#### Conceitos Básicos

Processamento Analítico de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri Prof. Dr. Ricardo Rodrigues Ciferri

#### Data Warehousing

Engloba arquiteturas, algoritmos e ferramentas que possibilitam que dados selecionados de provedores de informação autônomos, heterogêneos e distribuídos sejam integrados em uma única base de dados, conhecida como data warehouse (DW)

## Acesso às Informações

#### Duas etapas

- a informação de cada provedor é extraída previamente, devendo ser traduzida, filtrada, integrada à informação relevante de outros provedores e finalmente armazenada no DW
- as consultas, quando realizadas, são executadas diretamente no DW, sem acessar os provedores de informação originais

### Exemplos de Análises

- Análises de tendências simples
  - Quais as vendas mensais de um certo produto no ano de 1998?
- Análises comparativas
  - Quais as vendas mensais dos produtos de uma dada marca nos últimos 3 anos?
- Análises de tendência múltiplas
  - Quais as vendas mensais dos produtos de uma data marca nos últimos 3 anos, de acordo com as promoções de Natal?

### Vantagens

- Análises podem ser realizadas mais rapidamente
  - DW armazena informações integradas, cujas diferenças semânticas e de modelo já foram eliminadas
- Existe maior disponibilidade dos dados
  - consultas são executadas diretamente no DW sem acessar os provedores de informação originais

## Vantagens

- Garante a autonomia dos provedores de informação originais
  - processamento local nos provedores de informação originais não é afetado por causa da participação destes no ambiente de data warehousing

•

#### Visão do Mercado

Crescimento explosivo do uso da tecnologia de data warehousing



#### Pensamento Motivacional

A obtenção de informações estratégicas, relativas ao contexto de tomada de decisão, é de suma importância para o sucesso de uma empresa. Tais informações permitem à empresa um planejamento rápido frente às mudanças nas condições do negócio, essencial na atual conjuntura de um mercado globalizado.

|                                         | Ambiente Operacional                           | Ambiente Informacional                     |
|-----------------------------------------|------------------------------------------------|--------------------------------------------|
| Principal<br>Característica             | voltado ao processamento<br>de transações OLTP | voltado ao processamento de consultas OLAP |
| Tipos de<br>Operação mais<br>Freqüentes | atualização<br>remoção<br>inserção             | leitura (consulta)                         |

o termo OLAP (on-line analytical processing) foi introduzido em 1993 por Codd *et al.* para definir a categoria de processamento analítico sobre um banco de dados histórico voltado para os processos de gerência e tomada de decisão

|                                   | Ambiente Operacional                                       | Ambiente Informacional                                                                                             |
|-----------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Volume de<br>Transações           | relativamente alto                                         | relativamente baixo                                                                                                |
| Características<br>das Transações | pequenas e simples,<br>acessam poucos registros<br>por vez | longas e complexas,<br>acessam muitos registros por<br>vez e realizam várias<br>varreduras e junções de<br>tabelas |

|                                       | Ambiente Operacional                                                           | Ambiente Informacional                                                                 |
|---------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Tipos de<br>Usuários                  | administradores do<br>sistema, projetistas,<br>usuários de entrada de<br>dados | usuários de SSD<br>por exemplo: executivos,<br>analistas, gerentes,<br>administradores |
| Número de<br>Usuários<br>Concorrentes | grande<br>(geralmente milhares)                                                | relativamente pequeno<br>(geralmente centenas)                                         |
| Interações com<br>os Usuários         | pré-determinadas<br>estáticas                                                  | <i>ad-hoc</i><br>dinâmicas                                                             |

|                              | Ambiente Operacional                             | Ambiente Informacional                                                            |
|------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|
| Volume de Dados              | megabytes a gigabytes                            | gigabytes a terabytes                                                             |
| Projeto do Banco<br>de Dados | normalizado para suporte<br>às propriedades ACID | multidimensional, refletindo as<br>necessidades de análise dos<br>usuários de SSD |
| Granularidade<br>dos Dados   | detalhado                                        | detalhado e agregado                                                              |

|                                 | Ambiente Operacional                                              | Ambiente Informacional                                   |
|---------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|
| Principal Questão de Desempenho | produtividade da<br>transação                                     | produtividade da consulta                                |
| Tempo de<br>Resposta            | geralmente poucos<br>segundos                                     | de minutos a horas                                       |
| Exemplos de aplicações          | transações bancárias,<br>empréstimos de livros,<br>contas a pagar | planejamento de <i>marketing</i> ,<br>análise financeira |

## Arquitetura Típica



### Componente: DW

- Coração do ambiente de data warehousing
- Banco de dados
  - voltado para o suporte aos processos de gerência e tomada de decisão
  - tem como principais objetivos prover eficiência e flexibilidade na obtenção de informações estratégicas e manter os dados sobre o negócio com alta qualidade

#### Características dos Dados

- Orientados a assunto
  - relativos aos temas de negócio de maior interesse da corporação
  - exemplos: clientes, produtos, promoções, contas e vendas
- Integrados
  - dados obtidos dos provedores de informação corrigidos para eliminar possíveis inconsistências

#### Características dos Dados

- Não-voláteis
  - o conteúdo do DW permanece estável por longos períodos de tempo
- Históricos
  - relevantes a algum período de tempo
  - exemplo: usualmente dados relativos a um grande espectro de tempo (5 a 10 anos) encontram-se disponíveis

#### Características dos Dados

- Organizados em diferentes níveis de agregação
  - nível inferior: dados primitivos coletados do ambiente operacional
  - níveis intermediários: dados com graus de agregação crescente
  - nível superior: dados altamente resumidos (agregados)

devido ao volume de dados armazenados no DW, esses dados podem ser transferidos periodicamente para o nível antigo

## Níveis de Agregação



## Níveis de Agregação



#### Granularidade

- Grau de detalhamento em que os dados são armazenados em um nível
- Questão de projeto muito importante
  - impactua no volume de dados armazenado
  - afeta as consultas que podem ser respondidas

#### Granularidade

nível muito pequeno



tamanho do data warehouse é muito grande



praticamente qualquer consulta pode ser respondida

nível muito alto



tamanho do data warehouse é menor



número de consultas que podem ser respondidas é menor

# Componente: Provedores de Informação

- Fontes de dados
  - autônomas
  - heterogêneas
  - distribuídas
- Contêm dados operacionais
- Exemplos
  - SGBD relacionais, objeto-relacionais, ...
  - documentos HTML, SGML, ...

## Componente de Integração e Manutenção

- Carregamento dos dados
  - atividade mais complexa, cara e demorada
  - essencial ao bom funcionamento do ambiente de data warehousing
  - processos
    - extração– integração
    - traduçãoarmazenamento
    - limpeza recuperação de falhas

fluxo de informação: provedores de informação → DW

#### Carregamento dos Dados

- Extração
  - quais dados são extraídos de quais provedores
  - como esses dados são extraídos
- Tradução
  - conversão dos dados do formato nativo dos provedores de informação para o formato utilizado pelo ambiente de data warehousing
  - manutenção da temporalidade dos dados

#### Carregamento dos Dados

#### Limpeza

 garante a corretude e a qualidade dos dados, de forma que esses dados atendam às restrições de integridade impostas pelas regras de negócio

#### Integração

 geração de um dado único a partir de várias cópias do mesmo dado extraídas de diferentes provedores

#### Integração dos Dados

- Problema: dados armazenados nos provedores
  - são heterogêneos
    - seguem diferentes modelos de dados
    - são representados por conceitos diferentes
    - possuem diferentes formatos
    - etc
  - são redundantes, inconsistentes e até mesmo complementares
- Dois níveis: esquema e instância

## Integração: Nível de Esquema

- Conflitos de nome
  - refere-se aos nomes que representam os diferentes elementos a serem integrados
  - problema dos sinônimos: diferentes nomes são aplicados ao mesmo elemento
    - exemplo: cliente representa, em um esquema, todos os clientes atendidos por uma loja, enquanto que comprador é usado em outro esquema para representar a mesma situação
  - problema dos homônimos: mesmo nome é aplicado a diferentes elementos

## Integração: Nível de Esquema

- Conflitos semânticos
  - surgem quando o mesmo elemento é modelado em diferentes esquemas, porém representando conjuntos que se sobrepõem
    - exemplo: produto representa, em um esquema, todos os produtos de um supermercado, enquanto que produto é usado em outro esquema para representar apenas os produtos da seção de cosméticos

## Integração: Nível de Esquema

- Conflitos estruturais
  - surgem sempre que diferentes construtores estruturais são utilizados para modelar o mesmo conceito representado em diferentes aplicações
    - exemplo: considerando-se o modelo entidaderelacionamento, o mesmo conjunto de objetos do mundo real pode ser representado como um tipo-entidade em um esquema e como um atributo de um tipo-entidade em outro esquema

### Integração: Nível de Instância



#### Carregamento dos Dados

- Armazenamento
  - realização de processamentos adicionais, como verificação de restrições de integridade, geração de agregações, construção de índices, etc
- Recuperação de Falhas
  - evita que tanto leituras desnecessárias aos dados dos provedores de informação quanto computações cujos resultados já foram armazenados no DW sejam realizadas novamente

## Componente de Integração e Manutenção

- Atualização dos dados
  - periodicidade
    - necessidades dos usuários de SSD
    - nível de consistência desejado
  - manutenção dos dados
    - recomputação: conteúdo do DW é descartado e os dados são carregados novamente a partir dos provedores de informação operacionais
    - atualização incremental: apenas as alterações nos dados dos provedores são refletidas no DW

## Componente de Integração e Manutenção

- Expiração dos dados
  - remoção de dados do DW visando diminuir o volume de dados armazenado
  - pode ocorrer quando
    - dados atingem o limite de tempo no qual tornam-se inválidos
    - dados não são mais relevantes ou necessários ao ambiente de data warehousing
    - espaço de armazenamento é insuficiente

## Componente de Análise e Consulta

- Permite a interação do usuário com o ambiente de data warehousing por meio de ferramentas dedicadas à análise e consulta dos dados
- Ferramentas
  - oferecem facilidades de navegação e de visualização
  - possuem diferentes classificações, com base nas funcionalidades oferecidas

- De consulta gerenciáveis e geradores de relatório
  - tipos mais simples de ferramentas
  - têm como objetivo produzir relatórios periódicos
  - permitem que os usuários realizem consultas independentemente da estrutura do banco de dados e/ou da linguagem de consulta

- Para sistemas de informações executivas
  - oferecem visualização gráfica simplificada, por exemplo representando exceções a atividades normais de negócio ou a regras por meio de diferentes cores
  - oferecem capacidades analíticas limitadas

#### OLAP

- oferecem capacidades analíticas sofisticadas, permitindo que os dados sejam analisados usando visões multidimensionais complexas e elaboradas
- oferecem navegação facilitada nessas visões
  - exemplo: usuários de SSD podem analisar os dados sob diferentes perspectivas e determinar tendências por meio da navegação entre diferentes níveis de hierarquias de agregação

- De mineração de dados
  - permitem que informações, padrões e tendências de negócio "escondidas" nos dados sejam descobertas

IMPORTANTE: Independentemente da ferramenta utilizada, um fator primordial refere-se à visualização dos resultados obtidos. Técnicas de visualização dos dados devem determinar a melhor forma de se exibir relacionamentos e padrões complexos em um monitor bidimensional, de modo que o problema inteiro e/ou a solução sejam claramente visíveis usuários de SSD

### Componente: Data Mart

- DW que possui escopo limitado
- Armazena dados que compartilham as mesmas características dos dados do DW
- Enfoques
  - subconjunto dos dados do DW
  - política no projeto de construção de um DW corporativo

## Componente: Repositório de Metadados

- Dados de nível mais alto que descrevem dados de nível mais baixo
- Características
  - permite que os usuários de SSD conheçam a estrutura e o significado dos dados
  - representa o principal recurso para a administração dos dados no ambiente de data warehousing

### Exemplos de Metadados

Metadados Administrativos contêm informações relacionadas à construção e à utilização do data warehousing, tais como os esquemas dos provedores de informação e do DW, além dos mapeamentos existentes entre os diversos esquemas; regras de extração, de tradução, de limpeza e atualização dos dados, em adição às regras mapeamento utilizadas para a solução de problemas de heterogeneidade existentes entre os dados dos diversos provedores de informação que participam do ambiente; especificações sobre grupos de usuários e privilégios a eles associados, incluindo políticas de controle de acesso, autorização e perfis; ferramentas de integração e manutenção, e regras associadas aos processos envolvidos; ferramentas de análise e consulta; consultas, agregações e relatórios pré-definidos

### Exemplos de Metadados

| Metadados<br>Específicos da<br>Aplicação | incluem um conjunto de terminologias específicas ao domínio da aplicação, além de restrições da aplicação e outras políticas                                                                                                                                                                                                                                 |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metadados de<br>Auditoria                | mantêm informações relacionadas à linhagem dos dados, à geração de relatórios de erros, às ferramentas de auditoria empregadas e às estatísticas de utilização do ambiente de data warehousing, incluindo dados sobre a freqüência das consultas, os custos para se processar uma determinada consulta, o tipo de acesso aos dados e o desempenho do sistema |

classificação baseada em Wu, M.-C., Buchmann, A.P. Research Issues in Data Warehousing. In *Proceedings of The German Database Conference*, pages 61-82, Ulm, Germany, March 1997.