Exercícios em computador

C1 Use os dados do arquivo WAGE1 para este exercício.

```
library(wooldridge)
data("wage1")
```

(i) Encontre o nível de escolaridade médio da amostra. Quais são os menores e os maiores valores de anos de educação?

```
medio <- mean(wage1$educ)
menor <- min(wage1$educ)
maior <- max(wage1$educ)</pre>
```

- Nível de escolaridade médio: 13
- Menor valor de educação: 0
- Maior valor de educação: 18
- (ii) Encontre o salário-hora médio da amostra. Ele parece alto ou baixo?

```
salario_medio <- (mean(wage1$wage))</pre>
```

(iii) Os dados salariais são reportados em dólares de 1976. Pesquisando na Internet ou em uma fonte impressa, encontre o Índice de Preços do Consumidor (IPC) para os anos de 1976 e 2013.

Ano	IPC
1976	56.9
2013	233.0

(iv) Use os valores do IPC da parte (iii) para encontrar o salário-hora médio em dólares de 2013. Agora o salário-hora médio parece razoável?

```
salario_medio * (233 / 56.9)
## [1] 24.14397
```

(v) Quantas mulheres existem na amostra? E quantos homens?

```
tabela <- table(wage1$female)
names(tabela) <- c("Homem", "Mulher")
tabela

## Homem Mulher
## 274 252</pre>
```

C2 Use os dados do arquivo BWGHT para responder a essas questões.

```
data("bwght")
```

(i) Quantas mulheres existem na amostra e quantas relataram fumar durante a gravidez?

```
qtde_mulheres <- nrow(bwght)
qtde_nao_fumantes <- sum(bwght$cigs > 0)
```

Existem 1388 na amostra e 212 relataram fumar durante a gravidez.

(ii) Qual é o número médio de cigarros consumidos por dia? A média é uma boa medida da mulher "típica" neste caso? Explique.

```
# media arredondada
round(mean(bwght$cigs))
```

[1] 2

O número médio de cigarros consumidos por dia não é condizente com a amostra. Cerca de 85% das mulheres não fumaram durante a gravidez. Isso ocorre pois o valor atribuído quando a mulher não é fumante é 0.

(iii) Entre mulheres que fumaram durante a gravidez, qual é o número médio de cigarros consumidos por dia? De que forma isso se compara com sua resposta ao item (ii) e por quê?

```
# media
mean(subset(bwght, cigs > 0)$cigs)
```

[1] 13.66509

Esse número é muito maior do que no caso anterior, porque excluímos 85% das observações da amostra que eram 0.

(iv) Encontre a média de fatheduc na amostra. Por que somente 1.192 observações são usadas para calcular essa média?

subconjunto da amostra que contem as observacoes que possuem NA na variavel fatheduc
nrow(subset(bwght, is.na(fatheduc)))

[1] 196

```
# media
mean(bwght$fatheduc, na.rm = TRUE)
```

[1] 13.18624

[1] 18.73928

Parte das observações na variável de educação dos pais possui NA, ou seja, não foi possível obter essa informação no momento da captura dos dados

(v) Relate a renda média familiar e seu desvio padrão em dólares.

```
# media
mean(bwght$faminc)

## [1] 29.02666

# desvio-padrao
sd(bwght$faminc)
```

C3 Os dados existentes no arquivo MEAP01 são do estado de Michigan no ano de 2001. Use estes dados para responder às seguintes questões.

```
data("meap01")
```

(i) Encontre os maiores e os menores valores de math4. Essa variação faz sentido? Explique.

```
# valor maximo
max(meap01$math4)

## [1] 100

# valor minimo
min(meap01$math4)
```

[1] 0

(ii) Quantas escolas têm uma taxa de aprovação perfeita no teste de matemática? Que porcentagem da amostra total isso representa?

```
# aprovacao perfeita = 100
round(100 * mean(meap01$math4 == 100), 2) # porcentagem arredondada
```

[1] 2.08

(iii) Quantas escolas têm taxas de aprovação em matemática de exatamente 50%?

```
# quantidade escolas com 50% de aprovacao em matematica
sum(meap01$math4 == 50)
```

[1] 17

(iv) Compare as taxas médias de aprovação em matemática e leitura. Qual teste tem a aprovação mais difícil?

```
apply(meap01[, c("math4", "read4")], FUN = mean, MARGIN = 2)
```

math4 read4 ## 71.90900 60.06188

(v) Encontre a correlação entre math4 e read4. O que você conclui?

```
cor(meap01$math4, meap01$read4)
```

[1] 0.8427281

As duas variáveis são positivamente e fortemente correlacionadas.

```
# gastos por aluno medio
mean(meap01$exppp)
```

(vi) A variável exppp são os gastos por aluno. Encontre o exppp médio e seu desvio padrão. Você diria que há uma variação ampla nos gastos por aluno?

```
## [1] 5194.865
```

```
# desvio-padrao
sd(meap01$exppp)
```

[1] 1091.89

O desvio-padrão mostra que existe uma ampla variação no gasto médio por aluno.

(vii) Suponha que a Escola A gaste US\$ 6.000 por estudante e a Escola B gaste US\$ 5.500 por aluno. Com que percentual os gastos da Escola A superam os da Escola B? Compare isso a $100 \cdot [\log(6.000) - \log(5.500)]$, que é a diferença percentual aproximada baseada na diferença dos logs naturais. Ver Seção A.4, no Apêndice A (Disponível no site da Cengage.)

```
round(((log(6000) - log(5500)) * 100), 2)
```

[1] 8.7

C4 Os dados contidos em JTRAIN2 são provenientes de um experimento de capacitação profissional direcionado para homens de baixa renda durante 1976-1977; ver Lalonde (1986).

```
data("jtrain2") # carregando base de dados do pacote do wooldridge
```

(i) Use a variável indicadora train para determinar a proporção de homens que recebeu treinamento profissional.

```
round((mean(jtrain2$train) * 100), 1)
```

[1] 41.6

(ii) A variável re78 são os ganhos de 1978, medidos em milhares de dólares de 1982. Encontre as médias de re78 para a amostra de homens que recebeu capacitação profissional e para aquela que não recebeu. A diferença é economicamente grande?

```
# sem treinamento
(sem_treino <- mean(subset(jtrain2, train == 0)$re78))</pre>
```

[1] 4.554802

```
# com treinamento
(com_treino <- mean(subset(jtrain2, train == 1)$re78))</pre>
```

[1] 6.349145

A diferença percentual entre quem fez o treinamento e quem não fez é de 33.2%.

(iii) A variável unem78 é um indicador de um homem estar desempregado ou não em 1978. Que proporção dos homens que receberam treinamento profissional está desempregada? E entre aqueles que não receberam treinamento? Comente sobre a diferença.

```
# criando dados com fatores e rotulos
treino <- factor(jtrain2$train, labels = c("sem treino", "com treino"))</pre>
unem <- factor(jtrain2$unem78, labels = c("empregado", "desempregado"))</pre>
# tabela que relaciona desemprego e treinamento
( tabela <- table(unem, treino, dnn = c("DESEMPREGO", "TREINAMENTO")) )</pre>
##
                 TREINAMENTO
## DESEMPREGO
                  sem treino com treino
##
     empregado
                        168
                                     140
                          92
                                      45
##
     desempregado
# porcentagem dos homens desempregados que receberam e nao receberam treinamento
round(prop.table(tabela, margin = 2)[2,] * 100, 2)
## sem treino com treino
##
        35.38
                   24.32
```

(iv) A partir dos itens (ii) e (iii), o programa de treinamento profissional parece ter sido efetivo? O que tornaria suas conclusões mais convincentes?

Os efeitos encontrados pela diferença do ganhos e pela taxa de desemprego sugerem que existe o treinamento impacta positivamente os trabalhadores.

C5 Os dados em FERTIL2 foram coletados de mulheres que viviam na República de Botsuana em 1988. A variável children refere-se ao número de filhos vivos. A variável eletric é um indicador binário igual a um se a residência da mulher tiver eletricidade, e zero se não tiver.

```
data("fertil2")
```

(i) Encontre os menores e os maiores valores de children da amostra. Qual é a média de children?

```
summary(fertil2$children)[c("Min.", "Max.", "Mean")]
## Min. Max. Mean
## 0.000000 13.000000 2.267828
```

(ii) Qual é a porcentagem de mulheres que têm eletricidade em casa?

```
round(mean(fertil2$electric, na.rm = TRUE) * 100, 2)
```

[1] 14.02

(iii) Calcule a média de children para aquelas sem eletricidade e faça o mesmo para as que têm eletricidade. Comente o que descobriu.

```
mean(subset(fertil2, electric == 0)$children) # com eletricidade

## [1] 2.327729

mean(subset(fertil2, electric == 1)$children) # sem eletricidade

## [1] 1.898527
```

A média de filhos para mulheres sem eletricidade é maior.

(iv) A partir do item (iii), você pode deduzir que ter eletricidade "causa" mulheres com menos filhos? Explique.

Não. A partir da observação constatada acima, não temos o suficiente para fazer esta afirmação.

C6 Use os dados contidos no arquivo COUNTYMURDERS para responder a essas questões. Use somente o ano de 1996. A variável murders é o número de assassinatos relatados no condado. A variável execs é o número de execuções de pessoas sentenciadas à morte ocorridas naquele determinado condado. A maioria dos estados norte-americanos tem pena de morte, mas alguns deles não.

```
data("countymurders") # carregando base de dados
df <- subset(countymurders, year == 1996) # filtrando apenas para o ano de 1996</pre>
```

(i) Quantos condados são listados no conjunto de dados? Destes, quantos tiveram zero assassinato? Qual é a porcentagem de condados que teve zero execução? (Lembre-se, use somente os dados de 1996.)

```
# quantidade de condados na base de dados
qtde_condados <- length(
    unique(
        df$countyid))
# porcentagem de condados em 1996 em nao houve execucao
pct <- round(100 * length(df$countyid[df$execs == 0]) / qtde_condados, 1)</pre>
```

Para o ano de 1996, existem 2197 condados. Em 98.6 destes condados, não houve execução.

(ii) Qual é o maior número de assassinatos? Qual é o maior número de execuções? Por que o número médio de execuções é tão pequeno?

```
max(df$murders)
## [1] 1403
max(df$execs)
## [1] 3
```

(iii) Calcule o coeficiente de correlação entre murders e execs e descreva o que encontrar.

```
cor(df$murders, df$execs)
## [1] 0.2095042
```

Existe uma relação positiva entre murders e execs, contudo essa correlação não é forte.

(iv) Você deve ter encontrado uma correlação positiva no item (iii). Você acha que mais execuções causam mais assassinatos? O que poderia explicar a correlação positiva?

C7 O conjunto de dados do arquivo ALCOHOL contém informações sobre uma amostra de homens dos Estados Unidos. Duas variáveis principais são o status de emprego autorrelatado e o abuso de álcool (ao lado de muitas outras variáveis). As variáveis employ e abuse são ambas binárias, ou indicadores: elas só recebem os valores zero e um.

```
data("alcohol")
```

(i) Qual é a porcentagem de homens da amostra que relatou abuso de álcool? Qual é a taxa de emprego?

```
round(100 * mean(alcohol$abuse == 1), 1) # pct relatou abuso de alcool
## [1] 9.9
round(100 * mean(alcohol$employ == 1), 1) # pct empregados
```

(ii) Considere o grupo de homens que abusa de álcool. Qual é a taxa de emprego desse grupo?

[1] 89.8

```
mean(alcohol[(alcohol$abuse == 1), ]$employ)
```

[1] 0.8726899

(iii) Qual é a taxa de emprego do grupo de homens que não abusam de álcool?

```
mean(alcohol[(alcohol$abuse == 0), ]$employ)
```

[1] 0.9009946

(iv) Discuta a diferença de suas respostas aos itens (ii) e (iii). Isso permite que você conclua que o abuso de álcool causa desemprego?

A taxa de emprego para homens que relataram abuso de álcool, é menor do aqueles que não relataram abuso. Contudo, isso não implica, necessariamente, em causalidade.