

Spam Detection

Spam vs. non-Spam

Dear Professor Georges,

I have a few more questions about task sheet 1.

Should we create an FST in Python ourselves to normalize the text, or may we also use other normalization methods?

Email containing non-sense (Spam)

Spam or ham?

Spam or ham?

$$SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} P(S|\underline{w})$$

Rings a bell?

Let w be the word sequence.

Question: How to model a spam filter using Bayes classifier?

Let w be the word sequence.

Question: How to model a spam filter using Bayes classifier?

Answer: A Spam Filter, denoted by $SF(\underline{w})$, taking \underline{w} as input, can be modeled as:

$$SF(\underline{w}) = ...$$

$$SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} ...?$$

$$SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} P(S|\underline{w})$$


```
SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} P(S|\underline{w})= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)/P(\underline{w})
```



```
SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} P(S|\underline{w})
= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)/P(\underline{w})
= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)
```


$$SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} P(S|\underline{w})$$

$$= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)/P(\underline{w})$$

$$= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)$$

Question: What needs to be estimated?


```
SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} P(S|\underline{w})
= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)/P(\underline{w})
= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)
```

$$P(\underline{w}|spam) = P_{spam}(\underline{w})$$

 $P(\underline{w}|no-spam) = P_{no-spam}(\underline{w})$ Question: How to compute that?

$$SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} P(S|\underline{w})$$

$$= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)/P(\underline{w})$$

$$= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)$$

$$P(\underline{w}|spam) = P_{spam}(\underline{w})$$

 $P(\underline{w}|no-spam) = P_{no-spam}(\underline{w})$
How about an n-gram language model?

$$SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} P(S|\underline{w})$$

$$= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)/P(\underline{w})$$

$$= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)$$

$$P(\underline{w}|spam) = P_{spam}(\underline{w})$$

 $P(\underline{w}|no-spam) = P_{no-spam}(\underline{w})$
How about an n-gram language model?

Question:

Which quantity is missing?


```
SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} P(S|\underline{w})
= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)/P(\underline{w})
= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)
```

$$P(\underline{w}|spam) = P_{spam}(\underline{w})$$

 $P(\underline{w}|no-spam) = P_{no-spam}(\underline{w})$
How about an n-gram language model?

P(S) => Question: How to compute that?

$$SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} P(S|\underline{w})$$

$$= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)/P(\underline{w})$$

$$= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)$$

$$P(\underline{w}|spam) = P_{spam}(\underline{w})$$

 $P(\underline{w}|no-spam) = P_{no-spam}(\underline{w})$
How about an n-gram language model?

$$P(spam) + P(no-spam) = 1.0$$
 Question: How to compute that?

Predictor Prior Probability

$$SF(\underline{w}) = argmax_{S=\{spam, no-spam\}} P(S|\underline{w})$$

$$= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)/P(\underline{w})$$

$$= argmax_{S=\{spam, no-spam\}} P(\underline{w}|S)P(S)$$

Likelihood

$$P(\underline{w}|spam) = P_{spam}(\underline{w})$$

$$P(\underline{w}|no-spam) = P_{no-spam}(\underline{w})$$
How about an n-gram language model?

Class Prior

$$P(spam) + P(no-spam) = 1.0$$
 can be estimated

Language Identification

Language Identification (LID)

"Wenn wir das nehmen und darauf aufbauen, dann können wir einen Schritt weiter gehen: Wenn das Meer nicht glücklich ist, ist keiner glücklich."

English or German?

"And if we just take that and we build from there, then we can go to the next step, which is that if the ocean ain't happy, ain't nobody happy. "

English or German?

$$LID(\underline{w}) = argmax_{L=\{de,en\}} P(L|\underline{w})$$

$$LID(\underline{w}) = \underset{=}{\text{argmax}_{L=\{de,en\}}} P(L|\underline{w})$$

$$= \underset{=}{\text{argmax}_{L=\{de,en\}}} P(\underline{w}|L)P(L)/P(\underline{w})$$

$$= \underset{=}{\text{argmax}_{L=\{de,en\}}} P(\underline{w}|L)P(L)$$

$$P(\underline{w}|L) = ? P(L) = ?$$

$$LID(\underline{w}) = \underset{=}{\text{argmax}_{L=\{de,en\}}} P(L|\underline{w})$$

$$= \underset{=}{\text{argmax}_{L=\{de,en\}}} P(\underline{w}|L)P(L)/P(\underline{w})$$

$$= \underset{=}{\text{argmax}_{L=\{de,en\}}} P(\underline{w}|L)P(L)$$

$$P(\underline{w}|de) = P_{German}(\underline{w})$$
 $P(\underline{w}|en) = P_{English}(\underline{w})$
How about an n-gram language model?

$$LID(\underline{w}) = \underset{=}{\text{argmax}_{L=\{de,en\}}} P(L|\underline{w})$$

$$= \underset{=}{\text{argmax}_{L=\{de,en\}}} P(\underline{w}|L)P(L)/P(\underline{w})$$

$$= \underset{=}{\text{argmax}_{L=\{de,en\}}} P(\underline{w}|L)P(L)$$

$$P(\underline{w}|de) = P_{German}(\underline{w})$$

 $P(\underline{w}|en) = P_{English}(\underline{w})$
How about an n-gram language model?

$$P(de) + P(en) = 1.0$$

Usually uniformly distributed, depends on application

$$P(\underline{w}|de) = P_{German}(\underline{w}) = P_{German}(F(\underline{w}))$$

 $P(\underline{w}|en) = P_{English}(\underline{w}) = P_{English}(F(\underline{w}))$

F(w) := Text preprocessing

- Tokenization
- Character Set
- Punctuation
- •

LID with n-gram Language Models

Different characterbased n-gram models

LID too booring?

Multi-lingual ...

- Automatic Speech Recognition
- Spoken Language Understanding

	Play Music	Increase	Decrease	Stop	Reference
Play Music	0.8	0	0	0.2	
Increase	0	0.5	0.4	0.1	
Decrease	0	0.4	0.5	0.1	
Stop	0.2	0.1	0.1	0.6	
Prediction		•	•	•	•

Prediction

	Р	lay	Music	Increase	Decrease	Stop	Referenc
Play Music			0.8	0	0	0.2	
Increase			0	0.5	0.4	0.1	
Decrease			0	0.4	0.5	0.1	
Stop			0.2	0.1	0.1	0.6	
Prediction					•		a.

"Play Music" was correctly recognized in 80% of all cases

	Play Music	Inc	rease	Decrease	Stop	Reference
Play Music	0.8		0	0	0.2	
Increase	0		0.5	0.4	0.1	
Decrease	0		0.4	0.5	0.1	
Stop	0.2		0.1	0.1	0.6	
Prediction						•

"Increase"was correctly recognized in 50% of all cases

	Play Music	Increase	Decrease	Stop	Reference
Play Music	0.8	0	0	0.2	
Increase	0	0.5	0.4	0.1	
Decrease	0	0.4	0.5	0.1	
Stop	0.2	0.1	0.1	0.6	
Prediction			•		•

"Decrease" was confused with "Increase" in 40% of all cases.

	Play Music	Increase	Decrease	Stop	Reference
Play Music	0.8	0	0	0.2	
Increase	0	0.5	0.4	0.1	
Decrease	0	0.4	0.5	0.1	
Stop	0.2	0.1	0.1	0.6	
Prediction		•	•		→

Ideally:
each diagonal
element in matrix
equal to 1.0

	Play Music	Increase	Decrease	Stop	Reference
Play Music	0.8	0	0	0.2	
Increase	0	0.5	0.4	0.1	
Decrease	0	0.4	0.5	0.1	
Stop	0.2	0.1	0.1	0.6	
Prediction					•

Wanted:
Metric telling
"how diagonal is
the matrix"?

Evaluation

"A systematic determination of a subject's merit, worth and significance, using criteria governed by a set of standards."

True/False Positive/Negative

True Positive: A (spam) E-Mail is correctly recognized as spam

True Negative: A (non-spam) E-Mail is correctly recognized as non-spam

False Positive: A (non-spam) e-mail is incorrectly recognized as spam

Accuracy

$$ext{ACC} = rac{ ext{TP} + ext{TN}}{ ext{P} + ext{N}} = rac{ ext{TP} + ext{TN}}{ ext{TP} + ext{TN} + ext{FP} + ext{FN}}$$

condition positive (P) := TP + FN

condition negative (N) := TN + FP

True Positive: A (spam) E-Mail is correctly recognized as spam

True Negative: A (non-spam) E-Mail is correctly recognized as non-spam

False Positive: A (non-spam) e-mail is incorrectly recognized as spam

Precision

"Rate of relevant instances among the retrieved instances."

Positive Predictive Value (PPV)

$$ext{PPV} = rac{ ext{TP}}{ ext{TP} + ext{FP}}$$

True Positive: A (spam) E-Mail is correctly recognized as spam

True Negative: A (non-spam) E-Mail is correctly recognized as non-spam

False Positive: A (non-spam) e-mail is incorrectly recognized as spam

Recall

"Rate of the total amount of relevant instances that were actually retrieved."

Sensitivity, Hit Rate, True Positive Rate (TPR)

$$ext{TPR} = rac{ ext{TP}}{ ext{P}} = rac{ ext{TP}}{ ext{TP} + ext{FN}}$$

condition positive (P) := TP + FN

True Positive: A (spam) E-Mail is correctly recognized as spam

True Negative: A (non-spam) E-Mail is correctly recognized as non-spam

False Positive: A (non-spam) e-mail is incorrectly recognized as spam

Fall-Out

False Positive Rate (FPR)

$$ext{FPR} = rac{ ext{FP}}{ ext{N}} = rac{ ext{FP}}{ ext{FP} + ext{TN}}$$

condition negative (N) := TN + FP

True Positive: True Negative: False Positive: False Negative: A (spam) E-Mail is correctly recognized as spam
A (non-spam) E-Mail is correctly recognized as non-spam
A (non-spam) e-mail is incorrectly recognized as spam
A (spam) e-mail is incorrectly recognized as non-spam

F_{β} - Score

F1 Score for β = 1 (or Sørensen–Dice Coefficient)

P: Precision

R : Recall

F_{β} -Score

Use it only if your test set contains an equal amount of samples per class!

If your test set is imbalanced w.r.t. class sample size, the score is misleading!

Matthews Correlation Coefficient

Robustness despite imbalanced data set (w.r.t. #samplesPerClass)

$$\text{MCC} = \frac{\text{TP} \times \text{TN} - \text{FP} \times \text{FN}}{\sqrt{(\text{TP} + \text{FP})(\text{TP} + \text{FN})(\text{TN} + \text{FP})(\text{TN} + \text{FN})}}$$

True Positive: True Negative: False Positive: False Negative: A (spam) E-Mail is correctly recognized as spam
A (non-spam) E-Mail is correctly recognized as non-spam
A (non-spam) e-mail is incorrectly recognized as spam
A (spam) e-mail is incorrectly recognized as non-spam