Interrogation écrite 2

L2 EG : Techniques Quantitatives pour l'Économie Année 2024-2025

> 21 Novembre 2024 Durée : 1h

Attention : Lorsqu'un calcul est demandé, il est attendu que les étapes permettant d'aboutir au résultat soient détaillées. Plus généralement, toute réponse doit être justifiée.

Exercice 1 (Loi géométrique)

Rappels:

- On dit que la variable aléatoire X suit la **loi géométrique** de paramètre $p \in]0,1[$ et on note $X \sim \mathcal{G}(p)$ si X prend ses valeurs dans \mathbb{N}^* et si pour tout $k \in \mathbb{N}^*$, $\mathbb{P}(X=k) = (1-p)^{k-1}p$.
- On rappelle l'**identité binomiale**. Pour $n_0 \in \mathbb{N}$ et $x \in]-1,1[$, on a :

$$\sum_{k=n_0}^{+\infty} \binom{k}{n_0} x^{k-n_0} = \frac{1}{(1-x)^{n_0+1}}$$

Soit p = 0, 34. Soit $X \sim \mathcal{G}(p)$.

1/ Calculer $\mathbb{E}(X)$.

2/ Calculer $\mathbb{E}(X(X+1))$.

3/ Calculer $\mathbb{V}(X)$.

Exercice 2 (Loi normale)

Rappel : valeur de l'intégrale de Gauss

On a:

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$

Interrogation 2 L2 EG TQE

Soit f la fonction définie par $f(x) = Ae^{-\frac{x^2}{2}}$ pour $x \in \mathbb{R}$, avec A > 0.

1/ Calculer la valeur de A qui permet à f d'être une densité de probabilité sur \mathbb{R} . Indication : On effectuera un changement de variable afin de se ramener à l'intégrale de Gauss présentée dans le rappel.

- 2/ Quelle est la parité de f? Quelle est la parité de la fonction g définie par g(x) = xf(x) pour $x \in \mathbb{R}$?
- 3/ En déduire, sans calcul, la valeur de $\int_{-\infty}^{+\infty} x f(x) dx$.
- 4/ Calculer $\int_{-\infty}^{+\infty} x^2 f(x) dx$.

Indication : On utilisera à cet effet une intégration par parties (IPP). On admettra que le terme "crochet" donné par cette IPP est nul.

Exercice 3 (Marche aléatoire simple)

Soit μ la distribution de probabilité donnée par :

$$\forall x \in \mathbb{Z}, \quad \mu(x) = \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{sinon} \end{cases}$$

Soit également Q la matrice donnée par :

$$\forall x, y \in \mathbb{Z}, \quad Q(x, y) = \begin{cases} \frac{1}{2} & \text{si } y = x + 1 \text{ ou } y = x - 1 \\ 0 & \text{sinon} \end{cases}$$

Autrement dit, Q est une matrice dont tous les coefficients sont nuls, exceptés les coefficients de la forme Q(x, x + 1) et Q(x, x - 1) qui valent $\frac{1}{2}$.

1/ Montrer que Q est stochastique.

Soit (X_n) la chaîne de Markov sur l'espace $E = \mathbb{Z}$ dont la loi initiale est μ et dont la matrice de transitions est Q.

 $\mathbf{2}$ / Donner la loi de X_0 puis la loi de X_1 .

Bonus (Loi de Cauchy)

À ne faire que si la totalité des exercices précédents ont été traités. On définit sur $\mathbb R$ la fonction f par :

$$\forall x \in \mathbb{R}, \ f(x) = \frac{A}{1 + \left(\frac{x - x_0}{a}\right)^2}$$

avec a, A > 0 et $x_0 \in \mathbb{R}$.

Calculer A de sorte que f soit une densité de probabilité sur \mathbb{R} . L'expression de A fera intervenir a.

Indication : On admettra qu'une primitive de la fonction $x\mapsto \frac{1}{1+x^2}$ définie sur $\mathbb R$ est la fonction \arctan et que $\arctan(x)\xrightarrow[x\to-\infty]{}-\frac{\pi}{2}$, $\arctan(x)\xrightarrow[x\to+\infty]{}\frac{\pi}{2}$.