## The RL Framework: The Problem

Friday, November 27, 2020 6:20 PM

3.1 The Agent - Environment Interface



At t=0: \* Observation: Situation presented to Agent (SL)

- · Action: Response to Observation (At)
- · One time step 12 ter: Remardis presented (Roti)
  along with new state, (Stat)

Assumption: Agent is able to fully observe state of environment

Episodic rs. Continuing Tasks

Episodic: "Well-defined Ending Point"

beig -> game: win/lose
-> car : car crashes

- · When end point resched:
  - · Consider reward
  - · over many lives, agent gets better!
  - · Taget sims to of culminative reward.

Continung: Interection continues without limit

. S. A. R., S., A. .....

. More complex (e.g. Stock Marker)

Chess Example:

The series of Action: Morning & Prece

The series of State: Config of Board

The series of State: Config of Board

The series of State: Config of Board

The series of State: On the series of the s

## 3.2 Gools & Rewards.

- "Reward Hypothesis". Maximize expected Culminative Reward
- · Renarding is subjective to the took
  - -> e-g reverd in context of robot learning to wolk?

    Ly what makes walking good?
- " We want rewards to be a scientific concept!
- · Scenario: Robot Walking
  - \* Actions: { Forces applied to joints }
  - \* States: 2 Position & Velocity of joints, Measurements of the ground, Contact Sensor Dates }
  - · Reward & Feedbook Mechanism }

 $r = min(\Upsilon_x, \Upsilon_{max}) - 0.005(\Upsilon_y^2 + \Upsilon_z^2)$ - 0.05y² - 0.02||u||² + 6.02

penslize: penslize Constant:

terque Reward for

center of track

( not follow

· What are we rewarding for?

1. foward velocity: walk fast

2. foward direction: walk foward

3. torque: walk smoothly

4. Constant: Walk as long of possible

· General: In general, rewarding can be of simple as +1 for win or Ta score board

## Questions:

al: How would you reward ascaping quickly
in a maze ascape game A: - I for every step taken (Part of reward)

Q2: What roward encourages board gamers to win?

## Table of environments

Neal McBurnett edited this page on Apr 17, 2019 · 7 revisions



Here is a synopsis of the environments as of 2019-03-17, in order by space dimensionality. See discussion and code in Write more documentation about environments: Issue #106.

| Environment Id           | Observation Space | Action Space | Reward<br>Range | tStepL | Trials | rThresh |
|--------------------------|-------------------|--------------|-----------------|--------|--------|---------|
| MountainCar-v0           | Box(2,)           | Discrete(3)  | (-inf, inf)     | 200    | 100    | -110.0  |
| MountainCarContinuous-v0 | Box(2,)           | Box(1,)      | (-inf, inf)     | 999    | 100    | 90.0    |
| Pendulum-v0              | Box(3,)           | Box(1,)      | (-inf, inf)     | 200    | 100    | None    |
| CartPole-v0              | Box(4,)           | Discrete(2)  | (-inf, inf)     | 200    | 100    | 195.0   |
| CartPole-v1              | Box(4,)           | Discrete(2)  | (-inf,<br>inf)  | 500    | 100    | 475.0   |
| Acrobot-v1               | Box(6,)           | Discrete(3)  | (-inf,<br>inf)  | 500    | 100    | -100.0  |
| LunarLander-v2           | Box(8,)           | Discrete(4)  | (-inf, inf)     | 1000   | 100    | 200     |