly	Glu	Thr	Arg			Leu	His	Arg	Va1 80	
	65 Gly Th	r Arg	Ser 1		70 Ser	Arg	Cys	Gln		75 Val	Ala	Leu	Thr	His 95		
00	Gln Ar	g Ser		85 Val	Leu	Val	Leu		90 Ile	Asp	Ile	Pro		His	Gln	
<i>30</i>	Ala Gl		100 Asn	Ile	Glu	His		105 His	Pro	Gìn	Val				Leu	
	Glu Ar	115 g Trp	Ala	Arg	Va1			Ala	Pro	Ala				۷a۱	Asn	
35	13 Pro Le		Gly	Lys	Cys	135 Gln		Ile	Trp		140 Ile		Pro	Val	Phe	
	145 Ala Al	a Glu	G1 y	Thr	150 Thr	Ser	Ser	Asn			Leu	Leu	Ala			
	Thr G1	u Gìu		165 Th <i>r</i>	Arg	۷a۱	Phe				Gln	Ala	Phe	175 Ser		
40	Arg Le	u Ser	180 Arg	Trp	Pro	Leu				Asp	Asp				Tyr	
	Ser Tr	195 p His	Cys	Ġln	His				Asp	Ile	Leu	ZOS Asp		Leu	Met	
	21 Glu Va	0 11 Ala	Arg	Thr	Met	215 Thi		/ Ser	Lys	Lys	220 Pro		G1t	ı His		
45	225 His G	n Gliu	Phe	Ser	230 Ser		/ Arg	a Ala	a Arg	235 Ile		ı Ala	a Ala	a Arg	240 Lys	
		nr Ala		245					250)				255	5	
		la Leu	260					26	5				270)	_	
50		275					28	0				28	5			
		la Ala 90	GIU	шу	Arç	29:		a Ar	y ASI	י פונ	300)	a ()	₽ MI!	y 1115	• -

```
Ala Leu Thr Val Gly Tyr Gln Leu Lys Ala Ala Gly Glu Arg Leu Lys
                                     310
                                                         315
                Asp Ala Lys Ile Ile Asp Ala Tyr Glu Arg Ala Tyr Asn Val Ala Gln
                                 325
                                                     330
                Ala Val Gly Ala Asp Gly Arg Glu Pro Asp Leu Pro Ala Met Arg Asp
                             340
                                                 345
                Arg Gln Thr Met Ala Arg Arg Val Arg Ala Tyr Val Ala Lys Gly Gln
                                                                 365
                                             360
                Pro Thr Val Ser Ala Arg Ser Thr Gln Thr Gln Ser Ser Arg Gly Arg
10
                                         375
                                                             380
                 Lys Ala Leu Ala Thr Met Gly Arg Arg Gly Gly Gln Lys Ala Ala Glu
                                     390
                                                         395
                 Arg Trp Lys Thr Asp Pro Asn Gly Lys Tyr Ala Gln Glu Asn Arg Gln
                                 405
                                                     410
                 Arg Leu Glu Ala Ala Asn Lys Arg Arg Gln Val Ser Trp Asn Lys Tyr
15
                                                 425
                             420
                 Ala Ser Thr Asn Ser Gly Tyr Gly Phe Arg His Val Trp Ala Ser Leu
                                                                 445
                                             440
                 Glu Lys Cys Leu Arg Asp Glu Gln Ile Met Glu Glu Thr Gly Leu Ser
                    450
                                        455
                                                             460
20
                 Arg Ala Thr Val Thr Arg His Trp Val His Cys Glu Arg Leu Ala Cys
                                    470
                                                         475
                 Cys Gln Ile Leu Arg Gly Ala His Ala Val Asp Arg
                                 485
                 <210> 3
25
                 <211> 1479
                 <212> DNA
                 <213> Corynebacterium thermoaminogenes
30
                 <221> CDS
                 <222> (1)..(1476)
                 <400> 3
                 atg act cta gcg gat tcg cca gga aca tac aca gca gat gcg tgg aat
                 Met Thr Leu Ala Asp Ser Pro Gly Thr Tyr Thr Ala Asp Ala Trp Asn
35
                                                       10
                 tac tcc act gat ctg ttc gac acc cac cct gag ctg gct tta cgc tcc
                                                                                    96
                 Tyr Ser Thr Asp Leu Phe Asp Thr His Pro Glu Leu Ala Leu Arg Ser
                                                   25
                              20
                 cgg ggt tgg aat cac cag gac gcc gca gag ttc ctg gcc cac ctg gat
                 Arg Gly Trp Asn His Gln Asp Ala Ala Glu Phe Leu Ala His Leu Asp
40
                  cgc agc atg ttt cac ggg tgc ccc acc cgg gat ttc tcc gcg gcc tgg
                  Arg Ser Met Phe His Gly Cys Pro Thr Arg Asp Phe Ser Ala Ala Trp
                  gtc aaa gac ccg gaa acc gga gaa acc cgc ccc aag ctg cac aga gtt
45
                  Val Lys Asp Pro Glu Thr Gly Glu Thr Arg Pro Lys Leu His Arg Val
                                                           75
                                       70
                  ggc acc cgc tca ctt tcc cgg tgc cag tac gtt gcc ctg acc cac ccg
                  Gly Thr Arg Ser Leu Ser Arg Cys Gln Tyr Val Ala Leu Thr His Pro
                                                       90
50
                  cag cgc tcc gcg gtg ctg gtc tta gac atc gac atc ccc agc cac cag
                  Gln Arg Ser Ala Val Leu Val Leu Asp Ile Asp Ile Pro Ser His Gln
                              100
```

12

	gcc gg Ala Gl	c ggg y Gly 115	Asn	atc []e	gag Glu	cac His	ctt Leu 120	cac His	ccg Pro	cag Gln	gtg Val	tac Tyr 125	gcc Ala	acc Thr	ttg Leu	384
5	gag cg Glu Ar 13	g irp O	Ala	Arg	Val	Glu 135	Lys	Ala	Pro	Ala	Trp 140	atc	Gly	Val	Asn	432
10	ccg tt Pro Le 145	u Ser	Gly	Lys	Cys 150	Gln	Leu	He	Trp	Cys 155	Ile	Asp	Pro	Val	Phe 160	480
	gcc gc Ala Al	a Glu	Gly	165	Thr	Ser	Ser	Asn	Thr 170	Arg	Leu	Leu	Ala	Ala 175	Thr	528
15	acc ga Thr Gl	u Glu	Met 180	ihr	Arg	Val	Phe	Gly 185	Ala	Asp	Gln	Ala	Phe 190	Ser	His	576
	cgg ct Arg Le	u Ser 195	Arg	Trp	Pro	Leu	His 200	Val	Phe	Asp	Asp	Pro 205	Thr	Ala	Туг	624
20	tcc tg Ser Tr 21	o His O	Cys	Gìn	His	Asn 215	Arg	Val	Asp	He	Leu 220	Asp	Glu	Leu	Met	672
	gag gt Glu Va 225	l Ala	Arg	Thr	Met 230	Thr	Gly	Ser	Lys	Lys 235	Pro	Arg	Lys	His	Ala 240	720
25	cac ca His Gl	n Giu	Phe	Ser 245	Ser	Gly	Arg	Ala	Arg 250	He	Glu	Ala	Ala	Arg 255	Lys	768
	gcc ac Ala Th	r Ala	G1u 260	Ala	Lys	Ala	Leu	Ala 265	Ala	Leu	Asp	Ala	Thr 270	Leu	Pro	816
30	acg gc Thr Al	a Leu 275	Glu	Ala	Ser	Gly	Asp 280	Leu	Ile	Asp	Gly	Val 285	Arg	Val	Leu	864
	tgg gc Trp Al 29	a Ala }	Glu	Gly	Arg	Ala 295	Ala	Arg	Asp	Glu	Thr 300	Ala	Phe	Arg	His	912
35	gcg tt Ala Le 305	ı îhr	Val	Gly	Tyr 310	Gln	Leu	Lys	Ala	Ala 315	Gly	Glu	Arg	Leu	Lys 320	960
40	gat go	a Lys	He	11e 325	Asp	Ala	Tyr	Glu	Arg 330	Ala	Туг	Asn	Val	Ala 335	Gln	1008
	gcg gt Ala Va	l Gly	A1a 340	Asp	Gly	Arg	Glu	Pro 345	Asp	Leu	Pro	Ala	Met 350	Arg	Āsp	1056
45	cgt ca	1 lhr 355	Met	Ala	Arg	Arg	Va) 360	Arg	Ala	Туг	Val	Ala 365	Lys	G1 y	Gln	1104
	Pro Th	' Val	agc Ser	gcc Ala	agg Arg	agc Ser 375	aca Thr	cag Gln	acc Thr	cag Gln	agc Ser 380	agt Ser	cgg Arg	ggc Gly	cgg Arg	1152
50	aaa go Lys Ala 385	c ctg a Leu	gcc Ala	acc Thr	atg Met 390	ggc Gly	cgc Arg	aga Arg	ggc Gly	999 Gly 395	caa	aaa Lys	gcc Ala	gct Ala	gaa Glu 400	1200
	cgc tg Arg Tr	aaa Lys	acc Thr	gat Asp	cct	aac Asn	ggc Gly	aaa Lys	tac Tyr	gcc	caa Gln	gaa Glu	aac Aşn	cgc Arg	caa	1248

				4(05					410						415		1200
	cga c Arg L	tc (eu (ilu A	la A	ca a la A	ac a sn L	ag d ys /	arg i	cgt Arg 425	caa Gln	gtc Val	ago Ser	tg Tr	PΗ	ac a sn 1 30	aaa Lys	tac Tyr	1296
5	gcg a	er i	acg a Thr A	20 at to sn S	ct g er G	gc t ly T	yr (ggt Gly	ttc	cga Arg	cac His	gta Val	tg Tr 44	g g	ICC .	agc Ser	ttg Leu	1344
10	gaa a Glu l	aaa d ys (435 tgc c Cys L	ta c .eu A	gc g .rg A	sp G	ag (440 caa Gln	atc Ile	atg Met	gaa Glu	GII	a ac	ag	99 31 y	ctt Leu	tca Ser	1392
10	cga g	sct Ala	acc g Thr V	itg a /al T	hr A	ac c	at lis	tgg Trp	gtg Val	cac His	tgo Cys 475	Gli	ag	gg (rg l	ctg Leu	gcc Ala	tgc Cys 480	1440
15	465 tgc (Cys (caa Gln	atc ([]e l	.eu A	19g g	gg g	oct Na	cac His	gcc Ala	gta Val 490	cad	ag:	a ta g	aa				1479
20	<210: <211: <212: <213	> 49 > PR		bacte	eriun	n the	ermo	oami r	noge	nes								
	<400 Met	> 4 Thr	Leu	Ala /	Asp :	Ser	Pro	Gly	Thr	Tyr 10	Th	r A1	a A	sp	Ala	Trp 15	Asn	
25			Thr	20					25	1					30			
	_		Trp 35					40						40				
30		50	Met Asp				วว					- ()U					
<i></i>	65		Arg		Leu	70					r Va	5					Pro	
			Ser	100					10:	o IÌo 5	e As				110	His)	Glr	
35			Gly 115	Asn				120)					125				
		130	Trp				135)				- 1	4U					
40	145	i	Ser Glu			150					- 1	つつ					100	,
			. G1u . G1u		165					- 17	ľŪ				. Ph	e Se	J	
45			. Ser	180 Arg				ı Hi	s Va	5				Pro	Th c	U		
~	Ser		195 His	Cys	Gln	His	Asi	20 n Ar	o g Va	al As	sp 1	le i	.eu 220	205 Asp		u Le	u Me	t
) Ala	Arg	Thr	Met 230	21: Th	r G1	y Se	er L	ys l			Arg	g Ly	s Hi	s A1	a 0
50		s G1	n G1		245	Ser	- G1			- 2	rg 50	lle (۷:	ນ	
	A1	a Th	r Ala	a Glu	ı Ala	a Lys	s Al	a Le	eu A	la A	la	Leu	Asp	A1	a Th	nr Le	eu Pr	

	Thr	Ala	Leu	260 Glu	Ala	Ser	Gly	Asp	265 Leu	Ile	Asp	G1 y	Val	270 Arg	Val	Leu	
5	Trp		275 Ala	Glu	Gly	Arg		280 Ala	Arg	Asp	G1u		285 Ala	Phe	Arg	His	
	Ala 305		Thr	Val	Gly	Tyr 310	295 Gln	Leu	Lys	Ala	Ala 315		Glu	Arg	Leu	Lys 320	
			Lys	Пe	11e 325		Ala	Tyr	Glu	Arg 330		Туг	Asn	Val	A1a 335		
10			Gly	340					345					350			
	_		Thr 355					360				_	365	_		_	
15		370	Val				375					380					
	385		Leu			390					395					400	
			Lys		405					410					415		
20			Glu	420					425					430			
			Thr 435					440					445				
		450	Cys				455					460					
25	465		Thr Ile			470					475		AI 9	LÇU	AIG	480	
	Cys	וווט	116	Leu	485		nia	1113		490		711 9					•
30	<21 <21	0> 5 1> 1 2> 0 13> 0	479	ebac	teri	um t	herm	oami	noge	nes							
<i>35</i>		21> (D\$ (1)	(147	6)												
40	ate Me	t Thr 1	cta Leu	Ala	Asp S	Se	r Pro	Gly	/ Thi	- Tyı 1(· Thr)	Ala	. Asp	o Ala	a Trp 15	-	48
·	Ту	r Sei	Thr	Asp 20) Le(ı Ph	e Ası	Thi	r His 25	s Pro 5	Gle	ı Leu	ı Ala	a Lei	J Arg	tcc Ser	96
45	cg Ar	g gg g G1	t tgg y Trg 3!	Asr	t cad	c ca s G1	g ga n As	c gcc p Ala 4	a Ala	c ga a Gl	g tto u Pho	e Lei	gci Al: 4	a Hi	c ctg s Le	g gat u Asp	144
	cg Ar	c ag g Se 5	c ate	tti	t ca e Hi	c gg s G1	g tg y Cy 5	c cc s Pr	c ac	c cg r Ar	g ga g As	t tto p Pho 60	e Se	c gc r Al	g gc a Al	c tgg a Trp	192
50	٧a	c aa	a ga	c cc	g ga o Gl	u Th	c qq	a qa	a ac u Th	c cg r Ar	c cc g Pr 7	c aag	ct	g ca u Hi	c ag s Ar	a gtt g Val 80	240
	99	ic ac	c cg	c tc	a ct			g tg	с са	g ta			c ct	g ac	с са	c ccg	288

					Leu 85					90					95		
5	GIN	Arg	Ser	100	gtg Val	Leu	Val	Leu	Asp 105	He	Asp	Ile	Pro	Ser 110	His	Gln	336
•	АІа	ыу	115	Asn	atc Ile	Giu	His	Leu 120	His	Pro	Gln	Val	Tyr 125	Ala	Thr	Leu	384
(GIU	130	ırp	Ala	cgg Arg	Val	Glu 135	Lys	Ala	Pro	Ala	Trp 140	He	Gly	Val	Asn	432
	145	Leu	Ser	Gly	aag Lys	Cys 150	Gln	Leu	He	Trp	Cys 155	Ile	Asp	Pro	Val	Phe 160	480
	Ala	Ala	Glu	Gly	acc Thr 165	Thr	Ser	Ser	Asn	Thr 170	Arg	Leu	Leu	Ala	Ala 175	Thr	528
20	ihr	Glu	Glu	Met 180	acc Thr	Arg	Val	Phe	Gly 185	Ala	Asp	Gln	Ala	Phe 190	Ser	His	576
	Arg	Leu	Ser 195	Arg	tgg Trp	Pro	Leu	His 200	Val	Ser	Asp	Asp	Pro 205	Thr	Ala	Tyr	624
25	Ser	1rp 210	His	Cys	cag Gln	His	Asn 215	Arg	Val	Asp	Thr	Leu 220	Asp	Glu	Leu	Met	672
(Glu 225	Val	Ala	Arg	acg Thr	Met 230	Thr	Gly	Ser	Lys	Lys 235	Pro	Arg	Lys	His	Ala 240	720
30	His	Gin	Glu	Phe	tcc Ser 245	Ser	Gly	Arg	Ala	Arg 250	He	Glu	Ala	Ala	Arg 255	Lys	768
,	Ala	Thr	Ala	G1u 260	gcc Ala	Lys	Ala	Leu	Ala 265	Ala	Leu	Asp	Ala	Thr 270	Leu	Pro	816
35	Thr	Ala	Leu 275	Glu	gca Ala	Ser	Gly	Asp 280	Leu	Ile	Asp	Gly	Val 285	Arg	Val	Leu	864
1	Trp	Ala 290	Ala	Glu	999 G1 y	Arg	Ala 295	Ala	Arg	Asp	Glu	Thr 300	Ala	Phe	Arg	His	912
3	41a 305	Leu	Thr	Val	ggt Gly	Tyr 310	Gln	Leu	Lys	Ala	Ala 315	Gly	Glu	Arg	Leu	Lys 320	960
ļ	Asp	Ala	Lys	He	att Ile 325	Asp	Ala	Tyr	Glu	Arg 330	Ala	Tyr	Asn	Val	Ala 335	Gln	1008
ļ	Ala	Val	G1 y	Ala 340	gat Asp	Gly	Arg	Glu	Pro 345	Asp	Leu	Pro	Ala	Met 350	Arg	Āsp	1056
£0	Arg	Gln	Thr 355	Met	gcc Ala	Arg	Arg	Va1 360	Arg	Ala	Tyr	Val	Ala 365	Lys	G1 y	Gln	1104
· · · · · · · · · · · · · · · · · · ·	Pro	acg Thr 370	gtc Val	agc Ser	gcc Ala	agg Arg	agc Ser 375	aca Thr	cag Gln	acc Thr	cag Gln	agc Ser 380	agt Ser	cgg Arg	ggc Gly	cgg Arg	1152

	aaa gcc Lys Ala 385	Leu	Ala	Thr	Met 390	Gly	Arg	Arg	Gly	G1 y 395	Gln	Lys	Ala	Ala	G1 u 400	1200
5	cgc tgg Arg Trp	lys	Thr	Asp 405	Pro	Asn	Gly	Lys	Tyr 410	Ala	Gln	Glu	Asn	Arg 415	Gln	1248
10	cga ctc Arg Leu	Glu	Ala 420	Ala	Asn	Lys	Arg	Arg 425	Gln	Val	Ser	Trp	Asn 430	Lys	Tyr	1296
	gcg ago Ala Ser	Thr 435	Asn	Ser	Gly	Tyr	Gly 440	Phe	Árg	His	Val	Trp 445	Ala	Ser	Leu	1344
15	gaa aaa Glu Lys 450	Cys	Leu	Arg	Asp	G1u 455	Gln	He	Met	Glu	Glu 460	Thr	Gly	Leu	Ser	1392
	cga gct Arg Ala 465	Thr	Val	Thr	Arg 470	His	Trp	Val	His	Cys 475	Glu	Arg	ctg Leu	gcc Ala	tgc Cys 480	1440
.20	tgc caa Cys Gln	atc	ctt Leu	agg Arg 485	999 G1y	gct Ala	cac His	gcc Ala	gta Val 490	cac His	aga Arg	taa				1479
	<210> 6 <211> 4	92														
25	<212> P <213> C		ebact	teri	um th	nermo	oami r	noger	es							
	<400> 6 Met Thr		Ala	Asp	Ser	Pro	G1 y	Thr	Tyr	Thr	Ala	Asp	Ala	Trp	Asn	
30	Tyr Ser	Thr	Asp 20	Leu	Phe	Asp	Thir	His 25	Pro	Glu	Leu	Ala	Leu	Arg	Ser	
	Arg Gly	Trp 35		His	Gln	Asp	Ala 40		G) u	Phe	Leu	Ala 45	His	Leu	Asp	
	Arg Ser 50					55					60					
35	Val Lys				70					75				-	80	
	Gly Thr			85					90					95		
40	Gln Arg		100					105					110			
***	Ala Gly	115					120					125				
,	Glu Arg					135					140		-			
45	Pro Leu 145				150					155					160	
	Ala Ala			165	•				170					175		
	Thr Glu		180					185					190			
50	Arg Leu	195					200					205			·	
	Ser Trp 210	His	Cys	Gin	His	Asn 215	Arg	Val	Asp	Thr	Leu 220	Asp	Glu	Leu	Met	-

	G1u 225	Val	Ala	Arg	Thr	Met 230	Thr	Gly	Ser	Lys	Lys 235	Pro	Arg	Lys	His	Ala 240	
5	His	Gln	Glu	Phe	Ser 245	Ser	Gly	Arg	Ala	Arg 250	Ile	Glu	Ala	Ala	Arg 255	Lys	
	Ala	Thr	Ala	G1u 260	Ala	Lys	Ala	Leu	Ala 265		Leu	Asp	Ala	Thr 270		Pro	
	Thr	Ala	Leu 275	Glu	Ala	Ser	Gly	Asp 280	Leu	He	Asp	Gly	Val 285	Arg	Val	Leu	
10	Trp	Ala 290	Ala	Glu	G1 y	Arg	Ala 295	Ala	Arg	Asp	Glu	Thr 300	Ala	Phe	Arg	His	
	A1a 305	Leu	Thr	Val	G1 y	Tyr 310	Gln	Leu	Lys	Ala	Ala 315	Gly	Glu	Arg	Leu	Lys 320	
		Ala	Lys	lle	Ile 325		Ala	Tyr	Glu	Arg 330	Ala	Туг	Asn	Val	Ala 335	Gln	
15	Ala	Val	Gly	Ala 340		G1 y	Arg	Glu	Pro 345		Leu	Pro	Ala	Met 350		Asp	
	Arg	Gln	Thr 355	Met	Ala	Arg	Arg	Va1 360	Arg	Ala	Tyr	Val	Ala 365	Lys	Gly	Gln	
•	Pro	Thr 370		Ser	Ala	Arg	Ser 375		Gln	Thr	Gln	Ser 380	_	Arg	Gly	Arg	
20	Lys 385	Ala	Leu	Ala	Thr	Met 390		Arg	Arg	Gly	G1 y 395	Gln	Lys	Ala	Ala	G1u 400	
		Trp	Lys	Thr	Asp 405	Pro	Asn	Gly	Lys	Tyr 410	Ala	Gln	Glu	Asn	Arg 415	Gln	
25	Arg	Leu	Glu	Ala 420	Ala	Asn	Lys	Arg	Arg 425	Gln	Val	Ser	Trp	Asn 430	Lys	Tyr	
	Ala	Ser	Thr 435		Ser	Gly	Tyr	G1y 440	Phe	Arg	His	Val	Trp 445	Ala	Ser	Leu	
		Lys 450					455					460					
30	465					470					475		Arg	Leu	Ala	Cys 480	
	Cys	Gln	Ile	Leu	Arg 485	Gly	Ala	His	Ala	Va1 490		Arg					
		0> 7															
35	<21	1> 1 2> D	NA		.	4	L	:									
		3> 0	oryn	ebac	teri	um t	nerm	оалп	noge	nes							
40		1> 0		(127	43												
		!2> ()0> 7		(131	4)												
	ate	act	cta	909	gat	tcg	cca	gga	aca	tac	aca	gca	gat	gcg Ala	tgg	aat Asn	48
45	1				5					10	}				15	tcc	96
	Tyr	Ser	Thr	Asp	Leu	Phe	Asp	Thr	His	Pro	Glu	Leu	Ala	Let 30	Arg	Ser	30
	cgg	g gg1	tgg	20 aat	cac	cag	gad	900	gco	gag	tto	ctg	900	; ca	cte	gat	144
50			35	5				40)				45	5		ASP	102
	Arg	ago g Se	e ato	t Phe	. cac His	: 999 : Gly	Cys	Pro	t acc	cgg Arg	yat Asp	Phe	Ser	Al:	y gco	tgg Trp	192

		50					55					60						0.40
	Val	aaa Lys	gac Asp	ccg Pro	gag Glu	acc Thr 70	gga Gly	gaa Glu	acc Thr	cgc Arg	cct Pro 75	aag Lys	ctg Leu	His	aç s Ar	ga g ng V	tc al 80	240
ī	65 ggc Gly	acc Thr	cgg Arg	tcg Ser	ctt Leu 85	tcc	cga Arg	tgc Cys	cag Gln	tac Tyr 90	gtc Val	gcg Ala	ctg Leu	acc Th	H	ac c is P	cg	288
10	cag Gln	cgc Arg	tcc Ser	gcg Ala 100	ata	ctg Leu	gtc Val	tta Leu	gac Asp 105	atc	gac	atc Ile	ccc Pro	age Sei	c ca	ac c	ag N	336
	gcc Ala	ggc Gly	999 Gly 115	aac	atc Ile	gag Glu	cac His	ctt Leu 120	cac	ccg Pro	cag Gln	gtc Val	tac Tyr 125	gc A1	ca	cc t hr l	tg .eu	384
	gag Glu	cgc Arg 130	taa	gca Ala	cgg Arg	gtg Val	gag Glu 135	aaa Lys	gcg	ccg Pro	gcc	tgg Trp 140	He	99 G1	g g y V	tg a	aac Asn	432
	Pro 145	ttg Leu	Ser	Gly	Lys	Cys 150	cag Gln	Leu	Ile	Trp	Cys 155	i Ile	ASP	Pr	o v	ai i	rne 160	480
20	gcc	gcc Ala	Glu	G1 y	Thr 165	Thr	Ser	Pro	Asn	Thr 170	r Arg)	Leu	Leu	ı Ai	a A 1	1a 75	ihr	528
	Thr	gag Glu	Glu	Met 180	Thr	Arg	Met	Phe	Gly 185	Ala i	a Asp	Glr	ı Ala	a Ph 19	ie S 10	er	HIS	576
25	Arg	ctg Leu	Ser 195	cgg Arg	tgg Trp	Pro	Leu	His 200	Val	Ser	r Asi	o Asp	20!	o Ir S	ור 4	\Ia	ıyr	624
	tcc Ser	tgg Trp 210	His	tgc Cys	cag Gln	cac His	aac Asn 215	Arg	gto Val	ga Ası	t ac	g cti r Led 220	J Ali	t ga a Gl	ig d	etg Leu	atg Met	672
30	G1 L	gta Val	gcc	Arg	Thr	Met 230	Thr	Gly	, Sei	- Ly	s Ly 23	s Pro 5	O As	p Se	er	Ihr	240	720
	cac His	cag Gln	Glu	ı Phe	Ser 245	Ser	Gly	, Arg	3 A1:	a Ar 25	g II 0	e GI	u Al	аА	la	Arg 255	Lys	768
35	Ala	acc a Thr	· Ala	a Glo 260	ı Ala)	Lys	Ala	a Le	u Al. 26	a Al 5	a Le	u AS	PAI	a 1 2	nr 70	reu	Pro	816
40	Th	g gcg r Ala	27!	ս G1։ 5	s f A L	ı Ser	Gly	y As 28	p Le O	u II	e As	p GI	y Va 28	11 A 35	rg	vai	Leu	864
	Tr	g gca p Ala 290	a gca a Ala	a ga a Gl	u Gl	/ Arq	3 Ala 29	a Al 5	a Ar	g As	sp Gi	u 11	ir Al)0	a P	he	Arg	HIS	912
45	gc A1 30	g tte	a ac	c gt r Va	g gg 1 G1	y tai y Tyi 310	r G1	g ct n Le	t aa u Ly	a go	la A	a gg la Gl 15	y G	aa c lu A	gc Irg	ctg Leu	aaa Lys 320	960
	ga	c ac	c aa r Ly	g at s Il	c at e Il 32	t ga e As	t gc	g ta a Ty	it ga vr Gl	u A	gt go rg A 30	cc ta	ac a: yr A:	ac g sn \	tc al	gcc Ala 335	cag Gln	1008
50	gc A1	g gt a Va	9 99 1 Gl	g gc y A1 34	t ga a As	t aa	g cg y Ar	it ga ig Gi	וע צו	g g	at c	tg co eu P	ct g ro A	ıaı	atg Met 350	cgt	gat Asp	1056
		ıt ca	a 20	ა4 ზი tt	ים פר	ר כם	t ro	ıt a			cc t	ac q	tc q			ggo	cag	

	Arg	Gln	Thr 355	Leu	Ala	Arg	Arg	Val 360	Arg) A	la T	yr \	al .	Ala 365	Lys	Gly	GI	n	
	ccc Pro	Thr	gtg Val	agc Ser	gcc Ala	agg Arg	Ser	aca	Ca9 Glr	a ac	cc c hr G	iin s	igc Ser 380	agc Ser	cgg Arg	ggo Gly	as Ar	, .	1152
	Lys	370 gcc Ala	ctg Leu	gcc Ala	acc Thr	atg Met 390	375 gga Gly	cgc Arg	aga Arg	a g g G	ly A	ica g	cc	acc Thr	tcg Ser	aat Asr	1 A		1200
0	385 cgc Arg	agg Arg	tgg Trp	gca Ala	gac Asp 405	cca	gaa Glu	agc Ser	ga: As	Ρĺ	ac g	icc (cgc Arg	caa Gln	act Thr	Arg	gu	ag lu	1248
	cgt Arg	tta Leu	gcc Ala	Arg	qca	atg Met	agc Ser	tto Phe	gt Va 42	a c	at 1	ca Ser	gca Ala	cag Gln	acg Thr 430	AL	a a g T	ca hr	1296
5	agg Arg	gcc Ala	gga Gly 435	Ser	tgg Trp	cct Pro	acg Thr	ttt Phe 440	cc Pr	g a	igt (Ger /	gca Ala	agc Ser	gcc Ala 445	acg	gt	t a l T	cg hr	1344
	acc Thr	cca Pro 450	cga Arg	gca	aag Lys	aag Lys	tcg Ser 455	Caa Glr	cg	g a	igc Ser	tag							1377
20		450					400												
	<21 <21	0> 8 1> 4 2> P 3> C	58	ebac	teri	um t	hern:	noam	inog	jene	es								
25	<40	00> 8	}												_	_		_	
	Met	: Thr	Leu Thi		5	5					10						13		
				20	1				- 7	25					3	U			
30		_	y Tri	5				4	0					4;	כ				
		51	r Me				5	5					bι)					
ar.	£.	1 Ly:	s As			7	በ					15						au	
35	G1	y Th	r Ar	g Sei	r Le	u Se s	r Ar	g Cy	's G	ln.	Tyr 90	Val	Ala	ı Le	u Ir	ir H	1S 95	Pro	
			g Se	10	n				1	05					- 1	W			
40			y G1 11	۲				- 17	20					12					
40		12	g Tr	p Al			- 13	ս Լչ 85	/s A				14	U					
	1.6	o Le	eu Se			- 15	/s G1 50	n L				15:)					100	
45	A1	a Al	a G1	u G1	y Th 18	or Th	nr Se	er P	ro /	Asn	Thr 170	r Arg	g Le	u le	eu A	la /	41a 175	Thr	
			lu G1	18	t Th	nr Ai				185	Ala	AS			- 1	30			
	A	rg Le	eu Se	er År 95	g Tı	rp P	ro L	eu H 2	is ' 00	Val	Ser	r As	p As	p Pi 20	ro T 05	hr .	Ala	Tyr	
50	Si		rp H [.] 10	is Cy	rs G	ln H	is A			Va1	Ası	p Th	r Le 22	U A		เป็น	Leu	Met	
	~	2 1 ۷	10 a 1 a	la Ai	ra Ti	hr M	et T	hr G	1v	Ser	· Lv	s Lv			sp S	er	Thr	Ala	-

	225					230					235					240	
	His	Gln	Glu	Phe	Ser 245	Ser	G1 y	Arg	Ala	Arg 250		Glu	Ala	Ala	Arg 255	Lys	
;	Ala	Thr	Ala	G1 u 260		Lys	Ala	Leu	Ala 265		Leu	Asp	Ala	Thr 270	Leu	Pro	
	Thr	Ala	Leu 275		Ala	Ser	Gly	Asp 280		Ile	Asp	Gly	Va1 285	Arg	Val	Leu	
	Trp	Ala 290	Ala	Glu	Gly	Arg	Ala 295		Arg	Asp	Glu	Thr 300		Phe	Arg	His	
0	Ala 305		Thr	Val	G1 y	Tyr 310		Leu	Lys	Ala	Ala 315	Gly	Glu	Arg	Leu	Lys 320	
	Asp	Thr	Lys	Ile	11e 325		Ala	Tyr	Glu	Arg 330	Ala	Tyr	Asn	Val	Ala 335	Gln	
15	Ala	Val	Gly	Ala 340	Asp	Gly	Arg	Glu	Pro 345		Leu	Pro	Ala	Met 350		Asp	
, 5	Arg	Gln	Thr 355			Arg	Arg	Va1 360	Arg	Ala	Tyr	Val	Ala 365	Lys	Gly	Gln	
•	Pro	Thr 370	Val	Ser	Ala	Arg	Ser 375			Thr	Gln	Ser 380		Arg	Gly	Arg	
20	Lys 385	Ala	Leu	Ala	Thr	Met 390		Arg	Arg	G1 y	Ala 395		Thr	Ser	Asn	Ala 400	
	Arg	Arg	Trp	Ala	Asp 405	Pro	Glu	Ser	Asp	Tyr 410	Ala	Arg	Gln	Thr	Arg 415	Glu	
	Arg	Leu	Ala	Arg 420	Ala		Ser	Phe	Val 425	His	Ser	Ala	Gln	Thr 430		Thr	
25	Arg	Ala	Gly 435	Ser		Pro	Thr	Phe 440	Pro	Ser	Ala	Ser	Ala 445	Thr	Val	Thr	
	Thr	Pro 450	Arg	Ala	Lys	Lys	Ser 455	Gln	Arg	Ser							
30	<21 <21	0> 9 1> 4 2> 0 3> 0	369	ebac	teri	um t	herm	oami	noge	nes							
35		1> 0	DS 1)	(147	'6)												
40	ato	Thr	: cta	gcg Ala	gat Asp	tcg Ser	cca	gga Gly	aca Thr	tad Tyr	aca Thi	gca Ala	gat Asp	gcg Ala	tgg Trp	aat Asn	48
	tac	to	act Thr	gat Asr 20	Lei	tto Phe	gac Asp	aco Thr	cac His	Pro	t gae	g ctg J Let	gct Ala	tta Lei 30	i VL	tcc Ser	96
45	cg: Ar	9 99 9 Gl	t tgg y Trp 35	aat Asi	t cad	c cas	gad Asp	gco Ala	gca a Ala	ga	g tte u Ph	c cto	gco Ala 4!	a His	c cto s Leo	g gat u Asp	144
	cg: Ar	c ago g Se 5	c ate	tti	t cad	s Gly	tgo Cy:	CCC	c acc	c cg r Ar	g ga g As	t tto p Pho 60	e Se	c gc r Al	g gc a Al	c tgg a Trp	192
50	gte Va 6	c aa 1 Ly	a ga	c cc	g ga o Gl	a acc u Thi	r G1:	a ga y Gl	a acc	c cg r Ar	c cc g Pr 7	o Ly	g cte	g ca u Hi	c ag s Ar	a gtt g Val 80	240
			c cg	c to	a ct		-	g tg	c ca	g ta	c gt	t gc	c ct	g ac	с са	c ccg	288

21

- 55

	•			Ser	85					90						95		
5	cag Gln	cgc Arg	tcc Ser	gcg Ala 100	gtg Val	ctg Leu	gtc Val	tta Leu	gac Asp 105	atc Ile	gac Asp	atc Ile	ccc Pro	ago Ser 110	H	ac (ag Nn	336
	gcc Ala	ggc Gly	999 Gly 115	aac Asn	atc Ile	gag Glu	cac His	ctt Leu 120	cac His	ccg Pro	cag Gln	gtg Val	tac Tyr 125	Ala	a a T	cc i hr i	ttg Leu	384
10	gag Glu	cgt Arg 130	tag	gca Ala	cgg Arg	gtg Val	gag Glu 135	aaa	gcg Ala	ccg Pro	gcc Ala	tgg Trp 140	atc	999	9 7 V	tg :	aac Asn	432
	ccg Pro 145	ttg Leu	tcg Ser	gga Gly	aag Lys	tgc Cys 150	cag	ctc Leu	atc Ile	tgg Trp	tgc Cys 155	att	gac Asp	Pr	9 9 0 V	al	ttc Phe 160	480
15	acc	900	gag Glu	ggc G1y	acc Thr 165	acc	agc Ser	tcg Ser	aac Asn	acc Thr 170	cgc Arg	ctg Leu	cta Leu	gc Al	a A	icc lla 175	acc Thr	528
•	acc Thr	gag Glu	gaa Glu	atg Met 180	acc	cgt Arg	gtg Val	ttc Phe	ggc Gly 185	gct	gac	cag Gln	gca Ala	tt Ph 19	e S	cc Ser	cac His	576
20	cgg Arg	ctg Leu	agc Ser 195	cgg Arg	tgg Trp	ccg Pro	ctg Leu	cat His 200	gtt	ttt Phe	gat Asp	gat Asp	Pro 205	ac Th	ĊŞ	gcg Ala	tac Tyr	624
	tcc Ser	tgg Trp 210	cac His	tgc Cys	cag Gln	cac His	aac Asn 215	cqa	gtc Val	gat Asp	att Ile	ctt Leu 220	AS	ga Gl	g d u l	ctg Leu	atg Met	672
25	gag Glu 225	gta Val	acc	cgc Arg	acg Thr	atg Met 230	acc Thr	gga Gly	tca Ser	aaa Lys	aag Lys 235	ccs	aga	a aa g Ly	g (cac His	gct Ala 240	720
30	cac	cac	gag Glu	ttt Phe	tcc Ser 245	agc	ggt	cgg Arg	gca Ala	cgg Arg 250	ato Ile	gaa	gc Al	c gc a Al	a.	cgg Arg 255	aaa Lys	768
	gco Ala	acc a Thr	gca Ala	gag Glu 260	gcc Ala	aaa Lys	gcg Ala	ctt Leu	gcc Ala 265	gco	tt	g gad u Ası	gc Al	a ir	g 1r 70	ctg Leu	cct Pro	816
35	acq The	g gcg	cts Leu 275	gag Glu	qca	tca Ser	ggo	gat Asp 280	cto Lec	at	t ga	c gg p Gl	g gt y Va 28	g c	99	gtg Val	ttg Leu	864
	tg: Tr:	g gca p A1a 29a	a gca a Ala	gag a Glu	999 G1 y	cgt Arg	gca Ala 295	gco Ala	cgt	t ga g As	t ga p G1	g ac u Th 30	r Al	g t a Pl	tt he	cgc Arg	cat His	912
40	gc: A1: 30	g tte a Le	0 20	gtg Val	ggt Gly	tat Tyr 310	Gli	cti	t aaa u Lys	a gc	c gc a Al 31	a GI	t ga y Gl	a c u A	gc rg	ctg Leu	aaa Lys 320	960
	na	t ac	c aa a Ly	g ato s Ile	att 11e 325	gat As	ge	g ta a Ty	t gag r Gli	g cg u Ar 33	t go g Al	c ta	c aa r As	ac g an V	tc al	gcc Ala 335	Gin	1008
45	gc Al	g gt a Va	9 99 1 G1	a gct y Ala 340	t gat a Asp	gg	g cg y Ar	t ga g Gl	a cc u Pr 34	g ga o As	t ct	g co eu Pr	t go	la M	tg let 150	cgt	gat Asp	1056
	cg Ar	t ca	ig ac n Th 35	g ato	. gčt	c cg a Ar	c cg g Ar	t gt g Va 36	g cg 1 Ar	c go	c ta a Ty	ac gt yr Va	II Ą	cc a	aa	ggo Gly	cag Gln	1104
50	co Pr	o Th	a at	c age	c gco r Ala	c ag a Ar	g ag g Se 37	c ac	a ca	g ac n Th	ec ca	in Se	ic a	gt	:99 \rg	990 G1	c cgg y Arg	1152

```
1200
                aaa gcc ctg gcc acc atg ggc cgc aga ggc ggg caa aaa gcc gct gaa
                Lys Ala Leu Ala Thr Met Gly Arg Arg Gly Gly Gln Lys Ala Ala Glu
                                                        395
                                    390
                cgc tgg aaa acc gat cct aac ggc aaa tac gcc caa gaa aac cgc caa
                                                                                   1248
                Arg Trp Lys Thr Asp Pro Asn Gly Lys Tyr Ala Gln Glu Asn Arg Gln
                                                    410
                                405
                cga ctc gaa gct gca aac aag cga cgt caa gtc agc tgg aac aaa tac
                                                                                   1296
                Arg Leu Glu Ala Ala Asn Lys Arg Arg Gln Val Ser Trp Asn Lys Tyr
                                                                     430
                                                 425
                            420
                gcg agc acg aat tot ggc tac ggt tto cga cac gta tgg gcc agc ttg
                                                                                   1344
10
                Ala Ser Thr Asn Ser Gly Tyr Gly Phe Arg His Val Trp Ala Ser Leu
                                            440
                        435
                gaa aaa tgc cta cgc gac gag caa atc atg gaa gaa aca ggg ctt tca
                Glu Lys Cys Leu Arg Asp Glu Gln Ile Met Glu Glu Thr Gly Leu Ser
                    450
                                         455
15
                                                                                   1440
                cga gct acc gtg acg cgc cat tgg gtg cac tgc gag agg ctg gcc tgc
                Arg Ala Thr Val Thr Arg His Trp Val His Cys Glu Arg Leu Ala Cys
                                                                             480
                                                         475
                                    470
                465
                tgc caa atc ctt agg ggg gct cac gcc gta cac aga taacggttcc cacccc 1492
                Cys Gln Ile Leu Arg Gly Ala His Ala Val His Arg
20
                                 485
                                                     490
                 gtaggggtag cgcttggtcc ctgaagctcc ggctcccatc cctcctcagc actccctccc 1552
                cgaggggggg gctcacgccg tagacagata acggttccca ccccgtaggg gtagcgcttg 1612
                gtccctgaag ctctcacttc tggctcccct cctggccctc cttgagtgcc cacccataaa 1672
                tgcgaaatgc cgtcagcaga caacggttcc caccctggg gtcctcacaa caggctgcat 1732
                 cagggetete gacgettget ggetteatee ateaactget gggtgatete etegaacgea 1792
25
                 teettgateg egagtteete gaaateageg geagettget eecagtggat eegtteeage 1852
                 teeggeageg eegeceacag egecatgege aagtaggtte caegtgateg ettagtgege 1912
                 teggegageg egtecaggeg etegateage teeggtteea ggegeaegga gaccaegggg 1972
                 ccgcgtccgg cggggttctt ctggttggtg gccatgagaa atttcctctc gcttcggtag 2032
                 ttgtaaacaa tgtttacacc gtgtcgggga gaggggtttt tatttttctc ccgggcactt 2092
                 tcgagacggg tcatgccgta agcgaggcgc gtggccacac cgcactcggc gacgcaggtg 2152
30
                 tcacttgctc cccgactgtc ggccgggaag ggggcgcgca gagcgtccag gagcgccgta 2212
                 gagcgcctgg gacggttcgt gtggggactt ggtcgcccca cggggcttta atcgcttaaa 2272
                 aacgcgcaca gcgcatttct tgccacgggc tagcgcgtga ccgctgcgcg ctcacttgct 2332
                 caggaagaaa atcattcctc gcctaaagcg cttcgcgcgc tcgccctctc cgagggggaa 2392
                 aactaaccac acacctcatg cactaaagtg ctgatttgca ggtcagcgcg ttttagcgtg 2452
                 caaaaatagt gcggaaaacg gcgaaaatgg gggcgcgaca atcccctcag tggctcccca 2512
 35
                 aaattcacct attcacatct gctactggct gacttettte cegacaaggg gccctgtgag 2572
                 ggcgcaggtt gagccacttt tacgtcccgg agatcccttt agggcgtatt cgaggtgtgc 2632
                 tcagtgaccc gcttcggcgg ggtgggagta gccaaaagtc cgacattttt aacgaacgtt 2692
                 cgttaaaatg ggggcatgac tcagggacct ttgacctcag aaaccggcgc aatcctgaat 2752
                 gatcttggcg cagcagaccc tctcgatgtg gctgtccggg cacgggagag tgcgcatgtt 2812
 40
                 ctctctcaag tcgtggagtt tttagagcag atcggccggt ctgggggatag cgatttagac 2872
                 geggtgtatg agegtgattg geagetegat geagacaegt tgacetteat tgeceaggeg 2932
                  ttggaggggt tggcggacca ggccgaggcg aaggatgccg tgaacgaatg acggatatgt 2992
                  gtgcccaatg cggtggggaa atcccgcccc ggcctgaccc ccgcggacgc agggcgaagt 3052
                  attgctcgga tgcttgtcgg gcggcagcga gccgcgaacg cgcgcgccag cgccacgccc 3112
 45
                  aggaggtega ageegegegt etceaggeeg caetegatet gaaaaceeeg caggagaeee 3172
                  tggcagaggt agtccaggag cttcaggcca ccacccggat tatccgtgat cgaggggacg 3232
                  tgccagcgtc gctgcgtccg ctggttaatg ctgcatccga actggtcaac gcagcgcaac 3292
                  cggttgagga atctaagtca ttccccaacc ggcgagtgcg tcgtgcagtt aaacgaaagt 3352
                  ttgcgataag cgggtgatgt aactgatgga gatttttacc tggggggtgtc tccagcgagg 3412
                  tggccaagtc cgattgtgtt gaggattacc ccaaacgtgc ggggattatt caaaatccac 3472
 50
                  tgtccaaccg cttttccggt taccccgcct ccgatgcagc ctacgagaat agagcccatg 3532
                  accattgcat tgtggctata tcccgcattt ggatccagcg ccgagaaact ggtgtaggca-3592
```

5 10	ccagcagcgc agcctgcaat gcgagcgcca atgataacca gggggagggc gcgaggcatt actcgatttt catctgtggt ctgtcgctga atcgaagcag tgatggcttc ttcaaatgct tcagggtttg acgtggggtc cgagactgtt gacgcagctt cctgcactgc cttgatgagg acatcttcag ggatggaatc attgaacatt cctcccagct cagaagtggt ttgaacgtta gccgaaggga catgcacatc gggggaagcc tgggcggctg gagcaattaa agacagcgac agtgaagcaa cgagagccgt tacagtggca cgagttttta aatacatgag gcgaacttaa caaaccattg ataggttgtc gtgcggtaaa gataagaaaa ggataaagat atgaaaacgt tattatgaa tctcttaggt gccgcgcttg taggagcggt aatcatggtc ttgacatggt tattattga ttttgatgca cctggagcat ggctcggatt ctttattatc accaccatca gtgattgctg ctttagaagt catccacgga ctttgggaaa aacggcaggg atcttccact gacaatgatt gataaaacct ggttgaacgg aatacaaaac gcgcaaaata accaggcagt taaaagaaaa accagataag ctgcaccaat acttgaaaaa tgttgaacgc cccgacagct	3712 3772 3832 3892 3952 4012 4072 4132 4192 4252
15	gtaactgtcg aggcgtcggc taacccccag tcatcagctg ggagaaagca ctcaaaa <210> 10 <211> 22 <212> DNA <213> Artificial Sequence	4369
20	<220> <223> Description of Artificial Sequence: primer for amplifying replication origin of pYM2	
25	<400> 10 aaccaggggg agggcgcgag gc <210> 11 <211> 26 <212> DNA <213> Artificial Sequence	22
30	<220> <223> Description of Artificial Sequence: primer for amplifying replication origin of pYM2	
35	<400> 11 tctcgtaggc tgcatccgag gcgggg <210> 12 <211> 32 <212> DNA	26
40	<213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for amplifying replication origin of pYM2	
45	<400> 12 gctctagagc aaccaggggg agggcgcgag gc	32
50	<210> 13 <211> 36 <212> DNA <213> Artificial Sequence	-

	<223> Description of Artificial Sequence: primer for amplifying replication origin of pYM2	
;	<400> 13 gctctagagc tctcgtaggc tgcatcggag gcgggg	36
	<210> 14 <211> 32 <212> DNA <213> Artificial Sequence	
15	<220> <223> Description of Artificial Sequence: primer for amplifying replication origin of pYM2	
	<400> 14 gctctagagc aaccaggggg agggcgcgag gc	32
20	<210> 15 <211> 36 <212> DNA <213> Artificial Sequence	
25	<220> <223> Description of Artificial Sequence: primer for amplifying replication origin of pYM2	
	<400> 15 gctctagagc tctcgtaggc tgcatcggag gcgggg	36
30	<210> 16 <211> 32 <212> DNA <213> Artificial Sequence	
35	<220> <223> Description of Artificial Sequence:primer for amplifying kanamycin resistant gene of Streptococcus faecalis	
40	<400> 16 cccgttaact gcttgaaacc caggacaata ac	32
45	<210> 17 <211> 30 <212> DNA <213> Artificial Sequence	
-	<pre><220> <223> Description of Artificial Sequence: primer for amplifying kanamycin resistant gene of Streptococcus faecalis</pre>	
50	<400> 17 cccgttaaca tgtacttcag aaaagattag	- 30

:	<210> 18 <211> 26 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: primer for amplifying Escherichia coli cloning vector pHSG399	
ı	<400> 18 gatatctacg tgccgatcaa cgtctc	26
15	<210> 19 <211> 25 <212> DNA <213> Artificial Sequence	
20	<220> <223> Description of Artificial Sequence: primer for amplifying Escherichia coli cloning vector pHSG399	
25	<400> 19 aggccttttt ttaaggcagt tattg	25

30 Claims

35

40

- A plasmid isolable from Corynebacterium thermoaminogenes, which comprises a gene coding for a Rep protein
 having the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having homology of 90% or
 more to the amino acid sequence shown in SEQ ID NO: 2, and has a size of about 4.4 kb or about 6 kb, or a derivative thereof.
- 2. The plasmid or the derivative thereof according to claim 1, which is isolable from *Corynebacterium* thermoaminogenes AJ12340 (FERM BP-1539), AJ12308 (FERM BP-1540) or AJ12310 (FERM BP-1542), has a size of about 4.4 kb and is represented by the restriction map shown in Fig. 1.
- 3. The plasmid or the derivative thereof according to claim 1, which is isolable from *Corynebacterium* thermoaminogenes AJ12309 (FERM BP-1541), has a size of about 6 kb and is represented by the restriction map shown in Fig. 2.
- The plasmid or the derivative thereof according to claim 1, which comprises a gene coding for a Rep protein having the amino acid sequence shown in SEQ ID NO: 2, 4 or 6.
 - The plasmid or the derivative thereof according to claim 1, which comprises a gene coding for a Rep protein having the amino acid sequence shown in SEQ ID NO: 8.

Fig. 1

Fig. 2

Fig. 6

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 076 094 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 11.04.2001 Bulletin 2001/15

(51) Int. Cl.7: C12N 15/74

- (43) Date of publication A2: 14.02.2001 Bulletin 2001/07
- (21) Application number: 00117225.3
- (22) Date of filing: 11.08.2000
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 12.08.1999 JP 22839199
- (71) Applicant: Ajinomoto Co., Inc. Tokyo 104 (JP)
- (72) Inventors:
 - Matsuzaki, Yumi,
 c/o Ajinimoto Co., Inc.
 Kawasaki-shi, Kanagawa (JP)
 - Kimura, Elichiro, c/o Ajinimoto Co., Inc. Kawasaki-shi, Kanagawa (JP)

- Nakamatsu, Tsuyoshi,
 c/o Ajinimoto Co., Inc.
 Kawasaki-shi, Kanagawa (JP)
- Kurahashi, Osamu,
 c/o Ajinimoto Co., Inc.
 Kawasaki-shi, Kanagawa (JP)
- Kawahara, Yoshio, c/o Ajinimoto Co., Inc. Kawasaki-shi, Kanagawa (JP)
- Sugimoto, Shinichi,
 c/o Ajinimoto Co., Inc.
 Kawasaki-shi, Kanagawa (JP)
- (74) Representative: HOFFMANN EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE)
- (54) Plasmid capable of autonomous replication in coryneform bacteria
- (57) Plasmid isolated from *Corynebacterium* thermoaminogenes or a derivative therof, wherein said plasmid has a size of about 4.4kb or about 6kb and comprises a gene coding for a Rep protein having the amino acid sequence shown in SEQ ID NO: 2 or a sequence at least 90% homologous to the same.

EUROPEAN SEARCH REPORT

Application Number

EP 00 11 7225

	DOCUMENTS CONSID			
Category	Citation of document with ir of relevant pass		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
A	FR 2 612 937 A (AJI 30 September 1988 (* claims 1,2 *		1-5	C12N15/74
A	EP 0 082 485 A (KYO 29 June 1983 (1983- * page 6 - page 7, * examples 1.1,2 *	06-29)	1-5	
A	EP 0 472 869 A (DEG 4 March 1992 (1992-		1-5	
				TECHNICAL FIELDS SEARCHED (Int.CI.7)
				C12N
				· ·
	The present search report has	been drawn up for all claims		
	Place of search	Date of completion of the searce	<u>, </u>	Examiner
	THE HAGUE	16 February 20	1	ca Vicente, T.
X:par Y:par doo A:tec	CATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with and current of the same category innological background n-written disclosure	E : earlier pale after the filit ther D : document o L : document o	inciple underlying the nt document, but pub ng date lited in the application alled for other reasons the same patent fami	lished on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 11 7225

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of Information.

16-02-2001

	Patent document ed in search repo		Publication date		Patent family member(s)	Publication date
FR	2612937	A	30-09-1988	JP JP JP AU BR KR PH US	2027856 C 7063383 B 63240779 A 616168 B 1161488 A 8801289 A 9606580 B 25252 A 5250434 A	26-02-1996 12-07-1995 06-10-1988 24-10-1991 29-09-1988 25-10-1988 20-05-1996 27-03-1991 05-10-1993
EP	0082485	A	29-06-1983	JP JP JP AT AU CA DE DE ES ES IL US	1960412 C 6091827 B 58105999 A 37198 T 556761 B 9162982 A 1199594 A 3279030 D 82485 T 518348 D 8404408 A 67510 A	10-08-1995 16-11-1994 24-06-1983 15-09-1988 20-11-1986 23-06-1983 21-01-1986 20-10-1988 22-12-1983 16-04-1984 16-07-1984 31-08-1988 01-12-1987
EP	0472869	A	04-03-1992	DE DE DK JP JP US	4027453 A 59100582 D 472869 T 2603011 B 4229183 A 5175108 A	05-03-1992 16-12-1993 03-01-1994 23-04-1997 18-08-1992 29-12-1992
						··

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82