AMENDMENTS TO THE CLAIMS

This listing will replace all prior versions, and listings, of claims, in the application:

Listing of Claims:

What is claimed is:
Claim 1. (canceled)
Claim 2 (currently amended) Polyaminomethylenephosphonate derivatives
according to the preceding claim wherein n is preferably between 2 and 15000, and each R
group, being the same or different, is independently selected from the following classes:
1. CH ₂ PO ₃ M ₂ where M may be hydrogen or an suitable cation such as alkali metal or
ammonium;
2. CH ₂ R con R = CH ₂ OH; CHOHCH ₂ ; CHOHCH ₂ Cl; CHOHCH ₂ OH
3. (CH ₂) _n SO ₃ M con n = 3÷4 where M may be hydrogen or a suitable cation such as alkali
metal or ammonium;
4. CH_2CH_2R con $R = CONH_2$, CHO , $COOR_1$, $COOX$, CN
$\frac{\text{con } R_1 = CH_2 \div C_2 H_5}{\text{con } R_1 = CH_2 \div C_2 H_5}$
where X may be hydrogen or a suitable cation such as alkali metal or
ammonium.
With the premise that at least one of substituent R always is different from CH2PO3Mz-
A goals inhibitor comprising at least one polymethylenephosphate derivative having the

A scale inhibitor comprising at least one polymethylenephosphate derivative having the following formula:

$$\begin{array}{c|c} & R_1 & R_3 \\ & N & N \\ & N & CH_2PO_3M_2 \end{array}$$

wherein n is a number,

wherein M is a hydrogen or a cation,

wherein R₁, R₂, and R₃ are each independently selected from the group consisting of,

 $CH_2PO_3M_2$,

CH₂R₄, wherein R₄ is CHOHCH₃, CHOHCH₂Cl, or CHOHCH₂OH,

(CH₂)_mSO₃M, wherein m is 3 or 4, and

 $CH_2CH_2R_5$, wherein R_5 is $CONH_2$, CHO, $COOR_6$, COOX, or CN, wherein R_6 is CH_3 or C_2H_5 , and wherein X is an alkali metal or ammonium, and

wherein at least one of R_1 , R_2 , and R_3 is not $CH_2PO_3M_2$.

Claim 3 (currently amended)

Polyaminomethylenephosphonate derivatives The scale inhibitor according to claim 2, wherein also at least [[on]]one of the terminal CH₂PO₃H₂ mojeties ubstituted by one of the mojeties under the above points 1 to 4 CH₂PO₃M₂ moieties in a terminal position on the molecule is replaced by a moiety selected from the group consisting of CH₂R₄, (CH₂)_mSO₃M, and CH₂CH₂R₅.

Claim 4 (currently amended)

Process for the preparation of the

polyaminomethylenephosphonate derivative according to claims 1 or 2, comprising The scale

inhibitor of claim 2, wherein the polyaminomethylenephosphonate derivative is produced by a

process of phosphonomethylation of polyamine derivatives by means of employing the Mannich
reaction.

Claim 5 - 7 (canceled)

Claim 8 (new): The precipitation inhibitor according to claim 2, wherein n is a number in the range 2 to 15,000.

Claim 9 (new): The precipitation inhibitor according to claim 2, wherein the cation is an alkali metal or ammonium.

Claim 10 (new): A method for inhibiting scale formation in water, the method comprising the step of adding to the water a scale inhibitor comprising at least one polymethylenephosphonate derivative having the following formula:

$$R_1$$
 N
 N
 $CH_2PO_3M_2$

wherein n is a number,

wherein M is hydrogen or a cation,

wherein R₁, R₂, and R₃ are each independently selected from the group consisting of,

 $CH_2PO_3M_2$,

CH₂R₄, wherein R₄ is CHOHCH₃, CHOHCH₂Cl, or CHOHCH₂OH,

 $(CH_2)_mSO_3M$, wherein m is 3 or 4, and

 $CH_2CH_2R_5$, wherein R_5 is $CONH_2$, CHO, $COOR_6$, COOX, or CN, wherein R_6 is CH_3 or C_2H_5 , and wherein X is a an alkali metal or ammonium, and wherein at least one of R_1 , R_2 , and R_3 is not $CH_2PO_3M_2$.

Claim 11 (new): The method according to claim 10, further comprising the step of precipitating the polymethylenephosphonate derivative on a metal surface in contact with the water, thereby preventing corrosion of the metal surface.

Claim 12 (new): A method for sequestering iron ions in a water system, the method comprising the step of providing the water in the water system with a scale inhibitor comprising at least one polymethylenephosphonate derivative having the following formula:

$$R_1$$
 N
 N
 $CH_2PO_3M_2$
 R_3
 N
 $CH_2PO_3M_2$

wherein n is a number,

wherein M is hydrogen or a cation,

wherein R₁, R₂, and R₃ are each independently selected from the group consisting of,

 $CH_2PO_3M_2$,

CH₂R₄, wherein R₄ is CHOHCH₃, CHOHCH₂Cl, or CHOHCH₂OH,

(CH₂)_mSO₃M, wherein m is 3 or 4, and

 $CH_2CH_2R_5$, wherein R_5 is $CONH_2$, CHO, $COOR_6$, COOX, or CN, wherein R_6 is CH_3 or C_2H_5 , and wherein X is an alkali metal or ammonium, and wherein at least one of R_1 , R_2 , and R_3 is not $CH_2PO_3M_2$.