

GAN: Geometria Analítica

Cônicas - Elipse

Prof.: Francielle Kuerten Boeing

Elipse

Definição: Sejam F_1 e F_2 dois pontos distintos, 2c a distância entre eles e a um número real tal que a > c. Chamamos de elipse ao lugar geométrico dos pontos P(x, y) tais que

$$d(P, F_1) + d(P, F_2) = 2a$$

Elipse

Elementos:

- *F*₁, *F*₂: Focos;
- *F*₁*F*₂: Segmento focal;
- Ponto médio de F_1F_2 : Centro C;
- Distância focal: 2c;
- Eixo maior: A_1A_2 com comprimento 2a;
- Eixo menor: B_1B_2 com comprimento 2b;
- Vértices: A_1 , A_2 , B_1 e B_2 ;
- Excentricidade: $e = \frac{c}{a}$.

Observe que temos

$$a^2 = b^2 + c^2$$

Caso 1: Eixo maior sobre o eixo x (focos sobre o eixo x)

Caso 1: Eixo maior sobre o eixo x (focos sobre o eixo x)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(equação reduzida)

Caso 2: Eixo maior sobre o eixo y (focos sobre o eixo y)

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

(equação reduzida)

Elipse

OBS: No caso em que c = 0, obtemos

$$a^2 = b^2 + 0^2$$
$$\Rightarrow a = b.$$

Então temos uma circunferência e os dois focos coincidem com o centro. Assim, uma circunferência pode ser descrita pela equação

$$x^2 + y^2 = a^2,$$

onde a é o raio da circunferência.

Ex.1: A equação da elipse abaixo é

Ex.1: A equação da elipse abaixo é

$$x^2 + \frac{y^2}{9} = 1$$

Ex.2: Determine a equação da elipse com focos $F_1(-3,0)$ e $F_2(3,0)$, e a=5 e represente-a geometricamente.

UNIVERSIDADE Equação da Elipse: Centro em $C(x_0, y_0)$

Caso 1: O eixo focal F_1F_2 é paralelo ao eixo x

Caso 1: O eixo focal F_1F_2 é paralelo ao eixo x

Usando translação de eixos, obtemos

$$\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1$$

Caso 1: O eixo focal F_1F_2 é paralelo ao eixo x

Usando translação de eixos, obtemos

$$\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1$$

UNIVERSIDADE Equação da Elipse: Centro em $C(x_0, y_0)$

Caso 2: O eixo focal F_1F_2 é paralelo ao eixo y

Novamente usando translação de eixos, obtemos

$$\frac{(x - x_0)^2}{b^2} + \frac{(y - y_0)^2}{a^2} = 1$$

UNIVERSIDADE Equação da Elipse: Centro em $C(x_0, y_0)$

Caso 2: O eixo focal F_1F_2 é paralelo ao eixo y

Novamente usando translação de eixos, obtemos

$$\frac{(x - x_0)^2}{b^2} + \frac{(y - y_0)^2}{a^2} = 1$$

Ex.3 : Determine a equação da elipse com focos $F_1(-2,3)$ e $F_2(6,3)$ e cujo eixo maior mede $12 \ u.c.$ Represente-a geometricamente e determine seus elementos.

Ex.4 : Determine a equação que é satisfeita pelos pontos cuja soma das distâncias aos pontos $F_1(-2,4)$ e $F_2(-2,-1)$ é igual a 15 u.c. Represente-a geometricamente e determine seus elementos.

Ex.5 : Determine o centro, os vértices, os focos e a excentricidade da elipse de equação

$$4x^2 + 9y^2 - 8x - 36y + 4 = 0.$$

Ex. 6: Determine o centro, os vértices, os focos e a excentricidade da elipse de equação

$$9x^2 + 16y^2 + 72x - 96y + 144 = 0.$$