WORLD INTELLE TIVAL PROPERTY ORGANIZATION

STERNATIC NAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Pat ent Classification 6: C12N 15/31, C07K 14/315, 16/12, C12Q 1/68

(11) International Publication Number:

WO 98/18931

(43) International Publication Date:

7 May 1998 (07.55.98)

(21) International Application Number:

PCT/US97/19588

(22) International Filing Date:

30 October 1997 (30.10.97)

(30) Priority Data:

60/029,960

31 October 1996 (31.10.96) US

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors: and

(75) Inventors; and
(75) Inventors/Applicants (for US only): KUNSCH, Charles, A.
[US/US]; 2398B Dunwoody Crossing, Atlanta, GA 30338
(US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive,
Rockville, MD 20850 (US). DILLON, Patrick, J. [US/US];
1055 Snipe Court, Carlsbad, CA 92009 (US). ROSEN,
Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville,
MD 20882 (US). BARASH, Steven, C. [US/US]; 582 College Parkway #303, Rockville, MD 20850 (US). FANNON, Michael [US/US]; 13501 Rippling Brook Drive, Silver Spring, MD 20850 (US). DOUGHERTY, Brian, A.
[US/US]; 708 Meadow Field Court, Mount Airy, MD 21771
(US).

(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ; CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

Computer System 102

Computer System 102

Processor

Inde Processor

Removable Medium

Storage Device 110

Removable Medium

Removable Medium

Removable Storage

Medium

(57) Abstract

The present invention provides polynucleotide sequences of the genome of *Streptococcus pneumoniae*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media and computer-based systems and methods which facilitate its use.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LÜ	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
B B	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	· TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	ττ	Trinidad and Tobago
ВJ	Benin	ſΕ	Ireland	MN	Mongolia	UA	Ukraine
8R	8 razil	(L	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	. VN	Viet Nam
CG.	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PI.	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Libena	SG	Singapore		

10

15

20

25

30

Streptococcus pneumoniae Polynucleotides and Sequences

ı

FIELD OF THE INVENTION

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Streptococcus pneumoniae*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

BACKGROUND OF THE INVENTION

Streptococcus pneumoniae has been one of the most extensively studied microorganisms since its first isolation in 1881. It was the object of many investigations that led to important scientific discoveries. In 1928, Griffith observed that when heat-killed encapsulated pneumococci and live strains constitutively lacking any capsule were concomitantly injected into mice, the nonencapsulated could be converted into encapsulated pneumococci with the same capsular type as the heat-killed strain. Years later, the nature of this "transforming principle," or carrier of genetic information, was shown to be DNA. (Avery, O.T., et al., J. Exp. Med., 79:137-157 (1944)).

In spite of the vast number of publications on *S. pneumoniae* many questions about its virulence are still unanswered, and this pathogen remains a major causative agent of serious human disease, especially community-acquired pneumonia. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991)). In addition, in developing countries, the pneumococcus is responsible for the death of a large number of children under the age of 5 years from pneumococcal pneumonia. The incidence of pneumococcal disease is highest in infants under 2 years of age and in people over 60 years of age. Pneumococci are the second most frequent cause (after *Haemophilus influenzae* type b) of bacterial meningitis and otitis media in children. With the recent introduction of conjugate vaccines for *H. influenzae* type b, pneumococcal meningitis is likely to become increasingly prominent. *S. pneumoniae* is the most important etiologic agent of community-

10

15

20

25

30

35

acquired pneumonia in adults and is the second most common cause of bacterial meningitis behind Neisseria meningitidis.

The antibiotic generally prescribed to treat *S. pneumoniae* is benzylpenicillin, although resistance to this and to other antibiotics is found occasionally. Pneumococcal resistance to penicillin results from mutations in its penicillin-binding proteins. In uncomplicated pneumococcal pneumonia caused by a sensitive strain, treatment with penicillin is usually successful unless started too late. Erythromycin or clindamycin can be used to treat pneumonia in patients hypersensitive to penicillin, but resistant strains to these drugs exist. Broad spectrum antibiotics (e.g., the tetracyclines) may also be effective, although tetracycline-resistant strains are not rare. In spite of the availability of antibiotics, the mortality of pneumococcal bacteremia in the last four decades has remained stable between 25 and 29%. (Gillespie, S.H., et al., J. Med. Microbiol. 28:237-248 (1989).

S. pneumoniae is carried in the upper respiratory tract by many healthy individuals. It has been suggested that attachment of pneumococci is mediated by a disaccharide receptor on fibronectin. present on human pharyngeal epithelial cells. (Anderson, B.J., et al., J. Immunol. 142:2464-2468 (1989). The mechanisms by which pneumococci translocate from the nasopharynx to the lung, thereby causing pneumonia, or migrate to the blood, giving rise to bacteremia or septicemia, are poorly understood. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991).

Various proteins have been suggested to be involved in the pathogenicity of S. pneumoniae, however, only a few of them have actually been confirmed as virulence factors. Pneumococci produce an IgA1 protease that might interfere with host defense at mucosal surfaces. (Kornfield, S.J., et al., Rev. Inf. Dis. 3:521-534 (1981). S. pneumoniae also produces neuraminidase, an enzyme that may facilitate attachment to epithelial cells by cleaving sialic acid from the host glycolipids and gangliosides. Partially purified neuraminidase was observed to induce meningitis-like symptoms in mice; however, the reliability of this finding has been questioned because the neuraminidase preparations used were probably contaminated with cell wall products. Other pneumococcal proteins besides neuraminidase are involved in the adhesion of pneumococci to epithelial and endothelial cells. These pneumococcal proteins have as yet not been identified. Recently, Cundell et. al., reported that peptide permeases can modulate

15

20

25

pneumococcal adherence to epithelial and endothelial cells. It was, however, unclear whether these permeases function directly as adhesions or whether they enhance adherence by modulating the expression of pneumococcal adhesions. (DeVelasco, E.A., et al., Micro. Rev. 59:591-603 (1995). A better understanding of the virulence factors determining its pathogenicity will need to be developed to cope with the devastating effects of pneumococcal disease in humans.

Ironically, despite the prominent role of *S. pneumoniae* in the discovery of DNA, little is known about the molecular genetics of the organism. The *S. pneumoniae* genome consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory elements, such as prophages, plasmids, transposons and the like. Most physical characteristics and almost all of the genes of *S. pneumoniae* are unknown. Among the few that have been identified, most have not been physically mapped or characterized in detail. Only a few genes of this organism have been sequenced. (See, for instance current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. pneumoniae* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by S, pneumoniae, infection involves the programmed expression of S, pneumoniae genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of S, pneumoniae genes and genomic organization would improve our understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of S, pneumoniae would provide reagents for, among other things, detecting, characterizing and controlling S, pneumoniae infections. There is a need to characterize the genome of S, pneumoniae and for polynucleotides of this organism.

10

15

20

25

30

35

SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-391.

The present invention provides the nucleotide sequence of several hundred contigs of the *Streptococcus pneumoniae* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-391.

The present invention further provides nucleotide sequences which are at least 95% identical to the nucleotide sequences of SEQ ID NOS:1-391.

The nucleotide sequence of SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NOS:1-391 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape: optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Streptococcus pneumoniae* genome.

Another embodiment of the present invention is directed to fragments of the Streptococcus pneumoniae genome having particular structural or functional attributes. Such fragments of the Streptococcus pneumoniae genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs, and fragments which can be used to diagnose the

10

15

20

25

30

presence of *Streptococcus pneumoniae* in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORFs in fragments of the *Streptococcus pneumoniae* genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Streptococcus pneumoniae* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Streptococcus pneumoniae* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as

10

15

20

25

30

a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the abovedescribed antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b) determining whether the agent binds to said protein.

The present genomic sequences of *Streptococcus pneumoniae* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Streptococcus pneumoniae* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Streptococcus pneumoniae* researchers

WO 98/18931 PCT/US97/19588

and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

5

10

15

20

25

30

35

DESCRIPTION OF THE FIGURES

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Streptococcus pneumoniae genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press. Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Streptococcus pneumoniae relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading

frames (ORFs) is accomplished by processing contigs with zorf or GenMark. The ORFs are searched against S. pneumoniae sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

.10

15

20

25

30

35

5

The present invention is based on the sequencing of fragments of the Streptococcus pneumoniae genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-391. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Streptococcus pneumoniae* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-391, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-391" refers to any portion of the SEQ ID NOS:1-391 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Streptococcus pneumoniae* open reading frames (ORFs), expression modulating fragment (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in sample (DFs). A non-limiting identification of preferred representative fragments is provided in Tables 1-3. As discussed in detail below, the information provided in SEQ ID NOS:1-391 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Streptococcus pneumoniae* proteins.

While the presently disclosed sequences of SEQ ID NOS:1-391 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a

nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-391. However, once the present invention is made available (i.e., once the information in SEQ ID NOS:1-391 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-391 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

5

10

15

20

25

30

35

Even if all of the very rare sequencing errors in SEQ ID NOS:1-391 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of Streptococcus pneumoniae strains that can be used to prepare S. pneumoniae genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the S. pneumoniae strain that provided the DNA of the present Sequence Listing, Strain 7/87 14.8.91, has been deposited in the ATCC, as a convenience to those of skill in the art. As a further convenience, a library of S. pneumoniae genomic DNA, derived from the same strain, also has been deposited in the ATCC. The S. pneumoniae strain was deposited on October 10, 1996, and was given Deposit No. 55840, and the cDNA library was deposited on October 11, 1996 and was given Deposit No. 97755. The genomic fragments in the library are 15 to 20 kb

10

15

20

25

30

35

fragments generated by partial Sau3A1 digestion and they are inserted into the BamHI site in the well-known lambda-derived vector lambda DASH II (Stratagene, La Jolla, CA). The provision of the deposits is not a waiver of any rights of the inventors or their assignees in the present subject matter.

The nucleotide sequences of the genomes from different strains of Streptococcus pneumoniae differ somewhat. However, the nucleotide sequences of the genomes of all Streptococcus pneumoniae strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-391. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA 85:* 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-391 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; *i.e.*, a nucleotide sequence provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-391. Such a manufacture provides a large portion of the *Streptococcus pneumoniae* genome and parts thereof (*e.g.*, a *Streptococcus pneumoniae* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using

10

15

20

25

30

35

means not directly applicable to examining the *Streptococcus pneumoniae* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can-be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-

10

15

20

25

30

35

391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-391 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Streptococcus pneumoniae genome which contain homology to ORFs or proteins from both Streptococcus pneumoniae and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Streptococcus pneumoniae genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Streptococcus pneumoniae* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage

10

15

20

25

30

35

means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Streptococcus pneumoniae* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the

10

15

20

25

Streptococcus pneumoniae genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990), is used to identify open reading frames within the Streptococcus pneumoniae genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

10

15

20

25

30

35

BIOCHEMICAL EMBODIMENTS

Other embodiments of the present invention are directed to isolated fragments of the *Streptococcus pneumoniae* genome. The fragments of the *Streptococcus pneumoniae* genome of the present invention include, but are not limited to fragments which encode peptides and polypeptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Streptococcus pneumoniae* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-391, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment. Streptococcus pneumoniae DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate a Streptococcus pneumoniae library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS:1-391. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library or Streptococcus pneumoniae genomic DNA. Thus, given the availability of SEQ ID NOS:1-391, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-391 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

10

15

20

25

30

35

The isolated nucleic acid molecules of the <u>present</u> invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2, and 3 list ORFs in the Streptococcus pneumoniae genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

Table 1 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in October, 1997.

Table 2 sets out ORFs in the Streptococcus pneumoniae contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in October, 1997.

Table 3 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in October, 1997.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the first nucleotide of the ORF (actually the first nucleotide of the stop codon immediately preceding the ORF), counting from the 5' end of the contig strand; and the fourth column, "stop (nt)" indicates the last nucleotide of the stop codon defining the 3'end of the ORF.

In Tables 1 and 2, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column six in Tables 1 and 2 provides the gene name of the matching sequence; column seven provides the BLAST identity score and column eight the BLAST similarity score from the

comparison of the ORF and the homologous gene: and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

5

10

15

20

25

30

Each ORF described in the tables is defined by "start (nt)" (5') and "stop (nt)" (3') nucleotide position numbers. These position numbers refer to the boundaries of each ORF and provide orientation with respect to whether the forward or reverse strand is the coding strand and which reading frame the coding sequence is contained. The "start" position is the first nucleotide of the triplet encoding a stop codon just 5' to the ORF and the "stop" position is the last nucleotide of the triplet encoding the next in-frame stop codon (i.e., the stop codon at the 3' end of the ORF). Those of ordinary skill in the art appreciate that preferred fragments within each ORF described in the table include fragments of each ORF which include the entire sequence from the delineated "start" and "stop" positions excepting the first and last three nucleotides since these encode stop codons. Thus, polynucleotides set out as ORFs in the tables but lacking the three (3) 5' nucleotides and the three (3) 3' nucleotides are encompassed by the present invention. Those of skill also appreciate that particularly preferred are fragments within each ORF that are polynucleotide fragments comprising polypeptide coding sequence. As defined herein, "coding sequence" includes the fragment within an ORF beginning at the first in-frame ATG (triplet encoding methionine) and ending with the last nucleotide prior to the triplet encoding the 3' stop codon. Preferred are fragments comprising the entire coding sequence and fragments comprising the entire coding sequence, excepting the coding sequence for the N-terminal methionine. Those of skill appreciate that the N-terminal methionine is often removed during post-translational processing and that polynucleotides lacking the ATG can be used to facilitate production of N-termainal fusion proteins which may be benefical in the production or use of genetically engineered proteins. Of course, due to the degeneracy of the genetic code many polynucleotides can encode a given polypeptide. Thus, the invention further includes polynucleotides comprising a nucleotide sequence encoding a polypeptide sequence itself encoded by the coding sequence within an ORF described in Tables 1-3 herein. Further, polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence to the foregoing polynucleotides, are contemplated by the present invention.

10

15

20

25

30

Polypeptides encoded by polynucleotides described above and elsewhere herein are also provided by the present invention as are polypeptide comprising a an amino acid sequence at least about 95%, preferably at least 97% and even more preferably 99% identical to the amino acid sequence of a polypeptide encoded by an ORF shown in Tables 1-3. These polypeptides may or may not comprise an N-terminal methionine.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the percent identity of the highest scoring segment pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Streptococcus pneumoniae* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

5

10

15

20

25

30

EMF sequences can be identified within the contigs of the Streptococcus pneumoniae genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the Streptococcus pneumoniae genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Streptococcus pneumoniae* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Streptococcus pneumoniae* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers

10

15

20

25

30

35

consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferrably at least 99% and most at least preferably 99.9% identical to SEO ID NOS:1-391. with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated. Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of Streptococcus pneumoniae origin isolated by using part or all of the fragments in question as a probe or primer.

Preferred DFs of the present invention comprise at least about 17, preferrably at least about 20, and more preferrably at least about 50 contiguous nucleotides within an ORF set out in Tables 1-3. Most highly preferred DFs specifically hybridize to a polynucleotide containing the sequence of the ORF from which they are derived. Specific hybridization occurs even under stringent conditions defined elsewhere herein.

Each of the ORFs of the Streptococcus pneumoniae genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly Streptococcus pneumoniae. Especially preferred in this regard are ORFs such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Streptococcus pneumoniae. Also particularly preferred are ORFs that can be used to distinguish between strains of Streptococcus pneumoniae, particularly those that distinguish medically important strain, such as drug-resistant strains.

10

15

20

25

30

35

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helixforming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56:560 (1991) and Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press. Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK, pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG

10

15

20

25

30

(available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the Streptococcus pneumoniae genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF. The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs and subfragments thereof depicted in Tables 2 and 3 which encode proteins.

10

15

20

25

30

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides.—Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

The polypeptides and proteins of the present invention also can be purified-from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial"defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures. e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

5

10

15

20

25

30

35

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Streptococcus pneumoniae* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express

15

20

25

30

35

heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3- phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of *E. coli*, *B. subtilis, Salmonella typhimurium* and various species within the genera *Pseudomonas* and *Streptomyces*. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication

15

20

25

30

derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e,g), temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell* 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

10

15

20

25

30

35

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Streptococcus pneumoniae, of the fragments of the Streptococcus pneumoniae genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Streptococcus pneumoniae is defined as a homolog of a fragment of the Streptococcus pneumoniae fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Streptococcus pneumoniae genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-391 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ

10

15

20

25

30

35

ID NOS:1-391 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis et al., PCR Protocols. Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-391 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-391, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Streptococcus pneumoniae*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the

10

15

20

25

30

35

polypeptide. Such identifications permit one skilled in the art to use the Streptococcus pneumoniae ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper et al., Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Streptococcus pneumoniae* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-391.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts *et al.*,

10

15

20

25

30

Symbiosis 21:79 (1986) and Voragen et al. in Biocatalysts In Agricultural Biotechnology, Whitaker et al., Eds., American Chemical Society Symposium Series 389:93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of *Streptococcus pneumoniae*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* <u>6(A)</u>, Rhine *et al.*, Eds., Verlag Press. Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

10

15

20

25

30

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner et al., Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes. CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other

10

15

20

25

30

35

hand, has been described in detail by Bud et al., Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology 136*:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

2. Generation of Antibodies

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques In Biochemistry And Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72 (1983), pgs. 77-96 of Cole et al., in Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc. (1985)). Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods

10

15

20

25

30

35

include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175:109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labeling are well-known in the art, for example see Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308

10

15

20

25

30

(1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W., J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Streptococcus pneumoniae* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the DFs of the present invention and assaying for binding of the DFs or antibodies to components within the test sample.

Conditions for incubating a DF or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the DFs or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and

15

20

25

30

Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the DFs or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound DF or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Trisbuffers, etc.), and containers which contain the reagents used to detect the bound antibody or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed DFs and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

10

15

20

25

30

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Streptococcus pneumoniae* fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the *Streptococcus* pneumoniae genome; and
 - (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., "Application of Synthetic Peptides: Antisense Peptides," in Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

5

10

15

20

25

30

35

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense Okano. J. Neurochem. *56:5*60 (1991);Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helixforming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of Streptococcus pneumoniae, or another related organism, in vivo or in vitro. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of Streptococcus pneumoniae or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer

surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

5

10

15

20

25

30

35

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in, among other sources, **REMINGTON'S** PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may

10

15

20

25

30

be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s)

serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

5

10

15

20

25

30

35

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques. including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-

10

15

20

25

30

35

microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random

10

15

20

25

30

35

sequence has been determined can be calculated by the equation $P = e^{-m}$, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, Genomics 2: 231 (1988).

2. Random Library Construction

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Streptococcus pneumoniae DNA is prepared by phenol extraction. A mixture containing 200 µg DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 µl TE buffer.

To create blunt-ends, a 100 μ l aliquot of the resuspended DNA is digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 μ l BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100 μ l TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted and the resulting solution is extracted with phenol to separate the agarose from the

10

15

20

25

30

35

DNA. DNA is ethanol precipitated and redissolved in 20 μ l of TE buffer for ligation to vector.

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contains 2 µg of DNA fragments, 2 µg pUC18 DNA (Pharmacia) cut with SmaI and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is dissolved in 20 µl TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20 µl TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 ul) containing the v+I linears, 500 µM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 µl TE. The final ligation to produce circles is carried out in a 50 µl reaction containing 5 µl of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C.

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies 3 (1)*:5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A 100 µl aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 µl aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1 µl aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and

10

15

20

25

30

35

placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl (1 M), and 1 ml MgSO /100 ml SOB agar. The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 µl aliquot of transformation.

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams et al., Science 252:1651 (1991); Adams et al., Nature 355:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two *Streptococcus pneumoniae* lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-12 (Promega) and an unamplified library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, *Streptococcus pneumoniae* DNA (> 100 kb) is partially digested in a reaction mixture (200 ul) containing 50 μg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 ul. One μl of fragments is used with 1 μl of DASHII vector (Stratagene) in the recommended ligation reaction. One μl of the ligation mixture is used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage

are plated directly without amplification from the packaging mixture (after dilution with 500 μ l of recommended SM buffer and chloroform treatment). Yield is about 2.5x10³ pfu/ul. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5x10⁴ pfu are plated on the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x10⁹ pfu/ml.

5

10

15

20

25

30

35

Liquid lysates ($100 \,\mu l$) are prepared from randomly selected plaques (from the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams et al., Nature 368:474 (1994)). Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are performed by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. average usable read length is 485 bp for M13-21 sequences, 445bp for M13RPI sequences, and 375 bp for dye-terminator reactions.

Richards et al., Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of both-end sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the templates are sequenced from both ends. Random reverse sequencing reactions are

done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

5

10

15

20

25

4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 Automated DNA Sequencers. The Catalyst robot is a publicly available sophisticated pipetting and temperature control robot which has been developed specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear amplification (i.e., one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

30

35

Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and base-calling. The lane-tracking is confirmed visually. Each sequence electropherogram (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing

10

15

20

sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

INFORMATICS

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

. 25

30

35

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 10⁴ fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching

fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164:765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria-include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library).

The process resulted in 391 contigs as represented by SEQ ID NOs:1-391.

3. Identifying Genes

5

10

15

20

25

30

The predicted coding regions of the *Streptococcus pneumoniae* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank (October, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

10

15

20

25

30

ILLUSTRATIVE APPLICATIONS

1. Production of an Antibody to a Streptococcus pneumoniae Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassav procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al., Basic Methods in Molecular Biology, Elsevier, New York. Section 21-2 (1989).

10

15

20

25

30

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed. Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition. Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Streptococcus pneumoniae* genome, such as those of Tables 1-3 and SEQ ID NOS:1-391 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

10

15

20

5. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the Streptococcus pneumoniae genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al., U. S. Patent No. 5,082,767, incorporated herein by this reference.

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the Streptococcus pneumoniae genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene)—using BgII and SalI restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Streptococcus pneumoniae DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Streptococcus pneumoniae DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BgIII at the 5' end of the corresponding Streptococcus pneumoniae DNA 3' primer, taking care to ensure that the Streptococcus pneumoniae DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BgIII, purified and ligated to pXT1, now containing a poly A addition sequence and digested BgIII.

10

15

20

25

30

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Streptococcus pneumoniae* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Streptococcus pneumoniae* DNA.

WO 98/18931 PCT/US97/19588

Alternatively and if antibody production is not possible, the Streptococcus pneumoniae DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the Streptococcus pneumoniae DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases. the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al., cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using in vitro translation systems such as in vitro ExpressTM Translation Kit (Stratagene).

5

01

15

20

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

S. pneumoniae - Coding regions containing kno

Streptococcus pneumoniae pepti homoserine kinase homolog (th Streptococcus pneumoniae SSZ d sequence 151202 transposase g sequence alia g sequence 151202 transposase g sequence alia g streptococcus pneumoniae neural neura	Contig ONF Start Stop match match match match min min min min min match min mi	hatch gene name percent HSP nt ONF nt natch gene name ident length length	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and 92 200 567 homoserine kinase homolog (thrB) genes, complete cds	reptococcus pneumoniae SSZ dextran glucosidase gene and insertion 96 450 450 sequence 151202 transposase gene, complete cds	pneumoniae dexB, capi(A, B, C, D, E, F, G, H, I. J, K) genes, dTDP-rhamuose 98 426 426 iosynthesis genes and aliA gene	dexB, cap1(A, B, C, D, E, F, C, H, I, J, Kl genes, genes and aliA gene		treptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and 99 474 474 neuraminidase (nanA) gene, partial cds	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and 99 1359 1359 neuraminidase (nanA) gene, partial cds	neumoni (nanA)		Streptococcus pneumoniae neuraminidase B (nanB) gane, complete cds, and 99 2151 2151 neuraminidase (nanA) gene, partial cds	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and 99 1069 1131 neuraminidase (nanA) gene, partial cds	treptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	treptococtus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	treptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and 82 175 177 homoserine kinase homolog (thrB) genes, complete cds	S.pneumoniae DIIA for insertion sequence 151118 (1172 bp)	S.pneumonise DNA for insertion sequence 151181 (966 bp)	pneumoniae DHA for insertion sequence 151381 (966 bp)	pneumoniae biosynthesis	preumoniae c
	1	match	gb U41735	 45 U04047		 emb 283335 SP28 	emb z83135 sP28	 9b U43526 	46 043526	 ub u41526	 gb U43526 	gb U43526 	 95 U43526 	emb Y11463 SPDH	emb Y11463 SPDN					. ~1	
1 SP22 SP22		Stop	1003	5720	6167	9147	1696	12019	2,000	114338	15171	1,7282	118197	1186	1 2529	111473	1 7364	1 7570	1 7985	119733	7682
gb U41735 gb U41735 gb U41735 gb U43526		Start	437	6919	6592	9770	10489	11546	112017	13421	114329	115132	1,7267	9 1	1198	11297	1 7125	1 7322	1 2533	120197	8305
Stop match		JAF	·				:				9			_	~		, , ,	; 20	. 6	: ≈	
Start Stop match				-		<u> </u>	:=-	: =_	<u>: =-</u>	:	:	-=		-	; —	:	: -	: -	; -		:

. pneumoniae - Coding regions containing know

Cont ig 10	URF	Stare	Stop	match	match gene name	percent	HSP nt length	ORF nt length
	==:	905	9506	emb 283335 SP28	S. pneumoniae dexB. cap11A, B, C, D, E, F, C, H, I, J, Kl genes, dTDP-rhamnose blosynthesis genes and aliA gene	\$6	618	818
0 1	2_	9304	8078	[67(62)]	Streptococcus pneumoniae methyl transferase (mtr) gene cluster, complete	93	513	1227
= :	7	548	616	emb 279691 SOOR	S. pneumoniae yorf [A.B.C.D.E], [tsL. pbpx and regR genes	66	316	372
-		892	1980	emb 279691 SOOR	S. pneumoniae yorfila, B.C.D.El. ftsL. pbpX and regR genes	66	1089	1089
=	- S	3040	1 3477	emb 279691 SOOR	S. pneumonise yorfila, B.C.D.El. fist, pbpx and regR genes	- 66	259	438
=	9	3480	1 3247	emb 279691 SOOR S	pneumoniae yorf(A, B, C, D, E), ftsL, p	66	234	234
=		3601	4557	emb 279691 SOOR S	S. pnaumonise yorf (A. B. C. D. E). ftsl., pbpX and regR genes	96	156	656
=		4506	4846	umb 279691 SOOR	S. pneumoniae yorf (A, B, C, D, E). ftsL, pbpx and regR genes	66	381	181
=	6	4884	7142	emb X16367 SPPB	Streptococcus pneumoniae pbpX gene for penicillin binding protein 2x	66	2259	2259
=	0.	1 7132	8124	emb X16367 SPPB Streptococcus	Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X	86	0,0	666
2	_	53	1126	gb M31296	S.pneumoniae recP gene, complete cds	66	437	1074
7		.181	2148	 umb 283335 5828	S.pneumoniae dexB. capllA, B, C, D, E, F, G, H, I, J, Kl genes, dTDP-rhamnose biosynthesis genes and aliA gene	687	96	312
<u>.</u>		2518	2108	08191H 1f	Streptococcus pheumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	86	=	
51	^	8942	1758	1617,0092391	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHIJKLHNO) genes, complete cds, and alia yene, partial cds	68	340	432
=	~	0160	3458	emb 277726 SP1S	S.pneumoniae DNA for insertion sequence 151318 (1372 bp)	1 86 1	453	453
		4304	1 3873	emb 277727 SPIS	S.pneumonise DNA for insertion sequence 151318 (823 bp)	96	362	432
5	-	4	529	emb x94909 SPIG	S.pneumuniae iga gene	50	368	489
19	~	554	1.57	[gb[L0)752]	Streptococcus pneumoniae attachment site (att8). DNA sequence	- 66	167	204
61	_	946	1827	[9b]L07752	Streptococcus pneumoniae attachment site (attB), DNA sequence	76	100	682
50		93.7	185		Streptococcus pneumoniae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comb) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gln genes	66	756	756
50	~	12271	186	\$18:4 (n) 46	Streptococcus pneumoniae orfi gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gin genes	86	1341	1767

S. pneumoniae - Coding regions containing known sequences

Contig	ORF I to	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF ot length
02		31.75	2694	96 (076218)	Streptococcus pneumoniae competence stimulating peptide precursor ComC (comC), histidine kinase homolog ComD (comD), and response regulator homolog ComE (comE) genes, complete cds	66	492	492
50		3322	4527	gb AF000658	Streptococcus pneumonlae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (spspoJ), initlator protein (spdnaa) and beta subunit of DNA polymerase III (spdnaa) genes, complete cds	66	1206	1206
50	\$	4573	5143	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase 111 (spdnan) genes, complete cds	66	177	177
50	9	5532	6917	95 AF000658	Streptococcus pneumoniae R801 tRNA Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase [11] (spdnan) genes, complete cds	66	1386	1386
50		\$669	8212	95 AF000658	Streptocuccus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnas) and beta subunit of DNA polymerase [1] (spdnan) genes, complete cds	66	1218	1218
00	e :	8214	8471	gb AF000658	Streptococcus pneumoniae RBO1 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra). SPSpoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase [1] (spdnan) genes, complete cds	88	258	258
20	<i></i>	8534	9670	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra). SPSpoJ (spspoJ), initiato: protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	70	1132
22	71	11887	112267	SIdS 971.12 SBIS	S. pneumoniae DNA for insertion sequence [S1]18 (1372 bp)	- 66	226	381
22	115	12708	112256	emb 277727 SPIS	S. pneumoniae DIM for insertion sequence 151318 (82) bp)	97	353	453
22	116	13165	112662	temb 277726 SP1S	S. pneumoniae DNA for insertion sequence 151318 (1372 bp)	9.6	204	504
2.	72	18398	01681	emb 286112 5P28	S. pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence 151515	96	463	\$13
22	7.	18829	19299	eab 286112 SP28	S. pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence 151515		443	144
2	- 2	5624	4203	emb x52474 SPPL	S. pneumoniae ply gene for pneumolysin	- 66	1422	1422
2 -	9	6063	5629	L L L L L L L L L	S. pneumoniae pneumolysin yene, complete cds	- 86	197	435
26		\$500	2	emb x94909 SPIG	S. pneumoniae iga gene	87	3487	5499
92	~	5823	5584	95/047687	Streptococcus pneumoniae immunoglobulin Al protease (iga) yene, complete	66	151	240
56		# (6 9	5685	95 047687	Streptococcus pneumoniae inmunoglobulin Al protease (iya) yene, complete cds	1000	05	1194

S. pneumoniae - Coding regions containing known sequences

318 342 426 426 450 450 450 466 446 446 446 446 446 446 44	Contig ORF ID 1D	108	Start	Stop (nt)	match acession	match gene name	percent	HSP nt	ORF of
1432 1433 4931 4931 4931 4931 4931 4932	97		14498	14854	emb 283335 SP28	pneumoniae dexB, capilA, B, C, D, E, F, G, H, I, J, Kl genes, blosynthesis genes and alia gene	66	338	357
19 14472 1511 9b 104041 Strept cocces premounts 532 destrict glucosidate gene and insection 97 242 2 50 505 emb[253]2 Step concentration 97 126 3 501 932 periodical and analysis of the concentration 97 130 4 50 505 emb[253]2 Step concentration 97 140 5 501 932 pellototal Strept cocces and alla alea concentration 96 181 6 700 173 pellototal Strept cocces and alla alea concentration 96 181 7 700 173 pellototal Strept cocces and alla alea concentration 96 181 8 700 173 pellototal Strept cocces and alla alea concentration 96 181 9 700 700 700 700 700 700 700 700 700 700 700 9 700 70	26	6	14763	14924	emb 283335 5P28	dexB, cap1(A,B,C,D,E,F,G,H,I,J,K genes, s genes and allA gene	001	94	162
1 190 525 seeb 283333 StreepGroceccu promouniale SSG destrian glucosidate genera and insertion 97 450 1 190 1228 Sp U04047 StreepGroceccu promouniale SSG destrian glucosidate genera and insertion 96 181 1 190 1228 SP U04047 StreepGroceccu promouniale SSG destrian glucosidate genera and insertion 96 181 1 1 1 1 1 1 1 1 1	26	2	114922	15173	dp n04042	pneumoniae SSZ dextran glucosidase gene 102 transposase gene, complete cds	6	242	252
1.780 1952 99 U04047 Streptococcus premanniae SSZ destrain glucosidate gene and insertion 91 450 1.780 1729 99 U04047 Streptococcus premanniae SSZ destrain glucosidate gene and insertion 95 181 1.780 1571 99 U04047 Streptococcus premanniae maltoserasticdetrini uptake (malX) and two 99 1317 13 1.781 1477 275 1470 99 L08611 Streptococcus premanniae maltoserasticdetrini uptake (malX) and two 99 1317 13 1.781 1477 275 1470 99 L08611 Streptococcus premanniae maltoserasticdetrini uptake (malX) and two 96 755 1.472 2647 99 L08611 Streptococcus premanniae maltoserasticdetrini uptake (malX) and two 96 755 1.473 2647 99 L08611 Streptococcus premanniae maltoserasticdetrini uptake (malX) and two 96 755 1.474 2750 2647 99 L21856 Streptococcus premanniae maltoserastic complete cds malX gene, complete cds 99 704 1.784 1750 99 L21856 Streptococcus premanniae maltoserastic complete cds malX gene, complete cds 99 704 1.784 1750 99 L041735 Streptococcus premanniae maltoserastic complete cds malX gene, complete cds 99 704 1.784 1750 99 L041735 Streptococcus premanniae maltoserastic complete cds malX gene, complete cds 99 704 1.784 1756 1750 99 L041735 Streptococcus premanniae maltoserastic complete cds malX gene, complete cds 99 705 1.785 1750 99 L041735 Streptococcus premanniae maltoserastic complete cds 1750 1750 1.785 1750 1851 1	28	!	0.9	\$0\$	emb 283335 SP28	dexB, cap1(A,B,C,D,E,F,G,H,I,J,K genes, s genes and aliA gene	66	426	426
1.780 1528 gb u00011 Streptococcus pneumoniae SSZ dentian glucosidate gene and insertion 96 181	28	~	503	952	95 004047	SSZ dextran glucosidase	66	450	450
1477 2167 yoli Lossiii Streptococcus procumoniae maltose/mallodettiin uptake (malX) and two 99 1317 14 1477 2167 yoli Lossiii Streptococcus procumoniae malX gens, complete cds 96 145 1478 2790 2647 yoli Lossiii Streptococcus procumoniae malX gens, complete cds 96 146 1790 2647 yoli 21856 Streptococcus procumoniae malX gens, complete cds 96 146 1790 2647 yoli 21856 Streptococcus procumoniae malX gens, complete cds 96 146 1784 1767 yoli 21856 Streptococcus procumoniae malX gens, complete cds 96 146 1784 1767 yoli 21856 Streptococcus procumoniae malX gens, complete cds 96 146 1884 1861 yuli 2831315 Streptococcus procumoniae malX gens, complete cds 96 146 1884 1861 yuli 2831315 Streptococcus procumoniae malX gens, complete cds 96 146 1884 1861 yuli 2831315 Streptococcus procumoniae malX gens, complete cds 96 146 1884 1861 yuli 2831315 Streptococcus procumoniae malX gens, complete cds 97 1885 1861 yuli 2831315 Streptococcus procumoniae deab, capila,	28		. 780	1298	95 004047	dextran gene, co	96	181	519
239 1470 2167 99 208611 Streptococcus pneumonise maltose/maltodextrin uptake (malX) and two 96 795 725	7		207	1523	ab L08611	uptake (malx) complete cds	66	1317.	1317
1.299 1420 99 L21856 Streptococcus pneumoniae malA gene, complete cds; malR gene, complete cds 96 446 4416 99 L21856 Streptococcus pneumoniae malA gene, complete cds; malR gene, complete cds 99 137 1418 4416 99 L21856 Streptococcus pneumoniae malA gene, complete cds; malR gene, complete cds 99 137 1418 1416 99 L21856 Streptococcus pneumoniae peptide methionine sulfoxide reductase (marA) and 91 201 1418 1416 1419 emb X61601 SPBO Spneumoniae manA-Box 1416 1419 emb X61602 SPBO Spneumoniae dena, capll, B.C. D. E. F. D. H. I. J. KI genes, dTDP-rhamose 87 248 1416 1419 emb X61602 SPBO Spneumoniae dena, capll, B.C. D. E. F. D. H. I. J. KI genes, dTDP-rhamose 87 264 1418 1419 emb X61803 SPCB Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis genes and allA genes 24141. Cps14A.	34	~	1477	2367	6p C08611	pneumoniae maltose/maltodextrin uptake (malX) permease (malC and malD) genes, complete cds	96	266	891
4 2790 2647 99 L21856 Streptococcus pneumoniae malA gene, complete cds, malR gene, complete cds 99 137 5 3448 4416 99 L21856 Streptococcus pneumoniae malA gene, complete cds, malR gene, complete cds 99 137 6 1764 7507 99 L41735 Streptococcus pneumoniae peptide methiosine sulfoxide reductase (msrA) and 93 201 7 744 7507 99 L41735 Streptococcus pneumoniae peptide methiosine sulfoxide reductase (msrA) and 93 201 7 764 7507 99 L41735 Streptococcus pneumoniae peptide methiosine sulfoxide reductase (msrA) and 93 201 8 1176	=	2	2593	1 3420	gb L21856	pneumoniae malA gene, complete cds; malR gene. complete	96	446	828
5 1418 4416 9D L21856	= :	-	2790	2647	gb L21856	pneumoniae malA gene, complete cds; malR gene, complete	9.6	7.61	344
9 7764 7507 9p U41735 Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and 93 201 16 10552 10257 emb X63602 SPB0 S. pneumoniae masA Box 92 238 1 1156 1419 emb Z833335 SP28 S. pneumoniae dexB. capilA. B. C. D. E. F. G. H. I. J. Kl genes, dTDP-rhannose 87 248 1 1156 1961 Up U09239 Streptococcus pneumoniae type 19F capsular polysaccharide blosynthasis 98 264 116 1517 1547 emb X85787 SPCP S. pneumoniae daxB, cps14A, cps14B, cps14C, cps14B, cps14C, cps14B, cps14C, cps14B, cps14C, cps14B, cps14C, cps14B, cps14B, cps14B, cps14B, cps14B, C. D. E. F. G. H. I. J. Kl genes, dTDP-rhannose 86 792 18 1650 16170 emb Z83335 SPCP S. pneumoniae daxB, capilA. B. C. D. E. F. G. H. I. J. Kl genes, dTDP-rhannose 86 792 19 1720 16871 gu U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthasis 83 750 19 1720 16871 gu U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthasis 83 750 19 1720 16871 gu U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthasis 81 750 19 1720 16871 gu U09239 Streptococcus pneumoniae type 19F capsular colysaccharide biosynthasis 81 750 10 10 10 10 10 10 10	34	5 -	3418	4416	ab L21856	Complete cds; malk gene, complete	96		666
10 10362 10257 emb x63602 SPBO S. pneumoniae mmsA-Box 1176 1439 emb 283335 SP28 S. pneumoniae dexB. Capi(A.B.C.D.E.F.G.H.I.J.Kl genes, dTDP-rhamose 87 248 1176 1961 949 009239 Streptococcus pneumoniae type 19F capsular polysaccharide blosynthesis 98 264 116172 13477 emb x85787 SPCP S. pneumoniae daxB. Capi(A.C.D.E.F.G.H.I.J.Kl genes, dTDP-rhamose 86 792 18 16961 16170 emb z83335 SP28 S. pneumoniae daxB. Capi(A.B.C.D.E.F.G.H.I.J.Kl genes, dTDP-rhamose 86 792 19 17620 16871 99 uu99239 Streptococcus pneumoniae cype 19F capsular polysaccharide biosynthesis 83 750 19 17620 16871 99 uu99239 Streptococcus pneumoniae cype 19F capsular polysaccharide biosynthesis 83 750 19 17620 16871 99 uu9239 Streptococcus pneumoniae cype 19F capsular polysaccharide biosynthesis 81 10 17620 16871 99 uu9239 Streptococcus pneumoniae cype 19F capsular complete cds, and alia gene.	*	<u>-</u>	7764	7507	95 041735	peptide methionine sulfoxide reductase (marA) 9 (thrB) genes, complete cds	6	201	250
1176 1439 emb 283335 SP28 S pneumontae dexB. Cap1(A. B. C. D. E. F. G. H. I. J. Kl genes, dTDP-rhamose 87 248 248 1961 gub U09239 Streptococcus pneumontae type 19F capsular polysaccharide blosynthesis 98 264 264 Operon, (Cps19fABCDEFGHIJKLMIO) yenes, complete cds, and alia gene, 98 264 265 15477 emb X85787 SP2P S. pneumontae dexB. Cps14A, Cps14B, Cps14C, Cps14E, Cps14E, Cps14F, Cps14G, 97 696 265 16971 emb 283335 SP2B S. pneumontae dexB. Cap1(A. B. C. D. E. F. G. H. I. J. Kl genes, dTDP-rhamose 86 792 266 16871 gub U09239 Streptococcus pneumontae type 19F Capsular polysaccharide biosynthesis 89 750 267 17620 16871 gub U09239 Streptococcus pneumontae type 19F Capsular polysaccharide biosynthesis 81 750 268 264 792 792 792 793 793 269 792 793	=		;	110257	emb x63602 SPBO	S. pneumoniae mash-Box	92	238	306
5 1456 1961 4µ 009239 Streptococcus pneumoniae type 19F capsular polyaeccharide blosynthesis 98 264	35		9111	1439	emb 283335 SP28	pneumoniae dexB. capi(A, B, C, D, E, F, G, H, I, J, K) genes, biosynthesis genes and aliA gene	69.7	248	364
10 16172 15477 emb X85787 SPCP S. pneumoniae dexB. cps145, cps146, cps146, cps146, cps146, p7 696 18 16961 16170 emb 283315 SP28 S. pneumoniae dexB, cap1(A, B, C, D, E, F, C, H, L, J, K genes, dTDP-rhamnose 86 792 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 83 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 83 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 83 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 83 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 83 750 10 10 10 10 10 10 10	35	<u>~</u>	1458	1961	1617600195		98	264	504
18 16961 16170 emb 283335 SP28 S. pneumoniae dexB. cap1(A.B.C.D.E.F.G.H.I.J.Kl genes. dTDP-rhamnose 86 792 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 83 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 83 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 83 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 81 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 81 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 81 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 81 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 81 750 19 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 81 750 10 17620 16871 gb U09239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 83 750 10 17620 16871 Gb U09239 17620 17	35	=_	;	15477	emb x85787 SPCP	cpsidA, cpsidB, cpsidC, cpsidD, cpsidE, cpsidF, sidJ, cpsidK, cpsidL, tasA genes	6	969	969
19 17620 16871 9b 109239 Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis 83 750 operon. (cps19fABCDEFGHIJKLADIO) genes. complete cds, and aliA gene.	35	18	:	07191	emb 283335 SP28	capi(A.B.C.D.E.F.G.H.I.J.Kl genes.	98	792	261
	55	6		16871	95/1009239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHIJKLADIO) genes, complete cds, and alia gene, partial cds	6	750	051

S. Inneumoniae - Coding regions containing known sequences

10	9 OKF	Start (nt)	Stop (nt)	acession	match gene name	percent	HSP nt	ORF nt
2	202	19061	17604	emb x85787 SPCP	S.pneumoniae dexB. cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps14I, cps14I, cps14K, cps14L, tasA genes	76	1458	1458
36	6	118969	18352	95[040786]	Streptococcus pneumoniae surface antigen A variant precursor (psaA) and 18 kDa protein genes, complete cds, and ORF1 gene, partial cds	66	609	609
36	02	19934	18966	16051500 106		66	696	696
~	-	1 2741	621	emb 267739 SPPA	S.pneumoniae parc. parE and transposase genes and unknown orf			
=	~	2985	2824	emb 267739 SPPA	genes and	66	2565	2565
7	-	5034	0.00	[emb 267739 SPPA	genes and unknown	001	162	162
	-	1,5134	0672	emb 267739 SPPA	and transposase genes and unknown	66	1965	1965
-	~	1 6171	5833	emb 267739 SPPA	and transposase genes and unknown	66	657	657
86	61	112969	113268	90 H28679		0,	666	339
6.	~	1256	7137	95(1)41	Streptococcus pneumoniae peptide methlonine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	66	982	300
93		2405	33.70	95/041735	Streptococcus pneumoniae peptide methlonine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	66	996	996
40	6	5253	7208	gb H29686	S.pneumoniae mismatch repair (hexB) gene, complete cds	- 66	7561	7301
= :	-	-	1037	emb 217307 SPRE	S. pneumoniae recA gene encoding RecA			000
=	~	1328	(1172	emb 234303 SPC1	Streptococcus pneumoniae cin operon encoding the cinA, recA, dinF, lytA genes, and downstream sequences		1386	1386
‡	<u> </u>	1083	4045	ab H13812	S.pneumoniae autolysin (lyth) gene, complete cds	- : -		
‡	-	27.26	3006	gb H13812	gene	- 66	963	963
=		1 3603	3860	 gb M13812	gene, complete	100	- 41	171
;	9	4755	1	ab u36660	complete cds	001	258	258
=		5270	5716	19511366601	Doeumoniae ORF	96	1 807	409
÷	-	6112	9169	195/1.36660	pneumoniae ORF complete	1 86		447
=	-	9169	9117	099811966	Service GOO entroused	- 86	7 10	907
	110	7082	7660		'in setting and	1000	204	204
;		2,4,80	- :		off epicococus pneumoniae ORF, complete cds	1 66	552	678
		0 9 0	_ : -		Streptococcus pneumoniae ORF, complete cds	96	91	300
	, , , , ,	2016	/1/8	emb 277727 SP1S	S pneumoniae DNA for insertion sequence IS1318 (823 bp)	- 16	151	453

LABLE 1

S pneumoniae - Coding regions containing known sequences

10	2	10	(uc)	acession	שפיניו תנונע ופשע	percent	HSP nt length	ONF nt length
7	Ξ	6833	9132	emb 277725 SP1S	S. pneumoniae DMA for insertion sequence ISI381 (966 bp)	56	160	407
=	Ξ	6996	9475	emb 282001 SPZ8	S. pneumoniae pcpA gene and open reading frames	001	189	195
**	2	0617	1 7555	emb 282001 SP28	S.pneumoniae pcpA gene and open reading frames	66	366	366
7	9	6089	1 7607	emb 277726 SPIS	S. pneumoniae DMA for insertion sequence 151318 (1372 bp)	1 6 1	453	453
=		8423	1 6022	emb 277725 SP1S	S. pneumoniae DNA for insertion sequence 151381 (966 bp)	66	160	405
7	œ :	8559	9368	ent 282001 SP28	S. pneumoniae pcpA gene and open reading frames	100	189	\$61
20 .	<u> </u>	6480	1687	gb 1.39074	Streptococcus pneumoniae pyruvate uxidase (spx8) gene, complete cds	1 66 1	1794	1794
6.	~	162	1 260)	9 5 L20561	Streptococcus pneumoniae Exp7 gene, partial cds	001	216	2373
3	9	2407	2156	95 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 151202 transposase yene, complete cds	6	242	252
5.3		2566	2405	emb[283335]SP28	S. pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and allA gene	001	94	162
7	3	2833	2475	emb 283135 SP28	S.pneumoniae dexB, capl A,B,C,D,E,F,G,H,1,J,K genes, dTUP-rhamnose biosynthesis genes and aliA gene	66	338	35.7
5.	2_	12409	11105	emb 283335 SP28	S. pneumoniae dexB, capilA, B, C, D, E, F, G, N, I, J, Kl genes, dTtp-rhamnose biosynthesis genes and aliA gene	G -	165	1305
55	22	20488	119949	emb 284379 HS28	S. pneumoniae dfr gene (isolate 92)	66	540	540
19	Ξ	11864	0066	emb 216082 PNAL	Strept ococcus pneumoniae aliB gene	86	1965	1965
6.3	_		239	gb M18729	S. pneumoniae mismatch repair protein (hexA) gene, complete cds	100	237	237
6.3	7 -	1 233	2611	gb H18729	-	1 66	2330	2379
63	_	12557	2823	gb H18729	S pneumonise mismatch repair protein (hexA) gene, complete cds	66	266	267
6.3	-	2958	4664	dp H18729	S. pneumonlae mismatch repair protein (hexA) gene, complete cds	1 86	69	1707
67	9	01.11	9611	ab L20670	Streptococcus pneumoniae hyaluronidase gene, complete cds	96	372	372
67		1917	17.17	19512206701	Streptococcus pneumoniae hyaluronidase gene, complete cds	66	2938	2991
70	_	-	1 702	gb H14340	S.pneumoniae Dpnl gene region encoding dpnC and dpnD, complete cds	001	693	702
20	7	879	1160	[gb]H14340}	5. pneumoniae Dpnl gene region encoding dpnC and dpnD, complete cds	001	483	4
0,0	_:	2490	1210	gb H14339	S. pneumonise Dpnil gene region encoding dpnM, dpnA, dpnB, complete cds	1 86 1	462	1281
0,0	_ ;	4230	1 4424	ub J04234	S.pneumoniae exudeuxyribonuclesse (exoA) gene, complete cds	66	147	195
70	8 0	2197	4316	ab J04234	S. pneumonide exodeoxyribonuclease (exoA) gene. complete cds	00		

LABLE 1

S. pneumoniae - Coding regions containing known sequences

	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt length
8108 9874	9874	i	9b 1.20562	Streptococcus pneumoniae Exp8 gene, partial cds		234	1767
27964 28341	28341	:	emb x63602 SPBO	S.pneumonise masA-Box	93	233	1 976
4607 3552	1552		emb 226850 SPAT	S.pneumoniae (H222) genes for ATFase a subunit, ATFase b subunit and ATFase c subunit	6	102	1056
471 133	133		emb x63602 SPBO	S. pneumoniae masA-Box	16	193	339
3658 977	7,6		166)0044791	S. pneumoniae DNA polymerase I (pulA) gene, complete cds	66	2682	2682
4864 5379	5379		 10819EH 10819EH	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (puiC) genes, complete cds	86	318	516
2622 1999	1999		emb 283335 SP28	S. pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTOP-rhamnose blosynthesis genes and alia gene	95	624	624
3341 2523	2523		emt/28)335 SP28	S. pneumoniae dexB, cap11A, B, C, D, E, F, G, H, I, J, K genes, dTDP-rhamnose biosynthesis genes and alia gene	16	819	819
341		:	emb x77249 SPR6	S. pneumoniae (R6) ciaR/ciaH genes	1 66	339	966
1095 325	1 325	;	emb x77249 SPR6	S. pneumoniae (R6) claR/ciaH genes	1 66		1 111
11436 10816	11081	9	180 080 08	Streptococcus pneumoniae signal peptidase I (spi) gene, complete cds	1 6	621	621
112402 [11434	=======================================	- :	96 093576	Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds	9.6	953	1 696
112381 12704	11270	- :	96 093576	Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds	1 001	51	324
3212 3550	355		emb 277727 SPIS	S. pneumoniae DNA for insertion sequence 151318 (823 bp)	1.6	290	666
4662 6851	685	_ :	081984 06	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	66	2190	2190
6849 8213	821	_ :	dp H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	1365	1365
9236 9090	606		gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	66	855	855
9283 13017	1301		[8p[r12190]	Streptococcus pneumoniae SAICAR synthetase (purc) gene, complete cds	001	107	1 26.76
22147 23313	2331	_	0b L36923	Straptococcus pneumoniae beta-11-acetylhaxosaminidase (still) gene, complete	96	218	1167
23268 23450	2345(_ :		Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete	886	172	183
27527 23505	2350	· .	16569[7]	Streptococcus pneumoniae beta-N-acetylhexosaminidase (stril) gene. complete cds	66	3826	4023
		j		《《清楚》,《《《清祖》,《《清祖》,《《《明》,《《清祖》,《《《明》,《《明》,《《明》,《《明》,《《明》,《《明》,《《明》,《			

S. pneumoniae - Coding regions containing known sequences

	101	1 (uf.)	(nt)	match	maich gene Dame	ident	length	length
8	7 9 7	28472	11111	90 (136923)	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	ŝ	416	907
78		4554	6173	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes. dTOP-rhamnose biosynthesis genes and aliA gene	86	69.	1620
1 87	9	1 5951	5316	emb 277725 SP15	S. pneumoniae DUA for insertion sequence 151381 (966 bp)	96	600	969
98	~_	2957	13811	de H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	5 .	555	555
98		3466	4269	dp H36180	Streptococcus pneumoniae transposase, IcomA and comB) and SAICAR synthetase IpurC) genes, complete cds	\$	804	708
68	2_	9878	110093	95 H361H01	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	-6	211	216
6	=_	100062	110412	emb 283335 SP28	S. pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and allA gene	97	335	351
6	0=	5303	4941	emb x63602 SPBO	S. pneumoniae mmsA-Box	68	237	363
6		1.08	1520	35(11) 46	Streptococcus pneumoniae peptide mathionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	16	0 0 0	681
6	:	68	001	emb 283335 SP28	S pneumoniae dexB. cap1(A,B,C,D,E,F,G.H,I,J,K) genes, dTDP-thamnose biosynthesis genes and alik gene	66	592	612
66]	~	נניון	275	emb x17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	66	866	666
66	: - : -	2794	1,112	emb x1733 SPAH	emb x17)37 SPAM Streptococcus pneumoniae ami locus conferring aminopterin resistance	99	1083	1083
66	-	3.33	2788	emb x17337 SPAH	Straptococcus pneumoniae ami locus conferring aminopterin resistance	100	945	945
66		5249	1 1714	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	100	1536	1536
66	_	1262	1 5277	emb X17337 SPAH	Streptucoccus pneumoniae ami locus conferring aminoptetin resistance	66	1986	9861
101	-	216	1538	emb x54225 SPEN	. — — .	66	146	1323
101	~_	1492	6171	emb X54225 SPEH	S.pneumoniae epuA ai endA genes for 7 kDa protein and membrane endonuclease	66	228	228
	: :	1691	1855	emb x54225 SPEN	S.pneumoniae epuA and enulA genes for 7 kDa protein and membrane enuonuclease	100	162	162
<u>-</u>		1001	2582	emb x54225 SPEH	S pneumoniae epuA and endA genes for 7 kDa protein and membrane endonuclease	100	6.82	883
103	_	\$556	5041	emb 295914 SP29	Streptococcus pneumoniae sodA gene	001	396	516
104	~	1347	1556	emb 277727 5P15	S uneumoniae DWA for insertion sequence 151318 (823 tp)	8	206	210

FABLE 1

S prieumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop	match	mbtch gene name	percent	HSP nt length	ORF nt
\$01	· ~	1815	8205	emb 267739 SPPA	S pneumoniae parC, parE and transposuse genes and unknown orf	88	353	354
501	_	6809	6118	emb 267739 SPPA	S. pneumoniae parC, parE and transposase genes and unknown orf	- 86	4	111
100	-	2785	1880	emb x16022 SPPE	S. pneumoniae penA gene	86	72	906
1 107	<u>-</u>	2913	4988	emb x16022 SPPE	S. pneumonise penA gene	66	1692	2076
107		1864	5858	emb x13136 SPPE	Streptococcus pneumoniae perA gene for penicillin binding protein 28 lacking N-term. (penicillin resistant strain)	3	107	615
108	6	8906	8718	emb 267739 SPPA	S. pneumonise parC. parE and transposase genes and unknown orf	- 56	342	1 150
801	~	11308	110922	emb 267739 SPPA	S. pneumoniae parC. parE and transposase genes and unknown orf	- 66	199	387
109	-	2768	2241	emb 277725 SP15	S. pneumoniae DNA for insertion sequence [5138] (966 bp)	96	61	528
601	-	2688	2855	emb 277726 SP15	S. pneumoniae DNA for insertion sequence 151318 (1372 bp)	96	148	1 891
109	~	2982	13269	emb 277727 SPIS	S. pneumoniae DNA for insertion sequence 151318 (823 bp)	9.7	353	409
601	9	0268	1584	gb H18729	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	100	371	1 6661
<u>-</u>		į.		ab H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	26	429	629
[113	01	9788	8532	emb x99400 SPDA	S. pneumoniae dack gene and ORF	66	1257	1257
	Ξ	9870	110985	emb x99400 SPDA	S.pneumoniae dacA gene and ORF	66	1116	1116
=		2530	2030	ab H36180 	Streptococcus pneumoniae transposase. (cumA and comB) and SAICAR synthetase (purC) genes, complete cds	56	481	105
115	=_	11.103	10932	95 004047	Streptococcus pneumoniae 552 dextran glucosidase gene and insertion sequence 151202 transposase gene, complete cds	۲6	572	372
611	-	1 897	3302	emb x72967 SPNA	S. pneumoniae nank gene	66	2402	2406
11.7	~	רובנ	3831	emb x72967 SPNA	S. pneumoniae nanA gene	66	237	555
=		4327	3899	95 H36180 	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	5	459	429
121	7	1369	1941	1027270 46	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and bnaJ (dnaJ) gene, partial cds	66	202	573
121	<u>-</u>	2412	4251	95 072720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and bnaJ (dnaJ) gene, partial cds	5.6	1842	1842
122	6	2066	5587	95 004047	Streptococcus pneumoniae SS2 dextran glucosidase gene and insertion sequence 151202 transposase gene, complete cds	9	451	522

TABLE

pneumoniae - Coding regions containing known sequences

Cont 19 10	38. 	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt length
125		1811	189	op H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase [fputC] genes, complete cds	92	66	1623
128	<u>~</u>	12496	11204	emb 283335 SP28	S. pneumoniae dexB, capilA, B, C, D, E, F, G, H, I, J, Kl genes, dIDP-rhamiose biosynthesis genes and allA gene	91	705	1293
134	-	-	492	emb Y10818 SPY1	S.pneumoniae spsA gene	- 66	203	492
134	~	556	2652	gb AF019904	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	98	685	2097
134	_	1160	837	emb Y10818 SPY1	S. pneumoniae spsA gene	98	324	324
7.7	7	1952	2882	gb AF019904	Streptococcus pneumoniae chollne binding protein A (cbpA) gene, partial cds	86	215	1001
134	8	7992	9848	105567	Streptococcus pneumoniae PI) glycerol-3-phosphate dehydrogenase (glpD) ggene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes. complete cds	66	285	1857
1.54	7	9846	10622	dp n12567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	66	570	דרר
7.	<u> </u>	10805	111122	95/012567	Streptococcus pneumoniae P1) glycerol-) phosphata dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	001	318	318
131	2	0161	8443	61009239 	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHIJKLM10) genes, complete cds, and aliA gene, partial cds	06	420	424
11)	<u>-</u>	8590	8175	emb 283335 SP28	S.pneumoniae dexB, capl(A.B.C.D.E.F.G.H.I.J.K) genes, dTDP-rhamiose biosynthesis genes and allA gene	76	174	186
137	2	6773	1968	emb 283335 SP28	S.pneumoniae dexB, capllA, B, C, D, E, F, G, H, l, J, K genes, dTDP-rhamuose biosynthesis genes and allA gene	86	195	195
137	116	9223	9687	emb 277726 SP1S	S. pneumoniae DNA for insertion sequence 151318 (1372 bp)	96	944	465
117	117	9641	110051	emb 277727 SP1S	S. pneumoniae DNA for insertion sequence (S1318 (823 bp)	96	293	411
139	110	112998	112702	emb x63602 SPBO	S. pneumoniae mmsA-Box	06	234	297
= :	-	7805	8938	emb 249988 SPMM	Streptococcus pneumoniae mmsA gene	66	338	1134
= :	6	98 36	110972	емь 249988 SРИН	Streptococcus pneumoniae masA gene	66	7.602	2037
=	011	11472	112467	emb 249988 SРИН	Streptococcus pneumaniae masA gene	1001	1 94	966
142	~ -	257	814	[9Ъ]Н80215[Streptococcus pneumonlas uvs402 protein gens, complete cds	98	174	558
142		787	957	[95]н80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	1001	142	171
142	-	980	1 3022	gb H80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	98	1 1997	2043
							•	*

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent ident	HSP nt length	ORF nt length
142	~	1 3020	1 3595	gb H80215	Streptococcus pneumoniae uvs102 protein gene, complete cds	001	153	576
145	-	-	219	emb 235135 SPAL	S. pneumoniae allA gene for amiA-like gene A	1 6	185	219
145	~	171	1994	dp 120556	Streptococcus pneumoniae plpA gene, partial cds	1 66	1811	1824
145	_	1 2287	1 7599	emb 247210 SPDE	S. pneumoniae dexB, caplA, caplB and caplC genes and orfs	66	1052	5313
		9934	9911	dp H90527	Streptococcus pneumoniae penicillin-binding protein (ponA) gene, complete cds	66	2169	2169
\$1	^_	10188	9922	 96 H90527	Streptococcus pneumoniae penicillin-binding protein (pdnA) gene, complete	66	\$12	567
146	_	651.		emb 282002 SP28	S. pneumonlae pcpB and pcpC genes	96	156	156
1 146	~	747	06	emb 282002 SP28	S. pneumonise pcp8 and pcpC genes	86	255	255
146	9 -	11795	10794	emb 282002 SP28	S. pneumoniae pcpB and pcpC genes	85	276	1005
=	=_	110678	10202	emb 221702 SPUR	S. pneumoniae ung gene and mutX genes encoding uracil-DMA glycosylase and B- oxodGTP nucleoside triphosphatase	89		- 64
	<u>~</u> _	91511	10676	emb 221702 SPUN	S.pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8- oxodGTP nucleoside triphosphatase	66	699	1 (99
80	12	6006	8815	96 1041735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	06	180	195
156	-	1154	1402	emb x63602 SPBO	S pneumoniae mmsA-Box	76	185	249
159	<u> </u>	9048	8521	0819(H q6	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	96	526	528
091		-	Ì	emb 226851 SPAT	S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	100	142	147
091	~	6.1	868	emb 226851 SPAT	S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	66	720	720
160	<u> </u>	906	1406	emb 226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	- 56	105	201
160	-	1333	1942	emb 226850 SPAT	S.pneumoniae (H222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	8	306	570
191	- :	-	984	emb x77249 SPR6	S.pneumoniae (R6) claR/claH genes	- 66	984	984
191	_	0169	7497	emb x83917 SPGY	S. pneumoniae orflyyrB and gyrB gene encoding DNA gyrase B subunit	66	1 /(1)	588
191	3	7443	9386	emb x83917 SPGY-	S. pneumoniee orflyrB end gyrB gene encading DNA gyrese B subunit	86	1912	1944
1 163	-	2	1 2155	96 120559	Streptococcus pneumonlae ExpS gene, pertial cds	86	327	2154

S. pneumoniae - Coding regions containing known sequences

Contig	ORF.	Start (nt.)	Stop	match	match gene name	percent	HSP ot length	ORF nt
165		32	1618	96/100/46	S.pneumoniae malk and malk genes encoding membrane protein and amylomaltase, complete cds, and malk gene encoding phosphorylase	66	1587	1587
165	~	1608	3902	96110r a6	S.pneumoniae malk and malk genes encoding membrane protein and amylomaltase, complete cds, and malk gene encoding phosphorylase	100	280	2295
166	_	378	-	emb Y11463 SPDH	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	100	375	576
166	~	1507	320	emb Y11463 SPDN Streptococcus	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	66	1188	1188
166		3240	1 1432	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	66	563	1 6081
167		1077	328	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	76	155	1 250
167	~ :	1844	666	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	86	405	946
167		2714	1 1842	emb 271552 SPAD	•	- 66	909	1 678
1 167	-	9611	2641	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	- 66	103	1 657
168	-	-	2259	[9b]L20558]	Streptococcus pneumoniae Exp4 gene, partial cds	66	282	2259
0/1	0.	7338	7685	emb 277726 SP1S	S.pneumoniae DRA for insertion sequence (S1)18 (1)72 bp)	96	315	348
172	•	2462	4981	95 047625	Streptococcus pneumoniae formate acetyltransferase (exp72) gene, partial cds	- 66	365	2520
175		57	02	gb H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	68	153	354
175	-	1843	13621	emb 247210 SPDE	S. pneumontae dexB, caplA, caplB and caplC genes and orfs	1 56	68	6661
176	5	3984	2980	[emb 267739 SPPA	S.pneumoniae parc, parE and transposase genes and unknown orf	001	573	1005
178			425	emb 267739 SPPA	S. pneumoniae parc, parE and transposase genes and unknown orf	1 56	423	(2)
67.1		436	00	emb 283335 SPZ8	S.pneumoniae dexB. cap1 A,B,C,D,E,F,G,H,I,J,K genes, dTDP-rhamnose biosynthesis genes and aliA gene	5	3.18	157
081		3084	1855	emb X95718 SPGY	S.pneumoniae gyrk gene	- 66	381	1230
186	-	214	-	emb 279691 SOOR	S.pneumoniae yorfla.B.C.D.El. ftsl. pbpX and regR genes	86	65	1114
186	~	2254	809	emb[279691 500R	S.pneumoniae yor((A, B, C, D, E), tist, pbpx and regR genes	96	316	1647
186		100	1 880	emb 279691 500R	S. pneumoniae yorflA, B, C, D, E), ItsL, pbpX and regR genes	86	174	174
189		~	259	195 072720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	258	258
189	~	009	185	95/072720	Streptococcus pneumoniae heat shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	80	204	216

S. Daeumoniae - Coding regions containing to

Contig	108F	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt Length	ORF nt
189		1018	851	46 072720	Streptococcus pneumoniae heát shock protein 70 (dnaK) gene, complete cds and bnaJ (dnaJ) gene, partial cds	- 66	168	991
189		1012	2154	86 U72720	Streptococcus pneumoniae hant shock protein 70 (dnak) gene, complete cds and DnaJ (dnaJ) gene, partial cds	- 66	1062	110
161	6	7829	1524	emb x63602 SPBO	S. pneumoniae mmsA-Box	95	234	306
194		-	729	de H36180	Streptococcus pneumoniae timisposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	16	728	729
661	~		881	emb 283335 SPZ8	S.pneumoniae dexB, cap1(A, B, X, D, E, F, G, H, I, J, K) genes, MTDP-rhamnose blosynthesis genes and allA gene	96	211	23.7
199		66 1	1762	emb 283335 SP28	S.pneumonise dexB. cap1{A, B, C, D, E, F, G, H, I, J, K genes, dTDP-rhamnose biosynthesis genes and alia gene	68	248	264
661	~	187	2284	emb 28335 SP28	S. pneumoniae daxB. capila, B. C. D. E. F. G. II. I. J. Kl genes. dTDP-rhamnose biosynthesis genes and alia gene	86	\$04	504
203		1977		[9b[1.20563]	Streptococcus pneumoniae Extra yene, partial cds	1 66	342	1641
204		1145		66 136131	explo gene.	- 66	110	1 6411
208		65	2296	111.680/96	Streptococcus pneumoniae pneumococcal surface protein A PspA (pspA) gene, complete cds	06	471	2238
213		2455	2123	emb 283335 SP28	S.pneumoniae dexB. capllA, B, P, D, E, F, G, H, I, J, Kl genes. dTDP-rhamnose biosynthesis genes and allA yene	96	332	133
216		368	~	emb 281335 SP28	S.pneumoniae dexB. capllA.B.'.U.E.F.G.H.1,J.Kl genes, dTDP-rhamnose biosynthesis genes and alia yene	66	338	357
1 216		2650	2327	gb H28678	S. pneumoniae promoter sequence DNA	86	98	324
222		7.14	•	emb 283335 SP28	S. pneumoniae dexB. capilA, B, C, D, E, F, G, H, I, J, K genes, dTDP-rhamnose biosynthesis genes and alia gene	76	414	414
1 227		5266	4238	emb AJ000336 SP	Streptococcus pneumoniae 1dh gene	- 66	1 6201	1 6201
1 239		-	804	gb M31296	S. pneumoniae recP gene, comilite cds	95	484	804
247		1625	1807	gb H36180	treptococcus pneumoniae (purc) genes, complete	76	178	183
249	:	126	1364	8245 581113 Sp28	S.pneumoniae dexB. capllA, B, C, D, E, F, G, H, I, J, K] genes, dTDP-rhamnose biosynthesis genes and alia yene	76	43	999
253		162	•	gb H16180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	- 66	360	360
253	<u>~</u>	1238	2050	emb 283335 SPZ8	S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	95	420	613
					4-4411111111111111111111111111111111111			

S. pheumoniae - Coding regions containing trans-

Contig	ORF	Start	Stop	match	match gene name	percent	HSP ot	ORF of
253	•	5069	2572	emb 283335 SP28	S.pneumoniae dexB. capl(A, B, C, D, E, F, G, H, I, J, K genes, dTDP-rhamnose biosynthesis genes and aliA gene	97	504	504
255	-	7	800	emb 282002 5P28	S. pneumoniae pcp8 and pcpC genes	6.6	531	798
255	~	798	1841	emb 282002 SP28	S.pneumoniae pcpB and pcpC genes		672	1044
255		2493	1969	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown ort	92	435	\$25
257		985	770	emb X17337 SPAH	Streptococcus pneumoniae ami locus conferring aminopterin resistance	96	117	216
25.7	_	1245	604	66 H36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	9.	339	339
267	~	495	1208	951010146	Streptococcus pneumoniae dihydrupteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	95	90	714
267		1291	1122	95/1116156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	6	355	987
267		1922	1096	951910]q5	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthatase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	86	1341	1341
267	5	1361	4136	95(016156	Streptococcus pneumoniae dihydropleroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genas, complete cds	66	576	576
267	9	790	4949	951910 q6	Streptococcus pneumoniae dihydropteroate synthese (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	66	748	786
267		5544	5140	9b U16156	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genus, complete cds	001	186	405
268	7	1 193	1990	emb x63602 SPBO	S. pneumoniae masA-Box	98	194	198
ונג		562	104	gb H29686	S. pneumoniae mismatch repair thexB) gene, complete cds	93	160	459
291		25	524	95/004047/	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 1S1202 transposase gene, complete cds	96	450	450
291	~	1001	525	emb 283335 SP28	S pneumontae dexB, cap1 A, B, C, D, E, F, G, H, I, J, K genes, dTDP-rhamnose blosynthesis genes and aliA gene	87	205	423
291		907	559	emb 283335 SF28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhanulose biosynthesis genes and allA gene	06	170	249
291		1374	1099	95 136180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (burC) genes, complete cds	982	264	276
					· · · · · · · · · · · · · · · · · · ·			

S. pneumoniae - Codiny regions containing known sequences

Contig	CRF I TO	Start (nt)	Stop	match	match gene name	percent	HSP nt	ORF nt
1 293	-		1673	umb 267740 SPGY	S.pneumoniee gyrB gene and unknown orf	86	551	1 1 1 2 1
1 296	_	1434	151	emb 247210 5PDE	S.pneumoniae dexB. caplA. caplB and caplC yenes and orfs	66	000	1284
1 317		157	510	emb 267739 SPPA	S.pneumoniae part, part and transposase genes and unknown orf	68	353	354
1325	~	1237	485	emt. 283335 SP28	S.pneumoniae dexB, capi(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and allA gene	91	299	753
326		-	462	emb 282001 SP28	S.pneumonlae pcpA gene and open reading frames	100	233	7 (37
327		603	7	emb 283335 SP28	S.pneumoniae dexB, capi(A,B,C,D,E,F,G,H,I,J,KI genes, qTDP-rhamnose biosynthesis genes and aliA gene	76	69	540
7.	-	151	545	gb[041735]	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homosecine kinase homolog (thrB) genes, complete cds	87	9.1	193
336	-	308	6	emb 226850 SPAT	S.pneumoniae (H222) genes for ATPase a subunit, ATPase b subunit and ATPase	- 76	102	216
360	-	-	519	emb 267739 SPPA	S. pneumoniae part, part and transposase genes and unknown orf	- 56	415	519
360		1598	1960	emb 283335 SP28	S.pneumoniae dexB, capilA,B,C,D,E,F,G,H,I,J,KJ genes, dTDP-rhamuose biosynthesis genes and aliA gene	76	353	363
362		673	~	emb 283335 SP28	S.pneumoniae dexB. capilA,B,C,D,E,F,G,H,I,J,Kl genes, dTDP-rhamnose blosynthesis genes and aliA gene	\$6	69	672
362	~	1168	728	ap 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence 1S1202 transposase gene, complete cds	96	14	411
40		347	=	emb x85787 SPCP	S.pneumoniae dexB, cps14A, cps14B, cps14C, cps14B, cps14E, cps14E, cps14C, cps14H, cps	***	P S	237

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

228 2 1760 1942 pir F6066 F606 translation 260 1 2 205 91 984927 Ingomycin p 260 1 2 205 91 984927 Ingomycin p 25 2 486 1394 91 1574495 hypothetic p 25 2 486 1394 91 1574495 hypothetic p 2 486 1394 91 1574495 hypothetic p 2 290 2 91 347999 APP-dapend 2 290 589 91 987050 1ac2 gene 239 2 290 589 91 987050 1ac2 gene 239 2 290 589 91 987050 1ac2 gene 239 2 2741 91 127155 phosphoeno 2 2 290 589 91 147398 Uracil phosphoeno 2 2 290 2741 91 127155 phosphoeno 2 2 2 2 2 2 2 2 2	match match gene name	eis •	ident	length (nt)
1 2 205 91 984927 1 2 486 11394 91 F6066J F606 2 486 11394 91 F504495 1002 91 110627 1 190 2 91 110627 1004 91 91 91 91 91 91 91 9	0663 F606 translation elongation factor Tu · Streptococcus oralis	001	1 001	183
1 2 1138 pir F6066J F606 186 199 91 1574495 1902 91 110627 1902 91 110627 1902 91 110627 1902 91 110627 1902 91 110627 1902 91 110627 1902 91 110627 1902 91 110627 1902 91 11062 1902	927 neomycin phosphotransferase (cloning vector pBSL99)	001	100	204
2 486 1194 gi 1574495 2 685 1002 gi 110627 3 190 2 gi 191848 4 190 589 gi 997848 5 290 589 gi 99785 5 290 589 gi 997050 6 1004 1004 gi 151615 7 1004 1004 gi 151615 8 6575 7486 gi 151615 9 1004 11154 gi 1276873 1 1 1 1 1 1 1 1 1	0663/F606 translation elongation factor Tu · Streptococcus oralis	1 66	96	1137
2 685 1002 91 110627 1 190 2 91 1347999 1 1 190 2 91 1347999 1 2 290 589 91 987050 2 290 589 91 987050 2 1044 361 91 1347998 1 1044 361 91 1347998 1 1044 361 91 1347998 1 1 168 91 581299 1 1 168 91 581299 1 1 1 1 1 1 1 1 1	4495 hypothetical (Haemophilus influenzae)	86	96	606
1 190 2 9i 347999 ATP-depe 2 290 589 9i 987050 1ac2 ger 2 290 589 9i 987050 1ac2 ger 2 1044 361 9i 137755 phosphooles 2 1044 361 9i 153615 phosphooles 2 1362 1294 9i 1276873 phosphooles 2 1362 1396 9i 149396 1ac0 1a	<u> </u>	96	6	318
1 1 807 99 924848 inosine 2 290 589 99 987050 1ac2 ger 9 5948 7366 99 153755 phosphoology 9 5948 7366 99 147998 uracil ger 1367 7486 99 153615 phosphoology 1 1 168 99 153615 phosphoology 1 1 1 1 1 1 1 1 1	999 ATP-dependent protease protective subunit (Streptococous salivarius)	86	96	189
2 290 589 9i 87050 1acz 2 1044 361 9i 153755 phosp 2 1044 361 9i 153755 phosp 2 1044 361 9i 153615 phosp 2 1045 2 2741 9i 153615 phosp 2 2741 9i 153615 phosp 2 2741 9i 153615 phosp 2 2741 9i 276873 DeoD 2 2 2 2 2 2 2 2 2	_	86	1 76	807
9 5948 7366 gi 153755 phospore 2 1044 361 gi 147998 Uraci Great 1045 1486 sp 17214 ERA_S GTP-B 1184 gi 153615 gall 1184 gi 153615 gall 1184 gi 1276873 DeoD 14 1362 1598 gi 146606 1400 1		86	1 86	1 006
2 1044 361 91 147998 Uraci 8 6575 7486 Sp P17214 ERA_S GTP-B 9 1362 2741 91 153615 Eabli 1 1 168 91 16606 10c0 4 1362 1598 91 16606 11ac0 1 1 834 91 1743856 10tra 1 1 834 91 1743856 10tra 2 606 1289 91 149396 12c0 3 3410 3045 91 1850606 Y1xH 10 7972 7337 91 703442 thymi 1 4410 5848 91 153573 111 A1	755 [phospho-beta-b-galactosidase (EC 3.2.1.85] [Lactococcus lactis cremoris]	1 26	76	1 6191
8 6575 7486 Sp PJ7214 ERA_S GTP-B 951 2741 91 153615 phosp 1 1 168 91 164606 1000 4 1362 1598 91 46606 1100 2 135 441 91 20825 heat-line 3 1410 10967 911 PID 4100972 Pyruu 4 10410 10345 91 149396 1100 1 1 1045 91 149396 1100 1 10 7972 7337 91 195506 Pyruu 1 10 7972 7337 91 153573 110 AT-line 1 10 10 10 10 10 10 1 10 10		9.1	98	1 +89
3 951 2741 91 153615 phosp salin 1 168 91 581299 initial 1 168 91 581299 initial 1 168 91 1276873 Decob salin 1 1 1 1 1 1 1 1 1	214 ERA_S GTP-BINDING PROTEIN ERA HOMOLX;	96	16	912
1 1 168 9 581299	615 phosphoenolpyruvate: sugar phosphotransferase system enzyme I (Streptococcus salivarius)	96	92	1911
14 10438 11154 91 1276873 Decob 4 1362 1598 91 46606 11acb 11acb 12 135 441 91 1208225 10441 12 8622 10967 911 911 910972 971 911	299 initiation factor IF-1 (Lacturoucus lactis)	96	89	169
4 1362 1598 gi 46606 11ac0 12 13 834 gi 1743856 Intra 12 135 441 gi 208255 heat 12 8622 10967 gn1 PFID 4100972 PYEUV 12 8622 10967 gn1 PFID 4100972 PYEUV 10 7972 7337 gi 149396 YIAH 10 7972 7337 gi 1955606 YIAH 10 7972 7337 gi 153573 Hither AT 14410 5848 gi 153573 Hither AT 14598 3513 gi 153763 plasm	687) DeoD Streptococcus thermophilus	96	93	1 111
1 1 834 91 1743856 2 115 441 91 208225 1262 1269 91 149396 1269 91 149396 1269 91 149396 1269 91 149396 1269 91 149396 1269 91 1269606 1269 91 1269606	1	96	80	237
2 115 441 g1 208225 12 8622 10967 gn1 P1D d100972 2 606 1289 g1 149396 3 3410 3045 g1 1850606 10 7972 7337 g1 703442 9 6431 7354 g1 535767 7 4440 5848 g1 53573	1856 Intrageneric coaggregation-relevant adhesin (Streptococcus gordonii)	1 96	93	834
12 8622 10967 gn.1 PtD d.100972 2 606 1289 gi 149396 3 3 3 4 3 4 5 4 5 4 5 5 4 5 5	1225 heat-shock protein 82/neomcym phosphorransferase fusion protein (hsp82-neo) funidentified cloning vector)	96	96	327
2 606 1289 91 149396 3 3410 3045 91 1850606 10 7972 7337 91 703442 9 6431 7354 91 95767 7 4440 5848 91 153763	0 d100972 Pyruvate formate-lyase Streptococcus mutans	- 56	1 68	2346
3 3410 3045 gi 1850606 10 7972 7337 gi 703442 9 6431 7354 gi 195767 7 4410 5848 gi 15353 9 153763 9	396 lacD Lactococcus lactis	95	- 68	684
10 7972 7337 gi 703442 9 6431 7354 gi 995767 7 4410 5848 gi 153573 3 4598 3513 gi 153763	0606 YIMM (Streptococcus mutans)	- 76	98	990
9 6431 7354 gi 995767 7 4430 5848 gi 153573 3 4598 3513 gi 153763	442 [thymidine kinase [Streptococcus gordonii]	76	989	636
7 4410 5848 9.1 153573 3 4598 3513 9.1 153763	767 UDP-glucose pyrophosphorylasc (Streptococcus pyogenes)	76	98	926
1 3 4598 3513 91 153763	ATPase Enterococcus faecalis	- 96	9.	1419
\	763 [plasmin receptor Streptococcus pyugenes]	- 66	986	1086
12 B 7877 6204 91 1103865 formyl-tet	1)865 [formyl-tetrahydrofolate synthetase [Streptococcus mutans]	93 –	94	1674

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	2 -	(nt)	(00)	a Cession	match gere name	e •	1 dent	(nt)
65	=	4734	1 5120	gi 40150	Lif protein (AA 1-122) [Bacillus subtilis]	66	87	387
6.8	_ :	15.1	11297	[91 47341	antitumor protein Streptococcus pyogenes	6	1 69	1245
80			299	gn1 P1D d101166	ribosamal pratein S7 (Bacillus subtilis	6	76	197
127		695	1093	91 142462	[ribosomal protein Sil (Bacillus subtilis]	66	98	399
160	~	1924	3462	91 1773264	ATPase, alpha subunit (Streptococcus mutans)	66	98	1519
211	~	7571	3047	(45,15,15)	[aminopeptidase C [Streptococcus thermophilus]	93	92	7111
262	-	91	564	91 149394	lach (Lactococcus lactis)	6	06	549
366	-	197	_	191 295259	tryptophan synthase beta subunit (Synechocystis sp.)	1 93	16	195
\$2		26[1]	9761	91 1574496	hypothetical (Haemophilus influentae)	92	80	\$85
36		120781	119927	gi 310632	hydrophobic membrane protein (Streptococcus gordonii)	1 92	98	858
181	-	1265	1534	1911149196	lacD (Lactococcus lactis)	. 92	83	270
181	_	1 3662	4060	91 149410	enzyme III (Lactococcus lactis)	92	83	660
75	-	168	1937	gn1 P10 e294090	0 Libronectin-binding protein-like protein A Streptococcus gardonii)	16	88	1695
46	~	1054	1462	19111850607	signal recognition particle Fth (Streptococcus mutans)	16	84	1593
6.5	0	1 4442	4726	pir S17865 S178	ribusomal protein S17 - Bacillus stearothermophilus	16	80	285
,,	~	1 260	1900	1911287871	groEL gene product Lactococcus lactis	76 1	82	1641
8	<u>-</u>	~	5056	91 871784	[Clp-like ATP-dependent protesse binding subunit [Bos taurus]	16 1	96	2055
66	60	110750	9272	911153740	[sucrose phosphorylase [Streptococcus mutans]	16	18	1479
66	•	111947	111072	911153739	membrane protein (Streptococcus mutans)	16	78	9.09
121	~	2065	2469	pir 507223 R585	ribosomal protein 1.17 - Bacillus stearothermophilus	16	38	405
132	9	9539	9390	[gi]143065	hubst (Bacillus stearothermophilus)	16	68	150
137	œ :	4765	(615)	gn1 P1D d100347	Na+ -ATPase beta subunit Enterococcus hirae	16	1 66	1389
151	~	111119	9734	191 1815634	glutamine synthetase type 1 (Streptococcus agalactiae)	6	82	1386
201	7	1 1798	1 278	191 2208998	dextran glucosidase DexS Streptococcus suis	6	1 61	1521
222	7	673	1839	191 153741	ATP-binding protein (Streptococcus mutens)	16	85	1167
293	~	4113	4400	91 1196921	unknown protein (Insertion sequence [5861]	16	111	288
32	· ~	9919	1 6570	Pair falterial and	diazotatoren kinase bosolos strastorones sersas			

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig 10	LORF	Start int)	Stop (nt)	match	match gene name	E IS	1 ident	length (nt)
a :	~ -	841	1 527	gi 1196921	unknown protein Insertion sequence 15861	06	1 01	1 216
69	127	120908	19757	gn1 P1D e274705	lactate oxidase (Streptococcus iniae)	06	80	1152
55	121	119777	118515	gn1 P10 e221213	Clpx protein (Bacillus subtilis)	06	75	1263
56	7 -	717	776	19111710133	flagellar filament cap [Borrelia burgdorferi]	06	05	261
99	-	7	1 606	91 1165303	[L] (Bacl1)us subtilis]	06	75	1 909
=		~	988	gi 153562 	aspartate beta-semialdehyde dehydrogenase (EC 1.2.1.11) (Streptococcus mutans)	06	08	987
1 120		1345	827	91 407880	ORF1 (Streptococcus equisimilis)	06	75	5
159	112	1, 7690	8298	[gi]143012	GMP synthetase (Bacillus subtilis)	06	94	1 609
166	4	4076	13282	hi 1661179	high affinity branched chain amino acid transport protein (Streptococcus mutans)	06	7.8	795
183		2.8	11195	gi 308858	ATP:pyruvate 2-0-phosphotransferase [Lactococcus lactis]	06	76	1368
161	7	1 2891	1 1662	[gi 149521	tryptophan synthase beta subunit (Lactococcus lactis)	06	1 87	1230
1 198	7 -	1551	1.06	191 2323342	(AF014460) CcpA (Streptococcus mutans)	0.6	76	1116
1 305	_	1 37	1 783	[gi 157351	asparagine synthetase A (asnA) (Haemophilus influenzae)	06	08	747
80		1 2285	13343	gi 149434	putative (Lactococcus lactis)	68	18.	1059
46	8	1.817	1 7362	pir A45434 A454	ribosomal protein L19 - Bacillus stearothermophilus	68	76	216
49	6 :	1 8363	110342	191 153792	rece peptide (Streptococcus pneumontae)	68	83	1980
2 -	= :	18410	119417	[91]308857	ATP: D-fructose 6-phosphate 1-phosphotransferase (Lactoccccus lactis)	68	81	1038
15.	= ;	9686	69901	gnt PID d100932	H20-forming NADH Oxidase Streptococcus mutans	68	1 44	984
65	<u>~</u>	1 2418	1 2786	gi 1165307	S19 Bacillus subtilis	68	18	369
65	8	3806	4225	sp P14577 RL16_	50S RIBUSOMAL PROTEIN 1.16	1 68	82	420
69	81	8219	8719	91 143417	ribosomal protein S5 (Bacillus stearothermophilus)	69	1 96	105
1 73	<u></u>	6137	5335	191 532204	prs (Listeria monocytogenes)	89	1 04	1023
94 1		3360	1465	gn1 P1D e200671	lepA gene product (Becillus subtilis	89	1 92	19691
66	02	112818	91611	gi 153738	membrane protein (Streptococcus mutans)	1 68	1 62	006
1 120	2 -	1552	0011	1911407881	stringent response-like protein (Streptococcus equisimilis)	68	1 64	2253
122	<u>s</u> :	1 6512	1 2791	9n1 P1D e280490	0 unknown Streptococcus pneumoniae	68	- 18	1722
								4 : : : : : : : :

TABLE 2

				44445156511465644				•
Contig	10 E	Start	Stop (nt)	match	match gene name	E is	1 ident	length (nt)
176	-	699	-	91 47394	5-oxoprolyl-peptidase Streptococcus pyogenes	. 68	96	999
177	9 -	1 3050	1 3934	gi 912423	putative (Lactococcus lactis)	68	111	1 588
181		4033	1878	gi 149411	enzyme III (Lectococcus lectis)	68	08	1 6171
1 211	-	3149	2793	91 535273	aminopeptidase C (Streptococcus thermophilus)	- 68	83	1 628
1 361		<u>-</u>	878	91 1196922	unknown protein (Insertion sequence 15861)	68	1 07	1 804
3		111839	110535	sp P30053 SYH_S	HISTIDYL-TRNA SYNTHETASE (EC 6.1.1.21) (HISTIDINETRNA LIGASE) (HISRS)	88	78	13051
3.0	_	1646	2623	91 2058544	putative ABC transporter subunit ComYA (Streptococcus gordonii)	98	7.8	976
54			(22)	gn1 P10 d101320	Yqqu (Bacillus subtilis)	88	99	225
57	7 -	611	1468	gn1 P1D e134943	[putative reductase Saccharomyces cerevisiae	88	75	858
69	Ξ.	5497	6909	pir A29102 R5BS	ribosomal protein L5 - Bacillus stearothermophilus	9.8	1 55	1 (1)
9 1	120	1 9030	9500	191 2078381	ribosomal protein L15 (Staphylococcus aureus)	98	63	1 14
9,	-	3636	1108	gn1 P10 d100781	lysyl-aninopeptidase (Lactococcus lactis)	88	1 08	2529
106	112	12965	112054	91 2407215	(AF017421) putative heat shock protein HtpX (Streptococcus yordonii)	88	72	912
1 107	~	519	1 962	[gn1 PID e139862	putative acylneuraminate lyase (Clostridium tertium)	98	1 56	744
=======================================	æ :	114073	110420	[gi]402363.	RNA polymerase beta-subunit (Bacillus subtilis)	88	74	3654
1 126		13096	12062	gn1 P1D e311468	lunknown (Bacillus subtilis)	98	1 1/	1035
071	===	119143	116874	9111573659	H. Influenzae predicted coding region HI0659 (Haemophilus influenzael	88	61	270
77	_	1 394	555	gn1 P1D e274705	lactate oxidase (Streptucoccus Inlae)	88	1 50	162
148	-	2723	3493	gi 1591672	phosphate transport system ATP-binding protein [Methanococcus Januaschii]		1 89	1111
160	-	5853	6278	9111773267	ATPase, epsilon subunit (Streptococcus mutans)	88	59	426
(1)	- :	0771	2885	91 149426	putative Lactococcus lactis	88	72	1116
717	-	4140	1 3613	[91 535273	aminopeptidase C (Streptococcus thermophilus)	88	74	528
1 231	-	580	1 957	191140186	homologous to E coli ribosomal protein L27 (Bacillus subtilis)	98	78	378
260	5	1 2387	1.2998	19111196922	unknown protein (Insertion sequence 15861)	88	69	612
291	9	1 2017	1 3375		adenylosuccinate synthetase (Bacillus subtilis)	88	1 51	1 6561
916	-	658	1 317	91 603578	serine/threonine kinsse (Phytophthora capsici)		88	342
0	S .	(4)53	4514	911153672	lactuse repressor (Streptococcus autans)	6	86	162
	•		•	•	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		•	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	CRF	Start	Stop (nt)	match	match gene name	e is i	1 ident	length (nt)
6.0	=	110660	110929	91 1196921	[unknown protein (Insertion sequence 15861)	1 6	72	270
65		3140	3808	[gi]1165309	S) [Bacillus subtilis]	83	1 (1	699
65	21	6623	6807	91 1044978	ribosomal protein S8 (Bacillus subcills)	87	73	417
7.5	6	1 5411	6625	191 1877422	galactokinase (Streptococcus mutans)	87	78	1215
980	7	(0/	1 2805	gn1 P1D d101166	Helongation factor G [Bacillus subtilis]	87	1 94	2103
83	- -	541	248	19111196921	unknown protein (insertion sequence 15861)	87	1 69	762
140	5.7	[25033	123897	gn1 PtD e254999	phenylalany-tRMA synthetase beta subunit [Bacillus subtillis]	87	74	7.611
214	-	10441	8516	91 2281305	glucose inhibited division protein homolog GldA (Lactococcus lactis	87	35	1926
220	~	2742	874	gn1 P10 e324358	product highly similar to elangation factor EF-G [Bacillus subtilis]	87	1 66	1869
260	-	9602	2389	91 1196921	unknown protein (Insertion sequence 15861)	87	72	294
323	_	1 27	1 650	91 897795	130S ilbosomal protein [Pediococcus acidllactici]	87	1 67	624
157		1 154	570	91 1044978	ribosomal protein S8 (Bacillus subtilis)	87	73	417
49	Ξ	110927	111445	[91]1196922	unknown protein (Insertion sequence 15861)	980	63	613
. 65	7	1 7461	9224	1911951051	relaxase (Streptococcus pneumoniae)	98	1 89	1764
65	-	1553	2401	pit A02759 R5BS	fribosomal protein (2 - Bacillus stearothermophilus	96	1 1/1	648
65	2	110957	111610	91/44074	adenylate kinase (Lactococcus lactis)	98	1 94	959
82	-	4374	9584	1911153745	mannitol-specific enzyme III Streptococcus mutans	98	72	483
102	-	1 4270	4986	gn1 P1D e264705	OMP decarboxylase [Lactococcus lactis]	9.6	1 94	רור
106	-	1 7824	6880	gn1 PID e137598	aspartate transcarbamylase (Lactobacillus leichmannii)	98	1 89	945
101.	-		(72)	gn1 P1D e339862	[putative acylneuraminate lyase (Clostridium tertium]	98	1 11	273
=======================================	<u>-</u>	10432	6710	gn1 P10 e228283	DNA-dependent RNA polymerase (Streptococcus pyogenes)	9.8	1 08	3723
=	-	5704	4892	91/1661193	polipoprotein diacylglycerol transferase (Streptococcus mutans)	986	7.1	813
134	_	6430	1 7960	91 2388637	glycerol kinase (Enterococcus faecalis)	96	1 ((1551
146	=	1763	6583	101 1591711	melvelonate kinase Methanococcus jannaschii	98	72	169
153	~ :	1 595	2010	191 2160707	dipeptidase (Lactococcus lactis	98	1 84	1416
154	_ :	~	1435	91 11857246	6-phosphogluconate dehydrogenase [Lactococcus lactis]	98		1434
	,	•		•	• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		

YABLE 2

1. 2 1.53 1.51	Contra	108F	Start	Stop	match	match gene name	l sim	1 ident	length (
1 2 1411 pi 610467 lump-dependent Oliveralidable-1-plouphate dehydrogeneses Streptococcus 84 75 75 75 75 75 75 75 7	191		5025	6284	[91 47529	Unknown (Streptococcus salivarius)	9.8	99	1 1 2 6 0
1 2 193 1915)	8		7	1483	91 642667	NADP-dependent glyceraldehyde-l-phosphate dehydrogenase (Streptococcus mutans)	98	23	1482
1 244 1950 91 219355 Card division protein (Entercoccus decelia) 65 66 73 74 2444 1950 91 214990 Card division protein (Entercoccus decelia) 65 73 73 74 74 74 74 74 74	012	80	1 3659	1 6571	191115361	initiation factor IF2 (Enterococcus	986	1 94	2913
1 2644 3705 919 10265545 Deletiva ABC Cenngoucer abunit Coard (Streptococcus gardoniil 65 71 71 71 71 71 71 71 7	052	_	7	187	191/1573581	synthetase A (asnA) [Haemophilus	986	1 89	1981
1 2472 2387 2312093454 CoarC (Stropoucocus gordanii) 65 727 7387 7388 9112095846 CoarC (Stropucoccus gordanii) 65 727 7387 7389 9112095846 CoarC (Stropucoccus gordanii) 65 72 72 72 72 73 73 73 73	36	7	2644	1 3909	gi 2149909	cell division protein (Enterococcus facalis)	85	1 61	1266
1 2797 2787 2788 910 210 210 210 210 210 210 210	97	7	2475	13587	91 2058545	transporter subunit ComYB (Streptococcus	98	72	1111
1 1912 1919 191	91 1	5 -	13577	1 3915	gi 2058546	ComYC Streptucoccus gordonii	85	80	966
15 1417 2.388 91 133746	2	^ :	1. 2797	37.89			85	72	1 666
13 1459 15793 91 14171 12188 91 14171 12188 91 14171 12188 91 14171 12188 91 14171 12188 91 14171 12188 91 14171 12188 91 14171 12188 91 14171 12188 91 14171	- B2	<u>~</u>	4915	6054	91 153746	dehydrogenase	85	1 89	1140
1 13266 1314 gill164967 Scrif (Streptococcus mutans) 69 67 1 12666 1314 gill163366 [ORF 113F protein) [Enterbooccus subtilis] 65 72 2 132 692 gill104399 [Ilbosomal protein SI] [Bacillus subtilis] 65 72 1 1334 2409 gill [Biblio] [Lectahydrotolace dehydrogenase/cyclohydrolase [Streptococcus themophilus] 65 73 1 1346 2409 gull [PID] dil0004 [Na. Afrase alpha submit [Entercoccus hitself 65 70 2 2622 1099 [gull [PID] dil0004 [Na. Afrase alpha submit [Entercoccus hitself 85 67 2 2622 1099 [gull [PID] dil0006 [LABORIUS] [Bacillus subtilis] 85 67 2 1262 1760 4386 [gull PID] dil0006 [LABORIUS] [Bacillus subtilis] 85 67 2 178 [gull PID] dil0006 [LABORIUS] [Bacillus subtilis] 85 67 3 179 [gull PID]	. 83	115	14690	115793	gi 143371	aminoimidatole synthetase (PUR-M)	85	1 69	1104
1 12666 1154 911 193366 ORF (19% Protein) [Enterococcus facealis] 85 72 72 72 72 72 72 72 7	68.	~	1417	2388	gi 1184967	ScrR (Streptococcus mutans	1 58	1 69	972
2 1324 2409 gii 1941999 TiDosomal Procein Sil Bacillus subtilis 85 72 72 72 72 72 72 72 7	108	<u> </u>	7997	3154	91 153566	(19K	1 58	67	1 689
1 1534 2409 gil 1685110 tetrahydrofolate duhydrogensse/cyclohydrolase Streptococcus thermophilus 815 719 719 726.2 709 gin PID J100347 Nat. *TPease alpha submit [Enterocuccus hires] 815 710 815	123	7	312	692	91 1044989	protein S13 (Bacillus	85	72	381
2 2622 709 gni PID di00340 Nai -ATPase alpha subunit [Entercouccus hirse] 85 70 2 2622 709 gni PID di02006 (ABG01088) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND 85 70 3 2622 709 gni PID di02006 (ABG01088) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND 85 65 4 726 4786 911727436 putative 20-kDa protein [Lactococcus lactis] 85 67 5 7760 4786 911727436 putative 20-kDa protein [Lactococcus lactis] 85 70 6 728 728 727 gni PID e339862 putative acynnauraminate lyase [Cloatridium tertium] 84 72 7 7720 7551 gni PID e339862 putative acynnauraminate lyase [Cloatridium tertium] 84 69 8 772 772 911722 911	128		1534	5409	9111685110	tetrahydrofolate dehydrogenase/cyclohydrolase Streptococcus thermophilus	88	1 11	876
2 2622 709 gmilpibld102006 (ABD01488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND 85 70 5 7166 4786 91 727436 putative 20-kba protein [Lactococcus lactis] 85 67 6 728 1873 gi 1233155 (APD082220) YILA [Bacillus subtilis] 85 70 7 728 1873 gi 1233155 (APD082220) YILA [Bacillus subtilis] 84 72 8 8 8 70 8 8 8 8 70 8 8 8 8 8 8 8 8 8	113	~ :	2962	4767		ž Z	85	74	1806
5 1760 4386 91 127436 putative 20-XDa protein [Lactococcus lactis] 65 67 2 728 1873 91 1153116 ORF-5 [Streptococcus pneumaniae] 85 67 3 962 1255 91 2293155 (AF008220) Yila [Bacillus subtilis] 85 61 4 975 91 11597 CTP synthetase [Bacillus subtilis] 84 70 4 4775 3443 91 11597 CTP-binding protein [Bacillus subtilis] 84 70 4 4775 3443 91 115965 putative acylnauraminate lysse [Clostridium tertium] 84 69 6 1772 19687 91 1272464 (AF005089) RMAMEH II [Lactococcus lactis] 84 68 7 7 7 7 7 7 7 7 7	170	~	2622	601		IN E.COLI, H.	885	0,0	1916
2 728 1873 gi 1163116 ORF-5 Streptococcus pneumoniae 85 67	187		1760	4386	91 727436	putative 20-kDa protein (Lactococcus lactis)	85	1 69	627
1 1962 1255 gi 2293155 (AF008220) YLIA (Bacillus subtilis)	233	7 -	1 728	1 1873	gi j163116	ORF-5 (Streptococcus pneumoniae)	85	67	1146
1 199 1521 91 50884 91 520884 91 520884 91 520884 91 91 91 91 91 91 91 9	234	_	962	1255	gi 2293155	[Baci]]us	95	61	294
1 199 1521 91 508979 GTP-binding protein (Bacillus subtilis)	240	-	109	1831	gi 143597		95	1 02	1623
4 4175 1448 gnl PID e319862 putative acylneureminate lyase Clostridium tertium 84 70 10 10 10 10 10 10 10	9	-	199	1521	91 508979	GTP-binding protein (Bacillus subtilis)	78	72	1323
1 63 2093 gi 520753 DNA topoisomerase I (Bacillus subtilis) 84 69 69 4 1793 2593 gi 2352484 (AF005098) RNASEH II (Lactococcus lactis) 84 68 17 17720 19687 gnt PID d100584 cell division protein (Bacillus subtilis) 84 91 84 68 178 17723 20884 g1 299163 alanine dehydrogenase (Bacillus subtilis)	01	-	4375	3443	90 1		1 10	1 01	1 666
4 1793 2593 gi 2352484 (AF005098) RUMASEH II (Lactococcus lactis) 84 68 17 17720 19687 gni PID d100584 cell division protein (Bacillus subtilis) 178 179 189 199 1	=	- :	63	2093	gi 520753	topoisomerase I		69	1 1602
17	19	7	1793	2593	gi 2352484		96	89	1 108
[28 21723 20884 91 299163 alanine dehydrogenase (Bacillus subtilis)	02	1	:	19687	gn1 P1D d100584	division protein (Bacillus	*	11	1968
	22	128	121723	20884	[gi 299163	dehydrogenase	 80	- 89	0.00

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF 11D	Start	Stop (nt)	match	match gene name	e is	1 ident	length
00	-10	1730	6792	gn1 P10 d100296	[fructokinase Streptococcus mutans]	84	35	939
1 33	6	1 \$650	5300	gi 147194	phnA protein [Eschetichia coli]	84	111	351
36	122	121551	20172	[91]310631	ATP binding protein (Streptococcus gordonii)	1 84	72	780
48	-	1 2837	2505	91 882609	6-phospho-beta-glucosidase (Escherichia coli)	84	1 69	1 (66
5.8	- :	=	1516	gi 450849	amylase (Streptococcus bovis)	1 84	1 67	1476
65	01	6715	1 7116	[91]951053	ORF10, putative (Streptococcus pneumoniae)	84	1 10	405
1 62	-	77	644	lui 806487	ORF211; putative (Lactococcus lactis)	1 98	99	624
65	===	9177	1 8207	91 1044980	ribosomal protein L18 (Bacillus Bubtilis)	84	1 11	429
59	121	9507	110397	gi 44073	Secy protein (Lactococcus lactis)	94	89	891
901	-	5474	1 2262	gnt P1D e199387	carbamoyl-phosphate synthase Lactobacillus plantarum		1 62	1213
159	- :	147	-	gi 806487	ORF211: putative [Lactococcus lactis]	18	63	**1
163	-	1 4690	5910	91 2293164	(AF008220) SAM Synthase (Bacillus subtilis)	1. 10	69	1221
192	<u>-</u> :	9.	1308	91 495046	(ripeptidase [Lactococcus lactis]	94	1 (1	1263
348		169	9	gi 1787753	(AE000245) f346; 79 pct identical to 336 amino acids of ADH1_ZYHHO SW: P20368 but has 10 additional M-ter residues (Escherichia col1)	48	1,4	999
-	-	1572	13575	gi 143766	(thrSv) (EC 6.1.1.3) (Bacillus subtilis]	83	65	7002
6	9 :	1 3893	76.3	gnt Ptb d100576	single strand DNA binding protein (Bacillus subtilis)	83	69	1 114
= = =	1.5	7426	8457	[gi]520738	comA protein (Streptococcus pneumoniae)	83	99	1032
1 20	113	13860	14144	gn1 P1D d100583	Unknown (Bacillus subtilis)	83	61	285
2		3358	2606	91 1788294	[AE000290] 0238; This 238 as orf is 40 pct identical (5 gaps) to 231 residues of an approx. 248 as protein YEBC_ECOLI SW: P24237 (Escherichia coli)	8	7.	155
88	. –	1 3304	3000	91 11573659	II. influenzae predicted coding region H10659 (Haemophilus influenzae)	83	5, 1	300
35		5108	1867	191 311707	hypothetical nucleotide binding protein (Acholeplasma laidlawii)	83	63	1242
- 55	611	117932	117528	gi 537085	ONF_(141 (Escherichia coli)	B3	- 65	405
55	120	118539	117919	91 496558	orfx [Bacillus subtilis]	8)	69	621
\$9	9	2795	1 3142	9111165308	L22 (Bacillus subtilis)	83	1 19	348
89	• : - :	7789	6683	191/1213494	immunoglobulin Al protesse (Streptococcus pneumoniae)	69	- +5	198
								•

S. pneumoniae - Putative coding regions of noval proteins similar to known proteins

Contig	19 OHF	Start	Stop (nt)	match	match gene name	E is	1 ident	length
1 87	-12	115112	17771	gn1 PtD e323522	putative rpo2 protein (Bacillus subtills)	83	45	1 200
96	7	8963	1696	191147394	5-oxoproly1-peptidase (Streptococcus pyogenes)			1 099
86	-	_	263	191 1183885	glutamine-binding subunit (Bacillus subtills)	6		1 190
1 120	-	0717	5233	1911110630	Inc metalloprotease Streptococcus gordonli)	6		
127	_	1 2998	4347	19111500567	A. Jannaschil predicted coding region HJ1665 Hethanococcus jannaschil)	68	72	0561
[133	-		440	Qi 672918	v-type Na-ATPase (Enterococcus hirae)		09	- 024
160	-	1166	4356	911773265	Affese, gamme subunit (Streptococcus mutans)	68	69	100
214	-	2278	2964	gi 663279	(transposase (Streptococcus pneumoniae)	6	72	6.83
226	_	1367	0202	91 142154	[thioredaxin Synechococcus PCC6301]	83	87	945
100	- :		1049	91 40046	phosphoglucose isomerase A (AA 1-449) (Bacillus steerothermophilus)	93	67	1042
1003		11155	1661	91 289282	glutamyl-tRNA synthetase (Bacillus subtills			
9	=	115.170	114318	[gi 633147	[ribose-phosphate pyrophosphokinase (Bacillus caldulyticus)	82	- 99	1 1501
, ,	- :	299	96	[91]143648	ribosomal protein L28 (Bacillus subrilis)	92	1 69	1 400
6	-	1479	1090	1911385178	unknown [Bacillus subtilis]	82	97	900
6	- :	4213	1 3899	gn1 P10 d100576	ribosomal protein S6 (Bacillus subtills)	92	1 09	1 318
12	9	4688	3942	gn1 PtD d100571	unknown (Bacillus subtilis)	82	89	
77	13	113422	114837	91 520754	putative (Bacillus subtilis)	82	1 69	1416
22	1.8	114897	115658	gn1 P1D d101929	uridine monophosphate kinase (Synechocystis sp.)	82		1 636
2	9=	111471	10641	gn1 PID d101190	ORF4 (Streptococcus mutans)	82	89	1 168
35	6	7400	6255	gi 1881543	UDP-N-acetylglucosamine-2-epimerase (Streptococcus pneumoniae)	92	- 89	1146
•	01	8003	1.533	1911113519	riboflavin synthase beta subunit (Actinobacillus pleuropneumoniae)	82	6.8	421
87	=======================================	123159	[23437	[gi [1930092	louter membrane protein (Campylobacter Jejuni)	82	- 19	279 1
3	=	113833	114765	gi 142521	deoxyribodipyrimidine photolyase [Bacillus subtilis]	92	61	1 (16
09		717	1849		(AB001610) uvra (Deinococcus radiodurans)	62	99	28.89
62	-	2131	1457	[gi 2246749	(AF009622) thioreduxin reductase (Listeria monocytogenes)	82	63	675
<u> </u>	=:	;	:		185-1, 4-galactosyltransferase (Streptococcus pneumoniae)	82	1 09	933
2	2 :	9222	7837	985001P 014 1v6	unknown (Bacillus subtilis)	82	1 59	1386 1

TABLE 2

S pneumoniae - Putative coding regions of novel proteins similar to known proteins

1	Contig 1D	ORF 110	Start (nt)	Stop (nt.)	adtch	match gene name	E is	1 ident	length (nt)
1975 1985 1986	14	_	-	וררנ			82	6.9	11.00
10716 9184 918 9	6	_	9696	1981	gn1 P1D e305362	unnamed protein product (Streptucoccus thermophilus)	82	52	288
1 1112 9112 911 9110	98	=	10776	9394	lgi 683583	5-enolpyruvylshikimate-1-phosphate synthase (Lactococcus lactis)	82	19	1383
1 1 1112 901 PIN[GIOZOSO 148000927] phosphocher-valuecucidase [Laccobacillus gasseri] 22 1 1 1 1 1 1 1 1	68	~	8295	9752	191 40025	to E.coli 50K (Bacillus	82	99	1458
1 4677 6244 pir/S0609/S060 type 1 strate-specific decayrianmelease [EC 3.1.3]. J Cita Chain S - 62 1 4657 6244 pir/S0609/S060 type 1 strate-specific decayrianmelease [EC 3.1.3]. J Cita Chain S - 62 2 4183 7545 pir/S0609/S060 type 1 strate treaming protein lifelicobacter pyloxi. 82 3 748 7442 pir/S0609/S040 type 1 restriction-modification entyme S submit [Encherichia coli! 82 4 748 8441 pir/S0609/S040 type 1 restriction-modification entyme S submit [Encherichia coli! 82 5 7400 7444 girl pir/S0609/S040 tribozomal protein SS B Bácil us subtilias 84 7 7484 8441 girl pir/S0609/S040 tribozomal protein SS B Bácil us subtilias 84 8 7400 7444 girl pir/S0609/S040 tribozomal protein SS B Bácil us subtilias 84 8 7400 7444 girl pir/S0609/S040 tribozomal protein SS B Bácil us subtilias 84 8 7400 7444 girl girl pir/S0609 tribozomal protein streptococcus guidantilia 84 9 7410 7420 girl pir/S0609 tribozomal protein streptococcus actail 9 7410 7420 girl pir/S0609 tribozomal protein streptococcus actail 9 7410 7420 girl pir/S0609 tribozomal protein tribozomal	\$11	7	110347	8812	gn1 P10 d102090	(A8003927) phospho-beta-galactosidase [Lactobacillus gasseri]	82	34	1536
1 4657 6214		-	-	7177	gn1 P10 d100579	synthetase (Bacillus subtilis)	82	11	1332
6 4183 3501 91 311986 (14E000584) Conserved hypotherical process lifetication and process lifetication and process lifetication and process season in the process lifetication and process season in the process lifetication and lifetica	151		4657	6246	pir \$06097 \$060	site-specific deoxyribonuclease (EC 3.1.21.3) CfrA chain pacter freundii	98	99	1590
17 178 576 pri 500554 RIBS Fibosomal protein S9 - Bacillus stearothermophilas 82 82 845 pri 500554 RIBS Fibosomal protein S9 - Bacillus stearothermophilas 82 82 845 pri 500554 RIBS Fibosomal protein S18 Bacillus subtilia) 81 82 84 8411 pri 61010074 EcoA type I restriction-modification enyme S subunit [Escherichia colii] 82 84 8411 pri 61010074 Eropcohany-RNA synthesaw [Clostridium longispoum] 81 81 81 81 81 91 10004 EcoA type I restriction-repair coupling factor Bacillus subtilia 81 81 81 81 81 81 81 8	133	-	4183	1 3503	191 2313836		82	899	1 189
2 178 576 pir[508564[R]BS Fibosomal protein S9 - Becillus steacchemophilus 82 2 1788 645 gill46402 EcoA type restriction-modification enzyme S subunit Escherichia colii 82 1 1700 1346 guill Gill G	1.1.1	112	5481	7442	19n1 P1D J101999	NerB	82	80	1962
2 1368 845 gil 146402 EcoA type restriction-modification engme S subunit [Escherchia coli] 82 83 84 8413 gil 100014 Eryptophanyl-thia subtilia) 81 81 81 81 81 81 81 8	61	~	178	916	pir S08564 R3BS	protein 59 -	82	70	399
5 7484 8413 91 100074	502	~	1 258	845	91 146402	S subunit (Escherichia	82	899	888
1 10106 11820 gai Piolodidosa transcription-repair coupling factor Bacillus subtilis 81	-	-)400	3146	9050016 014 116		68	99	255
1 10108 13820 911 1058543	91	-	7484	8413	19111100074		18	70	930
2 1212 1606 gi 2058543 putative Dith binding protein Streptococcus gordon 8	°.	=	110308	13820	gn1 Pr0 d100583	transcription-repair coupling factor (Bacillus subtilis)	1 8	63	1513
2 1267 1751 91 460259 lenolase Bacillus cubtilis 81 81 81 81 81 81 81	38	~	1 1232	1606	gi 2058543	Streptococcus	18	63	375
1 2 1267 gil 431231 Uracil permease Bacillus caldolyticus 81 81 8253 1440 gil PID di00453 Hannoseplosphate Isomerase Streptococcus mutans 81 81 822 10106 10821 gil 44073 SecY protein Lactococcus actis 822 10106 10821 gil 44073 SecY protein Lactococcus actis 822 gil 2313526 SecTine hydroxymethyltransferase Bacillus subtilia 81 81 81 822 gil 1910 1919 1910	_ \$	- 5	1 3061	1251	91 460259		18	67	1361
3 2453 1440 gai 154752 Fransport protein [Agrobacterium tumetacians] 81 81 82 1106 336 gai 154752 Fransport protein [Agrobacterium tumetacians] 81 81 82 10306 10821 gai 144073 Secy protein [Lactococcus lactis] 82 10306 10821 gai 1556886 Serine hydroxymethyltransferase [Bacillus subtilis] 81 81 82 gai 12313526 (AE000557) H. 7/lori predicted coding region HP0411 [Helicobacter pylori] 81 81 82 93 1469939 19604939 197044 Spoillie protein - Bacillus subtilis 83 84 84 84 84 84 84 84	9	_	~	1 1267	1911431231		6	19	1266
2 1106 336 99 154752 transport protein Agrobacterium tumefaciens 81	4	;	1 2453	1440	gn1 Pr0 d100453	Mannosephosphate Isomerase (Streptococcus mutans)	18	01	1014
12 10306 10821 91 44073 SecY protein (Lactococcus lactis) 4 1874 2603 91 556886 Serine hydroxymethyltransferase (Bacillus subtilis) 81 16 19126 18929 91 23133526 (AE000557) H. Fylori predicted coding region HP0411 (Helicobacter pylori) 81 17 8373 7822 91 1910 199384 pyrR (Lactobacillus plantarum) 81 15 15899 18283 91 1469939 920up B oligopeptidase PepB (Streptococcus agalactiae) 81 15 15899 18283 91 820 91 1685111 91 10rf1091 (Streptococcus thermophilus) 81 18 18 18 18 18 18 1	.	7	1106	336	gi 154752		81	64	וני
4 1874 2601 gi 556886 Serine hydroxymethyltransferase [Bacillus subtilis] 81	9	123	90(01	110821	lgi 44073	Secy protein (Lactococcus lactis)	18	99	516
16 19126 18929 99 2313526 (AE000557) H. rylori predicted coding region HP0411 [Helicobacter pyloril 81 17 1873 7822 931 PID E199384 pyrR [Lactobacillus plantarum] 81 1873 991 PID E199384 910000 B oligopeptidase PepB Streptococcus agalactiae 81 1875 18281 pir 509411 5094 spoilité protein - Bacillus subtilis 15899 18181 91 1685111 orf1091 Streptococcus thermophilus 1878 1878 91 1685111 Protein - Pacillus subtilis 1878	68	-	1874	1 2603	911556886	serine hydroxymethyltransferase (Bacillus subtilis)	18	69	2721
7 8373 7822 gn1 PID e199384 pyrR Lactobacillus plantarum 6 5054 6877 yi 1469939 group B oligopeptidase PepB Streptococcus agalactiae 81 15 15899 18281 pir 509411 5094 spoilitE protein - Bacillus subtilis 5 3359 3634 gi 1685111 forf1091 Streptococcus thermophilus	66	91	19126	118929	[91 2313526	H. Fylori predicted coding region HP0411	ã	75	198
6 5054 6877 91 1469919 group B oligopeptidase PepB Streptococcus agalactiae 81	901		1 6373	1 7822	gn1 PID e199384	pyrR [Lactobacillus plantarum]	18	61	552
	108	ه.	5054	1 6877	gi 1469939		189	99	1824
5 3359 3634 gi 1685111 or11091 Streptococcus thermophilus	=	=	115899	118281	pir \$09411 \$094	protein -	18	65	2385
	128	:	95(1	1 3634	gi 1685111	orf1091 (Streptococcus thermophilus)	- F	69	276

ABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig 10	2	Cuc	- Car	acession	מבות ווסשט	e is	• ident	length (nt)
151	- :	630	1 1211	91 304896	EcoE type I restriction-modification enzyme R subunit [Escherichia coli]	1 18 1	1 65	2382
159	= ;	6722	7837	91/2239288	GNP synthetase (Bacillus subtilis)	81	69	1116
170	-	1 739	458	gn1 P10 d102006	(ABOO1488) FUNCTION UNKNOWN (Bacillus subtilis)	91	55	282
191	~ :	1759	693	gi 149522	[tryptophan synthase alpha subunit [Lactococcus lactis]	81	99	698
214	_	2290	1994	gi 157587	reverse transcriptase endonuclease (Drosophila virilis)	8 -	•	297
217	-	4415	4008	91 466473	cellobiose phosphotransferase enzyme II' (Bacillus stearothermophilus)	91	59	408
262		898	898	91 153675	Lagatose 6-P kinase (Streptococcus mutans)	1.6	99	300
299	-	.663	-	gnt PID e301154	StySKI methylase (Salmonella enterica)	18	1 09	099
366	~ -	1376	æ	lgi (149521	tryptophan synthase beta subunit [Lactococcus lactis]	18	65	294
77	011	8766	9242	91 1216490	ONA/pantothenate metabolism flavoprotein Streptococcus mutans	0.00	64	477
-2	=	0509	5748	qn1 P10 e305362	unnamed protein product (Streptococcus thermophilus)	80	67	100
1.1	91-	8455	9906	1911703126	leucocin A translocator (Leuconostoc gelldum)	1 08	65	612
81	_	2440	1613	91 1591672	phosphate transport system ATP-binding protein (Methanococcus jannaschii)	80	1 88	828
72	_	4248	1579	gi 452309	valy1-tRNA synthetase (Bacillus Subtilis)	08	1 69	2670
28	- 1	1671	13288	[91]1573660	H. Influenzae predicted coding region H10660 [Haemophilus Influenzae]	80	63	186
32	~	905	(193)	gn1 P1D e264499	dihydroorotate dehydrogenase B (Lactococcus lactis)	08	99	1032
19	-	-	1266	gn1 P1D e234078	hos [Lactococcus lactis]	90	63	1266
\$2	,	4363	3593	91/1183884	ATP-binding subunit (Bacillus subtilis)	80	57	ורר
24	2	4550	4744	19112198820	(AF004225) Cux/CDP(181); Cux/CDP homeoprotein (Mus musculus)	90	09	561
59	Ξ	1 7109	7486	lgi [951052	ORF9, putative (Streptococcus pneumoniae)	80	89	378
65	<u> </u>	1230	1550	pir A02815 R58S	ribosomal protein L23 - Bacillus stearothermophilus	80	69	321
65	~	5174	5503	pir A02819 R5BS	ribosomal protein L24 - Bacillus stearothermophilus	1 08	70	330
99	6	9884	110687	gi 2313836	(AE000584) conserved hypothetical protein [Hellcobacter pylori]	1 08	99	906
92	~	648	2438	gi 622991	mannitol transport protein (Bacillus stearothermophilus)	- 08	65	1961
85	_	056	630	91 528995	polyketide synthase (Bacillus subtilis)	90	9+	121
99	-	6870	6778	191 853776	peptide chain release (actor 1 (Bacillus subtilis)	90	69	1092
93	~	8178	1 7438		hypothetical protein (Symechocystis sp.)	- 08	9	1961

TABLE 2

.=
an oroteins
1010
č
_
5
9
to known
c
-
Ξ
8
č
-
-
ĭ
2
- I
ž
š
· Putative coding regions of novel proteins similar
Ξ
.=
Ö
<u>.</u>
5
Ξ
ŏ
J
a
-
ā
7
چ
prieumoniae
7
ã
Ĕ
ĕ
5
_
S

10 I		(חנ)	(ut)	acesston	match gene iiame	€ •	1 Ident	length (nt)
901	\$	6854	5751	gn1 P10 e199386	[glutaminase of carbamoyl-phosphate synthase [Lactobacilius plantarum]	08	9 9	1104
601		2160	1450	gi 40056	phop gene product (Bacillus subtilis)	08	65	711
1 721	6	4246	3953	gn1 P10 d102254	30S ribosomal protein S16 (Bacillus subtilis)	08	9	294
128	8	5148	6428	gi 2281308	phosphopentomutase [Lactococcus lactis cremoris]	08	99	1281
133	119	12665	111376	[gi]159109	[NADP-dependent glutamate dehydrogenase [Glardia intestinalis]	08	89	1290
140	611	66961	19457	lgi 517210	putative transposase Streptococcus pyogenes	08	0,0	243
158	~	2474	984	91 1677423	galactose-1-P-uridy transferase Streptococcus mutans	08		1491
171	100	1974	7728	91 397800	[cyclophilin C-associated protein Mus musculus)	08	09	255
181		~ ;	619	191 149 195	[lacc (Lactococcus lactis)	0.00	99	618
	_	27	519	gi 143467	[ribosomal protein S4 (Bacillus subtilis]	1 08 1	1 00	513
129	7 - 7	1652	858	191 533080	Recf protein (Streptococcus pyogenes)	80	63	295
17.1	_		958	91 442360	ClpC adenosine triphosphatase (Bacillus subtills)	80	88	156
	_	4312	5580	91 149435	putative (Lactococcus lactis)	1 60	79	1269
23	- :	1175	135	91 1542975	Abcb (Thermosnaerobacterium thermosulfurigenes)	1 60 +	1 19	1041
- :		9244	8201	gn1 P1D e253891	[UDP-glucose 4-epimerase (Bacillus subtills)	60	62	1044
36	-	1242	2633	gn1 P1D e324218	ftsA (Enterococcus hirae)	66	88	1392
98		1 8817	8378	91 (405134	acetale kinase (Bacillus subtilis)	60	58	1224
55	7 9	11106	8229	91 1146234	dibydrodipicolinate reductase (bucillus subtills)	96	95	183
65	B 61	8661	8915	91 2078380	ribosomel protein L30 (Stephylococcus aureus)	1 60 1	1 89	255
69	-	3678	2128	gnt PID e311452	unknown (Bacillus subtills)	1 66	1 99	1551
69	9 -	7881	7279	91 677850	hypothetical protein (Staphylogoccus aureus)	1 64 1	59	603
12	8 01	8491	9783	gn1 P1D d101091	hypothetical protein (Synechocystis sp.)	96.	62	1293
90	7 - 7	2906	7300	191/143342	polymerase 111 (Bacillus subtilis)	1 62	1 59	4395
82	11	113326 1	15689	gn1 P10 e255093	hypothetical protein (Bacillus subtilis)	61	1 59	2364
98	[13 [12	112233 11	111118	91 683582	prephenate dehydrogenase [Lactococcus lactis]	1 60	88	1116
76	6	016	1734	gi 537286	[friosephosphate isomerase (Lactococcus lactis]	60	1 69	1 267
98	9	4023	4742	gn1 P1D d100262	LivG protein (Selmonella typhimurium)	1 60	63	1 021

TABLE 2

Contig	ORF ID	Start	Stop	match	match gene name	e is	I ident	length (nt)
66	- 22	116315	114150	91 153736	a-galactosidase (Streptococcus mutans)	96	99	2166
107	_	1 5684	9049	911460080	D-alanine: D-alanine ligase-related protein (Enterococcus (aecalis)	96	885	123
=	6	6858	8303	gi 466882	pps1; B1496_C2_189 Hycobacterium leprae	97	99	1446
151	07	13424	[1221]	gi 450686	3-phosphoglycerate kinase (Thermotoga maritima)	96	09	1212
1 162	- 5	11158	1 3017	91 506700	Caph Staphylococcus aureus	64	69	1860
771	~	2876		[91 912423	[putative [Lactococcus lactis]	67	19	7.71
1177	3 0 :	4198	4563	gi 149429	putative [Lactococcus lactis]	66	61	366
187	<u>-</u> ;	1,2728	1 2907	gn1 PID d102002	(ABOO1488) FUNCTION UNKNOMN. (Bacillus subtilis)	64	53	180
1.89	-	1589	4350	gn1 Pin e183449	putative ATP-binding protein of ABC-type (Bacillus subtilis)	66	19	762
161	<u>~</u>	4249	3449	91 149519	indoleglycerol phosphate synthase (Lactococcus lactis)	64	99	108
2	<u>-</u> ;	1 1805	ינוק	91 1147404	mannose permease subunit 11-M-Man (Escherichia coli)	66	57	933
212	<u>-</u> :	1 3863	3621	gn1 P10 e209004	glutaredoxin-like protein [Lactococcus lactis]	66	58	243
215	- :	1 987	1 715	gi 2293242	(AF008220) arginine succinate synthase [Bacillus subtilis]	66	99	ξτς.
22 -	~ :	085	191	91 897795	30S ribosomal protein (Pediococcus acidilactici)	60	69	252
380	-	1 694	- 3	9111184680	polymucleotide phosphorylase (Bacillus subtilis	62	79	(69)
1 384	~ -	655	239	911143328	phop protein (put.); putative (Bacillus subtilis)	96.	59	417
9		1 2820	4091	191 853767	[UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Bacillus subtilis]	86	62	1272
	-	8	1786	gi 149432	putative (Lactococcus lactis)	1 87	63	1737
6	-	1 351	124	gi 897793	y98 gene product (Pediococcus acidilactici)	1 80	59	228
- 15	8 -	1 7364	8314	gn1 P10 d100585	Cysteine synthetase A (Bacillus subtilis	78	63	951
700	01	9738	110310	gn1 P1D d100583	stage V sporulation (Bacillus subtilis)	78	88	573
20	9 :	117165	נוייון	gi 49105	hypoxanthine phosphoribosyltransferase (Lactococcus lactis)	1 87	59	\$49
22	[22	117388	118416	gn1 P1D d101315	YqfE Bacillus subtilis	1.81	1 09	1029
~ -	~~	120971	120612	[gi 299163	alanine dehydrogenase (Bacillus subtills)	1 8/	59	360
7	æ :	1 7407	1 7105	[91]41015	aspartate-tRNA ligase (Escherichia coli)	78	\$5	303
1 35	8 :	6257	9618	gi 1657644	Cap8E (Staphylococcus aureus)	78	09	1062

S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

Contig	ORF 110	Start	Stop	match	match gene name	wis .	1 ident	length (nt)
9	=_	9287	8001	91/11/13/18	GTP cyclohydrase 11/ 3,4-dihydroxy 2-butanone-4-phosphate synthase [Actinobaclilus pleuropneumoniae]	78	88	1287
. 4	==	22422	23183	91 2314330	(AE000623) glutamine ABC transporter, ATP-binding protein (gluQ) [Hellcobacter pylori]	98	89	762
33 -	- 5	1012	1430	91(118)887	integral membrane protein (Bacillus subtilis)	87	24	672
- 55	=	113605	112712	gn1 P10 d102026	(AB002150) YbbP (Bacillus subtills)	18	88	968
1 55	111	116637	115612	gn1 P10 e313027	hypothetical protein (Bacillus subtilis)	97	- 15	1026
11.	: : <u>=</u> .	119756	119598	91119764	calcium channel alpha-1D subunit (Homo sapiens)	18	5.1	159
7	==	115031	14018	19111573279	Holliday junction DRA helicase (ruvB) (Haemophilus influenzae)	18	57	1014
3د ا	-	6623	27.67	91 1877423	galactose-1-P-uridy (ransferase Streptococcus mutans	1 78	62	1350
a	112	112125	113906	19111531607	[L-fucose isomerase (fuc!) (Haemophilus influentae)	96	99	1782
82	-	2423	4417	91 1153744	ORF X; putative (Streptococcus mutans)	92	9	1995
8	8	16926	118500	(((()))	phosphoribosyl aminoimidazole carboxy formyl formyltransferase/inosine monophosphate cyclohydrolase (PUR-H(J)) [Bacillus subtilis]	8 L	63	1575
68	. .	120212	12075	qi 143364	phosphoribosyl aminoimidazole carboxylase I (PUR-E) (Bacillus subtilis)	97	9	564
1 92	~	591	878	gn1 P1D d101190	ORF? (Streptococcus mutans)	1 78	62	714
86		1 5863	6069	19:12331287	[(AF013188) release factor 2 (Bacillus subtilis)	96	63	1047
= -	_	1 1001	2741	91580914	dnaZX (Bacillus subtilis)	1 78	79	1671
127	-	611	1 2071	91 142463	RNA polymerase alpha-core-subunit (bacillus subtilis)	78	65	616
1 132	-	2812	(6)	gi 1561763	[pullulanase (Bacteroides thetalotaomicron)	1 78	28	2296
1 135	-	1 2698	1537	91 1788036	(AE000269) WIJ dependent NAD synthetase (Escherichia colli	1 78	99	840
071	124	126853	125423	19111100077	phospho-beta-glucosidase Clostridium longisporum	18	64	1691
150	- 2	1 4690	4514	91 149464	amino peptidase (Lactococcus lactis)	78	42	177
751	-	-	266	91 639915	IAADH dehydrogenase subunit (Thunbergia alata)	84	\$	195
162	-	1.661	4110	gn1 P1D e323528	[putative YhaP protein [Bacillus subtilis]	96	64	889
181	2 -	1898	1 2947	191 149402	lactose repressor (lack, alt.) (Lactococcus lactis)	94	89	105
200	-	1 3627	4958	9n1 P1D d100172	invertase (Zymomones mobilis)	28	19	1332
503	-	0121	1 3015	[91/1174237	Cyck Pseudomonas fluorescens	96	رد ا	216
:								

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

11 1 1 1 1 1 1 1 1	Contig	ORF	Start	Stop (nt)	match	match gene name	e s i	1 ident	Jength (nt)
1 11 12.25 401 101	210		6869	27.17	gi 580902		18	42	364
1 5 232 232 241127007 Income Idealing addition 13 5 6 7 7 7 7 7 7 7 7 7			1 3810	1 2797	gn1 P1D d102049	haemolytica o-sialoglycoprotein endopeptidase; ransmembrana (Bacillus subtills)	78	09	1014
1 2116 10398 91 1573047	714	=======================================	6322	8163	168(711)16)	unknown [Bacillus subtilis]	.86	62	1842
1 212 216 2009 [5117210] [50000 germination and vegetative growth protein (genCC) [1040000000] 216 65 65 65 65 65 65 65	217	<u>:</u> -	6	(175	91 488430	alcohol dehydrogenase 2 (Entamoeba histolytica)	98.	99	2709
1 172 8 6 5 5 177710 Diagnativa transposare [Streptococcus projected 78 65 65 78 78 78 78 78 78 78 7	222	1	2316	3098	9111573047	spore germination and vegetative growth protein (gerC2) [Haemophilus influenzae]	9.8	65	183
1 122 123 123 123 123 124	268	= -	7.42	8	91/517210		96	9	135
1 1567 1079 1011289261	1 276	-	1 223	1.53	gn1 P10 d100306		86	65	531
1 177 794 Gillistold Caubi Stephylococcus aureus 78 59 51 52 525 Gillistold Caubi Stephylococcus aureus 78 59 59 50 52 525 Gillistold Caubi Murci lactic C	313	-	1 1567	6.01	:		78	54	684
1 737 32 1911 1912 1911 1912 1923 1911 1912 1923 1911 1912 1923	666	<u>-</u>	1117	194	91 1916729		98	53	9.9
11 737 31 1911186880	342	~	1 162	592	91 1842439	synthase (Bacillus	78	- 65	86+
15 11923 11008 51 1399555	1 383	-	יני		9111184680	Bacillus	80	9	135
2 1688 2255 gill9913 putative [Lactococcus lacits]			111923	111018	9111399855	subunit	נר	63	906
14 6948 7550 91 200363 Tree Bacillus subtilis 77 41 41 42 42 43 44 44 44 44 44	8	~ -	8691	1 2255	[gi 149433	putative (Lectococcus lactis)		59	558
12 9761 8867 gill000431 Tree Bacillus subtilis 77 64 77 75 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77	1 17		6948	1.550	91 520738	comA protein (Streptococcus pneumoniae)	ר	09	603
	 	122	1926	8967	91 1000451	(Bacillus	7.1	43	395
3 1836 4096 gi 1708640 YeaB Bacillus subtilis 8 8337 8034 gi 1890649 multidrug resistance protein LarA Lactococcus lactis 77 53 77 50 73 74 75 75 75 75 75 75 75	96	:	111421	112131	19111573766		נג	99	111
8 8372 8054 9j 1890649 multidrug resistance protein LmrA (Lactococcus lactis) 77 63 77 63 7509 7240 9j 40103 Fribosomal protein L4 (Bacillus stearothermophilus) 77 68 77 68 77 69 7709 7240 9j 47551 HMRP (Streptococcus sula) 77 68 77 68 77 68 77 69 77 69 77 69 77 69 77 69 77 69 77 69 77 69 77 77	55	-	1 3836	9607	gi 1708640	YeaB (Bacillus subtilis)	1.1	\$5	261
2 607 1254 gi 40103 fribosomal protein L4 (Bacillus stearothermophilus) 77 68 77 77	19	: = : =	נרנאן	8054	gi 1890649	multidrug resistance protein LmrA (Lactococcus lactis)	1.1	51	324
8 7509 7240 gil 47551	59		607	1254	191 40103	protein L4 (Bacillus		63	879
1 1083 118 gnl PID e311493 unknown (Bacillus subtilis)	89		1 7509	1240	gi 47551	HRP (Streptococcus suis)	ננ	89	270
5 4583 4026 gnl PID e281578 hypothetical 12.2 kd protein (Bacillus subtilis)	69	-	1000)	118	(gn1 P10 e311493		1.1	57	996
	الا ا	<u>s</u> –	4583	4026	gn1 P10 e281578	b d	۲۱	09	558
4 3006 5444 gni piD e329895 (AJ000496) cyclic nucleotide-gated channel beta subunit Rattus norvegicus 77 66	a	Ξ	113104	114552	91 1590947	amidophosphoribosyltransferase (Methanococcus jannaschii)	7.1	98	1449
	94	-	9000	5444	· .	cyclic nucleatide-gated channel beta subunit (Rattus	רר	99	2439
	96 -	Ξ	8218	1 8880	91 55 1879	ORF 1 Lactococcus lactis	1.1	62	363
	66	Ξ	114082	112799	191153737	Sugar-binding protein (Streptococcus mutans)	,	61	1284

5. pneumoniae - Putative coding regions of novel proteins similar to known proteins

10 1 10 10 10 10 10 10	Contig	LD	Start (nt)	Stop (nt)	match	match gene name	e is	• Ident	length (nt)
1.320 1111 10 1271700 10-1 10 10 10 10 10 10 10 10 10	106	~ ;	1 361	1176	91 148921	LicD protein (Maemophllus influenzae)	1 11	15	016
1 1230 1111 [01] [15	108		1 3152	4030	91 1574730	(tellurite rasistance protein (tehB) (Haemophilus influenzae)	1 11	8.8	879
1 1986 1911 191	811	7	1 3520	1131	191 1157 3900	D-alanine permease (daga) (Maemophilus influenzae)	- 1.1	52	390
1 100 1010 901	124	-	96/1	101	91 1573162	[tRNA (quanine-N1)-methyltransferase (trmD) [Haemophilus influenzae]	1 ((885	136
1 1 1207 901 Projection Projecti	126	-	6065	4614		Srb (Bacillus subtilis)		62	1396
1 1 120 9m1 P10 e325013 Ingrothetical protein Pacifius subtilis 77 7 7 7 7 7 7 7 7	128	7	630	(7.61			7.	88	744
1 1931 5982 931 293302 [AFODEZZO] TYCH [Bacillus subtilis] 77 77 77 77 77 77 77	130	-	- -	1287		hypothetical protein (Bacillus subtilis)	1 11	61	1287
11 10931 9582 gil 199284 Cysteinyl-1RNA synthetise Bacillus subtilis 777 778 778 1965 gil 1915 6411 779 7	67	- 2	4388	1 3639	191 2293302	[(AF008220) YtqA (Bacillus subtilis]	- ιι	65	750
19 1945 1926 1915 2120	0 1	=	110931	1 9582	91 289284	Cysteinyl-tRNA synthetase (Bacillus subtilis)		19	1350
2 976 1883 gan PiD eis7887 UNFS (aa 1-573) Uncoophila yakuba 4 2735 5593 gal S56628 sacA Listeria anoncoytogenes 5 671 2725 5931 gal S56628 sacA Listeria anoncoytogenes 8 6412 799 gal PiD di00596 Myporterial edabydrogenese A Lactucoccus Lectis 9 7277 799 gal PiD di00596 Myporterial esynthase alpha submit (Lactococcus Actis 9 7277 5971 gal PiD di00596 Myporterical Hiemophilus influenzae 9 5377 5177 gal PiD di00597 Myporterical Hiemophilus Influenzae 9 5377 5177 gal PiD di00997 Ribosomal Protein Lio (Bacillus subtilis) 77 1 701 1206 gal PiD di00997 Ribosomal Protein Lio (Bacillus subtilis) 77 1 771 1166 gal PiD di00997 Ribosomal Protein Lio (Bacillus subtilis) 77 1 771 1166 gal PiD di00997 Ribosomal Protein Lio (Bacillus subtilis) 77 1 771 1166 gal PiD di00997 Ribosomal Protein Cryptomonas phil 1 771 1166 gal PiD di01897 Ribosomal Protein Cryptomonas phil 2 771	140	8 .	119451	119263	191 517210	putative transposase (Streptococcus pyogenes)	1 11	99	189
4 2735 5239 gij 556256 Pacch (Listeria monocytogenes) 77 77 77 77 77 77 77	-	~	9.6	1 1683				05	108
2 671 2739 gui PID d100966 lyayl-tRMA thynthetase Bacillus subtilis 77 77 77 77 77 77 77	=		1 2735	5293	91 556258	secA Listeria monocytogenes	11	65	1 6555
5 5412 7398 91 511015 dihydroorotate dehydroogenase A Lactucoccus lactis 77 17 17 17 17 17 17	771		671	1 2173			7,	19	1051
10 7841 7074 gni Pin Ji00964 homologue of iron dicitrate transport ATP-binding protein FecE of E. coli 77 1872 5791 gi 149516 anthranilate synthase alpha subunit (Lactococcus lactis) 77 77 77 77 77 77 77	163	<u>^</u>	6412	7.398	91 511015	dihydroorotate dehydrogensse A [Lactucoccus lactis]	7.	79	1 686
8 7257 5791 Gail 149516 Anthranilate synthase alpha subunit (Lactococcus lactis) 77 77 77 77 77 77 77	91	<u>-</u> _	7641	7074	gn1 P10 d100964	o (E.	۲.	25	768
8 5377 5177 91 1571856 hypothetical [Haemophilus influenzae] 77 1202 462 91 1741860 Brca2 [Hus musculus] 77 77 77 77 77 77 77	161	30	1257	1672	91 149516	anthranilate synthase alpha subunit (Lactococcus lactis)	11	57	1467
1 202 462 91 1743860 Brca2 Hus*musculus 77	861	8	15177	1 5177	93, 1157, 1856	hypothetical [Haemophilus influenzae]	77	99	201
2 231 509 gml PID e334776 Y1DH protein [Bacillus subtilis] 77 77 77 77 77 77 77	1 213	<u>-</u>	1 202	1 462	91 1743860	Brca2 Mus.musculus]	7.1	05	261
3 1737 1276 gnl PID d100947 Ribosomal Protein L10 (Bacillus subtilis) 2734 1166 gnl PID d101824 psptide-chain-release factor 3 (Synechocystis sp. 76 12734 1166 gnl PID d101824 psptide-chain-release factor 3 (Synechocystis sp. 76 12734 18235 gnl PID d101824 psptide-chain-release factor 3 (Synechocystis sp. 76 12734 18235 gnl PID d101824 psptide-chain-release factor 3 (Synechocystis sp. 76 12734 18235 gnl PID e314495 hypothetical protein (Clostridium perfringens) 76 1274 14185 gnl PID e314495 hypothetical protein (Clostridium perfringens) 76 76 775 77	1 250	~	231	509		YlbH protein [Bacillus	۲۰	09	1 642
2 1399 668 gi 143004 transfer RNA-Gln synthetase Bacillus stearothermophilus 77 77 77 77 77 77 77	289	-	יניון	1276		Protein L10	۲۲	62	462
1 2734 1166 gol 455157 acyl carrier protein Cryptomonas phi	767	7	1399	699	gi 143004	transfer RNA-Gin synthetase (Bacillus stearothermophilus)	14	895	132
23 18474 18235 g1 455157 acyl carrier protein Cryptomonas phil 8 5706 4342 g1 1146247 asparaginyl-tRNA synthetase (Bacillus subcilis) 76 76 76 76 76 76 76 7	,	:	2734	1166			36	S	1869
8 5706 4142 gi l146247 asparaginyl-tRNA synthetase (Bacillus subtilis) 76 76 5 4531 4185 gnl plD e314495 hypothetical protein (Clostridium perfringens) 76 76 2 1615 842 gi l591672 phosphate transport system ATP-binding protein (Methanococcus jamaschii) 76		7.7	118474	118235	91 455157	lacyl carrier protein (Cryptomonas phi)	76	57	240
5 4531 4185 gn1 P1D e314495 hypothetical protein (Clostridium perfringens) 76 76 76 76 76 76 76 7	<u>.</u>	-	9015	1 4342	[91]1146247	asparaginyl - LRNA synthetase (Bacillus subtilis)	1 94	19	1365
2 1615 842 gi 1591672 phosphate transport system ATP-binding protein (Methanococcus jaunaschii) 76	01	<u>.</u>	4531	4185	gn1 P10 e314495	hypothetical protain (Clostridium perfringens)	1,6	23	101
	9-	~	1615	842	19111591672	system ATP-binding protein [Methanococcus	3,6	26	174

S. pneumoniae - Putative coding regions of novel acuteins similar to known proteins

Cont ig	ORF	Start (nt)	Stop (nt)	match	match gene name	E 18	1 Ident	length (nt.)
~	2	121796	[28173	gn1 P1D e13389	translation initiation factor If) AA 1-172) (Bacillus steatothermophilus)	9,6	99	378
25	9	1 3869	1 2682	gi 1773346	Cap5G (Staphylococcus aureus)	9/	19	1188
8	87	21113	78712	91 2314328	(AE000623) glutamine ABC transporter, permease protein (glnP) [Helicobacter pylor1]	3,6	25	675
52	112	12881	113786	[91]142521	deoxyribodipyrimidine photolyase (Bacillus subtilis)	9′	58	906
58	0.	11521	110571	gn PID e283110	femD Staphylococcus aureus	91	19	951
5.	•	7824	6559	290561	obs Escherichia coll	91	-	1266
62	- 2	2406	2095	gn1 P1D e313024	hypothetical protein (Bacillus subtillis)	7.6	- 65	312
65	6	4223	4441	91 40148	[L29 protein (AA 1-66) [Bacillus subtilis]	91	88	219
6.8	~	1328	ורנג	gn1 P1D e284233	anabolic ornithine carbamoyltransferase (Lactobacillus plantarum)	91	19	1044
69	a	1297	9009	PID d101420		9,6	61	1293
2	~	1839	1267	gn1 PID e243629	unknown [Mycobacterium tuberculosis]	9,6	53	573
1 74	~	8433	9607	gn1 P1D d102048	C. thermocellum beta glucusidase; P26208 (985) [Bacillus subtilis]	9,6	09	1395
80	5	7643	9164	19112314030	(AE000599) conserved hypothetical protein (Helicobacter pylori)	9,0	1 19	294
82	51	61091	96691	[91 [157 1900	D-alanine permease (dagA) [Haemophilus influenzae]	9/	95	976
£	<u>-</u>	91981	19684	91 [143374	phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) (Bacillus subtills)	76	09	1269
96	7	13409	12231	91 143806	Arof (Bacillus subtilis)	36	58	1 6711
1 87		_	1442	911153804	sucrose-6-phosphate hydrolase (Streptococcus mutans)	76	- 65	1440
1 87	91	15754	115110	gn1 P1D e323500	putative Gmk protein (Bacillus subtills)	9,	95	645
1 93	-	1769	1539	91 1574820	1.4-alpha-glucan branching enzyme (glgB) [Haemophilus influenzae]	9(97	231
36	_	15	365	91,1144313	6.0 kd ORF [Plasmid ColE1]	96	1 (1	315
116	~	2151	8691	91 153841	pneumococcal surface protein A (Streptococcus pneumoniae)	9/	29	1 10
123	9	3442	5895	gi 1314297	ClpC ATPase (Listeria monocytogenes)	96	1 65	2454
126	~	2156	2932	gar Pro dro1328	Yqi2 (Bacillus subtillis)	9,	1 19	1 111
128	0:1	6973	197	91 944944	purine nucleoside phosphorylase (Bacillus subtilis)	9,	09	825
<u> </u>	==	9819	5812	01674310	(AE000058) Mycoplasma pneumoniae, MG085 homolog, from M. genitalium [Mycoplasma pneumoniae]	90		375

S pureumoniae - Putative coding regions of novel proteins similar to known proteins

<u> </u>	Contig ORF	Start (nt)	(ur)	match	match gene name	e is	1 ident	length (
601	-	1 3641	3192	191 229 3 3 0 2	[AF008220] YtqA (Bacillus subtilis]	1.97	53	1 050
071	= :	14872	112536	91 1184680	polynucleotide phosphorylase (Bacillus subtilis)	9,6	62	2337
143	~ ;	2583	3905	1911143795	transfer RNA-Tyr synthetase [Bacillus subtilis]	96	61	1323
071	. –	\$60\$	6114	gn1 P10 d100959	ycgQ (Bacillus subtilis)	76	7	10201
180	- 5	1927	557	91 40019	ONF 821 (aa 1-821) (Bacillus subtilis)	1.96	53	1 1761
161	_	5815	5228	Ai 551880	anthranilate synthase beta subunit [Lactococcus lactis]	1 91	61	588
195	_	1 1829	2444	lgi 2149905	D-glutamic acid adding enzyme (Enterococcus faccalis)	76	1 09	1386
1 200		1914	1 3629	[gi]431272	lysis protein (Bacillus subtilis)	92	885	1716
102	-	431	207	19:12208998	dextran glucosidase DexS Streptococcus suis	76	57	225
214	- 5	1 1283	2380	91 663278	transposase (Streptococcus pneumuniae)	9,	55	1 8601
1 225		2338	7 2411	[91]1552775	ATP-binding protein (Escherichia coll)	1 9/	95	1074
1 233	- :	~	724	[91]1163115	neuraminidase B (Streptococcus pneumoniae)	1.91	1 09	723
1 343		523	38	gi 537033	ORF_(1)56 Escherichia coli	9,	1 09	486
1 356	~	842	165	[gi 2149905	Deglutamic acid adding enzyme (Enterococcus faecalis)	92	19	878
990	-	734	348	[gi 149520	[phosphoribosy] anthranilate isomerase [Lactococcus lactis]	9,6	69	180
S	6	112599	111484	[gi 1574293	[Imbrial transcription regulation repressor (pilb) [Haemophilus influenzae]	1.57	9	1116
	2	112553	111894	gn1 P1D d102050	ydin (Bacillus subtilis)	18	15	1 099
6	0=	1 7282	6062	91/102538	aspartate aminotransferase (Bacillus sp.)	15.	55	1221
0	Ξ.	1 8080	1 7940	gi 149493	SCRF1 methylase (Lactococcus lactis)	- 57	95	101
87	5 -	4266	13301		YqgH iBacillus subtilisi	15	52	996
- 55	- -	1838	2728	191 [1373157	orf-X; hypothetical protein; Method: conceptual translation supplied by author [Bacillus _ubtills]	25	62	891
30	=	9015	1 7828	[61]153801	enzyme scr-11 Streptococcus mutans	7.5	64	1188
- 31	~	2362	2030	91 2293211	(AF008220) putative thioredoxin (Bacillus subtilis)	25	53	133
1 32	6	7484	8359	gn1 F10 d100560	[formamidopyrimidine-DMA glycusylase [Streptococcus mutans]	- 57	61	876
	-	1735	1448	91 413976	Ipa-52r gene product (Bacillus subtilis)	- 51	53	288
<u> </u>	011	0430	1 5769	[91[533105	unknown (Bacillus subtilis)	75	95	102

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	9 10HF	Start	Stop (nt)	match	match gene name	E is	\ ident	langth (nt)
2	71	8699	1 7183	pir A00205 FECL	L ferredoxin 4Fe-45 - Clostridium thermaceticum	25	95	306
9				91 2088739	(AFO03141) strong similarity to the FABP/P2/CRBP/CRABP family of transporters (Caenorhabditis elegans)	75	3	180
38	122	114510	15379	191 1574058	hypothetical (Haemophilus influenzae)	25	95	870
48	=	(2)398	24066	91 1930092	outer membrane protein (Campylobacter jejuni)	75	95	699
- 2		~	916	gi 43985	nifS-like gene [Lactobacillus deltrueckil]	25	85	318
51	<u>-</u> _	8318	11683	91 537192	CG Site No. 620; alternate gene names hs, hsp, hsr, rm, apparent frameshift in GenBank Accession Number X06545 (Escherichia coli)	75	05	3366
25	1.6	19566	120759	191 66069	orf2 gene product [Lactobacillus leichmannii]	75	88	1194
57		H 448	1 7822	gi 290561	ol88 [Escherichia colil	25	- 80	627
65	=	6072	6356	gi 606241	10S ribosomal subunit protein SI4 [Escherichia coli]	25	799	285
0,	-	100.1	1 2472	gi 1256617	adentine phosphoribosyltransferase (Bacillus subtilis)	25	57	009
7		130399	129404	191 1574390	[C4-dicarboxylate transport protein [Haemophilus influenzae]	25	57	966
(,	~	910	455	gnt PtD e249656	YneT [Bacillus subtills]	25	1 23	1 950
79		1810	491	91/1146219	[28.2% of identity to the Escherichia coli GTP-binding protein Era; putative [Bacillus subtilis]	75	85	1320
8	9	6360	6536	gi 1655715	BrtD Rhodobacter capsulatus	54		1 771
2	9	1938	1 2975	gn1 P1D e323529	9 [putative Plsx protein (Bacillus subtilis)	56	95	1038
6 -	Ξ	7368	רונג	91 39989	methionyl-tRNA synthetase (Bacillus stearothermophilus)	35	- 88	2052
6 -	=	6016	6698	91 1591493	glutamine transport ATP-binding protein Q [Methanococcus jannaschii]	54	95	1116
9.5	- :	1795	5	gn1 P1D e323510	Ylov protein (Becillus subtilis)	35	1 65	1 6761
103	~	1 362	1186	gn1 PID e266928	unknown Hycobacterium tuberculosis	25	64	825
104	-	1691	915	gi 460026	repressor protein (Streptococcus pneumoniae)	54	- 15	225
= :	<u>- 2</u>	1 2951	1 3883	gn1 P10 d101119	ABC transporter subunit [Synechocystis sp.]	54	55	93.1
121	-	320	1390	gi 2145131	repressor of class I heat shock gene expression HrcA (Streptococcus mutans)	2,5	58	1001
127	9	2614	3000	19111500451	M. Jannaschii predicted coding region MJ1558 (Methanococcus jannaschii)	75	-	187
=	8-	110082	110687	911191116	P-glycoprotein 5 (Entamoeba histolytica)	25	52	909
671	Ξ	8499	9338	gn1 P1D d100582	lunknown (Bacillus subtilis)	1 50	55	840

TABLE 2

158	9	Start	Stop (nt)	match	match gene name	I sim	1 Ident	length
158	9	9100	7673	191 40467	Hads polypeptide, part of CfrA family (Citrobacter freundii)			יינים (יינים (
112	_	986	_	yn1 PID e253891	_			
	-	5653	6774	(gi 162978	glycerol dehydrogenase (Bacillus stearothermophilus)	2	50	900
7 77 1	<u></u>	1139	9730	gn1 P1D e268456		6/	96	1122
671	-	261	97	gn1 PID e236469		26	88	7592
185		3066	2014	91 157 4806	spermidine/putrescine transport ATP-binding protein (potA) [Haemophilus influenzae]	27	95	163
191	- 	5235	4213	91 149518	phosphoribosyl anthranilate transferase (Lactococcus lactis)	25	1 1 4	
226	~	1774	1181	91/2314588	(AE000642) conserved hypothetical protein [Hellicobacter pylori]	3,5		701
231	- !	-:	153	91 40173	homolog of E.coli ribosomal protein L21 (Bacillus subtilis)	\$		980
234	- ;	2	8 - 4	gi 2293259	(AF008220) Ytql (Bacillus subt(lis)	75	65	
279	- 	552	151	191/1119198	unknown protein (Bacillus subtilis)	75	0.5	
291		3550	1827	91 40011	ORF17 (AA 1-161) (Bacillus subtilis)	36		
1 25.6	~ ;	2	628	gi 410137	ORFX13 (Bacillus subtilis)	36		0/7
9	20 1	116721	17560	[gi [2293323	(AF008220) Ytdl (Bacillus subtilis)	76		760
- ~	- 9	4682	6052	91 1354211	PEF112 like protein (Bacillus subtilis)		7	940
97	_	134	242)	gn1 P10 d101319	Yqg1 (Bacillus subtilis)	*	09	1371
		5885	0084	[91]1072381	glutamyl-aminopeptidase Lactococcus actis		•	915
24	~	1.19	548	91 2314762	(AE000655) ABC transporter, permease protein (vaef) (Halion	•	66	1086
25	-	~	367	gn1 P10 d100932	77800211211	1 1	9	192
:	118	111432	112964	91 537034	ONF_o488 [Escherichla coli!	7	63	366
48	- 01	8924	6999	91 [151] 1069		1 1/2	57	1533
55	=======================================	11364	111401	01118	food Crystile (ithiusphalase Listaria monocytogenes)	7	- 65	2256
61 19		1.78.2	- ; -		I can loraphytocaccus aurens	7.	3	995
:	-		_ ; -		(AF008220) putative UDP-N-acetylmuramate alanine ligase (Bacillus subtilis)	74	55	1356
:	-			125	Yqib (Bacillus subtilis)	74	- 45	1350
- : -	-	-	- ; :	6 034	hisC homolog - Bacillus subtills	77	55	261
9		9882	0808	[gi 683585	prephenate dehydratase (Lactococcus lactis)	74	55	906

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF 11D	Start (nt)	Stop (nt)	match	match gene name	e is	, ident	length (nt)
1 102	\$	5005	5652	91 [143394	OMP-PRPP transferase (Bacillus subtills)	74	57	648
103	- 5	4364	1267	gn1 P1D e323524	Ylow protein (Bacillus subtilis)	1 1/	62	1098
108	7	6864	7592	gn1 P1D e257631	methyltransferase (Lactococcus lactis)	1 72	26	729
131	~	478	146	gn1 P10 d101320	[Yqg2 [Bacillus subtilis]	74	45	1 (((
103		1360	919	gn1 P1D e313025	hypothetical protein (Bacillus subtilis)		09	462
1.137	6	6167	6787	gn1 PID d100479	Na+ -ATPase subunit D (Enterococcus hirae)	74	53	621
149	-	3008	1 3883	gn1 P1D d100581	high level kasgamycin resistance (Bacillus subtilis)	1 6	55	876
157	~	2	824	(766,731) 19	methylated-DMAprotein-cysteine methyltransferase (dati) Haemophilus influenzae	74	84	582
164	9	3515	4249	gi 410131	ORFX7 (Bacillus subtilis)	74	48	135
167		5446	5201	191 413927	ipa-3r gene product (Bacillus subtilis)	7.	55	246
171		-	1818	gn1 P1D d102251	[beta-galactosidase (Bacillus circulans)	7.	62	1818
271	-	1064	2392	91 466474	cellobiose phosphotransferase engyme II'' [Bacillus stearothermophilus]	74	80	1329
-185		326		9111573646	Mg(2.) transport ATPase protein C (mytC) (SP:P22017) (Maemophilus influenzae)	74	899	324
188	2 -	1089	2018	9111573008	ATP dependent translocator homolog (msbA) (Haemophilus influentee)	74	-	930
189	=	6491	1174	[91]1661199	sakacin A production response regulator (Streptococcus mutans)	74	1 09	684
510	~	520	1287	gi 2293207	(AF008220) YtmQ (Bacillus subtilis)	7	1 09	1 894
192		836	192	gi 666983	putative ATP binding subunit (Bacillus subtilis)	7.	55	645
263		6191	3655	91 663232	Similarity with 5. cerevisiae hypothetical 137.7 AD protein in subtelomeric Y' repeat region (Saccharomyces cerevisiae)	74	\$	2037
265	7	700	1227	191 19272	Asparaginase (Bacillus licheniformis)	74	1 19	384
368	-	-	942	191 603998	unknown (Saccharomyces cerevisiae)	- ¥.	39	942
,	91	11357	11921	got P1D d101324	Yqhx (Bacillus subtilis)	_ LT	57	1437
- 2	0-1	5706	5449	gn1 P1D e305362	unnamed protein product (Streptococcus thermophilus)	1 11	1 6	258
=	7 -	522	244	gn1 P1D d100576	single strand DNA binding protein (Bacillus subrilis)		55	279
21	9	5667	6194		VqfG (Bacillus subtllis)		88	528
•	115 1	110281	9790	gn1 Pr0 d102151	(ABBOOL684) ORF42c (Chlorella vulgaris)	13	- 97	492
		•						

TABLE 2

Contrig	ORF	Start	Stop	match	match yene name	a i s	1 Ident	length (nt)
•	117	9816	9226	(18נלוון 19	ribotlavin synthase alpha subunit [Actinobacillus pleuropneumoniae]	ι ει	55	651
88	2	1 3592	6.8	gn1 Pt0 d101887	cation-transporting ATPase PacL [Synechocystis sp.]		09	2754
\$\$	8-1	17494	16586	gn1 PID e265580	unknown (Mycobacterium tuberculosis)	5	52	606
69	-116	7213	1367	91 143419	ribosomal protein L6 (Bacillus stearothermophilus)	1 11	1 09 1	555
99	_	3300	1 3659	gn1 PID e269883	Lace [Lactobacillus casei]	1 66	52	360
0,	01	1 5557	81.13	[91 857631	envelope protein (Numan immunodeficiency virus type 1)	ι,	9	1.111
11.	-	6133	8262	gnt P10 e322063	iss-1,4-galactosyltransferase (Streptococcus pneumoniae)	1 (1	45	2130
72	-		158	19: 2293177	[AF008220] transporter [Bacillus subtilis]	13	20	849
94	<u>~</u>	6104	6195	gn1 P10 d101325	Yqif (Bacillus subtilis)		99	825
9′	; ;	10009	1 9533	91 1573086	uridine kinase (uridine monophosphokinase) (udk) (Haemophilus influentae)	ι ετ	24	477
08	7	6113	57.56	911377823	aminopeptidase (Bacillus subtilis)	ι τ	09	1260
6	· -	1389	1668	gn1 P1D d101954	dihydroxyacid dehydratase {Synechocystis sp.	73	54	1722
86	6	6912	6196	gn1 P1D e314991	First Mycobacterium tuberculosis	1 (1	54	1 80¢
108	Ξ.	10928	10440	91 388109	regulatory protein [Enterococcus faccalis]	13	75	1 687
128	۰ -	1 3632	1 4222	91 1685111	orf109) (Streptococcus thermophilus)		63	591
138	~	1575	194	1911147326	transport protein (Escherichia coli)	13	09	1182
140	= :	12538	111903	pir E53402 E534	serine 0-acetyltransferase (EC 2.3.1.30) - Bacillus stearothermophilus		55	636
1 162	<u>-</u>	1 5701	1667	gn1 P10 e323511	putative ThaO protein (Bacillus subtll1s)		05	1111
164	-	2323	2790	gi 1592076	hypothetical protein (SP:P25768) [Hethanococcus jannaschii]	נג	22	468
164	-	4815	5546	gi 410137	ORFXI] (Bacillus subtilis)		95	132
071	<u> </u>	4394	1 5302	gn1 P1D d100959	homologue of unidentified protain of E. coli (Bacillus subtilis)	٤٢ ا	97	1 606
178	~ :	1 3893	1 4855	191146242	nodulation protein B. 5'end (Rhizobium lot!)	1 66	95	1 196
1 204	۰-	9605	1 4278	gn1 P1D e214719	PICR protein (Sacillus thuringiensis)	1 67	7	819
7.	~	812	2037	91 1565296	ribosomal protein SI homoloy; sequence specific DNA-binding protein [Leuconostoc lactis]	2	55	1206
231	~ :	30	1 287	91 (40173	homolog of E.coll ribosomal protein L21 (Bacillus subtills)	2	61	204
237	-:	7	1 505	91/1773151	adenine phosphoribosyltransferase (Escherichia coli)	2	51	504

TABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	Contig 10	ORF	Start (nc)	Stop (nt)	acession	match gene name	e is	1 Ident	length (nt.)
14 464 941 198135	269	-	~	169		Yqix (Bacillus subtilis)	1 23	36	069
1 14 494 [William Micropole Mi	289	~	1 1272	832	pir A02771 R7HC		1 23	99	=
1 222 4	343	-		\$ 8	91 1788125	(AE000276) hypothetical 30.4 kD protein in man2-cspC intergenic region Escherichia colij	2	42	471
5 7165 6651 [401] Pinjeldiologo Landaue [Symechecyatis sp.] 72 7185 7667 [41741] [13100 [401] Pinjeldiologo Landaucia coli 72 7185 71	356	-	222	•	91/2149905	D-glutamic acid adding enzyme (Enterococcus faecalis)	در ا	50	219
17 1741 11300 pui PiD c13914 sibiliar to hydroxymyristopi-lacyl Carrier protein) dehydratese [secilius] 72 73 73 73 73 73 73 73	,	~	1 3165	4691	gn1 P1D d101813		1 72	52	1527
17 1714 17100 Gard Principle 289141 Stabilitation by drosymycristory Carrier processing devications Baccilius 72 1842 Gard Ga	,	-	2617	7647	gi 146976	nush (Escherichia coli)	27	75	453
19 15677 16224 gail Propidition Synchrococcus mutans 72 1711 11425 gail Propidition Synchrococcus mutans 72 1714 5627 gail Propidition Separtyl-CRAM Synthecase Theremae themophilus 72 72 72 72 72 72 72	۲	=_	13743	00111	gn1 P1D e289141		72		* • • • • • • • • • • • • • • • • • • •
17 12111	22	61-	115637	116224	gn1 P10 d101929	releasing factor (Synechocystis	27	51	588
7 7117 16085 pir		-	112111	111425	gn1 P10 d101190	ORF3 (Streptococcus mutans)	72		687
23 15372 16085 pir	7	- 1	1 2147	1 5627	gi 396501	aspartyl-(RNA synthetase Thermus thermophilus	22	25	1521
5 5094 6905 gail 1910 10 10 10 10 10 10	38	2_	115372	16085	pir H64108 H641		72	54	714
6 4469 4636 491 153672 Incrose repressor (Streptococcus mutans) 72 72 72 72 72 72 72 7	67	<u>-</u>	1 5094	9069	gn1 P10 e254877	unknown (Mycobacterium tuberculosis)	27	95	1812
29 1759 1251 991 1310180 1nhibin beta-A-subunit (lovis acies) 1292 12729 12424 91 1311129 (AED00623) glutamine ABC transporter, permease protein (glnp) (Helicobacter	0	9	4469	4636	1911153672	repressor	22	88	168
29 12729 12424 gg 2314129 pyloril pyloril	89	~	1459	1253	91 310380	Inhibin beta-A-subunit (Ovis aries)	27	33	207
5 4529 3288 9 1750108	90 77	<u>- 1</u>	62712	22424	91 2314329	(AE000623) glutamine ABC transporter, permease protein (glnP) (Helicobacter pylori)	72	69	969
13 1044 2282 91 229330 (AF008220) YtbJ Bacillus subtilis 172 172 173 174 1281 11938 91 14222	0.5	- 2	4529	3288	911750108		1 72	24	1242
13 13681 13938 91 142521	15		1044	1 2282	91 2293230	(AFG08220) Yth (Bacillus subtilis)	72	25	1239
1 841 35 91 882518 100RF_o304; GTG start [Escherichla coli] 72 72 72 72 72 72 72 7	25	=	13681	113938	91 142521		27	\$	258
5 2832 3191 gol PiD e209886 mercuric resistance operon regulatory protein Bacillus subtilis 72	\$\$	-	841	35	191 (882518	0304; GTG Start	72	65	609
6 6229 5771 91 147450 lAFO08220) YCG Bacillus subtilis 5 5065 4592 92 92 92 92 92 92 92	25	s :	2832	3191	gn1 P1D e209886	resistance operon regulatory protein (Bacillus	27	-	360
5 5065 4592 gi 2293279 (AFO08220) YtcG Bacillus subtilis 72	3,6	•	6229	1,772	91 142450	[Bacillus	72	2	459
14 14726 12309 gnl PlD e323502 putative PriA protein (Bacillus subtilis) 72 1 1444 662 gi 500691 HYOl gene product (Saccharomyces cerevisiae) 72 72 72 72 72 72 72 72 72 72	79	- \$	1 5065	4592	gi 2293279	(AF008220) YtcG (Bacillus subtilis)	22	97	14
1 444 662 gi 500691 MYOl gene product (Saccharomyces cerevisiae) 72 72 72 72 72 72 72 7	69	=	114726	112309	gn1 P10 e323502	PriA protein (Bacillus	27	\$2	2418
7 4516 4764 gi 829615 skeletal muscle sodium channel alpha-subunit (Equus caballus)	16		444	1 662	gi 500691	gene product (Saccharomyces	72	80	219
	16	-:	1 4516	4764	qi 829615	muscle sodium channel alpha-subunit	72	38	549

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	08F	Start	Stop (nt)	match acession	match gene name	s is	1 Ident	length (nt)
98	~ :	2004	נונו	gn1 P1D e323527	putative Asp23 protein (Bacillus subtills)	72	0,	288
601		1452	118	 	alkaline phosphatase regulatory protein (Bacillus subtilis)	72	52	1335
126			2132	gn1 e10 d101831	glutamine-binding periplasmic protein [Symechocystis sp.]	22	46	2190
130	-	17.15	2478	91 2415396	[AF015775] carboxypeptidase [Bacillus subtilis]	72	53	1 116
1117	9 :	1 2585	2929	91 472922	v-type Na-ATPase Enterococcus hirae	72	1 97	345
140	110	1096	1 9203	gi 49224	URF 4 (Synechococcus sp.)	72	9,	1 666
146	<u>.</u>	1906	1247	gn1 P1D e324945	hypothetical protein (Bacillus subtilis]	1 24	1 54	099
=	~ -	2084	1083	gn1 P1D e325016	hypothetical protein (Bacillus subtilis)	127	56 1	1001
14)	<u> </u>	1 6156	5146	19: 412327	TPP-dependent acetoin dehydrogenase bata-subunit (Clostridium magnum)	1 22	98	1011
148	8 -	5381	6433	91 974332	NAD(P)H-dependent dihydroxyacetone-phosphate reductase Bacillus subtilise	72	24	1053
148	Ξ	110256	9675	gn1 P10 d101319	9 YqgN (Bacillus subtills)	72	1 05	582
159		4005	4949	0. 178871 19	(AE000330) 0463; 24 pct identical (44 gaps) to 338 residues from penicillin-binding protein 4°, PBPE_BACSU SW: P32959 (451 aa) [Escherichia coli)	72	7	945
1.12	01	19907	10620	1911763387	Unknown (Saccharomyces cerevisiae)	72	55	1116
1 220		1 2862	1 3602	91 1574175	hypothetical (Maemophilus influenzae)	22	20	741
267	;	-	449	[gi 290513	[470 [Escherichia coli]	72	1 84	1 (+)
281	~ :	668	540	gn1 P1D d100964	homologue of aspartokinase 2 alpha and beta subunits LysC of B. subtills [Bacillus subtills]	72	45	090
290		1018	7	91 474195	This ORF is homologous to a 40.0 kd hypothetical protein in the htrB 3' region from E. coli, Accession Number X61000 [Mycoplassa-like organism]	72	25	1000
300	- :	63	587	91 746399	transcription elongation factor (Escherichia coli)	22	80	525
316	<u>- :</u>	1326	-	91 158127	protein kinase C (Drosophila melanogaster)	21	07	132)
342		1 227		gn1 P1D d101164	unknown (Bacillus subtills)	22	24	225
154	- - -	-	1000	gn1 P1D d102048	8 [C. thermocellum beta-glucosidasa; P26208 (985) [Bacillus subtilis]	72	52	1 5001
9	0-1	8134	110467	[gn1 P1D e264229	unknown Mycobacterium tuberculosis	1 12	57	2334
	120	116231	115464	gi 18046]-oxoacyl-(acyl-carrier protein) reductase (Cuphes lanceolata)	12	52	1 894
21	- ;	1297	1 2	fani PID d100571	replicative DNA helicase (Bacillus subtilis)	11	51	1296
21	<u>.</u>	4435	1 3869	91 499384	orf189 (Bacillus subtilis)	1 1	-	1 195

TABLE 2

Contig	ORF 10	Start (nt)	Stop (nt)	match	match gene name	e is	1 ident	length (nt)
8	9	5120	4218	gn1 Pr0 d101318	YqqC [Bacillus subtilis]	1,1	15	106
53		- 	240	91 1773142	similar to the 20.2kd protein in TETB-EXOA region of B. subtilis {Escherichia coli}	1.1	95	540
.	120	113327	13830	1911537036	ORF_o158 [Escherichia coli]	17	69	204
2	717	115015	12676	gi 149528	dipeptidyl peptidase IV [Lactococcus lactis]	17	\$\$	2340
<i>j.</i>	2	121040	20585	91 2343285	[AF015453] surface located protein [Lactobacillus rhamnosus]	1 11	88	456
09	~	7.05	265	gn1 P10 d101320	YqgZ [Bacillus subtilis]		-	141
7.	81	124679	126226	1911580920	rodD (gtaA) polypeptide (AA 1-673) (Bacillus subtilis)	1,	***	1548
17	52	(30587	10360	91 606028	ORF_oili, Geneplot suggests frameshift near start but none found [Escherichia coli]	1,	\$0	228
~	9	5239	6229	91580835	lysine decarboxylase (Bacillus subtilis)	1 12	80	1491
22	-	16611	12878	9: 62:085	similar to rat beta-alanine synthetase encoded by GenBank Accession Number \$27881; contains ATP/GTP binding motif [Paramecium bursaria Chiorella virus 1]	1.0	\$	
2	= =	1 7269	((0).	91 1906594	PNI [Rattus norvegicus]	11	3	1 662
7	9	10385	8517	19111573733	prolyl-tRMA synthetase (proS) (Haemophilus influenzae)	17	52	1869
6	6	5772	6578	91 147404	mannose permease subunit II-M-Man [Escherichia coli]	1,	Ŝ.	1 608
98	~	4602	3604	gn1 PID e322063	[ss-1, 4-galactosyltransferase [Streptococcus pneumoniae]	17	S	666
501	-	1 3619	4707	9:12323341	(AF014460) PepO (Streptococcus mutans)	17	88	1089
901	: ;	113557	112955	91 1519287	LemA Listeria monocytogenes	נ	8,	603
-	- 5	1029	6761	1911310303	mosA (Rhizobium meliloti	71	\$\$	951
122	~	564	1205	91 1649037	glutamine transport ATP-binding protein GLNQ (Salmonella typhimurium)	ד	05	642
132	·	9018	1063	gn1 P1D d102049	H. Influenzae hypothetical ABC transporter; P44808 (974) (Bacillus subtilis)	1.2	15	1956
0		-	227	91 1673788	(AE000015) Mycoplasma pneumoniae, fructose-bisphosphate aldolase; similar to Swiss-Prot Accession Number P13243, from B subtilis (Mycuplasma pneumoniae)	ונ	\$	918
2	<u>~</u>	5635	4973	1900 (Pinial Ingl	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus [Bacillus subtills]	17	9	663
		7369	7845	gn1 P10 d102005	(ABOOL488) FUNCTION UNKNOWN, SINILAR PRODUCT IN E. COLI AND HYCOPLASHA PREUMONIAE. (Bacillus subtilis)		15	4.1

V 18 2

Contig	ORF	Start	Stop	match	match pene name			
9	2 :	(arc)	(a.t.)	acession		e .	, ident	length (nt)
193	_ :	-	165	91 46912	ribosomal protein L13 (Staphylococcus carnosus)	71	- 65	165
194	-	2205	1594	91 535351	Cody (Bacillus subtilis	12	52	612
199		1510	9161	91 2182574	[(AE000090) Y4pE [Rhizobium sp. NGR234]	7	45	192
508	~ :	2616	1 3752	19111787378	(AE000211) hypothetical protein in purB 5' region [Escherichia col1]	11.	57	1137
209	~	2022	1141	91 41432	fepC gene product (Escherichia coli)	717	90	882
012	S -	1161	1,000	(9) 49316	ORF2 gene product (Bacillus subtilis)	112	45	1161
210	9	1 3069	1 3386	1911580900	ORF) gene product (Bacillus subtilis)	111	48	318
212	~ :	19961	1381	19:1557567	ribonucleotide reductase RI subunit (Mycobacterium tuberculosis)	111	53	2161
233		1 2001	2920	gn1 P10 d101320	YqgR Bacillus subtilis	71	80	918
244		2	1053	un P10 d100964	homologue of aspartokinase 2 alpha and beta subunits LysC of B. subtilis	1,	\$5	1041
251	~	1008	1874	1911755601	unknown (Bacillus subtilis)	112	46	867
1 282	~ :	906	1 712	9111353874	unknown (Rhodobacter capsulatus)	1 12	90	1 361
1 312	-	2117	1565	gn1 P1D d102245	(AB005554) yxbf (Bacillus subcilis)	7.1	34	573
1 338	-	_	683	91 1591045	hypothetical protein (SP:P)1466) [Hethanococcus jannaschii]	111	87	681
1 346		-	164	gi 1591234	hypothetical protein (SP:P12297) [Hethanococcus januaschli]	7 7	36	162
174		619	~	gi 397526	clumping factor Staphylococcus aureus	112	23	1 819
1 377		688	~ -	91 197526	clumping factor Staphylococcus aureus	1 12	23	1 (89
<u></u>	8 -	7419	85.59	gnt PtD e269486	Unknown (Bacillus subtilis)	70	42	462
-	=======================================	8395	9075	gn1 P1D e255543	putative iron dependant repressor [Staphylococcus epidermidis]	0,	94	1 189
, -	11	111024	110254	gnt P10 d100290	undefined open reading frame [Bacillus stearothermophilus]	1 0′	55	1111
-	-18	114213	61761	gn1 P1D d101090	blotin carboxy! cerrier protein of acetyl-CoA carboxylase Synechocystis sp	0,	95	495
6	~ =	/501	287	gn1 P10 d100581	81 Junknown (Bacillus subtilis)	70	52	1 111
127	-	1 2610	1789	gn1 PtD d101195	yyc] (Bacillus subtilis	70	52	822
72	7 -	2586	1846	191 229 3447	(AF008930) ATPase (Bacillus subtilis)	1 02	54	100
22	= :	55601	111512	91 1165295	Ydr540cp Saccharomyces cerevisiae	00	80	558
30	9	4315	1 3980	191139478	ATP binding protein of transport ATPases (Bacillus firmus)	1 0′	\$1	336
								• • • • • • • • • • • • • • • • • • • •

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ty 10	2	300	(ur)	acession	וופרכנו קצוים ספשה	E : S	ident	(nt)
=	-	076	<u> </u>	gi 662792	single-stranded DNA binding protein [unidentified eubacterium]	1 00	36	258
	1.5	110639	19521	91/1161219	homolgous to D-amino acid dehydrugenase enzyme (Pseudomonas aeruginosa)	00.	20	1119
3.8	-	1 3812	1 (312	gi 2058547	Comyto (Streptococcus gordonii)	1 00	84	201
38	521	117986	(1847)	[91[537033	ORF_(136 (Escherichia coli)	1 00 1	58	492
0.	2	111054	9846	9111113516	ribotlavin-specific deaminase (Actinobacillus pleuropneumoniae)	1 00 1	52	1209
42	~	227	1 1954	19111116183	putative (Bacillus subtilis)	1 00	15	1233
7	-	(767)	1 1612	19111591493	glutamine transport ATP-binding protein Q (Hethanococcus jannaschii)	1 00	48	762
\$	8	7616	8049	gn P1D d102036	Subunit of ADP-glucose pyrophosphorylase (Bacillus stearothermophilus)	1 04 1	54	1149
65	~	567	956	gn1 P10 d100302	neopullulanase (Bacillus sp.)	1 00	42	390
09	<u>-</u>	1874	267	gn P1D e276466	eminopeptidase P [Lactococcus lactis]	1 00 1	1 89	1080
19	-	1 5553	1 2437	gn PID a275074	SNF (Bacillus cereus)	1 02	1 15	1116
19	-	7914	6802	19111573037	cystathionine gamma-synthase (metb) (Haemophilus influenzae)	1 00	52	
6.9		2,12	1222	gn1 P1D d100974	unknown (Bacillus subtilis)	1 00	54	1881
6.9		11126	1 6962	gi 1263014	emmi8.1 gene product [Streptocuccus pyogenes]	1 00	37	165
7.2	717	10081	11601	[gi 2313093	(AE000524) Carboxymorspermidine decarboxylase (nspC) Helicobacter pylori)	1 02	95	831
7.5	01	7888	8124	19:11877423	galactose-1-P-uridyl transferase (Streptococcus mutans)	1 04	65	237
96		3424	1 2525	lgi 39881	ORF 311 (AA 1-311) (Bacillus subtilis)	1 02		006
187	01	6916	7324	gn1 PID e323506	putative Pkn2 protein (Bacillus subtilis)	1 04	25	2046
96		10640	111788	19111573209	[tRNA-guanine transglycosylase (tgt) [Haemophilus influenzae]	0,	52	1149
113	~	574	1086	[91]433630	A180 (Saccharomyces cerevisiae)	1 04	- 65	\$13
123	- 2	1 2901	3461	gn1 P1D d100585	unknowm (Bacillus subtilis)	1 0, 1	- \$	\$61
125	- 2	4593	4282	gn1 P1D e276474	[capacitative calcium entry chainel 1 [Bos taurus]	70	35	312
129	5	4500	3454	gn1 P1D d101314	YqeT (Bacillus subtilis)	1 04 1	47	1047
<u> </u>		2608	1394	[91 2293312	(AF008220) YtfP (Bacillus subtilis)	1 04	50	1215
115	- :	420	1 662	gn1 P1D e265530	yorfE (Streptococcus pnaumoniae)	90	47	243
133	- :	438	932	g1 472919	v-type Na-ATPase [Enterococcus hirae]	100	57	695
138	_	440	_	91 147336	transmembrane protein (Escherichia coli)	-	•	

S. pheumoniae - Putative coding regions of novel proteins similar to known proteins TABLE 2

Cont ig	ORE	Start (nt)	Stop	Batch	match gene name	e is	1 ident	l Jength (nt.)
0 -		118796	16364	91 976441	NS-mathyltetrahydrofolate homocysteine methyltransferase Saccharomyces Cerevisiae	00	\$3	2433
167	2	8263	5699	[gi]149535	D-alanine activating enzyme [Lactobacillus casei]	0,	52	1569
204	-	1 3226	1 2747	gn1 P1D d102049	E. coli hypothetical protein; P31805 (267) [Bacillus subtills]	0, 1	51	087
207	_	1 2627	1 2869	gn1 PID e309213	racGAP (Dictyostellum discoideum)	000	45	243
282	-	1136	983	191 1353874	unknown (Rhodobacter capsulatus)	7.0	50	255
۰	121	117554	18453	gn1 P10 e233879	hypothetical protein (Bacillus subtilis)	69	**	006
9	122	118482	119471	[91 580883	Ipa-88d gene product (Bacillus subtills)	69	53	066
22	9	1. 4682	5824	(91 (2209379	(AF006720) ProJ (Bacillus subtilis)	69	60	317
22	6	1 7992	8651	gn1 Pr0 d100580	unknown (Bacillus subtilis)	69	5.1	099
22	= = = = = = = = = = = = = = = = = = = =	1 9871	110767		unknown (Bacillus subtilis)	69	51	768
23	<u>~</u> :	1 5857	5348	gn1 P10 d102012	(ABOO1488) FUNCTION UNKNOWN. (Bacillus subtilis)	69	28	510
36	0=	1 7294	911011	gi 437916	isoleucyl-fRMA synthetase (Staphylococcus aureus)	69	53	2823
9.	-	~ -	1090	91 141900	(alcohol dehydrogenase (EC 1.1.1) (Alcaligenes eutrophus)	69	8.	1089
0.4	= :	1033	111944	91 1573280	Holliday junction DNA helicase (ruvA) [Haemophilus influenzae	69	7 7	612
40	115	111942	112517	91 (1573653	DNA-3-methyladenine glycosidase I (tagl) (Haemophilus influenzae)	69	50,	576
45	9 -	6947	5490	91 580887	starch (bacterial glycogen) synthase (Bacillus subtilis)	69	47	1458
87	=======================================	24932	24153	gn1 P1D e233870	hypothetical protein (Bacillus subtilis)	69	3.6	780
6.	9 -	6183	6521	191 396297	similar to phosphotransferase system enzyme II (Escherichia coli)	69	95	339
4.9	6	7586	6338	91 396420	similar to Alcaligenes eutrophus pHGI D-ribulose-5-phosphate 3 epimerase	69	49	753
\$5	9 -	8262	1 7033	91/1146238	poly(A) polymerase (Bacillus subtliss	69	80	1230
65		954	1 2333	gn1 PID e313038	hypothetical protein (Bacillus subtilis)	69	34	1380
62		1170	1418	[gn1 P10 d101915	hypothetical protein (Symechocystis sp.)	69	6+	249
63	8 -	1298	1 7762	gi 293017	ORF) (put.); putative (Lactococcus lactis)	69	45	599
99		1 3657	1 5081	191/153755	phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris]	69	67	1425
99	<u>~ :</u>	5126	6829	gi 433809	entyme II (Streptococcus mutens)	69	9.	1704
= :	9 :	110017	110664	gn1 PID e322063	[ss-1, 4-galactosyltransferase (Streptococcus pneumoniae)	1 69	1 66	648
					● 1 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5			

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

17 17 17 17 17 17 17 17	Contig	ORF	Start (nt)	Stop	match	match gene name	eis /	1 Ident	length (nt)
1 1 1 1 1 1 1 1 1 1	11	;	:	1	gn1 P1D d100649	DE-cadherin (Drosophila melanogaster)	69	30	237
1 10.0 111	77		-	237	91 287870	groes gene product (Lactococcus lactis)	69	-	237
1, 1,	18	- 2	3622	1017	91 1573605	[fucose operon protein (fucu) [Haemophilus influenzae]	69	52	089
15 1572 915 911 911 912	£	<u>-</u>	40	714	pic C33496 C334		69	9	675
1872 1872	69	9 -	115742	16335	191 143372	phosphoribosyl glycinamide formyltransferase (PUR-N) [Bacillus subtills]	69	99	294
9 10.79 40.12 40.11 10.11 69 44 1 10.70 4 (0.12) Anni Pinel (100.00.2) (Listy processor) (Listy pr	98	~	1212	916	911194097	IFN-response element binding factor [Mus musculus]	69	9.	297
5 7377 4002 9401 PD19Id1002022 Live protein (Salaonalia typhiantiual 69 51 51 52 53 53 53 53 53 53 53			3678	4274	91 1574712		69	4	597
5 1003 5036 uni	9.6	- 2	1247	!	4m1 P1D d100262	Live protein (Salmonella typhimurium)	69	15	786
1 1016 4388 garl Projection 29 regular subtilise 69 47 47 47 47 47 47 47 4	108	- 2	4085	:	[gn1 P1D e257629	transcription factor (Lactococcus lactis)	69	6.7	972
6 4121 2889 gail Piul dialous lunname (Bacillus subtilis) 69 47 47 47 47 47 47 47 4	126		1 3078	1 4568	gn1 P1D d101329	Yqjj [Bacillus subtilis]	69	6.	1691
2 1505 1229 gni Piu dio0581 unknown (Bacillus subtilis) 69 69 69 69 69 69 69 6	Ē	9	4121	2889	1901 P10 d101314	YqeR (Bacillus subtilis)	69	47	6621
5 1852 476J gni PtD e33352 Y100 protein lBacillus subtilis 12 9336 10655 ji 151271	136	~	1 1505	1 2299	[gn1 P10 d100581	Unknown (Bacillus subtilis)	69	47	195
1 1916 1925 1911 1913	149	~	1 1852	1963	tgn1 PTD e323525	protein (Bacillus	69	80	912
1 196 2)24 gil 710073 Bind (Bacillus subtilis) 69 69 69 69 69 69 69 6	6	<u>2</u>	9116	10655	1011151571	and P.aeruginosa lysA gene; product Pseudosonas syringael	69	23	1320
1 196 2334 gail Piul diboos82 Lemperature sensitive cell division Bacillus subtills 69 66 1 196 231 gail 195209 Fibonucleotide reductase R2-2 small aubunit Hycobacterium tuberculosis 69 69 60 60 60 60 60 60	:	· ·	1916		1911111111	BrnQ (Bacillus subtills)	69	77	619
1 196 231 99 1992285 3229 Cibonucleotide reductase R2.2 small abbunit (Mycobacterium tuberculosis) 69 1 2 661 pir J92285 J922 Indulin-26 - Soybean 69 2 661 pir J92285 J922 Indulin-26 - Soybean 69 3 660 1766 91 148945	169		849	2324	gn1 P10 d100582	temperature sensitive cell division (Bacillus subtilis)	69	69	1476
1 1196 231 91 1395209	180	_	995	^	91 488339	(unidentified	69	20	999
1 2 661 pir J02285 J022 Inodulin-26 - soybean 69 69 69 69 60 766 91 472918 V-type Na-ATPasa (Enterococcus hirae) 69 69 69 69 60 766 91 148945 Inethylase (Haemophilus Influenzae) 69 69 69 69 69 69 69 6	212	_	9611	162	91 (1395209	R2-2 small subunit (Mycobacterium	69	5.3	996
5 1249 4766 91 472918	922	- -	2	199	pir JQ2285 JQ22	٠.	69	17	099
3 660 1766 gril 148945 methylase Haemophilus influenzee 69	612	<u>~</u>	3249	4766	91 472918	v-type Na-ATPase Enterococcus hirae	69	95	1518
2 865 2161 gn1 PID d100225 ONF5 Barlwy yellow dwarf virus 3 2899 1967 gi 2289233 macrolldw-efflux protein Streptococcus agalactiae 69 1 1 282 gn1 PID #322442 peptidw deformylasw Clostridium beljerinckil 69 1 868 2 gi 397526 clumping factor Staphylococcus aureus 69 1 749 3 gi 397526 clumping factor Staphylococcus aureus	235	_	099	1766	91 148945	methylase Haemophilus influenzae	69	+	1107
3 2899 1967 gi 2289231 macrolide-efflux protein (Streptococcus agalactiae) 69	50	~	965	1 2361	gn1 PID d100225	ORFS (Barley yallow dwarf virus)	69	69	1497
1	152	_	2899	1967	91 (2289231		69	51	933
1 668 2 gi 397526 clumping factor Staphylococcus aureus 1 749 3 gi 397526 clumping factor Staphylococcus aureus	310	_	-	282	gn1 P10 e322442		69	55	282
1 749 3 gi 397526 clumping factor (Staphylococcus aureus)	1 369	-	898	~	91 397526		69	22	667
	3.0	-	749		[gi J97526		69	21	747

TABLE 2

1 100	Cont ig ID	ORF	Start	Stop	natch	match gene name	V Sim	1 ident	length
1 120	379	-	44	780	gn1 P1D d100649	DE-cadherin (Drosophila melanogaster)			(nt)
1 1926 1906 1906 1907 1918 191	388		260	2	91 1787524	(AEO00225) hypothetical 32.7 kD protein in trpL-btuR intergenic region (Escherichia coli)	69	9	237
1 179 170 1711	-	~	2006	1 3040	[gn1]PID[d101809	transporter [Symechocystis			
1. 1790 1711 piri Sissovijassa filozoneal protein to 10 metalinus stearintenamophilius 64 55 55 55 55 55 55 55	12	- S	3958	1 2600	91 2182992	kinase (Lactococcus lactis	89	3	1035
12 1412 1415 14	.5	~	1790	1311	[pir \$16974 R58S	protein L9 - Bacillus	89	5	1359
13 14126 1450 501 50	1.6		7353	19761	9111787041	[AE000184] 0530; This 530 aa orf is 3) pet identical (14 gaps) to 525 residues of an approx. 640 aa prucin YHES_HAEIN SW: P44808 [Escherichia coll]	89	45	1653
13 14128 14505 91 147700 P Competence protein (tig start codon) (put.); putative [Bacillus subblis] 69 60 1 1448 4280 91 11380 Over Acchilicolium caulinodans 68 76 2 15 1391 4585 91 1573041 Apportmetical start codon) (put.); putative [Bacillus subblis] 68 76 3 1391 4585 91 1573041 Apportmetical start codon) (put.); putative [Bacillus subclis] 68 74 4 458 4280 91 1790111 (Accontact al Hermophilus Influentae) 68 55 5 7069 5165 91 692379 CC Site No. 2933 Escherichia coli 68 55 6 5329 5165 91 692379 CC Site No. 2933 Escherichia coli 68 50 7 7069 5165 91 692379 CC Site No. 2933 Escherichia coli 68 50 8 7069 5165 91 1790111 Abc transporcer [Smechocytlis ap.] 68 50 9 10 10 10 10 10 10 10	;	112	6419	6805	191 553165		84		
13 13612 12539 joil 1289362 come ONF) Bactillus subtilis 68 36 36 36 36 36 36 36	20	:	;	14505	91 142700	protein (ttg start codon) (put.); putative [Bacillus	89		175
1 4548 4288 91 111388 ONFT Azonhizoblum Cavilhodans 68 46 46 46 46 46 46 4		:	- :	125397	gi 289262	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	89		9/6
6 5219 6040 91 1571041 hypothetical litemophilus influenced 68 54 54 54 52 54 54 54 54	2		:	4288	911111388	ORF! (Azorhizoblum caulinodans)	89		
10 6213 7066 91 18825.79 CC. Site No. 2913 Escherichia coli 68 55 57 56 51 68 68 51 68 68 68 68 68 68 68 6	36	1 5	1911	1 4585	19111573041	hypothetical [Haemophilus influentae]	1 89		197
10 6235 7066 91 982539 CC Site No. 29739 Escherichia colli 68 55 55 56 56 56 55 56	9	•	5219	6040	1610671116	29.7 kD protein in ibpA-gyrB intergenic	8.9	5	822
5 7069 5165 911 PTD[d101914 ABC transporter Synechocystis sp. 68 45 45 45 45 45 45 45 4	54	01	6235	7086		Site No. 29739 (Escherichia			
6134 5613 gi 1573353 Outer membrane Integrity Protein (tol.A.) (Heemophilus Influenzae) 68 50 10 15342 16613 gi 14073 Sect Protein Lactococus Lactis 68 31 12 17560 18792 gi 14073 Sect Protein Lactococus Lactis 68 15 17 12295 24703 gi 1762349 Involved in protein export Bacillus subtilis 68 50 18 1729 gi 135337 durpase Bacteriophage rit 68 51 18 17198 16011 gi 41343 Ipa-194 gane product (Bacillus subtilis 68 43 17 17491 15866 gi 150209 Onf 1 Inycopia-na mycoides 68 43 18 17198 16011 gi 14198824 In Januaschii predicted coding region NJ0062 (Hethanococcus januaschii) 68 40 18 6735 5394 gi 150374 4-oxalocrotonate tautomerase Psaudomonas putidal 68 41 18 6735 5394 gi 2507358 (AEDOGG91) Nypothetical 52.9 AD protein in ald8-rpsf intergenic region 68 41 18 6735 5394 gi 25074 16074	55	· -	1069	5165		Synechocystis	00	55	852
10 15342 16613 ggi 580866 ipa-12d gene product (Bacillus subtilis) 68 31 68 31 68 35 35 35 35 35 35 35 3	_	_	6134	5613	91/15/3353	membrane integrity protein (tolA)	82	- 5	1905
12 17560 18792 gg 44073 SecY protein (Lactococcus lactis) 68 35 176249 involved in protein export (Bacillus subtilis) 68 50 50 176249 involved in protein export (Bacillus subtilis) 68 51 17491 17886 gi 135337 dUTPase (Bacteriophage ritt) 17491 17886 gi 135329 GMF (Mycopia-ma mycoldes) 68 43 17491 17886 gi 150209 GMF (Mycopia-ma mycoldes) 68 40 68 41 68 40 68 41 68 6755 5394 gi 150974 4 oxalocrotonate tautomerase (Pseudomonas putida) 68 43 6755 5394 gi 2367358 (AECOU491) hypothetical 52.9 kD protein in ald8-rpsF intergenic region 68 41 6755 5394 gi 2367358 (Escherichla coli) 68 41 6755 67				16613	191/580866	gene product (Bacillus subtilis)	2	95	525
17 122395 14703 gi 1762349	- :	. :		;			00	= ;	1272
16 10208 9729 gi 133537 dUTPase (Bacteriophage rit) 18 17198 16011 gi 413943 ipa-194 gane product (Bacillus subtilis) 68 53 1 1 17491 15866 gi 150209 ONF (Mycopletma mycoides) 68 43 1 1 18021 8242 gi 150974 4 0xalocrotonate tautomerase (Pseudomonas putida) 68 40 41 41 41 41 41 41 41	_			24703	91 1762349	in protein export (Bacillus			621
18 17198 16011 gi 413943 ipa-19d gene product (Bacillus subtilis) 68 53 1 17191 15866 gi 150209 ONF (Mycople-ma mycoides) 68 43 1 17191 15866 gi 150209 ONF (Mycople-ma mycoides) 68 40 11 11 12 12 12 13 13 14 13 14 15 15 15 15 15 15 15	_ :	:	10208	9729	-			2	6007
17 17491 15866 91 150209 ONF 1 (Mycople-ma mycoldes 68 43 68 43 68 43 68 40 68 40 68 40 68 40 68 6755 5394 91 2367358 (AECORO1911 hypothetical 52.9 kD protein in aid8-rpsF intergenic region 68 41 68 61 68 61 68 6755 5394 91 2367358 (AECORO1911 hypothetical 52.9 kD protein in aid8-rpsF intergenic region 68 41 68 68	:	:	:	11091		gene product (Bacillus	8	10	087
6 5139 4154 [gi 1498824 M. Jannaschii predicted coding region MJ0062 [Methanococcus Jannaschil] 68 40 11 8021 8242 gi 150974 4-oxalocrotonate tautomerase [Pseudomonas putida] 68 43 8 6755 5394 gi 2367358 (AE000491) hypothetical 52.9 kD protein in aid8-rpsF intergenic region 68 41 Escherichia coli)	_		_	15866	-			7	1186
	- 60	_	5139	4354	-	Januaschii predicted coding region NJ0062 (Merhannecur	2		1626
8 6755 5394 [91]2367358 (AE000491) hypothetical 52.9 kD protein in aid8-rpsF intergenic region 68 43 1		-	8021	8242	-		80	0	1986
=======================================		:	6755	5394	-	(AE000491) hypothetical 52.9 kD protein in aid8-rogf interpenic region	89		222
	- ;	- :	- :	:		[Escherichia coli]	 69	 :	1362

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contrg	ORF 110	Start	Stop (nt)	match	match gene name	a is	1 ident	length (nt)
9.6		1418	2308	gn1 P1D d100261	LivA protein (Salmonella (Yphimurium)	69	0,	168
66	=	16414	117280	91 455363	regulatory protein (Streptococcus mutans)	89	80	1 698
1115	2	5054	1 3693	91 466474	cellobiose phosphotransferase ansyme II'' Bacillus stearothermophilus	89	=	1362
124		3394	1323	gn1 P1D d100702	cut14 protein Schizosaccharomyces pombe	89	95	1 161
1.25	7	2923	1922	91 450566	transmembrane protein (Bacillus subtilis)	89	20	1002
132	7 -	4858	2888	qn1 P1D d101732	DNA ligase (Synechocystis sp.)	89	52	1 1761
0 1	~	3765	7580	191 1209711	unknown (Saccharomyces cerevisiae)	1 69 1	- 67	186
150		5.39	-	[91]402490	ADP-ribosylarginine hydrolase [Mus musculus]	89	1 65	537
164	-	58	1 867	gn1 P10 e255114	glutamate racemase (Bacillus subtilis)	89	64	910
	~	819	1835	gn1 P1D e255117	hypothetical protein (Bacillus subtilis)	89	50	1017
671		3946	4104	pir B\$4545 B\$45	hypothetical protein - Lactococcus lactis subsp. lactis plasmid p5L2	89	0+	1 651
170	7	4247	9607	91 304146	spore coat protein (Bacillus subtilis)	89	52	1 051
17.1	9	6002	1054	191138722	precursor (as -20 to 381) (Acinetobacter calcoaceticus)	89	54	1053
861		2473	1871	[gn] [PID]e313075	hypothetical protein (Bacillus subtilis)	89	1 94	1 (09
211	~	696	1802	91 1439528	EIIC-man Lactobacillus curvatus	68	45	834
214	8	4926	4231	gn1 PID d102049	H. influenzae hypothetical protein; P43990 (182) (Bacillus subtilis)	1 69 1	50	969
712	9	4955	5170	gn1 PID e326966	similar to B vulgaris CHS-associated mitochondrial (reverse transcriptuse) Arabidopsis thaliana	89	36	216
218		1930	4745	(91/2293198	(AF008220) YtgP (Bacillus subtilis)	1 89 1	38	816
220	9	4628	4338	gn1 P10 e325791	(AJ000005) orfl (Bacillus megaterium)	99	51	291
236		746	108	gi 410137	ORFX13 (Bacillus subtilis)	1 89 1	1 97	639
1111	~	675	1451	91 396348	homoserine transsuccinylase (Escherichia coli)	1 89 1	67	111
250	-	1111	1229	[gi 310859	ORF2 Synechococcus sp.	89	50	1 659
254		\$17	155	611787105	[AE000189] o648 was o669; This 669 aa orf is 40 pct identical (1 gaps) to 217 residues of an approx. 232 aa protein YBBA_HAEIN SW: P45247 [Escherichia coli]	89	:	363
			17.	gn1 PID e261990	putative orf (Bacillus subtilis)	1 89	4	1 100
345	- :		653	191 149513	[thymidylate synthase (EC 2.1.1.45) [Lactococcus lactis]	89	61	651

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	URF 110	Start (nt)	Stop (at)	match	natch gene name	Eis	1 Ident	length
386	7	417	-	191/1573353	outer membrane integrity protein (tolA) (Haemophilus influenzae)	8.9	51	-
7	-	5722	1691	91 1592141	H. jannaschil predicted coding region NJ1507 [Hethanococcus Jannaschii]	67	7 9 7	1026
-	9	5397	4591	19112293175	(AF008220) signal transduction regulator (Bacillus subtills)	67	7	807
\$	~	2301	574	[91]2313385	(AE000547) para-aminobenzoate synthetase (pabB) (Helicobacter pylori)	67	97	1728
	13	16063	16758	91 (413931	lipa-7d gene product (Bacillus subtilis)	67	7	969
22	8	7094	7897	gi 1928962	pyrroline-5-carboxylate reductase (Actinidia deliciosa)	1 69	- 15	804
62	02	8335	2,06	91 468745	gtcR gene product (Bacillus brevis)	67	7	738
, n		1379	585	[91 [2425123	(AF019986) PksB (Dictyostelium discoideum)	1 19	1 60	1 366
21	= = =	8849	10150	gi 42029	ORF1 gene product [Escherichia coli]	1 19	47	1302
91	116	14830	15546	91 1592142	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	1 29	- 5	1 711
98	6	4958	5392	gn1 PID e214803	[T22B].] (Caenorhabditis elegans)	67	- 4	435
96	=	27.7.5	114512	19:1537037	ORF_0216 Escherichia coli]	67	52	738
51	-	10428	9181	[gi[551710	branching enzyme (glgB) (EC 2.4.1.18) [Bacillus stearothermophilus]	67	51	1248
48	[2]	18344	117514	gi 413949	lipe-25d gene product (Bacilius subtilis)	67	80	631
05		1111	952	lgni Pioldioi330	0 YqjQ Bacillus subtilis	67	55	822
53		ē		gi 1574291	findrial transcription regulation repressor (pilB) [Haemophilus influentae]	67	9	429
55	=	112740	111946	gn1 P1D e252990	ORF YDL037c Saccharomyces cerevisiae]	1 (9	51	1 362
19	6	9210	8329	gn1 je10 e264711	ATP-binding cassette transporter A (Staphylococcus aureus)	67	05	682
1,71	~	5614	6117	191 1197667	vitellogenin (Anolis pulchellus	67.	36	204
.		4489	4983	91 1142714	phosphoenolpyruvate:mannose phosphotransferase element IB Lactobacillus curvatus	67	75	495
3	_	2957	1 3214	91/1276746	Acyl carrier protein (Porphyra purpureal	1 (9	37	258
98		8140	6089	[91]1147744	PSR Enterococcus hiree	67	45	1332
66		986	1366	gn1 P10 d102235	[(AB000631) unnamed protein product [Streptococcus mutans]	67	7	381
102		109	1413	91 682765	mccB gene product Escherichia coli	69	36	813
901	<u> </u>	1109	1987	g1 148921	LicD protein [Heemophilus influentee]	62	3	879
1 115	-	5982	9595	gi 895750	[putative cellobiose phosphotransferase enzyme III [Bacillus subtilis]	67	•	125

ABLE 2

Cont ig	ORF	Start (nt)	Stop	match	match gene name	s in	1 ident	length (nt)
115	_	8421	7 (0 8	91 466473	cellobiose phosphotransferase enzyme 11. (Bacillus stearothermophilus)	69	5.1	345
133	2	8127	1201	91 147326	transport protein (Escherichia coli)	6.9	\$\$	1107
136		1 2215	2859	gn1 P1D d100581	unknown (Bacillus subtills)	(9	6	645
140	2	123317	120906	gn1 P10 d101912	phenylalanyl-tRNA synthetase (Synechocystis ap.)	67	Ç	2412
146	9	2894	1 1893	191 2182994	histidine kinase [Lactococcus lactis cremoris]	69	7	1002
151	8	111476	11111	98	ORF129 [Bacillus cereus]	67	4	360
091	0	7453	9	91 (2281317	Orf8; similar to a Streptococcus preumoniae putative membrane protein encoded by GenBank Accession Number X99400; inactivation of the Orf8 gene leads to UV-sensitivity and to decrease of homologous recombination (plasmidic test) (Lactococcus l	67	9	20.
163		1 3099	1 4505		YqfR (Bacillus subtilis)	69	47	1407
167		6704	5454	91 1161933	DitB (Lactobacillus casei)	63	45	1251
169	-	1 2322	1 2879		YQKG [Bacillus subtilis]	67	7	558
17.1	Ξ	1 7656	8384	91 153841	pneumococcal surface protein A (Streptococcus pnaumoniae)	67	20	729
981	_	1930	1272	191 1542975	Abcb (Thermoanaerobacterium thermosulfurigenes)	1.9	99	1 1961
189	9	1 3599	3141	1 PID 8325178	Hypothetical protein (Bacillus subtilis)	67	52	657
205		1663	1 2211	1911606073	ORF_o169 [Escherichia coli]	69	4)	549
207	-	1 2896	3456	91 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	.9	64	561
2.7	-	9801	1 3703	1911895750	putative cellobiose phosphotransferase enzyme 111 (Bacillus subtilis)	63	42	384
346		291	1 662	di 1842436	Unknown (Bacillus subtilis)	67	7	372
252	-	~	745	gi 2351768	PspA [Streptococcus pneumoniae]	63	7	744
		1134	11811	gi 2313847	(AE000585) L-asparaginase II (ansB) [Helicobacter pylori]	67	62	678
295	-	-	1375	191 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	63	\$	375
-		4838	5146	gn1 F10 e255179	Unknown [Mycobacterium tuberculosis]	99	99	249
	-	389		gn1 P1D e269548	Unknown (Bacillus subtilis)	99	69	387
	02	119267	120805	91 39956		99	20	1539
-	-	1 2545	1 2718	19111787564	(AE000228) phage shock protein C (Escherichia colii)	99	36	174
S	. 6	111197	112592	191 1574291	fimbrial transcription regulation repressor (pilB) (Haemophilus influenzae)	99	9 🕈	909
	:::::::::::::::::::::::::::::::::::::::				missesser 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 + 1 , 1 , 1 , 1	•

5. pneumoniae - Putative coding regions of novel pruteins similar to known proteins

Contig	ONE	Start	Stop	match acession	match gene name	E is	1 Ident	length (nt)
6	-	1 2872	1451		unknown (Hycobacterium tuberculosis)	99	43	1422
1 12	2	1469	1200	91 520407	orf2; GTG start codon (Bacillus thuringienels)	99	42	270
15	127	61601	1 9897	qi 2314738	(AE000653) translation elongation factor EF-Ts (tsf) [Helicobacter pylor1]	99	6.7	1083
		1312	734		(AB005554) yxbF (Becillus subtilis)	99	35	579
22		1372	1881	19111480916	signal peptidase type 11 (Lactococcus lactis)	99	38	480
22		5828	9601		gamma-glutamy phosphate reductase Streptococcus thermophilus	99	51	1369
1 22	120	116194	117138		Yith (Bacillus subtilis)	99	\$0	945
30		530	976	91/2314379	NE000627 ABC transporter, ATP-binding protein (yhcG) (Helicobacter pylori)	99	9	447
32	-	661	984	91 312444	ORF2 (bacillus caldolyticus)	99	60	786
<u></u>	=	8352	7234	91 1387979	441 identity over 302 residues with hypothetical protein from Synechocystis sp. accession D64006_CD; expression induced by environmental stress; some similarity to glycosyl transferases; two potential membrane-spanning helices [Bacillus subtil	99	;	6111
-	و :	9595	470B	gn1 PID e250724	orf2 [Lactobacillus sake]	99	39	156
	===	2616	1 9574	[gi 1590997	H. Jannaschii predicted coding region MJ0272 (Hethanococcus jannaschil)	99	6	219
1 35	. 91	115163	114501	91 1771352	Cap5H Staphylococcus aureus	999	97	663
36	-	(719)	91.69	191 11518680	minicell-associated prutein Diviva (Bacillus subtilis)	99	35	804
36	Ξ_	110396	110824		insulin activator factor, INSAF (human, Pancreatic insulinoma, Peptide Partial, 744 aaj (Homo sapiens)	9	5	429
9+ 1	-	28	6111	gn1 P1D e325204	hypothetical protein (Bacillus subtilis)	99	05	1 1992
8.		3810	1 4112	91 2182574	[(AE000090) Y4pE (Rhizobium sp. NGR234)	99	0,	1 000 1
1 52	-	1 3595	1 2789	91 388565	major cell-binding factor (Campylobacter jejuni)	99	52	807
1 54	-	1 2662	1 1076	[gn1 [P10]d1018]1	glutamine-binding periplasmic protein (Symechocystis sp.)	99	43	1587
19	017	9740	1 9183	gn1 Ptp e154144	mdr gene product (Staphylococcus aureus)	99	*	1 858
1 ,2	Ξ	110893	111993	19112313129	AE000526 H. pylori predicted coding region HP0049 [Helicobacter pylori]	99	+	1011
174	6 -	13367	113476	19111573941	hypothetical (Maemophilus influenzae)	99	43	192
56	-	- 2	898	91 1574631	nicotinamide mononucleotide transporter (pnuC) (Haemophilus influenzae)	99	99	1 867
25		1 5303	1 4275	91 41312	put. EBG repressor protein (Escherichia coli)	99	0,	1029
	-							

FARLE 2

Contig	9 ORF 10	Start	Stop (nt)	match	match gene name	e : s	• ident	length (nt)
82		6813	8123	gn1 P1D e255128	trigger (actor (Bacillus subtills)	99	23	1311
		1.905	1219	pir c33496 c334	hisC homolog - Bacillus subtills	99	7	315
98	01	1 9407	8925	91 683584	shikimate kinase Lactococcus lactis	99	1	(8)
98	011	1001	0909	191 2098719	putative fimbrial-associated protein (Actinomyces naeslundii)	99	52	942
68	-	1 951	-	91 410118	ORFX19 [Bacillus subtills]	99	7	848
		3661	2711	91 1787936	(AE000260) (298; This 298 as orf is 51 pct identical (5 gaps) to 297 residues of an approx. 304 as protein YCSR_BACSU SW: R42972 (Escherichia coli)	99	6.4	951
104	-	1 1805	3049	91 1469784	putative cell division protein frs# (Enterococcus hirse)	99	8	1245
901	7.7	13576	114253	gi 40027	homologous to E.coli gidB [Bacillus subtilis]	99	52	678
1 100	-	1 965	1 1864	91 144858	ORF A (Clostridium pertringens)	99	67	006
- 12	- 1	1 5718	1 6593	91 609132	DprA (Haemophilus influenzae)	99	6	9.0
11.5	-		302	191 727367	Hyrlp (Saccharomyces cereviaine)	99	95	300
122	<u>:</u> -	-	995	gn1 P10 d101328		99	36	1 564
1 126	; e	111759	111046		ORF3 Bacillus subtilis	99	9	714
128	Ξ	1 8201	1 8431	91 726288	growth associated protein GAP-4) (xenopus laevis)	99		231
===		1 4894	4508	91 486661	Thing related protein (Saccharomyces cerevisiae)	99	39	786
077	-	1 3236	1 2574	91 40056	phop gene product (Bacillus subtilis)	99	36	(99
140	115	116318	115434	191 1658189	5,10-methy enetetrahydrofolate reductase Erwinia carotovora	99	69	888
146	~	1 7926	1 7636	gn1 P1D d101140	transposase Synechocystis sp.	99	7	291
147	9	(11)	6154	gi 472326	TPP-dependent acetoin dehydrogenase alpha-subunit (Clostridium magnum)	99	9	984
149	-	1 4435	5430	gn1 P10 d101887	pentose-5-phosphate-3-epimerase (Synechucystis sp.	99	46	966
149	=	110754	275111	191142371	pyruvate formate-lyase activating enzyme (AA 1-246) (Escherichia coli)	99	42	822
186	-	1 2578	1 2270		ORF11 (Enterococcus faecalis)	99	=	309
1 207	~	0312	1 2597	gn1 P10 e321893	envelope glycoprotein gpl60 (Human jamunodaficlency virus type 1)	99	9)	1 258
210	-	1 3358	1 3678	: -	ORF4 gene product (Bacillus subtilis)	99	46	321
1 217		5143	1 5155	gi 49538	thrombin receptor (Cricetulus longicaudatus)	99	38	213
1 220	-	1 3875	3642	91 466648	alternate name ORFD of L23635 [Escherichia coll]	99	33	× = = = = = = = = = = = = = = = = = = =

S. pneumoniae . Putative coding regions of novel proteins similar to known proteins TABLE 2

Contrig	2 C S S S S S S S S S S S S S S S S S S	Start (nt)	Stop	match	match gene name	E 30	1 ident	length (nt)
1 22.	- -	1070	86.1	[gn1 P1D e247187	lainc finger protein (Bacteriophage phigle)	99	45	933
224	- -	1864	1 2640	911116199	putative ABC transporter subunit (Staphylococcus epidermidis)	99	3	177
2	-		872	dbj AB000617_2	(AB000617) Ycdil (Bacillus subtilis)	9	45	870
1 268	~ _	168	1 568	91 517210	putative transposase Streptococcus pyogenes	99	09	324
1 322	-	7	CP9	gi 1499836	2n protease (Methanococcus jannaschii)	99	0,	642
5	01	113909	13178	91 1574292	hypothetical (Haemophilus Influenzae)	59	34	132
•	==	10465	111190	91 142854	homologous to E. coll radC gene product and to unidentified protein from Staphylococcus avreus (Bacillus subtilis)	59	89	726
	~	647	40\$	pir C64146 C641	[hypothetical protein H10259 - Hawmophilus influenzae (strain Rd Kw20)	65	42	243
~		6246	1 6821	gn1 P10 d101323	Yqbu (Bacillus subtilis)	9	05	576
01	~	1873	7661	11163111	ORF-1 (Streptococcus pneumoniae)	59	24	477
91 +	-	1428	2222		hypothetical protein (Bacillus subtilis)	99	ts	1967
7.7	-	1815	73157	gn1 P1D e314910	hypothetical protein (Staphylococcus sciuri)	9	9	459
7.7	-	125776	126384	19111123030	CpxA Actinobacillus pleuropneumonlae	6.5	42	609
: -	~	1648	1 290	91 1044826	F14E5.1 Caenorhabditis elegans	6.5	38	1359
8	=	10062	95801	9111573390	hypothetical [Haemophilus influentae]	65	\$	198
#	72	17521	116883	19111573191	hypothetical [Haemophilus influenzae]	65		619
8		119027	118533	gn1 P1D e264484	YCR020c, len:215 [Saccharomyces cerevisiae]	9	38	1 560
\$		3886	¥(; -	91 1480429	putative transcriptional regulator (Bacillus etearothermophilus)	59	32	1479
05 –		5337	618)	[91]171963	[tRNA isopenteny] transferase [Saccharomyces cerevisiae]	\$9	7	619
25	1.5	14728	115588	91 1499745	M. jannaschii predicted coding region MJ0912 (Methanococcus jannaschil)	6.5	9	1 198
65	_	1 3963	1 4745	gi 496514	orf seta (Streptococcus pyogenes)	\$9	42	783
89	_	1 2500	3483	91 887824	ORF_0310 [Escherichia coli]	65	9.	984
69	-	1717	(101)	gn1 P1D e111453	unknown (Bacillus subtilis)	92	4.2	1095
69		6209	5325	191 809660	decxyribose-phosphate aldolase [Bacillus subtilis]	65	55	1 501
7	5	9638	(876	19111573224	glycosyl transferase lgtC (GP:U14554.4) [Haemophilus intluenzae]	9	42	1248
~	8	1 7664	8527	gn1 P10 e267589	Unknown, highly similar to several spermidine synthases (Bacillus subtilis)	9	39	864
							• • • • • • • • • • • • • • • • • • • •	

TABLE 2

| I ident Ç Ç Ç Ç e is ç ç residues of an approx. 272 as protein AGAR_ECOLI SW: P42902 (Escherichia EcoE type I restriction modification enzyme H subunit (Escherichia coll) ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii) gn1 | PID | d102008 | (AB001488) SIMILAR TO ORF14 OF ENTEROCOCCUS FAECALIS TRANSPOSON TN916 4097 | gnl|PlD|di01723 |DNA REPAIR PROTEIN RECN (RECOMBINATION PROTEIN N). [Escherichia coli] pneumoniae - Putative coding regions of novel proteins similar to known proteins (similar to purine nucleoside phosphorylase (deoD) (Escherichia coll) (AE000226) f249; This 249 as orf 1s 32 pct identical (8 gaps) to 244 exodeoxyribonuclease, small subunit (xseB) [Haemophilus influenzae] (AE000532) conserved hypothetical protein (Helicobacter pylori) (1ABOO1488) PROBABLE UDP-N-ACETYLHURAHÖYLALANYL-D-GLUTAMYL-2, oligopeptide binding lipoprotein (Streptococcus pneumoniae) |gol|PID|e257609 |sugar-binding transport protein IAnaerocellum thermophilum| HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] |gn1|PID|d101125 |queuosine biosynthesis protein QueA (Synechocystis sp. | dihydrolipoamide acetyltransferase (Clostridium magnum) DNA-binding response regulator (Thermotoga maritima) |gn1|P1D|e246063 |NM23/nucleoside diphosphate kinase (xenopus laevis) DIAMINOLIGASE (EC 6.3.2.15). (Bacillus subtilis) |gnl|PID|d101880 |3-dehydroquinate synthase (Synechocystis sp. | membrane bound protein (Bacillus subtilis) [(AE000090) Y4pE [Rhizobium sp. NGR234] ORF1 gene product (Bacillus subtilis) membrane protein [Theileria parva] ORF2 (Clostridium perfringens) unknown (Lactococcus lactis) ORFX8 (Bacillus subtilis) |YqgH (Bacillus subtilis| (Bacillus subtilis) match gene name 9n1 | P10 | d101319 |gn1 | P1D | e339500 gn1 | P1D | d102004 match acession 91 1787540 3675 |91 |1574276 91 (2313188 181 11575577 91 2182574 |gi|1552737 91 12651 15 |gi|472329 91 | 151259 91 498839 91 304897 91 | 310893 91 | 410132 91 | 49315 Start (nt) 1 5773 1 2010 7 7 7 9 1 3821 ~ Contig lorf | S _ ~ 9(Ξ 1 16 ? 1 36 8) -

LABLE 2

134 1 2 574 [pol Pol P	Contig	ORF	Start (nt)	Stop (nt.)	match	match gene name	e is	1 ident	length (nt.)
1 2 144 501 101 102 544 501 101 101 102 545 501 101 101 102 545 501 101 101 545 54	284	<u>-</u>	-	006	191 559861	(Plasmid	59	36	006
1 2 168 91 790694 Autoparen C-5-episeces (Natobacce vinelandil) 1 2 569 91 790694 C. aucoparen, histófice utilization repressor; Pi3300 (199) GNA bunding 1 1 1 1 1 1 1 1 1	304	-	~	574		unknown (Mycobactetium tuberculosis)	59	52	573
1 1 1 1 1 1 1 1 1 1	1 315	; _ ; _	~ -	1 1483		mannuronan C-5-epimerase (Azotobacter vinelandii)	59	1 52	1482
1 1 100 901 PID -27200 PINOS protein Bacillus subcilis 6 5924 6865 91 109 -27200 Intentinate function prophosphorylase Bhodospitillum' rubrum 4 1317 1866 91 1045915 Intentinate aminospecidase Symethocystis p.) 4 1317 1866 91 1045915 [Oth helicase II (Mycoplasma genitalium] 5 1319 1269 91 1045915 [Oth helicase II (Mycoplasma genitalium] 7 6304 1319 91 1045915 [Oth helicase II (Mycoplasma genitalium] 8 1319 91 1045915 [Oth helicase II (Mycoplasma genitalium] 8 1319 91 1045915 [Oth helicase II (Mycoplasma genitalium] 9 1310 91 1045915 [Oth helicase II (Mycoplasma genitalium] 1 1 1 1 1 1 1 1 1 1	320			695	gn1 PID d102048	. aerogenes, histidine utilization repressor; P12380 Bacillus subtilis	65	9	567
1 1371 6656 Gill1398733 Intectinace muclostida pyrophosphorylase (Rhodoppirillum Tubrus) 4 1347 1366 Gill1015313 IONA helicase II (Mycoplasea Spanitalium) 4 1348 1266 Gill1015313 IONA helicase II (Mycoplasea Spanitalium) 5 504 7145 Gill1015132 Veriform Bacillus subtilisi 1 1348 1348 1349 Gill101513 Veriform Bacillus subtilisi 1 1379 1341 Gill101513 Veriform Bacillus subtilisi 2 1410 1314 Gill101513 Veriform Bacillus subtilisi 3 1417 1417 Gill101513 Veriform Bacillus subtilisi 4 1341 1348	1 358	-	-	906	gn1 P1D e323508	VIoS protein Bacillus subtilis	59	\$\$	1 600
6 5924 6802 gail Pro[dio]111 methionine anihopeptidase Symethecystis sp.) 4 1347 1366 gail Pro[dio]25525 Greb Streptococcus pneumoniae] 5 1348 2269 gail Pro[dio5522 Greb Streptococcus pneumoniae] 1 5504 7145 gil 1202126 Ver55c7/1g2 homolog Bacillus subtilis] 1 1 9448 9855 gail Pro[dio053] Unknown Bacillus subtilis] 2 1417 14179 gil 202266 Laeru Bacillus subtilis] 3 1418 13174 gil 202266 Laeru Bacillus subtilis] 4 1217 14179 gil 202266 Laeru Bacillus subtilis] 5 1510 1714 gil 40725 Laeru Bacillus subtilis] 5 1510 1714 gil 40725 Laeru Bacillus subtilis] 6 1710 1714 gil 40725 Laeru Bacillus subtilis] 7 1417 1417 gil 40725 Laeru Bacillus subtilis] 8 17 gil 1202166 Laeru Bacillus subtilis] 9 1418 1419 Gil 120216 Laeru Bacillus subtilis] 1 1 1 449 Gil 40725 Laeru Laeru Glecol Greb	~ _	-	1151	9699	[91 1498753	Intcotinate nucleotide pyrophosphorylase (Rhodospirillum rubrum)	79	47	976
4 1317 1566 gal PDD[0255529 OrdE Streptococcus preumonies 4 1349 2669 gal PDD[0255529 OrdE Streptococcus preumonies 7 6504 7145 gal PDD[010058] Unknown Bacillus subtilis 10 1250 73174 gal PDD[010058] Unknown Bacillus subtilis 10 1250 73174 gal PDD[010058] Unknown Bacillus subtilis 10 1250 73174 gal PDD[010058] Unknown Bacillus subtilis 1 1375 14199 gal PDD[010058] Unknown Bacillus subtilis 2 1510 1314 gal PDD[010058] Unknown Bacillus subtilis 3 1510 1314 gal PDD[010058] Unknown Bacillus subtilis 4 491 gal PDD[010058] Unknown Bacillus Bacillus sequence ISI1311 Agrobacterium 4 492 gal PDD[0135792] Unknown Bacillus Bacillus sequence ISI1311 Agrobacterium 4 493 gal PDD[0135792] Unknown Bacillus Bacillus sequence ISI1311 5 501 1059 gal PDD[0135792] Unknown Bacillus Bacillus subtilis 6 532 gal PDD[01319] Gal Bacillus subtilis 7 1157 555 gal PDD[01319] Gal Bacillus subtilis 8 511 6556 gal PDD[01319] Gal Bacillus subtilis 9 1158 gal PDD[01319] Gal Bacillus subtilis 9 1159 gal PDD[01319] Gal Bacillus subtilis	9	. 9	5924	6802		methionine aminopeptidase Symechocystis sp.	64	52	678
4 1349 1869	8		1 3417	3666	gi 1045935		64	98	270
7 6504 7145 91 763128 Yez-96-Yrigz homolog [Bacillus subtilis] 11 9548 9955 91 763128 Inknown [Bacillus subtilis] 12 12 14 14 14 15 15	-	-	1 3249	2689	gn1 P1D e265529	OrfB (Streptococcus pneumoniae)	99	9.	261
11 9548 9885 gnil PiD d1000801 lunknoom Bacillus subtilis 10 12350 21374 gii 289260 come ORPI Bacillus subtilis 1 1 1350 13174 gii 289260 come ORPI Bacillus subtilis 1 1 1317 gii 40795 Lodel methylase Lesultovibrio vulgaris 2 164 237 gii 12326168 Lype VII collagen Huis masculus 2 168 721 pir JCIIS JUII hypothetical 20. M protein (Insertion sequence Silili	1 15	-	1 6504	1116	911762328		9	\$\$	642
10 10.104 10.107 10.10	1 22	==	9548	9888	gn1 Pro d100581	unknown [Bacillus subtilis]	9	38	348
7	1 22	. <u> </u>	152501	123174	191 289260	ComE ORF1 Bacillus subtilis	1 64	9	672
2 1510 1114 gi 40795 [Ddef methylase [Desultovibrio vulgaris] 2 1614 297 gi 2126168 [type VII collagen [Hus musculus] 3 168 721 pic JCI151 JCI1 hypothetical 20.18 protein integration sequence [Sil11] - Agrobacterium 1 1 449 gi 46970 [type VII collagen [Hus musculus] 1 1 1 1 1 1 1 1 1	1 26		114375	14199	91 409286		64	30	7.61
2 614 297 91 2326168 type VII collagen [Mus musculus] 2 368 721 pir JC 151 JC 1 hypothetical 20.1K protein (Insertion sequence [SII]]] - Agrobacterium 1 3 449 91 4697U EpiD gene product [Staphylococcus epidermidis] 2 468 4976 91 PID e325792 (AJ000005) glucose kinase [Bacillus megaterium) 3 468 6520 91 PID e325792 (AJ000005) glucose pyrophosphorylase [Bacillus stearothermophilus] 468 6520 91 PID e325792 (AJ000005) glucose pyrophosphorylase [Bacillus stearothermophilus] 5 501 1059 91 A1985 nifS-like gene [Lac:Dacillus delbrucckii] 6 7356 91 573826 Alanyl-KNA synthetase [alas] [Haemophilus influenzae] 7 6256 91 157826 Alanyl-KNA synthetase (alas] [Haemophilus] 8 5213 6556 91 1010316 (Edd [Bacillus subtilis] 9 5356 4949 910 PID d100316 (Edd [Bacillus subtilis]	7.2		1 1510	100	191140795	Udel methylase (Desulfovibrio vulgaris)	+9	15	וננו
2 168 721 pir JCI151 JCI1 hypothetical 20. JK protein (Insertion sequence ISI131) - Agrobacterium 1 3 449 gil 46970 lepiD gene product (Stean) P022) plasmid Ti 4683 4976 gil pip epiD gene product (Stean) 1 1 1 1 1 1 1 1 1	1 29	~	614	1 297	9112326168		9	80	318
1 3 449	35	. ~	899	721	pic JC1151 JC11	20.3K protein (Insertion sequence ISII31) - (strain PO23) plasmid Ti	9	os —	354
7 4683 4976 gn1 PID e325792 (AJ000005) glucose kinase (Bacillus megaterium) 7 8068 6920 gn1 PID e325792 subunit of ADP-glucose pyrophosphorylase [Bacillus stearothermophilus] 2 301 1059 gi 43985 nifS-like gene (Lac: Dacillus delbrueckii) 115251 18397 gi 2293260 (AF008220) DNA-polymerase III alpha-chain (Bacillus subtillis) 1 1157 555 gi 1574292 hypothetical (Haemophilus influenzae) 2 4236 1606 gi 1573826 alanyl-tRNA synthetase (alas) (Haemophilus influenzae) 1 1 1 1 1 1 1 1 1	07.	-	_	449	91 46970	product (Staphylococcus	9		447
7 8068 6920 gni PiD di02036 subunit of ADP-glucose pyrophosphorylase Bacillus steafothermophilus 2 301 1059 gi 43985 nif5-like gene (Lac:obacillus delbrueckii) 15251 18397 gi 2293260 (AF008220) DNA-polymerase 111 alpha-chain Bacillus subtilis 2 4236 1606 gi 1574292 hypothetical Haemophilus influenzae 2 4236 1606 gi 1573826 alanyl-tRNA synthetase (ala5) Haemophilus influenzae 1 3 1259 gi 895749 putative cellobiose phosphotransferase enzyme 11' (Bacillus subtilis 5 5213 6556 gi 436965	0	~	4683	9,60	gn1 P1D e325792		9	\$\$	294
1 15251 18397 91 12293260 (AF008220) DIA-POlymerase III alpha-chain (Bacillus subtills) 1 15251 18397 91 12293260 (AF008220) DIA-POlymerase III alpha-chain (Bacillus subtills) 2 4236 1606 91 1574292 hypothatical (Haemophilus influenzae) 1 1 1 1 1259 91 895749 putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)	\$	-	1 8068	6920		of ADP-glucose pyrophosphorylase (Bacillus	79	40	1149
	15		301	6501	191143985	gene (Lactobacillus	79	24	159
3 1157 555 gi 1574292 hypothetical [Haemophilus influenzae] 2 4236 1606 gi 1573826 alanyl-tRNA synthetase (alaS) [Haemophilus influenzae] 1 1 1 1 1259 gi 895749 [putative cellobiose phosphotransferase enzyme II' [Bacillus subtilis] 5 5213 6556 gi 436965 [malA] gene products [Bacillus stearothermophilus] 6 5356 4949 gnl PID di01316 Cdd Hacillus subtilis]	- 51	=	115251	18397	191 229 3260	alpha-chain (Bacillus	9	9+	3147
2 4236 1606 gi 1573826 alanyl-tRNA synthetese (alas) [Haemophilus influenzae] 1 3 1259 gi 895749 purative cellobiose phosphotransferase enzyme II" [Bacillus subtilis] 5 5213 6556 gi 416965 [MalA] gene products [Bacillus starrothermophilus] 6 5356 4949 gn1 PiD di01316 Cdd Bacillus subtilis]	1 53	-	11157	585	9111574292	Kaemophilus	64	43	(09
1 3 1259 gi 895749 [putative cellobiose phosphotransferase enzyme II" (Bacillus subtilis)	85	: ~ : -	4236	9091	9111573826	alanyl-tRNA synthetess (alas) [Haemophilus influenzae]	9	2.	2631
5 5213 6556 93 416965 [malh] gene products [Bacillus stearothermophilus] 6 5356 4949 901 PLD d101316 Cdd Bacillus subtilis	99	-	_	1 1259	91 895749	cellobiose phosphotransferase enzyme II'' (Bacillus	99	4.2	1257
6 5356 4949 gn1 P1D d101316 Cdd Bacillus subtilis]	89	<u>~</u>	5213	9559	91 436965	gene products (Bacillus	79	4.3	1344
	69	-	5356	4949	- 1		64	52	404

S. pneumoniae - Putative coding regions of novel proteins Sthilar to known proteins

1 1 1 1 1 1 1 1 1 1	Cont ig	OKE	Start Int)	Stop	match	malch gene name	Eis	1 ident	length (nt)
1.123 1605 1613 1615	74	4	6948	5038	91 726480	(Bacillus	9	\$0	1161
13 11016 11233 91 191153	75		1283	1465	bbs 133379		9	52	183
11 10046 9300 gon Fire Gl101111 VitA Bacillus subtilis 1 1 10046 9300 gon Fire Gl10112 VitA Bacillus subtilis 1 1 2 1776 gon Fire Gl10112 Intercent Bacillus subtilis 1 2 1776 gon Fire Gl10111 IntS Symethecycles Societies Bacillus subtilis 1 2 1776 gon Fire Gl10111 IntS Symethecycles Societies Bacillus subtilis 1 3 1717 Gl101 Fire Gl10111 IntS Symethecycles Societies Gl101 Fire Gl10111 IntS Gl101 Fire Gl101 Fire	18	;		114231		dehydrogenase alpha-10 subunit (Bacillus	99	35	216
1 10046 9300 ganificiole33300 protective Ptcl protein Bacillus subtilial 1 1 1 10046 9300 ganificiole33300 hypothetical protein Bacillus aubtilial 1 2 1276 ganificiole32300 hypothetical protein Bacillus aubtilial 1 2 1279 ganificiole32301 hypothetical protein Bacillus acceptable 1 1 2 1297 ganificiole32302 hypothetical protein Bacillus acceptable 1 1 1 1 1 1 1 1 1	6	221	21851	122090	strtictb ara tng	Yqfa (Bacillus subtilis)	99	7	240
1 2 1376 931 Pipele 13380 Nypothetical protein Bacillus subtilis 1 2 1376 931 Pipele 1330 Similar to S. aurous mercorytil) reductase Escherichis coli 1 2 1376 931 Pipele 1330 Pipele Pi		=======================================	10046	9300	gn1 Pr0 e323505	putative Ptc1 protein [Bacl1lus subtilis]	99	£3	147
1 2 1126 6410 gol PiD[d1D119 Hilfs Symethecytis sp.		~	5032	5706	gnt PtD e233880	hypothetical protein (Bacillus subtilis)	99	38	675
1 1 2 1297 gni Pinglainiii HitS Symechocystis sp. 1 2 1297 gni Pinglainiii HitS Symechocystis sp. 1 1 2 1297 gni Pinglainiii Hypothetical protein Histomobactectuan pharaonis 2 1115 1156 Gni Pinglainiii Hypothetical protein Hymochocystis sp. 3 1517 1209 gni Pinglainiii Hypothetical 20.3k protein Himselfin sequence Hypothetical 20.3k protein Himselfin sequence Hypothetical 20.3k protein Hymochocystis sp. 1 152 154 Gni Pinglainiii Hypothetical 20.3k protein Himselfin sequence Hypothetical 20.3k protein Hymochocystis sp. 1 152 154 Gni Pinglainii Hypothetical 20.3k protein Hymochocystis 1 152 154 Gni Pinglainii Hymochocystis Homochocystis Homochocystis Homochocystis Hypothetical 20.3k protein Homochocystis 1 152 154 Gni Pinglainii Hymochocystis Homochocystis Hypothetical 20.3k protein Homochocystis Hypothetical 20.3k protein Hypoth	105	-	~ 1	1276		S. aureus mercury(11) reductase	64	45	1275
1 12 1293 gni PiD e1205208 ONF YDD2444 Saccharomyces corevisiee 3 1125 1156 Sisse gni PiD e120208 ONF YDD2444 Saccharomyces corevisiee 4 1461 1780 gni PiD d101114 YqeU Bacillus subtilis 5 1711 1780 gni PiD d101114 YqeU Bacillus subtilis 6 1467 1709 gni PiD d101114 YqeU Bacillus subtilis 7 1715			5136	6410	-	NifS (Synechocystis sp.)	79	\$0	1275
1 1125 2156 gii PID 2532284 OMF YOL2444 Saccharomyces cerevitite 5 2131 1780 gii PID 2101884 Mypothemical procein Symechocystis sp.] 6 1467 2709 yii PID 2101814 YqeU Bacillus subtilis 7 152 3 gii 277841 Unknoom Bacillus subtilis 8 152 3 gii 277841 Unknoom Bacillus subtilis 9 1726 2651 gii 27245 Mewalonate pyrophosphate decarboxylase Mattua norvegicus 1 2 1018 gii PID 21019 (AP000410) dynamin-like protein (Homo saplena) 1 270 2658 gii PID 210245 Mewalonate pyrophosphate decarboxylase Mattua norvegicus 1 2 1018 gii PID 210000 (AP000410) dynamin-like protein (Homo saplena) 1 270 2658 gii PID 20000 (Cansembrane Bacillus subtilis 1 2 1114 gii PID 210000 (Cansembrane Bacillus subtilis 2 156 4588 gii PID 20000 (Cansembrane Bacillus subtilis 3 156 4588 gii PID 210000 (Cansembrane Bacillus subtilis 4 1599 2114 gii PID 20000 (Cansembrane Canter Canabubactin Cansemperase protein Falb of 5 1506 4588 gii Salio7 (Cansembrane Canter Canabubactin Cansemperase protein Falb of 6 1586 gii Salio7 (Cansembrane Canter Canabubactin Cansemperase Canter Canabubactin Cansemperase 6 1588 gii Salio7 (Canabucillus subtilis 7 150 2651 2	611	-	~	1 1297	gn1 P10 e320520	hypothetical protein [Matronobacterium pharaonis]	94	37	1296
5 2331 1780 gnn PrD[d1010184 hypothetical protein Synechocytiis sp.]	2 2	-	11125	1 2156	gn1 P1D e253284	ORF YDL244w [Saccharomyces cerevisise]	64	0	1032
1 152 1 91 91 1177841	77:	5	1 2331	1 1780		hypothetical protein (Synechocystis sp.)	99	20	552
1 152 3 91 117841	671	-	3467	1 2709		YqeU (Bacillus subtilis)	64	52	98r
11 2196 2551 91 2293301	1 131	-	152	-	19111377841	unknown (Bacillus subtilis)	64	42	150
1 12 1018 91 132245	:		31196	7549	(pir Junisi Juni	•	9	20	354
10 6730 5648 gi 1322245 mevalonate pyrophosphate decarboxylase [Rattus norvegicus] 1 2 1018 gn1 P1D e13703) unknown gene product (Lactobacillus letchmanni) 1 1 1 1 1 1 1 1 1	139	-	1 3226	1 2651	191 2293301		64	7	976
1 2 1018 gn1 p1D e137033 unknown gene product (Lactobacillus leichmannii)	146	01	06730	1 5648		mevalonate pyrophosphate decarboxylase Rartus norvegicus	99	45	1083
1 8430 8783	1.67	-	~ -	8101	gn1 PtD e137033	unknown gene product (Lactobacillus leichmannii)	99	9 7	1017
	148	Ξ	8430	1 8783	:	dynamin-like protein (Homo	64	28	354
4 1299 2114 gn1 P1D d100892 homologous to Gln transport system permease proteins [Bacillus subtilis] 6 5880 6362 gi 517204 ORFI, putative 42 kDa protein Streptococcus pyogenes 13 9707 8769 gn1 P1D d100964 homologue of ferric anguibactin transport system permerase protein fatD of	156	-	4313	1 3612		transmembrane (Bacillus subtilis)	64	11	702
6 5880 6362 gi[517204 ORF1, putative 42 kDa protein [Streptococcus pyogenes] 9707 8769 gal[PID[d]00964 homologue of ferric anguibactin transport system permerase protein fatD of V anguillarum [Bacillus subtilis] 1906 4598 gi[534045 antiterminator [Bacillus subtilis] 1906 4598 gi[531307 response regulator [Lactobacillus plantarum] 1319 2863 gi[149520 phosphoribosyl anthranilate isomerase [Lactococcus lactis]	157	-	1 1299	1 2114	gn1 P10 d100892	proteins (Bacillus	19	43	816
13 9707 8769 gail PiD diou964 homologue of ferric anguibactin transport system permerase protein fatb of V. anguillarum Bacillus subtilis 5 1906 4598 9i 534045 antiterminator Bacillus subtilis 10 6154 6507 9i 581307	162	9 -	5880	6362	gi 517204	ORF1, putative 42 kDa protein (Streptococcus pyogenes)	99	58	(83
5 3906 4598 91 534045	164	==	9707	8769	gal P10 d100964	of ferric anguibactin transport system permerase protein FatD Harum (Bacillus subtilis)		0	616
10 6154 6507 91 581307 response regulator [Lactobacillus plantarum] 4 3519 2863 91 149520 phosphoribosyl anthranilate isomerase [Lactococcus lactis]	1.75	- 5	3906	1 4598	91 534045	antiterminator (Bacillus subtilis)	64	96	693
4 3519 2863 gi 149520 phosphoribosyl anthranilate isomerase [Lactococcus lactis]	681	011	1 6154	1 6507	1911581307	response regulator (Lactobacillus plantarum)	99	£	1354
,一下,一个一下,一下一下,下下了,只是有些的现在分词是有一个有一个一个一个一个一个一个一个一个一个一个一个一个一个一个一下,一下一下,一下	161	-	1 3519	1 2863	•		9	9 +	657

S. pneumoniae - Putative coding regions of novel proteins' Blailar to known proteins

		•		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		• •		
Contig	ORF.	Start Int)	Stop (nt)	match	match gene name	* * * * * * * * * * * * * * * * * * *	1 ident	length (nt)
707	<u>:</u> -	90	1140	gn1 P1D e293806	O-acetylhomoserine sulfhydrylase [Laptospira meyari]	9	47	1065
\$22	-	234	1521	91 1573393	collagenase (prtC) (Haemophilus influenzae)	99	7	1338
ī	-	1 291	643	91 401 74	ORF X (Bacillus subtilis)	99	2	357
253		907	1089	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence [51]]]] - Agrobacterium tumefaciens (strain PO22) plasmid Ti	7	80	186
597	- -	820	~	19111377832	unknown (Bacillus subtilis)	64	16	819
1 297	-	-	099	19111590871	collagenase (Hethanococcus januaschii)	64	87	099
328	- -	1 263	7.	191 992651	Gin4p Saccharomyces cerevisiae	64	19	243
s _	-	8730	8609	91 556885	Unknown (Bacillus subtilis)	69	60	633
0.	9	8612	44B3	19111573101	hypothetical (Haemophilus Influenzae)	63	0,	969
21	Ξ	9324	1 9902	gi 806536	membrane protein (Sacillus acidopullulyticus)	1 69 1	7	678
22	0-	1 8897	9187	91 722339	unknown (Acetobacter xylinum)	63	0+	291
-	~	1001	309	yn1 P10 e217602	PinU (Lactobacilius plantarum)	69	32	127
81	· •	8,,,	6975	19111377843	unknown (Bacillus subtilis	63	45	904
56	-	9780	7078	gi 142440	ATP-dependent nuclease (Bacillus subtilis)	63	99	2703
62	:	3488	4192	191(1377829	Unknown (Bacillus subtilis)	63	35	105
<u>.</u>	Ξ	1 8830	7988	gn1 P10 d101198	ORF8 (Enterococcus faecalis)	63	\$	843
ç;	-	11187	978	gi 722339	unknown Acetobacter xylinum	63	39	312
æ	-51	112509	11691	91 1573389	hypothetical (Haemophilus influenzae)	(9	‡	818
2	Ξ	61721	112189	91/142450	ahrC protein (Bacillus subtilis)	63	35	168
55	-	919	5022	91 1708640	YeaB (Bacillus subtilis)	69	;	1044
\$	517	13669	114670	gn1 P1D e311502	Ithioredoxine reductase (Bacillus subtilis)	G	-	1002
89	0.	9242	8919	sp P37686 Y1AY_	HYPOTHETICAL 40.2 KD PROTEIN IN AVTA-SELB INTERGENIC REGION (F382).	69	0	324
98	- ,	6554	1 5685	91 1574382	[lic-1 operon protein (licD) [Haemophilus influentae]	63	=	970
88		6085	5180	gi 2098719	putative fimbrial-associated protein [Actinomyces naeslundii]	63	43	906
96		5858	6484	91 (105280)	lorflgyib gene product (Streptococcus pneumonies)	63	98	627
100		240	1940	161/111	fucosidase (Dictyostelium discoideum)	(9	36	1071

FABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	ORF	Start (nt)	Stop (nt)	match	match gene name	e is	1 ident	length (nc)
7 01	-	1 3063	5976	911144985	phosphoenolpyruvate carboxylase (Corynebacterium glutamicum)	(9	9.	2703
901	=	6816	8554	91 533099	endonuclease III (Bacillus subtilis)	63	45	636
122	9	4104	4886	gni (Piblaia) 139	transposase (Synechocystis sp.)	63	1 60	103
128		4517	5203	ani Pro dio1434	orf2 [Nathanobacterium thermoautotrophicum]	69	05	687
761	-	1 963	1547	91 472920	(v-type Na-ATPase (Enterococcus hirae)	5	37	585
142		001+	4585	gn1 PTD e313025	hypothetical protein (Bacillus subtilis)	69	7	486
159		1741	2571	9: 1787043	(AEO00184) (271; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 Escherichia coli!	5	60	68
161	122	6	14406	gn1 P1D e324918	Igal protesse (Streptococcus sanguis)	63	8+	1 9095
	-		347	911773150	hypothetical 14 8kd protein (Escherichia coli)	63	34	345
178	~	423	616	91/722339	unknown (Acetobacter xylinum)	63	Ş	569
8/1		161.	7101	(gi 1591582	cobalamin biosynthesis protein N (Methanococcus jannaschii)	9	96	219
195	-	ייינו	571	gn1 P1D e324217	its0 [Enterococcus hirae]	63		1203
7.7	- 2	61.13	1527	91 159 1582	cobalamin biosynthesis protein N (Methanococcus jannaschil)	G	36	213
6 + 2	-	16	757	191 1000453	Trea (Bacillus subtilis)	63	\$	177
283	-	(21	1347	1911396486	ORF8 (Bacillus subtilis)	63	\$	1221
293		2804	1 3466	91/722339	unknown (Acetobacter aylinum)	63	37	(99
111	-	906	486	91/1877424	UDP-galactose 4-epimerase (Streptococcus mutans)	63	9.	420
324	- -	~	988	191 1477741	histidine periplasmic binding protein P29 (Campylobacter jejuni)	63	36	\$55
365	-	518	=	191 2252843	[(AF013293) No definition line found (Arabidopsis thalians)	63	33	202
382	-	89	876	191 722339	unknown Acetobacter xylinum	63	0	167
385		364	158	91 (2252843	(AF013293) No definition line found (Arabidopsis thallans)	63	33	207
~	-	2495	7 888	gn1 P1D e325007	[penicillin-binding protein [Bacillus subtilis]	62	7	2208
_	23	23374	124231	gn1 P1D e254993	hypothetical protein (Bacillus subtilis)	62	35	858
9	91	114320	113193	gn1 PID e349614	nifS-like protein (Mycobacterium leprae)	62	37	1128
^		6189	1 72.32	gn1 P1D d101324	Yqhy (Bacillus subtilis)	62	32	-
,	611	15466	114207	gn1 P1D d101804	beta ketoacyl-acyl carrier protein synthase Symechocystis sp.	62	6	1260
, , , ,		•						

S. manufat - Putative coding regions of novel proteins statis

,	- :					_	_	(nt)
_	77	117155	116229	gn1 P10 e323514	putative fabb protein (Bacillus subtilis)	62	9 +	927
- 1	~	19526	118519	gi 1276434	beta-ketoacyl-ACP synthase III (Cuphea wrightii)	79	37	1008
1.2	_	5904	4702	91,1573768	A/G-specific adenine glycosylase (mutY) (Haemophilus influenzael	62	G	1203
12	-	8032	(678	1911591587	pantothenate metabolism flavoprotein [Nethanococcus jannaschil]	62	66	762
2	<u>=</u> _	9678	9328	pir JC1151 JC11	hypothetical 20.3K protein (Insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasaid Ti	62	\$	351
17	-	5097	2442	gi 1591081	H. Jannaschil predicted coding region NJ0374 (Methanocaccus jannaschil)	62	43	168
1.7	~	3053	2835	91 149570	role in the expression of lactacin F, part of the laf operon Lectobacillus sp.	62	3	219
22	0_	8627	9538	gn1 P10 d100580	l on	62	43	912
00		965	2043	91 2314379	[AE000627] ABC transporter, ATP-binding protein [yhcG] [Helicobacter pylori]	62	5	1179
	- 2	1 2235	1 1636	91 413976	ipa-52r gene product (Bacillus subtilis)	62	*	009
3.8	=	6895	6123	gi 148231		62	34	435
0.0	-12	(14272	113328	gn1 PID d101904	hypothetical protein (Symechocystis sp)	62	Q	945
42	-	_	77.	91 1146182	putative [Bacillus subtilis	62	19	309
4	~;	1267	4005	91 1786952	(AE000176) 0877; 100 pct identical to the first 86 residues of the 100 as hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coli)	62	\$	2739
6.9	=	1 9732	9304	91 662920	repressor protein [Enterococcus hirae]	62	7.	429
15	6	5664	1917	gn1 P10 e301153	StySKI methylase (Salmonella enterica)	62	3	1518
\$		1612	1 2099	91 1183886	lintegral membrane protein (Bacillus subtilis)	62	7	(69)
\$\$	911	115702	14704	gn1 PiD e313028	hypothetical protein (Bacillus subtilis)	62	0,	666
53	9	3418	1 3984	gi 2065483	unknown [Lactococcus lactis	62	32	267
63	5	(66)	4809	91 149771	pilin gene inverting protein (PivML) (Moraxella lacunata)	62	28	189
0ر	=	10002	10739	191992977	bplG gene product (Bordetella pertussis)	62	45	138
=	2	06181	20382	91 1280135	coded for by C. elegans cDNA cm2le6; coded for by C. elegans cDNA cm0le2; similar to melibiose carrier protein (thiomethylgalactoside permease 11) {Caenorhabditis elegans}	62	62	1593
7	128	132217	132768	gn1 P10 d101312	YqeG (Bacillus subtills)	62	35	552
	-							

S pneumoniae - Putative coding regions of novel proteins similar to known proteins

97 10	07.69	6096			-		240
		-	igni Projetuzouz	(ABOO1488) FUNCTION UNKNOWN. [Bacillus subtilis]	62	99	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	8906	-	gi 882463	protein-N(pi)-phosphohistidine-sugar phosphotransferase [Escherichia coli]	62	4 5	2028
-	1 2306	1 3268	gn1 P1D d101496	BraE (integral membrane protein) (Pseudomonas aeruginosa)	62	42	963
	1 2823	6151	gn1 P1D e313010	hypothetical protein (Bacillus subtilis)	62	24	717
6 1 601 1	2795	1242	gn1 P1D d102049	H. influenzae hypothetical ABC transporter; P44808 (974) (Bacillus subtilis)	3	Ţ	1554
1 111 2	1 2035	! –	91 581297	Nisp [Lactococcus lactis]	62	7	1428
1 112 4	3154	! —	91 1574379	lic-l operon protein (licA) (Haemophilus influentae)	62	39	927
1 112 6	6669	5649	91 1574381	lic-1 operon protein (licC) (Haemophilus influenzae)	62	19	ווג
. 124		1221	9111573024	anaerobic ribonucleoside-triphosphate reductase (nrdD) (Haemophilus influenzael	62	\$	417
124 6	1 3162	1 2329	gi 609076	leucy aminopeptidase (Lactobacillus delbrueckii)	62	0.0	834
1 126 7	111073		gn1 P1D d101163	ONF4 Bacillus subcilis	62	3.8	3558
621	1 4983	4540	pir 541509 5415	zinc finger protein EF6 - Chilo iridescent virus	62	9	770
1 181 1	1 4510	1 4103	gi 1857245	unknown Lactococcus lactis	62	42	408
149 2	1 1923	6725	91 1592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)	62	-	657
1 149 7	1 5360	\$509	gn1 P10 e323508	YloS protein (Bacillus subtilis)	62	0,0	969
1 1 951 1	1 450	238	gn1 P1D e254644	membrane protein (Streptococcus pneumoniae)	62	0.0	213
9 951	9098	2835	gn1 P1D d102050	transmembrane (Bacillus subtilis)	62	37	672
1 171 2	6771	1 2291	191143941	Ellf-B Sor PTS (Klebsiella pneumonlae)	62	35	\$13
5 241	1 385	1.23	91 895750	putative cellobiose phosphotransfersse enzyme III (Bacillus subtilis)	62	39	939
-	3 2599	689	19111591732	cobalt transport ATP-binding protein O (Mathanococcus jannaschiil)	1 62	42	1707
67.1	2 492	1754	:	H. influenzae predicted coding region HI1018 (Haemophilus influenzae)	62	38	1263
: -	6 2856	1 3707	gi 1777435	Lact (Lactobacillus casei)	62	7.7	852
1 185 2	2 2074		u 2182397	(AEOOOO73) Y4fN (Rhizoblum sp. NGR234)	62 .1	-	1764
2000 2	2 1061	1984	911450566	Iransmembrane protein (Bacillus subtilis)	62	37	924
1 202	3 2583	£748 1	91 42219	P35 gene product (AA 1 - 314) (Escherichia coli)	9	- 10	168
012	1 1374	1 1565	91169115	ORF1 gene product (Bacillus subtilis)	62	\$	192

S. pneumoniae - Putative coding regions of novel proteins slailar to known proteins

222 2 7455 1024 991 1910 400 1910 400 1910 400 4	Contig	108.F	Start (nt)	Stop	match	match gene name	8	1 ident	length (nt)
1 14 999 gil/100613 gil/100623 g	211		7	176	gi 147402	mannose permease subunit 111-Man (Escherichia coll)	62	.	696
1 14 99 91 100063 91 100063 91 100063 91 100063 91 91 100063 91 91 100063 91 91 100063 91 91 100063 91 91 100063 91	1 223	~	1495	1034	gn1 P1D d101190	ORF2 (Streptococcus mutans)	62	17	462
1 1 139 917 917297359 (AF008120) Ytgq [Bacillus subtilis] 1 1 139 911167211 (AF00000521 Pycoplasas pneumoniae, hypothetical protein homology protein [14] 139 91167211 (AF00000521 Pycoplasas pneumoniae, hypothetical protein homology protein [15] 1359 911573133 Outer membrane integrity protein [16] (Haecophilus influenzae) 1 13 1325 911573133 Outer membrane integrity protein [16] (Haecophilus influenzae) 1 13 1325 9115114425 (Sisaliar to Synachocystis sp. hypothetical protein, encoded by GA Accession Number D64006 [Bacillus subtilis] 1 13 1325 9117114425 (Sisaliar to Synachocystis sp. hypothetical protein, encoded by GA Accession Number D64006 [Bacillus subtilis] 1 1 1 1 1 1 1 1 1	228	 	7	606	191/530063	uptake facilitator (Streptocuccus	62	-	928
1 1 159 1918	234	~	90	616	19112293259	(AF008220) YCQ1 (Bacillus subtilis)	62	36	828
1 1 159 9 1672711 1600000527 Mycopissas preumoniae, hypothetical protein homological subtilies (Wcopissas Procession Number P25155, from 8, subtilies (Mycopissas Procession Number P25155, from 8, subtilies (Mycopissas) 18650 19269 91 1606 19269 91 1606 19269 91 1606 19269 91 1606 19269 91 19269	282	S .	1765	1487	gn1 PID e276475	galactokinase (Arabidopsis thaliana)	62	33	1 675
5 584 137 91 1573333 Outer membrane integrity protein (Col.) [Haemophilis] 19 18850 19269 91 606162 ORF_£6239 Escherichia coli] 10 1225 1225 91 2114423 Similar to Symechocystia sp. hypothetical protein, 10 1026 1034 91 149569 Hactacin F (Lactobacillus subtilis) 11 80.88 7234 91 PID 41010329 YqjH (Bacillus subtilis) 12 1356 6565 8p P4516 POTC_ SPERHIDINE/PUTRESCINE TRANSPORT SYSTEM PERMEASE PROTECTION 10 10 10 10 10 10 10	37.5			159	91 1674231	Mycoplasma pneumoniae, hypothetical protein homolog; t Accession Number P15155, from B. subtills (Mycoplasme)	62	0	159
19 18550 19269 914606162 ORF_1729 Escherichia colij 4 2725 3225 9142114425	1 385	\$	584	157	19111573353	outer membrane integrity protein (tolA) [Haemophilus influenzae]	62	1 4	228
4 2725 3225 91 2114425 Similar to Synechocystis sp. hypothetical procein, 4 2726 1326 3034 91 149369 1accacin F (Lactobacillus subtilis) 4061 4957 9n PID d101039 YqH (Bacillus subtilis) 1 4061 4957 9n PID d101139 YqH (Bacillus subtilis) 1 1 1 1 1 1 1 1 1	_	٠ :		69261	191 606162	ORF_(129 Escherichia coll)	61	7	120
6 1326 1004 91 149569		4	2725	3225	91 211 4425	Synechocystis sp. hypothetical protein, Number D64006 [Bacillus subtilis]	19	42	501
1 4061 4957 gan PPD di010108 xylose repressor Synechocystis sp. 1 8188 7214 gan PPD di010129 YqjH Bacillus subtilis 6 1974 6037 gan PPD di010116 YqfK Bacillus subtilis 5 7156 6565 sp P45169 POTC_ SPERHIDINE/PUTRESCINE TRANSPORT SYSTEM FEMHEASE PROTEIN 1 3 692 gi 537108 ONF_2754 Escherichia coli 1 3 692 gi 537108 ONF_2754 Escherichia coli 1 3 692 gi 537108 ONF_2754 Escherichia coli 1 3 692 gi 53700 ONF_2754 Escherichia coli 1 3 692 gi 53708 ONF_2754 Escherichia coli 2 711 12311 11361 gi 178968 ONF_2784 O	-	9	3326	3054	91 149569		19	•	273
11 8188 7234	*		4061	4957	gn1 P10 d101068	xylose repressor Synechocystis sp.	19	38	1 168
6 1974 6037 qni PiD di01316 YqfK (Bacillus subtilis)	24	=	8388	1234	gn1 P10 d101329	YqjH (Bacillus subtilis	19	42	1155
5 7156 6565 sp P45169 POTC_ SPERMIDINE/PUTRESCINE TRANSPORT SYSTEM PERMEASE PROTEIN 1 3 692 gi 537108 ORF_6254 Escherichia coli 15 10737 12008 gi 952976 bplF gene product Bordetella pertussis 11 9759 10202 gn1 P1D d101833 carboxymorspermidine decarboxylase Synechocystis sp. 18 7881 7003 gn1 P1D d101833 carboxymorspermidine decarboxylase Synechocystis sp. 18 7881 7003 gn1 P1D d101833 carboxymorspermidine decarboxylase Synechocystis sp. 18 7881 7003 gn1 P1D d101833 carboxymorspermidine decarboxylase Synechocystis sp. 19 12311 11361 gi 528993 unknown Bacillus subtilis 10 12311 11361 gi 737080 ribonucleoside triphosphate reductase Escherichia coli 10 12311 13499 gn1 P1D d101851 hypothetical protein (Synechocystis sp. 10 1288 6478 g1 895747 putative cel operon regulator Bacillus subtilis 10 1281 8318 gi 1209527 protein histidine kinase Enterococcus faecalis	52	9	1974	(6037	qn1 P10 d101316		61:	42	2064
1 3 692 91 537108 ORF_C254 Escherichia coli]	5.8		356	6565	sp P45169 POTC_		19	76	192
9 8816 7890 gi 19501 [pPL212 gene product (AA 1-184) [Lupinus polyphyllus] 15 10737 12008 gi 292976 [bplF gene product Bordetella pertussis 11 9759 10202 gnl PID d101833	63			692	gi 537108	ORF_£254 [Escherichia coli]	19	97	1 069
15 10737 12008 91 992976	99	6	8816	7890	191 19501	gene product (AA 1-184) (Lupinus	61	7	927
11 9759 10202 gnl PID d101833 carboxymorspermidine decarboxylase (Synechocystis sp.	0, 1	112	76,01	112008	91 992976	gene product [Bordetella	19	7	1272
8 7881 7003 gailPID d100305 farnesyl diphosphate synthase [Bacillus stearothermophilu	22	=	:	110202			19	36	777
4 4914 1697 gi 528991	9/	80	1887	7003	gn1 e10 d100305	diphosphate synthase (Bacillus	19	1 65	879
	68	-	4914	1 3697	[91[528991	unknown (Bacillus subtilis)	19	42	1218
2 711 2989 gi 517080	69	=		111361	[91]1789683	(AE000407) methionyl-tRNA tormyltransferase [Escherichia coli]	19	;	951
3 2711 3499 gn1 P1D d101851 hypothetical 6 7968 6478 g1 895747 putative cel 8 7181 8518 g1 1209527 protein histi	91	~	ונג	2989	1911537080		61	45	2259
6 7968 6478 91 895747 putative cel	501		11112	3499	gn1 P1D d101851	Inypothetical protein (Synechocystis sp.	19	7	1 687
8 7181 8518 191 1209527	1115		1968	6478	91 895747		61	36	1 1691
ジョーの 日本の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日の日	123	8 .	1914	8518	gi 1209527	protein histidine kinase (Enterococcus faecalis)	19	0	1338

neumoniae - Putative coding regions of novel proteins similar to known pro

Cont ig 1D	OKF 110	Start (nt)	Stop (nt)	match	match gene name	e is	1 ident	length (nt)
971	9	7525	6725	91 1787043	(AE000184) {271; This 271 as orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 as protein YIDA_ECOLI SW: P09997 (Escherichia coli)	61	98	801
128	-	-	639		YqiY (Bacillus subtilis)	19	7	619
671		4384	5054	91 11022726	unknown (Staphylococcus haemolyticus)	19	Ş	1 261
139	6	112632	5913	gn1 P1D e270014	beta-galactosidase Thermoanaerobacter ethanolicus	19	7	6720
=	: - : -	2552	- 5	 9i 520541	penicillin-binding proteins 1A and 1B (Bacillus subtilis)	19	42	1152
148	9=	112125	111424	gi 1552743	tetrahydrodipicolinate N-succinyltransferase Escherichia coli	61	42	00،
791	-	4112	1 3456		phosphoglycolate phosphatase (Symechocystis sp.)	19	90	657
7.7			1077	gn1 P10 d102048	B. subtilis, callobiose phosphotransferase system, celA; P16318 (220)	19	÷	151
13	-	1101	1 1772		unknown Bacillus subtilis	19	Q	672
202	~	1 1278	1 2585	9111045831	hypothetical protein (GB:L18965_6) [Mycoplasma genitalium]	19	36	1308
224	-	1 2782	3 1 1 1 1 1 1 1 1 1 1	gi 1591144	H. jannaschil predicted coding region MJ0440 [Hethanococcus jannaschii]	19	00	163
225	-	395	1 3766	9111552774	hypothetical [Eschetichia coli]	19	0	372
249	- 5	717	805	91 1000453	TreR (Bacillus subtilis)	19	42	165
254	~	843	907	gn1 P1D d100417	ORF120 Escherichia coli	19	36	360
257	<u>-</u>		1 350	[gn1 P10 e255315	unknown Mycobacterium tuberculosis	19	42	348
293		11.68	1 3657	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence [S1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	79	Ş	315
101	-	949	= -	91 229 209	(AFO16424) contains similarity to acyltransferases (Caenorhabditis elegans)	19	33	933
17.	-	9901	1 287	911393396	ypanosom	61	80	780
	124	124473	24955	1911537093	ORF_0153b Escherichia coli	09	27	483
9	- 2	1 4636	65.73	91/2293258	[AF008220] Ytol [Bacillus subtilis]	0.9	35	1104
9	112	11936	111187	91 293017	ORF3 (put.); putative [Lactococcus lactis]	09	44	750
1.7	=	6708	1879	91 149569	lactacin F Lactobacillus sp.	09	32	225
1.8		6977	\$670	91 1788140	(AE000278) o481; This 481 so of 1s 35 pct identical (19 gaps) to 309 residues of an approx. 856 so protein NOLL_HUHAN SW: P46087 (Escherichia coli)	09	÷	1308
20	115	115878	117167	gn1 P10 d100584	unknown (Bacillus subtilis)	09	*	1290
:								

FABLE 2

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	108F	Start (nt)	Stop	match acession,	match gane name	e is	• ident	length (nt)
22	= =	-	1 200	gn1 P10 d102050	transmembrane (Bacillus subtilis)	09	36	243
1 32	02	9628	8964	91 2293275	(AF008220) YtaG (Bacillus subtills)	0.9	1,70	699
86 -	51	1 8837	1 9697	- <u>-</u>	B. subtilis genes rpmH, rnpA, Sakd, gidA and gidB (Bacillus subtills)	0,9	35	861
÷	9	8610	5944	91111187	protein kinase 1 (Saccharamyces cerevistae)	0.9	36	2667
-	-	-	1269		unknown (Schizosaccharomyces pombe)	09	*	1269
45	:	111138	110368	397488	1, 4-alpha-glucan branching enzyme (Bacillus subtilis)	09	3	171
\$	6_	99/51	114378	gn1 P1D e205173	orf! (Lactobacillus helvericus)	09	19	1389
£	121	116727	116921		[AB002668] unnamed protein product [Haemophilus actinomycetemcomitans]	0,9	32	1 525
05	-	~ 1	868	gn1 P1D e246537	OKF286 protein (Pseudomonas stutzeri)	09	7	1 168
62	- 7	618	(711)		unknown (Bacillus subtilis)	09	42	1 015
89 -	-	1 3590	1 5203	[91]1573583	H. influentae predicted coding region H10594 (Haemophilus influentae)	09	36	1614
0,	==	5781	6182	gn1 P10 d102014	(ABGO1488) SIMILAR TO YDFR GENE PRODUCT OF THIS ENTRY (YDFR_BACSU).	09	£	402
0,0	112	6343	8133	gn1 PID e324970	hypothetical protein (Bacillus subtills)	09	38	1 1911
12		107111	114157	1911580866	lipa-12d gene product (Bacillus subtilis)	09	33	2457
74		112509	111664	gn1 P10 d101832	phosphatidate cytidylyltransferase (Synechocystis sp.)	09	45	946
76		4116	1367	91 2352096	orf; similar to serine/threonine protein phosphatase (Fervidobacterfum islandicum)	09	65	750
80		1332	7665	911786420	(AEOOO1311 f86; 100 pcc identical to GB: ECODINJ_6 ACCESSION: D38582 [Escherichia col1]	0.9	00	294
	9	4073	4522	91 147402	mannose permease subunit III-Man (Escherichia coli)	09	35	450
98	-	076	1 155	911143177	putative Bacillus subtilis	09	26	186
1 92	-	-	192	gi 396348	homoserine transsuccinylase (Eschetichia coli)	0,9	45	192
2	<u>-</u>	61901	9384	911788389	[AE000297] 0464; This 464 aa orf is 33 pct identical (9 gaps) to 331 residues of an approx. 416 aa protein MTRC_NEIGO SW: P43505 (Escherichia colij	09	27	1236
- 36	- 2	5548	18121	gn1 P1D e329895	(AJ000496) cyclic nucleotide-gated channel beta subunit [Rattus norvegicus]	0,9	05	2574
1 97	~	9615	1 4533	911591396	transketolase' (Methanococcus jannaschii)	09	3	864
1 102	~	2081	, ,	gn P1D e32092	9 hypothetical protein (Mycobacterium tuberculosis)	09	63	157

S. pneumoniae - Putative coding regions of novel proteins with lar to known proteins

Cont ig	08F	Start (nt)	Stop (nt)	match	match gene name	e is	• ident	length (nt)
106	6	(1,776	9183	gn1 P1D e334782	VIbN protein (Bacillus subtilis)	09	31	591
113		1 6361	6837	91 466875	nifu; B1496_C1_157 (Mycobacterium leprae)	09	\$	477
115	~ -	1 2755	1 524	gn1 PID e328143	[AJ0001)2; Glucosidase II (Homo saplens)	09	32	2232
122	1 7	4763	1 5068		transposase Synechocystis sp.	09	39	306
127	80	4510	5283	gi 1777938	Pgm (Treponema pallidum)	09	38	174
138	: -	3082	1 2672	gn1 PtD e325196	hypothetical protein [Bacillus subtilis]	09	36	411
139	-	1177	-	gn1 P10 d100680	ORF (Thermus thermophilus)	09	39	174
66.1	==	114520	113009	91/537145	ORF_[437 Escherichia coll]	9	30	1512
0+1	~	2882	1249	91 1209527	protein histidine kinase (Enterococcus taecalis)	09	37	1344
141	-	1 210	1 1049	91 463181	ES ORF from bp 1842 to 4081; putative [Human papillomavirus type 33]	09	34	840
141	\$ -	5368	6405	91 145362	tyrosine-sensitive DAHP synthase (arof) (Escherichia coli)	09	=	8601
142		1358	1 4049	gi 600711	(putative (Bacillus subtilis)	09	رر	492
148	01	1742	1 8713	gn1 P10 e313022	hypothetical protein (Bacillus subtills)	09	2.7	972
153	5	1 3667	4278	di 2293322	(AF008220) branch-chain amino acid transporter [Bacillus subtilis]	09	42	612
155	: -	1413	748	Ai 2104504	putative UDP-glucose dehydrogenase (Escherichia coli)	09	0.	999
158	-	3116	1 2472	gn1 P10 d100872	a negative regulator of pho regulon (Pseudomonas aeruginosa)	09	37	645
159		238	1386	gn1 Pt0 e308090	product highly similar to Bacillus anthracis CapA protein (Bacillus) subtilis)	09	9	609
163		8049	H468	[gal Plu dlol313	[Yqen [Bacillus subtilis]	09	38	0450
170		1 4130	2688	01/1574179	influentee predicted coding region HI1244 (Haemophilus influentae)	09	39	1043
121	-	1 4717	1065	191 606076	ORF_0384 [Escherichia coli]	09	7	1185
183		2440	1 2135	91 1877427	repressor Streptococcus pyogenes phage T12	09	38	306
161	91	9444	8428	191 415664	catabolite control protein (Bacillus megaterium)	09	45	1017
200	-	1 139	1083	91 438462	transmembrane protein [Bacillus subtills]	09	1,	945
201		1 3895	1 1928	91 475112	enzyme Habo (Pediococcus pentosaceus)	09	39	1968
214	115	016011	110439	bi 1573407	(hypothetical (Haemophilus influentae)	09	99	492
218	-	2145	1 2363	191 608520	(myosin heavy chain kinase A (Dictyostelium discoideum)	09	11	219
						1 1 1 1 1 1 1		1,11,11

S. pneumoniae - Putative coding regions of novel proteins statilar to known proteins

Cont ig	ORF	Start	Stop	acession	match gene name			(ut)
336	1 -	2518	-	01 (437705	hyaluronidase (Streptococcus pneumoniae)	09	5.1	168
		326		oi [43938	Sor regulator (Klebslelia pneumoniae)	09	3	123
			288	di 1304897	EcoE type I restriction modification entyme M subunit (Escherichia coli)	09	95	288
		506	45	loi1671632	unknown (Staphylococcus aureus)	09	36	198
16.1			80	1011151794	rga (Streptococcus gordonii)	09	32	888
		1492	1662			09	7 7 7	171
224			96	9111592173		09	0,	141
308		463	2	91 1787397	AE000214 0157 [Escherichia coli]	09	(3)	462
318			308	gn1 P1D e137594	xerC recombinase (Lectobecillus leichmannii)	09	42	306
**		2	522	gi 509672	repressor protein (Bacteriophage Tuc2009)	09	32	450
<u>د</u>		576	-	91 2293147	(AF008220) YtxM (Bacillus subtilis)	65	31	573
. ~	122	19140	117142	gn1 P1D e280724	unknown (Hycobacterium tuberculosis)	65	39	666
01		100	-	91 1353880	sialidase L (Macrobdella decoral	65	4	1410
15	. ;	6463	5156	91 580841	(F) (Bacillus subtilis)	65	35	1308
22		679	1393	91 142469	als operom regulatory protein (Bacillus subtilis)	65	34	918
22		2698	4614	gn1 P1D e280623	PCPA Streptococcus pneumonlae	88		7161
9	. . -	208	558	gn1 P1D e233868	gn1 PtD e233868 hypothetical protein (Bacillus subtills)	65	37	151
0.2	-		2455		unknown Lactobacillus sake	65		1224
	=======================================	112201	11011	gn1 P1D e238664	hypothetical protein (Bacillus subtilis)	65	35	1131
35	=	113288	112182	91 1657647	Cap8H Staphylococcus aureus	- 59	39	1107
95	=======================================	118076	117897	19111500535	H. jannaschii predicted coding region NJ1635 (Methanococcus Jannaschii)	65	33	180
=======================================	- 2	1 6172	7117	gi 2293239	(AFO08220) Yexk (Bacillus subtilis)	65	76	996
7		1 1952	1361	gi 1684845	pinin (Canis familiaris)	88	0	1410
50	-	1 2678	1728	gn1 P10 d101329	rqjk [Bacil Ms subtilis]	89	+	951
5.6	5	1 1870	1 2388		xerC recombinese [Lactobacillus leichmannii]	59	=	519
		6812	1 5620	gn1 P1D e311516	aminotransferase (Bacillus subtilis)	65	0.	1185
	:		•				· *	

S pineumoniae - Putative coding regions of novel proteins similar to known proteins

•						•		
Contig	CR C	Start (nt)	Stop	match	match gene name	E	ident	length (nt)
69	01	1 8567	6688	fgi 1573628	antothenate kinase (coak) (Haemophilus influenzae)	65	38) (((
1 87	112	111383	110055	gn1 PID e323504	(putative Fmu protein (Bacillus subtilis)	59	*	1329
=		113927	15894	91(1673733	(AE000010) Mycoplasma pneumoniae, tructose-permease IIBC component; similar to Swiss-Prot Accession Number P2U966, from E. coli (Mycoplasma pneumoniae)	65	3	1968
115		9928	8521	[91]1590886	H. jannaschii predicted coding region MJ0110 (Methanococcus jannaschii)	59	38	246
611		1966	1526	gn1 PI0 e209005	d S.typhimur	59	3	
128	- [1]	113438	13178	gn1 PrD e279632	unknown Mycobacterium tuberculosis	59) BE	261
140	- 55	123903	23388	91 482922	protein with homology to pail repressor of B. subtilis (Lactobacillus delbrueckli)	65	0	516
	: <u>2</u> _	1 9697	9014	gn1 P10 d102005	(ABOO1488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN H. INFLUENZAE AND SYNECHOCYSTIS. (Bacillus subtilis)	65	32	684
149	01	(127)	8244	gi 710422	[cmp-binding-factor 1 (Staphylococcus aureus)	- 65	0.7	1032
164		6693	6003		ferric anguibactin-binding protein precusor FatB of V. anguillarum [Bacillus subtilis]	65	- -	186
164	==	8836	1 7823	gn1 P10 d100964	homologue of ferric anguibactin transport system permerase protein fatC of V. anguillarum (Bacillus subtilis)	65	35	1014
		401	1072	91 289759	coded for by C. elegans CDNA CE2G3 (GenBank:214728); putative Caemorhabditis elegans	65	0,	672
133	_	1 3841	4200	91 (2313445	(AE000551) H pylori predicted coding region HP0342 (Helicobacter pylori)	- 65	38	1 091
181	-	1 2768	H057	191 509672	repressor protein (Bacteriophage Tuc2009)	59	05	261
981		3398	2820	91 606080	ONF_0290; Geneplot suggests frameshift linking to 0267, not found (Escherichia coll)	59	8	579
061	_	1 3120	11.	91 1613768	histidine protein kinase (Streptococcus pheumoniae)	65	32	1410
194	~	1 1621	6101		unknown (Bacillus subtilis)	65	0,	603
861 -	-	\$200	1 4306	gn1 P10 e313073	hypothetical protein (Bacillus subtilis)	65	38	006
7.20	- 2	4362	1 3958	gn1 P10 d101322	YqhL (Bacillus subtilis	65	99	405
242		151	1 2367	9111787045	IAE000184) (1908; This 108 as orf is 15 pct identical (15 gaps) to 105 residues of an approx. 296 as protein PFLC_ECOLI SW: P12675 (Escherichia coll)	55	45	795
247	2	1154	1480	[91 40073	ORF107 (Bacillus subtills)	65	39	327
								•

S. pneumoniae - Putative coding regions of novel proteins stails to known proteins

Contig	ORF	Stait	Stop (nt)	match	match gene name	e is	Ident	length (nt)
952		898	~	gn1 PID d101924	hemolysin [Synechocystis sp.]	89	39	867
258	-	9	820	91 2246532	ORF 1), contains large complex repeat CR 73 (Kaposi's sarcoma-associated herpesvirus)	65	50	756
01.5	-	1 386	1126	gn1 P1D d102092	YfnB (Bacillus subtilis)	59	0	741
1 281	<u>-</u>	552	166	91 666062	putative Lactococcus lactis	88	1 10	187
109	-	-	6.7	gi 405879	yeth (Escherichia coli)	65	36	11.
1 363	-		1894	gi 915208	yastric mucin (Sus scrota)	65	110	1693
787	7	1 425	*	1911160671	S antigen precursor (Plasmodium falciparum)	59	4	342
~	9	111223	110465	gn1 P10 d101812	LumQ (Synechocystis sp.)	88	29	159
62	-	1 2098	13513		Na+ -ATPase subunit J (Enterococcus hirae)	58	1 60	1416
000	<u>.</u> -	1 4058	1891	qi 39478	ATP binding protein of transport Affases (Bacillus firmus)	88	Ť	408
-	. •	2983	1 2210	gal PID d101164	unknown (Bacillus subtillis)	98	45	174
96		5316	6119	9111518679	orf Bacillus subtilis	58) 20	864
\$	<u>~</u>	5926	1 1971	19111788150	(AE000278) protease II (Escherichia coli)	88	ונו	1956
9.	_	13304	1 5221	gn1 P1D e267329	Unknown (Bacillus subtilis)	88	42	1518
	=	111722	99011	gn1 e10 d101771	thiamin biosynthetic bifunctional enzyme (Synechocystis sp.)	99	34	657
~	<u>-</u>	6221	_	gn1 P1D d101291	reductase (Pseudomonas aeruginosa)	88	35	1227
1 53	~	707	1 412	19112313357	(AEGOUSAS) cytochrome c biogenesis protein (ccdA) (Helicobacter pylori)	88	25	291
1 58	-	9859	5498	191 147329	(transport protein (Escherichia coli)	58	1	1089
69	: -	4934	1 3807	gn1 P1D e311492	unknown (Bacillus subtilis)	5.8	1.0	1128
=	(2)	(31357	וונגנו	91 2408014	hypothetical protein (Schizosaccharomyces pombe)	58	£	921
~	-	1 3586	1 2882	91 18694	nodulin-21 (AA 1-201; [Glycine mex]	28	34	205
7	_	(169	1 4230	19112293252	(AF008220) YtmO Bacillus subtills	88	33	708
66	-	4594	1 1422	gi 1217989	ORF3 Streptococcus pneumoniae	88	7	1173
- 82	20	10585	1619	91 882711	exonuclease V alpha-subunit [Escherichia coli]	88	38	2415
98	=	116017	115337	91 47642	5-dehydroquinate hydrolyase (3-dehydroquinase) (Salmonella typhi)	8.5	32	681
97	7	166	098	gi 153794	rgg Streptococcus gordonil	88	32	372

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

120	2		:					
111		200	17/7	91 537020	vacB gene product (Escherichia coll)	58	1 71	2367
120	-	4593	5240	19111592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschiil)	- 82	36	648
•	-	4421	\$110		Yqgx (Bacillus subtilis)	28	- 4	069
	91	10101	112673	 gi 662919	ONF U (Enterococcus hirae)	58	42	459
132	-	6174	4939	19111800301	macrolide-efflux determinant (Streptocuccus pneumoniae)	5.8	35	1236
	-	===	890	gnt pro e269488	Unknown (Bacillus subtilis)	88	36	780
091	=	8615	9865	1911473901	ORFI (Lactococcus lactis)	58	1 61	1251
191	- 9	6268	6849		D-1 protein (Homo sapiens)	5.8	32	582
691	-	214	7	t++001pla1d tub	translation elongation factor-) [Chlorella virus]	5.8	11	213
1 187	-	487		91 475114	regulatory protein (Pediococcus pentosaceus)	58	38	486
167	9	4384	4620		desalcation-related protein (Craterostigma plantagineum)	58	55	237
190	~	1464	1640	gn1 PID e246727	competence pheromone Streptococcus gordonil	5.8	38	177
1 192	~	2012	1344	1gn1 P10 d100556	rat GCP360 (Rattus rattus)	58	*	699
206	-	1292	969	gnt P1D e202579	product similar to WrbA [Lactobacillus sake]	5.8	35	597
216	~	2333	555	gn1 P10 e325036	hypothetical protein [Bacillus subtills]	5.8	33	6661
217	·	5250	4321	gi 466474	cellobiose phosphotransferase enzyme II' Bacillus stearothermophilus	88	38	930
213	-	\$636	9015	gn1 P10 d102048	B. subtilis cellobiose phosphotransferase system celB; P46117 (998) transmembrane (Bacillus subtilis)	58	*	168
7 7 7 7		~	1118	19111573777	cell division ATP-binding protein (fiss) (Haemophilus influenzae)	58	66	B10
264		2	217	1911971330	Nata Bacillus subfills	58	32	214
280		33	191	91 1786187	(AE000111) hypothetical 29.6 kD protein in thrC-talB intergenic region (Escherichia colii	89	- I	735
306	=	845		gn1 PID e334780	YibL protein (Bacillus subtilis!	58	47	843
1 360		1556	1 1092	sp P46351 YZGD_	HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I 5'REGION	58	32	465
1 163	5	2160	1 1867	1911160671	S antigen precusor (Plasmodium falciparum)	5.8	15	294
1 372	-	909		191 393394	[Tb-29] membrane associated protein [Trypanosoma bruce: subgroup]	5.8	, v	904
382	. ~	749	615	pir June 151 June	hypothetical 20.3K protein (insertion sequence (S1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	88	7	231

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF ID	Start	Stop	match	match gene name	s in	I ident	length (nt)
	6	8409	1747	91 1499745	H. jannaschii predicted coding region NJ0912 (Methanococcus jannaschii)	52	38	939
01	01	7674	1.507	91/11/11/169	homologue to SKP1 Arabidopsis thallana	57	30	168
=	-	~	412		ORF (Acetobacter pasteurianus)	5.	42	11
	-	2032	1388	191 2293213	(AF008220) YtpR (Bacillus subtills)	57	1 (1	645
~	=	1 6931	6449	gn1 P1D e324949	hypothetical protein [Bacillus subtilis]	57	36	483
\$	- 2	5446	0905	gi 1592204	phosphoserine phosphatase (Methanococcus jannaschii)	57	7	367
6+		6523	1632	91,1155369	PTS enzyme-11 fructose (Nanthomonas campestris)	٦,	35	0111
52	9	4,520	6850	91 1574144	single-stranded-DNA-specific exonuclease (rec3) (Maemophilus influenzae)	52	35	2331
53	- 2	2079	1795	91 1843580	replicase-associated polyprotein (oat blue dwarf virus)	۲۶	97	285
	<u>-</u>	5112	1 4995	91 2182608	[AE000094] Y4rJ [Rhizobium sp. NGA234]	52	39	318
2.2	115	113883	13059	gn1 P10 d100892	homologous to SwissProt: YIDA ECOLI hyputhetical protein Bacillus subtilis	57	0+	828
62		2561	1815		homologue of NADPH-flavin oxidoreductase Frp of V. harveyi (Bacillus subtilis	5.7	4	1.16
82	6	9656	9763	91 1206045	short region of similarity to glycarophosphoryl diester phosphodiesterases [Caenorhabditis elegans]	57	35	891
98	91	115371	14493	91 1787983	(AE000264) o288; 92 pct identical (1 gaps) to 222 residues of fragment YDI8_ECOLI SW: P28244 (223 aa) Escherichia coli)	5.3	*	879
93	_	1 1695	((11)	191 1500003	mutator mut? protein (Hethanococcus jannaschii)	52	e.	519
96	9 -	3026	1 4519	91/559882	threonine synthase (Arabidopsis thaliana)	52	5	1494
66	=	112711	118212	91 773349	BirA protein (Bacillus subtilis)	52	=	1002
112		7448	1 7903	19111591393	 Jannaschii predicted coding region MJ0678 (Methanococcus jannaschii) 	53	30	456
=	91	18627	18328	pir a45605 a456	mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium falciparum	57	52	300
123	~	3	0111	pir F64149 F641	hypothetical protein H10355 - Haemophilus influenzae (strain Rd KW20)	57	38	768
123	-	8012	1 2884	gn1 P1D d102148	(AB001684) suifate transport system permease protein (Chlorella vulgaris)	57	39	ררר
127	0.	6477	1 5587	191 157 3082	nitrogenase C (nifC) (Maemophilus influenzae)	57	35	168
128	2	9251	9790	91 153692	pneumolysin (Streptococcus pneumonise)	57	38	540
121	-	1 2139	1363	191 42081	negD gene product (AA 1-250) (Escherichia colil	52	36	111
	:							

S pneumoniae - Putative coding regions of novel proteins similar to known proteins

Concig	CRF 110	Start	Stop (nt)	match	match gene name	eis	, ident	Jength (nt)
136	-	214	1221	bbs 148453	Spak-endocarditis immunodominant antigen Streptococcus sobrinus, MUCOB 263, Peptide, 1566 aaj (Streptococcus sobrinus)	52	4	1008
0 0	25	128701	126851	91 505576	beta-glucoside permease (Bacillus subtilis)	62	38	1851
=	9	6195	7438	1911995560	unknown Schizosaccharomyces pombe	57	41	1044
=	_	3231	2785		ORF (Acetobacter pasteurianus)	57	42	447
155	-	5454	4564	191 600431	glycosyl transerase (Erwinia amylovora)	57	*	891
159	6	(487)	5854	gi 290509	o307 Escherichia coli	57	35	978
167	=	9710	6826		ORF Acetobacter pasteurianus	23	42	462
171	9	4023	4436	gi 147402	mannose permease subunit III-Man (Escherichia coli)	5.	39	414
178	-	0612	9.01	gn1 PtD d102004	[ABGO1488] ATP-DEPENDENT RNA HELICASE DEAD HOMOLOG. [Bacillus subtilis]	65	39	1 5601
061	_	145	1455	91 149420	export/processing protein [Lactococcus lactis]	57	30	1311
198	<u>-</u>	1 298	86	91/522268	unidentified ORF22 Bacteriophage b1167	75	36	204
1 203	~	3195	5110	gn1 P1D e283915	orf c01003 (Sulfolobus solfataricus)	1 6	41	1086
205	-	0	507	91 11439527	EIIA-man [Lactobacillus curvatus]	rs	2.8	468
717		4243	1971	9n1 PID d1 02 04 9	 H. influenzae, ribosomal protein alanine acetyltransferase; P44105 (189) (Bacillus subtilis) 	57	· · · · · · · · · · · · · · · · ·	44
268		1767	1276	gi 43979	L.curvatus small cryptic plasmid gene for rep protein (Lactobacillus)	57	36	492
151	-	324	¥.	gn1 Pip e275871	TOJF6.b Caenorhabditis elegans	5.7	31	291
386	-	226	7	1911160671	S antigen precursor (Plasmodium (alciparum)	57	£\$	225
\$	- 2	10486	((18)	1911405857	yehU (Escherichia coli)	95		0161
6	~	3674	3910	191 467199	pksC; L518_F1_2 (Mycobacterium leprae)	96	39	137
01	_	3442	1874	gn1 P1D d101907	sodium-coupled permease (Synechocystis sp.)	95	36	1 6951
1 2 1	<u>-</u>	1880	133	91 2313949	(AE000593) osmoprotection protein (prowx) (Helicobacter pylori)	95	2	1548
~	139	21968	22456	gnt PID d102001	(ABGO1488) PROBABLE ACETYLTRANSFERASE. (Bacillus subtilis)	96	17	489
~	-	1361	_	91 215132	ea59 (525) (Bacteriophage lambda	95	30	1359
28	_	1667	4278	91/1592090	DNA repair protein RAD2 (Hethanococcus jannaschii)	95	29	390
~	-	,	386	gn1 PrD d100139	ORF (Acetobacter pasteurianus)	56	7	384

S pneumoniae - Putative coding regions of novel proteins Similar to known proteins

Contig	9	- J	(ut)	acession	-			(nt)
9.6	~ ;	5122	5357	pir P00053 P000	hypothetical protein (proC 3' region) - Pseudomonas aeruginosa (strain PAO) (fragment)	95	28	276
O P	-	(1137	4318	[91 1800301	macrolide-efflux determinant Streptococcus pneumoniae	95	72	1182
0	91	112511	13191	gn1 P10 e217602	PlnU (Lactobacillus plantarum)	95	38	189
ec :	12	113775	113023	91 143729	(transcription activator (Bacillus subtilis)	95	35	181
25	-	1674	2594	gn1 P10 d102036	membrane protein (Bacillus stearothermophilus)	95	25	921
98	-	1842	1459	1001 P10 D100139	ORF (Acetobacter pasteurianus)	95	10	384
68	~	1 5815	0164	191 853777	product similar to E coli PRFA2 protein (Bacillus subtilis)	95	42	978
10\$	~ -	1360	2718	gn1 P1D d101913	hypothetical protein (Symechocystis sp.)	95		1359
711	- ;	12121	1 3194	191 537201	ORF_0145 [Escherichia coli]	95		1044
=	- :	1 2754	1 2963	gn1 P10 d100140	ORF (Plum pox virus)	95	2.8	210
122	<u> </u>	1203	2054	9111649035	high-affinity periplasmic glutamine binding protein (Salmonella typhiamrium)	95	30	852
124	œ ;	1939	1 3694	gnt P1D e248893	Unknown (Mycobacterium tuberculosis)	95	22	246
125	-	1403	1 4107	gn1 P1D d100247	human non-muscle myosin heavy chain (Homo sapiens)	95	32	767
127	Ξ·.	6608	6405	191 2182391	[IAE000073] Y4fN [Rhizobium sp. NGR234]	95	35	204
134	· ~ :	4769	1 3849	gn1 Pr0 J101870	hypothetical protein (Synechocystis sp.)	95	39	126
137	01	6814	17245	19111592011	sulfate permease (cysA) [Methanococcus jannaschii]	95	34	432
142	. —	6105	4582	pit A47071 A470	orfl immediately 5. of nifs - Bacillus subtilis	95	62	438
971	9	9/90	1 3660	gn1 P1D d101911	hypothetical protein (Symechocystis sp.)	95	32	101
49		1906	61.72	gn1 P1D d101099	phosphate transport system permease protein PstA (Synechocystis sp.)	95	36	834
150	-	644	2743	gn1 P1D e304628	probably site-specific recombinase of the resolvase family of enzymes [Bactericphage TP21]	95	27	1707
1.72		~	208	91 1787791	(AE000249) f317; This 317 aa orf is 27 pct identical (16 gaps) to 301 residues of an upprox. 320 aa protein YXXC_BACSU SW: P39140 [Escherichia colij	95		20.
2.1		6164	5668	91 396293	similar to Bacillus subtilis hypoth. 20 kDa protein, in tar 3' region (Escherichia coli)	95	0.0	069
186		21.12	13367	gi 1732200	PTS permease for mannose subunit IlPhan (Vibrio furnissii)	95	36	366
187	~	1 2402	818	pir S\$7904 S\$79	virR49 protein - Streptococcus pyogenes (strain CS101 serotyne M49)	77	36	

pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ONF 110	Start (nt)	Stop (nt)	match	match gene name	* sim	, ident	length (nt)
204		2112	2239	91 606376	ORF_o162 [Escherichia coli]	95	35	534
1 206	~ -	13342	1633	198655 16	clyH [Plasmid pAD]]	95	38	1 0171
219	-	1689	9601	91/1146197	[putative [Bacillus subtilis]	95	27	1 165
230		60+	1485	pir C60328 C603	hypothetical protein 2 (sr 5' region) - Streptococcus mutana (strain ON2175, serotype 1)	95	0	1077
667	-	2930	1 3268	91 1041785	Irhoptry protein (Plesmodium yoelii)	26	24	1 666
	- 2	1543	2724	91 143089	lep protein (Bacillus subtilis)	95	32	1182
153	-	-	516	gn1 P1D e325000	hypothetical protein (Bacillus subtilis)	96	41	516
1 359	:	. 70	641	gi 1786952 	(AE000176) 0877; 100 pct identical to the first 86 residues of the 100 aa hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia colli	9.5	9	555
1 361	- 2	4482	8614	19111573353	outer membrane integrity protein (tolA) (Maemophilus influenzae)	96	36	285
1 376	: <u>-</u>	~ -	808	gn1 P1D e325031	hypothetical protein (Bacillus subtilis)	95	1 1	507
	<u>:</u> -	836	1177	gn1 P10 d100872	a negative regulator of pho regulon (Pseudomonas aeruginosa)	55	31	1 099
1 28	-	1834	1618	gn1 P1D e316518	STAT protein (Dictyostelium discoideum)	55	40	102
1 29	9 -	1496	1 5041	 	unknown protein (Anabaena sp.)	\$2	31	546
	91	5696	110702	1911580905	[8. subtilis genes rpmII, rnpA, 50kd, gidA and gldB (Bacillus subtilis)	55	31	1 8001
69		1 5727	6182	91 1786951	(AECOOL76) heat-responsive regulatory protein (Escherichia coli)	55	29	1 95+
15	: -	2381	1 3241	gn1 P1D d101293	[YbbA [Bacillus subtilis]	\$5	42	861
1 52	5	9640	110866	91 153016	ORF 419 protein (Staphylococrus aureus)	\$	1 62	1227
1 53	-	(181)	1 1349	91 896042	OspF (Borrelia burgdorfaii)	55	00	1 599
. 09	5 -	4794	5756	91 1499876	magnesium and cobalt transport protein (Methanococcus jannaschii)	\$5	38	1 (96
12	6 -	114176	115408	91 1857120	[glycosyl transferase [Reisseria meningitidis]	\$	17	1233
27		1 3189	4229	gn1 P10 e209890	NAD alcohol dehydrogenase (Bacillus subtilis)	\$5	44	1041
801	011	110488	1 9820	gn1 PID e324997	hypothetical protein (Bacillus subtilis)	\$\$	36	699
	112	[1227]	113037	gn1 P10 e311496	unknown (Bacillus subtilis	\$5	34	165
===	==	113007	113945	[91[157]423	[]-phosphofructokinase (fruk) [Haemophilus Influenzae]	\$	1 68 1	616
971		6764	5907	1610790131	(AE000446) hypothetical 29.7 kD protein in ibpA-gyrB intergenic region [Escherichia coli]	\$\$		858
								•

S pneumoniae - Putative coding regions of novel proteins samilar to known proteins

Contig ID	CRF 10	Start Int)	Stop (nt)	match	match gene name	E	1 ident	length (nt)
129		1 2719	1 902	gn1 Ptp d101425	Pz-paptidase (Bacillus licheniformis)	55	35	1818
138		2593	1 1610	91 142833	ORF2 (Bacillus subtilis)	55	37	984
140		9169	5633		homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus (Bacillus subtilis)	\$5	36	1284
143		3854	1 2136	91 472330	dihydrolipoamide dehydrogenase Clostridium magnum	\$\$	66	1719
141	01	10204	8921	gn1 P1D e73078	dihydroorotase Lactobacillus eichmannii	\$5	96	1284
148		1 1430	1 4119	91 290572	peripheral membrane protein U (Escherichia coli)	55	29	069
148		1.11	1 4650	91 695769	transposase Xanthobacter autotrophicus	85	37	080
149	=	112564	111650	gn1 P1D d101329	YqjG Bacillus subtilis	1 88	32	918
156			550	91 2 3 1 4 4 9 6	(AE000634) conserved hypothetical integral membrane protein (Helicobacter pylori)	\$\$	Z	564
159	2	6625	5897	91 290533	similar to E. coli ORF adjacent to suc operon; similar to gntR class of regulatory proteins (Escherichia coli)	s	. 29	129
164	-	1.784	1 2332	(gn1 P10 e255118	hypothetical protein (Bacillus subtilis)	55	37	675
164	5 -	2112	13521	191 40348	put. resolvase Inp I (AA 1 - 284) (Bacillus thuringiensis)	55	35	051
191	===	1 1428	1 7216	gn1 P10 e249407	unknown Hycobacterium tuberculosis	\$\$	36	612
167	- 2	1 3860	3345	1911535052	involved in protein secretion (Bacillus subtilis)	\$\$	28	916
186		1 2880	1 2563	191606080	ORF_0290; Geneplot suggests frameshift linking to 0267, not found (Escherichia coli)	55	35	318
681			1 5396	gn1 P1D e183450	hypothetical EcsB protein (Bacillus subtilis)	5.5	35	1086
192	- 2	0121	1 3079	91 1196504	vitellogenin convertase (Aedes aegyptil	\$\$	96	192
195	1 2	2454	1.384	91 1574693	transferase, peptidoglycan synthesis (morg) [Haemophilus influenzae]	55	2	1001
198	-	1 3013	2471	gn1 PID e313074	hypothetical protein (Bacillus subtilis)	\$\$	58	. \$43
214	-	173	744	gn1 P10 d101741	transposase (Synechocystis sp.)	55		372
219	~ ~	11115	456	91 268301	OMF2 gene product (Bacillus megaterium)	55	30	099
263		3742	3443	91/18137	cgcr-4 product (Chlamydomonas reinhardtii)	55	6.8	300
285	: : <u>-</u>	7 -	628		unknown (Bacillus subtilis)	55	0	828
286	-	059	249	191 396844	ORF (18 KDs) (Vibrio cholerae)	55	31	405
297		1 1229	9691	911150848	prtC Porphyromonas gingivalis	\$\$	39	899

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	3 0	Start	Stop Int)	acession	match gene name	F 6 1	1 ident	length (nt)
309	~ -	218	982	gi 1574491	hypothetical (Haemophilus influenzae)	55	35	292
328	~ -	646	224	191 571500	prohibitin (Saccharomyces cerevisiae)	\$\$	2.7	423
330	-	1340	474	91 396397	soxs [Escherichia coli]	55	29	198
364	-	2538	1546	gi 393394	Tb-291 membrane associated protein (Trypanosoma brucei subgroup)	55	36	666
368	-	1941	1 105	gi 160671	S antigen precursor (Plasmodium falciparum)	55	0+	837
_	5 -	1 4604	3624	91 2293176	(AF008220) signal transduction protein kinase (Bacillus subtilis)	54	26	186
•	=	1 7746	1 7246	91 1146245	putative Bacillus subtilis	54	38	105
£ .	72	116213	117937	91 1480429	putative transcriptional regulator [Bacillus stearothermophilus]	- 54	12	1725
9	8 :	1. 5076	4882	qi 19989	methlonyl-tRMA synthetase [Bacillus stearothermophilus]	- 54	35	195
7	-	1 3980	1 2367	gn1 P1D e148611	ABC transporter (Lactobacillus helveticus)	- 54	25	1614
3	01	10844	112103	19111762962	FemA (Staphylococcus simulans)	- 54	29	1260
52	- ; - ;	-	515	1911558177	endo-1, 4 beta-xylanase (Cellulomonas fimi)	1 54	36	510
88		4749	4246	gn1 P10 d101237	[hypothetical [Bacillus subtilis]	- 54	29	504
7.	~	110684	[0(11)	gi 510255	orf3 (Escherichia coli)	- 35	16	1020
7.	120	127546	רנירב)	gi 202543	secotonin receptor (Rattus norvegicus)	25	16	192
7.5	1 2	844	1098	[91]148613	srnB gene product (Plasmid F)	54	37	255
72	-	7438	6695	91 1196496	recombinase [Horaxella bovis]	1 54 1	38	744
•	01	14043	113465	91 1200342	ORF 3 gene product (Bradyrhizoblum japonicum)	- 54	32	678
7.	15	16483	115995	19112317798	maturase-related protein (Pseudomonas alcaligenes)	1 54	0.0	680
98	_	1 2877	2155	91 46988	orf9.6 possibly encodes the O unit polymerase (Salmonella enterica)	1 54	34	
68	- 2	1433	13921	91 147211	phnO protein (Escherichia coli)	54	7	513
9.0	- -	-	464	[91[2317798	maturase_related protein (Pseudomonas alcaligenes)	54	30	462
96	<u> </u>	8058	8510	gn1 P10 d102015	(ABBOO1488) SIHILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SURVIVAL, IN MACROPHAGE. [Bacillus subrilis]	54	32	453
97	9	4662	3604	[91 1591.194	transketolase'' (Methanococcus jannaschii)	54	30	1059
901	Ξ	10406	112010	91 606286	ORF_0637 (Escherichia coli)	1 54	32	1605
147	30 ——	8663	7404	gn1 P1D d101615	ORF_ID:031947; similar to (SwissProt Accession Number P37340) (Escherichia		35	1260

S uneumoniae - Putative coding regions of novel proteins similar to known proteins

12 2008 1949 940 [410] 400018 600000 60000 60000 60000 60000 60000 60000 60000 60	Concig	ORF	Start (nt)	Stop	match acession	match gene name	E is	V ident	length (nt)
1 526 1186 501 502	12.1	7	(62)	1 3223	91-11439528		54	36	1 47
1 528 1289 gnn Pip e25935 unknown (Mycobacterina tuberculesis) 2 582 2884 cnn Pip e25935 hypotherical protein (Becilius subtilis) 1 1 641 ani Pip e25936 loff000201 True (Bacilius subtilis) 2 655 519/279306 loff000201 True (Bacilius subtilis) 3 566 2357 gnn Pip e10081 hypotherical protein (Synachocystis sp.) 4 566 2357 gnn Pip e10081 hypotherical protein (Synachocystis sp.) 5 577 175 175 gnn Pip e10088 kranspoase (Synachocystis sp.) 6 1450 2377 gnn Pip e10088 kranspoase (Synachocystis sp.) 7 777 176 gnn Pip e10088 kranspoase (Synachocystis sp.) 8 740 777 176 gnn Pip e10088 kranspoase (Synachocystis sp.) 9 7577 176 gnn Pip e10088 kranspoase (Synachocystis sp.) 1 740 747 7	174	~	2068	1787		motor protein (Homo sapiens)	25	35	282
1 161 pol PiD ellO(81) Phypothetical protein [Synechocystis sp.] 161 pol PiD ellO(81) Phypothetical protein [Synechocystis sp.] 161 pol PiD ellO(81) Phypothetical protein [Synechocystis sp.] 1 161 pol PiD ellO(81) Phypothetical protein [Synechocystis sp.] 1 163 164 pol PiD ellO(81) Phypothetical protein [Synechocystis sp.] 1 164 pol PiD ellO(81) Phypothetical protein [Synechocystis sp.] 1 165 pol PiD ellO(81) Phypothetical protein [Synechocystis sp.] 1 164 pol PiD ellO(81) Phypothetical protein [Synechocystis sp.] 1 165 pol PiD ellO(81) Phypothetical protein [Synechocystis sp.] 1 165 pol PiD ellO(81) Phypothetical protein [Synechocystis sp.] 1 165 pol PiD ellO(81) Phypothetical protein [Synechocystis sp.] 1 1 1 1 1 1 1 1 1	88	- :	975	1188	gn1 P10 e250352	unknowm (Mycobacterium tuberculosis)	5.		1 (99
1 1 161 pol Pib diolidi Phypothetical protein Symechocyatis sp. 1 161 pol Pib diolidi Phypothetical protein Symechocyatis sp. 1 161 161 175	198	~	1 1582	2884	gn P1D e313074	hypothetical protein (Bacillus subtilis)	54	33	669
1 2 655 94 12370 94 12391206 (APP000220) YERP (Bacillus subtilis) 1 1681 147 941 1910	1 207	-	-	1641	gn P1D d101813	hypothetical protein (Synechocystis sp.)	54	24	1641
2 966 2157 [gni] [pni] [pn	1 210	_	~	655	91 2293206	YtmP (Bacillus	54	7 62	654
1 1681 147 gni Pin diole86 transposase Symechocystis sp. 2 907 1195 dni Pin diole86 transposase Symechocystis sp. 3 2517 1166 jai Li8626 unknown protein Streptococcus mutans 3 2517 1166 jai Li8626 unknown protein Streptococcus mutans 4 240 419 jai Li8626 unknown protein Streptococcus mutans 5 187 201 jai Li8626 unknown protein Streptococcus mutans 6 149 19 19 19 19 19 19 1	1 225	~	996	2357	gn1 P1D e330194	RIIH6 1 (Caenorhabditis elegans)	24	66	1392
2 907 1195 901 PID d101886 Eransposses Synechocystis sp. 5 1357 1161 91 180876 Unknown protein Streptococcus mutans 8 28 4 91 180876 Unknown protein Streptococcus mutans 1 828 4 91 180876 Unknown protein Streptococcus mutans 1 828 4 91 180876 Unknown protein Streptococcus mutans 1 240 479 91 180876 AAPP-Tibosylglycohydrolase Grad) Hethallocuccus jannaschii 1 240 479 91 510878 AAPP-Tibosylglycohydrolase Grad) Hethallocuccus jannaschii 2 240 479 91 510878 AAPP-Tibosylglycohydrolase Grad) Hethallocuccus jannaschii 3 201 91 510878 AAPP-Tibosylglycohydrolase Grad) Hethallocuccus jannaschii 4 240 479 91 510878 Grad) Homologous to f coli finga Baccillus subtilis 5 19702 19194 91 510655 5106 Phypothetical protein Recillus subtilis 6 458 51 4331 Unikhoown Hycobacterium tuberculosis 7 7007 8886 91 1878811 Unkhoown Hycobacterium system S subunit Hethanococcus jannaschii 7 1755 19564 94 566059 Orf2 gene product Laccobacillus Subunit Hethanococcus jannaschii 7 1755 1956 94 119788 Grad Festriction modification system S subunit Hethanococcus jannaschii	1 241	_ :	1681	1 147	[gn1 P1D d101813		54	76	1335
6 1430 2977 971 66671	263	~	206	1198	[gn1]PID]d101886		54	00	1 684
1 828 4 g1 293198 (AF008220) Yq9P Bacillus subtilis 1 828 4 g1 293198 (AF008220) Yq9P Bacillus subtilis 1 19 768 (g 159185) (AE000083) Yq1H (Bhizobiam sp. WGR234) 2 240 479 (g 1591815 ADP-ribosy)glycohydrulase (dra0) Hethanocuccus jannaschii) 3 240 479 (g 1591815 ADP-ribosy)glycohydrulase (dra0) Hethanocuccus jannaschii) 3 240 479 (g 1591815 ADP-ribosy)glycohydrulase (dra0) Hethanocuccus jannaschii) 3 240 479 (g 1591815 ADP-ribosy)glycohydrulase (dra0) Hethanocuccus jannaschii) 4 240 479 (g 1591815 ADP-ribosy)glycohydrulase (dra0) Hethanocuccus jannaschii) 5 19702 1949 (g 1591815 ADP-ribosy)glycohydrulase (dra0) Hospillus Hospillus (dra0) Hospillus (dra0) Hospillus Hospil	1 263	9	3450	1.267	gi 160671	S antigen precursor (Plasmodium falciparum)	54	1 4	474
1 19 766 91 1293198 (AF008220) YtgP Pacillus subtilis 1 19 766 91 128207 (AE000083) YtlH Philosolium sp. MCR244 2 2 4 590 91 1591815 APP-ribosylg ycohydrulase (drad) Hethanocuccus jannaschii 4 2 2 4 79 91 1591815 APP-ribosylg ycohydrulase (drad) Hethanocuccus jannaschii 5 2 4 79 91 1591815 APP-ribosylg ycohydrulase (drad) Hethanocuccus jannaschii 5 19702 19393 91 PiD 100 100 100 100 100 100 100 100 100 100 6 19393 91 PiD 10009 PiL 10000 PiD 100 PiD	71.2	_	1 2517	1 1363		unknown protein (Streptococcus mutans)	3	30	1155
1 19 768 590 GI 159815 ADP-ribosy19 yelly displain sp. MGR234 2 898 590 GI 159815 ADP-ribosy19 yeohydrulase (drad) (Hethanococcus jannaschii) 3 240 479 GI 530878 Amino acid feature: H-glycosylation sites, aa 41 41 46 48, 51 53, 72 74 70 109, 128 130, 132 134, 158 160, 163 165; amino acid feature: Rod protein domain, aa 169 140; amino acid feature: Pod protein domain, aa 169 140; amino acid feature: Pod protein domain, aa 169 140; amino acid feature: Rod protein domain, aa 169 140; amino acid feature: Subcilias subtilisi 2 2 2 2 3 3 4 4 4 4 4 4 4 4	1 307	- '	828	7	91 229 3198	(AF008220) YtgP (Bacillus subtilis)	5.4	28	825
2 240 479 gi 510878 ADP-ribosylglycohydrolase (dtaG) [Hethanococcus jannaschii] 4 240 479 gi 510878 72 74 107 109 128 130 137 14 158 160 163 165; 17 17 17 17 17 17 17 1	325	- : :	61	1,68	19112182507	(AE000083) Y41H (Rhizobium sp. NGR234)	54	- ((750
1 240 479 gu 530878 amino acid feature: N-glycosylation sites, aa 41 43, 46 48, 51 53, 74, 107 109, 128 130, 132 134, 158 160, 163 165; 91 169 169 169; 169 169; 169 169; 169 169; 169 169; 169; 169; 169; 169; 169; 169; 169;	1 332	· _ ;	898	1 590	gi 1591815		54	32	1 600
1 2497 2033 gail PID e255311 hypothetical protein Bacillus subtilis	282		240	479	91 530878	aa 41 114, 158 a 169	\$4	6	240
1 2497 2013 gml PTD d102015 Abb001488) SIMILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE (Bacillus subtilis)	,			119493	gn1 P1D e255111	hypothetical protein (Bacillus subtilis)	53	32	210
9042 10121 91 143331 alkaline phosphatase regulatory protein (Bacillus subtilis)	53		2497	2033	gn1 PTD 4102015	(ABBOD1488) SIMILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. (Bacillus subellis)	53	25	465
1 1479 1009 pii. Si0655 Si06 hypothetical protein X - Pyrococcus woesei (fragment) 6 4583 5134 gml PiD e316029 unknown Hycobacterium tuberculosis 1 8521 8898 gi 580904 homologuus to E coli rnpA Bacillus subtilis 1 7007 8686 gi 1377831 unknown Bacillus subtilis 1 17555 19564 gi 666069 orf2 gene product Lactobacillus leichmannii} 1 1 681 gi 1592266 restriction modification system S subunit Hethanococcus jannaschii}	67	=	9042	121011	[91[14333]	alkaline phosphatase regulatory protein (Bacillus subtilis)	- 65	31	10801
6 4583 5134 gml PID ell6029 unknown Hycubacterium tuberculosis 14 8521 8898 gi 580904 homologous to E coli rnpA Bacillus subtilis 7 7007 8686 gi 1377831 unknown Bacillus subtilis 17 17555 19564 gi 666069 orf2 gene product Lactobacillus leichmannii 1 1 681 gi 1592266 restriction modification system S subunit Hethanococcus jannaschii}	-	_	1479	6001	pir. S10655 S106	٠, ١	3	33	471
	36		4583	5134	gn1 P1D e316029	Hycobacterium	2	30	552
7 7007 8686 gi 1377811 unknown Bacillus subtilis 17 17555 19564 gi 666069 orf2 gene product (Lactobacillus leichmannii) 1 1 681 gi 1592266 restriction modification system S subunit (Methanococcus jannaschii)	1 38	<u> </u>	8521	8898	91 580904	to E coli rnpA (Bacillus	53	30	976
	52		1 2007	9898	gi 1377831	Unknown (Bacillus subtilis)	3	767	1 0891
1 1 681 91 1592266 restriction modification system S subunit Hethanocuccus jannaschii	54	=======================================	10355	119564	1911666069	orf2 gene product (Lactobacillus leichmannii)	53) 90	2010
ジャ・サード・サード・ドゥ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2.0	; - - ;	_ ; : _ :	681	91 1592266	S subunit	5.	32	1 189

S. pneumoniae - Putative coding regions of novel protein's similar to known proteins

Contig	9 ORF	Start	Stop	match	match yene name	e is	1 ident	length (nt)
52	3	9431	8483	gi 178854)	[AE000310] [351; Residues 1-12] are 100 pct identical to YOJL_ECOLI SH: P33944 [122 aa] and aa 152-351 are 100 pct identical to YOJK_ECOLI SH: P33943 [Escherichia coli]	3	12	945
7.9	_	429	-	gn1 PID e236467	B0024.12 Caenorhabdicis elegans	1 53		426
-	- :	1 5772	-	191 393394	[Tb-29] membrane associated protein [Trypanosoma bruce; subgroup]	1 53		5769
1,2	-	894	2840	191 2293178	(AFO08220) YESD (Bacillus subcilis)	53	27	1947
1, 1,	= :	1 9793	1 9212	191 1778556	putative cobalamin synthesis protein [Escherichia coli]	53	32	582
888		5217	4342	[91 2098719	[putative fimbrial associated protein (Actinomyces naeslundii)	53	3.8	876
- B	<u>^</u>	2395	1688	191 563366	gluconate oxidoreductase [Gluconobacter oxydans]	53		108
96	6	6632	17762	91 517204	ORF1, putative 42 kDa protein (Streptococcus pyogenes)	53	42	1131
108	œ :	1 7629	1 8600	91 149581	maturation protein [Lactobaci]]us paracasei]	- 65	32	972
128	9 - :	1 6412	6972	gn1 P1D e317237	unknown (Hycobacterium tuberculosis)	53	36	195
128	71	8429	1 9253	01011161161	pentraxin fusion protein (Xenopus laevis)	53	7	825
£ -	-	-	056	pir A61607 A616	probable hemolysin precursor - Streptococcus agalactiae (strain 74-360)	53	36	948
163	~ :	2162	1 3022	gi 1755150	nocturnin Xenopus laevis	53	30	861
12	_	2304	1 2624	19111732200	PTS permease for mannose subunit 11PMan (Vibrio furnissii)	1 83 1	32	321
1 182	- :	1 3785	1908	gn1 P1D d100572	unknown (Bacillus subtilis)	1 65	35	1 38.1
602		1 2948	1935	19111778505	ferric enterobactin transport protein [Escherichia col1]	53	28	1014
218	<u>s</u>	3884	2406	gi 40162	murE gene product (Bacillus subtilis)	- cs	34	1479
250	-	1 473	790	gn1 P10 e334776-	YlbH protein (Bacillus subtilis	l ss l	30	318
275	_	1 -	11911		Yqew (Bacillus subtilis)	53	35	1611
332	_	544	~	gi 409286	Descrillus subtilis	53	1 16	543
~	~	2543	3445	gn1 P1D e233879	hypothetical protein (Bacillus subtilis)	52	39	1 106
-	122	22402	123376	91 38969	JacF gene product Agrobacterium radiobacter	52	36	975
S	-:	8094	2356	gn1 Pf0 e324915	light protease (Streptococcus sanguis)	52	32	5739
22	26	119961	20212	91 152901	ORF 3 (Spirochaeta aurantia)	52	1 50	252
22	= :	_ :	:	91 289262	comE ORF3 Bacillus subtilis	25	32	1527
27	• :	5397	4801	[9:[39573	[P20 (AA 1-178) (Bacillus licheniformis)	52	35	1 65

S pneumoniae . Putative coding regions of novel proteins Similar to known proteins

1D	<u>a</u>	Start	Stop (nt)	match	match gene name	l sia	1 ident	length (nt)
35	2	8604	7357	91 508241	putative O-antigen transporter (Escherichia coli)	52	27	1248
\$	-	4801	3662	gn1 P1D d102243	(AB005554) homologs are found in E. coli and H. influenzae; see SMISS_PROT ACCI: P12100 (Bacillus subtilis)	52	36	1140
60	# :	· .	92461	gn1 P1D e205174	orf2 (Lactobacillus helveticus)	52	25	
6.	-	5321	5755	91 23177,40	(AF013987) nitrogen regulatory IIA protein (Vibrio cholerae)	55	61	
54	-	נרנג	4668	19111500472	(H. Jannaschii predicted coding region MJIS77 (Methanococcus jannaschii)	52	***	
35	9	5250	6969	191 2182453	[AE000079] Y410 [Rhizobium sp. NGR234]	52		1070
99	9	8400	6955	91 43140	TrkG protein (Escherichia coli)	52		7 7 7
1.	26	130659	211115	gn1 P10 e314993	unknown (Mycobacterium tuberculosis)			407
35	~	1673	1035	gn1 Pro d102271	(AB00168)) FarA (Streptomyces sp.)	\$		BC0
- E		60+1	1 2893	gn1 Pt0 e311458	rhamulose kinase (Bacillus subtilis)			200
18	60	4987	1878	[gi]147403	mannose permease subunit 11-P-Man (Escherichia coli)			200
	7.	20687	21853	91 141365	phosphoribosyl aminoimidatola carboxylasa II (PUR-K; ttg start codon)	25		1167
86	9	5785	4592	19111276879	EpsF (Streptococcus thermophilus)	\$2	26	7071
986	021	06161	13861	gi 454844	ORF 3 [Schistosoma mansoni]	25	3,6	
96	2	10540	6596	gi 288299	ORFI gene product (Bacillus megaterium)	52		
=======================================		~	2026	91 148 109	(cytolysin B transport protein (Enterococcus faecalis)	3		
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~	1457	1 2167	91 471234	orfl (Haemophilus influenzae)	3		
81.		11.62	2365	bbs 151233	Mip-24 kda macrophage infectivity potentiator protein (Legionella pneumophila, Philadelphia-1, Peptide, 184 aal (Legionella pneumophila)	52	33	267
1.22	6	\$646	5951	91 8214	myosin heavy chain (Drosuphila melanogaster)	52	36	306
122	= :	6519	6374	91 434025	dihydrolipoamida acetyltransferase (Pelobacter carbinolicus)	52	52	216
	9	4880	6313	91 153733	M protein trans-acting positive regulator (Streptococcus pyogenes)	52	7 67	44.4
135	- :	1238	2716	gn1 P10 e245024	lunknown (Mycobacterium tuberculosis)	52	35	9691
	- -	1681	2319	gn1 P10 d100573	unknown (Bacillus subtills)	52	32	639
	<u>;</u>	2562	5624	91 1146243	22 4% Identity with Escherichia coli DNA-damage inducible protein putative (Bacillus subtilis)	52	36	2463
173	~ :	896	183	gi 1215693	putative orf: GT9_orf434 [Hycoplasma pneumoniae]	3	30	786

S. pneumoniae - Putative coding regions of novel proteins "Mailar to known proteins

	834	264	168	870	324	970	302	9.6	780	1.00	282	261	3123	192	8001	1366	. 0.2	1.1.1	1 186	1134		543	654	1794	1 659	699
l length										_					<u> </u>	-				-				-		
1 ident	56	3.8	36	34	3.8	29	32	100	16	75					28	27	32	30	26	96	21	•	90	2.8	9.	2
e is	25	52	52	52	22	52	52	15	51	115	15	115	1 15	5.1	21	15	1 15	15	51	15	5	21	15	51	15	51
match gene name	gnl PID e113010 hypothetical protein (Bacillus subtilis)	DMA gyrase subunit B [Mycoplasma genitalium]	envelope protein (Human immunodeficiency virus type 1)	hypothetical [Escherichia coli]	unknown (Bacillus subtilis)	proteass/peptidase (Mycobacterium leprael	[Tb-29] membrane associated protein [Trypanosoma brucei subgroup]	Unknown (Mycobacterium tuberculosis)	5 - methylthioadenosine phosphorylase (Sulfolobus solfataricus)	integrase (Streptococcus pyogenes phaye T12)	(AE000633) transcriptional regulator (tenA) [Helicobacter pylori]	alpha-0-1,4-glucosidase (Staphylococcus xylosus)	pentraxin fusion protein (Xenopus lauvis)	Yqfi (Bacillus subtilis)	ORF 3 (AA 1-352); 38 kD (put. ftsX) (Escherichia coli)	ppsl; B1496_C2_189 (Mycobacterium leprae)	(AF007270) contains similarity to myosin heavy chain Arabidopsis thaliana	orf14 Bacteriophage HP1]	probable copper-transporting atpase (Escherichia coli)	(AF008220) putative hippurate hydrolase (Bacillus subtilis)	Herpesvirus saimiri ORF73 homolog (Kaposi's sarcoma-associated herpes-like virus)	hypothetical 40.7 kd protein (Bacillus subtilis)	CMP-N-acetylneuraminic acid synthetase [Escherichia coli]	probable copper-transporting atpase (Escherichia coli)	nti-P.falciparum antigen	pilD protein - Neisseria gonorrhueae
match	gn1 P1D e313010	191 497647	gi 550697	[gi[15527]	gn1 PID d100582	gn1 PtD e335028	91 393394	gn1 P10 e254943	91 929900	91 1877429	ui 2314655	91 474177	1911311070	gn1 Pr0 d101316	91 41500	91 466882	91 2191168	6816 [91 1046241	91 1354935	91 2293256	94 1633572	gn1 PtD e281580		9111773166	gn P10 e256400	pir \$32915 \$329
Stop (nt.)	1567	4107	5431	984	362	~	-	1173	1521	1597	18946	4016		;	8538	5173	5.7	. 9189	3983	10226	7313	111550	3208	-	ניוו	1311
Start (nt)	4400	8844	5264	- 51	39	17.8	1305	2048	742	410	19227	4276	6935		1531	3908	326	7286	4963	6	6003	12092	2555	1.671	2231	643
ORF	9	21	2	-	-	_	~	~	_		26	~	Ξ	5	0.	9	-	01		115	30	6	•	-		~
Contig	198	210	214	225	230	287	363	۲2	53	\$	9	2		8		=	124	129	143	8	6 1 1	151	159	7.	265	1 (12

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	9 10RF 11D	Start	Stop	match	match gene name	e la	1 ident	length (nt)
1 350	-	890	_	191 290509	ol07 Escherichia coli	15	30	888
363	-	1228	4485	191 11707247	partial CDS (Caenothabditis elegans)	15	23	3258
1 367	-	1 1 701	-	191 393394	Tb-291 membrane associated protein (Trypanosoma brucei subgroup)	51	32	1698
- 12	\$	1 5174	4497	gn1 P10 e58151	(F) (Bacillus subtlils)	05	36	678
91	-	1 2220	2582	gn1 P10 e325010	hypothetical protein (Bacillus subtills)	05	1 62	1 (96
61	- ·	1 2591	4159	19111552733	similar to voltage-gated chloride channel protein (Escherichia coli)	05	1 00	1 6951
52	-	1072	1997	91 887849	ORF_t219 [Escherichia coli]	05	27	901
35	-	112	417	gn1 P1D e236697	unknown (Saccharomyces cerevisiae)	05	33	207
96	-	1 1416	5152	gn1 P10 d100974	unknown (Bacillus subtilis)	05	27	
\$1		4000	1815	g1 1592027 	Carbanoyl-phosphate synthase, pyrimidine-specific, large subunit [Methanococcus jannaschii]	05	27	1182
5.1	э ——	6717	8303	91 1591847	type restriction-modification enzyme. S subunit (Methanococcus	05	28	1125
3		8740	9534	gi 144297	acetyl esterase (XynC) [Caldocellum saccharolyticum]	05	34	195
25	9 -	16591	01.621	91 2108229	basic surface protein (Lactobacillus fermentum)	05	34	822
5.7	~	6031	6336	9112275264	60S ribosomal protein L7B (Schizosaccharomyces pombe)	05	00	306
1,	=	129348	128383	gn1 P10 d101328	Yqja (Bacillus subtilis)	05 1	30	996
86	=======================================	111155	10769	gn1 PID a324964	hypothetical protein (Bacillus subtilis)	05	24	1 666
9.3	~	1205	330	91 1066016	similar to Escherichia coli pyruvate, water dikinase, Swiss-Prot Accession Number P23538 (Pyrococcus furiosus)	0\$	24	876
96	_	[167]	2959	gn1 P1D e322433	gamma-glutamylcysteine synthetase Brassica juncea	05	29	1287
86	~	1 218	1171	911151110	leucine., isoleucine., and valine-binding protein (Pseudomonas aeruginosa)	05	30	954
707	-	1 3303	2785	gi 154330	O-antigen ligase [Salmonella typhimurium]	05	1 16	1 615
115	~	6480	1 5980	gi 895747	putative cel operon regulator (Bacillus subtilis)	05	26	501
129	Ξ	1 7559	1 1305	91 1216475	skeletal muscle ryanodine receptor (Homo sapiens)	05	32	255
129	=	8192	1 7965	gi 152271	319-kDA procein (Rhizobium mellloti)	1 05	30	228
151	s :	7634	6189	91 40348	put. resolvase Inp I (AA 1 - 284) (Bacillus thuringiensis)	80	35	816
153	_	-	1 597	gn1 P10 d102015	[(AB001488) SIHILAR TO NITROREDUCTASE. [Bacillus subtilis]	80	29	597

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

15.5 1.554. 1.512 1.51	Contig	08F	Start	Stop (nt)	match acession	match gene name	E is	* ident	length (nt)
10 1 1730 1831 1911 196599	1 155	- 2	9865	5432	91/1276880	EpsG (Streptococcus thermophilus)	20	88	\$55
16 735 1960 991 991 991 992	091		7390	6323	19111786983	0331; 92 pct identical to the 333 aa hypothetical protein 1 SW: P52697; 26 pct identical (7 gaps) to 167 residues of otein HLE_TRICU SW: P46057; SW: P52697 (Escherichia coli)	05	00	8901
15 15 15 15 15 15 15 15	163	-	1 7396	1 8091			20	22	969
13 14 15 16 16 17 17 17 17 17 17	167	-	5233	1 3940	91 413926	1pa-2r gene product (Bacillus subtilis)	02	12	1293
5 1168 4025 91 606880 ORF_0230; Geneplot suggests frameshift linking to 0267, not found IEscherichia coii] 1518 115 91 30018 IMAY 2 polyprocein (Human Thinovicus) 1518 115 91 31316 Th-222 membrane associated protein (Trypanosoma brucel subgroup) 1 1518 115 91 44689 ORF B (Clostridiua perfitingens) 1 1518 115 14468 91 44410 Arr-dependent unclease (Bacilius subtilis) 1 15489 101 41410 Arr-dependent unclease (Bacilius subtilis) 1 1 15489 101 41410 Arr-dependent unclease (Bacilius subtilis) 1 1 1 1 1 1 1 1 1	•	- 7	1 807	130	[gn1 P1D e304540	endolysin (Becteriophage Bastille)	20	35	678
	7.7.		3168	4025	91 606080	ORF 0290; Geneplot suggests frameshift linking to 0267, not found Escherichia coli)	0,5	27	858
1 1518 115 91 193196 TD-322 membrane associated protein (Trypanosoma brucel subgroup) 2 5911 5090 91 14859 100K B Glostridium perfitingens 3 1073 9168 91 14440 Arr-dopendent nuclease Bacillus subtilis 4 9777 8186 91 141410	1 210	Ξ	1818	1 8414	91 330038	HRV 2 polyprotein (Human rhinovirus)	20	52	264
7 5911 5090 gp 144859 ORF B Cloatridium perfringens 8 10244 9168 gp 144240 ATP-dependent nuclease Bacillus subtilia 9 9777 9198 gp 1414170 Irrh gene product Hachandaarcina maraii 9 4866 4531 gp 1610 2255021 hypothetical protein Bacillus subtilia 9 4866 4531 gp 1610 2255021 hypothetical protein Hacillus subtilia 9 4866 4449 gp 1910 2255021 hypothetical protein Hichemophilus influenzae 9 4866 4449 gp 1910 2255021 hypothetical protein Hichemophilus influenzae 9 4866 4531 gp 1910 2255021 hypothetical protein Hichemophilus influenzae 9 4866 4449 gp 1910 2255021 hypothetical protein Homeophilus influenzae 9 4866 4931 gp 1910 2255021 hypothetical protein Homeophilus influenzae 9 4866 4931 gp 1910 225050 hypothetical protein Homeophilus influenzae 9 4866 4931 gp 1910 2401012 hypothetical protein Hymechocyttis sp. 9 4866 4949 gp 1910 2401012 hypothetical protein Hymechocyttis sp. 9 4866 4949 gp 1910 2401012 hypothetical protein Hymechocyttis sp. 9 4866 4949 gp 1910 24 Homeophilus Hymechocyttis sp. 9 4866 4949 gp 1910 24 Homeophilus Hymechocyttis sp. 9 4866 4940 gp 1910 24 Hymechocytein Hymechocytes cerevisiae 9 4866 4940 gp 1910 24 Hymechocytein Hymechocytes cerevisiae 9 4866 4940 gp 1910 24 Hymechocytein Hymechocytes cerevisiae 9 4860 gp 1910 24 Hymechocytein Hymechocytes cerevisiae 9 4860 4940	1 164	<u>:</u> -	1 1518	1135	91 393396	TD-192 membrane associated protein (Trypanosoma brucei subgroup)	80	16	1404
5 10734 9788 91 141410 IrrA gene product (Hethandsactina material 1 1777 8198 91 141410 IrrA gene product (Hethandsactina material 1 1789 17249 91 191 19285322 Recx protein (Hycobocterium smegnatis) 1 1789 17249 91 191 19285322 Recx protein (Hocalilus subtilis) 1 1 1 1 1 1 1 1 1	0.7	-	1 5911	0605	gi 144659	i aa	6.7	24	822
1 1787 1989 94 414170	92	: ^	110754	8916	gi 142440	(Bacillus	64	ī	987
6 5364 4648 gol PiD e285322 RecK protein (Hycobacterium smegmatis) 9 4866 4531 gol PiD e255991 Hypothetical protein (Hoff) Sphericus) 9 4866 4531 gol Gol Hypothetical protein (Hoff) Hawmophilus influenzael 1 4019 4948 gol 1574380 Hic-1 operon protein (Hoff) Hawmophilus influenzael 2 4019 4948 gol 19573 P20 (AA 1-178) Bacillus subtilia 3 1835 4438 gol 19573 P20 (AA 1-178) Bacillus subtilia 4 1421 1953 gol PiD gol Gol P20 (AA 1-178) Bacillus Hoheniformis 5 1867 gol PiD Gol P20 (AA 1-178) Bacillus Hoheniformis 6 1550 2940 gol P1D Gol Gol P20 (AA 1-178) Hacillus Hoheniformis 7 1057 2 gol P1D Gol Gol P20 (AA 1-178) Hypothetical protein P30 P30 P30 P30 8 1179 P30 Gol P30 Gol P30 P30 P30 P30 P30 9 1179 P30 Gol P30 P30 P30 P30 P30 P30 P30 10 1150 Gol P30 P30 P30 P30 P30 P30 P30 P30 10 P30 10 P30 10 P30 P3	99	: <u> </u>	1 977	1 8198	1911414170	gene product	6,	26	1380
1) 12689		· • -	1 5364	4648	 got PtD e285322	protein (Mycobacterium	5	78	רור
9 4866 4531 93 40067 X gene product [Bacillus spheericus] 16058 4948 93 15574380 Lic-1 operon protein (LicB) [Haemophilus influenzae] 1 6058 4949 931 9513 931 932 932 932 932 932 932 933		=	112689	113249	gn1 P1D e255091	hypothetical protein (Bacillus subtilis)	6	20	195
5 4019 4948 gill574360 lic-1 operon protein (licB) [Hieemophilus influenzael 1 6058 4949 gill574360 lic-1 operon protein (licB) [Hieemophilus influenzael 1 1951 4438 gill9573 P20 (AA 1-178) Bacillus licheniformis 1 1951 1957 1967 gill9104101732 hypothetical protein (Synechocystis sp.) 1 1 1 1 1 1 1 1 1	1 93	- 6	1 4866	1 (5)	: -	X gene product (Bacillus spheericus)	49	26	336
5 1875 4438 gal PID e267587 Unknown (Bacillus Subtilis)	1112	- 2	4019	4948	9111574380	lic-1 operon protein (licB) [Haemophilus influenzae]	64	27	930
5 1473 1953 gni PiD d101102 regulatory components of sensory transduction system (Synechocystis sp.) 5 2478 1637 gni PiD d101732 hypothetical protein (Synechocystia sp.) 5 1500 2940 gi 190324 LORF X gene product (unidentified) 6 5352 3667 gi 191002 (first methionine codon in the ECLFI ONF (Saimirine herpesvirus 2) 7 1129 1350 gi 19194472 (AF024499) contains similarity to homeobox domains (Caenorhabditis elegans) 8 1130 gi 19194414 ONF (18 xDa) (Vibrio cholerae) 9 1435 887 gi 193524 phosphatidylinositol-4,5-diphosphate 3-kinase (Dictyostelium discoideum)	621		8509	4949	gn1 P10 e267587		49	35	1110
2 1423 1953 gn1 PiD d101102 regulatory components of sensory transduction system (Synechocystis sp.) 5 2878 1637 gn1 PiD d101732 hypothetical protein (Synechocystis sp.) 5 3500 2940 gi 490324 LORF X gene product funidentified 6 5352 3667 gi 2394472 (AFD24499) contains similarity to homeobox domains (Caenorlabditis elegans) 7 1129 1350 gi 531116 SIR4 protein (Saccharomyces cerevisiae) 8 1129 1350 gi 33354 Johnsphatidylinositol-4,5-diphosphate 3-kinase (Dictyostelium discoideum)	501		2686	4438	(1,987)	(Bacillus	64	25	564
5 1878 1637 gail pip pip pip protectical protectical p	154	~	143	1 1953	;	sensory transduction system (Synechocystis	6.	59	531
5 3500 2940 gi 490324 LORF X gene product Unidentified	951	-	1 2878	1 1637	_		49	25	1242
1 1057 2 qi 331002 [first methionine codon in the ECLF Okr [Saimittine herpesvirus 2] 6 5352 3667 qi 2394472 (AFD24499) contains similarity to homeobox domains (Caenorlabditis elegans) 4 1129 1350 qi 531116 SIR4 protein (Saccharomyces cerevisiae) 1 600 136 qi 336844 ORF (18 kDa) Vibrio cholerae 1 1435 887 qi 33354 phosphatidylinositol-4,5-diphosphate 3-kinase (Dictyostelium discoideum)	1.23	- 2	1 3500	1 2940		gene	6.	30	196
6 5352 1667 gi 2394472 (AF024499) contains similarity to homeobox domains (Caenorhabditis elegans) 4 1129 1350 gi 531116	1 182	<u>-</u>	1 1057	~	91 331002	methionine codon in the ECLF1 Okf (Saimiriine herpesvirus	64	25	1056
4 1129 1350 91 5311116 SIR4 protein (Saccharomyces cerevisiae)	1 192	-	1 5352	1 3667	91 2394472	contains similarity to homeobox domains (Caenorhabditis	67	23	1696
1 600 136 91 396844 ONF (18 kDa) (Vibrio cholerae) 3 1435 887 91 733524 phosphatidylinositol-4,5-diphosphate 3-kinase (Dictyostelium discoldeum)	1 253	-	6211	1350	: -	Saccharomyces	64	23	222
1 1435 887			009	136	91 396844	ORF (18 xDa) [Vibrio cholerae]	6.	32	465
	ر2۲	_	1435	1 887		phosphatidylinositol-4,5-diphosphate]-kinase (Dictyostelium discoldeum)	6	24	549

S pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont 19 10	ONE.	Start (nt)	Stop	match	match gene name	E s	, ident	length (nt)
365		1436	132	91 393394	Tb-291 membrane associated protein (Trypanosoma bruces subgroup)	67	16	1305
33		4461	13277	91 145644	codes for a protein of unknown function (Escherichia coli)	87	3.6	1185
0	~	652	1776	gn1 P1D e290649	ornithine decarboxylase (Nicotiana tabacum)	87	29	1125
67	-	11377	2384	91 1772652	2-keto-3-deoxygluconate kinase [Haluferax alicantei]	89	30	1008
74	~	4269	1 3871	91 2182678	(AE000101) Y4vJ (Rhizobium sp. NGR231)	48	27	399
8	~	1326	541	91 153672	Lactose repressor (Streptococcus mutans)	48	- 55	786
10		2981	3646	91 146042	fuculose-1-phosphate aldolase (fuca) [Escherichia colli]	1 69	00	999
7.6	_	602	12	191 153794	rgg (Streptococcus gordonii)	1 48 1	67	552
110		- :	1 3132	191 1381114	pre8 gene product (Lactobacillus delbineckii)	48	- 62	3132
12.	\$	1 2914		gn1 P10 e183811	Acyl-ACP thloesterase (Brassica napus)	1 69 1	7.2	768
133	7	3494	1 2628	[gn1 P1D e261988	putative ORF (Bacillus subtilis)	48	2.	867
139	9	4231	4599	191 1049388	ZK470.1 gene product (Caenorhabditis elegans)	1 69 1	23	369
1.19	0	5036	5995	91 1 1 0 2 2 7 2 5	unknown (Staphylococcus haemolyticus)	8+	62	630
140	<u> </u>	91611	11000	9n1 PID d102049	H. influenzae, ribosomal protein alanine acetyltransferase; P44305 (189)	89	27	930
146	6	0.95	4654	191 1591731	melvalonate kinase (Hethanococcus jannaschii)	99	24	1017
161		1280	2374	gn1 P1D d101578	[Collagenase precursor (EC 3.4). (Escherichia coli)	84	24	1095
;	=	10581	111048	gn1 P10 d101132	hypothetical protein (Symechocystis sp.)	48	2.7	468
182	-	2930	2586	gi 40067	X gene product (Bacillus sphaericus)	87		345
210		ا و ا	96111	sp P13940 LE29_	LATE EMBRYOGENESIS ABUNDANT PROTEIN D-29 (LEA D-29).	- 84	90	411
214	115	6231	6482	gi 40389	non-toxic components {Clostridium botulinum}	89	36	252
221		704		91 1573364	H influentae predicted coding region H10392 (Haemophilus influenzae)	- 89	27	702
723	~	647	3928	19111673693	(AE000005) Mycoplasma pneumoniae, C09_orf718 Protein (Mycoplasma pneumoniae)	8	0.0	3282
25.1	~	180	1.58	gn1 P1D e236697	unknown [Saccharomyces cerevislae]	89	17.	279
363		1674	2211	191 18137	cgcr-4 product Chlamydomonas reinhardtill	89	0.	153
189		505	~	1911181117	cgcr-4 product (Chlamydomonas reinhardtii)	- 48	186	504
	131	120879	122258	[gn1 P1D e264778	putative maltose-binding pootein (Streptomyces coelicolor)		-	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Cont ig	ORF	Start	Stop (nt)	match	match gene name	e s ia	1 ident	length (nt)
9	-	4089	4658		P20 (AA 1-178) [Bacillus licheniformis]	47	23	570
1.5		37.16	1760	56501b a1a lu6	unknown (Bacillus subtilis)	47	25	1977
35	115	14516	13263	[91(1773351	Cap5L (Staphylocnccus aureus)	47	20	1254
: 5		3542	4005	A370	32K antigen precursor - Hycobacterium tuberculosis	47	38	456
55		10154	9273	7 —	U) (Bacillus subtilis)	47	26	882
26	-	1753	13276		PCPC (Streptococcus pneumoniae)	47	35	1524
127		5589	5386	91 1786458	(AE000134) (120; This 120 aa orf 1s 76 pct identical (U gaps) to 42 residues of an approx. 48 aa protein Y127_HAEIN SW: P43949 (Escherichia coli)	-	32	204
01.	~	1232	1759		unknown (Hycobacterium tuberculosis)	4	23	528
140	<u>:</u>	1564	3542		homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus (Bacillus subtilis)	+	7.	1410
151	: - -	6814	1 6200	91 1522674	H. jaunaschii predicted coding region MJECL41 (Methanococcus jaunaschii)	.	2.3	615
15.1	: -	803	1111		YqgZ (Bacillus subtills)	47	25	272
82.1		3267	2155	91 2367190	[AECO0190] 0314; sequence change joins ORFS 991R k 9915 from earlier version (YGJR_ECOLI SW: P42500] [Escherichia coli]	7	90	=
213	-	-	1549	(gn) (P1D) e254973	autolysin sensor kinase (Bacillus subtilis)	67	32	1548
100	- 7	880	644	91 1835755	zinc finger protein Png-1 (Hus musculus)	47	22	(237
5.4	=======================================	114182	112638	pir \$43609 \$436	rofA protein - Streptococcus pyogenes	46	24	1545
	: -	2	1 1018	gn1 PID e223891	xylose repressor (Anaerocellum thermophilum)	46	27	1017
96		4553	5860	gn1 F10 d101652	ORF_IO:034715; similar to SwissProt Accession Number P45272 Escherichia coli)	9	23	1308
112		1127		91 2209215	(AF004125) putative oligosaccharide repeat unit transporter Streptococcus pneumoniae	9	24	1125
122	=	1 7308	1 7982	19111054776	hree gene product (Nomo sapiens)	9	34	675
127	===	9616	1 8125	19111469286	atus gene product (Actinobacillus pleuropneumoniae)	90	28	1074
132	-	(601.	1 6197	191 153794	[rgg [Streptococcus gordonii]	9	26	1 897
071	-	8220	1 7723	91 1235795	[pullulanase (Thermoanaerobacterium thermosulfurigenes)	9	21	498
140	6	1 9205	8315	91 407878	leucine rich protein (Streptococcus equisimilia)	46	23	891
		111111				•		•

S pneumoniae - Putative coding regions of novel proteins similar to known proteins

13	Contrig	ORF ID	Start (nt)	Stop	match	match gene name		• ident	Jength (nt)
1 1 585	1 162		-	11125	gi 1143209	Method:	46	25	1125
1 1971 1477 5p P02562 MYSS_ MYOSIN HERE 1 687 220 91 1788049 (AE000011) ACCASSION ACCASSION ACCASSION ACCASSION ACCASSION ACCASSION ACCASSION ACCASION ACCA	661		-	585	91 1947171	(AF000299) No definition line found (Caenorhabditis elegans)	90	28	585
2 760 1608 91 1016112 17Cf38 general control contr	1 223		1761	1477	sp P02562 HYSS_		46	7.7	1 567
687 220 91 1673744 (AE0000111) 8 3843 6472 91 1788049 (AE000270) 9 1461 1868 91 1723139 Coded for ykl48g10 1 307 2 91 1699079 Coded for ykl48g10 1 307 2 91 152192 MADH Jehyclon Collin 1 14874 91 11321900 MADH Jehyclon Collin 1 174 1864 91 172921 V-type Habriton Collin 1 1885 1876 91 12151768 PspA Street Collin 1 1885 1876 91 1045139 M-genital 1 1865 11343 91 520541 Penicillin Collin 2 696 1135 91 196400 Similar Collin 2 696 1135 91 196400 Similar Collin 3 1885 1886 91 196400 Similar Collin 4 4 4 4 4 4 4 4 4	232	7 -	760	1608	9: 1:016112	ycil8 gene product (Cyanophora paradaxa)	46	28	849
6 3843 6472 91 1788049 (AEC000270) 6 3461 3868 91 722339 Unknown Paragrams 1 307 2 91 1699079 Coded for yki48910 Cod	292		687	220	91 1673744	Mycoplasma pneumoniae, Number C53312, from H.	9	29	468
6 3461 3868 gi 722339 1 307 2 gi 1699079 1 14874 gi 11313900 1 14874 gi 11313900 1 1 1 1 1 1 1 1 1	2	50	5843	6472	91 1788049	(AE000270) 0235; This 235 aa orf ib 29 pet identical (10 gaps) to 198 residues of an approx. 216 aa protein YTXB_BACSU SW: P06568 [Escherichia col1]	45	24	0.00
1 307 2 91 1699079 16 14371 14874 91 152192 12 7046 6606 bis. 153689 12 7046 6606 bis. 153689 1364 91 1472921 1460457 1561 2619 91 1480457 16 16 16 16 16 16 16 1	A .	9	1461	386A	19:1722339	unknown Acetobacter xylinum	45	29	1 804
16	9		307	~	91 1699079	C. elegans CDNA yk41h4.); coded for by C. elegans coded for by C. elegans CDNA yk15295.5; coded for N yk59a10.5; coded for by C. elegans CDNA yk41h4.5, is cDNA cm20g10; coded	\$\$	90	900
7 9158 7941 91 152192 12 7046 6606 bits 153639 1 774 364 91 472921 1 774 364 91 472921 1 604 2 91 440457 1 604 2 91 440457 2 4909 4037 901 910 910 3 1885 3876 91 2351768 4070 4037 901 910 910 5 1885 3876 91 2351768 6 18256 91 520541 7 15467 18256 91 536934 7 15467 18256 91 536934 8 7016 1352 91 536934 9 1016 1352 91 196400 1 14656 1352 91 196400 1 14656 1352 91 196400 1 14656 1352 91 196400 1 1 14656 1354 91 91 91 91 1 1 1 1 1 1 1 1	1 72	- 1	:	14874	19111321900	NADH dehydrogenase (ubiquinone) (Artemia franciscana)	45	25	504
12 7046 6606 bis 153689 1561 2619 91 172921 1 774 364 91 172921 1 604 2 91 1480457 1 604 2 91 1480457 1 604 2 91 1480457 1 604 2 91 1480457 1 604 1 605 91 91 91 91 91 91 91 9	66		9158	7941	91 152192		\$	28	1218
5 1561 2619 91 472921 V-type Na.ATPase Enterococcus hirae 1 774 364 91 304141	127	7	7046	9099	bhs 153689 	HitB-iron utilization protein (Haemophilus influenzae, type b. DL42, HTHI TN106. Peptide, 506 aal (Haemophilus influenzae)	45	24	441
1 774 364 91 104141	137	<u>-</u>	1561	2619	91 472921	v-type Na-ATPase (Enterococcus hirae)	45	1 64	1 6501
1 604 2 91 1480457	1 209		774	364	91 304141	restriction endonuclease beta subunit (Bacillus coagulans)	1 65	28	411
18 19782 20288 gi 433942 ORF_(Lactococcus lactis)	314		604	2	91 1480457	latex allergen (Hevea brasiliensis)	- s+ -	1 16	603
8 7030 6452 gi 537207 ORF_££277 Escherichia coli 5 4909 4037 gnl PID e308082 membrane transport protein Bacillus subtili 1 818 75 gnl PID d100718 ORFI Bacillus sp. 1 1885 3876 gi 235768 PspA Streptococcus pneumoniae 17 15467 18256 gi 1045739 M. genitalium predicted coding region MG064 15 14656 17343 gi 520541 Penicillin-binding proteins lA and 18 Bacillus subtili 2 696 1352 gi 536934 YjCA gene product Escherichia coli 2 2416 338 gi 396400 similar to eukaryotic Na·/H· exchangers Escherichia coli 2 2416 338 gi 396400 similar to eukaryotic Na·/H· exchangers Escherichia coli 2 2416 338 gi 396400 similar to eukaryotic Na·/H· exchangers Escherichia coli 2 2416 338 gi 396400 similar to eukaryotic Na·/H· exchangers Escherichia coli 2 2416 338 gi 536934 2416 2416 341	20	- 1	:	20288	gi 433942	ORF (Lactucoccus lactis)		7 92	507
5 4909 4037 gnl PID e308082 membrane transport protein Bacillus subtill 1 818 75 gnl PID d100718 ORF1 Bacillus sp. 1 1885 3876 gi 235168 PspA Streptococcus pneumoniae	87	8	1 7030	6452	1911537207	ORF_1277 (Escherichia coli)	44	26	678
1 818 75 gnl PID d100718 ORF1 (Bacillus sp.) 1885 3876 gi 2351768 PspA Streptococcus pneumoniae) 17 15467 18256 gi 1045739 M. genitalium predicted coding region MC064 15 14656 17343 gi 520541 Penicillin-binding proteins 1A and 1B (Bacillo 1866 1352 gi 536934 Y)CA gene product [Escherichia coli) 2 2416 338 gi 996400 similar to eukaryotic Na·/H· exchangers [Escherichia coli) 2 2416 338 gi 996400 similar to eukaryotic Na·/H· exchangers Escherichia coli) 2 2416 338 gi 996400 similar to eukaryotic Na·/H· exchangers Escherichia coli) 2 2416 338 gi 996400 similar to eukaryotic Na·/H· exchangers Escherichia coli) 2 2416 338 gi 996400 similar to eukaryotic Na·/H· exchangers Escherichia coli) 2 2416 338 2416 338 2416 338 2416 34	166	S	4909	4037	gn1 P1D e308082	protein [Bacillus	**	25	873
3 1885 3876 91 2351768 PspA Streptococcus pneumoniae 17 15467 18256 91 1045339 M. genitalium predicted coding region MG064 15 14656 17343 91 520541 Penicillin-binding proteins 1A and 1B (Bacill 2 696 1352 91 536934 Protein product [Escherichia coli] 2 2416 338 91 396400 Similar to eukaryotic Na·/H· exchangers [Escherichia coli] 2 2416 338 91 396400 Similar to eukaryotic Na·/H· exchangers Escherichia colin 2 2416 338 91 396400 Similar to eukaryotic Na·/H· exchangers Escherichia colin 2 2416 338 91 396400 Similar to eukaryotic Na·/H· exchangers Escherichia colin 2 2416 338 91 396400 Similar to eukaryotic Na·/H· exchangers Escherichia colin 2 2416 338 91 396400 Similar to eukaryotic Na·/H· exchangers Escherichia colin 2 2416 338 91 396400 Similar to eukaryotic Na·/H· exchangers Escherichia colin 2 2416	1 247		818	25	gn1 P10 d100718	ORF! (Bacillus sp.)	*	20	744
17 15467 18256 gi 1045739 M. genitalium predicted coding region MC064 15 14656 17343 gi 520541 penicillin-binding proteins la and 18 (Baci) 2 696 1352 gi 536934 YjcA gene product [Escherichia coli) 2 2416 338 gi 396400 similar to eukaryotic Na·/H· exchangers [Esc	1 12		1885	3876	91 2351768	PspA Streptococcus pneumoniae)	6	24	1 3651
15 14656 17343 91 520541 penicillin-binding proteins 2 696 1352 91 536934 yjcA gene product [Escherichi 2 2416 338 91 396400 similar to eukaryotic Na+/H+	36	:	;	118256	gi 1045739	genitalium predicted coding region MG064	-	26	2790
2 696 1352 gi 536934 yjcA gene product (Escherichi 2 2416 338 gi 396400 similar to eukaryotic Na./H.	54	:	:	11343	191 520541	(Bacillus	•	27	2688
2 2416 338 gi 396400 similar to eukaryotic Na·/H·	67	~ :	969	1352	gi 536934	y)cA gene product (Escherichia coli)	5	7 67	657
	1139	~ :	2416	336	gi 396400	eukaryotic Na+/H+	÷	24	2079

S. pneumoniae - Putalive coding regions of novel proteins similar to known proteins

Contig	ORF 110	Contig ORF Start Stop	Stop (nt)	match- acession	match yene name	a is	1 ident	length (nt)
862	-		608	809 91 413972	ipa-(8r gene product (Bacillus subtilis	÷	\$4	807
1 387	-	6 1	427	47 427 91 2315652	(AF016669) No definition line found (Caenorhabditis elegans)	\$	000	381
185	; —	4221	7216	4 4221 3127 91 2182399	(AE000073) Y4fP (Rhizobium sp. NGR234)	\$	52	1095
340	7 —.	1 582	02	70 qn1 PID e218681	[CDP-diacylglycerol synthetase (Arabidopsis thaliana)	=	70	513
1 363	; :	420\$	1914	6 4205 1914 91 1256742	R27-2 protein Trypanosoma cruzi	.	72	2292
368	- 5	- 2	1 943	91 21783.	LMN glutenin (AA 1-356) (Triticum aestivum)	=	34	942
155		6847	2361	91 42023	member of ATP-dependent transport family, very similar to mdr proteins and hemolysin B, export protein (Eschetichia colil	0	80	1629
365	<u>:</u>	56	1438	1436 91 1633572	Herpesvirus saimiri ORF73 homoloy (Kaposi's sarcoma-associated herpes-like virus)	0	12	1344
: : _	-	1 2979	1 3860	1 3860 911 1 1 1 1 1 1 1 1	hypothetical protein (Synechocystis sp.)	61	56	882
-	- 5	1 1814	4647	5 3814 4647 9n1 P1D d101961	hypothetical protein (Synechocystis sp /	60	61	834
1 26	: -	114035	10724	6 14035 10724 91 142439	ATP-dapendent nuclease (Bacillus subtilis)	æ	02	3312
	: - : -	-	4916	47 1 3 4916	INF-180 Petromyzon marinus	36	23	4914

proteins
known
S
1185
318
101
eins
•
o Jd
novel
ot
regions
coding
Putative
1
pneumoniae
Š

																												_
Stop (nt)	3009	967	. 76	1574	6497	15396	6317	1689		2841	15390	9419	1 0166	4280	5704		6888	2672	-	1456		243	1 6800	34	20		15893	
Start (nt)	3428	119		1182	5382	-	5625	615	1875	1215	1669	9955	19101		1034	6069	9116	1 8964	1140	6771	1913	-	5675	324		4890	14544	
	_	<u>-</u>	-	_				÷	: - -	=	= =	. –	-	- 9 -	-	-	-	-	-		: —	-	: -	-	: -			î
Contig 1D	-					-	-		9		. 9	2	-	a	. 6	91			. ~	-	14	16	91	13	1.3	1.1		
· :	. —	-	. —	-	-	-	<u>. </u>	: —	• —	_	·	-	-	-	•	-	-	• –	• –				· —		-		-	•

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

·				. —																					_		
Sto	2589	4482	17362	19982	25764	26218	21512	6032	6653	518	2641	4223	4956	1797	3850	1597	5072	4919	5518	8207	6263	2344	5538	9	1740	8641	1,116
Start (nt)	335		. 6		5.	. 40		9599	7132	36	1000	4819	4789	3017	4272	5028	5746	9655	5039	5655	6511	2664	5203	5327	8024		1 2996
ORF			121	25	=	35	36	. ~	. 60			•	. ~			01	=		- G	•	6	9	S	.	01	~	= :
Cont ig	21	21		22	22	22	7.5	23	23	3.4	25	נג	2.3	28	28	28				53	000		32	<u> </u>	- -	7	~
•	-	-	• —	• —			-	• —	-			-	-	- -	-	· –		-		-	. —	-		- -	-		. — ÷

vs
_=
9
3
ã
c
3
Š
_
2
roteins not \$1141lar to known
-
Z
=
د د
2
=
2
ž
proteins not
novel
3
Ċ
ŭ
Ξ
regio
eg
_
ž
Ē
Cod
u
9
-:
3
ž
•
1
9 6
-
pneumon
5
Ş
7

																					-				•		
85	i 0	000	; =	=	- 6		. 56	11		=		=		22		=		89			53	22		3	21	36	! - '
- St	·	- 85	، مَ		i 0			1 -					<u> </u>	1 00		89		· ~	. ~	. ~	. 💝		1124		183	1217	
Start (nt)			1073		: 2		: =	569	0.8	: 5		728	72	a a	268	4831	20.	3075	6	6.	5	: 2		1 7	9		508
	-	_	=	-	=	=	=	: -	-	-	=	-	-	-	-	-	-	-		-	-	-	= = .	=	=	= =	_
0 =		= :	:=:			=	=		-	=	Ξ.					-		_	_	-	-	Ξ			2		-
Cant i	. ~ .	_	:		. ~	ص ،		i A	38	. ~		i -	•	7	3	. •	• •	-			8	6.	48		8	6	67
: :	- :	-		-	: —	-	<u>-</u>	-	-	: -	<u>:</u> —	<u> </u>	- -	-	٤ —	-	<u>. </u>	<u>-</u>	<u>:</u> —	_	-	<u>:</u> —	<u>-</u>	-	-	-	<u> </u>

2
=
š
ž
Ē
Š
ž
9
_
3
ē
Similar.
یا
ņ
5
Ē.
٦
proteins
>
0
ŏ
'n
6
egions o
ā
ğ
Ξ
õ
•
-
ě
ž
,
•
ě
HOWN
'n
pneumonia
-

		· — ·	· — ·			• - -		• —						. — .				. –	. –				.			 .	 .
Stop (nt)	2672	3598		5187	:			0123			1939			7335				5549	5929	6451	1772	3176	2	3147	9495	1182	980
tart	700	239	,	_		: :		• -	• —	-		• •	_	1 1956	-	_	: —	; — ·	-	-	7 —	-	-		280	90	199
ORF S	_	<u> </u>	= .	_		9 - 6			~				_		: _		: 5				•					: _	~
	_	2.	52	÷.	54	!	2.		٠.	26		5.		•	59		59		- 65	0.9	159		7.0		99	6.	69
	_	_	<u>. </u>	-	<u>:</u> _	<u>:</u> _	-	<u>:</u>	<u>:</u> —	-	<u>:</u> _	<u>:</u> _ :	-	<u>:</u> —	- ,		<u> </u>			<u>:</u> –	-	<u>:</u> _	-	<u> </u>	<u> </u>	-	<u>: </u>

known proteins
٥
brief lac
not
proteins
fnovel
regions o
re coding
Putative
ı
pneumoniae
'n

•																											
Stop (nt)				0	! =	95	. 90	9	4 00	: 5	2.8	9		2	10	. 0	:	= =	20	1 49	. ~	1092	2875	1114	2000	1009	1 9000
Start (nt)	4059	4215	5268	0351	1859	5204	9458	1815	1214	6961	183	1462	24	187	1602	924		1631	872	810	164					; -	-
ORF	_	_	-	_	<u> </u>	: `` .	-	-	: —	; —	- -	; —	. –	-	: —	: —	- -	-	-	-	; —	-	-	=	: —	; —	; — .
Cont 19	0,0	0.0	0,0	11	1.1	17	72		3	73			9,6		;	80	;	1	83	83	¥8	98	98	98	87	1 1	68.3
• •		. — .		-	- .		-	· — ·	-	.	. — .	<u>. </u>	-	-		! — .	- -	-	- -	: — .	-	-	- –	: ·		<u>-</u>	: _ :

2
=
=======================================
ັ
ũ
э,
=
3
2
2
٩
-
<u>.</u>
2
=
imilar
6
-
not
5
-
5
Ξ
•
Ä
prot
ā.
_
-
5
2
-
ب
0
os.
Ē
2
ding regions of a
ē
ō
Ċ
P
ŏ
U
•
5
ā
7
2
_
•
•
oneumoniae
-
۶
ĕ
3
ĕ
×

## 19 179.10 176.10 ## 19 182.75 179.28 ## 2.111 28.78 ## 2.111 28.78 ## 2.111 28.78 ## 2.111 28.78 ## 2.111 28.78 ## 2.111 28.78 ## 2.111 28.78 ## 3.114 95.2 ## 3.114 95.2 ## 3.114 95.2 ## 3.114 2.395 ## 4 3.170 3.691 ## 4.53 4.573 ## 4.53 4.573 ## 4.53 4.573 ## 4.53 4.573 ## 4.53 4.573 ## 4.53 4.573 ## 4.53 4.53 ## 4.53 ## 4.53 ## 4.53 ## 4		· ·		·		· —	·	· — ·	· ·	· — ·	· —	• -	. —	-	• —	. —		• –	-		; –	• —·	: –	• — ·	. — .	, —	, —	- -
### Start ID ID ID ID ID ID ID I	5 5	5	17928	1840	2878	6016	·	6868	2395	22	141	691	573	~	237	37.	182	632	1140	1420	6753	18692	19541	1 00	299	6.63	6735	6517
10 10 10 10 10 10 10 10 10 10 10 10 10 1	tar nt)	Š	18275	6191	11172	2529	2634	ווננ	668	1143	2959	3170	4253	161	2648	4533	į	*	. ~		7043	18522	19717	1601	48	4924	6142	9609
		91	19	~	-	6	-	6	7				9	_		. 62	-	~		-	5	12	12		=			-
	ont i		87	80	88	80	83	68	9	9.6		9.	16	. ~	93		iō		96	96	97	66	66	100	103	101	104	105

n proteins
9
0
مَ
ž
š
_
or slittlar to known
4
Ξ
7
el proteins not slittille
7
č
5
Ξ
ž
ř
C.
<u>ء</u>
3
۰
of novel
'n
5
÷
regions
0
Ξ.
2
ŭ
3
-
7
- Putative coding
ď
•
5
Ĕ
ě
pneumoniae

				. —	. . .	• — ·					• - -	. <u> </u>		.	-	. —	• —·	. –	. —		<u> </u>		 -	.	, .	. — <u>-</u>	
Stop (nt)	163	0212	268	3788	9091	0438	2121	1357		•	! =	0	99	: ~		9509	6277	1621	756	5673	11209	0 11	3830	7	14521	14532	14875
		37			60	24		74 -	- 86	1 95				i	-	_	-	608	- 66	972	838	25	913	25	1 . 120	840	363
- St	_	96	-	-	9	= :	-	22	-	-	-	-	-	689	<u>-</u>	-	6	_	-	· ·		2		2 - 3	7	=======================================	115
10 ei	-	2		-	-	01		-	-	==	113	-	-	-	-	-	- -	-	_	= .	=		-	-			
Cont	106	106	108	Ξ	===	115	116	118	122	122	122	124	128	129	129	129	129	128	=======================================			-	100	- 1	-		= :
	• ·	•	• —		• —				-							•											

to known proteins
_
similar
not
proteins
novel
egions of
5
codin
tative
ž
pneumoniae
•

	• —									•																	
Stop (nt)	20838	1 69	479	178	2885	1076	90,901	9750	3726	8647	4765	9161	2880		579	1909	2642	13-61	101	116	294	780	2271	4017	1018	4945	4972
Start (nt)	19822		760	1149	3604	8223	6339	10052	7488	6913	5298		2	6258	355		2061	iō	2181	4550		631	1384	1726	1332	5535	2406
ORF IO	02	_	_	-	_	===	=	3	_	_		-	_	_	~		_	_	~			~	-		7	_	9
Cont ig 10	140	. 143	146	146	146	146	971	146	147	147	148	149	641	149	150	150	153	154	155	156	157	159	159	159	191	165	166
	• — ·	• —	• —	• •	• —	• -	• —	• –	• —	• —	-	• —	• —	-		• —	• •			-	-	• —		• —		• — •	

own proteins
š
2
not similar to k
not
ng regions of novel proteins not
novel.
ö
regions
coding
Putative
,
. pneumoniae
S

																										•,	
Stop (nt)	6395		7	6362	6962	1906	1476	1948	2677	835	1789	546	166	4925	177	5347	703	3724	2473	1102	2006	2320	4219		3557	4363	4821
Start (nt)	6075	2828	6485	1969	7303	8790	7150			659	893	1487	2200	1 9897	923	- 111	-	3652	1853	2112	2617	2126	4683	4846	2940	3686	4183
ORF	6	~	~	6	-	=======================================	6	- \$		~		- 5			- 01	=	=	9	- 5			~	- 2	9	-	-	
Contig	167	169	170	170	170	170	171	17.2	173	175		1	,	177	177		i	178		182	162	183	185	185	187	188	188
	<u>.</u> _ ;			_	_	_	<u>.</u> _ :	_	_		_	<u>.</u> —	<u>:</u>	<u>:</u> _	-	_		-	_	<u>. </u>	-	-	<u> </u>	_	<u>.</u>	<u>.</u>	

113
٥
bro
Ē
9
2
4
=
a .
100
9
Ē
5
٥.
novel
5
ō
S UO
6 9 i.
-
ding
õ
8
ناوا
2
niae
eumor
pne

			. <u></u> .						. —		.								. _	. –	-					. –	· - ·
ا جو ا	6493	2844	5564	-	1000	2268	2878	5331	319	1127	1543	6231	1849	198	9999	5769	595	3276	1709	2460	9	8230		205	330	5277	5754
ا ڪئيا:	882	-	956	81.9	35	19	1801	980	760	3115	5249	5620	1553	-	6844	5329	5993	160	3	2	245	73.7	905	3	2581	. 9	iosi
: :	_	_	_	_	-	_	_	_	-	_		-		-				-	~	_	~	01	- -	-	-	6	=
Cont ig	. ~	_	. ~			192		2	13	194	195	195	- 67	: 6	- 6-	2	2	2	502	: 2	509	210	210	210	: =	: 7	214
! :	_ :	-	<u>-</u>	-	-	-	<u>.</u> –	<u>.</u>	!	-	- -	-	-	<u>:</u> –	-	-	-	-	÷ —	-	: —	: –	-	: –	- -	÷ —	-

9
-
rotei
0
2
Ę
á
5
٥
·
-
=
i'al lai
not
ĕ
Ś
_=
3
ē
proteins
_
>
nove
J
0
S
ō
Б
regions
Э,
Ξ.
졋
coding !
ā
. _
4
7
۵.
- Putative
2
1136
5
pneumoniae
ĕ
ā
S

Stop (nt)	184	1432	1972	3821	66	009	1961	510	2161	1838	211	87	19	270	362	1222	792	9191	1212	1 (11	0061	2973	342	1022	1681	186	2295
Start (nt)	1175	\$16	1430	3639	458	698	2617	-	1539	2116	\$2	310	099	-		4	2789	6711	1770	653	2244	1569	_	7.71	1124	857	1684
08 G	~	~		9	-	-	•	-	-	9	-	~	-	-	_	~	_	~	_	-	-	<u> </u>	-	~	~		~
Cont ig	21.7	218	218	218	219	220	223	227	234	234	235	235	238	246	248	248	254	258	260	263	263	263	366	266	270	272	275
	• —	• •	• — •			• •				-					• —	• •			. — .	• —	•	• —			 .	· — ·	· ·

2
=
n protein
χ.
ĭ
Ġ.
_
Ę
ó
c
×
٥
ŭ
ä
٠.
2
-
not
×
ĕ
-
2
oteins
•
ن
0
ă
_
7
ó
Ċ
7
_
2
5
<u>~</u>
Ġ,
g regions of novel
-
Ō
_
Ę
odir
codir
, codir
ve codir
ive codir
tive codir
tative codir
utative codir
Putative coding
- Putative codir
- Putative codir
-
-
-
-
-
-
pneumoniae - Putative codir

				. — .		. <u> </u>		. — —	. —		• — ·	. —	<u>. </u>	. —	. –	-	. –	- -	_	_	· ·	 ;
Stop (nt)	406	191	1134	826	4	-	1658	292		. ~	8	, ~	20	1889	1816	. 0	-	. ~	9	549	53	. 60	342	70\$		199	198
Start (nt)	~	-	1463	6111	000	-	685	- 60	21		1 0/9	261	55	249	. 8	1048	313	5	. 6	. ~	. ~	591	+ ~	. ~	60		1
10 - S	-	_	-	-	-	: — :		-	-	! —	-	-	-		-	! — :		_			-		-	_		~	-
ıä	278	38	1 (2)	1 (4)	288	289	162	293	294	296		. ~	1 ~	9	316	317	316	319	327	331	13.3	333	333	301	315	346	349
	! —	_	-	-	<u>:</u> –	<u> </u>	<u>:</u> –	-	-	-	-	<u> </u>	<u>:</u> _	<u>:</u> _	<u>:</u> _	<u>:</u> _	-	<u>.</u>	<u> </u>	<u> </u>	-	! —		! —	<u>:</u> —	-	+ - :

ABLE 3

'S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

•	. –	. _	٠.		•			•		
Stop (nt)	=======================================	1 973	448	628	1265	1004	510	693	-	30
Start (nt)	180	7	636	948	1639	345	683	109	150	569
ORF	~		~	~	~	_	~	_	-	~
5	350	355	358	360	364	378	976	180	385	365
										. — .

148

(1) GENERAL INFORMATION:

(i) APPLICANT: Charles Kunsch

Gil H. Choi

Patrick S. Dillon

Craig A. Rosen

Steven C. Barash

Michael R. Fannon

Brian A. Dougherty

- (ii) TITLE OF INVENTION: Streptococcus pneumoniae Polynucleotides and Sequences
- (iii) NUMBER OF SEQUENCES: 391
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
 - (B) COMPUTER: HP Vectra 486/33
 - (C) OPERATING SYSTEM: MSDOS version 6.2
 - (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:

PCT/US97/19588

149

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Brookes, A. Anders
 - (B) REGISTRATION NUMBER: 36,373
 - (C) REFERENCE/DOCKET NUMBER: PB340P1
- (vi) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (301) 309-8504
 - (B) TELEFAX: (301) 309-8512

PCT/US97/19588 WO 98/18931

150

(2) INFORMATION FOR SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 5625 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

60	TCACAACTAC	AACTTGACTA	TTACGTAACA	CTAAAGGAAC	CCAGCTACAG	CCAAGCAAAA
120	AAGTAATGTA	TCAGTAGTTA	CTCACTTTAA	TTGACGTAAA	GGTATCAAAG	TCAAGGTGTT
. 180	CTTGTATAGT	CGACGGGCAT	TTTTGATGTA	TCTCAACTTT	AGACGCTATG	AAAAAGTTGA
240	ACTTAAACGT	AGAAGTCGGT	ATAGTAGCTC	TCAATCTACT	TATTCTAGTT	AGATGTGTAC
300	TTATTACCTT	CGTGTTTGGA	GGACTGGTTT	TGAAAAACGT	AACCAGTCCT	GCTATATCAA
360	ACGGTGGTGT	GAACGGACGT	GCCGTATGCC	TAGTTGAACC	CGTTAAAAGT	GAACGACATG
420	AATCTGGAAT	TAGTGGAATG	TTTCGAAATC	CCCTACTCGA	AGAGATTATC	GAGAGGGGCT
480	ACGTCGCCTT	AACCACGTCA	AATCTCTTCA	ACTCTTCGAA	GCTTTCTAAT	AGTCCATCGA
540	AGTGTTTTGA	ACCTCAAAAC	TCTATCCACA	CTTCGTCAGT	TGGTTACTGA	GCCGTGCGTA
600	CTGCGGCTAG	TTTGAGCAAC	AAAACAGTGT	CTACAACCTC	TCAGTTCCAT	GCTGACTACG
660	TTGGTTTAAA	TTGTTAGAAG	GTATAACACA	TTTTCATTGA	TGCTCTTTGG	TTTCCTÄGTT
720	TTAAGGTTGG	TATCCCATAG	CGATATATTA	CATTTACCTT	AGTTTGTTCA	TTTCCTAATC
780	TTGACAAAGA	GTTTCTTTAG	AAAACTTAGT	ATGGAGCCGT	GATTATAGTC	TCATACAGAT
840	TAGATGAAAA	GAAATAAATA	AGGATATTTT	TAACTGTAAT	AAAATATTTG	TGCCATGAAA
900	TACGTTCAAT	TATCTTTATT	TGCTATTCTT	TAAATGGTAC	ATTCTATACG	TATCACCGAT
960	TCATTAATGT	TTGCTACCTA	TGAAGCAATG	TTGATAGCAG	GTTTCGGCAA	TGTTTCAATA
1020	GCTCACTANA	TAATTTATTA	TGAAGAAGAA	CTCAACCTTT	CTAGATAAAT	TTTAGAGTTA
1080	AGCAACCTTT	TGCATTATAC	AAAAATGTCT	AAGCAGTAAG	GGAAAAGTAA	TTGAGGGTAA
1140	ATCTGTAGAT	TGGATGATTT	TGATTAAGAG	GAATAAAATT	TGGATGGATT	TGGGAATGAG
1200	GTAGAAGCCT	GTTATAATCA	TAAGAATTAG	TGAAGTAGTC	CAGTTAGTCT	TATTATTGGA
1260	GTACGAAACA	АТСТААААТА	AGTAGACTGA	GTTTATGTAT	GAGGAGGTTA	TGCTAATAAT
1320	CTCATCTTAT	TCGATTTGTT	ACTTTCCCAA	AATTAATTTT	CATTTATAGA	ATTGCTAAAA
1380	TAATCAATTG	ATGATAAAAT	CTTCATCAGA	GGTATCGAAT	TATATATTAT	TTCAATCCGC
. 1440	ATTTATACGA .	CTATTGAAAA	TTTTATATCA	TATGAAAGCT	ACAAACAGAA	ATATCTGATT

GATGATGAAA	GCCTTAAGTG	TTATTTTATA	AAGGTTATTT	CAAGTCGTTC	CAAGGTAACA	1500
AGTCTAGATC	AGATTGAAGC	TGATAAAACG	ATACAAAGAA	AATATTCAAG	TGAGCTAAAA	1560
AAATTTATTG	GATTTTATAA	TGAGATTATT	TGTGAGGAAA	ATAGTTTCCT	ACATGTACGA	1620
AAGAGGTGGT	CGAGTTGGTT	TAGGTAGTCG	ATGCGTGAGT	TGATAATTCT	CAGGGTATGG	1680
ACTTCTTTTT	CATGAATGAG	GTAAAAGAGC	AGGTATTGTT	TAGAGACAAT	CATTCTGAGC	1740
ATATTTTCTG	GATAGAGGGA	GTATCCGATT	TTATGATCAA	AGTTAATACC	GCCCTCTGGT	1800
GAGAAGATGA	GTAGGTTGGT	AATTTAAACT	ATTAAACAGA	ATTTTTGATT	AAAAGTATTA	1860
TTTCATGAGA	GAAATCCTAA	TTTCACAATC	CATAGGCAAA	CGCTTGCATT	TCGTTTTTTA	1920
TTGGACTATA	ATAGGTTGGT	ATAAAGCCTT	CTGTAGTAAT	AAAATGTAGA	AGGTGTAGAA	1980
AGTAAGGATT	TAGAATATTT	GTAGTTAAAA	ACACAATGTT	GCTATTCCTT	ACGATAGGGA	2040
GATAGATATG	GCAATGATAG	AAGTGGAACA	TCTTCAGAAA	AATTTTGTGA	AGACTGTTAA	2100
GGAACCGGGC	TTGAAGGGGG	CTTTGCGCTC	CTTTATTCAT	CCTGAAAAGC	AGACCTTTGA	2160
AGCGGTCAAG	GATTTGACCT	TTGAGGTTCC	AAAAGGGCAG	ATTTTAGGAT	TTATCGGGGC	2220
AAATGGTGCT	GGGAAGTCGA	CAACCATTAA	AATGCTGACA	GGAATTTTGA	AACCAACATC	2280
TGGTTTTTGT	CGGATTAACG	GCAAGATTCC	CCAGGACAAT	CGGCAAGATT	ATGTCAAAGA	2340
TATTGGCGTA	GTCTTTGGAC	AACGCACCCA	GCTATGGTGG	GATTTGGCTC	TGCAAGAGAC	2400
CTACACTGTC	TTAAAAGAGA	TTTATGATGT	GCCAGACTCG	CTCTTTCATA	AGCGTATGGA	2460
CTTTTTGAAT	GAAGTCTTGG	ATTTGAAGGA	CTTTATCAAG	GATCCCGTGC	GGACTCTTTC	2520
ACTGGGACAA	CGGATGCGGG	CGGATATTGC	GGCCTCCTTG	CTCCACAATC	CCAAGGTTCT	2580
TTTTTTAGAT	GAGCCGACCA	TTGGTTTGGA	CGTTTCGGTT	AAGGATAATA	TTCGTCGGGC	2640
AATTACTCAG	ATCAATCAAG	AGGAAGAAAC	TACCATTCTT	TTGACCACTC	ACGATTTGAG	2700
TGATATTGAG	CAACTTTGTG	ATCGGATTTT	CATGATTGAC	AAGGGGCAAG	AGATTTTTGA	2760
TGGAACGGTG	AGCCAACTCA	AGGAGACCTT	TGGTAAGATG	AAGACTCTCT	CTTTTGAACT	2820
GCTACCAGGT	CAAAGTCATC	TCGTCTCTCA	CTATGACGGT	CTGTCTGATA	TGACCATTGA	2880
TAGACAAGGA	AACAGCCTCA	ACATTGAATT	TGATAGTTCT	CGCTACCAGT	CAGCTGACAT	2940
TATCAAGCAA	ACCCTGTCTG	ATTTTGAAAT	CCGCGATTTG	AAGATGGTGG	ATACGGATAT	3000
TGAGGATATT	ATCCGTCGCT	TCTACCGAAA	GGAGCTCTAG	GATGATCAAA	TTGTGGAGAC	3060
GTTATAAACC	CTTTATCAAT	GCAGGGGTTC	AGGAGTTGAT	TACTTACCGA	GTCAACTTTA	3120
TTCTCTATCG	GATTGGCGAT	GTCATGGGGG	CTTTTGTGGC	CTTTTATCTC	TGGAAGGCTG	. 3180

			152			
TCTTTGATTC	TTCGCAAGAG	TCTTTGATTC	AGGGCTTCAG	TATGGCGGAT	ATCACCCTCT	3240
ACATCATCAT	GAGTTTTGTG	ACCAATCTTC	TGACTAGATC	CGATTCGTCC	TTTATGATTG	3300
GGGAGGAGGT	CAAGGATGGC	TCCATTATCA	TGCGTTTGTT	GCGACCAGTG	CATTTTGCGG	3360
CCTCCTATCT	TTTCACCGAG	CTTGGTTCCA	AGTGGTTGAT	TTTTATCAGC	GTTGGCCTTC	3420
CATTTTTAAG	TGTCATTGTC	TTGATGAAAA	TCATATCGGG	TCAAGGTATT	GTAGAGGTGC	3480
TAGGATTAAC	TGTCATTTAT	CTTTTTAGCT	TAACGCTCGC	CTATCTGATT	AACTTTTTCT	3540
TTAATATTTG	CTTTGGATTT	TCAGCCTTTG	TGTTTAAAAA	TCTTTGGGGT	TCCAACCTAC	3600
TTAAGACTTC	CATAGTGGCT	TTTATGTCGG	GGAGTTTGAT	TCCCTTGGCA	TTTTTTCCAA	3660
AGGTTGTTTC	AGATATTCTC	TCCTTTTTGC	CTTTTTCATC	CTTGATTTAT	ACTCCAGTTA	3720
TGATCATTGT	TGGAAAATAC	GATGCCAGTC	AGATTCTTCA	GGCACTCCTT	TTGCAGTTCT	3780
TCTGGCTCTT	AGTGATGGTG	GGATTGTCTC	AGTTAATTTG	GAAACGGGTC	CAGTCCTTTA	3840
TCACCATTCA	AGGAGGTTAG	TATGAAAAA	TATCAACGAA	TGCATCTGAT	TTTTATCAGA	3900
CAATACATCA	AACAAATCAT	GGAATATAAG	GTAGATTTTG	TGGTTGGTGT	CTTGGGAGTC	3960
TTTCTGACTC	AAGGCTTGAA	TCTCTTGTTT	CTCAATGTCA	TCTTTCAACA	TATTCCATTC	4020
CTAGAAGGCT	GGACCTTTCA	AGAGATAGCT	TTCATTTATG	GATTTTCCTT	GATTCCCAAG	4080
GGAATGGACC	ATCTCTTTTT	TGACAATCTC	TGGGCACTAG	GGCAACGCCT	AGTCCGAAAA	4140
GGGGAGTTTG	ACAAGTATCT	GACTCGTCCC	ATCAATCCTC	TCTTTCACAT	CCTAGTTGAA	4200
ACCTTTCAGA	TTGATGCCTT	GGGTGAACTC	TTAGTCGGTG	GTATTTTATT	GGGAACAACA	4260
GTGACCAGCA	TTGTTTGGAC	TCTTCCAAAA	TTCCTGCTTT	TCCTAGTTTG	TATTCCTTTT	4320
GCGACCTTGA	TTTATACTTC	TCTTAAAATC	GCAACAGCCA	GTATCGCCTT	TTGGACTAAG	4380
CAGTCAGGCG	CCATGATTTA	CATCTTCTAT	ATGTTCAATG	ACTTTGCTAA	GTATCCGATT	4440
TCTATTTACA	ATTCTCTTCT	TCGTTGGTTG	ATTAGCTTTA	TCGTGCCTTT	CGCCTTTACA	4500
GCCTACTATC	CAGCTAGCTA	TTTCTTACAG	GAAAAGGATG	TGTTCTTTAA	CGTAGGAGGT	4560
TTGATGTTGA	TTTCTCTGGT	TTTCTTTGTT	ATTTCCCTTA	AACTTTGGGA	TAAGGCTTA	4620
GATTCCTACG	AAAGTGCGGG	TTCGTAAAAG	CTAAAGTAAG	ACTAAAATCA	AGAAAGAAAC	4680
TTATGATGTT	TGTAATTGAA	GAAGTCAAGG	ATGAAAATCA	AAAAAAGGCA	GTTGTCGCTG	4740
AGGTTTTGAA	GGATTTGCCA	GAATGGTTTG	GAATCCCAGA	AAGCACACAA	GCCTATATAG	4800
AAGGAACCAC	GACACTGCAA	GTTTGGACCG	CCTATCAGGA	GAGTGATTTC	ACTAGATTTG	4860
TAAGCTTATC	CTATTCGAGT	GAAGATTGTG	CAGAGATTGA	TTGTCTCGGC	GTAAAAAAGC	4920
TTATCAAGGT	AGAAAAATTG	GGAGCCAATT	GCTTGCTACT	TTAGAGAGTO	AAGCTCGTAA	4980

AAAAGTTGGT	TATCTGCAGG	TCAAAACAGT	GGCAGAAGGT	TCTAATAAAG	ATTATGATCG	504
AACAAATGAC	TTTTATCGAG	GTCTTGGCTT	TAAAAAGTTA	GAGATTTTTC	CTCAACTATG	510
GAATCCGCAA	AATCCTTGTC	AGATTTTGAT	TAAAAAGCTT	GAATAATATT	ACTTGACATC	5160
TATTCTCAGA	GTGCTATACT	GTAAGTGTAA	TCGCCGATTT	AGCTTAGTTG	GTAGAGCAAG	5220
GCACTCGTAA	AGCCTAGGTT	ATAGGTAGAT	AAACGACTGA	GGATTTGAAA	AAATAGATAG	5280
GTAGAAGATA	ACCGTTAAGC	CTTACTCTTA	GCGGTTATTT	ATATTGTTTA	ATAGCGCTAA	5340
TATTTTATCA	ATTATGCCTG	TTTTCGTGTT	TCTGGTAGTT	GTTCAAGTTT	ATTGCTACTA	5400
TTTTTGATGG	TATGAATGTG	CTTATAATGT	ATCCCGGTTA	ACGAAAGTTT	TGGACTTATA	5460
CTCTTCGAAA	ATCTCTTCAA	ACCACGTCAA	CGTCGCCTTG	CCGTGCGTAT	GGTTATGACT	5520
TCGTCAGTTC	TATCCACAAC	CTCAAAACAG	TGTTTTGAGT	GACTACGTCA	GTTCCATCTA	5580
CAACCTCAAA	ACACTGTTTT	GCCCAATCTG	CGGCTAGTTT	CCTAG		5625

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7571 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

60	AAAATATCTC	AAGAAGTCTA	TTGTGTCTTT	GTTGGCCATG	TTCCTTGCGA	CTCTCCAGCT
120	TTGCCACAAT	TGTAGTGTAC	TTTCTCTGTG	TCCTATCTCG	CATCGCTCTC	CAATAAAACG
180	ATCTTGATTG	GTTTCCGCTG	TAGGCTTGAG	TCTAGTCGTG	TTTATTTACT	GCTTACAAAA
240	GCCATAACGC	TTTTTTTAGT	CTAGGCTTGC	ACCGCACAAG	CGAACCACAA	AATAGTTTCT
300	GCGAAATAGA	AAGCATCTTA	AGGCTTTGAC	CAAGAAAGCT	TCCATTATAA	CTCCATCTTA
360	TGAGATAGCC	TCTTCGCATC	TTTTCCTTAA	TGTTTGAGCC	AATCCCATAT	TTGACTATCG
420	ATTATCATCT	TATCAGACAA	CGCCCTCGAA	ACTTTGCGCA	CATCTACTAG	CGGCTAGCCT
480	AATTCCATTT	TGGCTGGTGC	CTTTTTGTAT	TTGTACTTGT	TATCATTGGT	GTCTGGCTAT
540	AATGGTATTG	TATAAGGTAA	CTTCCTGGCG	CGTAAAGGTA	CATTTTCAAC	TGCTTATAAG
600	ATAGTGGTTT	AGCCAGCTAG	TTTGAAGTAG	AGCTGCACCG	TAAAGACATG	GCAATGTTTC
660	ATAACCAATT	CATCCGGAGT	CTAATCACTA	AAGCCAGTGG	TCGGAAAGCC	TCATCAGTGG
720	AGTTTTCCCT	CAGTTGTTCC	AAAACTGCTT	CTCCGGATTG	CACTTGTGTA	ACCCACTGGT

GCCATGACAT AGTCTGCAGG CGATGAACTA ATACCGGTAC CGTTGGTGAA AGTCCCCAAC 780 ATCATACTGG TCATCTTGTC AGCTACAGAC TTATCAATCA CCCGTTTTTG TGAATTTTTA 840 TGACTCGCAA TAACTTGTCC ACTAGCATTT TCAATTCTAC TAATAAAATG AGCTTCAGGC 900 ATTAAACCTT CATTTGCAAA GGCGGCGTAT GCTTGAGCCA TTTGAAGAGG GTTGGTTTCA 960 ACACCGCTTC CCAAGGCGAC ACCAAGAACA CGGTCGACCT TTTCCATGTT GAGTCCGAAT 1020 TTTTCGCCTG CCTCAAAAGC CTTGTCGACA CCCAAATCAT TAACAGTGGC AACAGCAGGT 1080 AGATTAAGCG ATTCTGCCAA GGCTTGATAC ATAGGAACTT CTCGACTCGT TTTGATCCCT 1140 GCATAGTTAT CAACCTTATA GCTGTCATAC TGCATGGTAT GGTTATCCAA CTGCTTATTC 1200 AAAGCCCAGC TTGCTTCAAC TGCTGGCGTA TAAACAACTA AAGGCTTAAT TGTAGAACCA 1250 GGACTACGCT TTGATTGGGT TGCATAGTTG AAATTCCGGA ATCCAGTTTT ATCATTGTCA 1320 GCAACTTGAC CGACAACTCC ACGAACTCCC CCTGTTTTCG GTTCGAGGGC TACACTTCCT 1380 GATTGAGCAA ACGTTCCATC CTCTGCCCTC GGAAATAGCG ATGTGTTTTC ATAAACAATC 1440 TGCATATTTG CTTGGTAGTT TTGGTCCAGC TCTGTGTAAA TGCGGTAGCC ATTATTGACA 1500 ATCTCTTCCT CTGTTAGATT ATACTTGGAA ACAGCTTCAT TAACCACCGC ATCAAAATAA 1560 GAGGGGTAAC GGTAATCTGA GATTTTTCCT TCATACTTAT CGTGCAATTG CGAAGTCATA 1620 TCAACTTCAG CAGCTTTGGT TTCTTGGTTT TTATCAATAT ATCCTGCTGC AACCATATTC 1680 TGCAAGACAG TATCGCGCCG ATTAGTAGAA TCTTCTACGG AATTCAAGGG ATTATACAGT 1740 TCCGGCCCCT TGAGCATCCC TGCCAGAGTC GCAGCTTGAT CCAGACTCAC TTCTGATGCA 1800 GAAACTCCAA AGTATTTCTT ACTCGCATCT TCTACACCCC ACACACCATT TCCAAAATAA 1860 GCGTTGTTAA GGTACATGGT TAGAATTTGC TCCTTACTAT ATTTTTTGCT TAATTCTAAG 1920 GCAAGGAAAA ATTCTTTCGC TTTTCTCTCA ACAGTTTGAT CCTGCGATAA ATAGGCGTTT 1980 TTAGCCAGCT GTTGGGTAAT GGTAGAGCCA CCACCTGAAC GTCCAGCAGT GACAATAGCC 2040 AAGAAAAAC GGCCATAGTT AATCCCGTCA TTTTTATAGA AAGAACGGTC TTCTGTCGCA 2100 ATAACAGCAT TCTGCAAGTT TTTACTGATG TCAGTCAGCT CAACATAGGT TCCCTTTTGA. 2160 CCAGACAAGG CACCAGCCTC TTTTTCTTCA CGGTCAAAAA TAAGAGTCCG AGTTTTCAAG 2220 GCATTTTGCA AATCATTGAC ATTGGTCGAC TTGGCTACAG CAAACAAATA GATTCCAACT 2280 AGCAAGCCTG CACTCAAACC TAGTATAAGG ATAATCTTTG TTAGATGATA ACGACGCCAG 2340 AATTTTCGAA TCGGACCTAC TTGGGCTAAT TTTTTTCGAT CACTACGAGA GCGACGTAAG 2400 ATAGTAGAAT CAGAGTCCTC TAGTTCACTT GTTTCTTTT TAAAAAGAGA AAGAAATTTC 2460 TCAAATAATT TATCTAATTT CATGCGTTTA TTTTATCATC TTCATCATAG GAAGACAAGA 2520

155

ATTTAGCTAT	TTCCTATCCA	AATAGGGCTT	TTTTTGTTAC	AATATCTGTA	TGCAATTCAC	2580
ATTTACATTA	CCCGCCTCTC	TACCTCAAAT	GACAGTAAAG	CAATTACTTG	AGGAACAACT	2640
CCTCATCCCT	AGAAAAATCC	GTCATTTTTT	GAGAATCAAG	AAACATATTT	TGATAAATCA	2700
AGAAGAAGTC	CACTGGAAGG	AAATCGTAAA	TCCTGGAGAT	GTTTGCCAGT	TGACTTTTGA	2760
CGAGGAAGAT	TATTCCCAAA	AGACGATCCC	TTGGGGCAAC	CCAGACTTAG	TGCAGGAAGT	2820
TTATCAAGAT	CAACACTTGA	TTATTGTAAA	CAAACCAGAG	GGGATGAAAA	CGCATGGTAA	2880
TCAACCAAAC	GAAATTGCCC	TTCTTAACCA	TGTCAGTACC	TATGTTGGCC	AAACCTGCTA	2940
TGTCGTTCAT	CGTCTGGACA	TGGAAACCAG	TGGCTTAGTT	CTCTTTGCCA	AAAATCCTTT	3000
TATCCTGCCC	ATTCTCAATC	GCTTATTGGA	GAAAAAAGAG	ATTTCTAGAG	AATATTGGGC	3060
TCTAGTTGAT	GGAAATATCA	ACAGAAAAGA	ACTTGTTTTC	AGAGACAAAA	TTGGACGTGA	3120
TCGCCATGAT	CGTAGAAAAA	GAATAGTTGA	TGCAAAAAAT	GGGCAATATG	CTGAAACGCA	3180
TGTAAGCAGA	TTAAAGCAAT	TCTCAAACAA	GACTTCCTTG	GCTCATTGCA	AGCTAAAGAC	3240
AGGGCGAACC	CATCAGATTC	GTGTGCACCT	TTCGCATCAT	AATCTTCCTA	TCCTGGGAGA	3300
CCCTCTCTAT	AATAGTAAAT	CAAAGACAAG	CCGGCTTATG	CTTCATGCCT	TCCGACTTTC	3360
CTTTACCCAC	CCACTTACTT	TAGAGAAGCT	AACTTTCACT	ACCCTTTCAA	ATACATTTGA	3420
AAAAGAATTA	AAAAAGAATG	GATGATCGTG	TCATCCATTT	TTCCATATAA	AAAAGCAAGA	3480
CCACAAAGCC	TTGCTTTCTA	TCAACTCAAG	AATTATTTAG	CAATTTTTGC	GAAGTATTCA	3540
AGAGTACGAA	CAAGTTGTGC	AGTGTATGAC	ATTTCGTTGT	CGTACCATGA	TACAACTTTA	3600
ACCAATTGTT	TACCGTCAAC	GTCAAGAACT	TTAGTTTGAG	TTGCGTCAAA	CAATGAACCG	3660
TAAGACATAC	CTACGATATC	TGAAGATACG	ATTGGATCTT	CTGTGTAACC	GTATGATTCG	3720
TTTGAAGCTG	CTTTCATAGC	TGCGTTCACT	TCATCAACAG	TAACGTTCTT	TTCAAGAACT	3780
GCTACCAATT	CAGTAACTGA	TCCAGTTGGA	GTTGGAACGC	GTTGTGCAGA	TCCGTCAAGT	3840
TTACCATTCA	ATTCTGGGAT	TACAAGACCG	ATAGCTTTTG	CAGCACCAGT	TGAGTTAGGA	3900
ACGATGTTTG	CAGCACCAGC	GCGAGCACGG	CGAAGGTCAC	CACCACGGTG	TGGTCCGTCA	3960
AGGATCATTT	GGTCACCAGT	GTAAGCGTGG	ATAGTAGTCA	TCAATCCTTC	AACAACACCA	4020
AAGTTGTCTT	GAAGAGCTTT	AGCCATTGGA	GCCAAGCAGT	TTGTAGTACA	TGAAGCACCT	4080
GAGATAACTG	TTTCAGTACC	GTCAAGAACG	TCGTGGTTAG	TGTTGAATAC	AACTGTTTTA	4140
ACGTCGTTTC	CACCAGGAGC	AGTGATAACA	ACTTTTTTAG	CTCCACCTTT	AAGGTGTTTT	4200
TCAGCTGCTT	CTTTCTTAGC	AAAGAAACCA	GTAGCTTCAA	GAACGATTTC	TACACCGTCA	4260

			156	COMMON TONA	TTTACCCTTA	4320
	CGATTTGTTC					4380
	CACCTTCTTT					
	AGTGTGCAAG					4440
	CGTTTTGGAT					4500
	TAACTACCAT					4560
TGAAAAGAGT	AACTTGAATC	ACTACAAATC	ACCTTTCAAC	AAACCTATTA	TACAACTATT	4620
TGAGTTGAAT	TGCAAGTATG	GCCATTGTTT	TTCTATGTTA	GTTTCTTTTT	AAGACTGTAA	4680
ACCAAGGAAT	CCCTTACTAT	TCATAGCATA	ACGATTCTAT	AGGATCCATT	TTACTAATCT	4740
TACGCGCCGG	GAAGTAGGCT	GAGACATAAC	CAAGTAATAG	AGCGAAAACT	AGAGTTCCTA	4800
AAACAGATAA	AAGÄTTTAAT	TTAAAAACCT	TAGTGATGGA	TGGGTAAAAG	TGACTTACAA	4860
TCGCATTCGC	CAAACTTCCC	ACCCCTTGTG	CAACCAAAAA	TGCCAGCAGC	AAGGCGATGC	4920
CTACAATCCA	GATAGCCTCG	TAAATAAAAA	TTCCTTTGAC	ATCACGATTC	TGATAACCAA	4980
CTGCTTTCAT	GACACCTATT	TCCTTGGAAC	GTTGCATGAT	ATTGATGTAA	ATAATGATAC	5040
CAATCATAAC	CGCTGCTACC	ACAATAGCTT	GTGATGAAAG	CACAATCAAT	AATCCCTGAA	5100
TAACACGAAT	AAAGGTAATC	ACAATATCAA	GAACTCTCTG	TTGAGAAAGC	ACAGTATACT	5160
TCTTATTTTT	CTGTAATTCT	TCTGTTACTA	CTTTTGTCTG	TGATGGATCT	TTGAGTTCCA	5220
AGATAAAATA	AGATACAGCT	TTCGTAAATC	CAGCCTCTTT	CAAAATCGTT	TCCATTTGAT	5280
GAGACAGCAT	GAAACTGTTG	CTGTCCTCCA	TGTCATCTTC	ATCATTGATT	ACACGTACAA	5340
TCTTCGTTTG	AAATTGAGCA	ATCTTACTAG	TTTCGGCAGC	ACTTTCTACA	ATGCTGGCTG	5400
AGACTGATTT	GCCAATAAGA	TCATTAGCTG	TCAAATTTTT	TCCTGTCTGT	TCATTCCAAT	5460
TTTTTAGTAA	ACTGCTTGGA	ATCGTTAATC	CCTGTTCATT	TGTATCAGTA	TAGAGGGATC	5520
CAGCCAACAC	TTTGTCCGTC	TCATTATTAC	TAACAGAGAT	ACTTGTATCA	TCATAAAGAC	5580
TCACTACTTO	AGCATAAGAA	GGCATCGTT	GACTCAGATC	CATTTCTTG	CCATCTATAG	5640
TAATATTTGA	CATGTTCATC	CCAAAAGGAG	TCTCCAAATA	TTTAATAGCT	TCTTTCCCAA	5700
CTGTATCCGT	GATATATAGT	CAATTGAAAC	: AAGAGCAGGA	TAAAAAAGC	TCGTAAAAGG	5760
TATTGCAACT	TGGTAATACC	TTTTTGAGG	GCTTTTTGAT	ATGAGCCCAT	GTTTTCTCAA	5820
TAGGATTGT	A CTCAGGCGAG	TAGGGAGGA	GAGGTAAAAC	TTTATGCCC/	AACTCTTCGC	5980
ATAAAAGTTO	TAGCTTCCCC	ATTCTATGG	ATCTTACATT	TAATASSTA	A ATAACCGATG	5940
GTGTGTTTA	TGTTGGTAAC	AGAAAATTC	CAAACCAAG	TTCAAAAAA	TCGCTCGTCA	6000
TCGTCTCTT	GTAAGTCAT	GGAGCGATT	A ATTCACCAT	r TGTTAGACC	r GCAACCAAAG	6060

AAATCCTCTG	ATATCTTCTT	CCAGATACTT	TGCCTCTTAT	TAATTGACCT	TTTAATGAGC	6120
GACCATATTC	TCGATAAAAA	TAAGTATCGA	ATCCTGTTTC	GTCAATCTAA	ACAGGTGCTA	6180
GGTGCTTTAA	ACTATTAAAA	TTCTTAAGAA	ATAAGGCTAC	TTTTTCTGGG	TCTTGTTCAT	6240
AGTAGGTGTG	GTTCTTTTTT	CGAGTGTAGC	CCATAGCTTT	GAGCGTATAG	TGGATGGTAG	6300
TTGGATGACA	GCCAAATTCA	GAAGCTATTT	CAGTCAAATA	AGCGTCTGGA	TTGTCAGTAA	6360
GATAGTTTTT	AAGTCTATCT	CTATCAACCT	TTCTTGGTTT	TATTCCTTTT	ACTTGGTGGT	6420
TTAGCTCTCC	TGTTTTCTCT	TTTAGCTTTA	ACCAGCCATA	AATGGTATTA	CGTGAGATTT	6480
GGAAAACGTG	TGATGCTTCT	GTTATACTAC	CTGTTCGCTC	ACAATAAGAG	AGAACTTTTT	6540
TACGAAAATC	TATTGAATAT	GCCATAAAAA	GATTATACCA	CATTGTGTAC	TATTTTTGGT	6600
TCATTTTACT	ATATTTGAAG	AGGCGTTTAA	ACTATCTGAC	ATAAAACTCG	TTCTAGAGGA	6660
AAGACATCCT	TTAAAAAGTT	AGTTTATTTT	ACAACTTAGA	CATCAAGGTA	GGTTAACCCC	6720
TTCATGGAAA	AATCAAGACT	CTTAGCACTA	TGGGTTAAAC	TACCACTGGA	GACGTAATCA	6780
ATCGCTAAAC	CACGAAAACG	GCTAATAGTG	GTCATATCAA	TATTTCCAGA	ACATTCAATC	6840
CGAGAACGTC	CTGCAATTAG	GGTAATGGCC	TGTTCAATCT	GTTCCAATGA	CATATTATCC	6900
AACATGATAA	TATCAGCACC	CGCCGCCGCA	GCTTCTTCGG	CAGCAGCAAG	GCTTTCCACT	6960
TCCACCTCGA	CCATTTTCAC	AAAAGGGGCA	TAGGCACGCG	CTTGAGCAAT	TGCCTTTTGA	7020
АСАСТАССТА	CTGCCGCAAT	GTGATTGTCT	TTTAGCAGGA	TAGCATCTGA	TAAATTAAAG	7080
CGATGATTAT	AGCCACCGCC	AACTCTCACG	GCATATTTCT	CAAAAAGACG	TAAATTAGGA	7140
GTAGTTTTTC	GAGTATCAAA	TACCTTAATG	CAATCATCGC	CTAAGGCTTC	TACATAAGCA	7200
GCTGTCATCG	AAGCAATCCC	TGATAAATGT	TGTAAAAAAT	TCAAGGCAAC	GCGTTCACAT	7260
GTTAAGAGAG	TTCTCACCGA	GCCTATGATT	TCTAAAACCA	AATCGCCACT	AGTCAAACGA	7320
TCCCCATCCT	TAAATTGATG	AGGATTCTGG	AAGGTCACCT	CGGCATCAAA	TAGGGTAAAA	7380
ACCCTTTGA	AAACGGTTAG	CCCCCCTAAA	ACACCAGCTT	CCTTGGCAAA	AAGCGACACC	7440
TTGGCTTGGC	CATGATGATC	AAAAATGGCA	TTGGTACTGT	AATCTTCGGA	ATGAACATCT	7500
TCTCGCAAGO	CTGCTTTCAA	TGTATCATCI	ATTTGAAAAG	GGGTTAAATC	AGTTGAAATG	7560
ATTGACATCA	A C					7571

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 26385 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

158

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: TTTGCTAGTG GCTTAAATTC TTCAGGAAAA TCAGGCGTAT CTAAAAGTCG TGTCGTTTTT 60 GTTTCATCTA TATAAAGACT TCCTGCTCCC CCTACAACTA GAAAACGTGT CTGTGTTCCA 120 GCAAGAAGCT GATTAAATAG TTCGATTGAT TTGCTGTGGA GCGGTAGCGT ATCTGGTGTA 180 TAAGCACCAA ACGCTGAAAT AACAGCATCA AATCCAGTAA GATCATCTTT TGTCAACTCA 240 AATAAATCTT TTTTAATAAT AGACTCAGCT TGACTTTTGT TTTCAGAACG AACAATAGCC 300 GTTACTTCAT GTCCTCGTTT GACTGCTTCT TCAACAATTG CTTTCCCCGC TTGTCCATTT 360 GCTGCAATAA CTGCTAGTTT CATTTTTTAT ACCTCTCTTG TTGTAATTAT TTTAGTTACA 420 GAAATTGTGA CACTCTTAAT AATCAATGTC AATAGTCTTG CTTAATTATT ATCAAAATAT 480 TTCTACCAAG AAAACTAACC ATGATTCTAG TGAAAAAAAA TCTTCTTTGT CAACAAATTT 540 ACTITCTTGT TITAAACATG CTATAATAAT CATAGCAAGA GATCTAAGTT GTCTGTTTTT 600 TTAAAACGAG GTGATTATCA TGCGTAGATT CTATTCCCAT CTCCCCTACT ATCTGGTCAT 660 ATTATTCTTT TATTGGCCAC TTTATGAGTT GTTCTTACTA GTTGTTTCTG ACCCCCTTAC 720 780 ACTCAAGGGA CTCTATATAA ACAATCTTCT CTTCTTTACA CCTCTGGTAA TCTTGATTGT ATCGTTACTC TATAGCTACC GTTTCCGTTT CTCACTTTGA TGGTTAGTTG GTAACGGACT 840 GCTCTTTTAC TTTACTATCA TAACCTTTGG TGAGTTTATA CTAATTTACT TGCTAATCTA 900 960 TGAAACAGTT GCTCTGGTCG GCATGGATTC TGGTATTAGC ATCAAGCATA TTCTACAAAA AATGAAAAAC AAAAAACTTT CACAAAATCC TTGAAAAATC TCACAATCAT GCTATAATAA 1020 TCCATAGAGA CAAGTCACTT AGTCCCTTTC TACTAGAGAG TGCGTGGTTG CTGGAAACGC 1080 ATAGGAAGTC TAAACTGATA CTACTCTTGA GTTTTTTATG AAAACATAAA ACGGTGGCCA 1140 1200 CGTTAGAGCC GATCAGAGGT GTCCCTCTCT TTTGAGGTAC ATAAATGAAG GTGGAACCAC GTTGCGACGT CCTTTCGAGG ATGTCGCATT TTTTTATTAG GATACTAATT ATGGAGTTGC 1260 AAGAATTAGT GGAGCGCAGT TGGGCAATCC GACAAGCTTA TCACGAACTG GAAGTTAAGC 1320 ATCATGATTC CAAGTGGACG GTAGAAGAAG ACCTCTTGGC TTTATCTAAT GATATTGGAA 1380 ATTTCCAACG ACTGGTGATG ACAAAGCAAG GACGCTACTA TGATGAAACA CCCTACACAC 1440 TGGAACAAAA ACTTTCAGAA AATATCTGGT GGCTATTAGA ACTTTCTCAA CGTTTGGATA 1500 TAGACATTCT GACGGAAATG GAAAACTTCC TCTCTGATAA AGAAAAGCAA TTGAACGTTA 1560 GGACTTGGAA GTAGTCTGCT GATAAAAAT CAATGCTTAG AAACTATGAA ATAATAAAAA 1620

AGGAGAACAT CATGATTAAC	ATTACTTTCC	CAGATGGCGC	TGTTCGTGAA	TTCGAATCTG	1680
GCGTAACAAC TTTTGAAATT	GCCCAATCTA	TCAGCAATTC	CCTAGCTAAA	AAAGCCTTGG	1740
CTGGTAAATT CAACGGCAAA	CTCATCGACA	CTACTCGCGC	TATCACTGAA	GATGGAAGCA	1800
TCGAAATTGT GACACCTGAT	CACGAAGATG	CCCTTCCAAT	CTTGCGTCAC	TCAGCAGCTC	1860
ACTTGTTCGC CCAAGCAGCT	CGTCGTCTTT	TCCCAGACAT	TCACTTGGGA	GTTGGTCCAG	1920
CCATCGAAGA TGGTTTCTAC	TACGATACTG	ACAACACAGC	TGGTCAAATC	TCTAACGAAG	1980
ACCTTCCTCG TATCGAAGAA	GAAATGCAAA	AAATCGTCAA	AGAAAACTTC	CCATCTATTC	2040
GTGAAGAAGT GACTAAAGAC	GAGGCACGTG	AAATCTTCAA	AAATGACCCT	TACAAGTTGG	2100
AATTGATTGA AGAACACTCA	GAAGACGAAG	GCGGTTTGAC	TATCTATCGT	CAGGGTGAAT	2160
ATGTAGACCT CTGCCGTGGA	CCTCACGTTC	CATCAACAGG	TCGTATCCAA	ATCTTCCACC	2220
TTCTCCATGT AGCTGGTGCG	TACTGGCGTG	GAAACAGCGA	CAACGCTATG	ATGCAACGTA	2280
TCTACGGTAC AGCTTGGTTT	GACAAGAAAG	ACTTGAAAAA	CTACCTTCAA	ATGCGTGAAG	2340
AAGCTAAGGA ACGTGACCAC	CGTAAACTTG	GTAAAGAGCT	TGACCTCTTT	ATGATTTCAC	2400
AAGAAGTGGG ACAAGGTTTG	CCATTCTGGT	TGCCAAATGG	TGCGACTATC	CGTCGTGAAT	2460
TGGAACGCTA CATCGTAAAC	AAAGAGTTGG	TTTCTGGCTA	CCAACACGTC	TACACTCCAC	2520
CACTTGCTTC TGTTGAGCTT	TACAAGACTT	CTGGTCACTG	GGATCATTAC	CAAGAAGACA	2580
TGTTCCCAAC CATGGACATG	GGTGACGGGG	AAGAATTTGT	CCTTCGTCCA	ATGAACTGTC	2640
CGCACCACAT CCAAGTTTTC	AAACACCATG	TTCACTCTTA	CCGTGAATTG	CCAATCCGTA	2700
TCGCTGAAAT CGGTATGATG	CACCGTTACG	AAAAATCTGG	TGCCCTCACT	GGCCTTCAAC	2760
GTGTACGTGA AATGTCACTC	AACGACGGTC	ACCTATTCGT	TACTCCAGAA	CAAATCCAAG	2820
AAGAATTCCA ACGTGCCCTT	CAGTTGATTA	TCGATGTTTA	TGAAGACTTC	AACTTGACTG	2880
ACTACCGCTT CCGCCTCTCT	CTTCGTGACC	CTCAAGATAC	TCATAAGTAC	TTTGATAACG	2940
ATGAGATGTG GGAAAATGCC	CAAACCATGC	TTCGTGCAGC	TCTTGATGAA	ATGGGCGTGG	3000
ACTACTTTGA AGCCGAAGGT	GAAGCAGCCT	TCTACGGACC	AAAATTGGAT	ATCCAGATTA	3060
AAACTGCCCT TGGAAAAGAA	GAAACCCTTT	CTACTATCCA	ACTTGATTTC	TTGTTGCCAG	3120
AACGCTTCGA CCTCAAATAC	ATCGGAGCTG	ATGGCGAAGA	TCACCGTCCA	GTCATGATCC	3180
ACCGTGGGGT TATCTCAACT	ATGGAACGCT	TCACAGCTAT	CTTGATTGAG	AACTACAAGG	3240
GGGCCTTCCC AACATGGCTG	GCACCACACC	AAGTAACCCT	CATCCCAGTA	TCTAACGAAA	3300
AACACGTGGA CTACGCTTGG	GAAGTGGCCA	AGAAACTCCG	TGACCGCGGT	GTCCGTGCAG	3360

			160			
ACGTAGATGA	GCGCAATGAA	AAAATGCAGT	TCAAGATCCG	TGCTTCACAA	ACCAGCAAGA	3420
TTCCTTACCA	ATTAATTGTT	GGAGACAAAG	AAATGGAAGA	CGAAACAGTC	AACGTTCGTC	3480
GCTACGGCCA	AAAAGAAACA	CAAACTGTCT	CAGTTGATAA	TTTTGTTCAA	GCTATCCTAG	3540
CTGATATCGC	CAACAAATCA	CGCGTTGAGA	AATAAGAGTC	TAGCATAAAA	GCCTCCAATC	3600
TGGAGGCTTT	TTCTCATCTA	TTTTTACTCA	AGGACTAAGT	TCACTTGAGC	AAACTGAATC	3660
CGCACTGTCG	TTCCTTTTCC	GACCTCAGAC	TCGATACGAA	TCTGGTGCCC	CAGTTCTTCA	3720
GAAATTTTCT	TAGATAGATA	AAGGCCAAGT	CCAGAGGACT	GCTGGGTCAA	ACGGCCATTG	3780
TATCCTGAAA	AGCCACGTTC	AAATACTCGG	AGGACATCAC	TGTTTTTTAT	CCCGATTCCC	3840
GTATCTTTGA	TACAAAGCTC	TTGGTCATCC	ATATAAATCT	CCAGACCACC	TTCCTTGGTG	3900
TACTTGAGAC	TGTTTGAGAT	GATTTGCTCA	ATAACCACTA	GCAGCCACTT	TTTATCCGTC	3960
ACGATTTCTT	TATCAAGGTC	ATGTAGATTG	ACATTTAAGC	CTTTTTGAAT	AAAGAAAAGA	4020
GCATATTTAC	GAATTATTTC	CTTGACCAAG	TCCTCAATTT	GAACCTGCTT	TAAGACCAAA	4080
TCATCATGGA	AACTTTCTAA	ACGCAGGTAC	TGTAAAACTA	GGTTGGTATA	GGAGTCGATT	4140
TTGAAAATTT	CCTGTTCTAG	CTGCTGCTTC	AGTTGGCGGT	CGACCACTTC	TGCAACTAAG	4200
AGTTGACTGG	CTGCAATGGG	GGTCTTTATC	TGATGGACCC	ACAAGGTATA	GTAATCCAGC	4260
AAATCCGTCA	GTTTTCTTTC	TGCTTTTGAC	CTCTGCTGAT	AGAGTTCCAT	CTCACGCGCT	4320
TCTAATTTT	CTGCTAAAGC	TATTTCCAAA	GGAGACTTGG	сттесетете	TCCATAGAGA	4380
AGTTCCTGGC	GATAGACCTG	CGTTTCCACC	AATATGTCCC	AAGTGAAAAA	TAATATGGTT	4440
ACAAAGCAAC	: ACAAGAAGAA	AAAGTAGAGG	AAGTAAATTC	CTAGACTGGC	CAAAAAAAAC	4500
TGAAAGAGTA	AĞACAAGAAA	TGCCAAAGAA	AGCAGATAGA	TAAAAAGACC	ACTACGGGAG	4560
CGCAGATAGO	CTAGAAAAA	TTGTTTCCAA	TCAAGCATGC	TTCAATCCGT	CACCCTATTCC	4620
TTTCTTGGT	TCGATAAATC	CTACCAATCO	: CTGCTCCTCC	AACTTTTAC	GCAAACGAGC	4680
CACATTGAC	A GAGAGGGTAT	TATCATCAAT	GAAAAAGTCA	CTGTTCCAA	GTTCCCGCAT	4740
CAGGTCGTC	CGTGCTACGA	TGTTGCCTGC	ATGCTCAAAT	AACACGCGT/	A AAATCTGGAA	4800
TTCATTCTTC	GTCAAATTC	AGACTTGCCC	TTGATAATGT	AAATCCATG	G ATTTGGTATT	4860
GAGGATAAC	A CCAGCATAT	CCAGCAAACI	CTCATCACG	CCAAACTCA	r AGGAACGACG	4920
CAACAAGCC	C TGAACCTTAG	CTAAAAGAA	CTGCTGGTC	A AAAGGCTTG	G TCACAAAGTC	4980
ATCCGCCCC	C ATATTGATT	CCATGACAA	r ATCCATAGC	TGGTCTCTC	G AAGAAAGAAA	5040
CATGATAGG	T ACCTTGGAA	TCTTGCGGA	r TTCCTGACA	CAGTGATAA	C CATTAAACAA	5100
GGGCAAACC	A ATATCCATG	A GGACCAGAT	G AGGTTCCGA	C TGAACAAAT	A GACTCAAAAC	5160

TTCCATAAAG	TCTTCTACCA	GGACCACTTC	AAATCCCCAT	TCAGAGAGCA	TTTTCCCAAT	5220
CTGTTGACGA	ATGACCTGAT	CATCTTCTAT	TAATAAAATC	TTGTGCATGC	GCTTCTCCTT	5280
TTCCATTATT	ATAACAGATT	TTTCCATGCT	AGATGGTCTG	AAACTGAATT	TGAAATAGCC	5340
TGTTTTTAGC	CAGTACAAAC	AGGCTATGCT	ACTAGCTAAT	TTGAGGGAAA	TTTGCTAAGA	5400
TAAATAAAA	GAAAGGAGCT	CTTATGGCCA	ATATTTTTGA	CTATCTGAAA	GATGTCGCAT	5460
ATGATTCTTA	TTACGACCTT	CCCTTGAATG	AGTTAGACAT	TCTAACCTTA	ATAGAAATCA	5520
CCTACCTCTC	CTTTGATAAT	CTGGTCTCCA	CACTTCCTCA	ACGTCTTTTA	GATCTAGCAC	5580
CTCAGGTTCC	AAGAGATCCC	ACCATGCTTA	CTAGCAAAAA	TCGCCTTCAA	TTATTAGATG	5640
AATTGGCTCA	ACACAAGCGC	TTCAAAAATT	GCAAACTCTC	CCATTTTATC	AACGACATCG	5700
ACCCTGAACT	GCAAAAGCAA	TTTGCGGCTA	TGACTTATCG	TGTCAGCCTC	GATACCTATC	5760
TGATTGTCTT	TCGTGGGACA	GATGACAGTA	TCATTGGCTG	GAAGGAAGAT	TTCCACCTGA	5820
CCTATATGAA	GGAAATTCCT	GCTCAAAAGC	ACGCCCTTCG	CTATTTAAAG	AACTTTTTTG	5880
CCCATCATCC	TAAGCAAAAG	GTTATTCTAG	CTGGGCATTC	CAAGGGAGGA	AATCTCGCTA	5940
TCTATGCTGC	TAGCCAAATT	GAGCAAAGTT	TGCAAAATCA	GATCACAGCA	GTTTATACAT	6000
TTGATGCACC	TGGTCTCCAT	CAAGAATTGA	CACAGACTGC	GGGTTATCAA	AGGATAATGG	6060
ATAGAAGCAA	GATATTCATT	CCACAAGGTT	CCATTATCGG	TATGATGCTG	GAAAT1'CCTG	6120
CTCACCAAAT	CATCGTTCAG	AGTACTGCCC	TGGGTGGCAT	CGCCCAGCAC	GATACCTTTA	6180
GTTGGCAGAT	TGAGGACAAG	CACTTCGTCC	AACTGGATAA	GACCAACAGT	GATAGCCAGC	6240
AAGTAGACAC	AACCTTTAAA	GAATGGGTGG	CCACAGTCCC	TGACGAAGAA	CTTCAGCTCT	6300
ACTTCGACCT	CTTCTTTGGC	ACTATTCTTG	ATGCTGGTAT	TAGCTCTATC	AATGACTTGG	63.60
CTTCCTTAAA	GGCGCTTGAA	TACATTCATC	ATCTCTTTGT	CCAAGCTCAA	TCCCTCACTC	6420
CAGAAGAAAG	AGAAACCTTG	GGTCGCCTTA	CCCAGTTATT	GATTGATACT	CGTTACCAGG	6480
CATGGAAAAA	TAGATAATAC	TCTTGAAAAT	TAAATGTATA	CAAAACAAAA	GACCTAGAAT	6540
ACATACTTTC	ATGTGCATTC	TAAGTCTTTT	TAAATAGAAT	CTAATAGTCA	ATAAAAATCA	6600
AAGAGCATTG	AGAGATAATG	GGGCTTGGAA	CGTCCCTCTC	GCTTCAACAA	AATGACCCCA	6660
TTATAGATTA	AAAAGATGCC	ACTTAGAAAA	AGCAAAAAAG	GAAGTAAGAC	AAAGGCAAAT	6720
ATATAAAAAG	CTAACTGAAC	ATTCTCGTAT	CCATTTTTAT	AAAAAAGGTA	GGATAGATAA	6780
AAATAACTTG	AAATGAGGGA	TAATAAAAAT	AATACTGGAT	TCCACAAACT	TCTATTATCC	6840
TTCCAAAATG	ACACTATAAA	GGCTAATACA	ATTCCTATAA	CGAGATACAT	TTCTTACTCC	6900

162

TTTAATAGCT ACATTTTATC ATAATTATCC AAAGAAAAAA GAGGGCATTT ATCCCTCTTA 6960 ATCCTTCATC TGACTCTCTG CATCGGCCAC GACTTTTTCT AGACTGGTTT GACCAAGTTC 7020 TGCCTCCATA GTCAACTGAA TTCTCTCCAA TTTTTGATCC AAAACATCAT GAATATGAGC 7080 TCCTACAGGG CAATTTGGAT TCGGATTGTC ATGGAAACTG AAGAGTTGAC CTGTCTTACC 7140 AAGACATTCG ACCGCCTGAT AAACATCTAA AAGACTAATA TCCTTAAGGT CCTTGACAAT 7200 CTCTGTTCCG CCCGTTCCAC GCGCTACTGA AATCAGCTCT GCCTTCTTCA ACTGGGACAA 7260 GATCTTTCTG ATAATGACAG GATTGACCCC GACACTAGCA GCCAGAAAAT CACTGGTCAC 7320 CTTGCTTTCC TTCCCCTCGA GGGCAATGAT TATCAGCATA TGAGTCGCAA TGGTAAATCT 7390 ACTTGGAATT TGCATCCTCT TCTCCTTTTT ACGAGGCTAC CCTGCCTCTA CTCTTCTTTT 7440 TCTATTATTA TACCCTTTTT AGTTGTAATG TCAATCGTTA CCACTTTTCA ACCAGTCGTC 7500 TAACTCCCGA TCGCAGCCCT CTTTCTGAGC CAATTCTCTC AAAAATTCCT GATGATGAGT 7560 ATGGTGGATC CCATTGACCA GACTTTCATA GTAAACCTCA AAATAGGGAA GTCTCAGGTC 7620 TTTAGCCAGC TGCAATTCAG CTGCTACATC GTAGTCTACC CGTCGGAAGT CCATATCTAC 7680 CAGGCCTTTG TCATCAAACT CCAAAATCAT ATACTGGGCC CGCAAGTCCT TCCGTAGCTG 7740 AGCGTCCAAA AAGAAAGGTT GGCCAATCGA ACCCGGATTG ACAATCAATT GCCCACCAGT 7800 CCCGTAACGA AGCAACTGCT GGTGAATATC TCCATAAACA GCAATATCAC AGGGAGGATG 7860 AGTCACCAAG CGGTCAAACT CCTCTTGTTT GCCAGTATGA ATCAACTCTC GCCCCCAGTT 7920 CTTATCAGGC AGATGATGGC TAATTCCCAC CGTCAAATCC CCAAACTGAC GATGAATTTG 7980 AAGAGGTTGA TTGTGGAGCA CTTCAATTTC TTCTAGGGAA ATTTCCTCTA AAACATACTG 8040 GCACTGGCGC AAGAGATAGC GTTGACTGGG GCGAGTACTG TCCAATTCCT TACGGACACC 9100 ATGCCAAAGA CTGTCTTCCC AGTTTCCCAA AACTCTAGCC GTAATCGGTA GTTGATCCAA 8160 CAAGTCCAAA ATCCTTCTAC GCCCTGTCCC TGGCATGAGA ATATCTCCCA AAAGCCAGTA 8220 TTCATCCACT CCTATCTGCC GAGCATCTGC CAAAACAGCC TCCAAGGCGG TGGTATTTCC 8280 ATGAATATCT GAAAGAAGAG CTATTTTCGT CATATCCATC TCCTCGTTTT TTCTCTTGCA 3340 ATAAGTATAA CATAAAAAGT CACAGCTAGA GAAATCTAGC TTTTTTTGAT ATACTAGATA 8400 AAGATATTAG ACAAGAGGAA ACGAATGACC CCAAACAAAG AAGACTATCT AAAATGTATT 8460 TATGAAATTG GCATAGACCT GCATAAGATT ACCAACAAGG AAATTGCGGC TCGCATGCAA 8520 GTCTCTCCCC CTGCCGTAAC TGAAATGATC AAACGAATGA AAAGTGAAAA TCTCATCCTA 8580 AAGGACAAGG AATGTGGCTA TCTACTGACT GACCTCGGTC TCAAACTGGT CTCTGAGCTC 8640 TATCGTAAGC ACCGCTTGAT TGAAGTTTTT CTAGTTCATC ATTTAGACTA TACAAGTGAC 8700

CAGATTCACG	AGGAAGCTGA	GGTCTTGGAA	CACACTGTCT	CTGACCTGTT	CGTGGAAAGA	8760
CTAGATAAAC	TGCTAGGTTT	CCCTAAAACC	TGCCCCCACG	GGGGAACTAT	TCCTGCCAAG	8820
GGAGAACTAC	TCGTTGAAAT	CAATAACCTC	CCACTAGCTG	ATATCAAGGA	AGCTGGCGCC	8880
TACCGCCTGA	CTCGGGTGCA	CGATAGTTTT	GACATTCTCC	ATTATCTGGA	CAAGCACTCA	8940
CTTCACATCG	GTGACCAGCT	CCAAGTCAAG	CAGTTTGATG	GCTTCAGCAA	TACCTTCACT	9000
ATCCTCAGTA	ACGACGAGGA	TTTACAAGTG	AATATGGACA	TTGCAAAACA	ACTCTATGTC	9060
GAGAAAATCA	ACTAATTTCT	CAAGTCCCCT	ACCAACCCTG	AAAGTTTTAT	TTTGGCTCTT	9120
TGTCAACTGT	AGTGGGTTGA	AGTCAGCTAA	GCTCGAGAAA	GGACAAATTT	TGTCCTTTCT	9180
TTTTTGATAT	TCAGAGCGAT	AAAAATCCGT	TTTTTGAAGT	TTTCAAAGTT	CCGAAAACCA	9240
AAGGCATTGC	GCTTGATAAG	TTTGATGAGA	TTATTGGTCG	CTTCCAGTTT	GGCATTAGAA	9300
TAGTGTAGTT	GAAGGCCCTT	GACAATCTTT	TCTTTATCTT	TGAGGAAGGT	TTTAAAGACA	9360
GTCTGAAAAA	TAGGATGAAC	CTGCTTTAGA	TTGTCCTCAA	TGAGTCCGAA	AAATTTCTCC	9420
GGTTTCTTAT	TCTGAAAGTG	AAACAGCAAG	AGTTGATAGA	GCTGATAGTG	GTGTTTCAAG	9480
TCTTGTGAAT	AGCTCAAAAG	CTTGTCTAAA	ATCTCTTTAT	TGGTTAAGTG	CATACGAAAA	9540
GTAGGACGAT	AAAATCGCTT	ATCACTCAGT	TTACGGCTAT	CCTGTTGTAT	GAGCTTCCAG	9600
TAGCGCTTGA	TAGCCTTGTA	TTCATGGGAT	TTTCGATCCA	ATTGGTTCAT	AATTTGAACA	9660
CGCACACGAC	TCATAGCACG	GCTAAGATGT	TGTACAATGT	GAAAGCGATC	CAACACGATT	9720
TTAGCATTCG	GGAGTGAAAC	AGTCTGGGAG	ACTGTTTCAG	CCTGAGCCTA	GAAATTTGAA	9780
AGCGAAGCTG	TTTAGCCAAG	TCATAGTAAG	GACTAAACAT	ATCCATCGTA	ATGATTTTCA	9840
CTTGACAACG	AACGGCTCTA	TCGTAGCGAA	GAAAGTGATT	TCGGATGACA	GCTTGTGTTC	9900
TGCCTTCAAG	AACAGTGATA	ATATTAAGAT	TATCAAAATC	TTGCGCAATG	AAACTCATCT	9960
TTCCCTTAGT	GAAGGCATAC	TCATCCCAAG	ACATAATCTT	TGGAAGCCGA	GAAAAATCAT	10020
GCTCAAAGTG	AAAGTCATTG	AGCTTGCGAA	TGACAGTTGA	AGTTGAAATG	GCCAGCTGAT	10080
GGGCAATATC	AGTCATAGAA	ATTTTTTCAA	TTAACTTTTG	AGCAATYTTT	TGGTTGATGA	10140
TACGAGGGAT	TTGGTGATTT	TTCTTTACCA	GGGGAGTCTC	AGCAACCATC	ATTTTTGAAC	10200
AGTGATAGCA	CTTGAAACGA	CGCTTTCTAA	GGAGAATTCT	AGAAGGCATA	CCAGTCGTTT	10260
CAAGATAAGG	AATTTTAGAA	GGTTTTTGAA	AGTCATATTT	CTTCAATTGG	TTTCCGCACT	10320
CAGGGCAAGA	TGGGGCGTCG	TAGTCCAGTT	TGGCGATGAT	TTCCTTGTGT	GTATCCTTAT	10380
TGATGATGTC	TAAAATCTGG	ATATTAGGGT	CTTTAATGTC	TAGTAATTTT	GTGATAAAAT	10440

GTAATTGTTC	CATATGATTC	TTTCTAATGA	164 GTTGTTTTGT	CGCTTTTCAT	TATAGGTCAT	10500
ATGGGACTTT	TTTTCTACAA	TAAAATAGGC	TCCATAATAT	CTATAGTGGA	TTTACCCACT	10560
ACAAATATTA	TAGAACCGTA	AAAATAGAAG	GAGATAGCAG	GTTTTCAAGC	CTGCTATCTT	10620
TTTTTGATGA	CATTCAGGCT	GATACGAAAT	CATAAGAGGT	CTGAAACTAC	TTTCAGAGTA	10680
GTCTGTTCTA	TAAAATATAG	TAGATTGAAA	TAAGATGTGA	ACAACTCTAT	CAGGAAAGTC	10740
AAATTAATTT	ATAGAATTAT	TTTAGCAGTC	AAGGTGTACT	GTTATAGATT	CAATATATTA	10800
TATGACTATT	AACCTTGTCT	TCTCCTAAAA	TTGACTTTCT	TGTTTTCTTA	TCTTGTCCAC	10860
TCGAAACAAG	TATTGTAAGA	ATTTGATTAT	TTTTGAAAGT	ACTTTTAATA	TACTTGATAT	10920
AGTTAAAAAA	GATTTGAAAC	TAAATTCCAA	ATTAGAAAAA	GACTTGAAAT	ACTAAAAAA	10980
AAAAAGTATA	CTCTAATTGA	AAACGGTAAC	AAAACTAATT	TAGAGAATGA	AATATAGAGT	11040
ATTTCTCTCT	TAAAAGTTTT	TGGTGAAACG	AGATGTAGAA	AGGAGATTTA	GCCAAAGAGT	11100
CTATTAGTGC	TAGAATAATA	GATTAGAATT	ATTTTAGAAA	AACGAAGTGA	GCAGCTTATA	11160
AATTCAAGTC	CCCAAATAGA	TTCATACTAG	TATCTTTTGC	AAAAAAA	GGGCGACTTC	11220
CTTCATGAAT	ATCAATTTCA	TCTATAAGGA	AGGTAGCTAA	TTGAACTAAC	TTATTTATTC	11280
TGTTTGTCGC	TAGAAAAATC	AGACCTCCTT	GTGAAGATTG	AGGAGATACT	TAATGAAAAT	11340
CAAAGAAGAA	ACTAGCAAGC	TAGTAGCAGA	TTGCCCAAAA	CACCGCTTTG	AGGTTGTAGA	11400
TAAGACTGAC	CTATATAATC	CAAGGTGAAG	CGACTGTGGT	TTGAAGAGAT	TTTCAAAGAG	11460
TATAGGCTAG	AGAGTAGTGT	TTTTATGTCC	TTCTAGTAGA	AAATGCTAGA	CAGAAGAATG	11520
GGGAACTTGG	ATAGGAAAAA	TAGATTGAGA	AAGGAGGTTA	GAAGAGATGA	TTATTACAAA	11580
AATTAGCCGT	TTAGGAACTT	ATGTGGGAGT	AAATCCACAT	TTTGCAACAT	TAATAGATTT	11640
TCTAGAAAA	ACAGGACTAG	AAAATTTAAC	AGAAGGTTCG	ATTGCTATCG	ATGGTAATCG	11700
ATTGTTTGGG	AATTGCTTTA	CTTATCTAGC	AGATGGTCAA	GCAGGGGCTT	TCTTTGAAAC	11760
CCACCAAAAA	TATTTGGATA	TTCATTTAGT	TTTGGAAAAC	GAAGAAGCCA	TGGCTGTTAC	11820
ATCGCCGGAA	AATGTAAGCG	TTACCCAAGA	ATATGATGAA	GAGAAAGATA	TTGAATTATA	11880
CACAGGGAAA	GTĞGAACAGT	TGGTTCATTT	GAGAGCTGGC	GAATGCCTCA	TCACTTTTCC	11940
AGAAGATTTA	CATCAACCCA	AGGTTCGTAT	AAATGATGAA	CCTGTGAAAA	AAGTTGTCTT	12000
TAAAGTTGCG	ATTTCTTAAT	GTAGAAAGAG	AAGAACGATG	AAAAAAATGA	GAAAGTTTTT	, 12060
ATGTCTAGCT	GGAATTGCGC	TAGCGGCTGT	TGCCTTGGTA	GCTTGTTCAG	GAAAAAAAGA	12120
AGCTACAACT	AGTACTGAAC	CACCAACAGA	ATTATCTGGT	GAGATTACAA	TGTGGCACTC	12180
CTTTACTCAA	GGACCCCGTT	TAGAAAGTAT	TCAAAAATCA	GCAGATGCTT	TCATGCAAAA	12240

GCATCCAAAA	ACGAAAATCA	AGATTGAAAC	ATTTTCTTGG	AATGACTTCT	ATACTAAATG	12300
GACTACAGGT	TTAGCAAATG	GAAATGTGCC	AGATATCAGT	ACAGCTCTTC	CTAACCAAGT	12360
AATGGAAATG	GTCAACTCAG	ATGCTTTGGT	TCCGCTAAAT	GATTCTATCA	AGCGTATTGG	12420
ACAAGATAAA	TTTAACGAAA	CTGCCTTAAA	TGAAGCAAAA	ATCGGAGATG	ATTACTACTC	12480
TGTTCCTCTT	TATTCACATG	CACAAGTCAT	GTGGGTTAGA	ACAGATTTGT	TAAAAGAACA	12540
TAATATTGAG	GTTCCTAAAA	CTTGGGATCA	ACTCTATGAA	GCTTCTAAAA	AATTGAAAGA	12600
AGCTGGAGTT	TATGGCTTGT	CTGTTCCGTT	TGGAACAAAT	GACTTAATGG	CAACACGTTT	12560
CTTGAACTTC	TACGTACGTA	rTGGTGGAGG	AAGCCTCTTA	ACAAAAGATC	TTAAAGCAGA	12720
CTTGACAAGC	CAACTTGCTC	AAGATGGTAT	TAAATACTGG	GTTAAATTGT	ATAAAGAAAT	12780
СТСАССТСАА	GATTCTTTGA	ACTTTAATGT	CCTTCAACAA	GCTACCTTGT	TCTATCAAGG	12840
AAAAACAGCA	TTTGACTTTA	ACTCTGGCTT	CCATATCGGA	GGAATTAATG	CCAACAGTCC	12900
TCAATTGATT	GATTCGATTG	ATGCTTATCC	TATTCCAAAA	ATCAAAGAGT	CTGATAAAGA	12960
CCAAGGAATT	GAAACCTCAA	ACATTCCAAT	GGTTGTTTGG	AAAAATTCAA	AACATCCAGA	13020
AGTTGCTAAA	GCATTCTTAG	AAGCACTTTA	TAATGAAGAA	GACTACGTTA	AATTCCTTGA	13080
TTCAACTCCA	GTAGGTATGT	TGCCAACTAT	TAAGGGGATT	AGCGATTCTG	CAGCCTATAA	13140
AGAAAATGAA	ACTCGTAAGA	AATTTAAACA	TGCTGAAGAA	GTAATTACTG	AAGCTGTTAA	13200
AAAAGGTACT	GCTATTGGTT	ATGAAAATGG	GCCAAGTGTA	CAAGCTGGTA	TGTTGACTAA	13260
CCAACACATT	ATTGAACAAA	TGTTCCAAGA	TATCATTACA	AATGGAACAG	ATCCTATGAA	13320
AGCAGCAAAA	GAAGCAGAAA	AACAATTAAA	TGATTTATTT	GAGGCTGTTC	AGTAGATGTA	13380
AAAGACTAGA	AAATAGGTGG	GATAGTGAGC	TGAAAAGCTC	TAGCCCAATC	TTGTAAAAGA	13440
AGGGAGAAGG	AGAATGGTTA	AAGAACGTAA	TTTAACTCGC	TGGATATTTG	TTTTGCCAGC	13500
TATGATTATC	GTAGGATTAC	TCTTTGTTTA	TCCGTTTTTC	TCGAGTATTT	TTTATAGCTT	13560
TACCAATAAG	CATTTGATTA	TGCCTAATTA	TAAATTTGTT	GGTTTGGCTA	ACTATAAAGC	13620
TGTGCTATCA	GATCCCAACT	TCTTTAATGC	GTTCTTTAAT	TCAATTAAGT	GGACCGTTTT	13580
CTCATTAGTT	GGTCAAGTTT	TAGTAGGGTT	TGTATTGGCT	TTAGCTCTTC	ACAGAGTACG	13740
CCACTTCAAG	AAATTATATA	GGACATTATT	GATTGTTCCT	TGGGCATTTC	CTACCATCGT	13800
TATTGCCTTC	TCTTGGCAGT	GGATTCTAAA	CGGGGTTTAT	GGCTACTTAC	СТААТСТААТ	13860
CGTAAAATTA	GGTTTAATGG	AACATACACC	TGCATTTTTG	ACAGATAGTA	CATGGGCATT	13920
CCTATGTTTG	GTGTTTATCA	ACATTTGGTT	TGGAGCACCA	ATGATTATGG	TTAATGTGCT	13980

166 TTCAGCTTTG CAAACAGTAC CAGAAGAACA ATTTGAGGCT GCTAAGATAG ATGGTGCTTC 14040 AAGTTGGCAG GTGTTCAAGT TTATCGTCTT TCCACATATT AAAGTGGTTG TAGGACTTCT 14100 AGTTGTTTTG AGAACTGTAT GGATCTTTAA TAACTTTGAC ATTATCTACC TCATTACTGG 14160 TGGTGGACCA GCCAATGCTA CAACGACGCT TCCAATTTTT GCTTACAACC TGGGCTGGGG 14220 AACTAAATTG TTGGGTCGTG CTTCAGCAGT TACAGTACTG CTCTTTATCT TCTTGGTGGC 14280 GATTTGCTTT ATCTACTTTG CTATCATCAG TAAGTGGGAA AAGGAGGGTA GAAAATAATG 14340 AAGAAGAAAT CCAGTATTTA TTTAGATATT CTCTCACATG TACTTTTAGT TGGTGCGACC 14400 ATCGTTGCAG TTTTCCCATT GGTATGGATT ATCATATCTT CTGTCAAAGG GAAAGGGGAA 14460 TTAACTCAGT ATCCAACACG ATTTTGGCCT GAACAGTTTA CATTAGATTA TTTCACTCAT 14520 GTTATCAACG ATTTGCACTT CATTGATAAC ATTCGAAACA GTTTAATCAT TGCCTTGGCT 14580 ACAACCCTTA TTGCGATTAT TATTTCTGCT ATGGCAGCCT ATGGTATTGT TCGATTCTTT 14640 CCTAAATTGG GAGCAATCAT GTCGAGACTA CTCGTCATTA CCTACATTTT CCCACCAATT 14700 TTGTTAGCAA TTCCCTATTC AATTGCCATT GCTAAAGTTG GGTTAACAAA TAGTTTATTT 14760 GGCTTGATGA TGGTTTATCT ATCTTTTAGT GTTCCATATG CAGTTTGGCT CTTAGTTGGA 14820 TTTTTCCAAA CAGTTCCAAT TGGAATTGAA GAAGCGGCTA GAATTGATGG TGCAAATAAA 14880 TTTGTTACGT TTTATAAAGT TGTGCTACCG ATTGTAGCAC CAGGTATTGT AGCAACAGCT 14940 ATTTATACAT TTATCAATGC TTGGAATGAA TTCCTGTATG CCTTGATTTT GATTAACAAT 15000 ACAGGAAAGA TGACAGTAGC AGTAGCCCTT CGTTCACTTA ATGGTTCAGA AATACTAGAC 15060 TGGGGAGATA TGATGGCAGC GTCTGTTATT GTAGTTCTTC CATCAATTAT TTTCTTCTCT 15120 ATCATCCAAA ATAAGATTGC AAGTGGATTA TCAGAAGGAT CTGTGAAGTA GACGAAAGAA 15190 GGAAAAAAT GAATAAAAGA GGTCTTTATT CAAAACTAGG AATTTCCGTT GTAGGCATTA 15240 GTCTTTTAAT GGGAGTCCCC ACTTTGATTC ATGCGAATGA ATTAAACTAT GGTCAACTGT 15300 CCATATCTCC TATTTTCAA GGAGGTTCAT ATCAACTGAA CAATAAGAGT ATAGATATUA 15360 GCTCTTTGTT ATTAGATAAA TTGTCTGGAG AGAGTCAGAC AGTAGTAATG AAATTTAAAG 15420 CAGATAAACC AAACTCTCTT CAAGCTTTGT TTGGCCTATC TAATAGTAAA GCAGGCTTTA 15480 AAAATAATTA CTTTTCAATT TTCATGAGAG ATTCTGGTGA GATAGGTGTA GAAATAAGAG 15540 ACGCCCAAAA GGGAATAAAT TATTTATTTT CCAGACCAGC TTCATTATGG GGAAAACATA 15600 AAGGACAGGC AGTTGAAAAT ACACTAGTAT TTGTATCTGA TTCTAAAGAT AAAACATACA 15660 15720 CAATGTATGT TAATGGAATA GAAGTGTTCT CTGAAACAGT TGATACATTT TTGCCAATTT CAAATATAAA TGGTATAGAT AAGGCAACAC TAGGAGCTGT TAATCGTGAA GGTAAGGAAC 15780

ATTACCTCGC	AAAAGGAAGT	ATTGATGAAA	TCAGTCTATT	TAACAAAGCA	ATTAGTGATC	15840
AGGAAGTTTC	AACTATTCCC	TTGTCAAATC	CATTTCAGTT	AATTTTCCAA	TCAGGAGATT	15900
CTACTCAAGC	TAACTATTTT	AGAATACCGA	CACTATATAC	ATTAAGTAGT	GGAAGAGTTC	15960
TATCAAGTAT	TGATGCACGT	TATGGTGGGA	CTCATGATTC	TAAAAGTAAG	ATTAATATTG	16020
CCACTTCTTA	TAGTGATGAT	AATGGGAAAA	CGTGGAGTGA	GCCAATTTTT	GCTATGAAGT	16080
TTAATGACTA	TGAGGAGCAG	TTAGTTTACT	GGCCACGAGA	TAATAAATTA	AAGAATAGTC	16140
AAATTAGTGG	AAGTGCTTCA	TTCATAGATT	CATCCATTGT	TGAAGATAAA	AAATCTGGGA	16200
AAACGATATT	ACTAGCTGAT	GTTATGCCTG	CGGGTATTGG	AAATAATAAT	GCAAATAAAG	16260
CCGACTCAGG	TTTTAAAGAA	ATAAATGGTC	ATTATTATTT	AAAACTAAAG	AAGAATGGAG	16320
ATAACGATTT	CCGTTATACA	GTTAGAGAAA	ATGGTGTCGT	TTATAATGAA	ACAACTAATA	16380
AACCTACAAA	ТТАТАСТАТА	AATGATAAGT	ATGAAGTTTT	GGAGGGAGGA	AAGTCTTTAA	16440
CAGTCGAACA	ATATTCGGTT	GATTTTGATA	GTGGCTCTTT	AAGAGAAAGG	CATAATGGAA	16500
AACAGGTTCC	TATGAATGTT	TTCTACAAAG	ATTCGTTATT	TAAAGTGACT	CCTACTAATT	16560
ATATAGCAAT	GACAACTAGT	CAGAATAGAG	GAGAGAGTTG	GGAACAATTT	AAGTTGTTGC	15620
CTCCGTTCTT	AGGAGAAAAA	CATAATGGAA	CTTACTTATG	TCCCGGACAA	GGTTTAGCAT	16680
TAAAATCAAG	TAACAGATTG	ATTTTTGCAA	CATATACTAG	TGGAGAACTA	ACCTATCTCA	16740
TTTCTGATGA	TAGTGGTCAA	ACATGGAAGA	AATCCTCAGC	TTCAATTCCG	TTTAAAAATG	16800
CAACAGCAGA	AGCACAAATG	GTTGAACTGA	GAGATGGTGT	GATTAGAACA	TTCTTTAGAA	16860
CCACTACAGG	TAAGATAGCT	TATATGACTA	GTAGAGATTC	TGGAGAAACA	TGGTCGAAAG	16920
TTTCGTATAT	TGATGGAATC	CAACAAACTT	CATATGGCAC	ACAAGTATCT	GCAATTAAAT	16980
ACTCTCAATT	AATTGATGGA	AAAGAAGCAG	TCATTTTGAG	TACACCAAAT	TCTAGAAGTG	17040
GCCGCAAGGG	AGGCCAATTA	GTTGTCGGTT	TAGTCAATAA	AGAAGATGAT	AGTATTGATT	17100
GGAAATACCA	CTATGATATT	GATTTGCCTT	CGTATGGTTA	TGCCTATTCT	GCGATTACAG	17160
AATTGCCAAA	TCATCACATA	GGTGTACTGT	TTGAAAAATA	TGATTCGTGG	TCGAGAAATG	17220
AATTGCATTT	AAGCAATGTA	GTTCAGTATA	TAGATTTGGA	AATTAATGAT	TTAACAAAAT	17290
AAAGGAGAAA	AACATGGTTA	AATACGGTGT	TGTTGGAACA	GGGTATTTTG	GAGCTGAATT	17340
GGCTCGCTAC	ATGCAAAAGA	ATGATGGAGC	AGAGATTACT	CTTCTCTATG	ATCCAGATAA	17400
TGCAGAGGCG	ATTGCAGAAG	AATTGGGAGC	AAAAGTAGCA	AGTTCCTTAG	ATGAGTTGGT	17460
TTCTAGCGAT	GAAGTAGATT	GTGTTATCGT	CGCAACTCCA	AATAATCTTC	ATAAGGAACC	17520

			168			
GGTTATTAAG	GCTGCACAGC	ATGGTAAAAA	TGTTTTCTGT	G AAAA CCAA	TTGCGCTTTC	17580
TTATCAAGAT	TGTCGCGAGA	TGGTAGATGC	GTGTAAAGAA	AACAATGTAA	CCTTTATGGC	17640
AGGACATATT	ATGAATTTCT	TTAATGGTGT	TCATCATGCA	AAAGAACTCA	TTAATCAAGG	17700
AGTTATCGGA	GACGTTCTAT	ATTGTCATAC	AGCTCGTAAT	GGTTGGGAAG	AACAACAACC	17760
GTCAGTATCA	TGGAAAAAA	TTCGTGAAAA	ATCAGGTGGT	CACTTGTATC	ACCACATCCA	17820
TGAATTGGAT	TGCGTTCAAT	TCCTTATGGG	GGGCATGCCT	GAAACTGTAA	CCATGACAGG	17880
TGGAAATGTG	GCCCATGAAG	GTGAACATTT	CGGTGATGAA	GATGATATGA	TTTTTGTCAA	17940
TATGGAATTT	TCTAATAAGC	GTTTTGCCTT	GTTAGAATGG	GGTTCAGCTT	ATCGTTGGGG	18000
TGAACATTAT	GTCTTAATCC	AAGGAAGCAA	AGGTGCCATC	CGCTTAGACT	TATTCAACTG	18060
TAAAGGAACT	CTTAAGCTAG	ATGGGCAAGA	AAGCTATTTC	TTGATTCACG	AATCGCAAGA	18120
AGAAGATGAT	GATCGGACTC	GTATCTATCA	TAGTACAGAG	ATGGATGGAG	CAATTGCTTA	18180
TGGTAAACCA	GGTAAACGTA	CTCCATTATG	GCTATCATCT	GTCATTGATA	AAGAAATGCG	18240
CTATCTGCAT	GAGATTATGG	AAGGAGCTCC	AGTATCAGAA	GAATTTGCAA	AACTTTTGAC	18300
AGGTGAAGCT	GCCCTAGAAG	CAATTGCTAC	TGCAGATGCT	TGTACCCAGT	CTATGTTTGA	18360
AGATCGCAAA	GTAAAATTGT	CAGAAATTGT	AAAATAAATT	TTGGTATTCT	CCTATTTATA	18420
GGTCGACTTG	CTCCTCTGAA	AGTACTTTTA	GAGGAGCTGT	TTGACTTTGC	TAGTTTTTGA	18480
AACTGAAATC	TATTATACTA	CAAACTATTG	AAAGCGTTTT	AATTTTAAGG	TATAATAATC	18540
TCATAGAAAT	AAAGAAAAGG	AGGAAAGAGG	ATGCCACAGA	TTAGCAAAGA	AGCCTTGATT	13600
GAGCAAATCA	AAGATGGAAT	CATCGTTTCT	TGTCAGGCTC	TTCCTCATGA	ACCGCTTTAT	18660
ACAGAAGCGG	GAGGGGTGAT	TCCCTTGCTG	GTCAAAGCGG	CTGAGCAAGG	TGGAGCAGTC	18720
GGTATCCGAG	CAAACAGTGT	TCGCGATATC	AAGGAAATTA	AGGAAGTCAC	TAAACTTCCA	18780
ATCATTGGGA	TTATCAAACG	TGATTATCCA	CCTCAGGAAC	CCTTCATCAC	GGCTACTATG	18840
AAAGAAGTTG	ATGAATTGGC	AGAACTGGAC	ATCGAGGTGA	TTGCTCTGGA	TTGTACCAAG	18900
CGTGAACGCT	ACGATGGTTT	GGAAATTCAA	GAGTTCATTC	GTCAGGTTAA	GGAGAAATAT	18960
CCTAATCAGC	TTTTGATGGC	TGATACTAGT	ATCTTCGAAG	AAGGGCTAGC	AGCTGTAGAA	19020
GCAGGAATTG	ACTTTGTCGG	AACAACCTTA	TCAGGCTACA	CATCCTACAG	TCCAAAAGTA	19080
GACGGTCCAG	ATTTTGAATT	GATTAAGAAA	CTCTGTGATG	CTGGTGTAGA	TGTCATTGCA	19140
GAAGGAAAAA	TTCATACACC	AGAACAAGCC	AAACAAATCC	TTGAATATGG	AGTGCGAGGC	19200
ATCGTTGTTG	GTGGCGCCAT	TACTAGACCA	AAAGAGATTA	CAGAACGCTT	CGTTGCTAGT	19260
СТТАААТААС	ATGTGAGGGG	GAGTTTTATO	TTTAAAGTTT	TACAAAAAGT	TGGAAAAGCT	19320

TTTATGTTAC	CTATAGCTAT	ACTTCCTGCA	GCAGGTCTAC	TTTTGGGGAT	TGGTGGTGCA	19380
CTTTCAAACC	CAACCACGAT	AGCAACTTAT	CCAATACTAG	ACAATAGTAT	TTTTCAATCA	19440
ATATTCCAAG	TAATGAGCTC	TGCAGGAGAG	GTTGTATTCA	GTAATTTGTC	ACTACTTCTC	19500
TGTGTGGGAT	TATGTATTGG	CTTAGCGAAA	CGAGATAAAG	GAACCGCTGC	GTTAGCAGGA	19560
GTAACTGGTT	ACTTAGTTAT	GACTGCAACG	ATCAAAGCTT	TGGTAAAACT	TTTTATGGCA	19620
GAAGGATCTG	CAATTGATAC	TGGAGTTATT	GGAGCATTAG	TTGTCGGAAT	AGTTGCCGTA	19680
TATTTGCACA	ACCGATATAA	CAATATTCAA	TTACCTTCCG	CTTTAGGATT	CTTTGGAGGT	19740
TCACGCTTCG	TTCCTATTGT	TACATCGTTC	TCTTCTATCT	TGATTGGCTT	TGTCTTCTTT	19800
GTTATTTGGC	CACCTTTCCA	ACAACTTCTT	GTTTCTACAG	GTGGATATAT	TTCTCAGGCG	19860
GGTCCAATTG	GAACTTTTCT	ATATGGATTT	TTAATGAGAC	TTTCTGGAGC	AGTAGGCTTA	19920
CATCATATAA	TTTACCCTAT	GTTTTGGTAT	ACTGAACTTG	GTGGTGTTGA	AACTGTTGCA	19980
GGACAAACAG	TGGTTGGAGC	TCAAAAAATA	TTTTTTGCTC	AATTAGCCGA	TTTGGCCCAT	20040
TCTGGATTAT	TTACAGAAGG	AACAAGGTTT	TTTGCAGGTC	GTTTCTCAAC	AATGATGTTC	20100
GGTTTACCGG	CTGCCTGTTT	AGCGATGTAC	CATAGTGTTC	CTAAAAATCG	TCGTAAAAA	20160
TACGCGGGTT	TGTTTTTTGG	AGTTGCTTTA	ACATCTTTTA	TTACCGGTAT	TACAGAACCA	20220
attgaattta	TGTTTCTATT	CGTCAGTCCG	GTTCTATATG	TTGTTCACGC	ATTCCTTGAT	20280
GGTGTTAGCT	TCTTTATTGC	AGACGTCTTA	AATATTTCAA	TAGGAAACAC	ATTTTCAGGA	20340
GGTGTAATCG	ATTTCACTTT	ATTTGGAATT	TTGCAGGGGA	ACCCTAAGAC	GAATTGGGTT	20400
CTTCAGATTC	CATTTGGACT	TATTTGGAGT	GTTTTGTATT	ATATTATTT	TAGATGGTTC	20460
ATTACTCAAT	TCAACGTTCT	AACGCCAGGG	CGAGGAGAAG	AAGTAGATTC	TAAAGAAATT	20520
TCTGAATCCG	CAGATTCAAC	TTCAAATACT	GCAGATTATT	TAAAACAGGA	TAGCCTACAA	20580
ATTATCAGAG	CCTTGGGTGG	ATCAAATAAT	ATAGAAGATG	TAGATGCTTG	TGTGACACGT	20640
TTACGTGTAG	CTGTAAAAGA	AGTTAATCAA	GTTGATAAAG	CACTTTTAAA	ACAAATTGGT	20700
GCAGTTGATG	TCTTAGAAGT	GAAGGGTGGC	ATTCAAGCAA	TCTATGGAGC	AAAAGCAATC	20760
TTATATAAAA	ATAGTATTAA	TGAAATTTTA	GGTGTAGATG	ATTAAGTACT	TACTGACTTA	20820
ATAAAAAACA	GAGGAGAGTG	ATGGATGAGT	AGGATGAAAT	GAAATCGCAT	ACAAGAAATA	20880
AAGAACTCAT	TATCCAAGTT	GGATACGCTT	ATTACATAGG	AGAATACAAA	TGAAATTTAG	20940
AAAATTAGCT	TGTACAGTAC	TTGCGGGTGC	TGCGGTTCTT	GGTCTTGCTG	CTTGTGGCAA	21000
TTCTGGCGGA	AGTAAAGATG	CTGCCAAATC	AGGTGGTGAC	GGTGCCAAAA	CAGAAATCAC	21060

			170			
TTGGTGGGCA	TTCCCAGTAT	TTACCCAAGA	AAAAACTGGT	GACGGTGTTG	GAACTTATGA	2112
AAAATCAATC	ATCGAAGCGT	TTGAAAAAGC	AAACCCAGAT	ATAAAAGTGA	AATTGGAAAC	2118
CATCGACTTC	AAGTCAGGTC	CTGAAAAAAT	CACAACAGCC	ATCGAAGCAG	GAACAGCTCC	2124
AGACGTACTC	TTTGATGCAC	CAGGACGTAT	CATCCAATAC	GGTAAAAACG	GTAAATTGGC	2130
TGAGTTGAAT	GACCTCTTCA	CAGATGAATT	TGTTAAAGAT	GTCAACAATG	AAAACATCGT	2136
ACAAGCAAGT	AAAGCTGGAG	ACAAGGCTTA	TATGTATCCG	ATTAGTTCTG	CCCCATTCTA	21420
CATGGCAATG	AACAAGAAAA	TGTTAGAAGA	TGCTGGAGTA	GCAAACCTTG	TAAAAGAAGG	21480
TTGGACAACT	GATGATTTTG	AAAAAGTATT	GAAAGCACTT	AAAGACAAGG	GTTACACACC	21540
AGGTTCATTG	TTCAGTTCTG	GTCAAGGGGG	AGACCAAGGA	ACACGTGCCT	TTATCTCTAA.	21600
CCTTTATAGC	GGTTCTGTAA	CAGATGAAAA	AGTTAGCAAA	TATACAACTG	ATGATCCTAA	21660
ATTCGTCAAA	GGTCTTGAAA	AAGCAACTAG	CTGGATTAAA	GACAATTTGA	TCAATAATGG	21720
TTCACAATTT	GACGGTGGGG	CAGATATCCA	AAACTTTGCC	AACGGTCAAA	CATCTTACAC	21780
AATCCTTTGG	GCACCAGCTC	AAAATGGTAT	CCAAGCTAAA	CTTTTAGAAG	CAAGTAAGGT	21840
AGAAGTGGTA	GAAGTACCAT	TCCCATCAGA	CGAAGGTAAG	CCAGCTCTTG	AGTACCTTGT	21900
AAACGGGTTT	GCAGTATTCA	ACAATAAAGA	CGACAAGAAA	GTCGCTGCAT	CTAAGAAATT	21960
CATCCAGTTT	ATCGCAGATG	ACAAGGAGTG	GGGACCTAAA	GACGTAGTTC	GTACAGGTGC	22020
TTTCCCAGTC	CGTACTTCAT	TTGGAAAACT	TTATGAAGAC	AAACGCATGG	AAACAATCAG	22080
CGGCTGGACT	CAATACTACT	CACCATACTA	CAACACTATT	GATGGATTTG	CTGAAATGAG	22140
AACACTTTGG	TTCCCAATGT	TGCAATCTGT	ATCAAATGGT	GACGAAAAAC	CAGCAGATGC	22200
TTTGAAAGCC	TTCACTGAAA	AAGCGAACGA	AACAATCAAA	AAAGCTATGA	AACAATAGTC	22260
CTTAGTTATT	CTATAAAAAG	TAGTTTTTTA	AAGAACCTAA	GAGTGTATAC	CCCCTTTTCC	22320
CTCTACACAG	ATAGTGTAAG	AAAAGGGGC	TTTTGTTTAA	AATGTAAGAA	ACTGTCACGA	22380
AATTAAAA TG	AAGTTCTTAC	ATAAGCGAAT	CATAAAAAAT	TTCATTTTGA	TTTTAAAACA	22440
GTTCAAGAAA	GTCAAAAAAT	TATTCTATTT	GAAAGAGAGG	TGCCGACTGT	GAAAGTCAAT	22500
AAAATCCGTA	TGCGGGAAAC	AGTGATTTCC	TACGCTTTCC	TAGCACCAGT	ATTATTCTTC	22560
TTTGTCATCT	TTGTGTTGGC	TCCGATGGTG	ATGGGCTTCA	TTACAAGTTT	CTTTAACTAC	22620
TCAATGACTA	AATTTGAGTT	TGTAGGCTTG	GATAACTATA	TCCGTATGTT	TAAAGATCCT	22680
GTCTTTACAA	AATCTCTGAT	TAACACAGTT	ATTTTGGTTA	TTGGATCTGT	ACCAGTTGTT	22740
GTTCTATTCT	CACTCTTTGT	AGCATCTCAG	ACCTATCATC	AAAATGTCAT	TGCCAGATCC	22800
TTCTACCGTT	TCGTCTTCTT	CCTTCCTGTT	GTAACGGGTA	GTGTTGCCGT	GACAGTTGTT	22860

TGGAAATGGA	TTTATGACCC	ACTATCAGGG	ATTCTAAACT	TTGTCCTTAA	GTCCAGCCAC	22920
ATCATCAGCC	AAAACATTTC	TTGGTTGGGA	GATAAAAACT	GGGCATTGAT	GGCGATTATG	22980
ATTATTCTCT	TGACCACTTC	AGTTGGTCAG	CCCATCATCC	TTTATATCGC	TGCCATGGGG	23040
AATATTGACA	ATTCACTGGT	TGAAGCGGCG	CGTGTTGATG	GTGCAACTGA	GTTTCAAGTT	23100
TTTTGGAAGA	TTAAATGGCC	AAGCCTTCTT	CCAACAACTC	TTTATATTGC	AATCA'TCACA	23160
ACAATTAACT	CATTCCAGTG	TTTCGCCTTG	ATTCAGCTTT	TGACATCTGG	TGGTCCAAAC	23220
TACTCAACAA	GTACCTTGAT	GTACTACCTT	TACGAAAAAG	CCTTCCAATT	GACAGAATAC	23280
GGCTATGCCA	ACACAATTGG	TGTCTTCTTG	GCAGTCATGA	TTGCTATCGT	AAGCTTTGTT	23340
CAATTTAAAG	TACTTGGAAA	CGACGTAGAA	TACTAAAGAA	AGGAGACAGC	TATGCAATCT	23400
ACAGAAAAA	AACCATTAAC	AGCCTTTACT	GTTATTTCAA	CAATCATTTT	GCTCTTGTTG	23460
ACTGTGCTGT	TCATCTTTCC	ATTCTACTGG	ATTTTGACAG	GGGCATTCAA	ATCACAACCT	23520
GATACAATTG	TTATTCCTCC	TCAGTGGTTC	CCTAÀAATGC	CAACCATGGA	AAACTTCCAA	23580
CAACTCATGG	TGCAGAACCC	TGCCTTGCAA	TGGATGTGGA	ACTCAGTATT	TATCTCATTG	23640
GTAACCATGT	TCTTAGTTTG	TGCAACCTCA	TCTCTAGCAG	GTTATGTATT	GGCTAAAAAA	23700
CGTTTCTATG	GTCAACGCAT	TCTATTTGCT	ATCTTTATCG	CTGCTATGGC	GCTTCCAAAA	23760
CAAGTTGTCC	TTGTACCATT	GGTACGTATC	GTCAACTTCA	TGGGAATCCA	TGATACTCTC	23820
TGGGCAGTTA	TCTTGCCTTT	GATTGGATGG	CCATTCGGTG	TCTTCCTCAT	GAAACAGTTC	23880
AGTGAAAATA	TCCCTACAGA	GTTGCTTGAA	TCAGCTAAAA	TCGACGGTTG	TGGTGAGATT	23940
CGTACCTTCT	GGAGTGTAGC	CTTCCCGATT	GTGAAACCAG	CGTTTGCAGC	CCTTGCAATC	24000
TTTACCTTCA	TCAATACTTC	GAATGACTAG	TTCATGCAAT	TGGTAATGTT	GACTTCACGT	24060
AACAATTTG	CCATCTCACT	TGGGGTTGC	ACCATGCAGO	CTGAAATGG	AACCAACTAT	24120
GGTTTGATT	TGGCAGGAGG	TGCCCTTGC	GCTGTTCCA	TCGTCACAG	CTTCCTAGTC	24180
TTCCAAAAA	CCTTCACAC	GGGTATTAC	TATGGGAGCGC	TCAAAGGATA	ATACTCTGCG	24240
AAAATCTCT	r CAAACTACG1	CAGCTTCAC	TTGCCATACT	TAAGTATTG	CTGCGGTTAG	24300
CTTCCTAGT	r TGTTCTTCA	TTTTCATTG	a GTATAGGAA	ATCAATCTA	r caagatacag	24360
AAGTATATT	r TATAGATTT	A GAGAATATA	G AGGTTATAA	G TGTCTACAA	A ATGGAGGGTA	24420
TGCAGTTAC	r TTATGAAGT	r TTGTCAGAC	A CTTATAAAC	TAAGAATGG	r tttagttaac	24480
TATCAGAAA	C GAAGGAAAG	A GTATGATTT	T TGACGATTT	AAAAACATC	A CCTTTTACAA	24540
AGGGATTCA	T CCTAATTTA	G ACAAGGCTA	T CGACTATCT	TACCAACAT	C GTAAGGATTC	24600

		172			
GGAAAGTATG	ATATTGATGG	AGATAAAGTC	TTTCTAGTTG	TTCAGGAAAA	24660
CAAGCTGAAA	ATGATCAATT	TGAGTATCAT	AAGAACTATG	CAGATTTGCA	24720
GAAGGACATG	AATATTCGAG	CTACGGTTCA	CGTATCAAAG	ACGAGGCAGT	24780
GAAGCGAGTG	ACATTGGCTT	TGTTCATTGT	CATGAACACT	ACCCACTCTT	24840
CACAATTTTG	CGATTTTCTT	CCCAGGTGAG	CCACATCAGC	CAAATGGTTA	24900
GAAGAAAAGG	TTCGAAAATA	TCTCTTTAAA	ATTTTGATTG	ATTAAAAATA	24960
TTTTTTTTTTA	AAGCTTTGAT	AATACTCTAC	CATGAAATTG	ATCTTTGTGA	25020
TGAGAATAAA	ATATTTAAAA	ATTGGTATCT	TCTAAGTATG	CTGCAAGAGC	25080
GATGGACAGG	GGATTACAGT	TGATGAGATG	GCTTGGATAA	TTAGGGGCAT	25140
TTGATTGGTA	GATACATAAA	ATTAGGTACT	TATGCGGCTA	AGTATGGTAT	25200
CGCTCGATCT	TAAGTAGGGT	AGCTGCAACT	GCAGCAGCAA	GAGTAGGATT	25260
ATTTCTGGAT	GGATTTTACG	AGTAGCTGTG	AATGTAGCTG	ATGTATATGG	25320
AACAATATTG	CTGCAGCTTG	GGATGCATAT	GATAAAATTC	CTAACAATGG	25380
TTTTAAAATG	CGAGAATGAA	AGCACTTTGT	ATTTTTTAT	TGAATATGTT	25440
GTGCTTGCAA	TGATAATTCG	TGGAGGGCTA	GATGGATTTG	ATAGGCATAC	25500
ATTTTAATTG	CGTCGCTGTT	CGGGGTATAT	GATTATAAGC	CCATAGATAA	25560
AAGTCCAAAA	GAAAAAATAG	ATTTGTTCAT	GGTAGGGACT	TATGAAAGCT	25620
AAAAGAAAAC	AGTTTACAAA	GAAAAATGAT	GGAGGAGCAA	ACATGGCACA	25680
AGCCTTATCA	AGGCAGCATT	TGATACAGAT	AACTTTCTCA	TGCGTTTTAG	25740
TTGGACATCG	TGACAGCCAA	TCTTCTTTTT	GTCGTCTCTT	GTTTACCCAT	25800
GGAGTGGCTA	AAATCAGCCT	CTACGAGACC	ATGTTCGAAG	TTAAGAAGAG	25860
CCTGTTTTTA	AAATCTATCT	AAGATCTTTC	AAGCAAAATC	TGAAACTAGG	25920
GGTTTAATGG	AGTTAGGAAT	TGTGTTTCTT	ACCCTTTCAG	ATCTCTATCT	25980
CAAACAGCTC	TGCCCTTCCA	ATTGCTGAAA	GCCATTTGTT	TAGGTATTCT	26040
ACTATCGTGA	TGCTGGCTAG	TTACCCTATC	GCGGCACGTT	ATGACCTATC	26100
ATTCTTCAAA	AAGGATTGAT	GTTGGCTAGT	TTTAACTTTC	CTTGGTTCTT	26160
GCCATTCTTG	TCCTCATTGT	GATGGTTCTT	TATCTGTCCC	CCTTCAGTCT	26220
r GGCTCAGTCT	TCCTACTTT	TGGGTTTGGA	CTATTGGTCT	TTATCCAGAC	26230
G GAGAAAATTT	TCGCAAAATA	CCAATAGGAG	CTTTATTTCT	GAAACTACTT	26340
CAAACGCTAT	TCTATAAGCC	G AGAAACTAAA	ATCGG		26385
	CAAGCTGAAA GAAGGACATG GAAGCGAGTG CACAATTTTG GAAGAAAAGG TTTTTTTTGTA TGAGAATAAA GATGGACAGG TTGATTGGTA CGCTCGATCT ATTTCTGGAT AACAATATTG TTTTAAATTG AAGTCCAAAA AAAAGAAAAC AGCCTTATCA GGGAGTGGCTA GGAGTGGCTA GGAGTGGCTA GGAAACAGCTC ACTATCCAAA ATTCTTCAAA AGCCTTTTTA GGCTTGCAA ATTCTTCAAA AGCCTTTTTA GGCTTGCAA AGCCTTTTTA GGCTTGCTA GGCTTTTTA GGCTTCTTG AATTCTTCAAA AGCCATTCTTG GGCTCAGTCT GGCCTCAGTCT GGCTCAGTCT GGCTCAGTCT GGAGAAAATTT	CAAGCTGAAA ATGATCAATT GAAGGACATG AATATTCGAG GAAGCGAGTG ACATTGGCTT CACAATTTTG CGATTTCTT GAAGAAAAGG TTCGAAAATA TTTTTTTGTA AAGCTTTGAT TGAGAATAAA ATATTTAAAA GATGGACAGG GGATTACAGT TTGATTGGTA GATACATTAAC CGCTCGATCT TAAGTAGGGT ATTTCTGGAT GGATTTTACG AACAATATTG CTGCAGCTTG TTTTAAAATG CGAGAATGAA GTGCTTGCAA TGATAATTCG AATTTAATTG CGTCGCTGTT AAGTCCAAAA GAAAAAATAG AAAAGAAAAC AGTTTACAAA AGCCTTATCA AGGCAGCATT TTGGACATCG TGACAGCCAA GGAGTGGCTA AAATCAGCCT GCTGTTTTTA AAATCTATCT GGTTTAATGG AGTTAGGAAT AATTCTCAAA AAGGATTGAT ACTATCGTGA TGCCCTTCCA ATTCTCAAA AAGGATTGAT GCCATTCTTG TCCTCATTGT GGCCTCAGTCT TCCTCACTTTT GGGCTCAGTCT TCCTCACTTTT GGAGAAAATTT TCCCAAAATA	GGAAAGTATG ATATTGATGG AGATAAAGTC CAAGCTGAAA ATGATCAATT TGAGTATCAT GAAGGACATG AATATTCGAG CTACGGTTCA GAAGCGAGTG ACATTGGCTT TGTTCATTGT CACAATTTTG CGATTTCTT CCCAGGTGAG GAAGAAAAGG TTCGAAAATA TCTCTTTAAA TTTTTTTGTA AAGCTTTGAT AATACTCTAC TGAGAATAAA ATATTAAAA ATTGGTATCT GATGGACAGG GGATTACAGT TGATGAGATG TTGATTGGTA GATACATAAA ATTAGGTACT CGCTCGATCT TAAGTAGGGT AGCTGCAACT ATTTTAAAATG CGAGAATGAA AGCACTTTGT GTGCTTGCAA TGATAATTCG TGGAGGGCTA ATTTTAAAATG CGTCGCTGTT CGGGGGTATAT AAGTCCAAAA GAAAAAATAG ATTTGTTCAT AAAAGAAAAC AGTTTACAAA GAAAAATGAT AGCCTTATCA AGGCAGCAT TGATACAGAT TTGGACATCG TGACAGCCAA TCTTCTTTT GGAGTGGCTA AAATCAGCCT CTACGAGACC CCTGTTTTTA AAATCTATCT AAGATCTTTC GGGTTGAAA AGGATTACT AAGATCTTTC GGATTGAAAA AGGATTGAT TGTGTTCTT CAAACAGCTC TGCCCTTCCA ATTGCTGAAA ACTATCGTGA TGCTGGCTAG TTACCCTATC ACTATCCTAAA AAGGATTGAT GTTGGTTTCTT CAAACAGCTC TGCCCTTCCA ATTGCTGAAA ACTATCCTAAA AAGGATTGAT GTTGGCTAGGAAA ACTATCTTCAAA AAGGATTGAT GTTGGCTAGGAAA ACTATCTTCAAA AAGGATTGAT GTTGGCTAGT CAAACAGCTC TGCCCTTCCA ATTGCTGAAA ACTATCTTCAAA AAGGATTGAT GTTGGCTAGG GGCTCAGTCT TCCTCATTCT TGGGTTTCGAA ACTATCCTAAA AAGGATTGAT GTTGGCTAGG GGGGCTAAAAAATTT TCGCAAAATA CCAATAGGAC	GGAAAGTATG ATATTGATGG AGATAAAGTC TITCTAGTTG CAAGGTGAAA ATGATCAATT TGAGTATCAT AAGAACTATG GAAGGACATG AATATTCGAG CTACGGTTCA CGTATCAAAG GAAGCGAGTG ACATTGGCTT TGTTCATTGT CATGAACACT CACAATTTTG CGATTTTCTT CCCAGGTGAG CCACATCAGC GAAGAAAAGG TTCGAAAATA TCTCTTTAAA ATTTTGATTG TTTTTTTGTA AAGCTTTGAT AATACTCTAC CATGAAATTG TGAGAATAAA ATATTTAAAA ATTGGTATCT TCTAAGTATG GATGGACAGG GGATTACAGT TGATGAGATG GCTTGGATAA TTGATTGGTA GATACATAAA ATTAGGTACT TATGCGGCTA ACCAATTTG CTGCAGCTTG GGATGCATAT GATAAAATTC TTTTAAAATG CTGCAGCTTG GGATGCATAT GATAAAATTC TTTTTAATTG CGTCGCTGTT CGGGGTATAT GATAAAATTC AAGTCCAAAA GAAAAAATAG ATTTGTTCAT GGTAGGACT AAAAGAAAAC AGTTTACAAA GAAAAATGAT GGTAGGACTA AACAATATTG CGTCGCTGTT CGGGGTATAT GATTATAAGC AAAAGAAAAC AGTTTACAAA GAAAAATGAT GGAGGACCAA AGCCTTATCA AGGCAGCAA TCTTCTTTT GTCGTCTCTT GGGGTGGCTA AAATCAGCCT CTACGAGACC ATGTTCCAAG CCTGGTTTTTA AAATCTACT AAGATCTTC AAGCAAAAATC CGAGAGGACTA TGATACAGAA ACCTTTCTCAA CGGGTTGATAG AGATCAATCC TGACAGACC ATGTTCCAAG CCTGTTTTTA AAATCAGCCT CTACGAGACC ATGTTCCAAG CCAAACAGCTC TGCCCTTCCA ATGCTTTCT AACCTTTCAG CAAACAGCTC TGCCCTTCCA ATGCTTACAA GCCAATTTCT CAAACAGCTC TGCCCTTCCA TTACCCTATC GCGGCACGTT CAACACGCTC TGCCCTTCCA TTACCCTATC GCGGCACGTT CAACACGCTC TGCCCTTCCA TTACCCTATC GCGGCACGTT CAACACGCTC TGCCCTTCCA TTACCCTATC GCGGCACGTT CACTTCTCAAAAAAACAAACCTTTC TACCCTATC GCGGCACGTT CACTTCTCAAAAAAACAACCTTTT TACCCTTCTT CACCACTTCTTC TCCTCATTCT TTACCCTATC TTACCCTATC TTACCCTATCT TTACCCTATCT TTACCTTCCATCT TTACCCTATCT TTACCTTCCATCT TTACCCTATCT TTACCCTATCT TTACCCTATCT TTACCTTCCATCTTTT TTACCTTCCCATCT TTACCCTATCT TTACCCTATCT TTACCCTATCT TTACCCTATCT TTACCCTATCT TTACCTTCTT TTACCTTCCATCT TTACCCTATCT TTACCCTATCT TTACCTTCCATCTT TTACCTCCATCTT	GGAAAGTATG ATATTGATGG AGATAAAGTC TITCTAGTTG TTCAGGAAAA CAAGCTGAAA ATGATCAATT TGAGTATCAT AAGAACTATG CAGATTTGCA GAAGGACATG AATATTCGAG CTACGGTTCA CGTATCAAAG ACGAGGCAGT GAAGGACATG ACATTGCTT TGTTCATTGT CATGAACACT ACCCACTCTT CACAATTTTG CGATTTTCTT CCCAGGTGAG CCACATCAGC CAAATGGTTA GAAGAAAAGG TTCGAAAATA TCTCTTTAAA ATTTTGATTG ATTAAAAATA TTTTTTTGTA AAGCTTTGAT AATACTCTAC CATGAAAATG ATCTTTGGA TGAGAATAAA ATATTTAAAA ATTGGTATCT TCTAAGTATG CTGCAAGACC GATGGACAGG GGATTACAGT TGATGAGATG GCTTGGATAA TTAGGGGCAT TTGATTGGTA GATACATAAA ATTAGGTACT TATGCGGCTA AGTATGGTAT ATTTCTGGAT GGATTACAG AGTAGCACT GCAGCAGCAA GAGTAGGGTT ATTTCTGGAT GGATTTACG AGTAGCTGT AATGTAGCTG ATGTATATGG AACAATATTG CTGCAGCTTG GGATGCATAT GATAAAATTC CTAACAATGG TTTTAAAATG CGAGAATGAA AGCACTTTGT ATTTTTTAT TGAAAATGT TTTTAAAATG CGAGAATGAA AGCACTTTGT ATTTTTTAT TGAAAATGT ATTTTAAAATG CGTCGCTGTT CGGGGTATAT GATGAGCTT ATAGGCATAC AATTTTAAATG CGTCGCTGTT CGGGGTATAT GATTATAAGC CCATAGATAA AAAAGAAAAC AGTTTACAAA GAAAAATGAT GGTAGGGACT TATGAAAGCT AAAAGAAAAC AGTTTACAAA GAAAAATGAT GGAGGAGCAA ACATGGCACA AACCCTTATCA AGGCAGCAT TGATACAGAT AACTTTCTCA TGCGTTTTAG GGAGTGGCTA AAATCAGCCT CTACGAGACC ATGTTCCTAC TGCGTTTTAG GGAGTGGCTA AAATCAGCCT CTACGAGACC ATGTTCCAAG TTAAGAACAG GCCTTTTTAAATGG AGTTAGGAAT TGATACAGAT AACTTTCTCA TGCGTTTTTAG GGAGTGGCTA AAATCAGCCT CTACGAGACC ATGTTCCAAG TTAAGAACAG GCCTTTTTTA AAATCTACCA ATGCTTTCTT ACCCATTTTTCAAAACAGAC TGCCCTTCCAA TTGCTCTTT TAGCGACCT TAGAAACAGG GCATTACAAA AAGGAATCT TAACACAGAC ATGTTCCAAG TTAAGAACAGG GCTTTAATAGG AGTTAGGAAT TGTTTCTTT ACCCATTTCTAACACACTTCTCAACACACACCT TGCCCTTCCAATTCCTTCTTTTT TAGCGACCT TTAAGAACACACT TGCACCTATCC ACCACTTCCAACCTTCCAACCTTCCAACCTTCCAACCTTCCAACCTTCCAACCTTCCAACCTTCCAACCTCCT

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2716 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

CCTGCCCGCA	TTGCCCTAGG	CATTAAGTAA	ACATATAAAA	GCATGTGAGA	GACTGTTGGA	60
AAAGCGAGGA	AATTTCCCCT	CTTTTCCTCT	AGTCTCTCCT	TTCTTTTGCT	GATTTTATTC	120
AAAGAAAATG	ATATAATAGT	AGTTATGGAG	AAAAAGAAAT	TACGCATCAA	TATGTTGAGT	180
TCAAGTGAGA	AAGTAGCAGG	ACAGGGAGTT	TCAGGTGCTT	ACCGTGAATT	AGTTCGTCTT	240
CTTCACCGTG	CTGCCAAGGA	CCAATTGATT	GTTACAGAAA	ATCTTCCAAT	CGAGGCAGAT	300
GTGACTCACT	TTCATACGAT	TGATTTTCCC	TATTATTTAT	CAACCTTCCA	AAAGAAACGC	360
TCAGGGAGAA	AGATTGGCTA	TGTGCATTTC	TTGCCAGCTA	CACTTGAGGG	AAGTTTGAAA	420
ATTCCATTTT	TCTTAAAGGG	AATTGTGAAA	CGCTATGTAT	TTTCTTTTTA	CAACCGGATG	480
GAGCACTTGG	TTGTGGTCAA	TCCTATGTTT	ATTGAGGATT	TGGTAGCAGC	TGGTATTCCA	540
CGTGAAAAAG	TGACCTATAT	TCCTAACTTT	GTCAACAAGG	AAAAATGGCA	TCCTCTACCA	600
CAAGAAGAGG	TAGTCAGACT	GCGCACAGAT	CTTGGTCTTA	GTGACAATCA	GTTTATCGTA	660
GTAGGTGCTG	GGCAAGTTCA	GAAACGTAAA	GGGATTGATG	ACTTTATCCG	TCTGGCTGAG	720
GAATTGCCTC	AGATTACCTT	TATCTGGGCT	GGTGGCTTCT	CTTTTGGTGG	TATGACAGAT	780
GGTTATGAAC	ACTATAAGAA	AATTATGGAA	AATCCCCCTA	AAAATTTGAT	TTTTCCAGGC	840
ATTGTATCGC	CAGAGCGGAT	GCGCGAATTG	TATGCTCTAG	CGGATCTTTT	CTTGTTGCCT	900
AGTTACAATG	AGCTCTTTCC	TATGACTATT	TTAGAAGCTG	CGAGTTGTGA	GGCTCCTATT	960
ATGTTGCGTG	ATTTAGATCT	CTATAAGGTG	ATTTTGGAGG	GAAATTATCG	GGCGACAGCG	1020
GGTAGAGAAG	AGATGAAAGA	GGCTATTTTG	GAATATCAAG	CAAATCCTGC	TGTCTTAAAA	1080
GATCTCAAAG	AAAAGGCTAA	GAATATTTCC	AGAGAGTATT	CTGAAGAGCA	TCTGTTACAA	1140
ATCTGGTTGG	ACTTTTATGA	GAAACAAGCC	GCTTTAGGGA	GAAAGTAAAA	AGTGAGGTAA	1200
TCTATGCGAA	TTGGTTTATT	TACAGATACC	таттттсстс	AGGTTTCTGG	TGTTGCGACC	1260
AGTATTCGAA	CCTTGAAAAC	AGAACTTGAA	AAGCAGGGAC	ATGCTGTTTT	TATCTTTACG	1320
ACGACAGATA	AGGATGTCAA	TCGCTACGAA	GATTGGCAAA	TTATCCĢCAT	TCCAAGTGTT	1380

			174			
CTTTCTTTG	CTTTTAAGGA	TCGTCGCTTT	GCCTACCGAG	GTTTTAGCAA	GGCACTTGAA	1440
TTGCTAAAC	AGTATCAGCT	AGATATTATC	CATACTCAGA	CAGAATTTTC	TCTTGGCCTG	1500
TTGGGGATTT (GGATTGCGCG	TGAATTGAAA	ATTCCAGTCA	TCCATACCTA	TCACACCCAG	1560
TATGAAGACT	ATGTCCATTA	TATTGCTAAG	GGGATGTTGA	TCCGGCCGAG	TATGGTCAAG	1620
PATCTGGTTA	GAGGTTTCCT	GCATGATGTG	GATGGGGTTA	TTTGCCCTAG	TGAGATTGTC	1680
CGTGACTTGC '	TATCTGATTA	TAAGGTCAAG	GTTGAAAAAC	GGGTCATTCC	TACTGGGATT	1740
GAATTAGCCA .	AGTTTGAGCG	TCCGGAAATC	AAGCAGGAAA	ATTTGAAAGA	ACTGCGTAGT	1800
AAACTAGGGA	TTCAAGATGG	TGAAAAGACG	TTGCTTAGTC	TTTCGAGAAT	CTCCTATGAA	1860
AAAAATATTC	AAGCAGTTTT	AGCAGCCTTT	GCTGATGTTC	TGAAAGAGGA	AGACAAGGTT	1920
AAACTGGTAG	TAGCTGGGGA	TGGCCCTTAT	CTGAATGACC	TCAAAGAGCA	AGCCCAGAAC	1980
CTAGAGATTC	AAGACTCAGT	CATCTTTACA	GGGATGATTG	CTCCTAGTGA	GACGGCTCTT	2040
TACTATAAAG	CGGCGGATTT	CTTCATTTCG	GCATCGACAA	GCGAAACGCA	AGGTTTGACC	2100
TACTTGGAAA	GCTTAGCCAG	TGGAACACCT	GTCATTGCTC	ACGGAAATCC	TTATTTGAAC	2160
					TTTGGCTGGT	2220
					ATCAGAGAAA	2280
					TCTGGATGCC	2340
					TCAGCGTATC	2400
					AGGATCTAGA	2460
					GAAAGACCAT	2520
					TCGTGATAAA	2580
					GACTATCGTT	2640
					TTACATTATT	2700
TTATGGATTA						2716
LINIOGNIIA						

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13926 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

TGTTAACAGT	CTATGGAGAG	CTTTCATAGA	ACTAAGATTC	GGTTTATCTT	TGCTGCCACA	120
AATTAGTAAG	GTTGGATAAG	GGTAAGTTCC	TGCTATATCC	GTTAAATCAA	GTGTCTTCAA	180
CTCCTCAGAA	ACTCCGACCA	TAAGAGTCTT	GTCTGCTCCC	TGTTTTTCAA	ATACTCTTTT	240
GGGAAGTAGT	TTAAAAATCA	GCAATTGAAG	ATAAAATAGG	ATATTCCCTG	CTAATTTAAG	300
CGGGCATCCT	GACAGAATCA	AAGCTCGAAG	ATTTGGTAAA	TCGTAACTGG	AAAGTTCTAG	360
TGTCAGGGCA	GCACCTAAGG	ACAATCCAAT	CAAAACAAAA	GGTTCTGTCT	CTTGAGCTAG	420
GTGCTGATAA	ACTCGCTCTT	TAGCTTGTTG	ATAGTTACTA	ACTCCAGAAG	GAAATAACTC	480
GATAGCCTCA	GAAGGATAAT	CTGTCAGTAG	ATTCCGAACT	TCTTTCCAAG	ACTCTGCTGA	540
CTGCCCTAAC	CCATGCAAAA	ATATTAATTT	CATCTAGTTC	TCCTCAAGGC	TTAATTCATA	600
CAAGCCTCTC	ACTGCATTAC	AGCCGTAAAT	AGCTTCTGCT	TGGGTTAAAT	CTGCCAAGGT	660
CAAGACTTTC	TCTTCTACCT	GTCCTGTTTC	TAGCAAATGC	TGACGGTAAA	TTCCTGGCAA	720
GATTCCAAGT	CGGATAGGCG	GTGTGTAGAG	TTTTCCAGCG	ATTTTCAGAA	CCAAATTTCC	780
TATAGAGGTT	TCAAGCAGTT	CTCCTGACTT	ATTGTGGTAA	ATCTTCTCTT	GTTCTCCTAG	840
GCTCAAATGC	GGTCGGTGAG	TGGTTTTAAA	GTAGGTAAAG	GATTGATTCA	AAGCAGCTTC	900
CTGAAGACAG	ACTTGGGCCT	GACAAAAGCT	TGTACTGAGA	GGGGTTAATA	CTTGACGATT	960
GACTTCTATC	TCTCCAGATT	TGCTAAGGCT	GATTCGCAAG	CGGTAATCTC	GATTAGCTTC	1020
ACAATCCTGA	CACTCTTCCT	CAATCTTGTG	TCCCAAGTCT	TCTGCATCAA	AAGGAAAAGC	1080
AAAATAACGA	CTAGCTTTTC	TCAGCCTTTC	CAGATGTTGT	TCTTCAAACA	TCAGTTGTTT	1140
TTGGCTGATT	TTTCCAGTTG	TAATTAATTG	GAAGCGAGCT	TGTTTACGAT	AGAGAACTGC	1200
TGCCTTTTGA	TGAACCTCTC	GGTATTCAGA	TTCCCATGTG	CTATCCCAAG	TAATCCCTCC	1260
GCCAACTCCA	TAAATGGCTT	GACCTTTGTG	AAGTTGAATG	GTACGAATGG	CCACATTAAA	1320
AATCCGTCGT	CCATTTGGAA	GCAAGAGACC	AATCGTTCCA	CAGTAGACTO	CACGCGGTTG	1380
AGGCTCCAAG	TCCTTGATAA	TCTCCATTGT	CGCAATTTTC	GGTGCACCCG	TTATGGAACC	1440
ACAAGGAAAG	AGTGAGCGGA	AGATTTCAAC	AAGGTCCACA	TCCTCTCGCA	ACTGACTCTT	1500
GATGGTCGAA	GTCATCTGCC	AAACAGTTGA	ATACTGCTCT	ACCTGACACA	GACGCTCCAC	1560
GTGCTCGCTC	CCAACTTCAG	AAATACGGTT	CATATCATTG	CGCAAGAGGT	CCACAATCAT	1620
CATATTTTCA	GAGCGATTTT	TGGGATCCTG	TTCCAACCAA	CTGGCCTGTT	CAAGATCTTC	1680
TTGGTCAGTT	ACCCCACGCT	GAGTCGTCCC	CTTCATTGGT	CGTGTTGTC	ACTCGCGATC	1740
ATTTTGCTC	AAAAAGAGCT	CTGGGCTCAT	GGAAATCACT	GTCATCTCGT	CATGTTCCAC	1800

176 ATAGGCATTG TAGCCCGCCT CCTGCTCTAC CACCATACGA TTGTAGATGG CAAAAGGATT 1860 GGCATTTAAC TTTTGCTTAA GTTGGACGGT GTAGTTGACC TGATAGGTAT CTCCCTGCCG 1920 TAAATGATGG TGAATTTGGG CAATGGCCTT TTCATAGTCT GCTGCAGACG TTACTTCCTG 1980 CCAATTTGAG GGCAAATCAA TATCCTCATA AGTCAGAGGA ATAGGGGAAG TTTCTACGAT 2040 ATCATGAACA GTAAAGTAAA GCAGGTACTC TCCCAGTAGG GGATCCTTGT GAACTGCTAA 2100 TTTTTCCTCA AAAGCAGGTG CAGCCTCGTA GCTGACATAC CCCACCACAT AATAACCTTG 2160 CTCTTGGTAG CTTTCCACTT GTGCCAGCAA ATCTGCCACT TCTTCTACAT TTCTCGTTTT 2220 CAACTCTTTA ATAGGCTGGG TAAAGGTATA TCTCTCCCCC AAAGTCCTAA AATCAATCAC 2280 TGTTTTCTA TGCATACCTT AAGTATAGCA TAAAATAAGA AAACCCTCAT CCGCAAAGCA 2340 GATGAGAGAT TTCAATTATT TAAAGATTGA AGTTTTAAAG CTATTTGTTT GTTGAAGAAC 2400 TTTCTTATAA ACAGCTTCTT TTAATTTAAC TGTATTATTC ATAGATACTG TTTTATTACC 2460 GTTTGCTTCT TGTTTAAGAG TTTCGGCATC TTTTTTAACA GCTTCTTTAA ACAATGTCAG 2520 TANATCATCG TATGATGAAA CGGAAGAACC ATTTACTTCG AATGTTGTTA ATCCTTTCGT 2580 TGCTTTATCT TTAACTTCTT TGAAGTAAGC TTTTTTAAAT TCTTCAATAG TATTAAATGT 2640 ATTGTTAGAT ATTTTCTTGA TAATATATTC ATCACTTAGA ACAGACTCAC CATCTGTTTT 2700 AGATTGTTGT TTATATTTAT TTGAAGCATA ACCTAAGAAC CCATTTTCGT ATCCGTAGTA 2760 ACCCCATAAT CTAAAAGCAT TATGTTTGAA TGAAACAGCT CCAGGAGCAC CTTTACTAGT 2820 ATTACCTCCG TAGATACCGG TCATCATTCT AACACCTACA TAAGGTGATT GATCGTTATA 2880 GCTAATTGCT TCGGGTTTAT AGATACCATT ACCTGGATTG CGATTAGTCA TTAATTGTTG 2940 ATCAACTAAA TCATTAACAG ATTGAATATT TAATTCATTT TTCTCTTCTT GACTTAGATT 3000 TCGAATTTA TCCCATTGAT TTAATTTATT GTTATCACGG TATTCTCTAT CTATTTTTTT 3060 GAACCATGCA CTATTTAAAT CTTTATTTTG TTGAGAAATC ACAGATTCAG CCTCAATTTC 3120 ATCAAGAAGA GTTAAAGTGT CATTATAACC CTTCATATAT CTATTAATAT CTTCTCGTGT 3180 TTTTAGAGTT TTTGGATCTG TAATATACCA CTGATTCCCA TCATTTTTGC GTTTAAATAC 3240 CATATTAATA CCTAAAGAAC CAAACTCATC AAATCCACTA CCAGTAACAG GAGTTTGTAG 3300 CATACCCTGA GCATATGCTT CAGCATCAGT ACCTTCACGG TGTCCAAAGC CACCTAAGTA 3360 AATCGCACGG TCGTTGACGT GTGTTGTTTC ATGTGTGTAA ACTGAAATAC CGTATTCACC 3420 AACCATTTCT AAATGAACAT ATTTTACATC AGTTCTAATA TCATCAGAGT TAGGATATAT 3480 AGCAGCATAA GCTCCTGTTC CATTATAATT ATAATACTTA TCCATAGGAC CAAAGAATTC 3540 TCTAAGAGGA GTATATACTT TGTCGGTATT ATAGCGGCCA TATTTTTCAA CCCATCCACC 3600

177

				 .		
AGGAGCGTTA	TAACCTTCCC	AAATAGGAAT	AACAGCATCT	CTTAGTAGTC	GTTGTTTAAC	3660
GTTATCAGAC	GCTAGACGAT	ACCAGAAATC	ATAATAGTTT	CTATAACCAT	CTGCAGCTTT	3720
GTTAACGATA	TCTTTAATAT	CTTCTAATGA	TTTTTTACCT	AATCGCTCTG	CACTACCAAA	3780
GGCAATTGCA	TTATAATTTG	AAATTAAATA	AAGATGTGCT	TTATCAATAT	TCAGTAGTGG	3840
GAGTATAGTA	TTTCTAAGGT	GACTTCGTTT	TAAATTATCG	AATGCACGAT	GTTTAGAATT	3900
TTTAATTTCT	TCGACCTCAG	AAGCGCGTTC	TGCGATGTAG	ACATGGTCTT	CTGTAGCATC	3960
AATAAACCAA	TCGTTCATAT	TGTCTATATT	TGTGAACAAT	TGTCTATTAT	AATTTAAAAA	4020
TGCATCTAAA	TTACCTGATT	TAGTATATTT	AGCCAATACT	TGACCGAATG	CGTCGAATGT	4080
ACGTGAACCT	TTAATGTTGT	TCTCTTTAGA	ACCGATTTCA	ATTAATCTGT	CTAATACGCT	4140
AACTTTTTCA	CCATAGAAAT	CTGGTTTGAA	TAGCATTAAT	TCTTTAATAT	TAACATCACC	4200
AAATTTAACT	CCATAGTAAC	GATTTAGGTA	AGTTAAACCT	AGTAATAAAG	CTGCTTTGTT	4260
TTTCTCGACT	TTATCACGAA	TCATTTGACG	AGCAGCTGGA	GAATCATTTA	GTTGATGTTC	4320
TTCGTTTTGA	ACTAATTTTG	TGATTAGGTT	TGTTAAGTTT	TCTTTAACAT	CTGTGAAGCT	4380
TTCTTCTAA	TATAAATCTT	TGATTGCATT	AACTCTATAG	TCACCTAATC	GATTTAGATG	4440
CTGATACATO	GTTTGAGACT	GAAGCTCTAC	TGATTCTAAA	ATAGATTTTA	TATCATTAAC	4500
AAGAGTAGT	TTATCTTTTT	GAACGATATT	AGGTGTATAT	TTAATTCCTA	AGTCAGTTAT	4560
AGTATATTCT	TTTACATTAC	TTAAACCTTC	ACTGCTAGAA	GACAAGTTAA	AGTAATCTTT	4620
TGTACCGTC	C GCATAGTGAA	CAATAATTTT	ATTAGCTTCA	TCTAGGTTTG	TGATAAACTC	4680
ATTGTTGTT	ATCGCGGTAA	CAGAAAGAAC	TTCTTTAGTA	TTTAGATGGT	GTTCTTTATT	4740
TAATTTATT	A CCTTGATATA	CAATATAATO	TTTATTGTAG	AATGGTATTA	ATTTTTCAAG	4800
ATTTTTATA	G GCTTGGTTAT	ATTCAGCGTT	ATAATCTTGA	ATACTAGAAT	AGGCTTTTTC	4860
TTCATTAAG	T TTTGCAAGAG	GAGATAGATO	ACTTTCTAAT	TTATCAGCAG	TAATATTGAA	4920
AGTAGTAAC	T TTAGCATCAG	CTTGTTCTTT	AGTTAATTTA	GTAAATGTTT	TAGATTTCCT	4980
AAATGATCT	A TTACCTGACG	AATATCCCTC	TACCGCATAT	AAATCTTTT#	TATGAGCACT	5040
AGCATAATC	A GAATCATCAA	CGTCGTTAGA	GCCGAATAAC	TCCTCTCCAC	GGATAATCTT	5100
AGCATAGCT	G ACAGAATTAC	TTACCGTAC	TACAGGCCA	GTCTTACTTC	CTATTGCTCC	5160
AACTTCTAC	T GGATTTGAAJ	CATCTATTT	ACCTTTTAC	A ACCGACTCAC	TTAGGAGAGC	5220
TTTTGTACC	A ATAAGATGG1	CTAGAGTTA	A TCCATAATC	r ACTTTAGGA/	A CTAACAAGCT	5280
GGCGCGTGT	T TTGTTTCCT	TAATAGTAG	C ATCAACATA	r GCTTTTCTA	A CAATTCCTCT	5340

178 ATAGTTTGTA CCTGCAATTC CCCCTGTATG AGAGCCATTT CCACTTGTAG AGTGTAGTTT 5400 GCCAAAGAAA GCAACATTTT CAATACGAGT TCCATCATTC ATATTATTTA CAAATCCAGC 5460 AACATTATTA CGACCTGAAA GTGTGCCTGT AATTTTGACA TTTGTAATAA CTGAAGAACC 5520 TTTCATAGTA TTGGCTAATG ATGCAATATT ATCTTGACCA GAACGTTCTA TCTCTACATT 5580 TTCAAAATTC ACATTATTTA TCGTTGCGTT TGTTATCACA TTAAATAATG GATGTTCCAA 5640 TTCAGTAATA GCAAATTGTT TTCCTTCAGA ACTTAAAAGT TTTCCTGTGA ATTCTTTAGT 5700 GATATATGAT TITCCATTAG GAACAACATT TCTAGCGCTC ATTGATTGTC CCAGACGATA 5760 TTCTTTGAA GGATCGTTTT GAATAGCTTC CACTAATTCT TTGAAATTAT AATATACATT 5820 ATCTTCGTGG ACTTTAGGTT TTTCAATATA GTGAACGTAT TCTTCTTCAA ATTTATTATC 5880 AGCAGTTCTA GAGACTAAAT TGTCTGCGAT TGCTGTAACT TTATATACAG GTGTTCCGTT 5940 AACCGTAGTT TCTTCTATAT TTTTAACAGC TAGTAATGTA GTTTTCTGAT TATTTGAAGT 6000 TATTTTTAAA TAATAATTGC TCTTATCATC AGGAATAGTT GTTATCAGTG ATTCATTAGT 6060 TTCTTTTCCA TTTTCGTATT TGATTAAATC TGTACGTTTA ATATTTTTAA GCTCAACTTT 6120 TTTAAGATCT AATTGAATAT TTTGATTTTC TAGAGTTTCA GTTTCTTCAC CGTTACCTCT 6180 GTCGTAAATC ATAGTTGTAG ATAGGGTGTA TTCTTTGTAG TACTCTAGGT TCTTAAATGC 6240 AGCGCTTATA GTTTCTGTTG TTACCTTGTC ATCTGTAAGG ACTACAGTAT TAATAACTTC 6300 6360 AGTATACTTA GCAACAGCTT CACGTTCCAA TATTTTCTTA TCGGTACTAG TCAATGTTAA 6420 TATTGGCTTT TCAGATAATT CAACCAATTT TTCAATAGTT GCAGTTAATT TTTCAACAGC 6480 TTCGTTAACT TCACTTGTT TAGCATCTGT ATTAGCTGCA ACTTTTTCAG CCTTTGTAAC 6540 TTCAGTTTGG AGGTTTTGCC AACTTCTATC ACTGTAATGT TCTTTTACCT TTGTTTTTGC 6600 ATCTGCAATC GTATTGTTTA ATTCAGTTTT ATCAACGTTT AGAGCGTCAA TAGCCGTTTT 6660 AAGTTTATTT GTCTCGCTAT TTACCTCAGG CTGTTTTACA GGCTCTGAAG CATAGACACC 6720 TTTTGCAGTT TCTAAAACAG GTCCAAGAGC ATTGTAACTT GCTGTAGAAT AATCAGTAGG 5780 AGAAACTGAA CTAGCTTTAT CAATTTGATT ATTTAACTCA CTTTTATCAA CTGGTTCTTT 6840 AGTACCAATA CCCTTTATTT TATCTTCTGG TTTCGGTGTT TCCTCTACAG CCTTCTCTTC 6900 TTCAGGAACT TCTGGTTGCT TTTCTGGCTC AACTGGTGCC GTTGGTGCCT GTTCGTCTTC 6960 TCTTGGCGCG ACTGGTTCAC CTGCTTGTTC AACTTTTGGT TCCTCTGTTG GTTCTGTTTG 7020 TTTTTCTACA GCAGGCGTTT CAACTTTTGG TTGTTCAATA GATTGATTAA CAGTCTCCTC 7080 TTTTGGTTCT ACAGTTTCTT CAGCCTTGGT ATCTGGAGTT GACTCTTCTT GTTTCGGTGT 7140

TTCCTCTACA	GCCTTCTCTT	CTTCAGGAGC	TTCTGGTTGC	TTTTCTGGCT	CGACTGGTGC	7200
CTTTTCGTCT	TCTCTTGGCG	CGACTGGTTC	ACCTGCTTGT	TCAACTTTTG	ATTCCTCAGC	7260
TGGTTTGTCT	GATGGTTGAC	TTTCTGGCTT	AACTGCTACT	TTTTCCTCTG	GTTTTGACTC	7320
AACTTCTCCA	CCTACTTCTT	CAACTGGAGC	TGGTTCTGCT	GAATCTTCTT	TCCCCTCTTC	7380
TACTTTAGGA	AGGGTGTCGT	CAGTAGGTTT	TACCTCCGAT	TTTGGTTCTT	CCTTTGGACT	7440
TTCTTCTGTT	TTAGGTGCTT	CTTCTTTTGG	AGCTTCCTCT	GTCTCTACTA	CTTGGTTTTC	7500
TGTCCTAGCT	TGCTCCTGAT	TTGTTATTGA	TTGAGGAGTC	TCAACTTCGA	CCACAGTCAC	7560
CTCTCCAGGT	TTTGCTGAGG	TTTCTTCTAA	AACAGTGTCC	AAGCCAAGCG	TTTTGAGGAT	7620
GTCACCTGAT	AGATAACCAA	CATAGCGATA	GCCCTCCATT	TCAACAACAC	CCTCTCGACT	7680
AGCCAGCGCT	AGGGTCGCAA	CTGGGTCTAC	AGCCCCTGCA	CTAGGAAGAA	CTACCAATCC	7740
CATAGCTCCA	ACTAGAAAGA	CGCTAGCAAT	TTTCTTTCTC	TTGTAGATTA	AAAGCAAGCT	7800
CCCAACAGTC	AGCAAACCAA	AAGCTGTCAA	AACAGATGCT	TCTGTCCCTG	TTTGAGGCAA	7860
CTGATCTTTT	TGATACACCA	AACCATATAC	AACTTCATTC	CTGTCAGGCT	TTCCTGTCTG	7920
AATTAAATCT	TTAGCTTCTT	GTGAAATAAT	CTCTTTATTT	ACATAGTGAT	AGGTGGCTGC	7980
GTCCACTACA	GAAGGAGCCA	TCAAAAGGCT	TCCAAGAAAT	ACAGAGCCTA	CAACTCCCTT	8040
AATCTTACGA	ATTGAAAAAC	GGTCTTTTTT	AAACACTTTT	ATCTCCTTTA	TTCATTCTCA	8100
AAACTTCCTA	ATAGCATCTT	GCGGATAGTG	CGCACGCGCA	CCTCCGATTA	ATTTTGGACG	8160
ACTAGCCAGT	GCCGTTACAT	GGGCATGACC	AATCTCTCTC	AAAATAGGGC	GAATCGGAAC	8220
CTGAACATGC	TTGACATGCA	TGCCAATTGC	AGTGTCTCCG	ATATCCAATC	CAGCATGAGC	8280
CTTGATAAAT	TCAACCTCAA	CTGGATCCTG	CATAAACTTA	AAGGCTGCCA	ACTGCCCCGA	8340
ACCTCCTGCA	TGAAGAGTAG	GATGGACACT	GACAATTTCC	AGACCAAACT	GCTCTGCCAC	8400
CTGACGTTCA	ACAACGAGAG	CCCGATTGAC	ATGCTCACAA	CCTTGAACTG	CTAAATGGAT	8460
ACCTCTACTA	CCTAGAATAT	CCAAGATÄGT	CTCCACTATC	AGCTCACCAA	TCTCTTGACT	8520
GGATTCTTTC	CCAATATGAC	CACCTAGCAC	CTCACTAGAA	GATAGACCTA	AAACAAAAAG	8580
GCCCCCTGC	TTCAAATTGG	TCTTTTCTAA	AACATCTTCC	ACTACCTGAC	GTGTTTCTCT	8640
TTGAATCTGT	GTCTCGTTCA	TCTCTGTTAC	CTCTGTTGTC	ACTCTTCTAT	CATACCGTTT	8700
TTTCTTGTTT	TTAGCAAGAT	AGACAACCTA	GAAAGTTTGC	CCAATTACGC	ATAAAACTCC	8760
CAGAATTGAC	TGGGAGTTAG	CTAGTTTCTA	TTCTATTTAT	ATATATTTCA	ACTTTCGTCC	8820
CTTTTTGGGG	TCTAGAATCA	ATCTTCATAT	GGTAATTGGC	TCCAAAATGA	AGTTTGAGCC	8880

			180			
GTTGATCGAC	ATTTTGAAGA	CCAACTCCCC	CACGTTTGAG	TTGAC'STTGA	CTACTATCAC	8940
CAGCATCTTG	GAAGCCAACG	CCATCATCCT	CAATACGGAT	GACCAATCCC	GAATCCTGTT	9000
TCTGGACAGA	AAGTTTAATA	TGGCCCTGAC	CTTCCTTTTC	CTTAATGCCA	TGGTAAAGAG	9060
CATTTTCTAC	AAGGGGTTGT	AGGACCAGCT	TGGGTAAGAC	TAAATTATCA	AAGGCAACAT	9120
TTTCATTAAT	TTCGTATTCC	AGCTTATCTC	CATAGCGTTG	TTTCTGGATA	AAGAGATACT	9180
GGCGGACATG	ATTGATTTCG	TCAGAGAGAC	AAATCAAGTC	CTTGCCTTGA	TTGAGCGCCA	9240
AGCGGAAATA	GGTTGCCAAG	GACTTGGTCA	CCTGCACCAC	TCGCTGACTA	TCATGAAATT	9300
CAGCCATCCA	GATGATGGTG	TCCAAAGTGT	TATAGAGGAA	ATGTGGATTA	ATCTGGCTCG	9360
AAAGGGCTTG	AAGTTGGTAC	TGACGGGTCG	TTTCTTCCTG	GCTACGAATA	GCTACCATCA	9420
ACTGATCAAT	CTGATCCAAC	ATAGCATTAA	ATTGGCGAGT	TACTTCTCTC	AGTTCATAGG	9480
CACCAACTTC	CTTGGCACGA	AGATTTTGAG	CACCAGAAGC	AATTTCCAAC	ATGGTTTCTC	9540
TCAAATCCTT	CAAAGGAGCA	ATCCAGCGTT	TAAGACTGAA	CCACACTAAG	CAGAGACAGA	9600
CAAGAAGAGA	TGTGACACTG	GCCCCAAGCA	AGGTCCACAA	GAGCTGACTC	CGAACCTGGT	9660
CTAACTTTTC	CAATGATGAC	ACGCCAAGCA	CCGTCCAATC	AGTTCCTGCA	ATCTTCTCTT	9720
GACTGACGTA	GGATTTGTGA	CCAGGAGTAT	AACCCTGACC	TGTATCGATG	TAGGGTTTCA	9780
TAGCCTCCAT	TTTGCTAGAC	GAACTATAAA	CTGTGTGTTG	AGGATGGTAG	ACAAATTCAT	9840
GGTTTTCATT	GATAATGAAG	GCAAAGCCCT	GCTGCCCCAA	CTGGAGTTGA	TTGAGATAGG	9900
CTTCCAGAGT	TTCATAAGAA	ATATCCAAAC	GAAGCACACC	AAGATTGGCT	CCCTTTGCAT	9960
CAACAAGTTC	TTGAGTGACA	GAAATGACCC	ACTGACTATC	TGATTTACGA	GCTGGAGTCA	10020
AAACAGGCAT	AGCTCCCTGA	TGAATGGCCT	TTTGGTACCA	ATCCTCAGCC	ATCATATCAG	10080
AGGAAGTTTT	CATCTGCACA	CTGTCATCTG	TAGAAATGAC	CTGACCAGAT	TTGGTCACCA	10140
GCACAACAGT	TTTCAAGTCC	TTATCTGACT	TCAAGATGGT	CAAAAACAAA	TCTCGGATTC	10200
CCTCGACCTT	GTCTTGACTG	GGATTCTCAG	CATAGGCCAG	AACATCCGTC	TGCTGGGTCA	10260
AACCAGTCGA	GGTGGTTTCT	AGTTTTTGA	TATAAGACTG	AATAAAGTGG	CTAGTCTGGC	10320
TGATGGTCGT	TTGGCTGTTG	CCCTCAATGG	TGGCCTCAAT	GGCTGAAGAA	CTTGATTGAT	10380
AGTAGAAAGT	TCCAACCAGA	GCTAGGAGAA	TGAGAAAGAC	CAGAAAGATG	GAAATAACCA	10440
ттстаастаа	AAGAGAAGAA	CGCTTCATCG	GTCTTCTCCC	TTCTTAAACT	GACGAGGTGT	10500
CACACCTGCA	ATCTGCTTAA	AACGTTGGGT	AAAATAGTTC	ATATCTTCAA	AACCAACCTT	10560
CTCTGCGATC	тсаталатст	TCAGATCTGT	AGTTAAAAGC	AAGAGCTTGG	CTTGTTTAAC	10620
ACGTTCTCTC	ACCAGATAAT	CCTGAAAAGG	CAAGCCCAAC	TCTTTCTTAA	TCAAGGAACT	10680

CAGATAGGTC	GGACTAAAAC	CTAAGTCACT	GGCTAAAGAC	TTTĄAACTAA	ATTGGCTATC	10740
AGCCAGATGA	GACTGGATTT	TCTGGGCCAT	GTTTCCTTCA	AACCTATTAG	TCAATAAATC	10800
TTGTAACTGC	TCTTCTTTCT	CTTCCTTGTC	TAGTTTTTGT	TTGATTTTCC	CCAACATTTC	10860
CTCAATATCC	TGACGAGAAA	AGGGTTTGAG	CAGGTAGTCG	TCCACACCTA	GTTTGACAGC	10920
AGACAAGGCA	TAATCAAAAT	CATCGTAACC	TGTTAAAAAG	ACCAAATGAA	CCTGAGGATA	10980
GGTTTCTCGT	ACCAGACTGG	CCAACTGGAT	GCCATTTAGA	TGAGGCATGT	TGATATCGGT	11040
TAAAATGATA	TCTGGCACCT	GCTTTTGGAT	CAATTCCCAA	GCCTGCCTTC	CATTTTCAGC	11100
CTGACCGATG	ATTTCCATAT	CGTAGGCTGC	TACATTGACC	AGTTTAGTCA	AACCTTGTCT	11160
TACCAGATAT	TCATCTTCTA	CGATTAAGAT	TGTGTAGGTC	ATGCTCTGCT	CCTTTACCAC	11220
TTACTAGTAT	CAGTATAGCA	AAATTCTCCT	CTAACTGCTT	AGGAAAGACC	TCTTATACTC	11280
AATAAAAATO	AAAAAGTAAA	CTAGGAAGAT	AGCCACAGGT	TTCTCAAAGT	ACCGCTTTGA	11340
GGTTGTAAAT	AAAACTGACG	AAGTCGACTC	AAAGTATAGC	TTTGAGGTTG	TAGATAAAAC	11400
TGACGAAGTO	GATAACCCTA	CATACGGTAA	GGCGACGCTG	ACGTGGTTTG	AAGAGATTTT	11460
CGAAGAGTAT	TAATCAACAT	AATCTAGTAA	ATAAGCGTAC	CTTTTTCTTC	CATTTGGTCT	11520
TTGGGAATAA	AGCGGATAGA	GAGGCTATTG	ATACAGTAAC	GTAAGCCGCC	CTTGTCCTGT	11580
GGACCATCCC	TAAAGACATG	CCCAAGGTGA	GAATCTCCTA	CTCGGCTCCG	CACTTCCATA	11640
CGCGTCATAT	TGTAGGACTT	ATCTTCCTTG	TAGGTGACAA	CATCTGGACT	GATGGGTTGG	11700
GTAAAACTAG	GCCAGCCACA	ACCAGACTCA	AATTTGTCTT	TTGATGAAAA	GAGAGGTTCC	11760
CCAGTTGCT	TATCCACATA	GATACCGGAT	TCAAATTTAT	CCCAGTAACG	GTTTGAGAAA	11820
GCTCGTTCT	G TTTGATTTTC	CTGGGTAACT	GCATACTCCT	CAGGTGACAG	GGTCTTTTTC	11880
AATTCCTCA	r cacttggttt	TGGATATTTG	CTGGCATCAA	TGACAGGATA	GGCCGCCTGA	11940
TTAACATTG	A TATGGCAGTA	GCCATTTGGA	TTTTTCTTGA	GATAGTCTTG	ATGGTAATCC	12000
TCAGCCACC	A CAAAATTCTI	CAAGTTTTCC	TTTTCAACTG	CTAGAGGTTC	ATCGTATTTC	12060
					TGTGTAATAA	12120
					GGTTGGATTG	12180
					ATCATAGGTG	12240
					TGTTTCTCCT	12300
					GAAATATTCC	12360
TCCACTCCC	C AGAAACAACO	TCCAGCTAGA	TAAATTTCGT	CCAAGTCTG	GTCTTTACTA	12420

			182			
ATTTCTGTTT	TTTTCACTGC	TTTTCCTCCT	TGGCTAACTG	CCGCCTTTTC	AATTTGCGAG	12480
GCATCTGTCT	GCCCTGCATT	TCGTATCAAT	AGAACATAGA	AACCGGTTAT	GGCTAGAAAA	12540
AATACTCCTA	GCAACAAGAA	GATTTTTAAC	TTATCATTCA	TAAGACGCCT	CCTAGGCTAA	12600
TTCCTTCAAA	GTTTGCAAAA	TTGCATCTTT	TTCCATGAAT	CCTGGATGTG	TTTTGACCAG	12660
CTTGCCTTCT	TTGTCTATAA	AGGCTTGGGT	TGGGTAAGAA	CGGACACCAT	AAGTTTCCAA	12720
AAGTTTGCCT	GATGGGTCAA	CTAGGACTGG	GAGATTTTTA	TAATCCAATC	CCTTATACCA	12780
ATTCTTAAAG	TCCGCTTCAG	ATTGCTCTCC	CTTATGTCCT	GGTGACACTA	CTGTCAAGAC	12840
CACATAGTCA	TCACCAGCTT	CTTTAGCAAT	CTCATCCGTA	TCTGGAAGAC	TAGCCAGACA	12900
GATGGAACAC	CAAGAAGCCC	AGAATTTGAG	ATAGACTTTC	TTGCCCTTGT	AATCAGATAA	12960
ACGGTAGGTC	TTGCCATCTA	CTCCCATCAA	TTCAAAATCA	GCCACCTCTT	TCCCTTTAGC	13020
TGCGCTTGTT	TTACTAGCTG	TCTGCTCCGT	CTTCATTTCA	TCTTTCGTTT	GGTGTTCACT	13080
AGTCACGGAC	TTGCCTGAAC	AAGCCGTCAA	ACAAAGGAGC	GAACCTGCTC	CAAGAACACA	13140
TGTTTGCCAT	TTTTTCATAT	TGATATTCCT	TTCCATTTTA	TTCAAATAAT	TGACTTAAAA	13200
TTGAAGCATT	TCCAAACAGA	ACCAAGAAGC	CCATCACAAT	AATGAGAAAA	CCACCCACTT	13260
TTTTGAGGAT	TCCGAGATAG	GGATGAAGTT	TTCGGAAATG	TTTCAAAACA	TAACTAGAGG	13320
TCAGAGCTAG	AAGCAAGAAT	GGTAGCGCCA	AGCCCAGCGT	ATACACCAAC	ATGAGACCAG	13380
CTCCCTGCCA	AGCTCCTGAA	CCACCTGAAG	CCGCCAAGGC	CAAAACAGAC	CCCAGAACCG	13440
GCCCCACGCA	AGGCGTCCAA	GCAAAACTAA	AGGTCAAGCC	CAATAAAAAT	GCCTGACTAT	13500
AGCCCTTACC	ATTTTGCCCC	TGTCCTTGCA	GTTGTAGCCT	CTTTTCCTTA	TAAAGCCCCT	13560
TAAAGTGTAG	AATCTCCATT	TGGTGCAAAC	CAAGAAGGAT	AATAATTGCC	CCAGTAAGAT	13620
ATTGGAACCA	AGAAGCATAA	AGCAAATCGC	CTAAAAAACC	AGCTCCATAG	CCCAACAAAA	13680
ТАААТАТАА	GGAAATTCCT	GCTATAAAGG	CCAGAGTTCG	TAATAAACTA	GTAACTGAGA	13740
TTGAAAATTT	GCCGCTAGAA	GCCTGAGCAC	CATCCTTATC	ATCTAGTAAC	ACTCCTGT'AT	13800
AGACCGGTA	CAAAGGTAAG	ATACAAGGAG	AAAAGAAGGA	TAGAATCCCT	GCCAAAAAGA	13860
CACTTAGAAA	AAAGAAAATA	TGACCCATAA	AGTTCCTCCT	ATCATTTAT	TGATAGATTT	13920
ATTATA						13926

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20199 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CCCAGCAGAA	AAATGGCATT	TGGAGATAAT	GGAAATCGTA	AAAAAACTAT	GTTTGAGAAA	60
ATAACCTTGT	TTATCGTGAT	TATCATGCTA	GTAGCAAGTT	TATTGGGAAT	TTTTGCAACT	120
GCAATTGGTG	CCCTCAGTAA	TCTATAAAAT	AGATTCAAGA	aaatttagtg	ACTGGGATTT	180
CCCAGCCCTT	TTTTAAAGTG	AGAAGAAATA	ATGAGTATGT	TTTTAGATAC	AGCTAAGATT	240
AAGGTCAAGG	CTGGTAATGG	TGGCGATGGT	ATGGTTGCCT	TTCGTCGTGA	AAAATATGTC	300
CCTAATGGAG	GCCCTTGGGG	TGGTGATGGT	GGTCGTGGAG	GCAATGTGGT	CTTCGTTGTA	360
GACGAAGGAC	TACGTACCTT	GATGGATTTC	CGCTACAATC	GTCATTTCAA	GGCTGATTCT	420
GGTGAAAAAG	GGATGACCAA	AGGGATGCAT	GGTCGTGGTG	CTGAGGACCT	TAGAGTTCGA	480
GTACCACAAG	GTACGACTGT	TCGTGATGCG	GAGACTGGCA	AGGTTTTAAC	AGATTTGATT	540
GAACATGGGC	AAGAATTTAT	CGTTGCCCAC	GGTGGTCGTG	GTGGACGTGG	AAATATTCGT	600
TTCGCGACAC	CAAAAAATCC	TGCACCGGAA	ATCTCTGAAA	ATGGAGAACC	AGGTCAGGAA	660
CGTGAGTTAC	AATTGGAACT	AAAAATCTTG	GCAGATGTCG	GTTTAGTAGG	ATTCCCATCT	720
GTAGGGAAGT	CAACACTTTT	AAGTGTTATT	ACCTCAGCTA	AGCCTAAAAT	TGGTGCCTAC	780
CACTTTACCA	CTATTGTACC	AAATTTAGGT	ATGGTTCGCA	CCCAATCAGG	TGAATCCTTT	840
GCAGTAGCCG	ACTTGCCAGG	TTTGATTGAA	GGGGCTAGTC	AAGGTGTTGG	TTTGGGAACT	900
CAGTTCCTCC	GTCACATCGA	GCGTACACGT	GTTATCCTTC	ACATCATTGA	TATGTCAGCT	960
AGCGAGGGCC	GTGATCCATA	TGAGGACTAC	CTAGCTATCA	ATAAAGAGCT	GGAGTCTTAC	1020
AATCTTCGCC	TCATGGAGCG	TCCACAGATT	ATTGTAGCTA	ATAAGATGGA	CATGCCTGAG	1080
AGTCAGGAAA	ATCTTGAAGA	CTTTAAGAAA	AAATTGGCTG	AAAATTATGA	TGAATTTGAA	1140
GAGTTACCAG	CTATCTTCCC	AATTTCTGGA	TTGACCAAGC	AAGGTCTGGC	AACACTTTTA	1200
GATGCTACAG	CTGAATTGTT	AGACAAGACA	CCAGAATTTT	TGCTCTACGA	CGAGTCCGAT	1260
ATGGAAGAAG	AAGCTTACTA	TGGATTTGAC	GAAGAAGAAA	AAGCCTTTGA	AATTAGTCGT	1320
GATGACGATG	CGACATGGGT	ACTTTCTGGT	GAAAAACTCA	TGAAACTCTT	TAATATGACC	1380
AACTTTGATC	GTGATGAATC	TGTCATGAAA	TTTGCCCGTC	AGCTTCGTGG	TATGGGGGTT	1440
GATGAAGCCC	TTCGTGCGCG	TGGAGCTAAA	GATGGGGATT	TGGTCCGCAT	TGGTAAATTT	1500
GAGTTTGAAT	TTGTAGACTA	GGAGACTGGT	ATGGGAGATA	AACCGATATC	TTTCCGAGAT	1560
GCGGATGGTA	ATTTTGTTTC	CGCCGCAGAC	GTTTGGAATG	AAAAGAAATT	GGAAGAACTA	1620

				184			
TTTAATC	GTC	TCAATCCAAA	TCGTGCCTTG		GAACTAAAAA	GGAAAATCCA	1680
TCTCAGT	AAA	GAAGCTAAAA	AATCCCGTGC	CTCATCAGAC	ACGGGATTTT	GTGGTACGAC	1740
AGGCATG	TAT	AGCAAACTGA	ATCTGGAATA	GCACAGCATA	TCTTCTAAAA	TATAGTAAAA	1800
TGAAATG.	AGA	ACAGGACAAA	TCGATCAGGA	CAGTAAAATC	GATTTCTAAC	AATGTTTTAT	1860
AAGCAGA	GAT	GTACTATTCT	AGTTTCAATC	AACTATATTG	TTATAAATTG	ATTTGAATTT	1920
CAAAATT	AAA	TTGTTTGATT	CTTÁTTTCAA	TTTGTTATAG	TATATCTGAT	GTCAAAGTTC	1980
TCGGCGA	GTC	AAATAGCGAT	TCCCAAGCCT	GACTATCGTG	AGGTAGCGGA	TTAAAATGGT	2040
CTGGGGA	TAG	ACCGTTTTAA	GTCTGACGCT	GGAAATAAGA	ATTGTCAGAA	GAAGGGATAG	2100
CGAAATC	GTG	GCTCTACGAA	CAGGAACGTG	ATAATAAGGC	GTATATAGCG	GATAAGAGGG	2160
CATCAAA	CTC	TAAAGTCCAA	AAAGGTAGTC	GTAACCTATA	TGCGTAAATC	ACGAGAGTAA	2220
TTGAATT	CGT	ACTAAGATTT	TCTATTTTCA	CTGTAACCTT	TTAACGCCCT	TATATCTTGT	2280
ATACACG	AGG	AAAGATGTAC	GACTTATCCC	GTGAGGTCTA	TCACTATAAA	GAGAAAACGA	2340
CAGATAG	AAG	TGATCCTGAG	TCACGGTTAT	CTGTCTGATA	GGACGGTATG	TATAAAACGC	2400
TTCTGTG	AAC	TGAGAGAAGG	GGGAGAAGTT	CTTGCTAAAA	TTTAGTTGAA	CAGCCGTATT	2460
CCGATAC	TTA	GATAAGAGAT	CTAGTCTTAG	CTCCTACTCA	GTTTTAGGGG	ATAAAAAAGG	2520
GGCAATA	.GCG	ATTCGAGAAA	GATTATACTC	TTCGAAAATC	TCTTCAAATC	ACGTCAATAT	2580
CGCCTTG	TCG	TATGTGTAGG	ATACTGACTA	CGTCAGTTCC	ATCTACAACC	TCAAAACAGT	2640
GTTTTGA	GCA	ACCTGCGGCT	AGTTTCCTAG	TTTGATCTTT	GATTTTCATT	GAGTATTAGT	2700
AATTCAG	TTA	CTAACTCGTC	AACTCTGATT	TATCCAATAA	AATTGAAAAG	GATGGAAAAA	2760
AGGATAA	ATT	TATGATATAC	TTTATTTTGA	AGACCTTATT	AGAAATCTTG	AAAGAGTATT	2820
GAAAACT	TAG	AATGAGAAAA	ATTGTTATCA	ATGGTGGATT	ACCACTGCAA	GGTGAAATCA	2880
CTATTAG	TGG	TGCTAAAAAT	AGTGTCGTTG	CCTTAATTCC	AGCTATTATC	TTGGCTGATG	2940
ATGTGGT	'GAC	TTTGGATTGC	GTTCCAGATA	TTTCGGATGT	AGCCAGTCTT	GTCGAAATCA	3000
TGGAATT	'GAT	GGGAGCTACT	GTTAAGCGTT	ATGACGATGT	ATTGGAGATT	GACCCAAGAG	3060
GTGTTCA	AAA	TATTCCAATG	CCTTATGGTA	AAATTAACAG	TCTTCGTGCA	TCTTACTATT	3120
TTTATGO	GAG	CCTCTTAGGC	CGTTTTGGTG	AAGCGACAGT	TGGTCTACCG	GGAGGATGTG	3180
ATCTTGG	TCC	TCGTCCGATT	GACTTACACC	TTAAGGCGTT	TGAAGCTATG	GGTGCCACTG	3240
CTAGCTA	CGA	GGGAGATAAC	ATGAAGTTAT	CTGCTAAAGA	TACAGGACTT	CATGGTGCAA	3300
GTATTTA	CAT	GGATACGGTT	AGTGTGGGAG	CAACGATTAA	TACGATGATT	GCTGCGGTTA	3360
AAGCAA	TGG	TCGTACTATT	ATTGAAAATG	CAGCCCGTGA	ACCTGAGATT	ATTGATGTAG	3420
						*	

185

CTACTCTCTT	GAATAATATG	GGTGCCCATA	TCCGTGGGGC	AGGAACTAAT	ATCATCATTA	3480
TTGATGGTGT	TGAAAGATTA	CATGGGACAC	GTCATCAGGT	GATTCCAGAC	CGCATTGAAG	3540
CTGGAACATA	TATATCTTTA	GCTGCTGCAG	TTGGTAAAGG	AATTCGTATA	AATAATGTTC	3600
TTTACGAACA	CCTGGAAGGG	TTTATTGCTA	AGTTGGAAGA	AATGGGAGTG	AGAATGACTG	3660
TATCTGAAGA	CAGCATTTTT	GTCGAGGAAC	AGTCTAATTT	GAAAGCAATC	AATATTAAGA	3720
CAGCTCCTTA	CCCAGGCTTT	GCAACTGATT	TGCAACAACC	GCTTACCCCT	CTTTTACTAA	3780
GAGCGAATGG	TCGTGGTACA	ATTGTCGATA	CGATTTACGA	AAAACGTGTA	AATCATGTTT	3840
TTGAACTAGC	AAAGATGGAT	GCGGATATTT	CGACAACAAA	TGGTCATATT	TTGTACACGG	3900
GTGGACGTGA	TTTACGTGGG	GCCAGTGTTA	AAGCGACCGA	CTTAAGAGCT	GGGGCTGCAC	3960
TAGTCATTGC	TGGGCTTATG	GCTGAAGGTA	AAACTGAAAT	TACCAATATC	GAGTTTATCT	4020
TACGTGGTTA	TTCTGATATT	ATCGAAAAAT	TACGTAATTT	AGGAGCGGAT	ATTAGACTTG	4080
TTGAGGATTA	AACCGTAGAG	GTGTTTATGA	ATATTTGGAC	CAAATTAGCA	ATGTTTTCTT	4140
TTTTTGAAAC	GGATCGCTTG	TATTTGCGTC	CTTTCTTTTT	TAGTGATAGT	CAGGACTTCC	4200
GCGAGATAGC	TTCAAATCCA	GAAAATCTTC	TTTTATTTAA	CCCAACGCAG	GCAAGTCTGG	4260
AAGAAAGTCA	ATATGCACTG	GCCAATTACT	TTATGAAGTC	CCCTTTGGGA	GTGTGGGCAA	4320
TTTGTGACCA	GAAAAATCAA	CAAATGATTG	GTTCTATTAX	ATTTGAGAAG	TTAGATGAAA	4380
TCAAAAAAGA	AGCTGAGCTT	GGCTATTTTT	TGAGAAAAGA	TGCTTGGTCG	CAAGGATTTA	4440
TGACAGAGGT	TGTTAGAAAA	ATTTGTCAGC	TTTCTTTTGA	GGAATTTGGC	TTAAAACAAT	4500
TATTTATCAT	TACCCACCTT	GAAAATAAAG	CTAGCCAAAG	AGTTGCTCTT	AAGTCTGGAT	4560
TTAGTTTGTT	CCGTCAGTTT	AAGGGAAGTG	ATCGTTACAC	AAGAAAAATG	CGGGATTATC	4620
TTGAATTTCG	GTATGTAAAA	GGAGAGTTCA	ATGAGTAAGC	ATCAGGAAAT	TCTAAGCTAT	4680
TTGGAGGAAT	TACCAGTAGG	TAAAAGGGTC	AGTGTTCGTA	GCATTTCGAA	TCATCTAGGA	4740
GTTAGTGATG	GAACAGCCTA	TCGGGCTATT	AAAGAAGCTG	AAAACCGTGG	AATTGTGGAG	4800
ACCCGTCCTA	GAAGTGGAAC	AATTCGTGTT	AAATCCCAGA	AAGTTGCTAT	AGAGAGATTA	4960
ACGTTTGCTG	AAATTGCAGA	AGTGACTTCT	TCTGAGGTTC	TGGCTGGGCA	AGAAGGTTTA	4920
GAGAGAGAAT	TTAGTAAGTT	TTCAATTGGT	GCCATGACTG	AACAAAATAT	CTTGTCTTAC	4980
CTTCATGATG	GGGGGCTCTT	GATTGTCGGA	GACCGAACCC	GTATTCAGTT	GCTAGCCTTG	5040
GAAAATGAAA	ATGCAGTTCT	GGTTACAGGG	GGATTTCAGG	TTCATGATGA	TGTGCTTAAA	5100
CTGGCCAATC	AAAAAGGGAT	TCCTGTTCTA	AGAAGTAAGC	ATGATACCTT	TACCGTCGCG	5160

			186			
ACCATGATCA	ATAAAGCCTT	GTCAAATGTC		CTGATATTCT	GACAGTTGAG	5220
AAACTTTATC	GCCCTAGTCA	TGAGTATGGT	TTTCTGAGAG	AGACAGATAC	AGTTAAAGAT	5280
TATTTGGACT	TGGTTCGTAA	GAATCGTAGC	AGCCGTTTCC	CTGTTATCAA	TCAACATCAG	5340
GTCGTTGTTG	GTGTTGTAAC	CATGAGAGAC	GCTGGTGATA	AATCACCAAG	CACGACAATT	5400
GATAAGGTTA	TGTCTCGTAG	TCTATTTTTG	GTTGGATTAT	CGACAAATAT	TGCCAATGTG	5460
AGTCAACGGA	TGATCGCAGA	AGACTTTGAA	ATGGTACCAG	TTGTTCGAAG	CAATCAAACT	5520
TTGCTTGGCG	TTGTGACGCG	ACGAGATGTC	ATGGAGAAGA	TGAGCCGTTC	CCAAGTTTCG	5580
GCTCTACCAA	CTTTTTCTGA	GCAGATTGGA	CAAAAGCTCT	CTTATCACCA	TGATGAAGTA	5640
GTCATTACAG	TGGAACCCTT	TATGCTAGAA	AAAAATGGAG	TTTTGGCTAA	TGGTGTATTG	5700
GCAGAAATTC	TGACCCACAT	GACCCGATTT	AGTTGTTAAT	AGTGGTCGCA	ATCTCATTAT	5760
CGAGCAGATG	CTGATCTACT	TTTTGCAGGC	TGTTCAGATA	GATGATATAT	TGCGCATTCA	5820
GGCACGGATT	ATTCATCATA	CGAGACGGTC	AGCTATAATT	GATTACGATA	TTTATCATGG	5880
TCACCAGATT	GTTTCAAAAG	CAAATGTGAC	TGTTAAAATT	AATTAGAAAC	TAGGAGAAAA	5940
GATGATAACA	TTAAAATCAG	CTCGTGAAAT	CGAAGCTATG	GACAAGGCTG	GTGATTTTCT	6000
AGCAAGTATT	CATATAGGCT	TACGTGATTT	GATTAAGCCA	GGCGTAGATA	TGTGGGAAGT	6060
TGAAGAATAT	GTCCGCCGTC	GTTGTAAAGA	AGAAAATTTC	CTTCCACTTC	AGATTGGGGT	6120
TGACGGTGCC	ATGATGGACT	ATCCTTATGC	TACCTGTTGC	TCTCTTAACG	ATGAAGTGGC	6180
TCACGCTTTC	CCTCGTCATT	ATATOTTGAA	AGATGGTGAT	TTGCTCAAAG	TTGATATGGT	6240
TTTGGGAGGT	CCCATTGCTA	AATCTGACCT	AAATGTCTCA	AAATTAAACT	TCAACAATGT	6300
TGAACAAATG	AAAAAATACA	CTCAGAGCTA	TTCTGGTGGT	TTAGCAGACT	CATGTTGGGC	5360
TTATGCTGTT	GGTACACCGT	CCGAAGAAGT	CAAAAACTTG	ATGGATGTAA	CCAAAGAAGC	6420
TATGTACAAG	GGTATTGAGC	AAGCTGTTGT	TGGAAATCGT	ATCGGTGATA	TCGGTGCGGC	6480
TATTCAAGAA	TACGCTGAAA	GTCGTGGTTA	CGGTGTAGTG	CGTGATTTGG	TTGGTCATGG	6540
TGTTGGCCCA	ACTATGCACG	AAGAACCAAT	GGTTCCTAAC	TATGGTATTG	CAGGTCGTGG	6600
ACTCCGTCTT	CGTGAAGGAA	TGGTCTTAAC	CATTGAACCA	ATGATCAATA	CAGGCGATTG	6660
GGAAATTGAT	ACAGATATGA	AAACTGGTTG	GGCGCATAAG	ACCATTGACG	GTGGATTGTC	6720
ATGTCAGTAT	GAACACCAAT	TTGTCATTAC	GAAAGATGGA	CCTGTTATCT	TGACTAGCCA	6780
AGGTGAAGAA	GGAACTTATT	AATAAAAAGT	GAAAAGACTA	CTGGAAGTTT	ATTTTGATAA	6840
AAAATCCAGT	AGATCTTTTC	АТААТААААС	GCATTGTATC	AAGTGTTAGC	GGCTGATATC	6900
ATGCGTTTTT	CTGCTTTTAA	GATTTTTTCC	AACTCTGTTT	GTAAGCGCAT	CATAACAAAG	6960

•	GGTCTAGGAT	TCAGGGCTCT	CCTCCTATAT	ACTATTAGTA	AAGTAAAACT	AAGGGAGGAT	7020
,	\TTTTAGTGT	CGCAGTCTAT	TGTTCCTGTA	GAGATTCCAC	AATATTGTCG	TTTTGATTCT	7080
	AAAAAGAGAA	ATGGAATTCT	GTTTAATGTT	CGTATTGCCA	ATCTTAAATT	TACTTTTTTA	7140
,	TATTATACTT	CCTGCGAAAC	AAAATATGGT	ATAGTAGTTC	TATGAATGAT	GAAGCAAGTA	7200
	AACAACTAAC	TGATGCACGA	TTTAAGCGTC	TTGTTGGTGT	TCAGCGTACC	ACTTTTGAAG	7260
	AGATGTTAGC	TGTATTAAAA	ACAGCTTATC	AACTTAAACA	CGCAAAAGGT	GGACGAAAAC	7320
(CTAAATTAAG	CCTAGAAGAC	CTTCTTATGC	CCACTCTTCA	ATAGTGCGAG	AATATCGAAC	7380
•	TTATGAAGAA	ATTGCGGCTG	ATTTTGGTAT	TCACGAAAGC	AACTTTATCC	GTCGGAGCCA	7440
1	atgggttgaa	ATAACTCTTG	TTCAAAGTGG	TTTTACGGTT	TCAAGAACTC	CTCTCAGTTC	7500
•	rgaggacacg	GTAATGATTG	ATGCGACGGA	AGTAAAAATC	AATCGCCCTA	AAAAAACAAT	7560
	TAGCGAATGA	TTCTGGTAAA	AAGAAATTTC	ACGCTATGAA	GGCTCAAGCG	ATTGTCACAA	7620
(STCAAGGGAG	AATTGTTTCT	TTGGATATCG	CTGTGAACTA	TAGTCATGAT	ATGAAGTTGT	7680
•	TCAAAATGAG	TCGTAGAAAT	ATCGAÄCAAG	CTGGTAAAAT	CTTGGCTGAC	AGTGGTTATC	7740
4	AAGGGCTCAT	GAAGATATAT	CCTCAAGCAC	AAACTCCACG	TAAATCCAGC	AAACTC AA GC	7800
(CGCTAACAGC	TGAAGATAAA	GCCTATAACC	ATGCGCTATC	TAAGGAAAGA	AGCAAGGTTG	7860
i	AGAACATCTT	TGCCAAAGTA	AAAACGTTTA	AAATATTTTC	AACAACCTAT	CGAAATCATC	7920
(CTAAACGCTT	CGGATTACGA	ATGAATTTGA	GTGCTGGTAT	TATCAATCAT	GAACTAGGAT	7980
•	CTAGTTTTG	CAGGAAGTCT	ATTGAGGTAT	TGAGCTAGTT	TATGAAAAA	TTGGGTGAAA	8040
4	AGTCGAGTGT	TTTAGAAACC	CACAGTGTAG	TATTCTAGTT	TCAATCCACT	ATATTTTGCT	8100
	ACTCCCCGTA	AAGTTTCTAT	TTTCCCTGAT	TTCTGATATA	ATAGAAATAT	TGACTTCAAG	8160
i	agtaaggaag	AGAAGATGAA	CGCATTATTA	AATGGAATGA	ATGACCGTCA	GGCTGAGGCG	8220
(GTGCAAACGA	CAGAAGGTCC	CTTGCTAATC	ATGGCAGGGG	CTGGTTCTGG	AAAGACTCGT	8280
C	STTTTGACCC	ACCGTATCGC	TTATTTGATT	GATGAAAAGC	TGGTCAATCC	TTGGAATATC	8340
-	TTGGCCATTA	CCTTTACCAA	CAAGGCTGCG	CGTGAGATGA	AAGAGCGTGC	TTATAGCCTC	8400
1	A ATCCAGCGA	CTCAGGACTG	TCTGATTGCG	ACCTTCCACT	CCATGTGTGT	GCGTATTTTG	8460
(CGTCGCGATG	CGGACCATAT	TGGCTACAAT	CGTAATTTTA	CAATTGTGGA	TCCTGGTGAA	8520
(CAGCGAACGC	TCATGAAACG	TATTCTCAAA	CAGTTGAACT	TGGACCCTAA	AAAATGGAAT	8580
(GAACGAACTA	TTTTGGGGAC	CATTTCCAAT	GCTAAGAATG	ATTTGATTGA	TGATGTTGCT	8640
•	TATGCTGCCC	AAGCTGGCGA	TATGTATACG	CAAATTGTGG	CCCAGTGTTA	TACAGCCTAT	8700

CAAAAAGAAC	TTCGTCAGTC	TGAATCCGTT	188 GACTTTGATG	ATTTGATTAT	GCTGACCTTG	8760
CGTCTCTTTG	ATCAAAATCC	TGATGTTTTG	ACCTACTACC	AGCAAAAATT	CCAATACATC	8820
CACGTTGATG	AGTACCAAGA	TACCAACCAC	GCTCAGTACC	AATTGGTCAA	ACTCTTGGCT	8880
TCCCGTTTTA	AAAATATCTG	TGTGGTTGGG	GATGCGGACC	AGTCTATCTA	CGGTTGGCGT	8940
GGTGCTGATA	TGCAGAATAT	CTTGGACTTT	GAAAAGGATT	ACCCCAAAGC	CAAGGTTGTT	9000
TTGTTGGAGG	AAAATTACCG	СТСААССААА	ACCATTCTCC	AAGCGGCCAA	CGAGGTTATT	9060
AAAAATAATA	AAAATCGCCG	TCCTAAAAAT	CTCTGGACTC	AAAACGCTGA	TGGGGAGCAA	9120
ATCGTTTACT	ATCGTGCCGA	TGATGAGCTG	GATGAGGCTG	TATTTGTAGC	CAGAACCATC	9180
GATGAACTTA	GTCGCAGTCA	AAACTTCCTT	CATAAGGATT	TTGCAGTTCT	CTATCGGACT	9240
AATGCCCAGT	CCCGTACAAT	TGAGGAAGCC	CTGCTCAAGT	CTAACATTCC	TTATACCATG	9300
GTTGGCGGAA	ССАААТТСТА	CAGCCGTAAG	GAAATTCGCG	ATATTATTGC	TTATCTCAAC	9360
CTTATTGCTA	ATTTGAGTGA	CAATATTAGT	TTTGAGCGTA	TTATCAACGA	GCCTAAACGT	9420
GGAATTGGTC	TAGGTACAGT	TGAGAAAATC	CGTGATTTTG	CAAATTTGCA	AAATATGTCT	9480
ATGCTGGATG	CTTCTGCTAA	TATTATGTTG	TCTGGTATCA	AGGGTAAGGC	AGCCCAATCT	9540
ATCTGGGATT	TTGCCAATAT	GATGCTTGAT	TTGCGGGAGC	AGCTAGACCA	CTTAAGCATT	9600
ACAGAGTTGG	TTGAGTCCGT	CCTAGAAAAA	ACAGGTTATG	TCGATATTCT	TAACTCCCAA	9660
GCGACTCTAG	AAAGCAAGGC	ACGGGTTGAA	AATATCGAAG	AGTTTCTTTC	TGTTACGAAG	9720
AACTTTGATG	ACACCACGGA	TGTGACAGAA	GAGGAAACTG	GTCTGGACAA	ACTGAGTCGT	9780
TTCTTAAATG	ACTTGGCTTT	GATTGCCGAC	ACAGATTCAG	GTAGTCAGGA	GACATCAGAA	9840
GTGACCTTGA	TGACCCTGCA	TGCTGCCAAA	GGTCTCGAAT	TTCCAGTTGT	CTTTTTGATT	9900
GGGATGGAAG	AAAATGTCTT	TCCACTTAGT	CGTGCGACTG	AAGATTCAGA	TGAATTAGAA	9960
GAAGAGCGCC	GTCTAGCCTA	TGTAGGTATC	ACGCGTGCAG	AGAAAATTCT	CTATCTGACC	10020
AATGCCAACT	CACGCTTGCT	TTTTGGTCGT	ACCAATTATA	ACCGTCCGAC	TCGTTTTATT	10080
AACGAAATCA	GTTCAGACTT	GCTTGAGTAT	CAAGGTCTGG	CTCGTCCTGC	AAATACAAGC	10140
TTTAAGGCAT	CATATAGCAG	TGGTAGTATT	TCCTTTGGTC	AAGGTATGAG	TTTGGCTCAG	10200
GCTCTTCAAG	ACCGTAAACG	CGGTGCTGCC	CCAAAATCAA	TCCAGTCAAG	CGGTCTTCCA	10260
TTTGGTCAAT	TTACAGCTGG	CGCAAAACCA	GCATCTAGCG	AGGCAAATTG	GTCCATTGGT	10320
GATATTGCTC	TCCACAAGAA	ATGGGGAGAG	GGAACCGTTC	TGGAAGTTTC	AGGTAGCGGT	10380
GCTAGGCAGG	AATTGAAAAT	CAATTTCCCA	GAAGTAGGTT	TGAAAAAACT	TTTAGCCAGT	10440
GTGGCTCCAA	TTGAGAAAAA	AATCTAATTT	TCCATCCTTC	TCACGAATAA	TAAAGTGAGG	10500

AGGATTTTTA						10560
GCCAAGGAAG						10620
GGAACACGTC	AAGCTAGCGT	TTTTGAAATT	GCCCAAAAAG	TCTTGAACAA	TCTTTCAAGC	10680
CTAACGGATT	TGAAAAAAAT	GACCCTGCAG	GAATTGCAGA	GTTTGTCTGG	TATTGGGCGT	10740
GTTAAGGCCA	TAGAATTACA	AGCTATGATT	GAACTGGGGC	ATCGTATTCA	CAAACACGAG	10800
ACTCTTGAAA	TGGAAAGTAT	TCTCAGCAGT	CAAAAGTTGG	CCAAGAAGAT	GCAGCAGGAA	10860
TTAGGGGATA	AAAAACAAGA	GCACCTGGTG	GCACTCTATC	TCAATACTCA	AAATCAAATC	10920
ATCCATCAGC	AGACCATTTT	TATCGGGTCT	GTAACTCGTA	GTATCGCTGA	ACCGCGAGAG	10980
ATTCTTCACT	ATGCAATCAA	GCATATGGCG	ACTTCTCTTA	TCTTGGTCCA	CAATCATCCT	11040
TCAGGAGCGG	TAGCGCCTAG	CCAAAATGAT	GATCATGTCA	CTAAACTTGT	TAAAGAAGCC	11100
TGCGAATTGA	TGGGGATTGT	TCTCTTGGAC	CATTTGATTG	TCTCTCATTC	TAATTACTTT	11160
AGTTATCGTG	AAAAGACAGA	TTTAATCTAA	AGTTCATTAA	CGACATAGTC	AAAGAGTTTT	11220
TTATCTTTGG	GACGATTTTC	AAAAAGAAGT	TCTGGATGCC	ATTGGACACC	GAGAAAGGCG	11280
ACATCATCCG	TACTCATGAC	AGCCTCAATG	ATACCATCTT	TAGGATCATG	AGCCACAACT	11340
TTTAAATTTG	GTGCTAAGTC	CTTGATGCTC	TGGTGGTGGA	AGGAGTTGAT	ATGAGAGATT	11400
TCTCCATAGA	TTTCTTGGAG	AACGGTATCT	GGTTCTGTTA	CCAAGCGTTC	AGTTGTGTAC	11460
TCAACAGAAG	AATCCTGCCA	ATGGTCTTC	ATATCTTGGT	ACAAAGTTCC	ACCCATGGCA	11520
ACGTTAAAGA	GTTGGGTACC	ACGGCAGACA	GAGAAAATGO	GCTTTTTCTC	TTTAATAGCT	11580
TCCTTGATGA	GGGCCAGTTC	GAAGATATC	CTTTGAAGGT	GATAGTCAT	ACTATCAATG	11640
GTTTTGGGTT	CGCCATAAAA	TTTTGGATC	ACATTTTGCC	CACCTGTCA	GATGAGCTTG	11700
TCAATCAAAC	TGATATAGTO	GCAGGCCAT	r TCTTGATCAC	CAATCGGTAG	GATGATGGGA	11760
ATCCCTCCAC	CATCTTTAAC	GCCTTCAAC	A AAGCCTTTTC	CTGCGTAGC	r CATCATGATG	11820
TCATCATCTO	GATGAGTTT	TTCGTTTCC	r GTAATCCCAJ	A TAACTGGTT	TTTCATAAA	11880
TGATTTTCG	TTTCTAATC	TCTTTTCGC.	A TGAAGTAGA	G GAGGGTTTG	G AGTTCACTTG	11940
TCAAATCGAG	ATACTGAAC	G ACCACGTCT	T TTGGTAAAT	G CAGATGGAC	T GGTGAAAAAC	12000
TGAGAATTC	TTTCACACC	A GCATCAACC	A AGAGATTAG	C AACCTCTTG	T GACTTGACGC	12060
					C TTGATCTGAG	12120
					A TGGTCGTCTA	12190
					G TGGAGAAGGG	12240

AATCGGCAAA AAATGTCATT AGTTTTTTGA CATCATAGCC AAAACCACGA CGACCAAGTT CACCAAAATA GGAAAAATCA CGACGTACGG TCGCTGAATC AATACCGATA GCCTCTGCAA TTTGCTTAGA GTTGGCACGT TCAATCTTTT CTGCATGAAA TCTCTTAAAA ATTCGATAGT AGAGAGAGGA TCTTTTTGCT GTAGCTTTTG GAATAGCAAA CTGTTTATCT TTCACAAAAT CACAAACCTTT CTATTCTTCT ATTTTATAGA AACATGTGA AAAAATCAAC AAAAATAAGA AAAAACTAAG AAAAATCTTA GTTTGATGT AAAAAATCTG CATGAGATAG AAAAACCGATA AGGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTGAGAGA AGTCACATAA AGGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAAATCAAC TGAGAGCCTC ATGATCCTCA AGGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATCA GGAAGTCAAA TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAAATA TCAACTAGAC GAAGGCCAAA TTTTTCCTGA TGAATATGGT GGCCTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTGCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAACGAGAG GCCTAACCAAC TTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTAATTTT TTAACCAGAG GCCTAACCAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTAATTTT TTAACCAGAG GCCTAACCAC CTAACCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CGATAATTC TTTTAAGGTT TAGCCCCTGT ATGTTTTCA AATGCCATAT GGCTAACCTC CGATAATTC TTTTAAGGTT TTTGCGAGG TTTGTAGGTC TCCAACGGTA TTTTGTGGCC ACAAACTGAT GCGAAGGGAT TCCTTCAACG GTTCTTAATT TCCACCGATA TTTTGTGGC ACAAACTGAT GCGAAGGGAT TCCTTCAACG GTTCTTAATT TCCACCGATA TTTTTTTGGCC ACAAACTGAT GCGAAGGGAT TCCTTCAAC GTTCTTAATT TCCACCGATA TTTTTTTGGCC ACAAACTGAT GCGAAGGGAT TCCTTCAACG GTTCTTAATT TCCACCGATA CATGGCTTCAA CAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC AGCCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTC ACCAGGAAAT CCAAATATTC AGCCTAAATC TAGCCGAACC ATGCCTTCAA TGGGCAGAAT CCAATATTGA AGAACATGAG GGAATGAAT TTTCCTCTAT TCAGGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAGGC AGTTTCAGA TTTTCTCCTAT TCAGGGCAG ATTTTCATCTT TTTTCTAGT TTTTCTTTTTTTTTTTTTTTTTTTTTTTTT					190			
CACCAAAATA GGAAAAATCA CGACGTACGG TCGCTGAATC AATACCGATA GCCTCTGCAA TTTGCTTAGA GTTGGCACGT TCAATCTTTT CTGCATGAAA TCTCTTAAAA ATTCGATAGT 12 AGAGAGAGAG TCTTTTTGCT GTAGCTTTTG GAATAGCAAA CTGTTTATCT TTCACAAAAT 12 CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGTA AAAAATCAAC AAAAATAAGA 12 AAAAACTAAG AAAAATCTTA GTTTTATTGT AAAAAATCTG CATGAGATAG AAAAACGGTAG 12 AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAAGA AGTCACATAA 12 AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAAATCAAC AGAAACGGTAG 12 ACTTTTGAGG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT 12 CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGGCCCAA TTTTTCCTCA TGAATATGGT GGTCTTCTGA TTTGAAAAATA TCAACTAGAC GAAGGCCCAAA TTTTTCCTCAA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATCA TTTTGAGTTG 13 CAAGCCTTCA CCGCTGTTTG GCACTTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACCAGAAG GGCTAAGGAT 13 CTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 13 CAAAACTGAT GCGAAAGGGAT TCCTTCAGAG TTTGTAGGTC TCCAACGGTA TTTTTTTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA CAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA CAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 13 CAGCTAAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCT ACCGGCATAC ATGGCTTCAA CAGCAAAACTGAT GGAAGGGAT TCTCTCAAC GTTCTAAATT TCCAGGCTAA CATGAATTTC 13 CAGCAAAACGGA AGTTCTAGA TTTCCTCTAT TCAGGGTAATA CTGAATGCCC TCCAGCTCTG 13 CCAGAAAGGC AGTTTCTAGA TTTCCTCTAT TCAGGGTAATA CTGAATGCCC TCCAGCTCTG 13 CCAGAAAGGC AGTTTCTAGA TTTTCTCCTAT TCAGGGCAG ATTTTCATTT TTTTCTAGGT 13 CCAGAAACGGAT TCCCTTAGGA TTTCTCTCTAT TCAGGGTAATA CTGAATGCCC TCCAGCTCTG 13 CCAGAAACGGAT TCCCTTAGGA TTTTCTCCTAT TCAGGGCAG ATTTTCAGT CCTGCACCIT 13 CCAGAAACGGAT TCCCTTAGGA TTTCTCTCTAT TCAGGCTAAAAG CTCATCCTA GATCCCTAGAA TGCCTTAGAA TGCCCTAGAA TGGCCTAGAA AAACCAGAT TCCCTTAGGA TTTTCTTCACA AGGAATCAAA GCCATGCATA ACATGATAG CCAATTCTTC TGAATGAATT GGGAATTTAC CAATAGCCTG AACTGCATCA ACATGATAG CCAATTCTTC TGAATGAATT GGGAATTTAC CAATAGCC	(CATGGCCCAT	ATTTCCAATA	CCAACCAGCA	TGACATTGGT	AATAGAGTTG	TCATTGAGCA	12300
TTTGCTTAGA GTTGGCACGT TCAATCTTTT CTGCATGAAA TCTCTTAAAA ATTCGATAGT 12 AGAGAGAGAG TCTTTTGCT GTAGCTTTG GAATAGCAAA CTGTTTATCT TCACAAAAT 12 CACAACCTTT CTATCTTCT ATTTTATAGA AACATTGTA AAAAATCAAC AAAAATAAGA 12 AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCTG CATGAGATAG AAAAATCAAC AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCTG CATGAGAGA AGTCACATAA 12 AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAAGA AGTCACATAA 12 AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAAGA AGTCACATAA 12 AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAAGA AGTCACATAA 12 ACTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA 12 TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT 12 CTATCTTTCC GATTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA 12 CTTGTCAGTG ATAATTGGT GGCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA 12 CTTGTCAGTG ATAATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGAATGA TTTTGAGTTG 13 CAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 13 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 13 CTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATA TGGCTAACCTC 13 CGATAATTC TTTTAAGGTT TTTGCAGAG TTTTTTCAA AATGCCATAC ATGGCTTCAA 13 CAAAACTGAT GCGAAGGGAT TCCTTCAACG GTTCTGAATT TGCGCCATAC ATGGCTTCAA 13 CAAACTGAT GCGAAGGGAT TCCTTCAACG GTTCTGAATT TGCGCCATAC ATGGCTTCAA 13 CAACATAAGC GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 13 CAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGGTAATA CTGAATGCCC TCCAGCTCTG 13 CAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGGTAATA CTGAATGCCC TCCAGCTCTG 13 CCAGAAAAGC AGTTTCTAGA TTTTGTACAT GTGGAAAATG TTCTTCTTGT TTTTCTAGGT 13 CTTCTTTTTG GGCTGCACC ATGCCTACAA TGGGCAGCAG ATTTTCAGT CCTGCACGTT 13 CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGGCAGCAG ATTTTCAGT CCTGCACGTT 13 CCAATATCTC CTGGTCTCCG CCATGTAGAT TGTGGACAA GCCATGCATA ACATGATAG 13 CCAATATCTC TGAATGAATT GGGAATCAA TGGCGAGGA ATTTTCAGTC ACATGCTC ACATGATAG CCAATGAGCC TTCCTGTCTT 13 CCAATATCTC TGAATGAATT GGGAATCAAA TCGTATCAA ACATGATAGG 13 CCAATACTTCC TGAATGAATT GGGAATCAAA TCGTATCAA ACATGATTC ACATGATCA ACATGATTT 13 CCACATGGCTG TTCCTTGAGT ATTTTGCCCAA TTTCAGC	i	AATCGGCAAA	AAATGTCATT	AGTTTTTTGA	CATCATAGCC	AAAACCACGA	CGACCAAGTT	12360
AGAGAGAGA TETTTTGET GTAGETTTTG GAATAGCAAA CTGTTTATET TTCACAAAAT CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGTGA AAAAATCAAC AAAAATAAGA AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAATCTG CATGAGATAG AAAAACGGTAG AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGGA AGTCACATAA AGGTCATCG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT GGAAACTGAA CGACAAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTC TTTTAAGGTT TTTGCGAGGG TTTGTAAGTT TGCACCATA AGTGCCTCA CACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA CAAACTGAT GGGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA CAAACTGAT GGGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA CAGCTAAAATC TAGCCCAGG AGTAAGAGG CATTTTTCTG ACCAGGAAAT CCAATATTGA CAGCTAAAATC TAGCCCAGG AGTAAGAGG CATTTTTCTG ACCAGGAAAT CCAATATTGA CAGCTAAAATC TAGCCCAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA CAGCTAAAATC TAGCCCAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA CAGCTAAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA CAGCTAAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA CAGCTAAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA CAGCAGAAAGG AGTTTCTAGA TTTTCTCACAT GTTGAAATGC TCCTCGCTCTG CCAGAAAGGC AGTTTCTAGA TTTTCTACAT GTTGAAATG TCCTTCTTGT TTTTCTAGGT TTTTCTTTTTA GGCTGAACC ATGCCTTACAA TGGCAGGAG ATTTTCAGTT CCTGCACGTT TTTTCTTTTC CTGGTCCC CCATTGAAT TGGGGAGGAG ATTTTCAGTT CCTGCACGTT TTTTCTTTTC GGGGTGAACC ATGCCTTACAA TGGGGAGGAG AGCAGTAGGA AAATCAATGC CCAATTCTTC TGAATGATT GGGATTTTAC CAATAGCCT AACTGCATCA ACATGATTAG CAATACTTC TGAATGATT TTTCTGGCAA TTTCAGCGAT GGGCAGTAGG TTTTCCTGTCT CAATACTTC TGAATGATT TTTTCTGCCAA TTTCAGCGT GACGCAGAGG TTTTCCTGTCT CAATATTTGAC AAAACATGA	(CACCAAAATA	GGAAAAATCA	CGACGTACGG	TCGCTGAATC	AATACCGATA	GCCTCTGCAA	12420
CACAACCTTT CTATTCTTCT ATTTTATAGA AACATTGTGA AAAAATCAAC AAAAATAAGA 12 AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAATCG CATGAGATAG AAAACGGTAG 12 AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGGA AGTCACATAA 12 AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGGA AGTCACATAA 12 AGGTCATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA 12 TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT 12 CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGGCCAAA 12 CTTGTCAGTG ATAATGGTT GGCCCTGT AAGTTCCTTG TTAATGATGA GTATCCAAC 13 CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG 13 GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC 13 CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAAGAGT 13 CTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 13 CGATAATTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTTGTGGCG 13 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 13 CAAACATGGT GGATGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 13 CAACATGGCT GGATGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 13 CAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGGTAAT CCAAGAGAT CCAATATTCA 13 CAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGGTAAAT CCAATATTCA 13 CAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGGTAAA CCGAGGAAAT CCAATATTCA 13 CAACATTAGG GAGATGATGT TTTCCTCTAT TCAGGGTAAA CTGAATGCCC TCCAGGTCTG 13 CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGAGA ATTTCAGGTT TTTTCTAGGT 13 CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGAAA GCCAGTAGAA GTCCATCAT GATGCGTTAGA CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGAA AGCAGTGAGA AAATCAATGC 13 CCAATATCTC TGAATGAAT GGGATTTTAC CAATAGCCT AACTGCTA AAATCAATGC 13 CCAATATCTC TGAATGAAT TGGCAGAAT TCCTTGAAT TCCTGTCT 13 CCAATATCTC TGAATGAAT TGGCAGAAT TTTCAGCGAT AACTGCATCA ACATGATAGG 13 CCAATTCTTC TGAATGAAT TGGGCAAAA TCGATCAA ACATGATAGG 13 CCAATTCTTC TGAATGAAT TGGCGCAAAA TCGATCAA ACATGATAGG 13 CCAATTCTTC TGAATGAAT TTTTGGCCAA TTTCAGCGT GACCGATAGG TTTCCTGTCT 13 CAATATTTGAC AAAACATGAT GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13 CCACATTCTTC TGAATGATA TTTTCTGGCAA TTTCA	7	TTTGCTTAGA	GTTGGCACGT	TCAATCTTTT	CTGCATGAAA	TCTCTTAAAA	ATTCGATAGT	12480
AAAAACTAAG AAAAATCTTA GTTTTGATGT AAAAAATCTG CATGAGATAG AAAACGGTAG AGGTCTCCGA CCAGCCCCTG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA TTTGCTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC GATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TCCAACGGTA TTTTGTGGCG ACAAACTGAT GGGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA CAAACTGAT GGGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA CAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTGAAT CTGAATGCCC TCCAGCTCTG CCAGAAAAGG AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT TTTTCTTTTA GGCTGCAACC ATGCCTACAA TGGCAGCAG ATTTTCAGTT CCTGCACGTT TTTTCTTTTC CTGGTCTCC CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCCTAGA AAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCGAG ACCATGCAG AAATCAATGC CAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA ACCACTCAA AAACCGAT TCCCTTAGGA CAATGCCCT AACTGCATCA ACATGCATGA CCAAAACCGAT TCCCTTAGGA CAATGCAAAAACCGAAA GCCAGTAGAA AAACCAAAA TCGTTAGAAT AGGAATCAAA CCCAATGAATA GAAAACCGAT TCCCTTAGGA CAATGCAAAAACCGAT TCCCTTAGGA CAATGCCCT AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGGATATTTC CAATAGCCT AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGAATTTTCCGCCA TTTCAGCGA TGCGCAGGAGG TTTCCTGTCT CAATTCTTC TGAATGAATT GGGAATCAAA TCGTATCGCC ACCGAAAGCC TTTTGAATTT CATTTTTTGAC AACACGAGAAA TCGTATCGCC CCAAAAGCC TTTTGAATTT CATTTTTTGAC AACACGAAAA TCGTATCGTC ACCGTAAAGCC TTTTGAATTT CATT	2	AGAGAGAGAG	TCTTTTTGCT	GTAGCTTTTG	GAATAGCAAA	CTGTTTATCT	TTCACAAAAT	12540
AGGTETECGA CEAGECCETG ATAAACTTTT TTGCCCCTAA AAGTCAGAGA AGTCACATAA AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTCA AAAAAGGTGT TATCTTTGAG GGTGATTTT TTAACAGAAG GGCTAAGAGT GTAATCGTAA CGACAATTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGG GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTCTC ACCAGGAAT CCAATATTCA GAACATAGG GAGATGATGT TTTCCTCTAT TCAGGGTAAT CTGAATGCCC TCCAGCTCTG CCAGAAAAGG AGTTTCTAGA TTTTCTCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAAGG AGTTTCTAGA TTTTCTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CTTCTTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT TTTTCTAGGT TTTTCTTTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCCTAGA CAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATOC CAAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATOC GAAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATOC CAAATCTTC TGAATGAATT GGGGATTTTC CAATGCCTG AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGGATTTTC CAATGCCTG AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGGATTTTC CAATGCCTG AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGGATTTTC CAATGCCTG AACTGCATCA ACATGATAGG CAATACTTC TGAATGAATT GGGGATTTTC CAATAGCCTG AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGGATTTTC CAATAGCCTG AACTGCATCA ACATGATAGG CAATACTTCA ATTTCGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT CATTATTTGAC AAAACATGGTA ATTTCGCCAA TTTCAGCGT GGGCAGTAGG TTTTCCTGTCT CATTATTTGAC AAAACATGGTA ATTTCGCCAA TTTCAGCGT TGCTTCAAAC CCAAAGTGTT 13 CCTGGGCTGT GATTCTTGA TTTTCTGGCT GGATAATGGT TGC	(CACAACCTTT	CTATTCTTCT	ATTTTATAGA	AACATTGTGA	AAAAATCAAC	AAAAATAAGA	12600
AGTGTATCTG GTAAGGTTAC ACATCCTGAC AAAGTCAACA TGAGAGCCTC ATGATCCTCA TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT CTATCTTTCC GATTTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC GATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAAGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAAATC TAGCCGAAGG AGTAAGAGGT CATTTTCTCT ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAAGG AGTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT TTTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGAAA GTCCATGCTA GATGCCTTCAA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA ACCATGCTT 13 TTTTCTTTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAG AAATCAATGC TTTTTCTTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC TTTTTCTTTCT TGAATGAATT GGGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG CAACAGGGTG TTCCTTGAGT ATTTTGCCCAA TTCCAGCGAT GGCCAGTAGG TTTCCTGTCT CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT CATTATTGAC AAACATGGTA TTTTCCTGCC GGATAATGGT TGCTTCAAAC CCAAAAGTGTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCC GGATAATGGT TGCTTCAAAC CCAAAAGTGTT 13	į	AAAAACTAAG	AAAAATCTTA	GTTTTGATGT	AAAAAATCTG	CATGAGATAG	AAAACGGTAG	12660
TACTTGAGAG TACGCTCTAC ATGATAGCAG TCCTTATAGG TCAGTTCAAA CATTTTGGCT CTATCTTTCC GATTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTT TTAACAGAAG GGCTAAGAGT GTAATCGTAA CGACAATTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCT ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATG TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT TTTTCTGTTC CTGGTCTCCG CCATGGAAT AGGAATCAAA GTCCATGCTA GATGCCTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGAGGA AGCAGTAGAA AAACCGAT TCCCTTAGAA TGGCAGGCAG AGTTCTAGA TTTTCTTGTT CCTGCTTAGA CCAATACCTC TGAATGAAT GGGATTTTAC CAATAGCCA AGCAGTAGAG AAACCAAACC	i	AGGTCTCCGA	CCAGCCCCTG	ATAAACTTTT	TTGCCCCTAA	AAGTCAGAGA	AGTCACATAA	12720
CTATCTTCC GATTTGTAA AGACACCACG TTCTACCAAG CTATCCATGA GGAAGTAGAA TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTT TTAACAGAAG GGCTAAGAGT GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTA ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAGGC AGTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT TTTTCTTTTTA GGCTGCAACC ATGCCTACAA TGGCAGGCAG AGTTTCAGTT CCTGCACGTT TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCCTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCTAC ACATGATAGG GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCTAC ACATGATAGG CAACAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGT GAGCAGTAGG TTTCCTGTCT CATTATTGAC AAAACTGGTA ATTTGGCCAA TTTCAGCGT GGGCAGTAAGC TTTTCGATTT CATTATTGAC AAAACTGGTA GAAACCAAAA TCGTTATCGTC ACGTAAAGCC TTTTTGAATTT CATTATTGAC AAACATGGTA GAAACCAAAA TCGTTATCGTC ACGTAAAACC CCAAAAGTGTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAACC CCAAAAGTGTT 13	į	AGTGTATCTG	GTAAGGTTAC	ACATCCTGAC	AAAGTCAACA	TGAGAGCCTC	ATGATCCTCA	12780
TTTTTCCTGA TGAATATGGT GGTCTTCTGA TTTGAAAATA TCAACTAGAC GAAGGCCAAA CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTT TTAACAGAAG GGCTAAGAGT GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT CATTATTGAC AAACATGGTA GAAACCAAAA TCGTAATGGT GGGCAGTAGG TTTCCTGTCT CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAACCC TTTTGAATTT CGCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 GCTGGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 GCTGGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 GCTGGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	1	PACTTGAGAG	TACGCTCTAC	ATGATAGCAG	TCCTTATAGG	TCAGTTCAAA	CATTTTGGCT	12840
CTTGTCAGTG ATATTGATTT TAGCCCCTGT AAGTTCCTTG TTAATGATGA TTTTGAGTTG GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTT TTAACAGAAG GGCTAAGAGT GTAATCGTAA CGACAATTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCG AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCT AACTGCATCA ACATGATAGG CAACATGGTT TTTCCTTGAT TTTCAGCCAA TTCCAGCATCA ACATGATAGG CAACATGGTT TTTCCTTGAT TTTTGGCCAA TTCCAGCAT ACATGCATCA ACATGATAGG CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAACACGGTT TTCCTTGAGT ATTTCGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCCTGTCT CATTATTGAC AAACATGGTA GAAACCAAAA TCCTTATCGTC ACGTAAAGCC TTTTTGAATTT CATTATTTGAC AAACATGGTA GAAACCAAAA TCGTTATCGTC ACGTAAAGCC TTTTTGAATTT CATTATTTGAC AAACATGGTA GAAACCAAAA TCGTTATCGTC ACGTAAAGCC TTTTTGAATTT CATTATTTGAC AAACATGGTA GAAACCAAAA TCGTTATCGTC ACGTAAAGCC TTTTTGAATTT CATTATTTGAC AAACATGGTA TTTTCTGGCTA GGGTAAAGGC TTTTTTGAATTT CATTATTTGAC AAACATGGTA TTTTCTTGGCTA GGATAATGGT TGCTTCAAACC CCAAAGTGTT	(CTATCTTTCC	GATTTTGTAA	AGACACCACG	TTCTACCAAG	CTATCCATGA	GGAAGTAGAA	12900
GAAGCCTTCA CCGCTGTTTG GCACTTTTC CAAAAGGCGA GTCAGTTCAT AGTTACCAAC CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT GCTGGGCTGT GATTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAACC CCAAAGTGTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAACC CCAAAGTGTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAACC CCAAAGTGTT 13	7	TTTTTCCTGA	TGAATATGGT	GGTCTTCTGA	TTTGAAAATA	TCAACTAGAC	GAAGGCCAAA	12960
CTTAGTTTCA AAAAAGGTGT TATCTTTGAG GGTGAATTTT TTAACAGAAG GGCTAAGAGT 13 GTAATCGTAA CGACAATTTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC 13 CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG 13 ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA 13 GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC 13 CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA 13 GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 13 CCAGAAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 13 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 13 CAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13 CCAATTCTTC TGGATGAATT GGGATTTTAC CAATAGCCTA ACCAGGATAGG TTTCCTGTCT TGAATGCC TGGACGGGA TTTCCTGTCT TGAATGAGT TGCGAGGGAG AAATCAATGC 13 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA TTTCCTGTCT 13 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTTACGTC ACGTAAAGCC TTTTGAATTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	(CTTGTCAGTG	ATATTGATTT	TAGCCCCTGT	AAGTTCCTTG	TTAATGATGA	TTTTGAGTTG	13020
GTAATCGTAA CGACAATTT TTAACTGAAT GATTTTTCA AATGCCATAT GGCTAACCTC CGATAATTTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 13 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13 CCAATTCTTC TGGATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGT GGGCAGTAGG TTTCCTGTCT 13 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAAGCC TTTTGAATTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	(GAAGCCTTCA	CCGCTGTTTG	GCACTTTTTC	CAAAAGGCGA	GTCAGTTCAT	AGTTACCAAC	13080
CGATAATTC TTTTAAGGTT TTTGCGAGGG TTTGTAGGTC TTCAACGGTA TTTTGTGGCG ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13 GCTGGGCTGT GATTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGGATAATGGT TGCTTCAAACC CCAAAGTGTT 13	(CTTAGTTTCA	AAAAAGGTGT	TATCTTTGAG	GGTGAATTTT	TTAACAGAAG	GGCTAAGAGT	13140
ACAAACTGAT GCGAAGGGAT TCCTTCAAGC GTTCTGAATT TGCGCCATAC ATGGCTTCAA GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGGAAAGGC AGTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 CCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCCAAAGTGTT 13 CCTGGCTGTAATTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 CCTGGCTGTAATTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCCAAAGTGTT 13 CCTGCTGCTTCTAAACCAAAA TCCTTCAAAC CCCAAAGTGTT 13 CCTGCTGCGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCCAAAGTGTT 13 CCTGCTGCTTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCCAAAGTGTT	(GTAATCGTAA	CGACAATTTT	TTAACTGAAT	GATTTTTCA	AATGCCATAT	GGCTAACCTC	13200
GAACATGGCT GGATTGGACA ACGCCTGCAG TACAGGCTGA GCCAGTAGAG ATTGAAATTC CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 CCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 CCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 CATTATTGAC GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13 CCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	C	GATAATTTC	TTTTAAGGTT	TTTGCGAGGG	TTTGTAGGTC	TTCAACGGTA	TTTTGTGGCG	13260
CAGCTAAATC TAGCCGAAGG AGTAAGAGGT CATTTTCTG ACCAGGAAAT CCAATATTGA GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG 13 CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 13 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 13 TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA. 13 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	1	ACAAACTGAT	GCGAAGGGAT	TCCTTCAAGC	GTTCTGAATT	TGCGCCATAC	ATGGCTTCAA	13320
GAACATAAGG GAGATGATGT TTTCCTCTAT TCAGGTAATA CTGAATGCCC TCCAGCTCTG CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	(GAACATGGCT	GGATTGGACA	ACGCCTGCAG	TACAGGCTGA	GCCAGTAGAG	ATTGAAATTC	13380
CCAGAAAGGC AGTTTCTAGA TTTTGTACAT GTTGAAAATG TTCTTCTTGT TTTTCTAGGT 13 CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT 13 TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA. 13 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	(CAGCTAAATC	TAGCCGAAGG	AGTAAGAGGT	CATTTTTCTG	ACCAGGAAAT	CCAATATTGA	13440
CTTCTTTTAG GGCTGCAACC ATGCCTACAA TGGCAGGCAG ATTTTCAGTT CCTGCACGTT TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA. GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	(GAACATAAGG	GAGATGATGT	TTTCCTCTAT	TCAGGTAATA	CTGAATGCCC	TCCAGCTCTG	13500
TTTTCTGTTC CTGGTCTCCG CCATGTAGAT AGGAATCAAA GTCCATGCTA GATGCGTAGA 13 GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	(CCAGAAAGGC	AGTTTCTAGA	TTTTGTACAT	GTTGAAAATG	TTCTTCTTGT	TTTTCTAGGT	13560
GAAAACCGAT TCCCTTAGGA CCATGGAATT TGTGGGCAGA AGCAGTGAGA AAATCAATGC 13 CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	(CTTCTTTTAG	GGCTGCAACC	ATGCCTACAA	TGGCAGGCAG	ATTTTCAGTT	CCTGCACGTT	13620
CCAATTCTTC TGAATGAATT GGGATTTTAC CAATAGCCTG AACTGCATCA ACATGATAGG 13 CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	1	TTTCTGTTC	CTGGTCTCCG	CCATGTAGAT	AGGAATCAAA	GTCCATGCTA	GATGCGTAGA.	13680
CAGCAGGGTG TTGCTTGAGT ATTTGGCCAA TTTCAGCGAT GGGCAGTAGG TTTCCTGTCT 13 CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	C	GAAAACCGAT	TCCCTTAGGA	CCATGGAATT	TGTGGGCAGA	AGCAGTGAGA	AAATCAATGC	13740
CATTATTGAC AAACATGGTA GAAACCAAAA TCGTATCGTC ACGTAAAGCC TTTTGAATTT 13 GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	C	CAATTCTTC	TGAATGAATT	GGGATTTTAC	CAATAGCCTG	AACTGCATCA	ACATGATAGG	13800
GCTGGGCTGT GATTTCTTGA TTTTCTGGCT GGATAATGGT TGCTTCAAAC CCAAAGTGTT 13	C	CAGCAGGGTG	TTGCTTGAGT	ATTTGGCCAA	TTTCAGCGAT	GGGCAGTAGG	TTTCCTGTCT	13860
	C	ATTATTGAC	AAACATGGTA	GAAACCAAAA	TCGTATCGTC	ACGTAAAGCC	TTTTGAATTT	13920
GAACCAAGTA ATCAATTGTT TCAAGGACAG CATGGTGCTC GATGGCAGTT GTGATGATAT 14	C	SCTGGGCTGT	GATTTCTTGA	TTTTCTGGCT	GGATAATGGT	TGCTTCAAAC	CCAAAGTGTT	13980
	C	GAACCAAGTA	ATCAATTGTT	TCAAGGACAG	CATGGTGCTC	GATGGCAGTT	GTGATGATAT	14040

GTTTTCCTTG	TTCTTGGTGA	CGAAGACAGT	AGCCAATGAT	GGTAGTATTA	TTGCCTTCAG	14100
TCCCACCAGÁ	AGTGAAAAAG	ATATGTTGAG	GTTTTGTCCT	TAGTAACTGG	GCTAGTTCCT	14160
GACGGGCTTC	TCGCAAGAGT	TTGCCAGCTT	GACGACCATG	ACCATGAATA	CTAGAAGGAT	14220
TTCCGTGGGT	TTCTTGCATA	ACCTTGGTCA	TAGCTGAAAT	AGCAACTGCT	GACATAGGAG	14280
TCGTTGCAGC	ATTGTCCAAA	TAAATCAAAG	AATCACCTTA	TTTCTTTTTA	TTGTAGGCAA	14340
AGAGTGGGCT	GACTGGTTTT	CTTTCGTGAA	TACGGACGAT	AGCATCACCA	ATTAACTCAC	14400
TAGCAGTGAT	GTAGCATACA	TTTTTAGGAG	TTTTTTCTTT	TGTTGCTACT	GAATCAGTCA	14460
CAAGAATTTC	TTTAATATTA	GTATTGTCAA	GAAGCTCAGC	AGCTCCCTCG	ACGAAGAGAC	14520
CGTGGCTAGA	AACAGCATAA	ATTTCTGTAG	CTCCTTCACG	TTCAACGATT	TTAGAAGCTT	14580
CAGAGAAGGT	ACGTCCTGTA	TTTAAAATAT	CATCAATCAA	GATAGCTTTC	TTACCTTCAA	14640
CATCACCAAT	AATATAACCT	TCGTTACGAG	TTGCATCGTC	TTGAGGGTAG	TCGATAATGG	14700
CGATAGGAGC	ATCAAGATAT	TCAGCCAGGC	TACGCGCACG	TTTGACACCT	GAATTTTTAG	14760
GGCTAACGAC	AACAACATCT	GAACCAAGCA	ATCCTTTATC	GCAGTAATGT	TTTGCGAATA	14920
GGGGAACAGT						14880
GCAAATCAAG						14940
					CCAAAATATG	15000
					ATGATTAACA	15060
					ACATCATAAC	15120
					CGTGATGATA	15180
					TGGTTAGAGT	15240
					CTGTAAACTT	15300
					TTTTTATCTT	15360
					GACAAATCGA	15420
					TTGTCGAAAA	15480
					TGTTATATCA	15540
					ATAGCGAAGC	15600
					CGCCAATTCA	15660
			•		ATCTTTTAGT	15720
TGCAATTTTT	GGTTGTATTC	CATGTTTCC	ACACTCTGCC	G GGACTTTGAC	G TGTCAACTCA	15780
and the second s						

192

GCCCAGTCTT CAAAGGTTCG AATGCGCATA GCGACTTTCT TTTCTS::CAG TTCAAAATCA 15840 GGCGTGTCGA TGTAGTAATT TGTTTGAAGA ACAGGAGTGA CACCTGTGAA CTGGTCTTTT 15900 AGACGATTGT ATTCATCTTT TTTCAATAGT GTTTTCAATT CAATTTCTAA ATGTTTCATT 15960 TTTCTTACCT TTTTTTATCG TTGAAAGCGG ATTTATGGTA TAATAAGCAT TGTATTTATT 16020 GTATATGAAT CTGGAGAAAA AATCAAAGAT ATTTTTGACG GATAATATGA GAACAAGGGA 16080 GAATATATGA CCTTAGAATG GGAAGAATTT CTAGATCCTT ACATTCAAGC TGTTGGTGAG 16140 TTAAAGATTA AACTTCGTGG TATTCGTAAG CAATATCGTA AGCAAAATAA GCATTCTCCA 16200 ATTGAGTTTG TGACCGGTCG AGTCAAGCCA ATTGAGAGCA TCAAAGAAAA AATGGCTCGT 16260 CGTGGCATTA CTTATGCGAC CTTGGAACAC GATTTGCAGG ATATTGCTGG CTTACGTGTG 16320 ATGGTTCAGT TTGTAGATGA CGTCAAGGAA GTAGTGGATA TTTTGCACAA GCGTCAGGAT 16380 ATGCGAATCA TACAGGAGCG AGATTACATT ACTCATAGAA AAGCATCAGG CTATCGTTCC 16440 TATCATGTGG TAGTAGAATA TACGGTTGAT ACCATCAATG GAGCTAAGAC TATTTTGGCA 16500 GAAATTCAAA TTCGTACTTT GGCCATGAAT TTCTGGGCAA CGATAGAACA TTCTCTCAAC 16560 TACAAGTACC AAGGGGATTT CCCAGATGAG ATTAAGAAGC GACTGGAAAT TACAGCTAGA 16620 ATCGCCCATC AGTTGGATGA AGAAATGGGT GAAATTCGTG ATGATATCCA AGAAGCCCAG 15680 GCACTTTTTG ATCCTTTGAG TAGAAAATTA AATGACGGTG TAGGAAACAG TGACGATACA 16740 GATGAAGAAT ACAGGTAAAC GAATTGATCT GATAGCCAAT AGAAAACCGC AGAGTCAAAG 16800 GGTTTTGTAT GAATTGCGAG ATCGTTTGAA GAGAAATCAG TTTATACTCA ATGATACCAA 16860 TCCGGATATT GTCATTTCCA TTGGCGGGGA TGGTATGCTC TTGTCGGCCT TTCATAAGTA 16920 CGAAAATCAG CTTGACAAGG TCCGCTTTAT CGGTCTTCAT ACTGGACATT TGGGCTTCTA 16980 TACAGATTAT CGTGATTTTG AGTTGGACAA GCTAGTGACT AATTTGCAGC TAGATACTGG 17040 GGCAAGGGTT TCTTACCCTG TTCTGAATGT GAAGGTCTTT CTTGAAAATG GTGAAGTTAA 17100 GATTTTCAGA GCACTCAACG AAGCCAGCAT CCGCAGGTCT GATCGAACCA TGGTGGCAGA 17160 TATTGTAATA AATGGTGTTC CCTTTGAACG TTTTCGTGGA GACGGCCTAA CAGTTTCGAC 17220 ACCGACTGGT AGTACTGCCT ATAACAAGTC TCTTGGCGGT GCTGTTTTAC ACCCTACCAT 17280 TGAAGCTTTG CAATTAACGG AAATTGCCAG CCTTAATAAT CGTGTCTATC GAACACTGGG 17340 CTCTTCCATT ATTGTGCCTA AGAAGGATAA GATTGAACTT ATTCCAACAA GAAACGATTA 17400 TCATACTATT TCGGTTGACA ATAGCGTTTA TTCTTTCCGT AATATTGAGC GTATTGAGTA 17460 TCAAATCGAC CATCATAAGA TTCACTTTGT CGCGACTCCT AGCCATACCA GTTTCTGGAA 17520 CCGTGTTAAG GACGCCTTTA TCGGCGAGGT GGATGAATGA GGTTTGAATT TATCGCAGAT 17580

GAACATGTCA	AGGTTAAGAC	CTTCTTAAAA	AAGCACGAGG	TTTCTAAGGG	ATTGCTGGCC	17640
AAGATTAAGT	TTCGAGGTGG	AGCTATTCTG	GTCAATAATC	AACCGCAAAA	TGCAACGTAT	17700
CTATTGGACG	TTGGAGACTA	CGTTACCATT	GACATTCCCG	CTGAGAAAGG	CTTTGAAACC	17760
TTGGAGGCTA	TTGAGCTTCC	ATTAGATATT	CTCTATGAGG	ATGACCACTT	TCTAGTCTTG	17820
AATAAACCCT	ATGGAGTGGC	TTCTATTCCT	AGTGTCAATC	ACTCTAATAC	CATTGCCAAT	17880
TTTATCAAGG	GTTACTATGT	CAAGCAAAAT	TATGAAAATC	AGCAGGTTCA	CATTGTTACC	17940
AGACTAGATA	GGGATACTTC	TGGCTTGATG	CTCTTTGCCA	AGCACGGTTA	TGCCCATGCA	18000
CGATTAGACA	AGCAGTTGCA	GAAGAAATCT	ATCGAGAAAC	GCTACTTTGC	TTTGGTTAAG	18060
GGAGATGGAC	ATTTGGAGCC	AGAAGGGGAA	ATTATTGCTC	CGATTGCGCG	TGATGAAGAT	18120
тссаттатта	CCAGACGAGT	GGCTAAAGGC	GGAAAGTATG	CCCATACTTC	ATACAAGATT	18180
GTAGCTTCTT	ATGGAAATAT	TCACTTGGTC	TATATTCACC	TGCACACTGG	TCGAACCCAT	19240
CAAATCCGAG	TCCATTTTTC	TCATATCGGT	TTTCCTTTGC	TGGGAGATGA	TTTGTATGGT	18300
GGTAGTCTGG	AAGATGGTAT	TCAACGTCAG	GCTCTGCATT	GCCATTACCT	ATCCTTTTAT	18360
CATCCATTTT	TAGAGCAAGA	CTTGCAGTTA	GAAAGTCCCT	TGCCGGATGA	TTTTAGTAAC	18420
CTTATTACCC	AGTTATCAAC	TAATACTCTA	TAAAAACTGT	CTCAGAGTAT	AATTATTATC	18480
TTAAAGGAGA	AAACTCATGG	AAGTTTTTGA	AAGTCTCAAA	GCCAACCTTG	TTGGTAAAAA	18540
TGCTCGTATC	GTTCTCCCTG	AAGGGGAAGA	GCCTCGTATT	CTTCAAGCAA	CAAAACGCTT	18600
AGTAAAAGAA	. ACAGAAGTGA	TTCCTGTTTT	GCTTGGAAAT	CCTGAAAAAA	TTAAAATTTA	18660
TCTTGAAATT	GAAGGAATCA	TGGATGGTTA	TGAGGTCATC	GACCCTCAAC	ATTATCCTCA	18720
ATTTGAAGAA	ATGGTTTCTG	CCTTGGTGGA	GCGTCGCAAG	GGCAAAATGA	CTGAAGAAGA	18780
TGTACGCAAG	GTTTTGGTTG	AAGATGTCAA	CTACTTTGGT	GTGATGTTGG	TTTACTTGGG	18840
CTTGGTTGAT	GGAATGGTGT	CAGGAGCGAT	TCACTCAACA	GCTTCAACAG	TTCGCCCAGC	18900
TCTACAAATC	ATCAAAACTC	GTCCAAATGT	AACTCGTACT	TCAGGAGCCT	TCCTCATGGT	18960
TCGTGGTACC	GAACGTTACC	TATTTGGAGA	CTGTGCCATT	AACATCAATC	CAGATGCÁGA	19020
AGCCTTGGCT	GAAATTGCCA	TCAACTCAGC	AATCACAGCT	AAGATGTTTG	GCATCGAACC	19080
TAAAATTGCC	ATGTTGAGCT	ATTCTACTAA	AGGTTCAGGG	TTTGGTGAAA	GCGTTGATAA	19140
GGTCGTTGA	GCAACTAAAA	TTGCTCACGA	CTTGCGTCCT	GACCTTGAAA	TCGATGGTGA	19200
GTTGCAATTI	GATGCAGCCT	TTGTTCCTGA	AACTGCAGCT	CTGAAAGCTC	CTGGAAGTAC	19250
GGTAGCTGGT	CAAGCAAATG	TCTTCATCTT	CCCAGGTATO	GAGGCAGGAA	ATATTGGTTA	19320

				194			
CAJ	AGATGGCT	GAACGCCTGG	GTGGCTTTGC	GGCTGTAGGA	CCTGTTTTGC	AAGGTTTAAA	19380
CA	AGCCAGTT	AATGATCTTT	CTCGTGGATG	TAATGCAGAT	GATGTTTACA	AGTTGACCCT	19440
CA?	CACAGCA	GCTCAAGCAG	TTCATCAATA	GTGAAAACTA	TAAAGTGATA	TACTATGCTA	19500
TAC	CTGTAGTT	ATGAAACTAT	GTACGAAAAG	CACTGCCATT	AATTCCTGAG	AACTAAATTA	19560
CTO	SATTGGTG	TCAAAAAGGA	AAACTTCCAA	GCGATGATAT	CCTGTCTATA	CACGACCTAT	19620
AG/	LAATCT GT	AATATACATA	TCCGTAAAAC	GATAAATTCC	CTTTTTGATT	TTAAATGAGT	19680
ATC	GAAAAGAG	AATTTTTTGG	CTCTTTGTCA	ACTGTAGTGG	GTTGAAGAAA	AGCTAAGCTC	19740
GAG	GAAAGGAC	AAATTTCATC	CTTTCTTTTT	TGATATTCAG	AGCGATAAAA	ATCCGTTTTT	19800
TGA	AGTTTTC	AAAGTTCCGA	AAACCAAAGG	CATTGCGCTT	GATAAGTTTG	ATGAGATTAT	19860
TGC	STCGCTTC	CAGTTTGGCG	TTAGAATAGT	GTAGTTGAAG	GGCGTTGATA	ATCTTTTCTT	19920
TAT	CTTTGAG	GAAGGTTTTA	AAGACAGTCT	GAAAAATAGG	ATGAACCTGC	TTAAGATTGT	19980
CC1	CAATAAG	TCCGAAAAAT	TTCTCTGGTT	CCTTATTCTG	GAACTGAAAA	AGCAAGAGTT	20040
GA1	PAGAGCTG	ATAGTGGTGT	TTCAAGTCTT	CCGAATAGCT	CAAAAGCTTG	TTTAAAATCT	20100
CTI	TATTGGT	TAAGTGCATA	CGAAAAATAG	GACGATAAAA	TCGCTTATCA	CTCAGTTTAC	20160
GGC	TATCCTG	TTGAATGAGT	TTCCAGTAGC	GCTTGATAG			20199

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19702 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

60	САСЛАТАЛАЛ	ATGTTATACC	TTTTCAAACG	TTTACTCTAT	TCAGCGGATA	ACCCGATGTA
120	TTTACCTGAT	CGCGTTCAAC	ТАТТАТТААА	CCTTTGCTTT	CCTAAGGTCT	GAAAAAAGAC
180	AACAGTAACT	CATCGATAAG	TTAGGTTTAC	CCAAACTTTT	GAGCTGAAGC	TTCAAAGCAC
240	ACGGTTGTTT	TCGCGTGTGA	GTTTGGTTCA	GGCACGTTTT	TTGGTTTTAC	TTTTGAAGGT
300	TTCCTCCTAT	CCATTGTGTT	CATACTTTAG	TGTAAAGTAA	TCTTACGACC	CCTGATACAG
360	ACATTTTCTT	CTATGTTATC	ACATACCGTA	TGCTAGCACC	ATAGCGGATG	TAGATCTAAT
420	CTTGCGTGAC	TAAATCAGGT	ATTTGTGTCT	AAGATTTTT	AGGGAATTGG	GTTTTTTGCA
480	ATTATGTGTA	CAGAATTAAA	AACAGAACAC	ATCGTTGATT	TCCACATGCC	ATTTCTGCTC
540	CCACAGCTCA	AGTCCÁAATC	ATAGCCGTCA	AGCTAAGGGT	CTCTAACTGC	TAAAAATCAT

TCTATCGATT	TTCTTACAAC	AATATCTGAA	TCCAAATACA	GTACACGAGA	CTCGCTTACA	600
TACTTTGGAA	таааатасст	AAAAAAGCCG	CATATGAAAG	TCCCTCAAAG	GGGAGACGAT	660
AACCTTTCAG	AATATTACTG	TCAATCTAAA	CATTCACAAT	CTCACTATTC	AAAGTCTCTA	720
GTCTTTTTTC	CATCAATTGG	AACCATTCTC	GCGGAAGGTC	ATCATTAAAA	ACATAAAACT	780
TAAGATTATA	ATGATGAACA	CAAAGAGATT	TTATTGTTGT	TTCAACTTTA	TCCATATAAG	840
CATTATCTGC	ACCTAAGACA	ATCGCTTTTT	TCTCTTCTTT	CACTTTTTAT	CTCATTTCTT	900
TTTATTCCCA	тсататтатт	CCCATCATAT	GTTTCCCATC	ATATGTTTCT	ACGTAACCAT	960
TATTTTCGCC	TATTCGTTCG	TAAAACCATA	CCAGTGGAGA	TTTTAGATGA	AGTCCCATTA	1020
CGGTTTACAA	TTTTTACATT	ACGACACGGA	GTTTTACAAA	TCGATTTCAT	TTGCCAAACG	1080
TAGTTAGTGA	GGCAGTTAGC	TAGTTCGCCA	AATAGCGACT	AGCGTCCAAC	AATTTGGAAC	1140
TTTAGTTCCA	ATTGTTGGTA	CTGAGTCACA	TCTTCTCCTC	TAACTCTACG	TCTGGATACT	1200
TGTCCGCAAA	CCAGCGGAGG	GCAAAGTCAT	TTTCAAAGAG	AAAGACTGGT	TGGTCAAAAC	1260
GGTCTTTGGC	TAAGATATTG	CGACTTGACG	ACATCCGTTC	ATCCAAGTCC	TCAGGCTTGA	1320
TCCAACGAAC	GGTCTTTTTA	CCCATTGGGT	TCATAACTAC	TTCCGCATTG	TACTCGCCTT	1380
CCATGCGGTG	TTTAAAGACT	TCAAACTGGA	GTTGACCTAC	AGCGCCTAGC	ATGTACTCAC	1440
CTGTTTGGTA	ATTCTTATAA	AGCTGAACGG	CTCCTTCTTG	CACCAATTGC	TCAATCCCCT	1500
TGTGGAAGGA	TTTTTGCTTC	ATAACATTCT	TAGCAGAAAC	TTTCATGAAA	ATCTCAGGTG	1560
TAAAGGTTGG	CAGGGGTTCA	AATTCAAACT	TGTTTTTTCC	AACCGTCAAG	GTATCCCCAA	1620
CCTGATAAGT	ACCGGTATCG	TAAACCCCGA	TAATATCACC	TGCCACGGCA	TTGGTCACAT	1680
TCTCACGACT	CTCCGCCATA	AACTOGGTAA	CATTAGATAG	TTTAGCCCCC	TTACCAGTAC	1740
GAGGGAGATT	GACACTCATG	CCGCGCTCAA	ATTCGCCAGA	TACGATACGG	ACAAAGGCAA	1800
TACGGTCACG	GTGACGAGGG	TCCATGTTGG	CTTGGATTTT	AAAGACAAAG	CCTGAGAAAT	1860
CCTTGTCATA	AGGATCCACA	ATTTCACCGT	CTGTTTTCTT	GTGACCATGT	GGTTCTGGAG	1920
CAAACTTGAG	GAAGGTTTCA	AGGAAGGTCT	GCACACCAAA	GTTTGTCAGG	GCTGAACCGA	1980
AAAAGACAGG	CGTCAATTCT	CCAGCCAGAA	TAGCTTCCTC	TGAAAACTCA	TTCCCGGCTT	2040
CATTTAAAAG	CTCAATGTCA	TCCTTGACTT	GCTCGTAGAA	AGGATTGCTA	CCAAAGAGTT	2100
TGTCCCCGTC	TTCTAGACTG	GCAAAACGCT	CATCCCCTTT	GTAAAGCTCT	AAACGTTGGT	2160
TATAGAGGTC	ATACAAGCCC	TCAAAGGCTT	TCCCCATCCC	GATAGGCCAG	TTCATAGGGT	2220
AGCTAGCAAT	GCCCAAGATT	TCTTCCAATT	CTTGCAAGAG	ATCCAAAGGC	TCACGACCGT	2280

			196			
CACGGTCCAG	CTTGTTCATA	AAGGTAAAGA	CTGGAATGCC	ACGATGTTTC	ACAACCTCAA	2340
ACAATTTCTT	GGTTTGAGCC	TCGATCCCCT	TGCCAGAGTC	CACGACCATG	ACCGCAGCAT	2400
CCACCGCCAT	CAAGGTACGA	TAGGTATCTT	CTGAGAAGTC	CTCGTGCCCT	GGCGTGTCTA	2460
AGATATTCAC	GCGCTTGCCG	TCGTAGTCAA	ATTGCATAAC	AGATGAAGTA	ACAGAAATCC	2520
CACGTTGCTT	CTCGATATCC	ATCCAGTCAG	ATTTAGCAAA	AGTCCCTGTT	TTCTTCCCTT	2580
TTACCGTACC	AGCCTCACGA	ATCTCACCCC	CAAAGTAGAG	TAACTGCTCA	GTGATGGTTG	2640
TTTTCCCCGC	GTCCGGGTGG	GAGATAATGG	CAAAGGTACG	ACGTTTCTTA	ATTTCTTCTT	2700
GAATATTCAT	AAGTTCTCTT	TCTTTGATTC	TCTATTTTTC	TTGTTTCAAT	AGCTGAGAAT	2760
GATTTTTACA	TTGGATTTTA	CCATTCCTTT	CAACACTCCA	TTATATCGGA	TTTTAGCATT	2820
TTTTTCAATT	TCTATTTCTT	TTCACTTCCC	CCTCCCTTAT	TTATAGGAAA	ATATGGTAAA	2880
ATAGAACAGA	СТАААААТСА	TCATTTCACG	AAAGGATGCA	AGATGAAAAT	TACGCAAGAA	2940
GAGGTAACAC	ACGTTGCCAA	TCTTTCAAAA	TTAAGATTCT	CTGAAGAAGA	AACTGCTGCC	3000
TTTGCGACCA	CCTTGTCTAA	GATTGTTGAC	ATGGTTGAAT	TGCTGGGCGA	AGTTGACACA	3060
ACTGGTGTCG	CACCTACTAC	GACTATGGCT	GACCGCAAGA	CTGTACTCCG	CCCTGATGTG	3120
GCCGAAGAAG	GAATAGACCG	TGATCGCTTG	TTTAAAAACG	TACCTGAAAA	AGACAACTAC	3180
TATATCAAGG	TGCCAGCTAT	CCTAGACAAT	GGAGGAGATG	CCTAATGACT	TTTAACAATA	3240
AAACTATTGA	AGAGTTGCAC	AATCTCCTTG	TCTCTAAGGA	AATTTCTGCA	ACAGAATTGA	3300
CCCAAGCAAC	ACTTGAAAAT	ATCAAGTCTC	GTGAGGAAGC	CCTCAATTCA	TTTGTCACCA	3360
TCGCTGAGGA	GCAAGCTCTT	GTTCAAGCTA	AAGCCATTGA	TGAAGCTGGA	ATTGATGCTG	3420
ACAATGTCCT	TTCAGGAATT	CCACTTGCTG	TTAAGGATAA	CATCTCTACA	GACGGTATTC	3480
TCACAACTGC	TGCCTCAAAA	ATGCTCTACA	ACTATGAGCC	AATCTTTGAT	GCGACAGCTG	3540
TTGCCAATGC	AAAAACCAAG	GGCATGATTG	TCGTTGGAAA	GACCAACATG	GACGAATTTG	3600
CTATGGGTGG	TTCAGGTGAA	ACTTCACACT	ACGGAGCAAC	TAAAAACGCT	TGGAACCACA	3660
GCAAGGTTCC	TGGTGGGTCA	TCAAGTGGTT	CTGCCGCAGC	TGTAGCCTCA	GGACAAGTTC	3720
GCTTGTCACT	TGGTTCTGAT	ACTGGTGGTT	CCATCCGCCA	ACCTGCTGCC	TTCAACGGAA	3780
TCGTTGGTCT	CAAACCAACC	TACGGAACAG	TTTCACGTTT	CGGTCTCATT	GCCTTTGGTA	3840
GCTCATTAGA	CCAGATTGGA	CCTTTTGCTC	CTACTGTTAA	GGAAAATGCC	CTCTTGCTCA	3900
ACGCTATTGC	CAGCGAAGAT	GCTAAAGACT	CTACTTCTGC	TCCTGTCCGC	ATCGCCGACT	3960
TTACTTCAAA	AATCGGCCAA	GACATCAAGG	GTATGAAAAT	CGCTTTGCCT	AAGGAATACC	4020
TAGGCGAAGG	AATTGATCCA	GAGGTTAAGG	AAACAATCTT	AAACGCGGCC	AAACACTTTG	4080

AAAAATTGGG	TGCTATCGTC	GAAGAAGTCA	GCCTTCCTCA	CTCTAAATAC	GGTGTTGCCG	4140
TTTATTACAT	CATCGCTTCA	TCAGAAGCTT	CATCAAACTT	GCAACGCTTC	GACGGTATCC	4200
GTTACGGCTA	TCGCGCAGAA	GATGCAACCA	ACCTTGATGA	AATCTATGTA	AACAGCCGAA	4260
GCCAAGGTTT	TGGTGAAGAG	GTAAAACGTC	GTATCATGCT	GGGTACTTTC	AGTCTTTCAT	4320
CAGGTTACTA	TGATGCCTAC	TACAAAAAGG	CTGGTCAAGT	CCGTACCCTC	ATCATTCAAG	4380
ATTTCGAAAA	AGTCTTCGCG	GATTACGATT	TGATTTTGGG	TCCAACTGCT	CCAAGTGTTG	4440
CCTATGACTT	GGATTCTCTC	AACCATGACC	CAGTTGCCAT	GTACTTAGCC	GACCTATTGA	4500
CCATACCTGT	AAACTTGGCA	GGACTGCCTG	GAATTTCGAT	TCCTGCTGGA	TTCTCTCAAG	4560
GTCTACCTGT	CGGACTCCAA	TTGATTGGTC	CCAAGTACTC	TGAGGAAACC	ATTTACCAAG	4620
CTGCTGCTGC	TTTTGAAGCA	ACAACAGACT	ACCACAAACA	ACAACCCGTG	ATTTTTGGAG	4680
GTGACAACTA	ATGAACTTTG	AAACAGTCAT	CGGACTTGAA	GTCCACGTAG	AGCTCAACAC	4740
CAATTCAAAA	ATCTTCTCAC	CTACTTCTGC	CCACTTTGGA	AATGACCAAA	ATGCCAACAC	4800
TAACGTGATT	GACTGGTCTT	TCCCAGGAGT	TCTACCAGTT	CTCAATAAAG	GGGTTGTTGA	4860
TGCCGGTATC	AAGGCTGCTC	TTGCCCTCAA	CATGGACATC	CACAAAAAGA	TGCACTTTGA	4920
CCGCAAGAAC	TACTTCTATC	CTGATAACCC	CAAAGCCTAC	CAAATTTCTC	AGTTTGATGA	4980
ACCAAŢCGGA	TATAATGGCT	GGATTGAAGT	CAAACTAGAA	GACGGTACGA	CCAAGAAAAT	5040
CGGTATCGAA	CGTGCCCACC	TAGAGGAAGA	CGCTGGTAAA	AACACCCATG	GTACAGATGG	5100
CTACTCTTAT	GTTGACCTCA	ACCGCCAAGG	GGTTCCCTTG	ATTGAGATTG	TATCTGAGGC	5160
AGATATGCGT	TCTCCTGAAG	AAGCCTATGC	TTATCTGACA	GCCCTCAAGG	AAGTTATCCA	5220
GTACGCTGGC	ATTTCTGACG	TTAAGATGGA	GGAAGGTTCG	ATGCGTGTGG	ATGCCAACAT	5280
CTCCCTTCGT	CCTTATGGTC	AAGAGAAATT	CGGTACCAAG	ACTGAATTGA	AGAACCTCAA	5340
CTCCTTCTCA	AACGTTCGTA	AAGGTCTTGA	ATACGAAGTC	CAACGCCAGG	CTGAAATTCT	5400
TCGCTCAGGT	GGTCAAATCC	GCCAAGAAAC	ACGCCGTTAC	GATGAAGCGA	ATAAAGCAAC	5460
CATCCTCATG	CGTGTCAAGG	AAGGGGCTGC	TGACTACCGC	TACTTCCCAG	AACCAGACCT	5520
ACCCCTCTTT	GAAATTTCTG	ACGAGTGGAT	TGAGGAAATG	CGGACTGAGT	TGCCAGAGTT	5580
TCCAAAAGAA	CGTCGTGCGC	GTTATGTATC	TGACCTTGGT	TTATCAGACT	ACGATGCTAG	5640
TCAGTTGACT	GCTAATAAAG	TCACTTCTGA	CTTCTTTGAA	AAAGCTGTTG	CCCTAGGTGG	5700
TGATGCCAAA	CAAGTCTCTA	ACTGGCTCCA	AGGGGAAGTC	GCTCAGTTCT	TGAATGCTGA	5760
AGGTAAAACA	CTGGAACAAA	TCGAATTGAC	ACCAGAAAAC	TTGGTTGAAA	TGATTGCCAT	5820

			198			
CATCGAAGAC	GGTACTATTT	CATCTAAGAT	TGCCAAGAAA	GTCTTTGTCC	ATCTAGCTAA	5880
AAATGGCGGT	GGCGCGCGTG	AATACGTGGA	AAAAGCAGGT	ATGGTTCAAA	TTTCAGATCC	5940
AGCTATCTTG	ATCCCAATCA	TCCACCAAGT	CTTTGCCGAT	AACGAAGCTG	CTGTTGCCGA	6000
CTTCAAGTCA	GGCAAACGTA	ACGCCGACAA	GGCtTTACAG	GATTCCTTAT	GAAGGCAACC	6060
AAAGGCCAAG	CCAACCCACA	AGTTGCCCTT	AAACTACTTG	CACAGGAATT	GGCGAAGTTG	6120
AAAGAAAACT	AGACAGAACA	AAACCAGCCC	TAAGGTTGGT	TTTTTCTTCT	CTACCAACTC	6180
CCAATAACTA	TTTTGGCTTT	ATTTCCAGAG	TATTTTATGG	TAAAATGAAG	AGTAATAATA	6240
TTTATTAAAG	AGGTAAAAAC	ATGATTGAAG	CAAGTACCTT	AAAAGCTGGT	ATGACCTTTG	6300
AAACAGCTGA	CGGCAAATTG	ATTCGCGTTT	TGGAAGCTAG	TCACCACAAA	CCAGGTAAAG	6360
GAAACACGAT	CATGCGTATG	AAATTGCGTG	ATGTCCGTAC	TGGTTCTACA	TTTGACACAA	6420
GCTACCGTCC	AGAGGAAAAA	TTTGAACAAG	CTATTATCGA	GACTGTCCCA	GCTCAATACT	6480
TGTACAAAAT	GGATGACACA	GCATACTTCA	TGAATACAGA	AACTTATGAC	CAATACGAAA	6540
TCCCTGTAGT	CAATGTTGAA	AACGAATTGC	TTTACATCCT	TGAAAACTCT	GATGTGAAAA	6600
TCCAATTCTA	CGGAACTGAA	GTGATCGGTC	TCACCGTTCC	TACTACTGTT	GAGTTGACAG	6660
TTGCTGAAAC	TCAACCATCT	ATCAAAGGTC	CTACTGTTAC	AGGTTCTGGT	AAACCAGCAA	6720
CGATGGAAAC	TGGACTTGT	GTAAACGTTC	CAGACTTCAT	CGAAGCAGGA	CAAAAACTCG	6780
TTATCAACAC	TGCAGAAGG	ACTTACGTT	CTCGTGCCT	ATCTCTAGA	A AGAGGTCATT	6840
CTATGGGAAT	r TGAAGAACA	A CTTGGCGAA	TCGTTATCG	CCCACGTGT	CTTGAAAAAA	6900
TCATTGCTA	r CGCTACTGC	A AAGGTAGAG	GTGTTCACT	TTTTTCAAA	C AGATCAGTGT	6960
CTGATACCC	r ttcaaaact	TCACTCGGC	C GTGGCATTT	A TCTTAAAAA	C GTGGACGAAG	7020
AACTCACAG	C AGATATCTA	r crctacetr	G AGTACGGAG	r aaaagttcc	T AAGGTAGCGG	7080
TTGCTATCC	A GAAAGCTGT	C AAAGATGCC	G TCCGTAATA	T GGCTGATGT	A GAACTCGCTG	7140
CTATCAATA	T TCACGTTGC	A GGTATCGTC	C CAGATAAAA	C ACCAAAACC	A GAATTGAAAG	7200
ATCTATTTG	A CGAGGACTT	C CTCAATGAC	T AGTCCACTA	T TAGAATCTA	G ACGCCAACTC	7260
CGTAAATGC	G CTTTTCAAG	C TCTCATGAG	C CTTGAGTTC	G GTACGGATG	T CGAAACTGCT	7320
TGTCGTTTC	G CCTATACTC	A TGATCGTGA	A GATACGGAT	G TACAACTTC	C AGCCTTTTTG	7380
					A AATCACTCAG	7440
					A CCTCCTTCGC	7500
					TAATGAAGCT	7560
ATCGAGCTT	rg CAAAGGAC1	T CTCCGATC	A AAATCTGCC	C GTTTTATC	A TGGACTGCTC	7620

AGCCAGTTTC	TAACAGAAGA	ACAATAAGG	TCTTTGTCA	CTGTAGTGG	TTGAAAAAAA	768
GCTAAGCTCG	AGAAAGGACA	AATTTCGTC	TTTCTTTTT	GATGTTCAA	GCGATAAAAA	774
TCCGTTTTTT	GAAGTTTTCA	AAGTTTCGA	AACCAAAGGG	ATTGCGCTTC	ATAAGTTTGA	7800
TGAGATTATT	GGTCGCTTCC	AGTTTGGCA1	TAGAATAGTO	TAGTTGAAGO	GCGTTGACAA	7860
TCTTTTCTTT	' ATCTTTGAGG	AAGGTTTTAA	AGACAGTCTC	AAAAATAGGA	TGAGCCTGCT	7920
TAAGATTGTC	CTCAATAAGT	CCGAAAAATT	TCTCTGGTTC	CTTATTCTGG	AAGTGAAACA	7980
GCAAGAGCTG	ATAGAGCTGA	TAGTGGTGTT	TCAAGTCTTG	TGAATGGCTC	AAAAGCTTGT	8040
CTAAAATCTC	TTTATTGGTT	AAGTGCATAC	GAAAAGTAGG	ACGATAAAAT	CGCTTATCAC	8100
TCAGTCTACG	GCTATCCTGT	TGAATGAGTT	TCCAGTAGCG	CTTGATATCC	TTGTATTCAT	8160
GGGATTTTCG	ATGAAACTGA	TTCATGATTT	GGACACGCAC	ACGACTCATG	GCACGGCTAA	8220
GATGTTGTAC	AATGTGAAAG	CGATCAAGAA	CGATTTTAGC	ATTCGGGAGT	GAAACAGTCT	8280
GGGAGACTGT	TTCAGCCTGA	GCCTAGGAAT	TTGAAAGCGA	AGCTGTTTAG	CCAAGTCATA	8340
GTAAGGGCTA	AACATATCCA	TAGTAATAAT	TTTGACGCGA	CATCGGACAA	CTCTATCGTA	8400
GCGAAGAAAG	TGATTTCGAA	TGATAGCTTG	TGTTCTACCC	TCAAGAACAG	TGATGATATT	8460
GAGATTGTTA	AAATCTTGCG	CAATGAAGCT	CATCTTTCCC	TTTGTAAAAG	CATACTCATC	8520
CCAAGACATA	ATCTCAGGAA	GACAAGAAAA	ATCATGTTTA	AAGTGAAAAT	CATTGAGCTT	8580
ACGAATAACA	GTTGAAGTTG	AGATGGAAAG	CTGATGGGCA	ATATCAGTCA	TAGAAATCTT	8640
TTCAATCAAC	TTTTGAGCAA	TCTTTTGGTT	GATGATACGA	GGGATTTGGT	GATTTTTCTT	. 8700
GACGATAGAA	GTTTCAGCGA	CCATCATTTT	TGAACAGTGA	TAGCACTTGA	ATCGACGCTT	8760
TCTAAGGAGA	ATTCTAGTAG	GCATACCAGT	CGTTTCAAGA	TAAGGAATTT	TAGAAGGTTT	8820
TTGAAAGTCA	TATTTCTTCA	ATTGGTTTCC	GCACTCAGGG	CAAGATGGGG	CGTCGTAGTC	8880
CAGTTTGGCG	ATGATTTCCT	TGTGTGTATC	CTTATTGATG	ATGTCTAAAA	TCTGGATATT	3940
AGGGTCTTTA	ATGTCTAGTA	ATTTTGTGAT	AAAATGTAAT	TGTTCCATAT	GAATCTTTCT	9000
AATGAGTTGT	TTTGTCGCTT	TTCATTATAG	GTCATATGGG	ACTTTTTTC	TACAATAAAA	9060
PAGGCTCCAT	AATATCTATA	GGGGATTTAC	CCACTACAAA	TATTATAGAG	CCAACAATAA	9120
AAAGAAAAAG	TGTTTGATAG	ATATCAAACA	CTTTTTTCTT	TGCCTCCCAC	татсталала	9180
A ATGATAATA	GATATAATTG	ТАААСААААА	TCCAGATAGG	TTTTGCATGA	TTGAGAAAGT	9240
CAAAAAAACT	ATGGCAGAGA	ATCGTTAATC	TCAGATTGTC	GGTAGAACGA	TAAACAAGGG	9300
CAAAAAAGAA	ACCAATCAGA	СТАТААТАТА	ATAAACTAAT	TGGATCTCTG	TGAGATAGTA	9360

			200			
9420	TACTTGGACT	ATCCAAATAG	ATAGGATAAC	ATGATAGCAG	AATCCCAAAG	TCAAATGGCT
9480	ACAGGACCGA	CTCCTCAAAA	TATCAAGAGT	AAATACCCTC	GGTATTCATA	AGGGAAAGAA
9540	CCATTTGAAA	GGTTGGTTGT	TCGATAAAAA	GATAAGATAG	CAGGACAAAA	TGATTACAGG
9600	GCATAGCGTG	AATCAAATGA	TCCTATGATT	TCATGAATAT	AAAATACTCA	AAAGCACGGT
9660	AAGACAAATG	aaataagtag	CATAAGTTGC	TGATAAACCA	ACCGAGAATC	CCCAAAAATT
9720	AACCTCCAAA	TTTCTTTTTT	AGAGCATCTT	TCAAAGATAA	GCTCTTTTTC	ACCAGTTCCA
9780	ACATCAGCTC	AAGAGAATAG	TTGTTAAAAT	ACTAATCCCA	GAAACTTCCC	TTAATAGAAG
9840	GTAGATAGTA	TGGTAAATAG	CAATTGTTTG	ACATACAATC	AATGATCGTC	CTAACCCTAA
9900	ATCGTACTTT	TGTGTTTCTC	TTAGTTTTTT	CCAAATTGTC	CAAAAATATT	AAATAATAAG
9960	AATTAAGTGC	TCTATATAAG	CTTCCAAGCA	GGAAGCCGTA	TACCCTGCTC	TTTGAAAGAT
10020	ATCCATCTTC	CATCTACTAT	ATAATATAAC	CAAATTCTCT	ATATAGGGAG	CCCTTGCCTC
10080	CTGTAAATGT	GTTGAAAGAA	CAAGTCCTCA	AAGTTTGCTC	AGACCACCTG	CCAAACAGCA
10140	CACATTTATA	GTTGTAGGCT	AAAATAGATT	GTACCTTCTT	GTCATTGCAA	ATTTGTACCT
10200	TTTTCGACCT	AACTGGCAAT	CCATCTCCTC	ATTTTATAGC	TTTTTTGTCT	GTATATTTCT
10260	TTCTTAGTAT	CATTTAGTCA	TTTCTAGTCT	AAATGAGACC	TTTCCATAAA	GAATTACATT
10320	TGAAAGTCTA	GCGGTTTTTG	AACTCTTCTA	TTCTTCCAGC	GTTGATAGCG	TTTCTAAATC
10380	AGAAAGTCCT	GTTCTTTACT	CTCTTAATCA	TTTTTTGACA	TTTGGAGTTC	GCCAGCTCCG
10440	AGTGATTTTC	GTTCATGCGA	ATTTCTAACA	CACCACGTCC	TCACCTTATC	ATTTCAGAAA
10500	AGCAAAGCCT	ATAAAATGGA	CCGTCCTTCC	AGCGCGAGTA	CTGCTTCCAT	ATCAGTTCTG
10560	CGCGACAGCT	AGACACGGTC	TCCAGCATCC	GATAGAATTT	GAATGGCATA	TCTGGACTGA
10620	AGGAACTTTC	TGGCGATAAT	CCGATAATAA	ACCACCTTCA	CCCCCCCTGA	AGAGCCAGAG
10680	TTCTTCCGCT	CTTGACCACG	ATAGCTTCCC	ATTGCGAGCG	TTTCCATGAG	AGGTCACTCA
10740	GCCAAATTTC	CAACTGGACG	ATAAAGGTCA	TGCTGTATTG	GATAAGCACC	CCGACACCAG
10800	TTGGCCAAAA	CTGGATGTGG	CGGTAGCCTT	CAGTGCCTTT	TCATCAACCG	TCAGCCTGTT
10860	TGTTACAGCT	TACCAACCAC	CCTTTTTGGA	CAAACTCTTG	GGTTGTCTTG	TTCCCTTTGA
10920	AGAACGGTCA	CATCACGAAA	ACTGCACCAT	ACCACCAACA	GCCAACCAAT	TGGTCTCCAA
10980	TGTCAAGCGA	AGTCCAAGGT	CCTGTCGCAA	ATCAAAAATG	GGATAAATTC	CCATGTAATT
11040	CCTCCATGCA	TCTAGGACTC	GCAATATTCA	GACTATTTT	GCGCTTCTCT	CTCTGCTCAC
11100	GCATCCACAA	TTTGACAATA	AGTCTCTTCT	GTATCTGGTA	GCTAGCAATC	ATCTGACTAC
11160	TCACGAACCG	AGGCAAGCTT	GGAAATCCTC	TCTGCCTTTT	TAATAGGAAT	AGCCATGTTC

TATTTTCAAT	CACACGACGC	CCAGCAAAAC	CAACCAAGCT	CTGTGGTTCA	GCCAGAATGA	11220
TATCGCCTTC	CATAGCGAAA	GAAGCTGTCA	CACCACCAGT	CGTTGGATCT	GTCAAAATGG	11280
TCAGGTAAAA	GAGACCAGCA	TTTGAATGGC	GTTTAACCGC	CGCAGAGATC	TTAGCCATCT	11340
GCATGAGACT	CATGATTCCT	TCCTGCATAC	GGGCTCCACC	AGAGGCTGTG	AATAGGACAA	11400
CTGGCAATTT	TTCGACAGTC	GCATACTCAA	ACAAACGAGT	GATTTTTTCA	CCTACAACCG	11460
TACCCATAGA	AGCCATGATA	AAGTTAGAAT	CCATAATCCC	AAGAGCCACA	GTCTGACCTT	11520
TAATAAGAGC	AGTTCCTGTC	ACAACGGCTT	CATGCAGACC	TGTTTTTCA	CGCATAGATG	11580
CCAGTTTCTT	TTGGTAACCA	GGGAAATGCA	AGGGATCCTT	GCTTTCAATC	CCTGTAAACA	11640
ATTCTTTGAA	GGTTCCCATA	TCAATCGTCA	AAGCCAAGCG	TTCTTGGGCA	GAAATACGAA	11700
AGGTATAGCT	ACAGTGCGGA	CAGATACGTT	CACTTCCCAG	ATCCTTCTGA	TAGATGGTAT	11760
GCTTACAGCC	TGGACACTGG	GAAAATAATT	CATCTGGAAC	CTCTGGCTTA	GCTTGAGGTT	11820
TTTCCCTAAC	CGAACGATTG	GGATTGATTC	GAATATACTT	ATCTTTTTTA	CTAAATAGAG	11880
CCATTGATTC	CCCTTTTCGG	TTTAAACTCT	TAAAGTCATT	TTATTCTTTT	TCTTGATATT	11940
TAGGTAAGAA	GGTTTCCATC	AAGAAGGAAG	TATCATAATC	CCCAGCAATG	ACATTGCGAT	12000
CTGAAATGAG	GTCAAGCTGG	AAATCTGCAT	TGGTCTGCAC	TCCTTCAATT	TCTAATTCAT	12060
AGAGGGCACG	TTGCATTTTC	ATCAAGGCGT	CAAAACGATT	TTCGCCGTGT	ACTATGATTT	12120
TGGCAATCAT	ACTATCATAA	TAAGGCGGAA	TGGTATAACC	TGGATAAACT	GCTGAATCCA	12180
CGCGCAAGCC	AACTCCACCA	CTTGGCAGAT	AGAGATTAGT	AATCTTACCT	GGACTTGGAG	12240
CAAAGTTAAA	GGCTGGGTTT	TCTGCATTGA	TACGACACTC	GATGGCATGA	CCGCGTAGGA	12300
CAATATCTTC	TTGCTTAACA	GACAAAGGCT	GACCTGCCGC	AATGCAAATC	TGTTCCTTAA	12360
CGATATCAAC	ACCTGAAACA	AACTCTGTTA	CTGGATGTTC	TACCTGAACA	CGAGTATTCA	12420
TCTCCATGAA	ATAGAAATTG	CTACTTGCTT	CATCAAGAAG	AAATTCAATG	GTTCCTGCAT	12480
TCTCATAGCC	AACAAACTCT	GCCGCTCGAA	CAGCAGCAGC	ACCTATTTCA	TGACGCAGCG	12540
TTTTTCCGAT	TGCAATCGAG	GGACTTTCTT	CCAAAACCTT	TTGGTTATTC	CTTTGAAGAG	12600
AACAATCCCG	TTCACCCAAG	TGAATCACAT	GTCCATGCTC	ATCACCTAGG	ATTTGAACCT	12660
CAATGTGCCG	AGCTGGATAG	ATAACCCGTT	CTATGTACAT	GGCACCATTG	CCATAATTGG	12720
CCTTGGCCTC	ACTAGAGGCA	GTTTCAAAGG	CAGAAACGAG	GTCATCTGGT	TTTTCAACCT	12780
TACGAATCCC	TTTACCACCT	CCACCTGCTG	AAGCCTTGAG	CATAACAGGA	TAGCCAATTT	12840
TTTCAGCAAC	AATCAAAGCT	TCTTCAGAGT	TATGCACTTC	TCCATCTGAA	CCTGGTATAA	12900

			202			
CAGGCACACC	TGCTTTAATC	ATCTGAGCAC		CTTATCCCCC	ATCATATCCA	12960
TAACATGACC	AGATGGACCG	ATAAACTTGA	TACCTACTTC	TTCACACATG	GTCGCAAATT	13020
TGGAATTTTC	ACTGAGAAAT	CCAAAACCAG	GGTGAATAGC	TTCTGCCTCA	GTCAAGACTG	13080
CAGCTGATAG	AACTGCATTA	ATATTGAGAT	AAGACTCTGT	TGCCTTGCCA	GGACCAATAC	13140
AAACTGCTTC	ATCTGCCAAA	AGCGTATGAA	GAGCTTCCTT	ATCAGCAGTT	GAATAAACCG	13200
CTACCGTCGC	AATCCCCAAT	TCACGTGCCG	CACGGATAAT	ACGAACCGCA	ATTTCACCAC	13260
GATTGGCAAT	TAAAATTTTT	CGAAACATGG	AGAACCTCCT	TAGTTCCCAA	TTGCAAAAGT	13320
AAGGGTACCA	CTGGCTGCAA	GCTTGCCATC	CACTTCAGCC	TTTGCTTCAA	CCACAGCTAT	13380
GGTGCCACGA	CGTTTTACAA	AAGTCGCTGT	CATAACCAAT	TGGTCGCCTG	GTACAACTTG	13440
CTTCTTGAAC	TTAACCTTGT	CCATACCAGC	GTAAAAGACC	AGTTTTCCTT	TATTTTCAGG	13500
TTTTGATAAC	TCCAACACAC	CGGCAGTTTG	CGCCAAGGCT	TCCATAATCA	CAACACCTGG	13560
CATAACTGGG	TATTGAGGAA	AGTGGCCGTT	AAAGAAAGGC	TCGTTGATGG	TCACATTTTT	13620
GATAGCAACA	ATGGTATCCT	CGCTCACTTC	CAAGACACGG	TCCACTAGAA	GCATAGGATA	13680
ACGGTGGGGA	AGAGCTTCTT	TGATTCCTTG	AATATCGATC	ATTTGATACG	TACCAATCCT	13740
TTACCAAACT	CAACCATTTC	TTCGTTAGAG	ACGAGAATTT	CCGTTACCAC	ACCATCCTTA	13800
GGAGCTGGGA	TTTCATTCAT	GACTTTCATG	GCTTCGATAA	TTACCAATGT	TTGACCTTTT	13860
TTGACACTAT	CACCAACTGT	AACGAAGGCA	GGTTTATCTG	GTCCAGCAGC	CAAGTAAACC	13920
ACTCCAACAA	GTGGACTCTC	TACAAGATTT	CCCTCAGTAG	CCACACTTGC	TTCAGCTGGA	13980
GCTGGAACTT	CTTCTGCTAC	AGTCTCTGCT	GGAGCAGATG	TAGGAGCTAC	TGGACTCGGT	14040
GTTGCTAGAA	CGGGTGCTGG	AGCGACTTGA	GTTGCAACTT	CAGGCACAGG	TCTTGCTTCA	14100
TTCTTGCTAA	ACTGCAACTC	ATCCGTCCCA	TTTTTATAAG	AAAATTCTCT	CAAACTTGAC	14160
TGGTCAAATT	GAGTCATCAA	GTCTTTAATA	TCGTTTAAAT	TCATACTTAT	CTATTCTCCC	14220
AACGTTTGAA	AGCAAGAACT	GCATTGTGGC	CTCCAAAACC	AAAAGTATTT	GAAATAGCGT	14280
ATGGAATTTC	TTTCTCCAAG	CCTTGTCCAT	AAACGACATT	AGCTTCGATA	TAATCTGATA	14340
CTTCACTTGT	CCCAGCTGTC	ATTGGTACAA	AGTTATGACG	CATAGCTTCG	ATGGTGACGA	14400
TAGCTTCTAC	TGCACCCGCA	GCCCCCAGCA	AATGTCCTGT	AAAAGACTTG	GTTGATGATA	14460
CAGGTACTTC	CTTACCAAGA	ACAGCTACGA	TAGCACCACT	TTCTCCTTT	TCATTGGCAG	14520
GAGTTGACGT	TCCGTGAGCA	TTGACATAGG	CTACTTGCTC	TGGAGAAATC	TCAGCTTCTT	14580
CCAAGGCTAG	TTTGATGGCC	TTGATAGCTC	: CCTGACCTTC	TGGATGTGGA	GAAGTCATGT	14640
GGTAGGCATC	ACAAGTATTT	CCGTAACCAA	CCACTTCAGO	CAGGATAGTA	GCTCCACGTT	14700

				 .		
TTTCAGCGTG	TTCAAGACTT	TCTAGAACCA	ACATCCCTGA	ACCTTCACCC	ATAACAAACC	14760
CATTGCGATC	CTTATCAAAT	GGGATCGAAG	CACGAGTTGG	ATCCTCTGTA	GTAGAGAGAG	14820
CTGTTAAGGC	TTGGAAACCA	GCGATGGCAA	AAGGTGTGAT	AGAAGCTTCT	GTTCCTCCCA	14880
CCAACATCAC	ATCTTGGAAA	CCAAACTTAA	TGGAGCGGAA	GGCATCCCCA	ATCGCATCAT	14940
TTGATGAAGA	GCAGGCAGTA	TTGATAGATT	TACAAACACC	GTTTGCACCA	AAACGCATGG	15000
CTACATTCCC	AGAAGCCATA	TTTGGTAAAG	CTTTTGGAAG	AGTCATTGGT	TTGACACGTT	15060
TGGGTCCTTT	TTCATGAAGG	CGAAGTACCT	GATCTTCAAT	TTCCTTGATT	CCACCAATAC	15120
CAGATGCAAC	GATAACACCA	AAACGATCCC	TATTAAGAGC	CTCTACATCA	AGATTGGCAT	15180
GATTTACAGC	CTCTTGGGCT	GCATACAAGG	CATATAAAGA	ATAGTTATCA	AAACGGTTGG	15240
TATCTTTTTT	TACAAAGTAT	TTATCGAACG	GAAAATCTTG	GATTTCTGCC	GCATTATGCA	15300
CATCAAAGTC	ACTATGATCA	AATTTTGTAA	TGCCACCAAT	GCCGATTTTC	CCAGTTGCTA	15360
AACTATTCCA	AAATTCTTCT	GGTGTATTTC	CGATTGGAGA	TGTTACTCCA	TAACCTGTTA	15420
CCACTACTCG	ATTTAGTTTC	ATTCTTTTCA	CCTCTAGCTT	TCGCTACATA	CTTAAGCCAC	15480
CATCAATGGC	AACCACTTGT	CCAGTTAGAT	AATCTTGGCC	TGCTAAAAAT	ACTGTCAAAT	15540
CTGCAACCTG	CTCTGCCTGC	CCAAATTCTT	TCATCGGAAT	CTGAGCTAGT	GTAGCTTCCT	15600
TAATCTTATC	TGACAGGATA	GCGGTCATAT	CAGACTCAAT	CATTCCTGGA	GCAATCACAT	15660
TGACTCGTAT	ATTCCGACTA	GCGACCTCGC	GTGCCACAGA	CTTGGTAAAG	CCAATCAAGC	15720
CAGCCTTAGA	AGCAGCATAA	TTAGCTTGAC	CAATATTCCC	CATCAAACCA	ACAACACTAG	15780
ACATATTAAT	GATAGCACCT	TCTCTGGCTT	TCATCATCGG	TTTCAAGACT	GATTGTGTCA	15840
TATTAAAGGC	ACCAGTCAGA	TTGACCTTGA	GCACTTTTTC	AAAATCTGCT	TCTGTCATCT	15900
TGAGCATAAG	AGTATCTTGG	GTAATCCCTG	CATTGTTGAC	CAAAACATCT	ACTGAACCCA	15960
GTTCTGCAAT	AGCTTGATCA	ATCATACGCT	TAGCGTCTGC	AAAATCTGAT	ACATCTCCTG	16020
AAATGGGAAC	CACCTTGATA	CCATAGTTTG	AAAACTCAGC	GAGCAATTCT	TCTGAGATTG	16080
CCCCACGACT	GTTTAAGACA	ATGTTGGCTC	CTGCTTGAGC	AAACTTGTGG	GCGATGGCAA	16140
GACCAATTCC	ACGACTCGAA	CCTGTAATAA	AGATATTTTT	ATGTTCTAGT	TTCATTTTTT	16200
TCCTTTCAAA	ACTTCTACTT	ATTTTAGTCT	ATTTTTCTAA	AAGTGCTACT	AAACTCGCTT	16260
GATCTTCCAC	ATGAGCTAAG	TGAGCAGTTT	GATCAATTT	TTTAACAAAA	CCTGACAAGA	16320
CTTTCCCCGG	TCCAATCTCG	ATAAAGTTGC	TTATGCCTGC	TTCTTGCATG	ACCCCAATAC	16380
TTTCATAGAA	ACGAACGGGT	TCCTTGACCT	GACGCGTCAA	GAGCTGAGCA	ATGTCCTCTT	16440

TTTGCATCAC	AGCAGCTTCT	GTATTGCCGA	204 CTAGGGGACA	AGTAAAATCT	GAAAAACTTA	16500
CCTGAGCTAG	AGTTTCAGCT	AGTTTCTGGC	TAGCAGGTTC	AAGGAGAGCG	GTGTGAAAGG	16560
GACCTGACAC	CTTAAGAGGA	ATCAAGCGTT	TGGCACCTGC	TTCTTGCAAA	AGTTCAACCG	16620
CTCGATCAAC	TGCAACCACT	TCTCCAGCAA	TGACGATTTG	TGCAGGTGTG	TTATAGTTGG	16680
CTGGAGTAAC	CACTCCAAGT	TCAGAAGCTT	TTTGACAGGC	TTCTTCAATG	ACCTCTACTG	16740
GCGTATTGAG	AACTGCTACC	ATCTTGCCAG	AGTCAGCAGG	AGCCGCTTCT	TCCATATAGG	16800
CTCCACGCTT	AGCTACCAAG	GCAACCGCAT	CTTCAAAATC	CAAGGCGCCA	CTTGCCACCA	16860
AGGCAGAGTA	TTCTCCAAGA	GACAAACCAG	CAACCATATC	AGGCTGATAG	CCCTTTTCTT	16920
GCAATAAACG	GTAGATAGCA	ACCGAAGTCG	CTAGAATGGC	TGGTTGCGTA	TAGCGGGTCT	16980
GATTGAGTTT	GTCTTCTTCC	GTATCGATGA	GATAACGCAA	ATCATAACCG	AGCACCTGGC	17040
TCGCTCGATC	AATCGTTTCT	TTAACAATCG	GATACTGATC	ATAGAAATCC	CGTCCCATCC	17100
CTAGATACTG	GGCACCTTGA	CCAGCAAATA	AAAAGGCTGT	TTTAGTCATT	TCTTACAACT	17160
CCTGTCCAGC	GAGAGGCTTC	TTCTTGAATT	TTCTTAGCGG	CTCCGTAATA	CAAATCTTTT	17220
AGGATTTCTT	CAGCTGTTTC	TTCTTTAGAA	ACAAGCCCTG	CGATTTGACC	TGCCATAACA	17280
GAGCCACCAT	CCACATCACC	GTGAACAACT	GCTTTGGCTA	GAGCACCTGC	TCCCATTTGT	17340
TCAAAGATTT	CTAAATCAGG	ATCTTCTTGC	TTAAAGGCAT	CTTTTTCAGC	CAGTTCAAAA	17400
TCTCTAGTCA	ACTGATTTTT	AATAGCACGA	ACAGCATGAC	CAAAGTGCTG	AGCTGAAATC	17460
GTAGTATCAA	TATCCCTTGC	TTTTAAAATT	TTCTCCTTGT	AGTTTGGATG	GGCATTCGAC	17520
TCTTTTGCAA	CTACAAACCG	TGTCCCCACC	TGTACAGCCT	CTGCACCTAG	CATAAAGCCA	17580
GCCGCAGCAC	CTTCACCATC	CGCAATTCCT	CCTGCAGCAA	TAACAGGAAT	AGATATAGCT	17640
GTGGCTACCT	GTCGCACCAA	GGTCATGGTT	GTTAATTTAC	CGATATGCCC	CCCAGCTTCC	17700
ATTCCTTCTG	CAATAACAGC	GTCTGCACCG	ATTTTTTCCA	TGCGTTTAGC	TAAAGCGACA	17760
CTAGGAACAA	CAGGAATAAC	GATTATCCCA	GCTTCATGGA	AACGTTCCAT	ATACTTGCTT	17820
GGATTTCCTG	CTCCTGTTGT	GACAACTTTA	ACACCTTCTT	CAATAACGAG	ATCCACGATG	17880
TCTTCCACAA	AGGGAGATAA	GAGCATGATG	TTGACCCCAA	AGGGTTTATC	AGTCAATGAT	17940
TTGATTTTAT	CAATATTGGC	CTTGACAACT	TCTTTCGGGG	CATTTCCCCC	ACCGATAATT	18000
CCTAATCCTC	CAGCCTTGGA	AACAGCCCCT	GCCAAATCAC	CATCAGCAAC	CCAGGCCATC	18060
CCTCCTTGGA	AAATAGGATA	ATCAATCTTC	AATAATTCTG	TAATACGCGT	TTTCATAGTG	18120
CCTCCAACCT	TCCTTGCTTA	CGTAATAGTT	CGATTTCACC	ATAATTTGAC	AGTCAAACTA	18180
TTACĆTAAAC	AAGAGGGAGT	GGGTTTCTCC	CTACTCCTTC	TACTATATAT	CTGCTTATTT	18240
			•			

тосттостст	TCAACGTAAG	CAACCAAGTC	ACCAACTGTT	TTCAAGTCAT	TTTCTGCTTC	18300
GATTTGGATA	TCAAAAGCAT	CTTCGATTTC	TGAGATTACT	TGGAACAAGT	CCAATGAATC	18360
TGCGTCCAAA	TCATCAAAAG	TTGATTCAAG	TGTTACTTCT	GATGCGTCTT	TTCCAAGTTC	18420
TTCAACGATA	ATTTCTTGTA	CTTTTTCAAA	TACTGCCATG	ATAGGACTCC	TTTAAAATAA	18480
ATAGTTTTTT	TATAACAATG	TGTTCACCAC	ATGATTACCT	AAATTGTAAG	AATGAGCGTG	18540
CCCCAGGTCA	AGCCTCCACC	GAAGCCTGAT	AGAAGAACAG	TCTGGCTACC	ATCTAAAGGG	18600
ATGAGACCTT	GTTCTACACA	CTCTGAAAGT	AAAATCGGGA	TACTGGCTGC	ACTGGTATTG	18660
CCATATTCCA	TCATATTGGC	TGGAAGTTTG	GCTCGGTCAA	CACCAATTTT	TCTAGCCATC	18720
ттатссаааа	TACGGTCATT	GGCTTGATGA	AGTAGCAGAT	AATCCAAGTC	TGTCACCTCT	18780
ATAGGAGATT	CATCAATAGT	CTGCTTGATA	GACTTGGCTA	CATCTCGAAT	GGCAAAATCA	18840
AAGACTGTGC	GTCCATCCAT	CTTCAAAAAC	GAATCTGCAC	TTTCTTGATC	TGAAAATGGA	18900
GAATGTAAAC	CTGAATGCCC	ATAAGTTAAA	CACTCGCTGC	GACTTCCATC	GCTATTGAGA	13960
CTCTCAGCTA	AGAAATGCTC	TTGCTCGCTA	GCTTCTAACA	AGACACCACC	AGCACCATCT	19020
CCAAACAACA	CAGCTGTTGA	TCGATCCGAC	CAATCGACTG	CCTTAGAGAG	GGTTTCACTA	19080
CCAATCACCA	AGCCTTTTTG	AAAGCGACCA	GAAGCGATAA	ACTTTTCAGC	AGTTGAAAGA	19140
GCAAATACAA	ATCCACTGCA	AGCCGCGGTT	AAGTCAAAAG	CAAAGGCTTT	ATTAGCACCA	19200
ATATTAGCTT	GAACACGAGC	AGCTGTAGAG	GGCATCATCG	AATCTGGAGT	AATGGTAGCT	19260
AGGATGATAA	AATCCAGTTC	TTCTCCTGTT	ATTCCAGCTT	TTGCCATCAG	TTTCTTAGCA	19320
ACCTCTGTAG	CCAAATCACT	CGTAGATTCT	GTTCTTGAAA	TATGCCTTTG	TCGTATTCCC	19380
GTTCGACTTG	AAATCCACTC	ATCATTGGTA	TCCATAATCT	GAGCCAAGTC	GTGATTTGTA	19440
ACCACTTGCT	CTGGCACATA	ATGAGCAACC	TGACTTATTT	TTGCAAAAGC	CATTATTTCA	19500
AATCCTCCAA	AAATTGGTAA	AGATTAGTCA	AACCTTTACC	CATGACAGCA	ATTTCTTCCT	19560
CGCTCATGCC	ATCAATAATT	TTTTCTACCA	TGGCCTTGTG	GAAGCGTTTA	TGCAGTCTAT	19620
GAATCAAGCG	ACCCTTCTTT	GTCAAATGCA	GATGCACCAC	ACGACGATCC	TGTTCTGACC	19680
GAACTCGCTC	AATGTAGCCC	GG			•	19702

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 5211 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

60	AACAAGTTAT	GTATGATAGT	TGAAAAAATG	TGAAAAATTT	TCTCTTCTCT	GAAAATTTCC
120	CTAAGACGGG	TTAGAATCTC	GAAAATCAGT	GAATAATGGA	AAAGAAAGGG	TTTTAAGAGG
180	TTGGTTATCC	GATACCATCT	TTTAGGAGTT	CACTTCGTGA	GTTTTGGAAA	GTCGGACCTA
240	TTCGCCACAT	TTTAAAGGCA	GATATATAAT	TTTATGATGC	GTTTTGCCTT	TGGTGGTGCG
300	AATCAACTGG	GGTTATGCCA	TGAAGCTGAA	GTTGTTTGCA	CATGAGCAAG	TCTAGGGCGC
. 360	TTACAGGGAT	ACAAATGCCA	ACCAGGAGCA	TCACTAGTGG	GTTGCCGTCG	AAAGTTGGGT
420	TGGCGCGAGC	ACAGGTCAGG	TTTGGTCTTT	GCGTTCCCCT	ATGAGCGATA	TGCGGATGCC
480	TGCCAATCAC	GGAATTACCA	AGACATCGTG	TTCAGGAGGC	AAGGATGCCT	AGGGATTGGG
540	CGGAAGCTGT	CGTATCATTA	TGATATTCCG	GTGAGACAGC	TACCAAGTTC	TAAGTACAAT
600	AAGACATATC	GACCTACCAA	AGTTGTAATT	GTCCAGGGCC	ACTACAGGCC	CCATATCGCA
660	ATCAGCCGAC	TTACCAAGTT	AGAAGTGAAT	TTTATTCACC	ACAGACTTCA	TGCTTTAGAA
720	AGGCTAAAAA	CAATTGTCCA	AATCTTGAAG	AAATCAAGAA	AATGATATGC	TCTTGAGCCG
790	AACTAAATGA	GCTGCTACGG	TTATGCTGAG	GTGGAATTAG	TTAGCTGGTG	GCCAGTCTTG
840	GAACGATTGC	TTGGGACAAG	AACCAGTCTT	TTCCAGTGGT	CGCTATCAAA	ATTTGCAGAA
900	CAGCAAATAT	GGGTCATTCG	AGGCATGCAC	TTGGAATGGG	CCACTCTTTC	AACGAGTCAC
960	ACCGTTTGAC	CGTTTCGATG	TATTGGTTCT	TTATGATTAG	GAAGCGGACT	TGCTATGACG
1020	TTGACCCAGC	CACATTGATA	TAAGGTTGCC	CTAAGAATGC	AAGACTTTCG	GGGGAATCCT
1080	AGAAGGCCTT	GGAGATGCTA	TCCTGTAGTT	GTGCAGACAT	AAGATTATCA	TGAGATTGGC
1140	TTGAGAAAGT	GAAAAGTGGA	CAACAACACT	CAACAGTTCA	CTAGCAGAAC	GCAAATGTTG
1200	TTCAACCGCA	GAGCGTGTGG	TGATAAGAAA	TTCGTTCTTA	AAGAATCGTG	CACTAAAGAC
1260	TAACAGACCT	GCCATTGTGG	GAATGGAGAT	GTGAATTGAC	GAACGAATTG	AGCAGTTATT
1320	GTCAGTTAGT	CAAAATGAAC	TTATCCCTAC	CAGCTCAGTA	CAAATGTGGA	TGGTCAACAC
1380	GTGCTAAAAT	GCAGCAATCG	TGGAATTCCA	CAATGGGCTT	GGTTTGGGAA	GACTTCAGGT
1440	AAATGACCAA	GGTGGTTTCC	TGTTGGGGAT	TAGTCTTGTT	GATAAGGAAG	TGCTAACCCA
1500	TGCTGAACAA	AAGGTGGTTA	GGTGCCAATC	ATATTTACAA	GCTATTTTGA	CCAGGAGTTG
1560	GAACATCAGA	TATGAAGGCA	GGAATCCTTC	GCCAGTGGCA	GGAATGGTTC	TCATTCACTT
1620	GTATTAAAAA	CAGGCTTATG	ATTGATGGCG	CTGATTTCCA	GATACCCTTC	GTCGGTCTTT
1680	CTGAGGATGT	GAAGTCATCA	TCAAGACCTT	AGACCTTGGC	GACAATCCTG	CTATAAGTTT

TCCTATGCTA	ATTGAGGTAG	ATATTTCTCG	TAAGGAACAG	GTGTTACCAA	TGGTACCGGC	1740
TGGTAAGAGT	AATCATGAGA	TGTTGGGGGT	GCAGTTCCAT	GCGTAGAATG	TTAACAGCAA	1800
AACTACAAAA	TCGTTCAGGA	GTCCTCAATC	GCTTTACAGG	TGTCCTATCT	CGTCGTCAGG	1960
TTAATATTGA	AAGCATCTCT	GTTGGAGCAA	CAGAAGATCC	GAATGTATCG	CGTATCACTA	1920
TTATTATTGA	TGTTGCTTCT	CATGATGAAG	TGGAGCAAAT	CATCAAACAG	CTCAATCGTC	1980
AGATTGATGT	GATTCGCATT	CGAGATATTA	CAGACAAGCC	TCATTTGGAG	CGCGAGGTGA	2040
TTTTGGTTAA	GATGTCAGCG	CCAGCTGAGA	AGAGAGCTGA	GATTTTAGCG	ATTATTCAAC	2100
CTTTCCGTGC	AACAGTAGTA	GACGTAGCGC	CAAGCTCGAT	TACCATTCAG	ATGACGGGAA	2160
ATGCAGAAAA	GAGCGAAGCC	CTATTGCGAG	TCATTCGCCC	ATACGGTATT	CGCAATATTG	2220
CTCGAACGGG	TGCAACTGGA	TTTACCCGCG	ATTAAAAATC	CAACTTAAAT	TTATTAAACC	2280
AGCCTAAAAG	GCAATAAATA	ATAGAAAAGA	GAGAAAAGCT	ATGACAGTTC	AAATGGAATA	2340
TGAAAAAGAT	GTTAAAGTAG	CAGCACTTGA	CGGTAAAAAA	ATCGCCGTTA	TCGGTTATGG	2400
TTCACAAGGG	CATGCGCATG	CTCAAAACTT	GCGTGATTCA	GGTCGTGACG	TTATTATCGG	2460
TGTACGTCCA	GGTAAATCTT	TTGATAAAGC	AAAAGAAGAT	GGATTTGATA	CTTACACAGT	2520
AGCAGAAGCT	ACTAAGTTGG	CTGATGTTAT	CATGATCTTG	GCGCCAGACG	AAATTCAACA	2580
AGAATTGTAC	GAAGCAGAAA	TCGCTCCAAA	CTTGGAAGCT	GGAAACGCAG	TTGGATTTGC	2640
CCATGGTTTC	AACATCCACT	TTGAATTTAT	CAAAGTTCCT	GCGGATGTAG	ATGTCTTCAT	2700
GTGTGCTCCT	AAAGGACCAG	GACACTTGGT	ACGTCGTACT	TACGAAGAAG	GATTTGGTGT	2760
TCCAGCTCTT	TATGCAGTAT	ACCAAGATGC	AACAGGAAAT	GCTAAAAACA	TTGCTATGGA	2820
CTGGTGTAAA	GGTGTTGGAG	CGGCTCGTGT	AGGTCTTCTT	GAAACAACTT	ACAAAGAAGA	2880
AACTGAAGAA	GATTTGTTTG	GTGAACAAGC	TGTACTTTGT	GGTGGTTTGA	CTGCCCTTAT	2940
CGAAGCAGGT	TTCGAAGTCT	TGACAGAAGC	AGGTTACGCT	CCAGAATTGG	CTTACTTTGA	3000
AGTTCTTCAC	GAAATGAAAT	TGATCGTTGA	CTTGATCTAC	GAAGGTGGAT	TCAAGAAAAT	3060
GCCTCAATCT	ATTTCAAACA	CTGCTGAATA	CGGTGACTAT	GTATCAGGTC	CACGTGTAAT	3120
CACTGAACAA	GTTAAAGAAA	ATATGAAGGC	TGTCTTGGCA	GACATCCAAA	ATGGTAAATT	3180
TGCAAATGAC	TTTGTAAATG	ACTATAAAGC	TGGACGTCCA	AAATTGACTG	CTTACCGTGA	3240
ACAAGCAGCT	AACCTTGAAA	TTGAAAAAGT	TGGTGCAGAA	TTGCGTAAAG	CAATGCCATT	3300
CGTTGGTAAA	AACGACGATG	ATGCATTCAA	AATCTATAAC	TAATTAGAAA	TATATAGCGC	3360
TGGAGATGAT	TTTATGAAAA	AGATTATGAG	AAAAATTGCA	TCGTTATTAT	TGGTTCTAGT	3420

			208			
TGTATAATGT	AATTACACCG	TCGGTAATAG	TGCTAGCAGA	CCAAAATAAA	GCAGATTGGT	3480
CGTATGATGA	AAATGCTGTA	ATTAACATTT	ATGATGATGC	TAATTTTGAA	GATGGTAGGT	3540
TGCATATGAA	CTTTGAACAA	TTCTTCAAAT	TGGCACAAAT	AGCTAGAGAA	GAAGGTCTTG	3600
AAATTCATTC	TCCGTTTGAG	AGAGCTGGTG	CGACTAAATC	TGCTCGTTAT	ATAGCGAAAT	3660
GGATTTTGAG	ааатааааа	CATTAACAAA	TATAGTTGGT	AAATCATTAG	GACCTAAATC	3720
AGCTGTTAGA	TTCGGAGAAG	CTTTATCCTA	TATTGAAGGT	CCTCTTCGCA	GAATAAATGA	3780
GACGATAGAT	GGCGGTTTAT	ATCAAATAGA	GCAAATTATT	GCATCTGGAT	TGAAAGAATC	3840
GGGTTTAAAT	GACTGGACTG	CGAAAACTTT	AGCTTCAGCT	ATTCGTGGGA	TATTAGATGT	3900
ACTTATTTAG	GGGTTGAAAT	CATATGAATA	TTACCAATTT	GTTTTCTATC	AAGACAGGAT	3960
GTGATGAAAC	TGATAGGCAA	CTGCAAAAAC	TATTTTTCA	GTTGGATTTA	CAATTGGGAG	4020
AATTGACAGA	TCAACTAAGA	AAATTAGATT	CTAATTTTGT	TCCTCGTAGT	CAATTTGTAG	4080
ACACGTTGGA	TTTGAATGAT	GTAGAATATA	AAGAAATTTT	AAACTATTTT	ATCTTCCATC	4140
GTAATGATAG	TGAAGAAAGT	TTGGTAGAAT	GGTTATATGA	TTGGATTTCC	ACAAATCGTT	4200
ATGAACTTCC	TAAAGAGTTT	TCGATTCGTA	TGGCTCATAA	ATACCATGAA	AGTGTTACTG	4260
AAGTTTTCGG	AGATGAATAA	CTAAAAAACA	GTCATTAGTG	ACTGTTTTTT	ATAGAAAAAG	4320
AGGTTTTATA	TGTTAAGTTC	AAAAGATATA	ATCAAGGCTC	ACAAGGTCTT	GAACGGTGTG	4380
GTTGTGAATA	CTCCACTGGA	TTACGATCAT	TATTTATCGG	AGAAGTATGG	TGCTAAGATT	4440
TATTTGAAAA	AAGAAAATGC	CCAGCGTGTT	CGCTCCTTTA	AAATTCGTGG	TGCCTATTAT	4500
GCCATTTCCC	AGCTCAGCAA	GGAAGAACGT	GAACGTGGGG	TAGTCTGCGC	TTCTGCGGGA	4560
AATCATGCGC	AGGGAGTAGC	CTATACTTGT	AATGAAATGA	AAATTCCTGC	TACTATCTTT	4620
ATGCCCATTA	CTACGCCACA	ACAAAAGATT	GGTCAGGTTC	GCTTTTTTGG	TGGGGATTTT	4680
GTAACTATTA	AACTAGTTGG	AGATACCTTT	GATGCCTCAG	CCAAAGCAGC	TCAAGAATTT	4740
ACAGTCTCTG	AAAATCGTAC	CTTTATTGAT	CCTTTTGATG	ATGCTCATGT	TCAAGCAGGT	4800
CAAGGAACAG	TTGCTTATGA	GATTTTAGAA	GAAGCTCGAA	AAGAATCGAT	TGATTTTGAT	4860
GCTGTCTTGG	TTCCTGTTGG	TGGTGGCGGT	CTCATTGCCG	GGGTTTCTAC	CTATATCAAG	4920
GAAACAAGTC	CAGAGATTGA	GGTTATCGGA	GTAGAGGCGA	ATGGAGCGCG	TTCCATGAAA	4980
GCTGCCTTTG	AGGCTGGAGG	TCCAGTAAAA	CTCAAGGAAA	TTGATAAATT	TGCTGATGGG	5040
ATTGCTGTGC	AAAAGGTAGG	TCAGTTGACC	TATGAAGCAA	CTCGTCAACA	TATTAAAACT	5100
TTGGTAGGTG	TCGATGAGGG	ATTGATTTCT	GAAACCTTGA	TTGACCTTTA	CTCTAAGCAA	5160
GGGATAGTCG	CAGAACCTGC	TGGAGCGGCT	AGTATCGCCT	CTTTAGAGGT	TTTAGCTGAA	5220

209

TATATTAAGG	GGAAAACCAT	TTGTTGTATC	ATTTCTGGAG	GAAATAATGA	TATCAACCGT	5280
ATGCCAGAAA	TGGAAGAGCG	TGCCTTGATT	TATGATGGTA	TCAAACATTA	CTTTGTGGTC	5340
AATTTCCCAC	AACGTCCAGG	AGCTTTGCGT	GAGTTTGTAA	ATGATATCCT	GGGGCCAAAT	5400
GATGATATCA	CACGTTTTGA	GTATATCAAA	CGAGCTAGCA	AGGGAACAGG	CCCAGTATTA	5460
ATTGGGATCG	CTTTAGCAGA	TAAGCATGAT	TATGCAGGTT	TGATTCGTAG	AATGGAAGGT	5520
TTTGATCCAG	CTTATATTAA	CTTAAATGGT	AATGAAACGC	TTTATAATAT	GCTTGTCTGA	5580
GGACTAATAA	AAAAATATCA	TACCTTCATT	TTGATTTCCT	ATCTATTGAC	AAGCATAGTC	5640
ACACTGTCTT	TAATACTCTT	CGAAAATCTC	TTCAAACCAC	GTTAGCTCTA	TCTGCAACCT	5700
CAAAACAGTG	TTTTGAGCAA	CTTGCGGCTA	GCTTCCTAGT	TTGCTCTTTG	ATTTTCATTG	5760
AGTATAAGGT	ATGATTTGAT	TTCTTTTTGT	TGACAAATAT	ACTATATTAA	AAAGATATAT	5820
aagtaattaa	CTGAGCTTAT	CTGTCTTGTC	ATCTCTATTA	AGGATGGTTT	AGATAATCGG	5880
GTGTCTGCTT	CTAGGCTAGC	ACCTCAATAT	CCAAAGGAGT	GATGAATTTG	AAGGACATAA	5940
GGAATACCTA	TCTCTCAGAT	GATTTATTGA	GGAAGAAAGA	TAGGAGTTTT	TGAGCTAGTG	6000
AAGGCTTGGA	TTTCTAAAGG	TTAGAACTAT	CATCTTCAGT	TCTTAAATCG	AAGAAATAAG	6060
CTATCTTACG	GAAATAGAGA	AGCATTTTT	AAGAACTTGA	ATAATTTCGC	ACCTTAAGAG	6120
GGTAAȚAATA	CAGTATTTTT	ATTAGCAAAT	ATTTATGGTG	TAGAGGCTAG	CAAAACCTAT	6180
ATATTATCGG	ATTTAAAAAG	GAAGTAAGAA	A			6211

(2) INFORMATION FOR SEQ ID NO: 9:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7919 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

CCGGACTCCC	CACGATTCTT	CAAAATAACT	GAGTATATTT	CTATCTTGAT	TTTCAGATAT	60
AAATTCTTCC	TTCTGTGGCC	TCTTCTTACG	CTTGAGAAGA	GCTTCTCCGA	CATGGCTTCT	120
TCCTTACTGA	GCAAAACCTT	GAGCATAGAT	AAGTTTGACT	GGCAAGCGTG	CTCTTGTATA	180
TTTGGCTCCC	TTCCCACTAT	TGTGGATAGC	GAGGCGTCTT	CTCATATCAG	TCGTATAGCC	240
TATATAGTAG	GATCCATCAC	GACACTCCAG	AACGTACATA	TAAGCCTTAT	GATCCATAAT	300
AAATCTCTTC	GATTTCGGGC	GTATAAGAGC	CATCATCATT	GTGGACAATC	AAAGGAGGTA	360

AGACCTTAAA GCCACTTGTT GAGCCATCCT TGATCGCCTC AATCAAAAGC ATATTGGCTT 420 CCTTTTCTCT TTTTGGATAA ACAAACTGCA GGCGCTTAGG GGCTAGATTA TGTCGTTTTA 480 ACGTATCCAA AATATCCAGA AGTCGATCAG GACGATGAAC CATGGCCAAA CGCCCATTAG ACTTGAGAAT ACTCTGGGCA CTACGACAGA TTTCTTCCAA ATTAGTCGTG ATTTCGTGTC 600 GAGCCAAGAG ATAATGTTCA CTCTCGTTCA GATTAGAATA AGGATTCACC TTGAAATAGG 660 GTGGATTACA CAAAATCATA TCCACCTTAC TCCCCTGAAT GTGAGCAGGC ATATTTTTCA 720 AATCATCGCA GATGACCTGC ATTTGCTCCT CTAATCCATT CAAACGGACA GAGCGTTCAG 780 CCATATCCGC CAAACGCTCC TGAATCTCAA CAGACAATAT CTGTGCTTGA GTACGAGTGC TAGCAAAAAG CCCCACTGCT CCATTCCCAG CACAGAAATC CACAATCAAC CCCTTCTTAG 900 GAAAACGTGG AAATCGTGAT AAGAGAACAC TATCCACCGA ATAGCTAAAA ACCTCTCTAT 960 TTTGAATGAT TTTGATATCT GTCGAAAAGA GCTGGTTAAT GCGCTCTCCT GATTTTAATA 1020 ATTGTTCTTC TTCCATGGTC CTATTATAGC AAATTCATAT TAACATTACA AAAAATATAA 1080 AACTCTAAAC TACTTCTTCT TTTTTAAATG GTGCAGGGCT TCTCCAGTCC AGATTGGTAG 1140 CATTCGTCGA AAGGGAGCAA AGCCGTAGTT AAAGCGGTCG CTTGAAAAGC GTCTCCGTCT 1200 AGGAAACTGG TACTTTTCTT CCTCCAAAGT GCGGATAGAA AGACTGGCTT TCCCTGTAAA 1260 TTCATCTAAA TCCACTACCT GAACTTGAAC CTCTTCATCG ACTTTCAAGG TTTCATGAAT 1320 ATTTTCAATA AATCCTGTCC GAATCTCTGA AATGTGAATC AGCCCCGTAT CACCCGTCTC 1380 TAACTCAACA AAGGCACCGT AGGGCTGAAT CCCTGTAATA CGCCCCTTTA GCTTATCACC 1440 GATTTTCATC TTAGTCCTCG ATTTCAATAG TTTCAATTAC AACATCTTCA ACTGGCTTGT 1500 CCATAGCTCC TGTCTCAACA GCAGCAATGG CATCCAAGAC AGCGTAAGAT GCTTCATCAG 1560 CTAACTGACC AAAAACCGTG TGACGGCGGT CTAGGTGAGG TGTCCCACCT TGATTGGCAT 1620 AGATTTCTGC AATCGGTTCT GGCCAACCAC CACGAGTAAT TTCTTTCTTA GAATAAGGTA 1680 GGTGTTGGTT TTGCACGATA AAGAACTGGC TGCCGTTGGT ATTTGGACCA GCATTTGCCA 1740 TGGAAAGAGC ACCACGGATA TTGTAAAGCT CTTCTGAGAA TTCATCCTCA AAAGATTCGC 1800 CGTAGATTGA CTCGCCACCC ATACCAGTTC CAGTTGGGTC TCCACCTTGG ATCATAAAGT 1860 CCTTGATAAT ACGGTGGAAA ATGACACCAT CATAGTAGCC ATCTTTTGAA AGAGATACAA 1920 AGTTAGCCAC TGTTTTAGGA GCATGTTCAG GGAAAAGCTT GATACGTAAG TCTCCGTGAT 1980 TGGTCTTAAT AGTCGCAAGA GGACCTTCTA CTGTTTCAAT GTCTACTTGT GGAAAATGCA 2040 ATTCTTTTC TACCATACCA AATACTTCTA AGGCAGCAAA AATGCCATCT TCTTCTAATG 2100 TTTTTGTAAT ATAATCTGCT TTTTCTTTGA TTTTATCATG AGAAATTCCC ATGGCAACGC 2160

ポートでがついる	ATAATCAAAG	AGTTCCAAGT	CGTTGAGACC	ATCTCCAAAA	ACCATGACCT	2220
	CAAGCCAAGG					2280
	AATATCAGAC	•				2340
						2400
	CAAGTGCAAG					2460
	ATGGAAATCG					•
	ATCGGTGCGA					2520
	TTGCTTAGCC					2580
GCTGATAAAT	GACCTGACCT	TTTTTATCTT	CGATATAAGC	CCCATTCAAA	GTTACAAAAA	2640
AGTCAGGCTT	GAGATCACGA	ATCTCTGGAA	CAACACCAAA	AATGCCACGT	CCAGAGGCGA	2700
TTCCTGTTAA	AATTCCTTTT	TCACGCAACT	GTTTAAAAAC	AGTGGGAATT	GTAGTTGGAA	2760
TAAACCCTGT	CTTTGAATTC	CGCAATGTAT	CATCAATATC	AAAAAAGACA	ATCTTGATCT	2820
TCTTTGCCTT	GTATCTTAAT	TTCGCGTCCA	TCTCACTACC	TCTTTCAATC	TAACTCTTTC	2880
CATTATATCA	TAAAGTAGGC	AAATCCCCTA	TTTTCAAAAA	GTTTATCATT	TTTATTTTAA	2940
	GAGAAAAGAG					3000
	CAAACTCGTA					3060
					AGCTCATGAA	3120
					AAAGCCATTA	3180
					GTTCCTGTTA	3240
					TCAGTATCTT	3300
						3360
					CGGCGTTTGA	3420
					TGTCCATTAG	
					ATTTTCATTA	3480
					TGCAGAGTAA	3540
GCTCCACCT	G TGTGACCCTC	ACGCACACT	A CGGCTTTCC	A ACATTTGGA	A ATTCTCAGCC	3600
ACGACCTCT	G TCACGTAGA	ACGTTGTCC	T TGCTGGTTA	CGTAACTAC	G AGTCTGGATA	3660
CGACCTGTC	A CCCCGATAA	G TGAGCCTTT	T TTAGCCCAG	r tagcaagat	T TTCAGCCTGT	3720
TGGCGCCAC	A TAACGACAT	r gataaaatc	A GCCTCACGT	r CACCATTTT	G ACTCTTAAAT	3780
					T ATAACGCAAC	3840
					T TTACCTTCTT	3900

212 ACGCGTCAAT TTTGACGATC ATGTGACGAA GAATGTCAGC GTTGATTTTT GAAAGACGGT 3960 CAAACTCTTT AAGAGCTGCA TCGTCATTTG CTTCAACGTT AACGATGTGG TAAAGTCCTT 4020 CACGGAAATC TTGGATTTCG TATGCAAGAC GACGTTTTTC CCAAGTTTTT GATTCAACAA 4080 CAGTTGCACC GTTGTCAGTC AAAATAGAGT CAAAACGTGC TACCAAAGCG TTTTTAGCTT 4140 CTTCTTCAAT GTTTGGACGA ATGATATAAA GAATTTCGTA TTTAGCCATT GATATGTTCC 4200 TCCTTTTGGT CTAATGACCC CAAGACTTTG CAAGGGGTAA GTGAGGTTCG CTCACAATAA 4260 ACTATTATAC TAGAAAAAAT TTTTTTACGC AAGTAAAAAC ACTAGAATTC GAAAAAACGC 4320 4380 AGCTTCACGG ATATGTTTTG TTCCTGCTGC GAAGGTTACC ATACGTTCGA TACCGATACC 4440 AAATCCTCCG TGTGGAACTG TACCGTATTT ACGAAGGTCA AGGTAGAATT CATATTCTGT 4500 ACGATCCATG CCAAGTTCAT CCATCTTAGC GACAAGGGCA TCGTAATCTT CCTCACGCAT 4560 AGACCCACCG ATAATTTCTC CATAGCCTTC TGGAGCAAGC AAGTCTGCAC AAAGCACGCG 4620 CTCTGGATTT CCAGGAACTG GTTTCATGTA GAAGGCCTTG ATGGCTGCTG GATAGTTCAT 4680 GACAAATGTT GGCACACCAA AGTGGTTTGA AATCCAAGTT TCGTGTGGTG ACCCAAAGTC 4740 ATCACCATGC TCAAGATGCT CGTAGTCAGC ATCTTCATCA TTTTCATGCT CTTGCAAGAG 4800 CTCAATGGCT TGATCGTAAG TGATACGTTT GAATGGCTCT GCAATGTAGC GTTTCAAGAG 4860 TTCTGTATCA CGTTCCAAGG TTTCCAAGGC TTGAGGCGCG CGGTCAAGAA CACCTTGTAG 4920 AAGAGCTTTC ACATAAGCTT CTTGCAAGTC AAGCGACTCA TCATGTGTCA AGTATGAGTA 4980 CTCAGCATCC ATCATCCAGA ACTCAGTCAA GTGACGGCGT GTTTTTGATT TTTCAGCACG 5040 GAAAACTGGA CCAAAGTCAA AGACACGACC AAGAGCCATA GCCCCTGCTT CTAGGTAAAG 5100 CTGACCTGAT TGGCTCAAGT AGGCTGGCGT TCCGAAGTAG TCAGTTTCAA AGAGTTCTGT 5160 AGAATCTTCT GCCGCATTTC CTGAAAGAAT TGGGCTGTCA AACTTCATAA AACCGTTCTT 5220 GTCAAAGAAC TCATAAGTTG CATAGATAAT AGCGTTACGG ATTTGCAACA CAGCTACTTG 5280 CTTACGAGAG CGTAGCCACA AGTGACGGTT ATCCATCAAA AAGTCTGTTC CGTGTTCTTT 5340 TGGTGTGATT GGGTAGTCTT GAGATTCACC GATCACTTCG ATGTCTGTGA TGTCCAACTC 5400 ATAGCCAAAT TTAGAACGTT CGTCCTCTTT GACAATACCT GTCACATAAA CAGACGTTTC 5460 TTGGCTCAAG CGTTTGATAA CATCAAACTT CTCAAGTCCC ACTTCTTCAC CAAATTTTTC 5520 GACAAAGTTT GGTTTAAAAG CCACACCTTG AAAGAAGGCT GTTCCATCAC GCAATTGTAA 5580 GAAAGCGATT TTTCCTTTTC CTGATTTGTT GGCAACCCAA GCGCCAATCG TCACTTCCTG 5640 ACCAACATAG TCTTTTACGT CAATAATCGT TACACGTTTT GTCATTATTT TTCCTTTTCT 5700

. 14.

TTTTATTCT	TTATGGCAAA	CCACCTCTAT	ATTGTTCCCA	TCCAGGTCAA	TCATAAAAGC	5760
AGCATAGTAA	ATCGGATGCT	CACTTCGATA	ACCAGGAGCC	CCATTGTCTC	GCCCACCTGC	5820
CTCTAAGCCA	GCCTCATAAC	AAGCCTGAAC	TTCTTCCTTA	TTTTCTGCTA	AAAAAGCAAA	5980
ATGAACAGGA	TCTTGTGTTC	CCTGAGTCAG	CCAAAAATCA	CCACCAGGAT	GAGGGCTGTT	5940
CGGGGATAGA	AAACTAATTA	GAGAACTAGT	CTTAAAAGCC	AATTTATAGT	CCAAAGGAGC	6000
GAGAAAACTC	CTATAAAATC	CTTATGAAAT	TTGTAAATCC	TTTACCTTAA	TCTCAAAATG	6060
ATCAATCATT	CTCACTACCC	ATAAATGCTT	TCAAGCGTTC	GACTGCTTCT	TTAAGCGTGT	6120
CTAGGTCTGT	CGCATAGCTG	AGGCGGACAT	TTTCTGGTGC	TCCAAATCCA	GCTCCTGTTA	6180
CCAAGGCCAC	TTCGGCTTCT	TCTAAGATAA	CAGTTGTAAA	GTCTGTCACA	TCCGTGTAGC	6240
CTTTCATCTC	CATGGCCTTT	TTGACATTTG	GGAAGAGATA	GAAGGCCCCT	TGCGGTTTGA	6300
CCACTTCAAA	TCCTGGTACC	TCTGCAAGGA	GGGGATAGAT	GGTATTAAGA	CGTTCCTCAA	6360
AGGCCTGACG	CATGCTTTCT	ACAGTATCTT	GCTCACCTGA	TAGAGCCTCA	ACTGCTGCAT	6420
ATTGGGCTAC	TGCTGACGGA	TTCGAAGTTG	TTTGACCTGC	AATCTTGGAC	ATGGCAGCGA	6480
TAATGTCTGC	TTCTCCAACG	GCATAACCAA	TCCGCCAACC	AGTCATGGCA	TAAGTTTTAG	6540
ACACACCATT	GATGACCACT	CTTTGCTTGC	GAATCGCTTC	CGATAGGCTA	GAAATCGGTG	6600
TGAACTCATG	ACCATTATAA	ACCAAGCGGC	CATAGATATC	GTCTGCTAGG	ATGAGAATAT	6660
CATTTTCTAC	AGCCCAGTTT	CCAATTGCCA	AGAGTTCCTC	ACGGGTGTAA	ATCATACCTG	6720
TGGGATTAGA	TGGCGAATTC	AGCACCAAAA	CCTTGGTCTT	GTCAGTGCGA	GCTGCTTCTA	6780
ACTGCTCTAC	GGTCACCTTA	AAGTGATTGT	CTTCCTTAGC	AGAAACAAAG	ACGGGAACGC	6840
CTTCTGCCAT	CTTGACCTGA	TCTCCATAGC	TAACCCAGTA	TGGCGTTGGG	ATGATGACTT	6900
CATCACCTGG	ATTGACCACA	GCCATAAAGA	AGGTATAGAG	AGAATATTTG	GCTCCCGCAG	6960
CGACTGTCAC	TTGATTTGAC	GCTACAGAAT	AGCCGTAAAA	GCGCTCAAAG	TAGCTATTGA	7020
ссоссосстт	AAGCTCTGGC	AGACCTGAGG	TTACTGTATA	AAAAGAAGCA	CGCCCATCTC	7080
GAATCGATGC	AATGGCGGCA	TCTTGGATAT	TTTTGGGAGT	AGTGAAATCT	GGCTCACCCA	7140
AGGTTAGAGA	CAAAATATCT	CTACCCTCAG	CCTTCAGTGC	TTTGGCACGG	GCTCCAGCAG	7200
CCAAAGTCAC	ACTTTCTTCC	ATTTCTAAAA	CACGGTTGGA	TAGTTTCATA	GGCCCTCCTT	7260
GTTGACCAAT	GCTCCTGTTT	CAAAATCTAC	TAGATAAAAA	TCAGATCCTG	ACTTAACTTC	7320
CCAGATTGGC	TTATCTTGAT	AACGGCCAAA	GGTTATCTTG	TCAATCTCGC	CAGCTCCCTT	7380
TTCCTTAGAA	ACCGTTTCTG	CTTTTTCTTG	TGAAACACCC	TGATTTAGCT	GATAAACGTA	7440

			214			
AATCTTATGG	TCATCTTTAC	CAATCAGGAC	AGCAAGCGCT	TCTTGCTGTT	TGTTACGACC	7500
AAGAACGCTG	TAATAAGATT	CCAAGCCATT	GTATAAATCA	ACCTGATCAG	CCTGCTCTAA	7560
TCCTGCATAC	TGCTGAGCTA	ATTTTTCTCC	TTCACTTTTA	GCTGTTTGAT	AGGGTTTCAT	7620
GCTAAGAGAA	ACCATATACA	GAAAGGAACC	ACTGATAACC	ACAAACAAAA	TCGTCATCCC	7680
TAGACCATAC	TGCCACAGTA	GATTATTTTT	TGCTTTGTTT	TGTCTTTTTT	TCACTCGTCT	7740
ATTTTACCAT	CTATTAAGCT	TTATTACAAG	TGAATATAAG	AATACTCTTC	GAAAATCTCT	7800
TCAAACCACG	TCAGCTTTAT	CTGCAGACCT	CAAAGCTGTG	CTTTGAGCAA	CCAATTCTAT	7860
ттстсссттс	AAACAAAACC	GATTTTGAAA	GTGAAACAGT	TCTTACTTTT	TCAGTCACAA	7920
ATGATTAGAG	TTTGCCGGG					7939

(2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9897 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CCGCTCTACC GTCAAATAAT TACCATTTTG TTTAATACCG AAATTTTTAT CTACTGAAAA 60 TTCAGTTGGT CTGTTGGTAC GATCGTCGTA TACAGTACCA TTCTCACGAA TAGTATAATT 120 GTAATCAGTA TCACCTTGTT TCCTTAATTT AAGGTAATAA TTACCATCAA TTTGTTTATA 180 240 ACCTGAATCT TTTCTAGTTG CTTCTCTAAA ACTTACTCCA GCAGGCATCA CATCAGCAAA CATGAGTACT TGTTTGTTCT TTTTTTCAAC AATAACAGAG TCAATATAGG TTGCACCACC 300 GCTGATTTGT AAGTCACGTC CACCAACTTC ACGAGGCCAT TCTAATGGTA CTGGCGCAAA 360 ATCATCGAAT GCCAATGTTA ATTTTGGTTT AGTCCATGTC TTACCATTAT CATCACTATA 420 ACTTGTAGCA ATATTAATTT TATTCAAGAA ATCATGAGTT CCACCGTAAC GAGCGTCAAT 480 GCTTGAAAAT ACCCGACCAT TGCTAAAAGT ATACAGAACT GGAATACGGA AATAGTTAGA 540 ACCTGTTGTA TCATTAGCCG TATAAATTAA ATGTCCAGTA ACAGCGTTTG TTGTCATCTT 600 TTTAACAGTT TCTTCATCCA ATGCACTATT AAAGAATTTG ATATTTTCTA GTGTTCCGTT 660 AAAACCAAAC GCCGTTTTTC CTGCACGTTT CACTCCCCCA AGCATATAGT AATCAATACC 720 TTTAATATCC TTGATGTTTA GGAAATTATC CACTTTCTTT TCTACTACTT TTGTACCATT 780 TGCGTATAAA GAATATGTTT TTTTGACTGA ATCTGCTACT ACTGCAACAG TGTTAGTCAC 840 AGCCTCTTGT TTGTACTTAC CCCAAACTGA AGCAGGTCTG GATACTAGGT TATTTTATT 900

GGAAGAAGTA	TCACGCGCTT	CCATCCCCAA	CTCACCATTG	TCTCTAAGGA	ACACATCTAC	960
АТААСТАТТТ	TGTTGACCGG	GTTTGGAATT	AGATATTCCA	AACAGAGCTT	GTAAGCCTTT	1020
CTCACTTGAC	TGATTGTACT	TAATCACTAC	AGTAAAGTCA	CCGCTAGTAA	ATTTATCCTT	1080
таастсттта	GTAACATTTT	CTCCGCCCCC	TGTTAAAGTA	ACATTATTT	TTTCTAAGAC	1140
AGGAGTTTCT	TCCGCTGTAG	AAGATGGATC	CTTAACAGTA	GTTTCAACTG	TTCGAGGTTG	1200
TACAGTAACT	TCCGAAGAGT	TATCCGATGT	AGGTTGTACT	TCCGAAATCG	GAGTCGTTGG	1260
TGCAACAGGT	TGCACCAACT	TTGGTGTTCA	TACTTCAGAA	GTTTCAGTCT	CCTGAGCTGC	1320
AACTGAGTTA	GCAACAAATG	CTGATAATAC	CACTACAGTA	CCTAAGGTTA	CATATTGTTT	1380
AATATTTTTT	TTCATTTTAT	TTTTCCTCGT	TTAAAACTTT	GATAACAAGT	TTTTTAACAG	1440
TTTCATCATT	GCAATGAATC	TTTGGTTGGT	GAAGATCTTC	TTCAAAAGTC	ACCAACATAT	1500
TCCCTGGAAG	CAATTCAACA	ATTTGATAGT	CTTTGCTATC	GTAAAAAGCA	ATATCCTTCT	1560
CTTCGCTAAA	AGGTACACGT	GACTGGGCAC	GAACTGGGGA	AGTTACTGCC	ATTTTTTCAG	1620
TATTTTCAAC	AACAATATGA	ATATCTAAAT	ATTTCTTATG	AGTTTCAAAA	ATATCTCCTG	1680
GAACTCCATC	AGCTAGATAA	GTCATACAAT	TTGCAAAAAC	ATTTTCCCCG	ΤCAATATCAA	1740
TTTTTCCATC	AACTAAATCT	GTCAAATTTG	TATTTTCTAA	AAAATCACAG	ACTITTGAAA	1800
AATATTTATT	GACAGAAGCA	TATCGTTTAA	AATCAGATTG	TTCAGAAATA	ATCATATTAT	1860
TTTCTCTTTT	CTATTAGTGA	CGAACTTCCC	AACTTGAATC	CGCTTTAATT	TCTGTAATAT	1920
CATGAATCGT	TGTATATTTA	GGTGCAGATA	CTTTATTTCC	AGTAAGAACA	GATACAATAT	1980
AACCTGAAAC	TACTGATACA	GAGATTGAAA	TCAATGAATA	TGCCCAGTAG	CTAACAGCTG	2040
TTGGAGGAAG	GAAGTATTTA	ATAAATACCA	TGACGATGGT	TGATACAATC	AGCGCTGCAT	2100
AAGCACCTTG	TTTATTTGCT	TTTTTAGAAA	CAAATCCAAG	ΑΑΤΑΑΑΤΑΟΛ	CCACCAAGTA	2160
GACCAAGTAC	AAGTCCCATG	AAACTATTGA	ACCATTCGTA	TGCAGATTTA	ATATCTGAGT	2220
GAGCCATGAC	ÄATGGAAACA	CCAATTGAGA	ATAAACCTAC	TGCTAGAGAT	ACGAATTGTG	2280
CAATTTTCGT	ACGACGATTG	TCTGACATAT	TTTTAGAAAT	GACATCTTGA	ATATCCAATG	2340
TCCATGAAGT	TGCAACAGAG	TTCAAACCTG	TTGAAATAGT	TGATTGAGAT	GCTGCATAAA	2400
TCGCTGCCAA	GATCAAACCT	GTGATACCTA	CTGGTAACTG	GTATGCAATA	AAGTACATAA	2460
AGATTTGGTC	TTGAGGGATA	TTGCTAGCTG	CACTATCTGC	ATTTTGTACT	TGATAGAATA	2520
CGTACAAGCC	TGTACCAATC	AAGTAAAAGA	CTGTTGCAGT	TGCAAGTGAC	AAAACACCGT	2580
TTCTCAACAA	Сатсотатта	ACTTTCTTAA	TATTTCTCT	TGTAGTAAAA	CCTTGAACCA	2540

AATCTTGAGA	TGAAGCATAG	GAAGACAAGA	216 TTGTAAAGCC	TGAACCCATC	ACAATTAAAA	2700
AGATGGAGTT	TGAAAGCAAG	TTAGGATCGA	AAAGTTTTTC	ATTTGCAGCA	AGGAATTTCC	2760
CGTTTGCTAA	TGTTTCTGCT	ACTGCACCAA	AGCCACCTTT	AATATTAGCA	ATCAGTACAA	2820
ATAAAGCTAA	AACGACACCA	CTAATCAGAA	TCACACCTTG	AATAAAGTCT	GTCCATAATA	2880
CGGATTTTAG	ACCACCAGTA	TAAGAATAAA	CAATTGCAAC	TACACCCATC	AAAATAATCA	2940
AAATATTGAT	GTCAATTCCT	GTCAATACTG	ATAAACCAGC	TGATGGGAGG	TACATAATGA	3000
TAGACATACG	TCCCAATTGA	TAAATAATAA	ACAAGAGTGC	TGAAATAATA	CGAAGTGCTT	3060
TAGAATTAAA	ACGTTTATCC	AAGTAATCAT	ATGCCGTATC	GATGTCTATC	CGTGCAAAGA	3120
TAGGTAAGAT	AAAACGAATT	GTCAGTGGAA	TAGCTACTAC	CATCCCTAAT	TGAGCAAACC	3180
ATAAAATCCA	GCTACCTGCA	TAAGAGCTAC	CAGCGAGTCC	CAAGAAGGAA	ATCGGACTGA	3240
GCATTGTGGC	AAAAATGGAT	ACCGAAGTAA	CATACCAAGG	AACCGAACCA	TCTCCTTTAA	3300
AGAACTCTTT	TCCTTTCATC	TCTTTTTTAG	AGAAATAGAT	ACCTGCAACC	AACACCGCAA	3360
GTAAATAAAC	AATCAAGATA	ATTAAGTCAA	TTATTGTAAA	TCCTGTTGTG	CCCATAACAT	3420
ATCTCCATAT	TGATTTTATT	TATTATAAAA	ATTCTTTTCG	TGCTTGTTGA	ATAAGTTCTG	3480
CTGCTTGTTT	TGCAACTTCC	AAGTCACCTT	CTGCCAATGC	TTCTAAAGGT	TGACGAACAG	3540
AACCTAAATC	AAGTTTTTCA	TTTAGACGCA	AAACTTCTTT	TGCTACAGCA	TACATATTTG	3600
CCTTACCTGA	TATCATCTTA	TAGATAACTT	CATTGATAGC	ATATTGAAGT	TTTTTAGCTG	3660
TATCTAAATC	TCGTTCTTGA	ATCAAACTTT	CCAATTTCAA	GAACAAATCT	GGCATAACGC	3720
CATAAGTACC	ACCAATACCA	GCTTCTGCTC	CCATCAAGCG	ACCACCAAGA	TATTGTTCAT	3780
CTGGACCATT	GAATACAATG	TAATCTTCTC	CACCTGCAGC	TACAAACATT	TGAATATCTT	3840
GTACAGGCAT	AGAAGAATTT	TTAACTCCAA	TCACACGAGG	ATTTTGACGC	ATTGTTGCAT	3900
ACAAACTACC	AGTCAACGCA	ACCCCTGCCA	ATTGTGGAAT	ATTATAGATA	ATAAAATCTG	3960
TATTTGACGC	AGCTTCACTC	ATTGCATTCC	AATATGCTGC	GATTGAATAC	TCTGGCAATT	4020
TGAAATAAAT	AGGTGGGATA	GCTGCAATAG	CATCGACTCC	AACACTTTCT	GAATGTTTTG	4080
CCAATTCGAT	ACTATCTTTC	GTGTTATTAC	ATGCAATATG	GTTGATAACT	GTTAATTTAC	4140
CTTTAGCAAC	TTCCATAACA	GCTTCAATAA	TTTGTTTACG	ATCTTCTACA	CTTTGGTAAA	4200
TACATTCACC	TGAAGAACCA	TTTACATAGA	TACCTTTTAC	ACCTTTGTCA	ATGAAATATT	4260
GTACCAGAGA	TTTTACACGA	TCTTGGCTAA	TTTCACCATT	TTCATCATAG	CAAGCATAAA	4320
ATGCAGGGAT	AACGCCTTTG	TATTTAGTTA	AATCTTTCAT	CAGATTTCTC	CTTTATATTG	4380
TTTTTTATTT	GATGACATTA	ATAAATCGCT	GAGCAATTTC	TTTTGGACGT	GTAATCGCTC	4440

CACCAATGAC	TACACTGGTA	ACACCTAAAC	TATAAGCTTT	TTTTAATTGT	TCTGGATAAT	4500
GAATTTTTCt	TCGGCAATTA	CCGGAATATT	AAAATCAGCC	AATTTTTTCA	TTAGTTCAAA	4560
ATCAGGCTCA	TCTGATTGTA	CACTTGTACT	TGTGTAACCT	GATAATGTTG	TACCAACAAA	4620
ATCAACGCCT	GATTTAAATG	CATAGAGACC	TTCATCTAAA	TTACTTACAT	CCGCCATCAG	4680
CAATTGATTC	GGATATTTTT	CTTTTATTT	TTTGATAAAT	TCACTGACAA	CTAAGCCATC	4740
ATATCTTGGT	CTTAAAGTTG	CATCAAATGC	AATGACTGTT	GTTCCGCATT	CTACAAGTTC	4800
ATCTACTTCT	TTCATCGTAG	CAGTAATATA	TGGTTCTTGA	GGTGGATAAT	CCCTTTTGAT	4860
AATTCCAATT	ATTGGTAAAT	CTACTACTTT	CTGAATTGCT	TTAATATCAC	GCACAGAATT	4920
TGCGCGAATG	CCCACTGCTC	CTGCCTCTAA	AGCTGCTTTA	GCCATAAAAG	GCATCAAGCT	4980
AAATTCTTCA	TTATAAAGGG	CTTCACCAGG	TAAAGCTTGA	CAAGAAACAA	TGACTCCACC	5040
TTGAACTTGG	CTTATAAATT	TTTCTTTAGT	CCAAATTTGG	CTCATTTTAT	TATTCCTCCT	5100
TATGGATAAT	AGTTTGATTG	TAATAATATT	GTCTCTCTGG	ACTTTCCAGA	TAATTAGAGA	5160
ATAAGCAGTC	TGTAATTAAA	AGTATTGGAA	ACTGAGGTGA	TATGCGATTG	CCATACGAGA	5220
GATGATCGGT	CGAAGCTAAT	AACAATAGTT	CATCAAAGAA	ACAATCTTCT	TCGTCAAATT	5280
TTCTTGTAGT	CATTAAAACT	GTTTTAGCGC	CTTTATCTGC	AGCTTTTTGT	AGACCTTCTA	5340
GTACAATATC	AGTTTGACCT	GAAATGGATG	CTCCAATGAC	AAGGCAATTT	TCATTAAGTA	5400
GTAAGCTACT	CCACAAAATC	ATATCCTCGT	CTGATAATAC	TTCACCAATC	ACTCCGAGAC	5460
GCATAAATCT	CATCTTCATT	TCTTGTAAAG	CAAGAACAGA	ACTTCCTTTA	CCGTAGAGAT	5520
ATACACGCTC	AGCAGTTTCT	ATCATCTCAG	CAATACGCTC	AAGTTGAACT	TCATCAAGAA	5580
CCGTGTAAGT	TTTTCTCAAC	ATTTCCTCAT	AGTCGGATAA	AACTTTTTCT	GTTGCCTCTG	5640
TATATAATGC	CAACTTTTCT	TTCTCATGAA	TCATCTCTTG	GTATTTGAAA	ATGAATTGTC	5700
TAAAACCTTT	AAAACCACAT	TTTTTCGCAA	ATCGAGTCAA	TGTTGCTTTG	GATACATTAA	5760
GGTATTCGCA	CAATGCTTTA	GATGAATAAT	CATTCAGAGG	TTGCTGTTTT	AAGAAGAATT	5820
TAGCAATGTC	TTTTTCAGCA	TATGCCATAT	TTGGTAAGTT	AGCTTCTATC	ATTGGAATTA	5880
GTTCTTTTTG	CAGTAACATA	TGAGCTCCTT	AGTTGAAGTA	AACGTTTACA	TTCTTTATTT	5940
TAACACTTTT	TTTTTTTTC	AATATTTTTC	ATAAATTAGA	AACTAGTTTC	CAATTTCTTT	6000
CGTTTCATAA	CAGAACAACA	AACATAAAAA	TATAATAGTT	TTTATTCTTT	TTATCGTAAT	6060
TATATGTATT	GTAAGAACGT	TTATCACTAA	TAATATGTTC	ATATTAAAAT	ATTTTAGTAA	6120
TATTTTATTT	TGGTTTTATT	ATTTCTTTTC	GGAATTTCTA	TATAATATTT	TATTTCTAAA	6180

AAAATTGAAA	AAATATTTCT	AGTTTCTTTA	218 TTTTATATAG	GTAATATATT	TTATTTCTAA	5240
ATTAAAAGAG	AATCCCATAA	AAACTACAGA	TTATGAGAT	AAATCAGGTC	ACCTATTTTA	6300
AAAAAGCAGC	АДАСТАТАЛА	CTAAAAAGTT	CCACACCAAA	TGTAACCCCA	TACTTCCCCA	6360
TAAGTCAGAT	TTATAGCGCA	CCATACCTAA	AAACATTCCA	AGTGAAACGT	ACAGACACCA	6420
AGCTAGAATG	GTTCCTGGAT	GATGTACTAA	GGCAAATAAA	ACACTTGTCA	AAGCAACTCG	6480
AATATCTAAT	TTTCTAACCA	AGTTCCATAA	AATTTCACGA	TACAGAAATT	CTTCAACCAT	6540
ACTCGCATTG	ATTAAGAACA	ATAAAAATGA	AAACCAAGGA	ACTTGATGTT	GAAGGCCAAT	6600
TAAATTTGTT	TGATTCGTGC	TTCCTTGAGC	ATGAATCAGG	CTAAAACATA	GACTTATAAT	6660
CAGTAGACTA	GCTAGTCCAA	TACCAAGGCA	TTTCATCCTA	GTTTTCATAT	TGACCTTGAC	6720
CACTTGTTTT	CGTTGACCAT	ACATCCATAA	AAAAGAAAAA	AGAGACGCAC	CATAGAGAAC	6780
CTGTAGTATA	GTTAACTCAC	CGATACAAAG	AAATTTCAAT	AAGTATAGAG	ATACCAATAG	6840
GACATTTACT	TGTTGGAATA	TATAAACTGG	AATTATTCTT	TTCATAGTTA	CCTCCGAAAT	6900
AAATCTTCAT	AATCTAAATC	TAATATCTGC	ACAATCCTTT	CTACCCATGG	ACTTTGAGGC	6960
ATTCGTTGTT	CCATCTTGTA	GTGGCGAATC	TTTTGATATA	AACGATTCAA	TTCACTTGGA	7020
TAGTGAAACT	CTCCCGCAAA	CATTTTTCTG	GTTAACTCAA	TCCAGCTGAT	ATTTCTTTCA	7080
GCCAAAATAA	TGGACAAGTT	CTCCCAAAAT	CGTTCAGCCA	TATTECTTCT	CCTTTAGTTA	7140
GATAAATAAT	GTGTTTGyGC	CATGTAAATC	AATTGTTTCG	TATCTCTTGG	CAATAGAGCT	7200
CTAGCCTCTT	CCAAATTCAG	ACTTGGATAA	ACCCGCTTAT	TTGAAACCAC	AAAAGGAAGT	7260
CCGATGGTTA	GTTCAGGATT	TTTTAAAATT	ATCTCAACGA	AATCCGTTAA	TCTTAGATTG	7320
TCACGGTTCT	TAAATCGTAA	TAAATTGGGA	GATAAAAACT	CAAAACAATC	TGAAGAATAG	7380
CTCATCATCT	CAATTAATTT	GTCCTTTGTC	ATTTCAGAAA	CTGAATGACA	AGATACCTCA	7440
ATGCCATAGT	TTTGGAAGAA	GTCTAAAAGA	AGTTGATTTC	TTTGGCTATT	TTTACTTAGA	7500
TAGAGATCAA	TCATGGGAGA	CCTCCAACAA	ATTTGCTTCC	ATTTGATATT	CTGAGACGAT	7560
TAAGGAATCT	AACAACTTTG	AGAAGTTAAT	CGATTTCTTG	TCTTCATCAT	AAGCTTTTAC	7620
AGTTACTTGG	GTTGTAAGTA	TCCCCTCTTT	TCCCTCGGCT	CGATAGTCTT	GTCAATATAA	7680
AACAAAAACA	AGATTCTGAT	TATCATCTAC	AAAGGCATTA	ACTCCGTTCT	TTATATCCTG	7740
ACTTTCAAGG	AATTCCATAA	CGTTTTGAAG	ATAGGATTCA	TAAAATAGTO	GGTAATTATG	7800
TTTTTTATGG	таатсатста	AAAATGTTAC	CTCAAACTCA	CATGGATAAT	TGGGCATCAA	7960
AAATATTTGT	TCATCCAGCT	GTTTGATTTC	TGCATCATGT	AATTCTGTT	CTAATTCATC	7920
ACAATCTAGT	ATTGATTCTT	TATTTAATGO	TTTTATCTT	TTCCTCTAT1	TCTTTTAATT	7980

TCTTTGCGAT	TGCGGCAATC	ACAGGAACGG	TTACACTATT	ACCAACTTGT	TTATAGAGCT	8040
GACTATTAAT	AGAGACTTTT	CTAGCAGCTT	CAAAAGCCTA	ATCAGGAAAG	CCATGCAATC	8100
GAAAACACTC	TTTAGGAGTG	ATTCGTCGTA	TTCTCAAACG	GTAAAATTGT	CCATCTATTA	8160
AAACACCAGC	TACTTGGTAA	ACTTGTTTAT	CTTCTCCTTC	ATAGCTAGCC	ACTACTACTC	8220
CCATTTGACC	ACTAGTTGTT	AACGTATTAG	CTATACCTTT	TCCAACTCTA	CCACGACGAT	8280
ACTGAGAACT	TGGTCTTTCT	AAATTGATTG	AATCCCCAAT	CTCTGCTTGA	GCATATCCTT	8340
TTTTCGTTGC	TTCCCGTACT	TTTAGAAATT	GGATTGGTTC	TGGAATTAGT	ATTTTGGGGA	8400
TTTTATCTCC	TCCTTGCATC	GTAGTCAGTG	TTGGAGATAA	GCCCTCACTT	CCATAGACAC	8460
GACCTGTCTC	CTTAAAGCTA	GTCGGTAAAT	CTCCAACAAC	GACAATGCCA	TAACGATCCT	8520
GAGTATTTAA	AGTAAACATC	GGCTCTTGAT	TTTCCTTAAA	GCGTCTCCCA	TTTTGTCTCT	8580
TGTCTAATCT	ATCTGGTGTC	ATACAAGGAA	TCGCAACTTT	AAATCCTTCT	CCTTTACCAC	8640
GAACTAAGGT	TGGCGCAAGA	CCTTCTGAAT	AATAGACTTT	ACCGCTCATT	CCACTTCTTG	8700
ATGGATTCAA	ATTTCCTAGT	GCTTTCAAAG	TCTCAGAGTT	AGTTGCTTGA	CCTTCTCGTC	8760
TGAAAGGAAA	TAAGAGTCTG	GTACCTTTCT	TTCTAGAATG	TCCGATAATA	AACACCCTCT	8820
CTCTGTTTTT	GGGAACGCCA	AAATCCTTAC	TGTTAAGCAC	CTGCCACTCA	ACATCAAACC	8880
CCAACTCATC	AAGTGTGGTA	AGTATTGTGG	TGAACGTCCG	TCCCTTATCG	TGATTGAGTA	8940
GGCCTTTAAC	ATTTTCAAGA	AAAAGAAAAC	GTGGTTGGAT	TTGTTTGGCC	GCCCGAGCAA	9000
TTTCAAAGAA	CAAAGTTCCT	CTAGTATCTT	CAAATCCCAA	TOGTOTTOOT	GCGATTGAAA	9060
ATGCTTGACA	AGGGAATCCC	CCACAGATGA	CATCGACTTT	CCCTCTAAGT	TTTAAATT	9120
CGTCATCTGA	AACATCTCGT	ATGTCATGAA	ATTCTATTTC	TCCTTCCGTT	TGAAAAATGG	9180
ACTTATAAGA	TTTCCTAGCA	AATTTATCAA	TCTCACAAAA	TCCCAAGCAC	TCATGCCCTT	9240
GAGCTTCCAT	TCCCATCCTA	AAGCCTCCTA	TCCCAGCAAA	TAAATCTAAA	ACCCAAATCA	9300
TTCATACCTC	TCTCAACTAG	ATGTAACTTA	CAAAACCCCT	GACCTCATGA	GCCACTTTCT	9360
TCCTCCTCAT	GAGGTCAGTT	TTACTTTCTG	CTGTTCCAGT	ATCGTTTTTC	CTCGCTAGAT	9420
TTCCTCAAAA	GGGCAGACTC	CTCCCTTGGT	TCGTCACACG	ATTTTTTCAT	CTCGACTGTT	9480
CTTTAATGCA	TCATTAACGA	CGCTTTTCTT	CTAGGTGGTT	CATAAGGAAC	AGGAAGATTC	9540
AGGTTGACTT	TTCTAATCCT	AGAATAAAGT	GCTGAAAACA	ATTCGGAATA	GGCATAGAGA	9600
CTAGACAATT	TGAGGAGCTG	CTTGCGTCCT	GTTCGAACAC	ATTTTCCTAC	CACGTGAAGA	9660
AAAAGATGGC	GGAAGCGTTT	GATTGTTAAA	GTTTGGAAGT	CACCTCCAGC	TAGATGTTTG	9720

PCT/US97/19588 WO 98/18931

> 220 AGAAAAAGAT AGAGATTGTA GGCGATACAG CTCATCATCA TACGAACTCG TTTTTGATTA 9780 AGGTTGAACT ATCCGTTTTA TCGCCAAAAA ATCCCTCCTT CATCTCCTTG ATGAAATTCT 9840 CGGCTTGACC ACGTCCACGA TAAAGCTGAA ACTGGTCTTG GCTTGTTCCG GTACCGA 9897

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8148 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

			•			
60	CCGAGAATTT	CGTGGTCAAG	TTATCGTGGA	AGTTTCAGCT	AGCCAAGACC	CCGTGGAACA
120	CCTTAATCAA	GATAGTTCAA	CGATAAAACG	GATTTTTTGG	ATGAAGGAGG	CATCAAGGAG
180	TTCTCAAACA	CTCTATCTTT	CGCCTACAAT	TGAGCTGTAT	CGTATGATGA	AAACGAAGTT
240	TTTTTCTTCA	TTCCGCCATC	AATCAAACGC	AAACTTTAAC	GGTGACTTCC	TCTAGCTGGA
300	CTAGTCTCTA	CTCAAATTGT	CAAGCAGCTC	GAACAGGACG	AAATGTGTTC	CGTGGTAGGA
360	ACCTGAATCT	AGAAAAGTCA	TTCTAGGATT	CAGCACTTTA	GAATTGTTTT	TGCCTATTCC
420	AAAGAACAGT	ATGATGCATT	AGCGTCGTTA	CTAGAAGAAA	TATGAACCAC	TCCTGTTCCT
480	GGAAATCTAG	GCCCTTTTGA	GGAGGAGTCT	ACGAACCAAG	AAATCGTGTG	CGAGATGAAA
540	AGGAAGAAAG	CCTCATGAGG	GTAAAACTGA	ACAGCAGAAA	CGATACTGGA	CGAGGAAAAA
600	TGAATGATTT	GAGAGAGGTA	ACATCTAGTT	TTTGTAAGTT	GGTCAGGGGT	TGGCTCATGA
660	TCTTTGAGAA	AAGCGCCAAT	CAAACTCACC	AAAGAAGTAG	AATGAGCTTG	GGGTAAATAC
720	GTCATTCTGT	GAAATCATCC	TGAGAGTTTT	TCATTGCGCA	GATTATACCA	TCAGATGCTG
780	AAAATGATGA	TTTGAAGTGA	TGCTCTGGCT	AAGTGGAAAA	GATGATCGTG	CTACCAGACA
840	AATTGTGCCT	GTAGGTGAAA	GGATATTGGT	TATTAAGCGA	CTGATTCTGT	AACAGACAAG
900	ATGAGAGAAT	GATAAAATAA	TTTAGTATAT	GTGGAAAATG	ACAAAAATGC	CGTTGACGGA
960	AATAAGTATT	AATATGTTAT	TTGAATAGTG	AATAGGCATT	CAGTGCTAGA	GATTCGCTTG
1020	GGAAATGGCT	AAGACATTGC	CTGACCATAA	GGAGAAGAAA	GTTTTAGATT	AGTAGGAGGT
1080	AATGTCCCAA	AATATGAAAA	CTAAACGGGA	GTCATTTTAC	AAACAACCGT	CAGACCTCGA
1140	GAGCATTGTT	ATTACAAACC	CATGAAACAA	AAAAGTTATT	AAAAGATTGA	GAGACACGTG
1200	TGATATTACC	TTTTGATTGG	TTAATCGGTG	ACGAACAAAA	TAAACTCCAA	GCGCGTAGCT
1260	GAATGGCTAC	TCGCCAGCCA	ATTGAGGATA	TGTTAAGGGA	CAAACCAAAT	AACAGTTTCT

CAGGTAATGA TAGGAAATAG	TAATTACAGC	CAAGAGAGTG	AGGACCGGTA	TATTGAAAGC	1320
ATGCTTCTCT TGGGAGTAGA	CGGCTTTATT	ATTCAGCCGA	CCTCTAATTT	CCGAAAATAT	1380
TCTCGTATCA TCGATGAGAA	AAAGAAGAAA	ATGGTCTTTT	TTGATAGTCA	GCTCTATGAA	1440
CACCGGACTA GCTGGGTTAA	AACCAATAAC	TATGATGCCG	TTTATGACAT	GACCCAGTCC	1500
TGTATCGAAA AAGGTTATGA	ACATTTTCTC	TTGATTACAG	CGGATACGAG	TCGTTTGAGT	1560
ACTCGGATTG AGCGGGCAAG	TGGTTTTGTG	GATGCTTTAA	CAGATGCTAA	TATGCGTCAC	1620
GCCAGTCTAA CCATTGAAGA	TAAGCATACG	AATTTGGAAC	AAATTAAGGA	ATTTTTACAA	1680
AAAGAAATCG ATCCCGATGA	AAAAACTCTG	GTATTTATCC	CTAACTGTTG	GGCCCTACCT	1740
CTAGTCTTTA CCGTTATCAA	AGAGTTGAAT	TATAACTTGC	CACAAGTTGG	GTTGATTGGT	1800
TTTGACAATA CGGAGTGGAC	TTGCTTTTCT	TCTCCAAGTG	TTTCGACGCT	GGTTCAGCCC	1860
TCCTTTGAGG AAGGACAACA	GGCTACAAAG	ATTTTGATTG	ACCAGATTGA	AGGTCGCAAT	1920
CAAGAAGAAA GGCAACAAGT	CTTGGATTGT	AGTGTGAATT	GGAAAGAGTC	GACTTTCTAA	1980
AATGAAGGAA AATGACTTGC	AATCTCTGTT	AAGAAATAAA	ATAATCCCAC	CTAGAACAAG	2040
CTAGGTGGGA TTATTTGCCT	ATGAAATGAG	AAATTATGGG	AGCAAGCTCC	TAAATCAACT	2100
GTTTTTGATC TACTTCTTTA	ACTACTTGAT	AAAAGTTATA	GAAGTAGGCC	AAACTTGAAA	2160
TGATGGTTAC GACTAGGAAT	ATTGAAAATT	TCCATTGGAC	AGGGTTGGTT	AAAAGTTGTG	2220
GAAAGGATAT GAGGAGAAAG	AAGAGGGCTG	CGTTGAGGAC	AGGTATCCGT	TTTGATTGTA	2280
TTTTCTCAAG TCCTTTATTG	AGCGCAGGAA	GAAAGAGGAG	TAGGAGTAGT	AAAACTGTAT	2340
GAGAAATAGC TCCTGAAGTA	AGGGCGAÁGA	AAAGGAAAAT	ACTGATAAAA	ACATGAATGA	2400
TCAGTAGTCT AGCTAGTGAT	TTCATAAGGC	ACCTCCTAAT	CCTGGTCTTT	TTTAGCTCTT	2460
GCAATACGAA GTGAGTCGAC	AATATGTATC	ATCACTCCGA	AAAAGAAAGC	TCCCAGTATA	2520
GTTTTAAAAA TATGTTTTGT	ATTTAGAAGA	GAACTGATAA	AATTTGGATT	TTCACTTGTT	2580
AGGGTATCAA TGAGTGGAAT	TATAAAAAAT	ATCACTGTTC	CATAAATCGA	ACCTGCTTTC	2640
AGACCAGGAT AACGTAACTG	TTTCTTTTCT	TTTTTCATGA	GTTTCCTCCT	AATCCTCATC	2700
TTGATTTTTC TTAGTTTTTG	CAATGCGACG	GGAGATGAGG	AACTGTATGC	TCGCTCCGAA	2760
GAAAATAGAA CCGAGAATAC	TTGATACACC	ATTTCTTATA	GTGAGAAGAG	AATGAAAATA	2820
GTCCTGACCT TCATCTATGA	GTATCCTGAG	AAGAGGAGTT	ATAAAAAACA	TCCATAGACC	2880
AAAGAACAAA CCTGCTTTCA	GACCTGGGTA	GTGTAGTTGC	TTGCTTTCTT	TCTCATTCAG	2940
CATATCTGGT TCAATGACTG	TGATGCCTGT	TTTTTTCATT	TGGTAGGTGA	CATAGCCAGA	3000

			222			
AGCGATGAGG	GCAATCACTA	AAATCAGAGG		AGAGCCACTT	CTTGAGGGTA	3060
TTTATAGGCC	AGAAGGAGTG	GAATAAGATT	TCCGAAAATC	ATCAGATAAA	AGAGGATGAT	3120
AAAGACTTGG	TTCCCAATAC	TATCGGCCTC	ACGCCGTTTG	TATTCGTCAA	GGGGACCAGA	3180
AATACCGTAT	GTGCGTTTGA	TCAGTTTTTC	AGTGAAGGTT	TCTTTTTCA	TGAGTTTGCT	3240
CCTTTTTTAA	AAATCTTCCT	CCCAAAAGAG	ACTGTTGAGG	TCAGTTTGGA	GGCTGCGGGC	3300
GAGATTGAGA	CAGAGTTCCA	AGGTTGGATT	GTACTTGTCG	TTTTCAATCA	TATTGATAGT	3360
CTGTCTCGAG	ACACCGATAT	CCTTGGCGAG	TTCGAGCTGG	GAAATACCCA	ATTCCTTGCG	3420
AAATTCTTTC	ACACGATTCA	TCTGTTCTCC	TTTCTGATTT	ATGTCGTATA	TATTTGACTA	3480
TATTATAGTC	TTTTAAACAT	AAAGTGTCAA	GTATTTTTGA	CATATTTTTT	GAAGAAATAG	3540
TAGTCTCCTT	GTCCTATTTG	TCTGACAAGT	GCAAGCTGGT	CGGATTTGTG	GTAAAATAGA	3600
TAAGATATGA	CAAAAGAATT	TCATCATGTA	ACGGTCTTAC	TCCACGAAAC	GATTGATATG	3660
CTTGACGTAA	AGCCTGATGG	TATCTACGTT	GATGCGACTT	TGGGCGGAGC	AGGACATAGC	3720
GAGTATTTAT	TAAGTAAATT	AAGTGAAAAA	GGCCATCTCT	ATGCCTTTGA	CCAGGATCAG	3780
AATGCCATTG	ACAATGCGCA	AAAACGCTTG	GCACCTTACA	TTGAGAAGGG	AATGGTGACC	3840
TTTATCAAGG	ACAACTTCCG	TCATTTACAG	GCATGTTTGC	GCGAAGCTGG	TGTTCAGGAA	3900
ATTGATGGAA	TTTGTTATGA	CTTGGGAGTG	TCTAGTCCTC	AATTAGACCA	GCGTGAGCGT	3960
GGTTTTTCTT	ATAAAAAGGA	TGCGCCACTG	GACATGCGGA	TGAATCAGGA	TGCTAGCCTG	4020
ACAGCCTATG	AAGTGGTGAA	CAATTATGAC	TATCATGACT	TGGTTCGTAT	TTTCTTCAAG	4080
TATGGAGAGG	ACAAATTCTC	TAAACAGATT	GCGCGTAAGA	TTGAGCAAGC	GCGTGAAGTG	4140
AAGCCGATTG	AGACAACGAC	TGAGTTAGCA	GAGATTATCA	AGTTGGTCAA	ACCTGCCAAG	4200
GAACTCAAGA	AGAAGGGCA	TCCTGCTAAG	CAGATTTTCC	AGGCTATTCG	AATTGAAGTC	4260
AATGATGAAC	TGGGAGCGGC	AGATGAGTCC	ATCCAGCAGG	CTATGGATAT	GTTGGCTCTG	4320
GATGGTAGAA	TTTCAGTGAT	TACCTTTCAT	TCCTTAGAAG	ACCGCTTGAC	CAAGCAATTG	4380
TTCAAGGAAG	CTTCAACAGT	TGAAGTTCCA	AAAGGCTTGC	CTTTCATCCC	AGATGATCTC	4440
AAGCCCAAGA	TGGAATTGGT	GTCCCGTAAG	CCAATCTTGC	CAAGTGCGGA	AGAGTTAGAA	4500
GCCAATAACC	GCTCGCACTC	AGCCAAGTTG	CGCGTGGTCA	GAAAAATTCA	CAAGTAAGAG	4560
GGAAAAAGAT	GGCAGAAAAA	ATGGAAAAAA	CAGGTCAAAT	ACTACAGATG	CAACTTAAAC	4620
GGTTTTCGCG	TGTGGAAAAA	GCTTTTTACT	TTTCCATTGC	TGTAACCACT	CTTATTGTAG	4680
CCATTAGTAT	TATTTTTATG	CAGACCAAGC	TCTTGCAAGT	GCAGAATGAT	TTGACAAAAA	4740
TCAATGCGCA	GATAGAGGAA	AAGAAGACCG	AATTGGACGA	TGCCAAGCAA	GAGGTCAATG	4800

AACTATTACG	TGCAGAACGT	TTGAAAGAAA	TTGCCAATTC	ACACGATTTG	CAATTAAACA	4860
ATGAAAATAT	TAGAATAGCG	GAGTAAGATA	TGAAGTGGAC	AAAAAGAGTA	ATCCGTTATG	4920
CGACCAAAAA	TCGGAAATCG	CCGGCTGAAA	ACAGACGCAG	AGTTGGAAAA	AGTCTGAGTT	4980
TATTATCTGT	CTTTGTTTTT	GCCATTTTTT	TAGTCAATTT	TGCGGTCATT	ATTGGGACAG	5040
GCACTCGCTT	TGGAACAGAT	TTAGCGAAGG	AAGCTAAGAA	GGTTCATCAA	ACCACCCGTA	5100
CAGTTCCTGC	CAAACGTGGG	ACTATTTATG	ACCGAAATGG	AGTCCCGATT	GCTGAGGATG	5160
CAACCTCCTA	TAATGTCTAT	GCGGTCATTG	ATGAGAACTA	TAAGTCAGCA	ACGGGTAAGA	5220
TTCTTTACGT	AGAAAAAACA	CAATTTAACA	AGGTTGCAGA	GGTCTTTCAT	AAGTATCTGG	5280
ACATGGAAGA	ATCCTATGTA	AGAGAGCAAC	TCTCGCAACC	TAATCTCAAG	CAAGTTTCCT	5340
TTGGAGCAAA	GGGAAATGGG	ATTACCTATG	CCAATATGAT	GTCTATCAAA	AAAGAATTGG	5400
AAGCTGCAGA	GGTCAAGGGG	ATTGATTTTA	CAACCAGTCC	CAATCGTAGT	TACCCAAACG	5460
GACAATTTGC	TTCTAGTTTT	ATCGGTCTAG	CTCAGCTCCA	TGAAAATGAA	GATGGAAGCA	5520
AGAGCTTGCT	GGGAACCTCT	GGAATGGAGA	GTTCCTTGAA	CAGTATTCTT	GCAGGGACAG	5580
ACGGCATTAT	TACCTATGAA	AAGGATCGTC	TGGGTAATAT	TGTACCCGGA	ACAGAACAAG	5640
TTTCCCAACG	AACGATGGAC	GGTAAGGATG	TTTATACAAC	CATTTCCAGC	CCCCTCCAGT	5700
CCTTTATGGA	AACCCAGATG	GATGCTTTTC	AAGAGAAGGT	AAAAGGAAAG	TACATGACAG	5760
CGACTTTGGT	CAGTGCTAAA	ACAGGGGAAA	TTCTGGCAAC	AACGCAACGA	CCGACCTTTG	5820
ATGCAGATAC	AAAAGAAGGC	ATTACAGAGG	ACTTTGTTTG	GCGTGATATC	CTTTACCAAA	5880
GTAACTATGA	GCCAGGTTCC	ACTATGAAAG	TGATGATGTT	GGCTGCTGCT	ATTGATAATA	5940
ATACCTTTCC	AGGAGGAGAA	GTCTTTAATA	GTAGTGAGTT	AAAAATTGCA	GATGCCACGA	6000
TTCGAGATTG	GGACGTTAAT	GAAGGATTGA	CTGGTGGCAG	AACGATGACT	TTTTCTCAAG	6060
GTTTTGCACA	CTCAAGTAAC	GTTGGGATGA	CCCTCCTTGA	GCAAAAGATG	GGAGATGCTA	6120
CCTGGCTTGA	TTATCTTAAT	CGTTTTAAAT	TTGGAGTTCC	GACCCGTTTC	GGTTTGACGG	6180
ATGAGTATGC	TGGTCAGCTT	CCTGCGGATA	ATATTGTCAA	CATTGCGCAA	AGCTCATTTG	6240
GACAAGGGAT	TTCAGTGACC	CAGACGCAAA	TGATTCGTGC	CTTTACAGCT	ATTGCTAATG	6300
ACGGTGTCAT	GCTGGAGCCT	AAATTTATTA	GTGCCATTTA	TGATCCAAAT	GATCAAACTG	6360
CTCGGAAATC	TCAAAAAGAA	ATTGTGGGAA	ATCCTGTTTC	TAAAGATGCA	GCTAGTCTAA	6420
CTCGGACTAA	CATGGTTTTG	GTAGGGACGG	ATCCGGTTTA	TGGAACCATG	TATAACCACA	6480
GCACAGGCAA	GCCAACTGTA	ACTGTTCCTG	GGCAAAATGT	AGCCCTCAAG	TCTGGTACGG	6540

			224			
CTCAGATTGC	TGACGAGAAA	AATGGTGGTT	ATCTAGTCGG	GTTAACCGAC	TATATTTTCT	6600
CGGCTGTATC	GATGAGTCCG	GCTGAAAATC	CTGATTTTAT	CTTGTATGTG	ACGGTCCAAC	6660
AACCTGAACA	TTATTCAGGT	ATTCAGTTGG	GAGAATTTGC	CAATCCTATC	TTGGAGCGGG	6720
CTTCAGCTAT	GAAAGACTCT	CTCAATCTTC	AAACAACAGC	TAAGGCTTTA	GAGCAAGTAA	6780
GTCAACAAAG	TCCTTATCCT	ATGCCTAGTG	TCAAGGATAT	TTCACCTGGT	GATTTAGCAG	6840
AAGAATTGCG	TCGCAATCTT	GTACAACCCA	TCGTTGTGGG	AACAGGAACG	AAGATTAAAA	6900
ACAGTTCTGC	TGAAGAAGGG	AAGAATCTTG	CCCCGAACCA	GCAAGTCCTT	ATCTTATCTG	6960
ATAAAGCAGA	GGAGGTTCCA	GATATGTATG	GTTGGACAAA	GGAGACTGCT	GAGACCCTTG	7020
CTAAGTGGCT	CAATATAGAA	CTTGAATTTC	AAGGTTCGGG	CTCTACTGTG	CAGAAGCAAG	7080
ATGTTCGTGC	TAACACAGCT	ATCAAGGACA	TTAAAAAAAT	TACATTAACT	TTAGGAGACT	7140
aatatgttta	TTTCCATCAG	TGCTGGAATT	GTGACATTTT	TACTAACTTT	AGTAGAAATT	7200
CCGGCCTTTA	TCCAATTTTA	TAGAAAGGCG	CAAATTACAG	GCCAGCAGAT	GCATGAGGAT	7260
GTCAAACAGC	ATCAGGCAAA	AGCTGGGACT	CCTACAATGG	GAGGTTTGGT	TTTCTTGATT	7320
ACTTCTGTTT	TGGTTGCTTT	CTTTTTCGCC	CTATTTAGTA	GCCAATTCAG	CAATAATGTG	7380
GGAATGATTT	TGTTCATCTT	GGTCTTGTAT	GGCTTGGTCG	GATTTTTAGA	TGACTTTCTC	7440
AAGGTCTTTC	GTAAAATCAA	TGAGGGGCTT	AATCCTAAGC	AAAAATTAGC	TCTTCAGCTT	7500
CTAGGTGGAG	TTATCTTCTA	TCTTTTCTAT	GAGCGCGGTG	GCGATATCCT	GTCTGTCTTT	7560
GGTTATCCAG	TTCATTTGGG	ATTTTTCTAT	ATTTTCTTCG	CTCTTTTCTG	GCTAGTCGGT	7620
TTTTCAAACG	CAGTAAACTT	GACAGACGGT	GTTGACGGTT	TAGCTAGTAT	TTCCGTTGTG	7680
ATTAGTTTGT	CTGCCTATGG	AGTTATTGCC	TATGTGCAAG	GTCAGATGGA	TATTCTTCTA	7740
GTGATTCTTG	CCATGATTGG	TGGTTTGCTC	GGTTTCTTCA	TCTTTAACCA	TAAGCCTGCC	7800
AAGGTCTTTA	TGGGTGATGT	GGGAAGTTTG	GCCCTAGGTG	GGATGCTGGC	AGCTATCTCT	7860
ATGGCTCTCC	ACCAAGAATG	GACTCTCTTG	ATTATCGGAA	TTGTGTATGT	TTTTGAAACA	7920
ACTTCTGTTA	TGATGCAAGT	CAGTTATTTC	AAACTGACAG	GTGGTAAACG	TATTTTCCGT	7980
ATGACGCCTG	TACATCACCA	TTTTGAGCTT	GGGGGATTGT	CTGGTAAAGG	AAATCCTTGG	8040
AGCGAGTGGA	AGGTTGACTT	CTTCTTTTGG	GGAGTGGGAC	TTCTAGCAAG	TCTCCTGACC	8100
CTAGCAATTT	TATATTTGAT	GTAAGAATGG	CACCCTGATG	TTTCAGGG		8148

⁽²⁾ INFORMATION FOR SEQ ID NO: 12:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9909 base pairs
(B) TYPE: nucleic acid

225

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

				- · · · · -		
60	CATAGAATTG	CTTTTAAGTT	TACTTTACCG	TTCCTGTAAA	TTAATATCCG	TACTCCACCC
120	TTTGACCAGC	.TTTTTAGGAG	TTCCATCCAA	CAAGCATCTT	TGCTTGTCTT	AACTTTTAAA
180	TATAAGCTTC	TCTGCGATTT	TATAGATTTA	GGGTGATTAG	AACCTTGCTG	ТТТАААТААА
240	GATACGGAGG	CCTGTTTCCT	TCTGGCTTCT	TCGGCTCATC	TAGTGATATA	АТСААТАААА
300	GCTCAAAACC	CTAGATAGGC	ACTITCCTCG	ATTTCATTTC	ACGACATCAA	ATTTCCTATC
360	CTTCTTGGAC	GATTCTTCTA	ATGGGTTTTA	AGTCTTTGAT	TTCTTTTTCC	TATCATTCTA
420	CTGAATAAGG	TTTTGTTTAG	TTGAGATTGC	AACTCAATTG	TCCGCAAACA	TTCTAGCTCA
480	TCGCAATTTC	GAGATAATAG	GACATTGTAA	CCATCTGAAA	TTCAATCCAT	ACTACTTTTT
540	CCTCAAAAGT	AGATAATAGT	AGTCTTAGCT	GTTGATTTCC	TCTAATGTTG	TTTCTTTTGC
600	AACCATACGA	TGATACTCAT	AGAATCTCCT	CCAAAAGGAG	TTCTCACGCG	TGCCAAAAGA
660	CCTCACGACT	TCATCTGAAA	AAATGTGACT	CAAGTTTATA	GCATCTTTTA	AGCATGATAA
720	TTTCCTCACC	GATAATGGAA	AACTCGCTCA	CAACAAAACC	AGTTTTCTAT	AATCCGTTGC
780	CCTCTAACCA	CCACAAGTTA	AGGTGCTTCA	TTACCATATA	TCATATCTCG	AGTTACGGTA
840	CATATCCATT	TTCGATTCTA	CGAGCCTAAT	CAAGACTTAA	ACATACTCCT	TCGTAAGTCC
900	TCCGATCTTT	CTTATTTTTG	CACTTCTGCC	TTGGTGTAAA	ACCAACCACG	TTGCTTTGCG
960	TTCCAGTAAC	TTGGCAAAGT	CTGAATCAAG	CAGATCTGGG	TTGGATTTTT	TTGTTCATAT
1020	CATAAGAATG	CCTAACAATT	AAATCCCTTT	CACTTGGAGC	TTGATGCGAT	CTTACTTGGA
1080	TTAATAAGTC	AAAAGAATTT	TCGATCTTTT	TCTTTGTCGT	ACAATTGATT	CGTAnGCCAA
1140	ACCTCTCTTA	GTCATCAGCA	AATATCTATT	TTTCTTCACT	TTAGCCAAAC	AGCCGATTCT
1200	AAAAGTAATT	TTTACTTGAA	AGAATGAAAA	CATATTTTAA	CCTATTATAT	TATTGTAAGC
1260	ATCATCTACA	CGACTAATTC	AGAGTAGCAA	ACCAACTTCT	CTCTCCGATG	CAATAAATAT
1320	GCGATTACCA	ATTGACCAAC	CTATAGCGCC	ATTACCAATT	TAACTCGATA	ATTTGTACGA
1380	ATAGTTTGTA	TGGTTTGTAA	TCCAAAACAT	TCTTGGGTCT	TTCCGTGTCG	ACCAAAGCCT
1440	TCTTGTTGGA	TGATAAAACG	TTCAATTGCT	GTCCAATTTT	GCGTATAACG	ATTAGCTTCT
1500	CTTCCCAAGT	TGCATCATTT	GCCTAAATCA	CATCCTTCAA	ACAAATTATT	ACTAATTTAT
1560	AATCTGCCAC	TGATAGGCTA	TAAATACTCT	CCAAGTCTTC	ACTCCTTTTT	AATGGGTTCA

			226			
ACGAGCATCG	TATTCATCTT	CTAGGGCTTC	AAGAGTTTTG	GTGCGAATAA	GTTCCGAAAG	1620
GGAAACTCCT	TCAAACTTAG	CCATTGCTTT	CATAAATGTT	TTATCAGCTT	CAGAAACTTT	1580
TAATGTAATA	GTAGTCATCT	TTTGTGCTCC	CTTTTTTAAT	GGTAACACCA	TTGTATTACT	1740
TTTTAGGTGT	TCAGTCAATA	TAAAAAGAAC	ACCTTCTCAG	CGTTCTTTCT	ATATCTCTGT	1800
CAATGGTGTT	GCGGTATCTG	GTGAGGTATC	ATAAACCTTA	AAGTCTACTC	CGACTCCCAG	1860
ATCAGCTTGA	GCCAGCTGAT	TGACCATGGT	CATATGAGCC	AGTTCCTTGA	TATTGTTTTC	1920
CTTAGATAAA	TGCCCAAGGT	AAATCTTCTT	AGTACGATTT	CCTAGCGTCC	GAATCATAGC	1980
TTCAGCACCG	TCCTCGTTAG	AAAGGTGACC	AAGGTCAGAT	AGGATTCGTT	GTTTGAGTCG	2040
CCAAGCGTAA	GAACCTGATC	GCAAAATCTC	TACATCATGG	TTGGCCTCGA	TAAGATAACC	2100
ATCCGCATTT	TCGACAATGC	CCGCCATACG	GTCACTGACA	TAACCTGTAT	CTGTCAAGAG	2160
GACAAAACTC	TTATCATCCT	TCATAAAGCG	ATAGAACTGC	GGTGCGACTG	CATCATGGCT	2220
TACACCAAAA	CTCTCGATGT	CGATATCTCC	AAAGGTTTTG	GTTTTACCCA	TTTCAAAAAT	2280
ATGCTTTTGC	GAAGAATCCA	CCTTGCCAAG	ATATTTACTA	TTTTCCATAG	CTTGCCAGGT	2340
CTTTTCATTG	GCATAAAGAT	CCATACCATA	CTTGCGAGCC	AAAACGCCTA	CTCCATGGAT	2400
ATGATCTGAA	TGCTCATGGG	TAATCAAGAT	GGCATCCAGG	TCTTCTGGCT	TACGGTTAAT	2460
TTCAGCTAGC	AGACTGGTAA	TTTTCTTGCC	AGACAAGCCT	GCATCTACTA	AAAGCTTCTT	2520
TTTTGAGGTT	TCCAGATAAA	AAGAATTTCC	ACTGGAACCC	GACGCTAAAA	TACTGTATTT	2580
AAAGCCTATT	TCACTCATTC	TAGTCTTCTA	CTTCATCCTC	CCATACTTCT	TCTTTCACTG	2640
CATCCTTATC	ATAAGGGAGT	ACAATGGTAA	AGGTTGAACC	CTTGCCGTAT	TCACTCTTGG	2700
CCCAAATAAA	GCCCTTATGT	TGTTTGATAA	TTTCTTTAGC	GATAGACAGT	CCTAGACCTG	2760
TACCACCTTG	TGCACGACTT	CTAGCACGAT	CCACACGATA	GAAACGGTCA	AAGATACGTG	2820
GTAAATCCTG	CTTAGGAATC	CCCAAACCGT	GGTCAGAAAT	GGATAAAATC	ATCTGGTCTT	2880
CAGTTGTCTT	CATTCTGACA	GTGATTTTAC	CCCCATCTGG	CGAATACTTA	ATAGCATTAT	2940
TTAAAATATT	GTCGACAACC	TGCGTCATCT	TATCTGTATC	AATTTCCATC	CAGATAGAAT	3000
TGATGGGATA	ATCTCTCACC	AACTCATATT	TTTTCTCCTT	TTCCTGTCCT	TTCATCTTGT	3060
CAAAACGATT	GAGGATAAAG	GTAATAAAAG	CAGTGAAGTT	AATCAGTTCC	ACATCTAGGT	3120
GACTGGTAGC	ATTATCAATA	CGTGAAAGAT	GGAGGAGATC	CGTCACCATG	CGCATCATAC	3190
GGTTGGTCTC	ATCAAGAGAA	ACCTTGATAA	AGTCTGGTGC	TACAGTTTCA	CACAAAGCCC	3240
CCTCATCCAA	GCCTTCAAGA	TAGGATTTTA	CGCTAGTCAG	AGGAGTCCGT	AACTCATGGC	3300
TAACATTGGA	AACAAAGAGT	CTTCGTTCGC	GTTCTTCCTT	CTCCTGCTCC	GTCGTATCAT	3360

GCAAAACAG	CACCANACCT	GAAATAAAGC	CAGACTCTCG	ACGTATCAAG	GCAAAGCGAA	3420
CTCGAAGGTT	CAAATATTCG	CCATTGATAT	CTTGGGAATC	TAGCAACAAT	TCTGGACTTT	3490
GGGTAATCA	ATCACGCAAT	TCATAGTTTT	CTTCTATCTT	GAGCAATTCC	AAAATGCTTC	3540
TATTCAGAAC	ATCTTCCTTA	ACCAACCCCA	GTTGCTTCTT	GGCTGTATCG	TTAATCATGA	3600
TAATCTGACC	CCGACGGTTA	GTCGCAAGAA	CCCCATCTGT	CATATAAAAC	AGAATACTAT	3660
TTAGCCTCTT	ACTCTCTTGT	TCTAGATTTT	CCTGAGTGAG	ACGAATAACC	TCCGACAAGT	3720
CATTCAAATT	ATTGGTAATA	TTGGTGATTT	CAGACCCACC	TTGCATATCA	AGAACCTTGG	3780
AATAATCTCC	TGCAATCAAA	TCTTTAACCT	TTTGATTGAC	TTGCTTCAAC	TGAATATTAT	3840
CACGTCTATT	TTCCAGTAAT	AAGAGGGTCA	CAACAAGGAT	GAAACCTAAC	AAAATCAGGA	3900
TAAAGATAAA	ATCTCTGGTA	AAAATGGTTT	GTTTCAGTAA	ATCAAGCATT	ATTTCTCATG	3960
TAATACCCTA	CACCACGGCG	CGTCAAGATA	TACTCTGGTC	GGCTGGGCGT	ATCTTCAATC	4020
TTCTCACGCA	GACGTCGTAC	AGTCACATCA	ACTGTACGGA	CATCACCAAA	ATAGTCATAA	4080
CCCCAGACAG	TCTCAAGCAA	GTGTTCGCGC	GTGATGACTT	GACCTGTATG	CGATGCTAAA	4140
TGATACAAAA	GCTCAAATTC	ACGATGGGTT	AAGTCTAGTT	CTTCGCCATA	TTTTTTAGCC	4200
ACGTAGGCGT	CTGGAACAAT	TTCTAAATCC	CCAATTTGGA	TAGGTTGAGG	TTTACTATCT	4260
GCTTCCTGAC	CATCTACTGG	CATAGGTTGA	GAACGACGCA	GAAGAGCTTT	AACACGCGCC	4320
TGCAACTCAC	GATTGGAGAA	GGGTTTTGTT	ACATAGTCAT	CTGCCCCAAG	TTCCAAACCG	4380
ATAACCTTAT	CAAATTCACT	ATCTTTGGCT	GAAAGCATAA	GAATGGGCAC	ACTGCTTGTC	4440
TTACGAATGG	TCTTAGCAAC	TTCTAAACCA	TCAATTTCTG	GAAGCATCAA	ATCCAGAATA	4500
ATAATATCTG	GTTGCTCTGC	TTCAAATTGC	TCTAGCGCTT	CACGACCATT	AAAAGCAGTT	4560
ACAACTTCGT	AACCTTCCTT	GGTCATATTA	AACTTGATAA	TATCCGAGAT	TGGTTTCTCA	4620
TCATCTACAA	TTAGTATTTT	TTTCATATGT	TCACCTTTTT	CTCTACTATT	ATACCAAAAA	4680
AATAGTCAGA	AGACACAATA	GCTAGTCTTG	GCTACTGTCT	AAGTTGGCTT	GTGCATAAAC	4740
CTGCCAGATT	TTTTGTTGGG	GTTTGGCAAG	TGGGTAATTC	TTGAATTCTT	CTGGTGAAAG	4800
CCAGCGAACT	TCCCTATCTG	AAAAATCATG	GAAGTCACTC	ACCTGACCTG	CTACAATCTG	4860
TACATGCCAT	TTTCGATGAC	TAAAAACATG	CTGGACTGTA	TCAAAACAAA	CATCAAGCCA	4920
ATCAACATCT	AGGTCATAGT	CCTGCTGGAA	ACTCTCTTCT	GGACTGGGAC	CAAAGTTCAC	4980
ACTTTCTTCC	GCAACCTGAT	GAAAGAGGTC	AAACTGCTCT	TCTTGCGAAA .	AGTTATCAAC	5040
TTCTATAAAG	GGGAAATGCC .	AAAAACCTGC	CAAGAGCTTT	TCGCTTTCAT	TTTTTTCAAG	5100

228 TAAAAATTGT CCTTGAGAAT TTTTCACAAC TAAGGCTTTA AGATAAATAG GAACCGGCTT 5160 TTTCTTAGGA GATTTAATTG GATAACGGTC CATGGTTCCA TTCTGATATG CCGCACTAAA 5220 5280 GTCCTTGACT GGGCTTTCTT CAGGTCTGGG ATTTACAGGA GACTCAATAT CAGACCCTAA GTCCATCAAG GCTTGATTAA AATCACCCGG ACGATCCGGA TTAATCAAGA TCTCCATCAT 5340 TGCCTGAAAA ATTTTTCGAT TACTTGGAAT CCCAATATCG TGGTTGACTT CAAACAGACG 5400 CGCCAAGACC CGCATGACAT TACCATCTAC AGCTGGCTCA GGCAAGTTAA AAGCAATACT 5460 GGAAATGGCT CCTGCTGTGT AAGGTCCAAT CCCTTTCAAG CTGGAAATTC CTTCATAGGT 5520 ATTTGGAAAT TGGCCACCAA AGTCAGTCAT AATCTGCTGG GCTGCAGCCT GCATATTGCG 5580 AACTCGAGAA TAATAGCCCA AGCCTTCCCA AGCTTTCAGT AAACTCTCCT CAGGCGCAGT 5640 TGCCAGACTT TCGACAGTTG GAAACCAGTC CAAAAATCTT TCGTAGTAAG GGATAACTGT 5700 ATCCACCCTG GTCTGCTGAA GCATGATTTC AGATACCCAG ATGTGATAAG GATTTTTACT 5760 TCTCCTCCAA GGCAAATCTC TTTTGTTTTC ATCATACCAA GCGAGAAGTT TCTCACGGAA 5820 AGAAATGACT TTCTCCTCCG GCCACATGAC GATACCGTAT TCTTTCAAAT CTAACATATC 5880 TCTAGTATAA CACAGAAGGT TTCACCTGTC TTTGTATCTG ATTTATAATA TTTTCAATAG 5940 6000 ATAGTATATA ACTITICTAT CTACTTATAC TCAATGAAAA TCAAAGAGCA AACTAGGAAG CTAGCCGCAG GTTGCTCAAA ACACTGTTTT GAGGTTGTGG ATAGAACTGA CAGAGTCAGT 6060 ATCATATACT ACGGCAAGGT GAAGCTGACG TAGTTTGAAG AGATTTTCGA AGAGTATAAA 6120 TCTTATTGAT GAACTGCTTG CAGTCTGAGA AAAAATGAGC TTGGATATTA TTTCCAAACT 6180 CACTTAAAGT CAATTTCAAT CCACTAGAAC AAGCCTAGTA CAGTTCCATC GCTTTCAACA 6240 TCCATGTTGA GAGCTGCTGG ACGTTTTGGA AGACCTGGCA TGGTCATAAC ATCACCAGTT 6300 AAGGCAACGA TGAAGCCTGC ACCTAATTTT GGTACCAATT CACGAATGGT AATTTCAAAG 6360 TTTTCTGGTG CTCCAAGCGC ATTTGGATTG TCTGAGAAAC TGTATTGAGT TTTAGCCATA 6420 CAGATTGGCA ATTTGTCCCA ACCGTTTTGA ACGATTTGAG CAATTTGTGT TTGAGCTTTC 6480 TTCTCAAAGT TCACTTGCT ACCACGATAG ATTTCAGTGA CAATTTTTTC AATCTTTTCT 6540 TGGACAGAAA GGTCATTATC ATACAAACGT TTATAGTTAG CTGGATTTTC AGCAATTGTC 6600 TTAACAACTG TTTCGGCAAG TGCTACTCCA CCTTCTGCTC CATCAGCCCA GACACTAGCC 6660 AATTCAACTG GTACATCGAT TGAGGCACAG AGTTCTTTTA AGGCTGCAAT TTCAGCTTCT 6720 GTATCAGATA CAAATTCGTT AATAGCTACA ACTGCTGGAA TACCGAACTT ACGGATATTT 6780 TCAACGTGGC GTTTCAAGTT AGCAAAACCT GCACGAACTG CCTCTACATT TTCTTCAGTC 5840 AGAGCGTCTT TAGCCACACC ACCATTCATC TTAAGGGCAC GAAGGGTTGC GACAATAACA 6900

ACTGCATCT	G GAGATGTTG	G CAAGTTTGG	r GTCTTGATA	r caaggaatt	r ctcagcacca	696
AGGTCCGCAG	CAAAACCAG	TTCAGTAAC	A GTGTAATCAG	G CCAAGTGAA	GGCTGTTGTC	702
GTCGCCAAA	A CAGAGTTACA	GCCATGAGC	S ATATTGGCA	A ATGGACCAC	GTGTACAAAG	708
GCAGGTGTAG	CGTAAATTG1	CTGAACCAA	G TTTGGCTTA	A TAGCATCCT	CAAAATCAAA	714
GCCAAGGCAG	CCTCAACCTC	CAAATCACC	r acagaaacac	GCGTACGGT	ATAGCGATAA	720
CCAATAACGA	TATTCGCCAA	ACGACGTTT	AAGTCCTCGA	TGTCCGTTGC	CAAGCAAAGA	726
ATTGCCATGA	TTTCTGAAGC	AACTGTAATA	тсааалссат	CCTCACGTGC	AATACCGTTT	732
AGAGGACCAC	CAAGACCAAC	AGTCACATGO	CGGAGCGTAC	GGTCGTTCA	GTCCACAACG	7386
CGTTTCCAGA	GGATACGACG	TTGATCAATT	CCCAGCTCAT	TCCCTTGGTG	CAAGTGGTTG	7440
TCAATCAAGO	CAGAAAGGGC	ATTGTTGGC	GTTGTAATAG	CATGCATATO	TCCAGTAAAG	7500
TGGAGGTTGA	TGTCTTCCAT	TGGCAGAACT	TGTGCATACC	CACCACCAGO	AGCACCACCC	7560
TTGATCCCCA	TGACTGGACC	AAGAGACGGT	TCGCGGATAG	CAATCATGGT	TTTCTTGCCA	7620
ATCTTGTTCA	AGGCATCCGC	AAGACCAATG	GTAAGCGTCG	ACTTTCCTTC	ACCTGCAGGT	7680
GTTGGGTTGA	TGGCAGTAAC	CAAGATCAAT	TTACCGACTG	GATTGCTCTC	AACTGCACGA	7740
ATTTTATCAA	AGCTGAGTTT	AGCCTTGTAC	TTTCCGTACA	ACTCCAAATC	GTCATAAGAA	7800
ATACCAAGTT	TCTCTACAAC	ATCAACAATT	GGCTTCAACT	CAATACTCTG	TGCGATTTCA	7860
ATATCTGTTT	TCATTCAAAA	TTCCTCTAAC	CTCTTATATG	ATAATTCATT	ATATCACAAA	7920
ACAAGATTTT	TAACATCCTA	AAACTCTCTA	AACGTTCGTA	AATATCTCTG	TTTTTAAGAC	7980
TTTTAGAGTC	СТТТСТТААА	TTTTATATGG	CTTTATAGTT	TGAAACTATA	ATAAATCTTC	8040
GTTTTTACCA	AAAATTTATC	ACTTTCATTT	TACTTACCGC	TTATTTTTGT	GTACAATAGT	8100
GCTATGAAAA	TTTTAGTTAC	ATCGGGCGGT	ACCAGTGAAG	CTATCGATAG	CGTCCGCTCT	8160
ATCACTAACC	ATTCTACAGG	TCACTTGGGG	AAAATTATCA	CAGAGACTTT	GCTTTCTGCA	8220
GGGTATGAAG	TTTGTTTAAT	TACGACAAAA	CGAGCTCTGA	AGCCAGAGCC	TCATCCTAAC	8280
CTAAGTATTC	GAGAAATTAC	CAATACCAAG	GACCTTCTAA	TAGAAATGCA	AGAACGTGTT	8340
CAGGATTATC	AGGTCTTGAT	CCACTCAATG	GCTGTTTCTG	ACTACACTCC	TGTTTATATG	8400
ACAGGGCTTG	AGGAAGTTCA	GGCTAGCTCC	AATCTAAAAG	AATTTTTAAG	CAAGCAAAAT	8460
CATCAGGCCA	AGATTTCTTC	AACTGATGAG	GTTCAGGTTT	TGTTCCTTAA	AAAGACACCC	8520
AAAATCATAT	CCCTAGTCAA	GGAATGGAAT	CCTACTATTC	ATCTGATTGG	TTTCAAACTG	8580
CTGGTTGATG	TTACCGAAGA	TCATCTGGTT	GACATTGCAC	GAAAAAGTCT	TATCAAGAAT	8640

			230			
CAAGCAGATT	TAATCATCGC	GAATGACCTG	ACTCAAATTT	CAGCAÇATCA	GCACCGAGCT	8700
ATATTTGTTG	AGAAAAATCA	GCTTCAAACA	GTCCAGACTA	AAGAAGAAAT	TGCAGAACTC	8760
CTCCTTGAAA	AAATTCAAGC	CTATCATTCT	TAGAAAGGAA	AACTATGGCA	AACATTCTCT	8820
TGGCTGTAAC	GGGTTCAATC	GCCTCTTATA	AGTCGGCAGA	TTTAGTCAGT	TCTCTAAAAA	8880
AACAAGGCCA	TCAAGTCACT	GTCTTAATGA	CTCAGGCTGC	TACAGAGTTT	ATCCAACCTT	8940
TGACACTACA	GGTACTCTCA	CAGAATCCTG	TCCACTTGGA	TGTCATGAAG	GAACCCTATC	9000
CTGATCAGGT	CAATCATATC	GAACTTGGAA	AAAAAGCAGA	TTTATTTATC	GTGGTACCTG	9060
CAACTGCTAA	CACTATTGCA	AAACTAGCTC	ACGGATTTGC	GGACAACATG	GTAACCAGTA	9120
CAGCTCTAGC	CCTACCAAGT	CATATTCCCA	AACTAATAÇC	TCCTGCTATG	AATACAAAAA	9180
TGTATGACCA	TCCAGTAACT	CAGAATAATC	TGAAAACATT	AGAAACTACG	GCTATCAGCT	9240
GATTGCTCCT	AAGGAATCCC	TACTAGCTTG	TGGAGACCAC	GGACGAGGAG	CTTTAGCTGA	9300
CCTCACAATT	ATTTTAGAAA	GAATAAAGGA	AACTATCGAT	GAAAAAACGC	TCTAATATTG	9360
CACCCATTGC	TATCTTTTT	GCTACCATGC	TCGTGATACA	CTTTCTGAGC	TCACTTATCT	9420
TTAACCTTTT	TCCATTTCCA	ATCAAACCGA	CCATTGTTCA	TATTCCTGTC	ATTATTGCCA	9480
GCATTATTTA	TGGTCCACGA	CTTGGGGTTA	CACTTGGATT	TTTGATGGGA	TTACTTAGCT	9540
TGACGGTTAA	CACGATTACG	ATTCTACCGA	CAAGCTACCT	CTTCTCTCCC	TTCGTACCAA	9600
ACGGAAACAT	CTACTCAGCT	ATCATTGCCA	TCGTCCCACG	TATTTTGATT	GGTTTAACTC	9660
CTTACTTAGT	CTATAAACTG	ATGAAAAACA	AGACTGGTCT	GATTTTAGCT	GGAGCCCTTG	9720
GTTCcTTGAC	AAATACTATC	TTTGTCCTTG	GAGGAATCTT	CTTCCTATTT	GGAAATGTTT	9780
ATAATGGAAA	TATCCAACTT	CTTCTGGCAA	CCGTTATCTC	AACAAATTCA	ATTGCTGAAT	9840
TGGTCATTTC	TGCAATTCTA	ACCCTAGCCA	TTGTTCCACG	ACTACAAACC	TTGAAAAAAT	9900
AAAAACAGG						9909

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1126 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TAATTTTCAT ATAATAGTAA AATAGAATGT GTGATTCAAT AATCACCTCA AATAGAAAGG 60 AAATTCTATG TCAAATCTAT CTGTTAATGC AATTCGTTTT CTAGGTATTG ACGCCATTAA

PAAAGCCAAC	TCAGGTCATC	CAGGTGTGGT	TATGGGAGCG	GCTCCGATGG	CTTACAGCCT	180
TTTACAAAA	CAACTTCATA	TCAATCCAGC	TCAACCAAAC	TGGATTAACC	GCGACCGCTT	240
PATTCTTTCA	GCAGGTCATG	GTTCAATGCT	CCTTTATGCT	CTTCTTCACC	TTTCTGGTTT	300
rgaagatgtc	AGCATGGATG	AGATTAAGAG	TTTCCGTCAA	TGGGGTTCAA	AAACACCAGG	360
rcacccagaa	TTTGGTCATA	CGGCAGGGAT	TGATGCTACG	ACAGGTCCTC	TAGGGCAAGG	420
GATTTCAACT	GCTACTGGTT	TTGCCCAAGC	AGAACGTTTC	TTGGCAGCCA	AATATAACCG	480
TGAAGGTTAC	AATATCTTTG	ACCACTATAC	TTACGTTATC	TGTGGAGACG	GAGACTTGAT	540
GGAAGGTGTC	TCAAGCGAGG	CAGCTTCATA	CGCAGGCTTG	CAAAAACTTG	ATAAGTTGGT	600
TGTTCTTTAT	GATTCAAATG	ATATCAACTT	GGATGGTGAG	ACAAAGGATT	CCTTTACAGA	660
AAGTGTTCGT	GACCGTTACA	ATGCCTACGG	TTGGCATACT	GCCTTGGTTG	AAAATGGAAC	720
AGACTTGGAA	GCCATCCATG	CTGCTATCGA	AACAGCAAAA	GCTTCAGGCA	AGCCATCTTT	780
GATTGAAGTG	AAGACGGTTA	TTGGATACGG	TTCTCCAAAC	AAACAAGGAA	CTAATGCTGT	840
ACACGGCGCC	CCTCTTGGAG	CAGATGAAAC	TGCATCAACT	CGTCAAGCCC	TCGGTTGGGA	900
CTACGAACCA	TTTGAAATTC	CAGAACAAGT	ATATGCTGAT	TTCAAAGAAC	ATGTTGCAGA	960
CCGTGGCGCA	TCAGCTTATC	AAGCTTGGAC	TAAATTAGTT	GCAGATTATA	AAGAAGCTCA	1020
TCCAGAACTC	GCTGCAGAAG	TAGAAGCCAT	CATCGACGGA	CGTGATCCAG	TCGAAGTGAC	1080
TCCAGCAGAC	TTCCCAGCTT	TAGAAAATGG	TTTTCTCAA	GCAACT		112

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2520 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

CC	GGCAACAA	AAAAGAAAAA	ATCAACAGTT	AAAAAAAATC	TAGTCATCGT	GGAGTCGCCT	60
GC	TAAGCCAA	GACGATTGAA	AAATATCTAG	GCAGAAACTA	CAAGGTTTTA	GCCAGTGTCG	120
GC	CATATCCG	TGATTTGAAG	AAATCCAGTA	TGTCCGTCGA	TATTGAAAAT	AATTATGAAC	180
cc	CAATATAT	TAATATCCGA	GGAAAAGGCC	CTCTTATCAA	TGACTTGAAA	AAAGAAGCTA	240
A.J	AAAGCTAA	TAAAGTTTTT	CTCGCGAGTG	ACCCGGACCG	TGAAGGAGAA	GCGATTTCTT	300
G	SCATTTGGC	CCATATTCTC	AACTTGGATG	AAAATGATGC	CAACCGTGTG	GTCTTCAATG	360

232 AAATCACCAA GGATGCAGTC AAAAATGCTT TTAAAGAACC TCGTAAGATC GATATGGACT 420 TGGTCGATGC CCAACAAGCT CGTCGGATCT TGGATCGCTT GGTAGGGTAT TCGATTTCGC 480 CTATTTTGTG GAAGAAGGTC AAGAAGGCT TGTCAGCAGG TCGCGTTCAG TCCATTGCCC 540 TTAAACTCAT CATTGACCGT GAAAATGAAA TCAATGCCTT CCAGCCAGAA GAATACTGGA 600 CAGTTGATGC TGTCTTTAAA AAGGGAACCA AACAATTTCA TGCTTCCTTC TATGGAGTAG 660 ATGGTAAAAA GATGAAACTG ACCAGCAATA ACGAAGTCAA GGAAGTCTTG TCTCGTCTGA 720 CGAGTAAAGA CTTTTCAGTA GATCAGGTGG ATAAGAAAGA GCGCAAGCGC AATGCTCCTT 780 TACCCTATAC CACTTCATCT ATGCAGATGG ATGCTGCCAA TAAAATCAAT TTCCGTACTC 840 GAAAAACCAT GATGGTTGCC CAACAGCTCT ATGAAGGAAT TAATATCGGT TCTGGTGTTC 900 AAGGTTTGAT TACCTATATG CGTACCGATT CGACTCGTAT CAGTCCTGTA GCGCAAAATG 960 AGGCGGCAAG CTTCATTACG GATCGTTTTG GTAGCAAGTA TTCTAAGCAC GGTAGCAAGG 1020 TCAAAAACGC ATCAGGTGCT CAGGATGCCC ATGAGGCTAT TCGTCCGTCA AGTGTCTTTA 1080 ATACACCAGA AAGCATCGCT AAGTATCTGG ACAAGGATCA GCTTAAGCTA TATACCCTTA 1140 TCTGGAATCG TTTTGTGGCT AGCCAGATGA CAGCGGCCGT TTTTGATACC ATGGCTGTTA 1200 AATTGTCTCA AAAAGGGGTT CAATTTGCTG CCAATGGTAG TCAGGTTAAG TTTGATGGTT 1260 ATCTTGCCAT TTATAATGAT TCTGACAAGA ATAAGATGTT ACCGGACATG GTTGTTGGAG 1320 ATGTGGTCAA ACAGGTCAAT AGCAAACCAG AGCAACATTT CACCCAACCG CCTGCCCGTT 1380 ATTCTGAAGC AACACTGAIT AAAACCTTAG AGGAAAATGG GGTTGGACGT CCATCAACCT 1440 ACGCGCCAAC CATTGAAACC ATTCAGAAAC GTTATTATGT TCGCCTGGCA GCCAAACGTT 1500 TTGAACCGAC AGAGTTGGGA GAAATTGTCA ATAAGCTCAT CGTTGAATAT TTCCCAGATA 1560 TCGTAAACGT GACCTTCACA GCTGAAATGG AAGGTAAACT GGATGATGTC GAAGTTGGAA 1620 AAGAGCAGTG GCGACGGGTC ATTGATGCCT TTTACAAACC ATTCTCTAAA GAAGTTGCCA 1680 AGGCTGAAGA AGAAATGGAA AAAATCCAGA TTAAGGATGA ACCAGCTGGA TTTGACTGTG 1740 AAGTGTGTGG CAGTCCAATG GTCATTAAAC TTGGTCGTTT TGGTAAATTC TACGCTTGTA 1300 GCAATTTCCC AGATTGCCGT CATACCCAAG CAATCGTGAA AGAGATTGGT GTTGAGTGTC 1860 CAAGCTGTCA TCAGGGACAA ATTATTGAGC GAAAAACCAA GCGTAATCGC CTATTCTATG 1920 GTTGCAATCG CTATCCAGAA TGTGAATTTA CCTCTTGGGA CAAGCCTGTT GGTCGTGACT 1980 GTCCAAAATG TGGCAACTTC CTCATGGAGA AAAAAGTCCG TGGTGGTGGC AAGCAGGTTG 2040 TTTGTAGCAA AGGCGACTAC GAGGAAGAAA AGATGGCTCT TTGTCAACTG TAGTGGGTTC 2100 AAGTCAGCTA AGCTCGAGAA AGGACAAATT TTGTCCTTTC TTTTTTGATA TTCAGAGCGA 2160

TAAAAATCCG TTTTTGAAG TTTTCAAAGT TCCGAAAACC AAAGGCATTG CGCTTGATAA 2220
GTTTGATGAG ATTATTGGTC GCTTCCAATT TGGCGTTAGA ATAGTGTAGT TGAAGGGCGT 2280
TGACGATTTT CTCTTTGTCC TTTAGAAAGG TTTTAAAGAC AGTCTGAAAA AGAGGATGAA 2340
CCTGCTTTAG ATTGTCCTCA ATGAGTCCGA AAAATTTCTC CGGTTCCTTA TTCTGAAAGT 2400
GAAACAGCAA GAGTTGATAG AGCTGATAGT GATGTTTCAA GTCTTGTAAA TAGCTCAAAA 2460
GCTTGTTTAA AATCTCTTTA TTGGTTAAAT GCATACGAAA AGTAGGGCGA TAAAAATGTT 2520

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10993 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TTTTCTCGAT AATAACTTCC ACCTTATTAT TTGGGATACC CTCCTCTTCT TCACCACCAC 60 GTTCATAGTA GTCATCGCGA TAGAGAAAAG CTACGATATC AGCGTCCTGC TCAATAGACC 120 CAGATTCACG AATATCAGAC AAGACCGGTC TCTTGTCCTG ACGTTGTTCT ACACCACGAG 180 240 AAAGCTGACT CAGAGCGATT ACTGGAACCT TCAATTCCTT GGCTAGTATT TTCAACTGAC GAGAAATTTC AGAAACTTCT TGTTGACGAT TTTCTCGACC AGTTCCCGTG ATAAGTTGCA 300 360 AATAGTCTAT CAAAATCAAA CCAAGATTTC CAGTTTCTTG AGCCAATTTA CGAGAACGAG AACGAATCTC TGTAATCCGA ATACCTGGCG TATCATCGAT ATAGATACTG GCGTTAGCTA 420 GATTACCCTG AGCAATAGTA TATTTTTGCC ACTCCTCATC TGTCAATTGC CCTGTACGGA 480 540 TAGAATGTGA CTCCACTAAG CCTTCTGCAG CTAACATACG ATCTACCAAG CTTTCCGCAC CCATTTCGAG TGAAAAAATA GCAACCGTTT TGTCCAACTT AGTCCCAATG TTCTGAGCGA 600 TATTCAAGGC AAATGCTGTC TTACCAACTG CTGGACGAGC TGCTAAGATA ATCAACTCCT 660 CCTCATGAAG TCCTGTTGTC ATATGATCCA AATCACGATA ACCTGTCGCA ATACCTGTAA 720 TATCGGTCGT TTGTTGCGAG CGAGCTTCCA GATTTCCAAA GTTGAGATTC AACACATCTC 780 GAATGTTCTT AAACCCGCTT CGATTTGCAT TTTCACTGAC ATCAATCAAC CCTTTTTCTG 840 CCTGAGCAAT AATTTCATCA GCTGGTTGTG ACGCTTCGTA AGCTTGGTTG ACAGACTCTG 900 TCAACTTGGC AATTAAACGA CGTAGCATTG CTTTTTCTGC AACAATCTTA GCATAATACT 960 CCGCATTAGC AGAAGTTGGC ACAGAATTAA CAATCTCAAC CAAGTAAGAC AAGCCACCAA 1020

ጥ 3 ጥምር ጥር ጥ አ) MC) com-		234			
					A TCTATGGCAT	
CACCACGAT	C GGATAAATC	G ACCATGGCT	T GGAAAATCA:	ACGATGGGC	TACTTAAAA	1140
AGTCCCGAG	A CTCAATGTA	r tetegeaca	A AAACAAGTTI	ACTCTCATC	ATAAAGATAG	1200
CCCCTAAAA	C GGATTGCTC	A GCTAAGATA	T CTTGAGGTTC	TACTCGTAAC	TCTTCTACTT	1260
CTGCCATCA	G ACTTCCCTTC	CTTTTACAA	T CTTGTCAAGA	AGGTGTAAAC	TTATCCTTCT	1320
TTCACACGA	A GATTGATTAC	ACTTGTGAT	A TCTTGATAGA	TTTTCACTGO	CACATCAATC	1380
AAACCAACC	G CTCGAATCGC	AGCTTGTACT	r tgaatatgac	GTTTATCAAT	CTTAATTCCA	1440
AATTGCTTT	F GCAATTCTTC	TGCAATCTTC	TTATTGGTAA	TAGAACCAAA	GGTACGACCA	1500
TCTGGACCA	A CTTTTTCAAC	AAATTCTAC	ACAGTTTCTT	CTGCTTCAAG	TTGTGCTTTA	1560
ATTGCTTTT	CTTCTGCAAT	CATCTCAGCC	G TGAGCTTTTT	CTTCCGATTT	TTGTTTACCA	1620
CGAAGTTCA	CTACAGCTTG	AGCAGTCGCT	TCTTTGGCTA	GATTCTTTT	GATAAGAAAG	1680
TTTTGCGCAT	ACCCTGTTGG	TACTTCCTTA	ATTTCGCCTT	TTTTACCTTT	TCCTTTAACA	1740
TCTGCTAAA	AGATTACTTT	CATTCTTCTT	тстссттттс	CTTCATTTCA	TTTAATACAA	1800
TTTCTGTCAC	TTTTTCACCT	GCTTCTGACA	AGGTTACATC	TTTAATTTGA	GCTGCTGCCA	1860
AATTAAAGTO	GCCTCCACCG	CCTAACTCTT	CCATAATCCG	TTGTACATTC	AGTTTACTAC	1920
GACTTCGAGC	TGAGATAGAG	ATAAATCCTT	GTGTATTCTT	CGCAAGAACA	AAACTCGCTT	1980
CAATACCTGA	CATGGCTAAC	ATGGCATCTG	CTGCCTTACT	AATAACAACT	GTATCATAGC	2040
ATTTCATGTC	CTTAGCCTCT	GCTATTAGTA	CATCTGAACC	TAATTTACGC	CCCTGTAAAA	2100
TAAGTTCATT	GACCTCACGA	TATTCTTCAA	AATCTGTCGC	AGCGATTTCC	TGGATAGCAA	2160
TACTATCACT	TCCGCGCGTT	CTGAGATAGC	TAGCAACATC	AAATGTCCGA	CTAGTTACTC	2220
GCGAGGTGAA	ATTTTTAGTA	TCCAACATCA	TACCAGCCAT	CAAGACACTT	GCTTGCATAC	2280
GACTCAAACG	ATTTTTCTTA	GAATTCTGGA	ACTGAATCAA	TTCCGTTACC	AACTCACTGG	2340
CACTACTTGC	ACCACTTTCG	ATATAAGTAA	TAACCGCATT	ATCTGGAAAA	TCCTGATCCC	2400
TTCTATGGTG	GTCAATAACA	ATGGTTTGGG	тааатааатс	ATAAAATTCT	TTTGATAATG	2460
TTAAGGCTGT	CTTTGAATGG	TCTACAAGAA	TCAACAAAGA	ACGATTGGTC	ACCATCCCCA	2520
TTGCATCCTT	AACAGACAAC	AACTTCGTAA	CTCCTTCTTT	TTCTATGAAT	GAAACAGCTC	2580
GTTCAATATC	TGGAGACATT	TGTTCTTCAT	CATAAAGAGC	ATAGCTATTT	TCAATCACAT	2640
TGCTGGCGAA	CAACTGCATA	CCTACAGCAG	AGCCCAAAGC	ATCCATGTCT	AAATTTTTGT	2700
GACCGACTAC	AAAAACCTGA	TCTACACTCC	GAATCTTATC	TGAAATAGCT	GTCATCATAG	2760
CGCGCGTACG	AGTCCGTGTA	CGCTTGATTG	AAGCAGCAGA	CCCACCACCÀ	AAATAAACTG	2820

GATTTTTCGT	TTCGTCGTTT	TCCTTAACAA	CCACCTGGTC	GCCACCACGT	ACTTCAGCCA	2880
AGTTCAAATT	GAGCAAAGCA	ACTTTCCCTA	TCTCATCATG	ATTTCCATCG	CCATAAGAAA	2940
ATCCCATACT	TAAGGTCAAG	GGCAACTGTC	TCTGTTTCGA	CTCTTCTCTG	AAAGCATCAA	3000
TAACAGAAAA	TTTATCATTC	ATCAAGCCCT	CAAGCACCGT	GTAGTCAGTA	AATAGATAAA	3060
ATCGATCCAT	ACTTACCCGA	CGAGAAAACA	TCATGTGTTT	TTCTGAAAAC	TCTGATATAA	3120
AATTAGCTAC	AAAACTATTG	ATTTGACTAA	TATCTGACTC	AGAAGTTTCA	TCCTCCAAAT	3180
CATCATAATT	ATCCACAGAG	ACAATCCCAA	TCACTGGTCT	ACTTGTTACC	AATTCATCTG	3240
TTATGGCTTG	TTCCCTGGAT	ACATCTACAA	AATACAAAAC	ACCGGAAGAA	GCATCCATAT	3300
GAACAGCATA	ACGCTTCTCA	CCAAGCTTGG	CATAAGTAGA	CGGATTTCCT	ACTGAAGCCT	3360
TGATAATCGT	TTGAACAGCT	TCTAAATCAA	AATCACCATC	TTCCTTGGTC	AAAATCAATT	3420
CAGCATAGGG	ATTAAACCAC	TCAACCTCTC	CAGAAGATAA	ATTCAATTTC	ATAACACCTA	3480
CAGGCATCTG	TTCCAATAGA	GCTGTCAAAC	TTTCTTCCGC	TTGGTGGTTT	ACATACTGTA	3540
TCTGTTCTAC	ATCACTCCTT	GTATAATGCA	CTCTCAGTTT	CTTAAATAAA	AAAACATAGC	3600
CTCCTACAAA	AAGAAACAAA	ATTAAAACCG	TCAACAGATT	ATTATTAACA	AAAATAATGA	3660
AAGTGGATAA	GACTCCAAAC	GCAATCAATC	CTACTAGAAT	AGGAAAAATT	GGACTTACAT	3720
AAAATTTTTT	CATTCAAAAC	CTCTTGGCAC	CCATTATACC	ATAATACCCC	TCAAAAAGCG	3780
ΛΟΤΤΤΤΤΑΑΑ	AGTGTAATCA	GTAATTCTAT	CAATTATAAG	AAAAAGGTAG	TTTACAATTC	3840
AGTAAACCTA	CCTTTACACA	TATTGAAATT	AAGATTCTTT	AACCTCTAAC	AAACCAATTT	3900
CGCCATCCTC	ACGACGATAA	ATCACATTGG	TTGTCTGATC	TTCAACATCC	ACATAGATAA	3960
AGAAATCATG	CCCCAATAAA	TCCATTTGTA	GAATTGCTTC	TTCCAAATCC	ATTGGTTTTA	4020
AATCAATTTG	TTTTGAACGA	ACAACTTTAG	ACTGGACAAT	ATTTGAATCT	TCCACCAAAG	4080
CATCTGTAAA	TAATTGACCA	GTTGCTACCT	TATTTTTATT	TTTACGCTCG	ATTTTTGTTT	4140
TATTTTTACG	AATCTGACGT	TCAATTTTAT	CAGTTACAAG	GTCAATTGAA	CCATACATAT	4200
CTTGAGATAC	ATCTTCTGCG	CGGAGAGTAA	TAGATCCAAG	CGGAATCGTT	ACTTCCACTT	4260
TAGCCGTTTT	TTCACGATAA	ACTTTTAAGT	TAATTCGGGC	ATCCAACTCT	TGTTCTGGTT	4320
GGAAGTACTT	TTCGATCTTT	TCGAGTTTAG	AAACTACATA	ATCACGAATT	GCTTCTGTTA	4380
CTTCTAGGTT	TTCACCACGG	ATACTATATT	TAATCATATG	AGTACCTTCT	TTCTAAACAT	4440
TTTTGTTTTT	ATGATTTTAT	TATAACGCTT	TCATTCTATT	TTTGCAAATT	TTTTCCTCAT	4500
CTTACAAGGG	AAAATGTTTT	TACATCCTTA	GCACCAGCTT	CTTCCAACAG	TTTCTTAACA	4560

			236			
		AGTATAGATA				4620
GTGACTCCAC	EAATAATTT	GAAAGGAAGT	TCTGTCCCCA	AGCGCTCTGA	ACGATTTTA	4680
GAAGAACTGG	CTCTCTCTTC	TCTTTTCTCT	AATAAATCCA	GATACTCAAA	GCCTGCTGCC	4740
rctaccaagc	CCTCAACCTG	ATTAAATCCT	CTATTAGCAT	ATCTATCAGG	ACTTAGGGGA	4800
ATTACAACAA	ATTGATACTC	TTTGTACTTT	TTCAACTCCT	CACTTAAAAA	TGAAGCGAAA	4860
ACTTTTCTTA	ACAGGAAGTC	TCCATCAAAC	TTATACCGAC	TGAAAAAATC	CTTCATAGCT	4920
TGATTGTAAG	TAAAAATCGC	TCTATGACTG	ACTTCAACTC	CCTCTTTACA	CCAAAGTTGA	4980
CAATCTTGAC	ACTITGTTGA	CAACTCTGTT	TTCATACAAT	TTGGACAGTT	CTCTTCCCCA	5040
ATTCTTTCAA	AAGTAGAATC	ACAGTCTGAA	CAAAGACAAG	AGTCATCATT	CCTCAGAAGT	5100
AAGAGACTAC	TAAAAGTTAA	AACAGTCTTC	ATAGTCTGCC	CACATAACAA	GCACTTCATA	5160
GACCAGCCTC	CTTATTCATC	ATCTGAATTT	CCTTAATCGC	CTTCTTGATT	GAAGCATTTA	5220
ACCCATCATG	GAAGAAAAGC	AAATCTCCTG	TCGGTCTATC	CATGCTTCGT	CCAACTCGTC	5280
CACCAATCTG	AATCAAACTA	GACTTGGTAA	ACAAACGATG	ATTGGCCTCT	ACTACGAAAA	5340
CATCCACACA	AGGGAAGGTA	ACTCCGCGCT	CCAAGATTGT	CGTACTGATA	AGTATTGTCA	5400
GTTCTCCATC	TCGAAAAGCT	TGTACTTGCT	CTAATCGATC	CTCTGTTACA	GAAGATACAA	5460
AGCCAATTTT	CTCATTTGGA	AATTGCTCCT	GTAAGATTTC	TGCTAACTGC	TCCCCTTTCT	5520
TAATTTCTGA	AGCAAAAATG	AGTAACGGAT	AAGCTGTCTT	TCTCTGCTTC	TCAATATAGG	5580
ACTTTAACTT	TGGTGACAAA	CGATTCTTGT	CTAAGTAGCG	ATTAAAATCO	GATAACCAAA	5640
TTGGTTTTGG	AATAATCAAC	GGATTTCCAT	GAAACCGTCT	COGTAAATTO	AGTCTTTTTA	5700
GTTCTCCTAA	ACGGACCTTT	TTATCTAACT	CATTGGTCGA	AGTCGCTGTT	AAAAAGATTC	5760
TCAATCCATT	· CTCCTTTACA	CTATTCTIGA	CAGCGTGGTA	AAGCATGGGA	TTATCAACAT	5820
AAGGAAAAGG	: ATCTACTTCA	TCCACTATCA	GCAAATCAAA	AGCTTGATA	AACTTCAATA	5880
ACTGATGGGT	TGTTGCAACA	ACTAGTGGTG	TTCGAAAAT	AGGTTCCGAT	TCTCCATGTA	5940
GCAAAGCTAT	CCCGCAAGAA	AAATCCTGTI	GCAGGCGCTT	GTACAGCTC	AAACAAACAT	6000
CTATGCGAGC	ACTAGCCAAA	CACACTGCAC	CACCCGCATT	GATCACTTT	GCCACTACTT	6060
GATAAATCAT	TTCTGTCTT	CCAGCTCCTC	TTACCGCATC	G AACTAAGGT	GGCTTTTGCT	6120
TGTCTACTAC	TTGAAGCAAT	CCCTCTGACA	CCTTCTCTT	AAAAGGAGT	* AATTGGCCGC	6180
GCCATTTGAG	G AACATCTTGG	TTTGGAAAA	CCTCCTGCGG	AAAATAGTA	r AAAGTTTGAT	6240
CACTTCTGAC	TCGCTTCAT	AGCAAGCAC	CTCGACAAT	A GTAAGCACC	ATGGGCAAAT	6300
ACCATTCTT	TAGAATAGT	A CTATTACAGO	GTTGACAGA	A AAGTTTCCC	TTCTCCTTTC	6360

ATAAACGACC GAGATAATCT AAATTTACTT TCATACTTCT TTATTCGTAA AAACTAGCAC TTTAGATGAT TTTTTAGTAC AATTAAATCA TGGAATTTAG GACAATTAAA GAGGACGGTC AAGTCCAAGA AGAAATCAAA AAATCTCGCT TTATCTGCCA TGCCAAGCGT GTTTATAGCG AAGAAGAGGC TCGTGACTTC ATTACTGCCA TCAAAAAAGA ACACTACAAA GCGAACACATA ACTGCTCTGC CTTCATTATT GGAGAACGTA GTGAAATTAA ACGTACAAG GGAGACACATA ACTGCTCTGC CTTCATTATT GGAGAACGTA GTGAAATTAA ACGTACAAGT GATGATGGTG AGCCTAGTGG TACTGCTGGT GTTCCCATGC TTGGGGTACT AGAAAATCAC AATCTCACCA ATGTCTGTG GGTCGTGAC CGCTACTTTG GTGGTATTAA ACTAGGCGCT GGAGGACTAA TTCGTGCTTA CGCCGGCAGT GTCGCCTTAG CTGTCAAAGA AATTGGTATT ATTGAAATAA AGAACAGGC TGGCATTGCT ATCAAATGT CTTATGCTCA GTACCAAGAG TACAGTAACT TCCTTAAAGA ACATGGTCTC ATGGAGCTGG ATACAAACTT TACAGATCAA GTCGATACGA TGATTTATGT TGATAAAGAA GAAAAAGAAA CTATTAAAGC TGCACTTGTG GAGTTTTTA ATGGAAAAGT CACTTTAACT GACCAAAGGT TACGAGAGGT TGAAGTTCCT GTAAACTTAG TGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCCA CAACTACTTT AGCGAGGAAA ATAAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAGCA ATCCAAACGA AACCTGATAT TCGTTTCCTT CACACCTATT TACTAGAATT AGCTGAACCC AATCACTTGA AAATTAATGA CTTTTGATCT TGATAATATA AAATGATTAG AAATGAACCC AATCACTTGA AAATTAATGA CTTTTGATCT TGATAATATA AAATGATTAG GATAGCGTAT TACTAAAACGA AACCTGATAT TCGTTAAACTT AGCACCTATT TACTAGAATT AGCTGAACCC AATCACTTGA AAATTAATGA TGGAAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTACTAAACGA AACCCGGAT TGTTTAAACTT AACAACATCG TGCCCAGAAGG TCCTGCAGAC GTCTATATAA AGCTTGAAC AACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTCGAAC ATCCTAAACGA AACCCGGT TATTGGACTT TCATGGGTAG GTCCTGCTAC AGGATATAAA GCCTGAACCGA TTATTAGCCT GTTCATCTG TAAAAGACCG TATTGCCCTT AGCATCATTG AAAAAACCCGG TATTGGACT TCATGGGTAG GTCCTGCTAC TATTGTCGAAC TCGTCCTAAC AACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG TATTGGACT TCATGGGTAG GTCCTGCTAAC AGGATAAAA GTCGTCATCG TTATGCCCTA CTCTCGGTAGC GAGGAATGA AGGGTCTTATA CCAAGCTTAT CCAACAATCG CTGCTCAAC TCCTCGGTAGC GAGGAATGA AAGGTCTAT TCCTAAGCT TAGGACCC CTGCTCAAC TCCTCGGTAGC GAGGAATGA AAGGTCCTAT TCCTAAGCT TAGGACCC CTGCTAACC AACAGGACG GAGAAATCAG CTAAAATTTA CCAAGCTAT CCAAAACCGA ACGAAAAACC CTCTCGTTAC GTGCGAACGA TTTCTGGCT							
TTTAGATGAT TTTTTAGTAC AATTAAATCA TGGAATTTAG GACAATTAAA GAGGACGGTC AAGTCCAAGA AGAAATCAAA AAATCCCGCT TTATCCGCCA TGCCAAGCGT GTTTATAGCG AAGAAGAGGC TCGTGACTTC ATTACTGCCA TCAAAAAAGA ACACTACAAA GCGACACATA ACTGCTCTCC CTTCATTATT GGAGAACGTA GTGAAATTAA ACGTACAAAG GCGACACATA ACTGCTCTCC CTTCATTATT GGAGAACGTA GTGAAATTAA ACGTACAAAG GATGATGGTG AGCCTAGTGG TACTGCTGGT GTTCCCATGC TTGGGGTACT AGAAAATCAC AATCCCACCA ATGTCTGTG GTCGTGACA CGCTACTTTG GTGGTATTAA ACTAGGCGCT GGAGGACTAA TCGTGCTTA CGCCGGGAGT GTCGCCTTAG CTGTCAAAGA AATTGGTATT ATTGAAATAA AAGAACAGGC TGGCATTGCT ATCAAATGT CTTATGCTCA GTACCAAGAG TACAGTAACT TCCTTAAAGA ACATGGTCTC ATGCAGCTG ATACAAACTT TACAGATCAA GTCGATACCA TGATTTATGT TGATAAAGAA GAAAAAGAAA CTATTAAAGC TGCACTTGTG GAGTTTTTTA ATGGAAAAGT CACTTTAACT GACCAAGGGT TACAGAACTT TACAGATCAA GTCGATACGA TGGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCCA CAACTACTTT AGCGAGGAAA ATAAAAAGAG CCGTACCAAA ATATACTAGA AAATGAAGCA ATCCAAACGA AACCTGATAT CGTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACCA AATCACTTGA AAATTAATGA CTTTTGATCT TGATAATATA AAATGGTATG GATAGCGCA ATCCAAACGA AACCTGATAT CCTTTGATCT TGATAATATAA AAATGGTATG GATAGCGCA ATCCAAAACAT ATCTTATACA AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACCCGAT TGTTAAACTT AACAACATCG TGCCAGAAGG TCCTGCAGAC GTCTATATAA AGCTTGAAC AACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTCTGAAA TTAATCGGTC AAACACCGAT TATTGGACTT TCATGGGTAG GTCCCAGAAGG TCCTGCAGAC GTCTATATAA AGCTTGAAC AACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGCCCTT AGCATCATTG AAAAAACCCGAT TATTGGACTT TCATGGGTAG GTCCTGCTAA AGGGTATAAA GTCGTCATCG TAAACCCGAT TATTGGACTT TCATGGGTAG GTCCTCCTAC TATTGTCCCTT AGCATCATTG AAAAAACCCGA TTATTGGACTT TCATGGGTAG GTCCTCCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG TCTCTGGTTAGC GAGGAAATGA AGGGTCTATA CCAAGAATCG CTGCTCAACC TCCTGGTTAGC GAGGAAAGAA GTCGACTATA CCAAGAAATCG CTGCTCAACC TCCTGGTTAGC GAGGAAATGA AGGGTCTAT TCCTAAGCT TATGCCCTTA CTTCCTCTCC AACAAGATGG GAGGAAATGA AAGGTGCTAT TCCTAAGCA CAAAAATCG CTGCTCAACC TCCTCGGTAGC GAGGAAATCAG CTAAAATTAT CCAAGAATCG CTGCTGAACC TCCTCGGTAGC GAGGAATCAG CTGCTTTTCGC TAAAGATCG CTCAAAATCCA AACAACCTGG AACAAGGGCT GAGAAATCTA CCCTCT	TCATTGCTGG	AAGTTTCTCC	GCCAACTGAC	GTTCTTCTTC	TGTTAATTCA	TTCTCAGTAA	6420
AAGTCCAAGA AGAAATCAAA AAATCCGCT TTATCTGCCA TGCCAAGCGT GTTTATAGGG AAGAAGAGGC TCGTGACTTC ATTACTGCCA TCAAAAAAGA ACACTACAAA GCGACACATA ACTGCTCTGC CTTCATTATT GGAGAACGTA GTGAAATTAA ACGTACAAGT GATGATGGTG AGCCTAGTGG TACTGCTGGT GTTCCCATGC TTGGGGTACT AGAAAATCAC AATCTCACCA ATGTCTGTG GGTCGTGACA CGCTACTTG GTGGTATTAA ACTAGAGGCT GGAGGACTAA ATGTCTGTGT GGCCGGCAGT GTCCCCTTAG CTGCTAAAGA AATTGGTATT ATTGAAATAA AGAACAGGC TGGCATTGCT ATTCAAATGT CTTATGCTCA GTACCAAGAG TACAGTAACT TCCTTAAAGA ACATGGTCTC ATGGAGCTGG ATACAAACCT TACAGATCAA GTCGATACCA ATGGAAAAGA ACATGGTCTC ATGGAGCTGG ATACAAACCT TACAGATCAA GTCGATACCA ATGGAAAAGA ACATGGTCTC ATGGAGCTGG ATACAAACCT TACAGATCAA GTCGATACCA ATGGAAAAGT CACTTTAACT GACCAAGGTT TACAGAGGT TGAAGTTCCT GTAAACTTAC ATGGAAAAGT CACTTTAACT GACCAAGGTT TACAGAGGT TGAAGTTCCT GTAAACTTAC ATGAAACAAT GAATAATACA GCGTTTCGTT GACATTCTCA CAACTACTTT AGCGAGCAAA ATAAAAAAGAG CGTACCAAA ATATACTAGA AAATGAAGCA ATCAAACGA AACCTGGATAT CGTTTTCCTT CACACCCTATT TACTAGAATT AGCTGAACC AATCACTTGA AAATTAATGA CCTTTGATCTA TGATAATATAG AAATGGATTA GACTGAAACA ATCATAACAA AAAGAGGTATT CACACCTATT TACTAGAAAT AGCTGAAACC AATCACTTGA AAATTAATGA AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC ATTTAACCT GGTTCATCTG TAAAAGACC GTCTGCAGAC GTCTATATAA AGCTTGAACC ATTTAGACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAACC ATTTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTTAAA GCCTGAACCCGG TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GCCTGAACCCGG TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GCCTGAACCCGG TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCTAAC TTATGCCTGA AACTATGAGT TTCATGGAACCA GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAGGGCT CAAGAAATCG CTGCTGAACC TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAGGCT TAGGCCT TTGTGCTGG TGATGGTTC CTTCCTCTCC AATTTGACAA TCCAGCTAAT CCAAGAAATCG CTGCTGAACC TGCTGGAACCAC TTCTCTCTCC AATTTGACAA TCCAGCTAAT CCAAGAATCC TTGTTGCTGG AACAAGGACT GAGAAACACAGA TTCCTGCTTTCCG TAAAAGACCGG TTGTTTCCGG TAAAAAACCTGG TAAAAAACCTGG TAAAAACCTGG TAAAAACCTGG	ATAAACGACC	GAGATAATCT	AAATTTACTT	TCATACTTCT	TTATTCGTAA	AAACTAGCAC	6480
AAGAAGAGGC TCGTGACTTC ATTACTGCCA TCAAAAAAGA ACACTACAAA GCGACACATA ACTGCTCTGC CTTCATTATT GGAGAACGTA GTGAAATTAA ACGTACAAGT GATGATGGTG AGCCTAGTGG TACTGCTGGT GTTCCCATGC TTGGGGTACT AGAAAATCAC AATCTCACCA ATGTCTGTGT GGTCGTGACA CGCTACTTTG GTGGTATTAA ACTAGGCGCT GGAGGACTAA AGGACAGGC TGGCATTGCT ATTCAAATGT CTGTGCAAAGA AATTGGTATT ATTGAAATAA AGAACAGGC TGGCATTGCT ATTCAAATGT CTTATGCTCA GTACCAAGAG TACAGTAACT TCCTTAAAGA ACATGGTCTC ATGGAGCTGG ATACAAACTT TACAGAGTCAA GTCGATACGA ATGATTTATGT TGATAAAGAA GAAAAAGAAA CTATTAAAGC TGCACTTGT GAGTTTTTA ATGGAAAAGT CACTTTAACT GACCAAGGTT TACGAGAGGT TGAAGTTCCT GTAAACTTAC TGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCTCA CAACTACTTT AGCGAGCAAA ATAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAGCA ATTCAAACGA AACCTGATAT CCTTTGATCTA TGATAATATAA GAATGATATG GATAGCGTAA ATCATACTTA AACAACCTATT TACTAGAATT AGCTGAACCC AATCACTTGA AAATTAATGA CCTTTGATCTA TGATAATATAA GAATGATATG GATAGCGTAA TTACTAAAGAA ATCTTATACA AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAG GTCTATATAA AGCTTGAAGC ATTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAG GTCTATATAA AGCTTGAAGC ATTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAG GTCTATATAA AGCTTGAAGC ATTAACCTT GATACTCTG TAAAAGACCG TATTGCCCTT AGCAACAACTG GAAACACCGG TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GCCTGAACCCG TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCTTATACA CTGGTCTAAC AACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCTAAC TTATGCCTGA AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTCCTGAAC TCGCCTAAC TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCCAGCTAAT CCAAGAAATCG CTGCTGAAC TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCCAGCTAAT CCAAGAAATCG CTGCTGAAC TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCCAGCTAAT CCAAGAATCG CTGCTGAAC TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCCAGCTAAT CCAAGAATCG CTGCTGAAC TCCTGGTAGC GAGGAATGA AAGGTGCTAT TGCCTGAT CCAAGAATCG TTGTGCTGG TGATGGTTC CTTCCTCTCTC AATTTGACAA TCCAGCTAAT CCAAGAATCG TTGTGCTGG AACAAGGGCT GAGAATACTAG CTGCTTTCGG TAAAAGACTGG TAAAAACCTGG TAAAAACCTGG AACAAGGGCT GAGAAAAACCTGG TAAA	TTTAGATGAT	TTTTTAGTAC	AATTAAATCA	TGGAATTTAG	GACAATTAAA	GAGGACGGTC	6540
ACTGCTCTGC CTTCATTATT GGAGAACGTA GTGAAATTAA ACGTACAAGT GATGATGGTG AGCCTAGTGG TACTGCTGGT GTTCCCATGC TTGGGGTACT AGAAAATCAC AATCTCACCA ATGTCTGTGT GGTCGTGACA CGCTACTTTG GTGGTATTAA ACTAGGCGCT GGAGGACTAA 6780 ATGTCTGTTA CGCCGGCAGT GTCGCCTTAG CTGTCAAAGA AATTGGTATT ATTGAAATAA 6900 AAGAACAGGC TGGCATTGCT ATTCAAATGT CTTATGCTCA GTACCAAGAG TACAGTAACT 6760 TCCTTAAAGA ACATGGTCTC ATGGAGCTGG ATACAAACTT TACAGATCAA GTCGATACCA ATGGAAAAGT CACTTTAACT GACCAAGGT TACGAAGGGT TGAACTTAGG TGATTTATGT TGATAAAGAA GAAAAAGAAA CTATTAAAGC TGCACTTGTG GAGTTTTTA 7080 ATGGAAAAGT CACTTTAACT GACCAAGGTT TACGAGAGGT TGAAGTTCCT GTAAACTTAG 7140 TGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCCA CAACTACTTT AGCGAGCAAA 7200 ATAAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAGCA ATTCAAAACGA AACTGATAT 7260 CGTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTAATGA 7320 CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTTA TACTAAAGAT ATCTTATACA 7380 AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TACATAAGAT ATCTTATACA 7380 ATTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC 7500 ACTTTGACTT TCATGGTAG TTCAAAGACC TATTGCCCTT AGCAACAGTG GAAACACCGG 7500 ACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCATAA AGGGTATAAA GTCGTCTAAC 7740 ACCAGGAGTAT CATGGAGCG GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTCGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGA TCGTCCTAAC 7740 TCCTCGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGT CAAGAAATCG CTGCTGAACG 7740 TCCTCGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGT CAAGAAATCG CTGCTGAACG 7740 TCCTCGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGT CAAGAAATCG CTGCTGAACG 7740 AACAGGGGCT GAGAAACTAG CTGCTTTCGG TAAAAGATGA ACGAAAAACCCG 7800 AACAGGGGCT GAGAAACACAG TTCCTCTTC AATTTGACAA TCCAGGAATAC CCAGAAAGAAC 7860 AACAGGGACT GAGAAACACGA TTTCTGGTG TAAAGATGA ACGAAAAACCCG 7740 AACAGGGACT GAGAAACACAG TACCACTATT TCCAGGAACAACACAG TTCCTCTAAC 7740 AACAGGGACT TCCTCCTCTC AATTTGACAA TCCAGGCTAAT CCAGAAATCA ACGAAAAGAAC 7860 AACAGGGACT GAGAAACACAG TTCCTCTTCG TAAAATTAT CCAAGCTATT CCAGAAATCA ACGAAAAACCTGG 7800 AACAGGGACT TCTCCTCTCC AATTTGACAA TCCAGGAATAC ACGAAAAA	AAGTCCAAGA	AGAAATCAAA	AAATCTCGCT	TTATCTGCCA	TGCCAAGCGT	GTTTATAGCG	6600
AGCCTAGTGG TACTGCTGGT GTTCCCATGC TTGGGGTACT AGAAAATCAC AATCTCACCA ATGTCTGTGT GGTCGTGACA CGCTACTTTG GTGGTATTAA ACTAGGCGCT GGAGGACTAA 6840 TTCGTGCTTA CGCCGGCAGT GTCGCCTTAG CTGTCAAAGA AATTGGTATT ATTGAAATAA 6900 AAGAACAGGC TGGCATTGCT ATCCAAATGT CTTATGCTCA GTACCAAGAG TACAGTAACT 6960 TCCTTAAAGA ACATGGTCTC ATGGAGCTGG ATACAAACTT TACAGATCAA GTCGATACGA 7020 TGATTTATGT TGATAAAGAA GAAAAAGAAA CTATTAAAGC TGCACTTGTG GAGTTTTTTA 7080 ATGGAAAAGT CACTTTAACT GACCAAGGTT TACGAGAGGT TGAAGTTCCT GTAAACTTAG 7140 TGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCTCA CAACTACTTT AGCGAGCAAA 7200 ATAAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAACCA AATCAAACTT AGCGAGCAAA 7220 CCTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTAATGA 7320 CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTTA TACTAAAGAT ATCTTATACA 7380 AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TACATACAAA AACTCGATAT 7440 TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC 7550 ACTTTGATCT GGTCATCTG TAAAAGACG TATTGCCCTT AGCAACAGTG GAAACACCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCAACG 7620 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCAACC 7740 TCCTCGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGT CAAGAAACCCG 7680 TACTTGGACTT TCATGGGTAG GTGCTGCTAAA AGGCTTAATAAA GTCTCCTAAC 7740 TCCTCGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGT CAAGAAATCG CTCCTAAC 7740 TCCTCGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGT CAAGAAATCG CTCCTGAACC 7740 TCCTCGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCA CTCCTCAAC 7740 TCCTCGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT TTTTTGCCTGA 7740 AACAGGAGCT GAGAAACTAG CTGCTTTCG TAAAGATGA TCAGAAACACCG 7800 AACAGGAGCT GAGAAACTAG CTGCTTTCGG TAAAGATGA ACGAAAAACCCG 7800 AACAGGGACT GAGAAACACAG GTAAAATTAT CCAAGCTAAT CCAGAAGAAC ACGAAAGAAC 7740 AACAGGAGCT GAGAAACACAG GTAAAATTAT CCAAGCTTAT CCAGAAGAAC ACGAAAAGAAC 7740 AACAGGAGCT GAGAAACACAG TAAAGATGA TCCAGGAAGAA ACGAAAAACCCGG 7800 AACAAGGAGCT GAGAAACACAG TAAAATTAT CCAAGCTTAT CCAGAAGTAC ACGAAAAGAAC 7740 AACAGGAGCT GAGAAACACAG TAAAATTAT CCAAGCTAAT CCAGAAGAAC ACGAAAAGAAC 7740 AACAGGAACCT GAGAAACACAG AACCTCTAAACCA AAAATCTAA 7980 AACACAGGTAC GAG	AAGAAGAGGC	TCGTGACTTC	ATTACTGCCA	TCAAAAAAGA	ACACTACAAA	GCGACACATA	6660
ATGTCTGTT GGTCGTGACA CGCTACTTTG GTGGTATTAA ACTAGGCGCT GGAGGACTAA 6840 TTCGTGCTTA CGCCGGCAGT GTCGCCTTAG CTGTCAAAGA AATTGGTATT ATTGAAATAA 6900 AAGAACAGGC TGGCATTGCT ATTCAAATGT CTTATGCTCA GTACCAAGAG TACAGTAACT 6960 TCCTTAAAGA ACATGGTCTC ATGGAGCTGG ATACAAACTT TACAGATCAA GTCGATACGA 7020 TGATTTATGT TGATAAAGAA GAAAAAGAAA CTATTAAAGC TGCACTTGTG GAGTTTTTTA 7080 ATGGAAAAGT CACTTTAACT GACCAAGGTT TACGAGAGGT TGAAGTTCCT GTAAACTTAG 7140 TGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCTCA CAACTACTTT AGCGAGGAAA 7200 ATAAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAGCA ATTCAAACGA AACCTGATAT 7260 CGTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTAATGA 7320 CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTAA TACTAAAGAT ATCTTATACA 7380 AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT 7440 TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC 7550 ACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTCAAA GCAACAAGTG GAAACACCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTCGTAA AGGGTATAAA GTCGTCAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTCGTAT TGCTAAGGAT CCAAGAAATCG CTGCTGAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTCGTAT TGCTAAGGT CAAGAAATCG CTGCTGAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTCCTAT TGCTAAGGT CAAGAAATCG CTGCTGAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTCCTA TGCTAAGGTT CCAAGAAATCG CTGCTGAAC 7780 AACAGGAGCT GAGGAATCAA CTGCTTTCGG TAAAGATCG CTGCTGAAC 7780 AACAGGAGCT GAGAATCTA CCAAGCTTAT CCAAGAAATCA ACGAAAGAAC 7780 AACAGGAGCT GAGAATCTAG CTGCTTTCGG TAAAGATGGA TTAGATCGCT TTGTTGCCTG 7720 AACAGGAGCT GAGAAACAC TTCTGGTGT TTCTCATGCA CTCAAAATCAG AAAAATCTAA 77980 AACAGGAGCT GAGAAACAAC TTCCTGGTG TAAAGATCGA AAAAATCTAA 77980 AACAGGAGCT GAGAAACAC TTCCTGGTGT TTCTCATGCA CTCAAAATCAG AAAAATCTAA 77980 AACATCAAGTT TTTGCAGTAG AACACCTGG TAAAAATCTAA 77980 AACATCAAGTT TTTTGCAGTAG AACACCTGG TAAAAATCTAA 77980 AACATCAAGTT TTTTGCAGTAG AACACCTGG TAAAAATCTAA 77980	ACTGCTCTGC	CTTCATTATT	GGAGAACGTA	GTGAAATTAA	ACGTACAAGT	GATGATGGTG	6720
TTCGTGCTTA CGCCGGCAGT GTCGCCTTAG CTGTCAAAGA AATTGGTATT ATTGAAATAA 6900 AAGAACAGGC TGGCATTGCT ATTCAAATGT CTTATGCTCA GTACCAAGAG TACAGTAACT 6960 TCCTTAAAAGA ACATGGTCTC ATGGAGCTGG ATACAAACTT TACAGATCAA GTCGATACGA 7020 TGATTTATGT TGATAAAGAA GAAAAAGAAA CTATTAAAGC TGCACTTGTG GAGTTTTTA 7080 ATGGAAAAGT CACTTTAACT GACCAAGGTT TACGAGAGGT TGAAGTTCCT GTAAACTTAG 7140 TGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCTCA CAACTACTTT AGCGAGCAAA 7200 ATAAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAGCA ATTCAAACGA AACCTGATAT 7260 CGTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTAATGA 7320 CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTTA TACTAAAGAT ATCTTATACA 7380 AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT 7440 TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC 7550 ACTAGTGATCT TCATGGGTAG CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCATAA AGGGTATAAA GTCTTGAACCTGA 7560 AACTATGAGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCATAA AGGGTATAAA GTCGTCATAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGCT TATTGCCTGA 7680 AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG 7800 TGATGGTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGGT GAGATACTAG CTGCTTTCGG TAAAAGATGG TTAGATGCCT TTGTTGCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTG TAAAAGATGA AAAAATTCTAA 7980 CATTCAAGTT TTTTGCAGTAG AAGCAGATGA ATCTGCTTT CTATTCTGGTG AAAAAATTCTAA 7980 CATTCAAGTT TTTTGCAGTAG AAGCAGATGA ATCTGCTTT CTATCTGGTG AAAAAATTCTAA 7980	AGCCTAGTGG	TACTGCTGGT	GTTCCCATGC	TTGGGGTACT	AGAAAATCAC	AATCTCACCA	6780
AAGAACAGGC TGGCATTGCT ATTCAAATGT CTTATGCTCA GTACCAAGAG TACAGTAACT 6960 TCCTTAAAGA ACATGGTCTC ATGGAGCTGG ATACAAACTT TACAGATCAA GTCGATACGA 7020 TGATTTATGT TGATAAAGAA GAAAAAGAAA CTATTAAAGC TGCACTTGTG GAGTTTTTA 7080 ATGGAAAAGT CACTTTAACT GACCAAGGTT TACGAGAGGT TGAAGTTCCT GTAAACTTAG 7140 TGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCTCA CAACTACTTT AGCGAGCAAA 7200 ATAAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAGCA ATCCACTGA AAACTAGATA 7260 CGTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTAATGA 7320 CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTTA TACTAAAGAT ATCTTATACA 7380 AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT 7440 TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC 7500 ATTTAATCCT GGTTCATCTG TAAAAGACCG TATTGCCCTT AGCATGATTG AAAAAACCCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCTTCTGAA CAAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCCGG 7680 AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG 7800 TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCTTAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGAACACGA TTTCTGCGT TAAAGATCG CTGCTGAACG 7800 TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCATAAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGAAACGAC GTAAAATTAT CCAAGCTTAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGAACCACG TTATGCCCTAA TCCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGAACCAC CTGCTTTCCG TAAAAGTGGA TTGCTCTGAC TTGTTCCTGG 7920 AGTAGGTTCT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAAATCCTAA 7980 CATTCAAGTT TTTTGCAGTAG AAGCAGATGA ATCCGCTGTA AAAAATCCTAA 7980 CATTCAAGTT TTTTCCAGTAG AAGCAGATGA ATCCGCTGTG AAAAACCCTGG 8040	ATGTCTGTGT	GGTCGTGACA	CGCTACTTTG	GTGGTATTAA	ACTAGGCGCT	GGAGGACTAA	6840
TCCTTAAAGA ACATGGTCTC ATGGAGCTGG ATACAAACTT TACAGATCAA GTCGATACGA 7020 TGATTTATGT TGATAAAGAA GAAAAGAAA CTATTAAAGC TGCACTTGTG GAGTTTTTTA 7080 ATGGAAAAGT CACTTTAACT GACCAAGGTT TACGGAGGGT TGAAGTTCCT GTAAACTAG 7140 TGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCTCA CAACTACTTT AGCGAGCAAA 7200 ATAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAGCA ATCAACTGA AAACTAATGA 7320 CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTA TACTAAAGAA ATCATAATGA 7320 CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTA TACTAAAGAT ATCTTATACA 7380 AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGGAT 7440 TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTAATAA AGCTTGAAGC 7500 ATTTAATCCT GGTTCATCTG TAAAAGACCG TATTGCCCTT AGCATGATTG AAAAAACCCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA 7680 AACTATGGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG 7800 TGATGGTTCC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAATCG CTGCTGAACG 7800 TGATGGTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAATCG CTGCTGAACG 7800 AACAGGAGCT GAGAAACTAG CTGCTTTCGG TAAAGATGG TTAGATGCCT TTGTTGCTGG 7920 AACAGGAGCT GAGAACCAGA TTTCTGGTGT TCCTCATGCA CTCAAATCAG AAAATCCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ACCCAAACCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TCCTCATCC CTCAAACCAG AAAAATCCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ACCCAAACCTGG 7920 AGTAGGTACT TTTTGCAGTAG AAGCAGATGA AACACCTGG AAAAAACCCTGG 7920 AGTAGGTACT TTTTGCAGTAG AAGCAGATGA ATCTCTAATC CTAACTCAAC AAAAAACCCTGG 7920 AGTAGGTACT TTTTCGAGTAG AAGCAGATGA ACCCAAACCAGG AAAAATCCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ACCCAAACCAGG AAAAATCCTAA 7980 CATTCAAGTT TTTTGCAGTAG AAGCAGATGA ACCCAAACCTGG 7920 AGTAGGTACT TTTTCGAGTAG AACACCTGG AAAAAACCCTGG 8040	TTCGTGCTTA	CGCCGGCAGT	GTCGCCTTAG	CTGTCAAAGA	AATTGGTATT	ATTGAAATAA	6900
TGATTTATGT TGATAAAGAA GAAAAAGAAA CTATTAAAGC TGCACTTGTG GAGTTTTTA 7080 ATGGAAAAGT CACTTTAACT GACCAAGGTT TACGAGAGGT TGAAGTTCCT GTAAACTTAG 7140 TGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCTCA CAACTACTTT AGCGAGCAAA 7200 ATAAAAAGGA GCGTACCAAA ATATACTAGA AAATGAAGCA ATCCACACGA AACCTGATAT 7260 CGTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTAATGA 7320 CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTA TACTAAAGAT ATCTTATACA 7380 AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT 7440 TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC 7500 ATTTAATCCT GGTTCATCTG TAAAAGACCG TATTGCCCTT AGCATGATG AAAAAGCCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GCCTGAACC 7680 AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTCAAC 7780 TGATGGTTTC CTTCCTCTTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGGGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAATCCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCCTGATC TTGTTGCTGG 7920 AGTAGGTACT TTTTGCAGTAG AAGCAGATGA ATCCTCAAATCAG AAAATCCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTCTAATCAG AAAAACCTGG 8040	AAGAACAGGC	TGGCATTGCT	ATTCAAATGT	CTTATGCTCA	GTACCAAGAG	TACAGTAACT	6960
ATGGAAAAGT CACTTTAACT GACCAAGGTT TACGAGAGGT TGAAGTTCCT GTAAACTTAG TGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCTCA CAACTACTTT AGCGAGCAAA ATAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAGCA ATTCAAACGA AACCTGATAT CGTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTAATGA CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTTA TACTAAAGAT ATCTTATACA AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAAA AGCTTGAAGC ACTAGAGGTAT TCATGGAAC CTGGTTCTAC TATTGTCGAA GCAACAAGTG GAAACACCGG TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATAG TAAAAGACCGG TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC AACAGGAGGT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG AGTAGGTACT GGTGGAACGA TTTCTGGTGT TCCCAGTGA TTAGATCCCT TTGTTGCTGG AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCCCATGCA CTCAAATCAG AAAATCTAA CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTCATCTATT CTATCTGGTG AAAAATCTAA CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAATCTAA CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCCTGG 8040	TCCTTAAAGA	ACATGGTCTC	ATGGAGCTGG	ATACAAACTT	TACAGATCAA	GTCGATACGA	7020
TGTAAACAAT GAATAATACA GCGTTTCGTT GACATTCTCA CAACTACTTT AGCGAGCAAA ATAAAAAAGAG GCGTACCAAA ATATACTAGA AAATGAAGCA ATTCAAACGA AACCTGATAT 7260 CGTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTAATGA 7320 CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTTA TACTAAAGAT ATCTTATACA AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT 7440 TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC ATTTAATCCT GGTTCATCTG TAAAAGACCG TATTGCCCTT AGCATGATTG AAAAAGCTGA ACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAATCTAA CATTCAAGCT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040 CATTCAAGCT TTTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040 CATTCAAGCT TTTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	TGATTTATGT	TGATAAAGAA	GAAAAAGAAA	CTATTAAAGC	TGCACTTGTG	GAGTTTTTTA	7080
ATAAAAAGG GCGTACCAAA ATATACTAGA AAATGAAGCA ATTCAAACGA AACCTGATAT 7260 CGTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTAATGA 7320 CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTTA TACTAAAGAT ATCTTATACA 7380 AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT 7440 TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC 7500 ATTTAATCCT GGTTCATCTG TAAAAGACCG TATTGCCCTT AGCATGATTG AAAAAGCCTGA 7620 ACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA 7680 AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG 7800 TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TCCTCATGCA CTCAAATCAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTTATCTGAG AAAAATCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTTATCTGGT AAAAACCTGG 8040	ATGGAAAAGT	CACTTTAACT	GACCAAGGTT	TACGAGAGGT	TGAAGTTCCT	GTAAACTTAG	7140
CGTTTTCCTT CACACCTATT TACTAGAATT AGCTGAACGC AATCACTTGA AAATTAATGA 7320 CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTTA TACTAAAGAT ATCTTATACA 7380 AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT 7440 TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC 7500 ATTTAATCCT GGTTCATCTG TAAAAGACCG TATTGCCCTT AGCATGATTG AAAAAGCTGA 7560 ACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA 7680 AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG 7800 TGATGGTTTC CTTCCTCTTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TCCTCATGCA CTCAAATCAG AAAATTCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCCTGG 8040	TGTAAACAAT	GAATAATACA	GCGTTTCGTT	GACATTCTCA	CAACTACTTT	AGCGAGCAAA	7200
CTTTGATCTA TGATATATAG AAATGGTATG GATAGCGTTA TACTAAAGAT ATCTTATACA 7380 AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT 7440 TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC 7500 ATTTAATCCT GGTTCATCTG TAAAAGACCG TATTGCCCTT AGCATGATTG AAAAAGCTGA 7560 ACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA 7680 AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG 7860 TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAAATCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	ATAAAAAGAG	GCGTACCAAA	ATATACTAGA	AAATGAAGCA	ATTCAAACGA	AACCTGATAT	7260
AAGAGGTATT CATATGTCTA TTTATAACAA CATTACTGAA TTAATCGGTC AAACACCGAT TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC ATTTAATCCT GGTTCATCTG TAAAAGACCG TATTGCCCTT AGCATGATTG AAAAAGCTGA ACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAAATCAG AAAAATCTAA CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	CGTTTTCCTT	CACACCTATT	TACTAGAATT	AGCTGAACGC	AATCACTTGA	AAATTAATGA	7320
TGTTAAACTT AACAACATCG TGCCAGAAGG TGCTGCAGAC GTCTATATAA AGCTTGAAGC 7500 ATTTAATCCT GGTTCATCTG TAAAAGACCG TATTGCCCTT AGCATGATTG AAAAAGCTGA 7560 ACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA 7680 AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG 7800 TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAAATCAG AAAATTCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	CTTTGATCTA	TGATATATAG	AAATGGTATG	GATAGCGTTA	TACTAAAGAT	ATCTTATACA	7380
ATTTAATCCT GGTTCATCTG TAAAAGACCG TATTGCCCTT AGCATGATTG AAAAAGCTGA 75500 ACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG 76200 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA 76800 AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 77400 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG 78000 TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAAGTAC ACGAAAGAAC 78600 AACAGGAGCT GAGGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG 79200 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAAATCAG AAAAATCTAA 79800 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAAACCTGG 80400	AAGAGGTATT	CATATGTCTA	TTTATAACAA	CATTACTGAA	TTAATCGGTC	AAACACCGAT	7440
ACAAGATGGT ATTCTGAAAC CTGGTTCTAC TATTGTTGAA GCAACAAGTG GAAACACCGG 7620 TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA 7680 AACTATGAGT GTAGAACGAC GTAAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG 7800 TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAAATCAG AAAAATCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	TGTTAAACTT	AACAACATCG	TGCCAGAAGG	TGCTGCAGAC	GTCTATATAA	AGCTTGAAGC	7500
TATTGGACTT TCATGGGTAG GTGCTGCTAA AGGGTATAAA GTCGTCATCG TTATGCCTGA 7680 AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG 7800 TGATGGTTTC CTTCCTCTTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAATTCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	ATTTAATCCT	GGTTCATCTG	TAAAAGACCG	TATTGCCCTT	AGCATGATTG	AAAAAGCTGA	7560
AACTATGAGT GTAGAACGAC GTAAAATTAT CCAAGCTTAT GGTGCTGAAC TCGTCCTAAC 7740 TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG 7800 TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAATTCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	ACAAGATGGT	ATTCTGAAAC	CTGGTTCTAC	TATTGTTGAA	GCAACAAGTG	GAAACACCGG	7620
TCCTGGTAGC GAGGGAATGA AAGGTGCTAT TGCTAAGGCT CAAGAAATCG CTGCTGAACG TGATGGTTTC CTTCCTCTTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAATTCTAA CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	TATTGGACTT	TCATGGGTAG	GTGCTGCTAA	AGGGTATAAA	GTCGTCATCG	TTATGCCTGA	7680
TGATGGTTTC CTTCCTCTC AATTTGACAA TCCAGCTAAT CCAGAAGTAC ACGAAAGAAC 7860 AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAATTCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	AACTATGAGT	GTAGAACGAC	GTAAAATTAT	CCAAGCTTAT	GGTGCTGAAC	TCGTCCTAAC	7740
AACAGGAGCT GAGATACTAG CTGCTTTCGG TAAAGATGGA TTAGATGCCT TTGTTGCTGG 7920 AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAATTCTAA 7980 CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	TCCTGGTAGC	GAGGGAATGA	AAGGTGCTAT	TGCTAAGGCT	CAAGAAATCG	CTGCTGAACG	7800
AGTAGGTACT GGTGGAACGA TTTCTGGTGT TTCTCATGCA CTCAAATCAG AAAATTCTAA CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	TGATGGTTTC	CTTCCTCTTC	AATTTGACAA	TCCAGCTAAT	CCAGAAGTAC	ACGAAAGAAC	7860
CATTCAAGTT TTTGCAGTAG AAGCAGATGA ATCTGCTATT CTATCTGGTG AAAAACCTGG 8040	AACAGGAGCT	GAGATACTAG	CTGCTTTCGG	TAAAGATGGA	TTAGATGCCT	TTGTTGCTGG	7920
	AGTAGGTACT	GGTGGAACGA	TTTCTGGTGT	TTCTCATGCA	CTCAAATCAG	AAAATTCTAA	7980
TCCTCACAAA ATTCAAGGTA TCTCAGCTGG ATTTATTCCT GATACACTTG ATACTAAAGC 8100	CATTCAAGTT	TTTGCAGTAG	AAGCAGATGA	ATCTGCTATT	CTATCTGGTG	AAAAACCTGG	8040
	TCCTCACAAA	ATTCAAGGTA	TCTCAGCTGG	ATTTATTCCT	GATACACTTG	ATACTAAAGC	8100

CTATGATGGT	ATCGTTCGTG	TAACATCAGA		GCACTCGGAC	GTGAAATTGG	8160
TGGAAAAGAA	GGCTTCCTTG	TAGGGATTTC	CTCAGCTGCA	GCTATCTACG	GAGCCATCGA	8220
GGTTGCCAAA	AAATTAGGTA	CAGGTAAAAA	AGTCCTTGCC	CTAGCACCAG	ATAACGGTGA	8280
ACGTTATCTC	TCTACAGCAC	TTTATGAATT	GTAACCGTCC	AATAACGAAG	TCTATTGAAA	8340
AATCTCCAGA	CTAGAGAACT	CACGGATAGT	TCCTAATCTG	GAGATTTCTT	ATTTGCACTT	8400
TTCTTGTACA	ACTTTAGTCC	ATGGTAAATA	GGCCTCTAAA	ACCTCTTTGT	TTACGAGAGT	8460
TTCCACGTTT	GGAAGACATT	CTAGAAGATA	GGATAGATAT	TTCTCACTAT	TTATAATGGA	8520
TTGAAATAAG	ATATGAACAA	ATCGATTAGA	ACATGATGGT	AAAGCGTAAT	CCCTTGTTTC	8580
TCAGCTTTCC	CAGACAAAAA	AGTCCAATAG	TAAGTCAGCT	GACTATCACT	CTCTAGCACC	8640
CTATAAGAAG	TTTCATCCGC	ATGAAGTAAG	GGCTGAGTCA	ATAGTCTCTC	TCGCAAGAGG	8700
TTATAAAGGG	GCTCCAAATA	GTATTGACTC	GTCTTGATAT	GCCAATTAGA	GATTTCCTTA	8760
CGTGTGATTG	GTAAACCCAT	CCTAGCCCAA	TCTTCTTCTT	GGCGATAATT	GGGTACCTTC	8820
AGATTAAACT	TCTGATGGAT	GGTGTGAGCG	ATAATAGAAG	CTGAGCCAAA	GTTATGCGCT	8880
AAAGGGGCTT	TAGGAATAGG	AGCTTTCACA	AGCTTATCCA	GATGATTATC	TTTTACTCGT	8940
TATGGACAAT	GCTATATGGC	ATAAATCAAG	TACCTTAAAG	ATTCCGACTA	ATATTGGCTT	9000
TGCATTTATT	CCTCCATACA	CACCAGAGAT	GAACCCCATT	GAACAAGTGT	GGAAAGAGAT	9060
TCGTAAACGT	GGATTTAAGA	ATAAAGCCTT	TCGAACTTTG	GAAGATGTCA	TACAAGGACT	9120
GGAGAAGGAG	GTGATAAAGT	CCATCGTTAA	TCGGAGACGG	ACTAGAATGC	TTTTTGAAAA	9180
CAGATGAGTA	TAAAAAGAAA	GTCCTCATTT	CAATAGAAAT	CACGACTTTC	TGATGAATTT	9240
ATAGTAAAAT	GAAATAAGAA	CAGGATAGTC	AAATCGATTT	CTAACAATGT	TTTAGAAGCA	9300
GAGGTGTACT	ATTCTAGTTT	AAATCCACTA	TATTTGGGGA	GTGATAGAAA	AGCCCTTCAT	9360
CAGCCAATCT	ACTTGTTCAG	GTGCGAGAGC	TTTGACATCC	TTTTCTGTAC	TGGACCAAGT	9420
CAGTTTTCCG	TTCTCAAAGC	GTTTATATAA	TATCCAAAAT	CCTTGACCAT	CCCAGTAAAG	9480
AACTTTAAAG	CGGTCTTTAC	GTCCACCACA	AAAGAGAAAG	ACTTGATCGG	AGAAAGGATC	9540
CAATTCAAAG	TGGGTTTTAA	CTACATAGGC	TAATGAGTCT	ATTCCCTGCC	TCATATCTGT	9600
CTTGCCACAA	ACAAGGTGAA	CTTGACCTAA	ATCACTTAGT	TGAATTATCA	TAGTACAATA	9660
CCTTTCCTCC	GATAATTATT	TTTTATCTGG	TATACTGGAA	GTTGGGGAAT	TAGGATAGAT	9720
ACCTTGTTAT	GACGCGCTTA	CTATGAATTT	GAAGTATAGT	CTCCTAAATG	CACTTAGCCC	9780
TTATTATAGG	GCTTTTTGTT	TTAATTATTC	TAATCGAGTG	AGACTGGGGA	AAAAACAATT	9840
TCAGGAAAAA	TCTAAGCCCT	ATACAAAAA	GGAAGCAATT	TGCTTCCTTT	CTATTATTAG	9900

PCT/US97/19588 WO 98/18931

239

TTATTCAAGG	CTGCTGCCAT	TGTAGCTGCA	ACTTCAGCTT	CGAAGTCGTT	TGCAGCTTTC	9960
TCGATACCTT	CACCAACTTC	AAAGCGAGCA	AACTCAACTA	CCGAAGCGTT	AACTGATTCA	10020
AGGTATGCTT	CAACTGTCTT	GCTGTCATCC	ATGATGTAAA	CTTGTGCAAG	AAGTGTGTAA	10080
GCTTGGTCAA	CTTTAGTGTT	ATCAAGCATG	AAGCGATCCA	TTTTACCTGG	AATAATTTTG	10140
TCCCAGATTT	TTTCTGGTTT	GCCTTCTGCA	GCCAATTCAG	CTTTGATGTC	AGCTTCAGCT	10200
TGAGCAATAA	CATCATCAGT	TAATTGAGCT	TTTGATCCAT	ACTTCAAGTG	TGGAAGAGCT	10260
GGTTTATTAA	CCATTGCACG	GCTTTCGTTG	TCTTGGTCGA	TAACGTGATT	CAATTGTGCC	10320
AACTCATCTT	TAACGAATTG	CTCATCCAAT	TCTTTGTAAG	AAAGAACTGT	TGGTTTCATC	10380
GCTGCGATGT	GCATTGACAA	TTGTTTAGCA	AGTGCTTCGT	CTCCACCTTC	AACAACTGAA	10440
ATAACACCGA	TACGTCCACC	GTTATGTTGG	TATGCTCCAA	AGTGTTGTGC	GTCTGTTTTT	10500
TCAATCAATG	CAAAGCGACG	GAATGAGATT	TTCTCTCCGA	TAGTTGCTGT	TGCAGATACG	10560
TATGCAGCTT	CAAGAGTTTC	ACCTGAAGGC	ATTATCAAAG	CAAGAGCTTC	TTCGTTGTTA	10620
GCAGGTTTTC	CTTCAGCAAT	GACTTTAGCT	GTAGTATTTA	CCAATTCAAC	GAATTGAGCG	10680
TTTTTTGCAA	CGAAGTCAGT	TTCAGCGTTT	ACTTCAATAA	CTGCTGCAAC	ATTACCGTTA	10740
ACATAAACAC	CAGTCAAACC	TTCTGCAGCA	ACACGGTCAG	CTTTCTTAGC	TGCCTTAGCC	10800
ATACCTTTTT	CACGAAGCAA	TTCAATCGCT	TTTTCGATGT	CACCGTCTGT	TTCTACAAGC	10860
GCTTTTTTAG	CGTCCATAAC	ACCGGCACCA	GATTTTTCAC	GCAACTCTTT	TACAAGTTTA	10920
GCTGTAATTT	CTGCCATTTT	AATTCTCCTA	TATTTTTTGA	AAATAGGAGA	GCGCGGCTAA	10980
GCCCGCCTC	CGG					10993

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8411 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CGACGGGGAG GTTTGGCACC	TCGATGTCGG	CTCGTCGCAT	CCTGGGGCTG	TAGTCGGTCC	60
CAAGGGTTGG GCTGTTCGCC	CATTAAAGCG	GCACGCGAGC	TGGGTTCAGA	ACGTCGTGAG	120
ACAGTTCGGT CCCTATCCGT	CGCGGGCGTA	GGAAATTTGA	GAGGATCTGC	TCCTAGTACG	180
AGAGGACCAG AGTGGACTTA	CCGCTGGTGT	ACCAGTTGTC	TTGCCAAAGG	CATCGCTGGG	240

			240			
TAGCTATGTA	GGGAAGGGAT	AAACGCTGAA		TGTGAAACCC	ACCTCAAGAT	30
GAGATTTCCC	ATGATTATAT	ATCAGTAAGA	GCCCTGAGAG	ATGATCAGGT	AGATAGGTTA	36
GAAGTGGAAG	TGTGGCGACA	CATGTAGCGG	ACTAATACTA	ATAGCTCGAG	GACTTATCCA	42
AAGTAACTGA	GAATATGAAA	GCGAACGGTT	TTCTTAAATT	GAATAGATAT	TCAATTTTGA	48
GTAGGTATTA	CTCAGAGTTA	AGTGACGATA	GCCTAGGAGA	TACACCTGTA	CCCATGCCGA	54
ACACAGAAGT	TAAGCCCTAG	AACGCCGGAA	GTAGTTGGGG	GTTGCCCCCT	GTGAGATAGG	60
GAAGTCGCTT	AGCTTTAATC	CGCCATAGCT	CAGTTGGTAG	TAGCGCATGA	CTGTTAATCA	660
TGATGTCGTA	GGTTCGAGTC	CTACTGGCGG	AGTAATEGAT	AAAAGGGaAC	ACAGCTGTGT	720
TCCTCTTTT	GTATCAATTT	GTATCACCAA	GCATTTTCAT	AAGGAAGTCT	GTTATTTCTT	781
GAGAACTTTC	TTTTTTTCCA	TGTGCAATCC	AAGTTTGGCA	GACACCAAAA	AGTGCATGAG	840
TTAGATAGAT	GCTACTATAT	TCTAATTCAG	TGGTATTTAG	ATTCAGTTGC	ATAAATCGCT	90
TTTGTAAATC	TGTACTAAGC	ATGATATGAA	GTTTATTTCG	TAAGAAATTT	TGGATTTCTT	960
TAGTCCCATT	TTCAGAAAGA	AGGGCAGCCA	GAAGTGGTTC	TGACTCTAGA	TATTCAAAAA	1020
CTTCTAAAAT	AGCGTCTCTT	TTGTGATGAG	CATGTTTTTG	AAAAATATAT	TCAAATGTAT	108
GGAATAGCTT	GCTTTGATAG	TGCTCAATCA	TATCATACTT	ATCCTTATAG	TGACTATAGA	114
AGCTGGAACG	ACTAATTCCG	GCTTTTTCTA	CTAATTTGAC	AGTAGAAATT	TTATCAAATG	1200
GCTGTTCCAT	CAGTAATTGT	ACCATAGCAT	TTTCAATAGT	TCGCTTTGTT	TTTAAGCGTT	126
TGTTACTTTC	TTGCATATTT	CCTCCTTGTA	AACAAATTAG	ACTATATGTC	TAAAAATAGA	132
TTTTTTATCT	TGTAATTTAG	ATTTTTTAAT	GTATAATCTA	TTATATCAAA	ATTTTAGACA	138
ATATGTTTAA	AAAAGGAGAA	ACTAAGTTTA	AAGAATSSAA	AGCAATTTAA	AAAAAACCAA	144
CCTTTATTAT	TGTCATGATC	GGGATTTCTC	TTATTCCAGA	TCTGTACAAT	ATCATATTTT	150
TGTCATCAAT	GTGGGATCCA	TATGGGCAAT	TGTCTGACTT	ACCTGTGGCA	GTTGTAAATA	156
ATGATAAAGA	GGCTTCCTAT	AATGGTAATA	CTATGGCAAT	AGGAAAAGAC	ATGGTGTCCA	162
ATTTAAAAGA	AAATAAAACC	TTGGATTTTC	ATTTTGTAGA	TGAAGAGGAA	GGAAAGAAGG	168
GATTGGAAGA	TGGCGATTAC	TATATGGTAG	TGACTTTACC	AAGTGATTTA	TCTGAAAAA	174
CAACTACATT	ATCCAATATT	CAATCGACAG	CAGCTTATCA	ATCATTGACA	AGTGAGCAAC	180
AAACTGAGAT	AAGTGATTCT	GTATCTCAAA	ATTCAACTGA	TAGTATTCAA	TCGGCTCAGT	186
CAATTGTAGC	TTTAGTACAA	GATTTACAGG	GAAGTTTAGA	AAACTTACAA	AATCAATCTT	192
CTAATCTTTC	GACTTTAAAA	AATCAATCTA	ATCAAGTATC	ACCTATTACT	TCTACTTCTT	198
TGATAGGATT	GTCAAGTGGA	TTAACAGAGA	TACAAGGAGA	TGTTACTAGC	AAATTAGTTC	204

CTGCCAGTCA	GTCGATTGCA	TCAGGTGTAA	ACGCATATAC	TACAGGTGTT	GATAAAGTTT	2100
CTCAGGGCGC	AAGTCAACTA	AGTGAAAAA	ATGCCACCTT	GACAGGTAGT	TTGGATAAAC	2160
TAGTTTCAGG	CTCAAACACC	TTGACACAAA	AATCTTCTAG	ATTGACAGCA	GGAGTTGGTT	2220
AATTACAATC	AGGATCTGGG	CAATTAGCAG	ACAAATCCAG	TCAGTTACTT	TCAGGTGCTT	2280
CTCCATTAGA	GAATAGAGCT	AATAAATTGG	CAGATGGATC	TGGGAAACTA	GCAGAAGGTG	2340
GAACAAAGTT	AACTTCTGGA	TTGGAAGATT	TACAGACAGG	ACTTGCTTCT	TTAGGACAAG	2400
GACTAGGTAA	TGCTAGTGAT	CAACTCAAAT	CAGTATCAAC	AGAATCTAAA	AATGCAGAGA	2460
TTTTGTCAAA	TCCACTCAAT	CTTTCAAAAA	CAGACAATGA	TCAAGTTCCT	GTAAATGGAA	2520
TCGCAATAGC	TCCTTATATG	ATATCAGTTG	CTCTTTTTT	GCAGCAATAT	СААСАААТАТ	2580
GATATTTGCG	AAATTGCCTT	CAGGACGTCA	TCCAGAGAGC	CGTTGGGCTT	GGTTGAAATC	2640
TTGAGCTGAA	ATAAATGGTA	TTATAGCTGT	TTTGGCAGGA	ATTTTGGTAT	ATGGAGGAGT	2700
TCAGCTTATT	GGTTTAACTG	CTAATCATGA	GATGAGAATA	TTTATTCTCA	TCATCCTAAC	2760
AAGTTTAGTA	TTCATGTCTA	TGGTGACCAC	TTTAGCAACG	TGGAATAGCC	GTATAGGAGC	2820
TTTTTTCTCA	CTTATTTTGC	TTTTACTACA	GTTAGCATCA	AGTGCAGGTA	CTTATCCACT	2880
TGCTTTGACA	AATGATTTCT	TTAGATCTAT	TAATCCCTGG	TTACCAATGA	GCTATTCAGT	2940
TTCGGGATTA	CGACAAACAA	TCTCTATCAA	CAAGTCATTT	TCCTAGCTGT	CATACTAGTT	3000
CTATTTACTA	GTTTAGGTAT	GCTAGCCTAT	CAACATAAGA	AAATGGAAGA	AGATTAAAAA	3060
AATCGACCGA	TTAACTGGTC	GATTTTTTAT	GCCTTAGATG	ACTTTCGTCT	GTGATTATAG	3120
ATTCCAAATA	GTAAGAGAGA	AGTAAAGGAA	CAGATTGCTC	CAGTAATAAA	ACCATTGGGA	3190
•	: · · · · · · · · · · · · · · · · · · ·				TODAGTT	3140
TGAGCTTGTT	TAATTTCTAT	TTTCTTACCA	TCTTGGTAGG	CAGACCAACC	TTTGTCATAA	3300
GGAATGGTGA	AGAAAATAGA	TGTATCTTGT	TGGACATCAT	ATGTAGCAAA	AACCTTGTTT	3360
TTAGAAGTTG	ATACTGTGAC	AGGTTGTTCT	TTAATTTTTT	GAATTGCCTC	GGTGAAAGTT	3420
TTGGTATCTA	AACGATAGAA	GGTAGGAGAT	TCAAATGATA	CTTGTGAATT	TCCAGGGAAA	3480
CTAACATTGA	TATTGAAAGT	TTTTTTCTCT	TTAGTATATC	CTAGATTAAA	GAAGGAGAAG	3540
ACATTATCAG	TTGTAAAAGT	CTTTTTTTCA	CCATTTACAA	GGATGTCAAC	CTTCTTTTGT	3600
TTATCGTTAG	AAAAGTGAAG	GTTTATGAAA	GAGAGATAAA	CTTGGCTGTT	TTCTGGAACT	3660
TCAATTTGAT	ACTGGATTGC	TGCATCTTCA	TTTGAAGAAC	TTGTGACACT	AATCAAATCA	3720
TTAGTATTTT	CTATTTTTTC	TGTTTTTCA	TAAGGTATTG	GAGAAAAATA	ATCAAAATTG	3780

ACGTTAGCAA	GTTGATTTAA	AAATGAGGCC	242 TGATTATCCA	AGGTAT TTTC	ATTGAACTTG	3840
ACATCATTGT	AAACAGATTG	ACTCGCAACT	GCAATCGGAA	GAGAGTATTG	ATTTTCATAT	3900
AGGGTAAGAT	TATCTTTTTG	ATAGATATCT	TTAAAGCCAT	ACTTATCAAT	AGGACTGTCT	3960
GAGATATTGT	ACTGGATACC	АААТАААСТА	TCAGCCAAAA	TACTATTATT	TGCATATCGG	4020
AGATTGAGAT	TAGTCCCAGA	GGATTTAAAA	CCAAGTTTAT	CTAAAGTAGA	GCTTGATGAA	4080
CGATTTCGAA	CAGATGAAAA	TTGAGAGATT	CCATTGTAGT	TGAATTTCAT	ACTGTCATTT	4140
CCTGTCTGAG	TTTGTAGTTT	TTCAGTACGA	GTAAATTGAT	TTCCAATATA	TGTTGAGAAA	4200
GATTCCATAG	CTGGGATATC	TCGACTATAA	GCACTTCGAG	AAGCAAATCC	CCATTCCTTA	4260
GCAATTCCGT	CCATTTGAGA	TGAAGCATTT	AAACTCATTT	CAACCAGTAT	AAATAAAGAG	4320
ATTAGAATGG	CAAATAGATT	CACAGATATA	AACTTTTTGA	TAACTGCAAG	GAGTAAAAGA	4380
GAATAGACAA	CCAAAAATTC	AAGAGTAAGC	AGAATATTCA	AATCTGTTAA	AAAAGAATAA	4440
TGCGATTTTA	GATAGATGGT	AGCTAAAAAT	CCTGCTACTA	CAAGAAAAAG	CGAAACTAAA	4500
AAATTCCAGA	CTTTAAGTTC	TTTCAGACGC	TTTAAGACTT	CTGCTGCTGT	GTAAATTAAC	4560
AAGGTAGAGA	AAATCCAAGC	ATAGCGATGT	AAAAACATGT	TTGGAGTATG	CATGCCTTGC	4620
CAAAATAAGT	CAAGAGCTTC	TATGTAAAAG	CTTGCAATTA	GAAATGCAAA	GAATATTACA	4680
TATATGAGTT	TCACGTGAAA	CTTAATAGAT	TTCAGCGTAA	AAAATAAAAT	GGTCAAAATA	4740
AAGGGAAATA	GTCCAACAAA	AATCATTGGG	ATGGCCCCAT	ACTITGTTGT	GTCAAAGGAA	4800
CCAATGAATT	GCTTAGCAAA	GAGATCAAGA	TACCAGCTAC	TTTCAGTTTG	AAACTTTGTA	4860
ACTTCAGTCA	ATTTTTCCCC	ATGTGTCTGT	AAATCAAATA	GAGTGGGAAG	AGTCATAATC	4920
AAACTAGCCA	TACCAGCTAA	AAAGGAGATA	ACTATSAAAT	CAAGAACAGA	TGATTTTCGA	4990
GTCTTAAAGT	CCCACGAAAT	TTGACAGAGA	TACCAGAAAA	TAAGAAACAA	TACTGTCATA	5040
TATCCAAAAT	AATAATTTTG	AATAAATAAG	ATTGACAGAC	TTGTAAAGTA	CAATAGGAGT	5100
TTCTTTTCAG	TTATCAGTAG	ATGTAAACCA	GTTATAATTA	AAGGAATCAA	GATAAAAACA	5160
TCTAGCCAGG	TTTTTATCTC	TAATTGACTG	ACAGTGAAAC	TCATCAGAGC	ATAGGAAGTA	5220
GATAAGGCTA	GTTTTAAAAT	CTGAGGGATA	GATTGAAACA	ATTTATTCAA	ACTAAAAAAG	5280
GTTGACAGAC	CAATCAATCC	AAATTTTAAG	AGAGTTGTCA	GATAGATAGC	ATCTGGCATA	5340
TTCGTTAGAT	CAAAAAAGTA	AACCAGAGGC	GCGAGAAAAC	TACCCAAGTA	ATAACTAGAT	5400
AGGGCATAGA	AGTTTAGCCC	TAGACCACTT	GTAAAGGTGT	AAAACAGATT	ACTATTTCCA	5460
TGTAGGATAT	TTCGTAAGGC	TACATCAAAA	ATAACGTATT	GATGAAAGCC	ATCTCCTAAT	5520
AGAGGAGAGT	TGTCGCTATT	CCAGTAGATA	CTTTGAGATA	GATATACTCC	AGACATAATC	5580

ACTACAGGAA	TGATGAAAGA	AATAAAATAG	GTTCGATATG	TTTTTAAAAA	TGATTTCATG	5640
TTACCTCGTA	GAATGATAGA	AAACTCAGTT	GGTTAACCCA	ACTGAGTTTT	GAAGTTTTAT	5700
TTAGTCTTTC	CAAAGTTCTT	TAACTTTTGC	TTGTACTTCT	GCATTTTCTA	GGAATTCATC	5760
GTAGGTTTCA	TCGATACGGT	CAATGACGCC	ATTTTTAGAT	AAGACAATGA	TATGGTTAGC	5820
CAAAGTTTGA	ATAAATTCGT	GGTCATGGCT	GGCAAAGATG	ATTGATTCTT	TAAAGTTTTT	5880
CAATCCATCA	TTCAAGCTTG	AGATAGATTC	CAAGTCCAAG	TGATTTGTTG	GATCATCAAG	5940
TACAAGGACA	TTTGATTTTA	AGAGCATGAG	TTTTGAAAGC	ATGACACGAA	CTTTTTCTCC	6000
CCCTGACAAG	ACATTTACAG	GTTTGTTAAC	TTCATCTCCA	GAGAAGAGCA	TACGGCCGAG	6060
GAAGCCACGT	AGGAAAGTAT	TGTCATCTTC	TTCTTTACTT	GCGAATTGAC	GCAACCAGTC	6120
AAGAATTGAT	TCTCCTCCTG	CAAAATCAGC	TGAGTTATCT	TTTGGTAGGT	AAGATTGACT	6180
AGTTGTAACT	CCCCACTTGA	CAGTTCCTTC	ATAGTCAATA	TCTCCCATGA	TTGCACGAAT	6240
TAATGCAGTC	GTTTGAATAT	CATTTTGTCC	AATAAGTGCT	GTCTTATCAT	CTGGACGCAA	6300
GATGAAACTA	ATATTATCCA	AGATAGTTTC	ACCATCAATC	TTTACAGTTA	AATTTTCTAC	6360
TGTCAAGAGA	TCATTACCAA	TCTCACGTTC	CGCTTTAAAG	TTGATAAATG	GATATTTACG	6420
ACTAGATGGC	ACAATCTCTT	CTAGCTCAAT	CTTATCAAGC	ATTCTCTTAC	GTGATGTTGC	6480
CTGCCTTGAC	TTAGAAGCAT	TGGCAGAGAA	ACGAGCAACA	AATTCTTGCA	ATTGTTTAAT	6540
TTTTTCTTCT	GCTTTAGCAT	TACGGTCTGC	TAGCAATTTA	GCAGCAAGCT	CAGAAGATTC	6600
CTTCCAGAAG	TCGTAGTTTC	CGACATAGAG	TTTGATTTTT	CCAAAGTCAA	GGTCGGCCAT	6660
GTGAGTACAA	ACTTTGTTTA	AGAAGTGACG	GTCGTGGGAT	ACTACGATAA	CTGTGTTATC	6720
AAAGTCAATC	AAGAAJII. I	JIMACCANGT	Art CCA ITCC	AT LIBRAR	COTTAGTAGG	6730
CTCGTCCAAG	AGAAGAACAT	CTGGTTTACC	AAAAAGTGCT	TTGGCGAGGA	GAACCTTTAC	6840
TTTTTCACCG	TTGGCCAATT	CGCTCATGTT	TTGGTAGTGT	AATTCTTCTG	GAATGTTTAG	6900
GTTTTGAAGT	AGTTGAGAGG	CTTCACTCTC	TGCTTCCCAA	CCTCCAAGTT	CGGCAAACTC	6960
TCCTTCGAGT	TCGGCAGCAC	GAACCCCGTC	CTCGTCTGAG	AAATCTTCCT	TCATGTAGAT	7020
AGCATCTTTC	TCTTTCATGA	TGCTATAAAG	TTTTTCATTT	CCCATGATAA	CGACATCAAT	7080
GGCACGTTCA	TCTTCGTAGT	CAAAGTGATT	TTGACGAAGA	ACAGAGAGAC	GTTCATCTGG	7140
ACCAAGAGAG	ATGTGACCAG	TAGTAGGTTC	GATATCTCCA	GCTAAAATTT	TTAAAAAGGT	7200
TGATTTTCCG	GCACCATTAG	CACCGATTAA	TCCGTAAGTA	TTTCCTTCTG	TAAATTTGAT	7260
ATTGACATCA	TCAAAAAGTT	TGCGATCACT	AAAACGTAGT	GAAACATÇAG	ATACTGTAAG	7320

			244			
CAATGTTTTT	CTCCTATATG	TGTAATATAT		AGAAAATACA	GAAATATTCA	7380
TTATTTTAA	TGTCAATTTT	GTGTAAATTA	TATTTACAGT	ATCCTTTACA	CAAATCTGTA	7440
AAAAGCAAGG	CTGATTTATT	TTGATAAATT	ACGGTTATTT	CATTAAAAAA	ATGCTATAAT	7500
TGAAAGGACT	ATATCGAAGG	AGAACAAAAT	GACTAAACCC	ATTATTTAA	CAGGAGACCG	7560
TCCAACAGGA	AAATTGCATA	TTGGACATTA	TGTTGGAAGT	CTCAAAAATC	GAGTATTATT	7620
ACAGGAAGAG	GATAAGTATG	ATATGTTTGT	GTTCTTGGCT	GACCAACAAG	CCTTGACAGA	7680
TCATGCCAAA	GATCCTCAAA	CCATTGTAGA	GTCTATCGGA	AATGTGGCTT	TGGATTATCT	7740
TGCAGTTGGA	TTGGATCCAA	ATAAGTCAAC	TATTTTTATT	CAAAGCCAGA	TTCCAGAGTT	7800
GGCTGAGTTG	TCTATGTATT	ATATGAATCT	AGTTTCGTTA	GCACGTTTGG	AGCGAAATCC	7860
AACAGTCAAG	ACAGAGATTT	CTCAGAAAGG	ATTTGGAGAA	AGCATTCCGA	CAGGATTCTT	7920
GTCTATCCA	ATCGCTCAAG	CAGCTGATAT	CACAGCTTTC	AAGGCTAATT	ATGTTCCTGT	7980
rgggacagat	CAGAAACCAA	TGATTGAGCA	AACTCGTGAA	ATTGTTCGTT	CTTTTAACAA	8040
rgcatataac	TGTGATGTCT	TGGTAGAGCC	GGAAGGTATT	TATCCAGAAA	ATGAGAGAGC	8100
AGGGCGTTTG	CCTGGTTTAG	ATGGAAATGC	TAAAATGTCT	AAATCACTAA	ATAATGGTAT	8160
TATTTAGCT	GATGATGCGG	ATACTTTGCG	TAAAAAAGTA	ATGAGTATGT	ATACAGATCC	8220
AGATCATATC	CGCGTTGAGG	ATCCAGGTAA	GATTGAGGGA	AATATGGTTT	TCCATTATCT	8280
AGATGTTTTT	GGTCGTCCAG	AAGATGCTCA	AGAAATTGCT	GATATGAAAG	AACGTTATCA	8340
ACGAGGTGGT	CTTGGTGATG	TGAAGACCAA	GCGTTATCTA	CTTGAAATAT	TAGAACGTGA	8400
ACTGGGTCCG	G					8411
			_			

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9064 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

•	TGCCGTACTC	AAGTACAGCC	TGCGCTAAGT	TTCCTAGTTT	GCTCTTTGAT	TTTCATTGAG	60
۰	TATTAGTAAC	CAAAATCCGA	CCACATAGCC	AGCCCCTATG	AATATAGCCA	TTAAAGCTAG	120
•	CATGGAATTT	AGGAAATTAA	AAACCACCGC	AGATACAAAG	GTTAGCACAA	AAACATTAAA	180
	AGCAATGGTG	TCAGAAGCCA	AGACTAGAAT	ATAGGGTGTC	AACCGATCTA	AAGTTTTGGA	240
	ATCTAGGAAA	AATAAGTGTT	TATACATGAT	GACCTCCTCT	ATGGCTGAAA	AGCAAGCCTT	300

TTGTTTTTTT	ACCCCAAGAC	CCTATGTAGA	AAAGTGAGCA	AAAACGGGAA	GGTCGCTACA	360
ATATTATTGA	TCACATGCAC	CGCATAGGAT	GGATAAATGC	TCTTGGTATA	GCGGGTCAAA	420
CCAGCAAAGA	TGATTCCAAC	TGTTGCAAAG	ACGAAGATAT	CTAACAGACT	AGGCAGGCTT	480
GAAAAATGAG	GGAGAGCAAA	TAAAATAGAA	GGAAGAAGCA	AATCAAGACC	AAATCGCGAA	540
TGCTTAAAGA	AAGCATGTTG	CAGTAATCCT	CTATAAATCA	ATTCTTCCAT	CAGTGGAACC	600
AGAAAGAACA	GGGCTATATA	AATACCTAGC	TCTGCAAAGT	TAGTCCCACT	ATAACCAATC	660
AATACAGCCC	AACCTTCCGC	AGTTGACTGA	ACATGTTTAG	CTGTCTGAAC	GTTAAAAGAG	720
ATCTGGAACA	CTAGCACTAA	TACTGTCAAA	ATCGAATACC	AAAGCCATTT	TTTTCTTGGA	780
ATGCGGAAGA	GATAACCATG	GCCTGTCTTA	ACAAGAACCA	CAATCATGAC	TCCAATAAAA	840
AGTAAACTCA	AGATATTTTG	AATCCAGAAT	AAATTGCCTA	TCTGAGAAGA	AAATTGCCAA	900
TAGTTTTGGA	CGATAAGCGT	CAGCTGAGAA	AGACTAAATA	CGAAAAATAA	GTAAGAGAAG	960
ACTGCACTTA	TTTTGAATAG	AAGTTGATAC	TTTTTCATAG	AAATCCTCCC	TACTATGACC	1020
TCACCTTGTC	AGGCTCTACT	GCTGTAAGAT	TAAGAAGACA	GTTTGTTTTT	TTTAAGGCTA	1080
ACCTGACTAC	TAGATAATAG	ATACATTAAG	GCATTAAAGA	CAATGAAAAT	ATGTCCATAG	1140
AATAAAATCA	ACCTCGCATC	CAAACCAAGA	TAAAGTTTGA	ттатсалала	GATGAGCAAA	1200
AGAATTTGAA	ACCATAAGGT	TTTTCCAAAA	ATAAATTTAA	AGCGATTTCG	AATATCTACT	1260
TCCTTGATTT	TTACCGCCAC	CCCTTTATTA	GCAAGAAGGA	AAACTCCTGC	TTCAAACAAA	1320
CCACTGTAAA	GAACAAGCCA	CCCAATAGAT	ACGATAGAGA	TTTGTAAAAA	TGTCCCTAAA	1380
AGAATATCCA	ACACACTACT	CAAGAAAATA	ΑСΑΑΑΑΑΑΤΛ	ATCTGTATTT	CATATTAAAT	1440
ACCTCCATTC	ATTTATTTCA	CTAACAATTT	AATAGAGCCT	TCTACTCAAA	TATCCTGTCA	1500
GAAAAGGATA	GAAAGCTACT	TTTTATAATA	CTTCAAGCCC	CACATGAGCA	GAAGCGTGAT	1560
AAACAAGCAG	AGAATACACC	TATATAAGCG	ATTAGTTGTT	GATAGAATTC	TGTTTCTGAA	1620
ATACCTCTAT	ACAAACAAAT	GACAAACATA	AAATCTGCCA	AGCCGATAAA	CATAAGTTGA	1680
TTGGTTCTAG	GACTAACCAA	ATCATCATTT	ACTTATATTT	AAGAGTATCT	CTTTTATTTT	1740
AATGTATGTT	AGCACTGAAA	AGCAAGACAG	GCCAATAATA	TTTAAAATGA	ACAGTAACGG	1800
GGTTAAGTCT	СТАААААААТ	TATCTACTGA	CACTACAAGA	AATACTATAC	ATATTATAGT	1860
CGAAACTATC	TTTTTCTTAT	CCATAATTAT	TTACTCCTTT	CCTAACAAAT	CCAGCTTATC	1920
AATCAAGAGC	GATTTTTAAC	ATAATGTAGC	AGCACCCGTT	GCAACTTTGA	CAAGTTTAGT	1980
ATATCATTGT	TTTTTAAAAT	TTTTCATCCA	AATCTTGAAT	TGTCATCGAA	ACATCTTGAA	2040
				•		

246 TTGTTAAAAA ATTTAAAAAG TAAGCATTAA AAACATACTT TCCTCTTTAT ATTGTATTGA 2100 TACCAACTTG TTTGTAGACT TTTCATCCTG CTATCACATA TCATTTTGAC AGGCGAAACA 2160 ATATTAAAGA AACTCCCCTG TAAATTAAGC TAGCAAATAC AGGGGAGAAA TTTATTTTTT AGAGAGTACT ATCCGTATCC TTTTTGGAAG ATTTTGAAAA TATTTTTCTA ATTAAGTCAT 2280 CCATATAAGG ACCAAATATA CCAACTACTA AACCAATAAT AAAACTTTTA AAATCCATAA 2340 TTACCACCAA CATATTGCTG CATAGGCTAC ACCTCCAAGT ATAGCTCCAC CTGCAGCACC 2400 AGTTACACCT ATTCCTATAG CAAATGGTCC CAATAGAAAT GTCAAACCGT TGTTGCACAC 2460 CCATCAATTG CGCCATATGC AACCCCTGCT GCACAACTAA TTTTTCTTCC CCAATCAATA 2520 TCTCCACCTT CAACGCAAGC AAGCATTTCA TTATCCATAA CTGCAAATTG TGACATCATT 2580 TTTGTATCCA TATAGTGTAT CACTTTTCAG TTACGGAACA AGTTTAATAT AAAAATTATC 2640 AAAAAACAT AGGCAATAAA GAGAAAAATT AATTTATCAT AGATTAGAAA TAATATGACA 2700 AAACAATTCA ATGATGTTAA TTCAATAGTC TTTTGTTTTT TATCGGAGAT ACTTATGGAT 2760 AGATAAATAA GATAGGTTTG AAAAGCGAAG AGAATAATAA AGAATATAGC CTTCATAAAA 2820 TTTAGCTTTC ATTTTTATGA TGTAGCGGTA TAGGCTAAAT ATCCACAAAC CACTGCTCCT 2880 CCAATTCCTC CTATTGCAGC GCCCCATGGT CCTAGAAGTC TCCCATATTT CACTCCACCC 2940 GCTGCACAAC CTAAAGCAGC AACTACAGCT GCTCCTCCGG AATTACCTCC ATAAACCTCA 3000 CTCAGCATTG TTTCATTAT ATTACAATAA GTATTCATAC AAGTCTCCTT TTATTAAAAT 3060 CCACCCGTTG CCCCTGTTAC TCCTGCCCAA AGATCCACAC CAAATTTAGC TCCTATGTAT 3120 CCACATGCTC CCATAAATGG TGCTCCAACA CCACTCGCAG CACAAATAGC TGTCCCTAGC 3180 CCCCAGCCAC CAAAAGCAGC ACCACCACCT TCTAAGACAT TAGTTTGCCA ATTATTCTTG 3240 CCTCCTTCAA TACTAGATAA CATAGTTATA TCCATTTCAT GAAATTGTTC CATAATTTTT 3300 GTATCCATGA CAAATACTCT TTTTTATTTT TAATTTTTGT CTTGTTGTAA CTTTGACAAG 3360 TTTAGTATAT CATCGTTTTT TAAAATTTTT CATCCAGATT TTGAATAGTC ATCGAAACGT 3420 CTTGAATTGC AAAAATTACA TTAGACTTCC TGCAAAACTA GAATCCTAGT TCATGATTGA 3480 TAATACCAGC ACTCAAATTC ATTCGTAATC CGAAGCGTTT ACGATGACTT CGATAGGTTG 3540 TTGAAAACAT TTTAAACGTT TTTACTTTGG CAAAGATGTT CTCAACCTTG CTTCTCTCT 3600 TAGATAGCGC ATGGTTACAG GCTTTATCTT CAACTGTTAG CGGTTTGAGT TTGCTGGATT 3660 TACGTGAAGT TTGTGCTTGA GGATATATCT TCATGAGCCC TTGATAACCA CTGTCAGCCA AGATTTTACC AGCTTGTCCG ATATTTCTGC GACTCATTTT GAACAACTTC ATATCATGAC 3780 AATAGTTCAC AGTGATATCC AAAGAAACAA TTCTCCCTTG ACTTGTGACA ATCGCTTGAG 3840

	TCTTCATAGC	GTGAAATTTC	TTTTTACCAG	AATCATTCGC	TAATTCTTTT	TTTAGGGCGA	3900
	TTGATTTTTA	CTTCCGTCGC	ATCAATCATT	ACCGTGTCCT	CAGAACTGAG	AGGAGTTCTT	3960
	GAAATCGTAA	CACCACTTTG	AACAAGAGTT	ACTTCAACCC	ATTGGCTCCG	ACGGAGTAAG	4020
	TTGCTTTCGT	GAACACCAAA	ATCAGCCGCA	ATTTCTTCAT	AAGTGCGGTA	TTCTCGCACA	4080
	TATTGAAGAG	TGGCCATAAG	AAGGTCTTCT	AGGCTTAATT	TAGGTTTTCG	TCCACCTTTT	4140
	GCGTGTTTAA	GTTGATAAGC	TGTTTTTAAT	ACAGCTAGCA	TCTCTTCAAA	AGTCGTGCGC	4200
	TGAACACCAA	CAAGACGCTT	AAATCGTGCA	TCAGTTAGTT	GTTTACTTGC	TTCATAATTC	4260
	ATAGAACTAT	AGTAAAATGA	AATAAGAACA	GGATAAATCG	ATCAGGACAG	TCAAATCGAT	4320
	TTCTAACAAT	GTTTTAGAAG	TAGAGGCGTA	CTATTCTAGT	TTCAATCTAC	TATACTATAC	4380
	CATATTTTGT	TTCGCAGGGA	ATCTATTATA	AAAGGGTAAG	TATTGCAAAA	ACACTTACCC	4440
	TTTTCTTTTA	TACTTCATTA	AGCTCTACTT	TTTATAATAC	TTCAAGCCCC	ACATGAGCAG	4500
	AAGCATGATG	ATTAAGCAGA	GAACAGCGCC	AATATAAGCG	ATTATTTGTT	GGTAGGATTC	4560
	TCCTGCTGTG	ATACCTCTAT	ACAAACAAAT	AATAGACATA	AAACCTGTCA	AGCCGATGAA	4620
	CATAAGTTGA	TTGGTTCTAG	GACTAACCAA	ATCATCATCT	TCAAACTCTC	TTATCCTCAT	4680
	TTCCCTAGTG	AGATAAACAG	TAACCAAAAT	AGAAGCCAAG	TTAATAACTA	CTAAAAGAAA	4740
	TTGGAAAACT	ACGGAAAAAT	TTAAAAACTG	ACGAGATAGA	AATAGATAAG	TAGAAACAAG	4800
	CAAGGGCAAC	TGACCTAAGA	ACAATCTCGC	AAGGAAGATG	TTCCGTTTTT	TAGCAAGAAA	4860
	AGTTTTCATT	TCTTTTCTCC	TTTCTTTTTA	TTGATAGCAA	AATAGATCAT	AACTGCAATC	4920
	ACATAGGCTA	TGGTATAAAA	TAGCTGATAC	CAAGCACTCT	CCCTAAGCGG	ATATAGAAAG	4980
	ATGGACATGA	TTAGATACAG	AACGAAAATA	ATCAGTATTT	TTTTCTTCAT	AAGATTTCCT	5040
	CCTAAATGTG	CGATTTATCT	TAGTTGAGCA	AGAACATTTA	CACTGCTAGT	ATAGCACTTA	5100
	TTTTGACCTT	GGATCACTCA	AATCATAAAT	GGTCATCAAA	ACCTCTTGAA	TTGTAAAAAT	5160
	TAAAAAAGCA	AGCATGAAAA	ACATACTTTC	CTCTTTATAT	TGTATTGATA	CCAACTTGTT	5220
	TGTAGACTTT	TCATCCTGCT	ATCACATATC	ATTTTGACAG	GCGAAACAAT	ATTAAAGAAA	5280
	CTCCCCTGTA	AATTAAGCTA	GCAAATACAG	GGGAGAAATT	TATTTTTAG	AGAGTACTAT	5340
	CCGTATCCTT	TTTGGAAGAT	TTTGAAAATA	TTTTTCTAAT	TAAGTCATCC	ATATAAGGAC	5400
	CAAATATACC	ААСТАСТААА	CCAATAATAA	AACTTTTAAA	ATCCATAATT	ACCACCAACA	5460
	TGTTGCTGCA	TAGGCTACAC	CTCCAAGTAT	AGCTCCACCC	GCAGCACCAG	TTGCTGCACC	5520
•	TTGCCATGTT	CCTGTTTTAA	TGCCTAGTTG	AAGACCTCTT	GCTGCTCCTC	CTCCAACACC	5580

			248			
TGCTTTGGCA	AAATCTCCCC	AATTGCATCC	GCCACCTTCA	ACGCAAGCAA	GCATTTCAGT	5640
ATCCATAACA	GAAAATTGTG	ACATCATTTT	TGTATCCATG	ACAAATACTC	CTTTTTTAAA	5700
AAACTAAAAT	AAATCAGAAT	AGAATCCTCA	TAATTTTACT	ATAAGTCTTA	CCAACTTAGT	5760
CCCAATTTAT	CACCAACCAT	ACCTCCTAAG	CATGTTAATC	CACCCCAAT	TGCACCAATG	5820
TGTGCTCCAA	CAAATGCACC	AGCAAGTCCA	GCTACTCCTA	AAGTGGCCAA	ACCTGCTCCA	5880
GTTCCACCAG	TTATAATTCC	CGTAGTGACT	CCTGTAATCA	GTGCATTTTG	ACAATCAGTG	5940
GAGCTATACC	CCCCTTCAAC	TTTCGCAAGC	ATTTCAGTAT	CCATAACCTC	TAACTGTGAC	6000
AACATTTTTG	TATTCATGAT	GAATACCTCC	TTTTTATTTT	CAATTTGTTA	CCAAAGTCTT	6060
AAATTCAATA	AACAAATAGA	TTTTTTATAG	татсттттт	ATTTTCTTAA	AAAAGTATAT	6120
ACGTCTACTA	TCTTCTTAAA	GGTAGCAGTA	CCTATTTTTT	AGTCTAAGAT	TTCAATAATC	6180
TTGAGTATCT	AAAATATCTT	AATTTCGTTA	TTCTCCTTGC	AATAAAAAGT	TTTACTATAC	6240
TATTTATTAA	CTTGCAGAAA	GCAAAAAATA	TTAGTAAATA	ATAGTTTATA	GTTAAGTTTT	6300
TTATTCCTAC	CAATCCATCA	ACTAAGTAAA	GCATCAACGA	TTACATAAAC	GATTGATAAT	6360
ААААТТААТА	TTTTGCTAAC	TATCTTATTC	TCATCATTCT	TAGATAACTT	TGATATTTTG	6420
TAAGTAAGTA	AATAAGACAG	ТАААТТААТА	GCGATAATAA	TACTATATTT	AAGAATCATA	6480
ATCTTACAAA	GAGGACATAA	TTCCTGAACC	TACACAAATA	AGTGTTGCTG	CTCCCCCAGT	6540
TATCGGACCA	GTCGCAGCAG	CTAATAGTAC	TGCTCCAATA	CAACCACCGA	TTGCAGATCC	6600
TAAATTGCCT	CTTCCTCCAC	TAACTATTTC	GAGTTCTTCA	ттатссатаа	CAGAAAATTG	6660
TTCCATCATT	TTTGTATTCA	TGACAAATAC	TCCTTTTTTC	TTTTTTTATT	TTTGTCTTGT	6720
TGTAACTTTG	ATAAGTTTAG	TATATCATCG	TTTTTTAAAA	TTTTTCATCC	AGATCTTGAA	6780
TTGTCATCGA	AACGTCTTGA	ATTAGCTTTT	TTATTTCAAG	ССАССТСТАА	ATGTTTAAAA	6840
AAAATAATTT	СТААТСАСТТ	TTTTACCATT	CAGGAAGTTT	TAATGACTAT	TCAAGATTTC	6900
ATAAAATATG	AACTTAGTTT	TATGACATAA	TAGACCTATC	CACTATATGA	AAGGAATTGC	6960
CAATGACTTC	TTATAAACGT	ACATTTGTTC	CTCAAATAGA	TGCGAGAGAC	TGTGGTGTCG	7020
CTGCCTTAGC	CTCGATTGCT	AAATTCTATG	GTTCAGATTT	TTCTCTAGCT	CACTTGAGAG	7080
AACTTGCAAA	GACCAATAAA	GAAGGGACGA	CTGCTCTTGG	CATTGTAAAA	GCCGCTGATG	7140
AAATGGGCTT	TGAAACAAGA	CCTGTTCAAG	CAGATAAAAC	GCTCTTTGAC	ATGAGTGATG	7200
TCCCCTATCC	ATTTATCGTT	CACGTTAACA	AAGAAGGAAA	ACTCCAACAT	TACTATGTTG	7260
TCTATCAAAC	AAAGAAAGAC	TATCTGATTA	TTGGTGATCC	TGACCCTTCT	GTAAAAATCA	7320
CTAAAATGTC	AAAAGAACGC	TTTTTCTATG	AATGGACTGG	AGTAGCTATT	TTTCTAGCTA	7390

CCAAACCCAG	CTATCAACCC	CATAAAGATA	AAAAGAATGG	TCTACTAAGC	AAGCTTCCTT	7440
CCTCTGATTT	TCAAACAAAA	ATCTCTCATT	GCTTACATTG	TTCTCTCAAG	CTTATTGGTC	7500
ACTATTATCA	ATATAGGTGG	TTCTTACTAT	CTCCAAGGAA	TCTTGGATGA	ATACATTCCA	7560
AATCAGATGA	AATCAACTTT	AGGAATCATC	TCAGTTGGTC	TGGTTATCAC	CTATATCCTC	7620
CAACAAGTCA	TGAGCTTCTC	CAGAGATTAT	CTCCTAACCG	TTCTGAGTCA	GAGATTAAGT	7680
ATTGATGTGA	TTTTATCCTA	TATTCGCCAT	ATTTTTGAAC	TTCCCATGTC	TTTCTTTGCG	7740
ACACGTCGTA	CAGGAGAAAT	CATTTCACGA	TTCACAGATG	CTAACTCTAT	TATAGATGCC	7800
TTGGCTTCTA	CCATTCTTTC	TCTTTTTCTG	GATGTTTCTA	TTCTGATTCT	TGTAGGAGGC	7860
GTCTTACTGG	CACAAAACCC	TAATCTCTTC	CTTCTTTCTC	TTATTTCCAT	TCCTATATAC	7920
ATGTTCATCA	TCTTTTCTTT	TATGAAACCT	TTCGAAAAAA	TGAACCATGA	TGTCATGCAA	7980
AGTAATTCTA	TGGTTAGCTC	TGCCATTATC	GAAGATATCA	ACGGGATTGA	AACTATAAAG	8040
TCGCTCACGA	GTGAAGAAAA	TCGCTATCAA	AATATAGACA	GCGAATTTGT	AGATTATTTG	8100
GAAAAATCCT	TTAAGCTCAG	TAAATATTCT	ATTTTACAAA	CGAGTTTAAA	GCAGGGAACA	8160
AAATTAGTTC	TGAATATCCT	TATCCTATGG	TTTGGCGCTC	AATTAGTCAT	GTCAAGTAAA	8220
ATTTCTATCG	GTCAGCTGAT	TACCTTTAAC	ACACTTTTTT	CTTACTTTAC	AACTCCTATG	8280
GAAAATATTA	TCAACCTCCA	AACCAAACTC	CAATCTGCGA	AGGTCGCTAA	TAACCGTTTG	8340
AACGAAGTCT	ATCTAGTCGA	ATCTGAATTT	CAAGTTCAAG	AAAACCCTGT	TCATTCACAT	8400
TTTTTGATGG	GCGATATTGA	ATTTGATGAC	СТТТСТТАТА	AGTATGGTTT	TGGATGAGAT	8460
ACCTTAACAG	ATATTAATCT	CACGATTAAA	CAAGGAGATA	AGGTTAGCCT	AGTTGGAGTT	8520
AGTGGTTCTG	GTAAAACAAC	TTTAGCCAAA	ATGATTGTCA	ATTTCTTTGA	ACCCTACAAA	8580
GGGCATATTT	CCATCAATCA	TCAGGATATT	AAAAACATTG	ATAAAAAAGT	CTTGCGCCGT	8640
CATATTAATT	ACCTACCCCA	ACAAGCCTAT	ATCTTTAATG	GCTCTATTTT	GGAAAACTTA	8700
ACCTTGGGCG	GTAATCATAT	GATTAGTCAA	GAAGATATTC	TAAAAGCTTG	TGAAGTAGCT	8760
GAAATCCGTC	AAGACATTGA	AAGAATGCCT	ATGGGCTATC	AAACTCAGCT	CTCTGATGGA	8820
GCTGGTCTAT	CAGGAGGACA	GAAGCAACGA	ATCGCTCTCG	CTCGTGCTCT	TTTAACTAAA	8880
TCTCCTGTTT	TAATACTAGA	TGAAGCTACT	AGCGGTCTTG	ATGTCTTGAC	TGAGAAAAAG	8940
GTTATAGATA	ATCTTATGTC	TCTAACTGAT	AAAACCATTC	TCTTTGTAGC	CCATCGTCTC	9000
AGTATAGCCG	AACGAACCAA	CCGTGTCATT	GTTCTTGACC	AGGGGAAAAT	CATTGAAGTT	9060
GGTA						9064

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7780 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

CTCCATTTT TTGATTCAT AAATAAACAA CCTCTCTGTT AATTTTGTAT AATTATAACG 60 ATATCCAAGT TACTTGTCAA GTGTTTTTTA AATTTTTATC TCAAAAATAT TTTTTCGTTC 120 AAAAAAGGA GCCATCAGTT GATTTCAAGC TCCCTTTTAT ACAGAATTAA ACTATTTTAT 180 AGTTCGACAA TCTTACCTGT TTCAAAGTAG ACAACCCATT CACAGATATT TTTAGCATAG 240 TCACCGATAC GCTCCAAGTA GGAAATAACT TGGAAATAAT CACGACCCGT AACAATGGCT 300 TCTGGATTTT TCTTAATCTC TTCAGTCGCA AGGTCACGGA TAGTTTCAAA ATAGTGGTTA 360 ATTTGCTCAT CCATGGAGGC CACCCGGTAT GCGTCGTCAA CAGAACCATT AAGATAAAGA 420 TCAAGTGCTG CTTCCACAAC GCTTTTAACT TCACGTCCCA TTTTTTTAAT TTCTTCCTCT 480 ACAGCTGGAA TGCGCTCTTC CCCCTTCATA CGGATGGTTG CCTGGGCAAT GGCTACAGCG 540 TGATCCCCCA TACGCTCCAC ATCTGATACA GCCTTAAGGA CAGTCAAGAC TGTACGCAAA 600 TCTTGAGAGA CTGGTTGTTG GAGTGCGATC ATTTCAAATG ATTTCTTTTC CAGTTTCACT 660 TCGTATTCAT TTACTTCTGC ATCATCTTCG ATGACCTCTT TTGCCAGGTC ACGGTCATGC 720 GTGACAAAAG CACGTACCGT ACGATTGATT TGTGAGAGCA CTTCTTGTCC CATAGCGTAG 780 AACTGGTTAT GTAATTTCTC TAAATCTTCT TCAAATTGAG ATCGTAACAT CTTTCATCTC 840 CTTATCCAAA TTTTCCTGTA ATATAGTCTT CCGTTTCCTT GTGTTGGGGA TCAAGGAACA 900 TCTGCTTGGT ATCATTAAAT TCAATCAAAT CTCCATCTAG GAAAAATCCT GTCTTATCAG 960 AGATACCTGA AGCTTGCTGC ATGGAACGGG TTACCAGAAG CATGGTGTAC TTGTCTTTTA 1020 GACCATACAA GGTTTCCTCA ATTTTACCAG CTGAAATCGG ATCCAAAGCC GAAGTTGGCT 1080 CATCCAAGAG GATGATTTTA GGACTAGTTG CCAAGACACG GGCCACGCAG ACACGCTGCT 1140 GTTGACCACC TGACATCCA ATAGCTGAAT CATATAGACG ATCCTTGACC TCATCCCAGA 1200 TAGAGGCACC TTGCAAGGCT TTTTCTACGG CTTCATCCAG AACCTGCTTA TCCTTAATTC 1260 CATTGATACG AAGCCCGTAG ACAACATTCT CATAGATAGT CATAGGGAAA GGATTAGGTT 1320 GTTGGAAAAC CATTCCGATT TCCTTACGTA ATTCAACCGT ATCTGTACGC GGACTGTAGA 1380 TGTTGTGACC ATTGTACACC ACGGATCCAG TTGTGGTCAC CTCTGGATTG AGATCTCCCA 1440

TGCGGTTGAG	AGACTTGAGG	AGGGTTGACT	TCCCTGATCC	AGATGGACCA	ATCAAGGCTG	1500
TAATTTCCTT	AGGTTGGAAA	GATAGGGAAA	CACTATTCAA	AGCCTTCTTT	TTATTATAAT	1560
AAACGGACAG	GTCTGATACC	TGTAAAATCG	CATCTGTCAT	ACGGTTTCCT	TTCTAACCAA	1620
AGTGACCAGA	TACATAGTCA	TTGGTGGACT	GTAGCTTGGC	ATTTTGGAAA	ATAGTTGCAG	1680
TCTTGTCATA	CTCAATCAAA	TCACCCAAGT	AAAAGAAGCC	TGTATAGTCA	CTTGCACGAG	1740
CAGCCTGCTG	CATATTATGC	GTTACAATGA	TGATGGTAAA	GTTTTTCTTG	AGCTCAAACA	1800
TGGTCTCTTC	TAGTTGCATG	GTCGCAATCG	GATCCAAGGC	TGAGGCTGGC	TCATCCATTA	1860
AGAGGATATC	TGGCTTAACA	GAGATGGCAC	GAGCGATACA	GAGACGTTGT	TGCTGACCAC	1920
CTGATAAGGT	CAAGGCTGAC	TTGTGGAGAT	CGTCTTTAAC	CTGATCCCAG	AGGGCAGCCT	1980
GACGAAGGGA	GGTTTCTACG	ATTTCATCTA	GGACTTGCTT	ATCCTTAACT	CCAGCACGTT	2040
CATGCGCAAA	GGTAATATTA	CGGTAAATTG	ACTTAGCAAA	TGGATTGGGA	CGTTGAAAAA	2100
CCATTCCAAT	GTGTTTACGC	ATTTCATAAA	CGTTGATTTC	TGGACGGTTG	ACATCAATTC	2160
CACGATAGAG	AATCTGCCCA	GTTACTTTAG	CAATATCAAT	AGTATCATTC	ATGCGATTGA	2220
GACTGCGTAA	GTAGGTAGAT	TTCCCCGATC	CCGACGGGCC	AATCAAAGCT	GTAATTTTAT	2280
TTCTTTCAAA	TTGCATATCA	ATCCCCTTAA	TGGATTCATT	TTTACCATAG	TAAACATGGA	2340
CATCCTTAGT	AGAAAGGGCT	ACTITITCTT	CAGGAAAGGT	AAGGATATGC	TTCTCATCCC	2400
AGTTATATGT	TGACATGGCT	TCTCCTTTAG	GCAGCGGTTA	ATTTCTTGTG	TAGATAGCTT	2460
CCGAACTTAC	GAGCTCCAAA	GTTAAAAATC	AGGATAAAGA	TCAGGAGCAC	AGCGGCAGAA	2520
CCTGCTGATA	CAATGGTTCC	ATCTGGAATA	GTGCCTTCAC	TATTGACTTT	CCAGATATGG	2580
ACAGCCAAGG	TTTCTGCTTG	ACGGAAGATA	GAGATGGGGC	TAGTCACACT	GAGGATATTC	2640
CAGTTAGACC	AGTCAAGAGC	TGGCGCCGAT	TGECCTGCTG	TATAGATCAG	AGCTGCAGCT	2700
TCGCCAAAGA	TACGACCAGA	TGCCAAGACG	ACACCCGTTA	CAATACCTGG	AAGCGCTTCC	2760
GGAATAACAA	CATGAACCAC	TGTCTCCCAG	CGAGAAATCC	CAAGAGCCAG	ACCAGCCTCA	2820
CGTTGGGTAT	GGTGAACGTG	TTTCAAACTA	TCCTCTACAT	TACGCGTCAT	CTGAGGCAAG	2880
TTAAAGACTG	TCAAGGCCAA	GGCACCTGAA	ATGATTGAAA	ATCCATACTC	AAACTGGACT	2940
ACAAAGATCA	AGTAACCAAA	GAGACCCACC	ACCACTGATG	GTAAAGAGGA	CAAAATTTCA	3000
ATACAAGTCC	GCACAAAGTT	GGTAACAGGA	CCTTTTTTAG	CATATTCAGC	CAAGTAAATC	3060
CCAGCTCCCA	TAGAAAGAGG	TACAGAAATA	ATCAAGGTAA	TGACCAATAG	GAAAAAGGAA	3120
TTGTAAAGCT	GAATGCCAAT	CCCACCACCT	GCTTGAAAAG	CAGAAGACCT	TCCAGTCAAG	3180

252 AAAGACCAAG AGATATGGGG CAAGCCCCGA ACCAAGATAT AGAGAATCAA GGAAGCCAAG 3240 ATTGTCACAA TGATGCTAGC AATCGTATAG AGGACAGCTG TTGCAAGTTT ATCTAATTTC 3300 TTAGCGCGCA TAATTTTTCT TTCCTCTTTC TTTCGTAATC AATTTAATCA CACTGTTAAA 3360 AACTAAGCTC ATCAAGAGCA GTACCAAGGC CAGTGACCAG AGAACATTAT TATTTACAGT 3420 TCCCATGACA GTGTTCCCAA TTCCCATAGT TAATATAGAA GTTAAAGTTG CAGCTGGTGT 3480 GGTCAAGGAA GTTGGGATAA CAGCTGAGTT TCCGACAACC ATCTGGATAG CTAGAGCCTC 3540 ACCAAAGGCA CGCGCCATCC CAAAGACCAC TGCAGTGAAA ATACCAGAAC GGGCCGCCTT 3600 CAAGATCACA CGCCAGATAG TCTGCCAGCG AGTGGCTCCC ATAGCGAAAC TGGCTTCACG 3660 ATAATAACGA GGAACCGCAC GCAAGCTATC CGTTGTCATA AAGGTTACGG TCGGCAAAAT 3720 CATGACAAAG AGGACGGAAA TCCCTGACAA AATCCCAAAA CCAGTCCCAC CAAAGACACT 3780 GCGAACAAG GGAACGACGA CTTGCAAGCC AATAAATCCG TACACTACTG AAGGAATCCC 3840 AACCAGGAGT TCAATAGCTG GTTGCAAAAT CTTCGCCCCT TTTGGTGATA CTTCGGTCAT 3900 AAAAACTGCT GCACCAATAG CAAAGGGTGT TGCGATAAGG GCTGAGAGAA TGGTAACGAT 3960 AAAGGAACCC AAAATCATAG GAAGGGCACC AAATTCTTTA CTAGAAGGAT TCCAAGTTCC 4020 TCCCAAAAGA AAGTCAAAGA TATTCACACC ATTGACAAAG AAGGTCGACA AGCCTTTTTG 4080 CGCTACGAAA ACCAAAATCA TGGCCACAAG GATGACTATC AAAGAAAGAC AGGCAAAAGGT 4140 CAAACCTTTT CCTAATTTCT CCAGACGAGA ATTCTTTGAT GGAAGCAACA TTTTCTTAGC 4200 TAATTCTTCT TGATTCATTA TTGTCTCCCT TCCAACACTG TCACAGTTCC GGCAGCATCT 4260 TTTTCAACCT TCATTTCCTT AATCGGAATA TACTTCAATC CTTTGACAAT CCCTTCTTGG 4320 4380 GTCTCATCCG AGAGAACAAA ATTGAGAAAT TCTGCAGCCA ACTCATTGGG CTGCCCCAAT GTATACATAT GCTCATAAGA CCACAAGGGC CAATTATTGC TACTTATATT TTCTGGACTT 4440 AAGTCATAGC CATTCAACTT CATGCTTTTG ACCGAATCAT CTATATAGGT AAGAGATAAA 4500 TAAGAGATAG CTCCTGGACT TTTTGATACG ATTGATTTTA CCGCTCCATT TGAATCCTGC 4560 TCCTGACTTT GCATGGCAGA CTGACCTTCC ATAATGACAG TATCAAAGGT AGCACGAGAG 4620 CCAGAGCCGG CTGCCCGATT GATAACAGAG ATGGGTAAGT CCTTACCACC AACCTCTTTC 4680 CAATTGGTTA CCTCACCTAT GAAGATTTGA CGAAGTTGCT CTGTCGTTAG GTTATCAACA 4740 TCAACCTCCT TATTGACAAT CAGAGCCAAG CCAGCTACCG CGACCTTGTG GTCAACAAGA 4800 GCAGAAGCAT CAATTCCGTC TTTTTCCTCA GCAAATACAT CTGAGTTTCC TATATCAACT 4860 GCCCCAGACT GAACCTGGGA CAAGCCTGTA CCAGAACCTC CCCCTTGGAC ATTGACCGTT 4920 TTTCCAACAT GGATCGTGCC AAATTCATCT GCCGCTACTT CAACCAAGGG. TTGCAAGGCA 4980

GTTGAGCCAA	CAGCCGTTAT	GGATTCTCCA	CGATCAATCC	AGCTAGCACA	GCCTACTAAA	5040
CAAGCCGTCA	GCCAAAAAGC	GATAAGAGAC	AGAGCAAGCT	TTTTTCTTTT	TTTCACTGTT	5100
TTTCTCCTCG	AAAATAATTA	TGAATACTGT	GAATTTTTTA	AGTAGTTCTT	TATGAGTTGA	5160
CGCATGAATT	CTTACCAAAT	TTCTGCGCAA	TTGATTATTT	ATATAATATA	GGCTATATTA	5220
CTCTTTCCTA	ACCTCCTTTT	TTCATATGTG	GATAAAATCT	CTTGTCTATC	CCTTCCCCCA	5280
TTGTCACCCA	TTATAGTCAT	TTCGTGTCTC	TTTTTCCCCT	TTTTAATGCA	AGGGAAATTA	5340
CTCTCCTTAG	ATGATAATCC	AAAAGCTAGA	AAGGTATCTC	AAACCTCTCT	ACTCTCCCAG	5400
ACTAGTTTAC	AACTAAAAGG	AAAAGATTCT	ATTTTATGAG	AAATCTAGTT	TACAAGCGGT	5460
AAGAACGCTA	ATAACTAAAC	TTCTTGTACT	CTTTGAAAAT	CTCTTCAAAC	CAGTGTTTTG	5520
AGCTATCTAT	GGCTAGCTTC	CTAGTTTGCT	CTTTGATTTT	CATTGAGTAG	TAAAACTACA	5580
TGTAATGGCA	ATCAAGATAT	CAAGAATCAT	CCTACTAAAA	AAATCCATAC	TTTCACTATA	5640
ACATAGAATA	AGATATTTGA	CTAGCATTTT	CATTTGAATC	TGAGGCCTTT	TGGAAAATAA	5700
TTTTTCAAAA	CATTTCCAGT	AACCTTTGCA	AAGCCCAAGC	CATTGCCTTT	AACCAAAACT	5760
TGGTACCAAC	CATTTGGCAG	ACTTTCTGCC	AGCTGAACGG	TTTCTCCAGC	CGCATACTTG	5820
ACAAACGCTT	CTTGGCCAAT	TTCAACCGAC	TGTTCGACCT	GACTCGGTTT	CAAGGCTAAA	5880
CCAAGAGCGA	AACTGGGCTC	AAAGCGTTTC	TTCTTAAAAG	TACCCAGATG	CAGTCCATTG	5940
CGAGCAATCT	TGAGCTTCCA	TAAATCTGGC	AAAAGTTCTG	GCAAGAGATA	AAGCTGGTCT	6000
CCAAAAATCT	GCAAGATACC	CGGTAGATTG	ACCTTCAAAT	GGTTTTGGGC	AAATTCCTGC	6060
CACAAGGCAA	CTTGTTCACG	GCTGAGGTTA	CTCTTACTTG	CCTTAAATTT	AGGAGCTGGA	6120
TTGTTACCCT	TAAACTGTAG	ATGGGCAACA	AACTGACCCT	CTCCCTTAAA	CTGATGAGGA	6180
TACATCCGAG	CCGTTTCTGG	CAGGTCAATA	CCAGCTACCA	TTCCATTGAT	ATGCTCTACT	6240
GGCAACAAGT	CAAAATCATA	CTCTTCCAGC	AACCAATTGA	CAATCTCTTC	GTTTTCCTCG	6300
GGTGCCCAGG	TACAGGTCGA	ATAAACCAGA	TGACCACCTT	CAGCTAACAT	GGTCACTGCA	6360
TCCTCCAGAA	TTTCTCTTTG	CAAGCTAGCA	CATTGACTCG	GATAATCTAA	GCTCCAATAG	6420
TCCATAGCAT	CAGGTTGCTT	ACGAAACATT	CCTTCACCAG	AGCAAGGGGC	ATCAAGAACG	6480
ATTAAGTCAA	AATAGCCTTT	AAAGACCTTG	ACCAAGCGGT	CGGCAGATTC	ATTGGTCACC	6540
ACGACATTTG	TCGCTCCAAA	ACGCTCCATG	TTTTCAACCA	AAATCTTAGC	CCGTTTGCTT	6600
GAAATTTCAT	TGGAAnCAAG	TAGCCCCTCC	CCTGCTAGAT	AGGCTGCCAG	TTGAGTTGAT	6660
TTGCCCCCCG	GTGCAGCAGC	CAAGTCCAAG	ACCTTCATAC	CAGGACTGGG	TTGGGCTACT	6720

			254			
TGAGCCACCA	TTTGAGCAGC	AGGTTCTTGC	GAATAAACTA	AACCTGTAGC	ATGCTCAGGC	6790
GATTTCCCTG	AAACCTTCCC	ATAGTGGCCC	CAAGGGGTTT	GAGTAATGGC	ATCAGAAAAG	6840
GAAAGTTGCT	CTTCTTTTAA	GGGATTGACC	CGAAAGGCCG	AAACCGCTTC	CTCCTCAAAA	6900
GAGGCAAGAA	AATCTCTTGC	CTCATCTCCT	AGTATCTCTT	TATATTTTTC	AACAAATCCT	6960
TCTGGAAATT	GCATTTAAGT	TCTTTTCCTT	TCGTAAATAT	AGGACTGAAT	TTCCTCCTGC	7020
ATCTCAAGAG	GCACCATCAT	GACCGGCTGT	CTGGTTTGAA	AATCAGGAGC	TTCACCAAAA	7080
AGGGTCACAA	CCCGATAGCC	CAGACTTTCC	CCTAAAATAC	TAGCTGCGGC	ATAATCCCAT	7140
GGTTGCAGAT	AAGTGAGATA	GGTCAACAAA	CGCCCTGACA	AAATCTTGGC	AAAACTAATG	7200
GCCGCACTTC	CATAGACACG	AACACCAAGA	ACCGCTCGGC	TCAAATCAGC	CAGCCCCCAT	7260
TCATTGGTTT	CCAGCATACC	ACTATTCCCT	GCAATGAGAA	AATCTCCAAG	TGGTTTAGTT	7320
TTAAAAGGAG	CTAGGGACCT	ATCATTTAGA	CAAACTGGAA	ATTCCCCACC	ACCGTGGTAA	7380
CAATCCCCTT	TGACCACATC	ATAAATCAGA	CCAAACTGTC	CCTGACCATT	TTCAAAATAA	7440
GCCATCATAA	CAGCAAAATC	TTCCTGCTGG	GCTACAAAAT	TATTGGTACC	ATCAATGGGA	7500
TCAATGACCC	AAACCTTGCC	CTCTTGAACC	GAGGCTCGCA	GACAACCTTC	TTCAGCACAA	7560
ATCTTATCCT	CAGGATAACG	GGACAAAATC	TCACCAACCA	AGAGTTCCTG	AACTTCTTTG	7620
TCCAGTCTGG	TCACCAAATC	TGTTGGAGAG	GACTTGGTTT	CAACACGCAA	GTCTTCCTGC	7680
ATATGGTCAA	GAATGTACTG	ACCTGCTTTC	TTAACAAGCT	CTTTAGCAAA	TTCAAATTTA	7740
CTTTCCAAGA	GAAATCTTTC	СТТССССТТТ	TTCTTTGGGG			7780

(2) INFORMATION FOR SEQ ID NO: 19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4820 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double —

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

GT	VATGATA T	AGGAACACCA	GGTGACCTGA	TGGGACGTCG	TAAGCCTATG	AACTACTAGC	60
TGC	TAAAGGC	TTTAAAGATG	GTATGGTACC	ATATATCTCA	AACCAATACG	AAGAAGAAGC	120
CAA	ACAAAAG	GGCAAGACAA	TCAATCTCTA	CGGTAAAACA	AGAGGTTTGG	TTACAGATGA	180
CTT	GGTTTTG	GAAAAGGTAT	TTAATAACCA	ATATCATACT	TGGAGTGAGT	TTAAGAAAGC	240
TAT	CTATCAA	GAACGACAAG	ATCAGTTTGA	TAGATTGAAC	AAAGTTACTT	TTAATGATAC	300
AAC	ACAGCCT	TGGCAAACAT	TTGCCAAGAA	AACTACAAGC	AGTGTAGATG	AATTACAGAA	360

ATTAATGGAC	GTTGCTGTTC	GTAAGGATGC	AGAACACAAT	TACTACCATT	GGAATAACTA	420
CAATCCAGAC	ATAGATAGTG	AAGTCCACAA	GCTCAAGAGA	GCAATCTTTA	AAGCCTATCT	480
TGACCAAACA	AATGATTTTA	GAAGTTCAAT	TTTTGAGAAT	AAAAAATAGT	GTCTACTATT	540
AGGAAATAAA	GTTTAAAAAG	GTGATGAAGA	ACAAACCAAG	ATTCAAGCAG	GAATTCCTAC	600
TGATAATGAA	GTAAGTTATG	ATCTTATTTA	TCAGCAGGAA	ACTCTTCCTG	CAACAGGTTC	660
ATCAACTTCT	GAGCTTACAG	CTTTAGGCCT	ATTAGCTGTT	GGTAGTTTAG	TTCTTTTGGT	720
TCATAATATG	ACGGGAACAG	TTTTTTGCTC	CCTCTGAAAA	GTCATCATTT	GATGGCTTTT	780
TTCTATATAG	GGTAAAAGAT	AGGGTAAAAG	GCTATCATCG	GACAAAATAA	AGAAGGCATG	840
ATATAATATA	AAGTAGATTT	CTATGTCATA	AAACAAGAAC	TGTTTGGACA	TCATTCATTT	900
GAAAACTCTC	TATGTTCAAA	CAATAGTAAA	ATAAAATAGG	GGATCTAAAT	CCTTGCTATG	960
AAAGGAAAAA	ACTCAATGGC	TACTATTCAA	TGGTTTCCTG	GTCACATGTC	TAAAGCTCGT	1020
CGACAGGTGC	AGGAGAATTT	AAAATTTGTT	GATTTTGTGA	CGATTTTAGT	AGATGCACGC	1080
TTGCCTCTAT	CTAGTCAAAA	TCCTATGTTG	ACCAAGATTG	TTGGTGATAA	ACCAAAACTC	1140
TTGATTTTAA	ACAAGGCCGA	CTTGGCTGAT	CCAGCAATGA	CCAAGGAATG	GCGTCAGTAT	1200
TTTGAATCAC	AAGGAATCCA	GACGCTAGCT	ATCAACTCCA	AAGAGCAAGT	GACTGTAAAA	1260
GTTGTAACAG	ATGCGGCCAA	GAAGCTCATG	GCTGATAAGA	TTGCTCGCCA	GAAAGAACGT	1320
GGGATTCAGA	TTGAAACCTT	GCGTACTATG	ATTATCGGGA	TTCCAAACGC	TGGTAAATCA	1380
ACTCTGATGA	ACCGTTTGGC	TGGTAAAAAG	ATTGCTGTTG	TTGGAAACAA	GCCAGGGGTC	1440
ACAAAAGGTC	AACAATGGCT	TAAAACCAAT	AAAGACCTGG	AAATCTTGGA	TACACCGGGG	1500
ATTCTCTGGC	CTAAGTTTGA	GGATGAAACT	GTTGCACTTA	AGTTGGCATT	GACTGGAGCT	1560
ATCAAAGACC	AGTTGCTTCC	TATGGATGAG	GTTACCATTT	TTGGTATCAA	TTATTTCAAA	1620
GAACATTATC	CAGAAAAGCT	GGCTGAACGC	TTCAAACAAA	TGAAAATTGA	AGAAGAAGCG	1680
CCTGTGATTA	TTATGGATAT	GACCCGCGCC	CTCGGTTTCC	GTGATGACTA	TGACCGTTTT	1740
TACAGTCTCT	TCGTGAAGGA	AGTCCGTGAT	GGCAAACTCG	GTAACTATAC	CTTAGATACA	1800
TTGGAAGACC	TCGATGGCAA	CGATTAAAGA	AATCAAAGAA	TTCCTTGTGA	CAGTCAAGGA	1860
GTTAGAAAGC	CCTATTTTTT	TAGAGCTTGA	AAAGGATAAT	CGCTCAGGAG	TTCAAAAGGA	1920
AATCAGCAAG	CGTAAAAGAG	CCATTCAAGC	TGAATTAGAT	GAAAATTTGC	GCTTGGAATC	1980
CATGCTTTCT	TATGAAAAAG	AACTTTATAA	GCAAGGATTG	ACCTTAATTG	CAGGTATTGA	2040
TGAGGTTGGT	CGTGGTCCTC	TTGCTGGTCC	TGTAGTCGCT	GCGGCCGTTA	TTTTATCTAA	2100

			256			
AAATTGTAAG	ATTAAAGGTC	TCAACGACAG	CAAGAAAATT	CCTAAAAAGA	AACATCTGGA	2160
GATTTTCCAA	GCCGTTCAAG	ACCAAGCCTT	GTCGATTGGA	ATTGGTATCA	TAGATAATCA	2220
GGTCATCGAC	CAAGTCAACA	TCTATGAAGC	AACCAAACTA	GCCATGCAAG	AAGCAATCTC	2280
CCAGCTCAGC	CCTCAACCAG	AGCACCTTTT	GATTGATGCC	ATGAAACTGG	ACTTGCCCAT	2340
TTCACAAACC	TCCATTATCA	AAGGAGATGC	CAACTCCCTC	TCTATCGCAG	CAGCATCTAT	2400
AGTAGCCAAG	GTAACACGTG	ATGAATTGCT	GAAAGAATAC	GATCAGCAGT	TCCCTGGCTA	2460
TGATTTCGCT	ACTAATGCAG	GATATGGCAC	AGCTAAACAT	CTGGAAGGCC	TCACAAAACT	2520
AGGAGTTACC	CCAATTCACC	GAACCAGCTT	TGAACCCGTT	AAATCACTGG	TTTTAGGTAA	2580
AAAAGAAAGT	TAATTGAAAG	GAAATAACAT	GGAGGAACAG	TCGGAAATAG	TCCGTTCTAA	2640
GAAAGAATTC	GCCTTTGCAT	CCAGCACTAT	ACTATCCCAA	GTTGGTCGAG	GAATCATTGT	2700
CGGCCTCATC	GTTGGAATTA	TCGTCGGATC	CTTTCGTTTC	TTAATTGAAA	AGGGCTTCCA	2760
CCTGATACAA	GGAGTTTATC	AAGATCAAGG	GTACTTAGTG	CGCAATCTTT	TTGTACTGGT	2820
TTTGTTTTAT	ATACTCATCT	GTTGGCTCAG	TGCCAAACTA	ACACGGTCAG	AAAAAGATAT	2880
TAAAGGCTCA	GGAATTCCTC	AAGTCGAAGC	CGAACTGAAA	GGCCTCATGT	CCCTCAACTG	2940
GTGGGGCATT	CTTTGGAAAA	AATATGTGCT	AGGTATTCTT	GCTATTGCCA	GTGGACTCAT	3000
GCTGGGTCGA	GAGGGACCCA	GCATTCAACT	TGGAGCAGTT	GGTGGTAAAG	GAATTGCCAA	3060
GTGGCTCAAA	TCCAGTCCAG	TAGAGGAACG	TTCCTTGATT	GCCAGTGGAG	CTGCAGCAGG	3120
TTTAGCCGCA	GCCTTTAATG	CTCCTATTGC	AGCACTTCTC	TTTGTTGTAG	AAGAAGTCTA	3180
TCACCATTTT	TCGCGCTTTT	TCTGGGTCTC	AACTCTAGCA	GCCAGCATCG	TAGCAAACTT	3240
TGTGTCTCTA	CTCATGTTCG	GTTTGACACC	AGTATTGGAT	ATGCCAGATA	ACATTCCTCC	3300
CATGACCCTA	GATCAGTATT	GGATATATCT	CGTCATGGGA	ATTTTCCTTG	GATTTTCAGG	3360
ттттстстат	GAGAAAGCTG	TATTAAACGT	TGGAAGAGTT	TATGACTTGA	TTGGTCAAAA	3420
AATCCATTTG	GATAGGGCTT	ATTATCCCAT	CTTGGCTTTT	ATCCTTATCA	TACCAGTCGG	3480
AATCTTCTTA	CCTCAAATCA	TTGGTGGCGG	AAATCAGCTT	GTCCTTTCTT	TAACTGAACA	3540
AAATTTTAGT	TTCCAAGTTT	TATTAGCTTA	CTTTTTAATC	CGCTTTATTT	GGAGTATGAT	3600
TAGCTATGGA	AGTGGACTGC	CAGGAGGAAT	TTTCCTCCCC	ATTTTAGCTC	TTGGTTCTTT	3660
GCTTGGTGCC	TTAGTTGGTG	TTATCTGTGT	CAATCTTGGA	CTTGTCAGTC	AAGAGCAATT	3720
CCCTATATTT	GTCATTCTAG	GAATGAGTGG	CTATTTTGGA	GCCATATCAA	AAGCTCCCTT	3780
AACCGCTATG	ATCCTCGTAA	CTGAGATGGT	AGGAGATATT	CGCAACCTTA	TGCCACTTGG	3840
TCTTGTCACT	CTTGTTTCTT	ATATTATCAT	GGATTTGCTC	AAAGGTACGC	CAGTCTATGA	3900

257

AGCCATGCTG	GAAAAAATGC	TTCCAGAAGA	AGTATCTAGC	GAAGGAGAAG	TTACACTTAT	3960
CGAAATACCA	GTTTCTGATA	AAATTGCTGG	GAAACAAGTT	CATGAACTCA	ACTTACCACA	4020
CAACGTCCTC	ATCACAACTC	AAGTCCATAA	TGGCAAGAGC	CAAACAGTTA	ACGGCTCAAC	4080
CAGAATGTAT	CTGGGTGATA	TGATTCACCT	GGTTATTCCA	AAAAGTGAAA	TTGGAAAAGT	4140
CAAAGATTTG	TTGTTGTAGT	ATGAGTATTT	ACATAATTTA	TGTTATGTAA	ATGATCAGTT	4200
TGATTTATTT	AGAAAACCGA	TTCTCAGGAA	TGAGATCGGT	TATTTTTTAC	TGATGAGGAA	4260
TTTTACATAT	AAATAATTGA	ACTTTATTAA	AAATAAGACT	ATAATTAAGT	TAGAAATGAT	4320
AAAGTATAAA	GCTAGAAAGG	AGTTTACTGT	ATCAAATCTG	TACAGTAAGA	TTAAAATCAT	4380
GAAAAAGAAA	ACAATAGCAA	TTATATAGAG	AAATGAAATA	GAAATAGGAT	AAAACAATCA	4440
GGACAATCAA	ATCAATTTCT	AGCAATGTTT	TAGAAGTCCA	GATGTACTAT	TCTAGTTTCA	4500
АТСТАТТАТА	CAATGTGTTT	TGTATCTCAT	AGCTCCTTAT	ATAGCTCTTC	AGTTATGTAG	4560
TATTAACAGA	AGTTTAGTGG	GTGAGATTTT	TATTATTTTC	CTTATTCTGT	TTTGTTTGTA	4620
GGTCTAAGTC	TTTTTATCAC	TTTGAAAAAC	TCCTATAACA	TCTTTCCGAA	AAACTATAAT	4680
TTTCTTGAAA	AATATACAAG	TCTATGCTAT	ACTACTAGTA	тасттастта	TGGAGAAAAT	4740
ACATGAAACG	TGAGATTTTA	CTGGAACGAA	TCGACAAACT	AAAACAACTC	ATGCCCTGGT	4800
AAGTTCTGGA	ATACTACCAA					4820

(2) INFORMATION FOR SEQ ID NO: 20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21338 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CTACGACATC	ATGATTAACA	GTCATGCGCT	ACTACCAACT	GAGCTATGGC	GGATAAAATA	60
GTCCGTACGG	GATTCGAACC	CGTGTTACCG	CCGTGAAAAG	GCGGTGTCTT	AACCCCTTGA	120
CCAACGGACC	TTCTATCTGT	AGCAGATATA	ACCATTATAT	CAATTTCTTG	CTAATTGTCA	180
ATCACTTTTG	AGATTTTTC	TCTAAAATAT	CTTTTAATTT	TCTAATTTTT	AATCTTGAAA	240
TAGGACAACG	ATGGTCTTCA	TAGAAAACAA	TTTCTAAGTT	TTTTCGATCA	ATTTCTCTGA	300
TATTACCTAT	ATTTACCAAA	AATGACTTGT	GAGGAGAATA	AAATCGCTGA	GTATGTTTGT	360
CCTTTTCCTG	AATATCTGTC	ATGGTACCAT	AAAACTCTTT	TGCAAAATTC	ттассаатаа	420

			250		•	
rgcgcaattt	ATGAGATACC	CCTGTTGTTT	258 CAATATACAA	AATATCATGG	TAAGGAATTT	480
TTAAATCATT	TCCCTTGTAA	TTGTAGTCGA	AATAATCTAC	AACATCTTCA	TTTTCAAGTA	540
ACATACTCTT	CGTGTAGAAG	ATATTTTGCT	CAATTCTCTT	CTTAAACATC	TCATCATTGA	600
TATCCTTATC	AACAAAATCT	AGGGCTGATA	CCTGGTATTT	ATAGGTTAGA	GTCGCAAACT	660
CTGATCGACT	AGTGATAAAG	ACGATAATAG	CGTAAGGATT	GTAATGACGA	ATGAGCTGAG	720
CCACTTCAAA	TCCCTTTTTC	TCAATTCCAT	GAATATCGAT	ATCTAGGAAA	TAAAGCTGAT	780
TTACTTCATC	ATTTTCAATG	TATTCTTCAA	ATTCACGGAC	TTTTCCCGTT	GTCTTGTATG	840
ATATTGGAAT	ATTCGATTCT	TTCGAAATTT	CATCCAATAT	TCTCTCTAGT	CTCACTTGAT	900
GTTCAATAAC	ATCTTCTAAA	ATTAAAACTT	TCATTCAAAT	TCCCTCTTAA	ATCTAATGAT	960
TTGTCTAAAT	GTACTGCCTT	CCATCTCTGT	TTCTAAAATA	ATATTGTTGT	ACTTATCTAG	1020
TAGTTCTTTC	ACATTATTTA	ATCCGACTCC	GCGATTTCTT	CCCTTAGTGG	AGAATCCTAA	1080
GGCAAATAGA	TCTCCTGAAG	GAGTCATCGT	CATTTTACAT	GAATTCTGAA	TCACAATAAC	1140
TGTTTCAGTT	TCCATCTTAA	TAACTGCTAC	TTCCATCTGC	TTTTTATAGC	TATCAGCCGA	1200
TCCTTCGACA	GCATTATTCA	ATAAAACGCT	CATGATACGA	ACCAAATCCA	ATAGTTCAAT	1260
TGGAAGCTTG	GTAATCGTAT	CTTTTACTTC	CAGTGTAAAC	TCTACACCAT	TATTTCGAGC	1320
ATAGACAATT	GACTGAGCAA	CCAAACTTCG	TAAAGCTGAG	TCTTCTATGT	TGTTCAAATC	1380
AAAGTAAGTG	TACTTATCTG	AACGCAATTT	ATGATTTGCT	TTGACTAAAA	CTTCATTGTA	1440
AATTCTGTCA	ATTTCCTGTA	AATTACCACT	GTCAATTGCC	ATCTGCATGC	TGACAAGCAT	1500
TCCAGCATAA	TCATGTCGAA	AACCACGGAT	TTCATTATAC	AGACCAACAA	TTTCATCTGT	1560
GTAATTCTGT	AAATGTTTCT	GTTCAAATTT	CTTCTGCTTC	AAAGCAATCT	CTTTCTCCAT	1620
TTGAACTTTA	TGAGAATTCA	TTGCAAAGAA	GGTCAAAAGG	AGAGAGATAA	AGACAATAGA	1680
TGACAAAATA	CTTCCAAAAC	TATTCAAATG	TTTAATCGTA	CTTACCATAT	CTGAAACGAA	1740
AGATACAATA	TGTAGCAATA	GTAAAGCAAA	AAATACTTTT	TTCAAGAAAG	GATAAAGGTA	1800
GTCCTTGTCA	AAATAGGCTA	GTTCCAAATG	GAAATAGTAA	ATGATTTTTA	ATGTAACAAA	1860
ATAGGTTAAC	ACCGTCACAA	CGAAAAAGAA	TGGGAAATGA	TATTGTAAAA	CAAAATTATC	1920
TCCTGTTATA	GAGGAGAAAA	TTACGGACAG	AAAGTTATGA	GTGCTCTCAT	ATAAAAGAGA	1980
TAGTAGTAAA	CTTAGGAATA	GTCCTCTATC	CCTCTCATAC	TGTTTCATCC	ATCGAAAATA	2040
GGAATATAAG	CCCAAAGGAA	ATAAAAATCT	TTCAATCCCT	ATTTTATCTA	AATATAGAAG	2100
ATAAAAGGAA	AATTCAAGTA	CTATTTCAGT	TAGTAATGTA	TAAGCACCAA	AAACGTATAA	2160
TTCTTTTCTA	TTTATTCGAC	CTTTACAAAT	TAAACGGTAA	CTGTGACTAA	TAATTAAAAA	2220

ATGAACAATA	ACTGTCCCAA	ATCCAAGTAA	ATCCATTACT	CTTTCTCCTT	ATTTCATTAC	2280
TTTTTTCGTA	GGAAAAGAAA	ATCAAGGATG	ATTCTTGAAA	TCCTCATCTC	CCCACCTTTA	2340
ATCTTTTGTA	AGTCTTTTTC	CTTCAAAGCT	ACAAACTGTT	CCAATTTAAC	TGTGTTTTTC	2400
ATAATAAAAT	CTCCTAAAAT	GTTTTTTCTT	GTAAGCTAAC	TTACAAAAAC	CATTATACAA	2460
AATGGAATTT	CGTTTTAGAT	AAAATTCTCT	CAACTGTCAT	TTTTTTCTCC	CAAAGTGTAC	2520
TTTTTTAAGA	AAAAAGCCGG	GAAAATTCCC	AGCTTTGCTA	TTATATTGAT	CCCAGCAGGA	2580
TTCGAACCTG	CGACCGTTCG	CTTAGAAGGC	GAATGCTCTA	TCCAGCTGAG	CTATGAGACC	2640
TAATACAATT	ATTCTACCAA	AAATTCAATT	AAAAGTCAAT	TTTCTATTTA	TGGTAGGGGA	2700
ATCCCTGCTG	AATCGTAAAA	GCGCGATAGA	TTTGTTCAAC	AAGAACTAGT	CTCATTAACT	2760
GATGGGGTAA	GGTTAGGCGA	CCAAAACTGA	CAGAAAGATT	GGCTCTATTT	TTTACAGATG	2820
ATGATAATCC	TAAACTTCCC	ССААТААТАА	AAGTAAGAGT	AGAAAATCCT	TTTATAGAAG	2880
TTTCTTCTAA	CTGCTTACTA	AATTCTTCTG	AGAAGAAAGT	TTTCCCTTCA	ATGGCTAACA	2940
CAATAACGAA	ATCACGGTCA	GCAATTTTTG	ATAAAATTCT	CTGACCTTCT	ATTTCTAAAA	3000
TCTTTTGATT	TTCTGATTCA	CTGGCCTTAT	CTGGTGTTTT	TTCATCTGAT	AACTCAATCA	3060
TTTCAAACTT	AGCAAATCTA	GAAATTCGTT	TTGAATACTC	TGCGATACCA	TCTTTTAAAT	3120
ACTTTTCTTT	CAGTTTCCCA	ACTGTTACAA	CTTTAATTTT	CATGACTCTA	TTCTAACATA	3180
TTCTCTATTT	TTTCACATCT	TATTCACAAA	АТЛАААААТА	GATTTCAATT	AAGAAAATCA	3240
CAATTTCAAA	AGAGTTATCC	ACAGTTTGTG	TAAAACTTTT	GTGTTTAAGT	TATAATTAAG	3300
CTAGTCAGTT	TATACTTTCA	GTAATTCAAA	CATATGGAGG	CAAATATGAA	ACATCTAAAA	3360
ACATTTTACA	AAAAATGGTT	TCAATTATTA	GTCGTTATCG	TCATTAGCTT	TTTTAGTGGA	3420
GCCTTGGGTA	GTTTTTCAAT	AACTCAACTA	ACTCAAAAAA	GTAGTGTAAA	CAACTCTAAC	3480
AACAATAGTA	CTATTACACA	AACTGCCTAT	AAGAACGAAA	ATTCAACAAC	ACAGGCTGTT	3540
AACAAAGTAA	AAGATGCTGT	TGTTTCTGTT	ATTACTTATT	CGGCAAACAG	ACAAAATAGC	3600
GTATTTGGCA	ATGATGATAC	TGACACAGAT	TCTCAGCGAA	TCTCTAGTGA	AGGATCTGGA	3660
GTTATTTATA	AAAAGAATGA	TAAAGAAGCT	TACATCGTCA	CCAACAATCA	CGTTATTAAT	3720
GGCGCCAgCA	AAGTAGATAT	TCGATTGTCA	GATGGGACTA	AAGTACCTGG	AGAAATTGTC	3780
GGAGCTGACA	CTTTCTCTGA	TATTGCTGTC	GTCAAAATCT	CTTCAGAAAA	AGTGACAACA	3840
GTAGCTGAGT	TTGGTGATTC	TAGTAAGTTA	ACTGTAGGAG	AAACTGCTAT	TGCCATCGGT	3900
AGCCCGTTAG	GTTCTGAATA	TGCAAATACT	GTCACTCAAG	GTATCGTATC	CAGTCTCAAT	3960

			260			
AGAAATGTAT	CCTTAAAATC	GGAAGATGGA	CAAGCTATTT	CTACAAAAGC	CATCCAAACT	402
GATACTGCTA	TTAACCCAGG	TAACTCTGGC	GGCCCACTGA	TCAATATTCA	AGGGCAGGTT	408
ATCGGAATTA	CCTCAAGTAA	AATTGCTACA	AATGGAGGAA	CATCTGTAGA	AGGTCTTGGT	414
TTCGCAATTC	CTGCAAATGA	TGCTATCAAT	ATTATTGAAC	AGTTAGAAAA	AAACGGAAAA	420
GTGACGCGTC	CAGCTTTGGG	AATCCAGATG	GTTAATTTAT	CTAATGTGAG	TACAAGCGAC	426
ATCAGAAGAC	TCAATATTCC	AAGTAATGTT	ACATCTGGTG	TAATTGTTCG	TTCGGTACAA	432
AGTAATATGC	CTGCCAATGG	TCACCTTGAA	AAATACGATG	TAATTACAAA	AGTAGATGAC	4386
AAAGAGATTG	CTTCATCAAC	AGACTTACAA	AGTGCTCTTT	ACAACCATTC	TATCGGAGAC	4440
ACCATTAAGA	TAACCTACTA	TCGTAACGGG	AAAGAAGAAA	CTACCTCTAT	CAAACTTAAC	4500
AAGAGTTCAG	GTGATTTAGA	ATCTTAATTG	ACATCTATGT	AAAGAAAGCT	TTACATAAGA	4560
GAAAAGATGT	GTTAGTGTAG	AATCATGGAA	AAATTTGAAA	TGATTTCTAT	CACAGATATA	4620
CAAAAAAATC	CCTATCAACC	CCGAAAAGAA	TTTGATAGAG	AAAAACTAGA	TGAACTAGCA	4680
CAGTCTATCA	AAGAAAATGG	GGTCATTCAA	CCGATTATTG	TTCGTCAATC	TCCTGTTATT	4740
GGTTATGAAA	TCCTTGCAGG	AGAGAGACGC	TATCGGGCTT	CACTTTTAGC	TGGTCTACGG	4800
TCTATCCCAG	CTGTTGTTAA	ACAGATTTCA	GACCAAGAGA	TGATGGTCCA	GTCCATTATT	4860
GAAAATTTAC	AGAGAGAAAA	TTTAAACCCA	ATAGAAGAAG	CACGCGCCTA	TGAATCTCTC	4920
GTAGAGAAAG	GATTCACCCA	TGCTGAAATT	GCAGATAAGA	TGGGCAAGTC	TCGTCCATAT	4980
ATCAGCAACT	CCATTCGTTT	ACTITCCTTG	CCAGAACAGA	TTCTTTCAGA	AGTAGAAAAT	5040
GGCAAACTAT	CACAAGCCCA	TGCGCGTTCC	CTAGTTGGGT	TANATAACGA	ACAACAAGAC	5100
TATTTCTTTC	AACGGATTAT	AGAAGAAGAT	ATTTCTGTAA	GGAAATTAGA	AGCTCTTCTG	5160
ACAGAGAAAA	AACAAAAGAA	ACAGCAAAAA	ACTAATCATT	TCATACAAAA	TGAAGAAAAA	5220
CAGTTAAGAA	AACTACTCGG	ATTAGATGTA	GAAATTAAAC	TATCTAAAAA	AGACAGTGGA	5280
AAAATCATTA	TTTCTTTTTC	AAATCAAGAA	GAATATAGTA	GAATTATCAA	CAGCCTGAAA	5340
TAAGGCTGTT	CTTTTATTTT	TTTATCTCAC	AAGGTTATCC	ACTATGTTTT	TCGATAAAAA	5400
GCTTAATAAA	TCAATAATTT	CTTCTTTTAT	CCCCAACCTG	TGGATAAAGT	TTGGTAACAT	5460
TGTGGATTAT	TTTTCACAGC	TTGTGGAAAA	TTCTTGCTAT	CTATGGTAAA	ATATCTCTAG	5520
TATTAAACTT	TTAAATAGTA	AAGGAGGAGA	AAGGATTGAA	AGAAAAACAA	TTTTGGAATC	5580
GTATATTAGA	ATTTGCACAA	GAAAGACTGA	CTCGATCCAT	GTATGATTTC	TATGCTATTC	5640
AAGCTGAACT	CATCAAGGTA	GAGGAAAATG	TTGCCACTAT	ATTTCTACCT	CGCTCTGAAA	5700
TGGAAATGGT	CTGGGAAAAA	CAACTAAAAG	ATATTATTGT	AGTAGCTGGT	TTTGAAATTT	5760

ATGACGCTGA	AATAACTCCC	CACTATATTT	TCACCAAACC	TCAAGATACG	ACTAGCTCAC	5820
AAGTTGAAGA	AGCTACAAAT	TTAACTCTTT	ATAACTATAG	TCCAAAGTTA	GTATCTATTC	5880
CTTATTCAGA	TACGGGATTA	AAAGAAAAGT	ATACCTTTGA	TAACTTTATT	CAAGGGGATG	5940
GAAATGTTTG	GGCTGTATCA	GCCGCTTTAG	CTGTCTCTGA	AGATTTGGCT	CTGACCTATA	6000
ACCCTCTTTT	TATCTATGGA	GGACCAGGCC	TTGGTAAGAC	TCACTTATTA	AACGCTATTG	6060
GAAATGAAAT	TCTAAAAAAT	ATTCCTAATG	CGCGTGTTAA	ATATATCCCT	GCCGAAAGCT	6120
TTATTAATGA	CTTTCTTGAT	CACCTAAGAC	TTGGGGAAAT	GGAAAAGTTT	AAAAAGACCT	6180
ATCGTAGTCT	TGATCTTTTG	TTAATCGATG	ATATCCAGTC	ACTCAGCGGA	AAAAAAGTCG	6240
CAACTCAGGA	AGAATTTTTC	AATACCTTTA	ACGCCCTTCA	TGACAAGCAA	AAACAGATTG	6300
TCCTAACGAG	TGATCGTAGT	CCAAAACATC	TAGAAGGGCT	CGAGGAGAGG	CTTGTCACGC	6360
GTTTTAGTTG	GGGATTGACA	CAAACTATCA	CCCCCCTGA	CTTTGAAACA	CGTATTGCCA	6420
TTTTACAAAG	TAAGACGGAA	CATTTAGGCT	ACAATTTCCA	AAGTGATACT	CTAGAATACC	6480
TAGCTGGGCA	ATTTGATTCA	AATGTTCGAG	ATCTTGAGGG	AGCCATCAAC	GACATCACTT	6540
TAATTGCCAG	AGTAAAAAA	ATCAAGGATA	TCACTATTGA	TATTGCTGCA	GAAGCCATTA	6600
GAGCCCGCAA	ACAAGATGTT	AGCCAAATGC	TCGTCATCCC	AATTGATAAA	ATCCAAACTG	6660
AAGTTGGTAA	CTTTTATGGT	GTTAGTATCA	AAGAAATGAA	GGGAAGTAGA	CGCCTTCAAA	6720
ATATTGTTTT	GGCCCGTCAA	GTAGCCATGT	ATTTATCTAG	AGAACTAACA	GATAATAGTC	6780
TTCCAAAAAT	TGGGAAGGAA	TTTGGGGGAA	AAGATCATAC	CACAGTCATT	CATGCCCATG	6840
CCAAAATAAA	ATCTTTGATT	GATCAAGACG	ATAATTTACG	TTTAGAAATT	GAATCAATCA	6900
AAAAGAAAAT	CAAATAATTT	GTGGATAACT	TTTAGTTTTT	TATCTTTTTT	ATCCACATTT	6960
TTTAAACAAG	CTAAAAAACT	TGATATGACT	TGTTTAAAGG	CTGTTTTCCA	CAGATTTCAC	7020
AGACTCTATT	ATTACTATTA	TCTTTCTAAT	ACTAAAAATA	AATAAAGGAG	AATCCATGAT	7080
TCATTTTTCA	ATTAATAAAA	ATTTATTTCT	ACAAGCATTA	AATACTACTA	AGAGAGCTAT	7140
TAGTTCTAAA	AATGCCATTC	CTATTTTATC	AACAGTAAAA	ATTGACGTGA	CCAATGAAGG	7230
TATTACTTTA	ATTGGTTCAA	ATGGTCAAAT	TTCAATTGAA	AATTTTATTT	CTCAAAAAAA	7260
TGAAGATGCT	GGTTTGTTAA	TTACTTCTTT	AGGTTCGATC	CTTCTTGAAG	CTTCTTTCTT	7320
TATCAATGTA	GTATCTAGTT	TACCTGATGT	AACTCTTGAT	TTTAAAGAAA	TTGAACAAAA	7380
TCAAATTGTT	TTAACCAGTG	GCAAATCAGA	AATTACCCTA	AAAGGAAAAG	ATAGCGAACA	7440
ATATCCACGA	ATCCAAGAAA	TTTCAGCAAG	CACTCCTTTA	ATACTTGAAA	CAAAATTACT	7500

			262			
CAAGAAAATT	ATTAATGAAA	CAGCCTTTGC	TGCAAGTACA	CAAGAGAGTC	GTCCGATTTT	7560
AACAGGTGTC	CACTTCGTAT	TGAGTCAACA	CAAAGAGTTA	AAAACAGTTG	CAACAGACTC	7620
TCATCGCCTA	AGCCAGAAAA	AATTGACTCT	TGAAAAAAAT	AGTGATGATT	TTGATGTCGT	7680
AATTCCTAGC	CGTTCTCTAC	GCGAATTTTC	AGCGGTATTT	ACAGATGATA	TCGAAACTGT	7740
AGAGATTTTC	TTTGCCAATA	ACCAAATCCT	CTTTAGAAGC	GAAĀĀTATTA	GCTTCTATAC	7800
TCGTCTCCTA	GAAGGAAACT	ATCCTGATAC	AGATCGCTTG	ATTCCAACAG	ACTTTAACAC	7860
TACTATTACT	TTTAATGTGG	TAAACTTACG	CCAGTCAATG	GAGCGTGCCC	GTCTTTTATC	7920
AAGTGCGACT	CAAAATGGTA	CTGTGAAACT	TGAAATTAAG	GATGGGGTTG	TTAGCGCCCA	7980
TGTTCACTCT	CCAGAAGTTG	GTAAAGTAAA	CGAAGAAATC	GATACTGATC	AGGTTACTGG	8040
TGAAGATTTG	ACCATTAGTT	TCAACCCAAC	TTACTTGATT	GATTCTCTTA	AAGCTTTAAA	8100
TAGCGAAAAG	GTGACTATTA	GCTTTATCTC	AGCTGTTCGT	CCATTTACTC	TTGTGCCAGC	8160
AGATACTGAC	GAAGACTTCA	TGCAGCTCAT	TACACCAGTT	CGTACAAATT	AAGTGAAAGA	8220
GGTTGAGCCT	GGCTCGCCTC	TTTTATGATA	TAATCGAAAA	AGAAAAGGAG	AGTAGTATGT	8290
ATCAAGTTGG	AAATTTTGTT	GAGATGAAAA	AATCACACGC	TTGTACAATC	AAGTCGACTG	8340
GTAAAAAGGC	TAATCGTTGG	GAAATTACAC	GTGTAGGAGC	AGATATCAAA	ATAAAATGTA	8400
GTAATTGTGA	GCATGTTGTC	ATGATGGGGC	GATATGATTT	TGAGCGAAAA	ATGAATAAAA	8460
TTATTGACTG	AGAACCCTTA	GTTAGAGGGT	TAGCACTTTA	TCCCTTTTTG	TGTTATAATA	8520
TTAGGGATTG	AAATGAAAAC	GGAGAATGAG	AAATATGGCT	TTGACAGCAG	GTATCGTTGG	8580
TTTGCCAAAC	GTTGGTAAAT	CAACACTATT	TAATGCAATT	ACAAAAGCAG	GAGCAGAGGC	8640
AGCAAACTAC	CCATTTGCGA	CGATTGATCC	AAATGTTGGA	ATGGTGGAAG	TTCCAGATGA	8700
ACGCCTACAA	AAACTAACTG	AAATGATAAC	TCCTAAAAAG	ACAGTTCCCA	CAACATTTGA	8760
ATTTACAGAT	ATTGCAGGGA	TTGTAAAAGG	AGCTTCAAAA	GGAGAGGGC	TAGGGAATAA	8820
ATTCTTGGCC	NATATTCGTG	AAGTAGATGC	GATTGTTCAC	GTAGTTCGTG	CTTTTGATGA	8880
TGAAAATGTA	ATGCGCGAGC	AAGGACGTGA	AGACGCCTTT	GTAGATCCAC	TTGCAGATAT	8940
TGATACCATT	AATCTGGAAT	TGATTCTTGC	TGACTTAGAA	TCAGTGAACA	AACGATATGC	9000
GCGTGTAGAA	AAGATGGCAC	GTACGCAAAA	AGATAAAGAA	TCAGTAGCAG	AATTCAATGT	9060
TCTTCAAAAG	ATTAAACCAG	TCCTAGAAGA	CGGGAAATCA	GCTCGTACCA	TTGAATTTAC	9120
AGATGAGGAA	CAAAAGGTTG	TCAAAGGTCT	TTTCCTTTTG	ACGACTAAAC	CAGTTCTTTA	9180
TGTAGCTAAT	GTGGACGAGG	ATGTGGTTTC	AGAACCTGAC	TCTATCGACT	ATGTCAAACA	9240
AATTCGTGAA	TTTGCAGCGA	CAGAAAATGC	TGAAGTAGTC	GTTATTTCTG	CGCGTGCTGA	9300

PCT/US97/19588

GGAAGAAATT	TCTGAATTGA	ATGATGAAGA	TAAAAAAGAG	TTTCTTGAAG	CCATTGGTTT	9360
GACAGAATCA	GGTGTAGATA	AGTTGACGCG	TGCAGCTTAC	CACTTGCTTG	GATTGGGAAC	9420
TTACTTCACA	GCTGGTGAAA	AAGAAGTTCG	CGCTTGGACT	TTCAAACGTG	GTATGAAGGC	9480
TCCTCAAGCA	GCTGGTATTA	TCCACTCAGA	CTTTGAAAAA	GGCTTTATTC	GTGCAGTAAC	9540
CATGTCATAT	GAAGATCTAG	TGAAATACGG	ATCTGAAAAG	GCCGTAAAAG	AAGCTGGACG	9600
CTTGCGTGAA	. GAAGGAAAAG	AATATATCGT	TCAAGATGGC	GATATCATGG	AATTCCGCTT	9660
TAATGTCTAA	AAATTAATAA	ATGGTGTCAA	TTAGGTTGGA	AAAAAATTCC	AACCCTTTTG	9720
GCTTTTGAAA	GGAAAAATAA	ATGACCAAAT	TACTTGTAGG	CTTGGGAAAT	CCAGGGGATA	9780
AATATTTTGA	AACAAAACAC	AATGTTGGTT	TTATGTTGAT	TGATCAACTA	GCGAAGAAAC	9840
AGAATGTCAC	TTTTACACAC	GATAAGATAT	TTCAAGCTGA	CCTAGCATCC	TTTTTCCTAA	9900
ATGGAGAAAA	AATTTATCTG	GTTAAACCAA	CGACCTTTAT	GAATGAAAGT	GGAAAAGCAG	9960
TTCATGCTTT	ATTAACTTAC	TATGGTTTGG	ATATTGACGA	TTTACTTATC	ATTTACGATG	10020
ATCTTGACAT	GGAAGTTGGG	AAAATTCGTT	TAAGAGCAAA	AGGCTCAGCA	GGTGGTCATA	10080
ATGGTATCAA	GTCTATTATT	CAACATATAG	GAACTCAGGT	CTTTAACCGT	GTTAAGATTG	10140
GAATTGGAAG	ACCTAAAAAT	GGTATGTCAG	TTGTTCATCA	TGTTTTGAGT	AAGTTTGACA	10200
GĢGATGATTA	TATCGGTATT	TTACAGTCTG	TTGACAAAGT	TGACGATTCT	GTAAACTACT	10260
ATTTACAAGA	GAAAAATTTT	GAGAAAACAA	TGCAGAGGTA	TAACGGATAA	ATGGTGACCT	10320
TATTAGATTT	ATTCTCAGAA	AATGATCAGA	TTAAAAAATG	GCATCAAAAT	TTAACAGATA	10390
AGAAAAGACA	ACTAATACTT	GGTTTATCAA	CATCTACTAA	GGCTCTTGCA	ATTGCAAGCA	10440
GTTTAGAAAA	AGAAGATAGG	ATTGTGTTAT	TGACGTCAAC	TTATGGAGAA	GCAGAAGGAC	10500
TTGTTAGTGA	TCTTATTTCT	ATCTTGGGTG	AGGAACTCGT	CTATCCATTT	TTGGTAGATG	10560
ATGCTCCTAT	GGTGGAGTTT	TTGATGTCTT	CACAGGAAAA	AATTATTTCA	CGGGTTGAAG	10620
CCTTGCGTTT	TTTGACTGAT	TCATCTAAGA	AAGGGATTTT	AGTTTGTAAT	ATCGCAGCAA	10680
GTCGATTGAT	TTTACCGTCT	CCCAATGCAT	TCAAAGATAG	TATTGTAAAA	ATCTCAGTTG	10740
GTGAAGAATA	TGATCAACAC	GCGTTTATCC	ATCAGTTAAA	GGAAAATGGC	TATCGAAAAG	10800
TTACTCAAGT	ACAAACTCAG	GGCGAATTTA	GTCTTCGAGG	AGATATTTTA	GATATTTTTG	10860
AAATATCCCA	GTTAGAACCT	TGTCGAATTG	AGTTTTTTGG	TGATGAAATT	GATGGTATCA	10920
GGTCATTTGA	AGTAGAAACA	CAATTATCGA	AAGAAAATAA	GACAGAACTC	ACTATCTTTC	10980
CAGCTAGTGA	TATGCTTTTG	AGAGAAAAGG	ATTATCAACG	AGGACAGTCA	GCTTTAGAAA	11040

AACAAATTTC	AAAAACTTTA	TCACCTATTT	264 TGAAATCATA	CCTAGAAGAA	ATTCTTTCAA	11100
GTTTTCACCA	AAAACAAAGT	CATGCAGACT	CTCGGAAGTT	TTTATCTTTG	TCCTATGATA	11160
AGACATGGAC	TGTCTTTGAT	TATATTGAAA	AAGATACTCC	AATATTCTTT	GATGATTATC	11220
AAAAATTGAT	GAATCAGTAT	GAAGTCTTTG	AAAGAGACTT	AGCGCAGTAC	TTTACAGAAG	11280
AATTACAGAA	TAGTAAAGCA	TTTTCTGATA	TGCAGTATTT	TTCTGATATT	GAACAAATCT	11340
ATAAAAAACA	AAGTCCAGTG	ACCTTTTTCT	CTAATCTTCA	AAAGGGTTTA	GGAAATCTCA	11400
AATTTGACAA	AATTTATCAA	TTCAATCAAT	ATCCTATGCA	GGAATTTTTC	AATCAGTTTT	11460
CTTTTCTAAA	AGAAGAAATT	GAACGATATA	AAAAAATGGA	TTACACCATT	ATTCTGCAGT	11520
CTAGCAATTC	AATGGGAAGT	AAAACATTGG	AGGATATGTT	AGAGGAATAT	CAGATTAAAT	11580
TGGATTCTAG	AGATAAGACA	AATATCTGTA	AAGAATCTGT	AAACTTAATA	GAGGGTAATC	11640
TCAGACATGG	TTTTCATTT	GTAGATGAAA	AGATTTTATT	GATAACTGAA	CATGAGATTT	11700
TTCAAAAGAA	ATTAAAGCGT	CGTTTTCGAA	GACAACATGT	TTCAAATGCA	GAGAGATTAA	11760
AAGATTACAA	TGAACTTGAA	AAAGGGGACT	ATGTTGTCCA	TCATATCCAT	GGGATTGGTC	11820
AATATCTAGG	AATTGAAACC	ATTGAAATCA	AGGGAATTCA	TCGCGATTAT	GTCAGTGTCC	11880
AATACCAAAA	TGGTGATCAA	ATTTCTATCC	CCGTGGAACA	GATTCATCTA	CTGTCCAAAT	11940
ATATTTCAAG	TGATGGTAAA	GCTCCAAAAC	TCAATAAATT	AAATGACGGT	CATTTTAAAA	12000
AGGCCAAGCA	AAAGGTTAAG	AACCAGGTAG	AGGATATAGC	TGATGATTTA	ATCAAACTCT	12060
ACTCTGAACG	TAGTCAGTTG	AAGGGTTTTG	CTTTCTCAGC	TGATGATGAT	GATCAAGATG	12120
CCTTTGATGA	TGCTTTCCCT	TATGTTGAAA	CGGATGATCA	ACTTCGTAGT	ATTGAGGAAA	12180
TCAAGAGGGA	TATGCAGGCT	TCTCAGCCAA	TGGATCGACT	TTTAGTTGGG	GATGTTGGTT	12240
TTGGAAAGAC	TGAAGTTGCT	ATGCGTGCAG	CCTTTAAAGC	AGTCAATGAT	CACAAACAGG	12300
TTGTCATTCT	AGTTCCGACG	ACGGTTTTAG	CGCAACAGCA	CTATACGAAT	TTTAAGGAAC	12360
GATTCCAAAA	TTTTGCAGTT	AATATTGATG	TGTTGAGTCG	CTTTAGAAGT	AAAAAAGAGC	12420
		TTGAAAAACC				12480
GTGTTTTGTC	: AAAAGATGTT	GTGTTTGCTG	ATTTGGGCTT	GATGATTATT	GATGAGGAAC	12540
AGCGATTTGG	TGTCAAGCAT	AAGGAAACTI	TGAAAGAACT	GAAGAAACAA	GTGGATGTCC	12600
TAACCTTGAC	CGCTACGCCA	ATCCCTCGT?	CCCTCCATAT	GTCTATGCTC	GGAATCAGAG	12660
					TATGTTTTGG	12720
AAAAGAATGA	TAGTGTCATT	CGTGATGCTC	TCTTGCGTGA	AATGGAGCG1	GGAGGTCAAG	12780
TTTATTATCT	TTACAACAA	GTTGACACA	A TTGTTCAGAA	GGTTTCAGA/	TTACAGGAGT	12840

				 .		
TGATTCCGGA	GGCTTCGATT	GGATATGTTC	ATGGTCGAAT	GAGTGAAGTC	CAGTTGGAAA	12900
ATACTCTATT	AGACTTTATT	GAGGGACAAT	ACGATATCTT	GGTGACGACT	ACTATTATTG	12960
AGACAGGGGT	GGACATTCCA	AATGCTAATA	CTTTATTTAT	TGAAAATGCG	GACCATATGG	13020
GCTTGTCAAC	CTTATATCAG	TTAAGAGGAA	GAGTCGGTCG	TAGTAATCGT	ATTGCTTATG	13080
CTTATCTCAT	GTATCGTCCA	GAAAAATCAA	TCAGTGAAGT	CTCTGAAAAG	AGATTAGAAG	13140
CGATTAAAGG	ATTTACAGAA	TTGGGCTCTG	GCTTTAAGAT	TGCAATGCGA	GATCTTTCGA	13200
TTCGTGGAGC	AGGAAATCTT	TTAGGAAAAT	CCCAGTCTGG	TTTCATTGAT	TCTGTTGGTT	13260
TTGAATTGTA	TTCGCAGTTA	TTAGAGGAAG	CTATTGCTAA	ACGAAACGGT	AATGCTAACG	13320
CTAACACAAG	AACCAAAGGG	AATGCTGAGT	TGATTTTGCA	AATTGATGCC	TATCTTCCTG	13380
ATACTTATAT	TTCTGATCAA	CGACATAAGA	TTGAAATTTA	CAAGAAAATT	CGTCAAATTG	13440
ACAACCGTGT	CAATTATGAA	GAGTTACAAG	AGGAGTTGAT	AGACCGTTTT	GGAGAATACC	13500
CAGATGTAGT	AGCCTATCTG	TTAGAGATTG	GTTTGGTCAA	ATCATACTTG	GACAAGGTCT	13560
TTGTTCAACG	TGTGGAAAGA	AAAGATAATA	AAATTACAAT	TCAATTTGAA	AAAGTCACTC	13620
AACGACTGTT	TTTAGCTCAA	GATTATTTTA	AAGCTTTATC	CGTAACGAAC	TTAAAAGCAG	13680
GCATCGCTGA	GAATAAGGGA	TTAATGGAGC	TTGTATTTGA	TGTCCAAAAT	AAGAAAGATT	13740
ATGAAATTTT	AGAAGGTTTG	CTGATTTTTG	GAGAAAGTTT	ATTAGAGATA	AAAGAGTCTA	13800
AGGAAGAAAA	TTCCATTTGA	TATTTTTCTT	СТАТААААТА	GATAAAAATG	GTACAATAAT	13860
AAATTGAGGT	AATAAGGATG	AGATTAGATA	AATATTTAAA	AGTATCGCGA	ATTATCAAGC	13920
GTCGTACAGT	CGCAAAGGAA	GTAGCAGATA	<i>NAGGTAGAAT</i>	CAAGGTTAAT	GGAATCTTGG	13990
CCAAAAGTTC	AACGGACTTG	AAAGTTAATG	ACCAAGTTGA	AATTCGCTTT	GGCAATAAGT	14040
TGCTGCTTGT	AAAAGTACTA	GAGATGAAAG	ATAGTACAAA	AAAAGAAGAT	GCAGCAGGAA	14100
TGTATGAAAT	TATCAGTGAA	ACACGGGTAG	AAGAAAATGT	CTAAAAATAT	TGTACAAT~G	14150
AATAATTCTT	TTATTCAAAA	TGAATACCAA	CGTCGTCGCT	ACCTGATGAA	AGAACGACAA	14220
AAACGGAATC	GTTTTATGGG	AGGGGTATTG	ATTTTGATTA	TGCTATTATT	TATCTTGCCA	14280
ACTTTTAATT	TAGCGCAGAG	TTATCAGCAA	TTACTCCAAA	GACGTCAGCA	ATTAGCAGAC	14340
TTGCAAACTC	AGTATCAAAC	TTTGAGTGAT	GAAAAGGATA	AGGAGACAGC	ATTTGCTACC	14400
AAGTTGAAAG	ATGAAGATTA	TGCTGCTAAA	TATACACGAG	CGAAGTACTA	TTATTCTAAG	14460
TCGAGGGAAA	AAGTTTATAC	GATTCCTGAC	TTGCTTCAAA	GGTGATAAAA	TGGAAAATTT	14520
ATTAGACGTA	ATAGAGCAAT	TTTTGAGTTT	GTCAGATGAA	AAGCTGGAAG	AATTGGCTGA	14580

266 14640 TTATTTTGTT GCTACCAAGT TTTTTGACCA TTTCAAAAGT CGTTAGCACA GAAAAAGAAG 14700 TCGTCTATAC TTCGAAAGAA ATTTATTACC TTTCACAATC TGACTTTGGT ATTTATTTTA 14760 GAGAAAAATT AAGTTCTCCC ATGGTTTATG GAGAGGTTCC TGTTTATGCG AATGAAGATT 14820 TAGTAGTGGA ATCTGGGAAA TTGACTCCCA AAACAAGTTT TCAAATAACC GAGTGGCGCT 14880 TAAATAAACA AGGAATTCCA GTATTTAAGC TATCAAATCA TCAATTTATA GCTGCGGACA 14940 AACGATTTTT ATATGATCAA TCAGAGGTAA CTCCAACAAT AAAAAAAGTA TGGTTAGAAT 15000 CTGACTTTAA ACTGTACAAT AGTCCTTATG ATTTAAAAGA AGTGAAATCA TCCTTATCAG 15060 CTTATTCGCA AGTATCAATC GACAAGACCA TGTTTGTAGA AGGAAGAGAA TTTCTACATA 15120 TTGATCAGGC TGGATGGGTA GCTAAAGAAT CAACTTCTGA AGAAGATAAT CGGATGAGTA 15180 AAGTTCAAGA AATGTTATCT GAAAAATATC AGAAAGATTC TTTCTCTATT TATGTTAAGC 15240 AACTGACTAC TGGAAAAGAA GCTGGTATCA ATCAAGATGA AAAGATGTAT GCAGCCAGCG 15300 TTTTGAAACT CTCTTATCTC TATTATACGC AAGAAAAAAT AAATGAGGGT CTTTATCAGT 15360 TAGATACGAC TGTAAAATAC GTATCTGCAG TCAATGATTT TCCAGGTTCT TATAAACCAG 15420 AGGGAAGTGG TAGTCTTCCT AAAAAAGAAG ATAATAAAGA ATATTCTTTA AAGGATTTAA 15480 TTACGAAAGT ATCAAAAGAA TCTGATAATG TAGCTCATAA TCTATTGGGA TATTACATTT 15540 CAAACCAATC TGATGCCACA TTCAAATCCA AGATGTCTGC CATTATGGGA GATGATTGGG 15600 ATCCAAAAGA AAAATTGATT TCTTCTAAGA TGGCCGGGAA GTTTATGGAA GCTATTTATA 15660 ATCAAAATGG ATTTGTGCTA GAGTCTTTGA CTAAAACAGA TTTTGATAGT CAGCGAATTG 15720 CCAAAGGTGT TTCTGTTAAA GTAGCTCATA AAATTGGAGA TGCGGATGAA TTTAAGCATG 15790 ATACGGGTGT TGTCTATGCA GATTCTCCAT TTATTCTTTC TATTTTCACT AAGAATTCTG 15840 ATTATGATAC GATTTCTAAG ATAGCCAAGG ATGTTTATGA GGTTCTAAAA TGAGGGAACC 15900 AGATTTTTTA AATCATTTTC TCAAGAAGGG ATATTTCAAA AAGCATGCTA AGGCGGTTCT 15960 AGCTCTTTCT GGTGGATTAG ATTCCATGTT TCTATTTAAG GTATTGTCTA CTTATCAAAA 15020 AGAGTTAGAG ATTGAATTGA TTCTAGCTCA TGTGAATCAT AAGCAGAGAA TTGAATCAGA 16080 TTGGGAAGAA AAGGAATTAA GGAAGTTGGC TGCTGAAGCA GAGCTTCCTA TTTATATCAG 16140 CAATTTTCA GGAGAATTTT CAGAAGCGCG TGCACGAAAT TTTCGTTATG ATTTTTTCA 16200 AGAGGTCATG AAAAAGACAG GTGCGACAGC TTTAGTCACT GCCCACCATG CTGATGATCA 16260 GGTGGAAACG ATTTTTATGC GCTTGATTCG AGGAACTCGC TTGCGCTATC TATCAGGAAT 16320 TAAGGAGAAG CAAGTAGTCG GAGAGATAGA AATCATTCGT CCCTTCTTGC ATTTTCAGAA 16380

AAAAGACTTT	CCATCAATTT	TTCACTTTGA	AGATACATCA	AATCAGGAGA	ATCATTATTT	16440
TCGAAATCGT	ATTCGAAATT	CTTACTTACC	AGAATTGGAA	AAAGAAAATC	CTCGATTTAG	16500
GGATGCAATC	TTAGGCATTG	GCAATGAAAT	TTTAGATTAT	GATTTGGCAA	TAGCTGAATT	16560
ATCTAACAAT	ATTAATGTGG	AAGATTTACA	GCAGTTATTT	TCTTACTCTG	AGTCTACACA	16620
AAGAGTTTTA	CTTCAAACTT	ATCTGAATCG	TTTTCCAGAT	TTGAATCTTA	CAAAAGCTCA	16680
GTTTGCTGAA	GTTCAGCAGA	TTTTAAAATC	TAAAAGCCAG	TATCGTCATC	CGATTAAAAA	16740
TGGCTATGAA	TTGATAAAAG	AGTACCAACA	GTTTCAGATT	TGTAAAATCA	GTCCGCAGgC	16800
TGATGAAAAG	GAAGATGAAC	TTGTGTTACA	CTATCAAAAT	CAGGTAGCTT	ATCAAGGATA	16860
TTTATTTTCT	TTTGGACTTC	CATTAGAAGG	TGAATTAATT	CAACAAATAC	CTGTTTCACG	16920
TGAAACATCC	ATACACATTC	GTCATCGAAA	AACAGGAGAT	GTTTTGATTA	AAAATGGGCA	16980
тасалалала	CTCAGACGTT	TATTTATTGA	TTTGAAAATC	CCTATGGAAA	AGAGAAACTC	17040
TGCTCTTATT	ATTGAGCAAT	TTGGTGAAAT	TGTCTCAATT	TTGGGAATTG	CGACCAATAA	17100
TTTGAGTAAA	AAAACGAAAA	ATGATATÄAT	GAACACTGTA	CTTTATATAG	AAAAATAGA	17160
TAGGTAAAAA	ATGTTAGAAA	ACGATATTAA	AAAAGTCCTC	GTTTCACACG	ATGAAATTAC	17220
AGAAGCAGCT	AAAAAACTAG	GTGCTCAATT	AACTAAAGAC	TATGCAGGAA	AAAATCCAAT	17280
CTTAGTTGGG	ATTTTAAAAG	GATCTATTCC	TTTTATGGCT	GAATTGGTCA	AACATATTGA	17340
TACACATATT	GAAATGGACT	TCATGATGGT	TTCTAGCTAC	CATGGTGGAA	CAGCAAGTAG	17400
TGGTGTTATC	AATATTAAAC	AAGATGTGAC	TCAAGATATC	AAAGGAAGAC	ATGTTCTATT	17460
TGTAGAAGAT	ATCATTGATA	CAGGTCAAAC	TTTGAAGAAT	TTGCGAGATA	TGTTTAAAGA	17520
AAGAGAAGCA	GCTTCTGTTA	AAATTGCAAC	CTTGTTGGAT	AAACCAGAAG	GACGTGTTGT	17580
AGAAATTGAG	GCAGACTATA	CTTGCTTTAC	TATCCCAAAT	GAGTTTGTAG	TAGGTTATGG	17640
TTTAGACTAC	AAAGAAAATT	ATCGTAATCT	TCCTTATATT	GGAGTATTGA	AAGAGGAAGT	17700
GTATTCAAAT	TAGAAAGAAT	AATCTTTAAT	GAAAAAACAA	AATAATGGTT	TAATTAAAA	17760
TCCTTTTCTA	TGGTTATTAT	TTATCTTTTT	CCTTGTGACA	GGATTCCAGT	ATTTCTATTC	17820
TGGGAATAAC	TCAGGAGGAA	GTCAGCAAAT	CAACTATACT	GAGTTGGTAC	AAGAAATTAC	17880
CGATGGTAAT	GTAAAAGAAT	TAACTTACCA	ACCAAATGGT	AGTGTTATCG	AAGTTTCTGG	17940
TGTCTATAAA	AATCCTAAAA	CAAGTAAAGA	AGAAACAGGT	ATTCAGTTTT	TCACGCCATC	18000
TGTTACTAAG	GTAGAGAAAT	TTACCAGCAC	TATTCTTCCT	GCAGATACTA	CCGTATCAGA	18060
ATTGCAAAAA	CTTGCTACTG	ACCATAAAGC	AGAAGTAACT	GTTAAGCATG	AAAGTTCAAG	18120

268 TGGTATATGG ATTAATCTAC TCGTATCCAT TGTGCCATTT GGAATTCTAT TCTTCTTCCT 18180 ATTCTCTATG ATGGGAAATA TGGGAGGAGG CAATGGCCGT AATCCAATGA GTTTTGGACG 18240 TAGTAAGGCT AAAGCAGCAA ATAAAGAAGA TATTAAAGTA AGATTTTCAG ATGTTGCTGG 18300 AGCTGAGGAA GAAAAACAAG AACTAGTTGA AGTTGTTGAG TTCTTAAAAG ATCCAAAACG 18360 -ATTCACAAAA CTTGGAGCCC GTATTCCAGC AGGTGTTCTT TTGGAGGGAC CTCCGGGGAC 18420 AGGTAAAACT TTGCTTGCTA AGGCAGTCGC TGGAGAAGCA GGTGTTCCAT TCTTTAGTAT 18480 CTCAGGTTCT GACTTGTAG AAATGTTTGT CGGAGTTGGA GCTAGTCGTC TTCGCTCTCT 18540 TTTTGAGGAT GCCAAAAAAG CAGCACCAGC TATCATCTTT ATCGATGAAA TTGATGCTGT 18600 TGGACGTCAA CGTGGAGTCG GTCTCGGCGG AGGTAATGAC GAACGTGAAC AAACCTTGAA 18660 CCAACTITTG ATTGAGATGG ATGGTTTTGA GGGAAATGAA GGGATTATCG TCATCGCTGC 18720 GACAAACCGT TCAGATGTAC TTGACCCTGC CCTTTTGCGT CCAGGACGTT TTGATAGAAA 18780 AGTATTGGTT GGTCGTCCTG ATGTTAAAGG TCGTGAAGCA ATCTTGAAAG TTCACGCTAA 18840 GAATAAGCCT TTAGCAGAAG ATGTTGATTT GAAATTAGTG GCTCAACAAA CTCCAGGCTT 18900 TGTTGGTGCT GATTTAGAGA ATGTCTTGAA TGAAGCAGCT TTAGTTGCTG CTCGTCGCAA 18960 TAAATCGATA ATTGATGCTT CAGATATTGA TGAAGCAGAA GATAGAGTTA TTGCTGGACC 19020 TTCTAAGAAA GATAAGACAG TTTCACAAAA AGAACGAGAA TTGGTTGCTT ACCATGAGGC 19080 AGGACATACC ATTGTTGGTC TAGTCTTGTC GAATGCTCGC GTTGTCCATA AGGTTACAAT 19140 TGTACCACGC GGCCGTGCAG GCGGATACAT GATTGCACTT CCTAAAGAGG ATCAAATGCT 19200 TCTATCTAAA GAAGATATGA AAGAGCAATT GGCTGGCTTA ATGGGTGGAC GTGTAGCTGA 19260 AGAAATTATC TTTAATGTCC AAACCACAGG AGCTTCAAAC GACTTTGAAC AAGCGACACA 19320 AATGGCACGT GCAATGGTTA CAGAGTACGG TATGAGTGAA AAACTTGGCC CAGTACAATA 19380 TGAAGGAAAC CATGCTATGC TTGGTGCACA GAGTCCTCAA AAATCAATTT CAGAACAAAC 19440 AGCTTATGAA ATTGATGAAG AGGTTCGTTC ATTATTAAAT GAGGCACGAA ATAAAGCTGC 19500 TGAAATTATT CAGTCAAATC GTGAAACTCA CAAGTTAATT GCAGAAGCAT TATTGAAATA 19560 CGAAACATTG GATAGTACAC AAATTAAAGC TCTTTACGAA ACAGGAAAGA TGCCTGAAGC 19620 AGTAGAAGAG GAATCTCATG CACTATCCTA TGATGAAGTA AAGTCAAAAA TGAATGACGA 19680 AAAATAACCC TGAGAGAGGC TGGAGCCTCT CTTTTTTGTG CAGTTTAGGA GCTAAAGGGA ACAGAATGGA GAAAATGGAA CAAATGTGTT TTCTAATCTG TTAGACTGTA TCTAGAAAGG 19800 GGAAAATTAT GATTAAAGAA TTGTATGAAG AAGTCCAAGG GACTGTGTAT AAGTGTAGAA 19860 ATGAATATTA CCTTCATTTA TGGGAATTGT CGGATTGGGA GCAAGAAGGC ATGCTCTGCT

TACATGAATT GATTAGTAGA GAAGA	AAGGAC TGGTAGACGA	TATTCCACGT	TTAAGGAAAT	19980
ATTTCAAGAC CAAGTTTCGA AATCC	GAATTT TAGACTATAT	CCGTAAACAG	GAAAGTCAGA	20040
AGCGTAGATA CGATAAAGAA CCCTA	ATGAAG AAGTGGGTGA	GATCAGTCAT	CGTATAAGTG	20100
AGGGGGTCT CTGGCTAGAT GATTA	ATTATC TCTTTCATGA	AACACTAAGA	GATTATAGAA	20160
ACAAACAAAG TAAAGAGAAA CAAGA	AAGAAC TAGAACGCGT	CTTAAGCAAT	GAACGATTTC	20220
GAGGGCGTCA AAGAGTATTA AGAGA	ACTTAC GCATTGTGTT	TAAGGAGTTT	ACTATCCGTA	20280
CCCACTAGTA AGTCATGCAA AAAAA	AATGAA AAAAATTAGA	AAAAGTAGTT	GACAAAGTTT	20340
GAAAAGGCTG TATAATAGTA AGAGT	TTGAAA ATAACAACTC	AGGTCCGTTG	GTCAAGGGGT	20400
TAAGACACCG CCTTTTCACG GCGGT	TAACAC GGGTTCGAAT	CCCGTACGGA	CTATGGTATG	20460
TTGCGTCAGG ACCACTTGAT GAAAA	MAAGT TTAAAAAAAC	TTAAAAATCT	TCAAAAAAGT	20520
GTTGACAAGC GAAAGCAGTT GTGAT	PATACT AATATAGTTG	TCGCTTGAGA	GAAGCAAGTG	20580
ACAAAGACCT TTGAAAACTG AACAA	GACGA ACCAATGTGC	AGGGCGCTAC	AACGTAAGTT	20640
GTAGTACTGA ACAATGAAAA AAACA	ATAAA TCTGTCAGTG	ACAGAAATGA	GTAAGAACTC	20700
AAACTTTTTA ATGAGAGTTT GATCO				20760
ATGCAAGTAG AACGCTGAAG GAGGA	GCTTG CTTCTCTGGA	TGAGTTGCGA	ACGGGTGAGT	20820
AACGCGTAGG TAACCTGCCT GGTAG	CGGGG GATAACTATT	GGAAACGATA	GCTAATACCG	20880
CATAAGAGTA GATGTTGCAT GACAT	TTGCT TAAAAGGTGC	ACTTGCATCA	CTACCAGATG	20940
GACCTGCGTT GTATTAGCTA GTTGG	TGGGG TAACGGCTCA	CCAAGGCGAC	GATACATAGC	21000
CGACCTGAGA GGGTGATCGG CCACA				21060
GCAGCAGTAG GGAATCTTCG GCAAT	GGACG GAAGTCTGAC	CGAGCAACGC	CGCGTGAGTG	21120
AAGAAGGTTT TCGGATCGTA AAGCT		•		21180
GTTCACACTG TGACGGTATC TTACC				21240
GTAATACGTA GGTCCCGAGC GTTGT	CCGGA TTTATTGGGC	GTAAAGCGAG	CGCAGGCGGT	21300
TAGATAAGTC TGAAGTTAAA GGCTG	TGGCT TAACCATA			21338

(2) INFORMATION FOR SEQ ID NO: 21:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6273 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

TGTTTTTAAA	GAGCCGTGTC	TGGATAGACT	TTCGGACGCA	ACGCTCTATT	AGATAATGAA	60
CTGCCTATAC	ACAAGATTTC	TAACCTTAGT	CGACATGAGC	TGAAACCTCT	TATTTGTTAA	120
GTAGTTCACA	AAATATTATA	CACCTATTTT	ATGAATAGTO	AACTGTCTTT	ACAGTAAAAT	180
TTTAGAAAAT	CATGAAAATT	TTCTCTTTCT	TTCCATTTTA	AGTGACATTC	AGTCATTCTC	240
ACATCAAAAA	AGCCCAGACG	AAATTGTCTG	AGCATTCTTT	TATCTAGTCG	TTTAAGGAAG	300
TTGAGTTCAG	TATGTTTAAA	GTCTCTGTCC	CATCATTTCT	TCAACAAACC	TTGTTCTTGG	360
AGAAACTCCT	TGGCTACTTG	CTTTGCTGAC	TTGCCTTCAA	CACCGACTTG	GTAGTTGAGC	420
TGGCTCATCT	GGCTTTCTGT	AATCTTACCA	GCCAATGTAT	TAAGAACTCT	TTCCAACTCT	480
GGGTGTTTCT	TGAGAAGAGC	TTCTTTCATG	AGTGGAGCCC	CTTGATAAGG	TGGGAAGAGT	540
TGCTTGTCAT	CTTCCAAGAC	CTGTAAATCA	TAACGCTCCA	ATTCCGCATC	AGTCGAATAG	600
GCATCCGTGA	TTTGAATATC	CCCTGACTGA	ATAGCCTGAT	AGCGAAGGGC	TGGCTCAATG	660
GTCGCTACAT	TGAGATTGAG	ACCATACATT	GATTGCAAGC	CCTTATTTCC	ATCTTCACGG	720
TCGTTAAACT	CGAGTGTAAA	ACCTGCCTTC	AACTGCCCTT	CCACTTTTTT	CAAGTCTGAA	780
ATGGTCTTCA	AGCCATATTC	TTGAGCAATC	TTTTTCGGAA	CAGCTACAGC	ATAGGTGTTT	840
TGATAAGACA	TGGGTTTGAG	ATAGGCTAGA	TGATCCTGCT	TAGCAATGCC	ATCACGCGCC	900
ACCTGATAAA	CCTGTTCTGG	TTCATGACTC	ACCTTGGGTG	ATGGTTGAAG	CAAACTTTCA	960
GTCACCGTAC	CAGTAAATTC	AGGATAGATG	TCAATATCGC	CTTTTTTCAG	AGCTTCATAA	1020
AGGAAGCTTG	TOTTCCCAAA	ATTCGGTTTA	ACAGTCGCAG	TCATGCTGGT	ATTTTCTTCA	1080
ATCAGCAACT	TATACATATT	GGCCAAAATT	TCTGGTTCTG	GACCTATTTT	CCCAGCAATA	1140
ACCAAGTTTT	CCTTCTCTTT	TTGAACCAAA	AGAGCTGGAC	TATAAGACAG	ACCCAGTAAT	1200
AAAGCCACCA	AGGCAAAACC	TGAGAAAATC	GTCCGTAATT	TTGCTTTTTC	CATCACTTTT	1260
AGTAGGAAGT	TAAAGGCAAT	GGCTAGCACT	GCAGAAGAAA	GTGCCCCAAT	CAAAATCAAA	1320
CTGGCATTAT	TACGGTCAAT	TCCCAAAAGA	ATAAAGGAAC	CTAGTCCCCC	TGCACCAATC	1380
AAGGCCGCCA	AGGTTGCCGT	ACCGATAATC	AAAACAGCTG	CCGTCCGAAT	CCCAGACATG	1440
ATAACAGGCA	TGGCGAGTGG	AATTTCAAAT	TTCTTGAGAC	GTTCCCATCT	GGTCATCCCA	1500
AAGGCAATCC	CAGCCTCTTG	CAGGTTCGGA	TCAATTCCCT	TCAGCCCAGT	GATAGTATTT	1560
TGCAAAATAG	GGAAAATCGC	ATAAATCACT	AGAGCTGTCA	AAGCCGGCAA	GGTCCCAATT	1620
CCCATCAAAG	GGATAAAGAG	CCCCAACAAG	GCCAGAGACG	GGATGGTCTG	GAAAATACCT	1580
GCAATCTGCA	AGACCCAGTC	GGCCAGCTTC	TCATGATAGC	GAAGAAAAAC	AGCCAAGGGA	1740

i	ATCGCAAGCA	AAATAGCTAG	TAACAAGGTC	AAAAGCGACA	ACTGCAAATG	TTGAGATAGA	1800
(GCTGTCAACC	аатсастааа	ACGATCCTGA	AAAGTTGCAA	TTAAATTAGT	CATGAACACT	1860
į	ACCTCCAAAC	AAGTCTGCTA	CAAAGTCTGT	TGCAGGCGCT	TTTAAAATTG	TCTCGGGATT	1920
(CGCTACCTGG	CGAATTTCTC	CATCCTGCAA	GACAGCAATA	CGGTCCGCCA	ACTTCAAGGC	1980
•	TTCATCCGTA	TCATGGGTTA	CAAAAATCGT	TGTCATCCCA	AACTCTTTAT	GCAATTCTTT	2040
,	TGTCAGAACC	TGCAACTGTT	TTCTCGAAAT	AGCATCCAAG	GCCGAAAAGG	GTTCATCCAT	2100
(GAGGAAAATC	TTGGGCTGAC	CAATCATAGC	TCGGACAATA	CCGACCCGTT	GCTGTTCTCC	2160
	ACCAGATAAT	TCACTAGGTA	AGCGATGCCC	ATACTCGGCT	ACTGGTAAAC	CAACCTTAGC	2220
(CAAAAGCTCT	TCTGTTTTCT	TCGTAATTTC	TTCCTTGCTC	CACCCCTTCA	TTTCAGGAAT	2280
(GAGAGCAATA	TTTTCCGCAA	CTGTTAGATT	TGGAAAAAGA	GCAATAGCCT	GTAAAACATA	2340
	ACCAGTAGAA	AGACGAAGTT	CACGCTCATC	ATAGTCTTTG	ATGCGCTTCC	CATCCATATA	2400
	AATATTTCCA	TCAGTTGGTT	CCAAAAGACG	GTTAATCATC	TTGAGCATGG	TCGTCTTACC	2460
	TGACCCAGAA	GGCCCTACTA	AAACCATAAA	TTCCCCATCC	TCAATCTGTA	AGTTGACATC	2520
	TCTCAAGACA	TCCTTTTCTG	TGTAGCGCAG	TGCTACATTT	TTGTATTCAA	TCATTCTTTG	2580
	TCCTCAATTT	AAAACTTCCC	TCGATTGGTC	AAGTCTTCTA	CCTTAGGCAT	AACTTCCTTA	2640
	TTATCCCAAT	GCTCCACAAT	TTTCCCGTTC	TCTAAACGGA	AGATATCGTA	CTGGGCATAA	2700
	GCAACGCCAT	CAATCTGAGT	CTGACCATAG	CTAACCACAT	AGTTTCCTTG	TCCTAAGAGT	2760
	TGGAAAACAA	AGTCAAAAGT	GACACTATAT	TCAGCCACAT	AGTTTTTATA	AGCAGCACTT	2820
	CCTTGTCCAA	TATCATGATT	ATGCTGAATC	AAATCGTCTG	CCACATAATC	ACTCCACTGC	2880
	TOTAGOTOCO	CATTTTGGAA	AATTTCTGTG	AAGAAACSGS	SYYCCYCCLA	dddydddd.ca	2940
	GCTTTCTTAT	CCAAATCCTT	GATTTCAAAA	TCTCCAAAAA	TTTGATCTAG	TTGGTCATTT	3000
	TCAGGTGTTC	GATAGTAGTC	AATGACATCC	CAATGCTCAA	CAATACAACC	ATTCTCATCC	3060
	TCACGGAAAG	TATCCGTCGT	CACCCATTGA	GCTTCTCCAC	CATTCAGATA	TTGATGAACA	3120
	TGAACAAAGA	CCAGATTGCC	ATCCTCAATG	GTGCGGACAA	TCTTAATCTG	ACGCTCTGGA	3180
	TGACGCTCAA	AGAAATCTGC	AAAGAAGGCT	GCAAATCCTT	CTTTCCCGTC	AGGAACACCT	3240
	GTCGAATGTT	GGATATAGGT	ATCCCCTACA	GACTGGGCTT	GAGCCTCAGC	AACTCGTCCG	3300
	TCTTGAATGG	CATGGATGTA	TAGGTTGTGA	GCATTTTTCA	CTTGTTGTGA	CATATTCTAA	3360
	ACCTCATTTC	CCTTCTCTTT	CAGATTCGCC	AAAATTCTTT	CTTGAAAACC	TTCAAATTGG	3420
	TGAATTTCTT	CCTCTGAAAA	TCCTTTGTAA	AAGATAGTAT	CCAATTTCTG	ACTGACACGA	3480

			272			
TGCCCCACTT	CTTTCTGGGA	CTTGCCTAAC		CTAAATACTT	CTTACGCTTG	3540
TCTTTTCCAC	ACGGACTAAC	AATTACAAGC	TTTTGTTCCT	CTAGCTTTTT	TATCATAGTC	3600
GTCAGCGTAT	TATTCGCAAG	TCCAGTCGCA	AGCGCGATAT	CTGTCGCAGT	TGCGCAGCCA	3660
GTTTCACTAT	TCCATAAAAC	CGCTAAAATC	TTGCCCTGTT	CACCCTATA	AAGAGCCTCA	3720
GGATCTTGAC	TCAGTAACTT	TTGAAAAATC	CGCCCATTCA	ACAAACGAAT	ATGATGGGCT	3780
AGCAAATGAC	CATCTTTCAT	AACACCTCCA	ATTTATTTCG	ATATCGAAAT	GAATAAAACA	3840
ATTGTAACAC	TCATCGTTCT	AACTGTCAAC	TATTTCGATT	TAGAAATAAT	TTTTGATAAT	3900
TATCCACACC	ACCATACTCC	GGCTCAACTA	ACTTTTAACG	AGAGTTTCTA	AACTCCTTCG	3960
TCCTCCAGTC	TACAAAAGCC	TTCCATTCGT	ACTATCCTAT	ATTTTATGAG	GGGACACATT	4020
TTTCCTATCA	GACCATTTAT	TTTAAAGATA	GAAGTAAATC	ATAATTGCTT	CCATCTGTTC	4080
TTTTATAGTA	TATTGAAGTT	AGACTAGAGC	ACTGTATCTT	CTAAAACATT	GATAGAAAGC	4140
GATTTGAATT	TCCCAATCAA	TTTGTTCGTA	TTTATAGCAT	TTCGAAACTG	GAATAGGACA	4200
CCATGACTGC	TAAAAGATTT	CTATAAATTC	ATTTAATTTC	CTCAATCAAT	TTGTTCATAT	4260
CTTATTTCAT	TCCGCTATAA	TTTCACCTTA	CCCTATCTTT	TTCGTAGCAC	CCTTCAAACA	4320
GCCTATCCCC	TACCGTTTGA	CGATTCCTCA	CTTCGCTCCA	CTTCCATTAC	AGAAGTTTCT	4380
TCACTACTAT	GGGCTCGGCT	GACTTCTCAT	GATTCCTTGT	TACTACTATT	TGAACGCTCA	4440
CGAGATAGAT	CTTACAAAAA	ATGCTTTGAT	CCACAATGGA	ATCAAAGCAT	TTTAAAGAGT	4500
TCCTCATACA	TAAGCGCAGA	AGTCGCAGTT	CCTCTGTACT	TGGCTTCTTC	TCTTTTGACA	4560
AAGCGAGCCA	AGTTGAGCAA	CTCAGGTGCT	GGATGTTTGG	GATTTAGGAG	CAATTCACGA	4620
TTGACCAGGC	CTGAGAGACG	AACTGCCTGC	AATTGCTCAT	TTGTAGTAGG	CAGTTTTTTA	4680
GTAGTCTCTA	GGAGAGCAGC	AACTAAATCT	TCACTCAAAT	CATGTCGAGC	ATGATTGTAA	4740
AGATCTTTTA	TAAGGCTTTC	TAGGTTTGGT	TCTACCATCC	CTACCACCTC	CCTTATGGTT	4800
TAATAATGTT	TAATCAAATC	AACCGTTGAA	CGATCCAATT	TCTTCACCAA	GGCTTGTAAG	4860
AAAGCTTGCG	CTTCTAGGAA	GTCATCCATT	GCATAGAGGG	TTTGGTGAGA	ATGGATATAA	4920
CGAGCGCAGA	CACCGATAGT	TGTTGATGGG	ACACCACCAT	TTTTCAGATG	AGCTGCACCT	4980
GCATCTGTTC	CGCCTTTACC	ACAGTAGTAT	TGGTACTTGA	TACCAGCTTC	TTCAGCCGTT	5040
GTCAAAAGGA	AATCCTTCAT	CCCTGGGAGA	AGCAAGTGAC	CTGGATCATA	GAAACGAATC	5100
AAGGTTCCAT	CTCCAATCTT	GCCTTGACCA	CCGTAGACAT	CACCTGCTGG	TGAGCAATCA	5160
ACTGCGAGGA	AGACTTCTGG	GTCAAACTTG	GTTGTAGAGG	TATGAGCGCC	ACGCAGACCA	5220
ACTTCTTCTT	GGACGTTAGA	ACCCAGATAG	AGTTCATTGC	CGAGTTTTTG	ACCCGATAAA	5280

273

GCTTCAGCTA	GCTCGCTTAC	CATGAGGACA	CCGTAGCGGT	TATCCCAAGC	TTTTGAGATG	5340
ATATTTTTTT	CATTGGCTGT	CAAAATTGCA	GAACTATCTG	GTACAATGGT	ATCACCAGGA	5400
CGGATGCCAA	AACTTTCTGC	CTCAGCCTTG	TCCGCAAAAC	CACCATCAAA	AACGATATCG	5460
GCAATGGCTG	GCATGGTTGG	TCCCCCCTTT	CCACGAGTCA	AATGCGGAGG	AACAGAACCT	5520
GAAATCACAG	GAATTTCATG	ACCATCACGA	GTCAAGAGTT	TGAAACGTTG	GCTGCTAACC	5580
ACCATGGGGT	TCCAGCCACC	GATTTCTACG	ACACGGAAGG	TACCATCTGG	CTTGATTTCG	5640
CTGACCATAA	AACCAACTTC	GTCCATATGA	GAAGCGACCA	AGACGCGCGG	TGCATCCACA	5700
GCTTCTGAAT	GTTTGATACC	AAAAATACCA	CCCAAGCCAT	CTGTCACCAC	TTCATCCACA	5760
TGCGGTGTCA	ACTTTTCACG	AAGATAAGCA	CGGACAGGCG	CTTCATGACC	TGAGACTGCA	5820
GCAAGTTCTG	TTACTTCTTT	AATTTTTGAA	AATAATGTTG	TCATTTCAGT	TCCTTCTTTC	5880
TTTCATCCAT	TTTACCACTT	TTTATAGGAG	AAGGATAGTG	GGAAGGTGGA	TTTCTAAGTT	5940
AGTATCTTAG	TCCTGCTCTA	TCTTAGAAAA	GGATAGTATT	CTCTTGCATG	TAGTGCAAAA	6000
TCTAGTAAAC	ATTCCAAAAT	TAACTCGAAT	ATTTATTTCC	АААСААААА	ACAATACACC	6060
ATCAAAGTTG	TTTGGATTTT	TCATGAAATT	TACAGAAAAT	AGTTGACTTC	CCTTTCTTCT	6120
TTCTTTAAAT	ATATAGTTGG	TTGAGTTTGG	AATAGTACGC	TGTAGCTGCT	AAAACATTTC	6180
TAGAAATTAA	TTTGACTTTC	CTAATAGAGT	TGTTCATATC	TTATTTCAAT	TTACTATAGT	6240
ACAAAACTAG	AAAAGGAAAA	AATCATGACC	AGG			6273

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 28171 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

ACAACCTTTT	TCAAAAACTC	ACCTTGGTAC	GGAGATGTTT	TGCTTTCTGC	TATTATTTTC	60
GGTTATATTC	ATATCAATTT	TGCTTTAACT	CCTCTTGCTT	TTTTCATTTA	TGCTAGTGGA	120
GGTCTTATTT	TAGCTCTATT	GTATCGCATG	ACTAAAAATC	TCTACTATCC	AATACTAGTT	180
CATATTCTCA	TTAATATCAC	TGCCTTCTGG	GATGTGTGGT	TGCTCCTATT	TTCAGGAAGT	240
TAGCTTACTA	AAATAATGTC	GGAACTTTCC	GGCATTTTCT	TTTTTCACAA	ATAGTCAACG	300
TTTTTCTTTT	CGATATTGTA	GTGGTGTGTA	TCCAGTTATT	TTTTTGAATT	GATTTTGAAA	360

ATAAGGTTGA	CTTGAGAAAG	GCAGATAGTG	AAGATAGTTA	AGAAGAATAG	GATGTTCTTT	420
TTTCCTTTTT	GGAAAACTTC	TAAAATATGG	TATAATGAAA	AGATAAAGAA	GTTGGGGGTA	480
GAAGATGAAC	ATTCAACAAT	TACGCTATGT	TGTGGCTATT	GCCAATAGTG	GTACTTTTCG	540
TGAAGCTGCT	GAAAAGATGT	ATGTTAGTCA	GCCGAGTCTG	TCTATTTCTG	TTCGTGATTT	600
GGAAAAAGAG	TTGGGCTTTA	AGATTTTCCG	TCGGACCAGC	TCAGGGACTT	TCTTGACCCG	660
TCGTGGGATG	GAATTTTATG	AAAAATCGCA	AGAATTGGTT	AAAGGATTTG	ATATTTTCA	720
AAATCAGTAT	GCCAATCCTG	AAGAAGAAAA	AGATGAATTT	TCTGTTGCTA	GCCAGCACTA	780
TGACTTCTTG	CCACCAACTA	TTACGGCCTT	TTCAGAGCGC	TATCCTGACT	ATAAGAACTT	840
CCGTATTTT	GAATCAACTA	CTGTTCAAAT	ATTAGATGAA	GTGGCGCAAG	GGCATAGTGA	900
GATTGGGATT	ATCTACCTCA	ACAATCAAAA	TAAAAAGGGG	ATTATGCAAC	GGGTTGAAAA	960
ATTAGGTCTG	GAGGTCATCG	AATTGATTCC	TTTCCATACC	CATATTTATC	TCCGTGAGGG	1020
TCATCCTTTA	GCCCAGAAAG	AGGAATTAGT	CATGGAGGAT	TTAGCGGATT	TACCAACGGT	1080
TCGTTTCACT	CAAGAGAAAG	ACGAGTACCT	TTATTATTCA	GAGAACTTTG	TCGATACCAG	1140
CGCTAGCTCA	CAGATGTTTA	ATGTGACAGA	CCGTGCCACC	TTGAATGGTA	TTTTGGAGCG	1200
GACGGACGCC	TATGCGACAG	GTTCTGGATT	TTTAGATAGT	GACAGTGTTA	ATGGCATTAC	1260
AGTTATTCGT	CTCAAGGATA	ACCTAGATAA	CCGCATGGTC	TATGTTAAAC	GTGAAGAAGT	1320
GGAGCTTAGT	CAAGCTGGGA	CTCTCTTCGT	AGAAGTCATG	CAAGAATATT	TTGATCAAAA	1380
GAGGAAATCA	TGAAAAAAAG	AGCAATAGTG	GCAGTCATTG	TACTGCTTTT	GATTGGGCTG	1440
GATCAGTTGG	TCAAATCCTA	TATCGTCCAG	CAGATTCCAC	TGGGTGAAGT	GCGCTCCTGG	1500
ATCCCCAATT	TCGTTAGCTT	GACCTACCTG	CAAAATCGAG	GTGCAGCCTT	TTCTATCTTA	1560
CAAGATCAGC	AGCTGTTATT	CGCTGTCATT	ACTCTGGTTG	TCGTGATAGG	TGCCATTTGG	1620
ratt ta cata	AACACATGGA	GGACTCATTC	TGGATGGTCT	TGGGTTTGAC	TCTAATAATC	1680
GCGGGTGGTC	TTGGAAACTT	TATTGACAGG	GTCAGTCAGG	GCTTTGTTGT	GGATATGTTC	1740
CACCTTGACT	TTATCAACTT	TGCAATTTTC	AATGTGGCAG	ATAGCTATCT	GACGGTTGGA	1800
STGATTATTT	TATTGATTGC	AATGCTAAAA	GAGGAAATAA	ATGGAAATTA	AAATTGAAAC	1860
CGTGGTCTG	CGTTTGGATA	AGGCTTTGTC	AGATTTGTCA	GAATTATCAC	GTAGTCTCGC	1920
GAATGAACAA	ATTAAATCAG	GCCAGGTCTT	GGTCAATGGT	CAAGTCAAGA	AAGCTAAATA	1980
CACAGTCCAA	GAGGGTGATG	TCGTCACTTA	CCATGTGCCA	GAACCAGAGG	TATTAGAGTA	2040
GTGGCTGAG	GATCTTCCGC	TAGAAATAGT	CTACCAAGAT	GAGGATGTGĞ	CTGTCGTTAA	2100
CAAACCTCAG	GGAATGGTTG	TGCACCCGAG	TGCTGGTCAT	, ACCAGTGGAA	CCCTAGTAAA	2160

	TGCCCTCATG	TATCATATTA	AGGACTTGTC	GGGTATCAAT	GGGGTTCTGC	GTCCAGGGAT	2220
	TGTTCACCGT	ATTGATAAGG	ATACGTCAGG	TCTTCTCATG	ATTGCTAAAA	ACGATGATGC	2280
	GCATCTAGCA	CTTGCCCAAG	AACTCAAGGA	TAAAAAGTCT	CTCCGCAAAT	ATTGGGCGAT	2340
	TGTTCATGGA	AATCTACCTA	ATGATCGTGG	TGTAATTGAA	GCGCCGATTG	GCCGGAGTGA	2400
	AAAAGACCGT	AAGAAACAGG	CTGTAACTGC	TAAAGGGAAG	CCTGCAGTGA	CGCGTTTTCA	2460
	CGTCTTGGAA	CGCTTTGGCG	ATTATAGCTT	AGTAGAGTTG	CAACTGGAGA	CAGGGCGCAC	2520
	TCATCAAATC	CGTGTCCACA	TGGCTTATAT	CGGCCATCCA	GTCGCTGGTG	ATGAGGTCTA	2580
	TGGTCCTCGC	AAGACTTTGA	AAGGACATGG	ACAATTTCTT	CATGCCAAGA	CTTTAGGTTT	2640
	TACTCATCCG	AGAACAGGTA	AGACCTTGGA	ATTTAAAGCA	GATATCCCAG	AGATTTTTAA	2700
	GGAAACCTTG	GAGAGATTGA	GAAAGTAAGA	ATGAAAAGA	AATTAACTAG	TTTAGCACTT	2760
	GTAGGCGCTT	TTTTAGGTTT	GTCATGGTAT	GGGAATGTTC	AGGCTCAAGA	AAGTTCAGGA	2820
	AATAAAATCC	ACTTTATCAA	TGTTCAAGAA	GGTGGCAGTG	ATGCGATTAT	TCTTGAAAGC	2880
	AATGGACATT	TTGCCATGGT	GGATACAGGA	GAAGATTATG	ATTTCCCAGA	TGGAAGTGAT	2940
	TCTCGCTATC	CATGGAGAGA	AGGAATTGAA	ACGTCTTATA	AGCATGTTCT	AACAGACCGT	3000
	GTCTTTCGTC	GTTTGAAGGA	ATTGGGTGTC	CAAAAACTTG	ATTTTATTTT	GGTGACCCAT	3060
	ACCCACAGTG	ATCATATTGG	AAATGTTGAT	GAATTACTGT	CTACCTATCC	AGTTGACCGA	3120
	GTCTATCTTA	AGAAATATAG	TGATAGTCGT	ATTACTAATT	CTGAACGTCT	ATGGGATAAT	3180
	CTGTATGGCT	ATGATAAGGT	TTTACAGACT	GCTGCAGAAA	AAGGTGTTTC	AGTTATTCAA	3240
	AATATCACAC	AAGGGGATGC	TCATTTTCAG	TTTGGGGACA	TGGATATTCA	GCTCTATAAT	3300
	TATGAAAATS	STINCTONITS	ATCCCCTGAA	TTAAAGAAAA	TTTGGGATGA	CAATTCCAAT	3360
	TCCTTGATTA	GCGTGGTGAA	AGTCAATGGC	AAGAAAATTT	ACCTTGGGGG	CGATTTAGAT	3420
	AATGTTCATG	GAGCAGAAGA	CAAGTATGGT	CCTCTCATTG	GAAAAGTTGA	TTTGATGAAG	3480
۰	TTTAATCATC	ACCATGATAC	CAACAAATCA	AATACCAAGG	ATTTCATTAA	AAATTTGAGT	3540
	CCGAGTTTGA	TTGTTCAAAC	TTCGGATAGT	CTACCTTGGA	AAAATGGTGT	TGATAGTGAG	3600
,	TATGTTAATT	GGCTCAAAGA	ACGAGGAATT	GAGAGAATCA	ACGCAGCCAG	CAAAGACTAT	3660
,	GATGCAACAG	TTTTTGATAT	TCGAAAAGAC	GGTTTTGTCA	ATATTTCAAC	ATCCTACAAG	3720
	CCGATTCCAA	GTTTTCAAGC	TGGTTGGCAT	AAGAGTGCAT	ATGGGAACTG	GTGGTATCAA	3780
	GCGCCTGATT	CTACAGGAGA	GTATGCTGTC	GGTTGGAATG	AAATCGAAGG	TGAATGGTAT	3840
	TACTTTAACC	AAACGGGTAT	CTTGTTACAG	AATCAATGGA	AAAAATGGAA	CAATCATTGG	3900

			276			
TTCTATTTGA	CAGACTCTGG	TGCTTCTGCT	AAAAATTGGA	AGAAAATCGC	TGGAATCTGG	3960
TATTATTTTA	ACAAAGAAAA	CCAGATGGAA	ATTGGTTGGA	TTCAAGATAA	AGAGCAGTGG	4020
TATTATTTGG	ATGTTGATGG	TTCTATGAAG	ACAGGATGGC	TTCAATATAT	GGGGCAATGG	4080
TATTACTTTG	CTCCATCAGG	GGAAATGAAA	ATGGGCTGGG	TAAAAGATAA	AGAAACCTGG	4140
TACTATATGG	ATTCTACTGG	TGTCATGAAG	ACAGGTGAGA	TAGAAGTTGC	TGGTCAACAT	4200
TATTATCTGG	AAGATTCAGG	AGCTATGAAG	CAAGGCTGGC	ATAAAAAGGC	AAATGATTGG	4260
TATTTCTACA	AGACAGACGG	TTCACGAGCT	GTGGGTTGGA	TCAAGGACAA	GGATAAATGG	4320
TACTTCTTGA	AAGAAAATGG	TCAATTACTT	GTGAACGGTA	AGACACCAGA	AGGTTATACT	4380
GTGGATTCAA	GTSGTGCCTG	GTTAGTGGAT	GTTTCGATCG	AGAAATCTGC	TACAATTAAA	4440
ACTACAAGTC	ATTCAGAAAT	AAAAGAATCC	AAAGAAGTAG	TGAAAAAGGA	TCTTGAAAAT	4500
AAAGAAACGA	GTCAACATGA	AAGTGTTACA	AATTTTTCAA	CTAGTCAAGA	TTTGACATCC	4560
TCAACTTCAC	AAAGCTCTGA	AACGAGTGTA	AACAAATCGG	AATCAGAACA	GTAGTAGAAA	4620
AGAAGGTTTT	AGGGCCTTCT	TTTTCCTATC	AACTCTTTTC	TATTTCCTGT	TATTCATGTT	4680
ATAATGGATA	AATATGAATA	ATCGGAGTGA	GACTATGAAA	TACAAACGGA	TTGTCTTTAA	4740
GGTGGGTACT	TCTTCTCA	CAAATGAGGA	TGGAAGTTTA	TCACGTAGTA	AGGTAAAGGA	4800
TATTACCCAG	CAGTTGGCTA	TGCTGCACGA	GGCTGGTCAT	GAGTTGATTT	TGGTGTCTTC	4860
AGGTGCCATT	GCGGCTGGTT	TTGGAGCCTT	AGGATTTAAA	AAGCGTCCGA	CTAAGATTGC	4920
TGATAAACAG	GCTTCAGCAG	CGGTAGGGCA	GGGCCTTTTC	TTGGAAGAAT	ATACAACCAA	4980
TCTTCTCTTG	CGTCAAATCG	TTTCTGCACA	AATCTTGCTG	ACCCAAGATG	ACTTTGTGGA	5040
TAAGCGTCGT	TATAAAAATG	CCCATCAGGC	TTTGTCGGTT	TTGCTCAACC	GTGGGGCAAT	5100
TCCTATCATC	AATGAGAATG	ATAGTGTCGT	TATTGATGAG	CTCAAGGTTG	GGGACAATGA	5160
CACTCTAAGT	GCTCAAGTAG	CGCCGATGGT	CCAAGCAGAC	CTTTTAGTTT	TCTTGACAGA	5220
TGTGGACGGT	CTCTATACTG	GAAATCCTAA	TTCAGATCCA	AGAGCCAAAC	GCTTGGAGAG	5280
AATCGAGACC	ATCAATCGTG	AGATTATTGA	TATGGCTGGT	GGAGCTGGTT	CGTCAAACGG	5340
AACTGGGGGT	ATGTTAACCA	AAATCAAGGC	TGCAACTATC	GCGACGGAAT	CAGGAGTTCC	5400
TGTTTATATC	TGCTCATCCT	TGAAATCAGA	TTCCATGATT	GAGGCGGCAG	AGGAGACCGA	5460
GGATGGTTCT	TACTTTGTTG	CTCAAGAGAA	GGGGCTTCGT	ACCCAGAAAC	AATGGCTTGC	5520
CTTCTATGCT	CAGAGTCAAG	GTTCTATTTG	GGTTGATAAA	GGGGCTGCGG	AAGCTCTCTC	5580
TCAATATGGA	AAGAGTCTTC	TCTTATCTGG	TATCGTTGAA	GCAGAAGGAG	TCTTTTCTTA	5640
CGGTGATATC	GTGACAGTAT	TTGACAAGGA	AAGTGGAAAA	TCACTTGGAA	AAGGACGCGT	5700

GCAATTTGGA	GCATCTGCTT	TGGAGGATAT	GTTGCGTTCT	CAAAAAGCCA	AGGGTGTCTT	5760
GATTTACCGT	GACGACTGGA	TTTCCATTAC	TCCTGAAATC	CAACTACTTT	TTACAGAATT	5820
TTAGAGGTAA	ACTATGGTGA	GTAGACAAGA	ACAATTTGAA	CAGGTACAGG	CTGTTAAAAA	5880
ATCGATTAAC	ACAGCTAGTG	AAGAAGTGAA	AAACCAAGCC	TTGCTAGCCA	TGGCTGATCA	5940
CTTAGTGGCT	GCTACTGAGG	AAATTTTAGC	GGCTAATGCC	CTCGATATGG	CAGCGGCTAA	6000
GGGGAAAATC	TCAGATGTGA	TGTTGGATCG	TCTTTATTTG	GATGCAGATC	GTATAGAAGC	6060
GATGGCAAGA	GGAATTCGTG	AAGTGGTTGC	CTTACCAGAT	CCAATCGGTG	AAGTTTTAGA	6120
AACAAGTCAG	CTTGAAAATG	GTTTGGTTAT	CACAAAAAAA	CGTGTAGCTA	TGGGTGTCAT	6180
CGGTATTATC	TATGAAAGCC	GTCCAAATGT	GACGTCTGAT	GCGGCTGCTT	TGACTCTTAA	6240
GAGTGGAAAT	GCGGTTGTTC	TTCGTAGTGG	TAAGGATGCC	TATCAAACAA	CCCATGCCAT	6300
TGTCACAGCC	TTGAAGAAGG	GCTTGGAGAC	GACTACTATT	CATCCAAATG	TGATTCAACT	6360
GGTGGAGGAT	ACTAGCCGTG	AAAGTAGTTA	TGCTATGATG	AAGGCCAAGG	GCTATCTAGA	6420
CCTTCTCATT	CCTCGTGGAG	GAGCTGGCTT	GATCAATGCA	GTGGTTGAGA	ATGCGATTGT	6480
ACCTGTTATC	GAGACAGGGA	CTGGGATTGT	CCATGTCTAT	GTGGATAAGG	ATGCAGACGA	6540
AGACAAGGCG	CTGTCTATCA	TCAACAATGC	TAAAACCAGT	CGTCCTTCTG	TTTGTAATGC	6600
CATGGAGGTT	CTGCTGGTTC	ATGAAAÀCAA	GGCAGCAAGC	TTCCTTCCTC	GCTTGGAGCA	6660
AGTGTTGGTT	GCAGAGCGTA	AGGAAGCTGG	ACTGGAACCA	ATTCAATTCC	GCCTAGATAG	6720
CAAAGCAAGC	CAGTTTGTTT	CAGGTCAAGC	AGCTGAGACC	CAAGACTTTG	ACACCGAGTT	6780
TTTAGACTAT	GTCCTTGCTG	TTAAGGTTGT	GAGCAGTTTA	GAAGAAGCGG	TTGCGCACAT	6840
TGAATCCCAC	AGCACCCATC	ATTCGGATGC	TATTGTGACG	GAAAATGCTG	AAGCTGCAGC	6900
ATACTTTACA	GATCAAGTGG	ACTCTGCAGC	GGTGTATGTT	AATGCCTCAA	CTCGTTTCAC	6960
AGATGGAGGA	CAATTTGGTC	TTGGTTGTGA	AATGGGGATT	TCTACTCAGA	AATTGCACGC	7020
GCGTGGTCCC	ATGGGCTTGA	AAGAGTTGAC	CAGCTACAAG	TATGTGGTTG	CCGGTGATGG	7080
GCAGATAAGG	GAGTAAGAGA	TGAAGATTGG	ATTTATCGGT	TTGGGGAATA	TGGGTGCTAG	7140
CTTGGCAAAA	TCTGTCTTGC	AGACTAGGAC	GTCAGATGAG	ATTCTCCTTG	CCAATCGTAG	7200
TCAAGCTAAG	GTAGATGCTT	TCATTGCAGA	CTTTGGTGGT	CAGGCTTCCA	GCAATGAAGA	7260
AATGTTTGCA	GAAGCAGATG	TGATTTTTCT	AGGAGTTAAG	CCTGCTCAGT	TTTCTGAACT	7320
GCTTTCTCAA	TACCAGACCA	TCCTTGAAAA	AAGAGAAAGT	CTTCTTTTGA	TTTCGATGGC	7380
AGCTGGATTG	ACCTTAGAAA	AACTAGCAAG	TCTTATCCCA	AGTCAACACC	GAATTATTCG	7440

278 TATGATGCCT AATACCCCTG CTTCTATCGG GCAAGGAGTG ATTAGTTATG CCTTGTCTCC 7500 TAATTGCAGG GCTGAGGACA GTGAGCTCTT TTATCAGCTT TTAGCCAAGG CTGGTCTCTT 7560 GGTTGAACTA GGAGAAAGTT TAATCGATGC AGCGACAGGT CTTGCAGGTT GTGGACCAGC 7620 CTTTGTCTAT CTTTTTATCG AGGCCTTGGC AGATGCAGGT GTTCAGACAG GATTACCACG 7690 AGAAATAGCA TTGAAAATGG CAGCACAAAC TGTGGTAGGA GCTGGGCAAT TGGTCCTTGA 7740 AAGTCAGCAA CATCCTGGAG TATTGAAAGA CCAAGTCTGT AGCCCAGGCG GTTCGACTAT 7800 CGCTGGTGTA GCAAGCCTAG AAGCGCATGC TTTCCGAGGA ACAGTCATGG ATGCAGTTCA 7860 TCAAGCCTAC AAACGAACAC AAGAACTAGG TAAATAAGAG GTAGTTTTGA CTGCCTCTTT 7920 TATGGTGGCT GAAATGAGAA GACACAAAAA GATTGTCACA AACCCCTATT TTTTTGATAG 7980 AATAGAAGTA GTAAAAAAGA AATGAGTTAG ACATGTCAAA AGGATTTTTA GTCTCTTTG 8040 AGGGACCAGA GGGAGCAGGC AAGACCAGTG TTTTAGAGGC TCTGCTACCA ATTTTAGAGG 8100 AAAAAGGAGT AGAGGTGTTG ACGACCCGTG AACCTGGCGG AGTCTTGATT GGGGAGAAGA 8160 TTCGGGAAGT GATTTTGGAT CCAAGTCATA CTCAGATGGA TGCTAAAACA GAGCTACTTC 8220 TCTATATTGC CAGTCGCAGA CAGCATTTGG TGGAAAAAGT TCTTCCAGCC CTTGAAGCTG 8280 GCAAGTTGGT CATCATGGAT CGTTTTATCG ATAGTTCTGT TGCCTATCAG GGATTTGGTC 8340 GTGGCTTAGA TATTGAAGCC ATTGACTGGC TCAATCAGTT TGCGACAGAT GGCCTCAAAC 8400 CCGATTTGAC ACTCTATTTT GACATCGAGG TGGAAGAGG GCTGGCTCGT ATTGCTGCTA 8460 ATAGTGACCG CGAGGTTAAT CGTTTGGATT TGGAAGGGTT GGACTTGCAT AAAAAAGTTC 8520 GTCAAGGCTA CCTTTCTCTT CTGGATAAAG AGGGAAATCG CATTGTCAAG ATTGATGCTA 8580 GTCTCCCTTT GGAGCAAGTT GTGGAAACTA CCAAGGCTGT CTTGTTTGAC GGAATGGGCT 8640 TGGCCAAATG AAACAAGATC AACTAAAGGC TTGGCAACCA GCTCAGTTTG ACCGTTTTGT 8700 CCGTATCTTA GAACAAGACC AGCTCAATCA CGCCTATCTC TTTTCAGGTT TCTTTGAAAG 8760 CTTGGAAATG GCGCAATTTT TAGCTAAGAG CCTCTTTTGT ACGGATAAAG TTGGCGTCTT 8820 ACCATGTGAG AAATGCCGAA GTTGCAAGCT GATTGAACAG GGAGAATTTC CCGATGTCAC 8880 CTTGATTAAA CCAGTTAATC AGGTCATTAA GACGGAACGC ATTCGAGAAT TGGTGGGTCA 8940 GTTTTCTCAA GCAGGGATTG AAAGCCAGCA ACAGGTCTTT ATCATCGAGC AAGCGGATAA 9000 AATGCATCCC AACGCAGCCA ATTCTCTGCT CAAGGTCATC GAAGAACCCC AGAGTGAAGT 9060 TTATATTTC TTCTTGACTA GCGATGAGGA AAAGATGTTA CCGACAATCC GAAGTCGGAC 9120 TCAGATCTTC CACTTTAAAA AGCAAGAAGA AAAACTTATC TTACTCTTAG AACAAATGGG 9180 ACTTGTTAAG AAAAAAGCGA CTCTTTTAGC TAAGTTTAGT CAATCGCGAG CTGAAGCAGA 9240

AAAGTTGGCT AATCAGG	CAA GTTTTTGGA	C CTTGGTCGAT	GAAAGTGAAC	GCCTGCTGAC	9300
TTGGTTAGTA GCTAAGA	AAA AAGAAAGTT	A TCTACAGGTT	GCCAAATTAC	CCAACTTGGC	9360
AGATGATAAG GAAAAAC	AGG ATCAGGTTT	T ACGGATTCTT	GAAGTTCTCI	' GTGGGCAGGA	9420
CCTCTTGCAG GTAAGAG	TAA GAGTGATTC	r acaagattta	CTAGAAGCTA	GAAAAATGTG	9480
GCAAGCTAAT GTCAGCT	TTC AAAATGCCA	r ggaatatetg	GTCTTGAAAG	AAATATAAAC	9540
TCAAAAATGA ATGATAA	AGA AAGGAAAGG	CTGTTTTATG	GACAAAAAAG	AATTATTTGA	9600
CGCGCTGGAT GATTTTT	CCC AACAATTAT	GGTAACCTTA	GCCGATGTGG	AAGCCATCAA	9660
GAAAAATCTC AAGAGCC	TGG TAGAGGAAA	TACAGCTCTT	CGCTTGGAAA	ATAGTAAGTT	9720
GCGAGAACGC TTGGGTG	AGG TGGAAGCAGA	TGCTCCTGTC	AAGGCCAAGC	ATGTTCGTGA	9780
AAGTGTCCGT CGCATTT	ACC GTGATGGATT	TCACGTATGT	AATGATTTTT	ATGGACAACG	9840
TCGAGAGCAG GACGAGG	AAT GTATGTTTT	TGACGAGTTG	CTATACAGGG	AGTAGGCATG	9900
CAGATTCAAA AAAGTTT	TAA GGGGCAGTCT	CCCTATGGCA	AGCTGTATCT	AGTGGCAACG	9960
CCGATTGGCA ATCTAGA	IGA TATGACTTT	CGTGCTATCC	AGACCTTGAA	AGAAGTGGAC	10020
TGGATTGCTG CTGAGGAT	TAC GCGCAATACA	GGGCTTTTGC	TCAAGCATTT	TGACATTTCC	10080
ACCAAGCAGA TCAGTTT	rca tgagcacaat	GCCAAGGAAA	AAATTCCTGA	TTTGATTGGT	10140
TTCTTGAAAG CAGGGCAA	VAG TATTGCTCAG	GTCTCTGATG	CCGGTTTGCC	TAGCATTTCA	10200
GACCCTGGTC ATGATTT	AGT TAAGGCAGCT	ATTGAGGAAG	AAATTGCAGT	TGTGACAGTT	10260
CCAGGTGCCT CTGCAGGA	AT TTCTGCCTTG	ATTGCCAGTG	GTTTAGCGCC	ACAGCCACAT	10320
ATCTTTTACG GTTTTTT	CC GAGAAAATCA	GGTCAGCAGA	AGCAATTTTT	TGGCTTGAAA	10380
AAAGATTATO OT GAAAC A	CA GATTTTTAT	GAATCACCTC	ATCOTOTAGO	AGACACGTTG	10440
GAAAATATGT TAGAAGTC	TA CGGTGACCGC	TCCGTTGTCT	TGGTCAGGGA	ATTGACCAAA	10500
ATCTATGAAG AATACCAA	CG AGGTACTATC	TCTGAGTTAT	TAGAAAGCAT	TGCTGAAACG	10560
CCACTCAAGG GCGAATGT	CT TCTCATTGTT	GAGGGTGCCA	GTCAGGGTGT	GGAGGAAAAG	10620
GACGAGGAAG ACTTGTTC	GT AGAAATTCAA	ACCCGCATCC	AGCAAGGTGT	GAAGAAAAAC	10680
CAAGCTATCA AGGAAGTC	GC TAAGATTTAC	CAGTGGAATA	AAAGTCAGCT	CTACGCTGCC	10740
TACCACGACT GGGAAGAA	AA ACAATAAAGG	GAGACAGGAT	GTAATAATTC	TGTCTGTTTC	10800
IGTTTAACTT AATTAGTG	AT GATAATATAA	AGATGTATCA	CTTGGTATAG	AAGCTTTGGT	10860
ATTAAGTTTT TTATTAAG	CC CATACGGAAT	ACCGATGGTT	GGAGCAGCAG	TTATAGCGTT	10920
CTTAGAAGGT ATAAATAG	AA AAATAAGGTC	ATTTTAAATC	AAAGGATTGA	TAAATCAGAA	10980

280 AGAAGGTGAT TTTTTGCGAA CATACGAAAA TAAAGAAGAA CTAAAAGCTG AGATAGAGAA 11040 AACATTTGAG AAATATTTT TAGAATTTGA TAATATTCCA GAAAATTTAA AAGATAAGAG 11100 AGCTGATGAA GTTGACAGAA CTCCAGCAGA AAACCTTGCT TATCAGGTTG GTTGGACCAA 11160 CTTGGTTCTT AAATGGGAAG AAGATGAAAG AAAGGGGCTT CAAGTAAAAA CACCATCGGA 11220 TAAATTTAAA TGGAATCAAC TTGGTGAATT ATATCAGTGG TTCACAGATA CCTACGCTCA 11280 TTTATCTCTG CAAGAGTTGA AAGCAAAATT AAATGAAAAT ATTAATTCTA TCTCTGCAAT 11340 GATTGATTCG TTGAGTGAGG AAGAATTATT TGAACCGCAT ATGAGAAAGT GGGCTGATGA 11400 AGCGACTAAA ACAGCGACTT GGGAAGTGTA TAAGTTTATT CATGTAAATA CGGTTGCACC 11460 TTTTGGAACT TTCAGAACTA AAATCAGAAA ATGGAAGAAG ATAGTATTAT AAATTATATT 11520 TTTAACTTTA AAAAATTTCA TAAAAATGGT TACCAAAGGC GATAGAAGAA AAACTATCGT 11580 CTTTTCTTT GCAAATTTTT AAGAAGGGAG GTGATCTTGC ATGGACTTTG AATATTTTTA 11640 TAACAGAGAA GCGGAAAGAT TTAACTTCTT AAAAGTACCG GAGATATTAG TTGATAGAGA 11700 AGAATTTCGG GGCTTATCAG CAGAAGCAAT TATCCTTTAT TCCATACTTC TTAAACAGAC 11760 AGGAATGTCA TTTAAGAATA ACTGGATAGA CAAGGAAGGC AGAGTATTTA TCTATTTTAC 11820 TGTCGAAGAA ATTATGAAAA GAAGAAATAT CTCAAAGCCA ACTGCCATAA AAACATTAGA 11880 TGAGCTTGAT GTAAAAAGG AATAGGACTG ATCGAAAGAG TAAGGCTTGG ACTTGGTAAG 11940 CCGAACATCA TTTATGTTAA AGACTTTATG AGTATATTTC AGGTAAAAGA AAATGACTTA 12000 CAGAAGTCAA AAAACTTAAC TTCAGAAGTA AAAGATTTTA ACCTCAGAAG TAAAGAAAAT 12060 GAACTTCAAG AGGTTAAGAA CCTTGACTCT AACTATATAG AGAATAATAA GAGTAAGTAT 12120 AGTAAGAGAG AATATAGTTT TGGTGAAAAC GGACTTGGAA CATTTCAAAA TGTGTTTTTA 12180 GCTGCTGAAG ATATATCGGA TTTACAAATC ATAATGAACT CACAGCTTGA GAATTACATT 12240 AGACTTCCTG CAAAACTAGA ATCCTAGTTC ATGATTGATA ATGCCAGCAA TCAAATTCAT 12300 TCGTAATCCG AAGCGTTTAC GATGATTTCG ATAGATTGTT GAAAACATTT TAAACGTTTT 12360 TACTTTGGCA AAGATGTTCT CAATCTTGCT TCTCTCCTTG GATAGCGCAT GGTTACAGGC 12420 TTTATCTTCA GCTGTTAGCG GCTTGAGTTT GCTGGATTTA CGTGGAGTTT GTACTTGAGG 12480 ATATATCTTC ATGAGCCCTT GATAACCACT GTCAGACAAG ATTTTACCAG CTTGTCCGAT 12540 ATTTCTGCGA CTCATTTTGA ACAACTTCAT ATCACGACAA TAGTTCACAG CGATATCCAA 12600 AGAAACAATT CTCCCTTGAC TTGTGACAAT CGCTTGAGCC TTCATAGCGT GAAATTTCTT 12660 TTTACCAGAA TGATTCGCTA ATTCTTTTT TAGGGCGATT GATTTTTACT TCCGTCGCAT 12720 CAATCATTAC CGTGTCCTCA GAACTGAGAG GAGTTCTTGA AATCGTAACA CCACTTTGAA 12780

CAAGAGTTAC T	TCAACCCAT	TGGCTCCGAC	GGATTAAGTT	GCTTTCGTGA	ATACCAAAAT	12840
CAGCCGCAAT T	TGTTCATAA	GTTCGATATT	CTCGCACATA	TTGAAGAGTG	GCCATAAGAA	12900
GGTCTTCTAG G	CTTAATTTA	GGTTTTCGTC	CACCTTTTGC	GTGTTTAAGT	TGATAAGCTG	12960
TTTTTAATAC A	GCTAATATC	TCTTCAAAAG	TCGTGCGCTG	AACACCAACA	AGACGCTTAA	13020
ATCGTGCATC A	GTTAGTTGT	TTACTTGCTT	CATCATTCAT	AGAACTACTA	TACCATATTT	13080
TGTTTCGCAG G	AAGTCTATT	GGAAAGTAAG	AAATATTGAA	GCTGAGGCTA	TTAGAAGAAA	13140
TTGTGAGCGT G	GTGCTATTT	TTTCAGGTAA	ААТААААТАТ	CACGAAGATT	CACAGTTTAA	13200
AGGAGATCAC T	TATGTTGAAT	GTTATGCTGT	TTTAGATAAT	ACGGTTATAG	CAAGAGATAG	13260
AATAACAGTC C	CTATCGATC	CGTTATGTGG	AAAAGATTTT	ATAGAGTAGC	ATATAATTGA	13320
TTCTTAACTG G	AATACTCAC	TATCTCTTTA	CATCAAGAAA	ATGACTANAC	AGGGAAGTTT	13380
GCCTTCTTCC C	TTTTTTTGT	TATACTAGTA	GAAGAAAAA	TTAGAAAGAT	TTGTGGGTGT	13440
CAAACAGCCC A	GTGGGGTGT	TTTAATATGG	ACTTAGGTCC	CACCCAAAGA	GGTATTAGTG	13500
TCGTGTCTCA A	TCTTATATC	AATGTTATCG	GTGCTGGTTT	GGCAGGTTCT	GAAGCAGCTT	13560
ACCAAATCGC A	GAGCGTGGT	ATTCCAGTTA	AACTATATGA	AATGCGTGGT	GTCAAGTCTA	13620
CACCCCAGCA T	AAAACAGAC	AATTTTGCTG	AGTTGGTTTG	TTCCAATTCT	TTGCGTGGGG	13680
ATGCTTTGAC A	AATGCAGTT	GGTCTTCTCA	AGGAAGAAAT	GCGTCGCTTG	GGTTCTGTTA	13740
TCTTGGAATC T	CCTGAGGCT	ACACGTGTTC	CTGCAGGTGG	TGCCCTTGCA	GTGGACCGTG	13800
ATGGTTTCTC T	CAAATGGTG	ACCGAAAAAG	TTGCCAACCA	CCCCTTGATT	GAAGTGGTTC	13860
GTGATGAAAT T	ACAGAATTG	CCGACAGATG	TTATTACGGT	TATCGCTACT	GGTCCTTTGA	13920
ם מפתאפריטאגנ	/ADTOBOTT	ANGATTONTO	COLCOL PAGGS	250000000000	TTTTATTTCT	13980
ACGATGCGGC A	GCGCCTATT	ATCGATGTCA	ACACTATCGA	TATGAGCAAG	GTCTACCTCA	14040
ANTCACGTTA T	GATAAGGGA	GAAGCGGCCT	ACCTCAATGC	CCCTATGACC	AAGCAAGA 4T	14100
TTATGGATTT C	CATGAAGCT	TTGGTCAATG	CAGAAGAAGC	ACCGCTTAGT	TCTTTTGAAA	14160
AAGAAAAGTA C	TTTGAAGGA	TGTATGCCTA	TCGAAGTCAT	GGCCAAACGT	GGCATTAAAA	14220
CTATGCTTTA T	GGCCCTATG	AAGCCAGTCG	GTCTTGAGTA	CCCAGACGAC	TATACAGGAC	14280
CTCGTGATGG A	GAATTTAAA	ACACCTTATG	CGGTTGTGCA	ACTTCGTCAG	GATAATGCAG	14340
CTGGTAGCCT C	TACAATATT	GTTGGTTTCC	AGACCCACCT	CAAATGGGGA	GAACAAAAGC	14400
GTGTCTTCCA A	ATGATTCCG	GGTCTTGAAA	ATGCGGAGTT	TGTCCGTTAT	GGTGTGATGC	14460
ATCGCAATTC T	TACATGGAT	TCACCAAATC	TTCTTGAGCA	GACTTACCGT	TCTAAGAAAC	14520

				282			
	AACCAAATCT	CTTCTTTGCT	GGTCAAATGA		AGGCTATGTT	GAGTCGGCGG	14580
	CTTCAGGCTT	AGTTGCGGGA	ATTAACGCAG	CTCGTCTCTT	CAAGGAAGAA	AGCGAGGCTA	14640
	TTTTCCCCGA	GACGACAGCG	ATTGGAAGCT	TAGCTCATTA	CATTACCCAT	GCCGACAGCA	14700
	AACATTTCCA	ACCAATGAAT	GTCAATTTTG	GGATCATCAA	GGAGTTGGAA	GGCGAGCGTA	14760
	TCCGTGATAA	GAAGGCTCGT	TATGAAAAA	TTGCAGAGCG	TGCCCTTGCC	GACTTAGAGG	14820
	AATTTTTGAC	TGTCTAATTT	TTTTGAAAGA	ATTGCTCATG	ATACTATAAA	AATCTTAGAA	14980
	ATTGTGATAA	AATAGGTAGG	ATGAAAGAAG	GAGACTGAAA	ATGGCGAATC	CCAAGTATAA	14940
	ACGTATTTTA	ATCAAGTTAT	CAGGTGAAGC	CCTTGCCGGT	GAACGTGGCG	TAGGGATTGA	15000
	TATCCAAACA	GTTCAAACAA	TCGCAAAAGA	GATTCAAGAA	GTTCATAGCT	TAGGTATCGA	15060
	AATTGCCCTT	GTTATCGGTG	GAGGAAATCT	CTGGCGTGGA	GAACCTGCAG	CAGAAGCAGG	15120
	TATGGACCGT	GTTCAGGCAG	ATTACACAGG	AATGCTTGGG	ACTGTTATGA	ATGCTCTTGT	15180
	GATGGCAGAT	TCATTGCAAC	AAGTTGGGGT	TGATACGCGT	GTACAAACAG	CTATTGCCAT	15240
	GCAACAAGTG	GCAGAGCCTT	ATGTCCGTGG	ACGTGCCCTT	CGTCACCTTG	AAAAAGGCCG	15300
	TATCGTTATC	TTTGGTGCTG	GAATTGGTTC	ACCTTACTTC	TCGACAGATA	CAACAGCGGC	15360
	CCTTCGTGCA	GCTGAAATCG	AAGCAGATGC	CATCCTCATG	GCTAAAAATG	GTGTCGATGG	15420
	TGTTTACAAT	GCCGATCCTA	AGAAAGATAA	GACAGCTGTT	AAGTTTGAAG	AATTGACCCA	15480
	CCGTGACGTT	ATCAATAAAG	GTCTTCGTAT	CATGGACTCA	ACAGCTTCAA	CCCTCTCAAT	15540
	GGACAACGAC	ATTGACTTGG	TTGTATTCAA	CATGAACCAA	CCAGGCAACA	TCAAACGTGT	15600
	CGTATTTGGT	GAAAATATCG	GAACAACAGT	TTCAAATAAT	ATCGAAGAAA	AGGAATAAGA	15660
	AAGAATATGG	CTAACGCAAT	TATTGAAAAA	GCTAAAGAGA	GAATGACCCA	GTCTCACCAA	15720
	TCACTTGCTC	GTGAATTTGG	TGGTATCCGT	GCTGGTCGTG	CCAATGCAAG	CTTGCTTGAC	15790
	CGTGTACATG	TAGAATACTA	TGGAGTCGAA	ACTCCTCTTA	ACCAAATCGC	TTCAATTACG	15840
	ATTCCAGAAG	CGCGTGTTTT	GTTGGTAACA	CCATTTGACA	AGTCTTCATT	GAAAGACATC	15900
	GAACGTGCCT	TGAACGCTTC	TGATATTGGT	ATCACACCGG	CTAATGACGG	TTCTGTGATT	15960
	CGCTTGGTTA	TCCCAGCTCT	TACAGAAGAA	ACTCGTCGTG	ACCTTGCTAA	AGAAGTGAAG	16020
	AAGGTCGGCG	AAAATGCTAA	AGTGGCTGTC	CGCAATATCC	GTCGCGATGC	TATGGACGAA	16080
•	GCTAAGAAAC	GAGAAAAAGC	AAAAGAAATC	ACTGAAGACG	AATTGAAGAC	TCTTGAAAAA	16140
	GACATTCAAA	AAGTAACAGA	CGATGCTGTT	AAACACATCG	ACGACATGAC	TGCTAACAAA	16200
	GAGAAAGAAC	TTTTGGAAGT	СТАААААТАА	ACAGAAAAAC	TCAGTTGGCA	TTGCTGGCTG	16260
	AGTTTTATTC	GAAAGAAGGA	AATATGAATA	CAAATCTTGC	AAGTTTTATC	GTTGGACTGA	16320

TCATCGATGA	AAACGACCGT	TTTTACTTTG	TGCAAAAGGA	TGGTCAAACC	TATGCTCTTG	16380
CTAAGGAAGA	AGGCCAACAT	ACAGTAGGGG	ATACGGTCAA	AGGTTTTGCA	TACACGGATA	15440
TGAAGCAAAA	ACTCCGCCTG	ACAACCTTAG	AAGTGACTGC	CACTCAGGAC	CAATTTGGTT	16500
GGGGACGTGT	CACAGAGGTT	CGTAAGGACT	TGGGTGTCTT	TGTGGATACA	GGCCTTCCTG	16560
ACAAGGAAAT	CGTTGTGTCA	CTCGATATTC	TCCCTGAGCT	CAAGGAACTC	TGGCCTAAGA	16620
AGGGCGACCA	ACTCTACATC	CGTCTTGAAG	TGGATAAGAA	AGACCGTATC	TGGGGCCTCT	16680
TGGCTTATCA	AGAAGACTTC	CAACGTCTTG	CTCGTCCTGC	CTACAACAAC	ATGCAGAACC	16740
AAAACTGGCC	AGCCATTGTT	TACCGTCTCA	AGCTGTCAGG	AACTTTTGTT	TACCTACCAG	16800
AAAATAATAT	GCTTGGTTTT	ATTCATCCTA	GCGAGCGTTA	CGCAGAGCCA	CGTTTGGGGC	16860
AAGTATTAGA	TGCGCGCGTT	ATTGGTTTCC	GTGAAGTGGA	CCGCACTCTG	AACCTCTCCC	16920
TCAAACCACG	CTCCTTTGAA	ATGTTGGAAA	ACGATGCTCA	GATGATTTTG	ACTTATTTGG	16980
AAAGCAATGG	CGGTTTCATG	ACCTTAAATG	ACAAGTCATC	TCCAGACGAC	ATCAAGGCAA	17040
CCTTTGGCAT	TTCTAAAGGT	CAGTTCAAGA	AAGCTTTAGG	TGGTCTTATG	AAGGCTGGTA	17100
AAATCAAGCA	GGACCAGTTT	GGGACAGAGT	TGATTTAGGG	AGGCTTATGA	GAAAATCATT	17160
TTACACTTGG	CTCATGACCG	AGCGCAATCC	TAAAAGTAAC	AGTCCCAAAG	CAATTTTGGC	17220
AGACCTCGCT	TTTGAAGAGT	CAGCCTTTCC	AAAACACACA	GATGATTTTG	ATGAGGTCAG	17280
TCGCTTTTTG	GAGGAGCATG	CCAGTTTCTC	TTTTAACCTA	GGAGATTTTG	ACAGCATTTG	17340
GCAGGAATAT	CTAGAACACT	AGCATTTATT	CATTGGGTTT	GGGCTAGTAA	TTTCTCCATC	17400
CCTCTGCTAT	AATAAAAAGA	AATAAAAGGA	TTAGAGAGGT	TCTTTATTTG	AAGGAACATT	17460
CAATAGACAT	TCAACTGAGT	CATCCAGATG	ACCTGTTTCA	TCTTTTTGGT	TODAATGAAC	17520
GCCATCTTCG	TTTGATGGAA	GAAGAGCTTG	ATGTTGTGAT	TCATGCTCGT	ACGGAGATTG	17580
TCCAGGTTTT	GGGAGAAGAG	TCTGCCTGTG	AGGAAGCCCG	TCAAGTTATT	CAGGCTTTGA	17640
TGGTCTTGGT	AAATCGTGGG	ATGACCGTTG	GTACGCCAGA	TGTAGTCACT	GCGATTAGCA	17700
TGGTCAAAAA	TGATGAAATT	GACAAGTTTG	TCGCCCTTTA	CGAAGAAGAA	ATTATCAAGG	17760
ATAATACTGG	GAAACCTATC	CGTGTCAAAA	CCCTAGGGCA	AAAGCTTTAT	GTGGACAGTG	17820
TCAAACAGCA	TGATGTGACC	TTTGGAATTG	GGCCAGCAGG	TACAGGGAAG	ACCTTCCTTG	17880
CAGTGACCTT	GGCAGTGACT	GCCCTTAAAC	GTGGGCAAGT	CAAGCGAATT	ATCCTAACTC	17940
GTCCAGCGGT	GGAAGCGGGA	GAGAGTCTTG	GATTTCTTCC	GGGTGATCTT	AAGGAGAAGG	18000
TGGATCCTTA	CCTTCGTCCT	GTTTACGATG	CCTTGTATCA	AATTCTTGGG	AAAGACCAAA	18060

CGACTCGTCT	CATGGAGCGT	GAAATTATCO	284 AAATTGCGCC	CCTTGCCTAT	ATGCGTGGCC	18120
GGACCTTGGA	TGATGCCTTT	GTCATTCTCG	ATGAGGCGCA	AAACACGACC	ATCATGCAGA	18180
TGAAGATGTT	CTTGACGCGT	TTAGGTTTTC	ATTCTAAGAT	GATTGTCAAT	GGAGATATTA	18240
GTCAGATTGA	CCTGCCACGT	AATGTCAAGT	CCGGTTTGAT	TGATGCTCAA	GAGAAACTCA	18300
AGAACATCCA	TCAGATTGAC	TTTGTTCATT	TTTCAGCCAA	GGATGTGGTT	CGCCATCCTG	18360
TTGTCGCTCA	GATTATCCGA	GCCTATGAAT	ATTCTACTGA	AGTTGCACAC	GACTGATTTT	18420
GAGGAAGTTC	GCCTGCAAAA	GAATAGACTT	GTTCGGTAAC	TGTAAAAAGT	GTTATACTAT	18480
TTTTATGGAA	ACAGTATACG	ACAAAGCACA	AAAACTTAAC	TCAAAAAACT	TCAAACTATT	18540
GATTGGTGTC	AAAAAGGAAA	CCTTTCAACT	CATGCTAGAA	CACCTGAATT	CAGCCTATCA	18600
GATTCAGCAC	CGAAAAGGTG	GACGTCCACG	TAGTCTGCCC	ATGGAAGACC	AGCTCATTAT	18660
GACCCTCCGT	TACTTGCGAT	ATTATCCCAC	TCAGCGTCTG	CTGGCCTTTG	ATTTTGGCGT	18720
CGGTGTAGCT	ACGGTAAATG	CCATCATCAC	TTGGGTGGAG	GATACACTTC	GTGCGTCAGG	18780
TAGCTTTGAT	TTGGACCATT	TAGAAGCCCC	GAGTGCTGCT	GTGGCTATTG	ACGTGACCGA	18840
AAGTCCGATT	CAGCGTCCAA	ACAAAACCAA	AGCAAAAATT	ATTCTGGTAA	AAAGAAACGA	18900
CACACCTTAA	AAACTCAAAT	TATGCTGGAT	TTGACGACAC	ATAAAGTCTG	TCAAATGGCC	18960
TTTTCTGACG	GACATACGCA	TGATTTTACT	CTCTTCAAAG	AAAGTATTGG	ACAAAGTTTG	19020
CCTGAAACGA	CGCTTGCCTT	TGTTGACCTA	GGTTATTTAG	GCATCTTGAA	ATTTCATGAG	19080
AATACTTTCA	TTCCTGCTAA	AAATTCCAAA	AATCGCCGCC	TGAGTGAGGA	TGATAAGCAG	19140
TTAAATAAAG	AGATGTCAGC	GATACGAATT	GAAATTGAAC	ATTTTAACGC	TAAATTCAAG	19200
ACCTTCCAAA	TCATGTCAGT	CCCTTATCGT	AACCGCAGAA	AACGTTTCGA	GTTACGGGCG	19260
GAATTAATTT	GTGCCATCAT	CAATTATGAA	GTGAACTAGA	TTCCGAACAA	GTCTAATATA	19320
CTTTTGAGAG	AGGAAAATCC	AGTTGTATAG	GCTAAAGGTT	TTATCCAAAG	GTCTGAGACA	19380
ACGATTAGGC	ACGATGGAAA	GAACTTTTAT	GTGGCTGATG	ACGATCAGTG	CATCTTCCTG	19440
TGTCATAATC	ACAGGGCACA	AGAAAGTAGG	AATTTGAAAA	GATGATTGAC	СААСТАТСТА	19500
AGTATTACAG	TTGTAGGATA	CTAACTGAAA	AGGATATTCC	AAGTATTTTA	TCTTTATATG	19560
AAAGTAATCC	TCTGTATTTT	CAGCATTGTC	CACCAGAGCC	AAATTTTGCA	ACTGTAAAAG	19620
AGGACATGCT	TTGTCTACCT	GAAGGTAAAG	CTAAGGCTGA	TAAGTTTTTT	GTTGGATTTT	19680
GGAATGGATC	TGACCTTGTG	GCTGTTATGG	ATTTTGTCTA	TGCATATCCT	GATGAGGAGA	19740
CTGTTTTTAT	TGGTTTGTTT	ATGGTTGATC	AAGCCTATCA	GAGAAAAGGG	ATTGGTAGTC	19900
ATATTGTGAC	AGAAGCACTA	GCTTATTTTG	CTAAGAACTT	TCGAAAGGCA	CGTTTGGCTT	19860
						-

ATGTTAAGGG	AAATCCGCAA	TCTCAGCATT	TTTGGGAAAA	GCAGGGCTTT	AAATCAATTG	19920
GATGCGAGGT	TAAGCAAGAA	CTCTATACGG	TTGTTATCGC	TGAACAGAGC	CTAGAAGATT	19980
AGAAATGGCA	TCAAGTAAGA	ACTATTTGGA	ATTTGTTTTG	GAACAATTAT	CAGGATTAGA	20040
TGATGTGACT	TACCGTTCCA	TGATGGGGGA	GTATATTCTT	TACTTCCGCG	GCAAGATTAT	20100
TGGCGGCATT	TATGACGATC	GCTTTTTAGT	TAAACCCGTG	CAAGCAGTCT	TAGATAAGAT	20160
TGACCAATCT	TCTTTTGAGT	TTCCATACAA	AGGTGCCAAA	GAAATGATTT	GAGTGGAAGA	20220
ACTTGATAAT	AAGATGTTTC	TATAAGACCT	AATTTTAGCT	ATGTATAACC	AACTGCCAAC	20280
GCCCAAACCT	AAAAAGAAAA	AGCAAGGGTG	AACGAAGTAA	AAAAGAAGTC	TGCTAAGGCC	20340
CTGTCTTTGC	ACGGGTAAAA	TTTTATATAT	AAAAAGAAGC	TGGGACTAAA	GAGCTCAGCT	20400
TCCTTTGGTT	TATATAATTG	TCATTACAAG	ACGAAGTGGT	TGGGCGAAAC	TCTGTTGACT	20460
TTATTCAATT	TAGAGTTTCT	TATGCACAAT	TGAGTCTGGA	ACGAAAGTCT	CCAGTTGCAA	20520
AGTATACAGT	ACAATAAACC	AACGATGTAA	TAGCTGATGA	CACAAAGCAC	AGTGGGTAGG	20580
ACTTGCGAAG	TCACCCTTTT	CTTTTCAAAA	TTTATACTAA	ATCATTGATA	TCAGTGTAGT	20640
CACGATTAAG	TCCTTGAGCA	ACTGGTAGGT	TAGTCAAGTA	ACCTTGATAA	GTAGTCACAC	20700
CTTGACGCAA	GCCTTCATCT	TCAGAGATTG	CTTGTGCGAA	TCCTTTGCCA	GCCAAAGCTT	20760
CGATATAAGG	AAGAGTGACA	TTGGTTAGGG	CGATGGTTGA	AGTGCGAGCA	ACCGCACCAG	20820
GGATATTGGC	AACGGCATAG	TGGAGAACAC	CGTGTTTTTC	ATAGACGGCT	TCATCGTGCG	20880
TTGTCACACG	GTCAGCTGTT	TCGATAACGC	CACCTTGGTC	AACAGCAACG	TCAACGATAC	20940
AGAGCCTGGA	CGCATTTGTT	TGACCATCTC	ATCTGTCACC	AATTCCGGTG	CTTTTGCACC	21000
AGGGATGAGA	ATGGCTCCAA	TCACCACATC	AGCATCTCTC	ACACTTGCTT	CAATGTTGAA	21060
TGAATTAGAC	ATAAGAGTTT	GAATTTGACT	TCCAAAGACT	TCTTCTAGAA	CTGAGAGACG	21120
CTTGGAACTA	ATATCTAAAA	TAGTCACTTG	AGCACCAAGA	CCAAGGGCGA	TGCGGGCAGC	21180
ATGTGTACCG	ACGACACCAC	CACCGATGAT	AGTTACTTTT	CCTTTTGGAA	CACCTGGT'AC	21240
ACCACCAAGT	AGAACACCAG	AGCCACCAGC	TTGCTTAGTA	AGGAAGTGAG	CTCCGATTTG	21300
AACAGCCATA	CGACCTGCAA	CCTCACTCAT	AGGAACGAGG	AGCGGTAGTT	GTCCTTGATT	21360
GTCACGAACA	GTTTCAGTTG	TTTTTGCTGT	TAACATAGCA	TCTGCTAATT	CTGGAGCAGC	21420
GCCCATGTGC	AAGTAGGTGA	AGAGAAGAAG	ATCGTCGCGC	AAGTAACCGT	ATTCAGAACT	21480
TAAAGATTCT	TTTACTTTCA	CAACCAACTC	TGCTGCCCAA	GCTTCACCAG	CAGTAGCGAC	21540
AATCTCAGCT	CCTTGCTTTT	GATAGTCAGC	ATCAGTAAAG	CCAGAACCGA	GACCAGCATT	21600

286

TGTTTCGATA AGGACACGAT GACCACGACT AACTAAGCTA TGAACACCTG CAGGTGTGAG 21560 GGCGACACGG TTTTCGTTAT TTTTAATTTC TTTTGGGATT CCGATTAACA TTGAGATAAC 21720 CTACCTTTCA ATTGACGGTC TTGTTTTGGT TGTCACATTC CAGTTCATAA ATCAAAATG 21780 TGACGGTTTC ATTGTATATG AAACCGCTTC AAAAATCAAG AAAAACTTGT CATCCAAATT 21840 TTTTTATGCT AGACTAGTGA AAATCAAGCT CTAATGGAGG GAAAAGTATG GAATCAATAT 21900 TTGTGAAATT TGCCCAGTAT CCGTCTATAG AAACGGAGCG TTTATTGCTC AGACCTGTAA 21960 CTTTGGATGA TGCGGAACAA TGTTTGACTA TGCCTCGGAC AAGGGTAATA CACGTTACAC 22020 TTTTCCAACC AATCAAAGCT TGGAAGAAAC CAAGAATAAC ATTGCTCAGT TCTACTTGGC 22080 TAATCCCTTG GGACGTTGGG GAATAGAACT AAAAAGCAAT GGTCAGTTTA TTGGAACCAT 22140 TGACTTGCAC AAGATTGATT CTGTTCTTAA GAAGGCAGCT ATTGGCTACA TTATCAATAA 22200 AAAGTATTGG AATCAAGGAT TAACGACAGA AGCCAATCGT GCTGTGATTG AGCTAGCTTT 22260 TGAGAAGATA GGGATGAATA AGTTGACTGC CCTTCACGAT AAGGCTAATC CCGCGTCAGC 22320 AAAGGTCATG GAGAAATCAG GCATGCGTTT TTCCCATGCA GAACCATATG CTTGTATGGA 22380 CCAGCATGAA AAAGGCCGAA TCGTGACAAG AGTTCATTAT GTCTTGACCA AGGAAGACTA 22440 TTTTGCAAAT AAATAAGCAG TTGAAAAGAA ATTTTTCGAC TGTTTTTTCT TCCTCTTACG 22500 AATAATCTAA GAGAGGAGAA AATATGGAAG CAATTATCGA GAAAATCAAA GAGTATAAAA 22560 TCATCGTCAT CTGTACTGGT CTGGGCTTGC TTGTAGGAGG ATTTTTCCTG CTAAAACCAG 22620 CTCCACAAAC ACCTGTCAAA GAGACGAATT TGCAGGCTGA AGTTGCAGCT GTTTCCAAGG 22680 ACTCATCGAC CGAAAAGGAA GTGAAGAAGG AAGAAAAGGA AGAACCCCTT GAACAAGATC 22740 TAATCACAGT AGATGTCAAA GGTGCTGTCA AATCGCCAGG GATTTATGAC TTGCCTGTAG 22800 GTAGTCGAGT CAATGATGCT GTTCAGAAGG CTGGTGGCTT GACAGAGCAA GCAGACAGCA 22860 AGTCGCTCAA TCTAGCTCAG AAAGTTAGTG ATGAGGCTCT GGTTTACGTT CCTACTAAGG 22920 GAGAAGAAGC AGTTAGTCAA CAGACTGGTT CGGGGACAGC TTCTTCAACA AGCAAGGAAA 22980 AGAAGGTCAA TCTCAACAAG GCCAGTCTGG AAGAACTCAA GCAGGTCAAG GGACTGGGAG 23040 GAAAACGAGC TCAGGACATT ATTGACCATC GTGAGGCAAA TGGCAAGTTC AAGTCAGTAG 23100 ACGAGCTCAA GAAGGTCTCT GGCATTGGTG GCAAAACAAT AGAAAAGCTT AAAGACTATG 23160 TTACAGTGGA TTAAGAATTT CTCTATTCCC CTAATTTACC TGAGTTTTCT ATTACTTTGG 23220 CTTTATTACG CTATTTTCTC AGCATCTTAT CTTGCTTTGT TGGGCTTTGT TTTTCTGCTA 23280 GTCTGTCTCT TTATCCAATT TCCGTGGAAA TCTGCTGGTA AAGTTCTAAT AATTTGCGGA 23340 ATCTTTGGAT TTTGGTTTGT TTTTCAAAAT TGGCAACAGA GTCAAGCGAG TCAAAATCTG 23400

GCGGATTCTG	TTGAAAGGGT	ACGGATTTTG	CCTGATACTA	TTAAGGTTAA	TGGTGATAGT	23460
CTATCCTTTC	GTGGCAAGTC	TAACGGTCGT	GCTTTCCAAG	TCTATTATAA	ACTCCAGTCC	23520
GAGGAGGAGA	AAGAAGCCTT	TCAAGCTTTA	ACTGACCTGC	ATGAGATAGG	ACTAGAAGGG	23580
AAGCTTTCGG	AGCCAGAAGG	GCAGAGAAAT	TTTGGTGGCT	TTAATTACCA	AGCCTATCTG	23640
AAGACTCAGG	GAATTTACCA	GACTCTCAAT	ATCAAAACAA	TCCAGTCACT	TCAAAAGATT	23700
GGCAGTTGGG	ATATAGGAGA	AAACTTGTCC	AGTTTACGTC	GAAAGGCTGT	GGTTTGGATT	23760
AAGACGCACT	TTCCAGACCC	TATGGGCAAT	TACATGACAG	GACTCTTGCT	GGGACATCTG	23820
GACACCGACT	TTGAGGAGAT	GAATGAGCTT	TATTCCAGTC	TAGGAATTAT	CCACCTCTTT	23880
GCCCTATCTG	GCATGCAGGT	AGGTTTTTTC	ATGAATGGAT	TTAAGAAACT	TCTCTTGCGA	23940
TTGGGCTTGA	CCCAAGAAAA	GTTGAAATGG	CTGACTTATC	CCTTTTCCCT	TATCTATGCG	24000
GGACTAACTG	GATTTTCAGC	ATCGGTTATT	CGCAGTCTCT	TGCAAAAGCT	ACTGGCTCAA	24060
CATGGGGTTA	AGGGCTTGGA	TAATTTTGCC	TTGACGGTGC	TTGTCCTCTT	TATTGTCATG	24120
CCAAACTTTT	TCTTGACAGC	AGGAGGAGTC	TTGTCCTGCG	CTTATGCTTT	TATCCTGACC	24180
ATGACCAGCA	AAGAAGGGGA	GGGGCTCAAG	GCTGTTACTA	GTGAAAGTCT	AGTCATCTCC	24240
TTGGGCATAT	TGCCCATTCT	ATCCTTCTAT	TTTGCGGAAT	TTCAACCTTG	GTCTATCCTT	24300
TTGACCTTTG	TCTTTTCCTT	TCTTTTTGAC	TTGGTCTTCT	TACCGCTCTT	GTCTATCTTA	24360
TTTGTCCTTT	CCTTTCTCTA	TCCAGTCATT	CAGCTGAACT	TTATCTTTGA	ATGGTTAGAG	24420
GGCATTATTC	GCTTGGTCTC	GCAGGTGGCA	AGGAGACCAC	TTGTCTTTGG	TCAACCCAAC	24480
GCATGGCTTT	TAATCTTATT	GTTAATTTCC	TTGGCTTTGG	TCTATGATTT	GAGGAAAAAC	24540
ATTAAAGGAT	TAACAGTATT	GAGTTTATTG	ATTACAGGTC	TCTTTTTCCT	TACCAAGTAT	24600
CCACTGGAAA	ATGAAATCAC	CATGCTGGAT	GTGGGGCAAG	GAGAAAGTAT	TTTCTACGGG	24660
ATGTAACTGG	GAAAACCATT	CTCATAGATG	TAGGTGGTAA	GGCĄGAATCT	TATAAGAAAA	24720
TCAAAAAATG	GCAAGAAAAG	ATGACGACCA	GCAATGCCCA	GCGAACCTTG	ATTCCCTATC	24780
TCAAAAGTCG	AGGAGTAGCT	AAGATTGACC	AGCTAATTTT	GACTAACACG	GACAAGGAGC	24840
ATGTTGGAGA	TTTGTCAGAG	ATGACCAAGG	CTTTCCATGT	AGGGGAGATT	CTAGTATCAA	24900
AAGACAGTCT	GAAACAGAAG	GAATTTGTGG	CAGAACTACA	GGCGACTCAA	ACAAAGGTGC	24960
GTAGTATGAT	AGTAGGGGAG	AACTTGCCCA	TTTTTGGAAG	TCAGTTAGAA	GTTCTATCTC	25020
CAAGGAAAAT	GGGAGATGGA	GGACACGATG	ATACCCTAGT	TCTGTATGGG	AAATTCTTGG	25080
ATAAGCAATT	TCTCTTCACG	GGAAATTTGG	AGGAGAAAGG	AGAGAAGGAC	TTGCTGAAGC	25140

		200			
ACTATCCAGA CTTGAAAGTA	AATGTTTTGA	288 AAGCTAGCCA	ACATGGCAAT	AAAAATCAT	25200
CAAGTCCAGC CTTTCTAGAA	AAACTCAAAC	CAGAGCTTAC	TCTTATCTCA	GTTGGAAAGA	25260
GCAATCGAAT GAAACTCCCC	CATCAGGAAA	CATTGACACG	ACTGGAAGGT	ATCAATAGCA	25320
AAGTTTATCG AACTGACCAG	CAAGGAGCTA	TACGTTTTAA	GGGGTTGGAT	AGTTGGAAAA	25380
TCGAAAGTGT TCGATAGGAA	GGATAAATGT	TGTAGATTAG	TGAAATAAAC	TAAAAATTTG	25440
TTGCATAATA ATGATAAAAA	TGGTATAATG	AAAACGTATT	CAATATTGAG	GATATAAAAT	25500
CATTAAAAAT CAGCAAAAGT	TGTTTTATTA	GTTAGTTTAT	AATCTATTGG	TCTTCTTCAG	25560
TCCAGTGTAT CTGCTGTGAC	AGTCACTAAA	AGTTACAAGT	ATGATTGGAA	TACGGTTTGG	25620
GAATATAGTA CCAACTATCA	CGACCATCAG	TATGCTTGGA	TTCCGTCATG	GTCTCGTTAT	25680
GACAGCTATT CTGAGTATAA	AGTTGGCGGA	GGCTGGAACT	ACGCTCGTTA	TGAGGTCATA	25740
AACTATTACA GCGGAGGCTA	TTAATTCTTA	AAGAGTGAGA	AAAAGGAGGG	CTAGATATGT	25800
TGCAGCTTAC TCATGTGACC	TTAAAAACGC	GACAAGTCAT	CTTGCAAGAT	GTGGATTTCA	25860
CCTTTAAAAA GGGTAGGGTT	TATGGTCTTC	TTGCTATCAA	TGGCTCTGGA	AAGACGACCC	25920
TGTTCCGTGC CATTAGCAAT	TTAATTCCCA	TAAGTAGTGG	AAATATCGCA	GCCCCTCCTT	25980
CTTTATTTTA TTATGAGAGT	ATTGAATGGC	TGGATGGAAA	CTTAAGTGGG	ATGGACTACC	26040
TTCGTCTTAT CAAAAACATC	TGGAAGTCAG	GTCTGAACTT	GAGGGATGAA	ATCGCCTATT	26100
GGGAAATGTC TGACTATATC	AGTCTTCCCA	TTCGCAAGTA	TTCCTTAGGC	ATGAAGCAAC	26160
GCTTGGTGAT TGCCATGTAT	TTCCTCAGTC	AGGCCAAATG	CTGGCTCATG	GATGAGATTA	26220
CAAATGGCTT AGATGAGTAT	TATCGACAGA	. AGTTTTTTGA	TAGGCTAGCA	CAAATCGATA	26280
GACAAGAACA GCTGGTTCTT	TTAAGTTCCC	ACTATAAGGA	AGAGTTGGTT	GATGTCTGCG	26340
ATAGAGTAGT AACCATTCAT	CAGGGGCAGA	TAGAAGAGGT	TTAGTTTATG	AAAGATGTTA	26400
GTCTATTTTT ATTGAAAAAA	GTTTTCAAAA	GCCGCTTAAA	CTGGATTGTC	TTAGCTTTAT	26460
TTGTATCTGT ACTCGGTGTT	ACCTTTTATT	TAAATAGTCA	GACTGCAAAC	TCACACAGCT	26520
TGGAGAGCAG GTTGGAAAGT	CGCATTGCAC	CCAACGAGAC	GGCTATCAAT	GAAAATGAAG	26580
AGAAACTCTC CCAAATGTCT	GATACCAGCT	CGGAGGAATA	CCAGTTTGCT	ТТААТАААА	26640
TAGACGTGCA AAAAAATCTT	TTGACGCGA	AGACAGAAA1	TCTGACTTI	TTAAAAGAAG	26700
GGCGCTGGAA AGAAGCCTAC	TATTTGCAG	GGCAAGATG	AGAGAAGAAT	TATGAATTTG	26760
TATCAAATGA CCCGACTGCT	AGCCCTGGCT	TAAAAATGG	GGTTGACCGC	GAACGGAAGA	26820
TTTACCAAGC CCTGTATCCC	TTGAACATA	A AAGCACATAG	TTTGGAGTT	CCGACCCACG	26880
GGATTGATCA GATTGTCTG	S ATTTTAGAGO	TTATCATCC	AAGTTTGTT	r GTGGTTGCTA	26940

289

TTATTTTT	AT GCTAACACAA	CTATTTGCAG	AAAGATATCA	AAATCATCTG	GACACAGCTC	27000
ACTTATAT	CC TGTTTCAAAA	GTGACATTTG	CAATATCCTC	TCTTGGAGTT	GGAGTGGGAT	27060
ATGTAACT	GT GCTGTTTATC	GGAATCTGTG	GCTTTTCTTT	TCTAGTGGGA	AGTCTGATAA	27120
GTGGTTTT	GG ACAGTTAGAT	TATCCCTACC	CAATTTATAG	CTTAGTGAAT	CAAGAAGTAA	27180
CTATTGGG	AA AATACAAGAT	GTATTATTTC	CTGGCTTGCT	CTTAGCTTTC	TTAGCCTTTA	27240
TCGTCATT	ST GGAAGTTGTG	TACTTGATTG	CTTACTTTTT	CAAGCAAAAA	ATGCCTGTCC	27300
TCTTTCTT	C ACTCATTGGG	ATTGTTGGCT	TATTGTTTGG	TATCCAAACC	ATTCAGCCTC	27360
TTCAAAGG/	TGCACATCTG	ATTCCCTTTA	CTTACTTGCG	TTCAGTGGAG	ATTTTATCTG	27420
GAAGATTAC	C TAAGCAGATT	GATAATGTCG	ATCTAAATTG	GAGCATGGGA	ATGGTCTTAC	27480
TTCCTTGCC	T GATTATCTTT	TTGCTATTGG	GAATTCTATT	TATTGAAAGA	TGGGGAAGTT	27540
CACAGAAAA	A AGAATTTTT	AATAGATTCT	AGCTTTCCTA	TAGGTAGGGA	AAATAAGTAA	27600
AAACTAACA	T AGAGAGGGAA	TCAACTTGAT	TCTCTCTTTT	TGATTCGAAA	ACCAAACCAA	27660
AATACAAA	A CAAACTTTTC	AAAAAATAAC	TTTTTATCTT	GACAAGAGCT	AGAAAACTTG	27720
GTATCATAT	'A AAAGTTGAGA	AAAGCAGAAG	TGAGAGCTTC	TCGCCTTGTG	ACATTAAGTT	27780
GCCTGGCCC	T ACGGATGAAA	AGTTTCGAAG	AAACGCTATC	ATAACGTGCG	GGCTTGTATA	27840
TTTACAAGT	C CGCTATTGTT	тттстстаат	AAAACAAAAG	AGGTGAAAAC	CATAGCAAAG	27900
CAAGACTTA	T TCATCAATGA	TGAGATTCGT	GTACGTGAAG	TTCGCTTGAT	TGGTCTTGAA	27960
GGAGAACAG	C TAGGTATCAA	GCCACTCAGT	GAAGCGCAAG	CTTTGGCTGA	TAACGCTAAT	28020
GTTGACCTA	G TATTGATTCA	ACCCCAAGCC	AAACCGCCTG	TTGCAAAAAT	TATGGACTAC	28080
GGTAAGTTC	À AATTTGAGT\	CONGNAGAING	CAAAAAGAAC	AACGTAVAVA	\GAAAACCGTT	28140
GTTACTGTG	A AAGAAGTTCG	TCTAAGTCCG	G			28171
(2) INFOR	MATION FOR SE	EQ ID NO: 23	:			
					•	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7147 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CCGCTCAACT	TTTGCAATCA	AGGCTAAGTA	GACAGCAGCA	AATTTCATAT	TGTATAATTT	60
CTGACTCATA	CTTCTCTCTT	TCTATGTGTA	CTAGTATAAA	TAAGAAAAAG	AAGGCCGTCA	120

290 AGCCTTCTTT TGATTTATTC TTCTGCTTCA TCTTCTGTAA ATTGACTATT GTACAAGTCA 180 GCGTAGAAGC CACCTTGCGC CATCAGTTCC TCATAGTTGC CTTGCTCGAT GATATTTCCA 240 TCTTTCATGA CCAAGATCAA GTCTGCATTT CGGATGGTTG ACAAGCGGTG GGCAATGACA 300 AAGGATGTGC GTCCTTCCAT CAAACGGTCC ATGGCTTTTT GGATCAATTC CTCTGTCCGT 360 GTGTCAACAG AAGAAGTCGC CTCATCCAAA ATCAAAAGCG GTGCATCCTT AAGAAGGGCA 420 CGAGCAATAG TCAATAGTTG TTTTTGTCTT ACAGACAAGG TCACGGTGTC ATCCAAGATG 480 GTATCATAGC CATCTGGCAA GGTCATAATA AAGTGGTGAA TTCCCACAGC CTTACTAGCT 540 TCCATCATTC GTTCATCACT AATCCCTATT TGATTATAGA TGAGATTGTC TCGAATAGTT 600 CCTTCAAAGA GCCAGGTATC CTGCAAGACC ATTGAAAAGG CATCATGCAC TTCTGAACGC 660 GTCATAGCCT TGGTATCCAC ACCATCAATG CGAATACTTC CCTTATCAAT CTCATAGAAT 720 TTCATCAAAA GATTGACAAT GGTTGTCTTA CCAGCCCCAG TCGGCCCAAC AATGGCAACC TTTTGACCAG CATGAGCTGT CGCAGAGAAG TCATAGTCTT GAACATTGAC ACCGTCCACC 840 AGAATTTCTC CTGCTGACAC GTCGTAGAAA CGTGGAATCA GATTGACCAG AGTTGATTTA 900 CCAGAACCTG TTGACCCAAT AAAGGCCACT GTTTGACCAG TTTCTGCTTT AAAGCTAACA 960 TGTTCAATAA CTGCCTCCGA ATTTGCCGCA TAGCGGAAGG TCACATCCTT AAACTCGACC 1020 TGACCTTTGA AGTTTTCATC AGTCAGCTGC ACTTGAACAG GGTTTTGGAT AGAAGAATGC 1080 AAATCTAAAA CTTGATTAAT CCGCTTAGCA GAGACCATAG TTCGGGGAAG AACGATGAAG 1140 AGTGCTCCCA TGAGAAGGAA GCCCATGACA ACCTACATGG CATAAGACAT GAAAACAATC 1200 ATGTCACTAA AGAGAGGCAG ACGCGCTATC GGAGCAGCGT CGTTAATCAC ATAGGCCCCA 1260 ATCCAGTAAA TCGCCACACT CAAACCACTT GAAATCCCCA TCATGATAGG ATTCAAAATA 1320 GCCATAAGAC GGTTGACAAA CAAATTCAAA CGGGTCAATT CATCATTTAC TGCTGCAAAT 1390 TTTTCATTTT GATAATCCTC TGCATTGTAG GCACGAACGA CACGAATACC TGTTAAACTC 1440 TCACGAGTGA TACTGTTCAG TTTATCTGTC AGCCCCTGAA TCAAGGACTG TTTTGGAAAG 1500 GCTAGCGTCA TCAAAACGGT CGTCATCAGG ACGTTGATAA TCACTGCCAC AAGTACGGCC 1560 CAGAGCCAGT ATTCTGAATG ACCTAAAATC TTCCCAATAG CCCAGATAGC CATAATTGAA 1620 CCACGCGTTA CCACTTGCAA GCCCATAGTA ATCAACATTT GAACTTGAGT AATGTCATTG 1680 GTAGTACGCG TCAAGAGGCT AGGAATTGAA AATTTCTTAA TCTCTGTCTG CGAGTAATCC 1740 AAAACTCGGT TAAAAATATC ACTTCTCAGC CTACTAGTAT AAGAAGCCGC CACTCGGGAT 1800 GCAAAAAATC CAACTGCAAC TACGGACAAG AAGGCAAGAA AGGACATTCC CATCATCATG 1860 CTTGCCGACT GCCACACTC ATCTAAATTA GTTTCTTGAC TACCTAGCAA ATCCGTAATT. 1920

TTCGAGATAT	AGGTCGGCAC	TTCCAACTCT	AGATAGACCG	AAAAGCAAGT	AAAGAGAATG	1980
GCTAGTAAAA	TCATCCCCCA	TTCTTTTCTA	CTAATTCTTT	TGGCTAATTT	CTTTATTCTC	2040
TCCTCCTATT	CCCTTGATAT	TTTGCCTGTA	GTTGACCGAG	AACCTTCTCA	AAAATCAGTA	2100
ATTCATCTTC	ATCAATGTCT	TCCATCAACT	GCTTGTCTAT	GCGTTCAAAA	AAAGCCTTAA	2160
CCTGTTGCAT	CTGAGAACGT	GCTTTGTCCG	TCAGACGAAC	AAACTTAGCC	CGCTTATCAA	2220
CAGGACTCGC	CTCCAATTCC	ACCAAACCAT	TTTGCACTAT	ACGCTTAACC	AGATTACTAG	2280
CAACAGGCTT	GGTAATATTG	AGTTCCTGCT	CGATATCTTT	AATCAAGACC	AAGTCTTGGT	2340
TTTTCTCGCG	ATTATCCAAA	AAACGCACAA	CCTGACCTTG	CGGCCCACCC	ATAAATTCAA	2400
TGCCGCAACG	TTTGGCTTCC	TTTTGCACCA	TCAGGTGAAT	TTGATGACCA	AAACGCTTAA	2460
AGACTAACAT	CGGTTTATCC	ATAATCTCCC	CCTTCTAAAT	AAAAATAGTT	CTCTGGAGAA	2520
TAATTAAATT	TCTATGAGAA	CTATTTTCTT	GATTAAAAAA	ATCCCAAGTG	ATTTTCTCAC	2580
TTAGGATCAT	GTTCTATAGG	ттаааттааа	ACCCATCTAC	GTTCGTATAA	ATCTTTTGGA	2640
CGTCTTCGTC	GTCTTCAAGA	ACGCTGTAAA	GTTTTTCAAA	GGTTTCAAGG	TCTTCGCCTG	2700
ACAATTCCAC	TTCTGACTGA	GGAATCATTT	CCAATTCAGT	CACTTGGAAT	TCTTCAATAC	2760
CAGACTCACG	GAGGGCAACG	ATAGCCTTGT	GAAGGTCAGT	TGGCGCTGTG	TAAACTGTGA	2820
TTGTACCTTC	TTGTGCTTCT	ACGTCATCCA	CATCCACATC	CGCTTCGAGC	AATTGCTCAA	2880
AGACTGCGTC	CGCATCTTCA	CCTCCAAATA	CAATAACACC	TTTGTTGTCA	AAGAGGTAAG	2940
AAACAGAACC	TGAAGCGCCC	ATGTTTCCGC	CGTTTTTACC	AAAGGCTGCA	CGGACATTGG	3000
CTGCTGTACG	GTTGACGTTA	CAAGTCAAAG	TATCCACAAT	TAGCATAGAG	CCATTTGGCC	3060
CAAACCTTC	GTAACGTCCT	TCTGTAAAGG	TTTCGTCTGT	GTTTCCTTTG	GCTTTATCAA	3120
TCGCTTTATC	GATAATGTGT	TTTGGCACTT	GGGCTTGTTT	AGCACGGTCG	ATAACGAATT	3180
TCAAAGCTGA	GTTTGATTCT	GGATCTGGAT	CACCTTTTTT	AGCTGCTACA	TAGATTTCTA	3240
CACCAAATTT	TGCATATACT	TTAGAGTTAG	CTCCATCTTT	AGCCGTTTTC	TTGGCTACGA	3300
TATTGGCCCA	TTTACGTCCC	ATTAGGAATC	TCCTTTTTTC	ACATTTTAAT	CTTTCTTATT	3360
ATAACACAAG	TTTTTTTGAT	TTTCACTAGA	GGAAATGGAT	TTTATTAGCA	AATCAAGCTA	3420
GGATAGCACT	TTACCTGCTA	AGATGGTCTT	GCCTTTCTAT	CTTTATCAAC	AGGCACTCAT	3480
CCACATTCAA	AAAACAAACT	AGACCATTAT	CTGCAAATAG	AAAGTTTCAG	CCAAGTTTGA	3540
CAAAGTCAGC	TCAAATTACT	GTTTGAAGTT	TGTAGATATA	AGCGACAAAA	ACAATCATAC	3600
TGCACCTTTT	GTTGACAGTC	TACTCCAGAC	ATATCATAGT	TCAAGTAAAŤ	ACTTTGAAAT	3660

			292			
TCAACAGTTC	TTATAGGCGC	TATTGTATTC	TAAGAAATCA	AT AGAA JAGT	TTCTAAGCAA	3720
ACCTCTAATA	CTCAATAAAA	ATCAAAGAGC	AAACTAGAAA	GCTAGCCTCA	GGTTGCTCAA	3780
AACACTGTTT	TGAGGTTGCG	GATGGGGCTG	ACATGGTTTG	AAGAGATTTT	CGAAGAGTAT	3840
AATTTACGTG	TTCCCAAGAT	GGAGAAGTTA	GACTAGTACA	CTGGCACTTC	TAAAACATTG	3900
CTAGCAATTG	ATTTGTTCAT	ATTTAATTTC	ATTTTTCCA	TAAATGGGTA	TTAGATATAA	3960
ACAGCAAAAT	ATTTCCGATA	CGTGTCGTTC	TTGAATTTCC	AATCATCTAA	AACAAGTAAA	4020
GGATAATCAA	TCCCCTGTAT	ATCAAGGAAT	TGGCTACCCT	TTTTACTTTT	TTACACATTC	4080
TGTTTGATAG	ATTCATTTTA	ACATCACĞAG	CATACTCCAA	TGGAAATCGC	TAGGCAAGAG	4140
ATAAACTTTC	AGATATCCGC	AGAGAGATCA	TCGCCTCTTT	TTGTCGCAAG	CATTCTCCTC	4200
TCCTAGTCAT	TTTCTACCTT	ATCTTCTACC	TGAGGATAGA	GAGTTGTTCC	CCAAATAGAA	4260
ATCGTCCGCT	TACGCACTAG	TGGCAAATCG	GTTTTTTCAT	AAACCGTACG	CCACCATTCC	4320
CAGGCAAGCC	CGGTACACTC	TCTAATTTTG	ACAGAGAGAT	TACGAACATT	CCCTTTTAAA	4380
GGAATACTAG	TGGTAAAGTG	AGCCGTTAAA	TCCTGCCCAT	TTCTGTCCCA	AGCCTTAGGA	4440
STCAAGACTT	CCTTACCTTG	ATGATCATAG	GATAATTCAT	TCCAAGTAAT	ATAATATTGG	4500
GCAACATAGG	CACCACTATG	ATCCAGCAGT	AAATCTCCGT	TTCTGTAAGC	TGTAACCTTA	4560
STCTCAACAT	AGTCTGTACT	ATTTTGAAAG	GTCGCAACTA	CATTGTCACG	TAAAAAAGAA	4620
GTTGTATAGG	AAATCGGCAA	GCCTGGATGA	TCTGCTGTAA	AGCGACTGCC	TTCTTGAATC	4680
AGTCCTCTA	CCATATCCAC	CTTGCCTGTT	ACAACTCGGG	CACCCGAACT	TGGGTCGCCC	4740
CTAAAATAA	CCGCCTTCAC	TTCTGTATTG	TCCAAAATCT	GTTTCCACTC	TGTCTGAGGA	4800
CTACCTTGA	CTCCTTTTAT	CAAAGCTTCA	AAAGCAGCCT	CTACTTCATC	ACTCTTACTC	4860
STGGTTTCCA	ACTTGAGATA	GACTTGGCGC	CCATAAGCAA	CACTCGAAAT	ATAGACCAAA	4920
GACGCTCTG	CAGAAATTCC	TCTCTGTTTT	AAATCCTCTA	CCGTTACAGT	ATCTTGAAAC	4980
CATCTCCTG	GATTTTTAAC	AGCATCTACG	CTGACTGTAT	AATAAATCTG	СТТААААТТА	5040
CAATCTGAA	TCTGCTTTTC	GCCTGAATGG	ACAGAGTTAA	AATCAATATC	AAGAGAATTC	5100
CTGTCTTTT	CAAAGTCAGA	ACCAAACTTG	ACCTTGAGTT	GTTCCATGCT	GTGAGCCGTG	5160
TTTTTTCAT	ACTGCATTCT	AGCTGGGACA	TTATTGACCT	GACCATAATC	TTGATGCCAC	5220
TAGCCAACA	AATCGTTTAC	CGCTCCGCGA	ACACTTGAAT	TGCTGGGGTC	TTCCACTTGG	5280
GAAAGCTAT	CGCTACTTGC	CAAACCAGGC	AAATCAATAC	TATAAGTCAT	CGGAGCACGA	5340
CGACCGCAA	GAAGAGTGGG	ATTATTCTCT	AACAAGGTCT	CATCCACTAC	GAGAAGTGCT	5400
CAGGATAGA	GGCGACTGTC	GTTGGTAGCT	GTTACAGAAA	TATCACTTGT	ATTTGTCGAC	5460

AAGCTCCGCT	TCTTTCTTTC	GATAACAACA	AACTCATCGG	GTAGCTGATT	ACCCTCTTTG	552
ATGAAACGAT	TTTCAATACT	TTCTCCCTGA	TGGGTCAAGA	GTTTCTTTTT	ATCGTAATTC	5580
ATAGCTAGTA	TAAAGTCATT	TACTGCTTTA	TTTGCCATCT	TCTACCTCCT	AATAAGTTCC	5640
TGGATTGAGT	TGCATAAACT	CAGACTTGTT	CAGCGAAATC	AGCCGTGGTT	GGACTAAGTA	5700
ATCCAAAATT	TCCTCGTACA	ATTCTTCTGA	GACATTGCGT	CGCCGTCTGG	CTAAATAAGA	5760
AGTCGGAATG	ACCGTATTAT	CCAACATAAA	TACCTTATCT	AAGTCAATCA	AGGTTGGTCT	5820
TGTAAAAGGA	TTACGAGCTA	GATCCGGCTC	TTCTATCATA	AAGTTCTTGA	CCAAACGTCT	5880
GGTCAAGAGA	GCTGGTTTGA	AGGTCTGATT	TTTAACCAAC	TCTTTGTTTT	TAGTCATGCT	5940
GTTGTCAATA	CAGATATACA	TATGATTCTT	CACAGCCAAA	TCGCTACTAA	TAGTCGGAAA	6000
AGGCAAATAA	AGAGCTACAA	CATCTCCTCT	CTTAATCAAG	CAAGAGCACC	CCCTTTTCTC	6060
CTAATGTAAC	ATAGACAGGA	TTGACCAAGT	CTTCTGATTG	ACTCAGAATT	TCCAAAGTTT	6120
GAGTTTGGCG	CGCTGTCAAT	TTAGTAGCAT	CTTGTCTCTT	CAATACAAAA	TGCTTGTCGC	6180
CAATAACCTT	GACAATATAA	TCCTTCTCCA	AAGCTGACTG	GTAAATCCAC	ATCAGATGTT	6240
GTCTGTCCTG	AGAACTCAAG	AGAGAAGGAT	TTTCAAGCCT	CCCGATAGTC	TGATAAAAAT	6300
CAAAAACAGG	AGCTAACTCC	TGCCAATCTG	ATTGGCTAGT	TGTCAAGGCT	AGAAAAAGGG	6360
CTTTGCGAGC	TGATACTTCT	TGGTTAGCCT	TGAGAGTTAC	TTTCCCCTCC	AAGTTTTTTA	6420
GAAATCGGGA	AACTCCAGAA	AGCAAATTTT	TCTCTAACTG	CGAGAAATAA	AAACCTTTCG	6480
TTCCCAGACA	TAAGTCTTTC	ATGTCGCTTT	CTCTAGCAAA	TAAGAGCTCA	AACATTTGAT	6540
agtaaaagaa	AAATATCTGG	CACTGGGTCG	CGCTCATCTT	TTCCTTATCG	GCTTCTTTTT	6600
TTAACCAGAG	CAAGGGCGAC	AGGTAGCTGG	ATTGAGACAT	TTCCTCTACC	TCCTACTCTT	6660
TTTTAACTGG	AGCATCTGCA	CTAGCTGCCA	CTTCTTTTGA	CTGGATACTT	TCCCACTGGT	6720
TAATCTCCTC	TGAGATAAGA	CCTTCGCATG	TCTTGACAAA	TAGGGCAAAA	GCCTTGGTCT	6780
TTCCTGCATA	TTTCTCCGTT	TGGCATTGAT	AGAGGAATTT	TTCTTTCTCC	AGGAGTTGCG	6840
CAGTTTTTTG	GTAAGAAATC	CAATTTTCCT	TTGCATTATA	CAAATTGATA	ATCCCCTCAC	6900
ACAGCAAGCC	GAGACTGGAT	AAGGCAACCG	AAATCAAACG	GTAGCGATCA	CCTGGCATAG	6960
GAATAGCACA	AAAGACAGCT	ATGAGGAAAC	CTGCCACGAT	TTCTGTTATT	TTTAATACCT	7020
TATAGCGCCT	ACGATGTTGA	ACGCTTTTCT	TTAAAAAAATG	AGCTATCTGT	ACGTCTAATC	7080
GCTCTGTCAG	GTACATTTCT	TCTGGCGTCA	TATTCGTAAC	TCCTTTCATT	TACTTTGATA	7140
ATCAGCG						7147

PCT/US97/19588

294

121	INFORMATION	FOR	CEO	TD	NO.	24.
(2)	INFORMATION	PUR	SEQ	Ļυ	NU:	24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 755 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

CCGCATGGGA TT	GGTGTCCT	TTTGGGCAAT	CTCTTTGACC	AAACTGGAAA	CATGTTTTAT	60
GCGCCTGCCT TT	PACTGCCCT	TGTCGGCGGT	ACGTCTATAT	GATCCTAGTC	GCAAAAGTTC	120
CCCGCTTTGG AC	CCATTACC	ACTATCGGCC	TTGTCATTGC	CCTCTTTTTC	TTGGGAACTA	180
AACACGGTGC TO	GTTCCTTC	CTTCCTGGAA	TTATCTGTGG	CCTCCTAGCA	GATGGAGTAG	240
CTCATTTAGG AA	LAATACAA G	GACAAAACAA	AGAACTTCCT	TTCTTTCATT	ATTTTCGCCT	300
TTAGTACAAC AC	GACCAATC	TTGCTTATGT	GGATTGCGCC	CAAAGCCTAT	ATGGCTACTC	360
TTCTGGCAAG AC	GAAAATCC	CAAGAATATA	TCGACCGTAT	CATGGTCGCT	CCAAACCCTG	420
GAACTGTCCT TO	TATTTATC	GCAAGTATTG	TCATCGGAGC	CCTAGTGGGT	GCCTTGATTG	480
GACAAGCCTT GA	AGTAAAAA	TTTGCCCAGA	AAATCTGATC	AGTTAAAAAG	AGCCACGCGG	540
CTCTTTTTTA T	TATGGCTC	AATTTCTTAG	TCAAGAAATC	TCCCAAGAAT	TGGATTGCAA	600
AGATAATCAA AA	ATGATAATA	ATGGTTGCCA	AGATGGTCAC	ATCGTGATTG	TAGCGGTTAA	660
ATCCATAAGC GA	ATGGCTACG	TTACCGATAC	CACCAGCTCC	AACCGCACCG	GCCATAGCTG	720
TTtcCCAACA AC	GGGaAtCAA	GGTCACAGTC	GTCAC			755

(2) INFORMATION FOR SEQ ID NO: 25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3010 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

TTCAATTGGT	ATCTCAATCA	ACGGTCTTCA	CATGGTTTCA	ACTGGTTTGA	CTCTTGAAAA	60
AGCGAAAGCT	GCTGGTTACA	ACGCAACTGA	AACAGGCTTT	AACGATCTTC	AAAAACCAGA	120
ATTCATGAAA	CATGACAACC	ATGAAGTAGC	AATTAAGATT	GTCTTTGACA	AAGATAGCCG	180
TGAAATTCTT	GGTGCCCAAA	TGGTTTCACA	TGATATTGÇA	ATTAGCATGG	GAATCCACAT	240
GTTCTCACTT	GCTATCCAAG	AGCATGTGAC	AA TTĢATAAA	TTGGCATTGA	CAGACCTCTT	300

CTTCTTGCCA	CACTTCAACA	AACCATACAA	CTACATCACA	ATGGCTGCCC	TTACGGCTGA	360
аааттааааа	TGAATGAGCT	ATCTGGCCTT	AAGTTAAGGT	CAGATAGTTT	TTAGCTAATT	420
TGTCCCCATA	CAATTATAGT	TTTTTTATCT	TGTGCTTCAT	TCTGTTCTGA	CTTAAAATGA	480
AAAGGTAGCT	ACCAATACAA	ATGATGAGGA	TAAAACAAAT	GACTGAAAAT	CGTTATGAAC	540
AAAAAAA	CTTGGCACAG	ATGCTCAAGG	GTGGTGTTAT	TATGGATGTG	CAGAATCCTG	600
AACAGGCTCG	TATCGCAGAA	GCTGCTGGTG	CGGCAGCTGT	GATGGCCTTG	GAACGAATTC	660
CGGCTGATAT	TCGTGCAGCT	GGAGGAGTTT	CCCGCATGAG	CGACCCAAAG	ATGATTAAGG	720
AAATCCAAGA	AGCGGTTAGT	ATTCCAGTAA	TGGCTAAGGT	CAGAATCGGG	CATTTTGTTG	780
AAGCTCAGAT	TTTAGAGGCT	ATTGAAATTG	ATTATATCGA	CGAGAGTGAA	GTTCTATCTC	840
CAGCŢGATGA	CCGTTTCCAT	GTGGACAAGA	AAGAATTCCA	AGTTCCTTTT	GTCTGTGGTG	900
CTAAGGATTT	GGGTGAAGCC	TTGCGTCGTA	TCGCTGAAGG	TGCTTCCATG	ATTCGTACCA	960
AAGGAGAACC	AGGGACAGGG	GATATCGTCC	AAGCTGTTCG	TCATATGCGT	ATGATGAATC	1020
AGGAAATTCG	CCGCATTCAA	AACTTACGTG	AGGACGAGCT	TTATGTTGCT	GCCAAGGATT	1080
TGCAAGTCCC	TGTAGAATTG	GTCCAATATG	TTCATGAACA	TGGAAAATTG	CCAGTTGTAA	1140
ATTTCGCTGC	TGGAGGTGTT	GCAACGCCAG	CAGATGCTGC	GTTAATGATG	CAATTAGGGG	1200
CAGAGGGGGT	CTTTGTCGGT	TCAGGTATTT	TCAAGTCAGG	AGATCCTGTT	AAACGAGCGA	1260
GTGCCATTGT	TAAGGCTGTG	ACTAACTTCC	GTAATCCTCA	AATCCTAGCT	CAAATCTCTG	1320
AAGATTTAGG	AGAAGCCATG	GTTGGTATTA	ATGAAAATGA	AATCCAAATT	CTCATGGCTG	1380
AACGAGGAAA	ATAGATGAAA	ATCGGAATAT	TGGCCTTGCA	AGGGGCCTTT	GCAGAACATG	1440
CAAAAGTGCT	AGATCAATTA	GGTGTCGAGA	GTGTAGAACT	CAGAAATCTA	GATGATTTTC	1500
AGCAAGATCA	GAGTGACTTG	TCGGGTTTGA	TTTTGCCTGG	TGGTGAGTCT	ACAACCATGG	1560
GCAAGCTCTT	ACGTGACCAG	AACATGCTAC	TTCCCATCCG	AGAAGCCATT	CTATCTGGCT	1620
TACCAGTGTT	TGGGACCTGT	GCGGGCTTAA	TTTTGCTGGC	TAAGGAAATC	ACTTCTCAGA	1680
AAGAGAGTCA	TCTAGGAACT	ATGGATATGG	TGGTCGAGCG	TAATGCTTAT	GGGCGCCAAT	1740
TAGGAAGTTT	CTACACGGAA	GCAGAATGTA	AGGGAGTTGG	CAAGATTCCA	ATGACCTTTA	1800
TCCGTGGTCC	GATTATCAGT	AGTGTTGGTG	AGGGTGTAGA	AATTTTAGCA	ACAGTGAACA	1860
ATCAAATTGT	TGCAGCCCAA	GAAAAAAATA	TGTTGGTAAG	TTCTTTTCAT	CCAGAATTGA	1920
CTGATGATGT	GCGCTTGCAC	CAGTACTTTA	TCAATATGTG	TAAAGAAAAA	AGTTGAGATT	1980
CAAMMOOMOA	3.C00000000000	3 TCT 3 3 T 3 3 3	CNAMACCCAM	CT 2 TTC 2 2 CT	CCCCACCCAC	2040

			296			
CTAGGATAAA	GAGATGCCAA	ATCATGTGGA	AATAAGGTTT	TTTCTTGGCA	TAAAATCCAG	2100
CTCCAACTGT	ATAACAGAGT	CCGCCAGTTA	CCATGAGACT	CCAGAAAACG	GGTGTCGTTT	2160
GACTGATAAT	GGCAGGAATG	ATAGCCAGAA	CCAACCAGCC	CATAATCAGG	TAAAGAGCAA	2220
GGCTAAATTT	CTCATTGACC	TTTTTAGCAA	AGATTTTATA	GAGAATACCA	AAGATGGTCG	2280
TTCCCCATTG	GATGACAATA	ATCAGATAGC	CAAACCAGTT	ATTCATCAAG	GTCAAGACAA	2340
CGGCCGTGTA	TGAGCCGGCA	ATGGCAACGT	AAATCATAGA	ATGGTCAATG	ATTCGCAAAA	2400
CATATTTGTG	GGTCGAACCA	TAGGCCATAG	AGTGATAAAT	GGTGGATGAT	AGGAACATGA	2460
GAAAGAGACT	GATGACGAAA	ATGGAAACGC	CGATAGAGGA	TAAAAATCCG	TGTGCTTCAT	2520
AACTATAGAT	GGATGAAATA	GGCAGCAAGA	TAAGCATGAT	GACTGCACCC	ACAGCATGGG	2580
TCACGCTATT	AGCAATCTCC	TCTCCAAAAC	TGAGTTGTTT	GCTGAGTTTA	AGACTAGTGT	2640
TCATTGGATT	ACCTCCTCTT	GAGTATGATC	GATTAAGTCT	AGAGTTTGAT	GATAGAGTTT	2700
AACGGTTTGG	CAGCTGGTTT	GGATAATAGG	GTTAGCTGGG	TCAATTCCTT	GGTTCATGTA	2760
GTCCACAAAA	GCATCGTAGA	GTTGGTCTGA	ACTTGCTTGA	GTTTGTAGAG	TATTAAGTGT	2820
CTGGGCTATT	TCTTGAATAG	AAAATACAGA	CTTGAGGGTT	GTGATAGCAA	TCAAACGGGC	2880
AATCTGTTGG	CGTTGGTATT	TTTTTTTGTC	AGGCTTTGTC	AGGTAACCAT	TTTTCACATA	2940
ATTGTTGACC	ATAGATGCTG	TTAGGCCCTT	GTCTTTATTA	GGAGAGATAG	GGGCGCAGAC	3000
CTGATTGACA						3010

(2) INFORMATION FOR SEQ ID NO: 26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15213 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CATAAATCGG	TGCAAATAAC	TTAATAGTGA	AGTAGCCATT	TCTTTCGTAT	TTACCTGAGG	60
CATATTCCCT	AGACGAAAGA	ATATTATTAT	CAATCAAATC	ATTGAATGAA	CGTAGTCTTT	120
CAACTTCTTC	TACTGTTAGA	TTTCTGACAA	CATTTGTTGC	ATAGACCTTA	TTTCCATCAG	180
GATCAGGATG	GTACTCATTT	GTAACTTTTC	TAAGAAGTTG	TTGTTTTTGA	TTCGTATCCA	240
ATTTAAGAAT	TGAATTTCCT	TCGAGATATT	CCAACATATA	AACAACGTCA	AACATGTTGT	300
GGACATATTG	CTTCAAATCA	TCTGCATTAT	TAAATCTTGT	AGTTGGATCA	AGTACTTGTA	360
ATCGTCGACT	TTCTGTACTA	TCAGATTTTG	AATGTTTCAA	GATGGAGTTG	ATGGTAATGG	420

TCGCATCATC	TGGATGGTCT	GGTGCTTGTA	ATAATCCTTT	AGCAAAGAAC	TCTGGTCCCA	480
AGCCACTTCT	TCGACCATAT	CCTCCAAGAT	AAATGTCCTG	ATCTGAGTCA	TGTGTCATCT	540
CATGCGTATA	AGTAATAGCT	CCATCCTTAT	CCAACATTCG	ATAACCCATA	TAATAAACTG	600
CATCACCTGT	AGCATAAGCA	CCGTGTTGAT	TATGCCCAAC	TTTATTTCCA	ACAGGTCCAA	660
AGAAATGTTG	CATTGCAGGA	TTTGGATTAT	CAAAATCTGC	CACTTCTGTA	GCTTTCCCTA	720
CGGTATTATC	ATCGCCAAAT	TTATAAGCAT	CGTAAAGCAA	AATATTTCTA	TAAAGTTTTT	780
CACGTGCATT	GTCGTCTAAA	ATACGATACC	AATAATCGTA	GTGATCTCGC	TGACGTTTGG	840
CTGTTTCACG	CGCATTTTCT	TCAACAAAAT	CATTGAGAGC	CTTGCCCGCT	TTATGGTCAC	900
TACTGCGGTA	GCGATCATAA	GCTCCAAATC	CTAGACTAGA	CATGGTCGAG	ATGACAAATA	960
CGGATCTCTC	TGGCAAGGTC	AGGAGAGGCA	AGACCATATT	GCGGTATTTC	CATGTGGCAC	1020
TCGTGATACG	ATCATAAACA	CCGATAGAAT	ACTTGGTGCC	AGCTAACCCT	TGCTTCGTTT	1080
TCACCTCTTC	GATAGTGGAT	TTTTCTTCGA	CAATGTAAGC	CTTAGTCTCT	GATTTAAACC	1140
AGTCATTATT	GCTTGTATTT	GGTAAÁAAGA	CTTTTCGGTA	ATGTTCCAGC	GTGCTAAACA	1200
AATCTGTCGT	TCCATGTTGA	CTGGCAAGAC	TGATACCATA	AGTATCGACA	TTATTCTTAG	1260
CTAGAAGATT	GTTAAAGCCA	GATTTACCCA	ACTCAATCAG	AGTATCTAAT	GGTGAAGCAT	1320
TCCCCTTACC	AAAGAAGTCC	AAATGGTACA	GAACTAGGTC	TTTGACATTC	ACCTGACCAT	1380
AGCTAAAGTT	ATACCACCGT	TCCAGATAGG	TCAAGCCAAG	TAGCAAGGCT	TCCTTGTTGC	1440
GTTTGATTTT	ATCTACAAGA	TAACCTTCAG	TGACGGGGTT	AGCACTAGCC	AGTCCAGCAT	1500
CCGCTGACAA	GAGTTTTTTC	AAACTGTCTT	CCAGTTGTTG	TTTTGTTTTG	GCGAACTGGT	1560
CTTCTAGATA	GAGCTCAGTT	TGCTTGACGT	TTGGAGAAAT	ACCCAGCGTC	TTTCTGATGG	1620
CTTCTGAATG	ATAGTCAACC	TTTTGTAAGT	CAGGTAAGAC	TTGCTTGATG	ATAGAGGTTT	1680
GGTCATACAG	GAATTGGTTT	GGCGTATAGA	GAAGTCCAGT	ATTGCCCAGA	CTATATTCTG	1740
CTAATTTGGC	GAAATCATTC	TGGTATTTGA	GATCCAGCTT	CTCAGATAAA	TCATCCTTGT	1800
AGTGAAGCAA	GAGTTTGTTT	GCAGTCTGTT	TGTTAGAAAC	AATGTCTGTG	ATGACTTGGT	1860
TGTCCTTCAT	CATGACTGCT	GACAAGAGTT	CTTTTTGATA	TAAAAGACTG	TTCTCATTGA	1920
CCAGGTTTCC	GTATTTGACG	ATGGTTGCCT	TGTTGTAGAA	AGGTAGCAAT	TTTTCAATGT	1980
TTTTATAAGT	CAAGTTGCGC	TTAGCTTGAT	AATAGGCCAC	CTTAGAAAAA	TCACTGTCTT	2040
TTTTGCCACT	TGTTGAAAGT	GGCTCCACTG	TTGGTAAAAT	GAGAGGATTC	ATTTCTGCTT	2100
TTTTGCTTGC	AATTTGAGAA	GCATCTAGCA	TTGTTCCTCT	TTCTTCAAAG	GATTCCTTGC	2160

TGACGACCTC	ATCCTTGACC	AAGGTGACAT	298 TGTAGACTCT	GTTGGCCTTG	CTGCTGAATG	2220
TGTCCTTTAC	CTTCATTTCG	TTATAGTGGT	AACCAGTGAT	GGCATTTCCG	TTGGTTACAT	2280
TAACATCGCT	GAGAACATTG	GTCAAACTTC	CAGCATGCCT	AACATCACCA	GAAGTTCGAT	2340
CCCACAAATT	GCCTGCCACT	CCAGCGACTC	TACCAAAGTG	CTTGACATTG	TTGATATCAC	2400
CTTCAGCATA	GCTATCTTGG	ATCTGTGCAT	CTCGGTCTAC	TAGGCCTGCA	AGTCCACCCA	2460
CAGTCTGATC	TGAAGTATTT	GTGTTAGATG	AAATGGCTAC	TGTCGCTTTT	GACTTAGTAA	2520
GTAAAGCCTT	GTCACCTGTC	AAATGACCGA	CCATACCACC	GATATTGTAG	GCAGCAGTCG	2580
TTTCATAAGT	GTTGATAATT	CTTCCCTTGA	AACTGCTCTC	TGTGATGCTT	GATTGCTCAG	2640
CCTTAGCCAG	CAAACCACCG	ATACCACGTT	CACCAGCCAG	AACACCATCG	ACGTGAACTT	2700
GCTTAATTTT	TGTGTTATTC	TGAGCTTCAT	TTGCCAGTGA	ACCGATATCA	TCTTTCCCTG	2760
AAATAGCAAC	ATTTTTTAGA	CTCAGTTTTT	CTACTGTAGC	ACCACTCAAG	TTTTCAAACA	2820
GAGGTTTTTT	CAAATTATAG	ATAGCATAAT	TCTTGCCATC	TTTTTCACCG	ATTAAACGAC	2880
CAGTAAAGGT	GTCCTTGATA	TAGGATCTTT	CATCAGGACC	AAGCTCCACT	TCGTTAGCAT	2940
TCAGGCTGGC	CGCTAAATGA	TAGGTTCCAG	AGGGATTTTG	GTTTATAGCT	TTGACCAGAT	3000
TACTAAAGGA	AGTAAAGTTT	GTTGTTTCTT	CTGTTCCCTT	CTTAGCTAGA	TAGAAGGTAA	3060
AATTATCTTT	ATATCTGCTT	TCTATCTCCT	GCTGAAGCTT	CTCTACTTTT	GCTGTGATTT	3120
TATAAAGGAT	TTTATCATTT	TTTCTTTCCT	CTGATATTGA	TGCTACTGGT	AGGTATACAT	3180
CTTTGAATGA	AGAAGATTTC	ACTTTAACAA	AGTAGCTATT	TGGATTGCTT	GGAACTTGCT	3240
CTAACGAAAI	GTGTTGTTTA	TAAGTACCAT	TTGACAAACT	GTATAACTCT	AGGTCGGAAA	3300
CATTTCTTAA	TTCAAGTGTT	TTCTCTGGTT	CTTCTACCTT	TTTATCAGGG	TCTAGTTCAT	3360
TTTCTTGTTT	AATTTCTTCC	TTTCCATTTC	AATTGGATGT	GTTTGATTCG	GTTGAAACAT	3420
CCTCAGTTGA	ATTTCCGTTT	GATGGTTCTC	GTTCTGTTTC	TCCATTCTCT	GATGTTGTAT	3480
TACCTGAATT	TTCTGGTTT	GTTGCAGTTC	CGTTTTTTC	TGGTTGATTT	GATTCTTCAA	3540
					TTAGCTATTT	3600
TCCCAGAGTT	TGTTTGTGTT	TCTTCTGCAC	GTTGAACTGC	TTTTTCTGTT	TCTTGATTTG	3660
AGGTACCTT	TACTGTGCC1	TCATTTGGAT	TTACTGGAAC	TTCTTCTACA	GTTTTTTCTG	3720
AATTTTCAT	TTTAGAGTC	\ TTATGTTCT(GTTTATTTG/	TTCTCCAACI	GAGGTTGTCG	3780
					GGTGATACTT	3840
					TCTTGAATTG	3900
AGGTTCCTT	C TGTAGTACC	r TCATTTGGA	TTACTGGTG	r TTCTTCTGT	GGTTTTACTG	3960

	GAACTTCTTC	AGTTTTTTCT	GGACCTTGTT	CTTTGGTCTT	CTCAACCGGA	GTTTCAGGTT	4020
	TTACTTGCTC	AATATTACCC	TTATATTCTG	GAAGCGGTGC	TACCTGCTCT	GGTTCACCTT	4080
	TATCACTTAC	CACAGTATCT	GGCGACTCTG	GTTGAACCTC	AGTCTCACCT	TTGTCGGTCA	4140
	CAACTGCTTC	GGGTAATGTA	GGTTGAACTT	CTGGTTCGCC	TTTGTCACTT	ACTACAGCTT	4200
	CGGGCAACTC	AGGCTGAATT	GCGGGTTCAA	CAATAGCTCC	AGACTGTACG	TCCTTATGTT	4260
	CTACACCAGT	CTCAGGTTGT	TCCTTTATAA	CTTGAGTTTT	TTTAGTACCT	TTTTCGACTA	4320
	TTCTTGGACT	AGGCGCAGTC	GTTGAAGTTG	AAACAATTTC	TCGCGAAACT	TCTTCCTTGT	4380
	TTACAGAGAA	TATTCTGACG	ATTTCAACTT	TCTTACCTAA	TTTACCTTCT	TGTTTTACTC	4440
	TTACAGTTCC	TTCAGCTAAA	TCAGGATTTT	CTTGAATTTC	TTCTTGAAAA	TCTATTTTTG	4500
	TCTCCATAGT	TTCCTCACGA	TATAAGAGTT	CAGGTTTGTT	CAATTGACCT	GATAAAACTT	4560
	CATCCTGTGG	ATTTAATGTA	TTTACCCCAG	TCTTTTCTTT	TGGAGAAATC	TTCTCCTCTT	4620
	TCTTCGTTTC	TAGATTCTTA	TGTTCGGCTA	ATTGTTCTTG	AGAATCTGAA	GATTGTTTCT	4680
	CTTCTTTTCT	TGGATTGATT	AATTCAGTAG	AGAAAGGTTT	TTCAACTACT	TGAACTTCTG	4740
	TCGGCTTAGT	TGAAGAAACA	GGTGTTTGTT	CCTGAATAGC	TTGTACTGTT	GATGGATGGT	4800
	CTACAAAATT	CGGTGTAACA	TTATAATCCA	CCTTTTGTTG	TTTTGTAGGA	GTGGCAACTG	4860
	AACTCTTTTG	ATTACTTACT	TCAGACTCAG	AAGTCGTTTT	TCCCTCTTTG	ATATATCCAA	4920
	TATAAGTGTA	ACCTGAAATC	TCTTTAGGAA	GAGGTAATTT	TTCTCCAGAG	GTCAATTCAT	. 4980
	AGTCCGTATT	GTAATTTAGC	AAAAGATGAT	TTTCTAAAGC	ATGGACTGAA	ACTAAGACAC	5040
	CATTTCCTAT	CCCTGCAACC	AATACTAAAT	GTAATACCGT	TTTATTCTTA	ACCTTTTTCT	5100
	TGGAAACAGC	AAAAATTAAA	ATTCCCATAG	CAGCTAAGCT	AGCACCAGCA	ACTAGGGCTT	5160
	GCCTCTCATT	CTTGCTTCCA	GTATTTGGCA	ATTCCGCCAG	TTGATTTTGA	GAATTTAACT	5220
	TATAAACAAG	ATAATAAGTT	TCATCATCAT	TCTCCACGTA	TGTCGGAATA	TCATAGACAA	5280
	GCTGCTTCTT	TTCTTCTGAT	GATAGCTCTG	AATCTGCCAC	ATATTTATAG	TGAACTCCCG	5340
	CAGTTTCTTG	AGCATCCACA	GATGAACTAG	CTAATACAGA	CATAAAAAAT	AAACTTGAAA	5400
۰	TCGTTGCAGA	TACAAGTCCT	ACTGATAATT	TTCTAAATGA	AAAACGCTCT	TGTTTTTCAC	5460
,	CAAAATACTT	TTCCATTATT	CCTCCTTGAA	ATAAAATTTA	TATATGTTAC	AAAGACCTTT	5520
	ATTATATTAG	TGTATTATCT	ATTATCTATA	GAAAAGGCAG	TATACCTTAA	TTATACTCTT	5580
	AATTTACAAA	AAAGTCTTAA	AATTGAGATG	CGCTTTCATA	CTTTGTTTTA	TATTATTTGG	5640
	AGGTACAATA	ACACCTACCA	TGAAATTTAC	ACGGTAGGTG	TTACTCATAT	CACTAATCGT	5700

			300			
TCTAAAAATG	GTTTGAGGCA	GTTGAGGAGA		TCCAGCTTCC	TTGTGCTGAT	5760
GAGCGATGGT	CTTCCTGCAG	GCTTTTTTT	AGAAAATCTC	GGACTTGTTC	TGGTGCGATT	5820
TCAAATTCAA	AGGCTTTCAT	TTTATAGAAA	AAGTCGATGA	GATGATCTGA	CAGGTATTCA	5880
GTTGAAAAGG	GTACTTCACC	ACTTTTTCTA	TATTCTAATA	AGAGTCTAGA	AAATCGAGCT	5940
TTTTCTTCAG	GAAGCTCACG	AAAATAGGAA	TTGAGGATCC	AAGTCTGCTT	CTGTTTTCTT	6000
TCAATTGGAT	CCTGACTGGC	AATTCGTTGG	TCTTTTTCCA	GCTCTTTTTG	GTATTGTTTG	6060
GCCTTGATAG	CTCGTTCTGC	TCTATTTTTA	CCAAAAAGAA	TTTTTTCCCA	CTTGCGTTCT	6120
TCTTGAGTCA	GGGTCTCTGT	AAAGCCAAAG	TAATCTTGAT	AAGCACGCTC	TGCGGGTCCC	6180
ATGGCTAGAA	CCAGATTGTC	TGCATATTGC	TTGGCGATTT	TATCCCTCTT	CTTGCGTTCT	6240
TTCTCTGCCT	GGATACGGAG	TTCTTGTTCG	TAGTCAATTT	TCTCCTTGCC	TAGCTTGACA	6300
AGGTAGAGTT	GGTCATCCGA	TTTCCCAAGT	AAAAAGGGTT	TGATACACTT	TTCAAGGACT	6360
TCTTCCATCC	GAGCCTTTTT	CTTTGGTTCC	GCCTTGGTCC	AACTTCCTCC	CTGAAAGACT	6420
TCTAGGAAAA	GCTGGTAGTC	TCTCTCAGGC	GCAAATTGAT	TGCCACGATT	GGGTTTGAAA	6480
ACACCTTTTT	CCCAGAGCCA	TTTTAGAAGT	CGCTCGTCAA	AGTTACTTTT	ATTGACCTTG	6540
ATTTTTTCCT	TTTTCTGAGC	TTTTCTGGTT	AGATTTTCAA	CCTTTCTGAG	CAGTTTTTCT	6600
TCCTCTTCCA	ATTGCTGGTC	AAGGGACAAT	CGATGAAAAT	GACGAACACA	GTCGCTACCA	6660
ATTGGAAAGA	GGCGTTGGCC	TGTGACACCG	TTAAAGAGTT	CATAAGCGTA	TTTGATGGCA	6720
TTTCCACAGA	CACAATTGCT	ACGGCCGATA	CCGTTAAAAA	TAAAGGAAAC	TTCATTCCAT	6780
TCCTTGGTAG	CTTGTTCCCA	AGTATCCGCT	TTCGAAGCCT	GTAAAACTGC	ATCGTGCAGG	6840
GATTTTCTAA	CTGGAAGTGT	CATGAGGTCT	CCTTTCTAAT	ACTCAATAAA	AATCAAAGAG	6900
CAAACTAGAA	AGCTAGCCGC	AATCAGCTCA	AAACACTGTT	TTGAGGTTGT	AGATAGAACT	6960
GACGAAGTCA	GCtCAAAACA	CTGTTTTGAG	GTTGTGGATA	GAACTGACGA	AGTCAgTAAC	7020
CATATATACA	GCAAGGCGAA	GCTGACGTGG	TTTGAAGAGA	TTTTCAAAGA	GTATAAGTTA	7080
TACTTTTACA	ACTTGAACCT	CGTCTTTACC	GAGTAAAATC	AAGTATTTT	CAATATTTTC	7140
AATCGAATAG	GCTCGTGATA	AAGCCTCTTC	GTATAGAGCT	AACTGACCAC	GATAGCGGTC	7200
TACGAGTTGA	CTTGGTTCAT	CATAGCGGTC	TGTCTTGTAG	TCGAACAGAA	CAATTTTGTT	7260
TTCGTAAAGC	AGATAGCCAT	CAAGGATACC	ACGGACAACA	AAGTCTTCCT	GACTCTTTTG	7320
GTCTCGTTTG	AGCATGGAGA	AAGGTTGCTC	GCGATAAAGA	TGGTCGGTAT	TAGCAAGAAT	7380
TTCCTGACCG	AGTACTGTGT	CAAAGAAAGC	AAGAATTTTA	TCAAGATTGA	TCTTGTCTCT	7440
GACAGCTTGG	CTAGTTTGAA	CTTGTTTGAG	TGTTTCTGTT	AGGCTAGCAA	GGGTTAGTTG	7500

CTGGCTGAGG	TCAATTCTCT	GCATGAGTTC	GTGAGTAGCA	CTACCAATCT	CAGCTCCAGT	7560
TACCTTTTCT	TTGGTTGAAA	AATCTGGCAA	ATCGAAGCTG	ATTTTCTTGC	CTACTGACTG	7520
ACCTTGACCA	GCAATCTCGA	CACCTTCCAT	ATCCATAACT	GGTTCGTAGA	ATTTCTTGAT	7680
TTGACTTGGG	GTTTGAACAC	TAGGAAGTTC	AATAGCTGCG	CGGTGAAGAG	TATTATAAAC	7740
TTCCACCTCC	TTCAGCATTT	CCAGAGCTTC	TTTGATGGTA	TCTGACTGAC	GATTGTCTGC	7800
TTGGGAGCTA	TCTTGGAGAG	GACTCTTGGT	TTCCAACTCT	CCGATAGCTT	CTCTGGTCAA	7860
CTGATCTTCG	CCAATAAAAC	GATAACTAAA	GTTGAGCTTG	TCCTTAGTAA	ACACTTTACT	7920
GATAGCCCAA	AGCCAATCTT	GGAAATTCCG	TGCTTGCAGT	CTAGTATTGC	TATTTAGTTT	7980
CCCATTTTTG	GCTGCTGGGT.	ATTCCTTGGA	TTCCAGCTTT	TCACGAGAAC	CCTTGCCGAC	8040
AAGATAGAGC	TTTTTCTCAG	CCCGCGTCAT	AGCAACATAC	AGCAAACGCA	TCTGCTCAGA	8100
ATAGCTTGCT	AGCTGTAATT	CCTCTTCGTT	CTGCCTATAG	GTCAGACTAG	GAATGGAGAG	8160
TTTGATGGTT	TTAGGATAGT	GGTCTTCTAC	TGCCCCTGTC	TCCATCTTGG	CAATATATIT	8220
GACACCAAGA	CCATTCTGAC	GACTGAGAAT	GACTTCTGAC	ATAGAGTCTT	GCTTGTTGAA	8280
ATCTTGATCC	ATATTGAGGA	TAAAGACGTA	AGGAAACTCC	AGCCCTTTAC	TCTTGTGGAT	8340
GGTCATGAGC	TCTACTGCAT	CTTTTGGCGG	TGCGACGGCC	ACGCTTGCCA	AATCGTGCTG	8400
GGCTTCTAAG	ACTTGGTCAA	TCATACGAAT	AAAACGCGAC	AAACCTTTGA	AATTGCTCTT	84€0
TTCAAATTGA	TCAGCACGCA	GTGCTAGGGC	ATAGAGATTG	GCCTGCCTAG	CAGGACCATT	8520
CGGCAAAGCC	CCAACATAGT	CATAATAAAA	ACGGTCGTTG	TAAATCTTCC	AAATCAAGTC	8580
ATAGAGAGAG	TGGGTTTTGG	CATACAAGCG	CCAAGAAGCT	AGGATATCCA	TGAATTGCTT	8640
TAGTTTTTCA	GCTAGAGCTG	TGTGAATCAA	GCCTTTTTGA	CTACTTGCCA	TTTTTTGTGC	8700
ATTGACCAGT	TTCTCATAGA	GATTTTCGTG	ARLITHMATCO	TOTOCTTTOT	GAAGGGACAA	8760
ACGTGCTAGC	TCATCCTCAT	CAAAACCAAA	CATTGGAGAC	TTCATAAGGG	CAACCANGGC	8320
GTAGTCTTGC	AGGGGATTGT	GAATGACACG	AAGAGTGTCT	- AGCATGACTT	GCACTTCTAG	8880
GGATTGGAGA	TAATTGTTTT	GCTCTCCGTC	AGTTTTGACA	GGAATTCCGT	ACTCAGACAG	8940
GGCGAGGAGA	ATCTGGTCAT	TACGACTGCG	GCTGGAGGTC	AGAAGGGCAA	TTTCCTTAAA	9000
GGCAACACCT	TTTTCTTGAT	GAAGTTTCAG	AATCTCCTTG	ATAACTAAGC	GCATTTCGCC	9060
TGTTAGTTTC	GTTTCTGTTT	GACTCTCTTC	TTCCTCACCT	GTATCGTCCT	TGTCGTAGAG	9120
GAGAAATGCT	GCCTTGTTGT	CTGGATTGGG	AGTCAGTTTG	GTATTGGCAA	AAACAAGCTG	9180
GTGCTTGTTA	TCATAGTTGA	TTTCGCCGAC	CTCTTGGTCC	ATGAGACGTT	CAAAGACATC	9240

			302			
ATTGGTTGCT	GACAGCACTT	CTGAACTACT		TCCTTGAGGA	TAATGAGCCT	9300
GCCTTCTTGG	GGATTTTGCG	CATAGCGTTG	GAATTTCTCA	TTGAAAATCT	GCGGGTCTGC	9360
CTGACGGAAA	CGATAGATGG	ATTGCTTGAT	ATCTCCCACC	ATAAAGCGAT	TGTGGCCATT	9420
AGACAACAAT	TCCAGCATCC	GTTCTTGAAT	ATGGTTGGTA	TCCTGATACT	CATCGACCAT	9480
GACTTCATGG	AAGCGCTCCT	GATAAGACTC	ACGAACTTGT	GGGAAATTCT	CTAAAATCTC	9540
AATGGTGTAA	TGGCTGATAT	CAGCGAATTC	GAAGGCATTT	TCCTGTCGTT	TTCTCTGACG	9600
ATAAGCCTCT	ACAAAATCGC	TCATGAAAGA	TTGGAAGGTT	TTAGCTAGTT	TCCAAGTGTC	9660
TCCATGATAA	CGTTCTTGAT	AGTCGAGAAT	CGCTATCTGG	TCTGATAATT	GTCCTAGTTT	9720
AGCAAACTGG	GTCTTTCTCT	CTTCGTTGTA	GGCATCAGCC	AGGGGCTTCA	AATCAGCCTA	9780
CGGCTGGCAT	TAGTCAGAGC	TCGACCGTTT	TTCTCCTTAG	AGATGGCGAC	AACACGCGCA	9840
AGCACTGCCT	GATAAGCCTG	ACTATCGGAC	TCCTGATTTA	GGGAGCCAAT	TTCATCCAGA	9900
ATTAACTGAA	CATTTTCTAA	ATAGGCAGCC	TTTGCAAACT	CCTTGGCATC	GTTATCCAGA	9960
TGGTAACGGA	AAAAGCTTTC	CAAATCCCAA	AGGGCTTGTT	TGATTTGCTC	GGTCAGTTTT	10020
TCTTTTTCAC	TGGTAAAATC	AGCTTTCTCA	AATCCTTTGA	GGAAAGATTC	ACTCAGCCAC	10080
TTTTGAGGAT	TACTGGTGGA	TTGGAGGAAG	TCATAGATTT	TATAGACCTG	CTGGCGCAGA	10140
CCCCGTTCGT	CCTTGCCACG	CCCAGCAAAG	TTTTTCAGCA	AATGACTAAA	GGTCTCTTTC	10200
TGTTTACCTT	GGTAATGCGC	TTCAAAGACC	TCATGAAAGA	CTTCGTTTTC	GAGAATAAGT	10260
TGCTCGCTTT	GGTTTTGTAA	AATACGGAAA	TTAGGTGCAA	TATCAAGCAG	ATAACCATGT	10320
TTGCCAAGGA	ATTTTTGTGT	GAAAGAATCC	ATGGTTCCAA	TGGCAGCGTT	GGGTAGGTCT	10380
GCCAACTGGC	GACCCAAGTG	TTGTTTGAGG	TCGACATCAT	CTGTTTCTTG	GATTTTCTTC	10440
CTGATTTTTT	TCTCTAAACG	TTCTTTAAGT	TCAGTTGCAG	CCTTGACGGT	AAAGGTTGAG	10500
ATAAAGAGTT	GAGAAATTTC	GACACCACGC	GCCAATTGGT	CCAGAATGCG	CTCTGCCATG	10560
ACAAAGGTCT	TTCCAGAACC	AGCCGATGCT	GAGACCAGGA	TATTCTGGGC	AGAAGTGTAG	10620
ATAGCTTCGA	TTTGCTCGGC	AGTTTTCTTC	TGTTCCTTGC	TCGAATTTGC	TTCTGCTTCT	10680
TGCAGTTTTT	GAATCTCCTC	CTCACTTAAA	AAGGGAATAA	GCTTCATCGA	TTCAACTCCT	10740
CTCTTATTTT	TTCAAGCCAA	GCTTGCTTGA	GTTTTTCTCC	GACCAGACGC	TTGCCATCAG	10800
CTAGGTCCAA	CTTTTCTAGG	AAACGGGCTT	GGCCCAGATG	GTAATTGGCT	TCAAAGCCTG	10860
TAATAGCCTG	ATGTTGCTGG	ACGTATGGGG	CAATGCTTCT	GCCATTTTCA	GTATAAGGAT	10920
TGATGGCGAA	ссоосстост	AAAATCTTCT	CAGCAGCTTT	CTTGTAAAGA	TAGGCATTGT	10980
AGTCCAGTAG	GAGCTGAAAT	TCCTCATCTC	TCAGTTGATT	AGCCTTGTTT	TTGTTATAAA	11040

ATTCGCCTAA	ATAACTGCTT	TCTTTTTCCA	AGAAGAGCCC	TTGGTATTTC	ATAGATTTGC	11100
TGGCTTCTAC	CACTGCTCCT	GCCAGACTTT	TTACCGCCAT	CAGAGATTGG	ACAGGTTCAG	11160
CCATTTCCAA	GTACATGGCG	CCGAAAAAGT	TCTGCTCCCC	TTCTCTTTTT	AGGGCAGCAA	11220
GATAGGTTGG	TAACTGAGAA	TTGAGCCCAT	TAAAGAAATG	AGGAAACTGG	AACTGAGTCA	11280
GACTGGATTT	GTAGTCTACT	ACTCCTATCG	CTCCATTAGC	TTTCAAACGG	TCAATCCGGT	11340
CCACCTTGCC	TCGTACAAAG	ACACTGCGTC	CATTGTCTAA	TTGAATAAAG	GCTTGGTCTT	11400
TTCCACCAAA	ATTTGCTTCT	TCTTTGATGG	TTTCGATGGC	TGGATTGTGT	CGGAGAATAT	11460
GTCCAGTTGT	CCGTGCAACA	TCAAGCAAAA	CTTCCTTGGT	AAACTGGGCT	TCCAAACTTT	11520
CTTGATAAAT	AGCTTCAAAT	TCGCGTTCTT	GACTGGTTTC	TTGAATAGCT	TGTTCTAGAC	11580
GTTGGTCAAA	GGAATCTTCA	TTAGGCAACT	GTAAGGCGCG	TTCAAAGATA	CGATGCAAGA	11640
AATTCCCGTG	ACTACGGGCA	TCAGGATGCA	AACGTAATTC	CTCCTGCAAG	CCTAAAACGT	11700
AGCGTAGGAA	ATAACTGTAT	TCATTGCGAT	AAAACTCTGT	CAAACCCGAC	GTAGACAGGT	11760
AAAACTCCTG	TTTGGCAGGA	TAGAGAGCTT	GCAAGGTGTC	CTTGGCTAAG	GTCTTGCTGC	11820
TTGGACTGGT	TGGGATAGCT	GGATTTTCCA	GACCTTGCTG	ATCTAGTTTT	TTACCTATGA	11880
CACGCGACAG	AACCTTGACA	AAAGTCAAAT	CTTGCTCAGT	ATCGCTCATC	TCACCCTGCT	11940
GGTGATAGGC	AACCAGACTA	GACAAAAGAC	TGTGATAGGA	CCCCATATCC	TCCTTAGACA	12000
GTCCTTTGTC	ATTCATCCTC	TTCTCTCTCC	GCCTAAATCC	AAAATGGATC	AACTCTTGAA	12060
GATAGGCAGA	TTCCTTACTT	TCACTTTCGT	TAAAAAGGCT	TGGAGCCGAC	AAGAACAACT	12120
GCTTACGAGG	AGAATTGACO	AAGGAAAGCA	TAGTGTAGCG	ATTTTTCTTC	AGATTTTCAC	12180
	r CAGTAATTGA					12240
CATCTGTCAC	G AAGACTGGTC	TTTTGAGAAA	TTTTTGGTAA	ATTGTCCTGA	GTTAGTCCAA	12300
TAGCATAGAG	C AAAGTCAGCA	GTCAATGGTC	CAATCAAATC	GTAACTCTGC	ACCAGAACAG	12360
					TGGAGCAAGG	12420
					TGTTCTAAAA	12480
CATGGCAGA	A AGCCTTCCA	ACTTCGGCT	GTCTTTCCTC	TTCTACAGC1	TCCAAAGTGG	12540
TTGTCAAAT	C TTGTAACTG	TTGGTCACA	CTCCTTCTT	TAGAAAGACA	A CTCCATTTTT	12600
					A GGTGCTAAAA	12660
			•		GGATTTGGTGA	12720
AGGTTTGCT	G AAAGGCTGG	CAAGCCATTG	A TACCAAGAT	A GCGGATATA	r TGCTCAAAAG	12780

C100110100	AGACTGACTG	ACCTCACTAC	304	TOWNS	ተ ሞል አጥር ል ል ልጥ	12840
						12900
	AAAACGGTAA					
	CATGGCTTCG					12960
	AGATAACTGG					13020
AGCTCAGGTC	TGAGTTCTCA	TGTAATTTCT	GACGAATACT	ACGGGCTACT	AGCTCCAACT	13080
CCTCCTTTTG	CGTCAAACAA	GACCAGATTT	GTAAATTTTC	ACGGTCTTTC	TCATCGACAT	13140
CCAAAGCGAG	TTCTGAAAAG	TCATAAGAAG	ACTCCAACAA	ACGAGAGGCC	TTGTCAAAAC	13200
TATCCATCTT	CTCATGAGTT	TGAGAACAGT	CCTGAGCAGG	CGTTTGGTAT	TTAGAAGCCA	13260
GATGATGGAG	AAATTTTACG	CTGGCTTGGT	AGAGATTGCC	CTCGCTAAAA	GGACTGGTAT	13320
AGGCTTTCTT	ACTAGCATAA	GCCCCGATAA	CAATCTCAAC	ACCTTTGCCG	TGAAGTAAGT	13380
CCACAACCCG	CTCTTCCTCA	GCAGAAAAAC	GAGTAAAGCC	GTCAATGACC	AAGGCGATTT	13440
GATTAAAATC	ACTACTTACC	TTGTCATTCT	CAATAGCCTC	AATCAAATGG	GACAACTGAC	13500
TTTCCTGGGC	TAACTGACCT	TGATTAAGAT	AGGCTGTTAC	TTTCTCAAAA	ATCAAGAGTA	13560
AATCCGCCCT	CTTATCCTCA	TCTGTTAAAT	TCTCCAAGTC	CAAAAAACTC	ATCTGAGATT	13620
TGGTCATCTC	ATGGTAAAGC	TCAATTAACT	GCTGGATCAA	TTGAGGATCC	TGCTTAATAG	13680
CGCCATAAAC	ACGCAAGTCC	TTGGGATCGA	GTTCGGCAAG	GCATTTGTAA	AAGGCCAACC	13740
CAAGACCGAT	ATCATCAAGA	GTAGTTTTAG	CTGGTAAATC	ATTCAAGACC	AGATAGCGAG	13800
CCATTTGAGC	AAAGCGCGTG	ACGGTAATCG	AAAAAGAAGC	CTGCTGGGAC	AAGTATTCCA	13860
GCACGGCGCG	TTCCTTTTCA	AAAGAAAGAG	AGTTGGGGGC	AATGTAGAAG	ACCCGCTTGC	13920
CAGCTGCAAC	TAGCTCTTCT	GCCTCTCTTG	TTAGAATTTC	TGTCAAAGAA	GTCCGAATAT	13980
CAGTATAAAG	TAATTTCATC	TCAGCCTCGT	TGGAATTTTT	CATCACCCTA	TATTATACCA	14040
TGATTAGCCT	CGTAAATCTG	TTAAAATATT	TAGGCCATCC	TTTCTTTTCT	TCATCATCTG	14100
СТАААТСТТА	AATACTTAGC	TTTACTTGTA	TTAGATAGAA	TAAGTCTGGC	TACTGAAAAT	14160
CACATAATAA	AAAAGCCTCG	GTAACAAGGC	TTTGAGTTTT	ATGATTGTTT	CTTAGGTACG	14220
GAATACACTT	CAATGTGTTG	TCCCAGTATC	TTAATGTCGA	CTGGTAGATT	GTCTGATTTA	14280
TCGCCATCAA	CATCGGACTC	TAATTCGATA	TCAGAAGAAG	TTTTAATATT	ACGTGCCTTT	14340
ATATATTCAA	TATTCTTGAT	AGAATGATTG	AACTATAGTA	AATTGAAACT	ATAATAGTAC	14400
ACCGTGGATG	CTAAAATATT	TCTAGAAATT	AATTTGATTT	CCCTAATCAA	GCTATTCGTA	14460
TCTTATTTCA	ATCTACTATA	ATAAAATGAA	CCAAAAATAG	TACACAATGT	GGTATAATCT	14520
TCTTATGGCA	TATTCAATAG	ATTTTCGTAA	AAAAGTTCTC	TCTTATTGTG	AGCGAACAGG	14580

PCT/US97/19588 WO 98/18931

305

TAGTATAACA GAAGCATCAC	ACGTTTTCCA	AATCTCACGT	AATACCATTT	ATGGCTGGTT	14640
AAAGCTAAAA GAGAAAACAG	GAGAGCTAAA	CCACCAAGTA	AAAGGAACAA	AACCAAGAAA	14700
AGTTGATAGA GATAGACTTA	AAAACTATCT	TACTGACAAT	CCAGATGCTT	ATTTGACTGA	14760
AATAGCTTCT GACTTTGGCT	GTCATCCAAC	TACCATCCAC	TATGCGCTCA	AAGCTATGGG	14820
CTACACTCGA AAAAAAGAAC	CACACCTACT	ATGAACAAGA	CCCAGAAAAA	GTAGCCTTAT	14880
TTCTTAAGAA TTTTAATAGT	TTAAAGCACC	TAGCACCTGT	TTAGATTGAC	GAAACAGGAT	14940
TCGATACTTA TTTTTATCGA	GAATATGGTC	GCTCATTAAA	AGGTCAGTTA	ATAAGAGGCA	15000
AAGTATCTGG AAGAAGATAT	CAGAGGATTT	CTTTGGTTGC	AGGTCTAACA	AATGGTGAAT	15060
TAATCGCTCC AATGACTTAC	GAAGAGACGA	TGACGAGCGA	CTTTTTTGAA	GCTTGGTTTC	15120
AGAAGTTTCT CTTACCAACA	TTAACCACAC	CATCGGTTAT	TATAGTAAAA	TGAAATAAGA	15180
ATAGGGGGG GGGGGGAGGG	GGGGGGAGGG	AGA			15213

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6004 base pairs
 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

TTATTACCTG	AAACATTAAA	TTTAATTGGA	CATCCCGTTA	TCAATTTAT	AATATCAŢCA	50
AGATTTTAT	TATCTGATTC	AGGAATTTTA	TCTGATATAA	CAACACCATT	TTCAAGATAG	120
TCATTAAAT	TATTTGATTC	ACTAACATTA	GTGTTTTGAT	CTCCATCAAG	CCAAAAATAA	130
TGGTTATCGG	AATCTAAATA	CGATGAGTTT	AAAATATTAT	TACAAATTAT	TTGATTTGCT	240
CCACCAGGAA	TATATCTCAC	TACTAAATTC	TGTTTAAGAT	TCTCACTACC	TGAATGAGTG	300
ATAACAAAÇT	CTAGAATATA	TTTAGCTAGT	CTATCTTCAA	CATAAATCAT	CTTCCTAGAA	360
TGATACACAT	CACCTAATTC	AAAAAATGCA	TCCTGATAAT	CAATATTTTC	AATAACATCT	420
ACCTTTTCTC	CGTTTTTCAC	TAAAAGTTTC	ACGGCTTCTC	TAGGAAAATC	TTTTATAAGT	480
TGTGTAGAAT	GTGTAGTGAT	AATAATTTGA	TGTTTTTAT	TTAAACACTC	TTGAAGTAAA	540
AACTCTTTAA	ATTTATAGAT	TGCACTCGGA	TGAAGTGAGA	TTTCAGGTTC	ATCTATTAAT	600
ATTAATGAAT	TTGATTGCGC	ATTTACTATA	TCATTTACTA	ACAAAATAAT	TCTAGCCTCA	660
CCTGTTCCTG	CAAAAGCCTC	GGAATATTCT	TTTCCAGATT	TTTTCATCCA	AATAGTTTTG	720

306 GAAGCTTTTA TATCATCACC TTTTGAATAC AACTTATGTG TTAAAATTTG AATGTCTGTA 730 TAAGATTCAT CONTTATTTC ACTAATAATT TCACAAACTT TATCATCAAC TTTAACATTA 840 TCTATAACCA TTTCCTTTTT ATAACGCGTA TAGCTACTTG TATTATTCTT TAAAATATCA 900 GCAACTGGCT TAGATCGTAA TCTTATAAAA TCTTGTTTAC TACGTTGAGT AGAAATTTTT 960 TTAAAATTAT AGTGATAGAA AAATAAATCA AAAGCAGAAA CATATTCTTT ACAATCACAA 1020 AAGACAACAT TTTTTTCAAT GCCATCCCAT CTGTCTGTCG AAGAACTTCC AATATATTTA 1080 TTTTTGGGTA ATCTTTCCAT CTCATATTGT TTTTGAGGAG CATATGGTTC CCAATAATCT 1140 AATCCTTTTT TTGTTCCAGA ACGGCCTTTA AGAACTTCTA CATTTCTAGA AGCTTTAATG 1200 TTATAATATG AATAGATTAA ACATTGTTTC CCATCCACTT CATCTATTTG ATCAACATTT 1260 GTACTAAACC AATATTCAGA CACACTTTTA TTGGCTGGAG AACCATATAA AGCTTGTAAA 1320 ATTGAAGTTT TATTTACTCC ATATCTATTA CAGACACCTC AGGATTATTT AACTTATAAG 1380 TTTTAACAGC TACGGAATCA ATTTCAACAG CAACTTGAAC ATCTATGCCT GATTTTTTAA 1440 GGCCACTTGT AGTGCCACCT GCACCGTTAA ATAAATCAAT AGCAACAATT TTCCCCATAG 1500 TATTCTCCTA AAGTTTCTCC TTTTTATTAT AACATTATCA AATGTAAAAC CCAACCCGAT 1560 AGGGTTAGGT TTTTAACATC ATTTCACCAA CTTCTTCATC TCATCAATAC GTGCGACGGT 1620 CGCGTCATAT TTAGCTTGGT AGTCAGCTTG TTTGTCGCAT TCTTTTTGGA CGACTTCTGG 1680 TTTGGCGTTG GCTACGAAGC GTTCGTTAGA GAGTTTCTTA CCAACCATGT CCAGTTCTTT 1740 TTGCCATTTA GCAAGTTCCT TGTCGAGACG GGCCAGTTCT TCTTCAACAT TGAGGAGATC 1800 GGCCAGTGGC AGGTAGATTT CTGCTCCTGT GATGACACTT GACATAGCCA GTTCAGGTGC 1860 AGGGATGGTT GATGCGATTT CCAAGTGTTC TGGATTTGTA AAGCGTTTGA TATAGTTGAC 1920 ATTGCTGTTA AAGAAGGCTT CCAAGTCGCT ATCGCTTGTC TTAACAAGGA TGGTGATAGG 1980 CTTGCTTGGT GCTACATTTA CTTCCGCACG CGCATTCCGA ACAGCACGAA TCAAGTCTTT 2040 GAGACTTTCC ACACCAGTGT GAGCCGCAAG GTCTTCAAAG GCTAGATTAA CAGTTGGGTA 2100 TGCAGCTGTC ACGATAGAAC CTTCTGAGAT TTGTCCAAAG ATTTCCTCTG TCACGAATGG 2160 CATGATTGGG TGAAGGAGAC GAAGGATCTT CTCCAGCGTA TAGAGGAGAA CAGATCGAGT 2220 AATGACCTTA TCGTCTTCAT TGTCGCTGTA TAGAACTTCC TTGGTCAACT CAACATACCA 2280 GTTGGCAAAT TCTTCCCAGA TGAAGTTGTA AAGGATATGA CCAGCCACAC CAAACTCGAA 2340 CTTATCAAAG TTTTCAGTAA CTTTTGCAAT GGTTTCGTTG AGATTGTGGA GAATCCAGCG 2400 GTCCGTCACA TTACCAGCCT CACCTGTTGC AACTTTTGTG ACATTGTCAT GCGCCACATC 2460 CAGCGTCAAA CCTTCATTGT TCATGAGGAT ATAGCGAGAA ATGTTCCAAA TTTTGTTAAT 2520 -

AAAGTTCCAT	GAAGCATCCA	TTTTCTCGTA	AGAGAAACGA	ACGTCTTGAC	CTGGTGCGGA	2580
ACCGTTTGAA	AGGAACCAAC	GAAGGCCATC	AGCACCGTAT	TTCTCGATGA	CATCCATTGG	2640
GTCAATCCCG	TTACCGAGAG	ATTTAGACAT	CTTGCGTCCT	TGCTCGTCAC	GGATGAGACC	2700
GTGGATAAGC	ACGTTTTGGA	ATGGCTGACG	ACCAGTAAAT	TCCAAGGACT	GGAAGATCAT	2760
ACGAGACACC	CAGAAGAAGA	TGATGTCGTA	ACCTGTTACC	AAGGTTGAAG	TTGGGAAATA	2820
ACGTTTAAAG	TCTTCTGAGT	CGACTTCAGG	CCAGCCCATG	GTTGAAAATG	GCCAGAGGGC	2880
AGAACTGAAC	CAAGTATCCA	AGACGTCTTC	GTCCTGAGTC	CATCCGTCAC	CTTCTGGAGC	2940
TTCTTCGCCG	ACATACATTT	CACCATCAGC	ATTGTACCAG	GCAGGGATTT	GGTGACCCCA	3000
CCAAAGCTGA	CGAGAGATAA	CCCAGTCGTG	GACATTTTCC	ATCCATTGAA	GGAAGGTATC	3060
GTTGAAACGA	GGTGGGTAGA	ATTCGACCTT	GTCCTCTGTG	TCTTGGTTAG	CAATGGCGTT	3120
CTTAGCCAAT	TGGTCCATCT	TGACGAACCA	TTGAGTAGAC	AAGCGTGGCT	CAACTACGAC	3180
ACCTGTACGT	TCTGAGTGAC	CAACACTGTG	GACACGTTTT	TCGATTTTGA	CAAGGCACC	3240
GATTTCTTCC	AACTTAGCAA	CGACTGCCTT	ACGAGCTTCA	AAACGATCCA	TGCCTGAAAA	3300
TTCAAAGGCA	AGCTCATTCA	TAGTTCCGTC	GTCGTTCATG	ACGTTGACTT	GTGGCAAGTT	3360
ATGACGTTGG	CCAACCAAGA	AGTCATTTGG	ATCGTGGGCA	GGTGTGATTT	TCACGACACC	3420
AGTACCAAGC	TCAGGATCTG	CGTGCTCATC	TCCAACGATT	GGGATGAGTT	TATTAGCGAT	3480
TGGAAGGATG	ACGTTTTTAC	CAATCAAGTC	CTTGTAGCGC	GGGTCTTCTG	GATTAACCGC	3540
AACCGCAACG	TCCCCAAACA	TAGTCTCAGG	ACGAGTTGTA	GCAACTTCAA	GGGCGCGTGA	3600
ACCATCTTCC	AGCATGTAAT	TCATGTGGTA	GAAGGCACCT	TCTACATCCT	TGTGAATCAC	3660
CTCAATATCA	GAAAGGGCTG	TGCGAGCTGC	TSOGTCCCAG	AATADTABTT	ACTCACTACG	3720
ATAGATCCAG	CCTTTCTTGT	AAAGGTTCAC	AAAGACCTTA	CGAACAGCTT	TTGACAAACC	3780
TTCATCAAGA	GTGAAACGCT	CACGAGAATA	GTCTACAGAA	AGCCCCATCT	TGCCCCATTG	3840
TTCCTTGATG	GTAGTGGCAT	ATTCGTCTTT	CCATTCCCAG	ACCTTCGTCA	AGAAAGACTC	3900
ACGACCTAGG	TCATAACGCG	TAATACCCTC	ACCACGTAAG	CGCTCCTCAA	CCTTAGCCTG	3960
AGTCGCAATA	CCAGCGTGGT	CCATACCTGG	AAGCCAAAGG	GTATCAAAGC	CTTGCATGCG	4020
TTTTTGACGG	ATGATGATAT	CCTGCAAAGT	CGTATCCCAA	GCGTGACCAA	GGTGAAGTTT	4080
CCCAGTTACG	TTTGGTGGTG	GAATCACGAT	TGAATAAGGC	TTAGCCTTTT	GATCGCCTGA	4140
AGGCTTGAAA	ACATCCGCAT	CAAGCCATTT	TTGGTAACGA	CCAGCCTCAA	CCTCGGCTGG	4200
ATTGTATTTA	GGTGAAAGTT	CTTTAGACAT	GTGTGTGTCC	TTTCTCTATT	TTGTTTATTT	4260

			JU O			
TATTTTGAAT	TTGCTTAGCA	GCTTCTTCTG		CGTATTATTT	ATTTTAAAGT	4320
AGTGGTGCAA	CTCATTCGGT	TGATGTTGGG	AATTTAATTG	AAGTGTTTCA	GCGGTCTCTA	4380
AAATTTCTCT	TTCAGATACC	TCAATATGTC	GTTTTAAGGG	TTTGTGCTTT	AATCGATTCT	4440
CCGTTCGATT	TCGACGTATG	CACTCTTCAA	GACTTGTTTC	CAATTCAACA	AACAGAATCT	4500
CTTGATGAAA	GTTATCCAAT	AAATCCTGAA	TTTGCTTTAA	ATACATCAGC	TGGTACTGAT	4560
TTGAAAAATC	AATTACGTCT	GTTAAAATTA	CTGATCGCTG	ATTTCTTGCA	CTTGCTCCAA	4620
GGAAAGAAAA	GGTAATTCCA	CGAACAAATT	CCCACATCTC	CTCGGTATAA	TCCTGATAGA	4680
TCTCTAGTGC	AAAATCAATG	GCTTGATGGT	TATAAAATAG	GGTAGCATCC	GTCAGTCGAG	4740
ATAATTCTTG	ACCAATGGTC	ATTTTTCCTG	ATGCTGGAGC	ACCAATGATG	AAAAGATGCA	4800
TCAAATCACC	TCCCACTCAC	TCCTCAGCAA	GCCATATCTC	AAATCATCAC	AGCAGTTGCC	4860
TTGAGCATCT	TTGCGGTCTC	TTATGCGAGC	TTCGAGGGTA	AAGCCAAGCT	TTTCCGAGAC	4920
TCGTTGACTT	TGAAGGTTAT	ATCCAAAGCA	AGTTAGTTCA	ATCTTGTGAA	GACCAAGTTC	4980
TTTAAAAGCT	AGATCAATCA	AGGAACACGC	TGCTTCTGGA	ACATAACCTC	GACCCCAATA	5040
GTCTGGGTGC	AAGGTATAGC	CAAGCTCTAG	CACATCATCC	GCATGAAGAT	GGTTGAAGTC	5100
AACAGAACCA	ATGACTTTAT	CGGTTCCTTT	GACGACAATC	CCATAGCCAG	CTGGGAGATT	5160
TTCCTTTTGA	GTACGCTCCG	GAAGAATGTG	CTCCAGATAA	TAAATCTCAT	CTTCCAAGAT	5220
CTTGACTGGA	GGAAAACCTG	CTGGATAGGC	GACCTCTGGC	AAACTAGCGT	AGGTATGGAT	5280
ATCCTCAGCA	TCCACCACTG	TGCGGACTCG	TAAAACGAGA	CGTTCTGTTT	CGATTTTATC	5340
TGGCAGCTCA	GTTCTTGCCA	TCCTTCTTCC	TCGCTTTTTT	GATGAAACTG	CCCTTCATAT	5400
CTACACGCTT	GTCCAGATAG	CGATAAACGC	GCTGATATCC	ATCTCCCATG	AAATAGGTTG	5460
GGGCAAACAG	TTGATTTTTA	AAATGTCCCT	TTTCATCCAG	GAGTTCTGGG	GCAACAAGTC	5520
GCTCAAGAAT	CTTGGCAAAG	ATGTGGCAAA	TACCGTCTTC	CTCAACAATC	CTATCTACCC	5580
GACAATCTAA	AACAAGTGGA	CAGGCGTCTA	AAATAGGAGT	CTGAGTTCGT	TCAGAAAT I'T	5640
CATAATGCAC	TCCCAAACGT	TCCAATTTCT	CCTGATGACT	GATAAAACCA	GCCTGCTCCA	5700
TCGCAAGCAT	AGAAGTTTCA	TCAGAAATAT	TCACAGTAAA	TTTTTGATAC	TGTTTGATCT	5760
GCTCTGCGGC	ATTCTCTCTC	GCAACGACTC	CAATCACAAC	CCAATCTCCT	AGACTATAAG	5820
AGGAACTACA	GGTCGTGATG	TTATAGCCAA	AATTCTAATC	TTGATATCCT	AAAATAAAA	5880
CAGGAAAACC	ATAATATAGT	TTACTTGTGT	TAAAAGATTG	CTTCATAACA	ACCCCCTTTG	5940
ACTAAGACGT	AAAAGAAAAG	CCCTGCCATC	TACATGACAG	GGACGAATGT	GTTTATCCGC	6000
GGGG						6004

(2) INFORMATION FOR SEQ ID NO: 28:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5857 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28: TGTAGAATTC ACGACAATGC TTCGTTGATT TCTGGGTTGA TTTCGTCGCG TTCTGGCAAG 60 CGAGTCAATG AACCAAAAAT AGTACACAAT GTGGTATAAT CCTTTTATGG CATATTCAAT 120 AGATTTTCGT AAAAAAGTTC TCTCTTATTG TGAGCGAACA GGTAGTATAA CAGAAGCATC 180 ACACGTTTTC CAAATCTCAC GTAATACCAT TTATGGCTGG TTAAAGCTAA AAGAGAAAAC 240 AGGAGAGCTA AACCACCAAG TAAAAGGAAC AAAACCAAGA AAAGTTGATA GAGATAGACT 300 TAAAAACTAT CTTACTGACA ATCCAGATGC TTATTTGACT GAAATAGCTT CTGACTTTGG 360 CTGTCATCCA ACTACCATCC ACTATGCGCT CAAAGCTATG GGCTACACTC GAAAAAAGAA 420 CCACACCTAC TATGAACAAG ACCCAGAAAA AGTAGCCTTA TTTCTTAAGA ATTTTAATAG 480 TTTAAAGCAC CTAACACCTG TTTAGATTGA CGAAACAGGA TTCGATACTT ATTTTTATCG 540 AGAATATGGT CGCTCATTAA AAGGTCAGTT AATAAGAGGC AAAGTATCTG GAAGAAGATA TCAGAGGATT TCTTTGGTTG CAGGTCTAAC AAATGGTGAG TTAATCGCTC CAATGACTTA 660 CGAAGAGACG ATGACGAGCG ACTITITIGA AGCTTGGTTT CAGAAGTTTC TCTTACCAAC 720 780 ATTAACCACA CCATCGGTTA TTATTATGGA TAATGCAAGA TTCCATAGAA TGGGGAAGCT AGAACTCTTG TGTGAAGAGT TTGGGTATAA ACTTTTACCT CTTCCTCCCT ACTCACCTGA 840 900 GTACAATCCT ATTGAGAAAA CATGGGCTCA TATCAAAAAG CACCTCAAAA AGGTATTACC AAGTTGCAAT ACCTTTATG AGGCTTTTTT GTCTTGTTCT TGTTTCAATT GACTATATAA 960 ATTGTCTAAG CGAAACAACC GATAAGAATT GGCACAAAAG CGACCGTATT TTTGTTACCA 1020 ATACAGGAAA AACAGTTCAT AGTTCTATCT TGAGCAAGTC TCTCCAGCGA GCAAACGAAC 1080 GCCTTAAAAA ACCAATTCCC AAACATCTGT CCCCTCACAT CTTCAGACAC ACCACTATTA 1140 GCATCTTATC AGAAAATAAA ATTCCTTTAA AAACAATCAC GGACAGGGTT GGTCATCCCG 1200 ACTOTGAAGT CACTACTTCC ATCTACACCO ACGTCACAAA GAACATGAAA GATGAAGCAA 1250 TCAATGTACT GGATAAAGTT ATGAAAAAGA TTTTTTAAAA AGTTTTGTCC CTTTTTTGCC 1320 CTCTAAATAC AAAAATAGCC CTTCGGATAA AATCCGAGGG GCTAGAAACG TTGTTAAATC 1380

AACGGCCGAA	CTTTTGAATT	TCATGGTTCG	310 GGATAAAATA	GTTCACTGAA	СТАТТТТАТТ	1440
TTTTAAGGTT	ATCATAATAT	CAAATAGTTC	AATTAAATAC	GCTAAATTAC	TAATATACTT	1500
TTTACCTTTT	TCATTCTAAA	ATGTAAAGTA	CAAACAATTA	СААТАТАСТА	GAGGGGGAGT	1560
AAAAAAGGTA	TTAAATCGAT	GAGTTCAGCA	GGCAAGAAAA	TAGCACCTTT	ACGGGTGCTA	1620
TTTTTTTAATT	AACGCCACGT	TAACTTTTGA	TTGATGAATT	TTATTGTTTG	GCACTTCTTT	1680
CATTTCACGG	TAAACATCGA	TGAAATTCTT	TCCAACATTA	TTTTTGGAGT	TAACTGCATT	1740
TATTTTTGTA	TTAATAACTT	TTTTAGTATC	GAAAGAATGG	TTTAAGAAAT	CCATAACTAA	1800
CTCTCCTTTC	TCATCCTGTA	ATCAAGATTT	TTATCAATGT	CAAAATAGTA	TTTTCTATCA	1860
ATCCAAATTG	GTCCTTCTCC	TTTAGAAATA	GCAAGTACAT	CTACCGGACC	TCCTACTGTT	1920
TCAAGAGTGT	TGACAATTTT	TCTCTTAAAT	GAAGTTAATT	CAATAAATGT	TTTAGCTGTA	1980
CTCGCCATTT	CATTAAGTGG	TTGCATTCCA	ATAAGGTCTA	TTATAGGATT	TATATAATAT	2040
TTTTGCTGTA	TAGATGATAT	ATTTTCAAAT	ATATTCTCAA	TTTCATCACC	CAATCCATTT	2100
TTCTCCATAA	CTGATGATAC	TTGCTCTGCG	ATATATACAT	TTAAGTTAGG	ATCTATACCA	2160
TTCATAATCG	TCTCAACCAT	CTCTGACTGT	GCAAAAGGGA	TTATATGACA	AGTTTTATGA	2220
TGATTTATCA	CACTTTCATT	AATAACTTTC	CAAATTAATC	GTTTAGAAAA	AATTCCATAT	2280
AATTCAATTT	GTCTTATAGA	TGGAAATATC	TCGTCTGTAC	CATAACCTGC	TATAACTAAT	2340
CCAGTTATGT	TTGTTGAGTC	ATATCCAATG	AAAATCGCTT	TATATAAAGA	TTTAGCAATA	2400
ACTTCAACCT	CATCATCAGT	ATGAGGAAAG	GATTTAAAAA	CATCGTCTAC	AATGCTTTTT	2460
ATTAACTCTA	ACTCAGCTTC	AAAAAATTCA	AAATTACTTT	CAGCTTCTAC	TTTTGAAATT	2520
TCTAAACTAA	AATTAGTTAT	AGCATTTAAT	AAAATTTTAT	TAAAATCATC	TAGAGTGATG	2580
GTTTCACCAT	TAGAAACTCT	TAAATCAGCT	GTTTCTTGCG	CTTCATAGGC	AATGCTGTCC	2640
AAAATACTTC	TTGTACTTCT	GACAATATAA	TTTCTTAATA	AATCCTCAAC	TTGTAGATGT	2700
TTAAAGGAAA	TTAAAAATTC	TATTAGCTTT	TCAACGTATT	GGGCAGTATT	ATCTAATAAA	2760
TCTGTGCCAA	TAGCCTGCTT	AAACTCATTT	AAAATTACCT	CCCACGGAAT	TTCCATAAAC	2820
GAAGCGTTCC	CATATATCAT	GATCCCCACG	GAATGTTCTT	TTGATAAAGT	GAATAATTTT	2880
CGGGCGCTAT	TAAAAACTTT	TGAATTTTTC	CCGTCTGATA	AGGTTACAGC	GCTATCAGAA	2940
GCCAATACAA	CACCATTTTT	ATTTAATATT	CCAATTTCTG	CTGTCAAAAT	ATCACCTAAA	3000
CTTTCTAAAC	CTGCTCATGC	TCTAATGGTA	CAACAGCTAA	GGTCTTACCA	AGACTTGCCA	3060
ACACTTTTAA	TACTGTATCA	AGTTGTGGGC	TIGTCTTTCC	TGTTTCCATT	CTAGCGATAA	3120
CTGGCTGACT	AACACCGCTC	ATCTCCTCTA	GTTTCTTCTG	ACTAATACCC	TTTTCATTTC	3180

TAGCCTCGAT	AAGCTCACTC	ATGATAGCCA	CGCGCATATC	ACTTTCCAAA	ATTTCCTCTT	3240
TGCTGAATAA	TTCAGCTCTT	ACATCTTTCC	AGTTACTACC	AATAGCATTA	TTTTTCATTG	3300
TCTAAACCTC	TTTCTTTTAA	ATCTGCAAGT	TCACGTTTAG	CTTGCTCAAT	CTCTCTTTTG	3360
GGTGTTTTCT	GTGTCCTTTT	CATAAAATGA	TGCAGTAAAA	CAAAACTACC	ATCCATCCAA	3420
GCAACAAATA	AAATTCTATC	TCTAAGTGGT	CTCAGCTCCC	AAATTTCAGC	ATCTAAATGC	3480
TTAATATATG	GTTCGCCTGC	GCGTGTTCCA	TGTTGGCTTA	ACAACTCAAT	ATAATCATTA	3540
ATTTTATTAA	GCTTAATTCT	GCTATCTTTC	CCTTTTTTAC	TGGTAAGCTC	TCGCATATAA	3600
TCAAAAACAG	GCTCATTGCC	GTTTTTATCC	TTGTAAAAAT	AGATATTATG	CACTATTAAC	3660
ACCTCTTCCT	AATAACAATT	АТААССТААА	AGTTATTGTT	TGTAAATACT	TTTAAGTTAT	3720
TAAAATAAAA	AGCACCTAGT	TTCCTAGATG	CTAGCACAAT	GACACGGATT	CGCACCGTGG	3780
CTACCTCTAT	CAAGGTGTAC	TCCTTCTATA	CTATCCCTTG	TCCTTTAGAA	TATTATACCA	3840
CACAATCAAC	TAGATACCTA	CCATCTCATG	ATATACCCCC	ATTTTGGGCA	AGGGTACAAC	3900
GCTAAAATAC	AAATCAGAAT	AGATATTAAA	CCACTTATTT	AACTTATCAT	AAGCTGGTGA	3960
TTGACTGATA	AATAATATCC	GCTGACAAGC	TCCGATAACA	TTCATGTGAT	TGTACACATA	4020
AACCTCTTTT	ACAGCCTCTA	AAATGTCAGC	CTCACTTGTT	TGTACCCTAA	TATCTGTTAT	4080
CTGCTTGATA	GTTGCGTATT	TTTGATAAGC	TAGCATATCT	TGATTTTTAG	CAGCATCAAA	4140
CATTTTACGC	TCAAGGACAC	TATACTTAGG	TTGTTCTTTA	TCTCGCATGA	AATACCACTT	4200
GAGCCATAAA	ATCTTTTCTC	GGTGTATTAC	AGAAATACGC	TCAATTTTCT	TCTTTGTCAT	4250
TGCTACCTCC	TAAATCATCA	ATTTAACAAT	TCTAACCACT	CACTTTTAGA	AATAGTTGCA	4320
TAGATCTTGT	TCGATGTATG	ATACAAAGGT	TCTAAATCTT	TTTCCACCCT	AATATAGTTC	4380
ATCTTATCCT	CATGAGTAGG	AAAGTATAGT	ATTTCCCTTT	CATCCTCGTT	TAGGATACGA	4440
TTGCACCAAT	CATCAATAAT	AACTGGCACT	TCCCACTCAC	GCCATTTTTT	AAGGTTTTCT	4500
AAAAGTTCAT	TATCACTAAA	TAGCTCGCCA	TCTATTTGGA	AAAATTCCCC	TAAGTCATTG	4560
TTTCCTTCAA	CAATAATAAA	CTCTGGCATA	TTTCTATTAC	TTAATAACTC	CTTGAGTTCT	4620
TGTAACTCTT	TGATTTCCTT	TAGATACTTC	CTCAATTTCC	AACCTCAATT	CTTCAATCTG	4680
CCTTACTACT	CCAAAAATTT	CATGGGTCTT	ATAAGATTGT	TCAAGTATAG	CCTTTGCTGC	4740
TTGAGTTCTT	ATAAACGGGT	TGACCTTACT	GTCCATCATA	ATATCATTGA	GTACAGAAAC	4800
AGCGTTAGAT	GATGCTAAAT	AAAGCATTTG	AGTTGTTTTA	TCCATCATCT	CATCTTGCTT	4860
TATCCTCAAT	GTCTTTTTAA	CCGCTGCAAC	TTTTAGATAC	TTATGACCTG	TTGCGCGTGA	4920

			312			
TACCCCTGCT	TTTTGACATG	CTTTGTCTAT		GTAAGCATGG	CATCTATGAA	4980
TTTAATTTGC	TTGGACGTAA	GGTTATCATT	TTCATTTCCT	GCCATCTATT	ACCTCCTCAT	5040
татсаааата	AAGGGTTGCC	CCTTTATTTC	CCTATGCTAG	ATAATTCTGC	AATTCTGCAT	5100
CCATTGCCTC	TGAATTGCCC	TCAACAATCA	TTTCATGCTG	TACTAAATCA	ATCTTATCTC	5160
CGTTAATAAG	TAAACCACCG	TGGAAATAAT	CAATTTTTCT	ATCA'AGGAAA	TGTACTAGCT	5220
TTTCAAGGCG	TTGCTGTTGG	CTGAATTGCT	CCATGTCAAT	TTCGATATAA	GCAAGGGTAG	5280
TATCATTATC	CATAATATCT	TCTAATTTTC	TAAGAGCTAG	AGGTTTATTT	TTATATTTT	5340
CTAGGTATTC	TCTCATTTCT	GCCACTGTTA	ATTTGATACT	AGATAATAAA	CTTAGTTCAG	5400
CTGCATCATC	TGCTGTAATA	GGCTCTTCTT	TTGATTCATG	GTTTGCTAGT	TCAGCATTTT	5460
TCTCTTTTTC	TAGTTGCTGA	TACAATAGCT	GAGCAGTATT	TTGGGAATAG	TTTTCGCCCT	5520
СТТТТТТАТА	TTTTAAAAGT	TCTTGCTCTG	CATACACTTT	CCCGATAATC	ACTTCCTTAT	5580
AAACTAATTG	CCCATCTTGA	GCTTTTAGCT	TAATACTCCC	ATGCTCTGGA	ATTTCAATAT	5640
ACTTAATTAT	ACCATTTTT	GAGTATAAAA	CAAAGCCTTT	CTCCATCATT	TTTAATAATT	5700
TATCATCCTT	GTTTTCAGTC	ATGCTTTTCT	CCTTTATTTC	ATTTTATTAT	AATCTGAATA	5760
CCCCTAGTCT	ATTTATTTCA	CTAGGTTTTT	AGGGTTCGTA	TGCTAAAATA	CTACCCTTTT	5820
TGTGTACCTT	ATGGCTGACT	TTTCAAATTG	GTTAGTT			5857
(2) INFORM	ATTON FOR S	EO ID NO: 2	9:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10254 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

AAAATGATAG CAGGAGAGT	T TTCCCGTCCA	TCAGACCCAG	AACTGAGAGC	CTTAGCTCAG	60
GCTTCTCGCC AAAAACAGG	C CGCCTTTAAC	AAGGAAGAGA	ACCCCTTGAA	GGGAGCCGAA	120
ATCATCAAGA CTTGGTTTG	C CTCAACCGGG	AAAAATCTTT	ACATCAACAC	TCGCTTGATG	180
GTGGACTACG GTGTCAACA	T CCATCTAGGG	GAAAATTTTT	ATTCTAATTG	GAACTTGACC	240
ATGCTGGATA TCTGTCCCA	T TCGTATCGGG	GACAATGCTA	TGATTGGTCC	TAATTGTCAG	300
TTTTTGACAC CCCTCCATC	C ACTAGATCCA	CAGGAACGCA	ATTCAGGTAT	CGAGTACGGA	360
AAGCCTATCA CAATCGGAG	A TAATTTCTGG	ACTGGTGGTG	GCGTCATTGT	CCTTCCTGGA	420
GTGACACTGG GAAATAATG	T CGTTGCAGGA	GCAGGGGCAG	TAATTACCAA	ATCTTTTGGC	480

GACAACGTTG	TCCTAGCTGG	CAATCCTGCG	CGCGTGATTA	AGGAAATACC	TGTTAAATAG	540
AAGTAAAAAG	GAACAGCTGG	GGTTGTTTCT	TTTTTGTAGG	TTTCATCATT	TTTTACCCAG	600
TTCACATTTA	CCTACTCTAT	CTCTTAGCAA	GTCTGTTTCA	TTAAGCAAGT	TCAAAGCATC	660
TCGTAAGTGG	GATGTTTTTC	TCCTCAGTTC	ATCAGCTTCC	TCCTTGACAC	TCGGTCAGAT	720
TTTGATACAA	TAGTACAAAA	TTAGAGGAGG	CAGGCTATGA	TTCAGAAACA	TGCGATTCCT	780
ATTTTAGAGT	TTGATGACAA	TCCTCAGGCG	GTTATCATGC	CCAATCACGA	GGGGCTGGAC	840
TTGCAGTTGC	CAAAGAAGTG	TGTTTATGCA	TTTTTAGGTG	AGGAGATTGA	CCGCTATGCG	900
AGGGAAGTAG	GGGCGAACTG	TGTTGGCGAA	TTTGTTTCTG	CCACCAAGAC	CTATCCAGTT	960
TATGTCGTGA	ACTACAAGGA	CGAGGAGGTC	TGTCTGGCTC	AGGCTCCTGT	TGGCTCCGCT	1020
CCAGCAGCCC	AGTTTATGGA	TTGGTTGATT	GGCTATGGTG	TGGAGCAGAT	TATCTCTACT	1080
GGGACCTGTG	GTGTCCTAGC	TGATATAGAG	GAAAATGCCT	TTCTAGTCCC	TGTTCGCGCT	1140
CTGCGAGATG	AAGGAGCCAG	TTACCACTAT	GTGGCACCTT	GTCGTTATAT	GGAAATGCAG	1200
CCAGAGGCTA	TTGCTGCTAT	TGAGGAAGTT	TTGGAAGACA	GAGGGATTCC	TTATGAAGAA	1260
GTCATGACCT	GGACGACAGA	CGGTTTTTAC	CGAGAAACGG	CTGAAAAGGT	GGCTTATCGT	1320
AAGGAAGAAG	GCTGTGCTGT	TGTGGAGATG	GAGTGTTCTG	CTCTTGCGGC	AGTAGCTCAA	1380
TTGCGTGGGG	TTCTCTGGGG	TGAATTGTTG	TTCACAGCAG	ATTCTCTAGC	GGACTTGGAC	1440
CAGTACGACA	GTCGTGACTG	GGGCTCGGAA	GCTTTTAATA	AGGCGCTAGA	ACTGAGTTTA	1500
GCAAGTGTTC	ACCACCTTTA	GTTGTACTGG	CAAAGGATTT	GTTTTATCAT	AAAATGTCTA	1560
GCTCATACTT	TTCAAAAATA	TGTTTAAACG	AGGTCACCTT	CCTCTTGTCC	TAGGCATGTT	1620
GAGGTTGGGA	AAAATCTTTA	AAATCAGAAA	AACGTATCAT	ATCAGGTGAT	GAAAACTTTG	1680
ACACTATGCG	TTTTATGTCG	ATAAGATTTA	GAGTGAGATG	AAATGATACT	CTTCGAAAAT	1740
CTCTTCAAAC	CAGGTCAGCT	TCACCTTGCC	GTAGGTATAT	GTTACTGACT	TCGTCAGTCT	1800
TATCCGGCAA	CCTCAAAACG	GTGTTTTGAG	CTGACTTCGT	CAGTTCTATT	TGCAACCTCA	1860
AAACAGTGTT	TTGAGCAACC	TGTGACTAGC	TTTCTAATCG	ATGCCTTGGT	TTTCATTGCC	1920
TATAATCAAA	AAGAGAAATT	TTCTCCTGAA	AAGCATATAG	AGTAGCTGGC	GTTAAAAGCT	1980
CCTGTCTTGC	TTTTTTGACC	TATAGTCACA	TCTATCAAGT	ATTGTTCTTG	CCTAAGCTAT	2040
CAATAAAAAG	GTGGCATTTT	TTAGGCTTGG	TGTTAGTAGA	TTTTGCCTTA	TCCTATCTAA	2100
GTCATTTCGA	ACTTTTTATG	GTACAATGGA	AACATGTTAT	TCAAATTATC	TAAGGAAAAA	2160
ATAGAGCTAG	GCTTATCTCG	TTTATCGCCA	GCCCGTCGTA	TTTTTTTGAG	TTTTGCCTTG	2220

GTCATTTTAC	TAGGCTCTCT	TCTTTTGAGC	TTGCCCTTTG	TCCAAGTTGA	AAGCTCACGA	2280
GCGACTTATT	TTGATCATCT	TTTCACTGCT	GTCTCTGCAG	TCTGTGTGAC	GGGTCTCTCA	2340
ACCCTTCCAG	TAGCTCACAC	CTATAATATC	TGGGGTCAAA	TAATCTGTTT	GCTCTTGATT	2400
CAGATCGGTG	GTCTAGGGCT	CATGACCTTT	ATTGGGGTTT	TCTATATCCA	GAGCAAGCAA	2460
AAGCTTAGTC	TTCGTAGCCG	TGCAACTATT	CAGGATAGTT	TTAGTTATGG	AGAAACTCGA	2520
TCTTTGAGAA	AGTTTGTCTA	TTCTATTTT	CTCACGACCT	TTTTGGTTGA	GAGCTTGGGA	2580
GCTATTTTGC	TTAGTTTTCG	CCTTATTCCT	CAACTTGGCT	GGGGACGTGG	TCTTTTTAGT	2640
TCCATTTTTC	TAGCGATCTC	AGCCTTCTGT	AATGCCGGTT	TTGATAATTT	AGGGAGCACC	2700
AGTTTATTTG	CTTTTCAGAC	CGATTTACTG	GTCAATCTGG	TGATTGCAGG	CTTGATTATT	2760
ACAGGCGGCC	TTGGTTTTAT	GGTCTGGTTT	GATTTGGCTG	GTCATGTAGG	AAGAAAGAAA	2820
AAAGGACGTC	TGCACTTTCA	TACGAAGCTT	GTACTATTAT	TGACTATAGG	TTTGTTGTTA	2880
TTTGGAACAG	CAACTACTCT	CTTTCTTGAG	TGGAACAATG	CTGGAACGAT	TGGCAATCTC	2940
CCTGTTGCCG	ATAAGGTTTT	AGTTAGCTTT	TTTCAAACAG	TGACGATGCG	AACAGCTGGC	3000
TTTTCTACGA	TAGATTATAC	TCAGGCTCAT	CCTGTGACTC	TTTTGATTTA	TATCTTACAG	3060
ATGTTTCTAG	GTGGGGCACC	TGGAGGAACA	GCTGGGGGAC	TCAAGATTAC	GACATTTTT	3120
GTCCTCTTGG	TCTTTGCACG	AAGTGAGCTT	CTAGGCTTGC	CTCATGCCAA	TGTTGCGAGA	3180
CGAACGATCG	CGCCGCGAAC	GGTTCAAAAA	TCCTTTAGTG	TCTTTATTAT	CTTTTTGATG	3240
AGCTTCTTGA	TAGGATTGAT	TCTGCTAGGG	ATAACAGCCA	AAGGCAATCC	TCCCTTTATC	3300
CACCTCGTAT	TTGAAACCAT	TTCAGCTCTT	AGTACAGTTG	GTGTAACGGC	AAATCTGACT	3360
CCTGACCTTG	GGAAATTGGC	TCTCAGTGTT	ATCATGCCAC	TTATGTTTAT	GGGACGAATT	3420
GGTCCCTTGA	CCTTGTTTGT	TAGCTTGGCA	GATTACCATC	CAGAAAAGAA	AGATATGATT	3480
CACTATATGA	AAGCAGATAT	TAGTATTGGT	TAAGAAAGGA	AAGAGCATGT	CAGATCGTAC	3540
GATTGGAATT	TTGGGCTTGG	GAATTTTTGG	GAGCAGTGTC	CTAGCTGCCC	TAGCCAAGCA	3600
GGATATGAAT	ATTATCGCTA	TTGATGACCA	CGCAGAGCGC	ATCAATCAGT	TTGAGCCAGT	3660
TTTGGCGCGT	GGAGTGATTG	GTGACATCAC	AGATGAAGAA	TTATTGAGAT	CAGCAGGGAT	3720
TGATACCTGC	GATACCGTTG	TAGTCGCGAC	AGGTGAAAAT	CTGGAGTCGA	GTCTGCTTGC	3780
GGTTATGCAC	TGTAAGAGTT	TGGGGGTACC	GACTGTTATT	GCTAAGGTCA	AAAGTCAGAC	3840
CGCTAAGAAA	GTGCTAGAAA	AGATTGGAGC	TGACTCGGTT	ATCTCGCCAG	AGTATGAAAT	3900
GGGGCAGTCT	CTAGCACAGA	CCATTCTTTT	CCATAATAGT	GTTGATGTCT	TTCAGTTGGA	3960
TAAAAATGTG	TCTATCGTGG	AGATGAAAAT	TCCTCAGTCT	TGGGCAGGTC	AAAGTCTGAG	4020

TAAATTAGAC	CTCCGTGGCA	AATACAATCT	GAATATTTTG	GGTTTCCGAG	AGCAGGAAAA	4086
TTCCCCATTC	GATGTTGAAT	TTGGACCAGA	TGACCTCTTG	AAAGCAGATA	CCTATATTTT	4140
GGCAGTCATC	AACAACCAGT	ATTTGGATAC	CCTAGTAGCA	TTGAATTCGT	AAAGAGGGAT	4200
GACCCCTCTT	TTTTGATGCC	TAAGATGGCA	AATAGAGACA	GAAGCCCCTT	GTCTTCTAGT	4260
AAAAGTTCTT	CAAAGGCTGG	ACTTTATGGT	AAAATAGAAA	GAAGTGACAA	GAGAGAGTAA	4320
TACTCAATGA	AAATCAAAGA	TCAAACTAGG	AAACTAGCTA	CGGGCTGCTC	AAAACACTGT	4380
TTTGAGGTTG	CAGATAGAAC	TGACGAAGTC	AGTAACATCT	ATACGGCAAG	GCGACGTTGA	4440
CGCGGTTTGA	AGAGATTTTC	GAAGAGTATA	AGAAAAAATC	AGTCCCCTAA	AGGAGTAGAT	4500
TATGAAGTTA	TTGTCTATCG	CAATTTCTAG	CTATAATGCA	GCAGCCTATC	TTCATTACTG	4560
TGTGGAGTCG	CTAGTGATTG	GTGGTGAGCA	AGTTGGGATT	TTGATTATCA	ATGACGGGTC	4620
TCAGGATCAG	ACTCAGGAAA	TCGCTGAGTG	TTTAGCTAGC	AAGTATCCTA	ATATCGTTAG	4680
AGCCATCTAT	CAGGAAAATA	AATGCCATGG	CGGTGCGGTC	AATCGTGGCT	TGGTAGAGGC	4740
TTCTGGGCGC	TATTTTAAAG	TAGTTGACAG	TGATGACTGG	GTGGATCCTC	GTGCCTACTT	4800
GAAAATTCTT	GAAACCTTGC	AGGAACTTGA	GAGCAAAGGT	CAAGAGGTGG	ATGTCTTTGT	4860
GACCAATTTT	GTCTATGAAA	AGGAAGGGCA	GTCTCGTAAG	AAGAGTATGA	GTTACGATTC	4920
AGTCTTGCCT	GTTCGGCAGA	TTTTTGGCTG	GGACCAGGTC	GGAAATTTCT	CCAAAGGCCA	4980
STATACCATG	ATGCACTCGC	TGATTTATCG	GACAGATTTG	TTGCGTGCTA	GCCAGTTCTA	5040
ACTGCCTGAA	CATACTTTTT	ATGTCGATAA	TCTCTTTGTC	TTTACGCCCC	TTCAGCAGGT	5100
CAAGACCATG	TACTATCTGC	CTGTCGATTT	CTATCGTTAT	TTGATTGGGC	GTGAGGACCA	5160
STCTGTCAAT	GAGCAAGTGA	TGATTAAGTG	CATTGACCAG	CAACTCAAGG	TCAATCGACT	5220
CTTGATAGAC	CAACTTGATT	TGTCCCAAGT	GAGTCATCCC	AAAATGCGAG	AATATCTGCT	5280
GAATCATATT	GAACTCACGA	CGGTGATTTC	CAGTACCCTG	CTCAACCGAT	CTGGAACAGC	5340
GAGCATCTG	GCAAAAAAAC	GCCAATTGTG	GACCTATATT	CAGCAGAAAA	ATCCAGAAGT	5400
TTTCAGGCT	ATTCGTAAGA	CCATGTTGAG	CCGTTTGACC	AAACATTCTG	TCTTGCCAGA	5460
CGCAAACTG	TCCAATGTCG	TCTATCAAAT	CACCAAATCT	GTTTATGGAT	TTAATTAATA	5520
AAGTGTTTT	ATAAGAGGGA	TTTAAGAAAA	ATTTTAACTT	TTTCTTAGTC	CTTTTTAATT	5580
CAGGAGATT	ATACTAGAGT	CATCAAATAA	AGAAAGACTC	TAAGGAGAAT	CCTATGAAAT	5640
CAATCCAAA	TCAAAGATAT	ACTCGTTGGT	CTATTCGCCG	TCTCAGTGTC	GGTGTTGCCT	5700
AGTTGTTGT	GGCTAGTGGC	TTCTTTGTCC	TAGTTGGTCA	GCCAAGTTCT	GTACGTGCCG	5760

316 ATGGGCTCAA TCCAACCCCA GGTCAAGTCT TACCTGAAGA GACATCGGGA ACGAAAGAGG 5820 GTGACTTATC AGAAAACCA GGAGACACCG TTCTCACTCA AGCGAAACCT GAGGGCGTTA 5880 CTGGAAATAC GAATTCACTT CCGACACCTA CAGAAAGAAC TGAAGTGAGC GAGGAAACAA 5940 GCCCTTCTAG TCTGGATACA CTTTTTGAAA AAGATGAAGA AGCTCAAAAA AATCCAGAGC 6000 TAACAGATGT CTTAAAAGAA ACTGTAGATA CAGCTGATGT GGATGGGACA CAAGCAAGTC 6060 CAGCAGAAAC TACTCCTGAA CAAGTAAAAG GTGGAGTGAA AGAAAATACA AAAGACAGCA 6120 TCGATGTTCC TGCTGCTTAT CTTGAAAAAG CTGAAGGGAA AGGTCCTTTC ACTGCCGGTG 6180 TAAACCAAGT AATTCCTTAT GAACTATTCG CTGGTGATGG TATGTTAACT CGTCTATTAC 6240 TAAAAGCTTC GGATAATGCT CCTTGGTCTG ACAATGGTAC TGCTAAAAAT CCTGCTTTAC 6300 CTCCTCTTGA AGGATTAACA AAAGGGAAAT ACTTCTATGA AGTAGACTTA AATGGCAATA 6360 CTGTTGGTAA ACAAGGTCAA GCTTTAATTG ATCAACTTCG CGCTAATGGT ACTCAAACTT 6420 ATAAAGCTAC TGTTAAAGTT TACGGAAATA AAGACGGTAA AGCTGACTTG ACTAATCTAG 6480 TTGCTACTAA AAATGTAGAC ATCAACATCA ATGGATTAGT TGCTAAAGAA ACAGTTCAAA 6540 AAGCCGTTGC AGACAACGTT AAAGACAGTA TCGATGTTCC AGCAGCCTAC CTAGAAAAAG 6600 CCAAGGGTGA AGGTCCATTC ACAGCAGGTG TCAACCATGT GATTCCATAC GAACTCTTCG 6660 CAGGTGATGG CATGTTGACT CGTCTCTTGC TCAAGGCATC TGACAAGGCA CCATGGTCAG 6720 ATAACGGCGA CGCTAAAAAC CCAGCCCTAT CTCCACTAGG CGAAAACGTG AAGACCAAAG 6780 GTCAATACTT CTATCAAGTA GCCTTGGACG GAAATGTAGC TGGCAAAGAA AAACAAGCGC 6840 TCATTGACCA GTTCCGAGCA AAYGGTACTC AAACTTACAG CGCTACAGTC AATGTCTATG 6900 GTAACAAAGA CGGTAAACCA GACTTGGACA ACATCGTAGC AACTAAAAAA GTCACTATTA 6960 ACATAAACGG TTTAATTTCT AAAGAAACAG TTCAAAAAGC CGTTGCAGAC AACGTTAAAG 7020 ACAGTATCGA TGTTCCAGCA GCCTACCTAG AAAAAGCCAA GGGTGAAGGT CCATTCACAG 7080 CAGGTGTCAA CCATGTGATT CCATACGAAC TCTTCGCAGG TGATGGTATG TTGACTCGTC 7140 TCTTGCTCAA GGCATCTGAC AAGGCACCAT GGTCAGATAA CGGTGACGCT AAAAACCCAG 7200 CCCTATCTCC ACTAGGTGAA AACGTGAAGA CCAAAGGTCA ATACTTCTAT CAATTAGCCT 7260 TGGACGGAAA TGTAGCTGGC AAAGAAAAAC AAGCGCTCAT TGACCAGTTC CGAGCAAACG 7320 GTACTCAAAC TTACAGCGCT ACAGTCAATG TCTATGGTAA CAAAGACGGT AAACCAGACT 7380 TGGACAACAT CGTAGCAACT AAAAAAGTCA CTATTAACAT AAACGGTTTA ATTTCTAAAG 7440 AAACAGTTCA AAAAGCCGTT GCAGACAACG TTAAGGACAG TATCGATGTT CCAGCAGCCT 7500 ACCTAGAAAA GGCCAAGGGT GAAGGTCCAT TCACAGCAGG TGTCAACCAT GTGATTCCAT 7560

ACGAACTCTT CGCAGGTGAT	GGCATGTTGA	CTCGTCTCTT	GCTCAAGGCA	TCTGACAAGG	7620
CACCATGGTC AGATAACGGC	GACGCTAAAA	ACCCAGCTCT	ATCTCCACTA	GGTGAAAACG	7680
TGAAGACCAA AGGTCAATAC	TTCTATCAAG	TAGCCTTGGA	CGGAAATGTA	GCTGGCAAAG	7740
AAAAACAAGC GCTCATTGAC	CAGTTCCGAG	CAAACGGTAC	TCAAACTTAC	AGCGCTACAG	7800
TCAATGTCTA TGGTAACAAA	GACGGTAAAC	CAGACTTGGA	CAACATCGTA	GCAACTAAAA	7860
AAGTCACTAT TAAGATAAAT	GTTAAAGAAA	CATCAGACAC	AGCAAATGGT	TCATTATCAC	7920
CTTCTAACTC TGGTTCTGGC	GTGACTCCGA	TGAATCACAA	TCATGCTACA	GGTACTACAG	7980
ATAGCATGCC TGCTGACACC	ATGACAAGTT	CTACCAACAC	GATGGCAGGT	GAAAACATGG	8040
CTGCTTCTGC TAACAAGATG	TCTGATACGA	TGATGTCAGA	GGATAAAGCT	ATGCTACCAA	8100
ATACTGGTGA GACTCAAACA	TCAATGGCAA	GTATTGGTTT	CCTTGGGCTT	GCGCTTGCAG	8160
GTTTACTCGG TGGTCTAGGT	TTGAAAAACA	AAAAAGAAGA	AAACTAATCA	GCTAAGGAAA	8220
TAAATGATGG ATAGTGGGCT	GACTAAGATT	AGTTTAACAA	CTCAATCAGC	AATCAGGACT	8290
TTCTTTCAAT AGCAGATTAA	AATCATCGTA	AAACAATAAA	AATAGTGTTA	TACTTAAAGC	8340
AGTATAGCAC TGTTTTATO	AAAGGAGAGA	CAGATGGGAA	AGACAATTTT	ACTCGTTGAC	8400
GACGAGGTAG AAATCACAGA	TATTCATCAG	AGATACTTAA	TTCAGGCAGG	TTATCAGGTC	8460
TTGGTAGCCC ATGATGGACT	GGAAGCGCTA	GAGCTGTTCA	AGAAAAAACC	GATTGATTTG	8520
ATTATCACAG ATGTCATGAT	GCCTCGGATG	GATGGTTATG	ATTTAATCAG	TGAGGTTCAA	8580
TACTTATCAC CAGAGCAGCO	TTTCCTATTT	ATTACTGCTA	AGACCAGTGA	ACAGGACAAG	8640
ATTTACGGCC TGAGCTTGGC	AGCAGATGAT	TTTATTGCTA	AGCCTTTTAG	CCCACGTGAG	8700
CTGGTTTTGC GTGTCCACA	TATTTTGCGC	CGCCTTCATC	GTGGGGGCGA	AACAGAGCTG	8760
ATTTCCCTTG GCAATCTAA	AATGAATCAT	AGTAGTCATG	AAGTTCAAAT	AGGAGAAGAA	8820
ATGCTGGATT TAACTGTTA	ATCATTTGAA	. TTGCTGTGGA	TTTTAGCTAG	TAATCCAGAG	8880
CGAGTTTTCT CCAAGACAGA	A CCTCTATGAA	AAGATCTGGA	AAGAAGACTA	CGTGGATGAC	8940
ACCAATACCT TGAATGTGC	A TATCCATGCT	CTTCGACAGG	AGCTGGCAAA	ATATAGTAGT	9000
GACCAAACTC CCACTATTA	A GACAGTTTGO	GGGTTGGGAT	ATAAGATAGA	GAAACCGAGA	9060
GGACAAACAT GAAACTAAA	A AGTTATATT	TGGTTGGATA	TATTATTTCA	ACCCTCTTAA	9120
CCATTTTGGT TGTTTTTTG	G GCTGTTCAAA	AAATGCTGAT	TGCGAAAGGC	GAGATTTACT	9180
TTTTGCTTGG GATGACCAT	GTTGCCAGC	: TTGTCGGTGC	TGGGATTAGT	CTCTTTCTCC	9240
TATTGCCAGT CTTTACGTC	G TTGGGCAAAC	TCAAGGAGCA	TGCCAAGCGC	GTAGCGGCCA	9300

			318			
AGGATTTTCC	TTCAAATTTG	GAGGTTCAAG		ATTTCAGCAA	TTAGGGCAAA	9360
CTTTTAATGA	GATGTCCCAT	GATTTGCAGG	TAAGCTTTGA	TTCCTTGGAA	GAAAGCGAAC	9420
GAGAAAAGGG	CTTGATGATT	GCCCAGTTGT	CGCATGATAT	TAAGACTCCT	ATCACTTCGA	9480
TCCAAGCGAC	GGTAGAAGGG	ATTTTGGATG	GGATTATCAA	GGAGTCGGAG	CAAGCTCATT	9540
ATCTAGCAAC	CATTGGACGC	CAGACGGAGA	GGCTCAATAA	ACTGGTTGAG	GAGTTGAATT	9600
TTTTGACCCT	AAACACAGCT	AGAAATCAGG	TGGAAACTAC	CAGTAAAGAC	AGTATTTTTC	9660
TGGACAAGCT	CTTAATTGAG	TGCATGAGTG	AATTTCAGTT	TTTGATTGAG	CAGGAGAGAA	9720
GAGATGTCCA	CTTGCAGGTA	ATCCCAGAGT	CTGCCCGGAT	TGAGGGAGAT	TATGCTAAGC	9780
TTTCTCGTAT	CTTGGTGAAT	CTGGTCGATA	ACGCTTTTAA	ATATTCTGCT	CCAGGAACCA	9840
AGCTGGAAGT	GGTGGCTAAG	CTGGAGAAGG	ACCAGCTTTC	AATCAGTGTG	ACCGATGAAG	9900
GGCAGGGTAT	TGCCCCAGAG	GATTTGGAAA	ATATTTTCAA	ACGCCTTTAT	CGTGTCGAAA	9960
CTTCGCGTAA	CATGAAGACA	GGTGGTCATG	GATTAGGACT	TGCGATTGCG	CGTGAATTGG	10020
CCCATCAATT	GGGTGGGGAA	ATCACAGTCA	GCAGCCAGTA	CGGTCTAGGA	AGTACCTTTA	10080
CCCTCGTTCT	CAACCTCTCT	GGTAGTGAAA	ATAAAGCCTA	AAACCCCTTT	ACAAATCCAG	10140
CTATTCATGG	TAGAATAGAT	TTTGTGTGAA	ATATCAGCAG	GAAAGCATGA	AGCTCGTCAA	10200
CAGGTGTCTT	ATGACAAGTA	ACCTTGGCTG	TTTAGGCGAA	GGGCATCTGC	ACGG	10254

(2) INFORMATION FOR SEQ ID NO: 30:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9769 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

CTTGGT AGCCCCACAT TTTGGACAAC GCATCC	TTTC 60
ATACCA TTTTTTAAGC GATTCCCAAA ACAAT1	rctrc 120
PTGTTG TATTATTAA TTAAGACAAC AAGGTA	AAAA G 180
ATTTGA CAACAAAAAA CCCATCTATT TACAGA	ATTAT 240
TTCCCA TACACTGGAA CCCAATCAAC AACTTG	CCAAC 300
GGTGTC AATCCCAATA CCATCCAAAG AGCCT	TATCA 360
TACAGC AAGCGAACAA CTGGACGATT TGTGAG	CTAAG 420
CGCAAA CAATTATCAG AAGAAGAATT GGAACA	ACTTC 480

GTTTCCTCCA	TGACCCATTT	TGGCTATGAA	AAAGAAGAAC	TACCAGGCGT	AGTCAGTGAT	540
TATATTAAAG	GAGTTTAAGC	CTATGTCATT	ACTAGTATTT	GAAAATGTAT	CCAAATCATA	600
TGGAGCAACA	CCAGCCCTTG	AAAATGTTTC	TCTTGACATT	CCAGCTGGAA	AAATTGTCGG	660
CCTTCTTGGG	CCAAACGGCT	CAGGAAAAAC	AACCCTGATT	AAACTAATTA	ATGGCCTCTT	720
ACAACCAGAT	CAAGGACGTG	TCCTCATCAA	CGACATGGAC	CCAAGCCCAG	CAACCAAGGC	780
CGTTGTAGCT	TATTTGCCTG	ATACGACCTA	TCTCAATGAG	CAAATGAAGG	TCAAAGAAGC	840
CCTAACCTAC	TTCAAGACCT	TCTATAAAGA	TTGTCAGATC	TTGAACGCGC	CCATCATCTA	900
CTTGCAGACC	TGGGCATTGA	TGAAAATAGT	CGTCTCAAGA	AACTATCAAA	AGGAAACAAA	960
GAAAAGGTTC	AACTGATTTT	GGTTATGAGC	CGTGATGCTC	GTCTCTATGT	TTTGGACGAA	-1020
CCCATTGGTG	GGGTGGATCC	AGCAGCCCGT	GCTTATATCC	TCAATACCAT	TATCAACAAC	1080
TACTCACCAA	CTTCTACCGT	TTTGATTTCT	ACCCACTTGA	TTTCTGATAT	CGAGCCAATC	1140
TTGGATGAAA	TTGTCTTCCT	AAAAGACGGA	AAAGTCGTCC	GTCAAGGAAA	TGTAGATGAT	1200
ATTCGCTACG	AGTCAGGTGA	ATCCATTGAC	CAACTCTTCC	GTCAGAATTT	AAGGCCTAAG	1260
CAAAGGAGAT	TATTTATGTT	TTGGAATTTA	GTTCGCTACG	AAAAATTTAAAA	TGTTAACAAG	1320
TGGTATTTAG	CCCTCTACGC	AGCCGTGCTA	GTCCTTTCTG	CCCTCATCGG	AATACAGACA	1380
CAAGGCTTTA	AAAATCTACC	TTACCAAGAA	AGTCAGGCTA	CTATGCTACT	TTTTCTAGCT	1440
ACAGTCTTTG	GTGGCTTGAT	GCTTACACTT	GGGATTTCAA	CCATTTTCTT	GATTATTAAA	1500
CGCTTCAAAG	GTAGTGTCTA	CGACCGACAA	GGCTATCTGA	CTTTGACCTT	GCCAGTTTCT	1560
GAACACCATA	TCATCACAGC	CAAACTAATC	GGTGCCTTTA	TCTGGTCATT	GATTAGCACC	1620
GCTGTATTGG	CTCTAAGTGC	TGTTATTATT	CTSGCTTTAN	CAGCTCCAGA	ATGGATTCCT	1680
CTTTCTTATG	TGATTACATT	TGTAGAAACA	CATCTCCCTC	AGATCTTTCT	TACAGGTATA	1740
TCCTTCCTAC	TAAATACTAT	TTCAGGAATC	CTCTGCATCT	ACCTGGCTAT	TTCCATTGGA	1800
CAGCTTTTCA	ATGAATACCG	TACAGCACTC	GCTGTTGCAG	TCTACATTCC	TATCCAAATC	1860
GTCATTGGAT	TTATTGAACT	TTTCTTCAAT	CTTAGTTCTA	ATTTCTATGT	CAATTCACTG	1920
GTAGGACTCA	ATGACCATTT	CTATATGGGA	GCAGGTATAG	CCATTGTTGA	AGAACTCATA	1980
TTCATAGCTA	TCTTTTATCT	CGGAACCTAC	TACATCTTGA	GAAATAAGGT	TAATTTGCTT	2040
TAAATAATTT	TTACCTAGAT	ATGTAACATA	CTCATAGAAC	AAAAGAGACC	AGGCAAAAAG	2100
TCTTTAAAAT	TAGAAAACGC	ATAGTATCAG	GTGTTGAATA	TGTACTGCcC	CCCAAAAGTT	2160
AGATTTTTTC	TGTCTAACTT	TTGGGGGCAG	TTCATAAGAA	CCTTGGTAAT	ATGCGTTTTT	2220
						•

			320			
TGTGAGCTGA	CTTATTTCCT	TTCACTATAT	CGCAAAATGA	AATAAGAACG	GAACGATGGG	228
ATTTTGGÅAT	TCAAATCAAT	TTATAAGAAT	GTTTTAGAAG	TAATATTATO	CTATTCCAGA	234
TTCAGTTCAC	TATACAATTG	AGTTTTCAAG	CAACCTGTTT	ACATAATGTG	TACATAATTA	240
GGTTCGTGAT	TCCACCCTTT	TÇACCTTTAA	AAACCTCGCT	TTCGCAAGGC	TCTTCTATTT	246
ATAAGATAAG	GCACGTTTAA	AGGTTTTCCA	AATCCCTAAA	TCATCCGTTT	GAAGAACGAG	252
ACTAGCATAC	ATGCGTCCGA	TAAATCCTGT	TGCTACCACC	GCAAAAATCA	CTGTAATAGC	258
AAGTGAAATC	CATGCTTCTG	CTCCCCCGC	ATAGTCATTA	ATCGTTCGAA	ACGGCATAAA	264
GAAGGTCGAA	ATAAAGGGAA	TATAAGAACC	AATCTTCAAG	AGGAGATTGT	CACCAGCTGC	270
ACCTAGAGCT	GTCACTCCAA	AAAAACCACC	CATAATCAAA	ATCATCAAAG	GCGACAAGGC	276
TTTCCCTGAG	TCCTCAGGAC	GAGAAACCAT	AGATCCTAGG	AAGGCTGCCA	AGACTACGTA	282
CATGAAAAGA	CTGATCAAAA	TAAAGAGCAA	GGTATTCAGT	GAGATAGCAT	CTCCCAAGTG	2880
atcc aa aata	CCAGACTGAG	CCAAGAATGG	CAAATCTTTA	AAGAGCAAAA	CGGCAGCCAG	2940
ACCACCTACA	ACATAGATCC	CAATATGCGT	TAAAATCACT	AGAAACAGAG	CCATCATCCG	3000
CGCATAGAAA	TAGTGACTTG	CCCTTATGCT	AGAAAAAACG	ACTTCCATAA	TTTTGGTGCC	3060
TTTTTCACTG	GCAACTTCCT	GAGCTGTTAC	ACCCGCATAG	GTAATCAGAA	TCATATAAAG	3120
AAAGAATCCT	AAGGCACCTG	CTGCAATTGT	TTGAATAAAC	TTTTTATTTT	CCTTGGCTTC	3180
ATCAATCTTT	TCTGTGAATT	GAATTGTCTG	CGCTAAGCGT	TTTTCCTGCT	CTTGAGACAA	3240
GGAAGCAGTT	GAACGATTAA	GCTGATTTTG	CAGTTCATTG	AGTGTACCTG	TAACCTCAAA	3300
TTTAATTCCA	TTTTCAAGCG	ATGTTTCGCC	ATGATAAACT	GCCTTTAGAA	CACTATCTTC	3360
TTGATCAATG	GTCAAATAAC	CTTTTAATTT	TTCTTCTTTA	ATTGCTTCTT	TGGCACTTGC	3420
PTCGTCTTTA	TAGTCGAAGT	TAACACCATT	TACATTCTTC	AGTCCTTCTG	CTACAGATGG	3480
CACTGTTGTC	ACTACTGCCA	CTTTATTATT	TTTAGCCATA	GAAGAACCTT	GGAGATGCCC	3540
AATTCCTACA	GAGATTCCTA	AAAAGAGGAA	CGGCGAAATC	ACCATAAAGA	AGAAACTCCA	3600
rgactcgaca	TGTCGAAGAT	AGGTTTCCTT	GATTACAACC	CACATATTTC	TCATACTTCC	3660
ACTCCTGATT	CTAGTTTAAA	GATTTCATCG	ATAGTTGGCG	CTTGTTGGTC	AAATGTTGCG	3720
TATATTGAC	CTTGAGTCAA	GATTGAGAAG	AGTTCCCTTC	CAGCGCTCTC	ATCCTCCAAA	3780
TCAATTTCC	AACTGCCTTG	TTTGGTCAAG	CTCACCTGTT	TGACATGAGG	AAGATTTTCC	3840
VATTCTTCCT	TGCTTCGTTC	ACTTGAAACA	AAGAGACGCG	TTTTCCCGTA	TTGATTGCGG	3900
ACATCCTGAA	CTGGTCCGTG	CAAGACCACA	CGGCCATCTC	GGATCATCAG	AATATCGTCA	3960
AAAGTTCCT	CAACATTGGT	CATGACATGG	TCAGAAAAGA	TAATGGTTGT	CCGCGCTCTT	4020

TTTCCTGAAA	AATGACTTGT	TTGAGCAATT	CTGTATTAAC	TGGGTCCAAT	CCACTAAAAG	4080
GCTCATCCAA	GATAATCAGG	TCTGGTTCAT	GAATCAGAGT	AATAATGAGC	TGAATCTTCT	4140
GCTGATTTCC	TTTTGACAGA	CTCTTGATTT	TATCTGTCAG	CTTTCCTTTC	ACTTCCAACC	4200
TCTTCATCCA	TTGAGGGAGT	TTTTCTTTGA	CTTCTTTGGC	ATCCATGCCT	TTTAGAGTCG	4260
CCAAGTAGCG	AACTTGTTCA	AGAACTGTCA	ATTTAGGCAT	GAGATGCGTT	CTTCAGGCAG	4320
ATAACCAATC	CGAGCATAGG	TCTCCTGACG	AATATCCTGA	CCATCCAGAC	CGATTTCTCC	4380
CTGATATTCT	AGGAATTTCA	AAATACTATG	GAAAATCGTT	GTTTTTCCAG	CACCATTTTT	4440
TCCGACTAGT	CCCAAAATAC	GACCTGGTCG	CGCTTGAAAG	TCAATACCAA	ACAAAACTTG	4500
CTTGGATCCA	AAACTTTTCT	CTAGACTTCT	TACTTCTAGC	ATCTTTCACC	TCCGAAATTT	4560
CTTGCACTCA	TTATACTCCT	TTTTGATAGC	CTTTACAATG	TTTTTTGTCC	ATTTTTAGAA	4620
GACTATTGCT	GTGTAAAATA	TGGCCTGGAG	CACTTTTATA	CTCAATGAAA	ATCAAAGAGC	4680
AAACTAGGAA	GCTAGCCGTA	GACTGCTCAA	AGTACAGCTT	TGAGGTTGCA	GATAAAACTG	4740
ACGAAGTCGA	CTCAAAACAC	TGTTTTGAGG	TTGTGGATAG	AACTGACGAA	kCrTAaCTAT	4800
ATCTACGGCA	AGGCGAAcTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTAT	TAGTGATAAA	4860
TCCATTATAC	AGCAGCAAAC	TTAATTTATA	CCTTCCGCTC	CTCAACTGTC	TATTTTTAAT	4920
CCTGAATTGT	TATTTGAGTA	ACTCCTTTTT	CCTCGTAAAG	TTTTCTTCCT	CTAAAACTTC	4980
TGGAAAAAGG	CTAATAGTTT	CAGACAACAT	TTTTATAAGA	AACAAGTTCA	TCTGTCATTT	5040
CAAGAAGGAG	TAATCCTTTA	TCTACTAATG	GACGGAACAG	AATTCAACCG	CTTGTCCGAT	5100
ATGTTTTCTA	AGGATTATAT	AGTAAAATGA	AATAAGAACA	GGACAAATTG	ATCAGGACAG	5160
TCAAATTGAT	TTCTAACAAT	GTTTTAGAAG	TAGATGTATA	CTATTCTAGT	TTCAATCTGC	5220
TATATCTATT	ATGCACACCC	CTATAGGATC	TAATGAAAAT	CACAACAGGC	TCATTCATAG	5280
ATGGTTACCT	AAGCCTAAGG	GAACTAAGAA	AACGACTACC	AAGGAAGTCG	CATTCATCGA	5340
AAAGTAGATT	AACAACTATC	CTAAAAAATG	CTTGAACTAC	AAGTCCCCCA	GAGAAGACTT	5400
CTGGATGACT	AACTTGAACT	TGAAATTTAG	CAATAATTAA	TTCACTATCT	AACTATATTT	5460
AGTAATTATT	TCAGAACTGA	TTAATATTAA	AATTAACTAA	CAATTCAAAG	GATTCATACT	5520
AGCCATAAAT	TACGTCCATC	AGAGAGAGAC	TCTTACTACT	TTTAGATTTT	AGTCTTTCTA	5580
GCTTCAGAAT	ACATCTAAAC	TTTAGGGAAA	ATGACTATTC	GAAAGCGCGA	ATGCCTCAAA	5640
ATTATCTCAG	ATAAGCTATT	CGAAACTTAG	AATGCTTTTA	AATTTATGGA	ATTGCGATTA	5700
TTCGAAACCT	AGAATGCATA	TAACCTTTAG	TTGACAGACC	TATTCTAAGT	CTCGAAGGGC	5760

			322			
TATTTACTTT	CTATTCCTTA	TCAAAAAAAGA	CTCATTCCCC	CTTTCTCCTC	CAAAATATGG	5820
TATAGTAGAA	ATATACTATC	TATGAGGAGT	TTACATGTCA	CAGGATAAAC	AAATGAAAGC	5880
TGTTTCTCCC	CTTCTGCAGC	GAGTTATCAA	TATCTCATCG	ATTGTCGGTG	GGGTTGGGAG	5940
TTTGATTTTC	TGTATTTGGG	CTTATCAGGC	TGGGATTTTA	CAATCCAAGG	AAACCCTCTC	6000
TGCCTTTATC	CAGCAGGCAG	GCATCTGGGG	TCCACCTCTC	TTTATCTTTT	TACAGATTTT	6060
ACAGACTGTC	GTCCCTATCA	TTCCAGGGGC	CTTGACCTCG	GTGGCTGGGG	TCTTTATCTA	6120
CGGGCACATC	ATCGGGACTA	TCTACAACTA	TATCGGCATC	GTGATTGGCT	GTGCCATTAT	6180
СТТТТАТСТА	GTGCGCCTAT	ACGGAGCTGC	CTTTGTCCAG	TCTGTCGTCA	GCAAGCGCAC	6240
CTACGACAAG	TACATCGACT	GGCTAGATAA	GGGCAATCGT	TTTGACCGCT	TCTTTATTTT	6300
TATGATGATT	TGGCCCATTA	GCCCAGCTGA	CTTTCTCTGT	ATGCTGGCTG	CCCTGACCAA	6360
GATGAGCTTC	AAGCGCTACA	TGACCATCAT	CATTCTGACC	AAACCCTTTA	CCCTCGTGGT	6420
TTATACCTAC	GGTCTGACCT	ATATTATTGA	CTTTTTCTGG	CAAATGCTTT	GACACGTAAA	6480
AAATCCGTTT	GGTTTCCCAA	GTGGATTTTT	AAAGCGTAGA	TTAACTATAG	CTTGATACTA	6540
AATATACTTT	GGTATGGAAA	TCATGCATAT	TTTTCGATAG	TGAGGCGAGG	ACTTACCTAG	6600
CCTTTCCGCC	GTGATAGAAA	CACCTGAAAT	CTAATGGTTT	CAGGTATTCG	GAAACTTTGA	6660
GCCTAGTGTC	TCAAAGTTTA	GGTATGGAAT	TTTGAAGAAA	GTCGCTACCG	TCCGTAATCA	6720
CTTAAGGAAA	GGCTCAAAAA	TATTGTTTTC	AACCACAAAA	TCCGTTTGGT	TTCCCAAGCG	6780
GATTTTGTGC	TTTATTTTGA	AACTTCTTTT	GCAAGAACAA	AGTTCCCAAG	TGTGGCAGAA	6840
CCATTTCCTG	CGACTGCTGG	CGTCACGATA	TAGTCACGCA	CATCTGGTAC	TGGTAGGTAA	6900
CCATTAAGAA	GAGATGTAAA	TTTCTCACGG	ACACGGTCCA	GCATATGTTG	TTGAGCCATG	6960
ACCCCTCCAC	CAAAGACAAT	CACGTCTGGG	CGGAAAGTCA	CTGTCGCATT	AACCGCAGCT	7020
TGAGCGATAT	AGTAGGCTTG	AACATCCCAA	ACAGGGTTGT	TGAGTTCAAT	AGTTTCCCCA	7080
CGTACACCTG	TACGAGCTTC	CAAACTTGG	CCAGCTGCAT	AACCTTCTAC	ACATCCCTTA	7140
TGGAAAGGAC	: AAACACCCTT	AAACTCTTT	TCAATATCCA	TTGGGTGTC1	AGCAACATAA	7200
TAATGACCCA	TTTCAGGGTG	ACCCACACC	CCGATAAACT	CACCACGTTC	GATGACGCCT	7260
GCACCGATAC	: CTGTACCGAT	TGTGTAGTA	A ACCAAGTTT	CGATACGAC	ACCAGCATTG	7320
TTACGGGCA	CCATTTCACC	GTAAGCAGAG	CTGTTTACG	CTGTTGTGA	GTACATTGGC	7380
ACGTTTAGGO	G CGCGACGAAC	GGCACCAAG	AAGTCTACA	TTGCCCAGT	r TGGTTTTGGA	7440
GTCGTCGTG/	TAAAGCCAT/	AGTTTTTGAG	G TTTTTGTCA	TATCAATCG	G CCCAAATGAA	7500
CCAACTGCAA	A GACCAGCAAC	GTTATCGAA	r tttgagaag	A ACTCAATGG	TTTATCGATT	7560

GTTTCGATTG	GAGTTGTTGT	TGGAAATTGT	GTTTTTTCTA	CAACGTTAAA	GTTTTCATCA	7620
CCGACAGCAC	AGACAAACTT	TGTACCGCCC	GCTTCCAAGC	TTCCATATAA	TTTTGTCATG	7680
ATAAACCTCT	TGTTTTTATT	TTCTTTATTA	TAGCATACTT	CGAAAGTCTA	AATGTCTCTA	7740
TTTTTTAGAT	TTTCCTCTGT	AAATCTTACT	ATCTAATAAA	AACGAACAAA	CATGTCATTT	7800
GTTCGTTTTC	ACATTAGAGA	GGATTGATTA	GATTTTCACT	TCGATCACAG	CATCCCCCTT	7860
AGCAACTGAA	CCTGTTGCGA	CTGGAGCTAC	TGAAGCGTAG	TCACCTGTAT	TTGTAACGAT	7920
AACCATTGTT	GTATCATCAA	GTCCAGCTGC	AGCGATTTTG	TTTGAGTCAA	ATGTTCCAAG	7980
AACATCGCCA	GCTTTCACCT	TATTACCTTG	AGCAACTTTT	GTTTCAAAAC	CGTCACCGTT	8040
CATAGATACA	GTATCAATAC	CAACATGAAT	CAAAACTTCA	GCACCATTTC	TTGTTTTCAA	8100
ACCAAAAGCG	TGCCCTGTTG	GAAAGGCAAT	TGAAACTTCA	GCATCAGCTG	GTGCATAGAC	8160
CACGCCTTGG	CTTGGTTTCA	CAACGATACC	TTGTCCCATA	GCTCCACTTG	AGAAGACTGG	8220
GTCATTGACA	TCAGCAAGAG	CGACAACATC	ACCGACGATA	GGAGTTACAA	GTGTTTCATT	8280
TTGAAGAGCT	GCTGGCGCAA	CTTCTTCTTT	TTCTTCAGCC	ACTTCAGCTC	GTTTTGCAGC	8340
TGCAGTTGCG	TCTACTTCAT	CTTCGTAACC	AAACATGTAA	GTAAGAGCAA	AACCAAGGGC	8400
AAATGATACA	GCTACCATAA	GAAGGTATTG	TGGAAGTTGT	CCGTTACCAA	CATAAAGCAT	8460
TGTACCAGGG	ATGATGGTGA	TACCATTACC	AGTACCAGCA	AGTCCAAGGA	TAGAAGCCAA	8520
TCCACCACCG	ATTGCACCAG	CAATCAATGA	AAGGAAGAAT	CGTTTACGGA	AGCGCAAGTT	8580
CACCCCGAAG	ATAGCAGGCT	CTGTAATACC	TAGGAAGGCA	GAAAGAGCAG	CCGGGAAAGC	8640
AAGTGTTTTC	AGTTTTGGAT	TTTTTGTTTT	AACACCAACC	GCAACAGTAG	CAGCACCTTG	8700
AGCTGTCATA	GCAGCTGTGA	TGATAGCGTT	GAATGGGTTA	GCATGGTCAG	CAGCAAGTAA	8760
TTGCACTTCA	AGCAAGTTGA	AGATGTGGTG	CACACCTGAC	ACGACGATCA	ATTGGTGAAC	8820
CCCACCAATC	AAGAAACCAC	CAAGACCAAA	TGGCATGCTA	AGAATCGCTT	TTGTAGCAAT	8880
AAGGATGTAG	TTTTCAACAA	CGTGGAAAAC	TGGTCCAATG	ACAAAGAGTC	CAAGGATAGA	8940
CATGACCAAA	AGTGTCACGA	ATGGTGTTAC	CAAGAGGTCA	ATGACATCTG	GAACAACTTG	9000
CGGACAGCTT	TTTCAAATTT	AGCTCCGACA	ACCCCGATGA	TGAAGGCTGG	AAGAACGGAA	9060
CCTTGCAAAC	CAACAACAGG	GATGAAACCA	AAGAAGTTCA	TCGCTGTTAC	TTCACCACCT	9120
TGAGCAACTG	CCCAAGCGTT	TGGAAGTGAG	CCAGAGACAA	GCATCATACC	AAGAACGATA	9180
CCAACGGCAG	GATTTCCACC	AAATACACGG	AAGGTTGACC	ACACAACCAA	ACCTGGCAAG	9240
ATGATGAAGG	CTGTATCTGT	CAAGATTTGT	GTGTAAGTTG	CAAAGTGACO	TGGAAGTGGC	9300

PCT/US97/19588 WO 98/18931

			324			
ATTTCAAGAG	CGTTGAAAAG	ACCACGCACA	CCCATGAAGA	GACCTGTCGC	TACGATAACT	9360
GGGATGATTG	GAACGAAAAC	ATCACCAAAA	GTACGGATAG	CACGTTGGAA	CCAGTTCCCT	9420
TGTTTAGCAA	CTTCTGCTTT	CATGTCATCC	TTAGATGATG	TTGGTAATCC	AAGTACAACA	9480
ACTTCATCGT	ACATTTTGTT	AACTGTACCT	GTACCAAAGA	TAATTTGGTA	TTGCCCTGAG	9540
TTAAAGAAAG	CACCTTGAAC	TTTTTCCAAG	TTCTCAATCA	CTTCTTTATT	GATTTTCTCT	9600
TCATCTTTGA	CCATGACACG	TAGACGAGTC	GCACAGTGGG	CAACACTATT	GACATTTTCA	9660
CGTCCGCCCA	AGGCATCGAT	GACTTTTTTT	GCAATTTCCT	GATTGTTCAT	TTGCAAAAAT	9720
CTCCTTATAT	AACATTTTGT	TCTTGTTTGA	AAGCGATTTT	ATTCGCCGG		9769

(2) INFORMATION FOR SEQ ID NO: 31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3149 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

CGCTTGAGTG	CTAATTCATA	GTTCTATTGT	ATCACTTGGT	CAGAAATAAT	CAAGAAAAA	60
GTCTGACTTT	CTCAAGATAA	AAAGCCTGAG	ACCAACTCAG	ACTTTTTAAT	TCTTAAAATG	120
GCAATTCTTC	CTCTTCCAAG	ACCAAATCTG	CCAAATCTTG	GCCTGCATTA	TTTTCACGCA	190
TAGCACGTTG	GGCACGACTT	TCCAAGAGTT	GGAATCCTGT	GACAAGTACT	TCGGTCACGT	240
AGTTCATTTG	GCCATTTTC	TCAAAGCGAC	GGGTACGCAA	TTCTCCATCA	ACGGAAATGA	300
GACTACCTTT	GGTTGCGTAC	TTGCCAAAGT	TTCTGCTAGT	CTGCCCCATA	GGACCATATT	360
GACAAAATCA	GCTTCACGTT	CACCGTTTTG	GTCTTTGTAA	CGACGGTTCA	CAGCGATAGT	420
TGCTCGCGCT	ACCGACTTGT	CATTGTTGGT	TTTGTGCAAT	TCTGGTGTAG	ACGTTAAACG	480
TCCAATCAAG	ATAACTTTAT	TATACATATT	TTCTTCCTCC	TACTTATCTA	TTCGTAGGAA	540
АТСАААААА	GTTACAGAAA	TTTGTAACTT	TTCGAGAAAA	TTTTTTATTT	TTTATGAACC	600
ATGAAACCTG	TCGCCTGTTG	ATTGGCCATA	ATGGTCATAT	CTGTAATCTG	AACACGACGA	660
GGTTGACTAG	TCACATAGAC	TACTGTATCT	GCAATATCCT	GAGCTTGCAA	AGCTTCTATT	720
CCTTGGTAAA	CGGACGCAGC	TCGTTCTTTA	TCACCATGAA	AACGCACTGT	AGAAAATCT	780
GTTTCGACAA	TTCCAGGCTG	AATGGTCGTC	ACCTTGATAT	CCGTTGCGAT	GGTATCAATT	840
CGCAGTCCAT	CTGAAAAGGT	CTTAACTGCC	GCCTTGGTGG	CTGAGTAAAC	AGCTGCACCA	900
GCATAGGCAT	AAATTCCTGC	GGTTGACCCC	ATATTGATAA	TATGACCTTG	ATTGGCTTTT	960

ACCATTGCTG	GCAAGAAACA	GCGAGTGACT	GCCATCAAAC	CTTTGACATT	GGTATCCAAC	1020
ATGGTCAGCA	TATCCAACTC	TTCATAGTCT	TGATAGGGAG	CTAAGCCAAG	AGCCAGTCCT	1080
GCGTTATTGA	CCAGGATGTC	AATCTGACCT	ATCGTTTCTA	AAATATCAGA	GCAGACAGTC	1140
TTTACCATTG	TCATATCCGT	GACATCTAGG	AGAAAAGTCC	AAACTGTTTG	ATTTGGAAAA	1200
GTTTCTGCAA	ACTCCGCCTT	AAGAGCTTCT	AGTCTGTCTA	TCCGTCGTCC	TGTTAGAACG	1260
ACATCCTCAC	CCTGCTCCAG	ATAAGCACGC	GCAATCGCTT	CACCGATTCC	TGATGTCGCT	1320
CCTGTAATCA	CAACATTTTT	TGCCATCTTA	TTTCCTTCTA	GCTGGTCTAT	CAGATATTAA	1380
CAACTTCTTA	GGCAGTCCAG	TGTTTCGCTG	GGTCGAACGG	TGTTCCGACA	ACTTGGTCTT	1440
CTGATAATTC	AAGCACCCCA	CGTTTTTGTG	GAGCATTTGG	CAGATGCAAT	TCACGAGGAC	1500
TGCACATCAT	ACCAAAACTC	TTTTCACCAC	GAAGTTCACC	TGGGAAAATG	AGATTCCCTT	1560
TTGGCATCAT	AGCTCCAGGA	AGCGCGACAA	TGGTTTTCAA	CCCCACACGC	GCATTGGGAG	1620
CTCCTGCAAC	GATTTGTACA	GTCTTATCAC	TTGCGACTGC	AACTTGGCAG	ATGTTGAGGT	1680
GGTCACTATC	TGGATGGGCT	ACCATCTCAA	CAATTTCACC	TACAACAAAC	TTAGGTTCCT	1740
TATCATTAAC	AATTTCTTCT	GTAAAACCTT	CCGCCTGCAA	CTCTTGGTTC	AAACGAGCGA	1800
CTTGCTCATC	TGTCAAAAAG	ACTTGACCGC	GCTCTGCAAT	TTCAAATAAA	CTTGAAACTT	1860
CGAAAATATT	CCAAGCCACT	GTTTCCCCAT	TATCTTTGAG	AAAAACACGG	GCTACCTTGC	1920
CTTTGCGCTC	CACATCCAGT	TTGGCATCTC	CGCTATTTTT	CACGATGACC	ATAAGGACAT	1980
CACCGACATG	TTCTTTATTA	TATGTAAAAA	TCATTGTTTC	CTTTTTCTCC	TATTTCAGTC	2040
CTGCTAAAAA	GTCATTGATT	TGTTGCTTGC	TTTTACGGTC	GCGATTGACA	AAACGACCGA	2100
TTTCCTTGTC	CTTTTCTAGA	ACAACAAGGC	TAGGAATTCC	GTAAACATCC	CAGAGTTTGG	2160
CCAAATCCAT	ATACTGATCT	CGGTCCATTC	GAATAAAGGT	GAACTCTGGA	TTGGTCTCCT	2220
CAATCTCTGG	TAAGGCAGGA	TAAATATAAC	GACAATCGCT	ACACCAGTCT	GCCACAAAAA	2280
TGAAGACCTT	CTTGCCCGCT	TTTTCCACTA	AAGATGCTAA	TTCTTCTAAA	CTTGCTGGCT	2340
GTATCATAAG	ACTTCCTCCT	CATAGACTAG	GTCTTCATTT	TCATAGACAA	AGGTATAATG	2400
ACGGCCATCC	TCAAAAATGA	CGCCACCAAC	CAAGCTCTCC	AGACTGCTTT	CGTAAACTTG	2460
AACATAAAGG	GTCGCAATTT	CCCCCATGTC	GGAAAAATGG	TCTCGCACAA	TCTCTGTCAA	2520
CTCTTCCTGA	GTCTTCATGA	GCTTACGGTC	ATCTGCAACT	TTTTTCGTAG	CAAGAGCAAG	2580
GCTTCCGATA	CCTAGCAGAG	CCAAGCCTGC	CATCCACATT	TTTTTAGCTT	TCATACCATT	2640
CATTTTAACA	CAAAAAAGGC	TTCAGGACAA	ATGAGGAAGC	AGCAGAAAAG	CAAGTAAAAA	2700

			326			
GCCTCTTCCT	TTAAGGAAAA	GGACTTCTTA	TACTCAATGA	AAATCAAAGA	CCAAACTAGG	2760
AAGCTAGCCG	CAGGCTGCTC	AAAGCACTGC	TTTGAGGTTG	TAGATAGAAC	TGACGAgTCa	2820
CTCAAAACAC	TGTTTTGAGG	TTGTGGATGA	AGCTGACGTG	GTTTGAAGAG	ATTTTCGAAG	2880
AGTATTATTC	TTATTGCCAG	GCACCTAAGT	TGCCAACGTA	GTAACTATCA	GGTGTGTAGG	2940
TATTGCGAGC	ATCTTACCTG	ATGAAGCCAG	ATAATACTAC	TTGCCATTGT	CTTTGACCCA	3000
ATCATTCGCA	ATCATGGAAC	CAGAAGAACT	TACATAATAC	CATTCTCCCT	TGTCATAAAC	3060
CCAAGTACTG	ACTTTCATGG	TTCCTGAGCA	ATTAAAGGCA	AAAAAACTGT	CCAATAACAT	3120
TCGTTTTTTA	AAAGCATTTG	ACACTACAT	•			3149

(2) INFORMATION FOR SEQ ID NO: 32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10240 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

CCAAAAATTC	AACCTTTAAG	GGGAGTCCAG	AGAGACTCAC	AAGGTGTCAG	ATAAAAGAAT	60
GGTGCAATTT	TCTAGAGGAG	ACTTTTTGAG	TGTGCTCTCT	TGTGTTGTAC	GATTTTAACT	120
GAGGCCTTGC	ACTAGCAAGG	TCTTTTCTTT	ATCTGGTCCC	CTTAAAATTT	AAGGAGGAAA	180
AGTTATGAAT	CCCACATGTA	AGAAGCGTTT	GGGTGTCATT	CGGTTGGAAA	CCATGAAGGT	240
GGTTGCACAA	GAGGAAATCG	CGCCACAATC	TTTGAATTAG	TCCTAGAAGG	AGAAATGGTT	300
GAAGCCATGC	GAGCAGGCCA	ATTTCTTCAT	CTGCGTGTAC	CGGACGATGC	CCATCTCTTA	360
CGTCGTCCTA	TTTCAATTTC	GTCTATTGAC	AAGGCAAACA	AGCAGTGTCA	CCTCATTTAT	420
CGGATTGACG	GAGCTGGGAC	TGCAATTTTT	TCAACCTTAA	GTCAGGGAGA	CACTCTTGAT	480
GTGATGGGGC	CTCAGGGAAA	TGGTTTTGAC	TTGTCTGACC	TTGATGAGCA	GAATCAGGTT	540
CTCCTTGTTG	GTGGTGGGAT	TGGTGTTCCA	CCCTTGCTTG	AGGTGGCCAA	GGAATTGCAT	600
GAACGTGGAG	TGAAAGTAGT	GACAGTCCTC	GGTTTTGCTA	ATAAGGATGC	TGTTATTTTG	660
AAAACGGAAT	TGGCTCAGTA	TGGTCAGGTC	TTTGTAACGA	CAGATGATGG	TTCTTATGGC	720
ATCAAGGGAA	ATGTTTCCGT	TGTTATCAAT	GATTTAGACA	GTCAGTTTGA	TGCTGTTTAC	780
TCGTGTGGGG	CTCCAGGAAT	GATGAAGTAT	ATCAATCAAA	CCTTTGATGA	TCACCCAAGA	840
GCCTATTTAT	CTCTGGAATC	TCGTATGGCT	TGTGGGATGG	GAGCTTGCTA	TGCCTGTGTT	900
CTAAAAGTAC	CAGAAAACGA	GACGGTCAGC	CAACGCGTCT	GTGAAGATGG	TCCTGTTTTC	960

CGCACAGG	AA CAGTTGTAT	T ATAAGGAGA	A AATTATGAC	C ACAAATCGA	T TACAAGTTTC	1020
TCTACCTG	GT TTGGATTTG	A AAAATCCGA	T TATTCCAGC	TCAGGCTGT	TTGGCTTTGG	1080
ACAAGAGT	AT GCCAAGTAC	T ATGATTTAG	A CCTTTTAGGT	TCTATTATG	TCAAGGCGAC	1140
AACCCTTG	A CCACGTTTT	G GGAATCCAA	C TCCAAGAGTO	GCAGAGACG	CTGCTGGTAT	1200
GCTCAATG	CA ATTGGCTTG	C AAAATCCTG	TTTAGAGGTT	GTTTTGGCTC	AAAAGCTACC	1260
TTGGCTGGA	A AGAGAATAT	CAAATCTTC	TATTATTGCC	AATGTAGCTC	GTTTTTCAAA	1320
ACAAGAGTA	NT GCAGCTGTT	CTCATGGGAT	TTCCAAGGCA	ACTAATGTAA	AAGCTATCGA	1380
GCTCAATAT	TCTTGTCCC	A ATGTTGACCA	CTGTAATCAT	GGACTTTTGA	TTGGTCAAGA	1440
TCCAGATTI	G GCTTATGAT	G TGGTGAAAGC	AGCTGTGGAA	GCCTCAGAAG	TGCCAGTTTA	1500
TGTCAAATT	'A ACCCCGAGTO	TGACCGATAT	CGTTACTGTC	GCAAAAGCTG	CAGAAGATGC	1560
GGGAGCAAG	T GGCTTGACCA	TGATCAATAC	TCTGGTTGGA	ATGCGCTTTG	ACCTCAAAAC	1620
TAGAAAACC	A ATCTTGGCCA	ATGGAACAGG	TGGAATGTCT	GGTCCAGCAG	TCTTTCCAGT	1680
AGCCCTCAA	A CTCATCCGCC	AAGTTGCCCA	AACAACAGAC	CTGCCTATCA	TTGGAATGGG	1740
AGGAGTGGA	T TCGGCTGAAC	CTGCCCTAGA	AATGTATCTG	GCTGGGGCAT	CTGCTATCGG	1900
AGTTGGAAC	A GCTAACTTTA	CCAATCCTTA	TGCCTGCCCT	GACATCATCG	AAAATTTACC	. 1860
AAAAGTCAT	G GATAAATACG	GTATTAGCAG	TCTGGAAGAA	CTCCGTCAGG	AAGTAAAAGA	1920
GTCTCTGAG	G TAAACTGCAA	TCAATCTGTT	CTTGATTTTT	TATTAGTTTG	TAATATGAAT	1980
TTAGGAGAA	T TTTGGTACAA	ТААААТАААТ	AAGAACAGAG	GAAGAAGGTT	AATGAAGAAA	2040
GTAAGATTT.	A TTTTTTAGC	TCTGCTATTT	TTCTTAGCTA	GTCCAGAGGG	TGCAATGGCT	2100
AGTGATGGT.	A CTTGGCAAGG	AAAACAGTAT	CTGAAAGAAG	ATGGCAGTCA	AGCAGCAAAT	2160
GAGTGGGTT	r ttgatactca	TTATCAATCT	TGGTTCTATA	TAAAAGCAGA	TGCTAACTAT	2220
GCTGAAAAT	G AATGGCTAAA	GCAAGGTGAC	GACTATTTTT	ACCTCAAATC	TGGTGGCTAT	2280
ATGGCCAAA	r cagaatgggt	AGAAGACAAG	GGAGCCTTTT	ATTATCTTGA	CCAAGATGGA	2340
AAGATGAAA	A GAAATGCTTG	GGTAGGAACT	TCCTATGTTG	GTGCAACAGG	TGCCAAAGTA	2400
ATAGAAGACT	r gggtctatga	TTCTCAATAC	GATGCTTCGT	TTTATATCAA	AGCAGATGGA	2460
CAGCACGCAG	G AGAAAGAATG	GCTCCAAATT	AAAGGGAAGG	ACTATTATTT	CAAATCCGGT	2520
GGTTATCTAC	TGACAAGTCA	GTGGATTAAT	CAAGCTTATG	TGAATGCTAG	TGGTGCCAAA	2580
GTACAGCAAC	GTTGGCTTTT	TGACAAACAA	TACCAATCTT	GGTTTTACAT	CAAAGAAAAT	2640
GGAAACTATO	CTGATAAAGA	ATGGATTTTC	GAGAATGGTC	ACTATTATTA	TCTAAAATCC	2700

			328			
GGTGGyTACA	TGGCAGCCAA	TGAATGGATT	TGGGATAAGG	AATCTTGGTT	TTATCTCAAA	2760
TyTGATGGGA	AAATrGCTGA	AAAAGAATGG	GTCTACGATT	CTCATAGTCA	AGCTTGGTAC	2820
TACTTCAAAT	CCGGTGGTTA	CATGACAGCC	AATGAATGGA	TTTGGGATAA	GGAATCTTGG	2880
TTTTACCTCA	AATCTGATGG	GAAAATAGCT	GAAAAAGAAT	GGGTCTACGA	TTCTCATAGT	2940
CAAGCTTGGT	ACTACTTCAA	ATCTGGTGGC	TACATGGCGA	AAAATGAGAC	AGTAGATGGT	3000
TATCAGCTTG	GAAGCGATGG	TAAATGGCTT	GGAGGAAAAA	CTACAAATGA	AAATGCTGCT	3060
TACTATCAAG	TAGTGCCTGT	TACAGCCAAT	GTTTATGATT	CAGATGGTGA	AAAGCTTTCC	3120
TATATATCGC	AAGGTAGTGT	CGTATGGCTA	GATAAGGATA	GAAAAAGTGA	TGACAAGCGC	3180
TTGGCTATTA	CTATTTCTGG	TTTGTCAGGC	TATATGAAAA	CAGAAGATTT	ACAAGCGCTA	3240
GATGCTAGTA	AGGACTTTAT	CCCTTATTAT	GAGAGTGATG	GCCACCGTTT	TTATCACTAT	3300
GTGGCTCAGA	ATGCTAGTAT	CCCAGTAGCT	TCTCATCTTT	CTGATATGGA	AGTAGGCAAG	3360
AAATATTATT	CGGCAGATGG	CCTGCATTTT	GATGGTTTTA	AGCTTGAGAA	TCCCTTCCTT	3420
TTCAAAGATT	TAACAGAGGC	TACAAACTAC	AGTGCTGAAG	AATTGGATAA	GGTATTTAGT	3480
TTGCTAAACA	TTAACAATAG	CCTTTTGGAG	AACAAGGGCG	CTACTTTAA	GGAAGCCGAA	3540
GAACATTACC	ATATCAATGC	TCTTTATCTC	CTTGCCCATA	GTGCCCTAGA	AAGTAACTGG	3600
GGAAGAAGTA	AAATTGCCAA	AGATAAGAAT	AATTTCTTTG	GCATTACAGO	CTATGATACG	3660
ACCCCTTACC	TTTCTGCTAA	GACATTTGAŢ	GATGTGGATA	AGGGAATTTT	AGGTGCAACC	3720
AAGTGGATTA	AGGAAAATTA	TATCGATAGG	GGAAGAACTT	TCCTTGGAAA	CAAGGCTTCT	3780
GGTATGAATG	TGGAATATGC	TTCAGACCCT	TATTGGGGCG	AAAAAATTGO	TAGTGTGATG	3840
ATGAAAATCA	ATGAGAAGCT	AGGTGGCAAA	GATTAGTACT	ATAAGTGAAT	ATGATTTGAG	3900
TGAATAGTAA	GTTAAAAATC	CTGATTTCA	GTAAAATCAG	GATTTTTC	TGGATGCAAT	3960
TTTTTTGGAG	TCTGGTGTGA	CGCGGAGGGT	CTTTTGTCCT	GTGTAAGTG	CAAAGCCGGG	4020
TTTTCCACCA	GTTGGTTTAT	TGAGTTTTT	GACTTCAATO	ATATCTACC	r gcaccagai"r	4080
CGACAGGCGC	CCTTGAGAGA	AGTAGGCAG	TAACTCTGCT	r GCGTCTGTC	TGACTGCATC	4140
AGATGGGTCA	A AGATTTCCTC	AGATGACAA	ATGGCTTCC/	GGAATGTCC	r TAGCATGGAA	4200
CCAAAGTTC	TCCTTGCGGG	CCATTTAA	GGTCAATTC	TCATTTTGA	A GATTGTTTCG	4260
TCCGACATAG	G ATGATGGTT	TGCCATCGC	TGCTAGATA	r TGTTCTAGT	r tittgcgttt	4320
					T CTTCACGGAT	4380
					T CCAGATAGAG	4440
AATAGTGGC	T TTGGTTTCT	CAATCAAAT	C AGTCAAGTA	T TTGACAGCT	T CTTTGAGTTT	4500

CTGATACCGT	TTAAAATAGC	GTTGGGCATT	CTGGTTGGGA	GTCAGAGCCT	TATCAAGCGC	4560
AATCATGATA	GGTTGGTTGG	TATAGTAGTT	GTCTAGGATA	ACCTGGTCTT	GGTCGTTAGG	4620
CACTTGGTGG	AGGAAGGTTG	TCAGCAATTC	TCCTTTTTGA	CGAAATTCTT	CAGCGTTGTC	4680
TGTCGCCAGT	AACTCTTTTT	CCTGTTTTTT	GAGTTTGTGT	CGGTTTTTCT	GAAGTTCATT	4740
TTCAACACGA	CGAATCAGTT	CACTGGCCTG	CTGTTTGACG	CGGTCGCGCT	CAGCCTTATC	4800
CTTATAGTAG	GTGTCCAACA	AATCAGAAAG	ATTTGCAAAA	GGCTCTCCCA	CCTGATTTGC	4860
AAAAGGAACT	GGACTGAAGG	AAGTCTCAGT	CAAGCATGGC	TTGGTTTCTT	GATTGAAAAA	4920
ATTTCGGAAA	GCGGAAAGTT	TTTCACTAAC	CAGTATCCTT	TCCAATTCAT	TTGCCGTATC	4980
GCGTCCCAGA	CCTTGAAAGA	GGCTTTGAAG	ATTTTTTGCT	GTTAGTTCTT	GGGTTTGCAG	5040
GATTTCAAAG	AGCTTTTCAT	CCTTGATAGT	AAAAGGATTG	AGAGATTTTG	TACTTGGCGG	5100
AGCGATATAG	GTCGATCCTG	GAAGTAAGGT	GCGGTAGCTA	TTTTGTGAAA	AGCCGACGTG	5160
TTTGATAACT	TCGAGGATTT	TATGACTGCT	TTTATCGACC	AGTAGAATAT	TACTGTGTTT	5220
CCCCATAATT	TCGATAATCA	AGGTAGCCTG	GATATGGTCT	CCAATCTCGT	TTTTATTGGA	5280
AACTGTAATT	TCCACAATAC	GGTCATTTTC	CACTTGCTCA	ATCGACTCAA	TCAGGGCCCC	5340
CTGCAAATAC	TTTCTCAAAA	CCATGATAAA	GGTAGAAGGT	TGAGCTGGAT	TTTCAAAAGT	5400
CGTTTGGGTC	AGCTGAATGC	GTCCAAAAAC	TGGATGGGCA	GAAAGGAGCA	GGCGATGGCT	5460
TTGGCGATTG	CTGCGGATTT	GCAAGACCAA	CTCTTGTTCA	AAAGGCTGAT	TGATTTTCTG	5520
GATGCGACCA	TTCACTAATT	CGCTTCGCAA	TTCCTCAACT	ATGTGGTGTA	AAAAAAATCC	5580
GTCAAATGAC	ATCGTTCTCT	CCTTGTGATT	GTATTCCATA	GTATTATATC	AAAAAGGTAG	5640
AATAAAATCA	TGGAAATGTG	GTATAATAAA	GCCAAGTAAA	GAGAAACGAG	AAGCACATGT	5700
ATATTGAAAT	GGTAGATGAA	ACTGGTCAAG	TTTCAAAAGA	AATGTTGCAA	CAAACCCAAG	5760
AAATTTTGGA	ATTTGCAGCC	CAAAAATTAG	GAAAAGAAGA	CAAGGAGATG	GCAGTCACTT	5820
TTGTGACCAA	TGAGCGTAGT	CATGAACTTA	ATCTGGAGTA	CCGTAACACC	GACCGTCCGA	5880
CAGATGTCAT	CAGCCTTGAG	TATAAACCAG	AATTGGAAAT	TGCCTTTGAC	GAAGAGGATT	5940
TGCTTGAAAA	TTCAGAATTG	GCAGAGATGA	TGTCTGAGTT	TGATGCCTAT	ATTGGGGAAT	6000
TGTTCATCTC	TATCGATAAG	GCTCATGAGC	AGGCCGAAGA	ATATGGTCAC	AGCTTTGAGC	6060
GTGAGATGGG	CTTCTTGGCA	GTACACGGCT	TTTTACATAT	TAACGGCTAT	GATCACTACA	6120
CTCCGGAAGA	AGAAGCGGAG	ATGTTCGGTT	TACAAGAAGA	AATTTTGACA	GCCTATGGAC	6180
TCÁCAAGACA	ATAAACGAAA	ATGGAAAAAT	CGTGACTTGA	TATCCAGTTT	AGAATTTGCT	6240

			330			
TTGACAGGT	A TTTTTACTGO	TATCAAGGA	A GAACGCAATA	TG EGAAJ IACI	CGCAGTGACG	6300
GCTCTAGTG	G TCATCCTTGO	AGGTTTTGTT	TTTCAGGTGT	CACGAATCG	ATGGCTCTTT	6360
CTCCTATTG	A GTATTTTCTT	GGTAGTAGC	TTTGAGATTA	TCAACTCTG	TATTGAAAAT	6420
GTGGTGGAT	TGGCCAGTCA	CTATCACTTI	TCCATGCTGG	CTAAAAATGC	CAAGGATATG	6480
GCGGCCGGC	CGGTATTAGT	GGTTTCTCTT	TTCGCAGCCT	TAACAGGCGC	ATTGATTTTT	6540
CTCCCACGA	TCTGGGATTT	ATTATTTAA	ACAGTAAGAG	GAAATTATGA	CTTTTAAATC	6600
AGGCTTTGT	GCCATTTTAG	GACGTCCCAA	TGTTGGGAAG	TCAACCTTTT	TAAATCACGT	6660
TATGGGGCA	AAGATTGCCA	TCATGAGTGA	CAAGGCGCAG	ACAACGCGCA	ATAAAATCAT	6720
GGGAATTTAC	ACGACTGATA	AGGAGCAAAT	TGTCTTTATC	GACACACCAG	GGATTCACAA	6780
GCCTAAAACA	GCTCTCGGAG	ATTTCATGGT	TGAGTCTGCC	TACAGTACCO	TTCGCGAAGT	6840
GGACACTGTT	CTTTTCATGG	TGCCTGCTGA	TGAAGCGCGT	GGTAAGGGGG	ACGATATGAT	6900
TATCGAGCGT	CTCAAGGCTG	CCAAGGTTCC	TGTGATTTTG	GTGGTGAATA	AAATCGATAA	6960
GGTCCATCCA	GACCAGCTCT	TGTCTCAGAT	TGATGACTTC	CGTAATCAAA	TGGACTTTAA	7020
GGAAATTGTT	CCAATCTCAG	CCCTTCAGGG	AAATAACGTG	TCTCGTCTAG	TGGATATTTT	7080
GAGTGAAAAT	CTGGATGAAG	GTTTCCAATA	TTTCCCGTCT	GATCAAATCA	CAGACCATCC	7140
AGAACGTTTC	TTGGTTTCAG	AAATGGTTCG	CGAGAAAGTC	TTGCACCTAA	CTCGTGAAGA	7200
GATTCCGCAT	TCTGTAGCAG	TAGTTGTTGA	CTCTATGAAA	CGAGACGAAG	AGACAGACAA	7260
GGTTCACATC	CGTGCAACCA	TCATGGTCGA	GCGCGATAGC	CAAAAAGGGA	TTATCATCGG	7320
TAAAGGTGGC	GCTATGCTTA	AGAAAATCGG	TAGCATGGCC	CGTCGTGATA	TCGAACTCAT	7380
GCTAGGAGAC	AAGGTCTTCC	TAGAAACCTG	GGTCAAGGTC	AAGAAAAACT	GGCGCGATAA	7440
AAAGCTAGAT	TTGGCTGACT	TTGGCTATAA	TGAAAGAGAA	TACTAAGTAG	AGGTAGGCTC	7500
ATGCCTGCTT	CTTGTTTTTA	CAGAAGGAGG	ACTTATGCCT	GAATTACCTG	AGGTTGAAAC	7560
CGTTTGTCGT	GGCTTAGAAA	AATTGATTAT	AGGAAAGAAG	ATTTCGAGTA	TAGAAATTCG	7620
CTACCCCAAG	ATGATTAAGA	CGGATTTGGA	AGAGTTTCAA	AGGGAATTGC	CTAGTCAGAT	7680
TATCGAGTCA	ATGGGACGTC	GTGGAAAATA	TTTGCTTTTT	TATCTGACAG	ACAAGGTCTT	7740
GATTTCCCAT	TTGCGGATGG	AGGGCAAGTA	TTTTTACTAT	CCAGACCAAG	GACCTGAACG	7800
CAAGCATGCC	CATGTTTTCT	TTCATTTTGA	AGATGGTGGC	ACGCTTGTTT	ATGAGGATGT	7860
TCGCAAGTTT	GGAACCATGG	AACTCTTGGT	GCCTGACCTT	TTAGACGTCT	ACTTTATTTC	7920
TAAAAAATTA	GGTCCTGAAC	CAAGCGAACA	AGACTTTGAT	TTACAGGTCT	TTCAATCTGC	7980
CCTTGCCAAG	TCCAAAAAGC	CTATCAAATC	CCATCTCCTA	GACCAGACCT	TGGTAGCTGG	8040

ACTTGGCAAT	ATCTATGTGG	ATGAGGTTCT	CTGGCGAGCT	CAGGTTCATC	CAGCTAGACC	3100
TTCCCAGACT	TTGACAGCAG	AAGAAGCGAC	TGCCATTCAT	GACCAGACCA	TTGCTGTTTT	8160
GGGCCAGGCT	GTTGAAAAAG	GTGGCTCCAC	CATTCGGACT	TATACCAATG	CCTTTGGGGA	8220
AGATGGAAGC	ATGCAGGACT	TTCATCAGGT	CTATGATAAG	ACTGGTCAAG	AATGTGTACG	8280
CTGTGGTACC	ATCATTGAGA	AAATTCAACT	AGGCGGACGT	GGAACCCACT	TTTGTCCAAA	8340
CTGTCAAAGG	AGGGACTGAT	GGGAAAAATC	ATCGGAATCA	CTGGGGGAAT	TGCCTCTGGT	8400
AAGTCAACTG	TGACAAATTT	TCTÁAGACAG	CAAGGCTTTC	AAGTAGTGGA	TGCCGACGCA	8460
GTCGTCCACC	AACTACAGAA	ACCTGGTGGT	CGTCTGTTTG	AGGCTCTAGT	ACAGCACTTT	8520
GGGCAAGAAA	TCATTCTTGA	AAACGGAGAA	CTCAATCGCC	CTCTCCTAGC	TAGTCTCATC	8580
TTTTCAAATC	CTGATGAACG	AGAATGGTCT	AAGCAAATTC	AAGGGGAGAT	TATCCGTGAG	8640
GAACTGGCTA	CTTTGAGAGA	ACAGTTGGCT	CAGACAGAAG	AGATTTTCTT	CATGGATATT	8700
CCCCTACTTT	TTGAGCAGGA	CTACAGCGAT	TGGTTTGCTG	AGACTTGGTT	GGTCTATGTG	8760
GACCGAGATG	CCCAAGTGGA	ACGCTTAATG	AAAAGGGACC	AGTTGTCCAA	AGATGAAGCT	8820
GAGTCTCGTC	TGGCAGCCCA	GTGGCCTTTA	GAAAAAAAGA	AAGATTTGGC	CAGCCAGGTT	8880
CTTGATAATA	ATGGCAATCA	GAACCAGCTT	CTTAATCAAG	TGCATATCCT	TCTTGAGGGA	8940
GGTAGGCAAG	ATGACAGAGA	TTAACTGGAA	GGATAATCTG	CGCATTGCCT	GGTTTGGTAA	9000
TTTTCTGACA	GGAGCCAGTA	TTTCTTTGGT	TGTACCTTTT	ATGCCCATCT	TCGTGGAAAA	9060
TCTAGGTGTA	GGGAGTCAGC	AAGTCGCTTT	TTATGCAGGC	TTAGCAATTT	CTGTCTCTGC	9120
TATTTCCGCG	GCGCTCTTTT	CTCCTATTTG	GGGTATTCTT	GCTGACAAÁT	ACGGCCGAAA	9180
ACCCATGATG	ATTCGGGCAG	GTCTTGCTAT	GACTATCACT	ATGGGAGGCT	TGGCCTTTGT	9240
CCCAAATATC	TATTGGTTAA	TCTTTCTTCG	TTTACTAAAC	GGTGTATTTG	CAGGTTTTGT	9300
TCCTAATGCA	ACGGCACTGA	TAGCCAGTCA	GGTTCCAAAG	GAGAAATCAG	GCTCTGCCTT	9360
AGGTACTTTG	TCTACAGGCG	TAGTTGCAGG	TACTCTAACT	GGTCCCTTTA	TTGGTGGCTT	9420
TATCGCAGAA	TTATTTGGCA	TTCGTACAGT	TTTCTTACTG	GTTGGTAGTT	TTCTATTTTT	9480
AGCTGCTATT	TTGACTATTT	GCTTTATCAA	GGAAGATTTT	CAACCAGTAG	CCAAGGAAAA	9540
GGCTATTCCA	ACAAAGGAAT	TATTTACCTC	GGTTAAATAT	CCCTATCTTT	TGCTCAATCT	9600
CTTTTTAACC	AGTTTTGTCA	TCCAATTTTC	AGCTCAATCG	ATTGGCCCTA	TTTTGGCTCT	9660
TTATGTACGC	GACTTAGGGC	AGACAGAGAA	TCTTCTTTTT	GTCTCTGGTT	TGATTGTGTC	9720
CAGTATGGGC	TTTTCCAGCA	TGATGAGTGC	AGGAGTCATG	GGCAAGCTAG	GTGACAAGGT	9780

			332			
GGGCAATCAT	CGTCTCTTGG	TTGTCGCCCA	GTTTTATTCA	GTCATCATCT	ATCTCCTCTG	9840
TGCCAATGCC	TCTAGCCCCC	TTCAACTAGG	ACTCTATCGT	TTCCTCTTTG	GATTGGGAAC	9900
CGGTGCCTTG	ATTCCCGGGG	TTAATGCCCT	ACTCAGCAAA	ATGACTCCCA	AAGCCGGCAT	9960
TTCGAGGGTC	TTTGCCTTCA	ATCAGGTATT	CTTTTATCTG	GGAGGTGTTG	TTGGTCCCAT	10020
GGCAGGTTCT	GCAGTAGCAG	GTCAATTTGG	CTACCATGCT	GTCTTTTATG	CGACAAGCCT	10080
TTGTGTTGCC	TTTAGTTGTC	TCTTTAACCT	GATTCAATTT	CGAACATTAT	TAAAAGTAAA	10140
GGAAATCTAG	TGCGAGTAAA	AATCAATCTC	AAATGCTCCT	CTTGTGGCAG	TATCAATTAC	10200
CTAACCAGTA	AAAATTCAAA	AACCCATCCA	GACAGATTGA			10240

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13206 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGCTTTATCG	TGGACGTGGT	CAAGCCGAGA	ATTTCATCAA	GGAGATGAAG	GAGGGATTTT	60
TTGGCGATAA	AACGGATAGT	TCAACCTTAA	TCAAAAACGA	AGTTCGTATG	ATGATGAGCT	120
GTATCGCCTA	CAATCTCTAT	CTTTTTCTCA	AACATCTAGC	TGGAGGTGAC	TTCCAAACTT	180
TAACAATCAA	ACGCTTCCGC	CATCTTTTTC	TTCACGTGGT	GGGAAAATGT	GTTCGAACAG	240
GACGCAAGCA	GCTCCTCAAA	TTGTCTAGTC	TCTATGCCTA	TTCCGAATTG	TTTTCAGCAC	300
TTTATTCTAG	GATTAGAAAA	GTCAACCTGA	ATCTTCCTGT	TCCTTATGAA	CCACCTAGAA	360
GAAAAGCGTC	GTTAATGATG	CATTAAAGAA	CAGTCGAGAT	GAAAAAATCG	TGTGACGCAC	420
CAAGGGAGGA	GTCTGCCCTT	TTGAGGAAAT	CTAGCGAGGA	AAAACGATAC	TGGAACAGCA	480
GAAAGTAAAA	CTGACCTCAT	GAGGAGGAAG	AAAGTGGCTC	ATGAGGTCAG	GGGTTTTGTA	540
AGTTACATCT	AGTTGAGAGA	GGTATGAATG	ATTTGGGATT	AATCATTTCT	TGTTTTAAAT	600
CAGGAGAATA	GTAACGATTT	TTTCCTTTTT	TGACGAACTC	TATTCCGTAA	CGATCAATCA	660
ATTTAATCAT	GTACCTAATA	TTAGAATTGT	TTATCCCAAA	TTTATTTGAA	AGCTTCTCTA	720
AGCTATATCC	TTGTTTTCTA	AGTTCATAGA	TCTGAACTTT	ATCATCATAA	GTTAGTTTCA	780
TAATAAAAAC	ACCCCAAAAG	TTAGATTTTT	TCTGTCTAAC	TTTTGGGGGG	CAGTTCATTC	840
AACACCTGAT	ACTATGCGTT	TTTCTTATTT	GAAATACTTT	TTACTCAACC	TCTTTATACT	900
CAATGAAAAT	CAAAGTGCAA	ACTAGAAAGC	TAGCCTCAGG	CTGCTCAAAA	CAGTGTTTTG	960

AGGTTGCAGA	TGGAAGCTGA	CGTGGTTTGA	AGAGATTTTC	GAAGAGTATT	ACTTAATCTT	1020
CTTGATACTT	TGACTAAGAA	TAAATCCTAC	AATCATCCCT	ACCATATTTT	GCATAAAATT	1080
CGGTAGAATT	TCTGGGAGGG	CTGCTGCCCA	GCCATTCATC	AAAGCAGAAC	CCAAGGCGTA	1140
GCCTCCTACC	ATGGCAATAG	TTGCTAAAAT	AAGGCCTAAC	CACTGACTTT	TTCCTTTAAA	1200
TCCTGCGAAA	AATCCCTGCA	AGCCATGGTT	GACCAAGCTA	AAGAACATCC	ACTGAGGGTA	1260
GCCTGATAAG	AGGTCAATCA	AGAAACTTGC	TAGTCCTCCG	ACTACCGCTC	CTTCACGACT	1320
ACCAAAGTAA	AAGGCCGCAA	AGAAGACACC	AGCATCTAAA	AGAGTTAGAA	TTCCTGTAGG	1380
TGTTGGGATT	TTTAAGAAAT	AACCTAGAAC	CACAGAAAGG	GCGGTTAATA	GGGATACAAG	1440
GGCGATTTTA	GTTGTTTTTG	TTTGCTTCAT	ATTGTCTTAC	TCCATACTGA	TCTGCTTGTG	1500
CAATAGCACG	ATAAACGAAA	GCCTTAGAGC	TTTCTACTGC	TGGCAAAAGT	TTATCACCTT	1560
TAACCAGGTG	ACTGGCAATG	CTAGAGSCAA	AGGTACAACs	TGCACCAGCA	TTTTGGCCTT	1620
GGATAACTGG	ATTTTCTAGG	ATAGTAAAGG	TCTGTCCATC	ATAAAAGACA	TCCACAGCCT	1680
TGTCCTGACT	AAGACGATTG	CCTCCCTTGA	TAATGACTGt	GGCGCTCCTA	AATCATGCAA	1740
TTTCTGCGCT	GCAGTTTTCA	TGTCTTCCAA	GGTTTTAATT	TCCTGACCGG	ATAATAATTC	1800
TGCTTCTGGG	AGATTAGGCG	TAATCACACT	GACATAAGGG	AAAAAGCGAA	TCAACTCTTG	1860
GCAGAGCTCA	CTGACAGCTA	CATCATGCGT	TTCCTTGCAG	ACCAAGACAG	GATCCAACAC	1920
CACAGGTACT	CCTGGGCGTT	GTTTGATAAA	GTCCAAGGCC	TTCTCAGCCA	CGCTGACAGT	1980
AGGGAGAAGA	CCAATCTTAA	TTCCCCCAAA	TTCCACATCA	CGCAAGCTAT	CTAATTCATG	2040
TTGAAAAATG	GTATCATCAG	TTGGAAAGAC	TTCAAATCCT	TTTTCTGTCA	AGGCTGT CAA	2100
AGNAGTGACT	GCTACAAACC	CATGCAAGCC	GTTCMAGGTA	TAGGTAGGCA	AATCAGCTGA	2150
CAGTCCACCA	CCACTAAAAA	TATCATTTCC	AGAAAGTGCT	AAAATACGAT	TATTCTTCAT	2220
AACGAATCTC	CTTTAAATAC	AAACCATTTG	GTGCTGCAGT	GGGACCTGCA	AGTTGCCTGT	2280
CCTTCTTCTC	CAAGATGAGA	TCAATCTGCT	CTACTGGCAT	GCGGTTGTTA	CCGATTTTGA	2340
GAAGAGTCCC	CACCATATTG	CGAATCTGTT	TATACAAGAA	ACCATTTCCT	GAAAAGGTAA	2400
AGGTCAAAAA	TTGTCCTGTC	TCATCGACTA	TTAAACTAGC	TTCTGTGATG	GTGCGAACCT	2460
TATCCTCTAC	ACTAGTCCCA	GAGGCTGTAA	AACCGGTAAA	ATCATGGGTT	CCCTCTAGCT	2520
TTTTGATTGC	AATCTGCATT	CGTTCCACAT	CGAGTGGGTA	GGGAAAGTGG	GTGGCATAGT	2580
GACGGCGCAT	CGGATTTTTG	GGACGTCCTC	TATCCACAGT	AAACTCATAG	GTCTTGCTAT	2640
GCTTGGCATA	ACGGCAATGA	AAATCATCTO	CCACAAGCTC	AATCGAAATC	ACATCAATAT	2700

CTTCAGGAGA	CTGGGTATCC	AAGGCAAAAC	334 GGAGTTTCTC	CTCATCCATC	TGATAAGGCA	2760
GGTCAAAATG	AATCACCTGT	CCCAGGGCAT	GAACCCCACT	ATCTGTCCTA	CCAGCACCGT	2820
GAACAGTAAT	GGCTTGCCCT	TTATTTAATC	TGGTCAAGGT	TTTTTCAATT	TCTTCCTGAA	2880
CGCTACGCGC	ATGAGGCTGG	CGCTGAAAGC	CAGCAAAGGC	ATAACCATCA	TAGGAAATAG	2940
TTGCTTTATA	TCTCGTCATA	GCCTCTATTT	TATCAAGAAA	TTAGTCTGTA	AACAAGGACC	3000
TAAAACAAAT	ATTGTATGGG	TATAAAAATC	TCATACTCTT	CGAAAATCTC	TTCAAACCAC	3060
GTCAGTTTCC	ATCTGCAACC	TCAACACACT	ATTTTGAGCA	ACCTGCGGCT	AGCTTTCTAT	3120
AGTAGATTGA	AATAAGATAT	GAACAACTCT	ATTAGGAAAG	TCAAATTAAT	TTCTAGAAAT	3180
ATTTTAGCAG	CTACAGCGTA	CTATTCCAAA	CTCAATCAAC	TATAGTTTGC	TCTTTGATTT	3240
TCATTGAGTA	TCAAAAGAAA	AACTTAGGAA	TCAATCCTAA	GCTCTCTTCT	GAAGTAGGTA	3300
CATGACAAAG	ATAGAGATTA	CAATCAACCA	ACCTCCTAAG	ATACTAAAGA	CCAACATCCC	3360
ATTGTGAGTT	AGTAAGCCAA	TTGCACCTAG	AACGAATGGG	GTCGTAAAGG	CTCCGAAACT	3420
ACAGCCTAAT	ACAGCAAATG	AAGTTGCTTG	ATTGAGGAGT	TTAGCTGGAA	TTCGTTCAGA	3480
GACAAGTTGA	AAGACCGTCG	TCAAGACTAC	ACTATAGGCA	AATCCAGCCA	GAACACTTCC	3540
TGCTACTACC	ACCCACAAGG	ATGAAGACAA	GGCAATCACG	ATTTGCCCCA	AGCCAAAGGT	3600
AATACCAGAC	CAGAGGAGCA	GTTTCTCTTT	AAAGATAGAA	ATCAAGAAAG	AAAAACTCAC	3660
CCCAGCCACA	ATCCCGATCA	ACTGCATGAT	ACTAAGAACA	AAACTAGATA	ACTGGGCATC	3720
CCCCAATCCT	CTTTCCACCA	TCAAACTTGG	AATACGGATG	GTAATAGCTG	TATTGGTACA	3780
AACTACAACT	GCCGCTTCGA	TAGCTAAGGT	AAAAATCAAG	CCTTTCATTT	CTCGAGTTAA	3840
ACGACTTGCT	TCCTTCGCTC	TTTTCTTGAC	TTCTTTCTTT	GATTTTCCAT	AAGGGACAAA	3900
GAGCAGATAA	AGGGGCAGCA	CCAAAAATCC	AGCACTATAG	GCTAGAAAGA	TAGCTGTCCA	3960
ACCAAAGGCC	AACAACTGAC	CGACGGCCAA	GGTAATGAGA	GAAGCTCCAA	CGACCTCTGC	4020
AGAAGCGCGT	AGCCCTAACA	TCTGAATTCG	CCTTTTTCCT	TGGTAGCGTT	CACTGATAAT	4080
AGAAATGGCC	TTGGCATTGA	TCATCCCAAG	ACCCAAACCA	AAGAGAAGCC	GTGTTCCAAA	4140
GACAAAGGGA	TAGGCTTGGT	ACCAGAAGGG	AGCTGTACCG	CTCAATGATA	AAATCAGCAA	4200
GCCCAAACTA	ATCTGTAAGC	GCTCAGGAAA	TATTTTTTCT	AAGAAACCAT	TTAGCAGTAA	4260
CATCATCATG	ATTCCAAAGG	AAGGCAAGCT	CACCAAGAGC	TCAATTTGTT	CCTTAGAATA	4320
ACCCTGATAA	TAGTCAAACA	TGGCTGGTAG	GGCACTCGAA	ATGGAAAAGG	AGGTAATCAA	4380
AACGAGGGAG	AGAGCCAAAA	TGCTGGCCCG	TTCTAAAAAT	TGTTTCATGA	AATCTCTTTC	4440
TATATTTCTC	TTAATCTTCT	ACTITTTTGA	TAGTTĄTCAA	ATAAGCAAGA	AAAGAAGAAG	4500

CCTCATTGGT	TTGTAGACTC	CTTCTTAAAT	TCGAAAATGA	ATCCCTTGTA	TCTTATACTC	4560
AATGAAAATC	AAAGAGCAAA	CTAGGAAGCT	AGCCGCAGGT	TGTTCAAAAC	AGTGTTTTGA	4620
GGTTGCAGAT	GGAAACTGAC	GTGGTTTGAA	GAGATTTTCG	AAGAGTATTA	GGATGACTTT	4680
CTCTTGATTT	GCTTGATAAA	GTAGAAAATA	AATCCTGCTA	CCATATAGGC	AACAAAGATA	4740
ATCAGACACC	ACTTAAACAC	AACATTCCAA	CCCTTGTTCA	CATTCAAAAA	GAAGTAAGGG	4800
AAAGGATTAT	CCTTGGCATT	TGGAATATTG	AGTTTTAGAA	CCAAGCCATT	AAAAAGAGCA	4860
AACATCATAT	ACAGAAAGGG	TAAAATGGTC	CACACTGCTG	GATCCCAAAT	CTTGTATTGA	4920
CCCTGTTTGT	CAAAAAAGAG	GGTATCCGCT	AAAAACCAGA	TGGGAACGAT	ATAGTGGCAA	4980
AGGAAATTTT	CTAGGGTATA	GAAATTAGTC	GCAATGGGCG	CCAAGAGGAA	ATGGTAAATC	5040
ACACAGGTAA	TCATGATACT	CATGGTGACC	CCACCTTTTA	AGCGCAAGAG	ACTTGGCCTT	5100
TGCCAATTTT	CACCTACACG	GCTCATAACC	TTTAGAAGAT	AAAGGGTAAA	AATAGTTACC	5160
AAGAGGTTGG	ACAGAACCGT	GTAATAGAGA	AGCATCCCAA	AACCACCATG	CTTAGTAATT	5220
TCAAGAŤAAA	CTCCCGTAAA	AGCCGCTAGA	AACAAGAAGA	TACGGCTATA	AAATACAAGT	5280
TTATAGTGTT	TTGACATGCT	TAAATCTTCC	TCACAAACTC	TGATTTAAGT	TTCATGGCAC	5340
CAAAACCATC	AATCTTACAG	TCGATATTGT	GGTCGCCTTC	TACGATGCGG	ATATTTTTCA	5400
CGCGCGTCCC	TTGTTTCAAA	TCTTTTGGCG	CACCTTTTAC	TTTCAAGTCC	TTGATGAGAG	5460
TTACTGTATC	ACCATCAGCC	AATTTATTTC	CGTTGGCATC	GATAGCGACA	AGACCTTCTT	5520
CTACTTCTGC	AACTTCAGCA	GGATTCCACT	CATGAGCACA	CTCTGGGCAA	ACCAGTAGGG	5580
CACCGTCTTC	GTAGACATAC	TCTGAGTTAC	ATTTTGGACA	ATTTGGTAAA	TTGTTCATGG	5640
PTTCTCCTTA	TCATCATTCA	CTATTCTTTG	AAAATTAAAA	TTTCTCSAAC	AGCAACTATT	5700
ATACCCTAAA	ATCAGCATTT	TGACAAATTT	AGAAAAAAAC	CGATATCAAT	CTATCGGCTT	5760
TTCTACATTT	ACATTCTTTT	TTCAGCTTCT	GCTTTGATTT	TTTCAACTAC	TTCTTGAATG	5820
TTCAAACCAG	TTGTATCAAG	GTAGACAGCA	тсстстсстт	GTTTGAGAGG	AGAAGTCTCA	5880
CGATGACTAT	CCTTGTAGTC	ACGCGCAGCA	ATTTCCTTTT	TTAGGGTTTC	AAGGTCTGTT	5940
CAATTCCCT	TGGCAATATT	TTCCTTGTAA	CGACGCTCTG	CTCTCTCATC	AACAGAAGCT	6000
ACTAGGAAAA	TTTCAATTC	TGCTTGTGGC	AATACAACAG	TTCCAATATC	GCGACCATCC	6060
ATGACAATCC	CCCCTTCCTC	GGCAATTTCT	TGTTGGAGAG	AAACCAGTTT	CTCACGCACT	6120
GAGGAATTG	CTGCAATAGC	AGAAACATGA	TTGGTCACTT	CATTTTCACG	GATAGGATGG	6130
TAATATCCA	CATCTCCTAC	AAAAACAAGC	TGGTCTCCAG	TTTCTGAACG	TCCAAAGCTG	6240

			336			
ATTGGATGCT	GGTCCAACAA	GGCTAGAAGG	GCTTCGACTT	CTTCAACTCC	TAATTGGTTC	6300
TTAAGAGCCA	TATAGGTCGC	TGCACGATAC	ATAGCTCCTG	TATCAAGGTA	GGTGAATCCA	6360
AAATCCTTAG	CAATAATCTT	TGCGACCGTA	CTCTTACCGC	TGGAAGCAGG	ACCATCAATA	6420
GCAATTTGAA	TTGTTTTCAT	ATCGGCTCCT	ATTTTATTTT	TATAACATCA	CCTGGATTAG	6480
CAAACCAAGA	TCCTGTAGCC	ATGTGCCCAG	GATTCAAGGC	CTCTAACTGA	GCAATGGAGA	6540
TTCCTGCACG	AGCGGCAATA	GCTGCTTCCC	CTTCTCCTGC	GAGAACTTTA	ATCGTTCCTT	6600
CAGGATTAGC	AGCTTCTTCT	GAACTACTAG	AAGTAGATTC	TGGCTCTGAA	CTCTGCTCAG	6660
GCTGAGAACT	ACTTGAAGAT	GAGATTTGTA	CTACACTGGC	ATCAGAATCA	TGAAAGCCTT	6720
TTAAGGCTGC	TGTGCGATTA	CTCCCCCCCG	ATGATAGATA	GATGAGAACG	ATGACCATCA	6790
CCACCACAAT	TACAAAGAAA	ATACTAGCTA	GGATCGTCAA	AATACGATTA	GCCATCCTAT	6840
CAGCCCCTCC	GTGGTTTCGA	TGCCGACGCT	CTGCTCTTGA	TTCTTCTTGA	TCATAGATAT	6900
CTTCTTGCCA	CGGTTCTTTT	GCCATACCTT	ACTCCTTGTT	TTTTTTTACT	TTTCTTATTA	6960
CAATATAAAT	ATGAACATGA	AAATCACACT	TATACCTGAA	CGATGTATCG	CCTGTGGGCT	7020
TTGCCAAACT	TATTCTGATT	TATTTGATTA	CCACGATAAT	GGAATCGTGC	GTTTTTACGA	7080
TGACCCTGAC	CAACTGGAAA	AAGAAATTTC	TCCTAGTCAG	GATATCTTAG	AGGCTGTTAA	7140
AAATTGCCCA	ACTCGCGCCC	TGATTGGAAA	CCAGGAAGCC	TAAATCAATG	GCGATAATCC	7200
ACTCCCTCTA	GTTTAGCACA	TTTCCATGTA	AAATTATAGT	CTTTTCACTT	TATTTTTTC	7260
TGTAAAATCA	GGAAGGTCAC	TTTTTTCTTT	GATAAGATAA	AGTGGTCTTT	TTTTAGTCTC	7320
TAAATAAATC	TTACTGATAT	ACTTGCCGAG	AATCCCAATG	GTCAAGAGTT	GAATGCCTCC	7380
AAGAAAGAGA	ATAACAGCCA	TCAGAGAGGT	CCAACCAGAT	GTCGGATTGC	CCAAAATGAG	7440
GGTCCGAACC	АСААСААААА	AGGTCATCAG	CAGAGAAAGA	AAACAAGATA	GGAGACCAGC	7500
TACAAAGGCT	ATAATCAAGG	GAAAATCTGA	AAAATTAATA	ATCCCTTCAA	TGGAGTAGAA	7560
AAAGAGTTGC	CTAAAACTCC	AACTTGTCTT	GCCAGCCTGC	CTTTCGACAT	TTGGATAGTC	7620
CAAATAGTAG	GTTTTGAAAC	CCACCCAGGC	GAAGAGCCCC	TTTGAAAAAC	GATTGGACTC	7680
GGTCAAGCTT	AAAATGGCAT	CGACTACAGA	CCTTCTCATC	ATACGAAAAT	CACGGACACC	7740
CGACGGCAGA	GCTACTGGGC	TGATTTTTTG	CATGAGGCGA	TAAAAGAGAA	CAGCACAGAA	7800
ACTGCGAAAG	AAGGGTTCTC	CCTCCCGACT	AGTTCTCCGT	GTCCCAACGC	AGTCCAAGTC	7860
TACATTTTTG	TCTAATACAT	TTTTCATCTC	AAACAACATA	CTAGGAGGAT	CTTGGAGGTC	7920
TGCATCCATC	ACCACCACCA	AATCTCCTGT	CGCATATTGC	AAGCCTGCAT	AAAGGGCTGC	7980
TTCTTTGCCA	AAATTTCGAG	AGAAAGAAAT	ATAATGGACT	GCCGGATTTT	GCTCCCGATA	8040

GGCCTTTAAG	AGTTCCAAGG	TCCCATCACT	TGATCCATCA	TCGACAAAGA	CATACTCGAT	8100
TTCTGTTTCC	AAATCTGGAA	GTAAAGCTTC	CAGAGCCTGA	TAAAAAAGAG	GAAGTACTTC	8150
CTCTTCGTTT	AAACAAGGGA	CGATGATTGA	AATCATCATC	TTAGTCTTCA	AATCCATTTG	8220
GATGCTTGCT	TTGCCAACGC	CATGCGTCTT	CACACATTTG	GGTGATGTCG	AGTTCTGCTT	8280
CCCAACCGAG	TTCTGCTTTA	GCTTTTGCCG	GGTCTGAGTA	GCAGGCAGCG	ATATCACCTG	8340
GGCGACGTTC	TACGATGCGG	TAAGGAATAG	GACGGCCCAC	CGCTTTTTCC	ATGTTTTGGA	8400
TAATTTCAAG	AACTGAGTAA	CCTTTACCAG	TTCCAAGGTT	ATAAACGTTT	AGTCCTGAAC	8460
CTTTTTGGAT	TTTTTTCAAA	GCTGCAACGT	GACCCTTAGC	CAAATCGACA	ACGTGGATAT	8520
AGTCACGAAC	ACCTGTTCCA	TCTTCCGTAT	CGTAATCGTC	TCCAAACACT	TGCACTTGCT	8580
CTAATTTTCC	AACGGCTACT	TGAGTCACAT	ATGGCAAGAG	ATTGTTTGGA	ATACCGTTTG	8640
GATTTTCTCC	CAAATCACCA	CTCTCATGGG	CTCCGATTGG	GTTAAAGTAA	CGAAGCAAGA	8700
CAACATTCCA	TTCTGAGTCT	GCTTTGTAAA	TATCAGTCAA	AATTTCCTCT	AGCATGAGCT	8760
TAGTACGACC	GTATGGGTTG	GTCACTGAAA	GTGGGAAATC	TTCCAAGATG	GGCACTGTGT	8820
GCGGATCCCC	GTAAACTGTC	GCAGAAGAAC	TGAAGATGAT	GTTTTTACAG	TTGTTTTCTT	8880
CCATGGCTTT	CAAAAGGCTG	ACAGTTCCAG	CGATATTGTT	GTCATAGTAG	GCAAGAGGGA	8940
TACGTGTTGA	TTCGCCAACA	GCCTTCAAAC	CAGCAAAGTG	AATGACACCA	GTCGGTTCTT	9000
CCTGCTTGAA	AATATCTCTG	AGGGTATCTG	TGTCACGAAT	ATCTGCCTCA	TAGAAAGGAA	9060
TCTCAACTCC	TGTGATTCCT	TCAACAACTT	CTAAACTCTT	ACGATTGCTA	TTGACAAGAT	9120
TATCCACCAC	AACAACTTGA	TGACCTGCTT	GGATCANTTC	AATAACAGTG	TGGGTTCCAA	9180
TAAAACCGGC	ACCACCAGTT	ACCAAAATCT	TTTCTTGCAT	ZITTTTTCCT	CGATTCTCAG	9240
ATTATTTTTT	CTTATTTTAC	CATTTTTGAC	AGGGAATGTC	ATTTGCCATC	CTAAACTACC	9300
TGATAAAATT	TCAGTAAAAT	GCTTATACTC	TTCGAAAATC	CAATTCAAAC	TACGTCAACG	9360
TCGCCTTGCC	ATGGGTATGG	TTACTGACTT	CGTCAGTTCT	ATCCACAACC	TCAAAACAGT	9420
GTTTTGAGCT	GACTTCGTCA	GTTCTATCCA	CAACCTCAAA	GCAGTGCTTT	GAGTAACCCG	9480
CGGCTAGTTT	CCTAGTTTGT	TCTTTGATTT	TTATTGAGTA	TTATTCGCTT	TTTACTCGTT	9540
TGACATAGTT	TTCAATTGGG	TAATTTAGAG	GGTCCAAGGT	CAACTCCTTG	TCTTGGATCA	9600
GTTGGGCTAG	ATGGTAACCA	ATGATAGGAC	CAGTTGTGAG	GCCTGATGAA	CCTAGTCCAC	9660
TGGCTGCATA	GACACCAGTT	AAGTCAGGCA	CCTGCCCAAA	GAAAGGAGAG	AAATCACTGG	9720
TGTAGGCACG	GATTCCAACA	CGCTCAGATT	TTGAAGTAGC	TTCAGCCAAA	ATCAGATAGT	9780

			338			
GAGTCAAGGT	GGCCTCCTCC	ATTTGTTGGA	GCAAGGTTTC	ATCTACCGTC	AAATCAAATC	9840
CCATGTCATT	TTCGTGGGTA	GCGCCTAAGG	ATAATTTCCC	ACCTGCAAAG	GGAATCAAAT	9900
CCCACTCCCC	TTCTGGCATG	ACAACAGGGT	AATCTTCCAT	GTCTTGGGCA	AGCTGATAAT	9960
CTCGTAGTTG	TCCTTTTTGA	GGACGGACAT	CCACTTCATA	ACCTAAAGGC	TCTAACATGT	10020
CCCCAACCA	AGCTCCCGTC	GCCAAAATAA	CCTGCTCAAA	CTCCTCTTCA	CCAATCTGGT	10080
AGCCTGATGC	TAACGCTGTC	AGAGTCACTT	TTTCTTTGAC	CAGCTTGACA	TGACTGACTT	10140
CCAGCAAACG	AGTCACTAAA	AGTTGGCCAT	CTACTCTCGC	TCCACCAGAA	GCATAGAGCA	10200
GGCGGTCAAA	TCCCTGCAAA	CCAGGGAATA	ATTCATTAGC	TGAGGCTTGG	TTCAGAATGG	10260
CTAATTGCCC	TATCAAGGGA	GATTCTTCTC	TGCGCTGGAG	GGCCAGTTGA	TAAAGTTCTT	10320
CCAAATTGGA	TTCATCCTTT	TTCAAGAGAA	AGACTCCCGA	ACGCTGGTAA	AAGTCGATTT	10380
CTTGTCCTGA	TTTCTCTAAA	TCAGCTAATA	AATCCACATA	AAAATCAGCC	CCCAAGCGCG	10440
CCATCTTGTA	CCAGGCTTTA	TTACGGCGTT	TGGAAAACCA	AGGACTGATA	ATTCCTGCTG	10500
CGGCCTTGGT	GGCTTGACCT	TGCTCATGGT	CAAAAACGGT	CACCTCTAGG	TCACTTTCTC	10560
TCGAGAGGTA	GTAGGCAGCT	GTTGCTCCCA	CAATTCCTGC	TCCAATAATG	GCAACTTTTT	10620
TCATTGTCTT	CACTTTCTAA	CTAGATATGA	TGGAAAGGAT	TGGTTGATGC	CTGACTAGGC	10680
AAGATATCAA	TAGACCACCC	CTTATCTTCC	TTCCATTGAC	TAAGAAGTGC	TGCGATTTTT	10740
TCTACAAAAA	TCACTTCGAT	ATAGTGACCT	GGGTCCAATG	CAAGCAACCC	ATCAGATAGC	10800
ATATCCTGAG	CAGTATGGTA	GTAGATATCA	CCAGTGATAT	AGACATCTGC	CCCCTTTGCC	10860
AAAGCATCCT	TATAGAAAGA	CTGCCCGCTT	CCACCACAAA	TTGCTACTCT	TGAAATAGGC	10920
TTCTGCAAAT	CATCCTCTTG	ATAATGCACC	ATTCGAAGGC	TATCTAGGTC	AAAGACTTGC	10980
TTGACCTGTT	GGGCCAATTC	CCAAAATGTC	TGAGGCTGAA	TATTCCCAAT	ACGTCCAATT	11040
CCACGTTCTG	GACCTGTTTC	CTGCAGATAA	GTCGTCTCCT	CGATTCCTAG	CATCTGACAA	11100
AACCAGTCAT	TGAGCCCATT	TTCAACGATA	TCAATATTGG	TATGGCTGAC	ATAAACTGCG	11160
ATATCATGCT	TAATCAGGTC	GATGTAAATC	TGATTTTGCG	GACGGCTGGC	AAGCAAGT'CC	11220
TTGATAGGAC	GAAAGATAGG	CGCGTGCTTG	ACGATAATCA	AGTCCACACC	CTTTTCAATG	11280
GCCTCTGCCA	CTGTCTCTTC	ACGAATATCG	AGGGCAACCA	TGACCCTTTG	GATACCCTTG	11340
TCTAAAGTGC	CAATTTGCAG	ACCACGGCTG	TCTCCCTCCA	TAGAAAATTC	CTGAGGGCAA	11400
AAGGCTTCAT	AAGCTTGGAT	CACTTCACTT	GCTAACATGG	AGCACCTCCT	TGATAGCTTG	11460
AATCTTATCT	ACTAGAACTT	GACGTTCTTC	CAGATTTTT	TCTGGGATTT	GTCCGAGGGC	11520
GAACTCTAGC	TTCTCAGCTT	CTTTTTGCCA	TTTTTGGACA	AATACTGGAC	TGACTTCTTT	11580

GGACAAGAAG	GGACCAAAGC	GAACATCACT	GGCTGATAGC	TTCATTTGTC	CTGCTTCCAC	11640
CACCAAAATC	TCATAAAACT	TTCCAGCTTC	TTCTAAGATG	CTTTCTGCTA	CAATCTGGAA	11700
TCCATGATCC	TGTAGCCAGA	TACGCAAGTC	GTCTTCACGA	TTATTGGGCT	GGAGGATCAA	11760
ACGCTCTACA	TTAGCTAACT	TCCCCAAACC	TTCTTCTAAA	ATCCTAGCAA	TCAAACGACC	11820
ACCCATGCCA	GCAATGGTAA	TGACAGACAC	TTGGTCAGTC	TCTTCAAAAG	CTGCCAAGCC	11880
ATTGGCTAAA	CGGACTTGGA	TTTTCTCCTT	TAGGCCGTGA	GCCTCAACAT	TTTTAACCGC	11940
AGACTGATAG	GGACCTTCCA	CCACCTCACC	TGCAATAGCG	CTTTTGATTT	GGCCTCTCTC	12000
AACCAACTCG	ATAGGCAGAT	AAGCATGGTC	ACTTCCCACA	TCTAGTAAAA	TAGCCCCCTG	12060
TGACACAAAG	GAAGCTACCA	ATTCTAATCT	CTTTGAAATC	ATCTTCTCTC	ACTTTCCAAA	12120
ACTCTATTAC	СТСТТАТТАТ	ACCACATTTC	AATCTTCAAC	TTCCCAGTAA	TATAAGCACC	12180
TCTGGCGAAA	GAAGTTTCAA	TGTCCTAAAG	TAATAAGTGA	ATCCAATTGA	AAGATTTTAA	12240
ACAATTTGCA	AAAATGTCAA	AAAATAAAA	ATAAACAGTT	TATTCAGAAA	ATTCTTGACA	12300
татаааааса	CATGGTAGAA	TATAATTAGA	AAGTTAGAAA	AAATAAAAGT	TTGACTAAAA	12360
TTTGTATTTG	AAGGTGGTGT	TCAGATAAGA	AATTTAGTCA	GACGAACCAC	GAATTTGCTC	12420
TATGCTTTCT	GGAATTTATC	ATAACAGGAG	GATACAGTCA	TGGAACAAAC	ATTGTTTGAA	12480
TTAGAACTAC	TTCCAGAGGA	AGATATCATT	GTCACAGGTC	TCCCTAAGTA	TTGTTCTTTT	12540
ACTTGTTTAA	TTACAGGTCG	CTAGTTATAT	тттататааа	ATAAGTAGCT	TTACTTACGG	12600
AATAGGCTAG	TGCTGTGTCT	CTAGCCTATT	ATTAATAATT	GGAGTTTGTT	ATGGATTTAT	12660
TAGAGAAAGA	ATGTTTAAAA	TGTGATAAAA	ATTTCCAACA	GGGTGATATT	TGGAATTACT	12720
ATTATTTATO	AGATAAGATG	CCTGCACAAG	GGTGGAAAAT	ACACATAAGO	TCCCAAATAA	12780
AAGACGCTGT	· AAATATTTT	AAGATTGTGT	ATAAACTATC	CCAACTAAAT	AATTGTAGCT	12840
TTAAAGTTGT	TAAAAATTTA	GAGGAATTAA	AATTAAAAA .	TTCCCCTAGG	GAAATGAGCC	12900
CTACTGCTA	CAAATTTATA	ACTCTATATO	CTAAGTCAGA	ATCTGAAGCT	AAGAGTATGA	12960
TTTGTAATCT	TACGAATAGA	CTGTCAGAAT	TTAAGGCTCC	: AAAAATACTA	TCTGACTATC	13020
AATGTGGAAT	r GCATTCTCCA	GTTCATTATA	GATATGGGG	TTTTTTAAAA	AAACAAGCTT	13080
ATGATGAAA	AAATAAA	GTCATCTATT	TATTGCTAGA	TGAAAAAAGG	AAGAACTATG	13140
TAGAAGATA	A GAGACAAAAT	TTCCCTAGT	TTCCTAGCTC	GAAAATGGA1	TTATTTCAG	13200
AAGAAG						13206

⁽²⁾ INFORMATION FOR SEQ ID NO: 34:

340

(i) SEQUENCE CHARACTERISTICS:

(AI LENGTH: 13104 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

CCGGATCCAG	CGAAAAATAT	GCTCTTTGAT	GCTGTAAGTG	GTCAAAAAGA	TGCTAAAACA	60
GCTGCTAACG	ATGCTGTAAC	ATTGATCAAA	GAAACAATCA	AACAAAAATT	TGGTGAATAA	120
AAAATTTGTT	CAAGGGGGGT	GGAAATCAAA	TCCCCCTTTG	AATTTATCAA	TAGAGACACA	180
AATAATTTAG	CTTTCTTATA	AAAAAGTAGT	ATCCTATGAA	AGGAGTTAAT	ATGGAAAAGC	240
AACAACCTAG	TAAAGCAGCC	CTGCTGTCTA	TCATTCCTGG	GTTAGGACAG	ATTTACAATA	300
AACAAAAAGC	CAAAGGTTTT	ATCTTCCTTG	GTGTAACCAT	CGTATTTGTC	CTTTACTTCC	360
TAGCACTTGC	AACCCCTGAA	TTGAGCAACC	TCATCACTCT	TGGTGACAAA	CCAGGTCGTG	420
ATAATTCCCT	CTTTATGCTG	ATTCGTGGTG	CCTTCCATCT	AATCTTTGTA	ATCGTTTATG	480
TACTCTTTTA	TTTCTCAAAT	ATCAAAGATG	CACATACGAT	TGCAAAACGC	ATTAACAATG	540
GAATTCCAGT	TCCACGCACA	CTCAAAGACA	TGATCAAAGG	GATTTATGAA	AATGGCTTCC	600
CTTACCTCTT	GATCATTCCA	TCTTATGTTG	CCATGACCTT	CGCGATTATC	TTCCCAGTTA	660
TCGTAACCTT	GATGATCGCC	TTTACCAACT	ACGACTTCCA	ACACTTGCCA	CCAAACAAGT	720
TGTTGGACTG	GGTTGGTTTG	ACCAACTTTA	CAAACATTTG	GAGCTTGAGT	ACCTTCCGTT	780
CTGCCTTTGG	TTCTGTTCTT	TCTTGGACTA	TCATTTGGGC	TTTGGCAGCT	TCTACTTTAC	840
AAATCGTAAT	TGGTATCTTC	ACAGCTATCA	TTGCCAACCA	ACCATTTATC	AAAGGAAAAC	900
GTATCTTTGG	TGTTATTTTC	CTTCTTCCTT	GGGCTGTCCC	AGCCTTCATC	ACTATCTTGA	960
CATTCTCAAA	CATGTTTAAC	GATAGTGTCG	GTGCTATCAA	CACTCAAGTA	TTGCCAATCT	1020
TGGCTAAATT	CCTTCCTTTC	CTTGATGGAG	CTCTTATTCC	TTGGAAAACA	GACCCAACTT	1080
GGACTAAGAT	TGCCTTGATT	ATGATGCAAG	GTTGGCTCGG	ATTCCCATAC	ATCTACGTTC	1140
TGACCTTGGG	TATCTTGCAA	TCTATTCCTA	ACGACCTTTA	CGAAGCAGCT	TATATTGACG	1200
GTGCCAACGC	TTGGCAAAAA	TTCCGCAACA	TCACTTTCCC	AATGATTTTG	GCTGTTGCGG	1260
CACCTACTTT	GATTAGCCAA	TACACCTTCA	ACTTTAACAA	CTTCTCTATC	ATGTACCTCT	1320
TCAATGGTGG	AGGACCTGGT	AGTGTCGGAG	GTGGAGCTGG	TTCAACCGAT	ATCTTGATCT	1380
CATGGATCTA	CCGTTTGACA	ACAGGTACAT	CTCCTCAATA	CTCAATGGCG	GCAGCTGTTA	1440
CCTTGATTAT	CTCTATCATT	GTCATCTCAA	TCTCTATGAT	CGCATTCAAG	AAACTACACG	1500

CATTTGATAT GGAGGAG	GTC TAAGATGAA	ATTAACTCAATTA	AACTCAAACG	TAGACTGACT	1560
CAAAGCCTTA CTTACCT	TTTA CCTGATTGG	CTATCAATTG	TAATTATCTA	TCCACTGTTG	1620
ATTACCATTA TGTCAGO	CTT TAAAGCAGG	r AACGTCTCAG	CCTTTAAACT	AGATACTAAT	1680
ATCGACCTCA ATTTTGA	ATAA CTTTAAAGGG	CTCTTCACTG	AAACCTTGTA	CGGTACTTGG	1740
TACCTCAACA CTTTGAT	TAT CGCCTTAAT	r ACCATGGCTG	TTCAAACAAG	TATCATCGTA	1800
CTTGCTGGTT ATGCTTA	ACAG CCGTTACAA	TTCTTGGCTC	GTAAACAAAG	TTTGGTCTTC	1860
TTCTTGATCA TCCAAAT	GGT GCCAACTAT	G GCCGCTTTGA	CAGCCTTCTT	CGTTATGGCG	1920
CTTATGTTGA ACGCCCT	TTAA CCACAACTG	TTCCTCATCT	TCCTCTACGT	TGGTGGTGGT	1980
ATCCCGATGA ATGCTTC	GCT CATGAAAGG	C TACTTCGATA	CAGTGCCAAT	GTCTTTAGAC	2040
GAATCTGCAA AACTAGA	ACGG TGCAGGACA	TTCCGCCGCT	TCTGGCAAAT	TGTTCTACCA	2100
CTTGTTCGCC CAATGGT	TTGC CGTACAAGC	r ctctgggcct	TCATGGGACC	TTTCGGGGAC	2160
TACATCCTCT CTAGTT	CTT GCTTCGTGAG	G AAAGAATACT	TTACTGTTGC	CGTAGGTCTC	2220
CAAACCTTCG TTAACAA	ATGC GAAAAACTT	G AAGATTGCCT	ACTTCTCAGC	AGGTGCTATC	2280
CTCATCGCCC TTCCAAT	CTG TATTCTCTT	TTCTTCCTAC	AAAAGAACTT	TGTTTCAGGA	2340
CTTACAAGTG GTGGCGA	ACAA GGGATAATT	T ATCCCCGCCA	CCCTTTTTCA	TTTTATACTC	2400
TTCGAAAATC TCTTCAA	AACC ACGTCAGCT	r tatetecaac	CTCAAAGTTG	TGCTTTGAGC	2460
AACCTGTGGC TAGTTTC	GCAC TTTGATTTT	C ATTGATTATT	AGCAATTGTC	ACTGTAAATA	2520
ATATCCTTGT AGCAAGO	CAAT TTTTCTCCT	a gacttgaaat	AAAGCGCATT	TCTCTATATA	2580
ATAATACTCA TATAGAA	AAAC ACCTTTTAG	A AAGATACCTA	TGCTTCCATA	TCCATTTTCC	2540
TATTTTCAA GTATTT	GGG GGTTCGTAA	G CCCCTGTCCA	AACGTTTCGA	GCTCAACTGG	2700
TTTCAACTTC TCTTTAG	CAG TATCTTCCT	r atcagcttgt	CTATGGTACC	CATTGCTATC	2760
CAAAACAGCT CCCAGGA	AGAC CTATCCGCT	A GAAACTTTTA	TCGATAATGT	CTATGAACCT	2820
CTGACAGATA AGGTTG	rcca ggatctctc	T GAACATGCTA	CAATTGTCGA	TGGCACATTA	2880
ACTTATACTG GAACAGG	TAG TCAAGCCCC	T TCTGTTGTGA	TTGGTCCAAG	TCAAATCAAG	2940
GAATTACCTA AGGACT	IGCA ACTGCATTT	C GATACAAATG	AGCTAGTCAT	CAGCAAGGAA	3000
AGCAAGGAAC TGACCCC	GCAT CTCTTACCG	A GCCATTCAGA	CTGAGAGTTT	CAAAAGCAAA	3060
GACAGCTTGA CCCAAG	CAAT TTCTAAAGA	C TGGTACCAAC	AAAATCGTGT	CTATATCAGC	3120
CTCTTCCTAG TTCTCG	GTGC GAGCTTCCT	C TTTGGTTTGA	ATTTCTTTAT	CGTCTCTCTT	3180
GGAGCTAGCT TTCTCC	TTTA TATCACCAA	A AGATCACGCC	TCTTTTCATT	TAATACCTTT	3240

			342	CC \ CTC - \ \ \ T	ተ ልርልርምጥል ጥ ፓ	3300
	ACCATTTTAT					3360
	TTGGCCAAAA					• • • •
	TCACTATCTT					3420
GAGATTTTTA	TGCCCGTTAC	GATTAAAGAC	GTGGCCAAGG	CTGCTGGTGT	TTCGCCTTCA	3480
ACCGTAACCC	GTGTTATTCA	AAATAAATCA	ACCATTAGCG	ACGAAACAAA	AAAACGTGTT	3540
CGCAAAGCTA	TGAAGGAACT	CAACTACCAC	CCAAACCTCA	ACGCTCGTAG	CTTGGTAAGC	3600
AGCTATACTC	AGGTTATCGG	ATTAGTTCTT	CCTGATGACT	CAGACGCCTT	CTACCAGAAT	3660
CCTTTCTTTC	CATCGGTTCT	ACGTGGCATC	TCTCAAGTCG	CATCTGAAAA	CCACTATGCC	3720
ATTCAGATAG	CAACAGGGAA	AGATGAGAAG	GAGCGTCTCA	ACGCTATTTC	ACAAATGGTC	3780
TACGGCAAGC	GTGTAGATGG	GCTAATTTTT	CTCTATGCCC	AAGAAGAAGA	CCCTCTCGTA	3840
AAACTCGTCG	CAGAAGAACA	GTTCCCCTTC	CTTATCTTAG	GTAAATCTCT	ATCTCCTTTC	3900
ATCCCACTTG	TCGACAACGA	CAATGTTCAA	GCTGGTTTTG	ATGCGACTGA	ATATTTCATC	3960
AAAAAAGGCT	GCAAACGCAT	TGCCTTTATC	GGAGGAAGTA	AAAAGCTCTT	CGTGACCAAA	4020
GACCGTTTAA	CAGGCTATGA	ACAGGCGCTT	AAACATTACA	AACTTACCAC	TGACAACAAT	4080
CGCATCTACT	TTGCCGACGA	GTTTCTGGAA	GAAAAGGGCT	ATAAATTTAG	CAAGCGATTA	4140
TTCAAGCACG	ATCCACAAAT	TGATGCTATC	ATCACAACCG	ATAGCCTCCT	AGCTGAAGGT	4200
GTTTGTAACT	ATATTGCCAA	ACACCAGCTG	GATGTCCCTG	TTCTCAGCTT	TGACTCGGTT	4260
AATCCCAAGC	TCAACTTGGC	AGCCTATGTC	GATATCAATA	GTTTAGAGCT	TGGTCGTGTT	4320
TCCCTTGAAA	CTATTCTCCA	GATTATTAAT	GATAATAAAA	ACAATAAACA	AATTTGTTAC	4380
CGTCAATTGA	TCGCCCACAA	AATTATCGAA	AAATAAGAGA	CTGGGCAAAA	AGTCGTTAAA	4440
AGCAAAAACG	CATACTATCA	GGTATTGAAA	AAACTTGATA	CTATGCGTTT	TATTGTGGGA	4500
AGATTTACTT	CCTTTTCTAC	TGAAATTGAG	TCTTTTCCCA	AGATCTTTT	ATACTCAATG	4560
AAAATCAAAG	TGCAAACTAG	GAAGCTAGC	GCAGGTTGCT	CAAAACACTO	TTTTGAGGTT	4620
GTAGATGAAA	CTGACGAAGT	CAGTAACCAT	r ACCTACGGC	AGGTGAAGCT	GACGTGGTTT	4680
GAAGAGATTT	TCGAAGAGTA	TTAATCACT	ATTATCTATO	TCAACAAATG	TTCCTAGAAT	4740
ATGAACATTT	TCCGAGACAG	AGACAAAGG	GCTTGGATC	ACTTGTGTC	TAATCTGTTT	4800
AAATTCATTA	AACTCTGCAC	GTGTAATGA	AGTGATTAA	A ACTGCCTTT	TCTCGTGATT	4860
ATAGGTTCC1	TCTGCATCGT	GGATCATGG	r TOCTCCGCG	TGCAATTTT	TATGGATTTT	4920
TTCAATTAC	TTCTCTGGAT	GATTTGTCA	C AATCATGGC	TGCATACGC	TTTGCTTAGT	4980
AAAGACTGC	G TCTGTCACAC	GGCTAGAGA	C AAAGATGGT	A ATCATAGAA	T AAAGAGCGTA	5040
					•	

343

TTTCCAACCA	AAGGTCAAAC	CTGCTATCAG	CATGATAGTT	CCATTTACCA	AGAAAGAAAT	510
ACTACCGACA	TTCTTACCCG	TTTTCTTACG	AATAGTCAGG	CTGACGATAT	CCGTCCCACC	516
ACTGGAGATA	TTGTTTCGAA	GAGCAAAACC	AATCCCCAAA	CCCATAACAA	CACCCCAAA	522
AAGGGAATTG	ATAATGGGAT	CCTCTGTCAA	GGTTGCCACA	GGGACAAACT	GGATAAAGAA	528
GGAACTCATA	GATACCGTGA	TAAAGGTAAA	GACGGTGAAC	TTATGGCCAA	TCTGATACCA	5340
AGCTAAGACC	ATCAAAGGGA	AGTTAATGGC	GTAGAAGCTT	AGCGAAATCG	GAATATGAAA	5400
ACCAAACCAG	TGATTACTCA	AGGCAGAGAT	AATCTGTGCC	AGACCTGTTG	CACCACTCGA	5460
ATACACATGC	CCTGGTTGGA	AAAAGAAATT	AACTGCTACT	GCTGATAAAA	AACCATAGAC	5520
CAGAGAGGCC	GAAATCTTCT	CATCATACTT	TTCTCGAGAG	ATACTTTGTA	AGACACGTAA	5530
AATTTTTATC	TGATAAGCAA	AGCGGCGCAG	ATAATAGCGC	CACCGCTTAA	TTCGTTTTGT	5640
TTGTTTCATC	TTCTTCTACT	TGTAAGCTGA	GTTCCTCTAG	TTGTTTGAGA	GCGACTGTTG	5700
ATGGAGCTTG	TGTCATTGGG	TCAGTTGCCT	TGTTGTTCTT	AGGAAAGGCA	ATGACTTCAC	5760
GGATATTTTC	TTCTCCAGCA	AGCAACATGA	CAAAACGGTC	AAGCCCGATA	GCCAAACCAC	5820
CGTGTGGTGG	GAAACCATAG	TCCATGGCTT	CAAGAAGGAA	ACCAAACTGG	TCATTGGCTT	5880
CTTCAGTTGA	GAAACCAAGA	GCCTTGAACA	TGCGTTCTTG	AAGGTCTTTT	TGGTTGATAC	5940
GAAGGCTACC	ACCACCAAGC	TCATAACCGT	TCAAGACGAT	ATCGTAAGCA	ATGGCACGAA	6000
CCTTAGCCAA	ATCACCTTCT	AATTCATGAG	CAGTCTCTTC	CTGTGGAAGT	GTGAAAGGAT	6060
GGTGGGCGCT	CATGTAGCGG	CCTTCTTCTT	CAGACCATTC	AAACATCGGC	CAGTCAACCA	6120
CCCAAAGGAA	GTTGAACTTA	TCATTATCAA	TCAAGCCAAG	CTCTTTAGCA	ATACGTCCAC	6130
GAAGGGCACC	CAGTGTTGCA	TTAGCCACTT	CAAGCGTATC	CGCCACAAAG	AGAACCAAGT	6240
CCTTATCTTC	AAGAACAAGC	GCTGTTGTCA	ATTCTTCTTG	GATACCAGTC	AAGAACTTGG	6300
CAACTGGTCC	GTTTAATTCT	CCATCAACCA	CCTTGACCCA	AGCAAGACCT	TTGGCACCAT	6360
ACTGTTTGGC	TACTTCCGTC	ATCTTGTCGA	TGTCTTTACG	TGAATAGTTG	TCCGCAGCTC	6420
CTGTGACCAC	AATCGCTTTT	ACAGCAGGTG	CTTCTGAAAA	GACTTTAAAG	TCTACACCTC	6480
GGACCACTTC	TGTCAAGTCC	TGAAGCAACA	TGTCAAAACG	AGTATCTGGC	TTGTCAGAAC	6540
CGTAAAGAGC	CATAGCATCA	TCGTATTTCA	TACGAGGGAA	TGGTAGCGTT	ACTTCGATGC	6600
CTTTTGTTTC	CTTCATCACG	CGCGCGATCA	AGCTTTCTGT	AATATCTTGG	ATTTCTTGCT	6660
CAGTAAGGAA	GGACGTTTCC	AAGTCGACCT	GAGTAAATTC	AGGCTGGCGG	TCTCCACGCA	6720
AGTCCTCGTC	ACGGAAACAT	TTAACGATTT	GGTAGTAACG	GTCAAAACCA	GCATTCATCA	6780

			344			
AGAGCTGTTT	CGTGATTTGT	GGACTTTGAG	GAAGAGCGTA	AAAATGCCCC	TTATTAACAC	6840
GAGACGGCAC	TAAATAATCA	CGCGCCCCTT	CAGGCGTTGA	CTTAGAAAGG	AATGGTGTCT	6900
CCACGTCGAT	AAACTCCAAC	TCATCCAAGT	AGTTGCGGAT	AGAGTGGGTC	ACCTTGGCAC	6960
GAAGTTTAAG	ATTTTCCAAC	ATTTCTGGAC	GACGAAGGTC	AAGGTAACGG	TAACGCAAAC	7020
GTGTATCGTC	ATTTGCCTCA	ATGCCATCCT	TAATCTCAAA	TGGTGTTGTC	TTAGCTGTGT	7080
TAAGCACAAT	AAGAGCTGTC	ACGTTTAACT	CAACCGCACC	AGTTGGCAAC	TTATCATTGG	7140
CTTGTCACGC	GCAGCGACCT	GACCAGTCAC	CTCAATAACA	AATTCGCTAC	GAAGGCTTTC	7200
AGCTGTTGCC	ATAACCTCTG	CAGATACTTT	TTCAGGGTTG	ATAACCAACT	GCATGATTCC	7260
TTCACGGTCA	CGAAGATCGA	TAAAGATCAA	ACCACCAAGG	TCACGACGAC	GGCCAACCCA	7320
TCCTTTCAAG	GTTATTTCTT	GTCCGATGTG	TTCCTCACGA	ACACGACCAG	CATACATACT	7380
ACGTTTCATT	ATTTCTCTCC	TCTTTTATTC	TGTTACTATT	TTACCATAAA	AGCGCAGCTC	7440
TTCATGAAAA	TCATCAGAAA	AGTTTGCCAG	TCTTTAAAAG	TCAGGTGAAA	GCCCTAAAAA	7500
TTAGCGCTAA	TACTCTTCGA	AAATCTCTTC	AAACCACGTC	AGCGTCGCCT	TACCGTATGT	7560
ATGGTTACTG	ACTTCGTCAG	TTTCATCTAC	AACCTCAAAA	CCATGTTTTG	AGCTGACTTC	7620
GTCAGTTCTA	TCCACAACCT	CAAAACAGTG	TTTTGAGCAA	CCTGCGGCTA	GCTTCCTAGT	7680
TTGCTCTTTG	ATTTTCATTG	AGTATAATAC	AAAAATCCGA	TGAACTTCAC	CGGACTCTTT	7740
TATTTTGAAT	TTTTGCCTGC	TTTACGCTTT	TCAGCGATTT	CGGCTGCCTT	TCGAGGCAAG	7800
ACAATTTCCG	TTATGTAAGC	CGTCCCAAAA	CGCAGTACAC	CTGCAATAGG	AGCAAAGACA	7860
ACTGCTAGAT	AGTTATAGAA	GAAATCGCCT	TTGAAGGCAT	AAGCTAGCGC	TCCAATGATG	7920
AAAAATAGAA	CGACTGCCTG	AATCACTGCT	AATAAAATTA	CTCGTTTCAT	GTGACCTCCT	7980
GACTCTAITA	TAGCATGAGA	ATCATCAAAA	AGCCGACTAA	ATTATTCAAA	GCGTGAAGAG	8040
AAATACTGTA	GACCAGACCT	TTTCTGCTAA	TGTAAGCCAA	ACCCAAACTA	AAACCAAGGC	8100
TAAAATAGAC	AAAAAATTGT	TGCACATCAC	CTGGAAAATG	AATCAAGGCA	AATAGAAGAC	8160
TAGATACCAG	AAGAAAAATC	AGGGTTCGTT	TACTATTGTC	CTGCTTAGGA	AAGAGATAGC	3220
GTGCTAACAT	CCCTCTAAAA	ACAATCTCTT	CCGTCAAAGG	AGCAAAAATA	ACCACAGCAA	8280
AGAATGAGAA	AAGTGGTTGA	GACAAGGTCA	AGTCTGTCGC	TATTTGCTGA	TTTACTGAAG	8340
GATCATCTGG	CAAGAAGAAT	TGAACGACCA	GAGATAAGAA	CCAAACCAAG	ACAGGAAGCC	8400
AAATAAATCG	ATTAAAGCCG	CTCTTCTCAA	TATGAACAGG	AGCCTTCTGA	TACCATTTGT	8460
AAATGCCGTA	CACATATACT	CCAGCCAAGG	CCACATAGAG	TAGAGTAACA	GCATAGGGTG	8520
AAGCGCCTAA	AGCAAGCGAC	GCAGTCGCGA	GCCCCTGAAT	AAAGCCATAG	АТАААТАААА	8580

345

AGGATAGAAG	GGCTAGAAGA	ATCCAGCCAA	GGTTTTTAAG	TAATTTCATA	GATAACTCCT	8640
TTATTTGAAA	TAACGTTTTA	CCATAGGTAA	CTGCATCACA	TTGATATAAA	CATGGATGGC	8700
TCCTACAAGC	AAGAAAGCTA	GTAACTGAAT	СТСТССТСТС	AAGAAAGAAA	TGATAATAAG	8760
TATATAAAA	AAGGCTGGTA	AGACATATTG	GTGTAATTGG	AATAAAATTC	GAAAACTCTG	8820
TTCCAAATTA	GCCTGACGCT	CCCCTTCATC	ATAAGAATTT	ATATAGTTCA	AGACATCCTT	8880
TGGTGTAGCG	AAAAATTCCA	AATCAAACTG	ACGAACAATC	GCAATGGTTT	TAAAAAGAGA	8940
TTTTTGAGCG	ACTAAGAATA	CCACAAAGAG	TAAGAAAGAA	AGGAAAAATG	TTTGAGGGTT	9000
TGTATGCAAT	ATAATCACCT	CACTTAATGA	ААТАААААТА	GCCAATGGAA	TCGCTACACC	9060
TGTAATATTA	AAAGCAATGG	TTCCAAACTC	AAGATTCCGA	TACATTTGCA	CATAATAGGT	9120
TTCATTCAGA	TCGTCATCCA	TTTCCTCTTG	ATACAAAGAA	TGAAATTTTC	TGCTTTTCTT	9180
TAAGAAATTG	AAAGTCAAAA	ACATACTAAT	GAAACCTATC	AGTAAACAAA	TAGCTGATAT	9240
CCATGGCATC	AAGGCTTTTA	CATCTAAAAT	AATTTCGTGG	GATTCGACAC	GTGCCTTAAA	9300
CATCCCTACA	AACATGCCCA	AGAACCCCCC	AAGACAATAG	ACATCAAAAA	TAACAATCTA	9360
CGTTTCTTTT	TCATATTCAT	TCTCCTTTTT	CACTTGCTAG	ATTTTTGGAT	TTCTTTTCAA	9420
TCCATTCAAT	TACTGGGATG	AGAGCAAAGT	AGACCCAAAC	AAATTGGTCG	CTTTGATAGG	9480
GATTAAACCA	GCTTAGGTCC	ATCCCAATCA	GTAGAAATAC	GCTGACTAAT	AAAGCTATGA	9540
CCACTACATA	ATAAATCACT	TTATACTTGT	TCATCACTCG	TCCTCCTCGA	AACGAAATAC	9600
CGATTCGACT	GTTTCGTTGA	AAATTTGAGA	TATTTTCAGG	GCAATGATAA	TGGATGGGGT	9660
GTACTCATCC	CGTTCTAGTA	GGCTAATGGT	CTGTCTGGAA	ACCCCTGCCA	GTTTGGCTAG	9720
GTCGGTTTGA	TTGAGACCAT	CGCGAGCTCG	AAGCTCTTTT	AGACGATTTT	TTAGTTGCAT	9780
GTTACACACC	TACTCTCCGT	CAAATTCAAC	GGTTTGGATA	TCCTCAATAC	GTTGCAACTT	9840
GAATTTTTCT	TTTCCCGTAT	TATCTACACG	TCGTAGCTTT	ACCCATTCCT	CATCAACATC	9900
CACAACTTCC	CAGTTATCTG	GCCCAATATA	CACTCCCGTT	ATAATTGGTT	CCTTTCCAAT	9960
CATTTCTTGT	AATAATCTCG	ACATTTCTGC	GTTTCCTTTC	TCTTTTCGCT	CAAGTCTTTT	10020
GATTTTATTC	TCTAGTTTCT	TGATTTTTT	AGAATTATTA	GAATAAAAGA	AAATCATAAA	10080
TAGTATAAAT	CCTAGTACCC	ACATTATAAC	TCCTTTCTGC	TTCCTATTTC	TTAACTTGAA	10140
TTCATTGTAA	CATATCTTTT	TCTTTTTGAC	AAGTATAGTT	GTCAAAAAAA	TTATGATTTT	10200
TGTCATTTTG	CAAAAGAAAA	AGGTCAGGAG	TAGGTTCCTG	ACCACTTTAT	СТАТСАТТАА	10260
TACTCTTCTA	AAATCTCTTC	AAACCACGTC	AGCTTCACCT	TGCCGTAGGT	ATGGTTACTG	10320

346

ACTTCGTCAG ITTCATCTAC AACCTCAAAA CCATGTTTTG AGCTGACTTC GTCAGTTCTA 10380 TCCACAACCT CAAAACCATG TTTTGAGCTG ACTTCGTCAG TTCTATCCAC AACCTCAAAA 10440 CCATGTTTTG AGCTGACTTC GTCAGTTCTA TCCACAACCT CAAAACAGTG TTTTGAGCAA 10500 CCTGCGGCTA GCTTCCTAGT TTGCTCTTTG ATTTTTATTG AGTATAAAAT CCTAGTTTTT 10560 CAAAGATTTC TGAGAAGTTT TGGCTGATTG TCTCAAGTGA CACTTGCACT TCTTCTCGGG 10620 TTTGGTTGTT CTTGACCGTC ACTTGTCCGC TTTCGACTTC GCTCTCCT AGGGTGATGA 10680 GGGTCTTAGC CGCAAAGACA TCGGCTGACT TGAACTGAGC TTTTAGTTTA CGGTTGAGGT 10740 AATCACGCTC TGCTTTGAAA CCTTGTTGGC GAAGAGCCTG TACCAATTCC AAGGCCTTGA 10800 TATTTGCCCC TTCGCCCAAG ACTGCGATAT AGACATCTAG GGCGTTTTCG ATAGGGAGGG 10860 TCACACCTTG CTTTTCAAGG ATGAGAAGCA GGCGCTCTAC ACCAAGTCCA AAACCAAATC 10920 CAGCAGTTTC AGGGCCTCCA AAGTAAGCAA CCAAACCATC GTAGCGACCA CCCGCACAGA 10980 CGGTCAGGTC ATTGCCCTCA ATCTCTGTGA TAAACTCGAA AATGGTGTGG TTGTAGTAGT 11040 CCAGACCACG CACCATATTG GTATCGATGA TGTAATCTAC TCCAAGATTT TCCAACATCT 11100 GACGCACAGC ATCAAAATGA GCTTGGCTTT CTTCATCAAG AAAGTCCAAG ATAGACGGCG 11160 CATTCTCTAC TGCCACCTTG TCTTCTTTT CCTTAGAGTC CAAGACACGA AGAGGATTTT 11220 CCTCCAAGCG ACGTTGGCTA TCCTTAGACA AGGTCTCCTT GAGCGGTGTC AAATAGTCAA 11280 TCAAGGCTTG GCGGTAGGCT GCACGCTCT CAGGATTTCC AAGAGTGTTG AGGTGCAATT 11340 TGACACCTTG AATACCGATT TCCTTCAAAA AATGGGCTGC CATAGCGATT GTTTCCACAT 11400 CGGTAGCTGG ATTGCTAGAG CCAAAACACT CAACACCAAT CTGGTGGAAT TGGCGCAAGC 11460 GCCCTGCCTG TGGACGCTCA TAACGGAACA TAGGTCCCAT GTAGTAGAAC TTGCTTGGCT 11520 TTTGCACTTC TGGGGCGAAA AGTTTATTTT CCACATAGGA ACGGACAACG GGTGCAGTTC 11580 CTTCTGGACG GAGGGTAATA TGACGGTCAC CCTTGTCATA AAAATCGTAC ATTTCCTTGG 11640 TTACGATATC CGTTGTATCT CCGACAGAGC GACTGATAAC CTCGTAATGC TCAAAAATAG 11700 GCGTGCGCAC TTCTGCATAG TTGTAGCGTT TGAAAATCTC ACGGGCAAAG CCCTCAACGT 11760 ACTGCCACTT AGCAGACTCA GCAGGTAAAA TATCCTGCGT TCCTTTTGGT TTTTGTAATT 11820 TCATAGGGAA TCCTCTTTAA ACTTAATAGT CTTATTTTAC CATAAATAGA GGGATTAAAA 11880 CAGTAAGAAA AAAATTAGGA TTTAGATATC ATTTTTGAGA TTAAGAATTG TCAAAAAAAT 11940 AGCTAGCAAG GAAAGACCAA CAAATAGCAT CCAAGTCAAC TGTATATTCC ATACGGCTAC 12000 TAGTGAAAAA CAAGCTGTTC CCACAGGTAT GGATAAGGTA AACAATAGAC CTAAAAAATT 12060 ACTAGTACGA GCTAGAACCT CTGGAGCTAG ATTTTTCATG AGCATGGCAC TAATCTTTGG 12120

TTGAACTTTA	CCAGACACAT	ACAGAGTAAA	GAAGAGAAAT	AGCAAACCAA	GCACGACTTG	12190
ATTGAATAAA	TTAGCCAAAC	CAACTAGACT	AAGTCCTACG	GTCTCCCACA	TCATCAATCT	12240
AGGCAAGGAC	TGCTTCCCAA	AATAATCATT	GCCCGTAAGG	CTACTGATGA	TGACTGATAC	12300
TAAAACACAG	AATTGATTGA	TAAATAGTGC	CTCTGTATAA	GAAAAATTCA	AGAGAGAATG	12360
GCTCAAAAAG	AAGATATTAT	AAATTCCACC	CAAAGCGCCA	CCCAAGGAAT	TAATAAGCAA	12420
GACAGCAAAG	AGCATAAAAC	CAAAGTTTTT	CTGTCCACTT	TTAAGAAAAA	CGAGACGTAA	12480
ATTTCGGTAA	ATTGTTAGGA	ACTGGTCTTT	GATAGAAAGC	TTCTCATTTT	TTAAGTTTTC	12540
ACCATCAGCA	GATGACATTG	ACAGGCTCAA	TTTGCTTTTT	CCTAAAAAGA	GGATAGTGGC	12600
TGATACTAGG	AAAAAGCAGG	CATTGATTCC	CGCAACGAGA	GAAAAATTGT	TGACCGATAG	12660
AGCTAAGAGC	CAGACTCCGA	AAGCTTGACC	ACCAATAGCT	GAAATATAGG	TGATGAACTG	12720
TGAAAAAGAA	TAAGCCTCCA	TCAGATCATC	TTCAGCTACT	TTTTCCTTAA	TAAGAGGCAT	12780
ACGCAGGCCA	CCTGCAAAAT	CACTGATGAT	ATCACTAATG	ACATTGATCA	AACACAGGCT	12840
AGAAAAGGCA	AAGAGACTAG	CTTGCTGAAC	AACTAGGGCT	GCTAGAAAAA	ATAGAACCGC	12900
CTGAAACAAA	CCGCTATAGA	CCATCCATTT	GACCTTGTCC	CTCGTGTAAT	CTGCCCGAAT	12960
CCCTGCAAAA	ACTGTAAAGA	GGGTCGGAAG	AATCATGACA	ATATTCGCCA	TAGCAACAGC	13020
AAAAGATGCT	TGTGACAAGG	TCGATGCATA	GACGATAAAG	ACCAGGTTGA	AAATCGAAAC	13080
ACCAAAAGCA	TTGAAGAAGC	GTGG				13104

(2) INFORMATION FOR SEQ ID NO: 35:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19250 base pairs

- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

CCGGGCAAAT	AGTTTTGAAC	TTTTCATCAT	тттстссттт	AAAACTTTCT	CTCCATTATA	60
GACTCTTTTC	AGAAAGTTGT	CAACAGAATT	TTCAGAATTT	TTGAAAATTA	TTTTTCAAAC	120
AACATCTTTG	CAAAAAATAT	GAATATCGTA	AGCGCGTCAT	AACAAGGTAT	CTATCATTCA	180
TGGAGCTCCT	CCTGTATACT	ATTAGTAAAG	TAAATATTGG	AGGATATTTT	AATGCCACAA	240
CCTATTGTTC	CTGTAGAGAT	TCCACAATCT	CGTCGTTTTG	ATTCTAAAAA	GAGAAATGAT	300
ስ ጥ ግርጥ ድርጥጥ እ	እ አ አጥጥ ርርጥልጥ	TGGCAAGCTT	GAAGTAAGTT	TTTTTCAATC	TCTCAATCTC	360

			348			
GAAATGATAG	AACAGCTTTT	GGATAAGGTG	TTGCTCTATG	ACAATTCATC	TATCTAGCCT	420
AGGGCAGGTC	TATCTCGTGT	GTGGGAAAAC	TGATATGAGA	CAAGGAATCG	ATTCACTGGC	480
TATCTCGTT	AAAACCCACT	TTGAATTGGA	TCCTTTCTCC	GGTCAAATCT	TTCTCTTTTG	540
TGGTGGACGT	AAAGACCGCT	TTAAAGTCCT	TTACTGGGAT	GGTCAAGGAT	TTTGGCTACT	600
ATATAAACGC	TTTGAGAACG	GCAGACTGAC	TTGGCCCAGT	ACAGAAAAGG	ATGTCAAAGC	660
TCTCGCACCT	GAACAAGTAG	ATTGGCTGAT	GAAAGGCTTT	TCTATCACTC	CAAAAATATA	720
GTAGATTGAA	ACTAGAATAG	TACACCTCTG	CTTCTAAAAC	ATTGTTAGAA	ATCGATTTTA	780
CTGTCCTGAT	CGATTTGTCC	TGTTATTATT	TCATTTTACT	ATAAATCCAT	CAGAAAGTCG	840
TGATTTCTAT	TGAAATGAGG	ACTTTCTTTT	TATACTCATC	TGCTTTCAAA	AAGCACTCTA	900
GTCCATCTCC	GATTAACGAT	GGACTTTATC	ACCTCCTTCT	CCAGTCCTTG	TATAACATCT	960
TGAAGTTGAT	TCATGACATC	TTCCAAAGTT	CGAAAGGCTT	TATTCTTAAA	TCCACGTTTA	1020
CGAATCTCTT	TCCACACTTG	TTCAATGGGG	TTCATCTCTG	GTGTGTATGG	AGGAATAAAT	1080
GCAAAGCCAA	TATTAGTCGG	AATCTTTAAG	GTACTTGATT	TATGCCATAT	AGCATTGTCC	1140
ATAACGAGTA	AAAGATAATC	ATCTGGATAA	GCTTGTGAAA	GCTCCTATTC	CTAAAGCCCC	1200
TTTATAACCT	CTTGCGAGAG	AGACTATTGA	CTCAGCCCTT	ACTTCATGCG	GATGAAACCT	1260
CCTATCGGGT	TCTAGAGAGT	GATAGCCATC	TGACCTACTA	TTGGACTTTT	TTGTCAGGTA	1320
AAGCAGAGAA	ACAAGGGATT	ACGCTTTACC	ACCATGATCA	GTGTCGAAGT	GGTTCAGTAG	1380
TACAAGAATT	CCTAGGAGAT	TATTCTGGCT	ATGTTCATTG	TGATATGTTG	CGGCAGTAAC	1440
TTAGGACTTT	AGTCCTCTAG	TTCTGCCTAT	GCGATAGCAG	TCCAAGGTTT	AGGAGTAAGG	1500
CGACGCTAAG	CTTGGTAAAC	TGCGAACAGC	TAGAAGCTTA	TCGTCAACTG	GAAGAAGCTG	1560
CACTTGTTGG	ATGTTGGGCG	CATGTGAGAA	GGAAGTTTTT	TGAAGTGCCC	CCCAAGCAAG	1520
CAGATAAATC	ATCCTTAGGA	GCTAAAGGTT	TAGCCTATTG	TGATCAGTTA	TTTTCCTTGG	1680
AAAGAGACTG	GGAGGCTTTG	CCAGCTGATG	AACGGCTACA	GAAACGTCAA	GAACATCTCC	1740
AACCCCTACT	GGAAGACTTC	TTTGCTTGGT	GCCGTCGTCA	GTCAGTTTTA	TCGGGTTCAA	1806
AACTAGGAAG	GGCAATTGAA	TACAGCCTCA	AGTATGAAGA	AACCTTTAAG	ACCATTTTAA	186
AAGACGGACA	TCTGGTCCTT	TCCAATAATC	TAGCTGAACG	CGCCATTAAA	TCATTGGTTA	192
TGGGACGGAG	TAAAAGAGTC	CAGTGGACTC	TTTTAGCCTA	AGCTCAGTTT	AAAAAAACGA	198
GGGTGGTTAT	TTTTAAAAAA	GCGAGGGTGG	TTATTTTCTC	AAAGTTTTGA	AGGAGCTAAA	204
GCAAGAGCTA	TTATTATGAG	TTTGTTGGAA	ACAGCTAAAC	GTCATCAATT	ATAGTGCGTT	210
GAATCTATAA	CAGTACGCAT	CGACTGCTAA	AATATTTCTA	TAAATCAATT	TTCCTTTCCT	216

AATCGATTTG	TTCATATCTT	ATTACAATCC	ATTATAAATA	GCGAGAAATA	TCTATCCTAT	2220
CTTCTAGAAT	GTCTTCCAAA	CGAGGAAACT	CTCGTAAACA	AAGAGGTTTT	AGAGGCCTAT	2280
TTACCGTGGA	CTAAAGTTGT	ACAAGAAAAG	TGCAAATAAG	AAATCTCCAG	ATTAGGAACT	2340
ATATATGAGT	TCTCTAGTCT	GGAGATTTTT	CAATAGACTT	CGTTATTGGG	CGGTTACTTT	2400
CGAAACTTTG	AAAACTTCAA	AAAACGGATT	TTTATCGCTC	TGAACATCAA	AAAAGAAAGG	2460
ACGAAATTTG	TCCTTTCTCA	AGCTTAGCTT	TTCTTCAACC	CACTACAGTT	GACAAAGAGC	2520
CCTTTATTCT	ATCAAACATG	AAGCGCAAAA	ACAAGCCAAA	AATCCGATAG	AATGGCTATC	2580
CCTCGACTAT	CAAGTAAGAC	ATTTCCATCA	AATACGTTCA	ATTTTACTCT	TGTTCTACTA	2640
AGAATTAATC	ATCTCGTTTT	GATTTATTAA	AAATATACAA	TTCAGCTTTT	CCTCCAAACT	2700
ATTTTATCCA	CTATCCCTGT	ATAGCTCTGT	ATTATCTTAA	CAACTTTAGT	AGAGACATTT	2760
TCCTCAACAT	AATCCGGAAC	CGGTAATCCA	AAATCCTCAT	CTTGTGCCAA	GCTAACAGCA	2820
GTTTCAACTG	CTTGAAGAAG	AGAATTTTCA	TCAATGCCTG	CCAAAATAAA	TCCTGCCTTA	2880
TCTAAGGACT	CAGGACGTTC	TGTACTTGTA	CGAATACATA	CAGCGGGAAA	AGGATAACCT	2940
TGACTAGTAA	AGAAACTACT	TTCTTCCGGT	AAAGTTCCCG	AATCAGATAC	TACAACAAAT	3000
GCATTCATCT	GTAAACAATT	ATAGTCATGG	AATCCTAGTG	GCTCATGCTG	AATCACACGT	3060
TTATCTAGTT	TAAAACCGCT	CTCTTGTAGC	CTTTTCTTTG	ATCTAGGATG	GCAAGAATAT	3120
AAGATTGGCA	TATTATACTT	TTCAGCTAAT	TGATTAATTG	CTGTAAAGAG	AGAAATAAAA	3180
TTTTTATCTG	TATCAATATT	TTCCTCACGG	TGAGCTGAAA	GTAAGATATA	ACCTCCTTTT	3240
TTCAATCCCA	AACGTTCATG	GATATCTGAA	GACTCAATAG	CAGATAAATT	TTTATGTAAC	3300
ACTTCTGCCA	TAGGAGAACC	AGTTACATAT	GTGCGCTCTT	TAGGTAAACC	ACACTCATGT	3360
AAATACTTAC	GTGCATGTTC	AGAGTATGCT	AAGTTAACAT	CTGAAATAAC	ATCAACAATC	3420
CGACGATTAG	TCTCTTCCGG	TAGGCACTCA	TCTTTACAGC	GATTGCCAGC	CTCCATATGA	3480
AAAATTGGAA	TATGTAAACG	CTTGGCAGCA	ATAGCTGATA	AACAAGAATT	TGTATCCCCT	3540
AAAATCAATA	AAGCATCTGG	TTTAATTTGA	TTCATCAATT	TGTATGAAGT	ATTAATAATA	3600
TTCCCTACAG	TAGCACCAAG	ATCATCTCCA	ACAGCATCCA	TGTATACGTC	CGGAGTGTCT	3660
AACCCTAAAT	TATCAAAGAA	AATACCATTT	AAATTGTAAT	CATAGTTTTG	TCCAGTATGT	3720
GCCAAAATAA	CATCAAAATA	CTTTCGACAT	TTAGTGATAA	CACTACTTAG	ACGTATAATC	3780
TCTGGACGTG	TTCCCACAAT	AATCAATAAC	TTAAGTTTGC	CATTATCTTT	AAAGTGAATA	3840
TCACTATAAT	CTGTCTTAAT	TTTCATTTAT	TTCTCCACTT	GTTCAAAAAA	AGȚATCTGGA	3900

			350			
TGTCTAGGAT	CAAATGACTC	ATTAGCCCAC	ATGACAGTAA	TTAGATTTTC	TGTATCAGAA	3960
AGATTAATAA	TATTATGTGC	ATAGCCCGGT	ATCATATGTA	TTGCTTCAAT	CTTATCGCCC	4020
GACACTTCAA	AGTTCAGAAT	AGGATACTCT	TGACCGTTTT	CATCCAGCCC	TATCCTACGC	4080
TCTTGTATTA	AAGCACGACC	AGAAACAACC	ATGAAAAATT	CCCACTTAGA	ATGATGCCAA	4140
TGTTGCCCTT	TGGTAATGCC	AGGTTTAGAA	ATATTAACAG	AAAATTGACC	CGTATTTTCT	4200
GTTTTTAATA	ATTCCGTAAA	ACTACCTCGT	TCATCTATAT	TCATTTTTAG	AGGAAACTTA	4260
AACTTATCTA	CTGGTAAATA	AGATAGGTAG	GTAGAATACA	ATTTCTTTTT	AAACGATCCC	4320
TGAGGAATTT	CAGGCATAAC	TAAACTATCA	GGCTGTTTTT	TAAATGTTTC	TAATAGAGAG	4380
ACAATCTCTC	CTAAGGTTGC	ACGATGAGTC	GTTGGTACGT	AGCAGTAGTT	TCCTGATGGG	4440
CTAGGTAAGA	TTTGTAATCC	ATCTAGATTA	CAACGATGAG	GATTTCCTTC	CAATGCAGTT	4500
AGACACTCTT	GTATCAAATC	ATCAATATAC	AGCAACTCCA	ATTCTACACT	TGGATCATTT	4560
ACTTGAATAG	GTAAATCGTG	AGCTAGATTA	TAACAGAAAG	TTGCTACAGC	AGAATTGTAG	4620
TTAGGACGGC	ACCACTTCCC	ATAAAGATTC	GGGAAACGGT	AAACTAAGAC	AGGTGCTCCC	4680
GTTTTCTTTC	CATATTCAAA	GAÄGAGTTCT	TCCCCTGCTA	GCTTAGATTG	TCCATATATA	4740
GAGTTTGAAA	ATCGGCCTTC	TAAACTAGCT	TGAGTAGAAC	TTGAGAGTAG	AACAGGACAA	4800
GTGTTTTCAT	ACTTTTCTAA	AATCTCCAAT	AATCTACTTG	AAAAACCGTA	ATTTCCCTCC	4860
ATGAATTCAT	CAGGATTCTG	TGGACGATTG	ACACCAGCTA	AATGGAATAC	GAAATCGGCC	4920
TTCTTACAAT	ATTCATCTAA	TAAAATCGGA	TCTGTATCAC	GATCATACTG	AAAAATCTCT	4980
CCAATCTCTA	AATTAGGACG	AGTCCTATCT	CGTCCATCTT	TCAAAGCTTC	CAGAGTACAG	5040
ATAAGATTTT	TTCCTACAAA	TCCTTTCGCT	CCTGTGATTA	AAATATTTT	AATCATGCCC	5100
CCTCCTTATT	TTATATGCTG	TTTTAATAGT	TAACTCTCTC	GACAATACAT	GATACATTAT	5160
ATATCCTTGA	TAATTTTAAT	GTATCTTAAA	AGATTTTACA	TCTCTTCGTC	TGCTACCATA	5220
TCACGAATTG	CTGTCTGTAT	TTCATCTAAT	TCTAGCAACT	TTCTTTTAAC	TTGCTCTACA	5280
TCCATCAAAT	CGGTATTATT	ACTATTGAAT	TCTGTCAACA	AATTTCTATT	CGTACTACCA	5340
TCTTTGAAAT	ACTTATCATA	GTTAAGATTA	CGATTATCAC	TAGGAACTCT	ATAAAAATCA	5400
CCCAAATCAA	TTGCATTTGC	GCACTCTTCG	TTAGTTAATA	GTGTTTCATA	CCTTTTTTCT	5460
CCCTGTCTAA	TACCTATAAT	CTTAATATCT	TGTTCTGAGG	CAAAAATTTC	TGATACAGCC	5520
TTAGCCAACA	CTTCAATCGT	ACATGCTGGT	GCTTTCTGAA	CTAGTATATC	TCCAGATTTC	5580
ССТТСТТСАА	ATGCAAATAA	AACCAAGTCT	ACTGCTTCTT	CCAATGTCAT	CACAAAACGT	5640
GTCATGCTAG	GTTCAGTAAT	TGTAAGAGCA	TTTCCTTGCT	TAATTTGCTC	AATCCAAAGA	5700

GGAACGACAG	ATCCACGGCT	ACACAGAACA	TTCCCATAGC	GAGTCACACA	TATCTTTGTA	5760
TGCTCAGGAT	TTACCGTCCT	GGACTTAGCA	ACAGCAATCT	TTTCCATCAT	AGCCTTGGAT	5820
GTTCCCATAG	CATTGACAGG	ATAAGCCGCC	TTATCTGTAG	AAAGACAGAT	AACTTGCTTT	5880
ACACCAGCTT	CGATAGCCGC	AGTGAGGACA	TTCTCCGTTC	CCAAAATGTT	AGTTTTTACC	5940
GCTTCTACAG	GGAAAAATTC	ACAAGAAGGT	ACTTGTTTAA	GAGCAGCAGC	GTGAAAAACA	6000
TAATCCACAC	CATGCATAGC	ATTTTTTACC	GAAGCTAAGT	CACGCACATC	TCCAAGGTAA	6060
AAACGGATTT	TCCCAGCCAC	TTCTGGTACT	TTTACCTGAA	ACTCATGACG	CATATCATCT	6120
TGTTTCTTTT	CATCTCGCGA	AAATATACGA	ATCTCTGAGA	CATCTGTTTC	TAAAAAACGC	6180
TTGAGAACCG	CATTCCCAAA	TGAACCTGTC	CCTCCTGTAA	TTAGGAGAGT	TTTTCCTGTA	6240
AATTGTGACA	TATATTACAC	TTCTCCTTCT	AGTATGTCTG	CAATTTTCTT	ACAAGCCGTT	6300
CCATCTCCAT	ATGGATTTGA	AGCTTGACTC	ATTGCTTGAT	AAACTGAATC	ATTTTCTAAT	6360
AATTCTTTAA	AATGCCTATA	AATATTATTT	TCATCAGCAC	CTACAAGTTT	CAAAGTCCCT	6420
GCTTCAATTC	CCTCTGGACG	TTCAGTTGTA	TCTCTCATAA	CCAAAACAGG	TTTTCCTAAA	6480
CTTGGAGCCT	CTTCCTGAAT	ACCACCACTA	TCTGTTAAAA	TTAAATAACT	TCTTGATAAA	6540
AAATTGTGAA	AATCTAATAC	TTCTAAAGGT	TCGATCATCT	TGATACGTTC	ACAGCCACTT	6600
AGTTCTTCCT	CAGCAATTTG	GCGAACACGA	GGATTCATAT	GGATAGGATA	AATAGCCTTG	6660
ACATCTGAAT	ATTCTTCAAT	AATCCTTCTA	ATTGCTCTAA	ACATATGTCT	CATCGGTTCA	6720
CCAAGATTTT	CACGACGATG	AGCTGTAATT	AGAATAAACC	TGCTTTCTCC	TATCCATTCT	6780
AACTCAGGAT	GCGTATAGTC	CTCTTGAATT	GTAGTTTGTA	AAGCATCAAT	CGCCGTATTA	6840
CCTGTCACAA	ATATGCTCTC	TGGAGTTTTT	COTTOTOTTA	AAAGATTATC	TTTTGAAAGT	6900
TGTGTTGGTG	TAAAATGATA	CTGAGCCAAA	ACCCCAACTG	CTTGACGATT	AAACTCTTCA	6960
GGATATGGTG	AATAGATATC	GTAAGTGCGC	AAACCAGCTT	CAACATGACC	AATTGGAATC	7020
TGTAAATAAA	AGGCCGCCAG	TGAACTAGCG	AAGGTCGTAC	TTGTATCCCC	ATGAACTAAC	7080
ACCAAATCAG	GTTTTTCTGA	CTCTAAAATA	GCCTTCATTC	CTTCCAAAAT	GCCAATGGTC	7140
ACATCAAATA	AAGTTTGTTT	ATCTTTCATA	ATAGACAAAT	CAAAATCGGG	AATAATCCCA	7200
AATGTGTCCA	AGACCTGATC	CAACATTTGA	CGGTGTTGGC	CCGTAACGCA	AACTAATGTT	7260
TCAATATTCT	TACGTGTTCT	TAACTCTTTG	ACCAAAGGAC	ACATCTTGAT	GGCTTCTGGA	7320
CGAGTTCCAA	ATACTACAAC	TACTTTTTTC	ATATATTTAC	TTACTCCTAA	CAAATAATGA	. 7380
ACGGTTCTTA	AAATAAATTA	GATAACGGCT	AATCCATAAC	ACCACCTCAG	ACATACTTGA	7440

			352			
ACAAATAGCT AAT						7500
AGTTTGGACA ATC	GAAGCTA A	ATATAGTTGT	CATTGTAGTT	TCTTTCACTT	TATCAATAGC	7560
TCCTAAGACA GGC	CATCCGT	AAATCATAGA	АТАААААСТА	GCAACAAAAG	CGGGTAATAA	7620
GTACTTAAGA AAA	TCTGCTG	AAACGGTATA	TTTTTCACCA	CCAATTATAG	AAAGAATTTG	7680
ATTTGAAAAG AAT	'AAAACTA '	TCAAAACTCC	AAAGATAATA	GGAATAAACA	TAATCCGATT	7740
AATACTCTTA ACC	GATTGTA	TATCTTTAGT	ACGTATCATA	TGCGGATATA	AACTATTCGC	7800
TATAGGATTA TAC	AATGATT	TTGCTGCTGA	AAGCAGTTGC	ATTGCTATCC	CCCAAAAGGC	7860
TATCTCTTGA CT	TGTAAAT	AAAAACCCGA	AATGACTGTC	GTAAAGACGC	CAAAAATAGT	7920
AGTTGCAAAA TTC	GATAAAA	AATAAATAGA	GGATTCCTTT	AAATCTTTAA	CCCAAACAGA	7980
CAGATAAGAA AAT	GATAATT	TAATTCCATA	ATAATGAAGG	AATCTATAAG	AAACTACTGC	8040
AGCAACTAAA TTO	CCAATTC	CTTCCAATAT	AGGAATCCAT	AAAATAGAAG	AATCATCTTT	8100
TACTACAATA AAT	rgtcaaaa	TTGTAATGAT	AGTTTTAGAA	ATAATATAAG	GAATTGCAAC	8160
TGCATGCATC TT	TCAATTC	CACGAAATAA	AAAGTCAAAG	TATAAAATAT	TGGTCACTGT	8220
AGCTAACAAA TA	AAAAACTG	AAAAAAGAAT	ATTCTCTCTC	ATTATTGGGA	TTTGCCACAT	8280
CAATATGGTG TA	aattagaa	TCGAAATGAT	AGATAAAAAT	ATTTTTTCAA	CTAGAGTATC	8340
TCCAACTATC CT	TCCAATCT	TTGAGGGAGT	AGTACAAGCA	TTTACAATAT	TTTTTGTAGC	8400
TGATATCATG AA	ACCAAAAT	CAATCACCAG	TTGAACATAA	GCTATTAACG	CTTTAACATA	8460
AATAACCATT CC	ATACGCGT	CTAGCGAAAG	CACCCTTGTC	AAATACGGGA	GTGTTAATAA	8520
AGGAAATAGT AA	TTTAACAA	TATTCAGAAT	ATAGAGAGAA	CTTGTATTT	TTATAAATGA	8580
AATTCTATCA AC	TTTCACGA	ACTAGTCCTT	CCAAAAAAAG	ATCTAAATAG	TCCAAACTAC	8640
TTCTCGCTTT CA	ACACCAAT	TCTGAAGGTA	TTGTTATCGG	TTTTAGATGA	AAAGTTTCAA	8700
GTTTCTTTAC AA	TACTATTA	ACACTTGAAT	CAAATAAAGA	TTCACAACGT	TGTAACTCTC	8760
CAATTGCTCC AT	AATAACGT	GCTGTTTTT	CTGGATGGCA	TGCAATGGCA	ATCACAGATI	8820
TATTAAAACA TG	TTGCCACT	ACCCCAACAT	GTAATTTACA	AGTTAAAACC	ACATCTACCA	4880
TTTTCAACAA TO	ATGTCATT	TCTGCAGGAG	AATGATACT1	GAATTGAAAA	CAATCCTCAG	8940
TTCTAACTAA TT	TTCTAAAT	TCCTGATAAT	AAGCATCTTC	ATAAGGTAGA	ATGGAATCCG	9000
AAGTTACTAC AA	CATAATAG	TTAGGATTGT	TTTCTAGAAA	AAGACTAATT	GATTCCGCAA	9060
ATTTTTCAAG AC	CTTTTTTG	GAATGATTA	R AGTGAACAA	AATTATCTTO	TTATCTTTAG	9120
CTTCTCTTTT CA	ATTGACAC	AGCTGCTCTC	TITTTTCTT	TCTTAATTT	A CTTGAAATAA	9180
TTAAATCAAA GO	TTTCATGC	ACTGGAGCC	AAGGCGACA	A ATGCTTCAA	A GAATCAAATG	9240
					*	

ATTCTCGATC ACGAACT	GTA ATAAATTGAG	CATGATTAAT	AATTCTCTTT	ATACCATAAT	9300
TCATCAAAGA ATCGTTA	TTA GGCCCTGCAC	CAATACCTAA	TACTCCTATA	GGCTTTTTAA	9360
AATATGAAGC CCAAATT	CCC AAAGGTAAAA	ATCGTTTAAA	TTGGATTAAA	TTATCACGAA	9420
AACGTGCATT ATGCCCT	TCC CCAAAATATC	CTCCCGGGAT	ATACAAAATA	GCATCTGCTT	9480
GTTTTTTAGT AAAACTT	TGT TTTTGGCGAT	ATTCTTTCAA	GTACATTTGA	AAGAAATCTG	9540
ATGGATTATA AAAAGAA	ACT TCATATCCTT	TAGATTCTAA	TAAATCATAG	ACAATCTCAC	9600
CGTAAAGATA ATCACCG	TAA TTACTTGAAC	CATAATCCGT	TGCACCATGT	AACATAATTT	9660
TTTTCACCAC TATTTTT	TCA ACCTCCTAAA	AATAAATATC	ATAATCAAAC	TATACATAAT	9720
AGGACGATAA ACATCTA	TTG AACTACTTCT	CACTAAAAGC	AATAGTTGAG	AAATTACCGA	9780
AAAATAAATA ACTTTTG	AGA TTTTACTTGT	TTGAAAAGCT	CTGAAATTTA	ATCGCCATCC	9840
ACTANATATT CCCAAAA	CAA AACTCCAAAA	AACACCACCA	TAGTAACCAA	AGTTCCAAAA	9900
TAATTCTTCC ACAAAAG	AAG AGCCTACAGG	TAACCCCAAA	AATTTATTAA	TAACAACCGT	9960
CGCTGATGCT TTATCAA	AAA AATCACCAAC	TAACCATCCA	ATAGGAAAAA	TTGATAGGAT	10020
AGTGCGTAGA AATGTCA	TCC CATATTCATA	TGGAATGCTA	CTAGGCACAA	CAGTTACAGC	10080
AGAAGCTACT GTTAGGC	TGG TCAGTCCCGA	CTCTGAAAAT	ACTTCCCCTA	GTATATTCTT	10140
TACAAAATCT AATGAAG	AAA AGGAATCAAA	TAAGTATATA	CCTATAGTAT	TCAAGTCGAA	10200
ACGGTGCCCC CTAATAA	CAA CTAATACATT	TAATAGAAAT	ACAGTTACTA	TTAAAAATAC	10260
AAGTACTCTT TTCTTCG	AAA AAGTAATCCC	TAAAGATTGT	GTGTATACTA	AAACCAACGC	10320
CAAGATTGAA AACACCT	GGA TTTTACGACT	TCCTGTTAGG	ATCATTATCA	AAATTAGGTA	10380
AAACAACATT ACCCAAA	AAA TAGTACGCTT	TATAACTCGG	GACAGCTTAT	CTGAATAAAA	10440
CAAGGAGAAC ACACCAG	GAA GCATAAGTAC	TCCTAAATCA	TCTATTATTC	CTGAACTAGC	10500
TGCCTCTGAA TATGCTG	AAT AGCTATTCGC	CGCTCTAACT	GCTAGTACTG	TTTTAGAATC	10560
AGTTATTACC CTAGAAA	TAA AGCCCACTCC	TGTTAAAATC	CTACCCGCAT	TGTACAAAAT	10620
TTTCTCTTCA TTTTCCT	GAT AATTTTGTAC	TTCTGAATGA	TAATGTACCT	TTCCATCACT	10680
ATAAAAAAT AAATAGC	CTA CAGAATAACA	AAACAAAATC	CAAATTATAA	AAATATATGA	10740
ATGAAATAAT TCTTCAT	TAT TATAGAAGTT	ACTAGGGCTC	CACAGCAGAG	TTGTTTGAAA	10800
CCCCATATAC TCATTGA	AAA TTAATCCAAA	CATAAAAAAA	TAAGATAAAA	TCAGATACCA	10860
TACAGAAAAA TCATATA	TAC TAACTTTTG	ТААААТАААА	CCAGTAATTT	GAAAAATAAT	10920
TAGAAAGCAA ACCCATA	TAA ATATAGACGG	AACATAATTA	GATATAAGAA	AACCATTATT	10980

			354			
	AGAGTCCAGA		GAAAGCAAAT			11040
	CAAATATACT					11100
	AATAATTTAC					11160
GTTATTTATT	TCAAAACGAT	TGCATTCCTC	AGATGTTAAA	GACAGTACTT	TATCTTTCCA	11220
TAGCAACACA	GACTCTTCGT	TGATAGGTAA	GTAACTAATG	TTTTTGGTCA	CATCTACTTC	11280
TTGCGTCACT	GTATCTGACG	ATAAAATTTG	TAATCCCGAT	GCCTGAGCCT	CTACTAGAGA	11340
AACAGGCAAC	CCCTCATATT	TAGACGGAAG	CAAAAAAAACA	TCCATCGCAG	ATAATAAATC	11400
AGAAATATCA	GTCCTTCTCC	CTAAAAATAG	CACATATGGG	GTCAGATTTA	GTTCTAAAGC	11460
TTTCTGTTTT	AATTTCTGCT	CATCCTCACC	ATTACCAACT	AGGAGTAAAA	TAACATTTGG	11520
TTTGATTAAA	ATGAGTTCTT	TTAAAACGTT	AAATAAATAA	CTTTGGTTTT	TTTGATCTGA	11580
TAGGCGAGCT	ATATTTCCTA	ATACGAACTT	ATTTGACACA	TCTAATTCTC	TACGACATTT	11640
TTCTCTAACA	TCTGACAAAA	ATTGATACTT	TTTCAAATCA	ATTGCATTAA	AAATAATTTC	11700
AATTTTTCCC	TCTTTATACG	CTTTCTCTCC	ATATAACCAC	TTAGCCGAAT	CTTCCCCACA	11760
TGCAAACCAA	TGAGTTGCTA	AGATTTTAC	CAAAATTGTT	ACTAATTTAC	GCAATACTTT	11820
TTGAAAACTC	TTTTCTGTTA	CATAAGCCAT	ATGACTATGA	ATAATTCTAA	TTTTACAACC	11880
AATTATTTA	GATAAGATCA	GACCAATTGC	AGATTTATAG	CCATGGCAAT	GAACTATATC	11940
ATAATCTCCT	TTCTTTATTA	TTCTAGCAAG	AGAGAGAAAC	TGATGTAGAG	GCTTTTTCCT	12000
TAATAGAGGG	ACATGATAAA	CCTTTGCAC	CAATTCTTTC	ATTTTATCCT	CTAAAAATCC	12060
TTGTTCTTT	r ccaggcacaa	. TAAAATCAAA	TTGAATTTTT	TTTCTATCA	TGTGAGAATA	12120
ATAGTTGAA	r agaaaactti	CTACTCCACC	ACTATCTAGE	GTTGTAAATA	GATGTAATAC	12180
TTTAATCAT	r crrcrrccri	AAGCTTAAGA	TTCGCTTCTC	TAATTCTATT	TCTGTTTTTT	12240
GTTTTTCTA	A ACTAATTCTO	TCCATGAAG	TATCACAATT	CTTAATTAG	TGTTTCCTGT	12300
CAAGGTTTT	G AATATACAA	GCCAAACAA	CTTTTTCCG	TTCATCCTTC	ATAGGTAAAA	12360
CGAAACCAA	A ACCATTCTC	ATTGACACT	TTTCCATAT	AGTATCTTC	A CAAACTAAAA	12420
TAGGTTTAT	A CAACAATGC	A GCAAAGTAG	A GTTTATTAG	A CAAAGCATAG	G TCTAGTAAGG	12480
GAGTGTGAT	T CCCGTATAA	A TTCAAAACA	A CATCTGTAT	CTTATAAAA	A GACATGGTAT	12540
CTTTAGGCT	G GAATGTGTC	ACCAAGTTA	A CATTGCTGA	r ATTTTTTC	T TGACAAAATT	12600
CCCTTAATT	C TCCTGCATT	A GTACCTATA	A AATTCAACT	G AAATCGACT	G TCATTTGCAA	12660
AAAAATCGA	т татттттт.	A TTTTGTTCT	T GAAAACGAA	T TAAACCAAT	G TAGGAAAGTT	12720
GAATTGGAA	A CGTACTATT	A TTTTTTAAC	T GCTTTACCT	C GTTTAATTC	T ATCATATTGG	12780

355

GTAGGTTATG	GGTAGTAAAA	TACTCTCCCA	TTGGTAAAAA	AAATTTATAG	CCGTCTGAAG	12840
AAACGATATT	CATTAAAGAA	TTTTTCACCA	ATTGTTTCTG	AACCAAACGA	TAAACCAAAA	12900
ATTTTTCATA	ACTGTAATCA	CGAATATCAT	AAATATATCT	ATTTTTAAAT	GAAAAGAGAA	12960
GAAAATCTAC	TAAAATGAAA	GACACAATAC	TATGTAACGG	CAATATCATA	TCATAATCAT	13020
TTTCTTTTAG	CTTCTTTTTA	ATTTCTTTTC	TGAATTTTAC	ATAACCTAAT	ATCTTACTTA	13080
ATTTTCCTTT	ACCAGAAAAA	GAAATACGAT	AGTAGTTTTG	TTTTGTAATA	ATCTCGTTAA	13140
TATTCTTATC	CCAATATATA	ACATCGTAAC	TAATAGACAG	TTTCTTCAAT	AATTCTTTAT	13200
AAAAATTGAA	GTAAGGAGTT	AGATATATAT	TATCAGATAG	TATAAACAGT	ACTCTCATTA	13260
AATTATTCTT	TCTTACTTTC	CCTCTCTAAA	CATGTCTCCA	GTTCGAGCAT	AAACTGCTCT	13320
TTTGAAAAGT	GATTTTCATA	GTAACAACGA	GCTTTCTTTC	CTAACTCTCT	TTGTCTCTTA	13380
ATAGATAACA	TACTAAATTT	ACAAATATTT	TTTGCCAATT	GTTTTACATC	TCGTTCGGGA	13440
CTAACATATC	CACAATTTGC	TTCTTCTACA	ATTATTTTAG	CATCTCCTGA	AATTGCACCT	13500
ATAATTGGTT	TGCCTGCCGC	CATATAAGAk	TGTACCTTCC	CAGGTATAGT	ACGAGAAACT	13560
ATCGAGTCTC	CTATTAAAGA	AACTAACATA	GCATCTGATT	TTTTATAGAA	GGATGGCATT	13620
TCCTCCAAAG	AACGTCTTCC	ATAGAAGGAA	ATATTCTTTA	ACTCCAATTC	ATGAGCTAAT	13680
GCTTTCATGC	TTAACAATTC	CGTACCATCT	CCAACAAAAT	GAAAATGAAT	TTTCTTGGGT	13740
AAATTGGTAT	TCTTCTCTAT	CAAACTGGCA	GCTTTCAAAA	TAGTTTCCAA	ATTTTGTGCT	13800
TTGCCAATAT	TACCAGCAAA	AGTTAGGTCA	ACACTTTCTT	TATTAACTAT	AGATTCATCA	13860
GGGATAAAAA	GATCTTCTGC	ATATTGTGGC	AAATATGTAA	TCTTTTGTTC	GGATATGTCA	13920
AATTGCTTCA	CAAAATAATT	TTTAAATGAT	GGACTAGTGA	CAAATATATA	ATCACTAGCT	13980
CGGTAAACTT	TTTTTGAGAT	AAATTTAAAC	AGCTTGAAAA	TCAAGCCATC	TTGTTTCACT	14040
CCACCTACGG	TTAAACTATC	TGGCCAAACA	TCCATACAAT	ATAGAAACAT	CGGTTTCTTA	14100
TATTTTTTT	TATAAGCCAT	ACCAGCCCAT	GCCATCATAA	CTGGAGACAA	TTGGTTAACG	14150
AATACACAGT	CAAAATTCGA	TCCATCTTTC	GTTTTATACC	TCCCCAATAA	AACTCCTAAA	14220
GTAGAACTAA	TTGCAAAGCT	AAAATAATTC	AACAATCGAA	ATACAACACT	ТТТТТТТСТА	14280
GGGATTGTAT	AAGAACGATA	TATCGTAACA	CCTTCTATAA	TCTCACGTCT	TTTTTTATTA	14340
TGACGATAAT	CTGCATATAT	CTTCCCTTCA	GGGTAATTAG	GAATCCCAGC	CAAAACAGAG	14400
ACTTCATGCC	CTTTTCGAAC	TAAATCTTCA	CAAATATCTG	ACAACCTGAA	TGGTTCTGGC	14460
TTATAATGTT	GGCAAACAAA	TAGTATTTTC	ATTGTCCAAT	TTAACTTTCT	TTCTTACCAC	14520

TACCCTCTAC	AATACCTTTT	CGTTTCAGTA	356 CGTAAGGTAT	TGTCTTAACT	АТАСАТСТАА	14580
TATCCATTAT	CAAAGACAGA	TGTTTAACAT	AGTAGCCATC	TAACTCCGTC	TTCATCTCAA	14640
CAGACAAAGT	ATCACGCCCG	TTAATTTGTG	CCCATCCAGT	TAACCCTGGC	AAGATATCAT	14700
TTGCTCCATA	CTTATCTCTC	TCTGCAATCA	AATCTAGTTC	ATTTATACCC	GCTGGTCTAG	14760
GACCTACAAT	ACTCATATTA	CCAACAAGAA	TATTAAACAA	TTGTGGTAGT	TCATCCAAAG	14820
ATGTTTTTCG	CAAGAAAGCC	CCTACTTTTG	TAATCYATTG	CTCTGGATTA	TATAAGTTTC	14880
GAGGCGCCAC	ATTTTTAGGT	GCATCTATTT	TCATAGACCT	AAATTTCAAA	ATATAGAAGT	14940
ATTCTTTATG	AATACCAAAG	CGTTTTTGCT	TAAATATAAC	CGGACCTTCT	GAATCAAGTT	15000
TAATCGCAAT	TGCAATTATC	ATAAAAACCG	GACACAATAT	TATTATCCCT	ATTAAAGATA	15060
ATAATATATC	ACCTAATCGT	TTTATTATAC	CGTACATAAA	CAACCTCCAA	CTATAAATTC	15120
TATTTCCATT	TTTCATTCTA	TTTCCATTTG	ACAAATTAAA	TCAGGCAGTA	CATGCAACTA	15180
CAGAAACTCA	ATATATATTT	GGTCACTCAA	TGATTTTCAG	AAATATAATT	CTTTTATCCT	15240
CTACGTCAGA	TAAAACTTTT	CTCCATCTAA	ACAAAATTTA	TTTGTTTCAG	TAATATATGA	15300
GTTCTCAATA	ATGAATTAGA	AGGTCCAGTT	CAATTATTCT	TCCAAATAGA	CCGAATATTA	15360
TTTGAAGACA	TATCGGTTTC	TGAAATTGCA	ATCAGTACAT	AAGCTAATAA	ACTGATAAGT	15420
ATGCTCTGTA	AGAATGCCAG	AGTTATATTG	TAGTCCCCTT	CCATACTATA	TTCATTTTAT	15480
TTTTTACCAT	AATTTCCATA	GGAACCGTAA	ACTCCATACT	TATTAACCGA	GATATCCAAT	15540
TTATTTAAAA	CAACTCCTAG	GAACAGTTTC	CCTGTTTGTT	TTAATTGTTG	TTTCGCTTTT	15600
TGGATATCAC	GTTTATTCGC	CTCACCTGTT	GCTGTTACCA	AGATGGACGC	ATCACACTTT	15660
TGAGTGATAA	TTGCCGCATC	AATAACAATT	CCAATAGGCG	GTGTATCAAT	AATGATATAA	15720
TCAAAATATT	TACGCAATGT	TTCAATCATA	TCATTAAAAT	TTTTACTTTG	TAACAAGGCT	15780
GTAGGGTTTG	GTGATACAGA	TCCCGATTGA	ACTACAAATA	AATTTTCAAT	ATTTGTATCA	15840
CATAAACCGT	GAGATAAATC	AGCTGTCCCA	GATAAAAATT	CTGTTAGCCC	TGTAATTI IT	15900
TCACGAGATT	TAAAAACTCC	TAACATAACT	GAATTTCGAG	TATCGCCATC	GATCAAAAGA	.5960
GTTTTATAGC	CTGCACGCGC	AAACGACCAT	GCTATATTTA	TGGAAGTAGT	TGTTTTTCCT	16020
TCCCCAGGGT	TAACAGAAGT	AACGGAAATT	ACTTTTAGTT	TATCTCCGCT	CAACTGTATA	16080
TTTGTACACA	AGGCATTGTA	ATATTCTTCT	GCCTTCTTAA	TGAACTCCAG	TTTTTTTTGT	16140
GCTATTTCTA	ATGTCGGCAT	CCTTCTCTCC	TATTTCAACT	TACCCAAGTT	TGGCACAACT	16200
CCCAAAAGTG	TCATCTGCAA	TGTATTTTCG	ATATCTTCCG	GACGTTTCAC	ACGAGTATCC	16250
AAAAGTTCAA	GATGAAGAAC	TATAACACTA	GTTCCAATCA	CCCCTGCCAA	AAAACCAATT	16320

AGTGTATTGC GTTTAATATT TGG	CGAAGAC GGGGATATCG	CCGGCCTTGC	CTCCTCCAGT	16380
GTTGTCACGT CAGAAACACG AGT	AATACTG ATAATTTTT	GAGCAGCTAC	TTCTCTCAAA	16440
GAGTTAGCGA TACGGCTTGC CTC	TTCAGGA ACTCGATCAT	TAACTGAAAT	AGAGACAATA	16500
CGGGTATCAA CTGGTACTGT CAC	TTTAATT TTATTAGCCA	AACCTTTTGG	CGTCAAATCT	16560
AGTTTCAAAT CAGAAACAAC TTC	CTCCAAA ACATCCTGCG	AAAGGATAAT	CTCACGGTAG	16620
TCTTTTACCA GATAAGTTCC TGC	CTGCAAA TCCTGATTTG	TCAACCCCGG	CTTGTCTCCT	16680
TGATTGCGAT TCACTACGTA AAT	TCGCGTG GTACTCGTAT	ATTČTGGCTT	AACAATAAAA	16740
GTGCTATATG CAAAAGCCCC CGC	ACCTGTC ACAAGTGCCA	CTATTAAAAT	CATTAGCTTG	16800
CGTTTCCACA AGCTTTTAAC TAA	ATTGAAAT ACATCGATTT	CTATCGTATT	TTGTTCTTTC ·	16860
ATCATTTCTC CTAAATTAGT TG	ATCCATTA CAATTTTTCC	AGGATTGTCT	ATAAAAAGTT	16920
CCTGAGCCTT CGCTTCTCCG TAT	TTTTGGG TAACAAGGTC	ATATGCTTCT	GCCATATGAG	16980
GAGGTCTACC GTCTAGATTG TGC	CATATCAC TTGCAATGAG	ATGAACCAAA	TCCTGCTCTA	17040
AAAAATACTG AGCTCTTTTT TT	CATGAATT TATAACGTT	GCCAAAAAGT	TTGGGTTTGA	17100
GGACATGTGA ACTATTTACT TG	CGTGTAAC AGCCCATATO	GATCAGTTCT	CGAACGCGTT	17160
TTTCATTATT TTCAAGAGCA TC	ATAGCGCT CAATGTGGG	AATGACTGGA	GTAATTCCCA	17220
ACATCAAGAT CTTGCTCAAG GC	GCTATGAA TATCGCGAT	A AGGAGTGTTC	ATACTAAACT	17280
CTATCAAGGC ATAACGACTA TC	ATTGAGGG TCGGAATCC	CTTTTTTTCC	AGCTTATCCA	17340
GAACATCTGG TGTGTAATAA AT	TTCAGCCC CGTAAGCAA	r gaccaagtca	CTCGCCACTT	17400
CCTTAGCTAT TTCCCGAACC TG	AAGAAAGT TTTCTGCTA	CTTCTCTTCC	GGAGTTTCAA	17460
ACATGCCCTT GCGACGGTGA GA	GGTAGAAA CAATGGTTC	G CACCCCCTGT	CTGTAGGATT	17520
CTGCCAAGAG AGCCTTGCTT TC	CTCTCTTG ACTTGGGAC	C GTCATCTACA	TCAAAAACGA	17580
TATGCGAATG GATGTCTATC AT	TTCATCTA CCCTCCATC	A CATCCTGTAT	AGCTGCTTTA	17640
ACTACAGCTA AACTACTATC AT	CTATTTCC ATCACATAG	A GGTTACTGT	TGGCATTGCA	17700
TAAGAAGGAA GATCCATCCG AC	CTGTCCCT TTTAAATCT	T GAGAATTTA	TTTATATTC	17760
CCTCCACTTT CTAACTGAGC AT	TGACCAAA TTTATCATG	G TCTCAAGTG	CATATTTGTT	17820
TGGATAGAAT CTTGCAAGCT AT	TAATGATC GTACTATAA	T TTTTCAGCA	TTCGGTTGAC	17880
GTTAATTTTT GAAGGATAGC CA	ACAATCACC TTTTGTTGA	T GGCGCCCGC	G GTCACGATCG	17940
CCATCTGCTA GGGAGTAGCG CT	CACGAACA AAACCGAGA	G CCTGTTCTG	A ATCAAGATGA	18000
ACATTGCCTG CAGGGTAATA CT	TTTCCATTC GTATGGGC	G TAAATTCTT	G ATCATTATAA	18060

			358			,
ACATCAATTC	CACCCAACAA	ATCAATCAAT		AAGTGAAGTT	CAATCGCACA	18120
TAGTAATTGA	TATCCACTCC	ATAGAGATTT	TCTAAGGTGT	GAATGGACGA	ATCAACTCCA	18180
TAAATGCCCG	CATGAGTCAA	TTTATCTTTT	TGATTATTTC	CACCATCTGC	GATTGGTACA	18240
TAGGCATCAC	GTGGCGTTGT	GGTCAAGAGG	ATTTTCTTGG	TATCTCGATT	GACAGTCATC	18300
AGGATGTTGA	CATCTGATCG	CGACACCGAA	CTAATAGGAC	CATAGGTGTC	AATTCCACTA	18360
ACATAGATAT	TGAAAGACTG	ACTCTTAGAC	GTCTTAGGAG	CTTCTACTTT	TTTAGTGAAT	18420
CCCTTAGTAT	AAATCTTTTT	TATCTTCGAT	GCGTAGTCTG	GATACTCTGA	CTCGATGATG	18480
TTTTCAAAGA	CACTATTTAG	GACAATGGCC	TTAGTCTCCC	CTGCAATCAA	ACTCTTGTAA	18540
GCTGCCAAGT	AAGACGAACT	CTGGTTGACC	GTCAAATCGG	TATTCTGACT	TGACTTGATA	18600
TCAGCTAGTA	ATTTCTGAAT	ATTTTCATTA	TTAGTCCCAG	TCGGTGCTGT	CACACTCGTC	18660
AGTTGCGTAA	CATTTTCGAT	CTCACTATCT	GCTAAAACAG	CGACACTGAT	TGAATATTCT	18720
GAGTAATTAG	AAGTCGCATT	TAAACGATTG	GTCAGTCCAA	CAAACTGCTG	TACTGCAAAG	18780
AGCGACACAG	AGCTGACAAG	GATAGAGAAC	ACCAACAGAA	AAATAGTAAA	CTTTTCAGCT	18840
TTTTTATAGA	TAATCAAGAG	TAGCCCTACC	AAGGCAACTA	GTAGGACTAA	CGCAGTTACC	18900
ACTAGATTAA	GATATCTAAA	AGCAAGGATA	TTGTACTTAA	AGATTAAGAA	CAATAAAAAA	18960
CAAACTAACA	TAAATAAAT	AGTCAGCAAA	ACTATATTAA	CACTTCGCTT	CACTTTCTGT	19020
GAACGTGATT	TTTTAAAACG	TCTACTCATG	ATTAATACCT	ATACATTGAA	CATTATACGA	19080
TTATATCACT	TTTTTACGGT	AATGTCTACA	CCTTTATTTT	TACTATCTGC	ATCTTTAAGT	19140
ATCTTAGTAC	ACTTCCCGCG	AAACAAAAAT	ATAGTAAAAT	GAAATAAGAA	CAGAACAAAT	19200
CGTTCAGGAC	AGTCAAATCG	ATTTCTAACA	ATGTTTTAGA	AGCAGAGGTG		19250

(2) INFORMATION FOR SEQ ID NO: 36:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 21706 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

60	GAGCAAACAG	TCCAACTACA	ACCAATCGTT	TGTTTTTGAT	GACTGCTAGC	AAAGTTGAAA
120	AAATCAAGAA	AATTCCAAGA	CTTGATGGAC	ATGTAAGCTT	TTGTTTTTGG	TATACAAAGT
180	AAAACGCATT	ACTTATCTGA	CAACTGCCGA	TGCCATTGAC	TTCAATTTTT	ATTGCTGACC
. 240	GCAATATCTT	GTCATAGGGG	GTTTATCAAG	TCTTTGGCAG	AAATAGAGCT	ACCAAGGAGC

GACTAAGAAG	ATGATTATCG	ТАТТТСТААА	TCCATTTTTA	ACAACTAGCA	TGGTATAATA	300
ATATGCAGGA	AAATTTTGAA	TTATGAGGAA	GACTAGATGA	ATTTATGGGA	TATTTTCTTT	360
ACGACTCAGG	CAACCGAGCC	GCCCAAATTT	GACCTTTTTT	GGTATGTTAG	CCTATTTACG	420
CTCTTAGCCT	TAACCTTTTA	TACAGCCCAT	CGCTATCGTG	AAAAGAAGGT	TTACCAACGA	480
TTTTTCCAAA	TCTTGCAGAC	TGTTCAGTTA	ATCCTTCTTT	ATGGTTGGTA	CTGGGTCAAT	540
CATATGCCAC	TGTCAGAAAG	CCTACCCTTT	TACCATTGCC	GTATGGCTAT	GTTTGTGGTA	600
CTCTTGCTTC	CTGGTCAATC	CAAATATAAA	CAATACTTTG	CATTATTGGG	AACATTTGGG	660
ACATTAGCAG	CCTTTGTTTA	TCCAGTGCCA	GATGCTTACC	CTTTTCCACA	TATCACCATT	720
CTATCCTTTA	TCTTTGGTCA	TTTAGCACTC	TTGGGGAACT	CTCTAGTTTA	TCTATTGAGA	780
CAGTATAATG	CGCGATTGCT	GGATGTGAAG	GGAATTTTTC	TCATGACCTT	TGCCCTAAAT	840
GCCTTGATTT	TTGTGGTCAA	TTTGGTGACA	GGTGGCGATT	ACGGATTTTT	GACAAAACCG	900
CCATTGGTTG	GGGATCACGG	TCTAGTAGCT	AATTATTTAC	TTGTTTCAAT	TGTGCTGGTA	960
GCTACTATCA	GTTTGACTAA	GAAAATCTTA	GAATTCTTTT	TAGCTCAAGA	AGCAGAAAAA	1020
ATGATTGCAA	AGGAAGCTTA	ACACAGAGCT	TTCTTTTTTG	CTCTTAGAGA	GTTTTTACAA	1080
GCAGCTTATA	AAATAAGAAT	TTCTGAATAG	ACAAACTCAA	AAAATGGCTG	GGAAATTTAG	1140
GAAAAAAGCA	AGCACGATTA	AATTTTTTGT	GTTATAATAT	TTTGTGAATA	GCTATGCCTA	1200
TGTTTAGCTA	TGGAATAATA	CGAAGTGCGA	AACTTGGAAG	ATAGAGAGGA	AGCGATGTAA	1260
TGGCTAGAGA	AGGCTTTTTT	ACAGGTCTAG	ATATTGGAAC	AAGCTCTGTC	AAGGTGCTTG	1320
TGGCCGAGCA	GAGAAATGGT	GAATTAAATG	TAATTGGCGT	GAGTAATGCC	AAAAGTAAAG	1380
GTGTAAAGGA	TGGAATTATT	GTTGATATTG	ATGCAGCAGC	AACTGCTATC	AAGTCAGCCA	1440
TTTCCCAAGC	GGAAGAAAAG	GCAGGCATTT	CGATTAAATC	AGTGAATGTC	GGCTTGCCTG	1500
GTAATCTTTT	GCAGGTAGAA	CCAACTCAGG	GGATGATTCC	AGTAACATCT	GATACTAAGG	1560
AAATTACGGA	TCAAGATGTT	GAAAATGTTG	TCAAATCAGC	TTTGACAAAG	AGTATGACAC	1620
CTGACCGTGA	AGTCATTACC	TTTATTCCTG	AAGAATTTAT	TGTGGATGGT	TTCCAAGGGA	1680
TTCGTGACCC	ACGTGGCATG	ATGGGGGTTC	GCCTTGAAAT	GCGTGGTTTG	CTTTATACAG	1740
GACCTCGTAC	TATCTTGCAC	AATTTGCGTA	AGACGGTTGA	GCGTGCAGGT	GTTCAGGTTG	1800
AAAATGTTAT	CATTTCACCA	CTAGCAATGG	TTCAGTCTGT	TTTGAACGAA	GGGGAACGTG	1860
AATTTGGTGC	TACAGTGATT	GATATGGGGG	CAGGTCAAAC	GACTGTCGCT	ACAATCCGTA	1920
ATCAAGAACT	CCAGTTCACA	CATATTCTCC	AAGAAGGTGG	AGÁTTATGTA	ACTAAAGATA	1980

			360			
TCTCCAAGGT	TTTGAAAACC	TCTCGCAAAT	TAGCGGAAGG	CTTGAAACTG	AATTACGGGG	2040
AAGCCTATCC	GCCTCTTGCA	AGCAAAGAAA	CCTTCCAAGT	AGAGGTTATT	GGAGAAGTAG	2100
AAGCAGTCGA	AGTGACGGAA	GCCTACTTGT	CAGAAATTAT	TTCTGCACGA	ATCAAGCACA	2160
TCCTTGAACA	AATCAAGCAA	GAATTAGATA	GAAGGCGTCT	ATTGGACCTC	CCTGGTGGTA	2220
TTGTCTTAAT	CGGTGGGAAT	GCCATTTTAC	CAGGTATGGT	TGAGCTTGCT	CAGGAAGTCT	2280
TTGGCGTCCG	TGTCAAGCTT	TATGTTCCAA	ATCAAGTTGG	TATCCGTAAT	CCAGCCTTTG	2340
CGCATGTGAT	TAGTTTATCA	GAATTTGCGG	GTCAATTAAC	AGAAGTTAAT	CTTTTGGCTC	2400
AGGGAGCGAT	AAAAGGTGAG	AATGACTTAA	GTCATCAGCC	AATTAGTTTT	GGTGGGATGC	2460
TGCAAAAAAC	AGCTCAGTTT	GTACAATCAA	CGCCTGTTCA	ACCAGCTCCT	GCTCCAGAAG	2520
TAGAGCCGGT	GGCGCCTACA	GAACCAATGG	CGGATTTCCA	ACAAGCTTCA	CAAAATAAAC	2580
CGAAATTAGC	AGATCGTTTC	CGTGGATTGA	TCGGAAGCAT	GTTTGACGAA	TAAAGAGGAA	2640
алаталатта	TGACATTTTC	ATTTGATACA	GCTGCTGCTC	AAGGGGCAGT	GATTAAAGTA	2700
ATTGGTGTCG	GTGGAGGTGG	TGGCAATGCC	ATCAACCGTA	TGGTCGACGA	AGGTGTTACA	2760
GGCGTAGAAT	TTATCGCAGC	AAACACAGAT	GTACAAGCAT	TGAGTAGTAC	AAAAGCTGAG	2820
ACTGTTATTC	AGTTGGGACC	TAAATTGACT	CCTCCTTTCC	GTGCAGGAGG	TCAACCTGAG	2880
GTTGGTCGTA	AAGCCGCTGA	AGAAAGCGAA	GAAACACTGA	CGGAAGCTAT	TAGTGGTGCC	2940
GATATGGTCT	TCATCACTGC	TGGTATGGGA	GGAGGCTCTG	GAACTGGAGC	TGCTCCTGTT	3000
ATTGCTCGTA	TCGCCAAAGA	TTTAGGTGCG	CTTACAGTTG	GTGTTGTAAC	ACGTCCCTTT	3060
GGTTTTGAAG	GAAGTAAGCG	TGGACAATTT	GCTGTAGAAG	GAATCAATCA	ACTTCGTGAG	3120
CATGTAGACA	CTCTATTGAT	TATCTCAAAC	AACAATTTGC	TTGAAATTGT	TGATAAGAAA	3180
ACACCGCTTT	TGGAGGCTCT	TAGCGAAGCG	GATAACGTTC	TTCGTCAAGG	TGTTCAAGGG	3240
ATTACCGATT	TGATTACCAA	TCCAGGATTG	ATTAACCTTG	ACTTTGCCGA	TGTGAAAACG	330C
GTAATGGCAA	ACAAAGGGAA	TGCTCTTATG	GGTATTGGTA	TCGGTAGTGG	AGAAGAACCT	3360
GTGGTAGAAG	CGGCACGTAA	GGCAATCTAT	TCACCACTTC	TTGAAACAAC	TATTGACGGT	3420
GCTGAGGATG	TTATCGTCAA	CGTTACTGGT	GGTCTTGACT	TAACCTTGAT	TGAGGCAGAA	3480
GAGGCTTCAC	AAATTGTGAA	CCAGGCAGCA	GGTCAAGGAG	TGAACATCTG	GCTCGGTACT	3540
TCAATTGATG	AAAGTATGCG	TGATGAAATT	CGTGTAACAG	TTGTTGCAAC	GGGTGTTCGT	3600
CAAGACCGCG	TAGAAAAGGT	TGTGGCTCCA	CAAGCTAGAT	CTGCTACTAA	CTACCGTGAG	3660
ACAGTGAAAC	CAGCTCATTC	ACATGGCTTT	GATCGTCATT	TTGATATGGC	AGAAACAGTT	3720
GAATTGCCAA	AACAAAATCC	ACGTCGTTTG	GAACCAACTC	AGGCATCTGC	TTTTGGTGAT	3780

TGGGATCTTC	GCCGTGAATC	GATTGTTCGT	ACAACAGATT	CAGTCGTTTC	TCCAGTCGAG	3840
CGCTTTGAAG	CCCCAATTTC	ACAAGATGAA	GATGAATTGG	ATACACCTCC	ATTTTTCAAA	3900
AATCGTTAAG	TAAATGAATG	TAAAAGAAAA	TACAGAACTT	GTTTTTCGAG	AAGTTGCAGA	3960
GGCTAGTCTG	AGTGCTCATC	GAGAGAGTGG	TTCGGTCTCT	GTCATTGCAG	TTACCAAGTA	4020
TGTAGATGTA	CCGACAGCGG	AAGCCTTGCT	TCCGCTAGGT	GTCCATCATA	TCGGTGAAAA	4080
TCGTGTAGAT	AAGTTTCTGG	AAAAATATGA	AGCTTTAAAA	GATCGAGATG	TGACTTGGCA	4140
TTTGATTGGT	ACCTTGCAAA	GACGTAAGGT	GAAAGATGTC	ATTCAATACG	TTGATTATTT	4200
CCATGCATTG	GACTCAGTAA	AGCTAGCAGG	GGAAATTCAA	AAAAGAAGTG	ACCGAGTCAT	4260
CAAGTGTTTC	CTTCAAGTAA	ATATTTCTAA	AGAAGAAAGC	AAACACGGTT	TTTCGAGAGA	4320
GGAACTGCTG	GAAATCTTGC	CAGAGTTAGC	CAÇACTAGAT	AAGATTGAAT	ATGTTGGTTT	4380
AATGACGATG	GCACCTTTTG	AGGCTAGCAG	TGAGCAGTTG	AAAGAGATTT	TCAAGGCGGC	4440
CCAAGATTTA	CAAAGAGAAA	TTCAAGAGAA	ACAAATTCCA	AATATGCCTA	TGACCGAGTT	4500
AAGTATGGGA	ATGAGTCGTG	ATTATAAAGA	AGCGATTCAA	TTCGGTTCCA	CTTTTGTTCG	4560
TATAGGTACA	TCATTTTTTA	AGTAGGAGAG	AACCATGTCT	TTAAAAGATA	GATTCGATAG	4620
ATTTATAGAT	TATTTACGG	AGGATGAGGA	TTCAAGTCTC	CCTTATGAAA	AAAGAGATGA	4680
GCCTGTGTTT	ACTTCAGTAA	ATTCTTCACA	GGAACCGGCT	CTCCCAATGA	ATCAACCTTC	4740
ACAGTCGGCT	GGCACAAAAG	AGAACAATAT	CACCAGACTT	CATGCAAGAC	AACAGGAATT	4800
GGCAAATCAG	AGTCAGCGTG	CAACGGATAA	GGTCATTATA	GATGTTCGTT	ATCCTAGAAA	4860
ATATGAGGAT	GCAACAGAAA	TTGTTGATTT	ATTGGCAGGA	AACGAAAGTA	TCTTGATTGA	4920
TTTTCAGTAT	ATGACAGAGG	TOCAGGCTCO	TCGTTGTTTG	GACTATTTGG	ATGGAGCTTG	4980
TCATGTTTTA	GCTGGAAATT	TGAAAAAGGT	AGCTTCTACC	ATGTATTTGT	TGACACCAGT	5040
GAACGTTATT	GTAAATGTTG	AAGATATCCG	TTTACCAGAT	GAAGATCAAC	AGGGTGAGTT	5100
CGGTTTTGAT	ATGAAGCGAA	ATAGAGTACG	ATAATGATTT	TTTTAATTCG	TATGATTTAT	5160
AATGCAGTGG	ATATTTACTC	CCTGATTTTG	GTAGCCTTCG	CTGTCATGTC	TTGGTTTCCA	5220
GGTGCCTACG	AATCCAGTTT	AGGTCGTTGG	ATTGTAGCGT	TGGTGAAACC	AGTGCTTGCT	5280
CCCTTGCAAC	GCCTGCCTTT	ACAGATAGCG	GGTCTTGATT	TATCTGTTTG	GGTTGCGATT	5340
GTTTTGGTTC	GATTTTTAGG	AGAAAACCTA	GTGCGTTTTC	TGGCGATGAT	AGGATGAATA	5400
AAGGGATTTA	TCAGCATTTC	TCCATAGAAG	ATCGTCCATT	TCTTGACAAG	GGAATGGAAT	5460
GGATAAAGAA	GGTAGAAGAT	AGCTATGCTC	CTTTTTTAAC	TCCTTTTATC	AATCCTCATC	5520

			362			
AGGAGAAGCT	ATTAAAGATT	TTGGCCAAAA	CCTATGGTCT	TGCTTGTAGC	AGTAGTGGGG	5580
AATTCGTCTC	GAGTGAGTAT	GTTCGAGTTT	TATTATACCC	AGATTATTTC	CAACCAGAGT	5640
TTTCAGATTT	TGAAATATCT	CTCCAGGAAA	TTGTGTATTC	CAATAAATTT	GAACATTTAA	5700
CGCATGCTAA	GATTTTAGGG	ACAGTCATCA	ATCAATTAGG	GATTGAACGG	AAACTTTTTG	5760
GAGATATCCT	AGTAGATGAA	GAACGGGCGC	AGATTATGAT	TAATCAGCAG	TTTCTTCTTC	5820
TCTTTCAAGA	TGGACTAAAG	AAAATTGGTC	GTATACCTGT	TTCGCTGGAG	GAACGTCCTT	5880
TCACCGAGAA	AATAGATAAG	CTAGAACAGT	ATCGAGAACT	GGATTTATCT	GTGTCTAGTT	5940
TTCGATTAGA	TGTTCTTTTA	TCAAATGTTT	TGAAACTATC	TAGGAATCAA	GCAAACCAGT	6000
TGATTGAAAA	GANACTTGTC	CAAGTAAATT	ATCATGTGGT	AGACAAATCA	GATTACACTG	6060
TTCAAGTTGG	AGACTTGATT	AGTGTGAGAA	AATTTGGTCG	CTTGAGATTA	CTTCAAGATA	6120
AGGGACAAAC	GAAAAAAGAG	AAGAAAAAA	TAACCGTCCA	GTTATTATTA	AGTAAGTGAG	6180
GAATAGAATG	CCAATTACAT	CATTAGAAAT	AAAGGACAAG	ACTTTTGGAA	CTCGATTCAG	6240
AGGTTTTGAT	CCAGAAGAAG	TCGATGAATT	TTTAGATATT	GTGGTTCGTG	ATTACGAAGA	6300
TCTTGTGCGT	GCGAATCATG	ATAAAAATTT	GCGTATTAAG	AGTTTAGAAG	AGCGTTTGTC	6360
TTACTTTGAT	GAAATAAAAG	ATTCATTGAG	CCAGTCTGTA	TTGATTGCTC	AGGATACAGC	6420
TGAGAGAGTG	AAACAGGCGG	CGCATGAACG	TTCAAACAAT	ATCATTCATC	AAGCAGAGCA	6480
AGATGCGCAA	CGCTTGTTGG	AAGAAGCTAA	ATATAAGGCA	AACGAGATTC	TTCGTCAAGC	6540
AACTGATAAT	GCTAAGAAAG	TCGCTGTTGA	AACAGAAGAA	TTGAAGAACA	AGAGCCGTGT	6600
CTTCCACCAA	CGTCTCAAAT	CTACAATTGA	GAGTCAGTTG	GCTATTGTTG	AATCTTCAGA	6660
TTGGGAAGAT	ATTCTCCGTC	CAACAGCTAC	TTATCTTCAA	ACCAGTGATG	AAGCCTTTAA	6720
AGAAGTGGTT	AGCGAAGTAC	TTGGAGAACC	GATTCCAGCT	CCAATTGAAG	AAGAACCAAT	6780
TGATATGACA	CGTCAGTTCT	CTCAAGCAGA	AATGGCAGAA	TTACAAGCTC	GTATTGAGGT	6840
AGCCGATAAA	GAATTGTCTG	AATTTGAAGO	TCAGATTAAA	CAGGAAGTGG	AAGCTCCAAC	6900
TCCTGTAGTG	AGTCCTCAAG	TTGAAGAAGA	GCCTCTGCTC	ATCCAGTTGG	CCCAATGTAT	6960
GAAGAACCAG	AAGTAGCTCC	AATGCATCCG	ATAGGTCCAA	CACCAGCTAC	AGAAACTGTT	7020
GATTCAATAC	CGGGATTTGA	AGCACCGCAA	GAATCTGTTA	CAATTTTATA	AGAAATATTC	7080
TGAGAACAAT	ATCTTATCCT	TATATTTCCA	GCGAGCAGGA	GATGGTGTGA	GTCCTGTAAT	7140
CCCTATTGAT	r AAGATTATCO	TCTCAAAAA	TCAAGTCTGA	AGCTAGTAAC	ATTTGACGTT	7200
TCCCACGTTA	CGGGATAAGA	GGGAGAAAGA	CTAAATCTTT	TTCCGAATA	AGGTGGTACC	7260
ACGATTTTC	G TCCTTTTTGG	AAGTCGTGGT	TTTTAATTTC	TTATTATTT	TAAAGGAGAT	7320

ACCATGAAAC	TCAAAGACAC	CCTTAATCTT	GGGAAAACTG	AATTCCCAAT	GCGTGCAGGC	7380
CTTCCTACCA	AAGAGCCAGT	TTGGCAAAAG	GAATGGGAAG	ATGCAAAACT	TTATCAACGT	7440
CGTCAAGAAT	TGAACCAAGG	AAAACCTCAT	TTCACCTTGC	ATGATGGCCC	TCCATACGCT	7500
AACGGAAATA	TCCACGTTGG	ACATGCTATG	AACAAGATTT	CAAAAGATAT	CATTGTTCGT	7560
TCTAAGTCTA	TGTCAGGATT	TTACGCACCA	TTTATTCCTG	GTTGGGATAC	TCATGGTCTG	7620
CCAATCGAGC	AAGTCTTGTC	AAAACAAGGT	GTCAAACGTA	AAGAAATGGA	CTTGGTTGAG	7680
TACTTGAAAC	TTTGCCGTGA	GTACGCTCTT	TCTCAAGTAG	ATAAACAACG	TGAAGATTTT	7740
AAACGTTTGG	GTGTTTCTGG	TGACTGGGAA	AATCCATATG	TGACCTTGAC	TCCTGACTAT	7800
GAAGCAGCTC	AAATTCGTGT	ATTTGGTGAG	ATGGCTAATA	AGGGTTATAT	CTACCGTGGT	7860
GCTAAGCCAG	TTTACTGGTC	ATGGTCATCT	GAGTCAGCAC	TTGCTGAAGC	AGAGATTGAA	7920
TACCATGACT	TGGTTTCAAC	TTCCCTTTAC	TATGCCAACA	AGGTAAAAGA	TGGCAAAGGA	7980
GTTCTAGATA	CAGATACTTA	TATCGTTGTC	TGGACAACGA	CTCCATTTAC	CATCACAGCT	8040
TCTCGTGGTT	TGACGGTTGG	TGCAGATATT	GATTACGTTT	TGGTTCAACC	TGCTGGTGAA	8100
GCTCGTAAGT	TTGTCGTTGC	TGCTGAATTA	TTGACTAGCT	TGTCTGAGAA	ATTTGGCTGG	8160
GCTGATGTTC	AAGTTTTGGA	AACTTACCGT	GGCCAAGAAC	TCAACCACAT	CGTAACAGAA	8220
CACCCATGGG	ATACAGCTGT	AGAAGAGTTG	GTAATTCTTG	GTGACCACGT	TACGACTGAC	8280
TCTGGTACAG	GTATTGTCCA	TACAGCCCCT	GGTTTTGGTG	AGGACGATTA	CAATGTTGGT	8340
ATTGCTAATA	ATCTTGAAGT	CGCAGTGACT	GTTGATGAAC	GTGGTATCAT	GATGAAGAAT	8400
GCTGGTCCTG	AATTTGAAGG	TCAATTCTAT	GAAAAGGTAG	TTCCAACTGT	TATTGAAAAA	8460
CTTSGTAACC	TECTTETTEE	CCAAGAAGAA	ATCTCTCACT	CATATCCATT	TGACTGGCGT	8520
ACTAAGAAAC	CAATCATCTG	GCGTGCAGTT	CCACAATGGT	TTGCCTCAGT	TTCTAAATTC	8580
CGTCAAGAAA	TCTTGGACGA	AATTGAAAAA	GTGAAATTCC	ACTCAGAATG	GGGTAAAGTC	8640
CGTCTTTACA	ATATGATCCG	TGACCGTGGT	GACTGGGTTA	TCTCTCGTCA	ACGTGCTTGG	8700
GGTGTTCCAC	TTCCTATCTT	CTACGCTGAA	GATGGTACAG	CTATCATGGT	AGCTGAAACT	8760
ATTGAACACG	TAGCTCAACT	TTTTGAAGAA	TATGGTTCAA	GCATTTGGTG	GGAACGTGAT	8820
GCCAAAGACC	TCTTGCCAGA	AGGATTTACT	CATCCAGGTT	CACCAAACGG	CGAGTTCAAA	8880
AAAGAAACTG	ATATCATGGA	CGTTTGGTTT	GACTCAGGTT	CATCATGGAA	TGGAGTGGTG	8940
GTAAACCGTC	CTGAATTGAC	TTACCCAGCC	GACCTTTACC	TAGAAGGTTC	TGACCAATAC	9000
CGTGGTTGGT	TTAACTCATC	ACTTATCACA	TCTGTTGCCA	ACCATGGCGT	AGCACCTTAC	9060
				*		

AAACAAATCT	TGTCACAAGG	TTTTGCCCTT	364 GATGGTAAAG	GTGAGAAGAT	GTCTAAATCT	9120
CTTGGAAATA	CTATTGCTCC	AAGCGATGTT	GAAAAACAAT	TCGGTGCTGA	AATCTTGCGT	9180
CTCTGGGTAA	CAAGTGTTGA	CTCAAGCAAT	GACGTGCGTA	TCTCTATGGA	TATCTTGAGC	9240
CAAGTTTCTG	AAACTTACCG	TAAGATTCGT	AACACTCTTC	GTTTCTTGAT	TGCCAATACA	9300
TCTGACTTTA	ACCCAGCTCA	AGATACAGTC	GCTTACGATG	AGCTTCGTTC	AGTTGATAAG	9360
TACATGACGA	TTCGCTTTAA	CCAGCTTGTC	AAGACCATTC	GTGATGCCTA	TGCAGACTTT	9420
GAATTCTTGA	CGATCTACAA	GGCCTTGGTG	AACTTTATCA	ACGTTGACTT	GTCAGCCTTC	9480
TACCTTGATT	TTGCCAAAGA	TGTTGTTTAC	ATTGAAGGTG	CCAAATCACT	GGAACGCCGT	9540
CAAATGCAGA	CTGTCTTCTA	TGACATTCTT	GTCAAAATCA	CCAAACTCTT	GACACCAATC	9600
CTTCCTCACA	CTGCGGAAGA	AATCTGGTCA	TATCTTGAGT	TTGAAACAGA	AGACTTCGTC	9660
CAATTGTCAG	AATTACCAGA	AGTTCAAACT	TTTGCTAACC	AAGAAGAAAT	CTTGGATACA	9720
TGGGCAGCCT	TCATGGACTT	TCGTGGACAA	GCACAAAAAG	CCTTGGAAGA	AGCTCGTAAT	9780
GCAAAAGTTA	TCGGTAAATC	ACTTGAAGCA	CACTTGACAG	TTTATCCAAA	TGAAGTTGTG	9840
AAAACTCTAC	TCGAAGCAGT	AAACAGCAAT	GTAGCACAAC	TTTTGATCGT	GTCTGAGTTG	9900
ACCATCGCAG	AAGGACCAGC	TCCGGAAGCT	GCCCTTAGCT	TCGAAGATGT	AGCCTTCACA	9960
GTTGAACGTG	CTACTGGTGA	AGTATGTGAC	CGTTGCCGTC	GTATCGACCC	AACAACAGCA	10020
GAACGCAGCT	ACCAGGCAGT	TATCTGTGAC	CACTGTGCAA	GCATCGTAGA	AGAAAACTTT	10080
GCGGAAGCAG	TCGCAGAAGG	ATTTGAAGAG	AAATAAGATT	GAAAAGTCTA	GGCAAAATTC	10140
AATTTGAGAA	GAAAAGACAA	CTAATTTTAT	AGTCTATTAA	ACGCATTGTA	TCACGTTTTT	10200
GAATACCTGA	TATGATGCGT	TTTTTATTTA	TTTTAAAAAT	TTGCGAGGTA	TGACTTTTTA	10260
TACTCAACAA	GAATCAAAGA	GAAACTTAGC	AAGCTAACAG	TAGTAAGATA	AĄATAGGAAT	10320
TTGATATTAG	GGATAAGATT	GGTAAATAGT	GTAATATTTT	TACAACAATA	AATTTATATA	10380
GTTATTTCTG	GTTTCTGAAA	AGTATTATAT	TTTATTTCAT	ATTATACAAA	TTTTTTTTTTT	10440
ATAATATCAG	AACATACTTT	TTTTAAAAGC	AAATATGATA	CAATTTTATT	TGAAAAAAAT	10500
AAAAAAGGAG	ATTTTATTAT	AAAATTAAAA	AGACTTGCTT	TAATTAGTGG	TATCGTCGGT	10560
CTTGTGGGAG	GAATTTTACT	TCTTATTGGT	CCTTTTGTCT	TGTTGGGAAT	AGCGGTAAAC	10620
ACAGCTGCTA	CAACTCTTAA	TGGAGGAGCT	ACTGCAGGGG	CTTTTTCAGG	TGTAGCCTTA	10680
CTCTTGAATG	CCTTGAAGAT	TGCAAATCTT	GTTCTTGGTA	TCATTGCTAT	TGTTTACTAT	10740
AAAGGAGATA	AGCGTGTAGG	TGCAGCTCCG	TCTGTACTAA	TGATTGTTTC	TGGTGGAGTT	10800
AGTCTCATTC	TATTCCGTTC	TTAGGATGGG	TTGGGGGGAT	TTTTGCTATT	ATCGGAGGAT	10860

CTCTATTCCT	TTCAACATTG	AAGAAATTCA	AATCAGAAGA	ATAAAAGGTA	TTTTAGCATG	10920
AAAAGAACAA	AAAAGTTTAT	CGGTATAGGA	GTAGCTCTAT	TATCTCTTTC	TCTTCTAGTT	10980
GCATGTGGAA	CATAAAGTTC	AAAGAATACT	TCAACAAGTA	ATGATGAGAA	GACAGTAGCA	11040
ACATCCAATA	GTTCAAAAGA	AACAATCACT	TTCGATACAC	CGGTTGTAAC	AGACGATGCG	11100
ATTGAATCAA 1	TACGCACTTA	TGCAGATTAT	ATAGATCTTT	ATAAAAATAT	TTTTGATGAT	11160
TATTTTACTA	AAGCTGAGGA	AGGTTTCAAA	GGCATAGCTA	TGGAAAATAA	TGACTCGTTT	11220
ACTAAACTAA	AAGAGTCAAC	TCAAAAATTA	TTCGATGCGC	AGAAAAAAAG	GTTAAATAAT	11280
GAAGATAGAA	TAGAAACAAC	CAAAAACAAT	GTGATTGCCA	AACATTGTCA	AACAGTCCTT	11340
TCCTTTTTGG '	TTTTGACTAG	CTTTTTTGTG	AAAAATTGTG	TAAAATAGAA	TAGATAAACG	11400
AGGGGAAACC '	TCGGAAAATT	TAAAGGAGAA	TCCATCTAAT	GGTAAAATTG	GTTTTTGCTC	11460
GCCACGGTGA (GTCTGAATGG	AACAAAGCTA	ACCTTTTCAC	TGGTTGGGCT	GATGTTGATT	11520
TGTCTGAAAA	AGGTACACAA	CAAGCGATTG	ACGCTGGTAA	ATTGATCAAA	GAAGCTGGTA	11580
TCGAATTTGA (CCAAGCTTAC	ACTTCAGTAT	TGAAACGTGC	TATCAAAACA	ACTAACTTGG	11640
CTCTTGAAGC '	TTCTGACCAA	TTGTGGGTTC	CAGTTGAAAA	ATCATGGCGC	TTGAACGAAC	11700
GTCACTACGG	TGGTTTGACT	GGTAAAAACA	AAGCTGAAGC	TGCTGAACAA	TTTGGTGATG	11760
AGCAAGTTCA	CATCTGGCGT	CGTTCATACG	ATGTATTGCC	TCCAAACATG	GACCGTGATG	11820
ATGAGCACTC A	AGCTCACACA	GACCGTCGTT	ACGCTTCACT	TGACGACTCA	GTTATCCCAG	11880
ATGCTGAAAA (CTTGAAAGTG	ACTTTGGAAC	GTGCTCTTCC	ATTCTGGGAA	GATAAAATCG	11940
CTCCAGCTCT	TAAAGATGGT	AAAAACGTAT	TCGTAGGAGC	TCACGGTAAC	TCAATCCGTG	12000
CCCTTGTAAA	ACACATCAAA	GGTTTGTCAG	ATGACGAGAT	CATGGACGTG	GAAATCCCTA	12060
ACTTCCCACC	ATTGGTATTC	GAATTCGACG	AAAAATTGAA	CGTCGTTTCT	GAATACTACC	12120
TTGGAAAATA	AAAAATTGTA	AGTCTAGAAT	TGATTTCTAG	GCTTTTTATG	TTAGTATGGA	12180
AGTATGATAA	GGAATAAAAA	ACAAGATTAT	GTACTGGCCT	ACAAGCAACC	AGCTTCAACC	12240
ACTTACATGG (GTTGGGAAGA	AGAAGCTTTA	CCGATAGGCA	ATGGTTCTTT	AGGAGCAAAA	12300
GTATTTGGCC '	TTATAGGGGC	TGAACGGATT	CAATTTAATG	AAAAAAGTCT	CTGGTCTGGA	12360
GGTCCACTTC (CTGATAGTTC	AGATTATCAG	GGTGGAAATC	TTCAGGATCA	GTATGTTTTT	12420
TTAGCTGAGA	TTCGGCAGGC	TTTGGAGAAG	AGAGATTACA	ATCTGGCTAA	GGAACTGGCT	12480
GAGCAGCACC '	TAATTGGGCC	AAAAACGAGT	CAATATGGGA	CCTATCTGTC	TTTTGGGGAT	12540
ATTCACATTG	AGTTCAGCCA	GCAAGGTACG	ACTTTGTCTC	AGGTGACGGA	CTATCAGAGA	12600

366

CAGCTGAATA TTAGTAAGGC ACTTGCGACG ACTTCTTATG TCTATAAGGG AACGCGATTT 12660 GAACGTAAAG CTTTTGCGAG TTTTCCAGAT GATCTCTTGG TTCAATGTTT TACTAAGGAA 12720 GGGTTGGAAA CTCTAGATTT TACTATAGAA CTATCCTTGA CCTGTGATTT GGCTTCTGAT 12780 GGAAAGTATG AGCAGGAAAA ATCTGATTAC AAGGAGTGTA AGTTGGATAT TACTGATTCT 12840 CATATCTTGA TGAAGGGAAG AGTTAAGGAT AATGATCTGC GGTTTGCTAG TTATCTAGCT 12900 TGGGAAACGG ATGGAGATAT TAGAGTTTGG TCAGATAGGG TTCAGATATC AGGAGCCAGT 12960 TATGCCANTC TCTTCTTGGC CGCTAAGACG GATTTTGCCC AAAATCCTGC TAGCAATTAT 13020 CGCAAGAAAC TAGATTTAGA GCAACAGGTG ATAGACTTGG TGGACACAGC TAAAGAAAAG 13080 GGCTATACCC AATTGAAATC AAGGCATATC GAGGACTACC AAGCCTTATT CCAGCGTGTT 13140 CAATTGGATT TGGAAGCTGA TGTTGACGCA TCCACTACAG ATGATTTGTT AAAAAATTAT 13200 AAGCCACAAG AAGGGCAGGC TTTGGAGGAG CTGTTCTTCC AGTATGGACG GTATTTATTG 13260 ATTAGTTCGT CCAGAGACTG CCCAGATGCT CTACCAGCTA ACCTACAGGG AGTCTGGAAT 13320 GCGGTCGACA ATCCTCCTTG GAATTCGGAC TATCACTTAA ATGTCAATCT GCAGCTGAAT 13380 TATTGGCCAG CCTATGTTAC CAATCTCCTA GAGACGGTCT TTCCAGTCAT CAACTATGTA 13440 GATGATTTGC GTGTCTATGG TCGTCTAGCG GCTGTAAAGT ATGCAGGAAT CGTCTCTCAG 13500 AAAGGTGAGG AGAATGGTTG GTTGGTTCAT ACTCAAGCGA CTCCCTTTGG TTGGACGGCA 13560 CCTGGTTGGG ATTACTATTG GGGTTGGTCA CCAGCTGCCA ATGCGTGGAT GATGCAAACC 13620 GTTTATGAAG CCTATTTATT TTATAGGGAC CAAGACTATC TCAGGGAGAA AATTTATCCC 13680 ATGTTGAGGG AAACGGTTCG TTTTTGGAAT GCCTTTTTAC ATAAGGATCA GCAGGCGCAG 13740 CGTTGGGTGT CTTCTCCGTC TTATTCCCCA GAACATGGGC CGATTTCGAT TGGCAATACC 13800 TATGACCAAT CTCTGATTTG GCAGTTATTT CATGATTTTA TTCAGGCTGC TCAGGAATTG 13860 GGACTGGATG AGGACTTGTT GACTGAGGTT AAGGAGAAGT CTGATTTACT AAATCCTTTG 13920 CAAATCACTC AATCTGGTCG AATCAGGGAG TGGTATGAGG AGGAAGAGCA GTATTTTCAA 13980 AATGAGAAAG TGGAGGCCCA GCATCGGCAC GCTTCCCATC TAGTGGGACT CTATCCTGGC 14040 AATCTCTTTA GCTACAAGGG ACAAGAGTAT ATTGAAGCGG CGCGTGCTAG CCTCAATGAT 14100 CGTGGAGATG GCGGCACAGG CTGGTCCAAG GCTAATAAGA TCAATCTCTG GGCGCGTTTG 14160 GGAGATGGCA ATCGAGCCCA TAAATTATTG GCAGAGCAGT TAAAGACATC CACCTTGCAA 14220 AATCTTTGGT GTAGCCATCC TCCTTTTCAG ATAGATGGTA ATTTTGGTGC TACTAGTGGC 14280 ATGGCAGAAA TGTTACTCCA GTCTCATGCA GCTTATCTGG TACCTCTAGC TGCCCTACCT 14340 GATGCTTGGT CAACAGGTTC TGTTTCAGGC TTAATGGCAC GTGGACATTT TGAAGTGAGC 14400

ATGAGCTGGG	AAGATAAAAA	ACTCTTACAG	TTGACCATTT	TATCAAGGAG	TGGAGGAGAT	14460
TTGCGAGTTT	CTTATCCAGA	TATTGAGAAG	AGTGTGATTA	AAATGAATCA	AGAAAAAATA	14520
AAAGCGAAAT	GCATGGGGAA	AGATTGTATT	TCGGTGGCAA	CAGCAGAAGG	TGATCTTGTT	14580
CAATTTTATT	TTTAAGAAGA	TGTTATAAGG	CAGTAATTTG	AAACTGCCTT	TTAATAAGGA	14640
TTTAAGAATA	TAAGCAGTTT	TCAACTAGTT	GAAAAAACGT	TATAATGATA	ATAGGAAGTA	14700
ATACTCAATG	AAAATCAAAG	AGCACAAACT	AGGAAGCTAG	CCGCAGGTTG	CTCAAAACAG	14760
TGTTTTGAGG	TTGCAGATGG	AAGCTGACGT	GGTTTGAAGA	GAGATTTTCG	AGGAGTATAA	14820
TTTGTTTGAT	AGAGGGTGGG	TCTGATGGCT	TATATTGAGA	TGAAACACTG	TTACAAGCGT	14880
TATCAGGTTG	GGGACACGGA	GATTGTGGCC	AATTGTGATG	TGAATTTTGA	GATTGAAAAG	14940
GGGGAGCTGG	TTATTATCCT	TGGTGCTTCA	GGTGCAGGCA	AGTCAACAGT	TCTTAACCTT	15000
CTTGGGGGAA	TGGATACCAA	TGATGAAGGG	GAAATCTGGA	TTGATGGTGT	TAATATTGCG	15060
GATTATAGTT	CCCACCAGCG	CACCAATTAC	CGTAGAAATG	ATGTGGGGTT	TGTTTTTCAG	15120
TTTTATAATC	TAGTTTCTAA	TCTGACAGCT	AAGGAAAATG	TGGAACTGGC	TTCTGAAATT	15180
GTGACAGATG	CCTTGAATCC	TGATCAGGCC	TTGACAGATG	TAGGTCTGGC	TCATCGTCTC	15240
AATAACTTTC	CAGCCCAGCT	TTCTGGAGGG	GAGCAACAGC	GAGTCTCCAT	TGCACGCGCG	15300
GTAGCCAAAA	ATCCTAAAAT	TCTCCTTTGT	GATGAACCGA	CTGGAGCCTT	GGATTATCAG	15360
ACGGGCAAGC	AGGTTTTGAA	AATTCTCCAA	GACATGTCTC	GTCAAAAGGG	AGCGACGGTG	15420
ATCATCGTGA	CTCATAATGG	AGCTTTGGCG	CCCATTGCTG	ATCGCGTGAT	TCAAATGCAC	15480
GATGCCAGTG	TCAAGGATGT	GGTGCTCAAC	CAGCATCCTC	AGGATATTGA	CAGTTTGGAG	15540
TACTAGCATG	ATCAAGCGAA	AAACTTATTG	GAAGGACTTA	GTTCAGTCCT	TCACAGGCTC	15600
CAAGGGGCGT	TTTTTATCCA	TCTTGATCCT	GATGATGTTG	GGATCTCTAG	CCTTAGTAGG	15660
CCTCAAAGTA	ACCAGTCCCA	ACATGGAGGC	GACAGCTAAT	GCTTATTTAA	CAACTGCTCA	15720
AACCTTGGAT	TTGGCAGTCA	TGTCTAACTA	TGGCTTGGAT	CAAGCAGACC	AAGAAGAACT	15780
AAAACAGACG	GAGGGCGCAG	AGGTCGAGTT	TGGCTATTTG	ACAGATGTGA	CTATGGATAA	15840
TGGGCAGGAT	GCCATTCGGC	TGTACTCCAA	ACCAGAGCGA	ATTTCAACCT	TTCAGCTAAG	15900
AAAGGGACGA	CTTCCTCAGT	CAGACAAGGA	AATCGCTTTG	GCCACTCATT	TGCAAGGCCA	15960
ATACAGCGTG	GGACAGGAGA	TTAGTTTTAA	AGAAAAAGAA	GAGGGTCATT	CCTCTTTAAA	16020
AGACCATACT	TATACCATTA	CTGGTTTTGT	GGATTCGGCT	GAAATCCTCT	CCCAGCGAGA	16080
TATGGGCTAC	GCAGGAAGTG	GAAGTGGGAC	TCTGACAGCC	TATGGGGTGA	TTTTACCTAG	16140

			368			
TCAATTTGAT	CAGAAAGTCT	ACAATATAGC		TATCAAGATT	TAGCGGGTTT	16200
AAATGCCTTT	TCATCAGCTT	ATGAAGAAAA	ATCCAAGCAA	CATCAAGAAG	AGCTTGAACA	16260
AATTTTATCA	GATAATGGCA	AGGTACGTCT	GCAACTTTTG	AAAAAAGAAG	GACAAGAGTC	16320
TCTAGACAAG	GGGCAAGAGA	CCCTTGACAA	GGCTCAGACT	AATTTGCAGG	AAGGCAAGCG	16380
TCGTTTAGCA	GCTGCTCAAG	CTCGTATACA	GGCTCAAGAA	AGTCAACTAG	CCTTGTTTCC	15440
TCAAGTTCAG	AGAGAGCAGG	CTAGTGCTCA	ACTTACCCAA	GCCAAGCAGG	AATTGGGCAA	16500
GGAAGAGGAC	AAACTAAAGC	AAGCTGAACA	AAATCTAGCC	CAAGAAAAGG	AAAATTAGA	16560
AAAACATCAG	CAAGTCTTGG	ATGATTTGGC	GGAGCCAAGG	TATCAGGTTT	ATAATCGTCA	16620
GACCATGCCA	GGTGGTCAGG	GCTATCTTAT	GTATAGCAAT	GCTTCATCCA	GTATTCGAGC	16680
AGTGGGCAAT	ATCTTTCCTG	TGGTACTTTA	TGCCGTAGCA	GCCATGGTGA	CCTTTACGAC	16740
CATGACTCGC	TTTGTAGACG	AAGAGCGAAC	TCATGCAGGG	ATTTTTAAGG	CCTTGGGTTA	16800
TCGTAGTAAG	GATATTATCG	CCAAGTTTCT	CCTTTATGGA	CTAGTAGCTG	GGACTGTCGG	16860
AACGGCTCTA	GGTAGTATAC	TTGGTCATTA	TTTGCTAGCC	AGTGTAATTT	CAAGTGTCAT	16920
TACAAAAGGC	ATGGTGGTGG	GAGAAACTCA	GATTCAGTTC	TATTGGACCT	ATAGCTTACT	16980
AGCTTTTGTC	TTGAGCTTGT	TGGCGAGTGT	GTTACCAGCC	TATCTGGTGG	CTTGGAGGGA	17040
ACTTCATGAC	GAAGCAGCCC	AGCTTCTACT	TCCTAAACCT	CCTGTCAAAG	GAGCTAAAAT	17100
CTTATTGGAG	CGTATCGGTT	TTATCTGGCG	TCGTCTCAGT	TTTACTCATA	AGGTAACAGC	17160
CCGCAACATC	TTTCGTTATA	AGCAGAGAAT	GTTGATGACA	ATCTTTGGTG	TGGCAGGTTC	17220
TGTAGCTCTG	CTCTTTGCAG	GTTTGGGAAT	CCAATCTTCT	GTAGCAGGAG	TTCCGTCTAA	17280
ACAGTTTCAA	CAAATCCAAC	AGTATCAGAT	GCTTGTCTCT	GAAAATCCTA	GTGCGACCAA	17340
TCAGGACAAG	GTAGAGCTAG	CAGAAGTGTT	GAAAGGGCAG	GAGATACTAC	CCTACCAGAA	17400
AATCTATTCT	AAAGCGCTAT	ACAAGGATTT	CAAAGGCAAA	GCTGGTCTTC	AAAACATTAC	17460
TCTTATGATC	ATAGAGAAGG	AAGATTTGAC	TCCCTTTATC	CATCTTCAAC	ATCATCAGCA	17520
GGAGCTGACA	TTAAAAGATG	GCATCGTTAT	TACAGCTAAA	CTCGCCCAGC	TGGCAGGTGT	: 7580
CAAGGTTGGG	CAGACTTTAG	AAATTGAAGO	TAAGGAACTA	AAGGTCGTTC	CTATTACTGA	17640
GAACTACGTT	GGTCACTTTA	TTTATATGAC	TCAGGCTAGC	TATGAGCAAC	TTTACGGACA	17700
GCTACCCCA	GCCAACACTT	ATCTGGTCT	ATTAAGGGAT	ACCAGTGCA	CTAGTATCGA	17760
AAGTCAGGC	GGCTTGCTTA	TGAATCAAT	TGCGGTGTCC	AGCGTTGTC	AAAATGCTTC	17820
AGCCATTCG	A CTCTTCGACT	CTATCGCTA	CTCACTCAA1	CAGACCATG	CCATCTTGGT	17880
CATCGTATC	GTTCTATTAC	CTATTGTCA	r cctttacaa	CTGACCAAT	A TCAACGTAGC	17940

TGAGAGAATC	CGTGAACTCT	CCACTATCAA	GGTTCTTGGT	TTTCATAATA	ATGAAGTCAC	18000
	TACCGTGAGA					18060
	TATTTACACC	•				18120
						18180
	GTAGGCTGGG					
GACCTTGCTT	GGTTTCTTCG	TCAATTATTA	TCTGAGAAAG	GTTGATATGT	TAGAAGCCCT	18240
GAAATCTGTA	GAGTAAGGTA	GTTATTTTTA	GCTGATTGAA	CTTCTATTTA	CTAATATTCA	18300
AAAATCCTCC	GTTTCAAAGA	GCAGGGAACT	CTTTGTGACA	GAGGATTTTT	TCTATAGGGC	18360
TTTAGCAGCT	GCAATTGCGG	CTTCGAAGTT	TGGCTCAGAA	TTGATATTAT	CCACGTATTC	18420
AACGTAGCGA	ATCGTATTGT	CAGTATCGAG	GACAAAGACT	GCGCGTGCTA	ATAGGTGCCA	18480
TTCGTTGATC	AAGAGGGCAT	AATCGCGCCC	GAAAGAATGG	TCAAAGTAGT	CTGAAAGCAT	18540
AATGGCATTG	TCAAGGCCTT	CAGCACCGCA	CCAACGTTTT	TGAGCAAAAG	GTAGGTCCAT	18600
TGAAACAGTC	AATACGACCG	TGTTGTCCAG	TCCAGCCAAT	TCTTCATTAA	AACGACGTGT	18660
TTGAGTTGAG	CAGATGCCTG	TATCGATAGA	AGGAACGACA	CTCAAGACTT	TTTTCTTGCC	18720
ATCAAAATCA	GCCAGAGATT	TTTTAGAAAG	ATCTGTTGTA	GTAAGAGAAA	AATCAAGCGC	18780
CTTGTCGCCG	ACTTGTAGTT	GTTTACCTGT	AAAGCTCACA	GGATTTCCGA	GAAAAGTTAC	18840
CATAGGATAC	TCCAATCTTT	TTTCTTCCAT	TTTAGCTGAA	ACAGTCGGAA	TTTTCCAATG	18900
ATTTGACCGG	AAATATGGGC	ATAGAAAAA	CGCCAGCTCA	TGTGAGAATG	ACGTTTTTCA	18960
TAGGTTTATT	TTGCCAATCC	TTCAGCAATC	TTGTCAAGGT	TGTATTTCAT	CATGCTGTAG	19020
TAGCTGTCGC	CTTCTTTACC	TTGTTCTGCG	ATAGAGTCAG	TAAAGATTTG	AGCGTAGATT	19080
GGGATGTTTG	TGTCTTGAGA	AACAGTTTTC	ATTGGACGGT	CATCCACACT	TGATTCTACA	19140
AAGAGTGATG	GAACTTTTGT	TTGGCGAAGT	TTTTCAACCA	AGGTCTTGAT	TTGTTCAGGA	19200
GTTCCTTCTT	CTTCAGTATT	GATTTCCCAG	ATGTAAGCAC	TTGGGACACC	ATAGGCTTTA	19260
GAGAAGTATT	TGAATGCTCC	TTCGCTGGTT	ACAATGAGTT	TCTTTTCAGC	AGGGATCTTA	19320
TTAAATTTAT	CCTTACTTTC	TTTATCAAGT	TTGTCTAACT	TATCAGTATA	TTCTTTGAGA	19380
TTTTTTCAT	AGAATTCTTT	ATTGTTAGGG	TCTTTGGCGC	TCAATTGTTT	GGCGATATTT	19440
TTAGCAAAAA	TAATACCGTT	TTCAAGGTTA	AGCCAAGCGT	GTGGGTCTTC	TTTTCCTTTT	19500
TCATTTTGAC	CTTCAAGGTA	GATAACATCA	ACGCCGTCGC	TGACTGCGAA	GTAGTCTTTG	19560
TTTTCAGTTT	TCTTGGCATT	TTCTACCAAT	TTTGTAAACC	AAGCATTGCC	ACCTGTTTCA	19620
AGGTTGATAC	CGTTATAGAA	AATCAAATTA	GCCTCAGAAG	TTTTCTTAAC	GTCTTCAGGA	19630

AGTGGTTCGT	ATTCGTGTGG	GTCTTGCCCA	370 ATCGGAACGA	TACTATGAAG	GTCAATTTTG	19740
	TATTTTAGT					19800
TTTTGACCAG	AAGTTGTATC	TTTTTTCCG	CTAGCACATG	CTACAAGAAT	GATTGCAGAA	19860
AGAAAGAGAA	CGAGTAATGT	ACCTAATTTT	TTCATTAGAT	CCTCCAATTT	ATTAGGGCTT	19920
TGCCCCTTAT	TTTAACAAAT	GTTTATTTTT	CAGTTTCAAA	TATCGTTGTT	TGGGAGCGAT	19980
AAAGAAGCTA	ATGAGAAAGA	AACTAGCAGC	TGTAAGCACG	ATACTAGAAC	CTGCCGCAAC	20040
АТТААААСТА	TAGCCAATAA	AGAGTCCCAA	AACTGAAGCA	GTAGCTCCGA	AGGTTGAGGA	20100
AAGGAAAATC	ATACTTTTCA	GACTATTAGC	ATACAGATAA	GCAGTTGCAG	CTGGGGTAAT	20160
CAGCATGGCT	ACAATCAGGA	TAGTTCCGAC	ACTTTGCATG	GCTGTCACAG	ACACGAGAGT	20220
CAGGAGTACC	ATGAGAAGGT	AGTGATAGAA	ATTGACAGGC	ATTCCCATGG	CTTTAGCCAA	20280
GAGTTCATCA	AAGGAAGTTA	TCAAGAGTTG	CTTGAAGAAA	ATCCAGATTA	ACAAGAGGAT	20340
AGCTGCCCCC	ACACCCATAG	TAATAAACAT	ATCCGTATCT	TGGACGGCCA	GGATATTACC	20400
AAAAAGGATA	TGGAAAAGGT	CAGTTGAACT	TTTAGCGACA	CCAATCAAGA	TGATACCGAG	20460
GGCTAAGAAA	GAAGAAAAGG	TAATGCCGAT	GGCGGTATCG	CTTTTGATAA	TCGAGTTTCC	20520
TTTGATGTAG	GTAATGATGA	TGGCAGCTAG	CAATCCAAAG	ACAATGGCTC	CGATAAAGAA	20580
GTCAAGGCCC	AAGATGAAGG	ATAGGGCTAC	ACCTGGTAAG	ACAGCATGTG	AAATGGCATC	20640
TCCCATGAGT	GACATCCCGC	GTAGAATAAT	GAAACATCCC	ACAGCTCCAG	CTACAATCCC	20700
					ATCCATCGAT	20760
AAATTCTGCA	. ATCATAGGTC	ACCTCCATTG	AAAAAGAGTT	GATTACCGTA	AGCTTCTTTT	20820
					TCGATTGACA	20880
					GATGAGAACC	20940
					ACTGACAGAG	21000
					CAAACATCTG	21060
					TTCAGCGTAG	21120
					AGCCTTTAAA	21130
					GACCTTGATG	21240
					TAAGGATTTT	21300
					CAACATACCT	21360
					r TGTTGGTCCA	21420
TGGAGCACT	A GTGAAATATO	CTTAAGTGC	AACGTTTCT	TGTAGGAGA	C ACTGAGGTTT	21480

371

TCGATACGTA TCATAAACTT GTATTCCTCC TGTCTCTTAA TATACATTAA AAAAAAAATT 21540
AAGTCAAGTT AATTTTTGAA AAAATTAAAA TAATAACTGA AAAATAGATT CTAAAGATAA 21600
CTTTCAGGAT AAATTTCTAA ATTATAAAAC GCATAGTATC AAGTGTAAAA AACTTGGAAT 21660
TATGCGTTTT ATCATGGAAA GATTTTTTAT AATAGCTAAA AAATAA 21706

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6171 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

C	GATCCCCAGG	AAAAACCGAG	GTTTTCCCAA	TCAATCGTTA	CTGTCATATT	CCACTCCTTA	60
1	CAAAAATOTT	CTATTTCTTA	TATTCTACAC	TATTTTTCTA	AAATAGCAAG	TATATTTTGT	120
2	LATTTTCAGA	AAATTTCTCC	AATAAAAACC	AACTCTTAGA	ACTGATTCTT	CATTTCACTT	180
2	TTTATCTTC	AGTAACTACT	TCCTGAAGAT	AAGCGTCAAA	AACTTCTTCA	TCTGAAATCG	240
?	GTCAGAAAT	GAAGCTTCCA	TTGCTAGTGC	GTTCTGACAA	GTTCAAGTCT	TGCAATCGGC	300
1	PTTCATAGAT	TGTTCCTTTA	TTGGATTGGA	CAAGCAGAGT	TTGGTCGTTC	ACATCCACTT	360
(CCTACTGAA	GAAATCGCCA	ACAAATCCTT	GCTCTGCAAC	TGCTCCTGCC	AAGAAGACAC	420
(SATGCGGTTT	GTTTTTCAAC	TCACGCAAGA	CTTGTAATCC	TCGTTTGGCA	CGGCTGGTTG	480
(TAGAATTTC	CTCAATGGAA	ACACGTTTCA	AGCTTCCACG	CTGGGTCAAG	AGGTAGAAGG	540
Į	CGAAGTATT	ACAGATAAAG	CCAGATTGGA	GGACATCATC	TTCTTTCAAA	TTCATAGCCT	600
7	GACACCTGC	TGCCTTAGCA	CCGACAACCG	GAACCTCTTC	GATATTGAAA	CGCAGGGCAT	660
F	VACCATTTTG	ACTAACCAAG	ACAACATCAT	CTAGTTTAAT	CGGAGCCACT	GCTACAATCT	720
C	SATCTGTATC	GTCTTTGAGC	TTAGCATACT	TGACAGACTT	AGATCTATAG	GTCCGCCATG	780
C	AGTGAATTC	TTTTCGCTCT	ACCCGTTTGA	TTTGACCAAG	GCGAGTCACT	GCAAAGTAGG	840
1	TGTCGCATC	GTCAAACTGA	TCCAGTACTT	CCACATAAAG	GATTTCTTCA	TTCGTTTCAA	900
P	GTTTGTGAT	GGTTTGGCTC	AGATGCTCTC	CGATGTCCTT	CCAACGAATA	TCTGCCAACT	960
C	ATGGATTGG	TCTGTAGATG	ACATTTCCAA	GACTTGTGAA	CATCAAGAGG	TGCTGGGTTG	1020
7	CTTGGCAGA	TTGAACAAAA	ATCAAACGGT	CATCATCACG	CTTGCCAATT	TCTTCCAAGG	1080
7	GGAAGCCGC	AAAGGAACGT	GGACTGGTAC	GCTTGATGTA	ACCTGCCTTG	GTCACGCTGA	1140

			372			
CGTAGGTATC TTC	CTCAGCG	ATAAGACTAG	CTGTATCAAT	CTCAATTGCT	TTCGCAGTGT	1200
CTTCTAAAGA ACT	CAAACGA	GGAGTTGCAA	ATTTCTTCTT	GACCTCACGA	AGTTCTTTCT	1260
TCATGAGATT GTA	CATAGTC	CTTTCATCAC	CGATAATAGC	CGCCAGCATA	GCAATCTTCT	1320
CACGAAGCTC TGC	TTCTTCT	TCCTGCAAGA	CAACCACATC	GGTATTGGTC	AAACGGTACA	1380
GTTGCAAAGT TAC	GATAGCC	TCAGCCTGTT	CTTCCGTAAA	ATCATAGCTA	ACTTTGAGGT	1440
TTTCCTTGGC GTC	CGCCTTA	TTCTCAGAAG	CACGGATAAG	AGCAATGACT	TCATCCAAAA	1500
TCGAAATCAC ACG	AATCAAA	CCTTCGACGA	TATGGAGACG	TTTCTCAGCC	TTTTCTTTGT	1560
CAAAGCGTGA ACC	CCCCAAA	ATCACTTCTC	GACGGTGAGC	GATATAGCTA	GACAGGATTG	1620
GAACAATCCC AAG	CTGACGA	GGTGTGAAAT	TGTCAATCGC	CACCATATTA	AACTTGTAGT	1680
TGATTTGTAG GTO	GGTGTAC	TTAAATAAGT	AGTTGAGAAC	AAGCTCAGTA	TTAGCGTCTT	1740
TCTTAAGTTC GAT	PAGCGATA	CGAAGACCAT	CACGGTCAGA	CTCATCACGA	ACCTCAGCAA	1800
TCCCAGCTAC CT1	TGTTATTA	ACACGAACAT	CATCGATTTT	CTTGACTAGA	TTGGCCTTAT	1860
TGATTTCATA AGO	GAATCTCA	ATAATA ACGA	TTTGTTCCTT	ACCACCTTTT	AGCTTTTCAA	1920
TTTCAGTCTT GG	AACGAACA	ACCACGCGCC	CTTTCCCAGT	CTCATAAGCT	TTCTTGATTT	1980
CATCACGACC CTC	GAATAATA	GCCCCTGTAG	GGAAGTCTGG	TCCAGGCAAG	AATTCCATGA	2040
GTTTATCAAT CT	PTGCAGTT	GGGTGGTCAA	TCATGTAAAC	TGCAGCATCT	ATGACCTCAG	2100
CTAAATTATG GG	GAGGAATG	TCTGTGGCAT	AACCAGCCGA	AATCCCAGTC	GAACCATTGA	2160
CCAAGAGGTT TG	GAAAGGCT	GCTGGCAAGA	CCGTTGGTTC	TTTCTCCGTA	TCGTCAAAGT	2220
TCCATGCAAA AG	GAACTGTC	TTTTTCTCGA	TATCCTGAAG	AAGGTAGCCT	GCAATTTCAG	2280
ACAAACGTGC CT	CAGTATAA	CGCATAGCCC	CAGGAGGATC	TCCGTCCATA	GAACCGTTAT	2340
TACCGTGCAT TT	CAACTAGA	ATCTCACCAT	TTTTCCAGTT	CTGTGACATA	CGAACCATGG	2400
CATCATAGAT AG	AAGAATCC	CCGTGTGGGT	GGAAATTCCC	CATGATGTTC	CCGACTGACT	2460
TGGCCGACTT AC	GGTAGCTC	TTGTCAAAA	TATTGCTATO	CTTATTCATA	GAATAAAGAA	2520
TACGGCGCTG AA	CCGGCTTC	AACCCATCAC	GAATATCTGC	CAAAGCCCGG	TCTTGAATAA	.2580
TGTACTTGGA GT	AGCGACCA	AAGCGCTCTC	CCATGATGT	CTCCAGGGAG	ATGTTTTGAA	2640
TGTTAGACAT AA	GATACAAA	GCCCATAAA	A TACCAAGTG	A AAATAGAAA	TTCTTGAAGT	2700
AAGCAAACTC AC	AAGAGAAT	TTATCTTTT	r cacacagta	CTAGGGCGT	TTCAACTCCT	2760
TTCAAAGAAT GI	AGAGTAGG	TTTTTATGC	A GTAAAAGAT	A TITTACGGG	A ATTCCTCCCG	2820
TGTTCAGTTA CO	ATAAGTAA	CCAAACTAT	C CTGTTTGTA	r trttcaata'	r gaaaatctgg	2880
TTTTCCAAAA TT	AGTCTTAG	TTTGTGTCT	T AGCCGCTCC	C TTAAGCGCC	r CTTTGAGATA	2940

AGCACTCATA	GCAGATTCTT	CATTAATAAT	CCTGCAATTT	TTTCAAACCA	AGATTTTCAA	3000
ACTGCTTTTT	CACATAGTCA	TTCACATCCG	ACTCTAATTT	CCAGTTTACT	AACATATTAT	3060
TTTCTTTCAT	TAAAACACTG	TCGTTTCTTC	TAGCGTAAAC	TTGACATTAT	CTTCAATCCA	3120
TTTACGGCGT	GGTTCTACCT	TATCTCCCAT	GAGAACATTG	ACGCGGCGTT	ceececec	3180
TAAATCTTCA	ATTGTGACAC	GGATGAGGGT	ACGTGTTTCT	GGGTTCATGG	TTGTTTCCCA	3240
GAGCTGGTCC	GCATTCATCT	CACCAAGTCC	TTTGTATCGT	TGGAGGGTAG	CGCCTTTACC	3300
GAACTGTTTA	CGGAGTTCTT	CTAGTTCTCC	GTCCGTCCAA	GCGTAGGCCA	CTTCTTCTTT	3360
CTTGCCTTTA	CCTTTGGACA	TCTTGTAAAG	AGGTGGGAGG	GCAATATAGA	CATGACCTGC	3420
CTCGACTAGC	GGACGCATGT	AACGGTAGAA	AAATGTCAAG	AGCAAGGTCT	GGATATGGGC	3480
ACCGTCGGTA	TCCGCATCGG	TCATGATAAT	GATCTTATCA	TAGTTGGCAT	CTTCAATAGA	3540
GAAGTCTGCT	CCAACACCCG	CACCAATGGT	ATAAATCATG	GTATTGATCT	CTTCATTTTT	3600
GAGGATATCC	GCCATCTTGG	CCTTGGCTGT	ATTGACAACC	TTACCACGAA	GAGGTAGAAT	3660
AGCCTGGAAC	TTGCGGTCAC	GACCTTGTTT	GGCAGAACCA	CCGGCAGAGT	CCCCCTCAAC	3720
TAGATAGAGT	TCATTCTTAG	CAGGATTCTT	AGATTGGGCT	GGGGTCAATT	TCCCAGACAA	3780
CAAGCCCTTA	TCTTTCTTGT	TTTTCTTCCC	ATTTCGGCTC	TCATCACGCG	CCTTACGTGC	3840
TGCTTCACGA	GCATCACGGG	CCTTGATAGC	CTTGCGGATG	AGGTTAGAAG	CTAATTCCCC	3900
ATTTTCCATA	AGGAAAAAGG	TCAACTTATC	AGCCACTATT	CCATCCACAA	CTGGGCGAGC	3960
TAGGGGGCTT	CCTAGTTTAT	CCTTGGTCTG	TCCTTCAAAC	TGCAAGTGTT	CTTCAGGAAC	4020
TAAGATAGAA	AGAACGGCCG	CTAGTCCCTC	ACGATAGTCT	GAACCTTCAA	GGTTTTTATC	4080
TTTTTCCTTG	AGAAGACCTG	TTTTACGTGC	ATAGTCATTC	ATGACCTTGG	TAATGGCAGA	4140
CTTGAGTCCT	GTCTCGTGCG	TTCCACCGTC	CTTGGTGCGA	ACGTTATTGA	CAAAAGATAG	4200
AATGTTATCT	GAGAATCCGT	CATTGTACTG	GAGGGCTACT	TCCACTTGAA	AACCATTGTC	4260
TTCCCCTTCA	AAGTAAAGAA	CTGGCGTCAA	GATTTCCTTA	TCTTCGTTGA	GATAAGAAAC	4320
AAAATCTTGT	ACTCCATTCT	CATAGTGGAA	CTCAATCGCT	TCATTTGTTC	GCTTGTCCGT	4380
TAAAGACAAG	GTCACATTTT	TCAAGAGAAA	GGCTGATTCA	TTAAGGCGCT	CTGAAATGGT	4440
ATTGTACTTG	AAATCTGTCG	TAGAAAATAT	AGTCGCGTCA	GGCATAAAAG	TAACTTTGGT	4500
GCCTGTTTTA	GACTTGGGTG	CTGTACCGAT	TTTCTTCAAA	GTCGTGACAG	GTTTTCCACC	4560
ATTTTCGAAA	CGTTGCTTGT	AAACTGCGCC	ATCACGGGTA	ATTTCAACTT	CTAACCAGCT	4620
AGAAAGGGCG	TTAACAACGG	AAGAACCCAC	TCCGTGAAGT	CCACCTGATG	TCTTATAGCC	4680

PCT/US97/19588 WO 98/18931

			374			
ACCTTGACCG	AATTTCCCTC	CGGCATGAAG		ATAACCTCAA	CAGTTGGAAT	4740
TCCCATAGCG	TGCATACCTG	TCGGCATCCC	ACGTCCATGG	TCTTGAACCG	TTAGACTACC	480
GTCTTTATTG	ATAGTTACAT	CAATACGATC	ACCAAACCCA	GACAAGGCTT	CATCGACTGC	4860
ATTATCAACG	ATTTCCCAAA	CTAGGTGATG	AAGACCAGCG	CCATCGGTCG	ATCCAATATA	4920
CATCCCTGGA	CGTTTTCGGA	CCGCATCCAA	CCCTTCTAGC	ACCTGAATAG	CATCATCATT	4980
ATAATTGTTA	ATATTGATTT	CCTTTTTTGA	CACAAGGAAC	CTCCTATTCG	TTCATCTTTA	5040
CTATTCTACA	GGTTTTCCAA	GGATTTTGCA	AAATTTTTCT	TTCTCCGATG	TGACAATTTC	5100
AGCAGAGATT	CTCTGCTTTT	CTTTCCCAAT	TCATGATATA	ATAGGAGTAT	GATTACAATA	5160
GTTTTATTAA	TCCTAGCCTA	TCTGCTGGGT	TCGATTCCAT	CTGGTCTCTG	GATTGGACAA	5220
GTATTCTTTC	AAATCAATCT	ACGCGAGCAT	GGTTCTGGTA	ACACTGGAAC	GACCAACACC	5280
TTCCGCATTT	TAGGTAAGAA	AGCTGGTATG	GCAACCTTTG	TGATTGACTT	TTTCAAAGGA	5340
ACCCTAGCAA	CGCTGCTTCC	GATTATTTT	CATCTACAAG	GCGTTTCTCC	TCTCATCTTT	5400
GGACTTTTGG	CTGTTATCGG	CCATACCTTC	CCTATCTTTG	CAGGATTTAA	AGGTGGTAAG	5460
GCTGTCGCAA	CCAGTGCTGG	AGTGATTTTC	GGATTTGCGC	CTATCTTCTG	TCTCTACCTT	5520
GCGATTATCT	TCTTTGGAGC	TCTCTATCTT	GGCAGTATGA	TTTCACTGTC	TAGTGTCACA	5580
GCATCGATTG	CGGCTGTTAT	CGGGGTTCTG	CTCTTTCCAC	TTTTTGGTTT	TATCCTGAGT	5640
AACTATGACT	CTCTCTTCAT	CGCTATTATC	TTAGCACTTG	CTAGTTTGAT	TATCATTCGT	5700
CATAAGGACA	ATATAGCTCG	TATCAAAAAT	AAAACTGAAA	ATTTGGTCCC	TTGGGGATTG	5760
AACCTAACCC	ATCAAGATCC	TAAAAAATAA	AATGCCAGTT	CTGTACTGCC	CCCAAACAGT	5820
TAGACAAATA	ATTTATCCAA	AGGATTTAGT	TCTGTACTGC	ACAGGACTAA	GTCCTTTTAG	5880
TTTTACCTTA	ATTCGTTTGT	TGTTGTAGTA	ATCAATATAG	TCTATAATGG	CTTGTTCCAA	5940
TTGATTAAGT	GATTTAAATG	TTTTCTCATA	GCCATAAAAC	ATTTCGGATT	TTAAAATGCC	6000
AAAGAAAGAT	TCCATCCTAC	CGTTGTCTTG	GCTGTTGCCC	TTACGTGACA	TGGATGCTTG	6060
AATTCCCTTA	CTCTCTAGGA	ACCGATGATA	AGAATCGTGT	TGGTATTGCC	AGCCTTGGTC	6120
ACTATGGAGA	ATCGTATTCT	CGTAGTGCTT	CTCTGTGAAT	GCCTGTTCCA	A	6171

(2) INFORMATION FOR SEQ ID NO: 38:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 18475 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

TATTACAAAT	AAAAAAACGG	AGGAGTGCTT	TATGAAAGCC	TATACTTATG	TTAAACCAGG	60
ACTTGCTTCT	TTTGTTGATG	TAGACAAACC	AGTTATTCGC	AAGCCAACAG	ACCCTATTCT	120
GCGTATTGTA	AAAACCACTA	TTTGTGGAAC	AGACCTCCAT	ATTATCAAAG	GGGATGTTCC	180
TACTTGCCAA	AGTGGTACCA	TTCTTGGCCA	CGAAGGGATT	GGGATTGTTG	AAGAAGTTGG	240
GGAAGGAGTT	TCCAACTTCA	AAAAAGGTGA	CAAGGTCTTG	ATTTCTTGCG	TCTGTGCCTG	300
TGGTAAATGC	TACTACTGTA	AAAAAGGAAT	TTATGCTCAC	TGTGAAGACG	AAGGGGGCTG	360
GATTTTCGGT	CACTTGATTG	ATGGTATGCA	GGCTGAATAT	CTACGTGTCC	CTCATGCAGA	420
TAATACTCTT	TACCATACTC	CAGAAGACTT	GTCAGATGAA	GCTTTGGTTA	TGCTGTCAGA	480
CATTCTGCCT	ACTGGATATG	AAATTGGTGT	CTTAAAAGGG	AAAGTAGAAC	CTGGTTGCAG	540
CGTAGCCATT	ATTGGTTCAG	GTCCAGTTGG	ATTGGCTGCT	CTTTTAACAG	CCCAATTCTA	600
TTCACCAGCT	AAATTGATTA	TGGTAGACCT	AGACGATAAC	CGCTTGGAAA	CTGCCCTATC	660
ATTCGGTGCG	ACTCATAAGG	TTAATTCTTC	AGACCCTGAA	AAAGCCATTA	aag aaatt ta	720
TGATTTGACA	GATGGTCGTG	GTGTGGATGT	CGCTATCGAA	GCTGTTGGTA	TTCCTGCAAC	780
ATTTGATTTC	TGTCAAAAGA	TTATCGGTGT	AGACGGAACG	GTTGCCAACT	GTGGTGTGCA	840
TGGTAAACCA	GTTGAATTCG	ATTTAGATAA	ACTTTGGATT	CGCAACATCA	ATGTAACAAC	900
TGGTTTGGTA	TCTACAAATA	CGACTCCACA	ATTGTTGAAA	GCACTTGAAA	GTCATAAGAT	960
TGAACCGGAA	AAATTGGTAA	CTCACTATTT	CAAACTCAGT	GAAATTGAAA	AAGCCTACGA	1020
AGTCTTCAGT	AAGGCAGCAG	ACCACCATGC	CATTAAGGTC	ATTATCGAAA	ACGATATCTC	1080
AGAAGCCTAA	GTAGTAAAAA	TATTTTTGTA	CATAAGTAAA	TAGAAATTCA	GTCATCCATC	1140
AGATGGCTGG	ATTTTTTATC	AAAAAATTAA	GAAATGAGCA	TATTTCTTTC	CTTGTCTGGC	1200
GGAATTGGTT	ATAATATACG	GTACAAAGGA	ATGAATGAAT	ATGTATCGTG	TTATAGAAAT	1260
GTACGGAGAT	TTTGAACCGT	GGTGGTTCTT	AGAAGGTTGG	GAAGAAGATA	TTGTAGCAAG	1320
TAGAAAATTT	GACCAGTATT	ATGATGCTCT	CAAATACTAC	AAAACTTGCT	GGTTTAGATT	1380
GGAACAAGAA	TCGCCTCTTT	ATAAAAGTAG	AAGCGACTTG	ATGACCATTT	TTTGGGACCC	1440
GGAAGACCAA	CGCTGGTGTG	ATGAATGTGA	TGAGTATTTA	CAACAATACC	ATTCTTTGGC	1500
TCTTTTGCAG	GATGAGCAGG	TTATCCCAGA	CGAAAAACTA	CGCTCAGGCT	ATGAAAAACA	1560
AACCAGTCAG	GAÄAGGAATC	GTTCTTGCCG	TATGAAATTA	AAATAGAGAA	AAGTAACTTT	1620
TTTGGAGTTG	CTTTTTTTAT	TTTTCTAACT	CTTTGCGAAT	AGTATAGGTG	AGGAGGTAAG	1680

			376			
TATGGTTCAA	GAAATTGCAC	AAGAAATCAT	TCGTTCAGCT	CGGAAAAAAG	GGACGCAGGA	1740
TATCTATTTT	GTCCCTAAGT	TAGACGCCTA	TGAGCTTCAT	ATGAGGGTAG	GAGACGAGCG	1800
CTGTAAAATT	GGTAGCTATG	ATTTTGAAAA	GTTTGCAGCC	GTTATCAGTC	ACTTTAAGTT	1860
TGTGGCGGGT	ATGAATGTGG	GAGAAAAAAG	ACGTAGTCAA	CTGGGTTCCT	GTGATTATGC	1920
CTATGACCAT	AAGATAGCGT	CTCTACGTTT	ATCTACTGTA	GGCGATTATC	GGGGGCATGA	1980
GAGTTTGGTT	ATCCGTTTGT	TGCACGATGA	GGAGCAGGAC	CTGCATTTTT	GGTTTCAGGA	2040
TATTGAAGAA	TTAGGCAAGC	AGTACAGGCA	ACGGGGACTC	TATCTTTTTG	CTGGTCCGGT	2100
TGGGAGTGGT	AAGACGACCT	TGATGCATGA	ATTGTCCAAG	TCACTCTTTA	AAGGACAGCA	2160
AGTTATGTCC	ATCGAAGATC	CTGTCGAAAT	CAAGCAGGAC	GACATGCTTC	AGTTGCAGTT	2220
GAACGAAGCA	ATCGGCCTAA	CCTATGAAAA	TCTAATCAAA	CTTTCCTTGC	GTCATCGACC	2280
AGATCTCTTG	ATTATCGGAG	AAATTCGTGA	CAGCGAGACG	GCGCGTGCAG	TGGTCAGAGC	2340
TAGTTTGACA	GGTGCGACAG	TCTTTTCAAC	CATTCACGCC	AAGAGTATCC	GAGGTGTTTA	2400
TGAGCGTCTG	CTGGAGTTGG	GTGTGAGTGA	AGAAGAATTG	GCAGTTGTTC	TGCAAGGAGT	2460
CTGCTACCAG	AGATTAATCG	GGGGAGGAGG	AATCGTTGAC	TTTGCAAGCA	GAGATTATCA	2520
AGAACACCAA	GCAGCCAAGT	GGAATGAGCA	AATTGACCAG	CTTCTTAAAG	ATGGACATAT	2580
CACAAGTCTT	CAGGCTGAGA	CGGAAAAAAT	TAGCTACAGC	TAAGCAAAAA	AATATCATCA	2640
CCCTATTTAA	CAATCTCTTT	TCTAGCGGTT	TTCATCTGGT	GGAGACTATC	TCCTTTTTAG	2700
ATAGGAGTGC	TTTGTTGGAC	AAGCAGTGTG	TGACCCAGAT	GCGTGTGGGC	TTGTCTCAGG	2760
GGAAATCATT	CTCAGAAATG	ATGGAAAGTT	TGGGATGTTC	AAGTGCTATT	GTCACTCAGT	2820
TATCCCTAGC	TGAAGTTCAT	GGCAATCTCC	ACCTGAGTTT	GGGAAAGATA	GAAGAATATC	2880
TGGACAATCT	GGCTAAGGTC	AAGAAAAAAT	TGATTGAAGT	AGCGACCTAT	CCCTTGATTT	2940
TGCTGGGTTT	TCTTCTCTTA	ATTATGCTGG	GGCTACGGAA	TTACCTGCTC	CCACAACTGG	3000
ATAGTAGCAA	TATTGCCACC	CAAATTATCG	GTAATCTGCC	CCAAATTTTT	CTAGGCATGG	3060
TAGGGCTTGT	TTCCGTGCTT	GCCCTTTTAG	CACTCACTTT	TTATAAAAGA	AGTTCTAAGA	3120
TGAGTGTCTT	TTCTATCTTA	GCACGCCTTC	CCTTTATTGG	AATCTTTGTG	CAGACCTACT	3180
TGACAGCCTA	TTATGCACGT	GAATGGGGGA	ATATGATTTC	ACAGGGAATG	GAGTTGACGC	3240
AGATTTTCA	AATGATGCAG	GAACAAGGTT	CCCAGCTCTT	TAAAGAAGTC	GGTCAAGATC	3300
TGGCTCAAAC	CCTGAAAAAT	GGCCGTGAAT	TTTCTCAGAC	GATAGGAACC	TATCCTTTCT	3360
TTAGGAAGGA	ATTGAGTCTC	ATCATAGAGT	ATGGGGAAGT	TAAGTCCAAG	CTGGGTAGTG	3420
ACTTGGAAAT	СТАТССТСАА	AAAACTTGGG	AAGCCTTTTT	TACCCGAGTC	AACCGCACCA	3480

TGAATTTGGT	GCAGCCACTG	GTTTTTATCT	TTGTGGCACT	GATTATCGTT	TTACTTTATG	3540
CGGCAATGCT	CATGCCCATG	татсаааата	TGGAGGTAAA	TTTTTAAAAT	GAAAAAAATG	3600
ATGACATTCT	TGAAAAAAGC	TAAGGTTAAA	GCTTTTACAT	TGGTGGAGAT	GTTGGTGGTC	3660
TTGCTGATTA	TCAGCGTGCT	TTTCTTGCTC	TTTGTACCTA	ATCTGACCAA	GCAAAAAGAA	3720
GCAGTCAATG	ACAAAGGAAA	AGCAGCTGTT	GTTAAGGTGG	TGGAAAGCCA	GGCAGAACTT	3780
TATAGCTTAG	AAAAGAATGA	AGATGCTAGC	CTAAGAAAGT	TACAAGCAGA	TGGACGCATC	3840
ACGGAAGAAC	AGGCTAAAGC	TTATAAAGAA	TACAATGATA	AAAATGGAGG	AGCAAATCGT	3900
AAAGTCAATG	ATTAAGGCCT	TTACCATGCT	GGAAAGTCTC	TTGGTTTTGG	GACTTGTGAG	3960
TATCCTTGCC	TTGGGCTTGT	CCGGCTCTGT	CCAGTCCACT	TTTTCAGCGG	TAGAGGAACA	4020
GATTTTCTTT	ATGGAGTTTG	AAGAACTCTA	TCGGGAAACC	CAAAAACGCA	GTGTAGCCAG	4080
TCAGCAAAAG	ACTAGTCTGA	ACTTAGATGG	GCAGACGCTT	AGCAATGGCA	GTCAAAAGTT	4140
GCCAGTCCCT	AAAGGAATTC	AGGCCCCATC	AGGCCAAAGT	ATTACATTTG	ACCGAGCTGG	4200
GGGCAATTCG	TCCCTGGCTA	AGGTTGAATT	TCAGACCAGT	AAAGGAGCGA	TTCGCTATCA	4260
ATTATATCTA	GGAAATGGAA	AAATTAAACG	CATTAAGGAA	ACAAAAAATT	AGGGCAGTGA	4320
TTTTACTGGA	AGCAGTAGTC	GCTCTAGCTA	TCTTTGCCAG	CATTGCGACC	CTCCTTTTGG	4380
GACAAATTCA	AAAAAATAGG	CAAGAGGAAG	CAAAAATCTT	GCAAAAGGAA	GAAGTCTTGA	4440
GGGTAGCTAA	GATGGCCCTG	CAGACGGGGC	AAAATCAGGT	AAGCATCAAC	GGAGTTGAGA	4500
TTCAGGTATT	TTCTAGTGAA	AAAGGATTGG	AGGTCTACCA	TGGTTCAGAA	CAGTTGTTGG	4560
CAATCAAAGA	GCCATAAGGT	CAAGGCTTTT	ACCTTGTTAG	AATCCCTGCT	TGCCCTCATT	4620
GTCATCAGTG	GGGGATTACT	CCTTTTTCAA	GCTATGAGTC	AGCTCCTCAT	TTCAGAAGTT	4680
CGCTACCAGC	AACAAAGCGA	GCAAAAGGAG	TGGCTCTTGT	TTGTGGACCA	ACTTGAGGTA	4740
GAATTAGACC	GTTCGCAGTT	CGAAAAAGTA	GAAGGCAATC	GCCTATACAT	GAAGCAAGAT	4800
GGCAAGGACA	TCGCCATCGG	TAAGTCAAAG	TCAGATGATT	TCCGTAAAAC	GAATGCTCGT	4860
GGTCGAGGTT	ATCAGCCTAT	GGTTTATGGA	CTCAAATCTG	TACGGATTAC	AGAGGACAAT	4920
CAACTGGTTC	GCTTTCATTT	CCAGTTCCAA	AAAGGCTTAG	AAAGGGAGTT	CATCTATCGT	4980
GTGGAAAAAG	AAAAAAGTTA	AGGCAGGTGT	TCTCCTCTAC	GCAGTCACCA	TAGCAGCCAT	5040
CTTTAGTCTT	TTGTTGCAAT	TTTATTTGAA	CCGACAAGTC	GCCCACTATC	AAGACTATGC	5100
TTTGAATAAA	GAAAAATTGG	TTGCTTTTGC	TATGGCTAAA	CGAACCAAAG	ATAAGGTTGA	5160
GCAAGAAAGT	GGGGAACAGT	TTTTTAATCT	AGGTCAGGTA	AGCTATCAAA	ACAAGAAAAC	5220

			378			
	ACGAGGGTTC					5280
CAAAATCAAA	GAAGAGAAAA	GAGATAAAAA	GGAAGAGGTA	GCGACCGATT	CAAGCGAAAA	5340
AGTGGAGAAG	AAAAAATCAG	AAGAGAAGCC	TGAAAAGAAA	GAGAATTCAT	AGTCAATTCA	5400
ACTATAATGC	GTTGAATCCA	GAATAGTCCA	CTGTAGTTTC	TAGAAAATTG	CTGGAAATGG	5460
ATGTTAAGCT	CCAATTCATT	TGTTTATATC	TTATTTCAGT	TTACTATACT	TTGTGCTAAA	5520
TTAAAGATAT	GAAACATGAT	TTTAACCACA	AAGCAGAAAC	TTTCGATTCC	CCTAAAAATA	5580
TCTTCCTCGC	AAACTTGGTA	TGTCAAGCAG	CCGAGAAACA	GATTGATCTT	CTATCAGACA	5640
AAGAAATTTT	AGATTTCGGT	GGTGGCACGG	GTCTATTAGC	CTTGCCCCTA	ACCCCTAGCC	5700
AAGCAGGCTA	AGTCAGTCAC	TCTTGTAGAC	ATTTCTGAGA	AAATGTTGGA	GCAAGCTCGT	5760
TTGAAAGTGG	AGCAGCAAGC	AATCAAGAAT	ATCCAGTTTT	TGGAGCAAGA	TTTACCGAAA	5820
AATCCCTTGG	AGAAAGAGTT	TGATTGCCTT	GCTGTTAGTC	GGGTTCTTCA	TCATATGCCT	5880
GATTTGGATG	CGGCTCTCTC	ACTGTTTCAT	CAACATTTGA	AGGAAGATGG	GAAACTCATC	5940
ATTGCTGATT	TTACCAAGAC	AGAAGCTAAT	CATCATGGAT	TTGATTTAGC	TGAACTGGAA	6000
AACAAGCTAA	TTGAGCATGG	TTTTTCATCT	GTGCATAGTC	AGATTCTCTA	TAGTGCTGAA	6060
GACCTGTTTC	AAGGAAATCA	CTCAGAATTC	TTTTTAATAG	TAGCCCAAAA	ATCACTCGCC	6120
TAGTCAGGGA	GTGATTTTTC	TATAAGGATG	GAAAAAAGAA	GGGAAATTTG	GTAAGATAGG	6180
AATATGGATT	TTGAAAAAAT	TGAACAAGCT	TATACCTATT	TACTAGAGAA	TGTCCAAGTC	6240
ATCCAAAGTG	ATTTGGCGAC	CAACTTTTAT	GACGCCTTGG	TGGAGCAAAA	TAGCATCTAT	6300
CTGGATGGTG	AAACTGAGCT	AAACCAGGTO	AAGGAGAACA	ATCAAACCCT	TAAGCGTTTA	6360
GCACTACGCA	AAGAAGAATG	GCTCAAGAC	TACCAGTTTC	: TCTTGATGAA	GGCTGGGCAA	6420
ACAGAACCCT	TGCAGGCCAA	TCACCAGTT	r ACACCGGATO	CTATTGCTT	GCTTTTGGTG	6480
TTTATTGTGC	AAGAGTTGTT	TAAAGAGGAG	G GAAATTACTA	TCCTCGAAAT	GGGTTCTGGG	6540
ATGGGAATTC	TAGGCGCTAT	TTTCTTGAC	C TCGCTTACTA	A AAAAGGTGG#	TTACTTGGGA	6600
ATGGAAGTGG	ATGATTTGCT	GATTGATCT	G GCAGCTAGC	TGGCAGATG	C AATTGGTTTG	6660
CAGGCTGGCT	TTGTCCAAGO	G AGATGCCGT	T CGCCCACAA	TGCTCAAAG	A AAGCGATGTG	6720
GTCATCAGTO	ACTTGCCTG	CGGCTATTA	T CCTGATGAT	G CCGTTGCGT	GCGCCATCAA	6780
GTTGCTTCT	A GCCAAGAAC	A TACTTACGC	C CATCACTTG	C TCATGGAAC	A AGGGCTTAAG	6840
TACCTCAAG	r CAGACGGAT	A CGCTATTTT	T CTAGCTCCG	A GTGATTTGT	T GACCAGTCCT	6900
CAAAGTGAT	TGTTAAAAG	A ATGGCTGAA	A GAAGAGGCG	A GTCTGGTTG	C TATGATTAGT	6960
CTGCCTGAA	A ATCTCTTTG	C TAATGCCAA	A CAATCTAAG	A CTATTTTA	T CTTACAGAAG	7020

AAAAATGAAA	TAGCAGTAGA	GCCTTTTGTT	TATCCACTTG	CTAGCTTGCA	AGATGCAAGT	708
GTTTTAATGA	AATTTAAAGA	AAATTTTCAA	AAATGGACTC	AAGGTACTGA	AATATAAAAT	714
AGATTTTGTT	ATAATAGTTG	AAAACGCTTA	AAAAGGGGTA	TCATGTTATG	ACAAAAACAA	7200
TTGCAATCAA	TGCAGGAAGT	TCAAGTTTGA	AATGGCAATT	ATACTTAATG	CCAGAAGAAA	7260
AAGTATTGGC	GAAAGGTTTG	ATTGAACGTA	TCGGTTTGAA	AGATTCAATT	TCAACTGTAA	7320
AATTTGACGG	CCGTTCTGAA	CAACAAATTT	TGGATATTGA	AAATCATATA	CAAGCCGTTA	7380
AAATTTTATT	GGATGACTTG	ATTCGTTTCG	ATATTATCAA	GGCTTATGAC	GAGATTACAG	7440
GTGTTGGACA	TCGTGTTGTT	GCTGGTGGAG	AATATTTCAA	AGAATCAACA	GTTGTTGAGG	7500
GAGATGTTTT	AGAAAAAGTT	GAAGAGTTGA	GTTTGTTGGC	TCCTCTACAC	AACCCGGCCA	7560
ATGCAGCAGG	TGTTCGTGCC	TTCAAGGAAT	TGTTGCCAGA	CATTACCAGT	GTAGTTGTTT	7620
TTGATACTTC	CTTCCACACA	AGTATGCCAG	AGAAAGCTTA	TCGCTACCCT	CTACCAACAA	7680
AATATTACAC	AGAAAACAAG	GTTCGTAAAT	ACGGTGCTCA	TGGTACAAGT	CACCAGTTTG	7740
TAGCAGGAGA	AGCTGCAAAA	CTCTTGGGAC	GTCCATTAGA	AGACTTGAAG	TTAATTACCT	7800
GTCATATTGG	TAACGGAGGC	TCAATTACAG	CTGTGAAAGC	CGGCAAATCT	GTAGACACTT	7860
CTATGGGGTT	CACTCCTCTT	GGTGGTATTA	TGATGGGAAC	GCGTACAGGG	GATATTGATC	7920
CAGCTATCAT	TCCTTATTTA	ATGCAATATA	CAGAGGATTT	TAACACACCA	GAAGATATĆA	7980
GTCGTGTTCT	TAACCGTGAA	TCAGGTCTTT	TGGGAGTTTC	TGCTAATTCT	AGCGATATGC	8040
GCGATATAGA	AGCAGCTGTA	GCAGAAGGGA	ATCACGAGGC	TAGCTTGGCT	TATGAAATGT	8100
ATGTTGACCG	TATCCAAAAA	CATATCGGTC	AGTACCTTGC	AGTGCTAAAT	GGAGCAGATG	8160
CCATTGTTTT	CACAGCAGGT	GTCGGTGAAA	ATGCAGAGAG	TTTCCGTCGT	GATGTAATCT	8220
CAGGGATTTC	GTGGTTTGGT	TGTGATGTTG	ATGATGAAAA	GAATGTCTTT	GGCGTTACAG	8280
GAGACATCTC	AACAGAGGCA	GCTAAAATCC	GTGTCTTGGT	TATTCCAACA	GATGAAGAAT	8340
TAGTCATTGC	CCGTGACGTT	GAACGCTTGA	AAAAATAAGT	GAAACTAAAA	AAATATTCAA	8400
TACAAGGAGT	TGGGAAAGTT	ATTTTTCCAG	CTTCTTTTTC	TGATGAAATT	GTCCAAAACC	8460
TTGCTATGAT	TGGCTTTTTT	GAAAAATATG	GTATAATAGT	AGTAATTTAA	TAGATGGAGT	8520
TGAGTTTTGA	AGAAAACTT	TCGTGTAAAA	AGAGAGAAAG	ATTTTAAGGC	GATTTTCAAG	9580
GAGGGGACAA	GTTTTGCTAA	TCGCAAATTT	GTGGTCTACC	AATTAGAAAA	CCAGAAAAAC	8640
CGTTTTCGAG	TAGGTCTATC	AGTTAGCAAA	AAACTGGGGA	ATGCCGTCAC	TAGAAATCAA	8700
ATTAAGCGAC	GGATTCGGCA	TATTATCCAG	AATGCAAAAG	GGAGTCTGGT	AGAAGATGTC	8760

			380			
GACTTTGTTG	TCATTGCTCG	AAAAGGAGTC	GAAACCTTGG	GATACC TAGA	GATGGAGAAA	8820
AATCTACTCC	ATGTATTAAA	ATTATCAAAG	ATTTACCGGG	AAGGAAATGG	GAGTGAAAAA	8880
GAAACTAAAG	TTGACTAGTT	TGCTÁGGACT	GTCTCTGTTA	ATCATGACAG	CCTGTGCGAC	8940
TAATGGGGTA	ACTAGCGATA	TTACAGCCGA	ATCGGCTGAT	TTTTGGAGTA	AATTGGTTTA	9000
CTTCTTTGCG	GAAATCATTC	GCTTTTTATC	GTTTGATATT	AGTATCGGAG	TGGGGATTAT	9060
TCTCTTTACG	GTCTTGATTC	GTACAGTCCT	CTTGCCAGTC	TTTCAGGTGC	AAATGGTGGC	9120
TTCTAGGAAA	ATGCAGGAAG	CTCAGCCACG	CATTAAGGCG	CTTCGAGAAC	AATATCCAGG	9180
TCGAGATATG	GAAAGCAGAA	CCAAACTAGA	GCAGGAAATG	CGTAAAGTAT	TTAAAGAAAT	9240
GGGTGTCAGA	CAGTCAGACT	CTCTTTGGCC	GATTTTGATT	CAGATGCCGG	TTATTTTGGC	9300
CCTGTTCCAA	GCCCTATCAA	GAGTTGACTT	TTTAAAGACA	GGTCATTTCT	TATGGATTAA	9360
CCTTGGTAGT	GTGGATACAA	CCCTTGTTCT	TCCGATTTTA	GCAGCAGTAT	TCACCTTTTT	9420
AAGTACTTGG	TTGTCCAACA	AAGCTTTGTC	TGAGCGAAAT	GGCGCTACGA	CTGCGATGAT	9480
CTATGGGATT	CCAGTCTTGA	TTTTTATCTT	TGCAGTTTAT	GCGCCAGGTG	GAGTCGCCCT	9540
ATACTGGACA	GTGTCTAATG	CTTATCAAGT	CTTGCAAACC	TATTTCTTGA	ATAATCCATT	9600
CAAGATTATC	GCAGAGCGCG	AGGCCGTAGT	ACAGGCACAA	AAAGATTTGG	AAAATAGAAA	9660
AAGAAAAGCC	AAGAAAAAGG	CTCAGAAAAC	GAAATAAATA	AGGAGGAATO	TGGTAGTGGT	9720
AGTATTTACA	GGTTCAACTG	TTGAAGAAGC	AATCCAGAAA	GGATTGAAAC	AATTAGATAT	9780
TCCAAGAATG	AAGGCTCATA	TCAAAGTCAT	TTCTAGGGAG	AAAAAAGGC?	TTCTTGGTCT	9840
ATTTGGTAAA	AAACCAGCCC	AAGTGGATAT	TGAAGCGATT	AGTGAAACG/	CTGTTGTCAA	9900
AGCAAATCAA	CAGGTAGTAA	AAGGCGTTC	GAAAAAAATO	AATGATTTG	ACGAGCCTGT	9960
GAAGACGGTT	r AGTGAAGAAA	CCGTTGACCI	TGGTCATGTC	GTTGATGCT/	TAAAAAATT	10020
AGAGGAAGAA	GGTCAAGGTA	TTTCTGATG	A AGTCAAGGCT	GAAATCTTA	A AACATGAAAG	10080
ACATGCCAGG	ACTATOTTAG	AAGAAACTG	TCACATTGAC	TAAATTTTA	G AACTTCAAAT	10140
					C AAGACCAAGC	10200
TGAAAGTCAA	A GAACTAGAAC	ACTTGGGCT	r gaaagttga/	A ACGAACTTT	G ATATTGAACA	10260
AGTAGCTAC	GAAGTAATG	CTTATGTTC	A AACGATTAT	r GATGACATG	G ATGTTGAGGC	10320
					A CCAACGAACC	10380
AGGTCGTAT	T ATCGGCTAC	ATGGTAAAG	T CTTGAAGGC	C TTGCAACTG	T TGGCTCAAAA	10440
TTATCTTTA	C AACCGCTAT	r CCAGAACCT	T CTACGTTAC	A ATCAATGTC	A ATGATTATGT	105,00
CGAACACCG	T GCAGAAGTC	T TGCAGACCT	A TGCGCAAAA	A TTGGCGACT	C GTGTTTTGGA	10560

AGAAGGGCGC	AGTCATAAAA	CAGATCCAAT	GTCAAATAGC	GAACGCAAGA	TTATCCATCG	10620
TATTATTTCA	CGTATGGATG	GCGTGACTAG	TTACTCTGAA	GGTGATGAGC	CAAATCGCTA	10680
TGTTGTTGTA	GATACAGAAT	AAGTAAAATC	AGGTTTATCC	TGATTTTTTG	CTAGTTAGAG	10740
GAGGTTAAAC	TGATGTTGAA	TAAGATAAGA	GACTATTTAG	ACTTTGCTGG	TTTGCAGTAC	10800
CGTAATCCTG	ATAAAGCGGG	AGCAGAGCGA	GAGAAGATGC	TGGCATTCCG	CCACAAAGGA	10860
CAAGAGGCCC	GAAAGGTTTT	TACAGAACTG	GCCAAAGCCT	TTCAAGCAAG	CCATCCAGAA	10920
TGGCAACTCC	AACAGACTAG	CCAGTGGATG	AATCAGGCCC	AGCGTTTGAG	ACCACATTTT	10980
TGGGTTTATC	TACAGAGAGA	CGGACAAGTG	ACAGAACCTA	TGATGGCCTT	ACGTTTGTAT	11040
GGGACATCTA	CTGACTTTGG	AATTTCTTTG	GAAGTCAGTT	TCATCGAACG	TAAGAAGGAT	11100
GAGCAAACAC	TGGGCAAGCA	GGCCAAAGTT	TTAGACATTC	CAACCGTTAA	AGGGATTTAT	11160
TATCTAACCT	ACTCTAATGG	TCAAAGTCAA	CGGTGGGAGG	CGAATGAAGA	AAAGCGTCGT	11220
ACTTTACGCG	AGAAGGTGAG	AAGTCAAGAA	GTTCGAAAAG	TTTTAGTGAA	GGTAGATGTT	11280
CCTATGACAG	AAAATTCGTC	TGAAGAAGAA	ATCGTAGAAG	GCTTATTGAA	GTCTTATTCT	11340
AAAATTCTTC	CCTATTATCT	AGCTACGAGA	AAATAAGATA	ATTTGTAAAA	СЛТСАТААЛТ	11400
CATACAGTCC	AAGAGTGAAC	ÄGTCCGCTGT	GTAATTCTTG	GTCTTTTTGT	TTGCGCTTTC	11460
GCATTATATA	ATAAACTTAC	AAAAACAATT	CAAAAGGAGA	ACAATTATGG	AAGTCGTTTC	11520
AAGTGTTCTA	AATTGGTTTT	CTAGCAATAT	TTTGCAGAAT	CCCGCATTTT	TCGTAGGTTT	11580
ATTGGTGTTG	ATAGGATATG	CACTTTTGAA	AAAACCTGCC	CATGACGTTT	TTTCAGGGTT	11640
TGTTAAAGCA	ACAGTAGGGT	ATATGTTGCT	TAACGTGGGT	GCTGGTGGTT	TGGTTACAAC	11700
CTTTCGTCCA	ATCTTAGCAG	CTCTTAACTA	CAAATTCCAA	ATTGGTGCAG	CGGTTATCGA	11763
CCCTTACTTT	GGACTTGCTG	CAGCAAACAA	CAAAATTGTA	GCAGAGTTTC	CAGATTTTGT	11820
TGGAACTGCA	ACTACAGCTC	TATTGATTGG	TTTTGGAATA	AATATCTTGC	TCGTAGCTCT	11880
TCGAAAGATT	ACGAAGGTAA	GAACCCTCTT	TATTACTGGT	CACATCATGG	TACAACAAGC	11940
TGCAACAGTA	TCTCTTATGG	TTCTATTCTT	AGTACCACAA	TTGCGCAATG	CTTACGGTAC	12000
AGCAGCGATT	GGTATCATCT	GTGGACTTTA	CTGGGCAGTT	AGTTCAAATA	TGACTGTTGA	12060
GGCAACTCAA	CGCTTGACTG	GTGGTGGCGG	ATTTGCGATT	GGTCACCAAC	AGCAATTTGC	12120
AATCTGGTTT	GTAGATAAAG	TAGCAGGACG	CTTTGGTAAG	AAAGAAGAAA	GTTTAGACAA	12180
TCTTAAATTA	CCTAAGTTCC	TCTCAATCTT	CCACGATACA	GTTGTTGCAT	CTGCTACCTT	12240
GATGCTCGTA	TTCTTCGGAG	CCATTCTTTT	AATCTTGGGT	CCAGACATTA	TGTCTAATAA	12300

		382			
AGAAGTCATC ACTTCAGGAA CT	CTATTCAA	TCCTGCTAAA	CAAGATTTCT	TTATGTACAT	12360
TATCCAAACA GCCTTTACCT TC	TCAGTTTA (CTTGTTCGTT	TTGATGCAAG	GTGTCCGAAT	12420
GTTCGTATCT GAGTTGACAA AC	GCCTTCCA A	AGGTATTTCA	AACAAATTGT	TGCCAGGTTC	12480
ATTCCCAGCG GTTGACGTTG CA	GCTTCTTA	TGGATTTGGT	TCTCCAAATG	CTGTCTTGTC	12540
AGGATTTACC TTTGGTTTGA TT	GGTCAATT	GATTACAATT	GTTTTGCTCA	TCGTCTTTAA	12600
AAATCCGATT CTTATTATTA CA	GGATTTGT	ACCAGTGTTC	TTTGACAATG	CAGCCATTGC	12660
GGTCTACGCT GATAAACGCG GC	GGATGGAA	AGCGGCTGTT	ATCCTTTCCT	TTATATCAGG	12720
TGTCCTTCAA GTTGCTCTAG GA	GCTCTTTG	TGTGGCCCTT	CTCGATTTGG	CATCTTATGG	12780
TGGCTACCAT GGAAATATCG AC	TTTGAATT	CCCATGGCTT	GGATTTGGAT	ATATCTTCAA	12840
ATACCTTGGT ATTGTTGGTT AT	GTACTTGT	GTGTCTCTTC	TTGCTTGTTA	TTCCTCAACT	12900
TCAATTTGCC AAAGCAAAAG AT	AAAGAGAA	ATATTACAAC	GGTGAAGTTC	AAGAAGAAGC	12960
TTAGTATCTA GAAAAGGAGA AA	TAAAATGG	TTAAAGTATT	AGCAGCGTGC	GGAAATGGAA	13020
TGGGTTCATC AATGGTTATC AA	AGATGAAGG	TTGAAAATGC	TCTCCGTAAG	CTTAATCAAA	13080
CAGATTTTAC AGTCAATTCA TO	CAGTGTCG	GTGAAGCTAA	AGGTTTAGCA	GTAGGATATG	13140
ACATCGTAAT CGCTTCTCTT CA	ATTTGATTC	AAGAATTGGA	AGGGCGAACT	AATGGGAAGT	13200
TAATTGGGCT TGATAACTTG AT	rggatgata	AAGAAATCAC	CGAAAAACTC	AGTCAAGCAC	13260
TACAGTAAAA GGTTGGAGGG GG	CTGGACAG	AAACTGAGAG	TTATCGTTTC	TGTCCTTCTC	13320
CCTCTTTAAA TAAAGGAGGC AG	GATATGAAT	TTAAAACAAG	CTTTAATTGA	CAATGACTCG	13380
ATCCGACTAG GTTTAGAGGC TA	AACAATTGG	AAAGAAGCAG	TCAAGGTAGC	AGTAGATCCC	13440
TTAATTGAAA GTGGGGCAAT T	TTGCCAGAG	TATTACGATG	CTATCATTGA	ATCGACTGAA	13500
GAGTATGGGC CTTACTATAT C	TTGATGCCA	GGTATGGCTA	TGCCCCACGC	TAGACCTGAA	13560
GCAGGTGTGC AAAGTGATGC C	TTTTCATTG	ATTACCTTAC	AAAATCCTGT	TGTATTTTCA	13620
GATGGGAAAG AGGTATCTGT T	TTGTTGGCA	CTAGCAGCAA	CAAGTTCAAA	AATTCACACA	13680
AGTGTAGCCA TTCCACAAAT T	ATTGCCCTA	TTTGAATTAG	AAGATTCTAT	TGCACGTTTA	13740
CAGGCTTGCC AGACTAAAGA A	GATGTCTTG	GCTATGATTC	AAGAATCTAA	GGATAGCCCT	13900
TATCTCGAAG GATTGGATTT G	GAAAGTTAG	AAAGAGGAA1	· AAAGAAATGA	CAAAAAGAAT	13860
ACCTAATTTA CAAGTTGCAT T	AGACCATTC	AGACTTGCA	GGAGCGATTA	AAGCAGCTGT	13920
TTCTGTTGGT CAGGAAGTAG A	TATTATCGA	AGCTGGAAC1	CTTTGCTTGC	TTCAAGTTGG	13980
AAGTGAACTG GCTGAAGTCT T	rgcgtagcct	TTTCCCAGA	C AAGATTATTO	TGGCAGACAC	14040
AAAATGTGCT GATGCTGGTG C	AACAGTTGG	AATAAAAT :	GCGGTTCGT	GAGCAGACTG	14100

4	GATGACTTGT	ATCTGTTGTG	CAACCATCCC	TACTATGGAA	GCAGCTCTAA	AGGCTATCAA	14160
•	GACTGAACGA	GGAGAACGAG	GCGAAATCCA	GATCGAGCTT	TATGGCGATT	GGACTTTTGA	14220
	ACAAGCTCAG	CTTTGGCTAG	ATGCAGGTAT	CTCACAAGCT	ATTTATCACC	AATCTCGTGA	14280
	rgc r cttctt	GCTGGTGAAA	CTTGGGGTGA	AAAAGACCTT	AATAAGGTTA	AAAAACTCAT	14340
•	TGACATGGGC	TTCCGTGTAT	CTGTAACAGG	TGGTCTAGAT	GTAGATACTC	TCAAACTCTT	14400
	TGAAGGTATT	GATGTCTTTA	CCTTTATCGC	AGGTCGTGGA	ATTACAGAGG	CTGTGGATCC	14460
	AGCAGGAGCA	GCGCGTGCCT	TCAAGGATGA	AATCAAACGA	ATTTGGGGGT	AAATCATGGT	14520
	ACGTCCAATT	GGAATTTATG	AAAAGGCAAC	CCCAACACAC	TGTACTTGGC	TAGAACGTTT	14580
	AAATTTTGCC	AAGGAGTTAG	GCTTTGATTT	TGTCGAGATG	TCTATTGACG	AACGTGACGA	14640
	GCGTTTAGCA	AGACTTGACT	GGAGTAAGGA	AGAACGCTTG	GAAGTTGTCA	AAGCAATCTA	14700
	TGAAACTGGT	GTTCGTATTC	CTTCTATCTG	TTTTTCAGGC	CATCGTCGCT	ACCCATTGGG	14760
	TTCAAAAGAT	CCAGTTCTAG	AGGAAAAATC	TCTAGAACTC	ATGAAAAAT	GTATCGAATT	14820
	AGCTCAAGAC	TTGGGAGTTC	GTACGATTCA	ATTAGCTGGT	TACGATGTTT	ACTATGAGGA	14880
	AAAGTCACCC	CAGACACGCC	AACGTTTTAT	CAAAAATTTG	AGAAAAGCCT	GTGACTGGGC	14940
	TGAAGAAGCT	CAGGTGGTAC	TTGCTATTGA	AATTATGGAT	GATCCTTTCA	TCAGTAGCAT	15000
	CGAAAAATAT	TTGGCTATAG	AAAAAGAGAT	TGACTCTCCC	TTCCTCTTTG	TATATCCAGA	15060
	TATTGGTAAT	GTGTCTGCAT	GGCATAATGA	TATCTATAGT	GAGTTTTATC	TTGGTCATCA	15120
	TGCCATCGCA	GCTCTCCATC	TCAAGGATAC	TTATGCAGTG	ACAGAAAGTT	CAAAGGGCCA	15180
	GTTCCGAGAT	GTACCTTTCG	GGCAAGGTTG	TGTCAAATGG	GAAGAAGCTT	TCGATATTTT	15240
	AAAGGAAACC	AATTATAATG	GACCTTTCCT	AATCGAAATG	TGGTCTGAAA	ATTGTGAAAC	15300
	AGTAGAAGAA	ACACGCGCAG	CCATTCAAGA	GGCGCAAGCT	TTTCTCTATC	CACTCATTAA	15360
	GAAAGCAGGT	TTGATGTAAG	ATGAATCAAG	TAATCAATGC	TATGCGTAAA	CGAGTCTGTG	15420
	ATGCCAATCA	ATCATTGCCA	AAACATGGAC	TTGTCAAATT	TACCTGGGGG	AATGTATCTG	15480
	AAGTTAATCG	CGAACTCGGT	GTCATTGTTA	TCAAACCATC	AGGCGTGGAT	TATGACGAAT	15540
	TGACACCTGA	AAACATGGTA	GTGACTGATC	TAGATGGTAA	GATCCTAGAA	GGGGATTTAA	15600
	GACCATCTTC	CGACCTCCCA	ACTCATGTGC	AATT ATATAA	GACTTGGTCA	GAAATTGGTA	15660
	GTGTGGTTCA	CACCCATTCG	ACAGAAGCTG	TTGGTTGGGC	TCAGGCAGGT	CGTGATATTC	15720
	CTTTCTACGG	AACAACCCAT	GCAGATTATT	TCTACGGTTC	AATCCCTTGC	GCCCGTAGTT	15780
	TGACCAAGGA	CGAAGTAGAA	GTGGCCTATG	AAAAAGATAC	TGGCCTGGTT	ATCGTAGAAG	15840

			384			
AGTTTGAACA	TCGCGGACTT	AACCCGGTTG		AATTGTTGTA	CGCAATCACG	15900
GTCCATTCAC	CTGGGGCAAA	AATCCAGAGA	ATGCTGTTTA	TCACTCTGTC	GTACTAGAGG	15960
AAGTATCAAA	GATGAATCGC	TTTACAGAAC	AAATCAATCC	AAGAGTTGGA	CCTGCTCCCC	16020
AGTACATACT	AGAAAAACAC	TACCAACGTA	AACATGGACC	AAATGCTTAT	TATGGTCAAA	16080
AGTAAGAACG	ATGAAGGAGG	agaaaaagat	AAATTTAGCT	CCTCTTTTTA	CATTTGATTT	16140
TTATTGAGAG	TAAAGTTGGA	GTTGAAGTAA	TTTTAAAAGA	TTTTTTAGAA	ATAGCGCTTG	16200
ATATATATAT	GGTAAAATAA	AAAGAATTGC	TGTGATATCA	ATAGATTTGG	GGGATTTTTT	16260
AATATGGTAC	TGGATAAGGC	AAGTTGTGAT	TTGCTTCAAT	ATTTGATGGA	TCAAGAAACG	16320
TCCAAAACGA	TTATGGCGAT	TTCGAAAGAT	TTGAAAGAGT	CAAGAAGGAA	AATTTATTAT	16380
CACATTGACA	AAATCAATGC	TGCTCTGGGT	GACGAGGCGC	TTCACATCAT	TAGTATTCCA	16440
CGAATTGGTA	TTCACTTAAC	GGAAGAGCAG	AGAGATGCTT	GTTGTAAACT	ATTATCGGAA	16500
GTAGATTCGT	ACGATTATAT	CATGAGTGCG	CATGAACGTA	TGATGATAAT	GTTACTATGG	16560
ATAGGTATTT	CTAAAGAACG	TATTACGATT	GAAAAATTGA	TAGAGTTAAC	AGAGGTATCT	16620
AGGAATACTG	TTCTCAATGA	TTTGAATAGT	ATTCGTTATC	AACTAACTTT	GGAACAATAT	16680
CAGGTGATCT	TGCAAGTGAG	CAAGTCACAG	GGATACAACC	TTCATGCCCA	CCCTCTTAAT	16740
AAAATTCAGT	ATCTTCAATC	GCTTCTATAT	CATATTTTTA	TGGAAGAAAA	TGCCACTTTT	16800
GTATCTATTT	TAGAAGATAA	GATGAAAGAG	AGGTTAGATG	ATGAGTGTTT	GCTTTCTGTT	16860
GAAATGAACC	AATTTTTTAA	GGAACAGGTT	CCTTTAGTTG	AACAAGATTT	AGGGAAGAAA	16920
ATAAACCATC	ATGAAATAAC	TTTTATGTTG	CAGGTTCTAC	CTTATTTGCT	GTTAAGCTGT	16980
CATAATGTTG	AACAGTATCA	AGAAAGACAT	CAGGATATAG	AGAAAGAATT	TTCTTTGATA	17040
AGAAAAAGAA	TAGAGTATCA	GGTGTCTAAG	AAATTAGGAG	AACGGTTGTT	TCAAAAGTTT	17100
GAAATTTCTT	TGTCAGGACT	TGAAGTTTCT	CTTGTAGCTG	TTCTCCTCCT	CTCCTATCGT	17160
AAAGATTTGG	ATATTCATGC	AGAAAGTGAT	GATTTTCGGC	AATTAAAACT	TGCTTTAGAA	17220
GAATTTATCT	GGTATTTTGA	ATCACAAATC	CGAATGGAGA	TTGAGAACAA	GGATGATTTG	L7280
TTACGAAATT	TGATGATCCA	CTGTAAAGCC	TTGTTATTTA	GAAAGACTTA	CGGTATTTTT	17340
TCTAAAAATC	CTCTAACAAA	ACAAATTCGA	TCCAAGTATG	GAGAATTATT	TTTAGTCACT	17400
AGAAAATCTG	CGGAAATTTT	AGAAGGAGCA	TGGTTTATTC	GGCTAACAGA	CGATGATATT	17460
GCCTATTTGA	CGATTCATAT	TGGAGGATTT	TTAAAATATA	CACCATCATO	TCAAAAAAAT	17520
ATGAAAAAG	TTTATCTCGT	TTGTGATGAA	GGTGTTGCGG	TTTCGAGACT	TTTGCTGAAA	17580
CAATGCAAAC	TTTATTTTCC	AAATGAGCAA	ATTGACACTG	TATTTACAAC	AGAACAATTT	17640

PCT/US97/19588

385

AAGAGTGTGG	AAGATATTGC	ACAAGTTGAT	GTAGTGATTA	CTACTAATGA	TGATTTGGAT	17700
AGCAGATTTC	CGATTTTAAG	GGTTAATCCT	ATCCTTGAAG	CAGAAGATAT	TTTGAAAATG	17760
CTAGACTATC	TTAAACACAA	TATATTTCGT	AATAAGAGCA	AAAGTTTCAG	TGAAAATCTT	17820
TCTAGTCTTA	TTTCGTCTTA	TATTGTAGAC	AGCAAGTTGG	CTAGTAAGTT	CCAAGAAGAG	17880
GTTCAAACAC	TTATAAATCA	AGAAATAGTA	GTTCAAGCTT	TTTTGGAAGr	TATTTGAAGG	17940
ACAGTCCAAT	GATGAACACA	AACCTGTGTk	TTTCsTGGTC	TTTTTTAGTG	TTTTGAAGGG	18000
TGGKATACTA	ATCTCAAAGA	TAACAATTAT	ATCCAAAGGA	GGCAACATAT	GCCAAACGTC	18060
AAAGAAATTA	CAAGAGAGTC	ATGGATTTTA	GCCACTTTCC	CAGAGTGGGG	AACATGGTTG	18120
AACGAAGAAA	TCGAAGAAGA	AGTCGTACCT	GAAGGCAACT	TTGCCATGTG	GTGGCTAGGC	18180
AACTGTGGTA	CTTGGATTAA	GACACCAGCT	GGTGCTAACG	TTGTCATGGA	CCTTTGGTCA	18240
AACCGTGGAA	AATCAACCAA	AAAAGTGAAA	GATATGGTTC	GTGGGCACCA	AATGGCAAAT	18300
ATGGCAGGTG	TTCGTAAGCT	GCAACCAAAC	TTGCGTGTTC	AGCCAATGGT	TATCGATCCA	18360
TTTGCTATCA	ACGAACTAGA	CTATTACTTA	GTTTCACACT	TCCACAGTGA	TCATATCGAC	18420
CCATACACAG	CTGCAGCAAT	TCTCAATAAT	CCTAAGTTAG	AGCATGTTAA	GTTGG	18475

(2) INFORMATION FOR SEQ ID NO: 39:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 7186 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

CCAGGATTTG	GTACCGTTGC	AAGTGGTGTG	CCTTTCCTCC	TAAAGGAAAA	TGGAGGAAAA	60
ATCAATCAAT	CAGCACATTC	AGATATCAAA	GTTGCTAAGG	TATTGGTCAA	GGATGAAGAT	120
GAAAAAAATC	GCTTGCTTGC	AGCAGGGAAT	GACTTTAACT	TTGTAACCAA	TGTGGATGAT	180
ATTTTATCAG	ACCAGGATAT	TACTATCGTA	GTGGAATTGA	TGGGGCGTAT	TGAGCCTGCT	240
AAAACCTTTA	TCACTCGTGC	CTTGGAAGCT	GGAAAACACG	TTGTTACTGC	TAACAAGGAC	300
CTTTTAGCTG	TCCATGGCGC	AGAATTGCTA	GAAATCGCTC	AAGCTAACAA	GGTAGCACTT	360
TACTACGAAG	CAGCAGTTGC	TGGTGGGATT	CCAATTCTTC	GTACTTTAGC	AAATTCCTTG	420
GCTTCTGATA	AAATTACGCG	CGTGCTTGGA	GTAGTCAACG	GAACTTCCAA	CTTCATGGTG	480
ACCAAGATGG	TGGAAGAAGG	CTGGTCTTAC	GATGATGCTC	TTGCGGAAGC	ACAACGTCTA	540

			786			
GGATTTGCAG	AAAGCGATCC	GACGAATGAC	GTAGATGGGA	TTGATGCAGC	CTACAAGATG	600
GTTATTTTGA	GCCAATTTGC	CTTTGGCATG	AAGATTGCCT	TTGATGATGT	AGCCCACAAG	660
GGAATCCGCA	ATATCACACC	AGAAGACGTA	GCTGTAGCTC	AAGAGCTTGG	TTACGTAGTG	720
AAATTGGTTG	GTTCTATTGA	GGAAACTTCT	TCAGGTATTG	CTGCAGAAGT	GACTCCAACC	780
TTCCTACCTA	AAGCGCACCC	ACTTGCTAGT	GTGAATGGCG	TAATGAACGC	TGTCTTTGTA	840
GAATCTATCG	GTATTGGTGA	GTCTATGTAC	TACGGACCAG	GTGCGGGTCA	AAAACCAACT	900
GCAACAAGTG	TTGTAGCTGA	TATTGTCCGT	ATCGTTCGTC	GTTTGAATGA	TGGTACTATT	960
GGCAAAGACT	TCAACGAATA	TAGCCGTGAC	TTGGTCTTGG	CAAATCCTGA	AGATGTCAAA	1020
GCAAACTACT	ATTTCTCAAT	CTTGGCTCTA	GACTCAAAAG	GTCAGGTCTT	GAAGTTGGCT	1080
GAAATCTTCA	ATGCTCAAGA	TATTTCCTTT	AAGCAAATCC	TTCAAGATGG	CAAAGAGGGT	1140
GACAAGGCGC	GTGTCGTTAT	CATCACACAC	AAGATTAATA	AAGCCCAGCT	TGAAAATGTC	1200
TCAGCTGAAT	TGAAGAAGGT	TTCAGAATTC	GACCTCTTGA	ATACCTTCAA	GGTGCTAGGA	1260
GAATAAGATG	AAGATTATTG	TACCTGCAAC	CAGTGCCAAT	ATCGGGCCAG	GTTTTGACTC	1320
GGTCGGTGTA	GCTGTAACCA	AGTATCTTCA	AATTGAGGTC	TGCGAAGAAC	GAGATGAGTG	1380
GCTGATTGAA	CACCAGATTG	GCAAATGGAT	TCCACATGAC	GAGCGTAATC	TCTTGCTCAA	1440
AATCGCTTTG	CAAATTGTAC	CAGACTTGCA	ACCAAGACGC	TTGAAAATGA	CCAGTGATGT	1500
CCCTTTGGCG	CGCGGTTTGG	GTTCTTCCAG	CTCGGTTATC	GTTGCTGGGA	TTGAACTAGC	1560
CAACCAACTG	GGTCAACTCA	ACTTATCAGA	CCATGAAAAA	TTGCAGTTAG	CGACCAAGAT	1620
TGAAGGGCAT	CCTGACAATG	TGGCTCCAGC	CATTTATGGT	AATCTCGTTA	TTGCAAGTTC	1680
TGTTGAAGGG	CAAGTCTCTG	CTATCGTAGC	AGACTTTCCA	GAGTGTGATT	TTCTAGCTTA	1740
CATTCCAAAC	TATGAATTAC	GTACTCGCGA	CAGCCGTAGT	GTCTTGCCTA	AAAAATTGTC	1800
TTATAAGGAA	GCTGTTGCTG	CAAGTTCTAT	CGCCAATGTA	GCGGTTGCTG	CCTTGTTGGC	1860
AGGAGACATG	GTGACCGCTG	GGCAAGCAAT	CGAGGGAGAC	CTCTTCCATG	AGCGCTATCG	1920
TCAGGACTTG	GTAAGAGAAT	TTGCGATGAT	TAAGCAAGTG	ACCAAAGAAA	ATGGGGCCT'A	1980
TGCAACCTAC	CTTTCTGGTG	CTGGGCCGAC	AGTTATGGTT	CTGGCTTCTC	ATGACAAGAT	2040
GCCAACAATT	AAGGCAGAAT	TGGAAAAGCA	ACCTTTCAAA	GGAAAACTGC	ATGACTTGAG	2100
AGTTGATACC	CAAGGTGTCC	GTGTAGAAGC	AAAATAAAGA	ATAGAAGATA	GGATGGGGAA	2160
ACTCTTGACC	AGAGGGGTTC	ATATCCTTTT	TGTGAAAAGA	AGTTTATACT	CAATGAAAAT	2220
CAAAGAGCAA	ACTAGGAAGC	TAGCCGCAGG	CTGCTCAAAA	CAGTGTTTTG	AGGTTGCAGA	2280
TAGAACTGAC	GAAGTCAGCT	CAAGACACTG	TTTTGAGGTT	GCAGATAGAA	CTGACGAAGT	2340

CAGTAACCAT		come v come	NOCTOCTOTO	AAGAGATTTT	CGAAGAGTAT	2400
						2460
TAGTTAAAAA						
TTTTTGGGGC	CTAGAGGAAT	ATTTTTCACG	CATTTCTGGA	GTGCTAGAAA	CCAGTGTTGG	2520
CTACGCTAAT	GGTCAAGTCG	AAACGACCAA	TTACCAGTTG	CTCAAGGAAA	CAGACCATGC	2580
AGAAACGGTC	CAAGTGATTT	ACGATGAGAA	GGAAGTGTCA	CTCAGAGAGA	TTTTACTTTA	2640
TTATTTCCGA	GTTATCGATC	CTCTATCTAT	CAATCAACAA	GGGAATGACC	GTGGTCGCCA	2700
ATATCGAACT	GGGATTTATT	ATCAGGATGA	AGCAGATTTG	CCAGCTATCT	ACACAGTGGT	2760
GCAGGAGCAG	GAACGCATGC	TGGGTCGAAA	GATTGCAGTA	GAAGTGGAGC	AATTACGCCA	2820
CTACATTCTG	GCTGAAGACT	ACCACCAAGA	CTATCTCAGG	AAGAATCCTT	CAGGTTACTG	2880
TCATATCGAT	GTGACCGATG	CTGATAAGCC	ATTGATTGAT	GCAGCAAACT	ATGAAAAGCC	2940
TAGTCAAGAG	GTGTTGAAGG	CCAGTCTATC	TGAAGAGTCT	TATCGTGTCA	CACAAGAAGC	3000
TGCTACAGAG	GCTCCATTTA	CCAATGCCTA	TGACCAAACC	TTTGAAGAGG	GGATTTATGT	3060
AGATATTACG	ACAGGTGAGC	CACTCTTTTT	TGCCAAGGAT	AAGTTTGCTT	CAGGTTGTGG	3120
TTGGCCAAGT	TTTAGCCGTC	CGATTTCCAA	AGAGTTGATT	CATTATTACA	AGGATCTGAG	3180
CCATGGAATG	GAGCGAATTG	AAGTTCGTTC	TCGTTCAGGC	AGTGCTCACT	TGGGTCATGT	3240
TTTCACAGAT	GGACCGCGGG	AGTTAGGCGG	CCTCCGTTAC	TGTATCAATT	CTGCTTCTTT	3300
ACGCTTTGTG	GCCAAGGATG	AGATGGAAAA	AGCAGGATAT	GGCTATCTAT	TGCCTTACTT	3360
AAACAAATAA	AACAGAGAGT	GGGGCTTCCC	ACTTTCTTCA	TTTCTAGAAT	ATGAATAGAA	3420
GGGATTTATG	AAACACCTAT	TATCTTACT	CAAACCCTAC	ATCAAGGAAT	CAATTTTAGC	3480
CCCCTTGTTC	AAGCTGTTAC	AAGCTGTTT	TGAGCTCTTC	GTTCCCATGO	TGATTGCTGG	3540
GATTGTTGAC	CAATCTTTAC	CTCAGGGAG	TCAAGGTCAT	CTCTGGATG	AGATTGGCCT	3600
GCTCCTTATC	TTTGCAGTA	TTGGCGTTT	r AGTGGCCTTC	ATAGCTCAA1	T TTTACTCAGC	3660
AAAGGCAGCA	GTAGGTTCT	CTAAGGAAT	r GACAAACGA1	CTTTATCGT	C ATATTCTTTC	3720
CTTGCCCAAG	GACAGCAGAG	ACCGTCTGA	C AACTTCTAG	TTGGTCACT	C GCTTGACTTC	3780
GGATACCTAC	CAGATTCAG	A CTGGTATCA	A TCAATTCCT	G CGTCTCTTT	T TACGAGEGEC	3840
CATTATCGTT	TTTGGTGCC	A TTTTTATGG	C TTATCGAAT	C TCAGCTGAG	T TGACTTTCTG	3900
GTTCTTAGT	TTGGTTGCC	A TTTTGACCA	T TGTCATTGT	A GGGTTATCT	C GATTGGTCAA	3960
TCCTTTCTAC	AGTAGTCTC.	A GAAAGAAAA	C GGACCAACT	G GTTCAGGAA	A CGCGCCAGCA	4020
ATTGCAAGG	G ATGCGGGTT	A TTCGTGCTT	T TGGTCAAGA	A AAACGAGAG	T TACAGATTTT	4080

			388			
TCAAACCCTT	AACCAAGTTT	ATGCTAGATT	ACAAGAAAAG	ACAGGTTTCT	GGTCTAGTTT	4140
ATTAACACCT	CTGACCTATC	TGATTGTCAA	TGGAACTCTT	CTCGTTATTA	TCTGGCAAGG	4200
CTATATTTCA	ATTCAAGGAG	GAGTGCTCAG	TCAAGGTGCT	CTCATTGCTC	TTATCAATTA	4260
CCTCTTACAG	ATTTTGGTGG	AATTGGTCAA	GCTAGCCATG	TTGATCAATT	CCCTCAACCA	4320
GTCCTATATC	TCAGTCAAGC	GAATCGAGGA	AGTCTTTGTT	GAGGCTCCAG	AGGATATCCA	4380
TTCAGAGTTA	GAACAAAAGC	AAGCTACCAG	AGATAAGGTT	TTACAAGTCC	AAGAATTGAC	4440
CTTTACCTAT	CCTGATGCGG	CCCAGCCTTC	TCTGAGATAC	ATTTCCTTTG	ATATGACTCA	4500
AGGACAAATT	CTAGGTATCA	TCGGGGGAAC	TGGTTCTGGT	AAATCAAGCT	TGGTGCAACT	4560
CTTACTTGGA	CTTTATCCAG	TAGACAAGGG	GAACATTGAC	CTTTATCAAA	ATGGACGTAG	4620
тсстсттаат	TTGGAGCAGT	GGCGGTCTTG	GATTGCCTAT	GTACCTCAAA	AGGTCGAACT	4680
CTTTAAAGGA	ACCATTCGTT	CCAACTTGAC	TCTAGGTTTC	AATCAAGAAG	TATCTGACCA	4740
GGAACTCTGG	CAGGCCTTGG	AGATTGCGCA	AGCTAAGGAT	TTTGTCAGTG	AAAAGGAAGG	4800
ACTCTTGGAT	GCTCTAGTTG	AGGCAGGGGG	GCGAAATTTC	TCAGGTGGAC	AAAAACAAAG	4860
ATTGTCTATC	GCCCGAGCAG	TCTTGCGCCA	GGCTCCGTTT	CTCATCCTAG	ATGATGCAAC	4920
CTCGGCACTG	GATACCATTA	CAGAGTCCAA	GCTCTTGAAA	GCTATTAGAG	AAAATTTTCC	4980
AAACACGAGC	TTAATTTTGA	TCTCTCAACG	AACCTCAACT	TTACAGATGG	CGGACCAGAT	5040
TCTCCTCTTG	GAAAAAGGTG	AGTTGCTAGC	TGTTGGCAAG	CACGATGACT	TGATGAAATC	5100
CAGCCAAGTC	TATTGTGAAA	TCAATGCATC	CCAACATGGA	AAGGAGGACT	AGAATGAAAC	5160
GACAAACTGT	AAACCAGACG	CTCAAACGTT	TAGCCGTAGA	TTTAGCAAGC	CATCCTTTCC	5220
TCCTTTTCCT	AGCCTTTCTA	GGAACTATTG	CCCAAGTTGG	CTTATCAATT	TACCTACCTA	5280
TTCTGATTGG	GCAGGTCATT	GACCAAGTCC	TAGTGGCTGG	TTCATCACCA	GTTTTTTGGC	5340
AGATTTTTCT	CCAGATGCTC	TTGGTGGTAA	TAGGAAATAC	TCTGGTACAA	TGGGCCAATC	5400
СТСТССТСТА	TAATCGTCTA	ATCTTCTCTT	ATACCAGAGA	TTTACGGGAG	CGAATCATCC	5460
ATAAGCTCCA	TCGTTTACCG	ATTGCCTTTG	TAGATAGGCA	AGGTAGTGGA	GAGATGGTTA	552
GTCGTGTAAC	CACGGACATC	GAACAGTTGG	CAGCTGGCTT	GACCATGATT	TTTAACCAAT	558
TTTTCATTGG	TGTTTTGATG	ATTTTGGTCA	GTATTCTAGO	CATGCTCCA	ATTCATCTCC	564
TCATGACTCT	CTTAGTCTTG	CTGTTGACGC	CACTGTCCAT	GGTGATTTCA	CGCTTTATTG	570
CCAAGAAATO	CTATCATCTC	TTCCAGAAGO	: AAACAGAGAG	GAGGGGAATT	CAGACTCAGT	576
TGATTGAAGA	ATCGCTTAGT	CAGCAGACTA	TAATCCAGTO	CTTCAATGCT	CAAACAGAAT	582
ТТАТССААА С	ATTGCGTGAG	GCTCATGACA	ACTACTCAGO	CTATTCTCAC	TCAGCCATCT	588

TTTATTCTTC	AACGGTCAAT	CCTTCGACTC	GCTTTGTAAA	TGCACTCATT	TATGCCCTTT	5940
TAGCTGGAGT	AGGAGCTTAT	CGTATCATGA	TGGGTTCAGC	CTTGACCGTC	GGTCGTTTAG	6000
TGACTTTTTT	GAACTATGTT	CAGCAATACA	CCAAGCCCTT	TAACGATATT	TCTTCAGTGC	6060
TAGCTGAGTT	GCAAAGTGCT	CTGGCTTGCG	TAGAGCGTAT	CTATGGAGTC	TTAGATAGCC	6120
CTGAAGTGGC	TGAAACAGGT	AAGGAAGTCT	TGACGACCAG	TGACCAAGTT	AAGGGAGCTA	6180
TTTCCTTTAA	ACATGTCTCT	TTTGGCTACC	ATCCTGAAAA	AATTTTGATT	AAGGACTTGT	6240
CTATCGATAT	TCCAGCTGGT	AGTAAGGTAG	CCATCGTTGG	TCCGACAGGT	GCTGGAAAAT	6300
CAACTCTTAT	CAATCTCCTT	ATGCGTTTTT	ATCCCATTAG	CTCGGGAGAT	ATCTTGCTGG	6360
ATGGGCAATC	CATTTATGAT	TATACACGAG	TATCATTGAG	ACAGCAGTTT	GGTATGGTGC	6420
TTCAAGAAAC	CTGGCTCACA	CAAGGGACCA	TTCATGATAA	TATTGCCTTT	GGCAATCCTG	6480
AAGCCAGTCG	AGAGCAAGTA	ATTGCTGCTG	CCAAAGCAGC	TAATGCAGAC	TTTTTCATCC	6540
AACAGTTGCC	ACAGGGATAC	GATACCAAGT	TGGAAAATGC	TGGAGAATCT	CTCTCTGTCG	6600
GCCAAGCTCA	GCTCTTGACC	ATAGCCCGAG	TCTTTCTGGC	TATTCCAAAG	ATTCTTATCT	6660
TAGACGAGGC	AACTTCTTCC	ATTGATACAC	GGACAGAAGT	GCTGGTACAG	GATGCCTTTG	6720
CAAAACTCAT	GAAGGCCCCC	ACAAGTTTCA	TCATTGCTCA	CCGTTTGTCA	ACCATTCAGG	6780
ATGCGGATTT	AATTCTTGTC	TTAGTAGATG	GTGATATTGT	TGAATATGGT	AACCATCAAG	6840
AACTCATGGA	TAGAAAGGGT	AAGTATTACC	AAATGCAAAA	AGCTGCGGCT	TTTAGTTCTG	6900
AATAAGCCAT	TCTCTTTTGA	AAGTTTATGG	ACGAAAAAAG	TTGCCTTCGA	GTGACTTTTT	6960
TGTTACAATA	GCTAGAAAAA	TTGTTCACTG	TAATACTCAA	TGAAAATCAA	AGAGCAAACT	7020
AGGAAGCTAG	CCGTAGGTTG	CTCAAAGCAC	AGCTTTGAGG	TTGTAGATAA	GACTGACGAA	7080
GTCAGTTCAA	AACACTGTTT	TGAGGTTGCA	GATAGAACTG	ACGAAGTCAG	CTCAAAACAC	7140
TGTTTTGAGG	TTGCAGATAG	AACTGACGAA	GTCAGCTCAA	AACAGG		7186

(2) INFORMATION FOR SEQ ID NO: 40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14273 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

. 60 CTGAAAATTC TAAAAAATTT ATAAGTAAGG AATTAATTAG TTATTTTTGT GATAAAGTTT

			200			
ATGATGAAAT	ATTTGTTGAA	GAGGTAGTTC	390 CGCACGTTTT	TCTGCCATAT	GAATCTGACT	120
TACTTCTTAT	TTTACCAGCT	ACGGCAAATG	TGATTGGCAA	AATTGCTAAT	GGTATTGCTG	180
ATGATTTAGT	TACAGCAACT	GTTTTAAACT	TTAATAAAA	AATAATTTT	TGTCCCAATA	240
TGAACTCTAC	TATGTGGGAC	AATCACATAG	TTCAAAGAAA	TGTATCAATT	CTAAAGGAGT	300
TGGGACATAT	ATTTTTATTT	GAGTCTAAAA	AAACATATGA	GGTAGGATTG	CGTAAAGCAA	360
TAGATTCAAC	ATGTTCAATG	TTACAACCAC	AGTCGTTAGT	AAAAGAACTT	ATCAAATTAG	420
AAAATATTGT	CCTTGAAGAG	GGACATTAAA	AACTACTGAG	AATATTAATG	AGGGGAAAAA	480
ATGGAAAATT	CATCAATCGA	TGTAGATATG	CTGTTGGAAG	AATTGACACA	AGAAGCAATG	540
GTCGTTGTTG	CTGTTGATAA	GGACTGTTAA	TTTAAACTTA	TGGCAATATA	TGAAAGGTTA	600
CTGGATGTTT	TAAATTATGC	AGGCAGTAGC	CTTTTATTAT	ATACAAATGG	ATAAAGTAAG	660
GATAATACAA	TGATTAATAA	AAAAATACAA	CAAGTTGTTT	TGGAATCATT	ACAGAATTTT	720
TTGAATGGGA	ACTTCATTTC	GCCTTGTGTA	GTCTATGATT	TTGGCTTGCT	GGAAACTGTA	780
CTTGATGAAT	TTAAAAATCA	AATTCCTGTA	ACATTCAATT	ACCAACTTTT	TTATGCCGTT	840
AAAGCAAATT	CAAATGAGAA	GATACTTGAA	TTCTTAGTAG	ATAAAATTGA	TGGAGTTGAT	900
GTGGCGTCAT	TATCTGAATT	AGATGTGGCT	AAAAATTTT	TCCCACCAAC	TCAAATTTCT	960
GTTAATGGTC	CCGCATTTTC	TTATGAAACT	TTATATAATC	TGATTAAAAA	ACAATATAAA	1020
GTTGATATTA	ACTTTTTGGA	ACATCTTCAA	CAATTTTCCC	CAAAAGAATC	TGTTGGAATA	1080
AGAGTAACGG	AGCCAGATGA	ACTTAATAAT	CGTATGAGTC	GATTTGGAAT	AAATATTTGC	1140
AGTGATAATT	GGACTAGTAA	TTTACAAAAT	CCTTTAATTA	CACGACTGCA	TTTTCATTTT	1200
GGAGAAAAAG	ATGATAAATT	TATTGTTAAC	TTAGATAAAA	. TATTATTA	GTTACAAGAA	1260
ATTAATAAAC	TTAGAGAGGT	TAGAGAAATA	A AATCTTGGAC	GCGGTTTTAT	GAAATTATTT	1320
ATGGAAAATC	GTTTGAAAGA	ATTTTTCT	TCACTTATGO	AAATCTATA	AAAGTACGAT	1380
ATTGATAGTA	CTGTGACTAC	: AATAATAGA/	CCAGGTAGT	CAATTACTT	ATTTTCTGCC	1440
TATATGATTA	CTAGCCCAGT	TAATGTTAG	r gaggtgaat	agcagcagg	TATCACGT'A	1500
GACACATCA	A TATACACCA	TACATTATG	TTTGTTCCG	ATATTATTAC	AACGTTAAAT	1560
TCAAGTAGT	A AAGAGCGTTA	TAGTACTAT	r ctctatggt/	ATACCTGTT	A TGAACATGAC	1620
AAGTATAAA	TGAAAGTTTC	GCTTCCAAG	G TTAACTCAA	A ATAGCAGTA	r AGTGTTTTTT	168
CCTGTAGGA	G CTTATATAA	A AAGCAATCA	r TCAAATTTAG	C ATCGTAATG	A TTTTATGCGG	174
GAGGTATAT	r TGTGGACAAJ	A AAACTTGAC	A TATTAGATA	A AGTTAAGGA	A TATTTAGGAA	180
ATAAAACTA	C TCAAATTCT	GATAATCAA	T ATAAAGAAT	TTTGAAACT	T AATGATATAA	· 186

GGCGAGCGTT TGGTATTTCA	GAAAAAGTAT	TAAACAATTC	TTTTAATTTT	ACGAGTAAAG	1920
AATTTAATGA -TTTAATTAAT	AACGAAAATT	ATTTATTCGA	ATATGCATGT	AGAATTAGAG	1980
AGGAATGGAG AAAAAAATGC	TTTAATCATT	CTTATCGTTT	TCTATGCTCA	CCTATAATTA	2040
CAGATGATTT TCTTAACACG	AAGACATTGA	GAAGTAGCCA	AATTGAATAT	AAATATGAGC	2100
GATATTTATC GAAAAGTTCG	ATAGGCGATA	GAGCGGTTGA	TGGCTTTGTT	TCCTTCAATA	2160
CTTTAACAGC TAATGGTATG	TCTGCTATTA	AACTATGTCT	TGAGATATTA	AACTCTATTT	2220
TCTTCAAGAA GAAGATTGAT	TTATTATATT	CAACCGGATA	TTATGAAACA	AGATTTTTAT	2280
TAAATAATCT TGCTAAATCA	GGTATTAGTT	GCTATGAGGT	AAGTAATTGT	GAATTGGATA	2340
AAGATAAATT TTATAATGTA	TTCATGATGG	AACCCAATCG	AGCCGATTTA	ACATTACAAA	2400
AAACTGATTT CAAGATAGTA	GAATATTTTG	TTAAGTATAA	AAATAATTCA	ATAAAAGTCG	2460
TTATTTTAGA TATTTCATAT	CAAGGTTCTA	ATTTTAAATT	AGTAGAATTT	TTAGAGAAAT	2520
TTAAATTTGC GAATGTAATT	ATTTTTGTGG	TACGATCTTT	GATAAAATTA	GATCAAATGG	2580
GATTAGAATT GACAAATGGG	GGAATAATAG	AAGTGTTTAT	TCCTAATCAT	TTGAGAAAGT	2640
TGAAAAATTT TATTGAAGAG	GAATTCAATA	AATTTAGAAA	TTCTCACGGA	GCTAATCTAA	2700
GCCTCTATGA ATACTGTTTG	CTTGATAATT	CTTTAACTTT	AAAAAATGAT	TGGAACTATT	2760
CTGATTTAGT TATGAAATTT	ACGAGTAATT	TTTATGCTGA	TATAAAAGAC	TTGTTCATGG	2820
AAAATTCTGA TATTGAAATC	ATCCATGAAG	AGGGAGTACC	TTTTGTATTT	TTAGATTTAA	2880
TAGGTGAAGG TAAAAAAGAA	TATGAAATGT	TTTTTCAATG	GTTAAACTTC	TTTTACAAAC	2940
AGCTTGGAAT CACATTGTAT	GCTAGAAATA	GTTTTGGGTT	TCGGAATCTA	ACAGTAGAGT	3000
ATTTTGGAAT TATTGGGACA	GAAAGATATA	TATTTAAGAT	TTGTCCAGGT	GTTTATAAAG	3060
GGTTAAGTTA TTATTTGATG	AAATTTTTAT	TAAAATCTTT	TTCAAATGAA	TATTTAAAAA	3120
CTACTGATGA GGTTAATAGA	TGAAAAATTT	GATAAAGTTG	CTAATAATTA	GATTGATTGT	3180
TAACTTAGCA GACAGTGTAT	TTTATATAGT	AGCATTGTGG	CACGTTAGCA	ATAATTATTC	3240
TTCGAGCATG TTCTTAGGAA	TATTTATTGC	AGTAAATTAT	CTACCGGATT	TGTTACTAAT	3300
CTTTTTTGGA CCAGTTATTG	ACAGAGTAAA	TCCGCAAAAA	ATTCTTATAA	TATCAATTTT	3360
GGTTCAATTA GCAGTGGCTG	TAATATTTT	ATTATTATTA	AACCAAATAT	CATTTTGGGT	3420
GATAATGAGT CTAGTGTTTA	TTTCAGTAAT	GGCTAGCTCC	ATAAGTTACG	TGATAGAAGA	3480
TGTGTTGATT CCTCAAGTGG	TAGAATATGA	TAAGATTGTA	TTTGCAAATT	CTCTTTTTAG	3540
TATTTCGTAT AAAGTATTAG	ATTCTATTTT	TAATTCATTC	GCATCATȚTT	TACAGGTGGC	3600

AGTAGGATTT ATTTTATTGG TTAAGATAGA TATAGGCATA FTTTC:\CTTG CTCTATTTAT 3660 ATTGTTGTTG TTAAAATTTA GAACTAGCAA TGCGAATATA GAAAACTTCT CTTTCAAATA 3720 TTACAAGAGA GAAGTGTTGC AAGGTACAAA GTTTATTTTA AATAATAAAT TATTATTTAA 3780 AACCAGTATT TCTTTAACGC TTATAAACTT TTTTTATTCA TTTCAGACAG TAGTTGTACC 3840 GATTTTTCT ATTCGATATT TTGATGGTCC GATTTTTAT GGTATTTTT TAACTATTGC 3900 TGGTTTGGGT GGTATATTGG GAAATATGCT AGCGCCAATC GTAATAAAAT ATTTAAAATC 3960 GAATCAAATT GTTGGTGTAT TTCTTTTTTT GAACGGCTCA AGTTGGTTAG TAGCAATTGT 4020 TATAAAAGAC TATACTTTAT CACTTATTTT ATTTTTCGTT TGTTTTATGT CTAAAGGAGT 4080 CTTCAATATT ATTTTTAATT CGTTGTACCA ACAAATACCT CCACATCAAC TTCTTGGTAG 4140 GGTAAATACT ACCATTGATT CTATTATTC TTTTGGAATG CCAATTGGTA GTTTAGTTGC 4200 AGGAACGCTT ATTGATTTGA ATATTGAATT AGTGTTAATT GCTATTAGCA TACCTTATTT 4260 TTTGTTTTCT TATATTTTT ATACGGATAA TGGATTGAAA GAATTTAGTA TATATTAGAA 4320 ATGTTTATGT TCATTCAAAA GCATAATGAC TATAACTGAA AAAGAAAAGT GATATCTTTA 4380 AGGTTGTTCT TCTTGGTGGT GAGATTCGTG AGACAACCCA AGCTTTTGTC GGAAAGATTA 4440 CCAATGCTTT GATGGATAGG ATGTACTTTA GCAAGATGTT TTTAGTGGTA ACGGTATCGT 4500 GGATGGACGT GTAATAACCT CTTCTTTCGA GGAGTATTTT ACTAAAAAAC TAGCCTTGGA 4560 GCGTTCCCCA GAAACGGACT TACTCATTGA CTCTTCAAAG ATTTGGGGAG AAGATTTTGC 4620 TTCATCTGTT CCTTGAAAAA AGTCACAGCA GTCATCACAG ACGATAGTAC TGAACAAAAC 4680 TATGAAGAGT TAGAAATTTA TACGCAGGTG ATTGTATAAA GGATCTGGAA ATAGATAAGA 4740 AGTTGATTAG TATTGACCTA GGTGGTACAA ATATTAAGAT TACTGTTCTT TCAAATGACG 4800 GTGAGATTGA AACTTTGTGG AGTATTACAA CAGATACAAG TGAGAAAGGT TCTCAAATTA 4860 TATCGGACAT CATCAGTTCT ATTAAAAATA AATTGACCGA ACGGAATATT CCTGATAGCG 4920 ACCTTCTTGG AATCGGTATG GGAAGTTGCT CATCATACTT TCCTTGTAAA TCATAGGGGC 4980 TATAAACTCT CCGTCTACTT GTCCTGCAAC AATTGAAGTC TGCTCAAAAC GCCGTCCGCT 5040 AATCTTTTCA TAGACTTTCT CCCTTTTAGG AGCCTAGCTT TCTAGTTTGT TCTTTGATTT 5100 TTATTGAGTA TACCACTATT TTACTCCCTC TGGCAAGGGA CTTTGTCTAT GTGGAGGGAT 5160 TGGGCTCCTA TGTGGTGGAG CTTTTCTGTT CTTTCTGAAA TATGGTATAA TAGCACTAAT CAATTTCTAG GAAAATAGAT ACAGAAAGGG GCTGAAAGAT GTCTCATATT ATTGAATTGC 5280 CAGAGATGCT GGCAAACCAA ATCGCGGCTG GAGAGGTCAT TGAACGTCCT GCCAGTGTGG 5340 TCAAAGAGTT GGTAGAAAAT GCCATTGACG CGGGCTCTAG TCAGATTATC ATTGAGATTG 5400

AGGAAGCTGG	TCTCAAGAAG	GTTCAAATCA	CGGATAACGG	TCATGGAATT	GCCCACGATG	5460
AGGTGGAGTT	GGCCCTGCGT	CGCCATGCGA	CCAGTAAGAT	AAAAAATCAA	GCAGATCTCT	5520
TTCGGATTCG	GACGCTTGGT	TTTCGTGGTG	AAGCCTTGCC	TTCTATTGCG	TCTGTTAGTG	5580
TCTTGACTCT	GTTAACGGCG	GTGGATGGTG	CTAGTCATGG	AACCAAGTTA	GTCGCGCGTG	5640
GGGGTGAAGT	TGAGGAAGTC	ATCCCAGCGA	CTAGTCCTGT	GGGAACCAAG	GTTTGTGTGG-	5700
AGGATCTCTT	TTTCAACACG	CCTGCCCGTC	TCAAGTATAT	GAAGAGCCAG	CAAGCGGAGT	5760
TGTCTCATAT	CATTGATATT	GTCAACCGTC	TGGGCTTGGC	CCATCCTGAG	ATTTCTTTTA	5820
GCTTGATTAG	TGATGGCAAG	GAAATGACGC	GGACAGCAGG	GACTGGTCAA	TTGCGCCAAG	5880
CAATCGCAGG	GATTTACGGT	TTGGTCAGTG	CCAAGAAGAT	GATTGAAATT	GAGAACTCTG	5940
ACCTAGATTT	CGAAATTTCA	GGTTTTGTGT	CCTTGCCTGA	GTTGACTCGG	GCTAACCGCA	6000
ATTATATCAG	CCTCTTCATC	AATGGCCGTT	ATATTAAGAA	CTTCCTGCTC	AATCGTGCTA	6060
TTTTGGATGG	TTTTGGAAGC	AAGCTTATGG	TTGGACGTTT	TCCACTGGCT	GTCATTCACA	6120
TCCATATCGA	CCCTTATCTA	GCGGATGTCA	ATGTGCATCC	AACTAAGCAA	GAGGTGCGGA	6180
TTTCCAAGGA	AAAAGAACTG	ATGACTCTGG	TTTCAGAAGC	TATTGCAAAT	AGTCTCAAGG	6240
AACAAACCTT	GATTCCAGAT	GCCTTGGAAA	ATCTTGCCAA	ATCGACCGTG	CGCAATCGTG	6300
AGAAGGTGGA	GCAAACTATT	CTCCCACTCA	AAGAAAATAC	GCTCTACTAT	GAGAAAACTG	6360
AGCCGTCAAG	ACCTAGTCAA	ACTGAAGTAG	CTGATTATCA	GGTAGAATTG	ACTGATGAAG	6420
GGCAGGATTT	GACCCTGTTT	GCCAAGGAAA	CCTTGGACCG	ATTGACCAAG	CCAGCAAAAC	6480
TGCATTTTGC	AGAGAGAAAG	CCTGCTAACT	ACGACCAGCT	AGACCATCCA	GAGTTAGATC	6540
TTGCTAGCAT	CGATAAGGCT	TATGACAAAC	TGGAGCGAGA	AGAAGCATCC	AGCTTCCCAG	6600
AGTTGGAGTT	TTTCGGACAA	ATGCACGGGA	CTTATCTCTT	TGCCCAAGGG	CGAGATGGAC	6660
TTTACATCAT	AGATCAGCAC	GCTGCTCAGG	AACGGGTCAA	GTACGAGGAG	TACCGTGAAA	6720
GCATTGGCAA	TGTTGACCAA	AGCCAGCAGC	AACTCCTAGT	GCCCTATATC	TTTGAATTTC	6780
CTGCGGATGA	TGCCCTGCGT	CTCAAGGAAA	GAATGCCTCT	CTTAGAGGAA	GTGGGCGTCT	6840
TTCTAGCAGA	GTACGGAGAA	AATCAATTTA	TTCTACGTGA	ACATCCTATT	TGGATGGCAG	6900
AAGAAGAGAT	TGAATCAGGC	ATCTATGAGA	TGTGCGACAT	GCTCCTTTTG	ACCAAGGAAG	6960
TTTCTATCAA	GAAATACCGA	GCAGAGCTGG	CTATCATGAT	GTCTTGCAAG	CGATCTATCA	7020
AGGCCAATCA	TCGTATTGAT	GATCATTCAG	CTAGACAACT	CCTCTATCAG	CTTTCTCAAT	7080
GTGACAATCC	CTATAACTGT	CCTCACGGAC	GTCCTGTTTT	GGTGCATTTT	ACCAAGTCGG	7140

394 ATATGGAAAA GATGTTCCGA CGTATTCAGG AAAATCACAC CAGTCTCCGT GAGTTGGGGA 7200 AATATTAAAA GTATAAAAAA GTCTGGGAAA AATTTTCAAA ATCAAAAAAA CGCATAAAAT 7260 CAGGTGTTCA AAAACCTTGA TTTTATGCGT TTTATCATGG AAATAGTTAC TTCATTTTTT 7320 CCTAATTCTT TTCGAAACTC TTTTTAAACG ACGTCAGTTT TATCAGTAAT CTCAAAACAG 7380 TGTTTTGAGC TAATTTTGCC AGTTTTGTCT GTAACATCGA AGTTGTGTTT TACCACTCTG 7440 CGACTGGTTT CCTAGTTTGC TCTATGATTT TCACAGAGCA TTAAATTGCG ATTTTGCCAA 7500 GTTTCTTTAT TCGTCTAAAA GTAGAGTCTG TTCTATGCGT CTAATGTACG AATCAGGTTG 7560 ACCATTICAA TAGCTCCTTG TGCACACTCA GAACCCTTAT TTCCTGCTTT AGTACCAGCT 7620 CGTTCTATGG CTTGTTCAAT TGTATCTGTC GTTAGCACAC CAAACATAAC AGGAATTTCG 7680 CTATTTAAAC TGATTTGGGC GATTCCCTTA GATACCTCGC TACATACATA ATCATAATGA 2740 CTTGTATTCC CTCTAATGAC AGCTCCCAAG CAGATAATTG CATCATATTT TTTACTTTTT 7800 GCCATTTTTG ATGCAATCAG TGGTATTTCA AAAGCTCCTG GAACCCAGGC TACCTCTATA 7860 TCTTTCTCGT TTACATTCTC TCTTTTGAGA TTATCTAGTG CTCCAGATAA TAATTTTGAA 7920 GTTATAAATT CATTAAATCT CGCTACAACA ATACCTATTT TAATATTGTT TGCTACTAAA 7980 TTACCTTCAT AAGTGTTCAT TTATTTTTCC TCCATATTTA AAATGTGACC CATTCGATTT 8040 TTCTTTGTTT CTAAATAAAA ACTATCGTAA GGATTGGCTT CTATTTCGAT TGATATTCTA 8100 CTGGAAATGG TAATTCCATA TTTTTCTAAC TGTTCAACCT TGTCAGGATT ATTTGTCAGT 8160 AAATGAAGTG ACTGAAGTCC CAGATCTTTA AGCATTTTTG CTCCAATATG ATATTCTCTT 8220 AAATCACCTT CAAAGCCTAA TGCAAGATTG GCATCAAGCG TATCCATGCC TTGATCTTGT 8280 AAATGATAGG CTTTTAATTT ATTGATAAGT CCAATTCCTC GTCCCTCCTG TCGCAAGTAA 3340 AGTAAGACAC CCGAACCATT CTCAACAATC ATTTTCATAG CCTTATCGAA TTGCTGTCCA 8400 CAATCGCAAC GTAAAGAGCC TAAAACATCT CCTGTTAAAC ATTCGGAGTG GACCCGACAT 8460 AATACATTGG CTTCATCCTC TATATTTCCC ATAATAAGAG CAAGATGATG TTCCCCATTT 8520 AGTTTATCTA TATAGCTAAT TGCTTTGAAA TTACCGTATC TAGTAGGCAT ATTGACAG'IT 8580 GAAACTCGTT CTACCAGCTG ATCATATACT TTTCTATATT CTTGTAATTC TTTGATGGTA 8640 ATTAGTGGAA TGTTGTGTTT TTTCGAGAAC TGAATTAAAT CATCTGTTCT CATCATTTTG 8700 CCATCATGAT TCATTATTTC ACAACATAGG CCACACTCTT TTAGTCCAGC TAATTTTAAT 8760 AAATCAACAG TTGCTTCTGT GTGTCCATTT CTTTCTAGGA CACCACCTTT TTTTGCAATT 8820 AAAGGAAACA TGTGTCCTGG CCTGCGAAAA TCAGAGGGTG TTATATCTTC AGCTACACAC 8880 ATACGTGCGG TCAGTCCTCT TTCCTCGGCA GAAATACCTG TGGTCGTTTC TTTATAATCA 8940

ATTANTEGAT TAGGTANACT TEGGTCATA GGCATACANA THATECTTE GGCATANGTA GCCATANANT TANCATTITE TETTGTAGCT GCTTGTGCAG ANCANATTAN GTCTCCTTCA TTTTCTCTAT CCTTGTCGTC TATANACANGA ACANGTCGTC CCTTCTGCAN TGCTTCTANT GCTTCTTGTA TTTTTCGATA TTCCATTGAC TGATTATCCT TCTGCTANA ATCCATTTTG ATATANATAGT TCCTTAGATA TTTCTGATTT TGGAGAGTTA TCCATCAGTT TTTGGACATA TTTACCTANG ATATCATTTT CANGATTACT TGTACTCCCG ACTTGTTAC TCTTANGAAT GGTTTGTTCC ANGGTATGAG GGATANCAGA TACTGANANG TTTACTTTGG AGACTTTAGC GACAGTCAGA CTAATGCCGT CANTTGTAAT AGACCCTTT TCAACAATAT ATCCATAAAAT TTCTTTTTGT GTGTTGATTT GATACCATAC AGCATTATCA TCTTTTTTA TAGACGAGAT TTTCCTGTA CCATCAATGT GTCCTGTAAC GACGTGACCC CCAAGTCGAC CGTTGACAGA TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTTAAT AGAGTAAGAG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGGTTACAAT TACCAGCAT TAAATGGATA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGGTTACAAT TACCAGGAGTC TTCTGTATT CTTTCAACTT TTCCGATTTC TCCAATTATT CCTGTGAACA TGGATAAATC ACTCACTTT CTATGAGATA GTCATTTCCT TTCAATTATT CCTGTGAACA TGGATAAATC ACTCACTTT CTATGAGATA GTCATTTCCT TTCAATTATT CCTGTGAACA TGGATAAATC ACTCACTTT CTATGAGATA AATACCTTCA ATTTGAGAAA ATGCATAAGG TTTCAATCTA AAACCTTTT GTGCAATAAT TATTTTCAGC CCTCCGACAG GAAACTTGCA ACTACCTCCA AAAACTTTTG GTGCAATAAT TATTTTCAGC CCTCCGACAG GAAACTTGCC ACTACCTCCA AAAACTTTTG GTGCAATAAT TATTTTCAGC CCTCCTTCTTCT TTATGGAAAG TATTCACAG CCATGATTTT GATATAAGCT TATATGATTG CCTTTTTTCT TTATGGAAAG TATTCACAG CCATGATTTT GATATAACCT CATTTTATTT TGGCTTTCCAA AGGACTGCA AGGATCGTC TAAAACATTT GATATAACCT CATTTTATTT TGGCTTTCCAA AGGACTGCA AGGATCGTC TAAAACATTT TACCACTCC CACCATAATT TTGGCATTACA TGTCTGTAA ATGTGTACCA TGCATTATACCAT TTCCCTTCC CACCATAATT TTGCAATACAT TGTTTTTAGT GCCATTTTT CCATCCATTG ACATTGCATA TTTCCCTTCC TCCCAACCATACAT TTGTTTTTAGT GCCATTTTTT CCATCCATTT TATTTACCT AGGAATCCAT TTTTCCTTTC AGTAATCCAT TTTCTTTTTCAACAT ATTTCCAACAAA TTTCCAACAAA TTTCCA							
GCCATARART TRACATTITE TGTTGTAGCT GCTTGTGCAG ARCARATRA GTCTCCTTCA TTTTCCTAT CCTTGTCGTC TATARCARGA ACARGTCGTC CCTTCTGCAA TGCTTCTAAT GCTTCTTGTA TTTTTCGATA TCCATTGAC TGATTATCCT TCTGCTAAA ATCCATTTTG ATATAATAGT TCCTTAGATA TTTCTGATTT TGGAGAGTTA TCCATCAGTT TTTGCACATA TTTACCTAAG ATATCATTTT CAAGATTTAC TGTACTCCCG ACTTGTTAC TCTTAAGAAT GGTTTGTTCC AAGGTATGAG GGATAACAGA TACTGAAAAG TTTACTTTGG AGACTTTAGC GACAGTCAGA CTAATGCCGT CAATTGTAAT AGACCATTCA TCTTTTTTAT TGACGAGAT TTTCTTTTTGT GTGTTGATTT GATACCATAC AGCATTATCA TCTTTTTTAT TGACGAGAT TTTCTTTTTGT GTGTTGATTT GATACCATAC AGCATTATCA TCTTTTTTA TTGACGAGAT TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTAAT AGAGTAAGAG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATAG TTGAAATGAG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATAG TTCAAAATA TTTTTGAGGC TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGTGAACA TGGATAAAAC ACTTCAATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGTGAACA TGGATAAAAC ACTTCACTT TTGAGGAAAGA AATACCTTCA ATTTGAGAAAA ATCCATAAGG TTTCAATCTA ATACGCTCAT TTGGCAAAGA AATACCTTCA TTTGAGAAAA ATCCATAAGG TTTCAATCTA ATACGCTCAT TTGGCAAAGA AATACCTTCA CCTCCCGACAG GAAACTTGCC ACAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT TCAATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT TCAATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT CCTTTTTTCT TTATGGAAAG TATTCACAG CCATGATTTT GATATAACCT CATTTTATTT TTGTCTTCAA ACGAGATGGC AATACCATCA CAATTCATTA GACTGCCCCC TTCTAGAACT CCTTTTTTCT TTATGGAAAG TATTCACAG CCATGATTTT GATATAACCT CATTTTATTT TTGTCTTCAA AGGAACTGC AATGTAAGT TTGAATAAC TTGCTGTTTT TACGATTTTA TTGTCTTCAA AGGAACTGCA AAGCTCTC TGAATAAACAG TATTACACTC CATTTTATTT TTGTCTTCAA AGGAACTGCA AGGATCGTCT TGAATAACAG TATTTCCCTTCC TCCAATCTAC ATGTCAGAAA AGGATCGTCT TGAATAACAG TATTTGACTC CACCATAATT TTGGATTGAT TTGTTTTAGT GCTTATTTT CCATCCTTTC CTTCCTTCC CACCATAATT TTGGATTGAT TTGTTTTAGT GCTTATTTT CCATCCTTTT CTTCTTCTTC AGTAATCCAT TTGGATTGAT TTGTTTTAGT GCTTATTTT CCATCCTTTT TATTTATAAACAT TTTCATAAAAA ACATAGGGTA CATGCAGAA AGGATCGTCT TGAATACCTT TATTTAAACTT TATTTAAAACTT TATTTAAAACTT TATTT	9000	AGGTGAAAGC	TTTCAACCAT	TCTGTATTGT	CTTATGATTA	TAAAAGCAGT	ATTGAAACTC
TTTTCTCTAT CCTTGTCGTC TATAACAAGA ACAAGTCGTC CCTTCTGCAA TGCTTCTAAT GCTTCTTGTA TTTTCGATA TTCCATTGAC TGATTATCCT TTCTGCTAAA ATCCATTTTG ATATAATAGT TCCTTAGATA TTTCTGATTT TGGAGAGTTA TCCATCAGTT TTTGCACATA TTTACCTAAG ATATCATTTT CAAGATTTAC TGTACTCCG ACTTGTTTAC TCTTAGAGAT GGTTTGTTCC AAGGTATGAG GGATAACAGA TACTGAAAAG TTTACTTTTG AGACTTTAGC GACAGTCAGA CTAATGCCGT CAATTGTAAT AGATCCTTTT TCAACTATTA AATCTAAAAT TTCTTTTTGT GTGTTGATTT GATACCATAC AGCATTATCA TCTTTTTTAT TTGACGAGAT TATTCCTGTA CCATCAATGT GTCCTGTAAC GACGTGACCC CCAAGTCGAC CGTTGACAGA TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTTAAT AGAGTAAGG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATGA TCCGTTAATA TTTTTGAGG ACAGTACCA TTTACTGCTA TACTATCGCC TAAATGGATA TCCGTTAATA TTTTTGAGG TTTAATTGAT AGTTTACAAT TACGAGAGGT TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGTGAACA TGGATAAATC ACTTCACTTT CTATGAGATA GTCATTTCCT ATTTGAGAAA ATCCATAAGG TTTCAAATCTA ATACGCTCAT TTGGCAAAGA AATACCTTCA TCATCAACAA TTTGTTGTC CAAAGCACTC CAACTCTAT TGGCAAAGA AATACCTTCA CCTCCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC CCTCCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC CCTCCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC CCTCTCTTTTCT TTATGGAAG TATTCCACTG CCAAGTCTTT TACGAATATA TATTTTCAGC CCTTTTTTCT TTATGGAAG TATTCCACAG CCATGATTT TACATAGCT CATTTTATT 10 TCGTCTTCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGCT TATATGATTG 10 CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTT TGCTGTTTT TACGATTTT TACGATTTTA 10 TGGCTTACAA TCTGCATGAA ATGTGTACG CAATGATAC GGATAGGATT TTTCCCTTCC TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTC CACCATAATT 10 GGACTAACAT GGTGTCGTAA ATGTGTACG CATATTATC CTTCTTCTC CACCATAATT 10 GCACTAACAT GGTGTCGTAA ATGTGTACG CATATTATC CTTCTTCTC CACCATAATT 10 TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAAA 10 ACATAGGGTA CATGCTGGAT AATATACTTT CTAAAACTTT TATTTATACT TACTCCTTTT 11 TTTTCTAAAA TTCCAACAGA AAACTTTTT CCAACACTT AAAACTTT TACTCTTTT TACTCTTTCT 11 TTTTCTAAAA TTCCAACAGA AAACTTTTT CTAAAACTTT TAATTACTT TACTCCTTTT 11 TTTTCTAAAA TTCCAACAGA AAACTTTTT CTAAAACT	9060	GGCATAAGTA	TTAATCCTTT	GGCATACAAA	TTCGCTCATA	TAGCTAAACT	ATTAATTGAT
GCTTCTTGTA TTTTTCGATA TTCCATTGAC TGATTATCCT TTCTGCTAAA ATCCATTTTG ATATAATAGT TCCTTAGATA TTTCTGATTT TGGAGAGTTA TCCATCAGTT TTTGCACATA TTTACCTAAG ATATCATTTT CAAGATTTAC TGTACTCCCG ACTTGTTAC TCTTAAGAAT GGTTTGTTCC AAGGTATGAG GGATAACAGA TACTGAAAAG TTTACTTTTG AGACTTTAGC GACAGTCAGA CTAATGCCGT CAATTGTAAT AGACCATTAT TCAACTATTA AATCTAAAAT TTCTTTTTTG GTGTGATTT GATACCATAC AGCATTATCA TCTTTTTTA TTGACGAGAT TTTTCCTGTA CCATCAATGT GTCCTGTAAC GACGTGACCC CCAAGTCGAC CGTTGACAGA TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTTAAT AGAGTAAGG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATGA TCGGTAAATG TAACTGTAAG ACAGATACCA TTTACTGCTA TACTATCGCC TAAATGGATA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGTGAACA TGGATAAATC ACTTCACTTT CTATGAGATA GTCATTTCCT ATTTGAGAAA ATCCATAAGG TTTCAATCTA ATACCGTCAT TTGGCAAAGA AATACCTTCA ACTTCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAAATAA TATTTTCAGC CCTCCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAAATAA TATTTTCAGC CCTCCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAAATAA TATTTTCAGC CCTCCTGACAG TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCC TTCTAGAACT AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGCT TATATGATTG AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGCT TATATGATTG CCTTTTTTCT TTATGGAAAG TATTCACAG CCATGATTT TAGCTGTTT TACGATTTTA TTGTCTTCAA AGGAAGTGGC AATGTAACG CCATGATTTT TACGATTTTT TACGATTTTA TTGTCTTCAA AGGAAGTGGC AATGTAACG CATGATTCA TTGCTGTTT TACGATTTTA TTGTCTTCAA AGGAAGTGGC AATGTAACG CATGATACC TATATGACTC CACCATAATT TTGTCTTCAA ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGCTCC CACCATAATT TTGTCTTCAA ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGCTCC CACCATAATT TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCCATCAAA ACATAGGGTA CATGCTGGAT AATATACTTT CTAAAACTTT TTATTATACT TTTCCTTCC	9120	GTCTCCTTCA	AACAAATTAA	GCTTGTGCAG	TGTTGTAGCT	TAACATTTTC	GCCATAAAAT
ATATAATAGT TCCTTAGATA TTTCTGATTT TGGAGAGTTA TCCATCAGTT TTTGCACATA TTTACCTAAG ATATCATTTT CAAGATTTAC TGTACTCCCG ACTTGTTTAC TCTTAAGAAT GGTTTGTTCC AAGGTATGAG GGATAACAGA TACTGAAAAG TTTACTTTGG AGACTTTAGC GACAGTCAGA CTAATGCCGT CAATTGTAAT AGATCCTTT TCAACTATTA AATCTAAAAT TTCTTTTTTG GTGTTGATTT GATACCATAC AGCATTACA TCTTTTTTAT TTGACGAGAT TTTTCCTGTA CCATCAATGT GTCCTGTAAC GACGTGACCC CCAAGTCGAC CGTTGACAGA TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTAAT AGAGTAAGAG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATGA TTGAAATGAG TAACTGTAAG ACAGATACCA TTTACTGCTA TACTATCGCC TAAATGGATA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGGAACA TGGATAAATC ACTTCACTT CTATGAGATA GTCATTTCCT ATTTGAGAAA ATGCATAAGG TTTCAATCTA ATACCGTCAT TTGGCAAAGA AATACCTTCA CCTCCGACAG GAAACTTGCC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC TCATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCC TTCTAGAACT AGGCTATCAA TCTGGATGT TCCTAGATGT TGCATTAAC TCGATAAGT TATTTTCAGC CCTTTTTTCT TTATGGAAAG TATTCACAG CCATGATTT TAGAATAGCT TATATGATTG CCTTTTTTCT TTATGGAAAG TATTCACAG CCATGATTT TAGAATAGCT TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT TAGAATAGCT TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT TAGAATAGCT TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTT TAGAATAGCT CATTTTATTT CCAATCTAC AGGAAGTGGC AATGTATCG CAATAGAAC GGATAGGATT TTCCCTTCC TCCAATCTAC ATGTCAGAAA AGGATCGTCT TGAATAACAG TATTGACTC CACCATAATT CCAATCTAC ATGTCAGAAA AGGATCGTCT TGAATAACAG TATTGACTC CACCATAATT CCAATCTAC ATGTCAGAAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT CCAATCTAC ATGTCAGAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT CCAATCTAC ATGTCAGAAA AGGATCGTCT TGAATACAG TATTGACTCC CACCATAATT CCAATCTAC ATGTCAGAAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT CCAATCTAC ATGTCAGAA AGGATCGTCT TGAATACAT TTTCATAAAA ACATAGGGTA CATGCTGGAA AACTTGAACTT TTAATAACTT TTTCATAAAA ACATAGGGTA CATGCTGGAA AACTTGAACTT TTAATACTT TTAATAACTT TTAATAACTT TTCATAAAAA ACATAGGGTA CATGCTGGAA AACTTGAACTT CAAACCTT TAATATCTT TAATAACTT TAATATACTT TAATATCTT TAATATCTT TAATATCTT TA	9180	TGCTTCTAAT	CCTTCTGCAA	ACAAGTCGTC	TATAACAAGA	CCTTGTCGTC	TTTTCTCTAT
TTTACCTAAG ATATCATTTT CAAGATTAC TGTACTCCCG ACTTGTTTAC TCTTAAGAAT GGTTTGTTCC AAGGTATGAG GGATAACAGA TACTGAAAAG TTTACTTTGG AGACTTTAGC GACAGTCAGA CTAATGCCGT CAATTGTAAT AGATCCTTT TCAACTATTA AATCTAAAAT TTCTTTTTGT GTGTTGATTT GATACCATAC AGCATTATCA TCTTTTTTAT TTGACGAGAT TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTAAT AGAGTAAGAG CGTTGACAGA TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTAAT AGAGTAAGAG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATA TCCGTTAATA TTTTTGAGG ACAGATACCA TTTACTGCTA TACTATCGCC TAAATGGATA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGTGAACA TGGATAAATC ACTCACTTT CTATGACAAGA AATACCTTCA ATTTGAGAAA ATGCATAAGG TTTCAATCTA ATACGGTCAT TTGGCAAAGA AATACCTTCA CCTCCGACAG GAAACTTGCC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCACC TCATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCC TTCTAGAACT AGGCTATCAA TCTGGATGT TCCTAGATGT TGCATTAAAC TCGATAAGCT TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT TTGTCTTCAA AGGAAGTGGC AATGTAACGT TTAATACAT TTGCTGTTTT TACGATTTTA TTGTCTTCAA AGGAAGTGGC AATGTAACGT TTAATACAT TTGCTGTTTT TACGATTTTA TTGTCTTCAA AGGAAGTGGC AATGTAACGT TAAATACAT TTTCCCTTCC TCCAATCTAC ATGTCAGAAA AGGATCGTCT TGAATAACAG TATTGACTC CACCATAATT TTGTCTTCAA AGGAAGTGGC AATGTAACG TAGATACAG CACCATAATT TTGTCTTCAA AGGAAGTGGC AATGTAACG TAGATACAT TATTGATCCT TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT TCGCATTCAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT TCGCATTCAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA ACATAGGGTA CATGCTGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTCCT CAAGTACTT TACTCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAACAT TTATTTACCT CAAGTACTT TACTCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTCCT CAAGTACTT TACTCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTCCT CAAGTACTT TACTCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTCCT CAAGTACTT TACTCCTTTT TTTTCTAAAAA TTCCAACAGT	9240	ATCCATTTTG	TTCTGCTAAA	TGATTATCCT	TTCCATTGAC	TTTTTCGATA	GCTTCTTGTA
GGTTTGTTCC AAGGTATGAG GGATAACAGA TACTGAAAAG TTTACTTTGG AGACTTTAGC GACAGTCAGA CTAATGCCGT CAATTGTAAT AGATCCTTTT TCAACTATTA AATCTAAAAT TTCTTTTTGT GTGTTGATTT GATACCATAC AGCATTATCA TCTTTTTTTA TTGACGAGAT TTTTCCTGTA CCATCAATGT GTCCTGTAAC GACGTGACC CCAAGTCGAC CGTTGACAGA TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTTAAT AGAGTAAGAG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATGA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAAATTATT CCTGTGAACA TGGATAAATC ACTTCACTTT CTATGAGATA GTCATTTCCT ATTTGAGAAA ATGCATAAGG TTTCAATCTA ATAGCGTCAT TTGGCAAAGA AATACCTTCA AGGCTATCAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCC TTCTAGAACT AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGC TATATGATTG AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGCT TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT CCGATTCAA ATGTCATAAA TTCCTAGATT TTAATTACAT TTTCCTTCC TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT CCGATTCAA ATGTCATAAA TCTGCATGTT TCCTAGAACT TTAATACAT TTTCCTTCC TCCTCC AAAGCACTC TTAATAGACT CATTTTATTT CCGATTCAA ATGTCATAAA ATGTGTATCG CATATGATAC GGATAAGAT TATTTTATTT	9300	TTTGCACATA	TCCATCAGTT	TGGAGAGTTA	TTTCTGATTT	TCCTTAGATA	ATATAATAGT
GACAGTCAGA CTAATGCCGT CAATTGTAAT AGATCCTTTT TCAACTATTA AATCTAAAAT TTCTTTTTG GTGTTGATTT GATACCATAC AGCATTATCA TCTTTTTTTA TTGACGAGAT TTTCCTGTA CCATCAATGT GTCCTGTAAC GACGTGACCC CCAAGTCGAC CGTTGACAGA TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTTAAT AGAGTAAGAG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATGA TTGAAATGAG TAACTGTAAG ACAGATACCA TTTACTGCTA TACTATCGCC TAAATGGATA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGTGAACA TGGATAAATC ACTTCACTT CTATGAGATA GTCATTTCCT ATTTGAGAAA ATGCATAAGG TTTCAATCTA ATACGGTCAT TTGGCAAAGA AATACCTTCA CCTCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC TCATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGTC TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT CTGTCTTCAG AGGAAGTGGC AATGTAACG CCATGATTTT TACGATTTTT TACGATTTTATT TTGTCTTCAG AGGAAGTGGC AATGTAACG CAATATACCT TTGCCTTCT CACCATTATT TTGCCTTCCA AGGAATCGCAA AGGATCGTCT TGAATAACAG TATTTGACTC CACCATAATT TTGCCTTCCA ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTTGACTC CACCATAATT TTGCCTTCCA ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTTGACTC CACCATAATT TTGCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTTGACTC CACCATAATT TTGCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTTGACTC CACCATAATT TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG CTTCTTCTC AGTAATCCAT TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA ACATAGGGTA CATGCTGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA TTTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTACCTTTC CAAAACCTTT TACTCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTACCTTTC TACTCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTACATT TACTCCTTTTT TTTTCTAAAAA TTCCCAACAGT AACTTGAAGA TTATTTACATT TACTCCTTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCTTTC CAAGACTTT TACTCCTTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGACTTT TACTCCTTTTT TTTTCTTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGACTTT TACTCCTTTTT TTTTCTTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGGTATCTT TACTCCTTTT	9360	TCTTAAGAAT	ACTTGTTTAC	TGTACTCCCG	CAAGATTTAC	ATATCATTTT	TTTACCTAAG
TTCTTTTGT GTGTTGATTT GATACCATAC AGCATTATCA TCTTTTTTA TTGACGAGAT TTTTCCTGTA CCATCAATGT GTCCTGTAAC GACGTGACCC CCAAGTCGAC CGTTGACAGA TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTAAT AGAGTAAGAG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATGA TTGAAATGAG TAACTGTAAG ACAGATACCA TTTACTGCTA TACTATCGCC TAAATGGATA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGTGAACA TGGATAAATC ACTTCACTTT CTATGAGATA GTCATTTCCT ATTTGAGAAA ATGCATAAGG TTTCAATCTA ATACCGTCAT TTGGCAAAGA AATACCTTCA CCTCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC TCATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGCT CATTTTATTT CCTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT TTGTCTTCAG AGGAAGTGGC AATGTAACG CAATGATAC TTGCTGTTTT TACGATTTTAA GAGGTAACAA GGGATCGTAA ATGTGTATCG CAATAGATA GGATAAGCT CACCATAATT TTGTCTTCAG AGGAAGTGGC AATGTAACG TAAAACAG TATTGCTTCT TACGATTTTA GAGGTAACAA TTTCCCTTCAA ATGTGTATCG CAATATACA TTTCCCTTCC TCCAATCTAC ATGTCAGAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT TTCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT TTCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT TTCGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG CTTCTTCTC AGTAATCCAT TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA ACATAGGGTA CATGCTGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA TTTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTCCTTTCT TACTCCTTTT TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTCCTTTC TACTCCTTTT TTTTCTAAAA TTCCCAACAGT AACTTGAAGA TTATTTCCTTTCT TACTCCTTTT TTTTCTAAAA TTCCCAACAGT AACTTGAAGA TTATTTCCTTTCT TACTCCTTTT TTTTCTAAAAA TTCCCAACAGT AACTTGAAGA TTATTTTCCT TACTCCTTTT TTTCTTAAAAA TTCCCAACAGT AACTTGAAGA TTATTTTCCTTTCT TACTCCTTTTT TTTTCTAAAAA TTCCCAACAGT AACTTGAAGA TTATTTTCCTTTCT TACTCCTTTTT TTTTCTAAAAA TTCCCAACAGT AACTTGAAGA TTATTTTCCTTTCT TACTCCTTTTT TTTTCTTAAAAA TTCCCAACAGT AACTTGAAGA TTATTTTCCTTTCT TACTCCTTTTT TTTTCTTAAAAA TTCCCAACAGT AACTTGAAGA TTATTTTCCT CAAGGTATCTT TACTCCTTTTT	9420	AGACTTTAGC	TTTACTTTGG	TACTGAAAAG	GGATAACAGA	AAGGTATGAG	GGTTTGTTCC
TTTTCCTGTA CCATCAATGT GTCCTGTAAC GACGTGACCC CCAAGTCGAC CGTTGACAGA TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTTAAT AGAGTAAGAG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATGA TTGAAATGAG TAACTGTAAG ACAGATACCA TTTACTGCTA TACTATCGCC TAAATGGATA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGTGAACA TGGATAAATC ACTTCACTTT CTATGAGATA GTCATTTCCT ATTTGAGAAA ATGCATAAGG TTTCAATCTA ATAGCGTCAT TTGGCAAAGA AATACCTTCA CCTCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAAAGA AATACCTTCA CCTCCGACAG TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGTC TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATACCTT CATTTTATTT CGAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTCCCTTCC TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTC CACCATAATT CCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATACCAG TATTGACTC CACCATAATT CCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATACCAT TATTCATCAAAA ACATAGGGTA CATGCTGGGT AATATACTTT CCAAAACTTT TTATTAAGTT AAGACACTCA TTTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGGTATCTT TACCCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTCCC CAAGGTATCTT TACCCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTCCCT CAAGGTATCTT TACCCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGGTATCTT TACCCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGGTATCTT TACCCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGGTATCTT TACCCCTTTT TTTTCTAAAAAATTT TTATTAAGTT TACCCCTTTT TTTTCTAAAAA	9480	AATCTAAAAT	TCAACTATTA	AGATCCTTTT	CAATTGTAAT	CTAATGCCGT	GACAGTCAGA
TAAGGCTCTT TCTAGATTCA CCTCACTTCC ATGTTTAAT AGAGTAAGAG CTGTTCGACT CCATGTTTCA TTCATTACAT CAACTGTAAA GGATTGATGA TTGAAATGAG TAACTGTAAG ACAGATACCA TTTACTGCTA TACTATCGCC TAAATGGATA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC ATTTGAGAAA ATGCATAAGG TTTCAATCTA ATAGCGTCAT TTGGCAAAGA AATACCTTCA CCTCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC TCATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGTC TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT TTGTCTTCAG AGGAAGTGGC AATGTAAGTT TTAATATCAT TTGCTGTTTT TACGATTTTA GAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTTCCCTTCC TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTG CTTCTTCTC AGTAATCCAT TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA ACATAGGGTA CATGCTGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTCCT CAAGACTTT TACTCCTTTT TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTCCT CAAGACTTT TACTCCTTTT TTTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGACTTT TACTCCTTTT	9540	TTGACGAGAT	TCTTTTTTA	AGCATTATCA	GATACCATAC	GTGTTGATTT	TTCTTTTTGT
CCATGTTCA TTCATTACAT CAACTGTAAA GGATTGATGA TTGAAATGAG TAACTGTAAG ACAGATACCA TTTACTGCTA TACTATCGCC TAAATGGATA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGTGAACA TGGATAAATC ACTTCACTTT CTATGAGATA GTCATTTCCT ATTTGAGAAA ATGCATAAGG TTTCAATCTA ATAGCGTCAT TTGGCAAAGA AATACCTTCA CCTCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC TCATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGTC TATATGATTG TTGTCTTCAG AGGAAGTGGC AATGTAAGTT TTAATATCAT TTGCTGTTTT TACGATTTTA TTGTCTTCAG AGGAAGTGGC AATGTAAGTT TTAATATCAT TTGCTGTTTT TACGATTTTA GAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTTCCCTTCC TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTC CACCATAATT GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTG CTTCTTCTC AGTAATCCAT TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAAA ACATAGGGTA CATGCTGGGT AATATACCTT CTAAAACTTT TTATTAAGTT AAGACACTCA TTTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTCCT CAAGTATCTT TACTCCTTTT TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTCCT CAAGTATCTT TACTCCTTTT TTTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTTT TTTTCTAAAAA	9600	CGTTGACAGA	CCAAGTCGAC	GACGTGACCC	GTCCTGTAAC	CCATCAATGT	TTTTCCTGTA
ACAGATACCA TTTACTGCTA TACTATCGCC TAAATGGATA TCCGTTAATA TTTTTGAGGC TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGTGAACA TGGATAAATC ACTTCACTTT CTATGAGATA GTCATTTCCT ATTTGAGAAA ATCCATAAGG TTTCAATCTA ATAGCGTCAT TTGGCAAAGA AATACCTTCA CCTCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC TCATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGTC TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATACCTT CATTTTATTT GAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTTCCCTTCC TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA ACATAGGGTA CATGCTGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA TTTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTTT TTTTTCTAAAAA TTCCAACAGT AACTTTATTTCCT CAAGTATCTT TACTCCTTTTT TTTTTCTAAAAACTTT TAATTTTCCT CAAGTATCTT TACTCCTTTTT TTTTTCTAAAAA TTCCAACAGT AACTTTATTTCCT CAAGTATCTT TACTCCTTTTT TTTTTCTAAAAACTTT TAATTTTCCT CAAGTATCTT TACTCCTTTTT TTTTTCTAAAAACTTT TAATTTTCCT CAAGTATCTT TACTCCTTTTT TTTTTCTAAAAACTTT TAATTTTCCT CAAGTATCTT TACTCCTTTTT TTTTTTTTTTTTTTTTTTTT	9660	CTGTTCGACT	AGAGTAAGAG	ATGTTTTAAT	CCTCACTTCC	TCTAGATTCA	TAAGGCTCTT
TTTAATTGAT AGTTTACAAT TACGAGAGTC TTTCTGTATT CTTTCAACTT TTCCGATTTC TTCAATTATT CCTGTGAACA TGGATAAATC ACTTCACTTT CTATGAGATA GTCATTTCCT ATTTGAGAAA ATGCATAAGG TTTCAATCTA ATAGCGTCAT TTGGCAAAGA AATACCTTCA CCTCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC TCATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGTC TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT TTGTCTTCAG AGGAAGTGGC AATGTAAGTT TTAATATCAT TTGCTGTTTT TACGATTTTA GAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTTCCCTTCC TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTG CTTCTTCTC AGTAATCCAT TTGGATTGAT TTGTTTTAGT GGCTATTTT CCATCCATTG ACATTGCATA TTTCATAAAA ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10 TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10 TTTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10 TTTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	9720	TAACTGTAAG	TTGAAATGAG	GGATTGATGA	CAACTGŤAAA	TTCATTACAT	CCATGTTTCA
TTCAATTATT CCTGTGAACA TGGATAAATC ACTTCACTTT CTATGAGATA GTCATTTCCT ATTTGAGAAA ATGCATAAGG TTTCAATCTA ATAGCGTCAT TTGGCAAAGA AATACCTTCA 9 CCTCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC 10 TCATCAACAA TTTGTTGTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT 10 AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGTC TATATGATTG 10 CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT 10 TTGTCTTCAG AGGAAGTGGC AATGTAAGTT TTAATATCAT TTGCTGTTTT TACGATTTTA 10 GAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTTCCCTTCC 10 TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT 10 GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTC CTTCTTCTTC AGTAATCCAT 11 TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA 10 ACATAGGGTA CATGCTGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA 10 TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	9780	TTTTTGAGGC	TCCGTTAATA	TAAATGGATA	TACTATCGCC	TTTACTGCTA	ACAGATACCA
ATTTGAGAAA ATGCATAAGG TTTCAATCTA ATAGCGTCAT TTGGCAAAGA AATACCTTCA CCTCCGACAG GAAACTTGGC ACTACCTCCA AAAACTTTTG GTGCAATATA TATTTTCAGC TCATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGTC TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT 10 TTGTCTTCAG AGGAAGTGGC AATGTAAGTT TTAATATCAT TTGCTGTTTT TACGATTTTA GAGGTAAGAG GAGTTCGTAA ATGTGATCG CATATGATAC GGATAGGATT TTTCCCTTCC TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTG CTTCTTCTTC AGTAATCCAT TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	9840	TTCCGATTTC	CTTTCAACTT	TTTCTGTATT	TACGAGAGTC	AGTITACAAT	TTTAATTGAT
CCTCCGACAG GAAACTTGGC ACTACCTCA AAAACTTTTG GTGCAATATA TATTTTCAGC TCATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCCC TTCTAGAACT AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGTC TATATGATTG CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT TTGTCTTCAG AGGAAGTGGC AATGTAAGTT TTAATATCAT TTGCTGTTTT TACGATTTTA GAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTTCCCTTCC TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTG CTTCTTCTC AGTAATCCAT TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	9900	GTCATTTCCT	CTATGAGATA	ACTTCACTTT	TGGATAAATC	CCTGTGAACA	TTCAATTATT
TCATCAACAA TTTGTTGTTC CAAAGCACTC CAATTCATTA GACTGCCCC TTCTAGAACT 10 AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGTC TATATGATTG 10 CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT 10 TTGTCTTCAG AGGAAGTGGC AATGTAAGTT TTAATATCAT TTGCTGTTTT TACGATTTTA 10 GAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTTCCCTTCC 10 TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT 10 GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTC CTTCTTCTTC AGTAATCCAT 10 TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA 10 ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA 10 TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	9960	AATACCTTCA	TTGGCAAAGA	ATAGCGTCAT	TTTCAATCTA	ATGCATAAGG	ATTTGAGAAA
AGGCTATCAA TCTGCATGTT TCCTAGATGT TGCATTAAAC TCGATAAGTC TATATGATTG 10 CCTTTTTTCT TTATGGAAAG TATTTCACAG CCATGATTTT GATATAGCTT CATTTTATTT 10 TTGTCTTCAG AGGAAGTGGC AATGTAAGTT TTAATATCAT TTGCTGTTTT TACGATTTTA 10 GAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTTCCCTTCC 10 TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT 10 GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTG CTTCTTCTTC AGTAATCCAT 10 TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA 10 ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA 10 TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	10020	TATTTTCAGC	GTGCAATATA	AAAACTTTTG	ACTACCTCCA	GAAACTTGGC	CCTCCGACAG
CCTTTTTCT TTATGGAAAG TATTCACAG CCATGATTTT GATATAGCTT CATTTATTT 10 TTGTCTTCAG AGGAAGTGGC AATGTAAGTT TTAATATCAT TTGCTGTTTT TACGATTTTA 10 GAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTTCCCTTCC 10 TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT 10 GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTC AGTAATCCAT 10 TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA 10 ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA 10 TTTTCTAAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	10080	TTCTAGAACT	GACTGCCCCC	CAATTCATTA	CAAAGCACTC	TTTGTTGTTC	TCATCAACAA
TTGTCTTCAG AGGAAGTGGC AATGTAAGTT TTAATATCAT TTGCTGTTTT TACGATTTTA 10 GAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTTCCCTTCC 10 TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT 10 GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTG CTTCTTCTTC AGTAATCCAT 10 TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA 10 ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA 10 TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	10140	TATATGATTG	TCGATAAGTC	TGCATTAAAC	TCCTAGATGT	TCTGCATGTT	AGGCTATCAA
GAGGTAAGAG GAGTTCGTAA ATGTGTATCG CATATGATAC GGATAGGATT TTTCCCTTCC 10 TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT 10 GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTG CTTCTTCTTC AGTAATCCAT 10 TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA 10 ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA 10 TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	10200	CATTTTATTT	GATATAGCTT	CCATGATTTT	TATTTCACAG	TTATGGAAAG	CCTTTTTTCT
TCCAATCTAC ATGTCAGCAA AGGATCGTCT TGAATAACAG TATTGACTCC CACCATAATT 10 GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTG CTTCTTCTTC AGTAATCCAT 10 TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA 10 ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA 10 TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	10260	TACGATTTTA	TTGCTGTTTT	TTAATATCAT	AATGTAAGTT	AGGAAGTGGC	TTGTCTTCAG
GCACTAACAT GGTGTCGTAA CTGATGCACA TGCTTTCTTG CTTCTTCTTC AGTAATCCAT 10 TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA 10 ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA 10 TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	10320	TTTCCCTTCC	GGATAGGATT	CATATGATAC	ATGTGTATCG	GAGTTCGTAA	GAGGTAAGAG
TTGGATTGAT TTGTTTTAGT GGCTATTTTT CCATCCATTG ACATTGCATA TTTCATAAAA 10 ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA 10 TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	10380	CACCATAATT	TATTGACTCC	TGAATAACAG	AGGATCGTCT	ATGTCAGCAA	TCCAATCTAC
ACATAGGGTA CATGCTGGGT AATATACTTT CTAAAACTTT TTATTAAGTT AAGACACTCA 10 TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	10440	AGTAATCCAT	CTTCTTCTTC	TGCTTTCTTG	CTGATGCACA	GGTGTCGTAA	GCACTAACAT
TTTTCTAAAA TTCCAACAGT AACTTGAAGA TTATTTTCCT CAAGTATCTT TACTCCTTTT 10	10500	TTTCATAAAA	ACATTGCATA	CCATCCATTG	GGCTATTTTT	TTGTTTTAGT	TTGGATTGAT
	10560	AAGACACTCA	TTATTAAGTT	СТААААСТТТ	AATATACTTT	CATGCTGGGT	ACATAGGGTA
CCAGATACAA TAGGATTACA GTCTAGGCTT CCAATGACTA CTCTTGTAAT ACCACTATCG 10	10620	TACTCCTTTT	CAAGTATCTT	TTATTTTCCT	AACTTGAAGA	TTCCAACAGT	TTTTCTAAAA
·	10680	ACCACTATCG	CTCTTGTAAT	CCAATGACTA	GTCTAGGCTT	TAGGATTACA	CCAGATACAA

			396			
ATTATAGCAT	CTATACAGGG	AGGTGTTTTC		AACAGGGTTC	AAGTGTTACA	10740
TAAAGCGTCG	CTCCGACAGG	GGATTCTCTA	CAGTTTTTAA	GAGCATTTCT	CTCAGCATGT	10800
GGGCCACCAA	AAAACTCATG	ATAACCTTGT	CCGATAATGT	GATTATCTTT	TACAATAACT	10860
GCGCCGACCA	TAGGATTGGG	ATTGACGTAA	CCAGCCCCTT	TTTGTGCCAG	TTTTATTGCT	10920
AATTTCATAT	ATTTTGAATC	GCTCATCTCG	CTACCTCCAA	AAAAATATAC	CTTGAATAGG	10980
GGACTACTCA	AGGCATACAA	AAGAAAACTT	ATGCGATTAA	CAAAAATGCT	CTGAAATGAC	11040
AAGTAATCAT	TTCAGAGCAC	GCAAAAAGCA	CAAATATACT	TTTATCTTCT	TTCATCCAGA	11100
CTATACTGTC	GGCTTTGGAA	TTTCACCAAA	TCATGCCTTT	CGGCTCGTGG	GCTATACCAC	11160
CGGTAGGGAA	TTTCACCCTG	CCCTGAAGAT	AGTTATTCAA	TTACAGATGA	TTATAGTACT	11220
TAATTTTGAA	TATGTCAACA	GATAAATACC	GATTGTTTTT	GATATACTGT	ATTTGTGATA	11280
ATCGATTCTC	GCTCCTCGGA	TAAAGAAAAT	ATGATATACT	AGATAAACGA	AATAAGAGAG	11340
AAGGAATACT	ATGTACGCAT	ATTTAAAAGG	AATCATTACC	AAAATTACTG	CCAAATACAT	11400
TGTTCTTGAA	ACCAATGGTA	TTGGTTATAT	CCTGCATGTG	GCCAATCCTT	ATGCCTATTC	11460
AGGTCAGGTT	AATCAGGAGG	CTCAGATTTA	TGTGCATCAG	GTTGTGCGTG	AGGACGCCCA	11520
TTTGCTTTAT	GGATTTCGCT	CAGAGGATGA	GAAAAAGCTC	TTTCTTAGTC	TGATTTCGGT	11580
CTCTGGGATT	GGTCCTGTAT	CAGCTCTTGC	TATTATCGCT	GCTGATGACA	ATGCTGGCTT	11640
GGTTCAAGCC	ATTGAAACCA	AGAACATCAC	CTACTTGACC	AAGTTCCCTA	AAATTGGCAA	11700
GAAAACAGCC	CAGCAGATGG	TGCTGGACTT	GGAAGGCAAG	GTAGTAGTTG	CAGGAGATGA	11760
CCTTCCTGCC	AAGGTCGCAG	TGCAAGCAAG	TGCTGAAAAC	CAAGAATTGG	AAGAAGCTAT	11820
GGAAGCCATG	TTGGCTCTGG	GCTACAAGGC	AACAGAGCTC	AAGAAAATCA	AGAAATTCTT	11880
TGAAGGAACG	ACAGATACAG	CTGAGAACTA	TATCAAGTCG	GCCCTTAAAA	TGTTGGTCAA	11940
ATAGGAGCAG	AGAATGACAA	AACGTTGTTC	GTGGGTCAAG	ATGACCAACC	CGCTCTACAT	12000
CGCCTATCAT	GATGAGGAGT	GGGGCCAGCC	CCTCCATGAT	GACCAAGTAT	TGTTTGAGTT	12060
GTTGTGTATG	GAAACCTATC	AGGCAGGCCT	GTCTTGGGAA	ACGGTACTCA	ACAAACGCCA	:2120
AGCTTTCCGA	GAAGTCTTTC	ATAGCTATCA	AATTCACTCA	GTCGCAGAGA	TGACTGACAC	12180
TGAATTGGAA	GCCATGCTGG	AGAATCCAGC	TATCATTCGA	AATAGAGCCA	AGCTTTTTGC	12240
TACACGCGCT	AACGCCCAAG	CCTTTCTACA	GTTACAGGCA	GAGTACGGCT	CTTTTGATGC	12300
CTATCTTTGG	TCTTTTCTTG	AGGGGAAAAC	TGTCGTTAAC	GATGTTCCTG	ATTATCGCCA	12360
AGCGCCAGCT	AAAACACCCT	TATCTGAGAA	ATTAGCCAAA	GATCTCAAAA	AACGAGGCTT	12420
CAAGTTCACA	GGCCCAGTCG	CCGTATTGTC	TTTTCTACAG	GCTGCAGGGC	TAGTTGATGA	12480

	CCACGAGAAT	GATTGTGAGT	r GGAAAGGTC1	TAAATGATGT	CTAACAAAA	TAAGGAAATT	12540
	CTGATTTTTC	CGATTCTCT?	TACAGTCCTC	TTTATGTTTG	ATGGCGTTAA	ATTGCTGGCT	12600
	TCTTTAATGO	CATCTGCCAT	TGCAAATTAT	CTTGTTTATG	TAGTTTTAGC	TCTATATGGC	12660
	TCCTTCTTGT	TCAAGGATAG	ATTGATCCA	CAATGGAAGG	AGATTAGAAA	GACTAAAAGA	12720
	AAATTCTTCT	TTGGAGTCTT	AACAGGATGG	CTCTTTCTCA	TTCTGATGAC	TGTTGTCTTT	12780
	GAATTTGTAT	CAGAGATGTT	GAAGCAGTTT	GTGGGACTAG	ATGGACAAGG	TCTAAATCAG	12840
	TCTAATATTC	AAAGTACCTT	TCAAGAACAA	CCACTACTGA	TAGCTGTTTT	TGCTTGTGTC	12900
	ATTGGACCTC	TGGTAGAAGA	ATTATTTTC	CGTCAGGTCT	TATTGCATTA	CTTGCAGGAA	12960
	CGGTTGTCAG	GTTTACTAAG	CATTATTCTG	GTAGGACTTG	TTTTTGCTCT	GACTCATATG	13020
	CACAGTTTGG	CTCTATCAGA	GTGGATTGGT	GCAGTTGGTT	ACTTAGGTGG	AGGCCTTGCC	13080
	TTTTCTATTA	TTTATGTGAA	AGAAAAAGAG	AATATCTACT	ATCCCCTACT	TGTTCACATG	13140
	TTAAGCAACA	GCCTCTCCTT	AATCATTTTA	GCTATCAGTA	TAGTAAAATG	AAATGAGAAC	13200
	AGGACAAATC	GATTTCTAAC	AATGTTTTAG	AAGTAGAGGT	GTACTATTCT	AGTTTCAATA	13260
	TACTGTAATA	TGTGATGAAA	ATGCCAGTAA	TGATACCGAG	AAAAAAGCTG	AGAAACTTTT	13320
	CCCAGCTTTA	TTTGTTATAG	TCAAAGAGAA	TGACTTGTTC	CTGTGCATCT	ACATGAGCAT	13380
	GGACCCCAAA	GGGTACAATT	GCTCTTGGAG	TTGCGTGGCC	GACATTCAGA	TTATAGACAA	13440
	TCGGGATATT	GCTGTCAATG	ATATCCAATA	GTGCCTCTTT	ATAGTCGTCA	TGGAAAGTTT	13500
	CATCCATAGG	TTTTCCGACC	AAGAGTCCAT	TGATGACCGC	GAATATGCCA	GTGTCCTTTA	13560
	AAGTTAGCAA	CATCTTTTTG	AAGTCTTCTG	GCTTAGGCTT	TTCTTCGCTT	GTTTCGAGCA	13620
	AGAGGATTTT	CCCTTCTCAG	TOTGACLANGT	CAGGGAAAAG	TOTSTATUTE	TGGCACAGTT	13680
1	CCGTGCTATC	TGCGTATCGA	GAGTTGTCAA	AGATATCGTA	GAGGGATTCG	AGGCAACCAC	13740
•	CGAGGATTTT	CCCCTCGAAC	TGGGCACTTC	CTTGCAACAA	GTCAAAACCT	GTATTTGTAT	13800
(GACTGACACG	AGGTGTTCCC	AGGGCCGTGG	GACTAAAATC	AGTTCGTTCC	TCATACCAAA	13860
(CGTCACTAGG	GCGGATTTCT	GAAATTCTTC	CCGTCTCAAT	CAATTCTTTA	AAGTAGTGAA	13920
(GCTATAGGC	TAGCATTTCT	TTGTCTAATT	CACAAATGTC	TGCTAAAAAG	GATTGACCAT	13980
į	VAAAAGTCTT	GATTCCTAAT	TTATGCAACA	TGAGGTGGTT	CATGGTTGTA	TCCGAGAAGC	14040
C	CAAGAAAAAT	TTTTTGCTTG	ATAACCTTTT	GGAGTTGGTC	ATTTTCAAAA	AGATAAGGTA	14100
C	GCAAGCGATA	GGTATCGTCT.	CCACCGATGG	CACATAGGAT	CATGTCGATG	CTATCATCAG	14160
7	VAAAGGCATG	AATCAAATCC	TCTGCACGAG	CTTCAGGATG	GTCCTTGATA	AAGTCTAATC	14220

398
CTTTTAACGA ATGGGGCAAA AAGATGGGAT TGGTCCCAGA TCCTTGAGAC GTT

(2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9828 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41: GTGAAGTGCG GCAAAAGGTG CAAGTGATGA GCTCAGGTTC TTTAGCTCTT GACATTGCCC 60 TTGGCTCAGG TGGTTATCCT AAGGGACGTA TCATCGAAAT CTATGGCCCA GAGTCATCTG 120 GTAAGACAAC GGTTGCCCTT CATGCAGTTG CACAAGCGCA AAAAGAAGGT GGGATTGCTG 180 CCTTTATCGA TGCGGAACAT GCCCTTGATC CAGCTTATGC TGCGGCCCTT GGTGTCAATA 240 TTGACGAATT GCTCTTGTCT CAACCAGACT CAGGAGAGCA AGGTCTTGAG ATTGCGGGAA 300 AATTGATTGA CTCAGGTGCA GTTGATCTTG TCGTAGTCGA CTCAGTTGCT GCCCTTGTTC 360 CTCGTGCGGA AATTGATGGA GATATCGGAG ATAGCCATGT TGGTTTGCAG GCTCGTATGA 420 TGAGCCAGGC CATGCGTAAA CTTGGCGCCT CTATCAATAA AACCAAAACA ATTGCCATTT 480 540 TTATCAACCA ATTGCGTGAA AAAGTTGGAG TGATGTTTGG AAATCCAGAA ACAACACCGG GCGGACGTGC TTTGAAATTC TATGCTTCAG TCCGCTTGGA TGTTCGTGGT AATACACAAA 600 TTAAGGGAAC TGGTGACCAA AAAGAAACCA ATGTCGGTAA AGAAACTAAG ATTAAGGTTG 660 TAAAAAATAA GGTAGCTCCA CCGTTTAAGG AAGCCGTAGT TGAAATTATG TACGGAGAAG 720 GAATTTCTAA GACTGGTGAG CTTTTGAAGA TTGCAAGCGA TTTGGATATT ATCAAAAAAG 780 843 CAGGGGCTTG GTATTCTTAC AAAGATGAAA AAATTGGGCA AGGTTCTGAG AATGCTAAGA AATACTTGGC AGAGCACCCA GAAATCTTTG ATGAAATTGA TAAGCAAGTC CGTTCTAAAT 900 960 TTGGCTTGAT TGATGGAGAA GAAGTTTCAG AACAAGATAC TGAAAACAAA AAAGATGAGC CAAAGAAAGA AGAAGCAGTG AATGAAGAAG TTCCGCTTGA CTTAGGCGAT GAACTTGAAA 1020 TCGAAATTGA AGAATAAGCT GTTAAAGCAG TGGAGAAATC CGCTACTTTT TCGATTTTTG 1080 1140 ATTCAAGTTT TTAGATTATA TATAGTAGCT TGAAATAAGA TATGAACAAC TCTATTAGGA AAGTCAAATT AATTTCTAGA AATGTTTTAG CAGCTACAGC GTACTATTCC AAACTCAACC 1200 1260 AACTATAATA GATCGAAACT AGAATAGTAC ATATCTACTT CTAAAACATT GTTAAAAATC GATTTGACTT TCCTTATTTC ATTCCGCTAT ATATAGTTTG CTGTTTCTTG TCGCTCCTCT 1320 GGAAAGCTGA TATAATAGCT TTATGAATAA AAAACGAACA GTGGACCTGA TACATGGTCC 1380

GATTCTTCCC	TCGCTCTTAA	GCTTCACCTT	TCCAATTTTG	СТАТСАААТА	TTTTTCAACA	1440
GCTCTATAAC	ACTGCTGATG	TCTTGATTGT	TGGACGATTT	CTTGGTCAAG	AATCCTTGGC	1500
TGCAGTAGGA	GCGACGACAG	CGATTTTTGA	CCTGATTGTA	GGTTTTACAC	TTGGTGTTGG	1560
CAATGGCATG	GGGATTGTCA	TTGCTCGTTA	TTATGGGGCT	CGGAATTTCA	CTAAAATCAA	1620
GGAAGCAGTA	GCAGCCACCT	GGATTTTAGG	тостстттто	AGCATTCTAG	TTATGTTGCT	1680
GGGCTTTCTT	GGCTTGTATC	CTCTCTTGCA	ATACTTAGAT	ACTCCTGCAG	AAATTCTTCC	1740
TCAATCTTAT	CAATATATTT	CTATGATTGT	GACCTGTGTA	GGTGTCAGCT	TTGCTTATAA	1800
TCTTTTTGCA	GGCTTGTTGC	GGTCTATTGG	TGACAGTCTA	GCAGCCCTGG	GATTTCTGAT	1960
TTTCTCTGCC	TTGGTTAATG	TGGTTCTGGA	TCTCTATTTT	ATTACGCAAT	TGCATCTGGG	1920
AGTTCAATCC	GCAGGACTTG	CTACCATTAT	TTCGCAAGGT	TTATCAGCGG	TTCTCTGCTT	1980
TTATTATATT	CGTAAAAGTG	TGCCAGAACT	CTTGCCACAG	TTTAAACATT	TCAAATGGGA	2040
CAAAAGCTTG	TACGCGGATC	TCTTGGAGCA	AGGTTTGGCT	ATGGGCTTGA	TGAGTTCAAT	2100
TGTATCTATC	GGCAGTGTGA	TTTTACAGTT	TTCTGTTAAT	ACATTTGGTG	CAGTGATTAT	2160
TAGTGCCCAG	ACGGCAGCTC	GACGCATTAT	GACCTTTGCC	CTTCTTCCTA	TGACCGCTAT	2220
TTCTGCATCA	ATGACGACCT	TTGCTTCTCA	GAATCTAGGA	GCTAAGCGAC	CTGACCGTAT	2280
TGTTCAAGGT	CTTCGAATCG	GCAGTCGTTT	AAGTATATCC	TGGGCAGTTT	TTGTTTGTAT	2340
TTTCCTCTTT	TTTGCCAGTC	CAGCTTTGGT	TTCCTTCTTG	GCTAGTTCGA	CAGATGGTTA	2400
CTTGATAGAA	AATGGAAGTC	TCTATCTGCA	AATCAGTTCA	ACCTTTTATC	CCATTTTGAG	2460
CCTCTTGTTG	ATTTATCGCA	ATTGCTTGCA	GGGCTTGGGG	CAAAAGATCC	TTCCTCTAGT	2520
TTOTAGGTTT	ATTGAACTAA	TCGGAAAAAT	COTTTTTSTS	GTTTTSATTA	TTCCTTGGGC	2580
AGGATATAAG	GGTGTTATCC	TTTGTGAACC	TCTTATCTGG	GTTGCCATGA	CAGTTCAACT	2640
GTACTTCTCA	TTATTCCGTC	ATCCCTTGAT	AAAAGAAGGC	AAGGCAATCT	TGGCAACCAA	2700
AGTGCAATCC	TAGTTGGATT	TACTGAATAA	AATCCATTTC	CTCTAGTGAA	AATCGAAAAA	2760
ACTTGTGTTC	TCTTCTTTAG	TTTGGTGTTG	AAAATAGTTT	AACAGACTTT	TGACTTCTTT	2820
TATATGATAT	AATAAAGTAT	AGTATTTATG	AAAAGGACAT	ATAGAGACTG	TAAAAATATA	2880
CTTTTGAAAA	TCTTTTTAGT	CTGGGGTGTT	ATTGTAGATA	GAATGCAGAC	CTTGTCAGTC	2940
CTATTTACAG	TGTCAAAATA	GTGCGTTTTG	AAGTTCTATC	TACAAGCCTA	ATCGTGACTA	3000
AGATTGTCTT	CTTTGTAAGG	TAGAAATAAA	GGAGTTTCTG	GTTCTGGATT	GTAAAAAATG	3060
AGTTGTTTTA	ATTGATAAGG	AGTAGAATAT	GGAAATTAAT	GTGAGTAAAT	TAAGAACAGA	. 3120

TTTGCCTCAA	GTCGGCGTGC	AACCATATAG	400 GCAAGTACAC	GCACACTCAA	CTGGGAATCC	3180
GCATTCAACC	GTACAGAATG	AAGCGGATTA	TCACTGGCGG	AAAGACCCAG	AATTAGGTTT	3240
TTTCTCGCAC	ATTGTTGGGA	ACGGTTGCAT	CATGCAGGTA	GGACCTGTTG	ATAATGGTGC	3300
CTGGGACGTT	GGGGGCGGTT	GGAATGCTGA	GACCTATGCA	GCGGTTGAAC	TGATTGAAAG	3360
CCATTCAACC	AAAGAAGAGT	TCATGACGGA	CTACCGCCTT	TATATCGAAC	TCTTACGCAA	3420
TCTAGCAGAT	GAAGCAGGTT	TGCCGAAAAC	GCTTGATACA	GGGAGTTTAG	CTGGAATTAA	3480
AACGCACGAG	TATTGCACGA	ATAACCAACC	AAACAACCAC	TCAGACCACG	TTGACCCTTA	3540
TCCATATCTT	GCTAAATGGG	GCATTAGCCG	TGAGCAGTTT	AAGCATGATA	TTGAGAACGG	3500
CTTGACGATT	GAAACAGGCT	GGCAGAAGAA	TGACACTGGC	TACTGGTACG	TACATTCAGA	3660
CGGCTCTTAT	CCAAAAGACA	AGTTTGAGAA	AATCAATGGC	ACTTGGTACT	ACTTTGACAG	3720
TTCAGGCTAT	ATGCTTGCAG	ACCGCTGGAG	GAAGCACACA	GACGGCAACT	GGTACTGGTT	3780
CGACAACTCA	GGCGAAATGG	CTACAGGCTG	GAAGAAAATC	GCTGATAAGT	GGTACTATTT	3840
CAACGAAGAA	GGTGCCATGA	AGACAGGCTG	GGTCAAGTAC	AAGGACACTT	GGTACTACTT	3900
AGACGCTAAA	GAAGGCGCCA	TGGTATCAAA	TGCCTTTATC	CAGTCAGCGG	ACGGAACAGG	3960
CTGGTACTAC	CTCAAACCAG	ACGGAACACT	GGCAGACAAG	CCAGAATTCA	CAGTAGAGCC	4020
AGATGGCTTG	ATTACAGTAA	AATAATAATG	GAATGTCTTT	CAAATCAGAA	CAGCGCATAT	4080
TATTAGGTCT	TGAAAAAGCT	TAATAGTATG	CGTTTTCTTG	TGGAGATATT	TCCTTCAATT	4140
TTGCTACTAT	ATTAAACAAA	AATCAAAAAG	CAAACTAGAA	AGTTATGCTC	AAATAAAATC	4200
TAAATTTGAC	AATGTAAACC	GAGTCGGATA	GCTTTAAGTA	CTGTTTTGAG	GTTGAAGATA	4260
CGATTTTTGA	TAGGAACTCA	TCAATTTTAG	ATTTTTAAGC	AGCATCAATA	AATTGCTTCC	4320
TTGTTTTTGTC	ATAATTTTTT	TATTTAAAAA	ATTATGACma	GAGTGTGCTA	TTCTTTTTAT	4380
GAGAGGTGTA	TGAATATGAT	AAATGTATGT	GATAAATGTA	TGTGATGTTG	GAAAAAGAAT	4440
AAAAGAACTT	AGAATATCTT	CAAATCTTAC	TCAAGATAAG	ATTGCTGAGT	ATTTGTCT:T	4500
GAATCAAAGC	ATGATTGCCA	AAATGGAAAA	AGGTGAAAGG	AATATCACGA	ATGGATTTAA	4560
GTAATAAAGC	TTCAAATCTT	AGAAAAAAGT	TGGGAGCTGA	TGGTGAATCG	CCGATAGATA	4620
TTTTTAAATT	GGTACAAAAG	ATAGAAAATT	TGACGCTGGT	ATTTTATGGA	CTCGGAAAGA	4680
ATATTAGCGG	AGTCTGTTAT	AAAGGAACTC	AGTTCAGTCT	CATTGCAGTC	AATTCAGACA	4740
TGCCATTAGG	AAGGTAAAGA	TTTTCTTTAG	CACATGGACT	GTATCATCTT	TATTATGATG	4800
AGGTGAAGAA	GAGTTCAGTC	AGTCTTATCT	TGATTGGTGA	AGGAGATGAA	ACTGAAAGAA	4860
AAGCGGATCA	GTTTGCTTCT	TATTTTTTAA	TTTTCCCATC	TTCACTGTAT	AGGATGGTTG	4920

WO 98/18931 PCT/US97/19588

401

AGGAAATCAG	AGAAAATGCC	AATAGAACTC	ATCTTGAAGT	AGAAGATATT	ATAAAATTGG	498
GTCAGTTTTA	TGGTATCAGT	CATAAAGCTA	TGTTATATAG	ATTGAGGAAT	GATGGATACC	504
TTGATGCAGA	AGAAATTAAA	AATATGGATA	TTAGTGTTAT	AGAGACAGCT	TCAAGATTAG	510
GCTATGATAC	AAGTTTATAT	CGTCCTTTGT	CAGAAAGTAA	AAAAGAAATG	GCATTAGGAT	516
аатататтаа	TTCAACTGAA	CAACTTTTAG	AAAATAACAG	AATTTCGCAA	GGGAAGTATG	522
AGGAACTGTT	ACTAGATGCT	TTCAGATATG	ATATTGTATA	TGGGCTAGAT	GAAGAGGGG	5280
GAGTTGTCGT	TTGACTAGTC	GTGTATTTAT	TGATGCAGAT	TGTATTTCAG	TATTTTTATG	5340
GGTTGGCACT	GAACATCTTT	TAGAAAAGCT	CTATTTGGGT	AAAATTGTTA	TTCCACAAGA	5400
GGTGTATGAT	GAAATCAATA	TACCTACAAT	TCCCCATTTA	AAATCTAGGA	TAGATCAGTT	5460
GGTAGCTAAG	GGTTCAGCTG	AGATTGTGAG	CATAGACATT	GGAACTGAAG	AATACGCATT	5520
ATATAGAGAT	TTAACAAGAA	ATCATGATAG	TAACAAGATT	ATTGGTAAGG	GAGAAGGGC	5580
ATCTATTTCC	TTAGCGAAAA	AGCATAATGG	GATATTAGGA	AGTAATAACC	TAAGAGATGT	5640
TAAATCATAT	GTAGAAGAAT	TTTCTTTAGA	ATATATGACA	ACAGGAGATA	TACTGATTGA	5700
AGCGTTTAAA	GCGTAATTTA	TTACTGAATA	AGAGGGCAAT	CATATCTGGA	ATAATATGCT	5760
TAAAAAGAGA	AGGAAAATTG	GTGCAAATTC	ATTTTCAGAC	TATCTTCGTG	GAAGTATTCA	5820
TCAAAATAGA	CAAAAATAAA	TTTGGATAAA	TCGAACTCAC	TATTCAGGAG	GCATATGAGC	5880
AATTCGAAAA	AGAAAAGTGT	CAAATTGAGC	CTATAGGAGT	AGAAGTGAAA	TAGTAAGTCC	5940
TGCATAGTGG	ATGAGAGAAA	AGTTCTCCTT	GAAGTTTTCC	TGAACTATCA	GTCGCATGTC	6000
AAACGATATG	TAGGGTAATG	TGAGAGGGGA	TAGCGAGTAG	TTTTTGGTTA	TTTTATCAAA	6060
AAACTTATAT	TTTATTATAC	CGAATGATAA	AAT ATAATAA	AAATSATASA	ATAACGAAAA	6120
AACATGAATG	TCAAAAAGAT	AATGTCAATT	TTTCAATCCT	TTTATGTTGA	TGTCAGTATT	6180
GAGGAACTGA	CTTTGACTTT	ACCAATCAGT	TTTGTAAAAA	GGTTTGAGTA	TACTCAAATG	6240
ACTITICATA	AGGAATCATT	TTTATTGATT	AAAGAAAAGA	GAAGGGGGAG	TTTGAGTTCA	6300
TTTGTTACTC	AGGCTCGCAC	TATGGGTGAA	AAAGCCAATA	TGGATGTTGT	TTTGGTGTTT	6360
CGAAGTTAT	CAGACAGTGA	AAAAAAGCAA	TTACTTCAAG	CTAGAGTTCC	GTTTGTAGAC	6420
TTAAGGGAA	ACCTCTTCTT	CCCTCCATTG	GGACTAGTAC	TCAATGCGAA	TGATACTGAA	6480
GTCCCTAAGG	AATTAACACC	TAGCGAACAA	TTAACGTGGA	TTGCCTTTTT	ATTGACAAAA	6540
GGTCAAAAAG	TAGTAGATGT	TGATTTGCTT	TCACAAGTCA	CTGGACTTCC	AAACTCAACA	6600
יייי אייי איייי איייי איייי	CTTTC ACCAC	ጥጥጥጥ ስ ስ አ ር ር ጥ	TONTATION	TANACANCCA	> > > 0 CCCCC	

			402			
TACACATATA	CGGTGTCAAA	GAAAGAATTA	TTCTTAAAAT	CCGTGTCATG	TAATTTATTT	6720
CCCATCAAAA	AACGGATTTT	ATTGCCAGAT	GGCGATATAA	AGCAGATAAA	ATCTGTTTCT	6780
AACCTTCTAT	ATGGTGGTGC	TTATGCTTTG	TCGCATTCAA	CTTTTTTAGC	TGAAACGGAT	6840
GAAAATATTA	GCTATGTCAT	ATGGCAGAGA	AAATTCAATC	AGTTATCCTT	GCCACTTTCT	6900
CAGCATGTTT	TAAAATGAAA	GATGCTAGAG	ATATGGAAAT	ATCGTCCTTT	TGTATCTGAG	6960
TTTTGGAATG	ATTTTAAAAA	TAATCATGAT	AAACAATTTG	TAGATCCGAT	TTCTCTTTAT	7020
TTGACCTTAA	AAGATGATGA	TGACCCACGT	ATAGAGGAAG	AGAGTGAAGC	ACTAGAAAAT	7080
ATGATATTAC	AGTATCTGGG	AGAAGATGAT	GCCAGCTAAT	ACGAAAGTTA	TTTTTCAAGA	7140
AATGTTTGCG	CATTTTCAGA	ACTATTATGT	TCTGATTGGG	GGAACTGCTA	CCTCTATCGT	7200
ATTGGATTCG	CAAGGATTTA	AAAGTCGCAC	AACAAAAGAT	TATGATATGG	TCATCATTGA	7260
TGAAGTAAAA	AATAAGGAAT	TTTATACTAC	CTTGAATCAT	TTTTTAGAAT	TGGGAGAGTA	7320
TCAAGGAAGT	CAGAAAGATG	AGAAAGCGCA	GCTTTTTCGA	TTTACAACAA	CTAATCCTGA	7380
GTTTCCTTCT	ATGATTGAAC	TATTTAGTAT	CTTACCAGAA	TATCCATTAA	AGAAGGACGG	7440
TCGAGAAATT	CCCTTACATT	TTGACCAAGA	TGCTAGTTTA	TCAGCCTTAT	TATTGGATGA	7500
AGATTATTAT	AATATATTGG	TGCATGAAAA	AGAAACCATT	CAGGGGTATT	CGGTATTGAG	7560
TAATTGTGGT	TTATACTCTT	CGAAAATCTC	TTCAAACCAC	GTCAGCTTCC	ATCTACAACC	7620
TCAAAACAGT	GTTTTGAGCA	GCCTGCAGCT	AGCTTCCTAG	TTTGCTCTTT	GATTTTCATT	7680
GAGTATTAAT	TATTTTTAAG	GCTAAAGCTT	GGCTGGATAT	GAGGGAGCGC	TCTGCCACAG	7740
GTGCTCAAGG	TTTAAGTAAG	TCCATTAAAA	AGCATTTGAA	TGACCTTACC	CGTTTGACAG	7800
CTTCCTTGCT	AGGAGATGAA	AAGTTATCGG	CTATAACATC	AAGTAGTGCG	GTAAAAGCAG	7860
ACATGCACCG	CTTTGTGATA	GAATTAGAGO	CTGTGAAGTC	AACTATTCTT	CAAAATAATG	7920
ACATTTCATT	GGATCAAAAT	GAAATTTTT	AAATTCTGAA	AAATTTTCTC	GATGGTTAAA	7980
ATAATTGTAG	CGAGATGGCT	ATATTGAATT	CGTCTATATC	TGGAAACTAG	AAAAAACTTC	804C
AATTTCAGGA	GAAAATGAAG	TCAATCTTC	CACAATCAAA	CGTATAGTAT	CAAGGTTTTT	8100
CAAGACCTGA	TATTATGCGT	TTTTTGCTT	TCAAAACTTT	TTGCCCAGTC	TTCGTTTTTA	8160
TCCTCTAGTC	ACTTGATTTG	TTTCAGGTGG	TTTTTTAGTA	TAGTAGAATO	AAACGAGAAC	8220
AGGACAAATT	GATCAGGACA	GTCAAATCG	TTTCTAACA	\ TGTTTTAGA₽	GCAGAAGTGT	8280
ACTATTCTAC	TTTCAATCTA	CTATAGTTA	ATCTGCGGTG	AAGTCTACTC	GTGAATCTAT	8340
GATTGTAATA	CTCTTCCAA	ATCTCATCA	CCACGTCAG	CTTGCCTTGC	AGTCTGTATC	8400
TTACTGACCA	A AGCTAGTGAT	GGATTTAGA	A TAGGTGATT	GGAGCGTCC	ATTAGCTAGG	8460
		•			•	

AAATGCTGCT	CATAGTCCTT	TGCTGAGGCT	AGGGTGTTTC	AACATTCAAC	ACTCAACTGG	8520
TTGATCTAGT	TGATAGGAAG	GGAGTTACTA	TAAAATACTC	AGGCTTCCAT	CATATTTTTT	8580
GAAACGATTG	TGTAATCAAA	ATGTACCAAT	ATTGTAGTAT	TGGTACAGAA	GATGTTGTGA	8640
ATGGATAAAT	ATATCATAAC	TGCTATCTCA	AAAAGATTTC	ATATGTCTGT	GCATATATAA	8700
TAGACTTCCT	GCAAAACTAG	AATCCTAGTT	CATGATTGAT	AATACCAGCA	ATCAAATTCA	8760
TTCGTAATCC	AAAGCGTTTA	CGATGATTTC	GATAGGTTGT	TGAAAACATT	TTAAACGTTT	8820
CTACTTTGGC	AAAGATGTTC	TCAACCTTGC	TTCTCTCCTT	AGATAGCGCA	TGGTTATAGG	8880
CTTTATCTTC	AGCTGTTAGC	GGCTTGAGTT	TGCTGGATTT	ACGTGGAGTT	TGTGCTTGAG	8940
GACATATCTT	CATGAGCCCT	TGATAACCAC	TGTCAGCCAA	GATTTTACCA	GCTTGTCCGA	9000
TATTTCTGCA	ACTCATTTTG	AACAACTTCA	TATCATGACA	ATAGTTCACA	GTGATATCCA	9060
AAGAAACAAT	TCTCCCTTGA	CTTGTGACAA	TCGCTTGAGC	CTTCATAGCG	TGAAATTTCT	9120
TTTTACCAGA	ATCATTCGCT	AATTCTTTTT	TTAGGGCGAT	TGATTTTTAC	TTCCGTCGCA	9180
TCAATCATTA	CCGTGTCCTC	AGAACTAAGA	GGAGTTCTTG	AAATCGTAAC	ACCACTTTGA	9240
ACAAGAGTTA	CTTCAACCCA	TTGGCTCCGA	CGGATTAAGT	TGCTTTCGTG	AATACCAAAA	9300
TCAGCCGCAA	TTTCTTCATA	AGTGCGGTAT	TCTAGGCTTA	ATTTAGGTTT	TCGTCCACCT	9360
TTTGCGTGTT	TAAGTTGATA	AGCTGTTTTT	AATACAGCTA	ACATCTCTTT	AAAAGTCGTG	9420
CGCTGAACAC	CAACAAGACG	CTTAAATCGT	GTATCAGTTA	ATTGTTTACT	TCCTTCATAA	9480
TTTCGCAGGG	AGTCTATTGA	CTCTTTGGTA	GGTGTCAATG	тттттттслт	CTATCCCGAG	9540
AATTATTTTC	CCGCCATTTG	TATTTGCAAA	TGCTGAGTAG	GTTTCCCAGA	AAGACTCTGG	9600
AAGATTGTTT	TTAGCTTTTT	TGTATTCTAA	ATCAACCCCT	TCAAATTTTA	AGTCCATATT	9660
TTTCCTTTAC	ATCTGTTTTT	TGTGGTTCTG	GTATTTGTTC	AAGTTGAGTG	ATAATATAGC	9720
GAATTGAATT	TCGAGAGTTT	TTACTCAGTT	AATTTCTTTT	TTAACCCACT	TTAATTGCTT	9780
TTTTAACACG	GGTTAAAAAA	GAAATTAAAG	TGGGTTAATT	TTTCTTGA	•	9828

(2) INFORMATION FOR SEQ ID NO: 42:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3369 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

AGTCACTTCG TCAGGAAATT GCGGATTTGA AGGAAGAATT AACTCGTAAA CCGAAACCTT CACCAGTTCA AGCAGAACCC CTTGAAGGCG CAATTACAAG TTCTATGACA AATTTTGATA TTTTGAAACG CCTGAATAGA TTGGAAAAAG AAGTTTTTGG TAAACAAATT TTAGATAACT CAGATTTTA AGTAGTTATT TGAGATGCCA ATTTTTGGA TAATCGCGTG AGGAGAATTG TTTCTCATGA GGAAAGTCCA TGCTAGCACA GCCTGTGATG CCTGTAGTGT TTGTGCTAGG CGAAACCATA AGCCTAGGGA CGAGAAATCG TTACGGCAGT TGAAATGGCT AAGTCCTTGG ATAGGCCAGA GTAGGCTTGA AAGTGCCACA GTGACGGAGT CTTTCTGGAA ACAGAGAGAG TGGAACGCGG TAAACCCCTC AAGCTAGCACA GCCTAGATTT GGTCGGGGCA TGGAGTACGC GGAAACGAAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA GACAGAGAGAG GTAGGTCCTA GTCACTTCTG GAACAAACA TGGCTTATAG AAAATTCCAT ATAGGTTGGG GCTGAGAAAT TTTCTCAACCC TCATTTTTA AAGTGGACAT ATAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAGAATT TAATTTAATT							
AGTCACTTCG TCAGGAAATT GCGGATTTGA AGGAAGAATT AACTCGTAAA CCGAAACCTT CACCAGTTCA AGCAGAACCC CTTGAAGCGG CAATTACAAG TTCTATGACG AATTTTGATA TTTTGAAACG CCTGAATAGA TTGGAAAAAG AAGTTTTTGG TAAACAAATT TTAGATAACT CAGATTTTA AGTAGTTATT TGGAATAGC AATTTTTGGA TAACCAATT TTAGATAACT TTTCTCATGA GGAAAGTCCA TGCTAGCACA GCGTGTGATG CCTGTAGTGT TTGTGCTAGG CGAAACCATA AGCCTAGGGA CGAGAAATCG TTACGGCAGT TGAAATGGCT AACTCCTTGG ATAGGCCAGA GTAGGCTTGA AAGTGCCACA GCTGAGAGT TGAAATGGCT AACTCCTTGG ATAGGCCAGA GTAGGCTTGA AAGTGCCACA GCCAAATTTT GGCTCGGGGCA TGGAGTACGC GGAAACGAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA ACAGAGAGAG GGAAACGAAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA GACAGAGAGAG GTAGGTCCTA GTCACTTCTG GAACAAAACA TGGCTTATAG AAAATTGCAT ATAGGTTGGG GCTGAGAAAT TTTCTCAACCC TCATTTTTTA AAGTGGACAT ATAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAAGAATT TAATTTAATT	60	AATAAAGTAG	Ce sts -Potat		CAAGAGTTTG	TATTTTTGAA	CCGCGAAAGA
CACCAGTTCA AGCAGAACCC CTTGAAGCGG CAATTACAAG TTCTATGACG AATTTTGATA TTTTGAAACG CCTGAATAGA TTGGAAAAAG AAGTTTTTGG TAAACAAATT TTAGATAACT CAGATTTTTA AGTAGTTATT TGAGATGTCA AATTTTTGGA TAATCCGCTG AGGAGAATTG TTTCTCATGA GGAAAGTCCA TGCTAGCACA GGCTGTGATG CCTGTAGTGT TTGTGCTAGG CGAAACCATA AGCCTAGGGA CGAGAAATCG TTACGGCAGT TGAAATGGCT AAGTCCTTGG ATAGGCCAGA GTAGGCTTGA AAGTGCCACA GTGACGGAT TGAAATGGCT AAGTCCTTGG ATAGGCCAGA GTAGGCTTGA AAGTGCCACA GTGACGGAT TGAAATGGCT AAGTCCTTGG GGAAACGAAC GTAGTATTCT GACTAGCACA CCCAAATTTT GGTCGGGGCA TGGAGTACGC GGAAACGAAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA GACAGATGAT TATCGAAGGA AGTGGTCCTA GTCACTTCTG GAACAAAACA TCGCTTATAG AAAATTGCAT ATAGGTTGGG GCTGAGAAAT TTTCTCAACC TCATTTTTA AAGTGGACAT ATAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAAGAATT TAATTTAATT	120	GCCTTGGTCA	AACCTATGCT	AGGACTATGA	GATGTCATCA	GTTTTTAGAC	AAGTTGACGA
TTTTGAACG CCTGAATAGA TTGGAAAAG AAGTTTTTGG TAAACAAATT TTAGATAACT CAGATTTTA AGTAGTTATT TGAGATGTGC AATTTTTGGA TAATCGCGTG AGGAGAATTG TTTCTCATGA GGAAAGTCCA TGCTAGCACA GGCTGTGATG CCTGTAGTGT TTGTGTAGG CGAAACCATA AGCCTAGGGA CGAGAAATCG TTACGGCAGT TGAAATGGCT AAGTCCTTGG ATAGGCCAGA GTAGGCTTGA AAGTGCCACA GTGACCGAGT CTTTCTGGAA ACAGAGAGAG TGGAACCGCG TAAACCCCTC AAGCTAGCAA CCCAAATTTT GGTCGGGGCA TGGAGTACGC GGAAACGAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA GACAGATGAT TATCGAAGGA AGTGGCTCTA GTCACTTCTG GAACAAAACA TGGCTTATAG AAAATTGCAT ATAGGTTGGG GCTGAGAAAT TTTCTCAACC TCATTTTTA AAGTTGGACA TAAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAAGAATT TAATTTAATT	180	CCGAAACCTT	AACTCGTAAA	AGGAAGAATT	GCGGATTTGA	TCAGGAAATT	AGTCACTTCG
CAGATTTTTA AGTAGTTATT TGAGATGTGC AATTTTTGGA TAATCGCGTG AGGAGAATTG TTTCTCATGA GGAAAGTCCA TGCTAGCACA GGCTGTGATG CCTGTAGTGT TTGTGCTAGG CGAAACCATA AGCCTAGGGA CGAGAAATCG TTACGGCAGT TGAAATGGCT AAGTCCTTGG ATAGGCCAGA GTAGGCTTGA AAGTGCCACA GTGACGGAGT CTTTCTGGAA ACAGAGAGAG TGGAACCGGG TAAACCCCTC AAGCTAGCAA CCCAAATTTT GGTCGGGGCA TGGAGTACGC GGAAACGAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA GACAGATGAT TATCGAAGGA AGTGGTCCTA GTCACTTCTG GAACAAACA TGGCTTATAG AAAATTGCAT ATAGGTTGGG GCTGAGAAAT TTTCTCAACC TCATTTTTTA AAGTGGACAT ATAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAAGAATT TAATTTAATT	240	AATTTTGATA	TTCTATGACG	CAATTACAAG	CTTGAAGCGG	AGCAGAACCC	CACCAGTTCA
TTTCTCATGA GGAAAGTCCA TGCTAGCACA GGCTGTGATG CCTGTAGTGT TTGTGCTAGG CGAAACCATA AGCCTAGGGA CGAGAAATCG TTACGGCAGT TGAAATGGCT AAGTCCTTGG ATAGGCCAGA GTAGGCTTGA AAGTGCCACA GTGACGGAGT CTTTCTGGAA ACAGAGAGAG TGGAACGCGG TAAACCCCTC AAGCTAGCAA CCCAAATTTT GGTCGGGGCA TGGAGTACGC GGAAACGAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA GACAGATGAT TATCGAAGGA AGTGGTCCTA GTCACTTCTG GAACAAAACA TGGCTTATAG AAAATTGCAT ATAGGTTGGG GCTGAGAAAT TTTCTCAACC TCATTTTTTA AAGTGGACAT ATAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAGAATT TAATTTAATT	300	TTAGATAACT	TAAACAAATT	AAGTTTTTGG	TTGGAAAAAG	CCTGAATAGA	TTTTGAAACG
CGAAACCATA AGCCTAGGGA CGAGAAATCG TTACGGCAGT TGAAATGGCT AAGTCCTTGG ATAGGCCAGA GTAGGCTTGA AAGTGCCACA GTGACGGAGT CTTTCTGGAA ACAGAGAGAG TGGAACGCGG TAAACCCCCC AAGCTAGCAA CCCAAATTTT GGTCGGGGCA TGGAGTACGC GGAAACGAAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA GACAGATGAT TATCGAAGGA AGTGGTCCTA GTCACTTCTG GAACAAAACA TGGCTTATAG AAAATTGCAT ATAGGTTGGG GCTGAGAAAT TTTCTCAACC TCATTTTTA AAGTGGACAT ATAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAAGAATT TAATTTAATT	360	AGGAGAATTG	TAATCGCGTG	AATTTTTGGA	TGAGATGTGC	AGTAGTTATT	CAGATTTTTA
ATAGGCCAGA GTAGGCTTGA AAGTGCCACA GTGACGGAGT CTTTCTGGAA ACAGAGAGAG TGGAACGGGG TAAACCCCTC AAGCTAGCAA CCCAAATTTT GGTCGGGGCA TGGAGTACGC GGAAACGAAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA GACAGATGAT TATCGAAGGA AGTGGTCCTA GTCACTTCTG GAACAAACA TGGCTTATAG AAAATTGCAT ATAGGTTGGG GCTGAGAAAT TTTCTCAACC TCATTTTTA AAGTGGACAT ATAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAAGAATT TAATTTAATT	420	TTGTGCTAGG	CCTGTAGTGT	GGCTGTGATG	TGCTAGCACA	GGAAAGTCCA	TTTCTCATGA
TGGAACGCGG TAAACCCCTC AAGCTAGCAA CCCAAATTTT GGTCGGGGCA TGGAGTACGC GGAAACGAAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA GACAGATGAT TATCGAAGGA AGTGGTCCTA GTCACTTCTG GAACAAAACA TGGCTTATAG AAAATTGCAT ATAGGTTGGG GCTGAGAAAT TTTCTCAACC TCATTTTTTA AAGTGGACAT ATAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAAGAATT TAATTTAATT	480	AAGTCCTTGG	TGAAATGGCT	TTACGGCAGT	CGAGAAATCG	AGCCTAGGGA	CGAAACCATA
GGAAACGAAC GTAGTATTCT GACTGCTATC AGCTAGAGCT GTTAGTGGTA GACAGATGAT TATCGAAGGA AGTGGTCCTA GTCACTTCTG GAACAAAACA TGGCTTATAG AAAATTGCAT ATAGGTTGGG GCTGAGAAAT TTTCTCAACC TCATTTTTTA AAGTGGACAT ATAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAAGAATT TAATTTAATT	540	ACAGAGAGAG	CTTTCTGGAA	GTGACGGAGT	AAGTGCCACA	GTAGGCTTGA	ATAGGCCAGA
TATCGAAGGA AGTGGTCCTA GTCACTTCTG GAACAAACA TGGCTTATAG AAAATTGCAT ATAGGTTGGG GCTGAGAAAT TTTCTCAACC TCATTTTTA AAGTGGACAT ATAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAAGAATT TAATTTAATT	600	TGGAGTACGC	GGTCGGGGCA	CCCAAATTTT	AAGCTAGCAA	TAAACCCCTC	TGGAACGCGG
ATAGGTTGGG GCTGAGAAAT TTTCTCAACC TCATTTTTA AAGTGGACAT ATAGAAAGGT CTTGCAAGAC TGTAACATGA AAAAAGAATT TAATTTAATT	660	GACAGATGAT	GTTAGTGGTA	AGCTAGAGCT	GACTGCTATC	GTAGTATTCT	GGAAACGAAC
CTTGCAAGAC TGTAACATGA AAAAAGAATT TAATTTAATT	720	AAAATTGCAT	TGGCTTATAG	GAACAAAACA	GTCACTTCTG	AGTGGTCCTA	TATCGAAGGA
TGAGGCTGTC GTTGGTCGTG AAGTGCGAGA GTTGGGCTAC GATTGTCAGG TTGAAAATGG ACGTGTTCGT TTTCAAGGAG ACGTGAGAGC TATTATCGAA ACCAACCTTT GGCTTCGGGC AGCAGATCGT ATCAAAATTA TCGTAGGAAC GTTCCCAGCT AAGACTTTTG AAGAGCTATT TCAGGGAGTT TTCGCTTTGG ATTGGGAAAA TTATTTACCA CTTGGAGCTC GGTTCCCGAT TTCAAAAGCT AAATGTGTTA AGTCCAAACT TCACAATGAG CCCAGTGTTC AGGCTATTTC TAAGAAAGCT GTTGTCAAGA AATTGCAGAA ACACTATGCT CGCCCAGAAG GGGTTCCTCT GATGGAGAAT GGCCCAGAGT TTAAGATTGA GGTCTCTATT CTCAAAAGATG TGGCAACTGT CATGATTGAT ACGACCGGGT CTAGCCTCTT TAAACGTGGT TATCGTACCG AAAAAGGTGG CGCTCCTATC AAGGAAAATA TGGCAGCAGC CATTTTACAA CTTTCTAACT GGTATCCACA CAAGCCTTTG ATTGATCCGA CCTGTGGTTC GGGGACTTTC TGTATTGAGG CAGTTATGAT TGCTAGAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT CAGCGATCGC TTGATTCAAG AAGTGCGCAC AGAAGCGGCT AAAAAAGTAG ACCGTGAGCT TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGCTCAGGTA GCTGCTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATTGGTG AACGTTTGTC	780	ATAGAAAGGT	AAGTGGACAT	TCATTTTTA	TTTCTCAACC	GCTGAGAAAT	ATAGGTTGGG
ACGTGTTCGT TTTCAAGGAG ACGTGAGAGC TATTATCGAA ACCAACCTTT GGCTTCGGGC AGCAGATCGT ATCAAAATTA TCGTAGGAAC GTTCCCAGCT AAGACTTTTG AAGAGCTATT TCAGGGAGTT TTCGCTTTGG ATTGGGAAAA TTATTTACCA CTTGGAGCTC GGTTCCCGAT TTCAAAAGCT AAATGTGTTA AGTCCAAACT TCACAATGAG CCCAGTGTTC AGGCTATTTC TAAGAAAGCT GTTGTCAAGA AATTGCAGAA ACACTATGCT CGCCCAGAAG GGGTTCCTCT GATGGAGAAT GGCCCAGAGT TTAAGATTGA GGTCTCTATT CTCAAAAGATG TGGCAACTGT CATGATTGAT ACGACCGGGT CTAGCCTCTT TAAACGTGGT TATCGTACCG AAAAAAGGTGG CGCTCCTATC AAGGAAAATA TGGCAGCAGC CATTTTACAA CTTTCTAACT GGTATCCACA CAAGCCTTTG ATTGATCCGA CCTGTGGTTC GGGGACTTTC TGTATTGAGG CAGTTATGAT TGCTAGAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGGTCCGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	840	CAGCAGGGCT	GCAACTGTGG	TAATTTAATT	AAAAAGAATT	TGTAACATGA	CTTGCAAGAC
AGCAGATCGT ATCAAAATTA TCGTAGGAAC GTTCCCAGCT AAGACTTTTG AAGAGCTATT TCAGGGAGTT TTCGCTTTGG ATTGGGAAAA TTATTTACCA CTTGGAGCTC GGTTCCCGAT TTCAAAAGCT AAATGTGTTA AGTCCAAACT TCACAATGAG CCCAGTGTTC AGGCTATTTC TAAGAAAGCT GTTGTCAAGA AATTGCAGAA ACACTATGCT CGCCCAGAAG GGGTTCCTCT GATGGAGAAT GGCCCAGAGT TTAAGATTGA GGTCTCTATT CTCAAAGATG TGGCAACTGT CATGATTGAT ACGACCGGGT CTAGCCTCTT TAAACGTGGT TATCGTACCG AAAAAGGTGG CGCTCCTATC AAGGAAAATA TGGCAGCAGC CATTTTACAA CTTTCTAACT GGTATCCACA CAAGCCTTTG ATTGATCCGA CCTGTGGTTC GGGGACTTC TGTATTGAGG CAGTTATGAT TGCTAGAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT CAGCGATCGC TTGATTCAAG AAGTGCGCAC AGAAGCGGCT AAAAAAGTAG ACCGTGAGCT TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGCTCAGGTA GCTGCTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACCGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	900	TTGAAAATGG	GATTGTCAGG	GTTGGGCTAC	AAGTGCGAGA	GTTGGTCGTG	TGAGGCTGTC
TCAGGGAGTT TTCGCTTTGG ATTGGGAAAA TTATTTACCA CTTGGAGCTC GGTTCCCGAT TTCAAAAGCT AAATGTGTTA AGTCCAAACT TCACAATGAG CCCAGTGTTC AGGCTATTTC TAAGAAAGCT GTTGTCAAGA AATTGCAGAA ACACTATGCT CGCCCAGAAG GGGTTCCTCT GATGGAGAAT GGCCCAGAGT TTAAGATTGA GGTCTCTATT CTCAAAGATG TGGCAACTGT CATGATTGAT ACGACCGGGT CTAGCCTCTT TAAACGTGGT TATCGTACCG AAAAAGGTGG CGCTCCTATC AAGGAAAATA TGGCAGCAGC CATTTTACAA CTTTCTAACT GGTATCCACA CAAGCCTTTG ATTGATCCGA CCTGTGGTTC GGGGACTTTC TGTATTGAGG CAGTTATGAT TGCTAGAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	960	GGCTTCGGGC	ACCAACCTTT	TATTATCGAA	ACGTGAGAGC	TTTCAAGGAG	ACGTGTTCGT
TTCAAAAGCT AAATGTGTTA AGTCCAAACT TCACAATGAG CCCACTGTTC AGGCTATTTC TAAGAAAGCT GTTGTCAAGA AATTGCAGAA ACACTATGCT CGCCCAGAAG GGGTTCCTCT GATGGAGAAT GGCCCAGAGT TTAAGATTGA GGTCTCTATT CTCAAAGATG TGGCAACTGT CATGATTGAT ACGACCGGGT CTAGCCTCTT TAAACGTGGT TATCGTACCG AAAAAGGTGG CGCTCCTATC AAGGAAAATA TGGCAGCAGC CATTTTACAA CTTTCTAACT GGTATCCACA CAAGCCTTTG ATTGATCCGA CCTGTGGTTC GGGGACTTTC TGTATTGAGG CAGTTATGAT TGCTAGAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT CAGCGATCGC TTGATTCAAG AAGTGCGCAC AGAAGCGGCT AAAAAAGTAG ACCGTGAGCT TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	1020	AAGAGCTATT	AAGACTTTTG	GTTCCCAGCT	TCGTAGGAAC	ATCAAAATTA	AGCAGATCGT
TAAGAAAGCT GTTGTCAAGA AATTGCAGAA ACACTATGCT CGCCCAGAAG GGGTTCCTCT GATGGAGAAT GGCCCAGAGT TTAAGATTGA GGTCTCTATT CTCAAAGATG TGGCAACTGT CATGATTGAT ACGACCGGGT CTAGCCTCTT TAAACGTGGT TATCGTACCG AAAAAGGTGG CGCTCCTATC AAGGAAAATA TGGCAGCAGC CATTTTACAA CTTTCTAACT GGTATCCACA CAAGCCTTTG ATTGATCCGA CCTGTGGTTC GGGGACTTTC TGTATTGAGG CAGTTATGAT CAGCGAAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT CAGCGATCGC TTGATTCAAG AAGTGCGCAC AGAAGCGGCT AAAAAAAGTAG ACCGTGAGCT TGAGCTCGAT ATCATGGGCT GTGATATTGA TGCTCAGGTA ACCATGGGCCAA TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACCGTTCCGAT AAAAAACGTAG AACGTTTGTC CTCAGGTA AAAAAACGTAG AACGTTTGTC CTCAGGTA AAAAACAATG CAGATGCGCG TGCAGGATTT TGCTCCGATG AAAAAACGTAG AACGTTTGTC CTCAGGTATTT TTCCAATCCG CCTTATGGTG AACGTTTGTC	1080	GGTTCCCGAT	CTTGGAGCTC	TTATTTACCA	ATTGGGAAAA	TTCGCTTTGG	TCAGGGAGTT
GATGGAGAAT GGCCCAGAGT TTAAGATTGA GGTCTCTATT CTCAAAGATG TGGCAACTGT CATGATTGAT ACGACCGGGT CTAGCCTCTT TAAACGTGGT TATCGTACCG AAAAAGGTGG CGCTCCTATC AAGGAAAATA TGGCAGCAGC CATTTTACAA CTTTCTAACT GGTATCCACA CAAGCCTTTG ATTGATCCGA CCTGTGGTTC GGGGACTTTC TGTATTGAGG CAGTTATGAT TGCTAGAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT CAGCGATCGC TTGATTCAAG AAGTGCGCAC AGAAGCGGCT AAAAAAGTAG ACCGTGAGCT TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	1140	AGGCTATTTC	CCCAGTGTTC	TCACAATGAG	AGTCCAAACT	AAATGTGTTA	TTCAAAAGCT
CATGATTGAT ACGACCGGGT CTAGCCTCTT TAAACGTGGT TATCGTACCG AAAAAGGTGG CGCTCCTATC AAGGAAAATA TGGCAGCAGC CATTTTACAA CTTTCTAACT GGTATCCACA CAAGCCTTTG ATTGATCCGA CCTGTGGTTC GGGGACTTTC TGTATTGAGG CAGTTATGAT TGCTAGAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT CAGCGATCGC TTGATTCAAG AAGTGCGCAC AGAAGCGGCT AAAAAAGTAG ACCGTGAGCT TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	1200	GGGTTCCTCT	CGCCCAGAAG	ACACTATGCT	AATTGCAGAA	GTTGTCAAGA	TAAGAAAGCT
CGCTCCTATC AAGGAAAATA TGGCAGCAGC CATTTTACAA CTTTCTAACT GGTATCCACA CAAGCCTTTG ATTGATCCGA CCTGTGGTTC GGGGACTTTC TGTATTGAGG CAGTTATGAT TGCTAGAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT CAGCGATCGC TTGATTCAAG AAGTGCGCAC AGAAGCGGCT AAAAAAAGTAG ACCGTGAGCT TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	1260	TGGCAACTGT	CTCAAAGATG	GGTCTCTATT	TTAAGATTGA	GGCCCAGAGT	GATGGAGAAT
CAAGCCTTTG ATTGATCCGA CCTGTGGTTC GGGGACTTTC TGTATTGAGG CAGTTATGAT TGCTAGAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT CAGCGATCGC TTGATTCAAG AAGTGCGCAC AGAAGCGGCT AAAAAAAGTAG ACCGTGAGCT TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	1320	AAAAAGGTGG	TATCGTACCG	TAAACGTGGT	CTAGCCTCTT	ACGACCGGGT	CATGATTGAT
TGCTAGAAAG ATGGCGCCAG GTCTTCGTCG CTCTTTTGCA TTTGAGGAAT GGAACTGGAT CAGCGATCGC TTGATTCAAG AAGTGCGCAC AGAAGCGGCT AAAAAAGTAG ACCGTGAGCT TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	1380	GGTATCCACA	CTTTCTAACT	CATTTTACAA	TGGCAGCAGC	AAGGAAAATA	CGCTCCTATC
CAGCGATCGC TTGATTCAAG AAGTGCGCAC AGAAGCGGCT AAAAAAGTAG ACCGTGAGCT TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	1440	CAGTTATGAT	TGTATTGAGG	GGGGACTTTC	CCTGTGGTTC	ATTGATCCGA	CAAGCCTTTG
TGAGCTGGAT ATCATGGGCT GTGATATTGA TGCTCGCATG GTGGAAATTG CTAAGGCCAA TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	1500	GGAACTGGAT	TTTGAGGAAT	CTCTTTTGCA	GTCTTCGTCG	ATGGCGCCAG	TGCTAGAAAG
TGCTCAGGTA GCTGGTGTTG CAGGAGACAT TACTTTTAAG CAGATGCGCG TGCAGGATTT ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	1560	ACCGTGAGCT	AAAAAGTAG	AGAAGCGGCT	AAGTGCGCAC	TTGATTCAAG	CAGCGATCGC
ACGTTCCGAT AAAATCAATG GAGTAATCAT TTCCAATCCG CCTTATGGTG AACGTTTGTC	1620	CTAAGGCCAA	GTGGAAATTG	TGCTCGCATG	GTGATATTGA	ATCATGGGCT	TGAGCTGGAT
	1680	TGCAGGATTT	CAGATGCGCG	TACTTTTAAG	CAGGAGACAT	GCTGGTGTTG	TGCTCAGGTA
AGATGATGCA GGGGTGACCA AGCTCTATGC TGAGATGGGG CAAGTATTTG CACCGCTGAA	1740	AACGTTTGTC	CCTTATGGTG	TTCCAATCCG	GAGTAATCAT	AAAATCAATG	ACGTTCCGAT
	1800	CACCGCTGAA	CAAGTATTTG	TCAGATGGGG	AGCTCTATGC	GGGGTGACCA	AGATGATGCA

A	ACTTGGAGC	AAATTTATCC	TGACTAGTGA	TGAAGCTTTT	GAAAGCAAGT	ATGGTAGCCA	1860
A	GCAGATAAG	AAGCGTAAGT	TATACAACGG	AACCTTGAAA	GTGGATCTAT	ATCAATATTT	1920
T	GGTCAGCGT	GTCAAACGGC	AAGAGGTAAA	ATAGAAAGGG	ATACTCATGA	GTAAAAAAAG	1980
A	CGAAATCGT	CATAAAAAAG	AAGGTCAAGA	ACCGCAATTT	GATTTTGATG	AAGCAAAAGA	2040
G	CTAACAGTT	GGTCAAGCTA	TTCGTAAAAA	TGAAGAAGTG	GAATCAGGAG	TCTTGCCTGA	2100
G	GATTCCATT	TTGGACAAGT	ATGTTAAGCA	ACACAGAGAT	GAAATTGAGG	CGGATAAGTT	2160
Ţ	GCGACTCGT	CAATACAAAA	AAGAGGAGTT	CGTTGAAACT	CAGAGTCTGG	ATGATTTAAT	2220
Т	CAAGAGATG	CGTGAGGCTG	TAGAGAAGTC	AGAAGCTTCT	TCGGAGGAAG	TTCCATCTTC	2280
Т	GAAGACATC	TTACTACCCT	TGCCTCTGGA	CGATGAGGAG	CAAGGCTTGG	ATCCTCTATT	2340
G	CTAGATGAT	GAAAATCCAA	CAGAAATGAC	TGAAGAAGTG	GAAGAGGAGC	AAAACCTTTC	2400
T	CGTCTGGAT	CAAGAGGACT	CAGAAAAGAA	AAGTAAAAA	GGCTTTATTT	TGACCGTTTT	2460
Ć	GCGCTTGTA	TCAGTAATTA	TTTGTGTCAG	TGCTTATTAT	GTCTACCGTC	AAGTGGCTCG	2520
T	TCGACTAAG	GAAATTGAAA	CTTCTCAATC	AACTACAGCC	AATCAATCGG	ATGTGGATGA	2580
T	TTTAATACA	CTTTATGACG	CCTTTTACAC	AGATAGCAAT	AAAACGGCTT	TGAAAAATAG	2640
С	CAGTTTGAT	AAACTGAGTC	AACTCAAGAC	TTTACTTGAT	AAGCTGGAAG	GTAGTCGTGA	2700
A	CATACGCTT	GCCAAATCTA	AATATGATAG	TCTAGCAACG	CAAATCAAGG	CTATTCAAGA	2760
T	GTCAATGCT	CAATTTGAGA	AACCAGCTAT	TGTGGATGGT	GTGTTGGATA	CCAATGCCAA	2820
A	GCCAAATCG	GATGCTAAAT	TTACGGATAT	TAAAACTGGA	AATACGGAGC	TTGATAAAGT	2880
G	CTAGATAAG	GCTATCAGTC	TTGGTAAGAG	CCAGCAAACA	AGTACTTCTA	GCTCAAGTTC	2940
A	AGTCAAACT	AGCAGCTCAA	GTTCAAGTCA	AGCAAGTTCA	AATACGACTA	GTGAGCCAAA	3000
A	CCAAGTAGT	TCAAATGAGA	CTAGAAGTAG	TCGCAGTGAA	GTCAATATGG	GTCTCTCGAG	3060
Т	GCAGGGGTT	GCTGTTCAAA	GAAGTGCCAG	TCGTGTTGCC	TATAATCAGT	CTGCTATTGA	3120
τ	GATAGTAAT	AACTCTGCCT	GGGATTTTGC	GGATGGTGTC	TTGGAACAAA	TTCTAGCGAC	3180
T	TCACGTTCA	CGTGGCTATA	TCACTGGAGA	CCAATATATC	CTTGAACGTG	TCAATATCGT	3240
T	AACGGCAAT	GGTTATTACA	ACCTCTACAA	GCCAGATGGA	ACCTATCTCT	TTACCCTTAA	3300
С	TGTAAGACA	GGCTACTTTG	TCGGAAATGG	CGCTGGTCAT	GCGGATGACT	TAGATTACTA	3360
A	GCAGTCGG						3369

⁽²⁾ INFORMATION FOR SEQ ID NO: 43:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9713 base pairs

PCT/US97/19588

406

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

AAGTTTACAA TITAAATGAA TTAACAATTT TCCCAACTAA AAGCACTCCA GTTACCGCAA 60 CGTTTGTACT GAATGTACTA AATCGCATTC CATCAACTTC ATCTGTTTCG TCAACTTGAA 120 CAGATACTAA TTGAAGATTT AATACTTCTG CTGCCATAGC TAGCTCCTCC TATTTAAATT 180 TTTGGGATTA AGTACTTTAT CCACCTCAT ATACTCTCTC CACCAGTAAA ATGCAAGCAA 240 TGATACAAAA TAGATTTAAC TATTTTATAT AGCGAAAACT TACAAATTTT TAAGAAATAA 300 TTTTTGCATT CTTAAAGATA AAATAGGAAC TTTTAGTAAT AAATATTAAA ATAAATAAAA 360 TAATAGATAC TATAAAATTT GGAAGTATTA ACCCCAAAAG ATTCATATCA TCTATTAAAA 420 TATCCTCTAA AGAGTAGTAT ATTAAAGCCA TAATTTTAAT GTTAAGTAAA AATGCAATTA 480 ATGAAGTAAC AAATGTCAAA AATATAGCCT CACCAACTTT AATCTTAACC ATCTGGTAAT 540 TAGAAGTTCC TAAAATTTCA AATTGCTGAA TCTCAATCCT TTCTTGATGC GATGACAAAA 600 ATGCAATTGA AATAATATTT GCAAGTACTA TCAAAATTGG TGCTCCTACA TAGACAATAA 660 ATGCTACTTT TAGCTCTAAA TCACTGTCAT CTTGAAATTG AGATAGTATA TTCTGAGAAA 720 TCATTTGAAA ACTAGAAATT AGTAATATAG CTCCTGTAAT TGCAGCACTG ATAGATTTTA 780 TATAAGACTT ACAATATAGT AAATTCCACT TCGAAACAAT GAACATAAAA TTATTTCTAA 840 ATATAATTAT AGAAAGTAGT TTGATAAAAC ATGACTGTAT AAAAGGAGAT AATTGATAAA 900 TAATCACAAT ATCTAAGATT ACAATATTGA ATATTATCTG GGCCTTCGCT AAAATTGTGC 960 TATCTTGGAA AATTTGTTGC AAAGAAAGCA ACCAGATAAC ACTAAAACCA GCCAATAGCA 1020 GTATTCTTTT TACTATTGAA AGAACATGCC TTATTTTAGA ACTCTTCCTA TTTCTAATCT 1080 TCTTGAACGT ATAAAAGCAA CCACTTAGAA AGGCTAAAAA TGAAATCAAC ACTACTGTAA 1140 TGATACATCC AACAGCACTC GTTTGAAATT GGATATCAGG TAATATATTT TCCCCGAAAA 1200 AGTATTGTAA AAAATAATAA TAATTTGACG TAACAAATAT AGAGCATAGA TATGCAATAA 1260 AACTAATAAT CGAGGAAATG ATAAAAATCT GTCCCCCCAC AAGAAATGAT AGTTGAAGGC 1320 GACTTGCTCC CAACACCTCC AGAAGTTCGT AATCATCTCT AAAAATTTCA ACCAACATAT 1380 TTATTATGTT AGAGAGCACA AAGAATAATG TTACTCCTCC GAATACTATC GGAAACATAA 1440 AAATTGGTTT AGGATCTGGA AGTCCGACAA ATACTTGCGA ATTATTCTCA ACATTAATTA 1500 CCCCATTAAC AGCCAATCCC ATAACTAAAC TCGAAACAAA AATTACTGGT GAAACGCCTA 1560

ACCATTGT	TT	CTTATTATGT	AAAAATTGAT	AGTAAACTAA	TCTGAGCATC	TCTATTCCTC	1620
CGTAGTTG	AT	TGTACCTCTA	AGATTTTATA	CAACTCTTCC	CCGCTAGGTC	TATGAAGTTC	1686
TTTGAAAA	TT	TTTCCATCTT	TCAATATTAA	TGCACGATCA	GTTTTCGAGG	CCAATTCTAT	1740
ATCGTGCG	TT	ACCATAATTA	CACACTTACC	CGCCCCTACT	AACTCTCTCA	ATAATTCAAA	1800
AATTACTT	CA	CGAGAAACGC	TGTCTAAAGC	CCCAGTTGGC	TCATCAGCAA	ATATTATATC	1860
ACTATCAG	CA	ATAACCGCTC	TAGCTATAGC	AACCTTCTGT	TGTTCTCCAC	CAGACAGAGT	1920
TCCAACAA	AA	TCGTTTAAGC	CAGCATTAAA	CTTCATTCTT	TTGAGTAAGT	TTTCTACATT	1980
TTTAATAG	ТТ	AATTTTTTT	GTGATAATCG	CAAAGGAAGT	GCTATATTTT	CTATTACCGG	2040
CAGGGAAG	GТ	attaaattgt	ATGCTTGAAA	TATAAAAGAT	ACTTCGTTAC	GTCTTATACT	2100
TGACAATT	ŢŢ	GCATTTCTGA	TTTTATAGGG	GTTGATTCCA	TTTAAAATTA	CTTCCCCACT	2160
TGTTGGTT	CA	AGCAAACTAG	AAATACATTT	TAATAAAGTT	GACTTTCCAG	AACCACTAAT	2220
TCCTAGAA	TA	CTTATAAATT	CTCCTCTCGA	AGCAGAAAGA	GAAACATTTT	TCAGCACTTG	2280
CAACGTTT	TA	TTATTTCCTA	GTAAAAATTG	ATGATACAGC	CCTTTCACTT	TTAATATATA	2340
ATCTTTAT	cc	ATATTCTTGC	CTCCAATCAC	TTAATTTTGA	AAAGTGTTCC	ATTTTCCAAT	2400
TTATATAT	АT	CAGTGTATCT	CTTGTCATTT	AAGTCATAAT	GATGTGAAAC	TTCAATAAAT	2460
GAAATACC	TA	AATTGAACAG	AATATCATGT	ATGGAATTTG	AATTATCATT	ATCTAAATTA	2520
GCTGATAT	TT	CGTCAAATAA	GTACACTTTA	TTATTTCTAA	TCAGAGCTCT	AGCTAAAGCT	2580
ATTTTTTG	TT	TTTGACCTCC	AGACAAATTA	CTACCATTTT	CACCACATTG	ATAATTTAGT	2640
ATATCTATO	CT.	TTTCTAATTC	TTCATATAGA	TITACCTTTT	TTAACACCTC	AATTATCTGA	2700
TCATCTGA	AA	AATATTCATT	TTGAAATAAA	GTTACGTTCT	CACGAATAGT	AGTGTCAAAA	2760
ATATATGG	TG	TCTGATCAAC	TGTTGGTATT	GAATCTGAAC	TCTTTTTCCC	ATGTGATAAC	2820
AAATTTAC	AT .	AACCTTTTTG	TGGCTTTAAA	GAACCATTAA	TTAAATTTAA	AATCGTTGTT	2880
TTCCCACT	AC	CAGAAGTTCC	TGTTAATAAT	ACCCTAAATG	GTGACTTAAA	TGAGAAGTCA	2940
ATACTTAA1	rt '	TATTTTCTGG	TGTAATAGAA	TATACAACAT	CTTTCATGTG	TATCTCATCT	3000
ATTGATGA	AG '	TATACAGTCC	GTTATTATCA	TGTTCAGCGT	CTATAAAATT	CTTCTCTCCA	3060
CTTAAGTA1	rr '	TTAAAAACGG	TTTCCTTAAA	TCTTTGGTTG	TATTTATCTT	ATTTAATGAA	3120
raggcaatt	rg ,	ATTGTATCGG	CCCTAAAACT	TTATCGTTTG	CTAAGAAAAT	ACCTATCAGT	3180
CACTAAA	AG A	AAAGGCTTTT	ATGATAAATT	ACAAAATAAC	ATCCTACAAC	CAAGGGAACT	3240
AGAAAGCA.	AA A	AACCTGAAAT	TAGTACTGCA	ACCAATTTTG	AAAGAACCTC	TGATCGTTTC	3300

			408			
AAATTAAAAG	TAGAATCTTC	TAGTTTATCC		CCGACAAACT	AATTATTTCT	3360
TTAGTAACAG	AATAAGATTT	TAATGTCTTA	AAACCATTAA	AAATTTCTTT	TATTATGTGA	3420
GTATACTCTG	CATTGCTGTT	AGAGTACTCA	TTAGCTGAAT	TAGACAACAT	CTTCTTCATA	3480
AAGACAGGTA	CTATAATCGG	CAATGCTGAT	AATACAATAA	ATATTATTGA	nACTAGGAAG	3540
тттааатааа	GCATAAAACT	TAGAGAGACG	ATGAACAACA	ATATTGAAGA	AATTATTTCA	3600
AAAATTTGTC	таааатлстт	TTCTTCGATT	AATCTCAAAT	CATTTGACAA	AACTGAAATA	3660
ATAGATGAGT	AATCTTTAAC	CATTTCAGAA	GAAAGATACT	GTTCTCTAAA	ATATCCTTGT	3720
TTAATTTTTA	CATTTATATC	TTTAGTTATT	GATGCTTCCG	TTACTTCTAA	ATAGTAATTT	3780
GATATATAGA	TTGCTGACCA	ACCCAGAATA	CTTATAGCAC	CAAATCTTAG	AACGTCAGAA	3840
AATGAGGAAG	TCTGATTTAA	ACTACCTGCA	TATACAATAA	TTCCTGAGAG	CAAGACACCA	3900
TTAAACGAAG	ATAGAAATAT	TAAAATCCCC	ATTAATATAA	GTTTAGTCTT	TTTTATAAAT	3960
TTTAAATAAT	TCATAAGTTA	TTCCTTCCCA	CTTCTTCAAA	GAAATAATTT	AAAGTATCAA	4020
TCATTAAGAG	AACATCTGAT	GGAGTAAAAC	CTCCATGACC	AGCTGCTTTG	TTTAAATACA	4080
ACAAACTTTT	AACTCCAATA	GAATTTAATT	TCTTTGACCA	CTCTATCACT	TCGTTATTAT	4140
TAATATATGG	GTCTTTCTCA	CCCAAAATAT	TAACTATAAC	AGTATTTGAG	TCTCGTGCCT	4200
TTTCAATATT	TTGCATAGGC	GAATATGACT	TTATATAAGC	CTTTACTTCA	GGGTCTCTAA	4260
TATCTCCCCA	CTCTGCTATT	TCGGTCTTAG	AAAGAGGATC	ATTTGGATTC	TGAAGTGTAT	4320
CATAAGGATT	TATAAATGGC	GAAAATAAGA	GAATGCTTTG	CAATAAATTT	TTTTCCTCGT	4380
TCAACACCGC	ACCAGCAATT	ATTCCACCTG	CACTAGAAGT	TATTAAACCT	AATCGCTTAC	4440
TGTCAATTAC	ATCATTTTCC	CTTAAATAAT	TTACTCCCTC	AATAAAATCT	CTGATAGAAT	4500
TCCATTTGTT	TAACGCCTTT	CCTGAGCGAT	ACCATTCACC	ACCCAAATAG	CCTCCACCTC	4560
TTACATGAAC	TATAGCATAA	ATAAAACCTG	CATCTATTAT	AGATAACATA	ATTTCATCTA	4620
AATCAGAATT	ATCATTCTTA	CCATAAGCCC	CATAGACACT	TAGAATACAT	TTTTTTCTTC	4680
TTGGGAGCTC	ATCCGTATCT	TCACTTTTCC	AAAATAAAGA	AATCGGTATG	CTTACATCAT	4740
AACTGTCTTT	TTTAGTCCAA	ATCACCTTAG	AAAAATATTT	AGTATTATTC	GATTTTATGA	4800
TGGGTCTTTC	AAATTCAGTT	TTTAATGTAT	TTTCTATTAA	ATCAAAACTA	AGTATTTTTT	4860
CGTAAAAAGT	TCTCCTCTCT	AAAAACAGAA	GAACACGATC	AGAAAATGAA	TTTTCATAAA	4920
GTGTTGTCTT	TTCATCAAAT	GTTATCTTAT	TAACACTCAA	CTCCCTCAAA	CTATTATTTT	4980
TAAATGTAGC	AAGATAAAAG	ACGGAATTCG	CTGCGTTTGA	ACAGTCTAAA	AGGATATAAC	5040
GTCCTATACA	GTGAACTCTT	CTAGCCCTAT	CTTGATATGG	TATAGTAATA	GAAACTCTGT	5100

CTCCCGAAGA	AGTTTCCCTT	AGAATTAGTT	GATCTTTCTT	TTCTTCAGTT	GAAGAGAGCC	5160
CAAGAAAGTA	CTGTGCTTTT	TCTGTACTAA	ATAGAGCGAT	ATCTCTAGGT	GTTGGGGCTA	5220
CCGTTTCTGT	GTAAGAGTGT	CTAACAAAAC	CCGTCCGGTC	GAAACTGTAT	AGAAAAATCC	5280
TGCCTTTCTG	AAAGTCTACT	GACTTTACAA	AACAATTATT	GCTATCAATG	TGGACTATTT	5340
TTAATCGAAA	AGAGCATTCG	TTTTCTTCAA	ACAGTTCCTC	TTCTGTAAAG	CTATCAAAAG	5400
ATTTATAGAA	TAACTTACTT	GGCCTCCCGT	ACTCTTTGGA	GCGAGTATAC	ATAACACCGA	5460
ATTTACCCAA	ATAGAACGAA	CTTTCTACTG	AAATATCTTC	AATGATAAAT	AACTCTTCCA	5520
TAGTATATTT	TTTTATTCCA	ATTAAATTAG	TCGTACGCAG	TGAGGATACA	ACCAAAACTA	5580
TATAACTCTC	ATCAGATGAA	ATCCTAACAT	CCTGTAAGAT	ACTATCATCT	GGCAAAGTAT	5640
ATTTTTCCAC	ATCAAAGACA	ATTTTAAGTG	AATTTGAATT	GTCTAAACTG	GAAGAACTAA	5700
CCTTAGGAAT	CCAGTCATTA	TCTTCGACAT	ACCATTCCTT	TATTACACCA	GTATTGGGTA	5760
TACTCCAATT	ATCAAATTGG	TACCAATATC	GCCCTCTCCT	AAATATCAAA	GAATTCCATT	5820
TTTTTAATTC	CTGAAATGAT	GAAGAGATAG	ACCTCTTATA	GTGTGTTTTT	TCCTGTATTG	5880
TATTTAAAAA	TATTTCATTA	CTCTGATTCA	CAAGTATGAC	CCCTTAATAA	TGGTATCTAA	5940
ATATTATATT	TGAGGAAGAA	TCGTCAATTT	ATTATCCATT	ATTGATACCA	ATCCAATTGC	6000
AACACCCGCA	AATCCCGAAG	CAATATCTGT	TGTTATCTTT	AAACCATTAT	CTCCCGCAAT	6060
AACAAATCCT	TCTTCAATTA	CACACAAATA	TCTATAAAGT	TGTTCAATTA	ATTTCTTTTG	6120
TCCTGAAAAG	TTATCATCGA	TATCACTATA	TATATTATTA	GCAACTTCAA	GACCACAAAA	6180
TCCGTTAAAT	AAACCTGGTA	ATACACAAAA	AACTACATCA	GTTGCCCTCT	CTAAAGAAGT	6240
TAAATATTTT	AAGTATTTGC	TTGACAAGAT	TTCTTTATTT	CTATTAATAA	GTAAAAGCAG	6300
GCCAGCACTT	CCAGTTGCTA	CATATGGTAG	TAATCTATGA	CCTTGGCTGT	ACTGCAATGA	6360
ATTATTACTA	TCTACTTTAT	AAGCAACTAA	TTCTTTATCT	ACAGCCAATT	CTAGACCATT	6420
TTTATAGATA	CTTTCACCAG	TTAATTTATA	AGCTTCACCG	AAGAGCCAAG	CTACCCCTGC	6480
GTGACCATAT	AGTAATCCAC	CAAAATTCTC	ATAAGGATCG	TTACTCTGAA	CATCACTAGC	6540
GCCAACTTTA	CAAAAAGTTT	CTGGATTTTC	TATATAATTT	AAAGTATATT	CTCTAAGCCT	6600
AATTAGTATT	TCTTCTCCTA	GTTTATTATC	AATTCCCCCT	TTACTAAGAA	AATACAGTCC	6660
AACCAGTAAA	ATTCCAGCCT	GCCCACTATA	TAAATTTTTA	TTTTGTGAAT	TCTCAAATAT	6720
CTCTATAAAA	TGAGTTGTAA	AAAGTTCAAC	TGCCCGATCT	ATCTCCCCAA	ATTCATAAAT	6780
GAGCCAGATT	GTACCAATTT	TACCATCAAA	AAGACCAGAA	AGGGACGATT	TCTTAAAATT	6840

3 mmm 3 cmccc	mc>mm> 1m2 1	COMOMOMOCO	ላ ስጥርጥር ስጥል እ	TACTCATCAA	ACTTGAAATT	6900
					AAAACGCAAT	6960
TCCTTGATTA	AAATTCAGAC	CATAATAATG	AACTGGGAAG	AATCTTGATT	GAAATTCTTT	7020
ACGCCACTGT	CCATAAGTTA	GCGTAAACCC	TCTCAATAAT	TTTATAATAA	AATCTTGTAT	7080
ATCTTGCTCA	CTCTCGATAG	TTCTAATCTC	ATGCATGGGT	TTTAAAACTT	TTTTCCTGGA	7140
AATATTCTCA	ATCTGTGGAC	ATTTAGAATC	TAGATATGAC	AATAAACTTT	CTACATAATC	7200
TATATGTTCT	CTTGTATAAC	CCAAAGACTC	AAATAGTTTT	TTTCCTTCTA	TCCTGGTTTG	7260
ACTTACATAG	TTGTATGTCA	AATCCGATGT	AGTTACTAGT	GGCATGTATA	AATAATGAGC	7320
TATTTGTCTA	ATACCATACC	AATCTATCTC	ACTGGGAAGT	GTTTCTCGCC	ATGCTCTAAA	7380
ACCAGGGGCT	GCAACTTTAT	GTACAACTTT	TTCATCATTT	GAAAAGACAG	CCTGTTCCCA	7440
GTCTATTATA	CTAATCTCAT	CTTCĂTCCTT	AACCAAGATA	TTTCCTAAAT	GTAAATCTTG	7500
ATGATATACA	TTTTCAGAAT	GAAACTTATT	CGTTAAATCG	ATGAGTTTTT	CTACTATCTT	7560
TGAAACTCTC	AATAGATAAT	CTTTGGTCTT	ATCAACAACT	TCATATAAAG	GAAAATTATT	7620
GGTAACCCAT	CTATTTAGTG	GAACGCCCTT	CATATGTTCA	ATTCCTAAGA	AGGTGTGCTC	7680
CCAGATCTTA	CCGTGCCAGT	ATATTTTAGG	CGTCTCACTC	CATTCATTTA	GAATTTTTAG	7740
TGCTTTGCAC	TCCGAAGCTA	ATTTCTCTGA	AGAATAAGTA	CCATCAAATC	CTAGACCTGT	7800
ATACGGTCTA	GCCTCTTTTA	AAATTATTTT	TTTCCCATCT	TCTTTTAGCC	TAGCATTATA	7860
TATCCCACCA	CTGTTTGAAA	ATCTAATTGC	ATTATCTATA	ATAAAGGGAA	AGTCTCCCTG	7920
TTTTTTATCT	TTCTTGTCAA	GCCATTTATT	CAAAAAGTCA	GGGGCACTA	TACCTTTTGG	7980
AATTTTAAAT	ACTGGTAAAC	GTTCATCTTT	AACAACTTCA	TCGCCAACAA	TTAATTCATC	8040
AATAGCAACC	TTCTTTTCAT	CATCCCTTGA	CGGCCTAAAC	ACACCATACC	TCAGATATAT	8100
TGGTGCTTCA	TCCCAACGTT	TATCGCTTAA	AATATATGGC	CCATTATATT	GCTTTAAGGC	8160
ACTTTCTAAC	CTTTGCAAAA	CCGACTCTAA	TTCATTTTGA	TTTGGATAAC	ATGTAATAAA	8220
TTTACCAGAA	AATCCTCGAC	TAACCAATTT	CCCGTTTCGC	ATGATAAATT	TGTCTTCTGT	828
ACTAAGATGT	TTAAATGGAA	TTCGCATTTC	ATGGCAAATT	TTTGCTACAT	CTTGTAACAA	834
TTCATGTGAA	CTGTTATACT	CTGAACTAAT	GTGTATTTTC	CACCCTTGTC	TTTCAACAAA	840
TTTTCCAATA	GGGTATTGAT	AAACCCACTC	ATCATTATTC	ATTACTTCGT	GCCAATTAAA	846
					TAGTGAAAAA	852
					ATTTTATCAA	858
					CCTTTGGATT	864

(TCCCCATAT	AAGCACTAAC	ATTCCAACGT	GCACATATTG	GAACGACATC	CATAACTCCA	8700
(GAGAATCTCT	AAAGTTTACA	ATTTAAATGA	ATTAACAATT	TTCCCAACTA	AAAGCACTCC	8760
,	AGTTACCGCA	ACGATTTGTA	CTGAATGTAC	TAAATCGCAT	TCCATCAACT	TCATCTGTTT	8820
(CGTCAACTTG	AACAGATACT	AATTGAAGAT	TTAATACTTC	TTCTGCCATA	GCTAGCTCCT	8880
(CCTATTTAAA	TTTTTGGGAT	TAAGTACTTT	ATCCACCCTC	ATTATACTCT	CTCCACCAGT	8940
	AAAATGCAAG	CAATTATACA	ATGTTGTCAC	ATAGAAAATA	ATGTTTCCGT	AACTTTTCAA	9000
	AGTAACTTCC	ATCTCTCTCC	CAAAACTGGA	AGTTAGTTTT	AGAAGTTACC	TAAAAATCAG	9060
•	GTCACCTATT	TTAAAAAAAGC	AGCAAACTAT	AAACTAGTAG	GTTCCACACC	AAATGTAGTC	9120
•	CCATACTGCC	CCATAAGTCA	GATTTATAGC	GCACCATACC	TAAAAACATC	CCAAGTGAAA	9180
•	CATACAAACA	CCAAGCTAGA	ATGGTTCCTG	TATGATGTGC	TAAGGCAAAT	AAAACACTTG	9240
•	TCAAAGCAAC	TCTGATATCT	AATTTTCTGA	CCAAATTCCA	TAAAATTTCT	CGATACAGAA	9300
	ATTCTTCAAC	CATACTCGCA	TTGATTAAGA	ACAATAAAAA	TGAAAACCAA	GGAATTTGAT	9360
	GTTGAAGGCC	AATTAAGTTT	GCTTGATTCG	TGCTTCCTTG	AGCATGAATC	AGACTAAAAC	9420
	ATAGACTTAT	AATCAGTAGG	CTAACAAATT	CAACACCAAG	CCATTTCATC	CTAGATTTCA	9480
	TATTGACCTT	ATGCGCTTGT	TTGCGTTGGC	CATACATCCA	TAAAAAAGAA	ATGAGTGACG	9540
	AACCATAGAG	AATCTGTAGT	ATAGTTMACT	CACCGATACA	AAGAAATTTC	AATAAGTATA	9600
	GAGTTACCAA	TASGACATTT	ACTTGTTGGA	ATATATAAAC	TGGAATTATT	CTTTTCATAG	9660
	TTACCTCCGA	AATAAATCTT	CATAATCTAA	ATCTAATACC	TGCACAATCC	TTT	9713

(2) INFORMATION FOR SEQ ID NO: 44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8657 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

AAAGAAATTG	TCAGAGAGTG	GCTAGATGAA	GTAGCAGAGC	GGGCTAAGGA	CTATCCAGAG	60
TGGGTGGATG	TTTTCGAGCG	TTGCTACACC	GATACCTTGG	ACAATACGGT	TGAAATCTTA	120
GAAGATGGTT	CAACTTTTGT	CTTGACTGGG	GATATTCCTG	CCATGTGGCT	TCGAGATTCG	180
ACAGCCCAAC	TCAGACCCTA	CCTTCATGTA	GCTAAAAGAG	ATGCCCTCCT	GCGTCAGACC	240
ATTGCAGGTT	TGGTCAAACG	TCAGATGACC	TTGGTACTCA	AGGATCCCTA	TGCTAACTCC	300

TTCAACATTG	AGGAGAACTG	GAAAGGGCAC	412 CACGAGACTG	ACCACACAGA	CCTTAACGGC	360
TGGATCTGGG	AGCGCAAGTA	TGAGGTGGAT	TCGCTTTGCT	ATCCTTTGCA	GTTGGCTTAT	420
CTCCTCTGGA	AAGAGACTGG	CGAGACTAGT	CAGTTTGATG	AGATTTTTGT	CGCAGCGACT	480
AAGGAAATTC	TCCATCTGTG	GACGGTGGAA	CAAGACCACA	AGAACTCTCC	TTATCGTTTT	540
GTCCGAGATA	CGGACCGTAA	GGAAGACACC	TTGGTAAATG	ATGGCTTTGG	ACCTGACTTT	600
GCAGTGACAG	GTATGACTTG	GTCAGCTTTT	CGTCCGAGTG	ATGACTGTTG	CCAGTATAGT	660
TACTTGATTC	CGTCAAATAT	GTTTGCTGTA	GTAGTCTTGG	GTTATGTGCA	AGAAATCTTC	720
GCAGCATTAA	ACCTAGCTGA	TAGCCAGAGT	GTTATTGCTG	ATGCCÁAGCG	TCTTCAGGAT	780
GAAATCCAAG	AAGGAATCAA	AAACTACGCT	TACACCACCA	ACAGCAAGGG	CGAAAAGATT	840
TACGCTTTTG	AAGTGGATGG	CCTAGGAAAT	GCCAGCATCA	TGGATGATCC	AAATGTACCA	900
AGTCTACTAG	CTGCGCCCTA	TCTGGGCTAC	TGTTCGGTCG	ATGATGAAGT	GTATCAAGCT	960
ACTCGTCGTA	CCATTTTGAG	CTCTGAAAAT	CCATACTTCT	ACCAAGGAGA	ATACGCAAGC	1020
GGTCTCGGCA	GTTCTCATAC	CTTCTATCGC	TATATCTGGC	CAATCGCCCT	TTCTATCCAA	1080
GGCTTGACAA	CAAGAGATAA	GGCAGAGAAA	AAATTCTTGC	TGGATCAGCT	GGTTGCCTGC	1140
GATGGTGGTA	CAGGTGTCAT	GCACGAAAGC	TTTCATGTAG	ATGATCCGAC	CCTCTACTCT	1200
CGTGAATGGT	TCTCCTGGGC	TAACATGATG	TTCTGTGAGT	TGGTCTTGGA	TTACTTGGAT	1260
ATTCCCTAAG	GGGCTCGCTT	TAGCTCAACC	GATTCTTATC	AGAATCACAA	GTTTACATTT	1320
AAAACGTTAA	AATTTAAATT	TAGAATGAGG	TTTTACTTCA	TGGAAAATGT	TGTTGTACAT	1380
ATTATCTCAC	ATAGTCACTG	GGATCGTGAG	TGGTACTTGC	CTTTTGAAAG	CCATCGTATG	1440
CAGTTGGTGG	AATTGTTTGA	CAATCTCTTT	GATCTCTTTG	AAAATGACCC	TGAGTTCAAG	1500
AGTTTCCACT	TGGATGGACA	AACTATTGTC	CTTGATGACT	ACTTACAAAT	TCGCCCTGAA	156
AATCGCGACA	AGGTCCAACG	CTACATTGAC	GAGGGCAAAC	TTAAAATTGG	TCCCTTTTAC	162
ATCTTGCAGG	ATGACTACTT	GATCTCCAGT	GAAGCCAATG	TCCGCAATAC	CTTGATTGGT	168
CAACAAGAAG	CTGCCAAATG	GGGTAAATCA	ACCCAGATTO	GCTACTTTCC	AGATACCTTT	174
GGAAATATGG	GACAAGCGCC	TCAAATTCTT	CAAAAATCAC	GCATTCACGT	GGCGGCCTTT	180
GGTCGTGGTG	TGAAGCCGAT	TGGATTTGAG	AACCAAGTC	TTGAAGATG	GCAGTTTACG	186
TCTCAGTTTT	CAGAAATGTA	CTGGCAGGG	r GTGGATGGT#	A GTCGTGTTT	AGGTATTCTC	192
TTTGCCAACT	GGTACAGTAA	CGGGAATGA	ATTCCAGTTO	ACAAAGATG	A GGCCTTGACC	198
TTCTGGAAAC	: AAAAATTGTC	AGATGTGCG	r GCCTACGCT	T CGACCAACC	A ATGGTTGATG	204
ATGAACGGCT	GTGACCACCA	GCCTGTACAC	AAAAATCTG	A GCGAÁGCCA	T TCGTGTGGCA	210

AATGAACTCT	TCCCGGATGT	AATCTTTGTT	CATAGTTCTT	TTGATGAATA	TGTTCAAGCT	2160
GTAGAAGGTG	CGCTTCCTGA	ACACTTATCA	ACTGTTACAG	GCGAGTTGAC	CAGTCAGGAA	2220
ACAGATGGCT	GGTACACACT	TGCCAACACT	TCTTCATCCC	GCATTTACCT	AAAACAAGCC	2280
TTCCAAGAAA	ATAGCAACCT	CCTAGAGCAA	GTGGTAGAAC	CCTTGACTAT	TATCACTGGT	2340
GGACACAACC	ACAAGGACCA	GTTGACCTAT	GCTTGGAAAA	CACTTTTGCA	GAATGCGCCA	2400
CATGATAGTA	TCTGTGGCTG	TAGCGTGGAC	GAAGTTCACC	GCGAGATGGA	AACGCGTTTT	2460
GCCAAGGTCA	ACCAAGTAGG	AAACTTTGTT	AAAAGTAACT	TGCTCAACGA	GTGGAAGGGT	2520
AAAATTGCTA	CGGATAAGGC	TCAAAGTGAC	TATCTCTTTA	CTGTCATTAA	CACAGGCTTG	2580
CATGATAAGG	TCGATACTGT	CAGCACAGTG	ATTGATGTGG	CGACTTGTGA	TTTCAAGGAA	2640
TTGCACCCAA	CAGAAGGCTA	CAAAAAGATG	GCTGCTCTTA	TCTTGCCAAG	TTACCGTGTG	2700
GAGGACTTGG	ATGGTCGTCC	TGTAGAGGCT	ACAATCGAAG	ACCTCGGAGC	TAATTTTGAG	2760
TATAATTTAC	CAAAAGACAA	GTTCCGCCAA	GCTCGTATTG	CTCGTCAAGT	GCGCGTGACC	2820
ATTCCAGTTC	ACCTAGCGCC	GCTTTCTTGG	ACAACCTTCC	AATTGCTGGA	AGGAAAACAA	2880
GAACACCGTG	AGGGTATTTA	CCAAAACGGA	GTGATTGATA	CACCATTCGT	AACGGTGAGT	2940
GTGGATGACA	ACATCACAGT	CTATGACAAG	ACAACTCACG	AAGCCTATGA	AGACTTTATC	3000
CGCTTTGAAG	ACCGTGGGGA	CATCGGAAAC	GAGTATATCT	ATTTCCAACC	AAAAGGAACA	3060
GAGCCAATCT	TTGCAGAGCT	TAAGGGCCAC	GAGGTCTTGG	AAAACACAGC	TTGCTATGCT	3120
AAAATCTTGC	TCAAACATGA	ATTGACCGTG	CCTGTCAGTG	CGGATGAAAA	GCTAGAAGAA	3180
GAGCAACAAG	GTATCATCGA	GTTTATGAAG	CGTGAGGCTG	GACGGTCAGA	AGAATTGACA	3240
AACATTCCTC	TGGAAACTGA	GTTGACTGTC	TTCGTTGACA	ATCCACAAAT	CCGCTTCAAG	3300
ACTCGCTTTA	CTAACACTGC	CAAGGATCAC	CGTATCCGTC	TCTTGGTCAA	GACTCATAAC	3360
ACGCGTCCAA	GCAATGATTC	TGAAAGTATC	TATGAGGTGG	TGACACGACC	AAACAAACCA	3420
GCTGCTTCAT	GGGAAAACCC	TGAAAATCCT	CAACACCAAC	AAGCTTTTGT	CAGTCTGTAT	3480
GACGATGAAA	AAGGGGTGAC	TGTATCCAAC	AAGGGATTGA	ATGAATACGA	AATCCTTGGG	3540
GATAACACCA	TTGCCGTGAC	CATTTTGCGT	GCATCAGGTG	AGCTAGGTGA	CTGGGGCTAC	3600
TTCCCAACGC	CAGAAGCACA	ATGCTTGCGG	GAGTTTGAAG	TCGAGTTTGC	ACTTGAATGC	3660
CACCAAGCCC	AAGAACGCTT	CTCAGCCTAT	CGTCGTGCCA	AAGCCTTGCA	GACACCGTTT	3720
ACCAGCCTTC	AGCTTGCTAG	ACAGGAAGGA	AGCGTGGTTG	CGACTGGTAG	CCTCTTGAGC	3780
CATTCTGTTC	TCAGCATACC	GCAAGTTTGT	CCAACAGCCT	TTAAGGTAGC	TGAAAATGAA	3840

			414			
GAAGGCTATG	TGCTTCGTTA	CTACAATATG	TGTAGTGAAA	ATGTACGTGT	GCCAGAAAGT	3900
CAACATCTCT	TCCTTGACCT	ACTTGAACGA	CCATACCCAG	TTCATTCAGG	ACTATTGGCT	3960
CCACAAGAGA	TTCGTACAGA	ATTCATCAAA	AAAGAAGAAA	TTTAATTTCA	AAAAGTAAAC	4020
ATC AAA AGAA	AGGAGGGGCG	AAAAAGTAAG	AACTAACTGC	TGATTCGCCC	CTTTTATGGT	4080
AAAAACAATG	ACCATTGCAA	CGATTGATAT	CGGAGGGACT	GGGATTAAGT	TTGCCAGTCT	4140
GACTCCTGAT	GGGAAAATAC	TGGATAAGAC	AAGTATTTCA	ACGCCTGAAA	ACTTGGAGGA	4200
TTTACTAGCG	TGGCTAGATC	AACGCTTGTC	AGAACAGGAT	TACAGTGGGA	TTGCTATGAG	4260
CGTTCCAGGT	GCAGTCAATC	AAGAGACAGG	TGTGATTGAT	GGCTTCAGTG	CGGTGCCCTA	4320
CATCCATGGC	TTTTCTTGGT	ATGAGGCGCT	TAGCTCTTAT	CAGCTACCTG	TCCATTTAGA	4380
AAATGATGCC	AACTGCGTTG	GACTCAGTGA	ACTACTAGCT	CATCCAGAGC	TTGAAAATGC	4440
AGCCTGTGTC	GTGATTGGGA	CAGGGATTGG	CGGAGCCATG	ATTATCAATG	GTAGACTTCA	4500
TCGAGGTCGC	CACGGTCTGG	GTGGAGAATT	TGGCTACATG	ACAACCCTTG	CCCCTGCTGA	4560
ААААСТТААТ	AACTGGTCGC	AACTAGCATC	AACTGGGAAT	ATGGTACGAT	ACGTGATTGA	4620
AAAATCTGGT	CATACTGATT	GGGACGGTCG	CAAGATTTAC	CAAGAGGCCG	CAGCTGGTAA	4680
TATCCTTTGT	CAAGAAGCCA	TTGAGCGCAT	GAACCGCAAT	CTGGCGCAAG	GCTTGCTCAA	4740
TATCCAGTAT	CTGATCGATC	CAGGTGTCAT	CAGTCTGGGT	GGCTCTATCA	GTCAAAATCC	4800
AGATTTTATC	CAAGGTGTCA	AGAAGGCTGT	TGAAGACTTT	GTCGATGCCT	ACGAAGAATA	4860
CACGGTCGCA	CCAGTTATCC	AGGCCTGCAC	CTATCACGCA	GATGCCAATC	TCTACGGTGC	4920
TCTTGTCAAC	TGGCTACAGG	AGGAAAAGCA	ATGGTAAGAT	TTACAGGACT	TAGTCTCAAA	4980
CAAACGCAAG	CTATTGAGGT	TTTAAAAGGT	CACATTTCTC	TACCAGATOT	GGAAGTGGCT	5040
GTCACTCAGT	CTGACCAAGC	ATCTATCTCT	ATCGAGGGTG	AGGAAGGTCA	CTATCAATTG	5100
ACCTACCGCA	AACCTCACCA	ACTTTATCGT	GCCTTGTCCT	TGTTGGTAAC	AGTTCTAGCA	5160
GAAGCTGATA	AAGTAGAGAT	TGAGGAACAA	GCAGCTTACG	AAGATTTGGC	TTACATGGTT	5220
GACTGTTCTC	GAAATGCGGT	GCTGAATGTG	GCTTCTGCCA	AGCAGATGAT	TGAGATATTG	5280
GCTCTCATGG	GCTACTCAAC	CTTTGAGCTT	TACATGGAAG	ACACTTACCA	GATTGAAGGG	5340
CAGCCTTACT	TTGGCTATTT	CCGTGGAGCT	TATTCAGCAG	AGGAGTTGCA	GGAAATCGAA	5400
GCCTATGCCC	AACAGTTTGA	CGTGACCTTT	GTACCATGCA	TCCAGACCTT	GGCCCACTTG	5460
TCGGCCTTTG	TCAAATGGGG	TGTCAAGGAA	GTGCAGGAGC	TCCGTGATGT	AGAGGACATT	5520
CTTCTCATTG	GCGAAGAAAA	GGTTTATGAC	TTGATTGATG	GCATGTTTGC	CACGTTGTCT	5580
AAACTGAAGA	CTCGCAAGGT	CAATATCGGG	ATGGACGAAG	CCCACTTGGT	TGGTTTGGGA	5640

,	CGCTACCTGA	TTCTGAACGG	TGTTGTGGAT	CGTAGTCTCC	TCATGTGCCA	ACACTTGGAG	5700
(CGCGTGCTGG	ATATTGCTGA	CAAATATGGT	TTCCACTGCC	AGATGTGGAG	TGATATGTTC	5760
•	TTCAAACTCA	TGTCAGCGGA	TGGCCAGTAC	GACCGTGATG	TGGAAATTCC	AGAGGAAACT	5820
(CGTGTCTACC	TAGACCGTCT	CAAAGACCGT	GTGACTCTGG	TTTACTGGGA	TTATTATCAG	5880
(GATAGCGAGG	AAAAATACAA	CCGTAATTTC	CGCAATCATC	ACAAGATTAG	CCATGACCTT	5940
(GCATTTGCAG	GGGGAGCTTG	GAAGTGGATT	GGCTTTACAC	CTCACAACCA	TTTTAGCCGT	6000
(CTAGTGGCTA	TCGAGGCTAA	TAAAGCCTGC	CGTGCCAATC	AGATTAAAGA	AGTCATCGTA	6060
į	ACGGGTTGGG	GAGACAATGG	TGGTGAAACT	GCCCAGTTCT	CTATCCTACC	AAGCTTGCAA	6120
į	ATCTGGGCAG	AACTCAGCTA	TCGCAATGAC	CTAGATGGTT	TGTCTGCGCA	CTTCAAGACC	6180
1	VATACTGGTC	TAACGGTTGA	GGATTTTATG	CAGATTGACC	TTGCCAACCT	CTTACCAGAC	6240
(TACCAGGCA	ATCTCAGCGG	TATCAATCCC	AACCGCTATG	TTTTTTATCA	GGATATTCTT	6300
7	GTCCGATTC	TTGATCAACA	CATGACACCT	GAACAGGACA	AACCGCACTT	CGCTCAGGCT	6360
C	CTGAGACGC	TTGCTAACAT	TAAAĠAAAAA	GCTGGAAACT	ATGCCTATCT	CTTTGAAACT	6420
(AGGCCCAGT	TGAATGCTAT	TTTAAGTAGC	AAAGTAGATG	TGGGACGACG	CATTCGTCAG	6480
C	CCTACCAAG	CGGATGATAA	AGAAAGTTTA	CAACAAATCG	CCAGACAAGA	ATTACCAGAA	6540
C	TTAGAAGCC	AAATTGAAGA	CTTCCATGCC	CTCTTTAGCC	ACCAATGGCT	GAAAGAAAAC	6600
A	AGGTCTTTG	GTTTGGATAC	AGTTGACATC	CGTATGGGCG	GACTCTTGCA	ACGCATCAAA	6660
C	GAGCAGAAA	GCCGTATCGA	GGTTTATCTG	GCTGGTCAGC	TTGACCGCAT	CGACGAGCTG	6720
C	aagttgaaa	TCCTACCATT	TACTGACTTC	TACGCAGACA	AGGATTTCGC	AGCAACTACA	6780
C	CCAACCAGT	GGCATACCAT	TGCGACAGCG	TCGACGATTT	ATACGACTTA	ATATTCTTCG	6840
A	AAATCTCTT	CAAACCACGT	CAGCTTCCAT	CTGCAACCTC	AAAACAGTGT	TTTGAGCAAC	6900
C	TGCAGCTAG	CTTCCTAGTT	TGCTCTTTGA	TTTTCATTGA	GTATAAAAAC	AAGAACACCT	6960
T	GCTTGGCGC	AGGGTGTTTC	GCGTGAAACA	GAAGAATTAT	CTGGTTTCAA	ATGCTACAGT	7020
T	AGACAAACT	TATGATAAAA	TAGCAGAAAG	TGAATGTTTC	CTAAGAGCAA	TTGGAGGTAT	7080
Т	ATGCTACAC	TTAAAATTAG	TAAAACAAGA	AATAGAAGCT	GAAAAGCCAG	CATCTGTAGA	7140
A	GCTTGGATC	ATTTCCGTCA	AATTTAAAAA	AGGTTGCTAC	CGACATATAT	AGATTCCAAA	7200
Α	ACAAAAACG	TTAGCGGAAC	TAGCAGATGT	GATTTTATGG	AGTTTTGATT	TTGCAAATGA	7260
Ţ	CATGCTCAC	GCATTTTTCA	TGGATAATGT	TGAGTGGAGT	CATGCAGATT	CTTACTTTCG	7320
T	AGCTTTGTT	AGTGACGATG	TTGAAGAACG	TTACACAGAA	AATGTCTATC	TGGATAGCCT	7330

AAGTGTCAAA	САААААТТТА	AGTTTATTTT	416 CGACTTCGGT	GATGALITGGC	GTTTTGAATG	7440
CCAAGTGCTG	AGAGAAATCG	AGACAGAGGA	CGAAGAAGCT	TATCTCGTAC	GTTCGGTTGG	7500
AACGTCGCCA	GAACAATATC	CAGATTATGA	TGGTTTTGAC	TATGAAGAAT	GGTAAAATTG	7560
AAATCAGTCT	GTGTAGGCTT	AGTATTTCAA	TAGACTTCCT	GCAAAACTAG	AATCCTAGTT	7620
CATGATTGAT	AATACCAGCA	ATCAAATTCA	TTCGTAATCC	GAAGCGTTTA	CGATGATTTC	7680
GATAGGTTGT	TGAAAACATT	TTAAACGTTT	TTACTTTGGC	AAAGATGTTC	TCAACCTTGC	7740
TTCTCTCCTT	AGATAGCGCA	TGGTTATAGG	CTTTATCTTC	AGCTGTTAGT	GGCTTGAGTT	7800
TGCTGGATTT	ACGTGAAGTT	TGTGCTTGAG	GACATATCTT	CATGAGCCCT	TGATAACCAC	7960
TGTCAGCCAA	GATTTTACCA	GCTTGTCCGA	TATTTCTGCA	ACTCATTTTG	AACAACTTCA	7920
TATCATGACA	ATAGTTCACA	GTGATATCCA	AAGAAACAAT	TCTCCCTTGA	CTTGTGACAA	7980
TCGCTTGAGC	CTTCATAGCG	TGAAATTTCT	TTTTACCAGA	ATCATTCGCT	AATTCTTTTT	8040
TTAGGGCGAT	TGATTTTTAC	TTCCGTCGCA	TCAATCATTA	CCGTGTCCTC	AGAACTAAGA	8100
GGAGTTCTTG	AAATCGTAAC	ACCACTTTGA	ACAAGAGTTA	CTTCAACCCA	TTGGCTCCGA	8160
	TGCTTTCGTG					8220
	ATTTAGGTTT					8280
	ACATCTCTTT			-		8340
	ATTGTTTACT					8400
	TTTTTTCAT					8460
	GTTTCCCAGA					3520
	TCAAATTTTA					8580
	AAGTTGAGTG	ATAATATAGC	GAATTGAATT	TCGAGAGTTT	TTACTCAGTT	8640
LATTTCTTTT	TTAACCC					8657

(2) INFORMATION FOR SEQ ID NO: 45:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11384 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

TCTATTTTGG	GTATAGACTT	ACCTATAAAG	AAAAATATCT	ATACACTGCC	TTACTAGCTA	60
TACTGAACGA	GTCAACAAAA	ACGATATATA	TTGATGATAT	AAATACAGCA	AGATTTTTTA	120

ACTTCTT	TGG	CAATGATATT	CCTAATTCGT	CTTTAAAAAA	AATTGACTAT	ATCGCACCTT	180
CAGAAAT	TGT	TTCATTTAGT	ACGTACGTTC	GACAACGTTC	TAAAGTAATT	CCTAAAATTT	240
TGGAACA	тат	ATTAAAATCA	AGTTTTTTAT	TAGAGAATAT	AGATGTTTCT	GGTTACACTG	300
TAAATAT	ттт	AGAAGATCAA	TTAACAAAAC	ATAGAACAAT	CAAAATTAGT	AAAAACTAAC	360
TGGTTGA	тст	CATGTATAAA	TACCTAACAA	AACCACGCGC	CTTGCCTGCT	GATGGAAAGA	420
AAGGTAC	AAA	TACATGAATA	TCAAAGAAAA	AATCAAAAAG	AATGGCCAAA	GAGTTTATTA	480
TGCTAGT	GTT	TATCTAGGCG	TTGACCAACT	AACGGGCAAA	AAAGCCCGTA	CAACTGTTAC	540
AGCAACC	ACT	AAAAAGGCCG	TTAAAGTAAA	AGCGCGTGAT	GCGATCAATA	CTTTTGCTGC	600
TAATGGC	TAT	ACAGTTAAAG	ACAAGCCGAC	AATTACAACA	TATAATGAGC	TTGTAAAAGT	660
TTGGTGG	GAT	AGTTACAAGA	ATACAGTTAA	GCCAAATACT	CGCCAATCCA	TGGAGGGATT	720
GGTTAGA	GTG	CATTTATTGC	CTGTATTTGG	CGATTACAAG	CTATCTAAAC	TTACTACGCC	780
таттстт	CAA	CAGCAAGTAA	ACAAATGGGC	TGACAAGGCA	AATAAAGGCG	AAAAAGGGGC	840
ATTTGCT	AAC	TACTCTTTGC	TCCATAACAT	GAATAAGCGT	ATTTTGAAAT	ATGGCGTAGC	900
татссас	GTA	ATACAATACA	ACCCAGCTAA	TGATGTCATC	GTTCCACGCA	AACAGCAAAA	960
AGAAAAG	GCT	GCTGTCAAAT	ACTTAGACAA	CAAAGAATTA	AAACAGTTTC	TTGATTATTT	1020
AGATGC1	CTG	GATCAATCAA	ATTATGAGAA	CTTATTTGAT	GTTGTTCTGT	ATAAGACTTT	1080
ATTGGCC	CACT	GGTTGCCGTA	TTAGTGAGGC	TCTGGCTCTT	GAATGGTCTG	ATATTGACCT	1140
AGAAAGG	CGGT	GTTATCAGCA	TCAATAAGAC	ACTAAACCGC	TATCAGGAAA	TAAACTCACC	1200
TAAATC	AAGC	GCTGGTTATC	GTGATATACC	AATAGACAAA	GCCACATTAC	TTTTACTGAA	1260
ACAATAG	CAAA	AACCGTCAAC	AAATTCAGTC	TTGGAAATTA	GGCCGATCTG	AAACAGTTGT	1320
ATTCTCT	rgta	TTTACGGAGA	AATATGCTTA	TGCTTGTAAC	TTACGCAAAC	GCCTAAATAA	1380
GCATTT1	rgat	GCTGCTGGAG	TAACTAACGT	ATCATTTCAT	GGTTTCCGCC	ATACACATAC	1440
TACTATO	GATG	CTCTATGCTC	AGGTTAGCCC	GAAAGATGTT	CAGTATAGAT	TAGGCCACTC	1500
TAATTT	AATG	ATCACTGAAA	ATACTTACTO	GCATACTAAC	CAAGAGAATG	CAAAAAAAGC	1560
CGTCTC	AAAT	TATGAAACAG	CTATCAACAA	AAAAATATTT ,	ATAAGGGTGA	CCCATTTCCG	1620
GGCTAC	CCTC	TTACTATACC	: AAAAATTAGT	AGGGGTAGTA	AAAAGGGTAT	TAAATTATAA	1680
AAAGCA	CTAA	GGGAAAGCGC	CCCAAAGTG	TTATTTCAAA	GGCTTTATAC	CCTATAATCA	1740
CATAAA	GAGA	TTATTTTTTA	AGGTTGTAGA	ATGATTTCAA	TCCACGATAT	TCAGCTACTT	1800
CACCAA	GTTG	GTCTTCGATA	CGAAGCAATT	GGTTGTATTT	AGCGATGCGG	TCTGTACGTG	1860

.WO 98/18931 PCT/US97/19588

418 AAAGTGAACC AGTCTTGATT TGTCCTGCGT TAGTTGCAAC TGCAATATCA GCGATTGTTG 1920 AATCTTCAGT TTCACCTGAA CGGTGTGATA CAACAGCAGT GTAACCAGCT TCTTTAGCCA 1980 TTTCGATAGC TTCAAAAGTT TCAGTAAGAG TACCGATTTG GTTAACTTTG ATAAGGATTG 2040 AGTTAGCAGC ACCTTCTTGG ATACCACGTG CAAGGTAGTC AGTGTTTGTT ACGAAGAAGT 2100 CGTCACCAAC AAGTTGTACT TTCTTACCAA GACGTTCAGT AAGAGCTTTC CAACCATCCC 2160 AGTCGTTTTC ATCCATACCA TCTTCAATAG TGATGATTGG GTATTTGTTA ACCAATTCTT 2220 CAAGGTAGTC GATTTGTTCT GCAGATGTAC GAACAGCAGC ACCTTCACCT TCAAATTTAG 2280 TGTAGTCGTA AACTTTACGT TCTTTATCGT AGAATTCTGA TGAAGCACAG TCAAATCCGA 2340 TAAATACGTC TTTACCTGGT ACATATCCAG CAGCTTCAAT CGCAGCAAGG ATAGTTTCAA 2400 CACCATCTTC AGTTCCTTCG AAACGAGGAG CGAATCCACC TTCGTCACCT ACGGCAGTTT 2460 CCAAACCACG TGATTTAAGG ATTTTCTTAA GAGCGTGGAA GATTTCAGCA CCGTAACGAA 2520 GGGCTTCTTT AAATGTTGGC GCACCAACTG GCAAGATCAT GAACTCTTGG AAAGCGATTG 2580 GAGCGTCAGA GTGAGAACCA CCGTTGATGA TGTTCATCAT TGGAGTTGGA AGAACTTTAG 2640 TGTTGAATCC ACCAAGATAG CTGTAAAGTG GGATTTCAAG GTAGTCAGCA GCAGCACGAG 2700 CTACAGCGAT AGACACACCG AGGATTGCAT TCGCACCCAA TTTACCTTTG TTAGGAGTAC 2760 CGTCAAGTGC GATCATAGCA CGGTCAATAG CTTGTTGATC ACGTACATCG TAGCCAATGA 2820 TAGCTTCAGC AATGATGTTG TTTACGTTGT CAACAGCTTT TTGTGTACCA AGACCACCGT 2880 AACGAGATTT GTCACCGTCG CGAAGTTCAA CTGCTTCGTG TTCACCAGTA GAAGCTCCTG 2940 ATGGAACCAT ACCACGTCCG AAAGCACCTG ATTCAGTGTA AACTTCTACT TCAAGTGTTG 3000 GGTTACCGCG TGAGTCTAGG ACTTCGCGAG CGTAAACATC AGTAATAATT GACATTTTTT 3060 ACTOTOCTTA TGAGTTAAAT TTTTTACACO TCTATAATAC CTTAAAACCO CTCCTTTTTC 3120 AAGAAAAAC GTTATCTTTG TGCAACTTTT CCTTAACTTT ATAAAGTAAT CGCTTTCTTT 3180 TGTCTGTTTT ATTCTAACTT TTATGATATA CTGTTTTCAT GACAGATTTA TCAAAACAAT 3240 TACTTGAAAA AGCTCATGGT GGGTTAAAAA TAAATCCGGA TGAGCAAAGA CGCTATCTTG 3300 GTACTTTTGA GGAAAGAGTT CTTGGATATG TAGATATTGA CACAGCAAAT AGCCCTCAGT 3360 TAGAAAAAGG CTTTTTATTT ATTTTAGAAA ACCTTCAGGA AAAAGCAGAG CCACTATTTC 3420 TGAAGATTTC ACCAACTATC GAATTTGATA AGCAAGTTTT CTACTTAAAA GAAGCAAAAG 3480 AAACTGATAG TCAAGCCACC ATAGTATCTG AAGAGCATAT TACTTCTCT TTTGGCCTGG 3540 TTATTCATAG CAATGCACCA GTTCAAGTAG AAGAAAAAGA CCTTCGACTT GCTTTTCCAA 3600 AACTTTGGGA AGTTAAAAAG GAAGAACCAG CCAAAACATC CTTATGGAAG AAATGGTTTA 3660

GCTAAATCTT	GCACATATTT	AATAAGTGCC	CAATATTGGC	AGCCGTGCGC	TCCAGATAGA	3720
AACTGGCATT	TTTCAAACTA	TCTTCTAAAG	GTTCACTTTT	СТССААААТА	GAAAAGACAG	3780
CTTGGATATT	TTCAAATGGT	AGGGGAGGTA	AATCTTCAGC	AAGACTACCG	CAAATAGCAA	3840
TAACAGGAAC	TCCAACAGGG	GTTCTTTTTG	CAACACCTAT	AGGCGCTTTC	CCAGCAAAGC	3900
TTTGACTATO	AAGTCTTCCT	TCTCCAACAA	CAACCAAGTC	AGCATCTGAA	ACTTTCTTAT	3960
CAAAGTTGAT	TAAGTCCAAG	CAGGTATCAA	TTCCAGACAC	GATACTTGCC	TGAGCAAAGG	4020
CACACAAACC	ACCAGCAAGG	CCTCCACCTG	CTCCTGCTCC	TTTAATTTCT	AATGTTGCAG	4080
GTGAGAATTT	TTCATAAAAA	TCTTGGATCG	CCTGATCTAC	GACTGCAAAC	ATAGTCGGAT	4140
GTAGACCTTT	TTGATTGCCA	AAAGTGTAAG	TCGCACCTTG	ATGACCACAT	AAGGGACTCA	4200
CGACATCTGC	TAAAATATGA	ATTTGAACAC	CTTCAGGAAT	TTTATAGCAA	TTTTCTGTTG	4260
AAACAGAAGC	TAAGTTTAAT	AAGGATTGAC	CGGAAGCAGG	CAAGACATTT	CCATCCCTAT	4320
CATAAAATTG	ATAACCTAAA	CCAGCAGCAA	TCCCCAGTCC	TCCATCATTA	CTGGCCGTGC	4380
CACCAACACC	GATATAAATA	TCTTTAATCC	CTTTAGAGAT	GAGATGAAGA	ATCAACTCTC	4440
CAATACCACA	AGTTTGGATT	TGAAGTGGAT	TTCGTTTCTC	TAGCGGAATT	TTTCCAAGAC	4500
CAACCAAGTC	AGCTACTTCA	AATAGTGCCA	GTTCCCCTTT	TTGAAAATAG	CGCATGGCTT	4560
CTTTTTGTCC	AAAAGGGTCT	GTCACTTGGA	TCCATTTTTC	TTTTAGGTCA	AGAGAATGTC	4620
GGATAGCATC	TACAGTACCT	TCTCCCCCAT	CACCAACAGG	GCAGAGGAGA	CATTCTACAT	4680
CTGCTATCGA	TTGTTGGAAG	CCTCTTTTTA	TTGCTTCAGC	TACCTGTTGA	GCTGTCAAGC	4740
TTTCCTTAAA	CGAATCCGGT	GCAATTACAA	TCTTCATATT	TTCCCTCATT	CTAAACAGTC	4800
AATCAAAGGG	AGAACTTCTA	AAAAATCCCT	CTTGTCAACA	TGATGTGGTA	TTTCTTTTTT	4860
GAGCACTTCT	TTGGCACAAA	AGGCGATTCC	TAACTTCGCC	GACTTCAACA	TTAATAGATT	4920
ATTAACCCCA	TCACCGATTG	CCACCGTTCT	TTCTTTAGAA	AGTTTTAGTT	TCTTTCTCCA	4980
TTTTTCCAGA	GTCTCTTTTT	TGACCTGGGG	ACTTATAATT	TGTCCAACTA	ATTTTCCTGT	5040
TAAAAGACCT	TCTTTGACTT	CAAGCTAGTT	GGCAGTGAAA	TAGGCAATAC	CAAGGGATTT	5100
TGCTAATCTC	TCCAACTATT	GGTGTAAATC	CACCAGACAC	CAGACCAACT	AGGATGCCAT	5160
TCTTTTGGAG	AATAGAGATG	AACTCTGGGA	CATTTAGCGA	TAGATGAATT	GAGTTGAAGA	5220
CGTTATCAAA	GACCAAAATA	GGAAGACCTT	CCAACAAGGA	CACTCTTTTT	CTTAAACTGC	5280
TTTCAAAGAC	CAACTCTCCT	CGCATTGCTC	GACTTGTAAT	CTGCGAAATT	TCCGCCTCAT	5340
GACCTCCCTC	TCTCCCTAAA	AGATCAATCA	CTTCTTCTAG	GAŤTAAGGTT	CCATCTACAT	5400

WO 98/18931 PCT/US97/19588

CCAAAACACA CAAGCCTTTT ACTTGAGACA TCAGTTCTCC TCTCTAAACA GCCTAAAAAAT 5460 CGTATGAAGT CATCATACGA TTTTATCTAT TAATTAACTA AACTATGGTA CAAGTCAAGG 5520 TATGACTTGC AGGCTGTATC CCATGAGAAG TCACTCTCCA TAGCTTGTTT TTGTAGGTTT 5580 CTCCAAATGT CTGGATGGTT TCTATACAAG TCCAATGCTG TTTGGAAAGT CCAATTTAAC 5640 CAATAAGGAG ATAGATTGTC AAAGCTAAAG CCAGTACCGC TTCCTTCGAT TGGATTGAAA 5700 GCGCGAACTG TATCTCGCAA GCCTCCAACT TCATGGACCA ATGGCAAGGT TCCATAACGC 5760 ATAGCCATCA TTTGAGACAA GCCACACGGT TCAAAACGAC TTGGCATGAG GAAGAGGTCA 5820 CAAGCAGCGT AGATTTCCTG AGCAAGTTTG ACATCAAAAG TGATATTTGT TGATAGCTTG 5880 TCTGGGTAAA TCTGAGCAAA CCATGAGAAA GCTCCTTCAA AGGCTGGATC GCCAGTTCCC 5940 AAAAGAACAA TCTGAACATC TTCTTGCAAG ATATGGTGAA GACTTTCGAC CACCACATCA 6000 AAACCTTTTT GACGTGTCAA ACGAGAAACA ATTCCCACCA GTGGAACGTC TGCTCTAACA 6060 GGCAAGCCAA CTCTTTCTTG CAATTTTGCC TTATTTTTGG CTTTCCCAGA CAAATCTTCC 6120 TGATTGAAAT GATAGTCTAA AAGAGCATCC GTCTGAGGAT TATAAAGATC AGCATCAATC 6180 CCATTCACGA TACCAGATAC TTTACCAGAC TCCATTTTAA GAATCTGATC CAAATTACAT 6240 CCAAACTGAC TAGTCATAAT TTCATGAGCA TAGCTAGGTG AAACGGTTGA AACACGGTTC 6300 GCATAGAGAA TACCTGCCTT CATCCAGTTC AGACAGTTGT TCCATCGAAG GGTGCCATCA 6360 GCGTAACGTT CAAAGCCAAC TCCAAACAAA TCACCCAACA TTCCTTCTGA AAATTGTCCT 6420 TGGAATTCTA AATTATGAAT GGTTAAAACT GTTTCAATGT CCTCATAGGC TTGAATCCAA 6480 CGGTATTTTT CCTTCAACAA GAAAGGAATC ATAGCTGTAT GGTAGTCATG AACATGGAGA 6540 AGATCAGGAA TAAAGTCAAT CCTTTCCATA GCCTCAATGG CAGCCAGTTG GAAAAAGGCA 6600 AAGCGTTCTC CGTCATCAAA ATCACCGTAA ACATGACCAC GGAAGAAATA ATATTGATTG 6660 TCAATAAAGT AGAAGGTTAC ACCATTTAAT ACTGTTTTCT TAATTCCACA ATACTGTCTG 6720 CGCCAACCAA CGCTCACCTC AAAATGAAGC ACATCTTCAA TCTGATTTCC AAATTTAGCC 6780 TCTACCATAT CATAGTAGGG TAAAATCACT GCAACTTCGT GCCCAGCTTT TACCAGTGAT 0840 TTTGGAAGAG CGCCAATGAC GTCTCCCAAA CCACCTGTTT TTGAAAAGGG TGCACCCTCT 6900 GCTGCTACAA ATAAAATTTT CATGAATGAA TATCCTCTGT TACTTTAGCA CCTTTCTTAA 6960 CCACAACTGG ATGTTCTGCA GTTCCTCGAA TCACAACACC ATGCTCAACT TCAACCCCTT 7020 TGTCCAAGAT AGCATATTCG ACCTGAGCCC CTTCTCCAAT AACAACACGA GGGAAGAGCA 7080 GGCTATCTTT AACCAAGCTA TCCTTATGGA CATGAATATT ACGTGATAGA ACAGAATTAG 7140 CTACTTGACC TTCAATAATA CTACCAGAGG CAAACTGAGA AGTGCTTACC TTAGATGTAT 72,00

TAGCATAGTA	AGTTGGCTCT	TCGTTTTTGA	CCTTTGTATA	AATCTTTTGG	TTTGGTGAGA	7260
AAAGAGAATA	GAATTTTTGT	GATTCAAGCA	TATCGATATT	CGCTTGATAA	TAAGATTTAA	7320
CAGAGTGAAT	ATTGGCTAGA	TAGCCCGTGT	ACTCGTAGGC	GAAAGCTCCC	TCTTTTACAG	7380
CCAAATCCCG	TAAAACATAG	CGCAATTTCT	CTGGATGTTC	TTTTTTAGCT	TCTTCTTCCA	7440
AGTGTTCAAT	CAACCAAGGT	GTATCAACGA	CAAAGATATC	TGTAGACATA	TTGAACGTTT	7500
CAGCTGTTGA	CTTGCTATCA	AAGAGTTTAT	GAGAAAGAAC	ATGGTCTGTT	TCATCTACAT	7560
CCAAGATTGC	ATTTACTTCT	GAAATATCTT	TCTTAGCTAG	TTTTTTATAA	ACTACAGTGA	7620
TAGGCTCTTT	TGTTGTACTA	TGTAGGTGGA	AAACTTGGTT	CAAATCAATG	TTAATAAGAA	7680
CATCGCAGTT	GAGGGCAACC	GTTTGGTTTG	AGCCAGAACG	TTTCAAATAA	GTAAGAAGCT	7740
GTTGGTAGTA	TTCTTTTCCA	ACTGTACTAC	TTTCTACACG	GGTATTGTAA	ATTCCTAGAT	7800
AGTAATGGCT	AAGAAGGGTT	GATAAGCCCC	ACTCGCGTCC	TGAACGAATA	TGGTCAAATA	7860
CTGAGCTGAT	ATTATCCTGC	TGGAAAATAC	CAAAGACACT	ACGAACACCT	GCATTAGCAA	7920
GGCTTGAAAG	TGGGAAGTCA	ATCAAACGAT	ATTTCCCACC	AAATGGCAAA	CTTGCTACTG	7980
GACGGTGGTC	CGTCAATGTC	GACATATTGT	GAAAACCAAC	TGTATTTCCT	AAAATGGCAG	8040
AATATTTATC	AATCTTCATC	TGTTGCTACC	CCCACTACTT	CATTATATCC	TACAACTTGT	8100
ACTTCATCTG	TTCCATCAAT	TTCGACACCG	TCAGAAATAA	TCGCACCTTC	ACCAATAATG	8160
GCACGTTTAA	TCTTAGCTCC	TTGACCAATG	ATAGCTCCAC	TCATGATAAC	TGAATCAAGG	8220
ACTTCCGCTC	CTTCGCGAAC	TTGCGCGCCT	GTTGAAAGGA	TAGAATGTTT	AACAGTTCCA	8280
TCAACGAAAC	ATCCGTCTAC	AACTAATGAG	TCTTCCACAT	GAGCATTTGC	CCCGAGGAAG	8340
TTTGGTGGTG	AAATCAAGTT	TCTTGAGTAA	ATCTTCCATT	GACGGTTACG	ACTATCCAAG	8400
GCATTTTCTG	GAGAAATATA	CTCCATGTTC	GCTTCCCAAA	GTGACTCAAT	AGTACCAACA	8460
TCTTTCCAAT	AACCACTAAA	TTCGTAAGCA	TAAACACTTT	CACCTGACTC	AAGGTAATTT	8520
GGAATGACAT	TTTTACCAAA	GTCTGACATG	CCAACCTTGC	TCTTTTCAGC	AGCGACTAAC	8580
ATATTACGAA	GGCGTTGCCA	ATCAAAAATG	TAGATTCCCA	TAGAAGCTTT	TGTAGATTTA	8640
GGTTGAGCTG	GTTTTTCTTC	AAATTCAACA	ATACGATTGT	TAGCATCTGT	GTTCATGATA	8700
CCAAAACGGC	TTGCTTCTTT	AAGAGGGACG	TCTAAAACTG	CTACTGTCAA	GCTGGCATTA	8760
TTATCCTTAT	GAGACTGGAG	CATATCATCA	TAGTCCATTT	TGTAGATGTG	ATCCCCAGAC	8829
AAAATCAAGA	CATACTCAGG	ATTGACACTG	TCGATATAGT	CGATATTTTG	GTAAATAGCG	888
TGACTAGTCC	CCTCAAACCA	ACGATTTCCT	TCACTTGCAG	AATAAGGTTG	AAGAATAGAG	8940

			422			
ACACCTGAAT	TAATACCGTC	TAGTCCCCAG		TCCCAATATG	GTTGTTGAGA	9000
GCAAGTGGTT	GATACTGTGT	AACGACCCCA	ACATTGTGAA	TCCCTGAGTT	GGCACAGTTT	9060
GATAGGGCAA	AGTCAATGAT	ACGGTAGCGC	CCACCAAATT	GCACAGCTGG	TTTTGCGATG	9120
CTTTGAGTGA	GTTTACCGAG	ACGAGTTCCT	TGCCCACCAG	CAAGAATCAA	AGCTAACATT	9180
TCATTTTTCA	TTTTCTACTC	CTTTTTGGTT	TTTATTTGTG	ACGGTTTTAG	TAGATTTCAA	9240
GCGACGTTTG	ATTTTCCATA	CACTTGCTCC	CATAGCCGGT	AGGGTAAAGG	TTAAGGTCTG	9300
CTCATAATCT	TTCCATAGTC	CTTCTTGCGT	TTGAACAGTT	TGATTATGTT	CTTTCCAAAC	9360
GCCTCCCCAC	TCTTCCAACT	CAGTATTCCA	TACTTCTTCG	TAAATTCCTG	CAACGGGTAG	9420
TCCGATTGTA	AAATCTTTCC	GCTCAACAGG	TACCATATTA	AAGATACAGA	CTAACATTTC	9480
TCCCTTTTTA	CCCTTACGAA	TAAAGGAAAG	AACACTCTGG	TCTCGATTAT	CCGCATCAAT	9540
GATTTCAATA	CCATCATAGC	TGGTATCAAT	TTCCCACAGA	CAGCGATGAT	CTTTGTAAAA	9600
CTGGTTTAGC	TGAGAAGCGA	AATACTTCAT	CTTAGCATTC	ATTGGGTCTT	CTAGGTTAGA	9660
CCATTCCAAC	TGTTCTTCAG	ATTTCCATTC	TAGGAATTGA	CCGTATTCGC	TACCCATGAA	9720
GAGCAATTTC	TTACCAGGGT	GACAAATTTG	GTACGTATAG	AGATTGCGCA	AGCCTGCGAA	9780
TTGATTGTAA	CGATCTCCCC	ACATCTTATG	CATCATACTC	TTCTTGCCAT	GAACCACTTC	9840
ATCGTGCGAG	AATGGCAAGA	GATAATTCTC	CTTGAAAACA	TACATAAAGC	TGAAAGTCAC	9900
CAGGTTAAAG	TCATATTTAC	GATAGATCGG	ATCTTCTTCG	TAGAAACGGA	GGATATCATT	9960
CATCCAGCCC	ATGTTCCATT	TGTAGTCAAA	TCCTAGACCA	CCAATCTCTT	TCATTCCCGT	10020
AATCTTGATC	GCAGACGAAC	TTTCTTCTGC	AATCATCATC	ACATCTGGAT	ATTCTAACTT	10080
AATAACCTCA	TTCAAGCGCT	GAAGGAAATA	ATAACCTTCA	TAGTTGAGAT	TTCCGCCATC	10140
TTTATTAGGT	GTCCATGGAG	CATCATCATA	GTCCAAATAG	AGCATGTTGC	TAACAGCATC	10200
CACACGAATA	CCATCCAAAT	GATAGACATC	AATCCAATGC	TTAATGCAAG	AAATTAAGAA	10260
GGACTGGACT	TCATTTTTTC	CAAGGTCAAA	ATTAAGGGCA	CCCCAACCAT	GGTTATGAGC	10320
CTTATTATGG	TCTTGGTATT	CAAAAGTCGG	TGTCCCATCA	TAATAGGCTA	AGGCATCATC	10380
GTTGATGGTA	AAGTGACTGG	TACCCAGTCC	ACAATAACCC	CAATATTATG	GGTATGACAC	10440
TCCTCGACAA	AATCTTGAAA	CTCCTCTGGT	CGGCCATAAG	CATGCTCTAA	AGCGAAGTAA	10500
CCCATAAGCT	GATACCCCCA	ACTCAAGCCC	AAAGGATGGG	ACATCAAGGG	CATAAACTCA	10560
ATATGAGTAT	AGTTCATTTC	AACGAGATAA	GGAATGAGTT	CATCCTTGAG	CTGGGCAAAA	10620
CTATAAGGAC	TGCCATCAGA	ATTTCTTTTC	CATGATCCAG	CGTGAACTTC	ATAAATATTG	10680
ACAGGACGCT	CTTCAAAGCC	CCAACGTTTT	CTTCGTGCCA	GCCAAAGTCC	ATCCTTCCAT	10740

TTCTTCTCAG GAAGCTCTGT TACGATTGCC CCTGTTCCTG GACGAGCCTC ATACCTGACA 10800 GCAAAAGGGT CAATCTTCAT CAGTTGATGA CCATTTTGAC GTGTGACATG ATATTTGTAA 10860 ATATGCCCTT CTTGAGCCAT ATTGGTAAAG ACTTCCCAGA CCCCAAAATC ATTTCTTACC 10920 ATTGGAATCT GATTTCAAT CCAGTTGGTA AAATCACCAA CCAAGTGAAC AGCCTGAGCA 10980 TTAGGTGCCC AAACACGGAA GGTATAGCCA TGCTCTCCAT TTAGTTCTTC CCTATGTGCT 11040 CCTAGATAAT GTTGGAGATA AAAATTTTCA CCCGTCATAA AGGTTTTTAA TGCTTCTCTA 11100 TTATCCATAT ACTCCCCTTC TCCTGTAAGC GTTTTCTATG TTTTTATTAT ACTACCTTTT 11160 TAGAGAAGAT TCAAGTAAAT TACTATACTT CTTTAATTAT TTTGAAAATC TACAACAAGT 11220 TCACTTACTC GTTCAATTGT AAATCAATAT TTTTTCAAAA AATTGCGAAA ACGCCTTTCT 11280 TTTTCTACTA TAGTGAAATG AAATAAAACA TGCGCAAATC GATTAAGGAA TTTAATCTAA 11340 TTTCTAACAA TGTCTTAGAA ATCAAAGTGT ACTATTTTAA CTCC 11384

(2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7577 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

TOTTGATTTG TTACTAGACG TTGACCAACG TCCTTCGGCT GGAAAAGGAA TTCTCCTTAG 60 TTTCCAACAC GTTTTCGCCA TGTTTGGTGC GACCATCTTG GTACCATTGA TTTTGGGAAT 120 GCCTGTATCT GTTGCCCTTT TTGCTTCAGG TGTTGGAACA CTCATCTACA TGATTGCTAC 180 TGGTTTTAAA GTTCCAGTTT ATCTAGGTTC TTCATTTGCC TTTATCACAG CTATGTCACT 240 GGCTATGAAA GAAATGGGGG GGGATGTATC TGCTGCCCAA ACAGGGGTTA TCTTGACTGG 300 TTTGGTCTAT GTCCTTGTTG CTACCAGCAT CCGATTTGTA GGAACAAAAT GGATTGATAA 360 ACTCTTGCCA CCAATCATTA TCGGTCCTAT GATCATCGTT ATCGGTCTTG GACTTGCAGG 420 TTCAGCTGTT ACCAATGCAG GTCTTGTAGC AGACGGAAAT TGGAAAAATG CTCTGGTAGC 480 CGTTGTTACT TTCCTAATTG CTGCCTTTAT CAATACAAAA GGAAAAGGCT TCCTACGAAT 540 CATTCCATTC CTCTTTGCCA TTATCGGTGG TTACCTTTTC GCACTAACTC TTGGCTTGGT 600 TGACTTTACA CCAGTTCTTA AAGCCAACTG GTTCGAAATT CCTGGTTTCT ACTTGCCATT 660 TAGCACAGGT GGTGCCTTTA AAGAGTACAA TCTTTACTTT GGTCCAGAAG CCATCGCTAT 720

			424			700
		CAATTTCTGA				780
AATCTGTGGT	CGTCAATTCT	TAAAAGAACC	AGGTCTTCAC	CGTACTCTTC	TTGGTGACGG	840
TATCGCAACT	TCTGTTTCTG	CCTTCCTTGG	TGGACCAGCC	AATACAACTT	ACGGAGAAAA	900
TACAGGGGTT	ATCGGTATGA	CTCGTATCGC	TTCTGTCTCA	GTTATCCGTA	ACGCTGCCTT	. 960
CATCGCGATT	GCCCTCAGCT	TCCTTGGTAA	ATTCACTGCC	TTGATTTCAA	CTATTCCAAA	1020
CGCTGTACTT	GGTGGTATGT	CAATCCTTCT	CTATGGGGTT	ATCGCCAGCA	ATGGTTTGAA	1080
AGTCTTGATT	AAAGAACGTG	TTGATTTCGC	TCAAATGCGA	AACCTCATCA	TCGCAAGTGC	1140
TATGTTGGTT	CTTGGACTTG	GAGGAGCTAT	CCTTAAACTT	GGTCCAGTTA	CACTTTCAGG	1200
TACTGCCCTT	TCAGCCATGA	CAGGAATCAT	CTTGAACTTG	ATCTTGCCAT	ACGAAAATAA	1260
AGACTAAGAG	TCTAAATACA	CCTAATCCAC	TCAGACAGCT	GAGTGGATTT	TTCGTATACC	1320
ATAATAAAAG	TGTCTTAACA	AAATTATTAA	AATCAAAAAA	CGTATAATAT	CAGATATTCT	1380
AAAACCTTGA	TACTGTACGT	TTTATCATAG	AAATTTTTAC	TTTATTTTCT	CATCAAATGA	1440
GATTTGCATC	AATCTCTTGT	CTTACTTGCG	TTTCTTCTTC	GCTTTCTTCA	TTTTGTTAGC	1500
CATACGTTTC	ATGGACTGTT	TCATGGCAAA	TTCACCAATT	TTACCTTTCA	AACCGCCACC	1560
AAACATCTGG	CTCATATCTG	GCATTCCTGC	TCCTCCGAGA	GCTGATAAGT	CAGGCATACC	1620
GCCTTGTCCC	ATCATTCCTT	CAAGGGCAGA	CATATCCATT	CCTCCCATAT	TTGGCATATT	1680
TTTAGGAAGG	TTATTTGGAT	TAATCCCCAT	TTGCTTCATC	ATTTTATTCA	TATCCCCAGA	1740
CATAACACCC	TGCATGAGCT	GTTTAGCCTG	GTTAAAGTCC	TTGATGAATT	TATTGACTTC	1800
GACGAATGTA	TTTCCAGAAC	CAGCAGCAAT	ACGACGGCGA	CGGCTTGGAT	TTAACAAATC	1860
TGGGTTTTCA	CGCTCTTCAG	GTGTCATCGA	AGACACAATG	GCACGTTTAC	GAGCAATCTG	1920
GCGTTCATCC	ACCTTCATGT	TTTGAAGGGC	TGGATTGTTG	GCCATACCTG	GAATCATCTT	1980
GAGCAAGTCT	TCCATCGGCC	CCATATTTTG	CACCTGATCT	AATTGATCGA	TGAAATCATT	2040
AAAATCAAAG	GTGTTTTCGC	GCATCTTCTC	AGCCATTTCA	AGGGCTTTTT	GTTCATCGTA	2100
TTCCTGAGAA	GCTTTCTCAA	TCAAAGTGAG	CATATCCCCC	ATACCAAGGA	TACGGCTAGA	2160
CATGCGGTCT	GCGTGGAAGG	TTTCAATGTC	CGTAATCTTT	TCACCTGTAC	CAGTGAACTT	2220
GATTGGTTTT	CCAGTAATGT	GACGAACAGA	CAGAGCAGCA	CCACCACGAG	TATCGCCATC	2280
AATCTTGGTA	AGGATGACCC	CAGTCACTTC	CAACTGAGCA	TTAAACTCAC	GCGCAACATT	2340
GGCTGCTTCC	TGACCAATCA	TAGCATCAAC	GACAAGCAAG	ATTTCATTTG	GTTGAGCCAA	2400
TGCTTTCACA	TCACGAAGCT	CATTCATGAG	GAGCTCATCA	ATCTGCAAAC	GACCCGCAGT	2460
ATCAATCAAG	ACATAGTCGT	TATGATTAGT	TTGGGCTTGC	TCCAAACCTT	GACGTACAAT	2520

CTCAACAGCT	GGTACTTCTG	TTCCAAGTGC	AAAGACAGGC	ACATCAATCT	GTTGTCCCAA	2580
GGTCTTAAGC	TGGTCAATGG	CAGCTGGACG	ATAAATATCC	GCCGCAATCA	TCAAAGGACG	2640
AGCATTTTCT	TCTTTCTTGA	GTTTGTTGGC	CAATTTACCA	GCAAAGGTTG	TTTTACCAGC	2700
CCCTTGTAAA	CCAACCATCA	TGATGATGGT	TGGAATCTTA	GGTGACTTGA	TAATTTCTGC	2760
CGTATCAGAA	CCTAAAACGG	CTGTCAATTC	CTCATCAACG	ATTTTAATAA	TCTGTTGCGC	2820
AGGATTAAGT	GTATCAATGA	CCTCATGCCC	GACTGCACGC	TCACGAACTT	TCTTGATAAA	2880
GTCCTTTACA	ACAGGCAAGG	CAACGTCGGC	CTCGAGCAAG	GCCAAGCGAA	TTTCTTTGGT	2940
TGCCTCTTGG	ACATCAGATT	CAGAGATTTT	TCCTTTTTTA	CGTAGATTTT	TAAAGACGTT	3000
CTGCAAACGT	TCTGTTAAAC	TTTCAAATGC	CATTTTTCTT	CCTCTTATTC	TCTATTATCA	3060
ATGCTTGTTA	AAATTTCTAT	СТССТССТСС	AGAAAGTCAT	CCTTGGGATA	GCGCTCCAAA	3120
ATCTGATCAA	AAATCTGACT	GCGGACAATA	TAGTCCGAGT	ACATGTGCAA	TTTCATCTCA	3180
TAATCTTCCA	GAATCTTTTC	TGTTCGCTTG	ATATTGTCAT	AGACAGCCTG	ACGACTGACA	3240
CCGAACTCCT	CGGCAATTTC	AGCAAGGCTG	TAATCATCAG	CGTAGTAGAG	CTCGATATAA	3300
TTCATTTGCT	TATCTGTCAA	AAGCGCCGCA	TAAAATTCAA	AGAGCGCATT	CATACGATTG	3360
GTTTTTTCGA	TTTCCATAAC	TTTTATTATA	CCAAAAATTA	GCCTAATCTA	CCACACTAGG	3420
AAGCCGATCC	AAGAAGATAG	ATAGCTAAAT	TTGAAAAAGA	CATGAGCCTA	GCCCCAAGTA	3480
ATTTCCAATT	GATAGCTGGC	AAAGGGATGT	CCCTCTTGAT	TTTGTAGTTG	ATAATCTAGT	3540
TCAATCTTTT	GCCTATCAAC	TTGATAATGG	CTCGTTTGGA	TGATAAACTC	CTGCATGCCC	3600
ATAGGTGTAG	GAATATAGGC	TAAACTATCG	CTATCCTTTA	GAAAGCGCAT	AATGGTCTTG	3660
GGATTAGAAA	ATCGGCTCAT	CACAAGTTCT	TGACCATGAA	ATTTAATCAC	TACTTTTTCC	3720
TTTTCCTCAT	TATAGAAAAG	CAGGTAGCTA	TAATCTCCTT	TTTCATGCAC	TTCCACATCA	3780
TAAAGCTGGT	CAATCACTTC	CAACTGCTCA	TCAAACTGAA	TCGTATTTCG	CATCCGAATC	3840
TTCACATCAG	GCCCTCTTTC	TTGTCTCTTG	TCCTACTATT	TTACCAAAAA	GAGCAGGATT	3900
TTGCTATAAT	GGTCATATGA	ACGAAAAAGT	ATTCCGTGAC	CCTGTTCACA	ACTACATCCA	3960
TGTCAATAAT	CAAATCATCT	ATGACTTGAT	TAATACAAAA	GAATTTCAGC	GTTTGCGCCG	4020
GATCAAACAA	CTGGGAACTT	CCAGTTATAC	CTTCCACGGT	GGAGAACACA	GTCGCTTCTC	4080
rcactgtcta	GGAGTCTATG	AAATTGCACG	ACGCATCACA	GAGATTTTCG	AAGAAAATA	4140
FCCTGAGGAA	TGGAATCCTG	CCGAGTCTCT	CTTGACCATG	ACCGCTGCTC	TCCTACACGA	4200
CCTTGGGCAT	GGTGCCTACT	CCCATACTTT	TGAACATCTC	TTTGATACAG	ACCATGAAGC	4260

426 CATTACTCAG GAGATTATTC AAAATCCTGA GACAGAGATT CACCAAGTCC TGCTACAAGT 4320 GGCACCTGAT TTCCCAGAAA AGGTGGCCAG TGTCATTGAC CATACCTATC CTAATAAGCA 4380 GGTCGTGCAG CTCATTTCTA GTCAGATTGA CGCAGATCGC ATGGACTATC TCTTGCGCGA 4440 CTCCTATTTT ACAGGAGCAT CCTATGGGGA ATTTGACCTG ACTCGAATCC TCCGAGTCAT 4500 TCGTCCTATC GAAAATGGTA TCGCCTTTCA GCGCAATGGC ATGCACGCCA TCGAAGACTA 4560 4620 CGTCCTCAGT CGCTACCAGA TGTACATGCA GGTTTATTTC CACCCGCAA CACGCGCCAT 4680 GGAAGTTCTC CTACAGAATC TTCTCAAACG CGCCAAGGAA CTCTATCCTG AGGACAAGGA TTTCTTTGCC CGAACTTCTC CACACCTCCT GCCTTTCTTC GAAAAAAATG TGACCTTGAC 4740 TGACTATCTG GCTCTGGATG ATGGCGTGAT GAATACCTAC TTCCAGCTTT GGATGACCAG 4800 TCCTGACAAG ATTCTTGCAG ATTTATCGCA TCGCTTTGTC AACCGCAAGG TCTTTAAATC 4860 CATTACCTTT TCACAAGAGG ACCAAGATCA ACTTACTAGC ATGAGAAAAT TGGTTGAGGA 4920 TATCGGCTTT GATCCCGACT ACTACACTGC CATTCATAAG AACTTTGACC TCCCTTATGA 4980 TATCTATCGT CCCGAATCTG AAAACCCACG GACACAGATT GAGATTTTAC AAAAAAATGG 5040 AGAACTGGCC GAACTCTCTA GCCTGTCTCC TATCGTCCAA TCCCTTGCTG GCAGTCGCCA 5100 CGGAGATAAT CGCTTTTATT TTCCAAAAGA AATGTTGGAC CAAAACAGCA TCTTTGCAAG 5160 CATTACCCAG CAATTTTTAC ACTTGATTGA GAACGATCAT TTTACCCCAA ATAAAAACTA 5220 GAAGAGGAAA TTTATGAGTA TTAAACTAAT TGCCGTTGAT ATCGACGGAA CCCTTGTCAA 5280 CAGCCAAAAG GAAATCACTC CTGAAGTTTT TTCTGCCATC CAAGATGCCA AAGAAGCTGG 5340 TGTCAAAGTC GTGATTGCAA CTGGCCGCCC TATCGCAGGC GTTGCCAAAC TTCTAGACGA 5400 CTTGCAGTTG AGAGACGAGG GGGACTATGT GGTAACCTTC AACGGTGCCC TTGTCCAAGA 5460 AACTGCTACA GGACATGAGA TTATCAGCGA ATCCTTGACT TATGAGGATT ATCTAGATAT 5520 GGAATTCCTC AGTCGCAAGC TCGGTGTCCA CATGCATGCC ATTACCAAGG ACGGTATCTA 5580 TACTGCAAAT CGCAATATCG GAAAATACAC TGTACACGAA TCAACCCTCG TCAGCATGCC 5640 TATCTTCTAC CGTACCCCTG AAGAAATGGC TGGCAAAGAA ATTGTTAAAT GTATGTTTAT 5700 CGATGAACCA GAAATTCTCG ATGCTGCGAT TGAAAAAATT CCAGCAGAAT TTTACGAGCG 5760 CTACTCCATC AACAAATCTG CTCCTTTCTA CCTCGAACTC CTTAAAAAGA ATGTAGACAA 5820 5880 GGGTTCAGCC ATTACTCACT TGGCTGAAAA ACTCGGATTG ACCAAAGATG AAACCATGGC AATCGGTGAT GAAGAAAATG ACCGTGCCAT GCTGGAAGTC GTTGGAAACC CCGTTGTCAT 5940 GGAAAATGGA AATCCAGAAA TCAAAAAAAT CGCCAAATAC ATCACCAAAA CAAATGACGA 6000 ATCCGGCGTT GCCCATGCCA TCCGAACATG GGTACTGTAA AAGTATCATT TTTCAATAAG 6060

AATTGATTAG	CAATAAAATC	CAATGAATTT	TTTTAGCAAA	CTATTTAATT	ТААААСАААА	6120
TAATCATAAT	AGAGACACAA	ATTCTGATTG	TAACAATTTT	TACCTAAACG	AATTAGAATG	6180
TGGCCTTACT	CCTGGGCAAC	TCATACTCAT	AGATTGGACT	CAAAAAACAG	GGAGAAATTA	6240
TAATTTCCCA	AGATATTTA	AATACTCTCT	TCAAATTGAC	CCTGAATCTA	CACACAATCA	6300
ATTATACAAA	TTAGGATACT	TCACTAAAAA	TAAGACTTTA	TCATATCTTA	CAGTAGTAGA	6360
ATTAAAAACT	ATATTATCTA	AACATAATTT	AGCTACTTCT	GGAAAAAAAG	CAGAATTAAT	6420
TACAAGAATA	ATTAATAATG	TTAACATTGA	CAATTTAGAT	ATTCCGTTCG	AATTTAAACT	6480
AACAAAAGAA	GCACAAAATC	TTATTATCGA	ACATAGTGAC	TATATCAAAG	CATACTATGA	6540
TAAAGACATA	ACTATGGAAG	ATTATTGTAA	AGAAAAAAAC	AATATCTCTT	TTAAAGCAAC	6600
TTTTGGTGAT	ATAAAATGGA	GTCTCTTAAA	TAAACAAGCT	CATAGGAATA	CTGTATCAGG	6660
AGATTTTGGA	TGCTTATCTA	ACACACGAAA	GGCTCAGGGA	AGACATTTGG	AACAAGAAGG	6720
TAATATTAAA	CATGCTTTAA	TATATTACAT	AGAATCTTTG	ΑΤΑΑΤΤΑΟΤΛ	TTTCAGGATT	6780
AGAAAACAAT	TTTTCAGCCA	CTGATTATCC	AGTATATTAT	CCCGATTCGA	TACCTGACTA	6840
CTCACTAAAA	CATATTCAAA	CATTAATGGA	ATCATTATCT	GATGACGATT	ATGATTTTGC	6900
TTTTGATGAA	GCATTATTTC	GCTTCTCAAT	TTTGAATGCA	AATCATTTTT	TATCTAAGGA	6960
AGATATTGAC	TATTTAAGAG	TTAATTTACC	TCGTTCCACT	GCTGAAGAAA	TAAACAATTA	7020
CTTAAAGAAA	TATGAATGTT	ATAGTCCTTT	AAATAATTTA	GAACTTGACG	ATTTTGAATA	7080
AATTGACTAT	ACAAACATTT	ATATACTCGA	TATAGTCTCA	ATTTTATCTG	ATGATTGCCC	7140
AAATTTTTCA	ATAATAAAAC	GCATAATATT	ATGGAGACAA	TCCCCTATAT	TATGCGTTCT	7200
TTTAATATCA	AAGACTTTTT	GACAAACTTC	TTTGATATCT	AATTACATGC	CCCCTGCAGG	7260
AATCGAACCT	GCAACTACTC	CTTAGGAGGG	AGTTGTTATA	TCCATTGAAC	TAAGGGAGCT	7320
AGATAAAAAC	TCTGCTAAAT	GAGCAGAGTT	TTTTAGTCGA	ATTAACGACG	GATTTCTTTG	7380
ATACGAGCTG	CTTTACCTTG	AAGAGCACGC	AAGTAGTACA	ATTTCGCACG	ACGTACTTTA	7440
CCGTAACGAA	CAACTTCGAT	TTTTTCAACA	CGTGGAGTGT	GGATTGGGAA	GATACGCTCA	7500
ACACCTACAC	CGTTAGAGAT	TTTACGAACT	GTGTAGTTTT	CTGAGATTCC	AGCACCTTTA	7560
CGTGCGATAA	CAACACG					7577

(2) INFORMATION FOR SEQ ID NO: 47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4945 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(vi)	CECULENCE	DESCRIPTION:	SEO	TD	NO ·	47.
IXI	SECUENCE	DESCRIPTION:	SEU	10	NO:	411:

						\ - /
60	GAAACTGCAG	CTTGGCTGAA	CTGGTCCAGC	GTTTTATTTG	GATTGGTGCT	CCTCGCTGAT
120	CATTCGACCA	AGAGAGTGAG	TTGTTTCAGG	AATACAGAGC	TAGCGGANCT	TTCCTGAAAA
180	GAAAAGGCAG	AAACAAGCTA	ATGCTAGAGA	GAAGGGGAAC	TAAGCAGAAT	ATGAAGCTGA
240	GCAACTACTG	CAATGAAGCT	CGCCAGCAAG	GAAACTGCTT	GATAGCATCT	AAGGAGTAGC
300	GTGGTTGCAG	AGCAAGTGAG	CAGAGGAAAA	GCAGCTAAAC	AGCAGCTAGC	AAACTGCAGA
360	AAGCCCGAAG	AACAGAAGCA	CTGACAAGGA	AAACCTAAGT	TGCAGAAGCA	AAACACCATC
420	GAAAAAGAAG	TAATAAGACT	CAGCAGAAGC	TCTAAACCAG	AGGGGATGAG	CAACTAACCA
480	ATCAAATTTA	ACCAAAGGAA	AAACATTAAA	AATACAGAAA	TGTCCCTAAA	TCCAGCCAGA
540	GCTATTAACC	TGAAGATGAT	CAGGTGCTCG	AAATGGGAAC	AGAATTGTTA	ATTCTTGGGA
600	AAAGCTAGCA	AGTCAATGAA	CAGGTCATTT	TCACGTCGGA	TGTCCTCGCT	GCGGATCTGT
660	CATGCTTCTG	AGCAAAAGAC	CCAATTCTAA	TTATCAAACA	AGTTCAAGCC	AGGAAGCAAA
720	GATTCAATGG	GCAATATCTA	TTGACTATTG	GCCTATGCTT	AGAGTTCAAG	TTGGTGGAGA
780	CGTAACGGGG	TGCAGGTCAC	ACGTTATTGA	CCAACTCCTG	AGGTCTCGTA	TCTTCTGGGA
840	CAAGAAAGAT	TATTGCAGAT	GGTCTAATAG	TTCTTCAACT	CGGTACACTC	TTCCTGTATA
900	AAATTGGTAG	AATTGCCCGT	GTAGCTTCCC	GACGCAGATG	TTTGAAGCAA	TTGCTGAAGC
960	ACTGGAGATT	CCAAGAAACA	ATTTCATCAA	TATGATGGCT	GTATTATGGC	ACATGGCCAA
1020	GAATATGCTG	CTATAGCAAG	AGTTTATGCT	AAGATGCGCC	TCTTGGAGAA	TGGTTAAACC
1080	AACTATGGAC	CATGACCTAT	GGTACGATGC	AAGTATTCTT	CCATCCAATC	CTAAGGTAAA
1140	GAAGGAGATA	CATGCAACCA	ACTACCAATT	GGAGAATACA	AGATGGTTTG	GTTATCATCA
1200	AATGATTACA	TAAGGCTAAA	TTAACTGGGA	TTTGCTAACT	AGATAACTTC	AGGTTCCGGC
1260	GGTTTGGAAT	TGTATTTGCA	ATCCTTATGA	ATTGGTCGTA	TGCCAACTGG	CTATTGCAAC
1320	GACGAAAATC	TGACATTTTA	TTAAGTGGAA	AAGACAAAGG	TGGTTCCTAC	TGCAACAGGG
1380	TTAGGAAAAA	CATTACAAGT	CCCCAGATAC	GGTTTATTTG	CCTTTCTCTT	GGAAATTGCG
1440	GGAGACCCTA	AGGTTATCAA	TCTTCTTTAC	AATGAAGATA	TTATCATAAA	CTGGTGAAGA
1500	GCGGACCGTA	TAACCTAGTT	ATGGTATTGC	AAAGATTGGT	ACCAGGTGAC	CTGGCCAAAA
1560	AAAAAATGGT	AGGTCATGGT	CTTTTAATAC	TTTACTACTT	AGGTAATACT	CGCCAGCGGT
1620	TCAGGTGTTC	TCGTTCAGTA	AGTGGAATTA	AAGGATTCTG	TAAGGTTTCT	TCGTAGATGG

TTCCAACA	TG G	CGCTGGTGG	CAGACTTCAA	CAGGGGAAAA	ACTTCGTGCA	GAATATGATT	168
TTACAGATO	GC C	TATAATGGC	GGAAATTCCC	TTAAATTCTC	TGGTGATGTA	GCCGGTAAGA	174
CAGATCAG	GA T	GTGAGACTT	TATTCTACTA	AGTTAGAAGT	AACTGAGAAG	ACCAAACTTC	180
GTGTTGCC	CA C	AAGGGAGGA	AAAGGTTCTA	AAGTTTATAT	GGCATTCTCT	ACAACTCCAG	1860
ACTACAAA	TT C	GATGATGCA	GATGCATGGA	AAGAGCTAAC	CCTTTCTGAC	AACTGGACAA	1920
ATGAAGAA	TT T	GATCTTAGC	TCACTAGCGG	GTAAAACCAT	CTATGCAGTC	AAACTATTT	1980
TCGAGCATO	GA A	GGTGCTGTA	AAAGATTATC	AGTTTAACCT	AGGACAATTA	ACTATCTCGG	2040
ACAATCAC	CA A	GAGCCACAA	TCGCCGACAA	GCTTTTCTGT	AGTGAAACAA	TCTCTTAAAA	2100
ATGCCCAAC	GA A	GCGGAAGCA	GTTGTGCAAT	TTAAAGGCAA	CAAGGATGCA	GATTTCTATG	2160
AAGTTTATO	GA A	aaagatgga	GACAGCTGGA	AATTACTAAC	TGGCTCATCT	TCTACAACTA	2220
TTTATCTAC	CC A	AAAGTTAGC	CGCTCAGCAA	GTGCTCAGGG	TACAACTCAA	GAACTGAAGG	2280
TTGTAGCAC	ST C	GGTAAAAAT	GGAGTTCGTT	CAGAAGCTGC	AACCACAACC	TTTGATTGGG	2340
GTATGACTO	GT A	AAAGATACC	AGCCTACCAA	AACCACTAGC	TGAAAATATC	GTTCCAGGTG	2400
CAACAGTTA	AT T	GATAGTACT	TTCCCTAAGA	CTGAAGGTGG	AGAAGGTATT	GAAGGTATGT	2460
TGAACGGTA	AC C	ATTACTAGC	TTGTCAGATA	AATGGTCTTC	AGCTCAGTTG	AGTGGTAGTG	2520
TGGATATTC	G T	TTGACCAAG	CCACGTACCG	TTGTTAGATG	GGTCATGGAT	CATGCAGGAG	2580
CTGGTGGTG	GA G	rctgttaac	GATGGCTTGA	TGAACACTAA	AGACTTTGAC	CTTTATTATA	2640
AAGATGCAG	SA T	GGTGAGTGG	AAGCTAGCTA	AGGAAGTCCG	TGGTAACAAA	GCACACGTGA	2700
CAGATATCA	AC TO	CTTGATAAA	CCAATCACTG	CTCAAGACTG	GCGCTTGAAT	GTTGTCACTT	2760
CTGACAATG	GG A	ACTCCATGG	AAGGCTATTC	GTATCTATAA	CTGGAAAATG	TATGAAAAGC	2820
TTGATACTO	GA G	AGTGTCAAT	ATTCCGATGG	CCAAGGCTGC	AGCCCGTTCT	CTAGGCAATA	2880
ACAAGGTAC	CA AC	CTTGGCTTT	GCAGATGTAC	CGGCTGGAGC	AACTATTACC	GTTTATGATA	2940
ATCCAAATT	C TO	CAAACTCCG	CTCGCAACCT	TGAAGAGCGA	AGTTGGAGGA	GACCTAGCAA	3000
GTGCACCAT	T GO	GATTTGACA	AATCAATCTG	GTCTTCTTTA	TTATCGTACC	CAGTTGCCAG	3060
GCAAGGAAA	T T	AGTAATGTC	CTAGCAGTTT	CCGTTCCAAA	AGATGACAGA	AGAATCAAGT	3120
CAGTCAGCC	T A	GAAACAGGA	CCTAAGAAAA	CAAGCTACGC	CGAAGGGGAG	GATTTGGACC	3180
TTAGAGGTG	G TO	GTTCTTCGA	GTTCAGTATG	AAGGAGGAAC	TGAGGACGAA	CTCATTCGCC	3240
TAACTCACG	C A	GGTGTATCA	GTATCAGGTT	TTGATACGCA	TCATAAGGGA	GAACAGAATC	3300
TTACTCTCC	A A	TATTTGGGA	CAACCGGTAA	ATGCTAATTT	GTCAGTGACT	GTCACTGGCC	3360

AAGACGAAGC	AAGTCCGAAA	ACTATTTTGG	430 GAATTGAAGT	A AGTE ↓GGAA	CCGAAAAAAG	3420
ATTACCTAGT	TGGTGATAGC	TTAGACTTGT	CTGAAGGACG	CTTTGCAGTG	GCTTATAGCA	3480
ATGACACCAT	GGAAGAACAT	TCCTTTACTG	ATGAGGGAGT	TGAAATTTCT	GGTTACGATG	3540
CTCAAAAGAC	TGGTCGTCAA	ACCTTGACGC	TTCATTACCA	AGGCCATGAA	GTTAGCTTTG	3600
ATGTTTTGGT	ATCTCCAAAA	GCAGCATTGA	ACGATGAGTA	CCTCAAACAA	AAATTAGCAG	3660
AAGTTGAAGC	TGCTAAGAAC	AAGGTGGTCT	ATAACTTTGC	TTCATCAGAA	GTAAAAGAAG	3720
CCTTCTTGAA	AGCAATTGAA	GCGGCCGAAC	AAGTGTTGAA	AGACCATGAA	ACTAGCACCC	3780
AAGATCAAGT	CAATGACCGA	CTTAATAAAT	TGACAGAAGC	TCATAAAGCT	CTGAATGGTC	3840
AAGAGAAATT	TACGGAAGAA	AAGACAGAGC	TTGATCGCTT	AACAGGTGAG	GTTCAAGAAC	3900
TCTTGGCTGC	CAAACCAAAC	CATCCTTCAG	GTTCTGCCCT	AGCTCCGCTT	CTTGAGAAAA	3960
ACAAGGCCTT	GGTTGAAAAA	GTAGATTTGA	GTCCAGAAGA	GCTTACAACA	GCGAAACAGA	4020
GTCTAAAAGA	TCTGGTTGCT	TTATTGAAAG	AAGACAAGCC	AGCAGTCTTT	TCTGATAGTA	4080
AAACAGGTGT	TGAAGTACAC	TTCTCAAATA	AAGAGAAGAC	TGTCATCAAG	GGTTTGAAAG	4140
TAGAGCGTGT	TCAAGCAAGT	GCTGAAGAGA	AGAAATACTT	TGCTGGAGAA	GATGCTCATG	4200
TCTTTGAAAT	AGAAGGTTTG	GATGAAAAAG	GTCAAGATGT	TGATCTCTCT	TATGCTTCTA	4260
TTGTGAAAAT	CCCAATTGAA	AAAGATAAGA	AAGTTAAGAA	AGTATTTTC	TTACCTGAAG	4320
GCAAAGAGGC	AGTAGAATTG	GCTTTTGAAC	AAACGGATAG	TCATGTTATC	TTTACAGCAC	4380
CTCACTTTAC	TCATTATGCC	TTTGTTTATG	AATCTGCTGA	AAAACCACAA	CCTGCTAAAC	4440
CAGCACCACA	AAACACAGTC	CTTCCAAAAC	CTACTTATCA	ACCGACTTCT	GATCAACAAA	4500
AGGCTCCTAA	ATTGGAAGTT	CAAGAGGAAA	AGGTTGCCTT	TCATCGTCAA	GAGCATGAAA	4560
ATACTGAGAT	GCTAGTTGGG	GAACAACGAG	TCATCATACA	GGGACGAGAT	GGACTGTTAA	4620
GACATGTCTT	TGAAGTTGAT	GAAAACGGTC	AGCGTCGTCT	TCGTTCAACA	GAAGTCATCC	4680
AAGAAGCGAT	TCCAGAAATT	GTTGAAATTG	GAACAAAAGT	AAAAACAGTA	CCAGCAGTAG	4740
TAGCTACACA	GGAAAAACCA	GCTCAAAATA	CAGCAGTTAA	ATCAGAAGAA	GCAAGCAAAC	4800
AATTGCCAAA	TACAGGAACA	GCTGATGCTA	ATGAAGCCCT	AATAGCAGGC	TTAGCCAGCC	4860
TTGGTCTTGC	TAGTTTAGCC	TTGACCTTGA	GACGGAAAAG	AGAAGATAAA	GATTAAATAT	4920
CGAAAAATCT	TGTGAAATCT	TTCCG				4945

⁽²⁾ INFORMATION FOR SEQ ID NO: 48:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25002 base pairs
(B) TYPE: nucleic acid

431

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

GACAACTCAA	GTAGCTTTTT	CTTATTTTGA	AAAAGGAGAT	CAGAGTTTAA	CTATGTCAGA	60
AAAATCACAA	TGGGGGTCGA	AACTTGGTTT	TATTCTAGCA	TCTGCTGGCT	GGCCATCGGG	120
CTTGGTTCCG	TTTGGAAGTT	TCCCTACATG	ACTGCTGCTA	ATGGCGGTGG	AGGCTTTTTA	180
CTAATCTTTC	TCATTTCCAC	TATTTTAATC	GGTTTCCCTC	TCCTGCTGGC	TGAGTTTGCC	240
CTTGGCCGTA	GTGCTGGCGT	TTCCGCTATC	AAAACCTTTG	GAAAACTGGG	CAAGAATAAC	300
AAGTACAACT	TTATCGGTTG	GATTGGCGCC	TTTGCCCTCT	TTATCCTCTT	ATCTTTTTAC	360
AGTGTTATCG	GAGGATGGAT	TCTAGTCTAT	CTAGGTATTG	AGTTTGGGAA	ATTGTTCCAA	420
CTTGGTGGAA	CGGGTGATTA	TGCTCAGTTA	TTTACTTCAA	TCATTTCAAA	TCCAGCCATT	480
GCCCTAGGAG	CTCAAGCGGC	CTTTATCCTA	TTGAATATCT	TCATTGTATC	ACGTGGGGTT	540
CAAAAAGGGA	TTGAAAGAGC	TTCGAAAGTC	ATGATGCCCC	TGCTCTTTAT	CGTCTTTGTT	600
TTTATCATCG	GTCGCTCTCT	CAGTTTGCCA	AATGCCATGG	AAGGGGTTCT	TTACTTCCTC	660
AAACCAGACT	TTTCAAAACT	GACTAGCACT	GGTCTCCTCT	ATGCTCTGGG	ACAATCTTTC	720
TTTGCCCTCT	CACTAGGGGT	TACAGTCATG	TTGACCTATG	CTTCTTACTT	AGACAAGAAA	780
ACCAATCTAG	TCCAGTCAGG	AATCTCCATC	GTAGCCATGA	ATATCTCGAT	ATCCATCATG	840
GCAGGTCTAG	CCATTTTCCA	AGCTCGATCC	CCCTTCAATA	TCCAGTCTGA	AGGGGGACCC	900
AGCCTGCTCT	TTATCGTCTT	GCCTCAACTC	TTTGACAAGA	TGCCTTTTGG	AACCATTTTC	960
TACGTCCTCT	TCCTCTTGCT	CTTCCTTTTT	GCGACAGTCA	CTTTTTCTGT	CGTGATGCTC	1020
GAAATCAATG	TAGACAATAT	CACCAACCAG	GATAACAGCA	AACGTGCCAA	ATGGAGTGTT	1080
ATTTTAGGAA	TTTTGACCTT	TGTCTTTGGC	ATTCCTTCAG	CCCTATCTTA	CGGTGTCATG	1140
GCGGATGTTC	ACATTTTTGG	TAAGACCTTC	TTTGACGCTA	TGGACTTCTT	GGTTTCCAAT	1200
CTCCTCATGC	CATTTGGAGC	TCTCTACCTT	TCACTTTTTA	CAGGCTATAT	CTTTAAAAAG	1260
GCTCTTGCAA	TGGAGGAACT	CCATCTCGAT	GAAAGAGCAT	GGAAACAAGG	ACTGTTCCAA	1320
GTCTGGCTCT	TCCTTCTTCG	TTTCTTCGTT	TCGTCATTCC	AATCATCATC	ATTGTGGTCT	1380
TCATTGCCCA	ATTTATGTAA	TCAAAAAGGA	CTTGAGTAGT	GAACTCAGGC	CCTTTCTTTT	1440
TATGGATGGC	TAACAATCAA	TTCCAAACCT	TGCCCTTCCA	GAGTCCAAGC	TTCAACATCA	1500
CTTGGTAGGA	TAAAGTGGCT	GCCTTTTTGA	ATTGGATAAT	TTTTCCCGTC	AACAGTTAGC	1560

			432			
TGACCTTGAC	CAGCCAAGAC	ACTCAATAAG	CTGTAGTCAG	CTGTCTTTTC	AAAGTCAACT	1620
TTTCCAGTAA	TTTCCCACTT	GTAAACTGCG	AAGAAATCAT	TAGATACAAG	GAGAGTGGAA	1680
CGCAAATCAT	CTGCTTTAAC	AGTTACAGGA	CGGCTATTTG	CTGGCTCACC	AATGTTCAAG	1740
ACATCGATGG	ATTTTTCAAG	ATGAAGTTCA	CGCAAGTTGC	CTTTGTCATC	CTTGCGGTCA	1800
AAGTCATAGA	CGCGATAGGT	GGTATCGCTA	GACTGCTGGG	TTTCAAGGAT	TAAGATACCC	1860
GCCCCGATAG	CGTGCATAGT	CCCGCTTGGT	ACATAGAAGA	AATCTCCAGC	CTTAACAGGG	1920
ACTTTGGTCA	ACAAGTCATC	CCAGTTCTTG	TCCTCGATTT	GCTGGCGGAG	TTCTTCTTTT	1980
GACTTGGCAT	TGTGACCGTA	GATAATCTCT	GAACCTTCAT	CCGCTGCGAT	AATGTACCAG	2040
CATTCTGTTT	TTCCGAGTTC	GCCTTCATGC	TCGAGTCCAT	AAGCATCGTC	TGGGTGAACT	2100
TGGACACTGA	GCCAGTCGTT	GGCATCGAGG	ATCTTGGTCA	AAAGTGGAAA	TACAGGTTCT	2160
GGACGATTGC	CAAATAATTC	ACGGTGTTCC	GCATACAAAG	TAGCAAGATC	TGTTCCCTCG	2220
TAACGACCAT	TGGCAACTTT	AGAGACTCCA	TTTGGATGGG	CTGAGATGGC	CCAATATTCT	2280
CCGATTTTTT	CACTTGGGAT	GTCGTAGCCA	AACTCATCAC	GTAGCTTGGC	TCCACCCCAG	2340
ATTTTTTCTT	GCATAACTGA	TTGTAAAAAT	AATGGTTCTG	ACATGTCGAT	CTCCTGTCTG	2400
ATTTTTCTCC	CCTCATTATA	GCAAAAAAAG	AGTTCGAATT	GAACTCTTTT	TTACATCTTA	2460
TAAAGCAGGG	AGAAGATTTT	ATAAAAATAG	TAAACAAATG	TGCTCTACCC	GATGCTTGCA	2520
CCATTGCTAT	AAATGACATC	CTTGTACCAA	TAGAAGGACT	TCTTCTTGCT	ACGTTTGAGA	2580
GCTCCGTTTC	CTACATTATC	TCGATCTACA	TAGATAAAGC	CATAGCGCTT	ATTCATTTCC	2640
CCTGTGCCAG	CTGAAACCGG	ATCGATACAG	CCCCAAGTCG	TATAACCAAG	CAAGTCAACC	2700
CCGTCTTGGT	AAATGGCATC	TCGCATGGCC	TTGATGTGCG	CCTCTAAGTA	AGTAATCCGA	2760
TAGTCATCTG	CTACATAACC	ATTCTCATCC	GGTGTATCCA	TAGCACCGAG	TCCATTTTCT	2820
ACGATAATAC	TAAACTAAAA	TCAAAAAGCA	TTATATAATA	GTGATATGAA	ATCAACTAAA	2880
GAAGAAATCC	AAACCATCAA	AACACTTTTA	AAAGACTCTC	GTACAGCTAA	АТАТСАТАРА	2940
CGCCTTCAAA	TCGTTCTATA	GTAAAATGAA	ATAAGAACAG	TACAAATCGA	TCAGGACAGT	3000
CAAATCGATT	TCTAACAATG	TTTTAGAAGT	AGGGGTGTAC	TATTCTAGTT	TCAATCTACT	3060
ATATTTCGTC	TGATGGGCAA	ATCTTATAAA	GAGATTATAG	AACTTTTATA	GTAGTTTGAA	3120
ATAAGATGTG	AACAACTCTA	TCAGGAAAGT	CAAATTAATT	TATAGAAATA	TTTTAGCAGC	3180
CAAGGTGTAC	TGTTATAGAT	TCAATACACT	ATAGACTGTA	ATCAAACAAC	GATTTGGCGA	3240
AATGTAAAAA	AATATGAGGA	GTTCGGACTC	GACTCTCTCC	TTCAAGAAAC	ACGTGGTGGT	3300
CGTAACCATG	CATATATGAC	AGTTGAGGAA	GAGAAAGCCT	TTCTTGCCCG	CCATTTGAAG	3360

GCTACAGAGG	CAGGAGAATT	TGTTACAATT	GATGCCTTAT	TTCAGGCTTA	TAAAAAGGAG	3420
TTAGGTCGTT	CCTACACACG	TGATGCCTTC	TATCAACTGT	TGAAGCGCCA	TGGTTGGCGA	3480
AATATTACGC	CACGTCCAGA	ACATCCTAAG	AAAGCAGACG	CTCAAACCAT	TGTTGCGTCT	3540
AAAATAAAA	TCTCAATCCA	AGAAGGCAAG	AAAGCGTTTT	AAATATAGTA	GACGTTTTCG	3600
TAAGGTTTGC	TTGATGTACC	AAGCTGAAGC	TGGTTTCGGT	AGAATCAGTA	AACTGGGATC	3660
TTGTTGGGCT	CCAATAGGAG	TAGGTCCACA	TATCCATAGT	CACTATATAC	GAGAATTTCG	3720
СТАТТСТТАТ	GGAGCTGTTG	ATGCCTATAC	AGGCGAATCA	TTTTTCTTAA	TAGCTGGTAG	3780
ATGTAATACT	GAGTGGATGA	ACGCCTTTTT	AGAAGAGCTT	TCACAAGCTT	ATCCTTTTAC	3840
TCGTTATGGA	CAATGCTATA	TGGCATAAAT	CAAGTACCTT	AAAGATTCCG	ACTAATATTG	3900
GTTTTGCATT	TATTCCTCCA	TACACACCAG	AGATGAACCC	CATTGAACAA	GTGTGGAAAG	3960
AGATTCGTAA	ACGTGGATTT	AAGAATAAAG	CCTTTCGAAT	TTTGGAAGAT	GTCATGAATC	4020
AACTCCAAGA	TGTCATACAA	GGATTGGAGA	AGGAGGTGAT	AAAGTCCATC	GTTAATCGGA	4080
GATGGACTAG	AATGCTTTTT	GAAAGCAGAT	GAGTATTATA	TGCAATTTCT	AAAATATATT	4140
AGACCGGATT	GCTCCGATCT	TTCAATAGTT	CATATTCTCA	ATTTCTATTT	TAAAAATAGC	4200
TAAGGTTAAC	GTCAAATGAC	TACGCGACCT	ATTTCATACG	ATAAAAATCA	AGCACTAGAC	4260
CAGCAGGTCC	TTGAACTAAT	AAGGACTCTG	TTCCCCAATC	GGTTACAGTT	GGTCCGTGTA	4320
AAACCTTTAT	ACCAAGCTCG	TTCAACCGTT	TGTAGTTCTG	GTCTACATCC	TCAACCTCGA	4380
TATGAATAAT	GATTCCTGAC	TGAAAGTTTT	CCAAAGGAAC	CAAATGATTT	TGTGACAACA	4440
TAAGGCAGTG	ACTACCAATC	GTAAACTGAG	CAAAACCATC	ATTAGCATAA	TCTGCCTTTT	4500
TATCCAAGAT	ATGCTCCAAG	TCAGCACAGA	CTTGGGGAAC	ATTTGAAACG	ATAATATCTA	4560
ATTGATTTAA	ATTCATTTAC	TCTCCTCCAT	AAAAAGACCG	GATTGCTCCG	ATCTTTTAAA	4620
GTTCTGCTCT	ATGAAAATCA	AAGAATAAAG	TCTACAAGTT	TCATATTTGA	TTTTCGGCGA	4680
GAGGAATTAT	TTAATTGCGC	GTGATTGCAA	TCCTTCTTCT	TCCAAGAAGA	GACGGAATGG	4740
TACGAGTTCT	TCTGCTTCGT	ATTTTTCCTT	GAAGGCTTTG	ATAGCTTCTT	CTGAGTGAAG	4800
TTTTGGATCC	: AATTCAAGTA	CTTCTACTGG	AAGTGGACGG	TGTTGAGTGA	TGCGAGCATC	4860
GATGACAACA	GTTTTACCTT	CTTTGTTCAA	TTTAACAGCT	TCTGCAACAA	CTGCATCGAT	4920
GTCTTCGATA	CGGTCAACTG	TGAATCCAAC	AGCTCCTTGA	GCTTCCGCAA	TTTTAGCGTA	4980
GTCAGCGTTT	GTGAAGTCTA	CACCAAACAA	GTGTTTGTTT	GTATCTTCGT	ATTTGTTCTT	5040
GATGAAGCCG	TACTCAGCAT	TTGAGAAGAG	AAGGTTGATA	ACTGGAAGGT	CGTATTGAAC	5100

434 GTTTGTGATA ACGTCTGGGT AGCACATGTT GAATGCTCCG TCACCCATGA TGTTCCATAC 5160 TTGGCGATCT GGATTGTCTT TCTTAGCAGC GATACCACCA GGAAGGGCAA TACCCATTGT 5220 CGCAAAGAGT GGAGATGTAC GCCACATGTT CTTAGGTGTC ATGTGAAGGT GACGAGTAGA 5280 TGTTTGAGTA GTGTTACCTA CGTCGATTGA GTAGATAGCG TCTTGATCAG CATGTTTGTT 5340 GATTGCATTG TAAACTTGAT ACAATTGCAA TTCACCCTCA GTTTTACCTT CGAGTTTGTT 5400 CATGTAATCA CGCCAGTTTT GGTTGTTCTT AACGTTTGCA CGCCACCATG GAGTTGATTC 5460 AACTGGGTTT ACTTTGTCAA GGATAGCTTT AGCTGCTTGA CCAGCATCAC CAAGGATTGA 5520 AGCGTCAAGG GCATGACGTT TACCAAGTTT GTAAGGGTCG ATATCGACTT GGATGAATTT 5580 TTCAGTGTTC TTGAATGCTT CGTAAACTTC AGCAAATGGG AAGTTTGAAC CAAGGAAAAG 5640 AACTGTGTCT GCTTCAAAGA CCACTTCGTT GGCTGGTTTC CAACCAACAC GGTAAGCAGA 5700 ACCTGTCAAA CCTTCATAGT TCCATTCGAA AGCTTCAAAG TTTTTACCAG TTGTGATGAT 5760 TGGTGCTTTG ATTTTACGTG ACAATTCAGT AATCACTTCA CCAGCTTTAA CACCACCAAA 5820 TCCAGCATAG ATAACTGGGC GTTCAGCATT GTTCAAGATT TCAACAGCTT TGTCGATTTC 5880 AACTTCGTTC AAAGCAGGAG CGATGAATGA GCGTTCGTAT GAACCTGAAC CGTAGTATGA 5940 GTTTTCATCG ATTTCTTGGA AACCGAAGTT TACTGGAATT TCAACAACAG CTGGACCTTT 6000 TTTAGAAACT GCAGCACGGC AGGCTTCGTC AATTACTTTT GGCAATTGCT CAGCGTAAGC 6060 TACACGTTTG TTGTAAACAG CGATACCGTT GTACATTGGG TTTTGGTTAA GCTCTTGGAA 6120 AGCATCCATG TTCAATTCGT TAACTGGACG TGATCCAAGG ATCGCTAGGA ATGGAGTGTT 6180 ATCCATAGCT GCATCGTAAA CACCGTTAAT CAAGTGAGTC GCACCTGGAC CACCTGAACC 6240 AACTGCAACC CCGATTGAGC CGCCGAATTT AGCTTGCATA ACCGCTGCAA GAGCACCTGT 6300 CTCTTCGTGG CGAACTTGTA AGAAACGGAT ATCTTTGTCT TCAGCCAAAG CGTCCATCAA 6360 TGAGCTGAGT GTTCCTGATG GGATACCGTA GATTGTATCT ACGCCCCATG TTTTCAATAC 6420 GTTAAGCATT GCTGCAGATG CAGTAATTTT CCCTTGAGTC ATAATGATAA CTCTCCTTCA 6480 ATTTTTTAA ACTTGGAGAA TACGATTACA TAGAATTGGA AACGTTCTCC AAATTTTTAC 6540 TATTCCACTG TATCATATTT ATGCTGACTT TTCTAAAAAT CTGCTCAAAA CTCTCTATTC 6600 TCTATTCTAA TACAGTTTTG AAAGTTCTGT CATTTCTGTT TTATAACAAA GAAATCTAGT 6660 CATTACTTTT AGTCTATTTT ACTAAAATTT AACAGAAGGG AACTGGTCAG AACAGATACA 6720 GAACTAAAGG CCATGGCTAG ACCTGCCAAT TCTGGGTTGA GAGCCAGTCC AACACCTGAA 6780 AAGACTCCTG CTGCAATCGG AATTCCGACA ACATTGTAGA TAAAAGCCCA GAAAAGATTG 6840

AGTAGAATTC GATGAAAGGT TTTCTTACTC ATATCAAAGG CACGAACCAC TCCTAAAAGA

TT.	ATTGGTTG	TCAACACCA	ATCTGCTGAC	TCGATGGCGA	TATCTGTTCC	AGCTCCCATA	696
GC.	AATCCCCA	CATCTGCTAC	ACTAAGGGCA	GGAGCGTCAT	TGATACCGTC	CCCAACAAAG	702
GC	ractttcc	CTGACTGTTC	CAGTTTATGG	ATTTCATCGC	CTTTTTCTTC	TGGCAAGACG	708
cc	rgc aa tga	CCTCTTCAAT	TCCGATTTGA	TCTGCAATAG	CACGCGCCAC	ACCAGCATTG	714
TC	rcc r gtca	GCATGACTGT	TCGGAGACCA	CGTTTTTTA	GCTGACTGAT	GGCTAGCTTA	7200
GC	ATTTTCCT	TAGGAATATC	TTGCAAAGCA	AGCAAGCCTT	TGATTTCATT	GTCAACAGCT	7260
AA	GAACACAA	CTGTCTTAGC	TTCTTTTCT	AGTTCTTCTA	GTTTATCTTG	ATAAGTATTA	7320
GA	AATATCCA	TGCCATCCAG	CATTTTAGCA	TTTCCAAGTA	AAACTTGTTT	TCCATTGATT	7380
CGG	CCTGAAA	CACCTTTCCC	GTGCAAGGAC	TGAAAATTTT	CAACAGTTTG	AAACTCAAGT	7440
CCA	GCTTCAC	TCGCTCGCTT	AACGATAGCC	TCAGCCAGTG	GGTGTTGAGA	AGCATCTTCC	7500
AAC	GAGGCTG	CCAACCCAAA	CACTTCTACT	TCGTCGCCGA	TGACATCTGT	TACCACAGGT	7560
TTC	CCTTCCG	TCAAAGTCCC	GGTCTTATCA	AAGACAAGGG	TTTGAACTTT	CTGGATTTCC	7620
TGT	AAGACAG	TTCCATTTTT	GAGGAGAACC	CCCATCTTGG	CACTACGTCC	TGTCCCCACC	7680
ATA	AGGGCTG	TCGGTGTTGC	AAGTCCCAAG	GCACAAGGAC	AGGCGATAAT	CAAAACCGCC	7740
ACT	CCGTAGA	GAAGAGAGGA	CACAAAGCTA	GCTCCAAGCA	CAACCACACT	ATCCCTGAGC	7800
AAC	ACGAACC	AAACCCAAAA	GGTCATGATT	CCTAAAATGA	CAACTACTGG	GACAAAAATC	7860
CCI	GAAATCT	TATCCGTCAA	GTCCTGAATC	GGCGCACGAC	TTGTCTGAGC	TTTCTTCACA	7920
AAA	TCCACAA	TCTGAGCCAA	AACAGTCTCT	GAGCCAACTT	TTTCTGCTCT	AAAGACAAGC	7980
GTI	CCACTAT	GATTGATGGT	TGAGCCAATG	ACAGTATCTC	CAACTGTCTT	GTCCACAGGC	8040
AGA	CTCTCAC	CTGTCACCAT	GGATTCGTCA	ATACTAGAGA	CACCTTCTAC	TACGACACCA	8100
TCA	ACAGCAA	TCTTTTCACC	GGGACGCACT	CGAATCAGGT	CGCCTACCTT	GACTTGTTCC	8160
AAA	GGAACTT	GGACATAACT	ATCATCACTC	AAGACTTCTG	CGGTTTTAGC	TTGCAAGTCC	8220
AGT	AATTTCT	CCACAGCTTG	GGACGTATTT	TTTCTCATTT	TTTCCTCAAA	AACTGCTCCC	8280
AAA	AGAACGA	AAAAGAGGAT	AAATCCAGCA	CTTTCGAAGT	AAACAGGGAG	ACCAGCAAAG	8340
AGA	GCAACTA	GGCTATAGAA	ATAAGCCACT	AGAGTTCCCA	GCGCAACCAA	GGTATCCATG	8400
TTG	GCATTGT	GCTTTTTAAA	ACTGGCCCAA	GCACTCTGGA	TATATGGCTT	ACCTGCAACT	8460
AAC	ATAATAG	GCGTTGTTGC	TAGAAAGGTT	CCCCAATGCA	TGACTTGATG	ACTAATGCTA	8520
CCT	GTCAACA	TCCCAATCAT	GAGAATCACA	AGAGGCACAG	TAAAGATACT	AGTAATCCAA	8580
AAA	CGTTGCA	GGAGAGATAG	AGATTTTCGA	GTCTTCTCAA	CGACTGTATA	GCTTCCCTTT	8640

			436			
TGCATCTTCA	TGCCACAAGA	AAATTCATGT	CGCCCTAATT	CTTGAGGCGT	AAAACGAATG	8700
ACTTTCTCCT	CATCTACGCC	GATTGGTTCC	AAGATACCTT	CTTCTTCAAA	CAGAATTTCC	8760
TTATAACAGT	TTGAAGGAGT	AGCACGATGA	AAGGTAATCT	CAGCTGGAAT	TCCCTTTTGA	8820
AGCTGGATAT	GGGCTGGATG	ATAGCCTTTT	TCAGCTCGGA	TACGGATTTT	TTGAATGCCA	8880
TTTTCTAAGC	TTGCTTTCAC	AATTTCTGTC	ATAGTCTCCA	CCTACTCTAC	AATCATCTTG	8940
CCGTGCATCA	TGTTCATACC	ACAAGCAAAG	CCAAACTCTC	CAGCCTGTTC	AGGCGTGATT	9000
TCCACTACAT	ACTCTTCCCC	CATTGGCAGG	TTCGCATGTA	CACCAAAATC	TGGAAAAACA	9060
ATTTGATCCA	GACATGGTGA	AGGATCCTTG	CGGTCAAAGA	CAATGCGTGC	TGGCACTGAT	9120
TTCTTGAGGA	CAATCAACTC	AGGAGTATAG	CCTCCCATGA	CTTCCACTCG	AATCTCTTGG	9180
TATCCGTTTT	TTTGCTGGGC	TTTTTGTCCA	GATTTTTCAG	GCTTTTTGAA	AAACCAAAAC	9240
AAGATAAACG	CGATAAGGC	AATACAAATA	ATGGTTACAA	TACTATTTAA	CATGACGTCT	9300
CCTTTACATA	CAATTACATC	TTACTTCTGT	TACAGCACTT	GATTTCTTCT	CTGAAATCAC	9360
AGCTTCCAAG	TCTTCCAAGT	CAGTCTGAGT	AAATTCACAT	TCTACAATCA	AGTCAGCCAA	9420
CAAATTCCTA	ATCCTACGGG	AACAAACCTT	GTCTTTGATA	TCTTGGACAA	GTAAATCCCG	9480
ACTTTGGTCT	AGAGTTAAAA	GGGCTGAATA	AACAAAGGAC	TTGCCTTCTT	TTTTCCGAGT	9540
CAAACACTCT	TTATCAACCA	GACGAGCCAA	AAGTGTCTGA	ACCGTGGACT	TGGACCAGTC	9600
AAACCGCTCT	GCCAAAACCC	TAATCAAATC	TGTACTGGTC	TGCTCCCCCT	GCATCCAAAT	9660
AATCTTCATG	ACCTGCCATT	CTGCATCTGA	AATCTGCATT	ACCATACCTC	CAAAATCTAC	9720
ATTTGTCAAT	TACACTCATC	AGTATACTCT	таааатстас	ATTTGTCAAT	TATAGAAATA	. 9780
ATATTTTCTT	CGAAAAATAG	AATTTTAATC	ATTTGAAAAA	CGATTTGCAG	TCAAATATTA	9840
CTATATAAAC	AATAAAAATA	TGCTATACTA	AAGAAAAAAG	AAAACAACCA	CTAGGGGTGC	9900
GTAAAGCTGA	GATTAACGAC	TGTTAGATCC	CTCTGACTCA	ATCTAGGTAA	TGCTAGCTGA	9960
TGGAAGTGGA	AATGATAATG	GGGACTAGCA	GTCTTCTATT	GCCTTTCTAA	AACAGACTAG	10020
CTTGTTCTTA	AGAATACAAA	CTTCAGTTGG	TTGGGAGGTT	TTAGATGACT	TATTTACCCG	10080
TTGCTTTGAC	CATTGCAGGG	ACTGACCCTA	GTGGTGGTGC	TGGCATTATG	GCAGATTTAA	10140
AGTCATTCCA	AGCGAGAGAT	GTCTATGGAA	TGGCTGTTGT	AACCAGTCTT	GTCGCTCAAA	10200
ATACCAGAGG	TGTTCAGCTA	ATCGAGCACG	TTTCTCCTCA	AATGTTGAAA	GCCCAATTGG	10260
AGAGTGTCTT	TTCTGATATT	CCACCTCAGG	CTGTAAAAAC	TGGAATGTTG	GCTACTACTG	10320
AAATCATGGA	AATCATCCAA	CCCTATCTTA	AAAAACTGGA	TTGTCCCTAT	GTCCTTGATC	10380
CTGTTATGGT	TGCTACAAGT	GGAGATGCCT	TGATTGACTC	AAATGCTAGA	GACTATCTCA	10440

AAACAAACT	T ACTACCTCT	A GCAACTATT.	A TTACGCCAA	A TCTTCCTGA	A GCAGAAGAGA	10500
TTGTTGGTT	T TTCAATCCA	T GACCCCGAA	G ACATGCAGC	G TGCTGGTCG	C CTGATTTTAA	10560
AAGAATTTG	G TCCTCAGTC	T GTGGTTATC	A AAGGCGGAC	A TCTCAAAGG	T GGTGCTAAAG	10620
ATTTCCTCT	T TACCAAGAA	T GAACAATTT	G TCTGGGAAA	G CCCACGAAT	T CAAACCTGTC	10680
ACACCCATG	G TACTGGATG	T ACCTTTGCT	G CAGTGATTA	C TGCTGAACT	A GCCAAGGGCA	10740
AGAGTCTTT	A CCAGGCAGT	T GATAAGGCC	A AGGCCTTTA	CACAAAAGC	T ATTCAAGATG	10800
CCCCTCAACT	r cggtcatgg:	r TCTGGTCCAC	TCAACCATAC	AACTTTTAA	A GATTAAGAAA	10860
AAAAACTCTC	TAGTTCCCA	C TTTAAGGGA	TTAGAGAGTT	TTTATACTC	r tcgaaaatct	10920
CTTCAAACTA	CGTCAGCTTC	CATCTGCAGO	CTCAAAACAC	TGTTTTGAG	TGACTTCGTC	10980
AGTCTTATCT	AAAACCTCAA	GGCAGTACTT	TGAGCAACCT	GCGACTAGC	TTCTAGTTTA	11040
CTCTTTGATT	TTCATTGAGT	r attaattagg	AAAGAATGTT	' ATGCAACTT	DDAAAAATTT	11100
CTTGCGTTTT	TGCCTCAATA	TCTTCTGCTT	GCATCAAATC	ACGTACAACA	GCTACACCAG	11160
CTATGCCAGT	GCCCATAAGC	TGATCAATAT	TCTCCGAAGT	CAAGCCTCCA	ATAGCAACTA	11220
CTGGAATGGC	AACCGTTTGG	CAAATTGTTT	TCAAGGTCGA	TATCAGAGTA	ATGGGCGCAT	11280
TTTCCTTGGT	GCTGGTTGGG	AAAATGGCTC	CTGTACCCAA	GTAATCTGCA	CCTGATTTCT	11340
CCGCTTCCAG	AGCTCTTTTA	ACCGTTTTAG	CGGTGACACC	GAGGATTTTT	TCAGGACCCA	11400
AGACTTTGCG	AGCTACCGAA	ACTGGTAATT	CATCATCTCC	GATATGCAGA	CCTGCTGCAT	11460
CAACCGCAAG	ACAAACATCC	AACCGATCAT	CGATTATCAA	GGGTACCTGA	TAAGCATCTG	11520
TTATTTCCTT	GACTTGTTTT	GCCAGTTGAT	AATATTGATT	GGTTGTGAGA	TTTTTTTCTC	11580
GCAATTGGAC	TATGGTAACC	CCTGAACGGC	AGGCCGTCTC	AACTTTTGCA	AGAAAGCTTT	11640
CCACGGAATC	TTGATAGCGA	TTGGTTACCA	GATATAGTCT	AAGTGCTTCT	CTATTCATAA	11700
ACCTCTCCTT	TGATGGTATC	TAGCCAATTT	TCATCTCTTC	TTAGGAGCGA	AAGCTGATTG	11760
AGTACTTGGT	AACGAAATTC	TTCCAATCCC	ATTCCTTGAA	CAACTATTTT	CTCAGCAGCG	11820
ATATTGAGAT	AAGAGACTGC	TAAGCAAGAA	GCTTCAAAAC	CAGTCTTTCC	TTGGCTGAGA	11880
AAAACAGCTG	TTAAGGCTCC	AACCAAGTCT	CCTGTCCCTG	TTATCCAGTC	TAATTCAGTA	11940
CAGCCATTTC	CCAGTACAGC	GACCTGATTT	TTCGAAACGA	CGAGGTCCTT	GGGACCTGTG	12000
ACTAAGAAAG	ACATACCAGG	ATAGGTCTGA	CACCAGTCTT	TCAAGACTTG	AAGCAAATCC	12060
TCCGTTTCTT	GATCTTTAGC	ACTCGCATCG	ACCCCAACGC	CGTGGTGCTT	TAATCCAACA	12120
AGACTTCGAA	TTTCTGACAT	GTTTCCTTTA	AGGACCGTAG	GTCTATAGTC	TAAAAGGTCT	12180
•						

TTAACTAAGC	TCTTACGAAT	GGATGAAGTC	438 GTTACGCCAA	CCGCATCTAC	TACCATCGGG	12240
AGAGAAGATT	GGTTTGCATA	CGAAGCTGCC	ATGCGGATTG	CTTTTTCCTT	CTCAGCTGAC	12300
AAATGCCCCA	AATTGATGAA	GAGAGCCTGA	CTTTGCTTAG	TAAAATCAAG	AACTTCACGG	12360
GAATCATCTG	CCATGACAGG	TTTGCATCCC	AGAGCCAAAA	TCCCATTTGC	CAGCATCTCA	12420
CAAGAAATCT	CATTGGTAAT	GCAGTGAATG	AGGGAACTAG	AGCCTATAGG	AAAGGGATTT	12480
GTAAATTCCT	GCATCAGTCT	ATCCTTTCAC	TAAAGAAATA	TCCCTGCACT	TTTTTAAAGA	12540
ATTCCTGCTT	GATTAAAAAT	CGAAAGGCAA	TAAAGGAAAT	CGCTGTACCA	ATCAAGGTTG	12600
CTCCGAAAAA	TCGAGGCGTG	TAGATAAACC	AGCTAAGCTT	AGCAGCTGAT	CCTGTAAAGA	12660
GTACCATAAC	AGGATAGGAA	ACAATGGAAC	CAATAATACC	TGTTCCCAAA	ATCTCTCCTA	12720
GAGCAGAATA	GTGAAATTTT	CGACCGTACT	TATAAAAGAG	ACCTGCTAGA	AGGGCTCCAA	12780
AAGTCGCTCC	TGTGAGAGCT	AAAGGCGGAA	TCCCTTGAGT	CGTCATACGG	ATAAAGGCTG	12840
TGACTGTAGC	CATAGCCAAG	GCATAAACAG	GTCCCATCAT	GATTCCTGCT	AGAATATTGA	12900
CTACACTGGA	CATCGGTGCC	ATTCCCTCAA	TTCGAAAGAT	AGGTGTAAGG	ACTACATCAA	12960
GGGCAATCAT	CATAGATAAA	ATGGTTAATT	TGTGAACTTG	TAATTGGTGC	TTTCTCATGC	13020
TTCTATTCTT	CTCCTTTTTC	TAAAGACTGT	AAATCGCTCT	TCCATGTCTG	GTGTTGGTAG	13080
GCCATTTCCC	AAAACTTGGC	TTCCATATGA	ACACTGATGT	GGAAGGCATC	TAGCATTTTT	13140
TGCTTGTCTG	TCTCGTCACT	TTCTCGATAG	AGCTGATTGA	CCAGTGCTCC	CTCCTCTCTG	13200
ATCTGTTGCT	CTAACTCATC	CGTAATATAA	GTTTCAATCC	ATTGTTGATA	GAGAGGATTT	13260
GGTGATGGTT	TAAGATTAAG	TGATTTGCCT	ATATCATGGT	ATAACCAAGG	ACAAGGAAGC	13320
AAGCTTGCAA	AAGCGATGGC	TAAGTTCGGT	TCTGCAAATT	GCCTATAAAT	ATGAGAAATG	13380
TAATGATAAC	AGGTTGGAGC	GATTGGATGT	TGCTCCATTT	CCTGGTCGCT	GATTTCCAAT	13440
TCCTTGAAAA	ATTGTTGGCG	AATAAATAAC	TCACCCTCCA	CTAAACCCTG	AGCATTTTGT	13500
TTCAAGAGTC	TTTTCATCTC	TTGGTTTGAA	GTCTTATCAG	CCAAAAGATG	ATAGATTTCT	13560
GAGAAAGCCT	TCAGATAGTA	GGCATCCTGA	ATCAGGTAAT	AGCGGAAAAT	GGCAGGTTCT	13620
AAATTCCCCT	CTTGTAATTG	TAAAATAAAG	GGATGATGAA	AGGAAGCCTG	CCAAGCTTTC	13680
TTGGATAATT	CCATCGCAAT	ATCTGTAAAT	TCCATAATAA	CTCCTTTATA	AAAATAGACT	13740
GGTTTGAAGC	AATAAAAAGA	AAAGCAGGTA	GATTAATTTT	GTTTTTTAG	GAATATAAAA	13800
AGTCCGATAG	CTATTCTTCA	ACTGTGCATG	TTCGTCATAT	CCGTGAGCAG	ATAGAGCTCT	13860
CAGGTAAAGA	TGGCGCCACC	TAAAGACTGT	CATCAGAACC	TTACTGTAAA	TCAAGGGCGA	13920
CCAAAAATGT	AGTTCTTGAC	CACGTAATAG	GCAAGCTTCT	TTGAGGGACT	TGATTTCTTC	13980

				 .		
CTGAATGAGA	GGAAAAGAAT	TGAATACCAC	AATCAAGGCA	TAGGACCAAG	AGCGTGATAG	14040
CCCCTTTTGA	GCCAAGTACA	AGAGAAGCTC	TTTTAGTGAA	ACAGAGGAAA	CAAAGACAAG	14100
GCCGATACAA	ACTGTCACAA	AGGCCCTCGT	TCCAAGCATG	ACTGCCTGTG	AAGCATCTCC	14160
GTGTAACTGA	ACTGCCCAGT	AGTTGGCAAA	AGATGGTAAA	ATGGCAAGTA	TGATCATCCA	14220
AGCTAACATT	TTAAATCGAC	GGTAATAGAG	CATAAAGAGA	ATACAAAATG	CGACTACCGA	14280
AAGAGTCAGA	GCAATCGAAG	GAATGAAAGA	TGTTTCCAAG	GATAAAATCA	GCAAGAAGAG	14340
ACTGATAATC	GGTGTCTGGG	TTGCTACTTT	GACCATACTA	TCTCACCTCC	CCTTGGGTAT	14400
TGCTACTCTG	AGATGTAAGT	GGTTTGGTAA	TGGTCACTTC	TTTCACATGC	CGAAGACCCT	14460
GACTAGTCAT	CTCAATCCAA	таатсаасса	CAGAAATCAA	AGGGTCTAAA	CGATGACTAA	14520
TGAGCAGAAA	ACTTCTTCCT	TGATTCCTCT	CCTCCACAAT	CCACTTGCAA	AAATAATGGC	14580
AGGCTCTATC	ATCCAAACCT	GCAAAAGGTT	CATCTAGCAA	GATCACGGAA	GCCTTACTGG	14640
TCAAGATGGT	CAGGAGCTGA	AGAATTTTTT	GCTGACCACC	ACTTAATTGA	TAGGGACTCT	14700
TATCGACTGC	CTGCTCCAAA	TCAAAATATC	GTAAAGCTTG	AAAAATCCGC	TGATTTCTTT	14760
CAGAATCAGG	TCCATCTAAT	TGAAGCTCCT	CTCGCAGACT	GACTCGGATA	AACTGCTTCT	14820
CAGCTTCCTG	AACAACACCA	GTCAGATCAC	GATACAAACT	CTTTTTCTTT	TTCAGGACCG	14880
AACCCTTCCA	AGTAATGCTC	CCCTTATACT	TTTGAAATTG	AAGAATAGAC	CGAAAGAGGG	14940
TTGATTTCCC	GACACCATTG	TCACCCAGGA	TACAGGAAAT	CCCTTGATAG	AATGTGAAAT	15000
CAGCAATTGA	AAAGAGGGGG	CGATTACCAA	GCTCACCAGT	CACACGGTTC	ATATGGAATA	15060
GTTCCGGGCT	AGAAGCAACT	TCCTTTGAAG	CAACCTGTGT	CATCTCATAG	GAAGGGATTT	15120
GAAACACTTC	CCTTAGTTTT	CCGTCTCTTA	GCTCCACCAT	ATGGTCGATA	TAGGCTTTAT	15180
AGTCAGATAA	ATCATGGTCG	CACAAAATAA	CTGTCTTCCC	ATCATAGACC	AACTCTTTTA	1,5240
GAATCTCCAA	TATCTCGATT	CTGCTCTTGC	GGTCAATGGA	AGCGAAGGGC	TCATCCAAGA	15300
GATAGACCCT	AGGATTCATG	GCAAAGAGGA	CAGCCAGCGC	TGCTTTTTGC	TTTTCCCCAC	15360
CTGATAAGTG	ATGGATGAGA	CGGTGCAAGA	TGTCCTTGCA	ACGACATTGC	TGGACAACCT	15420
CTGCTATTTT	AGAATCAATT	TCCTGAAGGT	GATAGCCGAT	ATTTTCCATG	GTAAAAACCA	15480
ACTCCTCAAA	CAAGCTCTCC	ATGGTAAATT	GATGATTAGG	ATTTTGCAAG	AGAATACCAA	15540
CCGTCTGGAC	ACGTTCGACG	ATAGAAAGCT	GACTGACCTC	GCTCCCATCT	ATCAGGACTT	15600
GACCGCTATA	GGGAAGAGAA	CTAACTTGGG	CAATCATTTG	AAAGAGGCTG	GATTTTCCAG	15660
ACCCACTACT	CCCAACTAAC	AAGGTAAAGG	CTTGCGCATG	AAAAGTAAAA	TCAAACGCCT	15720

			440	a.mam.maam	mmmccmcc » C	15780
	TGGGGACTGA					
	ATGATAGAGT					15840
CAGAAATAAA	ACGTACCACA	AGCAAGGAAA	GGACAAACGG	AAGGGAAAAG	GCGTAGTAAC	15900
СТААСТТААТ	GTATTCATAG	ACAAAGCTAA	CAAGCGTAAT	CCCAATACTA	TTAGCAGTTA	15960
GAGAGAGCCA	ACTTTCATAG	CGATTCTTAG	TTACGATAAA	ACCAAATTCA	CTTCCCAAAC	16020
CTTGAACAAA	GCCAGACAAA	AGAGCTCCTA	GACCAAATTG	GCTACCATAA	AGGACTTCAG	16080
CAAGCGCAGC	TAGCACTTCT	CCAATCGTTG	CACTTCCGAC	TCTCGGAACA	AAGATGGCAG	15140
CAATGGGCGC	AGCCATACAC	CAGAGACCGA	AGAGGATTTC	ATTGGCAAAG	GCCTGCAAAC	16200
CAAGAGGTGT	TAAGAGTAGA	CTGAGAATAT	TATACACATA	TCCTGAACCA	ACGAAAACCC	16260
CACCAAAAAA	GATAGACAAG	AAAGCAAGCA	AGATAACATC	TTTTAACTGC	CATTTTTTCA	16320
АСАТААААА	CTCCTTTTTT	TAAAGAAAAG	TGAGGCACTC	AAGAAGACCG	ACCTAAATAC	16380
TTTGTATAGC	AGACTGAATT	TAGAACAGTA	CACAAGAACA	CTAAAATATT	TCTAGAAATT	16440
AATTTGAATT	TTCTAATTGA	TTTGTTCGCA	TCTTATTTCA	ATCTACTATA	TCATCTTCAT	16500
CCAGTTTCGT	AAAAGAAAA	ACTCTAATTA	CAGATACAAA	TTAGAGTTCA	GCTTACAAGA	16560
TTAGACAGTT	CTTTTCGACA	TACGAAAAA	ACATTTCACA	TTTCCCTTCG	CCAGTCTTAA	16620
CTGTATCAGG	TTCAATGGGT	ATCATCTCAG	CCTAAAGCAC	CCCAAATGTC	TTTATTATTT	16680
AATTATGTGA	TTATTATAAC	ACACATTTTA	TACTAGTTCA	AGAAATTGAA	CTGGAAATAC	16740
AGCCTTGCAC	TCACAAAGAC	AGCAGATCTT	TCTTTTGCAA	AAAACAAATO	ACCTGTTTGA	16800
TGAATTAGCC	ATTCAAGCTG	AATCTGGACA	TAGCTTTTTA	AAAAAGGAAA	ATCCTACTTA	16860
CTTAGAATC	AAGGATAGAT	ATCTATTGTT	CACTCATTTC	CCGAACAGTT	TTTTCTATAT	16920
TTTTTGCAT	CGATATTGCC	GAAATGATTO	AAACGCCATC	CATATTGGT	TTTATAATGT	16980
CTTTAATAT	TTTCGTCTGT	ATCCCACCA	TTGCAACTAA	A AGGCATTTGT	GGCAATAGTT	17040
TTCTCATCA	TTCAAGACC1	TCATAACCT	A TAGTACCACO	AGCATCATC	TTTGACTGGG	17100
TACCAAATAG	AGGCCCAACA	CCTACATAA	CTACATATTO	AACTTTTGAT	TGTTGAAATT	17160
CTTCTTCGT	r TCTTATAGAJ	A AGACCAATT	A TTTTATCTG	CATCAATTT	CTAATTTCAT	17220
CAACACCAA	r ATCATCTTG	A CCTACATGT	A CGCCATCGG	C GTCAATTTC	C ATTGCTAAAT	17280
CTATATCGT	C ATTAACGATA	A AATGGAACA	T TGTATTTT	T ACAAAGTTC	T TTAATTTGGA	17340
					T CGAAATTGAA	17400
ATAAGGTTA	r accaccitt	T AAGGCTTCC	T CAACGACTG	T ĄTATAGATT	T TTTCCTTGGC	17460
•					C ATCTTACTTC	17520

ACTCTTTTGA	ATTCCTTTAC	ATCTTCATCT	GTAATCTCGT	ATAAGGCATT	TATAAATTCA	17580
ACTTTAAATG	TCCCAGGAAG	ATGTCCATTT	GGACGTTTTT	CTGCTATTTC	TCCAGCGATA	17640
TTGTAAACCA	ACACTGCTGT	TTTTAATGAT	TTCAATTCTT	GACCTTTTTC	TAGTCCGATA	17700
AAGCTTGCTA	CTACAGCTCC	TAATAAGCAT	CCTGTCCCAA	TGACTTTCGG	CATCATAGCA	17760
CTACCATTAT	GAATCATTAC	CACTTCTCCA	TTAACAGCAA	TGGCATCCAC	TTCACCTGTT	17820
ACTACTATTG	GAATATTGAA	CTTCTCATTT	GCTGCTAGAG	CAATTTCGTC	AATATTATCT	17880
ACGCCCGCAC	TATCTACTCC	TTTAGATGCC	ACATCTATTC	CTACTAAAGA	GGCAATCTCG	17940
CCAGCATTTC	CTCTAATCGC	TGCTAGTTTA	TAATTGTTGA	TTAGATCATC	TGCTACTTTT	18000
TTTCTATATT	CTCCTGCTCC	ACAGGCTACA	GGATCTAAAA	CTGCTGGGAC	ATTATATTTC	18060
TCTGCAATTT	TCAGAGCAGC	TTGGTATAAT	TTCCAATTTT	CATCTGTCAA	TGTTCCTATG	18120
TTTATTAATA	AACCACCAGC	ATACTTTAAC	AAATCCTCTA	AATCTGCTGG	AAACTCACTC	18180
ATGGCTGGTG	AGGCGCCCAG	TGCTACTAAT	CCATTTGCTG	TGAAATTTTT	TACTACATCA	18240
TTGGTTATAC	AAATGACCAA	TGGTGCTTTT	TCTTTTAATA	ATTTTAAACT	TGTCATATTG	19300
AAATCCTTCC	TTTTCACTTT	ATACGATCTA	CTAATTTCGA	TTTATCTTTA	GTTGAGAATT	18360
TTTTTCATTT	ACATTGAATG	ATTTATACTC	AATGAAAATC	AAAGAGCAAA	CTAGGAGGCT	18420
AACCGCAGGT	TGCTCAAAAC	ACTGTTTTGA	GGTTGTGGAT	AGAACTGACG	TGGTTTGAAG	18490
AGATTTTCGA	AGAGTCTTAC	CTCATCAAAT	TTGTAAATAT	CATGAGCCTT	CTCTAGACAT	18540
CGTAACCAAT	ΛΤΟΑΑΑΑΑΑ	GCTAATTCTA	AAGCGACTGC	TTGATTCCAG	CGTTGCTGAA	18600
GTTCTGTCAA	ATCTTCTCGA	TTTTTACCGA	CACGATTGAG	TTCGTCAACC	AGAAATTGAA	18660
CCCACTCTGC	AAAGAAAGGA	CCTCTGTGGA	GATTGATCCA	TTCCGAATGA	ATATAGACTT	18720
CAGGTAAAGC	CAAATCTTTA	GAACCCCAGT	CTAAATAGAG	ACCTTCTGCA	ATGACCAGCA	18780
TGACCAAAAG	ATGGGCATAG	TCTGATGAAG	CCACCGCCGA	ATACATTAGA	TCCTGAAAGG	18840
CTTTTGTTAC	AGGGTGCAAA	GTCACTTCTA	GATAGTCATT	CTCTGCTACT	TTTAACTCTT	18900
TAAAAGCCTT	TTGGAAATAA	CCATCTTCAT	CTGCTTCAAG	AAAGCCTAGT	TGCTTGGCAA	18960
AACGAAGCTT	GGATTCAAGT	TTATCTGCGT	GACTACGCAG	GCACCCAGCA	TGGATAAGAA	19020
GGCATCAAAG	AAGTGATAAT	CTTGAATCAG	ATAGTCCTTT	AAGACCTTAT	TCTCAATTGT	19080
CCCCGCAAAA	AGTTCCTTAA	CAAAACGATG	ATTGATTGCA	GCCTGCCAAT	CCTTCTGACT	19140
GCTTTTTAAT	AATTCTCCAA	CAGTCAAACC	TGGCTGAAAT	GCATAGTCTT	GTGTTTCCAT	19200
ATTTACTTCT	CCTCTCTTTA	CTTGTTAGTA	ALAATAATTA	CACCAAGAAA	TATCAAGCAA	19260

		443			
AATCGTAATT CCACTTGATC	CTTTTAAAGC	442 ACATCGAGAG	CATT" FIAGA	GAGCTAACTA	19320
AACAAGCCTA TCCAGTTTAT	ATAAACAAAA	AACTCCAATT	ACAATCAAGA	ATTAGAGTTG	19380
ACTTACAAGA TTAGACCGTT	CATTTCACCA	TACGAAAAAA	CTGTTCACAT	TTCCCTTCGC	19440
CAGTCTTAAC TGTATCAGGT	TCAATGGGTA	TTATCTCAGC	CTAAAGCACC	CCAAATGTCT	19500
CTATTATTTA ACTACTGAAC	CAGTATAGCA	AAAAATGAAA	GCCCTAGCAA	GATATTTGAC	19560
CGAAAAATAT CTTTATATAT	AATATATTGA	AACTAGAATA	GTACACCTCT	ACTTATAAAA	19620
CATTGTTAGA AATCGATTTG	ACTGTCCTGA	TTGATTTGTC	CTATTCTTAT	TTCATTTTAC	19680
TATAGTTTTC GATAGCAATT	TATTCTTCCA	ATACACGAAG	AAAAACCTCC	ACATTCAGTG	19740
GAGGCAATCT GTTTTATCAA	TACAATTTTA	AGTCACGAGG	GTCAACTGGG	AAGGTTGGGT	19800
TGTATGGATT GTGACGGAGC	TTGAAGTGTT	TGACATCTTC	AATGGTCTGA	GTTCCAGACA	19860
ATTGCATAAC TGTCTTCAAT	TCCGCATTCA	AGTGTTCAAA	GACTTGACGC	ACACCGACAC	19920
TACCACCGAG AGCCAAGCCA	TAGATGACAG	GGCGTCCAAT	AGCAACCAAG	TCTGCTCCTG	19980
ATGCCAAGGC TTTAAAGACG	TGTTGACCAC	GACGAACACC	AGAGTCAAAG	ACAATCGGCA	20040
CACGTCTATC AACTGCTTCT	GCCACTTCTT	GAAGCGAGTC	AAAGGCAGCT	GGTCCACCGT	20100
CGATTTGACG ACCACCGTGG	TTGGTTACCC	AGATACCAGA	AGCTCCTGCA	GCAAGCGAAC	20160
GTTCAACGTC CTCACGGCAT	TGTGGTCCCT	TGACATACAC	AGGAAGACCA	GAGTATTCAG	20220
CGATAAATTC TACATCGCGT	GGAGACAAG	GTTGTTTAGG	TGATTTGTA	ACAAAGTCCA	20280
TTGATTTACC AGCACCTTCT	GGCAGGTAT	CTTCAACAA1	CGGCATGCCA	ACTGGGAAGA	20340
CAAAACCATT ACGCTTATCC	ACTTCACGAT	TCCCCCTAC	AGTAGCATC	r GCCGTCAAGA	20400
CAATCGCTTT ATAACCTTCA	GCCTTCACA	GGTCCATGAT	T GTGGCGGTT	ATACCGTCAT	20460
CCTTACTAAA GTAAAATTGA	A AACCAATGA	GTGTCCCTTC	G GAGGGCTTC	A GAAATCTCTG	20520
GAAGGTCAAC AGTAGAGTA	A GAACTGGTT	C TATAAAGAG	A ACCAAACTC	A TGCACACCAC	20580
GCGCAGTCGC CACTTCCCCC	C TGTTCATTT	G CCAATTTAT	G AGCCGCAAC	A GGTGCCATAA	20640
TGATTGGAGA AGATAGTTT	r TCACCTGCA	A ATTCAATCT	C TGTACTTGG	A TTTTCTACAT	20700
TGCAAAGTGT ATGAGGAAC	G ATGAGCTTG	T GGTTAAAGG	C ACGGATATT	C TCTCTTAAAG	20760
TGAAAGTATC TTCCGCCCC.	A CTAGCGATA	T AGCCAAATG	C TGCTTTAGG	A ATAACTTGTT	20820
GCGCCATTGG CTCCAAATC	A TAGGTATTG	A TGAArTCTA	C ATGACCTTC	T GCATTGCTTG	20880
TTTTGTATGA CATAAAATG	T CCTCCTTAA	T AAGTAAGCG	T TTACTTTGT	G TATTACAAAA	20940
ATATCTTAAC TCTTTTCA	A AACTTTTAA	A ATATTTTGT	T TGGAAATTT	C AGAAATTTTA	21000
TGTCTATGAT AAAAATCCT	T ATAACGGCA	A TAAAAAATA	G ATATTATCO	A AAGAAGATTT	21060

TAAGTGCTAC	AATAACTGTA	TTATTTCTAG	ATGGGAGGTT	CTATTTTTGG	ATTGATCCAT	21120
TGTTGAACAA	TATCTACCAC	TATATCAAAA	GGCATTCTTT	CTGACCTTGC	ATATTGCAGT	21180
TTGGGGAATT	TTGGGATCCT	TTCTGCTCGG	TTTAATCGTT	AGTATCATCC	GACATTATCG	21240
AATCCTTGTT	TTGGCGCAAG	TAGCGACAGC	CTACATTGAA	TTGTCACGTA	ATACGCCCCT	21300
TTTGATTCAA	CTCTTCTTTC	TCTACTTCGG	TCTTCCCCGA	ATCGGGATTG	TCCTATCTTC	21360
AGAAGTCTGT	GCAACGCTTG	GGCTTGTCTT	TTTAGGAGGC	TCCTATATGG	CAGAATCTTT	21420
CCGAAGTGGG	CTGGAAGCCA	TCAGTCAAAC	CCAGCAGGAG	ATTGGCCTCG	CTATTGGTCT	21480
GACACCTCTA	CAGGTCTTTT	ACTATGTGGT	TCTTCCGCAA	GCAACAGCGG	TGGCACTCCC	21540
CTCCTTTAGT	GCCAATGTCA	TTTTCCTTAT	CAAGGAAACC	TCTGTTTTCT	CAGCAGTGGC	21600
TTTGGCCGAC	CTCATGTACG	TCGCCAAGGA	TTTGATTGGT	CTCTACTATG	AGACAGACAT	21660
TGCGCTAGCT	ATGTTGGTAG	TTGCTTATCT	AATCATGCTG	CTACCCATCT	CACTGGTCTT	21720
TAGCTGGATA	GAAAGGAGGC	TCCGCCATGC	AGGATTCGGG	AATCCAAGTA	CTCTTTCAAG	21780
GAAATAATCT	CCTGAGAATC	TTACAGGGAT	TGGGCGTTAC	GATTGGGATA	TCCATCCTGT	21840
CTGTCCTCTT	ATCCATGATG	TTCAGAACAG	TCATGGGAAT	CATCATGACC	TCCCATTCTA	21900
GAATCATACG	ATTTTTAACA	CGATTGTATC	TGGAATTTAT	CCGTATCATG	CCCCAGCTGG	21960
TGCTACTCTT	CATCGTTTAC	TTTGGCTTGG	CTCGAAACTT	TAATATCAAT	ATCTCAGGTG	22020
AGACTTCAGC	TATTATCGTT	TTTACCCTCT	GGGGAACAGC	TGAAATGGGA	GACTTGGTAC	22080
GTGGAGCTAT	CACTTCTCTC	CCTAAACATC	AGTTTGAAAG	TGGACAGGCA	CTCGGCTTGA	22140
CTAATGTTCA	ACTTTACTAC	CACATCATCA	TCCCACAAGT	CTTAAGAAGA	CTGCTACCGC	22200
AGGCTATCAA	TCTTGTCACT	CGGATGATTA	AAACCACTTC	ATTAGTTGTT	TTGATTGGGG	22260
TTGTGGAAGT	GACCAAAGTT	GGACAACAAA	TCATCGATAG	CAATCGCCTG	ACCATCCCAA	22320
CTGCTTCATT	TTGGATTTAT	GGAACCATTC	TAATCTTATA	TTTCGCAGTT	TGCTACCCTA	22380
TTTCCAAACT	ATCCACTCAC	TTAGAAAAAC	ATTGGAGAAA	CTAAATGTCT	GAAACTATCT	22440
TAGAAATCAA	GGAACTAAAA	AAATCCTTCG	GAGACAATCC	CATCCTCCAA	GGACTTTCTC	22500
TAGAAATCAA	AAAAGGGGAA	GTTGTTGTCA	TCCTAGGGCC	ATCTGGTTGT	GGGAAAAGTA	22560
CCCTCCTTCG	TTGCCTCAAC	GGCTTAGAAA	GTATTCAAGG	TGGAGATATT	CTTCTGGATG	22620
GTCAGTCTAT	CGTTGAAAAT	AAAAAAGATT	TTCACCTAGT	TCGCCAAAAG	ATTGGCATGG	22680
TCTTTCAAAG	TTATGAACTC	TTTCCCCATC	TGGATGTCTT	ACAAAACCTC	ATCCTAGGCC	22740
CTATCAAAGC	TCAAGGAAGG	GACAAGAAAG	AAGTAACGGA	AGAAGCTTTG	CAATTACTAG	22800

			444			
AGCGTGTCGG	TTTGCTGGAT	AAACAACATA	GCTTTGCCCG	TCAATTATCT	GGTGGACAGA	22860
AGCAACGTGT	TGCAATTGTC	CGTGCCCTCC	TAATGCATCC	AGAAATCATC	CTTTTTGACG	22920
AGGTGACTGC	TTCGCTGGAT	CCAGAAATGG	TGCGTGAGGT	GCTGGAACTT	ATCAATGATT	22980
TGGCCCAAGA	AGGCCGTACC	ATGATTTTAG	TAACCCACGA	AATGCAGTTT	GCCCAAGCCA	23040
TTACTGACCG	GATTATCTTC	CTCGACCAAG	GGAAAATCGC	TGAAGAAGGA	ACAGCTCAAG	23100
CCTTCTTTAC	CAATCCGCAA	ACCAAACGAG	CCCAGGAATT	TTTAAACGTC	TTTGACTTTA	23160
GCCAATTCGG	CTCATATCTA	TAAAGGAGAT	TCTTATGAAA	CTATTCAAAC	CACTCTTAAC	23220
TGTTTTAGCA	CTTGCCTTTG	CCCTTATCTT	TATCACTGCT	TGTAGCTCAG	GTGGAAACGC	23280
TGGTTCATCC	TCTGGAAAAA	CAACTGCCAA	AGCTCGCACT	ATCGATGAAA	TCAAAAAAAG	23340
CGGTGAACTG	CGAATCGCCG	TGTTTGGAGA	TAAAAAACCG	TTTGGCTACG	TTGACAATGA	23400
TGGTTCTTAC	CAAGGCTACG	CTACGATATT	GAACTAGGGA	ACCAACTAGC	TCAAGACCTT	23460
GGTGTCAAGG	TTAAATACAT	TTCAGTCGAT	GCTGCCAACC	GTGCGGAATA	CTTGATTTCA	23520
AACAAGGTAG	ATATTACTCT	TGCTAACTTT	ACAGTAACTG	ACGAACGTAA	GAAACAAGTT	23580
GATTTTGCCC	TTCCATATAT	GAAAGTTTCT	CTGGGTGTCG	TATCACCTAA	GACTGGTCTC	23640
ATTACAGACG	TCAAACAACT	TGAAGGTAAA	ACCTTAATTG	TCACAAAAGG	AACGACTGCT	23700
GAGACTTATT	TTGAAAAGAA	TCATCCAGAA	ATCAAACTCC	AAAAATACGA	CCAATACAGT	23760
GACTCTTACC	AAGCTCTTCT	TGACGGACGT	GGAGATGCCT	TTTCAACTGA	CAATACGGAA	23820
GTTCTAGCTT	GGGCGCTTGA	AAATAAAGGA	TTTGAAGTAG	GAATTACTTC	CCTCGGTGAT	23880
CCCGATACCA	TTGCGGCAGC	AGTTCAAAAA	GGCAACCAAG	AATTGCTAGA	CTTCATCAAT	23940
AAAGATATTG	AAAAATTAGG	CAAGGAAAAC	TTCTTCCACA	AGGCCTATGA	AAAGACACTT	24000
CACCCAACCT	ACGGTGACGC	TGCTAAAGCA	GATGACCTGG	TTGTTGAAGG	TGGAAAAGTT	24060
GATTAGTCAT	TAACTCTTAA	AAGGAACTGG	ATTTTAAGCT	CCAATCCCTT	TTTAAGATTT	24120
TACCTATAAC	ATCCTGAGTC	TATCTAAGAT	GTTCAATCTG	AACACAGTGT	ACATACTTTA	24180
TCTTCTATTG	CATATACTTT	ATCACATAAG	ATACGAATAT	CCTCTTCACT	ATGACTAGCA	24240
ATCAAAATTG	TTGTCCCTTT	TTCACTAGAG	AGCTTTCTAA	ACAATGTTCT	CATATTTTCT	24300
ACACTTGATT	TATCCAAGGC	ATTCATAGGT	TCATCTAGTA	AAAGAATAGA	GGGATTCTCC	24360
ATAATTGCTT	GAGCAATCCC	TAGCTTTTTC	CTCATACCTA	GCGAATAAGT	TTTAACTTTC	24420
TGGTCTTTTT	GCTCATATAG	ACCAACTATT	TTCAGTGTAT	CATTGATTTC	CTGATTACCA	24480
ACTACTCCTC	GTATGCTTGC	CAAATATTGT	AAATTCTTAA	AGCCACTATA	ATAATTTATA	24540
AAACCAGGTT	CTTCAATCAA	AGCTCCCAAA	TTAGCTGGAA	TTTTTCTCTC	AGGAACAATA	24600

445

TTTTCCCCAT TGATTAACAC TTCTCCATAA GACGGACTAT ATAAACCAGC TATTAATTTA 24660

AACAATACAC TTTTCCCTGA GCCATTCGCA CCAGTAATTC CTATAATTTC CCCCTGTTTA 24720

CAACTAAAGT TAAGGTTTTG AAAAACACAT GTCTTTTTTA ATTTCAACTC AATATTTTTT 24780

AATGTAATTA TTTCATTCAT TCTATAAACC TCCTCTTTTG ACGAGTGAAA TAGAAAATGC 24840

TTTGAAAAAG AAAGACTAAA AATAGCAACT GAAGAAATAA ATCTCGTCCT ATATCTCCAT 24900

TCCCTCGATT CAAAATATAA AATAGATAAT TAGTTCGATT TCCTACAAAT AGACCACCAA 24960

ACACAATCAT GAGTAAAAAG AAACTAACGC AAGCAAAGTT CG 25002

(2) INFORMATION FOR SEQ ID NO: 49:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11443 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

CAGGTACGGT GAGGCGCAAC TAAAATATAA TTTTCATCTT GATTAGGAAT TTTATCAGTA 60 TTATGATAGT GAGCATTGCC ATTGATGGAC CATAAGAGCA ATACAACTAA TCCACGCAAA 120 TAAGTATAAA ACATGCGATC TCCTTCGATT GTTTTCTTGT TATTATTATA CCTTATCAAA 180 GGAGGGCTGG CAAACTTTTC CCTTGACTAG ATACATATTT AGGATGAAAT TAGAATTCTG 240 TTAAAAAAA TGATATAATA GAATTTATGG ATAAAAATAA GATTATGGGA TTAACCCAAA 300 GAGAAGTCAA GGAAAGACAG GCTGAGGGTT TGGTCAATGA CTTTACCGCA TCAGCCAGTA 360 CCAGCACTTG GCAAATCGTT AAACGAAATG TCTTTACCCT TTTTAACGCT TTGAACTTTG 420 CCATTGCTTT GGCTCTTGCC TTTGTGCAGG CTTGGAGCAA TCTGGTCTTC TTTGCTGTTA 480 TCTGCTTTAA CGCTTTTTCT GGGATTGTGA CCGAGCTACG AGCCAAACAC ATGGTGGACA 540 AGCTCAATCT CATGACCAAG GAAAAGGTCA AAACCATCCG TGATGGTCAG GAAGTTGCTC 600 TTAATCCTGA AGAATTAGTG CTAGGAGATG TCATTCGTTT GTCTGCAGGA GAGCAGATTC 660 CTAGTGATGC CTTGGTTTTG GAAGGCTTTG CGGAAGTCAA TGAAGCCATG TTAACGGGAG 720 AAAGTGATTT GGTGCAAAAG GAAGTTGACG GCTTACTTTT GTCAGGAAGT TTCCTAGCCA 780 GTGGGTCAGT TTTATCTCAA GTTCACCATG TCGGTGCAGA CAACTATGCT GCCAAACTCA 840 TGCTTGAGGC TAAGACCGTT AAACCCATCA ACTCCCGTAT CATGAAATCG CTGGACAAGT 900 TGGCTGGTTT TACTGGGAAG ATTATCATTC CCTTTGGTCT GGCTCTCTTG CTGGAAGCCT 960

TGCTTTTAAA	AGGCCTGCCT	CTCAAGTCAT	446 CCGTTGTAAA	CTCGTCGACA	GCTCTTTTGG	1020
GAATGTTGCC	TAAGGGAATT	GCCCTTTTGA	CCATTACTTC	GCTCTTGACT	GCAGTGATTA	1080
AGTTGGGCTT	GAAAAAGGTC	TTGGTGCAGG	AGATGTACTC	TGTTGAGACC	TTGGCGCGCG	1140
TGGATATGCT	CTGTCTGGAC	AAGACGGGTA	CCATCACCCA	AGGAAAGATG	CAGGTGGAGG	1200
CTGTTCTTCC	GTTGACGGAA	ACGTATGGTG	AAGAGGCTAT	TGCCAGCATC	TTGACTAGCT	1260
ACATGGCCCA	TAGTGAGGAT	AAGAATCCAA	CTGCCCAAGC	CATTCGCCAG	CGTTTTGTGG	1320
GAGATGTTGC	TTATCCTATG	ATTTCCAATC	TTCCCTTCTC	GAGCGACCGC	AAGTGGGGGG	1380
CTATGGAGTT	AGAAGGCTTG	GGGACAGTTT	TCTTAGGGGC	ACCTGAGATG	TTGCTTGATT	1440
CTGAAGTCCC	AGAAGCTAGG	CAGGCCTTGG	AGAGAGGATC	ACGTGTCTTG	GTCTTAGCTC	1500
TCAGTCAGGA	GAAATTAGAC	CATCACAAAC	CACAGAAACC	ATCTGATATT	CAGGCTCTAG	1560
CCTTGCTGGA	AATCTTGGAC	CCCATTCGAG	AGGGAGCAGC	AGAGACGCTG	GACTATCTCC	1620
GTTCTCAGGA	GGTGGGACTC	AAGATTATCT	CTGGTGACAA	TCCAGTTACG	GTGTCCAGCA	1680
TTGCCCAGAA	GGCTGGTTTT	GCGGACTATC	ACAGCTATGT	AGATTGCTCA	AAAATCACCG	1740
ATGAGGAATT	GATGGECATG	GCGGAGGAGA	CAGCTATTT	CGGACGTGTT	TCCCCTCATC	1800
AAAAGAAACT	CATCATCCAA	ACGTTGAAAA	AAGCGGGACA	TACAACGGCT	ATGACAGGGG	1860
ACGGGGTTAA	TGATATCTTG	GCCCTTCGTG	AGGCGGATTG	TTCTATCGTG	ATGGCGGAGG	1920
GGGATCCAGC	AACCCGTCAG	ATTGCCAATC	TGGTTCTCTT	GAACTCAGAC	TTTAATGATG	1980
TTCCTGAGAT	TCTCTTCGAG	GGTCGTCGCG	TGGTCAATAA	CATTGCCCAC	ATCGCCCCGA	2040
TTTTCTTGAT	AAAGACCATC	TATTCCTTCC	TGTTAGCAGT	CATCTGTATT	GCCAGTGCTT	2100
TACTAGGTCG	GTCAGAGTGG	ATTTTGATTT	TCCCCTTCAT	TCCGATCCAG	ATTACCATGA	2160
TTGACCAGTT	TGTGGAAGGT	TTCCCACCAT	TOGTTOTGAC	TTTTGAGCGA	AATATCAAAC	2220
CTGTTGAGCA	GAATTTCCTC	AGAAAATCCA	TGCTTCGTGC	CCTACCAAGC	GCTCTCATGG	2280
TCGTCTTCAG	CGTCCTGTTT	GTGAAAATGT	TTGGCGCGAG	TCAAGGTTGG	TCTGAGTTAG	2340
AAATCTCAAC	TCTACTCTAT	TATCTCTTGG	GGTCAATTGG	TTTCTTATCC	GTATTTAGAG	2400
CCTGCATGCC	ATTTACCCTA	TGGCGTGTCC	TCTTGATTGT	TTGGTCAGTA	GGAGGTTTCC	2460
TAGCCACAGC	TCTCTTCCCA	AGAATTCAAA	AACTGCTTGA	AATTTCAACC	TTAACAGAAC	2520
AAACGTTGCC	TGTTTATGGT	GTCATGATGT	TGGTCTTTAC	CGTGATTTTC	ATCCTGACCA	2580
GTCGTTACCA	AGCGAAAAAA	TAAATCAAAA	CCACCAGTGT	GAACTGGTGG	TTTGTTCTGC	2640
GGCTATAAGC	CGCTTCTACC	GGCCAGGGCC	AAAGGCCCAC	CGAAATAGCT	TCCTCGCGCA	2700
CCACTTTCCC	GAGCAGGTGC	TAAAGCACCT	TAGTTACTTC	CTCTTATTTA	TTTCGCCAGT	2760

AAACGGATCT	ACTGACTCGA	ATAACGTGAG	стостстост	ACTCTGTCTT	CTTGTAATTG	2820
ATTCTGAATA	TATTCAGCTA	TCACTTTCTG	ATTACGGCCT	ACCGTATCTA	CATAATAGCC	2880
TCTACACCAA	AACTTGCGAT	TGCCATATTT	GTATTTTAAA	TTCGCATGCT	TATCAAAAAT	2940
CATCAAACTG	CTCTTGCCCT	TTAAATAGCC	CATAAAGGAC	GAAACACTAA	GTTTCGGAGG	3000
AATACTGATA	AGCATGTGAA	TATGGTCTGA	ACAAGCATTC	GCTTCATGGA	TTATTACACC	3060
CTTACGCTCA	CATAAGTCAC	GTATGATTCT	TCCGATACTA	GCTTTGTATC	TGCCATAAAT	3120
GATTTGACGA	CGATATTTGG	GTGCAAAAAC	AATATGATAT	TTACAATTCC	ATGTGGTATG	3180
TGATAAACTT	TGATTATCCT	CTCTCATGAG	GTACCTCCTG	TATGATATGT	TGTAGTGGCG	3240
GAGAAACCAC	TTCTATCTTA	TCATTTTAGG	AGGTTCTTTT	TGTTACCACG	CTAAAAGCTC	3300
TATGGAACCA	CTAGCATAGC	TAGTGGTTTT	CGGGAGACAA	CAAGAAAGAC	TGCAATCTGT	3360
GGATTGCAGT	TTTTTATACG	ATGGATCTAT	CGTAGATCTG	ATGTGCAAGG	CCTACGTGCC	3420
GATCATCTAT	CGGTGAACCC	AAGAGCGACC	CTCAAGCCTG	CTTGGATTGA	GGTAATAGAT	3480
TCAAATATCT	GTAGTTAGAC	TATTTGAAGT	TTGATGTAAG	AAAGAGAAAG	CGACAGATTG	3540
AAGTAATTTT	AACTCTCTTC	TATTGCTAGA	ACAAATGGTC	GGATAGGTTG	GTAGTTTGAA	3600
AATGAAGATG	CTATCTATTG	TTAAATGGAA	CATAGTGTTA	TTTATTAGAA	AATCGTTTGG	3660
TTTATTTCTT	ATCAAATACG	AAAAGCAACT	TAAATATTTC	AACTAAAATA	GATGTTATGA	3720
AGAAAAGGTA	AAATGATTTT	GGCATAGTGA	GGTTCTGTTC	TATTTGATAT	CATATTTTTG	3780
АТАААААСАА	AAATGTCCAT	TGCAAAGGAC	AAAATGCGAA	GTATATTATT	TTTTGAAAGC	3840
GATATAATGG	ATTCATAAAG	GAGGTGTATC	GTGTCTAGAA	AACAAGAACA	AATGGAAACG	3900
TTGTTGCTCC	TTTTGCGAGA	TAGTAAGGAT	TATATATCTG	CTAAAGTATT	GGGAGAAAA	3960
TTAAATTGCT	CTGATAAAAC	GGTTTATCGC	CTTGTCAAGG	GAATCAACAA	AGATTGTCCG	4020
GTAGAAGCAT	TCATTTTATC	TGAAAAAGGC	AGAGGTTTCA	AATTAAATCC	AAGAAGTTCC	4080
CTCGTGGACG	TTGATGGGAA	TTTTACAGAG	GCTTTTGATC	CTGAAGTAAG	GCGTGAAAAA	4140
TTACTAGAAC	GTCTCTTGTT	GACTGCTCCT	AAGCCACA'I'T	CTATTTATGA	TTTAGGAGAG	4200
GAATTCTACG	TAAGCGAGTC	AGTAGTACTA	AAAGATCGTC	AGATATTACA	AGAGAGTCTA	4260
GCAATTTATG	GGTTAGATTT	AAAAATGAGA	CAACGAAAGC	TTTTTATTGA	TGGGGATGAG	4320
GCTCAAATTC	GTTCAGCCAT	TCTAAATCTA	CTGCCAATGT	TTAATCAGTT	GGATTTAGAG	4380
CAAATTACAC	AGAATAAGGT	TCAGCCTCTT	GACGGAGAAC	TTGCTCACTT	TTGTTTGGGA	4440
TTACTGATTA	CACTTGAGAG	AGAATTGGGG	GTAAACATTC	CCTATCCATA	TAATATAAAT	4500

TTTTCTCTC ACCTGTATAT TTTTATCAGT AGGAATCGTC GTAGTACTAG TATTCATGTT	4560
TAGCACCTT CAAAACCTAC TATTGTTGAT GAGAAAATTT ACAGTGTCTG TCAAAAAATT	4620
TTCAAGAAA TTGAACAATA TTTTAGGATG AAGGTTGATG CAGTTGAGAT TGACTATCTT	4680
ATCAATACG TTGTATCTTC GAGATTGCAA AAACCATTTT CTTCCGGGAA GCTTCCTTTT	4740
CTCAGCGAG TTTTAGATGT CACTCATTAC TATTTTAGCC GTATGTGTAT GGACAATAGA	4800
GAGATTGAAA CGACAGATCC TGACTTTGTT GACTTGGCGA GTCATATCAG TCCCTTACTG	4860
AGGAGATTAG ATAATAGAGT ACAGATTAAG AATAGTCTTT TATCACAAAT TCTTTTAACC	4920
PATCCTAATC TGGTTAAAGA GTTAACAACT ATTTCTAAAG AAGTGAGTCT AGTATTTGGT	4980
TTTGCTTCCT TGAGTCTGGA CGAGATTGGT TTTCTAGTCT TATATTTTGC ACGGTTTCAA	5040
GAAAAGCGAG CACGTCCTCT AAAAACAGTA GTGATGTGTA CATCAGGTGT CGGAACTTCA	5100
GAGCTTTTAC GAGCACGATT AGAAAAGCAA TTTTCTGAAT TGGATATTAT TGATGTAGTT	5160
GCTTATCATC AATTAGATGA GCTGATAAAT CTATATCCAG ATTTAGATTT CATTGTGACG	5220
ACGGTAGCTT TGCAGGAACC AGCAAGTGTC CCGTTTGTCC TAGTTAGTGT TTTTCTAACC	5280
GAGGGTGATA AACAACGTCT TCAAGCAAAA ATTCAGGAGA TAAACTATGA ATAATCTTTC	5340
GCTTGTCCTT ATGGATATAT CTGTTCAAAA TCGTCAAGAA GCCTACAAAG AATTAGCAAA	54-00
TCAAATCAGC CTTCTTGTTT CTGAAGATAC AGAAAAAATA GAAGAGCTTC TATATTACCG	5460
TGAGAGACAG GGAAGTATAG AGGTTGCTAA AGGTGTTCTT CTACCACATT GTGAAGGAAA	5520
CTTTCAACAT CATGTCTTAG TGATTACTAG ATTAAAATCA CCTATCAGAG AATGGTCGAA	5580
GGATATCCAG TGTGTTGACC TTATTATCGG TTTGGCCATT GCAGTATCAC AGGACAAGTC	5640
ATGTATTAAA ACATTGATGA GAAGACTAGC AGATGAATCA TTCATAAATC AATTAAAACA	5700
GTTAACAAAA GAAGAATTAC GGGAGATAAT ATATGGAAAT CAAAGATATT CTTAATGTGA	5760
GTCTGATCCA GACGGATTTA CAGATGCAGA GCAAAGAAGA GGTTTTTGAG GCATTAGCTC	5820
AACTATTGGT TGAGACGGGT TATGTGTCTG ATAGAGACCA ATTTATCGAA GGTCTTTATC	5880
AGAGAGAGGC AGAAGGACAG ACCGGTATTG GGAATTATAT TGCTATTCCC CATAGCAAGA	594
GTTCTGCTGT GGAGAAGGCG GGGGTAGTCA TAGCTATAAA TCACAATGAG ATTCCTTGGG	600
AGACCATTGA TGGGAAAGGG GTCAAAGTAA TTGTACTCTT TGCAGTTGGT GATGATACAG	606
AAGCTGCTAG GGAGCATTTG AAGACCTTAT CACTCTTTGC TCGAAAACTT GGTAATGACG	612
AAGTTGTTGC CAAATTAGTT CGGGCTCAGA CATCTGATGA TGTGATTGCA GCTTTTTGTT	618
AATAAGAAAA AATTTTGGAG GGTATCCGTA TGAAAATTGT TGGTGTTGCA GCTTGTACTG	624
TOGGAATTGC CCACACTTAT ATTGCACAGG AAAAATTAGA GAATGCCGCA AAGGTAGCTG	630

GACATGTGAT	TCATGTTGAG	ACTCAGGGGA	CAATAGGGGT	AGAAAATGAA	TTGAGTCAAG	6360
AGCAGATTGA	TGCAGCGGAT	GTAGTTATTT	TAGCAGTTGA	TGTTAAGATT	TCTGGTATGG	6420
AACGCTTTGA	GGGTAAAAAG	ATTATCAAGG	TTCCAACAGA	AGTGGCAGTC	AAATCTCCCA	6480
ATAAACTGAT	TGCTAAAGCT	GTTGAGATTG	TTACGAAATA	ACTGAAAATA	TTTAAGGAGA	6540
AAATATATGT	TGAAACACTT	AAACTTAAAA	GGTCACTTAT	TGACAGCCAT	TTCCTATATG	6600
ATTCCAATTG	TTTGTGGTGC	AGGATTCTTA	GTTGCCATTG	GTTTAGCAAT	GGGGGGTGGT	6660
GTTCCTGACG	CTCTTGTAGC	AGGAAAATTC	ACTATCTGGG	ATGCTTTAGC	AACTATGGGT	6720
GGTAAAGCCC	TTGGTCTCTT	GCCAGTTGTT	ATTGCTACAG	GTTTGTCTTA	CTCGATTGCT	6780
GGTAAGCCAG	GGATTGCACC	AGGTTTTGTT	GTTGGTCTAA	TTGCCAATTC	TGTTGGTTCA	6840
GGGTTTATCG	GTGGTATCTT	GGGAGGTTAT	ATAGCTGGTT	TCTTGGTTCA	AGCGATTATT	6900
AAAAAGGTCA	AAGTACCAAA	CTGGATTAAA	GGTTTAATGC	CAACCTTGAT	TATTCCTTTT	6960
GTAGCCTCTT	TGGTAAGTAG	TTTGATTATG	ATTTATATTA	TTGGAGCGCC	TATCGCAGCC	7020
TTTACCAACT	GGTTGACGAG	CTTATTACAA	AGCTTGGGAA	GTGCTTCAAA	TGGTTTGATG	7080
GGGGCAGTTA	TTGGAATTCT	CAGTGCTGTT	GACTTTGGTG	GCCCACTTAA	TAAAACAGTC	7140
TATGCGTTTG	TGTTGACTTT	ACAGGCTGAA	GGTGTGAAAG	AACCATTGAC	TGCTTTACAA	7200
TTGGTGAATA	CTGCTACACC	AGTTGGATTT	GGATTGGCCT	ATTTTATCGC	GAAATTACTC	7260
AAAAAAAATA	TCTATACTCA	AGAGGAAATC	GAAACATTGA	AATCGGCTGT	TCCTATGGGG	7320
ATTGTCAATA	TTGTTGAAGC	TGTAATTCCG	ATTGTTATGA	ATAACTTGGT	TCCAGGTCTC	7380
ATTGCAACAG	GTATCGGTGG	TGCTGTTGGT	GGTGCTGTTT	CTTTGACAAT	GGGTGCTGAT	7440
TCTGCTGTGC	CATTTGGTGG	AGTGCTTATG	TTACCAACCA	TGACTCGTCC	AGTAGCTGGT	7500
ATTTGTGCCT	TGTTAGCTAA	CATTGTAGTC	ACAGGACTTG	TCTACGCGAT	TTTGAAAAA	7560
CCAATAAAAC	ATGCAGAACC	AGTTATGACT	GTTGAAGAAG	AGATTGATTT	GTCAGATATT	7620
GAAATTTTGT	AAGAGGGTAA	CGATGTCAAG	AATTGAATTT	TCACCATCTT	TGATGACCAT	7680
GGATTTGGAC	AAATTCAAAG	AGCAGATTAC	TTTTTTGAAT	GATAAAGTAG	CATCTTATCA	7740
TATCGATATT	ATGGATGGCC	ATTTTGTTCC	CAATATTACC	TTGTCTCCTT	GGTTCATTCA	7800
AGAAGTTCAA	AAAATTAGTG	ACACACCTTT	ATCAGTTCAT	CTGATGGTCA	CAGACCCAAC	7860
CTTTTGGGTA	GATCAAGTTC	TCGATTTACA	ATGTGAGTAT	ATTTGTATTC	ATGCTGAAGT	7920
TCTGAATGGT	CTTGCTTTTC	GTTTGATTGA	TAAAATTCAT	GATGCAGGTC	TAAAGGCTGG	7980
TGTTGTCCTT	AATCCTGAAA	CACCTGTTTC	TACAATCTTT	CCCTACATTG	ATTŢACTTGA	8040

CAAAGCAACT	ATTATGACTG	TAGATCCAGG	TTTTGCAGGA	CAACGCTTTT	TGGAGTCTAC	8100
CTTGTATAAA	ATCCAAGAAC	TCCGTCAGCT	TAGAGTTCAG	AATGGTTATC	ACTACATCAT	8160
TGAGATGGAT	GGTTCTTCGA	GTCGTAAGAC	TTTCAAACAA	ATTGATGTGG	CAGGACCAGA	8220
TATTTATGTT	ATAGGTCGCA	GTGGATTATT	TGGTTTGGAT	GACGATATTG	CCAAAGCCTG	8280
GGATATCTGT	TCTAGAGATT	ACGAAGAAAT	GACCGGAAAA	ACAATGCCAA	TCAAATAATG	8340
GTTTGAGAAG	AAATTTATTA	GTTAGGAGGA	ATATATGTCA	CTACAATCAG	TTAACGCCAT	8400
TCGTTTTCTT	GGCGTAGATG	CTATTAACAA	ATCTAATTCT	GGTCACCCGG	GAATTGTCAT	8460
GGGTGCTGCG	CCAATGGCTT	ATAGCCTATT	TACAAAGCAC	CTTAGAATTA	CACCTGAGCA	8520
GCCAAACTGG	ATTAACCGAG	ATCGCTTTAT	CTTGTCTGCG	GGTCATGGAT	CAATGCTACT	8580
GTATGCTCTC	TTGCATTTAA	CAGGGTATAA	GGATGTATCC	ATGGACGAGA	TTAAAAATTT	8640
CCGGCAATGG	GGATCTAAGA	CACCTGGTCA	TCCTGAAGTG	ACGCATACGT	CTGGTGTGGA	8700
TGCĢACATCT	GGTCCGCTTG	GTCAGGGGAT	TTCTACTGCC	GTTGGTTTCG	CCCAAGCAGA	8760
GCGTTTTTTA	GCTGCTAAGT	ACAACAAAGA	TGGTTTCCCT	ATTTTTGACC	ATTATACTTA	8820
TGTTATCGCT	GGAGACGGTG	ACTTCATGGA	AGGAGTGTCT	GCGGAGGCGG	CTTCTTATGC	8880
AGGTCATCAA	GCTTTAGATA	AGCTTATCGT	CCTCTACGAC	TCCAACGACA	TCTGCTTGGA	8940
TGGTGAGACC	AAAGATACTT	TCTCTGAAAA	TGTTCGCGTC	CGTTACGATG	CTTATGGTTG	9000
GCATACAGTT	CTGGTAGAAG	ATGGAACAGA	TTTAGCAGCA	ATTTCTACAG	CAATTGAGAC	9060
GGCCAAGTTT	TCTGGTAAAC	CGAGTTTGAT	TGAAGTGAAA	ACGGTAATTG	GTTACGGCTC	9120
ACCCAATAAA	AGTGGTACAA	ATGCTGTTCA	TGGTGCACCA	CTAGGAGCAG	AAGAAACAGG	9180
AGCAACTCGT	AAGTTTTTGG	GATGGGATTA	CGATCCATTT	GAAGTACCAG	AGGAAGTATA	9240
TTCTGATTTC	AAGACAAATG	TAGCGGATCG	TGGTCAGGAG	GCATACGATG	CTTGGGCTAG	9300
TTTGGTGTCT	GATTACAAGG	TTGCTTATCC	CGAAGTTGCT	AGTGAGATTG	ACGCTATTGT	9360
AGCTGGAAAA	TCCCCTGTAA	CCATTACTGA	AAAAGACTTC	CCTGTCTATG	AGAATGGCTT	9420
CTCTCAAGCA	ACTCGTAATT	CGTCCCAAGA	TGCTATTAAT	ACAGCAGCAG	TTTTACCAAC	9480
CTTCTTAGGT	GGATCGGCAG	ACTTAGCTCA	CTCTAACATG	ACCTACATCA	AGGCAGATGG	9540
CTTACAAGAT	AAATATAATC	CATTAAACCG	CAATATTCAG	TTTGGGGTAC	GTGAATTTGC	9600
CATGGGAACA	ATCCTCAATG	GAATGGCTCT	TCATGGTGGT	TTACGAGTTI	ATGGCGGAAC	9660
CTTCTTTGTT	TTCTCTGACT	ACGTCAAAGC	TGCTATTCGG	CTATCAGCCA	TTCAGGAGTT	9720
GCCTGTAACT	TATGTCTTTA	CCCATGATTC	: AATTGCCGTT	GGTGAAGATC	GTCCAACTCA	9780
TGAACCAGTI	GAACATTTGG	CAGGTTTACC	CTCAATGCCA	AACTTGACT	TTATCCGTCC	9840

				 .		
AGCGGATGCC	CGTGAAACTC	AAGCGGCTTG	GCATCATGCC	TTGACUAGTA	CCACCACTCC	9900
AACTGTCATT	GTCTTAACCC	GTCAAAACTT	GGTAGTTGAA	GAAGGGACAG	ACTTTGGTAA	9960
GGTCGCTAAA	GGAGCCTACG	TCGTGTATGA	TACCCCGGGA	TTTGATACTA	TTATCATTGC	10020
TACAGGATCT	GAGGTCAATC	TAGCTATCAA	AGCTGCTAAG	GAATTGGTTT	TACAAGGTGG	10080
TAAAGTACGT	GTGGTATCTA	TGCCCTCAAC	CGAACTATTT	GATGCTCAAG	ATGCTACCTA	10140
CAAGGAAGAC	ATTTTACCAT	CTAAGACTCG	TCGTCGTGTG	GCCATTGAAA	TGGCAGCGAC	10200
CCAAAGTTGG	TACAAGTATG	TTGGTTTGGA	TGGCGCGGTC	ATCGGTATTG	ACATCTTCGG	10260
TGCGTCTGCC	CCAGCTCAGA	CTGTGATTGA	TAATTATGGA	TTTACGGTAG	AGAATATCGT	10320
TGCTCAAGTT	AAGTCCCTAT	AGAAACCAAT	TACAATGAAG	ATACAGCTGT	TGTCAGACTA	10380
GCAGATGTAG	TGATAGACAC	TAATCAGATG	ATTGGTTATT	TAAAAACTGT	AATGAAAATG	10440
TAATAATTTA	TCTACGAAAG	TTATAGTAGA	TAGTATACAC	AATAGAGTAT	ACCCTGAAAC	10500
GGTTGCGAAG	TACGCTAATC	ACTTTGCTAC	TGATCTAGAT	AGTTTCTTTA	ATCAATAAAC	10560
ACAGCATCCA	CAGATTGACT	TAGGATATTG	TAAGTTTTTT	GAAAGCTAGA	GAGAAGGTCT	10620
CTAAAATTAA	AAAACGCATλ	GTATAGGATG	TTGAAATGAT	GAACTGCACC	CCAAAAGTTA	10680
GACAGAAAAA	AATCTAACTT	TTGGGGTGTT	TTTATTATGA	AATTAACTTA	TGATGATAAA	10740
GTTCAGTTCT	ATGAACTTAG	AAAACAAGGA	TATATCTTAG	AGAAGCTTTC	AAATAAATTT	10800
GGGATAAATA	ATTCTAATCT	TAGGTACATG	ATTAAATTGA	TTGATCGTTA	CGGAATAGAG	10860
TTCGTCAAAA	AAGGGAAAAA	TCGTTACTAT	TCTCCTGATT	TAAAACAAGA	AATGATTCAT	10920
AAAGTCTGAC	ATGAAGGCTG	GACTAAAGAT	AGAGTTTCTC	TTGAATACGG	TCTCCCAAGT	10980
CGTACGATAC	TTCTTAACTG	GCTAGCACAA	TACAGGAAAA	ACGGGTATAC	TATTGTTGAG	11040
AAAACAAAAG	GGAGAGTACC	TGAGAGCGGA	GAATGCCATC	CTAAAAAAGT	TAAGAGAACT	11100
CCGATTGAAG	GAGGAAAAAG	AGAAATAAGA	AAGACAGAAA	TTGTTCAAGA	ATTAATGACT	11160
GAGTTTTCGT	TAGATCTTCT	TCTAAAAGCC	ATTAAACTAG	CTCGTTGGAC	CTACTACTAT	11220
CACTTGAAAC	AGCTAGATAA	ACCAGATAAG	GACCAAGAGC	TTAAAGCTGA	AATTCAATCC	11280
ATCTTTATCG	AACACAAGGG	AGATTATGCT	TATCGCCGGG	TTCATTTAGA	ACTAAGAAAT	11340
CGTGCTTATC	TGGTAAATCA	TAAAAGAGTT	CAAGGCTTGA	TGAAAGTACT	CAATTTACAA	11400
GCTAGAATGC	GACAGNAACG	AAAATATTCT	TCTCATAAAG	GAG		11443

⁽²⁾ INFORMATION FOR SEQ ID NO: 50:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 5338 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

60	CAGCCAAGCA	ATGAATGAGG	AACTGGCTCC	AAATCGTCGA	TATATTATCA	CCAATTACAT
120	ATGAAATGGG	GATTTGGAAA	TGCAGTGCGA	GTCTCTCCAA	ACTCAGCCAA	ACTCTTTATC
180	GCATGGAGTT	ACCCGTGATG	AATCACCTTG	ATCCCAAGGG	TTTATCCGCA	CATTGAGATC
240	GCTATAAAAA	CTGGAGGAAC	GACCCAGCTT	TTGTCGAGCA	GCCCGTCAGG	TCTCTCTTAT
300	TTGTGGTCAA	CACTATGCCT	TTCGTCTCAA	TCTTTAGCGT	CACCGCGAAC	TCCTGTCGCC
360	TCCTTCGTGA	TACGAACTCT	TATGGAGAAA	AGAAAAGCGA	TCTTTGCTCA	TGCCTTTGTC
420	TCGGGGTCCT	CGCAGTGAGG	CAAGAACTTC	TCGACGACGT	TGGGAGATTA	AACTCGGACT
480	ATCACCTGCT	CTGGATGACA	AACCAAGATG	GTGATGTTTT	AGTTACAACC	CTTCTTAAAC
540	ACCCTCTGGC	AGCAAGACCA	TATCTTTGTC	CGCAACCGCA	CTCTTCACAG	AGCCCACCAT
600	GCTATGACCA	CCTTACCTCA	GGAGAATTTC	TGTCTGATTT	AAGGTGAAAC	AAAGAAAGAC
660	ACCACAAGAA	TCTCAAGAAC	AGAGATTCTT	ACTTTTCAGA	AACTCCTTCT	AGGGACGCAC
720	TGGATGGTTA	TTGATTGGTT	CTTTAATCTC	GTGCCACCCT	GTCAGTGACC	ATCCATTGTG
780	TTTCTATCCC	GACAATATCG	CCTAAACGGA	TGAACAGCAA	ACAGGGATTT	TACCATTGCG
840	CCAGCCTATC	CATGAGAAAA	CTATATCCAG	TCGAGCTGGT	GATGACCCGA	ACTGGATATT
900	ATAGTTGAGA	GTTCAGTTTG	CCTAGAAGAA	TAGACTATCT	GAACGCTTTA	TAAGATGGGC
960	TTTACTTATA	ATTGGTTCTT	CAACCTGCAC	AGGCTAGCAA	ACCAATATGT	AATGATAAGA
1020	AAAACTTATG	AAGAGAGTAT	TAGCTTGGGA	ACTTATCAGC	TCCCCTGCCA	ATTAAAAGTT
1080	TAATCTTGAC	TTTTTTCCTA	TTCTCGTTTG	GGAGATTGAG	AACAAAATCG	GGCTAGGTTC
1140	TAAGATAAGT	TCAACCGATT	CAGGAAGCGA	CTGGTTCTAG	GCCACTGCAT	AATCTTTTTA
1200	TGACTGTTGT	GGTCCTGGAT	TGTACGGATT	CGAAAAATCC	TCGGCTTGGT	TCCATCTGGG
1260	CAATAGCCGC	TTTGAAAAAC	TCGCAGAGCA	TAAGTTCGAG	CCATAGGGCA	CACATAGACT
1320	CCATGCTGAC	ATTAGACCTG	GCCAGTAGCT	GACTAGACTT	GCTGAGTAAA	AAACTTGGTC
1380	GACGAGACAG	GCCGCAAGGT	CTTCATACGA	TGCTGCTTTC	ATATGCCCTT	GATGTTGATG
1440	CAGCAATCTG	ATATCTTTAT	CATCTGGTGA	TGACCTCAAA	GCAAAGGTAT	ATTCATCAGG
1500	TCTTGCCATA	AAGACATCAA	GTTGTTAATC	CGTAACCAGC	TCAAAAATCC	GTCAAATCCC
1560	TATCAATTTC	TCGTCGGTAA	TAGGGCTGAA	CCAGAGCTTC	AGATCAGTTA	GCGGAGATAA

	AATCAATTCT	GCATGGGAAT	AATTTCCGTA	GAGTTGGGCT	AATTTTTCCT	TATTTCTACC	1620
	AAGCAAGATG	AGTTGGTCAT	TGGGCAGGAG	TTTGACCATT	TCTTGAGCTA	GACCACCGCT	1680
	AGCTCCGGTA	ATGAGAATAG	TAGGCATACT	TATCCTTTCT	GTGACTGCTA	GATTTCCACT	1740
	TCTTCCAAGT	CTTTGACCAC	ATGGACATTT	TCAAAAATTG	TGGCAGCGTC	TTTCTTGAGT	1800
	TTGCTAATAT	CTTTTGAGAG	GAAACGGGCA	CTGATATGGT	TGAGTAGGAG	GCGTTTGGCA	1860
	CCTGCTTCTA	CCGCTACTTG	TGCAGCTTGC	ATATTAGTTG	AGTGACCATG	GTTACGAGCA	1920
	ATTTTTTCAT	CACCCTTGCC	ATAAGTGGAC	TCATGAACTA	GGACATCTGC	ATTGACAGCC	1980
	AGACGCACAC	TGGCACCCGT	TTTTCGAGTG	TCTCCTAAAA	TAGTGATAAT	CTTACCTGGA	2040
	CGTGGCGCTG	AGATATAGTC	TGCTGCCTTG	ATTTCAGTTC	CGTCTTCCAA	AACAAGATCC	2100
	TGGCCGTTTT	TGATTTTACC	AAAAAGCGGG	CCGAACGGAA	CACCAGCAGC	CTTGAGTTTT	2160
	TCAGCAŢCCA	GCGTCCCTTC	TAGATCCTTT	TGCATGACAC	GATAGCCAAC	ACAGAAAATA	2220
	GTGTGGTCCA	GCTCCTCTGC	ATACACAGTG	AATTTATCGG	TTTCAAGAAT	TTTACCCAGA	2280
	GAATCTTGGT	CAAACTCATG	GAAATGAATG	CGGTAGGGCA	GACGAGAACC	TGACACACGA	2340
	AGGCTGGTTA	AGACAAATGA	CTTGATTCCT	TGAGGTCCGT	AGATTTCCAA	ATCTGTCTGC	2400
	TCTTCATTGG	CCTGAAAGGC	ACGGCTAGAA	AGGAAACCTG	GCAAACCAAA	AATGTGGTCT	2460
	CCATGCAGAT	GGGTAATAAA	GATTTTGCTG	ACCTTACGTG	GTCGAATTGT	GGTTTCCAGA	2520
	ATGCGATTTT	GCGTACCTTC	TCCACAGTCA	AAGAGCCAAA	CTTCGTTAAT	CTCATCCAAA	2580
	AGTTTCAGGG	CGAGACTTGA	AACGTTGCGG	GCTTTAGAGG	GCTGACCAGC	CCCCGTTCCT	2640
	AAAAATTGAA	TATCCATTCG	ATACTTTCTA	ATTAATCAAT	ATATAACATG	GCTGTGCGGT	2700
	TTTCCGATCG	GAAATAGCGT	TTGCCAGAAA	AAGCAGCAGC	TTCTTGCAAT	AAATCCTCTT	2760
	GGCTGTAGCC	TTTGAGACGT	TTTCGACCAT	CAGCCAATCT	TTCCAAATCA	GTCAAAGCTG	2820
	TGAGACTTTC	TAGGCTGATA	ACTTCCTCGT	CCTCGACAGG	CTTCATGTAA	ATCTTACCAG	2880
	ACTCTTCAAA	GACTAATTGA	TGGGGGAAAA	TTTGCGCAAT	TTCAAAGAGC	AAGTCATCCG	2940
	AGATTTTCTC	CTCATTTTCA	AAGAAAATCC	GACCAAGGCC	GTCACTCTCA	TAACAAAAAC	3000
	CAAAGGATTT	ACCAGACAGA	TTAAGCCGAA	TAAAAGGCTT	ATTTTCTAGG	GTGAAACTTG	3060
٠	GCTCAGTATT	GTAAAGATTC	AGTTCCTGAC	TGAGTTCTGC	AAAATAATCC	GTCGCAGCCT	3120
	GAGGACTCTT	TTTCTGATAG	AGTTCTGCAA.	AGTAGGCATT	AACAACACTT	GGCGGAGGTG	3190
	TAATAAGTGT	TAACTGCTCC	TGATCTGTTT	TACCAGCTAG	AAGCTGATCC	AGATAGACCT	3240
	TGTCCAGACT	TGTATAACCT	CCATACTTTA	GAGCCAAAGT	TTTAATATCA	GTCATAAAAT	3300

			454	m 1 mc 1 mc	CCCTCTTTCC	3360
	TCCATTTATT					
	GTTCTTCCAG					3420
	CTCGCAGGGT					3480
GCTTGCAAGT	TTTCACGACT	GTCCTCAGAC	TTGGCAGAAA	TGAGGGTATA	TGGCGTTTGG	3540
CTAGGCGTGA	AATCCTCCAC	CAAATCCGCT	TTATTATAAA	GCGTCAAGTG	AGGAATATCT	3600
TCCATGTCCA	GGTCTTTCAT	GATGGAGAGA	ACCGTTTTTT	CATGCTCCTC	GTGGTAAGGA	3660
TTGCTAGCAT	CGATAACATG	AACCAGAAGG	TCCACATGCT	TGCTTTCTTC	CAAGGTTGAC	3720
TTGAAACTGG	ACACCAACTC	TGTCGGCAAA	TCTTGGATAA	AGCCAACGGT	ATCTGTCAAA	3780
GTTACTTGGA	GATTGCCTCC	CAGATGAATA	CTCTTGGTTG	TCGCATCCAG	AGTCGCAAAG	3840
AGCTCATCTG	CTTCATACTG	GGTCTTACTG	GTCAAGATGT	TCATGATAGT	TGATTTCCCA	3900
GCATTAGTAT	AACCAATCAA	ACCAATCTTA	AAAGTGCTAG	ACTCCAAACG	TTTTTCTCTG	3960
ACAGTCGCAC	GATTTTTCTC	AACCACCTTG	AGCTGGCGCT	CGATATCCGT	GATTTGATTG	4020
CGAACGCTAC	GACGGTTCAG	CTCCAGCTGG	CTTTCACCAG	GACCACGGGA	ACCAATTCCC	4080
CCTgCCTGAC	GGCTGAGCAT	AATCCCCTGA	CCAACCAAGC	GAGGCAAAAG	GTATTTGAGT	4140
TGGGCTAGGT	GGACTTGGAG	CTTCCCTTCA	TGGCTTCGAG	CCCGCATGGC	AAAGATATCC	4200
AAAATCAACT	GCATACGGTC	AATGACCTTA	ACACCGAGAA	CTTCCTCTAG	ATTGACATTC	4260
TGCCTTGGGG	TCAGACGATT	GTTGACGATG	ACAGTAGTGA	TTTCTTCTGC	ATCCACCATA	4320
AGCGCAATCT	CTTCCAACTT	ACCAGAGCCG	ACGAAGGTCT	TGGAATCATA	TTTTTCACGT	4380
ттттстстст	AGCTATCTAC	AACGACTGCC	CCTGCCGTTT	TCGCTAAACT	AGCCAATTCT	4440
TCCATGGAGA	GGTCAAAACT	GTCCATACCC	TGCAATTCCA	CACCAATCAG	CAGGACTCGC	4500
тсстсттттт	TCTCCGTTTC	AATCATCTAA	AAACTCCTCT	ATCTGGCTTA	AAATGCGGTC	4560
TTGTACACCA	GATTCTCCAA	TCTGATAAAA	GGTGACCTGC	ATGCGATTAC	GGAACCAGGT	4620
CAGCTGACGC	TTGGCAAAAC	GACGAGTCGC	CTGTTTAAGA	CTCTCACTAG	CTTCCTCCAA	4680
GGTCTGCTCT	CCACGGAAAT	AAGGAAAGAG	TTCCTTATAG	CCAATTCCTT	TAGCAGCCTG	4740
TACATTAGGG	GAATGGTCAA	ACAGCCACTT	GGCCTCATCC	AAAAGCCCAG	CCTCAAACAT	4800
CAAATCCACT	CGGTGGTTGA	TACGCTCATA	AAGTTGACTA	CGTTCATCAT	CCAAGCAGAT	4860
AATCAGCGGT	TCATACAAGG	TCTCTTGATT	TTCCAAATCC	TGACCAAAAT	GGGCAATTTC	4920
TAAGGCACGC	ATAGCACGAC	GACGATTAAA	CTGGGGAATC	TCAAGGCCTG	CTTGATCCAC	4980
CAAATGGGCT	AATTCCTCAT	CTGAATATGG	CTCCAAACTA	GCTCGATAAG	СТААААТСТС	5040
CTCATGAGGA	CTCTCCCC3 C	CTAGGTGGTA	ACCTTCTAGE	AAGCTCTGGA	TATAAAGTCC	5100

455

AGTCCCACCG GCGATAATGG CTAGCTTGCC ACGGTTGTGA ATACCCTCAA TAGTCATCTT 5160
AGCTTCTGAA ACAAAATCAA AAGCCGAGTA AGACTCGGTT ATCTCTCTAA CATCGATTAA 5220
ATGATGAGGA ACAGCTGCCT GCTCTTCTGG ACTAGCCTTG GCCGTCCCAA TATCAAGTCC 5280
TCGATAGACT TGCTGGCTAT CTCCACTAAC CACTTCGCCA TTAAAACGCT TTGCGGGG 5338

(2) INFORMATION FOR SEQ ID NO: 51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 19446 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

CGGAAACCCA TCTAGTCTCC ATCGTTTGGG AGACCAAGCA ACACGAATCT TAGATGCTTC 60 TCGCCAACAG ATTGCAGATT TAATCGGTAA GAAAAGCGAT GAAATCTTCT TTACCTCGGG 120 TGGAACAGAA GGGGATAACT GGCTTATCAA GGGTGTGGCC TTTGAAAAAG CTCAGTTTGG 180 CAAGCACATC ATTGTTTCAG CCATTGAACA TCCAGCAGTC AAAGAGTCAG CCCTCTGGTT 240 GAAAAGTCAA GGATTTGAAG TGGATTTTGC TCCAGTTGAT AAGAAAGGCT TGGTCGATGT 300 TGAGGCGTTA CAGGTTTGAT ACGGCATGAT ACAATCCTCG TTTCCATCAT GGCTGTGAAC 360 AATGAAATCG GCTCTATCCA ACCTATTGAG GCTATTTCAG AATTCTTGGC AGACAAGCCG 420 ACTATTTCCT TCCACGTTGA TGCGGTTCAG GCGCTTGCCA AAATTCCGAC TGAAAAGTAT 480 CTGACAGAAC GGGTGGATTG CGCGACTTTC TCTAGTCACA AGTTCCACGG GGTTCGAGGT 540 GTTGGCTTTG TCTATATCAA ATCTGGCAAG AAGATTACAC CTCTTCTTAC AGGTGGTGGC 600 CAGGAGCGAG ATTATCGTTC GACAACTGAA AATGTGGCAG GGATTGCAGC GACAGCCAAG 660 GCCCTCCGTT TGTCTATGGA AAAGCTAGAT ATCTTTAGGA GCAAGACTGG GCAGATGAAG 720 GCAGTGATTC GCCAAGCTCT TCTGAACTAT CCGGATATTT TTGTCTTTTC AGATGAGGAA 780 AACTTTGCAC CTCATATTCT GACTTTTGGA ATCAAAGGTG TTCGAGGTGA AGTCATCGTT 840 CACGCCTTTG AAGACTATGA TATTTTCATC TCAACAACCT CAGCTTGTTC ATCTAAGGCA 900 GGAAAACCAG CCGGTACCTT GATTGCCATG GGAGTGGACA AAGATAAGGC CAAGTCAGCT 960 GTGCGTCTTA GCCTAGACTT GGAAAATGAT ATGAGTCAGG TCGAGCAGTT TTTGACCAAG 1020 TTAAAATTGA TTTACAATCA AACTAGAAAA GTAAGATAGG AGCATTCATG CAGTATTCAG 1080 AAATTATGAT TCGCTACGGA GAGTTGTCAA CCAAGGGTAA AAACCGTATG CGTTTCATCA 1140

ATAAACTTCG	TAATAATATT	TCGGACGTTT	456 TGTCTATCTA	TACCCAAGTT	AAGGTAACAG	1200
CAGATCGCGA	CCGTGCCCAC	GCTTACCTCA	ATGGAGCTGA	TTACACAGCA	GTTGCAGAAT	1260
СТСТСАААСА	AGTTTTTGGA	ATTCAAAACT	TTTCTCCTGT	TTATAAGGTT	GAAAAATCTG	1320
TAGAAGTTTT	GAAGTCTTCT	GTCCAAGAGA	TTATGCGGGA	CATCTACAAG	GAAGGTATGA	1380
CCTTTAAGAT	TTCTAGCAAG	CGTAGCGACC	ACAACTTTGA	ACTTGATAGT	CGTGAACTCA	1440
ACCAAACACT	TGGAGGGGCT	GTATTCGAAG	CCATTCCAAA	TGTGCAAGTT	CAAATGAAAA	1500
GTCCTGACAT	CAATCTTCAG	GTGGAGATTC	GTGAAGAAGC	AGCCTATCTT	TCTTATGAAA	1560
CCATTCGTGG	GGCTGGTGGT	TTGCCAGTTG	GAACTTCAGG	TAAAGGGATG	CTCATGTTGT	1620
CAGGAGGGAT	TGACTCACCT	GTAGCAGGTT	ATCTTGCTCT	TAAGCGTGGG	GTGGATATCG	1680
AGGCAGTTCA	CTTTGCTAGT	CCACCATATA	CTAGTCCTGG	TGCCCTCAAG	AAAGCGCAGG	1740
ACTTGACCCG	TAAATTGACC	AAGTTTGGCG	GAAATATCCA	GTTTATAGAG	GTGCCTTTCA	1800
CAGAGATTCA	AGAGGAAATC	AAAGCCAAAG	CGCCAGAAGC	TTATTTGATG	ACTCTAACTC	1860
GTCGCTTTAT	GATGCGGATT	ACTGACCGTA	TTCGTGAGGT	ACGAAATGGT	TTGGTTATCA	1920
TCAATGGGGA	AAGTCTAGGT	CAAGTAGCCA	GCCAAACCCT	TGAAAGTATG	AAGGCTATCA	1980
ATGCTGTTAC	CAACACTCCC	ATCATTCGTC	CTGTGGTTAC	CATGGACAAG	TTGGAAATCA	2040
TTGACATCGC	CCAGGAAATC	GATACCTTTG	ACATTTCAAT	CCAACCGTTT	GAAGACTGTT	2100
GTACCATTTT	TGCACCAGAT	CGTCCAAAAA	CAAATCCTAA	AATTAAGAAT	GCGGAGCAGT	2160
ACGAAGCGCG	TATGGATGTT	GAAGGCTTGG	TTGAGCGAGC	AGTGGCTGGA	ATCATGATTA	2220
CTGAAATCAC	ACCTCAAGCC	GAAAAAGATG	AAGTTGATGA	CTTGATTGAC	AATCTGCTCT	2280
AATTCAGAAA	ATCCAAAAGA	ATAGCGAAAA	TCAGTAAAAA	AAGTTAGTTT	TTTCTCTAAA	2340
AACAGGTAAA	AAACTAACTT	TTTTTATTTT	TATGATATAA	TGATATAAAA	TTTTGAATAT	2400
AGAGAGTTTT	CTGACAATGA	ATCAATCCTA	CTTTTATCTA	AAAATGAAAG	AACACAAACT	24.60
CAAGGTTCCT	TATACAGGTA	AGGAGCGCCG	TGTACGTATT	CTTCTTCCTA	AAGATTATGA	2520
GAAAGATACA	GACCGTTCCT	ATCCTGTTGT	ATACTTTCAT	GACGGGCAAA	ATGTTTTTAA	2580
TAGCAAAGAG	TCTTTCATTG	GACATTCATG	GAAGATTATC	CCAGCTATCA	AACGAAATCC	2640
GGATATCAGT	CGCATGATTG	TCGTTGCTAT	TGACAATGAT	GGTATGGGGC	GGATGAATGA	2700
GTATGCGGCT	TGGAAGTTCC	AAGAATCTCC	TATCCCAGGG	CAGCAGTTTG	GTGGTAAGGG	2760
TGTGGAGTAT	GCTGAGTTTG	TCATGGAGGT	GGTCAAGCCT	TTTATCGATG	AGACCTATCG	2820
TACAAAAGCA	GACTGCCAGC	ATACGGCTAT	GATTGGTTCC	TCACTAGGAG	GCAATATTAC	2880
CCAGTTTATC	GGTTTGGAAT	ACCAAGACCA	AATTGGTTGC	TTGGGCGTTT	TTTCATCTGC	2940

AAACTGGCTC	CACCAAGAAG	CCTTTAACCG	CTATTTCGAG	TGCCAGAAAC	TATCGCCTGA	3000
CCAGCGCATC	TTCATCTATG	TAGGAACAGA	AGAAGCAGAT	GATACAGACA	AGACCTTGAT	3060
GGATGGCAAT	ATCAAACAAG	CCTATATCGA	CTCGTCGCTT	TGCTATTACC	ATGATTTGAT	3120
AGCAGGGGGA	GTACATCTGG	ATAATCTTGT	GCTAAAAGTT	CAGTCTGGTG	CCATCCATAG	3180
TGAAATCCCT	TGGTCAGAAA	ATCTACCAGA	TTGTCTGAGA	TTTTTTGCAG	AAAATGGTA	3240
AGTTAAGAAA	GGAAAAAACG	AAATGCATAT	TGAACATCTT	AGCCACTGGA	GTGGTCATCT	3300
TAACCGTGAA	ATGTACCTTA	ACCGTTATGG	ACATGGTGGG	ATTCCAGTTG	TGGTCTTTGC	3360
TTCATCAGGT	GGTAGTCACA	ACGAATACTA	TGATTTTGGC	ATGATTGATG	CCTGTGCTTC	3420
CTTTATCGAG	GAAGGCCTTG	TCCAGTTCTT	TACCCTATCT	agtttggata	GTGAGAGCTG	3480
GTTGGCTACT	TGGAAAAATG	CTCATGACCA	AGCGGAAATG	CACCGTGCCT	ACGAACGTTA	3540
TGTGATTGAG	GAGGCCATTC	TTTTATCAAG	CACAAGACAG	GTTGGTTTGA	TGGCATGATG	3600
ACGACAGGTT	GCTCTATGGG	AGCCTATCAT	GCACTCAATT	TCTTCCTCCA	GCATCCAGAT	3660
GTCTTTACCA	AAGTGATTGC	TCTCAGTGGT	GTTTACGACG	CACGTTTCTT	TGTCGGTGAT	3720
TACTACAACG	ATGATGCTAT	TTACCAAAAC	TCGCCAGTAG	ATTATATTTG	GAACCAAAAC	3780
GACGGCTGGT	TTATTGACCG	TTACCGTCAG	GCAGAGATTG	TGCTGTGTAC	GGGGCTTGGA	3840
GCCTGGGAAC	AAGATGGTTT	GCCATCCTTT	TACAAGCTCA	AAGAAGCCTT	TGACAAGAAA	3900
CAAATTCCAG	CCTGGTTTGC	TGAATGGGGA	CATGATGTCG	CCCATGACTG	GGAATGGTGG	3960
CGTAAACAAA	TGCCTTATTT	CCTCGGTAAT	CTCTATTTAT	AAAAGGAGTT	ACCTATGAAT	4020
TACCTTGTTA	тттстссста	CTATCCACAA	AACTTTCAAC	AGTTTACCAT	CGAACTAGCT	4080
AATAAAGGCA	TCACAGTCTT	GGGAATTGGT	CAAGAGTCTT	ACGAGCAATT	GGATGAGCCC	4140
TTGCGCAATA	GCTTGACCGA	GTATTTTCGT	GTTGATAATC	TTGAGAACAT	AGATGAAGTC	4200
AAACGTGCAG	TTGCTTTTCT	CTTTTATAAA	CATGGTCCAA	TTGGCCGCAT	CGAGTCTCAC	4260
AATGAATACT	GGCTTGAGCT	AGACGCAACA	CTCAGAGAAC	AATTCAATGT	TTTTGGTGCC	4320
AAACCAGAGG	ATCTCAAAAA	GACGAAATAT	AAGTCTGAAA	TGAAGAAACT	TTTCAAAAAA	4380
GCAGGTGTTC	CTGTGGTACC	TGGAGCTGTT	ATCAAGACGG	AAGCAGATGT	TGATCAAGCA	4440
GTGAAAGAAA	TCGGTCTTCC	AATGATTGCC	AAACCTGATA	ATGGAGTGGG	AGCAGCCGCA	4500
ACCTTTAAAC	TTGAGACAGA	AGACGATATC	AATCACTTCA	AGCAAGAATG	GGACCATTCA	4560
ACCCTTTATT	TCTTTGAAAA	ATTTGTCACT	TCCAGCGAAA	TCTGTACCTT	TGACGGGCTC	4620
GTGGACAAGG	ATGGAAAGAT	TGTCTTCTCA	ACAACCTTTG	ACTACGCCTA	TACACCGCTT	4680

GACCTCATGA	TTTATAAGAT	GGACAATTCT	458 TATTATGTGC	TCAAGGATAT	GGATCCTAAA	4740
CTGCGCAAGT	ATGGGGAAGC	AATTGTCAAA	GAATTTGGTA	TGAAAGAACG	GTTTTTCCAT	4800
ATTGAGTTCT	TCCGTGAGGG	GGACGATTAT	ATTACCATCG	AGTACAATAA	CCGCCCTGCA	4860
GGTGGTTTTA	CCATTGATGT	TTATAACTTT	GCTCATTCCT	TGGACCTTTA	TCGTGGCTAT	4920
GCAGCTATTG	TCGCAGGAGA	GGAGTTCCCG	GCGTCAGACT	TTGAAACTCA	GTATTGTTTG	4980
GCTACTTCTC	GCCGTGCAAA	TGCTCACTAT	GTTTATTCAG	AAGAGGATTT	GCTTGCCAAA	5040
TATAGCCAGC	AGTTCAAGGT	TAAAAAAGTC	ATGCCAGCTG	CCTTCGCGGA	ACTTCAAGGA :	5100
GATTACCTGT	ATATGCTGAC	CACTCCGAGT	CGACAAGAAA	TGGAGCAGAT	GATTGCAGAT	5160
TTCGGACAAC	GTCAAGAATA	AGAACTATCG	GATTAAGGAA	ATTAACTCCC	TTAATCCTTT	5220
TGTTTTGTCT	GATAAAAAAT	AAGAGCATCC	CAACAAGGTA	GCTATCATAA	AACTTGTTCG	5280
ATAACTATTT	GAAGCAGGAT	TAGGTGGTCA	GAAATTAAAT	TTTAATATTT	CAATTGAGTC	5340
ATAGTATTGT	GTTTGCGTAT	CCTTAAATCA	GCTAAAAGGA	TCCATGACGA	CACCTATACG	5400
ATATAGTTTT	CAAGATACCA	AACAAGTCTA	TTAATATTCA	ATGAAAATCA	AAGAGCAAAC	5460
TAGGAAGCTA	GCCGCAGGTT	TCTCAAAACA	CTGTTTTGAG	GTTGTGGATA	GAACTGACAG	5520
AGTCAGTATC	ATATACTACG	GCAAGGTGAA	GCTGACGTGG	TTTGAAGAGA	TTTTCGAAGA	5580
GTATAAAATA	TTCAGGTGAC	GCATAGATAT	AGTTAATTGA	AGCTTTGTTT	GAAATCTGAT	5640
AAAATAATGA	TATTACTAAG	TTTTAAAAAC	TAAAGAAAAG	GGAAGATATG	ATTACAGGCG	5700
AATTAAAAA	TAAAATCGAT	CAGCTGTGGG	AAATTCTTTG	GACAGAAGGA	AACGCAAATC	5760
CTTTAACAAA	TATTGAACAG	TTGACTTATC	TCTTATTTAT	GAAAGATTTG	GATAGTGTCG	5820
AGCTTGGACG	TGAAAGTGAT	GCTGAATTTC	TAGGGATTCC	TTATGAGGGA	GTTTTTCCAA	5880
AAGATAAACC	TGAATACCGT	TGGTCAACTT	TAAAAATAT	AGGAGATGCT	CAGGAAGTTT	5940
ATCGTTTAAT	GACTCAGGAG	ATTTTTCCGT	TTATTAAAA	TCTCAAGGGG	GATACAGA TG	6000
ATACAGCCTT	TTCACGATAT	ATGCGAGAAG	CTATTTTTCA	AATAAATAA	CCTGCTACGC	6060
TTCAAAAGGC	AATTTCTATC	TTAGATGTTT	TTCCAACTAG	GGGATTAGAT	GTAGATTTTG	6120
ATAATGACAA	ACAAAGTATT	ACTGATATCG	GAGATATCTA	TGAATATCTG	TTATCAAAAT	6180
TGTCGACCGC	AGGTAAAAAT	GGACAGTTCC	GTACACCTCG	TCACATCATC	GATATGATGG	6240
TTGAGTTGAT	GCAACCGACT	ATCAAAGATA	TCATCTCAGA	TCCCGCTATG	GGTTCTGCTG	6300
GCTTCTTAGT	ATCTGCTAGC	CGTTACTTAA	AGCGTAAGAA	AGATGAATGG	GAAACCAATA	6360
CAGATAATAT	CAATCATTTT	CATAATCAGA	TGTTTCATGG	AAATGATACG	GATACGACTA	6420
TGTTGAGACT	TGGGGCGATG	AACATGATGC	TACATGGAGT	AGAAAATCCA	CAAATCAGTT	6480

ACCTTGACTC	GCTGTCTCAA	GATAATGAAG	AAGCCGATAA	ATATACTTTG	GTTTTAGCAA	6540
ATCCTCCTTT	TAAGGGCTCA	CTTGACTACA	ATTCAACCTC	TAATGACCTT	CTTGCAACCG	6600
тааааассаа	AAAAACAGAA	TTACTCTTTC	тттстстттт	CTTGCGAACT	TTAAAACCAG	6660
GTGGACGAGC	AGCAGTTATC	GTACCTGATG	GTGTCCTTTT	TGGTTCGTCT	AAAGCTCATA	6720
AAGGAATTCG	TCAGGAAATT	GTAGAGAATC	ATAAGCTTGA	TGCTGTAATC	TCAATGCCTA	6780
GTGGTGTGTT	CAAGCCTTAT	GCTGGAGTTT	CAACTGCCAT	TCTCATCTTT	ACAAAACTG	6840
GTAATGGTGG	TACTGACAAA	GTCTGGTTTT	ACGATATGAA	AGCGGATGGT	TTAAGTTTGG	6900
ATGATAAGCG	ACAACCGATT	AGCGACAATG	ATATTCCAGA	TATTATCGAA	CGCTTTCATC	6960
ATCTTGAAAA	AGAAGCAGAA	CGTCAGAGAA	CGGATCAATC	TTTCTTTGTT	CCAGTTGCTG	7020
AGATAAAGGA	AAATGATTAT	GATTTGTCTA	TCAATAAATA	TAAAGAGATT	GAGTATGAAA	7080
AAGTTGAGTA	TGAACCAACA	GAAGTCATAT	TAAAGAAAAT	CAATGATTTA	GAAAAGAAA	7140
TTCAAGCTGG	CTTGGCTGAA	TTGGAAAAAT	TACTCAAGTA	GGGAGGTGGC	TGTATGAAAA	7200
AAGTGAAGTT	GGGGGAAGTC	TTATCTCTAA	AAAAAGGCAA	GAAAGCCACT	GTACTTGCTG	7260
AACAAACAAC	TCTAAGCCAA	CGTTATATTC	AAATAGATGA	TTTAAGAAAT	AATAATAATT	7320
TAAAATTCAC	TGAAAGTTTA	AATATGACTG	AAGCACTCCC	AGATGATATT	CTGATAGCAT	7380
GGGATGGAGC	TAATGCAGGA	ACAGTTGGTT	ATGGATTATC	GGGAGCTGTT	GGTAGTACAA	7440
TTACGGTCTT	AAAAAAGAAT	GAGCGATACA	AAGAAAAAT	TATATCAGAT	TACTTGGGAG	7500
TCTTTTTGGA	AAGTAAATCG	CAGTATTTAC	GAGATCATTC	AACAGGTGCA	ACAATTCCTC	7560
ATTTAAACAA	GAATATATTA	CTTGATTTAC	AATTAGAATT	GCTAGGTATC	GAAGAACAAG	7620
AGAACATTAT	CTGTATTCTT	AATACGATTA	AAAGGCTTAT	TACTAAAAGA	AAATTTCAGT	7530
TAGATGAACT	AAACTTGCTC	GTCAAATCCC	GATTTAACGA	GATGTTTGGG	GAAAATAAAA	7740
TATTTGAAAG	CATTGATAAC	TTATTTGATA	TTATAGATGG	TGATAGGGGC	AAAAATTATC	7800
CTAAATCAGA	TGAGTTGTTT	AGTGAGGAGT	ACTGTTTATT	TTTAAATACA	AAGAATGTTA	7860
CTAAAAACGG	ATTTTCATTC	GATACAAAGC	AATTTATCAC	TAAAACAAAG	GATAAATTAC	7920
TTCGAAAAGG	CAAACTTGAG	CGTTATGATA	TAGTCTTGAC	AACAAGAGGT	ACTGTTGGAA	7980
ATGTAGCGTA	CTACGATGAA	TAAAAAAT	ATAAACATTT	ACGTATAAAT	TCAGGTATGG	8040
TAATATTACG	TCCCAAGACA	CCAAATCTAA	ATCAGAAATT	TATTATCCAT	GTTTTAAGGA	8100
ATAATAATTA	TAGTCGAGTG	ATATCAGGAA	GTGCTCAGCC	TCAGTTACCA	ATTACAAAAT	8160
TAAAAAAAT	ACTTCTCCCC	CTCCCCCCAC	TAGCCCTCCA	AAATGAGTTC	GCAGACTTTG	8220

			460			
TAGTCCAGGT	CGACAAATCA	CAATTTGCTT	GTGAGATAGC	TATAAAAGTG	TGGAGAAATA	8280
GCTTGAAATT	TAGTATAATA	TAGCTAAACT	ATTTGTTTAA	AGTGAGAAAA	AAATGGGAAA	9340
TTTTAGCTTT	CTTTTAAAAA	ATGACGAATA	TGAATCTTTT	TCAAAACCTT	GCATTGAAGC	8400
TGAGAATATG	ATTGCTACAT	CAACTGTGGC	TACTGCCTTT	ATGGCGCGTC	GTGCTTTAGA	8460
GCAGGCTGTC	CATTGGATAT	ATAGTCACGA	TTCATATTTA	GAAGCTCCCT	ATCGTGCTAC	8520
TCTATCTTCT	TTAGTATGGG	ATGATGATTT	TAGGGATATC	GTAGATTCTG	AACTCCACAA	8580
GCAGATAGTT	CTGTTGATTC	GGTGGGGAAA	CCATGCTGCT	CATGGTGGTG	AAATTAAGGA	8640
ACGAGAAGCG	ATTTTAGCTT	TGCATCATTT	GTATCAGTTT	GTTAATTTTA	TCGATTATTG	8700
TTACAGCAAT	GAGTTTGTGG	AGCGTTATTT	TGATGAGAAG	TGCTTACCAC	TTTCAGCAAA	8760
CATCAAATAC	CGAGAAACTC	CACAATCTAT	GATAAAGTTA	CAAGACAGTT	TACCAGAACT	8820
GCCTGATTTT	CATGAACAGA	TGGCTGCTCA	GTCCGTAGAA	GTTCAAGAGA	CTTATACTGA	8880
AAAACGTGAG	ACTGCAGCGC	AACGGCAAGA	TGTGCCTTTC	CATATTGATC	AATTATCTGA	8940
GGCAGAGACA	AGAAAGCTCT	TTATTGATAT	CGATCTCCGT	TTAGCAGGAT	GGATATTTGA	9000
AGAAAACTGT	CGTGTTGAGA	TAGCCGTTGA	TGGTCTCAAG	CACGGTTCAG	GAATTGGTTA	9060
CTGTGACTAT	GTACTTTATG	GTAAAAATGG	GAAAATTTTA	GCGATTGTGG	AGGCTAAAAA	9120
AGCCTCTGTC	AATCCAGAAG	TAGGGGAAGT	ACAGGTCAAA	GAATATGCTG	AAGCTTTGGA	9180
GAAACATATC	GGCTATCAGC	CAATTTGCTT	TATTACAAAT	GGGTTGAAGC	ACTATATACT	9240
TGATGGTCCG	AACCGCCGCC	AGATTGCAGG	CTTTTACTCT	CAAGAAGAAT	TGCAATTAGT	9300
GATGGATAGA	CGTCATCTTC	AAAAACCGCT	TGAGGATATT	TCTAGTAAAA	TTAGGGACGA	9360
TATTTCCGGG	CGTCACTACC	AAAAACATGC	CATTGCAAGC	GTTTGTGAAG	CTTTCTCTGA	9420
TCATCGTAGA	CAGGCACTTT	TGGTTATGGC	AACTGGGGCG	GGGAAAACTC	GTACAGCAGT	9480
TTCTCTAGTT	GATATCTTAT	CACGTCATAA	CTGGGTAAAA	AACGTTCTCT	TCTTAGCCGA	9540
TAGAACTTCC	TTGGTTAAGC	AAGCATATGA	TTCGTTTAGA	AAATTACTCC	CAGATCTTTC	9600
CGTTTGTAAC	TTCTTAGAAG	ATAAAGAAGG	AGCTCAATCA	AGTCGCATGG	TCTTTTCAAC	9660
TTATCCGACC	ATGATTGGAG	CGATTAGTGG	TCAAGAAGAA	GTAAATCAAC	GCCCTTTCAC	9720
TGTTGGGCAT	TTTGACCTTA	TCATAATTGA	CGAATCTCAC	CGTTCTATTT	ATCAGAAATA	9780
CAAGTCCATT	TTTGATTATT	TTGATGCAAG	AATTGTAGGC	TTAACAGCTA	CTCCGCGTCA	9840
AGATTTAGAT	AAAAACACCT	ATGGATTCTT	TAATTTGGAG	AATGGGGTTC	CANCATATGC	9900
ATATGATTTG	GAAGAGGCTG	TTAAAGACGG	ATATTTAGTA	GCCTATCATT	CTATCGAAAC	9960
CAAACTGAAA	CTACCTACGG	ATGGTCTACA	TTATGATGAT	TTGTCCGAAG	AAGAAAAGGA	10020
					•	

ACATTTTGAT	AGCAAATTTG	AAGACAATAG	CTGTGAAAA	GATATTGATG	GGAGTGTATT	10080
TAATTCCTTT	ATTTTCAATA	AAAGTACAGT	AGAAATTGTT	TTAAATGAAC	TCATGACAAG	10140
AGGAATTCAG	ACAGCCTCGG	GTGATGAAAT	TGGTAAAACT	ATTATTTTTG	СТАААААТСА	10200
TGATCATGCC	GAATATATCA	GAGGTATTTT	TAACAACCGC	TATCCTGAAA	AAGGGAGCGA	10260
CTATGCTCAG	GTGATTGATT	ATAGTATTAA	GCATTATCAG	ACCTTGATTG	ATGATTTTAA	10320
AATTAAGGAG	AAGTATCCTC	AAATTGCGAT	TTCTGTCGAT	ATGTTAGATA	CAGGTATTGA	10380
TGTACCAGAG	GTTGTTAATT	TAGTCTTCTT	CAAGAAAGTA	CGCTCTAAAA	CTAAGTTTTG	10440
GCAGATGATT	GGTCGAGGAA	CCCGTCTATG	TAAAGATTTA	TTTGGACCTG	AGCAGGATAA	10500
GGAAAACTTC	TTGGTATTTG	ATTATGGGGA	CAATTTTGAT	TATTTTCGTG	CAGATCCAAG	10560
AGATGGAGAG	GGTCGTCACA	TTGTTTCGCT	GACTCAGCGT	TTATTTAATA	TCAAAGTGGA	10620
CTTGATTCGA	GAACTTCAGG	GACTCCAATA	CCAAGAAGAT	CAGTTTGCGA	GAGCATACCG	10680
TCAGCAGCTT	GTCTCGGAAC	TTCAAGGTCG	TATAGAGAGC	TTAAATGAGT	TGGACTTCAG	10740
GGTTCGTATG	GTTTTAGATA	CAGTTTATAG	CTATAGGAAA	TTGGAAAGTT	GGCAGAATCT	10800
AACTGCTGTT	ACAAGTGAAA	CCATTCAAAA	AAATCTCTCT	CCGCTTTTAT	TTGATGAAGA	10860
TAAAGAAGAT	GAGATGGCGA	GGAGATTTGA	TTTGTGGTTG	CTTCATATTC	AGTTGGGGCA	10920
ACTGACAGCT	AAATCTTCCA	CTGTTCATAT	TTCCCAAGTG	ATGAAGACGG	CTAGAGCTCT	10980
TTCTGCTATT	GGCAATATCC	CGCAGGTTTT	TGAGCAGGCT	GAAATTATCA	GGAAAGTACA	11040
GGAGCCTGAA	TTTTGGAAAG	AAGTTAACTT	GTCTGATTTG	GAAAAAATTC	GTCTTGCTAT.	11100
TCGAGATTTA	TTACAGTTTT	TGGATAAAAC	AGACCGTAAA	CCCTACTATG	TTAACTTTGA	11160
AGATCGTATA	CTCTCCACTG	TTCACGAGAC	CACAGCATTT	TTGCAGGTCA	ACGATCTTCG	11220
GTCTTACAAT	GAAAAAGTTG	AGCATTATTT	GAAAACTCAT	CTGGATGAGG	AGTCCATTTC	11280
TAAGCTATAC	CATAATAAAA	AGTTGACATC	TGATGATATG	CTTGCACTTG	AAAAATTGCT	11340
TTGGGAAAAA	TTAGGTAGTA	AAGCAGACTA	CCAAAGTCAT	TATGAAAATA	AGGCAATTICC	11400
GAGATTGGTT	CGTGAGATTA	TTGGCTTAGA	TAGAGAGTCT	GCCAATCGTA	TTTTTTCTAA	11460
ATTTTTGTCG	GATGAGAATC	TTAATGCCAG	GCAGATTTCA	TTTGTAAAAT	TGATTGTAGA	11520
CTACATTGTA	GAAAATGGTT	TTTTAGAGAC	GAAAGTGTTA	ACGCAAGAGC	CGTTTAAATC	11580
TTATGGTTCT	GTTCAACTAC	TCTTCCAACA	CCAACTACCA	GTACTTCGTA	ATATTGTTCA	11640
AATCATTGAA	СТТАТСААТА	ATCGAGCTGG	AGAAGCGGCT	TAAATTCTAA	AGTGATTGCC	11700
ATGCTGAGAC	TCATTTAAAA	TTAAAAAGAG	TAGAAATTTA	TGCTATATAT	GAGAAGTTTT	11760

462 ATTAGGAAGA ATGTCATCGT TTTCCTAGAA TACAGTATCA GTTGTTAAGT GGTTGATAAA 11820 TTTCAAAGTA GATACTTGTA CCACGATGTT TGTTGATCGA GTTATTAACA AAAGAGCTAC 11880 TTTGATTTTA AAGAAATAGA AAACAAAAAG CCGAGCAAGA ATTCAATTGC AGGAGAAAAT 11940 12000 GAAATAATAC TCAATGAAAA TCAAAGAGCA AACTAGGAAA CTAGCTGCAG GCTGCTCAAA ACACTGTTTT GAGGTTGCAG ATGGAAGCTG ACGCGGATTG AAGAGATTTT CGAAGAGTAT 12060 AAATCTTCCT AGGATAAAGC AAAACGCATA GTATCAAGGG TTTTCAACAC TTGATACTAT 12120 GCGTTTTCTG ATGTTAAAGA CTTTCTACCA GGTTTTTTAA AAGCATAATT GTTAGTTGTA 12180 GTCATTTATT ATTCTTCAAA GAAAAATGGT GGGGCGAATT TTTTCAGTTC TTCAAAGCAC 12240 TTTTGAGCAG TATCTGCATC TTCACAGATG ATAAGACAGA CATCATTACC ACAAAGGGTA 12300 GCGATAGCGT CAGGGAAGCT CAAAGTATCA ATGATAGAAC CAAAGGATTG AGCCAGTCCA 12360 GGAAGGGTTT TTAGTAGGAC TTGGTGTTGA ACTGGGCGCA TCCAGACAAG GGCGTCTTCC 12420 ATGTAGAGTT CGAGACGTTT TTCCCATTTT GAGATGGAAC CATTGTTAAG AACATAATAA 12480 GCGCTATCTT CTTCGCGGAC TTTTGATAGG TTCATATTTT TGATGTCGCG TGAGAGGGTT 12540 GCCTGGGTTA CTTGAATGTC GTTCTCAGCA AGAAGGGCTT GCAACTCAGC CTGTGTATGA 12600 ATCTTGTTTT TTGTGATAAG AGCGCGTATA AGTTGGTGGC GGTGTTCTGA TTTATTCATA 12660 12720 ATAATGTAAC TCCTTTTAGC AAGGTAAGGT AAGCATGGAC TGAGCGAGGT CGACAGTCAA GTGGTAGTCT GTATTGTCAC GGATGGTGAT TTCAAAGTCA GTAGTATAGA GGACTAAACG 12780 GAGAGTGTCT CCTTCTTTTA GCTTGTAAAT AGTTGGCTGC AGTTCAAATT GAACGTCCAT 12840 CCATTCATCT GCAGTAATAT CCTCTACTAA CAGTAAATCA TTTCTATTTT GTAAATTAAG 12900 GTAACCTTTT GTCACGACTC GTTGTGCCTC TGGTCTAAAT GGCAATTCAC AGAGATTTTC 12960 CAACATGTGA TAGCGACCGT TGTCAATGGT TCTAGCACTT AAAATAGCTG GATAAGGTTG 13020 TAGGTATTTC TTTTGCCCAA ATTCTAGCAG TTGGGCAGAT AAGAGCCCCT TGTTTGTACT 13080 GGATTTGATA CGAAGATTGA GCTGAGCGCC ACCGTTTAGG TGGAGATCTT TAGTCACAGG 13140 AAGGTTAATA GTAATCTGAT TGGCTTTCCC TTGATAGAGC TCTGTATTGA AGGTTTGGTA 13200 TGTCTTACCA TAGCGCTCAA AATCCTTATC TGGGTACTGG TTTTGAATAG CTTGCTCTTC 13260 TTGACCAAGT GAGAAGGTTT CACAGTTTTC TTGCCCACCG AAGTTATCAA CTGATAACCA 13320 AGTCTGTGGA GCTGTATTGT CCTGCCAGAT AACAGTAGGA AGTTGAAAGT CTGTTTCCTG 13380 TCCTAGTAAT TTCTTGGTCA ATAAGGCATT TATGGACTCA CGGAAGTCAA TTGATTGCCA 13440 ATTGTTCATG TAAACATGGG CACCATTATG GAAAAAGAGA TGCTTGTGTA TATGAGTAGG 13500 AAGAGCATGG AACATCTGGT AAACATGAAG TGGTTTGACA TTCCAATCCT GAGAACCATG 13560

PCT/US97/19588

AGTAAAGACA	ACCTCTGCCT	TTACTTTATG	GGCATTGAGC	AGATANITGC	GGTCATGCCA	13620
AAACTGATTG	TAGTCCCCAG	TTTTTCGGTC	TAGCTGAGCT	TTCACTTTTT	CTAAGTCAGC	13680
TTGGTGAGCT	TCATTGCCAC	GGATATAGTC	GCCAGCTAAG	AGATTACGAG	AATAGGTTAA	13740
CTCAGCAAGG	GAGTCAAAGT	CCTCACCTGG	ATAACCACCT	GGGCTAGTCA	CCAGACCGTT	13800
TTCACGGTAG	TAGTTGTACC	ATGATGAAAT	TCCTGCCTCG	GCAATGATAA	CTTCTAAACC	13860
ATCGACTCCT	GTAGTCGCAA	GACCATTGGA	CATGGTACCT	AGATAGGAAA	GTCCTGTTGT	13920
AGCAACTTTT	CCGTTTGACC	AATCAGCCTT	GACTTGACGC	TGGCGCGTGT	GATCAGTAAA	13980
GGCACGGCAA	CGACCGTTAA	GCCAATCGAT	GACATTTTTA	TAAGCCTCGA	TTTGCTGGTA	14040
GTCTCCATTA	GTCATGAAAC	CTGTCGAGTC	TTTGGTACCA	ACACCTGAGA	CATAGAGATT	14100
GGCAAAGCCT	CTCGGAAGGA	AGTAGTCGTT	TAGTGTATAG	CTAGAGTTGA	TGTGAGTTAG	14160
CTTTTCCTCA	GCCTCTGCTA	TAAGCTCAGC	TTTACCTTGG	GGTTGGACGA	GATTTAGTTG	14220
AGGTTTCTCT	AGCTCAATCT	TGTGAGGAAG	CTTAACCTCA	AGCTCGCCCT	CCATCTTGTA	14280
GAGAGCCTTG	TCACTAGCCT	TGTCATTGGT	TCCCTGATGA	TAAGGGCTGG	CTGTCATGAT	14340
GGCAGGGATT	TTTCCATCAA	AACGAGGGCG	AATAATGCTA	ACCTTTACTA	GGTCTGATAG	14400
CCCTTTTTGG	TCAGTATCGA	CACGAGACTC	AACGTAAACG	ACTTCACGAA	TGACATCCTG	14460
GTTAGAAAAA	GTAGCCAAAC	TCTTGCCGTT	AAAGTAGTGG	TAGTCATTAT	CCTCCGGAAT	14520
AAGACCATCA	CTAACAAGTT	GGTCGATAAG	AGTATTTCCT	TTTTTGGTGC	GAGTATTGAG	14580
TAACTGATAG	AGATTTTCAA	TCAAGTCACC	ATATATAATG	GGAAATCCAG	TTTCTTTACG	14640
AAAAACGTCA	CTATCTTCGA	AGTCAACCAA	ATAAGAAAAG	CCTAAAAGTT	GAAAAGCAAC	14700
AGTATAAAAA	ATATCTGCTG	TCAGTTCATC	TTCTGATTGA	AAAAATGTCA	GCAGGTCTGT	14760
TTTTTTATCA	GCTGCTAGGA	TAGAAAGTGG	GTAGTTGGTG	TCTTGATAAG	TGAAAAAGAA	14820
ACGACGTAAA	AAGGTTTCAA	GTGAGTCTTT	GTGATTGGCT	GTATTTTGTA	AATCAAAGCC	14880
ACATTTTTTT	AGTTCAGATA	AGACATTTTC	TTTTGGAAAA	TTGATATAAC	TATATTGATT	14940
AAAACGCATA	GAACCTCCAT	ATAGAATGAC	AGTTAAGGTT	ATTATATCAA	AAAAAAGCA	15000
GAAAGGGAAT	TGTTAACTTC	AAAAGGAAAT	AATCCAATAA	AAATGAATAA	AGTACTAAAT	15060
TCAATATAGA	GAACAGAGTA	ACAATAAGAA	TAAATAGATA	GGGTATAAAA	GTTCTAGGAG	15120
ATTTATATTA	TATGCTTTCT	ATTTTTATAT	ACAATATAGT	ATAAATATAA	AAATGATGAC	15180
AAAAATACAA	ATGAATAGAA	AATAAATTAG	TAAGCTGATG	AAATTTTTCT	CAAGAGAAGC	15240
CATTTATAGG	TGAAAATGGT	ATAATATAGT	GAGAAGGATA	GAGGAGAAGT	GTAAATTGAT	15300

CGCACAACTA GATACAAAAA CAGTCTATAG TTTTATGGAA AGCGTCATTT CGATCGAAAA 15360 GTATGTGAGA GCAGCTAAAG AATACGGCTA CACTCATTTG GCTATGATGG ATATTGACAA 15420 TCTTTATGGC GCTTTCGACT TTCTAGAGAT TACAAAAAAA TACGGCATTC ATCCTTTGCT 15480 AGGGCTTGAA ATGACAGTGT TTGTAGATGA TCAGGGAGTG AATTTGCGCT TTTTAGCTCT 15540 ATCTAGTGTG GGCTATCAGC AGTTGATGAA GCTTTCGACA GCCAAGATGC AGGGGGAGAA 15600 AACTTGGTCA GTCCTGTCCC AGTACCTGGA GGATATCGCG GTCATTGTGC CTTATTTTGA 15660 TAGAGTTGAG TCGTTAGAAC TAGGCTGTGA TTACTATATA GGGGTTTATC CAGAAACACT 15720 AGCAAGCGAA TITCATCATC CTATCTTACC TCTTTATCGG GTCAACGCTT TTGAAAGCAG 15780 GGATAGAGAA GTTCTTCAAG TTTTAACAGC GATTAAAGAA AATCTACCGC TCAGAGAAGT 15840 TCCCTTGCGT TCGAGACAAG ATGTCTTTAT ATCAGCAAGT TCTTTAGAGA AACTATTCCA 15900 AGAGCGTTTT CCGCAAGCTT TGGACAATTT AGAAAAGCTT ATTTCAGGCA TTTCTTACGA 15960 CTTGGATACT AGTCTGAAAC TGCCTCGTTT TAATCCAGCT AGACCAGCAG TAGAGGAGTT 16020 GAGAGAGCGT GCTGAACTGG GGCTTGTTCA GAAGGGGTTG ACTAGTAAAG AATATCAAGA 16080 TAGACTAGAC CAAGAATTGT CTGTTATTCA TGATATGGGC TTTGATGATT ATTTCTTGGT 16140 TGTTTGGGAT TTGTTGCGTT TTGGACAATC GAATGGCTAT TATATGGGAA TGGGAAGGGG 16200 TTCTGCAGTA GGCAGTTTGG TTTCTTATGC CTTAGACATC ACGGGGATTG ACCCAGTAGA 16260 GAAAAATCTG ATTTTTGAAC GCTTTCTTAA TCGTGAACGC TATACCATGC CTGATATTGA 16320 TATTGATATC CCAGATATTT ATCGTCCAGA TTTTATCAGA TATGTTGGTA ATAAATATGG 16380 TAGTAAACAT GCGGCACAAA TCGTTACTTT TTCAACCTTT GGAGCCAAGC AAGCTCTTCG 16440 AGATGTCTTG AAACGCTTTG GTGTGCCAGA GTATGAATTA TCTGCAATTA CTAAGAAAAT 16500 CAGTTTTCGT GACASTOTTA AGTCGGCCTA TGAGGGAAAT CTCCAGTTTC GTCAGCAAAT 15560 CAATAGTAAG TTAGAATACC AAAAAGCTTT TGAGATTGCT TGCAAGATAG AGGGCTATCC 16620 AAGGCAAACC TCTGTCCATG CGGCTGGTGT TGTAATTAGT GACCAAGATT TAACCAACTA 16680 CATTCCTCTA AAGTATGGTG ATGAAATTCC ACTGACTCAG TATGATGCTC ATGGAGTTGA 16740 GGCTAGCGGA CTTTTGAAGA TGGACTTTCT GGGACTACGA AATTTGACCT TTGTCCAGAA 16800 GATGCAAGAG TTGCTTGCTG AAACAGAAGG TATTCATCTG AAAATTGAAG AAATCGATTT 16860 AGAAGACAAA GAAACGTTAG CTTTATTTGC CTCTGGTAAT ACAAAAGGTA TCTTTCAATT 16920 TGAGCAACCA GGTGCCATTC GTCTGCTTAA GCGTGTGCAA CCAGTCTGTT TTGAAGATGT 16980 CGTCGCGACT ACTTCTCTAA ATCGACCGGG TGCTAGTGAC TATATCAATA ATTTTGTGGC 17040 AAGAAAGCAT GGGCAGGAAG AAGTGACTGT TCTGGATCCA GTACTGGAGG ATATTTTGGC 17100

TCCAACCTAC	GGCATAATGC	TCTATCAGGA	GCAGGTTATG	CAGGTTGCCC	AGCGACTTGC	17160
CGGATTTAGT	CTTGGGAAAG	CCGATATTTT	GCGTCGGGCT	ATGGGGAAAA	AGGATGCCTC	17220
TGCCATGCAT	GAGATGAGGG	CTTCCTTTAT	TCAAGGTTCA	TTAGAAGCTG	GTCATACTGT	17280
GGAAAAAGCA	GAGCAGGTCT	TTGATGTTAT	GGAGAAGTTT	GCAGGTTATG	GTTTTAACAG	17340
GTCACACGCC	TATGCCTACT	CAGCCTTGGC	CTTCCAGTTG	GCTTATTTCA	AAACGCATTA	17400
TCCAGCCATT	TTTTATCAGG	TCATGTTAAA	TTCTTCCAAC	AGTGATTACT	TAATAGATGC	17460
ACTTGAAGCA	GGTTTTGAAG	TAGCCTCTCT	ATCCATCAAC	ACCATTCCCT	ATCACGATAA	17520
AATTGCCAAC	AAGGCCATCT	ATCTAGGTTT	GAAATCCATT	AAAGGAGTCA	GTAATGATTT	17580
AGCTCTCTGG	ATTATTGAAA	ATAGACCTTA	TTCTAACATT	GAÄGATTTTA	TAGCTAAATT	17640
ACCTGAGAAT	TATCTGAAAC	TTCCTCTGCT	AGAACCTTTG	GTAAAAGTTG	GTCTTTTCGA	17700
TTCATTTGAA	AAAAATCGTC	AAAAAGTATT	TAATAACTTA	GCTAATCTAT	TTGAATTTGT	17760
GAAAGAGTTG	GGAAGTTTGT	TTGGAGATGC	TATTTATAGT	TGGCAGGAAT	CGGAAGATTG	17820
GACGGAACAA	GAAAAATTTT	ATATGGAACA	AGAGCTTTTA	GGGATAGGTG	TCAGCAAACA	17880
TCCACTACAA	GCTATTGCAA	GTAAGGCTAT	TTACCCGATT	ACCCCAATCG	GAAATTTGTC	17940
AGAAAATAGC	TATGCTATTA	TCTTGGTTGA	AGTTCAGAAA	ATAAAAGTGA	TTCGTACCAA	18000
AAAGGGTGAA	AATATGGCCT	TCTTACAGGC	AGATGATAGT	AAGAAAAAT	TGGATGTCAC	18060
TCTCTTTTCA	GACTTATATC	GTCAGGTTGG	ACAGGAAATA	AAAGAGGGAG	CCTTCTACTA	18120
TGTAAAAGGA	AAAATACAAT	CACGTGATGG	CCGTCTGCAA	ATGATTGCAC	AAGAAATAAG	19180
AGAAGCAGTT	GCTGAACGCT	TTTGGATACA	GGTGAAAAAT	CATGAATCGG	ATCAAGAAAT	18240
TTCACGCATT	TTAGAACAAT	TTAAAGGCCC	AATCCCAGTC	ATCATCCGGT	ATGAAGAGGA	18300
ACAGAAAACC	ATCGTTTCTC	CCCATCATTT	TGTAGCTAAA	TCCAATGAAT	TAGAGGAGAA	18360
ATTGAATGAA	ATCGTTATGA	AAACGATTTA	TCGCTAAAAA	TACGGAAAAT	AGAAGAATTT	18420
TCAACGTAAA	TGTGGTATAA	TCAGTAAGAA	TGTTAAAAGA	AAAAGGAGCA	TAACCAATAT	18480
GAAACGTATT	GCTGTTTTGA	CTAGTGGTGG	AGACGCCCCT	GGTATGAACG	CTGCCATCCG	18540
TGCAGTTGTT	CGTCAAGCAA	TTTCAGAAGG	AATGGAAGTT	TTTGGTATCT	ATGACGGATA	18600
TGCTGGTATG	GTTGCCGGTG	AAATTCATCC	CCTAGATGCA	GCTTCAGTAG	GGGACATCAT	18660
TTCTCGTGGT	GGTACTTTCC	TTCACTCAGC	TCGTTACCCA	GAGTTCGCTC	AACTTGAAGG	18720
GCAACTTAAA	GGGATTGAGC	aattgaaaaa	ACACGGAATT	GAAGGTGTAG	TTGTTATCGG	18780
TGGTGACGGA	TCTTACCACG	GCGCTATGCG	TTTGACTGAA	CATGGCTTCC	CAGCTATTGG	18840

		466			
TCTTCCAGGT ACAATCO	GATA ACGATATCGT	TGGTACTGAC	TTTAC: TCG	GTTTTGACAC	18900
AGCGGTTACT ACTGCC	ATGG ACGCTATCGA	TAAGATTCGT	GATACATCAT	CAAGTCACCG	18960
TCGTACTTTT GTAATCO	GAAG TTATGGGACG	TAACGCTGGT	GATATCGCTC	TTTGGGCTGG	19020
TATTGCAACT GGTGCTG	GATG AAATCATCAT	CCCTGAAGCA	GGCTTCAAGA	TGGAAGATAT	19080
CGTAGCAAGC ATCAAA	GCTG GTTATGAATG	TGGTAAAAA	CACAATATTA	TCGTCTTAGC	19140
TGAAGGTGTG ATGTCA	GCGG CTGAATTTGG	TCAAAAACTT	AAAGAAGCTG	GAGATACAAG	19200
CGACCTTCGT GTAACA	GAAC TTGGACATAT	TCAACGTGGT	GGTTCTCCAA	CTGCGCGTGA	19260
CCGTGTTTTG GCGTCA	CGTA TGGGTGCACA	TGCTGTTAAA	CTTCTTAAAG	AAGGTATCGG	19320
TGGTGTTGCG GTTGGT	ATTC GTAACGAAAA	AATGGTTGAA	AATCCAATTC	TTGGTACTGC	19380
AGAAGAAGGG GCATTG	TTTA GCCTTACTGC	AGAAGGTAAG	ATTGTGGTTA	ACAACCCAGC	19440
TACAAA					19446

(2) INFORMATION FOR SEQ ID NO: 52:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16593 base pairs (B) TYPE: nucleic acid

- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

TCGTAAATAT	GCTCTGTTTT	TGGATTTTGT	TTCTTAATCT	GTTTGGCAAG	TGCCTTCATC	60
ATAGAAATAG	GACCACACAT	ATAGACGGTT	GCATGTTCGG	GCACTTCTTT	TTGTTCAAAA	120
TTAAGATAGC	ССТСТТТССТ	ACTGTCGATT	AGATGGAGTT	CAAAATTAGG	ATTTTTCTGA	130
GCATAGTTAC	GGAGTAAATC	TAGGTAGACT	GCATTTTCAT	CTCCACGGAA	GCTATAGTAG	240
AAGTGAACCT	GTTTATCTAA	AATAGGATGT	TCACGGATGT	AAGAGATGAA	GGGGGTGATC	300
CCAATACCTC	CAGCAATCCA	AACCTGATTT	TCTCGTCCTT	CTTCTATGAT	CATGTGTCCG	360
TAAGCTCTGT	CTAGGGTTAC	TTTGCTGCCG	GCTTGAAGAT	TATCATAGAT	ATTCTTGGTA	420
TGGTCGCCTG	AAGTTTTAAC	AGTAAAGTAA	AGAGTTTGAC	CATGACCTCC	TGAGATAGAA	480
AAGGGATGCG	GAGCACTTTC	AAAGCCTTCT	TGGAAAATCT	TTAGAAAGGC	AAATTGTCCT	540
GATTGATAGT	TGAAAGGTCT	GCTAAGATGG	ATTTGAATTT	CTCTAGTATC	GTGATTTAAG	600
CGTTTGAGAT	GGGTAATTTT	CCCTAGATAG	GGGAAGGAAA	TCTTTTGATA	TAGAAAAATG	660
АТАТАААААС	CAGCTAGTAA	GCCTAAAAGG	GCATAGCTAC	CAACAAGAAA	ACTTAGAAGA	720
TTAAATGTAA	GGAGACGATT	GCCCATTATC	ATGTAGATGT	GAAAGAGTCC	TAAAATATAG	780

GC PAGG PAAA	CCAGGCGGTG	AATCCATCGC	CAAGCTTCGT	ATTGGATGTA	TITIGCCTAAA	840
TAGGCGACAA	GGATGATGCT	GGCAAAGATA	TAGATGGCAA	GATTGCCAAA	CTGAGCAGCT	900
AAGCGAGAGC	CCCACAAACC	GCCCATACTA	AAGTTATGAA	AGATTAGTAG	GATGATTGAG	960
AGAAAGGCTG	TGAATTTGTG	GACGGTGTAG	ACCTTCTCCA	AACTGTGAAA	CCAGCTTTCT	1020
agtagtggga	GACGAGTGGC	TAGGATAAAA	GTCAGAGATA	GGCTTGTTAA	AGCTAGTCCT	1080
GGAATCATGA	ATTGGGGAGA	AGTGTTCATC	CAAGTCAAAA	GAGTCAAGAT	AAAACTAGCT	1140
ATGATAAAGA	GTAGTCCTTT	GACTGATTTC	ATAGAAAATT	CCATTTCATT	TAGATTTCGA	1200
TTTGTTGTAA	ATAAATTTGT	TACATTTTAT	CATAGAAAAT	GTATGGTGTC	AAATTGAGGT	1260
СТАТАААТАТ	CTACTCTCAT	CAAAAAACTC	TCCAATTGAA	CTGGAGAGTG	GCTGTTTATA	1320
CTCAATGAAA	ATCAAAGAGC	AAACTAGGAA	GCTAGCCGCA	AGTTGCTCAA	AACACTGTTT	1380
TGAGGTTGCA	GATAGAGCTG	ACGTGGTTTG	AAGAGATTTT	CGAAGAGTGT	TATTCTGCAG	1440
CTTGTTGCCA	ACGTTTGGCT	AGCATATGAG	ACAGGCTAGA	AATTGCTAGG	TTAAAGCTGA	1500
AGTAGATGAG	GGCAATCAGG	NTGTAAAGAC	TGAAGACCTG	CTCTGGTTCG	AAATAACGGC	1560
CCATGAGAAT	TTGGCTGGCT	CCAAAGAGTT	CTTGTAGGGC	GATAACAGAG	TAGAGGAGAC	1620
TGGTATCCTT	AATCACGGTA	ACAAACTGAG	AAATGATGGC	TGGTAGCATT	TTGCGGATGG	1680
CTTGTGGGAG	AATGATGTAG	TAGAGGATTT	GGGCTGAGGT	GAAGCCTTGT	GACATTCCTG	1740
CTTCGTACTG	TCCCTTGTCT	ACGGCATTGA	GACCGCCTCG	AATAATCTCA	GCCAAGGCTG	1800
CTGATGTAAA	GAGAGTAAAG	GCTGTAATAC	CTGCTGGTGT	GGATTTCATT	TTGAACACCA	1860
AAAAGATAGT	AAAAATCCAG	AGAAGGTTGG	GAACGTTGCG	CACAAACTCG	ATATAAATAC	1920
TGGAAATAAT	GCGTAAGACA	GGATTTTTGC	CATTTCTCGT	GACAGCTAGC	ACCGTACCGA	1980
TGATAGTAGA	GAGGATGATG	GCAATCAGAG	AAATATAGAG	GGTCAAGCCA	AATCCTTTAA	2040
AGATAAAGAC	TAGGTTATCT	GGGGTTAAAA	CTTCTAAAAT	AGATTCCATA	GTAACCTCCT	2100
AAAGTGAATA	GGCTTTTTTG	TTGGCTTGCT	CCATCTTGCG	ACCAAACTGG	GCAACAGGGA	2160
AGCATAGAGC	AAAGTAGAGA	AGAGCAGCAC	CTAAAAAGGC	TGGTATATAG	TTTCCGTTGA	2220
GAGCCGACCA	AGACTTAGTC	ACAAACATCA	AGTCTACTCC	AGAGATGATA	GCTACAGTAG	2280
AGGTGTTCTT	GATGAGGTTA	ACAATTTGGT	TGGTCAATGG	AGGGAGAATG	ATGCGGAAGG	2340
CCTGAGGCAA	GATAATCAAG	CGCATGGCAC	TGATATAGGT	AAAACCTTGC	GACAAGGCGG	2400
CCTCCATCTG	ACCACTAGGA	ATAGACTGAA	TCCCTGAACG	AATAACCTCA	GCGATATAAG	2460
CCCCTGATA	GAGTCCCACG	CAGAGAACGG	CTGTCCAATA	AATTGGAATC	ATGATGATAT	2520

			468			
GGTCACTGAT	AAGAGGTAGG	CCATAAAAAA		CTGCACCAAG	AGGGGAGTAT	2580
TTTGGTAAAA	TTCAACAAAG	ATGCGAGCTA	AAATGCGTAA	AATTGGACGT	TTACTGGTTG	2640
ACATGGCACC	AAAGAAGATG	CCCAAAACCA	TAGCGAGGAT	AAAGGAACCA	ACCGCTAGGG	2700
CAAGGGTGAA	GAGGAAACCA	TTGAAAAATT	GTCCAAAATC	CTGAAAATAG	GCTGTCCAAG	2760
ATGATAAATC	TGTCATGGGG	TGTCCTCCTT	AATCTGCAGT	ATGGCTAGAT	GGTTTGAGCT	2820
TGTAACGGTC	ATAAAGTTTC	TGCAAACTAC	CATCCTTGCT	CCATTTAGTA	ACCAAGTTAT	2880
CAAGATAGTC	GTTGAGCTCT	GTATTTGATT	TCTTGGTAAC	AATACCGTAG	TCAGATGGCT	2940
TGAAACTATC	ATCTAGTAGT	GCTGTCCGTT	TACTAGTGTA	GCCAGATAGA	ATAGAGCGGT	3000
CAACGGAAAA	GGTATCGATA	CGATGAGCGT	GCAGGGAAGT	AATCAATTCT	GGGTAGGAAC	3060
CAAGTTCGAC	GAATTTAAAC	TTCAGACCTT	TCTTTTTACC	CAGTTCAGTA	ATCAGGCGTT	3120
GGGTGATAGA	ACCTTGGGCG	ACTCCGATGG	TTTTGCCGTT	TAGGTCCTCA	ATCTTTTTGA	3180
TTTTGGCAGA	TTTATTGACC	AAAAATCCAG	AAGCGTCTGT	GTAGTAGGGA	CTGGTAAAGT	3240
TGTAGAGTTT	TTTGCGTTCG	TCCGTGATGG	TAAAGGTCGC	GATATCCATA	TCGACCTGTT	3300
CATTGTCTAG	AAGGGGCCG	CGGGTTTGTG	CTGTAACCGG	CACATAGCGA	ATCTTGACCT	3360
TGAGTTCATC	AGCTACCATC	TTGGCCAAGT	CGGTTTCGAT	ACCAGAATAA	GTACCGGTCT	3420
TGGGATCTTT	GTAACCAAAA	TTGGGAACGT	CTTGTTTGAC	ACCGACAACC	AGTTCGCCTC	3480
TTTTTTGAAT	GTCTGCGATA	CTTGTATCAG	CCTGGACTGG	TTTGGCAGCA	GCAAGGCCGA,	3540
AAAGGCTAAT	CAATAATGCT	GATAAAAAGA	ATTTTTTTC	ATAGGCGCCT	CCTTATTTGA	3600
CTTTGTCACT	TTCGTGGTTG	ATAATTTTGC	TGAGGAATTG	TTGGGCACGA	GGTTCGCTTG	3660
GATTGTCAAA	AAAGTTATCG	ACATCTGTCG	TATCTACTAA	AACTTCTCCG	TCGGCCATAA	3720
AGATAATGCG	GTCCGCAACC	TCTCGAGCAA	AGCCCATTTC	GTGGGTAACG	ATGATCATGT	3790
TCATCCCATC	ATGCGCCAGT	TTCTGCATAA	CTGCTAGAAC	ATCTCCGATA	GTCTCAGGA'!	3840
CAAGAGCAGA	TGTTGGTTCA	TCAAAGAGGA	GGAGTTCCGG	ATGCATAGCA	AGACCACGAG	3900
CGATGGCGAT	CCGCTGTTTT	TGTCCACCAG	ATAGCATGGC	GGGATAGGAA	TCTTTCTTGT	3960
CCCACATATT	TACAAATTCC	AGATATTTT	GGGCGGTTTT	TTCAGCTTCT	TTTTTATCAA	4020
TTCCTAGAAC	TTCAATGGGT	GCAAGCGTTA	CGTTTTCTAA	CACAGCTTTG	TGTGGATAAA	4080
GGTTAAAATG	TTGAAAAACC	ATGCCGACTT	CCTTGCGAAG	AGGTACCAAA	TCTTTCTGGC	4140
TGGCACCAGC	AACTTGGTGC	CCATTGACTA	GGAGACTTCC	TTTGTCAACA	GTCTCTAAAC	4200
CATTGATCGT	ACGGATAAGA	GTGGACTTCC	CAGAGCCAGA	AGGTCCAAGC	AGGACAACAA	4260
CTTGTCCTTT	TTCAAAACGG	AGATTGATGT	TGCGGAATGC	GTGGTAGTCT	CCGTAATATT	4320

TTTCGACGTT	TTTAAATTCT	ACTAAAGCCA	TGAGAGATCT	CTATTGTGTT	ATATTTTATA	4380
ACACGGTTCT	ACAATAAAAG	AATGTTCTTG	тсааатсата	TCTGAAAAA	TTCACTATAG	4440
TGAAATAAGA	ACAGGAAAAA	TCGATCGGGA	CAGTCAAATC	GATTTCTAAC	AATATTTTAG	4500
AAGTAGAGGT	GTACTATTCT	AGTTTCAATA	ТАСТАТАЛА	TGTTATAAAA	AAGCAATCTG	4560
GATAGAGAAA	ACGTCTAAAT	CATGTTATAA	TGAAGCAATA	GAATTCTTAG	AAAGAGTGGA	4620
TGTCTTTTTG	ATAACACCTA	CTTATGAATG	GCAGTTTGCC	CTGCAGGTAG	AAGATGCGGA	4680
TTTTACAAAG	ATAGCCAAGA	AGGCTGGACT	GGGTCCTGAG	GTGGCTCGGT	TATTGTTTGA	4740
GAGAGGGATT	CAGAACCAAG	AAAGTCTGAA	GAAGTTTTTA	GAACCTTCCT	TGGAGGACTT	4800
ACATGATGCT	TATCTGCTCC	ATGATATGGA	CAAGGCAGTG	GAGCGGATTC	GTCAGGCTAT	4860
TGAAGAAGGG	GAAAATATTC	TTGTTTATGG	AGACTATGAT	GCGGATGGCA	TGACTTCGGC	4920
TTCTATTGTG	AAGGAAAGTT	TGGAACAACT	TGGTGCTGAG	TGCCGAGTTT	ACCTGCCAAA	4980
TCGTTTTACC	GATGGCTATG	GCCCTAATGC	TAGTGTTTAT	AAATACTTTA	TCGAGCAAGA	5040
AGGGATTTCC	TTGATTGTGA	CGGTGGACAA	TGGGGTTGCT	GGTCATGAGG	CTATTGCATT	5100
GGCTCAGTCT	ATGGGAGTAG	ATGTCATTGT	GACAGACCAT	CATTCCATGC	CTGAAACCCT	5160
GCCAGATGCT	TATGCTATTG	TCCATCCTGA	ACATCCAGAT	GCGGATTATC	CTTTTAAATA	5220
TTTGGCTGGT	TGTGGAGTTG	CTTTCAAGTT	GGCTTGTGCC	CTGTTAGAAG	AAGTGCAAGT	5280
GGAATTGCTT	GATTTGGTCG	CTATTGGAAC	TATTGCAGAT	ATGGTGAGTC	TGACGGATGA	5340
AAATCGTATC	TTAGTTCAAT	ATGGTCTGGA	AATGTTGGGT	CATACCCAGC	GCATTGGTCT	5400
GCAAGAAATG	CTGGACATGG	CTGGGATTGC	TGCCAACGAA	GTAACAGAAG	AAACGGTTGG	5460
TTTCCAGATT	GCTCCTCGTT	TGAATGCCTT	GGGTCGCTTG	GATGATCCCA	ATCCTGCCAT	5520
TGATTTGTTG	ACTGGATTTG	ATGATGAGGA	AGCGCATGAG	ATTGCCCTTA	TGATTCACCA	5580
GAAAAACGAA	GAGCGCAAGG	AAATCGTTCA	GTCTATCTAT	GAAGAAGCCA	AGACCATOGT	5640
GGATCCTGAG	AAGAAGGTTC	AGGTCTTGGC	CAAGGAAGGC	TGGAATCCTG	GGGTTCTAGG	5700
AATCGTGGCT	GGTCGTTTAT	TGGAAGAATT	GGGACAGACA	GTCATTGTTC	TTAATATAGA	5760
AGACGGTCGT	GCCAAGGGCA	GTGCTCGTAG	TGTGGAAGCG	GTCGATATTT	TTGAAGCTCT	5820
GGATCCCCAT	CGAGACCTCT	TCATCGCCTT	TGGAGGTCAT	GCAGGTGCAG	CGGGTATGAC	5880
GCTGGAAGTT	GAGCAACTCT	CAGATTTATC	TCAGGTTTTG	GAAGATTATG	TTCGTGAAAA	5940
AGGTGCAGAT	GCTGGTGGCA	AGAATAAGTT	AAACCTAGAT	GAAGAGTTGG	ATTTGGAGGC	6000
ACTTAGCTTG	GAAACGGTCA	AAAGTTTTGA	ACGTTTAGCT	CCTTTTGGAA	TGGATAATCA	. 6060

			4/0			
GAAACCTATT	TTTTATATCA	AGAATTTTCA	GGTCGAAAGT	GCTCGTACTA	TGGGGGCAGG	6120
TAATGCCCAT	CTAAAGCTGA	AAATTTCCAA	GGGTGAGGCG	AGTTTTGAAG	TGGTAGCCTT	6180
TGGTCAAGGC	AGATGGGCGA	CAGAGTTTTC	TCAAACCAAG	AATCTAGAGT	TAGCGGTTAA	6240
ATTGTCTGTC	AACCAATGGA	ATGGCCAAAC	TGCCCTCCAG	TTGATGATGG	TGGATGCGCG	6300
AGTGGAAGGT	GTTCAACTTT	TTAACATTCG	TGGAAAAAAT	GCAGTCTTGC	CAGAAGGTGT	6360
TCCAGTCTTG	GATTTTCCTG	GAGAACTGCC	AAATCTTGCG	GCTAGTGAAG	CTGTTGTCGT	6420
AAAAAACATT	CCAGAGGATA	TTACTCAGCT	GAAGACCATT	TTTCAGGAAC	AGCATTTCTC	6480
TGCTGTCTAT	TTCAAAAATG	ATATTGACAA	GGCTTATTAT	CTGACAGGTT	ATGGGACTAG	6540
AGATCAGTTT	GCCAAATTGT	ACAAGACTAT	TTACCAGTTC	CCAGAGTTTG	ATATTCGCTA	6600
CAAGCTGAAA	GATTTGGCTG	CATATCTTAA	TATTCAACAA	ATCTTGCTGG	TCAAGATGAT	6660
TCAAGTATTT	GAAGAACTAG	GCTTTGTGAC	GATAAAAGAT	GGTGTGATGA	CAGTCAATAA	6720
AGAGGCGCCA	AAGCGGGAGA	TAGGAGAAAG	TCAAATTTAC	CAAAATCTCA	AACAAACCGT	6780
TAAAGACCAA	GAAATGATGG	CGCTGGGTAC	GGTGCAAGAA	ATTTATGATT	TTTTGATGGA	6840
AAAAGAGTAG	AAGTTAGGAA	AGAGTTGGGA	AATCAACTCT	TTTTTGAAAA	CAGACCTTCA	6900
TTTTGAAAAT	CATCAAAAAA	ATCGTATAAT	GGTAGGAAAA	GATTCGGCTG	AAAGTATCAG	6960
AACTTTTAGA	ATAAGAGGGT	AGAATTGCCC	TATAATCAAG	ATAAACTAAG	ATTTTGGAGG	7020
AAAAATGAGT	AATATCAGTT	TAACAACACT	TGGTGGTGTG	CGTGAGAATG	GAAAAAATAT	7080
GTACATTGCT	GAAATTGGAG	AGTCCATTTT	TGTTTTGAAT	GTAGGGTTAA	AATATCCTGA	7140
AAATGAACAA	TTAGGGGTCG	ATGTGGTGAT	TCCAAACATG	GATTACCTTT	TTGAAAATAG	7200
CGACCGTATT	GCTGGGGTTT	TCTTGACCCA	CGGGCATGCG	GATGCCATTG	GTGCTCTACC	726
GTATCTCTTG	GCAGAGGCTA	AAGTTCCTGT	ATTTGGGTCT	GAGTTGACCA	TTGAGTTGGC	7320
AAAGCTCTTT	GTCAAAGGAA	ATGATGCCGT	TAAGAAATTT	AATGATTTCC	ATGTCATTGA	738
TGAGAATACG	GAGATTGATT	TTGGTGGGAC	AGTGGTTTCC	TTCTTCCCTA	CGACTTACTC	744
CGTTCCAGAG	AGTCTGGGAA	TTGTCTTGAA	GACATCGGAA	GGAAGCATCG	TTTATACAGG	750
TGACTTCAAA	TTTGACCAAA	CGGCTAGTGA	ATCTTATGCA	ACTGATTTTG	CTCGTTTGGC	756
AGAGATTGGT	CGTGACGGCG	TCCTGGCTCT	CCTCAGTGAT	TCGGCCAATG	CAGACAGCAA	762
TATTCAGGTG	GCTAGTGAAA	GTGAAGTTAG	GGATGAAATT	ACCCAAACTA	TTGCTGACTG	768
GGAAGGTCGT	ATCATCGTTG	CAGCTGTTTC	CAGTAATCTT	TCTCGTATTC	AGCAGATTTT	774
TGACGCTGCG	GATAAAACAG	GTCGACGTAT	CGTCTTGACA	GGATTTGATA	TTGAAAATAT	780
CGTCCGCACA	GCGATTCGTC	TTAAGAAGTT	GTCTTTAGCC	AACGAAATTC	TTTTGATTAA '	7,86

GCCTAAAGAT	ATGTCTCGCT	TTGAAGACCA	TGAGTTGATT	ATTCTTGAGA	CAGGTCGTAT	7920
GGGTGAGCCT	ATCAATGGAC	TTCGTAAGAT	GTCGATTGGT	CGCCATCGTT	ATGTAGAAAT	7980
CAAGGATGGG	GACCTAGTCT	ATATTGCTAC	GGCTCCGTCT	ATTGCTAAAG	AAGCCTTTGT	8040
TGCGCGTGTG	GAAAATATGA	TTTATCAGGC	AGGTGGGGTT	GTCAAATTGA	TTACCCAAAG	8100
TTTACATGTA	TCAGGGCACG	GAAATGTGCG	TGATTTGCAG	CTGATGATCA	ATCTTTTGCA	8160
ACCTAAGTAC	CTCTTCCCTG	TCCAAGGGGA	GTATCGTGAG	TTGGATGCTC	ACGCTAAGGC	8220
TGCCATGGCA	GTTGGGATGT	TGCCAGAACG	CATCTTCATT	CCTAAAAAGG	GGACGACCAT	8280
GGCTTACGAG	AATGGAGACT	TTGTTCCAGC	TGGATCGGTT	TCAGCAGGAG	ATATCTTGAT	8340
TGATGGGAAT	GCCATTGGTG	ATGTTGGAAA	TGTTGTTCTT	CGTGACCGTA	AGGTCTTGTC	8400
AGAGGATGGA	ATTTTCATCG	TGGCTATTAC	AGTCAACCGT	CGTGAGAAGA	AAATTGTGGC	8460
TAGGGCTCGT	GTTCACACGC	GTGGATTTGT	TTATCTCAAG	AAGAGTCGCG	ATATTCTCCG	8520
TGAAAGTTCA	GAATTGATTA	ACCAAACGGT	AGAAGAGTAT	CTTCAAGGAG	ATGACTTTGA	2580
CTGGGCAGAT	CTCAAAGGTA	AGGTTCGTGA	CAATCTGACC	AAGTACCTCT	TTGATCAAAC	8640
CAAGCGTCGC	CCAGCCATTT	TACCAGTAGT	CATGGAAGCA	AAATAATCGT	TGAAATAAAC	8700
AGAGAGAAAG	TCGAGTTTCG	GCTTTTTCTT	ATAGAAAAAT	AGAAGGAGAA	AATCATGGCA	8760
GTGATGAAAA	TCGAGTATTA	CTCACAAGTA	TTGGATATGG	AGTGGGGGGT	GAATGTCCTC	8820
TACCCTGATG	CCAATCGAGT	GGAAGAACCA	GAGTGTGAAG	ATATTCCCGT	CTTGTACCTT	8880
TTGCACGGGA	TOTOTGGAAA	TCATAATAGT	TGGCTTAAGC	GGACCAATGT	AGAACGCTTG	8940
CTTCGAGGAA	CTAATCTCAT	CGTTGTTATG	CCCAATACCA	GCAATGGTTG	GTACACCGAT	9000
ACCCAGTATO	GTTTTGACTA	CTACACGGCT	CTAGCAGAGG	AATTGCCACA	GGTTCTGAAA	9060
CGCTTCTTC	CTAATATGAC	GAGCAAGCGT	GAAAAGACCT	TTATCGCTGG	TCTTTCTATG	9120
GGAGGCTACC	G GCTGCTTCAP	ACTGGCTCTT	ACGACAAATC	GTTTTTCTCA	TGCAGCTAGT	9180
TTTTCAGGTC	CCCTCAGCTT	TCAAAACTT	TCTCCTGAAA	GTCAAAATCT	GGGAAGTCCA	9240
GCCTACTGGA	A GAGGTGTTT	TGGAGAGAT	r AGAGACTGGA	CAACTAGTCC	CTATTCTCTT	9300
GAAAGTCTGG	CTAAAAAATO	GGATAAAAA	ACCAAACTTT	GGGCGTGGTC	TGGCGAACAG	9360
GATTTCTTG	r ACGAAGCCA	A TAATCTCGC/	GTGAAAAATC	TCAAAAAACT	r AGGTTTTGAT	9420
GTGACCTATA	A GCCATAGCG	TGGAACTCAG	GAGTGGTACT	ACTGGGAAA	A ACAATTGGAA	9480
GTTTTTTA	A CAACCCTACO	AATTGATTT	C AAATTAGAAG	AGAGACTGAG	TTAGTTTGAA	9540
CTTCAGCAT	A GGGGGAGTAG	G AACTAAAAT	A AAATATGTT	TCACTAGAC	r TTTCAAACGm	9600

AAGTAGTAGA	ATAGTAATAA	AATACTGGAG	472 GAAAGAGAGT	AGGAAATGTA	CCGTTATCAA	9660
ATTGGCATTC	CCACATTAGA	ATATGATCAG	TTTGTCAAAG	AACATGAATT	AGCCAATGTA	9720
TTACAAAGTA	GTGCTTGGGA	GGAAGTTAAG	TCTAATTGGC	AACATGAGAA	GTTTGGTGTT	9780
TACAGGGAAG	AAAAATTACT	GGCGACAGCT	AGTATTTTGA	TTAGAACTCT	TCCGCTAGGC	9840
TATAAAATGT	TTTACATCCC	AAGAGGACCT	ATATTGGATT	ATGGGGATAA	AGAACTCTTG	9900
AATTTTGCCA	TTCAGTCTAT	TAAGTCCTAT	GCTCGCAGTA	AGAGAGCGGT	TTTTGTGACT	9960
TTTGACCCAA	GTATTTGCCT	ATCTCAAAGT	TTAATCAATC	AGGAAAAGAC	AGAATTTCCT	10020
GAAAATCTGG	CTATTATTGA	TAGTTTGCAA	CAAATGGGAG	TAAGGTGGTC	AGGAAAAACG	10080
GAGGAAATGG	GAGACACCAT	TCAACCTCGT	ATTCAGGCGA	AAATATACAA	GGAAAATTTT	10140
GAAGAAGATA	AACTTTCCAA	GTCAACAAAA	CAGGCTATTC	GAACAGCACG	AAACAAAGGG	10200
CTTGAGATTC	AATATGGTGG	ACTGGAACTA	TTAGATTCAT	TTTCGGAGTT	GATGAAAAAA	10260
ACTGAGAAGC	GAAAAGAGAT	TCATTTGAGG	AATGAAGCCT	ATTATAAAAA	ATTGTTAGAT	10320
AATTTTAAGG	ACAAGGCCTA	TATCACCTTG	GCCACCTTGG	ATGTTTCTAA	ACGTTCGCAA	10380
GAGTTAGAAG	AACAGTTAGC	GAAAAATAGA	GCCTTGGAAG	AGACCTTTAC	TGAGTCGACT	10440
CGAACTTCAA	AAGTAGAAGC	GCAGAAGAAG	GAAAAAGAAC	GTTTGTTAGA	GGAATTGACC	10500
TTCTTGCAGG	AATATATAGA	TGTAGGTCAA	GCGAGAGTTC	CTTTAGCGGC	TACTTTGAGT	10560
TTGGAATTTG	GTACTACCTC	TGTCAATATA	TATGCTGGTA	TGGATGATGA	TTTTAAACGT	10620
TACAATGCAC	CAATTTTAAC	TTGGTATGAA	ACGGCTCGCT	ATGCCTTTGA	ACGAGGTATG	10680
ATCTGGCAAA	ATTTAGGTGG	TGTTGAAAAC	TCTCTCAATG	GTGGACTTTA	TCATTTTAAG	10740
GAAAAATTTA	ATCCAACGAT	TGAAGAATAC	TTGGGTGAAT	TTACAATGCC	CACTCATCCT	10800
CTCTATCCTC	TGTTAAGACT	TGCTCTTGAT	TTCCGTAAAA	CATTAAGAAA	AAAACATAGA	10860
AAGTAAGTAT	ATGGCACTAA	CAACACTCAC	GAAAGAAGAG	TTTCAGACTT	ATTCTGATCA	10920
GGTTTCTTCT	CGTTCCTTTA	TGCAATCTGT	CCAGATGGGG	GATTTGCTAG	AAAAAAGAGG	10980
GGCTCGAATT	GTTTATCTTG	CTTTGAAACA	AGAAGGAGAA	ATTCAAGTTG	CAGCTCTGGT	11040
TTATAGCCTG	CCCATGCTGG	GTGGTCTGCA	TATGGAACTC	AATTCGGGGC	CGATTTATAC	11100
CCAACAAGAT	GCTCTTCCAG	TTTTTTATGC	AGAGTTAAAA	GAATATGCCA	AGCAAAATGG	11160
TGTATTAGAG	TTGCTTGTAA	AACCCTATGA	AACTTATCAA	ACTTTTGATA	GCCAAGGTAA	11220
TCCAATAGAT	GCTGAGAAAA	AAAGTATTAT	TCAAGATTTG	ACTGATTTAG	GTTATCAATT	11280
TGATGGCTTA	ACAACAGGTT	ACCCAGGTGG	AGAACCAGAT	TGGTTATACT	ATAAAGATTT	11340
AACTGAATTA	ACTGAAAAGA	GTTTGCTTAA	AAGŢTTTAGC	AAAAAGGGTA	AACCCTTGGT	11400

GAAAAAGGCT	GAAACCTTTG	GCATTCGGTT	GAAAAAGTTA	AAACGTGAAG	AACTATCGAT	11460
TTTTAAGAAT	' ATAACAAAAG	AAACCTCTGA	ACGTAGAGAA	TATAGTGATA	AAAGTTTAGA	11520
ATATTATGAG	CATTTTTATG	ATACTTTTGG	AGAACAAGCG	GAGTTTCTCA	TAGCAAGCTT	11580
AAATTTTTCG	GACTATATGA	GCAAATTGCA	AGGTGAACAA	AGTAAACTAG	AAGAAAACTT	11640
GGACAAGTTG	CGACTTGATT	TGAGTAAAA	TCCTCATTCT	GAGAAAAAAC	AAAATCAACT	11700
GAGAGAATAT	TCTAGTCAAT	TTGAAACGTT	TGAAGTTCGA	AAAGCAGAAG	CGCGAGACTT	11760
GATTGAAAAA	TATGGAGAAG	AAGATATTGT	TTTAGCTGGG	AGTTTATTTG	TTTATATGCC	11820
TCAGGAAACG	ACTTATCTCT	TTAGTGGTTC	CTACACTGAG	TTTAATAAGT	TCTATGCCCC	11880
TGCACTGCTT	CAAAAATATG	TTATGTTGGA	AAGCATAAAA	CGTGGAATAC	CTAAATACAA	11940
CTTCCTAGGC	ATTCAAGGGA	TTTTTGATGG	AAGTGATGGT	GTTTTGCGTT	TTAAACAGAA	12000
TTTTAATGGC	TATATTGTAC	GCAAAGCAGG	TACTTTCCGT	TACCATCCAT	CGCCTTTAAA	12060
ATACAAAGCT	ATCCAGTTAC	TCAAAAAAAT	AGTAGGACGT	TAAGATGAAA	AAGTCAGTAT	12120
TTAGATTTCT	TTTAGCTTCT	TTTAGTAAAA	TAATTCTTAT	TTGCTAGAAA	GGTGGAGAGA	12180
CATGCGCTGG	CTTTTTCGTT	TGATAGGGGC	TTTCTTTTCT	TTTGTGTGGC	GTTTGTTTTG	12240
GCGTCTGGTT	TGGATAGTTG	TGCTCTTATG	TGTGCTTGCT	TTCGGACTTC	TCTGGTATCT	12300
GAACGGAGAT	TTTCAAGGAG	CGCTAAAGCA	AGCAGAACGG	TCAGTAAAAA	TTGGTCAACA	12360
AAGTATTGAC	CAATGGGAGA	AAACAGGGCA	ACTGCCTAAG	TTAAGCCAGA	CAGATAGTCA	12420
CCAGCATTCT	GAAGGAAGGT	GGGCACAGGC	CTCTGCTCGT	ATTTACCTGG	ATCCGCAGAT	12480
GGATTCACGC	TTTCAAGAGG	CTTATTTAGA	AGCAATCCAG	AACTGGAATC	AAACTGGTGC	12540
TTTTAACTTT	GAACTCGTGA	CTGAGTCTAG	TAAGGCGGAT	ATTACGGCTA	CGGAGATGAA	12600
CGACGGAGGC	ACTCCTGTGG	CAGGAGAGGC	GGAAAGTCAA	ACTAATCTCT	TAACAGGGCA	12660
ATTCTTGTCC	GTAACGGTGC	GGTTGAATCA	TTATTATTTG	TCCAATCCAT	ACTATGGCTA	12720
CTCCTATGAA	CGCCTTGTCC	ATACGGCAGA	ACATGAGTTA	GGTCATGCGA	TTGGCTTGGA	12780
CCATACAGAT	GAGAAGTCTG	TCATGCAACC	AGCAGGTTCC	TTTTATGGTA	TCCAGGAAGA	12840
GGATGTTGCA	AACCTCCGAA	AAATATATGA	GACTAGTGAG	TAGGGTACTA	TCTTTCCCTA	12900
CTTTTTTTGC	TATAATGGAA	CTATGAACAA	CTTGATTAAA	TCAAAACTAG	AGCTCTTGCC	12960
GACCAGCCCT	GGTTGCTACA	TTCATAAGGA	TAAAAATGGC	ACCATTATCT	ATGTAGGAAA	13020
GGCTAAAAAT	CTGCGTAATC	GAGTACGGTC	CTATTTTCGT	GGAAGTCATG	ATACCAAGAC	13080
AGAGGCTCTG	GTGTCTGAAA	TTGTGGATTT	TGAATTTATT	GTTACGGAGT	CTAATATTGA	13140

WO 98/18931

GGCACTTCTC C	TAGAAATCA	ACCTGATCAA (474 GGAAAACAAG	CCCAAGTACA	ATATCATGCT	13200
CAAGGATGAC A	AGTCCTATC	CTTTCATCAA	AATCACCAAT	GAGCGCTATC	CACGCTTGAT	13260
TATCACTCGT (CAGGTCAAAA	AGGACGGAGG '	TCTTTATTTT	GGACCCTATC	CCGATGTGGG	13320
GGCAGCCAAT (GAAATCAAGC	GGTTGCTGGA '	TCGGATATTC	CCTTTTCGTA	AGTGTACCAA	13380
CCCGCCCTCT A	AAGGTCTGTT	TTTATTACCA	TATCGGCCAG	TGTATGGCCC	ACACCATCTG	13440
TAAGAAGGAT	GAGGCTTATT	TCAAGTCTAT	GGCCCAGGAG	GTGTCTGATT	TTCTGAAAGG	13500
TCAGGATGAC	AAAATCATCG	ATGATCTCAA	GAGTAAAATG	GCAGTAGCAG	CACAAAGTAT	13560
GGAGTTTGAA	CGTGCGGCGG	AATACCGTGA	CCTGATTCAG	GCTATTGGAA	CGCTTCGAAC	13620
CAAGCAACGG	GTCATGGCGA	AAGATTTGCA	AAATCGCGAT	GTCTTTGGCT	ACTATGTGGA	13680
TAAGGGCTGG	ATGTGTGTGC	AGGTTTTCTT	TGTCCGTCAG	GEAAGCTCAT	CGAGCGCGAT	13740
GTCAATCTCT	TÇCCCTACTT	CAATGATCCA	GATGAGGATT	TTTTGACCTA	TGTAGGACAA	13800
TTCTATCAAG	AAAAATCTCA	TCTAGTTCCC	AATGAGGTAC	TGATTCCGCA	GATATTGACG	13860
AAGAAGCTGT	CAAGGCTTTG	GTGGATTCCA	AGATTCTTAA	GCCTCAACGT	GGAGAGAAAA	13920
				TCTAGAGCAG		13980
				AAATCTAGGG		14040
				TAATATCATG		14100
					TACCGTAAGT	14160
					GTCATTCGCA	14220
					GTGATTGATG	14280
					GGCTTGGATA	14340
					CTCTTTGGAG	14400
					CTCCAACGCA	14460
					TCCAAAAATT	14520
					G CAGAATCTTA	14580
					G ATTGTCGAAG	14640
					G CAGGGAGAAG	14700
					C CACAATGAAC	14760
					A AGCAGTGATT	14820
					TTTTCTTCCT	14880
GGTCCAGGCC	CAAATGACT	T AGTCGCCCT	G CTAAAGGAC	CC TTCCTATCA	C AGCAAGTGTT	14940

CGAGGCAAT	T GGGATGATC	G TGTCCTTGA	G GCTTTAGAT	G GGCAATATG	G CTTAGAAGAC	15000
CCACAGGAA	G TTCAGCTCT	T GCGTATGAC	A CAGTATTTG	A TGGAGCGAA'	F GGATCCTGCA	15060
ACGATTGTC	T GGCTACGAA	G CTTGCCTTT	g ctggäaaag.	A AAGAAATTG	CGGATTGCGC	15120
TTTTCTATC	T CTCATAATT	T ACCTGACAA	A AACTATGGT	G GTGACTTGC1	r agttgagaat	15180
GATACAGAG	A AATTTGACC	A ACTGCTAGA	T GCGGAAACG	G ACGTGGCAGT	TTATGGTCAT	15240
GTTCACAAG	C AGTTGCTTC	G TTATGGAAG	T CAAGGGCAAG	AAATCATCA	TCCAGGGTCG	15300
ATTGGCATG	C CCTATTTA	A TTGGGAGGC	G TTAAAAAATC	ACCGTTCCCA	GTATGCCGTG	15360
ATAGAAGTT	G AAGATGGGG	A ATTACTCAA	ATCCAATTTC	GTAAAGTTGC	TTATGATTAC	15420
GAAGCTGAG'	T TAGAATTGG	CAAGTCCAAG	GGGCTTCCC1	TTATCGAAAT	GTATGAAGAA	15480
CTGCGTCGT	G ACGATAACTA	TCAGGGGCAG	AATCTGGAAT	TATTAGCCAG	CTTAATAGAA	15540
AAGCATGGG	r atgtagagga	TGTGAAGAAT	TTTTTTGATT	' TTTTGTAAGA	GTTTCCTAAA	15600
ATAGCCAATO	G CAAACTAAAA	AAGCGATTTC	CTGGTCCAAT	CGCTTTTAGT	ATATCTTATA	15660
CTCAATGAA	A ATCAAAGAGC	AAACTAGGAA	GCTAGCCGTA	GGTTGCTCAA	AGCACAGCTT	15720
TGAGGTTGC	A GATAAAGCTG	ACGTGGTTTC	AAGAGATTTT	CGAAGAGTGT	TATTGTAACT	15780
GAGATTGATO	TGGGAGGTAA	GAACCACCTA	GATAGGTATT	GCTGAGTTTT	TCAAGGGTTC	15840
CGTCTTGATA	GAGTTCTTTG	AGCGCTTTAT	CAAATTGCTC	TTTAAACTCT	TTTTGGTCGC	15900
TTGAGAAAAT	GATATAATTG	CTGGGGCTAT	CTGCAGAAGG	TAAATCAACG	ACTGAGAGGT	15960
CTAAACCACG	GTCCTTGATA	ATCTTTTGAA	CGGATACCTT	GTCAAAAACT	AGGAAATCAA	16020
ACTCTCCGTT	' AGCAAGGTCT	AGGATTCGTT	TACCAATATC	CTCACCAGAA	AAATTAATTG	16080
TAGCGGGATT	ATCAGTGTGT	TTCTGATTCC	AGTTATTGAT	GAATTGAGCG	TTAGAAGTTC	16140
CGGTATCCTC	TTGTGTTGTT	TTACCAGCGA	TCTGGTCAAG	AGAAGTCAAA	GGATTTTTCT	16200
TGTTGCTGAC	AAGGACGAGG	GGATTGTTGG	AAATTGGAAG	CGAGTAAAGG	TATTTTTCAG	16260
CACGCTCTTT	TGTGTAACTC	AAGTTATTGG	CCGCAGCCTG	ATAGTGACCA	GAATCAAGTC	16320
CTGGGAAGAT	GCTCTCCCAG	GCGGTTCTTT	GGAATTGAAT	CTCGTAGTCG	CTGAGTTTTT	16380
CATCTACTGC	CTTTAAAACT	TCGATATCAA	AGCCTGTCAG	ATTGCCCTTG	TCTTCGTAGT	16440
CAAATGGTGG	CACGTCGCCA	GCTGTAGCAA	GGACGATTGT	CTTTTGAGCG	CTAGTCTCTT	16500
TGGGTGTAGC	TTGATTCTCA	CAGGCAACCA	AAAATGGTAG	GATAGCTAGT	AATAGGCTAA	16560
ATTTTTTCAT	ACTGTCTCCA	TTCAAATGTA	AAG			16593

⁽²⁾ INFORMATION FOR SEQ ID NO: 53:

PCT/US97/19588

476

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3510 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

GGGATATCCT	TATATCCTTG	TTCCTGGAAC	CATTGTGGGA	ATTGCTCAAC	AGTTTTTCA	60
CCTTGAATTC	CTGGTGCAAT	GACAGTAAGA	ATTTCGAAAT	CACGATCTGG	TTTCGCCGCT	120
AGTTCCATCA	ACTCTGGCAT	ACTITITETIG	CATGGACCAC	ACCATGAAGC	CCAAAACTTC	180
AAGTAAACCT	TTTTACCCTT	AAAATCAGAT	AACTTAACTT	CTTTGCCATC	CATGGATTGC	240
AATGTGAAGT	CTGGAGCATC	TTTTCCAACA	GCAATTTGTT	GTACAGTCGT	TTGTTGTTTT	300
GGCTGTTGTG	CTGCTTGAGT	CTTTTTAGTT	TCTTCCTCAC	CACAGGCCAT	CAATACAACT	360
AATGACAAGA	GACTTAAGCC	AGCAAACATT	ACTTTTTCA	TTTGTCCTCC	TTTATTCAAA	420
AATTCCAGCT	AGAACATTTA	CTTGTCCTAA	TAGTAACAAA	ATTCCCATTA	AAACAATGAG	480
GAAACCACCA	ATTTTCTTTA	GTAGCATCAT	ATGACGCTTG	ATTTTACTAA	AATATGGCAT	540
GACTAGACCT	GAAGCTAGTG	CCAATACCAA	GAAAGGAAGG	GCCATGCCaG	AGTGTAAATG	600
AGAGTATAAA	TCGCTCCTTG	CCAAGCGCCA	TTGCCTCCAG	AAGCCGCAAG	TGCTAAAACA	660
GAACTTAAAA	CTGGACCAAT	ACAAGGTGTC	CAACCAAAGC	TAAAGGTAAT	ACCAAGTAAA	720
AAAGCTGACC	AATAACGATT	AGAATCTGAT	TTTTTAAAGG	TAAAACTTTT	TTGAACTTCT	780
AATTTCTTCA	AATGAAAAAT	TTCCATCTGG	TGAAGACCCA	AAATGATAAT	AATAGCTCCC	840
ATGCCATATC	, GAAACCAATT	TGCATAGAGA	ATATGACCAA	AGTAACCAGC	ACCAAAGCCT	900
AGAATAAAGA	. Aaatgagaga	GATACCAGCG	ATAAAGCAAA	GTGTTCGAAT	CAAGCCTGAC	960
CAGAGAACCT	TTCTCCCAAA	CAAAGAAAAG	CTTTTTGCAC	TTTCTTGATC	ATCCAATAAA	1020
ATCCCAGCAT	AGACTGGCAG	AAGAGGAAAA	ATACAAGGAG	AAAAAAAGGA	TAAAACACCT	1080
GCTAGAAAA	CAGAGATTAA	AAATACTATC	GTTTCCAATA	AAGAACCAAC	TTTCTTAATA	1140
ATTCTAATCC	TATTTTACTA	TATTCAATTT	TATTTGTAAG	CTTTCTGCTA	CGCAAAATCG	1200
TATCGGGCAC	TATTGGACCA	ATCTTTTCTT	TTGCTAGTCA	AGGCGGATCT	TATCCCCCAA	1260
AATAGCCAAA	AAGCAACGAC	AAGGATTACT	CATCGCTGCT	TTTGTGAACG	AAAATGTCTT	1320
TTAGGTCTGA	CATTTCATAA	ATCATGTTTT	ACTTGAGTTT	GTCAAGGATT	GCTTTAAGCT	1380
CCTCTACTAC	TTTAGTTTCT	GTCTCTGCTG	AGCCATTTTC	TTCTTTCACG	AAATCAAGGG	1440
TTTCTTGGAC	AAGGTTTTGG	GCTTTGGCAA	GGACTTTTTT	ATCCGCTTTT	TCTGCATCTA	1500

GCTGTCCTAG	AACCTTGATC	AATTCCGTGC	TTAATTGCTG	GATT: CGAC	TCTTTCTTAC	1560
GGCGAATCAG	CCAGAAGGCA	ATCACGCCTA	GGAGGGCAAG	TAGACTGACC	ACAATCACTC	1620
CTGCCGGAAC	TGAGTTTGTT	TCAGTCATCT	TATCTGAATC	CTTACTATCT	TCCGTTCCTT	1680
GTTTTGCATC	CTTCTTGTCC	TGTGCAGGCT	TGCTGTCGCT	AGCATTTGCT	TTCACATCTT	1740
TGAGAGAGTC	CAAGGCAGCC	CAGCCTTCAC	AGACTCTACT	GCAGTATGCA	GACCTTACTC	1800
TGTCAAGGCA	CTATCTTCCG	GAGCTTTTTG	AGCATCTAGG	AGGACAGCCT	TGGTTGCATC	1860
GATTTTCGGA	TCAGATACTG	TTGCCAAAGC	TTTCAAGCGT	TGGTCTAACT	CTTGACTCAA	1920
GGCACGAAGT	TCAGACTTGT	CAACTTGCTC	TTGAGCTTGT	GTGCTCGTTG	AGCTAGCCGA	1980
AGCGCTTGCT	ACCACTCTAG	GATCTTGAGT	CGGAGCTGAG	CTTGGAGCTG	GGACAGGGCT	2040
TGCAGGTTGA	CTAGGAACAG	TTATGGTATA	TTGAAACTAG	AATAGTACAT	ATGGACTTCT	2100
AAAACATTGT	TAGAATTCGA	TTTTACTGTC	CTGATCGATT	TGTCCTATTC	TTATTTCATT	2160
TTACTATAAT	AACCGATGGT	GTGGTTAATG	TTGGTAAGAG	AAACTTCTGA	AACCAAGCTT	2220
CAAAAAAGTC	GCTCGTCATC	GTCTCTTCGT	AAGTCATTGG	AGCGATTAAT	TCACCATTTG	2280
TTAGACCTGC	AACCAAAGAA	ATCCTCTGAT	ATCTTCTTCC	AGATACTTTG	CCTCTTATTA	2340
ACTGACCTTT	TAATGAGCGA	CCATATTCTC	GATAAAAATA	AGTATCGAAT	CCTGTTTCGT	2400
CAATCTAAAC	AGGTGCTAGG	TGCTTTAAAC	ТАТТАААЛТТ	CTTAAGAAAT	AAGGCTACTT	2460
TTTCTGGGTC	TTGTTCATAG	TAGGTGTGGT	TCTTTTTTC	GAGTGTAGCC	CATAGCTTTG	2520
AGCGCATAGT	GGATGGTAGT	TGGATGACAG	CCAAAkTCAG	AAGCTATTTC	AGTCAAATAA	2580
GCTTCTGGAT	TGTCAGTAAG	ATAGTTTTTĄ	AGTCTATCTC	TATCAACTT1	TCTTGGTTTT	2640
GTTCCTTTTA	CTTGGTGGTT	TAGCTCTCCT	GTTTTCTCTT	TTAGCTTTA	CCAGCCATAA	2700
ATGGTATTAC	GTGAGATTTG	GAAAACGTGT	GATGCTTCTC	TTATACTAC	TATTCGCTCA	2760
CAATAAGAGA	GAACTTTTT	ACGAAAATCT	ATTGAATAT	CCATAAGAA	ATTATACCAC	2820
ATTGTGTACT	ATTTTTGGTT	CATTTCACTA	тааслсааа	TAGATTATT	TTACATAACA	2880
AAAAAGAGGT	CTAAACCTCT	TAACTCAATI	ACTCCGCCAC	TAGGACTCG	A ACCTACGACA	2940
TCATGATTA	A CAGTCATGCC	CTACTACCA	CTGAGCTATO	GCGGATTAA	A GCTAAGCGAC	3000
TTCCCTATC	r CACAGGGGG	AACCCCAAC	TACTTCCGG	GTTCTAGGG	TTAACTTCTG	3060
TGTTCGGCA	r GGGTACAGGT	GTATCTCCT	GCTATCGT	ACTTAACTC	r gagtaatacc	3120
TACTCAAAA	r TGAATATCT	TTCAATTTA	GAAAACCGT	r CGCTTTCAT.	A TTCTCAGTTA	3180
CTTTGGATA	A GTCCTCGAG	TATTAGTAT	T AGTCCGCTAG	ATGTGTCGC	C ACACTTCCAC	3240

			478			
TTCTAACCTA	TCTACCTGAT	CATCTCTCAG	GGCTCTTACT	GATATATAAT	CATGGGAAAT	3300
CTCATCTTGA	GGTGGkTtCA	CACTTAGATG	CTTTCAGCGT	TTATCCCTTC	CCTACATAGC	3360
TACCCAGCGA	TGCCTTTGGC	AAGACAACTG	GTACACCAGC	GGTAAGTCCA	CTCTGGTCCT	3420
CTCGTACTAG	GAGCAGATCC	TCTCAAATTT	CCTACGCCCG	CGACGGATAG	GGACCGAACT	3480
GTCTCACGAC	GTTCTGAACC	CAGCTCGCGT				3510

(2) INFORMATION FOR SEQ ID NO: 54:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20986 base pairs
 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

CGGAGAAAA	CATGGCTAAG	TCAAACTTTG	AAAAAGTAGA	ATCAGTTGTT	GGCTGGGTTC	60
GTGATAAGAA	AATCACAGGC	TACCGTATCT	CTAAAGAAAC	GAATGCGCGT	GAAATGTCTA	120
TCATTGCTCT	GGCGCAGGGT	CGTGCAAAAG	TAAAAAATAT	TTCATTTGAA	ACAGCCCTAG	180
GCCTAATTGA	TTTCTATGAA	AAAAATTATG	AAAAATTTGA	AGATTAATCT	TTGGATAACG	240
GCGGATTCTT	GACCTTCAAG	TAGTAGAGAT	AGAGAATCTG	CCTTTTCATT	TTGAGGACAG	300
CAAAAAGACT	GCACGGTTGA	TGCAGCCTTT	TCTTTTTATT	TGAGATAGCG	TTGAAGGAAC	360
TCTTTTGTTC	GGTCTTCTTT	AGGATTGGTG	AAGAGGTCTT	CTGGTTTACC	TTCTTCAGCG	420
ATCACGCCCT	TATCCATAAA	GATAACACGG	TGAGAGACAT	CACGGGCAAA	TTCCATTTCA	480
TGGGTTACGA	CAATCATGGT	CAAGCCTTCC	TGAGCCAGGT	CCTGCATGAT	TTTGAGGACT	540
TCTCCAACCA	TTTCTGGATC	GAGAGCTGAT	GTTGGTTCAT	CAAAGAGAAT	AGCGTCCGGA	600
TTCATGGAGA	GGGCACGAGC	GATGGCCACA	CGTTGTTTTT	GACCACCTGA	GAGTTGTTTT	660
GGTTTGGCTT	GCCAGTAGCG	TTCTCCCATG	CCGACCTTTT	CCAGGTTTTC	TTTGGCAATC	720
TTTTCAGCTT	CTGTGCGTTC	GCGTTTTAGG	ACAGTTGTCT	GAGCGACGAT	TGTGTTTTCA	780
AGAACATTGA	GATTTTCAAA	GAGGTTAAAG	GATTGGAAAA	CCATCCCCAA	CTTTTCACGG	840
TATTGCGTGA	GGTCATAGCC	TTTTTCGAGG	ACGTTTTGTC	CATGATAAAG	GATTTGTCCA	900
TCAGTTGGTG	TTTCAAGTAG	GTTAATGGAG	CGTAGGAAGG	TCGATTTTCC	GCTTCCAGAG	960
CTTCCGATGA	TAGAGATGAC	CTCTCCCTTG	TGGACAGTGA	GTGAAATGTC	TTTTAGCACT	1020
TCGTTTTGTC	CATAGGATTT	TTTGAGGTGT	TTAATTTCAA	GGATTGCTTG	TGTCATTATT	1080
TCAAATCCTC	CGTTTGCATT	TGGTTAGCAC	CTGTAGTGTA	GGTATCCATG	TCCATTCTGC	1140

	GCGTAGGATA			•		1200
TGATTGTAAA	TGTCTGGAAG	TATTGATAGG	TTTGTGTTGC	CACGGTATTT	CCTGAGAAAT	1260
AAAGTTCGAC	AACAGAGATA	ACGTTCAATA	CAGATGTATC	TTTGATATTG	ATGACAAATT	1320
CATTACEAGT	TGCAGGTAGG	ATGTTACGGA	CTACCTGAGG	TAGGACAATC	TTACGCATGG	1380
TCTGGTTATG	GGTCATACCA	AGAGCAGTCG	CAGCTTCAAA	TTGTCCCTTG	TCAACTGCTA	1440
GGATACCACC	ACGGACGATT	TCAGTCATGT	AGGCACCGGT	ațtgattgaa	ACGATGAAGA	1500
TAGCAGCCAG	TGTACGGTCA	AGGTTGATCC	CGAAAGCTTG	GGCAGTTCCA	TAGTAGATAA	1560
CCATCGATTG	AACAATCATT	GGCGTACCAC	GGAAAATTTC	AATGTAGACA	TTGAGAACCC	1620
AGCCGACTAG	TTTTTGTAGG	CCGTAAATGA	CTTTGTTTTC	AGAGAGAGGA	GCAGTACGGA	1680
AGACACCAAT	GGCAAGTCCA	ATAATGAGAC	CTATGATGGT	TCCGACGATA	GAGATTAAAA	1740
GAGTGATACC	AGCACCACGC	AAGAGTTGTT	GCCAGTTTTC	AGAAAGAATT	TTAGCAACTT	1800
GGCTAAAGAA	ACTACTGCTA	GTCTCTTCAG	TTGTTGTAGC	TTCGGCAGGT	TGTTCCTTGA	1860
TCATACGATC	CATCAAGGCA	ACTTGGTCAT	CTTTTGAAAT	GGTTTCAATG	CTGGCATTGA	1920
TTTGGCTAAT	ACGATTGTCA	TTTTTACGAA	GCCCGATAGC	GATAGCTGTA	TCTTCTTCCC	1980
CAGTTTTGAA	ACCAGGTTCT	ACTTGAATCA	TCTTGAACTT	AGAGTTCGCA	GCTTCAGCAG	2040
TCAGTGCTTC	TGGACGTTCA	GAAACATAAG	CATCAATGAC	ACCAGCCTCA	AGAGCTTGTC	2100
GCATTTGAGC	GAAGTCTCCC	ATGGCTGTTT	CTTTTTTAGC	ACCTGGGATT	TGTGCAATCA	2160
AGTTATAAAG	GTAGACCCCT	TGTTGAGAAG	TGATTTTTGC	ACCGTTAAAG	TCATCCAAAG	2220
ATTTAGCACT	TGCGTAGGCA	GAATCTTTTT	TGACAAGCAA	AACTGGTTCG	CTAGTATAGT	2280
AACTGCTCGA	AAAGGCAATT	TCTTGTTTGC	GTTCTGCAGT	TGGACTCATA	CCTGCGATAA	2340
					GTTTTAACAA	2400
CCAAAGGTTC	TTTACCTAAG	TCCTTAGCGA	TTTTCTTGGC	GATTTGAACA	TCGTATCCGT	2460
TGGCATACTG	ATTGGTCCCA	TCGATTTTGA	CAGCTCCGTT	GCTATCATCA	TCCTGGGTCC	2520
AGTTAAAGGG	AGCATATGCT	GCTTCCATAC	: CGATGCGTAA	ATATTCATCO	GCTTGAGCAA	2580
CATTGACAAG	TCCTAGCATC	AGCAAGAGAG	TTGTGAAAAT	r AGATAAGTA)	ATGTGGCTCA	2640
TGATTTCTCC	TATTCTGATO	TATTAAAAAA	TAACTGTCTC	CTATTTATO	GAAAAATGCG	2700
TAATTTTTC	ACATAAGTAA	GTCTTTACTT	a ACGAAAAAA	r GCTATAATG	TAAGAAAGAT	2760
AAAAAGGGGG	CTTAGTTGAT	GAAAAAAACT	TTTTTCTTAC	TGGTGTTAG	CTTGTTTTGC	2820
CTTCTTCCAC	TCTCTGTTTT	TGCCATTGAT	TTCAAGATA	A ACTCTTATC	A AGGGGATTTG	2880

480 TATATTCATG CAGACAATAC GGCAGAGTTT AGACAGAAGA TAGTTTACCA GTTTGAGGAG 2940 GACTTTAAGG GCCAAATCGT GGGACTTGGA CGTGCTGGTA AGATGCCTAG CGGGTTTGAC 3000 ATTGACCCTC ATCCAAAGAT TCAGGCCGCG AAAAACGGTG CAGAACTAGC AGATGTGACT 3060 AGCGAAGTAA CAGAAGAAGC GGATGGTTAT ACTGTGAGAG TCTATAATCC AGGTCAGGAG 3120 GGCGACATAG TTGAAGTTGA CCTCGTCTGG AACTTAAAAA ATTTACTTTT CCTTTATGAT 3180 GATATCGCTG AATTAAATTG GCAACCTCTG ACAGATAGTT CAGAGTCTAT TGAAAAGTTT 3240 GAATTTCATG TAAGGGGAGA CAAGGGGGCT GAAAAACTCT TTTTCCATAC AGGGAAACTT 3300 TTTAGAGAGG GAACGATTGA AAAGAGTAAC CTTGATTATA CTATCCGTTT AGACAATCTT 3360 CCGGCTAAGC GTGGAGTTGA GTTGCATGCC TATTGGCCTC GGACCGATTT TGCTAGCGCT 3420 AGGGATCAGG GATTGAAAGG GAATCGTTTA GAAGAGTTTA ATAAGATAGA AGACTCGATT 3480 GTTAGAGAAA AAGATCAGAG TAAACAACTC GTTACTTGGG TCCTCCCTTC GATCCTTTCC 3540 ATCTCCTTGT TATTGAGTGT CTGCTTCTAT TTTATTTATA GAAGAAAGAC CACTCCTTCA 3600 GTCAAATATG CCAAAAATCA TCGTCTCTAT GAACCACCAA TGGAATTAGA GCCTATGGTT 3660 TTATCAGAAG CAGTCTACTC GACCTCCTTG GAGGAAGTGA GTCCCTTGGT CAAGGGAGCT 3720 GGAAAATTCA CCTTTGATCA ACTTATTCAA GCTACCTTGC TAGATGTGAT AGACCGTGGG 3780 AATGTCTCTA TCATTTCAGA AGGAGATGCA GTTGGTTTGA GGCTAGTAAA AGAAGATGGT 3840 TTGTCAAGCT TTGAGAAAGA CTGCCTAAAT CTAGCTTTTT CAGGTAAAAA AGAAGAAACT 3900 CTTTCCAATT TGTTTGCGGA TTACAAGGTA TCTGATAGTC TTTATCGTAG AGCCAAAGTT 3960 TCTGATGAAA AACGGATTCA AGCAAGAGGG CTTCAACTCA AATCTTCTTT TGAAGAGGTA 4020 TTGAACCAGA TGCAAGAAGG AGTGAGAAAA CGAGTTTCCT TCTGGGGGCT CCCAGATTAT 4080 TATCGTCCTT TAACTGGTGG GGAAAAGGCC TTGCAAGTGG GTATGGGTGC CTTGACTATC 4140 CTGCCCCTAT TTATCGGATT TGGTTTGTTC TTGTACAGTT TAGACGTTCA TGGCTATCTT 4200 TACCTCCCTT TGCCAATACT TGGTTTTCTA GGGTTAGTTT TGTCTGTTTT CTATTATTGG 4260 AAGCTTCGAC TAGATAATCG TGATGGTGTT CTAAATGAAG CGGGAGCTGA GGTCTACTAT 4320 CTCTGGACCA GTTTTGAAAA TATGTTGCGT GAGATTGCAC GATTGGATCA GGCTGAACTG 4380 GAAAGTATTG TGGTCTGGAA TCGCCTCTTG GTCTATGCGA CCTTATTTGG CTATGCGGAC 4440 AAGGTTAGTC ATTTGATGAA GGTTCATCAG ATTCAAGTGG AAAATCCAGA TATCAATCTC 4500 TATGTAGCTT ATGGCTGGCA CAGTACGTTT TATCATTCAA CAGCACAAAT GAGCCATTAT 4560 GCTAGTGTCG CAAATACAGC AAGCACCTAC TCTGTATCTT CTGGAAGTGG AAGTTCTGGT 4620 GGTGGCTTCT CTGGAGGCGG AGGTGGCGGC AGTATCGGTG CCTTTTAAAG AGAGCTACCA 4680

TAGACTGAAA	AAGTATGATA	TAATGGAAGA	TAGAAAAAAG	ACAAACTATA	AGAAAGTCA	4740
ATAGTTTTAT	CTAAACTATT	TCTTATTTCA	ATTTGATGAT	TTGGCGATGA	TTTTAGAGCA	4800
CGGCAAAAAG	CCCTTGAAAA	AGTCCATTTT	TTCAAAGGTA	ATCCTGTGTT	AATTTCAGAA	4860
ATTACATCAC	TTTTTGTTCG	TCAAATGGCA	GCTCTTTTTT	AGGATATAAA	ACAGGGTTCG	4920
GATAAGTTTT	TTTGCAAGGT	GGATGATGGC	TACATTGTAA	TGTTTTCCTT	ATTCTAACTT	4980
AGTCTTAAGA	TAGGCCTTAG	AAGCAGGTGA	AAAGCGAGGG	CATGCTTTGG	CAGCTTGTAT	5040
GAGTGCCCAC	CGCAGATGAG	GGGAACCCCG	TTTGACCATT	CTTCCAGCTA	AATCAATCTG	5100
ACCTGACTGA	TAAATAGAAG	AATCCAGTCC	AGCGAAAGCT	TGTAATTGAG	CAGGATTATC	5160
AAAGGCATGA	ATATTTCGAA	TCTCGGCTAA	AATGACCGCC	CTAAACGATC	CCCAATCCCA	5220
GTAACCGTCG	TGATGACCGA	GTTGAACTCA	GCCATCGAGT	CATTGATACA	TGTTTCCGCC	5280
TTGTCAATGA	GCCTCTTGTA	ATGCTTGATG	ATTTCGAATT	CACGAGCAGG	AGATGTTGTT	5340
CCGATAGAAC	GAGGTGCGAC	TGAGAGGATA	TCCTGAATTT	TAGAAGCGGT	CAATCGCTTA	5400
ATTTCTATCA	GCTTATCAAA	TCCTGCCTCA	ATCCTTTTCT	GAGGATTAGG	GTAGCGTGTC	5460
AAGAGTTGGT	AGGTATATTC	TGAATGCTTT	CCAACGATTT	TATCCAACTC	AGGAAAGATG	5520
ATATCAAGAC	AACGAGTGTA	TTGTACTTTC	CAATCAGACT	GTTTTTCTTG	AGACGATGAA	5580
TATGTCTAGC	CAGTATTTTT	AGGTCTACTT	GCCGATTATC	GTGTTGAAAT	TGTTCACGAT	5640
TGGGGTCAGA	AAGAAGTTTA	AGAGCGATGC	CATGAGCGTC	TTTCTTATCC	GTTTTAGTCT	5700
TGCGAAGTGA	TAATGATTTG	GCAAATTCCT	TGATGAGCAA	AGGATTGTAG	GTGTAAACTT	5760
TATATCCTTG	TTCATGCAGG	AAGTTCAGTA	GATTAAAGGC	ATAATGTCCA	GTATCTTCAA	5820
GAGCGATGAG	ACAGTCTTGG	TTGATCTGTC	GAATAGACAG	ATCTAAGAGT	TCAAAACCAG	5880
CTTTATTATT	TGAAAAAGTG	AGTGGTTTAA	GAACAGTTTT	TCCTGGAACA	TTCAAGGCTG	5940
TAACATCGTG	TTTATTTTTA	GCGATATCAA	TGCCTACATA	AAGCATGGGA	GTACCTCCAG	6000
ATATAGTATT	TCAAGTCTAC	TTGGTTATCC	ACGAATTTTT	TGCCTTGTTA	CCTTAGACGA	6060
GATCAAACGT	CTATGCGTTA	TCAAACTCAT	TACCAATTGA	AACAAAAGCT	GTGGTTAGAG	6120
CCTTTCGGAA	ATCGTCAAGC	GATTGGAGGA	AATGAACTAA	TCCATAGTGG	CTTATTCCAA	6180
GTATACCACT	TGGGCTTTGG	CAGTAGCTAA	CTGCGCTAAA	ТАТААТАТАС	GGAGTAATCT	6240
ATGTATCTTA	TTGAAATTTT	AAAATCTATC	TTCTTCGGAA	TTGTTGAAGG	AATTACGGAA	6300
TGGTTGCCGA	TTTCCAGTAC	AGGTCACTTG	ATTTTAGCAG	AGGAATTCAT	CCAATACCAA	6360
AATCAAAATG	AAGCCTTTAT	GTCCATGTTT	AATGTCGTGA	TTCAGCTTGG	TGCTATTTTA	6420

6480 GCAGTTATGG TGATTTATTT TAACAAGCTC AATCCTTTTA AACCGACCAA GGACAAACAG GAAGTTCGTA AGACTTGGAG ACTATGGTTG AAGGTCTTGA TTGCTACTTT ACCTTTACTT 6540 GGTGTCTTTA AATTTGATGA TTGGTTTGAT ACCCACTTCC ATAACATGGT TTCAGTTGCT 6600 CTCATGTTGA TTATCTACGG GGTTGCCTTC ATCTATTTGG AAAAGCGCAA TAAAGCGCGT 6660 GCTATCGAGC CAAGTGTAAC AGAGTTGGAC AAGCTTCCTT ATACGACCGC TTTCTATATC 6720 GGACTCTTCC AAGTTCTTGC TCTTTTACCA GGGACTAGCC GTTCAGGTGC AACGATTGTC 6780 GGTGGTTTGT TAAATGGAAC CAGTCGTTCA GTTGTGACAG AATTTACCTT CTATCTTGGG 6840 ATTCCTGTTA TGTTTGGAGC TAGTGCCTTA AAGATTTTCA AATTTGTGAA AGCCGGAGAA 6900 CTCTTGAGCT TTGGGCAATT GTTTTTGCTC TTGGTCGCGA TGGGAGTAGC TTTTGCGGTC 6960 AGCATGGTGG CTATTCGCTT CTTGACCAGC TATGTGAAAA AACACGACTT CACCCTTTTT 7020 GGTAAATACC GTATCGTGCT TGGTAGTGTT TTGCTACTTT ACAGTTTTGT CCGTTTATTT 7080 GTATAAGAAA AACCTTGAAG GGGCAACTCT TCAAGGTTTT ATACTCTTCG AAAATCTCTT 7140 CAAACCGCGT CAGCTTTATC TGCAACCTCA AAACAGTGTT TTGAGCAGCn CTGCGGCTAG 7200 CCTCCTAGTT TGCTCTTTGA ITTTCATTGA GCTTTAAAAT CCAGTCATGG TAATCCCCAA 7260 TAGGCGGACA CCTCTTCTT TCTTGCTTAA TTCTTCATAG AGTTGCAGGG CTATTTGGCT 7320 TATCTGACTA GCATCTTGTG TTTTTTGAGC AAGACTTTTT CGTTTGGTAA GAGTTGAAAA 7380 GTCCTCGTAG CGGATTTTCA AAATGACAAT TTTTCCAGCT TTTTCTTGTT GATGTAGATT 7440 GAGAGCGACT TTTTCTGATA GAAGAGTCAG CTCTTTTTTG ATATCTTCCT CAGCAAGGAG 7500 AATCTTCCCG TAGGTTTTCT CCTTGCCGAT TGATTTACGG ATGCGATTGG ATTTGACTGG 7560 AGAGTTGTGA ATGCCACGAG CCTTTCGATA CAGATCATAG CCTAGTCTAC CAAAACGGTC 7620 TATTAGGGTT ACCTCAGGAA CTTCAAGTAA ATCAGCACCA GTAAAAACGC CCATTTGATG 7680 AAGACGTTCT ACTGTCTTTT TTCCTACTCC ATGAAATTTG GAAATATCCA TTTGTTTGAG 7740 AAAATCCTCA GCCTGTTCAG GTAGAATCAC TGTCAAACCA TGTGGTTTTT GATAATCACT 7800 CGCCATTTTA GCTAAGAATT TGTTGTAAGA AACGCCTGCG GAAGCAGTTA GATGGAGTTC 7860 TTGCCAGATA TCTTTTGAA TGAGGCGAGC AATTTTGACC GCTGACTTGA TACCGAGTTT 7920 ATTTTCTGTC ACATCCAAAT AGGCTTCGTC AATGCTCATG GGTTCAATCA AATCTGTATA 7980 GCGCTTAAAA ATAGCTCGAA TCTGGAGTCC CACAGACTTG TATTTCTCAT AATTCCCTGA 8040 GATAAAGACA GCCTGGGGAC AACGTTCATA AGCTTCCTTG GAACTCATGG CAGAATGGAC 8100 ACCAAAAGCT CTTGCCTCAT AACTACAGGT AGAAACGACT CCCCGTCCAC CTGTTTGCCG 8150 AGGGTCGCTT CCAATAATGA CAGGTTTTCC TCTGAGTTTA GGATTATCCC TGATTTCCAC 8220

TGCAGCAAAA	AAGGCATCCA	TGTCAATATG	GATGATTTTT	CTTGACAAAT	CATTTAACAA	8280
AGGAAAAATC	AACATGCCTA	GCACCTTTTT	ATACTCTTCG	AAAATCTCTT	CAAACCACGT	8340
CAGCTCTATm	TGCAACCTCA	AAACAGTGTT	TTGAGCAATC	TGCGGCTAGC	TTCCTAGTTT	8400
GCTTTTCGAT	TTCCATTGAG	TGTTACTGCT	TATTYTCTTT	TATTATACCC	TTTTTTCTGA	8460
аааааададаа	AAAGGACTTT	ATTTTTTCAA	AAATATAATA	CAGTTTGAAA	TAAAATATAG	8520
ACTGTTTTAG	AAAAGAAAGT	GTAAAAATAG	GGAATTTTCA	CTTGTTGAAA	TCGGTTACTA	8580
TATGGTATAC	TTGTCTTATG	AATGTAACAG	ATGACTGTTA	CTAGAAAAA	GAGGACATTA	8640
ATATGGTTGT	TANGACAGTT	GTTGAAGCAC	AAGATATTTT	TGACAAAGCT	TGGGAAGGCT	8700
TCAAAGGCGT	AGATTGGAAA	GAAAAAGCAA	GTGTATCACG	ATTTGTACAA	GCTAACTACA	8760
CACCTTATGA	TGGAGACGAA	AGCTTCCTTG	CAGGACCAAC	AGAGCGTTCA	CTTCACATCA	8820
AGAAAATTGT	AGAAGAAACT	AAAGCACACT	ACGAAGAAAC	TCGTTTCCCA	ATGGACACTC	8880
GTCCAACATC	TATCCCTGAT	ATCCCTGCTG	GATTTATCGA	CAAAGAAAAT	GAAGTTATCT	8940
TCGGTATCCA	AAACGATGAA	CTCTTCAAAT	TGAACTTCAT	GCCAAAAGGT	GGTATCCGTA	9000
TGGCTGAAAG	TACTTTGAAA	GAAAATGGAT	ACGAACCAGA	CCCAGCTGTT	CACGAAATCT	9060
TCACTAAATA	A TGTAACAACA	GTTAACGAC	GTATTTTCCC	TGCCTACACT	TCAAATATTC	9120
GTCGCGCTCG	TCACGCACAC	ACTGTAACT	GTCTTCCAG	TGCATACTC	A CGCGGACGTA	9180
TCATCGGTGT	TTACGCACGT	CTTGCTCTT	T ACGGTGCAG	CTACTTGAT	G CAAGAAAAG	9240
TAAATGACT	G GAATGCAAT	AAAGAAATC	G ATGAAGAAA	AATCCGTCT	r CGTGAAGAAG	930C
TAAACCTTC	A ATACCAAGC	TTGCAACAA	G TTGTTCGCC	r GGGTGACCT	T TACGGGGTTG	9360
ATGTTCGCA	A ACCAGCGATO	AACGTGAAA	G AAGCAATCC	A ATGGGTTAA	C ATTGCTTTCA	9420
TGGCTGTCT	G CCGTGTGAT	T AACGGTGCT	G CTACATCTC	r aggtcgtgt	A CCAATCGTAT	9480
TGGACATCT	T, TGCAGAACG	r GACCTTGCT	C GTGGTACAT	T TACTGAATC	A GAAATCCAAG	9540
AATTCGTTG	A TGATTTCGT	T ATGAAACTT	C GTACAGTTA	A ATTTGCTCG	T ACAAAAGCTT	9600
ATGACCAAT	T GTACTCAGG	T GACCCAACC	т ттатсасаа	C TTCTATGGC	T GGTATGGGTA	9660
ACGACGGTC	G TCACCGTGT	T ACTAAGATG	G ACTACCGTT	T CTTGAACAC	T CTTGACAACA	9720
TCGGTAACT	C ACCAGAACC	A AACTTGACA	G TTCTTTGGA	C TGACAAATT	G CCATACAACT	9780
					C GAAGGTGTAA	9840
					GTGTCTCCAC	9900
TTGATCCAC	SA AAATGAAGA	A CAACGCCAC	ACATCCAGT	TA CTTCGGTGG	T CGTGTAAACG	9960
•						

TTCTTAAAGC CCTTCTTACT GGTTTGAATG GTGGTTACGA CGATGTTCAC AAAGACTACA 10020 10080 AAGTATTIGA TATCGAACCA ATCCGTGACG AAGTTCTTGA ATTTGAATCA GTTAAAGCGA ACTITIGAAAA ATCTCTTGAC TGGTTGACTG ACACTTACGT AGATGCCTTG AACATCATCC 10140 ACTACATGAC TGATAGGTAC AACTACGAAG CTGTTCAAAT GGCCTTCTTG CCAACTAAAC 10200 AACGTGCCAA CATGGGATTC GGTATCTGTG GATTTGCTAA CACTGTTGAT ACATTGTCAG 10260 CTATCAAATA CGCTACAGTT AAACCAATCC GTGACGAAGA TGGCTACATC TACGATTACG 10320 AAACAATCGG TGACTACCCA CGCTGGGGTG AAGATGACCC ACGTTCAAAC GAATTGGCAG 10380 AATGGTTGAT CGAAGCTTAC ACAACTCGTC TACGTAGCCA CAAACTATAC AAAGACGCAG 10440 AAGCTACAGT ATCACTTTTG ACAATCACAT CTAACGTTGC TTACTCTAAA CAAACTGGTA 10500 ACTCACCAGT TCACAAAGGT GTATACCTCA ACGAAGATGG TTCTGTGAAC TTGTCTAAAC 10560 TTGAATTCTT CTCACCAGGT GCTAACCCAT CTAACAAAGC TAAAGGTGGT TGGTTGCAAA 10620 ACTTGAACTC ACTTTCTAGC CTTGACTTTA GTTATGCAGC TGACGGTATC TCATTGACTA 10680 CACAAGTATC ACCTCGCGCT CTTGGTAAGA CTCGTGATGA ACAAGTTGAT AACTTGGTAA 10740 CAATTCTTGA TGGTTACTTC GAAAACGGTG GACAACACGT TAACTTGAAC GTTATGGACT 10800 TGAACGATGT TTACGAAAAA ATCATGTCAG GCGAAGACGT TATCGTACGT ATCTCTGGAT 10860 ACTGTGTAAA CACTAAATAC CTCACTCCAG AACAAAAAAC TGAATTGACA CAACGTGTCT 10920 TCCACGAAGT TCTTTCAATG GATGACGCCT TGGATGCATT GAGCTAATCA AGTTCTTGAA 10980 TAATAAAAG GAACCCTCGG TCAAACGACT GAGGGTTTTG TGCTTGGGAT AGTATGAGCA 11040 ATTCCTTCGG CGCAATATGC AATGTTTTTG GGCTCTTTGT CAACTGTAGT GGGTTGAAAA 11100 AAAGCTAAGC TTGAGAAAGG ACAAATTTCG TCCTTTCTTT TTTGATGTTC AGGGCGATAA 11160 AAATCCGTTT TTTGAAGTTT TCAAAGTTCC GAAAACCAAA GGCATTGCGC TTGATGTCTT 11220 TGATGAGTTT GTTAGTGGCC TCAAGTTTAG CGTTAGAATA AGGCAATTCA ATGGCGTTAG 11280 TGATGTAGTT TTTATAGCAA ATAAATGTGC TCAAAGTGGT TTTAAAGGTG CGGTTGAGAT 11340 GAGGTAACGT GTCTTGAATT AAGCCCCAAA ACTGGTCAGT ATTCTTCTCT TGTAGATGAA 11400 ATAGGAGTAG TTGATACAGG TCATAGTAAT CTTTAAGTTC AGGTACTAGA GTAAAGATTT 11460 TCTTCAGACA CTCCCTAGGA GTTAAGGTCT CTCTGAAAGT TCTAGCATAG AAAGGCTTAA 11520 GAGAGAGTTT CCGACTATCT TTTAGGATAA ATTTCCAGTA ATATTTAAGA GCTCTGTATT 11580 CCAGAGATTT ATCATCAAAT TGCTTCATGA TGTTGATTCT AGTCTGATTA AGAGCCCTGC 11640 TCATGTGTTG GACAATGTGG AAACGATCGA GAACAATTTT AGCATTGGGA AATAATTTCT 11700 TAATGAGAGG GATATAACTT CCAGACATAT CAACAGTGAC GACTTTAACT TTTTTTCTAG 11750

CTTCTTTCG	GTACTTGAAG	AAATGATTTC	GGATGGTTGT	TTGACGTCTG	TTATCAAGAA	11820
TGGTCATGAT	TTTCTTAGTG	TTGAAATCCT	GAGCAATGAA	AGCCAATTTC	CCCTTCTGGT	11880
AGGAGAATTO	ATCCCAGGAG	AGGATTTCAG	GCAAAGTGGT	GTAATCCTCT	TGGAAATGAA	11940
ATTGCTTGAC	CTTACGATAG	ACGGTAGAGG	TAGAGGTAGA	GGTAGAGATG	GCTAATTTAG	12000
AAGCGATATO	TGTAAGAGCC	TCTCTGTTGA	GTAGGAGTTG	GGCAATTTTC	TGTCTCACCA	12060
TTTCCGAGAT	TTGGCAATTT	TTCTGAACGA	GAGTTGTTTC	AGCTACAGTG	ACTTTCCGAC	12120
AGGACTTGCA	TTGAAATCGT	CTCTTTTTCA	AATGAATGAG	GCTAGGGAAA	CCACCAATCT	12180
CGATAAAAGG	GATTTTAGAA	GGCTTTTGGA	AGTCGTATTT	GATTTGTTTT	CCTTTACAGT	12240
GTTTACATTT	AGGTGGGTGA	TAATCAAGTG	TAGCGAAGAC	TTCGATATGG	GTATCGTGCT	12300
GAATGGCTTT	ATTTAAGGTG	ATGTTTTTGT	CTTTTATTCC	GATGAGTAAT	GTGGTATGAT	12360
TGATGTGTTC	CATAAGATAC	TTTCTAATGA	GTTGTTTAGG	CGCTTTTCAT	TATAAGTCTT	12420
ATGGGACTTT	TTTGATACTC	AAAAAGCCCT	ATAATCTCCA	CAGTGGGATT	TACCCACTAC	12480
AGAAATTATA	GAGCCAGAAA	AAACACTTTT	GTTCACTAGC	AGAAACTAGA	GAGCAGAAGT	12540
GTTTTTCTGT	TCAGATTTAC	CCAAAACTGG	GAAATATGGG	GATAAGAATA	GAGATGGCTT	12600
AGGAAGCCCC	TTTTTGTGTG	TAGACAGTAC	GATGAACTTA	TAACAAATAG	TGAGCCTTTT	12660
TAGCAATCAT	TGCGACCCGT	TTGTCAAAAG	CCTCTTTTCG	GATATCTACA	ATTGTCTGAT	12720
AGATGAGACG	CTGTTGGCTA	ACATGCAAAT	CTAAGGCAAT	CGTCAAAAAG	TGATGTTTCC	12780
CTTTGGGATA	CTGCTTTTTA	ACGTAAGGCA	GGTATTCTTT	CGTTGTAATA	ATAATCAATG	12940
GCTCTGTCAA	ATGCTCCTCT	GAAGGAGGAG	GACTAATTAG	AATATTGTAT	CCTGTAACAG	12900
AGGCAACTTT	GTCAGTAAAA	TTCCGTAAAA	TAATGGACTT	TATTAAGTTT	ACATCTGCTT	12960
GATTATTTAA	AATGATAAAA	ATCGGGATAG	CAGGTAGTGA	GGAAAAGATG	GTTTCTGTCA	13020
AGTAGAGTGA	GAAAAGGTAC	AGCCGATGCT	GGTCGATAAC	TCCTTCAATC	TTCTGCTCAG	13080
TCATCCACTC	TTGAACAATT	GCTTTCGAAA	TATGATACAG	TGGCTTGTCG	CTTTCAATCC	13140
CATAATGTTC	GTAATAATTA	TAATAGGGAA	CTAGATTTTG	талассалас	AAAAACGTTC	13200
TTGTTAAGAA	AGTCAGTGCT	GTTAAAAAAAG	AAAGAGAATT	CGAAATGTCA	TTTCCTAAGA	13260
TATTCTTGAA	CTTGGATAGT	AGATGCTTTC	CTCTTGTATG	CTGAAGAATC	AGTTGAATAG	13320
TATGAGTCTT	TTTTTCTTGA	TTCCATTTGT	CCTTGGAAAA	CGAAGAATTA	GCAGAACAAT	13380
AAACCAAAAA	GATATAATCC	AGTTCTTCCT	GAGTAAAAGT	CATGTTGGCA	TGTGGCTCTA	13440
AGTAAGTTTG	GCAATGTTCC	ATCAAAATCG	GATACATAAA	GAGGTTTTTT	AATTTTTCAA	13500

486 ACTCTTTGGA CTCAGGGAAC TCAAGTGGAA ATTCCCGACG TTTCCAAGTG AGTGCCACTA 13560 GTATGCTAAA ATGAACATAC TCGTCAGGTG TGATTTCTAA CAGTTCATGA CTGAGTTGAG 13620 AATTAGACTG CACAATCATA TGTGTGACCC AATCCATACT TCCATCATTC AAATCATAAA 13680 TCTCAATACC AAAATGAAAC TGGAGGAGTG CAATTAAAAA ACGAATGCGA TATTCAGGAC 13740 CAACTACTTG ATTTTTCACA AGGTCCAAAC CTACTGAACG TXGTAACAAG CCACACTTTT 13800 GTCGTACGCG GTAGCCTGTT GCGATGGAAA TATACTCTTT TTGTGTAAAT TCGTTAAAGC 13860 TTTGATTACC TTGTAGTAGA AAGAAGCGGA GTATTTTTAA AATAGTTGAT TGGTTATAAA 13920 GCTGATGGAA GTAATAATTC GTTTGATGAG AATGGTGTTC CATTAATTGA ACTTGTTGCG 13980 TATCTAAATT AAATGTCAAC TCTTCCTCGA ATGTTTCTTG TAATTCCTGC AAAATGCTTA 14040 GGAGACTTTT AGATTGTAAT GAAGTTAAAG TAGACAGTTC ATCTAGTTCA ATAGACCGAA 14100 TATCCAATAA TATATITAAA ATGGTAATIT TATCTGTAAT TCTTTTTCA ATGTATTTGT 14150 TTAGCATAGT TACCGAATCT TAGTTGCATA TAGATAATTT TAATTATTAT AATACAAAAG 14220 AAACTAATTG TCTTGTCAAA AAGGTTGTGG AATTTCCGAC TTTATTGATA AAACAGCATG 14280 TAATAAAAGG CATTTTAAAG ATAGTAATGA GTATTGGTGG AGTTTTATGG CTTATTTTTT 14340 TTATTAGAAA ATATTTTTT ATCAAATATT GTCGTTCTAT AAAAAAATAT GTGATAAAAA 14400 TATCTATTGT GATGGAAGTT GTTTTAATTT ATACTAGGAT AGTTAATAGT AATACTATAC 14460 TATACTATAT TGTATACAAG TGTGTCATTG CCAGGTTGAG AAGATAGCTA TAACGCACTT 14520 TTATACGCTT TTGCTACGTT TGTTAGTGAA CGGATTAACT CAGTGAGATA AATTTTATCA 14580 GAACATAAGT AATCCGTTTC TTCGTGTATA CAGATTGAAA GTACCTATGA ATCATAGAAG 14640 GATTAACTTG TTCTATGAAT AATGCTTAAC AGGGAGACAC ACATGAAAAA AGTAAGAAAG 14700 ATATTTCAGA AGGCAGTTGC AGGACTGTGC TGTATATCTC AGTTGACAGC TTTTTCTTCG 14760 ATAGTTGCTT TAGCAGAAAC GCCTGAAACC AGTCCAGCGA TAGGAAAAGT AGTGATTAAG 14820 GAGACAGGCG AAGGAGGAGC GCTTCTAGGA GATGCCGTCT TTGAGTTGAA AAACAATACG 14880 GATGGCACAA CTGTTTCGCA AAGGACAGAG GCGCAAACAG GAGAAGCGAT ATTTTCAAAC 14940 ATAAAACCTG GGACATACAC CTTGACAGAA GCCCAACCTC CAGTTGGTTA TAAACCCTCT 15000 ACTAAACAAT GGACTGTTGA AGTTGAGAAG AATGGTCGGA CGACTGTCCA AGGTGAACAG 15060 GTAGAAAATC GAGAAGAGGC TCTATCTGAC CAGTATCCAC AAACAGGGAC TTATCCAGAT 15120 GTTCAAACAC CTTATCAGAT TATTAAGGTA GATGGTTCGG AAAAAAAACGG ACAGCACAAG 15180 GCGTTGAATC CGAATCCATA TGAACGTGTG ATTCCAGAAG GTACACTTTC AAAGAGAATT 15240 TATCAAGTGA ATAATTTGGA TGATAACCAA TATGGAATCG AATTGACGGT TAGTGGGAAA 15300

ACAGTGTATG	AACAAAAAGA	TAAGTCTGTG	CCGCTGGATG	TCGTTATCTT	GCTCGATAAC	15360
TCAAATAGTA	TGAGTAACAT	TCGAAACAAG	AATGCTCGAC	GTGCGGAAAG	AGCTGGTGAG	15420
GCGACACGTT	CTCTTATTGA	тааааттаса	TCTGATTCAG	AAAATAGGGT	AGCGCTTGTG	15480
ACTTATGCTT	CCACTATCTT	TGATGGGACC	GAGTTTACAG	TAGAAAAAGG	GGTAGCAGAT	15540
AAAAACGGAA	AGCGATTGAA	TGATTCTCTT	TTTTGGAATT	ATGATCAGAC	GAGTTTTACA	15600
ACCAATACCA	AAGATTATAG	TTATTTAAAG	CTGACTAATG	ATAAGAATGA	CATTGTAGAA	15660
ттаааааата	AGGTACCTAC	CGAGGCAGAA	GACCATGATG	GAAATAGATT	GATGTACCAA	15720
TTCGGTGCCA	CTTTTACTCA	GAAAGCTTTG	ATGAAGGCAG	ATGAGATTTT	GACACAACAA	15780
GCGAGACAAA	ATAGTCAAAA	AGTCATTTTC	CATATTACGG	ATGGTGTCCC	AACTATGTCG	15840
TATCCGATTA	ATTITAATCA	TGCTACGTTT	GCTCCATCAT	ATCAAAATCA	ACTAAATGCA	15900
TTTTTTAGTA	AATCTCCTAA	TAAAGATGGA	ATACTATTAA	GTGATTTTAT	TACGCAAGCA	15960
ACTAGTGGAG	AACATACAAT	TGTACGCGGA	GATGGGCAAA	GTTACCAGAT	GTTTACAGAT	16020
AAGACAGTTT	ATGAAAAAGG	TGCTCCTGCA	GCTTTCCCAG	TTAAACCTGA	AAAATATTCT	16080
GAAATGAAGG	CGGCTGGTTA	TGCAGTTATA	GGCGATCCAA	TTAATGGTGG	ATATATTTGG	16140
CTTAATTGGA	GAGAGAGTAT	TCTGGCTTAT	CCGTTTAATT	CTAATACTGC	TAAAATTACC	16200
AATCATGGTG	ACCCTACAAG	ATGGTACTAT	AACGGGAATA	TTGCTCCTGA	TGGGTATGAT	16260
GTCTTTACGG	TAGGTATTGG	TATTAACGGA	GATCCTGGTA	CGGATGAAGC	AACGGCTACT	16320
AGTTTTATGC	AAAGTATTTC	TAGTAAACCT	GAAAACTATA	CCAATGTTAC	TGACACGACA	16380
					GAAATCAATT	16440
					GGGCACAGAT	16500
					CTTGGAGAAT	16560
					AAAAGTGCTC	16620
					GGATGAAAAA	16680
					ATTTTATGAT	16740
ACCAATGGTC	GAACAACCTT	ACATCCTAAG	GAAGTAGAAC	AGAACACAGT	GCGCGACTTC	16800
					AAAAGAGAAA	16860
					ACTGAGAGGT	16920
					G AGCTATTGAT	16980
CAAAATGGCA	A CȚTATCAAA	TGTGAGAAC	A GGTGAAGAT	G GTAAGTTGAG	CTTTAAAAAT	17040

CTGTCAGATG GGAAATATCG ATTATTTGAA AATTCTGAAC CAGCTGGTTA TAAACCCGTT 17100 CAAAATAAGC CTATCGTTGC CTTCCAAATA GTAAATGGAG AAGTCAGAGA TGTGACTTCA 17160 ATCCTTCCAC AAGATATACC AGCGGGTTAC GAGTTTACGA ATGATAAGCA CTATATTACC 17220 AATGAACCTA TTCCTCCAAA GAGAGAATAT CCTCGAACTG GTGGTATCGG AATGTTGCCA 17280 TTCTATCTGA TAGGTTGCAT GATGATGGGA GGAGTTCTAT TATACACACG GAAACATCCG 17340 TAAAGTGTAG AAATGATAAT ATCTATGTTC TGAACGATAC TTTTAAGAAG TAGCACTCAA 17400 GAAGAGATTT AAGTTTACTT GGTGAAACCT GTTTTATTCG TAAGTAAACT ATCATTGAAA 17460 GGGGAGATGT TTTCGAAAAC TTGCACAGAA AAAGGATTAT TATTGTCATG TGTAATTCAT 17520 TACATTGCTC ACAGTTGATT TTAAGAGATA TGAATAAGGA GAAATCATGA AATCAATCAA 17580 CAAATTTTTA ACAATGCTTG CTGCCTTATT ACTGACAGCG AGTAGCCTGT TTTCAGCTGC 17640 AACAGTTTTT GCGGCTGGGA CGACAACAAC ATCTGTTACC GTTCATAAAC TATTGGCAAC 17700 AGATGGGGAT ATGGATAAAA TTGCAAATGA GTTAGAAACA GGTAACTATG CTGGTAATAA 17760 AGTGGGTGTT CTACCTGCAA ATGCAAAAGA AATTGCCGGT GTTATGTTCG TTTGGACAAA 17820 TACTAATAAT GAAATTATTG ATGAAAATGG CCAAACTCTA GGAGTGAATA TTGATCCACA 17880 AACATTTAAA CTCTCAGGGG CAATGCCGGC AACTGCAATG AAAAAATTAA CAGAAGCTGA 17940 AGGAGCTAAA TTTAACACGG CAAATTTACC AGCTGCTAAG TATAAAATTT ATGAAATTCA 18000 CAGTTTATCA ACTTATGTCG GTGAAGATGG AGCAACCTTA ACAGGTTCTA AAGCAGTTCC 18060 AATTGAAATT GAATTACCAT TGAACGATGT TGTGGATGCG CATGTGTATC CAAAAAATAC 18120 AGAAGCAAAG CCAAAAATTG ATAAAGATTT CAAAGGTAAA GCAAATCCAG ATACACCACG 18180 TGTAGATAAA GATACACCTG TGAACCACCA AGTTGGAGAT GTTGTAGAGT ACGAAATTGT 18240 TACAAAAATT CCAGCACTTG CTAATTATGC AACAGCAAAC TGGAGCGATA GAATGACTGA 18300 AGGTTTGGCA TTCAACAAG GTACAGTGAA AGTAACTGTT GATGATGTTG CACTTGAAGC 18360 AGGTGATTAT GCTCTAACAG AAGTAGCAAC TGGTTTTGAT TTGAAATTAA CAGATGCTGG 18420 TTTAGCTAAA GTGAATGACC AAAACGCTGA AAAAACTGTG AAAATCACTT ATTCGGCAAC 18480 ATTGAATGAC AAAGCAATTG TAGAAGTACC AGAATCTAAT GATGTAACAT TTAACTATGG 18540 TAATAATCCA GATCACGGGA ATACTCCAAA GCCGAATAAG CCAAATGAAA ACGGCGATTT 18600 GACATTGACC AAGACATGGG TTGATGCTAC AGGTGCACCA ATTCCGGCTG GAGCTGAAGC 18660 AACGTTCGAT TTGGTTAATG CTCAGACTGG TAAAGTTGTA CAAACTGTAA CTTTGACAAC 18720 AGACAAAAAT ACAGTTACTG TTAACGGATT GGATAAAAAT ACAGAATATA AATTCGTTGA 18780 ACGTAGTATA AAAGGGTATT CAGCAGATTA TCAAGAAATC ACTACAGCTG GAGAAATTGC 18840

TGTCAAGAAC	TGGAAAGACG	AAAATCCAAA	ACCACTTGAT	CCAACAGAGC	CAAAAGTTGT	18900
TACATATGGT	AAAAAGTTTG	TCAAAGTTAA	TGATAAAGAT	AATCGTTTAG	CTGGGGCAGA	18960
ATTTGTAATT	GCAAATGCTG	ATAATGCTGG	TCAATATTTA	GCACGTAAAG	CAGATAAAGT	19020
GAGTCAAGAA	GAGAAGCAGT	TGGTTGTTAC	AACAAAGGAT	GCTTTAGATA	GAGCAGTTGC	19080
TGCTTATAAC	GCTCTTACTG	CACAACAACA	AACTCAGCAA	GAAAAAGAGA	AAGTTGACAA	19140
AGCTCAAGCT	GCTTATAATG	CTGCTGTGAT	TGCTGCCAAC	AATGCATTTG	AATGGGTGGC	19200
AGATAAGGAC	AATGAAAATG	TTGTGAAATT	AGTTTCTGAT	GCACAAGGTC	GCTTTGAAAT	19260
TACAGGCCTT	CTTGCAGGTA	CATATTACTT	AGAAGAAACA	AAACAGCCTG	CTGGTTATGC	19320
ATTACTAACT	AGCCGTCAGA	AATTTGAAGT	CACTGCAACT	TCTTATTCAG	CGACTGGACA	19380
AGGCATTGAG	TATACTGCTG	GTTCAGGTAA	AGATGACGCT	ACAAAAGTAG	TCAACAAAAA	19440
AATCACTATC	CCACAAACGG	GTGGTATTGG	TACAATTATC	TTTGCTGTAG	CGGGGGCTGC	19500
GATTATGGGT	ATTGCAGTGT	ACGCATATGT	TAAAAACAAC	AAAGATGAGG	ATCAACTTGC	19560
TTAAGTAAGA	GAGAAAGGAG	CCATTGATGA	CAATGCAGAA	AATGCAGAAA	ATGATTAGTC	19620
GTATCTTCTT	TGTTATGGCT	CTGTGTTTTT	CTCTTGTATG	GGGTGCACAT	GCAGTCCAAG	19680
CGCAAGAAGA	TCACACGTTG	GTCTTGCAAT	TGGAGAACTA	TCAGGAGGTG	GTTAGTCAAT	19740
TGCCATCTCC	TGATGGTCAT	CGGTTGCAAG	TATGGAAGTT	GGATGATTCG	TATTCCTATG	19800
ATGATCGGGT	GCAAATTGTA	AGAGACTTGC	ATTCGTGGGA	TGAGAATAAA	CTTTCTTCTT	19860
TCAAAAAGAC	TTCGTTTGAG	ATGACCTTCC	TTGAGAATCA	GATTGAAGTA	TCTCATATTC	19920
CAAATGGTCT	TTACTATGTT	CGCTCTATTA	TCCAGACGGA	TGCGGTTTCT	TATCCAGCTG	19980
AATTTCTTT	r TGAAATGACA	GATCAAACGG	TAGAGCCTTT	GGTCATTGTA	GCGAAAAAA	20040
CAGATACAAT	r gacaacaaag	GTGAAGCTGA	TAAAGGTGGA	TCAAGACCAC	AATCGCTTGG	20100
AGGGTGTCGG	G CTTTAAATTG	GTATCAGTAG	CAAGAGATGT	TTCTGAAAAA	GAGGTTCCCT	20160
TGATTGGAGA	A ATACCGTTAC	AGTTCTTCTC	GTCAAGTAGC	GAGAACTCTC	TATACTGATA	20220
AAAATGGAG	A GATTTTTGTC	ACAAATCTTC	CTCTTGGGAA	CTATCGTTTC	AAGGAGGTGG	20280
					GTAGATCATC	20340
					GACTTTATGA	20400
AGGTGGATG	G TCGGACCAAT	r ACCTCTCTTC	AAGGGGCAA!	r GTTCAAAGT	ATGAAAGAAG	20460
AAAGCGGAC	A CTATACTCC	r GTTCTTCAA	A ATGGTAAGG	A AGTAGTTGT/	ACATCAGGGA	20520
AAGÄTGGTC	G TTTCCGAGT	G GAAGGTCTAG	G AGTATGGGA	ATACTATTT	TGGGAGCTCC	20580

AAGCTCCAAC TGGTTATGTT CAATTACAT CGCCTGTTTC CTTTACAATC GGGAAAGATA 20640
CTCGTAAGGA ACTGGTAACA GTGGTTAAAA ATAACAAGCG ACCACGGATT GATGTGCCAG 20700
ATACAGGGGA AGAACCCTT GTATATCTTG ATGCTTGTTG CCATTTTGTT GTTTGGTAGT 20760
GGTTATTGTC TTACGAAAAA ACCAAATAAC TGATATTCAA TGTACATCAT TATGAATAGG 20820
ATAGCAGGCT GAAGGGAAGA CCAGAGTACT CTGAGGTGAT GTTAATCAGG AATCATGGTG 20880
ATGTGGCATG AATCATCAAT AACGGATATG AGGCTGGCCA GATTGTGCCA GCCTCATTGT 20940
GGGTTATTGT TTGTAAAACG ATAGGACTGG TCTGGTAATC ATTTA

(2) INFORMATION FOR SEQ ID NO: 55:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21040 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

CCCAGCAAAA AGCCATCCGA AGATGACTTT TTTGCTATTT AATTTCTGTA TAAGTTACTT 60 CCAAGCCACG CTTAACAGCT GGACGATTGG CAATTTTTTC TGCCCATTTT ACTAGATTTT 120 GATAACTTGA GGCATCCAAG AATTTTGCAG AACCTTGGTA AAGATTTCCT TGAACTAACT 180 GTCCATACCA AGACCAGATA GCAATATCTG CAATCGTATA GTCATTGCCT GCAATATAAG 240 GTTTCTGAGC CAATTCCTTA TCCAATAAAT CCAACTGGCG TTTCACTTCC ATCGTAAAAC 300 GGTTAATAGG ATATTCCAAT TTTTCAGGAG CATAATTGAA GAAATGTCCA AATCCCCCAC 360 CTAGAAAAGG TGCTGCACCT GCTTGCCAGA ATAGCCAATT CAAAACTTCT ACCTTTTCCA CAGGATTACT TGGTAAAAAG GCTCCAAATT TCTCAGCAAG GTAAAGAAGA ATATGAGCAG 480 ACTCAAAGAC TCTTACGTTT TCAGTACCTG ACTGGTCCAA TAAGGCTGGA ATCTTGGAAT 540 TTGGATTGAG CTTCACAAAG TCTGATCCGA ATTGATCCCC ATCCATGATA GCAATCTTAT 600 ACAAGTCGTA AGCCGCTTCC TTAAAACCAG CTTCTAGTAA TTCTTCCAAT AAGATAGTAA 660 CCTTCACACC ATTTGGTGTT CCCAGTGAAT AAAGCTGAAA AGCTTGTTCT CCTTTTGGCA 720 AGTTTTGTTC GAAACGGGCA CCTGCTGTTG GTCTGTTTAG CCCCGTAAAA GCTCCTTGAT 780 TACTAGCTTC ATCCTGCCAT ACGGTCGGTA ATTGATATGC TGACATCCGA AACCTCCCTT 840 AAATCGCATT CTTGTCAAAA CCGAGTTTGC GTTGAATAAA CTTAACGATT TCGACGATGA 900 TAATCATTGA GAAGCTTCCA GCCATAACAA TTCCCCATTG TGACAAGTCT AGTTTGGTTA 960 CGTGGAAGAT TCCTTCAAGC GGTTCTACAA CGATTGTTGC CATGAGAAGG ATAAAGGATA 1020

CCAAGATGGA	CCAGTTAAAG	GTCTTAGACT	TGAATGGGCC	AACTGTCAAG	ATGGATTGGT	1080
AGACAGACTT	GACATTGTAG	GCATGGAAGA	GCTGAATCAA	ACCAAGGGTT	GCAAAGGCCA	1140
TCGTTAGGGC	ATCTGCATGA	ATAGCATGAT	TGTCACCCAC	ATGAACTGGG	TAAGCAATCG	1200
CAAGGCCATA	AACACTCATA	ACAAGAGCTG	CTTGGAGTAC	ACCTTGATAA	ATGATAGAAC	1260
TÇAAAACACC	ACCTGAGAAG	AAGCTTGCCT	TGCGTCCACG	TGGTTTATGA	TTCATGACAC	1320
CAGGTTCCGC	AGGTTCAACA	CCAAGAGCGA	TAGCTGGGAA	GGTATCCGTT	ACCAAGTTGA	1380
TCCACAAAAG	ATGAACCGGC	TGTAAGACAT	CCCAACCAAA	CAAGGTTGAT	AGGAAGATGG	1440
TTAATACTTC	AGCAGTATTA	GCAGAAAGTA	GGTACTGAAT	AGTCTTTTGA	ATGTTTGAGA	1500
AGACCTTACG	TCCTTCTTCC	ACTGCGACGA	TAATAGTCGC	AAAGTTATCA	TCTGCAAGAA	1560
TCATATCAGA	AGCCCCCTTA	GAAACCTCTG	TACCAGTGAT	TCCCATACCG	ATACCGATAT	1620
CGGCTGTTTT	CAGAGCTGGC	GCGTCATTGA	CACCGTCACC	TGTCATGGCA	ACGACTTTAC	1680
CTTGTTTTTG	CCAAGCCTTG	ACGATACGAA	CCTTGTGTTC	TGGAGACACA	CGGGCATAAA	1740
CAGAGTATTG	ACCAACGACT	TTTTCAAATT	CTTCATCTGA	CAGTTCATTG	AGTTCAGCAC	1800
CAGTTAAAAC	GTGACCTTCT	GTATCGTTTG	CGTCAATGAT	TCCCAAACGT	TTGGCAATGG	1860
CTTCCGCTGT	GTCTTGGTGG	TCACCTGTAA	TCATAATTGG	ACGGATTCCC	GCTTCCTTAG	1920
CCACACGAAC	AGCCTCAGCG	GCTTCAGGAC	GTTCAGGGTC	AATCATCCCA	ATCAAACCAG	1980
TAAAAATTAA	ATCATTTTCA	AGCTCTTCAG	AAGTGAGATT	TTCTGGAATA	CTATCGATAA	2040
TCTTATAAGC	ACCTGCAAGG	ACACGCAAGG	CTTGATGAGC	CATTTCAGAA	TTGTTTGTAC	2100
GAATGAGATT	TGTAACCTTC	TCATCAATCG	GAGCAATATC	CCCAGCCTTA	TCACGAAGAA	2160
GACAACGTTT	TAAGAGTTGG	TCTGGCGCAC	CCTTGACTGC	TACAAGGAAA	CGACCATCTG	2220
GCAATGGGTG	AACTGTTGAC	ATGAGCTTAC	GGTCAGAGTC	AAATGGCAAT	TCAGCTACAC	2280
GAGGATATTT	CTCTAAGAAA	CCTTTGACAT	CATAGCCCTT	GTCCAAGGCA	TATTGGATAA	2340
AGGCTGTTTC	GGTTGGGTCA	CCAATCAAGT	TACCTTCCAC	ATCGATTTTC	GTATCATTGG	. 2400
CCAAGACAAC	TGAACGAAGT	AGTGGCATTT	CAAGACCTAG	TTCAATATCA	TCAGCTGAGT	2460
CATGTAGAAC	CGCATCGTAG	AAGACTTTTT	CGACTGTCAT	CTTGTTCATA	GTCAGCGTAC	2520
CAGTCTTATC	AGAAGCGATG	ATTTCAGTTG	AACCAAGTGT	TTCAACTGCT	GGCAACTTAC	2580
GAACGATGGA	ATGTCGTTTG	GCCAAAACTT	GAGTACCAAG	AGAAAGAACG	ATGGTAACGA	2640
TAGCAGGAAG	TCCTTCTGGA	ATGGCTGCAA	CGGCAAGGGC	AACAGAAGTC	AACAACTCAC	2700
CAAGTGGATT	TTTCCCTTGA	ATGAAGACAC	CCACTACAAA	AGTAACAAGG	GCAATGACCA	2760

AGATAGCATA GGTCAAGACC TTAGAAAGGT TGTTCAAATT TTGTTTGAGT GGTGTATCAG 2820 TCTCATCCGC ATCTTGAAGC ATACCAGCAA TATGACCAAC TTCAGTGTAC ATACCTGTAT 2880 TGACAACAAC ACCCATCCA CGACCATAGG TTACGTTTGA GTTTTGGAAG GCCATGTTGA 2940 CACGGTCACC ANTACCAGCA TCTGTCGCAA GCTCGACTGA CAAGTCTTTT TCGACTGGTA 3000 CAGATTCACC TGTCAAGGCT GCTTCTTCAA TTTTAAGAGA GTTGGCTTCT ATCAAACGTA 3060 GGTCCGCTGG TACCACGTCA CCTGCTTCAA GGGCAACGAT ATCGCCTGGT ACCAATTCTT 3120 TAGAGTCAAT CTCTGCCATG TGTCCATCAC GAAGAACGCG GGCAACTGGA CTAGACATGG 3180 ATTTGAGGGC TTCAATAGCT TCTTCAGCTT TTCCTTCTTG GTAAACACCA AAGGCAGCGT 3240 TGATGATAAC CACAGCTAGG ATGATAATGG CATCTGCGAT ATCTTCCCCA CCAGAAGTCA 3300 CGACTGACAA GATTGCtGCC GCAACTAGGA TGATAATCAT CAAATCCTTA AATTGCTCGA 3360 TGAATTTGAC CAAGATTGAT CGTTTCTCGC CTTCTTCGAG TTCATTGTGC CCAAATTCGG 3420 CAAGGCGCTT TTCCGCCTCA CTTGATGACA AACCTTGCTC GGTCGCATCC ACAGCCTGCA 3480 AGACCTCTTC AGGGCTCTGA GTATAAAACG CTTGGCGTTT TTGTTCTTTT GACATGTGTC 3540 TCCTCCTTGA CATTGTGTGC AAAACAGACT CTCTTTCTGT CATAGCTTTT CACGACAAAC 3600 AAAAAGAAAC CTGTTAATCA TAACAAGTCT CGCTGTTTAA GATAGGGCCG GAAAGCATAC 3660 TTTTCAGCAT AAAATTCGGA ATGACGACAC TATCACAGGT TTCTGCCAGC TACTCCCTTG 3720 AGTAGTACCA TTATACCAAA TTTTGGGGAG TTTTCAAAGA GTAAAAACTG CCTTATTTGA 3780 ATTTTTCCTT GAAAACCAGT ATAATGGTAG AATGCTATGT GACTAGAAAG GAAGTTGAAT 3840 GAAGCAATCT ATCTCAAATC TCAAGTTAGC TGAGCGTGGA GCCATTATCA GTATTTCGAC 3900 CTATTTGATC TTGTCTGCAG CCAAATTAGC AGCTGGTCAT CTCCLTCATT CATCCAGTTT 3960 GGTGGCCGAT GGTTTTAATA ACGTATCGGA CATCATTGGA AATGTGGCCC TCTTAATCGG 4020 GATTCGGATG GCGCGCCACC TGCAGACCGT GACCACCGTT TTGGTCATTG GAAGATTGAA 4080 GATTTGGCAA GCTTGATCAC TTCTATCATC ATGTTCTATG TCGGTTTCGA TGTTCTAAGA 4140 GATACCATTC AAAAGATTCT CAGTCGGGAA GAAACGGTCA TTGATCCTCT TGGTGCAACT 4200 CTAGGAATCA TTTCTGCAGC GATTATGTTT GTGGTCTATC TCTACAATAC TCGCCTCAGT 4260 AAGAAATCCA ACTCCAATGC GCTGAAGGCA GCTGCTAAGG ACAATCTTTC TGACGCTGTT 4320 ACCTCACTTG GAACCGCCAT TGCCATCCTA GCTAGTAGTT TCAATTATCC GATTGTGGAT 4380 4440 AAACTGGTTG CTATCATCAT CACTTTCTTT ATCTTGAAGA CTGCCTATGA TATCTTCATC GAGTCTTCCT TTAGTCTTTC AGATGGCTTT GACGACCGCC TGCTCGAGGA CTACCAAAAG 4500 GCTATCATGG AAATTCCCAA AATCAGCAAG GTCAAATCGC AAAGAGGTCG CACCTACGGT 4560

AGCAACATCT ACCTGGATAT	TACACTAGAG	ATGAATCCTG	ACTTGTCTGT	TTTTGAAAGC	4620
CATGAAATCG CGGATCAGGT	CGAGTCTATG	CTGGAGGAGC	GTTTTGGCGT	CTTTGATACC	4680
GATGTCCATA TCGAACCAGC	ACCTATCCCT	GAGGATGAAA	TTTTAGACAA	TGTCTATAAA	4740
AAATTGCTTA TGCGTGAACA	ATTGATTGAC	CAAGGAAACC	AACTAGAAGA	ACTCTTGACT	4800
GATGATTTTG TCTATATTCG	CCAAGATGGA	GAGCAGATGG	ATAAAGAGGC	TTATAAGACC	4860
AAAAAAGAGT TAAATTCTGC	TATCAAGGAC	ATTCAAATTA	CTTCCATCAG	TCAAAAAACC	4920
AAACTCATCT GCTATGAGTT	AGATGGTATC	ATCCATACCA	GTATCTGGCG	TCGCCACGAA	4980
ACCTGGCAAA ATATCTTTCA	TCAAGAAACC	AAAAAAGAAT	AGAGAAATCC	TTTCATGAGA	5040
CGGGATTTTT CTATTCTTTT	ATACTCAATA	AAAATCAAAG	TGCAAATTAG	GAAGCCGGTC	5100
ACAGGCTGTA CTTGAGTCGG	CAATGTGAAG	CCGACATAGT	TTGCACTTTG	ATTTTCGAAT	5160
AGTCTTAACT ATCAAATTCA	CTGAGATACT	CATAGCGTTC	GTATTTTTCA	AGGAGTGCTT	5220
CATTTTTCTC ATCCAATTCT	TTTTGGAGAG	TAGCCAGCTT	ACCAAAGTCA	GAGCCGTTAG	5280
CCTGCATTTC CTCTTCAATA	GCAGCGATAC	GTTTTTCCAA	GGTTTCAATA	TCACCTTCAA	5340
TACTTGCCCA CTCCTGCTTT	TCTTGGTAGG	TCATGCGTTT	CTTGTCTTCT	CGAACCTTGA	5400
CCACTTTTC CTTTTCGGCC	TTTTGCACTT	GATTGGCCAT	ATCTGTTTCA	AAAGCTTTTT	5460
CATCAAGATA GTCGGTGTAA	TGACCAAAGA	AAGGACGAAT	CTTGCCATCC	TCAAAAGCGA	5520
GAATCTTGGT CGCTACCTTA	TCCAAGAAAT	AGCGGTCGTG	ACTGACTGTT	AAAACGGGAC	5580
CTGCAAAACC TTGCAAGAAA	TTCTCTAAGA	CTGTCAAAGT	TGCAATATCT	AGGTCATTGG	5640
TTGGCTCGTC TAAAAGAAGA	ACATTTGGTT	TTTCCAAAAG	CAGTTTGAGG	AGATAAAGAÇ	5700
GTTTTTCTC ACCCCTGAC	AATTTCTCAA	TCAAAGTCCC	ATGCGTCGAA	COTOGGAAGA	5760
GGAATTGCTC CAGCAACTCA	GCGATGGAAG	TCGTAGAACC	ACCACTGGTC	TTGACCTCCT	5820
CTGCCACTTC CTGCAGGTAA	TTGATCACAC	GCTTGCTTTC	ATCCAAACCC	TCAATTTGTT	5880
GAGAGAAATA GGCGATGCGA	ACAGTTTCCC	CAATCACAAC	TTGTCCTGCT	GTCGGCTCAA	5940
GACTTCCTGC AATCAGGTTA	AGTAGGGTTG	ATTTTCCAAC	ACCATTGTCC	CCAACAATTC	6000
CAATACGGTC TTTAGCCTGA	ACTAAGAGAT	TAAAATTTTG	CAAAATGGGC	TTATTTTCAT	6060
AGGCAAAGGA AACATCCTGA	AACTCGATGA	CTTTCTTCCC	AATCCGACTG	GTTTCAAAGT	6120
TCATAGTCAA GTCTGTCTCA	GCACTACTGC	CTGAAACTTC	CTTTTTCAGA	TCATGGAAAC	6180
GATTGATACG AGCTTGTTGC	TTGGTCGCAC	GCGCCTGCGG	TTGTCTGCGC	ATCCAGGCCA	6240
ATTCTTGTTT GTAGAGTTGT	TCTTTTTTGT	GAAGAAGAGC	CGCGTCGCGC	TCATCCTGTT	6300
			•		

			494			
CCGCCTTTAG	GCGAACATAG	TCCTGGTAAT	TTCCCTGGTA	CTCGGTCAAG	CCTGCACGAT	6360
CCAACTCGAA	AATCCGTGTT	GACAAAGCGT	CTAAGAAATA	ACGATCGTGA	GTGATAAAAA	6420
GGACGGTCTT	CTTAGAATTT	TTCAAAAAGA	GGGTCAGCCA	CTCAATAATC	GCAATATCCA	6480
GATGGTTGGT	CGGCTCATCC	AAAAGCAAGA	GGTCGTGGTT	GCCAAGTAAG	ACTTGTGCCA	6540
ACTGTACCCG	TCTTCTCAGA	CCACCTGACA	ATTCCCCAAC	AGGAGTAGAT	AAGTCTTGAA	6600
TGCCCAATTT	GCTAAGAACG	GTCTTGACCT	GACTTTCGAT	TTCCCAAGCT	TGGAGAGAGT	6660
CCATCTCTGC	CATGACACGT	TCCAAACGCG	CCTGCTTGTC	CTCACTATAG	TCGAGCATAA	6720
TCAATTCATA	CTCACGAATG	AGCTGGATTT	CCTTGAGTTC	ACTAGATAGA	ACCGTATCCA	6780
AAACTGTCTT	TCTATCATCA	AAATCAGGAT	CCTGAGTCAA	GTAACCAATC	TGGTAATCAT	6840
TTTTAGCTGA	AAAAGGACTG	ACATCCCCAT	CAAATCCAGA	AACACCAGAA	AGGACGTCCA	6900
AAAGGGTGGT	CTTGCCAGTC	CCATTGACAC	CGATTAAACC	AATTCTGTCT	AAGTCATGGA	6960
TAATAAAGGA	AATATCCCTA	AAAACGGTCT	TGTCACCAAC	GGATTTACTT	AGTTTTTCAA	7020
CGATAAAATC	ACTCATTTT	TCTCCCTCAG	GTAAGCATGG	ATGGCTTCAC	GATTATTCTC	7080
CAATTCTCCA	TCGACAATGG	CAAACTCAAT	CTCTGTTAAA	ATCTCTCCCA	AGTCTGGGCC	7140
TGGCTGATAG	CCATATTCCT	TGATCAAAAT	ACCGCCATTA	ATCTGAATCT	CTTTCTTGTC	7200
ATGGATAGTC	AAGCTTTGGT	ATTTTTCTGT	GATGGCTTGT	GGGTTGACTT	CTTTTCCTTG	7260
AGCTTGACGA	AGATTTTCAG	CCTGTAAAAG	CAAATCTATG	TCAAAGCGAT	AACAATCTCG	7320
CTTGCTCAAT	TCTCCATTTT	CACGCAGAGC	CAAAATAATC	AGCAAATCCT	GAACTTGCTT	7380
GGCAAACTGG	CCTGAGGTCT	TCCAAGATTT	CAAAAATGAC	TGCGCATTTT	CAATCTCCAA	7440
AGCCCATAGT	AAAGCCGCCC	AGGCTTGTTC	AGAGGATTCA	AAAGTAAAAT	CAGTCTCCAA	7500
ATCAAACAGT	CTGTTGAGCT	TGTCCTGGCT	AGATGCCATA	TCAGGGAGAT	AGTCATAAGC	7560
TTGACTCTCA	ATCATGGAAG	CCAAGCCCCT	TCTCCAAAAT	GGAGCCAGCA	AGAGTTTATC	7620
AAACTCGACG	AAGGTACGCT	CTACAGAAAT	TTTCTCCAAA	AGCGGCGTCA	AGGTCTTCAT	7680
AGCTTTAAAT	GTTTCTGGCT	CAAGTGCAAA	ACCAAGACTA	GCCTGAAAAC	GGAAACCACG	7740
CATAATCCGT	AAAGCATCTT	CGTTGAAACG	CTCACTAGCC	ACTCCAACTG	CTCGCAAGAC	7800
TTGCTTTTCC	AAATCTTCTA	AACCATGGAA	CAAGTCAACG	ATTTCTCCTG	тстсатссаа	7860
GGCAAAGGCG	TTGACTGTGA	AATCACGGCG	TTTGAGGTCT	TCTTCTAGCG	ATCGTACAAA	7920
GGAAACCGCA	CTGGGTCTGC	GATAGTCCAC	ATAGACATCC	TCTGTCCGAA	AGGTTGTTAC	7980
CTCATACTCC	TCATCCCCAT	CTAAGACCAA	GACGGTTCCA	TGCTCGATTC	CGATATCGGC	8040
TGTTCGCGGA	AAAATCTGCT	TGGTCTCTTC	TGGATAAGAA	GACGTCGCAA	TATCCACATC	8100

GTGGATAGGG	CTATGGAGAA	GGGCATCTCG	AACAGAGCCC	CCAACAAAAT	AAGCCTCAAA	8160
GCCTGCTTCT	TTAATTTTTT	CTAATACTGG	TAAAGCCTTC	TGAAATTCAG	AAGGCATTTG	8220
CGTTAATCTC	ATAATAAGTG	TTCTAATCCA	TAGACAAGCT	CATGACGCTT	GACAACTTCT	8280
TTAATTCCCA	AATTGACTCC	TGTCATGAAG	GAGATGCGAT	CATAGGAGTC	ATGACGGAGG	8340
GTCAACCCTT	CTCCCTGATT	GCCAAAGATG	ACTTCCTGAT	GAGCTACCAA	GCCTGGCAAA	8400
CGAACTGAGT	GGATGCGCAT	ACCATCAAAG	TCAGCACCAC	GAGCACCAGC	AATCAGCTCT	8460
TCCTCATCTG	CTGCACCTTG	CTGAATTGAC	TCTCGAACCT	CTGCCATCAA	CTCAGCTGTT	8520
TTAATGGCTG	TTCCACTCGG	AGCATCCTTT	TTCTTGTCAT	GATGGAGCTC	AATAATCTCC	8580
ACATTTGGGA	AATATTTGGC	AGCCTGCGTC	GCAAATTGCA	TGAGTAAGAC	AGCACCCAAG	8640
GCAAAGTTAG	GGGCAATCAG	GCCACCCAAG	TCTTGGGCAC	GAGAAAATTC	TTTTAGCTCT	8700
GCAATTTCTT	CACTCGTGAA	ACCAGTCGTT	CCAACTACTG	GAGCAAAGCC	ATTTTCAAGA	8760
GCAAAACGTG	TATTTTCGTA	GGCAACAGCT	GGAGTAGTAA	AATCTACCCA	GACATCCGCT	8820
TCAAAACCAG	CTAAATCAGC	CTTATCCTTG	AAAACAGGAA	TACCCTGCCA	TTCTGACTCA	0888
GACTCAAAAG	GATCCAAAAC	TGCCACCAAG	TCCAAGTCTG	GATCAGTCAA	TACCATCTGA	8940
CAAGCAGCCT	GGCCCATCTT	TCCCTTAAAA	CCGGCAATAA	TTACTCGAAT	ACTCATCTCT	9000
ACTCCTGTCT	AAGATACAAA	GTCCGTAAGA	ACACAAAGTG	AAAATAGGAA	TTCCAATCAA	9060
GAAGTGTCTA	CTTCTTGGAA	GAACTATCTT	TTTCACACAG	GGTTCCAGGC	GTGTTCAATT	9120
ATCAAGATAC	AAAGGACCTT	AGCTGCCTCT	GAAAAATAGG	GAATGGCACT	GACTTTCCAC	9180
GAAAGGCAAG	ACAGGCATCT	TTTTTCAAGA	GGCAGGTAGT	CCGTGTTCAA	TTTCTAAGAT	9240
ACAAGGCATC	TTAACTAGCC	TAGAAGCGCC	AACTAAATCA	CTGGAATATA	ACCCAGAGCA	9300
ATACTTCCTG	CTCCTAGGTG	CGTTCCAATG	ACACTACCAA	ATGTAGCAAG	TGAAACATCC	9360
GAACCCAAGC	CAAAATCAAG	CAAGTGCTGA	CGCAATTCTT	CAGCCTTTTC	AGGAGCATTC	9420
CCATGAATGA	CAATGACCCG	GTATTGACCT	GAAGCCGTTG	TTTCCTTGAT	AATTTCAATT	9480
AAGCGCTTGG	TGGCCTTCTT	TTCAGTACGA	ACTITTTCGT	AAACTTCAAT	CACACCTTGA	9540
TCGTTAAAAT	AAAGGATTGG	CTTAATGCTA	AGCAAATTGC	CCAAAATGGC	AGCCCCATTT	9600
GAAAGGCGTC	CACCTTTTAC	CAAATGATCC	AAGTCATCTA	CCATGATAAA	GGCTGACGTA	9660
ÇGGCTGATTT	GAATGGCTAG	CTTATCCTGA	ATGCTGGCAA	AATCATCGCC	CTGATCACGC	9720
CAATTAAAGA	CGCTTTCAAC	CATGATGCCT	AGGGGAGCAC	TTGTAATCAA	AGTGTCTGGG	9780
AAAGCAATGG	TTAAGCCCTC	ATAGTCATCG	ACCATATACT	GGATATTTTG	GTAAAAACCT	9840

			400			
GAAATTCCA	G AAGATAGGAA	AAGCCCCAAG	496 GCATGTGTAT	r AGCCTTGTTC	TTTGAGCGAA	9900
GTTAAGATC	r catctaactt	GGCAATACTT	GGTTGACTG	C TCTTAGGCAA	TTCAGAAGCC	9960
TGAGCCATT	r tttggtaaaa	TTCCTCAGCA	GACAGATTG	A TGCCTTCGAC	ATATTCCTCA	10020
CCATCAATAT	r tgacaggaat	' ATCCAAGACA	AACAAGTCT1	CTCTTTGCAA	GATCTCTGCA	10080
CTGAGATAAC	G CAGAGGAATC	TGTGAAAACA	GCTAATTTCA	TATTAGAACT	CCAAATTAAT	10140
TCCTGGTAAC	TCTAATGCAA	TTTCAGTCAC	TTCGTAAGTC	AAACGATTGA	GCATGTTCAA	10200
ACATGGACGA	GCCAAGGTTT	CCACCTCTTC	TTGGTTCAAT	TCACTTGGTT	CATTGACAAT	10260
ACGGCCATCO	ATATGGTTTA	CTTGTGAGAT	TGTTCCACTA	ATGACAAACT	TATCAAATAC	10320
AATCATAAA	CTCAAGATGA	CAATCAAGGA	AGTCACTTGA	TTTTCTTGGT	CATGTTGGAG	10380
CAATTGGAAA	TTCACATCCA	CCTTGGTTTC	AGGAGCTCCA	TTTTCATTTT	CCCATTCAAA	10440
ATTACGCGCA	TCAAAATGAT	ACTGACTAAC	AAATTCTTGT	TCACGTTTAA	GATTCATGTC	10500
TTTCTCCATC	GGCTACAATA	TTATAAGCTA	TTGTACCATA	ATTTTTTATT	TTCATCTAGT	10560
TTTCTAGGAT	TTAGTCAATC	CCAATTTCAG	CACGAACTAC	ATCTGTGATG	GTATCAACAT	10620
AGTAGTTTAC	TTCTTCTGTT	GTAGGCGCTT	CTGCCATAAC	ACGCAAGAGG	GGTTCTGTTC	10680
CACTTGGACG	AACAAGGATA	CGCCCGTTCC	CCGCCATTTC	TTCTTCCATC	TTCTCGATGA	10740
TGGCCTTGAT	AGCTGGCACT	TCCATGGCCT	TTTCCTTCAT	GACGTTTTCC	ACTCGGATAT	10800
TAACTAATTT	TTGTGGATAA	ATCGTTACTT	CTGCCGCCAA	CTCTGATAAG	CTCTTACCAG	10860
TTTCCTTCAT	GATTTTAGTC	AATTGAACTG	CTGATAATTG	ACCATCACCT	GTGGTATTGT	10920
AATCCATCAA	GATAACGTGA	CCAGACTGTT	CACCACCAAG	GTTGTAGCCT	GATTTTCTCA	10980
TTTCTTCAAC	AACGTAGCGG	TCACCAACTG	CAGTAACTGC	CTTGTTAATA	CCTTCGCGAT	11040
TCAAGGCCTT	GTGGAAACCA	AGGTTAGACA	TAACAGTTGT	CACAATTGTA	TTTTGAGCCA	11100
ATTGTCCTTT	TTCAGAAAGG	TATTTTCCGA	TGATGTACAT	AATCTTGTCA	CCATCAACGA	11160
TGTCACCATT	CTCATCAACA	GCAATCAAGC	GGTCACTGTC	TCCATCAAAG	GCCAAACCAA	11220
TAGCTGACCC	ACTTTCTTTG	ACCACTTCTT	GAAGGGCTTC	TGGATGTGTT	GAACCAACAT	11280
TAAGGTTGAT	GTTAAGACCG	TCTGGTGTTT	CCCCGATAAC	CGTCAATTGG	GCACCAAGGT	11340
CTGCAAAGAT	TTGACGGGCA	CTGGTAGAAG	CTGCTCCATT	AGCTGTATCC	AAGGCAACCT	11400
TCATTCCATC	AAGAGGAGTT	CCAGTTGAAA	CAAGGTATCC	TTCATACTTA	CGCArGCtTC	11460
TGGATAATCT	ACCAAAATTC	CTAAGCCTTC	TGCACTTGGA	CGAGGAAGAG	TGTCTTCCTC	11520
AGCATCTAGC	AAGGCTTCAA	TTTCTGCTTC	TTTTTCATCA	TCTAGTTTGA	AGCCATCACC	11580
GCÇAAAGAAC	TTGATTCCGT	TATCAAGGGC	TGGGTTGTGG	CTAGCAGAAA	TCATGACACC	11640

GGCACTTGCT	CCTTCAGTTT	CAACCAAGTA	AGCTACTGCT	GGTGTTGCAA	GGACACCAAG	11700
TTTGTATACG	TGAATCCCTA	CTGAAAgGAG	ACCTGCCACC	AAGGCCGATT	CCAACATTTC	11760
CCCTGAAATA	CGTGTGTCAC	GTCCTACAAA	GACTTTCGGC	GCTTCCGTTT	CATGTTGACT	11820
AAGAACATAG	CCTCCAAAAC	GTCCTAGTTT	AAAGGCTAAT	TCTGGTGTTA	GTTCTAGGTT	11880
AGCTTCTCCA	CGGACTCCAT	CAGTCCCAAA	ATATTTACCC	ATTGTTATAA	AATCCTTTTC	11940
TATTTTTAAT	TCGTTTTTGA	ACTAGTTGCT	TTCGTTGACG	AAGATGTCTC	CGATGAACTG	12000
CTTGTACTTG	AATTTGATGT	GCTTGAACTT	GGTGCTACTG	GTTTTGTAGT	CACCTTCATT	12060
ATTGTATCAA	ACGGAGTGAT	AACTGCCGGT	AAGACAACAC	CATTGCGGTC	GATTGCCTGC	12120
AAAGGTACTG	AACCACTGTA	ATTACCTGTT	ATACGTTCGC	TAGTTGGCAA	AACAGCGATA	12180
ATCTTATCAA	TTCTATCCAA	TGTCTCTTGG	TCACTCGTAA	TAGACACTTC	TTTATCTGAC	12240
ACCATGACAT	TTTCAATTTG	TACCCGACTA	TCAATTTGAC	TAGGGTCAAT	CTCTGGTACA	12300
ATCTTTACCT	TATCCTTCTG	AGCCTTCTTA	CCAATCTTGA	CTGTAATTTT	TTGCGGAGTC	12360
GCCACAGCGG	TCAGCCCATT	GGGTAAATCT	TCAATGCTCA	AAGGAACTTC	AATCGTTCCA	12420
ACACCGGCAT	CTGTTAGGTC	AGCAGTAACC	TTGAATTTAC	GTGTACTTTC	TTGCATTTCA	12480
CTAGCTAGCG	ATAGGCGATT	TGCACCAGTC	AAGACCACTG	ATACTTCTGA	AGCAAAACCG	12540
CTAATAAAAT	ACTTATCACT	ATTATAGCGT	ATGTCAATAG	GGACATTTGT	TACTGTATTA	12600
GTATAGGTTT	CCGTTTTTAC	CTGCCTAGCA	CTGGTACTGT	TTTGAAAATT	CGTCGCCGTA	12660
GCATAGACAA	ATAAGACACA	AGCAAAAAAG	AGTGAGGATA	TGATATATAA	ACTATTTTTT	12720
TTCATGTTTC.	CATCCTCCTA	GCAATCGTTC	TTTAAAACTA	AGACCCACTT	CCTCTTTTGG	12780
AAGTAAGATT	TCACGTAATT	CTGTTTCAAA	TTCATCAAGT	GTTAGGTTGT	GCTTAAACCT	12840
TCCATTATAG	GTTATCGAAA	TTCCTCCCGT	TTCCTCTGAT	ACGACAAAAG	TCAAGGCATC	12900
TGAGACTTCT	GATAAACCGA	TAGCCGCCCG	GTGTCTGGTC	CCAAATTCCT	TGGAAATCCC	12960
TGTGTTTTTT	GTCAAGGGCA	GATAGGCAGA	CGTCACAGCG	ATACGTTCTT	CTTTGATAAT	13020
CACCGCACCA	TCATGTAGGG	GAGTGTTGGG	AATAAAAATG	TTAATGAGAA	GTTCTGCAGA	13080
AATCTTAGCA	TCCAAGGGAA	TTCCTGTCGA	AATATACTCC	TGCAAGGTAC	GTACACGCTG	13140
AATAGCAACC	AAGGCCCCGA	TTTTACGAGG	ACTCATGTAT	TCAACAGACT	TAACAAAGGC	13200
ACGAATCATC	TGTTCCTCAG	CACTAATAGG	GGCATTGGAA	AAGAAATCTG	TCGCTCTTCC	13260
CAAACGTTCC	AAACCAGTCC	GAATCTCTGG	AGAGAAGATA	ACAACCGCCG	CAATAACCCC	13320
ATAAGTAATA	ATTTGATTGA	TTAACCAAGA	AATCGTAGTC	AAACCAATCA	TATTTGCAAG	13380

			498			
GATTTGAGCT	AAAATAAACA	CCAAAACTCC	ACGTACCAAA	ATCATAATCT	TGGTTCCTGC	13440
AATAGCTTTT	GTAAAATGGT	ATAAAATATA	AGCAACAATC	AAAATATCAA	TCAGATTGAT	13500
AGCTATCGTC	CATGGACTTG	CAAACAAACT	GGTCCAATAT	TGCAGATTGG	ATAATTGTTG	13560
AAAATTCATC	CCTGATATCC	TCCCTATCAA	AACACTTTCG	TCCTATTATA	CCATTTTCTG	13620
GCATTTTTTT	CCCTATCCTA	GTCCATTTTA	CATTGAACAA	A AA TATGATA	AAATAAACTG	13680
ACTAAAAAA	ACAAAGGAGA	AACTATGTCT	CAACTCTATG	ATATTACCAT	TGTGGGTGGT	13740
GGTCCTGTCG	GGCTTTTTGC	AGCCTTTTAT	GCCCACCTAC	GCCAAGCCAA	GGTTCAAATC	13800
ATCGACTCTC	TTCCCCAGCT	AGGTGGACAA	CCTGCTATTC	TCTACCCTGA	AAAGGAAATC	13860
CTAGACGTAC	CAGGCTTCCC	AAACCTGACT	GGAGAAGAGT	TGACTAACCG	CTTGATTGAA	13920
CAGCTAAATG	GATTTGATAC	CCCTATTCAT	CTCAATGAAA	CGGTTCTTGA	GATTGACAAA	13980
CAAGAAGAAT	TTGCCATCAC	AACTTCTAAA	GGAAGTCACC	TGACTAAAAC	AGTTATCATC	14040
GCTATGGGTG	GCGGTGCCTT	CAAACCACGT	CCGCTGGAAC	TTGAAGGGGT	TGAGGGCTAT	14100
GAAAATATCC	ACTACCACGT	TTCTAACATT	CAGCAATACG	CTGGTAAGAA	AGTGACGATT	14160
CTTGGTGGGG	GAGACTCGGC	TGTGGATTGG	GCTTTGGCTT	TTGAAAAAAT	CGCACCAACT	14220
ACCCTTGTTC	ACCGCAGAGA	TAATTTCCGT	GCCTTGGAAC	ACAGTGTTCA	AGCCTTGCAA	14280
GAATCATCTG	TAACCATCAA	GACACCATTC	GCCCCTAGCC	AACTCCTTGG	AAATGGAAAA	14340
ACACTTGATA	AACTTGAAAT	CACAAAAGTC	AAATCTGATG	AAACTGAAAC	CATTGACCTA	14400
GACCACCTCT	TTGTCAACTA	TGGTTTCAAA	TCTTCTGTCG	GTAACCTTAA	AAACTGGGGG	14460
CTCGACCTCA	ACCGTCACAA	GATTATCGTC	AACAGCAAAC	AGGAATCCAG	CCAAGCAGGT	14520
ATCTATGCTA	TCGGTGACTG	CTGCTACTAT	GACGGAAAAA	TTGATCTGAT	TGCGACAGGC	14580
CTCGGAGAAG	CTCCAACTGC	TGTCAACAAC	GCTATCAACT	ACATTGACCC	TGAACAAAAA	14640
GTACAACCAA	AACACTCTAC	TAGTTTATAA	AAAAGAACCA	CGAGTCACAT	AGGATTCGTG	14700
GTTTTATAAT	TCATCCGCTA	TCTTATTGAT	TTTTCTGAGT	CTGTGATTGA	CACCACTTTT	14760
GGTCAGAGGG	GTGCTGAGAC	TATCTGCTAA	CTGCTGGATA	GAGTAGTCTG	GGTGCTGAAT	14820
CCTCAGTTGC	GCCACTTCCT	GCAAATCTAC	TGGCAAATTT	TCTAAGCCCA	TGATATCTTT	14880
GATTTTACTG	ATATTGTTAA	TGGTCTTCAT	GCTGGCAGAA	ACTGTCCGAG	CGATATTAGC	14940
TGTCTCGGCA	TTATTAGCCC	GATTGAGGTC	GTTACGGGTT	TCTCGCAAAA	TCTTAACCCG	15000
CTCAAAATCA	TCACGTGCCT	GCATGGCTCC	TATTACTATC	AAGAAGTCCA	TAATGTCTTC	15060
TGCTCGCTGG	AGATAGGTCA	CAGCCCCCTT	CTTGCGCTCA	AGCACCTTGG	CATCCAGTAA	15120
AAACTGTTGG	AGAAGGGAGG	CAATTCCTTG	CGCGTGGTCC	AGATAAACAG	AACTGATTTC	15190

CAACTGGTAC	TTGCCTGACT	CAGGGTCACG	AATGCTCCCA	TTTGCCAAGA	AAGCGCCACA	15240
GAGATAGGCA	CGACCTGCTT	CCTCATCCGA	TAAAATCGCC	TCATCAATAC	CTGTTTCCAG	15300
GCCAAAGAAA	GAGTCTGCCA	AGTGCAAATC	ACTTAACAAA	TCCTGCACCT	TTTCATCTGT	15360
AAAAACGGTA	TAGACGCGAT	TCTTGCGAAG	ATTGCTCCGT	TGGTGGTGAC	GAATTTCAGA	15420
TTTGATTTCA	TAGAGATGGA	GAAAGGACTC	ATAGAGGTGA	CGGGCCAGTT	TGGCATTTTC	15480
TGTCACAACT	GACAAAGTCA	AGCCCGAAGT	CGAGAGACCG	ATGCTACCAG	ACATTTTGAT	15540
AATGGCAGAT	AATTCATGCC	AGCTCAGATG	GTGTTGGCCC	AGGATTTCTT	CTTTTACTGC	15600
TACTGTGAAA	CTCATTTTTT	CACCTGTATA	ATGCGCATCA	ACTCGTCCAC	AATCAAATCT	15660
CCATCGTGGA	AGGCACCGCC	ATTTTCCAGA	CGAAGGAAGT	TAGATGAAAT	CACGCGCGAA	15720
ACTTGCTTAC	AAAGACCTAC	AAAATCGTGT	TCCACTTGCA	CTAAGTATTC	ATCAAAACGG	15780
TTGGAATTCA	TGTATTCCTG	AGGCACTTTT	TCAATATTCA	CCAAGACAGT	GTCGATAAAA	15840
GGGCGACCAA	GGTGACGATG	CAAGACTTCC	ACGTGGTCGC	TATCTGTAAA	GTGTTCCGTC	15900
TCCCCACGTT	GGGTCATGAT	ATTGCAGACA	TAGGCAATTT	CTGCCTTGGT	TTCCAAAAGA	15960
	TTTCCTTAAT					16020
					GGCCAGAGGC	16080
					ATGGTCTACA	16140
ATATGACTCT	CTCCAGCCAC	TTCTGTCCCA	TCCTGAAAGA	CTGCATGAAG	GGTCAAAGGA	16200
					TAACTGCATG	16260
					TCCCAATGGA	16320
					CTCATAAAAC	16390
TTAGGCATAT	CCGACATGGC	CACAAGGACA	TTACGAAGAT	CACCTGGCGC	TGTCAACTGT	16440
TGCATATTTT	TTCGGAGTTC	ACCTGAAGAA	CCACCATCAT	CTGCCACCGT	CACGATAGCT	16500
GCGATTTCCA	CATCTTTTC	CCGCAGACT	TTTAGAATG	CGGGACTTC	AGTCCCTCCA	16560
CCAATCACCC	TTATCTTTGC	TTTTCTCATO	AACGGTTTAG	CGTTTCCTT	CTGCGGTCTT	16620
TGTCGCGATC	CCCTTCATTA	ACAGACCAA	TCTTGGATA	GTCCTGCGC	AAGCGTTTAG	16680
CAAATGCCAG	ACTACGGTGT	TGTCCACCC	TACATCCCA	GGCAATGGT	AAAACGGACT	16740
TACCTTCCT	TTGGTAACT	r GGCAGAATC	G GCTCAATCA	A GGCCAATAA	A TGTTGATAAA	16800
AGTCTTCTG	A CTCAGGATGO	TTCATGACA	r AATCATAAA	C AGGTTCATC	C ACACCCGTTT	16860
GGTTTCTCAG	G TTCTGGTAA	A TAATAGGGA	r TTGGCAAGA	A ACGGACATC	A AAGACCAAGT	16920

500 CCGCATCAAT CGGGATTCCA TACTTAAATC CGAAAGACAT GACTTCGATA CGGAAAGACT 15980 GGGCTTGTTC TTGGTCTGAA AACTGCTCTG CAAGGGTTTT GCGCAGCTCA CGTGGAGTGA 17040 GTTCAGTCGT ATCCACCACA TTTTGGCTCA TATTTTTCAA AGGTGCCAAG AGTTCACGTT 17100 CCAACTTGAT TCCATCTAAA ATACGACCGT CTGCTGCTAG TGGGTGACTC CGTCTGGTTT 17160 CCTTGTAACG AGCGACCAAT TCCTTATCAG CCGCATCCAA AAAGAGGATT TTGAAATCCA 17220 AACCATCTTG ATTTTCCAAC TCATCCAAAA CAGCTTGAAT CTCTGAAAAG AAAGAACGGC 17280 TACGCATATC CACTACCAAG GCCAACTTAG GATTGTCTTC CTTAATTTCA ACCAGCTGCA 17340 AAAACTTAGG CAAGAGAGCT GGCGGCATAT TATCAATGGT GAAATAACCT AGATCCTCGA 17400 AGGACTGAAT GGCTACAGTT TTCCCTGCGC CACTCATCCC TGTCACAATC ACCAAGTGAA 17460 GTTGTTTCTT TGTCATCTTT TTCTCCTTAT ATCAAAAGAA GTTTGGCAAC ACCAAACTTC 17520 AACTAGCTTA TCCAATCTCT GCGATGACTT CAATTTCGAC TTTTACATCA CGAGGAAGAC 17580 GAGCTACCTC CACAGCTGAA CGAGCTGGGA ATTCCTCTTT GAAGGCCGTT TGGTAAACCT 17640 CATTANAAGG AACAAGTCG TTCATATCGC TCAAGAAGCA AGTTGTTTTG ACAACATGGT 17700. CAAAGTCTGT TCCTGCTTCT GCCAAAATAG CACCGATGTT TTTCAAGACT TGCTCTGTCT 17760 GTTCTTGGAT ATTCTCTCT ACAATTTCCC CAGTTTCAGG GGATAGGGGA ACTTGACCGC 17820 TAGCAAACAA AAGGTTGCCA ACGATTTTTC CTTGAACATA GGGTCCGATA GCCTTTGGGG 17880 CCTTATCTGT ATGAATTGTT TTTGCCATTT TCTTTTCCTC ACAATTTTTC TAAGATTGCA 17940 TCCCAAGCCT CATCCATCCC TGCCTTACTG ACAGATGAAA AGAGGATGAA ATCGTCACTC 18000 GGGTCAAAGT TTAATTTCTT TTTGATTGCT GATTCATGCT TGTTCCATTT ACCACGAGGA 18060 ATCTTGTCCG CCTTGGTCGC CACAATGATG ACTGGAATCT CATAATACTT GAGAAATTCG 18120 TACATCTGCA CATCATCTGC TGACGGGTCA TGACGAAGGT CAACTAGACT GACAACCGCA 18180 CGGAGATTTT CCCGAGTCGT TAAGTACTCC TCAATCATGC ACCCCCACTT TTCACGTTCC 18240 TTTTTAGAAA CACGAGCATA GCCATAACCA GGCACATCCA CAAAGCGCAT CTTGTCATCA 18300 ATGTTAAAAA AGTTCAGGAG CTGGGTTTTA CCAGGTTTTC CTGATGTACG GGCGAGATTC 18360 TTACGGTTCA ACATAGTGTT GATAAAGCTG GATTTACCAA CATTTGAACG CCCTGCTAGG 18420 GCAATCTCTG GCAGTTCATC CTGCGGATAG TGGGACTTAT TAGCTGCACT GAGCAAGATT 1848C TCAGCATTGT GTGTATTAAG TTCCATAGTC ACCTCTAGGC TGTTTCTAGG ATCGGTTTAT 18540 CCGTTCCATC TACAGTTTCT TTAGTGATGC GAACCAATTT CACATTTTCC TGACTCGGCA 18600 CCTCAAACAT GACATCTAGC ATGGTTTCTT CGATGATGGA GCGAAGTCCA CGCGCCCCTG 18660 TCTTCCGTTC GATTGCTTTA TTAGCAATCT CTTGAAGGGC TTCGTCGTCA AATTCCAACT 18,720

CAACATCATC	ATAAGAAAGC	AAGGTTTGGT	ATTGTTTCAC	CAAGGCATTT	CTTGGCTCTT	18780
TCAAGATGCG	AACCAAGTCA	TCAACGGTCA	ATTGCTCAAG	AGCCGCAAAA	ACAGGCAAGC	18840
GTCCAATCAA	CTCAGGGATA	ATACCAAATT	TTTGAATGTC	TTCAGCGATG	ATTTCTTGCA	18900
TGTATGAGCT	GTTTTCGTCA	ATCGCCTTAT	TATTTTGACC	AAATCCGATG	ACTTTTTCAC	18960
CCAGACGTTG	TTTGACAATT	TCTTCAATAC	CATCAAAAGC	ACCACCCACG	ATGAAGAGGA	19020
TATTTTTTGT	ATCCACTTGA	ATCATCTCTT	GTTGTGGATG	TTTGCGTCCA	CCTTGAGGCG	19080
GTACGCTAGC	AACAGTTCCC	TCAATAATCT	TGAGAAGGCC	TTGTTGCACC	CCTTCACCAG	19140
AAACATCACG	TGTGATAGAC	ACATTCTCAC	TCTTCTTGGC	AATCTTGTCA	ATTTCATCCA	19200
CATAGATAAT	GCCACGCTCT	GCACGTTCGA	TGTTAAAGTC	AGCAACCTGC	AAGAGTTTGA	19260
GGAGGATATT	TTCCACATCC	TCACCCACAT	AACCAGCCTC	CGTCAGAGCT	GTCGCATCCG	19320
CAATAGCAAA	AGGTACATTC	AAGCTCTTAG	CCAAGGTCTG	GGCAAGGAAA	GTTTTCCCTG	19380
AACCAGTTGG	GCCAATCATC	AAAATGTTTG	ACTTCTGCAA	ATCCACATCT	TCTGACTCTT	19440
CGCGTGTATC	GTGGAAATTG	ATGCGTTTGT	AGTGGTTATA	AACCGCCACT	GCCAAGGCAC	19500
GCTTGGCACG	ATCTTGACCA	ATTACATAGT	GGTTCAAGAT	ATGGAGGAGT	TCAATTGGTT	19560
TTGGCACCTC	AGACAAGTCT	GCCAAGACTT	CCTCAACCAA	TTCTTCTCGA	ATGATTTCCT	19620
GAGCTAACTC	CACGCATTCA	TTACAAATAA	AAGCATTGTT	GCCAGCAATT	ATTTTTTGTA	19680
CTTCTTCTTG	GTTTTTGCCA	CAAAATGAGC	AATAAACCAT	CATATCATTT	TTTCTATTTG	19740
TAGACATGAT	TTCCTTCCAT	TCTATACTGT	CATTCTATCT	AAAATAAGGT	CATGTAAAAA	19800
GCATGAATAC	TATTGACCAG	ATTGGTAAAG	GCATTTAACC	AAAGGACGAT	AGAAAGCCCG	19860
TAACGCTTTT	TACGAAAAGC	TTGTGCTCCT	GCCAGAAAGC	AGATGAAACA	CAGAAAAGCC	19920
GTGAATAGAC	САААТАААСТ	CCGTTCCATT	AGACTTCCTT	TCTCTTGCGG	TATTGGATGG	19980
TAAAATCATA	AGGATTCTTC	TCATCTTTGG	CGTAAAATTT	GCTTGAAACT	GTCTCAAAAA	20040
GAGACAAGTC	AAGTTCTTCA	GGGAAATAGG	TATCTCCTTC	CACCCGAGCA	TGAATGTGAG	20100
TGACAATCAC	TTCATCAAGG	TAAGGTTCAA	AAGCCTGAAA	AATTTGCTTC	CCACCGATAA	20160
TGTAGAGATT	CTTTTCTTGA	GCCTGATACC	AGTCAAGAAC	AGACTGGACG	TCCTGAAAAG	20220
TAGCAACCCC	ATCTATCTTT	TCTTCCGGAT	TACGCGTCAA	AATCAAGGTT	TCCCGTTTTG	20280
GAAGCAAGCG	ACGCCCCATC	CCATCAAAGG	TCACACGCCC	CATCAAGATA	GCATGATTCA	20340
GAGTTGTTTC	TTTAAAGTGC	TGCAATTCTG	CTGGCAAATG	CCAAGGCAGA	CGATTTTCCT	20400
TACCAATCAC	ACCCTCTTCA	TCCTGGGCCC	AAATAGCTAC	GATTTTCŢŢĀ	GTCATGCTTC	20460

			502			
CATCCTTTTC	ACTGATAGTA	CTATTTTATC	AAAAAACTCA	AAAAAAGACT	GGTTTGGAAT	20520
AGCTTACAAA	ATAGAAAAA	TCTGTAAGAA	ATTTCCTACA	GATTTATCTA	TGTTTCCTTA	20580
TTTCTTACAA	ACCAGGTGCT	TGTCCAAGTT	CGGCTGCAAG	CATCCAAATT	GTTTTATCTG	20640
TTTCAGTTTT	AGCGCCTGCA	AAGATACCGT	TTGTCACATC	GTCACCTTCT	TCATCAGTGA	20700
CATCCAAACC	TTTTTGGAAA	AGTTCTGACA	AGTAACGGTA	GATAACAAGA	ACACGTTCCA	20760
AGCTTTCTTC	AACATTACGG	TATTCACCAG	CTTCTTCTTC	GATTTCACTA	TTTTGAAGGA	20820
ACTCTGTCAA	TGTAGAGAAT	GGGCTTCCAC	CGAGTGTAAT	CAAGCGTTCA	CTGATTTCAT	20880
CCAATTGACC	GTCAAGAGCT	TCCATGTACT	CATCCATTTT	TGGATGCCAT	ACAAGGAAAC	20940
CACGACCATG	CATATACCAG	TGCACTTGGT	GCAAAGCAAC	GTGAGCTACA	TACAAATCAG	21000
CAACAGCTTG	GTTCAAGACT	TCCTTTGTTT	TTGCCAATGC			21040

(2) INFORMATION FOR SEQ ID NO: 56:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2387 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

60	TGAACTAAAC	TTCAGTTAGA	AAAAGAAAAT	GCTTATTACT	CGATTAAAAG	ATTCTTAATA
120	TGAAAGCATT	ATAAAATATT	TTTGGGGAAA	TAACGAGATG	AATCCCGATT	TTGCTCGTCA
180	ATCAGATGAG	ATTATCCTAA	AGGGGCAAAA	AGATGGTGAT	TTGATATTAT	GATAACTTAT
240	AAACGGATTT	ATGTTACTAA	AATACAAAGA	TTTATTTTTA	AGGAGTACTG	TTGTTTAGTG
300	AAAAGGCAAA	AATTACTTCG	ACAAAGGATA	TATCACTAAA	CAAAGCAATT	TCATTCGATA
360	AGCGTACTAC	TTGGAAATGT	AGAGGTACTG	CTTGACAACA	ATGATATAGT	CTTGAGCGTT
420	ATTACGTCCC	GTATGGTAAT	ATAAATTCAG	ACATTTACGT	TAAAATATAA	GATGAATTAA
480	TAATTATAGT	TAAGGAATAA	ATCCATGTTT	GAAATTTATT	АТСТАВАТСА	AAGACACCAA
540	AAAAATACTT	CAAAATTAAA	TTACCAATTA	TCAGCCTCAG	CAGGAAGTGC	CGAGTGATAT
600	CCAGGTCGAC	ACTTTGTAGT	GAGTTCGCAG	CCTCCAAAAT	CCCCACTAGC	CTCCCCCTCC
660	GAAATCTCTG	AAACTTTGAA	GAAGAACTTG	AAAATCTCTG	TGGCAATCCA	AAATCACAAT
720	TTGTTATAAT	CGGTAATGAT	ATTGTAATTA	ATATTCTGCC	ATTTTGGCTG	ATGCAGGAGT
780	TCAATCACCA	ACAAGGAAÁT	AAACAAGAAA	ATGGTAGTAA	AGGAAATCAG	ACTTCAAAGG
840	AAATTGTTAC	ATACGAAGCG	GTGCTGTTAA	AATATTCCAA	AAGTGAATTT	TTACGATTCC

CAAGTGGTGA	GATTATCTTT	ACTCCTGAAG	AATTGGGGCA	GCAGGTTTCT	TATGTATCTG	900
ATGATGCCTT	TGACTTAAAT	TTAGATAAAA	TATTTGACGA	ATACGACGAT	GTTTTCAAAG	950
CTTTGGTGGA	AAAATGACAA	TCTATTTGAC	AGAAAAGCAA	ATTGAAAAAA	TAAATGCTTT	1020
AGCAATTCAA	CGGTATTCTC	CAAATGAGAA	AATTCAAACA	GTTAGTCCTT	CTGCCTTAAA	1090
TATGATTGTG	AACTTACCAG	AACAATTTGT	CTTTGGGAAG	CCTCTTTATC	CAACAATTTT	1140
TGATAAAGCA	ACGATACTAT	TTGTCCÁATT	GATAAAGAAG	CATGTTTTTG	CTAATGCTAA	1200
TAAAAGAACT	GCTTTCTTCG	TTTTGGTCAA	ATTTTTACAA	TTAAACGGCT	ATCGTTTTTC	1260
TGTAACGGTA	GAAGAAGCAG	TAAAAATGTG	TGTAACCATC	GCAGTAGAAG	CTTTAACTGA	1320
TGAAAAAATG	ACAAGCTACT	CCAAATGGAT	TTCTGAACAT	TCTGTTAGAG	AAAAGGTCAA	1380
AAAGTAACCT	AGTATGCTGG	ATTTGAATGA	GCACAAGAAA	ATAAATGAAC	AGACAATATT	1440
AGAATTCTGT	AATGCAGAAA	CTGATATTGT	CTCTTTTTAT	TGATGAATAA	GAAAGTGAGA	1500
AATTATGGAA	TCAAAAGTTA	CAATTATCAT	GCAAGAAATG	TTACCTCTTT	TAAATAATGA	1560
ACAATTACTA	GCGTTGAGAG	AGAGTTTAGA	ACATCATCTA	GTAGACGGAA	AAAAGCAGCA	1620
GAAGTATTCG	AATAATAACC	TGTTGCAACT	ATTTATTACC	GCCAAGCAGG	TAGAGGGCTG	1680
TAGCTCAAAA	ACAATTCGTT	ATTATCAGAG	GACGATTGAA	AACTTGTTTA	ATGCTATTAA	1740
AGAGTCTGTG	ACACAACTCA	CAACAGATGA	TTTAAGGAGT	TATTTAGCAA	ATTACCAGTC	1800
TGAAAAGGAT	TGTAGTAAGG	CAAATTTAGA	CAATATTAGG	CGTATATTGT	CTTCTTTTTT	1860
TGCTTGGCTT	GAGCAAGAGG	ATATATCATT	AAAATTCCCA	TTCGACGGAT	ACAGAAAATT	1920
AAGACTGAGC	AAAATGTGAA	GGAAACTTAT	ACTGATGAAC	ATTTGGAAAT	TATGCGTGAT	1980
AACTGTGAAA	ATTTGAGAGA	TTTGGCAATA	ATAGACCTAC	TAGCATCGAC	AGGTATGCGT	2040
GTAGGGGAGC	TTGTACAGTT	GAATCGTTCA	GATATTGATT	TTGAAAACAG	AGAGTGTGTT	2100
GTCTTTGGTA	AAGGAAAGAA	GGAGAGACCA	GTATATTTTG	ACGCTCGTAC	GAAAATTCAT	2160
TTAAGAAATT	ATCTTAACGA	CAGAAAAGAT	AGTCACCCTG	CTCTTTTTGT	AACGCTAGTT	2220
GGAAAAGTCC	AGAGGCTTGG	AATTGCTGGT	GTAGAGATTC	GCTTAAGAAA	GTTAGGAGAC	2280
AAACTCGGCA	TACAAAAGGT	TCACCCACAT	AAGTTCAGAA	GAACTTTAGC	GACTAAGGCA	2340
ATTGATAAAG	GTATGCCTAT	CGAACAAGTC	CAAAAACTGC	TAGGTCA		2387

(2) INFORMATION FOR SEQ ID NO: 57:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10669 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
ATATTAAAGC GACTTTCTGT GCGCTAGGGA AAAATGTTCC TGGGAATGAG GACTTGGTGA	60
AGAGGATAAA ATCTGAAGGT CATGTTGTTG GAAACCATAG CTGGAGCCAT CCGATTCTCT	120
CGCAACTCTC TCTTGATGAA GCTAAAAAGC AGATTACTGA TACTGAGGAT GTGCTAACTA	130
AAGTGCTGGG TTCTAGTTCT AAACTCATGC GTCCACCTTA TGGTGCTATT ACAGATGATA	240
TTCGCAATAG CTTGGATTTG AGCTTTATCA TGTGGGATGT GGATAGTCTG GACTGGAAGA	300
GTAAAAATGA AGCATCTATT TTGACAGAAA TTCAGTATCA AGTAGCTAAT GGCTCTATCG	360
TTTTGATGCA TGATATTCAC AGTCCGACAG TCAATGCCTT GCCAAGGGTC ATTGAGTATT	420
TGAAAAATCA AGGTTATACC TTTGTGACCA TACCAGAGAT GCTCAATACT CGCCTAAAAG	480
CTCATGAGCT GTACTATAGT CGTGATGAAT AAGCAAGAAA AAATAGGTCT GTTAGATATT	540
TGACAGACTT ATTTTTACA GAATATAGTA CTACTTAAAA AATGTTTTAT GCTATAATTG	600
ATGAATAAAA TAGAAGGAGA AGCATATGAA TACCTATCAA TTAAATAATG GAGTAGAAAT	660
TCCAGTATTG GGATTTGGAA CTTTTAAGGC TAAGGATGGA GAAGAAGCCT ATCGTGCAGT	720
GTTAGAAGCC TTGAAGGCTG GTTATCGTCA TATTGATACG GCGGCGATTT ATCAGAATGA	780
AGAAAGTGTT GGTCAAGCAA TCAAAGATAG CGGAGTTCCA CGTGAAGAAA TGTTCGTAAC	840
TACCAAGCTT TGGAATAGTC AGCAAACCTA TGAGCAAACT CGTCAAGCTT TGGAAAAATC	900
TATAGAAAAA CTGGGCTTGG ATTATTTGGA TTTGTATTTG ATTCATTGGC CGAACCCAAA	960
ACCGCTCAGA GAAAATGACG CATGGAAAAC TCGCAATGCG GAAGTTTGGA GAGCGATGGA	1020
AGACCTCTAT CAAGAAGGGA AAATCCGTGC TATCGGCGTT AGCAATTTTC TTCCCCATCA	1080
TTTGGATGCC TTGCTTGAAA CTGCAACTAT CGTTCCTGCG GTCAATCAAG TTCGCTTGGC	1140
GCCAGGTGTG TATCAAGATC AAGTCGTAGC TTACTGTCGT GAAAAGGGAA TTTTATTGGA	1200
AGCTTGGGGG CCTTTTGGAC AAGGAGAACT GTTTGATAGC AAGCAAGTCC AAGAAATAGC	1260
AGCAAATCAC GGAAAATCGG TTGCTCAGAT AGCCTTGGCC TGGAGCTTGG CAGAAGGATT	1320
TTTACCACTT CCAAAATCTG TCACAACCTC TCGTATTCAA GCTAATCTTG ATTGCTTTGG	1380
AATTGAACTG AGTCATGAGG AGAGAGAAAC CTTAAAAACG ATTGCTGTTC AATCGGGTGC	1440
TCCACGAGTT GATGATGTGG ATTTCTAGAA AATCATAAAA AGAATTGTAC ATTATTCTAA	1500
TTTTTGATAT AATAGTCAGC AGGAAAGAAA GTCTTATGGC GTTCTTCAAG CGAGCTTGGG	1560
ATAGTGGGAG CCAAGTAGGG CAAAATAAAG GGCTGGCGCT TTCTGTAGTA TTTTCAAAAA	1620

CAATGAAGTA	ATAAATTAGG	GTGGAACCGC	GTTTCTGACG	CCCCTAGGTT	AAATCAACCT	168
AGGATTGTCA	GATGTGGTTC	TTTTGCTTAT	TCAGTCTATT	GTGTGAAAGA	AAGGAGAGCC	174
GTGGACAACC	TTTATCTTGT	AAAAGACGAT	AGTCAACTAG	CTACATTTCG	TGATTTTGTA	180
GTAAG AAA TA	CTGAAAAGTT	GAAAGATTAT	CAATCTTTTT	TAAAGAATGA	ACTTGCAGTC	186
TGTGATTTAC	CGCAAGCTGT	TATTTGGTCA	GATTTTAATG	CTGCTACACA	GATTATTAGG -	1920
GAAAGTGCTG	TTCCAACCTA	TACAAATAAT	AGACGAGTGG	TTATGACGCC	TGATTTAGCT	1980
GTTTGGAAAG	AATTGTATTT	GTATCAGTTG	ATGGACTACG	AGTGTTCTGA	GCAAACTCAA	2040
GCAATAGAAA	GTCACTATCA	TTCTTTATCT	GAAAATTTCC	TCTTACAGAT	TGTAGGACAT	2100
GAGTTAGCTC	ATTGGTCGGA	CATTTTTTAG	ATGATTTTGA	TGGTTATGAC	TCTTATATCT	2160
GGTTCGAAGA	GGGGATGGTT	GAATATATTA	GTCGCAAGTA	TTTCTTGACA	GAAGAGGAAT	2220
TTCAAGCGGA	AAAAATTTGT	AATCAATCTC	TCGTAGAACT	TTTTCAGAAG	AAGTATAGTT	2280
GGCATTCATT	GAATGATTTT	GGTTCTTCGA	CTTATGATAA	GAACTATGCA	AGTATTTTT	2340
ATGAATACTG	GCGCAGCTTT	TTGACAGTAG	ATAAGTTGGT	AGAAAATTTA	GGTAGTGTAC	2400
AAGCGGTCTT	AGATTCTTAT	CATTTATGGG	CAAATACAGA	AAAAACTTTT	CCCTTGTTAG	2460
ATTGGTTTGT	TCAGCAGAAA	TTAATTGAAA	AAGAAATATA	AAAACTAAAG	GAGTAAACAA	2520
TGTCTAAGAA	ATTAACATTT	CACTGCATCA	GTGGCAGAGA	CCTCCTTACA	GTCGGGCTGC	2580
TCCACGCTCA	GCACTAGAGT	GCCTGAGCTA	GACGCAGTAC	TANCTCGTCT	TGCCTCGTAT	2640
GATCGACGAG	GCAGACTCGT	GTCGCAAGTA	ATTATTTTT	ATTAAGGAGT	ATTCAATGTC	2700
TAAGAAATTA	ACATTTCACT	GCGTCAGTGG	CAGAAACCTC	CTTACAGTCG	GACTGCCCTA	2760
CGCTCAGCAC	TAGAGTGCCT	GAGCTAGACG	CAGTACTAAC	TCGTCTTGCC	TCGTATAATC	2820
GACGAGGCAG	ACTCGTGTCG	CAAGAAATTA	TTTTTTATTA	AGGAGTATTC	AATGTCTAAG	2880
AAATTAACAT	TTCAAGAAAT	TATTTTGACT	TTGCAACAAT	TTTGGAATGA	CCAAGATTGT	2940
ATGCTTATGC	AGGCTTATGA	TAATGAAAAA	GGTGCGGGGA	CAATGAGTCC	TTACACTTTC	3000
CTTCGTGCTA	TCGGACCTGA	GCCATGGAAT	GCAGCTTATG	TAGAGCCATC	ACGTCGTCCT	3060
GCTGACGGTC	GTTATGGGGA	AAACCCTAAC	CGTCTCTACC	AACACCACCA	ATTCCAGGTG	3120
GTCATGAAGC	CTTCTCCATC	AAATATCCAA	GAACTTTACC	TTGAGTCTTT	GGAAAAATTG	3180
GGAATCAATC	CTTTGGAGCA	CGATATTCGT	TTTGTTGAGG	ACAACTGGGA	AAACCCATCA	3240
ACTGGTTCAG	CT GGT CTTGG	TTGGGAAGTT	TGGCTTGACG	GAATGGAAAT	CACTCAGTTC	3300
ACTTATTTCC	AACAAGTCGG	TGGATTGGCA	ACTGGCCCTC	TGACTGCGGA	ACTTACCTAT	3360

GGTTTGGAGC GCTTGGCTTC TTACATTCAA GAAGTAGACT CTGTCTATGA TATCGAGTGG 3420 GCTGATGGTG TAAAATACGG AGAAATCTTT ATCCAGCCTG AGTATGAGCA CTCAAAATAT 3480 TCATTTGAAA TTTCGGACCA AGAAATGTTG CTTGAAAACT TTGATAAGTT TGAAAAAGAA 3540 GCTGGTCGTG CATTAGAAGA AGGCTTGGTA CACCCTGCCT ATGACTATGT TCTCAAATGT 3600 TCACATACCT TTAATCTGCT TGACGCGCGT GGTGCCGTAT CTGTAACAGA GCGTGCAGGC 3660 TATATCGCTC GTATCCGTAA CTTGGCCCGT GTCGTAGCCA AAACCTTTGT CGCAGAACGC 3720 AAACGCCTAG GCTACCCACT TTTGGATGAA GAAACAAGAG CTAAACTCCT AGCAGAAGAC 3780 -GCAGAATAAA GAGAGTGACA AATTACGAAA ATGGGCGAAC AGAGTGAGCC CTGAGCCAGT 3840 TGCCGCAGTG ATGAAGGTAT CCTTAGTGAA ACTAAGGATA CTAGGCAAAA TTGGAGACTT 3900 TTGGCTCCAA TTTTAGCAAT GAAACAACGA AGTTGGTTGC TTGCGTGCCA ATCACATAAG 3960 GCAAACTGGA AAATAAAAAG ATACTTTTCG GAGAAAAAAC ATGACAAAAA ACTTATTAGT 4020 AGAACTCGGT CTTGAAGAAT TACCAGCCTA TGTTGTTACG CCAAGTGAAA AACAACTAGG 4080 CGAAAAATG GCAGCCTTCC TCAAGGGAAA ACGCCTGTCT TTTGAAGCCA TTCAAACTTT 4140 CTCAACACCA CGTCGTTTGG CTGTTCGTGT AACTGGTCTT GCAGACAAAC AGTCTGATTT 4200 AACAGAAGAT TTCAAGGGTC CAGCAAAGAA AATTGCCTTA GATAGTGATG GAAACTTCAC 4260 CAAAGCAGCT CAAGGATTTG TCCGTGGGAA AGGTTTGACT GTTGAAGATA TCGAATTCCG 4320 TGAAATCAAG GGTGAAGAAT ATGTCTATGT CACTAAGGAA GAAATTGGTC AAGCAGTTGA 4380 AGCCATTGTT CCAGGCATTG TGGATGTCTT GAAGTCACTG ACTTTCCCTG TCAGCATGCA 4440 CTGGGCGGGA AATAGCTTTG AATACATCCG CCCTGTTCAC ACTTTAACTG TTCTCTTGGA 4500 TGAGCAAGAG TTTGACTTGG ATTTCCTTGA TATCAAGGGA AGTCGTGTGA GTCGTGGCCA 4560 TCGTTTTTTG GGACAAGAAA CCAAGATTCA GTCAGCATTG AGCTATGAAG AAGACCTTCG 4620 TAAGCAGTTT GTAATCGCAG ATCCATGTGA ACGTGAGCAA ATGATTGTTG ACCAAATCAA 4680 GGAAATTGAG GCAAAACATG GTGTACGTAT CGAAATTGAT GCGGATTTGC TGAATGAAGT 4740 CTTGAATTTG GTTGAATACC CAACTGCCTT CATGGGAAGT TTTGATGCTA AATACCTTGA 4800 AGTTCCAGAA GAAGTCTTGG TGACTTCTAT GAAGGAACAC CAGCGTTACT TTGTTGTTCG 4860 TGATCAAGAT GGAAAACTCT TGCCAAACTT CATTTCTGTT CGTAACGGAA ACGCAGAGCG 4920 TTTGAAAAAT GTCATCAAAG GAAATGAAAA AGTCTTGGTA GCCCGCTTGG AAGACGGAGA 4980 ATTCTTCTGG CGTGAAGACC AAAAATTGGT GATTTCAGAT CTTGTTGAAA AATTAAACAA 5040 TGTCACCTTC CATGAGAAGA TTGGTTCTCT TCGTGAACAC ATGATTCGTA CGGGTCAAAT 5100 CACTGTACTT TTGGCAGAAA AAGCTAGTTT GTCAGTGGAT GAAACAGTTG ACCTTGCTCG 5160

			C. C	CHTCCTC NAT	TTGACGAACT	5220
	ATTTACAAGT					
CCAAGGAATT	ATGGGTGAAA	AATACACCCT	TCTTGCTGGT	GAAACTCCAG	CGGTGGCAGC	5280
TGCTATTCGT	GAACACTACA	TGCCTACATC	AGCTGAAGGA	GAACTTCCAG	AGAGCAAGGT	5340
CGGCGCAGTT	CTAGCCATTG	CAGACAAATT	GGATACGATT	TTGAGTTTCT	TCTCAGTAGG	5400
ATTGATTCCA	TCAGGTTCTA	ATGACCCTTA	TGCCCTTCGT	CGTGCAACTC	AAGGTGTGGT	5460
TCGTATCTTG	GATGCCTTTG	GTTGGCACAT	TGCTATGGAT	GAGCTGATTG	ATAGCCTTTA	5520
TGCATTGAAA	TTTGACAGTT	TGACTTATGA	AAATAAAGCA	GAGGTTATGG	ACTTTATCAA	5580
GGCTCGTGTT	GATAAGATGA	TGGGCTCTAC	TCCAAAAGAT	ATCAAGGAAG	CAGTTCTTGC	5640
AGGTTCAAAC	TTTGTTGTGG	CAGATATGTT	GGAAGCAGCA	AGTGCTCTCG	TAGAAGTAAG	5700
CAAGGAAGAA	GATTTTAAAC	CATCTGTTGA	ATCACTTTCT	CGTGCCTTTA	ACCTGGCCGA	5760
GAAGGCAGAA	GGGGTTGCTA	CGGTTGATTC	AGCACTATTT	GAGAATGACC	AAGAAAAAGC	5820
TTTGGCAGAA	GCAGTAGAAA	CACTCATTTT	ATCAGGACCT	GCAAGTCAGC	AATTGAAACA	5880
ACTTTTTGCG	CTTAGCCCAG	TCATTGATGC	TTTCTTTGAA	AATACTATGG	TAATGGCTGA	5940
AGATCAGGCT	GTCCGTCAAA	ATCGTTTGGC	AATCTTGTCA	CAACTAACCA	AGAAAGCAGC	6000
TAAGTTTGCT	TGTTTTAACC	AAATTAACAC	TAAATAAAT	TTGATAAACG	GACTTTATCT	6060
TATTACAAAG	GAGAAGAAAT	GGATCCGAAA	AAAATTGCTC	GTATCAATGA	GCTTGCTAAA	6120
AAGAAAAAA	CAGAAGGCTT	AACACCAGAA	GAAAAAGTGG	AACAAGCCAA	ACTACGTGAG	6180
GAGTACATCO	AAGGTTATCG	CCGCGCTGTT	CGTCACCACA	TTGAAGGAAT	CAAAATTGTG	6240
GACGAAGAAG	GAAACGATGT	TACACCAGAA	AAACTACGCC	AAGTACAACO	TGAAAAAGGA	6300
TTACATGGC	GTAGTCTTGA	TGATCCAAAT	TCATAATAAT	ACTCTTCGA	AATCAAATTC	6360
AAACCACGTO	AGCTTCACCT	TGCCGTACT	AAGTACAGC	TGCGGCTAG	TTCCTAGTTT	6420
GCTCTTTGA	r TTTCATTGAC	TATATGTAT	CTTTCTTTI	ACAAAGATAG	G ATGAAACGAT	6480
AACAAAGAG	A CTAGCAGTTI	GTGTTTGCT/	GTCTTTTTT	GCTAAAAAA	G GAACCATAAT	6540
GGTTCCTAA	A AACTATCAT	AGTAACTTG	ACCGGCTGT	A GCGTCTGCG	T CACCACCGTG	6600
GCCTCCAGC	A TCCCCTGAAT	CAGAAGCGC	C AGAAGTAGC	TCGGCGTCT	CCATGACCTCC	6660
GGCAGCAGG.	A GCAAATGGT	CGCTACCAC	CACCAAACG	r TGACCAGTC	T CTTTTAGGTA	6720
CCAGTCAAG	C CATGGTTGG	A AGTTAAAGA	C GATTTCATT	G ATACCAGCG	T ATGATCCATC	6780
AGGATAGTA	C ATTGCTTGG	r agttgtgag	T GTTGATAAC.	a CCTGCAGGA	G AACCTGGAAC	6840
GATCGTACG	G ACGTATTCT	r GGTTTCCGT	T GCGAAGTGT	T CCGATAACC	C ACTCTACGTT	6900

CTTCATACGT	GCTGGTGGAA	GAGAACCATG	508 AACAGTCGAC	ATACGGCTAC	CTGATTGAGG	6960
TGGTACACGT	TTAGCGAACA	TAGTGTCTGG	ATCTTGGTGA	GCGTTGTTGT	AGTAGAGGAA	7020
TTGGTTGTTG	TCGTCAGCGT	ATGTCAATTC	AAATGGCATA	GCTTTCAAGA	ACATATCAAT	7080
TTGGTTAACT	GTTAGGATAC	CGTGGTCCAA	TTTGACATAG	GTATCACCAG	AAACAGCACC	7140
AGTGAATGCT	GCAACTTTTT	CTACCCATTC	TGGATCGTCA	GGGTCAACTT	CTGTGATGGT	7200
TGTAGCGATT	GGTTTTCCAC	AATCCAAGTC	TTCTGATTCG	ATTGGTTTTG	GTTTTTCAA	7260
TTTCGAAACG	ACTCCTACGT	ATTTAACAAA	GTTATCTAAG	CAAGTTTCAA	GGAATTTAAC	7320
AGTGCCTTCG	TTGGTGATAT	TTCCGTTGTT	ATCAAAAGCT	TCCTTAGCTT	TACCAAGAAG	7380
GAATTCGTTA	CCTGGAAGCG	TGTAGGCATT	AACACCTGGA	GCATCAAGGA	TTTTACGAAG	7440
GTGAACTTGA	GCACGTGATG	TTCCTTGGTC	ATAGTATGAT	GCACCCACAA	TCATAACAGG	7500
CTTGTTTTCA	AATGGATGAA	CTTCGTATGA	AAGCCATTCA	AGTACAGATT	TGAGTGAAGC	7560
TGAGATAGTG	TGGTTATGCT	CAGGAGTAGC	AATGATAACA	CCATCTGCAC	GAGTAATTTT	7620
GTTATATAAA	TAACGTAATT	GGAAACTTTC	ATCCCATTTT	TCATCTTGGT	TAAACATTGG	7680
AACTTCGTCA	ATTTCAAGAA	CTTCTAATTC	AAATTTGAGT	TTGAAGTAGC	GACGGATAAA	7740
TTCCAAGAGC	TTACGGTTAT	ATGATTGATC	GTAGTTTGAT	CCAACAAGTC	CAACAAATTT	7800
CATTCTTTTT	GGTCTCCTAT	CTTACAAATT	TTCCCAGTCA	AAGTCTTCAG	CATCTTTGCG	7860
AAGTAATTCT	TGTGCATTAC	GTAATTTTTC	TGTGATTTTT	ACAAAGATAC	GGAAGTCATC	7920
AAAGATGGCA	TCCAATTTCT	TGATAACATC	AAGGTCAACC	AAGTCGCCAC	TTGGGTTAAA	7980
TGCTTGAAGA	GAGTGTGAGA	GCAAGAATTC	ATCTGGAAGA	ACATTTGCCT	TGATTTCAGG	9040
AGCATTCAAG	ATTTGACGAA	GTTGCAATTG	GGCACGAGAT	GAACCAAGCG	TACCGTAAGA	9100
AGCACCTGTA	ATCATGATTG	GTTTGTTCAA	AAGTGGGTAA	ATACCATAAG	ACAACCAAGC	3160
AAGAGCGCTC	ATCAAAACAG	CTGGAATAGA	GTGATCATAC	TCAGGAGTAC	CGATAATAAC	8220
GCCATCTGCC	TCTTCGATTT	TAGCAGCAAT	TTCCAATATT	TCAGCAGGTA	CTTGCTTGTC	8280
AGCTGGTTTG	TTGAAGACAG	GAATGGCCTT	GATTTCAACA	AGTTCAATTT	CAGCTTTGTC	8340
AGTAAAGTGT	TTTTGCATGT	ATTGAAGCAA	TTGACGGTTT	GTAGAACGTT	TTGAATTTGT	9400
TCCAACAATA	GCAATAAGTT	TTAACATGAG	ATTTCCTTTC	TCTTTTTACA	TAATACAATT	8460
TTAAAATTCC	ATTGAAACAG	TTGTCTCTAT	AGAGTAGGAA	TTCCTGAAGA	ACAGCTTAGG	8520
TGGCCTTCTT	TATCGATGAG	GATGACTTCG	ATGCCCTCCA	AACTTTCGAC	TTGCCAGAGG	8580
ATAGAAGCAG	GTCTTTCTCC	AAAGAGTCGA	GTCGTCCAGA	TTTCGCCATC	GACTGATTTA	8640
TCAGAGATGA	TTGTTAGACT	CGCTAGTTCC	GTTTCAACAG	GATATCCTGT	TTGACTGTCA	8700

AAAATGTGAT	GGTAATCTTG	TCCATCGACG	GTCAGGTGAC	GTTCATAAAT	GCCTGAAGTC	8760
ACGACAGATT	TATTGACAAC	AGGGATGGTC	ATTAAATGAT	TTCCCCTAGG	ATTGGCTGGG	8820
TCTTGAATCC	CGATTTGCCA	TGGGTTATCC	CCTCTTGCCT	GATTTTTTCC	AATGGTCAGG	8880
ATATTCCCTC	CCAGATTGAT	CAAGGCAGAA	GTCACCCCCT	CTTTCCTAAG	AAATTGGGCA	8940
ACCTTATCCG	CACTGTATCC	TTTGGCTAAA	CAACCTAGAT	CGATCTTCAT	TCCTTTCTGT	9000
TTTAAAAACA	CAGTAGAAGT	AGAAGAATCT	AACTCGATAC	CATGAGGATT	GATTAGAGGC	9060
AGCACCGATT	CAATTTCTTG	AGGCTGGGCG	ACCTTGGCAT	CTGAAAAACC	GATACGCCAG	9120
GTTTGAATTA	AGGGACCAAT	GCTGATATTG	AGGTGGCTAG	AGAGCGCTAG	GCTATGCTCT	9180
AACCCAAGTG	AAATCAGCTC	AAACAGGTCT	GGATGAACCG	TGACGGGGGC	TATTCCTGCT	9240
TGATAATTGA	TTTCCATCAA	CTCAGATTCT	TGACTATTGG	CGTTGAAGCG	GTATTCAAGT	9300
TCTTTGAGCA	AGTCAAAGGA	TTTTTGGAGA	AAGATATCGG	CTTGCTCATC	CACTAATGAA	9360
ATAGTGATAG	TAGTCCCCAT	TAGCCGTTCA	GAATGTGAAC	GAAGAGTCAA	GCTACCAACT	9420
CCTTTCTCTT	ATAGAAAATA	AGTTGTAATA	TCAAATAATC	ATCTAAATTG	AAGCCCTTAC	9480
ATTTCATTTT	CATGTTATTA	TAATACCATA	AAGTTAGAAT	TTTCACAAAC	AAAATTTGGA	9540
AAAAGTCAAG	AAATATGCTC	ATAAAATTCA	TCAGGCTTGA	AAACAGGATA	AATGGGGAAT	9600
TATTTTTGAT	AAAAAATGCT	GAAATAATAG	TACCCCCCTT	GTAAACGCTA	ACGGTAAATG	9660
GTATACTAGT	AAGGTAAATT	TAGAATGAAG	GCAGGAAATT	TTTATGAGTA	AAATCGTTGT	9720
AGTCGGTGCT	AACCACGCTG	GTACAGCATG	TATCAATACC	ATGTTGGATA	ATTTTGGAAA	9780
TGAGAACGAA	ATTGTTGTAT	TTGACCAAAA	CTCTAACATC	TCTTTCCTAG	GATGTGGAAT	9940
GGCTCTTTGG	ATTGGTGAAC	AAATTGACGG	TGCTGAAGGC	TTGTTCTATT	CTGATAAAGA	9900
AAAATTGGAA	GCTAAAGGTG	CTAAAGTTTA	CATGAACTCA	CCTGTTCTTT	CAATCGACTA	9960
TGATAACAAA	GTAGTTACAG	CGGAAGTTGA	AGGAAAAGAG	CACAAAGAAT	CATACGAAAA	10020
ATTGATTTTC	GCTACAGGCT	CTACACCAAT	CTTGCCACCA	ATCGAAGGTG	TTGAAATTGT	10080
TAAAGGAAAC	CGCGAATTTA	AAGCAACTCT	TGAAAACGTA	CAATTCGTGA	AATTGTACCA	10140
AAATGCTGAA	GAAGTTATCA	ATAAACTTTC	TGACAAGAGC	CAACACCTCG	ACCGTATCGC	10200
CGTTGTTGGT	GGTGGTTACA	TCGGTGTTGA	ACTTGCTGAA	GCCTTTGAAC	GTCTTGGAAA	10260
AGAAGTTGTC	CTTGTTGATA	TCGTTGATAC	TGTCTTGAAC	GGTTACTATG	ACAAAGACTT	10320
CACACAAATG	ATGGCGAAGA	ACTTGGAAGA	TCACAACATC	CGCTTGGCTC	TAGGTCAAAC	10380
TGTTAAAGCA	ATCGAAGGTG	ACGGTAAAGT	TGAACGCTTG	ATTACTGACA	AAGAAAGCTT	10440

TGACGTGGAT	ATGGTTATCC	TTGCAGTTGG	510 TTTCCGTCCA	AACACAGCCC	TTGCAGGTGG	10500
TAAGATCGAA	CTCTTCCGCA	ACGGTGCCTT	CCTTGTAGAC	AAGAAACAAG	AAACATCTAT	10560
CCCAGACGTT	TACGCTGTTG	GTGACTGTGC	GACTGTTTAT	GACAATGCTC	GTAAAGATAC	10620
AAGCTATATC	GCTCTTGCTT	CAAATGCTGT	GCGCACTGGT	AACGTTGGT		10669

(2) INFORMATION FOR SEQ ID NO: 58:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7542 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

CGCGCTAATA	GATACTTTAT	GATAGAATAA	AGAACAAGAT	TGACAAGTAA	GAGGAAACAT	60
TATGCAAAAT	CAAACACTCA	TGCAATACTT	TGAATGGTAT	CTGCCCCACG	ACGGTCAACA	120
CTGGACGCGT	CTGGCTGAAA	ATGCTCCACA	CCTAGCTCAT	CTGGGGATCA	GTCACGTCTG	180
GATGCCACCA	GCCTTCAAGG	CAACCAACGA	AAAAGATGTC	GGCTATGGGG	TCTATGACTT	240
ATTTGACTTA	GGAGAGTTCA	ACCAAAAAGG	GACTGTCCGC	ACCAAGTATG	GTTTCAAAGA	300
AGACTATCTT	CAAGCCATTC	AAGCCCTTAA	AGCACAGGGA	ATTCAACCTA	TGGCCGATGT	360
AGTTCTCAAC	CACAAGGCTG	CTGCCGATCA	CAGGGAAGCC	TTTCAGGTTA	TCGAAGTTGA	420
TCCTGTAGAC	CGTACAGTTG	AACTTGGAGA	ACCCTTCACC	ATCAATGGCT	GGACTAGTTT	480
TACCTTCGAT	GGTCGCCAAG	ATACCTATAA	TGGCTTCCAC	TGGCATTGGT	ACCACTTCAC	540
CGGTACAGAC	TACGATGCCA	AACGCAGTAA	ATCTGGGATT	TATCTGATCC	AAGGGGACAA	600
CAAGGGCTGG	GCCAACGAGG	AATTGGTCGA	TAACGAAAAC	GGAAACTACG	ACTACCTCAT	660
GTATGCCGAC	CTAGACTTTA	AACATCCTGA	AGTCATCCAA	AACATCTATG	ACTGGGCTGA	720
TTGGTTCATG	GAAACGACTG	GTGTAGCTGG	TTTCCGTTTG	GATGCCGTTA	AGCATATTGA	780
CTCTTTCTTT	ATGCGCAACT	TCATCCGCGA	TATGAAGGAA	AAATACGGTG	ACGATTTCTA	840
TGTTTTTGGT	GAATTTTGGA	ACCCAGACAA	GGAAGCCAAT	CTGGACTATC	TCGAAAAAAC	900
GGAAGAACAC	TTTGACCTTG	TCGATGTTCG	TCTCCACCAG	AATCTCTTTG	AAGCCAGTCA	960
AGCTGGCGCA	AACTATGACC	TTCGTGGCAT	TTTCACAGAT	AGCCTGGTTG	AACTCAAGCC	1020
TGACAAGGCT	GTGACTTTTG	TCGACAACCA	CGATACCCAA	CGAGGACAAG	CCCTTGAGTC	1080
TACCGTTGAA	GAATGGTTCA	AGCCAGCAGC	CTATGCCCTC	ATTTTGTTAC	GCCAAGACGG	1140
CCTTCCATGT	GTCTTTTACG	GAGACTACTA	TGGGATTTCA	GGGCAGTATG	CTCAAGAAGA	1200

TTTCAAAGAA	ATCCTTGACC	GCCTCCTAGC	CATCCGAAAA	GATTTGGCCT	ATGGAGAACA	1260
AAATGACTAC	TTTGACCATG	CTAACTGTAT	CGGTTGGGTA	CGTTCAGGTG	CTGAAAATCA	1320
ATCCCCAATC	GCAGTCCTTA	TCTCAAATGA	CCAAGAAAAC	AGCAAGTCAA	TGTTTGTCGG	1380
TCAAGAATGG	ACTAATCAAA	CCTTTGTAGA	TTTACTTGGT	AACCACCAAG	GTCAAGTTAC	1440
AATTGATGAG	GAAGGTTATG	GACAATTCCC	TGTCTCAGCT	AGATCCGTAA	GTGTCTGGGC	1500
AGTCAATACC	ATCTAATAGC	TCATAATAAC	CAAGCTAGGT	CCAAGCGGAT	TTGGCTTTTT	1560
TGTATTCACA	AAAAGACCTA	CCCAAATGGA	TAGATCTTTA	CTTGATTACA	ATTTACCTGC	1620
TACTGCATCC	AACAATTCTT	GGATCTTAGG	TTGGTTGCTT	CCTCCTGCCA	TGGCCATATC	1680
TGGTTTACCA	CCACCACGTC	CATCGATGAT	TGGTGCTAAT	TCTTTGACAA	GGTTTCCTGC	1740
ATGAAGGTCT	TTTGTCTTGC	TTGCTACAAG	GACATTGACT	TTGTCACCGA	TAGCGGCAAC	1800
TAGGACAAGA	AGATCAGAGT	AGTCTTTTTG	TTTCCAGTTA	TCTGCAAAAG	TACGAAGGGC	1860
ACCGGCATCG	GATACAGACA	CTTGACTAGC	AATGTAACGA	TGACCGTTGA	CTTCCTTAAC	1920
ATCTTTGAAG	ATATCGCCTG	CGGCTGCAGC	TGCGGCTTTT	TCTTTCAACT	CAGCATTTTC	1980
TTTTTGAAGT	TGACGAAGTT	GTTCTTGAAG	TCCTTCTACC	TTGTGAGGTA	CTTCCTTGAC	2040
TTGAGGTGCT	TTCAAGGTTG	CTGCGATAGC	TTTAAGAGCA	TCCTCTTGTT	CACGATAGGC	2100
TTCAAAGGCT	TCCTTACCAG	TCACTGCCAA	GATACGGCGA	GTTCCTGAAC	CGATTCCTTC	2160
TTCTTTGACA	ATTTTGAAGA	GACCAATCTC	AGAAGTGTTG	TCAACATGAG	TACCACCACA	2220
AAGTTCAATA	GAGTAGTCAC	CGATAGTCAC	GACACGAACT	TCCTTGCCGT	ATTTCTCACC	2280
AAAGAGGGCC	ATAGCTCCCA	TTTCTTTAGC	AGTGTCAATA	TCCGTTTCAA	CTGTCTTCAC	2340
TTCAAGTGCT	TCCCAAATTT	TCTCGTTAAC	TTGCTGTTCA	ATCGCACGAA	GTTCCTCAGC	2400
AGTTACTGCT	TGGAAGTGGG	TAAAGTCAAA	GCGAAGGAAT	TCAACTTCGT	TAAGAGATCC	2460
TGCCTGTGTT	GCGTGGTTTC	CAAGGATATT	GTGAAGGGCA	GCGTGAAGCA	AATGAGTCGC	2520
AGTGTGGTTT	TTCATGACAC	GGTGACGGCG	ATTGCTATCA	ATTGCCAAGG	TATATTCTTG	2580
GTTCAAGGCA	AGCGGTGCAA	GGACTTCAAC	TGTATGAAGG	GCTTGACCAT	TTGGGGCTTT	2640
CTGAACATTG	GTCACAGTAG	CCACAACCTT	ACCTGACTCA	TCCAAGATTT	GTCCGTAGTC	2700
AGCTACCTGT	CCACCCATTT	CAGCATAAAA	TGACGTTTCC	GCAAAGATAA	GAGAGGCAGT	2760
TCCTTCTGAA	ACAGCTCCTA	CTTCTGCATT	GTCAGCAACG	ATAGCTACCA	ATTTAGAAGA	2820
CAATTGGCTA	GCATTGTAGT	TGAAGACACT	TTCTACAGTG	ATGTTTTGAA	GAGTTTCATT	2980
TTGCATACCC	ATTGAGCCAC	CCTTGACAGC	TGACGCACGC	GCGCGTTCTT	GCTGTTCTTT	2940

512 CATGGCTGCT TCAAAACCTT CACGGTCTAC AGTCATACCA GCTTCTTCAG CGATTTCTTC 3000 AGTCAATTCA ACTGGGAACC CATAAGTATC ATAGAGTTTG AAGACATCTG AACCAGCGAT 3060 AACAGATTGA CCTTTTTCTT TCAAGTCTGC TACAATGCCT TGGGCAAAGT GTTGACCTGA 3120 GTGAAGGGTA CGGGCAAATG ATTCTTCTTC GCTCTTAACG ATTTTCTCAA TAAAGTCACG 3180 TTTCTCAAGC ACTTCTGGGT AGTAGCTTTC CATGATTTTT CCAACAGTTG GAACCAATTT 3240 GTAAAGGAAA GGCTCGTTGA TACCCAATTT TTGACCATGC ATAGAAGCAC GACGGAGAAG 3300 ACGACGAAGA ACATAACCAC GACCTTCATT TCCTGGAAGG GCACCATCAC CGATAGCAAA 3360 TGAAAGAGA CGAATGTGGT CTGCGATAAC CTTGAAGCTC ATGTTGTCGC CATCTTGGTC 3420 ATAAACCTTA CCAGACAATT TCTCGACTTC ACGGATAATC GGCATGAAGA GGTCCGTTTC 3480 AAAGTTGGTC TTAGCCCCTT GGATAACGGC CACCAAACGC TCCAAACCAG CGCCCGTATC 3540 AATGTTCTTA TGTGGCAATT CCTTGTATTC GCTACGAGGA ACAGCAGGGT CTGCGTTAAA 3600 TTGTGACAAA ACGATGTTCC AGATTTCAAT ATAACGGTCG TTTTCAATAT CTTCTGCAAG 3660 CAGGCGAAGA CCGATATTTT CTGGGTCAAA GGCTTCCCCA CGGTCAAAGA AGATTTCTGT 3720 ATCTGGTCCA GAAGGTCCCG CACCGATTTC CCAGAAGTTG TCCTCAATTG GAATCAAGTG 3780 ACTTGGATCC ACTCCCACTT CAATCCAGCG GTTGTAAGAA TCTTTATCGT CTGGATAGTA 3840 GGTCATGTAA AGTTTTTCAG CAGGGAAATC AAACCATTCA GGGCTTGTCA AAAGCTCATA 3900 AGCCCAAGTG ATAGCTTCGT CACGGAAGTA ATCCCCGATA GAGAAGTTCC CCAGCATTTC 3960 AAACATGGTA TGGTGACGCG CGGTCTTCCC TACGTTTTCG ATGTCGTTGG TACGGATAGC 4020 CTTTTGGGCA TTGGTAATAC GTGGATTTTC AGGGATAATG GTCCCGTCAA AGTATTTCTT 4080 AAGGGTTGCT ACCCCAGAGT TGATCCACAA AAGAGTTGGG TCATTTACAG GAACCAAACT 4140 TACTGATGGT TCTACTGAGT GACCTTTGGT CGCCCAGAAA TCAAGCCACA TTTGGCGTAC 1200 TTGTGCACTA GATAGTTGTT TCATATTGTC TCCTTATTCA CTTGTTTAAT GTGATTGGCT 4260 TTCCAGCATT TCCACATAGT CAATCGCGAC ACAGAGGGAA ATGACTAGGT CTGCATAAGC 4320 GTCTTCAAGA ACCGTTACGG TATAGGTAGA AGTCAGATGG AAGAGTTCCT TCTTAATTTC 4380 CGCAATCAAC TGATCGCGAT CATCCAGCAA TTTGAAATTC AAATCCCAGA TATTGCCCTC 4440 GATACGAAGA CCTAGATTAT CAAACTCATA CTTATCTCGC CAGAAGGTCA ACTTCTTACG 4500 AATGACAAAA CTCGAGCCAT CCCGAAGCTG AATTTCAAAA CGAGGAAGCA AGGTCAAGAT 4560 TTCTTTACTA ATCTCACTGA CTTGTTCACC AGCCGCATCA TAGATGGTAA AGGTTTTAGG 4620 AATCTTAAAA AATGATCCCT CCACCTGATA GGCAATTTCT CCCCTGTCAT CCTTGATAGC GAAGCGTTCG CCTCCAAGAC GAAACTTTTG TTTGACAAGA AATGTTTTCA TCAACACCTC 4740

CAAAAATCAA	AAGACAAGCT	CATATCACGA	AGGGCGAAAA	ACCGCGGTAC	CACCTTCATT	4800
CAATGAACTT	GTCATTCTCT	TGTTCTTATG	CAATTGTATG	ATTGAGTAGC	ATGACTTCCT	4860
AGCTTAGATG	GCTCGCAGCA	CCGCCATTTC	TCTGGACTAA	GACAAGTGAA	AATCAATTCT	4920
CAACTTTCTT	ATTATAACGT	TTTTTTAAGC	TTGCGTCAAC	TGGAAATGAT	CTCCGTTGAA	4980
TTAGACCAAT	TCCCTACATC	TCTGATTACT	TTTTCAGGAT	ATATTTTTC	TTACTGCCAT	5040
TTTTCTTTTT	ATCCCAAATT	TTCATATTAC	TAAACACAGC	TACTAGAATA	TTTCCAAATA	5100
TAAAGGTGCC	TATCACCCAA	TATATGGACT	CACTTGTTAG	GTATTGTCGA	TCCAAGCCAT	5160
CCTTTAAATG	GAATAGTATA	GCAGTTTGGT	TAACAATCAT	AAAGGTTGGC	CAGAAACTTT	5220
TTTTGAAAAA	AGTAGACATT	TTCATTATTT	GTTGCCGCTT	TCTGTAAGGT	TAATACTCAA	5280
TAAAAATCAA	AAAGCAAACT	AGGAAGCTAG	CCTCAAGCTG	TACTTGAGTA	CGGCAAGGCA	5340
ACGCTGACGT	GGTTTGAAGA	GTATAGGCTT	AGTATACTAC	TAGGCAAGCA	AATAAACAAA	5400
TANACAACTA	GAATAGAAAA	AGATAGGGCT	CTAAAAACTG	ACTTCTATTC	CTTAAAAACG	5460
AACCAGCTTG	ACTGATTCGT	CTTCTTACGT	TTATCTCCTA	CTTCCGATAC	ATTTTAAACT	5520
GTAGGAAGAG	GTCGCTATAT	TTCCCTGTCC	ATTTATGGTC	AAATTTCTCA	TAAACTTCTA	5580
GGTGTTTCAT	GGTTTCAACA	TCGGGATAGA	AGGCCTTATC	TTCCTTTGTT	TCCTCTGGGA	5640
GCAATTCCTT	CGCTGGTAGG	TTTGGTGTTG	AATAGCCGAC	ATACTCCGCA	TTTTGGAGAG	5700
CATTTTCAGG	TTTCAACATA	AAGTTGATAA	AGGCATAGGC	TGAGTTTTGG	TTTTTAACTG	5760
TTTTGGGAAT	GACCATATTG	TCAAACCAAA	GATTGCTGGC	CTCTGTCGGT	ACCACATAAC	5820
GTAGATTTTC	ATTTTTTTCT	AACATTTGGC	TGGCTTCACC	AGAGAAGGTC	ACGCCGATTG	5880
CAACATTATT	CTSAATCATA	TAGCCCTTCA	TOTOGTOCGO	AACGATAGCC	TTGATATTTG	5940
GAGTCAGTTT	GTAGAGCTTA	TCCACTGTCT	CTTCCAACTG	CTGCAGATCC	TTGGAGTTGA	6000
GGCTGTAGCC	GAGGGAATTG	AGTCCTAGTC	CCAGCACCTC	ACGCGCCCCA	TCAAAGAGCA	6060
TGATAGAATT	CTTATACTCC	GGCTTCCAAA	GGTCATCCCA	ATGCTCAGGC	GCTTCATCTA	6120
CCATGGTTTC	GTTGTAGACA	ATTCCTAAGG	TTCCCCAGAA	GTAAGGGATG	GAGAATTTAT	6180
TACCTGGGTC	AAAGGACTGG	TTGAGAAACT	CTGGTCCGAT	ATTTTCGATT	CCTTCAATTT	6240
TTGAATAATC	AAGCGGAACC	AAGAGGTCTT	CGTCCTTCAT	CTTGTTAATC	ATGTATTCAC	6300
TTGGAATGGC	AATATCGTAG	GTCGTTCCAC	CCTGCTTTAT	CTTAGTGTAC	ATGGCTTCGT	6360
TGGAGTCAAA	AGTCTCGTAC	TGAACTTGAA	TTCCTGTTTC	TTCTGTAAAC	TGAGTCAAGA	6420
GTTCAGGATC	GATATAGTCT	CCCCAGTTAT	AGATAACCAA	TTTTTGACTA	TCTCGACTAT	6480

-			514			
CATTTTACT	ATCTAAATGA	GTCGCAATTC	CCCACAAGAC	AAGGATAATC	GCTGCAATTC	6540
CTGCTAAAAA	TGAATAGATT	TTTTTCATGC	TTGCTCCTCC	TTCTCACGAG	AGATAAAGTA	6630
ATAACCTACA	ACTAGGATAA	TACTAAAGAG	AAAGACTAGA	GCAGACAGGG	CATTGATTTC	6660
TAAGGAAATC	CCCTTGCGAG	CACGAGAGTA	AATCTCGACT	GATAGGGTTG	AAAAGCCATT	6720
rcctgttaca	AAGAAGGTCA	CGGCAAAGTC	ATCTAACGAA	TAGGTGAAGG	CCATGAAATA	6780
ACCAGTAATG	ATAGACGGAG	TCAGGTAAGG	AAGCATGATT	TCCTTGAACA	TCTGAAATTG	6840
ACTAGCTCCC	AAGTCATAGG	CCGCATGAAT	CATGTCGCCA	TTCATTTCCT	TGAGTCGAGG	6900
CAAGACCATC	AAGACCACGA	TAGGAATGGA	GAAGGCCACG	TGACTAGATA	GAACGGTCAA	6960
AAAGCCAAGT	GAAAACTTGA	GTTGGGTAAA	GAGAATCAAG	AAGCTAGCAC	CAATCATAAC	7020
GTCAGGCGCA	ACCATGAGGA	TATTATTGAG	TGATAGAAAG	GCTTCTTGGT	ATTTCTTACG	7080
AGACTGGTAG	ATGTAAATGG	CACCAAAAGT	CCCGATAATG	GTCGCTATCA	AGGCTGATAG	7140
GAAGGCCAAG	AAAAATGTCT	GAGCCAAAAT	CAGCATGAGT	CTCCCATCTC	CAAACATGGT	7200
TTCAAAGTGA	GTCCAGCTAA	AACCTGTAAA	GCTATTCATA	TCATCACCAG	CATTAAAGGC	7260
ATAGCCAATC	AAGTAAAAGA	TAGGCAGGTA	GAGGACCAGA	AAGACCAGTC	CCAGATAAAG	7320
GTTGGCAAAT	TTTTTCATCG	ттстстсстт	TCCTTAGTCA	CCCACATGGT	GATGAACATG	7380
GTCAGGATGA	GAATCACACC	GATGGTTGAA	CCCATACCAT	AGTTGTCATT	GGTTAGAAAA	7440
TTCTGCTCAA	TAGCCGTCCC	CAAGGTGATA	ACGCGTTCCC	ACCAATCAAA	CGGGTCAGCA	7500
TGAAGAGACT	CAAACTTGGG	ATAAAGACCG	ACTGAACCCC	GG		7542

(2) INFORMATION FOR SEQ ID NO: 59:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9223 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

AAAACCAAAT TCCGGTATT	TAACCTATGC	TGTAAATACC	ATGAAGTCTG	TCATGACAGA	60
TCAGGTCTAT AACATTAAG	G TTGAGACAGA	AAATGGAAAT	TATGTTGGTG	AAGCTAGCCA	120
TGTTTTGGTC CTTTTGACA	A ATTACTTCGC	TGATAAGAAA	ATCTTTGAAG	AAAACAAGGA	180
CGGCTATGCC AACATTTTG	a TTCTGAAAGA	TGCCTCTATA	TTCTCCAAAT	TATCCGTCAT	240
TCCTGATTTA TTAAAAGGG	G ATGTTGTCGC	AAATGATAAT	ATCGAGTATA	TCAAAGCGCG	300
таататтааа Атстсттса	G ATAGTGAATT	GGAGTCAGAT	. GTTGACGGAG	ATAAATCAGA	360-

TAACCTACCT	GTAGAAATCA	AAGTCCTAGC	TCAGCGAGTA	GAAGTATTTT	CAAAACCGAA	420
AGAGGATTAG	TATATAGAGA	AAGCCTTTTT	TAAGGCTTTT	TGTATACTTT	AAAAGATAGT	480
TCCTTTAACA	ACGGACATTC	CTTGCAAATA	GTTTTACAAA	AATAGTATAC	TGGATTCATT	540
GAGTTTGAAA	ACGTTTGCGT	AAAATTTGAA	TGAATACTTT	AGGAGACAAA	TTGATGGAAT	600
TGAGTGCTAT	TTACCATAGG	CCTGAGTCGG	AGTATGACTA	TCTTTATAAG	GATAAGAAAC	660
TCCATATTCG	AATTCGAACT	AAGAAAGGGG	ACATTGAAAG	CATCAACTTG	CACTATGGGG	720
ACCCTTTTAT	CTTTATGGAG	GAGTTTTATC	AGGATACAAA	AGAAATGGTC	AAGATAACTT	780
CTGGTACCTT	ATTTGACCAT	TGGCAGGTTG	AAGTGTCAGT	TGACTTTGCA	CGTATCCAGT	840
ATCTCTTTGA	GCTCAGAGAT	ACAGAAGGTC	AAAATATTTT	GTATGGCGAT	AAAGGGTGTG	900
TGGAAAATTC	TCTAGAAAAT	CTTCATGCAA	TTGGGAATGG	ATTTAAGTTG	CCTTAGCTTC	960
ATGAGATTGA	TGCCTGCAAG	gTTCCTGACT	GGGTTTCAAA	TACGGTATGG	TATCAGATAT	1020
TTCCTGAAAG	ATTTGCCAAT	GGCAATGCTC	TATTAAACCC	AGAAGGGACT	TTAGACTGGG	1080
ATTCATCTGT	CACACCTAAG	AGCGATGATT	TCTTTGGTGG	TGATTTACAG	GGGATTATTG	1140
ATCATATGAA	TTACTTGCAA	GACTTGGGTA	TTACTGGACT	ATATCTTTGT	CCCATCTTTG	1200
AATCTACAAG	CAATCACAAG	TACAATACGA	CAGATTACTT	TGAAATTGAC	CGTCATTTTG	1260
GAGACAAGGA	GACCTTTCGG	GAACTGGTGG	ATCAAGCGCA	TCATCGTGGC	ATGAAAGTCA	1320
TGCTGGATGC	GGTATTTAAT	CATATTCGTT	CGCAATCTCT	TCAATGGAAA	AATGTCGTCA	1380
AAAATGGTGA	ACAGTCTGCT	TATAAGGATT	GGTTCCATAT	TCAACAATTC	CCAGTGACAA	1440
CTGAAAAGCT	AGTTAATAAG	AGAGACTTAC	CCTATCATGT	TTTTGGTTTC	GAGGACTATA	1500
TOCCTAAGCT	AAATACAGCC	AATCCAGAGG	TCAAGAATTA	TCTTTTAAAG	STTGCGACTT	1560
ATTGGATTGA	AGAGTTTAAT	ATCGATGCTT	GGCGTTTGGA	TGTGGCTAAT	GAGATTGACC	1620
ATCAGTTCTG	GAAGGATTTT	CGTAAGGCAG	TTTTAGCTAA	AAATCCTGAT	CTTTATATCC	1680
TAGGAGAAGT	CTGGCATACA	TCTCAGCCTT	GGCTAAATGG	AGATGAGTTC	CATGCCGTCA	1740
TGAATTATCC	TTTATCTGAT	AGTATCAAGG	ACTATTTCTT	ACGAGGAATT	AAGAAGACAG	1800
ACCAGTTCAT	CGATGAAATC	AATGGAGAGT	CTATGTATTA	CAAGCAGCAG	ATTTCAGAGG	1860
TCATGTTTAA	TCTCTTGGAT	TCACATGATA	CAGAGCGAAT	CCTGTGGACG	GCCAATGAAG	1920
ATGTTCAACT	GGTTAAATCA	GCCTTAGCCT	TTCTCTTTTT	ACAAAAAGGA	ACACCGTGCA	1980
TTTATTACGG	AACCGAGCTA	GCCTTGACTG	GAGGACCAGA	TCCAGATTGT	CGTCGTTGTA	2040
TGCCTTGGGA	ACGTGTATCA	AGTGACAATG	ATATGCTGAA	CTTTATGAAG	AGGCTGATTA	2100

AAATTCGGAA	ATACGCGTCA	GTAATCATTT	516 CGCATGGCAA	GTATAGCCTT	CAAGAAATCA	2160
ACTCTGATCT	AGTAGCTCTG	GAATGGAAAT	ACGAAGGACG	GATCCTCAAA	GCAATATTCA	2220
ACCAATCAAC	AGAAGATTAT	CTTTTAGAGA	AAGAAGCAGT	AGCACTAGCA	AGCAATTGCC	2280
AAGAATTGGA	TAATCAGCTT	GTCATCTCTC	CAGATGGATT	TATGATTTTC	TAAAAACTAG	2340
TTGATGAAGA	TTATGGTACA	TTTCATACCT	TATATAGTAT	AATAAGGCTA	GTTACTAAAC	2400
TTGTAAAGGA	GAACTTAAAT	GAATTGTAGA	GGACATGAAA	CAAGACAAAG	AATTGTTAGA	2460
GATTTTGAAG	TTCAGCCTAA	AGCACATATT	AAGCTGTTAG	CAAATCAACA	AAAACATAGT	2520
GATGCAGGAG	CAACTATTGA	AGATGAATAT	TATGTATTTA	TCGCTGAGAG	TAAAATTGAT	2580
GGCAAGAAGG	AAGTTATTCA	GTGTTGCATG	GGTGCGGCAA	GGGATTTTTT	AGAACTAATT	2510
AATCACAAAG	GGCTACCTCT	TTTTAATCCG	CTTGTAGGTG	ATTCTCATGT	AAATAATAGA	2700
CAAGAATATG	ACAATACAGG	GAGTGGAAAT	TTATAACCTG	AAAAGTGGAA	TGAAACTGCA	2760
AAGCAGCTTT	ATAATGCTAT	AATGTGGTTG	ATTATTTTAT	GGAATGCTAA	GCCGGATACA	2820
CCTTTATTTA	ATTTTAAAGA	CGAAGTAATT	AAGTATAAAA	CATATGAGCC	TTTTGAAAGC	2880
AGTATAAAAA	GAGTAAATAC	TACTATAAAG	AATGGTAGTA	AAGGGAAAAC	TCTGACTGAG	2940
ATGATTAATG	GCTACAGAGC	GGATAACGAT	ATTAGAGATG	AAATTTGTAA	CTTTAATATT	3000
CTGAAAAATA	AAATTCGTGA	TATGAAAAAC	CAACAAGGAA	ATACAATGGA	ATCTTACTTT	3060
TAGTTATTGT	TGAATTTTGG	GTATTCTATA	AAATATCCTA	ATTGAGATTT	AAATAGTAGA	3120
CTATACAATA	TAGTTAAAAT	ATCAGTAAAA	ACAACACTTT	ATTGAGGTAT	TGGATACGCT	3130
TTGCTAATAG	CCTAATAATC	ACATGTGGAG	TGTTGCTACA	ACGAAAAAGG	TGATAATCCT	3240
TGATTTCAAG	CTATTTATA	AGCATTTTGT	CTTTGTAGAT	AAAGGCAATT	TTGACAATAA	3300
AAATCCTAAA	AGGTGAATCG	TTATAGATGT	ATTTGTAGAT	ATCGTTTGCC	CATCGAAAAA	3360
ATTAATACAA	GAATAAATAT	TTATAGCTCT	TTAGGTGACT	TTTATAGAAG	TAAAGTTTAG	3420
GATAGAAAA	A CAAGAAATAA	CGCACCATT	TTGGTGCGTT	ATGCTTTTT	ATGCTATAAT	3480
GCATTTATA	A AAATAAAGGA	GTTTGCTATO	ATTGGAAAGA	ACATAAAAT	CTTGCGTAAA	3540
ACACATGACT	TAACACAACT	CGAATTTGC	CGGATTGTAC	GTATTTCACO	AAATAGTCTG	3600
AGTCGTTATO	AAAATGGAAG	GAGTTCAGT	TCTACCGAAT	TAATAGACA	r CATTTGTCAG	3660
AAGTTTAAT	G TATCTTATG	CGATATTGT	GGAGAAGAT	AAATGCTCA	TCCTGTTGAA	3720
GATTATGAA	r TGACTTTAA	A AATTGAAAT	r gtgaaagaa	A GAGGTGCTA	А ТСТАТТАТС Т	3780
CGACTCTAT	C GTTATCAAG	A TAGTCAGGG	A ATTAGCATTO	G ATGATGAGT	C TAATCCTTGG	3840
ATTTTAATG	A GTGATGATC	r atctgattt	G ATTCATACG	A ATATCTATC	T AGTAGAAACT	3900

517

TTTGATGAAA	TAGAGAGATA	TAGTGGCTAT	TTGGATGGAA	TTGAACGTAT	GTTAGAGATA	3960
TCTGAAAAAC	GGATGGTGGC	CTAATGGAAA	TCCAAGATTA	TACTGATAGT	GAATTCAAAC	4020
ATGCTTTAGC	AAGGAATCTT	CGTTCACTGA	CAAGAGGAAA	AAAGTCCAGT	AAGCAACCTA	4080
TAGCGATTTT	GCTTGGAGGG	CAAAGTGGTG	CCGGTAAGAC	TACAATTCAT	CGTATTAAAC	4140
AGAAAGAATT	TCAAGGAAAT	ATTGTTATCA	TAGATGGTGA	TAGTTTTCGT	TCTCAGCATC	4200
CACACTATTT	AGAACTGCAG	CAAGAATATG	GCAAAGACAG	TGTAGAATAT	ACCAAAGATT	4260
TTGCAGGAAA	AATGGTAGAG	TCTTTAGTAA	CAAAATTGAG	TAGTTTGAGA	TACAATCTTT	4320
TGATAGAGGG	AACTTTACGA	ACAGTTGATG	TTCCAAAGAA	AACAGCACAA	CTCTTGAAAA	4380
ATAAGGGATA	TGAAGTACAA	TTGGCCTTAA	TTGCGACAAA	GCCTGAATTG	TCGTATCTAA	4440
GTACTCTTAT	CCGTTATGAA	GAACTGTACA	TTATCAATCC	AAATCAAGCA	CGCGCAACTC	4500
CAAAAGAACA	TCATGATTTC	ATTGTAAATC	ATCTAGTTGA	TAACACACGA	AAATTGGAAG	4560
AACTAGCTAT	CTTTGAAAGA	ATTCAAATTT	ACCAACGAGA	TAGAAGTTGT	GTATATGATT	4620
CAAAAGAAAA	TACAACTTCA	GCAGCAGATG	TTCTTCAAGA	GTTACTCTTT	GGGGAGTGGA	4680
GTCAGGTAGA	CAAGGAGATG	TTGCAGGTGG	GGGAAAAGAG	ACTTAATGAA	TTACTTGAAA	4740
AATAAACAAT	TGATATTTTT	AGGAGAATAG	AAATGAGAGG	GTTTAATAAC	AAGATAAAGT	4800
CTGTTTATCA	AGAACTAACA	AATTCCAAAG	AGAAATTCGG	TAGCTTTCAC	AAGACTTTAA	4860
TTCATTTGCA	TACACCTGTT	TCTTATGATT	ACAAGCTATT	TTCTAATTGG	ACTGCAACGA	4920
AATATAGAAA	AATTACTGAA	GATGAACTAT	ATGATATATT	TTTTGAAAAT	AAGAAAATAA	4980
AAGTTGATAA	GACAATTTTT	TTTAGTAATT	TTGATAAGGT	TGTTTTTTCT	AGTTCAAAAG	5040
AATATATTAG	TTTTCTTATG	TTAGCAGAGG	CAATCATAAA	AAATGGAATA	GAAATAGTTG	5100
TAGTAACTGA	TCATAATACT	ACCAAAGGTA	TTAAAÄAGTT	ACAAATGGCA	GTCTCAATCA	5160
TAATGAAAAA	TTATCCGATT	TATGATATAC	ATCCTCATAT	TTTACATGGA	GTAGAAATTA	5220
GTGCAGCAGA	TAAATTGCAT	ATTGTATGTA	TATATGATTA	TGAACAAGAA	TCATGGGTTA	5280
ATCAATGGTT	AAGTGAAAAT	ATTATAAGTG	AGAAAGATGG	AAGTTATCAA	CATTCACTGA	5340
CTATAATGAA	GGATTTCAAT	AATCAAAAA	TAGTTAACTA	TATTGCTCAT	TTCAATAGTT	5400
ATGACATTTT	GAAAAAAGGT	TCTCACTTAT	CAGGTGCATA	TAAACGAAAA	ATTTTTTCTA	5460
AAGAAAATAC	ACGATTTTGG	AGTTTAATAT	TAACTCGAAA	GAATCTTCGC	AACAACTTGA	5520
TATTCTCTAT	AAAGAAGTTG	GTGTATTAAG	TTTGGGACAA	AAAGTTGTAG	CCATGCTTGA	5580
TTTTTTATTA	GCATATAGTG	ATTATTCTAA	AGACTTCAGA	CCATTGATTA	TTGATCAGCC	5640

				518			
	TGAAGACAAT	CTAGACAATC	GTTATATTTA		GTTCAGCAGT	TTAGAGATGT	5700
•	GAAAGCTCAA	CGTCAAATTA	TTTTAGCAAC	ACATAATGCT	ACAATTGTAA	CAAATTCTAT	5760
(GACAGATCAA	GTTGTTATTA	TGGAGTCAGA	TGGAGTTAAC	GGATGGATTG	AATCACAGGG	5820
	ATATGTTAGT	GAAAAATATA	TAAAAAATCA	TATCATCAAT	CAATTAGAGG	GAGGAAAAGA	5880
,	TTCCTTCAAG	CATAAAATGT	CTATATATGA	GACGGCTTTA	TCAGAGTAGA	GTCAGAAAAA	5940
	GTAGGTTAGA	AATTTAGCCT	ACTTTTTTCT	TTGTCCGACA	GGCATAGTGT	ACATCTGAGG	6000
	TCCAAGTCCT	CTGTGGATAT	TTGCTGCAGA	TGAAACCAAT	AGCGACTCCT	AAGCCTGAAT	6060
	ATCGTGAGGT	AGGGGGGATA	GGAAGGAATT	AGCGAAATCA	AGGTTCTACA	AACAGAATCG	6120
	TGACTTGAAG	CCATATATAG	CGGATGAGGA	ACTCTAAAAT	CCAAATAGGT	GTCGTAACCT	6180
	ATATACGTAA	ATTACGAGAG	TAAACTAGGA	AAGATGTACG	GCTTATTCCG	TGAGCGTTTA	6240
	GGACGTAGTA	CAACGAATCA	TGGGAGTCAG	CTGAACACAT	AGTATTGAAG	AAATTTCTGT	6300
	aatggaaatg	GAGCGAAGAA	GTGAACAATT	AAATGAATAC	CTCTCTAATT	AAATTTGTCA	6360
	ATTCTAATTC	CTGGTATGAA	AAGACAGTGA	CCTGAAAATG	TAAACGATGG	GAGCTGATCA	6420
	TAAATATAGG	ACGGTACATG	CAGTGGTGTT	AGAGATTAGT	CCTTACTTGA	TTTGTGATAA	6480
	CTTCCCCAAA	TTTCTTCTGC	TATACTTTTC	TCAACTTTTA	AAAATCCAAC	TAAGAATTTT	6540
	ACCTGGGGGT	TTGGGGGCGG	AGCACTAAGT	TATCTTATCG	TTAGCTGTCA	AAACTGGTAG	6 6 00
	GTTTTGATAG	GCTGGCGATA	TGATTTTTGG	GATATTGTGG	ACACAATATC	TGAGCTCGCA	6660
	AAGCCTTACA	AGAATGAAAA	TCAGTTGTTG	GAAAAGTGTA	CTGACATTGT	ATGGTAGCTC	6720
	ACATTGTCAG	TACAAGTATT	TTGGAAAGGA	AGTAGCAGTA	TGAAACGAGA	TGTGCGTGAT	6790
	ATTCGGAAAC	AATTTCGTTT	AACAGAAGCA	GAAGAAAAGC	AAATTCTAGC	TTTGATGAGA	6840
	GAGCGGGGAG	AGACTAATTT	CTCTGATTTT	CTTCGTAAAA	GTTTACTTTC	CTCTGATTTA	6900
	CAAAAACAGA	TGGAGACATG	GTTTGCCCTC	TGGCAATCCC	AAAAACTAGA	ACAAATCAGT	6960
	CGTGACGTTC	ATGAAGTTTT	AATCTTGGCA	CAGTCAGAAC	GTCAAGTCAC	CCAAGAGCAT	7020
	GTATCTATTC	TCTTAACGTG	CGTGCAGGAA	TTGATTCAAG	AGGTTGCAAA	CACCATACCC	7080
	CTCAGTAAAG	AATTTCGTGA	GAAGTACATG	AGGTAAGCAC	ATGGAACATC	GTTACCGAAC	7140
	CAATCTCAAG	AAAGTGTTTT	TGTCTGATAG	TGAGTTGAAC	CAACTAAATA	TAAATATCGA	7200
	TCAAAGTGGT	TGTAAATCCT	TTTCTGAATA	TGCGAGACGA	ACTCTACTCG	ATCCTGGTAT	7260
	GAATTTTATO	ACGATTGACA	CAAACGGTTA	CCAAGATTTA	GTGTTTGAGT	TAAAGAGGAT	7320
	TGGCAATAAT	ATCAACCAGA	TTGCTCGAAC	TGTTAATCAA	TCTCAGTTAA	TTTCTGGTGA	7380
	AGAATTGCAG	GAGTTGAAAA	AAGGAATTGG	TGAATTGATA	AAAGAAGTTG	ATAAGGAATT	7440

TAATCTGCAA	GCGCAGAAGC	TAAAGGAGTT	CCATGGTCAT	CACTAAACAC	TTTGCCATTC	7500
ACGGAAAGAG	TTACCGCAGA	AAGCTTATCA	AGTACATTCT	CAATCCTGAG	AAAACCAATA	7560
ATCTTGCCTT	GGTGTCGGAC	TATGGCATGA	AGAATTTTCT	GGACTTTCCT	AGCTATGAGG	7620
AAATGGTGCA	GATGTATCAT	GAAAATTTCA	TCAGCAACGA	TACGCTTTAC	GATTTTCGCC	7680
ACGACAGGAT	GGAAGAAAAT	CAACGAAAAA	TACACGCTCA	CCACATCATT	CAGTCTTTCT	7740
CGCCAGAGGA	TCATATCACT	CCTGAACAAA	TCAATCGGAT	AGGTTATGAG	ACTGTGAAGG	7800
AATTAACTGG	TGGCAAATTT	CGTTTTATCG	TTGCGACCCA	TGTTGATAAA	GACCACCTGC	7860
ACAATCACAT	CATTATCAAT	TCAGTAGATA	GCAATTCTGA	CAAAAAGCTC	AAGTGGGACT	7920
ACAAGGTGGA	GCGAAATCTT	CGCATGATTT	CTGACCGTTT	TTCTAAAATC	GCAGGTGCTA	7980
AAATCATTGA	GAACCGCTAT	TCTCACCAGC	GGTATGAAGT	CTATCGTAAG	ACTAATCACA	8040
AGTATGAACT	CAAGCAGCGA	CTCTATTTTT	TGATGGAACA	TTCTAGGGAC	TTTGAGGATT	8100
TCAAAAAGAA	TGCTCCGCTA	CTACATGTGG	AGATGGATTT	CCGTCACAAG	CATGCCACCT	8160
TTTTTATTAC	GGACTCAACT	ATGAAACAGG	TGGTGCGTGG	CAAGCAACTC	AATCGCAAGC	8220
AGCCTTACAC	AGAAGAATTT	TTTAAGAACT	ACTTTGCCAA	AAGAGAAATA	GAAAGTCTCA	8280
TGGAATTTTT	ATTGCTGAAA	GTTGAGAATA	TGGATGATTT	ACTTCAGAAA	GCAAAACTTT	8340
TTGGACTAAC	TATCAATCCT	AAACAAAAGC	ATGTTTCTTT	TCAATTTGCA	GGAGTGGAGG	8400
TAAAGGAGAC	AGAGCTAGAC	CAGAAAAATC	TTTATGATGT	AGAGTTTTTC	CAAGATTATT	8460
TTAAAAATAG	AAAAGATTGG	CAAGCTCCAG	AAACTGAGGA	TTTCGTTCAA	CTTTATCAAG	8520
AAGAAAAGTT	ATCCAAAGAA	AAAGAACTTC	CAAGCGATGA	GAAGTTCTGG	GAGTCCTATC	9580
AAGAGTTCAA	GAGTAACAGA	GATGCCGTTC	ATGAATTTGA	GGTGGAGTTG	TCACTCAATC	8640
AAATTGAAAA	AGTAGTGGAT	GATGGAATTT	ACGTCAAGGT	CAAGTTTGGT	ATTCGTCAGG	8700
AGGGACTTAT	CTTTGTGCCG	AACATGCAGC	TTGATATGGA	AGAGGATAAG	GTGAAGGTTT	8760
TCATCAGGGA	AACCAGCTCC	TACTATGTCT	ACCACAAAGA	CGCTGCCGAG	AAAAATTGTT	8820
ATATGAAAGG	TCGAACCTTA	ATTAGACAGT	TCAGCTATGA	AAATCAAACC	ATTCCATTAC	8880
GCAGAAAAGC	GACAGTCGAT	ATGATTAAAG	AGAAGATTGC	GGAAGTGGAT	GCTTTGATTG	8940
AACTGGAAGT	AGAAAATCAA	TCTTATGTCA	CGATTAAAGA	TGAGTTAGTG	CATGAACTAG	9000
CAGCGTCTGA	ATTGAGAATC	AATGAGTTGC	AAGAACGAAT	GTCAACCTTG	AATCAAGTAG	9060
CAGAATATCT	ACTGGCTTCA	GTTGAAAGTA	AGCAAGAAAT	GAAATTAAAT	CTTTCAAAAC	9120
TGAATATAAC	TGAGAATATC	AGTGCTAATA	TTGTTGAGAA	AAAATTGAAG	AGCCTGGGGA .	9180

520 ATCAACTGGA ATTGGAAAGG GGCAGGTATG AAAAGATGGT AGT

9223

(2) INFORMATION FOR SEQ ID NO: 60:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6827 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

TCTGCTGGCT	ACCATCATCT	GACTTGGGCA	AGACCAAAGT	CTTAGTTACA	ACTGTATTCT	60
TCTCAGCATT	TTCAATAACT	GGCAATGCCG	ACTGAAGCGT	ATCTTTTTCT	GTTTTTGTAG	120
CTGGTCCAGT	TTCTTTTTTC	TGTCCGCAAC	CAACCAGGAC	AAAAAGGAAA	GCTAGACTAA	180
CAAGAACTAT	TTTTTTCATT	TCTTTCTTCT	TTCTTTTTGA	AATTAAAATA	GAATAAGACT	240
GGGAAGTGCT	CCCAGCCTTG	ATGTTTATAG	AGCTGCACGC	AAACGTGCTT	CTGCATTTTC	300
TACATTACGG	ACAGAGCGTG	GTAGGAAGGC	ACGAATATCG	TCTTCCTTGT	AGCCAACTTG	360
CAGGCGTTTT	TCATCTACAA	GGATTGGGCT	CTTTAAAATT	CTCGGTGTTT	CCATAATCAG	420
ATTGAGAACT	TCATTGACAC	TCAAATCTTC	AATATCCACT	CCAAGGGCTT	TGGCATAGCG	480
ATTTTTAGAC	GAAACGATGC	TGGCTATTCC	GTTATCTGTT	TTGGTTAGAA	TATCCAGTAA	540
TTCTTCTCTC	GTAATTCCTT	CTTTACCAAG	GTTTTGTTCT	TTATAACTTA	ACTGGTGGGC	600
ATTGAGCCAG	GTTTTTGCTT	TTTTACAGCT	AGTACAACTT	GAGACTGTAT	AAATTTTAAT	660
CATGTACCTA	CCCCTTTCGC	TACATGTTAC	TATCAGTTTA	GTCTATTATA	CCATAAAAAA	720
CATCCGACTT	GCGACCTATT	TTTAATTTTT	TTTGACTTTT	TTCGTCATTT	TCGTACTTTT	780
TTCTTGACAA	ACAACTAAAT	GACTATCAAC	TCTTTTGGAG	CTAGGGTCAA	TAATTCACAA	840
CCTGTCTCTG	TAATCAGGAT	ATCATCCTCG	ATACGAACGC	CATATTTGCC	TTCGATATAG	900
ATACCTGGTT	CATCGGTCAA	GGCCATACCT	GTCTTAATAG	TTTCTGTAGA	AGTCTGACTA	960
AAGTAGGGTT	CCTCATGGAT	ATCCAGACCA	ATACCGTGGC	CAATGCCGTG	AGTAAAGTAG	1020
TCACCATAAC	CTGCCTCAAT	GATAATATCA	CGAGGGATTT	TGTCAAAGTC	ACGGAAACCT	1080
AAGCCTGCCT	TAGCTTGGTC	AATCAAGGCT	TGGTTAGCTT	TTAGAACCGT	ATTGTAAATC	1140
TCTGCCTGCT	CATCGCTAAC	ATGCCCTAGA	TAGATAGTCC	GGGTCATATC	ACTGACATAG	1200
TGGTCATAGA	GACAGCCGAA	GTCCATGGTG	ATGGCTTCTC	CCAACTCCAC	TGGTTTGTGC	1250
ATTGGATGGG	CATGGGGTTT	AGAAGAATTG	ATACCGCTAG	CTAGGATCGT	ATCAAAAGAT	1320
AAGCCAGATG	CTCCCAACTC	ACGCATGCGG	AAATCAAGGA	AGTTGGCAAT	CTCAATTTCA	1380

GTTTTTCCTG	GTTTGATAAA	GTCAAGCGCA	TCGCGGAAAG	CTTGGTCTGA	GATAGAACAA	1440
GCCTTGCGAA	TCGCTGCAAT	CTCTGCCTCA	TCCTTAATCA	TACGAAGACC	TTCCACAAAC	1500
TGAGTTTGTG	GAAGCAAGTT	CAAACCTGCA	AAAGCTGCCT	GCATACGGTG	GTAATAAGAC	1560
ACTGAAATCT	CATCTTCAAA	ACCGATACGA	GTCAAGCCCA	TGTCCTTAAC	AATTCCTGCA	1520
ATGACAGCCA	ATTCATCACG	ATCAGCCACA	ATCTCAAAAC	CACTGGTTTC	TTGCTTAGCT	1680
GCGATGATAT	AGCGAGAGTC	TGTCACTAAG	ACCTGACGGT	CACGACTGAT	AAAGACTGTT	1740
CCGTTTGAGC	CCCAAAAACC	AGTCAAATAA	TAGACGTTTT	TAAGATTGTT	GATGATGATA	1800
CCATCTAGTT	CTTTTTCTTG	CATTTTAGCT	AGAAATGCTT	GTACGCGTTT	ATTCATGATG	1860
TAACTTTCCT	TTCAAATAGT	GTCCTGTATA	GCTGGCTTCG	TTGGCAGCTA	CTTCTTCTGG	1920
AGTTCCTGTT	ACGATGATGG	TTCCACCACC	GACACCGCCC	TCAGGTCCCA	AGTCAATGAT	1980
ATGGTCTGCC	GTCTTGATAA	CATCCAGATT	GTGCTCGATG	ACGAGGACTG	TATTGCCATC	2040
GTCTACAAAG	CGAGCTAAAA	CCTTGAGCAG	GCGAGCAATG	TCCTCTGTAT	GAAGCCCTGT	2100
CGTCGGCTCA	TCCAGAATGT	AGAAAGATTT	TCCTGTCGAT	CGTTTGTGGA	GTTCGCTAGC	2160
TAACTTCATA	CGTTGGGCTT	CTCCCCAGA	AAGGGTGGTA	GCTGGCTGTC	CCAAGGTCAC	2220
ATAGCCTAGC	CCTACATCCT	TGATGGTCTG	GAGTTTGCGT	TGAATTTTCG	GAATGTGTTG	2280
GAAAAATTCT	ACCGCATCGT	TGACCGTCAT	ATCCAAGACC	TGCGAAATAT	TCTTTTCCTT	2340
GTAGTGAACT	TCTAGGGTTT	CACTGTTATA	GCGGGTTCCG	TGGCAAACTT	CACAAGCCAC	2400
ATAAACATCT	GGCAAGAAGT	GCATCTCAAT	CTTGATAATC	CCGTCACCTG	AGCAAGCTTC	2460
ACAGCGACCT	CCCTTGACGT	TGAAACTGAA	GCGCCCCTTC	TTGTAGCCTC	GAATCTTGGC	2520
TTCATTTGTC	TGAGCAAAAA	GGTCACGTAT	ATCGTCAAAA	ACTCCTGTAT	AGGTAGCTGG	2580
GTTAGACCTC	GGCGTCCGTC	CGATAGGGCT	CTGGTCAATA	TCAATCAAAC	GGTCGACATG	2640
CTCAATCCCT	GTAATAGTCT	TAAACTTACC	AGGTTTGTCT	GAATTACGGT	TGAGCTTCTG	2700
GGCAATGGCT	TTTTTGAGAA	TGCTGTTGAT	TAGAGTCGAT	TTCCCTGAAC	CCGACACACC	2760
TGTCACTGCG	ATAAATTTTC	CTAGTGGAAA	GCGAGCCGTG	ACATTTTGCA	AGTTGTTCTC	2820
ACGCGCTCCT	ATCACTTCAA	TAAAACGACC	ATTTCCGACA	CGGCGCTCTT	CTGGTACTGG	2880
GATGACACGT	TTGCCTGACA	AGTACTGACC	TGTGATAGAC	TTGCTGTTGC	GAGCCACTTG	2940
CTTAGGTGTA	CCTGCTGCAA	CAATCTCACC	ACCAAAAACA	CCGGCACCAG	GACCAACGTC	3000
AATCAGATAA	TCAGCCTCAC	GCATGGTATC	TTCGTCGTGT	TCCACCACGA	TAAGAGTATT	3060
GCCCAAGTCA	CGCATCTTTT	TCAGACTGGC	AATCAGGCGA	TCATTGTCCC	TCTGGTGAAG	3120

522 ACCGATTGAC GGCTCGTCTA GGATATAGAG GACACCTGAT AGGTTGGAAC CAATCTGGGT 3180 TGCCAAACGA ATGCGCTGAC TTTCCCCACC TGAAAGGGTT CCTGCTGAAC GTGACAGGGT 3240 TAGATAGTTA AGACCCACAT TATTAAGGAA GGTCAAACGA TCCTTGATTT CCTTGAGAAT 3300 GGGACGAGCA ATGA: IGGCTT CATTTTCAGA CAAAGTTAAC TGGCTCACCA AGTCCAAGTG 3360 GTCAGCGATA GACAGGTCTG AGATTTCTCC AATATGTGGC CCTTGCTGGC CGCCCACACG 3420 GACAGACAAG GCCTGGTCAT TGAGACGATA GCCTTGACAG GTTCCGCAGG TCAGCTCATT 3480 CATGTAGAGA CGCATCTGAG TGCGAGTGTA ATCGCTATTG GTTTCATGGT AACGACGTTT 3540 GATATTATTG ATAACTCCCT CAAACGGAAT GTCGATATCG CGCACGCCAC CAAATTCATT 3600 CTCATAGTGG AAATGGAATT CCTTACCATC TGACCCATAG AGAATCAAGT TCTTATCTTC 3660 TTCTGACAGG TCCTCAAAAG GCTTATCCAT AGCCACTCCA AAGACTTTCA TGGCCTGCTC 3720 TAACATGTTT GGATAGTAGT TGGATGAGAT AGGATTCCAA GGTGCTAGCG CTCCCTCACG 3780 TAAGGTTTTG CTAGCATCTG GCACTACCAA ATCAGTATCC ACCTCCAGCT TGATGCCCAA 3840 GCCGTCACAC TCACTACAAG AGCCAAAAGG AGCATTGAAA GAAAAGAGAC GAGGCTCTAA 3900 CTCTGGGACA GTAAAACCAC AAACTGGACA GGCATAATGC TCAGAGAACA ACAACTCCGA 3960 GTCGTCCATG GTGTCGATAA TGACATAACC TTCTGCAATA CGAAGGCCAG CCTCAATGGA 4020 ATCAAAGAGA CGACTACGAA TGCCCTCCTT GATAACAATA CGGTCAACCA CGACATCGAT 4080 ATTGTGTTGC TTGCTCTTAG ACAACTCTGG CACTTCGGTC ACATCATAGA CTTCCCCATC 4140 CACACGGACA CGAACATACC CGTCTTTCTG AACCTTCTCG ATAACACTCT TATGTTGGCC 4200 TTTTTTTTTG CGGATGACAG GAGCCAAGAT CTGCAAGCGC TGGCGTTCAG GTAACTCCAA 4260 AACCTTATCA ACGATTTGCT CCACAGAAGA AGCATTGATA GCTCCATGTC CGTTGATACA 4320 GTAAGGCGTC CCCACACGTG CGTAGAGGAG ACGCAGATAG TCATTGATTT CAGTCGTCGT 4380 TCCCACCGTC GAGCGAGGAT TTTTACTAGT CGTTTTCTGG TCGATGGAAA TAGCTGGGCT 4440 GAGACCATCA ATGGCATCTA CATCTGGTTT TTCCATATTT CCCAAGAACT GACGAGCGTA 4500 GGCGGACAAA CTCTCTACAT AGCGACGTTG TCCCTCCGCA TAGAGAGTAT CAAAAGCCAG 4560 ACTGGACTTC CCTGAACCTG ACAAGCCAGT CACGACAACC AACTTGTCTC GCGGAATCTC 4620 CACATCAATA TTTTTTAAAT TATGGGCACG CGCCCCATGA ATGACAATTT TATCTTGCAT 4680 CTTTGTTCTT TCTAGTCCAT TATTGCTTAC CATTATACCA AAAAAAGTGA GATTCTATTA 4740 CCCAAAAGGC CGATTTTGTA GTATAATAGT ACAGTGTGAA AAAATCTGAA AAATGAGAAA 4800 GGATAAGGGA TATGAAACAA GTTTTTCTCT CTACAACAAC TGAATTTAAA GAGATCGATA 4860 COCTTGAACC GGGTACTTGG ATCAATCTCG TCAATCCGAC TCAAAATGAA TCACTCGAAA 4920

TCGCCAACAC	CTTCGATATT	GATATTGCTG	ACCTTCGAGC	ACCGCTCGAT	GCGGAAGAAA	4980
TGTCTCGTAT	TACCATTGAA	GACGAGTATA	CCCTGATTAT	CGTAGACGTG	CCGGTCACGG	5040
AGGAAAGAAA	TAACCGCACC	TACTACGTAA	CCATCCCGCT	TGGTATTATC	ATCACTGAGG	5100
AAACCATTAT	CACTACGTGT	TTGGAACCAC	TACCTGTCCT	TGATGTCTTT	ATCAACCGTC	5160
GATTGCGTAA	TTTCTATACC	TTCATGCGTT	CACGTTTTAT	CTTTCAAATT	CTTTATCGCA	5220
ATGCAGAGCT	TTACCTAACA	GCCCTTCGTT	CAATCGACCG	CAAGAGTGAA	CAAATCGAAA	5280
GTCAACTGCA	TCAATCAACT	CGTAATGAAG	AATTGATTGA	GCTCATGGAA	TTGGAAAAA	5340
CTATCGTCTA	TTTCAAGGCC	TCCCTCAAAA	CAAATGAGCG	CGTGATTAAG	AAATTGACCA	5400
GTTCAACCAG	CAATATCAAG	AAATACCTTG	AGGACGAAGA	CCTGCTTGAA	GACACCCTGA	5460
TTGAAACCCA	ACAGGCCATC	GAGATGGCAG	ATATTTATGG	AAACGTCTTG	CATTCTATGA	5520
CAGAGACCTT	TGCCTCTATC	ATTTCTAACA	ACCAGAACAA	CATCATGAAA	ACCTTGGCCC	5580
TTGTGACCAT	CGTCATGTCC	ATCCCAACCA	TGGTCTTTTC	TGCCTACGGG	ATGAACTTTA	5640
AGGATAATGA	AATCCCCCTA	AACGGAGAGC	CAAATGCCTT	CTGGTTAATC	GTCTTTATCG	5700
CCTTTGCTAT	GAGTGTCTCG	CTCACTCTCT	ATCTCATCCA	TAAAAAATGG	TTCTAAGAGG	5760
AGTTCCTATG	TCTCAAATTG	ATCTACAAAA	ATEAACTAAG	AAAAACCAAG	AGTTTGTCCA	5820
CATTGCTACC	CAACAATTCA	TCAAAGATGG	GAAAACAGAC	GCTGAAATCC	AGACTATTTT	5880
TGAGGAAGTC	ATTCCCCAAA	TCCTTGAGGA	GCAATCTAAA	GGTACAACTG	CCCGTTCCCT	5940
ATACGGCGCA	CCAACTCATT	GGGCTCATAG	CTTCACTGTC	AAAGAGCAGT	ACGAAAAAGA	6000
GCATCCAAAA	GAAAATGATG	ACCCAAAACT	GATGATTATG	GACTCAGCTC	TTTTCATCAC	6060
TAGCCTCTTT	GCCCTTGTCA	GCGCCCTCAC	AACCTTCTTT	GCGGCAGACC	AAGCTTTCGG	6120
CTATGGATTG	ATTACTCTTC	TATTAGTTGG	ACTGGTTGGT	GGATTTGCCT	TCTACTTGAT	6180
GTACTACTTT	GTTTACCAAT	ACTATGGACC	AGATATGGAT	CGCAGTCAAC	GTCCACCTTT	6240
CTGGAAATCT	GTACTAGTTA	TCCTAGCTTC	TATGTTCCTT	TGGTTGCTTG	TCTTCTTTGC	6300
AACAAGCTTC	CTACCAGCTA	GCCTTAACCC	AGTACTGGAT	CCATTGCCAC	TAGCTATTAT	6360
TGGAGCAGCC	CTCCTAGCCC	TTCGCTTCTA	TCTCAAGAAA	CGCTTGAATA	TCCGTAGTGC	6420
AAGTGCAGGA	CCAACACGCT	ATCAAGAATA	AGAAAACGAT	AAAAGCAACT	GCAGGTGCGG	6480
TTGCTTTTTC	ACTTACTTTT	TTGAGTTATA	TTCAATGAAA	ATCAAAGAGC	AAACTAGGAA	6540
GCTAGCTGCA	GGTTGCTCAA	AGCACAGCTT	TGAGGTTGCA	GATAAAACTG	ACGTGGTTTG	6600
AAGAGATTTT	CGAAGAGTAT	TAAAAGTATT	CTTCTGAAAT	CCCACATAGC	TTTCTCTTAT	6660

524 ATTTTGTGAT AAAATAGGCT CAATCTATTT CTAGGAGGAT	GAGATATGGT TTCTACTATT	6720
GGTATTGTTA GTTTATCTAG TGGCATTATC GGAGAGGATT	TTGTCAAACA CGAAGTGGAC	6780
TTGGGTATCC AACGTCTCAA GGATCTGGGA CTCAATCCCA	тсттттт	6827
(2) INFORMATION FOR SEQ ID NO: 61:	•	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11864 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

CTGGCTAGTT	GCATAGAGCA	AAGTTGCTTC	TTCATCAACA	AAACCGTTCA	TTTCAAAATA	60
GGAAAGCAGC	TCATCAGGAC	TCTCCAAACG	AATCCCTTTG	TAATCCAGCT	CAACTGCCAC	120
CTCTTTCAAG	GCTGCAAGAA	GAAGTGTTCC	CAGGCCCTGT	CTCTGATGGT	CAAACTCGAT	180
GACTAAAGAA	TGTACTTTTA	GACATTGCGG	ATTGTCTGAC	TGGGGACTTG	АТААААТАТА	240
GCCTAAAAGT	TGATTTTCAT	CCCTAGCTAG	AAGAAAGGTA	TCCGCACACT	TACGGATACT	300
TTCTTCTAAA	ATATGGGAAA	GTTGCTGCTT	TTCAGCTGGA	AAAGACGAGG	TCTGAAGTGC	360
CCCTATCTCA	GGCAAATCAG	ACTTGCTTGC	CTGAATGATC	TTAATTGGAA	TTTCCATGGG	420
AACATCCTAT	TGAACATTGC	TTGTCAAGTT	AGACAAGAGA	CGCTCAAATG	AGTATTCATA	480
GGTTTGGATG	TCTCCTGCTC	CCATAAAGAC	GTAAACAGCA	TTGTCATGGT	CTAGGAGTGG	540
AGAAACATTT	TCAACAGTAA	TCACTTGGTG	TTTTTTGTTG	ATTTTGTTGG	CTAGGTCTTC	600
TACCTTAACG	TCACCATGAT	CTACTTCACG	AGCCGAGCCA	TAAATTTGCG	CTAGATAAAC	660
AGCATCTGCT	TGGTTTAAAG	CATCGGCAAA	GTCGTCCAAC	AAGGCAATGG	TTCTTGTAAA	720
GGTATGCGGT	TGAAAGACTG	CTACAATTTC	CTTGCTTGGG	TATTTCTGAC	GAGCCGCATC	780
CAAGGTCGCA	ATAATTTCTG	TTGGATGGTG	GGCAAAGTCA	TCGATAATCA	CTGTATCATT	840
GACAATTTTC	TCAGTGAAAC	GACGTTTAAC	ACCGGCAAAT	GTTTTCAAGT	GCTCACGCAC	900
CAAGTTCAAA	TCAAATCCTC	CTGTGTAAAC	AAGACCAATA	ACGGCTGTCG	CATTCATGAT	960
ATTGTGACGA	CCAAAGGTTC	GAATGTGGAA	TTGCCCCAAG	TTTTGTCCAC	GGAAATGAAC	1020
GGTGAAGGTT	GAACCAGTTA	TTGAACGAAG	AAGATCACTA	GCTACAAAGT	CATTGCCTTC	1080
AGCTTCAAAA	A CCATAATAA!	AAATTGGTG	ATCAGACGTA	ATCTTACGCA	ATTCAGCATC	1140
TTCACCATAC	ACAAAAAGAG	CCTTGGTGA	r TTGTTTGGC	TAGTCGTTA	AGGCATTAAA	1200
AACATCCTC	G AGACTTGTG	AATAATCTG	G ATGGTCAAAC	TCAATGTTG	TGATAATAGA	1260

GTATTCTGGG	TGGTAAGGCA	TGAAGTGACG	CTCATATTCG	TCAGATTCAA	AGACAAAATA	132
TTTGGCATTG	GCCGAACCAC	GACCTGTCCC	ATCTCCAATC	AAGAAGCTGG	TATCTGTAAT	1380
GTGAGACAAG	ACATGAGACA	ACATACCTGT	CGTTGAAGTT	TTTCCATGTG	CTCCTGCTAC	1440
TCCCATGCTA	ACAAAGTCAC	GCATAAAGCT	ACCTAGAAAC	TCATGGTAAC	GTTTGTAGCT	1500
GATACCATTT	TGGTCCGCAT	AGGCAATTTC	GACGTTGTTA	TCTGGACGAA	AGGCATTTCC	1560
AGCGATAATT	TCCATATCAC	CGTCTAGATT	тттттсатса	AAAGGAAGAA	TGGTAATTCC	1620
TGCCTGCTCA	AGACCGCGTT	GGGTAAAGTA	GTACTTTTCA	ACATCTGATC	CCTGAACCTT	1680
GTGCCCCATC	TGGTGCAACA	TCAAGGCCAA	GGCACTCATC	CCTGATCCCT	TAATTCCGAT	1740
AAAATGATAT	GTCTTTGACA	TGTTTTCTCC	CCTATTCTGT	CATTCTGGTC	AGATTCAACT	1800
CTTGGGCAAC	CCGACGTTCT	TGTTCTGTTT	GTTTACTTTT	TTTATTGTAG	ATTTGGCTCT	1860
TCTTTAGAAA	ATCATAATTG	TTTTTCTTTG	GAGCAGGTGC	TGACACTTCT	TCATTCTTGG	1920
TAGGGATAGA	ATGAACTTCT	TCCGCCAAGA	TATAATGAGA	CTGGGTCAAT	TTTTGGCTAT	1980
ATTTGACAAA	TTCACCAGGA	TTTTCCTTTT	GGAAAGGAGC	TGTCGGTTGA	TTGCCCTGTC	2040
TAACTAGACT	GGGCTGAGAA	TGACGTCTCG	CAAGGCTGAA	ATCCTGAGTT	AGGTAGTTAG	2100
CAGAGCGTTT	CTTTTTCAAG	TCCGCACGCG	CTTCTTCACG	CGCCACCTCC	GCATAGCTCT	2160
TTCCTTCTTT	TTTAACCCCT	AAAGGAGCCT	TTTTAGGTTT	TTCGACTTGC	TTTTCAATCG	2220
GTTTTACTGG	TTTTTCTTCA	GCAATAGGAG	CCCATTCTAA	ATAATTTTTA	TCTCGATACT	2280
CACCCTTGAT	ATTACTGATC	AGATCAGACT	CATCATAGAG	ATTCATGACT	GGCATTTCAG	2340
TCAACATGAC	CTCGTCATCT	GACACCAATG	GAAATCGTTC	TTGTTTCATT	TTCTATTTCC	2400
TTTCAACACT	TCATTATAGC	GTATTGTCTT	GATTTTTCAA	GTGCTGGCTT	CAGAAATTCC	2460
CAAAATTTCT	CTAATTTCTG	CTAGGGTCAG	ACTACCACGT	GACTCTGTGC	CGTCCAATAC	2520
TTGTGACACC	AGATGTTTCT	TTTGTTCTTG	GAGTTCCTGA	ATTTTTTTTT	CAATGGTTCC	2580
CTTGGTCACC	AAGCGATAGA	CCTCAACCGT	TTCTTCCTGA	CCCATCCGAT	GGGCACGGCC	2640
AATGGCTTGC	GCTTCCACCG	CAGGATTCCA	CCAAAGGTCA	ACCAAGATCA	CTGTATCTGC	2700
ACCTGTCAGG	TTCAGACCGA	CCCCACCAGC	CTTGAGGGAA	ATCAGAAAGG	CATCTCTTTC	2760
CCTTGGTTA	AAGGCCTTGG	TCATGTCTTG	TCTTTCCTTG	GCTGGGGTTG	AACCCGTAAT	2820
PTTAAAGGAA	GTCAGGCCCA	AGTCTGGCAG	TTCTTGTTCA	ATTTTTTCCA	ACATTCCCTT	2880
GAACTGAGAG	AAAATCAAGA	CACGGTGTCC	GCCGTCTGCC	ACCTGTACCA	GTAGGTCTCG	2940
GAGACTATCT	AGTTTGCCGC	TGGCTCCCTG	ATAATCTTCC	ATAAACAGGG	CAGGAGTGTC	3000

526 ACATATTIGA CGCAAGCGCA TCAAACCAGA TAAAATTTCC ACACGACTTC GCTGAAATTC 3060 CTGTTCTGAC ACTTGAGCCA GATGGTCTCG CATCTGTTGT AACTGGGCAA GGTAAATAGC 3120 CTTTTGCTGG TCTTCCAGTT CATTTTATA AACCACCTCA ATCAAGTCTG GCAATTCAGT 3180 CAGAACTTCT TCTTTCTTGC GTCGCATCAC GAAAGGCTTG ATAAACTGAG CCACTCGCTC 3240 TGCTGGCAAT TTCATAAATT CTTTCTTGCT TGGCAAAAGT CCAGGCATGA CGATTTGGAA 3300 AATAGACCAC AACTCACCCA GATGGTTTTC AATCGGAGTT CCTGACAAGG CAAAGACCGA 3360 CGGCACCACA AATTGTCTCA AGGTCTGGGC AATCTTGGTC TGGGCATTTT TCATGACCTG 3420 AGCCTCATCT AAGAAAAGGA AGTCAAAGGC CATCCCTTGA TAAAACTCAC TGTCCTGACG 3480 GAAGGTGGCA TAGCTAGTCA CATAGATTTG ATGGCTCTCG GCAAGAATCT CCTCACGACT 3540 TGCTTTCAAA CCATGAACAA CAGTCACATC CAACTGTGGA GCAAATTTCT GAAACTCATC 3600 TGCCCAGTTG TAAATCAAAC CCGACGGAGC GAGAATCAAA ACCCGACTTT CTTTTGTCAC 3660 TTGACTAGTC AAAAAAGCAA TGGTCTGAAG GGTTTTCCCA AGTCCCATAT CATCAGCCAA 3720 AATCCCACCA AAACCATAAT GATGGAGCAT CTGCAACCAG CCAATTCCCT TTTCCTGATA 3780 ATCTCGCAAG TCAGCCTTGA CCTGAGTTGC TTGCAAAGGA AAGTCCTCTG GATGCGTCAA 3840 ATCCTGGGCC AGATTCTGGA ATTCTTGTGA AAAAGAAACA CGGTCTCGCC CTTCAAAGAG 3900 ATGAGCTAAA CTGTAGGCCA AGGATTTCCG AGCCTGCAAG GTCCCATCTT TTAATTCAAA 3960 TTGCCCCAGT TCCTGTAGAT TTTGGCGAAT TTTCTTGGTT TCTTCATCGA AAAAGTAAAC 4020 TTGATTAGAC GAATCAATAT AAAAATCCTG ATTGGCAACC AAGGCCTGCA TGGCTTGGTC 4080 GATTTCCTCC TGGACAATAT TTTGAAAATC AAACTGGATT TCCAAGAGAC CTCCCTTGGA 4140 GGCAATCTGC ACCTGAGGAC TCGCTAGGCT ATAAAGCTCT TCTAGTTTAT CTGATAGGTC 4200 AACATGCCCG AGTTTTTCAA AGACTGGAAT GATATCATGA AAAAAATGAT AGACAGACTC 4260 CGCTTTTAAG GCCTGACGCC AAGATTGAAA ATCGGCCTCA AAGCCCGCAG CCAAACAGAC 4320 TTGGAAAATT CTTTCTTCTA AGTCTGCGTC ACTTGAAAAG GGTAATTCTT CTAGCTCTTG 4380 TOGGOTAGAT ACCTGTCTAT TTCCATAATC AAACTGAATT TCTAAACGAA TCCGATTATC 4440 TTCTTCCTG TCAAAGTAAA AAGAGGGCGC AAAAGTTTTG ATTTGTAGAC GTTCTGGAGC 4500 TGAAACGGTG CCCATCTGGA TAAAAAGAGT CAGACAGGAG GCCAATTTGT CTCGATCACT 4560 GCTATCAAAT TGCAGGTATT TCTTTCCTTG TTGACCCACA GGTAACGCTT TAATTTCCTT 4620 GAGAAGACGC ATCTGCTGGT CTGTTAAAAA ATAAACCTGA CCTTTATGGA AAAGTACTGC 4680 TCCCTGATAA AAGACATTGA CCCTAGGACT CTCACTGATT TCCATTTCAA AATAATCCGA 4740 GTATTCTGTT ACTGTAAAGG CAAATAGATT GGCATCAGCA TGCATATCCT GAAAAAGCAG 4800

GGTTTGGTAG	CTATCCACTT	GATGGTCAAA	TTGAAAATGG	GGCAAGGCCA	TCAGTAAATT	4860
CACACCCTGC	TCAAAAAAGG	TCAGAGGGAA	AAAGAGGTGC	CGACCTTGGT	TTTGGAAAAA	4920
GAGGTCTGGA	ACCAGCCCTT	CCTCCGTTAG	TCCGTGCAAG	AAAGTCAAAA	GTTC:TGGCT	4980
GGCATCATCA	AAGGCTTCCC	AAGAAAGAGA	CTCCTCATAA	ATCTTGCCAA	TCATATACGA	5040
CTTTCTCTGC	TCGACAATCC	TTAAAAAAAG	TGGAATATCC	CGAATGACAT	AGTATTTTTG	5100
GCTATTGATT	TGGCCGATTC	TCAGAGTCCA	CAAGATATGA	TTGGTTCCTG	CTTCCACCTG	5160
ACCCACAGCT	GATAACTCAT	AGGCGCATTC	TGATTTTGGA	GATAAAATTC	GATCCAAAAA	5220
CTTGCCACCC	AAGGTCACCT	TGGTTTCAAC	AGCCTCTTTT	TCTTCATGAC	CTTCTTCCAG	5280
ACTCCACAAG	ATTTCCTGAC	CACGCTCATC	ATTTTTCAGA	AAATGCTCTA	GCGCTGCCAA	5340
ATGCACACAG	TAGCCCCTCT	TTTGAAAAAA	ATCACAGGCA	CAAAAAACCA	AATCATCCTC	5400
TAAACTATAG	CGCAGTTCTT	CTTCTGCAAC	GCGAGCGTAG	AGCCGATTGT	TCTTTTCCTT	5460
GATGATATCA	ACCTTACCAG	TTTCATAAAG	GGCAACACCT	TCGATACGAA	TTTTCCCCGG	5520
AATCAATTTA	GCCATATTTT	CACCTTTACC	TTATCTTTTT	ATTATACCAT	ATTTTCGCCT	5580
ATGAAAATAG	CCTTCTAGGA	AGACTTTTCT	CCTAGAAGGC	TGGATTTTTA	ACGTTTGGCA	5640
AAAGTAGCCA	CAATCCGCTG	ACAGACTTCT	TGCAACAGAG	ATTTGGGCAT	AGCTATATTG	5700
ATGCGGGCAT	GGAGACTTCC	TTCCTCTCCA	AAATCCAAAC	CACGGTTGAG	GATAACCTTG .	5760
GCTTCATTTC	TCAACAACTC	TTGCAATGTT	TCATCAGTCA	GGTCATAAGC	TGAAAAGTCA	5820
AGCCAAATCA	AGTAGGTACC	TTGCGGTTTC	ATGACCTTGA	TTTTAGTCTC	TTTTCCAAAT	5886
AGATCCATCA	CATAATTGAT	GTGGTCTTCA	AAGACTTGCT	TGAGTTCCTC	TAGCCAATCT	5940
TTACCGTATC	GATAGGCAGC	TTCTGTCGCC	AAATAACCCA	AGCCTGAAAT	TTCATGCTGA	6000
TTATTGGCCA	ACAGGCGTTT	CTGGAAAGCC	AGTCTCAACT	TAGGATTTTC	AATGACTGCA	6060
TAGGAATTTT	TTGTTCCAGC	AATATTAAAT	GTTTTAGTGG	CACTGCTCAA	GACGATAGCA	6120
AAATTTTTGA	AGGCAGGATT	GATGGTATTG	AAAGACTGGT	GTTTGTGACC	AAAGAGGGTC	6180
AAATCTTGGT	GAATCTCATC	CGAAACTAAC	AAAACACCGT	GTTTTTGGCA	GAGTTGGCCA	6240
ATCTTCTCCA	ACACTTCTTT	TTCCCAAACA	CGTCCACCAG	GATTGTGAGG	GTTGCAAAGA	6300
ACATAGAGTT	TAACCTCCTC	TTCCACCAAA	TCCTTTTCAA	GTTGGTCAAA	GTCAATCTCA	6360
AACAGACTAT	CCTTTTCCAC	TAAGGAATTA	GTAATCAATC	TACGATTATT	CAACTTGACA	642
CTGCGAGCAA	AGGGTGGGTA	GACAGGCGTG	TTAATTAAAA	CCGCCTCGCC	TTCTTTTGTA	648
AAGGTTTGAA	TACCTCTTGA	GATGGCTGGT	ACCACACCCT	CGATAAAGAC	AAGAGCCTCT	654

			528			
TTGTCAAAGT	TGTAACCGTA	TTGTGTAGCT	TCCCACTTTT	GAACTTCCTT	AATTAAGTCT	6600
TCACTGGCAT	AGGTATAACC	ATAAACCAGT	TGGTCTGCGT	AAGTTTGCAC	GGCTTGGCGG	6660
ATTTCAGGCA	AGACCACAAA	GTCCATATCC	GCTATCCAAG	CTGGTAGAAC	TTCACTATCC	6720
GTTTCTGTTT	CTTTCCATTT	ATAGGTATGG	TGCCCTAAAC	GGTTGGGCAG	GCTTGTAAAA	6780
TCATATTTTC	CCATCTTTGT	CTTATCCTTC	TATGGCTTGG	CGCAAATCTG	CAATCAAATC	6840
TCTAGCATCC	TCAATCCCAA	TAGACAAACG	CAAGAGGTCA	TCTGTCAAAC	CATAAGAATG	6900
GCGTACCTCT	GCTGGAATAT	CAGCATGAGT	TTGAGTCGTT	GGATAAGTAA	TAAGACTTTC	6960
CACTCCACCC	AAACTTTCCG	CAAAAGAGAA	GACCTTGAGA	CTGTTCAAAA	TATGAGGAAT	7020
GCGTGTTTCA	TCGGCTACTT	TAAAGGAAAT	CATGCCTCCA	CGACCAGTGT	AGAGAACTTC	7080
CTTAACTGCT	GGAGAATCCT	TCAAAAAGGC	AACCACTTCT	TGGGCGTTAG	CTGTTGAGCG	7140
CTCCATACGA	AGAGACAAGG	TCTTGAGACC	ACGAAGCAAC	TGGTAGCTGT	CAAATGGAGA	7200
CAAGACTGCC	CCTGTTGTAT	TAAGATTGTA	AAAAAGCTTC	TCGTATAGTT	CTAAACTATT	7260
GGTCACAACC	ACTCCAGCCA	AGACATCATT	GTGGCCTGCT	AGATACTTGG	TTGCTGAATG	7320
GAGAACGATA	TCTGCTCCAT	CTTCAATCGG	ACGTTGGTAG	ATAGGGCTAT	AGAAGGTATT	7380
GTCCACCACC	ACTTTGGCAC	CCTTAGCATG	AGCCAATTTT	GCTAGTTTTT	CGATATCAAA	7440
TTCCAACATC	AAGGGATTGG	TTGGGGTTTC	GATATAGAGA	ACATCCACAT	CCTTTTCTAA	7500
CTCGGCAATC	AACTCTTCTT	CTGTATTGGC	ATAGGTAAAA	TGGAAATGAC	CTTCCTGCTC	7560
CACTTGGTTA	AACCAGCGAA	AAGAACCACC	GTAAAGATCA	CGCACTGCCA	AGACCTTACT	7620
TCCTACTGGA	AAGACGCTAA	AGGCCAGTAC	AATAGCTGAC	ATCCCTGAGC	TAGTCGCTAG	7680
GGCATAGTCŤ	GCTGACTCAA	TAGCCGCCAA	GACTTCCTCA	GCCTTACTAC	GAGTTGGATT	7740
TTTAGTGCGC	GTATAGTCAA	ACCCAGTAGA	TCGACCAAAC	TCTGGATGCT	GATAGGTCGT	7300
TGAAAAATGA	AGTGGTGTCA	CCAAAGCACC	TGTTGCCTCA	TCAGACTTGA	TCCCTGCTTG	7860
TGCTAAAATT	GTGTTAATGT	GTAATTCCTT	GCTCATACAA	TTCCTCCAAA	TCTATAGTAA	7920
CTATTGTACC	ACTTATTTTG	TATCCTTCGT	TTTCTTGTTT	TCAAGAGCTA	GTTATAGTTT	7986
CAAACTATAT	AAAAAGGGAG	TTTTTCCTGC	TCCCTTTAAT	AGACTATAAA	ATGGTGAATC	8040
TCAAAAGACA	CCTTCACTCT	ATCATTTGCT	CCTGCACAAA	ACGAGCATAA	CGCTCATGAT	8100
TTTCCAGTAG	TTCCTTATGA	GTTCCTGAGC	CAGTGATTTT	ССССТССТСТ	AAGAAGAAAA	8160
TACAATCCAC	ATCTTTTACC	GTTGACAAAC	GATGCGCTAT	AATCACAACC	GTCTTCTCCT	8220
TTAGTACAGA	ATAGAGGCTA	CTGATAATCG	CATACTCAGA	ATCCGCATCA	AGATTAGCAG	828
TGGCTTCATC	AAATATAAGA	ATTTCAGCAT	CTTTTAAGTA	GGCTCTAGCT	ATTTGAAGTC	834

TTTCGTTCGC	CCCCCTGACA	AGAGTCGTCC	GCGTTCACCA	ACTTCAGTAT	CTAGTCCCTC	8400
TTTCATGGAG	CGAATCTCAT	CACCTAGTGA	TACTAAGTCT	AGCACTTTCA	TCAATTCATC	8460
ATCAGTTACT	AAGCGATTCA	AACCGAGACA	AAGATTGTCA	CGAATACTGC	CAGATAAGAC	8520
TGCATTATTT	TGTGAAACCC	AAGCGATTTT	ACTTCTCCAT	TCTTTTAAGT	TAAAATCATA	8580
TATACTTGAT	TGCTCCATTA	GAATATCTCC	TGAAAGCGGT	TTATAAAACC	GCTCTAACAA	8640
ACGCACAATC	GTTGATTTTC	CTGATCCAGA	TGGTCCAACA	AAAGCAATTT	TTTGCCCCTT	8700
GAAAATTGÄA	CAAGTAATAT	CCTTTAAGAC	AGGTCGATTT	TCATCATAAC	CAAAATAGAC	8760
ATGGTTAAAA	TTCAACCCTC	GTCCTGATAC	CGATTTTCCT	CCCTCAAATT	TTTCTTTAGG	8820
AACTGCAAGC	AAGTTCTCCA	GTGCAACTGA	AGATCCCTTG	CTCCTAGAAT	AAACAGTTAC	8880
AAAATTAGCT	ATATTACTAA	TAGGATTAAG	TAATTGAAAG	AGGTAAATCA	AAAACGAAAC	8940
CAAGGTTCCC	ACAGATATAT	ATCCTGCGCT	GACCCGATAA	CCCCATAGG	TTAGCATCAC	9000
AGCTATAGTO	GCAAAGATAA	ATAAGAGAGC	AAACGGGGTC	TCAAAAGAAG	TAACCCTATC	9060
TGATTTCAGT	GAATTGTTTT	GTACCCTTTC	AATACAATTA	TCCAAAACAT	CCTGTACACT	9120
TTTCTCTGCT	TGGTTAGTCT	TAATTAATTC	ATGTTCTTGA	ATCTTTTCAG	TCAATTGCCC	9180
TGTTAAATTT	CCTCCTGTAA	ACGACGACTA	TACTTTTCAC	TGATATTGGA	AAGGGGCAAG	9240
ATAATAAACA	TCATACAAGG	AAGAGTGATG	AATAAAAGTA	GAGAAAGATT	CCAATCAAGA	9300
CTAAATAAGA	CTACAATGGA	ACCAAGTACC	АТААСТАААС	TCAGAATAAT	ATTTGGGAAA	9360
GTCGTAATTA	AAAACTCACG	AATGACACTC	GTGTCATTGA	CAATGGCAGA	AGTCAACTCC	9420
CCACTTTGG	TCTTATCAAA	GAAGGATTTC	TCTACATAAA	TCAACCCCTC	TATCACTTTT	9480
TTCCTGATT	TTGCTATCTT	TTTTTCACCC	GATTGACTAA	ACAGATAGTA	ACCAATAGAA	9540
GAAAACAAGG	CTTGACCAAT	AAAAATCAAA	AACGATTGAA	ATACTTTGGA	GCCTATATTT	9600
TCAATAGAAG	C TCCCATCTAT	TAAATCCTTT	AAGATAAGGG	GAAGCAACAA	AGCAAGTAGA	9660
CTAGACAGA	A CAAGTAAGAA	ACTCCCATA	ATCACCTTAG	TATCTACTCT	TTAATAATTT	9720
AATTTCATA	а атастсстта	TAATATTTC	ACGGATAAAG	TCGGGAATA	CTCAATTTGA	9780
GGATAAAAT	C TAATAAATCT	TCCTATAACA	AAACGCATAA	CATCTAGGAT	TTTATATACC	9840
TGATATTAT	G CGTTTTTAAC	CACAAAGACT	TCTTACACA4	ACTTATCTAG	AATTAGATTT	9900
TATTTGACA'	T GTTTTGCCA	TTCTTCTTG	GCTTTTTAT	TGGATTCTT	TTTTTTTTC	9960
AACCATTTT	T CTCTGGCTT	TGCATATTC	TCTGTTGTG	CAATCTTATO	TTGTACTTTG	10020
					AGCAAATGGT	10080

			530			
ACGGTTCTTC	TCAATGATGG	TGTTCCCCCA	CGCGAAACAC	TTGGAAGAAC	TAAAGAACTA	10146
TCAATCAACC	AAGCTTGAAT	ATCAGCATAT	TTCTCATAAC	GTTTGGCCGG	ATCTTGCTCT	10200
TTATTAGCTT	CTTCCAACAT	TTGAGTATAG	ACATCCAGTC	CAACTGCCTT	AGCCTTGTCA	10260
TTGGCCTCAC	CAGGCTCTAG	TCCAAGATTT	TGCAGAAATC	CTCCACTATT	AGTATTAAAA	10326
ATATCGAGAT	AGGTTGACGG	GTCTTGATAA	TCAGGTCCCC	AACCGCCATG	ATATAAATCA	10380
TAATCTTTCT	GAGCAGCTGT	TTGAGCAAAG	TAGCCTGAAC	TGTCAAACTC	ATCTGATGTT	10440
AATTGCTGAA	TGTCAATCAC	TACATTATCA	GAACCTAAAA	CAGATTCAAT	TGATTGTTTG	10500
ATAGAACTAA	CTCCTTGTAT	GCCTACTTTA	TCTGTTACTT	CCACAGTCTT	ATCCAAGTGG	10560
ATTGGGAATT	GAACACCCTT	TGCTTCGAGT	TCTTTCTTAG	CTTCCGCAAA	CTTAGCCTTG	10620
GCTTTCTCAG	GATTGTAGTA	AGGGTCTTGA	CCATCCGCAA	AGTTGATACC	TTGCCATTCC	10680
TTACCATAGT	TGACCATCTT	AGAGGCTACA	ACTTCACCAA	AGTCTTTTCC	CTTGATACTG	10740
ACAAAGTTTG	GAGGAACCAC	TAGGTTACGC	AAAATCTTTG	TTGCACCTTC	TTTCCCTTCA	10800
GACTGAGCCC	CATAAGATGT	TCTGTCAAAA	GCAAAATTGA	TAGCCTGACG	GAAGTTTTTA	10860
TTGAGAACTG	CTTCCTGAGT	CGATTTCTTT	TCAATGTCAC	TTGTTTTAGA	AGTATAATTG	10920
TAAGACTTCC	TATCTAGGTT	AAAATTAAAG	AAATATGAAG	TTGAATTTTG	CATACTATAG	10980
ATGATATTGT	TTTTGTATTT	TTCTTTAATC	CCTTCATAGC	TGGAGCTGTT	AGGAAAAAGA	11040
CGAGCCGTAG	TATAAGCACC	AGCTGTAAAA	TTACGTTCCA	GTGATTCTTG	GTCGCTACCA	11100
TCATAGTAGG	TCAATTTCAC	ATCGTCTACA	AAGACATTCT	TAGCATCCCA	GTAATTAGGG	11160
TTTTTCTTAT	ATTCAATAGC	AGATTTTGAG	ACAAGTGCTT	TCATCAAGAA	AGGTCCATTG	11220
TACAAAATAC	TAGATGGATC	CGCCTTCCCA	AAATCATCCC	CTTTTGATTT	CAGGAAATCT	11280
GCATTAACAG	GAAAAAGTAT	CGTTGCAAGT	GTTTTTGAAT	TCCAGTAAAG	TTCTGGTTTA	11340
ACCAAAGTAT	ATTGAACCGT	TTGGTCATCA	AGTGCCTTGA	CACCGACAGT	TGAAAAGTCG	1140
CTTGTTTTAC	CAGTGATATA	GTCATCCAAA	CCAGCAACAG	AGTCCTGCAC	TAGATACAAG	11460
GCTTCTGATT	TTTTATCAGC	TGCATATTGC	AAACCTGTCA	CAAAATCCTG	GGCAGTTACA	11526
GGCGCATATT	сттетесете	AGAAGTAAAC	CACTTGGCAT	CCTTACGAAG	TTTGTAGGTA	1158
TAGGTCAAAC	CGTCCTGAGA	AACAGTCCAA	TCCTCTGCTA	ATGATGGAAT	AATATTCCCA	1164
TATTGGTCAT	TTTCTAATAA	CCCGTCTACC	AAATTTGCAA	CAATATCGGA	TGTTGCTGCG	1170
CGGTTTTCTG	CTAGATAGTT	CAAGCTAGAT	GGATCACTTG	AATAAACATA	GTTGTAGGTT	1176
TTTGACGCCG	TGCTAGAATT	TCCACACGCG	CTCAATAAAA	CTCCTGTACC	CAGGACAAGA	1182
CCTGCCAAGG	TTAGATATTT	GCTCTTAGAC	TTTTTCATTT	CCGG		1136

PCT/US97/19588 WO 98/18931

531

(2) INFORMATION FOR SEQ ID NO: 62:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2412 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

TAACTGCACT	AAACATAATA	TAAGGAGAGA	AAATGTCTGC	AATAGAACGT	ATTACAAAAG	60
CTGCTCACTT	AATTGATATG	AACGATATTA	TCCGTGAAGG	GAATCCTACT	CTACGCGCGA	120
TTGCTGAGGA	AGTCACTTTC	CCCCTATCTG	ACCAGGAAAT	CATCCTAGGC	GAAAAGATGA	180
TGCAATTCCT	TAAACATTCC	CAAGATCCTG	TCATGGCTGA	AAAAATGGGA	CTCCGCGGTG	240
GTGTTGGACT	GGCTGCTCCC	CAGTTAGATA	TCTCAAAACG	CATTATCGCT	GTTTTGGTAC	300
CTAATATTGT	TGAAGAAGGC	GAAACTCCAC	AGGAAGCCTA	CGATTTGGAA	GCCATTATGT	360
ACAATCCAAA	AATCGTCTCT	CACTCTGTTC	AAGATGCTGC	TCTTGGCGAA	GGAGAAGGTT	420
GCCTGTCTGT	TGACCGTAAC	GTGCCTGGCT	ATGTTGTTCG	CCATGCCCGC	GTTACTGTTG	480
ACTACTTTGA	CAAAGATGGA	GAAAAACACC	GTATCAAACT	CAAAGGCTAC	AACTCCATTG	540
TTGTTCAGCA	TGAAATTGAC	CACATTAACG	GTATCATGTT	TTACGATCGC	ATCAATGAAA	600
AAGACCCATT	TGCAGTTAAA	GATGGTTTAC	TGATTCTTGA	ATAAAGAAAA	TCCCGTTGCA	660
AGACGGGGTT	TTGTGTTATA	ATAGAGGCAT	GAAAACAAAT	GATATTGTCT	ATGGTGTCCA	720
CGCCGTTACC	GAAGCCCTCC	TTGCAAATAC	AGGAAACAAA	CTCTACCTCC	AAGAAGATCT	780
CCGAGGTAAG	AATGTTGAGA	AAGTCAAGGA	ACTAGCTACA	GAAAAGAAGG	TGTCCATTTC	940
TTGGACATCA	AAAAAATCTC	TCTCTGAGAT	TACTGAAGGT	GCTGTTCATC	AAGGTTTTGT	900
TCTACGAGTG	TCTGAATTTG	CCTATAGCGA	GCTAGATTAC	ATCCTTGCAA	AAACACGCCA	960
AGAAGAAAAT	CCACTTCTAT	TGATTCTAGA	TGGTCTAACC	GATCCCCATA	ATCTGGGTTC	1020
TATCTTGCGA	ACAGCCGATG	CGACCAATGT	TTCAGGTGTC	ATCATTCCCA	AGCACCGTAC	1080
TGTCGGAGTA	ACTCCTGTCG	TTGCCAAAAC	AGCCACAGGT	GCTATTGAAC	ACGTECCAAT	1140
TGCCCGAGTG	ACCAACCTCA	GTCAAACCTT	AGGATAAACT	TAAGGATGAA	GGTTTCTGGA	1200
CCTTTGGAAC	GGATATGAAC	GGTACTCCTT	GCCACAAGTG	GAATACAAAA	GGGAAAATCG	1260
CCCTCATCAT	TGGAAATGAA	GGAAAAGGTA	TCTCTAGCAA	CATCAAAAAA	CAGGTCGATG	1320
AAATGATTAC	CATTCCGATG	AATGGACATG	TTCAAAGCCT	TAATGCCAGT	GTTGCTGCGG	1380

			532			
CCATTCTCAT	GTACGAAGTT	TTCCGAAATA	GACTATAAAA	AAGTTTCCAG	TCATCTGATT	1440
GGAAACTTTT	TTATGATTAA	CTATGTTCTG	TAATGAATTT	ATAGGCTTCT	TGACCAGCGA	1500
TAGCTCCATC	TCCAACCGCT	GTTGTTACTT	GGCGAAGGTC	TTTCAAGCGA	ACATCTCCAA	1560
CTGCAAAGAT	ACCGTCGACT	GCAGTTTTCA	TGTGGTTATC	TGTCACAATC	CATCCTGCCT	1620
GATCTTGGAT	ATTCAATTCT	TTAACAAAAT	CGCTAAGAGG	GTCCAAACCA	ACATAGATAA	1680
AGACACCACC	GAAGGCTTGT	TCTGTCACTT	GACCTGTTTT	CACATTTTCA	AATACGACTG	1740
ATTCTACTCG	GTTTTCACCC	TTGATTTCCC	TTACTACAGA	ATCCCAGATA	AAGCTGATTT	1800
TTTCATTCGC	AAAGGCGCGA	TCTTGTAAAA	CCTTTTGGGC	ACGAAGTTGG	TCACGACGGT	1860
GAACAATGGT	AACAGTCTTA	GCAAAACGAG	TCAAGAAGAG	GGCTTCTTCA	ACAGCTGAAT	1920
CTCCACCACC	AACTACCAAT	AAATCTTGGT	CACGGAAGAA	AGCACCATCA	CACACAGCAC	1980
AGTAAGAAAC	ACCACGACTG	TTCAGTTCTT	CTTCTCCAGG	CACTCCCAAA	GGACGGTGTT	2040
TAGAACCAGT	TGCTACGATA	ACTGTACGTG	TTTCATATGT	TTGGTCATCA	GTCATCACTT	2100
TCTTAAAATC	ACCATGGCTT	CGACATTTTC	AACATAACCA	TAAATGTGCT	CAACACCAAG	2160
ATTTTCAAGT	GGTTCAAACA	TCTTTTCAGC	CAATTCAGGT	CCACTAATAT	TAGCGTATCC	2220
TGGGTAATTT	TCGATATCAG	ATGTATTATT	CATCTGACCA	CCTGGCAGAC	CACCTTCAAT	2280
CAAAGCTACT	TTTAGATTGC	TTCGAGCAGC	: ATACAAGGCC	GCAGTCATCC	cTGCAGGTCC	2340
AGCACCGATA	ATAATAGTAT	CGTACATATA	GATTCCTTCT	TTCTTGGTGT	AACTATCTTT	240
ATTCTAACTC						241

(2) INFORMATION FOR SEQ ID NO: 63:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7760 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

CCGATTTGGT GGAATTTTTG TCTCATCATT	TAGAAGGTGT	TGCAAGAGCA	GAGTTTACCT	60
TGGTGCTTCA TACCAAATTG GGAGAAGCCT	CTGTTTTGGC	AAATATTGTA	GATGTAAACA	120
AGGATGAATG GATTTTAGGA ACAGTTGCTG	GTGCCAATAC	CTTATTGGTT	ATTTGTCGAG	180
ATCAGCACGT TGCCAAACTC ATGGAAGATC	CTTTCCTAGA	TTTGATGAAA	GATAAGTAAG	240
GTCTTGGGAG TTGCTCTCAA GACTTATTTT	TGAAAAGGAG	AGACAGAAAA	TGGCGATAGA	300
AAAGTTATCA CCCGGCATGC AACAGTATGT	GGAȚATTAAA	AAGCÄATATC	CAGATGCTTT	360

TTTGCTCTTT	CGGATGGGTG	ATTTTTATGA	ATTATTTAT	GAGGATGCGG	TCAATGCTGC	420
	GAAATTTCCT		•			480
						540
	CCCTATCATT			,		
	ATCGCAGAGC					600
AGAGGTTGTT	CAGGTCATTA	CGCCAGGGAC	AGTGGTCGAT	AGCAGTAAGC	CGGACAGTCA	660
GAATAATTTT	TTGGTTTCCA	TAGACCGCGA	AGGCAATCAA	TTTGGCCTAG	CTTATATGGA	720
TTTGGTGACG	GGTGACTTTT	ATGTGACAGG	TCTTTTGGAT	TTCACGCTGG	TTTGTGGGGA	780
AATCCGTAAC	CTCAAGGCTC	GAGAAGTGGT	GTTGGGTTAT	GACTTGTCTG	AGGAAGAAGA	840
ACAAATCCTC	AGCCGCCAGA	TGAATCTGGT	ACTCTCTTAT	GAAAAAGAAA	GCTTTGAAGA	900
CCTTCATTTA	TTGGATTTGC	GATTGGCAAC	GGTGGAGCAA	ACGGCATCTA	GTAAGCTGCT	960
CCAGTATGTT	CATCGGACTC	AGATGAGGGA	ATTGAACCAC	CTCAAACCTG	TTATCCGCTA	1020
CGAAATTAAG	GATTTCTTGC	AGATGGATTA	TGCGACCAAG	GCTAGTCTGG	ATTTGGTTGA	1080
GAATGCTCGC	TCAGGTAAGA	AACAAGGCAG	TCTTTTCTGG	CTTTTGGATG	AAACCAAAAC	1140
GGCTATGGGG	ATGCGTCTCT	TGCGTTCTTG	GATTCATCGC	CCCTTGATTG	ATAAGGAACG	1200
AATCGTCCAA	CGTCAAGAAG	TAGTGCAGGT	CTTTCTCGAC	CATTTCTTTG	AGCGTAGTGA	1260
CTTGACAGAC	AGTCTCAAGG	GTGTTTATGA	CATTGAGCGC	TTGGCTAGTC	GTGTTTCTTT	1320
TGGCAAAACC	AATCCAAAGG	ATCTCTTGCA	GTTGGCGACT	ACCTTGTCTA	GTGTGCCACG	1380
GATTCGTGCG	ATTTTAGAAG	GGATGGAGCA	ACCTACTCTA	GCCTATCTCA	TCGCACAACT	1440
GGATGCAATC	CCTGAGTTGG	AGAGTTTGAT	TAGCGCAGCG	ATTGCTCCTG	AAGCTCCTCA	1500
TGTGATTACA	GATGGGGGAA	TTATCCGGAC	TGGATTTGAT	GAGACTTTAG	ACAAGTATCG	1560
TIGCGTICIC	AGAGAAGGGA	CTAGCTGGAT	TGCTGAGATT	GAGGCTAAGG	AGCGAGAAAA	1620
CTCTGGTATC	AGCACGCTCA	AGATTGACTA	CAATAAAAAG	GATGGCTACT	ATTTTCATGT	1680
GACCAATTCG	CAACTAGGÁA	ATGTGCCAGC	TCACTTTTTC	CGCAAGGCGA	CGCTGAAAAA	1740
CTCAGAACGC	TTTGGAACCG	AAGAATTAGC	CCGTATCGAG	GGAGATATGC	TTGAGGCGCG	1800
TGAGAAGTCA	GCCAACCTCG	AATACGAAAT	ATTTATGCGC	ATTCGTGAAG	AGGTCGGCAA	1860
GTACATCCAG	CGTTTACAAG	CTCTAGCCCA	AGGAATTGCG	ACGGTTGATG	TCTTACAGAG	1920
TCTGGCGGTT	GTGGCTGAAA	CCCAGCATTT	GATTCGACCT	GAGTTTGGTG	ACGATTCACA	1980
AATTGATATC	CGGAAAGGC	GCCATGCTGT	CGTTGAAAAG	GTTATGGGGG	CTCAGACCTA	2040
TATTCCAAAT	ACGATTCAGA	TGGCAGAAGA	TACCAGTATT	CAACTGGTTA	CAGGGCCAAA	2100

			534			
CATGAGTGGG	AAGTCTACCT	ATATGCGTCA	GTTAGCCATG	ACGGCGGTTA	TGGCCCAGCT	2160
GGTTCCTAT	GTTCCTGCTG	AAAGCGCCCA	TTTACCGATT	TTTGATGCGA	TTTTTACCCG	2220
PATCGGAGCA	GCAGATGACT	TGGTTTCGGG	TCAGTCAACC	TTTATGGTGG	AGATGATGGA	2280
GCCAATAAT	GCCATTTCGC	ATGCGACCAA	GAACTCTCTC	ATTCTCTTTG	ATGAATTGGG	2340
ACGTGGAACT	GCAACTTATG	ACGGGATGGC	TCTTGCTCAG	TCCATCATCG	AATATATCCA	2400
rgagcacatc	GGAGCTAAGA	CCCTCTTTGC	GACCCACTAC	CATGAGTTGA	CTAGTCTGGA	2460
GTCTAGTTTA	CAACACTTGG	TCAATGTCCA	CGTGGCAACT	TTGGAGCAGG	ATGGGCAGGT	2520
CACCTTCCTT	CACAAGATTG	AACCGGGACC	AGCTGATAAA	TCtACGGTAT	CCATGTTGCC	2580
AAGATTGCTG	GCTTGCCAGC	AGACCTTTTA	GCAAGGGCGG	ATAAGATTTT	GACTCAGCTA	2640
GAGAATCAAG	GAACAGAGAG	TCCTCCTCCC	ATGAGACAAA	CTAGTGCTGT	CACTGAACAG	2700
ATTTCACTCT	TTGATAGGGC	AGAAGAGCAT	CCTATCCTAG	CAGAATTAGC	TAAACTGGAT	2760
GTGTATAATA	TGACACCTAT	GCAGGTTATG	AATGTCTTAG	TAGAGTTAAA	ACAGAAACTA	2820
TAAAACCAAG	ACTCACTAGT	TAATCTAGCT	GTATCAAGGA	GACTTCTTTG	ACAATTCTCC	2880
ACTTTTTTGC	TAGAATAACA	TCACACAAAC	AGAATGAAAA	GGAGCTGACG	CATTGTCGCT	2940
CCCTTTTGTC	TATTTTTAA	GGAGAAAGTA	TGCTGATTCA	GAAAATAAAA	ACCTACAAGT	3000
GGCAGGCCCT	GGCTTCGCTC	CTGATGACAG	GCTTGATGGT	TGCTAGTTCA	CTTCTGCAAC	3060
CGCGTTATCT	GCAGGAAGTC	TTAGGCGCCC	TCCTTACTGG	GAAATATGAA	GCTATTTATA	3120
GTATCGGGGC	TTGGTTGATT	GGTGTGGCCG	TAGTCGGTCT	AGTTGCTGGT	GGACTCAATG	3180
TTGTCCTCGC	ACCCTATATT	GCCCAAGGAG	TTTCATCCGA	CCTTCGGGAG	GATGCCTTCC	3240
GTAAAATTCA	AACCTTTTCT	TATGCTGATA	TTGAACAATT	TANTGCGGGA	AATCTAGTCG	3300
TTCGAATGAC	AAATGATATC	AACCAGATTC	AGAACGTTCT	CATGATGACC	TTCCAAATTC	3350
TTTTCAGACT	TCCCCTCTTG	TTCATCGGTT	CGTTTATCCT	AGCGGTTCAA	ACCTTACCTT	3420
С тст ст сс тс	GGTGATTGTT	CTCATGGTAG	TCTTGATTTT	TGGTTTGACT	GCTGTCATGA	3480
TGGGAATGAT	GGGCCTCGT	TTTGCCAAGT	TTCAAACCCT	TCTTGAGCGC	ATCAATGCCA	3540
TTGCCAAGGA	AAATTTACGT	GGCGTTCGTG	TGGTCAAGTC	CTTTGTCCAA	GAAAAAGAGC	3600
AATTTGCTAA	GTTTACAGAG	GTCTCAGACG	AGCTTCTTGG	TCAAAACCTT	TACATTGGTT	3660
ATGCCTTTTC	AGTAGTGGAA	CCCTTTATGA	TGTTGGTTGG	TTACGGGGCG	GTCTTCCTCT	3720
CTATTTGGCT	GGTCGCGGGA	ATGGTTCAGT	CGGATCCGTC	TGTTGTTGGT	TCCATCGCTT	3780
CTTTTGTTAA	TTACCTAAGC	CAGATTATCT	TTACCATTGT	TATGGTTGGA	TTTTTGGGAA	3840
ATTCTGTCAG	CCGTGCCATG	ATTTCCATGC	GTCGTATTCG	AGAAATTCTT	GACGCAGAGC	3900

CAGCTATGAC	CTTCAAGGAT	ATCCCAGATG	AAGAGTTGGT	TGGAAGTCTT	AGCTTTGAAA	3960
ATGTGACCTT	TACCTATCCA	ATGGACAAGG	AACCGATGCT	GAAAGATGTG	AGCTTTACTA	4020
TTGAACCTGG	TCAAATGGTT	GGTGTAGTTG	GAGCGACTGG	TGCAGGAAAG	TCAACCTTGG	4080
CTCAATTGAT	TCCACGTCTC	TTTGATCCAC	AGGACGGGC	CATTAAAATC	GGTGGCAAGG	4140
ATATTCGAGA	AGTGAGTGAA	GGAACCCTGC	GTAAAACAGT	TTCCATCGTT	CTCCAACGTG	4200
CCATTCTTTT	TAGTGGAACG	ATTGCAGATA	ACTTGAGACA	GGGGAAGGGG	AATGCTACTC	4260
TATTTGAAAT	GGAGCGCGCA	GCCAATATTG	CCCAGGCTAG	TGAATTCATT	CATCGTATGG	4320
AGAAAACCTT	TGAAAGTCCA	GTTGAAGAAC	GGGGAACCAA	TTTCTCTGGT	GGACAAAAAC	4380
AAAGGATGTC	GATTGCGCGT	GGGATTGTCA	GCAATCCACG	TATTCTGATT	TTTGATGATT	4440
CGACCTCAGC	CTTGGATGCC	AAATCAGAGC	GCTTGGTGCA	AGAAGCTTTG	AATAAGGACT	4500
TGAAGGGGAC	GACAACCATT	ATTATTGCTC	AAAAAATTAG	CTCGGTTGTC	CATGCAGACA	4560
AGATCTTGGT	TCTAAATCAA	GGACGATTGA	TTGGTCAAGG	TACGCATGCA	GACTTGGTTG	4620
CCAACAATGC	CGTTTACCGT	GAAATCTATG	AAACACAGAA	ATGAAAGACA	AACTATAAGA	4680
AAAGTCAATA	GTTTTATCTA	AACTATTTCT	TATTTCAATT	TGATGATTTG	GCGATGATTT	4740
TAGAGCACGG	CAAAAAGCCC	TTGAAAAAGT	CCATTTTTTC	AAAGGTAATC	CTGTGTTAAT	4800
TTCAGAAATT	ACATCACTTT	TTGTTCGTCA	AATGGCAGCT	CTTTTTTTAG	GATATAAAAC	4860
AGGGTTCGGA	TAAGTTTTTT	TGCAAGGTGG	ATGATGGCTA	CATTGTAATG	TTTTCCTTGT	1920
TCTAATTTAG	TCTTAAGATA	GGCCTTAAAA	GCAGGCGAAA	AGCGAGGGCA	TGCTTTGGCA	4980
GCTTGTATGA	GTACCTACCG	CAGATGAGGG	GAACTCCGTT	TGACCATTCT	TCCTGCTAAA	5040
TCAATCTGAT	CTGACTGATA	AATAGAAGAA	TCCÄGTCCAG	CGAAAGCTTG	TAATTGAGCA	5100
GGATTATCAA	AGGCATGAAT	ATTTCGAATC	TCAGCTAAAA	TGACCGCCCC	TAAACGATCC	5160
CCAATCCCAG	TAACCGTCGT	GATGACCGAG	TTGAACTCAG	CCATCAAGTC	ATTGACACAT	5220
GTTTCCGCCT	TGTCAATGAG	CCTCTTGTAA	TGTTTGATGT	TTTCATTACA	CGAGATAAAA	5280
CGTCTATGCG	TTATCAAACT	CATTACCAAT	ТАЛААСАААА	AGCTGTGGTT	AGATCCTTTC	5340
GGAAATTGTC	AAGCGATTGG	AGGAAATGAA	CTAATCCACA	GCGGCTTATT	CCAAGTATAC	5400
CACTTGGGCT	TTGGCAGTAG	CTAACTGCGC	TAAATATAAT	ATAAGGAGGA	GTAAAATGAA	5460
GACAGTTCAA	TTTTTTTGGC	ATTATTTTAA	GGTCTACAAG	TTCTCATTTG	TAGTTGTCAT	5520
CCTGATGATT	GTTCTGGCGA	CTTTTGCCCA	AGCCCTCTTT	CCAGTCTTTT	CTGGACAAGC	5580
GGTGACGÇAG	CTAGCCAATT	TAGTTCAAGC	TTATCAAAAT	GGCAATCCAG	AACTTGTATG	5640

GCAAAGCCTA	TCAGGAATCA	TGGTCAATCT	536 TGGCCTGCTG	GTTTTGGTTC	TATTTATCTC	5700
				GAATCGACCA		5760
				TTCTTTGACC		5820
				ATCCTCCAAG		5880
						5940
				GGTCTGATTC		
				ACCCCATTGG		6000
				CTCCAGCAGA		6060
GAAGCTCAAC	GCCTATATGG	ATGAGAGCAT	CTCAGGCCAA	AAAGCCGTGA	TTGTGCAAGG	6120
AATTCAAGAG	GATATGATGG	CAGGATTTCT	TGAACAAAAT	GAGCGCGTGC	GCAAGGCAAC	6190
CTTTAAAGGA	AGAATGTTCT	CAGGAATTCT	TTTCCCTGTC	ATGAATGGGA	TGAGCCTGAT	6240
TAATACAGCC	ATCGTCATCT	TTGCTGGTTC	GGCTGTACTT	TTGAATGATA	AGTCTATTGA	6300
AACAAGTACA	GCCCTAGGTT	TGATTGTTAT	GTTTGCACAA	TTTTCACAGC	AGTACTACCA	6360
GCCTATTATC	CAAGTTGCAG	CGAGTTGGGG	AAGCCTTCAG	TTGGCCTTTA	CTGGAGCTGA	6420
ACGAATTCAG	GAAATGTTTG	ATGCAGAGGA	GGAAATCCGA	CCTGAAAAGG	CTCCAACCTT	6480
CACTAAGTTG	CAAGAAAGTG	TTGAAATCAG	TCATATCGTT	TTTTCATACT	TGCCTGATAA	6540
ACCTATTTTG	AAAGATGTCA	GCATTTCTGC	CCCTAAAGGC	CAGATGACAG	CAGTTGTTGG	6600
GCCGACAGGT	TCAGGAAAAA	CGACTATTAT	GAACCTCATC	AATCGCTTTT	ATGATGTTGA	6660
TGCTGGTGGT	ATTTATTTTG	ATGGTAAAGA	CATTCGTGGC	TATGACTTAG	ATAGTCTTAG	6720
AAGCAAGGTG	GGAATTGTAT	TGCAAGATTC	GGTCTTGTTT	AGCGGAACGA	TTAGAGACAA	6780
TATCCGATTT	GGTGTGCCAG	ATGCTAGTCA	GGAAATGGTT	GAGGTAGCAG	CAAAAGCAAC	6840
CCACATTCAC	GACTATATCG	AAAGTTTGCC	TGATAAGTAC	GATACTCTTA	TTGATGATGA	6900
					CCCTGATGAC	6960
					TGACAGAAAG	7020
					TCATTGCCCA	7080
					GAGAAGTCAT	7140
					AACTCTATCA	7200
						7260
					TTTCTTGTCC	7320
					TTTTGAGTGA	_
•					CGGTTGTAGG	7380
AGTTGCTGCA	AATCTATGTC	CCGTAGACGC	AGAAGGCAAA	ATCATTCATT	CATCTGTATC	7440

TTGTAGATTC	GCAGAGATCA	TTCGTCAAGT	CGGTGGTCTC	CCTTTAGTCA	TTCCTGTTGG	7500
TGATGAGTCA	GTTGTACGTG	ATTATGTGGA	AATGATTGAC	AAACTCATTT	TGACAGGAGG	7560
CCAAAATGTT	CATCCTCAGT	TTTATGGAGA	GAAAAAGACC	GTCGAGAGCG	ATGATTACAA	7620
TCTGGTCCGT	GACGAATTTG	AATTGGCACT	CTTGAAGGAA	GCGCTTCGTC	AGAATAAACC	7680
AATTATGGCA	ATCTGTCGCG	GTGTCCAACT	TGTCAATGTT	GCCTTTGGTG	GAACCCTCAA	7,740
TCAAGAAATC	GAAGGTCAGG					7760

(2) INFORMATION FOR SEQ ID NO: 64:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2723 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

GAGGTTTTAA	TTCACTTACC	TCTsCCGTAT	CTTTATTTAA	AATGAATTCT	TTTACGGTTG	60
TATTTCTTGC	AAAATCTTTT	ACAACAATCT	TAATGTTTAG	TGTCTTGTCT	ATTATTTGTT	120
TAATATCATT	AAATGATGTA	TATTCTTTTC	CATTTATATA	AATATGTTGT	TCTTGAATCT	180
CACCATCGAA	TCCATTATTT	CTTTTATCAT	TGATGTTAAA	GACTACAGAT	TTTCCATCAG	240
CATATTCGAT	ACTAGTATTT	CCCTTAGGAT	CAATGTTTAC	TTCGGGTTTA	ACATTATCAT	300
ATAAAAACTG	ATAGTGGACT	CCAACTGCTT	TAGCATTCAA	ATCGCTATAG	CCAGTTTGAA	360
GATAAACATT	TCCATCCATA	TCTGTTACCT	TATCTGGAAA	TCCGTTTGCT	TTATAGTCTT	420
TCATTCCCCA	GTCCATGATG	TCACCGTCTT	TAACATTCAG	CTTAATATTA	AAATCTCTAG	430
TGTTATCAAT	GTGTAAATCT	CCGTAGATTA	AATAATTATC	TACAACCGAT	TCATTAACTC	540
TCAATTCCCA	GTTAAAACCA	CCCTTATCAG	AAATCTTACC	TCTTAAATAA	AATTCTGGAT	600
TTCGTACATA	AATTTTATTA	GATTTAGATG	GATTAAAGTA	GTTCTTATCC	ATTGAAAGGT	660
TTACTGGTTT	GGTATCAATA	AATAACATGG	AGCCATCTTC	TTTTATAGCT	TCTACATTGA	720
ACTTATCCTC	TCCAGTGTAT	TCTTTATCAT	CCTTACCAAA	TAATACAAGT	TTAGAAGAAT	780
CTGTCACAAG	ATTTCCGTCT	TTATCGATAG	CTTCCCCTTT	ATCGTTCATT	TTAAATGTAA	840
ACACTTGATA	CCTTATAATG	TTAAAGCCGT	CCAAAGCCGA	CATTAATACA	GATTGGGTAC	900
TTCTTCCATC	TTCAACATTT	CTACTATCAG	CATAAATTGT	TGTTTCTGAA	AGGGCTCTTA	960
GATTAGGATT	GGCCTTTTGT	ATTTTTGCTA	TATCTTCCTT	GCTATAGACT	CCATTTCCTT	1020

					•	
СТААСАТАТС	CGTTTTTCCA	GGATTATAGG	538 TAGTCACTTT	TAGTGCATAG	CCTTTTCTTA	1080
GAATGATATT	ATCCTTTAAC	AGATATTGTT	GTTTTTCTGA	ATCAGAATAG	ATTTTACCAG	1140
ATTCCATTTT	AGTTAAATTG	TCTGGTTTGT	TTTTTGAAAG	ATCTCCTTCC	CCTAATTCTA	1200
TGACATTCCC	ATAACTTGAT	ACATAGGGAT	ATTCTGATTT	AGTTTCCTTA	ATTTTTCAG	1260
GCATTCTAAT	TTTAATTTCA	GCTTTTTTCT	GATCATTATC	TTTAACAAAT	AATCTCATAT	1320
CTCCTGCAAA	AGCTAATCCA	TCCACAATAT	CATTAATATT	AGCGTATAGA	TCAAATGTCA	1380
TCGTTTTTGA	GTGGAAATCA	TACTTGGTCG	CTTTGATTTC	TATAGATTTA	TAGTTATTCC	1440
САТААТАТАС	CTTGGCATTT	TTAGAAACAT	TACTTATCTT	TCCAAGAATT	TCAAAGTGTC	1500
CATCTTTAGA	CGGACTTAGA	ACACCATAAA	TTTTTGATTT	GATTTCGTCA	AGTTTCTCAG	1560
TTTCATATTC	TAGATCAGTC	CCATCATCGT	AGGCTATTAT	ATTTCCTTTA	TCATCGTATT	1620
TATAATCGTA	TTCCTCCATT	CTCTTACCAG	TTTCACTTGT	AAAATCATCA	ACTTCTCTAA	1680
ATTTCTTTTT	AATGAGTTTC	TTTAAGTCTT	TATTTTCAAA	GTCTCTAATT	GTTGAAATAT	1740
TTCTATCAAT	AGTAAAACTA	GATTTTTCTT	TAATAGACTC	TTCATTTTCT	TGATGATGAT	1800
GTTCTACCCC	AGTTGTATCT	TTTTTTAGAC	TACCCTCTTT	TCCATTTCCT	AATTTTTAA	1960
ATTTAGATTC	TGCAATCTCG	CCAAGCTTT	GATATTTAGA	TGAATCTTGA	TCAGGATCTA	1920
CTAGATAATA	GGAAATCATC	CCCTTTTCAT	CAGCCTGATT	AGCAAATTTA	ATTCTATGAA	1980
TCTTTGTGAA	ATTGCTAGAA	CCATCTAATO	CAATGACTTC	AATGATTTTT	TAAATTOOOO	2040
CTCCCGCACC	TTTAATTTCA	TAAATGGTAT	TTCCGTCTTT	ATCAAGTTTT	CTATTTCTTC	2100
CTTGACCCTC	ACCTGCGTAA	GTTACTTCAA	GATTTTTTC	AACCTCTCCA	TCTTCATTAA	2160
CAAGAGCGGG	GCCAGCATAC	CAAACTTCGT	TCGCAATCTC	GTCAAATTTT	TCAGGATGTT	2220
CTTTTTGAT	TCTCGCAAAT	AGCGTTTCAT	TCTTATACTG	ATCTTTTACC	TTATGATAAG	2280
TATCCTTTG	AATCAACTTA	ATTTTTCAC	GATTTGAAAA	ATCAACCGAA	ACAATCTTAG	2340
GGGCGGTGT	r ATCAATTTT	ACAGGAATAT	AGGAAACCTG	CCATGGGTAA	TCTTTAGTTA	2400
ATCTATATT	DATATTAAA 1	AAATATTGAG	CTTCCGCAAT	CGGTTCAAAT	TGACCTCTTA	2460
TCTTAGTAG	C AGGATCTTGA	TTATCCTTAC	TTTCTGGTGC	ATTTTCTTCT	CTACCTCTAG	2520
GATTATAGA?	r GAGTCCATCC	CACTTCAAG	CACCCCAAAC	TTTTAGTTT	GATGATTTGA	2580
TTCCCTTTG	C ATCATTGCT1	TTAGAATTT	A AAATTCCTCT	AATAAAGTG?	TCTCTCGAAA	2640
TGACTTTTA	A GTCTCTTTG	TTTTCTCCC	r CTTTATTTGT	ATTTACTAT	GAAATCAATC	2700
CTTCTTCTG	C ACTTCTTAAT	r ACA				2723

⁽²⁾ INFORMATION FOR SEQ ID NO: 65:

539

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 11831 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:

-						
, 60	TGTAACAGTT	AATTGATCCC	GAAGCTGGCG	AATCTTCACT	GAATGACTCA	AAAAAAGTGG
120	CGGATACAAC	TTGAAACAGA	GTTAAAACTG	TGTTCTTCAA	CTCCAAACGT	ATTGAAGCAA
180	TGCTAAAGGA	GCAACAAACC	GAAGTATTGA	TGACAAACGC	TTGGTTTCGA	GCTATCCAAG
240	AAACGTTGAA	GTGAATTCAA	CGCTTCATTC	GGCTCCTAAG	AAGCTAACAC	CATGTAGCGA
300	CGTTGTTGAC	CAGCTGGAGA	GAAACATTCG	AATTACAGTT	TTGGTGCTGA	GGCTTGGAAG
360	CGGACAATCA	TCAAACGCCA	CAAGGTGTTA	TAAAGGTTTC	CTTCTAAAGG	GTAACGGGTA
420	GGGGCCTGTT	CAGGTTCTAT	CACCGTCGTC	TTCTCGTTAC	TGGCTCACGG	CGTGGACCAA
480	CGACCGCGTA	GTATGGGTGG	CTTGCAGGAC	AGGTAAAAAC	GCGTATTCAA	GCACCTAACC
540	CCTTATCAAA	AGAACGTTAT	GTTCCAGAAA	TGTACAAGTT	ACCTTGAAGT	. ACAATTCAAA
600	TAAAGCTGGT	AATCAGCAGT	ATCACTATCA	GAAATCTCTT	CAGGTGCTAA	GGTAACGTAC
660	TGACCAAACT	TAACATTATT	ATGGCAAACG	ATCAGTCACA	GAAAGGGGAA	AAATAATAAA
720	ACCAAATGAA	TTGGTATCGA	GATGCAGTAT	TGTTCTTAGC	CTGGCCAAGT	GGTAAAGAAG
780	AACACACGCT	TTCGTCAAGG	CGCGCAAGCC	CATCAGCCAA	TTGATGTAAT	TCAGTTGTGT
840	AAAAGGAACT	CATGGCGTCA	GGACGCAAAC	ATCAGGTGGT	GCTCTGCAGT	GTTAAAAACC
900	TGTTGTCTTC	CTGGTGGTGG	CCACAATGGC	TATCCGCTCA	GTCAAGGTTC	GGACGTGCTC
960	CCTAGCTCTT	AAGTTCGTCG	CTTCCACAAA	CGGCTACAAA	CACGTTCATA	GGACCAACTC
1020	CGCTCTTTCA	TAGCTGTAGA	AACAAATTCG	AGTTGCTGAA	ACTCTGAAAA	AAATCAGTTT
1080	CATCGATTCT	CAGCATTGAG	AAAGTTCTTG	TGAATTTGCA	CAAAAACTGC	TTTACAGCTC
1140	TCGTAACCTT	CTCTTTCAGC	GAATTCGCAG	AGAAGGAAAT	TTATCCTTGA	AAAGTTCTTG
1200	AAATAGCGAC	TTGACATCGC	GCAAGTGTTC	TGCTACAACT	AAGTTGCAAC	CCAAACGTGA
1260	ATAATGAATT	AGGTTCTTGC	AAAATCGAGG	AGCTATCTCT	TCACACAAGC	AAACTTCTTG
1320	CTTGAAGCAG	AATGGCTCAA	CTGAAAGCTC	CCTGTCATCA	TATCAAAAAA	TGTATGATGT
1380	CAAGCTGTTG	TTTGATCAAG	CACACAAACT	GACACTCGTG	ATTTGAAGTT	GAAAATATGT
1440	AAACCAAAAG	AATCAACGTA	ATGTTAACAC	AAAGTTGCCA	CGAAGGTGTT	AAGCTGCTTT

			540			
CTAAACGTGT	TGGACGTTAC	ACTGGTTTTA	СТААСААААС	TAAAAAAGCT	ATCATCACAC	1500
TTACAGCTGA	TTCTAAAGCA	ATCGAGTTGT	TTGCTGCTGA	AGCTGAATAA	TCTAAGGAGG	1560
AAATATCGTG	GGAATTCGTG	TTTATAAACC	AACAACAAAC	GGTCGCCGTA	ATATGACTTC	1620
TTTGGATTTC	GCTGAAATCA	CAACAAGCAC	TCCTGAAAAA	TCATTGCTTG	TTGCATTGAA	1680
GAGCAAGGCT	GGTCGTAACA	ACAACGGTCG	TATCACAGTT	CGTCACCAAG	GTGGTGGACA	1740
CAAACGTTTC	TACCGTTTGG	TTGACTTCAA	ACGTAATAAA	GACAACGTTG	AAGCAGTTGT	1800
TAAAACAATC	GAGTACGATC	CAAACCGTTC	TGCAAACATC	GCTCTTGTAC	ACTACACTGA	1860
CGGTGTGAAA	GCATACATCA	TCGCTCCAAA	AGGTCTTGAA	GTAGGTCAAC	GTATCGTTTC	1920
AGGTCCAGAA	GCAGATATCA	AAGTCGGAAA	CGCTCTTCCA	CTTGCTAACA	TCCCAGTTGG	1980
TACTTTGATT	CACAACATCG	AGTTGAAACC	AGGTCGTGGT	GGTGAATTGG	TACGTGCTGC	2040
TGGTGCATCT	GCTCAAGTAT	TGGGTTCTGA	AGGTAAATAT	GTTCTTGTTC	GTCTTCAATC	2100
AGGTGAAGTT	CGTATGATTC	TTGGAACTTG	CCGTGCTACA	GTTGGTGTTG	TCGGAAACGA	2160
ACAACATGGA	CTTGTAAACC	TTGGTAAAGC	AGGACGTAGC	CGTTGGAAAG	GTATCCGCCC	2220
AACAGTTCGT	GGTTCTGTAA	TGAACCCTAA	CGATCACCCA	CACGGTGGTG	GTGAAGGTAA	2280
AGCACCAGTT	GGTCGTAAAG	CACCATCTAC	TCCATGGGGC	AAACCTGCTC	TTGGTCTTAA	2340
AACTCGTAAC	AAGAAAGCGA	AATCTGACAA	ACTTATCGTT	CGTCGTCGCA	ACGAGAAATA	2400
ATATTAAACT	AGTCGCTTAA	GCAACTAGTA	AATCCGCCAG	CTCGGTAGCG	CTCCATAGGA	2460
GTGCAAGCCG	CTGTGGTACA	ACATTTAAAG	GAGAAAATAT	AAAAATGGGA	CGCAGTCTTA	2520
AAAAAGGACC	TTTCGTCGAT	GAGCATTTGA	TGAAAAAAGT	TGAAGCTCAA	GCTAACGACG	2580
AAAAGAAAAA	AGTTATTAAA	ACTTGGTCAC	GTCGTTCAAC	GATCTTCCCA	AGTTTCATTG	2640
GTTACACTAT	TGCAGTTTAT	GACGGACGTA	AACACGTACC	TGTTTACATC	CAAGAAGACA	2700
TGGTAGGCCA	CAAACTTGGT	GAATTTGCAC	CAACTCGTAC	TTACAAAGGT	CACGCTGCAG	2760
ACGACAAGAA	AACACGTAGA	AAATAAGGAG	AACATAAATG	GCAGAAATTA	CTTCAGCTAA	2820
AGCAATGGCT	CGTACAGTAC	GTGTTTCACC	TCGTAAATCA	CCTCTTCTTC	TTGATAACAT	2880
CCGTGGTAAA	AGCGTAGCCG	ATGCAATCGC	AATCTTGACA	TTCACTCCAA	ACAAAGCTGC	2940
TGAAATCATC	TTGAAAGTTT	TGAACTCAGC	TGTAGCTAAC	GCTGAAAACA	ACTTTGGTTT	3000
GGATAAAGCT	AACTTGGTAG	TATCTGAAGC	ATTCGCAAAC	GAAGGACCAA	CTATGAAACG	3060
TTTCCGTCCA	CGTGCGAAAG	GTTCAGCTTC	ACCAATCAAC	AAACGTACAG	CTCACATCAC	3120
TGTAGCTGTT	GCAGAAAAAT	AAGGAGGTAA	AATCGTGGGT	CAAAAAGTAC	ATCCAATTGG	3180
TATGCGTGTC	GGCATCATCC	GTGATTGGGA	TGCCAAATGG	TATGCTGAAA	AAGAATACGC	3240

541

GGATTACCTT	CATGAAGATC	TTGCAATCCG	TAAATTCGTT	CAAAAAGAAC	TTGCTGACGC	3300
AGCAGTTTCA	ACTATTGAAA	TCGAACGCGC	AGTAAACAAA	GTTAACGTTT	CACTTCACAC	3360
TGCTAAACCA	GGTATGGTTA	TCGGTAAAGG	TGGTGCTAAC	GTTGATGCaC	TCCGTGCAAA	3420
ACTTAACAAA	TTGACTGGAA	AACAAGTACA	CATCAACATC	ATCGAAATCA	AACAACCTGA	3480
TTTGGATGCT	CACCTTGTAG	GTGAAGGAAT	TGCTCGTCAA	TTGGAGCAAC	GTGTTGCTTT	3540
CCGTCGTGCA	CAAAAACAAG	CAATCCAACG	TGCAATGCGT	GCTGGAGCTA	AAGGAATCAA	3600
AACTCAAGTA	TCAGGTCGTT	TGAACGGTGC	AGATATCGCC	CGTGCTGAAG	GATACTCTGA	3660
AGGAACTGTT	CCGCTTCACA	CACTTCGTGC	AGATATCGAT	TACGCTTGGG	AAGAAGCAGA	3720
TACTACATAC	GGTAAACTTG	GTGTTAAAGT	ATGGATCTAC	CGTGGTGAAG	TTCTTCCAGC	3780
TCGTAAAAAC	ACTAAAGGAG	GTAAATAACC	AATGTTAGTA	CCTAAACGTG	TTAAACACCG	3840
TCGTGAGTTC	CGTGGAAAAA	TGCGCGGTGA	AGCAAAAGGT	GGAAAAGAAG	TAGCATTCGG	3900
TGAATACGGT	CTTCAAGCTA	CAACTAGCCA	CTGGATCACT	AACCGCCAAA	TCGAAGCTGC	3960
TCGTATCGCC	ATGACTCGTT	ACATGAAACG	TGGTGGTAAA	GTTTGGATTA	AAATCTTCCC	4020
ACACAAATCA	TACACTGCTA	AAGCTATCGG	TGTGCGTATG	GGATCTGGTA	AAGGGCACC	4080
TGAAGGTTGG	GTAGCACCAG	TTAAACGTGG	TAAAGTGATG	TTCGAAATCG	CTGGTGTATC	4140
TGAAGAGATT	GCACGTGAAG	CGCTTCGACT	TGCTAGCCAC	AAATTGCCAG	TTAAATGTAA	4200
ATTCGTAAAA	CGTGAAGCAG	AATAAGGAGA	AGGCATGAAA	CTTAATGAAG	TAAAAGAATT	4260
TGTTAAAGAA	CTTCGTGGTC	TTTCTCAAGA	AGAACTCGCG	AAGCGCGAAA	ACGAATTGAA	4320
AAAAGAATTG	TTTGAACTTC	GTTTCCAAGC	TGCTACTGGT	CAATTGGAAC	AAACAGCTCG	4380
CTTGAAAGAA	GTTAAAAAAC	AAATCGCTCG	CATCAAAACA	GTTCAATCTG	AAGCGAAATA	4440
ATAGACTAGG	GAAGGAGAAA	TTTCAATGGA	ACGCAATAAT	CGTAAAGTTC	TTGTTGGACG	4500
TGTTGTATCT	GACAAAATGG	ACAAGACAAT	CACAGTTGTA	GTTGAAACAA	AACGTAACCA	4560
CCCAGTCTAT	GGTAAACGTA	TTAACTACTC	TAAAAAATAC	AAAGCTCATG	ATGAAAACAA	4620
TGTTGCCAAA	GAAGGCGATA	TCGTACGTAT	CATGGAAACT	CGCCCGCTTT	CAGCTACAAA	4680
ACGTTTCCGT	CTTGTAGAAG	TTGTTGAAGA	AGCGGTCATC	ATCTAATCAA	ACCTGAAAGG	4740
AGAAAACTGA	AATGATTCAA	ACAGAAACTC	GTTTGAAAGT	CGCAGACAAC	AGCGGTGCTC	4800
GCGAAATCTT	GACTATCAAA	GTTCTTGGTG	GTTCAGGACG	TAAATTTGCA	AACATCGGTG	4860
ATGTTATCGT	GGCATCTGTA	AAACAAGCTA	CTCCTGGTGG	TGCGGTTAAA	AAAGGTGACG	4920
TTGTTAAAGC	AGTTATCGTT	CGTACTAAAT	CAGGTGCTCG	TCGTGCTGAT	GGTTCATACA	4980

			542			
TCAAATTTGA	CGAAAACGCA	GCAGTTATCA	TCCGTGAAGA	CAAAACTCCT	CGCGGAACAC	5040
GTATCTTTGG	CCCAGTTGCA	CGTGAATTGC	GTGAAGGTGG	CTTCATGAAG	ATCGTGTCAC	5100
TTGCTCCAGA	AGTACTTTAA	TTTTTAGGAA	CAAACTAGTC	CCCTAGCTTC	AAGCTAGGGT	5160
GCCCTTATGG	GCGTAAGAAA	AATCAAGGAG	AAACCTAATG	TTTGTAAAAA	AAGGCGACAA	5220
AGTTCGCGTA	ATCGCTGGTA	AAGATAAGGG	AACAGAAGCT	GTTGTCCTTA	CTGCCCTTCC	5280
AAAAGTAAAC	AAAGTTATCG	TTGAAGGTGT	TAACATTGTT	AAGAAACACC	AACGTCCAAC	5340
TAACGAGCTT	CCTCAAGGTG	GTATCATCGA	GAAAGAAGCA	GCTATCCACG	TATCAAACGT	5400
TCAAGTTTTG	GACAAAAATG	GTGTAGCTGG	TCGTGTTGGA	TACAAATTTG	TAGACGGTAA	5460
AAAAGTTCGC	TACAACAAAA	AATCAGGCGA	AGTGCTTGAT	TAATCACGAA	GGAAAGGAGA	5520
AGTATAATGG	CAAATCGTTT	AAAAGAAAAA	TATCTTAATG	AAGTAGTTCC	TGCTTTGACA	5580
GAACAATTCA	ACTACTCATC	AGTGATGGCT	GTGCCTAAAG	TAGATAAGAT	TGTTTTGAAC	5640
ATGGGTGTTG	GTGAAGCTGT	ATCAAACGCT	AAAAGCCTTG	AAAAAGCTGC	TGAAGAATTG	5700
GCACTTATCT	CAGGTCAAAA	ACCACTTATC	ACTAAAGCTA	AAAAATCAAT	CGCCGGCTTC	5760
CGTCTTCGTG	AAGGTGTTGC	GATCGGTGCA	AAAGTTACCC	TTCGTGGTGA	ACGTATGTAC	5820
GAATTCTTGG	ATAAATTGGT	ATCAGTTTCA	CTTCCACGTG	TACGTGACTT	CCACGGTGTC	5880
CCAACAAAAT	CATTTGATGG	ACGCGGGAAC	TACACACTTG	GTGTGAAAGA	ACAATTAATC	5940
TTCCCAGAAA	TCAAĆTTCGA	TGACGTTGAC	AAAACTCGTG	GTCTTGACAT	CGTTATCGTA	6000
ACAACTGCTA	ACACTGACGA	AGAGTCACGT	GCATTGCTŢA	CAGGCCTTGG	AATGCCTTTT	6060
GCAAAATAAT	ATAGGAGGTA	AATCTAATGG	CTAAAAAATC	AATGGTACCT	AGAGAGGCTA	6120
AACGCCAAAA	AATTGTTGAC	CGTTATGCTG	AAAAACGTGC	TGCATTAAAG	GCGGCAGGGG	6180
ACTACGAAGG	ТТТАТСТААА	TTACCTCGCA	ACGCCTCACC	GACTCGTTTA	CATAATCGTT	6240
GTAGGGTTAC	GGGGCGCCCA	CATTCAGTTT	ACCGCAAATT	TGGTCTGAGT	CGTATCGCTT	6300
TTCGCGAACT	TGCGCATAAA	GGTCAAATTC	CTGGTGTAAC	AAAAGCATCT	TGGTAATTTA	6360
AGATATCAAG	AGCGTCAAAA	CTCCAAGTAA	AAATAGGAAA	CTTGACGAAG	AAACTAAAGT	6420
TTCTAGGAAA	GTTTATCTTT	TTCACACAGA	GTTTAGCCCG	GGTTCAATTG	GGCTTGCCAA	6480
TTTGAACACG	AGCTACAGCT	TTGGCAAAAA	AGACCAATTT	GCTTTGGAGC	ATTGCTTCTG	6540
CATTAAATTG	TCTATTTTTG	CTCGTGCTGT	TACGCTCTTT	GTATCATGTA	TTAACTAGCA	6600
AGTGCAACTT	GCAAACTACT	AGTAAGAGGA	GAAAAACAAA	ATGGTTATGA	CTGACCCAAT	6660
CGCAGACTTC	CTAACTCGTA	TTCGTAATGC	TAACCAAGCT	AAACACGAAG	TACTTGAAGT	672
ACCTGCATCA	AACATCAAAA	AAGGGATTGC	TGAAATÇCTT	AAACGCGAAG	GTTTTGTAAA	6780

A	aacgttgaa	ATCATTGAAG	ATGACAAACA	AGGCGTCATC	CGTGTATTTC	TTAAATACGG	6840
A	CCAAATGGT	GAGAAAGTTA	TCACTAACTT	GAAACGTGTT	TCTAAACCAG	GACTTCGTGT	6900
C'	гасааааа	CGTGAAGACC	TTCCAAAAGT	TCTTAACGGA	CTTGGAATTG	CCATCCTTTC	6960
A	ACTTCTGAA	GGTTTGCTTA	CTGATAAAGA	AGCACGCCAA	AAGAATGTTG	GTGGTGAGGT	7020
T	ATCGCTTAC	GTTTGGTAAA	ATCAAGATAC	AAAGCTCGTA	AAGAACAAAG	CAAAATTAGG	7080
λ	agttggaga	AGTTTGTTTA	CAAACAAGCC	AACTTATCTA	TTTTGCACAG	TTCTTAGAGC	7140
Gʻ	rgttcagtt	CAGCTCTTGA	ACTAAATAAG	TATCTGAACC	CCGTGAAAAC	TGGCCGTTCT	7200
G	CCTGACAA	TTTAACAGGA	GAAAATAAAC	ATGTCACGTA	TTGGTAATAA	AGTTATCGTG	7260
T7	rgcctgctg	GTGTTGAACT	CGCTAACAAT	GACAACGTTG	TAACTGTAAA	AGGATCTAAA	7320
G	GAGAACTTA	CTCGTGAGTT	CTCAAAAGAT	ATTGAAATCC	GTGTGGAAGG	TACTGAAATA	7380
A	CTCTTCACC	GTCCAAACGA	TTCAAAAGAA	ATGAAAACTA	TCCACGGAAC	TACTCGTGCC	7440
C1	TTTTGAACA	ACATGGTTGT	TGGTGTATCA	GAAGGATTCA	AGAAAGAACT	TGAAATGCGT	7500
G	GGTTGGTT	ACCGTGCACA	GCTTCAAGGA	TCTAAACTTG	TTTTGGCTGT	TGGTAAATCT	7560
C	ATCCAGACG	AAGTTGAAGC	TCCAGAAGGA	ATTACTTTTG	AACTTCCAAA	CCCAACAACA	7620
ΑT	CGTTGTTA	GCGGAATTTC	AAAAGAAGTA	GTTGGTCAAA	CAGCTGCTTA	CGTACGTAGC	7680
C?	TTCGTTCAC	CAGAACCATA	TAAAGGTAAA	GGTATCCGTT	ACGTTGGTGA	ATTCGTTCGC	7740
CC	GTAAAGAAG	GTAAAACAGG	TAAATAATGT	TGAGTGGTTG	ATCATCAACC	ACCAACCTAT	7800
Ţ	TTCCAACTT	TGTGCATAGC	ACACGATTTA	AAACTAAAGA	GGTGAAAACT	GTGATTTCAA	7860
A.	ACCAGATAA	AAACAAACTC	CGCCAAAAAC	GCCACCGTCG	CGTTCGCGGA	AAACTCTCTG	7920
G#	VACTGCT GA	TCGCCCACGT	TTGAACGTAT	TCCGTTCTAA	TACAGGCATC	TACGCTCAAG	7980
TC	GATTGATGA	CGTAGCGGGT	GTAACGCTCG	CAAGTGCTTC	AACTCTTGAT	AAAGAAGTTT	8040
C.	AAAGGA AC	TAAAACTGAA	CAAGCCGTTG	CTGTCGGTAA	ACTCGTTGCA	GAACGTGC#A	8100
AC	CCTAAAGG	TATTTCAGAA	GTGGTGTTCG	ACCGCGGTGG	ATATCTATAT	CACGGACGTG	8160
TC	AAAGCTTT	GGCTGATGCA	GCTCGTGAAA	ACGGATTGAA	ATTCTAATAG	GAGGACACTA	8220
GA	AAATGGCA	TTTAAAGACA	ATGCAGTTGA	ATTAGAAGAA	CGCGTAGTTG	CTGTCAACCG	8280
TC	TTACAAAA	GTTGTTAAAG	GTGGACGTCG	TCTTCGTTTC	GCAGCTCTTG	TTGTTGTTGG	8340
TC	GACCACAAT	GGTCGCGTAG	GATTTGGTAC	TGGTAAAGCT	CAAGAAGTTC	CAGAAGCAAT	8400
ÇC	GTĄAAGCA	GTAGATGATG	CTAAGAAAAA	CTTGATCGAA	GTTCCTATGG	TTGGAACAAC	8460
A٨	TCCCACAC	GAAGTTCTTT	CAGAATTCGG	TGGAGCTAAA	GTATTGTTGA	AACCTGCTGT	8520

			544			
AGAAGGTTCT	GGAGTTGCCG	CTGGTGGTGC	AGTTCGTGCC	GTTGTGGAAT	TGGCAGGTGT	8580
GGCAGATATT	АСАТСТААЛТ	CACTTGGTTC	TAACACTCCA	ATCAACATTG	TTCGTGCAAC	8640
TGTTGAAGGT	TTGAAACAAT	TGAAACGCGC	TGAAGAAATT	GCTGCCCTTC	GTGGTATTTC	8700
AGTTTCTGAT	TTGGCATAAG	AAAGGGGATA	AAATGGCTCA	TTAAAATT	ACTTTGACTA	8760
AGTCTCCAAT	CGGACGCATT	CCATCACAAC	GTAAAACTGT	TGTAGCACTT	GGACTTGGCA	8820
AATTGAACAG	CTCTGTTATT	AAAGAAGATA	ACGCTGCTAT	CCGTGGTATG	ATCACAGCAG	8880
TATCTCACTT	AGTAACAGTT	GAAGAAGTAA	ACTAATGAaG	TTTTAGGGGA	TGTGCACTGT	8940
ACCATCCCCT	AAAACTAGAT	ATAGTCATCT	ATGATGACAT	CGTATAGGCG	AGTTGATGGG	9000
GGAGACAACC	TTTTCTCCCT	TATCGGCCCT	AGCATTTTAC	AAAAGAGGAG	AAAATAAAA	9060
TGAAACTTCA	TGAATTGAAA	CCTGCAGAAG	GTTCTCGTAA	AGTACGTAAC	CGCGTTGGTC	9120
GTGGTACTTC	ATCAGGTAAC	GGTAAAACAT	CTGGTCGTGG	TCAAAAAGGT	CAAAAAGCTC	9180
GTAGCGGTGG	CGGAGTTCGC	CTTGGTTTTG	AAGGTGGACA	AACTCCATTG	TTCCGTCGTC	9240
TTCCAAAACG	TGGATTCACT	AACATCAACG	CTAAAGAATA	CGCAATTGTG	AACCTTGACC	9300
AATTGAACGT	CTTTGAAGAT	GGTGCTGAAG	TAACTCCAGT	TGTTCTTATC	GAAGCAGGAA	9360
TTGTTAAAGC	TGAAAAGTCA	GGTATTAAAA	TTCTTGGTAA	CGGTGAGTTG	ACTAAGAAAT	9420
TGACTGTGAA	AGCAGCTAAA	TTCTCTAAAT	CAGCTGAAGA	AGCTATCACT	GCTAAAGGTG	9480
GTTCAGTAGA	AGTCATCTAA	GAGAGGTGAC	CTATGTTTTT	TAAATTATTA	AGAGAAGCTC	9540
TTAAAGTCAA	GCAGGTTCGA	TCAAAAATTT	TATTTACAAT	TTTTATCGTT	TTGGTCTTTC	9600
GTATCGGAAC	: TAGCATTACA	GTTCCTGGTG	TGAATGCCAA	TAGCTTGAAT	GCTTTAAGTG	9660
GATTATCCTT	CTTAAACATG	TTGAGCTTGG	TGTCGGGGAA	TGCCCTAAAA	AACTTTTCGA	9720
TTTTTGCCCT	AGGAGTTAGT	CCCTATATCA	CCGCTTCTAT	TGTTGTCCAA	CTCTTGCAAA	9780
TGGATATTT	ACCCAAGTTT	GTAGAGTGGG	GTAAACAAGG	GGAAGTAGGT	CGAAGAAAAT	9840
TGAATCAAGC	TACTCGTTAT	ATTGCTCTAG	TTCTCGCTTT	TGTGCAATCT	ATCGCGATTA	9900
CAGCTGGTTT	TAATACCTTC	GCTGGAGCTG	AATTGATTAA	AACTGCTTTA	ACTCCACAAG	9960
TTTTTCTGAC	GATTGGTATC	ATCTTAACAC	CTGGTAGTAT	GATTGTCACT	TGGTTGGGTG	10020
AGCAAATTAG	AGATAAGGGA	TACGGAAACG	GTGTTTCCAT	GATTATCTT	GCCGGGATTG	10080
TTTCCTCAAT	TCCAGAGATO	ATTCAGGGC	TCTATGTGG	CTACTTTGTC	AACGTCCCAA	10140
GTAGCCGTAT	r CACTTCATC	CATCATTTCC	TAATCATTT1	GATTATTACT	GTATTGTTGA	10200
TTATTTACT	TACAACTTA	GTTCAACAA	CAGAATACA	AATTCCAAT	CAATATACTA	10260
AGGTTGCAC	A AGGTGCTCC	A TCTAGCTCT	T ACCTTCCGT	T, AAAAGTAAA)	CCTGCTGGAG	10320

TTATCCCTGT	TATCTTTGCC	ነ የተመፈመው የ	\	. CCCCTATTCT	TC & CTTTTTTC	10200
						10380
	GTCATGATTC					10440
TCTCCAACTC	GTATTGCCAT	GTATGCTTTC	TTGATTATTC	TCTTTACATT	CTTCTATACG	10500
TTTGTACAGA	TTAATCCTGA	AAAAGCAGCA	GAGARCCTAC	AAAAGAGTGG	TGCCTATATC	10560
CATGGAGTTC	GTCCTGGTAA	AGGTACAGAA	GAATATATGT	CTAAACTTCT	TCGTCGTCTT	10620
GCAACTGTTG	GTTCCCTCTT	CCTTGGTGTG	ATTTCCATTT	TACCGATTGC	AGCTAAAGAT	10680
GTATTTGGTC	TTTCTGATGT	TGTTGCCTTT	GGTGGAACAA	GTCTCTTGAT	CATTATCTCT	10740
ACAGGTATCG	AAGGAATCAA	GCAATTGGAA	GGTTACCTAT	TGAAACGTAA	GTATGTTGGT	10800
TTCATGGACA	GAACAGAATA	AAAGTATTTA	CTGAATCAGT	AAATACTGAG	GGAGTGGAGG	10860
TTTAAACTCT	GACATTTGTA	AGAGTTGGAT	CTCCCCTCTT	CTATTTTGTT	TTTAAATCGG	10920
GGTGAAAAGA	CTTTTTGCTT	CTATTTAAAA	ATAAAATAAG	GAGATCAAAT	CATGAATCTT	10980
TTGATTATGG	GCTTACCTGG	TGCAGGTAAG	GGAACTCAAG	CAGCAAAAAT	CGTAGAACAA	11040
TTCCATGTTG	CACATATCTC	AACAGGTGAT	ATGTTCCGCG	CTGCAATGGC	AAATCAAACT	11100
GAAATGGGTG	TTCTTGCTAA	GTCATATATT	GACAAGGGTG	AATTGGTTCC	TGACGAAGTT	11160
ACAAATGGAA	TCGTAAAAGA	ACGCCTTTCA	CAAGATGATA	TTAAAGAAAC	AGGATTCTTA	11220
TTGGATGGTT	ACCCACGTAC	AATTGAACAA	GCTCATGCCT	TGGACAAAAC	ATTGGCTGAA	11280
CTTGGCATTG	AACTAGAAGG	TGTTATCAAT	ATTGAAGTGA	ACCCTGACAG	CCTTTTGGAA	11340
CGTTTGAGTG	GGCGTATCAT	CCACCGCGTA	ACTGGAGAAA	CTTTCCACAA	GGTCTTTAAC	11400
CCACCAGTTG	ACTATAAAGA	AGAAGATTAC	TACCAACGTG	AAGATGATAA	GCCTGAGACA	11460
GTAAAACGTC	GTTTGGATGT	TAATATTGCT	CAAGGAGAAC	CAATCATTGC	TCACTACCGT	11520
GCCAAAGGTT	TGGTTCATGA	CATCGAAGGT	AATCAAGATA	TCAATGATGT	CTTCTCAGAT	11580
ATTGAAAAAG	TATTGACAAA	TTTGAAATAA	AGCGTTTTTC	ACACTTGCAA	AAATCCGCTA	11640
CAAATGTTAT	ACTGAGATAG	TCTGACTTAT	AATTGTTGTC	TCTGTGTCTA	GAGGCATCGA	11700
ATCGAAATTT	ATGGAGGTGC	TTTTGCGTGG	CAAAAGACGA	TGTGATTGAA	GTTGAAGGCA	11760
AAGTAGTTGA	TACAATGCCG	AATGCAATGT	TTACGGTTGA	ACTTGAAAAT	GGACATCAGA	. 11820
TTTTAGCAGG	G					11831

(2) INFORMATION FOR SEQ ID NO: 66:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 10726 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

546

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

60	ATTTTAGTCG	AATGCCTTTG	TTATGATGGC	CGTGAAGGAT	GAAAGCTATT	CCCGGCATTT
120	TGGCTGAATA	TTTTACAAAT	CTCAAGAGGC	ATCAGTTGGC	TCTTATTCTA	GCTCTTTATT
180	ATTATCTCCT	AACAGTAGCG	TGAATCAGTC	TTGACAACTA	GCTAAGTATC	GTGTTGGATT
240	GATGGTCCGT	ATATGGTACA	TGTCGGAAGG	GCCTACAGGT	TTTCGGTATT	TGGTCGCTTG
300	TCGAGTATGG	ACCTCGTTTT	TATTGATGGC	TCCAGTTTTG	CATAGCCTTA	CGGCAGGGAT
360	CCATTTTCTA	CGGCGCAATA	AGTTATTTCC	CAGGTCAAGC	AAATGGGGAG	TTTATGATAA
420	GCAGAGATTT	ATTGGTTACA	TTACTATTGG	TTTATGGCGA	ATCTTCTTTG	GCCTGAATGC
480	CCAGATGTAG	AAGTGGTGTC	TAAAAATGCC	GGAATTACGA	TATCCAGCGC	ATCGTATGTT
540	TGGGCTTTGG	TTTTGTTTTG	GTTTTACTAC	CTTTTATCTG	ATTTTCAGCT	TAAGTAAATC
600	CTAGGTGCAA	CAACGGACTC	CAGGAGGTCT	GCAGGAGTTG	TCTTGAAGCG	TCTTAAAAGG
660	CTATGTGTTA	AGGTATGATT	GAACGCTTCC	TTAATTGCAG	ACCGCTTAAG	TTGTTGGAAC
720	AATGCTTTTG	ACAAGTTTTA	TTAATGGGGG	TTCTGTGGAG	ATTCTTTTGG	TTGTAAACTC
780	GCAGGACAAA	AGCTGTGGCT	AAAACCAAGA	TTTACTACAG	TTGGTTACAA	TAGACCCAGT
840	GGTGGCGGTG	TGTATTTATT	AAGATTTATT	TTACCGTTTA	CATTATTACA	CACTCCAACA
900	GCGAATAAAA	TAAGAGTCGT	TCCTATTTAG	ATTTGTCTCT	TGGTCTTGCG	GAGCGACTAT
960	ATTCTATTTA	CAATACAGCT	TTTTTAATAT	ATACCGTCTA	GCTAGCTATT	CATTAGGTAA
1020	CCTACAATCA	TATTGCTACT	TGATTCCGTT	CCGATTATGC	AGTTTTAAAT	CGTTTCCAAC
1080	ACAGGTGTAA	ACCOTATACA	TAGGATTAGT	TCAATGGCTG	TACCTATGTA	ATGCCTTGAT
1140	GCTAGTTGGC	TGCAACAGGG	GAGGCTTCCT	CCGATTATAG	GACAATGCCA	TCCTTCCGTG
1200	TATCCATTCT	AGCAATTTAT	TGGTTTCTGT	GTTTTGATTT	ATTACAAGTT	GAGGAGCTCT
1260	GGGAAATAAG	TACTGTTGGA	AAGAAAAAGC	AATCTTGAAA	AGATAAACGC	TCAAAATTGC
1320	CTTAGAGGAA	CTAGCTTTGC	AATACTTATT	TCAACAGAAA	GAGTATTTGA	ATGGTTATCA
1380	GGAGAAGGAA	AGCTTGTCGA	ACTAACATAG	GGTCTTTAAG	ATATGAATCG	TTAAGTTACT
1440	TCTTATCTCA	AAGACCATGT	GAGGACAGAA	AGTCAATAAA	TTGTAGGATT	GCGGATATTT
1500	TATTGGAATT	TAGGTTTACT	AATACAATTG	AATTGAGTCT	GTAAGGGGAG	TTAGACAAGG
1560	ACATGACTTT	CAGGGCGCAG	TATACTAGAC	TGGGGTTGTG	TTCATGAATT	TACCGAATGT
1620	TGAAACAGCC	TATCTATAGA	GATAAACAGC	AGATTTTTTA	TACGATTTGA	GTTCCAGAGT

AGTTACTATO	ATAGGGGAGT	ATGTATAGAG	GGAGCGGATT	CATTTGAAAA	TATACTAGAT	1680
TTCATTGATT	GGCTACCTAA	GATTGGGATG	AACAGTTTTT	TCATCCAGTT	TGAAAATCCT	1740
TACTCTTTTT	TGAAACGTTG	GTATGAACAT	GAATTTAATC	CATATCTAAA	TAAAGAACAA	1800
TTTTCAAATG	AATTAGTACA	AGAATTGAGT	GATAGGTTGG	ATAAAGAATT	GCAAAAAAGA	1860
GGTCTTATTC	ATCATCGTGT	TGGTCATGGA	TGGACAGGTG	AAGTTTTAGG	TTACTCTTCA	1920
AAATTTGGCT	GGGAATCAGG	TCTTAGTATT	TCAGAGGAGA	AGAAACCCTA	TGTCGCTGAA	1980
ATAAACGGGA	AACGAGAATT	GTTTAATACG	GCTCCGATTT	TAACCAGCCT	GGATTTTTCA	2040
AATCCAGATG	TAGCTGATAA	GATGGTAGAA	ATTATCAAGG	ATTATGCCAA	GAAAAGACCT	2100
GATGTTAACT	ACTTACATGT	ATGGTTGTCG	GATGCTCGTA	ATAATATTTG	TGAATGCGAA	2160
AACTGTAGAC	AAGAATTGGT	TTCGGATCAG	TATATTCGTA	TTCTCAATCA	ATTGGATAGG	2220
GCTTTAACGA	GTGAGGGATT	AGATACAAAG	ATTTGTTTTC	TGCTTTATCA	TGAGTTGTTA	2280
TGGGCACCTC	AGAAAGAAAA	ATTAGATAAT	CCTGAACGCT	TTACCATGAT	GTTTGCACCG	2340
ATTACAAGAA	CATTTGAAAT	GAGTTATGCA	GATGTAGATT	TTGACAATTC	CATACCTACG	2400
CCTAAACCTT	ATATGCGTAA	TAAAATTATA	CTTCCGAATT	CTCTTGAGGA	AAATTTATCT	2460
TATCTTTTTG	AGTGGCAAAA	AGCATTTAAA	GGAGATAGTT	TCGTATATGA	CTATCCTTTA	2520
GGGCGTGCTC	ATTATGGCGA	TTTAGGCTAT	ATGAAAATTA	GTCAAACTAT	TTACAGAGAT	2580
GTATCTTATC	TTTCCAACCT	ACATTTGAAC	GGGTACATTT	CGTGTCAAGA	ATTACGTGCC	2640
GGATTCCCTC	ATAATTTTCC	TAATTATGTC	ATGGGGGAAA	TGCTCTGGAA	GAAGACAAGA	2700
agttatgaag	AATTGATTGA	AGAATACTTT	TCTGCTTTGT	ATGGGGAAAA	TTGGCAGTCT	2760
GTTGTTGAAT	ATTTAGAAAA	ATTATCCATT	TATTOGTCTT	GTGATTATTT	TAATGCAATT	2820
GGCAGCCGTC	AAAGTGATGT	TTTAGCGAAT	CATTATTATA	TAGCTTACAA	TCTAGCTGAT	2880
AATTTTTTAC	CAATTATTGA	GGAAAATATT	TCTAAGTTAT	TAAATAGTCA	AAAGGATGAA	2940
TGGAAACAGC	TCAGTTATCA	TCGTGAATAT	GTTGTTAAGA	TGGCGAAGGC	TTTATATCTT	3000
CAAGCAACTG	GAAAAACAAG	GCAAGCTCAA	GATGAATGGA	GAAATGTGTT	GAATTATATC	3060
CGTGGGCACG	AATTGCTATT	TCAATCTAAT	TTGGATGTTT	ATCGTGTAAT	TGAAGTAGCA	3120
AAAATTACG	CTGGTTTCCA	CTTATAAATC	ATAAGTATAG	AAAATGAACT	AAGGTATTCA	3130
GAGAAGATTG	АТССТАААТА	TTATGAAATT	TAAGGATTTT	TAAGATATTT	AGGGTCAACT	3240
TATTATOT	ATCGTAGCGA	AGTCATTTTA	ATAATGATGT	GTAAAAGATG	GATCAAGATT	3300
SAGGAGGAAG	AAAGATGAAA	TCAAAGAAG		CCTTCCTTTT	A C A A TTCTCC	3360

CTTACGCAGG	AGATGCAAGG	TCAGATTTGA	548 TGGATGCTTT	GGCGTTTGCG	AGAGATGGAT	3420
ATTTTGAACA	GGCAAGAGAA	TTGGTTGAGT	CTGCAAACGA	CTCAATAGTG	TCTGCCCATC	3480
GAGAACAGAC	TAATTTATTA	GCGGAGGAGG	CATATGGAGA	TAATTTTGAA	GTGAGCTTTA	3540
TTATGATTCA	TGGTCAAGAT	ACTTTGATGA	CAACGATGCT	ATTGTATGAT	CAGGTAAAGT	3600
TTTTTATTGA	TGAATATGAA	CGAATTCGAA	AGATTGAAGA	ACATATTGGT	TTGCAATGAG	3660
GATTAGTCAT	GGAAAATTTA	CAGGTTAAAG	CCTTACCGAA	GGAGTTTTTA	TTAGGAACTG	3720
CTACCGCTGC	TTATCAAGTA	GAGGGTGCAA	CTAGGGTAGA	TGGCAAAGGA	ATAAATATGT	3780
GGGATGTTTA	TTTGCAAGAA	AATAGTCCGT	TCTTACCAGA	TCCAGCTAGT	GATTTTTATT	3840
ATCGTTACGA	AGAGGATATA	GCTTTGGCGG	CAGAACATGG	TTTGCAGGCT	TTGCGTTTAT	3900
CTATTTCTTG	GGTTCGTATA	TTTCCTGATA	TAGATGGGGA	TGCTAATGTA	TTAGCTGTTC	3960
ATTATTACCA	TAGAGTTTTT	CAGTCTTGCT	TAAAACATAA	TGTGATTCCG	TTTGTTTCTT	4020
TACATCATTT	TGATTCGCCT	CAGAAAATGT	TAGAAACAGG	GGATTGGTTG	AACAGAGAGA	4080
ATATTGATCG	TTTCATACGA	TATGCTCGCT	TTTGTTTCCA	AGAATTTACA	GAAGTCAAGC	4140
ATTGGTTTAC	AATCAATGAA	CTGATGTCTC	TTGCTGCAGG	TCAATATATA	GGAGGTCAGT	4200
TTCCTCCAAA	TCATCATTTT	CAATTATCTG	AAGCAATTCA	AGCGAATCAT	AATATGTTGT	4260
TGGCGCATGC	TCTTGCAGTC	CTCGAATTTC	ATCAATTAGG	GATTGAGGGA	AAGGTAGGTT	4320
GTATTCATGC	TTTAAAGCCA	GGCTATCCTA	TTGATGGGCA	AAAAGAAAAT	ATTTTGGCAG	4380
CTAAACGGTA	TGATGTTTAT	AATAATAAAT	TTCTATTAGA	TGGAACTTTT	TTGGGCTACT	4440
ACAGTGAGGA	CACGCTTTTT	CACTTGAATC	AAATATTGGA	AGCTAATAAT	TCTAGCTTTA	4500
TTATTGAAGA	TGGTGATTTA	GAAATTATGA	AGAGAGCTGC	ACCTCTTAAT	ACGATGTTTG	4560
GCATGAATTA	TTATCGTTCA	GAATTTATTC	GTGAATACAA	AGGTGAAAAT	AGACAAGAAT	4620
TTAATTCAAC	AGGAATAAAA	GGACAGTCTT	CTTTTAAATT	AAATGCTCTA	GGTGAATTTC	4680
TAAAAAAACC	TGGTATTCCG	ACAACAGATT	GGGATTGGAA	TATTTATCCT	CAAGGGTTAT	4740
TTGATATGTT	GCTTCGTATC	AAAGAAGAAT	ATCCTCAACA	. TCCGGTCATT	TATTTAACTG	4800
AAAATGGTAC	- AGCCCTTAAA	GAAGTTAAGC	CAGAGGGCGA	GAATGATATT	ATTGATGAÇA	4860
GTAAGAGAAT	CCGTTATATT	GAGCAACATT	TACACAAAGT	TTTAGAGGCT	CGAGATAGAG	4920
GAGTCAATAT	TCAAGGCTAT	TTTATATGGT	CTTTGCAAGA	TCAATTTTCT	TGGGCGAATG	4980
GCTACAATAA	GCGATATGGT	CTTTTCTTTC	TTGATTATGA	AACACAGAAC	AGATATATTA	5040
AGAAAAGTG	TCTTTGGGTA	AAAGGGCTAA	AACGGAATTA	A AGGTTAGCGA	TTTGACTGAT	5100
GTTTAATATC	TATAAATAT	GAGGTTGAAT	TTTTTATAGO	AGGAGTTTT	TGGATAAGCT	5160

549

AGTCGCTGCC	ATTGAAAAGC	AACAAGGGAA	ATTTGAAAAA	ATTTCTACTA	ATAACTATAT	5220
GATGGCTATT	AAAGATGGAT	TCATTGCTAC	TATGCCTTTA	ATTATGTTTT	CAAGCTTTTT	5280
GATGATTATT	ATTATGATTC	CTAAAAATTT	CGGAGTAGAG	TTACCGAGTC	CAGCTATTGT	5340
CTGGATGAGA	AAAGTGTATA	TGTTAACCAT	GGGAGTTTTG	GGTATTATTG	TTTCAGGGAC	5400
TGTTGGAAAG	TCATTAGTTG	GAAATGTTAA	CAGAAAAATG	CCTCACGGAA	AGGTAATAAA	5460
TGATATTTCT	GCAATGTTGG	CAGCCATATG	TAGTTATCTG	GTATTAACTG	TAACGCTTGT	5520
AGTTGATGAG	AAGACGGGAT	CTACAAGTTT	GTCGACAAAC	TATTTAGGAT	CTCAAGGATT	5580
GATAACTTCG	TTTGTCAGTG	CCTTTATTAC	TGTAAATGTT	TACCGATTCT	GTATTAAGCG	5640
AGACATTACT	ATTCATTTAC	CTAAGGAAGT	TCCTGGGGCT	ATATCACAAG	CTTTTAGAGA	5700
TATTTTCCCT	TTTTCTTTTG	TTTTACTTAT	TAGTGGTTTG	TTAGATATTG	TATCTCGGTT	5760
TAGTTTAGAT	GTTCCTTTTG	CCCAAGTATT	TCAACAACTA	TTGACTCCTA	TTTTTAAGGG	5820
GGCAGAATCA	TATCCTGCTA	TGATGTTGAT	TTGGTTTATG	TGTGCTTTGC	TTTGGTTTGT	5880
TGGAATTCAT	GGACCATCTA	TTGTCTTACC	TGCTGTTACA	GCTTTGCAAC	TGAGCAATAT	5940
GGAAGAGAAT	GCTCAACTTC	TTGCAAATGG	GCAGTTCCCT	TATCATTCTT	TAACACCTAA	6000
TTTCGGGAAT	TATATCGCTG	CTATTGGAGG	AACGGGGGCT	ACCTTTGTTG	TACCATTTAT	6060
TTTGATTTTC	TTTATGCGGT	CTAAACAATT	AAAATCGGTA	GGTAAAGCTA	CAATTACTCC	6120
TGTTTTATTT	GCGGTAAATG	AACCTCTTCT	ATTTGGTATG	CCTGTTATTT	TGAATCCCTA	6180
TCTTTTTGTC	CCTTTTTTGA	TGACTCCACC	AGTGAATGTA	TTTCTAGGAA	AGGTCTTTAT	6240
TGATTTCTTT	GGAATGAATG	GATTTTATAT	CCAGTTACCT	TGGACCTTTC	CTGGTCCCTT	6300
GGGATTGTTA	ATTGGAACGA	ATTTTCAACT	TATCTCCTTT	GTATTTTAT	CTTTGATTTT	6360
AGTTGTCGAC	ATATTGATTT	ATTTGCCATT	CTGTAGAGCG	TATGATAGAC	AGTTACTGGT	6420
GAAAGAAGAT	ATTGCAAGCT	CAAATGATAT	TATTTTAGAG	GAGGATACAA	GTGAAATAAT	6480
TCCTGGTGAG	ATAGATGAAA	TAAAAAGTAA	GGAGTTGAAA	GTACTGGTTC	TTTGTGCAGG	6540
GTCTGGAACA	AGTGCGCAAT	TAGCCAATGC	AATTAACGAG	GGGGCTAACT	TAACAGAGGT	6600
TAGAGTGATT	GCGAATTCAG	GAGCGTACGG	AGCTCATTAT	GATATTATGG	GTGTTTATGA	6660
TTTAATTATT	CTGGCCCCAC	AAGTTCGGAG	TTATTATAGA	GAGATGAAGG	TGGATGCAGA	6720
AAGATTAGGT	ATTCAGATAG	TTGCTACCAG	AGGAATGGAA	TATATTCATT	TAACAAAGAG	6780
TCCAAGTAAA	GCCTTACAAT	TTGTATTGGA	GCATTACCAA	GCTGTGTAGT	AAGTTTTTCC	6840
ATCTTTTATT	TGAGTAAAGA	TTTTGTTTAC	AGATAGGCTT	GGATTTAAAA	ACGTTCCCCC	6900

TTTTTTAATA	TAAGAATCCC	TCTTTCACAA	550 TTGTAAAAAG	AGGGATTTTG	TATTTTATCT	6960
CTTAGACCAA	GTTCTCTTCA	TAAAGAGAAG	GAGGATTGGG	TAAATCTCCA	AGCGCCCTGC	7020
AATCATTGCA	AAGGATAGGA	GAATTTTTGA	GATGGGACTA	AAGATTGAGA	AACTAGAAGT	7080
GGTTCCTAGA	ATAGGCCCGA	TATTATTGAA	ACAGCTAAAG	ACAGCGCTGG	TCACGACCAG	7140
AAAATCATTG	CTATCTAGGC	TGACAATAAA	GATAAGCGCT	AGCAAAATCA	TAGCATAGAT	7200
GACAAAGTAC	TTGAGAATCT	TATGCTGGGT	ATCTTTGTCA	ATCACCGTTT	TATTAACATG	7260
GAGGGTCAAA	ACACGGTGGG	GCGATAGGAT	TGACAAAATT	TGGTTTTTGG	CAATTTTTGA	7320
AAGGATGAGG	CCTCGAATAA	TCTTGAGTCC	ACCTGCAGTT	GATCCAGCAG	AGCCACCGAT	7380
TGCCATGAGG	AAAAGGAGGA	TAAACTGGGA	GAAGAGGGC	CAGTTGGTAA	TATCTCCATA	7440
TCCAAAACCA	GTTGTTGTAA	TGATGTTGGA	AACCTGGAAG	AAGGTCATTT	CAAAGCTCTT	7500
TGAAAACCCT	GGGTAGAGGT	AGAGGGTGTT	GAGGCTAATC	AAGCCTGTAG	AAACCAGTAC	7560
AATGACCAAG	TAAGCCCTAA	GCTCTTCATC	TCCAAAGAAG	GCCTTGATGC	GACGGAGCAT	7620
GAGGTAGTAG	TAGAGGTTGA	AATTTACTCC	AAAAACCAGA	ACTCCGATAC	TGACCAGATA	7680
GGTAATCAGT	GAGCTGCCAT	AGTGGGCAAT	TCCGTCGTTA	TAGACGGTAA	AGCCTCCAGT	7740
TCCCGCTGTC	CCCATAGCAA	TAACAAAACT	ATCGTAGAGA	GGCATACCGG	CTAGATAATA	7800
GATGATGACA	AAGAGGGAGA	AGAGAGCTAG	ATAAAGGAGA	TAGAGAATCT	GGGCAGTGTT	7860
TTTTAGTTTG	GATACAACCT	TGCCAAAAAC	AGGACCTGGA	ACCTCAGCCT	TCATCACCTC	7920
TAGGTGGCTA	TTTTTGGCAT	TGTCCATAAT	AGCAAGTGCA	AAAACAAGCA	CTCCCATCCC	7980
TCCAATCAAG	TGGGTAAAAC	TTCGCCAGAA	GAGGAGGGAA	CGGCTGAGAA	CCGAAACGTC	9040
GTTCAAAATA	CTTGCTCCAG	TAGTTGTAAA	TCCAGAACTA	ATTTCAAAAA	AGGCATCAAT	8100
AAGGCTGGGG	ATTTGCCCAG	AAAAGACAAA	GGGGAGACCA	CCAAAGAAAG	ACCAAAGGAT	9150
CCAACAGAGG	GCAACGATCA	AGACTCCCTC	CTTGGCATAA	ATCCGTTGAT	TTTTTGGCTT	8220
CTGTAAACTC	CCTGAACCGC	CTAACAATAC	GAGAATCCCT	ATGGTCGAAA	AGAGGGCTGT	9280
AAAGACTTGG	CTCGATTCAC	GGTAATAGAC	AGCAATCGCA	ACAGGAACCA	AAAGAAGAAC	8340
AGCTTCAATC	AAAAGTAATT	TTGAAAGGAG	GTAACGAATC	ATACTTTTAT	TCATTTCTTA	8400
CCTCGCGATC	AAGTCATAAA	TCTTGGTGAT	GTTTGGCAAC	AAGGTTGTTA	CTAGGAGCTT	8460
GTCTCCAACT	TCCAACATAT	CCTCCCCAGT	TGGGAAAATA	GTCTTGCCCT	TTCGAATAAT	8520
GGCTGCAATA	AGAACCCCTT	TTTTCAATTT	CAGTTGAGAA	AGAGGTTTGG	CAGTCATTTT	8580
ATTGGCTTCC	TTGATATGGA	ATTGCAGGGT	TTCGATTTGG	CCATTGGCTA	GATGGTGCAT	8640
AGCTTGAAGG	TCTGAATACT	GGGCATTAAC	TCGACCACGA	ATAAAGTGCA	TAATCGTATC	8700

TACAGCGATG	CTTTTAGGTG	TGATGATACT	TGAAAAATCA	GGCGCATTGA	TAATCTCGAG	8760
GAGACTGGTA	CGATTGACCT	TAGTAATATT	TTTCTGTACA	CCTACCCTGT	CAAGGAACAT	9820
AGATGTAATC	AGATTTTCCT	CATCGACTCC	TGTTAGAGTC	GCAACGGCAT	CATAGTGTTG	8880
AGCACTTTCT	TCCAGCAGGA	TATCTTTTGC	GGTTCCATCT	CCTTGAACGA	TGTAGAGATT	8940
TGGGAATTTC	TCGCTAAAGA	AGCTGGCGAT	TTCAGGATTG	ATTTCAATGA	CTTTTGTATC	9000
GATACGACTA	TCTTTGAGAA	TACCAAGTAG	ATAATAGGCA	ATTCTACCTG	CCCCAACGAT	9060
GAGAAGGCTC	TTCACGGCGC	GTGATTTAAA	ATAATTATGG	AAGAGTATCA	TATCGACACG	9120
GTTACCAGTG	ACAAAGATTC	TATCTTTATC	CTGTACAGTC	ATGTCACCGC	TTGGAATGAT	9180
aatttgatga	TCCCTCTCTA	TCGCACAGAC	AATGACATTA	CCAAATTTTT	TACGAAAATC	9240
AGAAATGGGC	ATTTGGCAAA	GACCGCTGGT	GGACTTGACG	ACAAATTCCA	TGAGGCTAAC	9300
GCGTCCACCA	GCAAAGCGTT	CGACAGACAG	GGCGTTGGGG	AAGTCAATGA	TATTCGCGAT	9360
AGCGCGGGCA	GCCAAGAGCT	CAGGATTAAC	GATAAGAGAA	AAACCGAGAA	TATTCTTTTC	9420
CTTGAAATAA	GAGTTAGAAT	ATTCAGGGTT	CCGCACCCGA	ACGATAGTTT	CTTTAGCTCC	9480
CATTTTCTTG	GCTAGAACTG	CTGCAATCAT	GTTGACTTCA	TCGTGCTCAG	TCAGGGCGAT	9540
AAAGATATCA	CAATCTTGGA	CGCTGGCTTG	CTCAAGAATG	GCAAAATCGG	CCCCGTTACC	9600
AAGGATACCA	ATGATATCAA	AGCGACTGAC	AATATGATTG	AGAACAGCTT	CGTCTTGCTC	9660
AATCAGCAAA	ACATCATGCT	TTTCTGCAAC	CAAGGAGCGA	CAGAGGGCAA	AACCAACTTT	9720
TCCCCCTCCG	ACAAGGATAA	TTTTCATAAT	AAAACCTACT	TTTTCATGAT	GTAACTATCA	9780
TACCCTTTTT	CAAGAAAAA	TGCACCTACT	AGCTAATAAC	AAGAGTTTTT	AGTGAAAATT	9840
CGCTATAAGG	TAAAACTATA	CCCTAACCAA	TTGAAATAGC	TATTAGCGAC	TTTCTCTGAA	9900
ATATGGTATG	ATAAAGGATA	TACAAGGAGA	TAAAATGAAT	AATAATTTAC	TGGTATTACA	9960
ATCAGACTTT	GGTCTGGTTG	ATGGTGCGGT	ATCGGCTATG	ATTGGAGTGG	CTTTAGAAGA	10020
GTCTCCAACC	TTAAAAATAC	ATCACTTGAC	GCACGATATC	ACGCCTTATA	ATATTTTTGA	10080
GGGGAGCTAT	CGTCTCTTTC	AGACGGTGGA	TTACTGGCCT	GAGGGAACGA	CGTTTGTATC	10140
GGTTGTCGAT	CCAGGTGTCG	GTTCGAAACG	TAAGAGTGTA	GTTGCCAAGA	CTGCAAAAAA	10200
TCAATACATT	GTCACGCCAG	ATAATGGGAC	GCTTTCCTTT	ATCAAGAAAC	ACGTTGGCAT	10260
TGTAGCCATT	CGTGAGATTT	CTGAGGTGGC	CAATAGGCGT	CAAAACACAG	AGCATTCTTA	10320
TACCTTCCAC	GGTCGTGATG	TCTATGCCTA	TACTGGTGCT	AAACTGGCCA	GTGGTCACAT	10380
TACTTTTGAG	GAAGTAGGGC	CAGAGCTCAG	TGTGGAACAG	ATTGTAGAGO	TTCCAGTCGT	10440

			552			
AGCGACCATC	ATAGAAGATC	ATCTGGTGAA	GGGAGCCATT	GATATTCTGG	ATGTGCGTTT	10500
CGGTTCGCTT	TGGACCTCTA	TCACACGGGA	AGAATTTTAC	AAGCTGGAAC	CAGAATTTGG	10560
TGATCGTTTT	GAAGTGACCA	TCTATCATGC	TGATATGCTG	GTCTATCAAA	ATCAGGTTGT	10620
CTATGGCAAA	TCATTTGCAG	ATGTGAGAAT	TGGGCAACCs	ATCTTTACTC	TCAGCATCTE	10680
CGATTAGCTG	GGCAATTCGT	TCTAGTTGGA	TTTCGTCAAT	CAAGGT		10726

(2) INFORMATION FOR SEQ ID NO: 67:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7163 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

60	TATCGTGAAG	GATTGGGGCT	TCAATAAAGG	CAAGATCTGG	CGATATCAAT	TTATCTTTAA
120	ATCCAAGCCA	CGAGGACGGT	ACGTGACAGA	TATGTCTGTG	AGCCCATGGA	TTGGCATCCA
180	AACGCTGGTA	CCTCGTTAAT	TCATTGACAT	GAGGTTGGTG	AATCGAACAA	TGGTCAAGCA
240	GTCATCGATA	TTTCCGTAAG	GCGCCGCTGA	TGCGAAATGA	AGTTCCAATG	TTATCCGCCG
300	ATAAAGAAAG	TCCTTCTATG	AGGCAGTTAT	ATCGTTTCAA	CGCACCATTT	TTGACTTAAA
360	GAAACAGTTA	ACTGGGACGT	TGATGAGCGA	ATTTGTTCGA	GATTATCAAT	GGCATGGAAA
420	GCGTCTGAAT	CCGCAACATT	AAATGTTGAC	GGGGGCTTGA	TGCTGCTAAA	GCGCTTATGC
480	ACTCCTCAAA	TTATATTGCC	TTGGACCGGG	TGTAACGGAA	CAATATCCAA	ACGGTGGAGC
540	CAGTTCATCA	CCCATTTGAC	GTTCTCGCCA	CAAGAAGATG	TCGTGAATTG	CAGCACCTCT
600	conscision	TTTGATGGGC	ATACTGAAGA	CGTTGGGGAA	ACCTGCTGCA	TTGCAAAAAC
660	GATGGCGGTA	CCTATATGTA	ATGGCCACAT	AATTTTGTCA	TGATGCCAGC	TTCTCGCTAG
720	ATGAAAATCG	AGAAGATCTT	AAAAATAGAA	CAACCTGAGT	CATCGGAAAA	TCTTAGCCTA
780	AGTCTAAAAG	TATTTACGAT	AGAATCACAT	CAAGCTAGCA	TGAAAATAGT	САТТЛАТСАА
840	GAAGAAGGAG	TATGCGTGGA	TTAACTATGG	TACCAATTAT	TAAAAAAGGC	AAGCGACAGA
900	AATACAAAGG	CATCCTTTTA	TAATGGCTGC	CAGAACGGAC	AACTTATGTG	AAAGTCAATT
960	GCTTTAAACA	GGCTATGCTT	CGGGTGTAGG	GGCTGTGGTA	TGTTGTTACC	CAGTTGACTT
1020	CTTTATTCTC	TGACGCTTAC	TGGACCCAAC	GGTCTAGCAG	TGTTGTCTGT	GCTTCCCTGG
1080	TGGGGGGCAG	AGGATTTGGC	CTTATGCCAA	TTGTCTATCC	TGGTAACGCC	AAATCAATGG
1140	GGTGGCTACC	AGAAATGGGC	TATTTGCTGA	TTTGAACGCT	CAAATTGATG	AACTGACCCT

CAAGAGAACG	TGTAATCCCT	GAACAACGCA	ACGCTCGTAT	CTTAAACGAG	GTGAAACAAA	1200
TCACCCACAA	TGATTTGATG	ACCATCCTTA	AAATAATCGA	CCAAGACTTC	CTCAAAGACA	1260
CCATCTCTGG	CAAATACTTC	CAAGAATACT	TCTTTGAAAA	CTGCCAAGAT	GATGAAGTTG	1320
CTGCTTATTT	GAAAGAAGTA	TTAGCCAAGT	AAAGCTATTC	TAAACCAGAA	AGGAACTAAT	1380
GGATGACGAA	AATATTACTG	TTTGGCGAAC	CATTAATTCG	AATTTCACCA	TTAGATGCCA	1440
CCAGTATCGG	CGATCATGTT	GCCAGTTCGA	CTTATTTTGG	CGGATCAGAA	ATTAACATCG	1500
CTTGTAATTT	GCAAGCCCTG	GGTATCTCAA	CGAAAGTTTT	TACCGCACTC	CCTGCCAACG	1560
AGATTGGAGA	TCGTTTTCTC	ACATTCTTGA	AACAGCACCA	AATCGATACC	AGTTCAATCT	1620
GTCGGCTTGG	CGATCGAATC	GGCCTCTACT	ATTTGGAGAA	CGGCTTTGGT	TGTCGTCAAA	1680
GTGAAGTTTT	CTACGATCGT	AAGCATACGA	GTATCAGCCA	GATTCGGCCA	AACATGCTAG	1740
ATATGGATTC	TCTCTTTCAG	GGGATTAGCC	ATTTTCATTT	TAGTGGAATC	ACCGTAGCTA	1800
TCGGTCAAGA	GGTCCGTGCG	ATCCTTCTCC	TACTCTTGGA	AGAAGCCAAG	CGCCGAGGAA	1860
TTGTCGTTTC	AATGGATCTC	AATCTGAGAA	CAAAGATGAT	TTCAGTCCTA	GAAGCCAAGT	1920
ATGAATTTTC	TAAGTTTGCA	CGTTTTACTG	ACTATTGCTT	CGGTATTGAT	CCTCTCATGA	1980
TTGATGACCA	AAATCTAGAG	ATGTTTCCAA	GAGACAGTGC	TAGCCTAGAA	GAGGTGGAAA	2040
ATCGCATGCG	ACTTTTAAAA	GAAGCCTATG	GTTTCAAGGC	CATTTTCCAT	ACCCTCCGCT	2100
CTAGTGATGA	GCAAGACAAA	AATGTCTATC	AAGCCTATGC	TCTAGAAGAA	CTATTTGAAG	2160
AGTCTGTCCA	ACTAAAAACT	GCAGTCTATC	AACGAATTGG	TAGCGGGGAT	GCCTTTATAT	2220
CTGGTGCCCT	TTACCAACTA	CTCCATCATT	CCTCCCTAAA	AACTACCATT	GACTTTGCAG	2280
TTGCGAGCGC	AACTCTCAAA	TGCACTCTTC	CAGGAGACCA	TCTCTCCACT	TCCTCAACTA	2340
GTATTGAAAA	TTTACTGGCA	AATGCACAAG	ATATCATTCG	TTAGGAGAAT	TACATGACCA	2400
AATCAGATAC	GATTATTGAA	СТАААААААС	AAAAAATTGT	CGCTGTTATT	CGAGGAAATA	2460
CAAAGGAAGA	AGGACTACAA	GCCTCGATTG	CTTGTATCAA	GGGCGGTATC	AAAGCTATTG	2520
AAATCGCCTA	TACCAATCAG	TATGCAGGAC	AAATCATCAA	GGAACTTGTA	GACTTGTATC	2580
AGGACGATCA	GAGTGTTTGT	ATCGGTGCAG	GTACTGTGCT	TGATGCCGTA	ACTGCTAGAG	2640
ATGCCATTCT	AGCTGGAGCA	AATTACGTTG	TTTCTCCATC	TTTCCATGCT	GAAACTGCGA	2700
AAATGTGCAA	TCTCTACAGC	ACACCGTACA	TTCCAGGCTG	TATTACCCTC	ACAGAGATCA	2760
CGACTGCACT	TGAAGCCGGT	AGTGAAATCA	TCAAACTCTT	CCCAGGTAGT	ACTCTCAGTC	2820
CAGCATATAT	CTCTGCAGTC	AAGGCACCGA	TCCCACAAGT	TTCCGTAATG	GTAACCGGAG	2880

			554			
GAGTCGGCCT	AAACAACATC	CCTCAATGGT	TCGCTGCTGG	TGCAGATGCC	GTTGGAATTG	2940
GTGGCGAACT	CAATAAACTC	GCTTCCCAAG	GCAACTTTGA	CCGCATCAGC	GAGATTGCCC	3000
AACAGTATAT	TACACTCAGA	TAAAATCATA	ACTACCCGTC	TAACGGGTGG	TTTATCTCAG	3060
AGCTATAAGC	CCAAATCATC	AGCCAGCGCC	TAAAGACGCT	GGCTTTCACG	TTGTTCAAGC	3120
CTTATTGCTC	TTGACTCGTC	ACTTGCCTCT	TTAAGAGACT	TTGGTATTAC	TTACCACTAT	3180
CCCTAAAGGG	ATCCTCATAT	TCTTTTACAC	TCAATTTATC	TAGTGCTATA	GTAGATTGAA	3240
ACTGGAATAG	TACACCTCTG	CTTCTAAAAC	attgttaaaa	ATCGATTTGA	CTGTCCTGAT	3300
CGATTTTGTC	CTGTTCTTAT	TTCATTTTAC	TATATATCAT	ACTTTACTCG	TTCTCAAATT	3360
TTCATACTCA	TGAAGAAATC	ATCCACTCGA	TAATTTCTTT	AATCTTGACT	АТАТТТСТТА	3420
ATTGTGGCTT	CATTAAGCCC	TACTGGACTT	ACATAATAAC	CTTCCTCCCA	GAAATGCCGA	3480
TTCCCAAACT	TGTACTTGAG	ATTGGCGTGT	TTGTCAAACA	TCATGAGTGC	ACTTTTGCCT	3540
TTTAAATACC	CCATAAAACT	TGAAACACTT	AGCCTCGACG	GAATACTGAC	TAACATGTGT	3600
ACATGGTCTG	GCATTAAGTG	ACCCTCGATC	ATTTCAACAC	CTTTATAACT	ACACAAGCGA	3660
TGAAATATTT	CGTCTAAACT	ACTTCTATAT	TGATTATAGA	TGACTTTTCG	TCTATACTTA	3720
GGGTGAACA	CAATATGATA	GAACACCTCC	ACTTTGTGTA	TGATAAACTA	TGAGTCTTTT	3780
GTGCCATATT	TTTTCTCCTT	TCGCTTTACA	ATTGGATTGA	ACACCTTTAT	TGTATCGCGT	3840
TTGGAGTTTT	TTTGGTATAA	CCTTCGACGC	GCACCCGTAT	AGCGGGTGGT	TGTTTTGTCT	3900
CGCACCTCAC	GGAGCGAGAC	GGACTAATAT	AGTGGAGTGA	AATAGGATAC	GAACAAATTG	3960
ATTAGGAAAA	TCAAATGAAT	TTATAGAAAT	CTTTTAGCAG	TTATAACGTT	CTATTCTAGT	4030
TTCAAAACGC	TATAGTCACA	TAATAATGAA	GTAAAAAAGG	ATAAGTATCA	ACTTATCCTT	4080
TTTTAAAAGA	AAAATCCGAA	GATATTTGGC	CTTCTTCGGA	TTTTTTCTAT	TTTCCACAGT	4140
TTCATGTAAT	TCATCTAGAT	GATGAACAAA	TTAGTTGTTC	TTTCCTCTAC	GGAATAGATA	4200
AAATGCCCCA	AGTAGCAAGA	ACCCTAGACT	TGCCAAGATT	GACTGACCTT	CTCCTGTCTG	4260
AGGGAGATTC	TTTTGATCCG	AATGGTTCTT	TTCCTCTTCA	GATTTTTCCT	TTTCTTTTGA	4326
ATTCTGTACT	TGTGGCTGAG	CTGCTTGCTC	TAGCTTTTTA	AAGACTTCCT	GATCTGGAGC	438
TGATTCCTGG	GTTTCAGGAT	TATACTAGGC	AATCTTATAT	TCATCCCCTT	CTTTTCGAAT	444
GGTATAGACT	CCACGTTTCA	AAACTTGGAA	TTGGTTGGAA	ATAGTAGAGA	CAGAATCATC	450
ATATTTCACA	ATGCCCCAAA	CTCCTTGTTT	AGCATCATAA	ACAGACTGAA	GGGTTTCGTT	456
ATTTTCGATG	AGGCTACTTT	CTAACTCTTT	TATCATTTGA	TTGAAGGTGG	CACGATCCAC	462
GTTAGGA ATC	ACCATATACC	CATAAGAATC	TCTATTTCC	TTATGAGCCT	GACTAATCGT	468

AAGAAATTC.	A TTTTCAACTT	CCTTGTCTGA	CTGTCCTTC	TTGATATCCT	TCCAGGCTCC	4740
CTTTTGCAA	A GCCTTACTCA	TACTGATTGA	ACTOTTOTTA	AAGAAAAAGT	AACCAATATT	4800
CTTTTTCGA	A TCGAACGATT	CTAAAAAGAC	ACTTTGGGTT	TCAGGATAAT	CCTTTTCTTG	4860
TTCTGTAAG	G GAGGCTTCTT	TATCATTGAC	ATAGACTTTA	TATGGATTAC	CTGATTCCAG	4920
TTTTCTCTG	G TCAATTGTAG	TTGCAGCAGT	ATCTGTTGAA	GTGTTTTGGA	TATTGCTTCC	4980
TAAAAAGGC	ATCTTATCCT	TTAGCATAAA	CCAGCTCTTA	TGAGCAGTCA	ATGTTTGATT	5040
CCAGTTGGT	AAATCCATGG	TTGCTGTCGC	ATTGGCATCA	TCTAGTTTGC	TCGTTCCAAC	5100
GAAAGCAGAG	GGTAAAACTT	TACCTGTATC	GCTATCCGCT	CTCTTAGCAT	CCGTCTCTGT	5160
TGTACCAGGG	ATCTTATATG	GATTAACTGT	TGGCCAGTAG	CCATCGCTAT	AGTGACTCAA	5220
ATCGCCATTC	TAAAGATAGA	ACATCCCATC	ACTCGTATAC	CAACCACGTT	TATTTTCCTT	5280
GTTCATGTGT	TCGTAATTCA	AGGTACGACT	GGAAAAGAGT	GACAAGCCAA	ATCCAAACCC	5340
TTTCTCTGCA	TTGTACATGG	CTGTTTTATC	CATCTTGTTA	AAGGCAGATA	GGTAACTTGG	5400
TCTTGGAACA	CTTGCGACTC	CTGCATCACT	TAACAAGGAT	TGCATCAAAC	TGATATCCTT	5460
ATAAGTCTTC	AAATTCTTAA	AGACATCATA	ATAACTATCC	GATTGAACAA	TGGTCTTCAC	5520
AAGACTCTGC	AAACATTGTT	TGGTTTCTCC	TTCAGACATA	TCCGCTATTC	GGTGAATCCC	5580
TCTTAGTACT	TCTACTGCGG	CCACGTGCCC	CTCGCTATTT	GCACGACTGA	TCGAGCGTCC	5640
ACGACTCATA	TCCATCAACT	CTCCATTCAC	CAGCAAAGGA	GCAAACGATT	TATCAATCCA	5700
GTGGTACATG	GTTTGCATTT	TATCTTTATC	GATTGGATTC	TTGGTCTTTT	GAATGACTGG	5760
CAACAGTTGA	GACAGGCCAT	CAATCAAAAC	ATTCCCATAA	GCACCCGTAT	AGGCAACATT	5820
GGTGTGGTCG	ATATAGGATC	CATCTTGATA	AAAACCTTCA	CCTTGGTCTA	CCAACTTGAA	5880
CACTTGCTCA	ATCGAGCGAA	TGGTAGAAGA	AATTTCTTGA	TCATCCTTAC	GCAGTAAACC	5940
AGCTATTACT	TTTACCCTTC	CCATATCAAC	TAAGTTTCCA	CCTAGAGCCT	TGAATGGGTT	6000
ATCAGTCGTC	TTTCGGAAAT	GTTCGGGATC	TGGTACAAAT	TTTTCAATCA	CATCTGTATA	6060
TTTTTTTAATT	TCCTCATCAG	AGAAGTATTC	TTTCATCAGA	GACAAGGTAT	TGTTGATGGC	6120
ACGAGGTGTA	CCGATTTCAT	AATCCCACCA	GTTCCCAACA	ATGCTCTTTT	CACTATTGTA	6180
GACATGTTTA	TGCATCCATT	CCATGGAATC	CCTGACTGTT	CGAACGACAG	TTTCATCTTG	6240
ATAATAACGA	GAAGAAGGAT	TGGTCACTTG	CTTGGCCATC	TCCTCCAATT	TCCGATAAGT	6300
GGCAGTCAGA	TTTGCAGACG	TTTATAATT	TGAAAATTTT	TCCCACAAAT	AGGTGCGGTC	6360
CGCCTGACTT	GAAATACTGG	ATAGGCTATC	AGCTACCTTT	CCTTCCAATT	CCTGGTTTAA	6420

			556			
TTTGGCCATC	TGTTCATTTT	TAGAATCATA	GTATTGATTC	CCAGCGATGA	TGCCATTCCA	6480
GTCATCCAAA	CGGTCTGTGT	ATGCATCCTT	AACAGAGGCC	AGAATCTTCA	AAGGAATCTT	6540
TTTCACTTCC	TTGCCATCTT	TACTGACAAT	GACATTGGTT	GTCCCTTCCT	TAAGAGGTTC	6600
TAAAATTCCA	TTTTTGACTG	AAGCAACGTC	AGGATTTTCT	ACCTTATAAG	TATAGTCCGC	6660
AAGAGAAAAA	ACATGTTTTT	TTCCAATTGG	TAAATCAATC	TTTTCCTCAA	GCTGTTTATC	6720
TGTTTGAGAA	TCCTCAGAAA	GCTGGTCTGC	TACCTCTACC	AGCTCAATAT	CCTTAAAGGA	6780
AACAGTCCCA	GTTCCTGTTT	CATAGAATAA	CTCCAGCTTG	ATTTTATCAA	CATCTAAAGT	6840
CGGGCTATAG	TCTGCTTCAA	TGGTCTGCCA	GTCCTTTGTT	CCTGACGTCG	TTGCAGAATT	6900
CCACAATCGC	TTGTCCTTAC	CACTTTCCTC	AATGATACGA	ACTTTGGCAA	TCCCGATTTT	6960
ATTATCTGTT	TTAATCTTGA	AACGCAGTTT	ATACTTTTTC	TTAGCTTCAA	TAGGAACCAT	7020
ACGGTGAAGC	GCTGCCCTTA	ATTTCTCATG	GCTTGAGATA	GTGATAGCCC	CATCCTTAGC	7080
CTCAATGACT	CGAGTTGAGG	CATCTGCACT	ATTCTTCTGG	TCTACCCAAG	CTGACCACCC	7140
CCTGAGCTTT	GCTTCCTGTC	CGG				7163

(2) INFORMATION FOR SEQ ID NO: 68:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9244 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

60	TTTAAGGAGG	AGTCAAAATT	AATGGTGCCA	CGGTACCCAA	TACATGTAAG	CGTTATAACA
120	TGAAAAAAGT	ATTGGGAAAC	CTTCTCAGAA	CAATTCAGGT	TCTTCACATC	AAAATACATG
180	TTGAAAGGCT	CCGGACTATC	AAACTTGTTG	AGGAGTTAGA	CGTCCAGGCA	TATGTTGCAC
240	CATTTGCCCA	GAACATGATG	TGCTCAAAAA	TCTTGGAAGA	GATATTCCTT	TCTTTTTGAT
300	CTGAATCATT	CAACTCGCTG	CTACCTAGAA	TTGAGGTTCT	GATGAAGGAA	AGCTCTTCGC
360	CCAACATCCG	TTAGACGAAG	CGAGGAATAC	ATCAATTTAT	GAAATCCGCG	GACCTCTCCA
420	ACAACCAAGA	GGCATCAAGG	ATTGCTTCAC	CTATTCGTGA	ACCAAGGTTG	TGATCGTCAA
480	TTCCTGACGA	TTGCCAGAAA	AAAAGTTGAA	CTGGGATTCA	AAAACAATGG	ATTGGTTGAA
540	ACCCGATGCC	TTTGCAATTG	AGAGTATCCA	TAGTTGAATC	CTAACTGACT	AGCTAAAGAT
600	CGCTTAACCA	AACGCCGTAT	AACAATTGGA	ACCCATTTGC	TTCACTCGCG	AAACCTCTAT
660	TCAAATACCA	AAGTATATCT	ACTCTACGGT	ACCGTGAAAC	GACACTCGTA	CATGTTTGCA

CCCAATCTAT GGCGGAAAAG TGC	GATTTGGT CTACAACCGT	GAAGAAGATA	CGCGTATCGA	720
AGGTGGAGAC GAGTTAGTTC TTT	rctaaaga cgtccttgca	GTAGGTATCT	CTCAACGTAC	780
AGACGCAGCT TCTATCGAAA AAC	CTTTTGGT CAACATCTTC	AAGAAAAATG	TTGGCTTCAA	840
GAAAGTTTTG GCCTTTGAAT TTC	CTAACAA CCGTAAATTC	ATGCACTTGG	ATACTGTCTT	900
CACTATGGTA GACTATGACA AGT	TTCACTAT TCACCCAGAA	ATCGAAGGCG	ACCTTCACGT	960
TTACTCAGTT ACTTACGAAA ACC	GAAAAACT TAAAATCGTT	GAAGAGAAAG	GTGACTTAGC	1020
TGAACTTCTT GCTCAAAACC TTC	GTGTAGA AAAAGTTCAT	TTGATTCGTT	GCGGTGGTGG	1080
CAATATCGTA GCAGCTGCGC GTG	GAACAATG GAACGACGGT	TCTAACACTT	TGACCATCGC	1140
ACCTGGTGTG GTAGTTGTTT ATO	GACCGCAA TACCGTGACC	AATAAGATTT	TGGAAGAATA	1200
CGGGCTTCGC TTGATTAAGA TTC	CCCGGAAG TGAATTGGTT	CGGGCCGTG	GTGGACCTCG	1260
TTGTATGTCT ATGCCATTTG AAC	COTGAAGA AGTGTAATCG	CTGTTCGATA	TTCGTCAATA	1320
GAAAATGTAA AAAATAGAAA GAG	GAAATAA TAAAATGACA	AATTCAGTAT	TCCAAGGACG	1380
CAGCTTCTTA GCAGAAAAAG ACT	TTTACCCG TGCAGAGTTA	GAATACCTTA	TTGGTCTTTC	1440
AGCTCACTTG AAAGATTTGA AAA	AACGCAA TATTCAACAC	CACTACCTTG	CTGGCAAGAA	1500
TATCGCTCTC CTATTTGAAA AAA	CATCTAC TCGTACTCGT	GCAGCCTTTA	CAACTGCGGC	1560
TATCGACCTT GGTGCTCACC CAG	SAATACCT CGGAGCAAAT	GATATTCAGT	TGGGTAAAAA	1620
AGAATCTACT GAAGATACTG CTA	AAGTATT GGGACGTATG	TTTGACGGGA	TTGAATTCCG	1680
CGGATTCAGC CAACGTATGG TTG	GAAGAATT GGCAGAATTC	TCAGGCGTTC	CAGTATGGAA	1740
CGGTCTAACT GACGAATGGC ACC	CAACTCA AATGCTCGCT	GACTACTTGA	CTGTTCAAGA	1800
AAACTTCGGT CGCTTGGAAG GCT	TTGACATT GGTATACTGT	GGTGATGGAC	GTAACAACGT	1860
TGCCAACAGC TTGCTCGTAA CAG	GTGCTAT CCTTGGTGTC	AATGTTCACA	TCTTCTCACC	1920
AAAAGAACTC TTCCCAGAAA AAG	SAAATCGT TGAATTGGCA	GAAGGATTTG	CTAAAGAAAG	1980
TGGCGCACAT GTTCTCATCA CTG	AAGATGC TGATGAAGCA	GTTAAAGATG	CAGACGTTCT	2040
TTACACAGAC GTTTGGGTAT CAA	TGGGTGA AGAAGACAAA	TTCGCAGAAC	GTGTAGCTCT	2100
TCTTAAACCT TACCAAGTCA ATA	TGGACTT AGTTAAAAAA	GCAGGCAATG	AAAACTTGAT	2160
CTTCCTACAC TGCTTGCCAG CAT	TCCACGA TACTCACACT	GTTTATGGTA	AAGACGTTGC	2220
TGAAAAATTT GGTGTAGAAG AAA	TGGAAGT AACAGACGAA	GTCTTCCGCA	GCAAGTACGC	2280
TCGCCACTTC GATCAAGCAG AAA	ACCGTAT GCACACTATC	AAAGCTGTTA	TGGCTGCTAC	2340
ACTTGGTAAC CTTTATATTC CTA	AAGTATA ATTTTAGATA	ATAAACCGTC	TACCAACAGC	2400

558 TATGAGGGCT GCGACTAATA GCTTTAGTCC GGTCCTCTTT TATGTAATGG TAATCTATTA 2460 TTTCTTATAA AATATGTGAA AAATCATTAA ATTGAAATCT AAACGCATTC TATTGAGTGT 2520 GATAAAGGAG AATTTATGGC AAATCGTAAA ATTGTAGTAG CTTTGGGAGG AAATGCGATT 2580 CTTTCTTCTG ACCCATCAGC AAAGGCTCAA CAAGAAGCTT TAGTTGAAAC AGCTAAGCAT 2640 CTTGTAAAAT TGATTAAAAA TGGAGATGAT CTGATTATCA CTCACGGTAA TGGACCTCAA 2700 GTTGGGAATC TCTTGCTCCA ACATTTGGCA TCAGACTCTG AAAAGAACCC TGCCTTCCCA 2760 CTCGACTCAC TTGTCGCTAT GACAGAAGGT AGCATCGCTT TCTGGTTGAA AAATGCTTTG 2820 CAAAATGCTC TCTTGGATGA AGGCATCGAA AAAAATGTTG CCTCTGTTGT AACGCAAGTT 2880 GTCGTAGATA AAAATGATCC AGCTTTTGTT AACTTGAGTA AACCAATCGG TCCTTTCTAT 2940 TCAGAAGAAG AAGCAAAAGC AGAAGCCGAA AAAAGCGGAG CGACTTTCAA GGAAGATGCT 3000 GGCCGTGGCT GGCGTAAGGT CGTTGCCTCA CCAAAACCTG TTGACATCAA AGAAATTGAA 3060 ACCATCCGTA CTCTTTTAAA TAATGGTCAA GTCGTCGTAG CTGCAGGTGG TGGCGGTATT 3120 CCCGTCGTCA AAGAAACAA TGGACATTTG ACTGGTGTCG AAGCGGTTAT TGATAAAGAC 3180 TTCGCTTCCC AACGTTTGGC AGAATTGGTT GATGCAGACC TCTTCATCGT TTTGACAGGT 3240 GTAGATTATG TATTTGTTAA CTACAACAAG CCAAACCAGG AAAAATTGGA ACATGTGAAT 3300 GTTGCCCAGC TGGAAGAATA TATCAAACAA GATCAGTTTG CACCAGGTAG CATGCTTCCA 3360 AAAGTAGAAG CAGCTATCGC TTTTGTCAAT GGTCGTCCAG AAGGAAAAGC AGTTATTACT 3420 TCCCTTGAAA ATCTAGGCGC CTTGATTGAA TCTGAAAGCG GAACAATTAT TGAAAAAGGA 3480 TAAGTTGTTT TACTAATAAG ATGTATTCTA TTTCTAGTAT CTTTATATCA AATTAGAAAT 3540 TATTCTTGAA AACATGTACA ATATTTCAAA AGATACTAGT TTTAGACTTT AATATGGTAA 3600 AACAAATATA AATAGAAAGC GTTTTCTTGA ATGTTTATTT AAGAAAGTAG TTGGTTTTTT 3660 ACACTTTGTT AGACATCAGG AGGAAAAACA AATGAGTGAA AAAGCTAAAA AAGGGTTTAA 3720 GATGCCTTCA TCTTACACCG TATTATTGAT AATCATTGCT ATTATGGCAG TGCTAACTTG 3780 GTTTATCCCT GCGGGGGCCT TTATAGAAGG TATTTACGAG ACTCAGCCTC AAAATCCACA 3840 AGGGATTTGG GATGTCCTCA TGGCACCGAT TCGGGCTATG CTAGGTACTC ATCCAGAGGA 3900 AGGTTCGCTC ATTAAAGAAA CGAGCGCAGC GATTGATGTA GCCTTCTTCA TCCTTATGGT 3960 TGGTGGTTTC CTTGGCATTG TCAACAAAAC TGGTGCTCTT GACGTAGGGA TTGCCTCTAT 4020 CGTGAAGAAG TATAAGGGCC GCGAAAAAAT GTTAATTTTG GTACTGATGC CTTTGTTTGC 4080 CCTCGGTGGT ACAACTTATG GTATGGGTGA AGAAACAATG GCCTTCTATC CACTCCTTGT 4140 GCCAGTTATG ATGGCCGTTG GTTTTGATAG CCTGACTGGT GTTGCAATTA TTTTGCTCGG 4200

TTCTCAAATC	GGCTGTTTGG	CATCTACTCT	GAATCCATTT	GCGACAGGTA	TTGCTTCAGC	4260
GACTGCGGGA	GTTGGTACAG	GGGACGGTAT	CGTACTTCGT	CTGATCTTCT	GGGTTACCTT	4320
GACTGCTCTT	AGTACTTGGT	TTGTTTACCG	TTATGCGGAT	AAGATTCAAA	AAGATCCGAC	4380
TAAGTCACTG	GTTTATAGTA	CTCGCAAAGA	AGATTTGAAA	CACTTTAACG	TAGAAGAATC	4440
TTCATCTGTA	GAATCTACAC	TTAGCAGCAA	ACAAAAATCA	GTTCTCTTCT	TATTTGTGTT	4500
GACATTCATC	TTGATGGTAT	TGAGCTTCAT	TCCATGGACA	GACCTTGGCG	TTACCATTTT	4560
TGATGACTTT	AATACTTGGT	TGACTGGTCT	TCCAGTTATT	GGTAATATTG	TCGGTTCATC	4620
TACTTCTGCA	CTAGGTACTT	GGTACTTCCC	AGAAGGCGCA	ATGCTCTTTG	CCTTTATGGG	4680
TATCCTGATT	GGTGTTATTT	ATGGTCTTAA	AGAAGATAAG	ATTATCTCTT	CCTTCATGAA	4740
TGGTGCTGCT	GACTTGCTCA	GTGTTGCCTT	GATCGTAGCG	ATTGCTCGTG	GTATTCAAGT	4800
TATCATGAAC	GACGGTATGA	TTACCGATAC	AATCCTCAAC	TGGGGTAAAG	AAGGCTTGAG	4860
CGGTCTATCT	TCACAAGTCT	TTATCGTTGT	AACTTATATC	TTCTATCTAC	CTATGTCATT	4920
CTTGATCCCA	TCTTCATCTG	GTCTTGCCAG	CGCAACTATG	GGTATCATGG	CTCCACTTGG	4980
AGAATTTGTA	AATGTCCGTC	CTAGCTTGAT	TATCACTGCT	TACCAATCTG	CTTCAGGTGT	5040
CTTGAACTTG	ATTGCACCAA	CATCTGGTAT	TGTGATGGGA	GCTCTTGCAC	TTGGACGTAT	5100
CAACATTGGT	ACTTGGTGGA	AATTCATGGG	CAAACTCGTA	GTCGCTATTA	TTGTAGTGAC	5160
CATCGCCCTT	CTTCTCCTTG	GAACCTTCCT	TCCATTCCTA	TAAAATAGTG	AGTGAGGTGA	5220
TTCCATGAAA	ATAGATATAA	CAAATCAAGT	TAAAGATGAA	TTTCTTATAT	CATTAAAAAC	5280
CTTGATTTCC	TATCCTTCAG	TACTCAATGA	AGGAGAAAAT	GGAACACCTT	TTGGACAAGC	5340
AATCCAAGA?	GTCCTAGAAA	AAACTTTAGA	GATTTGTCGA	GACATAGGTT	TCACTACCTA	5400
TCTTGACCCT	AAAGGTTATT	ACGGATATGC	AGAAATCGGT	CAGGGAGCAG	AGCTTCTGGC	5460
CATTCTCTGT	CATTTGGATG	TTGTTCCATC	AGGTGATGAA	GCAGATTGGC	AGACACCGCC	5520
ATTTGAAGC	A ACTATCAAAG	ACGGCTGGGT	ATTCGGACGT	GGTGTCCAAC	ATGATAAAGG .	5580
CCCTTCGCT	GCAGCTCTCT	ATGCAGTAA	A AAGCTTGCTG	GACCAAGGTA	TTCAGTTCAA	5640
AAAGCGCGT	A CGCTTTATCT	TTGGTACCG	TGAGGAAACC	CTCTGGCGC1	GCATGGCACG	5700
					CTTTTCCTCT	5760
					CGGATCAACT	5820
					r ACCAAGGTCT	5880
CCTCTATGA	A CAGGTTTGT	ACGGTCTCA	A AGAAGCTGGT	TATGATTAC	AAACCACTGA	5940

ACAAACCGTA	ACGGTTCTCG	GAGTGCCAAA	560 GCATGCTAAG	GATGCTAGTC	AAGGTATCAA	6000
TGCTGTCATC	CGACTAGCTA	CCATTCTTGC	TCCTCTCCAA	GAACACCCTG	CTCTCAGTTT	6060
TCTTGCAACA	CAAGCAGGTC	AAGACGGCAC	AGGAAGACAA	ATCTTTGGTG	ATATAGCAGA	6120
TGAACCTTCT	GGTCACCTAT	CCTTTAATGT	CGCAGGTCTC	ATGATCAATC	ATGAACGTTC	6180
TGAAATCCGT	ATTGACATTC	GGACTCCTGT	CTTAGCTGAC	AXCGAAGAAC	TAGTAGAGTT	6240
GCTTACAAGA	TGTGCACAAA	ACTACCAACT	CCGCTACGAA	GAGTTTGACT	ATCTAGCGCC	6300
TCTATACGTC	GCAGAAGACA	GTAAACTCGT	TAGCACACTG	ATGCAAATCT	ACCAAGAAAA	6360
GACTGGCGAT	AACAGTCCTG	CTATTTCATC	CGGTGGTGCC	ACTTTTGCTC	GCACCATGCC	6420
AAATTGTGTA	GCCTTCGGCG	CCTTATTCCC	AGGAGCGAAG	CAGACAGAAC	ATCAGGCAAA	6480
TGAATGTGCC	GTTCTAGAAG	ATTTGTACCG	TGCTATGGAT	ATTTATGCCG	AAGCCGTCTA	6540
TCGACTTGCA	ACTTAATCAG	GCAACTGTTT	CTACCAAAAA	AAATCGACCG	ATTAATGAAC	6600
TGCACCCCAA	AAGTTAGACA	GAATAAATCT	AACTTTTGGG	GTGTTTTATT	ATGAAATTGA	6660
GTTATGAAGA	TAAAGTTCAG	ATCTATGAAG	TAAGAAAGCA	AGGACAAAGC	TTCAAACAGC	6720
TTTCAAAAA	ATTTGGTGTG	GATGTTTCTG	GTCTAAAGTC	ATCTGAATCT	TTGAGATGAG	6780
СТТТАТАААТ	CGCTTTTTTC	AGTTTTTGCA	CTGGTGTTTC	GATAAACTCA	AACTTTTTAG	6840
CCGTGGTATT	GCCTGATTTT	ATAGTATATT	GAAACTAGAA	TAGTACACCT	CTCCTTCTAA	6900
AACATTTTT	GAAATCGATT	TGACTGTCCT	GATCGATTTG	TCCTGTTCTT	ATTTCATTTT	6960
ACTATATTT	AGCCACTICG	TCTTTAACGG	CTTTATTCAT	AAGCTCTTGT	AATTTTTCTT	7020
TACTATCAAT	TACTTCTGAT	TTTCCGTTGT	AATTTATTGT	AATAGGTTTT	AACTTACCTA	7380
ATTTCTCGAC	ACGCTCATTA	ATTTGATCTT	TTTTGAAGGC	TGCTTATGTT	TTTCCTAAGA	7140
TTTTTTCAA	ATTTATTA	TCAGATAGCG	GTTTGTCTTC	TTCTTCAGCT	TGGTTTTTGT	7200
ATTAATTTG	AACATAAGGA	ACAAATCCTT	CATAGTAACC	TAATGCTCCC	ATAAGTTCAA	7260
AAGCTTGTTT	TCTAATTCAA	ACCATTGCAA	CTCAGATTTC	AGCTTTTCAG	ATAAATCCTG	7320
CTCATCCAA	TAATGACTTG	AAATTAGTGC	TGAACTCGTT	TCTGTATCCT	GTACAGGCTG	7380
AGCACCCATA	CCAGCAAAAA	ATAAACTCGT	TCCTAGCAAG	ACCGAACAAG	CTCCTATTGC	7440
ATATGGCCTG	AAAGAAAAAC	GCTGCTTTCT	CTCAAATTGA	AATTCTTTCA	TCCCATCTCC	7500
CATCATTCAT	TATTACTGTA	TATTTTGTAT	ATCAGAAATA	GTTTGTATTC	ACAAATCTTT	7560
CTAGTTATT	CCTTATCATT	CCTAATTAAG	GGAGATAACA	TACAATAATT	TTTAGTTAAA	7620
TGTATATCG	A TGTTTTTTGT	TTTTCTTAAT	AAACGCAATA	CAAAAAGAGC	CTGTTACCAA	7680
GCTCTTTGT	CTCAATGAAA	ATCAAAGAGC	AAATTAGGAA	ACTAGCCACA	GGTTGCTCAA	7740

AACACCGTTT	TGAGGTTGCA	GATAGAACTG	ACGAAgTCAG	CTCAAAACAC	TGTTTTGAGG	7800
TTGCAGATAG	AACTGACGAA	GTCAGTAACA	TCTATACGGC	AAGGCGACGC	TGACGTGGTT	7860
TGAAGAGATT	TTCGAAGAGT	ATTAGTCTAT	TATTTCTTCT	CAGCGCGAAG	GGCTGACAAG	7920
ATTTGTGTTC	GGATATCATC	CACACCATTT	GGAGTATTTG	GTAAAAAGAT	AGTTTGATTT	7980
CCTTTAGAGG	CAAAGGTATT	CAAGGTATCC	AAATACTGGT	TGGTCAAGAG	GATAGACATG	8040
ATTTGTTCTT	CTGTCATGCC	AACATTGGCT	TCCTTGAGTT	CGGTGATAGA	CTCTGCCAAT	8100
CCATCCACAA	TCGCCTTACG	TTGTTGGGCA	ATCCCCACAC	CATGAAGGCG	GTCTTTTTCT	8160
GCTTCTGCTT	CAGCTGCAGT	GACAATTTTA	ATCTTGTCAG	CTTCCGCCAA	TTCTTGTGCT	8220
GCGACCCGCT	TACGTTGCGC	CGCATTGATT	TCATTCATGG	ATTGCTTAAC	TTCTGCATCT	8280
GGTTCGACCT	TGGTAATCAA	GGTTTTCACG	ATAATGTAGC	CGTAAGTGGT	CATTTCTTCT	8340
GCTACTTGGT	GTTGAACTTC	AAGGGCAATC	TCATCTTTTT	TCTCAAACAA	TTCATCCAAG	8400
GTTAATTTTG	GAACAGAAGA	GCGAAGAGCA	TCTTCGATAT	AAGATTTAAT	CTGAGATTCT	8460
GGACGTATGA	GTTTATAGTA	AGCATCTGTC	ACGCTCTGCT	CGTTGACACG	GTACTGAGTC	8520
GCTACATTCA	TCATAACGAA	CACATTGTCC	TTGGTCTTAG	TCTCAACCAC	AATATCACTT	8580
TGCAACAAGC	GCAACTGAAT	CCGTGCTGCA	ATCGAGTCAA	TCCCAAAAGG	CAAGCGAATA	8640
TGAATACCGC	TATTAGCAAC	CTTTTGGTAT	TTCCCAAAGC	GTTCAATAAT	CGCCACCGAC	8700
TGCTGACGAA	CCACATAAAC	TGTACTCAGT	GTGACTATCA	CCAATAGGAG	CACACAAACA	8760
ATCAGAAAA	TCATGAAAAA	TATTGCCATA	ATGGAACCTC	CACAAGTATT	TTTCTAGTAT	8820
TATAGCACAT	TTAAAGAAGG	CTGTGCCGTT	TTTACTGCGA	TTTTTCCTGA	AATGTCAATA	8880
ATTAGAGGTG	AATTGTCCTA	TTGTCGTCCA	ATCTCTTGCT	AAAATAACTC	TTTATAAAAG	8940
CCAATCGTTT	CTTCTAAGGT	TGGCATAAAT	GGATTTCCTG	GTGCGCAGGC	ATCAATCAAG	9000
GCATTCTTAG	AAAGGTATTC	AAAGTCGAAA	TCTTTTTCTT	CAATACCAAG	TTCAGTCAGT	9060
TTCTTAGGAA	TACCTACTGT	CTCAGAAAGC	TTCTCAATCT	CAGCAATCGC	ATAATCGGCA	9120
CATTCTTGAT	CTGATTTACC	TTCTACATGA	AGTCCCAAGG	CTTTGGCAAC	ATTGCGGAAA	9180
CTTCTGGTA	CACGTTTAGC	ATTTTCACGT	TCTATAACTG	GTAGCAACAT	GGCACAGCAC	9240
ACGG						9244

(2) INFORMATION FOR SEQ ID NO: 69:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 8898 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

562

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

GATCTGAACT TTATCATCAT	AACTTAATTT	САТААТАААА	ACACCCCAAA	AGTTAGATTT	60
TTTCTGTCTA ACTTTTGGGG	TGTAGTTCAG	TCATTGGACT	GACGTTTTTT	TGTATGCTTA	120
TTTTGATTTG ATGTAGTTGA	TACCATCTGC	TTTTGGTGCG	ACTGCTTTTC	CAAAGAAGGC	180
TGCTAAGACA AGAATTGTCA	AAACATAAGG	TGCAATTTGA	AGATAAACCG	CTGGCACTCC	240
TTGTAGGAAC GGCAATTGAG	AACCGATAAC	AGCCAAACTT	TGTGAAAGTC	CAAAGAAGAG	300
ACTAGAAAGC ATAGCACCGA	TTGGATTCCA	TTTCCCAAAG	ATCATCGCAG	CAAGGGCGAT	360
AAATCCAGGT CCAACAATAG	TTGTCACTGA	GAAGTTAACT	GAGATTGATT	GCGCATAAAT	420
CGCTCCGCCA ATTCCACCTA	GAAAACCTGA	AATAATAACC	CCTAAATATC	TCATCTTGTA	480
GACGTTGATT CCCAAGGTAT	CCGCTGCTTG	AGGATGTTCA	CCGACAGAGC	GGAGACGAAG	5,40
ACCAAATTGA GTCTTAAAGA	GAATAAACCA	AGCAAGGAAT	GAGAAGGCAA	TCGCCAGATA	600
ACCAAGTAGA CTAGTTGACT	TGAAGAAGAT	ATCACCAATC	ACTGGGATAT	TTGCCAAGAC	660
TGGGAAATCA AAGCGTCCAA	AAGTTTGACT	TAGGTTGTCG	GTTTGTCCTT	TGTTATAAAG	720
AACTTTAACT AAGAAAACAG	CCAAGGCAGG	CGCCATCAAG	TTCAATACCG	TACCGCTGAC	780
AACATGGTCT GCACGGAAAT	GAACCGTCGC	TGCTGCGTGG	ATGATAGAGA	AAACACTACC	840
AACCAATCCT GCTACAAGCA	AGGATAGCCA	TGGAGTTGCT	GCTCCAAATT	GTTCTGCAAA	900
TTCAAGGTTA AAGACAACTC	CAGAAAAGGC	ACCCATAACC	ATAATTCCTT	CAAGGCCAAC	960
GTTTACCACA CCACCACGTT	CAGAGAAAAC	ACCACCGATA	CTTGTAAAGA	TGAGAGGTGC	1020
TGAGTAAATC AGCATAGAAG	ACACCAAGAG	GGGGAGCAAG	GTTATAATAG	ACATCTTTAC	1080
TTACCTCCTT TAACTTGTTT	TTTCGGTTTG	ACAAAGCGTT	CGATAAGGTA	ATGAACACTG	1140
ACAAAGAAGA TAATAGACGC	TGTTACAATG	CTGACAAGCT	CAGATGGTAC	CTGCGCCGCA	1200
TTCATACCAG GAGCCCCAAC	TTGGAGAACG	CCAAATAGGA	AGGCTGCAAA	GAGTATACCA	1260
ATTGGTGAGT TGGCCGCAAG	CAAACTAACC	GCCATTCCGT	TAAATCCGAT	AGCTAATGAC	1320
GAACCTTGAA CATAGACGTT	CTGGAAGGTT	CCCAAACCTT	CAACAGCTCC	ACCAAGACCT	1380
GCCAAGGCAC CTGAAATAAT	CATAGATAGG	ATAATAGTCC	GCTTGGCAGA	AATACCAGCA	1440
TATTCTGAAG CATGTGGATT	AAGACCAACT	GCACGGATTT	CAAAACCAAG	AGTTGTTTTC	1500
TTGAGCATGA ACCAAATAAC	TGCAACGGCA	ATGATGGCAA	AGAAAATACC	AATATTCATC	1560
CGTGAGTTAC CAGTCAACTC	AGCCAACCAA	GGTGTCTGAT	AGGTTGCATT	AGCCCCAACA	1620

563

CGAATGGTCG	AATCTGTACT	TTGCATGAAG	TCTTTAGGGA	AAGCATGGAT	AAAGGCATTC	1680
CCTACATACA	AGACAATGTA	GTTCATCATG	ATGGTTACAA	TAACCTCTGA	CGTCCCTAGA	1740
TAGGCCCTAA	GAATACCTGG	AATCGCTCCG	ACAATCCCAC	CAGCAATCAA	GGCAATCACG	1300
ATGGTTGCTA	GAATCATCAA	GGGACGGGC	ATATCTGGAT	GCGACAGGGC	AAACCAACCA	1860
CTGAGAATCC	AACCTGCCAA	AGCCTGACCA	GGAAGTCCGA	CGTTAAAGAA	ACCAGCTCGA	1920
CTGGCAACGG	CAAAACCAAG	ACCAATCAAG	ACCAGAGGAC	CCATAGCACG	GAAGATTTCT	1980
CCAATCCCAC	GCAGACTGCC	AAAGGCTGTA	TAGAACAATT	CTTCGTAGCC	CCAAATAGCA	2040
TCATAACCGA	AGATCCACAT	GACAATGGCT	CCGAGTAAAA	TTCCTAGGAA	TACAGAAATC	2100
AAGGGAACCG	AAATTTGTTG	TAATTTTTA	GACATCACTC	TTCTCCTTTC	CCAAGTTTCC	2160
ACCAGCCATC	AAGACACCAA	GTTCTTGTTT	ATTGGTTGTT	TCTGGTGATA	CAATACCTTG	2220
AATCTTACCA	TCGTGGATAA	CGGCAATACG	GTCTGAGACG	TTTAAAATCT	CATCCAATTC	2280
AAAGCTGACA	ACAAGGACAG	CCTTGCCATT	ATCACGCTCT	TCAATCAAGC	GTTTGTGGAT	2340
ATACTCAATG	GCACCGACAT	CCAACCCACG	AGTTGGCTGG	CTAACGATAA	GGAGATCAGG	2400
ATCTCGATCA	ATTTCACGAG	CAATAATTGC	TTTTTGTTGA	TTTCCTCCTG	AGAGTGCAGC	2460
TGCAGGAACT	AATTCACTGG	CAGCGCGAAC	ATCAAACTCT	TCCATCAGCT	TTTTAGCATA	2520
AGAAGTAATA	TTTGAATAAT	TCAAAATTCC	ATTTTTACTA	TGTGGTTCTT	TATAGTAGGT	2580
TTGAAGGGCA	ATATTTTCAG	ATATCATCAT	TTCCAAAATC	AAGCCATCAC	GGTGACGGTC	2640
TTCTGGAACG	TGCCCAACAC	TTAGTTCTGT	AATCTGACGT	GGGTGCAAGC	CTACAATTGA	2700
ATCTCCTTTT	AGCTCAATGC	TACCAGATTC	AACCTTACGA	AGACCTGTAA	TGGCTTGAAT	2760
CAGTTCAGAC	TGACCATTTC	CATCAATCCC	CGCAATACCA	ACAATCTCTC	CAGCACGAAC	2820
ATCCAAGGAC	AGATTTTTAA	CAGCTGGAAC	ACCACGGTTT	TCATTGACCA	CCAAATCTTT	2880
GATAGACAAA	ACCACTTCTT	TTGGTTTAGA	GGCTTGCTTC	TCTGTTTTAA	AGGAAACAGA	2940
ACGTCCTACC	ATCATTTCCG	CCAAATCAGC	ATTGGTAGCC	CCTGCAATTT	CAACGGTTTC	3000
AATTGATTTC	CCACGACGGA	TAACTGTAAC	ACGGTCAGAA	ACTGCTCGAA	TTTCATCCAA	3060
TTTGTGGGTA	ATCAAGATAA	TTGATTTTCC	TTCTTTGACA	AGATTTTTCA	TAATAGCCAT	3120
CAACTCATCA	ATTTCTGATG	GAGTCAAAAC	AGCCGTTGGT	TCGTCAAAGA	TAAGGATATC	3180
AGCCCCCCGA	TAAAGTGTTT	TTAAAATTTC	TACACGTTGT	TGGGCTCCAA	CTGAGATATC	3240
TGCTACCTTG	GCAGAAGGGT	CAACAGCTAA	GCCATAACGT	TCAGAAAGAG	CCTTGATTTC	3300
TTTGCTAGCT	CCAGCGATAT	CTAGCACACC	ATTTTTAGTC	AATTCACTAC	CTAAAATGAT	3360

GTTTTCAGCC	ACTGTGAAGG	CTTCAACCAA	CATAAAGTGC	TGGTGAACCA	TCCCGATTCC	3420
CAAGCTAGCT	GCTTTAGATG	GGGAGTCGAG	ATTGACAACT	TGACCGTTGA	CCGCGATTTC	3480
ACCACTAGTT	GGTTCAAGAA	GGCCTGCTAA	CATGTTCATT	AGCGTGGACT	TACCAGCCCC	3540
ATTTTCTCCT	AAAAGTGCAT	GAATTTCACC	TTTTCGTAGG	TGCAAGTTGA	TTTTGTCGTT	3600
GGCAACAAAT	CCACCAAACA	CCTTGGTAAT	ATCACGCATC	TCAATGACAT	TTTCGTGTGC	3660
CATGTGCTCT	TCCTTTCAGA	GTCTTATTTT	ATTTCAATAA	AACTTGCTAG	TTTGTCTAGT	3720
AGCAAGCTTT	ACTTAGACAA	AATGACTTTG	TCTCAACTCT	TAAAAAAGCG	GCCCTTGGCC	3780
GCTTCCTAAG	AAATGACTTC	CATCCATTAT	TTTTCAGGAA	CTTTTACGCT	TCCATCAAGG	3840
ATTTTAGCTT	TTGCATCTTC	GACAGCTTTT	TTACCTTCTT	CTGAAAGGTT	TGTTACTGCC	3900
AAGTCAACCC	CTTTATCCTT	CAATGAGTAA	ACGATCACTT	GACCGCCAGG	GAATTCTCCT	3960
CTTTCTGCCT	TGTTAGAAAT	ATCTTTTACA	GTTGTACCAA	CTTGTTTCAA	AGTAGATACA	4020
AGAACAAAGT	TTGATTCTTT	GCCATCTTTA	GAAGTGTATT	TACCTTCTGC	TTCTTGGTCA	4080
CGATCAACAC	CGATAACCCA	AACTTTTTCA	TTTTCAGGAC	GGCTTTCGTT	GAGAGATTTT	4140
GCCTCTGCAA	AGACACCTGC	ACCTGTACCA	CCAGCTACTT	GGTAAACAAT	ATCTGCACCG	4200
GCTGCGTATT	GTGCGGCTGC	AATTGTTTTA	CCTTTAGCCG	CATCACCAAA	TGAACCAGCG	4260
TAGTCAACTT	GGACTTTGAT	AGATGGGTCT	ACTGACGCAA	CACCAGCCTT	GAATCCTGCT	4320
TCAAAACGAC	G AGATAACTTC	AGATTCGATA	CCACCTACAA	AACCAACTTO	TTTTGTCTTA	4380
GTTGTTTTT	CTGCAGCCAC	ACCTGCAAG	TAACCTGACT	CATTATCAGO	GAAAGTTACG	4440
CTCGCAACAT	TCTTTTGGTC	TTTAATCACA	TCATCAATCA	AGACATAGTT	CAAGTCAGTG	4500
TGTTCTTTTC	CTGCATCTT	AACTGCATTA	TTAAGGGCAA	AACCAACAC	GAAGATTAGG	4560
TTGTAACTT	CAGCOGCTTO	TTGCAAGTTC	TTAGCGTAGT	CAGCTTCACT	TUTTGATTGG	4630
AAGTAAGTG	A AACCGTTATO	TTTTGAAAGA	A TEGTGTTCTT	TACCCCAAGG	CTGCAAACCT	4680
TCCCAAGCT	S ATTGGTTGA	A TGATTTGTC	TCAACACCAC	CAGTATCAG	GACGATTGCT	4740
GCTTTTGTC	r TCACATCAG	A AGATGAAGC	r GCGTTACGAC	AAGAGCGGT	r accacatgca	4900
GCAAGTCCA	A CTGCTGCCA	TGCAACTAG	G CCAAGACCT	GCCATTGTT	CTTGTTCATT	4860
ACTGAACCT	C CTAAATAAG	A TGTGCAACG	A TGTTGCAAG	T ATGGATTGG	T TGGCCACAAG	4920
GACCGTGCC	A CTCAGAGAG	C GACTCAGAC	T AGTTTAAGT	TGTAAAAGA	G TATGGAAGTA	4980
ATTCCCCGA	C CGTCATCTC	G ACCGTCGAT	T TATCTTTTG	C GACTAAGGT	C ACTTTTAGAT	504
CTTGTTCAA	A AAATTCAGC	C ATCACTTGG	C GACAAGCAC	C ACATGGCGA	G ATCGGTTTTT	510
CAGTTTCAC	C ATAGACAAT	C AATTCTGAA	A ATTCTCTTT	G GCCTTCAGA	T ATAGCCTTAA	516

AAATAGCTGT	TCTCTCACCG	CAATTGGTCA	AAGGATAGCT	AGCATTTTCA	ATATTCACTC	5220
CCGTGTAAAC	ACTTCCGTCT	TTAGCTACTA	AAACTGCTCC	GATAGGAAAG	TGAGAATAGG	5280
GGACATAGGG	ATGTTTGCTG	GTTTCAATTG	CCAGTTCAAT	CAACTCAGTA	GTCGCCATCT	5340
GCCAATTCTC	СТТТТААААТ	AGCTACCCCA	GCTGACGTTC	CGATACGGGT	CGCACCTGCT	5400
TCGACAAAGC	CAAGAGCATC	TGCATAAGAA	CGAGCTCCAC	CGGCGGCCTT	GACACCCATA	5460
TCAGATCCAA	CTGTTTCACG	CATTAATGTA	ACATCTGCTA	TCGTAGCACC	ACCAGTTGAA	5520
AAGCCAGTAG	ATGTTTTGAC	AAAGTCAGCC	CCAGCTTTTT	GGGCCAATTG	GCAAACAACA	5580
ACTTTTTCTT	GGTCTGTCAG	AAGGCAAGCT	TCAATAATGA	CTTTCACTAA	CTTATCACCA	5640
CTTGCTTCCA	CTACTGCGCG	AATATCTGAC	TCAACCAAGG	СТАААТТАСС	TGATTTGAGA	5700
GCTCCAACAT	TGATCACCAT	ATCAATCTCA	TCTGCACCAT	TTTGGATAGC	TTCTTTTGTC	5760
TCAAATGCTT	TCACGGCTGA	AGTTGTTGCT	CCCAAAGGGA	AACCTACTAC	TGTGCAAACC	5820
TTAACATCTG	TGCCTTCAAG	TCCTTTTTTA	GCATGTTCAA	CCCAGGTCGG	ATTAACGCAA.	5880
ACACTGGCAA	AGTCATACTC	TCTAGCCTCA	GACAACAAAC	TATCAATTTG	TTTTTTCTTT	5940
GCATCTTGTT	TTAAAAGCGT	ATGATCTATA	TATTTATTA	ATTTCATTTC	GGTTTTCCCT	6000
CCATTTAGGA	GATGATTTCT	ACAATTTCAC	GGATTTTTT	CACTTCATCA	CTTATTTTAA	6060
CACATTTTTG	GAAATCTGTA	ACTAGTTGAG	GTGGAATTTT	TTCATTTGTG	TATACTTTTG	6120
CAACAATTTC	ACCCTTTTGA	ACGGAGTCTC	CAATCTTCTT	TTCAAAAACA	ATTCCTGTTT	6180
CATAGTCCAA	GGCATCAGAC	TTAACTGCAC	GACCAGCACC	CAGCCTCATG	GCATAAAGAC	6240
CAAAGTCCAT	AGCTGGAAGA	GCTGAAATGA	CACCCGTTTC	CTGAGCAGGG	ATTTCCACCA	6300
CATGAGCTAC	ATTTACAGGA	CGATAGAGGT	CTTCCAAGTC	TCCACCTTGG	GCTTGCACCA	6360
TTTCCTCAAA	CTTAGCCAGT	GCTTGACCAT	TCTCAAGATG	TTGGTGAACT	TCTTCAACAG	6420
TTTTGTTAAC	ATTTGCCAAA	CCAAGCATAA	TTTGAGCCAA	TTCACAAATA	AAGTGGGTAA	6480
TATCCTGACG	TCCTTGACCT	TGCAAAATCT	CCAATGCTTC	AAGGATTTCC	AGACGATTTC	6540
CAATCGCTCG	TCCCAAAGGC	TGGCTCATAT	CCGTAATCAC	TGCTACTGTC	TTCCGTCCAA	6600
CAACCTTACC	AAGATCTACC	ATAGTTTGAG	CCAACTCACG	CGCCTCATCA	ACCGTCTTCA	6660
TGAAGGCACC	CTCACCGACA	GTCACGTCTA	GCAAAATAGC	ATCCGCCCCT	GCCGCAATTT	6720
TCTTGCTCAT	CACCGAACTC	GCAATCAAAG	GAATCGTGTC	GACAGTTGCG	GTCACATCAC	6780
GAAGGCCATA	GAGAAGCTTA	TCTGCTTTGA	CCAGCTGGTC	TGATTGCCCA	ATGACAGATA	6840
CTCCAATATC	CTGAACCTGA	CGAATAAAAT	CCTCTTGACT	ACGTTCTACT	TGATAGCCCT	5900

			566			
TAATGGACTC	CAATTTATCA	ATTGTTCCGC	CTGTATGGCC	AAGACCACGA	CCACTCATTT	6960
TTGCTACAGG	CACACCGAAG	CTAGCAACAA	GAGGAGCTAA	AATCAAGGTT	ACCTTATCGC	7020
CGACACCACC	AGTAGAATGC	TTGTCAACTT	TCACACCATC	AATGGCTGAC	AGGTCAAACT	7080
CTTGCCCAGT	CTTAACCATA	TTCATCGTTA	AATCAGAGAT	TTCTCGAGTC	GTCATTCCTT	7140
TAAAATAAAC	AGCCATAGCA	AAGGCAGACA	TCTGATAATC	AGGAACAGTT	CCTGATACAT	7200
AGCCTTCTAT	CAGCCATTCA	ATTTCACTTG	AAGTCAGTTC	TTGACCGTCT	CGTTTTTTTT	7260
GGATTAAATC	AACTGCTCTC	ATTCTTTCAC	ACTTCTAAGG	ATATAGTATC	CCTTGTCTTT	7320
TTTAAGGATT	TCACAATTGC	CAAACACATC	TTCCATCTTA	GACTTGGCAC	TTGGAGCTCC	7380
TTGTTTTTC	TGGATGACGA	TGGTCAAATC	TCCACCAATT	TCCAAGAAAT	CTTTACTTTT	7440
CTCGATGATT	TCATGAACGA	CTTGCTTGCC	CGCACGGATA	GGAGGATTGG	AAATGACATG	7500
GTCAAATCGC	CCTTGAACTC	TTGCATAAAT	ATTAGATTGA	AATATCGTCG	CTTTTGCATT	7560
ATTTTTTCA	GCATTTCTCT	GAGCTAAATC	CAGGGCACGA	GTGTTAATAT	CAACCATGGT	7620
CGCCTGAACT	CCGTAAACCT	TGACCAAGGA	CAAACCTAAT	GGACCATAAC	CACAGCCTAC	7680
ATCTAGGACT	GTCTCTCCTT	GGTTGACATC	CAGACACTTG	AGCAAGAGTT	GACTTCCAAA	7740
GTCAACCATT	TTCTTGCTAA	AAACACCCGC	ATCTGTCAAA	AAAGTCATTT	TTTCTCCCAA	7800
CAAGTCCACT	CTCAACTCAT	GAATGTCGTG	AGCAGCGTCA	GGATTTTCTG	CATAGTACAT	7860
TTTACTCATG	ACACTATTTT	ACCATAATTT	GACTCAAATT	GTAAATCGTT	TACAAATTGA	7920
TAATAAAACG	AAAAAGACCG	AAGAAAGCAA	GTCACGAAGC	CATTTTCTTC	AATCTCTTTC	7980
AACACTTATA	AATAATAAAC	CATTTAGAAC	TATAAATATC	ACAGTCCAGA	TAAAAACAAA	8040
AAGTTTATCA	TCTATAATCA	GGCAGATTAT	TATTTCTATT	GCTTAACCTT	AAAATACTTT	8100
ATTATCAACA	AAATTCCTAA	CAAAATGTTT	AGATAAAAGC	CCAACTGATA	CGTTTATGTC	8160
AGGATTTCCA	AACTTGTCCA	AAGTCGTATC	AAATCTTCTA	GTGACATGTG	GAAGAAATAA	8220
ссстстстсс	CAATCCGTAG	GACTAAAAAG	CAATAACTAC	CCGCAGCAÁT	CCATTTCGTC	8280
CATCGTTTTT	TAGTAAGAAA	GCAATTAAGA	ACGAACAAAT	AAAGACAGCT	GTTACAATAG	8340
CATGTTCCAT	CAAAAAAGTA	AAACCGTAAT	AGGTTTCCAC	AAAGCATCTA	CCATTATCTG	8400
CATTGGTTCC	TTTTATAAAA	GGTAAAGCAA	AACTTAAAAT	AAAACAGAGT	TCCAATATGT	8460
AACGTTTTAA	GATTTTCATA	GTACACCTCC	TATAAGTTGT	GAACTAAAAA	GCCCCCTTTA	8520
TAAGCTTATA	AATCÁGTAGA	ATCTATCTCC	TATTTCATCA	ATAAATTGAT	САСТТАТАСТ	8580
АТАТАССАТТ	GACTTACCAC	ATTCAAGAAA	CCGCTTTATT	TTTTTAGCTT	TTTATGGTAT	8640
GATAGACAAA	ATATCTAGG	GAAAACAAAT	GACCAACGAA	TTTTTACATT	TTGAAAAAAT	8700

567

CAGCCGCCAG ACTTGGCAAT CTTTACATCG AAAGACAACA CCTCCTTTGA CAGAAGAAGA 8760 ATTGGAATCT ATCAAGAGTT TTAATGACCA AATCAGTCTC CAAGACGTTA CAGATATCTA 8820 TCTCCCCTTG GCTCATTTGA TTCAGATTTA CAAGCGAACT AAGGAAGATT TAGCCTTTTC 8880 AAAAGGAATT TTCCTCCA 8898

(2) INFORMATION FOR SEQ ID NO: 70:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13188 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:

TATCTTAACG AGGATTO	GGGT TTATCGTCAG	TCTTATTGCC	CTAATTGTGG	GAACAATCCC	60
TTAAATCATT TTGAAAA	ATAA TCGGCCTGTA	GCAGATTTTT	ACTGTAATCA	TTGTAGTGAG	120
GAGTTTGAAC TAAAGAC	CAA AAAAGGAAAT	TTTTCATCAA	CAATCAATGA	TGGTGCTTAT	180
GCAACGATGA TGAAGCC	STGT GCAGGCAGAT	AATAATCCTA	ATTTCTTTTT	TTTAACTTAC	240
ACAAAAATT TTGAGGT	TAAA TAACTTTCTT	GTCCTTCCGA	AGCAATTTGT	TACACCGAAA	300
TCGATTATTC AAAGAAA	VACC ACTTGCACCA	ACTGCTAGAC	GAGCAGGTTG	GATTGGTTGT	360
AACATTGATT TATCACA	AGT ACCTTCTAAA	GGAAGGATAT	TTCTTGTGCA	AGATGGACAA	420
GTTAGAGATC CAGAAAA	AGT TACAAAAGAA	TTTAAGCAAG	GTTTATTTT	AAGGAAGAGC	480
TCTCTGTCAT CAAGAGC	TTG GACAATAGAA	ATTCTAAATT	GTATAGATAA	GATAGAGGGT	540
TCAGAATTTA CCCTTGA	AGA TATGTATCGT	TTTGAAAGTG	ACCTAAAAAA	TATCTTTGTT	600
AAGAACAATC ATATCAA	AGA AAAGATTAGG	CAACAGCTTC	AAATATTAAG	AGACAAAGAA	660
ATAATAGAAT TTAAAGG	STAG AGGAAAGTAT	CGGAAATTAT	GAAAACGAAA	CAACTTGT~G	720
CATCAGAAGA GGTGTAT	GAT TTCTTAAAAG	TCATCTGGCC	TGATTATGAA	ACTGAAAGCC	780
GTTACGATAA CCTAAGT	TTA ATCGTCTGTA	CCTTATCAGA	TCCCGATTGT	GTGAGATGGT	840
TATCTGAAAA TATGAAA	TTT GGTGACGAAA	AACAACTAGC	TTTGATGAAG	GAAAAATATG	900
GGTGGGAAGT AGGAGAT	AAA TTGCCAGAGT	GGCTACATAG	CTCCTATCAT	AGATTATTGT	960
TAATAGGTGA ATTATTG	GAA AGCAATCTAA	AACTGAAAAA	GTATACAGTA	GAAATTACAG	1020
AAACTTTATC ACGTTTA	GTA AGTATAGAGG	CTGAAAATCC	AGATGAAGCC	GAACGACTTG	1080
TAAGAGAAAA GTATAAG	AGT TGTGAAATTG	TTCTTGATGC	AGATGATTTT	CAGGACTATG	1140

ACACTAGCAT	ATATGAATAG	GTAGATGTTT	568 TTATTTTGTC	AACAAAAAAG	AGGCTCGCAC	1200
CTCTTTTTCT	TATTTCTTTT	TATGATTTAA	TACGGCATTG	AGGACAATAG	CGAGTAGGCT	1260
GGCTACGACG	ATTCCCTTTG	AGAAGAACAT	TTGGAAGGCT	GTCGGCATGC	TGACAAAGAG	1320
ATTACTGTTG	TTGAGACCGA	CACCTGCAGC	GATTGAAACA	GCTGCGATAA	GGAAGTTGTG	1380
TTCATTGTTA	GCAAAGTCAA	CACGGGCGAG	GATTTGCATC	CCTTGAATTG	ATACAAAACC	1440
AAACATTACC	AGCATGGCAC	CACCGAGGAC	GGAGCTTGGA	ATGATTTGGG	CAAGGGCGCC	1500
AAACTTAGGA	AGCAGTCCAA	GGAGAACCAG	GAAACCAGCT	GCGTAGTAGA	TTGGCAGGCG	1560
TTTTTTGATG	CCTGACAATT	TAACCAAACC	AACGTTTTGT	GAAAATCCGG	TGTAAGGGAA	1620
GGTGTTAAAG	ATTCCTCCGA	GAAGTACGGC	CAAACCTTCT	GCGCGGTATC	CGTTGCGAAG	1680
GCGCGTGCTG	TCGATTGGAT	CCTTTGTGAT	ATCAGACAAG	GCCAGATAAA	CACCAGTTGA	1740
CTCAACCATA	GACACCGTTG	CGATGATACA	CATCATGACA	ATAGATGAGA	TTTCAAAGGT	1800
TGGCATCCCA	AAGTAGAGTG	GAGTTGGGAC	ATGGACAAGT	GGAGCTACCG	CAACAGGAGA	1860
GAAGTCCACC	AAGCCCATAG	TAGCAGCAAT	GGCAGTTCCA	ACAACCAGAC	CAATCAAAAT	1920
AGAGATAGAC	TTGATAAATC	CTTTGGTAAA	GATGTTGATC	AAGAGGATAA	TCAGAACAGT	1980
AATAGCTGCA	AGCAAGAGAC	TTTGACCAGT	TGGCTCTGGA	ACGTTATTTC	CCATATTTCC	2040
AATAGCGACA	GGGATCAAGG	TTAAACCAAT	CGTGGTAATA	ACAGATCCTG	TTACGATAGA	2100
TGGGAAGAGA	TTGGCTACTT	TTGAGAAGAT	GCCTGAAACA	AGAACCACGT	AAATCCCAGA	2160
TGCGATAAGG	GCACCAAACA	TAGCGCCACT	ACCATGGCTT	TGCCCAATCA	TAATCAAGGG	2220
AGCGACCGAC	TGGAATGCAA	CTCCAAGAAC	GACTGGGAGT	CCAATCCCAA	AGTATTTGTT	2280
GAGTTGGAGT	TGGAGGAAGG	TTGCCACCCC	ACACATGAAG	ATATCTGTAG	AAATCAGGTA	2340
GGTCAACTGC	TCAGCTGAAT	AGCCAAGGGC	TGTCGCAATC	ATGATGGGAA	CCAGGATAGA	2400
TCCTGAGTAC	ATGGCTAGTA	AGTGCTGCAA	GCCAAGAACG	GCTGCTTGCG	AGTGTTTTTC	2460
TTGAGTTTGC	ATTAGAGATC	TGCCTCCTTA	AATACGACTT	GACCATTTTC	AAAACAAT CC	2520
AAACGAGCAA	GTGATAGGAC	AGGGTAGCCT	GCTTTTTCAA	GCAAATCACG	ACCATCTTGG	2580
AAGGATTTCT	CAATCACGAT	ACCGATAGCT	TGGACTGTGG	CACCGGCCTG	TTCGATGATT	2640
TGAATCAAGC	CTTTAGCAGC	TTGGCCATTA	GCAAGGAAAT	CGTCGATAAT	CAAAACCTTG	2700
TCCTCTGGTG	AGAGGAATTT	TTCAGCGATA	GAAACGGTGC	TGGTCACCTG	CTTGGTAAAG	2760
GAGTAGACTT	GAGCAGTTAA	GATGCCTTCG	TTCATGGTGA	TGTTCTTAGC	TTTTTTGGCG	2820
AAAATCATGG	GAACGTTTAA	GGCTTCAGCT	GTAAAAACGG	CTGGGGCAAT	ACCCGACGCT	2880
TCAATGGTTA	CGACCTTGGT	AATGCCAGTA	GTAGCAAATT	TTTCCGCAAA	AACCTTACCA	2940

ATCTCTCGCA	TCAAGCTAAA	GTCAACTTGG	TGGGTTAAAA	AGGAATCTAC	CTTGAGGATG	3000
TTATCACCCA	AGATATGCCC	ATCCTTGAGG	ATGCGCTCTT	CTAATAATTT	CATAAGACCT	3060
CCTAAAGTCT	AAAAGTTAAT	TTACTTGTTG	TTTAAATATT	TCTATAGTGA	TCCCTTTTGC	3120
TAATACTATA	TATTTGATAA	AACTATTACG	AGCGAAGCGA	GTCTTATCAA	ATATTTCCCG	3180
TTGTAGTGGT	ATCATAGACA	ATAATCTTGT	TATTGTCTAT	GACGGGATTT	TTGAGAGTAA	3240
AATAGTTCGG	GGAACTATTT	TAGCCTAAGC	CTAGAAATGA	AAGAGCTAGG	GGCTCAAAAA	3300
TTACCGATGA	AATTCCCTGG	ATTCCTGAAA	TTATTCACAG	GATAATTTCA	CCTCCCGTCC	3360
GCACTAATTA	AGGGAAATAT	TAAAAAAAGA	CCTACTTAAT	CTCTAAGTAA	GTCCCCTAAA	3420
TAGACATGGC	AAAAACGGCC	ATATCTCACT	GCTGACTTAC	TTATTGTTAG	GTGTTCCGGC	3480
ACCTTGTAGA	AACGTCGTGC	CAATTCACGA	CATAAACAAG	TAAAACGATA	TTCAATTTTA	3540
AATAGGCTTG	AGCCAATGTT	TTTATTTTAC	ACTAAATAAC	TTTAGAAATC	AACTATTTTG	3600
TTAGTGTTTT	GGTTTAAAAA	ACGAACAAAA	AGAAGAGAGG	GTGAACAAAA	ACTCCATTGT	3660
AAGCTAACAG	TTATACTAAA	TGAAAATCAA	AGAGCAAACT	AGGAAGCTAT	CCACAACCTC	3720
AAAACACTGT	TTTGAGGTTG	TGGATAGAAT	TGACAGAGCC	AGTATCATAT	ACCTACGGTA	3780
AGGCGACGTT	GACGTGGCTT	GAAGAGATTT	TCGAAGAGTA	TTAGAAGATT	TTTCCATCAT	3840
AAAAGGCATA	CTATCAAGCT	TTTAGACACC	TGACAATATG	CCTTTTTCTA	ACTTTAAAGA	3900
CTTTTCCCAA	TTTTTTTTT	TCTACTCGCT	AAATCTTAAA	AAATAGCCAT	CTGGATCCAA	3960
AACTGCAAAT	TTATGACGAT	AGATATAGGG	ATCACTGACA	CGAAACTTTC	TTTTGGTCAA	4020
GGGACGATAA	ATAGGATAGT	TTGCCTTCAT	CACTCTTTAA	TAGAGTTTTG	AAACATCCTT	4080
TATGCCAAAG	GAGAGATTGA	CTCCACGACC	AAAGGGATAG	GTCAGTTCAG	CTAGTTGATC	4140
CTTTGTTCCC	TCCTCTAACA	TTAGTTGACA	CTCTTCAAGA	GAAAGAGAAA	GTTTTCTTCT	4200
GGACGTTGGT	ATTCAATCCT	AAAACCCAGT	AAACCACAGT	AGAAGGACCG	GGACTGTTCG	4260
ATATTCGATA	CAAGCAACTC	GGGAATGACC	GCATTGTAGT	CCATATAGAA	AATCCTTACA	4320
AGTCAATTTC	CAAGACAATC	GGTGTATGGT	CTTGGCGAGC	ACCTGAGTCA	ATCATATCAG	4380
ATTTAGTGAC	CTTGTCAGCG	ATACGGTTAC	TTGTGAGCCA	GTAGTCGATT	CTCCAGCCTG	4440
TATTGTTGAT	TTTAGAAGTT	TTGCTGCGTT	GTGCCCACCA	AGTGTAGCGT	TCAGGAACAT	4500
CGCCATGAAC	ATGGCGGAAG	GTGTCTGTAA	ATCCAGTTGC	CAAAAGGTTG	GTAAATCCAG	4560
CACGTTCCTC	GTCAGTAAAT	CCAGGTGAAC	GGCGGTTGCT	AGCAGGATTT	GCAAGGTCGA	4620
TTTCATTGTG	GGCTACGTTG	TAGTCACCGG	TCGCAAGGAC	TGGTTTTTCT	TTGTCTAGTT	4680

			570			
CAGCCAAATA	CTCAGCATAT	TTGGCATCCC	AGACTTGGCG	TTCTTCCAAG	CGTTTGAGAC	4740
CGTCACCAGC	GTTTGGAGTG	TAAACTTGGG	TTACGAAAAA	TGCATCAAAT	TCTAGAGTGA	4800
TGATACGACC	TTCCAAGTCC	ATGGTAGAAG	GGGCACCGAT	TTCTGGGAAG	CTGATAGTAG	4860
GTGTAAGTTC	TTTCTTATAA	AGGAACATGG	TTCCAGCATA	GCCTTTACGG	GCAGGCTCTT	4920
GGGAAGAGCG	CCACGTGTTT	TCGTAGCCTG	GGAAGAGTTC	TTCTAAAATT	TCCACGTGTT	4980
PCTTTGTAGG	TCCTTTGGCA	GAAAGCTTGG	TTTCTTGGAT	AGCAATGATA	TCAGCATTTT	5040
CAGCGACCAA	GGTTTGTAGG	ACTTCTTGGG	ACAATTTGGC	ACGAGCTGAG	TCACTAGTTA	5100
GGCAGCGTT	TAGGGAATCA	ATATTCCATG	AGATAAGTTT	CATAAAGTTA	CCTTTTTCAT	5160
PCAGATTATA	GATTTTATTA	TACCAAAAAA	AGATCTATTT	CCCCAACGTA	TGGTTTGAAA	5220
AATTACTCTC	TTTCGTTTAT	AATTAAGAAT	GATTTTATGA	AAGGGAGTGA	AAATACATGA	5280
ATTCTACTC	TTATGACTAT	GTACTCAGCC	AAATCGGTCA	GCAAAATGGT	ATCATGGTTG	5340
SCTTTGGGAT	TGTTCTATTA	GCTGTGACAG	TTTTTTTTGC	TTTCAAGGCA	TACCATAATA	5400
AAA GGGAAG	CGAATTTCGT	GAGTTGGTCA	TGATTTCAGA	TCTGGCCTTA	TTTAGCTCTG	5460
TTTTGGTCA	GCATCACGAC	TTATCAAAAC	AATCAAGTTT	СТААСААТАА	ATTTCAAACT	5520
CACTTCATT	TCATCGAGGT	TGTTTCCAAA	GATTTGTGAG	TAGACAAGTC	AGAAGTCTAT	5580
STTAATACTT	CCACAAACAC	AGATGGCGCA	CTTATCAAGG	TGGGAGATCG	CTATTATCGT	5640
CCCTAAATG	GAAGTGAGCC	AGACAAGTAC	CTGTTAGAGA	AAGTCGAATT	GTATAAGACA	5700
ACGCAATTG	AACTGGTGGA	TGTGAACAAA	TGACACTTAA	TTATATCGAA	ATTTTAATCA	5760
ACTGGTCTT	GACTCTCAAA	TAGCTCAACA	ACAATGTTCA	CTTTGTGAAA	CGTTTGATTG	5820
TGGTAAGCC	AACTCTCCTT	ATCAAAAATG	GGAATATTGA	CCCAGAAGCC	TGTCGTTCAG	5880
TGGTTTGTC	TGCATCGGAT	GTATCCCTCA	AACTTCGTAG	CCAAGGGATT	TTCCAGATGA	5940
GCAAGTCAA	ACGAGCTGTG	CAAGAGCAAA	ATGGGCAACT	CATCGTTGTG	CAAATGGGAG	6000
TGAAAATCC	TAAGTATCCA	GTTGTGACTG	ACGGTGTGAT	TCAAGTAGAT	GTCTTGGAAT	6060
GATTGGTCG	TAGCGAAGAG	TGGTTGCTTG	ATAACCTCAG	TAAACAAGGG	CATGACAATG	6120
AGCCAATAT	CTTTATTGCT	GAATATGACA	AGGGTGCTGT	TACAGTCGTA	ACTTATGAAT	6180
AGAAAAACC	TGGGGTCTTG	TACTCTTCGA	AAATCTCTTC	AAACCGCGTC	AACGTCGCCT	6240
GCCGTATGT	AGGTTACTGA	CTTCGTCAGT	TCTATCTACA	ACCTCAAAGC	AGTGCTTTGA	6300
CAGCCTGCG	GCTAGTTTCC	TAGTTTGCTC	TTTGATTTTC	ATTGAGTATT	GGCCTCAGGT	6360
TCCATTTGC	AATCAGAAAG	GGATTTTATG	TCCATTATTC	AAĄAACTTTG	GTGGTTTTTC	6420
AGTTAGAAA	AACGCCGTTA	TCTAGTCGGA	ATTGTGGCCC	TGATCTTGGT	TTCCGTCCTC	6480

AATCTCATTC	CTCCTATGGT	TATGGGGCG	GTCATTGATC	CCATCACATO	GGGGCAATTA	654
ACCCAGCAGG	ACCTCCTTCT	TAGCCTATT	TACTTGCTAC	TTGCAGCCTT	TGGTATGTAC	660
TATTTGCGCT	ATGTGTGGCG	TATGTATATO	CTTGGGACCT	CTTATTGCTT	GGGACAGATC	6666
ATGCGGTCTC	GCTTGTTTAA	GCATTTCACA	AAAATGTCGT	CAGCCTTTTA	TCAAACCTAT	672
CGGACGGGTG	ATCTGATGGC	ACACGCAACC	: AATGATATCA	ATGCCTTGAC	TCGTTTAGCA	6780
GGTGGCGGTG	TCATGTCTGC	GGTGGATGCC	TCTATCACGG	CTCTGGTGAC	TTTGTTGACC	6840
ATGCTCTTTA	GCATCTCATG	GCAGATGACT	CTTGTTGCCA	ттстссссст	ACCTTTCATG	6900
GCCTATACGA	CTAGTCGCCT	AGGGAGAAAG	ACTCATAAGG	CCTTTGGCGA	ATCCCAAGCT	6960
GCTTTTTCTG	AACTCAATAA	CAAGGTACAG	GAGTCCGTAT	CAGGTATCAA	AGTGACCAAG	7020
тстттсбстт	ATCAGGCAGA	CGAGTTGAAG	TCTTTTCAGG	CAGTCAATGA	ATTAACCTTC	7080
CAAAAGAACC	TGCAAACCAT	GAAATATGAT	AGTCTCTTTG	ACCCTATGGT	TCTCTTGTTT	7140
GTTGGTTCGT	CCTATGTTTT	AACGCTTTTG	GTTGGCTCCT	TGATGGTTCA	GGAAGGCAG	7200
ATTACAGTTG	GGAATCTAGT	CACCTTTATC	AGCTATTTGG	ATATGCTGGT	CTGGCCTCTT	7260
CTGGCCATCG	GTTTCCTCTT	TAATACTACT	CAGCGAGGGA	AGGTTTCTTA	CCAGCGGATT	7320
GAAAATCTTT	TGTCTCAGGA	ATCTCCTGTA	CAAGACCCTG	AGTTTCCTCT	GGATGGTATT	7380
GAAAATGGGC	GTTTGGAGTA	TGCCATTGAC	AGCTTTGCTT	TTGAAAATGA	GGAAACACTG	7440
ACGGATATTC	ACTTTAGTTT	GGCAAAAGGG	CAAACACTGG	GCTTGGTTGG	GCAGACAGGC	7500
TCTGGGAAAA	CGTCCTTAAT	CAAGCTCCTC	TTGCGTGAAT	ACGATGTGGA	TAAGGGTGCC	7560
ATTTATCTAA	ACGGTCACGA	TATTIGGGAC	TATCGTCTGA	CAGACCTTCG	CAGTCTCATG	7620
GGCTATGTTC	CTCAGGACCA	GTTTCTTTTT	GCGACTTCAA	TCCTAGACAA	TATCCGCTTT	7680
GCAATCCTA	ACTTGCCCCT	TTCAGCGGTC	GAGGAAGCTA	CTAAGCTAGC	CCGGGTTTAC	7740
CAAGATATTG	TAGACATGCC	TCAAGGATTT	GATACGCTGA	TTGGTGAAAA	AGGAGTCACT	7800
CTTTCTGGTG	GTCAAAAGCA	ACGGTTGGCT	ATGAGTCGGG	CTATGATTTT	AGACCCTGAT	7860
ATCTTGATTT	TGGATGATTC	CTTATCCGCC	GTAGATGCCA	AGACAGAGTA	TGCGATTATC	7920
SACAACCTCA	AGGAGATGCG	AAAGGACAAG	ACAACCATTA	TCACTGCCCA	TCGCCTCAGT	7980
SCTGTTGTCC	ATGCAGATTT	TATTTTAGTT	CTACAAAATG	GTCAAATTAT	CGAACGAGGC	8040
ACGCACGAAG	ACTTGCTAGC	TTTGGATGGC	TGGTATGCCC	AAACCTACCA	GTCTCAGCAG	8100
TTGGAAATGA	AAGGAGAAGA	AGATGCAGAA	TAAACAAGAA	CAATGGACTG	TATTGAAGCG	8160
TTGATGTCT	TATCTCAAGC	CTTATGGACT	CCTGACCTTT	TTGGCACTCA	GTTTTCTCCT	8220

			572			
AGCGACGACG	GTCATTAAAA	GTGTCATACC	CCTCGTGGCT	TCCCACTTTA	TCGACCAGTA	8280
TCTCAGCAAT	CTTAACCAAC	TAGCCGTTAC	CGTTTTGCTG	GTCTACTATG	GTCTCTACAT	8340
CCTACAAACT	GTAGTTCAGT	ATGTCGGCAA	TCTTCTCTTT	GCGCGCGTGT	CTTACAGTAT	8400
TGTTAGGGAT	ATTCGTCGGG	ATGCCTTTGC	CAATATGGAG	AAACTGGGCA	TGTCTTACTT	8460
TGACAAGACG	CCAGCAGGTT	CTATCGTTTC	TCGTTTGACC	AACGATACCG	AGACGATTAG	8520
TGATATGTTT	TCTGGGATTT	TATCCAGCTT	TATCTCAGCA	GTTTTTATCT	TTCTGACAAC	8580
CCTTTATACC	ATGTTGGTGC	TGGATTTTCG	TTTGACGGCT	TTAGTCTTGC	TCTTTCTTCC	8640
TTTGATTTTC	CTTTTGGTCA	ATCTCTATCG	AAAAAAGTCA	GTGAAAATCA	TCGAGAAAAC	8700
CAGAAGTCTC	TTGTCAGATA	TCAATAGTAA	GCTGGCAGAG	AATATCGAGG	GAATCAGGAT	8760
TATTCAGGCC	TTTAATCAAG	AGAAGCGCCT	GCAGGCAGAA	TTTGATGAAA	TCAACCAAGA	8820
ACACTTGGTC	TACGCCAACC	GTTCTGTAGC	CTTGGATGCC	CTCTTTTTGA	GACCTGCCAT	8880
GAGTTTGCTG	AAACTTCTAG	GCTATGCAGT	CTTGATGGCC	TACTTTGGCT	ACCGTGGTTT	8940
TTCTATCGGG	ATAACGGTCG	GGACCATGTA	TGCCTTTATC	CAGTACATCA	ACCGCCTTTT	9000
TGACCCCTTG	ATTGAGGTGA	CGCAAAACTT	TTCAACTCTG	CAAACGGCTA	TGGTTTCTGC	9060
AGGTCGTGTC	TTTGCCCTGA	TAGACGAGAG	GACCTATGAA	CCTCTTCAAG	AAAATGGGCA	9120
AGCCAAAGTC	CAAGAAGGCA	ATATCCGTTT	TGAACATGTG	TGTTTCTCAT	ATGACGGTAA	9180
ACATCCGATT	CTGGATGACA	TTTCTTTCTC	TGTTAATAAG	GGTGAAACCA	TTGCCTTTGT	9240
AGGTCATACA	GGTTCAGGGA	AATCGTCTAT	TATCAATGTC	CTCATGCGCT	TTTATGAATT	9300
CCAGTCAGGG	AGAGTTCTCT	TGGATGATGT	GGATATCAGG	GATTTCAGTC	AAGAAGAGCT	9360
GAGAAAAAAC	ATCGGTTTGG	TCTTGCAGGA	ACCCTTCCTC	TATCATGGAA	CTATTAAGTC	9420
CAATATCGCC	ATGTACCAAG	AAACCAGTGA	TGAGCAGGTT	CAGGCTGCGG	CAGCCTTTGT	9480
GGATGCAGAT	TCCTTTATTC	AAGAACTTCC	TCAGGGGTAC	GACTCCCCTG	TTTCCGAGCG	9540
TGGTTCGAGC	TTCTCTACTG	GGCAACGCCA	GCTTCTTGCC	TTTGCTAGAA	CAGTCGCCAG	9600
CCAGCCTAAA	ATCCTGATTT	TGGATGAAGC	GACAGCCAAT	ATTGACTCTG	AAACAGAAAG	9660
CTTGGTTCAA	GCTTCTCTGG	CGAAGATGAG	ACAGGGCCGA	ACAACTATTG	CTATCGCTCA	9720
CCGCCTTTCT	ACTATTCAAG	ATGCCAACTG	CATCTATGTC	TTGGATAAGG	GACGCATTAT	9780
CGAGAGTGGA	ACCCATGAGG	AACTCTTGGC	TCTGGGAGGA	ACCTATCACA	AGATGTATAG	9840
TTTGCAGGCA	GGGGCCATGG	CCGATACTCT	TTGAAAATCT	CTTTAAACCA	TGTCAGCTTT	9900
ATCTGCAATC	TCAAAGCTGT	ACTTTGATTT	TCATTGAGTA	CTAGAAGGAA	ATCCTTCAAA	9960
TTACAGATTT	CTTTCACCGC	CTTTTCCATT	TTGTÇGTATA	ATGAAAAATG	TTGACAAATA	10020

GTATAATAAA AACAAAGGAG	AACAGCATGC	TGAAATGGGA	AGACTTGCCT	GTGGAAATGA	10080
AATCAAGCGA GGTTGAGTCT	TACTACCAGC	TTGTCTCTAA	AAGGAAGGGT	TCGCTGATTT	10140
TCAAGCGTTG CTTGGACTGG	GTTTTGGCCT	TGGTCTTACT	GGTTCTGACC	TCTCCCATCT .	10200
TTCTCATCTT GAGCATTTGG	ATCAAGTTGG	ATAGCAAAGG	GCCAGTGATT	TACAAGCAAG	10260
AGCGTGTGAC CCAGTACAAC	CGTCGGTTCA	AGATTTGGAA	GTTTCGTACC	ATGGTGACGG	10320
ATGCGGATAA AAAAGGAAGT	CTGGTGACTT	CTGCTAACGA	TAGCCGCATT	ACCAAGGTTG	10380
GAAATTTCAT CCGACGTGTC	CGTTTGGACG	AACTGCCTCA	GTTGGTCAAT	GTCCTTAAAG	10440
GTGAGATGTC CTTTGTCGGT	ACACGACCTG	AAGTGCCACG	TTATACAGAG	CAGTATAGCC	10500
CTGAAATGAT GGCAACCTTG	CTCTTGCAAG	CAGGGATTAC	CTCTCCAGCC	AGCATCAACT	10560
ACAAGGATGA GGACACAATT	ATCAGTCAAA	TGACGGAGAA	AGGTCTGTCA	GTTGATCAGG	10620
CCTATGTGGA GCATGTTCTT	CCTGAAAAGA	TGCGCTATAA	CCTCGCCTAT	CTCCGAGAGT	10680
TTAGTTTCTT TGGGGACATC	AAAATCATGT	TTCAAACCGT	GTTTGAGGTA	СТААААТААА	10740
GTAGTCATAA GAAAATGAGT	ACAGATAAAA	GGAGCAAATC	AATGCCAAAT	TACAATATTC	10800
CATTTTCACC GCCTGATATC	ACAGAAGCAG	AAATTACTGA	AGTAGTGGAT	ACCCTGCGTT	10860
CTGGTTGGAT CACAACAGGT	CCTAAAACAA	AAGAACTGGA	GCGCCGCTTG	TCTCTTTACA	10920
CACAGACACC TAAGACTGTT	TGTCTCAACT	CTGCGACAGC	CGCTCTGGAG	TTGATTTTAC	10980
GCGTTTTGGA AGTGGGACCT	GGTGATGAAG	TCATCGTTCC	AGCCATGACC	TATACGGCTT	11040
CATGTAGTGT CATTACGCAC	GTGGGAGCAA	CCCCTGTCAT	GGTGGATATC	CAAGCAGATA	11100
CGTTTGAGAT GGACTATGAC	CTGCTTGAGC	AAGCTATCAC	TGAGAAAACT	AAGGTGATTA	11160
TTCCAGTAGA GCTCGCAGGG	ATTGTTTGCG	ATTATGACCG	TTTGTTGCAA	GTCGTGGAGA	11220
AAAAACGTGA CTTCTTTACC	GCTTCAAGCA	AGTGGCAAAA	GGCCTTTAAC	CGTATTGTCA	11280
TTGTCTCTGA TAGTGCCCAC	GCTTTGGGAT	CTATTTATAA	AGGACAACCT	TCTGGTTCTA	11340
TCGCTGACTT TACTTCCTTC	TCATTCCATG	CAGTTAAĞAA	CTTTACAACG	GCAGAAGGTG	11400
GAAGTGCGAC TTGGAAAGCC	AATCCAGTGA	TTGATGACGA	AGAGATGTAC	AAGGAATTCC	11460
AAATCCTTTC CCTTCACGGG	CAAACTAAGG	ATGCTCTTGC	CAAGATGCAA	CTGGGGTCAT	11520
GGGAATACGA TATCGTTACA	CCAGCCTATA	AGTGCAACAT	GACCGATATC	ATGGCTTCAC	11580
TTGGTTTGGT ACAATTGGAC	CGCTATCCAA	GTTTGTTGCA	ACGCCGTAAG	GACATTGTGG	11640
ACCGCTATGA TAGTGGTTTT	GCAGGTTCTC	GCATCCATCC	TTTGGCACAC	AAGACTGAAA	11700
CTGTCGAATC TTCACGCCAC	CTCTACATCA	CCCGTGTAGA	AGGAGCAAGC	CTAGAAGAAC	11760

			574			
GCAACCTCAT	CATCCAAGAA	TTGGCTAAAG		AAGTAATGTT	CACTACAAAC	11820
CGCTTCCTCT	CTTGACAGCC	TATAAGAATC	TTGGATTTGA	TATGACGAAC	TATCCTAAGG	11380
CCTATGCCTT	CTTTGAGAAT	GAAATTACCC	TCCCTCTTCA	TACTAAATTA	AGCGATGAAG	11940
AAGTAGACTA	TATCATTGAG	ACTTTCAAAA	CAGTTTCTGA	AAAAGTGCTA	ACTTTATCAA	12000
AAAAATGACA	AACTACAGTC	AAGCGAAAGT	GATCCTGCCC	CTAAAAAGTC	TAATTGAGTG	12060
TAAAAACTGT	TGTTTTCAAT	TGATAATAGT	TTACACCTGT	AGTTGAGGCC	CCTTTCTCCT	12120
CAGAGAGAGA	ATTTTTATAG	GATTTTCCTT	TCTTGTGGGA	GTCCCGTGGT	TTGAAATAAG	12180
ATGTGAGCAA	TTTAGTGTAG	CATTTAGAAT	CCTTACTAGA	CATCATTTAG	AAAATCTAGT	12240
GTCTTGTTCT	AGTTTTCAAT	TCACCCTATT	TTTTGAAAGA	CGTGAGTTTC	CATGAGTGAG	12300
ATTGTGGAAA	CTCGCGTCTT	TTTTTGTTT	CAGAATATTG	TTCAAAATTT	TGTGCCTGTC	12360
TTTCATGTTC	TAGTCATTCT	TTTGCATGAT	AGAATTTATA	GCATGTTGAT	ATTATAATAA	12420
TACAAATATT	CTATATGTTT	AGTGATGCTT	GCTATACATT	ATTAGATOTO	CTGCGAGACA	12480
АТСТАТАААА	CACTTGTCTA	CGATTACCTA	TATGCCCTAT	TCCAGTATTT	TAGAAGCACT	12540
GCATCTATTT	TTATCGAGGT	TAAATCTAGC	TTTTATAGAA	GGTCTATTTA	AGAAATATAT	12600
TGTAGTGTTT	TAGTTTCAAT	CCGCCATATG	AGCGATATTC	AGGTAAATAT	CCCTGGCGAA	12660
TGCTTGTATG	ACAAGGTATT	TGTTCTTTCA	TTTATAATTT	ACAACATATC	AACAAATTTA	12720
AATATAGTAA	ATGGGATATT	TTATATTCAA	GCTAAGAAAG	ATAGCATCAC	TTTTGAATGG	12780
AAGGCTAAAG	AGCAAACTAG	GAAGTTGGCC	ATAGATAGCT	CAAAACCCTG	CTTTGAGGTT	12840
GTAGATATAG	TAAAATGAAA	TGAGAATAGG	ACAAATTGAT	CGGGACAGTC	AAATCGATTT	12900
CTAACAATGT	TTTAGAAGTA	GAGGTGTACT	ATTTTAGTTT	CAGTCTACTA	TAGAACTGAC	12960
CAAGTCAGTA	ACCTAGACTT	AGGGCAAGGC	GGCACTGACC	TAGTTTGAAG	AGATTTCCGA	13020
AGAGTATAAA	TTAATATT	TTCTTGTGTT	ATTCCTTGAC	AATTCAATTT	GGAAAATATA	13080
TGATAAAGAT	AATGACAGCG	GTGTCATTCT	АТСТАТТТА	AGAAAAGTAA	TAATCAATTG	13140
TTAAAAATAG	TAAAAAAATT	GGAGGTTCTG	ATGAAATATT	TTGTTCCG		13188

(2) INFORMATION FOR SEQ ID NO: 71:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 32768 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:

AACGAGTGCA	TCAGTCTCAG	CAAGCACCAG	TGCGTCGGCC	TCAGCAAGCA	CCAGCGCGTC	60
TGAATCCGCA	TCAACCAGTG	CCTCAGCTTC	AGCAAGTACC	TCAGCATCTG	AATCAGCATC	120
AACAAGTGCA	TCGGCTTCAG	CAAGCACAAG	TGCTTCAGCC	TCAGCAAGTA	TCTCAGCGTC	180
TGAATCGGCA	TCAACGAGTG	CGTCCGCTTC	AGCAAGTACT	AGCGCCTCAG	CATCAGCGTC	240
AACAAGTGCT	TCGGCTTCAG	CGTCAACGAG	TGCGTCTGAG	TCAGCATCAA	CGAGTACGTC	300
AGCCTCAGCA	AGCACATCAG	CTTCTGAATC	TGCATCAACC	AGTGCGTCAG	CCTCAGCATC	360
GACAAGCGCC	TCAGCTTCAG	CAAGTACCAG	TGCGTCAGCC	TCAGCAAGTA	CCAGTGCTTC	420
AGCCTCAGCG	TCGACAAGTG	CGTCGGCCTC	AACCAGTGCA	TCTGAATCGG	CATCAACCAG	480
TGCGTCAGCC	TCAGCAAGTA	CTAGCGCCTC	AGCCTCAGCA	TCAACGAGTG	CGTCCGCTTC	540
AGCAAGTACT	AGTGCATCAG	CATCAGCATC	AACGAGTGCA	TCGGCTTCAG	CAAGTACCAG	600
CGCCTCAGCT	TCAGCAAGCA	CCAGTGCGTC	AGCCTCAGCA	AGTACCAGCG	CCTCAGCCTC	660
AGCAAGCACC	AGTGCCTCAG	CTTCAGCAAG	TACCAGTGCG	TCAGCCTCAG	CGTCGACAAG	720
TGCGTCGGCT	TCAGCAAGTA	CCTCAGCGTC	TGAATCAGCA	TCAACGAGTG	CATCAGCTTC	780
AGCATCAACA	AGTGCTTCAG	CTTCAGCAAG	TATCTCAGCG	TCTGAATCGG	CATCAACGAG	840
TGCGTCCGCT	TCAGCAAGTA	CTAGCGCCTC	AGCATCAGCG	TCAACAAGTG	CTTCGGCTTC	900
AGCGTCAACG	AGTGCGTCTG	AGTCAGCATC	AACGAGTACG	TCAGCCTCAG	CAAGCACATC	960
AGCTTCTGAA	TCTGCATCAA	CCAGTGCGTC	AGCCTCAGCA	TCGACAAGCG	CCTCAGCTTC	1020
AGCAAGTACC	AGTGCGTCAG	CCTCAGCAAG	TACCAGTGCT	TCAGCCTCAG	CGTCGACAAG	1080
TGCGTCGGCC	TCAACCAGTG	CATCTGAATC	GGCATCAACC	AGTGCGTCAg	CCTCAGCAAG	1140
TACTAGCGCC	TCAGCCTCAG	CATCAACGAG	TGCGTCCGCT	TCAGCAAGTA	CTAGTGCATC	1200
AGCATCAGCA	TCAACGAGTG	CATCGGCTTC	AGCAAGTACC	AGCGCCTCAG	CTTCAGCAAG	1260
CACCAGTGCG	TCAGnCTCAG	CAAGTACCAG	CGCCTCAGCC	TCAGCAAGCA	CCAGTGCCTC	1320
AGCTTCAGCA	AGTACCAGTG	CGTCAgCCTC	AGCGTCGACA	AGTGCGTCGG	CTTCAGCAAG	1380
TACCTCAGCG	TCTGAATCAG	CATCAACGAG	TGCATCAGCT	TCAGCATCAA	CAAGTGCTTC	1440
AGCTTCAGCA	AGTACCAGTG	CGTCGGCTTC	AGCATCAACG	AGTGCTTCAG	TCTCAGCGTC	1500
AACCAGTGCC	TCTGAATCAG	CATCAACAAG	TGCCTCGGCT	TCAGCAAGCA	CCAGTGCGTC	1560
GGCTTCAGCA	AGTACTAGTG	CATCGGCTTC	AGCATCGACA	AGTGCGTCTG	AATCGGCATC	1620
AACGAGTGCT	TCGGCTTCAG	CATCAACGAG	TGCGTCAGCC	TCAGCAAGCA	CATCAGCTTC	1680
TGAATCTGCA	TCAACCAGTG	CGTCCGCTTC	AGCGTCAACC	AGTGCGTCGG	CTTCAGCGTC	1740

576 GACAAGTGCT TCGGCTTCAG CATCAACGAG TGCGTCGGCC TCAGCAAGCG CAAGTACCTC 1800 AGCGTCAGCT TCCGCCTCAA CCAGTGCGTC GGCTTCAGCA AGCACAAGTG CGTCAGCCTC 1860 AGCAAGTATC TCAGCGTCTG AATCGGCATC AACGAGTGCG TCTGAGTCAG CATCAACGAG 1920 TACGTCAGCC TCAGCAAGCA CATCAGCTTC TGAATCTGCA TCAACCAGTG CGTCAGCCTC 1980 AGCATCGACA AGCGCCTCAG CTTCAGCAAG TACCAGTGCT TCAGCCTCAG CGTCGACAAG 2040 TGCGTCGGCC TCAACCAGTG CATCTGAATC GGCATCAACC AGTGCGTCAG CCTCAGCAAG 2100 TACTAGTGCA TCAGCTTCAG CATCAACGAG TGCATCGGCT TCAGCATCAA CCAGTGCCTC 2160 GGCTTCAGCG TCAACCAGTG CGTCAGCTTC AGCAAGTACC AGTGCTTCAG TCTCAGCATC 2220 AACAAGTGCT TCAGCCTCAG CATCGACAAG TGCCTCGGCT TCAGCAAGCA CATCAGCATC 2280 TGAATCAGCG TCAACCAGTG CTTCGGCTTC AGCAAGTACC AGTGCTTCAG CTTCAGCATC 2340 AACCAGCGCC TCGGCCTCAG CAAGCACCTC AGCTTCTGAA TCGGCCTCAA CCAGCGCCTC 2400 GGCCTCAGCA AGCACCTCAG CTTCTGAATC GGCCTCAACC AGCGCCTCAG CCTCAGCATC 2460 AACGAGTGCT TCGGCTTCAG CAAGCACAAG CGCCTCGGGT TCAGCATCAA CGAGTACGTC 2520 AGCTTCAGCG TCAACCAGTG CTTCAGCCTC AGCATCAACA AGTGCGTCAG CCTCAGCAAG 2580 TATCTCAGCG TCTGAATCGG CATCAACGAG TGCGTCTGAG TCAGCATCAA CGAGTACGTC 2640 AGCCTCAGCA AGCACCTCAG CTTCTGAATC GGCCTCAACC AGTGCGTCAG CCTCAGCATC 2700 GACAAGCGCC TCAGCTTCAG CAAGTACCAG TGCTTCAGCC TCAGCGTCGA CAAGTGCGTC 2760 GGCCTCAACC AGTGCATCTG AATCGGCATC AACCAGTGCG TCAGCCTCAG CAAGTACTAG 2820 TGCATCGGCT TCAGCATCAA CCAGTGCCTC GGCTTCAGCG TCAACCAGTG CGTCAGCTTC 2880 AGCAAGTACC AGTGCTTCAG TCTCAGCATC AACAAGTGCT TCAGCCTCAG CATCGACAAG 2940 TGCCTCGGCT TCAGCAAGCA CATCAGCATC TGAATCAGCG TCGACAAGCG CCTCAGCTTC 3000 AGCAAGTACC AGTGCGTCAG CCTCAGCGTC GACAAGTGCG TCAGCCTCAG CAAGTACTAG 3060 TGCATCAGCT TCAGCATCAA CGAGTGCATC GGCTTCGGCG TCAACCAGTG CATCAGAGTC 3120 AGCAAGTACC AGTGCGTCAG CTTCCGCATC AACAAGTGCC TCGGCTTCAG CAAGCACCAG 3180 TGCGTCGGCT TCAGCAAGTA CTAGCGCCTC AGCCTCAGCC TCAACCAGTG CGTCAGCCTC 3240 AGCAAGTATC TCAGCGTCTG AATCGGCATC AACGAGTGCG TCCGCTTCAG CAAGTACTAG 3300 CGCCTCAGCC TCAGCGTCAA CAAGTGCATC GGCTTCAGCG TCAACGAGTG CGTCTGAATC 3360 GGCATCAACG AGTGCGTCCG CTTCAGCAAG TACTAGCGCC TCAGCCTCAG CGTCAACAAG 3420 TGCATCGGCT TCAGCATCAA CGAGTGCGTC CGCTTCAGCA AGTACTAGCG CCTCAGCCTC 3480 AGCGTCAACA AGTGCATCGG CTTCAGCGTC AACGAGTGCG TCTGAGTCAG CATCAACGAG 3540

TGCGTCAGCC	TCAGCAAGCA	CATCAGCTTC	TGAATCTGCA	TCAACCAGTG	CGTCAGCCTC	3600
AGCATCGACA	AGCGCCTCAG	CTTCAGCAAG	TACCAGTGCG	TCAGCCTCAG	CGTCGACAAG	3660
TGCGTCGGCT	TCAGCAAGTA	CCAGTGCGTC	AGCCTCAGCA	AGTACCAGTG	CGTCAGCCTC	3720
AGCGTCGACA	AGTGCGTCGG	CCTCAACCAG	TGCATCTGAA	TCGGCATCAA	CCAGTGCGTC	3780
AGCCTCAGCA	AGTACTAGTG	CATCAGCTTC	AGCATCAACG	AGTGCATCGG	CTTCAGCATC	3840
AACCAGTGCA	TCAGAGTCAG	CAAGTACCAG	TGCGTCAGCT	TCCGCATCAA	CAAGTGCCTC	3900
GGCTTCAGCA	AGTACTAGCG	CCTCAGCCTC	AGCGTCAACA	AGTGCTTCAG	CTTCCGCGTC	3960
AACCAGCGCC	TCGGCCTCAG	CAAGTATCTC	AGCGTCTGAA	TCGGCATCAA	CAAGTGCCTC	4020
GGCTTCAGCA	TCAACGAGTG	CATCAGTCTC	AGCAAGCACC	AGTGCGTCGG	CCTCAGCAAG	4080
CACCAGCGCG	TCTGAATCCG	CATCAACCAG	TGCCTCAGCT	TCAGCAAGTA	CCTCAGCATC	4140
TGAATCAGCA	TCAACAAGTG	CCTCGGCTTC	AGCAAGCACA	AGTGCTTCAG	CCTCAGCAAG	4200
TATCTCAGCG	TCTGAATCGG	CATCAACGAG	TGCGTCCGCT	TCAGCAAGTA	CTAGCGCCTC	4260
AGCATCAGCO	TCAACAAGTG	CTTCGGCTTC	AGCGTCAACG	AGTGCGTCTG	AGTCAGCATC	4320
AACGAGTAC	TCAGCCTCAG	CAAGCACATC	AGCTTCTGAA	TCTGCATCAA	CCAGTGCGTC	4380
AGCCTCAGC	TCGACAAGCG	CCTCAGCTTC	AGCAAGTACC	AGTGCGTCAG	CCTCAGCAAG	4440
TACCAGTGCT	T TCAGCCTCAG	CGTCGACAAG	TGCGTCGGCC	TCAACCAGTG	CATCTGAATC	4500
GGCATCAAC	AGTGCGTCAG	CCTCAGCAAG	TACTAGCGCC	TCAGCCTCAG	CATCAACGAG	4560
TGCGTCCGC	r TCAGCAAGTA	CTAGTGCATC	AGCTTCAGCA	AGTACTAGCO	CCTCAGCCTC	4620
AGCGTCGAC	A AGCGCCTCAG	CTTCAGCAAG	TACCAGTGCG	TCAGCCTCAG	CGTCGACAAG	4680
TGCGTCGGC	T TCAGCAAGTA	CCTCAGCGTC	TGAATCAGCA	TCAACAAGTO	CGTCGGCTTC	4740
AGCATCAAC	G AGTGCATCAC	CTTCAGCATC	: AACAAGTGC1	TCAGCTTCAG	CAAGTACCAG	4800
TGCGTCGGC	T TCAGCATCA	CGAGTGCTTC	AGTCTCAGC	TCAACCAGTO	CCTCTGAATC	4860
CGCATCAAC	A AGTGCCTCGC	CTTCAGCAAC	CACCAGTGCT	TCGGCTTCAC	CGTCAACGAG	4920
TGCGTCTGA	G TCAGCATCA	CGAGTGCGT	AGCCTCAGC/	AGCACATCA	G CTTCTGAATC	4980
TGCATCAAC	C AGTGCGTCAG	CTTCCGCAT	AACAAGCGC	TCGGCCTCAG	G CAAGTACAAG	5040
TGCTTCAGC	C TCAGCATCA	CCAGTGCAT	AGCTTCAGC	TCAACAAGT	G CTTCAGCCTC	5100
AGCGTCAAC	C AGTGCCTCG	CTTCAGCAA	G TACCAGTGC	G TCAGCTTCA	G .CAAGCACAAG	5160
TGCGTCAGC	T TCAGCATCA	A CCAGTGCTT	C GGCTTCGGC	A TCAACAAGT	G CCTCAGCATC	5220
AGCATCAAC	G AGTGCGTCA	G CCTCAGCAA	G TACTAGTGC	A TCAGCATCA	G CATCAACCAG	5280

			578			
TGCATCAGCC	TCAGCAAGTA	TCTCAGCGTC		TCAACGAGTG	CATCAGCATC	5340
AGCATCAACG	AGTGCATCGG	CTTCAGCGTC	AACCAGTGCA	TCAGTCTCAG	CAAGCACCAG	5400
TGCGTCGGCT	TCAGCATCAA	CGAGTGCCTC	AGCCTCAGCA	AGTATCTCAG	CGTCTGAATC	5460
GGCATCAACG	AGTGCGTCAG	CCTCAGCAAG	TACTAGTGCA	TCGGCTTCAG	CAAGCACCAG	5520
TGCGTCGGCT	TCAGCATCAA	CCAGTGCCTC	AGCCTCAGCA	AGTATCTCAG	CGTCTGAATC	5580
GGCATCAACG	AGTGCGTCAG	CCTCAGCAAG	TACTAGTGCA	TCAGCmTCAG	CATCAACGAG	5640
TGCATCGGCT	TCAGCAAGTA	CCAGCGCCTC	AGCTTCAGCA	AGCACCAGTG	CGTCAGCCTC	5700
AGCAAGTACC	AGCGCCTCAG	CCTCAGCAAG	CACCAGTGCC	TCAGCTTCAG	CAAGTACCAG	5760
TGCGTCAGcT	CAGCATCAAC	AAGTGCTTCA	GCTTCGGCCT	CAACAAGTGC	GTCAGCTTCA	5820
GCATCAACGA	GTGCGTCGGC	TTCAGCAAGC	ACCAGTGCCT	CGGCCTCAGC	AAGCACCAGT	5880
GCTTCAGCTT	CAGCATCAAC	AAGTGCGTCA	GCTTCAGCAA	GTACATCAGT	TTCAAATTCA	5940
GCAAACCATT	CGAACTCACA	AGTTGGAAAT	ACTTCTGGAT	CGACAGGTAA	ATCCCAAAAA	6000
GAATTGCCTA	ATACAGGTAC	TGAGTCGTCA	ATTGGATCTG	TGTTACTTGG	AGTTCTAGCA	6060
GCTGTTACAG	GTATTGGATT	GGTTGCGAAA	CGCCGTAAAC	GTGATGAAGA	AGAGTAAGAC	6120
AACCTGTAAA	GTTAGGCTAA	ACTAACTCGC	GCACATAAAT	CAAGGAGAAA	ATTGCTAGTG	6180
GATGATAAAA	TAACAGTCAT	TGTACCAGTA	TACAATGTGG	AAAACTATCT	GAGGAAGTGC	6240
CTAGATAGTA	TTATTACTCA	AACATATAAA	AATATTGAGA	TTGTTGTCGT	TAATGATGGT	6300
TCTACGGATG	CTTCAGGTGA	AATTTGTAAA	GAATTTTCAG	AAATGGATCA	CCGAATTCTC	6360
TATATAGAAC	AAGAAAATGC	TGGTCTTTCT	GCCGCACGAA	ACACCGGTCT	GAATAATATG	6420
TCCGGAAATT	ATGTGACCTT	TGTGGACTCG	GATGATTGGA	TTGAGCAAGA	TTATGTAGAA	6480
ACTCTATATA	AAAAAATAGT	AGAGTATCAG	GCTGATATTG	CAGTTGGTAA	TTATTATTCT	6540
TTCAACGAAA	GTGAAGGAAT	GTTCTACTTT	CATATATTGG	GAGACTCCTA	TTATGAGAAA	6600
GTATATGATA	ATGTTTCTAT	CTTTGAGAAC	TTGTATGAAA	CTCAAGAAAT	GAAGAGTTTT	66 60
GCTTTGATAT	CTGCTTGGGG	TAAACTCTAT	AAGGCAAGAT	TGTTTGAGCA	GTTGCGCTTT	6720
GACATAGGTA	AATTAGGAGA	AGATGGTTAC	CTCAATCAAA	AGGTATATTT	ATTATCAGAA	6780
AAGGTAATTT	ATTTAAATAA	AAGTCTTTAT	GCTTATCGGA	TTAGAAAAGG	TAGTTTATCA	6840
AGAGTTTGGA			mm's comes me	СТАТСТСТСА	ACGTATTACG	6900
	CAGAAAAGTG	GATGCACGCT	TIAGTIGATE	CINIGICIAN		
CTACTAGCTA					TCAGATGTTG	6960
	ATATGGGTTA	TCCTCTAGAG	AAACACTTGG	CAGTTTATCG		6960 7020
GAAGTCAGTC	ATATGGGTTA TCGCCAACGG	TCCTCTAGAG TCAAGCTAGT	AAACACTTGG GGTTTATCTG	CAGTTTATCG	TCAGATGTTG	

GCCATTGTCC	TCGCAGCAAA	CTATGGCTAT	GTAGACCAAG	TTTTAACGAC	AATCAAGTCT	7140
ATTTGTTATC	ATAATCGTTC	GATTCGTTTT	TATCTGATTC	ATAGCGATTT	TCCAAATGAA	7200
TGGATTAAGC	AATTAAATAA	GCGCTTAGAG	AAGTTTGACT	CAGAAATTAT	TAATTGTCGG	7260
GTAACTTCTG	AGCAAATTTC	ATGTTATAAA	TCGGATATTA	GTTACACAGT	CTTTTTACGC	7320
TATTTCATAG	CTGATTTCGT	GCAAGAAGAC	AAGGCCCTCT	ACTTGGACTG	TGATCTAGTT	7380
GTAACGAAAA	ATCTGGATGA	CTTGTTTGCT	ACAGACTTAC	AAGATTATCC	TTTGGCTGCT	7440
GTTAGAGATT	TTGGGGGCAG	AGCTTATTTT	GGTCAAGAAA	TCTTTAATGC	CGGTGTTCTC	7500
TTGGTAAACA	ATGCTTTTTG	GAAAAAAGAG	AATATGACCC	AAAAATTAAT	TGATGTAACC	7560
AATGAATGGC	ATGATAAGGT	GGATCAGGCA	GATCAGAGCA	TCTTGAATAT	GCTTTTTGAA	7620
CATAAATGGT	TGGAATTGGA	CTTTGATTAT	AATCATATTG	TCATTCATAA	ACAGTTTGCT	7680
GATTATCAAT	TGCCTGAGGG	TCAGGATTAT	CCTGCTATTA	TTCACTATCT	TTCTCATCGG	7740
AAACCGTGGA	AAGATTTGGC	GGCCCAAACC	TATCGTGAAG	TTTGGTGGTA	CTATCATGGG	7800
CTTGAATGGA	CAGAATTGGG	ACAAAACCAT	CATTTACATC	CATTACAAAG	ATCTCACATC	7860
TATCCAATAA	AGGAACCTTT	CACTTGTCTA	ATCTATACTG	CCTCAGACCA	TATTGAACAA	7920
ATTGAGACAT	TGGTTCAATC	CTTGCCTGAT	ATTCAGTTTA	AGATAGCAGC	TAGAGTAATA	7980
GTTAGTGATC	GATTGGCTCA	GATGACAATT	TATCCAAACG	TGACTATATT	TAACGGAATT	8040
CACTATTTGG	TAGATGTCGA	TAATGAATTG	GTAGAAACCA	GTCAAGTACT	TTTAGATATT	8100
AATCATGGCG	AAAAGACAGA	AGAAATTCTC	GATCAATTTG	CTAATCTTGG	CAAGCCTATC	8160
TTATCCTTTG	AAAATACTAA	AACCTATGAA	GTAGGTCAGG	AGGCATATGC	TGTTGACCAA	8220
GTTCAAGCAA	TGATTGAAAA	ATTGAGAGAA	ATAAGCAAAT	GAAGAAAAT	CATTTAGTAG	9230
GAGATGCTCT	GATTTTGACG	GTTAGTGATC	AGATTGAAGA	GTTGGATTAT	TTTTTATAAA	8340
ATTTCTCCGT	TCATCATATA	TGAAAGTTGT	TCAAACATCA	GAGTGCTTTA	AATATAA	8400
ATAGACCTAA	AGATATTTAA	TATGAACTGC	ACCCCAAAAG	TTAGACAGAA	AAAATCTAAC	8460
TTTTTGGsGT	CAGTACAATA	TTAGGGTGTG	ATTAATTATC	TTTTTAGGTG	AAAATGATTC	8520
TATATTATAG	CTGTTTGATA	CGAAATTTAT	TATAAGGAAA	TTATGTTAAT	GAATACAAAA	8580
TCTATAGTTT	TTAATGCAGA	TAATGATTAT	GTAGATAAAT	TAGAAACTGC	AATTAAATCT	8640
ATTTGTTGTT	ATAATAATTG	TTTAAAATTT	TATGTATTTA	ATGATGATAT	TGCGTCAGAG	8700
TGGTTTTTGA	TGATGAATAA	GCGATTGAAG	ACTATACAAT	CTGAAATCGT	TAATGTAAAG	8760
ATTGTAGATC	ATGTTCTTAA	AAAGTTTCAT	TTACCGTTAA	AGAATTTAAG	TTATGCCACT	8820

TTCTTTCGTT	ATTTTATACC	TAATTTTGTC	580 AAAGAAAGTC	GTGCTTTATA	CCTAGATTCT	8880
GACATCATTG	TTACAGGAAG	TTTAGACTAT	TTATTTGATA	TAGAACTAGA	TGGTTATGCC	8940
TTGGCAGCAG	TAGAAGATTC	TTTTGGTGAT	GTTCCTTCTA	CCAATTTTAA	CTCCGGAATG	9000
TTATTAGTTA	ATGTAGATAC	TTGGAGAGAT	GAAGATGCTT	GTTCGAAACT	GTTAGAACTG	9060
ACCAATCAAT	ATCATGAAAC	AGCATATGGA	GATCAAGGAA	TTTTAAATAT	GTTATTCCAT	9120
GATAGATGGA	AAAGATTAGA	CCGAAATTTT	AATTTTATGG	TGGGGATGGA	TAGCGTCGCA	9180
CACATAGAAG	GAAATCATAA	ATGGTATGAG	ATTTCTGAGT	TGAAAAATGG	AGATTTACCT	9240
AGTGTTATAC	ATTATACTGG	GGTAAAACCT	TGGGAAATAA	TTTCCAATAA	TCGCTTTAGA	9300
GAAGTTTGGT	GGTTTTATAA	TCTGTTAGAA	TGGTCTGATA	TTTTATTGAG	AAAAGACATT	9360
ATTAGTCGTA	GTTTCGAAGA	ACTTGTATAC	AGTCCTAAAG	CTCATACAGC	AATTTTTACA	9420
GCTAGTTGTG	AGATGGAGCA	TGTAGAATAT	TTGATAGAAA	ATTTACCAGA	GGTACATTTT	9480
TCTATACTAG	CACATACATA	TTTTGCGTCT	AGTGTCGTTG	CTTTATTAAG	ATATAGCAAT	9540
GTTACGATTT	ATCCTTGTTT	TTCTCCATTT	GATTATCGAA	AAATTTTGGA	TAATTTAGAT	9600
TTTTATTAG	; ататтаатса	TTATAAAGAA	GTGGATAATA	TTGTATCCGT	TGTTCAACAA	9660
CTATCTAAAC	CAATTTTAC	CTTTGAAAAT	ACTAGTCATG	ATATAGGCAA	TCAAACTAAT	9720
ATATTTTCTT	CAACCGAACC	AAACAAAATG	GTAGAGGCTA	TTAGACAATT	TATAGGAGAA	9780
TAAGTTTATO	GCAGACGAAC	TAATTAGTAT	TGTAGTTCCA	ATCTACAACG	TTGAGAATTA	9840
TTTGCGAATO	G TGTTTGGATA	GCATTCAGAA	TCAGACGTAT	CAAAATTTTG	AGTGTTTATT	9900
AATCAATGA?	GGCTCTCCAG	ATCATTCATO	CAAAATATGT	GAAGAATTTG	TAGAGAAAGA	9960
TTCTCGTTT	AAATATTTG	AGAAAGCAAA	CGGCGGTCTT	TCATCAGCTC	GTAACCTAGG	10020
TATTGAATG	r tesaggagga	GCGTACATT/	CTTTTGTAGA	CTCTGATGAT	TGGTTGGAAC	10090
ATGATGCTT	T AGACCGATTA	TATGGTGCT	TGAAAAAGGA	AAACGCAGA1	ATTAGTATCG	10140
GGCGTTATA	A TTCTTATGAT	GAAACACGC	ATGTGTATAT	GACTTATGTT	ACGGATCCAG	10200
ATGATTCTC	T AGAAGTGATA	GAAGGTAAAG	CAATTATGG/	\ TAGGGAAGG1	GTCGAAGAAG	10260
TCAGAAATG	G GAACTGGAC1	GTAGCTGTC	r tgaagttati	CAAGAGAGA	TTACTACAAG	10320
ATTTACCAT"	T TCCTATAGG	AAAATTGCA	G AGGATACTT	A CTGGACATG	AAGGTACTTC	10380
TAAGAGCTT	C GAGGATAGT	TATTTGAAT	C GTTGTGTTT	A CTGGTACCG	CTTGCTTTAT	10440
CTGATACTT	T ATCGAATAC	A TGGAGTGAA	A AGCGTATGT	A TGATGAAAT	CGGGCTAGGG	10500
AAGAAAAGA	T AGCTATTTT	A GCAAGTTCA	G ACTATGACT	T GACCAATCA	r ATTTTGATTT	10560
ATAAAAATA	G ATTACAAAG	a GTGATAGCA	A AATTAGAAG	A ACAAAATAT	G CAGTTCACAG	10620

AGATTTACAG	AAGAATGATG	GAAAAATTGT	CTTTACTTCC	GTAGATAGTA	ATAAAAAATG	10680
AGATAGCGTA	ATATGAAACT	ACATTTAACA	AATTTATACG	GCATGGCTGG	TGATAGTACG	10740
GTTATCTTAG	CTCAAAATGC	TGTTCAAAAG	ATAGCTAGTC	AACTGGGATT	TAGAGAGGTT	10800
GGTATTTATT	TTTACAACAT	TGCTTCAGAT	AGTCCTTCTG	AAATGAATAA	GCGTCTGGAT	10860
GGTATTATGG	CCAGTATCTC	TATTGGGGAT	ATTTTAGTCT	TTCAGTCTCC	AACCTGGAAT	10920
GGTTTTGAAT	TTGATCGTCT	CTTGTTTGAT	AAGCTAAAGG	ATATGCAGGT	GAAAATTATT	10980
TGCTTTATCC	ATGATGTTGT	TCCCCTCATG	TTTGATAGTA	ACTATTATCT	CATGAAAGAT	11040
TATCTGTATA	TGTATAATCT	ATCAGATGTT	TTGATAGTGC	CCTCAGAGAG	AATGAAAACA	11100
CGCCTGATGG	AAGAAGGATT	GACGACTAAG	AAGATTCTTG	TTCAAGGGAT	GTGGGATCAT	11160
CCTCATGATT	TATCCTTATA	CACCCCTGCT	TTTAAAAAAG	AACTTTTTT	TGCTGGAAGT	11220
TTAGAGCGTT	TTCCAGACTT	ACAAAATTGG	TCTCAAGATA	CGCCTTTGAG	AGTATTTTCA	11280
AATAAAGGGG	AAGCTAGTTC	TAGTGCTAGA	AGTCTCAGCA	TCGAAGGATG	GAAAAAGAT	11340
GAGGAATTGT	TGCTAGAATT	ATCAAAGGGT	GGATTTGGCC	TTGTCTGGGG	AACCCATCAA	11400
AATGAGGGAG	AAAGTAACCA	ATACTATACC	TTGAATATAT	CTCATAAGGT	GAGTACCTAT	11460
CTAACAGCGG	GCATTCCAGT	CATTGTACCA	AGTAGCTTGT	CAACTGCTAA	ATTTATAGTA	11520
GATCAAGGCT	TGGGCTTTAT	GGCGGATAGT	CTGGAAGAGG	TTCATGAGAT	AGTTGATAAA	11580
ATGAATCTAC	AAGAATATCA	AGAAATGACG	AATCGTATCA	AGACCTTTAG	CTATTTGTTA	11640
AAAGAGGGCT	ATTTCACTAA	AAAGTTATTG	GTAGATGCAA	TCTATCACTT	GGGAATTGAT	11700
TAAGGGAATG	AAATGAACAA	AACAATTGTA	CTAGCAGGGG	ATCGCAATTA	CACCAGGCAG	11760
TTAGAAACAA	CGATAAAATC	TATTTTATAC	CACAATCGAG	ATGTTAAGAT	TTATATTTTG	11820
AATCAAGATA	TCATGCCAGA	TTGGTTTCGC	AAACCACGAA	AAATAGCTCG	CATGTTAGGT	11880
AGTGAGATTA	TCGATGTTAA	ACTACCTGAA	CAAACTGTGT	TTCAAGATTG	GGAAAAGCAA	11940
GATCACATTA	GTAGCATTAC	TTATGCTAGA	TATTTTATTG	CAGATTATAT	CCAAGAAGAT	12000
AAGGTTTTAT	ATTTAGACAG	TGATTTGATT	GTAAATACTT	CTTTAGAGAA	attatttagt	12060
ATTTGTTTAG	AAGAAAAATC	ACTCGCAGCA	GTTAAAGATA	CAGATGGAAT	TACATTTAAT	12120
GCAGGTGTTT	TATTAATCAA	СААТААААА	TGGCGTCAAG	AGAAATTAAA	AGAACGACTA	12180
ATTGAACAGA	GCATTGTTAC	AATGAAGGAA	GTTGAAGAAG	GCCGTTTCGA	GCATTTTAAT	12240
GGTGATCAAA	CGATTTTAA	TCAGGTCTTG	CAAGATGATT	GGTTAGAACT	AGGTCGAGCT	12300
TATAATTTAC	AAGTAGGGCA	TGATATTGTG	GCTTTGTATA	ACAATTGG CA	GGAACATCTG	12360

			582			
GCTTTTAATG	ATAAACCAGT	GGTGATTCAT	TTTACGACCT	ACAGAAAACC	CTGGACTACC	12420
TTGACAGCCA	ATCGTTATCG	TGATTTATGG	TGGGAATTCC	ATGATTTGGA	GTGGAGTCAG	12480
ATTTTACAAC	ACCATATGGG	agaatttgaa	CTAATATCGC	CTCTAGATAA	GGAATTTTCT	12540
TGCTTAACCT	TAACGAATTC	CCAAGATTTA	GAAGGAATAG	AAGAGCTAGT	TACAGCTCTA	12600
CCTGAGGTGG	TATTTCATAT	CGCAGCTTGG	ACGGATATGG	GAGATAAATT	AAAAAAATTA	12660
GCTGTATATA	ATAATGTGAG	ATTGCATCCA	CAAATTGTTC	CACCGGTCTT	AGATAAGCTG	12720
AAAAAGTCAA	CAAATCTATA	TTTGGATATC	AATCATGGTA	GTGCAGATGA	GAACTTTTTA	12780
AAATCTTTGC	AAGAACAAGA	AAAAACGCTA	CTAGCTTTTC	AATCGACTCA	GCACGGAGAG	12840
TTAGGACAAA	TCGTTTTCGA	AAATGGGAAA	GTTTCCTTTA	TGATTGATAC	GATTAAAGAT	12900
TTTAAGAAAA	ACGGACATCT	TACCTGTTTT	CGACAACTTC	CAAGTTTAAC	TTGTTTAACG	12960
TTTACGGCTT	CTCAGTATAT	CGAACAATTG	GATTACTTGG	CTGGACAGTT	GCCAAATGTT	13020
GTTTTTCAAA	TTGCTGCTTG	GACAGCTATG	GGGCCAAAAT	TATATGATTT	GTCTAATCGT	13080
TATCCTAATA	TTCAGCTCTA	TCCGGCAATT	TCTAGAGATA	AGCTAGACGA	GTTGAAGGAG	13140
AAGATGGATG	CTTATTTAGA	TATCAACCTA	CTGACTTCAA	CATCCGATAT	CGTTGCAGAA	13200
ATGGCTCATC	TATCTAAACC	TATACTAGCC	TAAAT	CTCAAAATGG	GAATAATGGC	13260
CAAAGGTTGT	ATTCAAGTGA	ACATCCTGAA	CGAATGTTGG	CTGATTTGCA	AAAATTGATA	13320
ΛCTAAGGATA	TGCTAGAAAA	ACCGCTTGAT	ATAATCCAGG	TGAAAGGGAT	AGATGAAACC	13380
TTGGATTATA	TTATTGAACA	CAACTCTTCT	TTAGTTCGTT	TTGGAGATGG	GGAAATCAAT	13440
ATGCTTGCAG	GGCATTCAAT	TCCCTACCAG	GATTATGATG	AAGAGTTGGT	TTCAATCATG	13500
AGGGACATTA	TCGGCCAAGA	AAGTCGAGAA	GATTTAGTAG	TGTGCCTTCC	TGATGCTTTT	13560
ACAGATCGTT	TTAGGTTTAC	ATCGTGGGGG	ATTCCATTTT	GGAAAGATCA	CATGUATCAT	13620
TATATGGATT	TTTACAGAGA	GTTATGCAGT	GATTCATGGT	ATGGCTCAAC	CTTTGTATCT	13680
CGCCCTTATA	TCGATTTTGA	AGACAAGAGT	CAAGCTAAAG	CTCAATTTGA	AAAATTGAAA	13740
AGCATTTGGG	AAAACCGTGA	CTTACTGATA	GTCGAAGGTG	CGACTTCTCG	TTCAGGTGTC	13800
GGAAATGATT	TATTCGATGA	GGCAAATTCT	ATTAAGCGAA	TTATCTGTCC	TTCTCATAGT	13860
GCCTTTTCTA	GAGTTCATGA	ACTTGAACA	GAAATTGAAA	AGTATGCTGG	TGGTCGCTTG	13920
ATTTTATGTA	TGCTTGGACC	TACAGCAAAA	GTTCTGAGTT	ATAATCTATO	CCAGATGGGC	13980
TATCAAGTT	TGGATGTAGO	CCATATTGAG	TCAGAGTATO	AATGGAT GA	AATGGGAGCT	14040
AAAACTAAGG	TTAAATTTC	TCATAAACA	ACTGCAGAAG	ATAATTTCGA	CCAAGATATT	14100
GAATTTATT	ATGATGAAA	CTATAACAG	CAGATTGTT	CACGAATATI	AAACTAGACT	14160
				•		

ATTTAAAATA	AATGATAAGG	ATTTAAAATG	AGAAATACCA	AACGCGCTGT	AGTATTTGCA	14220
GGTGATTACG	CTTATATTCG	ACAAATCGAA	ACGGCGATGA	AGTCACTCTG	TAGACACAAT	14280
AGTCATTTGA	AAATTTATCT	GCTAAATCAG	GACATTCCTC	AGGAATGGTT	TAGTCAAATA	14340
AGAATATATT	TACAAGAGAT	GGGGGCGAC	TTGATTGACT	GCAAGTTAAT	TGGCTCACAG	14400
TTTCAAATGA	ATTGGTCTAA	TAAATTACCT	CATATCAATC	ATATGACATT	TGCACGCTAT	14460
TTTATTCCAG	ATTTTGTAAC	AGAAGATAAA	GTTCTCTATC	TAGATAGTGA	TTTGATTGTG	14520
ACTGGTGATT	TGACCGATTT	GTTTGAATTA	GACTTAGGTG	AAAATTATTT	GGCAGCAGCT	14580
CGTTCTTGCT	TTGGAGCAGG	AGTCGGCTTC	AATGCTGGTG	TTCTCTTGAT	TAACAACAAA	14640
AAATGGGGAT	CTGAAACTAT	TCGACAAAAA	TTGATTGACT	TAACAGAAAA	AGAACATGAG	14700
AATGTGGAAG	AAGGAGACCA	GTCAATTTTG	AATATGTTGT	TTAAAGATCA	ATATAGTTCC	14760
CTTGAAGATC	AATATAATTT	TCAAATAGGA	TATGATTATG	GGGCGGCAAC	CTTTAAACAT	14820
CAATTCATTT	TTGATATTCC	GCTCGAACCA	CTGCCACTAA	TTTTACACTA	TATTTCTCAG	14880
GATAAGCCTT	GGAATCAATT	TTCTGTTGGA	CGTCTAAGAG	AAGTTTGGTG	GGAATACTCT	14940
TTGATGGATT	GGTCTGTTAT	TTTAAATGAA	TGGTTTTCAA	AGAGTGTGAA	GTACCCTAGT	15000
AAATCACAAA	TATTTAAGTT	GCAATGTGTT	AATTTAACGA	ATTCTTGGTG	TGTCGAGAAA	15060
ATCGATTATT	TGGCGGAGCA	ATTGCCAGAA	GTTCATTTTC	ATATTGTTGC	TTATACAAAT	15120
ATGGCAAATG	AACTACTAGC	TTTAACGCGT	TTTCCTAATG	TTACCGTATA	TCCAAATTCC	15180
TTACCAATGT	TATTGGAACA	AATAGTAATA	GCTTCAGATT	TGTATTTGGA	TTTGAATCAT	15240
GATCGAAAAT	TAGAAGATGC	ATATGAGTTT	GTGCTTAAGT	ACAAAAAAACC	AATGATAGCT	15300
TTCGACAATA	CTTGCTCTGA	AAATCTTTCT	GAGATTTCAT	ATGAAGGTAT	CTATCCAAGC	15360
TCCATTCCGA	AAAAAATGGT	TGCAGCAATC	AGATCTTACA	TGAGGTAGAG	AACAGTATGA	15420
GAAAATCAAT	AGTATTAGCG	GCAGATAATG	CCTATCTTAT	TCCTTTAGAG	ACGACTATAA	15480
AGTCTGTATT	GTATCACAAT	AGAGATGTTG	ATTTTTATAT	TCTCAACAGT	GATATAGCTC	15540
CTGAATGGTT	TAAATTATTG	GGGAGAAAA	TGGAAGTTGT	GAATTCTACA	ATTCGCAGTG	15600
TACACATTGA	TAAAGAACTT	TTTGAAAGCT	ATAAAACAGG	ACCTCATATA	AATTATGCT1	15660
CTTACTTTAG	ATTTTTTGCG	ACAGAAGTGG	TTGAATCTGA	TAGGGTATTG	TATCTGGATT	15720
CCGATATCAT	TGTAACTGGG	GAACTAGCTA	CTTTGTTTGA	GATAGATCTC	AAAGGATATT	15780
CAATTGGTGC	TGTTGATGAT	GTCTATGCCT	ATGAAGGACG	AAAATCTGGA	TTTAATACTG	15840
GTATGTTACT	AATGGATGTT	GCAAAGTGGA	AAGAACATTC	TATTGTCAAT	AGTTTATTGG	15900

AATTAGCGGC	CGAGCAGAAT	CAAGTTGTTC	ATCTTGGGGA	TCAGAGTATT	TTAAATATTT	15960
ATTTTGAGGA	TAATTGGCTA	GCCTTAGATA	AAACATATAA	TTATATGGTG	GGTATTGATA	16020
TTTATCACCT	TGCTCAAGAA	TGTGAACGTC	TAGATGACAA	TCCACCTACA	ATTGTTCACT	16080
ATGCTAGTCA	TGATAAACCT	TGGAATACAT	ATAGTATATC	TAGACTACGT	GAATTATGGT	16140
GGGTTTATAG	AGATTTGGAT	TGGTCAGAGA	TTGCTTTTCA	ACGTTCCGAT	TTAAATTATT	16200
TTGAAAGAAG	CAATCAGTCT	AAAAAACAAG	TGATGCTTGT	GACATGGAGT	GCAGATATAA	16260
AACATTTAGA	GTATTTAGTA	CAACGGTTAC	CTGATTGGCA	TTTTCATTTG	GCTGCACCGT	16320
GTGATTGTTC	TGAGGAGCTG	ACCTCTCTAT	CACAGTATAC	GAATGTAACA	GTATATCAAA	16380
ATGTATTACA	TAGTAGAATT	GATTGGCTAT	TGGACGATTC	TATAGTTTAT	TTAGATATTA	16440
ATACAGGTGG	AGAGGTTTTT	AATGTAGTTA	CAAGGGCACA	AGAAAGTGGC	AAGAAAATCT	16500
TCGCTTTTGA	TATCACACGT	AAAAGTATGG	ATGATGGACT	CTATGACGGT	ATTTTTTCTG	16560
TGGAGAGACC	AGATGATTTA	GTGGATAGAA	TGAAGAATAT	AGAGATAGAG	TAATGAGTGA	16620
ATTAATTAGT	GTTGTGGTAC	CGATATACAA	TACGGGAAAA	TATTTAGTGG	AGTGTGTCGA	16680
GCATATTCTG	AAGCAAACCT	ATCAAAATAT	AGAAATTATT	TTAGTTGATG	ACCGTTCTAC	16740
GGATAATTCT	GGGGAAATTT	GTGATGCTTT	TATGATGCAA	GATAATCGTG	TGCGAGTATT	16800
GCATCAAGAA	AATAAGGGGG	GGGCAGCACA	AGCTAAAAAT	ATGGGGATTA	GTGTAGCTAA	16860
GGGAGAGTAC	ATCACGATTG	TTGATTCAGA	TGATATCGTA	AAAGAAAATA	TGATTGAAAC	16920
TCTTTATCAG	CAAGTCCAAG	AAAAGGATGC	AGATGTTGTT	ATAGGGAATT	ACTATAATTA	16980
TGACGAAAGT	GACGGGAATT	TTTATTTTTA	TGTAACAGGG	CAAGATTTTT	GCGTCGAAGA	17040
ATTAGCTATA	CAAGAAATTA	TGAACCGTCA	AGCAGGAGAT	TGGAAATTCA	ATAGCTCGGC	17100
CTTTATATTG	CCGACATTTA	AGTTGATTAA	AAAAGAATTA	TTCAATGAAG	TTCACTTTTC	17160
AAATGGTCGC	CGCTTTGATG	ATGAAGCAAC	TATGCATCGC	TTTTATCTTT	TAGCCTCTAA	17220
AATCGTCTTT	ATAAACGATA	ATCTCTATCT	GTATAGAAGA	CGTTCAGGAA	GCATCATGAG	17280
AACGGAATTT	GATCTTTCCT	GGGCAAGAGA	TATTGTTGAA	GTGTTTTCTA	AGAAAATATC	17340
GGATTGTGTC	TTGGCTGGTT	TGGATGTCTC	CGTTCTGCGT	ATTCGATTTG	TCAATCTTTT	17400
AAAAGATTAT	AAGCAAACTT	TAGAATACCA	TCAATTAACA	GATACTGAGG	AATATAAAGA	17460
TATTTGTTTC	AGATTAAAGT	TGTTTTTTGA	TGCAGAACAA	AGAAATGGTA	AAAGTTGAAA	17520
TAAAAGAATT	GTTATTTACC	АТАТСАСААА	CAATGAAGGT	GAGGGGAGTG	TTTTATGACT	17580
AAGATTTATT	CGTCAATAGC	AGTAAAAAAA	GGACTATTTA	CCTCATTTCT	ACTGTTTATC	17640
TATGTATTGG	GAAGTCGTAT	TATTCTCCCT	TTTGTTGACC	TAAATACTAA	AGATTTTTTA	17700

GGAGGTTCAA	CAGCCTATCT	AGCCTTCTCA	GCCGCCCTAA	CAGGTGGGAA	TCTAAGAAGT	17750
TTATCAATTT	TTTCTGTTGG	ATTATCCCCT	TGGATGTCCG	CCATGATTTT	ATGGCAGATG	17920
TTTTCTTTT	CTAAACGGTT	GGGTTTAACA	TCTACGTCTA	TAGAAATACA	AGATCGCCGT	17880
AAAATGTACC	TGACCTTGCT	AATTGCTGTG	ATTCAATCCT	TGGCAGTTAG	CTTGAGACTG	17940
CCAGTACAAT	CCTCCTATTC	TGCAATATTG	GTTGTTCTAA	TGAATACAAT	ATTGCTGATA	18000
GCAGGAACAT	TTTTTCTTGT	TTGGTTGTCA	GATTTAAATG	CGAGTATGGG	GATTGGAGGT	18060
TCTATTGTAA	TCCTCCTATC	CAGTATGGTT	TTAAATATTC	CTCAGGATGT	TTTGGAAACA	18120
TTTCAGACAG	TACACATTCC	AACAGGGATT	ATTGTGTTAC	TTGCTTTATT	AACCCTTGTC	18180
TTTTCTTATT	TACTTGCCCT	TATGTATCGA	GCTCGCTATT	TGGTTCCTGT	TAATAAAATT	18240
GGCTTACACA	ATCGATTTAA	ACGCTATTCT	TATCTCGAAA	TCATGTTGAA	TCCTGCAGGT	18300
GGGATGCCTT	ATATGTATGT	GATGAGTTTT	CTTAGTGTAC	CAGCTTATTT	GTTCATCTTG	18360
TTGGGATTTA	TTTTCCCTAA	TCATTCAGGG	TTAGCGGCTT	TATCAAAGGA	ATTTATGGTT	18420
GGAAAGCCTT	TGTGGGTCTA	TGTTTATATT	TCGGTCTTAT	TTTTATTTAG	TATCATTTTT	18480
GCTTTTGTTA	CGATGAATGG	AGAAGAGATT	GCAGACCGTA	TGAAAAAATC	TGGAGAATAC	18540
ATTTATGGTA	TTTATCCAGG	TGCGGATACT	AGTCGATTTA	TTAATCGATT	GGTCCTTCGT	18600
TTCTCAGTCA	TAGGTGGTCT	CTTTAATGTG	ATTATGGCAG	GTGGTCCCAT	GCTTTTTGTT	18660
TTGTTTGATG	AAAAGTTATT	ACGATTGGCA	ATGATTCCAG	GCTTATTTAT	GATGTTCGGG	18720
GGCATGATTT	TTACGATTAG	AGACGAGGTC	AAGGCTTTAA	GGCTAAATGA	GACCTATAGA	. 18780
CCTTTGATTT	AGGAGACTTT	TATGTATTAT	TTTATTCCAG	CTTGGTATGG	GTCAGAAAGA	18840
ACATGGCATG	CAGATATCAC	TCCATGGTAT	TTTTCTCATT	TTCGTCTAGA	GTTTGATGAT	19900
ACCTTTCACC	AGATTCGGCT	CTTTCAAGAG	CAAGATATAG	ATTCTCGTCT	ATTAGTATTA	18960
GCTTACCAGC	CTCATCTACG	TTATTTTTTA	TATAGACATG	GTGTGTTAGA	AATGGATACT	19020
TATTCCGTTT	TTGATGTTAT	GCAAGATTTT	CATAATCTCC	ATACCCAAGT	TTTAAGCATT	19080
AGAGATATTG	AGTGGGATGA	TGACTGTGAA	TTTATTTATA	GTCCCTTTAC	GATTATCGTT	19140
CAAAAAAATG	GGAAGAAATT	TGCTAAGGTT	GAACATGGAG	TTGAAGGCTT	CATCAGTGAT	19200
ATACAGTATT	TTGAACCAAA	TGGTCAAATA	CATATGCACC	ATATCGTGGA	TGATCGTGGG	19260
TTTGTATCGA	GCATTATCTT	TTTTGAAGAT	GGGCAAGCAG	CCTATCAAGA	ATATCTGAAC	19320
CTCAAGGGAG	AGTGGCAATT	CAGAGAGCGT	TTAAAAGAAG	GAGGACAGGT	AGAAGTCAAT	19380
CCAATTTTGG	GTTATCGCTT	TAAAATGCTT	ACCTATCAAA	ATATGGGAGA	TCTGGTGGCA	19440

586 GAATTTTTG AGAATTATCT GCAAACGTAT GTGAAGGATC AGGATATTTT TATGCTTCCT 19500 TCTCATTCTC ATCATGACCA GTTGGTACTA GATCGTTTAC CTAGTACTAA TCCTAAACTG 19560 TTGAGTCTGT TCATTGGACG TAATCCTCAA GATACCTTTA GGGATTTAGA TGTAACTTTT 19620 GAAAAATCGG ATTTGATTTT GGTGGATAGA GAGGATAGTT TACGATTGTT GCAGGAGTTG 19680 TATCCTGAAC GAATGCATCA ATGTTATCAT TTATCATCTT TTGACACCCG ATTACGATTG 19740 GGACGAAGCC AAACTAAGAA AGAATCCATC ATTTATTTTC AACTGGATTT TGAGCAGGGG 19800 ATTGATAATC AAGCTCTGCT TCAAGTCTTG TCCTTTGTCG CTGAAAATAA GGATACTGAG 19860 GTGATTTTTG GAGCCTTTGC TGCTAGTCAG GAGCAAATGA ATGAGGTTGA AGGGATTGTT 19920 GAGTCTTTCA TCCAAGAAAA CATTCAATCC GAAAATCTGG GAAAGGCGAT TGATTATGGT 19980 GATGCAGAAA ATCCTCTGGA AGAAAATCAA CACCAGGACT TACGCTTACA GTTTGTTAAC 20040 TTGAATGATG AGTTAGATTT GATAAAAACA CTAGAATTTG TCCGTTTGAT TGTGGATTTA 20100 AATAGACATC CTCATCTCTA CACACAGATT GCTGGGATTA GTGCAGGAAT TCCTCAAATC 20160 AACCTAGTTG AAACCGTCTA TGTTGAACAT TTAAAAAATG GTTATTTGTT AGCAGATGTT 20220 ACAGAATTIT CTAAGGCTGC ACATTATTAC ACAGATAGGT TGAAGGAGTG GAATGAGTCC 20280 TTGATATATT CAATTGATAA GATTAAGGAG CACACAGGAC AACAATTTCT TGGAAAATTA 20340 GAGAAATGGA TAGAGGAGGT TAAAAATGTC AAAGGAACTT AATATTTTAC AGATAGGACT 20400 TGCCAATTGG GAAAATCACT ATGACATACC TGAAAATATG AGTTGGTATT ATTTTTACCC 20460 AAACTCATCA AAAGCCCTTC GTGAAATAAT TGAAAAAGAG GATATTAACC GTTTTCATGC 20520 AGTTTTAATA GAAGATGGTC AGTATTCCAG AGACTTATTT TCCTATGTAA AATATTTTGA 20580 ACCTTATACT TTATTTTATA ACCAGAATCT ACAAATAAAT GATAGAGAGG TTGTGGATTT 20640 TCTAAAAAA CGATGTGCAC AAGCAATTGA TTTTTTAAGT CCCCAACAAC TAATCAATGA 20700 TTTAAGTAAA TCTCTTTTTG GCGGTGGGTA TGGTGATAAA CTCTTTCCTC CGACGATACA 20760 AGTCAATCCA AATTTTACAG GAGCTATTTC TTATCAAGGA TTGGATTATG TCAGTTTGGA 20820 AGGTGAGTTT GGGCAAGATT TTGCCCAGCT TGCCTATTGG GCTTATAATA TTATGGTGCA 20880 AAAAACACTC CCTATTGAGT TGTGGCTTGA ATATGAGAAG GAAGGCAATT GTGACTTTCG 20940 TTTAGTAATC CGTAAAATGT GGAGTGGGTC TGTTGATGAT TTCTTTGAAG AAGTAATAGT 21000 ATCTGAAAAA GACTTGGAGC AAGCACTTTT TATGGATAGT CGAGACGGAG ACTACTTTCT 21060 CTCGATATCT GTTGAAGCAA GAGGTCGTGG AACTATCAAA CTAGGTAATC TTCACCAACG 21120 ATGGAGTCGA AAACAATTTG GTAAGTTTGT ACTTGGTGGA AATATCCTAC ATGATTCCAA 21180 GCGTGATGAA ATAAACTATT TCTTCCATCC AGGTGATTTT AAACCGCCTT TGACTGTCTA 21240

TTTTGCAGGT	TATCGACCTG	CAGAAGGATT	CGAGGGTTAC	TTTATGATGA	AAACTCTTGG	21300
ATGTCCCTTC	ATTTTATTT	CTGATCCACG	TTTAGAGGGG	GGAGCTTTTT	ATCTCGGAAC	21360
GGATGAGCTA	GAGGGAAAAG	TAAAGGATAC	GATCACTCAC	TATCTTGATT	ATTTAGGCTT	21420
TGATCATAAG	GATTTGATTT	TATCAGGTCT	TTCTATGGGA	ACGTTTCCGG	CTCTCTATTA	21480
TGGTGCTTCT	TTTGAACCCC	ATGCCATCAT	AGTTGGTAAG	CCCTTGGCTA	ATTTAGGAAC	21540
TATAGCTAGT	CGTGGACGTT	TGGACGCACC	GGGTGTCTCT	AACTTAGCTT	TTGATTGTTT	21600
AATTCATCAT	ACAGGTGGGA	CAAGTTCTCA	AGATATGACG	GAGTTGGATC	AGCGTTTTTG	21660
GAAAATTTTT	AAACAAGCAA	ATTTTTCAAA	GACAACCTTT	GGTTTATCCT	ATATGAAAGA	21720
TGAAGAAATG	GATCCACAAG	CCTATGAACA	ATTAGTGTCT	TATCTGTGTA	ATACAGGTGC	21780
GAAGATTTTA	TCTAAAGGAA	CTGCTGGACG	ACACAATGAT	GATACAGATA	CCAATATTTC	21840
TTGGTTTTTG	CACTTTTATA	GAATGGTCTT	AGAGACTGGT	TTTGGAAGGG	AGAAAAGATG	21900
ATTATTACAC	AGAGACAGTC	TATTCATTGG	GGAGAAGTTG	GTGGGACTTA	TATGTATGGA	21960
ACAACTGTAT	CTTATTACCC	TGACAAAAGT	GTTCGTCTGT	ATAATCCTCT	ATTGCCATCT	22020
GGTGAGATTC	TAAAGACTTG	GTTTTCTAGT	GTCAATTACC	AGGCTGCACG	AACCCAACCT	22080
CAGCTTCCCT	TATTAAAAAG	AAAGCAGGAG	TATCAACTAT	CACTGGTTTT	TGACTGTCAG	22140
CCTGAAAATG	GAGTTTATAC	CAAGATAACT	TTTTTTGACC	GCTATGGTGA	TATTTTAGAA	22200
AAAAAGGTAG	AAAAAGTGAA	AGATTTCATA	TTTACTTATC	CAGAAGATAG	TTATACTTAT	22260
CGAGTTTCTC	TTTTAAGTGC	TGGATTTGAG	TCCTTAACTT	TTTATCATTT	TTCTATCAAG	22320
GAGATCAGAA	GTGTTTAGAC	GTTTAGGTCA	AGATTTCCAG	CTTAGGAAAG	TGAAAAAGAT	22380
TTTAAAGCAG	ATTAATGCCC	TGAAAGGCAA	GATGTCCTCT	CTTTCGGATC	AAGAATTAGT	22440
AGCTAAAACA	GTAGAGTTTC	GTCAGCGTCT	TTCCGAGGGA	GAAAGTCTAG	ACGATATTTT	22500
GGTTGAAGCT	TTTGCTGTGG	TGCGTGAAGC	AGATAAGCGG	ATTTTAGGGA	TGTTTCCTTA	22560
TGATGTTCAA	GTCATGGGAG	CTATTGTCAT	GCACTATGGA	AATGTTGCTG	AGATGAATAC	22620
GGGGGAAGGT	AAGACCTTGA	CAGCTACCAT	GCCTGTCTAT	TTGAACGCTT	TTTCAGGAGA	22680
AGGAGTGATG	GTTGTGACTC	CTAATGAGTA	TTTATCAAAG	CGTGATGCCG	AGGAAATGGG	22740
TCAAGTTTAT	CGTTTTCTAG	GATTGACCAT	TGGTGTACCA	TTTACGGAAG	ATCCAAAGAA	22800
GGAGATGAAA	GCTGAAGAAA	AGAAGCTTAT	CTATGCTTCG	GATATCATCT	ACACAACCAA	22860
TAGTAATTTA	GGTTTTGATT	ATCTAAATGA	TAACCTAGCC	TCGAATGAAG	AAGGTAAGTT	22920
TTTACGACCG	TTTAACTATG	TGATTATTGA	TGAAATTGAT	GATATCTTGC	TTGATAGTGC	22980

588 ACAAACTCCT CTGATTATTG CGGGTTCTCC TCGTGTTCAG TCTAATTACT ATGCGATCAT 23040 TGATACACTT GTAACAACCT TGGTCGAAGG AGAGGATTAT ATCTTTAAAG AGGAGAAAGA 23100 GGAGGTTTGG CTCACTACTA AGGGGGCCAA GTCTGCTGAG AATTTCCTAG GGATTGATAA 23160 TTTATACAAG GAAGAGCATG CGTCTTTTGC TCGTCATTTG GTTTATGCGA TTCGAGCTCA 23220 TAAGCTCTTT ACTAAAGATA AGGACTATAT CATTCGTGGA AATGAGATGG TACTGGTTGA 23280 TAAGGGAACA GGGCGTCTAA TGGAAATGAC TAAACTTCAA GGAGGTCTCC ATCAGGCTAT 23340 TGAAGCCAAG GAACATGTCA AATTATCTCC TGAGACGCGG GCTATGGCCT CGATCACCTA 23400 TCAGAGTCTT TTTAAGATGT TTAATAAGAT ATCTGGTATG ACAGGGACAG GTAAGGTCGC 23460 GGAAAAAGAG TTTATTGAAA CTTACAATAT GTCTGTAGTA CGCATTCCAA CCAATCGTCC 23520 GAGACAACGG ATTGACTATC CAGATAATCT ATATATCACT TTACCTGAAA AAGTGTATGC 23580 ATCCTTGGAG TACATCAAGC AATACCATGC TAAGGGAAAT CCTTTACTCG TTTTTGTAGG 23640 CTCAGTTGAA ATGTCTCAAC TCTATTCGTC TCTCTTGTTT CGTGAAGGGA TTGCCCATAA 23700 TGTCCTAAAT GCTAATAATG CGGCGCGTGA GGCTCAGATT ATCTCCGAGT CAGGTCAGAT 23760 GGGGGCTGTG ACAGTGCCTA CCTCTATGGC AGGACGTGGT ACGGATATCA AGCTTGGTAA 23820 AGGAGTCGCA GAGCTTGGGG GCTTGATTGT TATTGGGACT GAGCGGATGG AAAGTCAGCG 23880 GATCGACCTA CAAATTCGTG GCCGTTCTGG TCGTCAGGGA GATCCTGGTA TGAGTAAATT 23940 TTTTGTATCC TTAGAGGATG ATGTTATCAA GAAATTTGGT CCATCTTGGG TGCATAAAAA 24000 GTACAAAGAC TATCAGGTTC AAGATATGAC TCAACCGGAA GTATTGAAAG GTCGTAAATA 24060 CCGGAAACTA GTCGAAAAGG CTCAGCATGC CAGTGATAGT GCTGGACGTT CAGCACGTCG 24120 TCAGACTCTG GAGTATGCTG AAAGTATGAA TATACAACGG GATATAGTCT ATAAAGAGAG 24180 AAATCGTCTA ATAGATGGTT CTCGTGACTT AUAGGATGTT GTTGTGGATA TCATTGAGAG 24240 ATATACAGAA GAGGTAGCGG CTGATCACTA TGCTAGTCGT GAATTATTGT TTCACTTTAT 24300 TGTGACCAAT ATTAGTTTTC ATGTTAAAGA GGTTCCAGAT TATATAGATG TAACTGACAA 24360 AACTGCAGTT CGTAGCTTTA TGAAGCAGGT GATTGATAAA GAACTTTCTG AAAAGAAAGA 24420 ATTACTTAAT CAACATGACT TATATGAACA GTTTTTACGA CTTTCACTGC TTAAAGCCAT 24480 TGATGACAAC TGGGTAGAGC AGGTAGACTA TCTACAACAG CTATCCATGG CTATCGGTGG 24540 TCAATCTGCT AGTCAGAAAA ATCCAATCGT AGAGTACTAT CAAGAAGCCT ACGCGGGCTT 24600 TGAAGCTATG AAAGAACAGA TTCATGCGGA TATGGTGCCT AATCTCCTGA TGGGGCTGGT 24660 TGAGGTCACT CCAAAAGGTG AAATCGTGAC TCATTTTCCA TAAAAGGAGA AAATATGACA 24720 ATTTACAATA TAAATTTAGG AATTGGTTGG GCTAGTAGCG GTGTTGAATA CGCTCAAGCC 24780

TATCGTGCTG	GTGTTTTTCG	GAAATTAAAT	CTGTCCTCTA	AGTTTATCTT	TACAGATATG	24840
ATTTTAGCCG	ATAATATTCA	GCACTTAACA	GCCAATATTG	GTTTTGATGA	TAATCAGGTT	24900
ATCTGGCTTT	ATAATCATTT	CACAGATATC	AAAATTGCAC	CTACTAGCGT	GACAGTGGAT	24960
GATGTCTTGG	CTTACTTTGG	TGGTGAAGAA	AGTCACAGAG	AAAAAAATGG	CAAGGTTTTA	25020
CGTGTATTCT	TTTTTGACCA	AGATAAGTTT	GTAACCTGTT	ATTTGGTTGA	TGAGAACAAG	25080
GACTTGGTTC	AACATGCCGA	GTATGTTTTT	AAGGGAAACC	TGATTCGGAA	GGATTACTTT	25140
TCTTATACGC	GTTATTGTAG	CGAGTATTTT	GCTCCCAAGG	ACAATGTTGC	AGTCTTATAC	25200
CAACGAACTT	TTTATAATGA	AGACGGGACT	CCAGTCTATG	ATATCTTGAT	GAATCAAGGG	25260
AAGGAAGAAG	TTTATCATTT	CAAGGATAAG	ATTTTCTATG	GAAAGCAAGC	TTTTGTGCGT	25320
GCCTTTATGA	AATCTTTGAA	TTTGAATAAG	TCTGATTTGG	TCATTCTCGA	TAGGGAGACA	25380
GGTATTGGAC	AGGTTGTGTT	TGAGGAAGCA	CAGACAGCAC	ATCTAGCGGT	AGTTGTTCAT	25440
GCGGAGCATT	ATAGTGAAAA	TGCTACAAAT	GAGGACTATA	TCCTTTGGAA	TAACTATTAT	25500
GACTATCAGT	TTACCAATGC	AGATAAGGTT	GACTTCTTTA	TCGTGTCTAC	TGATAGACAA	25560
AATGAAGTTC	TACAAGAGCA	ATTTGCCAAA	TATACTCAGC	ATCAGCCAAA	GATTGTTACC	25620
ATTCCTGTAG	GCAGTÁTTGA	TTCCTTGACA	GATTCAAGTC	AAGGGCGCAA	ACCATTTTCA	25680
TTGATTACGG	CTTCACGTCT	TGCCAAAGAA	AAGCACATTG	ATTGGCTTGT	GAAAGCTGTG	25740
ATTGAAGCTC	ATAAGGAGTT	ACCGGAACTA	ACCTTTGATA	TCTATGGTAG	TGGTGGAGAA	25800
GATTCTCTGC	TTAGAGAAAT	TATTGCAAAT	CATCAGGCAG	AGGACTATAT	CCAACTCAAG	25860
GGGCATGCGG	AACTTTCGCA	GATTTATAGC	CAGTATGAGG	TCTACTTAAC	GGCTTCTACC	25920
AGCGAAGGAT	TTGGTCTGAC	CTTGATGGAA	GCTATTGGTT	CAGGTCTACC	TCTAATTGGT	25990
TTTGATGTGC	CTTATGGTAA	TCAGACCTTT	ATAGAGGATG	GGCAAAATGG	TTATTTGATT	26040
CCAAGTTCAT	CTGACCATGT	AGAAGACCAA	ATCAAGCAAG	CTTATGCCGC	TAAGATTTGT	26100
CAATTGTATC	AAGAAAATCG	TTTGGAAGCT	ATGCGTGCCT	ATTCTTACCA	AATTGCAGAA	26160
GGCTTCTTGA	CCAAAGAAAT	TTTAGAAAAG	TGGAAGAAAA	CAGTAGAGGA	GGTGCTCCAT	26220
GATTGAACTT	TATGATAGTT	ACAGTCAAGA	AAGTCGAGAT	TTACATGAAA	GTCTAGGCGC	25280
TACTGGTCTT	TCTCAACTTG	GAGTGGTCAT	CGATGCAGAT	GGTTTTCTGC	CTGATGGTCT	26340
GCTTTCTCCT	TTTACCTATT	ATCTAGGTTA	CGAGGATGGA	AAACCTCTCT	ATTTTAATCA	26400
AGTTCCCGTT	TCAGATTTTT	GGGAAATTTT	AGGAGATAAT	CAGTCTGCTT	GTATTGAAGA	26460
TGTGACGCAG	GAGAGGGCTG	TCATTCATTA	TGCTGATGGA	ATGCAGGCTC	GCTTGGTTAA	26520

			590			
ACAGGTAGAC	TGGAAAGACC	TAGAAGGTCG	AGTACGTCAG	GTTGACCACT	ACAATCGCTT	26580
CGGAGCTTGT	TTTGCTACAA	CGACTTATAG	CGCAGATAGC	GAGCCGATTA	TGACAGTTTA	26640
CCAAGATGTC	AATGGTCAAC	AAGTTTTACT	GGAAAACCAT	GTGACGGGTG	ATATCTTATT	26700
GACTTTGCCA	GGTCAGTCCA	TGCGTTACTT	TGCAAATAAA	GTTGAATTTA	TCACCTTCTT	26760
TTTGCAAGAT	TTGGAAATAG	ATACCAGTCA	GCTTATCTTT	AATACTCTAG	CGACTCCTTT	26820
CTTGGTTTCC	TTCCATCATC	CAGATAAATC	TGGCTCGGAT	GTCTTGGTAT	GGCAGGAACC	25980
TCTCTATGAT	GCCATTCCAG	GTAATATGCA	GTTGATTTTG	GAAAGTGATA	ATGTGCGTAC	26940
TAAGAAGATC	ATCATTCCAA	ATAAGGCGAC	TTATGAGCGC	GCTTTAGAGT	TAACTGACGA	27000
GAAATACCAT	GATCAGTTTG	TGCACTTGGG	TTATCATTAC	CAGTTCAAAC	GTGATAATTT	27060
CCTAAGACGA	GATGCCTTAA	TCTTGACCAA	TTCAGATCAG	ATTGAGCAAG	TAGAAGCAAT	27120
CGCAGGAGCC	TTGCCTGATG	TCACTTTCCG	TATTGCAGCG	GTGACAGAGA	ТСТСТТСТАА	27180
GCTCTTAGAC	ATGCTTTGCT	ATCCTAATGT	GGCCCTTTAC	CAGAACGCTA	GTCCACAGAA	27240
GATTCAGGAG	CTGTATCAAC	TGTCGGATAT	TTACTTGGAT	ATAAACCACA	GTAATGAGTT	27300
GCTACAGGCA	GTGCGTCAGG	CCTTTGAGCA	CAATCTCTTG	ATTCTTGGCT	TTAATCAGAC	27360
GGTGCACAAT	AGACTTTATA	TCGCTCCAGA	CCATCTATTT	GAAAGTAGTG	AAGTTGCTGC	27420
TTTGGTTGAG	ACCATTAAAT	TGGCCCTTTC	AGATGTTGAT	CAAATGCGTC	AGGCACTTGG	27480
CAAACAAGGC	CAACATGCAA	ATTATGTTGA	CTTGGTGAGA	TATCAGGAAA	CCATGCAAAC	27540
TGTTTTAGGA	GGCTAACATG	TCAGAGGAAG	ATTTATTTA	CAAAGACGTT	GAAGGCCGCA	27600
TGGAAGAGTT	GAAACAAAAA	CCCATCAAGA	AGGAAAAAGA	AACCCGAGGG	GAAAAGATTA	27660
GTAAGACTTT	TTCACTTTTA	CTGGGTTTGA	TGATTCTGAT	тосттостс	TTTACTTTGC	27720
TGGGAATTTT	GAGGTAGATC	TATGATTGAA	ATACTAATTG	TTTTAGCTAT	TATCCTATCT	27780
CTTGCTTTGA	TTGTATTGGT	AACTATACAA	CCCCGTCAAA	ATCAACTATT	TTCCATGGAT	27840
GCCACTAGTA	ATATTGGTAA	ACCAAGCTAC	TGGCAGAGCA	ACACCTTGGT	CAAGGTGCTC	27900
ACTTTATTGG	TGAGTTTGGC	TTTATTTATT	СТАСТАТТАА	CCTTTATGGT	GATTACTTAT	27960
AAATAAAAGA	AAACTTCAGA	TATTCACCTT	TTGTGGATTG	GTCTGAAGTT	TTCTTTTTTA	28020
TACTCAATGA	AAATCAAAGA	GCAAACTAGG	AAGCTAGCCG	CAGGCTgCTC	AAAACACCGT	28080
TTTGAGGTTG	TAGATATAAC	TGACGAAGTC	AGCTCAAAAC	ACCGTTTTGA	GGTTGTAGAT	28140
ATAACTGACG	AAGTCAGCTC	AAAACACCGT	TTTGAGGTTG	TGGATAGAAC	TGACGAAGTC	28200
AGCTCAAAAC	ACCGTTTTGA	GGTTGTGGAT	AGAACTGACG	AAGTCAGCTC	AAAACACCGT	28260
TTTGAGGTTG	TGGATAGAAC	TGACGAAGTC	AGCTCAAAAC	ACCGTTTTGA	GGTTGTGGAT	28320

AGAACTGACG	AAGCTCAGTA	ACATATATAC	AGCAAGGCGA	CGCTGACGTG	GTTTGAAGAG	28380
TATTACTGTC	TATATTTTTG	GTAAAAATCA	ACTTTTACTT	GGATGAAGGT	TTTGGCTTCA	28440
CGTAGGAGTT	GAAGAAGGGT	GGCGCGGGTT	TCAAATTCTT	CTCTTGTCTT	GGGCAGACTG	28500
CGGTTCCGGA	AGACTTCCAG	ATAACGTTCA	ATTTCATCTA	GCAAATCAGA	AGCAGGATTG	28560
GTCTGGCTCA	GTTGACCTGC	AATTTTTGAA	AAGAGTTGCG	CTAAGATCAG	GCTTTCACTG	28620
GCGGCAAGGT	GACAAGTGTT	AATCTGTTGG	GCCATGTTTC	TCAGGATACG	ACTTTGTCGC	28680
TGTCTCATCT	CAAAGTAGTG	GATATGGTAG	TCTGTCTGGT	GAAAGAGGTG	GTCAGAGTGA	28740
TCCAAATAGA	CCAGTCTGAG	GGCTTCTTTC	AAAAGCGTGT	CTAATTCTGC	TACCAGCTGT	28800
GCTCGGTTGC	GTCCGTCTCC	TCTGGATAAA	TAGTATTTGA	AGCGCTGGAG	GATATCTTTT	28860
AACTTTTCTT	CCACCAGCGT	GTGGTAGTGC	TGGATTTCCT	CTTCTCGTGA	AGGCATATAG	28920
AGATTAACAA	GCAAGGCAAA	TCCTGTACCA	ATAGCAAAGA	GAAGGAATTC	ATTGACTAGA	28980
AGGTCTGGAG	AGGTTGACTC	TTGAACCAAG	AGATGGCTAA	CCAAAACAGT	GCTTGGTGTG	29040
ATGCCAATTT	CCCAGCCCAT	CTTGTAGGCT	AAAGGAACGT	AGAAGGCCAG	ATAGAGGCCG	29100
AGACTCCAGA	TATGAAATCC	GCTCAAGTGA	AAAGCTAGAA	CACCGATAGC	CAGAGCTAGA	29160
AGCATAGAAA	AAAGACGATT	GCGAGCCAGT	TTTAAAGTAC	TTCTACGCGT	ATCAGATAGG	29220
CTCAAGAGAG	CGATAATTCC	AGCCGAAACT	GCTGACGAAA	GATTGAGAAA	ATAAGCAAGC	29280
AGGCAGGCAA	GACAGGTAGC	TAAGATGAGC	TTGGTCGTAC	GTTGGCTAAT	AGACATAAGA	29340
ATTTCCTAAT	AAGTTAGAAT	AAAAGCGTAA	AAGACAAGAC	ATGAGCAGGC	TTGCCTTGAT	29400
GAGTTATTTT	TTACGGGTTG	CTGCGTATTC	GGCAACGGCG	GTAAAGAGGA	CATCTGTAGA	29460
AGAGTTAAGG	GCTGTTTCAC	ATGAGTCTTG	GATGACACCA	ATCACAAAAC	CAACCCCAAC	29520
AATTTGTATG	GCAATATCGT	TAGAAATACC	GAAAAGGCTA	CAAGCAACTG	GGATAAGAAG	29580
GAGGGAACCT	CCGGCAATAC	CTGAAGCATC	ACAGGATGAG	ATAGCTGCTA	CCACACTGAG	29640
GACAAAGGCT	GTGGCAAAGT	CAACAGGAAT	TCCAAGAGTG	TTAACTGCAG	CAAGGGTCAA	29700
AAGGTTAATG	GTAATCGCTA	CTCCAGCCAT	ATTGATAGTA	GAACCGAGTG	GGATAGAAAC	29760
AGAATAGGTA	TCTGGGTTGA	GTCCAAGGTC	ATGGCAGAGT	TTCATGTTGA	CAGGAATGTT	29820
AGTCGCAGAA	CTACGAGTGA	AAAAGGCTGT	CACACCGCTG	ACACGGAGGC	AGTTCCAAAC	29880
TAGAGGGTAA	GGATTGCGTC	TCATAAAGAA	GAAGGCAATC	AAAGGGTTGA	CCACAGGGGC	29940
AACAAAAAGC	ATAGTCGTTA	CTAATAGAAC	СААТААААТА	CCGTAGTTGG	CAAGGCTTCC	30000
GACTCCCTTG	TCAGAAATGG	TTTTAAAAAC	AAGACCAAGG	ATTCCAAAŢG	GAGCCAGATT	30060

592 GATGATCCAT TCGACAATTT TAGAAGTCAC GTCAGCGATA GTTTTTAGCA ATTCTTGACT 30120 ATTTTTACTG GCTTCTCTCA TAGCGATTCC AAAAATGACT GCCCAAGATA AGATTCTAAT 30180 ATAGTTAGCA GTAAGCAGGG CGTTGACTGG GTTGTCAACC AGTTTGAGCA AGAGGTTGCT 30240 GAGAACCTGC CCAATCCCAT CTGGTGGTGC AATTTCAGTA TTGGCACTAT TTGGGGTAAT 30300 TTCAATAGGG ACGATGAAAT TTGCTAGTAC AGCTACAAGA GCAGCGGCGA AAGTCCCTAT 30360 CATAGGATAT ACAAGAAAAC AACAGTTTTC ATATTGCTAT CTTGTCCCTT TTGATGTTGG 30420 GAAAGGGCAT TGGCAACGAG AGCAAAGACT AGGATAGGAG CAACAGCTTT TAGACCTCCA 30480 ACGAATAAAT CCTCGAGTAG CCCAATCCCT GAGAGATTAG GAAGGGTCAG TCCTAGGATT 30540 CCCCACAAAG CATACCAATC AAGATACGCT TGACAAGGCT TGCCTTATTC CAAGCATGAA 30600 TGATTCTTTT CATAATAATC TCCTTTTTGT GTAGTGATTA TGATTATAGT ATAAATGATA 30660 GACAAAATCA AGAATTTTCT GTCTATTTTT TGAATATTTA TGGAGAATGA GACTGATGAA 30720 AATATGGTAT AATGAAATAA AGGAGTTTTA TATGCAAAAA TTTATTCAGG CTTATATTGA 30780 AAAGCTAGAT GTGACAACCA TTATCGAGAA TATTCTAACC AAGGTCATTT CTCTTTACT 30840 GCTTTTAATT GTATTTTATA TTGCTAAAAA AATGCTTCAT ACCATGGTGC AGAGAATTGT 30900 CAAACCTTCT CTAAAAATGT CTCGTCATGA TGTTGGACGC CAAAAAACCA TCTCACGTTT 30960 ACTAGAAAAT GTGTTTAATT ATACGCTATA TTTCTTTTTA CTCTACTGCA TTTTGTCGAT 31020 TTTAGGTTTG CCAGTTTCTA GTTTGCTGGC TGGAGCTGGT ATTGCTGGGG TAGCGATTGG 31080 TATGGGAGCC CAAGGCTTTC TGTCTGATGT CATCAATGGC TTTTTCATCC TCTTTGAACG 31140 TCAACTGGAT GTGGGAGATG AGGTCGTTCT GACAAATGGA CCGATTACTG TATCGGGTAA 31200 GGTTGTCAGT GTGGGAATTC GTACGACACA GCTTCGTAGC GAGGAGCAAG CCCTTCACTT 31260 TGTCCCTAAC CGAAATATCA CAGTTGTTAG CAATTTCTCA CGCACAGACT AGACCTGTTA 31320 TTTTAAGTAA TTTGTGGTAC AATAGAGGGA GTTTAATAAG GAGAAAAGAT GGTTTTAGAA 31380 AAGCAGTTGG GCAATGGTTG TACCTGGATA GACCTAGACC TAGGAAAGTT GAATAAACTA 31440 GAAGACCTTT CTGAAATTTA CGGTTTGGAC AAGGAAACCA TTGAATACGC ACTGGATAGA 31500 AACGAGCGCG CCCACATGGA CTACCACCGT GAAAGTGAGA CGGTTACCTT TATCTATAAT 31560 GTCTTAGACG TAAAAAAGGA CAAGGCCTAC TATGAGACTT TTCCCATGAC CTTTATTGTC 31620 GAGCATCGTC GCCTGATTAC CATTAGTAAT ACCAAGAACG CCTATGTCAT TGAACAGATG 31680 ACTCGTTATC TGGAGAACCA TGACACGCTT TCGATTTATA AGTTTCTCTT TGCCAGTCTG 31740 GAAATCATCA GCAATGCCTA CTATCCTGTC ATTGAGCAGA TGGACAAGAG TAGGGATGAG 31800 GTCAATGACC TCTTGCGCCA GCGAACTACC AAGAAAAACC TCTTTGTCCT GTCTGATTTG 31860

GAGACTGGTA	TGGTTTATCT	GACGGCAGCT	GCCAAACAAA	ATCGGATTTT	GTTAGAGCAT	31920
ATTCAAGGTC	ATGCCTTGTA	TCGTAGTTTT	GATGAGATTG	AGAGAGAACA	GTTTGATGAT	31980
GCCATGATTG	AGGCTCATCA	GCTGGTATCC	ATGACAGACC	TAATCTCTCA	GATTTTACAG	32040
CAGCTTTCAG	CCTCTTACAA	CAATATTCTA	AACAATAATC	TGAATGACAA	TTTGACAACC	32100
TTGACTATCA	TTTCAGTCTT	GCTAGCTGTT	TTGGCAGTCG	TGACAGGCTT	TTTCGGAATG	32160
AATGTTCCCT	TACCTTTAAC	AGATGAGCCC	CATGCTTGGC	TCTATATCAG	TTTGGCTAGT	32220
GCAGGTTTGT	GGATTGTTTT	ATCCTTGTTA	CTAAGGAAAA	TTGCGAAAAA	AAGTTAAGAA	32280
AAGGAGCCAG	AATGGCGATT	GAAAATTATA	TACCAGATTT	TGCTGTGGAA	GCAGTCTATG	32340
ATCTGACAGT	CCCAAGCCTG	CAGGCGCAGG	GAATAAAGGC	TGTTTTGGTC	GATTTGGATA	32400
ATACCCTCAT	TGCTTGGAAC	AACCCTGATG	GAACGCCAGA	GATGAAGCAA	TGGCTACATG	32460
ACCTTCGGGA	CGCGGGTATT	GGCATTATCG	TAGTGTCAAA	TAACACCAAA	AAACGCGTTC	32520
AACGAGCAGT	TGAGAAATTT	GGGATTGATT	ACGTTTACTG	GGCCTTGAAG	CCCTTCACAT	32580
TTGGTATTGA	CCGTGCTATG	AAGGAATTCC	ACTATGACAA	AAAGGAAGTG	GTCATGGTTG	32640
		ATACGAGCAG				32700
		GACTCAATCA				32760
GTGTTATG						32768

(2) INFORMATION FOR SEQ ID NO: 72:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14872 base pairs
 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:

CCAGTCACAA	AGAAATTGAG	CGCGTTCAGC	TGAGGATGCA	CTATGATGCA	AGCTACATTT	60
CATTTGATGG	GATATTAAGA	AAGGAGATTT	TCATGACACT	TTTAGATGTA	AAACACGTTC	120
AAAAAATTTA	TAAAACACGT	TTTCAGGGCA	ACCAAGTAGA	AGCCCTCAAG	GATATTCACT	180
TTACCGTAGA	AAAGGGTGAC	TACGTTGCCA	TCATGGGTGA	GTCTGGTTCT	GGTAAATCAA	240
CTCTTCTCAA	TATTCTAGCT	ATGTTGGATA	AACCAAGTCG	TGGTCAGGTT	TACTTGAATG	300
GAACTGACAC	CGCAACTATT	AAAAATTCAC	AGGCTTCTAG	TTTCCGGCGT	GAAAAGCTAG	360
GATTTGTCTT	CCAAGACTTT	AACTTGCTAG	ATACTCTGTC	TGTTAAGGAC	AATATCTTGC	420

			594		CTCCTC1 C1 C	480
	CTTGTCAAGA					
	GGGTATTAAC					540
AGAAACAGCG	TGTAGCAGTA	GCCCGCGCCA	TCATCACAGA	ACCTGAAATT	CTCCTTGCGG	600
ACGAGCCAAC	AGGAGCCCTT	GATTCCAAGT	CATCTGCAGC	CTTACTTGAT	GTCTTTAATG	660
AAATCAATGA	GCGTGGGCAA	ACCATCCTCA	TGGTAACCCA	CTCAACAGCA	GCTGCTAGCA	720
GGGCCAAGCG	TGTTCTCTTT	ATCAAAGACG	GCATTCTTTA	CAACCAAATC	TACCGTGGAG	790
AGAAGACAGA	GCGTCAGATG	TTCCAAGAAA	TCTCTGATAC	CTTGACTGTC	ATGGCAAGCG	840
AGGTGAATTA	GTATGTTTCG	ATTAACCAAT	AAGTTAGCGG	TATCGAACTT	GATTAAAAAC	900
CGCAAACTCT	ACTATCCCTT	TGCACTGGCT	GTTCTCTTGG	CAGTCACCAT	CACCTATCTC	960
TTTTACTCCC	TAACCTTCAA	TCCAAAGATT	GCGGAAATCC	GTGGAGGAAC	CACCATTCAA	1020
GCAACACTTG	GATTTGGTAT	GTTTGTCGTT	ACCCTTGCGT	CACCATTATC	GTCCTCTATG	1080
CCAATAGTTT	TGTCATGAAA	AACCGTTCCA	AGGAACTGGG	TATATATGGC	ATGTTAGGCT	1140
TGGAGAAGCG	CCATCTAATC	AGTATGACCT	TTAAGGAGTT	AGTGGTATTT	GGGATTCTAA	1200
CTGTTGGAGC	GGGTATCGGT	ATTGGAGCCT	TGTTTGACAA	GTTAATTTTC	GCTTTCCTGC	1260
тсааастаат	GAAACTGAAG	GTTGAGCTGG	TTGCTACCTT	CCAAATGAAT	GTTGTCATTG	1320
CAGTACTTGT	TGTCTTTGGA	TTGATTTTCC	TAGGCCTCAT	GTTCCTGAAT	GCTCTTCGAA	1380
TCGCCCGTAT	GAATGCCCTC	CAGCTCTCGC	GTGAGAAAGC	AAGCGGAGAG	AAAAGAGGTC	1440
GCTTCCTACC	TCTCCAAACG	ATTCTTGGTT	CCATAAGTTT	AGGGATTGGC	TATTATCTTG	1500
CCCTTACGGT	AACCGATCCT	CTTACAGCCC	TAACAACTTT	CTTCCTAGCT	GTTTTGCTGG	1560
TTATCTTTGG	ТАСТТАТСТА	TTGTTTAATG	CAGGGATTAC	: AGTCTTCCTA	CAAATCTTAA	1620
AGAAAACAA	GAAATACTAT	TACCAACCTA	ATAACCTCAT	ATCTGTTTCC	AACTTGATTT	1680
TCCGTATGAA	GAAAAATGCG	GTTGGACTAC	CAACCATCGC	TATTTTGTCA	ACAATGGTTT	1740
TGGTAACCAT	GTCAGCAGCG	ACAAGCATT	TCAATTCCGC	AGAAAGCTTT	AAAAAAGTTC	1800
TAAATCCTCA	TGATTTTGGG	GTTTCAGGGG	AAAATGTTGA	A AAAAGAAGA1	TTGGACAAAC	1860
TCTTGAGCCA	GTTTGCAAGT	GACAAAGGT	T ATAGTGTCA	AGAGAAAGA	GTACTTCGTT	1920
ACAGTAACTT	TGGTATTGCA	AATCAAGAAG	GAACCAAGT1	T AACTATTTT	GAAAAAGGAC	1980
AAAACCGTGT	CCAACCCACA	ACAGTTTTC	A TGGTATTTG/	A CCAAAAAGA	TATGAAAATA	2040
TGACTGGTCA	AAAACTGTCT	CTATCAGGA	A ATGAGGTCG	TCTCTTTGC	AAAAATGACG	2100
GACTGAAAGG	ACAGAAAGCT	CTAACTCTA	A ATGATCATC	A ATTTTCTGT	C AAAGAAGAAT	2160
TTAATAAAG	TTTCATTGT	AACCATGTT	CAAATAAGT	TAATATCTT	G ACTACTGATT	2220

ACAATTACCT	TGTTGTTCCT	GATTTACAAG	CCTTTTTGGA	TCAATTCCCA	GATTCGGCTA	2280
TCTATAATCA	GTTTTACGGT	GGTATGAATG	TAAATGTCAG	TGAAGAAGAA	CAACTCAAGG	2340
TCGCTGAGGA	GTATGAAAAC	TACCTCAATC	AATTTAATGC	TCAATTAGAC	ACAGAAGGTA	2400
GCTATGTTTA	TGGTAGCAAT	CTAGCAGATG	CTAGTTCTCA	GATGAGTGCC	CTCTTTGGTG	2460
GTGTCTTCTT	TATCGGTATT	TTCCTATCCA	TTATCTTTAT	GGTCGGAACT	GTTCTGGTCA	2520
TCTACTACAA	ACAAATTTCT	GAAGGCTACG	AAGACCGTGA	ACGCTTTATT	ATCTTGCAGA	2580
AAGTCGGTTT	GGACCAAAAG	CAAATCAAGC	AAACCATCAA	CAAACAGGTT	TTAACTGTTT	2640
TCTTCCTTCC	TTTGCTCTTT	GCCTTCATAC	ATCTCGCCTT	TGCCTACCAT	ATGCTTAGCC	2700
TGATTTTAAA	AGTGATTGGT	GTACTGGATA	CGACTATGAT	GTTGATTGTG	ACCTTGTCTA	2760
TCTGCGCTAT	CTTCCTCATC	GCCTATGTGC	TGATTTTCAT	GATTACTTCA	AGAAGTTATC	2820
GCAAGATTGT	GCAAATGTAA	AAAAGATACC	TCGACTTCAA	AATCGAGGTA	TTTCTTGTAT	2880
TCTAAATGCT	GAAAAGTTGT	CCGAGCAGGA	AGGTAACTCC	CATGGTCAAG	AGACCAATAG	2940
CAAGGTTCCG	AATCATAGCT	GTTTTGGTTG	GGGCTTTTCC	AAGTCTAGCA	CTTGTGTAAC	3000
CAGTGAGAAG	AAGGCCACA	CCGACAATAA	GGACGGTAGC	AGGGATGCGG	TAATCACTTG	3060
GAAAAATGGT	CACTGACAGC	ATTGGAGGCA	AACTTCTAAG	GAAAAAGGCA	ACGAAGCTAG	3120
AAATGGCAGC	GTGCCAAGGA	TTGGTAAATT	CTTCATACTC	AATCCCATAT	TTTTCCTCTA	3180
CCAGAGCCTT	GAGTGGATTT	TTAAGAAAGA	TCTTATTGGT	CAAGAGTTGG	GCAGAAGTTT	3240
TGAATTCTCC	ATTTTGGATA	TAAGCAGCAT	AGAGGGATTT	TTTGGCTAGT	TCCCTATCTT	3300
GGTCTAGCAA	GAGTTTTTCT	CGCGAAACGG	CAGCTTCCTC	GGTATCTTTT	GGAGTTGAAA	3360
CGGATACATA	TTCTCCACCA	GCTATTGAAA	AGGCACCAGC	TAAGATAGCC	GTAAAACCTG	3420
ATAAAAAGAT	AATCCAGATA	TTGGTCGTGG	CACTGGCAAC	TCCGATAACC	ACACCAGCAA	3480
TGGAAATAAT	TCCATCGTTA	GCATCAAGAA	CACCCGCACG	CAGGATATTT	AAACGACCTG	3540
CAAAATTTGA	ATCAATTTCG	TGATTTGTTT	CTGACGCTAA	ATTTCAAGTT	CAAGTTAGCC	3600
ATCAAGAAGT	CTTCTCTGGG	TGACTTGTAG	TCCAAGCATT	TTTTAGGATA	GTTGTTAATC	3660
CACTTTTCGA	TGAATGCGAC	TTCTTTGGGA	GTCATTTTCT	TGGTTCCCTT	AGGTAACCAT	3720
CTACGAATGA	GCCTGTTGTG	ATTCTCATTA	GTTCCCCTTT	CCCAAGAGGC	ATAGGGATGT	3780
GCATAATAAA	TGTGCTCCTC	AGAAAATACA	TTAGACAAGC	GATTGAATTC	CGTTCCATTA	3840
TCTGCCGTGA	TGGAAAGAAT	CTTGTGTTGT	TTTAAGATGA	GTTTTAGAGC	CTGATTGACC	3900
ACATCAGCAC	TTTTATTTGG	AATCAATCGG	ATGATCTGAT	GTCTACTTTT	TCGATCCGTC	3960

596 AAGACAAGCA AGCAGTAGTT TTTCGCTCTC GTAAGTAGAA CTGTATCAAT CTCATAATGC 4020 CCATTCTCCA AGCGAAAATT GATAGCTTCA AGCCGCTGTT CGATGGATTG ACCAGCAGGT 4080 TTAAAGTTGG TGCTGGCCTG TTTCTTAAGC GCTTTTCCTT TTCTAGGGTA AAGCAGATCC 4140 TGTTTGCTTA ACCCCAATTT TCCATGATGA ATCCAATAGT AAATGGTTGA AATTCCCACG 4200 TTAACCCCTT TAGCCATCAC CATCATTTCA GGCGAAAATT TTTGGTTATG ATAGTGGAGA 4260 ATCTTTCCT TTAGTTCCTT GGTCAAGCTT GATTTCTTGA CCGAGCGCTT GCGATTGTTT 4320 TCATAAGACT GTTGAGCATA GTCGGCAGAA TAAACCTCTT TGAAGCGCCC TTTTCCAAGA 4380 CATTGTCGGA CTGTCCCACG CTTGATTTCA GTGTGGATAG TTTGAGGAAC TTTTCCAAGC 4440 AGAGAGGCAA TTTCTCTATT TGATTTCCCT TCTTTTTTCC ATCTTTCGAT TAAGCGACGG 4500 CTATCGATTG TCAAATGTTC GCCTTTTGTA GTATAATGGT TTTGCATCTC TGTGCCTTTC 4560 TTGTGTTTGT GGTTGAACAA CAAGTATAAC ACAGAGGTGT TTTCTTATGC CTACAAGAGC 4620 TATCGGCTAG TTGAACCATC TAATTTTTAG GAGGGCTGGG TGGCTAACTT CATTATAGAA 4680 CTTTCATTTA CGAACATATA GTAAAATGAA ACAAGAACAG AACAAATCGA TCAGGACAGT 4740 AAAATCTATT TCTAACAATG TTTTAGAAGC AGAGGTGTAC TATTCTAGTT TCAATCTATT 4800 ATATTTTTGT TTTTTATCAA AAAATACTTT ACAAGTTCTT AAAAACATGA TATAGTAATA 4860 AAGCTTAGAA AATGAGATGA TGTTTTCTAG CAAATATAAA CCCGAGTAAA AAATGCCTAC 4920 GGACAGGCAG GGTTGAATGC CGAAGCGTGG TTGAAAAGCC ACATTATTGA TAGGGTTAAA 4980 AGCCTACTTT TATAAGTTGA TGTTAGGACA CTTGTCCTAA TTCATAAATT TTTAGTGTGG 5040 TGAAAGCACA CGTCATCTTG TGAAACGATC AATAAAGTAC GTAATATTTG CTACTAGAGA 5100 GTTAGGAAAC ATCGGGAACA GACATACTCA ACAGAAACCA AAATAAACAC GTCAGAAGAT 5160 TGCAGAGCAG GTGAAAACCT GCTCTTTTT CATGAGTCAA CCTTTAGTTC CTTAGTTTTC 5220 ATAAGGTCCT AAAAATATTG AAAGGAGTAT GTTTTGAAAG AGTTAGATCA AAACCAAGCC 5280 CCAATTTATG AGGCCTTGGT GAAGTTACGC AAGAAAAGGA TTGTTCCCTT TGATGTTCCA 5340 GGTCACAAGC GTGGACGGGG AAATCCAGAA CTTGTCGAAC TCTTAGGAGA AAAATGTGTA 5400 GGCATTGATG TCAATTCGAT GAAACCTTTG GATAATTTAG GCCATCCTAT TTCGATTATT 5460 CGTGATGCAG AGGAGCTGGC TGCAGATGCT TTTGGAGCTA GCCATGCCTT TCTAATGATT 5520 GGTGGAACAA CTTCATCGGT GCAGACTATG ATTCTGGCAA CCTGCAAGGC AGGAGATAAG 5580 ATTATTCTGC CACGAAATGT CCATAAATCT GCTATCAATG CGTTGGTTCT ATGTGGTGCC 5640 ATTCCCATCT ATATCGAGAT GAGTGTAGAT CCTAAGATTG GTATCGCTTT AGGTCTTGAA 5700 AATGACCGAG TAGCACAGGC CATAAAGGAC CATCCAGATG CTAAGGCTAT CCTAATCAAC 5760

AATCCTACTT	ACTACGGCAT	CTGTTCAGAC	CTAAAGGGGT	TGACAGAAAT	GGCTCATGAA	5820
GCTGGCATGA	TGGTTTTAGT	AGATGAAGCC	CACGGAGCGC	ATTTGCATTT	CACTGATAAA	5880
CTTCCAATTT	CTGCTATGGA	TGCAGGGGCT	GATATGGCAG	CAGTTTCCAT	GCATAAGTCT	5940
GGTGGGAGTT	TGACCCAAAG	CTCCATTTTA	CTTATCGGGG	AGCAGATGAA	TTCTGAATAC	6000
GTTCGTCAGA	TAATTAACCT	GACCCAGTCT	ACATCTGCCT	CTTACTTGTT	GATGGCTAGT	6060
TTGGATATTT	CACGTCGCAA	CTTGGCCCTT	CGTGGTAAAG	AGTCGTTTGA	GAAAGTCATT	6120
GAGCTATCTG	AGTATGCCCG	CCGTGAAATC	AATGCTATCG	GTGGCTACTA	TGCCTACTCA	6180
AAAGAGTTAA	TAGACGGTGT	TTCGGTTTGC	GATTTTGACG	TAACTAAGCT	GTCAGTTTAC	6240
ACTCAGGGTA	TTGGCTTAAC	AGGTATCGAG	GTTTATGACC	TCTTGCGAGA	CGAATACGAC	6300
ATTCAGATCG	AGTTTGGTGA	TATCGGCAAT	ATCTTGGCCT	ATATTTCCAT	CGGCGACCGC	6360
ATCCAAGACA	TCGAGCGCTT	GGTTGGTGCT	CTGGCTGATA	TTAAGAGACT	CTATTCAAGA	6420
GATGGAAAAG	ATTTGATAGC	AGGAGAATAT	ATTCAGCCCG	AGTTAGTGCT	GTCTCCGCAA	6480
GAAGCCTTCT	ATTCAGAAAG	AAAAAGTTTA	ACTTTGGATG	ATTCTGTTGG	ACAGGTCTGT	6540
GGAGAATTTG	TTATGTGTTA	CCCTCCAGGT	ATTCCTATCT	TGGCTCCTGG	TGAACGCATT	6600
ACACGAGAAA	TTGTCGACTA	TATCCAATTC	GCCAAGGAAC	GTGGTTGCTC	CCTCCAAGGG	6660
ACGGAAGATC	CAGAGGTCAA	TCATATCAAC	GTTATTAAGA	GAAAGACAAA	CTATAAGAAA	6720
AGTCAATAGT	TTTATCTAAA	CTATTTCTTA	TTTCAATTTG	ATGATTTGGC	GATGATTTTA	6780
GAGCACGGCA	AAAAGCCCTT	GAATTAGAAG	CGGTCAATCG	CTTAATTTCT	ATCAGCTTAT	6840
CAAATCCTGC	CTCAAGCCTT	TTCTGAGGAT	TAGGGTAGCG	TGTCAAGAGT	TGGTAGGTAT	6900
ATTCTGAATG	CTTTCCAACG	ATTTTATCCA	ACTCAGGAAA	GATGATATCA	AGACAACGAG	6960
TGTATTGTAC	TTTCCAATCA	GACTGTTTTT	TCTTGAGACG	ATGAATATGT	CTAGCCAGTA	7020
TTTTTAGTTC	TACTTGCCGA	TTATCGTGTT	GAAATTGTTC	ACGATTGGGG	TCAGAAAGAA	7080
GTTTAAGAGC	GATGCCATGA	GCGTCTTTCT	TATCCGTTTT	AGTTTTGCGA	AGTGATAATG	7140
ATTTGGCAAA	TTTCTTGATG	AGCAAAGGAT	TGTAGGTGTA	AACTTTATAT	CCTTGTTCAT	7200
GCAGGAAGTT	CAGTAGATTA	AAGGCATAAT	GTCCGGTATT	TTCAAGAGCG	ATGAGACAGT	7260
CTTGGTTGAG	CTGTCGAAGA	GACAGATCTA	AGAGTTCAAA	ACCAGCTTTA	TTATTTGAAA	7320
AAGTGAGTGG	TTTAAGAACA	GTTTTTCCTG	GAACATTCAA	GGCTGTAACA	TCGTCTTTAT	7380
TTTTAGCGAC	ATCAATGCCC	ACATAAAGCA	TGGGAGTATC	TCCAGATATA	GTATTTCAAG	7440
TCTACTGGGT	TATCCACGAA	CTTTTTGCCT	TGTTACCTTA	GACGAGATAA	AACGTCTATG	7500

598

CGTTATCAAA CTCATTACCA ATTGAAACAA AAAACTGTGG TTAGAGCCTT TCGGAAATCG 7560 TCAAGCGATT GGAGGAAATG AACTAATCCA CAGTGGCTTA TTCCAAGTAT ACCACTTGGG 7620 CTTTGGCAGT AGCTAACTGC GCTAAATATA ATATAAGGAG AAATAGATGG ATTTATGGTT 7680 TTCTGAAGTT CATACTCCAG ATGTCAAATT GTCTCTGAGA ACAGCCAAGC AACTTTACGC 7740 TGGAAAAAGT GAATGCAGG ATATCGAAGT CTTGGATACG CCAGCTTTTG GGAAAATACT 7800 GATTTTAAAT GGCCATGTCT TGTTCTCAGA TGCGGATGAT TTCGTCTACA ATGAAATGAC 7860 CGTTCACGTT CCCATGGCTG TCCACCCAAA TCCAAAGAAA GTATTGGTTA TTGGGGGTGG 7920 TGACGGCGGT GTTGCCCAAG TATTAACCCT CTATCCTGAA CTGGAGCAAA TTGATATTGT 7980 GGAACCGGAT GAGATGTTGG TCGAGGTCTG TCGTGAGTAT TTCCCAGACT TTGCTGCAGG 8040 GCTAGATGAT CCTCGTGTTA CCATTTACTA CCAAAATGGG CTACGCTTTT TGCGAAACTG 8100 CGAAGATGAT TACGATATTA TCATCAACGA TGCGACAGAT CCATTTGGCC ATACGGAAGG 8160 ACTOTITACO AAGGAATICI ACGGCAATAG ITATCGAGCI CIGAAGGAAG ACGGCATCAT 8220 GATTTACCAG CATGGGAGTC CCTTCTTTGA CGAGGATGAG TCGGCCTGCC GAAGCATGCA 8280 CCGCAAGGTC AATCAAGCCT TTCCAATCAG TCGGGTTTAT CAGGCCCATA TTCCAACTAG 8340 CCCAGCTGGC TATTGGTTGT TTGGATTTGC ATCGAAAAAA TACCACCCTG TCAAAGATTT 8400 TGACAAGGAA GGCTGGAAAA AACGCCAGCT TTTCACAGAA TACTACACTG CAAACTTACA 8460 CGTGGGAGCC TTTATGTTGC CCAAGTATGT TGAGGACATT TTAGAAGAAG AGGAAGGAAA 8520 AAAATGAGTC GTTTACTAGT TATTGGTTGT GGGGGCGTTG CCCAAGTTGC TATTTCAAAG 8580 ATTTGTCAAG ATAGCGAAAC ATTTACAGAG ATTATGATTG CTAGCCGTAC CAAGTCAAAA 8640 TGCGATGACT TGAAAGCGAA GCTAGAAGGC AAAACAAGTA CTAAAATTGA AACTGCAGCA 8700 CTTGATGCTG ACAAGGTTGA AGAAGTGATT GCCCTGATTG AAAGCTACAA ACCAGAAGCT 8760 CTTTTGAATG TAGCTCTGCC TTATCAAGAT TTAACCATTA TGGATGCTTG TTTGGCAACA 8820 GGTGTTCACT ATATCGATAC AGCCAACTAC GAAGCAGAAG ACACAGAAGA CCCTGAGTGG 8880 CGTGCTATCT ACGAAAAACG TTGTAAGGAA CTTGGTTTTA CAGCCTACTT TGACTACTCA 8940 TGGCAGTGGG CTTATCAAGA GAAATTCAAA GAAGCAGGCT TGACTGCTCT TCTTGGTTCT 9000 GGTTTTGACC CAGGTGTAAC TAGTGTCTTT TCAGCTTATG CCCTCAAACA CTATTTTGAT 9060 GAAATCCATT ATATCGACAT TTTAGACTGT AATGGCGGTG ACCACGGTTA TCCATTTGCA 9120 ACCAACTTTA ATCCAGAAAT TAATCTCCGT GAGGTTCTG CGCCAGGTTC TTACTGGGAA 9180 GATGGGAAAT GGGTCGAAGT CGAAGCTATG TCTATCAAGC GTGAGTATGA TTTCCCTCAA 9240 GTTGGACAAA AAGATATGTA TCTCCTTCAC CATGAAGAAA TCGAATCATT GGCCAAGAAC 9300

9360	CTTGACGCAC	GTCAATCTTA	ATGACTTTTG	TCGTTTCTTT	TCAAACGCAT	ATTCCAGGTG
9420	TAACGGCCAA	CCATTAACTT	CGTACGGATA	TGGACTCCTT	TTGAAAATGT	ATGAAATGTC
9480	TCTTGGGCCA	ATCCTGCCAG	TTGCTTCCAG	TTTGAAAGCC	CAATTCAATT	GAAATTGTTC
9540	CGGTGTCAAA	GTGTCAAAGA	ATCTTTACAG	TATTGGATGT	GAAAAACCAA	CGTACAGTCG
9600	GGTTGGTTCG	GTTACGCAGA	CATCAGGAAT	TGTCTGCGAC	ATATCTACAA	AAGACTATCT
9660	AGTCATGAAC	GGACAAAATT	GCCATGATTG	AGGAGTTCCA	CTTATACGAC	CAAGCTATTT
9720	TCCATTCATG	TAGATCCAGA	CTTGAGGAGT	AGTGTATAAC	AACAAGCTGG	GGAACTTGGA
9780	AATGGTGGAC	AAAATCCACA	GTTGTGGTTG	TTTGCCATGG	ATGAGTATGG	GAAGCTTTGA
9840	AAGTTAGAAG	TGACTTGGCC	CCTATGTTAT	CCAACACCAG	AGAACAAGTA	TAATGAAGTT
9900	TTGCTTGCCC	TTGCAAGGTC	AAGAGGCCGG	TATGTACAAG	CATTCTACAA	CTAATTGCCG
9960	TCAGGTACGA	CCAGTATCTA	CCTTGATTAG	AAAACTTATC	TTCCCTCTAC	AGAAGGCATA
10020	GAAGTCCATG	ATTTCCTGGT	CAAGGGAAGA	GCCAAATTGG	ACTCTATGAG	CAGCTAGTGG
10080	ATGGACCATA	GCTAGAGATA	TGGAGGAATT	GATGCAGACT	TGCTTTCAAG	TATTTGCGCC
10140	GAGGCTGGTG	GCGTTGTCGA	AACACGGTCC	CAGTTGCGTA	CTCAGAGAGA	TAGTCTTTAA
10200	CGCGCTCTAT	AGGCAGATCA	GTTCAACTCA	AACCCTCAGT	TTTGCGCCTC	TCAGTGTTGG
10260	GAGTGATTTG	ACAAGATTCC	GTTACTATAG	TCGCTTTGGA	CACCAGGTTC	GACCCTTGTG
10320	AGATGATTTA	AGCAGGGAGC	ACCCTTTGCG	TCATTTTCAT	TTGACGGACT	CTAGATTTGG
10380	GGTAAAATGG	ACTTACATGA	TTTGGTCCCT	AGAAGAACAG	TGAAAGCAGT	CAAACAACTT
10440	TTTGCTGATT	ÁCGATGTGGA	AGAGAAGGTT	TCATATTACA	GTGGTGGTCA	CTCAATATGG
10500	GCCTGGTGAA	TCTATATCGA	AATCTTGAAA	AAAAACTTAC	AGCGTATCCG	TCAGAAATCA
10560	AGAAAACGGT	TAGATATTGT	ACTGAGGTAT	TTATTTAGCA	TTAATGCGGG	GCCATTGCGC
10620	ACTTGAGATG	TGCCTGATGT	ACCTGCCATA	CGCCTCTGCG	TGGTTTTAGA	ATGGAAATCT
10680	TACCTACAGA	AAAAAGCCCA	GAGTCACAGG	AAATGGCTTT	CACCTTTGAG	CCCTATCGTC
10740	TGAAAATCCA	ATTATAGȚTT	GTGATTGGTG	GACGGGCGAT	ATACCTGTCT	СТТТСТТСТА
10800	TGTCAAAAAT	TTTATTCTTT	GACATGGCCA	TTATTTTCAA	GAGACAGACT	GTCCAAATCG
10860	GGGAGACTGT	TGGACGAACA	CTCTATCTCA	ATTGCCAAGT	ATGGTATTGG	AATACCTTTA
10920	ATGGACAGTC	GATTATCATG	TTTAAAGGGA	CTATCAAGAC	AAGCTTTTGG	AGCTTACTCA
10980	ACCCTCATGA	CCATCATGGT	AGTACGAACC	ATGCCAGCAG	AGGCTATCAC	CAAAAAAATT
11040	AGAGCATTTA	GGCTGCTAAA	TTCAAGGAAA	TCATGGCCTT	TCGACCAGGA	TATGGCCGAC

			600			
CTCAGATTAT	CGAGACCATA	GCAGAAGGGG	AAAGAGTCTA	TCTTTTGGTG	GAGCAGGCCT	11100
ATCTATCTGA	AGCCCAATCC	TATCTTGGAG	ACAAGGTTGT	TTATTTAGAC	ATTCCCACCA	11160
ATGATGCCTG	GGCGCGTGAT	ACTGGCCCAA	CCATTCTCGT	CAATGATAAA	GGTAAGAAAT	11220
TAGCCGTGGA	TTGGGCCTTC	AATGCTTGGG	GAGGCACCTA	TGATGGTCTT	TATCAAGATT	11280
ATGAAGAGGA	TGACCAAGTA	GCCAGTCGTT	TTGCTGAGGC	CTTGGAAAGG	CCTGTCTATG	11340
ATGCTAAACC	TTTTGTACTG	GAAGGAGGCG	CAATCCATAG	CGATGGTCAA	GGAACTATTC	11400
TCGTAACTGA	AAGTTGCTTG	CTTAGTCCTG	GTCGCAATCC	TAACTTGACT	AAAGAGGAGA	11460
TTGAAAACAC	ATTATTAGAA	AGTCTTGGTG	CTGAAAAAGT	TATTTGGCTT	CCTTATGGTA	11520
TTTATCAGGA	TGAAACCAAT	GAACACGTCG	ATAATGTTGC	TGCCTTTGTT	GGTCCTGCTG	11580
AGCTTGTTTT	GGCTTGGACA	GATGACGAAA	ATGATCCCCA	GTATGCCATG	TCAAAAGCAG	11640
ATCTCGAACT	CTTAGAACAG	GAAACAGATG	CAAAAGGTTG	TCACTTCACC	ATTCATAAAT	11700
TGCCTATCCC	TGCAGTTCGA	CAAGTTGTGA	CAGAAGAAGA	TTTGCCAGGC	TACATCTATG	11760
AAGAAGGAGA	AGAAAAGCGA	TACGCAGGTG	AACGACTAGC	AGCTTCCTAC	GTAAACTTTT	11820
ATATCGCCAA	CAAGGCTGTC	TTGGTTCCAC	AGTTTGAGGA	TGTAAACGAC	CAAGTGGCCT	11880
TAGATATCCT	CAGCAAGTGT	TTCCCAGACC	GTAAAGTTGT	CGGAATACCA	GCCAGAGATA	11940
TTCTCTTAGG	TGGTGGCAAT	ATCCACTGTA	TCACCCAACA	AATTCCAGAA	TAGGAGAAAA	12000
AGATGAGAAA	TGTAAGAGTT	GCAACCATTC	AGATGCAATG	CGCTAAGGAT	GTGGCAACAA	12060
ATATCCAAAC	CGCAGAGCGT	TTAGTACGTC	AGGCTGCTGA	GCAAGGAGCC	CAAATTATTC	12120
TCTTGCCCGA	CTTGTTTGAA	CATCCCTATT	TCTGTCAGGA	ACGTCAGTAT	GACTACTACC	12180
AGTATGCCCA	ATCTGTAGCG	GAAAATACTG	CCATTCAGCA	TTTTAAGGTG	ATTGCTAAGG	12240
AACTACAAGT	TGTTTTACCA	ATCAGTTTCT	A'I'GAAAAAGA	TGGTAATGTC	TTGTATAACT	12300
CTATTGCCGT	CATTGATGCA	GATGGGGAAG	TGCTGGGCGT	TTATCGAAAG	ACCCATATAC	12360
CAGATGACCA	. ТТАТТАТСАА	GAAAAATTCT	ATTTCACGCC	: TGGTAACACT	GGTTTCAAGG	12420
TCTGGAATAC	TCGCTATGCT	AAGATTGGTA	TCGGTATCTC	TTGGGATCA	TGGTTCCCTG	12480
AAACAGCGCG	CTGTCTTGCA	TTGAATGGTC	CTGAATTGCT	CTTTTATCCT	ACAGCTATCG	12540
GTTCAGAGCC	AATTTTGGAT	ACAGATAGTT	GTGGTCACTC	GCAACGTACT	ATGCAAGGGC	12600
ACGCAGCAGC	GAATATTGTT	CCAGTCATC	CAGCCAATCO	TTATGGTTT	GAGGAGGTTA	12660
CTCCTAGTGA	GGAAAATGGC	GGACAGAGC1	CCAGTCTTG	CTTCTACGG	TCCTCCTTTA	12720
TGACGGATGA	AACAGGAGCT	ATTCTAGAAG	GAGCTGAAAG	ACAAGAAGA	A GCTGTTCTGT	12780
TAGCTACTT	TGACCTAGAC	AAGGGAGCA	A GTGAACGCCT	AAACTGGGG	TTGTTTCGAG	12840

ATAGAAGACC	AGAAATGTAT	AGACAAATTA	CAGATTAGTG	TGGGAGAAAT	GAGAGATTCA	12900
TTCTGCTAGA	CTAACTTCTT	ATTAGTAACT	ATAAGATACT	ATGGCATCTA	GTAAATCGAT	12960
TTTTATGATT	CGCTATTCTT	GTCTATTGAT	TAGTCCGTAT	TTTAAAATAT	TAGCAAAAA	13020
GCAAATAGCA	GTAACTTCTG	TCTATTTGCT	TTTCTTTTTT	ATAGAATATA	TTTCTCAATA	13080
GCACGCGCAA	CGCCGTCTTC	TTCGTTGCTT	GAGGTAACGG	CATCCGCAAG	AGATTTGATA	13140
TAATCGCTGG	CATTTCCCAT	TGCAATCCCA	AGCCCTGCAA	ACTGGÄGCAT	TTCGATATCG	13200
TTATTAGCAT	CGCCCATGGC	CATAATCTCT	GAGGAATCAA	TCTTCAAAAT	CTCAGCTAGT	13260
CGTGAAAGAG	CAGTAGCCTT	TGTCGTTCCA	AGCGGCATTG	CTTCATAAAT	GACAGGCTGC	13320
GAACGAACTC	CACTGAATCG	TTGGCAAAGC	TCTTCAGCAA	AACGCTGCTC	AAAATCGTCT	13380
GTTTGTTCTT	TTGTTCCTAA	ACACATACCT	TGGAACATCC	GGAACTTTCC	ACTAGTCGCT	13440
TCTTCAAGAG	AAATTTCAGT	CAGGTCTGAA	AATACTAGTT	TAGCATCATT	TTCAATAACT	13500
TGATTGGGCT	TGTCACCGAG	AACAAAATAA	TGTGACTCGT	CAAAAAGTGT	CAACTGAACA	13560
TCACTCTTTT	CAGCAAGGTC	ATAGAGGTAT	TCGATGTCAG	CTGGACTCAG	TTCTTTCCAG	13620
TCAACTAGAC	TCCAATCACT	GGTCTGGTGA	GTTGAACAAC	CGTTGTTAAC	AATAATATAT	13680
TCGTTCTGGA	GGTCAAGCTC	CAGTTTTTTG	TAGTAGGGGA	GGACACCGAA	AAGGGGGCGA	13740
CCCGTACAGA	GAACCAGTTT	GACACCTTTT	TCAATGGCTT	TGTGAATAGC	AGTAATGTGT	13800
GCTTGTGGGA	TTTCCTTGGC	TTCATTGAGG	AGGGTGCCGT	CCATATCCAA	GGCTAGTAGT	13860
TTAATCATAG	GTCTTCCTCT	TTATCTTTGC	ТАТТАТТАТ	GCATATTTTG	GAGAAGAAAT	13920
TGATAGAAAG	CTTGAGACTA	ATTGATTTTA	TAGTTTAAGA	TGTTTTGATG	ACAATTCATG	13980
ATTTGAAGAC	GATATTTCGC	AAAGATATGO	TATACTATGT	TTGTCAATGT	TGCAACTAGA	14040
САДАТТАААА	AACCAACTTA	ATATAATAGT	TTTTTTGTAA	GTAGGTATGA	GTAGCAGATT	14100
ACTCAACTA	TCTGAAGAAT	AATGGAGGA	ATATATCATO	ATTTTAATGA	CAAAAAATAT	14160
AAATCTAACA	AATGAAGAAT	TAGAGCTGAT	ACAAGGTGGA	GCAGATCCAT	ATGGTAAAAA	14220
TCCTAATGGT	r AGGTACGATT	GGGAAATAGA	ACCAGTATTA	ACTCTGCTGC	TTCATGGATT	14280
TTGTCCCAGA	GCACCTATO	ATTCAGGAT	A TATTGGAGGA	GGTAATCATC	TTTGCAAAGG	14340
AAGTGCTGC	G AGATTTTAAC	TAAAATTA	r TAGGAATATO	AAGAAACAAG	GGGAGAAAAC	14400
AGAGGATTT	A ATATGAAAA	A ACGAGCTAT	CAAATTTTAC	TAGCATTGT	CTTAATTTTT	14460
TACAAATCA	A CTTGGTTTTC	GAGGCTTTT	C AATTATCTCC	CAAAGCCCTA	TCTACCAGCA	14520
AGTCGTGAA'	r TTTTTCAGA	r TCTGCTTTT	G ATGGAGAGCC	GAGTTCTTT	r CTTAGCGGTC	14580

ATCTATCTAC	TGGTTTTTGC	AGGAAAGAAA	602 ATTTTTCATT	TCAAGTGGCA	GCTGAGGTAC	14640
TTCATCTACC	TTTTACTGGG	CTACATCATT	TCATATATGT	CTGACTTCCT	CTTTTCGTAT	14700
TTCATATCCC	TGTCTTCAAA	TCAGATTTCT	TTGAATGAAA	CGGTAGAAAT	GATGGGGAGA	14760
CAGGAGTTCC	CTTATGTCTT	GCTCATCGTT	TGCTTCATCG	CCCCTATTGC	TGAGGAATTG	14820
ATTTATCGAG	GEGTGCTTAT	GACAACCTGT	TGCAAAAACT	CACCTTGGTA	CG	14872

(2) INFORMATION FOR SEQ ID NO: 73:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10223 base pairs

- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

CGTGCTATCG	GTCTCAAAAC	CAATCTGGTC	GCTATGGTCA	AATCCAGTTG	GAAAATCCAT	60
TCTTCTTGGA	GCCATCTGCT	GGATTGCCAT	CATCCTCACC	ACTCTTGGTA	TGCAGACCCT	120
TATCGGCATT	TTCTAATACT	CTTCGAAAAT	CTCTTCAAAC	CACGTCAACG	TCGCCTTGCC	180
GTAGGTATAT	GTTACTGACT	TCGTCAGTTC	TATCTGCAAC	CTCAAAACGG	TGTTTGAGCT	240
GACTTCGTCA	GTTCTATCTG	CAACCTCAAA	ACGGTGTTTT	GAGCTGACTT	CGTCAGTCGT	300
ATCTACAACC	TCAAAACAGT	GTTTTGAGCT	GACTTCGTCA	GTTCTATCTG	CAACCTCAAA	360
ACAGTGTTTT	GAGCAGCCCG	TGGCTAGTTT	CCTAGTTTGC	TCTTTGATTT	TCATTGAGTA	420
TAACACAAAA	GGTAGCCCAT	CAGCTACCTT	TTTCTTATGC	TTCCTCAATC	AAGCGAGTAT	480
GTTCTCTCTT	GATACAGCGA	TTCATCACGA	TATCATCACA	TCCACCATCA	CGCAAAATCT	540
CTTTCGCTTC	TAAACTTTCA	AGTCCTAGCT	GTGCCCAAAA	AATCTTGGCA	TCAGCTTTGA	600
GAAAATCACG	CGCCACATCG	GGCAGAAATT	CACTGCGACG	ATAAACATTG	ACAATATCTA	660
CAGGAAAAGG	AATTTCAGCG	AGGCTAGCAT	AAGCCTTTTC	ACCCAAGATT	TCGCCACCTG	720
CCGCCTTGGG	ATTGACTGGG	ATGATTTTAT	AGCCCCGAGC	CTGCATTTCC	TTTGTTACTC	780
GATTGCTGGT	TGTTTCTTCA	CGGTCAGACA	AACCCACCAC	AGCAAGGGTT	TTACTCGTTG	840
CGAGATACTG	ACGAATCACG	CCATCACTTG	GATTGATAAA	TTCTTGACTC	ATAGAAATCC	900
TCCTTTTTCA	TCAGTATAGC	ACATTTTGAA	AAGGTTTGCA	GAATTATACT	ACAAAAAAGG	960
AGGACTAGCC	СССТТТТТАТ	TTAGCCTCGT	ACCAGGTTGC	CCCTTCATTC	TCATCTGCGA	1020
TAAGAGGAAC	ACTGAGTTGA	ATGGCTTCTT	CCATGGTTTG	TTTCACCAAT	TTTTTCATCT	1080
CTACCAATTC	AGATTTAGGC	ACTTCAAGGA	CGATTTCATC	GTGCACTTGT	AACAGCATCT	1140

				CA ATCTTGAGAA	1200
TAGTCTGATA ACCA					
TATCTGCTGC CGAA	CCCTGG ATAGGT	GAGT TGATAG	CAGT TCGCTCCC	CA AAACCACGAA	1260
TATTGAAGTT GCGC	GAATTG ATATCT	GGCA ACTCAC	GGCG ACGCTTA	VAG AGGGTCTCTA	1320
CATAGCCCTT ATCA	CGCGCC TCCCGC	ACCA CTTCAT	CCAT GTAGTTT	TTA ATACCTGGAA	1380
AACGTTCAAA GTAG	GTATCA ATGTAC	GCTT TGGCTT	CCTT ACGACTA	ATT CCCAAATTAT	1440
TAGACAAGCC AAAG					1500
GACGGTCGTT TGCA					1560
AAGTATGGAT ATCT					1620
GCGCCAAAAC GCGC					1680
ACTCTGGCAC AAAA	GCCTTC CGAAT	CAAGC GCCCCT	GTTC CAATCGG	GCA GGAATATTTT	1740
GCAAGTTTGG ATCC	ACACTA GACAA	ACGCC CGGTCT	GGGT CAAATCC	TGC ACATAGCGAG	1800
TATGAATCTT TCC	TCAGCC AAAAT	CCAGT CCTGC	AGCC AATTACA	TAA GTAGATTGAA	1860
TCTTAGCAAT TTG	CGGTAA TCCAG	GATTT TCTTA	CAAT CGGAGCA	ATA GGAGCGAGAC	1920
GCTCTAAAAC ATC	CACTGCT GTCGA	ATAAC CTGTC	TGGT TTTCTTA	GTG TATTCTAGAG	1980
GAAGTCCCAA TTT	TCAAAG AGAAG	CACGC CCAAC	CCTT AGGCGAG	TTG ACATTAAACT	2040
CCTCACCAGC CAG	CTCGTAA ATCTC	TTGAG TCAGT	TTTTC AATGACA	AGC TCATTTTCAG	2100
CCTGCATCTC AAG	CAAGGTC TCTTT	CTTGA CCATA	ATCCC AGCAATT	TCC ATCTTGGCAA	2160
GGACAAAAGC CAG	AGGTTGC TCCAT	ATCAT AAAGA	AGCTC TAATTGO	CCA TTTTCGCTGA	2220
GTTTTTCAAG TAA	AATAGGC TCTGT	TTCTA CCAAA	ACAGC AAGTTT	ACAA GCTAAGTGTT	· 2280
CCAAGAATTT CTC	ACSTTCA GGAA1	GGCCT TTTTA	ACACC CTTACCC	STAG AAAGTTTCAT	2340
CATCAACCAA GTA	AGTCTGA CCATA	AAGAC TAGCG	ATGGT CGCAAT	TTCA TTGTCCTCCA	2400
CAGTCGAAAG GAG	GTATTTA GCCA	ACGGA TGTCA	AAAGC AGGCGC	CTGC. AAATCCACAC	2460
CAAAACGTTG CAA	AAGAACT TTAA	CTTCT TAAAG	TCATA AACTCT	CAGA GATGTTTTT	2520
CTAAGAAATC CTT	GAAAATC GGGT	TTGCA ACAGO	TCAAG CTTGTC	TGTG GCATAGAGCT	2580
TATCCCCACA AGA	CCAGACA AATC	CAACCA AATTA	TCCGT ATGGTA	ATTC TCACCAAAAA	2640
				TTGG TCAACAATAG	
				CTGC TTTAGCTGTT	
				ACCA CTATAGACCA	
•				TAGT GTTTTAGACA	

AAAAGGCCTG	TTCCTTGTCA	TTGATGAGAT	604 TTTCCTTCAT	CTTAGAAGTC	TTCATTCCAT	2940
CAATATTTTC	ATAAATCCCC	TCAAGCGAAC	CATGCTCCAG	CAAGAGCTTA	ATACCCGTCT	3000
TTTCACCGAC	TTTGGTCACC	CCAGGGATAT	TATCCGACTT	ATCACCCATG	AGCGCCTTGA	3060
GATCGATAAA	CTGAGCTGGT	GTGAGGCCCA	TTTCTTCCAT	GAGGTAATCT	GGCGTAAAGG	3120
CCTCAAACTC	AGCCACACCT	TTCTTGGAAA	TTTCAACCAC	CGTATGCTCA	TCCGTCAGCT	3180
GAATCAAATC	CTTGTCCCCA	CTGACAATAG	TAATATCAAA	ACCATCCTGC	TCTGCTAGCT	3240
TATCCAGCGT	CCCAATGATG	TCATCCGCCT	CATACTGAGC	CAGATCATAG	TGACGAATCC	3300
CCATATGATC	CAGCAACTCA	CGAATGAAAG	GAAATTGCTC	ACGAAACTCA	TCAGGAGTCT	3360
TGGCCCGACC	ACCCTTATAG	TCCGCATACA	TCTCTGTCCG	GAAGGTCGTC	TTTCCCGCAT	3420
CAAAAGCCAC	CAAAATATGA	CTCGGCTCAA	CCCGCTCCAA	TAAATGACTC	AACATCAACT	3480
GAAAACCATA	AATCGCATTG	GTATGCAAAC	CAGCCACATT	CTTAAAACGG	TCCAACTGCT	3540
GATACAGCGC	AAAAAACGCC	CGAAAAGCTA	CAGAAGACCC	ATCAATCAAT	AATAATTTTT	3600
TCTTATCCAT	ACACCCATTA	TAAAGGAAAG	AATCAAAAA	TACCATTGGG	AAGAGCTAGA	3660
GCAAGTATTT	TTCAAACTTT	TTCCGAATAA	ATAGATAGAG	CCAGAGAATT	TAGTAAACCT	3720
AGATTTAAAA	ATGTGCTATA	ATATAGTATA	TTGAATCTAT	AATAGTACAC	CTTGACTGCT	3780
AAAATATTTC	TATAAATTAA	TTTGACTTTC	CTGATAGAGT	TATTCACATC	TTATTTCAAC	3840
TCACTATAGA	AGGAGGAATA	GGAGGATTCT	CAGACATCCG	GGCATCAGCC	CAACTAATGA	3900
TTTGATTGCT	AAGAAAATAT	TCAGCAATCC	AGAAATCACT	TGTCAATTTA	TTCGCGATAT	3960
GCTGGACTTG	CCAGCAAAAA	ATGTGACCAT	TTTGGAGGGA	AGCGATATTC	ACGTATTACT	4020
CTCCATGCCT	TACTCGGTGC	AGGATTTTTA	TACCAGTATA	GACGTCTTGG	CGGAGTTGGA	4080
TAACGGTACT	CAAGTAATTA	TTGAGATTCA	AGTCCATCAT	CAGAATTTTT	TCATCAATCA	4140
CTTGTGGGCT	TACCTGTGCA	GTCAGGTTAA	TCAAAATCTT	GAAAAAATTC	GTCAGCGAGA	4200
AGGTGATACT	CACTAGAGCT	ACAAACACAT	CGCTCCTGTT	TACGCCATTG	CTATCGTGGA	4260
TAGTAATTAT	TTCTCAGATG	ACCTGGCTTT	TCATAGCTTT	AGTATGCGCG	AAGACACAAC	4320
AGGTGAGGTA	TTGGCGATTA	CCAACAATGG	ACAGGAAAAC	CATCTGGTTA	AGATGGCATT	4380
CTTGGAATTA	AAAAATACAG	AGAAACCAGC	AAAGACAAGG	TTCGCAAGCC	ATGGTTGGAG	4440
TTTTTCGGCA	ACAAGCCCTT	TACCCAGCAA	CCGCAACGAG	CCATTACCCA	AGCAAATCAA	4500
CTGCTGGACT	ACAAGAGCTG	GTCCGAGGAG	GACAGGAAAA	TGTTTAGTCA	ACTACATATG	4560
CGAGAAGAAC	AAGTCTTGTT	AGCACAGGAC	TATGCCTTGG	AAACTGCTAG	GGCTGAAGGC	4620
CTTGAACAAG	GACTAGAGCG	TGGGAAAGTT	GAAGGAAGGG	. CAGAAAGGAA	ACTTTTTGCC	4680

TTCCTAGACA TAG	TACGCCA AGG	rcttctg ac	CTTCTGAGG	TTGCCAGCCA	GCAATTAGGT	4740
ATGTCAGTAT CTG	AATTTGA GGC	ACTGTTG TA	AAAATGGCT	CCATAATATC	CATAGTGGGT	4800
AAATCCCCTA TGG	ATATTAT GGA	GCCTATT TI	rgtgtagaa	AAAAAGTCCC	ATATGACCTA	4860
TAATGAAAAG CGA	CAAAACA ACTO	CATTAGA AA	AGAATCATA	TGGAACAATT	ACATTTTATC	4920
ACAAAATTAC TAG	ACATTAA AGAG	CCTAAT GI	CCAGATTT	TAAACATCAT	CAATAAGGAT	4980
ACACACAAGG AAA	TCATCGC CAA	ACTGGAC TA	CGACGCCC	CATCTTGCCC	TGAGTGCGGA	5040
AACCAATTGA AGA	AATATGA CTTI	CAAAAA CC	TTCTAAAA	TTCCTTATCT	TGAAACGACT	5100
GGTATGCCTA CAA	GAATTCT CCTT	AGAAAG CG	STCGATTCA	AGTGCTATCA	CTGTTCAAAA	5160
ATGATGGTCG CTG	AAACTTC TGAT	GACGTA CA	GTCATATT	TCTTCTCTTT	TTATTATATC	5220
ACAGTTTTAA ATC	TAGCTTT ACTA	GATTCA CC	GCTACTAT	CTATTTATTC	GGAAAAAGA	5280
CGAAAAAACC TGAG	GAATCAT CTCA	GGCTTG GT	CATTAAAT	TTTTTTCTCA	ATATCGAAAA	5340
GTGGAGAAAG TGG	CGTTTT TCAT	GAATAC GT	ACGATAGC	ATCCCCTAGG	AGATGAGCGA	5400
TTGAAATCTG CTC	AATCTTA TCAA	TCAAAC GC	TCTTCTGG (CAGATAGATG	GTATCCAAAA	5460
CAACCAATTT CTT	AATAGCT GATT	TTTGGA TA	TTGTCCGT	AGCAGGACCA	GAAAGAACTG	5520
GGTGCGTACA GCT	rgcatag actt	CAACAG CA	CCAGCTTC (CGCAAGAGCA	TCTGCCGCAT	5580
GACAAATCGT TCC	AGCGGTA TCAA	TCATAT CA	TCAATCAA (GATACAAGTC '	TTGCCTTCAA	5640
CCTTACCGAT GATA	ATTCATA ACTT	CACTAG TA	TTCATCTT /	ATCAACGCTA	CGACGTTTAT	5700
CAATAATAGC GATA	AGATGTT TTCA	AAAATT CT	GCCAACTT A	ACGAGCACGA (STCACCCCTC	5760
CATGGTCCGG GCTC	SACAACC ACAT.	AGTCAG AA	CCAACCAT /	ACCACGACGC 1	rcaaaataat	5820
CTGCAATCAG AGGA	GCACCC ATCA	AATGAT CC	ACAGGAAT A	ATCAAAGAAT (CCTTGAATTT	5880
GCGCAGCATG CAAC	STCGATG GTCA	ATAAAC GA	TCCACTCC A	AGCTACTTCA /	AGCATATTTG	5940
CGACAAGTTT TGAA	GTGATT GGCT	CACGCG CTC	CTCGCCTT 1	CTATCCTGA (CGTGCATACC	6000
CATAGTAAGG CATG	ACAACA TTGA	CAGATT CTC	GCACTCGC A	CGCTTCAAA	GCATCTACCA	6060
TAATCAAAAT TTCA	AGCAGA TTGT	CATTTA CAC	GGCGAACT A	GTTGATTGT A	AAGATAAAGA	6120
CGTGTTTCCC ACGG	ATTGAT TCTT	CAATGT TGA	ACCTGAAT C	TCTCCATCT (GAAAATTGGC	6180
GAACACTTGA TTTC	CCCAAC TCTAT	rcccaa tci	rccrgcgc c	ACACGTTCT (SCCAATTCTT	6240
TATTAGAAGA AAGG	GCAAAC AGCT1	TAAAT CAC	GAAAAAGA C	ATGATTTCC 1	CCCGGTATAT	6300
ATGTATAACT TGTG	CTTTTC ACAAC	GATTTT CCA	ATCTACCA T	TGTAGCGCT 1	TTTGCACTA	6360
TTTTCAATC AAAA	ATAAAA GAAGO	GCACC ATA	ATTTGTAC C	CTTGCATCA 1	TCTTTTGAA	6420

AAATATTCTA	GGTCATCAAC	TCATTGTGTT	606 TCTCAACAAA	GCAATAAGCA	TGATAAAAAC	6480
CATAGAGAGC	AATAGCCGTA	ACCACTGGAA	TCGCTAAAGG	CAACTCTGTT	TCCAACTCCA	6540
CAAAAGGAGA	GTTAAACAAG	AAGTGAGTTC	CCAAGGCTAA	ACCTAGAAAA	ATAAGGCCCT	6600
GTTTCTTGCC	AACCTTCTGT	CCTTTATAGG	CTCTGTAAAG	CAAGTAAACA	CCTACTACAG	6660
CTAGACCTGA	AAAAGTCCAG	TGAGAGGCAA	TTCCTGAGAT	GATACGCTCT	AAAATTCGCG	6720
AAATAGTAAA	GTCAAAGCCC	TCTGGCAAAT	CCGTACGAAT	ATAACCAATA	TCCTTAATCA	6780
TTTGGAATCC	CAAACCGGAA	GCAATTCCAA	GTAAAAACAA	AGATTTTAAT	TTTCGCACAG	6840
GAATCAAAGC	СААААСАААА	ACAAGTGACA	ATAATTTCAA	GGGTTCTTCT	ACCAAAGGAG	6900
CCGCAATAGC	ACTTTCAAAG	GCATTTAAAA	ATGGACTATC	TGGGAAAAGA	ACCCCCAGTA	6960
AATCATGGAT	ATAAGTATTA	GCAAAACTAG	ACAACCAGCC	TGAAAGGAAC	ATCCCTCCCA	7020
ATAAAGACAG	AATCAAAACC	TTCTTTGGCA	ATTCCCATTT	TTCCCAATAC	GGAAGAGAAA	7080
ATAAAGAGCC	GGAATCATGT	AAAAGAGAGC	TAGAAAGATA	GAAACTCCCA	TTAGTCCATA	7140
TTCCGCACCT	GACCTCGAAC	CGTCCGTATA	GTAGATGGTT	TCATACTGTA	AACCAATACA	7200
TAGCAATAAA	ATAAAAATAA	ATAAAATATT	GCTTTTCTTC	ATACACTTTC	TTTCTAAATG	7260
AAGTATTTAT	AATTCTACGA	CTGTCATACT	TCCTGTATCA	ACATTGTAAA	TGGCACCAGA	7320
GATAATGACA	TCGTCTGGTA	TTAGGGGAGA	CTCGATAAGC	AGTTGCATAT	CCTCGCGTAC	7380
ACTCTCTTCT	ATATCTTGGA	AGGGCAAGAA	GTCCTGGTCT	GACACATCGA	CACCCAATTC	7440
TTCCTTCAAA	TACTCCTGAA	AAGGTTCATT	TTCAAAGGTC	TGAGCACCAC	AGTCTGTATG	7500
ATGCAATACC	ACAATTTCTC	TTGTCCCCAT	TTGTTGCTCG	GAAATAACTA	GAGAACGAAT	7560
CATATCCTCA	GTCACTCGAC	CACCTGCATT	CCGCAAAATA	TGAGCATCCC	CAAGTGCCAA	7620
ACCTAGAGCT	TGCGCAACGT	GCAAACGTGA	GTCCATACAG	GTCACAATGG	CTACTCTGGT	7680
TTTAGGTTTA	AGTGGCAGAT	TTAACTGCCC	ATGTAGGGCA	ACATAAGCCT	GATTGGCTTG	7740
CATAAACTGT	TCAAAATACG	ACACGATTCC	CTCCTTGAAA	ATTTGATAGT	CAAATATTTC	7800
TCCTATCTTA	TCATTTTTAA	GAGAATTTGT	CACGGATTAT	GCAAAGACCT	TTTTCAAGAC	7860
TTCCTGAATC	GTTGTCACGC	CAATGACCTG	AATTTCCTTA	GGCAGAGTGA	TTCCTGTCAA	7920
GGAATTCTTA	GGTACATAAA	TCTTAGTAAA	GCCCAGTTTA	GCAGCTTCGT	TGATGCGTTG	7980
CTCAATACGA	TTCACGCGCC	GAATCTCTCC	TGTCAAGCCC	AGTTCTCCGA	CAAAACATTC	8040
CTGAGGATTA	GTTGGCTTGT	CTTTGTAGCT	CGAAGCAATA	GCAACTGCAA	CAGCCAAGTC	3100
AATCGCAGGT	TCATCCAATT	TAACACCACC	AGCAGATTTG	AGATAGGCAT	CCTGATTTTG	8160
CAAGAGAAGC	CCTGCCCGTT	TTTCCAAAAC	AGCCATAATC	AAGCTAGCAC	GGTTAAAATC	8220

AAGTCCTGTC	GTAGTACGCT	TGGCATTTCC	AAACATGGTC	GGTGTTACCA	AAGCCTGAAC	8280
CTCCGCCAAA	ATCGGACGCG	TCCCTTCCAT	GGTTACAACG	ATGGAGGAAC	CAGTCGCCCC	8340
ATCCAAACGC	TCTTCTAGGA	AAACTTGACT	CGGATTGAGT	ACCTCAACCA	AGCCGCCCGA	8400
CTGCATCTCA	AAAATCCCAA	TCTCATTAGT	GGAACCAAAA	CGATTTTTGA	CCGCTCTCAA	8460
AATACGAAAG	GTGTGGTGAC	GCTCCCCTTC	AAAGTAAAGC	ACCGTATCCA	CCATATGCTC	8520
CAACATACGA	GGCCCAGCCA	AGGTTCCTTC	TTTGGTCACA	TGACCTACGA	TAAAGATGGC	8580
AATGTTATTG	GTCTTGGCCA	ACTGCATGAG	TTCAGCGGTC	ACTTCACGCA	CCTGAGAAAC	8640
AGACCCCTGC	ACCCCTGAAA	TCTCAGGAGA	CATGATGGTC	TGGATGGAAT	CAATAATGAG	8700
AAAGTCTGGC	TGGATACGCT	CCACTTCTGC	ACGAACACTC	TGCATATTGG	TCTCTGCATA	8760
GAGATAAAAC	TCACTATCAA	TATCACCTAA	GCGCTCTGCA	CGTAGTTTAA	TCTGCTGGGC	8820
AGACTCCTCC	CCACTGACAT	AGAGAACTGT	CCCCACTTGG	GACAACTGGG	TTGAGACTTG	8880
TAGGAGAAGA	GTTGATTTCC	CAATCCCAGG	ATCCCCACCG	ATAAGGACGA	GACTTCCTGG	8940
TACCACTCCG	CCTCCAAGCA	CACGGTTGAA	TTCCTCCATC	TCCGTCTTGG	TTCGATTGAC	9000
ATTGATGGAA	GTCACCTCAG	CTAGTTTCAT	GGGCTTGGTT	TTCTCACCTG	TCAAGGACAC	9060
ACGCGCATTC	TTAACTTCGG	CAACCTCAAC	CTCTTCCACA	AAAGAAGACC	AAGACCCACA	9120
GTTGGGGCAA	CGTCCCAGAT	ATTTAGGGGA	ATTATACCCA	CAATTTTGAC	ATACAAATGT	9180
CGCTTTTTTC	TTTGCGATGA	CAAACCTCTT	TCTATATCTC	TAACTCACAC	TCAATCACTT	9240
GGCAAAAATC	AATCTTCTCA	TTTGGCACAA	ACTGGCGCAT	GAGCATTCGA	TGAGCAACAA	9300
CTACCACAGT	CTGATGTTCT	CGATACTTAG	ACATACATTC	TAGAAACCGA	GACTTCATTT	9360
CCGTAGCTGT	CTCATATTGA	ATAGGACTAT	TAGGAAGCAA	CTCCCCCTTG	TTTTCTAAAA	9420
ACAGTCTTCT	AGCTGTTTCA	AAGTTTTCTA	TTCCTGTTTT	ATAGACCTGC	CATTCATGTA	9480
ATAAAGGCTC	TACTCTTAAA	GGAAGACCCG	TAGCACAGAC	CACATACGAA	GCCGTTTCTA	9540
AAGCTCTTGT	GACTGCAGAA	GATACGATTA	TTTCAGCTGA	CGAGAGTAAA	GGATTTTTGC	9600
TCAATTTCTG	GACTTGCTGC	CGTCCCATCT	CAGACAAGGG	TGCCAAATCT	ATCCCAAATC	9660
CTATATAAGA	ACGCTCCTCT	AACTCACGGT	AATCTGGCTC	CCCATGACGT	ACAAAGATAA	9720
TCTTCATTCT	AGTGCCCTGT	CGATCCAAAT	CCACCAGTTC	GAACGCCATC	AGCTGCATCT	9780
CCATCTGCAA	TTAAGAAAGT	AGCAAAAACA	GCCTGGACAA	TACGCTCCCC	AACTTCAAGA	9840
ACAACCTCTT	GGTCTGTGAT	ATTCTTCATC	TGCGCAAAAA	TATGCCCTTC	ATTTCCAGGA	9900
TTTCCATAAT	AATCCCCATC	AATGACTCCA	ACTGAGTTAA	TTAAAACCAA	GCCCTTCTTA	9960

			608			
CGAGGATTTG	AAGAACGATC	ATAGAGGTAG	AGAACCTCAG	TCGGCTGCAT	ATAAGCCTTA	10020
ACCCCTGTCG	GAACCAAGAC	AATCTCTCCT	GGCGCAACAA	CTGTACGCAC	AGCAACCTTT	10080
AAGTCGTAAC	CAGTCGCATG	CGCTGTCTCA	CGCTTGGGCA	ATAAATTTTC	ATCTGTAAAA	10140
CTCGAAACCA	ATTCAAAACC	ACGAATTTTC	ATAATTTTCT	CTTTTCTATT	ATCATTTATT	10200
CTAGATTATT	СТАТАСТТАТ	TTA				10223

(2) INFORMATION FOR SEQ ID NO: 74:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 16535 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:

60	TATCTCATCC	CTACACCAAC	CTTGCCATGG	CCTTGTCTTG	CTTATCGGCG	TGGTTCTGTC
120	CCTTGCCCAA	ATACAACCAC	AACAACAGAA	TAACGAACCC	CACCAACCAC	GACGAAAGTA
180	TTCACCTGGA	GTGATATTTC	AAGAACGAAA	TGGCTCTGGT	ATACAGCAGC	CCTCTTACTG
240	AGCCGATCCA	CTGCAAGCCC	GAAAAACCTG	GAAAACAGAA	CTTCCCTAGA	AATGCAAACG
300	TCCAGTAACA	CTTCTACTAG	GAGCCAACTA	TCGTTCAAGT	CTGGACAAGA	GCACCACAAA
360	TGTCAAAAAA	TCCGTATCCA	GATAACTACT	GCCCATCGAA	AGGCAGAAGA	ACTGAAACTA
420	TGAAAAACCA	GGGACGATGT	CTATGGACTT	TGCTCAAGGA	AAAACAAGGA	CTTCCTGAAG
480	TGACTACGGC	CCAAGAAAGA	TTCAAGGATG	AGCTTTGTCC	GGCCAAACGG	TCTGAAAACT
540	CCTCATCAAC	AAATTAGCTT	CAAGCCAAGA	AAAGGGAGAA	ATGTCAAATT	TATTACCTAG
600	TCCAAAAATG	AAAAACTAGT	AAATCTGTAG	AACCGGCGAT	GAAAAAATCT	AATACAGCTG
660	GCCTGCAGGA	ACGAGCCACA	GTTTTCTCTT	AGATTACAAG	GGTTAGACCA	AACGAAGCTT
720	TCTCTGGTAC	ACAAGAAATC	GGCAACTATG	CCGCACAGAT	TCAACTACTA	ACTGTTCGCG
780	CTTTACGGCT	ACGGAACAGA	CAATGGCCTG	AAGTAGCGCT	TGAAAAATCC	TGGGGAGATG
840	AGAATTTGGA	AAGCCGCAAG	CCTCTTAATG	TATCGACATT	ATGGCCGCTA	ACAGGCAAAT
900	AGAAAATTAT	AAATCCGTAA	GACGACGTGA	CAAACAAGGA	TAGATGAGAG	TTTTTATTAC
960	TGAATCGATT	AAGACGATGA	ATTTTCCTAA	TCATAGCCAA	ATTTGAAAAA	AAGTTCACAG
1020	CGTAGGCACT	GAGCCCAACA	CGTATGACAG	CCATGATATC	CATACTATGT	TACACAAATC
1080	TATCCTCAAA	AAAAAGAAGA	GTCGGTGCTA	TTCAACACTT	AAAGTAGCTT	TCTAGCATTG
1140	TGCAATCGAT	TTACCGATGT	AAGGTAACTA	CCTAGGAAAC	TCACTAATCA	CACTCCAACA

GAAGCTGGTA	AGAAAGTGAC	CTACAGCGGA	GATTTCTCTG	ACACAAAACA	TCCTTATACT	1200
GTTAGCTACA	ATTCCGACCA	ATTCACTACC	AAAACAAGCT	GGCGCCTGAA	AGATGAGACA	1260
TACAGCTATG	ATGGCAAACT	GGGAGCTGAC	CTAAAAGAAG	AAGGAAAACA	AGTTGATTTG	1320
ACCCTTTGGT	CACCAAGTGC	TGATAAGGTT	TCTGTTGTTG	TCTACGACAA	GAATGACCCT	1380
GACAAAGTAG	TTGGAACTGT	CGCTCTTGAA	AAAGGGGAAA	GAGGAACTTG	GAAACAAACT	1440
CTAGACAGCA	CAAACAAACT	CGGAATCACA	GATTTCACTG	GCTACTATTA	TCAATACCAA	1500
ATCGAGCGTC	AAGGTAAAAC	TGTTCTTGCA	CTCGATCCTT	ACGCTAAATC	TCTTGCTGCT	1560
TGGAATAGCG	ACGATTCCAA	GATTGACGAT	GCCCATAAAG	TGGCTAAAGC	CGCCTTTGTA	1620
GATCCAGCTA	AACTCGGACC	TCAAGACTTG	ACTTATGGTA	AGATTCACAA	TTTCAAGACT	1680
CGTGAAGACG	CCGTTATCTA	CGAAGCTCAT	GTGCGTGATT	TCACTTCAGA	TCCTGCCATT	1740
GCAAAAGACT	TGACCAAACC	ATTTGGGACT	TTTGAAGCCT	TCATTGAAAA	ACTAGACTAT	1800
CTCAAAGACT	TGGGTGTAAC	CCATATCCAG	CTCCTTCCAG	TCTTGTCTTA	CTACTTTGTC	1960
AATGAATTGA	AAAACCATGA	ACGCTTGTCT	GACTACGCTT	CAAGCAACAG	CAACTACAAC	1920
TGGGGATATG	ACCCTCAAAA	CTACTTCTCC	TTGACTGGTA	TGTACTCAAG	CGATCCTAAG	1980
AATCCAGAAA	AACGAATCGC	AGAATTTAAA	AACCTCATCA	ACGAAATCCA	CAAACGTGGT	2040
ATGGGAGCTA	TCCTAGATGT	CGTTTATAAC	CACACAGCCA	AAGTCGATCT	CTTTGAAGAT	2100
TTGGAACCAA	ACTACTACCA	CTTTATGGAT	GCCGATGGCA	CACCTCGAAC	TAGCTTTGGT	2160
GGTGGACGCT	TGGGGACAAC	CCACCATATG	ACCAAACGGC	TCCTAATTGA	CTCTATCAAA	2220
TACCTAGTTG	ATACCTACAA	AGTGGATGGC	TTCCGTTTCG	ATATGATGGG	AGACCATGAC	2280
GCCGCTTCTA	TCGAAGAAGC	TTACAAGGCT	GCACGCGCCC	TCAATCCAAA	CCTCATCATG	2340
CTTGGTGAAG	GTTGGAGAAC	CTATGCCGGT	GATGAAAACA	TGCCTACTAA	AGCTGCTGAC	2400
CAAGATTGGA	TGAAACATAC	CGATACTGTC	GCTGTCTTTT	CAGATGACAT	CCGTAACAAC	2460
CTCAAATCTG	GTTATCCAAA	CGAAGGTCAA	CCTGCCTTTA	TCACAGGTGG	CAAGCGTGAT	2520
GTCAACACCA	TCTTTAAAAA	TCTCATTGCT	CAACCAACTA	ACTTTGAAGC	TGACAGCCCT	2580
GGAGATGTCA	TCCAATACAT	CGCAGCCCAT	GATAACTTGA	CCCTCTTTGA	CATCATTGCC	2640
CAGTCTATCA	AAAAAGACCC	AAGCAAGGCT	GAGAACTATG	CTGAAATCCA	CCGTCGTTTA	2700
CGACTTGGAA	ATCTCATGGT	CTTGACAGCT	CAAGGAACTC	CATTTATCCA	CTCCGGTCAG	2760
GAATATGGAC	GTACTAAACA	ATTCCGTGAC	CCAGCCTACA	AGACTCCAGT	AGCAGAGGAT	2820
AAGGTTCCAA	ACAAATCTCA	CTTGTTGCGT	GATAAGGACG	GCAACCCATT	TGACTATCCT	2880

			210			
TACTTCATCC	ATGACTCTTA	CGATTCTAGT	GATGCAGTCA	ACAAGTTTGA	CTGGACTAAG	294
GCTACAGATG	GTAAAGCTTA	TCCTGAAAAT	GTCAAGAGCC	GTGACTATAT	GAAAGGTTTG	300
ATTGCCCTTC	GTCAATCTAC	AGATGECTTC	CGACTTAAGA	GTCTTCAAGA	TATCAAAGAC	3060
CGTGTCCACC	TCATCACTGT	CCCAGGCCAA	AATGGTGTGG	AAAAAGAGGA	TGTAGTGATT	312
GGCTACCAAA	TCACTGCTCC	AAACGGCGAT	ATCTACGCAG	TCTTTGTCAA	TGCGGATGAA	3180
AAAGCTCGCG	AATTTAATTT	GGGAACTGCC	TTTGCACATC	TAAGAAATGC	GGAAGTTTTG	3240
GCAGATGAAA	ACCAAGCAGG	ACCAGTCGGA	ATTGCCAACC	CGAAAGGACT	TGAATGGACT	3300
GAAAAAGGCT	TGAAATTGAA	TGCCCTTACA	GCTACTGTTC	TTCGAGTCTC	TCAAAATGGA	3360
ACTAGCCATG	AGTCAACTGC	AGAAGAGAAA	CCAGACTCAA	CCCCTTCCAA	GCCTGAACAT	3420
CAAAATGAAG	CTTCTCACCC	TGCACATCAA	GACCCAGCTC	CAGAAGCTAG	ACCTGATTCT	3480
ACTAAACCAG	ATGCCAAAGT	AGCTGATGCG	GAAAATAAAC	CTAGCCAAGC	TACAGCTGAT	3540
TCACAAGCTG	AACAACCAGC	ACAAGAAGCA	CAAGCATCAT	CTGTAAAAGA	AGCGGTTCGA	3600
AACGAATCGG	TAGAAAACTC	TAGCAAGGAA	AATATACCTG	CAACCCCAGA	TAAACAAGCT	3660
GAACTTCCAA	ATACAGGAAT	CAAAAACGAA	AACAAACTCC	TATTTGCAGG	AATCAGCCTC	3720
CTTGCGCTCC	TTGGTCTCGG	TTTCTTACTA	AAAAATAAAA	AAGAGAACTA	AACTAGCCCT	3780
CCTATAGAAA	AATCCCCCAA	GCATTATAGC	TCGGGGGATT	AATTTTTGTA	CAATATTTGT	3840
TGTCCTAATA	AACTTGATTA	GGATTTTTTA	TTAAGCCTCT	TTCATAGCAA	AATAAGCTCG	3900
TACTTTGGGT	GCAACTTGTG	TTCCGAAGAG	TTCAATAGCT	CTCAGAACCT	GGTCATGAGG	3960
CATAGAACCA	AGCGGTAGAT	GAAGCATGAA	GCGGTCCAAT	CCTAAATCCT	CTATCATGCG	4020
AATCAATTTT	TCGGCCACCT	GATCTGGATT	GCCAACAAAC	ATGGCGCCAT	TTGGCCCTAC	4080
CTGCTCCAAA	TATTGCTCAT	AACGCAATTC	CTGCCAGTGC	GGACGGTCTT	TGGAAATAGC	4140
ATCCACCACT	TGCTTAGTCG	GATGGAAATA	ATCTTTCACC	GCCTGCTCAC	CATCTTCCGC	4200
AATCCACCCC	CAAGAATGGG	CTCCCACTTT	CAAGTCTTTG	TCAGCATGGC	CCCTTCGCTT	4260
CCAATCTCAC	GATAAGCCTG	AATCAACTTT	TTAAAATAAC	GTGGATTACC	ACCAATAATA	4320
GCATATACAA	TCGGTAGACC	AGCCTGAGCA	ATCTTCACTG	TTGATTCGAC	ATGACCACCT	4380
GTAGCTATCC	ACAAGGGCAA	TTTGTCCTGA	ACTGGACGAG	GATAAACTTC	TTTACCAGCA	4440
ATCGTTTGAG	TCAATCGACC	TTGCCAGTCT	AACTTGGTCT	TTTCATTGAC	TAACTGAAGC	4500
AAGTCTAATT	TCTCATCAAA	AAGAGAGTCG	TAGTCTTTCA	AGTCATAACC	AAACAGAGGG	456
AAAGATTCCG	TGAAAGAGCC	CCTTCCAGCC	ATAATCTCCG	ATCGTCCATT	TGACAAAGCA	462
TCGATAGTGG	САТАСТСТТС	GAACAAACGA	ATCGGGTCCA	TGCTTGACAG	AATGCTGACT	4.68

GCACTGGTCA	AACGGATTTT	CTTGGTATTG	ACTGCCCCAG	CGGCCAGAAC	AATCTCTGGG	4740
GCTGATACTG	CAAAATCCGC	CCGATGGTGC	TCACCAATCC	CATATACATC	CAAACCAACC	4800
TTGTCAGCCA	GCTCAATCTC	TGCCACCAAC	TGGCGAATGC	GTTCAGCATG	ACTGTAAGTT	4850
TGTCCAGTCC	CTTCAAGCTC	CGTTATTTCC	CCAAATGTTG	AAATTCCCAA	TTCTACCATT	4920
GTGATTCTCC	TTATCTATCT	CTGTACTTCA	ATTTGAAAAA	TTATTCTAAC	ACGAATCTTG	4980
AGTACAAGCA	ACCGATTTGC	TCATTAGAAA	AAGCCTAGAT	AACTAGACTT	TTTTAGCTTA	5040
TTCTACCGTT	ACTGACTTGG	CAAGGTTACG	TGGTTTGTCC	ACATCGAGGC	CACGGTGGAG	5100
GGTTGCAAAG	TAAGCGACTA	ATTGCGTTGG	TACGACCATT	GAAATTGGTG	AGAGGTATGG	5160
ATGTACGGTC	GTAAGGACGA	TATCGTCGGT	ATCTTTGGCT	ACATTCTCTT	CTGCGATAGT	5220
GAGGACTTTG	GCACCACGGG	CTGCGACCTC	TTGGATATTT	CCACGAGTAT	GATTGGCAAG	5280
AACTGGATCT	GACAAGAGAG	CCAAAACAGG	CGTTCCTTCT	TCAATCAAGG	CAATGGTTCC	5340
GTGCTTGAGT	TCTCCTGCAG	CAAAGCCTTC	ACACTGGATA	TAAGAAATCT	CTTTGAGTTT	5400
GAGACTTGCT	TCCATGGCTA	CGTAGTAATC	TTGACCACGT	CCGATGTAAA	AGGCGTTACG	5460
AGTTGTTTCA	AGAAGTTCAC	GAACCTTGAC	TTCAATGGTT	TCTTTCTCTG	AAAGAGTTGA	5520
TTCGATAGAC	TGAGCTACGA	TTGACAATTC	ATGAACCAGG	TCAAAGGCTT	GCGCTTTAGC	5580
ATTACCATTT	GCTTCTCCGA	CTGCTTTTGC	AAGGAAGGCA	AGGGCTGCGA	TTTGCGCTGT	5640
ATAGGCTTTA	GTTGATGCCA	CGGCAATTTC	AGGACCTGCG	TGAAGGAGCA	TGGTATAGTT	5700
GGCTTCACGT	GAGAGGGTTG	AACCTGGAAC	GTTTGTCACT	GTTAAGCTTG	GAATTCCCAT	5760
TTCATTAGCC	TTGACCAAAA	CTTGACGACT	ATCCGCTGTT	TCACCAGATT	GGCTGATAAA	5820
GATGAAGAGT	GGTTTCTTGC	TGAGAAGTGG	CATACCGTAG	CCCCACTCAG	ATGAGATTCC	5880
AAGTTCAACT	GGTGTATCTG	TCAATTCTTC	CAACATTTTC	TTAGAAGCAA	ATCCTGCATG	5940
GTAAGATGTT	CCAGCTGCAA	GGATGTAGAT	GCGGTCTGCG	TCTTGAACAG	CCTTAATGAT	6000
ATCTGGGTCT	ACGACAACTT	GACCAGCCTC	ATCTGTGTAG	GCTTGGATGA	GTTTCCGCAT	6060
AACAGTTGGT	TGCTCGTCAA	TTTCCTTGAG	CATGTAGTAA	GGGTAAGTTC	CCTTACCGAT	6120
ATCTGACAAG	TCAAGTTCAG	CAGTGTAGCT	AGCACGCTCA	CGACGATTTC	CATCATAGTC	6180
TTGAACTTCC	ACACTATCAG	CCTTGACGAT	TACCAACTCT	TGGTCATGGA	TTTCCATGTA	6240
TTGGTTAGTT	TCACGAATCA	TAGCCATGGC	GTCTGAGCAG	ACCATGTTAT	AGCCTTCTCC	6300
AAGACCAATC	AAAAGTGGTG	ATTTATTTTT	AGCTACGTAG	ATGACTTCAG	GATCTTGTGA	6360
GTCAACCAAG	GCAAAGGCAT	AAGAACCACG	GATGATGTGA	AGGGCTTTTT	TGAAGGCTTC	6420

			012			
AAGAACTGAG	AGCCCTTCTT	CTTCCGCAAA	TTTTCCAATC	AAATGAACGG	CTATTTCAGT	6480
ATCTGTCTGC	CCCTTGAAGT	GGTGACCTGC	AAGGTATTCT	TCCTTGATTT	CAAGATAGTT	6540
CTCAATCACC	CCATTATGCA	CCAAGACAAA	ACGTTCCGTC	TCAGAGCGGT	GTGGGTGAGC	6600
ATTGTCCTCA	GTTGGTTTTC	CGTGAGTAGC	CCAACGAGTA	TGTCCGATAC	CAGTTGTTCC	6660
CTCAACACCA	GCTGTCTTGG	CAGACAATTC	TGCAATACGA	CCAACCGCCT	TCACCAAATG	6720
GTTATCAGCA	CCATCTAGGA	CAAAAATTCC	CGCAGAATCA	TAGCCACGGT	ATTCAAGCTT	6780
TTCAAGCCCT	TGAATCAAAA	TATCAGTTGC	ATTTGTGTTT	CCAACAACAC	CAACAATTCC	6840
ACACATAGTA	TATACGACAC	AGGCAAGCTG	TGCTTTCTCC	TTAAAATTGG	TATAGTCTAA	6900
TTCATCTTTT	ATAGAATCAG	CAAAAACAGT	ATATACTTGT	TTCTTTCACT	TGTCAAGAGT	6960
AAAAATTGGT	ATAGTTCAAA	TTAAGCTCCT	GTAAGCATAA	AAACTCTGAC	CGATTGGGAT	7020
AATCAGTCAG	AGTCCTTTTT	AAAATCCATT	ATTATCGCTT	AATTCTTTGA	ACCAGTGGCC	7080
TGATTTCTTC	AGACGACGTT	CTTGCGTTTC	CAAGTCTAAT	TCGACCAAAC	CATAGCGATT	7140
TTTATAGCTG	TTGAGCCATG	ACCAGCAGTC	AATAAAGGTC	CAAATCAAGT	AGCCCTTACA	7200
GTTGGCACCA	TCTTCAATGG	CACGGTGAAG	TTCACGAAGA	TGACCTTTTA	CAAAGTCAAT	7260
ACGGTAATCA	TCTTGAATCA	TTCCATCTTG	ACGGAATTTT	TCTTCCCCTT	CAACACCCAT	7320
ACCATTCTCA	GTCAACATCC	ACTCAATATT	GCCATAATTT	TCCTTGATAT	TTTGGGCGAT	7380
GTCATAAATC	CCTTGCTCAT	AAATCTCCCA	ACCACGGTGA	GAATTGATTT	TACGTCCAGG	7440
CATCACATAA	GGCTCGTAAA	AATGTTCTGG	TAAGAGTGGA	CTCTCTGGAT	GCTTAGCAAA	7500
TCGAGGAGCC	ATAACACGCA	AAGGTTGATA	GTAGTTCACA	CCAAGGAAGT	CCACCGTATT	7560
ATCACGAATG	AGTTCCAACT	CTTCCTCTGT	AGCATCAGGT	AAAAGACCGT	GTTCATGCAA	7620
GATTTCTACC	AACTCCTGTG	GATAAGTCCC	CAAGACAGAT	GGATCTAAGA	AAGATTGGGC	7680
CTGAAAAAGG	GCCGCAATAC	GAGCTGCCTT	GACATCAGCA	GGATGCTGGC	TACGTGGATA	7740
AGCCGGTGTC	AAGTTGAGGA	CAATCCCAAT	CTTGGAATCA	GGCAAAAGTT	CATGGCAAGC	7800
CTTAACAGCC	CGGCTGCTGG	CCAATTGTGT	ATGATAGGCT	ACCTTAACAG	CTGCCTCTGC	7860
ATCCACCTTA	TGTGGATAAT	GGGCATCATA	AAAATAACCA	AATTCTACAG	GAACGATGGG	7920
CTCGTTAAAG	GTAATCCATT	GATCCACTAA	ATCTCCATAA	GTCTCAAAAC	AAAAACGAGC	7980
ATAGTCTTCA	TAGGCTGAGA	CTGTCGCCTT	ATTTTCCCAA	CCATCACCAT	CCTCTTGAAG	8040
GGCAAAAGGT	AAATCAAAAT	GATAGAGATT	GACTAACAGA	CGAATTCCTT	TAGCCTTAAT	8100
AGCCTCAAAG	ACCTTACGAT	AAAAATCCAC	ACCTTGAGTG	TTGACTTTTC	CACAGCCTTG	8160
TGGAAAAATC	CGTGACCACT	GAATAGAAGT	CCGAAAGGCT	GTGTGACCAG	TCTCTAACAA	8220

AAGCTCAATA	TCCCGCTCCC	AATTTTCATA	AAAAGTCGAT	GTCTTATCTG	AACCAATCCC	8280
ATTATAGTAA	CGATTTGGCT	CCACTTGGAA	CCAGTAATCC	CAGAGATTGT	CTCCCTTACC	8340
GTCACCAGCT	ACACGTCCTT	CTGTCTGCGG	TCCAGAAGTA	GAGGATCCCC	AGACAAAATC	8400
CTTTGGAAAT	CTTAGCATAC	ATTTACCTCT	TTATCTACTC	ATTTCTCCCA	TTATACAGAA	8460
AAAACAAGGT	AAAAACTÄGT	TACATTTTT	CCTTGTTTTT	CTTCTGATTA	TAGTTTTTAT	8520
TTCTTGCTTA	GGATTTCAAG	CGTTTCAAGC	ACGTTATCTG	CATGAACCTC	AATGGTGTCA	8580
CCAGTTGCCT	TGATCTTAAC	TTCTACAATG	CCATCGGCCG	CTTTTTTACC	AACAGTGATA	8640
CGGATTGGAA	GACCAATCAA	GTCACTATCG	CTAAATTTAA	CACCGACACG	TTCGTTACGG	8700
TCATCTGTCA	AGACTTCATA	ACCAGCTCCC	ATCAAGCTTG	CTTCAAGTTT	TTCTGTCAAG	8760
GCTTGCGCTT	CTTCATCCTT	GACATTGACA	GTAATCAAAT	GCACATCAAA	TGGTGCCAAT	8820
TCTTTAGGGA	AATTGATTCC	CCAAGCGTAA	CGGTATTCAC	CTTTTGGCGT	TTTGTTAACA	8880
AAGAGGCGAG	CGTGTTGCTC	CATCACTGCT	GAAAGAAGAC	GGCTGACACC	GATACCGTAA	8940
CATCCCATGA	TGATTGGCAC	AGCACGACCA	TTTTCATCCA	AGACATCTGC	TCCCATGCTT	9000
GCTGAATAGC	GAGTTCCGAG	TTTGAAAATA	TGACCGATCT	CAATACCACG	CGCAAAGTTA	9060
AGGACACCTT	GTCCATCTGG	GGAAATTTCA	CCCTCACGAA	CTTCACGGAT	ATCCACATAT	9120
TCTGCAGTAA	AATCACGGCC	TGGGTTCACA	CCAGTCAAGT	GGTAGTCATC	TTCGTTAGCA	9180
CCGACAACTG	CATTGCGAAC	ATCTTGTACC	TTACGATCTG	CAATAATTTT	AATATTCTCT	9240
GGCAAACCAA	CTGGTCCAAG	TGAACCAAAT	CCTGCTTGAA	CAACATTCGC	CACTTCTTCT	9300
TCGCTAGCAA	CGTCAAAGAA	ATCTGCTCCC	AAGTGATTTT	TCAACTTGAC	TTCGTTGAGT	9360
TGGTCATTTC	CAACTAGAAG	GGCTGCAACA	AGCTCACCAT	CTGCAATGTA	GAAGAGGGTT	9420
TTAATCGTTT	GTTCTTCTGG	AACATTGAGG	AAGGCTGCAA	CTTCATCAAT	TGATTTAACA	9480
TCTGGCGTTG	CAACACGAGT	AACTTCTTCT	TCAGCGACAA	CACGGTTGCT	TGGTTTGTAC	9540
тсстттсттс	CCATTTCTAA	GTTAGCTGCA	TAGCTAGACT	CACTTGAGTA	AGCAATGGTA	9600
TCTTCACCAG	AGACTATCCA	TTTGAGCAAT	TCTGCCTTGA	TTTCTTCTTC	CACTTCTGCA	9660
GGAATTTCGT	CAAATGAGGC	AACTGACTTC	TCCAAGACAA	CCCAGCGGTC	AAGGTCTGTA	9720
CGAGCAGATG	TAATGGCCAT	AAATTCTTGG	CTATCCTTAC	CACCCATGGC	TCCACCGTCA	9780
CCAATAATAG	CCTTGAAGTC	TAAACCACTA	CGAGTGANAA	TACGCTCATA	GGCTGCTTTG	9840
TACTCATCAT	' AAACACTATC	CAAACTATCA	TAGTTAGCGT	GGAAACTATA	A AGCATCCTTC	9900
ATGATAAACT	CACGTGTACC	AAGAAGTCC	A TTACGCGGGC	GTTTTTCATO	ACGATACTTG	9960

			61.4			
GGCTGAATTT	GATAAAGGTT	GAGTGGCAAT	614 TGCTTGTAAG	ATTTAACAGA	ATCACGGACA	10020
ATAGCTGTAA	AGGTTTCTTC	GTGAGTTGGA	CCTAAGATAA	AGTCTGATTT	TTCACGGTTT	10080
TTTAGTTTGT	AAAGGTCTTC	ACCATAGGTT	TCGTAACGAC	CTGATTCACG	CCACAATTCT	10140
GCACTAAGAA	GGGCTGGAGC	CAACATCTCA	ACAGCACCAA	TCTTTTCGAA	TTCTTGGCGC	10200
ATGATGTTTT	TAGCTTTTTC	AATCACACGG	TTGGCAAGTG	GTAGATAAGA	ATAAACACCT	10260
GCTGAAACTT	GGCGAACATA	ACCAGCACGC	AACATAAGAG	CATGGCTGAT	AACTTGAGCA	10320
TCGCTTGGCA	TTTCGCGAAG	CGTTGGGATA	GGCATTTTAC	TTTGTTTCAT	AATATTCCTC	10380
GATTATCTAA	AAAAGAGTCG	CATAATGTCA	TTCCAAGTCA	CAGCAATCAT	CAAGACAACC	10440
ATGATGACCA	CTCCGGCCAA	GGTGACATAG	GTTTCAATTT	CTTGTTTCAA	TGGTTTGCCG	10500
CGGATGGCTT	CTAGGATATT	GAGCACAATC	TTACCACCAT	CCAAGGCTGG	AATCGGAATA	10560
AGATTAAAAA	TCCCAATATT	GATGGAAATC	ATTGCCAAGA	AGTACAAGAT	ATTTTCAATT	10620
CCATTTTTAG	CAGCATCACT	ACTTGCCTTA	AAGATAGCAA	CAGGTCCACC	CAACTTGTTC	10680
AAATCTGGTT	GGAAAATCAG	ATTTTTCAGA	GCTGAGAGAA	TTCGGAGAGC	TGAGTCAGCA	10740
GCAGTTGTAA	AACCACCTAC	AAACATGGAT	AGAAAATCTG	ACTTAACCCC	CGGTTGAACA	10800
CCTAGAAGGT	AACGACCTTG	ACTATCTTTG	GGTGTAACAG	TGACTTGTTT	GTCACTCCCC	10860
TTTTCAGAAA	TAGTCACATC	CAAAGTCGGT	GCCGTCTTAT	CTTTGGTTTC	TGTTTCCACA	10920
GCTTGGATCA	AGCTTTCCCA	GTTGCTAACC	TCATGTGAGC	CAATCTTGGT	AATTTGTGCC	10980
ATTTCTGGTA	CTCCTACCTT	GGCCAAGGCA	CCTTGGGGCA	TGATATGGAA	CTGATTGGTA	11040
TCAACATCTC	TGACACCACC	CTGCATAAAG	ATTAAAACCC	AAAAAACAAC	GACACCTAAG	11100
ATAAAATTGT	TCATAGGACC	TGCAAAATTG	GTAATCAGTT	TGCCCCAGAT	AGTCGCATTT	11160
TGATATTGAA	CATCTAAAGG	TGCAATCCGA	ACCTCAGTAC	CATCTGCTTC	CACAACCGTT	11220
GCATCGTGAT	CCACTGCAAA	TGTTTTTTCT	TCTTCCAGAA	CCAATCCTTT	GATAAAGAGC	11280
TTGTCTTCAA	AATCAAACTG	GGTCACCTGC	ATAGGGAGGG	CTGTTTGATC	CAATTTTT1 A	11340
CCTGAGAGAT	TGATGCGTTT	AACCTTACCA	TCATCAGCAA	GTGTCAAACT	AACAGGCGTT	:1400
CCTGTCTTGA	TTTCAGTTGT	ATCATCACCC	CAACCGGCCA	TGCGGACATA	GCCACCCAGA	11460
GGCAAGATTC	GAATGGTATA	GGCCGTTCCA	TCCTTGCCAA	TGTGAGCAAA	AATTTTAGGT	11520
CCCATACCGA	TGGCAAATTC	ACGTACTAAA	ATCCCTGATT	TCTTGGCAAA	GTAGAAGTGA	11580
CCGAACTCGT	GCACCACTAC	AATAATCCCG	AAAACCAGAA	TAAAGGTTAA	AATTCCGAGC	11640
ATAGCGTTTC	CTCCGTCTTT	TGATTAAAAG	AGTCCAAATA	AGTGCATGAT	TGGAAATACA	11700
AGCAACATAC	TATCGAAACG	ATCCAAAACA	CCACCATGTC	CAGGGATAAA	TTTCCCAGAA	11760

TCCTTAACAC	CAAAATGACG	TTTGATCGAA	CTTTCTAGTA	AATCACCAAA	TTGTCCAGCA	11820
ATGCTAAAGA	AAATAGCAAA	GACTGACATC	TTGTAAATTC	CATATGGAAG	AGCAACTGTA	11880
CTGTCAACTA	TCATAAGGAT	AATGGTTACT	AAAATTGCTC	CTAAAATACC	ACCCAAGGCA	11940
CCCTCAAGGG	TTTTATTAGG	CGATACCCTT	GGTGCTAACT	TTCGTTTCCC	ATAGTTCATC	12000
CCAACAAGAT	AGGCACCACT	GTCTGTCGCC	CAGACGATAC	ACAAGGCTAA	GAGAGCCTTG	12060
TCCAAACCTG	CAACACGAGC	ATCTAGTAAA	GCATTAAATC	CAAAGCCCAC	GTAGAAGCTC	12120
ATAGCAAGAG	GGAAAACCGC	ATCCTCAATC	GTATAAGACT	TGCTAAAAAC	GGTCGTTCCT	12130
AACATGATTG	AAATCAAAAC	ACTATAGGCA	ACCACATTCC	CATCAACTGG	CAAAAAAGTC	12240
AGGTAATTCT	CCAAGGGAAT	GGTCAATGCA	AAGGTTGCAA	AGAGGGTCAA	GAGGCCCTCC	12300
ATCGTCATGG	TCTCTAGACC	TCTCATCTTC	AAAAGTTCAT	GCATGGCTAG	CATGGCTATG	12360
ATTCCGATTG	CTATCTGAAG	CAAGAGGCCC	CCAATCATTA	AAATTGGTAG	GAAAATAGCC	12420
AGGGCAATCC	CTGCAAACAA	GGTTCTTTTC	TGTAAATCCT	GGGTCATATT	TCCTCCTAAA	12480
CTCCTCCAAA	TCGGCGATGA	CGACGATTAT	AGGCAAGAAT	AGCTTCCTGC	AAGGCCGCTT	12540
CGTCAAAATC	AGGCCATAAG	GTGTCCGTAA	AATAAAGCTC	ACTATAGGCT	CCCTGCCATG	12600
GAAGGAAATT	GCTCAAACGT	AATTCTCCAC	TAGTACGGAT	AATCAAGTCT	GGGTCTCGTA	12660
AGTCCTTAGG	CAAATGCTGA	GTAAAGAGAT	AGTTACCAAT	CAATTCCTCT	GTGATGTCAC	12720
CTGGGTTGAT	TTTGGCATCT	AAAACATCCT	GGGAAATCAA	CTTAAGCGCC	TGTGTAATCT	12780
CAGCACGTCC	ACCATAGTTA	AGAGCAAAAT	TAAGAATCAA	TCCTGTGTTG	TTCTTAGTCA	12840
ATTCCTCAGC	CTTGGTTAAA	GCTTCAAAGG	TTTGCTTAGG	CAGGCGGTCT	GTCTCCCCAA	12900
TCATTTGAAT	CTTAACATTA	TTCGCATGTA	GTTCCGGGAC	ATAATTATCA	TAAAACTCTA	12960
CTGGCAAGTT	CATGATAAAC	TTGACTTCCT	GATCTGGACG	GGTCCAGTTT	TCCGTAGAAA	13020
AAGCATAGAC	CGTAATAACC	TTGACGCCCA	GTTTGTTGGC	TGCCTTGGTC	ACGGTTTGCA	13080
ATGCTTCCAT	GCCCGCCTTA	TGTCCAAAAA	CTCGCGGTTG	CATACGTTTT	TTAGCCCAAC	13140
GGCCATTGCC	ATCCATGATG	ATGCCGATAT	GAGCAGGAAC	CTGTGTCGGA	ACCTCTACTT	13200
CCACAGCCTT	ATCTTTCTTA	AAAAATCCAA	ACATGATCTT	ATTCCTATTC	AAAAATCTAT	13260
CGTTTCATTA	TACCATATTT	CCCCATTTTC	TTCTATCACT	AAGCTATTTA	TTCTCAGGCA	13320
CCAAGCCCAT	TTTTCAAAAA	AATAAGCCGC	CTGATTGGGC	GACTTTATTT	TTATAGGGAG	13380
ATTATTATGA	AAAAGTTTTA	GGAGTTTAAG	TTAAGGTCTT	CTTAACTTAT	GAACTTAGTG	13440
TACACTCCCT	AGCTTAAAGT	TTCCTTAAGT	ATTTTTAAAA	ATCAAATTTT	TCCATTTCTC	13500

WO 98/18931 PCT/US97/19588

616 CTGCCAATTT TTCTTGGATA AACGTGTTTG ATAGAGTTCC ATTCGGTCTT CATTTTCTAA 13560 GAAATGAGGA GTTGGACGAA CTTGAAAATT CAAAATATCC TCCAAACCAT AAGGTACATA 13620 GAGTTCAAAA TCTAATTCTT CATTCAAGCG CAGTCCAACT GCCGTACACC GTTCTGGATA 13680 CTTACTCATA GCATCACGAG AACTGGTATA GGAAGCAGTG TGAGGACTGT GCTGATGCAT 13740 ATAGACCTGA TTTTTCAATT CCCACTGGTA CTGAGGAAAA TCCTCTCTCA GCTTTTTCTC 13800 CAGTAATAAG GTTTCCTCAT AAGAAAAATC TGGATCAAAG AAAATCACAT CTATATCTGT 13860 TTCATGATCA AAAGGGGATT TGTCTGACAA AAGATTCCAG ATGAAATTTC TGACAGAACC 13920 TGCTGCCAAC CACGAGTCTT TCAAACCAAG GTCTCGGATG ATCGTCAGAA TGGCCATCAT 13980 ATCTGGACTT TCTCTAAAAG CCTCTAAGAT TTCTTGCTTA TTTTTCACTG TATTCATAAC 14040 CTAAGTGCTC ATATGCCTTA GCAGTCGCCA CCCGTCCAGA CCGTGTCCGC ATGATAAAAC 14100 CTTTTTGAAT CAAGTAAGGC TCATACATGT CTTCAACTGT CTCACGCTCT TCGGCGATAT 14160 TCACAGAAAG AGTTCCTAGA CCAACAGGTC CTCCACTGTA CATCTCAATC ATGGTGCGAA 14220 GGATTTTTTG ATCCACATAG TCCAAACCTT CATGGTCAAC ATCCAGCATA GTCAAAGCCT 14280 TATCGGTAAT AACATCATCG ATAACCCCAT TCCCCATTAT CTGGGCAAAA TCGCGCACGC 14340 GCTTGAGGAG ACGATTGGCA ATACGAGGGG TTCCACGACT ACGTAGGGCC AACTCAGATG 14400 CTGCCTCATG GGTGATTTCC ATCTCAAAAA TATCTGCCGT CCGCTCGACA ATTTCTGTCA 14460 AGTCAGCATG AGCATAATAC TCCATATGAC CTGTAATCCC AAAACGTGCC CGTAGTGGAT 14520 TTGAGAGCAT ACCAGCCCGA GTCGTCGCAC CAATCAAGGT AAAAGGAGGC AACTCCAAAT 14580 GAACACTGCG ACTGCCTTCA CCAGCCCCAA TCATAATATC GATGTAGAAG TCCTCCATGG 14640 CACTATAAAG CACTTCTTCC ACTGACATGG GTAAGCGATG AATCTCGTCA ATAAAGAGGA 14700 CATCTCCAGG CTCTAAATCA TTCAAAATCG CTACCAAATC ACCCGCTTTT TCGATAACAG 14760 GACCAGACGT TTGCTTGAGA TTGACTCCCA GTTCATTGGC AATGACAAAA GCCATGGTTG 14820 TTTTCCCAAG CCCTGGAGGG CCAAATAAGA GCACATGATC CAGCGCTTCA TCCCGCATTT 14880 TAGCGGCTTC GATAAAGATC TGAAGTTGAT CCTTAACCTT ATCCTGACCA ATATATTCAC 14940 GTAAATACTG AGGACGGAGC GTGCGTTCTA CTAACTCCTC ATCACCCATC ATCTCATTAT 15000 CTAAAATTCT ACTCATGGCT CTATTATATC AAAAAAAACA AGCCACAAAC AAAAAAGCCA 15060 CCTGATTGGG TGACTCCTAA GTTTAGCACT TATGTGGTAT AATATTATAC GGCACTTCTA 15120 CACCGCCTAC GAAAGGAGGT GAGATAGCCC ATGATGGAAT TAGTACTCAA AACTATTATC 15180 GGACCAATTG TGGTCGGTGT CGTTCTTCGT ATAGTCGATA AATGGCTAAA CAAGGACAAA 15240 TAGTGTCAAA AAAGACCTCA AGCTTATTTG GTCGTGAGCT TGGGGTCTTT TCTAGCCTAT 15300

GATATAGAAC	TAGTACTCAA	TTCCTTTTTA	TTATCCCATA	GTTCACGAAT	TTTGTCAAAA	15360
CTTTACATTT	TCTTCAACCG	CTGTACGACA	AGACGGTTAA	GATTAAGAGA	ACGTTAGGGA	15420
TTCTATCAAT	TTCATAGAAA	TTTTGATTTC	GTAAACGAAG	AGACAATCTT	ACATGTCACT	15480
TCTCATTTAA	TACGCCACTA	CTAGACAAGC	AAAATCATTA	TTACAGTAGT	TCCAGTCCTT	15540
CAATTAACAG	TCACTTACAA	TCAAATTGAG	TTTGAACTAG	CTGAAGCGAC	CACAGACCTA	15600
TTTCTTAGTC	ATATTCGCTA	AAAAAATCCC	CGCCAAAATC	TCAAAAAGTC	CCCGCCAATT	15660
CCCCGACCAA	AATCCGAAAA	ATACCGAAAA	ATATCGAAAA	ATTATTTTTA	GAATAGTCCC	15720
AAAAATCCTG	AAATAGAGCT	AAAAAACTCC	ACCTGATTCG	GTGGAGTTAA	GGGAGATTAT	15780
TATGAAAAAG	AAAAGTTTAG	GATTTTATTA	AATAAAGTTA	GGAGGTCTTT	ATTTAATAAC	15840
TACATGATAC	AAGACGAAAC	TTAAAACTAG	CTTAACTTTT	CTAAAATTTT	ACTATTTTGC	15900
AAAAAATTTC	TATCACCAGC	ACCTCACCAA	TCGAGTAGGG	GATAATCTCT	AGCCCCTCTC	15960
ACACCACCGT	ACGTGCCGTT	TGGCATACGG	CGGTTCAACT	AACTTTTAAC	GCATGTCGTT	16020
CAAGGTAATA	ATCCAAACAC	GAAACCAGTC	CACGTTTTTC	CAGGACTGGT	TTTGATATAG	16080
CACGTTTAAG	TACCGACTTC	TGAGCTACTA	ATTGATAATG	GTCGCCCCAG	CCAGATACCT	16140
TATCTGCTAT	CCATTTAGGA	ACTCCTAACT	TAAGCAATCC	CCATAATCGT	CTCGATTTCT	16200
TCTTCCATTG	CTTCCAGATA	ATCACTCGTA	GGCGAGTACG	CAAGCGCTCA	TCTATGCTGG	16260
CGACTATACT	TTTCATATTT	CCCAATGAGC	AATACTTTAT	CCATCCTCGA	ATAGACAAAT	16320
TCAGTTGCTC	AATACGTCTT	GTTAGGTCTA	TACTCCATTT	CCTCTCTCTT	AGTTTCTTCA	16380
ATTTAAACTT	AAATCTCCGA	ACACTATCTT	GATGTGGACG	GCTTTTCCAA	CCATCTGATA	16440
ATTTCCAGAA	CCCAAAACCT	AGATATTTCA	ACTCTCTTGG	TCATGTTTAC	TTTCAAACCT	16500
AGCCGTTTCT	CAATAAACGA	CTGACTGAAT	ACATC			16535

(2) INFORMATION FOR SEQ ID NO: 75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8136 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

CCAGAGCGTT GCGTCCG	AAA GTCTATCCAG	ACACGGCTCT	TTAAAAACAA	AAGGAGAAAT	60
GATGCATACT TATTTGC	AAA AGAAAATTGA	AAATATCAAA	ACAACCCTAG	GTGAAATGTC	120

618 AGGTGGTTAC CGTCGTATGG TTGCGGCTAT GGCTGATTTA GGATTTTCAG GAACTATGAA 180 GGCTATCTGG GATGACCTCT TTGCCCATCG TAGTTTTGCC CAGTGGATTT ATTTGCTGGT 240 TTTAGGAAGT TTTCCTCTCT GGCTGGAGTT GGTTTACGAA CATCGTATTG TTGACTGGAT 300 TGGGATGATT TGTAGCTTGA CAGGGATTAT CTGTGTAATC TTTGTATCGG AAGGTCGAGC 360 . AAGTAATTAT CTTTTTGGCT TGATTAACTC TGTTATTTAC CTTATTTTGG CCCTACAGAA 420 AGGCTTTTAT GGTGAGGTGC TGACGACACT TTACTTCACA GTCATGCAGC CAATTGGACT 480 TCTAGTTTGG ATTTATCAGG CACAGTTTAA GAAGGAAAAG CAGGAGTTTG TCGCGCGTAA 540 ACTGGACGGC AAGGGCTGGA CAAAGTATCT TTCCATTAGT GTGCTTTGGT GGTTGGCCTT 600 TGGCTTCATT TATCAGTCTA TTGGTGCCAA TCGTCCCTAT CGTGATTCAA TCACAGATGC 660 AACCAATGGG GTAGGGCAAA TCCTCATGAC AGCTGTTTAC CGTGAACAGT GGATATTCTG 720 GGCGGCTACC AATGTCTTTT CAATCTATCT CTGGTGGGGA GAAAGCCTGC AAATTCAAGG 780 GANATATOTA ATTTATOTCA TTAACAGTOT AGTTGGTTGG TATCAATGGA GCAAGGCAGC 840 TAAGCAGAAT ACTGATTTAC TTAACTAGGA AAAGATGTTT GAAAGTGCTG TTTTGAGATT 900 TCGATTAAAA CAGATATAGT TGATAATCAA GGATTTATAG TATGAAAAAG AGGATCGCCG 960 GGTCCTCTTT TGTTGTTGAA AAGATAAAAA ACTCAGTAAC CTAGAAATAA GACAACTGAA 1020 GCTTTACTCT ATATTCAATT TITAGGAATG AGAAGGTCTA GATAAAATTG GACAACTTCC 1080 TGGTCTGTGA AATCTTGACC TTTTTTGAGC CACCAGGTCA ATGTCTCGAT AAAGTTGGAC 1140 ATGACCAAGT GTTGGAGGTA AGAAGTAGGC AGATTAGGGT GGGCTTCTTT TAAATTATCA 1200 GCTAGCACGG AATAGACATG GTGTTCTAGC TCTTTATGGA GTTGACGGAG GAAGTAGTCA 1260 TTTTTGGAAA ATAGCAGACT GGTGATATGG TCTTGGTTTT TATGAAAATG GAGAAAGAGG 1320 TGGGCGAGGT AGTCCTCGGT TGAAATGGCT TGCTCTCTTT CAAAAAGATG ATGGAAGAGG 1380 TAGCGGCAGA GCTGGTCCAG AAGAAGCTCC TTACTCTCAT AGTGACAGTA AAAGGTGGAT 1440 CGTCCCACAT CTGCGAGATC AATGATATCC TGAACAGTAG TGGCCTCGTA GCCCTTAGCA 1500 TTCAAAAGTT GTATAAAAGC TTGATAGATG GCTTTTTTGG TTTTGCTGAT ACGGCGGTCA 1560 ATGTTAGTCA TATGGACACT TAAGGCAAAT TGTTCAGAAC TGAATAAAGC TGACGTTTTG 1620 CTTCTATCCT TTCTTTGAGT TTTAGTGGAT AATGATAATG AACAAGGTGT TCATAAATCT 1680 ATTATAACAA AGGAATGAGA AATATGAAGG CAAAATATGC TGTTTGGGTG GCTTTTTCT 1740 TAAATTTGAC TTATGCCATT GTTGAGTTTA TTGCAGGTGG AGTATTTGGT TCTAGCGCTG 1800 TTCTTGCTGA CTCTGTGCAT GACTTGGGAG ATGCGATTGC AATTGGAATA TCAGCTTTTC 1860 TAGAAACAAT CTCCAATCGT GAAGAAGACA ATCAGTACAC CTTGGGCTAT AAGCGGTTTA 1920

GCCTGCTAGG	AGCCTTGGTA	ACAGCTGTGA	TTCTCGTAAC	GGGCTCTGTT	CTAGTCATTT	1980
TGGAAAATGT	CACGAAGATT	TTGCATCCGC	AACCAGTCAA	TGATGAGGGG	ATTCTCTGGT	2040
TAGGAATTAT	TGCGATTACT	ATCAATCTGT	TAGCGAGTCT	GGTGGTTGGT	AAGGGAAAGA	2100
CAAAGAATGA	GTCTATTCTG	AGTCTGCATT	TTCTGGAAGA	TACGCTAGGG	TGGGTAGCTG	2160
TTATCCTGAT	GGCGATTGTT	CTTCGATTTA	CGGACTGGTA	TATCCTAGAT	CCTCTTTTGT	2220
CCCTTGTCAT	TTCTTTCTTT	ATTCTTTCAA	AAGCCCTTCC	ACGTTTTTGG	TCTACACTCA	2280
AGATTTTCTT	GGATGCTGTG	CCAGAAGGTC	TTGATATCAA	GCAAGTAAAG	AGTGGCCTGG	2340
AGCGATTGGA	CAATGTGGCC	AGCCTTAATC	AGCTTAATCT	CTGGACTATG	GATGCTTTGG	2400
AAAAAAATGO	CATTGTCCAT	GTTTGTCTAA	AAGAAATGGA	ACATATGGAA	ACTTGTAAAG	2460
AGTCTATTCG	AATTTTCCTA	AAAGATTGTG	GTTTTCAAAA	TATTACCATT	GAAATTGATG	2520
CTGACCTAGA	AACTCACCAA	ACCCATAAGC	GAAAGGTGTG	TGACTTGGAA	CGGAGTTATG	2580
AGCATCAACA	TTAGAAAAAA	GTGAAAAATA	CTTGGGTACT	ATCTTATTTG	GAATAGAGTA	2640
ATTTCTTTAT	TATTTAAATA	TTTCAAAAAT	TGGTAAGAGA	AGAGCATTGT	ATAAACTCCA	2700
GATATATGAT	TGTTAATGAT	AAAAATTTTT	CGATTAGATA	CAAAATGCTT	GACTTGGAGT	2760
CAACTCAAAC	TTATATAATA	AGATAAGTGA	GTTAGAATAG	CGTGAATTCA	GTGAATGAAA	2820
TGAGAGGAGG	TTAGCGTGTG	AATATTAAAT	CTGCCAGTGA	. TTTGTTGGGA	ATTTCAGCGG	2880
ATACGATTC	G GTATTATGAA	CGGGTTGGTC	TTGTGCCACC	GATTACTCGT	ACTGCTACTG	2940
GGATTCGTG	A TTTTCAAGAT	CAGGATATCG	AAGCGCTGGA	ATTTATTAAC	TGTTTTCGTT	3000
CGGCGGGTG	r ctctgtagat	AGTTTAGTTG	ACTATATGTO	GCTCTACCA	AAGGGAGATG	3060
AAACGAGAG	A GGAGAGGCTT	GGTATTTAG	AAGAGGAAAA	GCAAAAATTA	GAGGAGCGCT	3120
TGTCTCAGC	T ACAGACAGCT	TTAAATCGTT	TAAATCTCAA	AATTAAACT!	TATAAGGAAG	3180
GAAAATTTT	A AATGAAATCA	GCAGTATATA	CAAAGGCAGG	TCAGGTTGG	A CTTGCTAGCA	3240
TTGAACGTC	C GCAAATAATA	GAAGCGGATC	ATGTGATTA	r regreteer	r CGTGCGTGCG	3300
TTTGTGGTT	C AGATTTATGO	AGGTACCGT	ATCCAGAAA	GAAAGCTGG	A CACAAAAATA	3360
GTGGACACG	A AGCGATTGGG	ATTGTTGAAC	AAGCTGGGG	A AGCCATTAC	G ACGGTGAAAG	3420
CAGGTGATT	T TGTGATTGT	CCTTTTACAC	ATGGATGTG	G TGAGTGTGA	r GCCTGTCTTG	3480
CTGGATTTG	A CGGTTCTTG	GACAATCAT	TTGGCAATA	A TTTGGGGGG	T GATTTTCAGG	3540
CAGAATATA	TCGCTTCCA	C TATGCAAAC	r GGGCGCTGG	TAAAATCCC	T GGTCAACCTT	3600
CTGACTATA	C AGAAGGGAT	G CTCAAGTCC	C TTTTGACTC	T TGCAGATGT	C ATGCCGACAG	. 3660

			620			
GCTATCATGC	GGCGCGTGTT	GCAAATGTTC		CAAGGTTGTT	GTTATCGGTG	3720
ATGGGGCTGT	TGGTCAATGT	GCTGTCATCG	CGGCTAAGAT	GCGTGGAGCA	TCACAAATTA	3780
TCCTTATGAG	CCGTCATGAA	GACCGTCAAA	AGATGGCTAT	GGAGTCAGGT	GCGACAgcTG	3840
TTGTTGCAGA	ACGTGGTCAA	GAAGGAATTA	CCAAGGTGCG	TGAAATCCTC	GGTGGAGGAG	3900
CAGATGCAGC	ACTTGAATGT	GTTGGTACGG	AGGCTGCTAT	AGAACAGGCG	CTAGGTGTTC	3960
TTCATAATGG	AGGGCGTATG	GGCTTTGTAG	GAGTCCCACA	СТАТААТААТ	CGTGCTCTTG	4020
GTTCGACATT	TATGCAAAAT	ATCTCTGTAG	CAGGTGGGGC	AGCTTCTGCT	ACAACATACG	4080
ATAAGCAATT	TTTACTAAAA	GCCGTCCTTG	ATGGTGATAT	CAATCCAGGT	CGCGTCTTTA	4140
CTTCAAGTTA	TAAACTGGAA	GATATCGACC	AAGCCTATAA	AGATATGGAT	GAACGTAAGA	4200
CAATTAAGTC	TATGATTGTA	ATCGAATAAA	AAACGAATAG	GAGTTTTAGA	ACTCTATTCG	4260
TTTTTTATGT	TATCCTATTC	TTGATTTAGG	GTACTTTCTC	TTAATGTCAG	TCTGGTTCCC	4320
AGCATGGTCA	GGCTAGGGAT	TTTCCGACCG	TGGAGGACTT	CCTTGTTAAG	AATATCCATA	4380
CCTGCTCGGC	CCATTTCTTC	AGTATAAACT	GTAATACTAG	AGAGGGGAGG	ATAGACCTGT	4440
TTGGTCAGAC	TAGTGTCGTT	AAAGGAAATG	AGGCTGACGC	GATCTGGCAG	GCTGATTCCA	4500
GCTTCTTGGA	GGGCACGGAG	GGCACCGATA	GCTAAACTAT	CGCTGGCTGC	GAAAAATGCT	4560
GGCGGAAGTT	GGTCTCCCAA	GCTCTGAATG	GCCTCCTTCA	TTAAGTCATA	GCCAGACTGG	4620
GCAGTAAATC	TTCCTTGAAA	GACCAGTTCA	TCATGATAGA	TTCCCCTCGC	TTGACTATAG	4680
TTTTTGAAGT	TTTCTAGACG	CTTGTCCTGA	ATGATTTCTT	CTTGGTCTGT	TGTTTCTTCA	4740
AGGCCTGTTA	GAATCCCGAT	ACGGTCCATT	CCTTGACTGA	GGAAATAATC	GACAACCTGT	4800
TTCATAGCAG	TGTAAAAATC	CGTGATAATA	CAGGTATGTC	CCAGGGAAAG	TGTATCGCTG	4860
TCTAGAAATA	CAAGAGGCTT	TTGGTATTCT	TCAAAGGCAG	AAATCTGAGC	TCGACTAAAC	4920
TTTCCGATGC	AGAGAATCCC	AATCACTTCC	TCGCTTAGGG	TAAAAGGGTG	GTCATTAAAA	4980
TAGCGCAAGA	TATCATAGTC	CAACTCTTGG	GCTCTTTTTT	CTATTCCTAG	GCGAATCTGG	5040
TAGTAGTAGA	GGTCGTCCAG	CTCCCCTTGT	TCGCTGACCC	ATTGGATAAT	GGCAATCTIT	5100
TGCTTGGGTT	TGTGGGACTC	GCCTGTCTTG	AGGTGCTTGG	TGTAGCCCAG	CTCTTCAGCA	5160
ACGGTTAAAA	TACGGTGTCT	GGTTTCTTCT	GTAACAGATA	GGCTCTGGTC	GCGGTTGAGG	5220
ACGCGGGATA	CGGTCGCGAT	AGAGACAGAG	GCTAGCTGTG	CAATGTCTTT	TAAGGTAGCC	5280
ATAAATCCTC	CTTGATTAGG	TTAGTATATC	ATGTTTTTCT	TCTTTTTACT	GATATTTTAC	5340
TAAAATTTTA	GTAAAAAGGA	TTGACCTTGG	AAAATTCCTT	GGATATAATA	GAAAGAAAAC	5400
GATTACACGT	TAAGATGGCT	TAACGGACAG	TCAAAGGAGA	ATTCATATGG	CACAACATCT	5460

WO 98/18931 PCT/US97/19588

621

TACTACTGAA	GCCCTTCGCA	AAGACTTTCT	TGCTGTTTTT	GGTCAAGAAG	CAGATCAAAC	552
CTTCTTTTCA	CCAGGCCGCA	TTAATTTGAT	TGGTGAACAC	ACAGACTACA	ACGGTGGGCA	558
CGTTTTTCCT	GCTGCTATTT	CCTTGGGAAC	TTACGGTGCA	GCTCGTAAGC	GTGACGACCA	564
AGTCTTGCGT	TTCTACTCAG	CTAACTTTGA	GGACAAGGGC	ATTATCGAAG	TGCCTCTCGC	570
TGACCTCAAG	TTTGAAAAAG	AGCACAACTG	GACCAATTAT	CCAAAAGGTG	TCCTTCATTT	576
CTTGCAAGAA	GCTGGGCACG	TGATTGACAA	AGGTTTTGAT	TTTTATGTTT	ATGGAAATAT	582
TCCAAATGGT	GCTGGCTTGT	CTTCTTCTGC	ATCCTTGGAA	CTCTTGACAG	GAGTCGTGGC	588
TGAGCATCTC	TTTGATTTAA	AATTAGAGCG	TCTCGATTTG	GTTAAAATCG	GCAAACAAAC	594
AGAAAACAAC	TTTATCGGAG	TAAACTCTGG	CATTATGGAC	CAGTTTGCTA	TTGGTATGGG	600
GGCAGACCAA	CGTGCTATTT	ACCTAGATAC	TAATACTTTA	GAATACGACT	TGGTGCCACT	606
TGATTTGAAG	GACAATGTCG	TTGTTATCAT	GAACACCAAC	AAACGCCGTG	AATTGGCGGA	612
CTCTAAATAC	AATGAACGTC	GTGCTGAGTG	TGAAAAAGCA	GTGGAAGAAT	TGCAAGTTTC	6180
CTTGGATATT	CAGACTCTGG	GTGAATTGGA	CGAGTGGGCC	GTTGACCAAT	ATAGCTATCT	6240
GATTAAAGAT	GAAAATCGTT	TGAAACGTGC	TCGCCATGCT	GTGCTTGAAA	ACCAACGTAC	6300
CCTCAAAGCT	CAAGTAGCAC	TCCAAGCAGG	AGATTTGGAA	ACATTTGGAC	GCTTGATGAA	6360
TGCGTCACAC	GTTTCTCTGG	AGCATGATTA	TGAAGTAACT	GGTTTGGAAT	TGGATACCCT	6420
TGTTCACACA	GCTTGGGCAC	AAGAAGGAGT	TCTCGGTGCT	CGTATGACAG	GGGCTGGTTT	6480
TGGTGGCTGT	GCcATTGCCT	TGGTTCAAAA	AGATACTGTT	GAGGCCTTTA	AGGAAGCTGT	6540
AGGCAAACAC	TACGAGGAAG	TAGTTGGATA	CGCTCCAAGC	TTCTATATCG	CTGAAGTTGC	6600
AGGTGGCACT	CGCGTCCTTG	ACTAGTCAAA	AGGAGGCTCT	ATAGTGACCT	TAGTAAATAA	6660
ATTTGTAACA	CATGTCATTT	CTGAAAGCTC	ATTTGAGGAA	ATGGATCGAA	TCTATCTGAC	6720
CAATCGTGTT	TTGGCACGAG	TGGGAGAAGG	TGTTTTGGAA	GTTGAGACCA	ATCTGGATAA	6780
ATTGATTGAC	CTCAAGGACC	AGCTGGTTGA	AGAAGCCGTT	CGATTAGAGA	CGATTGAGGA	6840
TAGTCAGACT	GCGCGTGAAA	TCCTTGGTGC	TGAACTGATG	GATTTGGTGA	CTCCTTGTCC	6900
AAGTCAGGTC	AATCGTGATT	TTTGGGCAAC	CTACGCCCAC	TCTCCAGAAC	AAGCGATAGA	6960
GGATTTTTAC	CAACTCAGTC	AGAAAAATGA	CTACATCAAA	CTCAAGGCCA	TTGCTAGAAA	7020
TATCGCTTAT	CGTGTTCCAT	CTGACTACGG	AGAACTTGAA	ATTACCATCA	ATCTCTCTAA	7080
GCCTGAAAAA	GATCCCAAAG	AGATTGTGGC	AGCCAAGTTG	GTGCAAGCTA	GTAATTATCC	7140
TCAGTGTCAG	СТТТСТСТАС	AGAATGAGGG	CTACCATGGT	CGAGTTAACC	ACCCACCTCC	7200

			622			
AGCAATCAC	CGTATTATCC	GTTTTGAAAT	GGTTGGTCAG	GAATGGGGTT	TCCAGTATTC	7260
CCCTATGCT	TACTTTAATG	AGCATTGTAT	CTTTTTAGAT	GGCCAGCATC	GTCCCATGGC	7320
ATTAGTCGT	CAGAGTTTTG	AACGTCTGTT	GGCTATCGTA	GACCAGTTTC	CAGGATATTT	7380
rgctggatct	AATGCCGACC	TGCCGATTGT	GGGGGCTCT	ATTCTAACTC	ATGATCATTA	7440
rcagggaggc	CGTCACGTAT	TTCCTATGGA	ATTGGCTCCC	TTGCAAAAGG	CCTTCCGATT	7500
IGCTGGTTTT	GAGCAGGTCA	AGGCTGGAAT	TGTCAAGTGG	CCCATGTCTG	TCCTACGTTT	7560
GACTTCGGAT	TCCAAAGAGG	ATTTGATCAA	TTTGGCTGAT	AAGATTTTGC	AGGAATGGCG	7620
CCAGTATTCA	GATCCTGCAG	TGCAGATTTT	GGCAGAGACA	GACAGGACAC	CGCATCACAC	7680
TATCACACCO	ATTGCCCGCA	AACGCGATGG	ACAGTTTGAG	TTGGACTTGG	TCTTGCGAGA	7740
CAATCAGACT	TCAGCAGAGT	ATCCTGATGG	TATCTATCAT	CCCCACAAGG	ATGTCCAACA	7800
		GCTTGATTGA				7860
					TTACAGTTGC	7920
					AACGGATAAA	7980
					TGTACTTGAG	8040
					CTTTGTGGAA	8100
		CTAGGAGCTT				9136
CAGGTCGGA	4 IIIIACIAGA	CINGGROCII				

(2) INFORMATION FOR SEQ ID NO: 76:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10011 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:

						• • • • •
60	TTCGTCCACC	AATTTAGGTT	TTCTAGGCTT	TAAGAAGGTC	AGAGTGGCCA	CCCATAGTGA
120	TCAAAAGTCG	GAACATCTCT	TAACACAGCT	AAGCTGTTTT	TTAAGTTGAT	TTTTGCGTGT
180	CTTGCTTCAT	TAGTTGTTTA	GTGTATCAGT	CATTTAAATC	ACCAACAAGA	TGCGCTGAAC
240	GTCAAATACT	GTCTAATATT	TTCGCAGGAA	CATGTTTTGT	ACTACTATAC	CATTCATAGA
300	TGGGATACCT	CTTCGATAAC	ATTGGCCCAG	ACGGAATAAG	TTGCTGGGAT	GGAACGCTCA
360	TTTCATAAGG	TATCGTAACC	GGTGTAAAGA	TGCAGCGATT	CAAGGTCTGT	GGTTCAAAAC
420	ACGGTTTGAA	CATCGTAACC	TCACAGTGAA	CATAACTGCA	CATCTTTCAC	TCTTCGTTTA
480	ACCGCAGGCA	TAACACCTGC	TGACTTGAGT	TTTAATTTGG	CTAGAGCACT	AGTTCTTCTT

PCT/US97/19588

GCAAGAATTT	TAATCATTTG	GATTTCCTCC	GATTTTATTT	TTTAATAGAC	AAGATTAAGC	540
GGTTGCTTCA	GCAATGTAAG	CATAAAGGGC	TTCTGGTTCA	GAAATTTTTG	ATAGGTCTTC	600
AAGATGACCA	TTTCCTGTGA	AGAAGTCCAT	TAACTGAGCA	AGAATGTTCG	TTTGACTTGA	660
ACTTGAATTA	TTGATGATAA	AGAAGAGCAA	GGATACTTCT	ACTTCCTTAC	CTGGCGCAAT	720
CATATTATGG	AAAGTCACCG	GTTTCTCTAA	TCGAACAACC	ACCACTTTCT	CAGCTAGATT	780
ATGAACAATA	TCTGTGTGAG	GAATCATTAC	ATTTGCAAGT	CCTTTCCTAG	AAATTCCATA	840
TATAAACCAG	TTGGAAATGA	CTTTTCACGC	GTGATCAAGG	CTTCACGATA	AGTTGGAGTG	900
ACAATTTCTC	GTTCTTCCAA	CAAGCTTGCT	ACCTGATCAA	AAAGTTATTC	TTGATTATCC	960
GCTTCTAAGC	AAAACACAAG	GTTTTTGTCA	AAGAAATAAT	CTAATACCAT	AAGGTTTTCC	1020
CTTCTTTCCA	TTAACTTTAT	GCTATAAGTA	TAACACTATA	TGAAATCGTT	GTTAATTACT	1080
TTCTATTCTT	TTTTGTCTCT	TTTTTTATAT	TTTTGTTTTG	TTTATAGTTT	GTTATATAAA	1140
AATAAACACA	САААСАААТЛ	CTCCAAGCAT	TTTTCTGTTC	TAATACTCAA	TGAAAATCAA	1200
AGAGCAAACT	AGGAAGCTAG	CCGCAGTTGT	TCAAAACACA	GTTTTGAGGT	TGTAGATGAA	1260
ACTGACGAAG	TCACTCAAAA	CATGGTTTTG	AGGTTGTAGA	TGAAACTGAC	GAAGCAACAg	1320
CCATACATAC	GGTAAGGCGA	CGCTGACGTG	GTTTGAAGAG	ATTTTCGAAG	AGTATAAAAA	1380
CTAAAAAAGC	AGACCATCTA	AGCCTGCTTT	ACTATTGATT	CTTATATAAA	TTTCCTGTGA	1440
ACAAGGAAAG	GCATTTCTGA	TAACTTATTC	TTCATCCATA	CTCAAGACGC	TGAGGAAGGC	1500
TTCTTGCGGA	ACTTCAACTG	ATCCGATGGA	TTTCATGCGT	TTCTTACCAG	CTTTTTGTTT	1560
TTCAAGGAGT	TTACGCTTAC	GAGAAACGTC	ACCACCATAA	CATTTAGCAA	GTACGTTCTT	1620
ACGAAGGGCC	TTGATATCAG	TACGAGCGAC	AATCTTGTGT	CCAATAGCCG	CTTGGATTGG	1680
AACTTCAAAT	TGTTGGCGAG	GGATGATTTT	CTTGAGTTTA	TCAACGATGA	GTTTCCCACG	1740
TTCGTAGGCA	AAGTCCTTGT	GAACGATAAA	GCTGAGGGCA	TCCACCTTAT	CTCCATTGAG	1800
AAGAATATCC	ATTTTCACCA	GCTTAGATGG	GCGATATTCT	GACAATTCGT	AGTCAAAGCT	1860
rgcataacca	CGTGTCGAAG	ACTTAAGTTT	ATCAAAGAAG	TCAAAGACAA	TTTCAGCAAG	1920
aggaatttga	TAGATAACAT	TGACACGGTT	ATCATCAATA	TAGTCCATAG	TCACAAAGTC	1980
CCACGCTTA	CGCTGAGCTA	GCTCCATTAC	TGCTCCGACG	AACTCCTGTG	GTACCATGAT	2040
TTGCGCCTTG	ACATAAGGCT	CTTCAATGGT	CGCAATCTTA	GTTGGGTCTG	GAAACTCAGA	2100
rgggttagac	ACATCCATAG	ACTCACCGTC	GGTCAAATTA	ACTTTGTAAA	TAACAGACGG	2160
AGCTGTCATG	ATGAGGTCAA	TATTGAACTC	ACGCTCTAAA	CGTTCCTGGA	TAACATCCAT	2220

624 ATGGAGAAGT CCAAGAAATC CACAACGGAA ACCAAATCCA AGTGCCTGAG ATGTTTCTGG 2280 TTCAAACTGA AGACTAGCAT CATTCAGTTG CAATTTTTCA AGGGCTTCAC GCAGGTCATT 2340 GTACTTGTTT GATTCGATTG GGTAGAGACC CGCAAAGACC ATAGGATTCA TCTGCTTATA 2400 ACCATGTAAT GGTTCTGCCG CAGGATTGGT TGCCAAGGTA ACGGTATCAC CCACACGAGT 2460 ATCCTGAACC GTCTTGATAG ACGCCGCAAT GTAACCAACA TCACCAGTCG CAAGGAAATC 2520 ACGACCAACC GCTTTTGGTG TAAAAATACC GACTTCGGCC ACATCAAAGG TCTTACTATT 2580 GCTCATGAGC TGAATCTTAT CACCAGGTTT GACCACTCCG TCCATGACAC GCACTTGGAG 2640 GATAACCCCA CGGTAAGCAT CGTAAACAGA GTCGAAAATC AAGGCCTTAA GTGGCGCCGT 2700 CACATCACCC GTTGGTGCTG GTACTTTTTC TACAATTTGC TCGAGGATTT CTTCAATCCC 2760 AATACCAGCC TTGGCAGAAG CCAAAACTGC TTCACTGGCA TCCAAACCAA TCACATCTTC 2820 AATCTCTGTA CGCACGCGCT CCGGATCTGC AGCCGGCAGG TCAATTTTAT TAATGATAGG 2880 CATGATTTCC AAATCATTAT CCAAAGCCAG ATAAACGTTG GCAAGAGTTT GAGCCTCAAT 2940 TCCTTGAGCC GCATCGACCA CCAAAATAGC ACCCTCACAG GCAGCTAGCG AACGTGAAAC 3000 TTCATAGGTA AAGTCAACGT GCCTGGTGT GTCAATCAAG TGGAAAATAT AAGTTTCCCC 3060 ATCTTTTGCA GTGTAATTCA ACTCGATGGC ATTCAACTTA ATAGTAATTC CACGTTCCCG 3120 CTCTAGCTCC ATGCTATCCA AAAGCTGGGC CTGCATTTCA CGACTTGAAA CCGTCTCTGT 3180 TTTTTCCAAA ATGCGGTCTG CTAGAGTTGA TTTTCCGTGG TCAATATGGG CGATAATAGA 3240 GAAGTTACGG ATCTTCTCT GTCGTTTTTT CAATTCTTCT AAGTTCATGA TTCTCTTCCT 3300 TTCAGGGTAT CTATTTATTA TAAATTGTTT TTGATATTTT GACAAGACCA TACCCTGCTA 3360 GGAGTACTAA TCTTCAGCGA CAAAGCCGTC ATTTTCGATA AAGTGGTGTT CTGTCATTCC 3420 TTGGTCTGTA AAGACAATCC CGTGAAGGAC ACCACCATAA ACAGCTCCTC CATCCATTCC 3480 AATCTTGCCA TCTTCTGTAG TCCAAAGCTC AGATGTACCG CGTTCTTGCT GTAACAAACC 3540 ATAGACCGGT GTATGACCGA AGACAATGGT TTTTCCAGTA TGATTTTCAG CTCCGTGGAA 3600 TGGTTTTCTA AGCCATACTT TTTTATAATC TGTTGTTTCA TGCCAGTCGT CCAAGGTCAA 3650 ATCAATACCT GCGTGAACAA AGATATACTT GTCTGTCTCT ACTACAAATG GCATTTGACG 3720 AATGAATTCG ACCAAGTCTG CCGCTTCAGC GGCAACCCGC TTGGCATCTT CTACTCCATC 3780 AACTGGTGCA TCCAAGGGAC GACCTAGGAT AGAGTTAATG GTTGTATCTC CACCATTGCG 3840 ACTATAATGG TCATAACTTT CTTCTGGGTC ATCTAGCCAA GTCAAAAACA TATACTCGTG 3900 GTTTCCGGAC AAACAGATAG CCCCTTGATT GTCCACCAAG TCCTTGACCA TTTCAAGAAC 3960 ACGGTGACTA TCCTCACCTC TGTCAATCAA ATCACCTAGA AAGAGCAACT GGGGCTGACC 4020

					CMCCA AMPAC	4080
			CCCAGCTTTT			
			TTCTCAACAA			4140
CTGCTTCTGT	CACATCATCA	CCTGCCAACA	TCTTGGCAAC	TTCCTCCACT	CGCTCTTCGA	4200
CCGTCAAGAG	ACGAACAGTC	GAAACCGTTG	AATGGTCATT	ACTAATCTTC	TCAATAAAGA	4260
ATTGATAATC	TGCAATCGCA	ATTACTTGTG	GCAAATGGGA	GATAGCCAAA	ACCTGACCAT	4320
GCTGACCAAT	TTTATGAATT	TTCTGAGCAA	TAGCTTGAGC	AACACGACCT	GAAACTCCCG	4380
TATCCACCTC	ATCAAAGACA	ATGCTAGTCT	TGCCTTCTTT	ACGTGAAAAG	GCAGACTTAA	4440
TGGCTAACAT	GAGACGAGAT	AATTCCCCTC	CAGAAGCAAC	CTTAACCAAG	GGTTTAAAGT	4500
CTTCTCCAGG	GTTGGTTGAA	ATATAAAACT	CAACCATTTT	ATTTCCCTCA	CGACTGAATT	4560
TTCCCTTACT	AAAACGAACC	TGAAACTGGG	CTTTTTCCAT	ATAAAGATCT	TGCAGTTCTT	4620
GTTTAATCTC	AGCTTCGAGT	TGCTGAGCCA	AATTATGACG	AGCAGAAGCA	AGTTGACCTG	4680
CCAAATTGAC	AAGATTGACT	TCCAACTTCT	TAAGCTCTGC	TTCCATGTCC	TCAGACGAAA	4740
GATTATTGCC	TGTCAAGAGA	TTGTATTCTT	CCGTAATCTT	GGCAAAATAA	AGCAAAACAT	4800
CATCAACAGT	CCCACCATAC	TTACGAGTAA	TAGTATGAAG	GAGGTCCAAA	CGATTCTCAA	4860
CCTGCATCAG	GCGATTGCCA	TCAAAATCAA	GGTCCTCAAT	GATAGCTTCC	AAACGTTTGC	4920
TAATGTCTTC	TAAAACATAG	TAGGTCTCAG	ACAGATAGCT	TGAAATTTCA	CGGTATTCAG	4980
GATCATACTO	TTCGACACTT	TCCATGTCAT	TCATAGCTGA	ACGAACATTG	GCCAGACTTG	5040
AAAAATCTTC	ATTGTCCAAC	ATACTGTAGG	CATTGGTCAG	TGTATCCGCA	ATATTTTTGT	5100
GGTTGAGGAG	TTTATCTCGC	TCTTGATTG	A GAGCCAAGTC	TTCTCCAGC	TGCAAGTTTG	5150
CTGCCTCAA	r ctctgccati	TGAAATTCC	A ACATTTCGAT	ACGTGCCTTC	TGTTCCTGTT	5220
GGTTTTTCT	r GACTTCCAGA	ACCTGCTTG	C GCATTTTCCC	ATAGGCATCA	AAACTCGTTT	5280
GATAGGTTT	C TTTCAAGTC	CAAAAAGCG	CATCACCAA	TTCATCCAA	ATCTGGATAT	5340
GCAGTTGGG	G ACGCATTAA	TCCTCATGG	r CATGCTGAC	ATGAATATC	r ACAAGATGTT	5400
GCCCAATAG	C TCGCAAAAC	A GACAGATTA	A CCATCTGAC	C ATTTACACG	G CTGATACTAC	5460
GACCATTTT	G CAAGATTTC	C CGACGGATG	A TAATTTCAT	C ACCTAATTC	T AAACCTTGCT	5520
					C TCAATCTCTG	5580
					C ATCATATTCA	5640
•					A GTCATCCCCT	5700
					A ATTTCAAGTA	5760
•						

WO 98/18931

			626			
ACATATAGAC	CTACCAATTT	TTTACTTGTT	CAAAGATTTC	CTCTGCTAGA	CTTCCACTTC	5820
TGGCAATGAC	TAAAATCGAG	CTATCATCAG	TCAAACAGCT	AAAAATCTTG	TCTGCAAAAG	5880
TCTCGATTAA	CTGAGCTTTT	ACAAAAGCCG	TATTTCCTGG	AATAACTTGG	AGATTGATCA	5940
TCTTATCCAT	CAATTCAGCC	GATTCGATAT	TGTCTTCAGC	CAGTTGCAGA	CTTTTTACGA	6000
TTGATTTTGG	CAATTCGTAG	ACATAGGTGT	TGTCTCTCAA	AGGAATTTTG	ACAATACCTA	6060
ACTCTTTGAT	ATCTCGGGAT	ACCGTCGCCT	GAGTGGCAGT	GATACCTGCT	TCTTTCAAAT	6120
GTTCTACAAT	TTCTTCTTGC	GTGCCGATTT	GATAATCTGT	CACCAATCTT	CTAATTTTT	6180
CAAGTCTCTC	TTTTTTATTC	ATTTTTAAAT	TGACTATGCG	CCCTCTCTAC	TGCTTCTTTA	6240
ATCTCAGCAA	GAATCTGATT	GCTTGCTGAC	TTTTCTTTTT	TCAAATACGC	TAAAAATTCA	6300
ATATTTCCAT	GTCCACCTTG	GATGGGAGAA	AAGTCCAAGC	CAAGGACTGA	AAAACCTACC	6360
TCTACTGCCA	TAGCTGTTAC	AGATTCAAGG	ACATTCTGAT	GAACCTTAGC	ATCTCGAATA	6420
ATTCCATTT	TCCCAATCTG	CTCACGTCCT	GCCTCAAACT	GAGGTTTGAC	AAGTGCTACC	6480
ACCTGACCTT	GATCAGCCAA	GACACGGTGC	AAGGCTGGCA	AAATCAGACT	AAGGGAAATG	6540
AAACTCACAT	CAATACTGGC	AAAGCTCGGC	TCCTGCTCGA	AATCAGTCTT	TTCAGCATAG	6600
CGGAAATTGA	ACTGCTCCAT	GCTGACAACT	CGTGGGTCTT	GGCGTAATTT	CCAAGCCAAC	6660
TGATTGGTAC	CAACATCGAC	TGCAAAGACC	AACTTGGCAC	TATTCTGTAG	CATGACATCG	6720
GTAAAACCTC	CAGTAGAGGC	CCCGATATCA	ATCGTAGTCG	CGCCATCCAC	CGACAAATCA	6780
AAGACCTGCA	AGGCCTTTTC	CAGTTTCAAA	CCACCACGGC	TGACATACTT	GAGTTTCTCC	6840
CCCTTGAGTT	TTAATTCGGT	GTCATCTGGA	ATTTTCTCTC	CTGGCTTGTC	AAACCGTTCT	6900
CCATTAAGGA	CTGCTACGAC	TAGGCCAGCC	ATCACACCTC	GCTTGGCCTG	CTCTCTCGTT	6960
TCAAACAACC	CCTGTTTATA	AGCTAGTACA	TCCACTCTTT	CCTTAGCCAT	TGATTCTCAA	7020
ACTTTCTACT	ACACTTACAA	TCGATTCTGT	TTCAAAGGGA	AGCTGCTGGG	CAATTTCTTC	7080
TAATTTTTCA	TTAGCTTGAT	CCAGGGTTTG	GTTACAAAAG	GCAATGGACT	CTTCCAAGCC	7140
CAACAGGGCA	GGATAGGTTG	ATTTTTCTGC	CTGCAGATCC	TTTTGAGGTG	TCTTGCCGAT	7200
TTCCTCAAAA	CTAGCTGTCA	CATCCAGTAC	ATCATCTCTG	ACTTGAAAAG	CAAGTCCAAT	7260
CAATTCACCC	ACAGTTTTCA	GCTTCACCTG	CATTTCAGGT	GACAATTCAG	CTATAATAGC	7320
TGCCGCTTGG	AAGGGATAGG	CTAGTAACTT	CCCAGTCTTA	TTGGCATGAA	TAGTCTGAAG	7380
TTCTTCCAAA	GACAAGTGCT	GGTGTTCGCC	CTCCATATCC	AAAACTTGCC	CTGCTACCAT	7440
ACCCAGACTA	CCTGAAGCAA	GGGATAAGTT	GGCAATCAAG	TCCACCTTAA	TCTGACTTGG	7500
CAAATCTGCC	TGCGCAATCA	AGGCATATGA	GTCTAAGAAT	AAGGCATCTC	CAGCCAAAAT	7560

GGCCATAGCT	TCACCGAATT	TCTTGTGATT	GGTTAACCGC	CCTCTTCGAT	AATCGTCATC	7620
ATCCATAGCA	GGAAGGTCAT	CGTGAATCAA	GCTCCCTGTA	TGAATCATCT	CTAAGGCAGT	7680
AGCTACCTGC	GCGTGAGCAG	GTTTGATGGT	AACCTGCAAG	GCTTCCAGAA	CTTCTAACAA	7740
GAGAAAAGGC	CGAATACGCT	TGCCACCAGC	ATGAATAGAA	TAGAGAACAG	ACTCCCGTAA	7800
ACTAGAGGCA	AACTGCTGGT	CTCCATAAAA	ATCTTCCAAA	GCCGACTCGA	CAAGAGCTAA	7860
TTTTTCTTGC	TTTTTCATTC	AAAATCACTT	TCTGTTCCGT	CTTCTTGCAT	GACCTTGACC	7920
AAGGTCTTTT	CAGCCTTGTC	CAGCGTAGCT	TGGAGCTCTT	TTGACAAGAC	CATGCCCTTT	7980
TGAAAGGCAG	TAATCGCATC	TTCCAGAGCA	ATTTCACCAT	TTTCCAAACT	TTGGACAATG	8040
GTTTCCAGTT	CTGCTAGATT	TTCCTCAAAT	TTCTTTTGTT	TTGACATCTT	TAACCTCTAA	8100
TTCTACTTGA	CCATCTCGCA	TCAAAAGCGT	TACTTGGTCT	TTTTTCTTCA	AACTCTCAAC	8160
CGAATCTACA	ACGGACTCTT	CTTTTTTGAC	AATAGCATAA	CCACGCGCCA	CGATTCGGCT	8220
AGTATCCAAC	ATGAGCAAAG	CTTCCGAAAG	TCGCTTGGCC	TCAGCAACCT	TGGCGTCATA	8280
AACTAACGCC	ATTTGGCTAC	CTAAGAGCTT	GTCCAACTGT	CCTAAACGGT	CTTGATAGCG	8340
TTGGATTTTG	GTAACAGGTG	ATAATTGTAC	TAATTGATGA	CTTCTTGCTT	GAACTAATTG	8400
TTTGTTATCA	GAAATCCGAG	TTCGCAAACT	TTGTTTCAAA	CGCAGTTGCA	GTTGGTCCAA	8460
GCGTTGCAAA	TAACCGTCAT	ACAAGCGCTC	AGGTTGTCTA	AAGATAACAG	ACTGACTGCA	8520
TTTTTCAAA	GCCTCTTGTT	TCTTAGATAG	AACATTTCGG	ACTGCCGTTA	CCATCCGTTT	8580
TTCCTGATTT	TGCAAATGAG	CTAATACATC	CAACTTGGTC	ACAGGTGTTG	CCAGTTCAGC	8640
CGCCGCTGTT	GGCGTTGCAG	CGCGTCGATC	TGCCACAAAA	TCTGCCAAGG	TCACATCCGT	8700
CTCATGCCCC	ACACTAGAGA	TAACTGGCAA	ÁCGAGATTCA	AAAATAGCTC	GTACCACAAT	8760
TTCTTCGTTA	AAGGCCCAGA	GATCCTCAAT	AGAACCACCT	CCACGACCAA	TAATGAGCAA	8820
ATCCAAATCG	TCCCGTTGAT	TAGCACGCGC	AATATTTCTA	GCAATTTCCT	CCGCAGCCCC	8880
TTCACCTTGA	ACCTTGGTCG	GATAAAGAAG	GATGTCAACA	CCTGGGAATC	GCCTGCTGAC	8940
GGTCGTGATA	ATATCTCGAA	TAACGGCTCC	ACTACGGCTG	GTTACTACAC	CAATTCTCTT	9000
AGAAAATTGG	GGCAGAGCTT	GCTTGAAGCG	TTCTTGAAAC	AGGCCTTCTT	CTGTCAATTT	9060
TTTCTTAAGT	TGTTCAAACT	GAATCGCAAG	CGCCCCAACC	CCATCAGGCT	CAGCTTTTTC	9120
aatgatgatg	GAGTAGCTAC	CACTTGGTTC	ATAGACCTGT	ACACGCCCAA	TCACATTGAT	9180
CTTCATTCCT	TCTTCCAGGT	CAAACCCTAA	TTTCTGATAA	ATCCCAGACC	AGATGGTCGC	9240
TTGAATAACT	GCATGGTCAT	CCTTTAGGGA	GAAATATTGG	TGAGTAGGTC	GTTTACGAAA	9300

			628			
GTTGGAAACT	TGACCAGTTA	AATAGACCCG		GGGTCTTTAT	CGAATTTCAT	9360
TTTCAGATAC	TTGGTCAAAG	TTGTTACCGA	TAAATACTTT	TCCATCTCCA	CCTACTATTC	9420
ATTTACTTGC	TCTTTCATGG	GTATTATTAT	ACCAAAAATA	TGCCTAAAAA	TCTCCATTTA	9480
TGTACCATTA	TGAGGGAAAA	ATAGAAAAAG	GAGGCAAGGC	CTCCACATGT	GATTATTTGC	9540
TGTTTCGAGC	TTCTTCCAAA	ATCTTTGCAA	TCTTGGTCGT	CAACAGGTCG	ATAGCCACGG	9600
TATTGCTAAC	CCCTTCAGGA	ATGACGATAT	CAGCATAACG	CTTAGTTGAC	TCGATAAACT	9660
GGTGGTACAT	TGGTTTGACC	ACACCTAAGT	ACTGGTTAAT	AACGCTATCA	AGGCTACGGC	9720
CACGCTCCTC	CATATCACGC	TTGATACGAC	GAATAATGCG	CACATCGTCA	TCCGTATCCA	9780
CAAAAATCTT	GATATCCATC	AAATCGCGCA	GACGCTTGTC	CTCCAAGACC	AAAATACCCT	9840
CAACGATAAA	GACATCTTGA	GGTTCCTGAC	GATAGGTCTT	GCTACTCCGT	GTATGCTCTG	9900
TATAGTCGTA	GGTCGGGATG	TCCACCGGAC	GCCCTGCCAA	CAATTCCTTA	ATCTGCTCGA	9960
TCATCAAGTC	TGTATCAAAG	GCAAAAGGAT	GGTCATAGTT	GGTTTTGACG	G	10011

(2) INFORMATION FOR SEQ ID NO: 77:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5365 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:

CGTGTGGTCT	TAAAAATAGA	AGACAAAGAA	CAAACTGTTG	GAGGCTTTGT	CCTTGCAGGC	60
TCAGCCCAAG						120
TTGAACGGTG	ACTTGGTTGC	TCCAAGTGTT	AAAACTGGAG	ATCGTGTCTT	AGTTGAAGCC	180
CACGCAGGTC	TTGATGTCAA	AGATGGCGAT	GAAAAGTACA	TCATCGTAGG	CGACTAACAT	240
TTTGGCAATC	ATTGAGGAAT	AGAAGGAGAA	AGTAAGTATG	TCAAAAGAAA	TTAAATTTTC	300
ATCAGATGCC	CGTTCAGCCA	TGGTTCGTGG	TGTCGATATC	CTTGCAGACA	CTGTTAAAGT	360
AACCTTGGGA	CCAAAAGGTC	GCAATGTCGT	TCTTGAAAAG	TCATTCGGTT	CACCCTTGAT	420
TACCAATGAC	GGTGTGACCA	TTGCCAAAGA	AATCGAATTG	GAAGACCATT	TTGAAAATAT	480
GGGTGCTAAG	TTAGTATCAG	AAGTAGCTTC	TAAAACCAAT	GATATCGCAG	GTGACGGAAC	540
TACGACTGCA	ACAGTCTTGA	CCCAAGCTAT	CGTCCGTGAA	GGAATCAAAA	ACGTCACAGC	600
AGGTGCAAAT	CCAATCGGTA	TTCGTCGTGG	GATTGAAACA	GCAGTTGCCG	CAGCAGTTGA	660
AGCTTTGAAA	AACAACGCCA	TCCCTGTTGC	CAATAAAGAA	GCTATCGCTC	AAGTTGCAGC	720

CGTATC	TTCT	CGTTCTGAAA	AAGTTGGTGA	GTACATCTCT	GAAGCAATGG	AAAAAGTTGG	780
CAAAGA	CGGT	GTCATCACCA	TCGAAGAGTC	ACGTGGTATG	GAAACAGAGC	TTGAAGTCGT	840
AGAAGG	AATG	CAGTTTGACC	GTGGTTACCT	TTCACAGTAC	ATGGTGACAG	ATAGCGAAAA	900
AATGGT	GGCT	GACCTTGAAA	ATCCGTACAT	TTTGATTACA	GACAAGAAAA	TTTCCAATAT	960
CCAAGA	AATC	TTGCCACTTT	TGGAAAGCAT	TCTCCAAAGC	AATCGTCCAC	TCTTGATTAT	1020
TGCGGA	TGAT	GTGGATGGCG	AGGCTCTTCC	AACTCTTGTT	TTGAACAAGA	TTCGTGGAAC	1080
CTTCAA	CGTA	GTAGCAGTCA	AGGCACCTGG	TTTTGGTGAC	CGTCGCAAAG	CCATGCTTGA	1140
AGATAT	cccc	ATCTTAACAG	GCGGAACAGT	TATCACAGAA	GACCTTGGTC	TTGAGTTGAA	1200
AGATGC	GACA	ATTGAAGCTC	TTGGTCAAGC	AGCGAGAGTG	ACCGTGGACA	AAGATAGCAC	1260
GGTTAT	TGTA	GAAGGTGCAG	GAAATCCTGA	AGCGATTTCT	CACCGTGTTG	CGGTTATCAA	1320
GTCTCA	AATC	GAAACTACAA	CTTCTGAATT	TGACCGTGAA	AAATTGCAAG	AACGCTTGGC	1380
CAAATT	GTCA	GGTGGTGTAG	CGGTTATTAA	GGTTGGAGCC	GCAACTGAAA	CTGAGTTGAA	1440
AGAAAT	GAAA	CTCCGCATTG	AAGATGCCCT	CAACGCTACT	CGTGCAGCTG	TTGAAGAAGG	1500
TATTGT	TGCA	GGTGGTGGAA	CAGCTCTTGC	CAATGTGATT	CCAGCTGTTG	CTACCTTGGA	1560
ATTGAC	CAGGA	GATGAAGCAA	CAGGACGTAA	TATTGTTCTC	CGTGCTTTGG	AAGAACCCGT	1620
TCGTC	LAATT	GCTCACAATG	CAGGATTTGA	AGGATCTATC	GTTATCGATC	GTTTGAAAAA	1680
TGCTG	AGCTT	GGTATAGGAT	TTAACGCAGC	AACTGGCGAG	TGGGTTAACA	TGATTGATCA	1740
AGGTA?	rcatt	GATCCAGTTA	AAGTGAGTCG	TTCAGCCCTA	CAAAATGCAC	CATCTGTAGC	1800
CAGCT	rgati	TTGACAACAG	AAGCAGTCGT	AGCCAATÁAA	CCAGAACCAC	TAGCCCCAGC	1860
TCCAG	CAATO	GATCCAAGCA	TGATGGGCGC	GATGATGTA	GCTTTCTATA	GAAAACAACT	1920
TATAA	AAAA	ACAAAAGGAG	GGAATGACT	ACCCTTCTT	TTATAGGCT	TTTGTCAACT	1980
GTAGT	GGGTT	GAAGTCAGCT	AAGCTCGAGA	A AAGGACAAA1	TTCGTCCTT	CTTTTTTGAT	2040
GTTCA	AAGCC	ATAAAAATCO	GTTTTTGA	GTTTTCAAAC	TTTCGAAAA	CAAAGGCATT	2100
GCGCT	TGAT	A AGTTTGATGA	GATTATTGG	CGCTTCCGG	TTGGCGTTA	AATAGTGTAG	2160
TTGAA	GGGC	TTGATAATCT	TTTCTTTAT	TTTGAGGAA	GTTTTAAAG	A CAGTCTGAAA	2220
AATAG	GATG	A ACTTGCTTA	GATTGTCCT	AATAAGTCC	G AAAAATTTC	r ccgcttcctt	2280
ATTCT	GAAA	G TGAAACAGC	A AGAGTTGAT	A GAGCTGATA	G TGATGTTTC.	A AGTCTTGTGA	2340
ATAGC	TCAA	A AGCTTGTCT	A AAATCTCTT	r attggttaa.	A TGCATACGA	A AAGTAGGACG	2400
ATAAA	ATCG	C TTATCACTC	A GTTTACGGC	T ATCCTGTTG	T ATGAGCTTC	C AGTAGCGCTT	. 2460

			630			
GATAGCCTTG	TATTCATGGG	ATTTTCGATC	CAATTGGTTC	ATAATTTGAA	CACGCACACG	2520
ACTCATAGCA	CGGCTAAGAT	GTTGTACAAT	GTGAAAGCGA	TCCAACACGA	TTTTAGCATT	2580
CGGGAGTGAA	ACAGTCTGGG	AGACTGTTTC	AGCCTGAGCC	TAGAAATTTG	AAAGCGAAGC	2640
TGTTTAGCCA	AGTCATAGTA	AGGACTAAAC	ATATCCATCG	TAATGATTT	CACTTGACAA	2700
CGAACGGCTC	TATCGTAGCG	AAGAAAGTGA	TTTCGGATGA	CAGCTTGTGT	TCTGCCTTCA	2760
AGAACAGTGA	TAATATTAAG	ATTATCAAAA	TCTTGCGCAA	TGAAACTCAT	CTTTCCCTTA	2820
GTGAAGGCAT	ACTCATCCCA	AGACATAATC	TTTGGAAGCC	GAGAAAAATC	ATGCTCAAAG	2880
TGAAAGTCAT	TGAGCTTGCG	AATGACAGTT	GAAGTTGAAA	TGGCCAGCTG	ATGGGCAATA	2940
TCAGTCATAG	AAATTTTTTC	AATTAACTTT	TGAGCAATCT	TTTGGTTGAT	GATACGAGGG	3,000
ATTTGGTGAT	TTTTCTTTAC	CAGGGGAGTC	TCAGCAACCA	TCATTTTTGA	ACAGTGATAG	3060
CACTTGAAAC	GACGCTTTCT	AAGGAGAATT	CTAGAAGGCA	TACCAGTCGT	TTCAAGATAA	3120
GGAATTTTAG	AAGGTTTTTG	AAAGTCATAT	TTCTTCAATT	GGTTTCCGCA	CTCAGGGCAA	3180
GATGGGGCGT	CGTAGTCCAG	TTTGGCGATG	ATTTCCTTGT	GTGTATCCTT	ATTGATGATG	3240
TCTAAAATCT	GGATATTAGG	GTCTTTAATA	TCGAGCAGTT	TTGTGATAAA	ATGTAATTGT	3300
TCCATATGAA	TCTTTCTAAT	GAGTTGTTTT	GTCGCTTTTC	ATTATAGGTC	ATATGGGACT	3360
TTTTTTCTAC	AACAAAATAG	GCTCCATAAT	ATCTATAAGG	GATTTACCCA	CTACAAATAT	3420
TATAGAGCCG	AAAATTCACA	TCTAATATAT	GCAGACTACT	TTGAAATGAA	AAAAAAA	3480
TTATTAAAGG	ATGACACAAA	AGTTTTTGAA	AAATCTACAT	TCAAATTTGT	AGAAGGATAT	3540
AAAATATACC	TGACAGAATC	TAAAGAATCT	GGAATTAAAC	AAATGGACAA	TGTCATAAAA	3600
TATTTTGAGT	TTATTGAATC	TAAAAGTATT	GCTTTATATT	TTCAAAAACG	ATTAAATGAG	3660
CTGATAGATT	AAATAGCATT	TTCTCTGTTG	AGATATTGTT	TTTAAAATAT	TGTACTAAAT	3720
GATTGATGCT	ATGTGGAAAT	ACAAAAAAT	GTTTTTGATA	CGAAGTTGAC	CTGTATTTT	3780
TATACTAATC	ATTTTCGTAT	TTTTTGTATT	AAACGATATA	AGTTTGTTGT	AAACTTACAA	3840
GGAATAAAGA	CATTAAAAAA	TAACAGTATA	TCTATTTGTT	TTATATATTT	TACGAATTCT	2900
GCATAAATCT	CTTTCTAGTA	ATGTGTTGTA	ACTCTGCTAT	AATAGATTTA	TTCCTTTTTG	3960
TGTTTACACA	ATTTATTTTA	TAGTACCAAA	AAAGGTCAGG	ATTTTGTTCC	TGACCTTTGA	4020
CAACTTTACC	GATTCTTTAG	TTCTACATAG	CGCTTGTACC	AAATGTTTAC	ATAGGCTTCT	4080
GAGAAAGGAC	CACGTCCATT	GTTAATCCAA	TCAACAAGAA	TTTTGACATG	TTCTTTTAAA	4140
ATATAGTCCA	AGTCATCAGA	ATAATTCATT	TTGCGTTTGT	GACGCTCGTA	CTCTTCAACG	42,00
TCCAAGAGAC	GTTTTTCCCC	ATCTGTAAAA	ATTTTAACAT	CCAAATCGTA	ATCAATATAC	4260

TTCAGTGCTT	CTTCATCCAG	ATAGTAGGGG	CTAGCCATAT	TGCAATAGTA	AGAAGTTCCA	4320
TTATCACGAA	TCATGGCAAT	GATATTAAAĊ	CAATATTTCT	TGTGAAAGTA	AACAATAGCC	4380
GGTTCTCGAG	TGACCCAACG	ACGACCATCA	CTTTCGGTAA	CAAGTGTATG	ATCGTTGACA	4440
CCAATAATGG	CGTTTTCTGT	TGTTTTTAGT	ACCATGGTGT	CCCGCCAAGT	TCGGTGGAGA	4500
CTCCCATCAT	GCTTATAACT	TTGAATTGTA	ATAAAGTCGC	CTTCTTTTGG	AAGCTTCATA	4560
ACTAACCAAC	TTTCTACAAT	TTATAAGTTT	ATCATTTACT	ATTGTACCAT	AAAATTACCC	4620
AAAATCTGTG	AATTTCACTT	GGAAATATTA	AAGATATTCT	CTAAGAGCGC	TTGCTATATC	4680
CGAAAAATCG	TAGCCCTTTC	GTGCTAAAAC	TTGAGTTAAA	CGCTGCTTCA	GTTCGTATCC	4740
TTCATACTTT	CGGGCATACT	TAGTATATTG	CTTATCAAGT	TCCTTGAAGA	TGAGTTCCTG	4800
AGTCGTTTCT	TCATCAACTT	GACTATCCAA	TTCGTCAAAG	GCAATTTTAG	CATCAAAATA	4860
AGAGAAGCCC	TTGTTAGTCA	AGTTCTGGAT	AATCTTATCT	TGCAGGGCAC	GAGCTGGAAG	4920
TTTTCCCTCA	TATTTTTCA	ATAGTTTATT	GGCTACACGT	TGAGCAACTT	CCGAAAAATC	4980
AAAATCATTC	AAGATTTCTT	CTATAGTAGA	TTTTGAAATT	CCTTTTTGTG	CTAATTTCTG	5040
AGTCAGTACA	TAAGGTCCCT	TGTCTCCTGA	AAGTTGATTG	GCATTGATGA	TAGCATAAGC	5100
GTACTGGCTA	TCATTAATCC	ACTTCTCTTC	TTTAAGATTA	GCAATGACTT	GAGAAACGAT	5160
GTTTTCATTA	ATATCATATT	TTTTCAGATA	TTCTCTGACC	TCTTTTTCAG	TACGTGCTTT	5220
AAAGGATAAG	TGGTAGAGGG	CCAGATTCTT	ACCATAAGAA	AATTGAGCAA	AGTCTTGAAT	5280
CTCTTTCAAT	TCCTCTTCGC	TTATCACCTT	ATCTCTCGAT	AACATAAAAC	GAACAATTGT	5340
GTCTTCGGTG	ATATAGCATT	TGTCG				5369

(2) INFORMATION FOR SEQ ID NO: 78:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3636 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:

TTTCCAGAAA	GAAGTTGAGT	AAAGTCTTTA	TCAAAGAGAA	TGACTTCCGT	ATTGGAACTG	60
ACATTAGGTT	TTATTTCTAC	TTTACTAGCG	TCCGCCCTAG	CATTTTCTAA	ATCTTTAATC	120
TCTTCTGTTG	CCCTATTTAT	AGCCAGCTGA	ATAACTGCTT	GAGGATTTTC	ACTCAGTCCA	180
TGAAGCTTAT	CGTCCACCGA	AGTATAAAGA	CTCGAATGCA	TGACTTGTAA	AATAATCAGA	240

GTCATTGTAG	AAAAAATCAG	GGTGAAGACA	632 CCGAAGTTGC	GGATAAAATA	ACTAAAGTCA	300
TCCGCATACC	ATGTTTTTT	AAGTTTACTG	AACATCTTTT	AAAAGATACC	CAACACTACG	360
CAAAGTTTGC	AAATTCTCTG	CAAAAGTGGT	TCCCTTTAAT	TTCTTACGGA	CTTTTGAAAC	420
ATAGACTTCG	ACAACCGAAA	TCGTTGTATC	ACTATCAAAT	CCCCATAGAC	GGTCAAAAAT	480
CTGCGTCTTA	GGCAAAATCA	CATTTTGATT	TTGAAGGAAA	TAAACTAGTA	AATCGAACTC	540
TTTCCCCAGC	AATTCGACAG	GAGTATCTTC	AACTTTAACG	GTATTGGTTG	ATAAATTAAC	600
CACGATATTC	CCATAAGTCA	AGGTGTTTTC	ATTAAACTTC	CCTGAACGTT	TGAGAAGGGC	660
CTGAATCCGC	ATTTTAAGTT	CTTCTAGGTA	GAAAGGTTTG	GTCAGATAAT	CATCCGCTCC	720
CAGTTCAAAT	CCATGTCCCT	TGTCATCCAA	ACTTTCCTTG	GCAGTCATAA	TCAGAACTGG	780
TGTCGTAATT	CCCTTTTCAC	GCAATTCTTT	TAAGACTTGG	AAACCATTTT	TTTCTGGCAA	840
CATCAAATCC	AGCAAAATCA	AGTCATAGAC	ACCACTCTCA	GCTTCGTAGA	GACCTTCTTC	900
TCCATCAAAT	ACCTGCATAA	CATCCGCAAA	ATCGTCTAAA	AAGTCAAATA	CTGAATTTGA	960
CAGACCTAGG	TCATCCTCAA	CCAATAAGAT	TTTTATCATG	AGAAACTCCT	CCTTATTAAA	1020
ACTATTATAC	CAAATTTGCC	ттаааааааа	CTCAACTCTC	TGCATTTTAC	ATGAGATAGC	1080
TGAGTTTTCT	TTTTATTTTA	GGCTTATTTA	TGCATTTCCG	TATTGAAGAA	CAACTGCTTC	1140
GACTGCAGCT	TTTTCACGGC	TAATCAAGTC	AACACGCGCT	GCAATTTCCT	TGATTCCCAT	1200
ACCGATGTTA	CGGCTAAGAG	CAAGGTCAGA	AAGTTGCGGT	TCAAAGAACT	CCTTGTATTC	1260
CGCCAAGCGT	TGCTGAGTCT	TAAATACATG	AGCAGGAAGG	ATAACAAAGC	TATCAAAGCT	1320
CATATCTCCT	CCAAGGGCTG	CCTTAATCCA	AGCCCAGTTT	TCACGCGCCC	AAGACCAAGC	1380
TGTTTTCTGA	GTTGCTTGAT	GAGCTAGGAA	TTGGTAÄTAC	CAAGCAGACA	AGTCCTGTGG	1440
TTTGACCACA	AATTTGTCCT	TCCAAGAAGT	AATCAGGTTT	TGGATATTAT	CCGCATCTGT	1500
ACTGTATGCA	AGAGCTGCTG	CCAACTGGCG	TTTAAAGACA	GCATCTGTTG	CGTGAGTATA	1560
AGTATCAAGA	TAAAGTGCTA	ACAAGTCTTT	AGTCTCATGA	TGTTTCATCT	CATTAATCAG	1620
AACTTGTGAG	CGAATAGCTG	CTGGGAGTCC	TGCAAGATTC	TCCTTGTGTG	TTGCGAAGAT	1680
TTGGCTAGCG	ACTTGACTAG	CTTCTGCATC	ATTTGAGCGA	ATCATCATCG	AAACAGCCAG	1740
CTGACGAACC	AATTCATCCT	CATCTGATTC	TCCGTCTTTA	GCTTCAAAAC	CAAGACGGTC	1800
ATAGTTATGA	CGAGCCAATT	TAGCAACCAG	TCCTTTGAAG	GCTGTTTCAG	CATCCGTTCC	1860
TTCATCAATA	AAGCGCTCAA	GGGCTGAAAT	CACTTGAGAA	ACAGCTGAAA	CCACCAGATA	1920
AGACTCTTCC	TTAGCAAGTT	TATCAAGAAC	TGGAAGCAAG	TCTGCATAAG	AAATGTGCCC	1980
TGCCTCAGCC	AACAAACGAC	GTTCTTGAAC	AATTŢGCAGT	ттосттотот	TATCAAGTGT	2040
					•	

		•				
CTCTAGCTCA GCA	AGAACAG CTO	CTAACAA	GTCTCCTTGA	TAGTCGGTAA	TATAGTGGGC	2100
AGTATTTTCA GTG	TTGAGAC GA	AGAGCTCC	TTCATTTTCA	GCAAGAAGAG	CTGCGTAGCC	2160
AGGGATTTCG ATA	CTTTCAG TT	CGAGTGT	ATCAGGCAAG	CCTTTCCAGT	TGCTATTGAG	2220
GGGCACCACC CAG	AGACGGT TC	TGTCTTC	GTTCTCACCG	ATGAAGAATT	GTTTTTGTGA	2280
AATCTTCAAG ACA	TCATTTT CA	ACTTTAAC	AGTAAGAACT	GGGTAACCAG	GCTGTTCCAA	2340
CCAAGAATCC ATG	AAGGCTG CG/	ACATCACG	TCCTGACGCT	TGACCAAGGG	CATCCCAAAG	2400
GTCACTACCA ATG	GTGTTGC TG	PATTGGTG	TTTTTCAAAG	TAGGCGTGCA	AACCTTTAGC	2460
AAAATCAGCA TCT	CCTAGCC AAG	CGGCGAAG	CATGTGCATG	AGACGGCTTC	CTTTGGCATA	2520
GACGATAGCG CCG	TCAAAGA GTO	GTATTGAT	TTCATCTGGA	TGTTTAACTT	CGACGTGGAC	2580
AGACTGAACG CCA	TCAGTAG CG	TCACGTTC	AAGAGCAAGA	GGTACTCCAC	CTGTTTGGAA	2640
ATCTTCAAAG ATA	TTCCAGC TT	GGTTCGAT	GGTATCCACA	CAGACGTATT	CCATCATATT	2700
AGCGAAACTT TCA	TTGAGCC AA	AGGTCATC	CCACCATTTC	ATAGTCACGA	GGTTCCCAAA	2760
CCATTGGTGA GCC	AATTCAT GG	GCCACAAC	AAGGGCAACT	TGTTGACGGC	TAGCAAATGT	2820
AGAGTTCTCA TCC	ACAACCA AG	TAAACTTC	ACGGTAGGTC	ACAAGACCCC	AGTTTTCCAT	2880
AGCACCAGCT GAG	AAGTCAG GA	AGGGCGAT	GTGGAGAGAT	TGAGGAATTG	GGTACTTAAC	2940
TCCATAGTAA TCT	TCGTAAA AC	TCGATAGA	GCGAACAGCG	ATATCCAGTG	AGAAATCAAG	3000
ATTTGAAAGT GGA	TGTGCTT TG	GTTGAGTA	GACACCTACC	AGGGTACCAT	TTTTAGTTTT	3060
AGCGGTCACC CCT	TGCAAAT CA	CCAGCAAC	AAAGGCCAAC	AAGTAAGAAG	ACATGCGAGG	3120
TGTTGTCTCA AAC	TTCCAGA TA	CCTGTTTC	CTTACGGTTT	TCAACATCGA	TTTCTGGCAT	3180
GTTTGACAAG GCC	CAATTCAC CT	TCTGCTTG	GTCAAAGCGA	AGAGAGACGT	CAAAAGTTGC	3240
TTTGGCTTCA GGC	TCATCCA CA	CATGGGAA	AGCTTCGCGC	GCAAAATGGC	TCTCGAACTG	3300
AGTAGACAAG ACC	CTCCTTCT TG	ACTCCATC	AACTGTATAA	TAAGAAGGGT	AAATCCCTGT	3360
CATGTTGTCT GTA	ATTTTAC CA	GAAAAGGC	AAGAACCAAT	TCAACTTGAC	CAGCCTCAGC	3420
CAATTCGATA TG	AAGGGCTT CA	TTGTCATG	GTCAACTGTA	AATGGACGAG	CTTGACCTGC	3480
AACTTCTACA GAG	GGTGATTT CC	AAATCTTT	TTGGTGGAGG	GAGATGCGGT	CACTCTGTGC	3540
TTGACCAGTG AT	GTCACTT TO	CCAGAAAA	AGTCTTGGTC	TCACGACTCA	AATCTAAAAA	3600
TAAATCATAA TG	rtcaggaa ca	AATTGCTT.	AATGGG			3636

⁽²⁾ INFORMATION FOR SEQ ID NO: 79:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 5066 base pairs

634

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

(~ _ / .	JEQUENCE DEE					
ATAGCGTGTA	ATAATCGATT	TTAGAGGTAC	CATAAGCCAC	CTCCTACAAA	TAGAAACCGA	60
TATAAATCAA	TGCCTTCCAC	CCTTAGACTT	CCCTAGTTCC	TGTCTCAAGC	GAAACATTTC	120
TTTGAAACAG	GAATAAGTTA	ACCAATTCAT	ACCAATAGCT	AGCAGAATAA	AAAGAAACCA	180
AATGCCCCAT	AACTTGATAT	CTGTCACATT	TCTCAAGACG	GTATTGAAAA	ACAGAACTGA	240
AACAACTGTC	CAAGCAAGGC	TAAAAAGAGA	ATAGAAGGGG	ATGTAAAACC	AGTAAAAATA	300
ATAAAAAATT	GGAAAAAACT	TACTATTTCT	GTTGGCCTTT	TCAATCCAGT	TATCAAAATA	360
AAAGTACGGT	GCTAAAAGTA	AGAATTTAAA	CAAATGTTCC	ATCACCGACA	TCCCCCCTTC	420
TTTTGATAGC	GTTTTCTATT	ATTTTATTAT	ATCAAAAAAA	TCCGGAACTG	TCATTCCAGA	480
TTCTACTTTT	TTATTTGCGT	TTTCTTGCGA	TGAGATGAAT	CGGTGTTCCC	TCAAAAACAA	540
AGGCCTTGCG	GATTTGATTT	TCCAAGAAAC	GCAGGTAAGA	AAAGTGCATG	AGTTCTTCTT	600
CATTGACAAA	GATGACAAAG	GTTGGTGGTT	TGGTTGCCAC	TTGGGTCGCA	TAGAAAATCT	660
TGAGACGTTT	TCCTTTGTCT	GTCGGTGTTG	GGTTGATGGC	AATGGCÄTCC	ATGATGACAT	720
CGTTCAAGAC	AGCTGATGGA	ATACGTGTAT	TTTGACTTTC	GCTGATTTGC	TTAATCATCT	780
CAGGAAGTTI	GTGGAGACGT	TGCTTGGTTA	AAGCTGATAC	AAAGATAATO	GGTGCGTAAG	840
GCAGGTATTC	GAACTGCTCA	CGGATATCTT	CTTCCCAGTT	TTTCATAGTG	TGGTTATCTT	900
TTTCAAGCGT	T ATCCCACTTG	TTGACCACGA	TAATCATCCC	TTTACCAGCT	TCATGGGCAA	960
ATCCTGCGAT	r ACGCTTGTCG	TACTCACGA	TGCCTTCTTC	CGCATTGATG	ACCATCAAGA	1020
CCACATCTG	ACGGTCAATA	GCACGCATGC	CACGCATAAC	AGAGTATTTC	TCAGTATTTT	1080
CATAAACCT	. ACCAGACTTA	CGCATACCAC	CCGTATCAAT	CATGGTAAAC	TCTTGACCAT	1140
CTGTATCTG	T AAAGTGGGTA	TCAATGGCAT	CACGAGTTGT	TCCAGCAACA	GGACTAGCAA	1200
TAACACGGT	C TTCTCCCAAC	ATAGCATTG	A TCAAGCTTGA	V TTTTCCAACO	TTAGGACGAC	1260
CAATCAAGC	r aaacttaato	G ACATCTGGA	TTTCTTCCTC	ATATTCATT	GGAAGATTTT	1320
CTACGATCG	C ATCTAGCACA	A TCCCCTGTA	C CGATTCCATC	GACAGATGA	ATAGGCAATG	1380
GTTCACCCA	A ACCGAGAGC	A TAGAAATCA	r atatatcat	TCTCATCTC	A GGGTTGTCCA	1440
CCTTGTTGA	c tgcgaggàta	A ACTGGTTTG	r GGGTCTTATA	A AAGCTTACG	A GCTACGTATT	. 1500
CGTCTGCAT	C AGTAATTCC	r TCCTTACCA	G ACACGACAA	A AACGATAAC	A TCTGCTTCTT	1560

CCATGGCAAT	TTCTGCCTGG	TGCTTGATTT	GTTCCATGAA	AGGAGCATCG	ACATCATCAA	1620
TTCCTCCTGT	ATCAATCATG	CTAAAAGAAC	GATTGAGCCA	CTCACCCGTT	GCATAAATAC	1680
GGTCACGTGT	CACTCCTTCG	ACATCTTCTA	CAATGGAGAT	TCGCTCACCA	GCGATCCGAT	1740
TAAATAGGGT	TGATTTCCCA	ACATTGGGAC	GTCCTACAAT	GGCAATAGTT	GGTAGGGCCA	1800
TAATTTCTCA	CTTTCTACAA	TAATTTCTTC	TGTTCAAGAT	TTTTTCTAGT	TGAGCTTGGT	1860
TCAGCTTGAC	CAAACTGTTC	TGCTAGGCGC	TGACTCCAGC	TTGTGGTCGC	ACGCGCCCCA	1920
GCATAGTCAG	CCTGAACACG	GTCATAAGCT	TGGATTGCCT	CAGTTGACTG	TTCTTGGTAT	1980
TCTTCCTCAA	AGACAACATT	CTCTAGTGGC	AGTCTCGGTT	TCATATCATG	ATGTTGATTT	2040
GGCACACCCA	GTGCCATCCC	AAAGACAGAA	TAGGTGTAGT	CAGGTAGGTT	AAAGAGCTCT	2100
GCCACTTCTT	CAGACTTGTA	TCGAACCAAA	CCGATAATCA	CACCACCATA	GCCCAAGCTT	2160
TCAGCTGCCA	ACAAGGCGTT	TTGTCCAGCA	AGAGCTGCAT	CGACCGAACT	AATCAAGAGA	2220
CCTTCCACAC	CTTGGGGTTG	GAAGGTGTCG	GTATGAAGTC	GGGCTCCCTT	TTCTGCTCGG	2280
TTCAAATCTC	CGACAAAGAG	AAGGAAAACA	GCAGACTGGC	GAATGGCTTC	TTGAGGTACC	2340
AATTCATACA	AGGCATCTTT	CTTCTCTTGA	CTTCGTACCA	CAATCACAGA	GTAGGATTGG	2400
AAATTCTTCC	AAGATGATGC	CATCTGGGCT	GCTGTCAAAA	TCTCATTTAA	GTCTACTTGG	2460
GGAATTTCTT	GCTCTTTAAA	CCTGCGCACT	GAAGTATGAG	CCTTCATCAA	TTTAATGGTT	2520
TCTGTCATCG	ACGGTTTACT	CCTTCTAAAC	GAGTCTCCTC	AGCCAAATAA	CGGATGCGTT	2580
CCATGACCCG	TCTGGCTTCC	CAGGTTTCGT	CATTTCCATG	TTTCACTTTC	GCAAAATGCT	2640
TCTCCAAATC	TTCAAAGTTG	AAGTTGGATG	TGAAAAAGGT	CGGTAAATTT	TCCTGCATCC	2700
GATATTGGAG	AATGACCTGC	AGGATTTCGT	CACGCACCCA	AACGGTTGAT	TGCTCGGCGC	2760
CAATATCATC	TAAAATCAGG	ACCTCAGACA	GCTTAATCTC	ATCCACCAAG	GTCTTAACAT	2820
TGCCATCACT	GATAGCATTT	TTGACATCAA	TGACAAAGCT	AGGATAGTGG	AGGAGAGTTG	2880
ATGAAACACC	ACGTTTTTCT	GATAAATCAT	GAGCTAAGGC	CGCCACCATG	AAACTTTTAC	2940
CCACACCAAA	GTCTCCATAT	AAGTAAAGAC	CTTTTCGAAT	AGCTGGATAT	TGCTCCACGA	3000
AGGCTAGTAG	CTTTTCAAAA	ACTGGTAAGC	GCCCCAAATC	ATCCAAGTCA	ACTTGAGCCA	3060
AACTAGCTTT	CTTGAGACTG	GCTGGTAGAT	TGATTAACTT	GAGACGGTTC	TTAATAGCCG	3120
CTTCTTTTTC	AGCCGCGATT	AGCTCAGGAG	TTTCTTCATA	TGAAACATCT	GCATAACCAT	3190
GATTCTTAAC	CAAAATCGGC	TTGTAGCCTT	TGGCAATATA	ATCCGTATCC	CCACGGAGAA	3240
ACTTGTCACG	CTCGGTGATG	TACTGATTAA	ACTTGGAGAT	ACTGCGATTT	AATTCCTTTG	3300

			636			
GAGTTAAGGA	TTCTTGCTGG	ATAAAGGCCG	CAACATCAGG	GTCCTTCATG	ATTTTCTGGA	3360
CCAAATCTTG	ATAATAAAA	CGGCTGGGTT	GACGTTTGAG	TACGTCTCCG	ACACTTTCCA	3420
TCTAATCTCC	TCCTTTTTCT	AATCGAGCTA	ATAGTTCTTG	CTTCTTACGT	TCTAGTTCCA	3480
GACGAGTTTC	CTCGCTGGTT	TCATTCTTAT	ATTCAGGATT	ACTCCATTTA	GGAACATTGG	3540
TTTTTTCTGG	GGCAGTCTGA	TTCTGTTTTT	GTGTTTTTGC	TTTCTGCCCT	CGATCACGAA	3600
TTCGTAAAAC	GGCCTCTTCT	GCCGAATGAA	TCTTTTGATA	GGCATAGTCA	TTGGCTACCT	3660
TCATGGCATA	TTTCTCATTG	ATATTTGCCG	AATCCACCTT	ATTAAAGGTC	AATAAGAGAA	3720
TAATATTGAT	GACTTCGTCC	AGTAAGCCCA	AGCCAGCCAT	CTGTTGCAAG	AGTTCTCTTT	3780
CTGTTTGGGT	AATGGTTCCC	TTGCGTGTTT	GCTTGATTTC	TGCTAAGAAC	TGCAGGGCAG	3840
TTTTACTTTT	AGCTTCTTTG	ATAATGGTCG	CTTCCTTAAG	ACTAAAGTCA	GAGGAAACTG	3900
GTTTTTGAGC	AATTTTTCA	CGCATGCGTT	TGGTTGAAAT	AACCTGGGAA	ACAGCTGTTG	3960
ACTTGGCCAA	TTGATAGGTT	TCAAACCAAG	TCCATTTCTT	CTCCTCGGCA	ATAGCAAAGA	4020
GGTTTAAGAC	ATCGGACTGC	TCATCCGCAA	AACGAAGTCC	ATCTCGAGCC	ATCAGCTGGC	4080
GAAAATGTTC	CAAGTCAAAA	TCATTGGCCA	CTTTCTTCTT	GAGACCAAĞG	TCTTCTTGAC	4140
TGCCTAGTTC	TGCCAATTCT	GGAAAGACTT	GATTGAGTGA	GACAGGTATT	TCTTCACCAT	4200
CAGCACTTTC	AACTTTCAAA	TCCTCCACAG	CTACATCGCC	AATCTTTTTC	TCTAAGAGTC	4260
TGCGATAAAC	AGGATGCCCC	AAGAAGTCTT	GACTAGATAG	AGGAGCATGG	AGGGCTAGCT	4320
GATAAACATC	ACCCTTTTGA	TAGAGGGTCA	AGAGATTAAA	AGCAGATAAG	ATTTTCAATG	4380
ATTTTATCAG	TCTATCCATC	CCAAAGTTGA	GATGGTTGAG	AATGCTTGAA	AAAAGATATT	4440
CCTTTCTACC	ATTATCCCAA	AAACTGATTG	TATAAAGATA	AAGGCTCAGT	GCCTCCTGAC	4500
CGATAATCGG	GAGGTAGCAC	TGTACCAGAG	ATGAGGTATC	TTGCGACACC	CGATTATTCT	4560
TTAGATAAGA	AAAACGGTCA	ATTGGCTTCA	TTTATCTTTC	CTTTTTCTTT	TTAGAGGACT	4620
GGGTGATTTG	TTGGAGCAAG	CTCTCTAACT	CACTGACATC	СТТААААСТА	CGATAGACAC	4680
TAGCAAAACG	TACATAGGTA	ATCTCGTCCA	ATTCAGCCAA	CTCCTCCATG	ACGAGTGAAC	4740
CAATGTCCTC	ACTTTGAATT	TCATTTTCAT	TTCGACCACG	GAGTTTCTGT	TCGATACGAT	4800
TGACTACCAT	GTTGATTTCA	TCACTTGACA	CAGGACGTTT	CTGGGCTGAG	CGGATAATCC	4860
CATTAAAGAT	TTTATCTCTG	GAGAATTGTT	CCCGTGTGCC	ATCTTTTTA	ACAACCACTA	4920
AGGTTCTTTC	TTCTACTCGT	TCGTAGGTTG	TAAAACGGTG	TTGGCATTCG	TCGCACTCAC	4980
GTCTTCTACG	AATGGTGTTC	CCTTCTTCTG	CTTGGCGACT	ATCGATAACA	CTTGACTTGG	5040
TAGCCCCACA	TTTTGGACAG	GGTACC				5066

(2) INFORMATION FOR SEQ ID NO: 80:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9607 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

			_			,,,_,
60	GTACGTGCAC	TGTACTTGAA	ACATCATGCC	GCTATGGAAA	ATTTGAAACA	CACTTGAAGT
120	CGTCGTACAA	TCGTCCAGAA	CAGTTGAAGT	TACCAAGTCC	TGGTTCTAAC	GTCGTGTTGG
180	ACAATGCAAG	TGGTGAACAC	CTCGTCTTCG	GTAACAATCG	TCGTTGGTTG	CACTTGGACT
240	GTTAAGAAAC	TGGTGCAGCA	CTAACAACAC	TTGGATGCTG	AAAAGAAATC	ACCGTCTTGC
300	CGTTGGTAAG	CGCACACTTC	ACCCTGCATT	GCTGAAGCTA	TCACCGTATG	GTGAAGATAC
360	CAGGTTGCGG	GGAATCGAAG	GAGAAAATAG	GAAAGTCCCA	AAAGCGTTAA	ATAGGATGCG
420	ACTAAATCAT	CTTGAGCTCA	AGACTTTTAG	CTTTTTCTCC	TGAGATTCAT	TTGCAACCAA
480	ATTCGACGAA	CTGACGCAGT	AAATAGGAAA	TGCAAGGTAA	ACGGTAAGGA	GATGCTAGGA
540	GCTAACTAAC	GCTCACATCG	TCCCGTTCCA	TCACGCAGCA	TTTATCTTTT	TACAAGGAGT
600	GCTTACCATC	CTATAACTCA	TTAGTATTAG	GCTAAATCGA	GTTCAAATTA	TTTAGCCCGG
660	CTGCCTATCC	CGGGTAGGTC	ACATTGAGAA	TAGCATGAAA	AAACCAACAA	TCGTAAGTTG
720	AGAAACAAAC	AATAAATAGG	AGAAATCAAA	ATAATAGAAT	AAATCGTGTT	GTTTTTATTA
780	GGCTCACGTC	TCGGTATCAT	ACTCGTAATA	ACTTGAAAAA	GCGAATTTTC	CTCATGGCAC
840	AATCCACAAA	ACACTGGTAA	ATTCTTTACT	TACTGAGCGT	AAACAACAAC	GATGCCGGTA
900	GCAAGAACGT	TGGAGCAAGA	ATGGACTGGA	TGCGTCACAA	CTCACGAAGG	ATCGGTGAAA
960	CGTAAACATC	ACAACCACCG	GCTCAATGGA	TGCGACGACA	TCACATCTGC	GGTATCACGA
1020	TCGTGTATTG	AACGTTCTCT	ATCGAAGTAC	GGACTTCACA	CAGGACACGT	ATCGACACAC
1080	TGAAACAGTT	AGCCTCAAAC	TCAGGTGTTG	TGACTCACAA	TTACCGTTCT	GATGGTGCGG
1140	AATGGACAAA	TTGCCAACAA	CGTATCGTAT	CGGAGTTCCA	: CAACTGAGTA	TGGCGTCAAG
1200	AGCAAATGCA	ATCGTCTTCA	ACACTTCACG	CTCTGTAAGC	ACTTCCTTTA	ATCGGTGCTG
1260	TGACTTGATC	GTGGTATCAT	GATGACTTCC	CGGTTCTGAA	AATTGCCAAT	CACCCAATCC
1320	AGAAGACATC	ATATCCTTGA	CTTGGTACGG	TACTAACGAC	CTGAAATCTA	AAGATGAAAG
1380	AGCAGTTGCT	AATTGATTGA	TACCGTGAAA	AGCTCAAGAA	r ACCTTGACCA	CCAGCTGAAT

638 GAAACTGACG AAGAATTGAT GATGAAATAC CTCGAAGGTG AAGAAATCAC TAACGAAGAA 1440 TTGAAAGCTG GTATCCGTAA AGCGACTATC AACGTTGAAT TCTTCCCAGT ATTGTGTGGT 1500 TCAGCCTTCA AAAACAAAGG TGTTCAATTG ATGCTTGATG CGGTTATCGA CTACCTTCCA 1560 AGCCCACTTG ACATCCCAGC AATCAAAGGT ATTAACCCAG ATACAGACGC TGAAGAAATT 1620 CGTCCAGCAT CTGACGAAGA GCCATTTGCA GCTCTTGCCT TCAAGATCAT GACTGACCCA 1680 TTCGTAGGTC GTTTGACATT CTTCCGTGTT TACTCAGGTG TTCTTCAATC AGGTTCATAC GTATTGAATA CTTCTAAAGG TAAACGTGAA CGTATCGGAC GTATCCTTCA AATGCACGCT 1800 AACAGCCGTC AAGAAATCGA CACTGTTTAC TCAGGTGATA TCGCTGCTGC CGTTGGTTTG 1860 AAAGATACTA CAACTGGTGA CTCATTGACA GATGAAAAAG CTAAAATCAT CCTTGAGTCA 1920 ATCAACGTTC CAGAACCAGT TATCCAATTG ATGGTTGAGC CAAAATCTAA AGCTGACCAA 1980 GACAAGATGG GTATCGCCCT TCAAAAATTG GCTGAAGAAG ATCCAACATT CCGCGTTGAA 2040 ACAAACGTTG AAACTGGTGA AACAGTTATC TCAGGTATGG GTGAACTTCA CCTTGACGTC 2100 CTTGTTGATC GTATGCGTCG TGAGTTCAAA GTTGAAGCGA ACGTAGGTGC TCCTCAAGTA 2160 TCTTACCGTG AAACATTCCG CGCTTCTACT CAAGCACGTG GATTCTTCAA ACGTCAGTCT 2220 GGTGGTAAAG GTCAATTCGG TGATGTATGG ATTGAATTTA CTCCAAACGA AGAAGGTAAA 2280 GGATTCGAAT TCGAAAACGC AATCGTCGGT GGTGTGGTTC CTCGTGAATT TATCCCAGCG GTTGAAAAAG GTTTGGTAGA ATCTATGGCT AACGGTGTTC TTGCAGGTTA CCCAATGGTT 2400 GACGTTAAAG CTAAGCTTTA TGATGGTTCA TATCACGATG TCGACTCATC TGAAACTGCC 2460 TTCAAGATTG CGGCTTCACT TTCCCTTAAA GAAGCTGCTA AATCAGCACA ACCAGCTATC 2520 CTTGAACCAA TGATGCTTGT AACAATCACT GTTCCAGAAG AAAACCTTGG TGATGTTATG 2580 GGTCACGTAA CTGCTCGTCG TGGACGTGTA GATGGTATGG AAGCACACGG TAACAGCCAA 2640 ATCGTTCGTG CTTACGTTCC ACTTGCTGAA ATGTTCGGTT ACGCAACAGT TCTTCGTTCT 2700 GCATCTCAAG GACGTGGTAC ATTCATGATG GTATTTGACC ACTACGAAGA TGTACCTAAG 2760 TCAGTACAAG AAGAAATTAT TAAGAAAAAT AAAGGTGAAG ACTAATCCGT CCTCACTCTA 2820 GAAGGAAGTC ACTTAGTGGC TTCCTTTTGT CTTTAGAAAA TACCTCTAAA TATGGTAAAA 2880 TAGTAGAAGA ATAATGTGAG GAAAATGAAT GTCAAATAGT TTTGAAATTT TGATGAATCA 2940 ATTGGGGATG CCTGCTGAAA TGAGACAGGC TCCTGCTTTA GCACAGGCCA ATATTGAGCG 3000 AGTTGTGGTT CATAAAATTA GTAAGGTATG GGAGTTTCAT TTCGTATTTT CTAATATTTT 3060 ACCGATTGAA ATCTTTTAG AATTAAAGAA AGGTTTGAGC GAAGAATTTT CTAAGACAGG 3120 CAATAAAGCT GTTTTTGAAA TTAAGGCTCG GTCTCAAGAA TTTTCAAATC AGCTCTTGCA 3180

GTCCTACTAT	AGGGAGGCTT	TCTCTGAAGG	TCCATGTGCT	AGTCAAGGTT	TTAAGTCCCT	3240
TTATCAAAAT	TTGCAAGTTC	GTGCTGAGGG	TAATCAGCTA	TTTATTGAAG	GATCTGAAGC	3300
GATTGATAAG	GAACATTTTA	AGAAGAATCA	TCTTCCTAAT	TTAGCCAAAC	AACTTGAAAA	3360
GTTTGGTTTT	CCAACTTTTA	ACTGTCAAGT	CGAGAAGAAT	GATGTCCTGA	CCCAAGAGCA	3420
GGAAGAGGCC	TTTCATGCTG	AAAATGAGCA	GATTGTTCAA	GCTGCCAATG	AGGAAGCGCT	3480
CCGTGCTATG	GAACAACTGG	AGCAGATGGC	ACCTCCTCCA	GCGGAAGAGA	AACCAGCCTT	3540
TGATTTTCAA	GCGAAAAAAG	CTGCAGCTAA	ACCCAAGCTG	GATAAGGCGG	AGATTACTCC	3600
TATGATCGAA	GTGACGACAG	AGGAAAATCG	TCTGGTATTT	GAAGGGGTTG	TTTTTGATGT	3660
GGAGCAAAAA	GTGACTAGAA	CAGGTCGTGT	TTTAATCAAC	TTTAAAATGA	CGGACTATAC	3720
TTCAAGTTTT	TCTATGCAAA	AGTGGGTTAA	AAACGAGGAA	GAGGCCCAGA	AGTTTGACCT	3780
CATCAAGAAG	AATTCTTGGC	TCCGAGTTCG	AGGGAATGTG	GAGATGAATA	ACTTCACACG	3840
CGATTTGACT	ATGAACGTAC	AGGATCTGCA	GGAAGTTGTT	CACTATGAGC	GGAAGGATTT	3900
GATGCCAGAA	GGTGAGCGTC	GGGTTGAGTT	TCATGCTCAT	ACTAACATGT	CGACTATGGA	3960
TGCTTTGCCA	GAGGTCGAAG	AGATTGTTGC	AACAGCTGCT	AAGTGGGGAC	ACAAGGCGGT	4020
TGCTATCACG	GACCATGGGA	ATGTCCAGTC	CTTTCCACAT	GGCTATAAGG	CGGCTAAGAA	4080
AGCGGGAATC	CAGCTGATCT	ATGGGATGGA	AGCCAATATC	GTGGAGGACC	GTGTCCCTAT	4140
CGTCTATAAC	GAAGTGGAGA	TGGACTTGTC	AGAAGCAACC	TACGTGGTCT	TTGACGTGGA	4200
AACGACGGGA	CTTTCAGCTA	TCTATAATGA	CTTGATTCAG	GTTGCGGCTT	CTAAGATGTA	4260
CAAGGGGAAT	GTTATTGCTG	AATTTGATGA	ATTTATCAAT	CCTGGGCATC	CCTTGTCAGC	4320
CTTTACTACA	GAGTTAACTG	GAATTACAGA	TGATCATGTC	AAAAATGCCA	AACCACTAGA	4380
ACAAGTTTTG	CAAGAATTCC	AAGAATTTTG	CAAGGATACG	GTCCTAGTTG	CCCACAATGC	1440
TACCTTTGAC	GTTGGCTTTA	TGAATGCTAA	TTATGAGCGG	CATGATCTTC	CAAAGATTAG	4500
TCAGCCAGTT	ATTGATACGC	TGGAGTTTGC	TAGAAACCTC	TATCCTGAGT	ATAAACGCCA	4560
TGGTTTGGGG	CCTTTGACCA	AGCGTTTTGG	TGTGGCCTTG	GAACATCACC	ACATGGCCAA	4620
CTACGATGCG	GAAGCGACTG	GTCGTCTGCT	TTTCATCTTT	ATCAAAGAGG	TAGCAGAAAA	4680
ACATGGTGTG	ACCGATTTAG	CTAGACTCAA	CATTGATCTA	ATCAGTCCAG	ATTCTTACAA	4740
AAAAGCTCGG	ATCAAGCATG	CGACCATCTA	TGTCAAGAAT	CAGGTAGGTC	TAAAAAATAT	4800
CTTTAAGCTG	GTTTCCTTGT	CTAATACCAA	GTATTTTGAA	GGAGTGCCAC	GGATTCCGAG	4860
AACGGTŢCTA	GATGCCCATC	GAGAGGGCTT	GATTTTAGGT	TCAGCCTGTT	CAGAGGGTGA	4920

WO 98/18931 PCT/US97/19588

640 AGTTTTTGAC GTGGTCGTTT CTCAAGGTGT GGATGCGGCG GTTGAGGTGG CCAAGTATTA 4980 TGATTTTATC GAGGTCATGC CACCGGCTAT CTATGCACCC TTGATTGCCA AAGAGCAGGT 5040 CAAGGATATG GAGGAACTCC AGACCATTAT CAAGAGTTTG ATAGAGGTTG GAGACCGCCT 5100 TGGCAAGCCT GTTCTGGCTA CGGGAAATGT TCACTATATC GAACCGGAAG AAGAGATTTA 5160 TCGTGAAATT ATCGTCCGTA GTTTGGGACA GGGTGCGATG ATTAATCGAA CTATCGGTCA 5220 TGGTGAACAT GCCCAACCAG CACCACTTCC AAAGGCTCAT TTTCGAACGA CTAATGAGAT 5280 CTTGGATGAA TTTGCCTTTT TGGGAGAGGA ACTGGCTCGT AAACTGGTTA TTGAAAACAC 5340 CAATGCCTTG GCAGAAATAT TTGAATCCGT TGAAGTCGTT AAGGGTGACT TGTATACGCC 5400 TTTCATCGAC AAGGCTGAAG AAACAGTTGC TGAGTTGACC TATAAGAAAG CTTTTGAGAT 5460 TTATGGAAAT CCGCTGCCAG ATATTGTTGA TTTGCGGATT GAAAAAGAAT TAACATCCAT 5520 ACTGGGGAAT GGATTTGCTG TGATTTATCT GGCATCGCAG ATGCTGGTGC AACGTTCTAA 5580 TGAACGGGGT TATTTGGTTG GTTCTCGTGG GTCTGTCGGA TCTAGTTTCG TTGCGACCAT 5640 GATTGGGATT ACGGAGGTCA ATCCTCTCTC TCCTCACTAT GTCTGGTC AGTGTCAGTA 5700 CAGTGAGTTT ATCACAGATG GTTCGTACGG TTCAGGATTT GATATGCCCC ATAAGGACTG 5760 TCCAAACTGT GGTCACAAAC TCAGTAAAAA CGGACAGGAT ATTCCGTTTG AGACCTTCCT 5820 TGGTTTTGAT GGGGATAAGG TTCCTGATAT TGACTTGAAC TTCTCGGGAG AAGATCAGCC 5880 TAGCGCCCAC TTGGATGTGC GTGATATCTT TGGTGAAGAA TATGCCTTCC GTGCGGGAAC 5940 GGTTGGTACG GTAGCTGCCA AGACTGCCTA TGGATTTGTC AAAGGTTACG AGCGAGATTA 6000 TGGCAAGTTT TATCGTGATG CAGAAGTAGA ACGCCTCGCT CAAGGAGCGG CGGGTGTCAA 6060 GCGGACAACA GGCCAACACC CGGGGGGAAT CGTTGTTATT CCGAACTACA TGGATGTCTA 6120 CGATTTTACG CCTGTCCAGT ATCCAGCAGA TGATGTCACG GCTGAATGGC AGACCACTCA 6180 CTTTAACTTC CACGATATCG ATGAGAACGT CCTCAAACTC GATGTACTGG GACATGATGA 6240 TCCGACTATG ATTCGAAAAC TTCAGGATTT GTCTGGTATT GACCCTAATA AAATTCCTAT 6300 GGATGACGAA GGCGTGATGG CACTCTTTTC TGGGACTGAT GTGCTAGGGG TAACACCTGA 6360 ACAAATTGGA ACGCCTACGG GTATGTTGGG GATTCCAGAG TTTGGAACAA ATTTCGTACG 6420 TGGAATGGTA GACGAAACCC ATCCGACAAC CTTTGCGGAA TTGCTTCAGC TGTCTGGTCT 6480 GTCCCACGGT ACTGATGTTT GGTTGGGGAA TGCTCAGGAT CTGATTAAGC AAGGAATAGC 6540 GGACCTATCG ACTGTTATCG GTTGTCGGGA CGACATCATG GTTTACCTCA TGCATGCGGG 6600 TCTGGAACCT AAGATGCCCT TTACCATTAT GGAACGGGTA CGTAAGGGTT TGTGGCTAAA 6660 GATTTCAGAA GAGGAGAGAA ATGGCTATAT CGAAGCAATG AAGGCTAATA AGGTGCCAGA 6720

GTGGTATATC	GAATCCTGTG	GGAAAATTAA	GTACATGTTC	CCTAAGGCCC	ATGCGGCAGC	6780
CTACGTTATG	ATGGCCTTGC	GTGTAGCTTA	CTTCAAGGTT	CACCATCCTA	TTTATTACTA	6840
CTGTGCTTAC	TTCTCCATTC	GTGCTAAGGC	TTTTGATATC	AAGACCATGG	GTGCGGGCTT	6900
GGAGGTCATC	AAGCGCAGAA	TGGAAGAAAT	CTCTGAAAAA	CGGAAGAACA	ATGAAGCCTC	6960
TAATGTGGAA	ATCGATCTCT	ATACAACTCT	TGAGATTGTC	AATGAGATGT	GGGAACGAGG	7020
TTTCAAGTTT	GGTAAATTAG	ATCTCTACTG	TAGTCAGGCG	ACAGAGTTCC	TCATCGACGG	7080
GGATACCCTT	ATCCCACCAT	TTGTAGCAAT	GGATGGTCTG	GGAGAGAACG	TTGCCAAGCA	7140
ACTGGTGCGG	GCGCGTGAAG	AGGGAGAATT	CCTCTCTAAA	ACAGAACTAC	GCAAGCGTGG	7200
TGGACTCTCA	TCAACCTTGG	TTGAAAAGAT	GGATGAGATG	GGTATTCTTG	GAAATATGCC	7260
AGAGGATAAC	CAGTTGAGTT	TGTTTGATGA	GTTGTTTTAA	AAAATTGCTT	AATAATCTAT	7320
TAAAAGAGGC	TAACGTATAT	CCAATAGATT	TACATTAGCT	TTCTTTTTTG	TTAAAATAGT	7380
CTATGGAAAG	AGGGTGAGAG	TATGTCAAAG	ATGAGTATAA	GCATCCGTCT	GGATAGTGAG	7440
GTTAAGGAGC	AGGCCCAACA	GGTGTTTAGT	AATCTGGGAA	TGGATATGAC	AACAGCTATT	7500
AATATTTTCC	TTCGTCAGGC	AATTCAATAT	CAGGGATTAC	CTTTTGATGT	TAGACTAGAC	7560
GAAAATCGGA	AGTTGCTCCA	AGCGTTAACG	GATTTAGACC	AAAATCGTAA	TATGAGCCAG	7620
TCTTTTGAAT	CAGTCTCAGA	TTTGATGGAG	GACTTACGTG	CTTAAGATTC	GTTATCATAA	7680
ACAGTTTAAA	AAAGATTTTA	AGTTGGCTAT	GAAGCGTGGT	TTGAAGGCAG	AATTATTAGA	7740
AGAAGTTTTG	AATTTTCTGG	TTCAAGAAAA	AGAACATCCT	GCCAGAAATC	GTGATCATTC	7800
ATT:GACGGCA	TCCAAGCATT	TTCAAGGAGT	TCGTGAATGC	CATACCCAGC	CAGATTGGCT	7860
TTTGGTTTAT	AAAGTAGACA	AGTCGGAATT	GATTTTAAAT	TTGCTGAGGA	CAGGCAGTCA	7920
CAGTGATTTA	TTTTAATCTA	TTTTAAGGGG	GTTCTCATGA	AACTAAGAAT	ATTTGCGGAA	7980
GATAAGCCGG	CTAAGAAGGT	ATTTGAATAT	CAATTAGAAC	TTGCTGATCG	TACAATTCTT	8040
CTATCGACAG	CACTCTTGTC	AGGTGCTATT	GCTTTAGCAG	GAATCTTTTC	TGCTTTGAAA	8100
GAAAAATAAA	AATAGAAAAG	AGAAAACAGA	ATGGTTTTAC	CAAATTTTAA	AGAAAATCTA	8160
GAAAAATATG	CGAAATTGTT	GGTTGCGAAC	GGAATTAACG	TGCAACCTGG	TCACACTTTG	8220
GCTCTCTCTA	TTGATGTGGA	GCAACGTGAA	TTGGCACATC	TAATCGTGAA	AGAAGCTTAT	8280
GCCTTGGGTG	CGCATGAGGT	CATCGTTCAG	TGGACAGATG	ATGTGATTAA	CCGTGAGAAA	8340
TTCCTCCATG	CCCCGATGGA	GCGTTTGGAC	AATGTG CCAG	AATACAAGAT	TGCTGAGATG	8400
AACTATCTCT	TGGAGAATAA	GGCTAGCCGT	CTTGGAGTTC	GTTCATCTGA	TCCAGGTGCC	8460

			642			
TTGAACGGAG	TGGACGCTGA	CAAGCTTTCA		AAGCTATGGG	ACTTGCCATG	8520
AAGCCTATGC	GTATCGCAAC	TCAATCTAAC	AAGGTTAGCT	GGACTGTAGC	AGCTGCAGCA	8580
GGACTTGAGT	GGGCTAAGAA	AGTCTTCCCA	AATGCTGCGA	GCGACGAAGA	AGCAGTTGAT	8640
TTCCTTTGGG	ACCAAATTTT	CAAAACTTGC	CGTGTCTACG	AAGCAGATCC	TGTTAAGGCT	8700
TGGGAGGAAC	ATGCAGCCAT	TCTCAAGAGC	AAGGCCGATA	TGCTTAATAA	GGAGCAATTT	8760
TCAGCCCTTC	ACTACACAGC	GCCAGGAACA	GATTTAACAC	TTGGTTTGCC	AAAGAACCAC	8820
GTTTGGGAAT	CAGCTGGTGC	TGTCAATGCA	CAGGGCGAAG	AATTCTTGCC	AAATATGCCA	8880
ACAGAAGAGG	TCTTCACAGC	GCCTGACTTC	CGTCGTGCAG	ATGGTTATGT	CACTTCTACA	8940
AAACCGCTTA	GCTACAACGG	AAATATCATT	GAAGGCATTA	AGGTGACCTT	TAAGGATGGA	9000
CAAATCGTAG	ATATCACTGC	TGAGAAGGGT	GATCAGGTTA	TGAAAGACCT	TGTCTTTGAA	9060
AATGCGGGTG	CGCGTGCCTT	GGGTGAATGT	GCCTTGGTAC	CAGATCCAAG	TCCAATTTCT	9120
CAGTCAGGCA	TTACCTTCTT	TAACACCCTT	TTCGATGAAA	ATGCGTCAAA	CCACTTGGCT	9180
ATCGGTGCAG	CCTATGCGAC	TAGCGTTGTT	GATGGAGCGG	AGATGAGCGA	AGAGGAGCTT	9240
GAAGCTGCAG	GGCTTAACCG	TTCAGATGTT	CACGTAGACT	TTATGATTGG	TTCTAACCAA	9300
ATGGATATCG	ATGGTATTCG	TGAGGATGGA	ACGCGGGTAC	CTCTTTTCCG	TAATGGGAAT	9360
TGGGCAAATT	AAGGAGATAA	TATGTTAGGA	AGTATGTTCG	TTGGTCTCCT	AGTGGGATTT	9420
TTAGCAGGTG	CTATGACCAA	TCGTGGAGAG	CGAATGGGAT	GTTTTGGAAA	AATGTTTCTC	9480
GGTTGGATCG	GAGCCTTTCT	AGGTCACTTG	CTCTTTGGAA	CTTGGGGGCC	AGTTTTATCA	9540
GGAACAGCTA	TTATCCCAGC	GATTTTAGGA	GCCATGATTG	TTTTAGCTAT	TTTTTGGAGA	9600
CGAGGAA						9607
	AAGCCTATGC GGACTTGAGT TTCCTTTGGG TGGGAGGAAC TCAGCCCTTC GTTTGGGAAT ACAGAAGAGG AAACCGCTTA CAAATCGTAG AATGCGGGTG CAGTCAGGCA ATCGGTGCAG GAAGCTGCAG TGGGCAAATT TTAGCAGGTG GGTTGGATCG GGAACAGCTA	AAGCCTATGC GTATCGCAAC GGACTTGAGT GGGCTAAGAA TTCCTTTGGG ACCAAATTTT TGGGAGGAAC ATGCAGCCAT TCAGCCCTTC ACTACACAGC GTTTGGGAAT CAGCTGGTGC ACAGAAGAGG TCTTCACAGC AAACCGCTTA GCTACAACGG CAAATCGTAG ATATCACTGC AATGCGGGTG CGCGTGCCTT CAGTCAGGCA TTACCTTCTT ATCGGTGCAG GGCTTAACCG ATGGATATCG ATGGTATTCG TGGGCAAATT AAGGAGATAA TTAGCAGGTG CTATGACCAA GGTTGGATCG GAGCCTTTCT GGAACAGCTA TTATCCCAGC	AAGCCTATGC GTATCGCAAC TCAATCTAAC GGACTTGAGT GGGCTAAGAA AGTCTTCCCA TTCCTTTGGG ACCAAATTTT CAAAACTTGC TGGGAGGAAC ATGCAGCCAT TCTCAAGAGC TCAGCCCTTC ACTACACAGC GCCAGGAACA GTTTGGGAAT CAGCTGGTGC TGTCAATGCA ACAGAAGAGG TCTTCACAGC GCCTGACTTC AAACCGCTTA GCTACAACGG AAATATCATT CAAATCGTAG ATATCACTGC TGAGAAGGGT AATGCGGGGT CGCGTGCCTT TAACACCCTT ATCGGTGCAG CCTATGCGAC TAGCGTTGTT ATGGATATCG ATGGTATTCG TGAGGATGGA TGAGGAAATT AAGGAGATAA TATGTTAGGA TGAGCAGAT AAGGAGATAA TATGTTAGGA GGTTGGATCG GAGCCTTTCT AGGTCACTTG TAACCAGCTT AACGACCAA TCGTGGAGAG GGTTGGATCG GAGCCTTTCT AGGTCACTTG GGAACAGCTA TTATCCCAGC GATTTTAGGA	AAGCCTATGC GTATCGCAAC TCAATCTAAC AAGGTTAGCT GGACTTGAGT GGGCTAAGAA AGTCTTCCCA AATGCTGCGA TTCCTTTGGG ACCAAATTTT CAAAACTTGC CGTGTCTACG TGGGAGGAAC ATGCAGCCAT TCTCAAGAGC AAGGCCGATA TCAGCCCTTC ACTACACAGC GCCAGGAACA GATTTAACAC GTTTGGGAAT CAGCTGGTGC TGTCAATGCA CAGGGCGAAG ACAGAAGAGG TCTTCACAGC GCCTGACTTC CGTCGTGCAG AAACCGCTTA GCTACAACGG AAATATCATT GAAGGCATTA CAAATCGTAG ATATCACTGC TGAGAAGGGT GATCAGGTTA AATGCGGGTG CGCGTGCCTT TAACACCCTT TTCGATGAAA ATCGGTGCAG CCTATGCGAC TAACCCCTT TTCGATGAAA ATCGGTGCAG GCCTTAACCG TCAGATGTT CACGTAGACT ATGGATATCG ATGGTATTCG TGAGGATGGA ACGCCGGTAC TGGGCAAATT AAGGAGATAA TATGTTAGGA ACGCCGGTAC TTAGCAGGTG CTATGACCAA TCGTGGAGAG CGAATGGGAT GGTTGGATCG GAGCCTTTCT AGGTCACTTG CTCTTTGGAA GGTTGGATCG GAGCCTTTCT AGGTCACTTG CTCTTTGGAA	TTGAACGGAG TGGACGCTGA CAAGCTTTCA GCTTCTGCTA AAGCTATGGG AAGCCTATGC GTATCGCAAC TCAATCTAAC AAGGTTAGCT GGACTGTAGC GGACTTGAGT GGGCTAAGAA AGTCTTCCCA AATGCTGCGA GCGACGAAGA TTCCTTTGGG ACCAAATTTT CAAAACTTGC CGTGTCTACG AAGCAGATCC TGGGAGGAAC ATGCAGCCAT TCTCAAGAGC AAGGCCGATA TGCTTAATAA TCAGCCCTTC ACTACACAGC GCCAGGAACA GATTTAACAC TTGGTTTGCC GTTTGGGAAT CAGCTGGTGC TGTCAATGCA CAGGGCGAAG AATTCTTGCC ACAGAAGAGG TCTTCACAGG GCCTGACTTC CGTCGTGCAG ATGGTTATGT AAACCGCTTA GCTACAACGG AAATATCATT GAAGGCATTA AGGTGACCTT CAAATCGTAG ATATCACTGC TGAGAAGGGT GATCAGGTTA TGAAAGACCT AATGCGGGTG CGCCTGCCTT GGGTGAATGT GCCTTGGTAC CAGATCCAAG CAGTCAGGCA TTACCTTCTT TAACACCCTT TTCGATGAAA ATGCGTCAAA ATCGGTGCAG CCTATGCGAC TAGCGTTGTT GATGGAGCG AGATGAGCGA AATGGATATCG ATGGTATTCG TGAGGATGGA ACGCGGGTAC CTCTTTTCCG TGGGCAAATT AAGGAGATAA TATGTTAGGA AGTATGTTCG TTGGTCTCCT TTAGCAGGTG CTATGACCAA TCGTGGAGGA CGAATGGGAT GTTTTGGAAA GGTTGGATCG GAGCCTTTCT AGGTCACTTG CTCTTTTGGAA CGTTGGATCG GAGCCTTTCT AGGTCACTTG CTCTTTTGGAA CGTTGGATCG GAGCCTTTCT AGGTCACTTG CTCTTTTGGAA CGTTGGATCG GAGCCTTTCT AGGTCACTTG CTCTTTTGGAA CGTTGGATCG GAGCCTTTCT AGGTCACTTG CTCTTTTGGAA CTTTTGGGGGCC CGAACAGCTA TTATCCCAGC GATTTTAGGA GCCATGATTG TTTTTAGCTAT	TTGAACGGAG TGGACGCTGA CAAGCTTTCA GCTTCTCCTA AAGCTATGGG ACTTGCCATG AAGCCTATGC GTATCGCAAC TCAATCTAAC AAGGTTAGCT GGACTGTAGC AGCTGCAGCA GGACTTGAGT GGGCTAAGAA AGTCTTCCCA AATGCTGCGA GCGACGAAGA AGCAGTTGAT TTCCTTTGGG ACCAAATTTT CAAAACTTGC CGTGTCTACG AAGCAGATCC TGTTAAGGCT TGGGAGGAAC ATGCAGCCAT TCTCAAGAGC AAGGCCGATA TGCTTAATAA GGAGCAATTT TCAGCCCTTC ACTACACAGC GCCAGGAACA GATTTAACAC TTGGTTTGCC AAAGAACCAC GTTTGGGAAT CAGCTGGTGC TGTCAATGCA CAGGCCGATA TGCTTAATAA GGAGCAATTT ACAGCACTTC ACTACACAGC GCCTGACTTC CGTCGTGCAG AATTCTTGCC AAATATGCCA ACAGAAGAGG TCTTCACAGC GCCTGACTTC CGTCGTGCAG ATGGTTATGT CACTTCTACA AAACCGCTTA GCTACAACGG AAATATCATT GAAGGCATTA AGGTGACCTT TAAGGATGGA CAAATCGTAG ATATCACTGC TGAGAAGGGT GATCAGGTTA TGAAAGACCT TGTCTTTGAA AATGCGGGTG CGCGTGCCTT GGGTGAATGT GCCTTGGTAC CAGATCCAAG TCCAATTTCT CAGTCAGGCA TTACCTTCTT TAACACCCTT TTCGATGAAA ATGCGTCAAA CCACTTGGCT AATGCGTGCAG GCCTTACCGA TAGCGTTGTT GATGGACCG AGATCACAG AGAGGAGCTT GAAGCTGCAG GCCTTACCGA TAGCGTTGTT CACGTAGACT TTATGATTGG TTCTAACCAA ATGGATATCG ATGGTATTCG TGAGGATGGA ACGCGGGTAC CTCTTTTCCC TAATGGGATT TGGGCAAATT AAGGAGATAA TATGTTAGGA ACGCGGGTAC CTCTTTTCCC TAATGGGATT TTAGCAGGTG CTATGACCAA TCGTGGAGAG CGAATGGGAT GTTTTTCCC TAATGGGATT TTAGCAGGTG CTATGACCAA TCGTGGAGAG CGAATGGGAT GTTTTTGCAAA AATGTTTCT CGGTGGATCG GAGCCTTTCT AGGCACTTG CTCTTTTGGAA AATGTTTCT CGGTTGGATCG GAGCCTTTCT AGGCACCTTG CTCTTTGGAA CTTTTTTCCC GGTTGGATCG GAGCCTTTCT AGGCCACTTG CTCTTTTGGAA CTTTTTTCC CGTTGGATCG GAGCCTTTCT AGGCCACTTG CTCTTTTGGAA CTTTTTTCCA CGGTACAGCTA TTATCCCACC GATTTTAGGAA GCCATTGGTT CTTTTTTCCA CGGTTGGATCG GAGCCTTTCT AGGCCACTTG CTCTTTTGGAA CTTTTTTTCC CGGTTGGATCG GAGCCTTTCT AGGCCACTTG CTCTTTTGGAA CTTTTTTCCA CGGAACAGCTA TTATCCCACC GATTTTAGGAA GCCATTGGTTT TTTTTTTTTCCA CGGAACAGCTA TTATCCCACC GATTTTAGGAA GCCATTGGTTT TTTTTTTTTT

(2) INFORMATION FOR SEQ ID NO: 81:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14231 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:

CTACAAGATA ATTCCAGCTA	TAACATCCGC	TATAATAGTA	AGAGCGAGCT	CTATGATAAG	60
GCTCATTAGT TTCACCTCCT	CTCACGAACC	CATAGGAACG	TAATCGGTAA	CCGATGACAA	120
AAATAGTATA CCACAATACA	TTTAGATCAT	CAAGGTCACT	TAATTCTTGA	AATATCAGAT	180
CTAAGAGAAA AATCTTTAAA	ATCAGAAAAA	CGCATAATAT	CAGGTGTGCA	AAAACTTGAT	240

300	GTTTTTGTCC	CTGAAATTGA	CCATTTTCTC	AAGGTTTACT	TTATTGTGGG	ACTATGCGTT
360	TGTAAATCAG	GGTGAATATT	AATGTCATGT	CTAAGAAAAT	TTTAGGGTTG	AGCCTCTGTT
420	TCGTCTTTCC	CATGTCAGCT	CTCTTCACAT	CTTCGAAAAT	GAACGATACT	TCAGCAGACA
480	TTTCGAGCTG	CAAAACAGTG	TCTACAACCT	ATCAGTTCTA	GACTGACTTC	GTATATATGT
540	TATTTGATTT	ACTAGCTTCC	GCAAGCTGAG	TGTACTTTGA	TTTTCAAATC	ACTTGATCAA
600	ATAATTTTTG	ACTGCGTCTA	AAATAATTCG	ATTCTCCATC	TCAGAAACCC	TCATTGAATA
660	KAAAA ATTTT	AGGGGATTAA	GTATTTGGAG	TAAAGGTTGT	GTGTCTGAAA	ATCTGGCACG
720	CTTTGTCAAT	GTTTCATGGG	CAGTAAGATG	AACTATCAAT	TAAAATTTAG	TCCAGTCTTG
780	GGTCATCAAT	TAAACATATT	AGAAGCTTCA	CTTGGCTGAG	TTTGAAATAG	AATATTCTTT
840	AATTTTCCTT	TCTAATAAAG	ATTAAAATGA	CTAAATCGAT	GAACAAAATG	ACCTCTTGCT
900	TAAAGATTTT	CCAGATGTGA	TTTGACCTCG	AGGATTGATG	ACCACGGAAC	ATCATAGTTG
960	TTGTAAAAAT	TGTAAACCAT	TTGTGCAGTA	CAGATAGGGT	TTAACAGTTT	GGAGCTATCT
1020	TACTAGAATC	TAGACAGTAG	ACAGAGTTCG	AAAGATAGGG	TCAAGTTCAG	AATCAAATTA
1080	TTAGTCTTTT	AGACTAGCGA	GTCTTTAGCG	ACCGAATAAA	CACATACCAG	TAGATAGATA
1140	TCATAGAGGA	TCAATTGTGT	ATGAGAAAGT	CACGTATTTG	CTTTCTCCTT	TTGCCTAGTA
1200	AAATTAAATC	TTTTCTAAGA	AAGACCTTGA	TTCTTTTGAT	TATCCGTGCT	CAGGGTCACG
1260	CGGCAATTCT	AGCTCTTTTA	GATTTCTGCC	TGGAGAAAGT	GTACTTGTGC	ACGACGTAAG
1320	TCATAAGCTC	TCAȚCTTTTA	AAGTACACGT	CAATCAATTC	TTGATAATTT	TTTTTTCTTT
1380	AATTATTTTT	GAGGAATTTG	GCACAAATTG	СТАТАТТАТА	ATCATTTCAA	CTCCTAATTT
1440	TGAAAAAATA	GTTCACATAT	TCAAGTAAGC	TGAACATTAT	GGTTAACATT	ATGAATATTG
1500	TGGAAGCGGT	AGAAGAAAAA	GGACGAAGAG	AGTTAATCMA	ATTATAATAA	AAACGTGGGG
1560	TTTCTGAAAA	GTTGGTTACC	AAGAGCAATC	CGACTTCTGG	GATTTAGGTG	TTTAGCAATA
1620	TAAAAGGGCA	CCTATTAGAG	TTCTAATCTA	TAAATCGCTT	ATGGAAGAAA	TAAACTAGTA
1680	GCTTGGCTAA	GAAAGTATCC	TAAAATTCTT	TTCTACTAGC	GATATTGACT	TTTATCTTGG
1740	TTGGACTGAT	GGAGTTGATT	TGACACATGG	CTATCGGTAT	AAGATTTTAT	TACTAGTTAC
1800	GAACAAAGGG	CGTGATGAAA	TGTTCATTAT	TATTACAACC	GGTAAGCTGT	TGATAATGAA
1860	AGACAGGAAA	CTGTATTCAG	ATTAGAAAAA	AAATGACTGA	GAAATATCTG	AGTGTTAAAG
1920	AATCTCCTGA	GCACGTCAAG	ACTCTTTAAG	CCTTGTTTCA	GAGATAAATA	TCAGATTATG
1980	ATCTCTTGAC	TTGTTTAATT	AATGCCAGAT	AGATTCTTTT	AAGACCAATA	CTCTTTCTAT

AGGTAAGTTT	GCTACAGAAA	AAAGCATTGC	TTCAACAACT	CAATTATTTG	ATCCTAGGAG	2040
TCAAAATTGG	AATCAGAATA	TCTTAAAACT	ATTTGAATTG	GATTCATCTT	TACTTCCTGA	2100
AATTGTTTCA	GAGGGAAATG	TTCTTGGAAG	GATAAAAGAG	GAGTATGGTT	TAGGCGATAT	2160
тсстсттстс	AATGTTTGTA	GTCATGATAC	AGCAAGCGCG	ATTGTCTCAG	TACCTAAGAC	2220
AGAAGGTAGT	TTATTTATTT	CATCAGGTAC	TTGGTCTTTG	GTTGGAGTGG	AACTTACTTC	2280
ACCGATTCTT	ACTACCGAAT	CCTTCAGTTA	TGGATTTACA	AATGAAGTCG	GTAAAGATGG	2340
AGTGATTACA	TTTCTGAAGA	ATTGTACAGG	GTTGTGGATC	ATAGAGGAAC	TAAGACGTTC	2400
ATTTGAACGA	AGAGGGAAAG	CCTATTCTTT	TGATGATATT	AGGACAATGG	TGGAGAAAGA	2460
AAAAGAAAAT	CTTCCTCTGA	TTGATACTGA	ATCAACTGAA	TTTGCAACAG	AATCTGATAT	2520
GCACAAGACT	TTGACAGAAT	ATCTAGCTTA	TCATCATGAA	ACTAGAGAGT	GGACAGATGG	2580
АСААСТАТТТ	AAGATTGTTT	ATGAAAGCCT	AGCTGAAACG	TATAGGAAAG	CGATAGAGTT	2640
ACTAGAAGAA	CTAACTCATA	AGGTTTATAA	GAGGATATAT	GTGATTGGAG	GAGGTGCTAG	2700
AGCCAGTTAC	TTTAACCAAA	TGATTGCTGA	TAGAACTGGT	AAAGAGGTTC	TTACAGGTTT	2760
GACTGAGGCT	ACAGCTGTGG	GGAATATTGT	TGTGCAGCTC	ATAGCTATGG	GACAATTAAA	2820
AGGGATGGAA	GAGGCTCACC	ATGTTATTGA	GGAGTTTCTA	CAATTAGAGA	GTTATTACTC	2880
CCAAAAGAAT	TAAAAAGATT	GAGAGTTTGT	AAATTTGCCT	ссстссссст	TCTTAGCTTT	2940
TGTGCAGGAA	GGGGGGATAA	TTGGTGAATT	GAAAAATATT	TAGTGTTTTG	ATATGAGGAG	3000
GACAAGGATG	TCAGATGTAA	AACAAGAATT	AATTAAATAT	GGTAAGAAGC	TAGTAGAAAC	3060
AGATTTGACG	AAAGGAACAG	GTGGGAATCT	CAGCGTTTTC	GATCGTGAAA	AACAATTGAT	3120
GGCAATTACC	CCGTCGGGTA	TTGATTTCTT	TGAAATCAAA	GAATCCGATA	TTGTAGTGAT	3180
GGATATTAAT	GGAAATGTTG	TAGAGGGAGA	ACGCTTGCCA	TCTAGCGAAT	GGTATATGCA	3240
TTTGATTCAA	TATCAAACTC	GTGATGATAT	CGATGCAATT	ATCCATGCTC	ATACAACTTA	3300
TGCAACAGTA	TTAGCTTGTC	TCAGAGAACC	ACTTCCAGCG	AGTCATTATA	TGATTGCAGT	3360
GGCAGGGAAA	GATGTTCGGG	TAGCTGAGTA	TGCAACATAT	GGCACGAAAG	AATTGGCTGT	3420
GAATGCAGCT	AAAGCAATGG	AAGGTCGTAG	AGCAGTTTTA	CTAGCGAATC	ATGGAATTTT	3480
AGCAGGTGCA	CAAAATTTAT	TGAATGCATT	TAATATTGTT	GAAGAAGTTG	AATATTGTGC	3540
AAAAATTTAT	TGTTTAGCTA	AGAATTTTGG	AGAGCCAGTA	GTTCTTCCTG	ATGAGGAGAT	3600
GGAATTGATG	GCAGAAAAAT	TTAAAACATA	CGGTCAGAGA	AAATAGGGAG	GATATTAATG	3660
TTAAAACATA	TACCGAAAAA	TATTTCTCCA	GATTTATTGA	AGACTTTAAT	GGAAATGGGA	3720
CATGGAGATG	AAATAGTATT	AGCTGACGCG	AATTATCCTT	CTGCCTCATG	TGCAAATAAG	3780

644

645

CTAATTCGTT	GTGATGGTGT	AAATATTCCA	GAATTATTAG	ATTCCATTCT	GTATTTAATG	3840
CCATTAGATA	GTTACGTCGA	TAGTTCAATT	CAGTTTATGA	ACGTTGTTTC	GGGTGATGAT	3900
ATTCCTAAGA	TATGGGGTAC	CTATAGACAG	ATGATTGAAG	GTCATGGTAC	AGATCTTAAA	3960
ACGATTACTT	ATCTTAGAAG	AGAAGACTTT	TATGAACGTA	GTAAGAAAGC	TTATGCTATT	4020
GTTGCTACAG	GAGAAACTTC	ACTTTATGCT	AATATTATCC	TTAAGAAAGG	AGTAGTTGTT	4080
GAAAGAGAAA	ATGTTCAATA	GAGGAATTTT	AGTTGCCAGT	CATGGTAATT	TTGCTAGCGG	4140
AGCTCTCATG	ACCGCAGAAA	TGTTTGTTGG	TGAGACAACA	AATGATAGAG	TTAGGACATT	4200
AGGTTTGATG	CCTGGAGAGA	ATATTGTAGA	GTTTGAGCAT	TATTTTAAAA	ATCAAGTGGA	4260
TGAACTGTTA	GACTCAAATC	AAGAGGTTAT	CGTTTTGACT	GACTTGATTG	GAGGAAGTCC	4320
TAATAATGTG	GCTTTGTCAC	GGTTTTTAAA	TTTGGATTCA	GTTGATATTG	TAACAGGGTT	4380
TAATATCCCT	CTCCTAGTGG	AATTAATATC	AAGTTATGAT	TCAAAAATCA	ATTTAGAAGA	4440
AATTGTTCAC	AATGCTCAAA	ATAGTTTGTT	TAATGTTAAA	CAACAACTTA	ACGTAGAGGA	4500
GGAAGAAGAT	TTATGTCTAT	AGAGTTTGTT	CGTATTGATG	ACCGTCTGGT	ACATGGTCAA	4560
GTTGTCACTA	CGTGGCTAAA	AAAGTATGAT	ATTGAGCAAG	TTATCATTGT	TAATGATCGC	4620
ATCTCAGAAG	ATAAAACACG	ACAATCTATT	TTAAAGATTT	CTGCACCGGT	AGGTTTAAAA	4680
ATTGTTTTCT	TTAGTGTAAA	ACGGTTTGTG	GAAGTTTTAA	ACTCTGTGCC	AATAAAAAAG	4740
AGAACAATGC	TGATATATAC	AAATCCAAAA	GATGTGTATG	ATTCTATTGA	AGGAAATTTA	4800
AAATTGGAGT	ACCTCAATGT	AGGACAGATG	AGTAAAACGG	AGGAAAATGA	AAAGGTAACG	4860
GGAGGTGTAG	CTCTAGGTGA	AGAAGACAAA	TATTATTTTA	AGAAAATAGT	TGATAAGGGA	4920
ACGAGAGTTG	AAATTCAAAT	GGTTCCTAAT	GATAAAGTTA	CAATGTTGGA	AAAATTTTTA	4980
TAAAAATAAT	TTAAGGAGGT	ACAGTATATG	CTATTCACAC	AAGCATTACT	GGTGACATTA	5040
GTTGGGATTA	TTGCCACTAT	TGACTATAAT	GGACCGTTAT	TTATGATTCA	CCGTCCGTTA	5100
GTTACAAGTG	CAATGGTTGG	CTTAGTATTA	GGAGATTTCA	CCCAAGGTGT	TCTTATTGGT	5160
TCAGCTCTTG	AATTAACTTG	GCTCGGTGTA	ACAGGTATTG	GAGGTTATAC	TCCACCAGAT	5220
ACTATTTCAG	GTGCGATTAT	TGGTACTGCA	TTTGGTATTT	TATCTGGTCA	AGGAGAAACT	5280
GCTGGTATCG	CTATAGCAGT	TCCAATTGCA	GTTGCTACCC	AACAGTTGGA	TGTTCTTGCA	5340
AAAACTTTAG	ATGTTTATTT	TGTGAAAAA	GCTGATAATG	ATGCTAAAAA	CGGAGATTAT	5400
TCAAAGATCG	GTTTTTATCA	TTATTCAAGT	TTGGTTTTAA	TCACGTTATT	TAAAATTGTA	5460
CCAATTTTCC	TAGCTATTAT	GCTTGGAGGG	GAATATGTGG	CAGACTTGTT	TGCTAAGGTT	5520

			646			
CCACCAATCG	TTATGCAGGG	ACTTAACTCT	GCAGGTGCTT	TACTACCTTC	AATTGGTTTT	5580
GGTATGCTTT	TAAATATGAT	GCTCAAGAAA	AATATGTGGG	TATTCTTGTT	GATTGGATTC	5640
ATTTGTTCTG	TGTATGGAGG	AATGTCAACC	ATTGGGATCT	CACTAGTTGG	TATTGCGGTA	5700
GCATACTTCT	ACGATATGAT	TGGAAGCAAA	CCACAAGAAA	CAACTTCAAG	TAGTGATGTT	5760
GAGGAGGATC	TTGATCTATG	ATGAATAATA	AAGTAACTAA	AGTTGAACTT	AAAAAGTTT	5820
TCAAACGAAG	TTTTATGTAT	GGTTCTTCAT	GGAACTATGA	GAGAATGCAG	AACCTAGGTT	5880
TTCTATATAC	AATTCTTCCA	GTATTGAAAA	AACTATACCC	AGACAAAGAT	TCAGCTTCTC	5940
CTGCAATGAA	ACGTCACCTT	GAGTTTTTCA	ATACTCATCA	AACAGCGGCA	CCATTTATTC	6000
TTGGAGTTAC	TTCCGCTATG	GAAGAACAAG	AAGGAAATGA	AGGTGCAGCT	TCAATTACTG	6060
GTATTAAAGT	TGGCTTGATG	GGGCCACTGG	CTGGTCTAGG	AGATACTTTG	TTCTGGCTGA	6120
CACTAGTTCC	TATCTGTTTT	AGTATTGGTG	CGTCTTATTC	TAAAGACGGC	GGTGCTTTAG	6180
GTATCTTTAT	CGCCTTAATA	TTGTTTAATA	TTATTAATAT	TCCTGTTAAA	TATTTCGGTT	6240
TGAAATATGG	GTATACTAAG	GGTTCTAGTC	TTATCCAAGA	AAATAATACA	AAAGGAACAT	6300
TGAATCGCGT	TACGAGTATG	GCGACAGCAT	TAGGGCTAGT	ACTAGTGGGT	GGTTTGATTC	6360
CATCAATGGT	TGGTATTAAT	TTTGGATTAG	AATTTAAGCA	GGGGGAACTT	GTTATTTCTG	6420
TTCAAGAAAT	GATTACAAAA	TTAATTCCAG	GATTTATCCC	TATGGCTTTG	ACTTTATTAA	6480
TGTGTAAATT	AATTAGAAAA	GGAAAGAATC	CGGTTGTACT	AATCTTTAGT	GTTATGGCTA	6540
TTGGAGTTAT	TCTAGTTGTT	TTAGGAATTT	TGAAGTAGTA	GAAAGTGTGG	AGGTGGTATT	6600
TGGGATATCA	CCTCCATTT	GGAAGAGAGG	TAAAGAGTGA	AATTATGGTA	TAAGAAAGCT	6660
GCCGCAAATT	GGAATGAAGC	CTTGCCGATT	GGGAACGGTC	ATTTAGGTGG	TATGATTTAT	6720
GGTTCAGCTA	CAAAAGAATG	TATTCAACTA	AACGATGAGA	CTATTTGGTA	TAGAGGAAAG	6780
TCAGATAGAA	ATAATCCAGA	CTCACTATTG	CATCTTAAAA	AAATTCGGGA	ATATCTTTTA	6840
GATGGAGAAA	TTCAGAAAGC	CGAAGAATTG	ATAAAGTTAA	CAGTGTTTGC	TACCCCAAGA	6900
GATCAAAGCC	ACTATGAATT	ACTTGGGGAA	CTTTACATTO	: AGCATATAGA	TATTCAGTCT	5960
TGTGCTCTTT	CATTGTATGA	AAGAGAGCTA	GATTTAGATA	CAGCTATTT	TAATGTTGTG	7020
TTTGAGCCT	A TAGTTGTAA	TTTACAAATA	AAAAGAGAAT	ATTTTACGAC	TTTTAATÄAG	7080
AATATTTTAT	r GTTGCCGTAT	AGTGTCATCA	GTTCAAAACA	CATTAAATT	TAACATTAAT	7140
TTGGGTAGAJ	A ATAAACGGTT	TAATGACGAA	GTATCTAAA	TGGATTCAA	TACAATTTTA	7200
ATGTCGGCCT	r crgcrggago	TAGAAAAGGT	CTTCAGTTT	AAGTAGTAT	TCATTCTAAG	7260
GTTACGGAT	GTGAAGTAAC	TGTATTGGG	A GAGACAATAG	TTATTCGGA	A TGCTACAGAG	7320
	•					

GTATTTCTTT	' ATCTCAAATC	AATGACGGAT	TATTGGGGAA	ATATAGATAT	TTCTTCTCTT	738
CAGGGAGAAT	TTAGTAGTAT	TGATTACTT	ACAGAAAAAG	ATGAACATGT	AAAAAAATAT	744
CAGGAGCAAT	TTAATAGAGT	TGATTTTAAA	CTAGACTATA	GTAAAGGTTG	TCTTAGCATT	7500
CCAACGAATC	TACTTCTTGA	AAACACTAAA	AAGTATAGTA	ACTACTTGAC	TAACTTGTTA	7560
TTTCATTATG	GAAGATATCT	GTTAATATCG	TCTAGTCAAC	CGAATGGTTT	ACCTGCCAAT	7620
CTTCAAGGAA	TATGGTGTGA	TGAATTAAAT	CCAATTTGGG	GTTCTAAATA	TACGATTAAT	7680
ATTAATACTC	AAATGAATTA	TTGGATGGTA	GGTCCATGTG	ATTTACCAGA	AGTAGAATAT	7740
CCATTATTTG	ATATGCTCGA	AAGAATGAGA	GAACCGGGAA	GACTAACCGC	TAAGAAAATG	7800
TATGGAGCTA	GAGGTTTTAC	AGCACATCAT	AATACGGATG	GTTTTGGCGA	TACGGCTCCC	7860
CAATCTCATG	CCATGGGGGC	TGCAATTTGG	GTATTAACTA	TTCCATGGTT	ATGTACTCAT	7920
ATTTGGGAAC	ACTATTTATA	TTTCCAAGAT	GAGCGTATTC	TTACGGAACA	TTTTGAAATG	7980
ATAAAAGAAG	CATTTCTTTT	CTTTGAAGAT	TATTTATTTG	AGGTGGATGG	CTACTTGATG	8040
ACAGGTCCAA	GTGTCTCACC	GGAAAATAAA	TATCGCTTAA	AAAATGGTAT	TGAAGGAAAT	8100
GCTTGTCTAT	CATCTACAAT	TGATAATCAA	ATTCTAAGAT	ATTTTTGTGA	TTCATGCATT	8160
GGCATTGCAA	AACAATTAGG	AGACAATTCG	GATTTTATTA	GTCGTGTGAA	GGAGTTAAAA	8220
AAGAAACTAC	CTAAAACAAA	AATAGGTAGT	AATGGGCAAA	TCCAAGAATG	GTTAGAAGAT	8280
TATGAAGAAG	TAGAGCCTGG	GCATAGACAC	ATTTCACCTC	TATTTGGGCT	TTATCCTTAT	8340
AATGAGATTG	ATATTCATAA	AACTCCGGAA	TTAGCAGAAG	CAGCTAAAAT	CACTATCAAT	8400
AGGAGATTAT	CAAACGCTAA	TTTTTTATCT	TCACAGGAGA	GGGAGCAAGC	GATTAATAAT	8460
TGGTTAGTAA	GTGGTTTGCA	TGCTAGTACA	CAAACAGGTT	GGAGTGCTGC	ATGGCTGATT	8520
CATTTTTTTG	CGAGACTATA	TCAAGGTGAA	CCTGCTTATA	ACCAGATTAA	TGGTTTGTTA	8580
AATAATGCGA	CTCTTGGCAA	TTTATTTCTT	GACCATCCAC	CATTTCAAAT	TGATGGTAAT	8640
TTAGGTTTGG	TGAGTGGAAT	TTGTGAATTA	TTAGTACAGA	GCCATCATAA	TTGGTTATCA	8700
CTAATTCCAG	CTTTACCTTC	TGCTTGGTCA	GAAGGAGAAG	TGAAAGGTTT	CAGAGTAAGA	8760
GGAGGATATA	AGGTATCGTT	TGCTTGGAAA	AATGGGGATA	TAACATTCCT	AAAATTGGAA	8820
GGAGGAAACA	AAGATCAAAA	AGTAAGAGTA	AGAATATATG	GCAAAAATAC	TGATGTACAA	8880
AATATTGAAT	TGGTATTTAA	TTCAGAAAAA	ATTATTGAGT	TAAATTTTTA	GGTATAAGTC	8940
ATGAATAAAG	алалалтала	AAGAAAATTA	ATCACAATAT	TGTTTGTATG	TATTGGGATG	9000
TATGTTTTG	GATTGTTAGC	AGGAGTTAAG	GCTGATAATC	GTGTTCAAAT	GAGAACGACG	9060

648 ATTAATAATG AATCGCCATT GTTGCTTTCT CCGTTGTATG GCAATGATAA TGGTAACGGA 9120 TTATGGTGGG GGAACACATT GAAGGGAGCA TGGGAAGCTA TTCCTGAAGA TGTAAAGCCA 9180 TATGCAGCGA TTGAACTTCA TCCTGCAAAA GTCTGTAAAC CAACAAGTTG TATTCCACGA 9240 GATACGAAAG AATTGAGAGA ATGGTATGTC AAGATGTTGG AGGAAGCTCA AAGTCTAAAC 9300 ATTCCAGTTT TCTTGGTTAT TATGTCGGCT GGAGAGCGTA ATACAGTTCC TCCAGAGTGG 9360 TTAGATGAAC AATTCCAAAA GTATAGTGTG TTAAAAGGTG TTTTAAATAT TGAGAATTAT 9420 TGGATTTACA ATAACCAGTT AGCTCCGCAT AGTGCTAAAT ATTTGGAAGT TTGTGCCAAA 9480 TATGGAGCGC ATTTTATCTG GCATGATCAT GAAAAATGGT TCTGGGAAAC TATTATGAAT 9540 GATCCGACAT TCTTTGAAGC GAGTCAAAAA TATCATAAAA ATTTGGTGTT GGCAACTAAA 9600 AATACGCCAA TAAGAGATGA TGCGGGTACA GATTCTATCG TTAGTGGATT TTGGTTGAGT 9660 GGCTTATGTG ATAACTGGGG CTCATCAACA GATACATGGA AATGGTGGGA AAAACATTAT 9720 ACAAACACAT TTGAAACTGG AAGAGCTAGG GATATGAGAT CCTATGCATC GGAACCAGAA 9780 TCAATGATTG CTATGGAAAT GATGAATGTA TATACTGGGG GAGGCACAGT TTATAATTTC 9840 GAATGTGCCG CGTATACATT TATGACAAAT GATGTACCAA CTCCAGCATT TACTAAAGGT 9900 ATTATTCCTT TCTTTAGACA TGCTATACAA AATCCAGCTC CAAGTAAGGA AGAAGTTGTA 9960 AATAGAACAA AAGCTGTATT TTGGAATGGA GAAGGTAGGA TTAGTTCATT AAACGGATTT 10020 TATCAAGGAC TTTATTCGAA TGATGAAACA ATGCCTTTAT ATAATAATGG GAGATATCAT 10080 ATTCTTCCTG TAATACATGA GAAAATTGAT AAGGAAAAGA TTTCATCTAT ATTCCCTAAT 10140 GCAAAAATTT TGACTAAAAA TAGTGAGGAA TTGTCTAGTA AAGTCAACTA TTTAAACTCG 10200 CTTTATCCAA AACTTTATGA AGGAGATGGG TATGCTCAGC GTGTAGGTAA TTCCTGGTAT 10260 ATTTATAATA GTAATCCTAA TATCAATAAA AATCAGCAAG TAATGTTGCC TATGTATACT 10320 AATAATACAA AGTCGTTATC GTTAGATTTG ACGCCACATA CTTACGCTGT TGTTAAAGAA 10380 AATCCAAATA ATTTACATAT TTTATTGAAT AATTACAGGA CAGATAAGAC AGCTATGTGG 10440 GCATTATCAG GAAATTTTGA TGCATCAAAA AGTTGGAAGA AAGAAGAATT AGAGTTAGCG 10500 AACTGGATAA GCAAAAATTA TTCCATCAAT CCTGTAGATA ATGACTTTAG GACAACAACA 10560 CTTACATTAA AAGGGCATAC TGGTCATAAA CCTCAGATAA ATATAAGTGG CGATAAAAAT 10620 CATTATACTT ATACAGAAAA TTGGGATGAG AATACCCATG TTTATACCAT TACGGTTAAT 10680 CATAATGGAA TGGTAGAGAT GTCTATAAAT ACTGAGGGGA CAGGTCCAGT CTCTTTCCCA 10740 ACACCAGATA AATTTAATGA TGGTAATTTG AATATAGCAT ATGCAAAACC AACAACACAA 10800 AGTTCTGTAG ATTACAATGG AGACCCTAAT AGAGCTGTGG ATGGTAACAG AAATGGTAAT 10860

TTTAACTCTG	GTTCGGTAAC	ACACACTAGG	GCAGATAATC	CCTCTTGGTG	GGAAGTCGAT	10920
TTGAAAAAA	TGGATAAAGT	TEGECTTETT	AAAATTTATA	ATCGCACAGA	TGCTGAGACT	10980
CAACGTCTAT	CTAATTTTGA	TGTGATTCTA	TATGACAATA	ATAGAAACGA	AGTTGCTAAG	11040
AAACATGTTA	ATAATTTGTC	GGGTGAATCT	GTTAGTCTAG	ATTTCAAAGA	AAAAGGAGCA	11100
AGGTATATTA	AAGTTAAATT	ACTAACGAGT	GGAGTGCCTT	TGAGTTTAGC	AGAAGTAGAG	11160
GTTTTTAGAG	AATCAGATGG	TAAGCAATCT	GAAGAGGATA	TAGATAAAAT	AACAGAAGAT	11220
AAAGTAGTCT	СТАСАААТАА	GGTAGCTACT	CAAAGTTCAA	CCAATTATGA	GGGTGTAGCT	11280
GCTTTAGCAG	TTGATGGTAA	TAAAGATGGA	GATTACGGAC	ATCATTCGGT	GACTCATACT	11340
AAGGCAGATT	CTAACGCTTG	GTGGCAGGTC	GATCTGGGAG	AAGAGTTTAC	GGTTTCTAAA	11400
GTTGATATTT	ATAATAGAAC	AGATGCCGAA	CCTCAGCGTT	TATCTAATTT	TGATGTTATT	11460
TTTCTATCTT	CATCAGGAGA	AGAAGTTTTT	AGAAGACATT	TTGATAAAGT	AGTTGATGGT	11520
TTGTTATCTT	TAAAAGTACC	TTCTGTAGGG	GCTAAGCTAG	TCAAAATAGA	ATTAAAATCA	11580
GCAGCTATTC	CGTTAAGTTT	AGCGGAAGTT	GAAGTCTATG	GTTCAAAGAG	AACTCCGAAG	11640
AAACTTTCTA	ATATTGCATT	AACAAAAGAA	ACTCGACAGA	GTTCAACGGA	TTACAATGGT	11700
TTTTCTCGTC	TAGCAGTTGA	TGGAAATAAA	AACGGAGATT	ATGGTCATCA	TTCAGTGACT	11760
CATACCAAAG	AAGATTCTCC	TTCATGGTGG	GAGATAGATT	TAGCACAAAC	CGAAGAATTA	11820
GAAAAGTTAA	TTATTTATAA	TAGAACAGAT	GCTGAAATTC	AGAGATTATC	AAATTTTGAT	11880
ATTATTATAT	ATGATTCAAA	TGATTATGAA	GTTTTTACAC	AACATATTGA	CAGTTTAGAA	11940
AGCAATAATC	TATCCATAGA	CTTAAAAGGA	CTGAAGGGAA	AAAAGGTTAG	AATTTCTTTG	12000
AGAAGCGCAG	GAATTCCTTT	AAGTTTAGCA	GAGGTAGAGG	TTTATACTTA	TAAGTAATTT	12060
TAAAAATTAT	CACCCAGGCT	ACCGTAAATA	TAATGGAGAT	GGTAGTATGA	AAGAAACAGA	12120
AAAATAAGAG	GAAAATAGTA	TGATTCAACA	TCCACGTATT	GGGATTCGTC	CGACTATTGA	12180
TGGTCGTCGT	CAAGGTGTAC	GCGAATCACT	TGAAGTGCAA	ACAATGAACA	TGGCTAAAAG	12240
TGTGGCAGAT	TTGATTTCAA	GCACATTGAA	ATATCCAGAT	GGGGAACCTG	TGGAATGCGT	12300
GATTTCTCCA	TCTACTATTG	GCCGTGTACC	AGAGGCTGCA	GCTTCCCATG	AGTTGTTTAA	12360
AAAATCAAAT	GTTTGCGCAA	CAATTACAGT	TACACCATGC	TGGTGTTATG	GTAGTGAAAC	12420
TATGGATATG	TCTCCAGATA	TTCCTCATGC	TATTTGGGGA	TTTAATGGGA	CAGAACGCCC	12480
AGGAGCTGTC	TATCTTGCAG	CTGTACTAGC	TTCACATGCT	CAAAAAGGGA	TTCCAGCCTT	12540
TGGGATTTAT	GGAAGAGATG	TTCAGGAAGC	TAGTGACACA	GATATTCCAG	AAGATGTCAA	12600

AGAAAAACTT	TTACGCTATC	CGCGTGCAGC	650 TCTTGCAACT	GGCTTGATGA	GAGACACTGC	12660
TTACCTATCA	ATGGGTAGTG	TTTCGATGGG	GATTGGTGGT	TCTATTGTAA	ATCCGGATTT	12720
CTTCCAAGAA	TACTTAGGAA	TGCGAAATGA	ATCGGTAGAT	ATGACGGAGT	TCACGCGCCG	12780
TATGGACCGT	GGTATTTACG	ACCCTGAAGA	GTTCGAACGT	GCGCTCAAAT	GGGTGAAAGA	12840
AAACGTAAAA	GAAGGATTCG	ACCATAACCG	TGAAGACCTT	GTTTTAAGCC	GTGAAGAAAA	12900
AGATAGACAA	TGGGAATTTG	TTATTAAGAT	GTTCATGATT	GGACGTGACT	TAATGGTTGG	12960
TAACCCAAGA	CTTGCTGAAC	TTGGTTTTGA	GGAAGAAGCG	GTTGGTCACC	ATGCTTTAGT	13020
AGCTGGTTTC	CAAGGTCAAC	GTCAGTGGAC	AGACCATTTT	CCAAATGGGG	ACTTTATGGA	13080
AACTTTCCTC	AATACTCAGT	TTGACTGGAA	TGGTATTCGA	AAACCATTTG	TATTTGCGAC	13140
AGAGAATGAT	TCACTAAATG	GTGTGTCTAT	GCTCTTTAAT	TATCTATTAA	CAAATACTCC	13200
ACAAATCTTT	GCTGATGTGC	GTACTTATTG	GAGCCCAGAG	GCTGTTAAAC	GTGTAACGGG	13260
ACATACTTTA	GAGGGTCGTG	CTGCAGCTGG	CTTCTTACAT	CTAATCAACT	CTGGTTCTTG	13320
TACATTGGAT	GGTACAGGTC	AAGCTACTCG	AGATGGCAAA	CCTATTATGA	AACCATTCTG	13380
GGAGTTGGAA	GAAAGTGAAG	TGCAGGCTAT	GCTTGAAAAT	ACAGACTTCC	CACCAGCAAA	13440
CCGCGAATAC	TTCCGTGGAG	GAGGATTCTC	AACTCGTTTC	TTGACGAAGG	GGGATATGCC	13500
AGTAACAATG	GTACGTCTCA	ATCTTCTAAA	AGGGGTTGGT	CCAGTGCTAC	AAATTGCAGA	13560
AGGTTACACA	CTTGAACTTC	CTGAAGATGT	TCACCATACT	TTAGATAATC	GTACAGATCC	13620
AGGATGGCCA	ACTACTTGGT	TTGCTCCACG	TTTGACAGGA	AAAGGTGCTT	TCAAGTCTGT	13680
CTATGACGTC	ATGAATAATT	GGGGAGCTAA	TCACGGAGCC	ATAACATATG	GACACATTGG	13740
AGCAGACTTG	ATTACCTTGG	CTTCTATGTT	GAGAATTCCT	GTCAATATGC	ATAATGTACC	13800
			GTCCTTATTT			13860
			GCCACTACAT			13920
•	•		TAAAAAGATT			13980
			GATGTTAAAT			.1040
			CGGCAGTCAA			14100
			TTGGCTATAA			14160
		GATATTTTAC	CTAAGACTTT	AAAACCACTG	GATACAGAAG	14220
GAATCGAATA	T					14231

⁽²⁾ INFORMATION FOR SEQ ID NO: 82:

⁽i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16995 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:

,,	-					
AGTTCTCTTA	ACTTTTTTAG	GATGGCATTC	TCCGCTCTCA	GGTACTCATT	TTCTGCTgAA	60
GACGTTCTAA	TTCTGTCCTC	TCTTCAGGTC	TCGTTTTTGG	CTTACGTCCC	ATTTTAGGTA	120
CTCTCCCTCT	TGTTTTCTCA	ACAATAGTAT	ACCCGTTTTT	CCTGTATTGT	GCTAGCCAGT	180
TAAGAAGTAT	CGTACGACTT	GGGAGACCGT	ATTCAAGAGA	AACTCTATCT	TTAGTCCAGC	240
CTTCATGTCA	GACTTTATTA	CTCATTTCTT	GTTTTAAATC	AGGAGAATAG	TAACGATTTT	300
TTCCTTTTTT	GACGAACTCT	ATTCCGTAAC	GATCAATCAA	TTTAATCATG	TACCTAATAT	360
TAGAATTGCT	TATCCCAAAT	TTATTTGAAA	GCTTCTCTAA	GCTATATCCT	TGTTTTCTAA	420
GTTCATAGAT	CTGAACTTTA	TCATCATAAG	TTAGTTTCAT	AATAAAAACA	CCCCAAAAGT	480
TAGATTTTT	CTGTCTAACT	TTTGGGGTGT	AGTTCATGTA	CACCTGATAT	GATGCGTTTT	540
ATAATTTTTA	AGCCTTTTTG	CCCAGCCTCG	TCAAAAGTAA	TGTTTTGACA	CAAAATCTGT	600
GACAAAACTT	TAGTTTTAAA	GGTTTTTAAC	TTTGTATATA	CTAGTTTTAA	GAAAAGGAGG	660
ATGATCTAAT	GGAAGAAAA	GTATCATTGA	AAGTCAGGGT	TCAAAAACTA	GGGACATCGC	720
TTTCAAATAT	GGTTATGCCC	AATATTGGAG	CATTTATTGC	TTGGGGAGTA	TTGACTGCCC	780
TCTTTATCGC	TGATGGCTAT	CTGCCAAATG	AACAGTTAGC	TACTGTTGTT	GGTCCTATGT	840
TAACGTATTT	ATTGCCAATC	CTGATTGGTT	ACACAGGTGG	ATATATGATC	CATGGCCAAC	900
GTGGTGCCGT	TGTAGGAGCT	ATTGCTACTG	TTGGTGCAAT	CACAGGTTCT	AGTGTTCCTA	960
TGTTTATCGG	AGCTATGGTA	ATGGGCCCAC	TGGGAGGATG	GACTATCAAG	AAATTTGATG	1020
AGAAGTTCCA	GGAAAAAATT	CGTCCCGGAT	TTGAAATGTT	AGTTAATAAC	TTCTCAGCTG	1080
GTCTCGTTGC	TTTTGCATTA	TTGCTTTTGG	CTTTCTACGC	AATCGGTCCA	GTCGTATCGA	1140
CTCTTACTG	AGCTGTTGGG	AATGGTGTTG	AGGCTATTGT	CAATGCTCGC	CTCCTTCCTA	1200
TGGCTAATAI	TATCATCGAA	CCGGCTAAAG	TCCTTTTCCT	CAATAATGCC	CTCAATCATG	1260
GCATTTTTAC	TCCTCTGGGA	GTAGAACAGG	TAGCTCAAGC	TGGTAAGTCA	ATTCTCTTCC	1320
TATTGGAAGO	TAATCCTGGA	CCAGGTCTGC	GAATTCTATT	AGCTTATGCT	GTATTCGGTA	1380
AAGGTTCTG	TAAATCTTCT	TCTTGGGGG	CAATGGTTA1	TCATTTCTTC	GGAGGGATTC	1440
ATGAAATTT	A CTTTCCTTAT	GTTATGATGA	AGCCTACTCT	r ATTTTTAGCT	GCTATGGCAG	1500

WO 98/18931 PCT/US97/19588

652 GAGGTATCTC TGGAACTTTT ACTTTTCAAC TCTTAGACGC TGGTCTTAAA TCTCCAGCTT 1560 CACCAGGTTC TATTATTGCG ATTATAGCTA CGGCGCCAAA AGGTGTTTGG CCCCATCTAA 1620 ATGTTCTTT AGGTGTTTTA GTGGCAGCAG TTGTTTCTTT CCTTGTAGCA GCCCTTATTC 1680 TTCATGCAGA CAAGTCAACT GAGGATTCGC TCGAAGCTGC TCAGGCGGCT ACCCAAGCAG 1740 CTAAGGCTCA GTCTAAAGGT CAGTTAGTAT CAACTTCTGT TGATGCAGTT GTTTCGACAG 1800 ACTCAGTGGA AAAAATCATT TTCGCCTGCG ATGCTGGTAT GGGAAGCTCT GCTATGGGAG 1860 CTAGTATTCT TCGAGATAAG GTTAAAAAAG CAGGTCTAGA GATTCCAGTA TCTAATCAGG 1920 CAATCTCAAA TTTGCTTGAT ACACCAAAAA CATTAATTGT TACTCAGGAA GAACTGACAC 1980 CAAGAGCTAA AGACAAGAGT CCAAGTGCTA TTCATGTTTC TGTTGATAAT TTCTTAGCGT 2040 CCTCTCGTTA TGATGAAATT GTAGCTTCAT TAACAGGAGC TTCTCCAATA GCAGAAATTG 2100 AAGGAGATAT ACCAACTTCA GCACCAGTAG ATAGTCAGGA AAGTGACCTT AACCATATTG 2160 ATGCTGTAGT AGTTGCTTAT GGTAAAGCAC AGGGAACTGC AACTATGGGC TGTGAAACGA 2220 TTCGGGCTAT TTTTAGAAAC AAGAATATTC GTATTCCAGT TTCTACTGCC AAAATTTCAG 2280 AATTAGGTGA ATTTAATTCT AAAAACATAA TGATTGTAAC AACTATTTCT TTACAGGCAG 2340 AAGTGCAGCA AGCAGCACCG AATTCTCAAT TTCTTATTGT GGATAGTTTA GTAACAACAC 2400 CAGAATATGA CAAAATGGCT GCTAGAATGT ACAAATAGAA CTAGAGGTTT CTAAATTACG 2460 AATGCTATTA ACCAAACGAG AAGAACAATT ATTGAAGGCT TTCCTACATG TAGGGAAGCT 2520 TTCAATGCAA GATATGACTG AAATCTTACA GGTTTCATCT AGAACAATTT ATCGAACTTT 2580 ATCAGATTTG ACAGATAGCA TGGAGCAATA TGGAATCGAA ATAACGAAGC ATGGGAAATA 2640 CTATATTTG ACTGGAGAGT TGGATGATTT GCCGACAGAA CTTGAAGTGT TAGTTGAGTA 2700 TAGTCCCCAA GAAAGACAAG AGTTGATTAC CTATCGCCTT CTGACTGAGA GTGGTTTTGT 2760 CACCAATGAA GCATTGCAAG AGTGCACGAA AGTCAGTAAT GTAACTATTA TTCAGGATAT 2820 TTCAGATATT GATAAGCGTC TTTTAGACTT TGATCTGAAA ATTGAACGAC AAAAAGGTTA 2880 TCGGATTCT GGTGATTCAG TTGGTAAGAG AAGATTTTTG GCTATTTTAC TGACAAACTG 2940 TATCTCAGTA GCAGATTTTT CAACCGGTAA TTTTGGGAGC TTTGATATTT TAGAAGCAGA 3000 TAGAACTGGG CTGGCCAGTC AGATTGTTAA TAAGCAACTG TCAGGTTTTC CAGATATGGA 3060 TGCTAGGATG AAGATGTTTT TTGCGATCTT GTTATCTCTT ATAGGTCAGG AGCAAAACAT 3120 TGAAAATTCA CCTAATACTA GTAAGCAGGC TTTGGAAATT TCTCAAAAAA TTTTTCAAGC 3180 TTACTCTAAG CAGACTGCAC AATTTTATAG TATTCAGGAA ATTATCTATT TTGCGAGCAT 3240 CTTGGATGAA TTAATCATTA AACGTCAGGA CAATCCGCTC TTTACGGAGA AATTTGATGG 3300

TGAATTTTTC	TACAATATTT	CAAATCTGAT	TGATACGGTT	TCCATGTATA	CCAAGATTGA	3360
CTTTTTTAAG	GACAAGGTTT	TATTCAATTT	TCTTTTCCAT	CATATTCGGC	TCAGTTTAGG	3420
CGTCCCTATC	CTTTTTCAGG	GTGAAAATTT	GCCAGAATCT	ATCCAGATTT	TAGTTGAAAG	3480
GAATAAATTT	CTTTATACAG	TCATCAGTCT	TTTAGTGAAT	GATATTTTC	CGAAATATCT	3540
TCATACAGAG	TATGAGTATG	GCATGATTGC	CCTACATTTT	ATCTCTAGCT	TAGGCCGTAG	3600
TCCAGAGATT	TATCCAGTCC	GTGTTTTGCT	TTTAACGGAT	GAACGTCGGG	TCACTAGAGA	. 3660
TTTATTAGTC	AGTAAAATTA	AGAGTGTTGC	TCCTTTTGTA	GAGTTGATAG	ATATTCAATC	3720
TCTAGTAGAT	TACCACAGTA	TTGATCTCAG	TCAGTATGAT	TATATTTTAT	CTACCAAGCC	3780
GCTGACTAAT	CAGGAAATCG	ATGTAATTTC	TAGTTTTCCA	ACCGTCAAAG	AATTGCTTGA	3840
ATTACAGGAA	CGACTTCAGT	ATGTACAGGC	ACATCGTACÀ	ATTGTCGCGC	GTGATGCTAT	3900
CGCTCCAGAG	AAAAGTTATG	ACTTGCAAGA	TTATTTAATA	TCTAGTAGTC	AGCTTTTGAG	3960
TCAATTCGAG	TTGGTTCAAT	TGGAGAATAA	TCAATCATTT	GAGCACACGG	TAGAACAAAT	4020
CATCCAATAT	CAGAAGAATG	TGAGTGACAG	AGCTTACCTA	ACAAGAAAAT	TGTTATCTCA	4080
CTTCCAGAAT	AGTCCTATGG	CTATTCCTAA	TACTGGTCTG	GTGCTTTTAC	ATAGTCAGTC	4140
TAGCAAAGTA	ACAACAAATA	GTTTTACTAT	GTTTGAACTC	AAACTACCTA	TCTCCGCATT	4200
GTCAATGAAA	CGAGAGGAAG	AAGAGGTCAA	AAGGTGTCTG	CTAATGCTAA	TGTCTAAAGA	4260
AGCTAGCGAG	GAAGCTAGAG	ATTTAATGAC	AGCTATTAGT	CAGTCGATTA	TTGAAAATCA	4320
TCTTTATACA	GAGATTTACA	AGACGGGAAA	TCAATCCATT	ATTTATCAGA	TGCTAAATAC	4380
TATTTTTAAC	GAAAAAATTA	AGAAATTGGA	GAACTAATAT	GAAACTTGAA	AAACATTTGA	4440
TTAAGCTTAA	TAAACAATTT	TCTAACAAGG	AGGAAGCTAT	TTGTTATTGT	GGGCAAGTTC	4500
TTTATGAGGG	TGGATATGTT	AATGAAGACT	ATATTGAAGC	CATGATTGAG	CGAGATAAAG	4560
AGCTATCTGT	TTACATGGGT	AACTTTATCG	CCATACCGCA	TGGAACAGAT	GCAGCAAAAA	4620
ATGATGTCCT	CAAGTCTGGT	ATTACAGTCG	TTCAAGTCCC	TAGAGGGGTT	GATTTTGGGA	4680
ATGTATCTAA	CCCTCAAGTG	GCAACGGTTC	TTTTTGGTAT	TGCTGGTATT	GGTAATGAAC	4740
ACTTAGAAAT	TATTCAGAAA	ATTTCTATCT	TCTGTGCAGA	TGTAGATAAT	GTTCTTAAAC	4800
TAGCAGATGC	TCAGTCAAAA	GAGGAAGTAT	TGCGCTTATT	TGATGCTGTT	GAATAATTGA	4860
ATTTAGTCAT	TTGTCATCTA	GTATATATGT	CCCTCAAATA	GGAAAAGGAG	AAATTGAATG	4920
AAACATTCTG	TTCATTTTGG	TGCCGGTAAT	ATCGGTCGTG	GTTTTATAGG	TGAAATTCTA	4980
TTTAAAAATG	GTTTCCATAT	TGATTTTGTG	GATGTCAATA	ATCAGATAAT	TCATGCTCTG	5040

			654			
AATGAAAAGG	GCAAGTATGA	AATTGAAATT		GACAGTCTCG	TATAGAAGTA	5100
ACTAATGTGG	CTGGCATTAA	TAGCAAAGAA	CATCCTGAGC	AAGTCATTGA	AGCGATTCAA	5160
AAGACGGATA	TTATTACTAC	TGCAATCGGA	CCTAATATAC	TCCCTTTTAT	CGCCGAACTT	5220
CTAGCCAAAG	GAATCGAAGC	TCGCCGAGTT	GCAGGAAATA	CACAGGCATT	GGATGTTATG	5280
GCCTGTGAAA	ATATGATTGG	CGGGTCTCAA	TTTCTTTATC	AAGAAGTCAA	GAAATATTTA	5340
AGTCCGGAAG	GTTTGACATT	TGCTGATAAC	TACATAGGTT	TTCCAAATGC	TGCAGTAGAC	5400
AGGATTGTTC	CAGCACAAAG	TCACGAAGAT	TCCCTTTTTG	TTGTGGTCGA	GCCCTTTAAT	5460
GAATGGGTCG	TGGAAACCAA	GCGTCTTAAA	AATCCAGATT	TACGTCTAAA	AGATGTGCAT	5520
TATGAAGAAG	ATTTAGAACC	CTTTATTGAG	CGAAAACTTT	TTTCAGTCAA	TTCTGGACAT	5580
GCAACTTCAG	CTTACATTGG	TGCGCATTAT	GGTGCCAAGA	CAATTTTGGA	AGCTCTTCAA	5640
AATCCTAATA	TTAAATCTCG	GATTGAATCT	GTATTAGCTG	AAATTCGGAG	TCTCTTGATT	5700
GCCAAATGGA	ACTTTGATAA	AAAAGAATTG	GAGAATTATC	ACAAAGTCAT	TATAGAACGA	5760
CTTGAAAACC	CTTTCATAGT	GGACGAGGTT	AGTCGCGTAG	CTCGTACTCC	AATCCGAAAA	5820
TTAGGCTATA	ATGAACGATT	CATCCGGCCG	ATACGTGAAT	TGAAAGAACT	CAGTTTGTCA	5880
TATAAAAACC	TACTTAAAAC	AGTTGGCTAT	GTCTTTGACT	ATCGCGATGT	AAATGATGAA	5940
GAAAGTATTC	GATTAGGTGA	ATTGTTGGCT	AAACAATCAG	TCAAAGATGT	TGTTATACAA	6000
GTTACAGGTT	TAGACGACCA	AGAATTGATT	GAGCAAATTG	TAGAGTATAT	TTAATCTTTT	6060
TCGAAAATCT	CTTCAAATCA	GGTTAGCATC	GCTTTGTCTT	AGGCATATGT	TGTTCTATCT	6120
ACAACCTCAA	AGCAGTGCTT	TGAGCTGACT	CCGTCAGTCT	TATCTGCAAT	CTCAAAACAC	6180
TGTTTGAGTT	ATCTGCGGTA	ATCTTTCTAG	CTTGTCTTTG	ATTTTTGTTG	TTATTTATAA	6240
GGTAAAAGAA	GCTGGACAAA	AAGTCTTCAA	AATCGGGAAA	AGGCAGCCTA	TCGGGTGTTC	6300
AAAAATCTTG	ATAGGATGTC	CTTTATTATO	GAAAGCCTTA	TTGGATTTTC	TCCTCAGATT	6360
GAGTTTTTGA	TCAGCTTTAT	GAGATAGGTO	TTGCTAGAGA	TGTAGCCCAT	CATGTTATTT	6420
TTATGGACAG	TGGGAAAATT	GTTGAAAAA	ATAATGCCCA	TCAATTCTTT	AGTCGTCCAA	6480
GAGAAGAACG	AACCAAGCAA	TTTTGGAACO	AATTCTTTCC	AATGCGATCT	ATATAGTAAA	6540
ATGAAACAAG	AACAGGACAA	ATCGATCAGO	ACAGTCAAAT	CGATTTCTAA	AAATGTTTTA	6600
GAAGTAGAGG	G TGTACTATTC	TAGTTTCAAT	CTACTATATA	ACTGAAAAA	TAGATAAATT	6660
AGTTTTGGAA	AATGACTAAC	CAAAAGATA	CCAAAGTAGT	CTAAAATTG1	r - CTATACTTTA	6720
TGAGTGTTTT	AGTTAGGAAA	AAGGCTTGT	r GTCTATAATI	GTCTGCATT	GTCTAGATTT	6780
TATTTATAGA	A AAATGTTATA	ATAGACTGT	A TTTAAAAAA	TTTAAGGAG	AATGACAGAA	6840
				•		

655

TGTCTGTATC	ATTTGAAAAC	AAAGAAACAA	ACCGTGGTGT	CTTGACTTTC	ACTATCTCTC	6900
AAGACCAAAT	CAAACCAGAA	TTGGACCGTG	TCTTCAAGTC	AGTGAAGAAA	TCTCTTAATG	6960
TTCCAGGTTT	CCGTAAAGGT	CACCTTCCAC	GCCCTATCTT	CGACCAAAAA	TTTGGTGAAG	7020
AAGCTCTTTA	TCAAGATGCA	ATGAACGCAC	TTTTGCCAAA	CGCTTATGAA	GCAGCTGTAA	7080
AAGAAGCTGG	TCTTGAAGTG	GTTGCCCAAC	CAAAAATTGA	CGTAACTTCA	ATGGAAAAAG	7140
GTCAAGACTG	GGTTATCACT	GCTGAAGTCG	TTACAAAACC	TGAAGTAAAA	TTGGGTGACT	7200
ACAAAAACCT	TGAAGTATCA	GTTGATGTAG	AAAAAGAAGT	AACTGACGCT	GATGTCGAAG	7260
AGCGTATCGA	ACGCGAACGC	AACAACCTGG	CTGAATTGGT	TATCAAGGAA	GCTGCTGCTG	7320
AAAACGGCGA	CACTGTTGTG	ATCGACTTCG	TTGGTTCTAT	CGACGGTGTT	GAATTTGACG	7380
GTGGAAAAGG	TGAAAACTTC	TCACTTGGAC	TTGGTTCAGG	TCAATTCATC	CCTGGTTTCG	7440
AAGACCAATT	GGTAGGTCAC	TCAGCTGGCG	AAACCGTTGA	TGTTATCGTA	ACATTCCCAG	7500
AAGACTACCA	AGCAGAAGAC	CTTGCAGGTA	AAGAAGCTAA	ATTCGTGACA	ACTATCCACG	7560
AAGTAAAAGC	TAAAGAAGTT	CCGGCTCTTG	ACGATGAACT	TGCAAAAGAC	ATTGATGAAG	7620
AAGTTGAAAC	ACTTGCTGAC	TTGAAAGAAA	AATACAGCAA	AGAATTGGCT	GCTGCTAAAG	7680
AAGAAGCTTA	CAAAGATGCA	GTTGAAGGTG	CAGCAATTGA	TACAGCTGTA	GAAAATGCTG	7740
AAATCGTAGA	ACTTCCAGAA	GAAATGATCC	ATGAAGAAGT	TCACCGTTCA	GTAAATGAAT	7800
TCCTTGGGAA	TTTGCAACGT	CAAGGGATCA	ACCCTGACAT	GTACTTCCAA	ATCACTGGAA	7860
CTACTCAAGA	AGACCTTCAC	AACCAATACC	AAGCAGAAGC	TGAGTCACGT	ACTAAGACTA	7920
ACCTTGTTAT	CGAAGCAGTT	GCCAAAGCTG	AAGGATTTGA	TGCTTCAGAA	GAAGAAATCC	7980
AAAAAGAAGT	TGAGCAATTG	GCAGCAGACT	ACAACATGGA	AGTTGCACAA	GTTCAAAACT	8040
TGCTTTCAGC	TGACATGTTG	AAACATGATA	TCACTATCAA	AAAAGCTGTT	GAATTGATCA	8100
CAAGCACAGC	AACAGTAAAA	TAATCTTAAT	AAACAGAAAA	CCCACCTGAA	TTGGTGGGTT	8160
TTCTGATGCA	CTATTTTCCA	AAAATCTCTT	TGAGGTCTGT	GTCTGTAATC	CCAATCATGG	8220
CTGGGATGCG	GTCCCAGTTT	TCTTCGGTTA	GGATGTAGGA	TTGTTCAGAG	GCACTTGATG	8280
TGACTGTTTC	AGAGACAGCT	TGTTGCTTTT	CTTCAACATT	CTCCAGTAGA	TCACTGAAGC	8340
GTTCAATCAG	ATAGGTTTTT	CGGGCAGTTC	CGATGTGTTG	GGTAGCATAG	TCGAAGGCTT	8400
GTAATTCGCC	TAGTAAGATG	AGTTTGCTTT	TGGCACGTGT	AATGGCTGTG	TAGATGAGAT	8460
TTCGCTCCAG	CATACGTCGG	CTAGCACTAG	TAATCGGTAG	GATGACAACT	GGGAACTCAC	8520
TTCCCTGAGA	CTTATGAATA.	CTCATGGCAT	AGGCCAAGCG	AATCTTGTAC	CATTCGTTAC	8580

			656			
GGGGGTAAGA GAC	TTCATTA (CCATCAAAAT	CAATGACAAT	CTCGTCTTGT	TTCGATTCGG	8640
TGTATTTACC AGG	AATCAGG	TCTGTGATAG	CTCCTAAATC	CCCATTAAAG	ACATTGATTT	8700
CAGCATCGTT AAC	CAAATGA	ATGACCCTGT	CTCTCTTACG	ATAGTGACAC	TGAGGAGCTT	8760
CAAAACTGAG TTG	ATCTTTT '	TGTGGGGGAT	TGAGCAGGTC	TTGCATGAGC	TGATTGATAG	8820
CATCAATCCC TGC	CGTCCCT	CGGTACATAG	GAGCCAGAAC	TTGGATATCA	CGGGCGGGAA	8880
TACCATTTCT GAG	GGCGGCA	CCTAAGATTT	TTTCAATGGT	GGCAGGAATA	TGGCCACTAG	8940
CAATTTCAAA GTA	GGAACGG	TCAGCTTTTT	TTTGGGTGAA	ATCAGCTGGC	AAGATGCCCT	9000
GTCGAATCTG ACT	PAGCTAGG	GTGACGATGG	TTGATTCTTT	GCTTTGTCGA	TAAATTTTTT	9060
CCAAGCGAGT CTC	GAGGAATC	AAA.GGAATAT	GAAGTAGATC	CGCTAGAACC	TGTCCAGGAC	9120
TGACAGAAGG TAG	GCTGATCA	CTGTCACCTA	CGATGAGGAT	CTTACTGTTA	GAAGAGATAT	9180
TGGAGAAGAG TTG	GATTGGCC	AGCCAAGTAT	CTACCATAGA	GAATTCATCC	ACGATGATAA	9240
AGTCAGCATC TAG	GGTAATCT	TCCAGATGAC	TGGTATCATC	GTCACCTGTC	ATTCCCAAGT	9300
GGCGATGTAT GG	TCGCGCTA	GGCAAACCTG	TCAATTCATT	CATGCGACGA	GCAGCTCGAC	9360
CAGTTGGAGC AG	CAAGAAGA	ATGGGCAGAT	TGCTTTTCTT	CCTGAAGTCA	AGTCCTTCTA	9420
AAAGGGCATA AA	CAGCAATG	ATTCCATTGA	TAACAGTTGT	CTTACCAGTA	CCAGGCCCAC	9480
CTGTCAGGAT AA	AGACCTTA	TTCTGGATAG	CATCACAGAT	AGCCTGTTTT	TGAATGTTAT	9540
CATACTCAAT TC	CCAGTTCT	TGCTCGACAG	TAGTGATATG	TTTTTGAATG	GTTTCTAAAT	9600
CATGACTCTT CT	GTTTTCCT	TTTTCAAGGA	TACGAACCAA	GTGACTGCGG	ATGCCTTCCT	9660
CAGCGAAAAA GA	GGCTGTTG	TCAAAGATCT	TGGTATCAAT	CTGCTGAACC	TTGTCTTCTT	9720
CGATCAGGTA GG	AGAGCTCT	TGGGCAACT	r GGCTGGGGTC	TAGTTCCACO	GGACGGGAAG	9780
ACTCAAGGAG AG	TAAGGGTT	TGTTCCAGC	A AATCCCGTGC	TTCAACATAG	GTGTCCCCTG	9840
TTTCCATACA GO	CCTGAAAA	AGACTGTGA	A CTAGACCGG	GCGGAAGCGT	TCAGGAGCCT	9900
GACTTTCGAT GO	CTAGTTCC	TCAGCTAGT	r GGTCAGCAA	r GGTAAAGCCC	AAACCCTTGA	9960
TATCCTCAAC CA	AGCTGGTAG	GGATAATTT	T CAACCACAT	AAGGGTTTCT	T TCCTTGTAAA	10020
AGTCTTGAAT CT	rgaaaggct	AGTTTGTTG	G GAATGCCGT	A GTTGGCTAG	T TTGGCCAAAA	10080
TCATCTCCGT TO	CCGTAGTTG	AGACGGAGA	G TGGAGACGA	A AGCCTCGCG	A TTTTTGGCAG	10140
AGAGTCCTGC GA	ATGCCTTCT	AACTTTTCT	G GGTGTTGCA	A AATTTCGTC	A ATGGTATTT	10200
CGCCATAGGT A	TCCACGATT	TTCTGAGCT	G TCTTGAGAC	C AATCCCCTT	G AAATGGCTAC	10260
TTGAAAAGTA C	TTGACCAAG	CCCTTACTA	G TTGGTTTTG	C GCGATCATA	A CGACTGATTT	10320
GCAGTTGTTC T	CCATACTTC	GAGTGCTGG	A CAATTTGCC	c ccaaaaagt	A TAGTCTTCGC	10380

CCTCAATTAC	ATCAGCCATG	GTTCCTGTGA	CAATGATTTC	AAAATCATCA	AAATCCTCTG	10440
CGTCCGTATC	GTCGATTTCT	AGGAGGAGGA	TGCGATAAAA	ATTGCTGGGA	TTTTCAAAAA	10500
TAATCCGTTC	AATAGTTCCT	GAAAAATAAA	CTTCCATAAA	ATTCCTTTGC	ATGAATAGGT	10560
GAGAGTTGGG	ATTGTTTTTA	TTTTATACTC	TTCGAAAATA	TCTTCAAACC	ACGTCAGCTT	10620
CCATCTGCAA	CCTCAAAACA	GTATTTTGAG	CTGACTTCGT	CAGTTCTATC	CACAACCTCA	10680
AAACACTGTT	TTAAGCAGCC	TACGGCTAGC	TTCCTAGTTT	GTTCTTTGAT	TTTCATTGAG	10740
TATTTGTAAA	TAAACAATCA	CTTCTCACGA	TAGAAGAAGA	GGCTGAGATT	GGTGATTCTC	10800
TGCCTCTTAG	GTTTCTTAAA	ATGTTCCGAT	ACGGGTGATT	GGCCATAAGC	GGAATTTAGC	10860
TTCCCCTGTG	ATATCTTTTG	CTTTGAAGGT	ACCTACGTGG	CGGCTGTCGC	TCGAAACCAA	10920
GCGGTCATCT	CCGAGGAGAA	GGTATTCTCC	TTCTGGAACA	GTAAAGCTAA	AGTTGGTGTT	10980
GTAGTTGACA	TCAACTGTGA	AGGCTTGAGC	TTTTTGAGCG	ATACTTCTAA	AGAAAGTTCC	11040
TTTATTTCCT	TCAAAGCCCT	TGCCTGAGTA	AGTGCTTTGG	AGTTTGTCAT	CCTTGAAGCG	11100
TTTGATATAG	TCTGCTAGAT	AAGGCTCGTC	CGTTTCTTTG	TCATTGATGT	AGAGTTTATC	11160
ATTTTCGTAA	CGAATGGTGT	CGCCAGGCAT	TCCAATCACG	CGCTTGACGA	TGTCCTTATT	11220
GCCATCTTCC	TCATGGGCCA	CCACGATATC	AAAACGGTCA	ATAGGAAGGT	GTTTTACAAC	11280
GAAGAGAATT	TCGCCATCCG	CTAGGGTCGG	ATCCATGGAA	TGTCCTTCTA	CGCGAACATT	11340
GCTCCAAAAA	AAGATACGAC	TTAAAGCTAG	TAATGACAGA	ATTAGGAGGA	ACAATCCCCA	11400
CTCTTTTAAG	AAATTTTTAA	ATGAATTCAT	AACTTACCTT	TCTAAGCGTT	TTTTCGCTTT	11460
TTCAGTGTTT	TTAAAGTGCA	ATTTGGCGCA	GAAGCTGAGT	CCCTGCATAC	CATAGGCTTG	11520
CAAAATCTGG	CTAGCCACCT	TGTCAGAAGC	CGTTCCAGCT	CCACTTGGGA	GCTGATAACC	11580
CAGTTCTCGT	CCCAAATTTT	CAAGATTTTC	CAGAAAGAGA	TCACGCGCAA	TGACAGAAGA	11640
AACTGCGACA	GACAAGTATT	TGCCCTCAGC	CTTTTCTTCT	AAGCTGATAG	GATTGCTGAA	11700
ACGATTGGCC	TCTTGTGCCA	AGTACTTGTC	ATAATTTTTA	GCACTGGTAA	AGGCATCAAT	11760
CACAATTTTC	TCAGGCTGAA	CACCTTTTTG	AAGGAGGAGA	TAGATAGCCT	GATTATGGAG	11820
GGCAACCTTA	ACCGAAACAG	CGTTGTAGCG	GTCTCCGATG	ACCTCGTTGT	ACTTGCTGGG	11880
TGAGAGAAGG	AGTGCCTGGT	GCTGAATTTT	TTCCTTGAGA	ATAGGAGTAA	TCTGACGGAT	11940
CTTTTGGTCG	GTCAGAGTCT	TAGAATCCCC	CACACCGAGT	TTTCGTAAAA	AGTCGTGCTG	12000
GTCAGGTGTG	ACAAAGGCAG	CCACAACTGC	AAGCCCACCA	AAGTAGGAAC	CATTTCCCAC	12060
CTCATCTGTC	CCAATTAAAG	GAAGATTTTG	TCCGCTGGTT	TGCTCTACAG	CTTGATAGCC	12120

			658			
AAAGAAACTG	GCGTATTTTT	CAGCCCCTTC	ACCCTGAAGC	AAGATTTTTC	CAGAAGTATA	12180
GATAGAAACC	GTTGCTTGAG	GTAGTTTCAA	AAAGTAGCGG	ATATAGGGAT	TCTTGCTAGG	12240
AGCCAGACTG	GTTTGATAGT	GTTCAAGAAA	AGCCTGAATA	TCCTTTTCGC	TTGGTGTGAG	12300
TGTGATACTT	GCCATAGTTT	CTATTGTACC	ACAAAAGCAG	TAAAATTTGT	AAAAACTGAC	12360
AAAATTAGCG	AATTTTGGTA	TAATATCGTG	AGGTGAATTT	TATGGCAAAT	CTAAATCGAT	12420
TCAAATTTAC	ATTCGGGAAA	AAATCGTTAA	CCTTGACAAG	CGAACATGAC	AACCTTTTTA	12480
TGGAGGAAAT	CGCTAAGGTT	GCGACAGAAA	AATACCAAGC	AATTAAAGAA	CAAATGCCTA	12540
GCGCAGATGA	TGAAACAATC	GCTCTTTTGT	TGGCAGTCAA	CTGTTTATCA	ACTCAGCTCA	12600
GCCGTGAGAT	TGAATTTGAC	GATAAGGAGC	AAGAGCTAGA	AGAACTCCGT	CACAAGCTTG	12660
TGACTTGTAA	GCAAGAACAG	AGCAAGATTG	AGGATTCCTT	ATGATTTCAT	TCCTTCTTCT	12720
ATTGGTCTTG	GTTTGGGGAT	TTTATATCGG	CTATCGGAGA	GGCCTGCTCT	TACAGGTTTA	12780
TTACCTGATT	TCAGCCATGG	CATCGGCTTT	TATGGCTGGC	CAGTTTTATA	AGGGGCTTGG	12840
AGAGCAATTC	CATTTATTGC	TCCCTTATGC	AAATTCGCAG	GAAGGTCAGG	GGACTTTCTT	12900
TTTCCCATCG	GATCAACTCT	TTCAGCTGGA	TAAGGTCTTT	TATGCAGGTA	TCGGCTACTT	12960
GCTTGTATTT	GGGATTGTCT	ATAGCATTGG	TCGTTTACTT	GGTCTTCTCT	TACACTTGAT	13020
TCCTAGCAAA	AAACTGGGTG	GTAAGTTGTT	CCAAGTTTCA	GCAGGTATCT	TGTCCATGTT	13080
GGTGACCTTA	TTTGTCTTGC	AAATGGCCTT	GACAATCTTG	GCGACCATCC	CCATGGCAGT	13140
TATACAAAAT	CCTCTTGAAA	AGAGTATCGT	CGCAAAACAC	ATCATCCAGA	GCATACCGGT	13200
AACAACCAGT	TGGCTCAAAC	AAATCTGGGT	GACAAATTTA	ATCGGATAAA	AAGGCAGGA	13260
GTTTTCCTAG	CCCTTTGTTT	ACAGATTTGA	CTCGAATCTA	TCAGAATGTA	AAAAGCTACC	13320
ACACCTAGAC	ATTCAAAGAC	AAGGAAATAA	AGATGAATAA	GAAAATATTA	GAAACATTAG	13380
AGTTCGATAA	GGTCAAGGCC	TTGTTTGAGC	CTCATTTGTT	GACCGAGCAG	GGCTTGGAGC	13440
AATTGAGACA	ACTGGCTCCG	ACTGCCAAAG	CAGATAAAAT	CAAACAGGCT	TTTGCTGAGA	13500
TGAAGGAAAT	GCAGGCTCTT	TTCGTCGAGC	AACCGCATTT	TACTATTCTC	TCAACTAAGG	i3560
AAATTGCAGG	AGTCTGCAAG	AGGTTGGAGA	TGGGAGCGGA	TCTCAATATC	GAGGAGTTCC	13620
TACTCTTGAA	ACGCGTGCTT	CTTGCCAGCC	GAGAACTTCA	AAATTTTTAC	ACCAATCTGG	13680
AAAATGTCAG	CTTGGAAGAA	TTAGCCCTTT	GGTTTGAGAA	ATTACATGAT	TTTCCGCAAT	13740
TACAAGGAAA	TCTTCAGGCC	TTTAATGATG	CGGGTTTCAT	TĢAAAATTTT	GCCAGTGAAG	13800
AATTGGCGCG	AATCCGTCGA	AAAATACATG	ATAGCGAGAG	TCAGGTACGC	GATGTTTTAC	13860
AAGACTTGCT	CAAGCAAAAA	GCGCAGCTGT	TGACGGAAGG	AATTGTTGCT	AGCAGAAATG	13920

GCCGTCAGGT	TTTACCAGTC	AAAAACACCT	ACCGCAATAA	GATTGCAGGT	GTCGTTCATG	13980
ATATTTCTGC	TAGTGGAAAC	ACCGTCTATA	TCGAACCCCG	TGAGGTAGTC	AAACTGAGCG	14040
AAGAAATTGC	TAGTCTGCGA	GCAGATGAGC	GCTATGAAAT	GCTTCGCATT	CTCCAAGAAA	14100
TTTCTGAGCG	TGTCCGCCCT	CATGCGGCTG	AGATTGCTAA	TGACGCTTGG	ATTATCGGTC	14160
ATCTGGACTT	GATTCGTGCC	AAGGTTCGAT	TTATCCAAGA	AAGACAAGCA	GTCGTGCCTC	14220
AGCTGTCAGA	AAATCAAGAG	ATTCAACTGC	TCCATGTCTG	CCATCCTTTG	GTCAAAAATG	14280
CCGTCGCAAA	TGATGTCTAT	TTTGGTCAAG	ATTTAACAGC	TATTGTCATT	ACAGGTCCCA	14340
ATACAGGTGG	GAAGACCATC	ATGCTCAAAA	CTCTGGGCTT	GACACAGGTC	ATGGCCCAGT	14400
CAGGATTGCC	GATTTTAGCA	GACAAGGGAA	GTCGTGTTGG	TATTTTTGAA	GAAATCTTTG	14460
CTGATATTGG	AGATGAGCAG	TCTATTGAGC	AGAGCTTGTC	TACCTTCTCT	AGTCATATGA	14520
CCAATATCGT	GGATATTCTT	GGCAAGGTCA	ACCAACATTC	ACTCTTACTT	TTGGATGAGT	14580
TGGGGGCTGG	TACTGATCCC	CAAGAGGGAG	CAGCCCTTGC	CATGGCTATT	CTGGAGGACC	14640
TTCGCCTGCG	TCAAATCAAG	ACCATGGCGA	CGACCCACTA	TCCAGAACTC	AAGGCCTACG	14700
GTATTGAGAC	AGCCTTTGTG	CAAAATGCCA	GTATGGAGTT	TGATACTGCA	ACTCTTCGCC	14760
CGACCTATCG	CTTTATGCAG	GGTGTTCCTG	GCCGAAGTAA	TGCCTTTGAA	ATTGCCAAAC	14820
GTCTAGGCCT	ATCTGAAGTT	ATCGTAGGAG	ATGCCAGTCA	GCAGATCGAT	CAGGACAATG	14880
ACGȚCAATCG	TATCATTGAG	CAATTAGAAG	AGCAGACGCT	GGAAAGCCGC	AAACGTTTGG	14940
ACAATATCCG	TGAGGTGGAG	CAAGAAAATC	TCAAGATGAA	CCGTGCGCTA	AAAAAACTCT	15000
ACAACGAGCT	TAATCGTGAA	AAGGAAACCG	AGCTTAACAA	GGCGCGTGAA	CAGGCTGCTG	15060
AGATTGTGGA	TATGGCCCTA	AGTGAAAGTG	ACCAGATTCT	CAAAAATCTC	CACAGTAAAT	15120
CCCAACTCAA	GCCCCACGAA	ATCATTGAAG	CCAAGGCCAA	CTTGAAAAAA	TTGGCTCCTG	15180
AAAAAGTGGA	CTTGTCTAAA	AATAAGGTCC	TTCAAAAGGC	CAAGAAAAA	CGAGCTCCAA	15240
AGGTGGGAGA	TGATATCGTG	GTTCTCAGTT	ATGGTCAGCG	TGGTACCTTG	ACCAGTCAAC	15300
TCAAGGACGG	TCGCTGGGAA	GCCCAAGTTG	GCTTGATTAA	GATGACCTTG	GAAGAGAAAG	15360
AGTTTGATCT	TGTTCAAGCC	CAGCAAGAAA	AACCAGTCAA	GAAGAAACAG	GTCAATGTTG	15420
TGAAACGAAC	TTCTGGGCGA	GGACCTCAAG	CTAGACTGGA	TCTTCGAGGC	AAGCGCTATG	15480
AAGAAGCCAT	GAATGAGCTA	GATACCTTCA	TCGACCAAGC	CTTGCTTAAC	AATATGGCTC	15540
AAGTTGATAT	CATCCATGGT	ATCGGAACAG	GAGTCATCCG	TGAAGGAGTT	ACCAAATACT	15600
TGCAAAGAAA	CAAACATGTC	AAGAGTTTCG	GCTATGCCCC	ACAAAATGCT	GGAGGCAGTG	15660

			660			
GTGCGACTAT	TGTCACTTTT	AAAGGATAGC		ACTTTATAAA	GTAAAAACTG	15720
TTGAACTAAT	TTTTACTAAT	AAACACATTG	ACAAAAGCCA	ACATTTTTTG	TAAAATTAGA	15780
ATCAATTAAA	TACCAACACC	GAATGAAGTT	TAATAGAAGT	GGGGAATCGT	TTGATTTTCC	15840
ATGACTGTAA	ATGGACGGAA	CTCTGGAGAG	ACCGTAAAGG	CACCGAAGGG	CAAGGCAGGC	15900
AACTGCTCAA	ACTCTCAGGT	AAAAGGACAG	AGCTAGGATA	GACCGCTTTT	TAGCATTTAT	15960
CTAAGCATTC	CAGAGTACAT	GTATCTTGCA	TGTGCTCTTT	CTTTTGGGGT	TGAAACGATA	16020
GGAGAAGGAA	ATGTTAGAAT	TGCTTAAATC	AATCGATGCT	TTTGCTTGGG	GACCGCCCCT	16080
CTTGATTTTA	TTGGTCGGAA	CAGGGATTTA	CCTAACTATT	CGGCTAGGAC	TCTTGCAGGT	16140
TTTGCGTCTA	CCCAAGGCCT	TTCAGCTTAT	TTTTATCCAG	GATAAGGGAC	ATGGTGATGT	16200
ATCCAGTTTT	GCAGCTCTGT	GTACAGCCTT	GGCATCAACT	GTTGGAACAG	GAAATATCAT	16260
AGGAGTTGCG	ACGGCTATCA	AGGTTGGTGG	ACCAGGAGCT	CTATTTTGGA	TGTGGATGGC	16320
GGCTTTCTTT	GGAATGGCTA	CCAAGTATGC	GGAAGGACTC	TTGGCCATCA	AATACCGCAC	16380
CAAGGACGAC	CATGGTGCAG	TAGCGGGAGG	TCCCATGCAT	TATATCCTTC	TAGGGATGGG	16440
AGAAAAGTGG	CGACCACTTG	CTGTTTTGTT	TGCAGTAGCA	GGAGTATTGG	TTGCTCTCTT	16500
GGGAATCGGA	ACCTTCACCC	AAGTCAACTC	GATTGCAGAA	TCTATCCAAA	ATACAACGAC	16560
GATTTCGCCA	GCCATCACAG	CTCTCGTCTT	GTCTGTCTTT	GTAGCGATTG	CAGTCTTTGG	16620
TGGACTCAAG	TCTATTTCTA	AGGTTTCAAC	TACTGTTGTT	CCTTTTATGG	CCATCATTTA	16680
TATCTTAGGA	ACTCTTACAG	TTATTTTCTT	TAATATCGGA	AAAATCCCTG	GCACAATCGC	16740
TTTAGTCTTT	ACCTCAGCTT	TTAGTCCCCT	TGCTGCGGTA	GGTGGATTTG	CTGGTGCTAG	16800
CGTTCGGATG	GCTATTCAAA	ATGGTGTGGC	GCGTGGTGTG	TTCTCAAACG	AATCTGGTCT	16860
GGGTTCTGCT	CCTATTGCAG	CTGCAGCTGC	CAAGACAAAT	GAACCAGTAG	AGCAAGGTTT	16920
GATTTCCATG	ACAGGAACCT	TTATTGATAC	CCTCATCATT	TGTACTCTAA	CTGGTTTGAC	16980
CATCTTGGTA	ACTGG					16995

(2) INFORMATION FOR SEQ ID NO: 83:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28473 base pairs
 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:

CCGGGGCTTT TGTAGTATAA TAGAGATACG TTTTGAAAGT AGGAGGTATC TATGGACTTA 60

ACTAAGCGCT	TTAATAAACA	GTTAGATAAA	ATTCAAGTTT	CGTTGATTCG	TCAGTTTGAC	120
CAGGCTATTT	CGGAGATTCC	TGGGGTCTTG	CGTTTGACCT	TGGGGGAACC	TGATTTTACA	180
ACGCCAGACC	ATGTCAAGGA	GGCGGGCAAG	CGAGCGATTG	ATCAGAACCA	ATCCTACTAT	240
ACAGGGATGA	GTGGTCTGCT	GACTCTACGT	CAGGCAGCCA	GTGACTTTGT	TAAGGAAAAG	300
TACCAACTGG	ACTATGCTCC	TGAAAATGAA	ATCTTGGTTA	CAATTGGGGC	GACAGAGGCT	360
TTATCTGCGA	CTTTGACGGC	TATTTTGGAA	GAGGGAGACA	AGGTACTTTT	GCCAGCTCCT	420
GCTTATCCAG	GCTATGAACC	GATTGTTAAC	TTAGTTGGGG	CAGAAATTGT	TGAGATTGAT	480
ACGACTGAAA	ATGGTTTTGT	CTTGACTCCT	GAGATGTTGG	AGAAGGCCAT	TTTGGAGCAG	540
GGTGATAAGC	TCAAGGCGGT	TATTCTCAAC	TATCCAGCCA	ATCCGACAGG	AATTACCTAC	600
AGTCGAGAGC	AGTTAGAGGC	CTTGGCAGCT	GTTTTACGCA	AGTACGAAAT	TTTTGTTGTC	660
TGTGATGAGG	TTTACTCAGA	ATTGACCTAC	ACAGGCGAAG	CCATGTGTCT	CTAGGAACGA	720
TGTTGAGAGA	CCAGGCTATT	ATTATCAATG	GTTTGTCTAA	ATCGCATGCC	ATGACAGGTT	780
GGCGTTTGGC	GCTGATTTTC	GCTCCTGCGA	CCTTCACAGC	CCAGTTAATC	AAGAGTCACC	840
AGTACTTGGT	CACTGCCGCA	AATACCATGG	CGCAACATGC	TGCGGTAGAA	GCCTTGACGG	900
CTGGTAAAA	CGATGCGGAC	CCATGAAGAA	GGAATATATC	CAACGTCGGG	ACTATATCAT	960
CGAAAAAATC	ACTGCTCTTG	GTTTTGAGAT	TATCAAACCA	GACGGTGCCT	TCTATATTTT	1020
TGCTAAAATT	CCAGCGGGCT	ACAATCAAGA	CTCCTTTGCT	TTTCTGAAGG	ATTTTGCTCA	1080
GAAGAAGGC	GTTGCCTTTA	TCCCTGGTGC	AGCCTTTGGA	CGTTACGGGG	AAGGCTACGT	1140
CCGCCTATC	TATGCAGCCA	GCATGGAGAC	TATCAAAGAA	GCCATGAAAC	GACTTGAGGA	1200
GTACATGAGA	GAAGCATGAT	TCAGTCTATC	ACGAGTCAAG	GCTTGGTGCT	TTACAATCGC	1260
AATTTTCGT	G AGGATGACAA	GCTCGTCAAA	ATTTTTACAG	AGCAGGTTGG	CAAACGCATG	1320
TTTTTTGTC	A AACACGCTGG	TCAGTCTAAG	CTGGCGCCTG	TTATTCAGCC	CTTGGTGCTG	1380
GCACGATTT	TCTTGCGAAT	CAATGATGAC	GGACTCAGTT	ACATCGAAGA	CTATCATGAG	1440
GTCATGACT	TTCCCAAGAT	TAATAGTGAC	CTCTTTGTCA	TGGCCTATGC	GACCTATGTG	1500
GCAGCTCTT	G CAGATGCTAG	TTTGCAGGAC	AATCAGCAGG	ATGCTCCCTT	GTTTGCTTTT	1560
TTGCAAAAG	A CTTTGGAGTT	GATGGAAGCA	GGCTTGGATT	ATCAGGTTTT	GACCAATATT	1620
TTTGAAATT	C AAATTTTGAC	TCGATTTGGA	ATCAGCCTCA	ATTTTAATGA	GTGTGTCTTC	1680
TGCCATCGG	G TTGGTCAGGC	TTTTGACTTT	TCTTTCAAAT	ATGGAGCCTG	CCTCTGTCCA	1740
GAGCATTAT	C ATGAGGATAA	GAGACGTTGT	CATCTCAATC	CCAATATCCC	CTATCTGCTC	1800

662 AATCAATTTC AAGCTATTGA TTTTGAGACT TTGGAGACCA TTTCGCTCAA GCCTGGAATC 1860 AAGCAAGAGC TACGCCAATT TATGGATCAA TTATATGAAG AGTACGTTGG GATTCACCTA 1920 AAATCAAAGA AATTTATTGA TTCCCTAGCA GACTGGGGAC AATTACTAAA AGAGGAAAAG 1980 AAATGAAAAA AATCGCAGTA GATGCCATGG GGGGCGATTA CGCACCTCAG GCCATTGTTG 2040 AGGGTGTCAA TCAAGCCCTA TCTGACTTTT CAGATATCGA GGTTCAACTT TACGGAGATG 2100 AAGCTAAAAT CAAGCAATAT CTGACAGCGA CAGAGCGCGT CAGCATTATC CATACGGATG 2160 AGAAGATTGA TTCGGATGAT GAACCTACGA GAGCTATTCG GAATAAGAAA AATGCCAGTA 2220 TGGTATTGGC AGCCAAGGCT GTCAAAGATG GTGAAGCAGA CGCTGTCCTT TCGGCTGGGA 2280 ATACAGGTGC CTTGTTGGCA GCAGGATTCT TCATCGTGGG TCGTATCAAG AATATCGACC 2340 GTCCTGGACT CATGTCTACC TTGCCTACCG TTGATGGAAA AGGTTTTGAC ATGCTAGACC 2400 TTGGTGCCAA TGCAGAAAAT ACAGCCCAGC ACCTCCATCA ATATGCGGTT CTAGGTTCCT 2460 TCTATGCTAA AAATGTCCGT GGCATTGCGC AACCACGCGT TGGTTTGCTC AACAACGGAA 2520 CAGAGAGTAG CAAGGGCGAC CCGCTTCGTA AGGAAACTTA TGAATTACTG GCGGCTGATG 2580 AAAGTTTGAA CTTTATCGGA AACGTGGAAG CGCGTGATTT GATGAATGGC GTTGCAGATG 2640 TTGTTGTGC AGATGGTTTC ACGGGAAACG CTGTGCTCAA ATCCATCGAA GGGACAGCTA 2700 TGGGAATCAT GGGCTTGCTC AAGACAGCTA TTACAGGTGG TGGTCTTCGA GCGAAACTAG 2760 GTGCCCTCCT TCTCAAGGAC AGCCTCAGTG GTTTGAAAAA ACAGCTCAAT TATTCAGATG 2820 TTGGTGGAGC GGTCTTGTTT GGTGTTAAGG CACCTGTTGT CAAGACTCAT GGCTCAAGCC 2880 ATGCCAAGGC TGTTTATAGT ACGATTCGTC AGATCCGTAC CATGCTAGAA ACAGACGTGG 2940 TTGCCCAGAC TGCGCGTGAA TTTTCAGGAG AATAAAAGAG ATGACAGAAA AAGAAATTTT 3000 TGACCGTATT GTGACCATTA TCCAAGAGCG ACAGGGAGAG GACTTTGTCG TGACAGAATC 3060 CTTGAGTCTG AAAGACGATT TGGATGCGGA TTCTGTTGAC TTGATGGAGT TTATCTTGAC 3120 TCTGGAAGAT GAATTTAGTA TCGAAATCAG CGATGAAGAA ATTGACCAAC TCCAAAACG? 3180 AGGAGATGTG GTTAAAATCA TTCAAGGAAA ATAGCAATCG GAGTTCCAAG TCAACGGAAG 3240 TAGATGGTTT TTAGAAATGA GAAATATCGG ACAAGCTGGT AAAATCTTGG CTGACAGTGG 3300 TTATCAAGGG CTCATGAAGA TATATCCTCA AGCACAACT CCACGTAAAT CCAGCAAACT 3360 CAAGCCGCTA ACAGTTGAAG ATAAAGCCTG TAATCATGCG CTATCTAAGG AGATAAGCAA 3420 GGTTGAGAAT ATCTTTGCCA AAGTAAAAAC GTTTAAAATG TTTTCAACAA CCTATCGAAA 3480 TCATCGTAAA CGCTTCGGAT TACGAATGAA TTTGATTGCT GGTATTATCA ATCATGAACT 3540 AGGATTCTAG TTTTGCAGGA AGTCTAATAG TAAAAAAGTG ATTAGAAAAC ATCTTTTTTA 3600

663

AAAATAGAGA	TGATTTTGAA	ACAAAAAAGC	TAATTCAAGA	CGTTTCGATG	CCAATTCAAG	3660
ATTTGGATGA	AAAAAATTAA	TAGATACTGT	TATACTAAAC	TTGTCAAGTT	TGTAACAAGA	3720
CAAATATTAA	AAATAAAA	GAGGTATTCG	TTATGAATAC	AAAAACGATG	TCACAATTTG	3780
AAATTATGGA	TACTGAGATG	CTTGCTTGCG	TTGAAGGTGG	CGGATGCAAT	TGGGGAGATT	3840
TTGCCAAAGC	AGGTGTTGGA	GGAGGAGCAG	CACGAGGTCT	TCAGCTAGGA	ATTAAAACAA	3900
GAACATGGCA	AGGTGCAGCA	ACTGGTGCTG	TGGGAGGAGC	TATACTTGGA	GGTGTGGCCT	3960
ATGCAGCGAC	ATGTTGGTGG	TAATTATGGA	TTTTAAAAGT	TTTATTATTG	GTTTAGTAGT	4020
TGGTATATTT	GGTCCTTATA	TGGATGATTT	AATTAGAAAA	AAATTTTTAA	AGTCTTCGGA	4080
GAAGAAAACA	GAAAAATCTG	TTAAAAAATA	ATCAAAACTA	TAAATGATGA	ATCTGAATCA	4140
AAATTATTTT	GCGCATGTAA	AGAGGAGTCT	TATAGTAACG	AGTCAAAAAA	GGAGTAACTA	4200
TGAATCGTAA	TTTAGAACGG	TGTTATCTAT	TCTGACTAGG	AATAGATCAT	ACCAGAGGTA	4260
GCTTAGAAAT	AGCAGAGACA	TTAGAAATTG	AAGTAATAAA	TAGGATGTCG	TAAGTGTTAC	4320
TATCAATGAT	TTATTTGTTT	CAAGCTTGCC	TAGGGTGACA	GTAAAAAATC	AATTTCCTTT	4380
CAATAGCATA	TTTTTAGTGG	GCAGGACTCT	TGTTCTGCCT	ATTTTTTTAT	CCAAAAAGTG	4440
CAGTTGGGAG	GGAGATAGGC	TCATTTGGGA	AGGAAGTCCA	GTTTTTGTTT	AGTGATTGGG	4500
GTAAGATAGT	TGTTATCAGA	TGAGTTAATA	CTCTTCGAAA	ATCAAATTCA	AACCACGTCA	4560
ACGTCGCCTT	GCCGTATATA	TGTGACTGAC	TTCGTCAGTC	CTATCTACAA	CCTCAAAACA	4620
GTGTTTTGAG	CAGCCTACGG	CTAGTTTCCT	AGTTTGCTCT	TTGATTTTCA	TTGAGTATTA	4680
GGGAAAAGGA	GATGAATATG	AAATTTGGGA	AACGTCATTA	TCGTCCGCAG	GTGGATCAGA	4740
TGGACTGCGG	TGTAGCTTCA	TTAGCCATGG	TTTTTGGCTA	CTATGGTAGT	TATTATTTTT	4800
TGGCTCACTT	GCGAGAATTG	GCTAAGACGA	CCATGGATGG	GACGACGGCT	TTGGGCTTGG	4860
TCAAGGTGGC	AGAGGAGATT	GGTTTTGAGA	CGCGAGCCAT	TAAGGCAGAT	ATGACGCTTT	4920
TTGACTTGCC	GGATTTAACT	TTTCCTTTTG	TTGCCCATGT	GCTTAAGGAA	GGGAAATTGC	4980
TCCACTACTA	TGTGGTGACT	GGGCAGGATA	AGGATAGCAT	TCATATTGCC	GATCCAGATC	5040
CCGGGGTGAA	GTTGACTAAA	CTGCCACGTG	AGCGTTTTGA	GGAAGAATGG	ACAGGAGTGA	5100
CTCTTTTTAT	GGCACCTAGT	CCAGACTATA	AGCCTCATAA	GGAACAAAAA	AATGGTCTGC	5160
TCTCTTTTAT	CCCTATATTA	GTGAAGCAGC	GTGGCTTGAT	TGCCAATATC	GTTTTGGCAA	5220
CACTCTTGGT	AACCGTGATT	AACATTGTGG	GTTCTTATTA	TCTGCAGTCT	ATCATTGATA	5280
CCTATGTGCC	AGATCAGATG	CGTTCGACAC	TAGGGATTAT	TTCTATTGGG	CTAGTCATCG	5340

TCTACATCTT	CCAGCAAATC	TTGTCTTACG	664 CTCAGGAGTA	тстсттсстт	GTTTTGGGGC	5400
AACGCTTGTC	GATTGACGTG	ATTTTGTCCT	ATATCAAGCA	TGTTTTTCAC	CTCCCTATGT	5460
CCTTCTTTGC	GACACGCAGG	ACAGGGGAGA	TCGTGTCTCG	TTTTACAGAT	GCTAACAGTA	5520
TCATCGATGC	GCTGGCTTCG	ACCATCCTTT	CGATTTTCCT	AGATGTGTCA	ACGGTTGTCA	5580
TTATTTCCCT	TGTTCTATTT	TCACAAAATA	CCAATCTCTT	TTTCATGACT	TTATTGGCGC	5640
ттсстатста	CACAGTGATT	ATCTTTGCCT	TTATGAAGCC	GTTTGAAAAG	ATGAATCGGG	5700
ATACCATGGA	AGCCAATGCG	GTTCTGTCTT	CTTCTATCAT	TGAGGACATC	AACGGTATTG	5760
AGACTATCAA	GTCCTTGACC	AGTGAAAGTC	AGCGTTACCA	AAAAATTGAC	AAGGAATTTG	5820
TGGATTATCT	GAAGAAATCC	TTTACCTATA	GTCGAGCAGA	GAGTCAGCAA	AAGGCTCTGA	5880
AAAAGGTTGC	CCATCTCTTG	CTTAATGTCG	GCATTCTCTG	GATGGGGGCT	GTTCTGGTCA	5940
TGGATGGCAA	GATGAGTTTG	GGGCAGTTGA	TTACCTATAA	TACCTTGCTG	GTTTACTTTA	6000
CTAATCCTTT	GGAAAATATC	ATCAATCTGC	AAACCAAGCT	TCAGACAGCG	CAGGTTGCCA	6060
ATAACCGTCT	AAATGAAGTG	TATCTAGTAG	CTTCTGAGTT	TGAGGAGAAG	AAAACAGTTG	6120
AGGATTTGAG	CTTGATGAAG	GGAGATATGA	CCTTCAAGCA	GGTTCATTAC	AAGTATGGCT	6180
ATGGTCGAGA	TGTCTTATCG	GATATCAATT	TAACCGTTCC	CCAAGGGTCT	AAGGTGGCTT	6240
TTGTGGGGAT	TTCAGGGTCA	GGTAAGACGA	CTTTGGCCAA	GATGATGGTT	AATTTTTACG	6300
ACCCAAGTCA	AGGGGAGATT	AGTCTGGGTA	GTGTCAATCT	CAATCAGATT	GATAAAAAAG	6360
CCCTGCGCCA	GTACATCAAC	TATCTGTCTC	AACAGCCCTA	TGTCTTTAAC	GGAACGATTT	6420
TGGAGAATCT	TCTTTTGGGA	GCCAAGGAGG	GGACGACACA	GGAAGATATC	TTACGGGCGG	6480
TCGAATTGGC	AGAGATTCGA	GAGGATATCG	AGCGCATGCC	ACTGAATTAC	CAGACAGAAT	6540
TGACTTCGGA	TGGGGCAGGG	ATTTCAGGTG	GTCAACGTCA	GAGAATCGCT	TTGGCGCGTG	6600
CTCTCTTGAC	AGATGCGCCG	GTCTTGATTT	TGGATGAGGC	GACTAGCAGT	TTGGATATTT	6660
TGACAGAGAA	GCGGATTGTC	GATAATCTCA	TTGCTTTGGA	CAAGACCTTG	ATTTTCATTG	6720
CTCACCGCTT	GACTATTGCT	GAGCGGACAG	AGAAGGTAGT	TGTCTTGGAT	CAGGGCAAGA	6780
TTGTCGAAGA	AGGAAAGCAT	GCTGATTTGC	TTGCACAGGG	TGGCTTTTAC	GCCCATTTGG	6840
TCAATAGCTA	GAAAGAGGAG	AGGATGAAAC	CAGAATTTT	AGAAAGTGCG	GAGTTTTATA	6900
ATCGTCGTTA	CCATAATTTT	TCCAGTAGTG	TGATTGTACC	CATGGCCCTT	CTGCTTGTGT	6960
TTTTACTTGG	CTTTGCAACT	GTTGCAGAGA	AGGAGATGAG	TTTGTCCACT	AGAGCTACTG	7020
TCGAACCTAC	TCGTATCCTT	GCAAATATCC	AGTCAACTAG	CAACAATCGT	ATTCTTGTCA	,7080
ATCATTTGG	AGAAAATAAG	CTGGTTAAGA	AGGGGGATÇT	TTTGGTTCA	TACCAAGAAG	7140

GGGCAGAGGG	TGTCCAAGCG	GAGTCCTATG	CCAGTCAGTT	GGACATGCTA	AAGGATCAAA	7200
AAAAGCAATT	GGAGTATCTG	CAAAAGAGCC	TGCAAGAAGG	GGAGAACCAC	TTTCCAGAGG	7260
AGGATAAGTT	TGGCTACCAA	GCCACCTTTC	GCGACTACAT	CAGTCAAGCA	GGCAGTCTTA	7320
GGGCTAGTAC	ATCGCAACAA	AATGAGACCA	TCGCGTCCCA	GAATGCAGCA	GCTAGCCAAA	7380
CCCAAGCCGA	AATCGGCAAC	CTCATCAGTC	AAACAGAGGC	TAAAATTCGC	GATTACCAGA	7440
CAGCTAAGTC	AGCTATTGAA	ACAGGTGCTT	CCTTGGCCGG	TCAGAATCTA	GCCTACTCTC	7500
TTTACCAGTC	CTACAAGTCT	CAGGGCGAGG	AAAATCCCCA	AACTAAGGTT	CAGGCAGTTG	7560
CACAGGTTGA	AGCACAGATT	TCTCAGTTAG	AATCTAGTCT	TGCTACTTAC	CGTGTCCAGT	7620
ATGCAGGTTC	AGGTACCCAG	CAAGCCTATG	CGTCAGGGTT	AAGCAGTCAA	TTGGAATCCC	7680
TTAAATCCCA	ACACTTGGCA	AAGGTTGGTC	AGGAATTGAC	CCTTCTAGCC	CAGAAAATTT	7740
TGGAGGCAGA	GTCAGGTAAG	AAGGTACAGG	GAAATCTTTT	AGACAAGGGG	AAAGTTACGG	7800
CGAGTGAGGA	TGGGGTGCTT	CATCTTAATC	CTGAGACCAG	TGATTCTAGC	ATGGTTGCAG	7860
AAGGTGCCCT	ACTAGCCCAA	CTTTATCCAT	CTTTGGAAAG	AGAAGGGAAA	GCCAAACTCA	7920
CAGCTTATCT	AAGTTCAAAA	TATGTAGCAA	GAATCAAGGT	CGGTGATTCT	GTTCGCTATA	7980
CTACGACTCA	TGATGCCGGG	AATCAACTTT	TCCTAGATTC	TACTATTACA	AGTATTGATG	8040
CGACAGCTAC	TAAGACTGAG	AAAGGGAATT	TCTTTAAAAT	CGAGGCGGAG	ACTAATCTAA	8100
CTTCGGAGCA	GGCTGAAAAA	CTTAGGTACG	GGGTGGAAGG	CCGCTTGCAG	ATGATTACGG	8160
GCAAGAAAAG	TTACCTACGT	TATTATTTGG	ATCAATTTTT	GAACAAAGAG	TAATGTTCGT	8220
GTTTTTAGAG	TTAAATAATT	TTTAAACTGT	GAGAAAGATT	CTTCTTGCAG	TTTTTTCTTT	8280
ACAATTTTTG	AAAAACATCT	ACTATTTATT	CGGTTAAATT	CTTGTGTTTT	TTGGTTTTTT	8340
GTGGTAAAAT	GTGCTCAAGT	AATACGAAAG	GCGAACTTTA	AAATGTCAAA	ACAATTGATC	8400
TATTCGGGAA	AAGCTAAAGA	TATCTATACA	ACTGAGGATG	AAAATCTTAT	TATTTCAACT	8460
TACAAGGACC	AGGCGACTGC	TTTCAACGGT	GTCAAGAAGG	AGCAGATTGC	AGGTAAGGGA	8520
GTCTTGAATA	ATCAGATCTC	ATCTTTTATT	TTTGAGAAAT	TAAATGTGGC	TGGTGTGGCG	8580
ACTCACTTTG	TGGAGAAACT	TTCAGACACG	GAACAACTCA	ATAAAAAGGT	TAAGATTATT	8640
CCTTTGGAAG	TCGTGCTCCG	CAACTATACT	GCTGGTTCCT	TTTCAAAACG	TTTTGGTGTG	8700
GATGAGGGAA	TCGCCTTGGA	GACTCCGATT	GTCGAATTTT	ACTACAAAAA	TGATGATTTG	8760
GATGATCCAT	TTATCAATGA	TGAGCATGTG	AAATTCCTAC	AGATTGCGGG	TGACCAGCAG	8820
ATTGCCTACT	TGAAGGAAGA	AACGCGTCGT	ATCAATGAAC	TATTGAAAGT	CTGGTTTGCT	8880

GAGATTGGGC	TTAAATTGAT	TGACTTTAAG	666 CTAGAGTTCG	GTTTTGACAA	GGATGGCAAG	8940
ATTATCTTGG	CAGACGAATT	TTCACCAGAT	AACTGCCGCT	TGTGGGACGC	TGATGGCAAC	9000
CACATGGATA	AGGATGTTTT	CCGTAGAGGA	TTGGGAGAAC	TAACCGACGT	TTATGAGATT	9060
GTTTGGGAAA	AGTTGCAGGA	ATTGAAATAA	TCTGTTTGCA	ACGGAAAACC	TTCGTCTCTC	9120
AACTAAAAGG	ACTCAGGCTG	AAAAGGTCCC	CCAGACCTTT	TCACTCTGTA	GAGAACTAGG	9180
TGAACTAACA	GATGTTTACG	AAATTGTCTG	GGAAAAGTTG	CAGGGTTTAA	AATAACAACC	9240
TCAAGGCTGT	TTGGGAATAT	TGCAAGAGCT	GAAATAAAGG	AATAAGAATT	GATGGATAAA	9300
CGTATTTTTG	TTGAAAAAA	GGCTGATTTT	CAGGTCAAGT	CAGAGAGTTT	CGTTAGAGAG	9360
CTCCAGCACA	ACTTGGGACT	GTCAAGCTTG	AAAAGTATTC	GTATTGTGCA	AGTATATGAT	9420
GTATTTGACT	TGGCTGAGGA	CTTGTTTGCA	CCTGCAGAGA	AGCACATTTT	CTCTGAGCAG	9480
GTAACCGACC	ATGTTTTAGA	TGAAGTATCT	GTGCAGGCGG	ATCTTGCTAA	CTATGCTTTC	9540
TTTGCCATTG	AAAGTCTGCC	AGGGCAGTTT	GACCAGCGTG	CAGCTTCGTC	ACAGGAAGCC	9600
TTGCTTTTGT	TGGGAAGTTC	GAGTGACGTG	ACAGTCAACA	CAGCCCAACT	TTACTTGGTG	9660
AATAAAGATA	TTGATGCGAC	TGAGTTGGAA	GCTGTCAAAA	ACTACCTGCT	CAATCCAGTT	9720
GATTCTCGTT	TCAAGGATAT	CACGACAGGG	ATTGCCAAGC	AGGAGTTTTC	AGAGTCAGAC	9780
AAGACCATTC	CCAAATTGAC	TTTCTTTGAA	AGCTATGCAG	CAGAAGACTT	TGCTCGCTAC	9840
AAGGCCGAAC	AAGGGATGGC	CATGGAAGTG	GATGATTTGC	TCTTTATCCA	AGACTACTTT	9900
AAGTCAATCG	GGCGCGTGCC	AACTGAGACT	GAACTCAAGG	TTTTGGACAC	TTACTGGTCT	9960
GACCACTGCC	GTCATACGAC	TTTTGAGACA	GAGTTGÁAAC	ACATCGACTT	TTCAGCTTCT	10020
AAATTTCAAA	AGCAATTGCA	GTCAACCTAT	GACAAGTATA	TTGCCATGCG	CGAGGAATTA	10080
GGTCGGTCTC	AAAAACCACA	AACCTTGATG	GATATGGCGA	CTATTTTCGC	TCGTTATGAG	10140
CGTGCTAATC	GACGATTGGA	TGATATGGA	GTCTCTGACC	AAATCAATGO	CTGCTCAGTT	10300
GAAATTGAAG	TGGACGTTGA	TGGTGTCAAC	GAACCTTGGG	TCCTCATGTT	TAAAAACGAA	10260
ACCCACAAC	ATCCAACAGA	AATTGAGCCA	TTTGGTGGAG	CGGCTACCTC	TATTGGTGGA	10320
GCTATTCGT	ATCCGTTGTC	AGGCCGTTCC	TATGTTTAC	AAGCCATGC	TATTTCAGGT	10380
GCTGGTGAT	A TTACAGCACO	GATTTCGGA	ACTCGCGCTC	GGAAATTGC	ACAACAAGTC	10440
ATTTCTAAA	A CAGCAGCTC	TGGTTATTC	T TCATATGGT	A ACCAGATTG	G GCTTGCAACA	10500
ACCTACGTT	C GTGAATACT	CCACCCAGG	TTTGTAGCT	A AACGTATGG	A ACTTGGTGCC	10560
GTTGTTGGT	G CGACTCCCA	GGGCAATGT	r gtccgtgaa	A AACCTGAAG	C AGGTGATGTG	10620
ATCATCCTT	C TCGGAGGCA	AACAGGTCG	r GATGGTGTC	GTGGTGCGA	C GGGCTCTTCT	10680

AAGGTTCAAA	CAGTTGAGTC	TGTAGAGACT	GCTGGTGCTG	AGGTTCAAAA	AGGAAATGCC	10740
ATCGAAGAAC	GCAAGATTCA	GCGCCTCTTC	CGTAATGGCA	ATGTCACTCG	TCTGATCAAG	10800
AAGTCCAATG	ACTTTGGGGC	AGGCGGTGTC	TGTGTGGCTA	TCGGTGAATT	GGCAGACGGT	10860
CTTGAAATCG	ACCTCAACAA	GGTGCCTCTT	AAATACCAGG	GCTTGAATGG	TACAGAAATT	10920
GCCATCTCTG	AATCACAAGA	ACGGATGGCG	GTCGTGGTTC	GTCCTGAAGA	TGTGGATGCG	10980
TTCGTTGCCG	AATGTAACAA	AGAAAATATT	GATGCTGTTG	TGGTGGCGAC	AGTAACTGAA	11040
AAACCAAATC	TTGTCATGCA	CTGGAATGGT	GAGACAATCG	TTGACTTGGA	GCGTCGTTTC	11100
CTTGACACCA	ATGGTGTGCG	CGTGGTTGTC	GATGCCAAAG	TTGTGGACAA	GGATGTCAAA	11160
CTCCCAGAAG	AGCGTCAAAC	ATCTGCTGAA	ACACTGGAAT	CAGATACCCT	TACGGTTCTA	11220
TCTGACCTCA	ACCATGCAAG	TCAAAAAGGA	TTACAGACTA	TCTTTGACTG	CTCTGTTGGA	11280
CGCTCAACGG	TTAATCACCC	ACTTGGTGGT	CGTTACCAAC	TCACACCAAC	TGAGGCATCT	11340
GTGCAGAAAT	TGCCAGTTCA	ACACGGTGTG	ACTCATACTG	CGTCGGTCAT	TGCTCAAGGT	11400
TTCAACCCAT	ATGTAGCTGA	ATGGTCTCCA	TACCACGGTG	CTGCTTATGC	GGTTATCGAA	11460
GCAACTGCTC	GTTTGGTGGC	TCCTGGTGCC	AACTGGTTCA	AGGCTCGTTT	CTCTTACCAA	11520
GAGTATTTCG	AGCGTATGGA	TAAACAAGCA	GAGCGTTTCG	GTCAGCCAGT	AGCTGCTCTT	11580
CTAGGTTCTA	TTGAAGCACA	AATTCAGCTT	GGCTTGCCAT	CTATCGGTGG	TAAGGACTCC	11640
ATGTCTGGTA	CCTTTGAAGA	ATTGACCGTT	CCGCCAACCT	TGGCTGCCTT	TGGGGTGACG	11700
ACGGCAGATA	GCCGTAAGGT	GCTCTCTCCA	GAATTTAAAG	CTGTTGGGGA	AAATATCTAC	11760
TACATCCCAG	GTCAAGCCCT	CTCTGCAGAG	ATTGATTTTG	ACTTGATTAA	GAAAAATTTT	11820
GCTCAGTTTG	AAGCCATCCA	AGCTGACCAT	AAAGTGACAT	CTGCATCAGC	TGTCAAATAC	11880
GGTGGTGTAG	TTGAAAGTTT	GGCTCTTGCT	ACCTTTGGAA	ACTATATTGG	TGCAGAGGTG	11940
ACCTTGCCTG	AACTTGAAAC	AGCTTTGACA	GCTCAATTAG	GCGGCTTTCT	CTTCACATCT	12000
CCTGAAGAAA	TTGCTGGAGT	AGAGAAGGTT	GGACAAACGA	AAGCAGACTT	TACACTGACT	12060
GTCAACGGTG	TGAAGCTAGA	TGGACACAAG	CTTGACAGTG	CATTTCAAGG	GACATTGGAA	12120
GAAGTTTACC	CAACAGAATT	TACCCAAGCG	AAAGAACTAG	AAGAAGTACC	AGCTGTGGCA	12180
TCAGATGTTG	TGATTAAAGC	CAAAGAAAAG	GTTGAAAAAC	CTGTGGTTTA	CATCCCAGTC	12240
TTTCCAGGAA	CCAACTCAGA	ATATGATTCA	GCTAAGGCCT	TCGAAAAAGA	AGGTGCAGAG	12300
GTCAATTTGG	TGCCATTCGT	GACCTTGAAT	GAAGAAGCTA	TTGTCAAGTC	AGTTGAAACT	12360
ATGGTTGACA	ATATCGACAA	GACTAATATT	CTCTTCTTTG	CTGGTGGATT	стсбсстссс	12420

GATGAAÇCAG	ATGGTTCAGC	TAAGTTTATC	668 GTCAATATCC	TGCTTAATGA	AAAAGTGCGT	12480
GTGGCTATTG	ATAGCTTTAT	CGCCCGTGGT	GGTTTGATTA	TCGGTATTTG	TAATGGATTC	12540
CAAGCCTTAG	TCAAATCGGG	TCTCCTACCC	TACGGAAACT	TTGAAGCTGC	TAACAGTACT	12600
AGCCCAACCC	TCTTCTACAA	TGATGCCAAC	CAACACGTGG	CCAAGATGGT	GGAAACTCGC	12660
ATTGCCAATA	CCAACTCACC	ATGGTTGGTT	GGTGTGCAAG	TGGGCGATAT	CCACGCTATT	12720
CCTGTTTCGC	ACGGTGAAGG	GAAGTTTGTC	GTGACGGCTG	AGGAATTTGC	AGAGCTCCGT	12780
GACAATGGAC	AAATTTTCAG	CCAATACGTT	GACTTTAACG	GTAAACCAAG	TATGGATTCT	12840
AAGTACAATC	CGAATGGTTC	TGTCCATGCC	ATCGAAGGAA	TTACCAGCAA	GAATGGTCAA	12900
ATCATCGGTA	AGATGGGCCA	CTCAGAACGT	TATGAGGATG	GTCTTTTCCA	AAATATCCCA	12960
GGCAATAAAG	ACCAACACCT	GTTCGCATCA	GCGGTTAAAC	ATTTCACTGG	AAAATAAGAC	13020
TTACAGATTT	TCTAATAGAT	AGTATCAGTA	ATGTAAAAGT	CATGTAAATC	TAGCTCTTGA	13080
TGATTACAAA	TGAAAATTAG	GTATAAAAA	TGACATACGA	AGTAAAATCT	CTTAATGAAG	13140
AATGTGGTGT	TTTCGGTATT	TGGGGACATC	CAGATGCTGC	TAAGTTGACC	TATTTTGGAC	13200
TCCACAGTCT	TCAACACCGT	GGTCAGGAGG	GGGCAGGAAT	CCTCTCCAAT	GATCAAGGAC	13260
AACTGAAGCG	CCATCGTGAC	ATGGGGCTTT	TATCAGAAGT	TTTCAGAAAT	CCAGCTAATT	13320
TGGATAAATT	GACAGGAGCT	GGTGÇGATTG	GGCATGTGCG	TTATGCGACT	GCTGGCGAAG	13380
CTTCTGTAGA	TAACATCCAG	CCCTTCCTCT	TCCGTTTTCA	CGATATGCAG	TTTGGTTTGG	13440
CTCATAATGG	AAATCTGACC	AATGCAGCCT	CTCTCAAGAA	AGAACTGGAA	CAAAGAGGAG	13500
CAATTTTCAG	CGCGACTTCG	GACTCTGAAA	TCTTGGCTCA	CCTCATTCGT	CGCAGTCATA	13560
ATCCTAGCCT	GATGGGCAAA	ATCAAGGAAG	CGCTCAGCCT	TGTCAAAGGT	GGTTTTGCCT	13620
ATATCTTGCT	GTTTGAGGAC	AAGTTGATTG	CGGCTCTTGA	CCCAAATGGA	TTCCGACCGC	13680
TTTCGATTGG	TAAAATGGCT	AATGGAGCAG	TTGTTGTATC	TTCTGAAACC	TGTGCTTTTG	13740
AGGTCATTGG	TGCCGAGTGG	ATTCGTGATT	TGAAGCCAGG	TGAGATTGTG	ATCATTGATG	13800
ACGAGGCAT	TCAGTATGAC	AGCTATACAG	ATGATACCCA	GTTGGCGGTT	TGTTCTATGG	13860
AGTATATCTA	. CTTTGCTCGC	CCTGATTCTA	ATATCCACGG	TGTCAATGTC	CATACGGCAC	13920
GTAAGAGAAT	GGGAGCGCAA	TTGGCGCGAG	AATTTAAGCA	TGAGGCAGAT	ATTGTAGTTG	13980
GTGTGCCCAA	TTCTTCCCTA	AGCGCGGCTA	TGGGATTTGC	GGAAGAATCA	GGCTTACCAA	14040
ATGAAATGGC	TCTGATCAAA	AACCAATACA	CCCAGCGAAC	TTTTATCCA	CCGACTCAAG	14100
AATTGCGGGA	GCAAGGAGTG	CGGATGAAAC	TGTCTGCTGT	TTCGGGTGTT	GTCAAAGGCA	14160
AACGTGTGGT	CATGGTGGAT	GATTCCATTC	TACGTGGAAC	AACCTCTCGT	CGTATCGTTC	14220

AGCTCTTGAA	AGAAGCGGGT	GCGACTGAGG	TTCACGTTGC	CATTGGAAGT	CCTGCACTAG	14280
CGTATCCATG	TTTCTACGGG	ATTGATATCC	AGACCCGTCA	GGAGCTGATT	GCAGCCAATC	14340
ATACGGTCGA	AGAAACTCGC	CAAATCATTG	GTGCGGACAG	TCTGACTTAT	CTTTCAATTG	14400
ATGGCTTGAT	TGAGTCGATT	GGTATCGAAA	CAGATGCGCC	GAACGGTGGT	CTCTGTGTCG	14460
CTTACTTTGA	CGGTGACTAC	CCAACGCCTC	TTTATGACTA	CGAAGAAGAC	TATCGTAGAA	14520
GTTTGGAAGA	AAAGACCAGT	TTTTACAAGT	AGGCGACAGA	TTCTCCATTA	AAGAAAAGGA	14580
AAAAATAAAT	GACAAATAAA	AATGCATATG	CCTCACGTCT	CACTACTGAC	TAAAGGCTTA	14640
AGCATTTAGT	CAGTAGACGC	TTTGTCCTAT	AGGATCAAAG	CTAGAGCCCT	GACTAGTATT	14700
TTTAGATAAA	AAGATGGTTT	ATCTAAAAAT	ACGTCGCAGT	CTTTCTCAAA	AAAAGAAAAG	14760
GAAAAATAAA	ATGGCAAATA	AAAATGCGTA	CGCTCAATCT	GGTGTGGATG	TTGAAGCGGG	14820
TTATGAAGTT	GTTGAACGGA	TTAAAAAGCA	CGTGGCCCGT	ACGGAGCGTG	CAGGTGTCAT	14880
GGGAGCTCTT	GGTGGCTTTG	GTGGTATGTT	TGACCTTTCC	AAGACTGGGG	TTAAAGAACC	14940
CGTCTTGATT	TCAGGGACTG	ACGGTGTCGG	AACCAAGCTC	ATGTTGGCTA	TCAAGTACGA	15000
CAAGCACGAT	ACCATCGGGC	AGGACTGTGT	GGCCATGTGT	GTCAACGACA	TCATTGCTGC	15060
AGGTGCGGAA	CCCCTCTATT	TTCTCGACTA	CGTAGCGACA	GGGAAGAATG	AACCAGCTAA	15120
GCTAGAACAA	GTGGTTGCTG	GTGTGGCAGA	AGGTTGTGTG	CAGGCTGGTG	CTGCCCTCAT	15180
CGGTGGGGAA	ACGGCTGAAA	TGCCGGGCAT	GTACGGCGAA	GACGACTATG	ACTTGGCTGG	15240
TTTTGCGGTC	GGTGTGGCTG	AAAAATCTCA	AATCATTGAC	GGTTCAAAGG	TCGTAGAGGG	15300
AGATGTTCTT	CTCGGACTTG	CTTCAAGTGG	GATTCACTCA	AATGGTTACT	CTTTGGTTCG	15360
TCGTGTCTTT	GCGGATTACA	CAGGTGAGGA	AGTCCTACCA	GAATTCGAAG	GCAAGAAACT	15420
TAAGGAAGTT	CTACTTGAGC	CGACTCGTAT	CTATGTCAAG	GCTGTCTTGC	CGCTCATCAA	15480
AGAAGAGTTG	GTCAACGGCA	TTGCCCACAT	CACAGGTGGT	GGCTTTATCG	AAAATGTCCC	15540
TCGTATGTTT	GCAGATGACC	TAGCTGCTGA	AATTGATGAA	AGTAAAGTTC	CAGTGCTTCC	15600
AATTTTCAAA	ACCCTTGAAA	AATACGGTCA	GATTAAACAC	GAAGAAATGT	TTGAAATCTT	15660
CAATATGGGT	GTGGGACTTA	TGTTGGCGGT	CAGCCCTGAA	AATGTAGAGC	GTGTAAAAGA	15720
ATTGTTGGAT	GAAGCAGTCT	ATGAAATTGG	TCGCATCGTC	AAGAAAGAAA	ACGAAAGTGT	15780
CATTATCAAA	TGAAAAAAAT	AGCGGTTTTT	GCCTCTGGTA	ATGGCTCAAA	TTTTCAGGTG	15840
ATTGCCGAAG	AATTTCCAGT	GGAGTTTGTC	TTTTCAGACC	ATCGTGATGC	CTATGTGCTT	15900
GAGCGTGCAA	AGCAGCTCGG	CGTTCTGTCC	TATGCTTTTG	AACTCAAGGA	GTTTGAGAGC	15960

			670		•	
AAGGCAGACT	ACGAAGCAGC	CCTTGTCGAA	•	AACACCAGAT	TGACTTGGTT	16020
TGCCTAGCAG	GCTACATGAA	AATCGTTGGA	CCAACCTTAT	TGTCGGCTTA	TGAAGGTCGG	16080
ATTGTCAACA	TTCATCCAGC	CTACTTGCCA	GAATTTCCAG	GAGCTCATGG	GATTGAGGAT	16140
GCTTGGAATG	CTGGCGTGGG	TCAGTCTGGT	GTGACCATTC	ACTGGGTGGA	TTCGGGTGTG	16200
GATACAGGCC	AGGTCATCAA	ACAGGTTCGT	GTGCCACGAC	TAGCTGATGA	TACCATTGAC	16260
AGATTTGAAG	CTCGCATCCA	TGAAGCAGAG	TACAGGCTGT	ATCCGGAAGT	AGTGAAGGCT	16320
CTATTTACAG	ATTGACTTTT	TGATGATTCA	TATGATATCT	TTGATTTTAA	ATTGGAGTCA	16380
GTGTTTGTTG	AAGACGGCTT	CAAACGGAGG	TATTTGTAAT	GTTAGAATCT	AAAAAAACAA	16440
CTCGATATGT	ATTTTATGTC	TATCTGATGT	TATTAACTTG	GGGAATCTTA	TŢŢAAGTŢŢĞ	16500
AAACAAATCC	TGAATTTATA	GCATTTTTCT	TAGCTCCAAG	GTATATCAAT	TGGATTCCAT	16560
TTTCAGAACC	ACTAATAGTC	GATGGAAAAA	TTGTTTTTGC	TGAAATGTTA	TTTAATCTGA	16620
TTTTCTTTAT	TCCATTAGGT	GTTTGTTTCC	CTTTGATAAA	AACTAATTTA	TCTAGTTTAA	16680
GAATAGTCGG	GACAGGTTTC	TTGATTAGTT	TATTGTTTGA	GTGCTTACAG	TATATTTTAG	16740
CAATAGGTAT	AACAGATATA	ACGGATTTGA	CTTTAAATAC	GCTAGGTGTC	TGTGTAGGCT	16800
TACTGATTTA	TCAAATTTTT	ATAAGAGTGT	TCAAATCACA	GACTAGAAAA	TGGATCAATA	16860
TCTTAGGTAT	GCTTAGCCTT	GGTTTTGCTT	ATCTTGTTTT	ACTGTTACTG	CATTTACTTA	16920
GTGTTTAACT	AATGATTAAA	AAGGAGAATA	TAATGACTAA	ACGCGTCTTA	ATCAGCGTCT	16980
CAGACAAAGC	GGGCATTGTT	GAATTTGCCC	AAGAACTCAA	AAAACTTGGT	TGGGAGATTA	17040
TCTCAACAGG	TGGAACTAAG	GTTGCCCTTG	ATAATGCTGG	GGTGGATACC	ATTGCTATCG	17100
ATGATGTGAC	TGGTTTCCCA	GAAATGATGG	ACGGTCGTGT	GAAGACCCTC	CACCCAAATA	17160
TCCACGGAGG	GCTTCTCGCT	CGTCGTGACT	TGGATAGCCA	CTTGGAAGCG	GCTAAGGACA	17220
ACAAGATTGA	GCTCATTGAC	CTTGTGGTGG	TCAACCTTTA	CCCATTTAAG	GAAACTATCC	17280
TTAAACCAGA	TGTGACTTAT	GCTGATGCAG	TTGAAAATAT	CGATATTGGT	GGGCCATCT:A	17340
TGCTTCGTTC	AGCAGCGAAA	AATCATGCCA	GTGTTACAGT	TGTGGTAGAT	CCTGCTGACT	:7400
ACGCTGTGGT	TTTGGATGAA	TTGGCAGCAA	ACGGCGAAAC	CTCTTATGAA	ACTCGCCAAC	17460
GTTTAGCAGC	CAAAGTATTT	CGTCACACAG	CGGCTTATGA	CGCCTTGATT	GCAGAATACT	17520
TCACAGCTCA	AGTGGGTGAA	AGCAAGCCTG	AAAAACTCAC	TTTGACTTAT	GACCTCAAGC	17580
AACCAATGCG	TTACGGTGAG	AATCCTCAAC	AAGACGCGGA	CTTTTACCAG	AAAGCTTTGC	17640
CTACAGACTA	CTCCATTGCT	TCAGCCAAAC	AGCTCAACGG	GAAAGAATTG	TCATTTAATA	17700
ATATCCGTGA	TGCAGATGCT	GCTATCCGTA	TCATCCGTGA	CTTCAAAGAT	AGTCCAACCG	17760

	CAAACACATG	AATCCATGTG	GAATTGGTCA	AGCTGATGAC	ATCGAGACTG	17820
	CGCTTATGAG					17880
						17940
	GGATGCTGCG					18000
	CTATACGGAT					• • • • • • • • • • • • • • • • • • • •
	CTTGCCATTT					18060
GTGTAGTCGG	TGGACTTCTC	GTGCAAAATC	AAGACGTGGT	CAAGGAAAGC	CCAGCTGACT	18120
GGCAAGTGGT	GACTAAACGT	CAGCCAACTG	AGACAGAAGC	GACTGCTCTT	GAGTTCGCTT	18180
GGAAGGCTAT	CAAGTACGTC	AAATCAAATG	GTATTATCGT	GACCAACGAC	CACATGACAC	18240
TTGGTGTTGG	TCCAGGTCAA	ACCAACCGTG	TGGCTTCTGT	TCGCCTTGCC	ATTGACCAAG	18300
CCAAAGATCG	TCTGGACGGG	GCGGTCCTTG	CTTCAGATGC	CTTCTTCCCA	TTTGCGGATA	18360
ACGTGGAAGA	AATCGCCAAA	GCAGGAATTA	AGGCCATCAT	CCAGCCCGGT	GGCTCTGTCC	18420
GTGACCAAGA	ATCCATCGAA	GCAGCGGATA	AATACGGCTT	GACTATGGTC	TTTACAGGTG	18480
	TAGACATTAA					18540
	TAACTGAAAC					18600
	A GAGGTTGAGG					18660
	A AAAAGTTACT					18720
					CGAACATTAT	18780
					TCCAGATGAT	18840
					CTTTGGTCCG	18900
					CATGGTCAAA	19960
					CAAAGCCTAT	19020
					T TGGGAAGGGT	19080
					T GCTTTTGGAC	19140
					a aggagaggaa	19200
					C GGCTCAGGAC	19260
					G TGCCTATGCG	19320
					T TGTCAAGCCA	19380
						19440
					A CGCAGGGCTT	19500
ATCCTGAC	AG CTGATGGAC	C GAAAGTCA1	TT GAGTTCAAC	o croonico	G AGATCCAGAA	22230

			672			
ACTCAGATTA	TCTTGCCTCG	CTTGACCTCT	GACTTTGCTC	AAAATATCAC	AGATATCCTG	19560
GATAGCAAGG	AGCCAAATAT	CATGTGGACG	GACAAGGGTG	TGACTCTGGG	TGTGGTTGTC	19620
GCATCCAAGG	GCTACCCGCT	AGACTATGAA	AGGGGCGTTG	AGTTGCCAGC	CAAGACAGAA	19680
GGCGATGTCA	TCACCTACTA	TGCAGGGGCT	AAGTTTGCGG	AAAATAGCAG	AGCACTGCTC	19740
TCAAACGGCG	GACGAGTTTA	TATGCTCGTT	ACCACAGCAG	ATACCGTCAA	AGAAGCCCAA	19800
GCCAGCATAT	ACCAAGAACT	ATACCAACAA	AAAATAGAAG	GACTCTTCTA	CCGAACAGAT	19860
ATCGGAAGCA	AGGCAATTAA	GTAAAGATAT	AAGAATAACG	CGCCGTAGTC	GCCAAACACG	19920
ATAATGGTCG	TCGTGGTGAA	AAGACCAGAA	CAGTGAATGT	TCTGGTCAGG	GGGAAACTTG	19980
GAGACCTTAG	GCTCAAAGTT	TAGGAATGAA	ACCGAAGGTT	TGCTTCCGCC	TCCATCACCT	20040
AAGACCATTA	TCAAAAAGAA	AAATAAAAAT	TCACAAAATA	CGTTAATGAT	CGTATGGTTT	20100
GCGAGCGTTA	GCGAGCTAAT	ATAGAACAAT	CACCGCCGTT	GTGAAAGAAC	GATTGGATGA	20160
TAATCCAATC	GTTCAGGGAA	ATTGGAAGAC	CTTGGGTTTC	CAATTTAGGC	ATGAGACACC	20220
TTTGGTGGCT	GCTGCCGTCC	CTCACAAGCT	AAGGTGATTG	TTGAAAAAGA	GGAAAAAGGA	20280
GAAGAAATGA	AACCAGTAAT	TTCCATCATC	ATGGGCTCAA	AATCCGACTG	GGCAACCATG	20340
CAAAAAACAG	CAGAAGTCCT	AGACCGCTTC	GGTGTAGCCT	ACGAAAAGAA	AGTTGTTTCC	20400
GCACACCGTA	CACCAGACCT	CATGTTCAAA	CATGCAGAAG	AAGCCCGTAG	TCGTGGCATC	20460
AAGATCATCA	TCGCAGGTGC	TGGTGGCGCA	GCGCATTTGC	CAGGCATGGT	AGCTGCCAAA	20520
ACAACCCTTC	CAGTCATTGG	TGTGCCAGTC	AAGTCTCGTG	CTCTTAGTGG	AGTGGATTCA	20580
СТСТАТТСТА	TCGTTCAGAT	GCCGGGTGGG	GTGCCTGTTG	CGACCATGGC	TATCGGTGAA	20640
GCTGGAGCGA	CTAACGCAGC	TCTCTTTGCC	CTCCGTCTCC	TCTCTGTAGA	AGATAAGTCC	20700
ATTGCGGATG	CACTTGCCAA	CTTTGCTGAA	GAACAAGGAA	AAATCGCAGA	GGAGTCGTCA .	20760
AATGAGCTCA	TCTAAAACAA	TCGGAATTAT	CGGTGGCGGT	CAACTGGGTC	AGATGATGGC	20820
CATTTCTGCT	ATCTACATGG	GCCACAAGGT	TATCGCGCTG	GATCCTGCGG	CGGATTGCCC	20880
GGTCTCTCGT	GTGGCGGAAA	TCATTGTGGC	ACCTTATAAC	GATGTAGACG	CCCTCCGTCA	20940
GTTGGCAGAC	CGTTGCGATG	TCCTCACTTA	TGAGTTTGAA	AATGTCGACG	CTGACGGTTT	21000
GGATGCCGTT	ATCAAGGATG	GACAACTCCC	TCAAGGAACA	GATCTGCTCC	GCATTTCGCA	21060
AAATCGTATT	TTTGAAAAGG	ACTITITGTO	AAACAAGGCT	CAAGTCACTG	TGGCACCCTA	21120
CAAGGTCGTG	ACTTCTAGCC	TAGACTTGGC	AGATATCGAC	TTGTCGAAAA	ACTATGTCCT	21180
CAAGACTGCG	ACTGGTGGCT	ACGATGGTCA	TGGACAAAAG	GTTATTCGTT	CAGAAGCAGA	21240
CTTGGAAGCA	GCCTATGCGC	TAGCAGACTO	AGCAGACTGC	GTCTTGGAAG	AATTTGTCAA	21300

CTTTGACCTT	GAGATTTCTC	TCATCGTGTC	AGGAAATGGC	AAGGAGGTGA	CGTTTTTCCC	21360
AGTTCAGGAA	AATATCCACC	GCAACAATAT	CCTGTCTAAG	ACCATCGTAC	CAGCCCGCAT	21420
TTCTGAAAGT	° CTAGTAGACA	AGGCTAAAGC	TATGGCAGTG	CGAATCGCAG	AACAACTCAA	21480
CTTGTCTGGA	ACTCTCTGTG	TGGAAATGTT	TGCGACAGCT	GATGACATCA	TTGTCAATGA	21540
AATCGCCCCA	CGACCACATA	ACTCTGGGCA	CTATTCTATT	GAAGCCTGTG	ATTTCTCTCA	21600
GTTTGACACC	CATATTCTGG	GTGTTCTCGG	AGCACCATTA	CCAGTCATCA	AACTCCATGC	21660
GCCAGCCGTT	ATGCTTAATG	TCCTCGGTCA	GCATGTCGAG	GCTGCTGAAA	AATATGTCAC	21720
AGAAAATCCA	AGCGCCCACC	TCCACATGTA	TGGTAAAATA	GAAGCAAAGC	ATAATCGTAA	21780
GATGGGACAT	GTGACTTTGT	TTAGTGATGT	GCCGGATAGT	GTGGAAGAGT	TTGGGGAAGG	21840
GATTGATTTT	TAGGACAAGT	CTATGATACA	AATTATCGTT	AATACATTTA	TTGAAAAGTA	21900
TAAGACTGGA	GCAGTTGTTG	AAGTGTTGTA	TGCCAGTGCT	GACCAAGATA	AGGTACAAGC	21960
TAAATATGAA	GAACTAGCTG	CACAATACCC	CGAAAATTAT	TTAGCTATCT	ATAATGTACC	22020
GCTGGATACG	GATTTGAATA	CACTAGATCA	TTACCCGTCT	GTGTTTATTG	GAAAAGAGGA	22080
GTTTGAGTAG	AAATCTTGGT	TTACCTAGAT	AGCTTATTCC	CAACAGCTTA	AGAAGAAAGG	22140
AAAAATTAAC	ACATGATCAA	CCGTTACTCT	CGCCCTGAGA	TGGCGAATAT	TTGGAGTGAA	22200
GAAAATAAAT	ACCGTGCTTG	GCTTGAGGTG	GAAATCCTCT	CTGACGAGGC	ATGGGCTGAG	22260
TTGGGGGAAA	TCCCTAAGGA	AGATGTGGCT	TTGATTCGCA	AGAAGGCGGA	CTTTGACATC	22320
GACCGTATTT	TGGAAATTGA	GCAGGAGACG	CGCCACGATG	TGGTGGCTTT	CACGCGTGCG	22380
CTTTCTGAGA	CTCTTGGTGA	AGAGCGCAAG	TGGGTTCACT	ATGGGTTAAC	TTCTACTGAC	22440
GTGGTGGATA	CTGCTTATGG	TTACCTCTAC	AAGCAGGCCA	ACGACATCAT	CCGTCGTGAC	22500
CTTGAAAACT	TCACTAATAT	CATCGCTGAC	AAGGCCAAGG	AGCACAAGTT	CACCATCATG	22560
ATGGGGCGTA	CTCATGGTGT	GCACGCTGAG	CCGACAACCT	TTGGTCTTAA	ATTAGCAACT	22620
rggtacagcg	AAATGAAACG	CAATATCGAG	CGCTTCGAGC	ATGCGGCTGC	TGGTGTAGAA	22680
CTGGTAAGA	TTTCTGGTGC	GGTTGGGAAC	TTTGCCAATA	TCCCACCATT	TGTAGAGGAG	22740
PATGTCTGCG	ATAAACTTGG	CATCCGTGCC	CAAGAAATCT	CTACACAAGT	CCTTCCTCGT	22800
SACCTTCACG	CTGAGTACTT	TGCGGTTCTT	GCCAGCATTG	CGACTTCAAT	CGAACGTATG	22860
CGACTGAGA	TTCGTGGTCT	ACAAAAATCT	GAGCAACGCG	AAGTAGAAGA	GTTCTTTGCT	22920
AAGGGCAAA	AAGGGTCTTC	AGCAATGCCT	CACAAACGCA	ACCCAATCGG	TTCTGAAAAT	22980
TGACTGGTC	TGGCGCGTGT	CATTCGTGGT	CACATGATTA	CGGCTTATGA	AAACGTCGCT	23040

			674			
CTCTGGCATG	AACGCGATAT	TTCTCACTCA	TCAGCTGAGC	GTATCATCAC	ACCAGATACG	23100
ACCATTTTGA	TTGACTACAT	GCTCAACCGT	TTTGGAAATA	TCGTCAAGAA	CTTGACAGTC	23160
TTCCCAGAAA	ATATGATCCG	AAACATGAAC	TCGACTTTTG	GTCTTATCTT	TAGCCAACGG	23220
GCTATGTTGA	CATTGATTGA	AAAAGGCATG	ACCCGTGAGC	AAGCCTATGA	CTTGGTGCAA	23280
CAAAAACAGC	CTACTCTTGG	GACAACCAAG	TAGACTTTAA	ACCACTTCTT	GAGGCAGATT	23340
CAGAAGTAAC	ATCACGTCTC	ACACAAGAAG	AAATCGATGA	AATCTTCAAC	CCAGTTTATT	23400
ACACCAAACG	AGTGGATGAT	ATCTTTGAAC	GTCTTGGACT	AGGTGATTAA	ТТААААААТА	23460
AACAGCGAGC	TTCAATCTCG	CTGTTTATTT	TTTATCGAAA	AGACTTAGTC	TTCTTTTCTT	23520
TTAGTGAGTC	CATAGGCTGC	TAGTGTGGAC	ATGAGTCCTG	CGACTACTAG	TCCTGCAGAA	23580
TCGTGAGTTC	CTGTTTCAGG	AAGTTTTTTC	TCTGTTACCA	CAGGAGCTGG	ATCTTGAGGA	23640
AGAACTTTGC	TTTCCTCAGC	AGGAGCAGTT	GATGGAGCTG	GTTGGCTTGG	GATTTCTAGT	23700
TTTGGTTTTT	CTTCAGCAAT	AGCGGCTTGT	CCGTTTTCAT	CGCCTACATG	TGTTACCATA	23760
GTTCCGACTT	CGACTATTTG	AGTAACGGCT	TCCTGTGCTA	CGACACTATT	TACAAGTGTT	23820
TTCACTTCCT	TACCATCGGC	AGAAGTGCTC	ACAGAGTAGA	AGTTGCTACG	ATGTCCATTG	23880
ACGCCCTTAG	TAATGACTTG	TGTTTTTCCT	TTGAGTAAGA	GTGGATTTTC	ACAAGTCACT	23940
GTGGTAAATG	GAATTTCTTC	TTCTTGGATA	TCCAGTCTAG	GTTTTACCTC	AGTAGTTGGT	24000
GCAAGACCAC	TTTCATCACC	CTTGTGAGTT	ACAGGAGCGC	CAACTTCAAC	CACTTGGTTT	24060
ATAACTTCTT	TGGTTACCTG	GCTATCAAGG	ACTGTTTCTG	TTGTTTTTCC	ATTTTCAGTG	24120
AGTACAGAGA	TGTAATGAGT	TCGTTCACCT	TTGACTCCTG	CTGTGATAAT	ATTTTCCTGA	24180
CCGGCTGGGA	GGTTAGGATT	TTCTTTCTTG	ATAACTTCAA	ATGGAATTTC	TTCAGTTCTT	24240
GTGATGAGTT	CTGGTCTGGT	TTCAACATTG	GCAGCCACTT	CATTTTCATC	TAGGCTTCCT	24300
GAATGAGTTA	CAGCTGGTTT	GAGGCCTTGA	AGAGCGGCTT	TTAGGTTGGC	TACAAGCGTG	24360
TCAAGCTCAG	CTTGTTTATT	ACGGTTGAGG	TTGTAATTTA	GAGCTGTTTT	AGCTGCGTCA	24420
AGGGCCTCAA	GACTTTCTTT	ACTATATCCT	TCTAAGTTTG	TAGGAATTTT	AGCTAATTCT	.24480
TCGCGGAGAG	CATTATAATT	AGCACGAAAG	TAGTCTTTGT	TGTGGTCTGC	AAAGGCAGTC	24540
ATGAGTTCAA	AGATTTCCTC	TTCCTTGTAT	TCAGCGCTTG	GTCTATCTGC	CCAGATTGAA	24600
AGCATACTTC	CGACTGTTGG	AAGATCTACT	TCAGGATATT	TGGTAGAAGC	TAGTTGATTG	24660
AATGGTGTTT	TTCCAGTATT	CTCAATAGCT	TTCTTGAGGA	AACCACCACC	ATCTTCTGGT	24720
TTTTGACCAA	GAATGTAGTA	CCAGTCACCG	TTGGTATTCA	AGAATTTATA	GCCTTTGCTT	24780
GCTAGGTATT	GAGGTGATGC	GAGGTTATAT	CCCCACCAGC	CTTTAGACCA	GTAAGAAATC	24840

AAGACATCTT	TGTCAAACTG	AACATCGTCC	TTGTCTTCAT	AGTAGAAGCC	ATCGTTGAAG	24900
GCCATTGGTT	GAAGCCCTCT	TTCTTTGGCC	ATAGCTGCGA	GGGTGTTGGC	ATATTCGGCA	24960
AATTTGCCAT	AGAGTTGATA	CCACTTGAGG	TAGTACCAGC	CTTGGGCACT	AGTCGCATCG	25020
TTGGCGTATT	CGTCAGTACC	AAAGTTGAAA	ATCTTTGTTT	TACCTGCAAA	GAAGTCCATG	25080
TATTTACCGA	TGAGGGCTTT	TACAAAGTTC	ATCGCTTCTT	CGTTTTTCAA	GTCCATAGTT	25140
GTTTTTGAAA	CTTTATCAAA	GTGGGCTTGA	GGATTTTTAA	TACCTAATTT	TTCCATGGCA	25200
ACCAGCATAG	CATCCATGTG	ACCTGGACTG	TTAATAGCTG	GGATGAGACC	GATGTCCTTA	25260
GATTTAGCGT	ATTCAATTAG	CTCTGTTACT	TCTGCCTGTG	TTAGTGCAGT	ACCGTTTGGA	25320
TCGTCGTAGT	AAGCTTTAGT	TCCTTCGATA	ATAGCTTTTT	TAACGTCATC	ACTAGCATAG	25380
GTTTTTCCGT	TGGCAGTAAT	GGTCATATCA	TCGAGTAGAA	AGCGAAGTCC	GTCATTTCCT	25440
AGAAGGAGAT	GGACATCAGA	ATATCCGAGC	TCACTGGCCT	TGTCTACGAT	GCGTTTGAGC	25500
TGGTTCAGAG	TAAAGTATTT	GCGTCCAGCA	TCGATTGAGA	TTACCTTGTT	TTTGGCAAGT	25560
TTTTCAACCT	CACGTTTAGC	TTCTTCTTCT	TTTTGAGCTT	CAGGCGTGAG	GGTCAAGTTG	25620
TTGACAGTTT	CTTGAAGTTT	AGCAATGGCT	TGATCAATCG	TATCTTGTTG	GGCACGGCTA	25680
AGGTTGCTAT	CGAGAGAGCG	AATAGCTTTT	TCAGCTTCTT	TTACGGCCGT	GACGCTTTCT	25740
GCAGTATAAC	GGTTCAGGTC	TTTTGGTACC	TCGTTAAGTG	CTTGCTCTGC	AGATTCATAA	25800
TCAGCTGCGA	AGTATTCAGC	GTTGGCATTT	GCAAAATGAC	GCATGAGTTT	GAAGAGGCGT	25860
GATGGTGAAT	AACGTGCAGA	TGGAGTGTCA	GCCCAAGCAG	CTACCATACC	ACCGATGATT	25920
GGGATATCAG	CTCCTTCTGT	TTTTGGTACA	GAAGTGATTG	GTGTGTTTTT	AATACCATTG	25980
AGCCCCTGAT	CGAGATTGTA	CCAGCCTTGG	CCATCAGCGT	TTCGTCCAAG	AACGTAGTAC	26040
CAAGCATCAT	TGGTATTAAG	GATTTGGTGA	CCTTTTTCAG	CTAGTAGTTT	AGAAGAAGCG	26100
ACATCGTAGC	CTCCCCAACC	ACCAGTCCAC	ATAGAAACGA	TGATGTCTTT	GTCAAAACTA	26160
CCAAAGCTTG	TGTCGCTATT	GTAGTAGATA	CCGTCGTTAA	AAGCCATTGG	TTTGAGACCG	26220
TGCGATTTTA	CAATACGAGC	GAGGTCATTG	GCGTAGGCAA	TAAATTTTTC	ATAGCCTTTT	26280
ACAGGGTAGC	CTTCGTTTGG	ATAGTATTTA	TCAGCTTGAA	GCACACTCCA	ACCTTTAGCA	26340
TCTGTCGCAT	CATTGGCATA	TTCATCAAGT	CCGATGTTGA	AGATTTCAGT	CTTTTTCGCG	26400
AAATAAGCAG	CATACTTGTC	GATAAGGGCT	TTTGTAAAAG	CGACAGCTTG	TTCGTTGTCA	26460
AGAŢCGACAG	TACGGGCTGA	TTTCTTCCCA	AAATAGCTAA	AGTTAGGGTT	TTGGATTCCC	26520
AATTCTTTCA	TGGCATTGAG	AATCGCATCC	ATGTGTCCAG	GACTATTTAC	TGTCGGAATG	26580

AGACCGATAC	CTTTATCTTT	GGCATAGTTA	676 ATCAGATCTG	TCATTTGACT	TTCTGTTAAG	25640
TGATTGCCGT	TTGGATCGTT	GTAATAATCA	TTTGTACCTT	TTTCAATGGC	GCGTTTGACA	26700
TCGTCACTGG	CATAGGTCTT	GCCGTTAGCT	GTGATGCTCA	TATCGTCCAA	CATGAAACGG	26760
AGTCCATCAT	TTCCGACTAA	TAGGTGTAAA	TCAGTGTAGC	CATAATGTTT	CGCTTTATCG	26820
ATGATTTCCT	TGAGCTGTTC	TGGTGAGAAA	TATTTACGTC	CAGCATCAAT	AGAAACAATT	26880
TTCTTTTTCG	CTAGTTTTTC	ATTTACAGTT	GCAGCACGTT	CCTTTCCTGC	CTCTGTTGCC	26940
GGTTTGTCAG	CCTCTGCTTT	CGCTTCATCT	TTTTTAGCTG	GTTTATCCTT	GTCAGTCTTG	27000
TCTGTATTTG	ACTCTTTAGA	ATCAACCTCT	TTCGCTTCTT	CCTTTTTAGG	GCTAGCTTCT	27060
TCTGCCTTTT	TATTAGCAGT	TTCTTTTTCA	GCAGAAGTTG	GAGTTACCAC	TTCTGCTTTA	27120
TCACTAGGAG	TTGAACTAAC	TTCCTCTTGT	GGTTTTTCTT	CTGTTTTTGG	AAGACTAGCT	27180
ACCTTATCAG	TAGCTGGAGT	TTCTGTTTCT	ACAGTTTTTG	GAGCTTCTGG	TTGAAGCACT	27240
GCTTTAGGTG	TTTCCTCAGT	CCGATTTTCG	GATGATTGAG	GGGAATCAGA	AACCGTATGG	27300
ATGGTCGGTT	GCTTTTCTGT	AGTAGTAGGA	GTAACTCCAT	CGGCTGCAAC	AGTCTGTGCT	27360
TGGAAGGCAA	ATCCAATTAG	AACAGAAGCT	GCTCCTACAG	CGTATTTACG	AATAGAAAAA	27420
CGCTGTTGTT	TTTCATGTTT	CATTGCAAAA	CCTCCTGATT	GCATTGTTAT	ATTGATAGCG	27480
ATTATATAA	TCAACGCCTT	TATTTTATTT	CTTATATTAA	TTTCTTATAT	TAACGAGAGT	27540
CAAGAGGAGA	TGACAAAAA	CTATAATAAG	AAAAAAATAT	TATAAAATTT	AAACTTAAGA	27600
TTTCAGATTG	GTCGGAAAAA	ATACGTATAT	ATATCTAGTA	TAATTTTTGG	TTCTATTTCT	27660
ATAAAATAT	CCACAAATTA	TAGAATTTTC	CAAAAATAGG	TAAGCGCTAC	CTTTTTGGTG	27720
TAGTATAATA	. AGCATAGAAA	AAGCCCAAGC	GATTAGCTCA	GGTTTTCTTC	TTAGTGATCA	27780
CGGTCACATG	AGATAAATTI	AATCTTGTAG	TAATCAGATC	GTTTGTAAGT	TTCACTGTAT	27840
TCTAAAACTI	GGCCAGTTGA	TTCGAGTTTC	GTGATTTAG	TTTGTAGGAC	AGTAGGGAAT	27900
TGTTCATCGA	CTCCGAGGAC	TGAAGCTGCA	TGTTCTGGAG	TTGGAAAGAC	TATTTCGTTG	27960
ATTTCTTCAA	AGTGTTCATC	ATTCATGTG	ATGTGGTAGT	CTAACTTGAA	ACGATTATAG	28020
ATAGAACTAT	AGTATTCAAC	GTTTGGATA	A TITGCGTTGA	TATATTGTT	TGGGATGTAG	28080
GATGTATGGT	AGATATAAA	GACACCGTT	r GATTCGCGGA	TACGTTCAAT	CTTGTAGTAG	28140
AATTGATCG	CGCGTAGACC	CAATTTTTC	CAAGTAAACA	GCTTGTTTC	GCGTTCAATT	28200
GAAAGAACAG	TTACCTTATO	ATCTTTAGC	A TTGAAGAGT	CAATATCTG	AAACTCTACA	28260
AGCTTGTGT	T TGCGTGCAC	TGAAACGAA	GTTCCTTTT	CTTGTTGGC	GACAATATAG	28320
CCATCTTTG	CAAGGTCGT	TAAGGCGCG	A ACAACTGTG	A TAGAGCTGAG	ATCGTACATT	28380

PCT/US97/19588 WO 98/18931

677

GAAATGAGTT CTGCTTCAGT GTAAAATTTA TCTCCACTGC TAAACTGCCC AGAGATGATT 28440 TTATTTTTA ATTCGTCTTT TATGTATTGA TGG 28473

(2) INFORMATION FOR SEQ ID NO: 84:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6749 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

CCTGATGGGT GGTATGCGAG GATACAGTTC TGAAAATCGC	CGTTACTTAA	TTAATGGACG	60
CGAAGTCACA CCTGAGGAAT TTGCTCACTA TCGTGCGACT	GGTCAATTAC	CAGGAAATGC	120
AGAAACTGAT GTGCAAATGC CACAACAGGC ATCAGGTATG	AAACAAGGCG	GTGTCCTTGC	180
AAAACTAGGT CGAAACTTAA CAGCAGAAGC GCGTGAGGGC	AAGTTGGATC	CTGTTATCGG	240
ACGAAACAAG GAAATTCAAG AAACATCTGA AATCCTCTCA	CGCCGCACCA	AGAACAATCC	300
TGTTTTGGTC GGAGATGCAG GTGTTGGTAA GACAGCAGTT	GTCGAAGGTC	TAGCGCAAGC	360
CATTGTGAAC GGAGATGTTC CTGCTGCTAT CAAGAACAAG	GAAATTATTT	CTATTGATAT	420
CTCAGGTCTT GAGGCTGGTA CTCAATACCG TGGTAGCTTT	GAAGAAAATG	TCCAAAACTT	480
AGTCAATGAA GTGAAAGAAG CAGGGAATAT TATCCTCTTC	TTTGATGAAA	TTCACCAAAT	540
TCTTGGTGCT GGTAGCACTG GTGGAGACAG TGGTTCTAAA	GGACTTGCGG	ATATTCTCAA	600
GCCAGCTCTC TCTCGTGGAG AATTGACAGT GATTGGGGCA	ACAACTCAAG	ACGAATACCG	660
TAACACCATC TTGAAGAATG CTGCTCTTGC TCGTCGTTTC	AACGAAGTGA	AGGTCAATGC	720
TCCTTCGGCA GAGAATACTT TTAAAATTCT TCAAGGAATT	CGTGACCTCT	ATCAACAACA	780
CCACAATGTC ATCTTGCCAG ACGAAGTCTT GAAAGCAGCG	GTGGATTATT	CTGTTCAATA	840
CATTCCTCAA CGTAGCTTGC CAGATAAGGC TATTGACCTT	GTCGATGTAA	CGGCTGCTCA	900
CTTGGCGGCT CAACATCCAG TAACAGATGT GCATGCTGTT	GAACGAGAAA	TCGAAACGGA	960
AAAAGACAAG CAAGAAAAAG CAGTTGAAGC AGAAGATTTT	GAAGCAGCTC	TAAACTATAA	1020
AACACGCATT GCAGAATTGG AAAGGAAAAT CGAAAACCAC	ACAGAAGATA	TGAAAGTGAC	1080
TGCAAGTGTC AACGATGTGG CTGAATCTGT GGAACGAATG	ACAGGTATCC	CAGTATCGCA	1140
AATGGAAGCT TCAGATATCG AACGTTTGAA AGATATGGCT	CATCGCTTGC	AAGACAAGGT	1200
GATTGGTCAA GATAAGGCCG TAGAAGTTGT AGCTCGTGCT	ATCCGTCGTA	ACCGTGCTGG	1260

			678			
TTTTGATGAA	GGAAATCGCC	CAATCGGCAA	CTTCCTCTTT	GTAGGGTCTA	CTGGGGTTGG	1320
TAAGACGGAG	CTTGCTAAGC	AATTGGCACT	CGATATGTTT	GGAACCCAGG	ATGCGATTAT	1380
CCGTTTAGAT	ATGTCTGAAT	ACAGTGACCG	CACAGCTGTT	TCTAAGCTAA	TTGGTACAAC	1440
AGCAGGCTAT	GTGGGTTATG	ATGACAATAG	CAATACCTTA	ACAGAACGTG	TTCGTCGCAA	1500
TCCATACTCT	ATCATTCTCT	TGGATGAAAT	TGAAAAGGCT	GACCCTCAAG	TTATTACCCT	1560
TCTCCTCCAA	GTTCTAGATG	ATGGTCGTTT	GACAGATGGT	CAAGGAAATA	CAGTAAACTT	1620
CAAGAACACT	GTCATTATTG	CGACCTCAAA	TGCTGGATTT	GGCTATGAAG	CCAACTTGAC	1680
AGAAGATGCG	GATAAACCAG	AATTGATGGA	CCGTTTGAAA	CCCTTCTTCC	GTCCAGAATT	1740
CCTCAACCGC	TTTAATGCAG	TCATCGAGTT	CTCACACTTG	ACTAAGGAAG	ACCTTTCTAA	1800
GATTGTAGAT	TTGATGTTGG	CTGAAGTTAA	CCAAACCTTG	GCTAAGAAAG	ACATTGACTT	1860
GGTAGTCAGT	CAAGCGGCTA	AAGATTATAT	CACAGAAGAA	GGTTACGACG	AAGTCATGGG	1920
GGTTCGTCCT	CTCCGTCGCG	TGGTTGAACA	AGAAATTCGT	GATAAGGTGA	CAGACTTCCA	1980
CTTGGATCAT	TTAGATGCTA	AACATCTGGA	AGCAGATATG	GAAGATGGCG	TTTTGGTTAT	2040
TCGTGAGAAA	GTCTAAGACA	GAATTTTGAG	GATAAAAAAG	AAGGAGCCAG	CTGAAAAAA	2100
CTGGTTCCTT	TTTAGGTACG	ACAGGCATGT	CGTATAGTAG	AAGTGTATTA	TTCTAGTTTC	2160
AATATACTAT	AGTAGCTCAG	AAGTCGGTAC	TTAAACGTGC	TATATCAAAA	CCAGTCCTGG	2220
AAAAACGTGG	ACTGGTTTCG	TGTTTGGATT	ATTACCTTGA	ACGACATGCG	TTAAAAGTTA	2280
GTTGAACCGC	CGTATGCCGA	ATGGTACGTA	CGGTGGTGTG	AGAGGGGCTA	GAGATTATCC	2340
CCTACTCGAT	TTTAAATCAC	ATGACGTTCA	AAGGCATCAT	CTGAAATCCC	TTGTTCCAAG	2400
ATGAGTTTTG	CCCATTCTTT	AGCAGAGAAG	AGGCTGTGGT	CCTTGTAGTT	TCCGCAAGAT	2460
TCGATGGTTG	TCCCTGGGAC	ATCTTCCCAA	GTAGTAGTTT	CAGCGATTTC	CTTGAGCGAA	2520
TCCTTGATAA	CAGCTGCGAT	TTTAGCACTG	GTGTGACGTC	CCCACATAAT	CATGTGGAAG	2580
CCTGTGCGGC	AACCAAATGG	TGAACAGTCA	ATCATGCCGT	CAATGCGGGT	ACGGATGAGT	2640
TTGGCTAAGA	GGTGCTCGAT	AGTGTGAAGG	CCGGCAGTAG	GGATAGAGTC	TTCGTTTGGT	.2700
TGCACCAAGO	GAATATCATA	ATTGGAGATG	ATGTCTCCTT	TTGGTCCTGT	TTCTTCCCCA	2760
ATCAAGCGAA	CATAGGGTGC	TTTGACAATG	GTGTGGTCAA	GTTCAAAACT	TTCGACAATA	2820
ACTTCTTTTG	ACATGGTAAA	TCCTTTCAGT	TTTCTTCTCT	CATTATATCA	TAAAGGTTGC	2880
TCCTGAGACA	GAGAGAAAAC	CTCTCCGAGG	CTGGAGAGGT	TGAAATCTTT	ACTTACGATA	2940
TAAGCGGTCG	TATTGGTAGT	ATGGGTCAAA	GGTTACGTTG	ATACCCAGTT	TACGAAGGAC	3000
ATTCTTGTCT	TCATCAGTCA	AGATGATGGT	TGAGTGGGCT	TCGCTTCCTT	TGAGGTTGCC	3060

GAGTTCTTCC	ATAGCGCGGG	CAGCATCAGG	ATTTTCTGTA	GCTGTGATAG	CAAGTGCAAT	3120
CAGGATTTCA	TTTGAATGAA	GGCGTGGATT	GCGGCTACCG	AGATGATCGA	TTTTAAGACC	. 3180
TTGGATTGGC	TTAACAACTT	CAGGCTCGAT	TAGTTTTACT	TCTTTAGCGA	TGTCAGCTGA	3240
TTTTTTGATG	GCGTTGATCA	AGGCAGCGGC	TGTAGGACCA	AAGAGTTCTG	AGTTCTTACC	3300
AGTGATGATT	TCCCCATTTG	GCAATTCAAA	GGCTAGGGCT	GGTCCACCAG	TTTCTTCTGC	3360
TTTTTGGCGC	GCAACGACAG	CAACCTTACG	GTCTGCAGGT	GTGATACCGA	GGTCGTTCAT	3420
GAGCAACTCA	ATTTTCTTGA	CGGCAGCTTC	GCCAACTTTT	TCAGCTTTGA	AGTCAAGAAC	3480
TGTTTGATAG	TAACGGCGGA	TGATTTCTTG	TTTAGAAGCT	TCGACAGCGG	CCTCGTCATC	3540
TGTAATAGCG	AAACCAACCA	TGTTGACACC	CATATCTGTC	GGTGAAGCGT	ATGGTGATTT	3600
TCCGAGAATA	CGTTCCAACA	TGCGTTTGAG	CACTGGGAAG	ATTTCGATAT	CACGGTTGTA	3660
GTTGACAGTG	GTTTCTCCAT	AGGTTTGAAG	ATGGAAGGGG	TCAATCATGT	TGACATCATC	3720
AAGGTCAGCT	GTGGCAGCTT	CATAAGCCAA	GTTAACTGGA	TGATGAAGGG	GAAGATTCCA	3780
AACAGGGAAG	GTTTCAAATT	TAGCGTAGCC	AGATTTGATG	CCATTGATTT	GGTCGTGGTA	3840
CATATTGGAC	ATACACGTTG	CCAATTTTCC	AGAACCAGGT	CCAGGAGCGG	TTACGACAAT	3900
CAAGTTGCGA	CTGGTTTTGA	TGTAGTCGTT	TTTGCCCATG	CCTTCTGGGG	AAATGATGTG	3960
ATCCATATCC	GTCGGATATC	CTTTGATTGG	ATAATGAAGA	TAAGAATCAA	TTCCGTTTTT	4020
CTCAAGTTGA	TTGCGGAAGG	CATCTGCAGC	GGGTTGGCCA	GCGTATTGTG	TAATGACAAC	4080
GGAACCAACA	AAAATCCCTA	ATTCATTGAA	TTTATCAATC	AAACGAAGAA	CTTCTTGGTC	4140
ATAAGAAATG	CCTAAGTCGC	CACGTGCTTT	GGAATGTTCA	ATGTTGCTAG	CATTAATGGC	4200
AATCACAACC	TCAACCTGCT	CTTTCAATTC	TTGCAAGAGC	TTGATTTTGT	TGTCAGGTTC	4260
ATAACCAGGA	AGGACACGAG	CAGCGTGGAA	ATCTTCTAAC	ATTTTACCGC	CAAACTCTAA	4320
GTAGAGCTTG	CCGTCAAATT	GGTTAATGCG	CTCCAAAATA	TGGTCGCGTT	GTAAATTCAA	4380
ATATTGTTCA	GAACTAAAAG	CTTGTTTTTT	CATTTTTTTA	CCTCTGGACT	CTATTATAAT	4440
AAAAAATTGG	AAGTTAGGAA	ACTACGGAGC	TAAAAAAGAA	ATTAAAAAGA	TTAAGCAAAC	4500
GCTTGCACAA	AATTTTAAAA	AGTGCTATCA	TAGACTATAG	ATTATGAAAA	TAATGAGGTA	4560
AACAGATGCA	AGAAAAATGG	TGGCACAATG	CCGTAGTCTA	TCAAGTCTAT	CCAAAGAGTT	4620
TTATGGATAG	TAATGGAGAT	GGAGTTGGTG	ATTTGCCAGG	TATTACCAGT	AAGTTGGACT	4680
ATCTAGCTAA	GCTAGGAATC	ACAGCAATTT	GGCTTTCTCC	CGTTTATGAC	AGCCCTATGG	4740
ATGATAATGG	CTATGATATT	GCTGATTATC	AAGCGATTGC	GGCTATTTTT	GGAACCATGG	4800

			680			
AGGACATGGA	TCAGCTGATT	GCAGAAGCTA	AGAAGCGTGA	CATTCGTATC	ATCATGGACT	4860
TGGTGGTCAA	TCATACCTCA	GATGAACATG	CTTGGTTTGT	CGAAGCCTGT	GAAAATACTG	4920
ACAGCCCTGA	GCGAGACTAC	TATATCTGGC	GCGATGAACC	CAATGACCTA	GATTCTATCT	4980
TTAGTGGGTC	TGCTTGGGAA	TACGATGAAA	AGTCAGGTCA	ATACTATCTC	CACTTTTTCA	5040
GCAAGAAACA	GCCGGATCTC	AACTGGGAAA	ATGAAAAACT	TCGCCAGAAA	ATTTATGAGA	5100
TGATGAACTT	CTGGATTGAT	AAAGGTATTG	GTGGTTTCCG	TATGGATGTT	ATTGACATGA	5160
TTGGCAAAAT	TCCTGACGAG	AAGGTAGTCA	ATAATGGTCC	TATGCTCCAT	CCCTATCTCA	5220
AGGAAATGAA	TCAGGCGACC	TTTGGAGATA	AGGATCTCTT	GACAGTAGGG	GAGACTTGGG	5280
GAGCAACTCC	AGAGATTGCC	AAGTTCTACT	CTGATCCAAA	GGGGCAAGAA	TTGTCTATGG	5340
TCTTCCAGTT	TGAACATATC	GGTCTTCAGT	ATCAGGAAGG	TCAGCCTAAA	TGGCACTATC	5400
AAAAAGAGCT	GAATATCGCT	AAGTTAAAAG	AAATCTTCAA	CAAATGGCAG	ACAGAGTTAG	5460
GAGTTGAGGA	CGGCTGGAAT	TCCCTCTTCT	GGAACAACCA	TGACCTCCCT	CGTATTGTCT	5520
CAATCTGGGG	AAATGACCAA	GAATACCGCG	AAAAATCTGC	CAAAGCCTTT	GCAATCTTAC	5580
TTCATCTCAT	GAGAGGAACT	CCTTATATCT	ACCAAGGTGA	GGAGATTGGG	ATGACCAACT	5640
ATCCGTTTGA	AACACTGGAT	CAAGTAGAAG	ATATTGAATC	TCTCAACTAT	GCGCGTGAGG	5700
CTCTTGAAAA	AGGTGTTCCG	ATTGAAGAAA	TCATGGACAG	TATCCGTGTT	ATTGGACGTG	5760
ACAATGCCCG	TACCCCTATG	CAATGGGACG	AGAGCAAAAA	CGCTGGTTTC	TCAACAGGTC	5820
AACCTTGGTT	GGCGGTTAAT	CCAAATTACG	AGATGATCAA	TGTCCAAGAA	GCGCTGGCAA	5880
ATCCAGATTC	TATTTTCTAT	ACCTATCAGA	AACTGGTCCA	AATTCGCAAG	GAGAATAGCT	5940
GGCTAGTTCG	AGCTGACTTT	GAATTGCTTG	ATACGGCTGA	TAAGGTCTTT	GCTTATATAC	6000
GTAAGGATGG	CGACCGTCGC	TTCCTAGTTG	TGGCTAACTT	GTCCAATGAA	GAGCAAGACT	6060
TGACAGTAGA	AGGAAAAGTC	AAATCTGTCT	TGATTGAAAA	CACTGCGGCT	AAAGAAGTAC	6120
TTGAAAAACA	GGTCTTGGCT	CCATGGGATG	CTTTCTGTGT	GGAATTACTA	TAAATATTTT	6180
TTGCAGAAAA	TTAAAATTTA	GAAATCGTAT	AAAAACAAGG	GAGGACTGTA	TAAAAGACAG	6240
AAATCCTTTG	AATATTTTTT :	CCAAAGTTTA	TAAACTTTCA	TTCTTGAAAT	TCAATTAACT	6300
TTACAAATTC	CCACTATTAA	GGAGAAAGAA	GATGAACATA	AAGAAGCGTG	TCCTTAGTGC	6360
AGGCCTGACT	TTTGCATCTG	CTTTGCTTTT	ACCCAAATCA	TTCATACCTO	TCTCAACTAG	6420
ATGTAACTTA	CAAAACCCCT	GACCTCATGA	GCCACTTTCT	TCCTCCTCAT	GAGGTCAGTT	6480
TTACTTTCTC	CTGTTCCAGT	ATCGTTTTT	CTCGCTAGAT	TTCCTCAAA	GGGCAGACTC	6540
CTCCCTTGG1	GCGTCACACG	ATTTTTCAT	CTCGACTGTT	CTTTAATGC	TCATTAACGA	6600

WO 98/18931

681

CGCTTTTCTT	CTAGGTGGTT	CATAAGGAAC	AGGAAGATTC	AGGTTGACTT	TTCTAATCCT	6660
AGAATAAAGT	GCTGAAAACA	ATTCGGAATA	GGCATAGAGA	CTAGACAATT	TGAGGAGCTG	6720
CTTGCGTCCT	GTTCGAACAC	ATTTTCCGG				6749

(2) INFORMATION FOR SEQ ID NO: 85:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1842 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

TCTACCCATG	GACTTTGAGG	CATTCATTGT	TCCATCTTCT	AGTGGCGAAT	CTTTTGATAC	60
AAACGATTCA	ATTCACTTGG	ATAGTGAAAC	TCTCCCGCAA	ACATTTTTCT	GGTTAACTCA	120
ATCCAGCTGA	TATTTCTTTC	AGCCAAAATA	ATGGACAAGT	TCTCCCAAAA	TCGTTCAGCC	180
ATATTGCTTC	TCCTTTAGTT	AGATAAATAA	TGTGTTTGCG	CCATGTAAAT	CAATTGTTTC	240
GTATCTCTTG	GCAATAGAGC	TCTAGCCTCT	TCCAAATTCA	GACTTGGATA	AACTCGCTTA	300
TTTGAAACCG	CAAGAGGAAG	TCTGATGGTT	AGTTCAGGAT	TTTTTAAAAT	TATCTCAACG	360
AAATCCGTTA	ATCTTAGATT	GTCACGGTTC	TTAAATCGTA	ATAAATTGGG	AGATAAAAAC	420
TCAAAACAAT	CTGAAGAATA	GCTCATCATC	TCAATTAATT	TGTCCTTTGT	CATTTCAGAA	480
ACTGAATGAC	AAGATACCTC	TATGCCATAG	TTTTGGAAGA	AATCTAAAAG	AAGTTGATTT	540
CTTTGTCTAT	TTTTACTTAG	ATAGAGATCA	ATCATGGGAG	ACCTCCCAAA	GATTCGGTTC	600
CATTTGATAT	TCTGACACGA	TTAAGGAATC	TAATAAATTA	AGGAATCTAA	TAAATTTGCG	660
AAGTTAATCG	GTTTCTTGTC	TTCATCATAA	GCTTTTACAG	TTACTTGGGT	TGTAAGTATT	720
CCCTCTTTTC	CCTCGGCTCG	ATAGCCTTGT	CCATATAAAA	CAAAAACGAG	ATTTTGATGA	780
TCATCTACAA	AGGCATCAAC	CCCATTCTTT	ATGTCTTGAC	TTTCAAGGAA	TTCCATAACG	840
TTTTGAAGAT	AGGATTCGTA	AAATAGTGGG	TAGTTATGTT	TTTTATGGTA	ATCATCTAAA	900
AATGTCACTT	CAAACTCACA	TGGAGAGTAA	TTTTGACTTT	GAACAGCCTA	AAAGTGCCAT	960
CAAATTTGAA	TTGGAATAAA	TCAAATAAAT	AGCCCCATCC	TCATCAATCC	AACCTTTGCT	1020
CAAAGACAAC	TCCAACCGAT	CTTTTAAAAC	TGAGTAAACC	ACCTTAACCT	CCAGTTTCAT	1080
ATTCTTATAC	CGTTCACTCT	CAAATAAAAG	TTTGGGGAGC	TTATAATAAC	GCTCTGATGT	1140
CTGATATTGA	TTAGCGGTAA	TACGCTTCAT	TATTGTCCCT	CCAAGACTAA	AATTCCAACA	1200

			682			
TTCCAAATT	CATCAAATCG	GATTAAACCT	ACTTGTTCCA	TTTCATCAAC	TAACTGAGTT	1260
GCTTTTACCC	AAATCATTCA	TACCTCTCTC	AACTAGATGT	AACTTACAAA	ACCCCTGACC	1320
TCATGAGCCA	CTTTCTTCCT	CCTCATGAGG	TCAGTTTTAC	TTTCTGCTGT	TCCAGTATCG	1380
TTTTCCTCG	CTAGATTTCC	TCAAAAGGGC	AGACTCCTCC	CTTGGTGCGT	CACACGATTT	1440
TTTCATCTCG	ACTGTTCTTT	AATGCATCAT	TAACGACGCT	TTTCTTCTAG	GTGGTTCATA	1500
AGGAACAGGA	AGATTCAGGT	TGACTTTTCT	AATCCTAGAA	TAAAGTGCTG	AAAACAATTC	1560
GGAATAGGCA	TAGAGACTAG	ACAATTTGAG	GAGCTGCTTG	CGTCCTGTTC	GAACACATTT	1620
TCCCACCACG	TGAAGAAAAA	GATGGCGGAA	GCGTTTGATT	GTTAAAGTTT	GGAAGTCACC	1680
TCCAGCTAGA	TGTTTGAGAA	AAAGATAGAG	ATTGTAGGCG	ATACAGCTCA	TCATCATACG	1740
AACTTCGTTT	TTGATTAAGG	TTGAACTATC	CGTTTTATCG	CCAAAAAATC	CCTCCTTCAT	1800
CTCCTTGATG	AAATTCTCGG	CTTGACCACG	TCCACGATAA	AG		1842

(2) INFORMATION FOR SEQ ID NO: 86:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19390 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

TCATCTTTAT CTCCTCGAAA TTTTCTAATA TAGCCATTAT AACAGAATTT TGTGAAAATT 60 CCTATTATAG TAAATCACTA TTTCAGTATA AAAAGAAAAA ACGAATCAGA CGATTCGCTC 120 TTCTTAAAAT CTGAAAATAG CTTTCCAGAA AGGATTAGCC GATTTTTTGC AGATTGAGCA 180 CTGCATCGTG ACTCATCAAG ACTTGACCAT ACTCTTGTAA GACTGAGCGA CTGATATCAC 240 TATCGTCTGC AAACTCGCGC ATACGGGCCA ACAGCCAAGC TGGATATGGG CTTGGATGAT 300 TTTCAATATC CACTAAAATG GTCAAATAAT AGCGCTCGTT CATTTTGTAG AGTTCAGAAG 360 TTTCCATTTC AAAAGTCACT GTCTTGGCAA AAGCTACCAA GTCAGCCAAC TTAGCAAAAG 420 AAAGGATGTA GTAGATGTAA GGTTCTTTCT TACTCTCAGC TTCTTGTTCA GCCTGCTCTT 480 GCTCTTCTTC CTTGACTTCA ACTTGCTCAA GAGATTGAAT GGCTTCGATA TCATCCTTGG 540 TTTTGTCTGC GATGCTTTTT TCCAGGGTTT TGATAAATTC ATCTGGAGAC ATTTGAGCCA 600 ATTCTTCCAT ATCTGGCAAA TCCGATAAGT CTTCAAAATC TAGATTTTGG TCAATCTTTG 660 ACTTGGTCAC AAAGACATCT ACCTTATCAG GTTTTGGAGT CACACGGAAG CTCAACATGC 720 CTGTATCCAG AAAGCTATCA GGCATCTCTA GCTCATCCAA GATAGCATAA AAGAACTCTT 780

CTGTTTTTTC	TTGAGGAACG	AGAAAGTCAG	CAATCTCCAT	TCCACGATCC	ATCAAATCCT	840
CTAAAGATAT	CGTGATTTTT	AAAGTTGTAT	CACTAATTTG	TTTCATTTTC	ATTGCTAGTA	900
ACCTCATACT	TTCAGTTCTA	TCTATTATAC	TAGATTTTTA	CGATTTTATC	AAAAGAAGGC	960
TCCTCTATAC	GGATAGATTT	TCCCTAGGGT	CTTTCTATAG	GAGACTCCAA	AAGAAAATTT	1020
CTGCAGACAG	ATAGAAAAAG	CCTTCAAAAT	CGGCTAAGAG	CCGACTTTGA	AGACCTTATA	1080
CATCAGAATA	CTTATAATTT	AAAGGTTGCT	ACACCGAGGA	TAGAACGATT	TAAGTTTCTG	1140
AGAATTTGAA	GACTTTGCTC	AAATTTCTTA	TAACGAGTCA	CTCCGTACTC	TTCAACAAGA	1200
AGGACTGTAT	CTCTTTCCAA	AAGAGATGAT	ACATCCTGTA	AATCTACAAA	ATGCATTCCT	1260
TTTAAAGCTT	CTTGACTCTG	TTTCAATTTA	TCTAAGATAG	CTTTATTTGA	GCTAACGATG	1320
GTCAATTCCT	GTCCAGTATT	TTTGTATGAC	AAAACATCTG	CTAGGTTAGC	AATTGTTGTA	1380
ATCTCTGTTA	CAAAATCAAT	TTGATACTGA	GAAAAATCAC	CTACTCTATT	GATTGTTGGA	1440
TTAAAGAGAT	AAACTAACAC	ATTTCCCATC	ACAACCAAAA	TCACACAAAC	CACTCCAATA	1500
ACAACTAAAC	GAAGAATCAG	ATTTTTCACA	TTTAAGCCAA	GCGCTGTTTC	ACCATTTGCG	1560
TTCAATTCTT	TAGAGTTGAT	GGTTTCCAGT	TTTTCAATTT	TCACATTTGC	ATAGGCATGT	1620
TTAAATTTCT	CAATCAACCC	ATCAATTTTT	TTCTCTAACA	AGTTATTGGC	ATCTTTACTT	1680
GATGTCAAAA	TTTTCACACC	AACCCCTGCA	TCGTCAATCA	TATAGTAGAC	GGTCAATTTT	1740
TTCCACCAAT	AGTCATTCGT	TGAATTTTTC	AAGGTTGTTT	CTGTCGTGTC	TAATTCACTG	1800
GCAATTTTTT	TCAACTCACT	GGGTTCTACA	TCATTGAAAA	GATAAGCTCC	ATTCAAATTA	1860
CCATCAATCA	ATTTCCCATA	AAAATCACTA	TAACCACCAA	TTTGATGATT	CAAAATCGTT	1920
TTGTCCGACT	CTTTTGGAGG	AGTGATTTTA	TAGATAAGAT	AAGTTGAATA	ACTTGTTGTA	1980
TCTTTGACAG	TGTTTTTATT	CCTAACTGCT	TTAATTGTAA	ATGGTACAGC	AATGAGAGCA	2040
AATAAAGCGA	TGAGAGCTAA	AATATTTGCT	TTTCGCTTTT	TATAAAGATT	TGCAAACAAA	2100
TCAGCTACTG	AATAATGTTC	AAACATGATT	TTTTTCTCCT	TTGTTTAGTA	GATACTAGTT	2160
TTCCTTTGTA	AGCATTTTTG	CTACAAATAT	AATCACAAGA	ACAATTCCCC	AGAATTGCAT	2220
TGTAAATAAA	TTGAAGAAAC	TTTCTGAAAA	GCTGCTTCTT	GGCATAAAGA	ATAGATTATT	2280
CAAGATGAGT	AGGGATAAAG	CAAATAGGAT	TGTCCTTGAG	CGATAGGCTA	CTTGCAGCAT	2340
GGCTATAAAT	AATACGCCGA	GTAAGAAACT	AAGCAGAAAG	ACTCCAATCA	TACCATAGTC	2400
GGTATACAAC	TCCATGATAT	AACTACTTCC	GATACCATGC	CCTTTCAAGT	ATTCCTTGTT	2460
CAAGACAAGA	TAGGATAGAT	TGTGGGCATA	ACTATTACTA	TCAATAGCTA	GTTCCACACT	2520

			684			
ATTGGTTGTA	TGTTCAAAGG	CTTTTCCTCC	GAAAATGGCT	CCCAAACTCC	CCCTTGCAAA	2580
ATAATCAAGA	ACAGGACCAA	AAGTAAAATT	ACGGAAATCT	CGGTAAGGGA	GGCTACTGTT	2640
AAATAGAAAA	CCTCGAGCCA	GAACACCAAA	ACTAGTCCCT	TGTTTATAGA	TAAAGTCAAG	2700
TAAGATATCC	CAGAAACCTG	TATGGGAAAC	TTGGACATTA	TCCCGTACAT	AATTGAGTAC	2760
TCCCATCGCT	AACATGAGAA	TAGGAGAACC	TACAAAAATC	GCTAACTTTT	CTTTAAACCC	2820
AATCCATTTT	CCTTTTTCAG	TTTGCTCCCG	CATAAAGTAA	TAAACAAAAG	CAAATmAAAT	2880
АСТТААЛАТА	AAGGGATTTC	GTGTCCCAAT	TGCCAAATGA	ATAGTATTAG	CTGCAATAAA	2940
GGAGACAAGC	ACTGCTGTGG	CCTGCAATTT	CTTTGGCTTG	GTTGCCAGAT	ACATACACAT	3000
TGCATAGACC	GTAAAGGTAG	ACAAAATGTA	GGTAAAATAA	GGCAGTTTAC	TTTCAAAATT	3060
TGCATAGTAG	GCATAGTAGG	AAGTCTGCAA	ACGATACAAG	AGCCGTTCAA	ATAACCGAAT	3120
GAAATAGÄAA	GGATAAGTTA	GAAGAAAAAC	TCCTAGTGAT	ACAAAGCGTA	ACCGCTTGAT	3180
ATAAACCTCT	TTTAGAGAAT	TTCCTATATT	TGCTACTTTT	ATTTTCTTCC	TAGCTATGAA	3240
GTAACGAGCC	AGAATGCCTC	CTGTGGTCAA	GCCCAGAATC	GAAATCATGA	CAACTATAAA	3300
GGCAAAACGA	TAGGCTATTG	GATGATAGGT	ATCCAAAGCA	CCATCCCTAA	AATAATCAAT	3360
GGTCGGTCTT	GATACCAGAA	ATACAAAAAT	GGTTAAATAG	AAAATAAAAT	GGATTAAGTA	3420
ATACTTGATA	TCATTCCAAC	AAGCAATTAA	GCTACTAACC	AACAAGAACA	ATAAAGTAGA	3480
AAGTAAGCTA	ACATTATTAT	TATTAAACAG	ATACACAATT	CCACTTACTA	GCGTCAAGGC	3540
ATAACTGACT	ATGGTCAAAC	TAAATAATAA	TCGTTTCCCA	TCAATCACTT	GGTCACCCCC	3600
GTTCTAATGT	AATTTTTAG	ATTTTTCAAT	ATTTTTCAGT	AATAAGAATC	GATATAAGGA	3660
AATATTTATG	AATAGGGCCA	AAGCACTAAT	TCTTCTCCCC	TTACGGAAAA	TTGGATTCCT	3720
AGAAATAGCA	AAGGCATGGC	CTTTTAAAAA	ACGATGAATC	TGAGAATAGG	CTTCAAACTG	3780
TTTATACTGA	TCATCTAGCA	ACATCTTATC	CAGAATAAAG	AAGTGGGCAT	AGGCCAATCT	3840
GAAAAAAGCG	ACCTCTTTCA	AGTCAGGATA	GTTTTTCACA	ACTTCATTAT	AAAACTTTTG	3900
GTAGATATCA	ATATAGGCTA	AATCCTTCTC	TGCATAGGGT	TTGGTCGTAA	TACTATCCCC	3960
TCTATGGAAA	TAGTAATAAT	AGGGTTTAGT	ATTAACCACA	TACTTCTTGG	CCAACTTGAT	4020
TAAATCAAAA	TGGTAATAGG	CATCTTCGTA	AATCAACCCC	TTAGGAAAGG	ATAGGGCAGT	4080
TGCAATCTGT	CTCTTGATTA	GCTTATTGCA	AATCGTCCCA	GGTATTTTTT	CACCTATGAG	4140
GTATTCCTTT	AGAAATGTTT	GAGAATCACA	GACAAAATAG	TCATCCTGAT	TGGCTGACTG	4200
TGGGCTTTCA	TCATTAGCAT	AGACATTCAT	GACACCACAG	CTCGAAACAT	CCGCATCTTC	4260
TTGAACTAAT	TGCTCATATA	AGCTCTGAAT	CATTTCTGGA	TGGATATAAT	CATCTGAGTC	4320

AATAAAAATC	AGATAATCCC	CGTGAGCCTG	CTTCATCCC	TCATTTCGTC	CTTGCGACAA	4380
TCCTTCGTTC	TTTTTATGAA	GCACTGACAC	CCTGTCATCT	TGTTCAGCGA	TTGAATCACA	4440
CAAGCGACCA	CTTTCATCTG	TTGCACCATC	ATCAACAAGA	ATAATTTCCA	GATTTTGATA	4500
GGTCTGCTTC	TGAATGGAAG	CTATCGATTT	TTCTAGGTAG	TGCGCCACAT	TATAGACTGG	4560
CACAATCACA	CTAATTAATG	CAGTTTCCAT	GCTACTCCTC	TAATAGTTTT	TCTACTTGTT	4620
CGATTTGTTT	TGTAATTGTA	AATTGTTGAA	TGAATTGGCT	AGCCTCATCG	ACATCAAAGT	4680
TTGAGGCAGA	AGTCATGTAA	TTAGTAATCG	CCTGAGCTGC	CTCTTGATTG	CTCTCAATGA	4740
TTTGTCCAAA	TCGTCCTTCT	TGGGATAATT	CCTCAGCCCC	TCCAACGTCC	GTAGAGATAA	4800
AAGGGAGTCC	CAGACTCAAG	GCCTCCACAT	ACACTCCAGG	AAAACCTTCT	TGTTTAGACA	4860
TAGACAAAAG	AACTTTCGTC	TGAGATAGAT	ACTGATAAGG	ATTTTTTGA	TAACCAAGGA	4920
AATGTACATA	GTCCTCAATC	CCATACTCTT	TGACTCGTTT	TTTCAGTTCC	TCTTCCATAT	4980
CACCAGCCCC	GATAAAATAG	AGATGATAGT	TTTTTCCCTC	TTGGTGTAAT	AATCGTATCA	5040
CTTCCACTAC	ACGGTCAGAA	CCCTTATTTT	CCTCAATCCG	TCCGATAGTA	CAGATACTTT	5100
GAGGAGCAAT	CTCGATATCG	ATCTTCTCTT	GAGATTTTTC	TAGAATAGTC	TGAAAATCAT	5160
ATCCATTGTA	GATTGTCTGT	aatttagaag	TATAATCTGG	ATAAACTTCC	TTGATAGAAT	5220
TGCTGGTCTT	TTTTGAAATC	CCTACAATTG	TATTCGCAGC	ATCCAACTGG	CTTCTATGTG	5280
ATTCTCTTTT .	AGAGCTATCC	TTAAGAAGTT	CTTCAATACT	TCCATGAATC	CAAGATATCT	5340
TCTTGACTTC '	TCTTCTTTTA	GAGAACAACA	GTGGTGGATT	CATAATGGTA	AAAGAAACTT	5400
CAACATCATA	ATCATCTTTT	ACAAGCAAAC	GACGAGTCAG	TCTTGGAAAA	TAAATTCTCA	5460
TTCTCCACAA	AAAAGCTCGT	AACCATCTGG	TTTGGCGATA	ATCTTGAAGG	GATTTTAAAA	5520
TGCGTACATG (CTTTGGAACA	GATTCATATC	CCTTGTCAAA	GTGCTCCATT	TCAAGAATAT	5580
CAATATCATA (CTTTTCTGGA	TCCAGATTTG	AAACAATGGT	TGATAGAATC	TTCTCTGCAC	5640
CACCTCCAAG A	AGAAAAAGAC (CACATAAAAA	ATAAGATTTT	TTTCTTAGCC	ACCATATTCT	5700
CCCTTGTATT (TGTATAAGA (CTTATCCATA	TCAGCGATGA	CAGCATCATG	ATGCGGTACC	5760
TGCTTGTCTG (TGGTGGAGG	CGTCATATAA	TCCCCAAAAG	CAGTTCTGAG	ATAGACATCA	5820
TAGCCGATTG C	GAATAGGCAT (CTCTGTTCCT	TCAAATGGCA	AGAAAAGATT	GTCTTCAAAA	5880
GATGTGATTG C	GTACTTGTT 1	rctcatgtag	CCAGGACCTG	AGCATAATTC	TGTAATGCCA	5940
rcacaatcag c	CAAATCATA (TTAGTCATT	TCTTTCTCAG	CTTTTTTCCA	GATGCGATAA	6000
CGGAGAGATT T	TGGAGTCAA A	ACCCAGTAAA .	ATGCGACTTC	CCCATTTCAT	GAGATCACCA	6060

TGCTTTTCTG	GAATAGTTTG	CGCACAAAAG	AGTGAATAAA	TCAAGGCCCA	ACGAACCTGT	6120
		TTTCGGATAA				6180
		CTGCTGATAA				6240
		ATCAACAAAA				6300
		TAATTCTGCT				6360
		AGGAATAAAT				6420
		CAAATCATGT				6480
		AATTGCTTTT				6540
		CACAAACAAG				6600
		AAATAGCTAT				6660
						6720
		GTCAGCTTCA				6780
		AAAACTGTGT				
		GTATTATCTT				6840
		AGCAGGCCCA				6900
		GTCAATTTTT				6960
		AAAGTATAGG				7020
		GTGAAAAGTT			•	7080
					TCATCACGGA	7140
AACGAGCATA	ATTGAGCAGG	GTCGAGCCAT	TCATCTGCTG	TTTTCCGACT	TTAATGGTTT	7200
GGGTTGGAGA	CTCAGTCTCG	GTAGCGTATA	AATCATCTCC	GACTGTAGCT	TCTGTTAGGG	726
GACGCCCATT	CAATGTTGAA	AATTGAGCAT	CAATCGTCAC	CCCATCAGGG	AAAAGCGTGT	732
CAATCGCTGT	GGCAAAGGCC	TGGAAATCAA	CCAAGGCGTA	GTACTTAATG	TCCAAGTCAA	738
AATTATCTTT	CAAGACTTGG	CGAACCATTT	CTGCCCCTTT	TTGCCCCTCT	TGTTCTCCTA	744
ACTCGTAGGC	TACGTTTAAC	TTGTTATCTG	TCTGTTTTCT	ACCATTAATC	ACTTGACTAT	750
AACCATCTAT	ATAGACCAAA	TTATCACGCA	TGAAACTGAC	TAGCTTCATT	TTCTTATCTG	756
AGCCCCCGAC	ATTTAATACC	ATAATAGAGT	CAGTTCGTGT	CTCAACACTG	TTCTGGCCGA	762
TTCGACCATC	AGTACCCATG	ATTAAAATAT	TAACTCCATC	TCTAGTGTCC	TGACCATTAA	768
AGACTTCTAC	TTGAGCTGCC	CGGGCATCAG	CAGTTTTCTT	TGCGCTAGCA	TCTTGGTAAC	774
CACGCAAAAA	CATGAATACC	ATGGCCAAAG	CCACACAGAC	CAAAAGTGAA	AAAATCACCA	780
TAAAAATTCG	TTTAAGACGG	AGCTTCCGTC	† 1111C1111	TGGAGGGAAA	GAGAGTGCTT	786

GTGATTTGGA	TTGTGAGCGA	CTCCGGTTCG	CATAGCTTGG	TAAGTCAACC	TGCTCTTCTC	7920
TTTCTTGTTC	CAAGCTAGAG	CTACTATTTC	CCCTAGCAAG	AGTTAGCTTT	TCTTGCAAAT	7980
AGGCAAACTC	ATTTTTTCT	CTCTCATTGA	GATAGTGAAT	ATTTTTTAGC	AAATAATCAT	8040
AACGCAACTG	CTCATGATGA	CTTAAGGGAT	TTTCTTTACT	CATCTTCTCT	CCTTTCCATG	8100
GTCTGATATT	GGATAAATAG	GATAGGCACC	CAGAATTTTA	TACTGGATTC	CAATCGCTTC	8160
TAATTCTTTT	TGGGCAAAGT	GGACCAAGTC	CTTATCGGTA	TAATCCACAT	CGATAATGAA	8220
AAAGTATTCA	CCCAGTGCTG	TCTTGAGTGG	ACAACTTTCA	ATTTTTGTCA	AGTCAATTCC	8280
TCGCCAAGCA	AAGGTCGACA	GGGCCTTATA	AAGTGCACCT	GGAAGGTTGT	CAGGTAATGT	8340
CAAGGCCAAA	CTCATCTTTT	CAGTTTGTGC	TTGCAAGGGA	ATACTAGGCT	TTTCAGCTCC	8400
TAGAACCCAG	AAACGTGTGA	AATTGGCTTC	CATTTCCTGA	ATATCCTCGG	CAATCAGTTC	8460
CAATCCATAT	TCTTCAGCAG	AACTTCTAGG	TGCAACTGCT	GCAAAGGGCT	GGTCTGGATG	8520
TTCGGAAATA	AAACGGGCCG	CATAAGCTGT	ACTAGCTGTT	ACCTCGATTT	GAGCCTCTGG	8580
ATATTGTTCA	TCGATGAATT	TCTTTCCTTG	AGCCAAGGCC	TGTGGATGTG	AAAAAATCTT	8640
TTCAATCTTA	GTATGGCCTG	GAACCACCAT	CAACTGCTGA	TGAATAGGCT	GAACGATTTC	8700
TGCTACTGCT	TGGATGTGAG	CCTGATGAAA	AAGATAGTCC	AAGGTTTCAT	GAACACTACC	8760
CTCAATAGAA	TTTTCAACTG	GCACCACAGA	ATAGTTCACT	AATCCTTGCT	CATAAGCCTT	8820
GATGACATCT	GTAATGTTGG	CAAAAGCCTG	CAATTCCTCA	TGAGGAAAAG	CTGTCTGCAC	8880
AACGTGGTGT	GAAAATGATC	CCTTGGGACC	TAGATAAGCA	ATTTTCATCT	TAGTTCCTCT	8940
ATAATTTCCT	CTGGGCTTAG	CTTGGTCACA	TCCAAAACCC	GACTAGCCAC	TTCCTCATAC	9000
CAAGCCTGTC	TTTCTTGGAA	AATAGCTACT	AGTTCTTCCT	TGCTATTATT	TAGAAAAAGC	9060
GGTCGCTGAT	TGTCCTTATC	AGCTGCGATA	CGTTGGTAGA	GGGTTTCAAA	ATCTGCTCTC	9120
AGGTAGATGT	TATCTGTATT	AGTCTTGAGT	AAGTCACGAT	TTCTCTGAGA	AATAACCACT	9180
CCTCCTCCAG	TTGACACGAC	TTGGTCTGTT	TGTAGTAAAT	CAGCTAGGAC	TTCTGATTCT	9240
ACCTGACGAA	AGGCTGTTTC	TCCCTTTTCA	GCGAAAAAAT	TCGCAATGGA	CATACCTAGG	9300
CGATTCTCAA	TCAGAGCATC	CATATCAAGG	TAATTAGGGT	CCAAGCCTCT	TGCAATAGTC	9360
GATTTTCCAG	CCCCCATAAA	CCCTAATAAC	ACCTTAGCCA	TGAATCAAGC	TCTCCAAATC	9420
ATCAAAGAAA	CTAGGATAGC	TGGTATTGAT	GGCTTCTGCA	CGGTCAAGCT	CCACCTCTCC	9480
ATCTGCAACC	AAGAGGGCTG	CGATAGCTGT	CATCATGCCG	ATACGGTGGT	CACCAAACGT	9540
ATTGACTCTA	GCACCGTGAA	GAGCTGATTT	TCCTTTGATA	ATCATCCCAT	CTGCCGTAGG	9600

AGTAATATCT GCTCCCA	TAC TATTTAAGGC	688 GTCTGCCACA	ACCTGAATAC	GGTCTGTTTC	9660
CTTGACCTTG AGCTCCT	CAG CATCCTTGAT	AACTGTTACA	CCTTGGGCTT	GGGTCGCAAG	9720
CAGGGCAATA ATGGGCA	ATT CATCAATCAA	TCGTGGAATC	AAAGCGCCAC	CAATCTCTGT	9780
TCCTTTCAAG TCAGAAG	GACT CAACAATCAA	GGTAGCAGAT	TTAGCGACTG	GATCGATTTC	9840
AGTTATTTCC AATTTTC	CAC CCATGGCACG	AATGACATCA	ATAATACCGG	TGCGAGTTTC	9900
GTTGATCCCC ACATTCT	rgca gcactagaco	AGAATTTGGA	GCAATCAAAC	CTGCGACTAA	9960
CCAAAAGGCT GCACTGC	GAAA TATCTCCTGC	TACGACCACC	TTCTGTCCTG	TCAATTTTTG	10020
TGGCCCCTGG ACTGTGA	ATTT TCTTACCATO	CACACTTAAA	TGACCACCAA	ATTGTTTCAA	10080
CATATCTTCA GTATGAT	TAC GGGTGTACTO	TTTTTCGATA	ATAACTGACT	CCCCCTTAGC	10140
TTGTAAGGCT GCAAACA	ATCA AGGCTGACT	GACTTGGGCA	GAGGCAATTG	GCAACTCATA	10200
ATGAATAGGT CTTAGGT	TTTT TCGTCCCTT	TAAGCGAAGG	GGAGGCAAGT	CTCGTTCAGT	10260
TTGCCCTGAA ATGCTG	ACGC CCATTTTTT	r cagtggaagg	GTCACACGGT	CCATAGGACG	10320
TTTGGAAAGA CTATCA	TCTC CAAACATCT	TACTTCGAAA	TCTGCACCAG	CAAGGACACC	10380
TGAAATCAGG CGAATC	GAGG TGCCAGAAT	r TCCCATATTA	AGGGCATTTT	GTGGCGCTTT	10440
TAAGCCAGCC ATGCCT	ACAC CTTGAATGG	ADDDDAATAA 1	TCTTTATCCT	CAATTTCAAC	10500
ACCAAGGTCA CGAAAA	ACCT GCATGGTCG	A AAGAACGTCT	TCACCTCGCA	GAATATCATA	10560
AACCTTGGTC TCACCC	TCAG CCAAACTTC	C AAAGATAATG	GAACGGTGGC	TGATAGACTT	10620
GTCACCTGGG ACGCGG	ATAC TACCATGTA	A ATGGCGAATG	TTTGTTTTTA	GTTTCATACT	10680
GGACCTCATA CTTGCA	ATAC TTTTACCTA	T TTTATCATAA	AAAGCCAGAA	ATTCCTTAAA	10740
AATTCCTGAC TTTAGG	ATCG TTCTTTTCT	T ATTTCAGCAA	TTCTGAAACT	GGTTCAAAAA	10800
CAATTTTTTC AATATC	AGAA AGGTAAATG	G CCAATTGTTC	TTGCTTGGTA	AAGAATTCTG	10860
ACAAGAGGCT ATTTCC	TTGA ATCTGTTTA	C CAAAGCCTTC	CATCTTAGCT	TGGAAGGACG	10920
CATCTGGCAT TTGACC	TGTC TGTGCTAGT	T TTTGAATTTC	CTCTTGAAAG	GCAAGATAAT	10980
CTGTAAAGAT TTTGCT	TGCC TCAGCATCT	G CTGCAATCGC	ATCTTTAGCT	GCTTTAACAG	11040
CCTTGTATTC TGGTAA	TCCG CGTAGACCG	C GACTGAGTTC	GTTTGCACTA	TCGTAAATAT	11100
TTGACATGTT CTTCTC	CTTA TTTGATGAC	G ACTGTATAGT	CAGTATTTT	TGTTATGAGA	11160
TGCTCAGCTC TTTCCA	AGTC TTGAGCATT	T TTAAATGAA	A TTTGTAGGAT	TCCGTGAATA	11220
TCCTCACGAT TTTCCT	CGTT GATGTGGAT	'A TTAACCAAGO	AAGTTCCAC	TAGCAGTTCC	11280
AAAATCCGCA GGATGA	ACATC TTCTTCATC	a ggaacgtca	A CATAGAGGT	GTAAGAGCTA	11340
TCCACACCAC CACGCT	TATG GATTTCCAT	C GTCTGGCGT	r GTTCACGCG	TTGGTTAAAA	11400

AAGTTCCAAA	TTTGCTCTTC	ATCTCCCTTA	CTAATGGCCT	GACCAATCGC	TTCCAAACGT	11460
TCCTTGAAAT	CCTCAATTCT	ATCCAGAATG	ATCTCGCTAT	TGGACAAGAG	AATGGAGGTC	11520
CACATTCCTG	GCTCGCTTTC	CGCAATTCGG	GTCATATCTC	GAAAACCACC	TGCCGCAAAG	11580
CGCCTTGCCA	TCTCATGCTC	TTGAGCATAG	ACCGCAGTCT	GCTCCATGAG	ACTAGAAGCC	11640
AAAATATGAG	GAAAATGGCT	AATCTGAGAA	GTGACACGAT	CATGCTCCTT	GGCATCAATC	11700
TCGATAAAAC	GAGCATGAAG	ACCTGAAAGC	AGATCCTTCA	TTTCCTTAAG	CGTGTCCTGA	11760
CTTGTCAGGC	TTGAAGGTGT	AAAGATATAA	TAGGCATTTT	CAAAAAGATT	GACATCTGCC	11820
GAAGCAGCCC	CTGTCTTGTG	ACTACCAGCC	ATGGGATGGG	CCCCGACAAA	GCGAACAGAC	11880
TTGCCAGCCA	AATACTGCTC	CGCCGCATCC	ACAATGGTTG	ACTTGGTCGA	ACCAGCATCT	11940
GAAATAATAA	CGCCTTCTCG	CAAATCCAAA	TTGGCCAACT	CCTTAATGAA	AGCAATAGTT	12000
TGTTTGATTG	GCAAGCTGAG	GATAATGACA	TCTGCCAAAG	GAGCAAAACT	AGCAAAATCA	12060
TCCGTTGCAC	GGTCAATCAT	ACCTTCTTTC	AAGGCGATAT	CTCTCGAAGC	TTGACTACGA	12120
TTATAACCTA	AAATTTCATA	ATCTGGATGA	TCGCGTTTGA	TACCAAGTGC	CATAGAGGCT	12180
CCAATCAACC	CAAGACCTGC	GATATAGATT	GTTTTTGCCA	TAGGAACTCC	TTAATAGTTC	12240
TTTGTATAGT	CTCGGTGTTT	GGCTACCGCT	TCTTTTAGTT	CCTCAAGATT	ATCTGATGAG	12300
AATTTTTCGA	GGATTTCTTG	CGCCAGAACC	GTTGCTACAA	CTGCTTCCAT	GACCATTCCT	12360
GCAGCTGGAA	GAGCAGTCGG	ATCACTTCTC	TCCACGGTTG	CCTTGTAAGG	TTCGTGGGTT	12420
TCGATATCCA	CACTCATAAG	AGGTTTATAA	AGAGTAGGAA	TGGGTTTCAT	GACCCCACGA	12480
ACAACGATGG	GTTGCCCATT	AGTCATACCA	CCTTCAAAAC	CACCTAGATT	ATTGGTACGG	12540
CGAGTATAAC	CGTCTTCTTT	AGACCAGAGA	ATTTCATCCA	TAACTTGGCT	GCCTTTACGA	12600
TAACCAGCCT	CAAAGCCAAG	ACCAAATTCC	ACCCCTTTAA	AGGCATTGAT	AGAGACAACA	12660
GCTTGAGCCA	ATCTTGCATC	CAATTTTCTA	TCCCATTGGA	CATAGGAACC	AAGACCAACT	12720
GGAACGCCTC	CGACGACTGT	CTCCACAACC	CCACCGATGG	TATCACCATC	ACGTTTGATT	12780
TGGTCAATAT	AGTCCTTGAT	TTCCTGTTCT	CCTTCTTGGT	TGACAATAGA	AACTTCAGAC	12840
TGGGCAGCTC	TTTGCTTAAT	TTCAGCGACT	GTCAGATTTT	CAGGAACATC	GATTTCCTTG	12900
CCACCAAAGA	CCACGACATG	GTTGGCAATC	TCCATATCCA	GCTCAGCCAA	GAGGCGTTTG	12960
GCTACTGCAC	CAACTGCCAC	CCGCATGGTG	GTTTCACGAG	CTGATGAACG	CTCCAAAGAA	13020
TTTCGCAAAT	CATCAAAACG	GTACTTAATC	CCCCCAACCA	AATCGGCATG	ACCTGGGCGA	13080
GGATGAGTAA	TTTTCCGCTT	GCTTTTAAGG	CGGTCTTCAA	TGTCCTCCGC	AGACATGATG	13140

TCCACCCATT	ポ ርምርርሙርርምር		690	MA AMACCCCC	cccmcmccmc	1 3 3 0 0
	TCTGGTGGTC					13200
TTCCCGTGGC	GAACGCCCGA	AGTAAAGACA	ACCTGGTCAT	TCTCAATCTT	CATACGACCA	13260
CCACGACCGT	AGCCACCCTG	ACGGCGTCTA	AGGTCCTCAT	TGATATCCTC	AGCTGTCAAT	13320
GGAAGTCCAG	CTGGAATTCC	CTCAATAATA	GCTGTTAGAC	GGGGGCCGTG	TGATTCTCCT	13380
GCAGTTAAAT	ATCTCATACA	CTCTCCTTAT	TTTACCAAGT	AGTCTTTCAT	CTCTTCCAGA	13440
GAAACTGGGT	GAATGGTCGC	TGAACCAAGC	TCTGGCACCA	AGACCAATTT	CAAGGTGTTA	13500
CCACGCGCTT	TCTTGTCATG	AGTAAGAGCC	TGATAAAGCT	TGCCAACTTC	CCAATTTTCA	13560
TAGTCAACAG	GCAAACCGAA	TTTCTGACAC	ATCTCTGTGA	TAGATTGGGT	AATGCCAGCT	13620
GGCATGAGGC	CTTTTTCCTC	AGCAACCTTG	GAAATCTGTA	CCATTCCCAT	GGCAACAGCC	13680
TCTCCATGCA	TGACCTTGCC	ATAACCGGCA	GTCGCTTCGA	TGGCATGGCC	AATAGTGTGG	13740
CCAAAATTGA	GGTAAAGACG	AATACCATTG	TCCAACTCAT	CTTCAACCAC	CATCTTGCGC	13800
TTCACCTGAC	AAGAATGTTC	AATCAAGGTC	TCTGCATGTT	CCAAAATACT	CTCAACAGAA	13860
CCATTCAGTC	CCGTCAAGAG	AGCCCACAGT	TCTGGATCCT	CAATCAAGCC	ATACTTGATA	13920
ACTTCACCCA	TCCCTTCAAT	CAACTCTCTT	TTTCCGAGGG	TTTCAAGAAC	AAGTGGATCA	13980
ATCAGAACCC	CATCTGGTTG	GGCAAAGGTC	CCCACCATAT	TTTTAGCAAA	TGGTGTATTA	14040
ACGCCTGTCT	TTCCACCGAT	AGAAGAATCA	ACCTGAGCTG	TCAAACTAGT	CGGAATCTGA	14100
ACAAAGTGAA	TACCCCGCAT	ATAGGTAGAG	GCTACAAATC	CAGCCAGGTC	CCCAACAACG	14160
CCACCACCAA	GAGCAACGAT	TCCATCGCTA	CGAGTCAGAC	CTTGCTTGAC	TAGAAATTCA	14220
TAGACTTTCT	GAACAGTAGT	TAAATTCTTT	CTTTCTTCAC	CTTCTAAGAA	ATCAAAAACA	14280
GCTACCTGAA	AACCAGCATC	TTCTAGGCTG	AGCTTGACCT	TCTCTGCATA	GAGAGAGGCT	14340
ACATGGTTAT	CTGTCACAAT	GACTACCTTT	TGCGGTTGCC	AGAGTTCTCG	CAACCACTGA	14400
CCAGCCTGGG	CCATACAACC	TTTTTCAATC	TGAATATCAT	AAGGATGGTG	AGGAATATCG	14460
ATTCTGATTT	TCATAGGAGA	GTCTCCCTTT	CTTTATTGGT	ATTTTTCTGT	TAAAGACTGC	14520
CAAATCTCTT	CTGTCGGCAT	ттссттссст	GTCCACAGTT	GAAAAGCTTC	TGCAGCTTGA	14580
TAGAGTAACA	TTCCCAGACC	ATTGACTGCT	GGATTGCCCT	GACTTCTAGC	CCATTTCAAA	14640
AACGGTGTTT	CAAAGGGTTG	GTATATGATA	TCTGCAACTA	AAAGAGTTTC	TGGTAAGACT	14700
ATGTTTTCAG	GAACAGGAGA	GGATTGGCCA	TCCATGCCCA	CACTGGTGGC	ATTAACTAGC	14760
AAATCCGACT	CGGCAATCCT	TGCTTGCAGT	TCAGAAACAT	ATTCTAAAGC	ACACAAATCC	14820
ACTTTAAAAC	CTGTCTGCTC	CTGTAACTTG	TCTAGGTAAG	GTCTTGTTTT	TTCCATAGAA	14880
ACGGAACGAA	CAAAGACCGA	AATCTGACTG	ACGCCATCCA	AAATAGCCTG	TGCCAAGATT	14940

GATTTAGCCG	CACCACCTGC	ACCCAGCAGG	GTCATCTTTT	TACCTGAAAT	TGTAAAAGAA	15000
GGCAAGCACT	TAAAAAATCC	CTTGCCATCT	GTATTATATC	CAATTAAATT	GCCATTCTCA	15060
TTGACAACCG	TATTAACCGC	ACCAATCAAG	CGCGCTTCAT	CGCTCAGCTT	АТССАААТАА	15120
GGAATCACCT	GCTCCTTATA	GGGCATGGAC	AGATTGATGC	CAAACATCTG	GTAGCGACGA	15180
ATATTGGCCA	CTGTTTCTAC	CAAGTCACTC	GCTTCAATCT	CCCAAGCCAC	ATAAGCACCG	15240
TTGGTAGCTG	TCGCCTCAAA	GGCTCTATTG	TGGATGAAGG	GAGAAATAGA	ATGCTTAATA	15300
GGATTGGCAA	CAACTGCAGC	TAAACGTGTA	TAGCCATCAA	GCTTCATCCA	AAATCTCCCT	15360
GATTTTTTC	ATGCTAGCTA	GAGAAATCTG	CCCAGGGGCA	CTAACCTCAT	CCAGACTGGC	15420
AAAAGACCAA	CTCGAACCAG	TCACATCCGC	AGTGATACGA	GAGACCTTGC	CCACCTTACC	15480
CATAGAAATG	GTCACATATT	CCTGTTCAGG	ATTGAGGGTT	TTAAAGCCTC	GTGTATAGTT	15540
CATCAAGTCT	AAGACATCCT	GCTCCGTGTG	AGCCATCACC	GCAACCTTAA	CAAGTTTTGG	15600
ATTTAGGATC	GTCAACTCTG	ACAAGATTTC	CATCATGTTC	TCAGGTGTTT	CTTGGAAATT	15660
ATGGTAACTC	AAAACAAGAT	TTGGGAAGTC	CAGCATTTCC	TCAAAAACAT	CCTTGTAGCT	15720
ATAGTACTCA	AAATCAATAT	AGTCTGGTTG	ATAGAGTTGC	GCAACTTCCT	TGATTAGATG	15780
GATATACTCT	TCTGGAGAAA	GGTCGATTTC	TCCACCTTCG	GAGCGAGTTC	GTAGCGTGAA	15840
AACCAACTCA	CGGCCTGCGA	ATTITTCAAA	AATGGCTGGA	GCTACCTGCA	AAATCGCTTC	15900
TTTAGGCAGA	TAGTCGGCAC	GCCATTCAAT	GATGTCGGCA	TCCAGGTACC	TCGTGGCATC	15960
CAGAGCCTGA	GCCTCCTCTA	AACTTCTTGG	CATTACTGAA	ACGATTAATT	TCATTTACTA	16020
ACCTTCATAC	TAATCACCTT	GAGGTAATTA	CTACTTTCAT	CTTTTTTATT	ATAGGCAAAA	16080
TCTGCTGGAA	GACCATATTT	GTTTAAAATC	TGGTAACTTC	TTCCTGCAAA	ACCTTTATCA	16140
ATTTGTTCTG	TAAATTTCTG	ACGGGAAACA	TTGGCAGCAT	TGGTACTGGC	AATGATAATC	16200
CCTCCCGGAT	TTAAAATCTC	AAGACTCTGG	GAAATCAACT	TGTGATAATC	CTTGGCCACA	16260
GAGAAAGTTT	GTTTTTTATT	CCGAGCAAAG	CTAGGCGGAT	CTAGGACAAT	CACATCGTAG	16320
GTCAAGTCTT	TGCGTTTGGC	ATATTTGAAA	TACTCAAAGA	CATCCATGAC	TATAAAACGA	16380
TGCTCGTCTG	TGCTGAGCCC	ATTTGCCTGA	AAATGCGCTT	GAGACAATTC	TCGTGAACGT	16440
TTGGCTAGAT	CAACAGAAGT	TGTATGGCTA	GCTCCTCCCA	TGGCCGCAGC	TACTGAAAAA	16500
GCCGCTGTGT	AGGAAAACAT	ATTGAGTAAG	GATTTACCCA	TAGCCAAGCC	GTCAACTAAA	16560
CTACCGCGAA	CCTCATGCTG	GTCTAGGAAA	ATTCCTGTCA	TCAAGCCATC	ATTCATAAAG	16620
ACTTGATACA	GGACACCATT	TTCTAAAACA	TTGAAAAAGT	CAGGTGCTTC	TTGACCATAA	16680

			692			
ACATGGGCAG	ATTCATAGTC	CAAACCCTTA	AAGCGGATTT	TCTCATAAGC	TCCTAAAACC	16740
TCAGGGAAAA	CCTGTCTAAA	GGCTTCTGAT	ATAGTCTGAC	GAATCTGATA	AACATAAGAG	16800
TTATACCAAG	AAAAGACGGC	GTAGTCGCCA	TAAAGGTCCA	CTGTCAGACC	CCCAAAGCCA	16860
TCTCCCTCTT	GATTAAAGAG	ACGAAAGGCA	GTTGTCAAAT	CATCTTGATA	GTAGGCGTTT	16920
CTCTTTTCTT	TGGCTTTTCT	AAACAACGTT	TCAAAGAAAG	CTTGATTGAA	GGCCACCTTG	16980
TCTTTGCTGA	TAAACCAGCC	CAAGCCCTTG	TTTTGCTGAG	AAAGGTAGGC	AGTCCCAAGA	17040
AAGTTTCCTT	CCTGACCCTG	CACCTCTACT	TCCTGATCCT	TAAGATTGAC	ATTCTCAAGA	17100
TCACTGGCTT	CTAGTAAAAC	TAGCCCCTTA	GCAAGCTTCT	TTTCAACCCT	TTTGCTGACT	17160
CTTATTCTAT	TCATAACTAC	CATTATATCA	AACTTTTAGA	CAATTCTCAA	AAAAGAAACT	17220
ACCCTTGCTT	TTTTACTCTT	CTTTTAAAAA	ATGGTATACT	AGACTTCCTG	CAAAACTAGG	17280
AAGTAAATGT	GTAAGAATCA	CAGTAAAAA	TGCTCTTCCG	TCTTGGAGGA	GCATTTCTTT	17340
TTATCAACGA	AAATCAAATA	GCAAACTATG	AAACTAGCCT	CAGGTTAACT	CTGAGATTAT	17400
AGGTAGAGAG	GTTGTATCAG	CAATATGTGT	CTGTCAAATT	TAGTGACAAA	GGTAGTAGAA	17460
GAAAGATAAA	GAAATAAATC	AGCTTCAGTA	GGTATCTGGA	AAATTTGATT	TTATAGAGAA	17520
GCCTTTTGTT	ACAAACTCAA	TATACTATCA	ATAAATAATA	TTATAGAAGC	AACAATAATT	17580
ATAATTTCAC	CTATCTGCAT	CATTCTATTT	CGAACTCTAA	ATATATGTTC	TATCAAAAAT	17640
ACTTGGAACA	CACACATTAT	AGGAATTAAC	GTTTTTGAAA	TTGAAAAATA	TCCAAATAAA	17700
TAAACTATAA	ACAACAAAAA	TAGAACTATG	TTATATTTCT	TATTCAAAAC	ATTCCTCCCT	17760
ATATATTTTT	GATTACCAAT	CTTAATCATT	TACAACTACA	TTCTAACAAA	CTATAAAAGC	17820
GTTTGTCGAA	TTGAATTTAT	CAAGCAAGCG	ACCAACCAGT	TCATCTTTTT	TCTATTTCTG	17880
CCAATATGCG	TGACAGGTAA	TAATGATAGC	CAAAAATAGC	AAGAGCAAGC	AAGACGATAA	17940
GAGCTCCTAC	TCCCAAGCTG	ATGGCAAGGA	TAGGGGAGAG	AGACTGAACC	AAGAATATGC	18000
TCCCAATTAC	AAGGCCATC	AGGATTGCAC	ТАТАААТААА	CAATAAAACT	ATGGCGAC FA	18060
TGCCATTTGA	ACGATTCACC	AGGTCCGTAA	TGCTACTCCA	ATTGGTTGAC	AGATTTTTAA	38120
CGTCCTTAAA	GTAATGGTGG	CAAGAAAGGA	TGACACTGGC	AATGATCCAG	ACTACAAGAA	18180
GGTAAATCAT	CGAAATGATG	GGCAAGCCTA	GATATAGAGA	AAGACCAAGC	AAAGTCAGAA	18240
CTGGTAAAAA	GGACTGGACA	GCATATATAA	TCCAAAATTT	CACTTTCACA	TAACGAGCAA	18300
AGTCAAAGGG	TAAACTCTTA	AGAAAATCAA	CATTTTCCCT	CTCCAAGGAC	AAGGCAATTG	18360
AATGCAGGCT	GGTGATATTG	TTATTGACAA	CTGCTATAAA	GAGAGCTATA	AAAAACAAGG	18420
GTAACCAGTA	TGGAGGATGA	ATGTCTGGAA	CTATCŢGAGA	ATCTCGGATT	TTGGAAATCA	18480

WO 98/18931

GACCGATCAT	CATGAGATAA	GGAAGGAAAG	CACTTGTAAA	AAGCACTGTA	ATCACGCCAG	1854
TCCCCTGTCC	CAAGAGGGTG	AGGTGGTAGC	GTAAAACCAT	GCGAAAAAAT	CCCTTTTTAG	1860
TGGTTGAAAT	TCTCTCCTTG	CTGCGACGTT	CTTTTTTGAC	CTTCTCCTCA	CTATTAAGCA	18660
GGATCACGTC	ATAAAAACGA	GGAAGGACCT	TCTTTTTGGT	CAGATAAAGC	AGGAAGAGAG	18720
TTAGTCCTAT	CCAAGCGAGC	AGACCCACTA	AGGCTTCTGT	CGAAAAAGGC	TCCACTGCTA	18780
TTTTGTAAAA	GATATGAAGA	GGATAAAGGA	GAAATGGAAT	GTCTCTAACT	TTGTCAACAA	18840
TACTTCCAAA	AGTCGACTGA	AGAAAGAAGA	TAAATATTAA	AGGTATGAGA	ACTCCTATCC	18900
CAATCATCAC	ATTCGAAAAA	ATAGACTGAT	ACTTTCTGAA	GACCCTAGTT	TGAGCCAAGA	18960
AATGCACTGC	CACTACCATC	ACTAGAGCCA	CAGAGACAAA	TAATAAGGTC	AAGGACAGTA	19020
GCATCAAAGG	CAAACCCAGC	CATAGAGAAG	GAGCTAGCCT	AATGTAGAGG	ACCAGAAAAT	19080
AAGCTAGGAT	TGGTACAATT	CCAGTTAGAG	CTGGCAAAAG	GACAGACAGT	CCTTTAGCAA	19140
TTATAATCTC	TGATTCTTTA	AAGGCATAGG	GCCTATACGA	TACCAAATCC	TTACTCTCAT	19200
AAAAGACATT	GTAAAAGGCC	GTTAAAGAAG	TTGAAAAGGC	AATCACTAGT	AAAATAGCAA	19260
TCATCGAGCT	AAAATAAATA	GGTATTTCCT	CAAAAGGAAA	ATGAATGGCT	ATATTACTAA	19320
AACAGATGAT	CATCAAGAGA	CTGGAAAAAA	TGTAAGAACT	TAAGACTCTA	GCGGAAACAT	19380
TTACTTTTTT						19390

(2) INFORMATION FOR SEQ ID NO: 87:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 18436 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

CCGAGCGTCG	TTACAGACTT	TATCAAGATT	GGACGCAAGA	AGAAATTCAA	CATATAAAGG	60
AAAATATGGC	ACAATCTCCA	TGGCATACTC	ATTACCATGT	TGAGCCAAAA	ACAGGACTTC	120
TCAACGACCC	AAATGGCTTT	TCTTACTTTG	ATGGCAAGTG	GATCCTCTTT	TACCAGAATT	180
TTCCTTTTGG	TGCAGCCCAC	GGTTTAAAAT	CTTGGGCACA	GCTAGAAAGT	GATGATTTGA	240
TTCACTTTAA	AGAAACTGGA	ATCAAAGTTT	TACCAGATAC	TCCATTAGAT	AGCCACGGTG	300
CCTACTCTGG	TTCTGCCATG	CAATTTGGCG	ATAACTTATT	CCTATTTTAT	ACAGGAAATG	360
TTCGCGATAA	AAACTGGATC	CGTCACCCAT	ACCAGATCGG	TGCTTTGATG	GACAAGGAGG	420

			0.74			
GTAAGATTAC	AAAGATTGAC	AAGATCTTGA		AGCAGACTCT	ACTGACCACT	48
TCCGCGATCC	ACAAATTTTT	AACTTTCAGG	GTCAATATTA	TGCCATTGTC	GGCGGACAAG	540
ACTTGGAGAA	AAAAGGTTTC	GTTCGTCTCT	ACAAGGCTGT	CAATAACGAC	TACACAAACT	600
GGCAAGCAGT	TGGCGACCTT	GACTTTGCTA	ACGACCGTAC	TGCCTACATG	ATGGAATGTC	666
CTAATTTGGT	CTTTGTAGAG	GAACAACCTG	TCCTTCTCTA	CTGTCCACAA	GGATTGGATA	720
AGAAAGTTCT	AGACTACGAT	AATATCTTTC	CAAATATGTA	TAAGATCGGG	GCTTCCTTTG	786
ACCCTAAAAA	TGCCAAAATG	GTAGATGTGT	CTCAACTTCA	AAACATGGAT	TACGGTTTCG	840
AAGCCTATGC	AACTCAAGCC	TTCAACGCTC	CTGATGGGCG	TGCTCTAGCA	GTTAGCTGGC	900
TTGGTTTGCC	AGATGTTTCT	TACCCATCTG	ACCGTTTTGA	CCACCAAGGA	ACCTTCTCTT	960
TGGTCAAGGA	ACTCACTATC	AAAGACGACA	AGCTCTACCA	GTATCCAGTC	GCTGCTATTA	1020
AGGACCTTCG	TGCTTCTGAA	GAAGCCTTCT	CAAACCGTTC	CCAAACCAAG	AACACTTACG	1080
AACTTGAACT	CAACTTGGAA	GCTAATAGCC	AGAGCGAGAT	TGTCTTACTT	GCTGATAAAG	1140
AAGGTAAGGG	ACTTTCAATC	AACTTTGACC	TTGTAAACGG	TCAAGTAACA	GTGGATCGTA	1200
GCCAGGCTGG	AGAACAGTAT	GCCCAAGAAT	TTGGGACAAC	TCGTTCTTGC	CCTATCGAGA	1260
ATCAGGCTAC	TACTGCTACA	ATCTTCATCG	ATAACTCTGT	CTTTGAAATT	TTCATCAATA	1320
AAGGAGAAAA	AGTATTTTCT	GGTCGTGTCT	TCCCACATGC	GGACCAAAAT	GGTATCCTGA	1380
TTAAATCTGG	AAACCCAACT	GGAACTTACT	ATGAATTAGA	TTATGGTCGC	AAAACTAACT	1440
GATGTCGCCA	AACTTGCAGG	CGTCAGTCCT	ACTACCGTTT	CTCGGGTTAT	CAATAAAAAA	1500
GGGTATCTAT	CTGAGAAAAC	CATCCAAAAA	GTCAATGAAG	CCATGCGAGA	ATTGGGCTAT	1560
AAACCCAACA	ACCTGGCTCG	TAGTCTGCAA	GGAAAATCAG	CTAAGTTAAT	CGGCTTGATT	1620
TTCCCCAATA	TTTCCAATGT	TTTCTATGCA	GAATTGATTG	ATAAATTGGA	ACACCAACTC	1680
TTCAAAAATG	GTTACAAGAC	CATCATCTGC	AACAGTGAAC	ATGATTCTGA	GAAGGAACGC	1740
GAATACATCG	AAATGTTGGA	AGCCAATCAG	GTGGACGGCA	TCATTTCTGG	TAGTCACAAC	1800
CTAGGAATCG	AAGACTACAA	TCGTGTGACA	GCGCCGATTA	TTTCCTTTGA	CCGAAACCTA	1860
TCGCCAGACA	TCCCTGTCGT	CTCCTCTGAC	AACTATGCTG	GTGGGGTTCT	TGCTGCCCAA	1920
ACCTTGGTCA	AGACAGGTGC	CCAGTCTATC	ATCATGATTA	CAGGGAATGA	CAATTCTAAT	1980
TCGCCAACCG	GACTGCGCCA	CGCTGGTTTT	GCATCCGTAC	TCCCAAAAGC	TCCTATTATC	2040
AATGTTTCCA	GTGACTTTTC	TCCCGTCAGA	AAAGAAATGG	AAATCAAGAA	TATCTTGACC	2100
CGGGAAAAAC	CAGATGCCAT	TTTTGCTTCG	GATGATTTGA	CAGCTATTCT	GGTCATTAAA	2160

ACCTACTTTA	TCGAAAATTA	CTACCCTCAA	TTGGCTACTA	TCAAGCAACC	TTTGGAAGAG	2280
ATTGCTTGTC	TCACTATTGA	TCTTCTCTTG	CAAAAGATTG	AAGGCAAGGA	AGTCGCCACA	2340
ACTGGTTACT	TCTTACCAGT	TACGCTATTA	CCAGGAAAAA	GTATTTAAAC	ACAAGAAAAC	2400
TCAGACCGAT	TCGTCTGAGT	TTTTATGATC	TTAAATTTTC	GAGATAGCGC	TGGGCTGTCT	2460
CTAGGTTAAA	GGTTTTATCT	GAGATGAGGC	GCTCTACTAG	GGGAGCAACT	TCAGATTCAC	2520
TAGCCCCAGC	TAGGAGAGCT	AGGGATTTGG	CCTGTAGTTT	CATGTGGCCT	TGCTGGATGC	2580
CCGTACTTAC	CAAGGCTTTG	AGGGCTGCAA	AATTTTGAGC	AAGACCGATG	GACACGATAA	2640
TCTGGGCTAA	TTCTCTGGCA	GAAGGATTTC	CTAGTAGATC	ATGACTGAGA	ACTACACGTG	2700
GGTTGAGGCC	GATAGAGCCA	CCCTTAGTCG	CTACAGGCAT	GGGCAGGGTC	ATCTCACCGA	2760
CCAATTCTTC	TCTTTCAAGG	TCCAGCGTCC	AGCAGCTAAG	ACCTTGATAG	CGTCCATCTC	2820
GACTGGCAAA	GGCATGGGCC	CCAGCTTCGA	TGGCACGCCA	GTCATTACCA	GTGGCAATCA	2880
AAATCGCATC	AATACCATTA	AAAATTCCTT	TATTATGAGT	AGCAGCTCGG	TAAGGATCAG	2940
CCTGCGCAAA	CTGACTAGCC	AACGCAATTT	TCTCCGCAAT	CTCTCGTCCT	TGATCCTTTT	3000
GGCGGCTCAA	GTAGCGAAAG	GCGATGCGAC	AGCTTGCAGT	CACCAGAGAA	TCGGTCGCGT	3060
AGTTGGACAG	GATTCCCATG	AGACTCTGTC	CCTGACTGAG	TTCTTCTAAG	ACTGGTTTCA	3120
AGGCTTCCAG	CATGGTGTTG	AGCATATTGG	CACCCATGGC	TTCCTGGGTA	TCGACATGAA	3180
TATAAACAAC	GAGAAAGTCT	GGTTCGCCTT	TTATCTGCTC	GACATGCAGA	TCACGCGCCC	3240
CACCTCCACG	TTTAACGATA	GAAGGATAGG	CTTGATTGGC	AAGCTCCAAG	AGCTCCGCTT	3300
TCTTGCTGGC	AATCTTCTCT	TGCGCTAGTT	TAGGATTAGC	AACTTGATAA	AGGGCTACCT	3360
GCCCAATCAT	CTGTCGCTGA	TGGACTTGTG	CAGTAAAACC	ACCTGCACGC	TTGATGATTT	3420
TGCTGGCATA	GCTGGCCGCC	GCAACCACAG	AGGGTTCTTC	TGTCACATAG	GGAACGGTGT	3480
ATTCCTGACC	GTTGACAAGT	ACCTCCGGAA	CCAGTGAATA	AGGCAGAGAA	AAAGTTCCCA	3540
CTACATTCTC	ACTCAGCTGG	TCTGCCACAG	TCACGCTCAT	CTGTTCATCC	TTCTCCAGAC	3600
TAGCTTGTCT	CTCAGGACTA	AGGAGCGCCT	GAGCTTTTAA	CAGCTCGAGG	CGCTCTTGGT	3660
ATGATTTTTT	AGAAAATCCA	TTCCAACTTA	TCTTCATTAT	TTTTCAACCT	TGCTATAACG	3720
GCGTTGGTGG	TCGAGAATTT	CAACCAAGGC	AAAATCTTGA	TTTTCATAGC	CAGCAAACTG	3780
GGCAGAGTTA	GTTTCATCCA	AGTTTACTTC	CTCAAAAAAG	ACCTTTTCAT	AGTCTGCAAC	3840
GGATAGGGCA	GTTCGTTGGT	TGAGCTTGTT	CAAACGGTCT	TTATCCAAAT	AAGCTTCATA	3900
TCCTTCAACC	AATTCACCAC.	TGAAGAACTC	AGCCACAGCT	CCACTTCCGT	AACTATAAAG	3960

			696			
GGCGATTTTA	TCCCCAGCTT	TCAAGCTATC	TGTATTTTCC	AAGAGAGACA	AAAGTCCAAG	4020
GAAAAGTGAA	CCTGTGTAGA	TATTCCCCAC	CTTTTGACTG	TAGAGAATAG	ACTGGTCAAA	4080
ATGCTTTTGT	AAGAGGTCTT	TTTTCTCTTG	AGGCAGGCTC	TTATCCATGA	TTTTTTCAA	4140
GCCTTTTAGC	GCTAATTTAG	GATAAGGCAA	GTGGAAACAA	ACAGCCGCAA	AATCATCCAA	4200
AGTAAGCTGG	TAGCGTTTTT	GATATTCAAG	CCAAGTCGTT	TTCAAACTAT	CCAAGTATTG	4260
TTGGGTAGAA	TAGACACCAT	TTACATAAGG	AGTTGTCGAG	TAATTTGGTC	GCCAGAAATC	4320
CATGATGTCA	CGGGTCTGAG	CTACATTGTC	ATTATTAAAG	GCCATCATGC	GTGGATTTTG	4380
TGTAATCAAC	ATAGCTACAC	TTCCAGCACC	TTGAGTTGGT	TCTCCTGGAG	TTTCAATACC	4440
GTATTTGGCA	ATATCACTGG	CAATGACCAA	GACCTTGGAC	TCCGGAGAAT	TTTCCACATG	4500
CAATTTGGCA	TAATGGAGGG	CAGCAGTCGC	TCCGTAGCAG	GCTTCTŢTAA	TCTCGAAACT	4560
ACGAGCAAAG	GGCTGGATGC	CCAGCAAGCC	ATGCACAAAG	ACGGCCGCAG	CCTTACTCTG	4620
GTCAATTCCT	GACTCGGTCG	CCACAATGAC	CATGTCAACT	TCTTGTCTTT	CTTGCTCAGT	4680
TAAAATAGAG	TCACTAGCAC	TGGCCGCCAA	GGTCACGATA	TCCTCAGTTA	GGGGCGCAAT	4740
ACTCAATTCC	TTGAGTAAGA	GTCCTTTACT	TAATTTTTCA	GGGTCAATTC	CCCTCGCTTC	4800
TGCTAAGTCT	TGTAATTTCA	AGACATATTG	ACTGGTCGCA	AAACCAATCT	TATCAATACC	4860
GATTGTCATA	TTTACCTCTG	TTTTATCATT	CATGTAAAA	ATCGTTCTAT	ACTATTTTAT	4920
CACAAATGGC	AGTAAAAGAG	AGAAAAAAGA	CTTGATTCAC	CAAATCAAGC	CTCTTATTGG	4980
TCATCATTTT	AAAGAATGAT	TAGTTGCTAG	AGAGTTCACC	GATATAAGTA	GCTTTATAAG	5040
CTCCATTCAC	AGTTATCAGC	TCCTGGAGGA	TCAAATTTCC	TGAGTAAGTC	CTTCCCATCT	5100
CATCTACAAA	TTTTTGATAA	AACTGACTGG	TCGGAATTTC	TCTGACATCC	TTATCAAATG	5160
TCTTATCAAG	TGTTTTACTA	ACCTTCTCAG	CAATCAATTG	ATGCTCTTGC	CATCCACTTT	5220
GAAACTCTGA	GCCCGAACTA	GAAACCATGA	CTGGGATAAA	CAACAAGGTC	AGTAGATTTA	5280
CAGACAATAA	GGAAAGTAGT	AGACTTCCTG	CAAAACTAGA	ATCCTAGTTC	ATGATTGATA	5346
ATACCAGCAA	TCAAATTCAT	TCGTAATCCG	AAGCGTTTAC	GATGATTTCG	ATAGGTTGTT	540
GAAAACATTT	TAAACGTTTT	TACTTTGGCA	AAGATGTTCT	CAACCTTGCT	TCTCTCCTTA	546
GATAGCGCAT	GGTTACAGGC	TTTATCTTCA	GCTGTTAGCG	GCTTGAGTTT	GCTGGATTTA	552
CGTGGAGTTT	GTGCTTGAGG	ATATATCTTC	ATGAGCCCTT	GATAATCACT	GTCAGCCAAG	558
ATTTTACCAG	CTTGTCCGAT	ATTTCTGCAA	CTCATTTTGA	ACAACTTCAT	ATCATGACTA	564
TAGTTCACAG	CGATATCCAA	AGAAACAATT	CTCCCTTGAC	TTGTGACAAT	CGCTTGAGCC	570
TTCATAGCGT	GAAATTTCTT	TTTACCAGAA	TCATTCGCTA	ATTGTTTTTT	AGGGCGATTG	576

697

ATTTTTACT	r ccgtcacatc	AATCATTATC	GTGTCCTCAA	AGCTGAGAGG	AGTTCTTGAA	5820
ATCGTAACA	C CACTTTGAAC	AAGAGTTACT	TCAACCCATT	GGCTCCGACG	GATTAAGTTG	5880
CTTTCGTGG	A TACCAAAATC	AGCCGCAATT	TCTTCATAAG	TGCGGTATTC	TCGCACATAT	5940
AGAAAGCGT	r atcaatttat	TTATCTCATT	TTTCAGAAAA	TTCTTTTATT	TCTGTAAAGT	6000
CTACGATAC	r cgatgtgttt	TTATATAATG	ATAGAGTCTG	AGAATCACTG	TTCCGCTAGC	6060
CATTCCAAT	A GAGATTACCA	AAGCCAACAT	GACAACCAAG	GTCGCACTTG	CCAGTGCTTT	6120
ATTATAGTC	CCTGTCACAA	AAAAGGCAGT	TGTTCGGTAG	GAGAGATAAC	CTGGAACCAG	6180
CGGTGCCAA	A ATGGCCAAGA	TAAAGACCAC	AGCAGGTGTC	TTATAAAGAA	TACTTAAAAT	6240
CTGGCTGAC	A CAAGAACCAA	TAATGGCTGC	AATGAAGGTA	GCTACAATGA	CATTGGTCGG	6300
TTCCTTGAG	C AAGAGATAGA	TTAGCCAGAC	AGTCATGCCC	AAAATCCCTC	CAGGTAAGAG	6360
CATAGACCG	r TGCACATTGA	GTACGATTAA	AAAAGTGATA	ATGGCAAGAA	AACTTGCTAC	6420
TGCTTGTAA	r aaaaaggttg	TTAGTGTCAT	ATTAGTTCAT	CAATACCAAG	GCGACAGAAG	6480
TTCCTGCCC	TAAAGCGAGG	GTAATGAGCA	GGGATTCAAA	CATCTTACTC	ATACCAGAGT	6540
TTATGTGGT	r ggtcataata	TCACGGACCG	CATTGGTCAA	GGCAATACCT	GGTACAAACG	6600
GCATGACCG	CACCAGCTATA	ATCAAATCTG	CCGTTGAAGG	AAAACCTGTG	TAGCGAGCCC	6660
AAAACTGGGG	CAATTATCCCA	AAGACAAAGG	CTCCAGCAAA	GGCTGTCACA	AAGGGAATTC	6720
GGATAAATT	T TTCCACATAG	AGGGAAAAGG	CAAAACCAAA	TAAGGTCGCC	ACTCCTGCCC	6780
CAAGTGCGTG	GTAGATATTT	CCGCTAAACA	TAACTGAAAA	GAAAGGAGCA	CTAAAGGTCG	6840
CAGCCAGAG	TACCTGCAAC	TTAGTATAGG	GAAGGGGTTT	GGCTTGCAAG	GCCGTCAATT	6900
GCTTAAAGG	TGTTTCTAAG	TCAATCTGCC	CCCCAACTAG	CTGACGAGAA	ATCTGGTTCA	6960
CATCGCAGAC	TTTTTCGATG	TTATAAGAAG	AGGAGGTCAC	GCGCTTCATG	CGCAAATATT	7020
GGTATTTTC	A ATAGAGAAAA	AGATAGCGGC	AGGCATGGCA	AGGACATTGC	AATCCACAAT	7080
CCCCTGCGA	TGCGCGATTC	GAATCATGGT	ATCTTCTACA	CGATGGATTT	CTGAGCCACT	7140
TTTAAGGAGA	ATAGTCCCCG	CTAGCATAAT	CACATCAATG	ACGGCATTTA	ATTCTTTTGA	7200
TTCTTCCATC	CTTTCCTCCT	TTTATCAACT	CCCTCTATTC	TATCACAAAT	CCGGACTCAA	7260
AAAAAATCTT	TGCCATGAAA	TCATGACAAA	GATTGATTAC	TCATTTTGAT	TATCCATCTG	7320
CTTTTAAGGA	GTAGCTGAAG	TTGTTTTAGG	TTTGTAGATT	GAAATCTTGA	CTCTAGTCTT	7380
ATTGAGGTCT	ACCTTTTCAC	CTGCTCTAGG	ACTTTGTTCA	ACAACCATGC	CTTCTGCACT	7440
ACCTGCAGG	GCTGTCGTCA	CTTCTACAAC	TTCTATATTA	GCTTCCTTAA	TCCCAACAAT	7500

			698			
TTGAATCAAA	TTGTTCTTAG	TAAACTCCAA	GCTAGAACCA	ATGTAACTCG	GCATGGCAAC	7560
ACTTGTAACT	TTTTTAGCTA	CTGTCAAGAC	AATTTGAGTA	GGTTTACTCA	CATCATAAGT	7620
CGTTCCGGCA	CCTGGACTTT	GTTTCATAAT	CGTTCCTGGT	TCGCTTTCGC	TGGACTCTTC	7680
TTCCTCTATC	TTAATCAAAT	TCTCAGGAAC	CTTCTTCTGC	TTGAGTTCTG	AGATTACTTC	7740
TGTAGAGTTC	CGTCCAATAT	AGTTCCCTAA	TTGAATCGTC	GTAGCTTTTT	TAGCTACTGT	7800
CAAAACAATT	TGAGTTGCCT	TGCTCAAGTC	ATAGGTCGTA	CCTTCTGGTA	GACTTTGCTT	7860
CAGGACCGTT	CCAGCCTCAC	TCTCATTCGA	CTCTTCTTCC	TCAATTTTAA	TCAAATTATC	7920
TGGAACTTTT	TTCTCTTTTA	ATTCCGCAAT	GACATCAGAG	GATTTCCGAC	CGACATAATT	7980
ACTAATTTGG	AAAGATTGCT	TECCTGATGA	GACAACCAAA	TTGATTTTCG	TTCCTTCTTT	8040
TCGACCAGTT	CCAGCGCCAG	GATCTGTACG	GATAATCCGC	CCTTCTTCCA	CCTTTTCACT	8100
AGCCTCTGTC	TTCTCCTCAC	CAATCTCAAA	ATTGGCTTTT	TTGAGCGTTG	CCTTGGCCTC	8160
TGCAACTGTC	TGACCTGCCA	CATCTGGAAT	GGCAATGGTT	GCAGGAGTTC	TGGATAGTAT	8220
CCAAATAAGA	GAAGCTGCCA	CCAATACAAG	GCTGGCCAAC	AAAATCAGGT	AACGCATCTT	8280
AAATCTATGT	TTTTTCGGTG	CTTGTGGTTG	GTAAGTTTCC	TCTGTCACAG	CCTGGCTTGG	8340
GTTTTTGATT	GATTTGTGTT	CTGTTTGCGC	TTGAACCTTA	GGAATAGATG	TCAAGGTACT	8400
CTGAGAAACC	TTCGGCAAGG	TCTTGGTATC	TGCCTTGCTC	GTTTCATCAA	AGATTAACTT	8460
ACTTTČATTT	CTACGATTGT	AGGACAAGCT	ACTAGACAAG	TCCACATACA	TCTCTGAAAC	8520
CGAGCGGTAG	CGATTGGTCA	ACTTTTTAGC	AGTTGCCTTG	ATAATAACAT	TTTCTAAAGC	8580
CTGAGGTACA	GATGGATTTT	CTGCAATAAC	GGACGGCAGG	GGTTTCTGGA	AATGCTGGAG	8640
GGCAATGGTC	ACCGCGCTAT	CCCCGTCATA	AGGGATATGG	CCTGTCAGCA	TCTCATAGAA	8700
AATAATCCCC	ATGGCATAGA	TATCACTCTG	CACAGTCGCC	TTCGAACCAC	GCGCCTGCTC	8760
TGGTGACAAG	TAATGAACTG	AGCCCAACAT	CGAGTTAGTC	TGGGTCAGAC	TTGTCTCTGC	8820
AAAGGCTACA	GCAATCCCAA	AGTCTGTGAC	CTTGGCAGTC	CCATCTGGTG	TCAAGAGGAT	9880
ATTTTGAGGT	TTCAAGTCCC	TGTGAACAAT	TCCTCGAGTA	TGGGCCAAGC	GCATAGCCAA	8940
GAGAATTTGT	CCCATGATAC	GGACTGCTTC	TTCATTAGAA	AGAGGATAAT	GTTCCTTGAT.	9000
ATAGCGTTTG	AGGTCCAGTC	CAGCCACATA	CTCCATAGCT	AGGTACTGTT	GACCGTCTTC	9060
CTCGCCAATA	TCTGTTATCC	GAACGATATG	AGGATGGTCT	AGATCTGCCA	TAGCTCTCGC	9120
TTCACGCTGA	AAACGAGCTA	CAGCTATCGG	GTCCGTCTGG	TAGTTGGTCC	TCAGAACCTT	9180
CACTGCCACT	TCTTCCCCAT	CTAAGATTAA	GTCTTTGGCT	AGGTAGACAT	CCGCCATACC	9240
TCCTCGACCA	ATCTCTTTCA	CAATCCGATA	GCGTCCGGCA	AAAATCTTCC	ССАПППССАП	9300

CATTCTGCAT	CCTCCTCGTT	CATAGAAACA	AGGGCAACCG	TAATGTTGTC	TAAACCTCCT	9360
GCATTGTTAG	CAAAACGAAC	AAGTGTCTCC	GTTTTATCTG	CTAAAGGAAT	ATCACTGGTT	9420
ACAATATCAC	GAATCTCACT	GCCTGAAATC	ATGTTGGTCA	AGCCGTCACT	ATTGAGCAAG	9480
AGATAGTCAC	CTGACTCAAG	GATAACTGTC	CCAAAATCAG	GCTGAATTTC	ATCTTTTTGC	9540
CCAATAGACT	GGGTGATAAT	ATTTTTTTGC	GGATGAGCTT	CTGCCTCTTC	TGGTGTCAAT	9600
TGACCAGCCT	TGAGCAATTC	ATTAACCAAG	GAATGATCGC	TCGTCAACTG	ATGGTATTCT	9660
TCTCCACGAA	TCAAGCCGAT	ACGCGAATCA	CCAATATGAG	CATAGATAGC	CTGATTATCA	9720
ATAATAGCAA	GGACTTCCAA	AGTAGTTCCC	ATGCCTCTGT	AAGCTTCATC	CTGACCAAGC	9780
TGGTGAATCT	TTTGATTTTC	AATTTCTAGG	TAATGGGCGA	ACCATTCACG	CACTTCATTG	9840
ACTGTATCGA	TCTGGGTATC	AACCCAAGCT	ACACCCAGGT	CTGTGACCGC	CATTTCACTA	9900
GCGATATTCC	CTGCGCGATG	ACCTCCCATC	CCATCAGCTA	AAATAATCAT	GGTACGTCCA	9960
GCTCTATTGA	CATAGTGGTT	GACATAGTCT	TGGTTATTTG	TTCGTTTCTG	ACCAACATCT	10020
GTTAATAATG	AAATTTCCAT	GTGTCAGTTC	CTTCCTAATC	CGATATCTTG	CGAAATTGAC	10080
TGATGAAGAA	TCCATCACTT	CCATACAATT	CAGGTGTAAT	GAGGATACAG	CCGTCTTTCA	10140
TGATATCCTT	ACATTCATGT	TCTAGTTTTA	CCTGCTCGAA	CTCGGGATGA	CTCTCTAAAA	10200
AGGCCTTAAC	GACTTGAAAA	TTCTCCTCTG	AGACGATAGT	GCAGGTGCTA	TAAGTTATTA	10260
TACCACCTTT	GCCTAGTATT	TGACAAACAC	TACCTAATAT	TTCTAACTGA	ATTTCCTGCA	10320
AGGACGCGAA	ATCTGCCGTT	TCTTTATTGT	ATTTGATATC	TGGTTTTCGG	CGCAAAAGAC	10380
CGATTCCTGA	ACAAGGAGCA	TCCACCAAAA	TCTTATCAAA	GGAATCCTGG	TCAAAAAACT	10440
CATGCACCTT	TCTGGCATCC	AATTTTTGAG	TTTGAACCCG	ATCTTCAACT	CCCAGACGTT	10500
GGGCATTTTC	TTGAATTAAA	TCCAACTTGT	GGTCGTACAA	GTCCAGAGCA	GTAACCTGAC	10560
CTGTCGTAAG	ATAAGAGGCT	ATATGGGCTG	TTTTCCCACC	TGGAGCCGCA	CAGGCATCAA	10620
GCACTCGCTC	ATCACCTTGT	AAATCAAGCG	TCGGAGCAAC	CAGCTGACTG	GACTCATCTT	10680
GGATGGTAAT	GGCTCCATCC	GCAAACAAAT	TATGCCCTGC	AAAATGCCCC	TGCTCCTTAA	10740
CCAGACCAGT	GGTTGCTAAA	AGGGAATTAT	TCGCCTCCAA	CAAGGCTTGG	ATTTCCTCTT	10800
TTCGACTTAG	GTCTGTTACA	CGAATACTGG	CTTTGTTTCG	CACTAACAGG	CTTTCAAAGA	10860
TGGCTTTTGC	TCTCTCCTCT	CCGTATTCTT	CCTTGAGTTT	GGCAACTAGC	CAAACTGGGA	10920
GAGAATAGGC	AATGGAGTCA	CGCTTGTTTT	TTCGCTTGAT	GCTAGCAATA	TCTGGCCAGC	10,980
CTTCACGCAA	GATACGGCGA	AGGACAGCGT	TGACCAATTT	TTCACTGCCT	TTTTTACGGA	11040

			700			
GTTTGGCCAA	TTCCACTGCT	TCATTAACCA	CAGCATGATC	TGGAATCTTG	TCCAAATAGC	11100
GGAGTTGGTA	GGCACTCATG	AGAAGAAGGA	CATAGAGCCA	GCTGTCTAAC	TGGTCTCTGT	11160
CTTCGATAAA	GTGGGATAGG	TACCATTCCA	GAGTCAGTTT	ACGGGCTACC	GTTCCATAGA	11220
CCAGCTCGGT	CACTAAGCCC	TTGTCTGCTG	CCAAAAGTTG	ACTTCCCTTT	AGATGCTTAT	11280
TTAAGGCGAT	ATTTGAATAT	GCTTGGTTCA	CAAAAACATC	CTCTAGCACT	GCTAGAGCTA	11340
AACTTCTAGC	CGTTTCTACT	TTAGTCACCA	AATCGTTCTC	CTACAGTCAA	TGTACGTCCA	11400
ACTCCGTTGA	GGAAGGAAGC	AATGTCCATC	TTAGGCTTAC	CAGCTGGCTG	CACTTGTTTG	11460
AGGGATAGAG	CCCCTTCAGC	CGTTGCGACA	ATCAATTCTT	TCTTGCCGAT	AGAGAGAATC	11520
TCACCTGGAT	TTCCCTGACC	TTCTACTGGT	AGGGCTTCAT	AAATCTTAAA	GCGGTCGCCC	11580
TTAAGGAAAG	TATGGGCAAC	AGGCCAGGGG	TTCATTCCAC	GAATTTGGTT	AAAGAGTTGA	11640
CGATTGGTTT	TGTTCCAGTC	CAGTTTTTCT	TCCTCTGGCT	TTATATTTGG	AGAGAAGGTA	11700
ACCTGACTCG	TATCCTGCGG	TTCAGGTTTG	ATATCACCAG	CANTATAGGC	AGGCAGAGTG	11760
TCCAAAAGCA	AATCACGACC	AACTAGCGCC	AATTTTTCAA	ACAAGGTGCC	AACATTGTCC	11820
TCATCTGTGA	TCGGAATGCT	GCGACGAGAA	ATCATATCTC	CTGCATCCAT	TTCCTTAACC	11880
ATTTCCATGA	TGGTCACACC	AGCTTCCTCA	TCCCCTTGAA	TCAAGGCATA	ATGGATAGGC	11940
GCACCACCAC	GGTGTCTAGG	AAGGAGGGAG	GCATGAACGT	TGACAGCAAA	GTCCATGCTA	12000
TCAAGGAGTT	TGCTTGGGAG	AAACTGCCC	AAAGCAGCAG	TCACAATTC	ATCTGCTCCT	12060
AGCTTCATA	GATCTTCCAT	CTCTGGACTI	CCAGATAATT	TTTCAGGTTC	GTAGATAGAT	12120
AGTCCTGCTT	CCTTGGCAGC	CTGCTTGACT	r GGGGTTTCTI	GGATAACTT1	TTTACGACCA	12180
ACAGCACGG1	CTGGCTGGGT	CACAACGGC	r agaatttcg1	AACGGTCATC	TGTCAAAAGT	12240
CCTTTTAAGA	CTGTTGCTGA	AAAGTCGGG	G GTCCCCATA	AGATTAGT	TGTCATATCT	12300
TCTCCTTCT	r ataaaaattg	CTGCGGCTC	A TGGTCAATG	TGAGACGGA	G CTCACTATTT	12360
TCCCGTTCT	r gagtcaaggc	TAAAACCTG	G TTGAGGGTC	G ACCCCAGCT	C ATCTTCTA4A	12420
CGGTATTTA	A TTAAAATCTG	GTAATGATA	G AGGTTGTGG	G TACGGGCAA	T - CGGTTTTGGC	12480
GTTGGCCCC	A GAATGGGACT	GGTCTCTGA	C AAGCCTGAC	C GCAAAATGT	T CATGACTTCA	12540
TAGGCACGT	T TGAAAACCTC	TTCTTCTTT	C TTGTGAGAA	A GGGTAATAC	C AATCGTGAAA	12600
TAGTAAGGT	G GATAGCCGAC	TTGTCGTCT	G ATTCCCATT	T CATAGGCAT	A AAAGCCTTCG	12660
TAATCTTGA	T CCTTGGCAAA	TCGAATAGC	A TAGTGCTGC	G GATTGTAGG	A CTGTATCAAG	12720
ACTTGACCT	G CCTTTTCAGO	CCGACCTGA	T CGACCTGCC	A. CCTGAGTCA	A GAGCTGGAAG	12780
GTTCTCTCA	G AAGAACGGA/	A ATCAGGCAG	A TTCAAGGCC	G TATCCGCAT	TAGAACTCCG	12840

ACTAGGGTAA	CATTGGGAAA	ATCCAAACCC	TTTGCAATCA	TCTGAGTACC	AAGTAAAATA	12900
TCCGCTTCCC	CTCGCCCAAA	CTGGTCAAGC	AAGGCTTGGT	GACTGCCTTT	CTTTCGAGTC	12960
GTATCCACAT	CCATCCTCAG	AATGCGAGCT	TGGGGAAAGA	GTTCTGCTAG	CTCATCATAA	13020
GCCTTCTGAG	TTCCCGTCCC	ATAGTAACGA	ATACTGCGGC	TCTTACAGTT	AGGACAGACC	13080
TGAGGAATAT	CCTTCGAGAA	ACCACAATAA	TGGCAGTTCA	TAGTCTTGGT	ATCCATATGC	13140
AAGGTCAGAG	AAATATCGCA	GTTGGGACAA	GTATCCACCG	TCCCACACTC	CCGACACATG	13200
ACAAAGCTAG	AATAACCACG	GCGATTGAGC	ATGAGAACCA	CCTGCTCTTT	TTTAACCAGA	13260
CGGTCTTGGA	TAGCCTCTAG	CAAAGGAGGC	GTAAAGTTTG	ACGTCTCATT	TTGTCCGATA	13320
TAGTCTCGAA	AGTCAATCAC	TTGAACCTCA	GGGATTGTAG	CCAAAGGATT	GGCACGTTGG	13380
GTTAGACGTA	AGTGTTGATA	GACGCCTTTG	CCAGCACGTG	CCCGGCTCTC	TAAGCTCGGC	13440
GTTGCAGATC	CAAGTACCAG	AGTTGCTTGA	TTATACTGAG	CCCGTAAAAT	AGCTACCTCT	13500
CTGGCATGGT	AACGGGGATT	GCTGTCCTGC	TTATAAGCCG	CTTCATGCTC	TTCATCAATA	13560
ATCATGACAC	CCAGATTTTT	CAGAGGAGCA	AAGATAGCAG	ATCTGGCACC	AACAACAACT	13620
TGGGCATCGC	CACGCTCCAC	CTTGCGCCAT	TCATCATACT	TTTCACCATT	GGATAATCCT	13680
GAGTGAAGAA	TGGCTACCTT	GTCCCCAAAA	CGTGCTATAA	AACGCTCGGT	CATCTGAGGA	13740
GTCAAGGAAA	TCTCAGGTAC	CAGCAAAATA	GCTGTCTTGC	CCTTATCCAG	GGCACCTTGG	13800
ATAATCTGCA	AGTAAACCTC	GGTCTTCCCA	CTTCCTGTAA	TCCCTTGAAG	TAGAAAGGGA	13860
GGTTGAGAAC	TGCCAATAGA	ACTCACAACC	GCATCACGCG	CCTGTCTTTG	TTCTGGATTT	13920
AACTCCAAAG	GTCTACTTGC	TTCAATTCCT	TCAAAATAAG	CAGCCGAGCG	TTGAACTTCC	13980
TTTTGGACTA	TGGTAACAGC	ACCTTGATCC	ACAAAGAAGT	TGACTTGCTC	TCGCGAGTAG	14040
GACTCTAACA	AGCTAGCCAA	GGAAGCGCTC	TCTGGATGAG	ACAGCAGATA	ATCTCTCAGT	14100
TCCAACTTTT	TCTTGGCACG	TGTAGAAATC	TCAACACCTT	CTAATTGAGC	ATGGTCAACC	14160
TCATACCAAG	ACTGGGTCTT	GACCTTCTTT	TGATCGACTC	CCTGATATTC	CAGACCAAGC	14220
AGGCCTTTTC	TAGTCAAACG	CATCATTTCA	GCTTGCTTGG	CAAGGTCTAG	TGAAGAAAAG	14280
GCTAGCGAAT	CTTCTGAACC	AAACAGGCGC	ACTCGTTCTT	CCTGACTCAA	GCCTTCCAGA	14340
			AGAAACCCTG			14400
GAGATTTTGT	AGGAGAAGAC	AGATTTGCGT	AACTCCTCAG	CCAGCCAGAG	TTGTTCTGGC	14460
GTGAGAACAG	GAGAAAAATC	CAGCACCTCT	GCAATATCTT	TTAAATCTTG	CTCCATCTCT	14520
TCTCCATCTG	ATTGGGACTT	CAAACCAAGA	ACAATCCCTT	GAATCAGGCG	ATTACCCTTA	14580

			702			
CCAAAAGGC.	A CATGAACCC	G CATCCCAAC	T TCCAGCATTO	CCTCAAATTC	CTCCGGAATC	14640
CTGTAACTA	T AGGGCTGGT	CGTCTGCAT	C AAGGGCACAT	CTACGATAAT	CTTAGCTAGG	14700
GCCATCTTC	r caccrccrc	TTGTCAGTAG	ATTCTTGCAA	TAGAAAAAT	AAGATTGAGT	14760
CCCCCAAC	C TTAAATTTTT	TCACCATCT	CTTTTTCTT	AGCAATTTGC	TCTTTGATTT	14820
TCTTTTCTTC	TTCTTCTTTC	CGGCGTTTT	CTTCTTCGAT	ACGCCGACGC	ACTGCTTCAC	14880
GTTTTCCTTC	TGGATCTGGG	G TGAATTGTAA	CGTTTCCTGA	TTCGATTTCT	TCTAAAGCGC	14940
GAAGAGTTG	A TTTTTCAGAC	TTGAAACCTT	GAGTTGCTGG	GGCACCTGCT	TCCAATTCGT	15000
GGGCACGTT	TGCTTCCAAG	ATTACGAGTO	AATATTTTGA	AGGAACCTTG	TCGAGCAAGG	15060
TATCAATAGA	GGGTTTTAAC	ATCATTTGCT	TGTACCTATT	TTCTAAATTT	TATCGGGTAG	15120
TTGGAGATTT	TGGTAACATC	TCCTGATAGT	GACCAATGAC	ACGATCCACA	CAGAAGTGTT	15180
CTGCTTCAAT	CACACATTTG	ACACGTTCAG	CAGCTAGGGG	TACCTGATCG	TTGACAATCG	15240
CATAATCATA	CTCACGCATG	AGGGCAATTT	CTTCCTTGGC	CTTTTCGATT	CGTTGGGCAA	15300
TCACTTCTGC	ACTATCTGTT	CCACGACCTA	CCAAGCGATC	TTGCAATTCA	TCCAAATCTG	15360
GTGGTGTCAG	GAAGATAAAG	ACAGCATCTG	GAACCTTTTT	CTTGACCTGA	AGAGCACCCT	15420
GAACTTCAAT	TTCAAGGAAA	ACATCGATTC	CCTTGTCCAA	GGTTTCATTG	ACATAGGTCA	15480
GAGGAGTTCC	ATAGTAGTTA	CCGACATATT	CTGCGTATTC	CAACATCTGT	CCTTGACGAA	15540
TCAGCTCTTC	AAATTCTTCA	CGAGTACGGA	AGAAATAGTC	AACACCGTCC	ACTTCTCCAG	15600
GACGTTGTGC	GCGTGTCGTC	ATCGATACAG	AATATTGAAA	TTGGTTTTCA	GAACTCTCAA	15660
AAATCTCTCT	TCTAACCGTT	CCTTTTCCAA	CCCCTGAAGG	ACCAGAAAAA	ACGATTAGTA	15720
AGCCTCGGTC	TGCCATTGTG	TCTCCTTTTA	GTCAATCTGT	GAAATAACAT	TTCTCTAGAA	15780
TAATGGCAAA	AAGCCAGATT	ATCCTTTACA	GTCTTTCTAT	CTAGTGTAAC	AAAAAAGCAG	15840
TAATTTTTCA	ACTGCTCTTT	CTTATTTATT	TAGCATAATC	TACTGCACGA	AGCTCGCGAA	15900
TCACGGTTAC	CTTGATATTT	CCTGGATAAT	CGAGATTGTT	TTCAATTTTC	TTACGAACTT	15960
TGTGAGCCAA	GATTGTGACT	TTGTCGTCCT	TGATTTTTCC	TGGATTGACC	ATGATACGAA	16020
TTTCACGTCC	TGCTTGAAGG	GCAAAGCTAG	TTTGCACTCC	TTCAAAGCCG	TTAGCAATTT	16080
CTTCCAAATC	ATGGAGACGC	TTGATGTAGC	TTTCAAGAGA	CTCACTACGA	GCACCTGGAC	16140
GGGCTGCGCT	CAAGGCATCT	GCTGCAGCGA	CGATAACTGC	TATCACGCTC	TCAGCTTCAA	16200
CATCTCCGTG	GTGACTAGCA	ATCGTATTCA	CCACAACTGG	GGGTTCCTTG	TACTTACGGG	16260
CCAATTCCAT	ACCGATTTCA	ACGTGGCTAC	CTTCAACCTC	ATGGTCAATG	GCTTTCCCGA	16320
TATCGTGAAG	GAATCCAGCA	CGACGGGCAA	GAGCCĢCATT	TTCACCAAGT	TCGCTCGCCA	16380

TGATACCAGC	CAACTTAGCA	ACCTCAATCG	AATGGCGCAA	AACATTTTGT	CCATATGAAG	16440
TACGGAACTG	CAAACGTCCC	ATAATCTTCA	TCAAGTCTGG	ATGAAGGTTT	GGCGCACCAA	16500
TTTCATAGGC	AGCAGCCTCA	CCGTATTCAC	GAATCTTATT	GTCAATCTCT	TGACGGTTTT	16560
TCTCAACCAA	CTCTTCGATA	CGAGCTGGAT	GTATACGACC	ATCTTTGAGC	AACATTTCCA	16620
TAGTCATACG	GGCAATCTCA	CGACGAATCG	GATCAAATCC	TGACAAGGTC	ACCACTTCTG	16680
GTGTATCGTC	GATAATCACA	TCGACCCCTG	TCAAACTTTC	AAAGGTACGA	ATGTTACGAC	16740
CTTCACGACC	AATAATGCGT	CCCTTCATAG	TATCGTCTGG	CAGATGAACT	GTTGAGTTTG	16800
TTGACTCCGC	TACATATTCA	CCAGCGATAC	GTTGCATAGC	TTGAACCAAG	ATGTCCTTGG	16860
CCATTTTGTC	AGAACGTTCC	TTGACCTCTT	GCTCAGCTTC	GCGAATGCGA	CTGGCAATCT	16920
CCCTGGTCAA	GTTTTCCTCT	GTCTGAGCCA	AGATAATATC	TCGTGCTTCT	GCCTGAGACA	16980
GCGCACCAAT	ACGCTCTAGT	TCTGCTTCTT	TTTGTCTTTC	GACTTCCTCT	AATTGCTCTT	17040
CACGCGCATC	AAGGTTTTTC	GCTCTATCAG	AAATACTTTG	TTCTTTTTGT	TCAAGTGTTT	17100
GTTCTTTACT	CGTCAAATTG	TCGTCCTTAC	GGTCAAGGCT	AGTAGCTCTC	TCTGTCAAAC	17160
GACTTTCGAT	TTGTTTGAGT	TCTTGACGTT	CTGATTTGAA	TTCAGCGTCC	ACTTCTTCAC	17220
GGTATTTTCT	GGCTTCTTCT	TTGGCCTCCA	ATAGTGCTTC	TTTTTTAAGA	GACTTGCTTT	17280
CACGTTTGGC	TTCATTAACA	AGTAAATCCG	CTTCACGCTC	AGCTTGTCCA	CGTAAATTAG	17340
TTGCTTCTTG	TTCAGCATTT	AAAAGCATCA	ACTCTGCAGC	TTCCTGAGAT	GATTTCATCT	17400
TAGCTGAGAT	GCTGACATAT	CCAATGACTA	AACCAATGAT	GACGGCAAAA	ACAGCAATCG	17460
CAAGCGACAT	GATTTCCATG	TTTTTACCTC	ATTTTATTGT	TATTCCGAAT	GACATACATT	17520
CTTTTACATT	CTACCATAAA	AAAGTGATTT	TCACAAACCT	AAAATAGAAT	ATGTTTTGAG	17580
GAATTTGGAA	CACATTTACC	AAAATAAACT	TGTTGTTTAG	AAATAGTAGT	TTAGTAGAGA	17640
CTTGAGAAAA	AGCCTACCTT	TCAATAGACT	TAGTAATGAT	CTTTAAAGGA	CAAGAAAGCC	17700
ACCCTATCTC	CATCCATCAT	ATAAATCAAG	CGATTTTCTG	CATCAATACG	CCGTGACCAG	17760
GCTCCTTGGT	AATCATATTT	GAGTGGTTCT	GGTTTACCTA	TTCCTGTAAA	GGGATCACGT	17820
TGAATATCCT	TGATTAGTTT	ATTGATTCTT	TTTAACGTTT	TCTTATCCTG	ATTTTGCCAG	17880
TAGCAATAAT	CTGCCCAGGC	ATCTTCTGTA	AACTTGAGCA	GCATTTCTTA	CTCCTCAATA	17940
ACATGGACCT	GAGTACTTCC	AGCACGAACT	TGAGCCATTC	CTCGCAAAAC	CTTATCAGAA	18000
AGTTCCTTAT	TTTGAGCAAT	TCTCAGGGTT	TCTTGGATAC	TATCCCACTC	ACTCTTTGAA	18060
AGGACTACAA	TGTCCTCATC	TGGATTTTTA	TTGACCACCG	TCAAAGGCTC	AAATTCATCA	18120

			704			
TTTACCTTCT	TCATGTAGTC	CTTTAAATGA	TTTCGGAATG	TTGAGTAAAG	GACTGCTTCC	18180
ATAACCATAC	CTCGTTTTAG	CTCTTTTCCA	CTATTATACA	CGAAAAGAAA	GAAATTGTCA	18240
GGAACTTGTA	CAAGATTTTC	TTTTCTATCT	ATTTATACTC	AATGAAAATC	AAAGAGCAAA	18300
CTAGGAAACT	AGCCGCAGGC	TGTACTTGAG	TACGGCAAGG	CGACGTTGAC	GCGATTTGAA	18360
TTTGATTTTC	GAAGAGTATT	ATTCGTAAAA	AATCTCAAAA	AGCCTACCTT	TCGGTAGACT	18420
TAGTTTGTTT	CTATTC					18436

(2) INFORMATION FOR SEQ ID NO: 88:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 7001 base pairs

(A) LENGTH: 7001 base par (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

ACGTAGAAAA	ACTATTTCTA	TCACAGATAA	TATTCCGTAT	GTTGTTGGAG	GTATTGAAAT	60
AAACGTCCTA	GGTATCTTTC	TCAGTCTATG	TGACTTACAA	GGGAAAACTC	TTTTCGAGAC	120
AGAAATTTTG	AATGAAGATT	ATCCTATTTC	AGAAATCAAT	TCCACCATTA	CCAATATGAT	180
AAAAACAGCT	ATAGAGTACG	TCCCTTTGGA	AACAAAATTA	CTTGGATTTG	GCTTATCAAT	240
ACCTGGACAT	TATAACAAAG	ACTCCGGAAG	TATCATTACA	AACAACCCCA	TATGGGAATC	300
TTTTAATTTA	TTAAATGTAA	TTAAAAGATT	CAATTTTCCT	TTTATTGTAA	AAAATAATAT	360
CGATTGTATG	GCTATAGGAC	AATACCTTTT	TAATCCACAC	AATACCCCCG	ATAACTTTAT	420
TTTCCTACAC	GCTGGATTAG	GTATTTACAC	TTCCTTTTTC	ACAAAAGAAA	AAATAGGAGC	480
CTCTAAAAAT	CCTTATATCG	GAGAAATTGG	ACACACCATT	GTCGAATTGA	ATGGGCAATA	540
TTGTGAATGC	GGAAAAAAAG	GTTGTTTACA	AACATATATT	TCGGATGCTT	GGTTAATCAA	600
ACACGCCCAA	TTATTATTTA	AAAATTCCCA	ACTAACTGTA	CTAAAAAGCC	TTGTAAAGAC	660
TGAAAAAGAC	ATTCATTTAG	ACACCCTTTT	AACGGCTTAT	AATTTAGGCG	ACTCCGCTTT	720
ACGTCAACAA	ATTGATAAAG	GAGTCAATTT	ATTAGCCACT	TCTATTGCAA	ATCTCCTCCT	780
CATCAATCCT	GCTGATAAAA	TCTATATCAA	CAGTCAATTG	CTTAATTATC	AACCTTTCAC	840
TCATGAAGTC	AGGGATAAAA	TCCAAGACCA	GCTCCACTTC	GTTCCCTTTA	CTCGTAATAT	900
AGAAATTGAA	ATTTTACCTT	ACAACAAACA	TCGTGGAAGT	ATAGGAGCTT	GTGCATTAGC	960
TATCGTCGCT	TTTTTCATAG	AACATAGCAA	TGTATTACAA	GATATTATTT	CACCTTAATA	1020
TATTAGAAAT	CTATAGACCT	GTTTAAATCA	ACTATAACCT	GTAGTAGATA	TCTCGTATTT	1080

AGACAATATG AAAACAAGAC GACTTCCATA TAGGAAACCG CCTTCTCGCT ATGTTGAGTG	1140
ATTIATATTA AAATAACTTT TCTTCTAGCT GCATTTATT ATTATAAAAA CATTCATCAT	1200
AACCCCCAGA ACTTAAATAA CAATTTTTAT TCAAGATACA TACTCCTAGA ATAAACTTTA	1260
PATGAAATTC TCATTTTGT TTTTACAATT CTCCTTAGTT AAATCTTGTT TAATATATGT	1320
TTTACATATA GTATTTAGCG CCACATAGTA CTGAACTCTC TCCAAAAACG GTTATTCCTC	1380
TTTGAATAGG GCGTTATCAC AAGAAAAGCA TCTCCACGTT TCAACTTCAT ATGGCTCAAA	1440
AACAATCAAT TGATGCTAAA ACCTGTACCT AGATGTTTCG GTTCATAAAA CCATGAAACT	1500
GTAAAAGTGG ATGAAATTGA TAGCGATAGT CAAATCAAGA GGCATCATAA CTCTAAAAAG	1560
TCACAATATA TAAGTTCATC CTCGGAAAAA TATCATTCTA ATTGTTGAAA TGCCTACATG	1620
AAAAGAAACG TCAAATGCTC ATGAAACAAC GAATACAGGT ATCAAAACTA TGACAAAACA	1680
AATCCCTAAA TTTACTAAAG ACACTGCTCA ACTTTACACC TGTAAATGGT TGTTGTATAA	1740
TAAAGTTACA AAGATGTACG ACCACACTGT TGTAAATCAT AGTGTTCGCG AATATATTAC	1800
TGATAGCATT TCTACAAATA CAAGTAAAGA GAGCGGATGA GATTCAAACG AAATATGTCA	1860
GTGCTTTGGC ATTCCTAGCC TTCATATCAT TTAAAGAATT GTATAGACAA AATTTTTTCC	1920
AATACAGACA CTCGTAACAA CTGCTTCATT TTTCTACCAA CATATTTAGG AACAGGATAA	1980
GATACAAGAG TATTAATCCA TAGCTCAGTT CTATACCAAT CTAAGACAAA TAAGCTAAAA	2040
AAACGATTGA TAATAAGCAA ATAGATTCCA AATTTTCTCT ATCTGCTCAT TTTAATAAAC	2100
AATACTAGTG TAACTATCCT TCCAGTCAGA AGCTTGTCAA ATCACACCGA AAATTCTTCT	2160
AAAATTTATC TCGTTAGGCA ATCAAGCAAA AACTCGACGA TAGTACAAAC ATTATCATAC	2220
AGGATTGACT TCCTAAATTA TATACTTTAG TAAGGTTTTC GGATAAGAAA AAAGGTTCAT	2280
TTTACATTTC TAAACATTCT TTTCTAAGAT GAAAAACAGA ATTTTTCGAT TGTGATTTAA	2340
AGCAACAAGA AGATTTTCAG TATCATCCTA TAGATACGAG CTAATTAAGA AAAACTACAT	240
TTTTGAATAT AAACTACAAT AATATAAACT AAATTTTATA GGAGGAAGAC AATGGATTGG	246
TACGATTATA TGATACAGGC ATCCAAACAA TCACAATTCA ACGCAAGCCA TTGGTTTCGC	252
TATTTGCGAA AAGTTATTTT TGAAGACTAT TCTTATTTAA CAAACCAAGA TGTAGAAAAG	258
TTGCTAGACT CCAAAGAACT AACCCGTTTT CAAAAAATTA GCTTGAAGTA TGCCTTTCAA	264
GAGCATACTC CAACTCATAA ATATGTGATT TCATTAAATA AACCTGCTAA GTTAACCAAT	270
GTTCAAAAAT TGATGGAGAA ATACAAACAT GGATAAAATG AAACCGGTCT TCCAAGCCCT	276
AAATAAGGAA TTAATTCAGG AAAATCTGAC TTTAACAATT ATCTGTGTCG GTGGTTATGT	282

			706			
CTTAGAATAT	CATGGTTTAC	GTGCCACACA	AGATGTTGAT	GCTTTTATGG	CTCTATAATA	2880
TTTGTAGTGG	GTAAATCCCC	TATGGATATT	ATGGAGCCTA	TTTTTGTGTA	GAAAAAAAGT	2940
CCCATATGAC	CTATAATGAA	AAGCGACAAA	ACAACTCATT	AGAAAGAATC	ATATGGAACA	3000
ATTACATTTT	ATCACAAAAT	TACTAGACAT	TAAAGACCCT	AATATCCAGA	TTTTAGACAT	3060
CATCAATAAG	GATACACACA	AGGAAATCAT	CGCCAAACTG	GACTACGACG	CCCCATCTTG	3120
CCCTGAGTGC	GGAAACCAAT	TGAAGAAATA	TGACTTTCAA	AAACCGTCTA	AGATCCCTTA	3180
CCTCGAAACA	ACTGGTATGC	CTTCTAGAAT	TCTCCTTAGA	AAACGCCGTT	TCAAGTGCTA	3240
TCACTGTTCA	AAAATGATGG	TCGCTGAAAC	TTCTATCGTC	AAGAAGAATC	ATCAAATTCC	3300
TCGTATTATC	AACCAAAAA	TTGCGCAAAA	GTTGATTGAG	AAGATTTCTA	TGACCGATAT	3360
TGCTCATCAG	CTGGCCATTT	CAACTTCAAC	TGTCATTCGC	AAGCTCAATG	ATTCTCACTT	3420
TGAGCATGAT	TTTTCGCGTC	TTCCTGAGAT	TATGTCCTGG	GACGTTGAAA	CAGTCCGGGG	3480
AGTGACTGTT	TCAATCGGGA	GATGGAGATG	AGCTTTATTG	CGCAAGATTT	TGAAAAGCTC	3540
GATATCATCA	CTGTTCTTGA	AGGTAGAACA	CAAGCTGTCA	TCCGAGATCA	CTTTCTTAAA	3600
TATGATAGAG	CCGTCCGATG	TCGCGTCAAA	ATTATTACTA	TGGATATGTT	TAGTCCTTAC	3660
TATGACTTAG	CTAGACAACT	TTTCCCGTGT	GCTAAAATCG	TTCTTGATCG	CTTTCACATT	3720
GTACAACATO	TTAGCCGTGC	TATGAGTCGT	GTGCGTGTCC	: AAATCATGAA	TCAGTTTCAT	3780
CGAAAATCCC	ATGAATACAA	GGCTATCAAG	CGCTACTGGA	AACTCATTC#	ACAGGATAGC	3840
CGTAAACTC	GCGATAAACA	TTTTTATCGC	CCTACTTTTC	GTATGCATT	AACCAATAAA	3900
GAGATTTTAG	ACAAGCTTTT	GAGCTATTCA	CAAGACTTGA	AACATCACTA	TCAGCTCTAT	3960
CAACTCTTG	TGTTTCACTI	TCAGAATAAC	GAACCGGAG	AATTTTTCG/	ACTTATCGAG	4020
GACAATCTT	A AGCAGGTTCA	TCCTATTTT	CAGACTGTC	TTAAAACCT	r CCTCAAAGAT	4080
AAAGAAAAG	TTATCAACGO	CCTTCAACT	A CACTATTCT	A ATGCCAAAC	r ggaagcgacc	4140
AATAATCTC	A TCAAACTTAT	CAAGCGCAAT	r GCCTTTGGT	T TTCGAAACT	r TGAAAACTTC	4200
AAAAAACGG	A TTTTTATCG	TCTGAATAT	Z AAAAAAGAA	A GGACAAAAT	т тотсстттст	4260
CGAGCTTAG	C TTTTTTTCA	A CCCACTACA	G TTGACAAAG	A GCCGGAAAA	A GGAACAGCCT	4320
TAGCTTTCC	T TTCATTTCT	r TTTATTTCC	C TCGTAGTAA	A CGTGCTAGC	T TCCACAAAAC	4380
AAACAGGAT	T CCCAGAAAT	G CCAGTACCA	C TAGCCCACG	G TACAACCAT	T GAGAGGTTGC	4440
AACACGCGA	T ACAGATTGT	C CTTCTTTCG	T AAAAGCAAC	C CTCGCAACT	G CAGCTGTTTG	4500
TGGATCTGA	T TTTTGATAA	A CAGCGACTO	G TTCAAAATT	C ACTAATAAG	C GTTTATTAAA	4560
GGTAGGAAT	C GGATCGCAG	G TTATCAAGG	T CATGATATT	T TTAGAGCTA	A CCGATTCTAA	4620

TTTTTCCCAT	TCCGACGGTA	AAATAATCTC	TGTGTCCATC	ATCTGATATT	CTACAATTTC	4680
CTGGCCATTA	TCATAATAAA	GAGCATCTCC	AACTTTTAGC	TGATCCAAAT	GGCGGAAAAA	4740
GACATGGCTT	GGCTCTGCAC	GGTGCCCAGC	AATCACTGAG	CGAATCCCTG	TACCATCCAG	4800
AGGCAGCGGT	GTACCATCCA	CATGAGCCAA	GCCCATCCCT	AAATGATGAT	AATCTGCTCC	4860
CAAATAAACC	GGCTCCATGA	TTTCCAAACT	TGGAATAGAC	AAGTAACCAT	AGACTGCATC	4920
AGGGTCGTCA	GACACTTGGT	AATTGACCTC	ATATCCCTCC	GCCAAAAAAG	GATCTACAAT	4980
GCGATTTTGC	GAAGCCAAGC	GTTGATTGTA	GGCGAGAGAA	TGGTTCTGTT	GTTCTTGGTA	5040
CATTTCAGTT	GTCATGGATT	TCACAAATGT	AGCATGACCT	TTCACCTGTC	CAAGAGACTG	5100
CAACACCATC	TGTCCAAAAC	AATAAATAGG	AATCAAACAG	GCTACCAACA	TCAACAAGTA	5160
TCCCAATAAG	GCTCGTAGTT	TAGTCCTTGA	CATGACGCCC	CTCCAATTGC	TTTTCTAGTC	5220
CTTTGACAAT	CCGTCGATTA	CGATACACGC	GATACAGCAA	GAGAAGGATG	ACCGCCATCG	5280
CTCCTAGTAA	TAACCACAAC	CAGAATTGCC	CACGCTCTCT	CACCGCTCGA	TTCCGCTCTG	5340
CAATTGGTGC	CGTATACGGA	ATCCGCTTCC	CACGTACCAA	CAGACGATGA	CTGTTAATCA	5400
TATACGGTGT	ACAAGTCÄAC	AAGGTCGCAT	AATCTTCCCC	ATGTTGAATC	AAGACAGGCT	5460
CAAAGTCATT	CGGCTCCACC	GTCACTATCT	GATCCACTTG	GTAGGCCAAC	ACCTGATCTA	5520
AAACGTGAAG	ATAAAAGATA	TCCCCTTTTT	TCATCTTATC	CAATTGACTG	AACAATTCTG	5580
CCGTTGGCAA	TCCTCTGTGA	GCAGTGATCA	CTGTATGGGT	ATTTTCACCT	CCAACAGGCA	5640
GCGAAGCCCC	TTCTAACAGC	CCTGCCCCTT	TCTGAAGAAT	GTCCTCACTC	GTTCCGACAT	5700
ACATCGGAAT	TTCCTGATCA	ATCGCAGGAA	TTTCCACATA	GCCAATCCGC	TCATGGACCT	5760
TTAGCATATT	GGCATATTCT	GAGACGCCTT	TCTTTTTCTC	TTGCTCTGTA	AAAGGATCAA	5820
GAATTTCAGA	TGGTTTCAAG	GTCGCATTGA	AGGCTTGAGC	CAAGCGCCAA	CGCTCCTCAA	5880
GTTCTGCCTT	ATCCATCTGG	GAAACCGTCT	CATCAAACTC	TTTAATAACC	TCGTTTGACT	5940
CAATACGATA	ATAATAACGA	GACACCAATG	GATATATCGC	AACGGCGAAT	CCTACTAAGA	6000
AAATCAGAAG	AAGGATCAGC	GGATGTTTCT	TCTTTTTTGT	GCCTTTTTTT	CGTGAACGTC	6060
TACTGTTGTC	CATCCTCCAC	CTTCACTTCC	TTCCTTGCTG	CTTTCAGCGC	CTTCAAAGCC	6120
TTTTCCGGTT	GTTTTTTCTT	CTTGCGCAAG	CGTCGAATAA	TCCATAAAAG	AATCACAATC	6180
AAACCAACTG	CCACATAAAA	CAGGTAGCGA	TAGAGATGAC	TGAGTTTGTT	TGCTGCAATA	6240
AATTCTTCCT	CAACCTCTGC	TACGTACGGT	ATCCGATGCC	CCCGAACCAA	TAGACGATGG	6300
GTATTGATCA	TGTATGGCGT	ACAAGTCAGC	AAGGTCACAT	AATCATGACC	TGGTACAATC	6360

			708			
AATAAATCAT	CAAAGTTCGT	CGGCTCAATC	ACCTTTACTT	GATCCACTTG	ATAGGCCATC	6420
ACTTCCTTGA	TATTGTGCAC	ATAAAACTTA	TCCCCAACTT	TAAGTTTGGT	CAAATCCGTA	6480
AACATCTTAG	CTGTTGGCAA	ACCTGTATGT	GCCGTAATCA	CCGCATGGGT	CGAATTGCCT	6540
CCGATCGGCA	GAGAAGTTCC	CTCTAGATGC	CCAGCCCCTT	GCTGCAATAC	CTCTTCAGCA	6600
GTACCAGCAT	AAACCGGCAA	ATCCACGTCA	ATAACGGGGA	TTTCCACATG	CCCCATCCGC	6660
TCATGGATTT	CTAACATACG	TGCATACTCT	GCTCGCCCTT	TTTTCTTCAT	TTCTTCCGAC	6720
CAAGGATCGC	CACTCACTAC	ATTATTCAAA	GAGTCATTGA	AGGCTTGTGC	CAATTTCATT	6780
CGTTCATCAA	TGTCAGCCTC	ATCCAACGTT	GCTTTTTCCT	TATCAAAGTC	AGCAATTTGT	6840
TGATTTGATT	CCACTCGATA	ATACAAGCGA	GACACCAGCG	GATACGCCAT	TACCGCCATT	6900
CCAATGAAAA	ATACCACTCC	TAATAGGAGA	TTATTTCGTT	TTTGCTTTTT	TGTTTTTACC	6960
ATTTTTATCA	GCATCCCTTT	ATCTTCAAAC	TTCAGGGTAT	С		7001
(2) INFORMA	TION FOR SE	Q ID NO: 89):			

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 10411 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

60	AGTTAAGGTT	TCCGCATCAA	TAGCGCCTTA	CACCGTCCTC	AAGAAGTTAC	GAGGGAGCTT
120	CATTTAGGGT	TGTTTAAGGT	TACGATGCTT	CAGCTTGTGA	AAACTGTCGC	GATATTTTTA
180	CAAAATTGAT	AGATTCAAGG	ACTCTTTGAG	TGAGGATATC	TCTGCATTGC	TTTAGTGAAA
240	TTAAGGTATC	TTGTAATTTT	CTGATCAAGT	CTGTTATGAC	ATCTGGTTTC	GATGATATTG
300	TAGCTTTGGC	TTACTTTCTT	CAGATTTCCC	CTTCTTCTGT	TTGCGGATAT	TTCAACAATC
360	AGCCTGATIT	TTAGCATCAT	GTTTAATTTA	CTAGGGCAAC	TTGATATCAG	GAGTCCTGAC
420	CCAAATCTTT	TCTTCTTGAG	AGCTTTTAGC	TATCTGACAA	TCAGCATTGA	GTCCTTGTTT
480	CTGCTAAAGC	TAGTAAATCC	CTCTAGCGAA	CTCCATTAGC	GGCACCTTGG	ATTAGCTTGT
540	CCATACCCAG	TTGGCATGTT	TACAGTGATT	TAGGGGCTGC	GTAACTGGAA	ACTTTCTCCT
600	CTGGTGTTTC	GTGATATTTT	AGTCACCTTA	ACATATCCTG	GCGTTTCGGT	CGTTACTGCT
660	ATGAATACAA	ATCTTGGCTG	TAGCTTTTGA	ATTTGTCACC	TCAAGTGGCG	AATCTTGACC
720	GTGTCATGGT	TAAACATCAG	GATTTTAGAA	CCACATTCAT	GAGTCATTGG	CTGTAAGCTA
780	TTTGATTTTT	TTTTTAAGAG	GTAGCCCAGT	TTGAGGCATT	TTGGTATCTG	CTTGAGTTCT

TTGGTCTTCA	GATAGGGAGG	AACCTAGGAC	ATATTCAGGT	TGGACATAGG	TTTCATCGAT	840
					CCCACAAGAT	900
		•				
CGCAGCGCTA	GTCAGAAAGA	GTTTCTTTCT	CATAGGGAAT	TTCCTCCTTT	ACTTCTTTAG	960
AGTAATATAT	CTATCTTAAA	GAAAACTTAT	AACAAAAACA	CCTGGTCTAG	CCAGATGTTG	1020
AAAAGAGAGT	GAAACATTTG	ATGATGTAAA	GGTTAAGTCG	TACCTGTCTA	GAATAATAAT	1080
AGTTTCCTCC	ATTTACATAG	AGTTCAGCAC	CGTGAAAAAT	GGAAATGGGG	TGAATATAAC	1140
TATAAGTCTT	TCCAGTCCTA	TTACCAAGCA	AGGGGCAAC	AGTCTCACGA	GAGTACTGTT	1200
TGGCTAGAGC	CAGGGTATTT	TCCTTGCCAT	TTTGGGCGAT	AAAATCGATA	TAGGCAGGTC	1260
CAAAATTATA	GGCTTGAACA	GCTGTCCAGA	TATCTACCCC	CTTCTTCTGC	GCCAGATAGA	1320
GATTGCCTGT	CAGAGTTTGA	ATGCCTTGCC	GAATGCTAGA	GGCATTATCA	TTGATGGTGT	1380
TGGTGGAACC	ACTTGCAGAC	TCACTAGACT	GCATAACATC	GCCTTCTTTT	CCTTTTGTTT	1440
CAGTATAAAT	CATAGCAAGC	ACAAGCTCTT	CGTTTGCTGG	GGTGTCTTGT	TCACTCAATA	1500
TTTCTCGCAC	CATGGGTTGA	TAGGTCATGA	CTTGTTTGAC	ATCTTGATGA	ACGCGGTAAG	1560
CTTTATAGCC	AGCAAAAAGG	AAGACTGCTA	GTACAAGCAC	TCTTCGAATT	CGTTTAAACA	1620
TTATTTACTT	TGGATATCCT	CGATATTTTT	GATTAAGATA	GAGTAGGTTC	CATTTTCGTT	1680
TTGGATAAAC	TCAACAGACT	CGGCGTCTTG	ATAGACGTTA	TTGGGAACGA	TGAGCTCAAT	1740
TCCATTTGAT	AAGGAGAGTT	TTTGGTTTTC	AAATTTCTTT	AATTGGCGAC	TGGCATCAAT	1800
TTCATCAAAT	TGAACAGGTT	CTGGTACGGC	TTCTTTGACT	TGGTCAATAA	AGCTCAAACG	1860
AGCCGTCAGA	TTGTTGTCAA	AAAGGTCATT	AGCCAATTTC	TCAGGTGACA	ATTCATTGCT	1920
TTCTTCTAGG	TTGTTGAAAA	TAGCTGATTT	GACCTTGGAT	TGAAATTGAA	AATCATCTGT	1980
GTTAAAAGAT	TTAGCAATTC	TCTGGGCTGT	TTTTTCCAGT	TCCTTGATAG	ATTTTTAGG	2040
AGAAATCTTA	GGAGCGACAG	CAAGAAGATT	ATCTGAAAAA	TAGTTCAAAA	AAGTCCCGTT	2100
GTACTTGATT	CGTTTTTCAA	TCAGGTGATA	CTTGCTACTC	TGAAGATTGA	CCACCAAGGC	2160
CTCATCAGCT	CCTGTTCCAA	ATCCAGGCAG	GTTATTCTGA	GTTAGCTTGA	TTGGATTATC	2220
AACTTCTCCT	CCGAGGTGGG	TCAAGGTCTC	CCGCAGGGCA	ATTCGCAAGA	AAGCGAAATG	2280
TTCTACACCT	TCTTTAGAAA	ATTGCACAAA	AATČAAGTCA	TTGGTCTTGA	GATTTTCAGA	2340
AATGCTAAAC	TCCTCTTTCC	AGAGATTAGC	CAGCGTTACT	GATGTCTCCA	ACAAATCGTC	2400
TGTAATATGA	TTGAAGAAGG	GATTTTCTTC	TTCGAAAATC	CCAGTCTTGG	CTTCATCTGA	2460
ATACACATGT	TCAATTTTTT	TACGCAGGTA	TTCTTCGATT	TTTGGAGTAA	TATTGAGAAA	2520

			710			
CTTATCTGCT	AAGAACAGTT	CGGTATCATC	CGGACTGAAC	TGGTGAATAA	TGGCTTTCTT	2580
AATATAAATG	TCCATAAAAG	TTTTAGTCCT	CGTATAATGG	GAAGGCATCT	GTCAATTCTT	2640
TGACTGCACT	TCTCACTTCT	TCTAATACAG	CCTCATTTTC	TGAATTCTTA	AGGGTTTTAA	2700
TGATGAGTTC	AGCCACTTTG	CGACTTTCTT	CTTCACCAAA	TCCACGTGCA	GTAATGGCTG	2760
CTGCTCCGAT	ACGAATCCCA	CTTGTCTTGA	ATGGTGACAA	GCTTTCGTAA	GGGATTGAGT	2820
TTTTATTTAA	GGTAATATTG	ACTTCATCCA	ACAAGTTTTG	AGCAACTTTG	CCGTTTTCTA	2880
CAACTTTAGT	CACATCAACA	AGGAAGAGAT	GGTTTTCAGT	TCCACCTGAA	ATAATACGGA	2940
AATCAGGGTC	TTGCAAGAAG	ACATCTGCCA	TAGCCTTGCT	GTTCTTAATT	ACATTGGCAG	3000
CATATTCCTT	GAAGGCTGGA	TCCAAAACTT	CTTTGAAGGA	AACTGCCTTA	GCCGCCACAA	3060
CATGCTCTAA	AGGACCGCCC	TGAATACCTG	GGAAAATAGC	TGAATTGATT	TTTTTAGCAA	3120
GTTCTTCGTC	ATTGGTCAAA	ATCAAACCAC	CACGAGGTCC	ACGAAGGGTT	TTGTGGGTCG	3180
TTGTTGTTGT	GATATGAGCG	TATGGAACTG	GGCTTGGATG	AAGGCCAGCC	GCAACCAAGC	3240
CAGCGATATG	GGCCATGTCC	ACCATGAGCT	TCGCACCGAC	AGCATCTGCG	ATTTCACGGA	3300
ATTTTGAAAA	ATCGATAATT	TGAGAATAGG	CTGAAGCACC	AGCTACAATC	AGTTTTGGTT	3360
TTACTTCTTG	GGCTTGTTTC	AAGATAGCAT	CAAAGTCTAA	GAGTTCCGTT	TTAGGATCAA	3420
CACTATAAGA	AACAAAGTTG	TAGGTTTGAC	CAGAGAAGCT	AACAGGAGCC	CCATGAGTCA	3480
AATGACCACC	TGATGCCAAA	TCCATTCCCA	TAACCGTATC	ACCTGGCTCA	ATCAAGGACA	3540
TGTAAGCCGC	ACAGTTAGCT	TGGCTTCCTG	AATGTGGTTG	AACATTGGCA	AATTTAGCAC	3600
CGAAAATTTC	TTTTGCGCGT	TCAATAGCAA	GAGTCTCTAC	AACGTCTACT	ACATCAGTTC	3660
CACCATAATA	ACGGCGTCCT	GGGTAACCCT	CGGCATATTT	ATTTGTCAAG	ATAGACCCTT	3720
GAGCTGCCAT	AACAGCCTTG	GAAACTACGT	TTTCCGAAGC	AATTAACTCG	ATATTATTTT	3780
GTTGGCGTTC	TTCTTCTTTG	GCAATAGCAT	TCCAGAGATC	AGCATCATAT	GCTTTAAAAT	3840
CATCTTTGTC	AAAAATCATA	GGTCTTCTCC	TTTATTGTGT	GACTAGTCCA	TTAGTTTGAT	3900
TTTACAATAA	GAAAATCAAA	CTAACAGATG	CGAATAAACC	GTTTCTGCAT	TTTATCACAA	3960
GTATAGCCAA	CTTTTTCATA	AAATGCATGA	GCACCCAGAC	GATGATTGGC	AGAATTTAAG	4020
CGGATAAACC	CATAACCACA	TCTTTTTGCT	TCTTCTTCCA	ACCCTTGTAG	TAAACTTTTA	4080
CCAATACCTT	GACCTTGCGC	TTGAGGTGAA	ACTGCTAAAG	CTAAGATATT	AAATCCTGCT	4140
TTGGAATAGA	GTGATTCGTA	AACTTCAGCG	TGGACATATC	CAAGTAAGAC	ATGATTAGCT	4200
GCATCCTCAT	AGCCAAGTAG	GAAATGATGG	GAATCCTGAG	ACAGTCTAGC	TAGTTGGCTA	4260
GCCGTTTCCT	CTGGACTAAA	AGTATAACCC	AAAGCCTCTT	GGTTGATGTC	ACATATAGCT	4320

TTCACATCAG	TTTCTCTTAA	ATCTCTTAGC	ATCTCATTCC	TCCTCAAAAG	AAATCTTTGG	4380
CAACCGAGCA	AGAATATCTT	CTCGCTTAAT	GGCCCCTTGA	CGTAAGATTT	TCACCTTGTC	4440
TCCCGACAAA	TTCAAAATAG	TTGAATCCTG	TCCAGTTAGA	AAAGCATCGT	CTTCCAGACC	4500
CAGAACCTCT	TGGTCAAAAT	CCTCTAGAAT	TTGATTAAAG	GTCACTCCAC	TCGCCTGACC	4560
TGAGATATTG	GCAGACGGCC	CAATCAAGGG	ACCTGTCTCT	CGAATCAAAT	CAAGGGTAAT	4620
GGGATGACTA	GGCATCCGAA	ATCCAACAGT	TGCAAGGCCA	GAATTGACCC	AATAGGGAAC	4680
TCGGTCATTA	GCTTCGAGAA	TAATGGTCAA	GGGACCTGGT	AAAAAGATCT	CTACAAGTTT	4740
TTGAAGATAA	GTTGGCTGAT	TCTTTGAAAA	GTACAAGATG	TCCTCTAAAG	AGGCAACATT	4800
GAGATTGAGC	GCCTTGTCTC	TACGTCGACG	TTTAAGCTGG	TAAACATGGT	CAACTGCTTT	4860
TTCGTCTAGC	GCCTTAGCAA	AGAGACCGTA	AACTGTCTCT	GTAGGCAAAA	CGACAGCTCC	4920
ACCATTTTCC	AACTCTTGTC	TAATCCTGTC	CATCATCAAC	GACAACCATC	CTATCTTGAC	4980
CAAATTGGTC	CTTGAGTGTT	CGTACTCGCT	TTTCAGGAAG	ATGTTTCCTA	AAAAGTTCAG	5040
GAACACTTTG	ACCTTGCTTG	TATCCAATTT	CAAGGTAAAT	CTTACCACCA	TCTTTGAGAT	5100
AGTCTTTTGC	ATCTTCCGCA	ATTCTACGGT	AAATAGCTAG	GCCATCCTCA	TCTGCAAAGA	5160
GAGCTAGATG	AGGCTCCGAA	TACAAGACAT	TCAAGCCTAC	CTCTGACTCA	TCTTCACGAG	5220
AGATATAGGG	TGGATTGGAA	ACAATTATAT	CATATTTTTC	AGAAATTTCT	GTAAAACAGT	5280
CAGATTTTTT	TAAAAATATT	TGAAGATTTT	GATTTTTAGC	ATTTTCGCTA	GCTACATCTA	5340
AAGCATCTTG	GGAAATATCT	GCTGCCGTCA	CTGACCAATC	TGGTCTGTTT	TTTGCTAGAG	5400
CGAGAGCAAT	AGCTCCACTA	CCTGTTCCGA	TATCTAGGAC	CATAAGATTT	TTCACAGGAT	5460
TTTCAGCCAG	GATAAGCTCC	ACCAACTCCT	CTGTTTCTGG	ACGAGGAATC	AAAACCCGTT	5520
CATCCACCTT	TAAATGCATT	CCATAAAAAT	CTGCCTGTCC	AATGATGTAC	TGAGCTGGCT	5580
TGTGAGCTGC	TAGTTGCTGG	TAAATATCTT	CTACAAATTG	TTTTTCTTCC	TCTGTTGTCA	5640
CCTCCTGCTG	GAGGGCAAAA	ATAAAGTCTG	TAAAAGATAG	ATTTTTCAGA	CTACGATAGA	5700
CAAAAGAGAG	GCTTTCCGCT	TCCTCTCCTT	GTCTTATCAA	CTCTTCTTCA	AAATTTGAAA	5760
ATAATTGAGC	TAATTTCATT	ATTTGTTTAA	TTCTTCTAGT	TTTTGTGTTT	GGTCATAAAG	5820
CACCAAGGCA	TCCACAACTT	CGTCCAATTT	ACCAGACAAA	ATCGTATCTA	GTTTTTGGAG	5880
GGTCAAGCCG	ATACGGTGGT	CTGTGACACG	GTTTTGTGGG	AAGTTATAAG	TTCGGATCCG	5940
TTCTGAACGG	TCACCAGTAC	CGATTGTCGA	CTTACGCTCA	ссотсствет	CATCTTGAGC	6000
AATCTGAGCA	AAGTGGTCAG	CAACACGGGC	ACGGATGATT	TTCATGGCCT	TCTCACGGTT	6060

CTTCTGCTGG	GTACGTTCTT	CCTGCATCTC	712 AACCTTGATA	TTGGTTGGCA	AGTGAACGAT	6120
ACGAACGGCA	GTCGCAACCT	TATTGACGTT	CTGTCCACCA	GCACCAGAGG	CGTGATAGAT	6180
GTCGACACGA	AGGTCTTTTG	GATCAATGTC	GTATTCAACC	TCTTCAACTT	CTGGCATAAC	6240
AAGAACTGTC	GCTGTCGAAG	TATGAACACG	GCCTTGGCTT	TCTGTCACAG	GAACACGTTG	6300
CACACGGTGG	GCACCTGATT	CATACTTAAG	CTTAGAGTAT	ACAGACTGAC	CTGAAACCAT	6360
AGCAACCACT	TCTTTAAAAC	CACCGACACC	ATTCATAGAG	GCTTCCATGA	CTTCAAAGCG	6420
CCAACCTTGG	GCTTCCGCAT	ACTTTTGGTA	CATAGTTAGC	AAATCTCCAG	CGAAAAGTGC	6480
CGCTTCGTCT	CCACCAGCTG	CTCCACGGAT	TTCAAGGATG	ATATTCTTGT	CATCGTTTGG	6540
ATCCTTTGGA	AGGAGCAAAA	TTTTCAGTTT	TTCTTCATAT	TCTTCTTTTT	CAGCCTTGGC	6600
ATCTTTGAGT	TCTTGCTTGG	CCAATTCTTC	CAAGTCCGCA	TCTCCGCCTG	ATTCCTTAAT	6660
CATCTCTTCG	GCATCGACGA	TATTTTGAAG	GACTTGTTTA	TACTCACGGT	AGGCTATTAC	6720
GGTGTCACGA	TTGGAAGCTT	CTTCTTTTGA	AAGCTCCATA	AAACGCTTGG	TGTCTGAAAC	6780
GACATCAGGG	TCACTCAGCA	ATTCTCCTAA	TTCTTCATAA	CGGTCTTCTA	CAACTTGTAG	6840
TTGATCATAG	ATGTTCATTT	TTTCTCCTTA	TTTCTCAATT	GTTAAATCAT	AGATTGCTAC	6900
TACTTCATTC	TCGGATATTT	CCCCAGTTTC	TTTAAATCCA	TAACTGAGGT	AACAAAATCT	6960
TGCCTGTTCA	TTTTCTGGTT	CATArGACAA	CCAAAGTTTA	TTGCTTAAAC	CTGCTGGCGC	7020
TGTTCGAACA	TAGTCTAGTA	CTTTATCCAT	AATTGGTTTA	AAATATCCTT	GATTTTGAAA	7080
ATTCTTATCA	ATCATAAAAC	GAAATAGTAA	ATAATTTCCA	CTACTAATTC	CGATCTTTTT	7140
ATCATAAGCT	ATCATCACAA	AACCTATAAT	TGCATCATTA	TCATAAACTG	CCAATGGAGC	7200
TACAAAATCT	CCATTTTTAG	TGTAGACGTA	TGCTTCAGCT	AAACTAATTG	CGTTGGTTGC	7260
AATGAATTGT	TTTTGATATT	CCTTGACATC	CAAATTTAAA	ACATCAAAAT	AATTTTCCAT	7320
TGTAACATCT	CTTAGTTCAA	TTGTCATAGT	TTTGCTCCTT	GTTAGAGGTT	ATCATTGGCG	7380
CAAAATAATG	TTTACGGCAA	ACTGAGATAT	AGGTTTCGTT	ACCACCAATC	TGGATCTGTT	7440
CTCCATCGTA	AACGGGCAGT	CCATCCTGTG	TTCGCAACAC	CATGGTCGCC	TTTTTCTTGC	7500
AATACTGACA	GATGGTCTTG	ATTTCGTCAA	TCTTGTCTGC	TAAAAGCAAG	AGATATTTGG	7560
AACCTTCGAA	CAATTCATTG	CGAAAGTCAT	TTTTCAAGCC	AAAAGCCATG	ACGGGTATGT	7620
CTAACTCGTC	CACAACACGA	GCTAGGTCGT	AAACATGGTG	GCGTTTGAGA	AACTGGGCTT	7680
CATCGACCAA	AACACAGTAA	GGTTTTTCTG	GTAGGTCTCG	GATATAGCCA	AAGATATCCG	7740
TTGTTTCCTC	AATCGCAAgG	GCAGGGCGTT	TCATGCCAAT	TCGACTCGÁC	ACATAGCCAA	7800 ·.
CGCCGTCACG	CGTATCCAGA	GCCGAGGTCA	TAATÇACAAC	ACCTTTTCCT	TGCTCCTCGT	7860

AGTTATAGGC	CACTTTGAGA	ATCTCAATCG	TTTTACCAGA	GTTCATGGTC	CCATAACGAT	792
AGTACAACTG	TGCCATGTTT	CTTGCTTCAC	GTCCATTTCT	AAATTTTTGC	TACATTCTAG	798
ТАТАТСАТАА	TTTTCTTAAG	CTTTAAACGG	CAAAATGTGG	TAAAATAGAA	GAAATCAAAA	8040
ACTAGTGGAG	GAAGCTATTA	TGCCATTTGT	ACGCATCGAT	TTATTTGAAG	GACGCACGCT	8106
CGAGCAAAAG	AAAGCTCTTG	CTAAGGAAGT	AACGGAAGCA	GTTGTCCGCA	ACACTGGAGC	8160
CCCTCAATCT	GCTGTCCATG	TCATCATCAA	CGACATGCCA	GAAGGAACTT	ACTTCCCACA	8220
AGGGGAAATG	CGTACTAAAT	AAGCTAGCTT	AAGCAGAATT	GCTTAGGCTT	TTTCAATCTC	8280
CAAGTAGCAT	TCATTGAAGA	AATATCCTAA	ATTTGTTACA	ATTTGAAAAG	AAACTTGGAG	8340
AATTTCCAAG	AAAAGAGCTA	TTAATTAAAG	GAAACATTAT	GATTACACGT	GAATTTGATA	8400
CCATCGCTGC	TATCTCTACT	CCACTAGGTG	AAGGGGCTAT	TGGTATTGTC	CGCCTGAGCG	8460
gAACAGACAG	TTTTGCTATT	GCGCAAAAGA	TTTTTAAAGG	AAAAGACTTG	AACAAGGTTG	8520
CCAGCCACAC	TCTCAACTAC	GGTCACATTA	TTGATCCTCT	GACTGGTAAA	GTCATGGACG	8580
AGGTTATGGT	TGGGGCTATG	AAGTCTCCAA	AGACCTTCAC	TCGTGAGGAT	ATTATCGAGA	8640
TTAACACCCA	CGGTGGGATT	GCGGTGACCA	ATGAAATTCT	CCAGCTAGCT	ATTCGTGAAG	8700
GGGCTCGGTT	GGCAGAACCT	GGTGAATTTA	CCAAACGTGC	TTTTTTAAAC	GGTCGCGTAG	8760
ACTTGACACA	GGCAGAGGCT	GTGATGGATA	TCATCCGTGC	CAAGACTGAC	AAGGCCATGA	8820
ACATTGCGGT	CAAACAATTA	GACGGCTCCC	TTTCTGACCT	CATTAACAAT	ACCCGTCAAG	888
AAATCCTCAA	TACACTTGCC	CAAGTTGAGG	TCAATATCGA	CTATCCTGAG	TATGACGATG	8940
TTGAGGAAGC	CACTACTGCT	GTTGTCCGAG	AGAAGACAAT	GGAGTTTGAG	CAATTACTAA	9000
CCAAACTCCT	TAGGACAGCA	CGTCGTGGTA	AAATCCTTCG	TGAAGGAATT	TCAACGCTA	9060
TCATTGGACG	TCCCAACGTT	GGGAAATCAA	GCCTTCTCAA	CAACCTCTTG	CGTGAGGACA	9120
AGGCTATCGT	AACAGATATC	GCTGGGACAA	CACGAGATGT	CATCGAAGAG	TACGTCAACA	9180
TCAATGGTGT	ACCTCTCAAA	TTGATTGATA	CAGCCGGTAT	TCGTGAAACG	GATGATATCG	9240
TTGAACAAAT	TGGAGTTGAG	CGTTCGAAAA	AAGCTCTTAA	GGAAGCTGAC	CTAGTTCTGC	9300
TAGTACTAAA	CGCTAGTGAA	CCACTAACCG	CCCAAGATCG	CCAACTCCTA	GAAATCAGTC	9360
AGGAGACTAA	TCGCATTATT	CTTCTTAACA	AAACTGACCT	GCCTGAAACG	ATTGAAACTT	9420
CGGAACTACC	TGAAGATGTC	ATCCGCATTT	CAGTTCTTAA	AAATCAAAAC	ATCGATAAAA	9480
TCGAAGAGAG	AATCAACAAC	CTCTTCTTTG	AAAATGCTGG	TTTGGTTGAG	CAAGATGCTA	9540
CCTACTTGTC	AAACGCCCGT	CACATTTCCT	TGATTGAGAA	GGCCGTTGAA	AGCCTACAAG	9600

			714			
CTGTTAACCA	AGGTCTTGAA	CTAGGGATGC	CAGTTGACTT	GCTTCAAGTT	GACTTGACCC	9660
GTACTTGGGA	AATTCTAGGA	GAAATCACTG	GAGATGCTGC	TCCAGATGAA	CTCATCACCC	9720
AACTCTTTAG	CCAATTCTGT	TTAGGAAAAT	AAGAAAAATC	CATGATCCTT	CATTCGGTCA	9780
TGGATTTTAG	GTTCTATAAT	ATTTGTAGTG	GGTAAATCCA	CTATAGATAT	TATGGAGCCT	9840
ATTTTATTGT	AGAAAAAAG	TCCCATATGA	CCTATAATGA	AAAGCGACAA	AACAACTCAT	9900
TAGAAAGAAT	CATATGGAAC	AATTACATTT	TATCACAAAA	TTACTAGACA	TTAAAGACCC	9960
TAATATCCAG	ATTTTAGACA	TCATCAATAA	GGATACACAC	AAGGAAATCA	TCGCCAAACT	10020
GGACTACGAC	GCCCCATCTT	GCCCTGAGTG	CGGAAACCAA	TTGAAGAAAT	ATGACTTTCA	10080
AAAAACCTTC	TAAAATTCCT	TATCTTGAAA	CGACTGGTAT	GCCCACTAGA	ATTCTCCTTA	10140
GAAAGCGTCG	ATTCAAGTGC	TATCACTGTT	CAAAAATGAT	GGTCGCTGAA	ACTTCTATCG	10200
TCAAGAAGAA	TCACCAAATC	CCTCGTATCA	TCAACCAAAA	GATTGCTCAA	AAGTTAATTG	10260
AAAAGATTTC	TATGACTGAT	ATTGCCCATC	AGCTTTCCAT	CTCAACTTCA	ACTGTTATTC	10320
GTAAGCTCAA	TGACTTTCAC	TTTAAACATG	ATTTTTCTTG	TCTTCCTGAG	ATTATGTCTT	10380
GGGATGAGTA	TGCTTTTACA	AAAGGGAAGA	T		â	10411
/2) TMDODW	AMTON FOR SI	50 ID NO. 9	n.			

(2) INFORMATION FOR SEQ ID NO: 90:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2393 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

60	GATAGTGTTC	TCCACATCAA	GGAAAAGCCG	TCAGATGGTT	CTGGAAATTA	GTTTTGGGTT
120	GACCTAACAA	ATGGAGTATA	CACAGAGGAA	AAGAAACTAA	GTTTAAATTG	GGAGATTTAA
180	TCATTGGGAA	AAACTATTGC	GAGGATGGAT	TTGTCTATTC	GCAACTGAAT	GACGTATTGA
240	CGAGTGATT'A	TACTCGCCTA	AGCGCTTGCG	AGCATAGATG	TATAGTCGCC	ATATGAAAAG
300	TTAGGAGTTC	ATTGCTTAAG	GATTATGGGG	AAATCGAGAC	ATGGAAGAAG	TCTGGAAGCA
360	GTAGCTCAGA	TTATCAATTA	GGGGCGACCA	GTATCTGGCT	AGCAGATAAG	CTAAATGGAT
420	CTGGTTTCGT	AAAACGTGGA	CAGTCCTGGA	ATATCAAAAC	TAAACGTGCT	AGTCGGTACT
480	GTATGCCAAA	TTGAACCGCC	TAAAAGTTAG	CGACATGCGT	TTACCTTGAA	GTTTGGATTA
540	AACTCCCCTG	CTACTCGATT	AGATTATCCC	GAGGGGCTAG	GGTGGTGTGA	CGGCACGTAC
600	GATCCTGGGA	CTGAGACGAC	ATTTTTGATG	AATTTCACGT	TAATTATGCA	AAATTTATTT

ACTTTTCAGA	TATTTTTTG	ACTATCTAAA	TCTATCATTA	GAAAAGCTTA	GAGCGCCAAA	660
GGATTTGAGC	GTTTTTCTGA	TTTTTAAGAC	TTTTTCCAGT	CTCTTTTTCG	ATTGAAGATG	720
TAATTATTCT	ACTAACTAAC	TAACTTCTTA	GTACTAGCCA	ACAACGATAA	TCATAATTCC	780
TCCTAAAATT	AGGAATAATA	AAGĞCAATAG	TTTTTGTTTT	TTCATGTAAA	AAACCTCACT	840
TTTGTTTTCT	GCTATTTTAT	GCTAAAATAT	TAAAAATCAA	ATTTAATTCC	AAAGTTTGTA	900
ACTAAAGGGG	GAGCGCTACA	TGTCTAATTC	ATTTGTCAAG	TTGTTAGTCT	CTCAATTATT	960
TGCAAATTTA	GCAGATATTT	TCTTTAGAGT	AACAATCATT	GCTAACATAT	ACATTATTTC	1020
AAAATCAGTA	ATTGCCACAT	CACTAGTTCC	TATCTTAATA	GGAATATCCT	CTTTTGTTGC	1080
GAGTCTTTTA	GTTCCGTTGG	TTACTAAAAG	GTTAGCGCTA	AATAGGGTTT	TATCTTTATC	1140
TCAATTTGGA	AAGACTATAT	TATTGGCGAT	ACTGGTAGGA	ATGTTTACCG	TAATGCAATC	1200
CGTAGCGCCT	TTGGTGACCT	ATCTATTTGT	TGTTGCAATT	TCCATACTAG	ATGGTTTTGC	1260
AGCACCCGTT	TCCTATGCTA	TTGTGCCACG	CTATGCGACC	GATTTGGGTA	AGGCTAATTC	1320
AGCCTTATCA	ATGACTGGTG	AAGCTGTTCA	ATTGATAGGT	TGGGGATTAG	GTGGACTCTT	1380
GTTTGCAACA	ATTGGTCTGT	TACCTACCAC	GTGTATCAAT	TTAGTCTTGT	ATATCATTTC	1440
TAGCTTTCTG	ATGTTATTTC	TTCCTAACGC	TGAAGTGGAG	GTGTTAGAGT	CAGAAACTAA	1500
TCTTGAAATT	TTGCTCAAAG	GTTGGAAGTT	AGTTGCTAGA	AATCCTAGAT	TAAGACTTTT	1560
TGTATCAGCA	AATTTATTGG	AAATTTTTTC	AAATACGATT	TGGGTTTCTT	CCATTATACT	1620
TGTTTTTGTA	ACGGAGTTAT	TAAATAAAAC	GGAAAGTTAC	TGGGGATATT	CTAATACAGC	1680
ATACTCTATT	GGTATTATAA	TTAGTGGCTT	AATTGCTTTT	AGGCTATCTG	AAAAGTTCCT	1740
TGCTGCTAAA	TGGGAACCCC	AATTATTCAC	CCCAAATCTA	AAAACCATCC	AGAATCCTTG	1800
CCTTAGCTTA	GATCCTGGAT	GGTTTCTTTT	TTCACCCAAT	GGGTGTTTTT	TACTAGACAA	1860
AAAAGAGTTT	CCCCTTTATG	GTATAAGTGT	AGAAAAAAAC	ACAAAAAGAA	AGGAAACTCA	1920
CATGAACAGT	TTACCAAATC	ATCACTTCCA	AAACAAGTCT	TTTTACCAAC	TATCTTTCGA	1980
TGGAGGTCAT	TTAACCCAGT	ATGGTGGTCT	TATCTTTTT	CAGGAACTTT	TTTCCCAGTT	2040
GAAACTAAAA	GAGCGGATTT	CTAAGTATTT	AGTAACGAAT	GACCAACGCC	GCTACTGTCG	2100
TTATTCGGAT	TCAGATATCC	TTGTCCAGTT	CCTCTTTCAA	CTGTTAACAG	GTTATGGAAC	2160
GGACTATGCT	TGTAAAGAAT	TGTCAGCTGA	TGCCTACTTT	CCAAAATTGT	TGGAAGGAGG	2220
GCAGCTTGCT	TCACAGCCAA	CCTTATCCCG	TTTTCTTTCC	AGAACTGACG	AGGAAACAGT	2280
CCATAGTTTG	CGATGCCTCA	ACCTTGAATT	GGTCGAATTC	TTTTTACAGT	TTCACCAGCT	2340

> 716 AAACCAACTC ATTGTAGATA ACGATTCTAC CCATTTCACA ACTTATGGCA AGC 2393

(2) INFORMATION FOR SEQ ID NO: 91:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4762 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:

TTTGTATCTT TTTAGGTCTC	TTTCAATCCA	AACCCTTTAA	ACTATACGTC	ATTTCGGTTC	60
CTGCAAGTCT TGTGGTAAT	TTAGGTTTGA	TTTTACTTT	CTTTTCACAA	GAGCCTCTGC	120
ACGCTTCTTA TTTGATGGT	GTCTTCCCTG	TTTTCCTACT	TTTATTGGTA	ACCAATATTA	180
AGAGTCAACA GAGGGGGCGT	AGTGCTAGAA	GAAGCCGAAG	AGAAACGCCA	TTATGCCTAT	240
GGAGTCGTTT CTTCAAAGGA	AATCTATATC	TGCTAGTTTT	TGGGTTTGTC	TATCTTTTGT	300
CTGTTCCTTT TTTGATGAAC	TTTGTCCTTT	ATCCAGTACC	TTATCAAGAA	CGTAATCGTC	360
TTGCTGATTT GGTAAAAGAC	GAGACAAATA	CGGAAGATGC	TATCTCATGC	ATGGGATGAT	420
ACTGCGACTC TTTATCGTAA	GAGTGAGCGC	TTGTCCCATC	GGCGATTTTG	TCCCCGTTGC	480
ACTATACAGC AACTGAGGAA	AATCGTAATA	AGTTACTTAA	TGACTTGAAA	GAAAAACAAC	540
CTAAGGTGAT TGTGGTAAAT	GATAAGGTGG	TAGTCTGGTC	TGAAGTGGAA	ACACTCTTAA	600
AAGAAAATTA CCAACAAGTA	AAGACTGATT	ACTCAGAGTT	TAAAGTCTAT	AAAATTAAAT	660
AACCAAATCA ATATCTTGTG	TATTTTTAAA	AATTTTAGGA	TTTTTAACAC	AAGATATTGA	720
TTTTTCTTTT TAGAGTGGTA	TAATACTTTT	TAGAAAGAAC	ATTTTAGAAA	AGAGCATGCA	780
TATGATTGCA CTAGAAGAAA	AAATTACAAT	TTTGCCAACT	CTCTTCGTCG	AGAAACGAGA	840
TGGGAGACGT GTTGTATTTG	ATGTGGACAA	GATTGACAAG	GCTCTCCACA	AGGCGGCTGA	900
CAAGGTTATG GATGTGACAC	CCCTGGTTGA	AAAATGCCTC	AATGATCTGA	CTGAGCGAAT	960
TATTACAGAA ATTCATAGTC	GCTTTCCACA	GGGAATTAAG	ATTTACGAAA	TTCAAAATAT	1020
CGTAGAACAT GAACTCCTTG	AAGCCAAAGA	ATATGCGCTG	GCTGAGGAGT	ATATTACTTA	1080
TCGGACACAG AGGGATTTTG	AGCGCTCAAA	AGCGACGGAT	ATCAACTTTA	GTATTCATAA	1140
ACTTCTCAAC AAAGACCAGA	CAGTTGTCAA	TGAAAACGCT	AATAAAGACA	GTGATGTCTT	1200
TAACACTCAG CGTGATTTGA	CAGCAGGGAT	TGTTGGGAAA	TCAATCGGAC	TGCAAATGCT	1260
TCCTAAGCAC GTAGCCAATG	CCCACCAAAA	GGGGGATATC	CACTATCACG	ATTTGGACTA	1320
CAGTCCCTAT ACCCCTATGA	CCAACTGCTG	TTTGATTGAT	TTTAAGGGTA	TGTTGGAAAA	1380

TGGTTTTAAG ATTGGAAA	TG CAGAGGTAG	A GAGTCCCAA	G TCTATCCAG	A CTGCGACAGC	1440
ACAGATTTCT CAAATCAT			-		
CCGTATCGAT GAAATTTT					1500
					1560
TGCAGAAGAG TGGGTATT					1620
GGACATCTAC GATGCCAT					1680
TGGACAAACA CCTTTTAC					1740
AATTCAAAAA GCTATTTT	AA ACATTCGCA	r caagggtet1	r ggttcagaa	C ACCGTACGGC	1800
TATCTTTCCT AAACTTAT	CT TTACGCTTA	A AAGAGGCCTC	AACTTAGAG	G AAGGAACTCC	1860
CAACTATGAC ATCAAGCAG	GT TGGCTCTAG	A GTGTGCAACO	AAGCGGATG1	TATCCAGACGT	1920
CTTGTCTTAT GATAAGAT	rg ttgatttgag	AGGTTCTTTC	AAGGTGCCTA	TGGGCTGCCG	1980
TTCTTTCCTT CAAGGGTG	GA AGGATGAAA	TGGTGTAGAA	GTCAATTCAG	GTCGCATGAA	2040
TCTGGGTGTT GTGACGGTT	TA ATCTGCCTCC	TATTGCTCTT	GAGTCTGAAC	GTGATATGAA	2100
TAAGTTCTGG GAAATCTTC	A ACGAGCGAAT	GAATATCGCA	GAAGATGCTC	TTGTTTACCG	2160
TGTCGAACGC ACTAAAGAC	G CGACACCAGO	GAATGCTCCT	ATTCTTTATO	AGTACGGTGC	2220
TTTTGGCCAT CGTCTAGGT	'A AAGAAGAAAC	TGTTGACCAG	CTCTTTAAGA	ATCGTCGTGC	2280
GACCGTTTCG CTGGGCTAT	'A TCGGCTTGTA	TGAAGTAGCG	ACAGTTTTCT	TTGGTAACAG	2340
CTGGGAAAGT AATCCAGAT	G CTAAGGAATT	CACGCTAGAC	ATCATTCACG	ATATGAAACG	2400
CCGTGTAGAA GAGTGGTCA					2460
CGAAAGTCTG ACAGACCGT					2520
TATCACAGAC AAGGAATAC					2580
ACCGTTTGAA AAATTGGAC					
CATCCATTAT TGTGAGTAT					2640
					2700
GGATTATGCT TATGACCGT					2760
CAAGTGTGAC TTTGAAGGG					2820
GGCAATAGC GACCCTAAA					2880
CCTCAAGCA AGACCGATG	G TCAACGGGCG	TCACAAGGAA	ATCGCTGCGC	GTGTCAAACA	2940
ATGAATGGT TCAACGATT	A AAATAGCTGG	GCATCAAGTA	ACAAATTAGA	ÄAGAAATGAA	3000
TGGGAAAAT ATCAACTAG	A CGATAAGGGG	CGCGCACAAG	TGACCCGTTA	TCACGAGAAA	3060
ACTCTAAAG GTGGAGCTG	G TAAGAAAGAA	CGCTTGCTTA	GCTTCAGAGA	ACAATTTTTA	3120

			718			
AACAAGAACA	AGAAAAAATA	AAAGTGAGAG	CCAGCTCTCG	CTTTTCTCAT	AGTGGGAGGT	318
AAGGATGGAA	TTACGCAGAC	CAAGATTAGC	GGATAAGAAA	GCTGTTTTAG	ATATGATGAC	3240
AGAGTTTGAA	AAATTTCAGT	CGCCTCACGA	CGGCGGTTTC	TGGGATACAG	AGAACTTTGT	3300
GTATGAAGAC	TGGTTAGAAA	GCAATCAGGA	ACAGGAAATG	GGGATTAATC	TGCCTGAAGG	3360
ATGGGTTTCT	GCAATTCAGT	TAGTGGCTTT	TTCTGAGAAA	GGTCAAGCAG	TTGGATTTCT	3420
TAATCTCCGG	TTGCGCCTCA	GTAACTTTCT	' ACTAGAAGAA	GGTGGCCACA	TTGGCTACTC	3480
CATTCGTCCA	TCTGAAAGAG	GCAAGGGTTA	TGCAAAAGAG	ACTCTCCGTC	AGGGCTTGCA	3540
AGTTGCTAAG	GAAAAGAACA	TCAAGAAAGC	TCTGGTGACC	TGTAGTGTGA	ATAATCCTGC	3600
TAGCAGAGCA	GTCATTCTAG	CAAATGGTGG	AATATTTGAG	GATGCTCGCA	ATGGAGTCGA	3660
GCGTTATTGG	ATAGAGGTAG	CGAATGAATA	ATCCAAAACC	ACAAGAATGG	AAAAGCGAGG	3720
AACTTAGTCA	AGGTCGTATC	ATTGACTACA	AGGCCTTTAA	CTTTGTGGAC	GGCGAAGGCG	3780
TGCGCAACTC	TCTCTATGTA	TCAGGCTGTA	TGTTTCACTG	CGAGGGATGT	TATAATGTTG	3840
CGACTTGGTC	TTTTAATGCT	GGCATTCCCT	ATACAGCAGA	ATTAGAAGAG	CAGATTATGG	3900
CAGACCTTGC	CCAACCCTAT	GTTCAAGGCT	TGACTTTGCT	GGGAGGGGAG	CCTTTTCTCA	3960
ATACTGGGAT	TCTCTTGCCA	CTTGTTAAGC	GGATTCGGAA	GGAATTGCCA	GACAAGGACA	4020
CTGGTCCTG	GACCGGCTAC	ACTTGGGAAG	AAATGATGTT	GGAAACTCCA	GATAAACTGG	4080
VATTCTTGTC	ACTGATTGAC	ATTCTTGTCG	ATGGAAGATA	TGATCGAACT	AAGAGAAATC	4140
TATGCTCCA	GTTTCGAGGT	TCATCTAACC	AACGAATTAT	CGATGTGCAA	AAATCGCTCA	4200
AAGTGGGCA	AGTAGTGATT	TGGGACAAGC	TCAATGACGG	AAAAGAAAGC	TATGAACAGG	4260
GAAGAGAGA	ATGAAGAAAA	AGGACTTAGT	AGACCAACTA	GTCTCAGAGA	TCGAGACGGG	4320
AAAGTCAGG	ACACTGGGAA	TATACGGTCA	TGGAGCTTCA	GGTAAATCAA	CCTTTGCACA	4380
GAATTGTAC	CAAGCTTTAG	ATTCTACTAC	AGTAAATTTG	CTAGAGACAG	ATCCTTATAT	4440
ACCTCAGGA	CGCCATCTGG	TAGTAÇCCAA	GGACGCGCCG	AATCAAAAGG	TGACAGCCAG	4500
CTGCCAGTG	GCGCATGAAC	TGGAGAGTTT	GCAGAGAGAT	ATCCTTGCTT	GCAGGCGGGT	4560
TGGATGTCT	TGACAATTGA	AGAACCTTGG	AAGGCTAGTG	AGGTCTTGTC	TGGAGCCAAA	4620
CAATTTTGA	TTGTCGAAGG	GATGTCTGTT	GGCTTTCTAC	CCAAGGAACT	CTTTGAAAAA	4680
CCATCTGTT	TCTACACGGA	TGAGGAGACC	GAATTAAAGC	GACGCCTTGC	TAGAGATACG	4740
CTGTGAGAA .	ATCGCGATGC	GG				4762
		•				

⁽²⁾ INFORMATION FOR SEQ ID NO: 92:

⁽¹⁾ SEQUENCE CHARACTERISTICS:

CGTATCTTCT	CGTTCTGAAA	AAGTTGGTGA	GTACATCTCT	GAAGCAATGG	AAAAAGTTGG	780
CAAAGACGGT	GTCATCACCA	TCGAAGAGTC	ACGTGGTATG	GAAACAGAGC	TTGAAGTCGT	840
AGAAGGAATG	CAGTTTGACC	GTGGTTACCT	TTCACAGTAC	ATGGTGACAG	ATAGCGAAAA	900
AATGGTGGCT	GACCTTGAAA	ATCCGTACAT	TTTGATTACA	GACAAGAAAA	TTTCCAATAT	960
CCAAGAAATC	TTGCCACTTT	TGGAAAGCAT	TCTCCAAAGC	AATCGTCCAC	TCTTGATTAT	1020
TGCGGATGAT	GTGGATGGCG	AGGCTCTTCC	AACTCTTGTT	TTGAACAAGA	TTCGTGGAAC	1080
CTTCAACGTA	GTAGCAGTCA	AGGCACCTGG	TTTTGGTGAC	CGTCGCAAAG	CCATGCTTGA	1140
AGATATCGCC	ATCTTAACAG	GCĠGAAÇAGT	TATCACAGAA	GACCTTGGTC	TTGAGTTGAA	1200
AGATGCGACA	ATTGAAGCTC	TTGGTCAAGC	AGCGAGAGTG	ACCGTGGACA	AAGATAGCAC	1260
GGTTATTGTA	GAAGGTGCAG	GAAATCCTGA	AGCGATTTCT	CACCGTGTTG	CGGTTATCAA	1320
GTCTCAAATC	GAAACTACAA	CTTCTGAATT	TGACCGTGAA	AAATTGCAAG	AACGCTTGGC	1380
CAAATTGTCA	GGTGGTGTAG	CGGTTATTAA	GGTTGGAGCC	GCAACTGAAA	CTGAGTTGAA	1440
AGAAATGAAA	CTCCGCATTG	AAGATGCCCT	CAACGCTACT	·CGTGCAGCTG	TTGAAGAAGG	1500
TATTGTTGC	GGTGGTGGAA	CAGCTCTTGC	CAATGTGATT	CCAGCTGTTC	CTACCTTGGA	1560
ATTGACAGG	A GATGAAGCAA	CAGGACGTAA	TATTGTTCTC	CGTGCTTTGG	AAGAACCCGT	1620
TCGTCAAAT	r GCTCACAATG	CAGGATTTGA	AGGATCTATC	GTTATCGATC	GTTTGAAAAA	1680
TGCTGAGCT	r GGTATAGGAT	TTAACGCAGG	AACTGGCGAG	TGGGTTAACA	TGATTGATCA	1740
AGGTATCAT	T GATCCĄGTTA	AAGTGAGTC	TTCAGCCCTA	CAAAATGCAC	CATCTGTAGC	1800
CAGCTTGAT	T TTGACAACAC	AAGCAGTCG	r AGCCAATAA	CCAGAACCAC	TAGCCCCAGC	1860
TCCAGCAAT	G GATCCAAGCA	TGATGGGCG	GATGATGTA	GCTTTCTATA	GAAAACAACT	1920
TATAAAAAA	C AĆAAAAGGAG	GGAATGACT	A ACCCTTCTT	TTATAGGCT	TTTGTCAACT	1980
GTAGTGGGT	T GAAGTCAGC1	AAGCTCGAG	A AAGGACAAA	TTCGTCCTT	CTTTTTTGAT	2040
GTTCAAAGC	G ATAAAAATC	GTTTTTGA	A GTTTTCAAA	TTTCGAAAA	CAAAGGCATT	2100
GCGCTTGAT	A AGTTTGATG	A GATTATTGG	r coerreces	TTGGCGTTA	G AATAGTGTAG	2160
TTGAAGGGC	G TTGATAATC	r TTTCTTTAT	C TTTGAGGAA	G GTTTTAAAG	A CAGTCTGAAA	2220
AATAGGATG	A ACTTGCTTA	A GATTGTCCT	C AATAAGTCC	G AAAAATTTC	r ccccttcctt	2280
ATTCTGAAA	G TGAAACAGC	A AGAGTTGAT	A GAGCTGATA	G TGATGTTTC	A AGTCTTGTGA	2340
ATAGCTCAA	A AGCTTGTCT	A AAATCTCTT	T ATTGGTTAA	A TGCATACGA	A AAGTAGGACG	2400
ATÁAAATCO	C TTATCACTC	A GTTTACGGC	T ATCCTGTTG	T ATGAGCTTC	C AGTAGCGCTT	2460

			930			
GATAGCCTTG	TATTCATGGG	ATTTTCGATC	CAATTGGTTC	ATAATTTGAA	CACGCACACG	2520
ACTCATAGCA	CGGCTAAGAT	GTTGTACAAT	GTGAAAGCGA	TCCAACACGA	TTTTAGCATT	2580
CGGGAGTGAA	ACAGTCTGGG	AGACTGTTTC	AGCCTGAGCC	TAGAAATTTG	AAAGCGAAGC	2640
TGTTTAGCCA	AGTCATAGTA	AGGACTAAAC	ATATCCATCG	TAATGATTTT	CACTTGACAA	2700
CGAACGGCTC	TATCGTAGCG	AAGAAAGTGA	TTTCGGATGA	CAGCTTGTGT	TCTGCCTTCA	2760
AGAACAGTGA	TAATATTAAG	ATTATCAAAA	TCTTGCGCAA	TGAAACTCAT	CTTTCCCTTA	2820
GTGAAGGCAT	ACTCATCCCA	AGACATAATC	TTTGGAAGCC	GAGAAAAATC	ATGCTCAAAG	2880
TGAAAGTCAT	TGAGCTTGCG	AATGACAGTT	GAAGTTGAAA	TGGCCAGCTG	ATGGGCAATA	2940
TCAGTCATAG	AAATTTTTTC	AATTAACTTT	TGAGCAATCT	TTTGGTTGAT	GATACGAGGG	3000
ATTTGGTGAT	TTTTCTTTAC	CAGGGGAGTC	TCAGCAACCA	TCATTTTTGA	ACAGTGATAG	3060
CACTTGAAAC	GACGCTTTCT	AAGGAGAATT	CTAGAAGGCA	TACCAGTCGT	TTCAAGATAA	3120
GGAATTTTAG	AAGGTTTTTG	AAAGTCATAT	TTCTTCAATT	GGTTTCCGCA	CTCAGGGCAA	3180
GATGGGGCGT	CGTAGTCCAG	TTTGGCGATG	ATTTCCTTGT	GTGTATCCTT	ATTGATGATG	3240
TCTAAAATCT	GGATATTAGG	GTCTTTAATA	TCGAGCAGTT	TTGTGATAAA	ATGTAATTGT	3300
TCCATATGAA	TCTTTCTAAT	GAGTTGTTTT	GTCGCTTTTC	ATTATAGGTC	ATATGGGACT	3360
TTTTTTCTAC	AACAAAATAG	GCTCCATAAT	ATCTATAAGG	GATTTACCCA	CTACAAATAT	3420
TATAGAGCCG	AAAATTCACA	TCTAATATAT	GCAGACTACT	TTGAAATGAA	AAAAAAA	3480
TTATTAAAGG	ATGACACAAA	AGTTTTTGAA	AAATCTACAT	TCAAATTTGT	AGAAGGA T AT	3540
AAAATATACC	TGACAGAATC	TAAAGAATCT	GGAATTAAAC	ANATGGACAA	TGTCATAAAA	3600
TATTTTGAGT	TTATTGAATC	TAAAAGTATT	GCTTTATATT	TTCAAAAACG	ATTAAATGAG	3660
CTGATAGATT	AAATAGCATT	TTCTCTGTTG	AGATATTGTT	TTTAAAATAT	TGTACTAAAT	3720
GATTGATGCT	atgtggaaat	ACAAAAAAAT	GTTTTTGATA	CGAAGTTGAC	CTGTATTTT	3780
TATACTAATC	ATTTTCGTAT	TTTTTGTATT	AAACGATATA	AGTTTGTTGT	AAACTTACAA	3840
GGAATAAAGA	CATTAAAAAA	TAACAGTATA	TCTATTTGTT	TTATATATTT	TACGAATTCT	2900
GCATAAATCT	CTTTCTAGTA	ATGTGTTGTA	ACTCTGCTAT	AATAGATTTA	TTCCTTTTTG	3960
TGTTTACACA	ATTTATTTA	TAGTACCAAA	AAAGGTCAGG	ATTTTGTTCC	TGACCTTTGA	4020
CAACTTTACC	GATTCTTTAG	TTCTACATAG	CGCTTGTACC	AAATGTTTAC	ATAGGCTTCT	4080
GAGAAAGGAC	CACGTCCATT	GTTAATCCAA	TCAACAAGAA	TTTTGACATG	TTCTTTTAAA	4140
ATATAGTCCA	AGTCATCAGA	ATAATTCATT	TTGCGTTTGT	GACGCTCGTA	CTCTTCAACG	4200
TCCAAGAGAC	GTTTTTCCCC	ATCTGTAAAA	ATTTTAACAT	CCAAATCGTA	ATCAATATAC	4260

TTCAGTGCTT	CTTCATCCAG	ATAGTAGGGG	CTAGCCATAT	TGCAATAGTA	AGAAGTTCCA	4320
TTATCACGAA	TCATGGCAAT	GATATTAAAC	CAATATTTCT	TGTGAAAGTA	AACAATAGCC	4380
GGTTCTCGAG	TGACCCAACG	ACGACCATCA	CTTTCGGTAA	CAAGTGTATG	ATCGTTGACA	4440
CCAATAATGG	CGTTTTCTGT	TGTTTTTAGT	ACCATGGTGT	CCCGCCAAGT	TCGGTGGAGA	4500
CTCCCATCAT	GCTTATAACT	TTGAATTGTA	ATAAAGTCGC	CTTCTTTTGG	AAGCTTCATA	4560
ACTAACCAAC	TTTCTACAAT	TTATAAGTTT	ATCATTTACT	ATTGTACCAT	AAAATTACCC	4620
AAAATCTGTG	AATTTCACTT	GGAAATATTA	AAGATATTCT	CTAAGAGCGC	TTGCTATATC	4680
CGAAAAATCG	TAGCCCTTTC	GTGCTAAAAC	TTGAGTTAAA	CGCTGCTTCA	GTTCGTATCC	4740
TTCATACTTT	CGGGCATACT	TAGTATATTG	CTTATCAAGT	TCCTTGAAGA	TGAGTTCCTG	4800
AGTCGTTTCT	TCATCAACTT	GACTATCCAA	TTCGTCAAAG	GCAATTTTAG	CATCAAAATA	4860
AGAGAAGCCC	TTGTTAGTCA	AGTTCTGGAT	AATCTTATCT	TGCAGGGCAC	GAGCTGGAAG	4920
TTTTCCCTCA	TATTTTTCA	ATAGTTTATT	GGCTACACGT	TGAGCAACTT	CCGAAAAATC	4980
AAAATCATTC	AAGATTTCTT	CTATAGTAGA	TTTTGAAATT	CCTTTTTGTG	CTAATTTCTG	5040
AGTCAGTACA	TAAGGTCCCT	TGTCTCCTGA	AAGTTGATTG	GCATTGATGA	TAGCATAAGC	5100
GTACTGGCTA	TCATTAATCC	ACTTCTCTTC	TTTAAGATTA	GCAATGACTT	GAGAAACGAT	5160
GTTTTCATTA	ATATCATATT	TTTTCAGATA	TTCTCTGACC	TCTTTTTCAG	TACGTGCTTT	5220
AAAGGATAAG	TGGTAGAGGG	CCAGATTCTT	ACCATAAGAA	AATTGAGCAA	AGTCTTGAAT	5280
CTCTTTCAAT	TCCTCTTCGC	TTATCACCTT	ATCTCTCGAT	AACATAAAAC	GAACAATTGT	5340
GTCTTCGGTG	ATATAGCATT	TGTCG				5365

(2) INFORMATION FOR SEQ ID NO: 78:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3636 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:

60	ATTGGAACTG	TGACTTCCGT	TCAAAGAGAA	AAAGTCTTTA	GAAGTTGAGT	TTTCCAGAAA
120	ATCTTTAATC	CATTTTCTAA	TCCGCCCTAG	TTTACTAGCG	TTATTTCTAC	ACATTAGGTT
180	ACTCAGTCCA	GAGGATTTTC	ATAACTGCTT	AGCCAGCTGA	СССТАТТТАТ	тсттстсттс
240	AATAATCAGA	TGACTTGTAA	CTCGAATGCA	AGTATAAAGA	CGTCCACCGA	TGAAGCTTAT

			632			
GTCATTGTAG	AAAAAATCAG	GGTGAAGACA		GGATAAAATA	ACTAAAGTCA	300
TCCGCATACC	ATGTTTTTTT	AAGTTTACTG	AACATCTTTT	AAAAGATACC	CAACACTACG	360
CAAAGTTTGC	AAATTCTCTG	CAAAAGTGGT	TCCCTTTAAT	TTCTTACGGA	CTTTTGAAAC	420
ATAGACTTCG	ACAACCGAAA	TCGTTGTATC	ACTATCAAAT	CCCCATAGAC	GGTCAAAAAT	480
CTGCGTCTTA	GGCAAAATCA	CATTTTGATT	TTGAAGGAAA	TAAACTAGTA	AATCGAACTC	540
TTTCCCCAGC	AATTCGACAG	GAGTATCTTC	AACTTTAACG	GTATTGGTTG	ATAAATTAAC	600
CACGATATTC	CCATAAGTCA	AGGTGTTTTC	ATTAAACTTC	CCTGAACGTT	TGAGAAGGGC	660
CTGAATCCGC	ATTTTAAGTT	CTTCTAGGTA	GAAAGGTTTG	GTCAGATAAT	CATCCGCTCC	720
CAGTTCAAAT	CCATGTCCCT	TGTCATCCAA	ACTTTCCTTG	GCAGTCATAA	TCAGAACTGG	780
TGTCGTAATT	CCCTTTTCAC	GCAATTCTTT	TAAGACTTGG	AAACCATTTT	TTTCTGGCAA	840
CATCAAATCC	AGCAAAATCA	AGTCATAGAC	ACCACTCTCA	GCTTCGTAGA	GACCTTCTTC	900
TCCATCAAAT	ACCTGCATAA	CATCCGCAAA	ATCGTCTAAA	AAGTCAAATA	CTGAATTTGA	960
CAGACCTAGG	TCATCCTCAA	CCAATAAGAT	TTTTATCATG	AGAAACTCCT	CCTTATTAAA	1020
ACTATTATAC	CAAATTTGCC	TTAAAAAAA	CTCAACTCTC	TGCATTTTAC	ATGAGATAGC	1080
TGAGTTTTCT	TTTTATTTTA	GGCTTATTTA	TGCATTTCCG	TATTGAAGAA	CAACTGCTTC	1140
GACTGCAGCT	TTTTCACGGC	TAATCAAGTC	AACACGCGCT	GCAATTTCCT	TGATTCCCAT	1200
ACCGATGTTA	CGGCTAAGAG	CAAGGTCAGA	AAGTTGCGGT	TCAAAGAACT	CCTTGTATTC	1260
CGCCAAGCGT	TGCTGAGTCT	TAAATACATG	AGCAGGAAGG	ATAACAAAGC	TATCAAAGCT	1320
CATATCTCCT	CCAAGGGCTG	CCTTAATCCA	AGCCCAGTTT	TCACGCGCCC	AAGACCAAGC	1380
TGTTTTCTGA	GTTGCTTGAT	GAGCTAGGAA	TTGGTAATAC	CAAGCAGACA	AGTCCTGTGG	1440
TTTGACCACA	AATTTGTCCT	TCCAAGAAGT	AATCAGGTTT	TGGATATTAT	CCGCATCTGT	1500
ACTGTATGCA	AGAGCTGCTG	CCAACTGGCG	TTTAAAGACA	GCATCTGTTG	CGTGAGTATA	1560
AGTATCAAGA	TAAAGTGCTA	ACAAGTCTTT	AGTCTCATGA	TGTTTCATCT	CATTAATCAG	1620
AACTTGTGAG	CGAATAGCTG	CTGGGAGTCC	TGCAAGATTC	TCCTTGTGTG	TTGCGAAGAT	168
TTGGCTAGCG	ACTTGACTAG	CTTCTGCATC	ATTTGAGCGA	ATCATCATCG	AAACAGCCAG	174
CTGACGAACC	AATTCATCCT	CATCTGATTC	TCCGTCTTTA	GCTTCAAAAC	CAAGACGGTC	180
ATAGTTATGA	CGAGCCAATT	TAGCAACCAG	TCCTTTGAAG	GCTGTTTCAG	CATCCGTTCC	186
TTCATCAATA	AAGCGCTCAA	GGGCTGAAAT	CACTTGAGAA	ACAGCTGAAA	CCACCAGATA	192
AGACTCTTCC	TTAGCAAGTT	TATCAAGAAC	TGGAAGCAAG	TCTGCATAAG	AAATGTGCCC	198
TGCCTCAGCC	AACAAACGAC	GTTCTTGAAC	AATTTGCAGT	TTGCTTGTGT	TATCAAGTGT	204

CTCTAGCTCA	GCAAGAACAG	CTGCTAACAA	GTCTCCTTGA	TAGTCGGTAA	TATAGTGGGC	2100
AGTATTTCA	GTGTTGAGAC	GAAGAGCTCC	TTCATTTTCA	GCAAGAAGAG	CTGCGTAGCC	2160
AGGGATTTCG	ATACTTTCAG	TTTCGAGTGT	ATCAGGCAAG	CCTTTCCAGT	TGCTATTGAG	2220
GGGCACCACC	CAGAGACGGT	TCTTGTCTTC	GTTCTCACCG	ATGAAGAATT	GTTTTTGTGA	2280
AATCTTCAAG	ACATCATTTT	CAACTTTAAC	AGTAAGAACT	GGGTAACCAG	GCTGTTCCAA	2340
CCAAGAATCC	ATGAAGGCTG	CGACATCACG	TCCTGACGCT	TGACCAAGGG	CATCCCAAAG	2400
GTCACTACCA	ATGGTGTTGC	TGTATTGGTG	TTTTTCAAAG	TAGGCGTGCA	AACCTTTAGC	2460
AAAATCAGCA	TCTCCTAGCC	AACGGCGAAG	CATGTGCATG	AGACGGCTTC	CTTTGGCATA	2520
GACGATAGCG	CCGTCAAAGA	GTGTATTGAT	TTCATCTGGA	TGTTTAACTT	CGACGTGGAC	2580
AGACTGAACG	CCATCAGTAG	CGTCACGTTC	AAGAGCAAGA	GGTACTCCAC	CTGTTTGGAA	2640
ATCTTCAAAG	ATATTCCAGC	TTGGTTCGAT	GGTATCCACA	CAGACGTATT	CCATCATATT	2700
AGCGAAACTT	TCATTGAGCC	AAAGGTCATC	CCACCATTTC	ATAGTCACGA	GGTTCCCAAA	2760
CCATTGGTGA	GCCAATTCAT	GGGCCACAAC	AAGGGCAACT	TGTTGACGGC	TAGCAAATGT	2820
AGAGTTCTCA	TCGACAACCA	AGTAAACTTC	ACGGTAGGTC	ACAAGACCCC	AGTTTTCCAT	2880
AGCACCAGCT	GAGAAGTCAG	GAAGGGCGAT	GTGGAGAGAT	TGAGGAATTG	GGTACTTAAC	2940
TCCATAGTAA	TCTTCGTAAA	ACTCGATAGA	GCGAACAGCG	ATATCCAGTG	AGAAATCAAG	3000
ATTTGAAAGT	GGATGTGCTT	TGGTTGAGTA	GACACCTACC	AGGGTACCAT	TTTTAGTTTT	3060
AGCGGTCACC	CCTTGCAAAT	CACCAGCAAC	AAAGGCCAAC	AAGTAAGAAG	ACATGCGAGG	3120
TGTTGTCTCA	AACTTCCAGA	TACCTGTTTC	CTTACGGTTT	TCAACATCGA	TTTCTGGCAT	3180
GTTTGACAAG	GCCAATTCAC	CTTCTGCTTG	GTCAAAGCGA	AGAGAGACGT	CAAAAGTTGC	3240
TTTGGCTTCA	GGCTCATCCA	CACATGGGAA	AGCTTCGCGC	GCAAAATGGC	TCTCGAACTG	3300
AGTAGACAAG	ACCTCCTTCT	TGACTCCATC	AACTGTATAA	TAAGAAGGGT	AAATCCCTGT	3360
CATGTTGTCT	GTAATTTAC	CAGAAAAGGC	AAGAACCAAT	TCAACTTGAC	CAGCCTCAGC	3420
CAATTCGATA	TGAAGGGCTT	CATTGTCATG	GTCAACTGTA	AATGGACGAG	CTTGACCTGC	3480
AACTTCTACA	GAGGTGATTT	CCAAATCTTT	TTGGTGGAGG	GAGATGCGGT	CACTCTGTGC	3540
TTGACCAGTO	ATGGTCACTT	TCCCAGAAAA	AGTCTTGGTC	TCACGACTCA	AATCTAAAAA	3600
TAAATCATAA	TGTTCAGGAA	CAAATTGCTT	AATGGG			3636

⁽²⁾ INFORMATION FOR SEQ ID NO: 79:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 5066 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

ATAGCGTGTA	ATAATCGATT	TTAGAGGTAC	CATAAGCCAC	CTCCTACAAA	TAGAAACCGA	6C
таталатсал	TGCCTTCCAC	CCTTAGACTT	CCCTAGTTCC	TGTCTCAAGC	GAAACATTTC	120
TTTGAAACAG	GAATAAGTTA	ACCAATTCAT	ACCAATAGCT	AGCAGAATAA	AAAGAAACCA	180
AATGCCCCAT	AACTTGATAT	CTGTCACATT	TCTCAAGACG	GTATTGAAAA	ACAGAACTGA	240
AACAACTGTC	CAAGCAAGGC	TAAAAAGAGA	ATAGAAGGGG	ATGTAAAACC	AGTAAAAATA	300
ATAAAAAATT	GGAAAAAACT	TACTATTTCT	GTTGGCCTTT	TCAATCCAGT	TATCAAAATA	360
AAAGTACGGT	GCTAAAAGTA	AGAATTTAAA	CAAATGTTCC	ATCACCGACA	TCCCCCCTTC	420
TTTTGATAGC	GTTTTCTATT	ATTTTATTAT	ATCAAAAAAA	TCCGGAACTG	TCATTCCAGA	480
TTCTACTTTT	TTATTTGCGT	TTTCTTGCGA	TGAGATGAAT	CGGTGTTCCC	TCAAAAACAA	540
AGGCCTTGCG	GATTTGATTT	TCCAAGAAAC	GCAGGTAAGA	AAAGTGCATG	AGTTCTTCTT	600
CATTGACAAA	GATGACAAAG	GTTGGTGGTT	TGGTTGCCAC	TTGGGTCGCA	TAGAAAATCT	660
TGAGACGTTT	TCCTTTGTCT	GTCGGTGTTG	GGTTGATGGC	AATGGCATCC	ATGATGACAT	720
CGTTCAAGAC	AGCTGATGGA	ATACGTGTAT	TTTGACTTTC	GCTGATTTGC	TTAATCATCT	780
CAGGAAGTTT	GTGGAGACGT	TGCTTGGTTA	AAGCTGATAC	AAAGATAATO	GGTGCGTAAG	840
GCAGGTATTC	GAACTGCTCA	CGGATATCTT	CTTCCCAGTT	TTTCATAGTG	TGGTTATCTT	900
TTTCAAGCGT	ATCCCACTTG	TTGACCACGA	TAATCATCCC	TTTACCAGCT	TCATGGGCAA	960
ATCCTGCGAT	ACGCTTGTCG	TACTCACGAA	TGCCTTCTTC	CGCATTGATO	ACCATCAAGA	1020
CCACATCTG	ACGGTCAATA	GCACGCATGO	CACGCATAAC	AGAGTATTT	TCAGTATTTT	1080
CATAAACCT	ACCAGACTTA	CGCATACCAC	CCGTATCAAT	CATGGTAAAG	TCTTGACCAT	1140
CTGTATCTGT	AAAGTGGGTA	TCAATGGCAT	CACGAGTTGT	TCCAGCAACA	GGACTAGCAA	1200
TAACACGGT	TTCTCCCAAC	ATAGCATTG	TCAAGCTTGA	TTTTCCAACO	TTAGGACGAC	1260
CAATCAAGC	T AAACTTAATO	ACATCTGGAT	r rtrcrrccrc	ATATTCATT	GGAAGATTTT	1320
CTACGATCG	ATCTAGCACA	TCCCCTGTAG	CGATTCCATC	GACAGATGA	ATAGGCAATG	1380
GTTCACCCA	A ACCGAGAGCA	TAGAAATCA	T ATATATCATT	TCTCATCTC	GGGTTGTCCA	1440
CCTTGTTGA	TGCGAGGATA	ACTGGTTTG	r gggtcttata	AAGCTTACG	A GCTACGTATT	1500
CGTCTGCAT	C AGTAATTCCT	TCCTTACCA	G ACACGACAA	AACGATAAC	A TCTGCTTCTT	1560

CCATGGCAAT	TTCTGCCTGG	TGCTTGATTT	GTTCCATGAA	AGGAGCATCG	ACATCATCAA	1620
TTCCTCCTGT	ATCAATCATG	CTAAAAGAAC	GATTGAGCCA	CTCACCCGTT	GCATAAATAC	1680
GGTCACGTGT	CACTCCTTCG	ACATCTTCTA	CAATGGAGAT	TCGCTCACCA	GCGATCCGAT	1740
TAAATAGGGT	TGATTTCCCA	ACATTGGGAC	GTCCTACAAT	GGCAATAGTT	GGTAGGGCCA	1800
TAATTTCTCA	CTTTCTACAA	TAATTTCTTC	TGTTCAAGAT	TTTTTCTAGT	TGAGCTTGGT	1860
TCAGCTŢGAC	CAAACTGTTC	TGCTAGGCGC	TGACTCCAGC	TTGTGGTCGC	ACGCGCCCCA	1920
GCATAGTCAG	CCTGAACACG	GTCATAAGCT	TGGATTGCCT	CAGTTGACTG	TTCTTGGTAT	1980
TCTTCCTCAA	AGACAACATT	CTCTAGTGGC	AGTCTCGGTT	TCATATCATG	ATGTTGATTT	2040
GGCACACCCA	GTGCCATCCC	AAAGACAGAA	TAGGTGTAGT	CAGGTAGGTT	AAAGAGCTCT	2100
GCCACTTCTT	CAGACTTGTA	TCGAACCAAA	CCGATAATCA	CACCACCATA	GCCCAAGCTT	2160
TCAGCTGCCA	ACAAGGCGTT	TTGTCCAGCA	AGAGCTGCAT	CGACCGAACT	AATCAAGAGA	2220
CCTTCCACAC	CTTGGGGTTG	GAAGGTGTCG	GTATGAAGTC	GGGCTCCCTT	TTCTGCTCGG	2280
TTCAAATCTC	CGACAAAGAG	AAGGAAAACA	GCAGACTGGC	GAATGGCTTC	TTGAGGTACC	2340
AATTCATACA	AGGCATCTTT	CTTCTCTTGA	CTTCGTACCA	CAATCACAGA	GTAGGATTGG	2400
AAATTCTTCC	AAGATGATGC	CATCTGGGCT	GCTGTCAAAA	TCTCATTTAA	GTCTACTTGG	2460
GGAATTTCTT	GCTCTTTAAA	CCTGCGCACT	GAAGTATGAG	CCTTCATCAA	TTTAATGGTT	2520
TCTGTCATCG	ACGGTTTACT	CCTTCTAAAC	GAGTCTCCTC	AGCCAAATAA	CGGATGCGTT	2580
CCATGACCCG	TCTGGCTTCC	CAGGTTTCGT	CATTTCCATG	TTTCACTTTC	GCAAAATGCT	2640
TCTCCAAATC	TTCAAAGTTG	AAGTTGGATG	TGAAAAAGGT	CGGTAAATTT	TCCTGCATCC	2700
GATATTGGAG	AATGACCTGC	AGGATTTCGT	CACGCACCCA	AACGGTTGAT	TGCTCGGCGC	2760
CAATATCATC	TAAAATCAGG	ACCTCAGACA	GCTTAATCTC	ATCCACCAAG	GTCTTAACAT	2820
TGCCATCACT	GATAGCATTT	TTGACATCAA	TGACAAAGCT	AGGATAGTGG	AGGAGAGTTG	2880
ATGAAACACC	ACGTTTTTCT	GATAAATCAT	GAGCTAAGGC	CGCCACCATG	AAACTTTTAC	2940
CCACACCAAA	GTCTCCATAT	AAGTAAAGAC	CTTTTCGAAT	AGCTGGATAT	TGCTCCACGA	3000
AGGCTAGTAG	CTTTTCAAAA	ACTGGTAAGC	GCCCCAAATC	ATCCAAGTCA	ACTTGAGCCA	3060
AACTAGCTTT	CTTGAGACTG	GCTGGTAGAT	TGATTAACTT	GAGACGGTTC	TTAATAGCCG	3120
CTTCTTTTTC	AGCCGCGATT	AGCTCAGGAG	TTTCTTCATA	TGAAACATCT	GCATAACCAT	3180
GATTCTTAAC	CAAAATCGGC	TTGTAGCCTT	TGGCAATATA	ATCCGTATCC	CCACGGAGAA	3240
ACTTGTCACG	CTCGGTGATG	TACTGATTAA	ACTTGGAGAT	ACTGCGATTT	AATTCCTTTG	3300

			979			
GAGTTAAGGA	TTCTTGCTGG	ATAAAGGCCG	CAACATCAGG	GTCCTTCATG	ATTTTCTGGA	336
CCAAATCTTG	ATAATAAAA	CGGCTGGGTT	GACGTTTGAG	TACGTCTCCG	ACACTTTCCA	342
TCTAATCTCC	TCCTTTTTCT	AATCGAGCTA	ATAGTTCTTG	CTTCTTACGT	TCTAGTTCCA	348
GACGAGTTTC	CTCGCTGGTT	TCATTCTTAT	ATTCAGGATT	ACTCCATTTA	GGAACATTGG	354
TTTTTTCTGG	GGCAGTCTGA	TTCTGTTTTT	GTGTTTTTGC	TTTCTGCCCT	CGATCACGAA	360
TTCGTAAAAC	GGCCTCTTCT	GCCGAATGAA	TCTTTTGATA	GGCATAGTCA	TTGGCTACCT	366
TCATGGCATA	TTTCTCATTG	ATATTTGCCG	AATCCACCTT	ATTAAAGGTC	AATAAGAGAA	372
TAATATTGAT	GACTTCGTCC	AGTAAGCCCA	AGCCAGCCAT	CTGTTGCAAG	AGTTCTCTTT	378
CTGTTTGGGT	AATGGTTCCC	TTGCGTGTTT	GCTTGATTTC	TGCTAAGAAC	TGCAGGGCAG	384
TTTTACTTTT	AGCTTCTTTG	ATAATGGTCG	CTTCCTTAAG	ACTAAAGTCA	GAGGAAACTG	390
GTTTTTGAGC	AATTTTTCA	CGCATGCGTT	TGGTTGAAAT	AACCTGGGAA	ACAGCTGTTG	396
ACTTGGCCAA	TTGATAGGTT	TCAAACCAAG	TCCATTTCTT	CTCCTCGGCA	ATAGCAAAGA	402
GGTTTAAGAC	ATCGGACTGC	TCATCCGCAA	AACGAAGTCC	ATCTCGAGCC	ATCAGCTGGC	408
GAAAATGTTC	CAAGTCAAAA	TCATTGGCCA	CTTTCTTCTT	GAGACCAAGG	TCTTCTTGAC	414
TGCCTAGTTC	TGCCAATTCT	GGAAAGACTT	GATTGAGTGA	GACAGGTATT	TCTTCACCAT	420
CAGCACTTTC	AACTTTCAAA	TCCTCCACAG	CTACATCGCC	AATCTTTTTC	TCTAAGAGTC	426
TGCGATAAAC	AGGATGCCCC	AAGAAGTCTT	GACTAGATAG	AGGAGCATGG	AGGGCTAGCT	432
GATAAACATC	ACCCTTTTGA	TAGAGGGTCA	AGAGATTAAA	AGCAGATAAG	ATTTTCAATG	438
ATTTTATCAG	TCTATCCATC	CCAAAGTTGA	GATGGTTGAG	AATGCTTGAA	AAAAGATATT	444
CCTTTCTACC	ATTATCCCAA	AAACTGATTG	TATAAAGATA	AAGGCTCAGT	GCCTCCTGAC	450
CGATAATCGG	GAGGTAGCAC	TGTACCAGAG	ATGAGGTATC	TTGCGACACC	CGATTATTCT	456
TTAGATAAGA	AAAACGGTCA	ATTGGCTTCA	TTTATCTTTC	CTTTTTCTTT	TTAGAGGACT	462
GGGTGATTTG	TTGGAGCAAG	CTCTCTAACT	CACTGACATC	CTTAAAACTA	CGATAGACAC	468
TAGCAAAACG	TACATAGGTA	ATCTCGTCCA	ATTCAGCCAA	CTCCTCCATG	ACGAGTGAAC	474
CAATGTCCTC	ACTTTGAATT	TCATTTTCAT	TTCGACCACG	GAGTTTCTGT	TCGATACGAT	480
TGACTACCAT	GTTGATTTCA	TCACTTGACA	CAGGACGTTT	CTGGGCTGAG	CGGATAATCC	486
CATTAAAGAT	TTTATCTCTG	GAGAATTGTT	CCCGTGTGCC	ATCTTTTTA	ACAACCACTA	492
AGGTTCTTTC	TTCTACTCGT	TCGTAGGTTG	TAAAACGGTG	TTGGCATTCG	TCGCACTCAC	498
GTCTTCTACG	AATGGTGTTC	CCTTCTTCTG	CTTGGCGACT	ATCGATAACA	CTTGACTTGG	504
TAGCCCCACA	TTTTGGACAG	GGTACC				506

(2) INFORMATION FOR SEQ ID NO: 80:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9607 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

CACTTGAAGT	ATTTGAAACA	GCTATGGAAA	ACATCATGCC	TGTACTTGAA	GTACGTGCAC	60
GTCGTGTTGG	TGGTTCTAAC	TACCAAGTCC	CAGTTGAAGT	TCGTCCAGAA	CGTCGTACAA	120
CACTTGGACT	TCGTTGGTTG	GTAACAATCG	CTCGTCTTCG	TGGTGAACAC	ACAATGCAAG	180
ACCGTCTTGC	AAAAGAAATC	TTGGATGCTG	CTAACAACAC	TGGTGCAGCA	GTTAAGAAAC	240
GTGAAGATAC	TCACCGTATG	GCTGAAGCTA	ACCCTGCATT	CGCACACTTC	CGTTGGTAAG	300
ATAGGATGCG	AAAGCGTTAA	GAAAGTCCCA	GAGAAAATAG	GGAATCGAAG	CAGGTTGCGG	360
TTGCAACCAA	TGAGATTCAT	CTTTTTCTCC	AGACTTTTAG	CTTGAGCTCA	ACTAAATCAT	420
GATGCTAGGA	ACGGTAAGGA	TGCAAGGTAA	AAATAGGAAA	CTGACGCAGT	ATTCGACGAA	480
TACAAGGAGT	TTTATCTTTT	TCACGCAGCA	TCCCGTTCCA	GCTCACATCG	GCTAACTAAC	540
TTTAGCCCGG	GTTCAAATTA	GCTAAATCGA	TTAGTATTAG	СТАТААСТСА	GCTTACCATC	600
TCGTAAGTTG	AAACCAACAA	TAGCATGAAA	ACATTGAGAA	CGGGTAGGTC	CTGCCTATCC	660
GTTTTTATTA	AAATCGTGTT	ATAATAGAAT	AGAAATCAAA	AATAAATAGG	AGAAACAAAC	720
CTCATGGCAC	GCGAATTTTC	ACTTGAAAAA	ACTCGTAATA	TCGGTATCAT	GGCTCACGTC	780
GATGCCGGTA	AAACAACAAC	TACTGAGCGT	ATTCTTTACT	ACACTGGTAA	AATCCACAAA	840
ATCGGTGAAA	CTCACGAAGG	TGCGTCACAA	ATGGACTGGA	TGGAGCAAGA	GCAAGAACGT	900
GGTATCACGA	TCACATCTGC	TGCGACGACA	GCTCAATGGA	ACAACCACCG	CGTAAACATC	960
ATCGACACAC	CAGGACACGT	GGACTTCACA	ATCGAAGTAC	AACGTTCTCT	TCGTGTATTG	1020
GATGGTGCGG	TTACCGTTCT	TGACTCACAA	TCAGGTGTTG	AGCCTCAAAC	TGAAACAGTT	1080
TGGCGTCAAG	CAACTGAGTA	CGGAGTTCCA	CGTATCGTAT	TTGCCAACAA	AATGGACAAA	1140
ATCGGTGCTG	ACTTCCTTTA	CTCTGTAAGC	ACACTTCACG	ATCGTCTTCA	AGCAAATGCA	1200
CACCCAATCC	AATTGCCAAT	CGGTTCTGAA	GATGACTTCC	GTGGTATCAT	TGACTTGATC	1260
AAGATGAAAG	CTGAAATCTA	TACTAACGAC	CTTGGTACGG	ATATCCTTGA	AGAAGACATC	1320
CCAGCTGAAT	ACCTTGACCA	AGCTCAAGAA	TACCGTGAAA	AATTGATTGA	AGCAGTTGCT	1380

638 GAAACTGACG AAGAATTGAT GATGAAATAC CTCGAAGGTG AAGAAATCAC TAACGAAGAA 1440 TTGAAAGCTG GTATCCGTAA AGCGACTATC AACGTTGAAT TCTTCCCAGT ATTGTGTGGT 1500 TCAGCCTTCA AAAACAAAGG TGTTCAATTG ATGCTTGATG CGGTTATCGA CTACCTTCCA 1560 AGCCCACTTG ACATCCCAGC AATCAAAGGT ATTAACCCAG ATACAGACGC TGAAGAAATT 1620 CGTCCAGCAT CTGACGAAGA GCCATTTGCA GCTCTTGCCT TCAAGATCAT GACTGACCCA 1680 TTCGTAGGTC GTTTGACATT CTTCCGTGTT TACTCAGGTG TTCTTCAATC AGGTTCATAC 1740 GTATTGAATA CTTCTAAAGG TAAACGTGAA CGTATCGGAC GTATCCTTCA AATGCACGCT 1800 AACAGCCGTC AAGAAATCGA CACTGTTTAC TCAGGTGATA TCGCTGCTGC CGTTGGTTTG 1860 AAAGATACTA CAACTGGTGA CTCATTGACA GATGAAAAAG CTAAAATCAT CCTTGAGTCA 1920 ATCAACGTTC CAGAACCAGT TATCCAATTG ATGGTTGAGC CAAAATCTAA AGCTGACCAA 1980 GACAAGATGG GTATCGCCCT TCAAAAATTG GCTGAAGAAG ATCCAACATT CCGCGTTGAA 2040 ACAAACGTTG AAACTGGTGA AACAGTTATC TCAGGTATGG GTGAACTTCA CCTTGACGTC 2100 CTTGTTGATC GTATGCGTCG TGAGTTCAAA GTTGAAGCGA ACGTAGGTGC TCCTCAAGTA 2160 TCTTACCGTG AAACATTCCG CGCTTCTACT CAAGCACGTG GATTCTTCAA ACGTCAGTCT 2220 GGTGGTAAAG GTCAATTCGG TGATGTATGG ATTGAATTTA CTCCAAACGA AGAAGGTAAA 2280 GGATTCGAAT TCGAAAACGC AATCGTCGGT GGTGTGGTTC CTCGTGAATT TATCCCAGCG 2340 GTTGAAAAAG GTTTGGTAGA ATCTATGGCT AACGGTGTTC TTGCAGGTTA CCCAATGGTT 2400 GACGTTAAAG CTAAGCTTTA TGATGGTTCA TATCACGATG TCGACTCATC TGAAACTGCC 2460 TTCAAGATTG CGGCTTCACT TTCCCTTAAA GAAGCTGCTA AATCAGCACA ACCAGCTATC 2520 CTTGAACCAA TGATGCTTGT AACAATCACT GTTCCAGAAG AAAACCTTGG TGATGTTATG 2580 GGTCACGTAA CTGCTCGTCG TGGACGTGTA GATGGTATGG AAGCACACGG TAACAGCCAA 2640 ATCGTTCGTG CTTACGTTCC ACTTGCTGAA ATGTTCGGTT ACGCAACAGT TCTTCGTTCT 2700 GCATCTCAAG GACGTGGTAC ATTCATGATG GTATTTGACC ACTACGAAGA TGTACCTAAG 2760 TCAGTACAAG AAGAAATTAT TAAGAAAAAT AAAGGTGAAG ACTAATCCGT CCTCACTCTA 2820 GAAGGAAGTC ACTTAGTGGC TTCCTTTTGT CTTTAGAAAA TACCTCTAAA TATGGTAAAA 2880 TAGTAGAAGA ATAATGTGAG GAAAATGAAT GTCAAATAGT TTTGAAATTT TGATGAATCA 2940 ATTGGGGATG CCTGCTGAAA TGAGACAGGC TCCTGCTTTA GCACAGGCCA ATATTGAGCG 3000 AGTTGTGGTT CATAAAATTA GTAAGGTATG GGAGTTTCAT TTCGTATTTT CTAATATTTT 3060 ACCGATTGAA ATCTTTTTAG AATTAAAGAA AGGTTTGAGC GAAGAATTTT CTAAGACAGG 3120 CAATAAAGCT GTTTTTGAAA TTAAGGCTCG GTCTCAAGAA TTTTCAAATC AGCTCTTGCA 3180

GTCCTACTAT	AGGGAGGCTT	TCTCTGAAGG	TCCATGTGCT	AGTCAAGGTT	TTAAGTCCCT	3240
TTATCAAAAT	TTGCAAGTTC	GTGCTGAGGG	TAATCAGCTA	TTTATTGAAG	GATCTGAAGC	3300
GATTGATAAG	GAACATTTTA	AGAAGAATCA	TCTTCCTAAT	TTAGCCAAAC	AACTTGAAAA	3360
GTTTGGTTTT	CCAACTTTTA	ACTGTCAAGT	CGAGAAGAAT	GATGTCCTGA	CCCAAGAGCA	3420
GGAAGAGGCC	TTTCATGCTG	AAAATGAGCA	GATTGTTCAA	GCTGCCAATG	AGGAAGCGCT	3480
CCGTGCTATG	GAACAACTGG	AGCAGATGGC	ACCTCCTCCA	GCGGAAGAGA	AACCAGCCTT	3540
TGATTTTCAA	GCGAAAAAAG	CTGCAGCTAA	ACCCAAGCTG	GATAAGGCGG	AGATTACTCC	3600
TATGATCGAA	GTGACGACAG	AGGAAAATCG	TCTGGTATTT	GAAGGGGTTG	TTTTTGATGT	3660
GGAGCAAAAA	GTGACTAGAA	CAGGTCGTGT	TTTAATCAAC	TTTAAAATGA	CGGACTATAC	3720
TTCAAGTTTT	TCTATGCAAA	AGTGGGTTAA	AAACGAGGAA	GAGGCCCAGA	AGTTTGACCT	3780
CATCAAGAAG	AATTCTTGGC	TCCGAGTTCG	AGGGAATGTG	GAGATGAATA	ACTTCACACG	3840
CGATTTGACT	ATGAACGTAC	AGGATCTGCA	GGAAGTTGTT	CACTATGAGC	GGAAGGATTT	3900
GATGCCAGAA	GGTGAGCGTC	GGGTTGAGTT	TCATGCTCAT	ACTAACATGT	CGACTATGGA	3960
TGCTTTGCCA	GAGGTCGAAG	AGATTGTTGC	AACAGCTGCT	AAGTGGGGAC	ACAAGGCGGT	4020
TGCTATCACG	GACCATGGGA	ATGTCCAGTC	CTTTCCACAT	GGCTATAAGG	CGGCTAAGAA	4080
AGCGGGAATC	CAGCTGATCT	ATGGGATGGA	AGCCAATATC	GTGGAGGACC	GTGTCCCTAT	4140
CGTCTATAAC	GAAGTGGAGA	TGGACTTGTC	AGAAGCAACC	TACGTGGTCT	TTGACGTGGA	4200
AACGACGGGA	CTTTCAGCTA	TCTATAATGA	CTTGATTCAG	GTTGCGGCTT	CTAAGATGTA	4260
CAAGGGGAAT	GTTATTGCTG	AATTTGATGA	ATTTATCAAT	CCTGGGCATC	CCTTGTCAGC	4320
CTTTACTACA	GAGTTAACTG	GAATTACAGA	TGATCATGTC	AAAAATGCCA	AACCACTAGA	4380
ACAAGTTTTG	CAAGAATTCC	AAGAATTTTG	CAAGGATACG	GTCCTAGTTG	CCCACAATGC	4440
TACCTTTGAC	GTTGGCTTTA	TGAATGCTAA	TTATGAGCGG	CATGATCTTC	CAAAGATTAG	4500
TCAGCCAGTT	ATTGATACGC	TGGAGTTTGC	TAGAAACCTC	TATCCTGAGT	ATAAACGCCA	4560
TGGTTTGGGG	CCTTTGACCA	AGCGTTTTGG	TGTGGCCTTG	GAACATCACC	ACATGGCCAA	4620
CTACGATGCG	GAAGCGACTG	GTCGTCTGCT	TTTCATCTTT	ATCAAAGAGG	TAGCAGAAAA	4680
ACATGGTGTG	ACCGATTTAG	CTAGACTCAA	CATTGATCTA	ATCAGTCCAG	ATTCTTACAA	4740
AAAAGCTCGG	ATCAAGCATG	CGACCATCTA	TGTCAAGAAT	CAGGTAGGTC	TAAAAAATAT	4800
CTTTAAGCTG	GTTTCCTTGT	CTAATACCAA	GTATTTTGAA	GGAGTGCCAC	GGATTCCGAG	4860
AACGGTTCTA	GATGCCCATC	GAGAGGGCTT	GATTTTAGGT	TCAGCCTGTT	CAGAGGGTGA	4920

			640			
AGTTTTTGAC	GTGGTCGTTT	CTCAAGGTGT	GGATGCGGCG	GTTGAGGTGG	CCAAGTATTA	4980
TGATTTTATC	GAGGTCATGC	CACCGGCTAT	CTATGCACCC	TTGATTGCCA	AAGAGCAGGT	5040
CAAGGATATG	GAGGAACTCC	AGÁCCATTAT	CAAGAGTTTG	ATAGAGGTTG	GAGACCGCCT	5100
TGGCAAGCCT	GTTCTGGCTA	CGGGAAATGT	TCACTATATC	GAACCGGAAG	AAGAGATTTA	5160
TCGTGAAATT	ATCGTCCGTA	GTTTGGGACA	GGGTGCGATG	ATTAATCGAA	CTATCGGTCA	5220
TGGTGAACAT	GCCCAACCAG	CACCACTTCC	AAAGGCTCAT	TTTCGAACGA	CTAATGAGAT	5280
GTTGGATGAA	TTTGCCTTTT	TGGGAGAGGA	ACTGGCTCGT	AAACTGGTTA	TTGAAAACAC	5340
CAATGCCTTG	GCAGAAATAT	TTGAATCCGT	TGAAGTCGTT	AAGGGTGACT	TGTATACGCC	5400
TTTCATCGAC	AAGGCTGAAG	AAACAGTTGC	TGAGTTGACC	TATAAGAAAG	CTTTTGAGAT	5460
TTATGGAAAT	CCGCTGCCAG	ATATTGTTGA	TTTGCGGATT	GAAAAAGAAT	TAACATCCAT	5520
ACTGGGGAAT	GGATTTGCTG	TGATTTATCT	GGCATCGCAG	ATGCTGGTGC	AACGTTCTAA	5580
TGAACGGGGT	TATTTGGTTG	GTTCTCGTGG	GTCTGTCGGA	TCTAGTTTCG	TTGCGACCAT	5640
GATTGGGATT	ACGGAGGTCA	ATCCTCTCTC	TCCTCACTAT	GTCTGTGGTC	AGTGTCAGTA	5700
CAGTGAGTTT	ATCACAGATG	GTTCGTACGG	TTCAGGATTT	GATATGCCCC	ATAAGGACTG	5760
TCCAAACTGT	GGTCACAAAC	TCAGTAAAAA	CGGACAGGAT	ATTCCGTTTG	AGACCTTCCT	5820
TGGTTTTGAT	GGGGATAAGG	TTCCTGATAT	TGACTTGAAC	TTCTCGGGAG	AAGATCAGCC	5880
TAGCGCCCAC	TTGGATGTGC	GTGATATCTT	TGGTGAAGAA	TATGCCTTCC	GTGCGGGAAC	5940
GGTTGGTACG	GTAGCTGCCA	AGACTGCCTA	TGGATTTGTC	AAAGGTTACG	AGCGAGATTA	6000
TGGCAAGTTT	TATCGTGATG	CAGAAGTAGA	ACGCCTCGCT	CAAGGAGCGG	CGGGTGTCAA	6060
GCGGACAACA	GGCCAACACC	CGGGGGGAAT	CGTTGTTATT	CCGAACTACA	TGGATGTCTA	6120
CGATTTTACG	CCTGTCCAGT	ATCCAGCAGA	TGATGTCACG	GCTGAATGGC	AGACCACTCA	6180
CTTTAACTTC	CACGATATCG	ATGAGAACGT	CCTCAAACTC	GATGTACTGG	GACATGATGA	6240
TCCGACTATG	ATTCGAAAAC	TTCAGGATTT	GTCTGGTATT	GACCCTAATA	AAATTCCTAT	6300
GGATGACGAA	GGCGTGATGG	CACTCTTTTC	TGGGACTGAT	GTGCTAGGGG	TAACACCTGA	6360
ACAAATTGGA	ACGCCTACGG	GTATGTTGGG	GATTCCAGAG	TTTGGAACAA	ATTTCGTACG	6420
TGGAATGGTA	GACGAAACCC	ATCCGACAAC	CTTTGCGGAA	TTGCTTCAGC	TGTCTGGTCT	6480
GTCCCACGGT	ACTGATGTTT	GGTTGGGGAA	TGCTCAGGAT	CTGATTAAGC	AAGGAATAGC	6540
GGACCTATCG	ACTGTTATCG	GTTGTCGGGA	CGACATCATG	GTTTACCTCA	TGCATGCGGG	6600
TCTGGAACCT	AAGATGGCCT	TTACCATTAT	GGAACGGGTA	CGTAAGGGTT	TGTGGCTAAA	6660
GATTTCAGAA	GAGGAGAA	ATGGCTATAT	CGAAGCAATG	AAGGCTAATA	AGGTGCCAGA	6720

GTGGTATATC	GAATCCTGTG	GGAAAATTAA	GTACATGTTC	CCTAAGGCCC	ATGCGGCAGC	6780
CTACGTTATG	ATGGCCTTGC	GTGTAGCTTA	CTTCAAGGTT	CACCATCCTA	TTTATTACTA	6840
CTGTGCTTAC	TTCTCCATTC	GTGCTAAGGC	TTTTGATATC	AAGACCATGG	GTGCGGGCTT	6900
GGAGGTCATC	AAGCGCAGAA	TGGAAGAAAT	CTCTGAAAAA	CGGAAGAACA	ATGAAGCCTC	6960
TAATGTGGAA	ATCGATCTCT	ATACAACTCT	TGAGATTGTC	AATGAGATGT	GGGAACGAGG	7020
TTTCAAGTTT	GGTAAATTAG	ATCTCTACTG	TAGTCAGGCG	ACAGAGTTCC	TCATCGACGG	708Ó
GGATACCCTT	ATCCCACCAT	TTGTAGCAAT	GGATGGTCTG	GGAGAGAACG	TTGCCAAGCA	7140
ACTGGTGCGG	GCGCGTGAAG	AGGGAGAATT	CCTCTCTAAA	ACAGAACTAC	GCAAGCGTGG	7200
TGGACTCTCA	TCAACCTTGG	TTGAAAAGAT	GGATGAGATG	GGTATTCTTG	GAAATATGCC	7260
AGAGGATAAC	CAGTTGAGTT	TGTTTGATGA	GTTGTTTTAA	AAAATTGCTT	AATAATCTAT	7320
TAAAAGAGGC	TAACGTATAT	CCAATAGATT	TACATTAGCT	TTCTTTTTTG	TTAAAATAGT	7380
CTATGGAAAG	AGGGTGAGAG	TATGTCAAAG	ATGAGTATAA	GCATCCGTCT	GGATAGTGAG	7440
GTTAAGGAGC	AGGCCCAACA	GGTGTTTAGT	AATCTGGGAA	TGGATATGAC	AACAGCTATT	7500
AATATTTTCC	TTCGTCAGGC	AATTCAATAT	CAGGGATTAC	CTTTTGATGT	TAGACTAGAC	7560
GAAAATCGGA	AGTTGCTCCA	AGCGTTAACG	GATTTAGACC	AAAATCGTAA	TATGAGCCAG	7620
TCTTTTGAAT	CAGTCTCAGA	TTTGATGGAG	GACTTACGTG	CTTAAGATTC	GTTATCATAA	7680
ACAGTTTAAA	AAAGATTTTA	AGTTGGCTAT	GAAGCGTGGT	TTGAAGGCAG	AATTATTAGA	7740
AGAAGTTTTG	AATTTTCTGG	TTCAAGAAAA	AGAACATCCT	GCCAGANATC	GTGATCATTC	7800
ATTGACGGCA	TCCAAGCATT	TTCAAGGAGT	TCGTGAATGC	CATACCCAGC	CAGATTGGCT	7860
TTTGGTTTAT	AAAGTAGACA	AGTCGGAATT	GATTTTAAAT	TTGCTGAGGA	CAGGCAGTCA	7920
CAGTGATTTA	TTTTAATCTA	TTTTAAGGGG	GTTCTCATGA	AACTAAGAAT	ATTTGCGGAA	7980
GATAAGCCGG	CTAAGAAGGT	ATTTGAATAT	CAATTAGAAC	TTGCTGATCG	TACAATTCTT	8040
CTATCGACAG	CACTCTTGTC	AGGTGCTATT	GCTTTAGCAG	GAATCTTTTC	TGCTTTGAAA	8100
GAAAAATAAA	AATAGAAAAG	AGAAAACAGA	ATGGTTTTAC	CAAATTTTAA	AGAAAATCTA	8160
GAAAAATATG	CGAAATTGTT	GGTTGCGAAC	GGAATTAACG	TGCAACCTGG	TCACACTTTG	8220
GCTCTCTCTA	TTGATGTGGA	GCAACGTGAA	TTGGCACATC	TAATCGTGAA	AGAAGCTTAT	8280
GCCTTGGGTG	CGCATGAGGT	CATCGTTCAG	TGGACAGATG	ATGTGATTAA	CCGTGAGAAA	8340
TTCCTCCATG	CCCCGATGGA	GCGTTTGGAC	AATGTGCCAG	AATACAAGAT	TGCTGAGATG	8400
AACTATCTCT	TGGAGAATAA	GGCTAGCCGT	CTTGGAGTTC	GTTCATCTGA	TCCAGGTGCC	8460

			642			
TTGAACGGAG	TGGÀCGCTGA	CAAGCTTTCA	GCTTCTGCTA	AAGCTATGGG	ACTTGCCATG	8520
AAGCCTATGC	GTATCGCAAC	TCAATCTAAC	AAGGTTAGCT	GGACTGTAGC	AGCTGCAGCA	8580
GGACTTGAGT	GGGCTAAGAA	AGTCTTCCCA	AATGCTGCGA	GCGACGAAGA	AGCAGTTGAT	8640
TTCCTTTGGG	ACCAAATTTT	CAAAACTTGC	CGTGTCTACG	AAGCAGATCC	TGTTAAGGCT	8700
TGGGAGGAAC	ATGCAGCCAT	TCTCAAGAGC	AAGGCCGATA	TGCTTAATAA	GGAGCAATTT	8760
TCAGCCCTTC	ACTACACAGC	GCCAGGAACA	GATTTAACAC	TTGGTTTGCC	AAAGAACCAC	8820
GTTTGGGAAT	CAGCTGGTGC	TGTCAATGCA	CAGGGCGAAG	AATTCTTGCC	AAATATGCCA	8880
ACAGAAGAGG	TCTTCACAGC	GCCTGACTTC	CGTCGTGCAG	ATGGTTATGT	CACTTCTACA	8940
AAACCGCTTA	GCTACAACGG	AAATATCATT	GAAGGCATTA	AGGTGACCTT	TAAGGATGGA	9000
CAAATCGTAG	ATATCACTGC	TGAGAAGGGT	GATCAGGTTA	TGAAAGACCT	TGTCTTTGAA	9060
AATGCGGGTG	CGCGTGCCTT	GGGTGAATGT	GCCTTGGTAC	CAGATCCAAG	TCCAATTTCT	9120
CAGTCAGGCA	TTACCTTCTT	TAACACCCTT	TTCGATGAAA	ATGCGTCAAA	CCACTTGGCT	9180
ATCGGTGCAG	CCTATGCGAC	TAGCGTTGTT	GATGGAGCGG	AGATGAGCGA	AGAGGAGCTT	9240
GAAGCTGCAG	GGCTTAACCG	TTCAGATGTT	CACGTAGACT	TTATGATTGG	TTCTAACCAA	9300
ATGGATATCG	ATGGTATTCG	TGAGGATGGA	ACGCGGGTAC	CTCTTTTCCG	TAATGGGAAT	9360
TGGGCAAATT	AAGGAGATAA	TATGTTAGGA	AGTATGTTCG	TTGGTCTCCT	AGTGGGATTT	9420
TTAGCAGGTG	CTATGACCAA	TCGTGGAGAG	CGAATGGGAT	GTTTTGGAAA	AATGTTTCTC	9480
GGTTGGATCG	GAGCCTTTCT	AGGTCACTTG	CTCTTTGGAA	CTTGGGGGCC	AGTTTTATCA	9540
GGAACAGCTA	TTATCCCAGC	GATTTTAGGA	GCCATGATTG	TTTTAGCTAT	TTTTTGGAGA	9600
CGAGGAA						9607

(2) INFORMATION FOR SEQ ID NO: 81:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14231 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:

CTACAAGATA ATTCCAG	CTA TAACATCCGC	TATAATAGTA	AGAGCGAGCT	CTATGATAAG	60
GCTCATTAGT TTCACCT	CCT CTCACGAACC	CATAGGAACG	TAATCGGTAA	CCGATGACAA	120
AAATAGTATA CCACAAT	ACA TTTAGATCAT	CAAGGTCACT	TAATTCTTGA	AATATCAGAT	180
CTAAGAGAAA AATCTTT	AAA ATCAGAAAAA	CGCATAATAT	CAGGTGTGCA	AAAACTTGAT	240

ACTATGCGTT	TTATTGTGGG	AAGGTTTACT	CCATTTTCTC	CTGAAATTGA	GTTTTTGTCC	300
AGCCTCTGTT	TTTAGGGTTG	CTAAGAAAAT	AATGTCATGT	GGTGAATATT	TGTAAATCAG	360
TCAGCAGACA	GAACGATACT	CTTCGAAAAT	CTCTTCACAT	CATGTCAGCT	TCGTCTTTCC	420
GTATATATGT	GACTGACTTC	ATCAGTTCTA	TCTACAACCT	CAAAACAGTG	TTTCGAGCTG	480
ACTTGATCAA	TTTTCAAATC	TGTACTTTGA	GCAAGCTGAG	ACTAGCTTCC	TATTTGATTT	540
TCATTGAATA	TCAGAAACCC	ATTCTCCATC	AAATAATTCG	ACTGCGTCTA	ATAATTTTTG	600
ATCTGGCACG	GTGTCTGAAA	TAAAGGTTGT	GTATTTGGAG	AGGGGATTAA	KAAAAA TTTT	660
TCCAGTCTTG	TAAAATTTAG	AACTATCAAT	CAGTAAGATG	GTTTCATGGG	CTTTGTCAAT	720
AATATTCTTT	TTTGAAATAG	CTTGGCTGAG	AGAAGCTTCA	TAAACATATT	GGTCATCAAT	780
ACCTCTTGCT	GAACAAAATG	CTAAATCGAT	ATTAAAATGA	TCTAATAAAG	AATTTTCCTT	840
ATCATAGTTG	ACCACGGAAC	AGGATTGATG	TTTGACCTCG	CCAGATGTGA	TAAAGATTTT	900
GGAGCTATCT	TTAACAGTTT	CAGATAGGGT	TTGTGCAGTA	TGTAAACCAT	TTGTAAAAAT	960
AATCAAATTA	TCAAGTTCAG	AAAGATAGGG	ACAGAGTTCG	TAGACAGTAG	TACTAGAATC	1020
TAGATAGATA	CACATACCAG	ACCGAATAAA	GTCTTTAGCG	AGACTAGCGA	TTAGTCTTTT	1080
TTGCCTAGTA	CTTTCTCCTT	CACGTATTTG	ATGAGAAAGT	TCAATTGTGT	TCATAGAGGA	1140
CAGGGTCACG	TATCCGTGCT	TTCTTTTGAT	AAGACCTTGA	TTTTCTAAGA	AAATTAAATC	1200
ACGACGTAAG	GTACTTGTGC	TGGAGAAAGT	GATTTCTGCC	AGCTCTTTTA	CGGCAATTCT	1260
TTTTTTCTT	TTGATAATTT	CAATCAATTC	AAGTACACGT	TCATCTTTTA	TCATAAGCTC	1320
CTCCTAATTI	ATCATTTCAA	СТАТАТТАТА	GCACAAATTG	GAGGAATTTG	AATTATTTTT	1380
ATGAATATTO	GGTTAACATT	TGAACATTAT	TCAAGTAAGC	GTTCACATAT	TGAAAAAATA	1440
AAACGTGGGC	ATTATAATAA	AGTTAATCMA	GGACGAAGAG	AGAAGAAAAA	TGGAAGCGGT	1500
TTTAGCAATA	GATTTAGGTG	CGACTTCTGG	AAGAGCAATC	GTTGGTTACC	TTTCTGAAAA	1560
TAAACTAGTA	ATGGAAGAAA	TAAATCGCTT	TTCTAATCTA	CCTATTAGAG	TAAAAGGGCA	1620
TTTATCTTG	GATATTGACT	TTCTACTAGO	TAAAATTCTT	GAAAGTATCC	GCTTGGCTAA	1680
TACTAGTTAC	AAGATTTAT	CTATCGGTAT	TGACACATGG	GGAGTTGATT	TTGGACTGAT	1740
TGATAATGAA	GGTAAGCTGT	TATTACAACC	TGTTCATTAT	CGTGATGAAA	GAACAAAGGG	1800
AGTGTTAAA	GAAATATCTG	AAATGACTGA	ATTAGAAAAA	CTGTATTCAG	AGACAGGAAA	1860
TCAGATTATO	G GAGATAAATA	. CCTTGTTTCA	ACTCTTTAAG	GCACGTCAAG	AATCTCCTGA	1920
CTCTTTCTA	r AAGACCAATA	AGATTCTTT	AATGCCAGAT	TTGTTTAATT	ATCTCTTGAC	1980

			644			
AGGTAAGTTT	GCTACAGAAA	AAAGCATTGC		CAATTATTTG	ATCCTAGGAG	2040
TCAAAATTGG	AATCAGAATA	TCTTAAAACT	ATTTGAATTG	GATTCATCTT	TACTTCCTGA	2100
AATTGTTTCA	GAGGGAAATG	TTCTTGGAAG	GATAAAAGAG	GAGTATGGTT	TAGGCGATAT	2160
TCCTGTTGTG	AATGTTTGTA	GTCATGATAC	AGCAAGCGCG	ATTGTCTCAG	TACCTAAGAC	2220
AGAAGGTAGT	TTATTTATTT	CATCAGGTAC	TTGGTCTTTG	GTTGGAGTGG	AACTTACTTC	2280
ACCGATTCTT	ACTACCGAAT	CCTTCAGTTA	TGGATTTACA	AATGAAGTCG	GTAAAGATGG	2340
AGTGATTACA	TTTCTGAAGA	ATTGTACAGG	GTTGTGGATC	ATAGAGGAAC	TAAGACGTTC	2400
ATTTGAACGA	AGAGGGAAAG	CCTATTCTTT	TGATGATATT	AGGACAATGG	TGGAGAAAGA	2460
AAAAGAAAAT	CTTCCTCTGA	TTGATACTGA	ATCAACTGAA	TTTGCAACAG	AATCTGATAT	2520
GCACAAGACT	TTGACAGAAT	ATCTAGCTTA	TCATCATGAA	ACTAGAGAGT	GGACAGATGG	2580
ACAACTATTT	AAGATTGTTT	ATGAAAGCCT	AGCTGAAACG	TATAGGAAAG	CGATAGAGTT	2640
ACTAGAAGAA	CTAACTCATA	AGGTTTATAA	GAGGATATAT	GTGATTGGAG	GAGGTGCTAG	2700
AGCCAGTTAC	TTTAACCAAA	TGATTGCTGA	TAGAACTGGT	AAAGAGGTTC	TTACAGGTTT	2760
GACTGAGGCT	ACAGCTGTGG	GGAATATTGT	TGTGCAGCTC	ATAGCTATGG	GACAATTAAA	2820
AGGGATGGAA	GAGGCTCACC	ATGTTATTGA	GGAGTTTCTA	CAATTAGAGA	GTTATTACTC	2880
CCAAAAGAAT	TAAAAAGATT	GAGAGTTTGT	AAATTTGCCT	CCCTCCCCCT	TCTTAGCTTT	2940
TGTGCAGGAA	GGGGGGATAA	TTGGTGAATT	GAAAAATATT	TAGTGTTTTG	ATATGAGGAG	3000
GACAAGGATG	TCAGATGTAA	AACAAGAATT	AATTAAATAT	GGTAAGAAGC	TAGTAGAAAC	3060
AGATTTGACG	AAAGGAACAG	GTGGGAATCT	CAGCGTTTTC	GATCGTGAAA	AACAATTGAT	3120
GGCAATTACC	CCGTCGGGTA	TTGATTTCTT	TGAAATCAAA	GAATCCGATA	TTGTAGTGAT	3180
GGATATTAAT	GGAAATGTTG	TAGAGGGAGA	ACGCTTGCCA	TCTAGCGAAT	GGTATATGCA	3240
TTTGATTCAA	TATCAAACTC	GTGATGATAT	CGATGCAATT	ATCCATGCTC	ATACAACTTA	3300
TGCAACAGTA	TTAGCTTGTC	TCAGAGAACC	ACTTCCAGCG	AGTCATTATA	TGATTGCAGT	3360
GGCAGGGAAA	GATGTTCGGG	TAGCTGAGTA	TGCAACATAT	GGCACGAAAG	AATTGGCTGT	3420
GAATGCAGCT	AAAGCAATGG	AAGGTCGTAG	AGCAGTTTTA	CTAGCGAATC	ATGGAATTTT	3480
AGCAGGTGCA	CAAAATTTAT	TGAATGCATT	TAATATTGTT	GAAGAAGTTG	AATATTGTGC	3540
AAAAATTTAT	TGTTTAGCTA	AGAATTTTGG	AGAGCCAGTA	GTTCTTCCTG	ATGAGGAGAT	3600
GGAATTGATG	GCAGAAAAAT	TTAAAACATA	CGGTCAGAGA	AAATAGGGAG	GATATTAATC	3660
TTAAAACATA	TACCGAAAAA	TATTTCTCCA	GATTTATTGA	AGACTTTAAT	GGAAATGGGA	3720
CATGGAGATG	AAATAGTATT	AGCTGACGCG	AATTATCCTT	CTGCCTCATG	TGCAAATAAG	3780

CTAA	TTCGTT	GTGATGGTGT	AAATATTCCA	GAATTATTAG	ATTCCATTCT	GTATTTAATG	3840
CCAT	TAGATA	GTTACGTCGA	TAGTTCAATT	CAGTTTATGA	ACGTTGTTTC	GGGTGATGAT	3900
ATTC	CTAAGA	TATGGGGTAC	CTATAGACAG	ATGATTGAAG	GTCATGGTAC	AGATCTTAAA	3960
ACGAT	TACTT	ATCTTAGAAG	AGAAGACTTT	TATGAACGTA	GTAAGAAAGC	TTATGCTATT	4020
GTTG	CTACAG	GAGAAACTTC	ACTTTATGCT	AATATTATCC	TTAAGAAAGG	AGTAGTTGTT	4080
GAAAG	GAGAAA	ATGTTCAATA	GAGGAATTTT	AGTTGCCAGT	CATGGTAATT	TTGCTAGCGG	4140
AGCT	CTCATG	ACCGCAGAAA	TGTTTGTTGG	TGAGACAACA	AATGATAGAG	TTAGGACATT	4200
AGGTT	TTGATG	CCTGGAGAGA	ATATTGTAGA	GTTTGAGCAT	TATTTTAAAA	ATCAAGTGGA	4260
TGAAC	CTGTTA	GACTCAAATC	AAGAGGTTAT	CGTTTTGACT	GACTTGATTG	GAGGAAGTCC	4320
ТААТ	ATGTG	GCTTTGTCAC	GGTTTTTAAA	TTTGGATTCA	GTTGATATTG	TAACAGGGTT	4380
TAATA	ATCCCT	CTCCTAGTGG	AATTAATATC	AAGTTATGAT	TCAAAAATCA	ATTTAGAAGA	4440
AATTO	TTCAC	AATGCTCAAA	ATAGTTTGTT	TAATGTTAAA	CAACAACTTA	ACGTAGAGGA	4500
GGAAG	AAGAT	TTATGTCTAT	AGAGTTTGTT	CGTATTGATG	ACCGTCTGGT	ACATGGTCAA	4560
GTTGT	CACTA	CGTGGCTAAA	AAAGTATGAT	ATTGAGCAAG	TTATCATTGT	TAATGATCGC	4620
ATCTC	AGAAG	ATAAAACACG	ACAATCTATT	TTAAAGATTT	CTGCACCGGT	AGGTTTAAAA	4680
ATTGT	TTTCT	TTAGTGTAAA	ACGGTTTGTG	GAAGTTTTAA	ACTCTGTGCC	AATAAAAAAG	4740
AGAAC	AATGC	TGATATATAC	AAATCCAAAA	GATGTGTATG	ATTCTATTGA	AGGAAATTTA	4800
TTAAA	GGAGT	ACCTCAATGT	AGGACAGATG	AGTAAAACGG	AGGAAAATGA	AAAGGTAACG	4860
GGAGG	TGTAG	CTCTAGGTGA	AGAAGACAAA	TATTATTTA	AGAAAATAGT	TGATAAGGGA	4920
ACGAG	AGTTG	AAATTCAAAT	GGTTCCTAAT	GATAAAGTTA	CAATGTTGGA	AAAATTTTTA	4980
AAAA	ATAAT	TTAAGGAGGT	ACAGTATATG	CTATTCACAC	AAGCATTACT	GGTGACATTA	5040
GTTGG	GATTA	TTGCCACTAT	TGACTATAAT	GGACCGTTAT	TTATGATTCA	CCGTCCGTTA	5100
GTTAC	AAGTG	CAATGGTTGG	CTTAGTATTA	GGAGATTTCA	CCCAAGGTGT	TCTTATTGGT	5160
CAGC	TCTTG	AATTAACTTG	GCTCGGTGTA	ACAGGTATTG	GAGGTTATAC	TCCACCAGAT	5220
CTAT	TTCAG	GTGCGATTAT	TGGTACTGCA	TTTGGTATTT	TATCTGGTCA	AGGAGAAACT	5280
CTGG	TATCG	CTATAGCAGT	TCCAATTGCA	GTTGCTACCC	AACAGTTGGA	TGTTCTTGCA	5340
LAAAC	TTTAG	ATGTTTATTT	TGTGAAAAA	GCTGATAATG	ATGCTAAAAA	CGGAGATTAT	5400
CAAA	GATCG	GTTTTTATCA	TTATTCAAGT	TTGGTTTTAA	TCACGTTATT	TAAAATTGTA	5460
CAAT	TTTCC	TAGCTATTAT	GCTTGGAGGG	GAATATGTGG	CAGACTTGTT	TGCTAAGGTT	5520

			646			
CCACCAATCG	TTATGCAGGG	ACTTAACTCT		TACTACCTTC	AATTGGTTTT	5580
GGTATGCTTT	TAAATATGAT	GCTCAAGAAA	AATATGTGGG	TATTCTTGTT	GATTGGATTC	5640
ATTTGTTCTG	TGTATGGAGG	AATGTCAACC	ATTGGGATCT	CACTAGTTGG	TATTGCGGTA	5700
GCATACTTCT	ACGATATGAT	TGGAAGCAAA	CCACAAGAAA	CAACTTCAAG	TAGTGATGTT	5760
GAGGAGGATC	TTGATCTATG	ATGAATAATA	AAGTAACTAA	AGTTGAACTT	AAAAAGTTT	5820
TCAAACGAAG	TTTTATGTAT	GGTTCTTCAT	GGAACTATGA	GAGAATGCAG	AACCTAGGTT	5880
TTCTATATAC	AATTCTTCCA	GTATTGAAAA	AACTATACCC	AGACAAAGAT	TCAGCTTCTC	5940
CTGCAATGAA	ACGTCACCTT	GAGTTTTTCA	ATACTCATCA	AACAGCGGCA	CCATTTATTC	6000
TTGGAGTTAC	TTCCGCTATG	GAAGAACAAG	AAGGAAATGA	AGGTGCAGCT	TCAATTACTG	6060
GTATTAAAGT	TGGCTTGATG	GGGCCACTGG	CTGGTCTAGG	AGATAGTTTG	TTCTGGCTGA	6120
CACTAGTTCC	TATCTGTTTT	AGTATTGGTG	CGTCTTATTC	TAAAGACGGC	GGTGCTTTAG	6180
GTATCTTTAT	CGCCTTAATA	TTGTTTAATA	TTATTAATAT	TCCTGTTAAA	TATTTCGGTT	6240
TGAAATATGG	GTATACTAAG	GGTTCTAGTC	TTATCCAAGA	AAATAATACA	AAAGGAACAT	6300
TGAATCGCGT	TACGAGTATG	GCGACAGCAT	TAGGGCTAGT	ACTAGTGGGT	GGTTTGATTC	6360
CATCAATGGT	TGGTATTAAT	TTTGGATTAG	AATTTAAGCA	GGGGGAACTT	GTTATTTCTG	6420
TTCAAGAAAT	GATTACAAAA	TTAATTCCAG	GATTTATCCC	TATGGCTTTG	ACTTTATTAA	6480
TGTGTAAATT	AATTAGAAAA	GGAAAGAATC	CGGTTGTACT	AATCTTTAGT	GTTATGGCTA	6540
TTGGAGTTAT	TCTAGTTGTT	TTAGGAATTT	TGAAGTAGTA	GAAAGTGTGG	AGGTGGTATT	6600
TGGGATATCA	CCTCCATTTT	GGAAGAGAG	TAAAGAGTGA	AATTATGGTA	TAAGAAAGCT	6660
GCCGCAAATT	GGAATGAAGC	CTTGCCGATT	GGGAACGGTC	ATTTAGGTGG	TATGATTTAT	6720
GGTTCAGCTA	CAAAAGAATG	TATTCAACTA	AACGATGAGA	CTATTTGGTA	TAGAGGAAAG	6780
TCAGATAGAA	ATAATCCAGA	CTCACTATTO	CATCTTAAAA	AAATTCGGGA	ATATCTTTTA	6840
GATGGAGAAA	TTCAGAAAGC	CGAAGAATTC	ATAAAGTTAA	CAGTGTTTG	TACCCCAAGA	6900
GATCAAAGCC	ACTATGAATT	ACTTGGGGA	CTTTACATTC	AGCATATAGA	TATTCAGTCT	5960
TGTGCTCTTT	CATTGTATGA	AAGAGAGCT	A GATTTAGATA	CAGCTATTT	TAATGTTGTG	7020
TTTGAGCCTA	ATAGTTGTA	TTTACAAAT	A AAAAGAGAA1	ATTTTACGAC	TTTTAATAAG	7080
AATATTTTAT	GTTGCCGTAT	AGTGTCATC	A GTTCAAAAC	CATTAAATT	TAACATTAAT	7140
TTGGGTAGAA	ATAAACGGT	TAATGACGA	A GTATCTAAA	TGGATTCAA	G TACAATTTA	7200
ATGTCGGCCT	CTGCTGGAGG	TAGAAAAGG	r GTTCAGTTT	A AAGTAGTAT	G TCATTCTAAG	7260
GTTACGGATC	GTGAAGTAA	G TGTATTGGG	A GAGACAATAG	G TTATTCGGA	A TGCTACAGAG	7320

GTATTTCTTT	ATCTCAAATC	AATGACGGAT	TATTGGGGAA	ATATAGATAT	TTCTTCTCTT	7380
CAGGGAGAAT	TTAGTAGTAT	TGATTACTTT	ACAGAAAAAG	ATGAACATGT	AAAAAAATAT	7440
CAGGAGCAAT	TTAATAGAGT	TGATTTTAAA	CTAGACTATA	GTAAAGGTTG	TCTTAGCATT	7500
CCAACGAATC	TACTTCTTGA	AAACACTAAA	AAGTATAGTA	ACTACTTGAC	TAACTTGTTA	7560
TTTCATTATG	GAAGATATCT	GTTAATATCG	TCTAGTCAAC	CGAATGGTTT	ACCTGCCAAT	7620
CTTCAAGGAA	TATGGTGTGA	TGAATTAAAT	CCAATTTGGG	GTTCTAAATA	TACGATTAAT	7680
ATTAATACTC	AAATGAATTA	TTGGATGGTA	GGTCCATGTG	ATTTACCAGA	AGTAGAATAT	7740
CCATTATTTG	ATATGCTCGA	AAGAATGAGA	GAACCGGGAA	GACTAACCGC	TAAGAAAATG	7800
TATGGAGCTA	GAGGTTTTAC	AGCACATCAT	AATACGGATG	GTTTTGGCGA	TACGGCTCCC	7860
CAATCTCATG	CCATGGGGGC	TGCAATTTGG	GTATTAACTA	TTCCATGGTT	ATGTACTCAT	7920
ATTTGGGAAC	ACTATTTATA	TTTCCAAGAT	GAGCGTATTC	TTACGGAACA	TTTTGAAATG	7980
ATAAAAGAAG	CATTTCTTTT	CTTTGAAGAT	TATTTATTTG	AGGTGGATGG	CTACTTGATG	8040
ACAGGTCCAA	GTGTCTCACC	ggaaaataaa	TATCGCTTAA	AAAATGGTAT	TGAAGGAAAT	8100
GCTTGTCTAT	CATCTACAAT	TGATAATCAA	ATTCTAAGAT	ATTTTTGTGA	TTCATGCATT	8160
GGCATTGCAA	AACAATTAGG	AGACAATTCG	GATTTTATTA	GTCGTGTGAA	GGAGTTAAAA	8220
AAGAAACTAC	CTAAAACAAA	AATAGGTAGT	AATGGGCAAA	TCCAAGAATG	GTTAGAAGAT	8280
TATGAAGAAG	TAGAGCCTGG	GCATAGACAC	ATTTCACCTC	TATTTGGGCT	TTATCCTTAT	8340
AATGAGATTG	ATATTCATAA	AACTCCGGAA	TTAGCAGAAG	CAGCTAAAAT	CACTATCAAT	8400
AGGAGATTAT	CAAACGCTAA	TTTTTTATCT	TCACAGGAGA	GGGAGCAAGC	GATTAATAAT	8460
TGGTTAGTAA	GTGGTTTGCA	TGCTAGTACA	CAAACAGGTT	GGAGTGCTGC	ATGGCTGATT	8520
CATTTTTTTG	CGAGACTATA	TCAAGGTGAA	CCTGCTTATA	ACCAGATTAA	TGGTTTGTTA	8580
AATAATGCGA	CTCTTGGCAA	TTTATTTCTT	GACCATCCAC	CATTTCAAAT	TGATGGTAAT	8640
TTAGGTTTGG	TGAGTGGAAT	TTGTGAATTA	TTAGTACAGA	GCCATCATAA	TTGGTTATCA	8700
CTAATTCCAG	CTTTACCTTC	TGCTTGGTCA	GAAGGAGAAG	TGAAAGGTTT	CAGAGTAAGA	8760
GGAGGATATA	AGGTATCGTT	TGCTTGGAAA	AATGGGGATA	TAACATTCCT	AAAATTGGAA	8820
GGAGGAAACA	AAGATCAAAA	AGTAAGAGTA	AGAATATATG	GCAAAAATAC	TGATGTACAA	8880
AATATTGAAT	TGGTATTTAA	TTCAGAAAAA	ATTATTGAGT	TAAATTTTTA	GGTATAAGTC	8940
ATGAATAAAG	аааааатааа	AAGAAAATTA	ATCACAATAT	TGTTTGTATG	TATTGGGATG	9000
TTATGTTTTG	GATTGTTAGC	AGGAGTTAAG	GCTGATAATC	GTGTTCAAAT	GAGAACGACG	9060

			548			
ATTAATAATG	AATCGCCATT	GTTGCTTTCT	CCGTTGTATG	GCAATGATAA	TGGTAACGGA	9120
TTATGGTGGG	GGAACACATT	GAAGGGAGCA	TGGGAAGCTA	TTCCTGAAGA	TGTAAAGCCA	9180
TATGCAGCGA	TTGAACTTCA	TCCTGCAAAA	GTCTGTAAAC	CAACAAGTTG	TATTCCACGA	9240
GATACGAAAG	AATTGAGAGA	ATGGTATGTC	AAGATGTTGG	AGGAAGCTCA	AAGTCTAAAC	9300
ATTCCAGTTT	TCTTGGTTAT	TATGTCGGCT	GGAGAGCGTA	ATACAGTTCC	TCCAGAGTGG	9360
TTAGATGAAC	AATTCCAAAA	GTATAGTGTG	TTAAAAGGTG	TTTTAAATAT	TGAGAATTAT	9420
TGGATTTACA	ATAACCAGTT	AGCTCCGCAT	AGTGCTAAAT	ATTTGGAAGT	TTGTGCCAAA	9480
TATGGAGCGC	ATTTTATCTG	GCATGATCAT	GAAAAATGGT	TCTGGGAAAC	TATTATGAAT	9540
GATCCGACAT	TCTTTGAAGC	GAGTCAAAAA	TATCATAAAA	ATTTGGTGTT	GGCAACTAAA	9600
AATACGCCAA	TAAGAGATGA	TGCGGGTACA	GATTCTATCG	TTAGTGGATT	TTGGTTGAGT	9660
GGCTTATGTG	ATAACTGGGG	CTCATCAACA	GATACATGGA	AATGGTGGGA	AAAACATTAT	9720
ACAAACACAT	TTGAAACTGG	AAGAGCTAGG	GATATGAGAT	CCTATGCATC	GGAACCAGAA	9780
TCAATGATTG	CTATGGAAAT	GATGAATGTA	TATACTGGGG	GAGGCACAGT	TTATAATTTC	9840
GAATGTGCCG	CGTATACATT	TATGACAAAT	GATGTACCAA	CTCCAGCATT	TACTAAAGGT	9900
ATTATTCCTT	TCTTTAGACA	TGCTATACAA	AATCCAGCTC	CAAGTAAGGA	AGAAGTTGTA	9960
AATAGAACAA	AAGCTGTATT	TTGGAATGGA	GAAGGTAGGA	TTAGTTCATT	AAACGGATTT	10020
TATCAAGGAC	TTTATTCGAA	TGATGAAACA	ATGCCTTTAT	ATAATAATGG	GAGATATCAT	10080
ATTCTTCCTG	TAATACATGA	GAAAATTGAT	AAGGAAAAGA	TTTCATCTAT	ATTCCCTAAT	10140
GCAAAAATTT	TGACTAAAAA	TAGTGAGGAA	TTGTCTAGTA	AAGTCAACTA	TTTAAACTCG	10200
CTTTATCCAA	AACTTTATGA	AGGAGATGGG	TATGCTCAGC	GTGTAGGTAA	TTCCTGGTAT	10260
ATTATAAT A	GTAATGCTAA	TATCAATAAA	AATCAGCAAG	TAATGTTGCC	TATGTATACT	10320
AATAATACAA	AGTCGTTATC	GTTAGATTTG	ACGCCACATA	CTTACGCTGT	TGTTAAAGAA	10380
AATCCAAATA	ATTTACATAT	TTTATTGAAT	AATTACAGGA	CAGATAAGAC	AGCTATGTGG	10440
GCATTATCAG	GAAATTTTGA	TGCATCAAAA	AGTTGGAAGA	AAGAAGAATT	AGAGTTAGCG	10500
AACTGGATAA	GCAAAAATTA	TTCCATCAAT	CCTGTAGATA	ATGACTTTAG	GACAACAACA.	10560
CTTACATTAA	AAGGCATAC	TGGTCATAAA	CCTCAGATAA	ATATAAGTGG	CGATAAAAAT	10620
CATTATACTT	ATACAGAAAA	TTGGGATGAG	AATACCCATG	TTTATACCAT	TACGGTTAAT	10680
CATAATGGAA	TGGTAGAGAT	GTCTATAAAT	ACTGAGGGGA	CAGGTCCAGT	CTCTTTCCCA	10740
ACACCAGATA	AATTTAATGA	TGGTAATTTG	AATATAGCAT	ATGCAAAACC	AACAACACAA	10800
AGTTCTGTAG	ATTACAATGG	AGACCCTAAT	AGAGCTGTGG	ATGGTAACAG	AAATGGTAAT	. 10860

TTTAACTCTG	GTTCGGTAAC	ACACACTAGG	GCAGATAATC	CCTCTTGGTG	GGAAGTCGAT	10920
TTGAAAAAA	TGGATAAAGT	TGGGCTTGTT	AAAATTTATA	ATCGCACAGA	TGCTGAGACT	10980
CAACGTCTAT	CTAATTTTGA	TGTGATTCTA	TATGACAATA	ATAGAAACGA	AGTTGCTAAG	11040
AAACATGTTA	ATAATTTGTC	GGGTGAATCT	GTTAGTCTAG	ATTTCAAAGA	AAAAGGAGCA	11100
AGGTATATTA	AAGTTAAATT	ACTAACGAGT	GGAGTGCCTT	TGAGTTTAGC	AGAAGTAGAG	11160
GTTTTTAGAG	AATCAGATGG	TAAGCAATCT	GAAGAGGATA	TAGATAAAAT	AACAGAAGAT	11220
AAAGTAGTCT	CTACAAATAA	GGTAGCTACT	CAAAGTTCAA	CCAATTATGA	GGGTGTAGCT	11280
GCTTTAGCAG	TTGATGGTAA	TAAAGATGGA	GATTACGGAC	ATCATTCGGT	GACTCATACT	11340
AAGGCAGATT	CTAACGCTTG	GTGGCAGGTC	GATCTGGGAG	AAGAGTTTAC	GGTTTCTAAA	11400
GTTGATATTT	ATAATAGAAC	AGATGCCGAA	CCTCAGCGTT	TATCTAATTT	TGATGTTATT	11460
TTTCTATCTT	CATCAGGAGA	AGAAGTTTTT	AGAAGACATT	TTGATAAAGT	AGTTGATGGT	11520
TTGTTATCTT	TAAAAGTACC	TTCTGTAGGG	GCTAAGCTAG	TCAAAATAGA	ATTAAAATCA	11580
GCAGCTATTC	CGTTAAGTTT	AGCGGAAGTT	GAAGTCTATG	GTTCAAAGAG	AACTCCGAAG	11640
AAACTTTCTA	ATATTGCATT	AACAAAAGAA	ACTCGACAGA	GTTCAACGGA	TTACAATGGT	11700
TTTTCTCGTC	TAGCAGTTGA	TGGAAATAAA	AACGGAGATT	ATGGTCATCA	TTCAGTGACT	11760
CATACCAAAG	AAGATTCTCC	TTCATGGTGG	GAGATAGATT	TAGCACAAAC	CGAAGAATTA	11820
GAAAAGTTAA	TTATTTATAA	TAGAACAGAT	GCTGAAATTC	AGAGATTATC	AAATTTTGAT	11880
ATTATTATAT	ATGATTCAAA	TGATTATGAA	GTTTTTACAC	AACATATTGA	CAGTTTAGAA	11940
AGCAATAATC	TATCCATAGA	CTTAAAAGGA	CTGAAGGGAA	AAAAGGTTAG	AATTTCTTTG	12000
AGAAGCGCAG	GAATTCCTTT	AAGTTTAGCA	GAGGTAGAGG	TTTATACTTA	TAAGTAATTT	12060
TAAAAATTAT	CACCCAGGCT	ACCGTAAATA	TAATGGAGAT	GGTAGTATGA	AAGAAACAGA	12120
AAAATAAGAG	GAAAATAGTA	TGATTCAACA	TCCACGTATT	GGGATTCGTC	CGACTATTGA	12180
TGGTCGTCGT	CAAGGTGTAC	GCGAATCACT	TGAAGTGCAA	ACAATGAACA	TGGCTAAAAG	12240
TGTGGCAGAT	TTGATTTCAA	GCACATTGAA	ATATCCAGAT	GGGGAACCTG	TGGAATGCGT	12300
GATTTCTCCA	TCTACTATTG	GCCGTGTACC	AGAGGCTGCA	GCTTCCCATG	AGTTGTTTAA	12360
AAAATCAAAT	GTTTGCGCAA	CAATTACAGT	TACACCATGC	TGGTGTTATG	GTAGTGAAAC	12420
TATGGATATG	TCTCCAGATA	TTCCTCATGC	TATTTGGGGA	TTTAATGGGA	CAGAACGCCC	12480
AGGAGCTGTC	TATCTTGCAG	CTGTACTAGC	TTCACATGCT	CAAAAAGGGA	TTCCAGCCTT	12540
TGGGATTTAT	GGAAGAGATG	TTCAGGAAGC	TAGTGACACA	GATATTCCAG	AAGATGTCAA	12600

			650			
AGAAAAACTT	TTACGCTATO	CGCGTGCAG	TCTTGCAACT	GGCTTGATGA	GAGACACTGC	1266
TTACCTATCA	ATGGGTAGTC	TTTCGATGGC	GATTGGTGGT	TCTATTGTAA	ATCCGGATTT	1272
CTTCCAAGAA	TACTTAGGA	TGCGAAATGA	ATCGGTAGAT	ATGACGGAGT	TCACGCGCCG	1278
TATGGACCGT	GGTATTTACG	ACCCTGAAGA	GTTCGAACGT	GCGCTCAAAT	GGGTGAAAGA	1284
AAACGTAAAA	GAAGGATTC	ACCATAACCO	TGAAGACCTT	GTTTTAAGCC	GTGAAGAAAA	1290
AGATAGACAA	TGGGAATTTG	TTATTAAGAT	GTTCATGATT	GGACGTGACT	TAATGGTTGG	1296
TAACCCAAGA	CTTGCTGAAC	TTGGTTTTGA	GGAAGAAGCG	GTTGGTCACC	ATGCTTTAGT	1302
AGCTGGTTTC	CAAGGTCAAC	GTCAGTGGAC	AGACCATTT	CCAAATGGGG	ACTTTATGGA	1308
AACTTTCCTC	AATACTCAGT	TTGACTGGAA	TGGTATTCGA	AAACCATTTG	TATTTGCGAC	13140
AGAGAATGAT	TCACTAAATG	GTGTGTCTAT	GCTCTTTAAT	TATCTATTAA	CAAATACTCC	13200
ACAAATCTTT	GCTGATGTGC	GTACTTATTG	GAGCCCAGAG	GCTGTTAAAC	GTGTAACGGG	13260
ACATACTTTA	GAGGGTCGTG	CTGCAGCTGG	CTTCTTACAT	CTAATCAACT	CTGGTTCTTG	13320
TACATTGGAT	GGTACAGGTC	AAGCTACTCG	AGATGGCAAA	CCTATTATGA	AACCATTCTG	13380
GGAGTTGGAA	GAAAGTGAAG	TGCAGGCTAT	GCTTGAAAAT	ACAGACTTCC	CACCAGCAAA	13440
CCGCGAATAC	TTCCGTGGAG	GAGGATTCTC	AACTCGTTTC	TTGACGAAGG	GGGATATGCC	13500
AGTAACAATG	GTACGTCTCA	ATCTTCTAAA	AGGGGTTGGT	CCAGTGCTAC	AAATTGCAGA	13560
AGGTTACACA	CTTGAACTTC	CTGAAGATGT	TCACCATACT	TTAGATAATC	GTACAGATCC	13620
AGGATGGCCA	ACTACTTGGT	TTGCTCCACG	TTTGACAGGA	AAAGGTGCTT	TCAAGTCTGT	13680
CTATGACGTC	ATGAATAATT	GGGGAGCTAA	TCACGGAGCC	ATAACATATG	GACACATTGG	13740
AGCAGACTTG	ATTACCTTGG	CTTCTATGTT	GAGAATTCCT	GTCAATATGC	ATAATGTACC	13800
TGAGGAAGAT	ATCTTTAGAC	CTAAAAATTG	GTCCTTATTT	GGAACAGAAG	ATCTAGAATC	13860
AGCAGACTAT	CGTGCATGTC	AGTTGTTGGG	GCCACTACAT	AAATAAAACT	TGTTTATATA	13920
GGAGGTGAAC	TTACGTCCCT	CCTATCCTTT	TAAAAAGATT	TGTTAAACAA	TTCACAAATA	13980
ATTGAAAACG	AATACAAAAA	GTAATATAAT	GATGTTAAAT	AGATAGCGCG	GAGGCGCAGG	. 1040
AGGAAAATTA	TATGGCTATA	TTTTATGTTC	CGGCAGTCAA	CCTTATTGGA	AAAGGTGTTG	14100
PAAATGAAGT	GGGTCCTTAT	ATCAAGGAAC	TTGGCTATAA	AAAGGCACTT	TTGGTGACAG	14160
TAAGTACAT	CGAAGGCAGT	GATATTTTAC	CTAAGACTTT	AAAACCACTG	GATACAGAAG	14220
GAATCGAATA	т					14231

⁽²⁾ INFORMATION FOR SEQ ID NO: 82:

⁽i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16995 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:

AGTTCTCTTA	ACTTTTTAG	GATGGCATTC	TCCGCTCTCA	GGTACTCATT	TTCTGCTgAA	60
GACGTTCTAA	TTCTGTCCTC	TCTTCAGGTC	TCGTTTTTGG	CTTACGTCCC	ATTTTAGGTA	120
стстссстст	TGTTTTCTCA	ACAATAGTAT	ACCCGTTTTT	CCTGTATTGT	GCTAGCCAGT	180
TAAGAAGTAT	CGTACGACTT	GGGAGACCGT	ATTCAAGAGA	AACTCTATCT	TTAGTCCAGC	240
CTTCATGTCA	GACTTTATTA	CTCATTTCTT	GTTTTAAATC	AGGAGAATAG	TAACGATTTT	300
TTCCTTTTTT	GACGAACTCT	ATTCCGTAAC	GATCAATCAA	TTTAATCATG	TACCTAATAT	360
TAGAATTGCT	TATCCCAAAT	TTATTTGAAA	GCTTCTCTAA	GCTATATCCT	TGTTTTCTAA	420
GTTCATAGAT	CTGAACTTTA	TCATCATAAG	TTAGTTTCAT	AATAAAAACA	CCCCAAAAGT	480
TAGATTTTTT	CTGTCTAACT	TTTGGGGTGT	AGTTCATGTA	CACCTGATAT	GATGCGTTTT	540
ATAATTTTTA	AGCCTTTTTG	CCCAGCCTCG	TCAAAAGTAA	TCTTTTGACA	CAAAATCTGT	600
GACAAAACTT	TAGTTTTAAA	GGTTTTTAAC	TTTGTATATA	CTAGTTTTAA	GAAAAGGAGG	660
ATGATCTAAT	GGAAGAAAA	GTATCATTGA	AAGTCAGGGT	TCAAAAACTA	GGGACATCGC	720
TTTCAAATAT	GGTTATGCCC	AATATTGGAG	CATTTATTGC	TTGGGGAGTA	TTGACTGCCC	780
TCTTTATCGC	TGATGGCTAT	CTGCCAAATG	AACAGTTAGC	TACTGTTGTT	GGTCCTATGT	840
TAACGTATTT	ATTGCCAATC	CTGATTGGTT	ACACAGGTGG	ATATATGATC	CATGGCCAAC	900
GTGGTGCCGT	TGTAGGAGCT	ATTGCTACTG	TTGGTGCAAT	CACAGGTTCT	AGTGTTCCTA	960
TGTTTATCGG	AGCTATGGTA	ATGGGCCCAC	TGGGAGGATG	GACTATCAAG	AAATTTGATG	1020
		CGTCCCGGAT				1080
		TTGCTTTTGG				1140
CTCTTACTGG	AGCTGTTGGG	AATGGTGTTG	AGGCTATTGT	CAATGCTCGC	CTCCTTCCTA	1200
		CCGGCTAAAG				1260
GCATTTTTAC	TCCTCTGGGA	GTAGAACAGG	TAGCTCAAGC	TGGTAAGTCA	ATTCTCTTCC	1320
					GTATTCGGTA	1380
		TCTTGGGGGG				1440
ATGAAATTTA	CTTTCCTTAT	GTTATGATGA	AGCCTACTCT	ATTTTTAGCT	GCTATGGCAG	1500

652 GAGGTATCTC TGGAACTTTT ACTTTTCAAC TCTTAGACGC TGGTCTTAAA TCTCCAGCTT 1560 CACCAGGTTC TATTATTGCG ATTATAGCTA CGGCGCCAAA AGGTGTTTGG CCCCATCTAA 1620 ATGTTCTTTT AGGTGTTTTA GTGGCAGCAG TTGTTTCTTT CCTTGTAGCA GCCCTTATTC 1680 TTCATGCAGA CAAGTCAACT GAGGATTCGC TCGAAGCTGC TCAGGCGGCT ACCCAAGCAG 1740 CTAAGGCTCA GTCTAAAGGT CAGTTAGTAT CAACTTCTGT TGATGCAGTT GTTTCGACAG 1800 ACTCAGTGGA AAAAATCATT TTCGCCTGCG ATGCTGGTAT GGGAAGCTCT GCTATGGGAG 1860 CTAGTATTCT TCGAGATAAG GTTAAAAAAG CAGGTCTAGA GATTCCAGTA TCTAATCAGG 1920 CAATCTCAAA TTTGCTTGAT ACACCAAAAA CATTAATTGT TACTCAGGAA GAACTGACAC 1980 CAAGAGCTAA AGACAAGAGT CCAAGTGCTA TTCATGTTTC TGTTGATAAT TTCTTAGCGT 2040 CCTCTCGTTA TGATGAAATT GTAGCTTCAT TAACAGGAGC TTCTCCAATA GCAGAAATTG 2100 AAGGAGATAT ACCAACTTCA GCACCAGTAG ATAGTCAGGA AAGTGACCTT AACCATATTG 2160 ATGCTGTAGT AGTTGCTTAT GGTAAAGCAC AGGGAACTGC AACTATGGGC TGTGAAACGA 2220 TTCGGGCTAT TTTTAGAAAC AAGAATATTC GTATTCCAGT TTCTACTGCC AAAATTTCAG 2280 AATTAGGTGA ATTTAATTCT AAAAACATAA TGATTGTAAC AACTATTTCT TTACAGGCAG 2340 AAGTGCAGCA AGCAGCACCG AATTCTCAAT TTCTTATTGT GGATAGTTTA GTAACAACAC 2400 CAGAATATGA CAAAATGGCT GCTAGAATGT ACAAATAGAA CTAGAGGTTT CTAAATTACG 2460 AATGCTATTA ACCAAACGAG AAGAACAATT ATTGAAGGCT TTCCTACATG TAGGGAAGCT 2520 TTCAATGCAA GATATGACTG AAATCTTACA GGTTTCATCT AGAACAATTT ATCGAACTTT 2580 ATCAGATTTG ACAGATAGCA TGGAGCAATA TGGAATCGAA ATAACGAAGC ATGGGAAATA 2640 CTATATTTTG ACTGGAGAGT TGGATGATTT GCCGACAGAA CTTGAAGTGT TAGTTGAGTA 2700 TAGTCCCCAA GAAAGACAAG AGTTGATTAC CTATCGCCTT CTGACTGAGA GTGGTTTTGT 2760 CACCAATGAA GCATTGCAAG AGTGCACGAA AGTCAGTAAT GTAACTATTA TTCAGGATAT 2820 TTCAGATATT GATAAGCGTC TTTTAGACTT TGATCTGAAA ATTGAACGAC AAAAAGGTTA 2880 TCGGATTTCT GGTGATTCAG TTGGTAAGAG AAGATTTTTG GCTATTTTAC TGACAAACTG 2940 TATCTCAGTA GCAGATTTTT CAACCGGTAA TTTTGGGAGC TTTGATATTT TAGAAGCAGA 3000 TAGAACTGGG CTGGCCAGTC AGATTGTTAA TAAGCAACTG TCAGGTTTTC CAGATATGGA 3060 TGCTAGGATG AAGATGTTTT TTGCGATCTT GTTATCTCTT ATAGGTCAGG AGCAAAACAT 3120 TGAAAATTCA CCTAATACTA GTAAGCAGGC TTTGGAAAATT TCTCAAAAAA TTTTTCAAGC 3180 TTACTCTAAG CAGACTGCAC AATTTTATAG TATTCAGGAA ATTATCTATT TTGCGAGCAT 3240 CTTGGATGAA TTAATCATTA AACGTCAGGA CAATCCGCTC TTTACGGAGA AATTTGATGG 3300

TGAATTTTTC	TACAATATTT	CAAATCTGAT	TGATACGGTT	TCCATGTATA	CCAAGATTGA	3360
CTTTTTTAAG	GACAAGGTTT	TATTCAATTT	TCTTTTCCAT	CATATTCGGC	TCAGTTTAGG	3420
CGTCCCTATC	CTTTTTCAGG	GTGAAAATTT	GCCAGAATCT	ATCCAGATTT	TAGTTGAAAG	3480
GAATAAATTT	CTTTATACAG	TCATCAGTCT	TTTAGTGAAT	GATATTTTTC	CGAAATATCT	3540
TCATACAGAG	TATGAGTATG	GCATGATTGC	CCTACATTTT	ATCTCTAGCT	TAGGCCGTAG	3600
TCCAGAGATT	TATCCAGTCC	GTGTTTTGCT	TTTAACGGAT	GAACGTCGGG	TCACTAGAGA	3660
TTTATTAGTC	AGTAAAATTA	AGAGTGTTGC	TCCTTTTGTA	GAGTTGATAG	ATATTCAATC	3720
TCTAGTAGAT	TACCACAGTA	TTGATCTCAG	TCAGTATGAT	TATATTTTAT	CTACCAAGCC	3780
GCTGACTAAT	CAGGAAATCG	ATGTAATTTC	TAGTTTTCCA	ACCGTCAAAG	AATTGCTTGA	3840
ATTACAGGAA	CGACTTCAGT	ATGTACAGGC	ACATCGTACA	ATTGTCGCGC	GTGATGCTAT	3900
CGCTCCAGAG	AAAAGTTATG	ACTTGCAAGA	TTATTTAATA	TCTAGTAGTC	AGCTTTTGAG	3960
TCAATTCGAG	TTGGTTCAAT	TGGAGAATAA	TCAATCATTT	GAGCACACGG	TAGAACAAAT	4020
CATCCAATAT	CAGAAGAATG	TGAGTGACAG	AGCTTACCTA	ACAAGAAAAT	TGTTATCTCA	4080
CTTCCAGAAT	AGTCCTATGG	CTATTCCTAA	TACTGGTCTG	GTGCTTTTAC	ATAGTCAGTC	4140
TAGCAAAGTA	ACAACAAATA	GTTTTACTAT	GTTTGAACTC	AAACTACCTA	TCTCCGCATT	4200
GTCAATGAAA	CGAGAGGAAG	AAGAGGTCAA	AAGGTGTCTG	CTAATGCTAA	TGTCTAAAGA	4260
AGCTAGCGAG	GAAGCTAGAG	ATTTAATGAC	AGCTATTAGT	CAGTCGATTA	TTGAAAATCA	4320
TCTTTATACA	GAGATTTACA	AGACGGGAAA	TCAATCCATT	ATTTATCAGA	TGCTAAATAC	4380
TATTTTTAAC	GAAAAAATTA	AGAAATTGGA	GAACTAATAT	GAAACTTGAA	AAACATTTGA	4440
TTAAGCTTAA	TAAACAATTT	TCTAACAAGG	AGGAAGCTAT	TTGTTATTGT	GGGCAAGTTC	4500
TTTATGAGGG	TGGATATGTT	AATGAAGACT	ATATTGAAGC	CATGATTGAG	CGAGATAAAG	4560
AGCTATCTGT	TTACATGGGT	AACTTTATCG	CCATACCGCA	TGGAACAGAT	GCAGCAAAAA	4620
ATGATGTCCT	CAAGTCTGGT	ATTACAGTCG	TTCAAGTCCC	TAGAGGGGTT	GATTTTGGGA	4680
ATGTATCTAA	CCCTCAAGTG	GCAACGGTTC	TTTTTGGTAT	TGCTGGTATT	GGTAATGAAC	4740
ACTTAGAAAT	TATTCAGAAA	ATTTCTATCT	TCTGTGCAGA	TGTAGATAAT	GTTCTTAAAC	4800
TAGCAGATGC	TCAGTCAAAA	GAGGAAGTAT	TGCGCTTATT	TGATGCTGTT	GAATAATTGA	4860
ATTTAGTCAT	TTGTCATCTA	GTATATATGT	CCCTCAAATA	GGAAAAGGAG	AAATTGAATG	4920
AAACATTCTG	TTCATTTTGG	TGCCGGTAAT	ATCGGTCGTG	GTTTTATAGG	TGAAATTCTA	4980
TTTAAAAATG	GTTTCCATAT	TGATTTTGTG	GATGTCAATA	ATCAGATAAT	TCATGCTCTG	5040

			•			
AATGAAAAGG	GCAAGTATGA	AATTGAAATT	654 GCACAGAAAG	GACAGTCTCG	TATAGAAGTA	5100
ACTAATGTGG	CTGGCATTAA	TAGCAAAGAA	CATCCTGAGC	AAGTCATTGA	AGCGATTCAA	5160
AAGACGGATA	TTATTACTAC	TGCAATCGGA	CCTAATATAC	TCCCTTTTAT	CGCCGAACTT	5220
CTAGCCAAAG	GAATCGAAGC	TCGCCGAGTT	GCAGGAAATA	CACAGGCATT	GGATGTTATG	5280
GCCTGTGAAA	ATATGATTGG	CGGGTCTCAA	TTTCTTTATC	AAGAAGTCAA	GAAATATTTA	5340
AGTCCGGAAG	GTTTGACATT	TGCTGATAAC	TACATAGGTT	TTCCAAATGC	TGCAGTAGAC	5400
AGGATTGTTC	CAGCACAAAG	TCACGAAGAT	TCCCTTTTTG	TTGTGGTCGA	GCCCTTTAAT	5460
GAATGGGTCG	TGGAAACCAA	GCGTCTTAAA	AATCCAGATT	TACGTCTAAA	AGATGTGCAT	5520
TATGAAGAAG	ATTTAGAACC	CTTTATTGAG	CGAAAACTTT	TTTCAGTCAA	TTCTGGACAT	5580
GCAACTTCAG	CTTACATTGG	TGCGCATTAT	GGTGCCAAGA	CAATTTTGGA	AGCTCTTCAA	5640
AATCCTAATA	TTAAATCTCG	GATTGAATCT	GTATTAGCTG	AAATTCGGAG	TCTCTTGATT	5700
GCCAAATGGA	ACTTTGATAA	AAAAGAATTG	GAGAATTATC	ACAAAGTCAT	TATAGAACGA	5760
CTTGAAAACC	CTTTCATAGT	GGACGAGGTT	AGTCGCGTAG	CTCGTACTCC	AATCCGAAAA	5820
TTAGGCTATA	ATGAACGATT	CATCCGGCCG	ATACGTGAAT	TGAAAGAACT	CAGTTTGTCA	5880
TATAAAAACC	TACTTAAAAC	AGTTGGCTAT	GTCTTTGACT	ATCGCGATGT	AAATGATGAA	5940
GAAAGTATTC	GATTAGGTGA	ATTGTTGGCT	AAACAATCAG	TCAAAGATGT	TGTTATACAA	6000
GTTACAGGTT	TAGACGACCA	AGAATTGATT	GAGCAAATTG	TAGAGTATAT	TTAATCTTTT	6060
TCGAAAATCT	CTTCAAATCA	GGTTAGCATC	GCTTTGTCTT	AGGCATATGT	TGTTCTATCT	6120
ACAACCTCAA	AGCAGTGCTT	TGAGCTGACT	CCGTCAGTCT	TATCTGCAAT	CTCAAAACAC	6180
TGTTTGAGTT	ATCTGCGGTA	ATCTTTCTAG	CTTGTCTTTG	ATTTTTGTTG	TTATTTATAA	6240
GGTAAAAGAA	GCTGGACAAA	AAGTCTTCAA	AATCGGGAAA	AGGCAGCCTA	TCGGGTGTTC	6300
AAAAATCTTG	ATAGGATGTC	CTTTATTATG	GAAAGCCTTA	TTGGATTTTC	TCCTCAGATT	6360
GAGTTTTTGA	TCAGCTTTAT	GAGATAGGTO	TTGCTAGAGA	TGTAGCCCAT	CATGTTATTT	6420
TTATGGACAG	TGGGAAAATT	GTTGAAAAAA	ATAATGCCCA	TCAATTCTTT	AGTCGTCCAA	6480
GAGAAGAACG	AACCAAGCAA	TTTTGGAACG	AATTCTTTCG	AATGCGATCT	ATATAGTAAA	6540
ATGAAACAAG	AACAGGACAA	ATCGATCAGO	ACAGTCAAAT	CGATTTCTA	AAATGTTTTA	6600
					TAGATAAATT	6660
AGTTTTGGAA	AATGACTAAC	CAAAAGATAT	CCAAAGTAGT	CTAAAATTG1	CTATACTTTA	6720
TGAGTGTTT	r agttaggaaa	AAGGCTTGTT	GTCTATAATT	GTCTGCATTA	GTCTAGATTT	6780
TATTTATAGA	A AAATGTTATA	ATAGACTGT	TTTAAAAAAT	TTTAAGGAGA	AATGACAGAA	6840

TGTCTGTATO	ATTTGAAAAC	AAAGAAACAA	ACCGTGGTGT	CTTGACTTTC	ACTATCTCTC	6900
AAGACCAAAT	CAAACCAGAA	TTGGACCGTG	TCTTCAAGTC	AGTGAAGAAA	TCTCTTAATG	6960
TTCCAGGTTT	CCGTAAAGGT	CACCTTCCAC	GCCCTATCTT	CGACCAAAAA	TTTGGTGAAG	7020
AAGCTCTTTA	TCAAGATGCA	ATGAACGCAC	TTTTGCCAAA	CGCTTATGAA	GCAGCTGTAA	7080
AAGAAGCTGG	TCTTGAAGTG	GTTGCCCAAC	CAAAAATTGA	CGTAACTTCA	ATGGAAAAAG	7140
GTCAAGACTG	GGTTATCACT	GCTGAAGTCG	TTACAAAACC	TGAAGTAAAA	TTGGGTGACT	7200
ACAAAAACCT	TGAAGTATCA	GTTGATGTAG	AAAAAGAAGT	AACTGACGCT	GATGTCGAAG	7260
AGCGTATCGA	ACGCGAACGC	AACAACCTGG	CTGAATTGGT	TATCAAGGAA	GCTGCTGCTG	7320
AAAACGGCGA	CACTGTTGTG	ATCGACTTCG	TTGGTTCTAT	CGACGGTGTT	GAATTTGACG	7380
GTGGAAAAGG	TGAAAACTTC	TCACTTGGAC	TTGGTTCAGG	TCAATTCATC	CCTGGTTTCG	7440
AAGACCAATT	GGTAGGTCAC	TCAGCTGGCG	AAACCGTTGA	TGTTATCGTA	ACATTCCCAG	7500
AAGACTACCA	AGCAGAAGAC	CTTGCAGGTA	AAGAAGCTAA	ATTCGTGACA	ACTATCCACG	7560
AAGTAAAAGC	TAAAGAAGTT	CCGCCTCTTG	ACGATGAACT	TGCAAAAGAC	ATTGATGAAG	7620
AAGTTGAAAC	ACTTGCTGAC	TTGAAAGAAA	AATACAGCAA	AGAATTGGCT	GCTGCTAAAG	7680
AAGAAGCTTA	CAAAGATGCA	GTTGAAGGTG	CAGCAATTGA	TACAGCTGTA	GAAAATGCTG	7740
AAATCGTAGA	ACTTCCAGAA	GAAATGATCC	ATGAAGAAGT	TCACCGTTCA	GTAAATGAAT	7800
TCCTTGGGAA	TTTGCAACGT	CAAGGGATCA	ACCCTGACAT	GTACTTCCAA	ATCACTGGAA	7860
CTACTCAAGA	AGACCTTCAC	AACCAATACC	AAGCAGAAGC	TGAGTCACGT	ACTAAGACTA	7920
ACCTTGTTAT	CGAAGCAGTT	GCCAAAGCTG	AAGGATTTGA	TGCTTCAGAA	GAAGAAATCC	7980
AAAAAGAAGT	TGAGCAATTG	GCAGCAGACT	ACAACATGGA	AGTTGCACAA	GTTCAAAACT	8040
TGCTTTCAGC	TGACATGTTG	AAACATGATA	TCACTATCAA	AAAAGCTGTT	GAATTGATCA	8100
CAAGCACAGC	AACAGTAAAA	TAATCTTAAT	AAACAGAAAA	CCCACCTGAA	TTGGTGGGTT	8160
TTCTGATGCA	CTATTTTCCA	AAAATCTCTT	TGAGGTCTGT	GTCTGTAATC	CCAATCATGG	8220
CTGGGATGCG	GTCCCAGTTT	TCTTCGGTTA	GGATGTAGGA	TTGTTCAGAG	GCACTTGATG	8280
TGACTGTTTC	AGAGACAGCT	TGTTGCTTTT	CTTCAACATT	CTCCAGTAGA	TCACTGAAGC	8340
GTTCAATCAG	ATAGGTTTTT	CGGGCAGTTC	CGATGTGTTG	GGTAGCATAG	TCGAAGGCTT	8400
GTAATTCGCC	TAGTAAGATG	AGTTTGCTTT	TGGCACGTGT	AATGGCTGTG	TAGATGAGAT	8460
TTCGCTCCAG	CATACGTCGG	CTAGCACTAG	TAATCGGTAG	GATGACAACT	GGGAACTCAC	8520
TTCCCTGAGA	CTTATGAATA	CTCATGGCAT	AGGCCAAGCG	AATCTTGTAC	CATTCGTTAC	8580

GGGGGTAAGA GACTTCATTA CCATCAAAAT CAATGACAAT CTCGTCTTGT TTCGATTCGG 8640 8700 TGTATTTACC AGGAATCAGG TCTGTGATAG CTCCTAAATC CCCATTAAAG ACATTGATTT CAGCATCGTT AACCAAATGA ATGACCCTGT CTCTCTTACG ATAGTGACAC TGAGGAGCTT 8760 CAAAACTGAG TTGATCTTTT TGTGGGGGAT TGAGCAGGTC TTGCATGAGC TGATTGATAG 8820 CATCAATCCC TGCCGTCCCT CGGTACATAG GAGCCAGAAC TTGGATATCA CGGGCGGGAA 8880 TACCATTTCT GAGGGCGGCA CCTAAGATTT TTTCAATGGT GGCAGGAATA TGGCCACTAG 8940 9000 CAATTTCAAA GTAGGAACGG TCAGCTTTTT TTTGGGTGAA ATCAGCTGGC AAGATGCCCT GTCGAATCTG ACTAGCTAGG GTGACGATGG TTGATTCTTT GCTTTGTCGA TAAATTTTTT 9060 CCAAGCGAGT CTGAGGAATC AAAGGAATAT GAAGTAGATC CGCTAGAACC TGTCCAGGAC 9120 TGACAGAAGG TAGCTGATCA CTGTCACCTA CGATGAGGAT CTTACTGTTA GAAGAGATAT 9180 TGGAGAAGAG TTGATTGGCC AGCCAAGTAT CTACCATAGA GAATTCATCC ACGATGATAA 9240 AGTCAGCATC TAGGTAATCT TCCAGATGAC TGGTATCATC GTCACCTGTC ATTCCCAAGT 9300 GGCGATGTAT GGTCGCGCTA GGCAAACCTG TCAATTCATT CATGCGACGA GCAGCTCGAC 9360 CAGTTGGAGC AGCAAGAAGA ATGGGCAGAT TGCTTTTCTT CCTGAAGTCA AGTCCTTCTA 9420 AAAGGGCATA AACAGCAATG ATTCCATTGA TAACAGTTGT CTTACCAGTA CCAGGCCCAC 9480 CTGTCAGGAT AAAGACCTTA TTCTGGATAG CATCACAGAT AGCCTGTTTT TGAATGTTAT 9540 CATACTCAAT TCCCAGTTCT TGCTCGACAG TAGTGATATG TTTTTGAATG GTTTCTAAAT 9600 CATGACTCTT CTGTTTTCCT TTTTCAAGGA TACGAACCAA GTGACTGCGG ATGCCTTCCT 9660 CAGCGAAAAA GAGGCTGTTG TCAAAGATCT TGGTATCAAT CTGCTGAACC TTGTCTTCTT 9720 CGATCAGGTA GGAGAGCTCT TGGGCAACTT GGCTGGGGTC TAGTTCCACG GGACGGGAAG 9780 ACTCAAGGAG AGTAAGGGTT TGTTCCAGCA AATCCCGTGC TTCAACATAG GTGTCCCCTG 9840 TTTCCATACA GGCCTGAAAA AGACTGTGAA CTAGACCGGC GCGGAAGCGT TCAGGAGCCT 9900 GACTITCGAT GCCTAGTTCC TCAGCTAGTT GGTCAGCAAT GGTAAAGCCC AAACCCTTGA 9960 TATCCTCAAC CAGCTGGTAG GGATAATTTT CAACCACATC AAGGGTTTCT TCCTTGTAAA 10020 AGTOTIGAAT CTGAAAGGOT AGTTTGTTGG GAATGCCGTA GTTGGCTAGT TTGGCCAAAA 10080 TCATCTCCGT TCCGTAGTTG AGACGGAGAG TGGAGACGAA AGCCTCGCGA TTTTTGGCAG 10140 AGAGTCCTGC GATGCCTTCT AACTTTTCTG GGTGTTGCAA AATTTCGTCA ATGGTATTTT 10200 CGCCATAGGT ATCCACGATT TTCTGAGCTG TCTTGAGACC AATCCCCTTG AAATGGCTAC 10260 TTGAAAAGTA CTTGACCAAG CCCTTACTAG TTGGTTTTGC GCGATCATAA CGACTGATTT 10320 GCAGTTGTTC TCCATACTTG GAGTGCTGGA CAATTTGCCC CCAAAAAGTA TAGTCTTCGC 10380

CCTCAATTAC	ATCAGCCATG	GTTCCTGTGA	CAATGATTTC	AAAATCATCA	AAATCCTCTG	10440
CGTCCGTATC	GTCGATTTCT	AGGAGGAGGA	TGCGATAAAA	ATTGCTGGGA	TTTTCAAAAA	10500
TAATCCGTTC	AATAGTTCCT	GAAAAATAAA	CTTCCATAAA	ATTCCTTTGC	ATGAATAGGT	10560
GAGAGTTGGG	ATTGTTTTTA	TTTTATACTC	TTCGAAAATA	TCTTCAAACC	ACGTCAGCTT	10620
CCATCTGCAA	CCTCAAAACA	GTATTTTGAG	CTGACTTCGT	CAGTTCTATC	CACAACCTCA	10680
AAACACTGTT	TTAAGCAGCC	TACGGCTAGC	TTCCTAGTTT	GTTCTTTGAT	TTTCATTGAG	10740
TATTTGTAAA	TAAACAATCA	CTTCTCACGA	TAGAAGAAGA	GGCTGAGATT	GGTGATTCTC	10800
TGCCTCTTAG	GTTTCTTAAA	ATGTTCCGAT	ACGGGTGATT	GGCCATAAGC	GGAATTTÄGC	10860
TTCCCCTGTG	ATATCTTTTG	CTTTGAAGGT	ACCTACGTGG	CGGCTGTCGC	TCGAAACCAA	10920
GCGGTCATCT	CCGAGGAGAA	GGTATTCTCC	TTCTGGAACA	GTAAAGCTAA	AGTTGGTGTT	10980
GTAGTTGACA	TCAACTGTGA	AGGCTTGAGC	TTTTTGAGCG	ATACTTCTAA	AGAAAGTTCC	11040
TTTATTTCCT	TCAAAGCCCT	TGCCTGAGTA	AGTGCTTTGG	AGTTTGTCAT	CCTTGAAGCG	11100
TTTGATATAG	TCTGCTAGAT	AAGGCTCGTC	CGTTTCTTTG	TCATTGATGT	AGAGTTTATC	11160
ATTTTCGTAA	CGAATGGTGT	CGCCAGGCAT	TCCAATCACG	CGCTTGACGA	TGTCCTTATT	11220
GCCATCTTCC	TCATGGGCCA	CCACGATATC	AAAACGGTCA	ATAGGAAGGT	GTTTTACAAC	11280
GAAGAGAATT	TCGCCATCCG	CTAGGGTCGG	ATCCATGGAA	TGTCCTTCTA	CGCGAACATT	11340
GCTCCAAAAA	AAGATACGAC	TTAAAGCTAG	TAATGACAGA	ATTAGGAGGA	ACAATCCCCA	11400
CTCTTTTAAG	AAATTTTTAA	ATGAATTCAT	AACTTACCTT	TCTAAGCGTT	TTTTCGCTTT	11460
TTCAGTGTTT	TTAAAGTGCA	ATTTGGCGCA	GAAGCTGAGT	CCCTGCATAC	CATAGGCTTG	11520
CAAAATCTGG	CTAGCCACCT	TGTCAGAAGC	CGTTCCAGCT	CCACTTGGGA	GCTGATAACC	11580
CAGTTCTCGT	CCCAAATTTT	CAAGATTTTC	CAGAAAGAGA	TCACGCGCAA	TGACAGAAGA	11640
AACTGCGACA	GACAAGTATT	TGCCCTCAGC	CTTTTCTTCT	AAGCTGATAG	GATTGCTGAA	11700
ACGATTGGCC	TCTTGTGCCA	AGTACTTGTC	ATAATTTTTA	GCACTGGTAA	AGGCATCAAT	11760
CACAATTTTC	TCAGGCTGAA	CACCTTTTTG	AAGGAGGAGA	TAGATAGCCT	GATTATGGAG	11820
GGCAACCTTA	ACCGAAACAG	CGTTGTAGCG	GTCTCCGATG	ACCTCGTTGT	ACTTGCTGGG	11880
TGAGAGAAGG	AGTGCCTGGT	GCTGAATTTT	TTCCTTGAGA	ATAGGAGTAA	TCTGACGGAT	11940
CTTTTGGTCG	GTCAGAGTCT	TAGAATCCCC	CACACCGAGT	TTTCGTAAAA	AGTCGTGCTG	12000
GTCAGGTGTG	ACAAAGGCAG	CCACAACTGC	AAGCCCACCA	AAGTAGGAAC	CATTTCCCAC	12060
CTCATCTGTC	CCAATTAAAG	GAAGATTTTG	TCCGCTGGTT	TGCTCTACAG	CTTGATAGCC	12120

AAAGAAACTG	GCGTATTTTT	CAGCCCCTTC	658 ACCCTGAAGC	AAGATTTTTC	CAGAAGTATA	12180
GATAGAAACC	GTTGCTTGAG	GTAGTTTCAA	AAAGTAGCGG	ATATAGGGAT	TCTTGCTAGG	. 12240
AGCCAGACTG	GTTTGATAGT	GTTCAAGAAA	AGCCTGAATA	TCCTTTTCGC	TTGGTGTGAG	12300
TGTGATACTT	GCCATAGTTT	CTATTGTACC	ACAAAAGCAG	TAAAATTTGT	AAAAACTGAC	12360
AAAATTAGCG	AATTTTGGTA	TAATATCGTG	AGGTGAATTT	TATGGCAAAT	CTAAATCGAT	12420
TCAAATTTAC	ATTCGGGAAA	AAATCGTTAA	CCTTGACAAG	CGAACATGAC	AACCTTTTTA	12480
TGGAGGAAAT	CGCTAAGGTT	GCGACAGAAA	AATACCAAGC	AATTAAAGAA	CAAATGCCTA	12540
GCGCAGATGA	TGAAACAATC	GCTCTTTTGT	TGGCAGTCAA	CTGTTTATCA	ACTCAGCTCA	12600
GCCGTGAGAT	TGAATTTGAC	GATAAGGAGC	AAGAGCTAGA	AGAACTCCGT	CACAAGCTTG	12660
TGACTTGTAA	GCAAGAACAG	AGCAAGATTG	AGGATTCCTT	ATGATTTCAT	TCCTTCTTCT	12720
ATTGGTCTTG	GTTTGGGGAT	TTTATATCGG	CTATCGGAGA	GGCCTGCTCT	TACAGGTTTA	12780
TTACCTGATT	TCAGCCATGG	CATCGGCTTT	TATGGCTGGC	CAGTTTTATA	AGGGGCTTGG	12840
AGAGCAATTC	CATTTATTGC	TCCCTTATGC	AAATTCGCAG	GAAGGTCAGG	GGACTTTCTT	12900
TTTCCCATCG	GATCAACTCT	TTCAGCTGGA	TAAGGTCTTT	TATGCAGGTA	TCGGCTACTT	12960
GCTTGTATTT	GGGATTGTCT	ATAGCATTGG	TCGTTTACTT	GGTCTTCTCT	TACACTTGAT	13020
TCCTAGCAAA	AAACTGGGTG	GTAAGTTGTT	CCAAGTTTCA	GCAGGTATCT	TGTCCATGTT	13080
GGTGACCTTA	TTTGTCTTGC	AAATGGCCTT	GACAATCTTG	GCGACCATCC	CCATGGCAGT	13140
TATACAAAAT	CCTCTTGAAA	AGAGTATCGT	CGCAAAACAC	ATCATCCAGA	GCATACCGGT	13200
AACAACCAGT	TGGCTCAAAC	AAATCTGGGT	GACAAATTTA	ATCGGATAAA	AAGGGCAGGA	13260
GTTTTCCTAG	CCCTTTGTTT	ACAGATTTGA	CTCGAATCTA	TCAGAATGTA	AAAAGCTACC	13320
ACACCTAGAC	ATTCAAAGAC	aaggaaataa	AGATGAATAA	GAAAATATTA	GAAACATTAG	13380
AGTTCGATAA	GGTCAAGGCC	TTGTTTGAGC	CTCATTTGTT	GACCGAGCAG	GGCTTGGAGC	13440
AATTGAGACA	ACTGGCTCCG	ACTGCCAAAG	CAGATAAAAT	CAAACAGGCT	TTTGCTGAGA	13500
TGAAGGAAAT	GCAGGCTCTT	TTCGTCGAGC	AACCGCATTT	TACTATTCTC	TCAACTAAGG	13560
AAATTGCAGG	AGTCTGCAAG	AGGTTGGAGA	TGGGAGCGGA	TCTCAATATC	GAGGAGTTCC	13620
TACTCTTGAA	ACGCGTGCTT	CTTGCCAGCC	GAGAACTTCA	AAATTTTTAC	ACCAATCTGG	13680
AAAATGTCAG	CTTGGAAGAA	TTAGCCCTTT	GGTTTGAGAA	ATTACATGAT	TTTCCGCAAT	13740
TACAAGGAAA	TCTTCAGGCC	TTTAATGATG	CGGGTTTCAT	TGAAAATTTT	GCCAGTGAAG	13800
AATTGGCGCG	AATCCGTCGA	AAAATACATG	ATAGCGAGAG	TCAGGTACGC	GATGTTTTAC	13860
AAGACTTGCT	CAAGCAAAAA	GCGCAGCTGT	TGACGGAAGG	AATTGTTGCT	AGCAGAAATG	13920

GCCGTCAGGT	TTTACCAGTC	AAAAACACCT	ACCGCAATAA	GATTGCAGGT	GTCGTTCATG	13980
ATATTTCTGC	TAGTGGAAAC	ACCGTCTATA	TCGAACCCCG	TGAGGTAGTC	AAACTGAGCG	14040
AAGAAATTGC	TAGTCTGCGA	GCAGATGAGC	GCTATGAAAT	GCTTCGCATT	CTCCAAGAAA	14100
TTTCTGAGCG	TGTCCGCCCT	CATGCGGCTG	AGATTGCTAA	TGACGCTTGG	ATTATCGGTC	14160
ATCTGGACTT	GATTCGTGCC	AAGGTTCGAT	TTATCCAAGA	AAGACAAGCA	GTCGTGCCTC	14220
AGCTGTCAGA	AAATCAAGAG	ATTCAACTGC	TCCATGTCTG	CCATCCTTTG	GTCAAAAATG	14280
CCGTCGCAAA	TGATGTCTAT	TTTGGTCAAG	ATTTAACAGC	TATTGTCATT	ACAGGTCCCA	14340
ATACAGGTGG	GAAGACCATC	ATGCTCAAAA	CTCTGGGCTT	GACACAGGTC	ATGGCCCAGT	14400
CAGGATTGCC	GATTTTAGCA	GACAAGGGAA	GTCGTGTTGG	TATTTTTGAA	GAAATCTTTG	14460
CTGATATTGG	AGATGAGCAG	TCTATTGAGC	AGAGCTTGTC	TACCTTCTCT	AGTCATATGA	14520
CCAATATCGT	GGATATTCTT	GGCAAGGTCA	ACCAACATTC	ACTCTTACTT	TTGGATGAGT	14580
TGGGGGCTGG	TACTGATCCC	CAAGAGGGAG	CAGCCCTTGC	CATGGCTATT	CTGGAGGACC	14640
TTCGCCTGCG	TCAAATCAAG	ACCATGGCGA	CGACCCACTA	TCCAGAACTC	AAGGCCTACG	14700
GTATTGAGAC	AGCCTTTGTG	CAAAATGCCA	GTATGGAGTT	TGATACTGCA	ACTCTTCGCC	14760
CGACCTATCG	CTTTATGCAG	GGTGTTCCTG	GCCGAAGTAA	TGCCTTTGAA	ATTGCCAAAC	14820
GTCTAGGCCT	ATCTGAAGTT	ATCGTAGGAG	ATGCCAGTCA	GCAGATCGAT	CAGGACAATG	14880
ACGTCAATCG	TATCATTGAG	CAATTAGAAG	AGCAGACGCT	GGAAAGCCGC	AAACGTTTGG	14940
ACAATATCCG	TGAGGTGGAG	CAAGAAAATC	TCAAGATGAA	CCGTGCGCTA	AAAAAACTCT	15000
ACAACGAGCT	TAATCGTGAA	AAGGAAACCG	AGCTTAACAA	GGCGCGTGAA	CAGGCTGCTG	15060
AGATTGTGGA	TATGGCCCTA	AGTGAAAGTG	ACCAGATTCT	CAAAAATCTC	CACAGTAAAT	15120
CCCAACTCAA	GCCCCACGAA	ATCATTGAAG	CCAAGGCCAA	GTTGAAAAAA	TTGGCTCCTG	15180
AAAAAGTGGA	CTTGTCTAAA	AATAAGGTCC	TTCAAAAGGC	CAAGAAAAA	CGAGCTCCAA	15240
AGGTGGGAGA	TGATATCGTG	GTTCTCAGTT	ATGGTCAGCG	TGGTACCTTG	ACCAGTCAAC	15300
TCAAGGACGG	TCGCTGGGAA	GCCCAAGTTG	GCTTGATTAA	GATGACCTTG	GAAGAGAAAG	15360
AGTTTGATCT	TGTTCAAGCC	CAGCAAGAAA	AACCAGTCAA	GAAGAAACAG	GTCAATGTTG	15420
TGAAACGAAC	TTCTGGGCGA	GGACCTCAAG	CTAGACTGGA	TCTTCGAGGC	AAGCGCTATG	15480
AAGAAGCCAT	GAATGAGCTA	GATACCTTCA	TCGACCAAGC	CTTGCTTAAC	AATATGGCTC	15540
AAGTTGATAT	CATCCATGGT	ATCGGAACAG	GAGTCATCCG	TGAAGGAGTT	ACCAAATACT	15600
TGCAAAGAAA	CAAACATGTC	AAGAGTTTCG	GCTATGCCCC	ACAAAATGCT	GGAGGCAGTG	15660

				660			
•	GTGCGACTAT	TGTCACTTTT	AAAGGATAGC	AGTATTCTGG	ACTTTATAAA	GTAAAAACTG	15720
	TTGAACTAAT	TTTTACTAAT	AAACACATTG	ACAAAAGCCA	ACATTTTTTG	TAAAATTAGA	15780
	ATCAATTAAA	TACCAACACC	GAATGAAGTT	TAATAGAAGT	GGGGAATCGT	TTGATTTTCC	15840
	atgactgtaa	ATGGACGGAA	CTCTGGÄGAG	ACCGTAAAGG	CACCGAAGGG	CAAGGCAGGC	15900
	AACTGCTCAA	ACTCTCAGGT	AAAAGGACAG	AGCTAGGATA	GACCGCTTTT	TAGCATTTAT	15960
	CTAAGCATTC	CAGAGTACAT	GTATCTTGCA	TGTGCTCTTT	CTTTTGGGGT	TGAAACGATA	16020
	GGAGAAGGAA	ATGTTAGAAT	TGCTTAAATC	AATCGATGCT	TTTGCTTGGG	GACCGCCCCT	16080
	CTTGATTTTA	TTGGTCGGAA	CAGGGATTTA	CCTAACTATT	CGGCTAGGAC	TCTTGCAGGT	16140
	TTTGCGTCTA	CCCAAGGCCT	TTCAGCTTAT	TTTTATCCAG	GATAAGGGAC	ATGGTGATGT	16200
	ATCCAGTTTT	GCAGCTCTGT	GTACAGCCTT	GGCATCAACT	GTTGGAACAG	GAAATATCAT	16260
	AGGAGTTGCG	ACGGCTATCA	AGGTTGGTGG	ACCAGGAGCT	CTATTTTGGA	TGTGGATGGC	16320
	GGCTTTCTTT	GGAATGGCTA	CCAAGTATGC	GGAAGGACTC	TTGGCCATCA	AATACCGCAC	16380
	CAAGGACGAC	CATGGTGCAG	TAGCGGGAGG	TCCCATGCAT	TATATCCTTC	TAGGGATGGG	16440
	AGAAAAGTGG	CGACCACTTG	CTGTTTTGTT	TGCAGTAGCA	GGAGTATTGG	TTGCTCTCTT	16500
	GGGAATCGGA	ACCTTCACCC	AAGTCAACTC	GATTGCAGAA	TCTATCCAAA	ATACAACGAC	16560
	GATTTCGCCA	GCCATCACAG	CTCTCGTCTT	GTCTGTCTTT	GTAGCGATTG	CAGTCTTTGG	16620
	TGGACTCAAG	TCTATTTCTA	AGGTTTCAAC	TACTGTTGTT	CCTTTTATGG	CCATCATTTA	16680
	TATCTTAGGA	ACTCTTACAG	TTATTTTCTT	TAATATCGGA	AAAATCCCTG	GCACAATCGC	16740
	TTTAGTCTTT	ACCTCAGCTT	TTAGTCCCCT	TGCTGCGGTA	GGTGGATTTG	CTGGTGCTAG	16800
	CGTTCGGATG	GCTATTCAAA	ATGGTGTGGC	GCGTGGTGTG	TTCTCAAACG	AATCTGGTCT	16860
	GGGTTCTGCT	CCTATTGCAG	CTGCAGCTGC	CAAGACAAAT	GAACCAGTAG	AGCAAGGTTT	16920
	GATTTCCATG	ACAGGAACCT	TTATTGATAC	CCTCATCATT	TGTACTCTAA	CTGGTTTGAC	16980
	CATCTTGGTA	ACTGG					16995

(2) INFORMATION FOR SEQ ID NO: 83:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 28473 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: CCGGGGCTTT TGTAGTATAA TAGAGATACG TTTTGAAAGT AGGAGGTATC TATGGACTTA

ACTAAGCGCT	TTAATAAACA	GTTAGATAAA	ATTCAAGTTT	CGTTGATTCG	TCAGTTTGAC	120
CAGGCTATTT	CGGAGATTCC	TGGGGTCTTG	CGTTTGACCT	TGGGGGAACC	TGATTTTACA	180
ACGCCAGACC	ATGTCAAGGA	GGCGGGCAAG	CGAGCGATTG	ATCAGAACCA	ATCCTACTAT	240
ACAGGGATGA	GTGGTCTGCT	GACTCTACGT	CAGGCAGCCA	GTGACTTTGT	TAAGGAAAAG	300
TACCAACTGG	ACTATGCTCC	TGAAAATGAA	ATCTTGGTTA	CAATTGGGGC	GACAGAGGCT	360
TTATCTGCGA	CTTTGACGGC	TATTTTGGAA	GAGGGAGACA	AGGTACTTTT	GCCAGCTCCT	420
GCTTATCCAG	GCTATGAACC	GATTGTTAAC	TTAGTTGGGG	CAGAAATTGT	TGAGATTGAT	480
ACGACTGAAA	ATGGTTTTGT	CTTGACTCCT	GAGATGTTGG	AGAAGGCCAT	TTTGGAGCAG	540
GGTGATAAGC	TCAAGGCGGT	TATTCTCAAC	TATCCAGCCA	ATCCGACAGG	AATTACCTAC	600
AGTCGAGAGC	AGTTAGAGGC	CTTGGCAGCT	GTTTTACGCA	AGTACGAAAT	TTTTGTTGTC	660
TGTGATGAGG	TTTACTCAGA	ATTGACCTAC	ACAGGCGAAG	CCATGTGTCT	CTAGGAACGA	720
TGTTGAGAGA	CCAGGCTATT	ATTATCAATG	GTTTGTCTAA	ATCGCATGCC	ATGACAGGTT	780
GGCGTTTGGG	GCTGATTTTC	GCTCCTGCGA	CCTTCACAGC	CCAGTTAATC	AAGAGTCACC	840
AGTACTTGGT	CACTGCCGCA	AATACCATGG	CGCAACATGC	TGCGGTAGAA	GCCTTGACGG	900
CTGGTAAAAA	CGATGCGGAC	CCATGAAGAA	GGAATATATC	CAACGTCGGG	ACTATATCAT	960
CGAAAAAATG	ACTGCTCTTG	GTTTTGAGAT	TATCAAACCA	GACGGTGCCT	TCTATATTT	1020
TGCTAAAATT	CCAGCGGGCT	ACAATCAAGA	CTCCTTTGCT	TTTCTGAAGG	ATTTTGCTCA	1080
GAAGAAGGCC	GTTGCCTTTA	TCCCTGGTGC	AGCCTTTGGA	CGTTACGGGG	AAGGCTACGT	1140
CCGCCTATCT	TATGCAGCCA	GCATGGAGAC	TATCAAAGAA	GCCATGAAAC	GACTTGAGGA	1200
GTACATGAGA	GAAGCATGAT	TCAGTCTATC	ACGAGTCAAG	GCTTGGTGCT	TTACAATCGC	1260
AATTTTCGTG	AGGATGACAA	GCTCGTCAAA	ATTTTTACAG	AGCAGGTTGG	CAAACGCATG	1320
TTTTTTGTCA	AACACGCTGG	TCAGTCTAAG	CTGGCGCCTG	TTATTCAGCC	CTTGGTGCTG	1380
GCACGATTTC	TCTTGCGAAT	CAATGATGAC	GGACTCAGTT	ACATCGAAGA	CTATCATGAG	1440
GTCATGACTT	TTCCCAAGAT	TAATAGTGAC	CTCTTTGTCA	TGGCCTATGC	GACCTATGTG	1500
GCAGCTCTTG	CAGATGCTAG	TTTGCAGGAC	AATCAGCAGG	ATGCTCCCTT	GTTTGCTTTT	1560
TTGCAAAAGA	CTTTGGAGTT	GATGGAAGCA	GGCTTGGATT	ATCAGGTTTT	GACCAATATT	1620
TTTGAAATTC	AAATTTTGAC	TCGATTTGGA	ATCAGCCTCA	ATTTTAATGA	GTGTGTCTTC	1680
TGCCATCGGG	TTGGTCAGGC	TTTTGACTTT	TCTTTCAAAT	ATGGAGCCTG	CCTCTGTCCA	1740
.GAGCATTATC	ATGAGGATAA	GAGACGTTGT	CATCTCAATC	CCAATATCCC	CTATCTGCTC	1800

662 AATCAATTTC AAGCTATTGA TTTTGAGACT TTGGAGACCA TTTCGCTCAA GCCTGGAATC 1860 AAGCAAGAGC TACGCCAATT TATGGATCAA TTATATGAAG AGTACGTTGG GATTCACCTA 1920 AAATCAAAGA AATTTATTGA TTCCCTAGCA GACTGGGGAC AATTACTAAA AGAGGAAAAG 1980 AAATGAAAAA AATCGCAGTA GATGCCATGG GGGGCGATTA CGCACCTCAG GCCATTGTTG 2040 AGGGTGTCAA TCAAGCCCTA TCTGACTTTT CAGATATCGA GGTTCAACTT TACGGAGATG 2100 AAGCTAAAAT CAAGCAATAT CTGACAGCGA CAGAGCGCGT CAGCATTATC CATACGGATG 2160 AGAAGATTGA TTCGGATGAT GAACCTACGA GAGCTATTCG GAATAAGAAA AATGCCAGTA 2220 TGGTATTGGC AGCCAAGGCT GTCAAAGATG GTGAAGCAGA CGCTGTCCTT TCGGCTGGGA 2280 ATACAGGTGC CTTGTTGGCA GCAGGATTCT TCATCGTGGG TCGTATCAAG AATATCGACC 2340 GTCCTGGACT CATGTCTACC TTGCCTACCG TTGATGGAAA AGGTTTTGAC ATGCTAGACC 2400 TTGGTGCCAA TGCAGAAAAT ACAGCCCAGC ACCTCCATCA ATATGCGGTT CTAGGTTCCT 2460 TCTATGCTAA AAATGTCCGT GGCATTGCGC AACCACGCGT TGGTTTGCTC AACAACGGAA 2520 CAGAGAGTAG CAAGGGCGAC CCGCTTCGTA AGGAAACTTA TGAATTACTG GCGGCTGATG 2580 AAAGTTTGAA CTTTATCGGA AACGTGGAAG CGCGTGATTT GATGAATGGC GTTGCAGATG 2640 TTGTTGTGGC AGATGGTTTC ACGGGAAACG CTGTGCTCAA ATCCATCGAA GGGACAGCTA 2700 TGGGAATCAT GGGCTTGCTC AAGACAGCTA TTACAGGTGG TGGTCTTCGA GCGAAACTAG 2760 GTGCCCTCCT TCTCAAGGAC AGCCTCAGTG GTTTGAAAAA ACAGCTCAAT TATTCAGATG 2820 TTGGTGGAGC GGTCTTGTTT GGTGTTAAGG CACCTGTTGT CAAGACTCAT GGCTCAAGCG 2880 ATGCCAAGGC TGTTTATAGT ACGATTCGTC AGATCCGTAC CATGCTAGAA ACAGACGTGG TTGCCCAGAC TGCGCGTGAA TTTTCAGGAG AATAAAAGAG ATGACAGAAA AAGAAATTTT 3000 TGACCGTATT GTGACCATTA TCCAAGAGCG ACAGGGAGAG GACTTTGTCG TGACAGAATC 3060 CTTGAGTCTG AAAGACGATT TGGATGCGGA TTCTGTTGAC TTGATGGAGT TTATCTTGAC 3120 TCTGGAAGAT GAATTTAGTA TCGAAATCAG CGATGAAGAA ATTGACCAAC TCCAAAACG? 3180 AGGAGATGTG GTTAAAATCA TTCAAGGAAA ATAGCAATCG GAGTTCCAAG TCAACGGAAG 3240 TAGATGGTTT TTAGAAATGA GAAATATCGG ACAAGCTGGT AAAATCTTGG CTGACAGTGG 3300 TTATCAAGGG CTCATGAAGA TATATCCTCA AGCACAAACT CCACGTAAAT CCAGCAAACT 3360 CAAGCCGCTA ACAGTTGAAG ATAAAGCCTG TAATCATGCG CTATCTAAGG AGATAAGCAA 3420 GGTTGAGAAT ATCTTTGCCA AAGTAAAAAC GTTTAAAATG TTTTCAACAA CCTATCGAAA 3480 TCATCGTAAA CGCTTCGGAT TACGAATGAA TTTGATTGCT GGTATTATCA ATCATGAACT 3540 AGGATTCTAG TTTTGCAGGA AGTCTAATAG TAAAAAAGTG ATTAGAAAAC ATCTTTTTTA 3600

AAAATAGAGA	TGATTTTGAA	ACAAAAAAGC	TAATTCAAGA	CGTTTCGATG	CCAATTCAAG	366
atttggatga	AAAAAATTAA	TAGATACTGT	TATACTAAAC	TTGTCAAGTT	TGTAACAAGA	372
CAAATATTAA	алаталала	GAGGTATTCG	TTATGAATAC	AAAAACGATG	TCACAATTTG	378
aaattatgga	TACTGAGATG	CTTGCTTGCG	TTGAAGGTGG	CGGATGCAAT	TGGGGAGATT	384
TTGCCAAAGC	AGGTGTTGGA	GGAGGAGCAG	CACGAGGTCT	TCAGCTAGGA	ATTAAAACAA	3900
GAACATGGCA	AGGTGCAGCA	ACTGGTGCTG	TGGGAGGAGC	TATACTTGGA	GGTGTGGCCT	3960
ATGCAGCGAC	ATGTTGGTGG	TAATTATGGA	TTTTAAAAGT	TTTATTATTG	GTTTAGTAGT	4020
TGGTATATTT	GGTCCTTATA	TGGATGATTT	AATTAGAAAA	AAATTTTTAA	AGTCTTCGGA	4080
GAAGAAAACA	GAAAAATCTG	ТТААААААТА	ATCAAAACTA	TAAATGATGA	ATCTGAATCA	4140
AAATTATTT	GCGCATGTAA	AGAGGAGTCT	TATAGTAACG	AGTCAAAAAA	GGAGTAACTA	4200
TGAATCGTAA	TTTAGAACGG	TGTTATCTAT	TCTGACTAGG	AATAGATCAT	ACCAGAGGTA	4260
GCTTAGAAAT	AGCAGAGACA	TTAGAAATTG	AAGTAATAAA	TAGGATGTCG	TAAGTGTTAC	4320
PATCAATGAT	TTATTTGTTT	CAAGCTTGCC	TAGGGTGACA	GTAAAAAATC	AATTTCCTTT	4380
CAATAGCATA	TTTTTAGTGG	GCAGGACTCT	TGTTCTGCCT	ATTTTTTAT	CCAAAAAGTG	4440
CAGTTGGGAG	GGAGATAGGC	TCATTTGGGA	AGGAAGTCCA	GTTTTTGTTT	AGTGATTGGG	4500
GTAAGATAGT	TGTTATCAGA	TGAGTTAATA	CTCTTCGAAA	ATCAAATTCA	AACCACGTCA	4560
ACGTCGCCTT	GCCGTATATA	TGTGACTGAC	TTCGTCAGTC	CTATCTACAA	CCTCAAAACA	4620
GTGTTTTGAG	CAGCCTACGG	CTAGTTTCCT	AGTTTGCTCT	TTGATTTTCA	TTGAGTATTA	4680
GGGAAAAGGA	GATGAATATG	AAATTTGGGA	AACGTCATTA	TCGTCCGCAG	GTGGATCAGA	4740
rggactgcgg	TGTAGCTTCA	TTAGCCATGG	TTTTTGGCTA	CTATGGTAGT	TATTATTTTT	4800
rggctcactt	GCGAGAATTG	GCTAAGACGA	CCATGGATGG	GACGACGGCT	TTGGGCTTGG	4860
CAAGGTGGC	AGAGGAGATT	GGTTTTGAGA	CGCGAGCCAT	TAAGGCAGAT	ATGACGCTTT	4920
rtgacttgcc	GGATTTAACT	TTTCCTTTTG	TTGCCCATGT	GCTTAAGGAA	GGGAAATTGC	4980
CCACTACTA	TGTGGTGACT	GGGCAGGATA	AGGATAGCAT	TCATATTGCC	GATCCAGATC	5040
CCGGGGTGAA	GTTGACTAAA	CTGCCACGTG	AGCGTTTTGA	GGAAGAATGG	ACAGGAGTGA	5100
CTCTTTTTAT	GGCACCTAGT	CCAGACTATA	AGCCTCATAA	GGAACAAAA	AATGGTCTGC	5160
CTCTTTTAT	CCCTATATTA	GTGAAGCAGC	GTGGCTTGAT	TGCCAATATC	GTTTTGGCAA	5220
CACTCTTGGT	AACCGTGATT	AACATTGTGG	GTTCTTATTA	TCTGCAGTCT	ATCATTGATA	5280
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 C 3 T C 3 C 3 T C	CCTTCCACAC	መስ <i>ርርር</i> አመመ ላጥ	ጥ <b>ጥርጥ እ ጥጥ</b> ር ር ር	CT & CTC & TCC	6240

			664			
TCTACATCTT	CCAGCAAATC	TTGTCTTACG		TCTCTTGCTT	GTTTTGGGGC	5400
AACGCTTGTC	GATTGACGTG	ATTTTGTCCT	ATATCAAGCA	TGTTTTTCAC	CTCCCTATGT	5460
CCTTCTTTGC	GACACGCAGG	ACAGGGGAGA	TCGTGTCTCG	TTTTACAGAT	GCTAACAGTA	5520
TCATCGATGC	GCTGGCTTCG	ACCATCCTTT	CGATTTTCCT	AGATGTGTCA	ACGGTTGTCA	5580
TTATTTCCCT	TGTTCTATTT	TCACAAAATA	CCAATCTCTT	TTTCATGACT	TTATTGGCGC	5640
ттсстатста	CACAGTGATT	ATCTTTGCCT	TTATGAAGCC	GTTTGAAAAG	ATGAATCGGG	5700
ATACCATGGA	AGCCAATGCG	GITCTGTCTT	CTTCTATCAT	TGAGGACATC	AACGGTATTG	5760
AGACTATCAA	GTCCTTGACC	AGTGAAAGTC	AGCGTTACCA	AAAAATTGAC	AAGGAATTTG	5820
TGGATTATCT	GAAGAAATCC	TTTACCTATA	GTCGAGCAGA	GAGTCAGCAA	AAGGCTCTGA	5880
AAAAGGTTGC	CCATCTCTTG	CTTAATGTCG	GCATTCTCTG	GATGGGGGCT	GTTCTGGTCA	5940
TGGATGGCAA	GATGAGTTTG	GGGCAGTTGA	TTACCTATAA	TACCTTGCTG	GTTTACTTTA	6000
CTAATCCTTT	GGAAAATATC	ATCAATCTGC	AAACCAAGCT	TCAGACAGCG	CAGGTTGCCA	6060
ATAACCGTCT	AAATGAAGTG	TATCTAGTAG	CTTCTGAGTT	TGAGGAGAAG	AAAACAGTTG	6120
AGGATTTGAG	CTTGATGAAG	GGAGATATGA	CCTTCAAGCA	GGTTCATTAC	AAGTATGGCT	6180
ATGGTCGAGA	TGTCTTATCG	GATATCAATT	TAACCGTTCC	CCAAGGGTCT	AAGGTGGCTT	6240
TTGTGGGGAT	TTCAGGGTCA	GGTAAGACGA	CTTTGGCCAA	GATGATGGTT	AATTTTTACG	6300
ACCCAAGTCA	AGGGGAGATT	AGTCTGGGTA	GTGTCAATCT	CAATCAGATT	GATAAAAAAG	6360
CCCTGCGCCA	GTACATCAAC	TATCTGTCTC	AACAGCCCTA	TGTCTTTAAC	GGAACGATTT	6420
TGGAGAATCT	TCTTTTGGGA	GCCAAGGAGG	GGACGACACA	GGAAGATATC	TTACGGGCGG	6480
TCGAATTGGC	AGAGATTCGA	GAGGATATCG	AGCGCATGCC	ACTGAATTAC	CAGACAGAAT	6540
TGACTTCGGA	TGGGGCAGGG	ATTTCAGGTG	GTCAACGTCA	GAGAATCGCT	TTGGCGCGTG	6600
CTCTCTTGAC	AGATGCGCCG	GTCTTGATTT	TGGATGAGGC	GACTAGCAGT	TTGGATATTT	6660
TGACAGAGAA	GCGGATTGTC	GATAATCTCA	TTGCTTTGGA	CAAGACCTTG	ATTTTCATTG	6720
CTCACCGCTT	GACTATTGCT	GAGCGGACAG	AGAAGGTAGT	TGTCTTGGAT	CAGGGCAAGA	6780
TTGTCGAAGA	AGGAAAGCAT	GCTGATTTGC	TTGCACAGGG	TGGCTTTTAC	GCCCATTTGG	6840
TCAATAGCTA	GAAAGAGGAG	AGGATGAAAC	CAGAATTTTT	AGAAAGTGCG	GAGTTTTATA	6900
ATCGTCGTTA	CCATAATTTT	TCCAGTAGTG	TGATTGTACC	CATGGCCCTT	CTGCTTGTGT	6960
TTTTACTTGG	CTTTGCAACT	GTTGCAGAGA	AGGAGATGAG	TTTGTCCACT	AGAGCTACTG	7020
TCGAACCTAG	TCGTATCCTT	GCAAATATCC	AGTCAACTAG	CAACAATCGT	ATTCTTGTCA	7080
ATCATTTGGA	AGAAAATAAG	CTGGTTAAGA	AGGGGGATCT	TTTGGTTCAA	TACCAAGAAG	7140

GGGCAGAGGG	TGTCCAAGCG	GAGTCCTATG	CCAGTCAGTT	GGACATGCTA	AAGGATCAAA	7200
AAAAGCAATT	GGAGTATCTG	CAAAAGAGCC	TGCAAGAAGG	GGAGAACCAC	TTTCCAGAGG	7260
AGGATAAGTT	TGGCTACCAA	GCCACCTTTC	GCGACTACAT	CAGTCAAGCA	GGCAGTCTTA	7320
GGGCTAGTAC	ATCGCAACAA	AATGAGACCA	TCGCGTCCCA	GAATGCAGCA	GCTAGCCAAA	7380
CCCAAGCCGA	AATCGGCAAC	CTCATCAGTC	AAACAGAGGC	TAAAATTCGC	GATTACCAGA	7440
CAGCTAAGTC	AGCTATTGAA	ACAGGTGCTT	CCTTGGCCGG	TCAGAATCTA	GCCTACTCTC	7500
TTTACCAGTC	CTACAAGTCT	CAGGGCGAGG	AAAATCCCCA	AACTAAGGTT	CAGGCAGTTG	7560
CACAGGTTGA	AGCACAGATT	TCTCAGTTAG	AATCTAGTCT	TGCTACTTAC	CGTGTCCAGT	7620
ATGCAGGTTC	AGGTACCCAG	CAAGCCTATG	CGTCAGGGTT	AAGCAGTCAA	TTGGAATCCC	7680
TTAAATCCCA	ACACTTGGCA	AAGGTTGGTC	AGGAATTGAC	CCTTCTAGCC	CAGAAAATTT	7740
TGGAGGCAGA	GTCAGGTAAG	AAGGTACAGG	GAAATCTTTT	AGACAAGGGG	AAAGTTACGG	7800
CGAGTGAGGA	TGGGGTGCTT	CATCTTAATC	CTGAGACCAG	TGATTCTAGC	ATGGTTGCAG	7860
AAGGTGCCCT	ACTAGCCCAA	CTTTATCCAT	CTTTGGAAAG	AGAAGGGAAA	GCCAAACTCA	7920
CAGCTTATCT	AAGTTCAAAA	TATGTAGCAA	GAATCAAGGT	CGGTGATTCT	GTTCGCTATA	7980
CTACGACTCA	TGATGCCGGG	AATCAACTTT	TCCTAGATTC	TACTATTACA	AGTATTGATG	8040
CGACAGCTAC	TAAGACTGAG	AAAGGGAATT	TCTTTAAAAT	CGAGGCGGAG	ACTAATCTAA	8100
CTTCGGAGCA	GGCTGAAAAA	CTTAGGTACG	GGGTGGAAGG	CCGCTTGCAG	ATGATTACGG	8160
GCAAGAAAAG	TTACCTACGT	TATTATTTGG	ATCAATTTTT	GAACAAAGAG	TAATGTTCGT	8220
GTTTTTAGAG	TTAAATAATT	TTTAAACTGT	GAGAAAGATT	CTTCTTGCAG	TTTTTTTTTT	8280
ACAATTTTTG	AAAAACATCT	ACTATTTATT	CGGTTAAATT	CTTGTGTTTT	TTGGTTTTTT	8340
GTGGTAAAAT	GTGCTCAAGT	AATACGAAAG	GCGAACTTTA	AAATGTCAAA	ACAATTGATC	8400
TATTCGGGAA	AAGCTAAAGA	TATCTATACA	ACTGAGGATG	AAAATCTTAT	TATTTCAACT	8460
TACAAGGACC	AGGCGACTGC	TTTCAACGGT	GTCAAGAAGG	AGCAGATTGC	AGGTAAGGGA	8520
GTCTTGAATA	ATCAGATCTC	ATCTTTTATT	TTTGAGAAAT	TAAATGTGGC	TGGTGTGGCG	8580
ACTCACTTTG	TGGAGAAACT	TTCAGACACG	GAACAACTCA	ATAAAAAGGT	TAAGATTATT	8640
CCTTTGGAAG	TCGTGCTCCG	CAACTATACT	GCTGGTTCCT	TTTCAAAACG	TTTTGGTGTG	8700
GATGAGGGAA	TCGCCTTGGA	GACTCCGATT	GTCGAATTTT	ACTACAAAAA	TGATGATTTG	8760
GATGATCCAT	TTATCAATGA	TGAGCATGTG	AAATTCCTAC	AGATTGCGGG	TGACCAGCAG	8820
ATTGCCTACT	TGAAGGAAGA	AACGCGTCGT	ATCAATGAAC	TATTGAAAGT	CTGGTTTGCT	8880

GAGATTGGGC	TTAAATTGAT	TGACTTTAAG	666 CTAGAGTTCG	GTTTTGACAA	GGATGGCAAG	8940
	CAGACGAATT					9000
	AGGATGTTTT					9060
	AGTTGCAGGA					9120
AACTAAAAGG	ACTCAGGCTG	AAAAGGTCCC	CCAGACCTTT	TCACTCTGTA	GAGAACTAGG	9180
TGAACTAACA	GATGTTTACG	AAATTGTCTG	GGAAAAGTTG	CAGGGTTTAA	AATAACAACC	9240
TCAAGGCTGT	TTGGGAATAT	TGCAAGAGCT	GAAATAAAGG	AATAAGAATT	GATGGATAAA	9300
CGTATTTTG	TTGAAAAAAA	GGCTGATTTT	CAGGTCAAGT	CAGAGAGTTT	GGTTAGAGAG	9360
CTCCAGCACA	ACTTGGGACT	GTCAAGCTTG	AAAAGTATTC	GTATTGTGCA	AGTATATGAT	9420
GTATTTGACT	TGGCTGAGGA	CTTGTTTGCA	CCTGCAGAGA	AGCACATTTT	CTCTGAGCAG	9480
GTAACCGACC	ATGTTTTAGA	TGAAGTATCT	GTGCAGGCGG	ATCTTGCTAA	CTATGCTTTC	9540
TTTGCCATTG	AAAGTCTGCC	AGGGCAGTTT	GACCAGCGTG	CAGCTTCGTC	ACAGGAAGCC	9600
TTGCTTTTGT	TGGGAAGTTC	GAGTGACGTG	ACAGTCAACA	CAGCCCAACT	TTACTTGGTG	9660
AATAAAGATA	TTGATGCGAC	TGAGTTGGAA	GCTGTCAAAA	ACTACCTGCT	CAATCCAGTT	9720
GATTCTCGTT	TCAAGGATAT	CACGACAGGG	ATTGCCAAGC	AGGAGTTTTC	AGAGTCAGAC	9780
AAGACCATTC	CCAAATTGAC	TTTCTTTGAA	AGCTATGCAG	CAGAAGACTT	TGCTCGCTAC	9840
AAGGCCGAAC	AAGGGATGGC	CATGGAAGTG	GATGATTTGC	TCTTTATCCA	AGACTACTTT	9900
AAGTCAATCG	GGCGCGTGCC	AACTGAGACT	GAACTCAAGG	TTTTGGACAC	TTACTGGTCT	9960
	GTCATACGAC					10020
AAATTTCAAA	AGCAATTGCA	GTCAACCTAT	GACAAGTATA	TTGCCATGCC	CGAGGAATTA	10080
GGTCGGTCTC	AAAAACCACA	AACCTTGATO	GATATGGCGA	CTATTTTCGC	TCGTTATGAG	10140
CGTGCTAATC	GACGATTGGA	TGATATGGAJ	GTCTCTGACO	: AAATCAATGO	CTGCTCAGTT	10200
					TAAAAACGAA	10260
					TATTGGTGGA	10320
GCTATTCGT	ATCCGTTGTC	AGGCCGTTC	TATGTTTAC	AAGCCATGC	TATTTCAGGT	10380
					CACAACAAGTC	10440
					G GCTTGCAACA	10500
			•		A ACTTGGTGCC	10560
					C AGGTGATGTG	10620
ATCATCCTT	C TCGGAGGCA	A AACAGGTCG	T GATGGTGTC	G GTGGTGCGA	C GGGCTCTTCT	10680

AAGGTTCAAA	CAGTTGAGTC	TGTAGAGACT	GCTGGTGCTG	AGGTTCAAAA	AGGAAATGCC	10740
ATCGAAGAAC	GCAAGATTCA	GCGCCTCTTC	CGTAATGGCA	ATGTCACTCG	TCTGATCAAG	10800
AAGTCCAATG	ACTTTGGGGC	AGGCGGTGTC	TGTGTGGCTA	TCGGTGAATT	GGCAGACGGT	10860
CTTGAAATCG	ACCTCAACAA	GGTGCCTCTT	AAATACCAGG	GCTTGAATGG	TACAGAAATT	10920
GCCATCTCTG	AATCACAAGA	ACGGATGGCG	GTCGTGGTTC	GTCCTGAAGA	TGTGGATGCC	10980
TTCGTTGCCG	AATGTAACAA	AGAAAATATT	GATGCTGTTG	TGGTGGCGAC	AGTAACTGAA	11040
AAACCAAATC	TTGTCATGCA	CTGGAATGGT	GAGACAATCG	TTGACTTGGA	GCGTCGTTTC	11100
CTTGACACCA	ATGGTGTGCG	CGTGGTTGTC	GATGCCAAAG	TTGTGGACAA	GGATGTCAAA	11160
CTCCCAGAAG	AGCGTCAAAC	ATCTGCTGAA	ACACTGGAAT	CAGATACCCT	TACGGTTCTA	11220
TCTGACCTCA	ACCATGCAAG	TCAAAAAGGA	TTACAGACTA	TCTTTGACTG	CTCTGTTGGA	11280
CGCTCAACGG	TTAATCACCC	ACTTGGTGGT	CGTTACCAAC	TCACACCAAC	TGAGGCATCT	11340
GTGCAGAAAT	TGCCAGTTCA	ACACGGTGTG	ACTCATACTG	CGTCGGTCAT	TGCTCAAGGT	11400
TTCAACCCAT	ATGTAGCTGA	ATGGTCTCCA	TACCACGGTG	CTGCTTATGC	GGTTATCGAA	11460
GCAACTGCTC	CTTTGGTGGC	TGCTGGTGCC	AACTGGTTCA	AGGCTCGTTT	CTCTTACCAA	11520
GAGTATTTCG	AGCGTATGGA	TAAACAAGCA	GAGCGTTTCG	GTCAGCCAGT	AGCTGCTCTT	11580
CTAGGTTCTA	TTGAAGCACA	AATTCAGCTT	GGCTTGCCAT	CTATCGGTGG	TAAGGACTCC	11640
ATGTCTGGTA	CCTTTGAAGA	ATTGACCGTT	CCGCCAACCT	TGGCTGCCTT	TGGGGTGACG	11700
ACGGCAGATA	GCCGTAAGGT	GCTCTCTCCA	GAATTTAAAG	CTGTTGGGGA	AAATATCTAC	11760
TACATCCCAG	GTCAAGCCCT	CTCTGCAGAG	ATTGATTTTG	ACTTGATTAA	GAAAAATTTT	11820
GCTCAGTTTG	AAGCCATCCA	AGCTGACCAT	AAAGTGACAT	CTGCATCAGC	TGTCAAATAC	11880
GGTGGTGTAG	TTGAAAGTTT	GGCTCTTGCT	ACCTTTGGAA	ACTATATTGG	TGCAGAGGTG	11940
ACCTTGCCTG	AACTTGAAAC	AGCTTTGACA	GCTCAATTAG	GCGGCTTTGT	CTTCACATCT	12000
CCTGAAGAAA	TTGCTGGAGT	AGAGAAGGTT	GGACAAACGA	AAGCAGACTT	TACACTGACT	12060
GTCAACGGTG	TGAAGCTAGA	TGGACACAAG	CTTGACAGTG	CATTTCAAGG	GACATTGGAA	12120
GAAGTTTACC	CAACAGAATT	TACCCAAGCG	AAAGAACTAG	AAGAAGTACC	AGCTGTGGCA	12180
TCAGATGTTG	TGATTAAAGC	CAAAGAAAAG	GTTGAAAAAC	CTGTGGTTTA	CATCCCAGTC	12240
TTTCCAGGAA	CCAACTCAGA	ATATGATTCA	GCTAÄGGCCT	TCGAAAAAGA	AGGTGCAGAG	12300
GTCAATTTGG	TGCCATTCGT	GACCTTGAAT	GAAGAAGCTA	TTGTCAAGTC	AGTTGAAACT	12360
ATGGTTGACA	ATATCGACAA	GACTAATATT	CTCTTCTTTG	CTGGTGGATT	CTCGGCTGCG	12420

GATGAACCAG	ATGGTTCAGC	TAAGTTTATC	668 GTCAATATCC	TGCTTAATGA	AAAAGTGCGT	12480
GTGGCTATTG	ATAGCTTTAT	CGCCCGTGGT	GGTTTGATTA	TCGGTATTTG	TAATGGATTC	12540
CAAGCCTTAG	TCAAATCGGG	TCTCCTACCC	TACGGAAACT	TTGAAGCTGC	TAACAGTACT	12600
AGCCCAACCC	TCTTCTACAA	TGATGCCAAC	CAACACGTGG	CCAAGATGGT	GGAAACTCGC	12660
ATTGCCAATA	CCAACTCACC	ATGGTTGGTT	GGTGTGCAAG	TGGGCGATAT	CCACGCTATT	12720
CCTGTTTCGC	ACGGTGAAGG	GAAGTTTGTC	GTGACGGCTG	AGGAATTTGC	AGAGCTCCGT	12780
GACAATGGAC	AAATTTTCAG	CCAATACGTT	GACTTTAACG	GTAAACCAAG	TATGGATTCT	12840
AAGTACAATC	CGAATGGTTC	TGTCCATGCC	ATCGAAGGAA	TTACCAGCAA	GAATGGTCAA	12900
ATCATCGGTA	AGATGGGCCA	CTCAGAACGT	TATGAGGATG	GTCTTTTCCA	AAATATCCCA	12960
GGCAATAAAG	ACCAACACCT	GTTCGCATCA	GCGGTTAAAC	ATTTCACTGG	AAAATAAGAC	13020
TTACAGATTT	TCTAATAGAT	AGTATCAGTA	ATGTAAAAGT	CATGTAAATC	TAGCTCTTGA	13080
TGATTACAAA	TGAAAATTAG	GTATAAAAA	TGACATACGA	AGTAAAATCT	CTTAATGAAG	13140
AATGTGGTGT	TTTCGGTATT	TGGGGACATC	CAGATGCTGC	TAAGTTGACC	TATTTTGGAC	13200
TCCACAGTCT	TCAACACCGT	GGTCAGGAGG	GGGCAGGAAT	CCTCTCCAAT	GATCAAGGAC	13260
AACTGAAGCG	CCATCGTGAC	ATGGGGCTTT	TATCAGAAGT	TTTCAGAAAT	CCAGCTAATT	13320
TGGATAAATT	GACAGGAGCT	GGTGCGATTG	GGCATGTGCG	TTATGCGACT	GCTGGCGAAG	13380
CTTCTGTAGA	TAACATCCAG	CCCTTCCTCT	TCCGTTTTCA	CGATATGCAG	TTTGGTTTGG	13440
CTCATAATGG	AAATCTGACC	AATGCAGCCT	CTCTCAAGAA	AGAACTGGAA	CAAAGAGGAG	13500
CAATTTTCAG	CGCGACTTCG	GACTCTGAAA	. TCTTGGCTCA	CCTCATTCGT	CGCAGTCATA	13560
ATCCTAGCCT	GATGGGCAAA	ATCAAGGAAG	CGCTCAGCCT	TGTCAAAGGT	GGTTTTGCCT	13620
ATATCTTGCT	GTTTGAGGAC	AAGTTGATTG	CGGCTCTTGA	CCCAAATGGA	TTCCGACCGC	13680
TTTCGATTGG	TAAAATGGCT	AATGGAGCAG	TTGTTGTATC	TTCTGAAACC	TGTGCTTTTG	13740
AGGTCATTGG	TGCCGAGTGG	ATTCGTGAT1	TGAAGCCAGG	TGAGATTGTG	ATCATTGATG	13800
ACGAGGGCAT	TCAGTATGAC	AGCTATACAG	ATGATACCCA	GTTGGCGGTT	TGTTCTATGG	13860
AGTATATCTA	CTTTGCTCGC	CCTGATTCTA	ATATCCACGG	TGTCAATGTC	CATACGGCAC	13920
GTAAGAGAAT	GGGAGCGCAA	TTGGCGCGAG	AATTTAAGCA	TGAGGCAGAT	ATTGTAGTTG	13980
GTGTGCCCAA	TTCTTCCCTA	AGCGCGGCT	A TGGGATTTGC	GGAAGAATCA	GGCTTACCAA	14040
ATGAAATGGG	TCTGATCAAA	AACCAATAC	CCCAGCGAAC	TTTTATCCA	CCGACTCAAG	14100
AATTGCGGGA	GCAAGGAGTG	CGGATGAAA	TGTCTGCTG1	TTCGGGTGT	GTCAAAGGCA	14160
AACGTGTGGT	CATGGTGGAT	GATTCCATT	TACGTGGAAC	AACCTCTCGT	CGTATCGTTC	14220

AGCTCTTGAA	AGAAGCGGGT	GCGACTGAGG	TTCACGTTGC	CATTGGAAGT	CCTGCACTAG	14280
CGTATCCATG	TTTCTACGGG	ATTGATATCC	AGACCCGTCA	GGAGCTGATT	GCAGCCAATC	14340
ATACGGTCGA	AGAAACTCGC	CAAATCATTG	GTGCGGACAG	TCTGACTTAT	CTTTCAATTG	14400
ATGGCTTGAT	TGAGTCGATT	GGTATCGAAA	CAGATGCGCC	GAACGGTGGT	CTCTGTGTCG	14460
CTTACTTTGA	CGGTGACTAC	CCAACGCCTC	TTTATGACTA	CGAAGAAGAC	TATCGTAGAA	14520
GTTTGGAAGA	AAAGACCAGT	TTTTACAAGT	AGGCGACAGA	TTCTCCATTA	AAGAAAAGGA	14580
AAAAATAAAT	GACAAATAAA	AATGCATATG	CCTCACGTCT	CACTACTGAC	TAAAGGCTTA	14640
AGCATTTAGT	CAGTAGACGC	TTTGTCCTAT	AGGATCAAAG	CTAGAGCCCT	GACTAGTATT	14700
TTTAGATAAA	AAGATGGTTT	ATCTAAAAAT	ACGTCGCAGT	CTTTCTCAAA	AAAAGAAAAG	14760
GAAAAATAAA	ATGGCAAATA	AAAATGCGTA	CGCTCAATCT	GGTGTGGATG	TTGAAGCGGG	14820
TTATGAAGTT	GTTGAACGGA	TTAAAAAGCA	CGTGGCCCGT	ACGGAGCGTG	CAGGTGTCAT	14880
GGGAGCTCTT	GGTGGCTTTG	GTGGTATGTT	TGACCTTTCC	AAGACTGGGG	TTAAAGAACC	14940
CGTCTTGATT	TCAGGGACTG	ACGGTGTCGG	AACCAAGCTC	ATGTTGGCTA	TCAAGTACGA	15000
CAAGCACGAT	ACCATCGGGC	AGGACTGTGT	GGCCATGTGT	GTCAACGACA	TCATTGCTGC	15060
AGGTGCGGAA	CCCCTCTATT	TTCTCGACTA	CGTAGCGACA	GGGAAGAATG	AACCAGCTAA	15120
GCTAGAACAA	GTGGTTGCTG	GTGTGGCAGA	AGGTTGTGTG	CAGGCTGGTG	CTGCCCTCAT	15180
CGGTGGGGAA	ACGGCTGAAA	TGCCGGGCAT	GTACGGCGAA	GACGACTATG	ACTTGGCTGG	15240
TTTTGCGGTC	GGTGTGGCTG	AAAAATCTCA	AATCATTGAC	GGTTCAAAGG	TGGTAGAGGG	15300
AGATGTTCTT	CTCGGACTTG	CTTCAAGTGG	GATTCACTCA	AATGGTTACT	CTTTGGTTCG	15360
TCGTGTCTTT	GCGGATTACA	CAGGTGAGGA	AGTCCTACCA	GAATTGGAAG	GCAAGAAACT	15420
TAAGGAAGTT	CTACTTGAGC	CGACTCGTAT	CTATGTCAAG	GCTGTCTTGC	CGCTCATCAA	15480
AGAAGAGTTG	GTCAACGGCA	TTGCCCACAT	CACAGGTGGT	GGCTTTATCG	AAAATGTCCC	15540
TCGTATGTTT	GCAGATGACC	TAGCTGCTGA	AATTGATGAA	AGTAAAGTTC	CAGTGCTTCC	15600
AATTTTCAAA	ACCCTTGAAA	AATACGGTCA	GATTAAACAC	GAAGAAATGT	TTGAAATCTT	15660
CAATATGGGT	GTGGGACTTA	TGTTGGCGGT	CAGCCCTGAA	AATGTAGAGC	GTGTAAAAGA	15720
ATTGTTGGAT	GAAGCAGTCT	ATGAAATTGG	TCGCATCGTC	AAGAAAGAAA	ACGAAAGTGT	15780
CATTATCAAA	TGAAAAAAAT	AGCGGTTTTT	GCCTCTGGTA	ATGGCTCAAA	TTTTCAGGTG	15840
ATTGCCGAAG	AATTTCCAGT	GGAGTTTGTC	TTTTCAGACC	ATCGTGATGC	CTATGTGCTT	15900
GAGCGTGCAA	AGCAGCTCGG	CGTTCTGTCC	TATGCTTTTG	AACTCAAGGA	GTTTGAGAGC	15960

			670			
AAGGCAGACT	ACGAAGCAGC	CCTTGTCGAA	CTCTTGGAAG	AACACCAGAT	TGACTTGGTT	16020
TGCCTAGCAG	GCTACATGAA	AATCGTTGGA	CCAACCTTAT	TGTCGGCTTA	TGAAGGTCGG	16080
ATTGTCAACA	TTCATCCAGC	CTACTTGCCA	GAATTTCCAG	GAGCTCATGG	GATTGAGGAT	16140
GCTTGGAATG	CTGGCGTGGG	TCAGTCTGGT	GTGACCATTC	ACTGGGTGGA	TTCGGGTGTG	16200
GATACAGGCC	AGGTCATCAA	ACAGGTTCGT	GTGCCACGAC	TAGCTGATGA	TACCATTGAC	16260
AGATTTGAAG	CTCGCATCCA	TGAAGCAGAG	TACAGGCTGT	ATCCGGAAGT	AGTGAAGGCT	16320
CTATTTACAG	ATTGACTTTT	TGATGATTCA	TATGATATCT	TTGATTTTAA	ATTGGAGTCA	16380
GTGTTTGTTG	AAGACGGCTT	CAAACGGAGG	TATTTGTAAT	GTTAGAATCT	AAAAAAACAA	16440
CTCGATATGT	ATTTTATGTC	TATCTGATGT	TATTAACTTG	GGGAATCTTA	TTTAAGTTTG	16500
AAACAAATCC	TGAATTTATA	GCATTTTTCT	TAGCTCCAAG	GTATATCAAT	TGGATTCCAT	16560
TTTCAGAACC	ACTAATAGTC	GATGGAAAAA	TTGTTTTTGC	TGAAATGTTA	TTTAATCTGA	16620
TTTTCTTTAT	TCCATTAGGT	GTTTGTTTCC	CTTTGATAAA	AACTAATTTA	TCTAGTTTAA	16680
GAATAGTCGG	GACAGGTTTC	TTGATTAGTT	TATTGTTTGA	GTGCTTACAG	TATATTTTAG	16740
CAATAGGTAT	AACAGATATA	ACGGATTTGA	CTTTAAATAC	GCTAGGTGTC	TGTGTAGGCT	16800
TACTGATTTA	TCAAATTTTT	ATAAGAGTGT	TCAAATCACA	GACTAGAAAA	TGGATCAATA	16860
TCTTAGGTAT	GCTTAGCCTT	GGTTTTGCTT	ATCTTGTTTT	ACTGTTACTG	CATTTACTTA	16920
GTGTTTAACT	AATGATTAAA	AAGGAGAATA	TAATGACTAA	ACGCGTCTTA	ATCAGCGTCT	16980
CAGACAAAGC	GGGCATTGTT	GAATTTGCCC	AAGAACTCAA	AAAACTTGGT	TGGGAGATTA	17040
TCTCAACAGG	TGGAACTAAG	GTTGCCCTTG	ATAATGCTGG	GGTGGATACC	ATTGCTATCG	17100
ATGATGTGAC	TGGTTTCCCA	GAAATGATGG	ACGGTCGTGT	GAAGACCCTC	CACCCAAATA	17160
TCCACGGAGG	GCTTCTCGCT	CGTCGTGACT	TGGATAGCCA	CTTGGAAGCG	GCTAAGGACA	17220
ACAAGATTGA	GCTCATTGAC	CTTGTGGTGG	TCAACCTTTA	CCCATTTAAG	GAAACTATCC	17280
TTAAACCAGA	TGTGACTTAT	GCTGATGCAG	TTGAAAATAT	CGATATTGGT	GGGCCATC'I'A	17340
TGCTTCGTTC	AGCAGCGAAA	AATCATGCCA	GTGTTACAGT	TGTGGTAGAT	CCTGCTGACT	:7400
ACGCTGTGGT	TTTGGATGAA	TTGGCAGCAA	ACGGCGAAAC	CTCTTATGAA	ACTCGCCAAC	17460
GTTTAGCAGC	CAAAGTATTT	CGTCACACAG	CGGCTTATGA	CGCCTTGATT	GCAGAATACT	17520
TCACAGCTCA	AGTGGGTGAA	AGCAAGCCTG	AAAAACTCAC	TTTGACTTAT	GACCTCAAGC	17580
AACCAATGCG	TTACGGTGAG	AATCCTCAAC	AAGACGCGGA	CTTTTACCAG	AAAGCTTTGC	17640
CTACAGACTA	CTCCATTGCT	TCAGCCAAAC	AGCTCAACGG	GAAAGAATTG	TCATTTAATA	17700
ATATCCGTGA	TGCAGATGCT	GCTATCCGTA	TCATCCGTGA	CTTCAAAGAT	AGTCCAACCG	17760

TTGTGGCTCT CAAACACATG AATCCATGTG GAATTGGTCA AGCTGATGAC ATCGAGACTG	17820
CTTGGGACTA CGCTTATGAG TCTGACCCAG TGTCTATCTT TGGTGGGATT GTCGTCCTCA	17880
ACCGTGAGGT GGATGCTGCG ACAGCTGAGA AGATGCACGG CGTTTTCCTC GAAATCATCA	17940
TTGCACCAAG CTATACGGAT GAAGCGCTAG CCATTTTGAT CAATAAAAAG AAAAACTTGC	18000
GTATCCTTGC CTTGCCATTT AATGCTCAAG AGGCTAGCGA AGTGGAAGCA GAATACACAG	18060
GTGTAGTCGG TGGACTTCTC GTGCAAAATC AAGACGTGGT CAAGGAAAGC CCAGCTGACT	18120
GGCAAGTGGT GACTAAACGT CAGCCAACTG AGACAGAAGC GACTGCTCTT GAGTTCGCTT	18180
GGAAGGCTAT CAAGTACGTC AAATCAAATG GTATTATCGT GACCAACGAC CACATGACAC	18240
TTGGTGTTGG TCCAGGTCAA ACCAACCGTG TGGCTTCTGT TCGCCTTGCC ATTGACCAAG	18300
CCAAAGATCG TCTGGACGGG GCGGTCCTTG CTTCAGATGC CTTCTTCCCA TTTGCGGATA	19360
ACGTGGAAGA AATCGCCAAA GCAGGAATTA AGGCCATCAT CCAGCCCGGT GGCTCTGTCC	18420
GTGACCAAGA ATCCATCGAA GCAGCGGATA AATACGGCTT GACTATGGTC TTTACAGGTG	18480
TGAGACATTT TAGACATTAA GAAGATAAAA GGGAAGAAAA CAGTTTCTTT CCTTTTTTGG	18540
CTTAAAATAC TAACTGAAAC AAGATTAAAA CGAACTTTTT TGATATAATG TTGGTAAATA	18600
ATTCGCAAAA GAGGTTGAGG AATGAAACTG CTTGTTGTCG GTTCTGGTGG TCGTGAGCAT	18660
GCGATTGCTA AAAAGTTACT TGAATCAAAA GACGTGGAAA AAGTCTTTGT AGCTCCTGGG	18720
AATGATGGGA TGACTCTGGA TGGTTTGGAA TTGGTAAATA TCTCTATTTC CGAACATTAT	18780
AAATTGATTG ACTTCGCAAA GACCAATGAT GTTGCTTGGA CCTTTATCGG TCCAGATGAT	18840
GCCCTTGCTG CTGGTATCGT GGATGATTTT AACCAAGCTG GACTTAAGGC CTTTGGTCCG	18900
ACTAGGGCTG CAGCGGAGCT GGAGTGGTCC AAGGATTTCG CCAAGGAAAT CATGGTCAAA	18960
TACGGCGTTC CGACAGCAAC ATATGGCACA TTTTCAGATT TCGAGGAAGC CAAAGCCTAT	19020
ATCGAAAAGC ATGGTGCGCC TATCGTAGTC AAGGCGGATG GCTTGGCACT TGGGAAGGGT	19080
GTCGTCGTTG CTGAGACGGT TGAGCAAGCG GTCGAAGCCG CTCATGAGAT GCTTTTGGAC	19140
AATAAATTTG GTGACTCAGG TGCGCGCGTG GTTATTGAGG AATTCCTTGA AGGAGAGGAA	19200
TTTTCACTCT TTGCCTTTGT CAATGGTGAT AAGTTCTACA TCATGCCAAC GGCTCAGGAC	19260
CACAAACGTG CCTATGATGG CGACAAAGGG CCTAACACGG GTGGTATGGG TGCCTATGCG	19320
CCAGTCCCAC ACTTACCACA GAGTGTAGTT GATACAGCGG TTGACACCAT TGTCAAGCCA	19380
GTTCTAGAAG GGGTGATTAA AGAAGGTCGC CCTTATCTGG GAGTTCTTTA CGCAGGGCTT	19440
ATCCTGACAG CTGATGGACC GAAAGTCATT GAGTTCAACG CTCGGTTCGG AGATCCAGAA	19500

			672			
ACTCAGATTA	TCTTGCCTCG	CTTGACCTCT		AAAATATCAC	AGATATCCTG	19560
GATAGCAAGG	AGCCAAATAT	CATGTGGACG	GACAAGGGTG	TGACTCTGGG	TGTGGTTGTC	19620
GCATCCAAGG	GCTACCCGCT	AGACTATGAA	AGGGGCGTTG	AGTTGCCAGC	CAAGACAGAA	19680
GGCGATGTCA	TCACCTACTA	TGCAGGGGCT	AAGTTTGCGG	AAAATAGCAG	AGCACTGCTC	19740
TCAAACGGCG	GACGAGTTTA	TATGCTCGTT	ACCACAGCAG	ATACCGTCAA	AGAAGCCCAA	19800
GCCAGCATAT	ACCAAGAACT	ATACCAACAA	aaaatagaag	GACTCTTCTA	CCGAACAGAT	19860
ATCGGAAGCA	AGGCAATTAA	GTAAAGATAT	AAGAATAACG	CGCCGTAGTC	GCCAAACACG	19920
ATAATGGTCG	TCGTGGTGAA	AAGACCAGAA	CAGTGAATGT	TCTGGTCAGG	GGGAAACTTG	19980
GAGACCTTAG	GCTCAAAGTT	TAGGAATGAA	ACCGAAGGTT	TGCTTCCGCC	TCCATCACCT	20040
AAGACCATTA	TCAAAAAGAA	AAATAAAAAT	TCACAAAATA	CGTTAATGAT	CGTATGGTTT	20100
GCGAGCGTTA	GCGAGCTAAT	ATAGAACAAT	CACCGCCGTT	GTGAAAGAAC	GATTGGATGA	20160
TAATCCAATC	GTTCAGGGAA	ATTGGAAGAC	CTTGGGTTTC	CAATTTAGGC	ATGAGACACC	20220
TTTGGTGGCT	GCTGCCGTCC	CTCACAAGCT	AAGGTGATTG	TTGAAAAAGA	GGAAAAAGGA	20280
GAAGAAATGA	AACCAGTAAT	TTCCATCATC	ATGGGCTCAA	AATCCGACTG	GGCAACCATG	20340
CAAAAAACAG	CAGAAGTCCT	AGACCGCTTC	GGTGTAGCCT	ACGAAAAGAA	AGTTGTTTCC	20400
GCACACCGTA	CACCAGACCT	CATGTTCAAA	CATGCAGAAG	AAGCCCGTAG	TCGTGGCATC	20460
AAGATCATCA	TCGCAGGTGC	TGGTGGCGCA	GCGCATTTGC	CAGGCATGGT	AGCTGCCAAA	20520
ACAACCCTTC	CAGTCATTGG	TGTGCCAGTC	AAGTCTCGTG	CTCTTAGTGG	AGTGGATTCA	20580
CTCTATTCTA	TCGTTCAGAT	GCCGGGTGGG	GTGCCTGTTG	CGACCATGGC	TATCGGTGAA	20640
GCTGGAGCGA	CTAACGCAGC	TCTCTTTGCC	CTCCGTCTCC	TCTCTGTAGA	AGATAAGTCC	20700
ATTGCGGATG	CACTTGCCAA	CTTTGCTGAA	GAACAAGGAA	AAATCGCAGA	GGAGTCGTCA	20760
AATGAGCTCA	тсталалсал	TCGGAATTAT	CGGTGGCGGT	CAACTGGGTC	AGATGATGGC	20820
CATTTCTGCT	ATCTACATGG	GCCACAAGGT	TATCGCGCTG	GATCCTGCGG	CGGATTGCCC	20880
GGTCTCTCGT	GTGGCGGAAA	TCATTGTGGC	ACCTTATAAC	GATGTAGACG	CCCTCCGTCA	20940
GTTGGCAGAC	CGTTGCGATG	TCCTCACTTA	TGAGTTTGAA	AATGTCGACG	CTGACGGTTT	21000
GGATGCCGTT	ATCAAGGATG	GACAACTCCC	TCAAGGAACA	GATCTGCTCC	GCATTTCGCA	21060
AAATCGTATT	TTTGAAAAGG	ACTITITGTC	AAACAAGGCT	CAAGTCACTG	TGGCACCCTA	21120
CAAGGTCGTG	ACTTCTAGCC	TAGACTTGGC	AGATATCGAC	TTGTCGAAAA	ACTATGTCCT	21180
CAAGACTGCG	ACTGGTGGCT	ACGATGGTCA	TGGACAAAAG	GTTATTCGTT	CAGAAGCAGA	21240
CTTGGAAGCA	GCCTATGCGC	TAGCAGACTC	AGCAGACTGC	GTCTTGGAAG	AATTTGTCAA	21300

CTTTGACCTT	GAGATTTCTC	TCATCGTGTG	AGGAAATGGC	: AAGGAGGTGA	CGTTTTTCCC	21360
AGTTCAGGAA	AATATCCACC	GCAACAATAT	CCTGTCTAAG	ACCATCGTAC	CAGCCCGCAT	21420
TTCTGAAAG1	· CTAGTAGACA	AGGCTAAAGC	TATGGCAGTG	CGAATCGCAG	AACAACTCAA	21480
CTTGTCTGGA	ACTCTCTGTG	TGGAAATGTT	TGCGACAGCT	GATGACATCA	TTGTCAATGA	21540
AATCGCCCCA	. CGACCACATA	ACTCTGGGCA	CTATTCTATT	GAAGCCTGTG	ATTTCTCTCA	21600
GTTTGACACC	CATATTCTGG	GTGTTCTCGG	AGCACCATTA	CCAGTCATCA	AACTCCATGC	21660
GCCAGCCGTT	ATGCTTAATG	TCCTCGGTCA	GCATGTCGAG	GCTGCTGAAA	AATATGTCAC	21720
AGAAAATCCA	AGCGCCCACC	TCCACATGTA	TGGTAAAATA	GAAGCAAAGC	ATAATCGTAA	21780
GATGGGACAT	GTGACTTTGT	TTAGTGATGT	GCCGGATAGT	GTGGAAGAGT	TTGGGGAAGG	21840
GATTGATTTT	TAGGACAAGT	CTATGATACA	AATTATCGTT	AATACATTTA	TTGAAAAGTA	21900
TAAGACTGGA	GCAGTTGTTG	AAGTGTTGTA	TGCCAGTGCT	GACCAAGATA	AGGTACAAGC	21960
TAAATATGAA	GAACTAGCTG	CACAATACCC	CGAAAATTAT	TTAGCTATCT	ATAATGTACC	22020
GCTGGATACG	GATTTGAATA	CACTAGATCA	TTACCCGTCT	GTGTTTATTG	GAAAAGAGGA	22080
GTTTGAGTAG	AAATCTTGGT	TTACCTAGAT	AGCTTATTCC	CAACAGCTTA	AGAAGAAAGG	22140
AAAAATTAAC	ACATGATCAA	CCGTTACTCT	CGCCCTGAGA	TGGCGAATAT	TTGGAGTGAA	22200
GAAAATAAAT	ACCGTGCTTG	GCTTGAGGTG	GAAATCCTCT	CTGACGAGGC	ATGGGCTGAG	22260
TTGGGGGAAA	TCCCTAAGGA	AGATGTGGCT	TTGATTCGCA	AGAAGGCGGA	CTTTGACATC	22320
GACCGTATTT	TGGAAATTGA	GCAGGAGACG	CGCCACGATG	TGGTGGCTTT	CACGCGTGCG	22380
GTTTCTGAGA	CTCTTGGTGA	AGAGCGCAAG	TGGGTTCACT	ATGGGTTAAC	TTCTACTGAC	22440
GTGGTGGATA	CTGCTTATGG	TTACCTCTAC	AAGCAGGCCA	ACGACATCAT	CCGTCGTGAC	22500
CTTGAAAACT	TCACTAATAT	CATCGCTGAC	AAGGCCAAGG	AGCACAAGTT	CACCATCATG	22560
ATGGGGCGTA	CTCATGGTGT	GCACGCTGAG	CCGACAACCT	TTGGTCTTAA	ATTAGCAACT	22620
TGGTACAGCG	AAATGAAACG	CAATATCGAG	CGCTTCGAGC	ATGCGGCTGC	TGGTGTAGAA	22680
GCTGGTAAGA	TTTCTGGTGC	GGTTGGGAAC	TTTGCCAATA	TCCCACCATT	TGTAGAGGAG	22740
TATGTCTGCG	ATAAACTTGG	CATCCGTGCC	CAAGAAATCT	CTACACAAGT	CCTTCCTCGT	22800
GACCTTCACG	CTGAGTACTT	TGCGGTTCTT	GCCAGCATTG	CGACTTCAAT	CGAACGTATG	22860
GCGACTGAGA	TTCGTGGTCT	ACAAAAATCT	GAGCAACGCG	AAGTAGAAGA	GTTCTTTGCT	22920
AAAGGGCAAA	AAGGGTCTTC	AGCAATGCCT	CACAAACGCA	ACCCAATCGG	TTCTGAAAAT	22980
ATGACTGGTC	TGCCGCGTGT	CATTCGTGGT	CACATGATTA	CGGCTTATGA	AAACGTCGCT	23040

			674			
CTCTGGCATG	AACGCGATAT	TTCTCACTCA		GTATCATCAC	ACCAGATACG	23100
ACCATTTTGA	TTGACTACAT	GCTCAACCGT	TTTGGAAATA	TCGTCAAGAA	CTTGACAGTC	23160
TTCCCAGAAA	ATATGATCCG	AAACATGAAC	TCGACTTTTG	GTCTTATCTT	TAGCCAACGG	23220
GCTATGTTGA	CATTGATTGA	AAAAGGCATG	ACCCGTGAGC	AAGCCTATGA	CTTGGTGCAA	23280
CAAAAACAGC	CTACTCTTGG	GACAACCAAG	TAGACTTTAA	ACCACTTCTT	GAGGCAGATT	23340
CAGAAGTAAC	ATCACGTCTC	ACACAAGAAG	AAATCGATGA	AATCTTCAAC	CCAGTTTATT	23400
ACACCAAACG	AGTGGATGAT	ATCTTTGAAC	GTCTTGGACT	AGGTGATTAA	тталалалта	23460
AACAGCGAGC	TTCAATCTCG	CTGTTTATTT	TTTATCGAAA	AGACTTAGTC	TTCTTTTCTT	23520
TTAGTGAGTC	CATAGGCTGC	TAGTGTGGAC	ATGAGTCCTG	CGACTACTAG	TCCTGCAGAA	23580
TCGTGAGTTC	CTGTTTCAGG	AAGTTTTTTC	TCTGTTACCA	CAGGAGCTGG	ATCTTGAGGA	23640
AGAACTTTGC	TTTCCTCAGC	AGGAGCAGTT	GATGGAGCTG	GTTGGCTTGG	GATTTCTAGT	23700
TTTGGTTTTT	CTTCAGCAAT	AGCGGCTTGT	CCGTTTTCAT	CGCCTACATG	TGTTACCATA	23760
GTTCCGACTT	CGACTATTTG	AGTAACGGCT	TCCTGTGCTA	CGACACTATT	TACAAGTGTT	23820
TTCACTTCCT	TACCATCGGC	AGAAGTGCTC	ACAGAGTAGA	AGTTGCTACG	ATGTCCATTG	23880
ACGCCCTTAG	TAATGACTTG	TGTTTTTCCT	TTGAGTAAGA	GTGGATTTTC	ACAAGTCACT	23940
GTGGTAAATG	GAATTTCTTC	TTCTTGGATA	TCCAGTCTAG	GTTTTACCTC	AGTAGTTGGT	24000
GCAAGACCAC	TTTCATCACC	CTTGTGAGTT	ACAGGAGCGC	CAACTTCAAC	CACTTGGTTT	24060
ATAACTTCTT	TGGTTACCTG	GCTATCAAGG	ACTGTTTCTG	TTGTTTTTCC	ATTTTCAGTG	24120
AGTACAGAGA	TGTAATGAGT	TCGTTCACCT	TTGACTCCTG	CTGTGATAAT	ATTTTCCTGA	24180
CCGGCTGGGA	GGTTAGGATT	TTCTTTCTTG	ATAACTTCAA	ATGGAATTTC	TTCAGTTCTT	24240
GTGATGAGTT	CTGGTCTGGT	TTCAACATTG	GCAGCCACTT	CATTTTCATC	TAGGCTTCCT	24300
GAATGAGTTA	CAGCTGGTTT	GAGGCCTTGA	AGAGCGGCTT	TTAGGTTGGC	TÁCAAGCGTG	24360
TCAAGCTCAG	CTTGTTTATT	ACGGTTGAGG	TTGTAATTTA	GAGCTGTTTT	AGCTGCGTCA	24420
AGGGCCTCAA	GACTITCTTT	ACTATATCCT	TCTAAGTTTG	TAGGAATTTT	AGCTAATTCT	24480
TCGCGGAGAG	CATTATAATT	AGCACGAAAG	TAGTCTTTGT	TGTGGTCTGC	AAAGGCAGTC	24540
ATGAGTTCAA	AGATTTCCTC	TTCCTTGTAT	TCAGCGCTTG	GTCTATCTGC	CCAGATTGAA	24600
AGCATACTTC	CGACTGTTGG	AAGATCTACT	TCAGGATATT	TGGTAGAAGC	TAGTTGATTG	24660
AATGGTGTTT	TTCCAGTATT	CTCAATAGCT	TTCTTGAGGA	AACCACCACC	ATCTTCTGGT	24720
TTTTGACCAA	GAATGTAGTA	CCAGTCACCG	TTGGTATTCA	AGAATTTATA	GCCTTTGCTT	24780
GCTAGGTATT	GAGGTGATGC	GAGGTTATAT	CCCCACCAGC	CTTTAGACCA	GTAAGAAATC	24840

AAGACATCTT TGTCAAACTG	AACATCGTCC	TTGTCTTCAT	AGTAGAAGCC	ATCGTTGAAG	24900
GCCATTGGTT GAAGCCCTCT	TTCTTTGGCC	ATAGCTGCGA	GGGTGTTGGC	ATATTCGGCA	24960
AATTTGCCAT AGAGTTGATA	CCACTTGAGG	TAGTACCAGC	CTTGGGCACT	AGTCGCATCG	25020
TTGGCGTATT CGTCAGTACC	AAAGTTGAAA	ATCTTTGTTT	TACCTGCAAA	GAAGTCCATG	25080
TATTTACCGA TGAGGGCTTT	TACAAAGTTC	ATCGCTTCTT	CGTTTTTCAA	GTCCATAGTT	25140
GTTTTTGAAA CTTTATCAAA	GTGGGCTTGA	GGATTTTTAA	TACCTAATTT	TTCCATGGCA	25200
ACCAGCATAG CATCCATGTG	ACCTGGACTG	TTAATAGCTG	GGATGAGACC	GATGTCCTTA	25260
GATTTAGCGT ATTCAATTAG	CTCTGTTACT	TCTGCCTGTG	TTAGTGCAGT	ACCGTTTGGA	25320
TCGTCGTAGT AAGCTTTAGT	TCCTTCGATA	ATAGCTTTTT	TAACGTCATC	ACTAGCATAG	25380
GTTTTTCCGT TGGCAGTAAT	GGTCATATCA	TCGAGTAGAA	AGCGAAGTCC	GTCATTTCCT	25440
AGAAGGAGAT GGACATCAGA	ATATCCGAGC	TCACTGGCCT	TGTCTACGAT	GCGTTTGAGC	25500
TGGTTCAGAG TAAAGTATTT	GCGTCCAGCA	TCGATTGAGA	TTACCTTGTT	TTTGGCAAGT	25560
TTTTCAACCT CACGTTTAGC	TTCTTCTTCT	TTTTGAGCTT	CAGGCGTGAG	GGTCAAGTTG	25620
TTGACAGTTT CTTGAAGTTT	AGCAATGGCT	TGATCAATCG	TATCTTGTTG	GGCACGGCTA	25680
AGGTTGCTAT CGAGAGAGCG	AATAGCTTTT	TCAGCTTCTT	TTACGGCCGT	GACGCTTTCT	25740
GCAGTATAAC GGTTCAGGTC	TTTTGGTACC	TCGTTAAGTG	CTTGCTCTGC	AGATTCATAA	25800
TCAGCTGCGA AGTATTCAGC	GTTGGCATTT	GCAAAATGAC	GCATGAGTTT	GAAGAGGCGT	25860
GATGGTGAAT AACGTGCAGA	TGGAGTGTCA	GCCCAAGCAG	CTACCATACC	ACCGATGATT	25920
GGGATATCAG CTCCTTCTGT	TTTTGGTACA	GAAGTGATTG	GTGTGTTTTT	AATACCATTG	25980
AGCCCCTGAT CGAGATTGTA	CCAGCCTTGG	CCATCAGCGT	TTCGTCCAAG	AACGTAGTAC	26040
CAAGCATCAT TGGTATTAAG	GATTTGGTGA	CCTTTTTCAG	CTAGTAGTTT	AGAAGAAGCG	26100
ACATCGTAGC CTCCCCAACC	ACCAGTCCAC	ATAGAAACGA	TGATGTCTTT	GTCAAAACTA	26160
CCAAAGCTTG TGTCGCTATT	GTAGTAGATA	CCGTCGTTAA	AAGCCATTGG	TTTGAGACCG	26220
TGCGATTTTA CAATACGAGC	GAGGTCATTG	GCGTAGGCAA	TAAATTTTTC	ATAGCCTTTT	26280
ACAGGGTAGC CTTCGTTTGG	ATAGTATTTA	TCAGCTTGAA	GCACACTCCA	ACCTTTAGCA	26340
TCTGTCGCAT CATTGGCATA	TTCATCAAGT	CCGATGTTGA	AGATTTCAGT	CTTTTTCGCG	26400
AAATAAGCAG CATACTTGTC	GATAAGGGCT	TTTGTAAAAG	CGACAGCTTG	TTCGTTGTCA	26460
AGATCGACAG TACGGGCTGA	TTTCTTCCCA	AAATAGCTAA	AGTTAGGGTT	TTGGATTCCC	26520
AATTCTTTCA TGGCATTGAG	AATCGCATCC	ATGTGTCCAG	GACTATTTAC	TGTCGGAATG	26580

			676			
AGACCGATAC	CTTTATCTTT	GGCATAGTTA	ATCAGATCTG	TCATTTGACT	TTCTGTTAAG	25640
TGATTGCCGT	TTGGATCGTT	GTAATAATCA	TTTGTACCTT	TTTCAATGGC	GCGTTTGACA	26700
TCGTCACTGG	CATAGGTCTT	GCCGTTAGCT	GTGATGCTCA	TATCGTCCAA	CATGAAACGG	26760
AGTCCATCAT	TTCCGACTAA	TÄGGTGTAAA	TCAGTGTAGC	CATAATGTTT	CGCTTTATCG	26820
ATGATTTCCT	TGAGCTGTTC	TGGTGAGAAA	TATTTACGTC	CAGCATCAAT	AGAAACAATT	26880
TTCTTTTTCG	CTAGTTTTTC	ATTTACAGTT	GCAGCACGTT	CCTTTCCTGC	CTCTGTTGCC	26940
GGTTTGTCAG	CCTCTGCTTT	CGCTTCATCT	TTTTTAGCTG	GTTTATCCTT	GTCAGTCTTG	27000
TCTGTATTTG	ACTCTTTAGA	ATCAACCTCT	TTCGCTTCTT	CCTTTTTAGG	GCTAGCTTCT	27060
TCTGCCTTTT	TATTAGCAGT	TTCTTTTTCA	GCAGAAGTTG	GAGTTACCAC	TTCTGCTTTA	27120
TCACTAGGAG	TTGAACTAAC	TTCCTCTTGT	GGTTTTTCTT	CTGTTTTTGG	AAGACTAGCT	27180
ACCTTATCAG	TAGCTGGAGT	TTCTGTTTCT	ACAGTTTTTG	GAGCTTCTGG	TTGAAGCACT	27240
GCTTTAGGTG	TTTCCTCAGT	CCGATTTTCG	GATGATTGAG	GGGAATCAGA	AACCGTATGG	27300
ATGGTCGGTT	GGTTTTCTGT	AGTAGTAGGA	GTAACTCCAT	CGGCTGCAAC	AGTCTGTGCT	27360
TGGAAGGCAA	ATCCAATTAG	AACAGAAGCT	GCTCCTACAG	CGTATTTACG	AATAGAAAAA	27420
CGCTGTTGTT	TTTCATGTTT	CATTGCAAAA	CCTCCTGATT	GCATTGTTAT	ATTGATAGCG	27480
ATTATATAAA	TCAACGCCTT	TATTTTATTT	CTTATATTAA	TTTCTTATAT	TAACGAGAGT	27540
CAAGAGGAGA	TGACAAAAA	CTATAATAAG	TATAAAAAAA	TATAAAATTT	AAACTTAAGA	27600
TTTCAGATTG	GTCGGAAAAA	ATACGTATAT	ATATCTAGTA	TAATTTTTGG	TTCTATTTCT	27660
ATAAAATATT	CCACAAATTA	TAGAATTTTC	CAAAAATAGG	TAAGCGCTAC	CTTTTTGGTG	27720
TAGTATAATA	AGCATAGAAA	AAGCCCAAGC	GATTAGCTCA	GGTTTTCTTC	TTAGTGATCA	27780
CGGTCACATG	AGATAAATTT	AATCTTGTAG	TAATCAGATC	GTTTGTAAGT	TTCACTGTAT	27840
TCTAAAACTT	GGCCAGTTGA	TTCGAGTTTC	GTGATTTAG	TTTGTAGGAC	AGTAGGGAAT	27900
TGTTCATCGA	CTCCGAGGAC	TGAAGCTGCA	TGTTCTGGAG	TTGGAAAGAC	TATTTCGTTG	27960
ATTTCTTCAA	AGTGTTCATC	: ATTCATGTGA	ATGTGGTAGT	CTAACTTGA	ACGATTATAG	28020
ATAGAACTAT	AGTATTCAAC	GTTTGGATA	A TTTGCGTTGA	TATATTGTT	TGGGATGTAG	28080
GATGTATGGT	AGATATAAAC	GACACCGTT	r GATTCGCGG#	TACGTTCAAT	CTTGTAGTAG	28140
AATTGATCG	CGCGTAGACC	CAATTTTTC	C AAGTAAACA	GCTTGTTTC	GCGTTCAATT	28200
GAAAGAACAC	TTACCTTATO	ATCTTTAGC	A TTGAAGAGT	CAATATCTG	A AAACTCTACA	28260
AGCTTGTGTT	TGCGTGCAC	TGAAACGAA	G GTTCCTTTTC	CTTGTTGGC	G GACAATATAG	28320
CCATCTTTG	CAAGGTCGT	TAAGGCGCG	A ACAACTGTG	A TAGAGCTGA	CATCGTACATT	28380

PCT/US97/19588 WO 98/18931

677

GAAATGAGTT CTGCTTCAGT GTAAAATTTA TCTCCACTGC TAAACTGCCC AGAGATGATT 28440 TTATTTTTTA ATTCGTCTTT TATGTATTGA TGG 28473

#### (2) INFORMATION FOR SEQ ID NO: 84:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6749 base pairs

- (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

CCTGATGGGT GGTATGCGAG GATACAGTTC TGAAAATCGC CGTTACTTAA TTAATGGACG	60
CGAAGTCACA CCTGAGGAAT TTGCTCACTA TCGTGCGACT GGTCAATTAC CAGGAAATGC	120
AGAAACTGAT GTGCAAATGC CACAACAGGC ATCAGGTATG AAACAAGGCG GTGTCCTTGC	180
AAAACTAGGT CGAAACTTAA CAGCAGAAGC GCGTGAGGGC AAGTTGGATC CTGTTATCGG	240
ACGAAACAAG GAAATTCAAG AAACATCTGA AATCCTCTCA CGCCGCACCA AGAACAATCC	300
TGTTTTGGTC GGAGATGCAG GTGTTGGTAA GACAGCAGTT GTCGAAGGTC TAGCGCAAGC	360
CATTGTGAAC GGAGATGTTC CTGCTGCTAT CAAGAACAAG GAAATTATTT CTATTGATAT	420
CTCAGGTCTT GAGGCTGGTA CTCAATACCG TGGTAGCTTT GAAGAAAATG TCCAAAACTT	480
AGTCAATGAA GTGAAAGAAG CAGGGAATAT TATCCTCTTC TTTGATGAAA TTCACCAAAT	540
TCTTGGTGCT GGTAGCACTG GTGGAGACAG TGGTTCTAAA GGACTTGCGG ATATTCTCAA	600
GCCAGCTCTC TCTCGTGGAG AATTGACAGT GATTGGGGCA ACAACTCAAG ACGAATACCG	660
TAACACCATC TTGAAGAATG CTGCTCTTGC TCGTCGTTTC AACGAAGTGA AGGTCAATGC	720
TCCTTCGGCA GAGAATACTT TTAAAATTCT TCAAGGAATT CGTGACCTCT ATCAACAACA	780
CCACAATGTC ATCTTGCCAG ACGAAGTCTT GAAAGCAGCG GTGGATTATT CTGTTCAATA	840
CATTCCTCAA CGTAGCTTGC CAGATAAGGC TATTGACCTT GTCGATGTAA CGGCTGCTCA	900
CTTGGCGGCT CAACATCCAG TAACAGATGT GCATGCTGTT GAACGAGAAA TCGAAACGGA	960
AAAAGACAAG CAAGAAAAAG CAGTTGAAGC AGAAGATTTT GAAGCAGCTC TAAACTATAA	1020
AACACGCATT GCAGAATTGG AAAGGAAAAT CGAAAACCAC ACAGAAGATA TGAAAGTGAC	1080
TGCAAGTGTC AACGATGTGG CTGAATCTGT GGAACGAATG ACAGGTATCC CAGTATCGCA	1140
AATGGAAGCT TCAGATATCG AACGTTTGAA AGATATGGCT CATCGCTTGC AAGACAAGGT	1200
GATTGGTCAA GATAAGGCCG TAGAAGTTGT AGCTCGTGCT ATCCGTCGTA ACCGTGCTGG	1260

				•			
	PTTTGATGAA	GGAAATCGCC	CAATCGGCAA	678 CTTCCTCTTT	GTAGGGTCTA	CTGGGGTTGG	1320
	TAAGACGGAG	CTTGCTAAGC	AATTGGCACT	CGATATGTTT	GGAACCCAGG	ATGCGATTAT	1380
	CCGTTTAGAT	ATGTCTGAAT	ACAGTGACCG	CACAGCTGTT	TCTAAGCTAA	TTGGTACAAC	1440
	AGCAGGCTAT	GTGGGTTATG	ATGACAATAG	CAATACCTTA	ACAGAACGTG	TTCGTCGCAA	1500
	TCCATACTCT	ATCATTCTCT	TGGATGAAAT	TGAAAAGGCT	GACCCTCAAG	TTATTACCCT	1560
,	TCTCCTCCAA	GTTCTAGATG	ATGGTCGTTT	GACAGATGGT	CAAGGAAATA	CAGTAAACTT	1620
	CAAGAACACT	GTCATTATTG	CGACCTCAAA	TGCTGGATTT	GGCTATGAAG	CCAACTTGAC	1680
	AGAAGATGCG	GATAAACCAG	AATTGATGGA	CCGTTTGAAA	сссттсттсс	GTCCAGAATT	1740
	CCTCAACCGC	TTTAATGCAG	TCATCGAGTT	CTCACACTTG	ACTAAGGAAG	ACCTTTCTAA	1800
	GATTGTAGAT	TTGATGTTGG	CTGAAGTTAA	CCAAACCTTG	GCTAAGAAAG	ACATTGACTT	1860
	GGTAGTCAGT	CAAGCGGCTA	AAGATTATAT	CACAGAAGAA	GGTTACGACG	AAGTCATGGG	1920
	GGTTCGTCCT	CTCCGTCGCG	TGGTTGAACA	AGAAATTCGT	GATAAGGTGA	CAGACTTCCA	1980
	CTTGGATCAT	TTAGATGCTA	AACATCTGGA	AGCAGATATG	GAAGATGGCG	TTTTGGTTAT	2040
	TCGTGAGAAA	GTCTAAGACA	GAATTTTGAG	GATAAAAAAG	AAGGAGCCAG	CTGAAAAAA	2100
	CTGGTTCCTT	TTTAGGTACG	ACAGGCATGT	CGTATAGTAG	AAGTGTATTA	TTCTAGTTTC	2160
	AATATACTAT	AGTAGCTCAG	AAGTCGGTAC	TTAAACGTGC	TATATCAAAA	CCAGTCCTGG	2220
	AAAAACGTGG	ACTGGTTTCG	TGTTTGGATT	ATTACCTTGA	ACGACATGCG	TTAAAAGTTA	2280
	GTTGAACCGC	CGTATGCCGA	ATGGTACGTA	CGGTGGTGTG	AGAGGGGCTA	GAGATTATCC	2340
	CCTACTCGAT	TTTAAATCAC	ATGACGTTCA	AAGGCATCAT	CTGAAATCCC	TTGTTCCAAG	2400
	ATGAGTTTTG	CCCATTCTTT	AGCAGAGAAG	AGGCTGTGGT	CCTTGTAGTT	TCCGCAAGAT	2460
	TCGATGGTTG	TCCCTGGGAC	ATCTTCCCAA	GTAGTAGTTT	CAGCGATTTC	CTTGAGCGAA	2520
	TCCTTGATAA	CAGCTGCGAT	TTTAGCACTG	GTGTGACGTC	CCCACATAAT	CATGTGGAAG	2580
	CCTGTGCGGC	AACCAAATGG	TGAACAGTCA	ATCATGCCGT	CAATGCGGGT	ACGGATGAGT	2640
	TTGGCTAAGA	GGTGCTCGAT	AGTGTGAAGG	CCGGCAGTAG	GGATAGAGTC	TTCGTTTGGT	2700
	TGCACCAAGC	GAATATCATA	ATTGGAGATG	ATGTCTCCTT	TTGGTCCTGT	TTCTTCCCCA	2760
	ATCAAGCGAA	CATAGGGTGC	TTTGACAATG	GTGTGGTCAA	GTTCAAAACT	TTCGACAATA	2820
	ACTTCTTTTG	ACATGGTAAA	TCCTTTCAGT	TTTCTTCTCT	CATTATATCA	TAAAGGTTGC	2880
	TCCTGAGACA	GAGAGAAAAC	CTCTCCGAGG	CTGGAGAGGT	TGAAATCTTT	ACTTACGATA	2940
	TAAGCGGTCG	TATTGGTAGT	ATGGGTCAAA	GGTTACGTTG	ATACCCAGTT	TACGAAGGAC	3000
	ATTCTTGTCT	TCATCAGTCA	AGATGATGGT	TGAGTGGGCT	тесеттестт	TGAGGTTGCC	3060

GAGTTCTTCC	ATAGCGCGGG	CAGCATCAGG	ATTTTCTGTA	GCTGTGATAG	CAAGTGCAAT	3120
CAGGATTTCA	TTTGAATGAA	GGCGTGGATT	GCGGCTACCG	AGATGATCGA	TTTTAAGACC	3180
TTGGATTGGC	TTAACAACTT	CAGGCTCGAT	TAGTTTTACT	TCTTTAGCGA	TGTCAGCTGA	3240
TTTTTTGATG	GCGTTGATCA	AGGCAGCGGC	TGTAGGACCA	AAGAGTTCTG	AGTTCTTACC	3300
AGTGATGATT	TCCCCATTTG	GCAATTCAAA	GGCTAGGGCT	GGTCCACCAG	TTTCTTCTGC	3360
TTTTTGGCGC	GCAACGACAG	CAACCTTACG	GTCTGCAGGT	GTGATACCGA	GGTCGTTCAT	3420
GAGCAACTCA	ATTTTCTTGA	CGGCAGCTTC	GCCAACTTTT	TCAGCTTTGA	AGTCAAGAAC	3480
TGTTTGATAG	TAACGGCGGA	TGATTTCTTG	TTTAGAAGCT	TCGACAGCGG	CCTCGTCATC	3540
TGTAATAGCG	AAACCAACCA	TGTTGACACC	CATATCTGTC	GGTGAAGCGT	ATGGTGATTT	3600
TCCGAGAATA	CGTTCCAACA	TGCGTTTGAG	CACTGGGAAG	ATTTCGATAT	CACGGTTGTA	3660
GTTGACAGTG	GTTTCTCCAT	AGGTTTGAAG	ATGGAAGGGG	TCAATCATGT	TGACATCATC	3720
AAGGTCAGCT	GTGGCAGCTT	CATAAGCCAA	GTTAACTGGA	TGATGAAGGG	GAAGATTCCA	3780
AACAGGGAAG	GTTTCAAATT	TAGCGTAGCC	AGATTTGATG	CCATTGATTT	GGTCGTGGTA	3840
CATATTGGAC	ATACACGTTG	CCAATTTTCC	AGAACCAGGT	CCAGGAGCGG	TTACGACAAT	3900
CAAGTTGCGA	CTGGTTTTGA	TGTAGTCGTT	TTTGCCCATG	CCTTCTGGGG	AAATGATGTG	3960
ATCCATATCC	GTCGGATATC	CTTTGATTGG	ATAATGAAGA	TAAGAATCAA	TTCCGTTTTT	4020
CTCAAGTTGA	TTGCGGAAGG	CATCTGCAGC	GGGTTGGCCA	GCGTATTGTG	TAATGACAAC	4080
GGAACCAACA	AAAATCCCTA	ATTCATTGAA	TTTATCAATC	AAACGAAGAA	CTTCTTGGTC	4140
ATAAGAAATG	CCTAAGTCGC	CACGTGCTTT	GGAATGTTCA	ATGTTGCTAG	CATTAATGGC	4200
AATCACAACC	TCAACCTGCT	CTTTCAATTC	TTGCAAGAGC	TTGATTTTGT	TGTCAGGTTC	4260
ATAACCAGGA	AGGACACGAG	CAGCGTGGAA	ATCTTCTAAC	ATTTTACCGC	CAAACTCTAA	4320
GTAGAGCTTG	CCGTCAAATT	GGTTAATGCG	CTCCAAAATA	TGGTCGCGTT	GTAAATTCAA	4380
ATATTGTTCA	GAACTAAAAG	CTTGTTTTTT	CATITITIA	CCTCTGGACT	СТАТТАТААТ	4440
AAAAAATTGG	AAGTTAGGAA	ACTACGGAGC	TAAAAAAGAA	ATTAAAAAGA	TTAAGCAAAC	4500
GCTTGCACAA	AATTTTAAAA	AGTGCTATCA	TAGACTATAG	ATTATGAAAA	TAATGAGGTA	4560
AACAGATGCA	AGAAAAATGG	TGGCACAATG	CCGTAGTCTA	TCAAGTCTAT	CCAAAGAGTT	4620
TTATGGATAG	TAATGGAGAT	GGAGTTGGTG	ATTTGCCAGG	TATTACCAGT	AAGTTGGACT	4680
ATCTAGCTAA	GCTAGGAATC	ACAGCAATTT	GGCTTTCTCC	CGTTTATGAC	AGCCCTATGG	4740
ATGATAATGG	CTATGATATT	GCTGATTATC	AAGCGATTGC	GGCTATTTTT	GGAACCATGG	4800

			680			
AGGACATGGA	TCAGCTGATT	GCAGAAGCTA	AGAAGCGTGA	CATTCGTATC	ATCATGGACT	4860
TGGTGGTCAA	TCATACCTCA	GATGAACATG	CTTGGTTTGT	CGAAGCCTGT	GAAAATACTG	4920
ACAGCCCTGA	GCGAGACTAC	TATATCTGGC	GCGATGAACC	CAATGACCTA	GATTCTATCT	4980
TTAGTGGGTC	TGCTTGGGAA	TACGATGAAA	AGTCAGGTCA	ATACTATCTC	CACTTTTTCA	5040
GCAAGAAACA	GCCGGATCTC	AACTGGGAAA	ATGAAAAACT	TCGCCAGAAA	ATTTATGAGA	5100
TGATGAACTT	CTGGATTGAT	AAAGGTATTG	GTGGTTTCCG	TATGGATGTT	ATTGACATGA	5160
TTGGCAAAAT	TCCTGACGAG	AAGGTAGTCA	ATAATGGTCC	TATGCTCCAT	CCCTATCTCA	5220
AGGAAATGAA	TCAGGCGACC	TTTGGAGATA	AGGATCTCTT	GACAGTAGGG	GAGACTTGGG	5280
GAGCAACTCC	AGAGATTGCC	AAGTTCTACT	CTGATCCAAA	GGGGCAAGAA	TTGTCTATGG	5340
TCTTCCAGTT	TGAACATATC	GGTCTTCAGT	ATCAGGAAGG	TCAGCCTAAA	TGGCACTATC	5400
AAAAAGAGCT	GAATATCGCT	<b>AAGTTAAA</b> AG	AAATCTTCAA	CAAATGGCAG	ACAGAGTTAG	5460
GAGTTGAGGA	CGGCTGGAAT	TCCCTCTTCT	GGAACAACCA	TGACCTCCCT	CGTATTGTCT	5520
CAATCTGGGG	AAATGACCAA	GAATACCGCG	AAAAATCTGC	CAAAGCCTTT	GCAATCTTAC	5580
TTCATCTCAT	GAGAGGAACT	CCTTATATCT	ACCAAGGTGA	GGAGATTGGG	ATGACCAACT	5640
ATCCGTTTGA	AACACTGGAT	CAAGTAGAAG	ATATTGAATC	TCTCAACTAT	GCGCGTGAGG	5700
CTCTTGAAAA	AGGTGTTCCG	ATTGAAGAAA	TCATGGACAG	TATCCGTGTT	ATTGGACGTG	5760
ACAATGCCCG	TACCCCTATG	CAATGGGACG	AGAGCAAAAA	CGCTGGTTTC	TCAACAGGTC	5820
AACCTTGGTT	GGCGGTTAAT	CCAAATTACG	AGATGATCAA	TGTCCAAGAA	GCGCTGGCAA	5880
ATCCAGATTC	TATTTTCTAT	ACCTATCAGA	AACTGGTCCA	AATTCGCAAG	GAGAATAGCT	5940
GGCTAGTTCG	AGCTGACTTT	GAATTGCTTG	ATACGGCTGA	TAAGGTCTTT	GCTTATATAC	6000
GTAAGGATGG	CGACCGTCGC	TTCCTAGTTG	TGGCTAACTT	GTCCAATGAA	GAGCAAGACT	6060
TGACAGTAGA	AGGAAAAGTC	AAATCTGTCT	TGATTGAAAA	CACTGCGGCT	AAAGAAGTAC	6120
TTGAAAAACA	GGTCTTGGCT	CCATGGGATG	CTTTCTGTGT	GGAATTACTA	TAAATATTTT	6180
TTGCAGAAAA	ATTTAAAATT	GAAATCGTAT	AAAAACAAGG	GAGGACTGTA	TAAAAGACAG	6240
AAATCCTTTG	TTTTTTATAA	CCAAAGTTTA	TAAACTTTCA	TTCTTGAAAT	TCAATTAACT	6300
TTACAAATTC	CCACTATTAA	GGAGAAAGAA	GATGAACATA	AAGAAGCGTG	TCCTTAGTGC	6360
AGGCCTGACT	TTTGCATCTG	CTTTGCTTTT	ACCCAAATCA	TTCATACCTC	TCTCAACTAG	6420
ATGTAACTTA	CAAAACCCCT	GACCTCATGA	GCCACTTTCT	TCCTCCTCAT	GAGGTCAGTT	6480
TTACTTTCTC	CTGTTCCAGT	ATCGTTTTTC	: CTCGCTAGAT	TTCCTCAAAA	GGGCAGACTC	6540
CTCCCTTGG1	GCGTCACACG	ATTTTTCAT	CTCGACTGTT	CTTTAATGCA	TCATTAACGA	6600

681

CGCTTTTCTT	CTAGGTGGTT	CATAAGGAAC	AGGAAGATTC	AGGTTGACTT	TTCTAATCCT	6660
AGAATAAAGT	GCTGAAAACA	ATTCGGAATA	GGCATAGAGA	CTAGACAATT	TGAGGAGCTG	6720
CTTGCGTCCT	GTTCGAACAC	ATTTTCCGG				6749

## (2) INFORMATION FOR SEQ ID NO: 85:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1842 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

TCTACCCATG	GACTTTGAGG	CATTCATTGT	TCCATCTTCT	AGTGGCGAAT	CTTTTGATAC	60
AAACGATTCA	ATTCACTTGG	ATAGTGAAAC	TCTCCCGCAA	ACATTTTTCT	GGTTAACTCA	120
ATCCAGCTGA	TATTTCTTTC	AGCCAAAATA	ATGGACAAGT	TCTCCCAAAA	TCGTTCAGCC	180
ATATTGCTTC	TCCTTTAGTT	AGATAAATAA	TGTGTTTGCG	CCATGTAAAT	CAATTGTTTC	240
GTATCTCTTG	GCAATAGAGC	TCTAGCCTCT	TCCAAATTCA	GACTTGGATA	AACTCGCTTA	300
TTTGAAACCG	CAAGAGGAAG	TCTGATGGTT	AGTTCAGGAT	TTTTTAAAAT	TATCTCAACG	360
AAATCCGTTA	ATCTTAGATT	GTCACGGTTC	TTAAATCGTA	ATAAATTGGG	AGATAAAAAC	420
TCAAAACAAT	CTGAAGAATA	GCTCATCATC	TCAATTAATT	TGTCCTTTGT	CATTTCAGAA	480
ACTGAATGAC	AAGATACCTC	TATGCCATAG	TTTTGGAAGA	AATCTAAAAG	AAGTTGATTT	540
CTTTGTCTAT	TTTTACTTAG	ATAGAGATCA	ATCATGGGAG	ACCTCCCAAA	GATTCGGTTC	600
CATTTGATAT	TCTGACACGA	TTAAGGAATC	TAATAAATTA	AGGAATCTAA	TAAATTTGCG	660
AAGTTAATCG	GTTTCTTGTC	TTCATCATAA	GCTTTTACAG	TTACTTGGGT	TGTAAGTATT	720
CCCTCTTTTC	сстсссстсс	ATAGCCTTGT	CCATATAAAA	CAAAAACGAG	ATTTTGATGA	780
TCATCTACAA	AGGCATCAAC	CCCATTCTTT	ATGTCTTGAC	TTTCAAGGAA	TTCCATAACG	840
TTTTGAAGAT	AGGATTCGTA	AAATAGTGGG	TAGTTATGTT	TTTTATGGTA	ATCATCTAAA	900
AATGTCACTT	CAAACTCACA	TGGAGAGTAA	TTTTGACTTT	GAACAGCCTA	AAAGTGCCAT	960
CAAATTTGAA	TTGGAATAAA	TCAAATAAAT	AGCCCCATCC	TCATCAATCC	AACCTTTGCT	1020
CAAAGACAAC	TCCAACCGAT	CTTTTAAAAC	TGAGTAAACC	ACCTTAACCT	CCAGTTTCAT	1080
ATTCTTATAC	CGTTCACTCT	CAAATAAAAG	TTTGGGGAGC	TTATAATAAC	GCTCTGATGT	1140
CTGATATTGA	TTAGCGGTAA	TACGCTTCAT	TATTGTCCCT	CCAAGACTAA	AATTCCAACA	1200

			682			
TTTCCAAATT	CATCAAATCG	GATTAAACCT		TTTCATCAAC	TAACTGAGTT	1260
GCTTTTACCC .	AAATCATTCA	TACCTCTCTC	AACTAGATGT	AACTTACAAA	ACCCCTGACC	1320
TCATGAGCCA	CTTTCTTCCT	CCTCATGAGG	TCAGTTTTAC	TTTCTGCTGT	TCCAGTATCG	1380
TTTTTCCTCG	CTAGATTTCC	TCAAAAGGGC	AGACTCCTCC	CTTGGTGCGT	CACACGATTT	1440
TTTCATCTCG	ACTGTTCTTT	AATGCATCAT	TAACGACGCT	TTTCTTCTAG	GTGGTTCATA	1500
AGGAACAGGA	AGATTCAGGT	TGACTTTTCT	AATCCTAGAA	TAAAGTGCTG	AAAACAATTC	1560
GGAATAGGCA	TAGAGACTAG	ACAATTTGAG	GAGCTGCTTG	CGTCCTGTTC	GAACACATTT	1620
TCCCACCACG	TGAAGAAAAA	GATGGCGGAA	GCGTTTGATT	GTTAAAGTTT	GGAAGTCACC	1680
TCCAGCTAGA	TGTTTGAGAA	AAAGATAGAG	ATTGTAGGCG	ATACAGCTCA	TCATCATACG	1740
AACTTCGTTT	TTGATTAAGG	TTGAACTATC	CGTTTTATCG	CCAAAAAATC	CCTCCTTCAT	1800
CTCCTTGATG	AAATTCTCGG	CTTGACCACG	TCCACGATAA	AG		1842

#### (2) INFORMATION FOR SEQ ID NO: 86:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19390 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

TCATCTTTAT CTCCTCGAAA TTTTCTAATA TAGCCATTAT AACAGAATTT TGTGAAAATT 60 CCTATTATAG TAAATCACTA TTTCAGTATA AAAAGAAAAA ACGAATCAGA CGATTCGCTC TTCTTAAAAT CTGAAAATAG CTTTCCAGAA AGGATTAGCC GATTTTTTGC AGATTGAGCA 180 CTGCATCGTG ACTCATCAAG ACTTGACCAT ACTCTTGTAA GACTGAGCGA CTGATATCAC 240 TATCGTCTGC AAACTCGCGC ATACGGGCCA ACAGCCAAGC TGGATATGGG CTTGGATGAT 300 TTTCAATATC CACTAAAATG GTCAAATAAT AGCGCTCGTT CATTTTGTAG AGTTCAGAAG 360 TTTCCATTC AAAAGTCACT GTCTTGGCAA AAGCTACCAA GTCAGCCAAC TTAGCAAAAG 420 480 AAAGGATGTA GTAGATGTAA GGTTCTTTCT TACTCTCAGC TTCTTGTTCA GCCTGCTCTT GCTCTTCTTC CTTGACTTCA ACTTGCTCAA GAGATTGAAT GGCTTCGATA TCATCCTTGG 540 TTTTGTCTGC GATGCTTTTT TCCAGGGTTT TGATAAATTC ATCTGGAGAC ATTTGAGCCA 600 ATTCTTCCAT ATCTGGCAAA TCCGATAAGT CTTCAAAATC TAGATTTTGG TCAATCTTTG 660 ACTTGGTCAC AAAGACATCT ACCTTATCAG GTTTTGGAGT CACACGGAAG CTCAACATGC 720 CTGTATCCAG AAAGCTATCA GGCATCTCTA GCTCATCCAA GATAGCATAA AAGAACTCTT 780

CTGTTTTTTC	TTGAGGAACG	AGAAAGTCAG	CAATCTCCAT	TCCACGATCC	ATCAAATCCT	840
CTAAAGATAT	CGTGATTTTT	AAAGTTGTAT	CACTAATTTG	TTTCATTTTC	ATTGCTAGTA	900
ACCTCATACT	TTCAGTTCTA	TCTATTATAC	TAGATTTTTA	CGATTTTATC	AAAAGAAGGC	960
TCCTCTATAC	GGATAGATTT	TCCCTAGGGT	CTTTCTATAG	GAGACTCCAA	AAGAAAATTT	1020
CTGCAGACAG	ATAGAAAAAG	CCTTCAAAAT	CGGCTAAGAG	CCGACTTTGA	AGACCTTATA	1080
CATCAGAATA	CTTATAATTT	AAAGGTTGCT	ACACCGAGGA	TAGAACGATT	TAAGTTTCTG	1140
AGAATTTGAA	GACTTTGCTC	AAATTTCTTA	TAACGAGTCA	CTCCGTACTC	TTCAACAAGA	1200
AGGACTGTAT	CTCTTTCCAA	AAGAGATGAT	ACATCCTGTA	AATCTACAAA	ATGCATTCCT	1260
TTTAAAGCTT	CTTGACTCTG	TTTCAATTTA	TCTAAGATAG	CTTTATTTGA	GCTAACGATG	1320
GTCAATTCCT	GTCCAGTATT	TTTGTATGAC	AAAACATCTG	CTAGGTTAGC	AATTGTTGTA	1380
ATCTCTGTTA	CAAAATCAAT	TTGATACTGA	GAAAAATCAC	CTACTCTATT	GATTGTTGGA	1440
TTAAAGAGAT	AAACTAACAC	ATTTCCCATC	ACAACCAAAA	TCACACAAAC	CACTCCAATA	1500
ACAACTAAAC	GAAGAATCAG	ATTTTTCACA	TTTAAGCCAA	GCGCTGTTTC	ACCATTTGCG	1560
TTCAATTCTT	TAGAGTTGAT	GGTTTCCAGT	TTTTCAATTT	TCACATTTGC	ATAGGCATGT	1620
TTAAATTTCT	CAATCAACCC	ATCAATTTTT	TTCTCTAACA	AGTTATTGGC	ATCTTTACTT	1680
GATGTCAAAA	TTTTCACACC	AACCCCTGCA	TCGTCAATCA	TATAGTAGAC	GGTCAATTTT	1740
TTCCACCAAT	AGTCATTCGT	TGAATTTTTC	AAGGTTGTTT	CTGTCGTGTC	TAATTCACTG	1800
GCAATTTTTT	TCAACTCACT	GGGTTCTACA	TCATTGAAAA	GATAAGCTCC	ATTCAAATTA	1860
CCATCAATCA	ATTTCCCATA	AAAATCACTA	TAACCACCAA	TTTGATGATT	CAAAATCGTT	1920
TTGTCCGACT	CTTTTGGAGG	AGTGATTTTA	TAGATAAGAT	AAGTTGAATA	ACTTGTTGTA	1980
TCTTTGACAG	TGTTTTTATT	CCTAACTGCT	TTAATTGTAA	ATGGTACAGC	AATGAGAGCA	2040
AATAAAGCGA	TGAGAGCTAA	AATATTTGCT	TTTCGCTTTT	TATAAAGATT	TGCAAACAAA	2100
TCAGCTACTG	AATAATGTTC	AAACATGATT	TTTTTCTCCT	TTGTTTAGTA	GATACTAGTT	2160
TTCCTTTGTA	AGCATTTTTG	CTACAAATAT	AATCACAAGA	ACAATTCCCC	AGAATTGCAT	2220
TGTAAATAAA	TTGAAGAAAC	TTTCTGAAAA	GCTGCTTCTT	GGCATAAAGA	ATAGATTATT	2280
CAAGATGAGT	AGGGATAAAG	CAAATAGGAT	TGTCCTTGAG	CGATAGGCTA	CTTGCAGCAT	2340
GGCTATAAAT	AATACGCCGA	GTAAGAAACT	AAGCAGAAAG	ACTCCAATCA	TACCATAGTC	2400
GGTATACAAC	TCCATGATAT	AACTACTTCC	GATACCATGC	CCTTTCAAGT	ATTCCTTGTT	2460
CAAGACAAGA	TAGGATAGAT	TGTGGGCATA	ACTATTACTA	TCAATAGCTA	GTTCCACACT	2520

ATTGGTTGTA	TGTTCAAAGG	CTTTTCCTCC	684 GAAAATGGCT	CCCAAACTCC	CCCTTGCAAA	2580
ATAATCAAGA	ACAGGACCAA	AAGTAAAATT	ACGGAAATCT	CGGTAAGGGA	GGCTACTGTT	2640
AAATAGAAAA	CCTCGAGCCA	GAACACCAAA	ACTAGTCCCT	TGTTTATAGA	TAAAGTCAAG	2700
TAAGATATCC	CAGAAACCTG	TATGGGAAAC	TTGGACATTA	TCCCGTACAT	AATTGAGTAC	2760
TCCCATCGCT	AACATGAGAA	TAGGAGAACC	TACAAAAATC	GCTAACTTTT	CTTTAAACCC	2820
AATCCATTIT	CCTTTTTCAG	TTTGCTCCCG	CATAAAGTAA	TAAACAAAAG	CAAATmAAAT	2880
ACTTAAAATA	AAGGGATTTC	GTGTCCCAAT	TGCCAAATGA	ATAGTATTAG	CTGCAATAAA	2940
GGAGACAAGC	ACTGCTGTGG	CCTGCAATTT	CTTTGGCTTG	GTTGCCAGAT	ACATACACAT	3000
TGCATAGACC	GTAAAGGTAG	ACAAAATGTA	GGTAAAATAA	GGCAGTTTAC	TTTCAAAATT	3060
TGCATAGTAG	GCATAGTAGG	AAGTCTGCAA	ACGATACAAG	AGCCGTTCAA	ATAACCGAAT	3120
GAAATAGAAA	GGATAAGTTA	GAAGAAAAAC	TCCTAGTGAT	ACAAAGCGTA	ACCGCTTGAT	3180
ATAAACCTCT	TTTAGAGAAT	TTCCTATATT	TGCTACTTTT	ATTTTCTTCC	TAGCTATGAA	3240
GTAACGAGCC	AGAATGCCTC	CTGTGGTCAA	GCCCAGAATC	GAAATCATGA	CAACTATAAA	3300
GGCAAAACGA	TAGGCTATTG	GATGATAGGT	ATCCAAAGCA	CCATCCCTAA	AATAATCAAT	3360
GGTCGGTCTT	GATACCAGAA	ATACAAAAAT	GGTTAAATAG	TAAATAAAA	GGATTAAGTA	3420
ATACTTGATA	TCATTCCAAC	AAGCAATTAA	GCTACTAACC	AACAAGAACA	ATAAAGTAGA	3480
AAGTAAGCTA	ACATTATTAT	TATTAAACAG	ATACACAATT	CCACTTACTA	GCGTCAAGGC	3540
ATAACTGACT	ATGGTCAAAC	TAAATAATAA	TCGTTTCCCA	TCAATCACTT	GGTCACCCCC	3600
GTTCTAATGT	AATTTTTAG	ATTTTTCAAT	ATTTTTCAGT	AATAAGAATC	GATATAAGGA	3660
AATATTTATG	AATAGGGCCA	AAGCACTAAT	TCTTCTCCCC	TTACGGAAAA	TTGGATTCCT	3720
AGAAATAGCA	AAGGCATGGC	CTTTTAAAAA	ACGATGAATC	TGAGAATAGG	CTTCAAACTG	3780
TTTATACTGA	TCATCTAGCA	ACATCTTATC	CAGAATAAAG	AAGTGGGCAT	AGGCCAATCT	3840
GAAAAAAGCG	ACCTCTTTCA	AGTCAGGATA	GTTTTTCACA	ACTTCATTAT	AAAACTTTTG	3900
GTAGATATCA	ATATAGGCTA	AATCCTTCTC	TGCATAGGGT	TTGGTCGTAA	TACTATCCCC	3960
TCTATGGAAA	TAGTAATAAT	AGGGTTTAGT	ATTAACCACA	TACTTCTTGG	CCAACTTGAT	4020
TAAATCAAAA	TGGTAATAGG	CATCTTCGTA	AATCAACCCC	TTAGGAAAGG	ATAGGGCAGT	4080
TGCAATCTGT	CTCTTGATTA	GCTTATTGCA	AATCGTCCCA	GGTATTTTTT	CACCTATGAG	4140
GTATTCCTTT	AGAAATGTTT	GAGAATCACA	GACAAAATAG	TCATCCTGAT	TGGCTGACTG	4200
TGGGCTTTCA	TCATTAGCAT	AGACATTCAT	GACACCACAG	CTCGAAACAT	CCGCATCTTC	4260
TTGAACTAAT	TGCTCATATA	AGCTCTGAAT	CATTTCTGGA	TGGATATAAT	CATCTGAGTC	4320

AATAAAAATC AGATAAT	CCC CGTGAGCCT	G CTTCATCCC	A TCATTTCGT	G CTTGCGACAA	438
TCCTTCGTTC TTTTTAT	'GAA GCACTGACA	C CCTGTCATC	T TGTTCAGCG	A TTGAATCACA	444
CAAGCGACCA CTTTCAT	CTG TTGCACCAT	C ATCAACAAG	A ATAATTTCC	A GATTTTGATA	450
GGTCTGCTTC TGAATGG	AAG CTATCGATT	T TTCTAGGTA	C TGCGCCACA	T TATAGACTGG	456
CACAATCACA CTAATTA	ATG CAGTTTCCA	T GCTACTCCT	TAATAGTTT	T TCTACTTGTT	462
CGATTTGTTT TGTAATT	GTA AATTGTTGA	A TGAATTGGC1	AGCCTCATC	G ACATCAAAGT	468
TTGAGGCAGA AGTCATG	TAA TTAGTAATC	G CCTGAGCTG	CTCTTGATT	G CTCTCAATGA	474
TTTGTCCAAA TCGTCCT	TCT TGGGATAAT	T CCTCAGCCC	TCCAACGTC	GTAGAGATAA	480
AAGGGAGTCC CAGACTC	AAG GCCTCCACA	T ACACTCCAGO	AAAACCTTC1	TGTTTAGACA	486
TAGACAAAAG AACTTTCC	GTC TGAGATAGA	r actgataago	ATTTTTTG#	TAACCAAGGA	492
AATGTACATA GTCCTCA	ATC CCATACTCT	TGACTCGTTT	TTTCAGTTC	TCTTCCATAT	4986
CACCAGCCCC GATAAAA1	TAG AGATGATAG	TTTTTCCCTC	TTGGTGTAAT	AATCGTATCA	5040
CTTCCACTAC ACGGTCAC	GAA CCCTTATTT	CCTCAATCCG	TCCGATAGTA	CAGATACTTT	5100
GAGGAGCAAT CTCGATAT	CG ATCTTCTCT	GAGATTTTTC	TAGAATAGTO	TGAAAATCAT	5160
ATCCATTGTA GATTGTCT	GT AATTTAGAAC	TATAATCTGG	ATAAACTTCC	TTGATAGAAT	5220
TGCTGGTCTT TTTTGAAA	NTC CCTACAATTO	TATTCGCAGC	ATCCAACTGG	CTTCTATGTG	5280
ATTCTCTTTT AGAGCTAT	CC TTAAGAAGTT	CTTCAATACT	TCCATGAATC	CAAGATATCT	5340
TCTTGACTTC TCTTCTTT	TA GAGAACAACA	GTGGTGGATT	CATANTGGTA	AAAGAAACTT	5400
CAACATCATA ATCATCTT	TT ACAAGCAAAC	GACGAGTCAG	TCTTGGAAAA	TAAATTCTCA	5460
TTCTCCACAA AAAAGCTC	GT AACCATCTGG	TTTGGCGATA	ATCTTGAAGG	GATTTTAAAA	5520
TGCGTACATG: CTTTGGAA	CA GATTCATATC	CCTTGTCAAA	GTGCTCCATT	TCAAGAATAT	5580
CAATATCATA CTTTTCTG	GA TCCAGATTTG	AAACAATGGT	TGATAGAATC	TTCTCTGCAC	5640
CACCTCCAAG AGAAAAAG	AC CACATAAAAA	ATAAGATTTT	TTTCTTAGCC	ACCATATTCT	5700
CCCTTGTATT CTGTATAA	GA CTTATCCATA	TCAGCGATGA	CAGCATCATG	ATGCGGTACC	5760
TGCTTGTCTG CTGGTGGA	GG CGTCATATAA	TCCCCAAAAG	CAGTTCTGAG	ATAGACATCA	5820
TAGCCGATTG GAATAGGC	AT CTCTGTTCCT	TCAAATGGCA	AGAAAAGATT	GTCTTCAAAA	5880
SATGTGATTG GGTACTTG	TT TCTCATGTAG	CCAGGACCTG	AGCATAATTC	TGTAATGCCA	5940
CACAATCAG CCAAATCA	TA CTTAGTCATT	TCTTTCTCAG	CTTTTTTCCA	GATGCGATAA	6000
GGAGAGATT TTGGAGTC	AA ACCCAGTAAA	ATGCGACTTC	CCCATTTCAT	GAGATCACCA	6060

			686			
TGCTTTTCTG	GAATAGTTTG	CGCACAAAAG		TCAAGGCCCA	ACGAACCTGT	6120
TTTTTCCGCT	CAGCTGGATT	TTTCGGATAA	TAATCCAAAG	GCAAAACATC	CAAGGCCAGA	6180
CCATGTGGCA	AATCCAAATC	CTGCTGATAA	GGCTTGATAC	AGGTGGTTTT	CTTGTCACGA	6240
ATGGTAATAA	AAAGATTACG	ATCAACAAAA	TCCTTGTGAC	TCTTTGACAA	GAAATAACGT	6300
TCATCTGCAT	AACGAGGCCA	TAATTCTGCT	AATTTCTCAT	AATCTTTACG	AGGCATAAAA	6360
AAGTCTAGGT	CGTCGTCCCA	AGGAATAAAT	CCCTTGTTTC	GAAGGGCACC	AATAGCGCCT	6420
CCGCCACAGA	GATAACAGAG	CAAATCATGT	TCTTTACAAA	AGGCCACAAA	ATATTCAGCC	6480
ATCTCCAGAC	TACGAGCCTG	AATTGCTTTT	AAATCAGTCA	TATTGTTCAT	TATTCTTTCT	6540
ATCGTATCGT	TTCATTATAC	CACAAACAAG	GGGTGAAAAT	CTATTGCAGA	CTGTAAAAA	6600
TCAAAGCCTG	ACTGCTATCC	AAATAGCTAT	CAAACTTTGA	TTTTTCTGTC	TTATACTCTT	6660
CGAAAATCTC	TTCAAACCAC	GTCAGCTTCA	CCTTGCCGTA	GGTATAGGTA	ACTGACTTCG	6720
TCAGTCTTAT	CTACAACCTC	AAAACTGTGT	TTTTAGCAGC	CTGCGGCTAG	CTTCCTAGTT	6780
TGCACTTTGA	TTTTCATTGA	GTATTATCTT	ATCTTAAGCC	CATTTGAGCG	AGCTTGGTTT	6840
GATATTTGTT	TTGATCAACC	AGCAGGCCCA	AGCCCCCATA	AACATCATAG	GCATCTACCC	6900
AGTCACCCAG	TTCTGGAATC	GTCAÄTTTTT	CAATACCATT	TTTTGCTCCA	TCCAAAACAG	6960
ATAAACCGTT	TGTTAGGAGG	AAAGTATAGG	GTACGTTGGT	TGAGGTCATA	GCAAAAACCT	7020
TTCCAAĞAGC	TTCAGAACCA	GTGAAAAGTT	TAGTGGGATC	TTTAATTTGC	TCTAAAATTG	7080
CTGTTAAAAC	TTGTTGCTGT	CTTTTTGTAC	GGCCGTAATC	TGCCTCATCA	TCATCACGGA	7140
AACGAGCATA	ATTGAGCAGG	GTCGAGCCAT	TCATCTGCTG	TTTTCCGACT	TTAATGGTTT	7200
GGGTTGGAGA	CTCAGTCTCG	GTAGCGTATA	AATCATCTCC	GACTGTAGCT	TCTGTTAGGG	7260
GACGCCCATT	CAATGTTGAA	AATTGAGCAT	CAATCGTCAC	CCCATCAGGG	AAAAGCGTGT	7320
CAATCGCTGT	GGCAAAGGCC	TGGAAATCAA	CCAAGGCGTA	GTACTTAATG	TCCAAGTCAA	7380
AATTATCTTT	CAAGACTTGG	CGAACCATTT	CTGCCCCTTT	TTGCCCCTCT	TGTTCTCCTA	7440
ACTCGTAGGC	TACGTTTAAC	TTGTTATCTG	TCTGTTTTCT	ACCATTAATO	ACTTGACTAT	7500
AACCATCTAT	ATAGACCAAA	TTATCACGCA	TGAAACTGAC	TAGCTTCATT	TTCTTATCTG	7560
AGCCCCCGAC	ATTTAATACC	ATAATAGAGT	CAGTTCGTGT	CTCAACACTG	TTCTGGCCGA	7620
TTCGACCATC	AGTACCCATG	ATTAAAATAT	TAACTCCATC	TCTAGTGTCC	TGACCATTAA	7680
AGACTTCTAC	TTGAGCTGCC	CGGGCATCAG	CAGTTTTCTT	TGCGCTAGCA	TCTTGGTAAC	7740
CACGCAAAAA	CATGAATACC	ATGGCCAAAG	CCACACAGAC	CAAAAGTGAA	AAAATCACCA	7800
TAAAAATTCG	TTTAAGACGG	AGCTTCCGTC	TTTTCTTTT	TGGAGGGAAA	GAGAGTGCTT	7860

GTGATTTGGA	TTGTGAGCGA	CTCCGGTTCG	CATAGCTTGG	TAAGTCAACC	TGCTCTTCTC	7920
TTTCTTGTTC	CAAGCTAGAG	CTACTATTTC	CCCTAGCAAG	AGTTAGCTTT	TCTTGCAAAT	7980
AGGCAAACTC	ATTTTTTCT	CTCTCATTGA	GATAGTGAAT	ATTTTTTAGC	AAATAATCAT	8040
AACGCAACTG	CTCATGATGA	CTTAAGGGAT	TTTCTTTACT	CATCTTCTCT	CCTTTCCATG	8100
GTCTGATATT	GGATAAATAG	GATAGGCACC	CAGAATTTTA	TACTGGATTC	CAATCGCTTC	8160
TAATTCTTTT	TGGGCAAAGT	GGACCAAGTC	CTTATCGGTA	TAATCCACAT	CGATAATGAA	8220
AAAGTATTCA	CCCAGTGCTG	TCTTGAGTGG	ACAACTTTCA	ATTTTTGTCA	AGTCAATTCC	8280
TCGCCAAGCA	AAGGTCGACA	GGGCCTTATA	AAGTGCACCT	GGAAGGTTGT	CAGGTAATGT	8340
CAAGGCCAAA	CTCATCTTTT	CAGTTTGTGC	TTGCAAGGGA	ATACTAGGCT	TTTCAGCTCC	8400
TAGAACCCAG	AAACGTGTGA	AATTGGCTTC	CATTTCCTGA	ATATCCTCGG	CAATCAGTTC	8460
CAATCCATAT	TCTTCAGCAG	AACTTCTAGG	TGCAACTGCT	GCAAAGGGCT	GGTCTGGATG	8520
TTCGGAAATA	AAACGGGCCG	CATAAGCTGT	ACTAGCTGTT	ACCTCGATTT	GAGCCTCTGG	8580
ATATTGTTCA	TCGATGAATT	TCTTTCCTTG	AGCCAAGGCC	TGTGGATGTG	AAAAAATCTT	8640
TTCAATCTTA	GTATGGCCTG	GAACCACCAT	CAACTGCTGA	TGAATAGGCT	GAACGATTTC	8700
TGCTACTGCT	TGGATGTGAG	CCTGATGAAA	AAGATAGTCC	AAGGTTTCAT	GAACACTACC	8760
CTCAATAGAA	TTTTCAACTG	GCACCACAGA	ATAGTTCACT	AATCCTTGCT	CATAAGCCTT	8820
GATGACATCT	GTAATGTTGG	CAAAAGCCTG	CAATTCCTCA	TGAGGAAAAG	CTGTCTGCAC	8880
AACGTGGTGT	GAAAATGATC	CCTTGGGACC	TAGATAAGCA	ATTTTCATCT	TAGTTCCTCT	8940
ATAATTTCCT	CTGGGCTTAG	CTTGGTCACA	TCCAAAACCC	GACTAGCCAC	TTCCTCATAC	9000
CAAGCCTGTC	TTTCTTGGAA	AATAGCTACT	AGTTCTTCCT	TGCTATTATT	TAGAAAAAGC	9060
GGTCGCTGAT	TGTCCTTATC	AGCTGCGATA	CGTTGGTAGA	GGGTTTCAAA	ATCTGCTCTC	9120
AGGTAGATGT	TATCTGTATT	AGTCTTGAGT	AAGTCACGAT	TTCTCTGAGA	AATAACCACT	9180
CCTCCTCCAC	TTGACACGAC	TTGGTCTGTT	TGTAGTAAAT	CAGCTAGGAC	TTCTGATTCT	9240
ACCTGACGAA	AGGCTGTTTC	TCCCTTTTCA	GCGAAAAAAT	TCGCAATGGA	CATACCTAGG	9300
CGATTCTCA	TCAGAGCATC	CATATCAAGG	TAATTAGGGT	CCAAGCCTCT	TGCAATAGTC	9360
GATTTTCCAC	CCCCCATAAA	CCCTAATAAC	ACCTTAGCCA	TGAATCAAGO	TCTCCAAATC	9420
ATCAAAGAAA	CTAGGATAGO	TGGTATTGAT	GGCTTCTGCA	CGGTCAAGCT	CCACCTCTCC	9480
• *					CACCAAACGT	9540
ATTGACTCT	GCACCGTGAA	GAGCTGATT	TCCTTTGATA	ATCATCCCAT	CTGCCGTAGG	9600

AGTAATATCT	GCTCCCATAC	TATTTAAGGC	688 GTCTGCCACA	ACCTGAATAC	GGTCTGTTTC	9660
CTTGACCTTG	AGCTCCTCAG	CATCCTTGAT	AACTGTTACA	CCTTGGGCTT	GGGTCGCAAG	9720
CAGGGCAATA	ATGGGCAATT	CATCAATCAA	TCGTGGAATC	AAAGCGCCAC	CAATCTCTGT	9780
TCCTTTCAAG	TCAGAAGACT	CAACAATCAA	GGTAGCAGAT	TTAGCGACTG	GATCGATTTC	9840
AGTTATTTCC	AATTTTCCAC	CCATGGCACG	AATGACATCA	ATAATACCGG	TGCGAGTTTC	9900
GTTGATCCCC	ACATTCTGCA	GCACTAGACG	AGAATTTGGA	GCAATCAAAC	CTGCGACTAA	9960
CCAAAAGGCT	GCACTGGAAA	TATCTCCTGG	TACGACCACC	TTCTGTCCTG	TCAATTTTTG	10020
TGGCCCCTGG	ACTGTGATTT	TCTTACCATC	CACACTTAAA	TGACCACCAA	ATTGTTTCAA	10080
CATATCTTCA	GTATGATTAC	GGGTGTACTC	TTTTTCGATA	ATAACTGACT	CCCCCTTAGC	10140
TTGTAAGGCT	GCAAACATCA	AGGCTGACTT	GACTTGGGCA	GAGGCAATTG	GCAACTCATA	10200
ATGAATAGGT	CTTAGGTTTT	TCGTCCCTTT	TAAGCGAAGG	GGAGGCAAGT	CTCGTTCAGT	10260
TTGCCCTGAA	ATGCTGACGC	CCATTTTTT	CAGTGGAAGG	GTCACACGGT	CCATAGGACG	10320
TTTGGAAAGA	CTATCATCTC	CAAACATCTC	TACTTCGAAA	TCTGCACCAG	CAAGGACACC	10380
TGAAATCAGG	CGAATCGAGG	TGCCAGAATT	TCCCATATTA	AGGGCATTTT	GTGGCGCTTT	10440
TAAGCCAGCC	ATGCCTACAC	CTTGAATGGT	AATAACCCCA	TCTTTATCCT	CAATTTCAAC	10500
ACCAAGGTCA	CGAAAAACCT	GCATGGTCGA	AAGAACGTCT	TCACCTCGCA	GAATATCATA	10560
AACCTTGGTC	TCACCCTCAG	CCAAACTTCC	AAAGATAATG	GAACGGTGGC	TGATAGACTT	10620
GTCACCTGGG	ACGCGGATAC	TACCATGTAA	ATGGCGAATG	TTTGTTTTTA	GTTTCATACT	10680
GGACCTCATA	CTTGCAATAC	TTTTACCTAT	TTTATCATAA	AAAGCCAGAA	ATTCCTTAAA	10740
AATTCCTGAC	TTTAGGATCG	TTCTTTTCTT	ATTTCAGCAA	TTCTGAAACT	GGTTCAAAAA	10800
CAATTTTTTC	AATATCAGAA	AGGTAAATGG	CCAATTGTTG	TTGCTTGGTA	AAGAATTCTG	10860
ACAAGAGGCT	ATTTCCTTGA	ATCTGTTTAC	CAAAGCCTTC	CATCTTAGCT	TGGAAGGACG	10920
CATCTGGCAT	TTGACCTGTC	TGTGCTAGTT	TTTGAATTTC	CTCTTGAAAG	GCAAGATAAT	10980
CTGTAAAGAT	TTTGCTTGCC	TCAGCATCTG	CTGCAATCGC	ATCTTTAGCT	GCTTTAACAG	11040
CCTTGTATTC	TGGTAATCCG	CGTAGACCGC	GACTGAGTTC	GTTTGCACTA	TCGTAAATAT	11100
TTGACATGTT	CTTCTCCTTA	TTTGATGACG	ACTGTATAGT	CAGTATTTTC	TGTTATGAGA	11160
TGCTCAGCTC	TTTCCAAGTC	TTGAGCATTT	TTAAATGAAA	TTTGTAGGAT	TCCGTGAATA	11220
TCCTCACGAT	TTTCCTCGTT	GATGTGGATA	TTAACCAAGG	AAGTTCCACC	TAGCAGTTCC	11280
AAAATCCGCA	GGATGACATC	TTCTTCATCA	GGAACGTCAA	CATAGAGGTC	GTAAGAGCTA	11340
TCCACACCAC	CACGCTTATG	GATTTCCATC	GTCTGGCGTT	GTTCACGCGC	TTGGTTAAAA	11400

	AAGTTCCAAA	TTTGCTCTTC	ATCTCCCTTA	CTAATGGCCT	GACCAATCGC	TTCCAAACGT	11460
,	TCCTTGAAAT	CCTCAATTCT	ATCCAGAATG	ATCTCGCTAT	TGGACAAGAG	AATGGAGGTC	11520
,	CACATTCCTG	GCTCGCTTTC	CGCAATTCGG	GTCATATCTC	GAAAACCACC	TGCCGCAAAG	11580
	CGCCTTGCCA	TCTCATGCTC	TTGAGCATAG	ACCGCAGTCT	GCTCCATGAG	ACTAGAAGCC	11640
	AAAATATGAG	GAAAATGGCT	AATCTGAGAA	GTGACACGAT	CATGCTCCTT	GGCATCAATC	11700
•	TCGATAAAAC	GAGCATGAAG	ACCTGAAAGC	AGATCCTTCA	TTTCCTTAAG	CGTGTCCTGA	11760
•	CTTGTCAGGC	TTGAAGGTGT	AAAGATATAA	TAGGCATTTT	CAAAAAGATT	GACATCTGCC	11820
(	GAAGCAGCCC	CTGTCTTGTG	ACTACCAGCC	ATGGGATGGG	CCCCGACAAA	GCGAACAGAC	11880
,	TTGCCAGCCA	AATACTGCTC	CGCCGCATCC	ACAATGGTTG	ACTTGGTCGA	ACCAGCATCT	11940
(	GAAATAATAA	CGCCTTCTCG	CAAATCCAAA	TTGGCCAACT	CCTTAATGAA	AGCAATAGTT	12000
,	TG <b>TTTGA</b> TTG	GCAAGCTGAG	GATAATGACA	TCTGCCAAAG	GAGCAAAACT	AGCAAAATCA	12060
,	TCCGTTGCAC	GGTCAATCAT	ACCTTCTTTC	AAGGCGATAT	CTCTCGAAGC	TTGACTACGA	12120
,	ттатаасста	AAATTTCATA	ATCTGGATGA	TCGCGTTTGA	TACCAAGTGC	CATAGAGGCT	12180
•	CCAATCAACC	CAAGACCTGC	GATATAGATT	GTTTTTGCCA	TAGGAACTCC	TTAATAGTTC	12240
,	TTTGTATAGT	CTCGGTGTTT	GGCTACCGCT	TCTTTTAGTT	CCTCAAGATT	ATCTGATGAG	12300
	AATTTTTCGA	GGATTTCTTG	CGCCAGAACC	GTTGCTACAA	CTGCTTCCAT	GACCATTCCT	12360
(	GCAGCTGGAA	GAGCAGTCGG	ATCACTTCTC	TCCACGGTTG	CCTTGTAAGG	TTCGTGGGTT	12420
,	TCGATATCCA	CACTCATAAG	AGGTTTATAA	AGAGTAGGAA	TGGGTTTCAT	GACCCCACGA .	12480
ž	ACAACGATGG	GTTGCCCATT	AGTCATACCA	CCTTCAAAAC	CACCTAGATT	ATTGGTACGG	12540
(	CGAGTATAAC	CGTCTTCTTT	AGACCAGAGA	ATTTCATCCA	TAACTTGGCT	GCCTTTACGA	12600
•	TAACCAGCCT	CAAAGCCAAG	ACCAAATTCC	ACCCCTTTAA	AGGCATTGAT	AGAGACAACA	12660
(	GCTTGAGCCA	ATCTTGCATC	CAATTTTCTA	TCCCATTGGA	CATAGGAACC	AAGACCAACT	12720
(	GGAACGCCTC	CGACGACTGT	CTCCACAACC	CCACCGATGG	TATCACCATC	ACGTTTGATT	12780
1	rggtcaatat	AGTCCTTGAT	TTCCTGTTCT	CGTTCTTGGT	TGACAATAGA	AACTTCAGAC	12840
1	rgggcagctc	TTTGCTTAAT	TTCAGCGACT	GTCAGATTTT	CAGGAACATC	GATTTCCTTG	12900
(	CCACCAAAGA	CCACGACATG	GTTGGCAATC	TCCATATCCA	GCTCAGCCAA	GAGGCGTTTG	12960
(	GCTACTGCAC	CAACTGCCAC	CCGCATGGTG	GTTTCACGAG	CTGATGAACG	CTCCAAAGAA	13020
7	TTTCGCAAAT	CATCAAAACG	GTACTTAATC	CCCCCAACCA	AATCGGCATG	ACCTGGGCGA	13080
(	GGATGAGTAA	TTTTCCGCTT	GCTTTTAAGG	CGGTCTTCAA	TGTCCTCCGC	AGACATGATG	13140

690 TCCAGCCATT TCTGGTGGTC CTTATTGATG ACATCCATAG TAATAGGCGC CCCTGTCGTC 13200 TTCCCGTGGC GAACGCCCGA AGTAAAGACA ACCTGGTCAT TCTCAATCTT CATACGACCA 13260 CCACGACCGT AGCCACCCTG ACGGCGTCTA AGGTCCTCAT TGATATCCTC AGCTGTCAAT 13320 GGAAGTCCAG CTGGAATTCC CTCAATAATA GCTGTTAGAC GGGGGCCGTG TGATTCTCCT 13380 GCAGTTAAAT ATCTCATACA CTCTCCTTAT TTTACCAAGT AGTCTTTCAT CTCTTCCAGA 13440 GAAACTGGGT GAATGGTCGC TGAACCAAGC TCTGGCACCA AGACCAATTT CAAGGTGTTA 13500 CCACGCGCTT TCTTGTCATG AGTAAGAGCC TGATAAAGCT TGCCAACTTC CCAATTTTCA 13560 TAGTCAACAG GCAAACCGAA TTTCTGACAC ATCTCTGTGA TAGATTGGGT AATGCCAGCT 13620 GGCATGAGGC CTTTTTCCTC AGCAACCTTG GAAATCTGTA CCATTCCCAT GGCAACAGCC 13680 TCTCCATGCA TGACCTTGCC ATAACCGGCA GTCGCTTCGA TGGCATGGCC AATAGTGTGG 13740 CCAAAATTGA GGTAAAGACG AATACCATTG TCCAACTCAT CTTCAACCAC CATCTTGCGC 13800 TTCACCTGAC AAGAATGTTC AATCAAGGTC TCTGCATGTT CCAAAATACT CTCAACAGAA 13860 CCATTCAGTC CCGTCAAGAG AGCCCACAGT TCTGGATCCT CAATCAAGCC ATACTTGATA 13920 ACTTCACCCA TCCCTTCAAT CAACTCTCTT TTTCCGAGGG TTTCAAGAAC AAGTGGATCA 13980 ATCAGAACCC CATCTGGTTG GGCAAAGGTC CCCACCATAT TTTTAGCAAA TGGTGTATTA 14040 ACGCCTGTCT TTCCACCGAT AGAAGAATCA ACCTGAGCTG TCAAACTAGT CGGAATCTGA 14100 ACAAAGTGAA TACCCCGCAT ATAGGTAGAG GCTACAAATC CAGCCAGGTC CCCAACAACG 14160 CCACCACAA GAGCAACGAT TCCATCGCTA CGAGTCAGAC CTTGCTTGAC TAGAAATTCA 14220 TAGACTTTCT GAACAGTAGT TAAATTCTTT CTTTCTTCAC CTTCTAAGAA ATCAAAAACA 14280 GCTACCTGAA AACCAGCATC TTCTAGGCTG AGCTTGACCT TCTCTGCATA GAGAGAGGCT 14340 ACATGGTTAT CTGTCACAAT GACTACCTTT TGCGGTTGCC AGAGTTCTCG CAACCACTGA 14400 CCAGCCTGGG CCATACAACC TTTTTCAATC TGAATATCAT AAGGATGGTG AGGAATATCG 14460 ATTCTGATTT TCATAGGAGA GTCTCCCTTT CTTTATTGGT ATTTTTCTGT TAAAGACTGC 14520 CAAATCTCTT CTGTCGGCAT TTCCTTGCCT GTCCACAGTT GAAAAGCTTC TGCAGCTTGA 14580 TAGAGTAACA TTCCCAGACC ATTGACTGCT GGATTGCCCT GACTTCTAGC CCATTTCAAA 14640 AACGGTGTTT CAAAGGGTTG GTATATGATA TCTGCAACTA AAAGAGTTTC TGGTAAGACT 14700 ATGTTTTCAG GAACAGGAGA GGATTGGCCA TCCATGCCCA CACTGGTGGC ATTAACTAGC 14760 AAATCCGACT CGGCAATCCT TGCTTGCAGT TCAGAAACAT ATTCTAAAGC ACACAAATCC 14820 ACTITAAAAC CTGTCTGCTC CTGTAACTTG TCTAGGTAAG GTCTTGTTTT TTCCATAGAA 14880 ACGGAACGAA CAAAGACCGA AATCTGACTG ACGCCATCCA AAATAGCCTG TGCCAAGATT 14940.

GATTTAGCCG	CACCACCTGC	ACCCAGCAGG	GTCATCTTTT	TACCTGAAAT	TGTAAAAGAA	15000
GGCAAGCACT	TAAAAAATCC	CTTGCCATCT	GTATTATATC	CAATTAAATT	GCCATTCTCA	15060
TTGACAACCG	TATTAACCGC	ACCAATCAAG	CGCGCTTCAT	CGCTCAGCTT	ATCCAAATAA	15120
GGAATCACCT	GCTCCTTATA	GGGCATGGAC	AGATTGATGC	CAAACATCTG	GTAGCGACGA	15180
ATATTGGCCA	CTGTTTCTAC	CAAGTCACTC	GCTTCAATCT	CCCAAGCCAC	ATAAGCACCG	15240
TTGGTAGCTG	TCGCCTCAAA	GGCTCTATTG	TGGATGAAGG	GAGAAATAGA	ATGCTTAATA	15300
GGATTGGCAA	CAACTGCAGC	TAAACGTGTA	TAGCCATCAA	GCTTCATCCA	AAATCTCCCT	15360
GATTTTTTC	ATGCTAGCTA	GAGAAATCTG	CCCAGGGGCA	CTAACCTCAT	CCAGACTGGC	15420
AAAAGACCAA	CTCGAACCAG	TCACATCCGC	AGTGATACGA	GAGACCTTGC	CCACCTTACC	15480
CATAGAAATG	GTCACATATT	CCTGTTCAGG	ATTGAGGGTT	TTAAAGCCTC	GTGTATAGTT	15540
CATCAAGTCT	AAGACATCCT	GCTCCGTGTG	AGCCATCACC	GCAACCTTAA	CAAGTTTTGG	15600
ATTTAGGATC	GTCAACTCTG	ACAAGATTTC	CATCATGTTC	TCAGGTGTTT	CTTGGAAATT	15660
ATGGTAACTC	AAAACAAGAT	TTGGGAAGTC	CAGCATTTCC	TCAAAAACAT	CCTTGTAGCT	15720
ATAGTACTCA	AAATCAATAT	AGTCTGGTTG	ATAGAGTTGC	GCAACTTCCT	TGATTAGATG	15780
GATATACTCT	TCTGGAGAAA	GGTCGATTTC	TCCACCTTCG	GAGCGAGTTC	GTAGCGTGAA	15840
AACCAACTCA	CGGCCTGCGA	ATTTTTCAAA	AATGGCTGGA	GCTACCTGCA	AAATCGCTTC	15900
TTTAGGCAGA	TAGTCGGCAC	GCCATTCAAT	GATGTCGGCA	TCCAGGTACC	TCGTGGCATC	15960
CAGAGCCTGA	GCCTCCTCTA	AACTTCTTGG	CATTACTGAA	ACGATTAATT	TCATTTACTA	16020
ACCTTCATAC	TAATCACCTT	GAGGTAATTA	CTACTTTCAT	CTTTTTTATT	ATAGGCAAAA	16080
TCTGCTGGAA	GACCATATTT	GTTTAAAATC	TGGTAACTTC	TTCCTGCAAA	ACCTTTATCA	16140
ATTTGTTCTG	TAAATTTCTG	ACGGGAAACA	TTGGCAGCAT	TGGTACTGGC	AATGATAATC	16200
CCTCCCGGAT	TTAAAATCTC	AAGACTCTGG	GAAATCAACT	TGTGATAATC	CTTGGCCACA	16260
GAGAAAGTTT	GTTTTTTATT	CCGAGCAAAG	CTAGGCGGAT	CTAGGACAAT	CACATCGTAG	16320
GTCAAGTCTT	TGCGTTTGGC	ATATTTGAAA	TACTCAAAGA	CATCCATGAC	TATAAAACGA	16380
TGCTCGTCTG	TGCTGAGCCC	ATTTGCCTGA	AAATGCGCTT	GAGACAATTC	TCGTGAACGT	16440
TTGGCTAGAT	CAACAGAAGT	TGTATGGCTA	GCTCCTCCCA	TGGCCGCAGC	TACTGAAAAA	16500
GCCGCTGTGT	AGGAAAACAT	ATTGAGTAAG	GATTTACCCA	TAGCCAAGCC	GTCAACTAAA	16560
CTACCGCGAA	CCTCATGCTG	GTCTAGGAAA	ATTCCTGTCA	TCAAGCCATC	ATTCATAAAG	16620
ACTTGATACA	GGACACCATT	TTCTAAAACA	TTGAAAAAGT	CAGGTGCTTC	TTGACCATAA	16680

692 ACATGGGCAG ATTCATAGTC CAAACCCTTA AAGCGGATTT TCTCATAAGC TCCTAAAACC 16740 TCAGGGAAAA CCTGTCTAAA GGCTTCTGAT ATAGTCTGAC GAATCTGATA AACATAAGAG 16800 TTATACCAAG AAAAGACGC GTAGTCGCCA TAAAGGTCCA CTGTCAGACC CCCAAAGCCA 16860 TCTCCCTCTT GATTAAAGAG ACGAAAGGCA GTTGTCAAAT CATCTTGATA GTAGGCGTTT 16920 CTCTTTTCTT TGGCTTTTCT AAACAACGTT TCAAAGAAAG CTTGATTGAA GGCCACCTTG 16980 TCTTTGCTGA TAAACCAGCC CAAGCCCTTG TTTTGCTGAG AAAGGTAGGC AGTCCCAAGA 17040 AAGTTTCCTT CCTGACCCTG CACCTCTACT TCCTGATCCT TAAGATTGAC ATTCTCAAGA 17100 TCACTGGCTT CTAGTAAAAC TAGCCCCTTA GCAAGCTTCT TTTCAACCCT TTTGCTGACT 17160 CTTATTCTAT TCATAACTAC CATTATATCA AACTTTTAGA CAATTCTCAA AAAAGAAACT 17220 ACCCTTGCTT TTTTACTCTT CTTTTAAAAA ATGGTATACT AGACTTCCTG CAAAACTAGG 17280 AAGTAAATGT GTAAGAATCA CAGTAAAAAA TGCTCTTCCG TCTTGGAGGA GCATTTCTTT 17340 TTATCAACGA AAATCAAATA GCAAACTATG AAACTAGCCT CAGGTTAACT GTGAGATTAT 17400 AGGTAGAGAG GTTGTATCAG CAATATGTGT CTGTCAAATT TAGTGACAAA GGTAGTAGAA 17460 GAAAGATAAA GAAATAAATC AGCTTCAGTA GGTATCTGGA AAATTTGATT TTATAGAGAA 17520 GCCTTTTGTT ACAAACTCAA TATACTATCA ATAAATAATA TTATAGAAGC AACAATAATT 17580 ATAATTTCAC CTATCTGCAT CATTCTATTT CGAACTCTAA ATATATGTTC TATCAAAAAT 17640 ACTTGGAACA CACACATTAT AGGAATTAAC GTTTTTGAAA TTGAAAAATA TCCAAATAAA 17700 TAAACTATAA ACAACAAAAA TAGAACTATG TTATATTTCT TATTCAAAAC ATTCCTCCCT 17760 ATATATTTT GATTACCAAT CTTAATCATT TACAACTACA TTCTAACAAA CTATAAAAGC 17820 GTTTGTCGAA TTGAATTTAT CAAGCAAGCG ACCAACCAGT TCATCTTTTT TCTATTTCTG 17880 CCAATATGCG TGACAGGTAA TAATGATAGC CAAAAATAGC AAGAGCAAGC AAGACGATAA 17940 GAGCTCCTAC TCCCAAGCTG ATGGCAAGGA TAGGGGAGAG AGACTGAACC AAGAATATGC 18000 TCCCAATTAC AAGGGCCATC AGGATTGCAC TATAAATAAA CAATAAAACT ATGGCGACTA 18060 TGCCATTTGA ACGATTCACC AGGTCCGTAA TGCTACTCCA ATTGGTTGAC AGATTTTTAA 18120 CGTCCTTAAA GTAATGGTGG CAAGAAAGGA TGACACTGGC AATGATCCAG ACTACAAGAA 18180 GGTAAATCAT CGAAATGATG GGCAAGCCTA GATATAGAGA AAGACCAAGC AAAGTCAGAA 18240 CTGGTAAAAA GGACTGGACA GCATATATAA TCCAAAATTT CACTTTCACA TAACGAGCAA 18300 AGTCAAAGGG TAAACTCTTA AGAAAATCAA CATTTTCCCT CTCCAAGGAC AAGGCAATTG 18360 AATGCAGGCT GGTGATATTG TTATTGACAA CTGCTATAAA GAGAGCTATA AAAAACAAGG 18420 GTAACCAGTA TGGAGGATGA ATGTCTGGAA CTATCTGAGA ATCTCGGATT TTGGAAATCA 18480

CATGAGATAA	GGAAGGAAAG	CACTTGTAAA	AAGCACTGTA	ATCACGCCAG	1854
CAAGAGGGTG	AGGTGGTAGC	GTAAAACCAT	GCGAAAAAAT	CCCTTTTTAG	1860
TCTCTCCTTG	CTGCGACGTT	CTTTTTTGAC	CTTCTCCTCA	CTATTAAGCA	1866
ATAAAAACGA	GGAAGGACCT	TCTTTTTGGT	CAGATAAAGC	AGGAAGAGAG	1872
CCAAGCGAGC	AGACCCACTA	AGGCTTCTGT	CGAAAAAGGC	TCCACTGCTA	18780
GATATGAAGA	GGATAAAGGA	GAAATGGAAT	GTCTCTAACT	TTGTCAACAA	18840
AGTCGACTGA	AGAAAGAAGA	TAAATATTAA	AGGTATGAGA	ACTCCTATCC	18900
ATTCGAAAAA	ATAGACTGAT	ACTTTCTGAA	GACCCTAGTT	TGAGCCAAGA	18960
CACTACCATC	ACTAGAGCCA	CAGAGACAAA	TAATAAGGTC	AAGGACAGTA	19020
CAAACCCAGC	CATAGAGAAG	GAGCTAGCCT	AATGTAGAGG	ACCAGAAAAT	19080
TGGTACAATT	CCAGTTAGAG	CTGGCAAAAG	GACAGACAGT	CCTTTAGCAA	19140
TGATTCTTTA	AAGGCATAGG	GCCTATACGA	TACCAAATCC	ттастстсат	19200
GTAAAAGGCC	GTTAAAGAAG	TTGAAAAGGC	AATCACTAGT	AAAATAGCAA	19260
AAAATAAATA	GGTATTTCCT	CAAAAGGAAA	ATGAATGGCT	ATATTACTAA	19320
CATCAAGAGA	CTGGAAAAAA	TGTAAGAACT	TAAGACTCTA	GCGGAAACAT	19380
					19390
	CAAGAGGGTG TCTCTCCTTG ATAAAAACGA CCAAGCGAGC GATATGAAGA ATTCGAAAAA CACTACCATC CAAACCCAGC TGGTACAATT TGATTCTTA GTAAAAGGCC AAAATAAAAT	CAAGAGGGTG AGGTGGTAGC TCTCTCCTTG CTGCGACGTT ATAAAAACGA GGAAGGACCT CCAAGCGAGC AGACCCACTA GATATGAAGA GGATAAAGGA AGTCGACTGA AGAAAGAAGA ATTCGAAAAA ATAGACTGAT CACTACCATC ACTAGAGCCA CAAACCCAGC CATAGAGAAG TGGTACAATT CCAGTTAGAG TGATTCTTTA AAGGCATAGG GTAAAAGGCC GTTAAAGAAG AAAATAAATA GGTATTTCCT	CAAGAGGGTG AGGTGGTAGC GTAAAACCAT TCTCTCCTTG CTGCGACGTT CTTTTTTGAC ATAAAAACGA GGAAGGACCT TCTTTTTGGT CCAAGCGAGC AGACCCACTA AGGCTTCTGT GATATGAAGA GGATAAAGGA GAAATGGAAT AGTCGACTGA AGAAAGAAGA TAAATATTAA ATTCGAAAAA ATAGACTGAT ACTTTCTGAA CACTACCATC ACTAGAGCCA CAGAGACAAA CAAACCCAGC CATAGAGAAG GAGCTAGCCT TGGTACAATT CCAGTTAGAG CTGGCAAAAG TGATTCTTTA AAGGCATAGG GCCTATACGA GTAAAAGGCC GTTAAAGAAG TTGAAAAGGC AAAATAAATA GGTATTTCCT CAAAAGGAAA	CAAGAGGGTG AGGTGGTAGC GTAAAACCAT GCGAAAAAAT  TCTCTCCTTG CTGCGACGTT CTTTTTTGAC CTTCTCCTCA  ATAAAAACGA GGAAGGACCT TCTTTTTGGT CAGATAAAGC  CCAAGCGAGC AGACCCACTA AGGCTTCTGT CGAAAAAGGC  GATATGAAGA GGATAAAGGA GAAATGGAAT GTCTCTAACT  AGTCGACTGA AGAAAGAAGA TAAATATTAA AGGTATGAGA  ATTCGAAAAA ATAGACTGAT ACTTTCTGAA GACCCTAGTT  CACTACCATC ACTAGAGCCA CAGAGACAAA TAATAAGGTC  CAAACCCAGC CATAGAGAAG GAGCTAGCCT AATGTAGAGG  TGGTACAATT CCAGTTAGAG CTGGCAAAAG GACAGACAGT  TGATTCTTTA AAGGCATAGG GCCTATACGA TACCAAATCC  GTAAAAGGCC GTTAAAGAAG TTGAAAAGGC AATCACTAGT  AAAATAAATA	CATGAGATAA GGAAGGAAAG CACTTGTAAA AAGCACTGTA ATCACGCCAG CAAGAGGGTG AGGTGGTAGC GTAAAACCAT GCGAAAAAAT CCCTTTTTAG CTCTCCCTTG CTGCGACGTT CTTTTTTGAC CTTCTCCTCA CTATTAAGCA CATAAAAACGA GGAAGGACCT TCTTTTTGGT CAGAAAAAGC AGGAAGAGAG CCCAAGCGAGC AGACCCACTA AGGCTTCTGT CGAAAAAGGC TCCACTGCTA GATATGAAGA GGATAAAGGA GAAATGGAAT GTCTCTAACT TTGTCAACAA AGTCGACTGA AGAAAGAAGA TAAATATTAA AGGTATGAGA ACTCCTATCC ATTCGAAAAA ATAGACTGAT ACTTTCTGAA GACCCTAGTT TGAGCCAAGA CACTACCATC ACTAGAGCCA CAGAGACAAA TAATAAGGTC AAGGACAGTA CAAACCCCAGC CATAGAGAAG GAGCTAGCCT AATGTAGAGG ACCAGAAAAT TGGTACAATT CCAGTTAGAG CTGGCAAAAG GACAGACAGT CCTTTAGCAA TGATTCTTTA AAGGCATAGG GCCTATACGA TACCAAATCC TTACTCTCAT GTAAAAGGCC GTTAAAGAAG TTGAAAAGGC AATCACTAGT AAAATAGCAA AAAATAAATA GGTATTTCCT CAAAAGGAAA ATGAATGGCT ATATTACTAA CATCAAGAGA CTGGAAAAAA TGTAAGAACT TAAGACTCTA GCGGAAACAT

### (2) INFORMATION FOR SEQ ID NO: 87:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 18436 base pairs
    (B) TYPE: nucleic acid

  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

CCGAGCGTCG TTACAGACTT TATCAAGATT GGACGCAAGA AGAAATTCAA CATATAAAGG 60 AAAATATGGC ACAATCTCCA TGGCATACTC ATTACCATGT TGAGCCAAAA ACAGGACTTC 120 TCAACGACCC AAATGGCTTT TCTTACTTTG ATGGCAAGTG GATCCTCTTT TACCAGAATT 180 TTCCTTTTGG TGCAGCCCAC GGTTTAAAAT CTTGGGCACA GCTAGAAAGT GATGATTTGA 240 TTCACTTTAA AGAAACTGGA ATCAAAGTTT TACCAGATAC TCCATTAGAT AGCCACGGTG 300 CCTACTCTGG TTCTGCCATG CAATTTGGCG ATAACTTATT CCTATTTTAT ACAGGAAATG 360 TTCGCGATAA AAACTGGATC CGTCACCCAT ACCAGATCGG TGCTTTGATG GACAAGGAGG 420

GTAAGATTAC	<b>AAAGATTGAÇ</b>	AAGATCTTGA	• • • •	AGCAGACTCT	ACTGACCACT	48
TCCGCGATCC	ACAAATTTTT	AACTTTCAGG	GTCAATATTA	TGCCATTGTC	GGCGGACAAG	540
ACTTGGAGAA	AAAAGGTTTC	GTTCGTCTCT	ACAAGGCTGT	CAATAACGAC	TACACAAACT	600
GGCAAGCAGT	TGGCGACCTT	GACTTTGCTA	ACGACCGTAC	TGCCTACATG	ATGGAATGTC	660
CTAATTTGGT	CTTTGTAGAG	GAACAACCTG	TCCTTCTCTA	CTGTCCACAA	GGATTGGATA	720
AGAAAGTTCT	AGACTACGAT	AATATCTTTC	CAAATATGTA	TAAGATCGGG	GCTTCCTTTG	780
ACCCTAAAAA	TGCCAAAATG	GTAGATGTGT	CTCAACTTCA	AAACATGGAT	TACGGTTTCG	840
AAGCCTATGC	AACTCAAGCC	TTCAACGCTC	CTGATGGGCG	TGCTCTAGCA	GTTAGCTGGC	900
TTGGTTTGCC	AGATGTTTCT	TACCCATCTG	ACCGTTTTGA	CCACCAAGGA	ACCITCTCTT	960
TGGTCAAGGA	ACTCACTATC	AAAGACGACA	AGCTCTACCA	GTATCCAGTC	GCTGCTATTA	1020
AGGACCTTCG	TGCTTCTGAA	GAAGCCTTCT	CAAACCGTTC	CCAAACCAAG	AACACTTACG	1080
AACTTGAACT	CAACTTGGAA	GCTAATAGCC	AGAGCGAGAT	TGTCTTACTT	GCTGATAAAG	1140
AAGGTAAGGG	ACTTTCAATC	AACTTTGACC	TTGTAAACGG	TCAAGTAACA	GTGGATCGTA	1200
GCCAGGCTGG	AGAACAGTAT	GCCCAAGAAT	TTGGGACAAC	TCGTTCTTGC	CCTATCGAGA	1260
ATCAGGCTAC	TACTGCTACA	ATCTTCATCG	ATAACTCTGT	CTTTGAAATT	TTCATCAATA	1320
AAGGAGAAAA	AGTATTTTCT	GGTCGTGTCT	TCCCACATGC	GGACCAAAAT	GGTATCCTGA	1380
TTAAATCTGG	AAACCCAACT	GGAACTTACT	ATGAATTAGA	TTATGGTCGC	AAAACTAACT	1440
GATGTCGCCA	AACTTGCAGG	CGTCAGTCCT	ACTACCGTTT	CTCGGGTTAT	CAATAAAAA	1500
GGGTATCTAT	CTGAGAAAAC	CATCCAAAAA	GTCAATGAAG	CCATGCGAGA	ATTGGGCTAT	1560
AAACCCAACA	ACCTGGCTCG	TAGTCTGCAA	GGAAAATCAG	CTAAGTTAAT	CGGCTTGATT	1620
TTCCCCAATA	TTTCCAATGT	TTTCTATGCA	GAATTGATTG	ATAAATTGGA	ACACCAACTC	1680
TTCAAAAATG	GTTACAAGAC	CATCATCTGC	AACAGTGAAC	ATGATTCTGA	GAAGGAACGC	1740
GAATACATCG	AAATGTTGGA	AGCCAATCAG	GTGGACGGCA	TCATTTCTGG	TAGTCACAAC	1800
CTAGGAATCG	AAGACTACAA	TCGTGTGACA	GCGCCGATTA	TTTCCTTTGA	CCGAAACCTA	1860
TCGCCAGACA	TCCCTGTCGT	CTCCTCTGAC	AACTATGCTG	GTGGGGTTCT	TGCTGCCCAA	1920
ACCTTGGTCA	AGACAGGTGC	CCAGTCTATC	ATCATGATTA	CAGGGAATGA	CAATTCTAAT	1980
TCGCCAACCG	GACTGCGCCA	CGCTGGTTTT	GCATCCGTAC	TCCCAAAAGC	TCCTATTATC	2040
AATGTTTCCA	GTGACTTTTC	TCCCGTCAGA	AAAGAAATGG	AAATCAAGAA	TATCTTGACC	2100
CGGGAAAAAC	CAGATGCCAT	TTTTGCTTCG	GATGATTTGA	CAGCTATTCT	GGTCATTAAA	2160
ATCGCTCAAG	AATTGGGCAT	TTCTGTCCCA	AAAGAGCTCA	AGGTCATCGG	CTATGATGGG	2226

ACCTACTTTA	TCGAAAATTA	CTACCCTCAA	TTGGCTACTA	TCAAGCAACC	TTTGGAAGAG	2280
ATTGCTTGTC	TCACTATTGA	TCTTCTCTTG	CAAAAGATTG	AAGGCAAGGA	AGTCGCCACA	2340
ACTGGTTACT	TCTTACCAGT	TACGCTATTA	CCAGGAAAAA	GTATTTAAAC	ACAAGAAAAC	2400
TCAGACCGAT	TCGTCTGAGT	TTTTATGATC	TTAAATTTTC	GAGATAGCGC	TGGGCTGTCT	2460
CTAGGTTAAA	GGTTTTATCT	GAGATGAGGC	GCTCTACTAG	GGGAGCAACT	TCAGATTCAC	2520
TAGCCCCAGC	TAGGAGAGCT	AGGGATTTGG	CCTGTAGTTT	CATGTGGCCT	TGCTGGATGC	2580
CCGTACTTAC	CAAGGCTTTG	AGGGCTGCAA	AATTTTGAGC	AAGACCGATG	GACACGATAA	2640
TCTGGGCTAA	TTCTCTGGCA	GAAGGATTTC	CTAGTAGATC	ATGACTGAGA	ACTACACGTG	2700
GGTTGAGGCC	GATAGAGCCA	CCCTTAGTCG	CTACAGGCAT	GGGCAGGGTC	ATCTCACCGA	2760
CCAATTCTTC	TCTTTCAAGG	TCCAGCGTCC	AGCAGCTAAG	ACCTTGATAG	CGTCCATCTC	2820
GACTGGCAAA	GGCATGGGCC	CCAGCTTCGA	TGGCACGCCA	GTCATTACCA	GTGGCAATCA	2880
AAATCGCATC	AATACCATTA	AAAATTCCTT	TATTATGAGT	AGCAGCTCGG	TAAGGATCAG	2940
CCTGCGCAAA	CTGACTAGCC	AACGCAATTT	TCTCCGCAAT	CTCTCGTCCT	TGATCCTTTT	3000
GGCGGCTCAA	GTAGCGAAAG	GCGATGCGAC	AGCTTGCAGT	CACCAGAGAA	TCGGTCGCGT	3060
AGTTGGACAG	GATTCCCATG	AGACTCTGTC	CCTGACTGAG	TTCTTCTAAG	ACTGGTTTCA	3120
AGGCTTCCAG	CATGGTGTTG	AGCATATTGG	CACCCATGGC	TTCCTGGGTA	TCGACATGAA	3180
TATAAACAAC	GAGAAAGTCT	GGTTCGCCTT	TTATCTGCTC	GACATGCAGA	TCACGCGCCC	3240
CACCTCCACG	TTTAACGATA	GAAGGATAGG	CTTGATTGGC	AAGCTCCAAG	AGCTCCGCTT	3300
TCTTGCTGGC	AATCTTCTCT	TGCGCTAGTT	TAGGATTAGC	AACTTGATAA	AGGGCTACCT	3360
GCCCAATCAT	CTGTCGCTGA	TGGACTTGTG	CAGTAAAACC	ACCTGCACGC	TTGATGATTT	3420
TGCTGGCATA	GCTGGCCGCC	GCAACCACAG	AGGGTTCTTC	TGTCACATAG	GGAACGGTGT	3480
ATTCCTGACC	GTTGACAAGT	ACCTCCGGAA	CCAGTGAATA	AGGCAGAGAA	AAAGTTCCCA	3540
CTACATTCTC	ACTCAGCTGG	TCTGCCACAG	TCACGCTCAT	CTGTTCATCC	TTCTCCAGAC	3600
TAGCTTGTCT	CTCAGGACTA	AGGAGCGCCT	GAGCTTTTAA	CAGCTCGAGG	CGCTCTTGGT	3660
ATGATTTTTT	AGAAAATCCA	TTCCAACTTA	TCTTCATTAT	TTTTCAACCT	TGCTATAACG	3720
GCGTTGGTGG	TCGAGAATTT	CAACCAAGGC	AAAATCTTGA	TTTTCATAGC	CAGCAAACTG	3780
GGCAGAGTTA	GTTTCATCCA	AGTTTACTTC	CTCAAAAAAG	ACCTTTTCAT	AGTCTGCAAC	3840
GGATAGGGCA	GTTCGTTGGT	TGAGCTTGTT	CAAACGGTCT	TTATCCAAAT	AAGCTTCATA	3900
TCCTTCAACC	AATTCACCAC	TGAAGAACTC	AGCCACAGCT	CCACTTCCGT	AACTATAAAG	3960

			696			
GGCGATTTTA	TCCCCAGCTT	TCAAGCTATC	TGTATTTTCC	AAGAGAGACA	AAAGTCCAAG	4020
gaaaagtgaa	CCTGTGTAGA	TATTCCCCAC	CTTTTGACTG	TAGAGAATAG	ACTGGTCAAA	4080
ATGCTTTTGT	AAGAGGTCTT	TTTTCTCTTG	AGGCAGGCTC	TTATCCATGA	TTTTTTCAA	4140
GCCTTTTAGC	GCTAATTTAG	GATAAGGCAA	GTGGAAACAA	ACAGCCGCAA	AATCATCCAA	4200
AGTAAGCTGG	TAGCGTTTTT	GATATTCAAG	CCAAGTCGTT	TTCAAACTAT	CCAAGTATTG	4260
TTGGGTAGAA	TAGACACCAT	TTACATAAGG	AGTTGTCGAG	TAATTTGGTC	GCCAGAAATC	4320
CATGATGTCA	CGGGTCTGAG	CTACATTGTC	ATTATTAAAG	GCCATCATGC	GTGGATTTTG	4380
TGTAATCAAC	ATAGCTACAC	TTCCAGCACC	TTGAGTTGGT	TCTCCTGGAG	TTTCAATACC	4440
GTATTTGGCA	ATATCACTGG	CAATGACCAA	GACCTTGGAC	TCCGGAGAAT	TTTCCACATG	4500
CAATTTGGCA	TAATGGAGGG	CAGCAGTCGC	TCCGTAGCAG	GCTTCTTTAA	TCTCGAAACT	4560
ACGAGCAAAG	GGCTGGATGC	CCAGCAAGCC	ATGCACAAAG	ACGGCCGCAG	CCTTACTCTG	4620
GTCAATTCCT	GACTCGGTCG	CCACAATGAC	CATGTCAACT	TCTTGTCTTT	CTTGCTCAGT	4680
TAAAATAGAG	TCACTAGCAC	TGGCCGCCAA	GGTCACGATA	TCCTCAGTTA	GGGGCGCAAT	4740
ACTCAATTCC	TTGAGTAAGA	GTCCTTTACT	TAATTTTTCA	GGGTCAATTC	CCCTCGCTTC	4800
TGCTAAGTCT	TGTAATTTCA	AGACATATTG	ACTGGTCGCA	AAACCAATCT	TATCAATACC	4860
GATTGTCATA	TTTACCTCTG	TTTTATCATT	CATGTAAAA	ATCGTTCTAT	ACTATTTAT	4920
CACAAATGGC	AGTAAAAGAG	AGAAAAAAGA	CTTGATTCAC	CAAATCAAGC	CTCTTATTGG	4980
TCATCATTTT	AAAGAATGAT	TAGTTGCTAG	AGAGTTCACC	GATATAAGTA	GCTTTATAAG	5046
CTCCATTCAC	AGTTATCAGC	TCCTGGAGGA	TCAAATTTCC	TGAGTAAGTC	CTTCCCATCT	510
CATCTACAAA	TTTTTGATAA	AACTGACTGG	TCGGAATTTC	TCTGACATCC	TTATCAAATG	516
TCTTATCAAG	TGTTTTACTA	ACCTTCTCAG	CAATCAATTG	ATGCTCTTGC	CATCCACTTT	522
GAAACTCTGA	GCCCGAACTA	GAAACCATGA	CTGGGATAAA	CAACAAGGTC	AGTAGATTTA	528
CAGACAATAA	GGAAAGTAGT	AGACTTCCTG	CAAAACTAGA	ATCCTAGTTC	ATGATTGATA	534
ATACCAGCAA	TCAAATTCAT	TCGTAATCCG	AAGCGTTTAC	GATGATTTCG	ATAGGTTGTT	540
GAAAACATTT	TAAACGTTTT	TACTTTGGCA	AAGATGTTCT	CAACCTTGCT	TCTCTCCTTA	546
GATAGCGCAT	GGTTACAGGC	TTTATCTTCA	GCTGTTAGCG	GCTTGAGTTT	GCTGGATTTA	552
CGTGGAGTTT	GTGCTTGAGG	ATATATCTTC	ATGAGCCCTT	GATAATCACT	GTCAGCCAAG	558
ATTTTACCAG	CTTGTCCGAT	ATTTCTGCAA	CTCATTTTGA	ACAACTTCAT	ATCATGACTA	564
TAGTTCACAG	CGATATCCAA	AGAAACAATT	CTCCCTTGAC	TTGTGACAAT	CGCTTGAGCC	570
TTCATAGCGT	GAAATTTCTT	TTTACCAGAA	TCATTCGCTA	ATTGTTTTT	AGGGCGATTG	576

697

ATTTTTACTT	CCGTCACATC	AATCATTATC	GTGTCCTCAA	AGCTGAGAGG	AGTTCTTGAA	5820
ATCGTAACAC	CACTTTGAAC	AAGAGTTACT	TCAACCCATT	GGCTCCGACG	GATTAAGTTG	5880
CTTTCGTGGA	TACCAAAATC	AGCCGCAATT	TCTTCATAAG	TGCGGTATTC	TCGCACATAT	5940
AGAAAGCGTT	ATCAATTTAT	TTATCTCATT	TTTCAGAAAA	TTCTTTTATT	TCTGTAAAGT	6000
CTACGATACT	CGATGTGTTT	TTATATAATG	ATAGAGTCTG	AGAATCACTG	TTCCGCTAGC	6060
CATTCCAATA	GAGATTACCA	AAGCCAACAT	GACAACCAAG	GTCGCACTTG	CCAGTGCTTT	6120
ATTATAGTCC	CCTGTCACAA	AAAAGGCAGT	TGTTCGGTAG	GAGAGATAAC	CTGGAACCAG	6180
CGGTGCCAAA	ATGGCCAAGA	TAAAGACCAC	AGCAGGTGTC	TTATAAAGAA	TACTTAAAAT	6240
CTGGCTGACA	CAAGAACCAA	TAATGGCTGC	AATGAAGGTA	GCTACAATGA	CATTGGTCGG	6300
TTCCTTGAGC	AAGAGATAGA	TTAGCCAGAC	AGTCATGCCC	AAAATCCCTC	CAGGTAAGAG	6360
CATAGACCGT	TGCACATTGA	GTACGATTAA	AAAAGTGATA	ATGGCAAGAA	AACTTGCTAC	6420
TGCTTGTAAT	AAAAAGGTTG	TTAGTGTCAT	ATTAGTTCAT	CAATACCAAG	GCGACAGAAG	6480
TTCCTGCCCC	TAAAGCGAGG	GTAATGAGCA	GGGATTCAAA	CATCTTACTC	ATACCAGAGT	6540
TTATGTGGTT	GGTCATAATA	TCACGGACCG	CATTGGTCAA	GGCAATACCT	GGTACAAACG	6600
GCATGACCGC	ACCAGCTATA	ATCAAATCTG	CCGTTGAAGG	AAAACCTGTG	TAGCGAGCCC	6660
AAAACTGGGC	AATTATCCCA	AAGACAAAGG	CTCCAGCAAA	GGCTGTCACA	AAGGGAATTC	6720
GGATAAATTT	TTCCACATAG	AGGGAAAAGG	CAAAACCAAA	TAAGGTCGCC	ACTCCTGCCC	6780
CAAGTGCGTC	GTAGATATTT	CCGCTAAAÇA	TAACTGAAAA	GAAAGGAGCA	CTAAAGGTCG	6840
CAGCCAGAGT	TACCTGCAAC	TTAGTATAGG	GAAGGGGTTT	GGCTTGCAAG	GCCGTCAATT	6900
GCTTAAAGGC	TGTTTCTAAG	TCAATCTGCC	CCCCAACTAG	CTGACGAGAA	ATCTGGTTCA	6960
CATCGCAGAC	TTTTTCGATG	TTATAAGAAG	AGGAGGTCAC	GCGCTTCATG	CGCAAATATT	7020
GGTATTTTCA	ATAGAGAAAA	AGATAGCGGC	AGGCATGGCA	AGGACATTGC	AATCCACAAT	7080
CCCCTGCGAA	TGCGCGATTC	GAATCATGGT	ATCTTCTACA	CGATGGATTT	CTGAGCCACT	7140
TTTAAGGAGA	ATAGTCCCCG	CTAGCATAAT	CACATCAATG	ACGGCATTTA	ATTCTTTTGA	7200
TTCTTCCATG	CTTTCCTCCT	TTTATCAACT	CCCTCTATTC	TATCACAAAT	CCGGACTCAA	7260
AAAAAATCTT	TGCCATGAAA	TCATGACAAA	GATTGATTAC	TCATTTTGAT	TATCCATCTG	7320
CTTTTAAGGA	GTAGCTGAAG	TTGTTTTAGG	TTTGTAGATT	GAAATCTTGA	CTCTAGTCTT	7380
ATTGAGGTCT	ACCTTTTCAC-	CTGCTCTAGG	ACTTTGTTCA	ACAACCATGC	CTTCTGCACT	7440
ACCTGCAGGC	GCTGTCGTCA	CTTCTACAAC	TTCTATATTA	GCTTCCTTAA	TCCCAACAAT	7500

698 TTGAATCAAA TTGTTCTTAG TAAACTCCAA GCTAGAACCA ATGTAACTCG GCATGGCAAC 7560 ACTTGTAACT TTTTTAGCTA CTGTCAAGAC AATTTGAGTA GGTTTACTCA CATCATAAGT 7620 CGTTCCGGCA CCTGGACTTT GTTTCATAAT CGTTCCTGGT TCGCTTTCGC TGGACTCTTC 7680 TTCCTCTATC TTAATCAAAT TCTCAGGAAC CTTCTTCTGC TTGAGTTCTG AGATTACTTC 7740 TGTAGAGTTC CGTCCAATAT AGTTCCCTAA TTGAATCGTC GTAGCTTTTT TAGCTACTGT 7800 CAAAACAATT TGAGTTGCCT TGCTCAAGTC ATAGGTCGTA CCTTCTGGTA GACTTTGCTT 7860 CAGGACCGTT CCAGCCTCAC TCTCATTCGA CTCTTCTTCC TCAATTTTAA TCAAATTATC 7920 TGGAACTTTT TTCTCTTTTA ATTCCGCAAT GACATCAGAG GATTTCCGAC CGACATAATT 7980 ACTAATTTGC AAAGATTGCT TGCCTGATGA GACAACCAAA TTGATTTTCG TTCCTTCTTT 8040 TCGACCAGTT CCAGCGCCAG GATCTGTACG GATAATCCGC CCTTCTTCCA CCTTTTCACT 8100 AGCCTCTGTC TTCTCCTCAC CAATCTCAAA ATTGGCTTTT TTGAGCGTTG CCTTGGCCTC 8160 TGCAACTGTC TGACCTGCCA CATCTGGAAT GGCAATGGTT GCAGGAGTTC TGGATAGTAT 8220 CCAAATAAGA GAAGCTGCCA CCAATACAAG GCTGGCCAAC AAAATCAGGT AACGCATCTT 8280 AAATCTATGT TTTTTCGGTG CTTGTGGTTG GTAAGTTTCC TCTGTCACAG CCTGGCTTGG 8340 GTTTTTGATT GATTTGTGTT CTGTTTGCGC TTGAACCTTA GGAATAGATG TCAAGGTACT 8400 CTGAGAAACC TTCGGCAAGG TCTTGGTATC TGCCTTGCTC GTTTCATCAA AGATTAACTT 8460 ACTITCATIT CTACGATTGT AGGACAAGCT ACTAGACAAG TCCACATACA TCTCTGAAAC 8520 CGAGCGGTAG CGATTGGTCA ACTTTTTAGC AGTTGCCTTG ATAATAACAT TTTCTAAAGC 8580 CTGAGGTACA GATGGATTTT CTGCAATAAC GGACGGCAGG GGTTTCTGGA AATGCTGGAG 8640 GGCAATGGTC ACCGCGCTAT CCCCGTCATA AGGGATATGG CCTGTCAGCA TCTCATAGAA 8700 AATAATCCCC ATGGCATAGA TATCACTCTG CACAGTCGCC TTCGAACCAC GCGCCTGCTC 8760 TGGTGACAAG TAATGAACTG AGCCCAACAT CGAGTTAGTC TGGGTCAGAC TTGTCTCTGC 8820 AAAGGCTACA GCAATCCCAA AGTCTGTGAC CTTGGCAGTC CCATCTGGTG TCAAGAGGAT 8880 ATTTTGAGGT TTCAAGTCCC TGTGAACAAT TCCTCGAGTA TGGGCCAAGC GCATAGCCAA 8940 GAGAATTTGT CCCATGATAC GGACTGCTTC TTCATTAGAA AGAGGATAAT GTTCCTTGAT 9000 ATAGCGTTTG AGGTCCAGTC CAGCCACATA CTCCATAGCT AGGTACTGTT GACCGTCTTC 9060 CTCGCCAATA TCTGTTATCC GAACGATATG AGGATGGTCT AGATCTGCCA TAGCTCTCGC 9120 TTCACGCTGA AAACGAGCTA CAGCTATCGG GTCCGTCTGG TAGTTGGTCC TCAGAACCTT 9180 CACTGCCACT TCTTCCCCAT CTAAGATTAA GTCTTTGGCT AGGTAGACAT CCGCCATACC 9240 TCCTCGACCA ATCTGTTTGA CAATCCGATA GCGTCCGGCA AAAATCTTGC CGATTTGGAT 9300

CATTCTGCAT	CCTCCTCGTT	CATAGAAACA	AGGGCAACCG	TAATGTTGTC	TAAACCTCCT	9360
GCATTGTTAG	CAAAACGAAC	AAGTGTCTCC	GTTTTATCTG	CTAAAGGAAT	ATCACTGGTT	9420
ACAATATCAC	GAATCTCACT	GCCTGAAATC	ATGTTGGTCA	AGCCGTCACT	ATTGAGCAAG	9480
AGATAGTCAC	CTGACTCAAG	GATAACTGTC	CCAAAATCAG	GCTGAATTTC	ATCTTTTTGC	9540
CCAATAGACT	GGGTGATAAT	ATTTTTTGC	GGATGAGCTT	CTGCCTCTTC	TGGTGTCAAT	9600
TGACCAGCCT	TGAGCAATTC	ATTAACCAAG	GAATGATCGC	TCGTCAACTG	ATGGTATTCT	9660
TCTCCACGAA	TCAAGCCGAT	ACGCGAATCA	CCAATATGAG	CATAGATAGC	CTGATTATCA	9720
ATAATAGCAA	GGACTTCCAA	AGTAGTTCCC	ATGCCTCTGT	AAGCTTCATC	CTGACCAAGC	9780
TGGTGAATCT	TTTGATTTTC	AATTTCTAGG	TAATGGGCGA	ACCATTCACG	CACTTCATTG	9840
ACTGTATCGA	TCTGGGTATC	AACCCAAGCT	ACACCCAGGT	CTGTGACCGC	CATTTCACTA	9900
GCGATATTCC	CTGCGCGATG	ACCTCCCATC	CCATCAGCTA	AAATAATCAT	GGTACGTCCA	9960
GCTCTATTGA	CATAGTGGTT	GACATAGTCT	TGGTTATTTG	TTCGTTTCTG	ACCAACATCT	10020
GTTAATAATG	AAATTTCCAT	GTGTCAGTTC	CTTCCTAATC	CGATATCTTG	CGAAATTGAC	10080
TGATGAAGAA	TCCATCACTT	CCATACAATT	CAGGTGTAAT	GAGGATACAG	CCGTCTTTCA	10140
TGATATCCTT	ACATTCATGT	TCTAGTTTTA	CCTGCTCGAA	CTCGGGATGA	CTCTCTAAAA	10200
AGGCCTTAAC	GACTTGAAAA	TTCTCCTCTG	AGACGATAGT	GCAGGTGCTA	TAAGTTATTA	10260
TACCACCTTT	GCCTAGTATT	TGACAAACAC	TACCTAATAT	TTCTAACTGA	ATTTCCTGCA	10320
AGGACGCGAA	ATCTGCCGTT	TCTTTATTGT	ATTTGATATC	TGGTTTTCGG	CGCAAAAGAC	10380
CGATTCCTGA	ACAAGGAGCA	TCCACCAAAA	TCTTATCAAA	GGAATCCTGG	TCAAAAAACT	10440
CATGCACCTT	TCTGGCATCC	AATTTTTGAG	TTTGAACCCG	ATCTTCAACT	CCCAGACGTT	10500
GGGCATTTTC	TTGAATTAAA	TCCAACTTGT	GGTCGTACAA	GTCCAGAGCA	GTAACCTGAC	10560
CTGTCGTAAG	ATAAGAGGCT	ATATGGGCTG	TTTTCCCACC	TGGAGCCGCA	CAGGCATCAA	10620
GCACTCGCTC	ATCACCTTGT	AAATCAAGCG	TCGGAGCAAC	CAGCTGACTG	GACTCATCTT	10680
GGATGGTAAT	GGCTCCATCC	GCAAACAAAT	TATGCCCTGC	AAAATGCCCC	TGCTCCTTAA	10740
CCAGACCAGT	GGTTGCTAAA	AGGGAATTAT	TCGCCTCCAA	CAAGGCTTGG	ATTTCCTCTT	10800
TTCGACTTAG	GTCTGTTACA	CGAATACTGG	CTTTGTTTCG	CACTAACAGG	CTTTCAAAGA	10860
TGGCTTTTGC	TCTCTCCTCT	CCGTATTCTT	CCTTGAGTTT	GGCAACTAGC	CAAACTGGGA	10920
GAGAATAGGC	AATGGAGTCA	CGCTTGTTTT	TTCGCTTGAT	GCTAGCAATA	TCTGGCCAGC	10980
CTTCACGCAA	GATACGGCGA	AGGACAGCGT	TGACCAATTT	TTCACTGCCT	TTTTTACGGA	11040

GTTTGGCCAA 1	PTCCACTGCT	TCATTAACCA	700 CAGCATGATC	TGGAATCTTG	TCCAAATAGC	11100
GGAGTTGGTA (	GCACTCATG	AGAAGAAGGA	CATAGAGCCA	GCTGTCTAAC	TGGTCTCTGT	11160
CTTCGATAAA (	STGGGATAGG	TACCÀTTCCA	GAGTCAGTTT	ACGGGCTACC	GTTCCATAGA	11220
CCAGCTCGGT (	CACTAAGCCC	TTGTCTGCTG	CCAAAAGTTG	ACTTCCCTTT	AGATGCTTAT	11280
TTAAGGCGAT A	ATTTGAATAT	GCTTGGTTCA	CAAAAACATC	CTCTAGCACT	GCTAGAGCTA	11340
AACTTCTAGC (	CGTTTCTACT	TTAGTCACCA	AATCGTTCTC	CTACAGTCAA	TGTACGTCCA	11400
ACTCCGTTGA	GGAAGGAAGC	AATGTCCATC	TTAGGCTTAC	CAGCTGGCTG	CACTTGTTTG	11460
AGGGATAGAG	CCCCTTCAGC	CGTTGCGACA	ATCAATTCTT	TCTTGCCGAT	AGAGAGAATC	11520
TCACCTGGAT	TTCCCTGACC	TTCTACTGGT	AGGGCTTCAT	AAATCTTAAA	GCGGTCGCCC	11580
TTAAGGAAAG	TATGGGCAAC	AGGCCAGGGG	TTCATTCCAC	GAATTTGGTT	AAAGAGTTGA	11640
CGATTGGTTT	TGTTCCAGTC	CAGTTTTTCT	TCCTCTGGCT	TTATATTGG	AGAGAAGGTA	11700
ACCTGACTCG	TATCCTGCGG	TTCAGGTTTG	ATATCACCAG	CAATATAGGC	AGGCAGAGTG	11760
TCCAAAAGCA	AATCACGACC	AACTAGCGCC	: AATTTTTCAA	ACAAGGTGCC	AACATTGTCC	11820
TCATCTGTGA	TCGGAATGCT	GCGACGAGAA	ATCATATCTO	CTGCATCCAT	TTCCTTAACC	11880
ATTTCCATGA	TGGTCACACC	AGCTTCCTCA	TCCCCTTGA	TCAAGGCATA	ATGGATAGGC	11940
GCACCACCAC	GGTGTCTAGG	AAGGAGGGAG	GCATGAACG1	TGACAGCAAA	GTCCATGCTA	12000
TCAAGGAGTT	TGCTTGGGAG	AAACTGCCCA	AAAGCAGCAG	TCACAATTC	ATCTGCTCCT	12060
AGCTTCATAA	GATCTTCCAT	CTCTGGACTI	CCAGATAATT	TTTCAGGTTC	GTAGATAGAT	12120
AGTCCTGCTT	CCTTGGCAGC	CTGCTTGACT	GGGGTTTCT	r ggataactti	TTTACGACCA	12180
ACAGCACGGT	CTGGCTGGGT	CACAACGGC	r AGAATTTCG	r AACGGTCATC	TGTCAAAAGT	12240
CCTTTTAAGA	CTGTTGCTGA	AAAGTCGGGG	G GTCCCCATA	A AGATTAGTT	r TGTCATATCT	12300
TCTCCTTCTT	ATAAAAATTO	CTGCGGCTC	A TGGTCAATG	C TGAGACGGA	G CTCACTATTT	12360
TCCCGTTCTT	GAGTCAAGGG	TAAAACCTG	G TTGAGGGTC	G ACCCCAGCT	C ATCTTCTA4A	12420
CGGTATTTAA	TTAAAATCTC	GTAATGATA	G AGGTTGTGG	G TACGGGCAA	T CGGTTTTGGC	12480
GTTGGCCCCA	GAATGGGACT	r GGTCTCTGA	C AAGCCTGAC	C GCAAAATGT	T CATGACTTCA	12540
TAGGCACGTT	TGAAAACCTC	TTCTTCTTT	C TTGTGAGAA	A GGGTAATAC	C AATCGTGAAA	12600
TAGTAAGGTG	GATAGCCGAG	TTGTCGTCT	G ATTCCCATT	T CATAGGCAT	A AAAGCCTTCG	12660
TAATCTTGAT	CCTTGGCAA	A TCGAATAGC	A TAGTGCTGC	G GATTGTAGG	A CTGTATCAAG	12720
ACTTGACCTG	CCTTTTCAG	C CCGACCTGA	T CGACCTGCC	A CCTGAGTCA	A GAGCTGGAAG	12780
GTTCTCTCAG	AAGAACGGA	A ATCAGGCAG	A TTCAAGGCC	G TATCCGCAT	T TAGAACTCCG	12840

ACTAGGGTAA	CATTGGGAAA	ATCCAAACCC	TTTGCAATCA	TCTGAGTACC	AAGTAAAATA	12900
TCCGCTTCCC	CTCGCCCAAA	CTGGTCAAGC	AAGGCTTGGT	GACTGCCTTT	CTTTCGAGTC	12960
GTATCCACAT	CCATCCTCAG	AATGCGAGCT	TGGGGAAAGA	GTTCTGCTAG	CTCATCATAA	13020
GCCTTCTGAG	TTCCCGTCCC	ATAGTAACGA	ATACTGCGGC	TCTTACAGTT	AGGACAGACC	13080
TGAGGAATAT	CCTTCGAGAA	ACCACAATAA	TGGCAGTTCA	TAGTCTTGGT	ATCCATATGC	13140
AAGGTCAGAG	AAATATCGCA	GTTGGGACAA	GTATCCACCG	TCCCACACTC	CCGACACATG	13200
ACAAAGCTAG	AATAACCACG	GCCATTGAGC	ATGAGAACCA	CCTGCTCTTT	TTTAACCAGA	13260
CGGTCTTGGA	TAGCCTCTAG	CAAAGGAGGC	GTAAAGTTTG	ACGTCTCATT	TTGTCCGATA	13320
TAGTCTCGAA	AGTCAATCAC	TTGAACCTCA	GGGATTGTAG	CCAAAGGATT	GGCACGTTGG	13380
GTTAGACGTA	AGTGTTGATA	GACGCCTTTG	CCAGCACGTG	CCCGGCTCTC	TAAGCTCGGC	13440
GTTGCAGATC	CAAGTACCAG	AGTTGCTTGA	TTATACTGAG	CCCGTAAAAT	AGCTACCTCT	13500
CTGGCATGGT	AACGGGGATT	GCTGTCCTGC	TTATAAGCCG	CTTCATGCTC	TTCATCAATA	13560
ATCATGACAC	CCAGATTTTT	CAGAGGAGCA	AAGATAGCAG	ATCTGGCACC	AACAACAACT	13620
TGGGCATCGC	CACGCTCCAC	CTTGCGCCAT	TCATCATACT	TTTCACCATT	GGATAATCCT	13680
GAGTGAAGAA	TGGCTACCTT	GTCCCCAAAA	CGTGCTATAA	AACGCTCGGT	CATCTGAGGA	13740
GTCAAGGAAA	TCTCAGGTAC	CAGCAAAATA	GCTGTCTTGC	CCTTATCCAG	GGCACCTTGG	13800
ATAATCTGCA	AGTAAACCTC	GGTCTTCCCA	CTTCCTGTAA	TCCCTTGAAG	TAGAAAGGGA	13860
			GCATCACGCG			13920
AACTCCAAAG	GTCTACTTGC	TTCAATTCCT	TCAAAATAAG	CAGCCGAGCG	TTGAACTTCC	13980
TTTTGGACTA	TGGTAACAGC	ACCTTGATCC	ACAAAGAAGT	TGACTTGCTC	TCGCGAGTAG	14040
GACTCTAACA	AGCTAGCCAA	GGAAGCGCTC	TCTGGATGAG	ACAGCAGATA	ATCTCTCAGT	14100
TCCAACTTTT	TCTTGGCACG	TGTAGAAA.TC	TCAACACCTT	CTAATTGAGC	ATGGTCAACC	14160
TCATACCAAG	ACTGGGTCTT	GACCTTCTTT	TGATCGACTC	CCTGATATTC	CAGACCAAGC	14220
			GCTTGCTTGG			14280
			ACTCGTTCTT			14340
			AGAAACCCTG			14400
			AACTCCTCAG			14460
			GCAATATCTT			14520
TCTCCATCTG	ATTGGGACTT	CAAACCAAGA	ACAATCCCTT	GAATCAGGCG	ATTACCCTTA	14580

CCANANCCC		G100001	702			
	A CATGAACCCG					14640
	r AGGGCTGGTC			,		14700
	CACCTCCTCC					14760
CCCCCAACO	TTAAATTTTT	TCACCATCTT	CTTTTTCTTT	AGCAATTTGC	TCTTTGATTT	14820
TCTTTTCTTC	TTCTTCTTTG	CGGCGTTTTT	CTTCTTCGAT	ACGGCGACGC	ACTGCTTCAC	14880
GTTTTCCTTC	TGGATCTGGG	TGAATTGTAA	CGTTTCCTGA	TTCGATTTCT	TCTAAAGCGC	14940
GAAGAGTTGA	TTTTTCAGAC	TTGAAACCTT	GAGTTGCTGG	GGCACCTGCT	TCCAATTCGT	15000
GGGCACGTTT	TGCTTCCAAG	ATTACGAGTG	AATATTTTGA	AGGAACCTTG	TCGAGCAAGG	15060
TATCAATAGA	GGGTTTTAAC	ATCATTTGCT	TGTACCTATT	TTCTAAATTT	TATCGGGTAG	15120
TTGGAGATTT	TGGTAACATC	TCCTGATAGT	GACCAATGAC	ACGATCCACA	CAGAAGTGTT	15180
CTGCTTCAAT	CACACATTTG	ACACGTTCAG	CAGCTAGGGG	TACCTGATCG	TTGACAATCG	15240
CATAATCATA	CTCACGCATG	AGGGCAATTT	CTTCCTTGGC	CTTTTCGATT	CGTTGGGCAA	15300
TCACTTCTGC	ACTATCTGTT	CCACGACCTA	CCAAGCGATC	TTGCAATTCA	TCCAAATCTG	15360
GTGGTGTCAG	GAAGATAAAG	ACAGCATCTG	GAACCTTTTT	CTTGACCTGA	AGAGCACCCT	15420
GAACTTCAAT	TTCAAGGAAA	ACATCGATTC	CCTTGTCCAA	GGTTTCATTG	ACATAGGTCA	15480
GAGGAGTTCC	ATAGTAGTTA	CCGACATATT	CTGCGTATTC	CAACATCTGT	CCTTGACGAA	15540
TCAGCTCTTC	AAATTCTTCA	CGAGTACGGA	AGAAATAGTC	AACACCGTCC	ACTTCTCCAG	15600
GACGTTGTGC	GCGTGTCGTC	ATCGATACAG	AATATTGAAA	TTGGTTTTCA	GAACTCTCAA	15660
AAATCTCTCT	TCTAACCGTT	CCTTTTCCAA	CCCCTGAAGG	ACCAGAAAAA	ACGATTAGTA	15720
AGCCTCGGTC	TGCCATTGTG	TCTCCTTTTA	GTCAATCTGT	GAAATAACAT	TTCTCTAGAA	15780
TAATGGCAAA	AAGCCAGATT	ATCCTTTACA	GTCTTTCTAT	CTAGTGTAAC	AAAAAAGCAG	15840
TAATTTTTCA	ACTGCTCTTT	CTTATTTATT	TAGCATAATC	TACTGCACGA	AGCTCGCGAA	15900
TCACGGTTAC	CTTGATATTT	CCTGGATAAT	CGAGATTGTT	TTCAATTTTC	TTACGAACTT	15960
TGTGAGCCAA	GATTGTGACT	TTGTCGTCCT	TGATTTTTCC	TGGATTGACC	ATGATACGAA	16020
TTTCACGTCC	TGCTTGAAGG	GCAAAGCTAG	TTTGCACTCC	TTCAAAGCCG	TTAGCAATTT	16080
CTTCCAAATC	ATGGAGACGC	TTGATGTAGC	TTTCAAGAGA	CTCACTACGA	GCACCTGGAC	16140
GGGCTGCGCT	CAAGGCATCT	GCTGCAGCGA	CGATAACTGC	TATCACGCTC	TCAGCTTCAA	16200
CATCTCCGTG	GTGACTAGCA	ATCGTATTCA	CCACAACTGG	GGGTTCCTTG	TACTTACGGG	16260
CCAATTCCAT	ACCGATTTCA	ACGTGGCTAC	CTTCAACCTC	ATGGTCAATG	GCTTTCCCGA	16320
TATCGTGAAG	GAATCCAGCA	CGACGGGCAA ,	GAGCCGÇATT	TTCACCAAGT	TCGCTCGCCA	16380
				*	•	

TGATACCAGC	CAACTTAGCA	ACCTCAATCG	AATGGCGCAA	AACATTTTGT	CCATATGAAG	16440
TACGGAACTG	CAAACGTCCC	ATAATCTTCA	TCAAGTCTGG	ATGAAGGTTT	GGCGCACCAA	16500
TTTCATAGGC	AGCAGCCTCA	CCGTATTCAC	GAATCTTATT	GTCAATCTCT	TGACGGTTTT	16560
TCTCAACCAA	CTCTTCGATA	CGAGCTGGAT	GTATACGACC	ATCTTTGAGC	AACATTTCCA	16620
TAGTCATACG	GGCAATCTCA	CGACGAATCG	GATCAAATCC	TGACAAGGTC	ACCACTTCTG	16680
GTGTATCGTC	GATAATCACA	TCGACCCCTG	TCAAACTTTC	AAAGGTACGA	ATGTTACGAC	16740
CTTCACGACC	AATAATGCGT	CCCTTCATAG	TATCGTCTGG	CAGATGAACT	GTTGAGTTTG	16800
TTGACTCCGC	TACATATTCA	CCAGCGATAC	GTTGCATAGC	TTGAACCAAG	ATGTCCTTGG	16860
CCATTTTGTC	AGAACGTTCC	TTGACCTCTT	GCTCAGCTTC	GCGAATGCGA	CTGGCAATCT	16920
CCCTGGTCAA	GTTTTCCTCT	GTCTGAGCCA	AGATAATATC	TCGTGCTTCT	GCCTGAGACA	16980
GCGCACCAAT	ACGCTCTAGT	TCTGCTTCTT	TTTGTCTTTC	GACTTCCTCT	AATTGCTCTT	17040
CACGCGCATC	AAGGTTTTTC	GCTCTATCAG	AAATACTTTG	TTCTTTTTGT	TCAAGTGTTT	17100
GTTCTTTACT	CGTCAAATTG	TCGTCCTTAC	GGTCAAGGCT	AGTAGCTCTC	TCTGTCAAAC	17160
GACTTTCGAT	TTGTTTGAGT	TCTTGACGTT	CTGATTTGAA	TTCAGCGTCC	ACTTCTTCAC	17220
GGTATTTTCT	GGCTTCTTCT	TTGGCCTCCA	ATAGTGCTTC	TTTTTTAAGA	GACTTGCTTT	17280
CACGTTTGGC	TTCATTAACA	AGTAAATCCG	CTTCACGCTC	AGCTTGTCCA	CGTAAATTAG	17340
TTGCTTCTTG	TTCAGCATTT	AAAAGCATCA	ACTCTGCAGC	TTCCTGAGAT	GATTTCATCT	17400
TAGCTGAGAT	GCTGACATAT	CCAATGACTA	AACCAATGAT	GACGGCAAAA	ACAGCAATCG	17460
CAAGCGACAT	GATTTCCATG	TTTTTACCTC	ATTTTATTGT	TATTCCGAAT	GACATACATT	17520
CTTTTACATT	CTACCATAAA	AAAGTGATTT	TCACAAACCT	AAAATAGAAT	ATGTTTTGAG	17580
GAATTTGGAA	CACATTTACC	AAAATAAACT	TGTTGTTTAG	AAATAGTAGT	TTAGTAGAGA	17640
CTTGAGAAAA	AGCCTACCTT	TCAATAGACT	TAGTAATGAT	CTTTAAAGGA	CAAGAAAGCC	17700
ACGCTATCTC	CATCCATCAT	ATAAATCAAG	CGATTTTCTG	CATCAATACG	CCGTGACCAG	17760
GCTCCTTGGT	AATCATATTT	GAGTGGTTCT	GGTTTACCTA	TTCCTGTAAA	GGGATCACGT	17820
TGAATATCCT	TGATTAGTTT	ATTGATTCTT	TTTAACGTTT	TCTTATCCTG	ATTTTGCCAG	17880
TAGCAATAAT	CTGCCCAGGC	ATCTTCTGTA	AACTTGAGCA	GCATTTCTTA	CTCCTCAATA	17940
ACATGGACCT	GAGTACTTCC	AGCACGAACT	TGAGCCATTC	CTCGCAAAAC	CTTATCAGAA	18000
AGTTCCTTAT	TTTGAGCAAT	TCTCAGGGTT	TCTTGGATAC	TATCCCACTC	ACTCTTTGAA	18060
AGGACTACAA	TGTCCTCATC	TGGATTTTTA	TTGACCACCG	TCAAAGGCTC	AAATTCATCA	18120

WO 98/18931 PCT/US97/19588

			704			
TTTACCTTCT	TCATGTAGTC	CTTTAAATGA	TTTCGGAATG	TTGAGTAAAG	GACTGCTTCC	18180
ATAACCATAC	CTCGTTTTAG	CTCTTTTCCA	CTATTATACA	CGAAAAGAAA	GAAATTGTCA	18240
GGAACTTGTA	CAAGATTTTC	TTTTCTATCT	ATTTATACTC	AATGAAAATC	AAAGAGCAAA	18300
CTAGGAAACT	AGCCGCAGGC	TGTACTTGAG	TACGGCAAGG	CGACGTTGAC	GCGATTTGAA	18360
TTTGATTTTC	GAAGAGTATT	ATTCGTAAAA	AATCTCAAAA	AGCCTACCTT	TCGGTAGACT	18420
TAGTTTGTTT	CTATTC					18436

## (2) INFORMATION FOR SEQ ID NO: 88:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 7001 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

ACGTAGAAAA	ACTATTTCTA	TCACAGATAA	TATTCCGTAT	GTTGTTGGAG	GTATTGAAAT	60
AAACGTCCTA	GGTATCTTTC	TCAGTCTATG	TGACTTACAA	GGGAAAACTC	TTTTCGAGAC	120
AGAAATTTTC	AATGAAGATT	ATCCTATTTC	AGAAATCAAT	TCCACCATTA	CCAATATGAT	180
AAAAACAGCT	' ATAGAGTACG	TCCCTTTGGA	AACAAAATTA	CTTGGATTTG	GCTTATCAAT	240
ACCTGGACAT	TATAACAAAG	ACTCCGGAAG	TATCATTACA	AACAACCCCA	TATGGGAATC	300
TTTTAATTTA	TTAAATGTAA	TTAAAAGATT	CAATTTTCCT	TTTATTGTAA	AAAATAATAT	360
CGATTGTATG	GCTATAGGAC	AATACCTTTT	TAATCCACAC	AATACCCCCG	ATAACTTTAT	420
TTTCCTACAC	GCTGGATTAG	GTATTTACAC	TTCCTTTTTC	ACAAAAGAAA	AAATAGGAGC	480
CTCTAAAAAT	CCTTATATCG	GAGAAATTGG	ACACACCATT	GTCGAATTGA	ATGGGCAATA	540
TTGTGAATGC	GGAAAAAAAG	GTTGTTTACA	AACATATATT	TCGGATGCTT	GGTTAATCAA	600
ACACGCCCAA	TTATTATTTA	AAAATTCCCA	ACTAACTGTA	CTAAAAAGCC	TTGTAAAGAC	660
TGAAAAAGAC	ATTCATTTAG	ACACCCTTTT	AACGGCTTAT	AATTTAGGCG	ACTCCGCTTT	720
ACGTCAACAA	ATTGATAAAG	GAGTCAATTT	ATTAGCCACT	TCTATTGCAA	ATCTCCTCCT	780
CATCAATCCT	GCTGATAAAA	TCTATATCAA	CAGTCAATTG	CTTAATTATC	AACCTTTCAC	840
TCATGAAGTC	AGGGATAAAA	TCCAAGACCA	GCTCCACTTC	GTTCCCTTTA	CTCGTAATAT	900
AGAAATTGAA	ATTTTACCTT	ACAACAAACA	TCGTGGAAGT	ATAGGAGCTT	GTGCATTAGC	960
TATCGTCGCT	TTTTTCATAG	AACATAGCAA	TGTATTACAA	GATATTATTT	CACCTTAATA	1020
TATTAGAAAT	CTATAGACCT	GTTTAAATCA	ACTATAACCT	GTAGTAGATA	TCTCGTATTT	1080

AGACAATATG AAAACAAGAC GACTTCCATA TAGGAAACCG CCTTCTCGCT ATGTTGAGTG	1140
ATTTATATTA AAATAACTTT TCTTCTAGCT GCATTTTATT ATTATAAAAA CATTCATCAT	1200
AACCCCCAGA ACTTAAATAA CAATTTTTAT TCAAGATACA TACTCCTAGA ATAAACTTTA	1260
PATGAAATTC TCATTTTTGT TTTTACAATT CTCCTTAGTT AAATCTTGTT TAATATATGT	1320
TTTACATATA GTATTTAGCG CCACATAGTA CTGAACTCTC TCCAAAAACG GTTATTCCTC	1380
TTTGAATAGG GCGTTATCAC AAGAAAAGCA TCTCCACGTT TCAACTTCAT ATGGCTCAAA	1440
AACAATCAAT TGATGCTAAA ACCTGTACCT AGATGTTTCG GTTCATAAAA CCATGAAACT	1500
GTAAAAGTGG ATGAAATTGA TAGCGATAGT CAAATCAAGA GGCATCATAA CTCTAAAAAG	1560
TCACAATATA TAAGTTCATC CTCGGAAAAA TATCATTCTA ATTGTTGAAA TGCCTACATG	1620
AAAAGAAACG TCAAATGCTC ATGAAACAAC GAATACAGGT ATCAAAACTA TGACAAAACA	1680
AATCCCTAAA TTTACTAAAG ACACTGCTCA ACTTTACACC TGTAAATGGT TGTTGTATAA	1740
TAAAGTTACA AAGATGTACG ACCACACTGT TGTAAATCAT AGTGTTCGCG AATATATTAC	1800
TGATAGCATT TCTACAAATA CAAGTAAAGA GAGCGGATGA GATTCAAACG AAATATGTCA	1860
GTGCTTTGGC ATTCCTAGCC TTCATATCAT TTAAAGAATT CTATAGACAA AATTTTTTCC	1920
AATACAGACA CTCGTAACAA CTGCTTCATT TTTCTACCAA CATATTTAGG AACAGGATAA	1980
GATACAAGAG TATTAATCCA TAGCTCAGTT CTATACCAAT CTAAGACAAA TAAGCTAAAA	2040
AAACGATTGA TAATAAGCAA ATAGATTCCA AATTTTCTCT ATCTGCTCAT TTTAATAAAC	2100
AATACTAGTG TAACTATCCT TCCAGTCAGA AGCTTGTCAA ATCACACCGA AAATTCTTCT	2160
AAAATTTATC TCGTTAGGCA ATCAAGCAAA AACTCGACGA TAGTACAAAC ATTATCATAC	2220
AGGATTGACT TCCTAAATTA TATACTTTAG TAAGGTTTTC GGATAAGAAA AAAGGTTCAT	2280
TTTACATTTC TAAACATTCT TTTCTAAGAT GAAAAACAGA ATTTTTCGAT TGTGATTTAA	2340
AGCAACAAGA AGATTTTCAG TATCATCCTA TAGATACGAG CTAATTAAGA AAAACTACAT	2400
TTTTGAATAT AAACTACAAT AATATAAACT AAATTTTATA GGAGGAAGAC AATGGATTGG	2460
TACGATTATA TGATACAGGC ATCCAAACAA TCACAATTCA ACGCAAGCCA TTGGTTTCGC	2520
TATTTGCGAA AAGTTATTTT TGAAGACTAT TCTTATTTAA CAAACCAAGA TGTAGAAAAG	2580
TTGCTAGACT CCAAAGAACT AACCCGTTTT CAAAAAATTA GCTTGAAGTA TGCCTTTCAA	2640
GAGCATACTC CAACTCATAA ATATGTGATT TCATTAAATA AACCTGCTAA GTTAACCAAT	2700
GTTCAAAAAT TGATGGAGAA ATACAAACAT GGATAAAATG AAACCGGTCT TCCAAGCCCT	2760
AAATAAGGAA TTAATTCAGG AAAATCTGAC TTTAACAATT ATCTGTGTCG GTGGTTATGT	2820

			706			2000
	CATGGTTTAC					2880
	GTAAATCCCC					2940
CCATATGAC	CTATAATGAA	AAGCGACAAA	ACAACTCATT	AGAAAGAATC	ATATGGAACA	3000
ATTACATTTT	ATCACAAAAT	TACTAGACAT	TAAAGACCCT	AATATCCAGA	TTTTAGACAT	3060
CATCAATAAG	GATACACACA	AGGAAATCAT	CGCCAAACTG	GACTACGACG	CCCCATCTTG	3120
CCTGAGTGC	GGAAACCAAT	TGAAGAAATA	TGACTTTCAA	AAACCGTCTA	AGATCCCTTA	3180
CCTCGAAACA	ACTGGTATGC	CTTCTAGAAT	TCTCCTTAGA	AAACGCCGTT	TCAAGTGCTA	3240
TCACTGTTCA	AAAATGATGG	TCGCTGAAAC	TTCTATCGTC	AAGAAGAATC	ATCAAATTCC	3300
TCGTATTATC	AACCAAAAAA	TTGCGCAAAA	GTTGATTGAG	AAGATTTCTA	TGACCGATAT	3360
TGCTCATCAG	CTGGCCATTT	CAACTTCAAC	TGTCATTCGC	AAGCTCAATG	ATTCTCACTT	3420
TGAGCATGAŢ	TTTTCGCGTC	TTCCTGAGAT	TATGTCCTGG	GACGTTGAAA	CAGTCCGGGG	3480
AGTGACTGTT	TCAATCGGGA	GATGGAGATG	AGCTTTATTG	CGCAAGATTT	TGAAAAGCTC	3540
GATATCATCA	CTGTTCTTGA	AGGTAGAAÇA	CAAGCTGTCA	TCCGAGATCA	CTTTCTTAAA	3600
TATGATAGAG	CCGTCCGATG	TCGCGTCAAA	ATTATTACTA	TGGATATGTT	TAGTCCTTAC	3660
TATGACTTAG	CTAGACAACT	TTTCCCGTGT	GCTAAAATCG	TTCTTGATCG	CTTTCACATT	3720
GTACAACATC	TTAGCCGTGC	TATGAGTCGT	GTGCGTGTCC	AAATCATGAA	TCAGTTTCAT	3780
CGAAAATCCC	ATGAATACAA	GGCTATCAAG	CGCTACTGGA	AACTCATTCA	ACAGGATAGC	3840
CGTAAACTCA	GCGATAAACA	TTTTTATCGC	CCTACTTTTC	GTATGCATTT	AACCAATAAA	3900
GAGATTTTAG	ACAAGCTTTT	GAGCTATTCA	CAAGACTTGA	AACATCACTA	TCAGCTCTAT	3960
CAACTCTTGC	TGTTTCACTT	TCAGAATAAG	GAACCGGAGA	AATTTTTCGA	ACTTATCGAG	4020
GACAATCTTA	AGCAGGTTCA	TCCTATTTTT	CAGACTGTCT	TTAAAACCTI	CCTCAAAGAT	4080
AAAGAAAAGG	TTATCAACGC	CCTTCAACTA	CACTATTCTA	ATGCCAAACT	GGAAGCGACC	4140
AATAATCTCA	TCAAACTTAT	CAAGCGCAAT	GCCTTTGGTT	TTCGAAACT1	TGAAAACTTC	4200
AAAAAACGGA	TTTTTATCGC	TCTGAATATC	AAAAAAGAAA	GGACAAAATT	TGTCCTTTCT	4260
CGAGCTTAGC	TTTTTTCAA	CCCACTACAG	TTGACAAAGA	GCCGGAAAA	GGAACAGCCT	4320
TAGCTTTCCT	r TTCATTTCTT	TTTATTTCCC	TCGTAGTAAA	CGTGCTAGCT	TCCACAAAAC	4380
AAACAGGATI	r cccagaaato	CCAGTACCAC	TAGCCCACGC	TACAACCAT	r GAGAGGTTGC	4440
					G CAGCTGTTTG	4500
					C GTTTATTAAA	4560
		_			A CCGATTCTAA	4620

TTTTTCCCAT	TCCGACGGTA	AAATAATCTC	TGTGTCCATC	ATCTGATATT	CTACAATTTC	4680
CTGGCCATTA	TCATAATAAA	GAGCATCTCC	AACTTTTAGC	TGATCCAAAT	GGCGGAAAAA	4740
GACATGGCTT	GGCTCTGCAC	GGTGCCCAGC	AATCACTGAG	CGAATCCCTG	TACCATCCAG	4800
AGGCAGCGGT	GTACCATCCA	CATGAGCCAA	GCCCATCCCT	AAATGATGAT	AATCTGCTCC	4860
CAAATAAACC	GGCTCCATGA	TTTCCAAACT	TGGAATAGAC	AAGTAACCAT	AGACTGCATC	4920
AGGGTCGTCA	GACACTTGGT	AATTGACCTC	ATATCCCTCC	GCCAAAAAAG	GATCTACAAT	4980
GCGATTTTGC	GAAGCCAAGC	GTTGATTGTA	GGCGAGAGAA	TGGTTCTGTT	GTTCTTGGTA	5040
CATTTCAGTT	GTCATGGATT	TCACAAATGT	AGCATGACCT	TTCACCTGTC	CAAGAGACTG	5100
CAACACCATC	TGTCCAAAAC	AATAAATAGG	AATCAAACAG	GCTACCAACA	TCAACAAGTA	5160
TCCCAATAAG	GCTCGTAGTT	TAGTCCTTGA	CATGACGCCC	CTCCAATTGC	TTTTCTAGTC	5220
CTTTGACAAT	CCGTCGATTA	CGATACACGC	GATACAGCAA	GAGAAGGATG	ACCGCCATCG	5280
CTCCTAGTAA	TAACCACAAC	CAGAATTGCC	CACGCTCTCT	CACCGCTCGA	TTCCGCTCTG	5340
CAATTGGTGC	CGTATACGGA	ATCCGCTTCC	CACGTACCAA	CAGACGATGA	CTGTTAATCA	5400
TATACGGTGT	ACAAGTCAAC	AAGGTCGCAT	AATCTTCCCC	ATGTTGAATC	AAGACAGGCT	5460
CAAAGTCATT	CGGCTCCACC	GTCACTATCT	GATCCACTTG	GTAGGCCAAC	ACCTGATCTA	5520
AAACGTGAAG	ATAAAAGATA	TCCCCTTTTT	TCATCTTATC	CAATTGACTG	AACAATTCTG	5580
CCGTTGGCAA	TCCTCTGTGA	GCAGTGATCA	CTGTATGGGT	ATTTTCACCT	CCAACAGGCA	5640
GCGAAGCCCC	TTCTAACAGC	CCTGCCCCTT	TCTGAAGAAT	GTCCTCACTC	GTTCCGACAT	5700
ACATCGGAAT	TTCCTGATCA	ATCGCAGGAA	TTTCCACATA	GCCAATCCGC	TCATGGACCT	5760
TTAGCATATT	GGCATATTCT	GAGACGCCTT	TCTTTTTCTC	TTGCTCTGTA	AAAGGATCAA	5820
GAATTTCAGA	TGGTTTCAAG	GTCGCATTGA	AGGCTTGAGC	CAAGCGCCAA	CGCTCCTCAA	5880
GTTCTGCCTT	ATCCATCTGG	GAAACCGTCT	CATCAAACTC	TTTAATAACC	TCGTTTGACT	5940
CAATACGATA	ATAATAACGA	GACACCAATG	GATATATCGC	AACGGCGAAT	CCTACTAAGA	6000
AAATCAGAAG	AAGGATCAGC	GGATGTTTCT	TCTTTTTGT	GCCTTTTTT	CGTGAACGTC	6060
TACTGTTGTC	CATCCTCCAC	CTTCACTTCC	TTCCTTGCTG	CTTTCAGCGC	CTTCAAAGCC	6120
TTTTCCGGTT	GTTTTTTCTT	CTTGCGCAAG	CGTCGAATAA	TCCATAAAAG	AATCACAATC	6180
AAACCAACTG	CCACATAAAA	CAGGTAGCGA	TAGAGATGAC	TGAGTTTGTT	TGCTGCAATA	6240
AATTCTTCCT	CAACCTCTGC	TACGTACGGT	ATCCGATGCC	CCCGAACCAA	TAGACGATGG	6300
GTATTGATCA	TGTATGGCGT	ACAAGTCAGC	AAGGTCACAT	AATCATGACC	TGGTACAATC	6360
					• • •	

WO 98/18931 PCT/US97/19588

			708			
AATAAATCAT	CAAAGTTCGT	CGGCTCAATC	ACCTTTACTT	GATCCACTTG	ATAGGCCATC	6420
ACTTCCTTGA	TATTGTGCAC	ATAAAACTTA	TCCCCAACTT	TAAGTTTGGT	CAAATCCGTA	6480
AACATCTTAG	CTGTTGGCAA	ACCTGTATGT	GCCGTAATCA	CCGCATGGGT	CGAATTGCCT	6540
CCGATCGGCA	GAGAAGTTCC	CTCTAGATGC	CCAGCCCCTT	GCTGCAATAC	CTCTTCAGCA	6600
GTACCAGCAT	AAACCGGCAA	ATCCACGTCA	ATAACGGGGA	TTTCCACATG	CCCCATCCGC	6660
TCATGGATTT	CTAACATACG	TGCATACTCT	GCTCGCCCTT	TTTTCTTCAT	TTCTTCCGAC	6720
CAAGGATCGC	CACTCACTAC	ATTATTCAAA	GAGTCATTGA	AGGCTTGTGC	CAATTTCATT	6780
CGTTCATCAA	TGTCAGCCTC	ATCCAACGTT	GCTTTTTCCT	TATCAAAGTC	AGCAATTTGT	6840
TGATTTGATT	CCACTCGATA	ATACAAGCGA	GACACCAGCG	GATACGCCAT	TACCGCCATT	6900
CCAATGAAAA	ATACCACTCC	TAATAGGAGA	TTATTTCGTT	TTTGCTTTTT	TGTTTTTACC	6960
ATTTTTATCA	GCATCCCTTT	ATCTTCAAAC	TTCAGGGTAT	С		7001
(2) INFORMS	TTON POR CE	O TO NO. 00				

## (2) INFORMATION FOR SEQ ID NO: 89:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10411 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

GAGGGAGCTT	AAGAAGTTAC	CACCGTCCTC	TAGCGCCTTA	TCCGCATCAA	AGTTAAGGTT	60
GATATTTTTA	AAACTGTCGC	CAGCTTGTGA	TACGATGCTT	TGTTTAAGGT	CATTTAGGGT	120
TTTAGTGAAA	TCTGCATTGC	TGAGGATATC	ACTCTTTGAG	AGATTCAAGG	CAAAATTGAT	180
GATGATATTG	ATCTGGTTTC	CTGTTATGAC	CTGATCAAGT	TTGTAATTTT	TTAAGGTATC	240
TTCAACAATC	TTGCGGATAT	CTTCTTCTGT	CAGATTTCCC	TTACTTTCTT	TAGCTTTGGC	300
GAGTCCTGAC	TTGATATCAG	CTAGGGCAAC	GTTTAATTTA	TTAGCATCAT	AGCCTGAT TT	360
GTCCTTGTTT	TCAGCATTGA	TATCTGACAA	AGCTTTTAGC	TCTTCTTGAG	CCAAATCTTT	420
ATTAGCTTGT	GGCACCTTGG	CTCCATTAGC	CTCTAGCGAA	TAGTAAATCC	CTGCTAAAGC	480
ACTTTCTCCT	GTAACTGGAA	TAGGGGCTGC	TACAGTGATT	TTGGCATGTT	CCATACCCAG	540
CGTTACTGCT	GCGTTTCGGT	ACATATCCTG	AGTCACCTTA	GTGATATTTT	CTGGTGTTTC	600
AATCTTGACC	TCAAGTGGCG	ATTTGTCACC	TAGCTTTTGA	ATCTTGGCTG	ATGAATACAA	660
CTGTAAGCTA	GAGTCATTGG	CCACATTCAT	GATTTTAGAA	TAAACATCAG	GTGTCATGGT	720
CTTGAGTTCT	TTGGTATCTG	TTGAGGCATT	GTAGCCCAGT	TTTTTAAGAG	TTTGATTTTT .	780

TTGGTCTTCA	GATAGGGAGG	AACCTAGGAC	ATATTCAGGT	TGGACATAGG	TTTCATCGAT	840
AACTTTTTGA	ACATCTGTTG	CTGCATGGAC	GCTATTCATA	GCTGTTACTG	CCCACAAGAT	900
CGCAGCGCTA	GTCAGAAAGA	GTTTCTTTCT	CATAGGGAAT	TTCCTCCTTT	ACTTCTTTAG	960
AGTAATATAT	CTATCTTAAA	GAAAACTTAT	AACAAAAACA	CCTGGTCTAG	CCAGATGTTG	1020
AAAAGAGAGT	GAAACATTTG	ATGATGTAAA	GGTTAAGTCG	TACCTGTCTA	GAATAATAAT	1080
AGTTTCCTCC	ATTTACATAG	AGTTCAGCAC	CGTGAAAAAT	GGAAATGGGG	TGAATATAAC	1140
TATAAGTCTT	TCCAGTCCTA	TTACCAAGCA	AGGGGGCAAC	AGTCTCACGA	GAGTACTGTT	1200
TGGCTAGAGC	CAGGGTATTT	TCCTTGCCAT	TTTGGGCGAT	AAAATCGATA	TAGGCAGGTC	1260
CAAAATTATA	GGCTTGAACA	GCTGTCCAGA	TATCTACCCC	CTTCTTCTGC	GCCAGATAGA	1320
GATTGCCTGT	CAGAGTTTGA	ATGCCTTGCC	GAATGCTAGA	GGCATTATCA	TTGATGGTGT	1380
TGGTGGAACC	ACTTGCAGAC	TCACTAGACT	GCATAACATC	GCCTTCTTTT	CCTTTTGTTT	1440
CAGTATAAAT	CATAGCAAGC	ACAAGCTCTT	CGTTTGCTGG	GGTGTCTTGT	TCACTCAATA	1500
TTTCTCGCAC	CATGGGTTGA	TAGGTCATGA	CTTGTTTGAC	ATCTTGATGA	ACGCGGTAAG	1560
CTTTATAGCC	AGCAAAAAGG	AAGACTGCTA	GTACAAGCAC	TCTTCGAATT	CGTTTAAACA	1620
TTATTTACTT	TGGATATCCT	CGATATTTTT	GATTAAGATA	GAGTAGGTTC	CATTTTCGTT	1680
TTGGATAAAC	TCAACAGACT	CGGCGTCTTG	ATAGACGTTA	TTGGGAACGA	TGAGCTCAAT	1740
TCCATTTGAT	AAGGAGAGTT	TTTGGTTTTC	AAATTTCTTT	AATTGGCGAC	TGGCATCAAT	1800
TTCATCAAAT	TGAACAGGTT	CTGGTACGGC	TTCTTTGACT	TGGTCAATAA	AGCTCAAACG	1860
AGCCGTCAGA	TTGTTGTCAA	AAAGGTCATT	AGCCAATTTC	TCAGGTGACA	ATTCATTGCT	1920
TTCTTCTAGG	TTGTTGAAAA	TAGCTGATTT	GACCTTGGAT	TGAAATTGAA	AATCATCTGT	1980
GTTAAAAGAT	TTAGCAATTC	TCTGGGCTGT	TTTTTCCAGT	TCCTTGATAG	ATTTTTAGG	2040
AGAAATCTTA	GGAGCGACAG	CAAGAAGATT	ATCTGAAAAA	TAGTTCAAAA	AAGTCCCGTT	2100
GTACTTGATT	CGTTTTTCAA	TCAGGTGATA	CTTGCTACTC	TGAAGATTGA	CCACCAAGGC	2160
CTCATCAGCT	CCTGTTCCAA	ATCCAGGCAG	GTTATTCTGA	GTTAGCTTGA	TTGGATTATC	2220
AACTTCTCCT	CCGAGGTGGG	TCAAGGTCTC	CCGCAGGGCA	ATTCGCAAGA	AAGCGAAATG	2280
TTCTACACCT	TCTTTAGAAA	ATTGCACAAA	AATCAAGTCA	TTGGTCTTGA	GATTTTCAGA	2340
AATGCTAAAC	TCCTCTTTCC	AGAGATTAGC	CAGCGTTACT	GATGTCTCCA	ACAAATCGTC	2400
TGTAATATGA	TTGAAGAAGG	GATTTTCTTC	TTCGAAAATC	CCAGTCTTGG	CTTCATCTGA	2460
ATACACATGT	TCAATTTTTT	TACGCAGGTA	TTCTTCGATT	TTTGGAGTAA	TATTGAGAAA	2520

			710			
CTTATCTGCT	AAGAACAGTT	CGGTATCATC	CGGACTGAAC	TGGTGAATAA	TGGCTTTCTT	2580
AATATAAATG	TCCATAAAAG	TTTTAGTCCT	CGTATAATGG	GAAGGCATCT	GTCAATTCTT	2640
TGACTGCACT	TCTCACTTCT	TCTAATACAG	CCTCATTTTC	TGAATTCTTA	AGGGTTTTAA	2700
TGATGAGTTC	AGCCACTTTG	CGACTTTCTT	CTTCACCAAA	TCCACGTGCA	GTAATGGCTG	2760
CTGCTCCGAT	ACGAATCCCA	CTTGTCTTGA	ATGGTGACAA	GCTTTCGTAA	GGGATTGAGT	2820
TTTTATTTAA	GGTAATATTG	ACTTCATCCA	ACAAGTTTTG	AGCAACTTTG	CCGTTTTCTA	2880
CAACTTTAGT	CACATCAACA	AGGAAGAGAT	GGTTTTCAGT	TCCACCTGAA	ATAATACGGA	2940
AATCAGGGTC	TTGCAAGAAG	ACATCTGCCA	TAGCCTTGCT	GTTCTTAATT	ACATTGGCAG	3000
CATATTCCTT	GAAGGCTGGA	TCCAAAACTT	CTTTGAAGGA	AACTGCCTTA	GCCGCCACAA	3060
CATGCTCTAA	AGGACCGCCC	TGAATACCTG	GGAAAATAGC	TGAATTGATT	TTTTTAGCAA	3120
GTTCTTCGTC	ATTGGTCAAA	ATCAAACCAC	CACGAGGTCC	ACGAAGGGTT	TTGTGGGTCG	3180
TTGTTGTTGT	GATATGAGCG	TATGGAACTG	GGCTTGGATG	AAGGCCAGCC	GCAACCAAGC	3240
CAGCGATATG	GGCCATGTCC	ACCATGAGCT	TCGCACCGAC	AGCATCTGCG	ATTTCACGGA	3300
ATTTTGAAAA	ATCGATAATT	TGAGAATAGG	CTGAAGCACC	AGCTACAATC	AGTTTTGGTT	3360
TTACTTCTTG	GGCTTGTTTC	AAGATAGCAT	CAAAGTCTAA	GAGTTCCGTT	TTAGGATCAA	3420
CACTATAAGA	AACAAAGTTG	TAGGTTTGAC	CAGAGAAGCT	AACAGGAGCC	CCATGAGTCA	3480
AATGACCACC	TGATGCCAAA	TCCATTCCCA	TAACCGTATC	ACCTGGCTCA	ATCAAGGACA	3540
TGTAAGCCGC	ACAGTTAGCT	TGGCTTCCTG	AATGTGGTTG	AACATTGGCA	AATTTAGCAC	3600
CGAAAATTTC	TTTTGCGCGT	TCAATAGCAA	GAGTCTCTAC	AACGTCTACT	ACATCAGTTC	3660
CACCATAATA	ACGGCGTCCT	GGGTAACCCT	CGGCATATTT	ATTTGTCAAG	ATAGACCCTT	3720
GAGCTGCCAT	AACAGCCTTG	GAAACTACGT	TTTCCGAAGC	AATTAACTCG	ATATTATTTT	3780
GTTGGCGTTC	TTCTTCTTTG	GCAATAGCAT	TCCAGAGATC	AGCATCATAT	GCTTTAAAAT	3840
CATCTTTGTC	AAAAATCATA	GGTCTTCTCC	TTTATTGTGT	GACTAGTCCA	TTAGTTTGAT	3900
TTTACAATAA	GAAAATCAAA	CTAACAGATG	CGAATAAACC	GTTTCTGCAT	TTTATCACAA	3960
GTATAGCCAA	CTTTTTCATA	AAATGCATGA	GCACCCAGAC	GATGATTGGC	AGAATTTAAG	4020
CGGATAAACC	CATAACCACA	TCTTTTTGCT	TCTTCTTCCA	ACCCTTGTAG	TAAACTTTTA	4080
CCAATACCTT	GACCTTGCGC	TTGAGGTGAA	ACTGCTAAAG	CTAAGATATT	AAATCCTGCT	4140
TTGGAATAGA	GTGATTCGTA	AACTTCAGCG	TGGACATATC	CAAGTAAGAC	ATGATTAGCT	4200
GCATCCTCAT	AGCCAAGTAG	GAAATGATGG	GAATCCTGAG	ACAGTCTAGC	TAGTTGGCTA	4260
GCCGTTTCCT	CTGGACTAAA	AGTATAACCC	AAAGCCTCTT	GGTTGATGTC	ACATATAGCT	4320

TTCACATCAG	TTTCTCTTAA	ATCTCTTAGC	ATCTCATTCC	TCCTCAAAAG	AAATCTTTGG	4380
CAACCGAGCA	AGAATATCTT	CTCGCTTAAT	GGCCCCTTGA	CGTAAGATTT	TCACCTTGTC	4440
TCCCGACAAA	TTCAAAATAG	TTGAATCCTG	TCCAGTTAGA	AAAGCATCGT	CTTCCAGACC	4500
CAGAACCTCT	TGGTCAAAAT	CCTCTAGAAT	TTGATTAAAG	GTCACTCCAC	TCGCCTGACC	4560
TGAGATATTG	GCAGACGGCC	CAATCAAGGG	ACCTGTCTCT	CGAATCAAAT	CAAGGGTAAT	4620
GGGATGACTA	GGCATCCGAA	ATCCAACAGT	TGCAAGGCCA	GAATTGACCC	AATAGGGAAC	4680
TCGGTCATTA	GCTTCGAGAA	TAATGGTCAA	GGGACCTGGT	AAAAAGATCT	CTACAAGTTT	4740
TTGAAGATAA	GTTGGCTGAT	TCTTTGAAAA	GTACAAGATG	TCCTCTAAAG	AGGCAACATT	4800
GAGATTGAGC	GCCTTGTCTC	TACGTCGACG	TTTAAGCTGG	TAAACATGGT	CAACTGCTTT	4860
TTCGTCTAGC	GCCTTAGCAA	AGAGACCGTA	AACTGTCTCT	GTAGGCAAAA	CGACAGCTCC	4920
ACCATTTTCC	AACTCTTGTC	TAATCCTGTC	CATCATCAAC	GACAACCATC	CTATCTTGAC	4980
CAAATTGGTC	CTTGAGTGTT	CGTACTCGCT	TTTCAGGAAG	ATGTTTCCTA	AAAAGTTCAG	5040
GAACACTTTG	ACCTTGCTTG	TATCCAATTT	CAAGGTAAAT	CTTACCACCA	TCTTTGAGAT	5100
AGTCTTTTGC	ATCTTCCGCA	ATTCTACGGT	AAATAGCTAG	GCCATCCTCA	TCTGCAAAGA	5160
GAGCTAGATG	AGGCTCCGAA	TACAAGACAT	TCAAGCCTAC	CTCTGACTCA	TCTTCACGAG	5220
AGATATAGGG	TGGATTGGAA	ACAATTATAT	CATATTTTTC	AGAAATTTCT	GTAAAACAGT	5280
CAGATTTTT	TAAAAATATT	TGAAGATTTT	GATTTTTAGC	ATTTTCGCTA	GCTACATCTA	5340
AAGCATCTTG	GGAAATATCT	GCTGCCGTCA	CTGACCAATC	TGGTCTGTTT	TTTGCTAGAG	5400
CGAGAGCAAT	AGCTCCACTA	CCTGTTCCGA	TATCTAGGAC	CATAAGATTT	TTCACAGGAT	5460
TTTCAGCCAG	GATAAGCTCC	ACCAACTCCT	CTGTTTCTGG	ACGAGGAATC	AAAACCCGTT	5520
CATCCACCTT	TAAATGCATT	CCATAAAAAT	CTGCCTGTCC	AATGATGTAC	TGAGCTGGCT	5580
TGTGAGCTGC	TAGTTGCTGG	TAAATATCTT	CTACAAATTG	TTTTTCTTCC	TCTGTTGTCA	5640
CCTCCTGCTG	GAGGGCAAAA	ATAAAGTCTG	TAAAAGATAG	ATTTTTCAGA	CTACGATAGA	5700
CAAAAGAGAG	GCTTTCCGCT	TCCTCTCCTT	GTCTTATCAA	CTCTTCTTCA	AAATTTGAAA	5760
ATAATTGAGC	TAATTTCATT	ATTTGTTTAA	TTCTTCTAGT	TTTTGTGTTT	GGTCATAAAG	5820
CACCAAGGCA	TCCACAACTT	CGTCCAATTT	ACCAGACAAA	ATCGTATCTA	GTTTTTGGAG	5880
GGTCAAGCCG	ATACGGTGGT	CTGTGACACG	GTTTTGTGGG	AAGTTATAAG	TTCGGATCCG	5940
TTCTGAACGG	TCACCAGTAC	CGATTGTCGA	CTTACGCTCA	GCGTCCTGCT	CATCTTGAGC	6000
AATCTGAGCA	AAGTGGTCAG	CAACACGGGC	ACGGATGATT	TTCATGGCCT	TCTCACGGTT	6060

			712			
CTTCTGCTGG	GTACGTTCTT	CCTGCATCTC	AACCTTGATA	TTGGTTGGCA	AGTGAACGAT	6120
ACGAACGGCA	GTCGCAACCT	TATTGACGTT	CTGTCCACCA	GCACCAGAGG	CGTGATAGAT	6180
GTCGACACGA	AGGTCTTTTG	GATCAATGTC	GTATTCAACC	TCTTCAACTT	CTGGCATAAC	6240
AAGAACTGTC	GCTGTCGAAG	TATGAACACG	GCCTTGGCTT	TCTGTCACAG	GAACACGTTG	6300
CACACGGTGG	GCACCTGATT	CATACTTAAG	CTTAGAGTAT	ACAGACTGAC	CTGAAACCAT	6360
AGCAACCACT	TCTTTAAAAC	CACCGACACC	ATTCATAGAG	GCTTCCATGA	CTTCAAAGCG	6420
CCAACCTTGG	GCTTCCGCAT	ACTTTTGGTA	CATAGTTAGC	AAATCTCCAG	CGAAAAGTGC	6480
CGCTTCGTCT	CCACCAGCTG	CTCCACGGAT	TTCAAGGATG	ATATTCTTGT	CATCGTTTGG	6540
ATCCTTTGGA	AGGAGCAAAA	TTTTCAGTTT	TTCTTCATAT	TCTTCTTTTT	CAGCCTTGGC	6600
ATCTTTGAGT	TCTTGCTTGG	CCAATTCTTC	CAAGTCCGCA	TCTCCGCCTG	ATTCCTTAAT	6660
CATCTCTTCG	GCATCGACGA	TATTTTGAAG	GACTTGTTTA	TACTCACGGT	AGGCTATTAC	6720
GGTGTCACGA	TTGGAAGCTT	CTTCTTTTGA	AAGCTCCATA	AAACGCTTGG	TGTCTGAAAC	6780
GACATCAGGG	TCACTCAGCA	ATTCTCCTAA	TTCTTCATAA	CGGTCTTCTA	CAACTTGTAG	6840
TTGATCATAG	ATGTTCATTT	TTTCTCCTTA	TTTCTCAATT	GTTAAATCAT	AGATTGCTAC	6900
TACTTCATTC	TCGGATATTT	CCCCAGTTTC	TTTAAATCCA	TAACTGAGGT	AACAAAATCT	6960
TGCCTGTTCA	TTTTCTGGTT	CATArGACAA	CCAAAGTTTA	TTGCTTAAAC	CTGCTGGCGC	7020
TGTTCGAACA	TAGTCTAGTA	CTTTATCCAT	AATTGGTTTA	AAATATCCTT	GATTTTGAAA	7080
ATTCTTATCA	ATCATAAAAC	GAAATAGTAA	ATAATTTCCA	CTACTAATTC	CGATCTTTTT	7140
ATCATAAGCT	ATCATCACAA	AACCTATAAT	TGCATCATTA	TCATAAACTG	CCAATGGAGC	7200
TACAAAATCT	CCATTTTTAG	TGTAGACGTA	TGCTTCAGCT	AAACTAATTG	CGTTGGTTGC	7260
AATGAATTGT	TTTTGATATT	CCTTGACATC	CAAATTTAAA	ACATCAAAAT	ΑΑΤΤΤΤΟΟΛΤ	7320
TGTAACATCT	CTTAGTTCAA	TTGTCATAGT	TTTGCTCCTT	GTTAGAGGTT	ATCATTGGCG	7380
CAAAATAATG	TTTACGGCAA	ACTGAGATAT	AGGTTTCGTT	ACCACCAATC	TGGATCTGTT	7440
CTCCATCGTA	AACGGGCAGT	CCATCCTGTG	TTCGCAACAC	CATGGTCGCC	TTTTTCTTGC	7500
AATACTGACA	GATGGTCTTG	ATTTCGTCAA	TCTTGTCTGC	TAAAAGCAAG	AGATATTTGG	7560
AACCTTCGAA	CAATTCATTG	CGAAAGTCAT	TTTTCAAGCC	AAAAGCCATG	ACGGGTATGT	7620
CTAACTCGTC	CACAACACGA	GCTAGGTCGT	AAACATGGTG	GCGTTTGAGA	AACTGGGCTT	7680
CATCGACCAA	AACACAGTAA	GGTTTTTCTG	GTAGGTCTCG	GATATAGCCA	AAGATATCCG	7740
TTGTTTCCTC	AATCGCAAgG	GCAGGGCGTT	TCATGCCAAT	TCGACTCGAC	ACATAGCCAA	7800
CGCCGTCACG	CGTATCCAGA	GCCGAGGTCA	TAATÇACAAC	ACCTTTTCCT	TGCTCCTCGT	7860

AGTTATAGGC	CACTTTGAGA	ATCTCAATCG	TTTTACCAGA	GTTCATGGTC	CCATAACGAT	7920
AGTACAACTG	TGCCATGTTT	CTTGCTTCAC	GTCCATTTCT	AAATTTTTGC	TACATTCTAG	7980
ТАТАТСАТАА	TTTTCTTAAG	CTTTAAACGG	CAAAATGTGG	TAAAATAGAA	GAAATCAAAA	8040
ACTAGTGGAG	GAAGCTATTA	TGCCATTTGT	ACGCATCGAT	TTATTTGAAG	GACGCACGCT	8100
CGAGCAAAAG	AAAGCTCTTG	CTAAGGAAGT	AACGGAAGCA	GTTGTCCGCA	ACACTGGAGC	8160
CCCTCAATCT	GCTGTCCATG	TCATCATCAA	CGACATGCCA	GAAGGAACTT	ACTTCCCACA	8220
AGGGGAAATG	CGTACTAAAT	AAGCTAGCTT	AAGCAGAATT	GCTTAGGCTT	TTTCAATCTC	8280
CAAGTAGCAT	TCATTGAAGA	AATATCCTAA	ATTTGTTACA	ATTTGAAAAG	AAACTTGGAG	8340
AATTTCCAAG	AAAAGAGCTA	TTAATTAAAG	GAAACATTAT	GATTACACGT	GAATTTGATA	8400
CCATCGCTGC	TATCTCTACT	CCACTAGGTG	AAGGGGCTAT	TGGTATTGTC	CGCCTGAGCG	8460
gAACAGACAG	TTTTGCTATT	GCGCAAAAGA	TTTTTAAAGG	AAAAGACTTG	AACAAGGTTG	8520
CCAGCCACAC	TCTCAACTAC	GGTCACATTA	TTGATCCTCT	GACTGGTAAA	GTCATGGACG	8580
AGGTTATGGT	TGGGGCTATG	AAGTCTCCAA	AGACCTTCAC	TCGTGAGGAT	ATTATCGAGA	8640
TTAACACCCA	CGGTGGGATT	GCGGTGACCA	ATGAAATTCT	CCAGCTAGCT	ATTCGTGAAG	8700
GGGCTCGGTT	GGCAGAACCT	GGTGAATTTA	CCAAACGTGC	TTTTTTAAAC	GGTCGCGTAG	8760
ACTTGACACA	GGCAGAGGCT	GTGATGGATA	TCATCCGTGC	CAAGACTGAC	AAGGCCATGA	8820
ACATTGCGGT	CAAACAATTA	GACGGCTCCC	TTTCTGACCT	CATTAACAAT	ACCCGTCAAG	8880
AAATCCTCAA	TACACTTGCC	CAAGTTGAGG	TCAATATCGA	CTATCCTGAG	TATGACGATG	8940
TTGAGGAAGC	CACTACTGCT	GTTGTCCGAG	AGAAGACAAT	GGAGTTTGAG	CAATTACTAA	9000
CCAAACTCCT	TAGGACAGCA	CGTCGTGGTA	AAATCCTTCG	TGAAGGAATT	TCAACGGCTA	9060
TCATTGGACG	TCCCAACGTT	GGGAAATCAA	GCCTTCTCAA	CAACCTCTTG	CGTGAGGACA	9120
AGGCTATCGT	AACAGATATC	GCTGGGACAA	CACGAGATGT	CATCGAAGAG	TACGTCAACA	9180
TCAATGGTGT	ACCTCTCAAA	TTGATTGATA	CAGCCGGTAT	TCGTGAAACG	GATGATATCG	9240
TTGAACAAAT	TGGAGTTGAG	CGTTCGAAAA	AAGCTCTTAA	GGAAGCTGAC	CTAGTTCTGC	9300
TAGTACTAAA	CGCTAGTGAA	CCACTAACCG	CCCAAGATCG	CCAACTCCTA	GAAATCAGTC	9360
AGGAGACTAA	TCGCATTATT	CTTCTTAACA	AAACTGACCT	GCCTGAAACG	ATTGAAACTT	9420
CGGAACTACC	TGAAGATGTC	ATCCGCATTT	CAGTTCTTAA	AAATCAAAAC	ATCGATAAAA	9480
TCGAAGAGAG	AATCAACAAC	CTCTTCTTTG	AAAATGCTGG	TTTGGTTGAG	CAAGATGCTA	9540
CCTACTTGTC	AAACGCCCGT	CACATTTCCT	TGATTGAGAA	GGCCGTTGAA	AGCCTACAAG	9600

			714			
CTGTTAACCA	AGGTCTTGAA	CTAGGGATGC		GCTTCAAGTT	GACTTGACCC	9660
GTACTTGGGA	AATTCTAGGA	GAAATCACTG	GAGATGCTGC	TCCAGATGAA	CTCATCACCC	9720
AACTCTTTAG	CCAATTCTGT	TTAGGAAAAT	AAGAAAAATC	CATGATCCTT	CATTCGGTCA	9780
TGGATTTTAG	GTTCTATAAT	ATTTGTAGTG	GGTAAATCCA	CTATAGATAT	TATGGAGCCT	9840
ATTTTATTGT	AGAAAAAAAG	TCCCATATGA	CCTATAATGA	AAAGCGACAA	AACAACTCAT	9900
TAGAAAGAAT	CATATGGAAC	AATTACATTT	TATCACAAAA	TTACTAGACA	TTAAAGACCC	9960
TAATATCCAG	ATTTTAGACA	TCATCAATAA	GGATACACAC	AAGGAAATCA	TCGCCAAACT	10020
GGACTACGAC	GCCCCATCTT	GCCCTGAGTG	CGGAAACCAA	TTGAAGAAAT	ATGACTTTCA	10080
AAAAACCTTC	TAAAATTCCT	TATCTTGAAA	CGACTGGTAT	GCCCACTAGA	ATTCTCCTTA	10140
GAAAGCGTCG	ATTCAAGTGC	TATCACTGTT	CAAAAATGAT	GGTCGCTGAA	ACTTCTATCG	10200
TCAAGAAGAA	TCACCAAATC	CCTCGTATCA	TCAACCAAAA	GATTGCTCAA	AAGTTAATTG	10260
AAAAGATTTC	TATGACTGAT	ATTGCCCATC	AGCTTTCCAT	CTCAACTTCA	ACTGTTATTC	10320
GTAAGCTCAA	TGACTTTCAC	TTTAAACATG	ATTTTTCTTG	TCTTCCTGAG	ATTATGTCTT	10380
GGGATGAGTA	TGCTTTTACA	AAAGGGAAGA	T			10411

# (2) INFORMATION FOR SEQ ID NO: 90:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2393 base pairs
- (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

GTTTTGGGTT CTGGAAA1	TTA TCAGATGGTT	GGAAAAGCCG	TCCACATCAA	GATAGTGTTC	60
GGAGATTTAA GTTTAAA	MTG AAGAAACTAA	CACAGAGGAA	ATGGAGTATA	GACCTAACAA	120
GACGTATTGA GCAACTGA	AT TTGTCTATTC	GAGGATGGAT	AAACTATTGC	TCATTGGGAA	180
ATATGAAAAG TATAGTCO	SCC AGCATAGATG	AGCGCTTGCG	TACTCGCCTA	CGAGTGATT'A	240
TCTGGAAGCA ATGGAAGA	AAG AAATCGAGAC	GATTATGGGG	ATTGCTTAAG	TTAGGAGTTC	300
CTAAATGGAT AGCAGATA	AAG GTATCTGGCT	GGGCGACCA	TTATCAATTA	GTAGCTCAGA	360
AGTCGGTACT TAAACGT	CT ATATCAAAAC	CAGTCCTGGA	AAAACGTGGA	CTGGTTTCGT	420
GTTTGGATTA TTACCTT	GAA CGACATGCGT	TAAAAGTTAG	TTGAACCGCC	GTATGCCAAA	480
CGGCACGTAC GGTGGTG	TGA GAGGGGCTAG	AGATTATCCC	CTACTCGATT	AACTCCCCTG	540
AAATTTATTT TAATTATO	GCA AATTTCACGT	ATTTTTGATG	CTGAGACGAC	GATCCTGGGA	600

ACTTTTCAGA	TATTTTTTG	ACTATCTAAA	TCTATCATTA	GAAAAGCTTA	GAGCGCCAAA	660
GGATTTGAGC	GTTTTTCTGA	TTTTTAAGAC	TTTTTCCAGT	CTCTTTTTCG	ATTGAAGATG	720
TAATTATTCT	ACTAACTAAC	TAACTTCTTA	GTACTAGCCA	ACAACGATAA	TCATAATTCC	780
TCCTAAAATT	AGGAATAATA	AAGGCAATAG	TTTTTGTTTT	TTCATGTAAA	AAACCTCACT	840
TTTGTTTTCT	GCTATTTTAT	GCTAAAATAT	TAAAAATCAA	ATTTAATTCC	AAAGTTTGTA	900
ACTAAAGGGG	GAGCGCTACA	TGTCTAATTC	ATTTGTCAAG	TTGTTAGTCT	CTCAATTATT	960
TGCAAATTTA	GCAGATATTT	TCTTTAGAGT	AACAATCATT	GCTAACATAT	ACATTATTTC	1020
AAAATCAGTA	ATTGCCACAT	CACTAGTTCC	TATCTTAATA	GGAATATCCT	CTTTTGTTGC	1080
GAGTCTTTTA	GTTCCGTTGG	TTACTAAAAG	GTTAGCGCTA	AATAGGGTTT	TATCTTTATC	1140
TCAATTTGGA	AAGACTATAT	TATTGGCGAT	ACTGGTAGGA	ATGTTTACCG	TAATGCAATC	1200
CGTAGCGCCT	TTGGTGACCT	ATCTATTTGT	TGTTGCAATT	TCCATACTAG	ATGGTTTTGC	1260
AGCACCCGTT	TCCTATGCTA	TTGTGCCACG	CTATGCGACC	GATTTGGGTA	AGGCTAATTC	1320
AGCCTTATCA	ATGACTGGTG	AAGCTGTTCA	ATTGATAGGT	TGGGGATTAG	GTGGACTCTT	1380
GTTTGCAACA	ATTGGTCTGT	TACCTACCAC	GTGTATCAAT	TTAGTCTTGT	ATATCATTTC	1440
TAGCTTTCTG	ATGTTATTTC	TTCCTAACGC	TGAAGTGGAG	GTGTTAGAGT	CAGAAACTAA	1500
TCTTGAAATT	TTGCTCAAAG	GTTGGAAGTT	AGTTGCTAGA	AATCCTAGAT	TAAGACTTTT	1560
TGTATCAGCA	AATTTATTGG	AAATTTTTTC	AAATACGATT	TGGGTTTCTT	CCATTATACT	1620
TGTTTTTGTA	ACGGAGTTAT	TAAATAAAAC	GGAAAGTTAC	TGGGGATATT	CTAATACAGC	1680
ATACTCTATT	GGTATTATAA	TTAGTGGCTT	AATTGCTTTT	AGGCTATCTG	AAAAGTTCCT	1740
TGCTGCTAAA	TGGGAACCCC	AATTATTCAC	CCCAAATCTA	AAAACCATCC	AGAATCCTTG	1800
CCTTAGCTTA	GATCCTGGAT	GGTTTCTTTT	TTCACCCAAT	GGGTGTTTTT	TACTAGACAA	1860
AAAAGAGTTT	CCCCTTTATG	GTATAAGTGT	AGAAAAAAC	ACAAAAAGAA	AGGAAACTCA	1920
CATGAACAGT	TTACCAAATC	ATCACTTCCA	AAACAAGTCT	TTTTACCAAC	TATCTTTCGA	1980
TGGAGGTCAT	TTAACCCAGT	ATGGTGGTCT	TATCTTTTTT	CAGGAACTTT	TTTCCCAGTT	2040
GAAACTAAAA	GAGCGGATTT	CTAAGTATTT	AGTAACGAAT	GACCAACGCC	GCTACTGTCG	2100
TTATTCGGAT	TCAGATATCC	TTGTCCAGTT	CCTCTTTCAA	CTGTTAACAG	GTTATGGAAC	2160
GGACTATGCT	TGTAAAGAAT	TGTCAGCTGA	TGCCTACTTT	CCAAAATTGT	TGGAAGGAGG	2220
GCAGCTTGCT	TCACAGCCAA	CCTTATCCCG	TTTTCTTTCC	AGAACTGACG	AGGAAACAGT	2280
CCATAGTTTG	CGATGCCTCA	ACCTTGAATT	GGTCGAATTC	TTTTTACAGT	TTCACCAGCT	2340
					*	

716 AAACCAACTC ATTGTAGATA ACGATTCTAC CCATTTCACA ACTTATGGCA AGC 2393

# (2) INFORMATION FOR SEQ ID NO: 91:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4762 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:

TTTGTATCTT	TTTAGGTCTC	TTTCAATCCA	AACCCTTTAA	ACTATACGTC	ATTTCGGTTC	60
CTGCAAGTCT	TGTGGTAATT	TTAGGTTTGA	TTTTACTTTT	CTTTTCACAA	GAGCCTCTGC	120
ACGCTTCTTA	TTTGATGGTC	GTCTTCCCTG	TTTTCCTACT	TTTATTGGTA	ACCAATATTA	180
AGAGTCAACA	GAGGGGGCGT	AGTGCTAGAA	GAAGCCGAAG	AGAAACGCCA	TTATGCCTAT	240
GGAGTCGTTT	CTTCAAAGGA	AATCTATATC	TGCTAGTTTT	TGGGTTTGTC	TATCTTTTGT	300
CTGTTCCTTT	TTTGATGAAG	TTTGTCCTTT	ATCCAGTACC	TTATCAAGAA	CGTAATCGTC	360
TTGCTGATTT	GGTAAAAGAG	GAGACAAATA	CGGAAGATGC	TATCTCATGC	ATGGGATGAT	420
ACTGCGACTC	TTTATCGTAA	GAGTGAGCGC	TTGTCCCATC	GGCGATTTTG	TCCCCGTTGC	480
ACTATACAGC	AACTGAGGAA	AATCGTAATA	AGTTACTTAA	TGACTTGAAA	GAAAAACAAC	540
CTAAGGTGAT	TGTGGTAAAT	GATAAGGTGG	TAGTCTGGTC	TGAAGTGGAA	ACACTCTTAA	600
AAGAAAATTA	CCAACAAGTA	AAGACTGATT	ACTCAGAGTT	TAAAGTCTAT	AAAATTAAAT	660
AACCAAATCA	ATATCTTGTG	TATTTTTAAA	AATTTTAGGA	TTTTTAACAC	AAGATATTGA	720
TTTTTCTTTT	TAGAGTGGTA	TAATACTTTT	TAGAAAGAAC	ATTTTAGAAA	AGAGCATGCA	780
TATGATTGCA	CTAGAAGAAA	AAATTACAAT	TTTGCCAACT	CTCTTCGTCG	AGAAACGAGA	840
TGGGAGACGT	GTTGTATTTG	ATGTGGACAA	GATTGACAAG	GCTCTCCACA	AGGCGGCTGA	900
CAAGGTTATG	GATGTGACAC	CCCTGGTTGA	AAAATGCCTC	AATGATCTGA	CTGAGCGAAAT	960
TATTACAGAA	ATTCATAGTC	GCTTTCCACA	GGGAATTAAG	ATTTACGAAA	TTCAAAATAT	1020
CGTAGAACAT	GAACTCCTTG	AAGCCAAAGA	ATATGCGCTG	GCTGAGGAGT	ATATTACTTA	1080
TCGGACACAG	AGGGATTTTG	AGCGCTCAAA	AGCGACGGAT	ATCAACTTTA	GTATTCATAA	1140
ACTTCTCAAC	AAAGACCAGA	CAGTTGTCAA	TGAAAACGCT	AATAAAGACA	GTGATGTCTT	1200
TAACACTCAG	CGTGATTTGA	CAGCAGGGAT	TGTTGGGAAA	TCAATCGGAC	TGCAAATGCT	1260
TCCTAAGCAC	GTAGCCAATG	CCCACCAAAA	GGGGGATATC	CACTATCACG	ATTTGGACTA	1320
CAGTCCCTAT	ACCCCTATGA	CCAACTGCTG	TTTGATTGAT	TTTAAGGGTA	TGTTGGAAAA	1380

717

TGGTTTTAAC	ATTGGAAATG	CAGAGGTAGA	GAGTCCCAAC	TCTATCCAG	CTGCGACAGC	1440
ACAGATTTCT	CAAATCATTG	CCAACGTTGC	TTCTAGCCAC	TACGGTGGCT	GTTCAGCTGA	1500
CCGTATCGAT	GAAATTTTGG	CGCCTTATGC	AGAGAAGAAT	TATCAAAAAC	ATCTCAAAGA	1560
TGCAGAAGAG	TGGGTATTGC	CTGAAAAACA	GGAAGATTAC	GCTTGGAAGA	AAGCGCAAAA	1620
GGACATCTAC	GATGCCATGC	AATCTCTTGA	GTATGAAATC	AATACTCTCT	TCACTTCAAA	1680
TGGACAAACA	CCTTTTACTT	CGTTAGGTTT	TGGTCTGGGA	ACCAGTCGTT	TTGAACGAGA	1740
AATTCAAAAA	GCTATTTTAA	ACATTCGCAT	CAAGGGTCTT	GGTTCAGAAC	ACCGTACGGC	1800
TATCTTTCCT	AAACTTATCT	TTACGCTTAA	AAGAGGCCTC	AACTTAGAGG	AAGGAACTCC	1860
CAACTATGAC	ATCAAGCAGT	TGGCTCTAGA	GTGTGCAACC	AAGCGGATGT	ATCCAGACGT	1920
CTTGTCTTAT	GATAAGATTG	TTGATTTGAC	AGGTTCTTTC	AAGGTGCCTA	TGGGCTGCCG	1980
TTCTTTCCTT	CAAGGGTGGA	AGGATGAAAA	TGGTGTAGAA	GTCAATTCAG	GTCGCATGAA	2040
TCTGGGTGTT	GTGACGGTTA	ATCTGCCTCG	TATTGCTCTT	GAGTCTGAAG	GTGATATGAA	2100
TAAGTTCTGG	GAAATCTTCA	ACGAGCGAAT	GAATATCGCA	GAAGATGCTC	TTGTTTACCG	2160
TGTCGAACGC	ACTAAAGAGG	CGACACCAGC	GAATGCTCCT	ATTCTTTATC	AGTACGGTGC	2220
TTTTGGCCAT	CGTCTAGGTA	AAGAAGAAAG	TGTTGACCAG	CTCTTTAAGA	ATCGTCGTGC	2280
GACCGTTTCG	CTGGGCTATA	TCGGCTTGTA	TGAAGTAGCG	ACAGTTTTCT	TTGGTAACAG	2340
CTGGGAAAGT	AATCCAGATG	CTAAGGAATT	CACGCTAGAC	ATCATTCACG	ATATGAAACG	2400
CCGTGTAGAA	GAGTGGTCAG	ACCAATATGG	CTACCATTTC	TCTATCTACT	CAACACCATC	2460
CGAAAGTCTG	ACAGACCGTT	TCTGCCGACT	AGATATAGAC	AAGTTTGGCT	CTATTCCTGA	2520
TATCACAGAC	AAGGAATACT	ACACCAACTC	TTTCCACTAC	GATGTTCGTA	AAAATCCAAC	2580
ACCGTTTGAA	AAATTGGACT	TTGAGAAAGT	CTATCCGGAA	GCAGGTGCGT	CAGGTGGTTT	2640
CATCCATTAT	TGTGAGTATC	CAGTCCTTCA	GCAAAATCCA	AAGGCCTTGG	AAGCTGTCTG	2700
GATTATGCT	TATGACCGTG	TAGGCTATCT	AGGCACCAAT	ACTCCGATTG	ACCGTTGCTA	2760
CAAGTGTGAC	TTTGAAGGGG .	ATTTTGAACC	AACTGAGAGA	GGGTTTGCTT	GTCCAAACTG	2820
GGCAATAGC	GACCCTAAAA	CAGTAGATGT	GGTGAAACGA	ACTTGTGGCT	ACCTAGGTAA	2880
CCTCAAGCA	AGACCGATGG '	TCAACGGGCG	TCACAAGGAA	ATCGCTGCGC	GTGTCAAACA	2940
ATGAATGGT	TCAACGATTA	AAATAGCTGG	GCATCAAGTA	ACAAATTAGA	aagaaatgaa	3000
TGGGAAAAT	ATCAACTAGA (	CGATAAGGGG	CGCGCACAAG	TGACCCGTTA	TCACGAGAAA	3060
ACTCTAAAG	GTGGAGCTGG	TAAGAAAGAA	CGCTTGCTTA	GCTTCAGAGA	ACAATTTTTA	3120

			718			
		A AAAGTGAGAG				318
AAGGATGGA	A TTACGCAGA	CAAGATTAGO	GGATAAGAAA	GCTGTTTTAG	ATATGATGAC	324
AGAGTTTGA	A AAATTTCAG	r cgcctcacga	CGGCGGTTTC	TGGGATACAG	AGAACTTTGT	330
GTATGAAGA	C TGGTTAGAAJ	GCAATCAGGA	ACAGGAAATG	GGGATTAATC	TGCCTGAAGG	336
ATGGGTTTC	T GCAATTCAGT	TAGTGGCTTT	TTCTGAGAAA	GGTCAAGCAG	TTGGATTTCT	342
TAATCTCCG	G TTGCGCCTC	GTAACTTTCT	ACTAGAAGAA	GGTGGCCACA	TTGGCTACTC	348
CATTCGTCC	N TCTGAAAGAC	GCAAGGGTTA	TGCAAAAGAG	ACTCTCCGTC	AGGGCTTGCA	354
AGTTGCTAAG	GAAAAGAACA	TCAAGAAAGC	TCTGGTGACC	TGTAGTGTGA	ATAATCCTGC	360
TAGCAGAGCA	GTCATTCTAG	CAAATGGTGG	AATATTTGAG	GATGCTCGCA	ATGGAGTCGA	3666
GCGTTATTGC	ATAGAGGTAG	CGAATGAATA	ATCCAAAACC	ACAAGAATGG	AAAAGCGAGG	3720
AACTTAGTCA	AGGTCGTATC	ATTGACTACA	AGGCCTTTAA	CTTTGTGGAC	GGCGAAGGCG	3780
TGCGCAACTC	TCTCTATGTA	TCAGGCTGTA	TGTTTCACTG	CGAGGGATGT	TATAATGTTG	3840
CGACTTGGTC	TTTTAATGCT	GGCATTCCCT	ATACAGCAGA	ATTAGAAGAG	CAGATTATGG	3900
CAGACCTTGC	CCAACCCTAT	GTTCAAGGCT	TGACTTTGCT	GGGAGGGGAG	CCTTTTCTCA	3960
ATACTGGGAT	TCTCTTGCCA	CTTGTTAAGC	GGATTCGGAA	GGAATTGCCA	GACAAGGACA	4020
TCTGGTCCTG	GACCGGCTAC	ACTTGGGAAG	AAATGATGTT	GGAAACTCCA	GATAAACTGG	4080
AATTCTTGTC	ACTGATTGAC	ATTCTTGTCG	ATGGAAGATA	TGATCGAACT	AAGAGAAATC	4140
TTATGCTCCA	GTTTCGAGGT	TCATCTAACC	AACGAATTAT	CGATGTGCAA	AAATCGCTCA	4200
AAAGTGGGCA	AGTAGTGATT	TGGGACAAGC	TCAATGACGG	AAAAGAAAGC	TATGAACAGG	4260
TGAAGAGAGA	ATGAAGAAAA	AGGACTTAGT	AGACCAACTA	GTCTCAGAGA	TCGAGACGGG	4320
GAAAGTCAGG	ACACTGGGAA	TATACGGTCA	TGGAGCTTCA	GGTAAATCAA	CCTTTGCACA	4380
GGAATTGTAC	CAAGCTTTAG	ATTCTACTAC	AGTAAATTTG	CTAGAGACAG	ATCCTTATAT	4440
CACCTCAGGA	CGCCATCTGG	TAGTACCCAA	GGACGCGCCG	AATCAAAAGG	TGACAGCCAG	4500
TCTGCCAGTG	GCGCATGAAC	TGGAGAGTTT	GCAGAGAGAT A	ATCCTTGCTT (	GCAGGCGGGT	4560
ATGGATGTCT	TGACAATTGA	AGAACCTTGG	AAGGCTAGTG A	AGGTCTTGTC '	TGGAGCCAAA	4620
CCAATTTTGA	TTGTCGAAGG	GATGTCTGTT	GGCTTTCTAC (	CCAAGGAACT (	CTTTGAAAAA	4680
ACCATCTGTT	TCTACACGGA	TGAGGAGACC	GAATTAAAGC (	SACGCCTTGC 1	TAGAGATACG	4740
ACTGTGAGAA	ATCGCGATGC	GG				4762

⁽²⁾ INFORMATION FOR SEQ ID NO: 92:

⁽i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3832 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:

60	TGTTAATCAG	AAGATGATGA	AATTACTTTA	TATTCCAGAA	TCGACCCACA	GATGCAGGTT
120	GGTAGACCAT	TCAGTAATTG	GCCCTCTTTT	TTCATCTGCA	TTTGTTGGTC	GTACCTTGTC
180	ATCTGCATAT	AAGATGATGC	AGAAAGATAG	TTTTGATTGG	AGGAGACGCC	GCGGTCTATC
240	ACCTTGGTTT	TAAATCAGGT	TAGACGCTTT	ATGACATATT	AAGAGGAATT	GGGTATTTAT
300	GATTTTCTGG	TTCTAGCGAC	AACTCTTTCC	CATTTTAAGG	CCTGCTCTTG	TACCGAGTGC
360	CCAAGCCAGA	AGAAATGTCG	CAGGCTTAGA	CAAAATACGA	TTTCTATTTG	TTTGGCAATT
420	AATCTGACGG	GTCCATTTCT	ATGTCAACCA	GAAATTTCGG	GATTGGCAAG	TTGCTGAAAG
480	TTGCTCTTTG	CGAAATTGAA	AATTAAATGG	CGTACTATCG	GCTCCAGTAT	AAAGGGGACT
540	TCAAGTTCAG	AGCAGTTCAT	ACCTGTTTGG	CGTTTGGATG	GGCCTTGGAA	ATGCTAGTTT
600	CAGGAGTTGG	AACCTTCCAG	ATTTGGTGGA	CAGCTCAAGG	ACCTCAAAAC	ACCAGCTAAC
660	GAAGATGGAA	GACACTAAAG	ATTTGACCAA	GAGATTGAGG	GACGCCTTTT	GACGATTGTT
720	AAACCAAACT	TTTGAATGGA	GTGAAGCTGT	GAGGCTCTTC	CTTGATTAAG	CCAGTGCTGA
780	AGTGTGGCTC	AGGAATCAAG	GGCGCCATGA	TTGAGAAACT	TCAGGCGATT	GGAAGTACAT
840	CAGGTATCTG	TCAGTTGACA	CAAGCAATCC	GAAAGAGAAG	CAAGAGAGCA	AAATTGAGGC
900	GGCTTGAAAT	CATGCAAGTA	AGGATTAATC	GATCTCTGGA	AAATGCCATG	CAGATTTCAT
960	TAAATTGAAA	AAATAGAAAA	GTGATAGAAT	GTGTATAATT	TTTGCAAGCT	CCGAGTAAGA
1020	AATGAACAAA	GTAACTGGAA	TTTATCGCTG	ACCTAAACCA	GTGAAATGTC	AAAGAGGTAT
1080	TTCATCAGAT	CAAAACTTCC	GCAGTTGCAT	ATTCGTTGAA	AAGCTAAAGC	AATCCAGAAG
1140	TGCTGTTGCA	CAACTGTTCT	CTTGATTTGA	TGCTCCAGCT	CAGGTATCGC	CTTGTTGAAG
1200	AGGTGCTTTC	TTGAAAATGC	AACTGCTACT	TGCTGCTCAA	ACCTTAAAGT	AAAGGCTCAA
1260	TGTTATCGGT	CTGACTACGT	GAAATCGGTA	AGTTTTGAAA	CTAGCCCACA	ACTGGTGAAA
1320	AAAAGCAAAA	ATATCAACAA	ACTGATGAAG	CTTCCATGAA	CCCGTGACTA	CACTCAGAAC
1380	TGAAACTTAC	GTGAATCACT	ATCTGTTGTG	GCTTCCAATC	CGAACGGTAT	GCAATCTTTC
1440	GGCTGGATTG	CTGCTGCATT	GCTCAAGTAT	ATTCGTAGGT	AAGCTGCTGA	GAAGCTGGTA
. 1500	TATCGGTACT	CAATCTGGGC	GCTTATGAGO	CTCAGTTATC	AAGTTGCTGC	ACTGCTGAAC

			720			
GGTAAATCAG	CTTCACAAGA	CGATGCACAA	AAAATGTGTA	AAGTTGTTCG	TGACGTTGTA	1560
GCTGCTGACT	TTGGTCAAGA	AGTCGCAGAC	AAAGTTCGTG	TTCAATACGG	TGGTTCTGTT	1620
AAACCTGAAA	ATGTTGCTTC	ATACATGGCT	TGCCCAGACG	TTGACGGTGC	CCTTGTAGGT	1680
GGTGCGTCAC	TTGAAGCTGA	AAGCTTCTTG	GCTTTGCTTG	ACTTTGTAAA	ATAATCAGTA	1740
AGTAGCAAAA	GCTAGGTGGA	ACAGCATTCA	GATGTCTGTT	ACATTTTTTA	TAGGAGAGAA	1800
AGATTGAAAA	CAAAAATTGG	ATTAGCAAGT	ATCTGTTTAC	TAGGCTTGGC	AACTAGTCAT	1860
GTCGCTGCAA	ATGAAACTGA	AGTAGCAAAA	ACTTCGCAGG	ATACAACGAC	AGCTTCAAGT	1920
AGTTCAGAGC	AAAATCAGTC	TTCTAATAAA	ACGCAAACGA	GCGCAGAAGT	ACAGACTAAT	1980
GCTGCTGCCC	ACTGGGATGG	GGATTATTAT	GTAAAGGATG	ATGETTCTAA	AGCTCAAAGT	2040
GAATGGATTT	TTGACAACTA	CTATAAGGCT	TGGTTTTATA	TTAATTCAGA	TGGTCGTTAC	2100
TCGCAGAATG	AATGGCATGG	AAATTACTAC	CTGAAATCAG	GTGGATATAT	GGCCCAAAAC	2160
GAGTGGATCT	ATGACAGTAA	TTACAAGAGT	TGGTTTTATC	TCAAGTCAGA	TGGGGCTTAT	2220
GCTCATCAAG	AATGGCAATT	GATTGGAAAT	AAGTGGTACT	ACTTCAAGAA	GTGGGGTTAC	2280
ATGGCTAAAA	GCCAATGGCA	AGGAAGTTAT	TTCTTGAATG	GTCAAGGAGC	TATGATGCAA	2340
AATGAATGGC	TCTATGATCC	AGCCTATTCT	GCTTATTTTT	ATCTAAAATC	CGATGGAACT	2400
TATGCTAACC	AAGAGTGGCA	AAAAGTGGGC	GGCAAATGGT	ACTATTTCAA	GAAGTGGGGC	2460
TATATGGCTC	GGAATGAGTG	GCAAGGCAAC	TACTATTTGA	CTGGAAGTGG	TGCCATGGCG	2520
ACTGACGAAG	TGATTATGGA	TGGTACTCGC	TATATCTTTG	CGGCCTCTGG	TGAGCTCAAA	2580
GAAAAAAAAG	ATTTGAATGT	CGGCTGGGTT	CACAGAGATG	GTAAGCGCTA	TTTCTTTAAT	2640
AATAGAGAAG	AACAAGTGGG	AACCGAACAT	GCTAAGAAAG	TCATTGATAT	TAGTGAGCAC	2700
AATGGTCGTA	TCAATGATTG	GAAAAAGGTT	ATTGATGAGA	ACGAAGTGGA	TGGTGTCATT	2760
GTTCGTCTAG	GTTATAGCGG	TAAAGAAGAC	AAGGAATTGG	CGCATAACAT	TAAGGAGTTA	2820
AACCGTCTGG	GAATTCCTTA	TGGTGTCTAT	CTCTATACCT	ATGCTGAAAA	TGAGACCCAT	2880
GCTGAGAGTG	ACGCTAAACA	GACCATTGAA	CTTATAAAGA	AATACAATAT	GAACCTGTCT	2940
TACCCTATCT	ATTATGATGT	TGAGAATTGG	GAATATGTAA	ATAAGAGCAA	GAGAGCTCCA	3000
AGTGATACAG	GCACTTGGGT	TAAAATCATC	AACAAGTACA	TGGACACGAT	GAAGCAGGCG	3060
GGTTATCAAA	ATGTGTATGT	CTATAGCTAT	CGTAGTTTAT	TACAGACGCG	TTTAAAACAC	3120
CCAGATATTT	TAAAACATGT	AAACTGGGTA	GCGGCCTATA	CGAATGCTTT	AGAATGGGAA	3180
AACCCTCATT	ATTCAGGAAA	AAAAGGTTGG	CAATATACCT	CTTCTGAATA	CATGAAAGGA	3240
ATCCAAGGGC	GCGTAGATGT	CAGCGTTTGG	TATTAAGCGA	TGATTTGAAA	GAGGGATGTG	3300

721

ATAGTAGCAC	CCTCTTTTTC	TTTGTTTTAT	GATAGTTCAT	CCTCGAGTAA	ATTCAAGTTC	3360
TTGCTCGGAA	ATGAAGCTTA	TATAGTAGAT	TGAATATAGA	CAAATACCTT	GTGATTGGTA	3420
AAACATTTTA	GAAATTCATT	TACCTTTCCT	AATCGACTTG	GTTTCATCTT	ATTTCAATCT	3480
ATTATAGTAT	TGGGGAATTT	CTTCAAACCA	CATCAGCTTG	GTCAGTTCTA	CCTGCGACCT	3540
CAAAACTTGT	GCTTTGGTCA	AGCTGGGTTT	AGTTTCCTAG	TTTGCTGATG	GATTTCCATT	3600
GACTATAAGC	ATCCAACCCT	CTTTTTGTCT	TCTAAAGAAT	TCTTAAATTA	TCAGTCTATT	3660
GCAACTTTTC	TCATATAAGT	TCTTTGTCTT	GCTATTGGTT	TTCCTTAGTA	GTATACTAAG	3720
GTAGTAATCA	TTAAGAAGTG	GTTACAAAAA	ATAATGAATG	AGGTAAAGAA	AATGGTAGAA	3780
TTGAAAAAAG	AAGCAGTAAA	AGACGTAACA	TCATTGACAA	AAGCAGCGCC	GG	3832

## (2) INFORMATION FOR SEQ ID NO: 93:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10690 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:

TGAAAAATC CTCATGAACC TGGCGCCAAT AGACAAGTGT CTTGTTTCCC TCACCTTCCT 60 TATAGGCATG GTCAGCTGAC ACTCGATTGA AGGGTTTAAC AGAAACCTTT GTAATTTCGA 120 CAATGCAGAC AGCCTGATTT TGACTATCTA AAATGACATC GAAGGTCCCT ACTTGGGGAA 180 GTGGTTCGTC TTCTAGCACA TAGAGGTCAT AGGCTGATGC TGTTGCTGTC TTTTCTCCTT 240 TAAACACCAA ATCCGCTAAA AGGTCTGGTT CAACTCCAAA AGCCCAGGCA TCGATTTCAT 300 CTCCGATCAA AGGATTGATT TGCTTGTATT TATTCCACAT TTCTTGCGGT ATCATGGGTG 360 CTCCTTTGTA ATTTTTTACT TTCTTCTTTT ATGTGTTTAA GATGATCTGG ATGGTCAATC TCTAAATCAA AAATCTCTGG AATAGAACTG TAGTGGATAA TGCACTTGAT ACCCAACTGA 480 TTCATTTTT GTATGAAAGA AGTATTCAGA TAGCCTGCTA CAGCAAAATC AATCTTGTTC 540 TTTCTTGCTT TATCCTGCAT ATCTCTTAGC ATATCTAACA TTATTGGACT TTCCATATCA .600 TGCCATTGAC TGTTTCTCAT AGTCGCAAAA ACAAAGGAAG TCAAATCATT CATTCCAACT 660 ACAATCTTTG AAATGCCCGT TTCCAGTATA CTAGATAAGT CAAAATACGC TGACGGTAAT TCAATCATCG TTCCGACTTT CCCAGTAAAA CCCTGCTGAC GCAATACTGT AATAGCTTGT 780 TTTAATTGGT CGGCATCATT GACAAAAGGA AAGATAACAG ATAGATTGGG GTTGGTTTGA 840

			722			
TAAACTTCTG	TAACGACATG	TGCTTCAGCC	TGAAATTCAT	CCAAACACGC	CAGTAAACGC	900
CTAGTTCCTC	TATAGCCAAA	CAAGGGATGC	CCTTCGTCAA	AAAACTCTTT	AGTCCCCACT	960
AAACAATTGG	CTTCTGTATT	CGTTAATTCA	GTAAAACGAT	ACCAAACTTC	CTTACCTAAG	1020
TAAAAGGAGC	AAATAGTATC	AAGATAATCT	TTCACAAATT	CCTGACAACT	TTGTAATAGT	1080
ATATTTTGAT	TGAGCTCTCT	CAATAAGTAT	TCCCCACGAA-	-TEATGCCGAC	GTGGTGAAAT	1140
AGTTGAGGAT	AAATTTTTTC	AAGAATTTTT	TCGCCACTAA	GGGCAAGTTG	ATTTCTCATC	1200
ATTCACCTTC	CAATTCATGT	AAGAAGTCTT	GTCCAGTTCT	GGAAATCCTA	ATAATTCAGA	1260
CTTAACCTTC	AAGACTAATG	GCGATGCATT	TTCTTCTGTA	ATCTCTTGAA	TATCCATCCA	1320
AATATATCCA	AGTGAATCAT	TCGCACCATC	AGACACAGCT	TCCGAAATCG	TAACTTGAGG	1380
TGCACTCTCA	TTCATTTCAA	CATCATACAA	GGCTATGACA	TGGTGAACCA	TAAAATTTTT	1440
TAACTCTTCC	CTGACGAAAA	CATCGTAGAT	TCGAGGATTA	GAGTAGCTTC	TAACAGTAAA	1500
TCCCGTCTCT	TCCATAACTT	CTCTAGTCAG	CGTTTCCGTC	AGTCCTTCAC	CAAGTTGCTG	1560
ACTGCCTCCA	GGTAGATCAT	ACCGATGTTG	ATAAGGGCCT	CTCGTTTTTT	CAATGCAAAG	1620
TAACTTTCCA	TTTTCAAAGC	AAACACAGTA	GACCCCAÁAG	TGATTTTTGA	TTTCCATCCA	1680
ACTCCTCCTA	CTTCAAAGAC	CAGCCACCAT	CTATTGTCAA	GATTTGTCCT	TGCATGGCGC	1740
TCGCTTTTCC	ACTTGCTAAA	AAAAGACTAA	GCTCTGCTAT	TTCCTCTGGC	TCAATCCAGC	1800
GCTTGATTGG	GGTTTCACTA	GCCACCCAGT	CAGCCAAACC	ACCTGGTTCA	AAATCCGCAG	1860
CGGTCATAGC	TGTCTTGACT	GCTCCTGGAG	CGATACCAAA	GACCTGAATC	CCAGCTTCAG	1920
CATAGTCTAG	AGCCAACTGC	TTGGTGAAGC	CAGCCAAGGC	ATGCTTGGAT	GAAGTATAGG	1980
CGTGACCACC	TCCACCTGCT	AGGCTAGAAG	CAATGGAACA	CATATTGATG	ATGATTCCCT	2040
TTTTATTTTC	CAGCATTTGT	GTCAAATAAT	ACCGAGTCAA	CTCTACTGGA	ATAATGTAGT	2100
TGATTTCAAA	AATCTCTTGA	ATGTCCTGCG	CCGTTTGTTC	CAACAGTGGT	TTGTAATCAT	2160
CCAAAACTCC	AGCAGTATTA	CACAAAACAT	CCACCTGAGG	GCACCAGTCA	AAAATAGGTT	2220
CCAAGTCCAA	GGTCAAATCT	CTCTGTAAAA	AGCGAAAATC	ACCCTCTAAG	AGTGGCTTTT	2280
CACCTTGGTC	AACTCCATAA	ACTTGATAGO	CCTTCTCTAA	AAAGAGGCGA	GCTTGAGCCA	2340
ATCCGATCCC	TGAACTCACT	CCTGTAATGA	GTACACGTTT	AGTCATGCAC	TTCTACCCAA	2400
TCCGTTGCCA	AAACATCACA	AACTGTCGGG	CTCCACATGG	AAAAACCTTC	TCCTTCGCCA	2460
GAAACGTTGA	'TTAGGAAATA	AGGTGTCATT	TCAAGTGCAA	GCCCATTTTG	CTCGATGGTA	2520
TCAAAGAGTT	GGACATAGTT	TTCCGCACCT	CCCCAACCAG	TTCGTACATA	TTTTCTCTTA	2580
GCCTTTAACC	CAGGCAGGAT	CTCTTCAAAT	GTCATGTTT	TCTCCTTTAA	TTCTACATTC	2640

TTCATTTAAT	TATAGCAAAA	AACCGCTTTA	TACGGCTTTT	TGAATGTGAG	TTATTCAAAC	2700
CTGCTACTAC	TTACGGCAAA	TTATTCCCTG	CAGCAAGATA	AATTTCATAC	CATTCTTTTC	2760
TTGTTAAGCT	AAAGTTTGCC	GCTCGGCTAA	CTTCTCTCAA	GTGCTTAGGA	TTTGTTGTAC	2820
CTACGACTGC	CTGCATTTTT	GCTGGATAAC	GCAATATCCA	AGAAATGGCA	ATAGTTGAAG	2880
AGGTTACTCC	ATATTTAATA	GCTAAACGAT	CAAGTACTTG	ATTTAAAGCT	TGAAATTTCT	2940
CATTTCCAAC	AAAATTCCCT	TTAAAATACC	CGAATTGTAA	GACAGACCAT	GCTTGAATGA	3000
CCACATCGTG	TAATTGGCAA	TATTCAAAAA	TGCTGCCATC	TCGCATAGCT	GCTTGACTAT	3060
CTTCCATATT	AACATGAAAA	GCTGATTCAA	ATCCTGGAGT	AAAAGCCGCA	CTCAATTGTA	3120
GCTGATTAAC	AGCTAACGGC	TGCTTGACAT	CTTTTTTAAG	CAACTCCATC	ATCATAGGAT	3180
TTTGATTAGA	AACTCCAAAA	TCTCGAACTT	TACCTTGTTT	ATAAAGGAGA	TTAAAGGCTT	3240
CTGCTACTTG	GTCAGATTCC	ATCAAAGCAT	CTGGTCGATG	AAGGAGCAAG	CTATCTAGAT	3300
GATCAATCTT	CAATCTTTGC	AAAATACCGT	CTACTGATTT	TATAATATAG	TCCTTAGAAA	3360
AATCAAAATA	GGTAAATTCT	TCAATGCGAA	TGCCACATTT	GGACTGAATC	CACATCTTTT	3420
CTCTTAAATC	TGGACGATTT	TTTAGGACAA	GACCTAACAG	TTCTTCACAA	CGACCACGAC	3480
CATAAATATC	AGCCAAGTCG	AAGGCATTGA	TTCCAACAGA	AAGTGCTGTT	TCTACAAGCT	3540
CTTCAACTTC	TTTTACAGAT	TTATCTTTTA	TTCTCATCAT	TCCGAGAACA	ATTTCTGATA	3600
ATTCTTTGTC	ATCTTGACCA	AGAGTTATGT	ATCTCATCAA	ATTTTTCTCC	TTTAATTTCT	3660
AACATTCTTC	CCTTCATTAT	AACAAAAAAC	CGCTTTGCAA	CGACTTTTTG	ACTATACTTC	3720
ACTCCATTTT	ATCTTCTTAA	ACCCACGGAA	CAAGACAAAG	ATTCCAATAA	AGAGGACAGC	3780
TAAAGGAATA	ACTTTTGTAA	GGAAAACATT	TGAAATTCCC	ATCCACTCAT	AATAACGGAG	3840
CAGAGAACCC	ACCACAAGAT	GGGCAATAAT	CATACTGACA	AATGGACGAA	AGACCGCTTC	3900
TTTCCAATTC	CAAATACCGA	TAACTAGCGA	AATCGTAAAG	ACAGACAAAC	TATCCCAGGG	3960
AGCCGGAATA	TAAAAGGCTC	CTTCTTGTAT	GAAGCTTGCC	ATTCCTACAT	ATCCTAAAAC	4020
AACTAGAAGA	ACTATAGTCC	CAACAACAAT	GTAAGTGCCA	ATTTTCATTT	TAGGAGAATC	4080
TTGGACTAAA	CTTCTTCGTA	AAATTGTGGC	CACAAGTCCA	AATCCAATCA	GAAAAATAAG	4140
AAGTTGCCCT	AAAAATGTGA	GCAAATTGAC	TGTTAAGAGA	GGACCTTTAG	AAAAATCACT	4200
TAGTAGTTGA	TAATAACGTA	ATACCGCCAG	GACAAGAATT	GGCGTCAAAA	GGGACTCTTT	4260
GATAGAACTG	CGAGGTGCTC	CCTTGAGAAT	CTCTTTCATT	ATTTTTTAG	GATTCTTACC	4320
TAGATAATCC	TCTGCACTCA	TGCCATCTCG	TTCTGCTTCT	GAGAAATCTA	GCATCATCAA	4380

			724			
ATAGATCTGC	TCTCTGAGAT	AGTCTTCATC		CCAGCAAGAT	TAAAACTTTC	4440
CCACAACTCC	TCAAAATACT	TTTGATTCTC	CTCAGAAAAC	TCATGTAGCA	AAGCGCTTGT	4500
TTCTTCGTAA	TACTTCATTT	TCTTCATGGT	TTAACCCCCA	TTCTTAATCC	CTTCTACTTT	4560
TTGACTCAAA	TCGTCCCATT	GTTGCCAAAA	GACTGAGACA	CGCTCTTCTC	CTTCTTTCAT	4620
TAATGAAAAA	TACTTCCGAT	CTGGACCATC	TGGCGACGGG	CGCATGTCGC	CTCTTATCCA	4680
TTGATTTTTT	TCTAACTTTT	GCAACAAAGG	ATAAATAGTT	CCTGGAACGA	TAGTATCAAA	4740
TCCAGCCTCT	CGCAAAGTCT	GAACCAACTC	ATAACCATAC	CGCTCTTTTT	GACCAATCAT	4800
ATCCAAGACA	CAACCTTCAA	GAACACCTTT	TAATAGCTGA	GTTTCTTTCA	TCACTTCTCC	4860
CTTCTAATCT	ATTTTGTAAT	ACCTACTAGT	GACTTCACCT	ATAGTATATC	ACTTCTACAC	4920
TAGTTTGTAA	AGCATAATAG	TTAATACTCT	TCGAAAATCT	CTTCAAACCA	CGTCAGCGTC	4980
GCCCTACCGT	ATGTATGGTT	ACTGACTTCG	TCAGTTTCAT	CTACAACCTC	AAAAACATGT	5040
TTTGAGCTGA	CTTCGTCAGT	TTCATCTACA	ACCTCAAAAC	AGTGTTTTGA	GCTGACTTCG	5100
TCAGTTTCAT	CTACAACCTC	AAAACAGTGT	TTTGAGCTGA	CTTCGTCAGT	TTCATCTACA	5160
ACCTCAAAAA	CATGTTTTGA	GCTGACTTCG	TCAGTTTCGT	CTACAACCTC	AAAACAGTGT	5220
TTTGAGCAAC	CTGCGGCTAG	CTTCCTAGTT	TGCTCTTTGA	TTTTCATTGA	GTATAAATAA	5280
AAAAACAGAA	CTAGCCTGAA	CTAGTCCTGT	CTACTTTTAC	CCAATCACAC	TTCCATTTGG	5340
TACAGCTGGA	TCAACTGTGA	GAAGGGTTAA	TTTGCCATCA	TGTTCAGCTG	AGAGAATCAT	5400
ACCCTGGCTG	ACATATTTTT	TCATCATTTT	ACGTGGTT1'G	AGGTTAGCAA	CGATTTGAAC	5460
TTTCTTGCCG	ACCAATTCTT	GTTCATTTGG	ATAGTATTTT	GCAATTCCTG	AAAGAATCTG	5520
ACGATCTTCT	CCATCACCAG	CATCCAAGCG	GAATTGAAGC	AACTTATCTG	AACCTTCTAC	5580
TTTAGACACT	TCTTTGACTT	CTGCGACACG	GATTTCAACC	TTGTCAAAGT	CTTCAAACTT	5640
GATTTCATCC	TTGTTTAGTT	TGAGCTCAAC	TTCGTCCGGA	TTCCATTCTT	TTTCGACTGC	5700
TGGTTTATTG	CCTTCCATTT	GTTCCTTGAT	ATAGGCGATT	TCTTCTTCCA	TATTTAGACG	5760
TGGAAAGATA	GGTGTTCCTT	TGGCAACTAC	AGTCACATCT	GCTGGĠAAGT	CAGCCAAACT	5820
CAAGTTTTCA	AGACTAGAAA	CTTCTTCCAA	ACCAAGTTGA	GTCAAAACTG	CACGACTAGT	5880
TTCCATCATA	AATGGTTCAA	TCAAGTGAGC	AACTACACGA	ATGCTGGCTG	CCAAGTGGCT	5940
CATGACACTT	GCCAATTGGT	CACGAAGAGC	TTCATCCTTG	GCCAAGACCC	ATGGTGCGGT	6000
CTCATCGATG	TATTTATTGG	TACGAGAGAT	CAGAGTCCAG	ACTGCTTCAA	GCGCACGTGG	6060
ATAGTCAACT	GCTTCCATGT	GTGTATGGAA	GTCTGCGATT	GATTGTWCTG	CAACCTCAGC	6120
AAGAACATGA	TCATATTCAG	TCACACCTTC	TACATAGGCA	GGGATTTGTC	CATCAAAGTA	6180

CTTATTAATC	ATGGAAACCG	TACGGTTAAG	GAGGTTCCCA	AGGTCATTAG	CCAATTCATA	6240
GTTGATACGG	CCGACATAGT	CTTCAGGAGT	AAAGGTTCCG	TCTGAACCAA	CTGGAAGGTT	6300
ACGCATGAGG	TAGTAACGAA	GTGGATCTAG	TCCATAACGC	TCTACCAACA	TTTCAGGGTA	6360
AACGACATTC	CCTTTTGACT	TAGACATTTT	TCCGTCTTTC	ATGACAAACC	AACCATGGGC	6420
AATCAAACGA	TCAGGTAATT	TAACATCCAA	CATCATAAGA	AGGATTGGCC	AGTAGATAGA	6480
GTGGAAGCGA	AGGATATCTT	TTCCTACCAT	ATGGAAGACT	GTTCCATTCC	AGAACTTGTC	6540
AAAGTTACCA	TGTTCGTCTT	GAGCGTAGCC	AAGAGCTGTC	GCATAGTTAA	GAAGGGCATC	6600
AATCCAAACG	TAGACAACGT	GTTTTGGATT	TGATGGGACA	GGCACTCCCC	ATGTAAAGGT	6660
TGTACGAGAT	ACCGCCAAAT	CTTCCAAGCC	TGGCTCGATG	AAGTTGCGTA	GCATTTCATT	6720
AAGGCGACCA	TCTGGCGTGA	TAAATTCAGG	ATGAGCTTTG	AAAAATTCGA	CCAAACGGTC	6780
TTGGTATTTG	CTAAGGCGAA	GGAAGTATGA	TTCTTCAGAA	ACCCATTCAA	CCTCATGACC	6840
TGATGGAGCA	ATACCACCAG	TCACATTTCC	AGCTTCATCA	CGGAAAACTT	CTGCCAGCTG	6900
GCTTTCTGTA	AAGAATTCTT	CGTCTGATAC	TGAATACCAA	CCAGAGTATT	CACCCAAGTA	6960
GATATCATCT	TGAGCAAGTA	AGCGTTCAAA	GACTTGTGCG	ACAACTTTTT	CATGGTAGTC	7020
ATCAGTTGTA	CGGATAAATT	TATCGTATGA	GATATCTAGT	AATTGCCAGA	GTTCTTTAAC	7080
TCCAACCGCC	ATTCCATCAA	CATAGGCTTG	AGGTGTAATA	CCAGCTTCTT	CCGCTTTCTG	7140
CTGGATTTTC	TGACCATGTT	CATCAAGACC	TGTCAGATAA	AATACATCGT	AGCCCATCAG	7200
GCGTTTGTAA	CGTGCTAGGA	CATCACATGC	GATAGTTGTG	TAGGCAGAAC	CGATATGAAG	7260
TTTCCCAGAT	GGATAGTAAA	TCGGCGTTGT	AATATAAAA	TTTTTTTCAG	ACATAATTTT	7320
TCCTTTCCAG	GCAAATGAAA	CCTGTTTTTC	TAACACTTCA	TTATATCACA	TTTTTAATGA	7380
ATTTCAATAG	GGAAATCCAT	ACAAAAACAA	GATAGACGAG	TGTCCATCTT	GTTGATCTCA	7440
TTCATAACGA	AGGGCTTCAA	TTGGATCAAG	TTTCGATGCC	TTGTTGGCTG	GCAAGACTCC	7500
AAAAATCATA	CCAACACTAG	CCGAAACTGC	AAGACTAAAT	AGGGCGACTG	GGATTGATAC	7560
TCCAACTTCT	ATACCTTCTA	TTAAACCTTG	CAGTAACAAA	CCTGCTAAGg	CAGTTAAACC	7620
ACTTGCAATT	GTCAAGCCAA	TTAAGCCACC	TAACAAGGTC	AAAATCATGG	ATTCAATCAA	7680
AAACTGAATT	AAAATATTGG	CACGTGTTGC	ACCCAAAGCC	TTACGAAGAC	CAATCTCACG	7740
AGTGCGCTCT	GTCACCGAAA	CCAGCATGAT	GTTCATGACA	CCAGTTCCTC	CAACAAAGAG	7800
AGAAATCCCT	GCGATGGAAC	TAATAATCGT	CGTCATAAAA	CTAAACGATT	GTTGAATTTC	7860
TGCAAATACA	ACGGACTCAT	CTGCCACCTG	GTATTCTCCC	TGTTGTAAGC	CTGCAAGCTC	7920

ጥርጥር እ ሙሙሙሙ	CGTGCCAGTT	CTGGACCCAG	726	AAACTGGTAT	CATTCACTCG	7980
				GCAAGGGAGA		8040
				GCCTCCGGAC		8100
CCCAATGACC	CGGTAACTAA	ATCCATTGAC	TTCTACAACC	TTGTTAATAG	CCTCTTGAGG	8160
AGATTCAAAT	AAACTAATGG	ACAATTCCTC	ATCTAGCAAA	ATGACACTTG	CAAACTCTTT	8220
GAAATCTTGC	TCTCTCAGAC	TACGACCTGC	AATAATTTCA	TTCTTAACAG	CGTCCATGTA	8280
AGTTCTGTTT	CCACCTGTCA	AATTAGCATT	CTCAACCTTT	TTATCTTGAT	AGGTCAAGAT	8340
GGCATTCGTT	GAATTGGTTA	CATAGTAACT	ATCCACTCCC	TTCAGTTTAG	CTGCCTCTTG	8400
GACCCAGGAT	TCTTGCGGTT	TTGGCGGTTC	AACAGGAACT	TCCTCTTCCT	TTCCAGAAAC	8460
CGTAAAAGCT	GATTGTTTCT	GAGTAAAAGA	CCCGTCTTTA	CTTTTTTTAG	GAGAGAAAA	8520
GACGCTAATA	TTTTTCTGAG	ATTTAGTCAT	ATCTTTATTG	ACTTGACGAG	ATAGGGAATC	8580
ACCCAAAGCC	ATAATCACAA	CAACTGATGA	AACACCGATA	ATAATCCCAA	TCATAGTAAG	8640
CAAAGAACGC	ATCTTGTGAG	CCATGATAGA	TGAAAAGGCA	AATTTCAGAT	TCTGCATCTT	9700
AGTTTTCCTC	CTTTCCTAAC	TGAGCACTGT	CAGACGAAAT	GACCCCATCC	CGAATGACAA	8760
TCTGACGTTT	GGCATAGGCA	GCAATCTCAG	GCTCATGCGT	TACCATGATA	ATGGTTTTTC	8820
CTTCTTTATT	CAAATCAACC	AATAATTGCA	TAATTTGGTT	ACCTGTTTTG	GTATCCAAGG	8880
CTCCTGTCGG	TTCATCCGCT	AGGATAATAG	AAGGATTGTT	TACCAAGGCA	CGCGCAATGG	8940
CTACACGTTG	CTTTTGACCA	CCAGATAATT	CTGAAGGTAA	ATGGTGACTA	CGTTCTGTCA	9000
ATTCAACCTT	GTCTAAATAT	TCCTCAGCCA	ACTTGCGACG	TTTTGAAGAC	GAAACTCCTG	9060
CGTAAATCAA	GGGCAATTCŤ	ACATTTTGCA	GAGCATTGAG	CTTCGATAGA	AGAAAGAACT	9120
GCTGAAAGAC	AAAACCGATT	TGTTGGTTAC	GGACCTTAGC	TAGTTGTTTT	TCACCAAGCC	9180
CAGCCACTTC	TTGACCTTCA	AGATAATATT	CTCCACTGGT	TGGTGTATCC	AACATGCCAA	9240
TCGTATTCAT	CAGAGTGGAC	TTACCAGACC	CAGATGGTCC	CATGATGGCT	ACAAATTCAC	9300
CCTCATTCAC	TTCTAGATTG	ATATTTTTGA	GAACCTGCAG	TTCTTGGTCA	CCATTACGGT	9360
AACTTCTGAA	GATATTTTT	AGACTAATTA	GTTGCTTCAT	CAGCCTTCAC	CTCTTTTCCT	9420
TCTTCCAAGG	AAGATGTTGG	ATTACTGATG	ACCTTAGCAC	CGTTCGTTAA	ACCAGAAGTG	9480
ATTTCTTGAT	TTTCTGCGTC	AGCATTTCCC	AATGAAACCT	CAACTTTTT	AGCCTTTTGT	9540
TGTTCATCCA	CAATCCAGAC	ATAATTTTA	CTATCATCCA	TTACTAGACT	GCTAACAGGA	9600
ACAAGAATAG	CCTTAGTTTT	GCTTTTAACC	TCAATGTTGA	CAGAAAAACG	TTGTTTCAAA	9660
TCACCAACCT	CGCCTGTCAC	ATCAATAGTA	TAAGGGTATT	TAGAACCTGT	ATTATTCCCG	9720

WO 98/18931 PCT/US97/19588

727

GCTGCTGGAC	TAGCTGCTTC	ACCATTGTTT	TTAGGATAGT	CAGAAATATA	GCTTAATTTC	9780
CCAGTCCATT	TTTTATCAGG	ATACACTTTA	GAAGTAAAGC	TTACTTCTTG	ACCTACAGAA	9840
AGGTTGGCTA	GATTGTACTC	AGACAATTCT	CCCTTGACTT	GTAAATTTTC	ATTGCTGACA	9900
ATATGAACCA	TAACTTGACT	CGCCCCTGTT	GGAGATTTAG	AAACATTGCT	ATTGACTTCG	9960
ACCACAGTTC	CCTCTAGGGT	ACTGAGAACA	GTTGTTGCAT	CCAATTGACT	TTGAGCCTTG	10020
CTTAATTGCG	CCGCAGCATC	TGCACGCGCA	TCACGGGCAT	CACCCAATTG	AGCGTCAATA	10080
GAAGCAACAG	AATTTCCAGC	CACTGGAGTT	GGGCTTTGCA	CCGTTGCATC	TTCTCCTCCT	10140
ACTGGCGCTG	GTAACTGTGG	AGCCGGAGCT	GAAGCGGCTT	CATTTCGTGC	TTGATTGAGT	10200
TCATTGATAT	GACGATCTGC	CCTAGCTACT	GCTCGACTAG	CTGAATCATA	GCCGCCTGC	10260
GCTTCTGAAC	TACTGTACTT	GACTAAAGCC	TGCCCTTCGC	TGACCTTATC	GCCCACAGAA	10320
ACAAGGATTT	CATCTAAATC	ACCCTTACTA	GCATCAAAAT	AAACATATTG	TTCATTTTTT	10380
GCTGTTACTG	TCCCTGACAA	TAAAACAGAG	GAGGCCACGC	TTCCTTCCTT	GGCAACAACA	10440
AGATGAGTAG	GCTCATCTTT	TAGAGCAGTC	TGAGAAGGTT	GTCTAAAGAG	TAAAATCCCC	10500
CCAGCACCCA	ATACAACTAC	ACTCGCAGCA	CCGATTGCTG	CATACAGTTG	CCACTTTTTA	10560
GCTTTACCAT	TCTTTTTCTT	CATAATGAAA	стссттттст	TTTTTACAAT	ACTTTGCTAT	10620
TATACCAAAT	TTCCCTCCAG	CAAACAATAC	AGTTCAGGAT	TAAACAATCG	TTCGGAATTT	10680
TGCTTTTCGG						10690

# (2) INFORMATION FOR SEQ ID NO: 94:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8195 base pairs
- (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:

GAGAAAGCGC	CCACGTTTCC	CCGAAGGGAG	AAAGGCGGAC	AGGTATCCGG	TAAGCGGCCA	60
GGGTCGGAAC	AGGAGAGCGC	AACGAGGGAG	CTTCCCAGGG	GGAAACGCCT	GGTATCTTTA	120
TAGTCCTGTC	GGGTTTCGCC	ACCTCTGACT	TGAGCGTCGA	TTTTTGTGAT	GCTCGTCAGG	180
GGGGCGGAGC	CTATGGAAAA	ACGCCAGCAA	CGCGGCCTTT	TTACGGTTCC	TGGCCTTTTG	240
стессстттт	GCTCACATGT	TCTTTCCTGC	GTTATCCCCT	GATTCTGTGG	ATAACCGTAT	300
TACCGCCTTT	GAGTGAGCTG	ATACCGCTCG	CCGCAGCCGA	ACGACCGAGC	GCAGCGAGTC	360

			728			
AGTGAGCGAG	GAAGCGGAAG	AGCGCCCAAT	ACGCAAACCG	CCTCTCCCCG	CGCGTTGGCC	420
GATTCATTAA	TGCAGCTGGC	ACGACAGGTT	TCCCGACTGG	AAAGCGGGCA	GTGAGCGCAA	480
CGCAATTAAT	GTGAGTTAGC	TCACTCATTA	GGCACCCCAG	GCTTTACACT	TTATGCTTCC	540
GGCTCGTATG	TTGTGTGGAA	TTGTGAGCGG	ATAACAATTT	CACACAGGAA	ACAGCTATGA	600
Catgattacg	AATTCGAGCT	CGGTACCCGG	AAAATCCAGA	AAATGCTTGA	AAAAAATCCT	660
AGAAGATGGT	ATAATACTAA	ATTGTAAGGG	TTATCACATA	TAACTCAAAA	AAAGAAAGAA	720
CAAAAGGAGA	GTCAAACTAT	GGCTTCTAAA	GATTTCCACG	TAGTGGCAGA	AACAGGTATT	780
CACGCACGTC	CAGCAACATT	GTTGGTACAA	ACTGCTAGCA	AATTTGCTTC	AGATATCACT	840
CTTGAGTACA	AAGGTAAATC	AGTTAACCTT	AAATCAATTA	TGGGTGTTAT	GAGTCTTGGT	900
GTTGGCCAAG	GTGCTGACGT	AACTATCTCA	GCTGAAGGTG	CAGATGCAGA	TGACGCTATC	960
GCTGCAATCT	CAGAAACAAT	GGAAAAAGAA	GGATTGGCAT	AAGGGAAATG	ACAGAAATGC	1020
TTAAAGGAAT	CGCAGCATCT	GACGGTGTTG	CAGTTGCAAA	AGCATATCTA	CTCGTTCAGC	1080
CGGATTTGTC	ATTTGAGACT	ATTACAGTCG	AAGATACAAA	CGCAGAAGAA	GCTCGCCTTG	1140
ATGCCGCTCT	ACAGGCATCA	CAAGACGAGC	TTTCTGTTAT	TCGCGAGAAA	GCAGTAGGTA	1200
CGCTCGGTGA	AGAAGCAGCT	CAAGTTTTTG	ATGCTCACTT	AATGGTTCTT	GCTGACCCAG	1260
AAATGATCAG	CCAAATCAAG	GAAACTATCC	GTGCGAAGAA	AGTGAATGCA	GAAGCAGGTC	1320
TGAAAGAAGT	TACAGATATG	TTTATCACTA	TCTTTGAAGG	CATGGAAGAC	AACCCATACA	1380
TGCAAGAACG	CGCAGcGGAT	wtccgcgacg	TGACAAAACG	TGTATTGGCA	AACCTTCTTG	1440
GTAAAAAATT	GCCAAACCCA	GCTTCTATCA	ATGAAGAAGT	GATTGTGATT	GCGCATGACT	1500
TGACTCCTTC	AGATACAGCT	CAATTGGACA	AAAACTTTGT	AAAAGCTTTT	GTAACCAACA	1560
TTGGTGGACG	TACAAGCCAC	TCAGCTATCA	TGGCACGTAC	ACTTGAAATT	GCTGCTGTAT	1620
TAGGTACAAA	TAACATCACT	GAAATCGTTA	AAGACGGTGA	CATCCTTGCT	GTTAACGGGA	1680
TCACTGGAGA	AGTGATTATC	AACCCAACAG	ATGAACAAGC	GGCAGAATTT	AAAGCAGCTG	1740
GTGAAGCCTA	TGCGAAACAA	AAAGCTGAAT	GGGCACTTTT	GAAAGATGCT	CAAACAGTGA	1800
CTGCTGACGG	TAAACACTTC	GAGTTGGCTG	CTAATATCGG	TACTCCAAAA	GACGTTGAAG	1860
GTGTTAACAA	CAACGGTGCA	GAAGCTGTTG	GACTTTACCG	TACAGAGTTC	TTGTACATGG	1920
ATTCTCAAGA	CTTCCCAACT	GAAGATGAGC	AGTATGAAGC	ATACAAGGCT	GTTCTTGAAG	1980
GAATGAACGG	TAAACCTGTT	GTCGTTCGTA	CAATGGATAT	CGGTGGAGAT	AAGGAACTTC	2040
CTTACTTCGA	TATGCCTCAC	GAAATGAACC	CATTCCTTGG	ATTCCGTGCT	CTTCGTATCT	2100
CT MCTCTCT A	CACTCCACAT	CCTATCTTCC	CCACACAAAT		CT-TPCCTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	2160

CTGTTCACGG	TCAATTGCGT	ATCATGTTCC	CAATGGTTGC	GCTCTTGAAA	GAATTCCGTG	2220
CAGCGAAAGC	AGTCTTTGAT	GAAGAAAAAG	CAAACCTTCT	TGCTGAAGGT	GTTGCAGTTG	2280
CGGATAACAT	CCAAGTTGGT	ATCATGATCG	AGATTCCTGC	AGCGGCTATG	CTTGCAGACC	2340
AATTTGCTAA	AGAAGTTGAC	TTCTTCTCAA	TTGGTACAAA	CGACTTGATC	CAATATACAA	2400
TGGCAGCAGA	CCGTATGAAC	GAACAAGTTT	CATACCTTTA	CCAACCATAC	AACCCATCAA	2460
TCCTACGCTT	GATTAACAAT	GTGATCAAAG	CAGCTCACGC	TGAAGGTAAA	TGGGCTGGTA	2520
TGTGTGGTGA	GATGGCTGGT	GACCAACAAG	CTGTTCCACT	TCTTGTCGGA	ATGGGCTTGG	2580
ATGAGTTCTC	TATGTCAGCA	ACATCTGTAC	TTCGTACACG	CAGCTTGATG	AAGAAACTCG	2640
ACACAGCTAA	GATGGAAGAG	TACGCAAACC	GTGCCCTTAC	AGAATGCTCA	ACAATGGAAG	2700
AAGTTCTTGA	ACTTCAAAAA	GAATACGTTA	ATTTTGATTA	ATCGAAAAGT	CCCTGCAACT	2760
CAGTTACAGG	GATTTTTTG	ATATTTTAAA	AAGAATTTTC	AAGAAAATCT	TTCTTATAGA	2820
AAGTCCAACC	TTGAAAAAGT	AGTGGTCAGA	ACAAAAAATA	CTTAAATGGT	TCATAAAATT	2880
CTTGACAAGT	TGGATATTTA	GGAGTAAACT	ATTAACCAGT	TAAGTAATAG	AGAGGAGTTT	2940
CTGCAATTTA	GAAATGAATT	GCAACTAGAA	ATATCAAATA	GAAAGAGAGT	TTCGATGAAA	3000
ATTAATAAGA	AATACCTTGT	TGGTTCTGCG	GCACTTTGAT	TTTAAGTGTT	TGTTCTTACG	3060
AGTTGGGACT	GTATCAAGCT	AGAACGGTTA	AGGAAAATAA	TCGTGTTTCC	TATATAGATG	3120
GAAAACAAGC	GACGCAAAAA	ACGGAGAATT	TGACTCCTGA	TGAGGTTAGC	AAGCGTGAAG	3180
GAATCAATGC	TGAGCAAATC	GTCATCAAGA	TAACAGACCA	AGGCTATGTC	ACTTCACATG	3240
GCGACCACTA	TCATTATTAC	AATGGTAAGG	TTCCTTATGA	CGCTATCATC	AGTGAAGAAT	3300
TACTCATGAA	AGATCCAAAC	TATAAGCTAA	AAGATGAGGA	TATTGTTAAT	GAGGTCAAGG	3360
GTGGATATGT	TATCAAGGTA	GATGGAAAAT	ACTATGTTTA	CCTTAAGGAT	GCTGCCCACG	3420
CGGATAACGT	CCGTACAAAA	GAGGAAATCA	ATCGACAAAA	ACAAGAGCAT	AGTCAACATC	3480
GTGAAGGTGG	AACTCCAAGA	AACGATGGTG	CTGTTGCCTT	GGCACGTTCG	CAAGGACGCT	3540
ATACTACAGA	TGATGGTTAT	ATCTTTAATG	CTTCTGATAT	CATAGAGGAT	ACTGGTGATG	3600
CTTATATCGT	TCCTCATGGA	GATCATTACC	ATTACATTCC	TAAGAATGAG	TTATCAGCTA	3660
GCGAGTTGGC	TGCTGCAGAA	GCCTTCCTAT	CTGGTCGAGG	AAATCTGTCA	AATTCAAGAA	3720
CCTATCGCCG	ACAAAATAGC	GATAACACTT	CAAGAACAAA	CTGGGTACCT	TCTGTAAGCA	3780
ATCCAGGAAC	TACAAATACT	AACACAAGCA	ACAACAGCAA	CACTAACAGT	CAAGCAAGTC	3840
AAAGTAATGA	CATTGATAGT	CTCTTGAAAC	AGCTCTACAA	ACTGCCTTTG	AGTCAACGAC	3900

ATGTAGAATC	TGATGGCCTT	GTCTTTGATC	730 CAGCACAAAT	CACAAGTCGA	ACAGCTAGAG	3960
GTGTTGCAGT	GCCACACGGA	GATCATTACC	ACTTCATCCC	TTACTCTCAA	ATGTCTGAAT	4020
TGGAAGAACG	AATCGCTCGT	ATTATTCCCC	TTCGTTATCG	TTCAAACCAT	TGGGTACCAG	4080
ATTCAAGGCC	AGAACAACCA	AGTCCACAAC	CGACTCCGGA	ACCTAGTCCA	GGCCCGCAAC	4140
CTGCACCAAA	тсттаааата	GACTCAAATT	CTTCTTTGGT	TAGTCAGCTG	GTACGAAAAG	4200
TTGGGGAAGG	ATATGTATTC	GAAGAAAAGG	GCATCTCTCG	TTATGTCTTT	GCGAAAGATT	4260
TACCATCTGA	AACTGTTAAA	AATCTTGAAA	GCAAGTTATC	AAAACAAGAG	AGTGTTTCAC	4320
ACACTTTAAC	TGCTAAAAAA	GAAAATGTTG	CTCCTCGTGA	CCAAGAATTT	TATGATAAAG	4380
CATATAATCT	GTTAACTGAG	GCTCATAAAG	CCTTGTTTGA	AAATAAGGGT	CGTAATTCTG	4440
ATTTCCAAGO	CTTAGACAAA	TTATTAGAAC	GCTTGAATGA	TGAATCGACT	AATAAAGAAA	4500
AATTGGTAGA	. TGATTTATTG	GCATTCCTAG	CACCAATTAC	CCATCCAGAG	CGACTTGGCA	4560
AACCAAATTO	TCAAATTGAG	TATACTGAAG	ACGAAGTTCG	TATTGCTCAA	TTAGCTGATA	4620
AGTATACAAC	GTCAGATGGT	TACATTTTTG	ATGAACATGA	TATAATCAGT	GATGAAGGAG	4680
ATGCATATG	AACGCCTCAT	ATGGGCCATA	GTCACTGGAT	TGGAAAAGAT	AGCCTTTCTG	4740
ATAAGGAAA	AGTTGCAGCT	CAAGCCTATA	CTAAAGAAAA	AGGTATCCTA	CCTCCATCTC	4800
CAGACGCAG	TGTTAAAGCA	AATCCAACTC	GAGATAGTGC	AGCAGCTATT	TACAATCGTG	4860
TGAAAGGGG	A AAAACGAATT	CCACTCGTTC	GACTTCCATA	TATGGTTGAG	CATACAGTTG	4920
AGGTTAAAA	A CGGTAATTTC	ATTATTCCT	ATAAGGATCA	TTACCATAAT	ATTAAATTTG	4980
CTTGGTTTG	A TGATCACAC	TACAAAGCT	CAAATGGCTA	TACCTTGGAA	GATTTGTTTG	5040
CGACGATTA	A GTACTACGT	A GAACACCCT	ACGAACGTC	ACATTCTAAT	GATGGATGGG	5100
GCAATGCCA	G TGAGCATGT	TTAGGCAAG	A AAGACCACAG	TGAAGATCCA	AATAAGAACT	5160
TCAAAGCGG	A TGAAGAGCC	A GTAGAGGAA	A CACCTGCTG	GCCAGAAGTC	CCTCAAGTAG	5220
AGACTGAAA	A AGTAGAAGC	CAACTCAAA	G AAGCAGAAG	r TTTGCTTGCC	AAAGTAACGG	5280
ATTCTAGTC	T GAAAGCCAA	r gcaacagaa	A CTCTAGCTG	G TTTACGAAA1	AATTTGACTC	5340
TTCAAATTA	T GGATAACAA	T AGTATCATG	G CAGAAGCAG	A AAAATTACTI	CCGTTGTTAA	5400
AAGGAAGTA	A TCCTTCATC	T GTAAGTAAG	g aaaaaataa	A CTAATGAAA	A ATGAAAGTCT	5460
CGATAAAGA	G GCTTTCATT	T TTATTATGT	A TATATGTAA	A ATTCTTGAC	A AGCAATATTA	5520
AAAAGAGTA	A ACTATTAAC	T AGTTAATTA	A CCGGTTTAT	T ACTTTATAG	r GAATCAAATA	5580
TACTTAAGA	A AAGAGGAAA	G AATGAAAAT	AAAAAATAA T	T ATCTAGCAG	G TTCAGTGGCA	5640
GTCCTTGCC	C TAAGTGTTT	G TTCCTATGA	A CTTGGTCGT	C ACCAAGCTG	G TCAGGTTAAG	5700

AAAGAGTCTA	ATCGAGTTKC	TTATATAGAT	GGTGATCAGG	CTGGTCAAAA	GGCAGAAAAC	5760
TTGACACCAG	ATGAAGTCAG	TAAGAGGGAG	GGGATCAACG	CCGAACAAAT	CGTCATCAAG	5820
ATTACGGATC	AAGGTTATGT	GACCTCTCAT	GGAGACCATT	ATCATTACTA	TAATGGCAAG	5880
GTCCCTTATG	ATGCCATCAT	CAGTGAAGAG	CTCCTCATGA	AAGATCCGAA	TTATCAGTTG	5940
AAGGATTCAG	ACATTGTCAA	TGAAATCAAG	GGTGGTTATG	TTATCAAGGT	AGATGGAAAA	6000
TACTATGTTT	ACCTTAAGGA	TGCAGCTCAT	GCGGATAATA	TTCGGACAAA	AGAAGAGATT	6060
AAACGTCAGA	AGCAGGAACA	CAGTCATAAT	CACGGGGGTG	GTTCTAACGA	TCAAGCAGTA	6120
GTTGCAGCCA	GAGCCCAAGG	ACGCTATACA	ACGGATGATG	GTTATATCTT	CAATGCATCT	6180
GATATCATTG	AGGACACGGG	TGATGCTTAT	ATCGTTCCTC	ACGGCGACCA	TTACCATTAC	6240
ATTCCTAAGA	ATGAGTTATC	AGCTAGCGAG	TTAGCTGCTG	CAGAAGCCTA	TTGGAATGGG	6300
AAGCAGGGAT	CTCGTCCTTC	TTCAAGTTCT	AGTTATAATG	CAAATCCAGC	TCAACCAAGA	6360
TTGTCAGAGA	ACCACAATCT	GACTGTCACT	CCAACTTATC	ATCAAAATCA	AGGGGAAAAC	6420
ATTTCAAGCC	TTTTACGTGA	ATTGTATGCT	AAACCCTTAT	CAGAACGCCA	TGTGGAATCT	6480
GATGGCCTTA	TTTTCGACCC	AGCGCAAATC	ACAAGTCGAA	CCGCCAGAGG	TGTAGCTGTC	6540
CCTCATGGTA	ACCATTACCA	CTTTATCCCT	TATGAACAAA	TGTCTGAATT	GGAAAAACGA	6600
ATTGCTCGTA	TTATTCCCCT	TCGTTATCGT	TCAAACCATT	GGGTACCAGA	TTCAAGACCA	6660
GAACAACCAA	GTCCACAATC	GACTCCGGAA	CCTAGTCCAA	GTCCGCAACC	TGCACCAAAT	6720
CCTCAACCAG	CTCCAAGCAA	TCCAATTGAT	GAGAAATTGG	TCAAAGAAGC	TGTTCGAAAA	6780
GTAGGCGATG	GTTATGTCTT	TGAGGAGAAT	GGAGTTTCTC	GTTATATCCC	AGCCAAGGAT	6840
CTTTCAGCAG	AAACAGCAGC	AGGCATTGAT	AGCAAACTGG	CCAAGCAGGA	AAGTTTATCT	6900
CATAAGCTAG	GAGCTAAGAA	AACTGACCTC	CCATCTAGTG	ATCGAGAATT	TTACAATAAG	6960
GCTTATGACT	TACTAGCAAG	AATTCACCAA	GATTTACTTG	ATAATAAAGG	TCGACAAGTT	7020
GATTTTGAGG	CTTTGGATAA	CCTGTTGGAA	CGACTCAAGG	ATGTCyCAAG	TGATAAAGTC	7080
AAGTTAGTGG	ATGATATTCT	TGCCTTCTTA	GCTCCGATTC	GTCATCCAGA	ACGTTTAGGA	7140
AAACCAAATG	CGCAAATTAC	CTACACTGAT	GATGAGATTC	AAGTAGCCAA	GTTGGCAGGC	7200
AAGTACACAA	CAGAAGACGG	TTATATCTTT	GATCCTCGTG	ATATAACCAG	TGATGAGGGG	7260
GATGCCTATG	TAACTCCACA	TATGACCCAT	AGCCACTGGA	TTAAAAAAGA	TAGTTTGTCT	7320
GAAGCTGAGA	GAGCGGCAGC	CCAGGCTTAT	GCTAAAGAGA	AAGGTTTGAC	CCCTCCTTCG	7380
ACAGACCATC	ÄGGATTCAGG	AAATACTGAG	GCAAAAGGAG	CAGAAGCTAT	CTACAACCGC	7440

			732			
GTGAAAGCAG	CTAAGAAGGT	GCCACTTGAT		ACAATCTTCA	ATATACTGTA	7500
GAAGTCAAAA	ACGGTAGTTT	AATCATACCT	CATTATGACC	ATTACCATAA	CATCAAATTT	7560
GAGTGGTTTG	ACGAAGGCCT	TTATGAGGCA	CCTAAGGGGT	ATACTCTTGA	GGATCTTTTG	7620
GCGACTGTCA	AGTACTATGT	CGAACATCCA	AACGAACGTC	CGCATTCAGA	TAATGGTTTT	7680
GGTAACGCTA	GCGACCATGT	TCGTAAAAAT	AAGGTAGACC	AAGACAGTAA	ACCTGATGAA	7740
GATAAGGAAC	ATGATGAAGT	AAGTGAGCCA	ACTCACCCTG	AATCTGATGA	AAAAGAGAAT	7800
CACGCTGGTT	TAAATCCTTC	AGCAGATAAT	CTTTATAAAC	CAAGCACTGA	TACGGAAGAG	7860
ACAGAGGAAG	AAGCTGAAGA	TACCACAGAT	GAGGCTGAAA	TTCCTCAAGT	AGAGAATTCT	7920
GTTATTAACG	CTAAGATAGC	AGATGCGGAG	GCCTTGCTAG	AAAAAGTAAC	AGATCCTAGT	7980
ATTAGACAAA	ATGCTATGGA	GACATTGACT	GGTCTAAAAA	GTAGTCTTCT	TCTCGGAACG	8040
AAAGATAATA	ACACTATTTC	AGCAGAAGTA	GATAGTCTCT	TGGCTTTGTT	AAAAGAAAGT	8100
CAACCGGCTC	CTATACAGTA	GTAAAATGAA	TGGAGCATAT	TTTATGGAGA	AGTAACCTTT	8160
CGTGTTACTT	CTCTTTTTTA	GAAAAACGTA	ACAGA			8199

# (2) INFORMATION FOR SEQ ID NO: 95:

- (i) SEQUENCE CHARACTERISTICS:

  - (A) LENGTH: 2004 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

TTTACTAAAA	GGAAAAAAGA	ACTGATTTCT	CAGTCCTTCA	TTAATCTTAT	TCCACACTAA	60
ATAGGTATGG	GTAAACAGGT	TGTTGACCTT	ĢGTGAATCTC	GACTTCAACG	TCTTCGAATT	120
CTTCTACGAT	TTCTTGAGCG	ATTTCATTGG	CAAGTTCTTC	GCTTCCGTCT	TCACCTACAT	180
AGAAGGTTAC	GATTTCACTG	TCTTCATCCA	ACATATGTTT	CAAGGTTTCA	GTCAATGT FT	240
GGTGCATATC	AGGGTTTGAC	ACAAGAATTT	TTCCATCCAC	CATACCTAAA	TTATCGTTTT	300
CATGGATTTC	TAAGCCATCG	ATCGTTGTAT	CACGCACGGC	TGTTGTGACG	CTTCCGCTAA	360
CGACATCGCT	AAGAGCAGCT	GTCATACGCT	CTTGGTTTTC	TTCAATGGAC	TTGCTTGGAT	420
CAAAGGCAAG	AAGACTTGTC	ATACCTTGAG	GAAGAGTGCG	AGCCTCTACC	ACTACCGCTG	480
GTTGCTCCAA	AACTTCTGCC	GCAGATTGAG	CTGCCATGAA	GATGTTCTTG	TTGTTTGGCA	540
AGAAGATGAT	GTTACGGGCA	TTAACCTGTT	CAACAGCCTT	GATAAAGTCT	TCTGTTGAAG	600
GGTTCATGGT	TTGACCGCCT	TCGATAACAT	AATCCACGCC	TTGAGAACAG	AAGATATCTG	660

CTAGACCTTT	ACCAGCCACC	ACAGCAATCA	AAGCATACTC	TTTTTCTTCA	GCCGACTTGA	720
	AGCTTCTTTC					780
TAACTTGAGT	AGCTTCTTTC	TCAACCTGTG	CITCGIGITG	GITACGCATA	HIGHCAACH	700
TTACCTTGAC	CAAGCTACCA	TATTTGAGAC	CTTCTTGCAT	AACAAGTCCT	GGATCTTCTG	840
TATGAACATG	GACTTTGACA	ATTTCATCAT	CGTTAACAAC	AAGGAGAGAA	TCTCCAAGCT	900
CATCCAAGTA	GTTACGGAAT	TCATCGTAGT	CAAAATCTTT	AGCATAGGTT	GGACCTTGCT	960
TAAGAGCTAC	CATGATTTCA	GTACAGTAAC	CAAACGTGAT	GTCCTCAGTC	GCTACGTGAC	1020
CAGCTACAGA	CTTATGATGC	TCTACATTGA	TCATCTCACT	CATGTTGGCA	GGAGTCGCTA	1080
CAAAGTCCTC	AGATGCAATA	TATTCGCCAG	TAAGGGCTGA	AAGGAAACCT	TCGTAGATGA	1140
AGACCAATCC	TTGACCACCT	GAGTCCACAA	CGCCAACTTC	TTTCAATACT	GGAAGCATGT	1200
CTGGTGTTTT	AGCTAGAGCT	GTTTTAGCAC	CTTCCAAGGC	TGCGCGCATG	ACTTCAACAG	1260
CGTCATCTGT	TTGCTCAGCT	TTTTTCTTAG	CACCGATAGC	AGCTCCACGA	GAAACTGTTA	1320
AAATCGTTCC	TTCAACAGGT	TTCATCACTG	CCTTATAGGC	AACTTCCACA	CCTGATTGGA	1380
AGGCCAGAGC	CAAGTCTTGA	CCTGTTAACT	CGTCTTTATC	CTTGATAGCT	TGGGAAAATC	1440
CACGGAAAAG	CTGAGACGTA	ATCACTCCTG	AGTTCCCACG	CGCACCCATC	AAAAGCCCTT	1500
TGGCAAGAAT	GCTCGCTACT	TCTCCAACTG	TAGAAGCTGG	CTTGTCTGCA	ACTTCTTTAG	1560
CACCATTTTC	AATGGTCATT	CCCATATTTG	TCCCAGTATC	TCCATCTGGA	ACTGGAAAGA	1620
CGTTTAATGA	ATTGACATAT	TCAGCTTGCT	TATTCAAGCG	AGTTGATGCA	GCCTGCACCA	1680
TTTCTTGAAA	TAAGCTAGTA	GTAATTTTTG	ACACGGTTAT	TCTCCTACAA	CTTTGATATT	1740
TTGAATGTAG	ACATTTACAG	TCTGAGCAGT	AATTCCAAGC	TGGTTTTCCA	AGCTAAAGGC	1800
AACACGCTCT	TGAATGTTTT	TTGACACTTC	ACTAATCTTT	GTTCCGTAGC	TTAACACGGT	1860
ATATACATCA	ACTGCAATAC	TGCCATCTTC	GGCTGCCTTT	ACGACGACAC	CTTTAGAATA	1920
ATTTTCCTTA	CCTAGCAGGG	CTTGGAAATT	ATCTTTGAGG	GCATTTTTAC	TAGCCATACC	1980
GACCACACCA	GAAATCTCAG	TTGC				2004

#### (2) INFORMATION FOR SEQ ID NO: 96:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 11915 base pairs
  (B) TYPE: nucleic acid

  - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:

				734			
С	CGGGTTGGG	CTGTTCGCCC	ATTAAAGCGG		GGGTTCAGAA	CGTCGTGAGA	60
С	AGTTCGGTC	CCTATCCGTC	GCGGGCGTAG	GAAATTTGAG	AGGATCTGCT	CCTAGTACGA	120
G	AGGACCAGA	GTGGACTTAC	CGCTGGTGTA	CCAGTTGTCT	TGCCAAAGGC	ATCGCTGGGT	180
A	GCTATGTAG	GGAAGGGATA	AACGCTGAAA	GCATCTAAGT	GTGAAACCCA	CCTCAAGATG	240
Α	GATTTCCCA	TGATTATATA	TCAGTAAGAG	CCCTGAGAGA	TGATCAGGTA	GATAGGTTAG	300
A	AGTGGAAGT	GTGGCGACAC	ATGTAGCGGA	CTAATACTAA	TAGCTCGAGG	ACTTATCCAA	360
Α	GTAACTGAG	AATATGAAAG	CGAACGGTTT	TCTTAAATTG	AATAGATATT	CAATTTTGAG	420
τ	AGGTATTAC	TCAGAGTTAA	GTGACGATAG	CCTAGGAGAT	ACACCTGTAC	CCATGCCGAA	480
c	ACAGAAGTT	AAGCCCTAGA	ACGCCGGAAG	TAGTTGGGGG	TTGCCCCCTG	TGAGATAGGG	540
A	<b>L</b> AGTCGCTTA	GCTCTAGGGA	GTTTAGCTCA	GCTGGGAGAG	CATCTGCCTT	ACAAGCAGAG	600
C	GTCAGCGGT	TCGATCCCGT	TAACTCCCAT	TTTAGCGGGT	GTAGTTTAGT	GGTAAAACTA	660
c	CAGCCTTCCA	AGCTGTTGTC	GCGAGTTCGA	TTCTCGTCAC	CCGCTTTGAA	CTTTGTTCTT	720
7	rgtaccaagt	TTTTGACTTG	GGCGCGTAGC	TCAGGTGGTT	AGAGCGCACG	CCTGATAAGC	780
C	GTGAGGTCGG	TGGTTCGAGT	CCACTCGTGC	CCATAGTGTT	TAGTCCATTA	CTAGGGGATT	840
c	GGAATATTAT	CTGTTCACTA	AGAGGACACG	GGCTTGTTCC	CGTATAAACT	ATTTTGGAGG	900
2	ATTACCCAAG	TCCGGCTGAA	GGGAACGGTC	TTGAAAACCG	TCAGGCGTGT	AAAAGCGTGC	960
(	GTGGGTTCGA	ATCCCACATC	CTCCTTTTAT	ATTAACGCGG	GATGGAGCAG	CTCGGTAGCT	1020
						AAGGCTCGGT	1080
						TTCCGTCTCG	1140
						TGTAAATCCG	1200
						AGTTTAAAGG	1260
						GTGTTAATAG	1320
	AATTATGGCC	GGTGTGGTGA	AGTGGTTAAG	ACACCAGATT	GTGGCTCTGG	CATGCGTGGG	1380
						AGGCAAGGGA	1440
						TGCCGGCGTG	1500
						GCCGGTTCGA	1560
						CTTTTTTATA	1620
						TGTAGGGGAG	1680
						A AAGAAAATCC	1740
	TGAATTGTT	T GTCGGAATT	G AGTTGGAGT	A TCCTGTTGC	A AGTTTAGAA	G GGGATGCTAC	1800

AGATGT	rgaa	GTTATGAAGG	ATCTATTTCA	TTATTTAGTT	TCTACTTTGG	ATCTCACCGT	1860
AGCAAAG	GTA	GATGATTTTG	GCAATCTGAT	CCAGTTAGTA	GATCCGATA	GTCAGGATGC	1920
TATTTT	TTT	GAAGTTTCCT	ATACAACGAT	' TGAGTTTGCA	TTTGGTAAGO	CTGAAACGAT	1980
TCAAGAC	GTC	GAAAATCGTT	TCAATAATTA	TATGAATGTA	ATTCAGAGAA	AGTTAGCTGA	2040
ATCAAAT	CAT	GCTATTGTTG	GCTGTGGTAT	CCATCCCAAC	TGGGATAAAA	ATGAGAATTG	2100
TCCAGTO	CCT	TATCCACGCT	ATCAGATGTT	GATGGATTAT	TTGAATTTGA	GTAGAAATAT	2160
TATTAA	TCA	GATTTACATC	ATTTCCCTGA	ATATGGTACT	TTTATCTGTG	GGAGCCAGGT	2220
TCAGCTG	GAT	ATTTCAAAAA	CCAACTACTT	ACGGGTGATT	AATGCTTTTA	CTCAAATTGA	2280
AGCGGCT	'AAG	GCTTATTTAT	TTGCAAACTC	TGAATTTTCG	GGTGCGGATT	GGGATACGAA	2340
AATTTCA	AGG	GATATTTTCT	GGGAAGAATC	TATGCATGGT	ATCTATCCAG	AGAATGTTGG	2400
GGTCAAT	CT	AGACTCCTTA	ATGATGAAAC	TGATTTTTT	GACTATCTAA	ATCATTCTGC	2460
GATTTTT	ACT	GCGGAACGTG	ATGGGCAGAC	CTATTATTTT	TATCCTATTC	AGGCTGGGGA	2520
CTATTTG	GCT	ACGTCCGAAA	TCCAAGCATT	TGCTCTGAAT	GGGGATGAGG	TTATTATTTA	2580
CCCCAA	GAG	AAGGATTTTG	AAACTCATCG	TAGTTACCAG	TACCAAGATT	TAACGACTCG	2640
AGGAACA	GTT	GAGTTTCGTA	GTGTGTGTAC	ACAGCCACTT	GATAGGACTT	TTGCTTCTGC	2700
AGCTTTT	CAC	TTGGGATTAT	TGGTTAATTT	AGACAAGTTA	GAAGCTTACT	TAGAAACAGC	2760
ACCTTTC	TTT	AAAGTATTTG	GTTATGATTA	CAAGTCTTTA	AGGAGACAAT	TTTCTAAGAA	2820
AAATCTT.	ACA	GATGAGGAAG	AAACTACGAT	TATTGAATTT	TCCAAAGACT	TACTCCTACT	2880
AGCTGAG	GAG	GGACTAGTGG	TGAGAAATAA	GGAAGAAATG	ACCTATTTAC	AGCCTTTGAG	2940
AGAAGAA'	ТТG	AGCCTATAAT	TTCTCTTATA	AAGGGAGAAT	TTTCTGAAAA	ATCATGATAT	3000
AATGGAC	GAG	ACTATAGATA	AAGGATAGAG	AGTAATGACA	TTAGTTTATC	AATCAACGCG	3060
IGATGCC.	AAC	AATACAGTAA	CTGCCAGCCA	AGCAATTTTG	CAAGGTTTGG	CGACGGACGG	3120
CGGTTTG	TTT	ACACCGGATA	CTTATCCAAA	GGTAGATTTG	AACTTTGACA	AATTGAAAGA	3180
rgcttct	rac	CAGGAAGTTG	CTAAGCTAGT	TTTGTCAGCA	TTTTTAGATG	ACTTTACAGT	3240
rgaggag:	rtg	GACTAÇTGTA	TCAACAATGC	CTACGATAGC	AAATTTGATA	CTCCAGCTAT	3300
rgcacca:	PTA	GTGAAATTAG	ATGGGCAATA	CAATTTGGAA	CTTTTCCATG	GTTCAACGAT	3360
rgccttt	AAG	GATATGGCCT	TGTCTATTTT	GCCATACTTT	ATGACGACTG	CTGCTAAGAA	3420
ACATGGT	rtg	GAGAACAAGA	TTGTTATCTT	GACAGCGACA	TCTGGTGACA	CGGGGAAAGC	3480
rgctatg(	GCG ·	GGGTTTGCGA	ATGTGCCTGG	TACTGAGATT	ATCGTCTTTT	ATCCAAAGGA	3540

736 TGGTGTCAGC AAGATTCAAG AGTTACAAAT GACCACTCAG ACTGGCGACA ATACTCATGT 3600 TATTGCTATT GATGGTAACT TTGACGATGC GCAAACAAAT GTGAAGCACA TGTTTAACGA 3660 CGTGGCTCTT CGTGAAAAAT TGACTACCAA CAAGTTGCAA TTTTCATCAG CTAACTCTAT 3720 GAACATTGGT CGTCTGGTGC CACAAATTGT TTATTATGTT TATGCTTACG CTCAATTGGT 3780 TAAGACTGGT GAAATTGTAG CTGGTGAAAA GGTTAACTTC ACAGTACCAA CAGGAAACTT 3840 TGGAAATATC TTGGCTGCCT TTTATGCCAA ACAAATTGGT TTGCCAGTTG GTAAATTAAT 3900 CTGTGCTTCA AATGACAACA ATGTTTTGAC AGACTTCTTT AAAACACGTG TCTATGACAA 3960 AAAACGTGAG TTTAAGGTAA CAACCAGCCC ATCTATGGAT ATCTTGGTAT CTTCAAACTT 4020 GGAGCGCTTG ATTTTCCATC TTTTGGGAAA TAATGCTGAA AAGACAACTG AACTTATGAA 4080 TGCCTTGAAC ACGCAAGGAC AATATAAGTT GACAGACTTT GATGCAGAGA TTTTGGACCT 4140 CTTTGCAGCT GAATATGCGA CTGAGGAAGA AACGGCAGCA GAGATCAAGC GTGTTTGTGA 4200 GTTAGATTCT TATATCGAGG ACCCTCATAC AGCTGTTGCT TCAGCAGTTT ATAAAAAATA 4260 CCAATCGGCC ACTGGAGATG TAACTAAGAC AGTGATTGCT TCAACAGCTA GTCCATACAA 4320 GTTCCCAGTA GTTGCAGTAG AAGCTGTAAC TGGAAAAGCA GGTTTAACAG ACTTTGAAGC 4380 CTTGGCTCAA TTACATGAAA TCTCAGGCGT TGCAGTGCCA CCAGCAGTTG ATGGGCTTGA 4440 AATAGCTCCA ATTCGTCACA AGACAACAGT GGCAGCTGCT GACATGCAAG CAGCGGTTGA 4500 GGCTTATTTA GGACTTTAAG ACAGAGGGAG CAAACTCGGT TGGGAAACCA ACTGAGTTTC 4560 TTTTCATCAG GAGGAGAGAT TGTTTAAGAA AAATAAAGAC ATTCTTAATA TTGCATTGCC 4620 AGCTATGGGT GAAAACTTTT TGCAGATGCT AATGGGAATG GTGGACAGTT ATTTGGTTGC 4680 TCATTTAGGA TTGATAGCTA TTTCAGGGGT TTCAGTAGCT GGTAATATTA TCACCATTTA 4740 TCAGGCGATT TTCATCGCTC TGGGAGCTGC TATTTCCAGT GTTATTTCAA AAAGCATAGG 4800 GCAGAAAGAC CAGTCGAAGT TGGCCTATCA TGTGACTGAG GCGTTGAAGA TTACCTTACT 4860 ATTAAGTTTC CTTTTAGGAT TTTTGTCCAT CTTCGCTGGG AAAGAGATGA TAGGACTT'I'T 4920 GGGGACGGAG AGGGATGTAG CTGAGAGTGG TGGACTGTAT CTATCTTTGG TAGGCGGATC 4980 GATTGTTCTC TTAGGTTTAA TGACTAGTCT AGGAGCCTTG ATTCGTGCAA CGCATAATCC 5040 ACGTCTGCCT CTCTATGTTA GTTTTTTATC CAATGCCTTG AATATTCTTT TTTCAAGTCT 5100 AGCTATTTTT GTTCTGGATA TGGGGATAGC TGGTGTTGCT TGGGGGACAA TTGTGTCTCG 5160 TTTGGTTGGT CTTGTGATTT TGTGGTCACA ATTAAAACTG CCTTATGGGA AGCCAACTTT 5220 TGGTTTAGAT AAGGAACTGT TGACCTTGGC TTTACCAGCA GCTGGAGAGC GACTTATGAT 5280 GAGGGCTGGA GATGTAGTGA TCATTGCCTT GGTCGTTTCT TTTGGGACGG AGGCAGTTGC 5340

TGGGAATGCA	ATCGGAGAAG	TCTTGACCCA	GTTTAACTAT	ATGCCTGCCT	TTGGCGTCGC	5400
TACGGCAACG	GTCATGCTGT	TGGCCCGAGC	AGTTGGAGAG	GATGATTGGA	AAAGAGTTGC	5460
TAGTTTGAGT	AAACAAACCT	TTTGGCTTTC	TCTGTTCCTC	ATGTTGCCCC	TGTCCTTTAG	5520
TATATATGTC	TTGGGTGTAC	CATTAACTCA	TCTCTATACG	ACTGATTCTC	TAGCGGTGGA	5580
GGCTAGTGTT	CTAGTGACAC	TGTTTTCACT	ACTTGGGACC	CCTATGACGA	CAGGAACAGT	5640
CATCTATACG	GCAGTCTGGC	AGGGATTAGG	AAATGCACGC	CTCCCTTTTT	ATGCGACAAG	5700
TATAGGAATG	TGGTGTATCC	GCATTGGGAC	AGGATATCTG	ATGGGGATTG	TGCTTGGTTG	5760
GGGCTTGCCT	GGTATTTGGG	CAGGGTCTCT	CTTGGATAAT	GGTTTTCGCT	GGTTATTTCT	5820
ACGCTATCGT	TACCAGCGCT	ATATGAGCTT	GAAAGGATAG	GAAATGCAAA	AAACAGCTTT	5880
TATTTGGGAT	TTAGACGGGA	CTTTATTGGA	CTCTTACGAA	GCGATTTTAT	CAGGGATTGA	5940
GGAGACTTTT	GCTCAGTTTT	CTATTCCTTA	TGATAAGGAG	AAGGTGAGAG	AGTTTATCTT	6000
CAAGTATTCG	GTGCAAGATT	TGCTTGTGCG	GGTGGCAGAA	GATAGAAATC	TGGATGTTGA	6060
GGTGCTAAAT	CAGGTGCGTG	CCCAGAGTCT	GGCTGAGAAG	AATGCTCAGG	TAGTTTTGAT	6120
GCCAGGTGCG	CGTGAGGTGC	TAGCTTGGGC	AGACGAATCA	GGAATTCAGC	AGTTTATATA	6180
TACTCATAAG	GGGAACAACG	CTTTTACCAT	TCTCAAGGAC	TTGGGGGTGG	AATCCTATTT	6240
TACAGAGATT	TTAACCAGTC	AGAGTGGCTT	TGTGCGGAAG	CCAAGTCCAG	AAGCGGCTAC	6300
CTATCTGCTA	GATAAGTATC	AGTTGAATTC	TGATAATACT	TATTATATAG	GGGATCGGAC	6360
TCTGGATGTG	GAATTTGCCC	AGAATAGTGG	GATTCAAAGC	ATCAACTTTT	TAGAGTCTAC	6420
TTATGAAGGG	AATCACAGGA	TTCAAGCGTT	AGCAGATATT	TCCCGTATTT	TTGAGACTAA	6480
GTGATAAAAA	GATTGTGTCA	GTTTTGTGAC	AGAGACCTAA	CAAACTATTT	CAAGTAACCT	6540
AGTTTGTTAC	AAGGAATAGA	CAGTTCTGTT	AAATAGGCCC	GAGAGGGCTT	TTTTTCTACA	6600
TTTTTTGTGT	TATGATAGAC	AGGTACTCAT	TTGAAAGGAA	TTTGAAAGAA	TGAAGAAAAG	6660
AATGTTATTA	GCGTCAACAG	TAGCCTTGTC	ATTTGCCCCA	GTATTGGCAA	CTCAAGCAGA	6720
AGAAGTTCTT	TGGACTGCAC	GTAGTGTTGA	GCAAATCCAA	AACGATTTGA	CTAAAACGGA	6780
CAACAAAACA	AGTTATACCG	TACAGTATGG	TGATACTTTG	AGCACCATTG	CAGAAGCCTT	6840
GGGTGTAGAT	GTCACAGTGC	TTGCGAATCT	GAACAAAATC	ACTAATATGG	ACTTGATTTT	6900
CCCAGAAACT	GTTTTGACAA	CGACTGTCAA	TGAAGCAGAA	GAAGTAACAG	AAGTTGAAAT	6960
CCAAACACCT	CAAGCAGACT	CTAGTGAAGA	AGTGACAACT	GCGACAGCAG	ATTTGACCAC	7020
TAATCAAGTG	ACCGTTGATG	ATCAAACTGT	TCAGGTTGCA	GACCTTTCTC	AACCAATTGC	7080

			738			
AGAAGTTACA	AAGACAGTGA	TTGCTTCTGA	AGAAGTGGCA	CCATCTACGG	GCACTTCTGT	7140
CCCAGAGGAG	CAAACGACCG	AAACAACTCG	CCCAGTTGAA	GAAGCAACTC	CTCAGGAAAC	7200
GACTCCAGCT	GAGAAGCAGG	AAACACAAGC	AAGCCCTCAA	GCTGCATCAG	CAGTGGAAGT	7260
AACTACAACA	AGTTCAGAAG	CAAAAGAAGT	AGCATCATCA	AATGGAGCTA	CAGCAGCAGT	7320
TTCTACTTAT	CAACCAGAAG	AGACGAAAAT	AATTTCAACA	ACTTACGAGG	CTCCAGCTGC	7380
GCCCGATTAT	GCTGGACTTG	CAGTAGCAAA	ATCTGAAAAT	GCAGGTCTTC	AACCACAAAC	7440
AGCTGCCTTT	AAAGAAGAAA	TTGCTAACTT	GTTTGGCATT	ACATCCTTTA	GTGGTTATCG	7500
TCCAGGAGAC	AGTGGAGATC	ACGGAAAAGG	TTTGGCTATC	GACTTTATGG	TACCAGAACG	7560
TTCAGAATTA	GGGGATAAGA	TTGCGGAATA	TGCTATTCAA	AATATGGCCA	GCCGTGGCAT	7620
TAGTTACATC	ATCTGGAAAC	AACGTTTCTA	TGCTCCATTC	GATAGCAAAT	ATGGGCCAGC	7680
TAACACTTGG	AACCCAATGC	CAGACCGTGG	TAGTGTGACA	GAAAATCACT	ATGATCACGT	7740
TCACGTTTCA	ATGAATGGAT	AAACCCGACT	TGATAACATC	ATTTTGACGA	ATGAGATCTA	7800
GCTTTCGTGA	TGGAAAGCGA	TTCTCGTTCG	TTTTTTCTTT	GTCATACTCT	TCGAAAATCT	7860
CTTCAAACCA	CGTCAGTTTT	ATCTGAAACT	TCAAAGCTGT	GCTTTGAGCA	ACCTGCGACT	7920
AGCTTCCTAG	TTTGCTTTTT	GATTTTCATT	GAGTATCAAT	TTGAATGGAA	AATGGAAAGT	7980
TATCATCTTG	TAATGAGTTA	AGCAACATTC	TTGCAATCTA	TTTTACTTTA	TATCACAATT	804
AATTAGTCAA	ATATTGATAA	ATCAATAAAA	AGAGAGGGGA	AGAAATGCTA	GAGATTCAAG	810
ATTTACTGTA	TCAACTCCGC	TTGTCTGAGC	AAGCGAGTAC	GCAATTGTTT	GAAAAAGGC	816
TTGGGATTAG	TTTGACACGG	TATCAGATTT	TACTGTTTTT	GCTGGAGCAT	TCTCCTTGTA	822
ACCAAATGGC	GGTTCAGGAG	CGTTTGAAAA	TTGATCAGGC	TGCTTTGACA	CGGCATTTCA	828
AAATTTTGGA	AACGGAAGGT	TTGGTGGAGC	GTCATCGTAA	TCCTGAAAAT	CAGCGGGAAG	834
TGTTGGTAGA	GGCTGCGAAG	TATGCCAAGG	AGCAGTTAGT	GGTGAATCCC	CCTCTGCAAC	840
ATATCAGGGT	TAAGGAAGAG	ATAGAAAGTA	TCTTAACAGA	GTTTGAGAGA	ACAGAACTCA	846
GCCGTTTATT	AAATAAATTG	GTTTTGGGTA	TTGAAAATAT	AGAAATTTAA	GGAGAAATAG	852
ATGTCAATTA	TTTTAACAAC	GATCGTTGCT	TTGGAGCATT	TTTACATTTT	TTATTTGGAA	858
AGTATTGCCA	CGCAATCAGA	TGCGACTAGT	CGTGTATTTA	ATATGGAAAA	GGAAGAATTG	864
GCTCATCCGT	CAGTAAGTTC	ATTGTTCAAA	AATCAAGGAA	TTTATAAGGC	TCTGCTAGGA	870
GTCTTTCTCT	TGTATGTCAT	TTATTTCTCA	CAGAATTTAG	AAATTGTGAC	TATTTTTGTC	876
TTATTTGTGA	TTGGTGCTGC	GACTTACGGC	TCTTTAACAG	CGGATAAAA	AATTATTTTG	882
BBBCBBCCTC	CATCACCTAT	TTTCCCCTTC	ልሞኮልርሞልሞሞ	тастсттаа	ATACACTIGA	888

AGGTCGATTC	TAATCTCGCT	AATCCTTTTT	AATCCAGAAT	AAGGGAAATA	TGTTATACTT	8940
GTTTTTAAGA	AAAAAGTCTC	ATTGAATTGG	TTTTGAGGAG	TTAGAAATGA	AAGTATTAGT	9000
GACAGGTTTT	GAGCCCTTTG	GAGGGGAAAA	GGGCAATCCA	GCTTTGGAGG	CCATTAAAGG	9060
TTTACCAGCT	GAAATCCATG	GTGCTGAGGT	CCGTTGGCTA	GAGGTGCCGA	CAGTTTTTCA	9120
CAAATCTGCT	CAAGTATTGG	AAGAAGAGAT	GAATCGTTAT	CAACCTGACT	TTGTCCTTTG	9180
TATTGGGCAA	GCTGGTGGAA	GAACTAGTTT	GACACCTGAA	CGAGTGACCA	TTAATCAAGA	9240
CGATGCATGC	ATTTCTGATA	ACGAAGATAA	TCAACCGATT	GACCGTCCCA	TTCGCCCAGA	9300
TGGTGCTTCG	GCCTACTTTA	GTAGTTTGCC	GATTAAAGCG	ATGGTTCAAG	CTATAAAAAA	9360
AGAGGGCTTA	CCGGCCTCTG	TTTCCAATAC	GGCAGGGACT	TTTGTCTGCA	GCCATTTGAT	9420
GTATCAGGCT	CTCTATTTGG	TAGAAAAGAA	ATCTCCATAT	GTTAAGGCAG	GTTTTATGCA	9480
TATTCCTTAT	ATGATGGAAC	AGGTGGTGAA	CAGACCGACT	ACTCCAGCTA	TGAGTTTAGT	9540
GGATATTCGG	CGAGGGATAG	AAGCAGCAAT	CGGCGCTATA	ATAGAACATG	GAGATCAGGA	9600
ACTCAAGTTG	GTAGGCGGAG	AAACTCATTG	ATAGAAAAA	GCTTGAGGGG	AAAAACCTTC	9660
AAGCTTTTGG	ACGTTTTCGG	GCCAATACTG	CTCGGTAAAA	CATAATTTTA	GTGCATTGGA	9720
TATAAGGTAG	GAGTGAAAAA	CTAGCAATGC	CAAAGGTAAT	CCAATTGAGG	AAGTACCAAG	9780
GAAGAAGCTG	TAAATCTAGG	ACAAAGTGCT	GGAACTTGTA	GCCCTTCATA	AAGGAACGCC	9840
TAGTTTTTAG	GATTCGTCTT	GGTGGGACCT	GTCCTAGGTC	TAGACTATAA	CAGAGAAGAA	9900
ATTCCACCTG	TGAATAGGCA	TAATACTGTG	GAATATAGAG	GATATTTCCT	ACAATGATCA	9960
AGATGAGACT	TGCAAGAAAG	TAGAGTCCAA	AGACCATGAG	GAAACGCTCG	GTTTCAACTC	10020
ATGAGAGATC	TAGATTTGGA	AACTCAGGAT	GTAGGGTGAC	GAATTTTTTG	GCTAAAAAGC	10080
TACTATAAAA	GAGGAGGTAA	ATCCCAAGTA	AATTAGGGAT	ACTCCATAAA	AAGAGATAGA	10140
AACGTTTGAG	AAGTAGGGTC	AAAAAGGTTT	GAGAAAAGCG	CTCCTCATCA	AAGAGAGCTA	10200
GGCTGTTTTT	TACAGATGGC	TCCGTTTTAG	AATCTTTCAT	GAGTGTCAGT	GTTGCATAGA	10260
CGGAACTGGT	CAAAAGAATA	GTCCCGATAA	AGGAGACTAG	TAGAGGAAAG	AGGTAGGTTT	10320
GAAGTATTTG	GCCAAGTATG	CTGAAAAATG	GCTGTTCTAA	AACAGTCCCG	TGGATCCGAG	10380
ATAAGGGATT	AAGAAAACCA	GATAAGATGA	CCAGCATACT	GGGAAGGATA	TAGAGGAGAA	10440
AGAGACGGGG	GGTGTCAGCC	TGAAAATGTT	TTGACTCCTG	ACGAATTGTT	TTTAAATCAA	10500
TTTTTGGATA	GTTCATTCTC	TTATTATACC	ATAGTTCTTA	TACATAGTTC	GTGACAGTTC	10560
CTACTTTTTT	TGATAAAATC	ATACAGTGTG	TCCTTGGGCA	CACTGTATGA	ACTGGGACTG	10620

TCTTTCCCAG	CTTCGGAGGT	AAAAAATGTC	740 AGATTCACCA	ATCAAATATC	GTTTGATTAA	10680
GAAAGAAAAA	CACACAGGAG	CTCGTCTGGG	AGAAATCATC	ACTCCCCACG	GTACCTTTCC	10740
GACACCTATG	TTTATGCCAG	TTGGGACACA	AGCCACTGTC	AAAACTCAGT	CACCTGAAGA	10800
ATTGAAGGAG	ATGGGTTCGG	GAATTATCCT	ATCAAACACC	TATCATCTCT	GGCTTCGCCC	10860
TGGAGATGAA	CTCATTGCAC	GCGCTGGTGG	TCTCCACAAG	TTCATGAATT	GGGACCAGCC	10920
TATCTTGACA	GATAGTGGTG	GTTTTCAGGT	TTATTCTTTA	GCAGATAGCC	GTAATATCAC	10980
AGAAGAAGGA	GTAACCTTTA	AAAATCATCT	AAATGGTTCT	AAGATGTTCC	TATCCCCAGA	11040
AAAAGCCATC	TCTATTCAGA	ATAATCTGGG	TTCAGACATC	ATGATGTCCT	TTGATGAATG	11100
TCCTCAGTTT	TATCAACCTT	ATGACTACGT	TAAGAAATCG	ATCGAGCGTA	CCAGCCGTTG	11160
GGCTGAGCGT	GGTTTGAAGG	CTCACCGTCG	TCCACATGAC	CAAGGTTTGT	TTGGAATTGT	11220
GCAAGGTGCA	GGATTTGAAG	ACCTTCGCCG	CCAATCAGCT	CATGATCTTG	TCAGCATGGÁ	11280
TTTCTCAGGC	TACTCTATCG	GTGGTTTGGC	AGTGGGAGAA	ACCCATGAAG	AGATGAATGC	11340
GGTCTTGGAC	TTTACAACTC	AACTGCTGCC	TGAAAATAAA	CCTCGTTATC	TGATGGGTGT	11400
GGGAGCGCCA	GATAGCTTGA	TCGATGGGGT	CATTCGTGGG	GTGGATATGT	TTGACTGTGT	11460
CTTACCGACT	CGAATTGCTC	GTAACGGGAC	TTGTATGACC	AGTCAAGGAC	GTTTGGTTGT	11520
GAAAAATGCC	CAGTTTGCTG	AGGACTTTAC	GCCACTGGAT	CCTGAGTGTG	ATTGCTACAC	11580
ATGTAATAAC	TATACACGCG	CTTACCTTCG	TCACCTGCTC	AAGGCTGATG	AAACCTTTGG	11640
TATCCGCTTG	ACTAGCTACC	ACAATCTTTA	CTTCTTGCTT	AACCTGATGA	AGCAAGTGCG	11700
ACAAGCCATC	ATGGATGACA	ATCTCTTGGA	ATTCCGTGAG	TATTTTGTGG	AAAAATATGG	11760
CTATAATAAG	TCAGGACGTA	ATTTCTAAAA	TGGAATTGAT	ATAAAAAAAT	CCTAAGTTTT	11820
CTCTTAGGAT	TTTTCTTCTT	TTTTTGATAG	AATAAAGTGT	ACAATGAAAG	GAAGAATAAA	11880
CTCGTATGCG	CATTAAATGG	TTTTCCTCGA	TTAGG			11915

#### (2) INFORMATION FOR SEQ ID NO: 97:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 9069 base pairs

  - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

GAGAGGGCAA CAGTTCTATC GCTTCAAATT TTTTCTTGGT TTGCAGATAT TCAAGAATCG 60 GGAGTTTTTC TATAGTATTC GGCAGATTTA TTACAGCCAA GCATCTCAAA AATACGGACA 120 .

GCATCCTCCA	TCTTTTTCTG	GCCTTCCTTG	ACTCTACCTT	GCTTGCTATC	AAGGAGACCT	180
TCTGCCCACA	GATAAACAAT	TCGGAAATAG	GTCTCATTTT	CCTTGTAGAA	ATGCTCTTCG	240
ATAACACGTT	TAAAATAATA	GGCATTGGTA	AATTCTTCAC	ACTCAATACT	AGCTAAAAAG	300
CCATTCAATA	GTATAGTATG	AAAAAGGTTT	CGATTGCCAG	ACATTTCCAT	TAGAAAATCA	360
GATTTACGTA	CCATTTCTCG	TACATATCTA	GTAAAAAGAG	AAACAGATAA	AAATGGAGAA	420
CTGACTGAAA	ATAAATTGAG	TTCATAGATT	CCCCAGATCT	CGGTAGAAAA	CAAATAATCA	480
TGAAGGACTT	TTCCTTCCTC	TGCTGTTAAG	TCTACCCTTT	CATCTATGCT	CTTCATATAA	540
GACTTGATAA	TAATGGCATT	TAGAATATGT	TTCTGTTTGT	TGTGAGAATG	GGCATGCTTT	600
TATACTCCCT	GCGATATAAG	TCCTCAAGAG	GTGCTATATT	CTTTGGTTCC	AÁGACATCTG	660
TAATTTCTTT	TCTCAACTCA	GAATCTGTAT	CATACTGGAA	ACCTCTTGCC	AGAAAGAGGA	720
TCTCCTCCAC	ACTGGCAGAT	ATATTTTCCA	GAGCAAATAG	AAACTTTTCC	ACCGAAAGCT	780
CACTCTGACC	TGTTTCAAAA	CGGGACAACA	TAGACGGCGA	AAATTGTCCT	CCGGTTGCTT	840
GTCTCAGTGA	GATATTTCTT	GACTCTCGTA	ATTGTCTAAA	GACTTTTCCA	ATCTGCTCCA	900
TAGACTTCCC	CTTGATTCCG	TATTTTCTTC	ATTTTATCAT	ATTTTTCAGA	AAATTCATCA	960
AAAACTTGCC	AAATTGTCAG	AATTATGAGA	AAATAGAGGA	TATTTATCAC	GTGGAGGGAC	1020
TGCTATGAGA	GACGATATCA	AAATCAATGA	CCGTGCTTTG	GCCTTGCAAG	ACCAAATTAT	1080
CGAAAAACTA	GAGAAAGTTT	TTGATACAGA	TGTGGAATTG	GATGTTTACA	ATCTAGGTCT	1140
GATTTATGAA	ATCAATCTGG	ATGAAACGGG	GCTCTGCAAG	ATTGTCATGA	CCTTCACCGA	1200
TACTGCCTGT	GATTGCGCCG	AAAGCCTGCC	TATTGAAATC	GTGGCAGGTC	TGAAACAAAT	1260
CGAGGGTATC	AAAGATATCA	AGGTTGAAGT	TACCTGGTCG	CCTGCTTGGA	AAATCACACG	1320
AATCAGTCGC	TATGGCCGTA	TTGCCCTTGG	ACTACCACCT	CGTTAAGCAG	ACCAATCACT	1380
TTTAAAGATG	AAAATCAAAG	GGCAAACTAG	AAAACTAGCC	GCAGGTTGCT	CAAAACACTG	1440
TTTTGAAGTT	ATGGATAGAA	CTGACGAAGT	CAGCTCAAAA	CACTGTTTTG	AGGTTGTGGA	1500
TAGAACTGAC	GAAGTCAgCT	CAAAACACTG	TTTTGAGGTT	GTGGATAGAA	CTGACGAAGT	1560
CAGCCCAAAA	CACTGTTTTG	AGGTTGTGGA	TAGAACTGAC	GAAGTCAGTA	ACCATACCTA	1620
CGGCAAGGCG	ACGTTGACGT	GATTTGAAGA	GATTTTCGAG	TATGAGTTTA	TTTTTTACCT.	1680
GACTTGTCCA	TATTCCAGAA	GTCTGTCACG	GCTCCGCGTG	AAGCAGATGA	TACGATGTGG	1740
GCATATTTAC	CGAGGACACC	ACGGCTGTAA	AGTGGTGGCA	AGGTTGTTTC	TGCCTTGCGT	1800
TTTTCAAGTT	CTTCTTCGGA	TACGGCCATA	GAAATTTCTT	TGGTATCTTG	GTCAACCGTA	1860

			742			
ACGATATCGC	CGGTACGGAG	ATAGGCAATT	GGTCCACCAT	CCTGAGCTTC	AGGAGCGATA	1920
TGTCCAACAA	CCAGACCATA	AGTACCACCA	GAGAAACGTC	CGTCCGTCAA	GAGGGCCACC	1980
TTATCTCCCT	GACCTTTACC	AACAATCATT	GAAGAAAGTG	ATAGCATCTC	AGGCATACCA	2040
GGACCACCTT	TAGGTCCAAC	AAAACGAACA	ACGACTACAT	CGCCATCAAC	GATTTCATCT	2100
GTCAGAACGG	CCTGAATCGC	ATCTTCTTCT	GAGTCAAAGA	CCTTAGCTGG	CCCAACGTGA	2160
CGACGCACTT	TAACACCTGA	TACCTTGGCA	ACTGCACCGT	CAGGAGCAAG	GTTCCCGTTC	2220
AAGATGATAA	GCGGACCATC	CGCACGTTTT	GGATTTTCAA	GTGGCATGAT	AACTTTTTGG	2280
CCTGGAGTCA	AGTCTGCAAA	GTCAGCCAAG	TTTTCAGCTA	CAGTCTTACC	AGTACATGTG	2340
ATGCGATCTC	CGTGAAGGAA	ACCATTTGCC	AACAAATACT	TCATAACCGC	AGGGACACCA	2400
CCGACTTCGT	AGAGGTCTTG	GAAGACATAC	TGACCAGATG	GTTTCAAGTC	GGCCAAGTGA	2460
GGCACACGTT	CTTGAATCGT	ATTGAAGTCC	TCAAGTGACA	AGTCAACATT	TGCGGCATGG	2520
GCAATGGCGA	GCAAGTGAAG	AGTGGCGTTT	GTAGAACCAC	CGAGAGCCAT	CGTTACAGTG	2580
ATAGCATCTT	CAAAGGCTTC	ACGAGTCAAG	ATATCTGATG	GTTTGAGACC	AAGTTCCAAC	2640
ATCTTAACAA	CAGCACGTCC	TGCTGCTTCG	ATATCTTCTT	TCTTATCAGC	TGATTCAGCT	2700
GGGTGAGAGG	ATGACCCTGG	CAAACTCATC	CCTAGAACTT	CGATAGCAGT	TGCCATGGTA	2760
TTAGCAGTAT	ACATACCACC	ACAACCACCA	GGGCCAGGGC	AGGCATTACA	TTCAAGACGT	2820
TTCACGTCCT	CAGCTGTCAT	GTCACCGTGG	TTCCATTTTC	CGATACCTTC	AAAGACAGAA	2880
ACCAAGTCGA	TATCTTTACC	ATCAAGATTT	CCCGGTGCAA	TAGTTCCACC	: ATAGGCGAAA	2940
ATAGCTGGGA	TATCCATATT	AGCAATAGCA	ATCATAGATO	CAGGCATGT	CTTGTCACAG	3000
CCACCGATAG	CGACGAAGGC	ATCCACGTTC	G TGACCACTCA	TAGCCGCCTC	GATGGAGTCC	3060
GCGATGATGT	CACGAGATGT	TAGAGAGAA	CGCATACCAC	GCGTTCCCAT	AGCGATCCCG	3120
TCCGCTACGG	TAATGGTTCC	AAACTGTAC	GGCCAAGCG	CTGCAGATTT	GACACCTTCT	3180
TTAGCCAGT	TCCCGAAATC	ATGCAAGTG	ATGTTACATO	GTGTATTTT	CGCCCAAGTC	3240
GAAATCACTO	CCACAATCGA	TGTTTCAAA	TCCTTATCT	TCATACCAG	CGCACGAAGC	3300
ATAGCACGGT	TAGGTGATT	AACCATGCT	G TCATAAATG	TACTGCGGT	G ACGTTTATCT	3360
AATTCAGTC	A TCTTATCCCT	CCCATTTCA	TTTTTACTA	TATAGCACA	TTTTCGCATG	3420
AAGAACAGA	A TAAAATTCT1	GAATTTTCA	G AAAATTCTA	T ACACATGTG	A AATATTAAA	3480
ATTAAAAAC	A ACAAAGCGG	TTAGTGCAC	r TTCTGATGA	C CAGAATATG	C TTTTTAATCC	3540
GCTTTCTTT	A AATAACGTAC	TGTAATTTT	T ACAGAAATT	C TTTCAAATA	A GTGTATTTAA	3600
CATCTATCT	r GCATTATAA	TTTCTAGAA	c crictcrit	T ATATTCGAT	T CACTCAAACC	3660
					•	

ATACTCATTA	AGAAGATAAT	CCATTTTCCC	TACTTGACCG	AATCTTTCTT	GAACACCCAT	3720
CCGATGAATT	TTTGTTATTC	CATCATCAGA	GAATAATTCA	CATAAAGCAC	TGCCAATTCC	3780
ACCTATCTGA	TTGTGGTTTT	CTACAGTAAA	TATAGTTTTT	CCACTTAACA	TTGTTTTTAT	3840
CTGTTCTGGT	ATCGGTTTGA	TTCTAAATAA	ATCTATCACA	CCTACTGAAT	AACCTAATTT	3900
AGACAGTTCA	TCTGCAACTC	GAATACTTGG	AGCAACCATT	ATGCCAGAAG	CAACGATTAC	3960
AAGATCTTCA	CCATGCCTTA	ACTCAATGTA	GCCTTTAGAA	AAATCTTCTC	CACCTTGATA	4020
CACAGGAACT	GGAGCTTTTC	TAATTGTTCG	AATATATTTT	AGTCCTTTTA	AGTCTAATGT	4080
CTGGTTCAAT	ATTTCACGAA	ATTGGATATC	ATCAGTTGCT	TCGAAAATGA	TTGATTTAGG	4140
AATTAAACGT	AACAATCCAA	TTTCTTCAAA	TGGCATATGT	GTTCCACCAT	TCATCTCTGC	4200
CGTTACTCCT	GCATCTGATC	CAATCACAGT	GGCATCCAAT	TGTGCGTATC	CAAGAGAAAT	4260
aaataattga	TCAAATACTC	TTCGTGAAGC	AAAAGGACCA	AATGTATGAA	GATAAGGTCT	4320
AAACCCCTGA	ATAGACAAGC	CTGCTGCAAG	GCCGACCATT	TCTGCTTCCA	TAATCCCAAC	4380
ATTCACATAA	CGGTCTCCAA	AGTCCTTTTC	AAGATTATTA	GTAGCCATCG	AACTTGACAA	4440
ATCGGCTTCT	AAGACTACTA	TATCAGAATC	ACTTTGATTA	GCCTCTAAAA	GGAAGTCTCT	4500
ATATACATGC	CGTAATTCTT	TCGTACTTCT	CATCATTCTG	TTTCCTCCAA	TTCCTGACTT	4560
AATCTTTCTA	CAACTGAAGT	TAACATTTGT	TTCTCCTCTA	CAGTAGGGCG	AAGATGATGA	4620
TTGGATTTCA	TTTCTTCCAG	CTCTTGAACC	CCTTGACCTT	TAATAGTATC	TAATACAATG	4680
CACTTAGGTG	ATGAATTATT	TGACTGTTTT	AATTGGACAA	TCCCTTCATA	AATTTCTCTA	4740
ATATCTGAAC	CCTTGACCCT	AATGGATTCA	AATCCAAATG	CTGAAAATTT	TTCTACGAAA	4800
TCACCTGGAT	TACAAATATC	CTTTGTAAAA	CCATCTAATT	GTTTTTTGTT	ATCATCAACA	4860
AATACAATTA	AGTTGGATAA	CTGTTGATGA	GAAGCAAACT	GTATAGCCTC	CCAACATTGT	4920
CCCTCATTTA	ACTCACCATC	TCCAACAATA	GCGTAAGTAT	AAAAGGGACT	CTTTCTTATT	4980
CTCTGACCAT	ATGCAAGTCC	AGTTGCAACA	CTAATTCCTT	GTCCTAAAGA	GCCCGTTGTC	5040
ATATCTATGC	CTGGCGTTAG	ATTTCTATCA	GGATGAGACG	GTAATTTGGT	TCCATTTGTA	5100
TTTAAAGAAT	ATAAGAATTC	TTTGTCAAAG	AAACCATTCA	AATAGAGTGT	ACTGTATAGA	5160
GCTGGTCCTC	CGTGACCTTT	TGATAATATG	AAATAATCTC	TATCTCGTGC	TGCAAATATT	5220
TCTGGAGTCA	TTGGCATTAT	TTCACCATAA	AGCACCGCTA	AAACTTCTAC	GATAGACAGA	5280
CTTCCTCCGT	AATGTCCGAA	TCCAAGATGA	TTCAATGTTC	TAAGAGTATT	TAATCGGATG	5340
TTAGTCGCAA	ATTTTCTTAA	CCCATCTTCT	CTATTTTTAC	TTAAAATCAT	CCCTTATTCC	5400

			744		·	
TCCGTTGCAG	ATGGCTTTTT	AATAAAGGAT	ACTCCAAACA	TAACTGCTAG	AATAAGAACA	5460
AGACCAATCA	CAATGCCTGC	TTGTGAGCCA	AATTGATTTA	ACATTCCTAA	AATAATTCCT	5520
GATAGACCAA	AATCTGCATC	TGAGAAAGTT	GATCCTTGGA	AACCAAGTCC	TCCCAAAACT	5580
GGCATTAAAA	AGACTGGAAG	AAAACTGATT	AAAATACCTT	GTAAAAATGC	TCCAATAGTG	5640
GCTCCACGAA	CACCACCAGA	TGCATTCCCA	ATGACACCTG	CAGTCGCTCC	ACAGAAGAAA	5700
TGAGGCACAA	CACCTGGTAA	GATAACAACC	GTTCCTGAAG	CAATCATAAT	TACCATACTT	5760
ACTAAACCAC	CAACAAAACT	AGAGATAAAT	CCAATTAGAA	CTGCATTGGG	TGCATAAGTA	5820
TAAACAATCG	GACAATCCAA	AGCAGGTTTT	GAATTAGGTA	CAAGACGCTC	TGAAATACCT	5880
TTAAAGGCTG	GAACAATTTC	GCCCAAAATA	AGGCGAACAC	CTGCTAAAAT	AACAAATACC	5940
CCTGCTGCAA	ATTGACCTGC	TAATTGTAAA	GCATAAACTA	GACCACTTGT	ACCACTACTG	6000
ATTTCTTTTT	CTATATATTC	TGACCCTGCA	AAGATAGCTA	CAATAATGTA	AATAACTGCC	6060
ATGGATAAAG	TAATACTAAC	AGTACTATCA	CGTAAAAAAG	CTAAACTCTT	TGGAAATTTA	6120
ATGTCCTCTG	TTGATTTTGA	TTTGTCACCG	ATAAGGCTAC	CAGTAAAACC	ACTCAACCAA	6180
TATCCCAAAG	AACTGAAATG	ACCTAAAGCT	ACCTTGTCAT	TTCCAGTTAA	TTGAACCATA	6240
TATTTTTGCA	CAAATGCTGG	GGAAATACTC	ATAATAATAC	CGAGTGCTAA	TCCTCCTAGT	6300
AAGATGAGAG	GCAAGCTAGT	AAAGCCAGCA	ACTGATAAAA	TGACCGCAAT	CATACATGCC	6360
ATATATAGAG	TGTGGTGCCC	TGTTAAAAAA	ATATATTAA	ATCGAGTAAA	ACGAGCGATT	6420
AAGATATTGA	ACACCATGCC	TGCAAACATA	ATCATTGCAG	TAGCTGAGCC	ATATGTTGTT	6480
AAAGCTACAG	CTACAATTGC	TTCATTATTC	GGCACAACGC	CAGATAAATO	AAAAGCATGC	6540
TCAAACATGG	TACCAAATGG	ATTTAAAGAA	TTTTGTACAA	TTCCTGCACC	ACCAGATACA	6600
ACTAAGAAAC	: CAACAAAGGT	CTTAATTCCA	CCTTTAATA	TATCAGGTA	TTTCTTCTTC	6660
TGAAGAACTA	ATCCTAAGAT	TGCAATTAAA	GCTACTAAAA	TAGCTGGTG	ACTAACAATA	6720
TCCAATATGA	ACTTCATCAT	GACGCTAGCC	TCCTATATA	GTCCTTTTT	TTCACAAAGT	6780
TTAGTAATTA	ATTCTCGTAC	TTCATCCAT!	TCAATAATA	TATTTAAGA	r ACGAACATCT	6840
CCAAGATGAG	TAGCTGAATC	AGCTAGATC	CGACCAACA	TCCAAATAT	AGCTGCATTT	6900
GGATCTGCT	CACCTAAATO	ATAATGTTC	A ACTTCTACA	CCGAAACAT	CAAATCACTC	6960
AATACAGAT	r CAATATTCAT	CTGTACCAT	A AAACTTGAA	CTAATCCTG	A ACCACAAGCT	7020
GTACCAATT	r TTAACATTA	CTAATCCTC	TGTTTAATT	A TCATTTTAA	T GTCATCATAG	7080
TTTTTTGAT	G ATATTAAAG	TTGAACATG	A TTTTTATCT	C TTAAAATTG	T TGTTAAATGT	7140
GACAAAGCC	T TTAAATGAC	CTCATTATC	A ATGGCTGCA	A TACAAATCA	A CAATCTTACC	7200

TCTTGTTCTG	GATTATCCAA	TAAATAAATC	GGTTCTTCCA	AAACTAACAT	TGACATTCCT	7260
ATTTCATTCA	CACCTTCATC	TGGCCGAGCG	TGAGGAATTG	CTACTCCCTT	CCCTAAATTA	7320
ATAAAAGGTC	CAAACTCTTC	TACTTTTTGA	ATCATTGCCT	CAGGGTAGTT	CTCAGTTATC	7380
TTATCTTGAT	CCAAAAGCGG	TTTAGCTGCT	AAACGAATCG	CCTCCTTCCA	TCCTAATTTT	7440
TGCGAACTAA	CCTGATAGGT	TTCTTTGGTA	ATAAGTTGTT	CTAGCACTGG	TACAATTTCC	7500
TTTCTATCAT	TTTTTTGGTA	AAGATAATTC	TTTAACGCCA	ATCTTAATTC	CAATTCTTGT	7560
GTAATAATTC	CATATCTTTT	GACAATATTC	AGGATTTGTT	CAATCTCAAA	ATCTCCATAC	7620
TCTAAATTCG	GAAAATCTTT	TAACACTAGT	TCTACTAGTT	GTATTGCTTG	CTCTTCAGTC	7680
ATCATAACCG	AAACTAGATA	ATTTGGCTTT	TCTGTCTCCA	CCTTTATGGT	AGAAAAAACC	7740
ATATCATAGT	CACTACTAGC	TTTCACCTGT	AAATCATCAA	TCTTTGAGGT	TCCTATAAAC	7800
TCAATTTGAG	GAAATAATGC	TAATAGATTC	TCTTTTAACA	TCAATGAAGA	ACTAACACCA	7860
TTAGGACAAA	TGATTGCTGC	TTTATACCAT	TTTTGAGGCA	AAGTATCTGC	TTTCTTTAAA	7920
TAACCTCCGA	AATGGATAAC	AAAATATGCT	GTTTCACTAT	CAGGTATGGG	ATTGTCAATA	7980
GCGTCCATCA	AGGGCATCAA	AGAATCTTTG	ACTAATTCAA	ATAAATCAGG	ATAATGTTCT	8040
TTAACATGCA	ATACATATTC	ATTTGAACTA	GGTAGGCCGA	ACTTTAATCT	ATAGTAAGCC	8100
GGTATAAGGT	GGCGGCGAAG	ATTTTCTCTC	AATCCTTCCC	TTTGTTTAAA	ATGTAACAAA	8160
GAAATATCTT	CCATTCTACT	TATAATAGCC	TCTGTTAATT	GATTAAAGTA	AACCGGAGCA	8220
ACATCTACTT	CACCTTCAAA	GCAACTTGAT	AATAAAACGG	TGATATAGCG	ATAATCATCC	8280
TCAGAAAACA	CCGTATCTAT	AATTCCCAAA	TCAACCACTG	TATCCAATAA	AATAGTGGTT	8340
ATATCTTGAA	TAACAGGAGA	TACTAATGTC	TCTGAAAGAC	ATACTCTTTC	AACATCCCTT	8400
TGATACCTAC	ACAGAATGAA	TACTAAACCG	AAAAGGTAAA	CTTTTAATTG	ATTAACAATA	8460
GGTACTAGCT	GTAGCTTCTC	ATAATAATCT	TTAACTACCT	GATCAATCAA	ATCATAAGTT	8520
AATGAATACC	CCCAACTGGA	TAAAACATAA	TCCAAACCCC	AAATCCCTAT	GGAGGATTCC	8580
AGCAACTCAC	TAACCATTTG	AAAAGCTAAG	CGGTGCTTAT	TCCACTCTGA	ACCGTGTAAA	8640
GTATAACCTT	TTGCTCTACT	GTACCCTAGC	TCCAAATCAT	TATCTAACAT	AATCTTTCTT	8700
AATGATTGAA	TATCAGATAA	GGTTGTATTC	TTACTTACTT	TCAAAAAGTC	TTGGTAATGA	8760
CTATTCGATA	ТААААТСТАА	TCGGCAAAAA	GTGTAAAGAT	AGATTAAAGC	TAAGCGAGTC	8820
GACTTTGGTA	AAACCAATTC	ATCCGACTTA	ATAATATCTG	TCAAAGACTG	CTTCGTACGA	8880
TTTGATAAAC	TATAGCGACC	TTGCTTTTTA	TCCAGCACTA	TCCCTTTATT	AGCTAGATAA	8940

GGCACTAAAT AATCTATTCC TTCTTTGACT TCCTTTATAG GTAAGCTCAC CTTAACAGAT 9000
AATTCATATA ACGATAGCTC ACAATGATCC ATCAAAAGTCA TCAAAATAAC TAGTGCTCTA 9060
TAATCAAAC 9069

#### (2) INFORMATION FOR SEQ ID NO: 98:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8654 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

CGAGACAACA AGATGAAGAA AAATTTGCCC TATCGTTTGT GGCGCTTGCA AGTGTAGCAC 60 TTCTTGCAGC CTGTGGAGAA GTGAAGTCTG GAGCAGTCAA CACTGCTGGT AACTCAGTAG 120 AGGAAAAGAC AATTAAAATC GGGTTTAACT TTGAAGAATC AGGTTCTTTA GCTGCATACG 180 GAACAGCTGA ACAAAAAGGT GCCCAATTGG CTGTTGATGA AATCAATGCC GCAGTGGTAT 240 CGATGGAAAA CAAATCGAAG TAGTCGATAA AGATAATAAG TCTGAAACAG CTGAGGCTGC 300 TTCAGTTACA ACTAACCTTG TAACCCAATC TAAAGTATCA GCAGTCGTAG GACCTGCGAC 360 ATCTGGTGCG ACTGCAGCTG CGGTAGCGAA CGCTACAAAA GCAGGTGTTC CATTGATCTC 420 ACCAAGTGCG ACTCAAGATG GATTGACTAA AGGTCAAGAT TACCTCTTTA TTGGAACTTT 480 CCAAGATAGC TTCCAAGGAA AAATTATCTC AAACTATGTT TCTGAAAAAT TAAATGCTAA 540 GAAAGTTGTT CTTTACACTG ACAATGCCAG TGACTATGCT AAAGGGATTG CAAAATCTTT 600 CCGCGAGTCA TACAAGGGTG AAATCGTTGC AGATGAAACT TTCGTAGCAG GTGACACAGA 660 CTTCCAAGCA GCCCTTACAA AAATGAAAGG GAAAGACTTT GATGCTATCG TTGTTCCTGG 720 TTACTATAAT GAGGCTGGTA AAATTGTAAA CCAAGCGCGT GGCATGGGAA TTGACAAACC 780 AATCGTTGGT GGTGATGGAT TCAACGGTGA GGAGTTTGTA CAACAAGCAA CTGCTGAAAA 840 AGCATCAAAC ATCTACTTTA TCTCAGGCTT CTCAACTACT GTAGAAGTTT CAGCTAAAGC 900 TAAAGCCTTC CTTGACGCTT ACCGTGCTAA GTACAATGAA GAGCCTTCAA CATTTGCAGC 960 CTTGGCTTAT GATTCAGTTC ACCTTGTAGC AAACGCAGCA AAAGGTGCTA AAAATTCAGG 1020 TGAAATCAAG AATAACCTTG CTAAAACAAA AGATTTTGAA GGTGTAACTG GTCAAACAAG 1080 CTTCGATGCA GACCACAACA CAGTCAAAAC TGCTTACATG ATGACCATGA ACAATGGTAA 1140 AGTTGAAGCA GCAGAAGTTG TAAAACCATA ATAGAAAAAT GTTGAAATAG GGAATGAGCC 1200 TTTGACTCAC TCCCTGTTTC GATATTTAAT ACTCTTCGAA AATCTCTTCA AACTGCGTCA

ACGTCGCCTT GGATTATATA TGTGACTGAC TTCGTCAGTC TTATCTACAA CCTCAAAGCA	132
GTGCTTTGAG CAACCTGCGG CTAGTTTCCT AGTTTGCTCT TTGATTTTCA TTGAGTATAA	138
GAACCTATCA AAAAGTGAGG GAAAACCCTC GGAATTATAA ATAGAAAGAG TGAATCTTAT	144
GCTCCAACAA CTCGTAAATG GTTTGATTCT AGGTAGTGTT TACGCGCTGT TAGCCCTAGG	1500
ATATACCATG GTTTACGGAA TTATCAAGCT CATCAACTTC GCCCATGGTG ATATTTATAT	1560
GATGGGAGCC TTTATCGGTT ATTTCTTGAT CAATTCTTTC CAAATGAATT TCTTTGTAGC	1620
GCTTATTGTA GCTATGCTAG CGACAGCTAT TCTTGGTGTC GTGATTGAGT TTCTTGCTTA	1680
CCGACCTTTG CGCCACTCTA CTCGTATTGC TGTTTTGATT ACGGCTATTG GGGTTTCTTT	1740
CCTATTGGAG TATGGAATGG TCTATCTGGT TGGTGCCAAT ACCCGTGCCT TCCCTCAAGC	1800
GATTCAAACA GTTCGATATG ATTTGGGACC AATTAGCTTA ACAAATGTGC AGTTAATGAT	1860
TTTGGCCATT TCCTTGATTT TGATGATTTT GTTACAAGTC ATTGTCCAAA AGACTAAGAT	1920
GGGGAAAGCC ATGCGTGCAG TATCAGTAGA TAGCGACGCG GCGCAATTGA TGGGGATCAA	1980
TGTAAACCGT ACGATTAGCT TTACCTTCGC TTTGGGTTCT GCTCTTGCGG GTGCGGCTGG	2040
TGTTCTGATT GCTCTTTATT ATAACTCTCT TGAGCCTTTG ATGGGGGTTA CTCCAGGTCT	2100
TAAATCTTTC GTTGCCGCAG TACTTGGTGG TATCGGAATT ATTCCTGGTG CGGCTCTTGG	2160
TGGCTTTGTG ATTGGTCTAT TGGAAACCTT TGCGACTGCC TTTGGGATGT CAGATTTCCG	2220
TGATGCCATT GTTTATGGAA TCTTGTTGTT GATCTTGATT GTCCGCCCAG CTGGTATCCT	2280
TGGTAAGAAT GTGAAAGAGA AGGTGTAAAC GATGAAGGAA AATTTAAAAG TTAATATTCT	2340
ATGGTTACTC CTTTTGTTAG CTGGCTATAG CTTGATTAGT GTACTGGTTT CAGTCGGAGT	2400
ACTTAATCTA TTCTATGTAC AGATTTTACA ACAAATTGGA ATTAATATTA TTTTGGCTGT	2460
TGGTCTCAAC TTAATCGTTG GTTTTTCAGG ACAATTTTCA CTTGGTCATG CTGGTTTCAT	2520
GGCGATTGGT GCCTATGCAG CAGCTATTAT TGGTTCTAAA TCACCAACCT ACGGTGCCTT	2580
CTTTGGAGCT ATGCTTGTAG GGGCTTTGCT TTCAGGAGCA GTTGCCTTAC TTGTCGGCAT	2640
CCAACCTTG CGCTTGAAGG GGGACTATCT TGCGGTAGCA ACTCTGGGTG TTTCTGAAAT	2700
PATCCGTATC TTTATCATCA ATGGTGGAAG CCTTACAAAT GGTGCGGCAG GTATCTTAGG	2760
SATTCCTAAC TTTACAACTT GGCAAATGGT TTACTTCTTT GTCGTGATTA CAACCATTGC	2820
ACCTTGAAC TTCTTGCGTA GCCCAATTGG TCGTTCAACC CTCTCTGTTC GTGAAGATGA	2880
ATCGCTGCT GAGTCAGTTG GGGTTAATAC GACTAAAATT AAAATCATCG CTTTTGTCTT	2940
GGTGCCATT ACTGCAAGTA TTGCTGGGTC ACTTCAGGCA GGATTTATCG GGTCTGTTGT	3000

			748			
ACCGAAAGAT	TACACCTTCA	TCAACTCAAT	CAACGTTTTG	ATTATTGTTG	TATTTGGTGG	306
ACTCGGTTCC	ATTACAGGTG	CGATTGTTTC	GGCTATTGTT	CTGGGAATTT	TGAATATGCT	312
TCTCCAAGAT	GTTGCTAGTG	TGCGTATGAT	TATTTACGCT	TTGGCCTTGG	TATTGGTAAT	318
GATTTTCAGA	CCAGGTGGAC	TCCTTGGAAC	ATGGGAACTG	AGCCTATCAC	GTTTCTTTAA	324
AAAATCTAAG	AAGGAGGAAC	AAAACTAATG	GCATTACTTG	AAGTAAAACA	GTTAACCAAA	330
CATTTTGGTG	GTCTAACAGC	TGTTGGAGAT	GTGACTCTTG	AATTGAACGA	AGGGGAACTG	3360
GTTGGATTAA	TCGGTCCAAA	CGGAGCTGGG	AAAACCACCC	TTTTCAACCT	TTTGACCGGT	3420
GTTTATGAAC	CAAGCGAGGG	AACAGTAACC	CTAGATGGTC	ACCTTTTGAA	TGGGAAATCA	3480
CCTTATAAGA	TTGCCTCTTT	GGGACTTGGA	CGTACTTTCC	AAAATATCCG	TCTCTTTAAA	3540
GATTTAACAG	TTTTAGATAA	TGTTTTGATT	GCTTTTGGAA	ACCATCACAA	ACAGCATGTT	3600
TTTACTAGTT	TCTTACGCTT	ACCAGCTTTT	TACAAGAGTG	AAAAAGAATT	AAAGGCTAAA	3660
GCTTTGGAAT	TGTTGAAAAT	CTTTGATTTA	GATGGTGATG	CAGAGACTCT	TGCTAAAAAT	3720
CTTTCCTACG	GACAACAACG	TCGTTTGGAA	ATTGTTCGTG	CCCTTGCTAC	GGAACCTAAA	3780
ATTCTCTTCT	TAGATGAACC	AGCAGCAGGT	ATGAACCCAC	AGGAAACAGC	CGAATTGACT	3840
GAGTTAATTC	GTCGTATCAA	AGATGAGTTT	AAGATTACAA	TCATGTTGAT	TGAACACGAT	3900
ATGAATCTGG	TCATGGAAGT	AACAGAACGT	ATCTACGTAC	TTGAATATGG	CCGTTTAATC	3960
GCTCAÁGGAA	CTCCAGACGA	AATTAAGACC	AATAAACGCG	TTATCGAAGC	TTATCTAGGA	4020
GGTGAAGCCT	AATGTCTATG	TTAAAAGTTG	AAAATCTTTC	TGTGCATTAC	GGTATGATCC	4080
AAGCAGTTCG	TGATGTAAGC	TTTGAAGTTA	ATGAAGGAGA	AGTTGTTTCC	CTTATCGGTG	4140
CCAACGGTGC	AGGTAAGACA	ACTATTCTTC	GCACCTTGTC	AGGTTTGGTT	CGACCAAGTT	4200
CAGGAAAGAT	TGAATTTTTA	GGTCAAGAAA	TCCAAAAAAT	GCCAGCTCAG	AAAATCGTGG	4260
CAAGTGGTCT	TTCACAAGTT	CCAGAAGGAC	GCCACGTCTT	TCCTGGCTTG	ACTGTTATGG	4320
<b>AAAATCTT</b> GA	AATGGGAGCT	TTCTTAAAGA	AAAATCGTGA	AGAAAATCAA	GCTAACTTGA	4380
AGAAGGTTTT	CTCACGCTTT	CCTCGTCTTG	AAGAACGGAA	GAACCAAGAT	GCAGCCACTC	4440
TTTCAGGGGG	GGAACAACAA	ATGCTTGCCA	TGGGACGCGC	CCTCATGTCA	ACACCAAAAC	4500
PTCTTCTTTT	AGATGAACCA	TCAATGGGAC	TTGCCCCAAT	CTTTATCCAA	GAAATTTTTG	4560
ATATCATTCA	AGATATTCAG	AAGCAAGGAA	CAACGGTCCT	CTTGATTGAA	CAAAATGCCA	4620
ATAAAGCACT	TGCAATCTCT	GACCGAGGAT	ATGTACTGGA	AACAGGGAGA	ATCGTCCTAT	4680
CAGGAACAGG	AAAAGAACTC	GCTTCATCAG	AAGAAGTCAG	AAAAGCATAT	CTAGGTGGCT	4740
AAAACAATCC	AGTGGATTGT	TTTAGTCGGC	AGATGGAGAT	TACGAAGTAA	TCATCAATAT .	4800

					አጥርጥ እር አጥጥር	4860
	ACCTTTTTAG					
AAAGCTTAAT	TTCTAATAAT	TGAAAAAATC	GAATGAAAAA	TTTCTTACCT	TCATTCACAG	4920
AGCTCGATTT	CAGAGCTCTT	TTTGCTAGCT	TATTCATACT	TTTCTGAATT	TCGAAAAAGA	4980
AATGTAAGCG	TTTGATAGAT	TTACAAAAAG	ATTGTATAAT	AGGGATAAGA	ATAGAAAAGG	5040
	TGGCAGTTAA					5100
	CTCATGCAGC					5160
	ATCAATTAGT					5220
	CAAGTCTTTC					5280
	TGATTCGCGA					5340
ACTTATCTGA	TGTTGAAAAA	TAAGATTAGT	ATTCTCCCTG	TCGTAGATAA	CCATCAAGTA	5400
					AGGTTATGGC	5460
GAAGAAGGGA	TTCGTGTACG	CTTTGTTACA	GAAGATGAAG	TTGGTGTTCT	TGGAAAAATT	5520
					TCCGCGTAAG	5580
					AGCCTTGAAA	5640
					AGCAAAAGTC	5700
					AGCAAAAGAT	5760
					TTTATGGACA	5820
					TTCAGGGGGT	5880
					GATGACAGAA	5940
					AAATGAATTA	6000
					CGAAATTTTA	6060
					GTTAGCCGAA	6120
					TTATGACCAC	6180
					A GGACTGGGGT	6240
					A AGTGGAAGTG	6300
					CATTTGAAGGG	6360
					r GCGAATCTCA	6420
				•	T GATGCCAGAA	6480
•				•	A TACCTTCCGT	6540
LIGGALGA		· · ·				

TCAGGTGGTG	CCGGTGGACA	AAACGTCAAT	750 AAGGTTTCAA	CAGGTGTACG	TTTAACCCAC	6600
ATTCCAACTG	GAATTGTTGT	CCAATCAACA	GTAGATCGTA	CCCAGTATGG	AAATAGAGAT	6660
CGTGCCATGA	AGATGTTGCA	GGCTAAGCTC	TATCAAATGG	AGCAAGATAA	GAAGGCTGCG	6720
GAGGTAGATT	CTCTCAAAGG	TGAGAAAAAG	GAGATCACTT	GGGGAAGCCA	AATCCGTTCT	6780
TATGTCTTCA	CGCCTTATAC	TATGGTAAAA	GATCACCGAA	CTAGCTTTGA	GGTTGCTCAG	6840
GTAGATAAGG	TTATGGATGG	GGACCTAGAT	GGTTTTATCG	ATGCTTATCT	CAAGTGGCGA	6900
ATTAGCTAAG	ATAGAAAGGA	ACTCACATGT	CAATTATTGA	AATGAGAGAT	GTCGTTAAAA	6960
AATACGACAA	CGGAACAACT	GCTCTACGCG	GTGTTTCGGT	TAGCGTTCAA	CCGGGGGAAT	7020
TTGCTTACAT	CGTAGGACCT	TCAGGAGCAG	GGAAGTCAAC	TTTTATTCGT	TCTCTGTATC	7080
GTGAAGTAAA	AATCGATAAA	GGAAGCCTAT	CAGTTGCTGG	TTTTAATCTG	GTTAAGATCA	7140
AAAAGAAAGA	TGTCCCGCTT	CTACGTCGTA	GTGTTGGGGT	TGTCTTCCAG	GATTATAAAT	7200
TGTTACCAAA	GAAAACTGTC	TATGAAAATA	TTGCTTACGC	TATGGAAGTA	ATCGGGGAAA	7260
ATCGCCGTAA	TATCAAAAGA	CGAGTGATGG	AAGTTTTGGA	CTTGGTTGGA	TTGAAGCATA	7320
AGGTTCGTTC	TTTCCCAAAT	GAACTCTCAG	GTGGGGAGCA	ACAGCGGATT	GCGATTGCGC	7380
GTGCAATTGT	AAATAATCCC	AAAGTATTGA	TAGCTGATGA	GCCAACAGGA	AATCTGGATC	7440
CGGATAATTC	ATGGGAAATT	ATGAATCTCT	TGGAACGGAT	TAACYTACAA	GGAACAACTA	7500
TTTTGATGGC	GACTCATAAT	AGCCAGATTG	TAAATACCTT	GCGCCACCGT	GTCATTGCCA	7560
TTGAAAATGG	CCGTGTCGTT	CGTGACGAAT	CAAAAGGAGA	GTATGGATAC	GATGATTAGT	7620
AGATTTTTTC	GCCATTTATT	TGAAGCCTTA	AAAAGTTTGA	AACGAAATGG	TTGGATGACA	7680
GTAGCTGCTG	TCAGTTCAGT	CATGATTACT	TTGACCTTGG	TGGCAATATT	TGCATCTGTT	7740
ATTTTCAATA	CAGCGAAACT	AGCTACAGAT	ATTGAAAATA	ATGTCCGTGT	AGTAGTTTAT	7800
ATCCGAAAGG	ATGTGGAAGA	TAATAGTCAG	ACAATTGAAA	AAGAAGGTCA	AACTGTTACA	7860
AATAATGACT	ACCACAAGGT	ATATGATTCT	TTGAAGAACA	TGTCTACGGT	TAAAAGTGTT	7920
ACCTTTTCAA	GTAAAGAAGA	ACAATATGAA	AAATTAACCG	AGATAATGGG	AGATAACTGG	7980
AAAATCTTTG	AAGGAGATGC	CAATCCTCTC	TATGATGCCT	ATATTGTAGA	GGCAAACACT	8040
CCAAATGATG	TAAAAACTAT	AGCCGAAGAT	GCTAAAAAAA	TTGAAGGTGT	CTCTGAGGTT	8100
CAAGATGGCG	GTGCCAATAC	AGAAAGACTC	TTCAAGTTAG	CTTCATTTAT	CCGTGTTTGG	8160
GGACTAGGGA	TTGCTGCTTT	GTTAATTTTT	ATCGCAGTTT	TCTTGATTTC	AAATACCATT	8220
CGTATTACCA	TTATTTCCCG	CAGTCGCGAA	ATTCAAATCA	TGCGCTTGGT	CGGAGCTAAA	8280
AACAGTTATA	TCCGTGGACC	GTTCTTGTTA	GAAGGAGCCT	TTATCGGTTT	ATTGGGAGCT	8340

PCT/US97/19588 WO 98/18931

751

ATCGCACCAT CTGTTTTGGT CTTTATTGTT TATCAAATTG TTTACCAATC TGTCAACAAA 8400 8460 TCGTTGGTAG GGCAAAATCT ATCCATGATT AGTCCAGATT TATTTAGTCC GTTGATGATT GCCCTACTAT TTGTGATTGG GGTTTTCATT GGTTCATTGG GATCAGGAAT ATCCATGCGC 8520 CGATTCTTGA AGATTTAGGT AAAATAGCTG CTTTTATGAG GAGATTGTAA AATCTCCTTT 8580 TTTGCTACAA GAGTTTTTGA AAAGAGATGC GCAGAAGAAA AGAGCTTCCA AAGAAGTCCC 8640 CCAGAGAAGA CTTC 8654

#### (2) INFORMATION FOR SEQ ID NO: 99:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 19718 base pairs
    (B) TYPE: nucleic acid

  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

TGTCGCGTCA AAATCAT	TTAC TATGGCTATG T	ATAGCCCTT A	CTATGACTT (	GGCTAAACAC	60
GTTCGCTTTC AAATTTC	TAG GCTCAGGCTG A	AACAGTCTC C	CAGGCTGTT	CACTCCCGAA	120
TGCTAAAATC GTTCTTC	SATC GCTTTCACAT T	GTACAACAT C	TTAGCCGTG	CTATGAGTCG	180
TGTGCATGTC CAAATCA	ATGA ATCAGTTTCA T	CGAAAATCC C	ATGAATACA	AGGCTATCAA	240
GCGCTACTGG AAACTC	ATTC AACAGGATAG C	CGTAAACTG A	GTGATAAGC	GATTTTATCG	300
CCCTACTTTT CGCATGO	CACT TAACAAATAA A	GAAATTCTT G	ACAAGATTT '	TAAGCTATTC	360
AGAAGACTTG AAACAC	CACT ATCAGATCTA T	CAACTCTTA C	TTTTTCACT	TTCAGAACAA	420
AGACCCTGAG AAATTT	TTCG GACTCATTGA G	GACAATCTG A	AGCAGGTTC	ATCCTCTTTT	480
TCAGACTGTC TTTAAA	ACCT TTCTCAAAGA T	AAAGAAAAG A	TTATCAACG	CCCTTCAACT	540
ACACTATTCT AATGCC	AAAC TGGAAGCGAC C	AATAATCTC A	TCAAACTTA	TCAAGCGCAA	600
TGCCTTTGGT TTTCGA	AACT TTGAAAACTT C	AAAAAACGG A	TTTTTATCG	CTTTGAACAT	660
CAAAAAAGAA AGGACGA	AAAT TTGTCCTTTC T	CGAGCTTAG C	TGACTTCAA	CCCACTACAG	720
TTGACAAAGA GCCTAA	TTTC CATAAAATT G	ACATGGAAA T	TATAAAACC	ATTACTAGTT	780
TAGTCCTTTT TGATAAC	GTG CCAATTCGGC T	TGGTTCGCC C	AAACATAGT (	GACCTGGACG	840
GATTTCTACC ATAGATO	GCT TATCAGTCTC A	TAGTCGTGT T	GACTTGGAT	CGTAAACCTT	900
CAAGACCTTC TTACGT	rcca agattggatc t	GGGATTGGT A	CCGCTGAAA	GCAAGGCTTG	960
AGTATATGGG TGAATT	GGAT TGTTAAACAA T	TCTTCTGTT T	CTGCAACCT	CTACAATAAC	1020

	•		/52			
ACCCTTGTAA	ATAACTGCGA	TACGATCTGA	AATAAAGCGA	ACAACCGACA	AGTC#TGGGC	108
GATGAAGAGA	TAGGTCAGGC	CGAGCTCTTT	TTGGAATTTT	TTGAGCAAGT	TCAAGACTTG	114
GGCACGTACA	GAAACGTCCA	AGGCTGAAAT	TGGCTCATCT	GCAATAACAA	AGTCTGGTTG	1200
CATGACCAAG	GCACGGGCAA	TACCGATACG	TTGACGTTGA	CCGCCTGAGA	ATTCATGAGG	1260
GTAACGAGTC	AAGTGCTCAG	CAAGAAGACC	TACTTCACGG	ATAATATTT	GAACTTTCTC	1320
TTTACGTTCT	TCTTCATCCT	TAAATAAACG	GTGATTGTAA	AGACCTTCAG	AAATAATATA	1380
ATCAACAGTC	GCACGTTCAT	TCAAACTTGC	GGCAGGGTCT	TGGAAAATCA	TCTGGATTCG	1440
ACGAATCAAT	TCCGCAGCTT	GTTCACGCGA	TTTCTTACCA	TTAATCTTTT	GACCATCAAA	1500
AATGATATCT	CCATTACTTG	TATCATTTAG	ACCGATGATA	GCACGACCAA	TAGTTGTTTT	1560
CCCACTACCG	GACTCACCTA	CAAGCGAGAA	AGTTTCTCCC	TTGTTGATAA	AGAAGTTAGC	1620
ATTTTTAACC	GCGACAAACT	TCTTACTTCC	TTCACCGAAG	GAAATTTCTA	AATCTTTGAT	1680
TTCTACTAAT	TTTTCAGACA	TTTCCTTCCT	CCTAGTCAGC	CAGATGGGCA	AATCCCATTT	1740
TTTCACGGAT	CTTATCATGG	AGATTTGCAA	TCACAGCTGG	TTTTTCTACT	TTCGGAGCAT	1800
CCTCATGAAG	AAGCCAAGTT	TTAGCCCAAT	GTGTCTCTGA	TACTGAGAAT	TGAGGAGCTT	1860
TTTGTTCGAA	GTCAATCTGC	ATTGCGTAGT	CAGAACGCAA	GGCAAAAGCA	TCCCCTTTCA	1920
GGTCAGTATA	AAGTGACGGA	GGTGTTCCTG	GGATTGAGTA	AAGATCCCCT	TTATCATCAG	1980
CAAGCTGAGG	CAAGCTAGAC	AAGAGACTCC	ATGTATATGG	ATGGCGAGGG	TCATAGAAGA	2040
CTTCCTCAAC	CGTTCCATAC	TCAACGATTT	CTCCTGCATA	CATAACCGCT	ACCTTATCCG	2100
CAATACTTGC	CACCACACCA	AGGTCGTGGG	TAATAAAGAT	TGTTGTGAAA	TGATACTCGT	2160
TTTGTAAAGA	TTTTAGCAAA	TCAATAATCT	GAGCTTGAAT	AGTTACATCC	AAGGCAGTTG	2220
TTGGCTCATC	ACAGATCAAG	ACATCAGGTC	GGCAGGCAAG	GGCAATAGCA	ATAACGATAC	2280
GTTGACGCAT	TCCTCCAGAA	TATTGGAATG	GGTATTCATT	AAAACGTCTA	TCTGCGTCTG	2340
GAATGCCAAC	CTTATTCATG	TAGTCAATGG	CCAATTCTTT	CGCTTCTTTA	GCTGTTT1TC	2400
CTTGGTGTTT	TACAATAACT	TCTGTAATCT	GACTACCAAT	TGTTTTAATG	GGGTCCAAAC	2460
TAGTCATTGG	GTCCTGGAAG	ATAGTCGCAA	TCTTAGCACC	ACGAATTTGT	TCCCAATCCT	2520
TGTGAGAAGA	TAAAGCTGTC	AAGTCCTGAC	CACGGTAGTC	AATACTACCT	TGGGCAATAC	2580
GACCATTTTC	TTCGAGCATA	CCTGTGAAGG	TCTTTGTCAA	AACAGATTTA	CCTGATCCTG	2640
ACTCACCTAC	CAAGGCTAAT	ACTTCTCCTT	CGACTAGTTC	AAGGGAAACG	CCGCGAATGG	2700
CTGTCAATAC	TTTGTCACGA	ACGTCAAATT	CCACGACAAT	ATCGCGAGCA	GTCAAAATTA	2760
CATTTTTTC	TTTTGTCATT	тстастсета	TCTATGTGTA	CGTGGATCAC	TAGCATCCGC	2820

TAAGTT	ГТGA	CCAACTACG	A AAAGGGACA	A GGATACCAAC	ACAAGGGTT	TCAATGGAAT	288
CCAGAA	CAAG	TAAGCATTG	TTGTTACGT	TTGTGAATA	TCCGAAATC	AACGACCCAA	294
ACTTGGG	CACT	GTAATCGGTA	ATCCAAGAC	GAAGAAAGAG	AAGAAGGCT	CGTATGAGAT	300
AAAGCTI	rgga	AGCATTTGAC	TCATGGTTG1	CACAATAACA	GATACCAATT	GAGGCATGAT	3060
ATTTTTC	GCA	ACAATCTTCA	AGGTTGGTGT	TCCCAAAGTA	CGTGACGCCA	AGTTGTATTC	3120
CAAGTCA	CGA	TAGCGCAAGA	TTTGCACACO	GATCATGAAG	GCAATACCAA	TCCATGTTGT	3190
TACGCTC	ATG	GCAAAAATCA	GATTCCAGAA	TCCAGCTCCG	ATTGAGTAAG	TCAAGACAAT	3240
AACAATO	:AAA	AGAGGTGGGA	TGTTTGAGAT	GACGTTGTAA	ACTTCCATCA	TGACACGGTC	3300
AACTGAT	TTT	GAAATACCCC	AAATACCACO	GACAAAAACA	CCGATAACCA	AGTTAATCAC	3360
TGTCGCA	ATC	ACAGAAATGA	GGATGGAGTT	ACGAGCTCCG	AACCAGACAC	CGTCAAAGAG	3420
CGATTTA	ccc	TTACTGTCAG	TACCGAACCA	ATGCTCCGCA	TTTGGCTTGA	TATAACGAAC	3480
ACTAAAG	TCG	TTTACCTTGC	TGACATCATT	GAAATCAAAC	TTAGAAAACA	TTGGGTAGAT	3540
GAAACTT	ATC	AAAATGATGG	CTACCAAGAT	TCCCAACATG	ACTACAGTTG	ATTTTTTCTT	3600
CATAAAT	TGT	TTAAACACTG	ATTTCCAGTA	AGAATATGCT	GGCGCATCAA	TAGTTTCAGA	3660
GGCAAAA	TCG	TCACGTTTTA	CAAACTGAAA	TTTTTCTTTA	TCGATTGTAG	ACATTATTTG	3720
CCTCCTT	тст	CAGTCAATTT	AATACGTGGG	TCAATAATAG	TCATCCAAAT	ATCTCCCAAA	3780
AGACGTG	AGA	AGATAGAAAT	ACATGTAAAG	ATGAAGACAA	GACCAACGAC	CATAGAGTTA	3840
TTAGATG	CIT	TTACAGAGTC	AATCAACATT	TTACCCATAC	CTGGGAAGGC	GAAGACTGTT	3900
<b>ICAGTAA</b>	GGG	TTGCACCACC	GATAACCCCA	ATAATGGCAG	CAGGAATTCC	TGAAACCAGC	3960
GGAACCA	TGG	CATTTTTAAA	GATGTGTTTG	TTTGAAATTT	CTTTTTCAGA	CAAACCTTTT	4020
GCACGAG	CGA	AACGAACAAA	GTCTTGAGAT	TGCAAGTCAA	TCATGTAACG	ACGAATCCAA	.4080
ATGGCTG'	TAC	CAGGAGCACC	CAACAAACCA	AGGATGACTG	CTGGTAAAAC	GTAAGAACGC	4140
CAATCTC	CAG	CTCCCAAGAT	AGGGAATGAA	TCTGGAAGGG	CAATAGATGA	TCCAATCAAT	4200
GAACGA'	TGT	AAACCAAGGC	AATCGTTGGA	AGAGCAAGCA	AGAAGGTCAA	AGCCCCTGTT	4260
GAGAGGC	TAT	CAATCCAAGT	GTTCTTGAAA	CGAGCCATGG	CTGAACCAAG	TGGCACGGCA	4320
AGAGCAT	AGG	CAAGAACCAA	ACCAATCAAA	CCAGTAATAG	CAGAGCTGAC	AATCATAGAT	4380
GATATTO	GGT	AATTACTTTC	AGTCGCTGTA	TAAGGATCAT	CTTTCCCATA	GCTAGCTACT	4440
CACGAGA	AGT	CAGCCTGACT	AGGTGACTTG	TAGGTTCTTG	AGTAAATATT	TACAGAAGAC	4500
TTTTCT	PAC	CTGTTGGGAA	CTGAACTTGG	GCAGTTTTGG	TTTGTCCTTG	ACCTTGAGTA	4560

ATAACCTGAA	GAACTGGTGT	ATTAGCATAG	754 GTTGGGTAAG	AGTCACCTAA	ATTCAAGTTC	4620
ACAAAGTTTT	GATGAACAAA	TGGGAACTGA	CTGTTAAAGT	ACAAGAGAT <u>A</u>	TTTATGTTTA	4680
GTTCCTGAAC	CGACCAATGA	CCATCCGATA	GCTGGATCAT	TTTCAAAACG	AAGGTAGCGT	4740
TTCAAGTCTG	GATTTTCAGG	GTCTTGGATT	TTATTTGTAT	GGTCAATGTC	AATCAAGTTA	4800
GCATAGAAGT	GAAAAACACG	TTCAAAAATT	GGAATTTCAC	GAGTAGCATA	GAATTGACCA	4860
CTTTCAGTAA	ATTCTCCCAA	AGTCCAACCA	TGACCTAATT	GATTGATGTA	CTTTTCATAA	4920
ATAGCTTTAT	TGGTCGCATT	TGCTTCTACT	GTTACAGAAG	AATCCATGCT	ACTTGCCTTT	4980
TCTTGCAACT	CTTTAGTATC	GTAATACTCA	ATGTAGCCCA	TACGCTCAAA	CACAGTATTT	5040
TCATAGTTAT	CACGTTTATC	AGCCGTTGTC	GCAATTTTAT	TATACTTAGG	ATCCTGCTTG	5100
AAAATCAATT	TTCGAGGAAC	CAAGGTATAG	ATAATCGTGT	AGGTCAAAGT	CGTTACTAAG	5160
AAAATCGAAA	CCAATGACCG	CAAAACACGC	ATAAAAATAT	ATTTTTCAT	ATTATTTCCT	5220
TTAAAAATCC	CAAAAGAACC	TTCTCCTCAT	GGAGAGAAAG	TTCTATTAGA	AATTATTTAC	5280
TTCACATGAC	TTGCCAATTC	TTTTTGAGCT	TTCTCATTTG	ATTCAGCTTT	TTCTTTCAAC	5340
CATTTTTCAC	GAGCTTTTTC	ATACTCTTCC	TTAGTCACCA	CTTTATCTTG	TGATTTCAAA	5400
TATTTGAAGT	AAACATCTGA	CCCCTTAGAG	CCTGTTTGCG	CAGAAGCTCC	AGTAAATGGA	5460
ACAATTCGTG	AAAGCACTGG	TGCTGCACCA	GAAGAAGÇCA	TAGCAGGAAT	AAAGAGTGAA	5520
CTATCTGTCA	ACCATGCTTG	AGCCGCTGCA	TATTTTTCAT	AACGGACATT	CAAGTCGCTT	5580
GTCTCTCTGG	CAGCTTCATC	AACTAATTTA	TCGTATTCTT	TCAAACCAAC	TTGAACTACT	5640
GAAGGCTAT	TTGGATTATC	AAATCCTAAA	TATGTTTTTG	TAGTTTCACT	GCTAGTTGTT	5700
TTTAAAATAT	CCAGGTAAGT	AGATGGGTCT	TGATAGTCTG	GCCCCCATGA	AACTCCTCCT	5760
GATACATCCC	AATCCTCAGA	TGAAGCATTG	GCAGCATAGT	AAGTAATATT	AAGGAATTCA	5820
TCACTTGTCA	TTTGTTGAAT	ATCAACAACG	ACATTTTCAA	CACCAAGAAC	TGTTTCTACA	5880
GATTGTTTAA	AGGACTGAAT	ACGAGATATG	TAGTTTTTTG	ATGCTTGGTC	TACTGGAACG	5940
TCCAGATGAA	TAGGAAACTG	AACGCCGTCT	GCTTCTAAAG	CTTTCTTAGC	TTTCGCAAAC	6000
TCTGCCTTGG	CCTTGTCAGC	ATTGAATAAA	CCATCCTGCC	CATCAGCTAA	ATTCACACCT	6060
TTCCACTCAT	CACCATAAGO	AGGAAGTTGA	GCAGCGACTA	AATCACCAAA	GGTCTTCTCA	6120
CCAGCTGAAA	CAAAGTCTGG	TTTTACAAAT	AAATTACGAA	CTGCTAAAGC	TGCTCCATCT	6180
TTACCATTGA	TTTGAGCTGA	GTAAGCTGAG	CGATCAAGAG	CAAAATTCAA	GGCTTGACGG	6240
AAATCTTTGT	TAAGCAATGC	CTTCTTAGTA	GCTACTTTCT	CTGAATCTGI	AGTTTTAGAA	6300
GTATAGTTGT	AACTTTGGCC	ATCAATATT	ACACCCAGAC	CAGCAATCC	AGAGCCTGAT	6360

TGTGTGTAAT AGATATTGTC CTTGTAT	PCT TCTGCAACCT TAGAATAGTT GGAGCTGGTA	6420
GGGTAAAGAC GGGCATAACT ATAAGCT	CCA CTAGTGAAGT TACGCTCTAG CGACTCCTGA	6480
TCTGATCCAT CATAGTAAGC TAGATTG	ATA GTATCTAGGT GGACATTTTC TTTATCCCAA	6540
TATTGCTCAT TTTTTACAAA CTCTACAG	GAA GATTTTGCAG TCAACCCTTT CAACAAGAAT	6600
GGACCATTAT AAAGCAAGGA TGTCGGA	PCT GTTGGTTTAG CAAAATCGCT TCCTTTTGAT	6660
GTTTCGAATT CTTCATTCAG AGGCCAG	AAA ATAGAATAGG TCAACTTAGA GTTCCAGAAC	6720
GGTTCAGGCT GGTTCAAAGT GTATTGT	AAC GTATAATCAT CAACCGCCTT GACACCAACT	6780
GTTGAAAAAT CTGTTGAAGT TCCTGATA	AGA TAATCTGCCA AGCCTTTAAC CGAATTTTCA	6840
GCTAAATACA TAGCTTCTGA TTTTTTAT	PCT GCTGCGTGTT TTAAACCGTT CACGAAATCT	6900
TTAGCCGTCA CCTCTGCATA TTCTTCTC	CCA TCAGAGGTAA ACCATTTAAC CCCTTTACGA	6960
ATCTTATAAG TGTAGGTCAA ACCATCCT	TTA GAGACTTCCC AATCCTCTGC AACTGCAGGA	7020
GCAAGATTAC CGTAATTATC GTTAGTGA	NAT AAACCATCAA TCCCATTTGA AGTCACTACT	7080
GTTGTACTAT TTTTACTTGA AATCAGG1	AG TCCAAGGTTT CTGGGTCTGC TGTATAAACA	7140
TAGCCATAAG CTTTAGGGGC TGATGAAT	CA GATGATTTTG AAGAACTGCA TGCTGCAAGT	7200
ACACCTGCTG CTAATAAAAC AAGACCTC	GCT GTAGCAAATA CACGATTTTT TTTCATTTTC	7260
TACTCCTCTG TTTATGTGAA TTATAGAT	TG ACAACCATTA TATCACATTA TCCATTAAAA	7320
ATCAAACAAA TTTTCAGAAT ATTTAGGO	TT GTTGGCACAA ATTTTTCATT TTTTTTGAAT	7380
ATATGATTCA AATTGTCGTT CGAAGTGT	CA AAGACTACAG TGAAAATAGG AAATTTGACG	7440
CAGAAACTTT GGAGTTTAGG AAGACATA	CA GTAAAATGAA ATACGGACGG AACAATGTGA	7500
TTTTGGAATT CAAATTAAAT TATAACAA	TA TTGTAGAAGT ATCATTCTAG TATTCAAGAT	7560
TCAGTTTACT ATGTCTTTTC ACACCAAC	CT TATCCCGAAT TCAATTACTT TTGTGATTTA	7620
CATATATAGA TTAAGACTAT CTTTTATA	CT TTAAAATTTC TCGCTACCTT ATCCACTATA	7680
TGCTCCTCGC TATCACGTTT CTATTCAT	AG CCTACGATTT CACTATTGCT TTCTCTGACA	7740
ATTCTTATTT CCTGCGTCAG ACTTAAAA	CG ATCTATCCCC AGACCATTTT AATCCGCTAC	7800
CTCACGATAG TCAGGCTTGG GGAGCGCT	AT TGTATTCACC GGTAGTGGAG CCCTACAGAG	7860
GACTTACACC TCAGATGCAC GACATGCC	CA TCGTATAAAA AATCTCCTAC CCAAGGTAGA	7920
AGATTTCAAA CTTATAAAAC TTAATCCC	TC ATGTCCGATA CCAACATTCG ATGCTCCAAT	7980
GGAATACTGC ACATAACTAG CAAGAAAA	TA AAGCCTGACT GAATCCAGAA GAGAGCCAAG	8040
TCAAAAATTC CGTGCACAGC AACCACTG	TA AGGAAAGATA GATAAAGGCC GATAATCGGA	8100

756	•	
CGTTTCCCCG ACTCCTGACT CATATCCATC ATCAAGCGAA CAGGAGCAA		8160
ACTAATAAAA TAGTCCCCAC AATTCCGTAA CTCAGAATCG TATCAATAT	A AAGACTGTGG	8220
GCATGTTCAT GATAAGGAGC ATGTATCCGA GGATAAGAGT TCATATAGG	T CAATGGCCCT	8280
TCACCCCAAA AAGGATTTTG CTTAAACAAG GCCATCCCAG CATCCCAGA	T AGAAATGCGT	8340
TCTTCCATAG AAGAGTCTAA AGTACCCATT CGAACTCCCA AATCACTAG	AAAGAGGAAA	8400
CTCAAACCAA TCGCGAAGAC CCCAATACTA AGCCAAAAGG CCTTCCAGT	T TTTAATAGTC	8460
GTAAAGAGAT AGATAATTGC TCCAGCGATA ATAGCAGGAA AGGCAGTTC	G ATTTTGAGTA	8520
AAGTTCAAAC CAAAGAGATT AACAAAGCCT GCAATCACAC AGAATACTT	TT CAACCAATTC	8580
AACTTGGTCG TTGTAAACAG ATAGAAAGCA ATCATAATAC AGAAACAAC	CA AATAATTCCA	8640
TAATAATTAG GATTAAAGAA GGTCACTTCT GCCCGGTTCT GATGCCACA	AC CTGCATATTG	8700
GGTGAAAGAA AAGCATAGTT AAATTTCTTC ACAATTTGGA AATGTTCTA	AA ACTGGCAAAA	8760
GCAGCTGACA AGACACTACC AAACAAGACA AACTGCAAAA TCAATCGAA	AA GAATTTATGG	8820
GATAAAATCG ACTGATAGTG CAAAAAGAAA ATAGTAAATA GAAACATTG	CC TACTGAAGCC	8880
ACAAGACCCA TCCAATTTTG TGCAAGAATG GATATAACAG TACTATAGG	CT AAGAAAAAGA	8940
AGCAGCATCG GATGCTCCCC CATTTTCTGA AGAATACTTT TCATGTCTC	CC TGTAAAAATC	9000
AAACTGATAA TATATAAACA GAGTACAACT ACAAAAAGAT AAAAGGGT	AA AAAGATACTC	9060
AGGATAATTC CCAATAAAAT CAGCTCTTTA CTAGACAACC CCTTCAGC	TT TTCAATAAAG	9120
CCTATTGATT TCAAAATGAA TCCTTTCTCT CCAAATCAGC TGATTCAG	AT AATAGTAAGC	9180
TATCCTATAT TGTACCACTT TTTTAGCAAT TTGAAAACAA AGGAAACG	TT TTCCAAAATA	9240
AAAACCCTAT TTTATCCACC ATATCAAGGC TTCAAAATGA TACTTCAA	CT CCATTCTCAA	9300
TTACCCGATA AGTCTGATTT TGCAAATCAA TTTCTACTAC TGCTGTTA	CG GACTTATCTT	9360
TATTTTGACG TTTGATTACA ATGCTGTGAG CTGTTGGTGT CTCTATCT	CA GTAGTCCCTT	9420
CTAGATCAAA GGCTTCTGAA CGGTTACGGA AAGAAAATAG ATTGAGAA	GG GCCTTCACAA	9480
CAGGTCGTTG CACTTCTTTT GCTATTTCCT CGTTGCTATA GTAATGAC	GA TTAATATTTC	9540
GACCTTCTTT AGTTTCTTCT AATAATTTCA AGTCATTCTT GCCTGCTA	AT AGACCCACAT	9600
AGTAAATCTG AGGAATACCT GGGGCAAAAG CTTGAATTAG ACGAGCGA	GA AAATACTTGA	9660
CATCATCATC TCCAAGCGCT GAATAGTAGG TTGAATTGAT TTGGTAGA	TA TCTAAGTTGT	9720
TATACTCGGC ACTAGAGTAC TTACGTTTGA CATTGGCTCC AACCTTAT	PAG AGTTCATTTG	9780
AAGCATAGTC AATCTCCTCA TCGGTCAGGA TATCCTTGAC ATCTACTA	ACT CCAATCCCAT	9840
CATGGGTATC TAGCGTCGTA AATTGCTTCA TCGGGCTCAT CTTTAACC	CAC TTAGCCAAAC	9900

GCTCTGTTC	T GGAACTGTA	A AGAGTATAA	A GTGTCACCA1	T TGGAAGAGC	А АААТСАТААА	9960
CATAGTAAT	C ATGGTCTGC	r attttaaac	GAATCGAAT	GTGTTCATG	A ATCTCAGGTA	10020
AAAGCTCTG	r cccatactc	A GCAGCGATA	CTCGAACTT	GTCCAATAA	A TCCCAAATAT	10080
CTGGTTCCAC	C AAAGAAATC	TTAGTATCC	ATTTCTTCAC	TGCATAAGC	A AAGGCATCTA	10140
GACGAATCA	A ATCACACCC	TTACTTGCC#	AGTGCTGAA1	GGTCTTACGG	S ATAAATTCCA	10200
TAGTTACTT	TTTGGTCAC	TCAAGATCA	TCTGCTCCTC	ACCAAAGGT/	TTCCACAAAT	10260
GTTCCACTG	ACCATCTTC	AACACAATCT	CTTGCTTTGG	TGCACGATCO	TTACGCTTGT	10320
AAATTAAATO	TACATCAGAC	TGTGTCGGAC	GGTTTTCTGG	CCAAAACTT	TCCCAGTTTA	10380
AAAAGAGAG	TTTAAATTCA	CTGGCTTCAT	GTTTTTCTTG	ATAGTCCTTA	TAATACTTGG	10440
ATTGACGAGA	AATATGATTA	ATCATAAAAT	CAAACATAAG	ATAATATTTC	TCACCTAAAC	10500
GCTTCACATO	CTCCCAATCA	CCAAAAGCTG	AGTCCACTTC	GTCGTAGTCA	ACTGGCGCAA	10560
ATCCACGATO	AACTGTTGAT	GGGAAAAATG	GTAAAAGGTG	AACTCCTCCA	ATAGCATCTC	10620
CAAAATGCTC	TTCCAAATTA	TCATATAAGT	CTTTAAGATT	ATTTCCAAGG	CTATCAGAAT	10680
AGGTAATCAA	CATGGTTTTA	TTTTGAATTG	GCATCATTAC	TCTCCTTTTT	CTAATTGAAG	10740
CCAAGTCTCA	TATGATCTGG	CTTCATAAAT	AAAATTCATT	TTAAATCTCT	ATTTATCATC	10800
AAACTCGTAC	TAATATAGAC	TGTGATAAAC	AAAGTACTAC	TTTCTTGTTT	TCTGCATAGA	10860
ATTATCAACA	AGCTAAACTC	TTCCTCTGTG	TCAAAGACTA	TAGATTCCAT	GAGCTCTTCT	10920
TATACTCTTC	GAAAATCTCT	TCAAACCACG	TCAGCTTCAC	CTTGCCGTAG	GTATGGTTAC	10980
TGACTTCGTC	AGTTTCATCC	ACAACCTCAA	AACAGTGTTT	TGAGCAACCT	GCGGCTAGCT	11040
TCCTAGTTTG	CTCTTTGATT	TTCATTGAGT	ATTACTTCAC	TGCCCCGTTG	CTCATTCCTG	11100
AAATGATATG	GCGTTGGAAG	AAGAGATAGA	CAATGGTGAT	ACTGATAATG	CCGACCACGT	11160
AAGAGGCAAA	GCTTGGTCCG	TAGTCGTTGA	AATATTGGCC	TGCGTAGTTG	TATTGGAACA	11220
AAGGCAGAGT	CCACATTTTG	GAATCCCGGT	TCAAGACAAG	GAGTGGCAAC	ATGAAGTCAT	11280
TCCAGAACCA	AAGGGCATTG	ATGATCATGG	TTGTCGCATG	CATCGGTTTC	ATCATTGGGA	11340
AGATGATGCG	GAAATAGGTT	GTAAATTGAT	TAGCCCCATC	GATCTCTGCT	GCTTCATCCA	11400
GACTTTCTGG	AATCGAGATT	TTGATATAGC	CAACATAGAG	AAAGAGGGTC	TGTGGAATCG	11460
CATAGGTCAA	GTAGAGCAAG	ATCAAACCAA	AGGTATTAGC	CAAACCGAGT	TTACTCATCA	11520
TAACCGTAAT	CGGAATCATG	ATGACTTGGA	AAGGTACGAA	GATTCCGAGG	ATTAAGAGGG	11580
TATACATGAT	GGTAAAGGCT	TTTCTTTTAC	TCATATTGCG	AGCGATGGAG	TAGGCTGCCA	11640

			758			
TAGGGATAAA	GATCATTACT	GCAAGTAAAG	ACAAGACAGT	GATGACGACA	GAGTTCCAAT	11700
AATAGCCTCC	AATCCCATCA	GCTAAGAGAC	GGCTAAAGTT	GTCCCATGTG	AAGTTGGTTG	11760
GAAAGCCAAA	GAAATTATCT	ACAATATCCT	TAGTGGGTTT	GAAGGAACTA	AAGAGGGTAG	11820
CAAGGAGCGG	CACTAAAATC	AGAACCGATC	CTAGAATCAA	TAGAATGTAT	TTGCCAATCA	11880
GGGCTTTTCT	TTCATCTTGT	TTCATCATGC	TTCTCCTCTT	AAATTTCAAA	TTTCTTAGAT	11940
ACTCTCAATT	GGATGATCGA	AATCACTACA	attaagaaga	ACAAGATTAC	GGCAATGGCA	12000
TTGGCATAAC	CGAATTGGTT	GTTTTTAAAG	GCATAGTTAT	AAACCAAGAG	CCCAAGTGAG	12060
GTTGTGGCAT	TGTTTGGACC	ACCACCGGTC	ATGGCAAAGA	CTTGGTCAAA	GGCAGTCAGC	12120
CCACCTTTTA	GGGCTAGGAT	AAAGACCATA	GAGACACTTG	GTAGCAAGTA	AGGCAATTCA	12180
ATGTTCCAGA	AAACTTGCTT	GCTAGTCGCA	CCATCAATCC	TTGCTGCCTC	TGTAATCTCA	12240
GTTGGAATAG	ATTGCAAACC	AGCTAGGAAG	ATGATGATGG	GCATAGCCAC	CCCTTGCCAA	12300
AGAAGGACAA	AGACAGCCGC	AAAGATTGCT	CCCCACTTAG	TCCCTAAAAG	ACTGGTTTGG	12360
AAAAATTCAA	TATGAAGGC	ATTTCCAATC	GCTGGAAGAC	CGTAGTTGAA	GACTTGCTTG	12420
AAGATCAAAG	CCACTGTCAA	ACCAGATAAA	ACAGCTGGGA	AGAAGAACCA	AGCACGGAAG	12480
AAGGTTTGGC	CTTTGATTTT	AGAATTCAAG	ACACGCGCAA	TGAAGATCCC	GAGTGCAATC	12540
TCACCAACCA	CCATGGCAAT	CGCAATGATT	GCGGTAAAGC	CAATCGCATT	CATGAATTTT	12600
GGATCCATGA	AGAGGAGCTT	AAAGTTGTTT	AAGCCAACAA	ATTTGTAGTT	ATAAGTCAAT	12660
CCTGTCCAGT	TGGTAAAACT	GTAAAAGGCT	CCTTGAAACA	TCGGCACATA	GAAGAAAATT	12720
GCTTGTAACA	AGAGGGGGAT	GACCACAAAA	GCCCATGCCC	AATATTTTTG	TAATACTTTT	12780
TTCATAGTCT	CTCTACTCCT	AATCCACATC	CGCTTTCATC	GGGTTAAAGA	AGGCATTCAA	12840
ATCATTGACC	ATGCCTTGTT	TATCACCGGT	CAAGACATAG	TTCATGGTCA	AGGTATGGAA	12900
GTCTGCTTCA	CTGGTCCAGT	ATTGTTGCAA	CCAGACCAAG	TGACGATCCG	TAAAGGCATA	12960
TTCGGTCATA	CCAGCAAGCG	GTGAATCTTC	TCCTGCTTGT	TTGACCCCTT	CGATCGCTGT	13020
TGGAGATCCG	TCCACATCGT	AGTATTTTTG	CATGACTTCT	GGACGGGTCA	TATATTCCAC	13080
AAAGGCATTG	GCTTCTTTTG	GATGTTTGGT	GGTGGCTGAG	ATAGACCATG	CCAAGTCTCC	13140
CGCACCAACG	GTTAAGCTTT	GTCCTTTTTC	TTTTCCTGGA	ATCATGAAGG	TCCCAATCTT	13200
AAAGTTCGGT	TTTTGTTCAT	TAATCGCTGT	GATCGCCCAA	GACCCATTTG	GTGTCATGAG	13260
GACATCCCCA	CGTGCGAAGG	CTCCGATAAC	ATCGGTATAG	CCAGCACCTT	CCCAGTTCTT	13320
TTGCTTAGAT	CCATTGATGC	GAAGGATGTO	CATGACCTTG	ATATCATCTT	TCATAATCGG	13380
ATCCGACAAT	TTAATGGCAT	TTGGTTGAGA	ATAACGAAGG	TATTGATTTG	сттсттттсс	13440

TCCACCTGTT	GCTGTCGCAA	AGGCTAATTG	ATTGTAACCA	TTGAGTGTCC	AAGCATCTGC	13500
ACCTGCAATT	CCAAATGGTG	TTTGTCCTTT	AGCAACGATA	TCTTTGACTA	ACTGTTCAAA	13560
TTCATCCCAG	GTTTCAGGAA	CCTTCAAGCC	CAGTTCTTCG	AATTTATCTT	TGTTGTAGTA	13620
AATTCCATAA	GCATTAGCTG	TAAAAGGAAC	GTTGTAAACT	TTTTCGTTTA	CAGCATATTT	13680
TTCAGCGTAG	CCATTTTTCA	CGCGTTTCAG	GTAGTCTTTG	TTGCTCAAAT	CTTCAAAAAC	13740
ACCTGCTTTT	GCCCATTCTT	GCAGTTCGAT	GGACTGTGGG	TAAATATTGA	CCACATCAGG	13800
CACATCTCCT	GCGAGAACGC	GTGTCTTCAA	TACTTCACCA	GCATTTGGTA	CATTGACGAC	13860
TTTGACCTTG	ATCTTAGGGT	TTTCCTTCTC	AAAATCACGA	GTGATTTCTT	CCAAGGTTTT	13920
GGTCATTTCT	TTTTTCTGGT	TGAAATACTC	GATGGTCACT	GTGCCATCCG	CAGATTTACC	13980
ATAGTTGGAG	CAAGCGCCGA	GCCCAAACAA	AGCTAAACCT	GTAGTTGCAA	GAAGTCCGAT	14040
TTTTTATAC	CATTCCATTA	GAAAGCCTCC	TTTATAAATT	TATACACCCT	TATTGAACTG	14100
CACCCCAAAA	GTTAGACAGA	ATAAATCTAA	CTTTTGGGGT	CAGTACATAT	CATAGTTTTC	14160
тааааатата	CTGTCTACTC	AAAAAATCTC	CTTGGGATAA	GATAACAGTT	AAGCCCGCAT	14220
ACATTAGTTC	TGCACCTGAG	TAAACTTCGC	CATTTTCCTG	TAATTTATAT	AGTCCCTCTT	14280
CATCCAAATC	TTTTAATTTT	AAAGTTGTTT	CCATGGTCTC	TACAACAGAT	AAAACGCGAA	14340
CGTAGGTTAC	AATCGTTTGA	TTTCCGTAAT	TAAATTGTAC	AGCTGCTTCA	TTGGATACAG	14400
TATCAGGATT	AATTAGTCTA	TACTGCTGTC	CTAACTGAAC	TACTGGTCGT	AATTCTTTAT	14460
ACAAGTTCAC	CTGATTAGCA	ATCGTAGCTT	TCTCTTCATC	TGATAAATTT	GTCAAATCAA	14520
GTTCATAGCC	CAAATTTCCC	ATCATTGCTA	CAAGGCCACG	TGTTTCTAAT	GGTGTCATTC	14580
GTCCCATCTG	ATGATTCGGT	ACTGCTGACA	CATGAGCCCC	CATAGAAATG	GTTGGATAGA	14640
GATAGGATGA	ACCGTATTGA	ATTGGTAAAC	GTGCAATGGC	ATCAGTATTA	TCACTAGCCC	14700
AGACTTGTGG	GAAATAGCGC	ATCATACCAA	GATCATTTCG	TCCACCACCA	CCAGAGCAGG	14760
ACTCAAAGAG	AATATGGCTG	TGCTTCTCTG	TCAGATAAGA	AACGAGTTCA	TAAAGCCCCA	14820
GCATGTACTG	ATGAGATTGC	ATCTGTGTCT	CTAGATAAGT	TAATCCATTC	CCTAGCTTAG	14880
TGATATTGCG	GTTCATATCC	CATTTAATGT	AATCAATATC	ATGATAAAAT	AGGAGTTGAT	14940
CTAAGACACT	TTTCAAGTAT	TCTACTACCT	GAGGATTGGC	AAGATTAAGT	ACTAATTGAT	15000
TCCGAGAATA	AGTATGCTCA	TAGCCAGGAA	CCTGAATAGC	CCAGTCAGGA	TGTTGACGAT	15060
ACAAATCACT	ATCTACAGAA	ATCATTTCGG	GTTCTAACCA	AAGTCCAAAC	TGCAAACCTC	15120
TTTCATGGAT	AGCTGAAATC	AGACTTTCTA	GACTTCCACC	CAGTTTTTCC	ŢCATTAACAA	15180

			760			
CCCAATCACC	TAAAGCACGA	TTATCATCAA	AACGATTGCC	AAACCAACCA	TCATCTAATA	15240
CAAAAAGTTC	AATGCCAACT	TTCTTAGCTT	CATCTGCTAA	CTCTAACAGT	TTTTCTCTCT	15300
GAAAGTCAAA	GTAAGTAGCT	TCCCAGTTAT	TGATTAGAAT	TGGACGTTCT	TTTTTAGAAA	15360
ATTCACTTAG	CATAATGTGC	TTCAGTACAA	AATTCTGACT	TTCATGACTA	ATACCAGTTA	15420
ATCCCTGATC	TGAATGAGTC	ACTAAAGCTA	CCGGTGTTTC	AAAGTATTCC	TCAGGAGCTA	15480
ACTTCCAAGA	AAAGTTTTCT	GGATTAATGC	CAATAGCCAC	CCGAACTTCA	TTCAATTGAT	15540
TTTTTTGAAC	AAAAGCTTCA	AAGTTGCCAC	TATACATTAG	TTGAATAGCA	AACACATTCC	15600
CAGCATCCTC	TGTGACTCCT	TGTTCGCATA	GTAGAAGAGC	TGGTGTTTGA	GCATGACCAG	15660
AAGCACCTCG	GTTTGAACTA	ATCGAAAAGA	TTCCTTGTTC	TACCTGTTGA	CGTCTAACAG	15720
TCTTTTCACG	AGCATAAGCA	CCCTGCAGAG	TTACTATTTC	GTAATCTGCA	GCTGGAAAAT	15780
CAGCCATAAA	AGAAAAATCT	TTATGGATGA	CAACTTCCTG	ATTACTATTA	TTATCTAATT	15840
TACTGTAGCT	AGCAATAGTC	GCATCATTAT	TAAAAGTAGT	ATAATACAAA	GTCAGACTAA	15900
GTTGAGCCTT	AGAATCTTCT	AACATTAAGA	CAAGAGTCTC	TGTATCGTCC	ATGCTATGTG	15960
GAGAAGGTAA	GCCCTGTGGA	CCATTCTGAC	CTTTTAAAAT	CTTTGCTTCT	ACAAATCGAA	16020
AGTCTGTTAC	TTCAGTTACA	CTATGCTGAA	CCTGTATGGT	TGGTTTCCTA	AAATCTCCTA	16080
AGCCATGTTG	TCCAAAAATC	TGTCGCTGAG	TATCTAAACT	AAAGGTTCGA	TTAGTAGCCG	16140
TTGGATTTCC	TGAAAAGGCA	TGGTCTCGTT	CATAAACACT	ATTGGAACCT	TTATAGTTCT	16200
TAATAGTCTT	TCCTAAATGT	TTCAAAAGTA	AGTAGCCATT	TCGATTTTCA	ATAATCAAAC	16260
TTAGATTTTT	ACTCTCAACA	TAAAATAGAT	TATTCTCTAT	CCTAACTCCC	ATTTACTTCA	16320
CCTCATCACT	TTATTGATTA	TATTTTATCA	CCTGAAATCG	CTTTCCAAAA	TAGAAAAATG	16380
TCTCAAGAAT	ATGGTAAAAT	GTTÄGGTAGG	AGGTAGCACA	TGTTAGTTTT	TTCAGAATAC	16440
CAGACTGGAA	CAATCGACCT	TGCCCTAAGC	TTTTATGGAT	ATGAGGAATG	CACACCTAAT	16500
TACTCTTTTG	GTCCAGCCAT	TCGTGATACA	TACGTTCTAC	ATTACATTAC	TAAAGGACHA	16560
GGAAAATTTC	ATTACAAGGG	TAAAATTGTT	GATTTAAAAG	AAGGAGATTT	CTTTCTATTA	6620ء
AAACCAGAGG	AACTAACCTT	TTATCAAGCA	GATAGTAAAG	AACCTTGGGC	CTACTACTGG	16680
TTAGGAATCA	CTGGAGGGAA	AGCCCCTGAT	TATTTTGCTC	TTTCCCAAAT	TTCTGATCAA	16740
TCCTATCTCA	TCCAATCTGA	AACTTGTCAT	ACCCAGACTA	CTGCAAAACT	CATCTCAGAC	16800
ATTGTCCGCT	TCGCTCAGAT	TACAAAATCA	AGTGAATTAG	CTCAACTCCA	TATCATGGGA	16860
CAACTTCATO	AACTGATGTT	TCATCTGGGA	ACTATTGCTC	CCAATCAGAA	AAAAAAGAAT	16920
ATTTCATCA	CCCACCAACT	CTATCTTGA	TGCAAACGAT	TAATTGATAC	CCACTATCCT	16980

CAATCACTTA CAATTCAAG	A TTTAGCAAAA	GAACTATCCG	TTCACAGAAG	CTACTTATCA	17040
AGCGTATTCA AAGAATTTA	A TACCTTATCA	CCCAAAGAAT	ACCTACTCTA	CGTTCGAATG	17100
CACCGAGCTA GACAACTTC	T CGAAAATACC	CAAGAGTCCA	TCAAGGTAAT	TGCATACTCG	17160
GTAGGTTTTT CAGATCCAC	T CCATTTTTCG	AAAGCTTATA	AACAATACTT	TAATCAGACT	17220
CCAAGTCATA CAAGAAAAG	A ATACTCTCAA	TACCAACTAG	TAAGAAAGGC	AACATTATGA	17280
AATCCTACCA AGCTGTCTA	C CAAATCCTAT	CTAAAGAAAC	CGACTATATC	AGCGGAGAAA	17340
AAATCGCAGA AAAACTATC	C CTAAGCCGAA	CAGCAATTTG	GAAAGCCATC	AAGCGACTAG	17400
AACAAGAAGG CATTGAAAT	T GATAGTATCA	AAAATAGAGG	ATATAAACTG	ATGAATGGTG	17460
ACCTTATTCT TCCAGAGAT	T CTAGAAGAAA	ATCTTCCAAT	TAAAGTCAGC	TTTAAACCCG	17520
AAACAAAATC AACACAACT	A GATGCAAAAG	AAGCAATTGA	TTTAGGCCAT	GAAGCAAATA	17580
CCCTCTATCT AGCTTCCT	T CAAACAGCAG	GCCGAGGCCG	TTTTCAACGT	TCCTTCTACT	17640
CACCACAAGG TGGTATTT	T ATGACACTCC	ATCTTAAACC	AAATCTCCCC	TATGACAAAT	17700
TACCATCCTA CACACTACT	T GTAGCTGGAG	CTGTCTACAA	AGCCATTAAG	AACCTAACTT	17760
TAATAGATGT CGACATAA	A TGGGTCAATO	ATATCTATCT	AAACAATCAT	AAAATTGGAG	17820
GAATCCTTAC TGAAGCAA	G ACCTCTGTAG	AAACTGGCTT	AGTCACAGAT	ATCATTATTG	17880
GAGTAGGTAT CAATTTCAG	T ATTAAAGACT	TCCCTCAGGA	ATTAAAAGAA	AAAGCTGCCA	17940
GCTTATTTAA AGCTACAG	CT CCTATAACA	GGAATGAATT	GATCATAGAA	ATCTGGCGTG	18000
CTTTCTTCGA AACACCAG	CA GAAGAGCTAT	TATACCTATA	CAAAAAACAC	TCATTCATTC	18060
TAGGAAAAGA AGTCACTT	TC ACACTAGAGO	AAAAAGACTA	CAAGGGACTT	GCTAAAGACA	18120
TCTCAGAAAA TGGAAAAC	TT TTAGTTCAA	r grgataacgo	AAAAGAAAT	TGGCTAAATA	18180
GTGGCGAAAT TTCTCTCA	AT AGTTGGAAG	r aaaataacac	AATTATAAT	TAAACGATAT	18240
AAAAATAACT TCAGATTA	GT AATTCAATT	A AGTTTTACGO	ATCTGAAGT	TTATTGGCTC	18300
TAAAAATAAA AAAGAGAG	TT ACAGACTCT	C ATTAAAACGC	G AGAATAAGG	ATTCGAACCC	18360
TTGCGCCAGT TACCCGAC	CT AACGATTTA	G CAAACCGTCC	TCTTCAGCC	r cttgagtaat	18420
TCTCCAATTA ATGGGCAC	GA GTGGACTCG	A ACCACCGAC	TCACGCTTA	r CAGGCGTGCG	18480
CTCTAACCAC CTGAGCTA	CG CGCCCAAGT	T AAAAAACTTO	GTAATTTGA	A CAAAGTTCAA	18540
AGCGGGTGAC GAGAATCG	AA CTCGCGACA	A CAGCTTGGA	A GGCTGTAGT	T TTACCACTAA	18600
ACTACACCCG CATAAATA	CT ATCAATAAA	A TGGCGCGAG	A CGGAATCGA	A CCGCCGACAC	18660
ATGGAGCTTC AATCCATT	GC TCTACCAAC	T GAGCTACCG	A GCCTTATTG	C GGGAGCAGGA	18720

			762			
TTTGAACCTA	CGACCTTCGG	GTTATGAGCC		CCGAGCTGCT	CCATCCCGCG	18780
TTAATAATAT	AAAAGGAGGA	TGTGGGATTC	GAACCCACGC	ACGCTTTTAC	ACGCCTGACG	18840
GTTTTCAAGA	CCGTTCCCTT	CAGCCGGACT	TGGGTAATCC	TCCAATATTC	AAATGGACCT	18900
TGTAGGACTT	GAACCTACGA	CCACTCGGTT	ATGAGCCGAG	AGCTCTAACC	AGCTGAGCTA	18960
AAGGTCCGAC	AAGATCATTA	TAGCGGCGAA	GGGGATCGAA	CCCCCGACCT	CCCGGGTATG	19020
AACCGGACGC	TCTAGCCAGC	TGAGCTACAC	CGCCATGAAT	CGGGAAGACA	GGATTCGAAC	19080
CTGCGACACC	TTGGTCCCAA	ACCAAGTACT	CTACCAAGCT	GAGCTACTTC	CCGAGTTAAA	19140
TAGAAAAATG	CACCCTAGAG	GAGTCGAACC	TCTAACCGCC	TGATTCGTAG	TCAGGTACTC	19200
TATCCAGTTG	AGCTAAGGGT	GCTCCATATT	ATGCCGAGGA	CCGGAATCGA	ACCGGTACGA	19260
TCGTTACCAA	TCGCAGGATT	TTAAGTCCTG	TGCGTCTGCC	AGTTCCGCCA	CCCCGGCCTC	19320
TCTAAGCGAA	CGACGGGATT	CGAACCCGCG	ACCCCCACCT	TGGCAAGGTG	GTGTTCTACC	19380
ACTGAACTAC	GTTCGCACTG	TTTTCTTCTA	TCTAAAAATG	CCGGCTACAT	GACTTGAACA	19440
CGCGACCCTC	TGATTACAAA	TCAGATGCTC	TACCAACTGA	GCTAAGCCGG	CTCATTTGTT	19500
ATATCTTAAT	GCGGGTTAAG	GGACTTGAAC	CCCCACGCCG	TTAAGCGCCA	GATCCTAAAT	19560
CTGGTGCGTC	TGCCAATTCC	GCCAAACCCG	CATATATGAC	CCGTACTGGG	CTCGAACCAG	19620
TGACCCATTG	ATTAAAAGTC	AATTGCTCTA	CCAACTGAGC	TAACGAGTCT	AAAATAACTT	19680
GCGTTACCTT	AAACGGTCCG	ACGGAATCGA	CCCGGTAC			19718

### (2) INFORMATION FOR SEQ ID NO: 100:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4117 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:

CCGTGGAAAA	GTCTGGATAG	TGAATGGTCT	TCACACAATG	ACCTGAAAGA	AGCCTGAGAA	60
TAATTATGGA	GAGTAGCATT	CTGAGAGGTG	TTAGCAGAAC	CATATGACAG	AGCTGTTTGA	120
AGAGGGAATA	TTGAGGAGAA	AAATCCTGAG	CCTACCAGTT	GGAGTTGGAA	AGAGCTGACT	180
GTTAGATCAT	GGTTTATTAT	CCACAACCTG	TGGATAACTT	TGTGAATAAG	AGAAGTTGCT	240
AAAGAAGGAG	ATATATAACG	ATGAAGAAAA	TCAAACCGCA	TGGACCGTTA	CCAAGTCAGA	300
CTCAGCTAGC	TTATCTGGGA	GATGAACTAG	CAGCTTTTAT	CCACTTCGGT	CCTAATACCT	360
TTTATGACCA	AGAATGGGGG	ACTGGACAGG	AGGATCCTGA	GCGCTTTAAC	CCGAGTCAGT	420

rggatgcgcg	TGAGTGGGTT	CGTGTGCTCA	AGGAAACGGG	CTTCAAAAAG	TTGATTTTGG	480
rggtcaagca	CCACGATGGC	TTTGTCCTTT	ATCCGACAGC	TCACACAGAT	TATTCGGTTA	540
AGGTCAGTCC	TTGGAGGAGA	GGAAAGGGCG	ACTTGCTCCT	TGAAGTATCC	CAAGCTGCCA	600
CAGAGTTTGA	TATGGATATG	GGGTCTACC	TGTCACCGTG	GGATGCCCAT	AGTCCCCTCT	660
ATCATGTGGA	CCGAGAAGCG	GACTACAATG	CCTATTATCT	GGCTCAGTTG	AAGGAAATCT	720
PATCAAATCC	TAACTATGGG	AATGCTGGTA	AGTTCGCTGA	GGTTTGGATG	GATGGTGCCA	780
GAGGAGAGGG	CGCGCAAAAG	GTTAATTATG	AATTTGAAAA	ATGGTTTGAA	ACCATTCGTG	840
ACCTGCAGGG	CGATTGCTTG	ATTTTTTCAA	CAGAAGGCAC	CAGTATCCGC	TGGATTGGCA	900
ATGAACGAGG	GTATGCAGGT	GATCCACTGT	GGCAAAAGGT	GAATCCTGAT	AAACTAGGAA	960
CAGAAGCAGA	GCTGAACTAT	CTTCAGCACG	GGGATCCCTC	GGGCACGATT	TTTTCAATCG	1020
GAGAGGCAGA	TGTTTCCATC	CGTCCAGGCT	GGTTCTACCA	TGAGGATCAG	GATCCTAAGT	1080
CTCTCGAGGA	GTTGGTCGAA	ATCTACTTTC	ACTCAGTAGG	GCGAGGAACT	CCACTCTTGC	1140
TTAATATTCC	GCCGAATCAA	GCTGGGCTCT	TTGATGCAAA	GGATATTGAA	CGACTTTATG	1200
AATTTGCGAC	CTATCGCAAT	GAGCTCTATA	AAGAAGATTT	GGCTCTGGGA	GCTGAGGTAT	1260
CTGGTCCAGC	TCTTTCCGCA	GACTTTGCTT	GTCGCCATTT	GACAGACGGC	CTTGAGACCA	1320
GCTCTTGGGC	AAGCGATGCA	GACTTGCCCA	TCCAGTTAGA	ACTCGACTTA	GGTTCTCCTA	1380
AAACTTTTGA	TGTAATTGAG	TTAAGAGAAG	ATTTGAAGCT	AGGGCAACGA	ATCGCTGCTT	1440
TTCATGTGCA	AGTAGAGGTG	GATGGTGTCT	GGCAGGAGTT	TGGTTCGGGT	CATACTGTTG	1500
GTTACAAACG	TCTCTTACGA	GGAGCAGTTG	TTGAGGCACA	GAAGATACGT	GTAGTCATTA	1560
CAGAATCACA	GGCTTTGCCT	TTGTTGACCA	AGATTTCCCT	TTATAAAACT	CCTGGATTAT	1620
CAAAAAAAGA	AGTTGTTCAG	GAACTAGCAT	TTGCAGAAAA	AAGCCTAGCT	GTGGCAAAGG	1680
GAGAAAATGC	CTATTTTACA	GTTAAGCGCA	GAGAATGTAG	TGGTCCTTTA	GAAGCTAAGA	1740
TTTCGATTCA	ACCGGGGACA	GGTGTCCATG	GTGTCGCCTA	TCAGGATGAG	ATTCAAGTCC	1800
TTGCGTTTCA	AACTGGTGAG	ACTGAAAAA	GTCTGACGCT	ACCAACCTTG	TATTTCGCAG	1860
GAGATAAAAC	CTTGGATTTC	TATCTGAACC	TAACGGTGGA	TGGTCAGCTT	GTGGATCAAC	1920
TTCAAGTCCA	AGTTTCATAA	AAGAAGAACC	TTTGCGCGAT	GCAAAGGTTC	TTTTGGTTAT	1980
TAGTGACTTG	GTAACCAGCT	GAGGGTGAAA	GTTAGTTGTT	CAGCTTTTAA	GAGGTCTTGG	2040
TGTTGAATAG	TTGATACGAG	TGTTTTGTCC	AGTCGGCATT	CTTTGACAAA	GTTAAAATGG	2100
TTGTGGTTTT	GTTTAGTATG	GATATCCAGO	CATTTATCTT	CTTTAGCGAC	GTAGACTCGT	2160

			/64			
AGATGGTCAA	AGAGAGGGAT	TCCGAGGTCA	TAGCTTGGTT	TTCCTGGACA	GGTTGGATAA	222
AATCCGAGAG	CTGACCAGAT	GTACCAAGCA	GAGAGACTAC	CATTGTCTTC	ATCTCCAGGA	228
TAGGCTTCCC	AACTTGGGTG	AAAAGCTTTC	TGACGGAGCG	TCTTGATAAG	AAGGCAGTG	234
TAGTCAGGGT	AATCGCTGTA	ACGGAAGAGA	TAAGGAATGT	GGAAACTAGG	CTGGTTGGAA	240
ATGGCTATTT	GTCCAAAAGG	AGCAGTAGCC	ATCTCGCTCA	TTTCGTGAAT	TTCGTAACCA	246
TAGCCTGTTG	TTTCAAAGAG	GGGAGCATCT	TGACAGGCTT	TCAAAAGATA	GTTGCTAAAG	252
GTTTCTTTTC	CACCCATCAG	TTGGATTAAG	CCAGGGATGT	CGTGGAGAAC	GCCTAAAGTA	258
GCTTGAATGG	CAGAGCATTC	AGCGTAGTCT	CGCCCCCAAC	TATAAGGAGA	GAAGTCAGGG	264
TGAAAGTTTC	CTTGATTGTC	TCGTGCTCGC	ATGTAACCTG	TCTCAGCGTC	AAATAGCTGG	270
CGGTAATTTT	GTGAAGCAGC	CTTGTAGGTT	TCAGCGATTT	CTATGTTCTC	TAGTTTTTTG	276
GCACAGCTGG	CGATACAAAA	GTCACTATAG	GCATAGTCTA	GAGTATGGCT	AACACTTTCG	282
TGGTGGTCGG	TAGAGAGGTA	ACCTAGTTCT	TGGTATTGGG	CTAGTCCGTG	GCGGCCATTG	288
ATGCCGAGAG	GGTCGGCTTT	GCTGGCTGTT	TCGAGCATGG	CTTGGAAGAG	TTCTCCTTCT	2940
AGGTCGGGGG	TCATGTCCTT	GCAGGCGCTA	TCTGCGATAA	TACCGTCTAA	AAGTGTACCT	3000
GGCATCATAC	CCCGTTCATC	TGGAGCCAGC	CATTTTGGAA	GGAAACCAGT	ATCGCGGTAG	306
CTATTGAGGA	AACCTTCTAA	AAAGCGTTGA	TAGTGCTCCG	GTATGATAAG	GGCAAAGAGG	3120
GGGAAGGTGG	TGCGGAAGGT	ATCCCAGAAA	CCATTGTTGC	TAAAGAGGAC	ACCAGGCTTG	318
ACAGTACCAG	TAGCCAGATC	CATGTGGATG	GCTTGCCCTG	ATTCATTAAT	CTCATAAAAA	3240
GTCTGTGGGA	AGAGGAAGAG	TCTGTAGAGG	CAGTGGTCAA	AGAAGGTTCG	GTCAGCCTCT	3300
CCTGTCTCTA	TAATGTCAAA	ACGATGGAGG	AGATTTTCCC	AATCCACTTG	GGCACTTGAT	3360
TTACAGCTAT	CAAAATCTTC	TTGAGGTAGA	TTGATTAGAG	CTTGAGAAGG	AGAGATGAAA	3420
GAAGTGGCTA	GTTGCATCTC	GGTTTGACTA	CTTGCTAAGT	CAATTCGCCA	GTCTCCAGCT	3480
TCTTGGCTGA	TAGCAAGAAT	ATCCGTGTTC	ATTTGCAGGG	CAGTGAACAT	CGTTAGCGAA	3540
TTTTTGTTAG	TTTCAGTTTT	ACCTTCTTGT	CGCAGGGCAA	GAGTCCGCTT	ATCTACTTGC	3600
TCTACTGTCA	GTTCATCTGC	TGCGTGAAGA	TAGAGGGAGA	GGGCTTTGCC	TTGCTTTTGA	3666
TTCAAACGAA	TAGAAGCACC	ATAGCAAGTC	GGTGTGAGCT	GGGTTTCAAT	CTGATAACGC	372
AGAGAAAAGA	GCTTCAAATA	GTGAGGCTGG	AAGCAAGCTT	TATCTATATC	ATAAGAAGAC	378
TGGCGGTGAA	AGAGGCTGTC	TCCCCCCAGT	TGACTGGTGA	CAGGTGTCAG	AAGGAGCCAA	384
GAGTAGTCCC	CAATCCAAGG	ACTGGGCTGG	TGAGTTAATC	GAATCCCCTG	AAAGATAGGC	390
AGATGTGGAT	CAAAAAACCA	AGATCCATCC	TGGTCACTGG	TCTGGGGCAC	AAAGTAATTC	3966

ATCCCAAAAG	GCACGCCTGT	GTATGGCAGG	GTATTTCCCC	GAGAAAAGGC	ATGCTTGTTG	4020
GTAGTTCCAA	AACGGGTATC	GATGGTATCA	AGTAGTGGTT	TCATAGTCTT	TCCTTTAGCT	4080
GTTTTTCTAC	ATTATATCAG	TAATAGAGGG	CCTTTAG			4117

#### (2) INFORMATION FOR SEQ ID NO: 101:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2727 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:

CTGGTTCAAT	TATTATTCAC	TCTAAGTAGT	CATATGTTCT	TTATTTATGT	GAGTTTTTAC	60
CTTTTAAAGG	ATCTTGTTAG	ATGGGAGAAG	GTTTTAAAAG	TGACAGATGA	TAATACAAGA	120
AAAGTTCGTT	TATTAGTAGC	CTTTTTTAGC	ATTGTCATAG	GCTACATCCT	GAGTTCTTTC	180
TTTATTAGCC	TGTATCATTT	GTGGCAAGAA	GCGCTTAGAG	GATTATTATG	AAATCAAGAG	240
TAAAGGAAAC	GAGTATGGAT	AAAATTGTGG	TTCAAGGTGG	CGATAATCGT	CTGGTAGGAA	300
GCGTGACGAT	CGAGGGAGCA	AAAAATGCAG	TCTTACCCTT	GTTGGCAGCG	ACTATTCTAG	360
CAAGTGAAGG	AAAGACCGTC	TTGCAGAATG	TTCCGATTTT	GTCGGATGTC	TTTATTATGA	420
ATCAGGTAGT	TGGTGGTTTG	AATGCCAAGG	TTGACTTTGA	TGAGGAAGCT	CATCTTGTCA	480
AGGTGGATGC	TACTGGCGAC	ATCACTGAGG	AAGCCCCTTA	CAAGTATGTC	AGCAAGATGC	540
GCGCCTCCAT	CGTTGTATTA	GGGCCAATCC	TTGCCCGTGT	GGGTCATGCC	AAGGTATCCA	600
TGCCAGGTGG	TTGTACGATT	GGTAGCCGTC	CTATTGATCT	TCATTTGAAA	GGTCTGGAAG	660
CTATGGGGGT	TAAGATTAGT	CAGACAGCTG	GTTACATCGA	AGCCAAGGCA	GAACGCTTGC	720
ATGGTGCTCA	TATCTATATG	GACTTTCCAA	GTGTTGGTGC	AACGCAGAAC	TTGATGATGG	780
CAGCGACTCT	GGCTGATGGG	GTGACAGTGA	TTGAGAATGC	TGCGCGTGAG	CCTGAGATTG	840
TTGACTTAGC	CATTCTCCTT	AATGAAATGG	GAGCCAAGGT	CAAAGGTGCT	GGTACAGAGA	900
CTATAACCAT	TACTGGTGTT	GAGAAACTTC	ATGGTACGAC	TCACAATGTA	GTCCAAGACC	960
GTATCGAAGC	AGGAACCTTT	ATGGTAGCTG	CTGCCATGAC	TGGTGGTGAT	GTCTTGATTC	1020
GAGACGCTGT	CTGGGAGCAC	AACCGTCCCT	TGATTGCCAA	GTTACTTGAA	ATGGGTGTTG	1080
AAGTAATTGA	AGAAGACGAA	GGAATTCGTG	TTCGTTCTCA	ACTAGAAAAT	CTAAAAGCTG	1140
TTCATGTGAA	AACCTTGCCC	CACCCAGGAT	TTCCAACAGA	TATGCAGGCT	CAATTTACAG	1200

766	
CCTTGATGAC AGTTGCAAAA GGCGAATCAA CCATGGTGGA GACAGTTTTC GAAAATCGT	
TCCAACACCT AGAAGAGATG CGCCGCATGG GCTTGCATTC TGAGATTATC CGTGATACAG	3 1320
CTCGTATTGT TGGTGGACAG CCTTTGCAGG GAGCAGAAGT TCTTTCAACT GACCTTCGTG	1380
CCAGTGCGGC CTTGATTTTG ACAGGTTTGG TAGCACAGGG AGAAACTGTG GTCGGTAAAT	1440
TGGTTCACTT GGATAGAGGT TACTACGGTT TCCATGAGAA GTTGGCGCAG CTAGGTGCTA	1500
AGATTCAGCG GATTGAGGCA AGTGATGAAG ATGAATAAGA AATCAAGCTA CGTAGTCAAG	
CGTTTACTTT TAGTCATCAT AGTACTGATT TTAGGTACTC TGGCTCTAGG AATCGGTTTA	1620
ATGGTAGGTT ATGGAATCTT GGGCAAGGGT CAAGATCCAT GGGCTATCCT GTCTCCAGCA	1680
AAATGGCAGG AATTGATTCA TAAATTTACA GGAAATTAGG CTGGAGAACC AGCCTTTTTC	1740
TAAAGATAAG GAGAAATATG AACAAAAAA CAAGACAGAC ACTAATCGGA CTGCTAGTGT	1800
TATTGCTTTT GTCTACAGGG AGCTATTATA TCAAGCAGAT GCCGTCGGCA CCTAATAGTC	1860
CCAAAACCAA TCTTAGTCAG AAAAAACAAG CGTCTGAAGC TCCTAGTCAA GCATTGGCAG	1920
AGAGTGTCTT AACAGACGCA GTCAAGAGTC AAATAAAGGG GAGTCTGGAG TGGAATGGCT	1980
CAGGTGCTTT TATCGTCAAT GGTAATAAAA CAAATCTAGA TGCCAAGGTT TCAAGTAAGC	2040
CCTACGCTGA CAATAAAACA AAGACAGTGG GCAAGGAAAC TGTTCCAACC GTAGCTAATG	2100
CCCTCTTGTC TAAGGCCACT CGTCAGTACA AGAATCGTAA AGAAACTGGG AATGGTTCAA	2160
CTTCTTGGAC TCCTCCAGGT TGGCATCAGG TCAAGAATCT AAAGGGCTCT TATACCCATG	2220
CAGTCGATAG AGGTCATTTG TTAGGCTATG CCTTAATCGG TGGTTTGGAT GGTTTTGATG	2280
CCTCAACAAG CAATCCTAAA AACATTGCTG TTCAGACAGC CTGGGCAAAT CAGGCACAAG	2340
CCGAGTATTC GACTGGTCAA AACTACTATG AAAGCAAGGT GCGTAAAGCC TTGGACCAAA	2400
ACAAGCGTGT CCGTTACCGT GTAACCCTTT ACTACGCTTC AAACGAGGAT TTAGTTCCCT	2460
CAGCTTCACA GATTGAAGCC AAGTCTTCGG ATGGAGAATT GGAATTCAAT GTTCTAGTTC	2520
CCAATGTTCA AAAGGGACTT CAACTGGATT ACCGAACTGG AGAAGTAACT GTAACTCAGT	2580
AAAAGATACG CCTACACTCC TATGTCACTT ATGGATGTAG GAGTTCTTTT TACTAGTTTA	2640
AGCAGGACTA AGACAGGTAC TAAGACAAAA TAGCAACTTC TAAAACTAAC TTCCAGTTTT	2700
GGGAGAGAGA TGGAAGTTAC TTTGAGA	2727

# (2) INFORMATION FOR SEQ ID NO: 102:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 5717 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:

TTTTTTGTAC	ATTTAAGTGG	GGTGCAATTC	СТАААААТА	AAAAACAATT	TTTGAAAATT	60
ATGTTAGCAG	GAATTGCTTC	AAATTCGATT	ттатсастта	CAGGTTTACT	TGTTTTATTG	120
TTCACATCGT	ATAAATTGCT	TGGACTCTTA	TTTTTTATCA	TTAACTTAGG	TATGATTTTT	180
ATTAATTCAA	TTCCTTTTT	TCAGTATGAT	AGTGGTATTA	TTTTAAGATA	CTTGAATTCT	240
AACAATAATA	ACTTGAATTT	TCAATATATA	GTTCAACTTT	TAATAGCATT	TGTTATTATT	300
TATTTTCCTT	TGAGTCAACT	ATTACAGTTT	TTGACACCCA	ATATTATTGT	TCGTAGTATA	360
GGAGGGGTGG	TTGTTTCTAT	ACTGCTTTCT	ATATTATATA	TGATAGGAAG	GACGAAATAT	420
GTTCTACGTA	AATAGTTATG	TTTTTGCTTA	TAAAAAAGAA	GGTATAATGT	ATTTACGTGG	480
TCGGAGTATG	CGGGAAATAG	CTATAGAACC	TCAAATTTCG	CAAGAATTTA	TCAACGATCT	540
ATTTAATAGT	TGTAAGGAAC	TATTAGAGAT	AGAAGAAGTA	TTAGGCAGTA	AACTAACATT	600
TGAACTATAA	ATGAACAAAT	TTTAATTTCG	GATGAGATAG	ATATTGATAG	TAGATATTCT	660
AGAACTAAAG	GTTACTATTC	GTTATTTTAT	AATGAAGAGT	ATAATAAAAT	ACAGAATAAA	720
ACAGTATTAG	TATTAGGAGC	AGGAGTCTTA	GGATGTTATA	TATCTCTAAG	TCTAAGTATG	780
TATGGAGTGA	GGAAACTTAT	TGTCGCTGAT	TACGATATAA	TAGAACCATC	TAAATTTAAAT	840
AGGCAAATTC	TTTATACAGA	GTCGGATGTT	GGTAAGGAGA	AGATTAATGT	TCTTTCTGAA	900
AAAATACACA	AGTATAATTC	AGATGTTCAG	GTAGTACCTA	TTTCTATTAA	AGTTTCTTCA	960
GTAGAAGAAT	TAGAAAAAAT	TGTTGCGGAA	TATGGGAGTA	TAGATTTTAT	CGTTAAAGCA	1020
ATTGATACGC	CCATTGATAT	ТАТАААААТТ	GTCAATCAAT	TTGCTGTATC	GCATAAGATA	1080;
TCCTACATAT	CAGGAGGGTT	TAATGGATGC	TATCTTATTA	TTGATAATAT	ATATATCCCT	1140
ACCATCGGTT	CTTGCTTTGG	TTGTCGGAAT	ATAAACAAAG	АТАТАААТАА	GTACACTTTA	1200
TCTGATAAGA	CAAAGTGGCC	GACTACACCA	GAGATGCCTG	CTATTTTGGG	AGGGATAATG	1260
ACTAATTTAA	TAAATTAAAAT	ATTTCTGGGA	TGTTATAATG	AAATCCTAAT	AGATAACGCT	1320
TACGTTTATA	ATATGAGAAA	TCATGCTCTA	AGTCAAGAAA	AATATGTTCT	GGAAAACGGA	1380
GAATGTCCAA	TTTGTAAAAA	aataataag	TGAAAGATAA	CAATATTAGA	GCGAAAACAT	1440
TTATTCGTTC	AGTTTGTTTT	TGCTTATTAT	CAGGAGGAGT	AGCTTTTTTA	TCTGCTATTG	1500
GGCAGTTCAC	TGTTATAGAA	ACACAATTAA	TAGTATTGTT	CTTGGGTATT	ATTTTTGCTA	1560
PATATTATGC	TTACTACAAT	AAAAATATTC	AAACATCATT	GGAAAATATA	GTATGGCTTT	1620

			758			
TTTCATCGTT	TGAGATTTTA	TTTTTGCTTG	TTAATTTTAG	AACATTTATT	CAGTTACCAG	1680
TGGATATTTT	TATTGGTATG	ATAATATTTT	TAATGCTGTG	GATATTTATT	ATGTTAGGTA	1740
TAGTGTGTCT	TAGTTATTAT	ATAACTTTAT	TATTTAGCAA	GGAGGCTTAG	TATGTTTAAA	1800
AAAATAGGTA	TAATGAGCAT	TTGCATATAT	ATAATTATTT	TATACTGCTT	GAGAATGTAT	1860
CGTATTATCA	ATAATATTGA	AACAATCTTG	CTAACGGTTA	TATGCTTAAT	GTTATTGTTT	1920
TTTTTAAGAC	GTTTATTTGA	TAAAGATAAG	TAAATAGATG	TTAAGTAAAA	ATGTAGAATA	1980
TAAAGGAGGT	GCAATGAGTA	TGATTGAAGT	TAGCCATTTA	TCAAAAAGTT	TTGGTGATAA	2040
AATAGCTTTA	AATAATATAA	GCTTCACTGT	TAAAGAAGGT	TAGATTTTTG	GATTTTTAGA	2100
ACCATCTGGT	TCTGGAAAGA	CCACAACGAT	TAATATTCTG	ACTGGGCAGT	TCCTTGCCGA	2160
TAAAGGACAA	TCTATTATTT	TGGGACAAAA	ATCTCAAAAT	TTAACAAGCG	GTGAATTAAA	2220
GAGAATTGGA	TTGGTTAGCG	ATACAAGTGG	ATTTTATGAG	AAAATGTCTC	TGTATAACAA	2280
TCTTCTTTT	TATAGTAAAT	TTTATAATAT	TAGTAAATCA	CGTGTTGATA	ATTTGTTAAA	2340
GCGAGTAGGA	TTATATGATA	GTCGCAAGAT	GGTAGCAGGA	AAATTATCCA	CTGGAATGAG	2400
GCAACGAATG	CTTTTAGCAC	GAGCTCTTAT	CAACAACCCC	GCTGTACTCT	TTCTGGATGA	2460
ACCGACCTCA	GGTCTAGATC	CCACAACTTC	TCGAACAATT	CATGAGTTAA	TTTTAGAATT	2520
GAAAACAGCA	GGGACAACGA	TTTTCTAAC	GACTCATGAT	ATGAATGAAG	CAACTCTTTT	2580
ATGTGATTAT	GTTGCCTTAT	TAAATAAAGG	GAAATTAGTT	GAGCAAGGAG	CTCCTTCTGA	2640
ACTCATTCAA	AGATATAATA	AAGATAAAAA	GATTAAGGTT	ACAGATTATA	ATGGGAATCA	2700
GATAACTTTT	GATTTTACAT	CACTAGAACA	GGTATCTCAG	ACTGATCTGG	AAAATATTTT	2760
TTCAATTCAT	TCATGTGAGC	CTACTTTAGA	AGATATTTTT	ATCACATTAA	CAGGAGGAAA	2820
GCTAAATGCT	TAAACGGTTT	CTGGCTTTGG	TATGGTTGCG	TTGTCAAATC	ATCCTTTCCA	2880
ATAAGAGTAT	TTTATTGCAA	GTTTTAGTGC	CTTTTGCTTT	CACATATTTT	TATAAATATC	2940
TTATGGAAAC	ACAGGGGAAG	GTCAACGATC	AACAGGCATT	AGTTCTTTTG	ATGATGTGTT	3000
TACCTTTTTC	TTTTTCTTTG	GCTGTTGGAA	GTCCTATAAC	TATTATCTTG	TCTGAAGAAA	3060
AAGAAAAGTA	CAATTTACAA	ACTCTTCTGT	TGAGTGGTGT	TAAAGGCTCC	GAATACATTT	3120
TATCAACTAT	GTTTCTTCCT	TTTTTGCTAA	CTTTTGTGAT	TATGGGAACT	ACTCCTCTTA	3180
TTTTAGGAGT	TACAATTGTA	CATACTTTTA	ATTATATTAC	AATCGTTCTT	CTAACCTCTT	3240
TATCCATCAT	TTTATTCTAT	TTATTGATAG	GTTTAACCGC	GAAGAGCCAA	GTAGTAGCTC	3300
AGGTTATCAG	TCTTCCTGCT	ATGATTTTAG	TTGCTTTCTT	ACCGATGCTA	TCTGGTTTGG	3360
ATAAGACAGT	TGCGAAGATA	ACAGATTATA	GTTTTATGGG	ACTATTTACT	AAGTTTTTCA	3420

CAAAATGGGA GGAATTTTCA TGGAATAAAA CTCTAATTCC TAATCTAACA CTACTTATTT	3480
GGATTGTTCT TCTATTAACT TTAATTACGA TAACTATTAG GAAAAAGAAA ATTTCTTAAT	3540
TGAGTTATTT TAATGATTAT AAACACAAGT GGGAAGGAAA AAATGAACTG ATCTTTTTGA	3600
CAGCAATTCT ACAGAATAGT CTTATTGCTA TATTTTGATT TGAGTGTACG AAAAAAGAAA	3660
AATAACAATA GTGCTCATAC TAATTGCAGA AGTTTTGGGT GATAAGATAA	3720
GCAATAAAAA ATGCAACATT TTTAAATCTC CTCTATAAGT GCTTCAAAAA GTGCTTCAAA	3780
ACCTGTCTTG TAATCCAAGT ATTTTTGGGG ACGGTGATTA ATAAGCTAGC AAAGCATCAT	3840
TAAGGATTIT TICGGTAATT GITGCCAAAT CGGTTTAAGA AAATACTCAC GAAGAAGTCC	3900
ATTCGCATTC TCATTACTTC CCCTTTGCCA AGATGAATAG GCATCCGCAA AATAAAACAG	3960
AATTCCCATT TGTTCAATTA AAGGGTAACA AGCAAACTCT TTTTCTCTGT CCGAAGTGAA	4020
AGTCTTTAAC TATTCTTTTG GAAAGAGTCT TGTGAGGTGT TCAATAGCAG TCAACATGGA	4080
TTTAGCTGTT TTTACTTGAC AAGTGCTAGT AGAAATAATA GAATAGTAAA AAACCTTTAA	4140
AGCAGTCCAG AGAGGCAGCT AAGGTTAGAC GGTGAAAGGG TGGAGACTAC CCATTTTTCG	4200
TGGAACCTTG CTGTTGGCAG GTTCCTTTTT TCGTGGCTTC TGTTGGCCAG ACTCTCTCAC	4260
TAGTAAAGGT AAAAGGAGAA ACCTATGCGA GAACATCGTC CAATCATTGC TCTTGATTTT	4320
CCTAGTTTTG AGGCGGTCAA GGAATTTTTA GCTCTTTTCC CAGCAGAAGA AAGCCTTTAT	4380
CTCAAGGTAG GGATGGAGCT TTATTACGCA GCGGGGCCTG AGATTGTGTC CTACTTAAAA	4440
GGTTTGGGTC ATAGTGTCTT TTTGGATCTC AAACTTCATG ACATTCCTAA TACAGTCAAG	4500
TCAGCCATGA AGATCTTGTC TCAGCTTGGT GTCGATATGA CTAATGTCCA TGCGGCTGGT	4560
GGTGTAGAGA TGATGAAGGC GGCGCGTGAA GGTCTTGGGA GTCAAGCCAA ATTGATCGCT	4620
GTAACTCAGC TCACATCAAC GTCAGAAGCT CAGATGCAGG AGTTTCAAAA TATCCAAACC	4680
AGTCTGCAAG AGTCTGTGAT TCACTATGCC AAGAAGACAG CTGAAGCTGG CTTGGATGGT	4740
STTGTTTGCT CGGCTCAGGA AGTACAAGTC ATCAAGCAGG CTACCAATCC AGATTTTATC	4800
TGTCTGACAC CAGGGATTCG TCCAGCTGGT GTTGCAGTTG GAGATCAAAA ACGAGTCATG	4860
ACACCTGCTG ATGCCTATCA AATCGGCAGT GACTATATCG TAGTGGGACG TCCCATTACC	4920
CAAGCTGAGG ATCCTGTTGC AGCTTATCAT GCCATCAAGG ATGAATGGAC ACAGGACTGG	4980
NATTANAGAN CTAGATTAGA AANATANAAG GAGAATACCA TGACACTTGC TANAGATATC	5040
CTAGCCACC TCTTGAAAAT CCAAGCCGTT TACCTCAAAC CAGAGGAACC CTTCACTTGG	5100
CATCTGGTA TCAAGTCACC GATTTACACT GATAATCGTG TGACACTAGC CTATCCAGAA	.5160

			770			
ACTCGTACCC	TAATTGAAAA	TGGTTTTGTG	GAAGCTATCA	AAGAAGCCTT	TCCTGAAGTA	5220
GAAGTGATTG	CAGGAACTGC	AACAGCAGGG	ATTCCACACG	GAGCCATTAT	TGCTGATAAG	5280
ATGGACTTGC	CTTTTGCCTA	CATCCGTAGT	AAACCAAAAG	ACCACGGAGC	TGGTAATCAA	5340
ATCGAAGGTC	GCGTAGCTCA	AGGTCAAAAA	ATGGTAGTGG	TTGAAGACCT	TATTTCAACG	5400
GGTGGTTCAG	TTCTTGAAGC	TGTAGCAGCA	GCCAAGCGAG	AAGGAGCAGA	TGTACTTGGA	5460
GTTGTAGCGA	TTTTCAGCTA	CCAATTGCCA	AAAGCAGATA	AGAACTTTGC	AGATGCTGGT	5520
GTTAAACTTG	TGACGCTTTC	AAACTATAGC	GAGCTTATCC	ATCTAGCCCA	AGAAGAAGGT	5580
TACATCACGC	CAGAGGGCCT	TGATCTTCTA	AAACGCTTTA	AAGAAGACCA	AGAAAATTGG	5640
CAAGAAGGTT	AGGTCAGTAA	GATAAAGAGA	GACGAGGCTA	CCGAGTCTCT	TTTACCATTT	5700
TATTTAAAAT	ATGACAG					5717

#### (2) INFORMATION FOR SEQ ID NO: 103:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 5558 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

CCTGGACTTT CTAAAATGAA ATCTTGCGAC CTGGATCAAG CCCTTCATGA GCATTTTTCA 60 GAAGAAGAAT TAGCTGGTCA CTTTCATGTC CTTCTATGGA CTTTTTTTAC AATGGCATTG 120 CTATCACACC CAATACCTAT CTAAGCGCCT GGTTCGTAAA CTTTATTGCA GCTCTTCCTC 180 TAAATTTCCT AATTGTTGAA CCAATTGCCC GTTTTATACT AAGTTCTTTT CAGAAACCAT 240 TTACTGGGGA AGAAGTTGAA GATTTTCAAG ATGATGATGA AATCCCAACT ATTATCTAAG 300 CCAGTTCTGT AAACTACTAA TATTTGAAAT CCACTTCCTT TTAGGGTGCA ATGGTTATAA 360 ATGAATTTT GAGAGGATCA GAATGAAAAA ACTAGCAACC CTTCTTTTAC TGTCTACTGT 420 AGCCCTAGCT GGGTGTAGCA GCGTCCAACG CAGTCTGCGT GGTGATGATT ATGTTGATTC 480 CAGTCTTGCT GCTGAAGAA GTTCCAAAGT AGCTGCCCAA TCTGCCAAGG AGTTAAACGA 540 TGCTTTAACA AACGAAAACG CCAATTTCCC ACAACTATCT AAGGAAGTTG CTGAAGATGA 600 AGCCGAAGTG ATTTTCCACA CAAGCCAAGG TGATATTCGC ATTAAACTCT TCCCTAAACT 660 CGCTCCTCTA GCGGTTGAAA ATTTCCTCAC TCACGCCAAA GAAGGCTACT ATAACGGTAT 720 TACCTTCCAC CGTGTCATCG ATGGCTTTAT GGTCCAAACT GGAGATCCAA AAGGGGACGG 78C TACAGGTGGT CAGTCCATCT GGCATGACAA GGATAAGACT AAAGACAAAG GAACTGGTTT 840

CAAGAACGAG	ATTACTCCTT	ATTTGTATAA	CATCCGTGGT	GCTCTTGCTA	TGGCTAATAC	90
TGGTCAACCA	AACACCAATG	GCAGCCAGTT	CTTCATCAAC	CAAAACTCTA	CAGATACCTC	96
TTCTAAACTC	CCTACAAGCA	AGTATCCACA	GAAAATTATT	GAAGCCTACA	AAGAAGGTGG	1026
AAACCCTAGT	CTAGATGGCA	AACACCCAGT	CTTTGGTCAA	GTGATTGACG	GTATGGATGT	1086
TGTGGATAAG	ATTGCTAAGG	CCGAAAAAGA	TGAAAAAGAC	AAGCCAACTA	CTGCTATCAC	1140
AATCGACAGC	ATCGAAGTGG	TGAAAGACTA	CGATTTTAAA	TCTTAAAAAC	САААААААТА	1200
CAGTATCCAC	ATTCGGTACT	GTATTTCTTT	TACTCTCATT	CTTAAGTTAA	ATTATTAAAA	1260
TCCCATATTT	GGTCTATCCA	GCCTTCATAA	AAGTCTGGCT	CGTGGCAGAC	CATAAGGATA	1320
GATCCCCTAT	ATTCTTTGAG	AGCGCGTTTG	AGCTCATCCT	TTGCATCCAC	ATCCAAATGG	1380
TTGGTCGGCT	CGTCCAGCAC	TAAAACGTTG	TTTTCACGAT	TCATCAAGAG	ACAGAAACGA	1440
ACCTTGGCTT	GCTCTCCCCC	TGATAATACT	TGAATCTGGC	TTTÇAATATG	TTTGGTTGTC	1500
AAACCACAAC	GGGCAAGGGC	TGCACGGACT	TCTGCTTGAT	TAAGGGCAGG	AAAGGCATTC	1560
CAGACAGCTT	CAAGAGGAGT	TTGGCGATTA	CCGCCTTCTA	CTTCCTGCTC	AAAATAACCA	1620
AGTTCTAAAT	AATCTCCACG	CTCCACTTCC	CCAGCGATTG	GCGAGATAAT	GCCCAAGAGA	1680
CTCTTCAAGA	GAGTTGTTTT	TCCAATACCA	TTAGCACCAA	TAATCGCAAC	CTTTTGATTG	1740
CGTTCGAAGG	TAAGATTTAA	AGGCTTAGTA	AGAGGACGGT	CGTAACCAAT	TTGCAAGTTC	1800
TTGGCTTGGA	AGATAAAGCG	CCCTGGTGTA	CGAGCTGGTT	TGAAATCAAA	GGATGGTTTT	1860
GGTTTCTCAC	TTTGGAGTTC	GATAATATCC	ATCTTATCCA	ATTTCTTTTG	ACGAGACATA	1920
GCCATATTAC	GAGTTGCAAC	ACGGGCTTTA	TTACGAGCCA	CAAAGTCCTT	GAGGTCTGCA	1980
ATCTCTTTCT	GCTGGCGTTC	GTAGGCTGCC	TCTAGCTGAG	ATTTCTTCAT	AGCATAAACT	2040
TCTTGGAACT	GGTAGTAGTC	ACCAGAGTAA	CGCGTCAGCT	GTTGATTTTC	CACATGATAG	2100
ACAATATTAA	TAACGTCATT	GAGGAATGGA	ATATCGTGCG	AAATGAGAAC	AAAGGCATTC	2160
CATAGTTTT	GGAGATAGCG	CTTGAGCCAA	TCAATATGCT	CAGCATCCAA	GTAGTTGGTC	2220
GCTCGTCCA	ACAGCAAGAT	ATCAGGCTTT	TCAAGGAGAA	GTTTTGCCAA	AAGCACCTTG	2280
GTTCTTTGCC	CACCTGACAA	AGAAGTTACA	TCCGTATCCA	TGCCAAAGTC	CATAACACCA	2340
AGAGCACGCG	CTACTTCGTC	AATCTTAGCA	TCCAAGGTAT	AGAAATCACG	ACTCTCCAGA	2400
GGTCTTGAA	GTTCTCCTAC	TTCTTCCATG	AGAGCATCAA	CATCCGCGCC	GTCTTCAGCC	2460
ATTTTCATAT	AGAGGTCATT	GATACGAGCT	TCAGCTTTGA	AAAGCTCATC	AAAAGCCGTA	2520
GGAGAACAT	CÁCGCÁCCGA	CTGTCTTTCA	GCAAGGACAG	ACTCCTGATC	CAACTAACCA	2580

772	
GCCGTCACAT ATTTGGACCA CTCAACCTTT CCTTCATCTG GCAGCATTTT ACCAGTCACG	2640
ATACTCATAA AGGTTGATTT TCCTTCACCA TTGGCACCGA CCAGGCCGAT ATGTTCTCCC	2700
TTGAGGAGAC GGAAGGACAC ATCTTCAAAA ATTGCACGGT CACCAAAACC GTGACTCAGA	2760
TTTTTAACTT CTAAAATACT CATTTTAATT CCTTACCTTG TTTTTATGTA ATCGTTTATA	2820
AAGGAGCCAA GCCAGATAGC CACCCAAAGT GTTGGTCCAC AAATCATCAA TCTCAAAGAC	2880
GCGATTGAAA TCAAAGAAAA AGTCCAAGAT TAATTGCGTA CACTCGATTC CAAGACTCAC	2940
AAGAAAACTA AAAAGAAGGA CCTTTTTTGT TTTCCGCAAA TTTGGAAATA GATAAAGGAG	3000
TTGGAAAATC AGAGGAAAAA ACAAGAAGAC ATTGAGGATA TTTTGTAAAA AAATCCAACA	3060
TAATTGTCCA ATGTCACTCA CTTCGCCCAG TTTCCAGAGA GAATTGAAAG GAGTCAAAAG	3120
AAAAACCAGG CGTCCAAGAT GCTGAATACC TGGAGTTCCC ACTCCCACGG TAGATTGTTC	3180
TTGAGGAGTA AAGCAAAAAC AGACAATGCA AATGCTATAG AAAATGACTC CCCAGACCAA	3240
AATATGATTA TAAGTCTTCT TCATCATTAA GGATTTACCG CTGCGACTGC CTTCTGGCGG	3300
TCACGTTTCA TTGTGTTAGA GCGCAATTGT CCACAAGCTG CGTCAATATC TGTACCATGC	3360
TCTTGACGAA CCACACAGTT GACCCCTTTT TTCTTAAGCG TATCATAGAA AGCCAACACG	3420
CACTCTTTGG GACTACGGCT ATATTGGTCA TGCTCACTAA CTGGGTTATA AGGAATCAAG	3480
TITACATAAG ACAATITCTT GATGTTCTTG AGCAATTCAG TCAATTCCAA GGCTTGTTCT	3540
ACACCGTCGT TGACTTCATT AAGCATGATA TATTCAAAGG TTACACGACG GTTTGTTGTC	3600
TCAATGTAGT ATTCAATAGC AGCAAAGAGT TTTTCAATCG GAAAGGCACG GTTAATCTTC	3660
ATGATACTTG AACGAAGTTC ATTGTTAGGT GCGTGAAGAG ACACGGCAAG ATTGACCTGA	3720
ACCCCTTCAT CAGCAAAGTC ACGAATTTTA TGAGCCAAAC CTGAGGTTGA AACCGTGATG	3780
TGACGAGCAC CGATAGCCAT TCCTTTATCA TCATTGATAG TACGAAAGAA ATTCAAGACA	3840
TTGTTGTAAT TATCAAAGGG CTCACCGATT CCCATGACAA CGATATGGCT GATGCGTTCA	3900
TCCTGACCAC GCTCATCAAA GTATTTCTGA ACCAGCATGA TTTGCGCTAC GATTTCACCG	3960
TTATTGAGGT CACGTTGCTT CTTAATCAAA CCAGAGGCAC AGAAGGTACA ACCGATATTA	4020
CAGCCGACCT GAGTGGTCAC ACAGACAGAT AAACCATAGT GTTGACGCAT GAGTACAGTC	4080
TCAATTAACA TACCGTCGGG CAATTCAAAG AGATATTTGA CTGTACCATC AGCAGACTCT	4140
TGCACAATAC GTTGTTTCAA GGGATTGACC ACAAACTGGT CATTGAGCTT AGCAATCAAA	4200
TCCTTGGAAA GGTTGGTCAT TTCTTCAAAT GACTGCACAC GTTTACGGTA GAGCCATTCC	4260
CAGATTTGAT CTGCACGGAA TTTCTTTTCT CCCTGCTCCA ATACCCATTC CTGCATGGTT	
TGATGTACCA AACTATGAAT TGAGGGTTTC ATTTCTTCTC CTTATTCTCT ACTCACTTCT	4320
and the second s	4380

GACGAATGAC	AAAATGACGT	TGTCCCTTGT	CGTCTTTCTG	ACGACGTCTA	TTTTTCTTAT	4440
CTGCATTCGA	CTTTCGTTTA	GTTTGAGTCG	GTTTCTTTCC	TTTTCTAGAA	GGTGTTTCTT	4500
CTTCCGTCTT	ACGCATTTTC	TTGTCAAATG	ATGCTCGCTT	AGGGGCTTCA	TTTTCTAAGA	4560
CAAAATAGGC	ACAACCATAA	CTACAATACT	CTAAAAGGTA	GTCTTGTAAA	CGACTGATTT	4620
TTTCAAGTTT	TTCTTCTGTT	CGGTCATCCT	TGTAAAAACC	TCGTAGGCGA	AGCTGTTCGT	4680
TGCTCCAGTC	CCCCACGATA	TAATCAAACT	TGGTTAATAC	TTCTGAAAAA	CGCTGATTAA	4740
AAGTCGTCAC	ATCAAAGGCA	TCCTTGATAT	TTTCAACCAA	GGAAAAAGCT	ATCCCTTCCG	4800
TTTCGACCTT	GTCCCCGTGT	AAATGGAACT	CCGGACCAGG	AAACTTGTTA	TAGTTGTATA	4860
ATTCAGGTGC	AATTTCTTTT	CGCATAGATA	TCCTTTTTTC	ACGATTACTT	AATACTTTAT	4920
ГСТАССАТАА	TTTCTAGCAG	TTAGCACGTT	TCTCATAAAA	ATGAAAAAAG	TCTGACGATT	4980
PTGTCAGACC	AGAATCTTAT	AACCTAAAAA	GAGAAGAACA	ATTCTTCCCT	CCAACTATCA	5040
PTATTTAGCA	GCTGCGTACA	ATTCATCTAC	TTTATTCCAG	TTGATTACTG	AAAAGAAAGC	5100
TTTGATGTAG	TCAGGACGCA	CGTTGCGGTA	TTTCACGTAG	TAAGCATGTT	CCCAAACGTC	5160
CAAGCCCAAG	ATTGGTTTTT	TACCTTCTGA	GATTGGTGTG	TCTTGGTTTG	CTCTTGAAGT	5220
CACTTCAAGT	TTCCCTTCTT	TGTTGACAAC	CAACCATGCC	CAACCTGAAC	CAAAACGAGT	5280
CTTGCTGCT	GCAGTGAAGG	CTGCTTGGAA	TTCTTCAAAT	GAACCAAATG	TTGCATCGAT	5340
GCTGCTGCC	AGTTCTGCTG	AAGGAGCTGT	TTTCTCGGGA	GTCATCAATT	CCCAGAAAAG	5400
GCGTGGTTC	AAGTGTCCGC	CACCATTGTT	GATAAGTGCT	TGACGGATAT	CAGCTGGGAT	5460
GATTCTACA	TCAGCAAGCA	AGGCTTCAAG	GTCTTCACCG	ATTTCAGGGT	GTTTTTCTAA	5520
GCTGCATTG	GCATTGTTGA	CATAAGTTTG	ATGGTGTT			5558

#### (2) INFORMATION FOR SEQ ID NO: 104:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6735 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:

GGAATTGTAA ATATCATATT GTTTTTGCAC CCAAATATCG TCGTCAAATC ATTTATGGCA 60 GATACAAAGC TAGTATCGGA AGAATCATAC GTGACTTATG TGAGCGTAAG GGTGTAATAA 120 TCCATGAAGC GAATGCTTGT TCAGACCATA TTCACATGCT TATCAGTATT CCTCCGAAAC 180

774 TTAGTGTTTC GTCCTTTATG GGCTATTTAA AGGGCAAGAG CAGTTTGATG ATTTTTGATA 240 AGCATGCGAA TTTAAAATAC AAATATGGCA ATCGCAAGTT TTGGTGTAGA GGCTATTATG 300 TAGATACGGT AGGCCGTAAT CAGAAAGTGA TAGCTGAATA TATTCAGAAT CAATTACAAG 360 AAGACAGAGT AGCAGACCAG CTCACGTTAT TCGAGTCAGT AGATCCGTTT ACTGGCGAAA 420 TAAATAAGAG GAAGTAACTA AGGTGCTTTA GCACCTGCTC GGGAAAGTGG TGCGCGAGGA 480 AGCTATTTCG GTGGGCCTTT GGCCCTGGCC GGTAGAAGCG GCTTATAGCC GCAGAACAAA 540 CCACCAGTTC ACACTGGTGG TTTTGATTTA AAAAACTTGA TACATAAAAA TAAAAGTCTA 600 TATAAAGGAT GGTAAAATTC CTGTTGTCCG ATTTGGACAA TATCCTAAAT AGTTACAATA 660 TATGGTCTAT ACTITTCTT AGGAGAAAGC TAGATGTACA GACGTTTGAG AGATTTGAGG 720 GAGGATCATG ATCTGCCCCA AAAGCAAATA GCTACAATAC TTTCGTTTAC AAATTCAGCT 780 TATGCCAAAA TTGAACGGGG TGAGCATGCG TTGACGGCTG ATGTATTGGT TAAACTCTCA 840 GATTTCTATG ACGTCAGTAC AGACTATTTA TTGGGATTAA CTGATTTTCC TGATAAAATT 900 CGCTTTAGAA AATAATCTCC TCAATTTCAT AGAGTTTGAA AATGAGTGAG ATTTTTTATT 960 TGCCCTTTGA CAACTGAATA GCCTAAAATG GTACTTTCCT CATTTGTGGA GCAAATTTGA 1020 ATGGCTCGCC ATGATAAGAG CGATTTTAAA ATCATCAATA AAATAGAGCG ATACTTTATA 1080 TGCCATGATA CAAATGATAT ACAATGATAC TTCTGACCGT TCAGCCTGCC AACGTAAAAG 1140 AGCAGCAAGT GAAATTCTTA TGATGACTTC ATCAGTCATG CCACGTTGAA TGTGTGAGTT 1200 TGTTAGATAA ACGCAATTAA TCCTCAAAAG GTTCCCCGAA CCTTTTGAGT TCTACAGACG 1260 CATCACGTGG AGTGTGTAAG CTTGTTGCTA AAAGCGTAAA AACCTTGGAA CGAAAGGAAT 1320 AATAGACTTT CTGCGAAACA AAAATATAAT ACAATAAAAC TATGAATGAT GAAGCAAGTA 1380 AACAATTGAG CGATAGCCGT TTCAAGATCC TTGTAGGTGT TCAGCGCACG ACTTTTGAAG 1440 AGATGTTAGC TGTGTTAAAA ACAGCTTATC AACGTAAACG CGCAAAAGGT GGACGAAAAA 1500 GCAAATTAAG CCTAGACGAT CTCCTTATGG TAACTATTCA ATACATGCGA GAATAGAGCA 1560 CTTATGAACA AATTGCGGCT GATTTTGGCA TTCACGAAAG CAACTTAATC CGTCGGAGTC i.620 AATGGGTTGA AGCAACTCTT ATTCAAAATG GTTTTACGAT TTCAAATTCT GCCTTAATTC 1680 TGTAAAAACA GTAAAATTCG AAGGATTGTA AGGTAAGAGT TTTTTTCTTT CTGAAAAAAT 1740 GGTATAATAG CAATCAAAAC TAGAAAATAA AACGGAATTT GGAACAGATT TGTCTGTATC 1800 CTAGTAGAGT GGTGATACTA TGAAGATTAG TAAGAGGCAC TTATTAAATT ATTCCATCTT 1860 GATTCCCTAC TTGCTTTTAT CTATTTTGGG CTTGATTGTG GTCTATTCGA CCACCAGTGC 1920 TATTTAATT GAAGAAGGCA AGAGCGCCTT GCAGTTGGTT CGAAACCAAG GAATCTTTTG 1980

GATTGTTAGT	TTGATACTGA	TTGCCTTAAT	TTATAAATTG	AGACTAGATT	TTTTGAGAAA	2040
TGAGCGACTA	ATCATTTTAG	TTATATTAAT	AGAAATGCTT	TTATTGTTCT	TGGCTCGTTT	2100
TATTGGTATT	TCCGTAAACG	GGGCATACGG	TTGGATTTCG	GTTGCAGGAA	TAACTATTCA	2160
GCCAGCTGAG	TACTTAAAAA	TCATTATTAT	TTGGTATTTA	GCTCACCGAT	TCTCCAAACA	2220
GCAAGAAGAA	ATAGCTACTT	ATGATTTTCA	AGTTTTGACT	CAAAATCAAT	GGCTTCCCCG	2280
TGCTTTTAAT	GATTGGCGAT	TCGTTCTCCT	AGTTCTGATT	GGAAGTTTGG	GAATTTTCCC	2340
TGATTTAGGA	AATGCGACTA	TTTTAGTCTT	GGTTTCCTTG	ATTATGTATA	CAGTTAGTGG	2400
AATCGCTTAT	CGCTGGTTTT	CAACCATTCT	GGCGCTCGTA	TCTGCCGCTT	CTGTCTTTGT	2460
CTTGACCACT	ATCAGCCTAA	TCGGTGTTGA	GACCTTTTCA	AAAATTCCAG	TATTCGGCTA	2520
TGTAGCCAAG	CGCTTTAGTG	CCTTTTTTAA	TCCTTTTGCC	GATCGTGCTG	ATGCAGGTCA	2580
CCAGTTAGCT	AATTCTTATT	TTGCCATGGT	CAATGGCGGT	TGGTTTGGTC	TAGGTCTTGG	2640
AAACTCGATT	GAAAAACGAG	GTTATTTGCC	AGAAGCTCAT	ACAGACTTTG	TCTTTTCTAT	2700
CGTGATTGAA	GAATTTGGCT	TTGTTGGTGC	CAGTCTTATT	TTAGCTCTCT	TGTTTTTCAT	2760
GATTTTGCGG	ATTATCTTGG	TCGGTATCCG	AGCGGAGAAT	CCTTTCAATG	CCATGGTTGC	2820
ACTCGGTGTC	GGAGGGATGA	TGTTGGTTCA	GGTATTTGTC	AATATCGGAG	GGATTTCGGG	2880
CTTGATTCCA	TCTACAGGAG	TGACTTTCCC	CTTCTTATCC	CAGGGTGGAA	ATAGTCTTCT	2940
AGTCTTATCA	GTGGCAGTAG	CCTTTGTCTT	AAATATTGAT	GCCAGTGAAA	AACGCGCTAA	3000
ATTGTACCGA	GAATTGGAAA	ATCAACCAAT	GAACCTTCTG	TTGAAGTAGG	ATAAAGAAAG	3060
GATAGTTTAT	GTCTCTTCAA	AAATTAGAAA	ATTATAGTAA	TAAAAGTGTT	GTGCAAGAAG	3120
AAGTCTTGAT	TCTAACAGAA	TTACTGGAAG	АТАТТАСТАЛ	AAATATGCTT	GCCCCAGAGA	3180
CCTTTGAAAA	AATAATACAG	TTGAAAGAAT	TATCAACGCA	GGAAGATTAT	CAAGGTCTAA	32,40
ACCGTCTAGT	GACTAGCTTA	TCAAATGATG	AAATGGTCTA	TATTTCACGC	TATTTCTCTA	3300
TCTTGCCTCT	TTTGATTAAT	ATTTCAGAGG	ATGTGGATTT	AGCTTATGAA	ATCAATCATC	3360
TATAATAAAA	TGATCAGGAC	TATTTAGGTA	AATTATCTAC	AACGATTAAA	TTGGTAGCAG	3420
AAAAGGAAAA	TGCCGTTGAG	ATCCTAGAAC	ACTTGAATGT	TGTCCCTGTT	TTGACAGCCC	3480
ATCCAACACA	AGTGCAACGC	AAAAGTATGT	TGGATTTAAC	AAATCATATT	CATAGTCTTT	3540
TGCGTAAATA	CCGTGATGTT	AAGTTGGGGT	TGATCAATAA	AGATAAATGG	TACAATGATT	3600
TGCGTCGTTA	CATCGAAATT	ATCATGCAGA	CAGACATGAT	TCGTGAGAAA	AAATTAAAAG	3660
TGACTAACGA	AATCACGAAT	GCTATGGAAT	ATTATAACAG	CTCCTTTTTG	AAAGCTGTAC	3720

776 CTCATTTGAC GACGGAGTAT AAGCGCTTAG CGCAAGCGCA TGGTCTGAAT TTAAAACAGG 3780 CTAAACCAAT CACCATGGGT ATGTGGATAG GTGGTGACCG TGATGGAAAT CCATTTGTTA 3840 CAGCAAAGAC CITGAAGCAG TCTGCACTCA CTCAGTGTGA AGTCATCATG AACTACTATG 3900 ATAAAAAGAT TTACCAACTT TATCGTGAAT TTTCTCTTTC AACTAGCATT GTCAACGTCA 3960 GCAAGCAAGT CAGAGAAATG GCTCGTCAAT CCAAGGATAA CTCGATTTAC CGCGAAAAAG 4020 AGCTTTACCG TCGTGCCTTG TTTGATATTC AATCAAAAAT TCAGGCAACT AAAACCTATC 4080 TGATTGAGGA TGAAGAAGTT GGGACTCGTT ATGAAACCGC CAATGATTTC TACAAGGATT 4140 TGATTGCCAT TCGAGATTCT CTACTAGAAA ATAAGGGCGA GTCCTTGATT TCAGGTGATT 4200 TTGTGGAATT ATTGCAGGCA GTAGAGATAT TTGGTTTTTA CTTAGCATCA ATTGATATGC 4260 GACAAGACTC TAGCGTCTAT GAAGCCTGTG TGGCAGAACT CTTGAAATCA GCAGGAATTC 4320 ATTCTCGTTA TAGCGAGTTG AGCGAAGAAG AAAAGTGTGA CCTTCTCTTG AAAGAATTAG 4380 AAGAAGATCC CCGAATTCTT TCTGCGACTC ACGCAGAAAA ATCAGAATTA TTAGCAAAAG 4440 AATTAGCTAT TTTTAAGACG GCTCGTGTTT TGAAAGATAA GTTGGGAGAT GATGTCATCC 4500 GTCAGACCAT CATTTCACAT GCAACCAGCC TTTCTGATAT GCTAGAATTA GCTATTCTGT 4560 TAAAAGAAGT AGGACTGGTG GATACGGAAA GGGCGCGTGT TCAGATTGTT CCCCTTTTTG 4620 AAACAATTGA AGACTTGGAT CATTCAGAGG AAACAATGAG AAAATATCTT TCTCTTAGCC 4680 TTGCCAAAAA ATGGATTGAC TCACGAAATA ACTACCAAGA AATCATGCTT GGCTACTCTG 4740 ACAGTAATAA AGATGGCGGT TACTTGTCAT CATGTTGGAC CCTCTACAAG GCTCAACAAC 4800 AATTGACTGC TATTGGAGAT GAATTTGGCG TTAAGGTTAC CTTCTTCCAT GGTCGTGGTG 4860 GTACTGTCGG TCGTGGTGGT GGGCCAACCT ATGAAGCCAT TACATCTCAA CCGCTCAAGT 4920 CTATCAAGGA TCGTATCCGC TTGACGGAGC AGGGTGAAGT AATTGGGAAT AAATACGGTA 4980 ACAAAGACGC CGCTTACTAT AACCTTGAAA TGCTAGTATC GGCAGCTATT AACCGTATGA 5040 TTACTCAGAA GAAGAGCGAT ACCAATACCC CAAATCGTTA TGAAACCATT ATGGATCAAG 5100 TAGTGGACCG TAGTTACGAT ATCTACCGTG ATTTGGTCTT TGGTAATGAG CATTTCTATG 5160 ATTATTTCTT CGAGTCAAGT CCAATCAAGG CTATTTCAAG TTTTAATATT GGTTCTCGTC 5220 CAGCCGCTCG TAAGACTATT ACTGAAATCG GTGGTTTGCG TGCCATCCCT TGGGTATTCT 5280 CATGGTCACA GAGTCGTGTT ATGTTCCCTG GATGGTACGG GGTTGGTTCA AGCTTCAAGG 5340 AATTTATCAA TAAAAATCCA GAGAATATTG CTATCTTACG AGATATGTAC CAAAATTGGC 5400 CTTTCTTCCA ATCGCTTCTT TCAAATGTTG ATATGGTTTT GTCAAAATCA AATATGAATA 5460

TTGCTTTTGA ATATGCTAAA CTTTGTGAAG ACGAGCAAGT TAAGGCCATC TATGAGACTA

777

TTTTAAATGA	ATGGCAAGTT	ACTAAGAACG	TTATCTTGGC	TATTGAAGGA	CATGACGAAC	5580
TCTTAGCTGA	CAATCCATAT	CTAAAAGCTA	GTCTGGATTA	CCGTATGCCT	TACTTTAATA	5640
TTCTCAACTA	TATTCAGTTG	GAGTTGATTA	AACGCCAACG	TCGTGGAGAA	TTGTCCAGTG	5700
ATCAAGAACG	ATTGATTCAT	ATCACCATCA	ACGGAATTGC	GACAGGATTG	CGTAATTCAG	5760
GTTGATAATT	TTCAAGAGTG	AATGCTAAAA	GTGAATATCA	AAAAAATTCT	AATAGACTAT	5820
TGACAAGTAG	TTTAAAAATG	ATATAATTTA	ACCATTCAGA	AAAGTAATCA	TACAAACTTT	5880
TTAGAGAGTC	TGTGGTAGCT	GAAAACAGAT	AAGTGGCAAT	GATGAAAATT	GGGCTGAATG	5940
CTATTTAGAA	TTTGAAATTA	TAAAAATTCG	GTAAGCACAC	CTTACAGTGC	ATCTCGTTAT	6000
TGCGAGACTG	AGCGATAGGG	AAATTCCCTA	TAATTGAGGT	GGTACCGCGC	ATCGACGTCC	6060
TCACACAAGT	TTTTTGTGTG	AGGATTTTTT	TGATGGAGGT	TAGTATGGAA	AGAAAACGAT	6120
GGCGTCGCTT	GTTTAGATAA	GTGAAATATG	TTAAAGGAAA	TAAAAAGGAG	AAACAGAATG	6180
AAAAATAAAC	GTTTAATTGG	AATTATTGCT	GCATTAGCAG	TCTTAGTAGC	AGGAAGCTTG	6240
ATTTATTCTT	CAATGAATAA	ATCAGAAGCT	CAGAATAATA	AGGATGAGAA	GAAAATAACC	6300
AAGATTGGTG	TGCTTCAATT	TGTGAGCCAT	CCATCCCTTG	ATTTGATTTA	TAAAGGGATC	6360
CAAGATGGAC	TTGCAGAAGA	AGGATATAAA	GATGATCAAG	TTAAAATTGA	TTTTATGAAC	6420
TCAGAAGGTG	ACCAAAGTAA	GGTTGCGACA	ATGAGTAAAC	AATTGGTTGC	AAATGGGAAT	6480
GACCTTGTGG	TTGGTATCGC	AACACCAGCA	GCCCAAGGGT	TGGCTAGTGC	AACAAAAGAC	6540
CTACCGGTTA	TCATGGCCGC	TATTACAGAC	CCAATTGGTG	CTAACTTGGT	TAAAGATTTG	6600
AAAAAACCAG	GTGGCAACGT	TACAGGGGTA	TCTGACCACA	ATCCAGCTCA	ACAACAAGTT	6660
GAACTCATCA	AGGCTCTGAC	ACCGAATGTG	AAAACAATCG	GAGCTCTTTA	CTCAAGTAGC	6720
GAAGACAATT	CAAAA					6735

## (2) INFORMATION FOR SEQ ID NO: 105:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 6516 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:

CTAGAGGATC CCAGCAG	GTA AATTGGCTTC	AGCTGGCAAA	AAAGTTGCCC	TCGTTGAACG	60
CAGCAAGGCT ATGTACG	GTG GAACTTGTAT	CAACATTGGT	TGTATCCCAA	CTAAAACCTT	120

GCTAGTTGCT	COTCABARO	. ACTTCTCTTCTT	770			
					AAAACACGAT	18
					TAGATATCTT	24
					GTGATGAAAA	30
GAAAGAACTG	ACTGCTGAAA	CAATCGTCAT	CAACACTGGT	GCTGTTTCAA	ACGTCTTGCC	36
AATCCCTGGA	CTTGCTACAA	GCAAAAACAT	CTTTGACTCA	ACAGGTATCO	AAAGCTTGGA	42
CAAATTACCT	GAAAAACTTG	GAATCCTTGG	TGGCGGAAAT	ATCGGTCTTG	AATTTGCCGG	48
CCTTTACAAC	AAACTTGGAA	GCAAGGTCAC	AGTCCTAGAT	GCCTTGGATA	CATTCCTACC	54
TCGTGCAGAA	CCTTCCATCG	CAGCTCTTGC	TAAACAATAC	ATGGAAGAAG	ATGGCATTGA	60
ATTGCTTCAA	AATATCCATA	CTACTGAAAT	CAAAAACGAT	GGTGACCAAG	TGCTTGTCGT	66
AACTGAAGAC	GAAACTTACC	GTTTCGACGC	CCTTCTCTAC	GCAACTGGAC	GCAAACCAAA	72
TGTAGAACCA	CTTCAACTTG	AAAATACAGA	TATTGAACTA	ACTGAACGTG	GTGCTATTAA	786
AGTAGACAAA	CACTGTCAAA	CAAACGTTCC	TGGTGTCTTT	GCAGTTGGAG	ATGTCAACGG	840
TGGCCTTCAA	TTTACTTACA	TTTCACTTGA	TGACTTCCGT	GTTGTTTACA	GCTACCTTGC	900
TGGAGATGGC	AGCTATACAC	TTGAAGACCG	TCTCAATGTG	ССАААТАСТА	TGTTCATCAC	960
ACCTGCACTT	TCACAAGTTG	GTTTGACTGA	AAGCCAAGCA	GCTGATTTGA	AACTTCCATA	1020
CGCTGTTAAG	GAAATCCCCG	TTGCAGCAAT	GCCTCGTGGT	CACGTAAATG	GAGACCTTCG	1080
CGGTGCCTTC	AAAGCTGTTG	TCAATACTGA	AACAAAAGAA	ATTCTTGGAG	CAAGCATCTT	1140
CTCAGAAGGT	TCTCAAGAAA	TCATCAACAT	CATCACTGTT	GCTATGGACA	ACAAGATTCC	1200
TTACACTTAC	TTCACAAAAC	AAATCTTCAC	TCACCCAACC	TTGGCTGAGA	ACTTGAATGA	1260
CTTGTTTGCG	ATTTAAGTTG	AGATTTAATC	GTATCGAACA	GCCCTCTTTG	GGCTGTTTTT	1320
ACTTCTGCGG	AATCTCAAAT	CTGTCTTTCT	CCTCTTTTAT	GATATAATAG	AAACATGAAC	1380
тталаласта	CTTTGGGCCT	TCTTGCTGGG	ССТТСТТССС	ACTTCGTTTT	AAGCCGTCTT	1440
GGACGTGGAA	GTACGCTCCC	AGGGAAAGTC	GCCCTTCAAT	TTGATAAAGA	ТАТТТТАСАЛ	1500
AACCTAGCTA	AGAACTACGA	GATTGTCGTT	GTCACTGGAA	CAAATGGAAA	AACCCTGACA	1560
ACTGCCCTCA	CTGTCGGCAT	TTTAAAAGAG	GTTTATGGTC	AAGTTCTAAC	CAACCCAAGC	1620
GGTGCCAACA	TGATTACAGG	GATTGCAACA	ACCTTCCTAA	CAGCCAAATC	TTCTAAAACT	1680
•		CGAAATTGAC				1740
		САТТАСТААТ				1800
		CATGATATTG				1860
		TCCACTTTTC				1920
					CCCIVILIONO	1320

TATTTTGGTT	TTGACTTGGA	AAAGGGACCA	GCCCAACTGG	CTCACTACAA	TACCGAAGGG	1980
ATTCTCTGTC	CTGACTGCCA	AGGCATCCTC	AAATATGAGC	ATAATACCTA	TGCAAACTTG	2040
GGTGCCTATA	TCTGTGAAGG	TTGTGGATGT	AAACGTCCTG	ATCTCGACTA	TCGTTTGACA	2100
AAACTGGTTG	AGTTGACCAA	CAATCGCTCT	CGCTTTGTCA	TAGACGGCCA	AGAATACGGT	2160
ATCCAAATCG	GCGGGCTCTA	TAATATCTAT	AACGCCCTAG	CTGCTGTGGC	CATCGCCCGT	2220
TTCCTAGGTG	CCGATTCGCA	ACTCATCAAA	CAGGGATTTG	ACAAGAGCCG	TGCTGTCTTT	2280
GGACGCCAAG	AAACCTTTCA	TATCGGTGAC	AAGGAATGTA	CCCTTGTCTT	GATTAAAAAT	2340
CCAGTCGGTG	CAACCCAAGC	TATCGAAATG	ATCAAACTAG	CACCTTATCC	ATTTAGCCTA	2400
TCTGTCCTCC	TTAATGCCAA	CTATGCAGAT	GGAATTGACA	CTAGCTGGAT	CTGGGATGCA	2460
GACTTTGAAC	AAATCACTGA	CATGGACATT	CCTGAAATCA	ACGCTGGCGG	TGTTCGTCAT	2520
TCTGAAATCG	CTCGTCGCCT	CCGAGTGACT	GGCTATCCAG	CTGAGAAAAT	CACTGAAACG	2580
AGTAATCTGG	AGCAAGTTCT	CAAGACCATT	GAGAATCAAG	ACTGCAAGCA	TGCCTATATT	2640
CTGGCAACTT	ATACTGCCAT	GCTGGAATTT	CGTGAACTGC	TGGCTAGTCG	TCAGATTGTT	2700
AGAAAGGAGA	TGAACTAATG	GTTTATACTT	CACTTTCCTC	AAAAGATGGC	AATTACCCCT	2760
ATCAGCTCAA	CATTGCCCAC	CTCTACGGAA	ATCTCATGAA	TACtACGGGG	ACAATGGAAA	2820
CATCCTCATG	CTCAAGTATG	TGGCTGAÂAA	ACTGGGAGCC	CATGTGACCG	TTGACATCGT	2880
TTCTCTCCAT	GATGACTTTG	ATGAAAATCA	CTACGACATC	GCCTTTTTCG	GTGGTGGTCA	2940
AGACTTTGAA	CAAAGTATCA	TTGCAGACGA	CCTACCTGCT	AAAAAAGAGA	GCATTGACAA	3000
CTACATCCAA	AACGACGGTG	TAGTTCTGGC	TATCTGCGGT	GGTTTCCAAC	TATTGGGTCA	3060
ATATTATGTT	GAAGCTTCAG	GAAAACGTAT	CGAAGGGCTA	GGGGTCATGG	GACACTACAC	3120
GCTCAACCAG	ACCAATAACC	GTTTTATCGG	TGACATCAAG	ATTCACAATG	AAGATTTCGA	3180
TGAAACCTAC	TATGGATTTG	AAAATCACCA	AGGTCGTACC	TTCCTCTCTG	ATGACCAAAA	3240
ACCGCTGGGA	CAGGTTGTCT	ATGGAAATGG	AAACAACGAA	GAAAAGGTCG	GTGAAGGGGT	3300
TCATTATAAG	AATGTCTTTG	GTTCCTACTT	CCACGGGCCT	ATCCTCTCTC	GTAATGCCAA	3360
TCTGGCTTAT	CGCCTAGTTA	CTACTGCCCT	CAAGAAGAAA	TATGGTCAGG	ACATCCAACT	3420
CCCTGCCTAT	GAGGACATTC	TCAGCCAAGA	AATCGCTGAA	GAGTACAGTG	ACGTCAAAAG	3480
CAAGGCTGAC	TTTTCTTAAA	CAAAGGAAAA	TGATATCAAA	GAACTCCGTT	ATCTTGTCGG	3540
AGTTTTTTGT	CTTTTCTTT	ACCCTTCTCC	CTTGCATTTT	CTCTCATTTT	TTGCCAAAAT	3600
AGAĞGGGTAG	AAAGAAGGTA	GCATATGTCT	AAATTACAAC	AAATCCTAAC	ATATCTTGAA	3660

			780			
TCAGAAAAC	TAGACGTCGC	TGTCGTATCT	GACCCCGTCA	CAATCAATTA	CCTCACTGGT	372
TTTTACAGTG	ATCCCCATGA	ACGCCAAATG	TTCCTCTTTG	TCCTAGCAGA	TCAGGAACCT	3780
CTCCTCTTTG	TCCCAGCTCT	TGAAGTAGAA	CGTGCAAGTA	GCACCGTTTC	CTTCCCAGTA	3840
GTGGGCTATG	TCGATTCTGA	AAATCCATGG	CAAAAAATCA	AACATGCTCT	TCCACAACTT	3900
GACTTCAAAC	GTGTCGCTGT	TGAGTTTGAC	AATCTCATCT	TGACCAAATA	CCATGGTTTG	3960
AAAACAGTTT	TTGAGACTGC	TGAGTTTGAC	AACCTCACTC	CTCGTATCCA	ACGCATGCGC	4020
CTCATCAAAT	CAGCTGATGA	AGTGCAAAAA	ATGATGGTTG	CAGGTCTTTA	TGCTGACAAG	4080
GCTGTTCATG	TTGGTTTTGA	CAATATTTCT	CTTGATAAGA	CTGAGACAGA	TATCATCGCA	4140
CAAATCGACT	TTGCCATGAA	ACGTGAAGGT	TATGAAATGA	GCTTTGATAC	CATGGTCTTG	4200
ACTGGTGATA	ATGCTGCGAA	TCCACACGGC	ATTCCAGCAG	CTAATAAGGT	TGAAAATGAT	4260
GCTCTTCTCC	TCTTTGACCT	GGGTGTTCTG	GTCAATGGCT	ATGCGTCAGA	TATGACTCGT	4320
ACAGTCGCTG	TCGGCAAACC	AGACCAATTC	AAGAAAGATA	TTTACAACTT	GACTCTTGAA	4380
GCCCAACAAG	CTGCTCTTGA	CTTTATCAAG	CCAGGTGTGA	CTGCTCATGA	AGTGGACCGC	4440
GCTGCCCGTG	AGGTCATCGA	AAAAGCTGGT	TATGGTGAGT	ACTTCAACCA	CCGTCTCGGG	4500
CATGGTATCG	GTATGGATGT	CCATGAATTC	CCATCTATCA	TGGAAGGAAA	CGACATGGTC	4560
ATCGAAGAAG	GCATGTGCTT	CTCTGTTGAA	CCAGGTATCT	ATATCCCTGG	TAAAGTCGGT	4620
GTTCGTATTG	AAGACTGCGG	TGTTGTTACC	AAGGATGGCT	TCAACCTCTT	TACAAGCACC	4680
AGCAAAGATT	TGCTTTATTT	TGATTAAACT	ATATAGCCCC	TATGCTTTCC	TTTCAAAATA	4740
TCTAGGGGCT	ATTTTATTGT	CATTTTTCTG	CTATTATGCT	AAAGAAATTG	GCTGCAATAA	4800
TCTAACCCTA	AGTGTCTGGA	ATGATAACGA	GGGTGCTCTC	CGCTTTTATC	AAAGACAAGG	4860
GATGAAACCC	CAAGAAACAA	CAATGGAAAT	GATAATTGAT	TAAGAAGTCA	TCTATCAAAA	4920
GATGTTAGAA	AAAGTTCAAT	TTCACTAGAA	AATGAGGAAA	ATCTCCCCAC	AATAAAACGC	4980
ATAGTATCAG	GTATTGTGTA	CTGACCCCAA	ACAGTTAGAC	ATTAATTTA	TCCGAAGGAT	5040
TTAGTTCTGT	ACTGCACAGG	ACTAAGTCCT	TTTAGTTTTA	CCTTAATTCG	TTTGTTGTTG	5100
TAGTAATCAA	TATAGTCTAT	AATGACTTGT	TCCAATTGGT	TAAGTGATTT	AAATGTTTTC	5160
TCATAGCCAT	AAAACATTTC	GGATTTTAAA	ATGCCAAAGA	AAGATTCCAT	CATACCGTTG	5220
TCTTGGCTGT	TTCCCTTGCG	TGACATAGAT	GCTTGAATTC	CCTTATTCTC	TAGGAACCGA	5280
TGATAAGAAT	CGTGTTGGTA	TTGCCAGCCT	TGGTCACTAT	GGAGAATCGT	ATTCTCGTAG	5340
TGCTTCTCTT	TGAATGCCTG	TTCCAACATT	GTTTGTACTT	ATTCTAAATT	AGGCGAACAA	5400
GAAAGATTAA	AAGCAATAAT	TTCGCTGTTA	AAGCCATCTA	AAACTGGTGA	TAAGTAAAGC	5460

TTTTGAGTAC	TTGCTGGAAT	GGCAAATTCA	GTCACATCTG	TGTAGCACTT	TTCCATTGTT	5520
rtag <b>a</b> gcctt	CAAATTGGGC	TTGAATGAGA	TTCTCTGCCT	TCTTACCAAC	GTCTCCTTTA	5580
rgagaagaat	ATTITCGTTT	CTTTCGCATT	TTAGCTTGTA	AATTGAGTAC	TTTCATCAAG	5640
CTTGAACTC	TTTTATGATT	TACCAGATAA	CCACGATTTC	TTAGTTCTAA	ATGAACCCGG	5700
CGATAAGCAT	AATTTCCCTT	GTGTTCGATA	AAGATGGATT	GAATTTCAGT	TTTAAGCTCT	5760
rggtcttat	CTGTTTTGTC	TAGCTGTTTC	AAGTGATAGT	AGTAGGTCCA	ACGAGCTAGT	5820
TTAATGGCTT	CTAGAAGAAG	ATCTAACGAA	AACTCAGTCA	TTAATTCTTG	AACAATTTCT	5880
GTCTTTCTTC	TTTCTCTTTT	TCCTCCTTCA	ATCGGAGTTC	TCTTAACTTT	TTTAGGATGG	5940
CATTCTCCGC	TCTCAGGTAC	TCTCCCTCTT	GTTTTCTCAA	CAATAGTATA	CCCGTTTTTC	6000
CTGTATTGTG	CTAGCCAGTT	AAGAAGTATC	GTACGACTTG	GGAGACCGTA	TTCAAGAGAA	6060
ACTCTATCTT	TAGTCCAGCC	TTCATGTCAG	ACTTTATTAA	CCCCAATTAT	TCACCCCAAA	6120
TCTAAAAACC	ATCCAGAATC	CTTGCCTTAG	CTTAGATCCT	GGATGGTTTC	TTTTTCACC	6180
CAATGGGTGT	TTTTTACTAG	ACAAAAAAGA	GTTTCCCCTT	TATGGTATAA	GTGTAGAAAA	6240
AAACACAAAA	AGAAAGGAAA	CTCACATGAA	CAGTTTACCA	AATCATCACT	TCCAAAACAA	6300
GTCTTTTTAC	CAACTATCTT	TCGATGGAGG	TCATTTAACC	CAGTATGGTG	GTCTTATCTT	6360
TTTTCAGGAA	CTTTTTTCCC	AGTTGAAACT	AAAAGAGCGG	ATTTCTAAGT	ATTTAGTAAC	6420
GAATGAmCAA	CGCCGCTACT	GTCGTTATTC	GGATTCAGAT	ATCCWTGTCC	AGTTCCTCTT	6480
TCAACTGTTA	ACAGGTTATG	GAACGGAATA	TGCTTG			6516

### (2) INFORMATION FOR SEQ ID NO: 106:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 14654 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

TTTTCAACCC	ATATCGTGGC	TCCTGAATAC	TACTTACTGA	CAACTATGCT	ATCAGAGACT	60
TCTCTACTTG	TTTTCTATAT	CATTTTCATC	CATAGAAAAC	AACTCATCCA	CTTGGGACAT	120
ATCTTTAGCT	ATACTGTTCG	ATACTCTCTC	TTTTCACTTT	CCTTTGTAGC	AATTTATTTC	180
CTGATTAATT	TCGTGTATCC	TGTAGATATG	GTCATTAATT	TGCCATTTTT	GATTAATACT	240
GGTTTGATTG	TCTTGCTATC	AGCTATCTCT	TATATTAGTC	TACTTGTCTT	CACAAAAGAT	300

			782		•	
AGCATTTTCT	ATGAATTTTT	AAACCATGTC	CTAGCCTTAA	AAAATAAATT	TAAAAAATCA	360
TAGGAGTTTA	AAATGAAACA	ACTAACCGTT	GAAGATGCCA	AACAAATTGA	ATTAGAAATT	420
TTGGATTATA	TTGATACTCT	CTGTAAAAAG	CACAATATCA	ACTATATTAT	TAACTACGGT	480
ACTCTGATTG	GGGCGGTTCG	ACATGAGGGC	TTTATCCCTT	GGGACGACGA	TATTGATCTG	540
TCCATGCCTA	GAGAAGACTA	CCAACGATTT	ATTAACATTT	TTCAAAAGGA	AAAAAGCAAG	600
TATAAGCTCC	TATCCTTAGA	AACTGATAAG	AACTACTTTA	ACAACTTTAT	CAAGATAACC	660
GACAGTACGA	СТААААТТАТ	TGATACTCGA	AATACAAAAA	CCTATGAGTC	TGGTATCTTT	720
ATCGATATTT	TCCCTATAGA	TCGCTTTGAT	GATCCTAAGG	TCATTGATAC	TTGTTATAAA	780
CTGGAAAGCT	TCAAACTGCT	GTCTTTCAGT	AAACATAAAA	ATATTGTCTA	TAAGGATAGC	840
CTTTTAAAAG	ATTGGATACG	AACAGCCTTC	TGGTTACTCC	TTCGACCGGT	TTCTCCTCGT	900
TATTTTGCAA	ATAAAATCGA	GAAAGAAATT	СААААТАТА	GTCGTGAAAA	TGGGCAATAT	960
ATGGCTTTTA	TCCCTTCAAA	ATTTAAGGAA	AAGGAAGTCT	TCCCAAGTGG	TACCTTTGAT	1020
AAAACAATCG	ATTTACCCTT	TGAGAATTTA	AGCCTTCCTG	CACCTGAAAA	ATTTGATACT	1080
ATTTTGACAC	AATTTTATGG	AGATTATATG	ACCCTACCAC	CAGAAGAAAA	ACCCTTCTAC	1140
AGTCATGAAT	TTCACGCTTA	TAAATTGGAG	GATTAGGATG	CAATATTTAG	AAAAAAAAGA	1200
AATTAAAGAA	ATTCAACTAG	CCCTGCTGGA	CTATATTGAT	GAGACTTGTA	AGAAACATGA	1260
TATTCCTTAT	TTTCTCAGTT	ATGGAACCAT	GCTTGGAGCC	ATCCGCCACA	AAGGTATGAT	1320
TCCTTGGGAT	GATGATATTG	ATATTTCCCT	TTATCGTGAG	GATTATGAGC	GTTTACTGAA	1380
GATTATTGAA	GAAGAAAATC	ACCCTCGCTA	CAAGGTTCTT	TCCTACGATA	CATCTTCTTG	1440
GTACTTCCAT	AATTTCGCAT	CGATTTTGGA	CACTTCTACT	GTTATAGAAG	ACCATGTTAA	1500
GTACAAGCGT	CATGATACCA	GCCTTTTCAT	CGATGTCTTC	CCAATTGATC	GATTTACAGA	1560
CTTGAGCATT	GTCGACAAGA	GCTATAAGTA	TGTGGCTCTT	CGTCAACTAG	CTTATATCAA	1620
AAAATCACGA	GCAGTTCACG	GTGATAGCAA	ACTAAAAGAT	TTTCTTAGAT	TATGTAGCTG	1680
GTACGCTCTC	CGATTTGTCA	ATCCTCGCTA	CTTTTACAAG	AAAATTGATC	AACTAGTCAA	1740
AAATGCTGTA	ACCAACACTC	CTCAATATGA	AGGAGGAGTT	GGGATCGGTA	AGGAAGGGAT	1800
GAAAGAAATC	TTCCCAGTTG	ATACCTTTAA	AGAACTGATT	TTAACTGAGT	TTGAGGGCCG	1860
TATGTTGCCT	GTTCCCAAAA	AATATGACCA	ATTTTTAACC	CAGATGTATG	GCGATTATAT	1920
GACACCACCA	TCAAAAGAAA	TGCAAGAGTG	GTATAGTCAT	AGCATTAAAG	CTTATCGCAA	1980
AAACTGATTG	AGGGGGATTA	TACAAACTAC	TAAGATAGAG	GTTATTCAAA	AACATAATTT	2040
TAGTAGAAAA	TGAAATACAT	ATTCCCACAA	TAAAĄCGCAT	CATATCAAGG	TTTTTGAAAA	2100

ACCTTGATAT	GATGCGTTTT	ATAATTTTAA	AGACTTTTT	CTATAGTAGA	TTGAAATAAG	2160
ATGCGAACAA	ATCAATTAGA	AAATTCAAAT	TAATTTATAG	AAATATTTTA	GTATTCCTGT	2220
GTACTGTTCT	AAATTCAGTC	TGCTATATCT	TATTTTTCTA	TTTAAATCGC	TTCTGTAACA	2280
AAGCTACGAC	TTTCAAGTAC	CTTAAGCATG	GCATTAGCTG	TATCTAGCGC	TGTGAAGAGG	2340
GGCACCCCGT	GTTCAATGGC	TGAACGACGA	ATTTGCTCAC	CATCTTCGTC	AGCAGTTCGT	2400
TTTGTTCCT	CTGTGTTAAT	GATAGCTTGA	ATTCTTCCTT	TGCGTACAAA	ACTTGGGATA	2460
TCCTTATCGT	CATCACCAAT	CTTACCAACA	GGTTGGGCTT	GCAAGCCATG	ACTAGCAAAG	2520
AAGGCTGCTC	TCCCTTCTGT	CGCAAGGATT	CCATAACCAA	TGTTTTGGAA	ACGACGAGCC	2580
AAGTTCAAGO	CTTCTTCTTT	GGCATCATCA	GCGATGGTAA	AGACGACATT	ACCAAAAGTT	2640
GGCAAGTGTA	GATAAGAAGC	TTCAAAGGCT	TTATAGAGAG	CTTTTTCCAA	AGTAGCATCA	2700
GAACCCATAA	CTTCACCTGT	TGACTTCATT	TCAGGACCGA	GCAAGCTGTC	TACCTTAGCT	2760
AGTTTGGTAA	AGGAGAAGAC	AGGTGCCTTG	ATATGAACAC	GGGTGCTTTC	AGGGTAAAGT	2820
CCATTTTGGT	AGCCAAGTTC	TGATAAACTT	TGACCAAGAA	TGAGTTTGGT	CGCTACTTGA	2880
GCCATAGGA	TATTGGTTAC	CTTAGATAGG	AATGGAACAG	TACGGCTGGC	ACGTGGATTG	2940
ACCTCAATAA	CGTAGACTTT	TTCATCCTTG	ATAACAAACT	GGATGTTCAT	CATTCCAAGG	3000
CAGTGAAGAC	CGATTGCTAA	GCGTTTGGTG	TAGTCTGCGA	TGGTCTCCTG	AACCTTTTGC	3060
GACAAGGTTT	GTGGTGGGTA	AACAGCCATT	GAGTCACCTG	AGTGGACACC	AGCACGTTCG	3120
ATATGCTCC	TGATACCAGG	AATGAGTACA	TTTTTACCAT	CTGAAATGGC	ATCAACTTCG	3180
CACTCTTGCC	CAACGATATA	AGAGTCGACA	AGAACTGGGT	GGTCTGGACT	AGCCTTAACA	3240
GCAGTTCGC	TGTAAGAACG	AAGGTCTTCT	TCGTTTTCAA	CGATTTCCAT	GGCACGTCCA	3300
CCAAGTACAT	AAGATGGGCG	GACAAGAACT	GGGAAGCCAA	TCTTGCGAGC	TGCAAGAGCT	3360
GCTTCTTCTT	CATTGGTAGC	CGTTTGTCCT	GGTGGCTGTG	GAATATCCAA	TTCTTTGAGA	3420
GCTTGCTCG	AGAGGTCACG	GTCTTCGGCA	CGATCTAGGT	CAGCAACCTG	TGTACCAAGG	3480
ATGGTCACAC	: CTGCTTTTGC	CAATGGCTCC	GCAAGGTTGA	TGGCTGTTTG	ACCACCGAAC	3540
TGAACGATAA	CTCCCTTTGG	TTGTTCCAAG	TCAATGACGT	TCATAACATC	TTCGAATGTC	3600
AATGGCTCAA	AGTAAAGCTT	ATCTGATACA	GAGAAGTCTG	TTGAAACGGT	CTCTGGGTTT	3660
GAGTTCATG	TGATAGCTTC	ATAACCAGCT	GCCTGGATAG	CCTTAACAGA	GTGAACGGTT	3720
GCGTAGTCA	ACTCAACCCC	TTGACCGATA	CGGATTGGAC	CTGAACCTAG	GACAAGTACA	3780
GATTCTTTAT	CAGATCTGAT	AGATTCATTT	TCCCAACCAT	AGGTTGAATA	GAAATATGGC	3840

			784			
GTTTCGGAGT	CGAACTCTGC	CGCACAAGTG	TCTACCATCT	TATAAACTGG	AACAATCTTG	390
TTTTCCAAGC	GAAGTTGGCG	AACTTTATCA	TCAGTCGTTC	CCCAGAGTTC	AGCAATCTTA	3960
CGGTCTGAAA	AACCATTAAG	TTTGGCTGTT	TTCAAAACTT	CTAAATCTTG	TGGATGAGCA	4020
CCCAATTCTT	GCTCAATTTC	AAAGATATGC	AAGAGTTTAT	CAAGATAGAA	GATATCAATT	4080
TTTGTAAGCT	CTGCAATTTC	TTCAGGTGTG	TAGCCACGAC	GAATGGCTTC	TGATACGTAG	4140
AAGAGACGGT	CATCTTGGGC	TTTGACAACC	TTTTCAATCA	AGGCATCATC	AGAAACTGCT	4200
GCAAGTTCAG	GTATTTCATT	GTGGTGCACC	CCAATTTCAA	GGGAGCGGCA	GGCCTTGAGA	4260
AGAGATTCCT	CGATGTTACG	ACCGATTGCC	ATGACTTCTC	CAGTCGCCTT	CATTTGTGTA	4320
CCGAGACGGC	GTTCACCCTT	TTCAAACTTG	TCAAATGGGA	AACGTGGAAT	CTTAGCAACT	4380
ACGTAGTCAA	GGGCTGGTTC	AAACATGGCA	TAGGTTGAAC	CTGTAACTGG	GTTTATAACC	4440
TCATCCAAGG	TCAAACCTAC	TGCAATCTTG	GCAGCCAACT	TAGCAATCGG	ATATCCTGTC	4500
GCTTTAGAAG	CAAGGGCTGA	CGAACGTGAT	ACACGAGGGT	TTACTTCGAT	AACATAATAC	4560
TTGAAGCTGT	TAGGATCAAG	AGCTAGCTGA	ACATTACATC	CACCTTCAAT	CTTGAGGGCA	4620
CGAATAATGC	TCAAGCTCGC	ATCACGAAGC	ATTTGGTTTT	CATAGTCTGA	CATGGTTTGC	4680
GCAGGGGCAA	ATACAATGGA	ATCCCCTGTG	TGAATCCCAA	CTGGGTCAAA	GTTTTCCATG	4740
TTACAAACAA	CCAAGGCATT	GTCAGCTGAG	TCACGCATCA	CTTCGTATTC	AATTTCCTTG	4800
AAACCGGCAA	TCGAACGCTC	AATCAAACAT	TGGGTAACAG	GTGACAATTT	CAAACCATTT	4860
TCAGTGATTT	CACGCAATTC	TTTCTCGTTG	GCACACATAC	CACCACCAGT	ACCACCAAGG	4920
GTAAAGGCTG	GACGAACGAT	GACTGGGTAG	CCAATTGTCG	CTGCAAAGGC	AACTGCTTCT	4980
TCTACTGTGT	TAACAATTTC	AGATTCTGGA	ATGGGTTGTT	CAAGCTCTTC	CATCAATTGT	5040
TTAAAGAGGT	CACGGTCCTC	CGCTTGGTCA	ATGGCAGATA	ATTTGGTACC	CAGAAGTTCA	5100
ACGCCAAGCT	CGTCTAGGAT	ACCATTTTTA	GATAATTCCA	TGGCCATGTT	GAGACCTGTC	5160
TGACCACCGA	GTGTTGGTAG	CAAGGCATCT	GGACCTTCCT	TACGAAGAAT	ACGTGTCACA	5220
AACTCAAGTG	TAATCGGTTC	AATGTAAACC	TTGTCAGCAA	TTTCCTTGTC	CGTCATGATG	5280
GTTGCAGGAT	TTGAGTTAAC	CAAAACAACC	TCATAACCTT	CCTCTTTCAA	CGACAAGCAA	5340
GCCTGAGTCC	CAGCGTAGTC	AAACTCAGCA	GCCTGACCAA	TAATAATCGG	ACCAGAACCA	5400
ATCACCATAA	TTTTTTGAAT	ATCAGTACGT	TTAGGCATAT	ATAAGATATT	AAGGGTGTCA	5460
AGCGGACAAA	GCTAAAATAG	GAGTTATGAC	GAAGAACTGT	CAGTTCTAGG	AATAACTATC	5526
TTTTTAGCAC	CGTCCGTAGC	CCGTATTCAG	TTCAGCAAAT	ACGGAGCACC	CTTCTCCTTT	558
CTATTCGTCG	CCTCTCAGGG	CGACATTAAA	TAAGATACAA	AGGACGAATA	GAAAGCGATT	5646

	GAATTTTAGG	AAATCAAGGA	AGGATTGACA	ATCCAAGTTG	GTTTCTCTAC	ATTCTGAGCT	570
	TTCCGTCCGT	GTTCAGTTAC	ATAAATTCTC	CGACGAGCTT	TTACTCGTTC	TTAGTTTGAT	576
	TGTTTAAAAA	CTTCCATCAT	CTCGATAAAC	TCGTCAAATA	GGTAGCTAGC	GTCGTGTGGC	582
	CCAGGAGCTG	CATCTGGGTG	GTATTGAACA	GAGAAAGCAG	GTTGGTATCT	GTGGCGCACA	588
	CCTTCCACTG	ACTTGTCATT	GATTTCTTCG	TGGGTAATAA	TCAAGTGCTC	TGGCAAATCC	594
	TCGCGGCTGA	CTGCATAACC	ATGGTTCTGG	CTGGTGAAGT	CTACTCGTCC	TGTTGCGATT	600
,	TCACGTACCG	CATGGTTGAA	TCCACGGTGG	CCAAACTTCA	TCTTATAGGT	CTTAGCCCCG	606
	TTTGCCATTG	CAAAGAGTTG	GTGTCCCATA	CAAATACCAA	AGATTGGAAT	TTTTCCTTGT	612
	ACACCGCGAA	TCATGTCGAG	TGCTTGTGGA	ACGTCTTCTG	GGTTACCTGG	ACCATTTGAC	618
	AACATAACTC	CGTCAGGATT	GAGATGGAGA	ATTTCTTCAG	CCGTTGTCGA	ATAAGGAACA	624
,	ACTGTCACGT	TACAGTTGCG	TTTAGAAAGT	TCACGTAGGA	TTGAGTGCTT	GAGACCAAAG	630
٠	TCCACTAGCA	CCACGCTCAA	ACCAACTCCT	GGAGCTGGAT	AAGACGTTTT	AGTAGAAACC	636
•	rgtttgatat	TGTCTGTCGG	TAAAACTGTT	GCTTGGAGCT	GGTCCGTCAC	ATGGTCCATA	642
(	CTGTCCCCAA	CATGGGTCAA	GGTTGCACGC	ATAGTACCAT	GCTTACGGAT	AATCTTGGTA	648
i	AGAGCACGCG	TATCAATTCC	TGAAATCCCT	GGAATTTTCT	TGGCTTTCAA	AAATTCATCC	654
i	AAGGTCATTT	GGTTGCGCCA	GTTGCTAGCT	CTACGCGCTT	CTTCAAAAAC	AACGACTCCC	6600
•	TTACAAGTTG	GAATAATGGA	TTCATAATCA	TCACGATTAA	TACCATAATT	TCCTACCAAA	6660
(	GGATAAGTAA	AGGTCAAGAT	TTGTCCATTA	TAAGACTGGT	CTGTAATGGA	TTCTTGGTAG	672
(	CCGGTCATCC	CTGTATTAAA	GACGATTTCG	CCTGTTACAT	CAATATCTGC	TCCGAAGGCC	6780
7	TTGCCTTCAA	AAACTGTGCC	ATCTTCTAAT	ACTAGAATTC	TTTTTGTCAT	ATTTTCACCT	6840
C	CTCGTGGACG	CTCACTGGCG	TCTTTTAACG	TCTTGTGTTT	TAGTTGGCGT	TTCTACTCGC	6900
7	PAGTACGGAT	TCTAAGATTG	CCATTCGAAC	AAAGACACCA	TTGGTCATTT	GTTGGACAAT	6960
C	CGTGATTTT	GGTGCTTCAA	CCAAGTGGTC	TGCTATTTCT	ACATCACGAT	TGATTGGAGC	7020
1	GGGTGCATG	AGGATTGCTG	TTTCTTTCAA	ACGATCGTAA	CGTTCTTGAG	TCAAGCCATG	7080
T	TGGGCATGG	TAGTCTTCTT	TTGAAAATAC	AGCTCCACTA	TCATGGCGTT	CGTGTTGCAC	7140
A	CGGAGAAAC	ATCATGACAT	CAACCTGATC	AATGATTTCA	TCAATGGTTA	CAAACTGTCC	7200
P	TAGTCTGCA	AACTCTTGAC	TTCTCCATTC	CTCAGGTCCA	GCGAAAAAGA	GTTCAGCTCC	7260
c	AAGCGTTTC	AAAATCTGCA	TATTGGATTT	GGCAACGCGT	GAGTGGTCCA	AGTCACCTGC	7320
A	ATAGCAACT	TTAAGACCCT	CAAAGTGGCC	AAATTCCTCA	TAAATGGTCA	TCAAATCAAG	7380

				786			
1	CAAGCTCTGG	CTAGGGTGTT	GGCCCGAACC		TTGATGATGG	AAGTCGTAAT	7440
4	CGTTGGACTA	GCAATCAATT	CTCTATAGTA	GTCGACCTCT	GGATGGCGAA	TCACACAGAC	7500
	ATCCACTCCT	AAAGCAGACA	GAGTCAAAAT	GGTGTCATAA	AGTGTCTCAC	CCTTATTAAC	7560
4	CGAGCTAGTC	TTCACATCAA	AGTCAAGTCG	TTCCAATCCA	AGTTTAATCT	CTGCGACTTC	7620
,	AAAGGACTTA	TGTGTCCGTG	TAGAATCCTC	AAAGAAGAGA	TTGGAAACAA	TCGGATGGTC	7680
•	<b>TTCATAGGGA</b>	AGCTGGGCTC	CATTTTTAAA	CTCAATTCCT	CGCTTGATCA	ATTTCATTAC	7740
•	PTGATCGACA	GTGAGGTCTT	CCATGGACAC	CACATGGTTC	AATGCTTGTT	GATTTTCTGA	7800
•	CATGGCTACT	CCTTTAACTT	TCTAAGCTTC	TTCAGTAATC	AGAACTCTGT	CTTGGTCATC	7860
	AAGTTCTGTC	ATCTCTACGA	TGATTTCTTC	AGAACGACTG	GTTGGGATAT	TTTTTCCAAC	7920
•	GTAATCTGGA	CGGATTGGCA	ATTCTCTATG	TCCACGATCG	ACTAGAACTG	CTAAACTCAC	7980
	ACGCGCAGGA	CGACCATGAC	CGACAATATT	ATCAATAGCA	GCACGGATGG	TACGACCTGT	8040
	ATAGAGCACA	TCATCCACCA	AGATAACTTC	GCGGTCTGTC	ACATCGACAG	AAACCAAAGA	8100
	AGTATCTTCT	CCACTTTTAA	CATCATCACG	GAAAGGTTTA	GTATCCAATT	CCACAACAGG	8160
	AACTGAAAGA	TTTTCTAACT	GCTTCAAACG	TTCTTGGATT	CGGTGGGCAA	TAAAGACACC	8220
	ACGAGTTTTA	ATACCAGCCA	AGACGATCTT	ATTCAAATCT	TTGTTGCGTT	CGATAATCTC	8280
	ATAAGTAATA	CGCGTAATCG	CTCGTTTGAC	GGTCAATTCG	TCTACAACTT	CTTTTGTTTT	8340
•	CATGACAAAC	CTCCAAAAAG	AAAAGTCTCC	TTAAACAAGG	AGACTTGAAA	TTTATAGCCA	8400
	AGCGAGCCCT	ACTGCACACA	GTATAGACTT	CACCCTTCTA	CTTTATCGCG	CTCCTTGCCT	8460
•	GCCTCACGGG	ACAGGTTTAA	AGGAATATTT	AGTTATCATT	TACTATAGCA	CAAAGCATGC	8520
•	PTAAAATCAA	GCAAAAAGTT	TCAATGTAGC	ATCTTACAAA	TTGCTAAAAT	CATATAATTG	8580
•	TGGGTACTGG	TCACACTCTG	GATTTTTTGG	ATGGCAAATG	GCTCTTCCAA	AATAAATCAT	8640
(	GCCTGATGG	GCAGCTAACC	ACTGCTCAGG	CGGCAAGATA	TCCATGACCC	GCTTTTCCAC	8700
•	CTCAAGTGGC	GTCGCTGATT	TTTTGACAAT	ATCGTGGTGT	TTGCAAATAC	GCTCCACA'IG	8760
4	AGTATCCACT	GCAAAGGCTG	GAATTCCAAA	TCCTACACTC	ATGACAACAT	TGGCTGTCTT	8820
•	GCGACCAACA	CCTGCCAAAC	TCTCCAATTC	TTCACGTGTC	TGAGGGACTT	GACCATCAAA	8880
	ATCGTCTAGT	AACTGTTGGG	CACATTTTTT	AAGGAATTTA	GCTTTATTCC	GATACAATCC	8940
•	CAAGCGAGAA	ATATGTGAAG	CAATCTCACT	CTCTGTCGCT	ACAGACATAG	CTTGGGGTGT	9000
•	rggaaaggca	ACAAAGAGAC	CTGGTGTGGC	CTTATTTACC	GCTGCATCTG	TCGTCTGGGC	9060
•	rgataacatg	ACCGCAACCA	GGAGTTCAAA	ATGATTGGTA	AAATCAAGAC	TAGGCTTGGC	9120
,	ATCTGGGAAG	AGGGCAATGA	TTTCTTCTAG.	CACCTTTCGT	GCTCGTTTTT	TTGACAAGAC	9180

CATTATTCAT	CTCCGTCAAA	TAGTCCTTGT	AAGCCAGCAA	AAGGACTGTT	TTCTTCTTTC	9240
TTTACTGCTT	TTTGAGCTTG	GTATTCTTCC	TCTGTCATGA	TTTGCCAGTC	ATTTCCTGAG	9300
ATAAATCCTT	GACCAGCTTC	TTCTTCAGCC	GTCAAGACCT	TGATAGGAAT	GTTTAGCAGG	9360
ATATTGTCTG	ATACACTCTC	AGCAAGGTCA	AGCTCCCCAT	TTTCGATGGG	CAAGACCAAG	9420
TCATCATCTA	AAACTTCTTG	ATCTAGCTGG	TTAGTTGCGC	CTTCCATGAA	AACTTCCGTG	9480
ACTGGATAAG	ATTCAACTAA	CTCAACTGGC	TCCATACTGC	GACTCGACGC	AAGAACAATG	9540
GTATAAGATA	GTTGATAATC	TAAGAAATAC	ATACGGTCTT	CATATTGTAC	TTTCCCAACT	9600
GCAAGGATAT	CTTTTACATC	TAAAATTTCT	TGATTACGTG	CACGCAGGTC	ATCAACTAAA	9660
TCTAACGTTT	GTTCAAAGTT	CAAACCTTCA	GACTGCTTAC	GAATTTCTTG	TAATTTAAA	9720
TTCATACTTC	CTCCATAAAG	ATTTACTCTC	TTGATTATAC	CATGAAAAGG	CTACAAATCA	9780
GCACACCAAA	CTTTGTAATT	AAAATTCAAA	ATTTTAACAT	ATTTACTATG	ATAGTTTTAT	9840
TTTTTAGTGC	TATACTATAG	GGAAAGAGTA	CATCAGATCA	AGGAGGATGC	TCACATGGAA	9900
GACAAGAAAC	TCATTCAACT	CCTATCCAAG	TTAAATAAAA	GCTACCAAAA	CTGTAAACAG	9960
GGTACGGCAG	ATGATATTCG	ACTACAAGAG	CTGCTAAACA	CTACTATGCA	AGAGCTCAAA	10020
AAAACGGAAC	AGTTGAACAA	CAGTATCTTA	ATTGATCTTG	AGAAATTTTA	CCAACCTACC	10080
AGTCTTCTGA	TTGGACTGGG	TAGCCTAAAA	CTAAACGATC	AAGCACGCAC	TGCTTGGCGA	10140
AACTATGATA	AATTCCATTA	CGATCATGTC	AAACACGTAC	TAAGTCTCTA	TGGACCTGTT	10200
TTTGAATTTT	AGAGCATAGA	ATTTCCAGTT	TTCTGTTGAC	AAAATTTCCT	TAAAGGTATA	10260
ATATAAAGAT	ACTAATACTC	GGAGGTAAGG	GAGACATGAA	CAACTAAGTC	TATCAAATAA	10320
AGAACCTTTA	TTTAGTAGAT	CTTGTTTTTG	TCTCTTTTTG	TGTGCTCTTT	TATGCTCTTT	10380
TTCTGGCATG	TTAATAGAGT	TTTTTTGACA	TAGACTTTGG	GCTCTACTAG	GTAAAGTAGA	10440
GCTTTTTGTT	ATGCACTATG	AACATTCTAG	AAAGGGAAAT	CATATGATAA	AAATCAATCA	10500
TCTAACCATC	ACACAAAACA	AAGATTTACG	AGATCTTGTA	TCTGACCTAA	CCATGACCAT	10560
CCAAGACGGG	GAAAAGGTTG	CTATTATTGG	TGAAGAAGGA	AATGGCAAAT	CAACCTTACT	10620
TAAAATTTTA	ATGGGGGAAG	CTTTGTCTGA	TTTCACTATC	AAGGGAAACA	TCCAATCTGA	10680
CTATCAGTCA	CTGGCCTACA	TTCCTCAAAA	AGTCCCTGAG	GACCTAAAAA	AGAAAACTTT	10740
ACACGACTAC	TTCTTTTTAG	ATTCTATTGA	TTTAGACTAC	AGTATCCTCT	ATCGTTTGGC	10800
GGAGGAATTG	CATTTTGATA	GCAATCGTTT	CGCAAGTGAC	CAAGAGATTG	GCAATCTATC	10860
AGGGGGGAA	GCTTTGAAAA	TTCAGCTTAT	CCATGAGTTA	GCCAAACCCT	TTGAGATTCT	10920

			788			
ATTTTTAGAT	GAACCTTCAA	ATGACCTAGA	CCTTGAGACA	GTTGATTGGC	TAAAAGGCCA	10980
GATTCAAAAG	ACCAGGCAAA	CCGTTATTTT	CATTTCCCAT	GATGAAGACT	TTCTTTCTGA	11040
AACGGCAGAC	ACTATTGTTC	ACTTGCGACT	GGTCAAACAC	CGTAAAGAAG	CGGAAACGCT	11100
AGTAGAGCAT	TTAGACTATG	ATAGCTATAG	TGAGCAGAGA	AAGGCTAATT	TTGCCAAACA	11160
AAGTCAGCAA	GCTGCTAACA	ACCAAAGAGC	CTACGATAAA	ACCATGGAAA	AACATCGGAG	11220
AGTTAAGCAA	AATGTAGAAA	CTGCGCTTCG	AGCTACCAAA	GATAGTACTG	CCGGTCGCCT	11280
ATTGGCTAAA	AAGATGAAAA	CTGTCCTCTC	ACAAGAAAAA	CGCTACGAAA	AGGCAGCTCA	11340
GTCCATGACT	CAAAAGCCAC	TTGAAGAGGA	ACAAATCCAA	CTTTTCTTTT	CAGACATCCA	11400
ACCATTACCA	GCTTCTAAAG	TCTTAGTCCA	ACTGGAAAAA	GAAAATTTGT	CCATTGACGA	11460
CCGAGTTTTG	GTTCAAAAAC	TACAACTAAC	TGTCCGTGGC	CAAGAAAAA	TCGGTATTAT	11520
CGGGCCAAAT	GGTGTTGGGA	AATCAACTCT	GTTAGCCAAG	TTACAGAGAC	TTCTGAATGA	11580
TAAAAGAGAG	ATTTCACTTG	GTTTTATGCC	ACAAGATTAC	CACAAAAAAC	TGCAATTGGA	11640
TTTATCCCCA	ATAGCCTATC	TCAGTAAAAC	TGGGGAAAAA	GAGGAACTAC	AGAAAATCCA	11700
ATCTCACCTA	GCTAGTCTCA	ATTTCAGTTA	TCCAGAAATG	CAGCATCAAA	TTCGCTCCTT	11760
ATCTGGCGGA	CAACAGGGAA	AACTCCTGCT	TTTGGATTTA	GTCCTGCGCA	AACCAAACTT	11820
TCTCCTGCTG	GATGAACCCA	CACGAAACTT	TTCTCCCACT	TCTCAACCCC	AAATCAGAAA	11880
ACTCTTTGCT	ACCTATCCAG	GCGGTCTCAT	CACTGTTTCG	CATGACCGTC	GTTTCTTAAA	11940
AGAAGTCTGC	TCGATCATCT	ATCGCATGAC	AGAACACGGT	TTGAAGCTAG	TTAATTTAGA	12000
AGATTTATAA	ATTTGCAACA	TAGCAAAAAT	CCAGAGACGA	CCTCTGGATT	CTTTTACATC	12060
TGTTTTAAAC	GTTCAATCCG	TTCTGAGATA	GGTGGGTGGG	TATAAAAGAG	TTTTTGGAAC	12120
CCCCACCTT	TCTTAGGATC	ATTGATATAA	AGGGCACTGC	TAGCATCATC	GACGTGGCGA	12180
CTCATAGGTT	TGCTATTGTC	CAACTTATCT	AGGGCATTAA	TCATTCCCTG	GGGATTGCGA	12240
GTCAGCTCGA	CACTAGATGC	ATCTGCCAGA	AATTCCCTCT	GACGAGAAAT	AGCGAGCTGA	12300
ACCAAGGTTG	CAGCGAGAGG	TGCCAGTACA	ATAGCTAGTA	GGGAAACCAC	TAGCATAATG	12360
ATTTCAAGAC	CATTTCCATC	TCGGTCATCA	TCACTTCGTC	TGCGACCTGC	TCCACCCCAC	12420
CACATCATAC	GACCTGCCAT	ACTAGAAAGC	ATGGTGATAG	CACTAGCAAG	GGCAACTGCA	12480
ATAGTCGAAA	TACGGATATC	ATAATTACGA	ATATGACTGA	CTTCATGTCC	CATAACAGCT	12540
TCTAGTTCTT	CACGATTCAT	GATAGCTAGT	AGACCTGAAG	TCGCAGCAAC	AGCCGCATTT	12600
TGAGGATTAG	AACCTGTCGC	AAAGGCATTT	AAGGCTGGAT	CATCAATGAT	GAAAACACGG	12660
GGCATAGGAA	TCTGAGCGAC	CAGAGCCATA	TCTTCCACTA	CATGGTAGAG	GTCTGGTGCC	12720

GTTTGCTCAT	CCACCTCACG	CGCTCCATTC	ATGGACATGA	CAATCTCTGT	CGATTGAAAA	12780
ATCATAGACA	AAGCGTAGAT	AAAGCCGATA	ATCAGTGCAA	TAACCAAACC	ACCAAGTCCA	12840
GATCTTATAA	AGAGATAACC	AACCGCATAA	CCAACAAGAG	CTAAGAGTAG	GAAAAATACC	12900
AGCAACAAAA	TCCAGGTTTT	TCGTTTATTG	CTTGCAATTT	GATCAAACAA	CATCTTAGTC	12960
ACCTAAACCG	СТААААТСАА	CTTTAGGAAC	CGACTTTTCC	TCTTCAGGTG	TTTGAAGGAA	13020
ATCTGCCGCT	TTAAATCCAA	ACATTCCAGC	GATAATATTG	CTCGGGAAAG	TTTCTAATTT	13080
TACATTGTAG	TTGCTGACAA	CACTGTTATA	GAGTTGACGA	GAGTAAGAAA	TTTTATTTTC	13140
TGTGTTTGTC	AACTCCTCTT	GCAATTTAAC	AAAGTTAGCA	CTAGCTTTCA	AATCTGGATA	13200
GCTTTCTGCA	ACTGCAAAAA	TACCTGAAAC	CTGACGAGTG	AGGGCATCAC	TGGCTTTCAT	13260
AGCTTCTGCT	GGTGAAGTCG	CTGCCGCCAC	TTGGTTACGT	AGTTCTGCCA	CCTTTTCAAG	13320
GGTAGAACCT	TCATATTTGG	CATAACCTTT	TACAGTCTCA	ATCAAGTTTG	GCAAGAGGTC	13380
ATTGCGACGT	TTCAACTGAA	CATCAATCTG	ACTCCAAGCC	TCCTTGGTTT	GCATACGATT	13440
TTTAACCAAA	CCGTTATAGC	TAACAATCAC	AAAAATAACA	ATAAGAGCGA	TAACTCCAAG	13500
AATAATCCAA	GTCATAATAT	AAGTCCTTTC	TGCTTTTAGA	TTAGTACCAG	TATATCAAAT	13560
TTTCTATGAT	TGTGGTAAAA	TAAGATGATA	CTAAAGAAGG	AAATAACTAT	GAAACCAAAA	13620
ACATTTTACA	ACTTGCTTGC	CGAGCAGAAT	CTTCCACTTT	CGGACCAGCA	AAAAGAACAA	13680
TTTGAACGTT	ATTTTGAGCT	CTTGGTCGAG	TGGAATGAGA	AGATTAATTT	GACGGCGATT	13740
ACGGACAAGG	AAGAAGTTTA	TCTCAAACAT	TTTTACGATT	CGATTGCACC	CATTCTTCAA	13800
GGTTTGATTC	CCAATGAAAC	TATCAAACTT	CTTGATATCG	GGGCTGGGGC	AGGATTTCCT	13860
AGTCTACCAA	TGAAAATTCT	CTATCCGGAG	TTAGATGTGA	CCATTATTGA	TTCACTCAAT	13920
AAGCGCATCA	ACTTCCTACA	ACTCTTGGCT	CAAGAACTGG	ATTTGAACGG	AGTTCATTTC	13980
TACCACGGAC	GTGCCGAAGA	TTTTGCCCAA	GACAAGAACT	TCCGTGCTCA	ATATGATTTT	14040
GTAACAGCTC	GTGCGGTTGC	CCGTATGCAG	GTCCTATCTG	AATTGACTAT	TCCCTACCTT	14100
AAGGTTGGTG	GCAAACTATT	AGCACTCAAG	GCTAGCAATG	CGCCTGAGGA	ATTATTAGAA	14160
GCTAAGAATG	CCCTCAATCT	CCTTTTTAGT	AAGGTCGAAG	ACAATCTCAG	TACGCCCTAC	14220
CGAATAGAGA	TCCGCGCTAT	ATCACAGTGG	TAGAAAAGAA	AAAAGAAACA	CCAAATAAAT	14280
ATCCACGTAA	GGCTGGTATG	CCAAATAAAC	GCCCACTTTA	AATTTTTTAG	TAAACAAATG	14340
TTTACAAAAT	CAGCCTCGCT	CTTTTATTTC	TAGGCTCGGG	AAAAAATGAT	TTACAAAATC	14400
AGCCTCGCTC	TTTTATTTCT	AGGCTCGGGA	AAAAATGATT	TACAAAATCA	TTTTTTTCTG	14460

TATACTATC CTAAGCAAAG GTTTTTAATG TCATCCCGTG AGGTGACGAA GACGCAGAAA 14520
TATTTAAAAC TCTTTAAAAT CTAAATTTTA AAGAAGTCTT ACTCTGAGGG CCTATTGCTG 14580
TAAAATAATG GGCTCTTTT TGATGCCCAA AAGTGAGGTT TATATGAAAC AAGAATCAAC 14640
TGTTGATTTG TTAC 14654

#### (2) INFORMATION FOR SEQ ID NO: 107:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6405 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

AGAAAAATCT GCTTTACAGA AAATAAAAAT AATAGGAGAA AATCTATGTC AGATTTGAAA 60 AAATACGAAG GTGTCATTCC AGCCTTCTAC GCATGTTATG ATGATCAAGG AGAAGTAAGC 120 CCAGAACGTA CGCGTGCCTT GGTTCAATAC TTCATTGATA AAGGTGTTCA AGGTCTTTAT 180 GTCAATGGTT CTTCTGGTGA ATGTATCTAC CAAAGCGTTG AAGATCGCAA GTTGATTTTG 240 GAAGAAGTCA TGGCGGTAGC AAAGGTAAAT TGACCATTAT TGCCCATGTT GCTTGCAATA 300 ATACTAAAGA TAGTATGGAA CTTGCTCGCC ATGCTGAAAG CTTGGGAGTA GATGCTATTG 360 CAACGATTCC ACCAATTTAT TTCCGCTTGC CAGAATACTC AGTTGCCAAA TACTGGAACG 420 ATATCAGTTC TGCAGCTCCA AACACAGACT ACGTGATTTA CAACATTCCT CAATTGGCAG 480 GGGTTGCTTT GACTCCAAGC CTTTACACAG AAATGTTGAA AAATCCTCGT GTTATCGGTG 540 TGAAGAACTC TTCTATGCCA GTTCAAGATA TCCAAACCTT TGTCAGCCTT GGTGGAGAAG 600 ACCATATCGT CTTTAATGGT CCTGATGAGC AGTTCCTAGG AGGACGCCTC ATGGGGGGCTA 660 GGGCTGGTAT CGGTGGTACT TATGGTGCTA TGCCAGAACT CTTCTTGAAA CTCAATCAGT 720 TGATTGCGGA TAAGGACCTA GAAACAGCGC GTGAATTGCA GTATGCTATC AACGCAATCA 780 TTGGTAAACT CACTTCTGCT CATGGAAATA TGTACGGTGT CATCAAAGAA GTCTTGAAAA 840 TCAATGAAGG CTTGAATATT GGATCTGTTC GTTCACCATT GACACCAGTG ACTGAAGAAG 900 ATCGTCCAGT TGTAGAAGCG GCTGCTGCCT TGATTCGTGA AACCAAGGAG CGCTTCCTCT 960 AATCTAAAAG GAGGTATTTA TGACATATTA CGTTGCAATT GATATCGGTG GAACCAACAT 1020 CAAGTATGGT TTGGTTGATC AAGAGGGGCA ACTTCTTGAA TCGCATGAAA TGCCAACTGA 1080 GGCGCATAAG GGTGGACCTC ATATCTTACA AAAGACCAAA GATATCGTAG CTAGTTATTT 1140 AGAAAAAGGC CCAGTAGCAG GTGTTGCCAT ATCTTCTGCT GGGATGGTGG ATCCGGATAA 1200

GGGTGAGATT	TTCTATGCTG	GGCCGCAAAT	CCCTAACTAC	GCAGGCACCC	AGTTCAAAAA	1250
GGAAATCGAA	GAAAGCTTTA	CTATTCCTTG	TGAGATTGAA	AATGATGTCA	ACTGTGCAGG	1320
TCTTGCTGAG	GCAGTATCTG	GTTCAGGCAA	GGGAGCAAGT	GTGACACTTT	GCTTGACCAT	1380
TGGAACCGGT	ATCGGTGGTT	GCTTGATTAT	GGATAGGAAA	GTCTTCCATG	GTTTTAGCAA	1440
TTCAGCCTGT	GAAGTCGGGT	ATATGCATAT	GCAGGATGGA	GCTTTTCAAG	ACTTGGCTTC	1500
TACAACAGCT	TTAGTGAAAT	ATGTAGCTGA	AGCCCATGGA	GAAGATGTTG	ATCAGTGGAA	1560
TGGCCGTAGA	ATTTTCAAAG	AAGCCACTGA	AGGAAACAAA	ATCTGCATGG	AAGGTATTGA	1620
CCGTATGGTT	GACTATCTAG	GAAAAGGTCT	GGCAAATATT	TGCTACGTTG	CCAATCCAGA	1680
AGTGGTTATT	CTTGGTGGTG	GTATCATGGG	GCAAGAGGCT	ATCCTCAAAC	CTAAGATCCG	1740
TACAGCCTTG	ÄAAGAGGCTT	TGGTACCAAG	TTTAGCAGAA	AAAACACGAT	TAGAATTTGC	1800
CCATCACCAA	AATACAGCAG	GGATGTTGGG	TGCATATTAT	CATTTTAAGA	CAAAACAATC	1860
CTAGTTTGGC	TCAGCCAAAC	TAGGATTTTC	TTACACGTTT	TTGTCTACGA	TAGCCGTTGA	1920
GTTTTTATT	TTCCCAGTAG	CTATTAAAGA	TTTTTTCCTT	GCTTTCGCGA	TTGATTTCCA	1980
AAAAGTAGGC	ATAAATCAAA	TCGATAAAGA	AGAGCATAGG	AAGTTGAGCG	GATATTCGTT	2040
GGATATAGGA	CCCTTCCCTC	TGGGTGGCTA	CAAGAACAGT	CTCTGTATAG	GTCTGGCTAT	2100
CTTTATTGGG	AACACTTGTA	AAGAGTACAG	TCTTTGCCCC	CATCTCCTTA	GCATCTAATA	2160
GACTATCTAA	AATAGAAGGA	GTTGAGCCTG	AAAGTGAGAA	GCCCAGTACT	AGACAATTTT	2220
CATCCATGAT	GCTGGTTGTC	CAGGCAAAGC	CGTCTTGGTC	TGTCAAAGCT	TCGCAGACCA	2280
CACCTAGTCG	CATAAAACGT	AATTTCATTT	CACGGGCGAC	GAGGCCAGAA	CTCCCTGTTC	2340
CAAAGAAGTA	GATACGCTCA	GCATCTTCGA	TTAGCTGGGC	AATTCGTTCT	AGTTGGATTT	2400
CGTCAATCAA	GTCTTGTGTT	TGTTCCCTCA	TATTGCTATA	ACTTCTGAGG	ACTCGTTTGG	2460
TCAGTGGACT	GTGCTTGGAG	ACTTGGTTGG	CTTGATTTTC	TGCCTGATGT	TGGTATTGGA	2520
AAATAAATTC	TCGGTAGCCA	GTAAAGCCAC	ACTTTTTAGC	AAAGCGGGTC	AAAGCAGCTT	2580
GAGAAATATG	TAATTTTTGG	GTGACTTGTT	GAGAAGATAA	ATCATCTGTA	ATCGTTTCAG	2640
CTTGCAAAAA	ATAGCGAGCG	ATTTCTTGTT	CTAGGTCTGT	CATTTCTTCA	AAATGTGAAT	2700
CAATGATAGT	TGCGATATCT	GGTTTGTCCA	TAGGGAAAGC	TCCTTTACAT	GAGTCATACT	2760
GGAAGACTAG	ATCAGAGAAT	AGTCACACTT	CATTATAACA	CATAATATAA	GGATAGATAA	2820
ATAAAAACGC	ATCTCTGTTT	TAAAAACGAA	AAAATCGAAA	AAGCTTCTCT	CTTTTCCATA	2880
ATTTTCTACT	CAAATTGTGG	TACAATTAAG	AGTAAGATTT	TAAGTTAGAA	ATGAGACTGA	2940
	GGAAATCGAA TCTTGCTGAG TGGAACCGGT TTCAGCCTGT TACAACAGCT TGGCGTAGA CCGTATGGTT AGTGGTTATT TACAGCCTTG CCATCACCAA CTAGTTTGGC GGATATAGGA CTTTTTATT AAAAGTAGGC GGATATCTAA CATCCATGAT CACCTAGTCG CAAAGAAGTA CGTCAATCAA TCAGTGGACT AAATAAATTC GAGAAATATG CTTGCAAAAA CAATGATAGT GGAAGACTAG CAATGATAGT	GGAAATCGAA GAAAGCTTTA TCTTGCTGAG GCAGTATCTG TGGAACCGGT ATCGGTGGTT TTCAGCCTGT GAAGTCGGGT TACAACAGCT TTAGTGAAAT TGGCCGTAGA ATTTTCAAAG CCGTATGGTT GACTATCTAG AGTGGTTATT CTTGGTGGTG TACAGCCTTG AAAGAGGCTT CCATCACCAA AATACAGCAG CTAGTTTGGC TCAGCCAAAC GTTTTTTATT TTCCCAGTAG AAAAGTAGGC ATAAATCAAA GGATATAGGA GGGTTGGCTG CTTTATTGGG AACACTTGTA GACTATCTAA AATAGAAGGA CATCCATGAT GCTGGTTGTC CACCTAGTCG CATAAAACGT CAAAGAAGTA GATACGCTCA CGTCAATCAA GTCTTGTGTT TCAGTGGACT GTGCTTGGAG AAATAAATC TCGGTAGCCA GAGAAATAT TTTTGG CTTGCAAAAA ATAGCGAGCG CAATGATAGT TGCGATATCT GGAAGACTAG ATCAGAGAAT ATAAAAACGC ATCTCTTTT	GGAAATCGAA GAAAGCTTTA CTATTCCTTG TCTTGCTGAG GCAGTATCTG GTTCAGGCAA TGGAACCGGT ATCGGTGGTT GCTTGATTAT TTCAGCCTGT GAAGTCGGGT ATATGCATAT TACAACAGCT TTAGTGAAAT ATGTAGCTGA TGGCCGTAGA ATTTCAAAG AAGCCACTGA CCGTATGGTT GACTATCTAG GAAAAGGTCT AGTGGTTATT CTTGGTGGTG GTATCATGGG CCATCACCAA AATACAGCAG GGATGTTGGG CTAGTTTGC TCAGCCAAAC TAGGATTTTC GTTTTTTATT TTCCCAGTAG CTATTAAAGA AAAAGTAGGC ATAAATCAAA TCGATAAAGA GGATATCTAA AATAGAAGA GTTGAGCCTG CATCACTAA AATAGAAGA GTTGAGCCTG CATCACTAA AATAGAAGA GTTGAGCCTG CATCACTAA AATAGAAGA GTTGAGCCTG CACCTAGTCG CATAAAACGT AATTCATTT CAAAGAAGTA GATACGCTCA GCATCTTCGA CGTCAATCAA GTCTTGTTT TGTTCCCTCA TCAGTGGACT GTGCTTGGAG ACTTGGTTGG CAAAAAAATTC TCGGTAGCCA GTAAAAGCCAC GAGAAATATG TAATTTTTGG GTGACCTTGTT CTTGCAAAAA ATAGCGAGC ATTTCTTTT CTTGCAAAAA ATAGCGAGC ATTTCTTTT CTTGCAAAAA ATAGCGAGC ATTTCTTTT CAATGATAGT TAATTTTTGG GTGACCTTGTT CAATGATAGT TAATTTTTGG GTGACCTTTTT CAATGATAGT TAATTTTTGG GTGACTTTTT CAATGATAGT TAATTTTTTGG GTGACTTTTT CAATGATAGT TAATTTTTTGG GTGACTTTTT CTTGCAAAAA ATAGCGAGCA ATTTCTTTTT CAATGATAGT TAATTTTTTGG GTGACTTTTT CAATGATAGT TAATTTTTTTTTTTTTTTTTTTTTTTTTT	GGAAATCGAA GAAAGCTTTA CTATTCCTTG TGAGATTGAA TCTTGCTGAG GCAGTATCTG GTTCAGGCAA GGGAGCAAGT TGGAACCGGT ATCGGTGGTT GCTTGATTAT GGATAGGAAA TTCAGCCTGT GAAGTCGGGT ATATGCATAT GCAGGATGGA TACAACAGCT TTAGTGAAAT ATGTAGCTGA AGCCCATGGA TGGCCGTAGA ATTTCAAAG AAGCCACTGA AGGAAACAAA CCGTATGGTT GACTATCTAG GAAAAGGTCT GGCAAATATT AGTGGTTATT CTTGGTGGTG GTATCATGGG GCAAAGAGCT TACAGCCTTG AAAGAGGCTT TGGTACCAAG TTTAGCAGAA CCATCACCAA AATACAGCAG GGATGTTGGG TGCATATTAT CTAGTTTGCC TCAGCCAAAC TAGGATTTC TTACACGTTT AAAAGTAGGC ATAAATCAAA TCGATAAAGA AGAGCATAGG GGATATAGGA GGGTTGGCT TGGGTGCTA CAAGAACAG CCTTTATTTGG AACACTTGTA AAGAGTACAG TCTTTGCCCC GACTATCTAA AATAGAAGGA GTTGAGCCTG AAAGTCAGA CATCCATGAT GCTGGTTGTC CAGGCAAAGC CGTCTTGGTC CAACAAGAAGA GATACCACT AATTCCATT CACGGGCGAC CAAAAAAAACGA GTCTTGTT TGTTCCCTCA TATTGCTTATA TCAGTGGCT GTGCTTGGA CATTTCATT CACGGGCGAC CAAAAAAATCAA GTCTTTTTCCTTCA TATTGCTTCAAAAAAAAAA	GGAAATCGAA GAAAGCTTTA CTATTCCTTG TGAGATTGAA AATGATGTCA TCTTGCTGAG GCAGTATCTG GTTCAGGCAA GGGAGCAAGT GTGACACTTT TGGAACCGGT ATCGGTGGT GCTTGATTAT GGATAGGAAA GTCTTCCAGG TTCAGCCTGT GAAGTCGGGT ATATGCATAT GCAGGAGGA GCTTTTCAAG TACAACAGCT TTAGTGAAAT ATGTAGCTGA AGCCCATGGA GAAGATGTTG TGGCCGTAGA ATTTCAAAG AAGCCACTGA AGGAAACAAA ATCTGCATGG CCGTATGGTT GACTATCTAG GAAAAGGTCT GGCAAATATT TGCTACGTTG AGTGGTTATT CTTGGTGGTG GTATCATGG GCAAAAACAAA ATCTCCAAAC TACAGCCTTG AAAGAGGCTT TGGTACCAAG TTTAGCAGAA AAAACACGAT TACAGCCTTG AAAGAGGCTT TGGTACCAAG TTTAGCAGAA AAAACACGAT CCATCACCAA AATACAGCAG GGATGTTGG TGCATATTAT CATTTTAAGA CTAGTTTGGC TCAGCCAAAC TAGGATTTC TTACACGTTT TTGTCTACGA GTTTTTTATT TTCCCAGTAG CTATTAAAGA TTTTTCCTT GCTTTCGCGA AAAAGTAGGC ATAAATCAAA TCGATAAAGA AGGCATAGG AAGTTGAGCG GGATATAGGA GGGTTGGCT TGGGTGGCTA CAAGAACAGT CTCTGTATAG GCTTATTTAGG AACACTTGTA AAGAGTACAG TCTTTGCCCC CATCTCTTA GACTATCTAA AATAGAAGGA GTTGAGCCTG AAAGTAGAAA GCCCAGTACT CACCCAGAAC AATACACAG AATTTCATTT CACGGGCGAC GAGGCCAGAA CAAAGAAGTA GCTGGTTGTC CAGGCAAAGC CTCTTGGTC TGTCCAAAGCT CACCCAGAAC AATACCACA AATTCCATTA CACGGGCGAC GAGGCCAGAA CAAAGAAGTA GATACGCTCA GATTTCCATT CACGGGCGAC GAGGCCAGAA CAAAGAAGTA GATACGCTCA GATTTCCAT TAGCTTGGCC AATTCCTTC CACCTAGTCG CATAAAACGT AATTTCATTT CACGGGCGAC GAGGCCAGAA CAAAGAAGTA GATACGCTCA GCATCTTCGA TATGCCTGGC AATTCCTTCT CGCTCAATCAA GTCTTGGTTT TGTTCCCTCA TATTGCTATA ACTTCTGAGG TCAGTGGACT GTGCTTGGAG ACTTGGTTG CTTGATTTTC TGCCTGATGTT CAGTGGACT GTGCTTGGAG ACTTGGTTG CTTGATTTTC TGCCTGATGTT CAGTGGACT GTGCTTGGAG ACTTGGTTG CTTGATTTTC TGCCTGATGTT CAAAAAAAAAAAAAAAAAAAAAAAAAAA	GGGTGAGATT TTCTATGCTG GGCCGCAAT CCCTAACTAC GCAGGCACCC AGTTCAAAA GGAAATCGAA GAAAGCTTTA CTATTCCTTG TGAGATTGAA AATGATGTCA ACTGTGCAGG TCTTGCTGAG GCAGATCTG GTTCAGGCAA GGGAGCAAGT GTGACACTTT GGGAACCCGT ATCGGTGGTT GCTTGATTAT GGATAGGAAA GTCTTCCATG GTTTTAGCAA TTCAGCCGTG GAAGTCGGGT ATATGCATAT GCAGGATGGA GCTTTTCAAG ACTTGGCTTC TACAACAGCT TTAGTGAAAT ATGTAGCTGA AGCCCATGGA GAAGATGTTG ATCAGTGGAA TGGCCGTAGA ATTTCAAAG AAGCCACTGA AGGAAACAAA ATCTGCATGG AAGGTATGA ACTGGCTTATC CTTGGTGGTG GTACCAAG TTTAGCAAA ATCTCAAACG AAGAGCCTTG AAAGAGGCTT TGGTACCAAG TTTAGCAGAA AAACCACGAT TAGAATCAG CCATCACCAA AATACAGCAG GGATGTGG TCCATATTAT CATTTTAAGA CAAAACAATC CCATCACCAA AATACAGCAG GGATGTTGG TCCATATTAT CATTTTAAGA CAAAACAATC CTAGTTTGCC TCAGCCAAAC TAGGATTTC TTACACGTTT TTGCTCACGA TAGATCTCG GGTATTGGT TCCCAGTAG CTATTAAAGA TTTTTCCTT GCTTTCGCGA TTGATTCCA AAAAGTAGGC ATAAAACAA TCGATAAAGA AGGCCATAGG AAGTTGGCG GATATTCTT GGATATAGGA GGGTTGGCT TGGTGGCTA CAAGAACAATC CTTTATTGGG AACACTTGTA AAGAGTACA TCGTTAAGGA CATCTCACAA AATACAAGC ATAAATCAAA TCGATAAAGA AGGCCATAGG AAGTTGGCG GATATTCCTT GGATATTGG AACACTTGTA AAGAGTACG TCTTTGCCC CATCTCCTTA GCATCTAATA AAAAGTAAGGA GGGTTGGCT TGGGTGGCTA CAAGAACAGT CTCTGTATAG GTCTGGCTAT CTTTATTGGG AACACTTGTA AAGAGTACAG TCTTTGCCC CATCTCCTTA GCATCTAATA AACACATGTT AAGAGTACAG TCTTTGCCC CATCTCCTTA GCATCTAATA AACACATTTT CAGGCCAGAAC TCTTTGCCC CATCTCCTTA GCATCTAATA CACCATGATC AATACAAA TCTGACCAG AATTCATTT CACGGGCGAC GAGGCCAGAA CTCCCTGTTC CAAAGAAGTA GATACCCTCA GCATCTTCGA TATTGCTTCT TGTCAAAGCT TCGCAGACCA CACCTAGTCG CATAAAACGT AATTCATTT CACGGGCGAC GAGGCCAGAA CTCCCTGTTC CAAAGAAGTA GATACCCTCA GCATCTTCGA TATTGCTTATA ACTTCTGAGG ACTCCTTTGG CAAAAAAACGT TTTTCCCTCA TATTGCTTATA ACTTCTGAGG ACTCCTTTTGG CACAAAAAAACGA ATTTCTTTT CAGGGGAAGA ACTCCTTTCAG CAAAAAAATTC TCGGTAGCCA GTAAAACCAC ACTTTTTACC AAAACCAGT TAGTTTCTACA CAATGAAAAAACCA ATTTTTTTG GTGACCTTTTTTC TCGCTGTTCT TAGTTTTCAG CAAAAAAAATTC TCGGTAGCCA GTAAAACCAC ACTTTTTACC AAAACCAGT TAGTTTTCAG CAAAAAAAATTC TCGGTAGCCA GTAAAACCAC ACTTTTTACA CAAATATAA GGATAATAA ATAAAAAACCA ATTTTTTTG GTGACCATC TATTGCAAA AAACCACTT CATTTTCAA A

				792			
	TTTGTATGAG	AAAATTTAAC	AGCCATTCGA		GCTTAATTTA	TTGTTTTCAA	3000
	TCGTCATTTT	ACTCTTTATG	ACCATTATTG	GTCGTTTGTT	GTATATGCAG	GTTTTGAACA	3060
	AGGATTTTTA	CGAAAAAAAG	CTAGCTTCAG	CTAGTCAGAC	CAAGATTACA	AGCAGTTCAG	3120
	CCCGTGGGGA	AATTTATGAT	GCTAGTGGAA	AACCTTTGGT	AGAAAATACG	TTAAAGCAGG	3180
	TTGTTTCCTT	TACGCGTAGC	AATAAAATGA	CGGCTACAGA	CTTAAAAGAA	ACAGCTAAAA	3240
	AGTTACTGAC	TTATGTGAGC	ATCAGTTCTC	CAAATTTGAC	AGAACGCCAG	CTGGCGGATT	3300
	ACTATTTGGC	TGATCCTGAA	АТСТАТАААА	AAATAGTGGA	AGCTCTCCCA	AGTGAGAAAC	3360
`	GCTTGGATTC	AGATGGCAAT	CGTCTATCCG	AATCAGAACT	GTATAACAAT	GCGGTCGATA	3420
	GTGTACAAAC	GAGTCAACTA	AACTATACAG	AGGATGAAAA	GAAAGAAATC	TATCTTTTTA	3480
	GTCAGTTAAA	TGCTGTTGGA	AACTTTGCGA	CAGGAACCAT	TGCGACAGAT	CCTCTAAATG	3540
	ATTCTCAGGT	GGCTGTTATT	GCCTCTATTT	CAAAGGAGAT	GCCTGGCATT	AGTATTTCTA	3600
	CTTCTTGGGA	TAGAAAGGTT	TTGGAAACTT	CCCTTTCTTC	TATAGTTGGG	AGTGTATCCA	3660
	GTGAAAAAGC	TGGTCTCCCA	GCGGAAGAAG	CAGAAGCCTA	TCTTAAAAAA	GGCTATTCTC	3720
	TAAATGACCG	TGTAGGAACC	TCCTATTTGG	AAAAGCAATA	TGAAGAGACC	TTACAAGGAA	3780
	AACGCTCGGT	AAAAGAAATC	CATCTGGATA	AATATGGCAA	TATGGAAAGC	GTGGATACAA	3840
	TTGAGGAAGG	TAGTAAGGGA	AACAATATCA	AACTGACCAT	TGATTTGGCT	TTCCAAGATA	3900
	GCGTGGATGC	TTTACTGAAA	AGTTATTTCA	ATTCTGAGCT	AGAAAATGGT	GGAGCCAAGT	3960
	ATTCTGAAGG	TGTCTATGCA	GTCGCCCTTA	ACCCAAAAAC	AGGTGCGGTT	TTGTCTATGT	4020
	CAGGGATTAA	ACATGACTTG	AAAACGGGAG	AGTTGACGCC	TGATTCCTTG	GGAACGGTAA	4080
	CCAATGTCTT	TGTTCCAGGT	TCGGTTGTCA	AGGCGGCGAC	CATCAGCTCA	GGTTGGGAAA	4140
	ATGGAGTCTT	GTCAGGAAAC	CAGACCTTGA	CAGACCAGTC	CATTGTCTTC	CAAGGTTCAG	4200
	CTCCCATCAA	TTCTTGGTAT	ACTCAGGCTT	ACGGTTCATT	CCCTATCACA	GCGGTCCAAG	4260
	CTCTGGAGTA	TTCATCAAAT	ACCTATATGG	TCCAAACAGC	CTTAGGTCTT	ATGGGGCAAA	4320
	CCTATCAACC	CAATATGTTT	GTCGGCACCA	GCAATCTAGA	GTCTGCTATG	GAGAAACTGC	4380
	GTTCAACCTT	TGGCGAATAT	GGCTTGGGTA	CTGCGACAGG	AATTGACCTA	CCAGATGAAT	4440
	CTACTGGATT	TGTTCCCAAA	GAGTATAGCT	TTGCTAATTA	CATTACTAAT	GCCTTTGGGC	4500
	AGTTTGATAA	CTATACGCCG	ATGCAGTTGG	CTCAGTATGT	AGÇAACTATT	GCAAATAATG	4560
	GTGTTCGTGT	GGCTCCTCGT	ATTGTTGAAG	GCATTTATGG	TAATAATGAT	AAGGGAGGAC	4620
	TGGGTGACTT	GATTCAGCAA	CTGCAACCGA	CAGAGATGAA	TAAGGTCAAT	ATATCCGACT	4680
	CCGATATGAG	CATCTTGCAC	CAAGGTTTTT	ATCAGGTTGC	CCATGGTACT	AGTGGATTGA	4740
			· ·			•	

CAACTGGACG	TGCCTTTTCA	AATGGTGCCT	TGGTATCCAT	TAGCGGAAAA	ACAGGTACAG	4800
CCGAAAGCTA	TGTGGCAGAT	GGTCAGCAAG	CAACCAATAC	CAATGCGGTG	GCCTATGCCC	4860
CATCTGATAA	TCCCCAAATC	GCTGTCGCAG	TGGTCTTTCC	TCATAATACC	AATCTAACAA	4920
ATGGTGTAGG	ACCTTCCATT	GCGCGTGACA	TTATCAATCT	GTATCAAAAA	TACCATCCAA	4980
TGAATTAGAA	AGGAAATTAT	GCTTTATCCA	ACACCTATTG	CCAAGTTGAT	TGACAGTTAT	5040
TCTAAGTTAC	CAGGTATCGG	GATTAAGACG	GCTACGCGTC	TGGCCTTTTA	TACGATTGGG	5100
ATGTCTGCTG	ATGATGTCAA	TGAATTTGCA	AAAAATCTCC	TTTCTGCTAA	GAGAGAATTG	5160
ACATATTGTT	CTATTTGTGG	ACGTTTGACA	GACGACGATC	CTTGTTCTAT	CTGTACTGAT	5220
CCGACTCGTG	ACCAGACAAC	AATTTTAGTT	CTTGAGGATA	GTAGAGATGT	GGCAGCCATG	5280
GAAAATATCC	AAGAATACCA	TGGACTCTAT	CATGTCCTTC	ATGGCCTCAT	TTCTCCTATG	5340
AATGGTATCA	GTCCGGACGA	TATCAATCTC	AAGAGCCTTA	TGACTCGTCT	TATGGATAGT	5400
GAGGTTTCAG	AAGTGATTGT	GGCGACTAAT	GCTACAGCGG	ATGGTGAAGC	GACTTCCATG	5460
TATCTTTCAC	GTTTGCTCAA	GCCGGCTGGT	ATCAAGGTTA	CGCGTCTAGC	ACGAGGTCTC	5520
GCTGTGGGAG	CGGACATTGA	GTATGCGGAC	GAAGTGACAC	TCTTACGAGC	CATTGAAAAT	5580
CGGACAGAGT	TGTAAGTGTA	GGCAAATTTA	CGAACTCCAT	TCATTTATAA	AAAATCAAAG	5640
AGGCTGAAAA	TCGTTCCTAT	CGGCCTCTTT	TTGTATAGTG	TGATGAGTAG	GCTCAGGTTC	5700
AAGTTTTAAA	AAACCAAGCA	AATATGATAT	ACTAAAGAGC	GAGTATTCTA	GTAGAATTAG	5760
GACAAATAAT	ATGAAACAAA	CGATTATTCT	TTTATATGGT	GGACGGAGTG	CGGAACGCGA	5820
AGTCTCTGTC	CTTTCAGCTG	AGAGTGTCAT	GCGTGCGGTC	GATTACGACC	GTTTCACAGT	5880
CAAGACTTTC	TTTATCAGTC	AGTCAGGTGA	CTTTATCAAA	ACACAGGAAT	TTAGTCATGC	5940
TCCGGGGCAA	GAAGACCGTC	TCATGACCAA	TGAAACCATT	GATTGGGATA	AGAAAGTTGC	6000
ACCAAGTGCT	ATCTACGAAG	AAGGTGCAGT	GGTCTTTCCA	GTCCTTCACG	GGCCAATGGG	6060
AGAAGATGGC	TCTGTTCAAG	GATTCTTGGA	AGTTTTGAAA	ATGCCTTACG	TTGGTTGCAA	6120
CATTTTGTCA	TCAAGTCTTG	CCATGGATAA	AATCACGACT	AAGCGTGTTC	TGGAATCTGC	6180
TGGTATTGCC	CAAGTTCCTT	ATGTGGCTAT	CGTTGAAGGC	GATGATGTGA	CTGCTAAAAT	6240
CGCTGAAGTG	GAAGAAAAAT	TGGCTTATCC	AGTCTTCACT	AAGCCGTCAA	ACATGGGGTC	6300
TAGTGTCGGT	ATTTCTAAGT	CTGAAAACCA	AGAAGAACTC	CGTCAAGCCT	TAAAACTTGC	6360
CTTCCGATAT	GACAGCCGTG	TCTTGGTTGA	GCAAGGAGTG	AATGC		6405

⁽²⁾ INFORMATION FOR SEQ ID NO: 108:

794

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11309 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:

CGAGCTCGGG	TACCGGGATT	TTAAGGAGT	T TGATATGTAT	AACCTATTAT	TAACCATTTT	60
ATTAGTATTA	TCTGTTGTG	TTGTGATTG	AATTTTCATO	CAACCAACCA	AAAACCAATC	120
CAGCAATGTA	TTTGATGCCA	GTTCAGGTG	TTTGTTTGAA	CGCAGTAAAC	CTCGCGGTTT	180
TGAAGCTGTA	ATGCAGCGTT	TGACAGGGAT	TTTAGTCTTT	TTCTGGCTAG	CCATTGCCTT	240
AGCATTGACG	GTATTATCAA	GTAGATAAGA	AAATAATGGG	CAGGACTAGG	TCTTTGCCTC	300
TTTTTATTT	TAAAGGATGT	TTGAGAAGGT	TTTACAGTAA	AAGAAAATTA	AAAAATCTAG	360
AAAGAAAATA	TGAAAGATAG	AATAAAAGAA	TATTTACAAG	ACAAGGGAAA	GGTGACTGTT	420
AATGATTTGG	CTCAGGCTTT	GGGAAAAGAC	AGTTCCAAGG	ATTTTCGTGA	GTTGATTAAA	480
ACCTTGTCCT	TAATGGAAAG	AAAGCACCAA	ATTCGTTTTG	AAGAAGATGG	TAGTCTGACA	540
TTAGAAATTA	AGAAAAAACA	TGAGATTACC	CTCAAGGGGA	TTTTTCATGC	CCATAAAAAT	600
GGCTTTGGCT	TTGTTAGTCT	GGAAGGCGAG	GAGGACGACC	TTTTTGTAGG	GAAAAATGAT	660
GTCAACTATG	CTATTGATGG	TGATACCGTC	GAGGTAGTGA	TTAAGAAAGT	CGCTGACCGC	720
AATAAGGGAA	CAGCAGCAGA	AGCCAAAATT	ATTGATATCC	TAGAACACAG	TTTGACAACA	780
GTTGTCGGGC	AAATCGTTCT	GGATCAGGAA	AAACCTAAGT	ATGCTGGCTA	TATTCGTTCA	840
AAAAATCAGA	AAATCAGTCA	ACCGATTTAT	GTTAAGAAAC	CAGCCCTAAA	ATTAGAAGGA	900
					TTTCTTTGTC	960
GCGAGTGTTC						1020
					AGCAGAAAGT	1080
GTGCCTGATG						1140
ACCTTTACCA						1200
CTGAAAAATG						1260
GAGGGGTCTG						
CGAGTGGTGC (						1320
GTTGACCGCC 1						1380
TATACCATTA (						1440
		cratorice	AGILLICULA	IGACCTATAG	CGATGTCAAT	1500

GATATCCTAG	CTGGCGATGA	AGAAAAGAGA	AAAGAATATC	ATAAAATTGT	ATCAAGTATC	1560
GAACTCATGG	CCAAGCTTCA	TGAAACTTTA	GAAAACATGC	GTGTGAAACG	TGGAGCTCTC	1620
<b>AATTT</b> TGATA	CCAATGAAGC	GAAGATTTTA	GTGGATAAAC	AAGGTAAGCC	TGTTGATATC	1680
GTTCTTCGGC	AGCGTGGTAT	TGCCGAGCGG	ATGATTGAGT	CTTTTATGTT	GATGGCTAAT	1740
GAAACAGTTG	CCGAACATTT	CAGCAAGTTG	GATTTGCCTT	TTATCTATCG	AATTCACGAG	1800
GAGCCTAAGG	CTGAAAAGGT	TCAGAAGTTT	ATTGATTATG	CTTCGAGTTT	TGGCTTGCGC	1860
ATTTATGGAA	CTGCCAGTGA	GATTAGTCAG	GAGGCACTTC	AAGACATCAT	GCGTGCTGTT	1920
GAGGGAGAAC	CTTATGCAGA	TGTATTGTCC	ATGATGCTTC	TTCGCTCTAT	GCAGCAGGCT	1980
CGTTATTCGG	AGCACAATCA	CGGCCACTAT	GGACTAGCTG	CTGACTATTA	TACTCACTTT	2040
ACCAGTCCAA	TTCGTCGTTA	TCCAGACCTT	CTTGTTCACC	GTATGATTCG	GGATTACGGC	2100
CGTTCTAAGG	AAATAGCAGA	GCATTTTGAA	CAAGTGATTC	CAGAGATTGC	GACCCAGTCT	2160
TCCAACCGTG	AACGTCGTGC	CATAGAAGCT	GAGCGTGAAG	TCGAAGCCAT	GAAAAAGGCT	2220
GAGTATATGG	AAGAATACGT	GGGTGAAGAG	TATGATGCAG	TTGTATCAAG	TATTGTCAAA	2280
TTCGGTCTCT	TTGTCGAATT	GCCAAACACA	GTTGAAGGCT	TGATTCACAT	CACTAATCTG	2340
CCTGAATTTT	ATCATTTCAA	TGAGCGTGAT	TTGACTCTTC	GTGGAGAAAA	ATCAGGTATC	2400
ACTTTCCGAG	TGGGTCAGCA	GATCCGTATC	CGTGTTGAAA	GAGCGGATAA	AATGACTGGA	2460
GAGATTGATT	TTTCATTCGT	ACCTAGTGAG	TTTGATGTGA	TTGAAAAAGG	CTTGAAACAG	2520
TCTAGTCGTA	GTGGCAGAGG	GCGTGATTCA	AATCGTCGTT	CGGATAAGAA	GGAAGACAAG	2580
AGAAAATCAG	GACGCTCAAA	TGATAAGCGT	AAGCATTCAC	AAAAAGACAA	GAAGAAAAA	2640
GGAAAGAAAC	CTTTTTACAA	GGAAGTAGCT	AAGAAAGGAG	CCAAGCATGG	CAAAGGGCGA	2700
GGGAAAGGTC	GTCGCACAAA	ATAAAAAGGC	ACGCCACGAC	TATACAATCG	TAGATACGCT	2760
AGAGGCAGGG	ATGGTCCTGA	CTGGAACTGA	AATCAAGAGT	GTACGAGCTG	CTCGAATTAA	2820
TCTCAAGGAT	GGCTTTGCTC	aagtgaaaaa	TGGAGAAGTT	TGGCTGAGCA	ATGTTCATAT	2880
CGCGCCTTAC	GAAGAGGCA	ATATCTGGAA	CCAGGAACCA	GAACGTCGTC	GTAAACTCCT	2940
GCTCCATAAA	AAGCAAATTC	AAAAATTGGA	ACAAGAGATC	AAAGGGACAG	GAATGACCTT	3000
AGTTCCCCTT	AAGGTCTATA	TAAAAGATGG	CTACGCTAAG	CTTCTTTTAG	GACTTGCCAA	3060
AGGGAAGCAT	GACTATGACA	AACGGGAGTC	TATCAAACGT	CGTGAGCAAA	ATCGAGATAT	3120
CGCGCGTGTG	ATGAAAGCTG	TTAATCAGCG	ATAAAAAGAG	GAATTGAAAA	TGGAAAAATT	3180
AGTTGCCTAT	AAACGCATGC	CTTTGTGGAA	TAAACAAACA	ATGCCTGAAG	CTGTTCAGCA	3240

			196			
AAAGCACAAT	ACAAAAGTTG	GGACTTGGGG	GAAAATTACT	GTCTTGAAGG	GAGCTCTCAA	3300
GTTTATTGAA	TTGACAGAAG	AAGGGGAAGT	TCTAGCTGAA	CACCTCTTTG	AAGCAGGGC	3360
AGACAATCCA	ATGGCCCAAC	CTCAAGCCTG	GCACCGAGTG	GAAGCTGCCA	CAGATGATGT	3420
GGAATGGTAC	TTGGAATTTT	ATTGTAAACC	TGAGGATTAT	TTTGCTAAAA	AATACAATAC	3480
CAATCCTGTT	CATTCAGAGG	TCCTAGAGGC	CATGCAGACA	GTGAAACAAG	GGAAAGCTTT	3540
GGATTTGGGT	TGTGGTCAGG	GGCGTAATTC	TCTTTTTCTA	GCCCAGCAAG	ATTTTGATGT	3600
GACGGCTGTA	GATCAAAATG	GACTAGCTCT	TGAAATCTTG	CAAAGCATTG	TGGAGCAGGA	3660
AGATTTGGAC	ATGCCTGTTG	GCCTTTACGA	TATCAATTCA	GCTAGCATTG	AACAAGAATA	3720
<b>IGATTTT</b> ATC	GTTTCAACAG	TTGTTCTCAT	GTTTCTACAA	GCGGACCGCA	TTCCAGCTAT	3780
TATTCAAAAT	ATGCAGGAGA	AAACCAGTGT	TGGTGGTTAC	AACCTTATCG	TTTGTGCCAT	3840
GGACACGGAG	GATTATCCTT	GCTCGGTTAA	CTTCCCATTC	ACCTTTAAAG	AAGGAGAACT	3900
GGCAGACTAT	TACAAGGATT	GGGAATTGGT	TAAGTACAAT	GAAAATCCAG	GCCATTTGCA	3960
CCGTCGCGAT	GAGAATGGCA	ATCGTATTCA	ACTACGCTTT	GCGACCTTAC	TAGCTAAGAA	4020
<b>AATCAAGTAA</b>	ACACACATGA	AGATTAGGAA	TTTTCCTGAT	CTTTTTTCTT	TTTTACGAAT	4080
GATATAGAAA	AGGAGGGAAT	TCATGTTTGT	TGCGAGAGAT	GCTAGGGGAG	AATTGGTAAA	4140
rgtgttagag	GATAAACTTG	AGAAGCAAGC	ATACACCTGC	CCAGCTTGTG	GAGGCCAGCT	4200
CCATTTGCGT	CAAGGACCAA	GTGTACGGAC	GCATTTTGCC	CATAAATCCT	TAAAAGACTG	4260
rgattttttc	TTTGAAAATG	AAAGTCCAGA	ACACCTGGCC	AATAAGGAAT	CCCTCTATCA	4320
CTGGTTGAAA	AAAGAGACAA	AGGTTCAATT	AGAGTAÇCCG	CTTTCAGAAC	TTAAACAGAT	4380
rgcggatgta	TTTGTAAATG	GCAATCTAGC	TCTAGAAGTT	CAGTGTAGTC	CCTTGCCTCA	4440
GAAAGTCCTT	AAAGAGCGAA	GTGAGGGCTA	TCGTAGTCAG	GGTTACCAAG	TACTGTGGTT	4500
CTGGGTCAA	AAACTGTGGC	TCAAGGAGCG	TTTGACTCGT	CTACAGCAAG	GTTTTCTTTA	4560
TTCAGTCAA	AACATGGGCT	TTTATGTTTG	GGAATTAGAC	AAGGAAAAAC	AAGTTTTAAG	4620
CTCAAATAC	CTGATTTACC	AGGATCTCCG	CGGTAAACTC	CATTATCAAA	TCAAGGAATT	4680
TCCTATGGT	CAAGGTAGTT	TATTGGAAAT	ATTGCGTCTT	CCCTATAAGA	GACAAAAAAT	4740
TCTCATTTT	ACAGTTTCTG	AGGACAAGGA	CATCTGTCGC	TATATCCGGC	AACAACTTTA	4800
TATCAAAAT	CTCTTTTGGA	TGAAAGAACA	AGCAGAAGCC	TATCAAAAGG	GAGAAAATAT	4860
CCTGACTTAT	GGACTGAAAG	AATGGTATCC	ACAAATTCGA	CCAATAGTGG	GCAAATTTTT	4920
ÇAGATTGAA	CAAGACTTGA	CTAGCTATTA	TCAGCACTTT	TATACCTATT	ACCAAAAAA	4980
CCTCAAAAT	GATTGGCAAA	AGCTTTATCC	ACCAGCCTTT	TATCAGCAAT	ATTTCTTGAA	5040

AAATATGGTA	GAATAGAAAG	GATGGAGGAA	TCTAATGGTA	TTACAAAGAA	ATGAAATAAA	5100
TGAAAAAGAT	ACATGGGATC	TATCAACGAT	CTACCCAACT	GACCAGGCTT	GGGAAGAAGC	5160
CTTAAAAGAT	TTAACAGAAC	AATTGGAGAC	AGTAGCCCAG	TATGAAGGCC	ATCTCTTGGA	5220
TAGTGCGGAT	AACCTACTAG	AAATCACTGA	ATTTTCTCTT	GAAATGGAAC	GCCAGATAGA	5280
GAAGCTTTAC	GCTTATGCTC	ATATGAAGAA	TGACCAGGAT	ACACGTGAAG	CTAAGTATCA	5340
AGAGTACTAT	GCCAAGGCCA	TGACACTCTA	CAGCCAGTTA	GACCAAGCCT	TTTCATTCTA	5400
TGAGCCTGAA	TTTATGGAGA	TTAGCGAAAA	GCAGTATGCT	GACTTTTTAG	AAGCTCAACC	5460
AAAGCTGCAG	GTTTATCAAC	ACTATTTTGA	CAAGCTTTTG	CAAGGCAAGG	ATCACGTTCT	5520
TTCACAACGT	GAAGAAGAAT	TATTGGCTGG	AGCTGGAGAA	ATCTTTGGTT	CAGCAAGTGA	5580
AACCTTCGCT	ATCTTGGACA	ATGCGGATAT	TGTGTTCCCT	TATGTCCTAG	ACGATGATGG	5640
TAAAGAAGTT	CAGCTATCTC	ATGGGACTTA	CACACGTTTG	ATGGAGTCTA	AAAAACGTGA	5700
GGTTCGCCGT	GGTGCCTATC	AAGCTCTTTA	TGCGACTTAC	GAACAATTCC	AACACACCTA	5760
TGCCAAAACC	TTGCAAACCA	ATGTTAAGGT	GCAAAATTAC	CGTGCTAAAG	TTCGTAACTA	5820
CAAGAGTGCT	CGTCATGCAG	CCCTCGCAGC	GAATTTTGTT	CCAGAAAGTG	TTTATGACAA	5880
TTTGGTAGCA	GCAGTTCGCA	AGCATTTGCC	ACTCTTACAT	CGCTATCTTG	AGCTTCGTTC	5940
AAAAATCTTG	GGGATTTCAG	ATCTCAAGAT	GTACGATGTC	TACACACCGC	TTTCATCTGT	6000
TGAATACAGT	TTTACCTACC	AAGAAGCCTT	GAAAAAAGCA	GAAGATGCTT	TGGCAGTCTT	6060
GGGTGAGGAT	TACTTGAGCC	GTGTTAAACG	TGCCTTCAGC	GAGCGTTGGA	TTGATGTTTA	6120
CGAAAATCAA	GGCAAGCGTT	CAGGTGCCTA	CTCTGGTGGT	TCTTATGATA	CCAATGCCTT	6180
TATGCTTCTC	AACTGGCAAG	ACAATCTGGA	CAATCTCTTT	ACTCTTGTTC	ATGAAACAGG	6240
TCACAGTATG	CATTCAAGCT	ATACTCGTGA	AACTCAGCCT	TATGTTTACG	GGGATTACTC	6300
TATCTTTTTG	GCTGAGATTG	CCTCAACTAC	CAATGAAAAT	ATCTTGACGG	AGAAATTATT	6360
GGAAGAAGTG	GAAGACGACG	CAACACGCTT	TGCTATTCTC	AATAACTTCC	TAGATGGTTT	6420
CCGTGGAACA	GTTTTCCGCC	AAACTCAATT	TGCTGAGTTT	GAACACGCCA	TTCACCAAGC	6480
AGATCAAAAT	GGGGAGGTCT	TGACAAGCGA	TTTCCTAAAT	AAACTCTACG	CAGACTTGAA	6540
CCAAGAGTAT	TATGGTTTGA	GTAAGGAAGA	CAATCCTGAA	ATCCAATACG	AGTGGGCTCG	6600
CATTCCACAC	TTCTACTATA	ACTACTATGT	ATATCAATAT	TCAACTGGCT	TTGCGGCCGC	6660
CTCAGCCTTG	GCTGAAAAA	TTGTCCATGG	TAGTCAAGAA	GACCGTGACC	GCTATATCGA	6720
CTACCTCAAG	GCAGGTAAGT	CGGACTATCC	ACTTAATGTC	ATGAGAAAAG	CTGGTGTTGA	6780

			798			
TATGGAGAAG	GAAGACTACC	TCAACGATGC	CTTTGCAGTC	TTTGAACGCC	GTTTAAATGA	684
GTTTGAAGCC	CTTGTTGAAA	AATTAGGATT	GGCATAAAAT	GGTTGAATCG	TATAGTAAGA	690
ATGCTAACCA	TAACATGCGT	CGTCCTGTCG	TCAAAGAAGA	AATTGTAGAC	TTGATGCGTC	6960
AGCGTCAAAA	GCAGGTCACA	GGTTTCTTGA	aagaattgga	AGACTTTGCC	CGCAAGGAAA	7020
ATATTCCTAT	TATTCCCCAT	GAAACGGTTG	CTTATTTCCG	TTTTCTTATG	GAAACCATGC	7080
AGCCTAAAAA	TATTCTGGAA	ATTGGGACGG	CTATCGGTTT	TTCAGCTCTC	TTGATGGCTG	7140
AACATGCGCC	AAATGCTAAG	ATTACAACTA	TTGATCGTAA	TCCAGAAATG	ATTGGTTTTG	7200
CCAAGGAAAA	TTTTGCCCAG	TTTGACAGTC	GCAAGCAAAT	CACTCTCCTA	GAGGGAGATG	7260
CGGTGGATGT	CTTATCTACA	CTGACAGAGT	CTTATGATTT	CGTCTTTATG	GATTCTGCCA	7320
AGTCTAAATA	CATCGTCTTT	CTGCCAGAAA	TCCTCAAACA	TTTGGAAGTT	GGTGGTGTGG	7380
TTGTCTTGGA	TGATATTTTT	CAAGGTGGTG	ATGTTGCCAA	GGATATTATG	GAAGTCCGTC	7440
GTGGTCAGCG	AACCATTTAT	CGAGGCCTTC	AAAAATTATT	TGATGCAACC	TTAGACAATC	7500
CAGAACTCAC	CGCAACATTA	GTGCCTTTAG	GAGATGGTAT	TCTCATGCTT	CGTAAAAATG	7560
TAGCAGATGT	TCAACTGTCT	GAAAGCGAAT	GATTTTCAGA	AAAATTTAAG	AAAAAATAGT	7620
AAAATAGATA	GAGTAACACT	TATCTCAAAG	GAGTAGACAT	GAAGAAAAA	TTATTGGCAG	7680
GTGCCATCAC	ACTATTATCA	GTAGCAACTT	TAGCAGCTTG	TTCGAAAGGG	TCAGAAGGTG	7740
CAGACCTTAT	CAGCATGAAA	GGGGATGTCA	TTACAGAACA	TCAATTTTAT	GAGCAAGTGA	7800
AAAGCAACCC	TTCAGCCCAA	CAAGTCTTGT	TAAATATGAC	CATCCAAAAA	GTTTTTGAAA	7860
AACAATATGG	CTCAGAGCTT	GATGATAAAG	AGGTTGATGA	TACTATTGCC	GAAGAAAAA	7920
AACAATATGG	CGAAAACTAC	CAACGTGTCT	TGTCACAAGC	AGGTATGACT	CTTGAAACAC	7980
GTAAAGCTCA	AATTCGTACA	AGTAAATTAG	TTGAGTTGGC	AGTTAAGAAG	GTAGCAGAAG	8040
CTGAATTGAC	AGATGAAGCC	TATAAGAAAG	CCTTTGATGA	GTACACTCCA	GATGTAACGG	8100
CTCAAATCAT	CCGTCTTAAT	AATGAAGATA	AGGCCAAAGA	AGTTCTCGAA	AAAGCCAAGG	8160
CAGAAGGTGC	TGATTTTGCT	CAATTAGCCA	AAGATAATTC	AACTGATGAA	AAAACAAAAG	8220
AAAATGGTGG	AGAAATTACC	TTTGATTCTG	CTTCAACAGA	AGTACCTGAG	CAAGTCAAAA	8280
AAGCCGCTTT	CGCTTTAGAT	GTGGATGGTG	TTTCTGATGT	GATTACAGCA	ACTGGCACAC	8340
AAĞCCTACAG	TAGCCAATAT	TACATTGTAA	AACTCACTAA	GAAAACAGAA	AAATCATCTA	8400
ATATTGATGA	CTACAAAGAA	AAATTAAAA	CTGTTATCTT	GACTCAAAAA	CAAAATGATT	8460
CAACATTTGT	TCAAAGCATT	ATCGGAAAAG	AATTGCAAGC	AGCCAATATC	AAGGTTAAGG	8520
ACCAAGCCTT	CCAAAATATC	TTTACCCAAT	ATATCGGTGG	TGGAGATTCA	AGCTCAAGCA.	8580

GTAGTACATC	AAACGAATAG	TCCAAATCAA	TGAGTCAGGG	AAAAACTCG	ACTTCAGGAA	8640
AAAATGAAGC	AAACATTCCC	ACAATAAAAC	GCATAGTACA	AGGTTTGTAC	TGCCCCCAA	8700
AAAGTTAGAC	AATTAATTTA	TCCGAAGGAT	TTAGTTCTGT	ATTGCACAGA	GCTAAGTCCT	8760
TTTAGTTTTA	TCTTAATTCT	CTTATTGTTG	TAATAATCAA	TATAGTCTAT	AATGGCTCGT	8820
TCCAATTGAT	TAAGTGATTT	AAATGTTTTC	TCATAGCCAT	AAAACATTTC	GGATTTTAAA	8880
ATGCCAAAGA	AAGATTCCAT	CCTACCGTTG	TCTTGGCTGT	TGCCCTTACG	TGACATGGAT	8940
GCTTGAATTC	CCTTACTCTC	TAGGAAGCGA	TGATAAGAAT	CGTGTTGATA	TTGCCAGCCT	9000
TGGTCACTAT	GGAGAATCGT	ATTCTCGTAG	TGCTTCTCTT	TGAATGCCTG	TTCCAACATT	9060
AACGATCAAT	CAATTTAATC	ATGTACCTAA	GATTAGAATT	GTTTATCCCA	AATTTATTTG	9120
AAAGCTTCTC	TAAGCTATAT	CCTTGTTTTC	TAAGTTCATA	GATCTGAACT	TTATCATCAT	9180
AAGTTAATTT	CATAATAAAA	ACACCCCAAA	AGTTAGATTT	TTTCTGTCTA	ACTTTTGGGG	9240
TGTAGTTCAT	GTACACCTGA	TATGATGCGT	TTTATAATTT	TAAAGACTTT	TTGACCAGCC	9300
TCATTTTTT	AACTTGATAC	TCAGTGAAAA	GCAAAGATTA	AACTAGGAAG	CTAGCTGTAG	9360
GCTGCTCAAA	GAACAGCTTT	GAGGTTGTAG	ATAAAACTTG	TGAGGTCACC	AACATATATA	9420
ATGTGAAGCT	GACGTGGTTT	GAATAGATTT	TAGAAGAGTA	TGAGTCTGGA	AGTTTTAATG	9480
GATAATGCAA	GATTCCATAG	AATGGGTAAG	CTAGAGTTCT	TATGTGAAGA	GTTTGGGCAT	9540
AAACTTTTAC	CTTTTCCTCC	CTACTCATCT	TAGTATAGAA	AAGTGAATCT	GAAATAGTAC	9600
ATAACTGCTT	CTAAAACATT	CTTATAAATT	GATTTAAATT	CTCAAATCAT	ATTATTCAGT	9660
TCTTATTTCA	TTTTGTTCTA	CAATCCTGTT	GAGAAGACAC	GTGTTCATAT	CAAAAAGGTA	9720
TTGGCAAGTT	GCAATACCTT	TTTACGAGGC	TCTGTTGTCT	TATTTTTGTT	TCAACTGACT	9780
ATATCTCCTA	TGGTTCTAGT	TCAGAAGGCT	AGGCTATAAT	TATGATTGAT	AAGAAGTATC	9840
ATTCCAAGTA	TTGGGAGTGA	ATGTTTCAAA	ATCATGGGTT	TCTATAATGG	TCAGGCTGGC	9900
ATTTGCTAGA	CCGCCATCTT	TACGAAGAAG	TGGTTCTTTA	TAGCCTAGGA	GAGTACGAAG	9960
ACTGGCAGTA	AGATTGGCGC	CGTGTCCGAC	AATTAGAATA	CGTTCAGCTG	GACTATCTTT	10020
TAATGATTTG	ATAAATTGGA	TGGTCCGTTG	AGTTGTACTA	TAGAGGGATT	CGGCTCCGAA	10080
CATTCGAGTG	TCAAATTGAG	CAAGATTTGA	ACGAAAAGCC	TGGATTTGTT	GCGGGTAAAT	10140
AGCTTCCAAG	GTTGCAATTT	TCAAACCTTC	TAACTTCCCA	AGTTGCCATT	CACGGAGATT	10200
AGGAACGATT	TCTAAAGAAC	AGGGGGTATA	GAGTTGACTT	TGGATAATCT	CAGCAGATTT	10260
GACCGCTCGA	GGTAAATCAC	TTGAATAAAT	CTGATCAAAA	GGAATTTCCT	TGAGATACTG	10320

			800			
ACCAAGTCGT	TTTAGGGTTT	CAATGGATTC	AGGAAGAAGA	GGAGAATCAC	CACTAGCACC	10380
TTGAAAACGA	CCTTCTTGGT	TCCAGAGGGT	ACGACCGTGG	CGGACAAAGT	AGAGTTTCAT	10440
TACTTGATGT	CCTCCAAAAT	ATCTACAAAG	TCTGCCTTTA	CAAAGCTAGC	CAAGTCTTGT	10500
GGCGCGACGA	TAATGCTGTG	TCCGACTTCG	CCTGCAGAGA	CAATCATTTG	ATCCAAATCT	10560
AGAGCAATTT	TATCGATAAA	AATGGGATAA	TTGTGTTTCT	GACGAATTCC	GACAGGATTA	10620
TTGGCTCCAT	GAATGTAACC	AGTTGTTTTT	TCTAAGTCCT	TTTGTGGAAT	CATGCTCACT	10680
TTTTTATTGC	CAGAAATTTT	AGCTAGTTTC	TTTTCAGACA	AGTGCTGAGT	GATAGGGACA	10740
ATTCCGATAA	TCGGTCCGGT	CTTGTCTCCC	AAAAGCGCCA	AGGTTTTGAA	AATCTGATCT	10800
CGTTCATAAC	CTTGAGGAAG	CTCTCCTTCT	AGGGCATTGA	TTTGAATCCC	CTGATGAGGG	10860
ATAGCTGCTT	TAGATAGGAT	TTGTTCCACC	AATGTTTTTT	TGATTTTAAC	TTTTTTTGCC	10920
ATTATTTATA	TTTATCCTCC	AATTGACTCA	TCCAAATACC	AAGCCAGATT	CCCAGCGCAA	10980
AGAAGAAGGC	GATGATGACA	TAACCGACAA	GTGAAAGTCC	TGTGTATTGG	ATACTTTCAG	11040
CGTTTCCTGC	ATTTGGAATT	AAGATCAAAA	GGGTACTTGA	TAGGACGATA	CCGATGATGA	11100
AATGATAGAC	GAACTGTTTA	CGGAGTTCTT	CTAGTTCTCC	GTCCGTCCAA	GCGTAGGCCA	11160
CTTCTTCTTT	CTTGCCTTTA	CCTTTGGACA	TCTTGTAAAG	AGGTGGGAGG	GCAATATAGA	11220
CATGACCTGC	CTCGACTAGC	GGACGCATGT	AACGGTAGAA	AAATGTCAAG	AGCAAGGTCT	11280
GGATATGGGC	ACCGTCGGTA	TCCGCATCG				11309

# (2) INFORMATION FOR SEQ ID NO: 109:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5548 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

CCATAGTCTA	ACAAGTCTTT	GTAAAGGTTT	ATCCCTGATT	CATGTAAAGA	TTGTGTAAAG	60
AATCAAAAA	AGCCACTTTT	GAAAAATGGC	TGCTCCTAAA	AATAGCTTTA	ATTATTA	120
GTCCTGTGCG	AAAGATTGGT	TAGGAAGAAA	AATCGTGAAG	CAACTGCCTC	TGCCAAGCTG	180
ACTCGTCACC	GTGACTTGGC	CACCTAATAA	TTGACTGAGT	TCTTTGACAA	TGGCAAGGCC	240
AAGACCAGTG	CCACCAGTTT	GTCTGCTTCG	ACCTTTATTA	ACTCGGTAAA	AACGTTCAAA	300
AATACGATCC	TGCTCTAATT	GACTAATACC	AATCCCTGTA	TCTGATACAG	AAATCTTAAT	360
GCCTTCGTTC	ACCTTTTGGG	TCTTGACCTC	AATTTTTCCC	CCTTGTTCAG	TGTAACGGAT	420

GGCATTGGAT AAAAGATTGA	GTAAGATTTG	GGAAAGTAAT	TGACTATCTG	ATACGAGGGT	480
GACATCATCT GGCACCTGCA	CCTTTAGCTG	TAAATCCTTC	TTCTTGAGCT	GAGGTTGCAA	540
GCTTTGAGTC AAATCCTGTA	CAAATTCTGC	CAAAGAAAGG	GTCGTCCATT	GTATAGGCAT	600
TTGTTGAGCC TTAGATAAGG	TAAGAAGATG	CTCAACAATA	TGCTCAAGAC	GCAAACTTTC	660
TTTGTAAATA ATGTCTAGAA	AGTCATCCTT	GAGCGCTTCT	TCTTCAGCTG	ACATCCCCTT	720
AATGGTTTCA GCAAAGCCCT	TAATCGAAGT	AACTGGTGTC	CTCAATTCAT	GGGAGGCATT	780
TGAGACAAAG GCTAAATTTA	ACTTTTCATA	AGTTCTAATC	GTTGTTAAAT	CATATAGCAA	840
GACGAGCACA GCTTCCACAG	ATTGGGTGGG	GCTAAAAACG	GGAACTGCTG	TCACTTCTAA	900
AATCAAGTCA CCCTCATGAA	ACCCACTTAC	TTCTTGTTTT	AACCTTGTTT	TTTGATCAAA	960
GGCTTGGTGA ACTAAATTCC	GAATATCCAT	CCGTTTGAGG	TCATCAAGTG	AACTTATGTC	1020
GCCGTCCACA TCGGGAAAAT	AATGAGGÇAG	AGAGCGACTG	GATAATAACA	TCTGACCTTG	1080
AGCGGAAACT AAAAACGTCC	CCATGGTTAG	GTGCGACAGA	AGAACCTCCA	TTGTTTCGGC	1140
TAGATCCTTG TATTGCTGAT	CCTGTTGGGA	GACTTTGGTT	TTTAGGCCAG	ACACATACTG	1200
AGCCAAAGAC TTTAAGTCTT	CTTGCCCTTT	TTCTAAAAAG	TATTCACTAC	TGGTCAAGAG	1260
AGGTTGGTGC AAGGTCTCAA	AAGCAACTTC	CCATTTCCAA	AGGCAAAAGA	GCCAGTAGCC	1320
ACCTAGTCCC AAAGAAAGGG	CTAGAAGAAA	GAGACCGATG	CCTTTACTGA	TCCAAGTTAA	1380
TGCCATCCCT GCAATCAGAA	TGAGGCTAAC	ACTTAGATTG	ACTAGCCAAA	ATTGAAGGTA	1440
GCGTTTCATC TATAACTCCT	TGAACTTATA	ACCATAACCC	CGAATGGTTC	GAATAAATTG	1500
AGGGGCTTTA GGATTGTCTT	CAATTTTTTC	CCTCAACTTA	CCAATATGAA	CGTCCACCAA	1560
ACGTGTTTCC TGCCCAAAGT	CATACCCCCA	GATACGTTCC	AAAAGACGCT	CTCTAGTCAG	1620
TGTCATGTTG GGATGTTTCA	TAAGATAGAG	CAAGAGTTCA	AATTCTTTTG	GGGTCAAACT	1680
CAGTAACTTA TTCGCCTTGT	AGACTTCATG	ACGCTCAGGG	TATACTTTCA	AGGTCCCAAA	1740
TAGCCAAGAA TCGTCAGCGA	TATTATCTGA	ATCATCTCCT	TCTTGTTCTC	CTTTAGTTCG	1800
CCTGAGGACA GCCTTGACAC	GCGCCAGCAA	TTCTCTAGGG	CTAAAAGGCT	TGGTCAGGTA	1860
GTCATCAGCC CCTAATTCCA	AGGCCAAAAC	CTTATCAAAT	TCATCACTTT	TCGCAGAAAC	1920
CATCATAATT GGAGTTTTGA	CGCCTTTGGC	TCTCAGCCGC	TTACAAACTT	CCATGCCATC	1980
TAATTGTGGT AACATGATAT	CAAGCAAGAT	AAAATCAAAG	GGTTCTGTTT	CTGCCAAAGC	. 2040
TAAGGCCTTC CGTCCATTTG	TCACCAATTG	AGTAGAAAAG	CCTTCCTTAC	TTAAATGGTA	2100
GTCAAGCAAT TTCAGAATGT	GTTCTTCATC	ATCCACTAAT	AAGACTTGTT	TTGTCATCTA	2160

802 TTATCTCCTA TTGGTAACAT TATAACACAA TTATCAGAAA TCCTAACATT GCTAAATCAG 2220 ATTAAATTTG CCTATCAAGA CTAGTATCTG GTCAAACGCT CAATCATCTC CTTGTGCTCT 2280 GGATAGGTCG CCAGTAGATC TACCCTTTCA AATAATTCAA AATCCTCAAA TTCAAAACCA 2340 GGAGCAACAA GACAAGAAAC CAGAGCATCA TCCTTATCAA CTGTTGATCC CCAAATAGTG 2400 CCCTTAGGAA CACAGTAGTG AAGTTGTTGC CCTTTGGATA TGTCCAGGCC TAAAGTGACT 2460 GCTTCGTAGT GACCATCTGC TGTAATCATG TGAACAGTAA GTGGGGATCC TGCATGAAAA 2520 TACCAGATTT CATCTGCTGT CAATCGGTGA AAATGTGAAG GATTCGTTTC TTCTAATAAG 2580 AAATAAATAC TGGTATAAAG CGCCCTTCCC TTACCAGCAA GGTTTATAGT GTCTGAAGCT 2640 TTTTTTGTTT GTCTAAAATA GCCACCTTCA ATATGGGGAG CTAACTCTAG AGTTCTTATC 2700 AAGTCTTCTT TATCCGTCGG AGCCAATGGG TTGAAGTAAC TCTTGTTCAA AGTGGTTTTA 2760 CGATTTCAAG AACTCCTCTC AGTTCTGAGG ACACGGTAAT GATTGATGCG ACGGAAGTAC 2820 AAATCAATCG CCCTAAAAAA AGAATTAGCG AATGATTCTG GTAAAAAAAA TGCCACGCTA 2880 TGAAGGCTCA AGCGATTGTC ACAAGTCAAG GGAGAATTGT TTCTTTGGAT ATCGCTGTGA 2940 ACTATTGTCA TGATATGAAG TTGTTCAAAA TGAGTCGCAG AAATATCGGA CAAGCTGGTA 3000 AAATCTTGGC TGACAGTGGT TATCAAGGGC TCATGAAGAT ATATCCTCAA GCACAAACTC 3060 CACGTAAATC CAGCAAACTC AAGCCACTAA CAGTTGAAGA TAAAGCCTAT AACCATGCGC 3120 TATCCAAGGA GAGAAGCAAG GTTGAGAACA TCTTTGCCAA AGTAAAAACG TTTAAAATGA 3180 TTTCAACAAC CTATCGAAAT CATCGTAAAC ACTTCGGATT ACGAATGAAT TTGATTGCTG 3240 GCATTATCAA TCATGAACTA GGATTCTAGT TTTGCAGGAA GTCTATTATT TGGTTAGGTG 3300 AATTAGTGAA GCGTTTAGGC AAGTGTCTCT GGTTACGACG TCATGGACTC TAAATCGATT 3360 ATATTTAGGG GTCATGACTA GTGAAGCAGT TAGCTAGTTC GCATATAAGC GGCTAGCGTC 3420 TAACAATTAG GAACTTTAGT TCCAATAACT TTAAGATTAC GACGTTTTAG GACATAAATC 3480 GATCATATTT ATGTCCTAAA ACTAGTGAAG CGCCTAGCCA AAGTCCGAAT AGGATTTVGC 3540 GTTAGTTACT TAGATTGCTT TGCAATCAAG TAACTTTGGC GATTTACATC TTCTCTGGCG 3600 CTTCTACTCC AAGCAAGCGA AGGGCTTCTT TGAGAACGAC TGCGGTTGCG TAGCTGAGGG 3660 CTAGACGGCT GTCGCGTTCT GGGCTTTCAT CCAAGATACG TGTATGTGCA TAGTATTTGT 3720 TAAAGGATTG AGCCAGGCTA ATTGCAAATT TAGCAATGAT AGAAGGTTCA AAGTTATCTG 3780 CCGCACGGTT GATAATACGT GGGAAGTCTT GAATGAGTTT AATGATTTCC CAGCTTTCAG 3840 TATCATTCAA GCTATAGTTG CCAGCTGTTT CTGGTTTGAA ATCGGCTTTG CGTAAGATAG 3900 ATTGGATACG AGCGTAGGCA TATTGAACGT AAGGTCCAGT TTCACCCTCG AAGGATACCA 3960

TAGCCTCTAG GTCGAAGTCG	TATCCATTTG	TACGGTCGGT	TTTGAGGTCA	TAGAATTTAA	4020
TGGCTCCAAT CCCAACAGCA	TGTGCTACTT	GGTCTTTGTT	TTCTAGTTCA	GGATTTTTAG	4080
CCTCGATTTG GACCTTGGCA	CGGCTAACAG	CCTCTGCAAC	AGTAGGCTCT	AGCAAGATGA	4140
CATTCCCTTT ACGAGTAGAG	AGTTTCTTCC	CTTCTTTTGT	AACCAAACCA	AAAGGAACGT	4200
GAGTAATGTC GTCACTCCAG	TCGTAGCCCA	TCTCTTGCAA	GACAGCTTTG	AGCTGTTTAA	4260
AGTGGGCAGA TTGTTCTTGA	CCAACGACAT	AGATAGATTT	AGCAAATTGG	TATTCGTTTT	4320
TACGGTAGAG GGCTGCAGCC	AAGTCACGTG	TGATATAGAG	AGTTGCACCA	TCAGACTTCT	4380
TGATGAGGGC TGGATGTTCA	ATTCCATATT	TCTCAAGATT	CACAACTTGG	GCACCTTCTG	4440
ATTCAAGAAG TAGTCCTTTT	TCAGAAAGAA	TGTCTACAAC	TGCATCCATC	TTATCATTGT	4500
AGAAGGCTTC TCCGTTATAG	CTGTCAAATT	CAACCTTCAA	TTCATTGTAA	AGGCGGTTAA	4560
ATTCCACTAA ACTTTCATCG	CGGAACCATT	GCCAAAGAGC	GAGAGCTTCC	TCATCTCCAT	4620
TTTCAAGTTT ACGGAACCAT	TCGCGCGCTT	CTTCATCCAA	GCTAGGGTCA	TTTTCAGCTT	4680
CAGCGTTGAT GCGGACATAG	AGTTTAAGGA	GTTCATCGAT	TGGATGAGCT	TTTACAGCTT	4740
CTTCGTCGCC CCATTTTTTG	TAGGCAACAA	TCAACATCCC	AAATTGTTTA	CCCCAGTCTC	4800
CCAAATGGTT GACCTTGACC	GTTTGATAAC	CGATTTTTTG	GAAAATATGT	GACAAGCTAT	4860
CTCCGATAAC AGTTGAACGC	AGGTGGCCAA	TAGAAAATGG	TTTAGCGATA	TTCGGACTAG	4920
ACATGTCGAT AACAACATTT	TCTTGTTTAC	CAATATTTTG	GTCAGCATAG	TGTTCTTTTT	4980
CAGTGGTAAC AGCTTGCAAT	ACTTGAGCAG	AAATGGCAGA	TTTATCAAGG	AAAAAGTTAA	5040
CGTAAGGTCC TGTTGCGACA	ACTTTTTCAA	AGGCTTGGCT	GTTCATTTTT	TCAGCCAGTT	5100
CAGCCGCAAT CATTTGTGGT	GCTTTACGTT	CGACTTTTGC	AAGAGAAAAA	GCAGGGAAAG	5160
CAATGTCTCC CATTTCTGAG	TTTTTAGGGG	TTTCCAGTAA	СТТТААААТА	GCCTCTTGGT	5220
CCAGGCTATC AATGATGCTA	GATAATTCGC	TAGCAATCAA	TTCTTTTGTA	TTCATTAAGA	5280
GCTCCTTTTT GGACTTTTCT	ACTATTTTAT	CACAATTTTA	AAGAAAGAAG	AAAAAATTTT	5340
TGAAATCTCC TGTTTTTTTG	GTATAATATG	GTTATAAATA	TAGTTATAAA	TATGCACGCA	5400
AGAGGATTTT ATGAGAAAAA	GAGATCGTCA	TCAGTTAATA	AAAAAAATGA	TTACTGAGGA	5460
GAAATTAAGT ACACAAAAAG	AAATTCAAGA	TCGGTTGGAG	GCGCACAATG	TTTGTGTGAC	5520
GCAGACAACC TTGTCTCGTG	ATTTGCGG				5548

⁽²⁾ INFORMATION FOR SEQ ID NO: 110:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3132 base pairs

804

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

			····			
60	CTCTGATAAA	CTTTAAACAT	TCTGAAGATG	CACATCTAGC	TCTTAGCAGA	TACCCGGTAG
120	GGAAACTTCA	ATAGTGCTAT	GAAAATATCC	AGAGAAACAT	CAGAAAATAA	GAAAAAGTAG
180	TAGTAAAAAT	AAGAAGTTGT	ATTAAGGAAA	AACAGCAGTC	AAGAGAAGAA	CAGGATTTTA
240	AAATTCCAAT	TCAAAGAAGA	GAAGCAAAAA	TAGCAATGAA	ACAATAACAC	CCTGTGATAG
300	TCCCAAAAAA	ACACAGAAAA	GTGAATAAAA	GGACTCATTT	GAGATTATAC	AAATCCCAAG
360	AAAAGCAATC	AATCTGGAGA	AAAGATAAAG	TGCTGAATTT	TTGTCTATAT	GAAGATAAAG
420	AATTTTTAAC	CTTATGATAG	GTTTTATATA	GAATACAAAA	CCAGTCTTAA	AAGGAACTAT
480	AGAAGGTATT	TTAAACAAAT	TTGGACAAAA	TCCAGATAAC	TAGAAACAAC	GGTAGTGCCA
540	AAAGGAAATT	ATCATGCCAG	CCCATGATGA	AAAAGTCCAA	AAAGGGCACA	TCATCGGTTG
600	GAAAAATTTT	CTCCGTTTGG	TCTATCAATG	TTACCTAAAG	AAGCTATTGA	GGAGTTGAGG
660	ACATAAGGCT	CAGATTATAG	GATACTGGAA	TTCAAATATC	GTATGGTCAT	GATGGTAGAG
720	CTTAAAAGGC	AAAAAGAAGA	ATGAGATTTA	CAAAGCCTCA	ATGATGATGC	ATGAGAATCG
780	TTATAATGGT	CGTTCAATTA	ATCCCTCATG	GAGTGATAAA	ATTATTGGTT	ACTGATAAAA
840	ACATGGGATG	ATTTTGACCC	GGAAGGGATT	ATATGATGAT	CTGTAGAAAA	GGCAAAATCA
900	CTTTAACGGC	ACATCAAAAA	ACTGAACAAG	TGGAAATGAT	GGATTCTTGC	CATATTGCAG
960	TGACGCAGGA	AAATGTATTC	TTCTCTTACA	TGCACAAATT	TTGCACCTAA	ATAGATGGAA
1020	CAAACACAAC	AAGATTCTAT	CATGCTATTG	AACAATGTTT	CGGGTGATGA	TCTGGGTTTG
1080	TGAGAAATAT	GTCTTGTAGG	ACAGGAACAG	ATCTGGTTTT	TTTCGGTATC	GTTGATGTTG
1140	TACGGGTAAC	TGGTTGTCGC	GGCATTCCAA	AAGAAAAGCA	TTCGGGCATT	TGGCAAGCTA
1200	TCTGAAAATG	CAAATAATCA	GATTTAGTAG	TTCTTCATGG	CTGCTTCAAG	TATGCGACTT
1260	GGTCGCTTCT	ATGCGATAGC	GCACATGÁAG	ACGAACTGCA	GAAATGTAAC	ACCGACACTG
1320	TTTTAAATAC	GTGGAGAAAG	GTTAACATAG	GTTTGATAAA	AAACAGTTGA	GCTAAAAATC
1380	TGGAACAAAA	CAAATGAAGA	AAAATCACAA	CGATAAGAGT	GGGCCTTTTT	AGAAATATAG
1440	TTTGATAGGT	AAGACCAAGA	GGCAAGGGGC	TGTATATATA	TTAAAATT	GCTCCTAGTA
1500	TTTAAAAAAT	ATACAAAGGA	GATAGAATTT	TGCAGTAATG	GGGGCAAAAT	TTGGATCTTA
1560	TACTGTAAAT	TGGTTGTAAA	CGCGCCATTA	TAAGGGTGCA	AAGCTATGGA	GCTTTTAAAA

TACTACAATA	GAGATAATTG	GACAGAGCTT	CCAGCTATGG	GATATGAAGO	GGATGAAGGT	1620
ACTAAAAGTC	AAGTGTTTTC	AATTTCAGGA	GATGATGCTG	TAAAGCTATO	GAACATGATT	1680
AATCCTGATA	AAAAAACTGA	AGTCAAAAGA	AATAATAAAG	AAGATTTTAA	AGATAAATTG	1740
GAGCAATACT	ATCCAATTGA	TATGGAAAGT	TTTAATTCCA	ACAAACCGAA	TGTAGGTGAC	1800
GAAAAAGAGA	TTGACTTTAA	GTTTGCACCT	GACACAGACA	AAGAACTCTA	TAAAGAAGAT	1860
ATCATCGTTC	CAGCAGGATC	TACATCTTGG	GGGCCAAGAA	TAGATTTACT	TTTAAAACCC	1920
GATGTTTCAG	CACCTGGTAA	AAATATTAAA	TCCACGCTTA	ATGTTATTAA	TGGCAAATCA	1980
ACTTATGGCT	ATATGTCAGG	AACTAGTATG	GCGACTCCAA	TCGTGGCAGC	TTCTACTGTT	2040
TTGATTAGAC	CGAAATTAAA	GGAAATGCTT	GAAAGACCTG	TATTGAAAAA	TCTTAAGGGA	2100
GATGACAAAA	TAGATCTTAC	AAGTCTTACA	AAAATTGCCC	TACAAAATAC	TGCGCGACCT	2160
ATGATGGATG	CAACTTCTTG	GAAAGAAAAA	AGTCAATACT	TTGCATCACC	TAGACAACAG	2220
GGAGCAGGCC	TAATTAATGT	GGCCAATGCT	TTGAGAAATG	AAGTTGTAGC	AACTTTCAAA	2280
AACACTGATT	CTAAAGGTTT	GGTAAACTCA	TATGGTTCCA	TTTCTCTTAA	AGAAATAAAA	2340
GGTGATAAAA	AATACTTTAC	AATCAAGCTT	CACAATACAT	CAAACAGACC	TTTGACTTTT	2400
AAAGTTTCAG	CATCAGCGAT	AACTACAGAT	TCTCTAACTG	ACAGATTAAA	ACTTGATGAA	2460
ACATATAAAG	ATGAAAAATC	TCCAGATGGT	AAGCAAATTG	TTCCAGAAAT	TCACCCAGAA	2520
AAAGTCAAAG	GAGCAAATAT	CACATTTGAG	CATGATACTT	TCACTATAGG	CGCAAATTCT	2580
AGCTTTGATT	TGAATGCGGT	TATAAATGTT	GGAGAGGCCA	AAAACAAAAA	TAAATTTGTA	2640
GAATCATTTA	TTCATTTTGA	GTCAGTGGAA	GCGATGGAAG	CTCTAAACTC	CAGCGGGAAG	2700
AAAATAAACT	TCCAACCTTC	TTTGTCGATG	CCTCTAATGG	GATTTGCTGG	GAATTGGAAC	2760
CACGAACCAA	TCCTTGATAA	ATGGGCTTGG	GAAGAAGGGT	CAAGATCAAA	AACACTGGGA	2820
GGTTATGATG	ATGATGGTAA	ACCGAAAATT	CCAGGAACCT	TAAATAAGGG	AATTGGTGGA	2880
GAACATGGTA	TAGATAAATT	TAATCCAGCA	GGAGTTATAC	AAAATAGAAA	AGATAAAAAT	2940
ACAACATCCC						3000
CCATCATCAA						3060
CAAGATGCTC	AACTTGAAAG	AGGATTAACA	CCTTCTCCAC	TTGTATTAAG	AAGTGCAGAA	3120
GAAGGATTGA '	rr					3132

⁽²⁾ INFORMATION FOR SEQ ID NO: 111:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 14672 base pairs

PCT/US97/19588 WO 98/18931

806

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:

60	GATATTCTCT	TCCAGATCTG	CTACCCATCA	TACGTGAAAT	TTAAATGAAC	CGAGATTTCT
120	TTAAAGCTTC	TCTCATGCTT	TAATATAAGT	TAGGAGATTT	AGTAAAGTTT	CCTATCTATA
180	GTTCTCATTT	TTCTGGGAGA	ACTCATTTGC	TCAGTTTCCC	TTAAAACCGC	GGTAAGAGAT
240	CAAAAGGCAG	TTAGATCCTG	GTTTTATATT	GTAAAAACAA	GAAAAAATTA	TATTATTCTT
300	TAACATTTAA	AATATCATTT	GCATTATTCA	AATTTGAAAG	TCAATAAGTG	GCAGAGAATG
360	TAAAGTATTT	TCGCCTGTTT	TAATAAGAAG	CTCGTAAAGA	AGCTTTATGT	AAAGTTAGAT
420	TGTATGTAAT	ACAGCATTAT	ATTTTTTGTA	TAGGGATTTT	AGGAATAAGC	TTTTAAGTAT
480	AGGACGATTC	ACGAATTTCA	CATAATTGAC	CTAATAGATA	GTACCTATAG	ACAATCATTA
540	TCTCACTAAT	ACTGTTTCAT	ATTTATATTT	TTACTATATT	AGAATGTTAT	GTATTCGTCT
600	AAGAGATTAG	ATAATGGATA	CTTAAAATAT	ATGTTGCATC	AGACAGATAT	GTATTTATTA
660	AACGTACTTT	TTTTATGAAA	ACCTTACAGT	TGATATATTT	ATGAAACATT	CTATGATTTT
720	TATCAAATAA	AGAGAAATAC	TGTTTATATA	CTAACTCTAT	CTTTTTAGAG	AGGGGATATA
780	TTTTATTTAG	TATGCTGTGG	GATTGTGGTT	ATTTGTTAAT	GCTATACTTG	TTTTATAGCA
840	CTATTGTAAT	CTAGCTCTAT	ATCACTAAGT	TCTTTTTAAT	TACATGGTAA	CTTTTCTAAG
900	AAAAGGTTAA	AATATAAAAG	AATTGATAAA	CAAAAAATTT	ATAAAAATCT	GTATCCAATC
960	TAACTGGAGA	GATATTAAGC	TAAAAATAGT	AAGTAATTTC	ATTACTTCCG	TGTTCAAAAT
1020	TCATAGGTCG	AAACAGCTCA	TTTTAATACA	AATGGGATAA	TGGATTAACA	AGAGGAATTT
1080	AAATTATTCT	AATGTTTTAC	TAGTATAACG	CAATTGTTAG	ATACATTTAT	AAAACTTGAT
1140	TGACGTTAGG	TTCGAACAAT	TATAAAAACA	TAGGTGTAAA	ACCCTTATTG	CCCTGTTTTG
1200	TTTCTTTAAG	TCTCCTATAA	ATACTTTATT	CAGTCTCACC	GCAATAAGTA	ACAAATTGTA
1260	AGGATGTGTT	TTAAGAATAG	GGGATATTTT	TGTTATTAAA	ATACAATTAA	TGATAACTAT
1320	TTGATAAAAA	GATATAAAAT	AGTCAGTCAA	TTCCAGAAAG	TCCGAATTAA	ТААТАСТААА
1380	TTTTGAAAGG	GATGATTATG	TGGATTATTT	GGTATAAATA	AAAGATATTT	AATAGAATTA
1440	CAGGTTCAGG	GTTGGAGAAT	TGTTGCTATT	AAGGAGAAAC	ACTATTAAAA	AATAAATGTT
1500	GTTCAATAGA	CCTAATATTG	TTTATTAGAA	TTTTATTAGG	TTAGCTAAAA	TAAGAGTACA
1560	TTTTTGGAGC	TATAGAAAGA	TCAAACATTG	AAGAAATTGG	GTAGAAAAAG	AGTTGATGGA

AGTGTTACA	A AATTCAACCO	TAAGTTATGG	TACCTTAAGA	GAGAATTTGA	CATTTGGACA	1620
CTTTGTTTC	CA GATGAAGAAT	TAATGACAAA	TCTAAATTCA	ATTGGTCTTA	GCAATGTAGT	1680
TAAATCTTT	A CCTCTTGGAT	TAGAGACAAT	CATCGCTGAA	GAAGGTAATA	ACTTTTCTGG	1740
AGGGCAGCA	G CAAATGATAC	TTTTAGCTCG	TTGTCTTTTG	TCGAAACCTT	CGGTAGTTGT	1800
TTTGGACGA	A GCAACAAGTA	GTTTAGATAA	TTTATCTCAA	CAAATTACAA	CTTCTTACTT	1860
AAGTGAAAT	C GGTACCACTA	AGATTTTAAT	TGCCCATCGA	CTAGATACTA	TCAAGTCTGC	1920
AGATAAGAT	C TTAGTAATGC	ATAATGGTGA	AATTGTAGAG	ATTGGGACCC	ATAGAGAACT	1980
TCTTGAACT	'A GGAGGCATTT	ATAAGCAATT	GTATTCAAAT	AATTAGTTTT	TGATTAAAAG	2040
GGTAAATTT	A TGAAGATTAT	GAAAAAAAA	TATTGGACTT	TAGCGATATT	ATTCTTTTGT	2100
TTGTTCAAT	'A ATTCTGTTAC	TGCTCAAGAA	ATACCTAAAA	ATCTTGATGG	CAATATAACT	2160
CACACTCAG	A CTAGCGAAAG	TTTTTCTGAA	TCTGATGAAA	AACAGGTTGA	CTATTCTAAT	2220
AAAAATCAA	g aagaagtaga	ССААААТААА	TTTCGTATTC	AAATCGATAA	GACAGAATTA	2280
TTTGTAACA	A CAGATAAACA	TTTAGAAAAA	AACTGTTGTA	AATTGGAACT	TGAACCACAA	2340
ATAAATAAC	G ATATTGTTAA	CTCTGAAAGT	AATAATTTAC	TAGGCGAAGA	TAATTTAGAT	2400
AATAAAATT	a aggaaaatgt	TTCTCATCTA	GATAATAGAG	GAGGAAATAT	AGAGCATGAC	2460
AAAGATAAC	T TAGAATCGTC	GATTGTAAGA	AAATATGAAT	GGGATATAGA	TAAAGTTACT	2520
GGTGGAGGC	g aaagttataa	ATTATATTCT	AAAAGTAATT	CTAAAGTTTC	AATTGCTATT	2580
TTAGATTCA	G GAGTCGATTT	ACAAAATACT	GGATTACTGA	AAAATCTTTC	AAATCACTCA	2640
AAAAACTAT	G TCCCCAATAA	AGGATATTTA	GGAAAAGAGG	AGGGAGAGGA	AGGAATAATA	2700
TCAGATATT	C AAGATAGATT	AGGTCATGGT	ACGGCTGTTG	TAGCTCAAAT	TGTAGGGGAT	2760
GACAATATT.	A ATGGAGTAAA	TCCTCACGTT	AATATTAACG	TCTATAGAAT	ATTTGGTAAG	2820
TCGTCAGCT	A GTCCAGATTG	GATTGTAAAA	GCAATTTTTG	ATGCTGTAGA	TGATGGCAAT	2880
GATATTATC.	A ATCTTAGTAC	TGGACAATAT	TTAATGATTG	ATGGAGAATA	TGAGGACGGA	2940
ACAAATGAT	T TTGAAACATT	TTTGAAGTAT	AAAAAGGCTA	TTGATTACGC	GAATCAAAAA	3000
GGAGTAATT	A TAGTAGCTGC	ATTAGGGAAT	GACTCCCTAA	ATGTATCAAA	TCAGTCAGAT	3060
TTATTGAAA	C TTATTAGTTC	ACGCAAAAAA	GTAAGAAAAC	CAGGATTAGT	AGTTGATGTT	3120
CCAAGTTAT	r TCTCATCTAC	AATTTCGGTC	GGAGGCATAG	ATCGCTTAGG	TAATTTATCA	3180
GATTTTAGC	A ATAAAGGGGA	TTCTGATGCA	ATATATGCGC	CTGCAGGCTC	AACATTATCT	3240
CTTTCAGAA	T TAGGACTTAA	TAACTTTATT	AATGCAGAAA	AATATAAAGA	AGATTGGATT	3300

TTTTCGGCAA CACTAGGAGG ATATACGTAT CTTTATGGAA ACTCATTTGC TGCTCCTAAA 3360 GTTTCTGGTG CGATTGCAAT GATTATTGAT AAATACAAAT TAAAAGATCA GCCCTATAAT 3420 TATATGTTTG TAAAAAAATT CTGGAAGAAA CATTACCAGT AAAAAATGGT ATAAAAGTGT 3480 TAAATATACC AAACGTATTG AGATATGATT TGAATATGTT ACAATTAGAA TATAAAAATG 3540 3600 AAACTACTAT TGGAATTAAA CAAATAAACA CACACAATAT TATTACTATT GCCCGAGAAG 3660 GGTACTCTCA AAATTATTTA CCTAACACTT CAGAAAATAC ATATAATTCA TTACAAGTCA 3720 GTTTAGTTGG AGTATTACTA CTTTTTATAA GTATGGTAAA TATTTTATGG GCTAAAAAAA 3780 GTAAATGAAA ATAAAATTTG GAGCCCTCTG AAAAAGTAAG TCCTACAGTT CAACTAAAAT 3840 GAGTCAAAAG ATGAATCACC TTGATGTAGG GGAGTTTGTC TTATTGCTGC CTGAACACCT 3900 CCGTTCAGAG GAAGAACATT ATAAATCTGT TTTTGAAGAC GACTTAACCA GTCGCATATC 3960 TAGTCAAGAT GAACGACAGC AAATGACTGC TACGGTAGGT TATTTAGAAT CAGGTCAGGA 4020 TCGTTTTGTG TATAATACGA CCCCTATTTC TTACCAGCAG TTTTTGAAAG ATCCAATCAT 4080 CATTGTTATA ACACCCCAAT CAACTGGTCC ACAGTCCATT TTGTTTTGGA TAGACGCAGT 4140 ACAGAACTAC GTTCTCTTTA ATCAATTGTC TGATGCCCAG GAGCTTATCC AGAGACAAGG 4200 CATTGAAAAT TGGGTCTCAG AAATGCAAAC AGGTTACCAC AACTACATCA CATTATTGGA 4260 TAATATCCAG AGGGAACGTT GGGTAATGCT AGCAGGAGCT GTGCTTGCGA TTGCAACTTC 4320 AATCTTGTTG TTTAACACTA TGAATAGGCT CTACTTTGAA GAATTTAGAC GTGCCATTTT 4380 TATCAAACGC ATTGCAGGTC TCAGGTTCTT AGAAATCCAT CGCACTTATC TCTTTGCTCA 4440 ACTGGGTGTG TTTTTACTGG GATTTGTTGC GAGTGTATTT CTTCAGGTAG AGATAGGAGT 4500 TGCTTTCTTA GTCTTGTTAC TCTTTACTGG TCTATCTCTT TTACAGTTAC ATGTCCAAAT 4560 GCAGAAAGAA AACAAGATGT CCATGCTTGT TTTGAAGGGA GGTTAATATG ATTGAACTTA 4620 AACAGGTGAG TAAATCTTTT GGAGAACGAG AGTTATTTTC GAATCTTTCA ATGACATTTG AGGCTGGAAA AGTCTATGCC TTAATTGGTT CAAGTGGTAG CGGAAAAACA ACCTTGATGA 4740 ACATGATTGG GAAATTAGAA CCTTATGATG GGACGATTTT TTACCGAGGT AAAGACTTGG 4800 CCAATTATAA ATCAAGTGAT TTTTTCCGTC ACGAATTGGG CTACCTCTTC CAGAACTTTG 4860 GCTTAATTGA AAACCAAAGT ATTGAAGAAA ACCTTAAGCT AGGTCTCATT GGTCAAAAGT 4920 TGAGTCGGTC GGAACAGCGG TTGAGGCAGA AGCAGGCTTT AGAACAGGTC GGCCTGGTTT 4980 ATCTTGACCT AGATAAGCGC ATCTTTGAGT TATCGGGCGG AGAATCGCAA CGGGTTGCCT 5040 TGGCAAAAAT TATCTTAAAG AATCCACCCT TTATTCTGGC AGATGAGCCA ACAGCTTCAA 5100

809

TA	GACCCAGO	AACCTCTCAC	TTGATTATGG	AGATTTTGCT	ATCTCTTCG#	GATGATAATA	5160
GG	CTAATCAT	TATCGCAACA	CATAATCCGG	CAATTTGGGA	GATGGCTGAT	GAAGTGTTCA	5220
CG	ATGGATCA	TCTGAAATAA	AAATCCTTGT	TTTTAATTGC	ACGATGAGTT	ACTGAAATAT	5280
TA	TCATGAAT	' CAAGAATTGG	AGTTAATTTA	GAATTGTACT	TAATTTAGAA	TTGTACTTTA	5340
тT	AATATTGA	GGTAACTTTT	TCTTGATAAA	GGAAGAAATA	ATGGAGAGGA	AGTTAGAATG	5400
AA	AAAATTCG	ACAATTATAT	TATTGAGAAG	CCTTGCGATT	CTAATTCAGA	TAAACTGCAA	5460
AA	AATCTTAA	TAATTGAAAG	TTTGGTAGAT	GATATTTTGC	AATTTTCTCT	CAGAATCAAT	5520
AΑ	TAGTGTAG	GAGAGATTTT	CCTCCTACAA	CCGTTTTAAA	AGAAAACTAT	CTTTATTCCA	5580
ТG	TTATTTTG	AGGAAGATAT	TGTGAAAGTC	AAAGATGATG	ATAAAGTTGA	GTGGAATTTG	5640
TŤ	AGAATTTC	AAAAATTTAG	AGCATTTTTG	GCTTAGTAAT	CTGTGTTGAA	GGCTCAAAAC	5700
CT	ATGGTAAA	AAAGTAGCTT	TGAAAACGTA	TTGCCTCCAA	AGATTTAGTT	AAATAATGAT	5760
TT.	AACACAAA	AAGAAATTAT	TGAAGTTCTG	GAAAGATGTT	GTTTCAGTAT	TGAGAAAAGG	5820
TG	GGAAAAAC	TTGCGATTTT	CACAGAGAAA	GGAAGAAAA	GTATAGAAAT	ATAGTCAATT	5880
GA.	AACAAGAA	CAGGATAAAA	GAACCTTTTG	TGCCATATTT	TTCTCCTTTC	GCTTTACAAT	5940
TG	GATTGAAC	ACCTTTATTG	TATCGCGTTT	GGAGTTTTTT	TGGTATAACC	TTCGACGCAC	6000
AC(	CCGCATAG	CGGGTGTTTT	TTTTGTCTCG	CACCTAACGG	AGCGAGACAA	ACTAATAGTC	6060
AC	rtaatc <b>aa</b>	AAAACGCACC	АТАТСААААА	CTAAAAAGTT	TGATATCATG	CGTCATGTCT	6120
TA	AACTAATT	GACTATACTT	TCTATTCAAA	TGAGCTTTTA	ACCAATTGAT	TGAGCCAATC	6180
CAG	TCTTAAA	ACCAAAGAGC	AATTTCTCGC	TTAGCTGACT	CTTCTGAATC	TGAACCATGT	6240
AC/	ACATTT	GGATAATCTC	ATTTTCTCCA	GCAGCTTTTG	CAAAATCACC	TCGAATAGTG	6300
CCI	rggtaaag	CTTCTTCTGG	ACGAGTTGCA	CCCATCATGG	TCCGCCAAGT	TTCGATTACT	6360
PT(	GGACCAG	AAATGACACC	CACAAGAACT	GGACCTGAAG	TCATGAATTC	ACGAATCGGT	6420
GGC	TAAAAAC	TCTGACCAAC	CAAGTCCTGA	TAGTGCTGGT	CAATCAACTC	TTCTGAAACC	6480
rgī	GAACGAA	ACTCCAATTT	TTCGATTGTA	AATCCACGTT	GTTCGATGCG	CTTTAACACT	6540
rc#	CCCACTA	GCCCTCTTTT	TACACCATCT	GGTTTGATGA	TAAAGAATGT	TTGTTCCATA	6600
ccc	GTCTCCT	TTGTCAGCTT	CTTTCTTTTA	TTTTACCACA	TTTCGTGGAA	AAATGGAGAA	6660
AGT	TTTCAGA	AGAGAGAATG	AGAGAACCCT	CGGGTTCTCT	CATTCTCTCT	TATTCTACTG	6720
rri	CTTCCAC	AGTTTCAACG	GCAGTATCCA	CAACTACTTC	TGTTGTTTCT	TCATTTCCTT	6780
тт	CCTCTAC	TGGAGGATTA	AGGTATTCTT	CササCCササC A C	AGC ATGTGGT	ምር 8 ስርርምም እር	6940

			810			
GGTAACGGGC	CATACCAGTA	CCAGCTGGGA	TGATCTTACC	GATGATAACA	TTTTCTTTAA	690
GTCCAAGGAG	ATGGTCTTTC	TTACCACGGA	TAGCTGCGTC	AGTAAGGACA	CGAGTTGTTT	696
CCTGGAAGGA	AGCCGCTGAC	AAGAAACTGT	TTGTTTCAAG	TGAGGCTTTG	GTAATTCCCA	702
TAAGGACTGG	GCGACCTGTC	GCTGGAACTC	CACCTGCGAT	AAGGACATCT	TTGTTGGCAT	708
CTGTAAAGTC	ATTGATATCC	ATGAGGGTAC	CCATGAGAAG	ATCTGTATCA	CCTGGATCCA	714
TGACACGGAC	TTTACGGATC	ATTTGACGAA	CCATTACCTC	GATGTGTTTG	TCACCGATTT	720
CTACCCCTTG	GCTACGGTAA	ACTTTTTGTA	CTTCACCGAG	AAGGTACGTT	TCAACTGACA	726
AGACATCACG	AACTGCAAGG	AGACGTTTTG	GTTGGATAGA	ACCTTCTGTC	AGAGCAGCAC	732
CACGCGCTAC	TTGGCCCCCA	ACTTCGACAC	GCATACGAGC	TGTAAATGGA	ACGACATATT	738
CACCTTCGCC	AGTTTCACCC	TTAACAAAGA	CTTTCTTGGT	ACGAGTTGAT	GCATCTTCTT	744
CGATAGCAGT	AACTTGTCCT	TTAACCTCTG	TAATAACCGC	TTCCCCTTTA	GGATTGCGGG	750
CTTCAAAGAT	TTCTTGGACA	CGAGGAAGAC	CCTGAGTGAT	ATCGGTATTT	GAGGCAACCC	756
CACCTGTGTG	GAAGGTACGC	ATTGTAAGCT	GTGTACCAGG	TTCCCCGATA	GATTGGGCAG	762
CGATTGTACC	AACTGCTTCA	CCAACTTCAA	CCGCATCACC	AGTCGCCAAG	TTGATACCGT	768
AACAGTGACG	GCAGACACCG	TGACGAGTGT	TACATGTAAA	TACAGAACGG	ATAGTCACTT	774
CTTCCACACC	AGCATTGACA	ATTTCACGCG	CCTTGTCTTC	TGTAATCAAT	TCATTTGGAC	780
CAATAATCAC	TGCACCAGTT	TCTGGATGTT	TAACAGTTTT	CTTAGTGTAA	CGACCGTTGA	786
GACGCTCTTC	GAGAGACTCG	ATCATCTCTT	TTCCTTCTGC	GATAGAACGG	ATCAAGAGAC	792
CACGGTCAGT	TCCACAGTCG	TCCTCACGGA	TGATAACGTC	TTGGGCAACG	TCGACCAAAC	798
GACGAGTCAA	GTAACCTGAG	TCGGCTGTCT	TAAGGCCCGT	ATCGGTCATA	CCTTTACGAG	804
CACCGTGAGT	TGAGAAGAAC	ATTTCCAATA	CCGACAAACC	TTCGCGGAAG	TTTGAAAGGA	810
TTGGCAATTC	CATGATACGT	CCATTCGGAG	CAGCCATCAG	ACCACGCATA	CCGGCAAGCT	816
GTGAGAAGTT	TGAGATGTTA	CCACGGGCTC	CAGAGTCCAT	CATCATAACG	ATTGGGTFCT	822
TAGGATCTTG	GTTAGCAATC	AAGCGTTTCT	CAAGTTTTTC	ACGGGCAGCA	CGCCATTCAG	828
CTGTAACAGC	ATTGTAACGC	TCGTCGTCTG	TGATCATACC	ACGACGGAAT	TGTTTGGTGA	834
TTTGTTCGAC	ACGTTTGTGT	GATTCTTCAA	TGATTTCAGC	CTTGTCATCA	ACGACTGGGA	840
TATCGGCAAT	ACCCACTGTC	AATCCTGCAA	GAGTTGAGTG	GTGGTAACCG	AGGTTCTTCA	846
TGCGGTCAAG	TAGGGCAGAA	GTTTCTGTCG	TACGGAAACG	TTTGAAGATT	TCAGCGATGA	852
TATTTCCAAG	GTTTTTCTTC	TTGAATGGAG	GGTTGAGCTC	AAGATTGCTG	ATAGCTTCCT	858
TGATATCTCC	ACCAAGTGGC	AAGAAGTATT	TAGCTGGAAC	ACCTTCTCTC	AAGTTGGCAT	864

TGTTTGGTTC	TTGCAAGTAT	GGTAGCCCCT	CTGGCATGAT	ATCGTTGAAG	AGAATTTTAC	8700
CAACTGTTGT	AAGCAAGACC	TTATGTCTTT	GCTCTTCTGT	CCAAGGCTTG	TTGAGGCTGT	8760
CTGTTGCGAT	ACCAACACGT	GAGTGGAGGT	GAACATAACC	ATTGCGGTAA	GCCATAACCG	9820
CTTCGTCACG	GTCTTTGAAG	ACCATTCCTT	CACCTTCGCG	ACCAGCTTCT	TCCATGGTCA	8880
AGTAGTAGTT	ACCCAAAACC	ATGTCCTGAG	ATGGAGTAAC	TACCGGTTTC	CCATCTTTCG	8940
GGTTCAAGAT	GTGCTCAGCA	GCTAGCATGA	GGATACGAGC	TTCTGCTTGT	GCTTCTTCTG	9000
AAAGTGGTAC	GTGGATGGCC	ATTTGGTCCC	CGTCAAAGTC	AGCATTGTAG	GCTTCACAGA	9060
CAAGTGGGTG	CAAGCGAAGA	GCCTTACCAT	CAATCAAGAC	TGGCTCGAAG	GCTTGGATAC	9120
CCAAACGGTG	AAGGGTCGGT	GCGCGGTTCA	AAAGCACTGG	GTGTTCTTTA	ATCACTTCTT	9180
CAAGGATATC	CCAGATACGC	TCATCTCCGC	GTTCCACCAA	GCGTTTAGCT	GCTTTGACGT	9240
TTTGCACGAT	ATCACGGGCA	ACGATTTCAC	GCATGACAAA	TGGTTTAAAG	AGTTCAATCG	9300
CCATTTCACG	CGGCACACCA	CATTGGTACA	TCTTAAGAGT	TGGACCAACG	GCGATAACTG	9360
AACGTCCTGA	GAAGTCAACA	CGTTTACCGA	GCAAGTTTTG	ACGGAAGCGT	CCTTGTTTAC	9420
CTTTAAGCAT	GTGGCTCAAT	GATTTCAATG	GACGGCTACC	TGGTCCTGTG	ATTGGACGAC	9480
CACGACGACC	ATTGTCAATC	AAAGCGTCAA	CTGCTTCTTG	AAGCATACGC	TTCTCATTTT	9540
GAACGATGAT	ACCTGGTGCA	TTTAACTCAA	GCAAACGAGC	CAAACGGTTG	TTACGGTTGA	9600
TAACACGGCG	GTAAAGGTCA	TTCAAGTCAG	ATGAGGCAAA	ACGGCCACCA	TCCAACTGCA	9660
ACATTGGACG	AAGATCTGGT	GGGATAACCG	GAAGGATGTT	AAGAATCATC	CATTCAGGTT	9720
TGTTTCCAGA	CTTGTAAAAG	GCATCCAAAA	CATCCAAACG	ACGGATGGCT	TTGACACGCT	9780
TTTGTCCAGT	AGCTGTTTTC	AATTCTTCTT	TGAGTTCAGC	AATTTCTTTT	TCAAGATCTA	9840
CTTGCTTCAA	AAGGTCTTGG	ATGGCTTCCG	CACCCATCTT	GGCAACAAAT	GAACCATAAC	9900
CATATTCACG	CAAGCGCTCT	CGGTATTCGC	GCTCTGTCAT	GATAGACTTG	TGCTCAAGTG	9960
GTGTATCCTT	AGGATCAATC	ACCACATAAG	CCGCAAAGTA	GATAACTTCC	TCGAGGGCAC	10020
GAGGGCTCAT	ATCAAGGGTC	AAGCCCATAC	GGCTTGGAAT	CCCCTTGAAG	TACCAGATGT	10080
GAGATACAGG	AGCTTTCAAT	TCGATATGTC	CCATACGCTC	ACGACGAACT	TTCGTACGCG	10140
TTACTTCAAC	CCCACAGCGG	TCACAAACAA	TTCCTCTGTA	ACGAATGCGT	TTGTACTTAC	10200
CACAAGCACA	TTCCCAGTCT	TTTGTAGGAC	CAAAGATCAC	TTCATCAAAG	AGTCCTTCAC	10260
GTTCTGGTTT	CAAGGTACGA	TAATTGATTG	TTTCAGGTTT	TTTGACTTCT	CCATAAGACC	10320
ATGAACGGAC	TTTACTTGGA	GAAGCTAGGG	TGATTTGCAT	ACTTTTAAAA	CGATTTACAT	10380

812 CAACCACTAT TTCTTCCCTT TCTATTCTAA GTGAACTGCT TATTCTTGTT CAGCAGCTTC	
	10440
TTCTGTTGCT TCCGCTTTTG TTGCTTTCTC AGCTTCTTCA GCTTCAAAGG CTGCTTTAGC	10500
CTCTTGGGCT GCTTTTTCGC GGGCTTTTTC AAGGTCATCT ACGTGGATGA CATCTTCGTC	10560
CATTCCTTCA TCCAAGTCGC GAAGTTCCAC TTCTTGGTCA TCTTCGTCTA GGACACGCAT	10620
GTCAAGACCA AGAGATTGCA ATTCTTTGAC AAGAACTCGG AAGGATTCTG GAACACCTGG	10680
TTTTGGAATT GGTTTGCCTT TTGTAATAGC TTCATAGGCT TTCAAACGTC CGTTGATATC	10740
GTCCGACTTG TAAGTCAAGA TTTCTTGAAG GACATTTGAC GCACCGTAGG CTTCAAGAGC	10800
CCAAACCTCC ATCTCACCGA AACGTTGTCC ACCAAACTGA GCCTTACCTC CGAGTGGTTG	10860
TTGGGTAACA GTTGAGTATG GTCCGACTGA ACGCGCGTGC AATTTATCAT CAACCATGTG	10920
GTGGAGTTTG ATCATGTACA TGACTCCGAC AGAAACACGG TTATCAAACG GTTCACCAGT	10980
ACGTCCATCG TAAAGGATCG TTTTGGCATC GCTATCCATA CCTGCTTCTT TAACAGTTGA	11040
CCAAAGATCT TCAGAACTTG CTCCATCAAA GACTGGTGTA GCGATGTGAA TACCAAGAGT	11100
ACGAGCTGCC ATACCAAGGT GAAGCTCCAT AACCTGACCG ATATTCATAC GTGATGGTAC	11160
CCCAAGTGGG TTCAACATGA TGTCGACTGG AGTTCCGTCT GGAAGGTAAG GCATGTCTTC	11220
TACAGGAACG ATACGAGAGA CAACCCCTTT GTTTCCGTGA CGTCCGGCCA TTTTATCTCC	11280
GACCTTAATC TTACGTTTTT GAGCGATGTA AACACGAACC AACATGTTAA CACCTGATTG	11340
CAACTCATCT CCATTTACAC GTGTAAAGAT CTTAACATCA CGAACGACAC CATCGGCACC	11400
GTGTGGTACA CGAAGAGAAG TATCACGCAC TTCACGAGAC TTGTCTCCAA AGATAGCGTG	11460
CAAGAGACGT TCTTCAGCTG AAAGATCTTT CTCACCCTTA GGTGTTACTT TACCTACAAG	11520
AATATCACCT TCTTTAACCT CAGCACCAAT ACGGATAATC CCCATTTCGT CAAGGTCTTT	11580
GAGGGCATCT TCACCAACGT TTGGAATTTC GCGAGTGATT TCTTCAGGCC CAAGCTTTGT	11640
ATCGCGCGTT TCTGATTCGT ATTCTTCAAG GTGAACAGAT GTGTAGACAT CGTCCTTCAC	11700
CAAGCGTTCG CTCATGATAA CGGCATCCTC GAAGTTGTAA CCTTCCCAAG TCATGTAGGC	11760
AACGATTGGG TTTTGTCCAA GCGCCATTTC TCCATTTTCC ATAGAAGGTC CGTCAGCGAT	11820
GAAATCGCCT TTTTCAACGA CATCACCAAC TTTTACGAGA GTGCGTTGGT TGTAAGCAGT	11880
ACCTGAGTTT GAACGACGGA ATTTTTGGAT GTGGTAAACA TCCAATGAAC CATCTTCACG	11940
ACGAACTTCT ACCTTGTCAG CATCTGCGTA AGTAACTTTA CCATCATACT GAGCAATCAC	12000
AGCCGCACCA GAATCGTGGG CTGCTTGGTA TTCCATACCA GTACCAACGT AAGGTGCCTG	12060
AGGATTAATC AATGGCACAG CCTGACGTTG CATATTGGCT CCCATGAGGG CACGGTTGGA	12120
GTCATCGTTT TCCAAGAAAG GAATACATGC TGTCGCAACG GCAACTACCT GTTTTGGTGA	
ACTIVITIES	12180

AACGTCCATG	TAGTCAACAA	TATTAGCTGC	ATACTCTTGG	TTGACCCCTT	GGTGACGTCC	12240
CATGACAATC	TTCTCAGCAA	AGGTTCCATC	TTCATTCAGA	CGAGAGTTAG	CCTGAGCTAC	12300
AGTATATTCA	TCTTCTTCAT	CAGCTGTCAA	CCAAACAATT	TCGTTCGTGA	CAACACCTGT	12360
TTCACGGTCA	ACCTTACGGT	ATGGTGTTTG	AACAAAACCA	TATTTGTTCA	AGTGTCCATA	12420
AGATGACAAG	TTATTGATCA	AACCGATGTT	AGGTCCTTCA	GGTGTCTCGA	TTGGACACAT	12480
ACGACCATAG	TGAGTGTAGT	GCACGTCACG	TACTTCATAT	CCAGCACGGT	CACGAGTCAA	12540
ACCACCAGGT	CCTAAGGCTG	ACAAACGGCG	TTTGTGAGAC	AACTCAGAAA	GCGGGTTGTG	12600
TTGGTCCATG	AACTGTGACA	ACTGTGATGA	ACCAAAGAAT	TCTTTAACTG	CAGCTGTTAC	12660
AGGACGGATA	TTGATAATTT	GTTGTGGTGT	CAAGACTTCA	TTGTCCTGAA	CAGACATACG	12720
TTCACGGACA	TTACGTTCCA	TACGAGAAAG	TCCCAAACGT	ACTTGGTTGG	CAAGCAATTC	12780
ACCAACCGCA	CGGATACGAC	GATTTCCAAG	GTGGTCGATA	TCATCTACAC	GGCCAAGTCC	12840
TTCAGCCAAG	TTGAGGAAGT	AGCTCATCTC	AGCAAGGATA	TCTGCAGGAG	TCACCGTACG	12900
AACCTTGTCA	TCTGGGTTAG	CATTACCAAT	GATCGTTACG	ACGCGATCTG	GATCAGTTGG	12960
AGCAATAACC	TTGAATTTTT	GAAGAACAAC	AGGCTCAGTC	ACAACGGCTG	CATCGTTTGG	13020
GATGTAGACA	ATCTTGTTCA	AGTCGCCATC	CAAATGGCTT	TCAATGCTTT	CAATCACGCT	13080
ACGAGTCATA	ATCGTACCAG	CTTCTACCAA	GATTTCTCCA	GTTTCAGGGT	CTACCAATGG	13140
CTCTGCAATG	GTTTGGTTGA	GCAAACGTGT	TTTAACATTG	AGTTTTTTAT	TGATTTTGTA	13200
ACGACCAACT	GCTGCCAAGT	CATAACGACG	TGGGTCAAAG	AAGCGAGCTA	CAAGCAAGCT	13260
ACGTGAGCTT	TCAGCCGTCT	TAGGCTCACC	TGGACGAAGG	CGTTCGTAAA	TTTCTTTCAA	13320
GGCTTCGTCT	GTACGAGAGT	CCATTGGATT	CTTGTGGATA	TCTTTTTCAA	CAGTGTTGCG	13380
AACCAATTCG	CTGTCACCAA	AGATATCAAA	GATTTCATCA	TCACCTGAGA	AACCAAGAGC	13440
ACGAACCAAG	GTTGTAAATG	GAATCTTACG	AGTACGGTCG	ATACGAGTGT	AGGTGATATC	13500
TTTTGAGTCG	CTTTCAAGTT	CCAACCAAGC	TCCACGGTTA	GGGATAACAG	TTGAACCATA	13560
GCCCACCTTA	CCATTTTTGT	CTACTTTGTC	GTTAAAGTAA	ACACCTGGTG	AGCGGACCAA	13620
CTGAGAAACG .	ATAATACGTT	CACCACCATT	GATGATGAAA	GTACCCATTT	CTGTCATGAT	13680
TGGGAAATCA	CCAAAGAAAA	CTTCTTGGGT	CTTGATTTCG	СТТСТТТСТТ	TATTGATCAA	13740
ACGGAAGGTT .	ACAAAAATTG	GTGCTGAGTA	GCTAGCATCG	TGGATACGAG	CTTCTTCTAG	13800
CGTATATTTT	GGTTCCTTGA	TTTCATATCC	AACAAATTCC	AACTCCATTG	TGTCTGTGAA	13860
GTTTGAAATT (	GGCAATACAT	CTTCAAACAC	TTCCTTAAGA	CCGTGGTCTA	GGAAAGCTTT	13920
		•			•	•

PCT/US97/19588 WO 98/18931

				814			
G	AATGAGTCA	GTTTGAATTT	CAATCAAATT	TGGTAAGTCA	AGAACTTCTT	TGATTCTTGA	13980
A	AAAÇTACGA	CGGGTACGAT	GTTTCCCGTA	TTGAACGTCA	TGTCCTGCCA	AGATGATTCT	14040
С	CTTTGTAAA	TAAGTTCCAA	GCCTTGTCAA	TCAGGCTTTT	CTAATCGTCA	TATGGTTGTA	14100
A	ACCCCTTAT	CACCGTGTCC	TCTTGACGAA	TTTTCAGAAT	CTTTAAGCCT	CTGTTACAAA	14160
T	GCTCAAAAT	CTTGAAAAAA	AGCACAAAAA	GAGCAGCTAA	ATCTGACTTT	TTCAGAAGAT	14220
T	TAACTGCTG	TGAGCCTTGT	CTGGACAATA	TTTCAGACAA	AACCTACGAC	AAATGATTAC	14280
C	CATATTATA	CCCTATTTAG	CTAGATTTTT	CAAGGGGTTT	CAGTAGGTTT	TTGGTAAATT	14340
T	TTTCCCATA	GAAAACTTGG	CATCACATTC	GAATCACGCT	ATGGTACAAA	AAACTGAAAA	14400
A	ACTATTGAC	TGAAAATCAT	TTTCAAGGTA	TAATAATAAA	CGTTAAGGCG	GTATAGCCAA	14460
G	TGGTAAGGC	ACGGCTCTGC	AAAAGCTTGA	TCGTCGGTTC	AAATCCGTCT	ACCGCCTTCT	14520
A	TAACTTGAT	TTATCAGGTT	TCAAATGAAC	AGAAAGCCCA	ATTTGAAGGG	CTTTTTTAT	14580
T	TTCCCTCGA	ATAAATACGT	ATAACTTTAA	AAACTTTTGG	AGCGAGTTTG	TGGCAGAGTT	14640
C	TTTCCATGG	CATAATTCCC	TTTTGAAATC	AG			14672

### (2) INFORMATION FOR SEQ ID NO: 112:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 7902 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

60	TGTGATACGT	CTGTATAGAC	CCAGCAAAGA	ATTGAGTAGC	TCAAGCCCAA	AGGAGACTAT
120	GGCCAGGATA	TGGTATCTAA	GAACCAAGAA	GAGAATTTGG	CATTGGTAAA	TTTTCATAGC
180	TTCACTACCG	CGATATATTT	ATGCCGCCTC	AGAGGTCAAG	AAGCGAAGAG	ATCGTACGAA
240	<b>AATGATA</b> AAG	AACTCAGTGG	ATGAGTCCAA	TCCTAAAACC	TGGCATTTGG	TAAAGTAGGA
300	GTCTCCTTTC	AGGCTTCTTT	AGAGAAACAT	TCTATTAACC	TTCGACTACC	AAGTTAAAGA
360	AACCCCAGCT	CACCTGTTAC	ACTCCAATTG	AGGCACACTC	AACTGAGACG	CCCAGATAGT
420	AATCCCTGTT	CGTTGACATC	TAGTAACTAA	AGCTATGGTA	CAATTCGCTG	ATAACGGTCA
480	AAAGACTAAC	TGGCATTGGC	AAGAGCATAT	TAAAAAAGTG	AGAGGCGATC	TTAACGAGGA
540	AACAAGTTTG	GGTGAATTTT	AÄATCACTTA	GAGTGGTTTA	GAGGGAGAAA	ATGGCTGTCA
600	TAAACTCATC	TCAGCGTCGA	AGGTAGTTAA	ATAACTAATC	TAATCCAAAA	ATGTCTCTTT
660	AGAGACCAGC	ATAAGAAAAT	TTTTTAACAA	ATCGTGTTCA	AGACAACAAT	ACAAGTGTAT

ATCAGGATAC	GGATGAAGGC	AGTTTTGTAA	AAGAGAAAAC	TGTAATTTTC	CAGAGCTTCA	720
TTGACCCATT	CGATTGAAAA	AATCTGGGCA	ATGAGTTGAA	TCCCCATAAC	AAGGTAGACC	780
TTTTTGACGA	TTGGATTATC	AGTAAAGAAG	AGAGGATAGG	CTAGGATATA	GACAGCAGTG	840
GTCAAAATCG	TACAAGCGAT	GCACAAATAA	AAAAGACTAG	AAAAGGTTCT	GTTAAGATCT	900
TTTTTGTTAT	CCTTGACATT	ACTGATAGCC	CTTAAACCGT	AGTTATAGAC	ACCATAAGTT	960
GCAAAGGGCA	AGAAAAATGA	CAAAATAGTG	TCGACTGAGT	TGAAGTAACC	ATAGTCAGTT	1020
CGGTCCAAGA	CACGCGCGAC	ATAGGTTCCA	GTTAGGATGG	GAAAAATAAT	ATTCAAGACA	1080
CGAATTCCCA	TGTAAGATAG	AGCATTTAAT	TTTATACTTT	TCATTCAATT	TACCTCGTTT	1140
TTCATTATAT	CATAAAGTTA	GCTAATAAGA	AATGAAGGGC	AGTAAGTCAA	GTAATCACTT	1200
TGAAGTTTCA	AATCTTAAGT	TTTAAGTTTT	CTTTAAGGAA	AGTATATTAT	TCTGAAGGAC	1260
TCTAAAATTT	CGCAGCCATT	TATTAGTAAT	TGCTACAGAA	TTCCTAGTCA	TTACTAGAAA	1320
TGGACTAGTT	TCTTTGAATA	ATAGAACTGC	ATAATTCTCC	TATTCTAGAA	GGGGAGGACC	1380
AGTATTTCTT	TTATGATAGG	ACTAGATTGT	GGTATAATAG	AGAGAATAAG	TTTTTTTAGT	1440
AAGACAAAGG	AGAAAATAGA	TGATTTATGC	AGGAATTCTT	GCCGGTGGAA	CTGGCACACG	1500
CATGGGGATC	AGTAACTTGC	CAAAACAATT	TTTAGAGCTA	GGTGATCGAC	CTATTTTGAT	1560
TCATACAATT	GAAÄAATTTG	TCTTGGAGCC	AAGTATTGAA	AAAATTGTAG	TTGGTGTTCA	1620
TGGAGACTGG	GTTTCTCATG	CAGAAGATCT	TGTAGATAAA	TATCTTCCTC	TTTATAAGGA	1680
ACGTATCATC	ATTACAAAGG	GTGGTGCTGA	CCGCAATACA	AGTATTAAGA	ACATCATTGA	1740
AGCCATTGAT	GCTTATCGTC	CGCTTACTCC	AGAGGATATC	GTTGTTACCC	ACGATTCTGT	1800
TCGTCCATTT	ATTACACTTC	GCATGATTCA	GGACAATATC	CAACTTGCCC	AAAATCATGA	1860
CGCAGTGGAC	ACAGTGGTAG	AAGCGGTTGA	TACTATCGTT	GAAAGTACCA	ATGGTCAATT	1920
TATTACAGAT	ATTCCAAATC	GTGCTCACCT	TTATCAAGGA	CAAACACCTC	AAACATTCCG	1980
TTGCAAGGAC	TTCATGGACC	TTTATGGATC	TCTTTCTGAT	GAAGAGAAGG	AAATCTTGAC	2040
AGATGCATGT	AAAATCTTTG	TGATCAAAGG	AAAAGATGTG	GCTTTGGCCA	AAGGTGAATA	2100
CTCAAATCTG	AAGATTACAA	CCGTAACAGA	TTTGAAGATT	GCAAAAAGTA	TGATTGAGAA	2160
AGACTAGTAA	AATGATTAAT	CAAATTTATC	AACTAACTAA	GCCTAAGTTT	ATCAATGTCA	2220
AATATCAGGA	AGAGGCTATT	GACCAAGAGA	ATCATATCCT	TATCCGTCCC	AACTACATGG	2280
CTGTCTGTCA	TGCGGATCAG	CGTTACTATC	AGGGAAAACG	TGATCCCAAG	ATTTTGAATA	2340
AAAAGCTTCC	AATGGCAATG	ATTCACGAGT	CATGTGGAAC	CGTCATTTCT	GACCCGACCG	2400

816 GAACCTACGA GGTTGGTCAA AAAGTTGTCA TGATTCCCAA TCAGTCTCCT ATGCAGAGTG 2460 ATGAAGAATT CTATGAAAAC TACATGACAG GGACCCATTT CTTGTCTAGT GGATTTGATG 2520 GCTTTATGAG AGAGTTTGTT TCTCTCCCTA AAGATCGTGT GGTGGCTTAT GATGCTATTG 2580 AAGATACGGT TGCAGCCATT ACAGAGTTTG TCAGTGTGGG CATGCACGCT ATGAATCGTC 2640 TATTGACTCT TGCTCATAGC AAGCGGGAGC GGATCGCCGT TATTGGAGAT GGAAGTTTAG 2700 CTTTTGTGGT TGCCAATATT ATCAACTATA CTTTGCCAGA AGCAGAGATT GTGGTTATTG 2760 GTCGTCATTG GGAAAGTTG GAACTCTTCT CATTTGCCAA AGAATGCTAT ATTACGGATA 2820 ATATTCCTGA AGATTTGGCC TTTGACCATG CTTTTGAATG TTGTGGTGGT GATGGTACTG 2880 GACCAGCTAT TAATGACTTG ATTCGCTACA TTCGTCCTCA GGGAACGATT CTCATGATGG 2940 GAGTTAGCGA ATATAAAGTC AATCTCAATA CTCGCGATGC CTTAGAAAAG GGCTTGATTT 3000 TGGTTGGGTC ATCTCGTTCT GGTCGCATTG ATTTTGAAAA TGCTATCCAA ATGATGGAAG 3060 TCAAGAAATT TGCCAATCGT CTTAAAAATA TCCTTTATCT AGAAGAACCT GTAAGAGAAA 3120 TTAAAGATAT TCATCGTGTC TTTGCAACCG ATTTAAACAC AGCCTTTAAA ACAGTGTTTA 3180 AGTGGGAAGT ATAAGTACTG GAGGTTAATT GTGGAGAAAA TCATTAAAGA AAAAATTTCT 3240 TCCTTACTTA GTCAAGAAGA GGAAGTCCTC AGTGTTGAAC AACTGGGTGG AATGACCAAT 3300 CAAAACTATT TGGCCAAAAC AACAAATAAG CAATACATTG TTAAATTCTT TGGTAAAGGG 3360 ACAGAAAAGC TTATCAATCG ACAAGATGAA AAGTACAATC TTGAACTACT AAAGGATTTA 3420 GGCTTAGATG TAAAAAATTA TCTTTTTGAT ATTGAAGCTG GTATCAAAGT AAATGAGTAT 3480 ATCGAATCTG CGATTACGCT TGATTCAACG TCAATCAAGA CCAAGTTCGA CAAAATTACT 3540 CCAATATTAC AAACTATCA TACGTCTGCT AAGGAATTAA GAGGAGAATT TGCTCCTTTT 3600 GAAGAAATCA AAAAATACGA ATCCTTGATT GAAGAACAAA TTCCTTATGC CAACTATGAA 3660 TCTGTTAGAA ATGCAGTCTT CTCCTTAGAG AAAAGACTGG CTGACTTAGG TGTTGACAGA 3720 AAATCTTGTC ATATCGATTT GGTGCCTGAA AACTTTATCG AATCACCTCA AGGACGACTT 3780 TATTTGATTG ACTGGGAATA TTCATCAATG AATGATCCAA TGTGGGATTT GGCTGCCCTC 3840 TTTTTAGAGT CTGAATTCAC TTCCCAAGAG GAAGAAACTT TCTTATCTCA CTATGAGAGT 3900 GACCAAACAC CGGTTTCTCA TGAAAAGATT GCTATTTATA AAATTTTACA AGATACTATT 3960 TGGAGTCTAT GGACTGTCTA TAAGGAAGAG CAAGGTGAAG ATTTTGGTGA CTATGGTGTG 4020 AATCGTTACC AAAGAGCTAT TAAAGGTTTG GCTTCTTATG GAGGTTCAGA TGAAAAGTAA 4080 AAACGGAGTT CCTTTTGGCC TTCTCTCAGG TATTTTCTGG GGCTTGGGTC TAACGGTTAG 4140 TGCTTATATC TTTTCGATTT TTACAGATTT GTCACCCTTT GTGGTGGCTG CAACTCATGA 4200

TTTTTTGAGC	ATCTTTATCT	TACTAGCTTT	TCTCTTGGTA	AAAGAAGGGA	AAGTTCGCCT	4260
CTCAATTTTC	TTAAATATTC	GCAATGTCAG	TGTTATCATC	GGAGCCTTGC	TAGCAGGCCC	4320
TATCGGTATG	CAGGCCAATC	TTTATGCAGT	TAAGTATATC	GGAAGTTCTT	TAGCTTCATC	4380
TGTATCGGCT	ATTTACCCTG	CGATTTCAGT	TCTATTGGCT	TTCTTCTTTT	TGAAGCACAA	4440
GATTTCGAAA	AATACTGTAT	TTGGGATTGT	CTTGATTATT	GGAGGGATTA	TTGCTCAGAC	4500
CTATAAGGTT	GAACAGGTTA	ATTCTTTCTA	CATTGGGATT	CTTTGTGCTT	TGGTTTGTGC	4560
TATTGCATGG	GGAAGTGAGA	GTGTTCTTAG	CTCTTTTGCC	ATGGAAAGTG	AATTGAGTGA	4620
AATCGAAGCC	CTCTTAATCC	GTCAAGTAAC	TTCGTTCTTG	TCCTATCTTG	TGATTGTGCT	4680
CTTCTCTCAT	CAGTCATTTA	CTGCAGTAGC	CAATGGACAA	TTGCTAGGTC	TCATGATTGT	4740
TTTTGCAGCC	TTTGATATGA	TTTCCTACTT	GGCTTATTAT	ATCGCTATCA	ATCGCTTGCA	4800
ACCAGCCAAG	GCTACAGGCT	TGAACGTGAG	CTATGTAGTA	TGGACGGTCT	TGTTTGCAGT	4860
TGTTTTCTTG	GGTGCACCGC	TAGATATGCT	GACCATTATG	ACGTCACTTG	TCGTCATTGC	4920
TGGAGTTTAT	ATTATTATTA	AAGAATAAAG	GAGATTCGTG	TGAAAGCCAT	TATCTTAGCA	4980
GCGGGATTGG	GAACTCGCTT	GCGTCCTATG	ACTGAAAATA	CCCCTAAAGC	CTTGGTTCAG	5040
GTTAATCAAA	AACCTTTGAT	TGAGTACCAA	ATTGAGTTTC	TCAAAGAAAA	AGGAATCAAT	5100
GACATCATCA	TCATTGTTGG	TTATCTTAAA	GAACAATTCG	ATTACTTGAA	AGAGAAATAC	5160
GGTGTTCGTC	TCGTTTTCAA	TGATAAATAC	GCTGACTACA	ATAACTTTTA	CTCTCTCTAT	5220
CTTGTAAAAG	AAGAATTGGC	CAACAGCTAT	GTTATTGATG	CTGACAATTA	TCTCTTTAAA	5280
AATATGTTCC	GCAATGATTT	GACACGTTCG	ACTTATTTTA	GTGTTTATCG	TGAAGATTGT	5340
ACCAACGAAT	GGTTCTTGGT	TTATGGAGAT	GACTACAAGG	TTCAAGACAT	TATTGTTGAT	5400
AGCAAGGCAG	GTCGCATCCT	TAGTGGTGTA	TCCTTCTGGG	ATGCTCCAAC	TGCAGAAAAG	5460
ATTGTCAGCT	TTATCGACAA	GGCTTATGTA	AGTGGTGAAT	TTGTTGATCT	CTATTGGGAC	5520
AATATGGTTA	AGGATAATAT	CAÂAGAGCTA	GATGTCTATG	TTGAAGAATT	AGAAGGCAAT	5580
AGCATTTATG	AGATCGATAG	TGTCCAAGAC	TATCGTAAAT	TAGAAGAAAT	TCTTAAAAAC	5640
GAAAATTAAA	GATTCCAACA	TCTGACAAAA	TAGTCGGATG	TTTTTTGATT	TTTTACGAAC	5700
TTTTACGAAT	AGATAGATGA	GTAGAAAAAG	AAATGGAGTT	ATTTATGAAA	ATCACAAACT	5760
ATGAAATCTA	TAAGTTAAAA	AAATCAGGTT	TGACCAATCA	ACAGATTTTG	AAAGTGCTAG	5820
AATACGGTGA	AAATGTTGAT	CAGGAGCTTT	TGTTGGGTGA	TATTGCAGAT	ATCTCAGGTT	5880
GCCGTAATCC	AGCCGTTTTT	ATGGAACGTT	ATTTTCAGAT	AGACGATGCG	CATTTGTCGA	5940

AAGAGTTTC	A AAAATTTCCA	TCTTTCTCTA	TTTTAGATGA	CTGTTATCCT	TGGGATTTGA	600
	A TGATGCGCCT					606
TCCCGAAGG	T AGCGGTCGTG	GGCAGTCGTG	CTTGTAGCAA	ACAGGGAGCT	AAGTCAGTTG	612
AAAAAGTCA	T TCAAGGCTTG	GAAAATGAAC	TGGTTATTGT	CAGTGGTCTG	GCCAAGGGCA	618
TTGACACAG	C AGCTCATATG	GCAGCTCTTC	AGAATGGCGG	AAAAACCATT	GCAGTGATTG	624
GAACAGGAC	T GGATGTGTTT	TATCCTAAAG	CCAATAAACG	CTTGCAAGAC	TACATCGGCA	630
ATGACCATC	T GGTTCTAAGT	GAATATGGAC	CTGGTGAACA	ACCTCTGAAA	TTTCATTTTC	636
CTGCCCGTA	A TCGCATCATT	GCTGGACTTT	GTCGTGGTGT	GATTGTAGCA	GAGGCTAAGA	6420
TGCGTTCAG	G TAGTCTCATT	ACGTGTGAGC	GAGCAATGGA	AGAAGGACGC	GATGTCTTTG	6480
CTATTCCTG	G TAGCATTTTA	GATGGACTAT	CAGACGGTTG	CCATCATTTG	ATTCAAGAAG	6546
GAGCAAAAT	T GGTCACCAGT	ĠĢĢĊĀĀĢĀŦĢ	TTCTTGCGGA	ATTTGAATTT	TAAAAATGAC	6600
CTAAGCTAG	A ATTCTAAGAA	AAAATCAATT	TTAAGAGAAA	ATGAACCCAA	CATTTCCATA	6660
ATAAAACGC	A TATTAGCAAG	TTTTTAACAC	TTGATAATAT	GCGTTTTTTC	TAAGTGGATT	6726
AGTAGAGTA	G AGGATTTTC	TCATATAATA	CTCTTCGAAA	ATCTCTTCAA	ACTACGTCAG	6780
CTTCCATCT	G CAACCTCAAA	ACAGTATTT	GAGCgaCTtC	GTCAGTCTTA	TCTACAACCT	6840
CAAAGCAGT	G CTTTGAGCAA	CCTGTGGCTA	GCTTCCTAGT	TTGCGCTTTG	ATTTTCATTG	6900
AGTATAAGG	G AAAGTATAGT	GAATTGAAAT	AAGATGTGAA	CAACTCTATC	AGGAAAGTCA	6960
AATTAATTT	A TAGAAATATT	TTAGCAGCCA	AGGTGTACTG	TTATAGATTC	AATTACACTA	7020
TAATTTAGT	g taattgagaa	AGGAGAAATG	ATTGTGATTG	ATGTTGGCTA	GGTTATGTTC	7080
AATGATTCC	r ACCGTCTCAA	ATCTTGTCAG	TAAGGAAAAA	TAAATTCTTC	AAAAGTAGAG	7140
ATTACAAGG	C TTGTTTAAGA	AAGAATTCAA	AGACCTTGAC	AAAAAAAAA	AAAATGGTTA	7200
TTATAAAAA	A TGGTCTGAAA	TAGATGATGA	TACTTTTCGA	AAATCTCTTC	AAATACGTCA	7260
GCTCAGCTT	r GCCTTGCTGT	GTTTTGAGCA	AGCTACGGTT	AGCTTCCGAG	TTTGATTT"C	7320
ATTTACTAG	A AATGAAACTG	ATGAGAGATA	TCAGTAGACA	TTTGAGTCAG	GATATTATGG	7380
aaaatgata <i>i</i>	A AAAGAGCTCG	TGAGATTGGC	ATATCAGACT	ACTAAAGTAT	TGAGTTTGTT	7440
AGGATTTTAC	G CGACTAGTTA	GCTGGGAAAG	GAAGATATTT	GTGACAAATA	ATAAACTGTA	7500
TTCG <b>TTGAT</b>	A GAATTTAGAA	ATAAAATATA	TGAAGAATTA	GAACTTTCCA	GAAGTGATTT	7560
AGCGATTTT	A CTATGTGCCA	TGCTTATCGC	CTCTATCGGA	TTAAATATGG	ATTCGACTCC	7620
CGTGATTATT	GGAGCCATGT	TAATCTCTCC	TTTGATGACA	CCTATTCTGG	GAGTGGGGCT	7680
CTCTCTAGCT	T ATATTTGATT	TTAAATTGTT	AAGAAAATCT	TTTAAAATAT	TAGCTATTCA	7740

819

AATTCTTGCC AGTCTAATAG CTTCAACACT TTATTTTAT CTTTCTCCCA TTTCGTATGC 7800
TAGTTCGGAG ATTGTTGCTA GAACCTCTCC GACTATTTGG GATGTTCTCA TTGCTTTTGT 7860
AGGAGGGATA GCAGGTATCA TTGGTGCTAG GAAAAAAGAG AC 7902

- (2) INFORMATION FOR SEQ ID NO: 113:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 18627 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:

GAAGTTGAAA TGGCCAGCTG ATGAGCAATA TCGGTCATAG AAATCTTCTC AATCAACTTT 60 TGCGCAATTT TTTGGTTGAT AATACGAGGA ATTTGGTGAT TTTTCTTGAC GATAGAAGTT 120 TCAGCGACCA TCATTTTGA ACAGTGATAG CACTTGAAAC GACGCTTTCT AAGTAGAATT 180 CTAGTAGGCA TACCAGTTGT CTCAAGGTAA GGAATCTTAG ACGGTTTTTG AAAGTCATAT 240 TTCTTCAATT GGTTTCCGCA CTCAGGGCAA GATGGGGCGT CGTAGTCCAG TTTGGCGATG 300 ATTTCCTTGT GTGTATCTTT ATTGATGATG TCTAAAATCT GGATATTAGG GTCTTTAATG 360 TCTAGTAATT TTGTGATAAA ATGTAATTGT TCCATATGAA TCTTTCTAAT GAGTTGTTTG 420 GTCGCTTTTC ATTATAGGTC ATATGGGACT TTTTTTCTAC AATAAAATAG GCTCCATAAT 480 ATCTATAAGG GATTTACCCA CTACAAATAT TATAGAGCCA AAAATCCTTT GTTTACTAAA 540 CAAGGGATIT TICTTTIGIC TCTGCTCCTT TITTGATATA ATAGTTCTAT GITAAAATCA 600 GAAAAACAAT CACGTTATCA AATGTTAAAT GAAGAATTGT CCTTCCTATT GGAAGGCGAA 660 ACCAATGTTT TGGCTAATCT TTCCAACGCC AGTGCTCTCA TAAAATCACG TTTTCCTAAT 720 ACCGTATTTG CAGGCTTTTA TTTGTTCGAT GGAAAGGAAT TGGTTTTAGG CCCCTTCCAA 780 GGAGGTGTTT CCTGCATCCG TATTGCACTA GGCAAGGGTG TTTGTGGTGA GGCAGCTCAC 840 TTTCAGGAAA CTGTTATTGT TGGAGATGTG ACGACCTATC TCAACTATAT TTCTTGTGAT 900 AGTCTAGCTA AAAGTGAAAT TGTGGTGCCG ATGATGAAGA ATGGTCAGTT ACTTGGAGTT 960 CTGGATCTGG ATTCTTCAGA GATTGAGGAT TACGATGCTA TGGATCGAGA TTATTTGGAA 1020 CAATTTGTCG CTATTTTGCT TGAAAAGACA GCATGGGACT TTACGATGTT TGAGGAAAAA 1080 TCTTAATGTA TCAAGCACTT TATCGAAAAT ATAGAAGTCA AAACTTCTCC CAGTTAGTTG 1140 GTCAAGAAGT TGTGGCTAAG ACTCTTAAAC AAGCGGTGGA GCAAGAGAAA ATAAGTCACG 1200

			820			
CTTATCTTTT	TTCTGGTCCT	CGTGGAACGG	GAAAAACCAG	TGTTGCTAAA	ATCTTTGCCA	1260
AGGCTATGAA	CTGTCCCAAT	CAAGTGGGTG	GCGAACCTTG	CAATAACTGC	TATATTTGTC	1320
AAGCAGTGAC	GGACGGTAGT	TTAGAAGATG	TCATTGAAAT	GGATGCAGCT	TCTAATAATG	1380
GGGTAGATGA	AATTCGCGAA	ATTCGTGATA	AATCTACCTA	TGCGCCTAGC	CTTGCTCGTT	1440
ATAAGGTTTA	TATCATAGAT	GAGGTTCACA	TGCTGTCTAC	AGGGGCTTTT	AATGCCCTCC	1500
TAAAGACGCT	GGAAGAACCA	ACACAGAATG	TAGTCTTTAT	TTTGGCCACT	ACTGAATTGC	1560
ACAAGATTCC	TGCTACTATT	CTATCCCGTG	TGCAACGTTT	TGAGTTTAAA	TCAATTAAGA	1620
CACAGGATAT	TAAGGAACAT	ATTCACTATA	TCTTAGAAAA	AGAAAATATC	AGTTCTGAAC	1680
CAGAGGCTGT	GGAAATCATT	GCCAGACGGG	CGGAAGGTGG	AATGCGGGAC	GCCTTGTCTA	1740
TTTTGGATCA	AGCCCTGAGT	TTGACACAGG	GAAATGAGCT	GACGACTGCT	ATCTCTGAAG	1800
AAATTACTGG	CACCATTAGC	CTATCAGCCT	TGGATGATTA	TGTGGCGGCC	TTGTCTCAAC	1860
AGGATGTTCC	CAAAGCTTTG	TCTTGCTTGA	ATCTTCTTTT	TGACAATGGT	AAGAGCATGA	1920
CTCGTTTTGT	GACCGATCTT	TTGCACTATT	TAAGAGACTT	GTTAATTGTT	CAAACAGGGG	1980
GAGCAAATAC	TCATCATAGT	TCAGTCTTTG	TAGAAAATTT	GGCACTTCCT	CAAAAAAATC	2040
TGTTTGAAAT	GATTCGCTTA	GCAACAGTGA	GTTTAGCAGA	TATTAAGTCT	AGTTTGCAAC	2100
CCAAGATTTA	TGCTGAAATG	ATGACCGTCC	GTTTGGCGGA	AATCAAGTCC	GAACCAGCTC	2160
TATCAGGAGC	GGTTGAAAAT	GAAATTGCTA	CGCTGAGACA	GGAAGTTGCC	CGTCTCAAAC	2220
AAGAGCTTTC	TAATGTAGGT	GCGGTTCCTA	AACAAGTTGC	ACCAGCTCCT	AGTCGACCAG	2280
CTACGGGCAA	AACAGTCTAT	CGTGTCGATC	GCAATAAAGT	GCAATCTATC	TTACAAGAGG	2340
CCGTCGAAAA	TCCTGATTTA	GCACGTCAAA	ATTTAATTCG	TTTGCAGAAT	GCCTGGGGAG	2400
AGGTAATTGA	AAGTCTAGGT	GGGCCGGACA	AGGCTCTGCT	AGTTGGTTCT	CAACCGGTTG	2460
CTGCCAATGA	ACACCATGCT	ATTCTTGCTT	TTGAGTCTAA	CTTCAATGCT	GGTCAAACTA	2520
TGAAACGAGA	CAATCTCAAT	ACCATGTTTG	GTAATATCCT	CAGTCAGGCG	GCAGGTTTTT	2580
CACCTGAGAT	TTTAGCTATT	TCCATGGAGG	AATGGAAAGA	AGTTCGCGCA	GCCTTTTCAG	2640
CCAAAGCCAA	ATCTTCTCAA	ACTGAAAAAG	AAGTAGAAGA	AAGCCTGATT	CCAGAAGGAT	2700
TTGAATTTTT	GGCTGATAAA	GTGAAGGTAG	AGGAAGACTA	AAGAAAGATT	TCATGATACA	2760
ATAAGTTTAT	GAATAAACAA	CAATTTATTA	TTATGGCGCT	GTTTACAGCT	GCTGAGACCT	2820
ATTTTTTCAA	TGAAGCCTGG	ATGACTGGCC	GCTATATTAT	GGCAGCCTTT	TGGGCAATTT	2880
TACTCTTTAG	AAATTTCCGA	GTCAGTTATG	TGATGGGCAA	AATCGTTGAT	GTCATCGATC	2940
AGCATTTTAA	TAGGAAAGAC	TAGCCCTCAG	CTTCCAGACA	AAATCAAAGC	CTTTTTAGGCT	3000

TTTTTTTGT	T ATACTAGAA	A AGTATATT	A TAGAATTTT	GCTCTATTT	TGGGGAAATC	3060
AGACGTTTT	r ctagtaagt	CTGTAAAAG1	TTTGAAAAA	AAAGGAACT	TCATGTCAGT	3120
ATTAGAGAT	C AAAGATCTTC	ACGTTGAGAT	T TGAAGGAAAA	GAAATTTTAA	AAGGGGTTAA	3180
CCTGACCCT	G AAAACAGGAC	AAATTGCCG	TATCATGGGA	CCAAATGGT	CAGGTAAATC	3240
GACTCTTTCT	GCCGCTATCA	TGGGAAATC	AAACTATGAA	GTAACTAAAC	GTGAAGTTTT	3300
GTTTGATGG	GTAAACATCO	TTGAGTTGG	AGTGGATGAG	CGTGCGCGTA	TGGGACTTTT	3360
CCTTGCTATO	G CAATACCCAT	CAGAAATCCC	TGGAATTACC	AATGCTGAGT	TTCTTCGTGC	3420
CGCTATGAAT	GCGGGTAAAG	AAGATGATGA	GAAGATTTCA	GTTCGTGAGT	TTATTACTAA	3480
GCTAGATGAA	AAAATGGAAT	TGCTCAACAT	GAAAGAAGAA	ATGGCAGAGC	GTTACCTCAA	3540
CGAAGGCTTC	TCTGGTGGTG	AGAAAAAACG	CAATGAAATT	CTTCAACTTT	TGATGTTGGA	3600
GCCAACATTT	GCTCTTTTGG	ACGAGATTGA	CTCAGGTCTT	GATATTGACG	CTCTTAAAGT	3660
TGTGTCTAAA	GGTGTCAATG	CCATGCGTGG	TGAAGGTTTT	GGTGCTATGA	TCATCACTCA	3720
CTACCAACGT	CTTTTGAACT	ATATCACACC	TGATGTGGTA	CACGTGATGA	TGGAAGGTCG	3780
TGTTGTCCTT	TCTGGTGGTC	CAGAATTGGC	TGCGCGTTTG	GAACGTGAAG	GATACGCAAA	3840
ATTAGCTGAA	GAACTTGGCT	ACGACTACAA	GGAAGAATTG	TAATTCCCTC	GTATCTTTTA	3900
GGAGAAGTAA	ATGACTAGAG	AAAATATTAA	ACTTTTTTCA	GAAATGCACG	CTGAACCAAG	3960
CTGGTTGGCT	GATCTCCGTC	AAAAAGCTTT	TGACAAGATT	GAGACTTTGG	AATTACCAGT	4020
TATTGAGTGT	GTCAAATTCC	ACCGTTGGAA	TCTGGGTGAT	GGAACGATTA	CAGAAAATGA	4080
GCCATCAGCA	AATGTTCCAG	ATTTCACAGC	TTTAGATCAT	CACTTGAAGT	TGGTGCAAGT	4140
AGGAACTCAA	ACTGTTTTCG	AACAAACTCC	AGTTGAGTTA	GCTGAACAGG	GTGTTGTCTT	4200
CACAGACTTT	CACTCAGCTT	TAGAAGAAAT	TCCAGAGCTG	ATCGAAGAAT	TCTTCATGTC	4260
ATCTGTTAAG	TATGATGATG	ACAAGTTGGC	GGCTTACCAC	ACAGCTTACT	TTAACAGTGG	4320
TGCTGTACTC	TATATTCCAG	ATAACGTAGA	AATCACAGAG	CCAATTGAAG	GAATTTTCTA	4380
CCAAGATAGC	GATAGCAATG	TGCCGTTTAA	CAAGCATATT	ATGATTATCG	TTGGTAAAAA	4440
TTCTAAGATT	AGTTATCTGG	AGCGTTTAGA	GTCACGCGGT	GAAGGAAGTG	ACAAAGCAAC	4500
TGCCAATATC	ACAGTGGAAG	TGATTGCACG	TTCTGGTGCG	CAAGTCAAGT	TTGCTGCTAT	4560
CGACCGTCTA	GGTGAAAACG	TCACTGCCTA	CATTAGCCGT	CGTGGTAAAT	TAGGCAACGA	4620
TGCAAGTATT	GACTGGGCTA	TCGGTGTCAT	GAACGAAGGA	AATGTCGTTG	CTGATTTTGA	4680
TAGTGACTTG	ATTGGTAATG	GTAGCCATGC	TGACCTCAAG	GTTGTAGCTC	TTTCAAGTGG	4740

TCGTCAGGTA	CAAGGGATTG	ATACTCGTGT	822 AACTAACTAT	GGCTGCAACT	CAATCGGAAA	4800
CATTCTACAA	CATGGGGTTA	TCCTTGAAAA	AGCAACTTTG	ACTTTCAATG	GTATCGGCCA	4860
CATCATCAAG	GGTGCTAAGG	GAGCAGATGC	GCAACAAGAG	AGCCGTGTTC	TCATGCTTTC	4920
AGACCAAGCG	CGTTCAGATG	CTAACCCAAT	TCTTTTGATT	GATGAAAATG	ACGTAACTGC	4980
AGGCCATGCA	GCCTCTATTG	GTCAGGTAGA	TCCAGAAGAT	ATGTACTACC	TCATGAGTCG	5040
TGGCTTGGAT	AAGGCAACTG	CAGAGCGTTT	GGTTGTTCGT	GGTTTCCTTG	GATCTGTTAT	5100
CGTGGAGATT	CCAGTCAAGG	AAGTTCGTGA	TGAAATGATT	GCAACTATCG	AAGAGAAATT	5160
GTCAAAACGC	TAAGGGCAG	CCTATGTTAG	ATGTAGAAGC	GATTCGCAAG	GATTTTCCAA	5220
TTTTAGATCA	GATTGTCAAT	GATGAACCTC	TGGTCTATCT	GGACAATGCT	GCGACGACAC	5280
AAAAACCACT	AGTAGTTCTG	AAAGCTATTA	ACAGCTACTA	TGAGCAGGAC	AATGCCAATG	5340
TTCACCGTGG	TGTCCATACC	TTAGCGGAAC	GAGCGACAGC	TTCTTATGAA	GCTGCTCGTG	5400
AAACCATTCG	TAAGTTTATT	AATGCAGGCT	CTACAAAGGA	AGTTCTCTTT	ACCAGAGGAA	5460
CGACAACCAG	CCTTAACTGG	GTGGCACGCT	TTGCTGAGGA	AATTCTCACT	GAGGGAGACC	5520
AGGTCTTGAT	TTCAGTAATG	GAACACCATT	CTAATATCAT	TCCATGGCAG	GAAGCTTGTC	5580
GAAAGACTGG	AGCAGAGCTT	GTCTATGTCT	ATCTTAAAGA	CGGTGCCTTG	GATATGGAGG	5640
ATTTGCGAGC	TAAATTGACT	GATAAGGTTA	AATTTGTTTC	CCTAGCTCAT	GCCTCCAATG	5700
TTCTTGGTGT	GGTCAATCCG	ATCAAGGAAA	TCACTCAATT	AGCCCACCAA	GTTGGGGCAA	5760
TTATGGTAGT	GGATGGTGCT	CAATCTACAC	CTCATATGAA	GATTGATGTC	CAGGACTTGG	5820
ATCTGGACTT	TTTCGCCTTT	TCGGGTCACA	AGATGGCTGG	TCCGACTGGT	ATCGGTGTCC	5880
TTTACGGCAA	AGAAAAGTAT	CTTGAGCAAA	TGTCTCCAGT	AGAATTTGGC	GGCGAGATGA	5940
TTGATTTTGT	CTACGAGCAA	TTTGCTAGTT	GGAAGGAATT	GCCTTGGAAA	TTTGAGGCTG	6000
GAACGCCAAA	TATGGCAGGA	GCTATTGGAC	TTGCGACTGC	AGTTGATTAT	CTGGAAAAGA	6060
TTGGTATGGA	TGCCGTTGAA	GCTCATGAAC	AGGAATTGAT	TGCGTACGTC	TATCCAAAAC	6120
TGCAGGCAAT	TGAGGGATTG	ACCATTTACG	GTTCTCAGGA	TTTGGCTCAA	CGTTCGGGTG	5180
TTATTGCCTT	TAACCTAGGT	GATCTCCATC	CTCACGATCT	TGCGACGGCT	CTGGATTATG	6240
AAGGAGTGGC	TGTTCGTGCT	GGTCACCATT	GTGCGCAACC	CTTGCTTCAG	TATTTGGAAG	6300
TCCCAGCAAC	AGCTCGTGCA	AGTTTTTATA	TCTACAATAC	CAAGGCAGAT	TGCGACAAAC	6360
TAGTCGATGC	CCTACAAAAG	ACAAAGGAGT	TTTTCAATGG	САСТТТСТАА	ACTAGATAGC	6420
CTTTATATGG	CAGTGGTAGC	AGACCATTCG	AAAAATCCAC	ATCACCAAGG	GAAGTTAGAA	6480
GATGCTGAGC	AAATCAGTCT	CAACAATCCG	ACTTGTGGGG	ATGTCATCAA	CCTCTCTGTC	6540

	AAGTTTGATC	CAGAGGACCG	TTTGGAAGAT	ATTGCTTTTC	TAAATTCAGG	ATGCACGATT	660
	TCAACTGCTT	CTGCTAGTAT	GATGACAGAT	GCCGTTTTAG	GAAAAACCAA	ACAAGAAATT	6666
	TTAGAACTGG	CGACTATTT	TTCTGAAATG	GTTCAAGGGC	AAAAAGATGA	GCGTCAAGAC	6720
	CAACTTGGAG	ACGCGGCATT	CTTGTCAGGT	GTTGCCAAAT	TCCCTCAAAG	AATCAAGTGT	6780
	GCAACCCTAG	CTTGGAATGC	CCTTAAGAAA	ACAATTGAAA	ATCAAGAAAA	ACAGTAAGAC	6840
	AAGTTTCTTT	TGTCTTATGA	ATTATTAGAA	ATGAAGAAAG	AAAGGATACT	ATGGCTGAAG	6900
	AAAGAGTAGA	ACCAAAACCA	ATTGACCTTG	GTGAATATAA	ATTTGGTTTC	CATGACGATG	6960
	TAGAGCCTGT	CTTATCGACA	GGAAAAGGAC	TCAACGAAGG	TGTTATTCGT	GAATTATCTG	7020
	CTGCTAAGGG	TGAGCCTGAG	TGGATGTTGG	AGTTCCGTTT	GAAGTCTTAT	GAAACCTTCA	7080
	AAAAAATGCC	CATGCAAACT	TGGGGAGCAG	ACTTGTCAGA	GATTGACTTT	GATGACTTAA	7140
	TCTACTACCA	AAAACCATCT	GACAAACCAG	CCCGTTCTTG	GGATGATGTA	CCTGAAAAGA	7200
	TTAAAGAAAC	CTTTGAACGT	ATCGGGATTC	CAGAAGCTGA	ACGTGCTTAT	TTAGCAGGG	7260
	CTTCTGCCCA	GTACGAGTCA	GAAGTGGTTT	ACCACAACAT	GAAGGAAGAG	TTCCAXAAAT	7320
	TAGGTATTAT	CTTTACAGAT	ACAGATTCCG	CACTCAAGGA	ATACCCAGAC	TTATTTAAAC	7380
	AATACTTTGC	GAAGTTGGTA	CCGCCGACAG	ATAACAAGTT	GGCAGCCCTC	AACTCAGCAG	7440
	TATGGTCGGG	TGGAACTTTT	ATCTACGTGC	CAAAAGGTGT	CAAGGTAGAT	ATTCCACTTC	7500
	AAACTTATTT	CCGTATCAAT	AACGAAAATA	TAGGTCAGTT	CGAACGTACC	TTGATTATCG	7560
	TTGATGAGGG	AGCAAGCGTC	TACTACGTAG	AAGGATGTAC	AGCACCAACA	TATTCAAGCA	7620
	ATAGCTTACA	CGCTGCCATT	GTAGAAATTT	TTGCTTTGGA	CGGAGCTTAT	ATGCGTTATA	7680
	CAACTATCCA	AAACTGGTCT	GATAACGTCT	ATAACTTGGT	AACAAAGCGT	GCTAAGGCTC	7740
	AAAAGGATGC	CACTGTTGAG	TGGATTGATG	GAAACTTGGG	TGCCAAAACG	ACTATGAAAT.	7800
	ATCCATCTGT	TTACCTTGAT	GGAGAAGGAG	CGCGTGGTAC	CATGCTCTCT	ATCGCCTTTG	7860
	CTAATGCAGG	GCAACACCAA	GACACGGGTG	CTAAGATGAT	TCACAATGCT	CCACATACCA	7920
(	GCTCGTCTAT	TGTGTCTAAA	TCCATCGCTA	AAGGTGGAGG	AAAGGTTGAC	TACCGTGGAC	7980
i	AAGTCACCTT	TAACAAGAAC	TCTAAGAAAT	CTGTTTCCCA	CATTGAATGT	GATACCATTA	8040
-	rcatggatga	CTTGTCAGCA	TCAGATACTA	TTCCATTTAA	TGAAATTCAC	AACTCGCAAG	8100
•	TGGCTTTGGA	ACACGAAGCC	AAAGTATCTA	AGATTTCAGA	AGAGCAATTG	TATTATCTCA	8160
•	TGAGCCGTGG	ATTGTCAGAA	TCTGAGGCAA	CTGAAATGAT	TGTCATGGGA	TTTGTAGAAC	8220
(	CCTTTACAAA	AGAACTTCCA	ATGGAATACG	CAGTTGAGCT	GAACCGCTTG	ATTAGCTATG	8280

824 AAATGGAGGG ATCAGTTGGA TAAAATTTGA TTTTATACTC TTCGAAAATC TCTTCAAACC 8340 ACGTCAGCAT CGCCTTACCG TATGTATGGT TWCTGACTCG TCAGTTTCAT CTACAACCTC 8400 AAAACAGTGT TTTGAGCAAC tGCGGCTAGC TTCCTAGTTT GTTCTTTGAT TTTGAGTATT 8460 AGATTTACTC AAAATCAAGG ATTTTGAAGA TGAACTTGTA TCAAAAAATC GCGGTTTAAA 8520 ATCGCGATTT TTTATAATTT CTCGTTAACA AAGCGGACAA ACTGATTCCA CCAAACTTTT 8580 AAGAAGAAGG CTTTTTCAAT TTTCTTGTCT GCTACCATTT CGAAACTAGG GCGCTCTGTG 8640 GTGATGTAAC CTTGACCAAT CAAGTCCTTG TCTTCATAAG TCAAATGGCC AACCACTGTT 8700 CCAGCTTCAA GTGGTGCTGG GATTGCTTTG GAATCAGGTG TGAATTGAAC AGATTGGGAA 8760 GATTGATTCC CAACACGTTC GATTAGATAG ATATCCTCTG GAGCCACTGC AGTTACTGTA 8820 TCTTCTTTTC CATCTTGTAC AGGGGCTTTG CTATCTTGAT AGGCATCGCC TTGTTGAACG 8880 ATTTTGCGAA GTGTAAATGT AGAAGAAATA TAATCCATTA GGGAAGATGT AGCTGTAAAT 8940 CGAGCGTAAG GATTATTGTC TTGATGATCT GCATTTAAAA CAACTGTGAT GACTCTCATG 9000 CCTTTTTCGA CAGTAGTACC AACAAAAGAC TCTCCAGCCT TATCTGTTGT TCCTGTTTTT 9060 AGCCCATCAA AACCACCACG GTAAGCAGGC ATACCTTCTA ACATGTAGTT GGTTGAAGTG 9120 ATTGTCATCC CAGCAAAAGT AGAAGAAGGT TTTTTGGTGA TTTCTAAGAC TTGTGGGTAT 9180 TTTTTGATGA GGTTGCGAGC AACGATAGCG ACATCATAAG CACTAAGCTT ATTTTCCTCA 9240 TCTTTTTAG AACCTGGGTA AATGTTATCC CCTAGAGTTT CATTGTTAAG ACCTGTCGTA 9300 TTGACAACAG TGGCATCCTG AATTCCCCAT TCCAAGAGTT TTGCCCGCAT CATATCGACG 9360 AAATCTTTTT CTGAGCCAGC AATTTTCTCA GCTAGGGCAA TAGCGGCGCT GTTGGCACTA 9420 GATACCAGAG TTGCTTCAAG CAACTCTTCG ACAGTATAAT TACGGGCCTC CATAGGAATA 9480 TTACTGGCTT CAGAATTTGT CGTCAATTGA TAAGGATAAT CAGAAATATC TACAGGAGTG 9540 GAGAGGGTAA TACTTCCGTT TTCCAAAGCT TCATAGACCA GATAAACAGT AATCAATTTT 9600 GTTATGGAAG CAATTTCGAC AGGTTGCGTT GCATCCTTCT CATAGAGAAT TTTACCAGTA 9660 TTTGCCTCAA CAGCAATCGC ATGTTTAGCG GCAATGGTAA AATCTTGAGC AACAGCAGTA 9720 GAAGCACCC CTAAAAGAGA GACAGTTAAC AAAGTTAAAA ATATTTTTTT CATAGTAGTC 9780 TTATTCTATC ATAAAGAAAA AAAATATTCT TGCTTTAATA ATTCATCTGT TAAGCTTTTT 9840 GAAAATATGG TAAAATAAAG TAAGGGAGGT AACTCATGTT TCGTAGAAAT AAATTATTTT 9900 TTTGGACCAC AGAAATTTTA CTCTTAACCA TCATCTTTTA CCTATGGAGA CAGATGGGGT 9960 CTTTGATTAA CCCTTTTGTT AGCGTGCTTA ATACAATTAT GATTCCATTT TTATTAGGGG 10020 GCTTTTTTTA TTATTTGACA AACCCTATTG TTACTTTCTT AAATAAAGTC TGTAAACTCA 10080

ATCGTTTGCT	TGGTATTTTA	ATTACCTTGT	GTACTTTGGT	CTGGGGAATG	GTCATAGGTG	10140
TTGTCTATCT	CTTACCTATT	TTGATTAATC	AGTTATCTAG	TTTGATTATA	TCTAGTCAAA	10200
CTATTTATAG	TCGAGTACAA	GACTTAATCA	TAGACTTATC	TAATTATCCT	GCGCTCCAGA	10260
ATTTGGATGT	AGAAGCTACA	ATTCAGCAGT	TAAACTTATC	CTATGTTGAT	ATTCTTCAAA	10320
ATATCCTAAA	TAGCGTATCA	AATAGTGTGG	GGAGCGTCTT	GTCAGCTCTT	ATCAGTACTG	10380
TTTTGATTTT	GATTATGACT	CCAGTTTTTT	TGGTTTATTT	CTTATTAGAT	GGACATAAAT	10440
TCTTGCCCAT	GCTTGAAAGA	ACGATTCTAA	AGAGGGATCG	CTTGCATATT	GCAGGCTTAT	10500
TAAAGAATTT	AAATGCGACG	ATTGCTCGCT	ATATTAGTGG	AGTTTCGATT	GACGCAATCA	10560
TTATAGGTTG	TTTGGCTTAT	ATTGGCTATA	GTATTATTGG	TTTAAAATAT	GCTTTAGTTT	10620
TTGCCATTTT	TTCTGGTGTA	GCCAATTTAA	TTCCTTATGT	GGGGCCAAGT	ATTGGTTTGA	10680
TTCCTATGAT	CATCGCAAAT	ATATTCACTG	ATCCCCATAG	ACTGCTGATT	GCAGTGATTT	10740
ATATGCTTGT	TGTTCAGCAG	GTAGATGGCA	ATATCTTATA	TCCTCGAATC	GTAGGAAGTG	10800
TTATGAAGGT	TCATCCAATC	ACGATTTTAG	TTTTACTTTT	GTTGTCAAGC	AATATCTATG	10860
GTGTAGTTGG	AATGATTGTC	GCAGTGCCAA	CCTATTCTAT	CTTGAAAGAA	ATTTCTAAGT	10920
TCTTATCCCA	TTTGTATGAA	AATCATAAAA	TAATGAAAGA	ACGAGAAAGA	GAATTAGCTA	10980
AGTAAAAGTC	AGGAGAACCC	TGATTTTTCT	TTACTGGAAG	TGGCCTTTAG	ATTAGAAGAC	11040
TGAAAATAAG	TTAAAGTCTT	AAACTAATTT	TCACAGCTAA	GAATAGTAGA	AGTTAATCTG	11100
ATAAAAATCG	AAAAAACCAG	TGGAATTCTG	TGTCAGGGTA	AGTTCCACTG	GTTTTCATAG	11160
TCTATTAAAG	TTCGAATGAA	ACCTATTTAT	AGTAGATTGA	AACTAGAATA	GTACACCTCT	11220
AATTCTAAAA	CATTGTTAGA	AATCGATTTG	ACTGTCCTGA	TCTATTCGTT	CTATTCTTAT	11280
TTCATTTTAC	TATATTTTGG	TGCAATAAGT	GAAAAGTAGT	CCGAATAATA	TAAGGATTGA	11340
TTTTATAGTT	TTTAAACTCA	AATGAATTGA	AATAAAGAGA	GTACGAAAAT	TCTCATCTGA	11400
AAGTATTTTA	GAATAATTCT	CTTCGTGAAT	TTCTTCAAAA	CAGATAGCTT	CATCTTAGGT	11460
ATGTGATTTC	TTTTTGCATT	TTTGAGTTAG	ATAAGGTATA	ATGATTTTAT	TGTCTTTTGG	11520
GGTCGTTACG	GATTCGACAG	GCATTATGAG	GCATATTTTG	CGACTCGTGT	GGCGACGTAA	11580
ACGCTCAGTT	AAATATAACT	GCAAAAAATA	ACACTTCTTA	CGCTCTAGCT	GCCTAAAAAC	11640
CAGCAGGCGT	GACCCGATTT	GGATTGCTCG	TGTTCAATGA	CAGGTCTTAT	TATTAGCGAG	11700
ATACGATTAA	GCCTTGTCTA	GCGGTTTGAT	AAGAGATTGA	TAGACTCGCA	GTTTCTAGAC	11760
TTGAGTTATG	TGTCGAGGGG	CTGTTAAAAT	AATACATAAC	CTATGGTTGT	AGACAAATAT	11820

GTTG	GCAGGT	GTTTGGACGT	GGGTTCGACT	CCCACCGGCT	CCATTATTCC	TTTGCATTCT	1188
TTTG	CATTCC	TTGGTAAAAC	GTTGTTAAAT	CAACGTTTTT	TATTTTTATC	TTTGGTATTC	1194
CTTT	GCATTC	TTTTGCTAAA	AAGGGAGTCA	CAAACAGACC	CTATTTTAAA	AAAGGATAGA	12000
AAAA.	AGGATA	CAACATTTGT	CGCATCCTAA	AAATAATCTT	TTTTCGACGG	AAGACATGGG	12060
ATTC	GAACCC	ACGCACGCTA	TTACACGCCT	ACCGCGTTTC	CAACACGGCC	TCTTAAGCCT	12120
CTTG.	AGTAAT	CTTCCAATAC	TTACTCAAAT	AGTCTACCAT	AAAGGCTCTT	ATCTTGCAAT	12180
AAAA	ATTCTA	GAAATAAGAA	AAATGATAGA	TTTTGAAAGA	AAATGATAAA	AAATGCTTGA	12240
CTTC	GAAAGA	AAGTATGATA	GAATGAATAG	TGTAAACGAT	AACAGGAGGT	GATTCAGTGT	12300
TAAA	AACAGA	ACGTAAACAA	CTAATTTTAG	AGGAGTTAAA	TCAACATCAT	GTAGTTTCTC	12360
TAGA	TTAAAA	AGTTAGTTTG	CTAGAAACGT	CAGAATCAAC	GGTTCGAAGA	GACTTGGATG	12420
AGTT	GGAAGC	GGAAAACAAG	CTTCGTCGTG	TGCATGGTGG	AGCAGAACTC	CCCTACTCCT	12480
TACA	GGAAGA	AGAAACCATT	CAAGAAAAAT	CTGTCAAAAA	CCTTCAAGAA	AAGAAATTGC	12540
rggc'	TCAGAA	AGCAGCCTCT	CTCATTAAAG	AAAAAGATGT	CATCTTTATC	GATGCTGGAA	12600
CAAC	AACTGC	TTTTTTGATT	CATGAATTGG	TCAATAAGAA	TGTTACAGTT	GTGACCAACT	12660
CCAT	TCACCA	TGCCGCTCAG	TTGGTTGAAA	AGCAGAWTCC	AACTGTCATG	GTTGGAGGAA	12720
ACGT	CAAGAC	GGCGACAGAT	GCTAGTATCG	GGGCGTTGC	TCTTAACCAG	ATTAACCAAT	12780
TGCA	CTTTGA	CCGTGCCTTT	ATCGGAATAA	ATGGTGTTGA	CGATGGCTAT	TATACGACTC	12840
CTGA	TATGGA	GGAGGGAGCT	GTGAAAAGAG	CTATTTTGGA	GAATGCCAAG	CAGACCTACG	12900
CTT	GGTGGA	TTCGTCAAAA	ATTGGACAAA	CTTGCTTTGC	CAAGGTAGCC	CCACTCAAAC	12960
GCGC	PATCGT	TATCACTAGT	CAAGGGCATG	AGCTCTTGCA	GGTTATTAAG	GAGAAAACGG	13020
AGGT	<b>AATAGA</b>	AGTATGATTT	ATACAGTCAC	ACTCAATCCA	TCCATTGACT	ATATCGTTCG	13080
rttg	GACCAA	GTCAAAGTTG	GTAGTGTCAA	TCGTATGGAC	AGTGATGATA	AGTTTGCTGG	13140
rggga	AAAGGA	ATCAATGTCA	GCCGTGTCTT	GAAACGTTTG	AATATACCAA	ATACAGCG.4.C	13200
GGGAT	TTATC	GGTGGCTTTA	CTGGTAAATT	TATCACAGAT	ACTTTAGCAG	AGGAAGAAAT	1.3260
CGAG	ACACGT	TTTGTCCAGG	TGGCAGAAGA	TACTCGTATC	AATGTTAAAA	TCAAAGCAGA	13320
CAA	GAAACA	GAAATCAACG	GAACGGGTCC	AACTGTTGAA	TCGGTTCAGC	TAGAAGAATT	13380
GAAA	CTATT	TTATCTAGTC	TGACAGCAGA	AGATACAGTT	GTCTTTGCAG	GTTCAAGTGC	13440
LAAA1	AATCTA	GGCAATGTTA	TCTATAAGGA	TTTGATTTCC	TTGACGCGCC	AGACTGGTGC	13500
CAA	STGGTC	TGTGACTTTG	AAGGACAGAC	CTTAATTGAT	AGTTTGGACT	ACCAGCCTCT	13560
CTT	STAAAA	CCAAACAATC	ATGAACTTGG	AGCGATTTTT	GGGGTTAAAC	TCGAAAGTTT	13620

AGATGAAATT	GAGAAATACG	CTCGTGAGTT	ACTGGCTAAC	GGTGCTCAAA	ATGTTATTAT	13680
CTCTATGGCT	GGTGATGGTG	CCCTTCTTGT	CACATCTGAG	GGAGCTTACT	TCGCTAAACC	13740
AATCAAAGGA	ACAGTCAAAA	ATTCAGTTGG	AGCTGGTGAT	TCTATGGTTG	CTGGATTCAC	13800
AGGTGAATTT	GTCAAATCAA	AAGACGTAGT	' AGAAGCCTTC	AAATGGGGAG	TGGCTTGCGG	13860
AACGGCAACT	ACCTTCTCAG	ATGACTTGGC	AACGGCGGAA	ТТТАТТАААС	AAACATATGG	13920
AAAAGTTGAG	GTAGAAAAAC	GATGAAAATT	CAAGACCTAT	TGAGAAAAGA	TGTCATGTTG	13980
CTAGATTTGC	AGGCAACTGA	AAAAACAGCT	GTCATCGACG	AGATGATTAA	AAATTTGACA	14040
GACCACGGTT	ATGTAACAGA	TTTTGAAACA	TTTAAAGAAG	GAATTTTGGC	GCGTGAAGCT	14100
TTGACTTCTA	CTGGTTTGGG	TGATGGAATC	GCAATGCCTC	ACAGCAAAAA	CGCTGCTGTC	14160
AAAGAAGCGA	CAGTTCTATT	TGCTAAGTCA	AATAAGGGTG	TTGACTACGA	GAGCTTGGAT	14220
GGACAAGCAA	CTGACCTCTT	CTTCATGATT	GCAGCTCCAG	AAGGTGCCAA	TGATACTCAC	14280
TTGGCAGCCT	TGGCAGAATT	GTCTCAATAC	TTGATGAAAG	ACGGTTTTGC	AGACAAACTT	14340
CGTCAAGCAA	CATCTGCAGA	CCAAGTTATC	GAACTTTTTG	ACCAAGCTTC	AGAAAAACT	14400
GAGGAACTTG	TTCAAGCACC	TGCTAATGAC	TCTGGTGACT	TTATCGTAGC	TGTTACAGCT	14460
TGTACAACAG	GTATTGCCCA	CACTTACATG	GCCCAAGAAG	CCCTTCAAAA	AGTAGCTGCT	14520
GAAATGGGGG	TTGGTATCAA	GGTCGAAACC	AACGGTGCTA	GCGGTGTTGG	AAATCAACTA	14580
ACTGCAGAAG	ATATCCGTAA	GGCTAAAGCT	ATTATCATTG	CAGCAGACAA	GGCCGTTGAA	14640
ATGGATCGAT	TTGATGGAAA	ACCATTGATC	AATCGTCCAG	TTGCTGACGG	TATCCGTAAG	14700
ACAGAAGAGC	TAATTAACTT	GGCTCTTTCA	GGAGATACTG	AAGTCTACCG	TGCCGCTAAT	14760
GGTGCCAAAG	CTGCAACAGC	CTCTAACGAA	AAACAAAGCC	TTGGTGGTGC	CTTGTACAAA	14820
CACTTGATGA	GTGGTGTATC	TCAAATGTTA	CCATTCGTTA	TCGGTGGTGG	TATCATGATT	14880
GCCCTTGCCT	TCTTGATTGA	CGGTGCTTTG	GGTGTTCCAA	ATGAAAACCT	TGGCAATCTT	14940
GGTTCTTACC	ATGAGTTAGC	TTCTATGTTC	ATGAAAATTG	GTGGAGCTGC	CTTTGGTTTG	15000
ATGCTTCCAG	TCTTTGCGGG	TTATGTTGCC	TACTCTATTG	CTGAAAAACC	GGGTTTGGTA	15060
GCAGGTTTCG	TGGCTGGTGC	TATTGCCAAA	GAAGGTTTTG	CCTTTGGTAA	AATTCCTTAT	15120
GCCGCAGGTG	GTGAAGCAAC	TTCAACTCTT	GCAGGTGTCT	CATCTGGTTT	CCTAGGTGCC	15180
CTTGTTGGTG	GATTTATCGC	AGGTGCCTTG	GTTCTTGCCA	TCAAGAAATA	CGTTAAAGTT	15240
CCTCGTTCAC	TCGAAGGTGC	TAAATCAATC	CTTCTATTGC	CACTTCTTGG	AACAATCTTG	15300
ACAGGATTTG	TTATGCTAGC	TGTGAATATC	CCAATGGCTG	CAATCAACAC	TGCTATGAAT	15360

			848			
GACTTCCTAG	GCGGTCTTGG	AGGAGGTTCA	GCTGTCCTTC	TTGGTATCGT	CCTTGGTGGA	1542
ATGATGGCTG	TTGACATGGG	TGGACCAGTT	AATAAAGCAG	CTTATGTCTT	TGGTACAGGT	1548
ACGCTTGCAG	CAACTGTTTC	TTCAGGTGGT	TCTGTAGCCA	TGGCAGCAGT	TATGGCTGGA	1554
GGAATGGTGC	CACCACTTGC	AATCTTTGTC	GCAACTCTTC	TTTTCAAAGA	TAAATTTACT	1560
AAGGAAGAAC	GTAACTCTGG	TTTGACAAAC	ATCATCATGG	GCTTGTCATT	TATCACTGAG	1566
GGAGCGATTC	CATTTGGTGC	CGCTGACCCA	GCTCGTGCGA	TTCCAAGCTT	CATCCTTGGT	1572
TCAGCAGTAG	CAGGTGGACT	CGTTGGTCTT	ACTGGTATCA	AACTCATGGC	GCCACACGGA	1578
GGAATCTTCG	TTATCGCCCT	TACTTCAAAT	GCTCTCCTTT	ACCTCGTTTC	TGTCTTGGTA	1584
GGAGCAATCG	TAAGTGGTGT	GGTTTATGGT	TACCTACGCA	AACCACAAGC	ATAAAAAATA	1590
GAAAAATGAA	AAGATTGGAC	CGTTTGGTGC	AGTCTTTTTC	TCTTCCCGAA	ATGCCTGTGA	1596
AATATGGTAT	AATAGAAGAA	TGGCAAACAA	GAATACAAGT	ACAACAAGAC	GGAGACCGTC	1602
TAAAGCAGAA	CTGGAAAGAA	AAGAAGCGAT	TCAACGAATG	TTGATTTCGT	TAGGAATTGC	1608
GATTTTATTG	ATTTTCGCAG	CCTTCAAATT	AGGGGCTGCA	GGTATAACCC	TTTATAATTT	1614
AATTCGCTTG	CTAGTGGGTA	GCCTAGCTTA	TCTGGCGATA	TTCGGCCTAT	TAATCTATCT	1620
CTTCTTTTTC	AAGTGGATAC	GAAAACAGGA	AGGACTCTTA	TCTGGCTTTT	TCACCATATT	1626
TGCTGGCTTA	CTCTTGATTT	TTGAGGCCTA	CTTGGTTTGG	AAATATGGTT	TGGACAAGTC	1632
CGTTCTAAAA	GGGACCATGG	CTCAGGTTGT	GACAGATCTG	ACTGGTTTTC	GAACGACTAG	1638
CTTTGCTGGA	GGGGGCTTGA	TCGGGGTCGC	TCTTTATATT	CCAACAGCCT	TTCTCTTTTC	1644
AAATATCGGA	ACTTACTTTA	TTGGTTCTAT	CTTGATTTTA	GTGGGTTCTC	TCCTAGTCAG	1650
CCCTTGGTCT	GTTTACGATA	TTGCTGAATT	TTTCAGTAGA	GGCTTTGCCA	AATGGTGGGA	1656
AGGGCACGAG	CGTCGAAAAG	AGGAACGCTT	TGTCAAACAA	GAAGAAAAAG	CTCGCCAAAA	1662
GGCTGAGAAA	GAGGCTAGAT	TAGAACAAGA	AGAGACTGAA	AAAGCCTTAC	TCGATTTGCC	1668
TCCTGTTGAT	ATGGAAACGG	GTGAAATTCT	GACAGAGGAA	GCTGTTCAAA	ATCTTCCACC	1674
TATTCCAGAA	GAAAAGTGGG	TGGAACCAGA	AATCATCCTG	CCTCAAGCTG	AACTTAAATT	1680
CCCTGAACAG	GAAGATGACT	CAGATGACGA	AGATGTTCAG	GTCGATTTTT	CAGCCAAAGA	1686
AGCCCTTGAA	TACAAACTTC	CAAGCTTACA	ACTCTTTGCA	CCAGATAAAC	CAAAAGATCA	1692
GTCTAAAGAG	AAGAAAATTG	TCAGAGAAAA	TATCAAAATC	TTAGAAGCAA	CCTTTGCTAG	16986
CTTTGGTATT	AAGGTAACAG	TTGAACGGGC	CGAAATTGGG	CCATCAGTGA	CCAAGTATGA	17040
AGTCAAGCCG	GCTGTTGGTG	TAAGGGTCAA	CCGCATTTCC	AATCTATCAG	ATGACCTCGC	17100
TCTAGCCTTG	GCTGCCAAAG	ATGTCCGGAT	TGAAGCACCA	ATCCCTGGGA	AATCCCTAAT	17160

PCT/US97/19588 WO 98/18931

829

CGGAATTGAA	GTGCCCAACT	CCGATATTGC	CACTGTATCT	TTCCGAGAAC	TATGGGAACA	17220
ATCGCAAACG	AAAGCAGAAA	ATTTCTTGGA	AATTCCTTTA	GGGAAGGCTG	TTAATGGAAC	17290
CGCAAGAGCT	TTTGACCTTT	CTAAAATGCC	CCACTTGCTA	GTTGCAGGTT	CAACGGGTTC	17340
AGGGAAGTCA	GTAGCAGTTA	ACGGCATTAT	TGCTAGCATT	CTCATGAAGG	CGAGACCAGA	17400
TCAAGTTAAA	TTTATGATGG	TCGATCCCAA	CATGGTTGAG	TTATCTGTTT	ACAATGATAT .	17460
TCCCCACCTC	TTGATTCCAG	TCGTGACCAA	TCCACGCAAA	GCCAGCAAGG	CTCTGCAAAA	17520
GGTTGTGGAT	GAAATGGAAA	ACCGTTATGA	ACTCTTTGCC	AAGGTGGGAG	TTCGGAATAT	17580
TGCAGGTTTT	AATGCCAAGG	TAGAAGAGTT	CAATTCCCAG	TCTGAGTACA	AGCAAATTCC	17640
GCTACCATTC	ATTGTCGTGA	TTGTGGATGA	GTTGGCTGAC	CTCATGATGG	TGĆCCAGCAA	17700
GGAAGTGGAA	GATGCTATCA	TCCGTCTTGG	GCAGAAGGCG	CGTGCTGCAG	GTATCCACAT	17760
GATTCTTGCA	ACTCAGCGTC	CATCTGTTGA	TGTCATCTCT	GGTTTGATTA	AGGCCAATGT	17820
TCCATCTCGT	GTAGCATTTG	CGGTTTCATC	AGGAACAGAC	TCCCGTACGA	TTTTGGATGA	17880
AAATGGAGCA	GAAAAACTTC	TTGGTCGAGG	AGACATGCTC	TTTAAACCGA	TTGATGAAAA	17940
TCATCCAGTT	CGTCTCCAAG	GCTCCTTTAT	CTCGGATGAC	GATGTTGAGC	GCATTGTGAA	18000
CTTCATCAAG	ACTCAGGCAG	ATGCAGACTA	CGATGAGAGT	TTTGATCCAG	GTGAGGTTTC	18060
TGAAAATGAA	GGAGAATTTT	CGGATGGAGA	TGCTGGTGGT	GATCCGCTTT	TTGAAGAAGC	18120
TAAGTCTTTG	GTTATCGAAA	CACAGAAAGC	CAGTGCGTCT	ATGATTCAGC	GTCGTTTATC	18180
AGTTGGATTT	AACCGTGCGA	CCCGTCTCAT	GGAAGAACTG	GAGATAGCAG	GTGTCATCGG	18240
TCCAGCTGAA	GGTACCAAAC	CTCGAAAAGT	GTTACAACAA	TAAAAAAATA	GCTTCTTTCC	18300
AAGTTTGGAG	GGAAGCTATT	TTAGTGGCTA	TTGATTGCTT	TTATTTTCTG	AAGTTGGCGC	18360
ATTGGACTGT	TTTTCGTTTT	CAGTAGCAGG	TTTACTTGAA	GCAGGAGTAG	AAGAGTCCTG	18420
AGTTGCTGTT	TTCTGATCTT	CTTTTTTCTC	TTCCTTGACG	CTAGATTTTG	GTGTTTCCTC	18480
TTGCTGTGTT	TTTTCTTGAC	TAGTGTTAGT	CTCTTTAGTT	GGACTGGTGT	TTTCCTTAGG	18540
GGATTCCTTT	TGGATTTCTT	TGACAATGGT	TGTCGTCTGG	CTTGTCGTAG	GTTCTTTTTT	18600
AATATTTTTG	TTATTATCCA	AGGCGTT				18627

### (2) INFORMATION FOR SEQ ID NO: 114:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2560 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

830

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:

TAAAATACGT	TACCTTGCTT	CTGCACGTTC	AGCAGGTAAG	TCATTGAAAT	TTAAAGATCA	60
AGATATTACA	ATTGAAGAAA	CGACTGAAAC	AGCTTTTGAA	GGAGTTGATA	TTGCTCTCTT	120
TTCAGCAGGT	AGTTCTACAT	CAGCTAAGTA	TGCACCATAC	GCAGTAAAAG	CTGGCGTGGT	180
AGTAGTAGAT	AATACATCTT	ATTTCCGTCA	AAATCCAGAT	GTTCCTTTGG	TTGTTCCAGA	240
GGTCAATGCT	CATGCACTTG	ATGCTCACAA	CGGAATCATT	GCCTGCCCTA	ATTGTTCAAC	300
AATTCAAATG	ATGGTGGCTC	TTGAGCCGGT	TCGCCAAAAA	TGGGGCTTGG	ACCGTATCAT	360
TGTTTCAACT	TATCAAGCCG	TTTCAGGTGC	TGGTATGGGA	GCAATTCTTG	AGACACAACG	420
TGAACTTCGT	GAAGTCTTGA	ATGATGGTGT	GAAACCACGT	GATTTGCATG	CGGAAATCTT	480
GCCTTCAGGT	GGTGACAAGA	AACATTATCC	TATCGCCTTT	AACGCTCTTC	CACAAATTGA	540
TGTTTTCACT	GATAATGATT	ACACGTACGA	AGAGATGAAG	ATGACCAAGG	AAACTAAGAA	600
AATTATGGAA	GATGATAGCA	TTGCAGTATC	TGCAACATGT	GTGCGTATTC	CAGTCTTGTC	660
AGCTCACTCT	GAGTCTGTTT	ATATCGAAAC	AAAAGAAGTG	GCTCCAATCG	AAGAAGTAAA	720
AGCAGCTATC	GCAGCCTTCC	CAGGTGCTGT	TCTTGAAGAT	GATGTAGCTC	ATCAAATCTA	780
TCCTCAAGCT	ATCAATGCAG	TTGGTTCGCG	TGATACCTTT	GTTGGTCGTA	TCCGTAAAGA	840
CTTGGATGCA	GAAAAAGGAA	TTCACATGTG	GGTTGTTTCA	GATAACCTTC	TCAAAGGTGC	900
TGCTTGGAAC	TCAGTTCAGA	TTGCTGAAAC	TCTTCATGAA	CGTGGATTGG	TTCGTCCAAC	960
AGCCGAATTG	AAATTTGAAT	TAAAATAGTC	ATATCGTTTA	GGAGTTCAGA	TGAACTCCTT	1020
CTTTGAAATA	GAGAGGTGTT	TTCGTGTCTT	ATCAAGATTT	AAAAAAATGT	AAAATCATTA	1080
CAGCCTTTAT	TACCCCCTTC	CATGAGGATG	GTTCCATTAA	CTTTGATGCT	ATTCCAGCCT	1140
TGATTGAGCA	TTTATTGGCC	CATCATACGG	ATGGAATTCT	TCTCGCAGGA	ACGACTGCTG	1200
AGAGTCCAAC	TTTGACCCAC	GATGAGGAGT	TGGAGTTGTT	TGCGGCTGTA	CAAAAGGTT\;	1260
TCAATGGACG	CGTTCCTTTG	ATTGCGGGTG	TAGGTACTAA	TGATACGCGT	GACTCTATTG	1320
AGTTTGTCAA	AGAAGTAGCG	GAATTTGGTG	GTTTCGCAGC	TGGGCTTGCT	ATTGTTCCTT	1380
ACTACAACAA	ACCTTCTCAA	GAAGGGATGT	ATCAGCACTT	TAAGACTATT	GCAGATGCTT	1440
CTGACCTACC	AATTATTATC	TATAACATTC	CAGGGCGTGT	AGTTGTCGAA	TTGACTCCAG	1500
AAACCATGCT	TCGCTTGGCT	GACCATCCAA	ATATTATCGG	TGTCAAAGAA	TGTACTAGCT	1560
TGGCTAATAT	GGCTTACTTG	ATTGAGCACA	AGCCTGAAGA	GTTCTTGATT	TATACAGGTG	1620
AGGATGGAGA	TGCTTTCCAT	GCCATGAACC	TTGGGGCGGA	TGGGGTTATT	TCTGTTGCCT	1680

CTCATACAAA	TOCOCOMONA	3000300303	mcmma			
					AGCGATATGA	1740
AGAAAGCCGC	AGCAATTCAG	CGTAAATTCA	TTCCTAAGGT	TAATGCTCTC	TTCTCTTATC	1800
CAAGTCCTGC	TCCAGTTAAG	GCAATTCTTA	ACTATATGGG	ATTTGAAGCT	GGACCCACTC	1860
GTCTACCTCT	TGTTCCAGCA	CCAGAAGAAG	ATGCCAAACG	CATTATCAAG	GTTGTCGTAG	1920
ATGGCGACTA	CGAAGCAACT	AAGGCAACTG	TAACAGGGGT	CTTAAGACCA	GATTACTAAT	1980
AAAGACAATA	AAATCCGGCT	CTTTGTCAAC	TGTAGTGGGT	TGAAGTCAGC	TAAGCTCGAG	2040
AAAGGACAAA	TTTTGTCCTT	TCTTTTTTGA	TATTCAGAGC	GATAAAAATC	CGTTTTTTGA	2100
AGTTTTCAAA	GTTCCGAAAA	CCAAAGGCAT	TGCGCTTGAT	AAGTTTGATG	AGATTATTGG	2160
TCGCTTCCAA	TTTGGCGTTT	GAATAGGGTA	GTTGAAGGGT	GTTGACGATT	TTCTTTTTGT	2220
CCTTTAGAAA	GGTTTTAAAG	ACAGTCTGAA	AAATAGGATG	AACCTGCTTC	AGATTGTCCT	2280
CAATGAGTCC	GAAAAATTTC	TCCGGTTCCT	TATTCTGAAA	GTGAAACAGC	AAGAGTTGAT	2340
AGAGCTGATA	GTGATGTTTC	AAGTTTTGTG	AATAGCTCAA	AAGCTTGTTT	AAAATCTCTT	2400
TATTGGTTAA	GTGCATACGA	AAAGTAGGAC	GATAAAATCG	CTTATCACTC	AGTTTACGGC	2460
TATCCTGTTG	AATGAGTTTC	CAGTAGCGCT	TGATAGCCTT	GTATTCGGGA	TTTTCGATGA	2520
AACTGATTCA	TGATTTGGAC	ACGCACACGA	CTCATAGCAC			2560

# (2) INFORMATION FOR SEQ ID NO: 115:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11303 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:

TATTGGATTT	CCCTTGCAAT	CAGTTTATGG	GACAAGCACC	CGGCAGCGCA	GAGGAAATCA	60
ACGCCTTCTG	TAGCCTACAT	TTTCAAACCA	CCTTCCCACG	TTTTGCCAAG	ATTAAGGTCA	120
ACGGTAAGGA	AGCAGACCCT	CTCTATGTCT	GGTTACAAGA	CCAGAAATCC	GGCCCACTAG	180
GAAAACGAGT	CGAATGGAAT	TTCGCTAAGT	TTCTCATCGG	TCGAGATGGG	CAAGTCTTTG	240
AACGCTTTTC	TTCAAAAACA	GACCCAAAAC	AAATTGAAGA	GGCGATACAA	ACTCTACTAT	300
AATTCACAAT	CTCACTATGA	TTAGGTTTCC	TTTAACCTGA	TGAATAGTGA	GATTTTTTGA	360
TGGGCTTTGA	CTTAAATAGA	AAAACACCCC	ATGATATGAA	ACATGAAGTG	TTGTAAAGTC	420
TATGTTGTAG	GTGCTTATTT	CACAATTTCA	ATGTGACCAG	TGATAACGAA	TACCATACAG	480

			832			
AATCTTCATA	TACACTAAAC	AAATGACTTT	CTAATTATTT	CAATTAGTTT	TGGCTAGTAA	54
ATATCATTTC	CAACAAACGC	CCTCTCAATT	CCTTATCCTG	ATGATGCAAG	ATATTCATTA	60
AGTCATGAGA	GTTTTTCGCA	TTGATGAATT	GATTTAACAA	TCTATCTTTT	AATTCATATG	66
GAAGAGAAGC	TGTCTTTAGT	AGTCTAAAAA	CTTCGTCATT	TAAAGATGTC	CTTTTATTAT	72
CTTTCCATTC	AAATTTAGCT	GTATCATTCT	TATTTGGCAA	TTCAATTATA	GACACATTCG	78
TTCCTTTAAA	ATGAATTCTA	TGTTTTCTAT	TGCTTGGAAC	GATACTAGAA	TCTCCTTGTA	84
ATGCTAACTC	TACCATTCCC	ATTTCCCAAT	CGATTGATAA	TCTTGTTTTA	TATCTTTGAC	90
CATTTTGATC	TTCAAGCATT	TCAAAAGAAT	GTTGTTTTCC	TGGGAATACA	TACCAATCTA	960
CAACTTCAGG	TAAATCAACA	CCCATACCTA	TCTCAGAACC	AACCAAGGGA	ATGATTGCAC	1020
CACTTTTTGC	AAACACAGGC	GTAGTCGAGA	TGTCCCTATA	AACACTTAAC	TTCACACCAC	1086
CTGTGTATTT	TTTCTCTGAA	AAGAAGTCAT	ACCATTCACC	TTCAGGGAAC	CATACATCTA	1140
CTTTTGCAGA	TTGGAATGTC	AAATCCATCT	TTTCTACAAT	GGGAGCCACC	ATCAGTTCTG	1200
TTCCAAAAAA	GTATTGGTTT	GGAACATTAT	AGCTCTCATC	ATTCTCTGGA	TAGAAATAAT	1260
AGATTGGACT	GATTAATGGG	GCACCTTCCT	CATGTGTCTG	TACATTCATG	GTATATAGAT	1320
AGGGAATCAT	CTGATGTCTC	AAACGAAGGT	ATTTCTTCAT	AATCTTAGAT	GTTGTTTCTG	1380
AAAAAAACCA	AGGTTCTTTA	CTATTAAAAG	GACTTCTAGA	ACTATGTAAT	CGAGTAATCG	1440
GACTAAAAAC	ACCAAACTGT	AGCCATCTAG	TTTGTAGCTC	TTCGTCATAA	TCCCCCAACA	1500
TATGTCCACC	GATATCATGA	CTCCACCAAC	TATAACCGAT	ATTAGATGCT	GTCGCTGTAA	1560
AATAGGGTTG	AAATCTTAAG	GAATTCCAAC	TAATAATAGT	ATCCCCTGAA	AAACCAACAG	1620
GGTAGCGGTG	ACTACCAGGA	CCTGCATATC	TTGATAAAAT	CAAACCACCT	TCTGCATTTT	1680
TACAACTATC	CTGATAGTGA	TAATGGTTTA	AAAGCCAAAG	TGGATCTAGC	ATACCTTGTG	1740
rcccttgttg	CCAGTCAATC	CACCAAAAAT	CTACTCCCTG	CTTTTCTAGT	TCATAATGAA	1800
CATCTTTAAA	GTAGGCTTCC	CTAAAAGAGG	GATTAAAAAA	ATCAAAAATA	GCAGGTTCTT	1860
CTAGTTCTAC	ATTTAACCCC	AACCGTTTTG	CGATTTGAGG	ATAAGCTTCT	TCATAAGCCC	1920
GTATCCCATC	AGCAGGATGG	ACATTTAAGG	AGAGTTTTAG	CTTTCTATCA	TGAAGTTGTT	1980
GCAATAACTG	TTCTGGATTT	GGTATTAAGT	TTCTATTCCA	ACTATATCCT	GTCCAGCCAC	2040
TTCCAAAGCG	AGCTGGAATG	TCAGTTATAT	GCCAATCCAT	ATCTAACACA	CCGATAGATA	210
ATGGAATTTT	CTCTGTTTCA	AATCTGTCTA	TTAAATCCAA	GTATTCATCC	GACGTATAAG	216
GCCAATATCT	ACTCCACCAA	TTGCCTAAAG	CATATCTTGG	CAACAAGGGT	GTTGAACCAG	222
TCAAATGGTA	AAAATCTCTG	ATTGCTCCTC	TATAATCATG	CCCATAGGCA	AAGAAATACA	2286

833

GGTCAATTTG	ATTTTCTCTC	TCAATATAAC	CAGATTGTTC	ATCCCAAATA	AATCCTTGAG	234
AATCATCCAA	TAAGGCTATA	CCATTTCGGC	TAATAATTCC	ATCTTCTAAC	GAGATTGCTC	2400
CATCTGCCTT	ATCCAGAGTC	CGAGCTGTTC	CTTTTAACGT	TTCAATAGAT	TCACCAAAAT	2460
ACCAGCGACT	ACCATATACG	GCAAAATTTC	CTTTTAATTC	TATAAATAAA	TTTTCGGCGT .	2520
TAAATTCTCC	TTTATTAAAG	TGCAGATGAA	AATAGTCCGT	CATAATATCT	AGTACGTTTG	2580
ATGTCTCGAT	ATAATCTAAC	GAAATTTGGC	CAAAATCTCT	ATTATAGATA	AGTTGTGTCG	2640
TTCTATCCTC	AAAACTTCCA	GTTTGAGAGT	ATTCTAACCT	TACTAGCTTG	TCTGTTAATA	2700
CAGAGATTCG	ATAAAACTCT	CCCTTAAAAA	TTTTCAATTT	GTTTTCCTCC	TTTTATGGTA	2760
GCATAAAAAC	AGAACGCACC	ATTTTTGATG	CGTTTTTCAT	TATTCTGAAT	GCAATGTTCT	2820
ATCTGTTATA	TCTATGACAA	ATAATAGTCA	ATTGAAAAA	TGCAGTGGAC	AAAATATCTT	2880
TTAACAAACC	AAGAGTTTAT	TAAAGAGTTA	TCACTTTTCA	ACTTTTCTAA	GCTTATGCAG	2940
TTGTGAAACA	AACTACTTTT	AAACTATTAA	CTAAGATAGG	ATTGATAAAT	AATTTCAAAC	3000
TCTTACTAGC	AATCATACGA	TATTCAAGCT	CACGTGCTTT	TTTCCTTCCT	GCTTATTTCT	3060
TAGAACTGAA	GAACCCGGAT	CGGTATATAA	ATTATCCGGA	TCAACATAGT	CATAAGATTC	3120
ATAACAGTTG	CGCTTCATTA	AGTCATCCCC	AGAGCAAGAG	CTTCATCTCG	TAATTTTTCA	3180
ACATCACTAA	CCGTAGGTCG	CCATCCTTCA	ATCATATTTG	TACTTAAAGC	ATACCAAACA	3240
CTCTTAAAAA	CGGATCGGTT	TTCAAAAGCT	ATTCCCATGA	TTGTCATCTT	TTCTTTATCT	3300
ATATCTAAGG	ACATATGCTA	CCTCCTTTAG	ATACATTATA	CCATGTTTCT	CTGTAGCTTT	3360
TTTTAAAAT	ATTTTGTTTG	TCATATCTAA	GTTTTCAGCA	CGCTTATCCT	ATTTTATAAG	3420
CCTCAAACCC	AAATATAAAA	CGCATTCTTT	TTGCTTTTTT	ACTATTGTAT	CGTATTCTAC	3480
GATAACATAC	TTTACTTTAT	TGTTTTTTTA	AATAACAGCA	GTTCCCTGTT	TATCAACTAT	3540
TCGAACTACT	TTCTATTTTG	CTTCATACCC	TACATAGCGA	AAAAATATGA	AAAAGCAGAG	3600
AAGAATATCT	TAAAAAGACC	TCTTCACTGC	TAATATTAAC	ACTCATTATT	TAAACTATAT	3660
GGATTCTATC	ATCGAGTATA	CTTTTTTACT	TÁTTAGATAC	CTTGCTCTTC	TTTCACCAAT	3720
TTTTGATCAT	ATACACGGAT	GAATGGAAGA	TAGACTAGGA	ATGCTGCAAA	TGCACATACT	3,780
AGAGCAACTA	ATACAGCTCG	AAGATCTGCT	GTCCCTAAGA	AAGCTCCAAT	CCCTACTGGA	3840
GTTGGCCATG	GAACCTGTGC	GATAATTGGC	TTAATAAAGT	TTAGAGAATT	CGCTACGTAA	3900
TAAATAGTAG	CAGTAACCAT	TGGTGCTAAA	ATAAATGGTA	TAGCCAAGGC	TGGATTATAG	3960
3 T 3 3 T 3 C C T 3	ATCC	TA ATCCTTCA	<b>ተ</b> ሞለ አጥ አጥጥ አ	ATTA ACCOTTO	3 A CT 3 C 3 C 5 T	4020

GCTCGTCCTA	TTGCTTTAAG	CTGTTCAGAT	TTAGAGGCAA	AAGCAATATA	TAAACATAGT	4080
CCTAAAGTTC	CACCAGAACC	ACCTGCAATT	ACAAACATAT	TAGAAAATTC	ACCTGCAACA	4140
GCGAAGTGCC	CGCCAGCAGC	ATTTTCAGCC	ATGTTAGCAA	GAGCAATTGG	ACTAACAAAT	4200
GCAAAAACAA	TGTTCGCACC	GTGGATACCT	ACAATCCAAA	GTAGTTGAGT	CAATAGATAA	4260
ATAATCATTA	AACCAATCCA	CGAATTAGTC	AGATTGGATA	CARRACCAAA	TGGAATTGCA	4320
ATGACTTTAA	AAATATCTGT	TCCCATTGCT	ACAAGAAGAC	CGTTGATAAA	GATAACAACA	4380
AATGCAACAA	CAAATCCCGG	AACCAAAGCG	GTAAATCCAC	GAGAAACTCC	TTCTGGAACA	4440
GCTTCAGGCA	ттттаатаас	CCAATTATGT	TTAACACACA	TACGATAAAT	AAGAACAGTC	4500
ACAATTGCCA	TAATGATTGC	GGTAAAAATC	CCTGTTGTCC	CAAAACGTGC	GACTACATTT	4560
CCCATTGCCC	ATCCATCTGC	AATTACTGCA	CCTTCTTTTA	GACTTGTCAC	AGTCTTCATC	4620
ATTCCACCAT	CAAAAATGAT	TTGCGGTACT	GTCATGACAA	AAGCCATCAA	GGCAAGCAAG	4680
GCACCATTAA	GAGGATTCAT	ATTGAGTTCT	TCTTCCTCTG	CATAAATTTT	TGTCAATTCA	4740
TATGCAAGTG	ATAGAACGAA	ATAAAGAGAT	AGAGAACCCA	TAGTCGCATA	GTTTGCAACC	4800
atgtaaagtg	ATGTGAATTT	ATCAAATGAA	GCAGAGAAAA	TATCTGCCAC	AATTGGCCAA	4860
aatgagaaag	CTTGTGGCAA	AATACTGAAT	ACCAAAAACA	TTGATCCTAC	AATAGTAAAT	4920
GGTACAGCAG	CCATACCTGC	AGCCGTGATA	GCACGTACTA	CTTTAAACTG	AGCAAGTTTG	4980
CCCATTGGTC	CCATAACATG	GTTTTCAAGA	AAACCAAACA	ACCCGTTTTG	TTGATCCATA	5040
AATAGACCTC	CTTAATAAAA	CATAATAATT	TTTACTTTCT	AAAGACTAGT	TTCAAATACA	5100
AATTATACTA	GATCAGGATT	ATAAACTAAG	TGAGTTCTTT	TCCAATTGGA	CAAATTGTTG	5160
ATAAGCCTTA	TCTGTTCGTT	TATAAATTTT	TTTAATTCTT	CTAATGTCTA	ACAAACTCAG	5220
VACTAAACCT	AATAGAAGAA	CTACAAAAAC	AAATAAACGT	GCTACTTGGT	TATTTTCAAA	5280
ATCGGAAAA	AGATTCTTAA	ACCAACTTGT	CCAAGTTAAA	ACAAGTAATC	CTATTGAAAT	5340
VAGCATTTGT	ATTCTAACAA	ACATTAGTGT	TATTCCCAAC	TTTTCTTTCC	TATTTCCA'IA	5400
AGTTT <b>AA</b> AT	TGTTCAACAG	TTGCTAAAAT	AGAAAATACT	ATGAGCATAA	TGGGGAAAAT	5460
ATAATAGGC	GAGGGACTAA	TAAACTGACT	CAAAAGCCAA	TAAATATTCC	CAAAAAGAA	5520
AGTGCTATT	GAATAACGTA	GAAGAAGATA	TCGATTGAAA	AAAGTATTAG	TTAGAGCCAT	5580
TCTCGACGT	TGTTGTTCAA	TCTTTTGTCG	TTCTTTTTTA	TCCATATCAT	TTCCTCCTTA	5640
ATAACAACA	CATATTTAGT	TAACTTTCTT	ATAAAGAGCT	AACATTTCCT	TTGCTACTTC	5700
AATAATGTC	ATAGTGGTCA	TTAAATGATC	TTGAGCATGT	ACCATGATAA	TTTCAATTTT	5760
ATTTCCACT	CCACTTGCGT	ATTCTTGCAA	GAGTTTGGTT	TGTGCATGAT	GCGCTTCAAG	5820

AATTATCTCA	TTTGATTGAT	TTAATTTACT	TTCTGCATCA	TCAAAACTAC	CTTCTCTCAT	5880
TTTTGCAAAT	GCTTCATGTA	TTTCTGACCT	TGCATTTCCC	GAATGCAGGA	TAATTTCAAA	5940
TGCTGCAACC	TGCAGTTCCT	CTTGATTCAT	ATAAACCTCC	TATTTTATCT	TCTCAAATAT	6000
GTTAATAAAA	TCTTCAAAGT	TATTGCAAGA	TATTAGCTGA	TTTTGCAATT	CATCATTCTC	6060
TGTCAGAGAG	ACTATCTTTT	TAGTCACAGT	TGCCAAACCT	TCGTTCCCAT	ATATTGATGG	6120
AGATAGAAGA	AATACTAGCT	GGACATGTGA	ACTTTGATTA	TCCCAGAGTA	ACGAATCTTT	6180
ACAAATTGCA	ACCGAAACCT	TTCCCTCTGT	ACCAAAGGGC	TGAATAGGAT	GCGGAACTGC	6240
AATTTTTCA	GAAAAAACAA	CTGAACTTAA	TTCTTCGCGC	TGTTTAATTC	CATAAAGTAA	6300
AGATTGTTCA	AACTCATTTG	ATTCACCAAC	AGATAAACTC	TCAACCATCT	TTTCAAGTAA	6360
ATTTACCTTG	TCTGATTCAG	TACATATTAA	AAAGTTTTCT	TTACTAAAAT	ACTGTCTAAA	6420
GCCGTTGTTT	TCAAATTTGT	TAATCTTTGA	TGATTGTACA	TAACTAGAAA	CTTGCATCTA	6480
ATCCATAGCT	TTTCTAATCA	TTTCCATCTC	ATCACTCTTA	AGAAACACAC	TAACTTTAAA	6540
AACTGGGATT	TGAAAATATA	GATTTGATÄA	ATCAATAGCT	GACACTATAA	AATCTATTCC	6600
TTTAAGTTTT	TCTTGATTCA	ATTCATAGTA	GCCTATTACA	TCAACAACTT	CTACTCGCTT	6660
CCCAAACTCC	GTTTCCAAAC	GATTTCTTAA	CATTTGGGCT	GCACCAAATC	CTGTTGCACA	6720
AATAGCAAGA	ATATTAAACT	TAGTACTCTC	TTTGCTACGT	TCCATAGCAG	CTAAAAAGTG	6780
AAGACTTACA	TATGCTACTT	CATCATCTGA	TATTGTCCAC	TCCAAGAACT	TGTCCATATT	6840
TGCAAGAATT	TCTCTAGTCA	TAAAGAATAT	ATCACTATAA	TTCTGTTTAA	TTTCATCTAC	6900
CAAAGGGTTA	TTTAAGGTAA	TCCGGCTTTC	TAAACGTACT	TGTAGTGTCA	TTAGATGAGT	6960
TATCAATCCT	TCAATTAGTT	GGAAATCTGA	AGAAAAGTTA	TACATATCAT	CTAATCCTAA	7020
ATTCTGAAAT	GTTTTAAATA	AAGATTTTTT	TAAAACTTCT	TCAGAAATAT	TCTTCTGATT	7080
TTTTTGACAT	TGTTGACTCT	TAGCTAACAA	ATGCAAAGTA	ATGTAGTCTA	TTTCCTGAAC	7140
TGGAAATTCC	TGATTTGTTA	CTTCTCTTAC	TTTAGAAAGA	ATTCTTTGGG	CAACCTTTCT	7200
CTCTATTGCA	TCATCAGTCA	TCTGACAGTC	TATATTTTTT	ATTTCAAATC	CGGATTTTAA	7260
ACGAATCACA	GACAATGCTA	TGTGAACTAC	TAAATTCTGT	AGTACAAAAT	CAGATAGTTT	7320
TAGGTTGGCC	TCTTGGCATT	CATCCAAAAC	AATTCTAGCA	AATTCTTCTA	ATGGAACAGT	7380
TTGATCAAAA	AAGTTAAATT	TTACATAGCA	ATGTATTGTT	TTAAAAAATT	GATTCTCTAG	7440
GAAATAATTT	ATGATAAAAC	GTCGTTTATC	ACGTTCCTCG	CCTGAGACAT	AAACTCCTTT	7500
ATTCGCCCTA	CTCTCAATGG	ACAAATTATA	CTCTGATAAC	ATCACTCGTA	TCTTTCTGAA	7560

			סנס			
ATCATGAGAT	AATGTTGAAC	GACTAACGTA	AAGTTCATCA	GCTAAATCAT	CAAAAAGAAC	762
TGGAACTTGC	TCAAATAATA	ATTTATTTAA	GATAAATACT	AAACGATCAT	CACCTTTTGA	768
AACCGCAGTT	TTCGTATAGT	CTTCTTCCAG	TTCATAAGTT	TGTCTAAACT	CCTGGTAAGC	774
GCCTTGATTC	TCAAAAAATA	TTTGATACCC	TTGACCTTGT	TTTGAAATCA	ACCGGACTCC	780
TTGAATAATC	ATTGTCTTCT	CAATTAATTT	CAGTACATTA	CGGACAGTTC	TATCTGAACA	786
GGATAAATAT	TCTGCCAGTT	CTTTGCTTGT	AACAAAACGT	TCCTTATTTT	TTATTAAAAA	792
TTGAAGGATA	TCTTTCTCTT	TAATGTTTAA	CACATTCATT	CCCTCCTAAA	ACGTATGTTT	798
TCATATATTG	AAGCATATTA	TACACTTAAA	TCAGTTTATA	TCAAACTCAA	AACAATTTAT	804
CTTAACCTAA	ATATTTATTG	ACATTTCATG	TGTTCATCAA	ATATTCTCAA	GAATCAAATT	810
AGCCATTTTT	TCAATTCCCA	TTGGAATAGG	AATATAGGCT	TGAGGAGGTA	TTTGTACAAC	816
TGGTTTTCCT	GCTTTAGAAC	CAGCCTCTTC	AAATTGCTTA	AAGTACATTT	TTGTTTGAGG	822
ACTGACAAGA	TACAAATCAA	AAGCTGCTGC	TGCGATAGCT	TTCCCTCCTT	CAGTAGCACT	828
AATAGCATCA	ACTACAATAT	CTTTCCCTTT	TCCTTTTAGA	AACTCTGTTG	TTTTCTGTGC	834
CATAAGTGAT	GAAGACATTC	CTGCTGCACA	ААТААТТААА	GCTTTTGCCA	TAATATTTTC	840
TCCTTTTCTT	AAATCCAATC	AAAGCTGTGC	TAAGTTGGCT	TATTTGTTAT	CTATTTTTAT	846
таталаатаа	AGCGTTTCCA	ATGACAATTC	CCTCATTTTC	CTAAATGATA	TGGAAAAAA	852
TTATTTATAC	TTCAATTTAT	AAAATAAAAT	TATTCCTGAG	AGTAGAAATG	AAACACTATT	858
TGCTAAAATC	AAAGGCAAGT	CTCCTATACG	AATACCATGA	GCAAGCCACA	ATGCAATACC	864
AATAACTTGC	ATAACATACA	TACCTAGAGC	AATAGATCCT	GTGTCCTTTG	TCTTAACTAC	8700
ACGAAAAACT	TGTGGTAAAA	ATGCAAATGT	TGTTAAAATT	GCTGCAATAC	TTCCAATCAT	8760
ATGTCACCTC	AATATGCTAA	ACAAACTGAG	AATAATCTCA	GTTTGTTTAT	ACTATTCTAC	8820
TGATTCACCG	TTAGATGAAA	TAACTTCCTT	ATACCAGCCA	AAAGATTTTT	TCGGGGAACG	888
ATTATAACTT	CCCTTCCCAT	TATCATCTTT	ATCTACATAA	ATAAAGCCAT	AACGTTTCCG	8940
CATTTCACCG	GTACCAGCTG	AAACCAAATC	AATACATCCC	CATGGAGTAT	AACCCATTAA	9000
ATCAACACCA	TCTTCAACTA	CAGCCTTTTT	CATTTCACGA	ATATGGGCAC	CTAGATATTC	9060
AATTCTATAA	TCATCATGTA	CCATACCATC	TGCTGCAACT	TGATCTATAG	CTCCAAAACC	9120
ATTTTCAACA	ATAAAGAGTG	GTAAGTGATA	GTGGTCTGTA	AACCAATTTA	ACGCATAACG	9180
CAAACCTTCT	GGATCAATTT	GCCACTCCCA	TTCAGAAGCC	TTAACATAAT	TATTTTCAC	9240
TAAATCTTCT	GTTTCAAGAT	ААТСААААТА	AGGATTATTT	TCACGATGAG	AGTCGATAGC	9300
AAAGGACATA	TAGTAACTGA	AACCAATGTA	ATCTACAGTC	CCACCAAGTA	AATCTTCTTT	9360

ATCCTGGGCA GTAAAATCAA CTGAAATACC TTTTCGTTCC CAATACTTGA AAATATGCTC	942
AGGATATTTA CCTAAAACAT GCACATCAGC AAAATAATAA CGCTTCTGCA TAGCTTTCAT	948
TGCCATTAAG ATATCCTTAG GATTGCAAGT AACTGGATAA ATTGGACACA TCGCAATCAT	954
ACAACCTATT TGAAAATCTG GATTAATCTC ATGACCAATT TTTACAGCTC GTGCAGAAGC	960
AACTAATTCG TAATGTGCTG CTTGATACAT AATTGCTTCT CTATTATCAC CTTCCTCATA	966
TACAATACCT GAGTTAGTAA ATGGTGCAAA ATCTTCCTGA TAATTCGCTT GATTATTGAT	972
TTCATTGAAA GTCATCCAAT ATTTAACCTT ATCTTTGTAA CGTTTAAATA CGACTTCTGC	978
AAAACGAGCA AAGAAATCAA TCAATTTCCT ATTTTTCCAA CCACCATATT CGGTCACTAA	9840
GTGATAAGGC ATTTCAAAAT GAGATAGAGT GATGACAGGT TCAATACCAT TCTTTAAGCA	9900
TTCATCAAAA AGATTATCAT AAAACTGTAA TCCTTCTTCA TTCGGCTCTA ACTCATCACC	9960
TTTTGGAAAG ATACGTGTCC ATGCAATAGA GGTACGGAAG CACTTGAATC CCATTTCAGC	10020
AAAAAGTGCT ATATCTTCTT TATAACGGTG ATAAAAATCT ATCGCCTCAT GATTTGGATA	10080
ATATTTACCC TCTAAAACTC CCAAAGTAAT TTCACGAGCT ACTCCATGAC GACCAGCAGT	10140
CATAACATCA GCAACACTAA TTCCCTTGCC ACCTTCTTGC CATCCACCTT CAAGTTGATG	10200
AGCAGCAACA GCACCACCC ATAAAAATCC ATCTTTAAAA GTAGTCATCT TTTTTCCTCC	10260
TGACTTTGAT ACTCTTATTA TAAACCTTAA ACCAAAAGAT GAAAACGCAT TCTTTTTCCT	10320
TATTGTTAAG GAAAGAAGTA ATTTTTAATG GAAATAGAAC AATATCTTCT TGTATTCTCG	10380
TAATGATATC TTTACGATTT TCAATACTTT CAAACTACAA AAACTCTCAC AATAATTCTA	10440
ATTCCCTGTG TCTATAAACG ACTTATCGCT TTCTGGCATC CCAGAATCAT CTTCTATATA	10500
ACGTTCAACT TGCATCTGCA AGTGATATTT TTTTCTTAAA TCTAAGATTT TCTGCATTGT	10560
CTTTGATTGA TAATGTTTAT CTAAAGTTTC TTGATTTATC CACTGATCAA TAAGGAGAAT	10620
AGTTCCCTCT TTTTCAATTG GTAAAAAATA TTCGTATTTC AAGTTACCTT TTTGATTTCT	10680
AATTTCTTTA ACAAGGCCAC TATCAAGCAT TTCTCTTGCA AACTTTATTG CACTATCTCC	10740
ATCACCTTTA TAATATACAT GAATAGTCAA TGTCATCTTA TATCCTCCAA AATCATCCTT	10800
CAATTTAAA AAAACAAGTT TAGATGAGGA TCTAAACTTG TTTTTTATGA ACTAATTATC	10860
PAACGTTTCG CCATTACTTT CAATCACTTC TTTATACCAA TAAAATGATT TTTTCTTATA	10920
CGATTTATA GTCAATTGAA ACAAGAGCAG GACAAAAGAG CCTCATAAAA GGTATTGCAA	10980
TTGGTAATA CCTTTTTGAG GTGCTTTTTG ATATGAGCCC ATGTTTTCTC AATAGGATTG	11040
ACTCAGGTG AGTAGGGAGG AAGAGGTAAA AGTTTATACC CAAACTCTTC ACACAAGAGT	11100

PCT/US97/19588 WO 98/18931

TCTAGCTTCC	CCATTCTATG	GAATCTTGCA	838 TTATCCATAA	TAATAACCGA	TGGTGTGGTT	11160
					CATCGTCTCT	11220
					AGAAATCCTC	11280
			TITIGITAGAC	CIGCAACCAA	AGAAATCCTC	
TGATATCTTC	TTCCAGATAC	TTT				11303

### (2) INFORMATION FOR SEQ ID NO: 116:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3112 base pairs

  - (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:

CCTTAGATTT CCACTTGCCA GAGGAATTGA TTGCCCAAAC GCCCCTTGAA AAACGTGATG	60
CCTCCAAACT CCTCATCGTC AACCGTGAGA CAGGAGAAAT GCAAGATAAA CATTTCCACT	120
CTATTATTGA TATGCTGGAA CCTGGTGATG CCCTTGTCAT GAACGACACC CGAGTTCTCC	180
CTGCCCGCCT CTATGGTCAA AAAGTGGAGA CAGGAGGTCA TGTGGAACTT CTCCTCCTTA	240
AGAACACTAG TGGAGACGAG TGGGAAGTTC TGGCTAAACC TGCCAAACGC CTCAAGGTCG	300
GTACTCGTAT CAGCTTTGGT GATGGCCGCC TCAGCGCTGT CGTTACAGAA GAATTGACCC	360
ACGGGGGACG CATTGTCCGC TTTGAATACC AAGGAATTTT CCTAGAAGTC TTGGAAAGTC	420
TGGGAGAAAT GCCTCTGCCA CCTTATATCC ACGAAAAATT AGATGACCGT GAACGTTATC	480
AAACCGTCTA CGCCAAGGAA AGTGGCTCTG CTGCAGCACC GACTGCTGGT CTTCACTTCA	540
CCAAAGAACT GCTGGCAGAA ATCCAAGCTA AGGGTGTTCA TCTAGTCTAT CTGACTCTCC	600
ATGTCGGACT CGGAACCTTT AGACCTGTTT CTGTGGATAA TCTGGACGAA CACGAAATGC	660
ACTCAGAGTT CTATCAACTT TCTGAGGAAG CTGCTGCCAC CCTTCGCTCT GTCAAAAAAA	720
ATGGTGGTCG TGTCATCGCT GTCGGAACCA CTTCTATCCG CACCTTGGAA ACTATTGGTT	780
CCAAGTTTGA TGGGCAAATC CAAGCAGATT CTGGTTGGAC CAATATCTTT ATCAAACCTG	840
GGTATGAGTG GAAGGTCGTG GATGCCTTCT CAACCAACTT CCACCTGCCA AAATCAACTC	900
TGGTCATGTT GGTTTCTGCC TTTGCAGGCC GTGAATTAGT CTTAGATGCC TACCACCATT	960
CCATCCAAGA ACACTACCGC TTCTTCAGTT TTGGTGACGC CATGTTTATT TATTGAGAAA	1020
GAATTTCTCT AAATCTTCTA ATACCAATAA ATCGCTAAGA TATTATTTCA AAGAACATCT	1080
ACAATTGAAA CTCTAGCTAG CTGTAGAAGA GGCCTAGTAC ATTGAAATTA AAATGCTTCC	1140
CCCTAGCTTC GAAAATATTG CCATAGATTG CGTTGACTCT CCAAATTGAT TCATCTATAT	1200

TTTATTTCAG CTTCCTATAC TTTCTTCGCT GTTTGTAAAT CAAAATGCAA GACACATGAG	126
TAGCACCATA TTTGTTACTC TTATCTGTCC TCTCAAGAGA CTATTATGAG TTATTTCAGA	132
ATCATTCACT ACTTTGACCC TGACTCTCCT TAGTCTCAAA ATCAAAGACT TATACTCTTC	138
AAAAATCTCT TCAAACCGCG TCAACGTCAC CTTGGATTAT ATATGTGALC TGACTTCGTC	1440
AGTTCTATCT ACAACCTCAA AGCAGTACTT TGAGCAACCT GCGACTAGTT TTCTAGTTTG	1500
CTCTTTGATT TTCATTGAGT ATTAAACAAA AAGTGAACAA ATCTGAATTC TAATGTACAG	1560
AAGACTAGGC TTGTTCACTT TTTTATAGTC GCTATAAGAT GACCTTATCT ATAGCTTTTT	1620
ATATATATT ATATATTCAG ACATACTATT ATCAATTTTG TCGCAGGGAG GAATCTGTTA	1680
ACGCACCCAT TCACCATTAT CATTGACTCT ATAGCCATCT ATACTTGTAT TGACCGCTAA	1740
CTCACCCGAT GTATTTACAT AATACCATTT ACCACCAACT TGGAACCATT GATTGACTTT	1800
CATAGAACCG TTGCTGTTGA GGTAGTACCA TGAACTATTA ACTTGTACCC AACCTGTTGC	1860
CATGGAACCA TCAGTATTAT AAAAATACCA CATACCATTT TCTTGTTTCC AGTCTGTTGT	1920
TGGAGCAACT GCTTTAGCTG GTTCTACTGC TACATCTGTT CCTTGGTTAG ATGTAACAGA	1980
TACAGGATAC GAAGGAATAG ATGATTGCTC AGGAACAACA ACTTTTTCAG GTTCTCTCGT	2040
CCCTCTCCTT ATACGTCTTT TTACCATCTC TTTAGTAATT TGACGAGAAG TAGTTTCTTC	2100
AATTGTTCCA TCACGTTCAT CTACAGTATA GATTGTAGTA AGAGTAATTT ACCAATTTCT	2160
CCTACTTCTT CTACTTCTTG ACTTTTATCA AGAGTTGGGC CATCGAGATA TTCTGTTTCG	2220
ATTGGAATTT CTTGGACAAG AACTTGGGGC TTGGTTCTTT TTTTAACAAC TCTTGTTTGA	2280
GAGTCTTTTT TTTGACTTAA AGTACTCTCA GTTACTTGTC CACTCTTTCC ATCTACATTA	2340
PAAGTTATCG TTGTAACTGT TTTCCCATTC TTTCCTAGAG TAATCTCTTG CTCCTGTCCT	2400
GCAGAAAGGT CATTGTCTGC TTCATATTTA GTAGCAAATG GAACAAGAAC TTCTTCAACC	2460
TGCTTTTAG CTGGAACTTT GATAACTGTA TCCGTGGCTT CTTTTCTATC AACAGTAACC	252Ò
GTTCGGTAA CATAACCAGT CTCTGGATTA ACATCGTAGG TCCTTGTCGT AGTTACATAG	2580
CATCCTCTC CATCAATTGT AACAGGATTT TCACTACGGT CTTTTGTTTC ATCTTTTCA	2640
AACGAATTC GCGTACTTGA AATTTTCTTG GTTACTACCT TAGGTTTAGT CGCTACTTTT	2700
CAATAATAT CCCCATTGTC AGCGTCATCA TACTCTATTC CCTCTTCTTT ATCTCTAGTA	2760
CATCTCTGA CATATTGAAT CCCATCAGCA GCATGAACAA AACTTGTATT CAGATTCCTC	2820
TAAAAATAA AGTTAGCCCG ATTACCGCAG AACCAAAAAT CTTTCCGAGT TTACGTATTG	2880
ATAGCGCTT ATTAGTATTA GATTTTGCCA TTACATCCTA CTTCTAGTAT AGCATCTTTT	2940

840
CTATCAAACG TTAAACAATA TACGTTATAT ATAAAATAGA CTTAGAATGA TATATTGATT 3000
ATTGAACTAA CACTTTAACT ATATCGTAAT CAATCTCATA TATAAAGGAT TGCAGACATC 3060
TTATCTAAAT ACATGCGAAT ATATTTAGAT ACAAACATTC CAACTTGATA AT 3112

# (2) INFORMATION FOR SEQ ID NO: 117:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4327 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

CCCAAAAATC TCTTCAAACC ACGTCAGCTT CGCCTTGCCG TAGTATGGTT ACTGACTTCG 60 TCAGTTCTAT CCACAACCTC AAAACAGTGT TTTGAGCATC ATGCgGCTAG CTTCTTAGTT 120 TGCTCTTTGA TTTTCATTGA GTATAAAAAC AGATGAGTTT CTGTTTTCTT TTTATGGACT 180 ATAAATGTTC AGCTGAAACT ACTTTCAAGG ACATTATTAT ATAAAAGAAT TTTTTGAAAC 240 TAAAATCTAC TATATTACAC TATATTGAAA GCGTTTTAAA AATGAGGTAT AATAAATTTA 300 CTAACGCTTA TAAAAAGTGA TAGAATCTAT TTTTATGTAT ATTTAAAGAT AGATTGCTGT 360 AAAAATAGTA GTAGCTATGC GAAATAACAG ATAGAGAGAA GGGATTGAAG CTTAGAAAAG 420 GGGAATAATA TGATATTTAA GGCATTCAAG ACAAAAAAGC AGAGAAAAAG ACAAGTTGAA 480 CTACTTTGA CAGTTTTTT CGACAGTTTT CTGATTGATT TATTTCTTCA CTTATTTGGG 540 ATTGTCCCCT TTAAGCTGGA TAAGATTCTG ATTGTGAGCT TGATTATATT TCCCATTATT 600 TCTACAAGTA TTTATGCTTA TGAAAAGCTA TTTGAAAAAG TGTTCGATAA GGATTGAGCA 660 GGAAGTATGG TGTAAATAGC ATAGGCTGAT GTCCATCATT TGCTTATAAA GAGATATTTT 720 AGTTTAATTG CAGCGGTGTC CTGGTAGATA AACTAGATTG GCAGGAGTCT GATTGGAGAA 780 AGGAGAGGG AAAATTGGCA CCAATTTGAG ATAGTTTGTT TAGTTCATTT TTGTCATTTA 840 AATGAACTGT AGTAAAAGAA AGTTAATAAA AGACAAACTA AGTGCATTTT CTGGAGTAAA 900 TGTCTTATTT CAGAAATCGG GATATAGATA TAGAGAGGAT CAGTATGAAT CGGAGTGTTC 960 AAGAACGTAA GTGTCGTTAT AGCATTAGGA AACTATCGGT AGGAGCGGTT TCTATGATTG 1020 TAGGAGCAGT GGTATTTGGA ACGTCTCCTG TTTTAGCTCA AGAAGGGGCA AGTGAGCAAC 1080 CTCTGGCAAA TGAAACTCAA CTTTCGGGGG AGAGCTCAAC CCTAACTGAT ACAGAAAAGA 1140 GCCAGCCTTC TTCAGAGACT GAACTTTCTG GCAATAAGCA AGAACAAGAA AGGAAAGATA 1200 AGCAAGAGA AAAAATTCCA AGAGATTACT ATGCACGAGA TTTGGAAAAT GTCGAAACAG 1260

Ί	GATAGAAAA	A AGAAGATGT1	GAAACCAATO	CTTCAAATGO	TCAGAGAGTT	GATTTATCAA	132
G	TGAACTAGA	TAAACTAAAC	AAACTTGAAA	ACGCAACAGT	TCACATGGAC	TTTAAGCCAG	138
A	TGCCAAGGC	CCCAGCATTO	TATAATCTCT	TTTCTGTGTG	AAGTGCTACT	' AAAAAAGATC	144
A	GTACTTCAC	TATGGCAGTT	TACAATAATA	CTGCTACTCT	AGAGGGGCGT	GGTTCGGATG	150
G	GAAACAGTT	' TTACAATAA1	TACAACGATG	CACCCTTAAA	AGTTAAACCA	GGTCAGTGGA	156
A	TTCTGTGAC	TTTCACAGTT	GAAAAACCGA	CAGCAGAACT	ACCTAAAGGC	CGAGTGCGCC	162
Т	CTACGTAAA	CGGGGTATTA	TCTCGAACAA	GTCTGAGATC	TGGCAATTTC	ATTAAAGATA	1686
Т	GCCAGATGT	AACGCATGTG	CAAATCGGAG	CAACCAAGCG	TGCCAACAAT	ACGGTTTGGG	1740
G	GTCAAATCT	ACAGATTCGG	AATCTCACTG	TGTATAATCG	TGCTTTAACA	CĆAGAAGAGG	1800
T	ACAAAAACG	TAGTCAACTT	TTTAAACGCT	CAGATTTAGA	AAAAAAACTA	CCTGAAGGAG	1860
C	GGCTTTAAC	AGAGAAAACG	GACATATTCG	AAAGCGGGCG	TÄACGGTAAC	CCAAATAAAG	1920
A'	TGGAATCAA	GAGTTATCGT	ATTCCAGCAC	TTCTCAAGAC	AGATAAAGGA	ACTTTGATCG	1980
C.	AGGTGCAGA	TGAACGCCGT	CTCCATTCGA	GTGACTGGGG	TGATATCGGT	ATGGTCATCA	2040
G.	ACGTAGTGA	AGATAATGGT	AAAACTTGGG	GTGACCGAGT	AACCATTACC	AACTTACGTG	2100
A	CAATCCAAA	AGCTTCTGAC	CCATCGATCG	GTTCACCAGT	GAATATCGAT	ATGGTGTTGG	2160
T	TCAAGATCC	TGAAACCAAA	CGAATCTTTT	CTATCTATGA	CATGTTCCCA	GAAGGGAAGG	2220
G	aatctttgg	AATGTCTTCA	CAAAAAGAAG	AAGCCTACAA	AAAAATCGAT	GGAAAAACCT	2280
A'	CAAATCCT	CTACCGTGAA	GGAGAAAAGG	GAGCTTATAC	CATTCGAGAA	AATGGTACTG	2340
T	CTATACACC	AGATGGTAAG	GCGACAGACT	ATCGCGTTGT	TGTAGATCCT	GTTAAACCAG	2400
C	TATAGCGA	CAAGGGTGAT	CTATACAAGG	GTGACCAATT	ACTAGGAAAT	ATCTACTTCA	2460
C	ACAAACAA	AACTTCTCCA	TTTAGAATTG	CCAAGGATAG	CTATCTATGG	ATGTCCTACA	2520
G7	GATGACGA	CGGGAAGACA	TGGTCAGCTC	CTCAAGATAT	TACTCCGATG	GTCAAAGCCG	2580
A٦	TGGATGAA	ATTCTTGGGT	GTAGGTCCTG	GAACAGGAAT	TGTACTTCGG	AATGGGCCTC	2640
AC	AAGGGACG	GATTTTGATA	CCGGTTTATA	CGACTAATAA	TGTATCTCAC	TTAGATGGCT	2700
CC	CAATCTTC	TCGTGTCATC	TATTCAGATG	ATCATGGAAA	AACTTGGCAT	GCTGGAGAAG	2760
CC	GTCAACGA	TAACCGTCAG	GTAGACGGTC	AAAAGATCCA	CTCTTCTACG	ATGAACAATA	2820
SA	CGTGCGCA	AAATACAGAA	TCAACGGTGG	TACAACTAAA	CAATGGAGAT	GTTAAACTCT	2880
ri	ATGCGTGG	TTTGACTGGA	GATCTTCAGG	TTGCTACAAG	TAAAGACGGA	GGAGTGACTT	2940
30	GAGAAGGA	TATCAAACGT	TATCCACAGG	TTAAAGATGT	CTATGTTCAA	ATGTCTGCTA	3000

			842			
TCCATACGAT	GCACGAAGGA	AAAGAATACA		TAATGCAGGT	GGACCGAAAC	3060
GTGAAAATGG	GATGGTCCAC	TTGGCACGTG	TCGAAGAAAA	TGGTGAGTTG	ACTTGGCTCA	3120
AACACAATCC	AATTCAAAAA	GGAGAGTTTG	CCTATAATTC	GCTCCAAGAA	TTAGGAAATG	3180
GGGAGTATGG	CATCTTGTAT	GAACATACTG	AAAAAGGACA	AAATGCCTAT	ACCCTATCAT	3240
TTAGAAAATT	TAATTGGGAA	TTTTTGAGCA	AAAATCTGAT	TTCTCCTACC	GAAGCGAACT	3300
AGAGAGATGG	GCAAAGGAGA	GATGGGCAAA	GGAGTTATTG	GCTTGGAGTT	CGACTCAGAA	3360
GTATTGGTCA	ACAAGGCTCC	AACCCTTCAA	TTGGCAAATG	GTAAAACAGC	GACTTTCCTA	3420
ACCCAGTATG	ATAGCAAGAC	CTTGTTGTTT	GCAGTAGATA	AGGAAGATAT	CGGACAGGAA	3480
ATTATTGGTA	TAGCTAAAGG	AAGCATCGAA	AGTATGCATA	ATCTTCCTGT	AAATCTAGCA	3540
GGTGCCAGAG	TTCCTGGCGG	AGTAAATGGT	AGCAAAGCAG	CGGTGCATGA	AGTTCCAGAA	3600
TTTACAGGGG	GAGTTAATGG	TACAGAGCCA	GCTGTTCATG	AAATCGCAGA	GTATAAGGGA	3660
TCTGATTCGC	TTGTAACTCT	TACTACAAAA	AAAGATTATA	CTTACAAAGC	TCCTCTTGCT	3720
CAGCAGGCAC	TTCCTGAAAC	AGGAAACAAG	GAGAGTGACC	TCCTAGCTTC	ACTAGGACTA	3780
ACAGCTTTCT	TCCTTGGTCT	GTTTACGCTA	GGGAAAAAGA	GAGAACAATA	AGAGAAGAAT	3840
TCTAAACATT	TGATTTTGTA	AAAATGGCTC	TTTGTCAACT	GTAGTGGGTT	GAAGTCAGCT	3900
AAGCTCGAGA	AAGGACAAAT	TTTGTCCTTT	CTTTTTTGAT	ATTCAGAGCG	ATAAAAATCC	3960
GTTTTTTGAA	GTTTTCAAAG	TTCCGAAAAC	CAAAGGCATT	GCGCTTGATA	AGTTTGATGA	4020
GATTATTGGT	CGCTTCCAAT	TTGGCGTTAG	AATAGTGTAG	TTGAAGGGCG	TTGACGATTT	4080
TCTCTTTGTC	CTTTAGAAAG	GTTTTAAAGA	CAGTCTGAAA	AAGAGGATGA	ACCTGCTTTA	4140
GATTGTCCTC	AATGAGTCCG	AAAAATTTCT	CCGGTTCCTT	ATTCTGAAAG	TGAAACAGCA	4200
AGAGTTGATA	GAGCTGATAG	TGATGTTTCA	AGTCTTGTGA	ATAGCTCAAA	AGCTTGTTTA	4260
AAATCTCTTT	ATTGGTTAAA	TGCATACGAA	AAGTAGGGCG	ATAAAAATGT	TTATCGCTGA	4320
GTTTACG						4327

### (2) INFORMATION FOR SEQ ID NO: 118:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3521 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:

CTCTGGCCCT GCCACTCCAA CGTTTTGTCA GGGTGCTTTT TTCATAAAGG AGTTCTTATG 60

TTAGATATCA AACGTATTCG TACAGATTTT GAAGCTGTCG CAGAAAAATT AGCTACACGT	120
GGTGTAGATG CTGCTGTCTT GAATGAAATG AAAGAAATCG ATGCTAAACG TCGTAACATC	180
TTGGTCAAGG TTGAAACTCT CAAAGCAGAA CGTAACACAG TTTCTGCTGA GATTGCCCAA	240
GCTAAGCGCA ACAAGGAAAA TACAGATGAC AAGATTGCTG CCATGCAAAA TCTATCTGCT	300
GAGGTTAAAG CCTTGGATGC TGAATTGGCA GAAATCGATG CTAAATTGAC AGAATTTACA	360
ACGACTCTTC CAAATATCCC AGCTGACAGC GTTCCTGTTG GGGCTGACGA AGACGACAAT	420
GTGGAAGTTC GCCGTTGGGG TACTCCACGC GAGTTTGACT TCGAACCTAA AGCTCACTGG	480
GATCTCGGTG AAGACCTTGG TATCCTTGAC TGGGAACGCG GTGGTAAGGT AACAGGCGCT	540
CGCTTCCTCT TCTATAAAGG CCTCGGTGCT CGTTTGGAAC GTGCTATCTA CAACTTTATG	600
TTGGATGAAC ATGGAAAAGA AGGCTATACT GAAGTCATCA CACCTTACAT AGTCAACCAT	660
GATTCTATGT TTGGTACTGG TCAGTATCCA AAATTTAAGG AAGATACTTT TGAACTCAGC	720
GATACCAACT TTGTCTTGAT TCCAACTGCT GAAGTTCCTC TGACAAACTA CTACCGTGAT	780
GAAATCTTAG ACGGCAAAGA TCTTCCAATC TACTTCACTG CCATGAGTCC GTCATTCCGT	840
TCTGAGGCTG GTTCTGCCGG TCGTGATACG CGTGGCTTGA TCCGTTTGCA CCAATTCCAC	900
AAGGTTGAAA TGGTCAAATT TGCCAAACCA GAAGAATCTT ACGAAGAATT GGAAAAAATG	960
ACAGCCAACG CTGAAAACAT TCTTCAAAAA CTCAACCTTC CATACCGTGT CGTTGCTCTC	1020
TCTACTGGAG ATATGGGCTT CTCAGCTGCG AAGACTTACG ACTTGGAAGT GTGGATTCCA	1080
GCACAAAACA ATTACCGTGA AATCTCAAGC TGTTCAAACA CAGAAGATTT CCAAGCCCGT	1140
CGTGCCCAAA TCCGTTACCG TGATGAAGCA GATGGCAAGG TGAAACTCCT TCATACCTTG	1200
AACGGTTCTG GACTTGCAGT TGGACGTACA GTGGCTGCAA TTCTTGAAAA TTACCAAAAT	1260
GAAGATGGTT CTGTGACCAT CCCAGAAGCA CTTCGTCCAT ACATGGGTGG AGCTGAAGTC	1320
ATCAAACCAT AAAAAATAAG GTTTAGCTAT TTCTAGCTAG ACCTTTTTTC GTAACCAAAT	1380
CAGATAAGCA CCTAGTACAA AGAATAAAAT AGTTAGGCAT ATAATGGTTT CAGCCAATAC	1440
CAGGTAATCC AGAAATGGAA GTTTCAAAAT TCCCTGAGCC ATCTTGAGCG AGGTCGCTGT	1500
GATAATGGTT GGGAAGGTGA GGGCTGAGAA GGCTGGTTGA AAACCTTGTT TTAAAATGTT	1560
GGGCAGACGA GTTAAAACAA AGAAAAAGAA GGATTGAGAA GCCAAAATCA TGACAATCAA	1620
GACCCAAGTC GGCAGGCTGG TTCCTCCTAC TCGAACTAGA GAAGCCAAGA GTAGAGAGAA	1680
AGGAGCACAG TAGATTCCTT CTTGTCCAAG CAAGGCTAGT GGGAGTGGAT GTTTCTTTAA	1740
ATCGCTATAA ATAAGGGGAT AGAGATAGAA GGTCAAGAGA AAACCAAAAC TCAAGGTCGC	1800

			844		•	
ATAGGCAATT	TCGATAATAC	CTACCAGAGG	ATAGGTCAAG	GCAGCCACTG	CTATCCCCAC	186
ATAGAGAACC	GTCCAGCTTG	GAGTGGCATG	AACCCTCCGC	CCTGGACAAG	CAAACTTGAT	192
GGTAAAACCA	GCAATCAAGG	TCAAATCCAA	GAGAAATGAA	AACCACCAAA	TCCCTTGTGC	198
TACCAAAGGA	AGATAAGAGA	ATACGCGAAA	GACATAGGTC	GATAAAATCA	TCCCAGCCAT	204
AGGAAAGGTT	GCCATTCCTG	ACAAAAGAGG	GGGCTTGGTC	AATTCTTGCT	TGGTTTCTTT	210
CCAATTAAAG	AGATGCAGAA	TTAGAAAGTA	AATCCATAAA	ACCAAACCAA	TCAGACTAAA	216
AAGATGGGAT	AGAACCGGCA	ACGTATCTAA	AATAAGATTT	CCAGCTCCTG	CCAAACCTAG	2220
CAAACAACCT	GAAAATACTA	AGGGGAGTTT	TTTCATCCTA	ACCTCCAATA	ATCATGTTAG	228
TTTCAGTATA	ACATAAAAGC	GCTTAAATGA	GGATTTAAAA	AAACGAGTCC	GCTTATTTCA	2340
GACTTCATTT	TACTCAGATA	TGAATTAGGC	ATAAGGTTGC	AATTCTGGAT	TAATTGGTGT	2400
ATTAGCTAAG	TTGTTGGCAT	AGTTACAGAG	GATTGCTAGG	CTGACACCAA	AAACCACATC	2460
CAAGGCATTT	TGTTGAGTGT	AGCCAGCTTC	TAAAAACTCA	GACAAGGCTT	CATCTCCTAC	2520
ACGACCCTTG	GTATTGATAA	CTGCCAAGGT	AAACTTAGCT	AGGGTATCCA	ATTTAGGATC	2580
TGTTTCAATT	GGAGTACGAT	TGCGAAGAGC	TTGAATCAAG	TCATCATTCA	TCTGGATTTG	2640
TTTGATGGAA	AAGGCTGTGT	GACCTGCGAC	ACAGAAGGCA	CAACCATTGG	TCACGGCTGC	2700
CGTGATTTGC	ACCACTTCAC	GCTCAACGGG	TGTCAGGCTG	TTGCGACGGT	GGATAGATGA	2760
GACAATTTGG	TAGGCTTCTA	AAACAGTCGG	GGCATTGGCC	AAGAGACCGA	TTAGGTTGGG	2820
AATATAGCCA	TTGTTGTCTT	TTTCTACTGT	TTCAAGAATT	TCTTTCACTT	CTGCTGGTGC	2880
TGACTCTACT	GTATGGATAG	TAAATGTTGT	CATAAGATAC	СТСТТТТСТТ	ATTATTGACA	2940
CTAATATTAT	TGGAAAATCT	TATAAAATCC	TGATTCCTAA	GTTTATCTAA	GATAAAGCTT	3000
TATTCTCTCA	TAAGATTTTC	GTTGTTATAT	TAGTTTATCA	CACTTCCAAT	CACTTGTATA	3060
ATATATATTA	TATATCAGGC	TGATAAAAAT	TATTTATAGG	CAAAAAAATC	ACACGAGCTG	3120
TGTGATTCCA	TTATTTGTCA	AAATACTTTT	TAGTTTCAGC	AATAACGACT	GGCGACAAGA	3180
CCAAGAGGGC	AATCAAGTTT	GGCAGAGCCA	TCAAGGCGTT	AACGATATCT	GCGATAATCC	3240
AGACCATATC.	CAACTCGATA	AATCCTCCTA	ACAAGACCAT	GAGCACAAAA	ACCACACGGT	3300
AGAGCCAGAT	AAAGCGAACC	CCAAAGAGGA	ACTCAAAACA	GCGTTCTCCG	TAATAGTTCC	3360
AACCTAGAAT	CGTTGTAAAG	GCAAAAAGTA	CAAGGAAGAT	GGTCAAGAGA	GCAGGCCCAA	3420
AGTGTGAAAA	GTTTGTTGAG	AAAGCTGACT	GAĞTCAAGGC	AACCCCATTC	AAGTCACCGC	3480
TCCAAACTCC	AGTTACCAAG	ATGGTCAAAC	CAGTTAGAGT	A		3521
(2) INFORMA	TION FOR SE	Q ID NO: 11	.9:			

845

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 1968 base pairs

  (B) TYPE: nucleic acid

  (C) STRANDEDNESS: double

  (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

AACCTGGGCA	AGCAAGCTAA	AAGCAATGGG	ACCTGGAATO	CTAATGGCAA	CTGCCGCTGT	60
TGGAGGTTCC	CACATTGTAT	CCTCAACTCA	AGCTGGCGGT	TCTTACGGTT	GGTCTCTACT	120
TCTCTTGGTC	ATCTTAGCCA	ATGTCTTTAA	ATATCCATTT	TTCCGTTTT	GTGCTGAATA	180
CACAGCTGAT	ACTGGAAAGA	CTTTGGTTGA	AGGTTATGCC	GAAAAAGGAA	AACTCTATCT	240
CTGGATTTTC	TTTATCCTCA	ATGTCTTTTC	GGCTATGGTC	AACACGGCTG	GTGTTGCCAT	300
TCTGTGCTCA	GCTATCATCG	CCAGTGCCTT	CCCAATGATT	GGACTTAGCA	TTACTCAGTG	360
GTCCCTCATT	CTCGTTGCAA	TCATTTGGGC	TATGCTACTC	TTTGGAGGCT	ACAAACTTTT	420
AGACGGCATG	GTCAAATGGA	TTATGTCTGC	CTTAACCATT	GCGACTGTTC	TTGCAGTTAT	480
CATTGCGGCG	GTCAAGCATC	CAGAATACAG	TTCTGATTTT	GTCGAGAAGA	CACCTTGGCA	540
AATGGCAGCT	CTGCCCTTCA	TCGTCTCCCT	CCTAGGATGG	ATGCCGGCTC	CTATTGAAAT	600
TTCAGCCATC	AATTCACTTT	GGTCAGCTGA	AAAGAGAAAG	ACCGTCAACT	TTAACACAGA	660
AGACGCTCTG	TTTGACTTTA	ACACTGGTTA	TATTGGAACA	GCTATCCTAG	CCGTCTTCTT	720
TGTGGCACTG	GGAGCACTGA	TTCAGTATCC	TACAGGGCAG	GCGGTTGAAG	CTGCTTCAGC	780
CAAATACATC	TCTCAATTCG	TGGGCATGTA	TGCCTCTGTT	CTTGGCGAAT	GGTCCCGTTA	840
CTTGATTACC	TTTATTGCCT	TCCTCTGTAT	CTTTGGAACA	GTTATAACTG	TTATCGATGG	900
CTATTCTCGC	GTTAATCAGG	AATCTCTCCG	ACTGCTAATC	AGTCAAAAAG	AGGACAATCG	960
TAAATCTTTG	AACATCTGGA	TGACCATCAC	TGCTATCATC	GGTATCGTCA	TTATCAAGTT	1020
CTTCGCTGGT	CAGGTTTCAA	CCATGCTCCG	CTTTGCCATG	ATTGGCTCTT	TCCTGACAAC	1080
ACCTTTCTTT	GCTCTTTTGA	ATTACGCCTT	GGTAACGCGT	GAAAACAAAA	ATCTTCCTTC	1140
TTGGCTCAAA	CACCTTGCCA	TTGCGGGATT	GATTTTCCTC	TTTGCTTCGC	CATCTTCTTT	1200
ATCTACGCAC	TCGCAATCGG	AAAAGCAGGG	TAAGGGACAA	GCGCGAGATG	AAGATAAGGT	1260
PTCATTTCAA	GAGAAAATTC	AGCAAATATT	TCTATGATAA	AAAGCATAAG	AACAAGGTTT	1320
FGAAGACCTG	AACTTATGCT	TTTTTACGTT	CTTAAAGACT	GTTTATACTC	AAAAAACAGT	1380
TGAACAACTT	CAACCACCTC	TTATAAGAAC	тттатастат	TCCACAATCT	CTTC A A A CCA	1440

			846			
CGTCAGCTCT	ATCTGCAACC	TCAAAGCTGT	GCTTTGAGCA	ACCTGCGACT	AGCTTCCTAG	1500
TTTGCTCTTT	GATTTTCATT	GAGTATTAAT	TCTCCTTTTC	CAACTCATAC	AAATCTGCGA	1560
TAATAGCTGC	GACATGTTTG	ATATCTTCCA	GCATGCCTCG	CATTTCAAAG	TCAGCCAATA	1620
CAGGGAAGCC	AAAGCGTTGA	CTGTATTGCT	TGGCTGTTAG	GCAGTATTGG	TTATTAAAGT	1680
TACGATTTCC	TGACCCAACC	ACACCAAAAC	ACTTACTAGC	ATTGTTACCA	TAGGCAATAA	1740
AATCTCCCAC	CGGTGTCGTC	AAAATCTCAA	CATCTCCGTT	ATCCACGCCA	TTCCCACCTT	1800
CGAGATAGGT	CGGCAAAAAA	GCGACATAGG	GATGGTCCAT	TTCATAGAAA	TTTTTGCCTT	1860
CCTTGACCAA	ATCCTTGATA	TGAATCTTTT	GAACCTCAAT	CCCTTTGTAC	TGGGACAAGA	1920
GATAGTCTTT	CAAGCGCGTC	ACAAAACTTT	CAGTGTTGCC	ACTCAAGG		1968

## (2) INFORMATION FOR SEQ ID NO: 120:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7172 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:

CCGCATTTTT	TATCACTAGA	CTCGAGACAT	CTTTTGAGTG	GCTCTTGCTC	TCTGGTTTAA	60
TTTTCTTCCT	TGCTCAAGGA	CTCCTGCTAT	TTCTCTTGGT	CGTCCGACTC	AAACATCAAT	120
TCGCTGAGAT	TTATCCTCAA	ATCAATAAAA	AGATTCGCTT	CTACTATTTA	GGGGTTCTCA	180
CCATTGATTT	TCTATTTTT	GTTCTCTTAG	CCTTCATTAG	TTCTCAGCGT	TTTTCATCTC	240
TTATGCCAAT	CATCACTGCT	TGCCATTCTA	CTTTTTATTA	TATGACAGCT	GACTACCTAA	300
GAGAAAACTA	TCCAGACTTT	TACGACAAAC	ACATCTCTTT	ATGGGAGTGT	CTCTAAAGAA	360
AAGGAGGTTT	TAGCATGAAA	AAAATCATCT	TCATCAAAAC	CATTCAACTC	CTTGTCATTG	420
ATGGAATCAT	GCTGGCATTT	TTGACATTTA	AAAGGGGGCT	TACTTGGGAC	TGGATTTTGA	480
TTTATAGCGG	TTGGCTCATT	TTCTTTCATC	CTGTGCTATT	GACCTATCTT	TCAAACCAAC	540
TTTGTGACCA	CTTTAGTTAA	CTCTATTCCC	AGATTAGACC	GAGATTCTGG	CGTTTTGCTT	500
TACAAATTCT	CCTATGGGAT	AGCCTGATGA	TTCTCTCCTT	GGTGTCTTTA	AGTGATATTC	660
CACTTTTCCT	TCAGGGAACT	CTCCTCATCC	TAGGACATCT	CATCCCTTCC	TATCGCATCT	720
GCCAAAGCCT	GAAAAGAGAC	TTCCCCCAAG	CATATCAAGA	ACCGATTTCT	TTTTGGAGTA	780
TTTTATGATA	GATGAGAAAG	ACCAAGCCGA	CTGGGCTTGG	TCTTTCTTAT	CTCTTTTTAG	840
TATCTAGGAT	AATGGTAACA	GGTCCATTAT	TAACCAGCTC	AACCTGCATA	TCTGCTCCAA	900

AGATGCCTGT	CTGAACGGG	ACTTCTTGC	CTAATTTTTC	ATTGAAAGC	TCATAGAAGT	960
CTGATGCCAT	ATCAGGTTT#	GCTGCCCCTC	TAAAGgCTGG	ACGATTGCCT	CTCTTAGTAT	1020
CCGCAAAGAC	GGTAAACTGA	GAAATAGAGA	GGATTTCTCC	TTCAATATCT	TTGACAGACA	1080
GGTTCATCTT	GCCTTCTGCG	TCTGAAAAA	TCCGCATATT	GACCAGTTTT	CTCACAGCAT	1140
AGTCCAAATC	TTCCTCTTGG	TCCTCTGGTC	CAACACCAAC	CAGCAATAAA	AGTCCCTGAT	1200
TGATTTTTCC	CTGAATCTGG	CCTTCTATAC	TCACTTGGGC	TTTTTTAACO	CGTTGGATAA	1260
TGATTTTCAT	AATAGCCTTT	CTAGTAAGAG	CTAGGACAAC	TAGCCGTTGG	TCCGTTTGAC	1320
AGAGTAAACT	TCTGGCACAC	TCTTAATTTT	ATCGACAACC	GTGGTCAGTG	TAGAGAGGTT	1380
GGCAATACCG	AAGgACACAT	GGATATTAGO	AAACTTCATA	TCCTTGGTTG	GTTGGGCATT	1440
GACCGTTGAA	ATATTCTTGG	TTGTATTTGA	AAGAACTTGC	AGTACATCGT	TCAACAGTCC	1500
TGTACGGTTG	AGACCGTAGA	TATCGATATG	GGCCATATAC	TCCTTATTTG	AGCTAGGGTA	1560
CTGGTCTTCC	CATTCCACAT	CAAGGAGACG	TTGCTCGTAG	TTTTCTTGGG	CACGCAGGTT	1620
CATACAGTCC	ACACGGTGAA	TAGCCACACC	ACGACCCTTG	GTAATGTAGC	CAACAATATC	1680
GTCACCAGGC	ACGGGGTTAC	AACACTTAGC	AATCCGCACT	AGGAGACCAG	AAGCACCTTC	1740
AATAACCACT	CCCCCTCAT	GCTTGACCTT	GAGGGTTTCT	TTATTTTCAA	CCTTGACCTC	1800
GCCACCTTTG	ACAAGCTCCT	CTGCCTCAGC	TTTGGCCTTG	GCACGCTCTT	CCTCACGGCG	1860
TTCCTTTTCA	GTCAGACGGT	TAAAGACGGT	AATCGCACCG	ATTTCCCCAA	AACCAATGGC	1920
CGCAAAGAGG	GAGTCTTCTG	TCTTGTAACT	GGTCTTTTGC	AGAACTTGAT	CCATGTGGCG	1980
CTTGTCCATA	AATTTATTTG	CCACATAGCC	ATTTTCTTGG	AACTGAGCCA	TCAGCATCTC	2040
ACGACCCTTG	TTGACAGACA	ATTCCTTATC	TTGGTTTTTA	AAGAACTGGC	GAATCTTATT	2100
GCGCGCCTTG	CTAGTCTTGA	CCATATTGAG	CCAGTCACGG	CTAGGTCCAA	AGGAGTTCGG	2160
GTTGGCGATA	ATTTCAACCT	GATCCCCTGT	CTTTAACTTG	GTTGTCAGTG	GAACCATGCG	2220
GCCATTGACC	TTGGCACCAG	TTGCTTTTTC	ACCGACCTTG	GTATGGATTT	CGTAGGCAAA	2280
ATCAATCGGT	CCTGAATCTT	TGGGAAGGGA	ACGGACAGCT	CCATCTGGGG	TAAAAACGTA	2340
AATCTCCTCA	GCCAAATAGT	TTTCCTTAAC	AGAGTCCACA	AATTCCTTAG	CATCATCAGC	2400
CTGGTCTTGG	AGCTCCATCA	TCTCCTTGAT	CCAGTTCATT	CCAATAGCTG	ATTCCTTGCT	2460
GTTAACTTGC	CCCTTTATAC	CTTTCTTATA	AGCCCAGTGA	GCCGCAACCC	CGTACTCAGC	2520
CACCTCGTGC	ATTTCCTTGG	TTCGAATCTG	GAATTCAATC	GGCCCTTTTG	GTCCATAAAC	2580
AGTCGTATGG	ATAGACTGAT	AACCATTGGC	CTTGCGGTTG	GCGATATAGT	CTTTGAAGCG	2640

848 ACCTGGCATC GGTTTCCAAA ATTCATGCAC GTAACCAAGC ATGGCATAAA CATCACTTTG 2700 GGTATCTAAA ATACAACGAA TAGCAATCAG ATCATAGATT TCCTCAAACC GTTTTCTCTT 2760 GTCCTGCATT TTGCGGAAAA TTGAGTAAAT ATGCTTGGGA CGACCATAAA TCTTCCCTTT 2820 CAAGTGACGT TCTGTCGTAT ACTCCTCTAA TTTTGTGACT ACCTCATCCA CCAAGGCCTC 2880 ACGCTCCCTG CGCTTTTCCT TCATCATATG GGTAATCTTG TAAAACTCCG TTGGATTGAG 2940 ATAACGGAAA GACAAGTCTT CTAATTCCCA TTTGACACTG GAAATCCCCA AACGATGGGC 3000 AAGCGGGGCA TAGATTTCCA TGGTTTCTTT GGAAATACGC TCCTGCTTGT CTTTTCGAAG 3060 ATGTTTCAGG GTCCGCATAT TGTGCAAGCG GTCAGACAGT TTGACCAAAA TAACGCGGAT 3120 GTCCTCAGAC ATGGCCATGA GCATCTTGCG ATGATTTTCC GCTAATTGCT CCTCGATCGA 3180 TTTGTACTCG ACCTTGCCAA GCTTGGTAAC TCCGTCAACA ATCATCCGCA CATCAGGACC 3240 AAACTCTCTT TCCAAATCGT CCAAAGTCGC ATCTGTATCT TCCACCACAT CATGCAAGAA 3300 3360 AGGGTGAATG ATATAAGGCT CGCCTGATTT GCGATATTGA CCACTGTGGC ATTCAACAGC 3420 ATAGACCAAG GCCTTATGGA CAAAATGAAC ATCCTCTTCC GTTAAATATT CTTTGGTTAA 3480 AGCGACAACT TCTTCGCCTG TTAAATTCAC TTCTTTCGGC ATCTCTACTC TCCAATTCTT 3540 CCTACCATTT TATCACTTTT TTAAGAATAT GAAAACTAGA TTGGAACAGA ATAAGAAAAA 3600 AATAATTCAA AATTGCTTGA TAATTCTGAA TTATTGGTCC GTAATATACT ACGAAGTTAG 3660 ATTITAAACT TAGGTGATAG AAGGAGAGAT AGAAGAACGG AAACCATATT GTAACCCAAA 3720 GACTTTCTGA CTTCCCCAAT TCCATTGAAG ATACGAAAGA TAAACGGTGG AACTCGTATC 3780 ACATACACTG GTACCTTGAC TGGATTTTGG AATTAATACT AAATGAAAAT CAAAGAGCAA 3840 ACTAGGAAAC TAGCCGCAGG TTACTCAAAG CACCGCTTTG AGGTTGCAGA TAAAGTTGAC 3900 GCGGTTTGAA GAGATTTTTG AAGAGTATAA AAATCCTCAA GATACTTTCT TCTATCCTTT 3960 AGTTTATAAG GAGAATACCT ATGAAAAAAA CTGCTATTTC TATCTTTGCT CTCCTAATGT 4020 TAGGAGTTTG CTGCCTGTTC CTATTCAGCC AGCAAAGCTA TAAAAAACAG TCGTTCAATA 4080 CTATGCTAAC GACCAGAACC TGCCCAGTAG GATAACTTAT AGTGAATATA GCGACAAATG 4140 AGAAGCCAAC TACGGTAGCA CTCTAAACAT CACGTCTATC AAACAAGCTA ATGACGGAGT 4200 TTATGCAACC TATGAAGGGC AATTGACACC TTTCCAATAT TGATAAATTG ATAACCAGCC 4250 TGTCTTCATC TAGTCATGCT GGTTTTTAAG TTCATTTTAA ATCCTTACCT ATTCTCCCTA 4320 ACTGTGCTAT ACTTAATTTA TACTCAATGA AAATCAAAGA GCAAACTAGA AAGCTAGCCG 4380 CAGGCTGTTC AAAGCACTGC TTTGAGGTTG CAGATAAAGT TGACGCGGTT TGAAGAGATT 4440

849

TTCGAAGAGT	ATTAGTACAT	TCTTTGAGAT	TGGAGCTAGT	ATGAAAATCC	ATAAAACCGT	4500
GAATCCTGTT	GCCTATGAAA	ATACCTATTA	TCTAGAAGGC	GAAAAGCACC	TCATCGTCGT	4560
CGATCCTGGT	AGTCATTGGG	AAGCCATTCG	TCAGACAATC	GAGAAGATCA	ACAAACCGAT	4620
CTGTGCTATT	CTCTTGACCC	ACGCCCATTA	TGACCATATC	ATGAGTCTGG	ACTTGGTTCG	4680
CGAGACGTTT	GGCAATCCTC	CTGTCTATAT	CGCAGAGAGC	GAAGCCAGCT	GGCTCTACAC	4740
TCCTGTCGAT	AATCTCTCCG	GTCTCCCTCG	CCACGATGAT	ATGGCAGATG	TGGTCACAAA	4800
ACCTGCAGAA	CACACCTTTG	TCTTTCACGA	AGAATACCAA	CTAGAGGAAT	TTCGTTTTAA	4860
GGTTCTACCG	ACCCCAGGGC	ACTCTATCGG	TGGTGTTTCC	CTAGTCTTTC	CTGATGCTCA	4920
TCTAGTCTTG	ACGGGAGATG	CTCTATTCCG	CGAAACTATC	GGACGGACCG	ACCTTCCGAC	4980
TGGTAGCATG	GAGCAACTCC	TTCATAGTAT	CCAGACCCAA	CTCTTCACCC	TACCAAACTA	5040
CGATGTCTAT	CCAGGACATG	GTCCAGCTAC	TACTATCGCT	CACGAAAAGG	CCTTCAATCC	5100
CTTTTTCTAG	CAAGATGATG	ACAATCGAAA	TTTAAGTAAA	CTATCCAGCA	AATCTTTCTA	5160
TTACAAAAGG	CATCCTATCA	AGGTTTTCAC	ACATGATTGG	ATGCCTTTTT	TCTGATGACT	5220
AGATTTTTTG	CATTACCAAA	TAATCACGCG	CTCCTCTGGT	GAACGCCACA	TTCCGTCTCC	5280
TTCTTTGACA	TCATAGGTTG	TAAAGAAATC	GTCGAAGTTT	GGTACTTGCA	CATTGACACG	5340
GAGTTTGGCT	GGTGCGTGCA	CATCGACGCT	AGCCAAAAGT	TTCATAAATT	CTGGTCGACC	5400
TTTCATGCGC	CAGATGCGAC	CGAAGTTGTA	GAAGAACTCT	TCTGCTGAGA	AGTCTGCTTC	5460
TCTCTTAGCT	GCTTCAAGCG	CTGCTGCGAT	TCCTCCCAAG	TCAGCCACGT	TTTCTGATAC	5520
AGTCAATTTA	CCGTTAATGG	TTGCTCCATA	AGAATCCTGT	CCATCAAATT	GGTCAATGAC	5580
TTTTTGTGTT	TTCTCCTTGA	AGGCAGCATA	GTCGCTCTCT	GTCCACCAAT	CCTTGAGGCT	5640
ACCATTTTCG	TCAAAGGAAG	CCCCGTTAGT	ATCAAAGGCG	TGGGAAATTT	CATGGGCAAT	5700
CACTGCCCCA	ATACCACCGT	AGTTAGCAGA	AGATGACTGA	TGCAAGTCAT	AGAAAGGCGC	5760
CTGTAAAATG	GCCGCTGGAA	AGACAATCAG	GTTCTTCTGA	GGATTGTAGT	AGGCATTGAC	5820
CATATGAGCA	GGCATGCCCC	ATTCCTTATA	ATCTACAGGC	TGGTTCCACT	TACTCCAACT	5880
GTGCTTGATT	TCCACACGCG	CAAAGGCTAG	AGCATTCTCA	AAAAGACTGG	CAGTTTCATT	5940
CACTACCTTA	TCCTTGTAAC	GTGCAGGCAA	TTCTTCTGGA	TAGCCAATAT	AAGGTTTGAT	6000
CACATTGAGC	TTCACGATAG	CCTGTTTACA	GGTTTCTGGA	GTGAGCCAGT	CATTCTTAAG	6060
CAGACGCTCC	TTATAAACAT	CAATCATGGT	TGCCACTTTT	TTCTCCACAT	CCGCCTTGGC	6120
TTCTGGAGAG	AACTTCTCAC	GGGCGTACCA	AAGACCCAGG	GCTTGCTTGA	AAGGTTCTTG	6180

			850			
rgctagatga	TAAGCTGCTT	TGACCTTATC	TTTTGCCTCT	GGAACTCCAG	AAAGGGCACG	6240
GCTGTAGGCA	CCAGACAAAA	CACGGATATC	CTCTGTTAAA	TAGCTGGTTG	AAAGATTGAC	6300
AACACTCAAA	ATCAAGGTTG	CTTTAAGGAG	AGACCAGGCT	TCCTCACTGT	AGAATTGCTC	6360
TGCTGCTTGC	CAGAAACGTT	CCTCGTCTAC	AATAACCTTG	TCTGGTAATT	GCCCAATAAC	6420
rgctttgaag	AAGTCATCCA	AAGGTAGGGC	AGGCGCGAAT	TTCTTGAAAT	CTTCGTAAGA	6480
ATATGGATGA	TAGAGTTTAG	CATATTCTGA	ACTTTCTTCA	TTAGAGAGCA	CCACTGCCGC	6540
AACTCGGCGG	TCCAATTCAA	GTCTTTTTC	TAGCAAGTCT	TCAATTTCTT	CATCAGAGAA	6600
ATCATAAGCC	TTGAGGAGAT	TTGCGCTGCT	TTCTTTCCAA	AGAGTCAAGA	GCTCTTCGCG	6660
CTGAGGATGT	TCTTCTGCAT	AGTAGGTCGT	ATCTGGCAAG	ATTGTGCTTG	GAGCGCTAGC	6720
CCATAGAACA	TTGATTCTAG	CATCCATAAA	GTCTGGCGAT	ACACCAAAAG	GAAGGAAGTT	6780
TGGTTTTCCT	GCAAGCTCAA	ACTCTGCTAG	TTTAGCTGTA	AAATCCGCAA	AAGTCTCCAA	6840
TTCTTGGAAT	TCTTTAAGGA	GTGGTAAGAC	AGGTGTGATA	CCGTCAGCTT	CTCTCTTGTC	6900
AAAATCACGA	ACTAGGCGGT	GGTATTTGAC	AAAGTTTTCC	AAGATAGCAT	CCTCAGGCAC	6960
TTCTTCACCT	GCTAACCACT	TGTCTGTTGT	CGCCAGCATC	AGGTCTTCAA	TTTCCTGGTC	7020
TAAATCAACA	AAACCTCCTG	TTTGAGACTT	ATCTGCTGGG	ATTTCAGCTG	TCTGTTGCCA	7080
TTCTCCATTG	ATAGCATCAT	AAAAATCATC	TTGATAACGT	GTCATCTTGT	TCTCGCTTTC	7140
ATTTGTATTT	GCATTTATCT	TAACAAAAAT	CG			7172

# (2) INFORMATION FOR SEQ ID NO: 121:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 4518 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID:NO: 121:

CGGGAAGTTA	TGCGATCTAG	ACTTCGTTCC	TGTACAGCTA	CTTTCTCAGG	TGGTCTTGTT	60
GTTTGTATGA	GTTTGTTTAG	AGAGGATCTT	TCTATGTCTT	TCTTTCTTAT	TTTTGTTTTA	120
TATGCTTTTC	TGATTTCTTA	TCTAATTTAT	GGTTATTTCA	GACTAAAAAG	GAAATACCGA	180
GTAGATGAAT	AGCAAGGTTC	TAGGTCTTCA	GATTGATTTT	TAGCACTCTT	GATAAAAGAG	240
TGCTAATTTT	TTGAGTTTTT	GTCTTGACAT	TCTCTTCTAA	GGGTGTATAA	TAGAATCATG	300
AGTTAGCACT	TGGATGCATT	GAGTGCTAAT	TGATCAGACA	GAGAGGAGTG	ATGAGATGGT	360
TACAGAGCGT	CAGCAGGATA	TTTTAAATCT	GATTATTGAC	ATCTTTACCA	AÄACGCACGA	420

ACCTGTCGGA	TCAAAAGCC1	TGCAAGAGTC	TATTAACTCT	AGCAGTGCAA	CCATTCGTAA	480
TGACATGGCG	GAACTAGAAA	AACAAGGGTT	GCTTGAGAAG	GCTCATACTT	CAAGTGGTCG	540
GATGCCAAGT	GTTGCTGGTT	TTCAGTACTA	TGTGAAACAC	TCACTGGATT	TTGACCGGCT	600
GGCTGAAAAT	GAGGTATATO	AGATTGTCAA	AGCCTTTGAT	CAGGAATTCT	TCAAATTGGA	660
GGATATTCTG	CAAGAGGCTG	CTAACTTACT	AACAGACCTG	AGTGGCTGTA	CGGTAGTGGC	720
ACTGGATGTT	GAGCCGAGCA	GGCAACGTTT	GACAGCCTTT	GATATCGTTG	TTTTGGGGCA	780
ACATACAGCC	TTGGCGGTAT	TTACCCTAGA	CGAGTCGCGA	ACGGTTACTA	GTCAGTTTCT	940
GATTCCAAGG	AACTTCTTGC	AGGAGGATTT	GCTGAAACTG	AAGAGCATCA	TTCAGGAACG	900
TTTCCTCGGT	CACACCGTTT	TAGATATTCA	CTACAAGATT	CGGACGGAGA	TTCCGCAGAT	960
TATCCAGCGT	TACTTTACAA	CAACGGATAA	TGTCATCGAT	CTCTTTGAAC	ACATCTTTAA	1020
GGAAATGTTC	AACGAAAACA	TTGTGATGGC	GGGCAAGGTC	CATCTCTTGA	ATTTTGCCAA	1080
TCTAGCAGCC	TATCAGTTCT	TTGACCAACC	GCAAAAGGTG	GCCTTGGAGA	TTCGTGAGGG	1140
GTTGCGTGAG	GATCAGATGC	AAAATGTTCG	TGTTGCAGAC	GGTCAAGAGT	CCTGTTTAGC	1200
TGACCTAGCG	GTAATCAGTA	GTAAGTTCCT	CATTCCTTAT	CGGGGAGTTG	GAATTCTAGC	1260
CATTATCGGT	CCAGTTAATC	TGGATTACCA	ACAGCTAATC	AATCAAGTCA	ATGTGGTCAA	1320
CCGTGTTTTG	ACCATGAAGT	TGACAGATTT	TTACCGCTAC	CTCAGCAGTA	ATCATTACGA	1380
AGTACATTAA	GATTGAAATC	ATTAAAGGAG	GCGAACATGG	CCCAAGATAT	AAAAAATGAA	1440
GAAGTAGAAG	AAGTTCAAGA	AGAGGAAGTT	GTGAAAACAG	CTGAAGAAAC	AACTCCTGAA	1500
<b>AAGTCTGAGT</b>	TGGACTTGGC	AAATGAACGT	GCAGATGAGT	TCGAAAACAA	ATATCTTCGC	1560
GCTCATGCAG	AAATGCAAAA	TATCCAACGC	CGTGCCAATG	AAGAACGTCA	AAACTTGCAA	1620
CGTTATCGTA	GCCAGGACTT	GGCAAAAGCA	ATCTTACCAT	CTCTTGACAA	CCTTGAGCGT	1680
GCACTTGCAG	TTGAAGGTTT	GACAGATGAT	GTGAAGAAGG	GCTTGGGGAT	GGTGCAAGAA	1740
GCTTGATTC	ACGCTTTGAA	AGAAGAAGGA	ATTGAAGAAA	TCGCAGCAGA	TGGCGAATTT	1800
SACCATAACT .	ACCATATGGC	CATCCAAACT	CTCCCAGCAG	ACGATGAACA	CCCAGTAGAT	1860
CCATCGCTC	AAGTCTTTCA	AAAAGGCTAC	AAACTCCATG	ACCGCATCCT	ACGCCCAGCA	1920
TGGTAGTGG	TGTATAACTA	AGATATAAAG	CCCGTAAAAA	GCTCGCAGTA	Aaaataggag	1980
TTGACGAAG	TGTTCGATGA	ACACAAGAAA	ATCTATCTTT	TTTACTCAGA	GCTTAGGGCG	2040
GTTCGATTC	GGCAATTCTG	ACGGTAGCTA	AAGCAACTCG	TCAGAAAACG	GCAATCGCTA	2100
GGCGTTTGC (	CTAGCTTCCT	TACTAACTCG	TCGTCGAAAT	AAAATCGATT	TCGACTCCTC	2160

			852			
GTGTCGCAAT	ТТАСАТААТА	GAAAACTTGT	CCGAAACGAC	AATAAACTAT	GAAGAAAGAT	2220
AAAATATGTT	TGGCTTTGTA	ATAGTGAGCG	AAGCGAACCA	AACACGATAC	TCTTCGCCGT	2280
GGCGCTATTT	GCGCAAATTT	TGAGACCTTA	GGCTCAAAGT	TTAGTCAAAG	AGATTGACGA	2340
AGTCAAGCTC	TGACGGCGTC	GCCACTGTCG	CCACTTAAGA	AGAGTATCAA	AAAGAAAAAT	2400
AGAAAATTAA	CTAACAAGGA	GAAAAACACA	TGTCTAAAAT	TATCGGTATT	GACTTAGGTA	2460
CAACAAACTC	AGCAGTTGCA	GTTCTTGAAG	GAACTGAAAG	CAAAATCATC	GCAAACCCAG	2520
AAGGAAACCG	CACAACTCCA	TCTGTAGTCT	CATTCAAAAA	CGGAGAAATC	ATCGTTGGTG	2580
ATGCTGCAAA	ACGTCAAGCA	GTTACAAACC	CAGATACAGT	TATCTCTATC	AAATCTAAGA	2640
TGGGAACTTC	TGAAAAAGTT	TCTGCAAATG	GAAAAGAATA	CACTCCACAA	GAAATCTCAG	2700
CTATGATCCT	TCAATACTTG	AAAGGCTACG	CTGAAGACTA	CCTTGGTGAG	AAAGTAACCA	2760
AAGCTGTTAT	CACAGTTCCG	GCTTACTTCA	ACGACGCTCA	ACGTCAAGCA	ACAAAAGACG	2820
CTGGTAAAAT	TGCTGGTCTT	GAAGTAGAAC	GTATTGTTAA	CGAACCAACT	GCAGCAGCTC	2880
TTGCTTATGG	TTTGGACAAG	ACTGACAAAG	AAGAAAAAAT	CTTGGTATTT	GACCTTGGTG	2940
GTGGTACATT	CGACGTCTCT	ATCCTTGAAT	TGGGTGACGG	TGTCTTCGAC	GTATTGTCAA	3000
CTGCAGGGGA	CAACAAACTT	GGTGGTGACG	ACTTTGACCA	AAAAATCATT	GACCACTTGG	3060
TAGCAGAATT	CAAGAAAGAA	AACGGTATCG	ACTTGTCTAC	TGACAAGATG	GCAATGCAAC	3120
GTTTGAAAGA	TGCGGCTGAA	AAAGCGAAGA	AAGACCTTTC	TGGTGTAACT	TCAACACAAA	3180
TCAGCTTGCC	ATTTATCACT	GCAGGTGAGG	CTGGACCTCT	TCACTTGGAA	ATGACTTTGA	3240
CTCGTGCGAA	ATTTGACGAT	TTGACTCGTG	ACCTTGTTGA	ACGTACAAAA	GTTCCAGTTC	3300
GTCAAGCCCT	TTCAGATGCA	GGTTTGAGCT	TGTCAGAAAT	CGACGAAGTT	ATCCTTGTTG	3360
GTGGTTCAAC	TCGTATCCCT	GCCGTTGTTG	AAGCTGTTAA	AGCTGAAACT	GGTAAAGAAC	3420
CAAACAAATC	AGTAAACCCT	GATGAAGTAG	TTGCTATGGG	TGCGGCTATC	CAAGGTGGTG	3480
TGATTACTGG	TGATGTCAAG	GACGTTGTCC	TTCTTGATGT	AACGCCATTG	TCACTTGGTA	3540
TCGAAACAAT	GGGTGGAGTA	TTTACAAAAC	TTATCGATCG	CAACACTACA	ATCCCAACAT	3600
CTAAATCACA	AGTCTTCTCA	ACAGCAGCAG	ACAACCAACC	AGCCGTTGAT	ATCCACGTTC	3660
TTCAAGGTGA	ACGCCCAATG	GCAGCAGATA	ACAAGACTCT	TGGACGCTTC	CAATTGACTG	3720
ATATCCCAGC	TGCACCTCGT	GGAATTCCTC	AAATCGAAGT	AACATTTGAC	ATCGACAAGA	3780
ACGGTATCGT	GTCTGTTAAG	GCCAAAGACC	TTGGAACTCA	AAAAGAACAA	ACTATTGTCA ·	3840
TCCAATCGAA	CTCAGGTTTG	ACTGACGAAG	AAATCGACCG	CATGATGAAA	GATGCAGAAG	3900
CAAACGCTGA	AGCCGATAAG	AAACGTAAAG	AAGAAGTAGA	CCTTCGTAAT	GAAGTAGACC	3960

PCT/US97/19588 WO 98/18931

853

AAGCAATCTT	TGCGACTGAA	AAGACAATCA	AGGAAACTGA	AGGTAAAGGC	TTCGACGCAG	402
AACGTGACGC	TGCCCAAGCT	GCCCTTGATG	ACCTTAAGAA	AGCTCAAGAA	GACAACAACT	4080
TGGACGACAT	GAAAACAAAA	CTTGAAGCAT	TGAACGAAAA	AGCTCAAGGA	CTTGCTGTTA	4140
AACTCTACGA	ACAAGCCGCA	GCAGCGCAAC	AAGCTCAAGA	AGGAGCAGAA	GGCGCACAAG	4200
CAACAGGGAA	CGCAGGCGAT	GACGTCGTAG	ACGGAGAGTT	TACGGAAAAG	TAAGATGAGT	4260
GTATTGGATG	AAGAGTATCT	AAAAAATACA	CGAAAAGTTT	ATAATGATTT	TTGTAATCAA	4320
GCTGATAACT	ATAGAACATC	AAAAGATTTT	ATTGATAATA	TTCCAATAGA	ATATTTAGCT	4380
AGATATAGAG	AATTATATTA	GCTGAACATG	ATAGTTGTAT	CAAAAATGAT	GAAGCGGTAA	4440
GGAATTTTGT	TACCTCAGTA	TTGTTGTCTG	CATTTGTATC	GGCGATGGTA	CCGTATCTGA	4500
CGAACGTTCA	GCTTATAT					4518

### (2) INFORMATION FOR SEQ ID NO: 122:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 8145 base pairs

  - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:

			854			
AATTGCAGAA	GCGCAATCTA	CTGGGATTTG	TCTTCCAAGA	TTTTCAACTA	TTTCCTCATC	840
TATCAGTTCT	GGAAAATTTG	ACTTTATCGC	CTGTGAAGAC	CATGGGAATG	AAGCAGGAAG	900
AGGCTGAGAA	GAAGGCGAGT	GGACTCTTGG	AACAGTTAGG	ACTAGGAGGA	CACGCAGAGG	960
CCTATCCTTT	CTCACTATCT	GGTGGGCAAA	AGCAGCGGGT	GGCTTTGGCG	CGTGCTATGA	1020
TGATTGACCC	AGAAATCATT	GGCTACGATG	AACCAACTTC	TGCCCTGGAT	CCAGAATTAC	1080
GTTTGGAAGT	GGAGAAGCTA	ATCTTGCAAA	ATAGGGAACT	TGGGATGACC	CAGATTGTGG	1140
TTACCCATGA	TTTGCAGTTT	GCTGAAAATA	TCGCAGATGT	ATTATTGAAA	GTAGAACCTA	1200
AATAGGAGGA	AAAATGGATG	AAAAAATGGA	TGCTTGTATT	AGTCAGTCTG	ATGACTGCTT	1260
TGTTCTTAGT	AGCTTGTGGG	AAAAATTCTA	GCGAAACTAG	TGGAGATAAT	TGGTCAAAGT	1320
ACCAGTCTAA	CAAGTCTATT	ACTATTGGAT	TTGATAGTAC	TTTTGTTCCA	ATGGGATTTG	1380
CTCAGAAAGA	TGGTTCTTAT	GCAGGATTTG	ATATTGATTT	AGCTACAGCT	GTTTTTGAAA	1440
AATACGGAAT	CACGGTAAAT	TGGCAACCGA	TTGATTGGGA	TTTGAAAGAA	GCTGAATTGA	1500
CAAAAGGAAC	GATTGATCTG	ATTTGGAATG	GCTATTCCGC	TACAGACGAA	CGCCGTGAAA	1560
AGGTGGCTTT	CAGTAACTCA	TATATGAAGA	ATGAGCAGGT	ATTGGTTACG	AAGAAATCAT	1620
CTGGTATCAC	GACTGCAAAG	GATATGACTG	GAAAGACATT	AGGAGCTCAA	GCTGGTTCAT	1680
CTGGTTATGC	GGACTTTGAA	GCAAATCCAG	AAATTTTGAA	GAATATTGTC	GCTAATAAGG	1740
AAGCGAATCA	ATACCAAACC	TTTAATGAAG	CCTTGATTGA	TTTGAAAAAC	GATCGAATTG	1800
ATGGTCTATT	GATTGACCGT	GTCTATGCAA	ACTATTATTT	AGAAGCAGAA	GGTGTTTTAA	1860
ACGATTATAA	TGTCTTTACA	GTTGGACTAG	AAACAGAAGC	TTTTGCGGTT	GGAGCCCGTA	1920
AGGAAGATAC	AAACTTGGTT	AAGAAGATAA	ATGAAGCTTT	TTCTAGTCTT	TACAAGGACG	1980
GCAAGTTCCA	AGAAATCAGC	CAAAAATGGT	TTGGAGAAGA	TGTAGCAACC	AAAGAAGTAA	2040
AAGAAGGACA	GTAAGATAAA	ATAGTGGCTG	AAACTGCGTT	TTGATTAGCA	AAACGTAGTT	2100
TTTTTTGTAA	TCTAGGAAAA	CGATAATAGC	GATTGAATAT	GGATAATTGA	ATATGGAATA	2160
CCCACTGTG	ATTTCTAAAA	CATTGTTAAA	AATTGATTTG	ACTTCCAAAA	TTAAAATGTT	2220
CTGTAATGAA	ATACTGATGT	AACTGTTTTA	GGAACAATAA	AACGCATAAT	ATCAAGGTTT	2280
TTGCACCTTA	CATTATGCGT	TTTTGTGATT	TTAAGACTTG	TTAGCTGATT	TTTTACAATC	2340
CTGCGAAATC	TTTGATTTCT	TGTGCTGACA	TTGAAGAGTC	GCAACGGACG	TTGATTTGTC	2400
CATCTGTAAT	ATGAACAAAA	CCTGGTACAG	TTGGGATTCC	ATAGCGTGAG	CGGAATGCTT	2460
GCAAATCATT	GAGTTGGCTT	GGTTCTTCAC	TATTGATGAA	GTAAATGTGA	GCTTTGGTTT	2520
CAGCTACGAC	ACCTGACAAT	GTACCTGCAA	ATTTACGGCA	GTAAGGGCAA	GTTTTGCGAC	2580

CGATA	AAGAA	GGTTGCAGTT	TCTTTTTTAT	CAAGAGCTTC	TTGCGCACGC	ACAACTGTAG	2640
TGACT	TCAAG	GTCTTTGATG	ТТАТСТАААА	ATTGTTCCAT	GAGATTACCT	CGCTTTCATT	2700
GATAA	GTCTA	GTATGCCATA	AAGTTTCTAA	AATTGCTTAG	ATTTGATACO	AAAAAAGATG	2760
AGGTT	GGTTG	GTCTCATCTT	TTATAGGTCT	TTATTTTACA	AATGCATTGA	TTTCTGCTTC	2820
GATGT	TAGCA	ATCTTAGCTT	GTGATTCTTC	GTTGGTTTCC	CCTACAACTG	CAATGTAGAA	2880
CTTGA	TTTTT	GGTTCTGTAC	CTGAAGGGCG	AACGGCAATC	CATGAACCGT	CAGCAAGTGT	2940
GTATT	TCAAC	ACATCACTTG	GAGGAGTTGT	CAAGTTTGTA	ACAGTACCGT	CAGCAACAGT	3000
AGCAG	TTTGT	GCCTTGAAGT	CTTCTACGAC	AGTGATAGCT	GTTGCGTTCC	ATTCTGTTGG	3060
AGCAT"	TGTTG	CGGAATTTAG	CCATAATCGC	TTTGATTTGT	TCAGCACCAT	CGACACCTGA	3120
AAGAG'	TAACA	GAGATTGTTT	TTTCTGCGTA	GTAGCCATAT	TCTTTATAGA	TTTCTTCGAT	3180
ACCGT	CAGCA	AGTGTCAAAC	CACGAGAACG	GTAGTAGGCA	GCAAGTTCAG	CAACTACAAG	3240
AACGG	CTTGG	ATGGCATCTT	TATCACGTAC	AAATGGTTTA	ATCAAGTAAC	CGAAGCTTTC	3300
TTCAA	ATCCC	ATCATGTAAG	TGTGGTTGTG	TTTTTCTTCG	AATTCTTGGA	TTTTTTCAGC	3360
GATAA	ATTTG	AAACCTGTCA	AGACGTTGAA	CATAGTTGCG	CCGTAGCTTT	CAGCAATCTT	3420
CGTTA	CCAAG	TCAGTTGAAA	CGATAGATTT	GCAGAGAGCG	GCATTTTCAG	GAAGAGTTCC	3480
AGCGT1	TTTG	TGAGCTTCCA	AGATGTATTT	AGCCATGATA	GCACCGATTT	GGTTACCTGA	3540
AAGGTT	rgagg	TAGCTACCAT	CTTTTTGAAG	AACTTCAACA	CCAACACGGT	CAGCGTCTGG	3600
GTCAGT	TGCG	ACAAGAACAT	CTGCACCAAC	TTGACGACCA	AGTTCTTCAG	CAAGGGCAAA	3660
GGCTGC	TTGG	CTTTCTGGGT	TTGGAGATGT	TACAGTTGAA	AAGTCTGGGT	CAGCAGTTGC	3720
TTGCGC	TTCA	ACAACTTGAA	CAGAGTCAAA	TCCTGCTTGG	GCAAGAGCAC	GACGAGCCAA	3780
CATTTC	CACCA	GTACCATGAA	GTGGTGTGTA	GACAATCTTC	ATGTCTTTAC	CAAATTCTTC	3840
aatcaa	GCT	GGGTTGATGT	TTATGTCCTT	AACCTCTTTA	AGGTATTCTA	TGTCAACAGC	3900
TTCGCC	GATA	ACTTCAATCA	AGCCAGAAGC	TTTTTCAGTT	TCCACATCAG	CAACTTCAAC	3960
TGCAAA	TGGG 1	TTTCGATTG	CACGGATATA	AGTAGTCAAA	GCGTCCGCAT	CGTGTGGAGG	4020
CATTTG	TCCA (	CCGTCTTCAC	CGTAAACCTT	GTAACCGTTA	AATGGAGCAG	GGTTGTGGCT	4080
GCTGT	GACC 2	ATGATACCTG	CGAAACAGTT	GAGATGACGA	ACTGCAAATG	ATAGTTCTGG	4140
AGTCGG	ACGA A	AGGCTTTCAA .	ATACGTAAGA	TTTGATGCCG	TGTTTAGCAA	GAACTGCCGC	4200
AGATTC.	AAAG	GCAAACTCAG	GTGAGAAGTG	ACGGCTATCG	TAGGCAATTG	CTACACCGCG	4260
TCTTT	CTCG 1	TTTCCACCTT '	TTGACTCAAT	CAAACGAGCC .	AATCCTTCAG	TAGCTTGGCG	4320

AACAACGTAG	ATGTTGATAC	GGTTTGTACC	. 9CC9CC79CC	AACCCACCCA	TACCTGCAGT	4380
					TATTTTCCAA	4440
					AATTTTCTTG	4500
GTAAGACATT	CAAATTCTCC	TTTATTTTA	. AAACATTTAA	TCAGTTTAAT	TATATCATTT	4560
TTTTTAGTTT	TAGTAAAACC	TTATCTGCTT	CGAACATCTC	TTCAAACCAG	GTCAGATTGA	4620
ATTTTGGGGT	TATATGATGT	TGAGGCTAGG	AAAAATTCAA	TTTCAGTAAA	AAAAGTAAGT	4680
CTTCTCATAA	CAAAACATTG	ATATAGTTAC	TTAGTTTTAA	ACAAGCATAT	TATAATAAAG	4740
CTATGGCATA	TAGTACTGAT	TTTAAACAGC	GAGCATTAGA	TTACATCAAA	GAGGGCACA	4800
GCCATGTCGA	GGCAGCCAAG	TTTTTTGGTG	TTGGCGTCAG	AACTCTCTTC	ACGTGGGAAA	4860
AGAAAGACGT	GAACAAGAAC	ACATAGAGAG	GAAAAAGCGA	GTCGTCAAAA	ACCGAAAGAT	4920
TCCTTTAGAG	GAATTGAAAG	CCTTTGTAGA	GGCTCATCCA	GATGCTTTTT	TACGGGAAAT	4980
TGCGGCACAT	TTTGATTGTG	CTGTTCCTTC	AGTATGGGCA	GCTTTAAAGC	AGATTAAGGT	5040
САСТТТАААА	AAAGATGACG	AGCTTTAAGG	AACAAGACCC	AGAAAAGTAG	CCTTATTTCT	5100
TAAGAATTTT	AATAGTTTAA	AGCACCTAGC	ACCTGTTTAT	ATTGATGAAA	CAGGAATCGA	5160
CCGCTATCTC	TATCGTCCTT	ATGCAGGGGC	TCCTAGAGGG	GAGAAAGTCT	ATGAAAAGAT	5220
TAGCGGACGT	CGTTTTGAGC	GAACTTCAAT	TGTTGCAGGA	CAAGTAGACG	GAGAGTTTAT	5280
AGCTCCCATG	ATTTACAAGA	AAAGCATGAC	AAGCGATTTC	TTTGTGGAGT	GGTTCAAAAC	5340
GCAACTCCTA	CCTGCTTTGA	AGACACCTCA	TGTTATTGTC	ATGGGCAATG	CTGGTTTTCA	5400
TCCCAAGAAC	ATTTTGGATG	AACTCTGCAT	CCAAGATAAA	CACTTTTTCT	TACCTCTACC	5460
ACCTTATTCA	CCGGATTTGA	ATCCTATTGA	GCAAGCTTGG	GCTATCTTGA	AAAAGAAAGT	5520
GACGGATGTA	TTAAGGGAAG	TTCCAACTAT	TTTTGAATGT	TTGGAATGCT	TTTTTAAAAC	5580
TAGATGACTA	TAACGGTTCT	AAAGGAACCT	ATCGAGTAGT	CATTAAAACT	AAGGATACTG	5640
CTGGTTAAGA	GAAGACGGTA	TACAATCAAA	CCATTCACCG	TGTAGCCGAA	ATCGTTCAGA	5700
ATGAAGACTT	GTATCAGAAT	GAAGACTTGT	ATAAGAAAGG	TTTGAATGTT	GAACTTGCGC	5760
ACCAACAAAT	TAAGGGATTT	TTTGAAGCAG	AGTTTAAAAA	TCGTATTAAT	GGAGTTCTTA	5820
АТАСТААААТ	AAAAAATAGT	ACATTAAATC	GTGTAAATAA	AAAAACTATA	CACCAGAGCA	5880
ACAAAACTC	CATGATCAAT	TTGAAGCAGA	AGCAACGGAA	GATGCTAAAA	AACAAGGCGA	5940
•					AAAGTGGTTC	6000
					ACTTGAATAA	6060
		AAGATACTCC				6120
					c.cnocroc	0120

TTCTAAAGCT	AAAGATGATG	ACAGAGTATA	TAAACTACTG	AAGACTCTTA	TACCAGGAGA	6180
AAATTACCTA	TCATGTTAAG	GATAATCAGC	TAGAAGTAGA	AACAGATAAA	TACACATATA	6240
CTGCCGCTAG	AAATGGTAGT	AAGGAAGTTG	GTATTCAAGA	GTCAGATATA	GCAGCAACTC	6300
TAAGTGCCGA	TGAATATAAT	TCTAATCGCC	AAACTTTTGA	GAGAGAATAC	AAATACAAAA	6360
GCAAATGCCC	TTAATAATGG	TTGGGCTAGA	TCTGGTTCTG	AAGAGTTCAA	AAAGTTCTCC	6420
CACTTTGTAG	GGGTAGACAA	AGGGATTGTG	CGAACGAATG	TACTGACTGG	тааааааста	6480
TCTGATAAGA	TTAGGAAAGA	AGTGGGCTCT	GGAGATAGCA	AACTAGGAAA	AGGCGGCTAT	6540
TTCTCTACTG	GGGATGTTCT	ATTAGGAAAA	GATGTTGTTT	CTTATACCGT	ACAAGTATTT	6600
TCAGAGAATA	ATGAAAGAGT	AGGAGTAAAC	ACTCAAAGTC	ACCGTGTTCA	GTATAATCTC	6660
CCAATTCTAG	CTGACTTTTC	AGTCATCCAA	GATACTGTGG	AACCATCACG	AACCGTTGTT	6720
GAAAAAATCA	TTCCAAAACT	AAATATTCCC	GAAGAAGAGA	AAGGGAAAAT	AACCGAAGAA	6780
ATCAAGAAAA	AGAAAAAAC	CTCAGAATTG	GCAGAACTAA	TCTCAGAAAA	TGTGAAAGTT	6840
CGCTATGTTG	ATGAACAAGG	GCGTTTGCTA	TCATTGAAAA	ATGATACTGG	AATTGGAGAA	6900
AAAGAAAGTG	ACGGAACCTA	CATTACCAAT	AAAAAACAAC	TGATTGGTAC	CAGCTATAAT	6960
GTCACAGATA	AAAAACTCAG	TAGCATGACT	ACTACTGACG	GAAAATATTA	TACTTTTAAA	7020
GAAGCAGATA	CAAATTCTGC	AAGTTTAACT	GGGAATATTG	TAAGCGAAGG	TAGAACAGTG	7080
ACCTTAGTTT	ATAGAGAAAG	CGAAGCGCCA	ACCACTGCTA	CAGTAACAGC	CAATTACTAT	7140
AAAGAAGGTA	GGCAAGAGAA	GTTGGTAGAG	TCTGTTATAA	AAGCTGATTT	AGCGATAGGT	7200
TCTGAGTATA	CCACAGAATC	AAAAACTATT	GAAGGGAAAA	CAACAACTGA	GGACAAAGAA	7260
GACCGAGTTA	TCACAAGGAA	AACAACATAC	ACCTTGGTAG	CAACTCCTGA	AAATGCGTAC	7320
CAGAAGACGG	TGCAACAGTT	GACTATTACT	ACCGTGAGAA	TGTTGAGGAA	ACAGTGGTTC	7380
CCAAAACAGC	AACCTCTACT	GAGACGAAGA	CTATAACGCG	TATCATTCAT	TACGTTGATA	7440
aagt <b>ta</b> cgaa	CCAAAATGTA	AAAGAAGATG	TTGTTCAACC	TGTAACCTTA	AGCCGTACAA	7500
AAACTGAGAA	CAAGGTCACG	GGAGTTGTAA	CCTACGGTGA	ATGGACAACA	GGAAACTGGG	7560
ACGAGGTTAT	ATCTGGTAAG	ATTGACAAGT	ACAAAGATCC	AGATATTCCA	ACAGTTGAA1	7620
CACAAGAAGT	TACGTCAGAC	TCTAGTGATA	AAGAAATAAC	GGTAAGGTAT	GACCGTTTAT	7680
CAACACCAGA	AAAACCAATC	CCACAACCAA	ATCCAGAGCA	TCCAAGTGTT	CCGACACCAA	7740
ACCCAGAACT	ACCAAATCAA	GAGACTCCAA	CACCAGATAA	ACCAACTCCA	GAACCAGGTA	7800
CTCCAAAAAC	TGAAACTCCA	GTGAATCCAG	ACCCAGAAGT	TCCGACTTAT	GAGACAGGTA	7860

NCACACACCA	ATTCCC	ACAGGTACAG	858	TACCTTGGCT	AGTGCTGGTA	7920
-						7980
				GAAAAAAGAA		
AATAGATTTT	AGAATCTAGG	AACCAGGAAA	AGCTCACAGA	TGTGGGCTTT	TTTCCTGGTT	8040
TTGAGAACGA	GGTCTTTCGT	AAAGAATAAA	AACGCTTACA	AGTCTGTTGA	ACTGGGAAAC	8100
TATGAATCCT	ATTTTTTAA	AAATATTTCC	AGAAATCAGT	TGCGG		8145

#### (2) INFORMATION FOR SEQ ID NO: 123:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8697 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:

CGGTACCGGG AACGATACTT AGTCTAATTT TGCACCTTTT CCATGTATGG TAAAGGTTTT 60 TCTTTTTTA AAAAGGAAAA CGAGAAGAGG AGGTTCTTAT GAAAGCAAGC ATTGCCTTGC 120 AAGTTTTACC CCTAGTACAG GGGATTGATC GGATAGCTGT TATTGATCAG GTCATTGCTT 180 ATCTGCAWAC TCAAGAAGTG ACGATGGTAG TGACACCATT TGAAACGGTC TTGGAAGGGG 240 300 AGTTTGATGA GCTTATGCGC ATTCTAAAAG AAGCGCTGGA AGTGGCAGGG CAGGAGGCAG ACAATGTCTT TGCCAATGTC AAAATAAATG TAGGAGAGAT TTTAAGTATT GATGAGAAAC 360 TTGAGAAGTA TACTGAGACG ACACATTAGT CTATTGGGCT TTCTCGGAGT ATTGTCAATC 420 480 TGGCAGTTAG CAGGTTTTCT TAAACTTCTC CCCAAGTTTA TCCTGCCGAC ACCTCTTGAA ATTCTCCAGC CCTTTGTTCG TGACAGAGAA TTTCTCTGGC ACCATAGCTG GGCGACCTTG 540 600 AGAGTGGCTT TACTGGGGCT GATTTTGGGA GTTTTGATTG CCTGTCTTAT GGCTGTGCTC ATGGATAGTT TGACTTGGCT CAATGACCTG ATTTACCCTA TGATGGTGGT CATTCAGACC 660 ATTCCGACCA TTGCCATAGC TCCTATCCTG GTCTTGTGGC TAGGTTATGG GATTTTGCCC 720 AAGATTGTCT TGATTATCTT AACGACAACC TTTCCCATCA TCGTTAGTAT TTTGGACGGT 780 TTTAGGCATT GCGACAAGGA TATGCTGACC TTGTTTAGTC TGATGCGGGC CAAGCCTTGG **B40** CARATCCTGT GGCATTTTAA AATCCCAGTT AGCCTGCCTT ACTTTTATGC AGGTCTGAGG 900 GTCAGTGTCT CCTACGCCTT TATCACAACT GTGGTATCTG AGTGGTTGGG AGGTTTTGAA 960 GGTCTTGGTG TTTATATGAT TCAGTCTAAA AAACTGTTTC AGTATGATAC CATGTTTGCC 1020 ATTATTATTC TGGTGTCGAT TATCAGTCTT TTGGGTATGA AGCTGGTCGA TATCAGTGAA 1080 AAATATGTGA TTAAATGGAA ACGTTCGTAG AATTAGAATG TTTCTGAAAA AGAAAAGAGG 1140

Ξ.

AAATCAAAA1	r gaagaaaaca	TGGAAAGTG1	TTTTAACGCT	TGTAACAGC1	CTTGTAGCTG	1200
TTGTGCTTGT	GGCCTGTGGT	CAAGGAACTC	G CTTCTAAAGA	CAACAAAGAG	GCAGAACTTA	1260
AGAAGGTTGA	CTTTATCCTA	GACTGGACAC	CAAATACCAA	CCACACAGGG	CTTTATGTTG	1320
CCAAGGAAAA	AGGTTATTTC	AAAGAAGCTG	GAGTGGATGT	TGATTTGAAA	TTGCCACCAG	1380
AAGAAAGTTO	TTCTGACTTG	GTTATCAACG	GAAAGGCACC	ATTTGCAGTG	TATTTCCAAG	1440
ACTACATGGC	TAAGAAATTG	GAAAAAGGAG	CAGGAATCAC	TGCCGTTGCA	GCTATTGTTG	1500
AACACAATAC	ATCAGGAATC	ATCTCTCGTA	AATCTGATAA	TGTAAGCAGT	CCAAAAGACT	1560
TGGTTGGTAA	GAAATATGGG	ACATGGAATG	ACCCAACTGA	ACTTGCTATG	TTGAAAACCT	1620
TGGTAGAATC	TCAAGGTGGA	GACTTTGAGA	AGGTTGAAAA	AGTACCAAAT	AACGACTCAA	1680
ACTCAATCAC	ACCGATTGCC	AATGGCGTCT	TTGATACTGC	TTGGATTTAC	TACGGTTGGG	1740
ATGGTATCCT	TGCTAAATCT	CAAGGTGTAG	ATGCTAACTT	CATGTACTTG	AAAGACTATG	1800
TCAAGGAGTT	TGACTACTAT	TCACCAGTTA	TCATCGCAAA	CAACGACTAT	CTGAAAGATA	1860
ACAAAGAAGA	AGCTCGCAAA	GTCATCCAAG	CCATCAAAAA	AGGCTACCAA	TATGCCATGG	1920
AACATCCAGA	AGAAGCTGCA	GATATTCTCA	TCAAGAATGC	ACCTGAACTC	AAGGAAAAAC	1980
GTGACTTTGT	CATCGAATCT	CAAAAATACT	TGTCAAAAGA	ATACGCAAGC	GACAAGGAAA	2040
AATGGGGTCA	ATTTGACGCA	GCTCGCTGGA	ATGCTTTCTA	CAAATGGGAT	AAAGAAAATG	2100
GTATCCTTAA	AGAAGACTTG	ACAGACAAAG	GCTTCACCAA	CGAATTTGTG	AAATAATGAC	2160
AGAAATTAGA	CTAGAGCACG	TCAGTTATGC	CTATGGTCAG	GAGAGGATTT	TAGAGGATAT	2220
CAACCTACAG	GTGACTTCAG	GCGAAGTGGT	TTCCATCCTA	GGCCCAAGTG	GTGTTGGAAA	2280
GACCACCCTC	TTTAATCTAA	TCGCTGGGAT	TTTAGAAGTT	CAGTCAGGGA	GAATTGTCCT	2340
TGATGGTGAA	GAAAATCCCA	AGGGGCGCGT	GAGTTATATG	TTGCAAAAGG	ATCTGCTCTT	2400
GGAGCACAAG	ACGGTGCTTG	GAAATATCAT	TCTGCCCCTC	TTGATTCAAA	AGGTGGATAA	2460
GGCAGAAGCT	ATTTCCCGAG	CGGATAAAAT	TCTTGCGACC	TTCCAGCTGA	CAGCTGTAAG	2520
AGACAAGTAT	CCTCATGAAC	TTAGCGGTGG	GATGCGCCAG	CGTGTAGCCT	TACTCCGGAC	2580
CTACCTTTTT	GGGCACAAGC	TCTTTCTCTT	AGATGAGGCC	TTTAGCGCCT	TGGATGAGAT	2640
GACAAAGATG	GAACTCCACG	CTTGGTATCT	TGAGATTCAC	AAGCAGTTGC	AGCTAACAAC	2700
CCTGATCATC	ACGCATAGTA	TTGAGGAGGC	CCTCAATCTC	AGCGACCGTA	TCTATATCTT	2760
GAAAAATCGC	CCTGGGCAGA	TTGTTTCAGA	AATTAAACTA	GATTGGTCTG	AAGATGAGGA	2820
CAAGGAAGTC	CAAAAGATTG	CCTACAAACG	TCAAATTTTG	GCGGAATTAG	GCTTAGATAA	2880

			860			
GTAGAAAAAT	AGGGAGTTGG	TGAAGATTAT		CGCCCTTTTT	CTTTTAAAAA	2940
TGAGAAAATT	TCGGTATAAT	AGTCAAACAA	GGTCAAGGTT	TAAAGAGAGA	GGTGGGTTTG	3000
TTATGAGATT	TAAAAATACA	TCGGAŤCATA	TTGAGGCCTA	CATCAAGGCG	ATTTTAGATC	3060
AATCTGGTAT	CGTGGAGTTG	CAACGGAGTC	AGTTGGCAGA	TACCTTTCAG	GTTGTTCCTA	3120
GTCAGATTAA	CTACGTGATC	AAGACACGCT	TTACGGAAAG	TAGAGGCTAC	TTGGTTGAAA	3180
GTAAGCGTGG	TGGCGGAGGC	TACATTCGTA	TAGGACGGAT	TGAGTTTTCT	AGTCATCATG	3240
AAATGCTCCG	GGAGCTGCTT	TACTCGATTG	GTGAGCGAGT	CAGTCAAGAA	ATTTATGAGG	3300
ATATTCTCCA	GCTTTTGGTT	GAGCAGGAAT	TGATGACCAA	GCAGGAGATG	AATTTGCTAG	3360
AATCAGTAGC	TTTGGATCGC	GTTTTAGGAG	AAGAAGCTCC	AGTTGTTCGA	GCAAACATGC	3420
TACGTCAGAT	CATACAAGAG	GTAGATAGAA	AAGGGAAGTA	AGATGAACTA	TTCAAAAGCA	3480
TTGAATGAAT	GTATCGAAAG	TGCCTACATG	GTTGCTGGAC	ATTTTGGAGC	TCGTTATCTA	3540
GAGTCGTGGC	ACTTGTTGAT	TGCCATGTCT	AATCACAGTT	ATAGTGTAGC	AGGGGCAACT	3600
TTAAATGATT	ATCCGTATGA	GATGGACCGT	TTAGAAGAGG	TGGCTTTGGA	ACTGACTGAA	3660
ACGGACTATA	GCCAGGATGA	AACCTTTACG	GAATTGCCGT	TCTCCCGTCG	TTTGCAGGTT	3720
CTTTTTGATG	AAGCAGAGTA	TGTAGCGTCA	GTGGTCCATG	CTAAGGTACT	AGGGACAGAG	3780
CACGTCCTCT	ATGCGATTTT	GCATGATAGC	AATGCCTTGG	CGACTCGTAT	CTTGGAGAGG	3840
GCTGGTTTTT	CTTATGAAGA	CAAGAAAGAT	CAGGTCAAGA	TTGCTGCTCT	TCGTCGAAAT	3900
TTAGAAGAAC	GGGCAGGCTG	GACTCGTGAA	GATCTCAAGG	CTTTACGCCA	ACGCCATCGT	3960
ACAGTAGCTG	ACAAGCAAAA	TTCTATGGCC	AATATGATGG	GCATGCCGCA	GACTCCTAGT	4020
GGTGGTCTCG	AGGATTATAC	GCATGATTTG	ACAGAGCAAG	CGCGTTCTGG	CAAGTTAGAA	4080
CCAGTCATCG	GTCGGGACAA	GGAAATCTCA	CGTATGATTC	AAATCTTGAG	CCGGAAGACT	4140
AAGAACAACC	CTGTCTTGGT	TGGGGATGCT	GGTGTCGGGA	AAACAGCTCT	GGCGCTTGGT	4200
CTTGCCCAGC	GTATTGCTAG	TGGTGACGTG	CCTGCGGAAA	TGGCTAAGAT	GCGCGTGTTA	4260
GAACTTGATT	TGATGAATGT	CGTTGCAGGG	ACACGCTTCC	GTGGTGACTT	TGAAGAACGC	4320
ATGAATAATA	TCATCAAGGA	TATTGAAGAA	GATGGCCAAG	TCATCCTCTT	TATCGATGAA	4380
CTCCACACCA	TCATGGGTTC	TGGTAGCGGG	ATTGATTCGA	CTCTGGATGC	GGCCAATATC	4440
TTGAAACCAG	CCTTGGCGCG	TGGAACTTTG	AGAACGGTTG	GTGCCACTAC	TCAGGAAGAA	4500
TATCAAAAAC	ATATCGAAAA	AGATGCGGCA	. CTTTCTCGTC	GTTTCGCTAA	AGTGACGATT	4560
GAAGAACCAA	GTGTGGCAGA	TAGTATGACT	ATTTACAAG	GTTTGAAGGC	GACTTATGAG	4620
AAACATCACC	GTGTACAAAT	CACAGATGAA	GCGGTTGAAA	CAGCGGTTAA	GATGGCTCAT	4680

CGTTATTTA	CCAGTCGTCA	CTTGCCAGA	TCTGCTATCC	ATCTCTTGG#	TGAGGCGGCA	474
GCAACAGTGC	AAAATAAGGG	AAAGCATGT	A AAAGCAGACG	ATTCAGATTT	GAGTCCAGCT	480
GACAAGGCCC	TGATGGATGG	CAAGTGGAA	A CAGGCAGCCC	AGCTAATCGC	: AAAAGAAGAG	486
GAAGTACCTG	TCTACAAAGA	CTTGGTGAC	A GAGTCTGATA	TTTTGACCAC	CTTGAGTCGC	492
TTGTCAGGAA	TCCCAGTTCA	AAAACTGACT	CAAACGGATG	CTAAGAAGTA	TTTAAATCTT	498
GAAGCAGAAC	TCCATAAACG	GGTTATCGGT	CAAGATCAAG	CTGTTTCAAG	CATTAGCCGT	5040
GCCATTCGCC	GCAACCAGTC	AGGGATTCGC	AGTCATAAGC	GTCCGATTGG	TTCCTTTATG	5100
TTCCTAGGGC	CTACAGGTGT	CGGGAAAACT	GAATTAGCCA	AGGCTCTGGC	AGAAGTTCTT	5160
TTTGACGACG	AATCAGCCCT	TATCCGCTTT	GATATGAGTG	AGTATATGGA	GAAATTTGCA	5220
GCTAGTCGTC	TCAACGGAGC	TCCTCCAGGC	TATGTAGGAT	ATGAAGAAGG	TGGGGAGTTG	5280
ACAGAGAAGG	TTCGCAATAA	ACCCTATTCC	GTTCTCCTCT	TTGATGAGGT	AGAGAAGGCC	5340
CACCCAGATA	TCTTTAATGT	TCTCTTGCAG	GTTCTGGATG	ACGGTGTCTT	GACAGATAGC	5400
AAGGGACGCA	AGGTCGATTT	TTCAAATACC	ATTATCATTA	TGACATCGAA	TCTAGGTGCG	5460
ACTGCCCTTC	GTGATGATAA	GACTGTTGGT	TTTGGGGCTA	AGGATATTCG	TTTTGACCAG	5520
Gaaaatatgg	AAAAACGCAT	GTTTGAAGAA	CTGAAAAAAG	CTTATAGACC	GGAATTCATC	5580
AACCGTATTG	ATGAGAAGGT	GGTCTTCCAT	AGCCTATCTA	GTGATCATAT	GCAGGAAGTG	5640
GTGAAGATTA	TGGTCAAGCC	TTTAGTGGCA	AGTTTGACTG	AAAAAGGCAT	TGACTTGAAA	5700
TTACAAGCTT	CAGCTCTGAA	ATTGTTAGCA	AATCAAGGAT	ATGACCCAGA	GATGGGAGCT	5760
CGCCCACTTC	GCAGAACCCT	GCAAACAGAA	GTGGAGGACA	AGTTGGCAGA	ACTTCTTCTC	5820
AAGGGAGATT	TAGTGGCAGG	CAGCACACTT	AAGATTGGTG	TCAAAGCAGG	CCAGTTAAAA	5880
TTTGATATTG	CATAAAAGAA	TAAAAGTATC	AGCATCTGAC	CATAAGTCAC	AGTGGAGTGA	5940
AATTCAATGA	AAATCAAAGA	GCAAACTAGG	CAGCTAGCCG	CAGGTTGCTC	AAAACACTGG	6000
TTTGAGGTTG	CAGATAGAGC	TGACGTGGTT	TGAAGAGATT	TTCGAAGAGT	ATGAAACTAA	6060
AACCTATAGC	TTCTAAACGA	TCCGTGGTTT	TCATCATTCA	ACACAAAATT	CATATGTTTA	6120
PTACCCTCCG	TCGTATTTGT	CTTAGAGCGT	GTGTAGTAGA	AAAAGAGCAG	TCTTATCTGA	6180
ATTTTTTATT	CTTTCAAAAG	AGACCTGTTT	CTTTTTTGCA	TGTCAAATCC	GTTCTAGCTG	6240
STATTTGAAA	AATCAAACTA	ATATTCAATG	AAAATCAAAG	AACAAACTAG	GAAGCTAGCC	6300
CAGGTTGCT	CAAAACACTG	TTTTGAGGTT	GTAGATAGAG	CTGACGTGGT	TTGAAGAGAT	6360
TTTCGAAGAG	TATAAGCTGC	AAGATGAATG	ATTTTCTTGT	ATTGACGTTG	TTGTTGACAA	6420

			862			
AAAGTAGCGG	ATAAATGAAA	TCCATTCCAT	TATCATAGAT	GATAGGCTGG	TAGGAAATTT	6480
TCAAATAGCA	TACAGGAAAT	AGATGTATGG	AGTTCTGGTA	GTAGAAAGGG	AGAGAGATGA	6540
ACATTTTAGT	TGCAGATGAC	GAGGAAATGA	TTAGAGAAGG	AATTGCAGCA	TTTCTGACAG	6600
AAGAGGGTTA	TCATGTCATT	ATGGCTAAGG	ATGGACAAGA	GGTCTTGGAA	AAATTTCAAG	6660
ATCTCCCTAT	CCATCTCATG	GTACTGGATT	TAATGATGCC	TAGGAAGAGT	GGTTTTGAAG	6720
TGTTAAAAGA	AATCAATCAA	AAGCACGATA	TTCCTGTCAT	CGTCTTGAGT	GCTCTGGGAG	6780
ATGAAACTAC	TCAGTCACAG	GTATTTGATC	TCTATGCTGA	TGATCATGTG	ACAAAACCTT	6840
TTTCTTTGGT	ACTGCTTGTC	AAGCGTATTA	AGGCGCTTAT	CAGACGTTAC	TACGTCATAG	6900
AGGATCTTTG	GCGATATCAG	GATGTAACAG	TGGATTTTAC	CTCTTACAAA	GCACATTATA	6960
AAAATGAAGA	AATTGATCTC	AAACCAAAGG	AATTACTGGT	ACTAAAGTGT	TTGATTCAGC	7020
ATAAAAATCA	AGTTTTAAGT	AGAGAGCAGA	TATTGGAAGA	AATTTCAAAA	GATGTAGCTG	7080
ATTTACCTTG	TGATAGGGTC	GTTGATGTCT	ATATTCGTAC	TCTTCGCAAA	AAATTAGCTT	7140
TAGATTGTAT	CGTGACTGTG	AAAAATGTTG	GGTATAAGAT	TAGCTTATGA	TAAAAAATCC	7200
TAAATTATTA	ACCAAGTCTT	TTTTAAGAAG	TTTTGCAATT	CTAGGTGGTG	TTGGTCTAGT	7260
CATTCATATA	GCTATTTATT	TGACCTTTCC	TTTTTATTAT	ATTCAACTGG	AGGGGAAAA	7320
GTTTAATGAG	AGCGCAAGAG	TGTTTACGGA	GTATTTAAAG	ACTAAGACAT	CTGATGAAAT	7380
TCCAAGCTTA	CTCCAGTCTT	ATTCAAAGTC	CTTGACCATA	TCTGCTCACC	TTAAAAGAGA	7440
TATTGTAGAT	AAGCGGCTCC	CTCTTGTGCA	TGACTTGGAT	ATTAAAGATG	GAAAGCTATC	7500
AAATTATATC	GTGATGTTAG	ATATGTCTGT	TAGTACAGCA	GATGGTAAAC	AGGTAACCGT	7560
GCAATTTGTT	CACGGGGTGG	ATGTCTACAA	AGAAGCAAAG	AATATTTTGC	TTTTGTATCT	7620
CCCATATACA	TTTTTGGTTA	CAATTGCTTT	TTCCTTTGTT	TTTTCTTATT	TTTATACTAA	7680
ACGCTTGCTC	AATCCTCTTT	TTTACATTTC	AGAAGTGACT	AGTAAAATGC	AAGATTTGGA	7740
TGACAATATT	CGTTTTGATG	AAAGTAGGAA	AGATGAAGTT	GGTGAAGTTG	GAAAACAGAT	7800
TAATGGTATG	TATGAGCACT	TGTTGAAGGT	TATTTATGAG	TTGGAAAGTC	GTAATGAGCA	7860
AATTGTAAAA	TTGCAAAATC	AAAAGGTTTC	CTTTGTCCGC	GGAGCATCAC	ATGAGTTGAA	7920
AACCCCTTTA	GCCAGTCTTA	GAATTATCCT	AGAGAATATG	CAGCATAATA	TTGGAGATTA	7980
CAAAGATCAT	CCAAAATATA	TTGCAAAGAG	TATAAATAAG	ATTGACCAGA	TGAGCCACTT	8040
attagaagaa	GTACTGGAGT	CTTCTAAATT	CCAAGAGTGG	ACAGAGTGTC	GTGAGACCTT	8100
GACTGTTAAG	CCAGTTTTAG	TAGATATTTT	ATCACGTTAT	CAAGAATTAG	CTCATTCAAT	8160
AGGTGTTACA	ATTGAAAATC	AATTGACAGA	TGCTACCAGG	GTCGTCATGA	GTCTTAGGGC	8220

PCT/US97/19588 WO 98/18931

863

ATTGGATAAG GTTTTGACAA ACCTGATTAG TAATGCAATT AAATATTCAG ATAAAAATGG 8280 GCGTGTAATC ATATCCGAGC AAGATGGCTA TCTCTCTATC AAAAATACAT GTGCGCCTCT 8340 AAGTGACCAA GAACTAGAAC ATTTATTTGA TATATTCTAT CATTCTCAAA TCGTGACAGA 8400 TAAGGATGAA AGTTCCGGTT TGGGTCTTTA CATTGTGAAT AATATTTTAG AAAGCTATCA 8460 AATGGATTAT AGTTTTCTCC CTTATGAACA CGGTATGGAA TTTAAGATTA GCTTGTAGAC 8520 AGATTAGTTT TTTATTAAAG TTCATATAGG GTTAACATAA GTGTGTTATT CTTTGTGTAG 8580 ATAAAAGAAA GGATACTAAT ATGGTATTAG CGATTATTTT AGTAACATTC TTTATTCGAT 8640 TGATTTTTT AAAGCGTTCG ATAGAGAATG AGAAACGAAT CCTTAGCAAT GGCGGGG 8697

#### (2) INFORMATION FOR SEQ ID NO: 124:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4317 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

AACCATACAT ACGGCAAGGC AAAGCTGACG CGGTTTGAAG AGATTTTCGA AGAGTATTAG 60 TTGCCTTTAA AGGCATCCAC CATCGTTTGA AATTCTTCAT TTGAGAGAGT AATCCCTTTG 120 CCCATTTTAG TATGGTCTGG ACTCCAAGCA CGAATATCAA ACTTTGCAGG GGCACCATTA 180 AAGCTCACAC GGTTAATTTC CTTGGTCCAA CCTTTTTCGT TTTCAGAAAG AGTCAACAAG 240 TGCTCTTCGA TTTCAAATGT AAATTCTGCC ATTTTCTTCT CCTTTTTTAG TTTCATTAGT 300 TTATTCGTAA AATCTTGTAG ATTTTAGGAA AATTTTATAT AATATTGATA TAAAAGAAGG 360 GAGGCCAATA TGAGACATAA ATTCCAGCAA GTTCTAAATA AAATACATGA TTTTTTAAAT 420 GGATATGACC AACCTGACCA GACTGAAACC AACTCCCTTA CAGCCACTAT TGAAGAGGCT 480 ATCCAGAAAC AAACCGCTGT TCACCTTATC TTGTCTGAGA CAAGCTTTAC AGGTGACATC 540 ATCAAATATG ATCAGCAAGG CCAGCAAATT ATCGTGAAAA ATTTTTCCAA AAATGTGAGC 600 CGGATTATCC GTATAAGCGA TATTCAACGC CTGCGATTTG TCCCCTCAAC TGTCCAAACA 660 GCCCAAAAAA ATAGATTTAA GAAAGAGTGA GATGTAGTTG CTTCATCCCA CTCTTTTTTC 720 TTAGCGAATT TGTTCAAAAT GTAAATGAAC TGCGATATGA TCTCCATAAC CACTTCTTTC 780 CAAGTCACGT TGTAAACGAT AGGAAATGTA GTGTTCTGCA ATGGTAATGT AACCTGCGCC 840 - CAATAAACGA TGTTCAACCA TAGATTGAAT CATACTGATA GTCGCACGTT CCACCTTGGC 900

			864			
TTCTTGTAAA	TCCAAAACTA	CCTTCTTAGT	GACTTGAGCA	AGATTTTGAC	GCAAATCATC	960
TGTCAAAACA	TAAACAGTTT	GGGCTGCCTT	CAAGATGGCT	TGGTAAATCT	TATCTGGATT	1020
AAATTCAGCA	ATTTCGCCAT	TACGTTTGAT	TACTTGCATA	GGTTTCTCCT	TTATTCTTTG	1080
TTTTCTTTGA	TTTCTGCCAG	CATTTTTTCT	TCTTCTACTG	TCAGTTGATA	ATGTTCAAGT	1140
AAATCCGGTC	TGCGCTCGTA	GGTTTTCTTT	AAACTCTCGT	ACAATCGCCA	CTGACGAATC	1200
TTTTCATGGT	GGCCACTCAT	CAATACATCT	GGCACGACCA	TGCCTCGATA	ATCATAGGGA	1260
CGTGTGTACT	GAGGATATTC	TAAAAGACCT	GAAGAAAAAC	TATCATCTTG	GTGGCTAGAC	1320
TCCTTGCCAA	TCACTTCTGG	AATCAGGCGA	ACTGTAGCAT	CAATCATGGT	CATAGCTGCC	1380
AATTCTCCAC	CAGTGAGGAC	ATAGTCACCT	AGGGAAATCT	CATCTGTTAC	CAAGGTCTTA	1440
ATGCGCTCAT	CATAACCCTC	ATAGTGCCCA	CAGATAAAGA	TTAGCTCTTC	CTCTTGAGCC	1500
AAATCTTCAG	CATAAGCCTG	ATCAAACTGC	TTTCCAGCAG	GATCAAGGAG	AATAACGCGC	1560
GGATTTTTCT	TTTCAATAGC	ATCAAAGGAA	TCGAAAATAG	GTTGTGCTCT	GAGCAACATG	1620
CCCTGACCGC	CTCCGTAGGG	CTCATCATCT	ACATGACGGG	CCTTTTCAGC	ATTTTCTCGA	1680
AAATTATGAT	ACTGGATATC	CAAGAGCCCT	TTTTCTCGAG	CCTTTCCAAC	GATTGAGTGC	1740
TCCAGTGGAG	AAAACATCTC	TGGAAAGAGG	GTTAAAATAT	CAATCTTCAT	CGTCTAACCC	1800
TTCTAAGATT	TCCACATCGA	CCCGTTTACT	TGGAATATCA	ACATTGAGAA	CCACTGGTGG	1860
GATATAAGGT	AAAAGCAAAT	CACGTTTGCC	TTTTCGTTTG	ACCACCCAGA	CATCATTAGC	1920
ACCTGGTTGC	AGGATTTCCT	TGATGGTTCC	AACCAAGCTA	TCACCCTCAT	AGACTTCCAA	1980
ACCGATAATC	TCGTGATAGT	AAAATTCACC	ATCGTCTAGG	TCATTCAAAT	CTTCCTCAGC	2040
GACCTTGAGA	CTGTATCCCT	TGTACTTTTC	GATAGTATTG	ATATGGTACA	TATCTTTGAA	2100
TTTAATAATG	TCAAAGTTCT	TCTGTTTACG	GTGGCTAGCG	ATGGTCACTG	TTTGGACAAA	2160
CTGATCTTTT	TCATCAAACA	AAACCAGCTC	AGCTCCTTTT	TTAAACCGTT	CTTCTGCAAA	2220
ATCCGTCACA	GACAAGACTC	GCATCTCCCC	CTGTAATCCC	TGCGTATTAA	CGATTTTCCC	2280
AACATTAAAG	TAGTTCATCT	TGTCTCCTGT	AATCTCCTTT	TTTCCATCTT	ATTCTAACAA	2340
TTCTCGAATA	ATAGCCGCAA	TTTTTTCCGA	TTCTGACCAT	TGTAAATAAT	GGTGATTCCC	2400
CCTAAAATG	AGTTTAGTAT	TGGAAGTCCA	ATATTCTGAT	TCTCTGTACT	CTTTTTCTCT	2460
ATAAGGCTGA	CAAAAAACAA	ATACAGGAAT	ATGAGCTTCT	ATAGATACAT	CCTCAAAATC	2520
TTCCTCAGTA	ATCTCTCCAG	ATATCTGAAA	TTCTGGATCT	TGATTTTCCA	ACTCTAAGCC	2580
TTTTTCTTGC	ATTAATTCCC	AGATTTTTT	ATTCGTTTCA	GGACTAAATG	TTGCTTGAGT	2640
TAAGTTCTTA	AAATAAAGTT	CAGGACCACA	CTCGTCAATC	AGCCTCATCT	GCTCTTCCAT	2700

TTCTGGATAA GGATTTTCTG AAAAATCAGC AAACATGACT TTTTTAGTTG TCGGTTCAAT	2760
TGCTACTAAA GTCTGACGCT TAATTGGTTT CTCGAGTAAT TTGCAAGCTA AAATTCCACT	2820
CCAACTATGT GCACAAAGTA TATATTCAGA AATTCCTAAT TCTTCAAGTA CTTCATAAAC	2880
CGCATCTGCA AGATTATCTA GATTTTTTCC AGCTTGGTCA TGAATCGGAC TCCTACCTGT	2940
GTTCGGAAAA TCAATTGTCA AATAACCAAT TGTAGGAGGA GGTTTTTCAA GTATAAGTGA	3000
AAAATTTTCA TAACTTGGTA GCAAACCTGC TCCGTTTAAA CAAACTAGCA CTTTCTTTTG	3060
CTTTTGATAA GTAACAGAGA GGCTACCAAT TTCTGTAGAT ACTTCAAACC TCTTCATAAA	3120
GAAATCCACT GATTCTATAT AATGAATTAT TAAAAATCCT TATCCTTTAT TTTATCACGT	3180
TCCAAGGATT TTCTCAAGTT GGAGGAAGGG GACAATATCT CTACTTTCCC TTCAATAATC	3240
CTTCCAAATT ATGTTTATGT TGGTAATTAA TGGCTGCGGT TTTGTCTTTC TCAAAGACAG	3300
TCTTGGTAAG GTCAATATGA TTAATAGCTA CGATTGCGAC GGTGTAGTAA ATGATATCAG	3360
CCAGTTCTCT GGCAAGTTCC TCGTTCGAAT CCTATCCCTT CTTTTCGACC AGAGCGCCTA	3420
TTCAAAACCT CGACTACTTC TCCGACTTCC TCCACTAACT TCATAAAGAG ACCTTCATCA	3480
GTCCGAGACT GCTGTTAATG TTCGATTAAG TAGTCTTGGA ATTGCCTAAA CGTTCAATCT	3540
TTTATAGTAT ATTGAAACTA GAATAGTACA CCTTTACTTC TAAAACATTG TTAGAAATCG	3600
ATTTGACTGT CCTGATCGAT TTGTCCTGTT CTTGTTTCAT TTTACTATAT CTTCTATTCC	3660
ACACAAAAAA GCGAGACATC CGTCCCGCCC TTCTTATTTT TCGTCAATAA CGATTCTTAC	3720
TTTTTTGTAT TCAGTTGGGA CAGAGTAGAC AATCGTTCTT ATCGCAGAAA TAGTGCGACC	3780
CTTACGACCG ATTACACGAC CCACATCGCT TTGATCAAGA TTCAAATGAT ATTCCAAAAA	3840
TTCTGGTGTA TCCTCAATCT TGATAGTTAA GGCATCTGGT TGTGAAATTA AGGGTTTCAC	3900
AATCGCAATA ATGAGATTTT CAATCGTATC CATCTGTCAA CCTACTTTAA ACTTATTTTG	3960
AAAATTTAGA ATCGTGGAAT TTTTTCAATA CGCCTTCTTT TGAAAGGATG TTACGTACTG	4020
TGTCTGAAGG TTGAGCTCCA TTAGCCAACC ATGCAAGAAC GCGGTCTTCT TTCAAAGTTA	4080
CTTGGTTTTC AGCAACAAGT GGGTTGTAAG TTCCAACTGT TTCGATGAAA CGTCCGTCAC	4140
GTGGTGAACG TGAATCTGCT ACGTTGATAC GGTAGAAAGG TTTTTTCTTA GAACCCATAC	4200
GAGTCAAACG GATTTTAACT GCCATTTTTA AAGTCTCATT TCTTTAATTT TTTATTTCGG	4260
TGAAATAGCT GAGCTATTTA GCACATGTTC TATTATAGCA GATTTCTGGC ATGTGTC	4317
/3\ ************************************	

⁽²⁾ INFORMATION FOR SEQ ID NO: 125:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4881 base pairs

PCT/US97/19588

866

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

(X1)	SEQUENCE DES	CRIPTION: 3	SEQ ID NO. 1	.23.		
AATTTATTTG	ACTGGAAATT	GTAGAGGGTT	CTCGAAATTT	CTTGAATGGT	TAAAATAAGG	60
ACAAGAGAAA	ACATGGATAT	CTATATCCTT	GTGCCAAAAA	AACCACTGCC	CTCCCCAGAC	120
CAACCTGAGG	AAAGCAGTGA	TTCTTATTTT	AGGAGTTAGG	AATGAATACA	CGAAATCAAT	180
TTAGCTGATT	ATTTTTTGTT	TTTCAAGAAT	TCATCGTATT	GTTTTTGCAT	TTCGTTCAAT	240
ACTTTTTCGT	AGGCACCTTC	AGATTTCAAT	TTTTCCATCA	ATTCTGGAAT	CGCTTTATCT	300
GGGTCTACAG	TACCAGTGTT	GATAGCTGTA	TCAAATTGTT	GCATTGTGTT	AGCAATAGCT	360
GAGATTTCAG	ATTTCACATT	GTCAGTATTG	AAGATAAATC	CAAGCGCTGG	AGATTCTTTA	420
GCTTCTGCCA	ATTCTTTCTT	AGAATTTTCG	ATTTGTTGGT	CTGTAACGTT	TTCGTTGATG	480
TAAAGGATCC	AGTTGTTACC	AGTGTTCCAT	CCACCCATGT	GAGTGTTTCC	TTTGTAGCCA	540
TCAAGAACGC	GAACACGGTT	TTCTTTACCT	TCAATTTTTT	CCCAGTTCTT	GCCTTCTGGA	600
CCGTAAACAA	GACCGTTCAA	GAGTTCTGGG	TTCGTATTCA	AGAGGTTCAA	GATTTCCATT	660
GATTTTTCTT	TGTTCTTAGA	GTTGTTTGAG	ATGACAAAGT	TAGCAACTTG	TGTTGTTTGG	720
TTTTTCTTGA	TGAAGTTAGT	AATTGGTTTG	ATTTGGATAT	CTTTGTTGGC	AACACGTGAA	780
AGCAAGCTGT	TACCGTAGTC	AGCTGGTCCT	ACTGTTTCTT	CACGAACGAA	CCAAGTATCT	840
TGTTGAAGGT	CAAAGGAAGT	ATCGCTTGTT	GCGACGTCTT	TTGGAATGTA	GCCAGCTTCA	900
TAGAATTTGT	GAAGAGTCTT	CAAGTGTTCT	TTGAAACGAG	GCACTTCGTA	ACGGTTTACA	960
ACTTTAGTAG	TATCGCCTTC	AAGGTCGATA	ACGAATGGAA	GACCGTTTGC	TACTGGGTAG	1020
TCAAAATTAT	CAGATGGGAT	GAAAACTTTA	CCAATAGCAA	ATGGTACTAC	GTCTGGAGCT	1080
TTTTCTTTGA	TTTGTTTCAA	GACTGGCTCA	AGAGTTTCGT	AAGAAGTAAC	ACCTGAAATA	1140
TCGATACCAT	ATTTAGCAAG	GAGAGTTCCG	TTGAAGGCAA	AGTTTTGAGA	TGATGCAACG	1200
TTGGCTGCAA	CTGGAACAGC	GTAAATCTTA	CCATTTACAG	TATTACCCTT	GATGTAAGCT	1260
GGGTCAAGTG	CTTTGTAAAG	GTCTTTACCT	TCTTTTTTGT	ACAATTCTGT	CAAGTCAGCG	1320
TAAGCACCTT	TTTGAGCATT	TACAATATAG	TTATCTGCAA	AGGCAATATC	ATAGTTTTCA	1380
CCAGATGATO	TGATAACTGA	CATTTTCTTA	CCATAGTCAC	CCCAGCCAAG	GTATTGGATA	1440
TCCAATTTG	CACCAACTTT	TTCTTCAATG	ATTTTGTTGG	CATTTGCTAA	CAATTCATCC	1500
AAGTTGTCTC	GTTTGTCACC	GATTTGGTAC	ATTTTGATAA	CAGGTTTGTC	ACCTGAATCA	1560

GCAGC	TTTTT	TGCTGTTAC	C TGTCAAATT	r ccacaagcac	CAAGACCTG	AGCCAGAGCG	162
ACTAC	CACTAG	CAGATGCAA	A AGCATATTT	TTCCAGTTT	TCATGATAA	AACTCCTTTT	168
TTTAT	ТТТТТ	AACTTATAA	A CAATGTAATO	G ATCTTATACT	CAATAAAAA	CAAAGAGCAA	174
ACTAC	BAAAAC	TAGCCGCAG	CTGCTCAAAC	CACTGCTTTC	AGGTTGTAGA	TAAGACTGAC	180
GAAGT	CAGTT	ACATATATCT	ACGGCAAGGC	GACGTTGACG	CGGTTTGAAT	TTGATTTTCG	186
AAGAG	TATTA	ACTTCACACA	AGGGAAGTTC	GGAACTGAGA	AATGTTATTT	CTCAATAAGC	192
ACTAT	TCTTT	CACACCACC	ATAGTCAAAC	CTTTTACAAA	GTAGCGTTGG	AAAAATGGAT	198
ACAAA	ATCGC	GATTGGAAGG	GTTGCAACCA	CAACCATGGC	CATACGACCT	GTTTCTTTCG	2040
GTAGA	GCAAC	TCCCAGTTGA	CCAATCAAGC	CGACCGCTTT	GGCAATGTAG	TCCATATTTT	2100
GTTGG	ATTTG	CATGAGCAAA	TATTGCAATG	GATACAAGTT	GTCACTCTTG	ATGTAAAGAA	2160
GGGCG	TTGAA	CCAGTCATTC	CAGAAACCAA	GAGCTGTTAA	GAGCGTGATG	GTTGCGATAC	2220
ÇŤGGT	agtga	CAATGGCAAA	CAGATTTGGA	AGAAAATCCG	GGCCTCACTG	GCACCATCGA	2280
TACGA	GCCGA	TTCTAGAATG	GCTTCTGGAA	TGGTCTTCTT	GAAGAAGGAA	CGCATCAAGA	2340
TGATG	TTAAA	TGGTGAGAGA	AGCATTGGAA	CAATCAAGGC	CCAAACAGTG	TCACCAAGCT	2400
GAAGT.	ACACG	GGTCACCATG	ATATAACCTG	GTACCAAACC	AGCGTTGAAC	AACATACTGA	2460
GAAGG.	ACGAA	GATGGTAAAG	AATCTGCGAT	ACTTAAAGGT	TGTCCGTGAA	ATAGCGTAGG	2520
CATAG	GTTGT	TGTGATAAAG	ACATTTGTCA	ATGTCCCAAC	TACGGTTACA	AAGACAGAGA	2580
TGAAG	AGGGC	TTGTAGGATT	TTATCCTTAA	ACTGTGCCAA	AAACTCAAAA	CCGTCTAAGC	2640
CAAAT"	TGGGA	TGGGAAGAAG	CTATAGCCGT	ATTGGAGGAG	GCTTTTCTCG	TCTGTCACTG	2700
AAATA.	ATGAT	AACGAATACA	AAAGGTAGGA	TACAAGAGAG	GGCAATCAAA	CCCGAAATGA	2760
ractg.	AAGAA	GATATCTGCT	TTCTTACTGA	AGGAGTGAAT	GCCGACATTA	TCAATTTTTT	2820
TTTTT	TAAT	TTTCTTTTTT	GCCATATTCT	CCTCCTTTCT	AGAACAAAGC	TGAGTTTGGA	2880
CGACT	rcgrc	TTGCAAGCAA	GTTTGATAGG	ATAACCAGAA	TCAAACCAAC	AACGGATTGG	2940
TAAAGA	ACCGG	CTGCTGCAGC	CATACCGATA	TCTGCTGTCT	GAGTCAAACC	ATTAAAGACA	3000
TATACO	STCCA	AAACGTTGGT	TACATTGTAA	AGCTGACCAG	CATTGTGTGG	GATTTGATAG	3060
AGAGA	ACCGA	AGTCTGCGCG	GAAGATATTT	CCGACTGCAA	GGATGGTCAA	TACAGTTACA	3120
GCGGA	GTCA	ACTGAGGAAT	GGTTACGTTG	CGAATACGTT	GCCACTTGCT	AGCTCCGTCC	3180
CTGTC	CGCTG	CTTCGTAGTA	GGTTGGATCA	ATTCCCATGA	TCGTCGCATA	GTACATGACA	3240
TGCTA	TATC	CAAAGCCTTT	CCAAATACCT	AGGAAAAGTA	GGAGATAGGG	CCAGATGCCC	3300

			868			
AGGTCAGCGT	AGAAATTGAC	TTCTTTGAGA		CCAATAGATG	ATTGAACACC	3360
CCTTTATCAA	TATTTAGGAA	GGCATCTGTA	AAGAAACTGA	TGATAACCCA	AGACAAGAAG	3420
TAAGGGAACA	ACATAGAAGT	TTGAAAAATC	TTCACCATTC	TCTTAGAACG	GAGCTCGCTG	3480
AGGATAATGG	CAATCCCTAC	AGATACAACT	AAACCTAGAA	AGATAAAGCC	AAGATTGTAG	3540
AGGACAGTAT	TTCGTGTGAT	AATAAAGGCG	TCTCTTGAAC	TAAATAAGAA	TCTAAAATTA	3600
TCGAGTCCGA	CCCATTTACT	ATTTATGATA	CTATCTATGA	AACCATTACT	GGTCATGTGG	3660
TAGTCTTTGA	AGGCAACCAC	GTTCCCAAAT	ACTGGAATGT	AAAAGAATAG	AATCAACCAG	3720
AGTGCCCCTG	GCAAAACCAT	CAAGAGAAAG	ATCCAGTTGT	CTCTCAATGT	TTTTGAAAAC	3780
TTTTTCATAA	TTTCCTCCCT	TTTTATTTTG	ATATCCATCT	AAAAATTCTT	TTTTAGACTT	3840
TTGATAACGA	TTACATTATT	AGTATACTCC	TATTTGCAGG	TTAGGTTAAA	CTCCTAATTA	3900
TAGAAAAAC	TCCACAAATT	ATGTAGCAGA	TTTAAAACTT	TATCACCACT	ATCAAACAAA	3960
TGTCCTAAAT	CAATTGTTTA	TTTTATCTCT	ATTAGCCCAG	TGATGGCGTC	ACTCTGTTAT	4020
AAGCATCCAA	CAACGGGGTA	TACTGAAAAA	TCTCCAGACT	AGGGAACTCA	GCGATAGTTC	4080
CTAATCTGGA	GATTTTTAAT	ATGTTATTAG	GCGTTTGCTT	TCAACTTAGC	AATAACCTCT	4140
TTAAGATTAT	CAATCAACTC	TGCTGCAGTA	TGCTCAGAGC	CTTTTTCATC	TGCCAAGAAC	4200
AAAACTGCTT	TTTGAAGTTC	TTTTTGAGAG	TTTTCAAGGA	CATCCTTATC	TACTGTTTCA	4260
AGGTTTGAGT	CTTTAAGAAG	TTTACTTAAT	TCCTTGGCTA	ATTTCTTGAG	TTTGATTTGC	4320
AGACTCATCT	TCTCCTGCTG	TTTCTTTGCC	CGCTGTTTGT	CCTCCATCCT	TAGTTGCTGA	4380
CTGGCTTTCC	TTAATGGACT	CTAGGGAAGC	AATGGCATCT	TTGACTGTTT	GCAAGATATC	4440
ACGTAAACCT	TGCTCTGTCA	AACTATCATC	TGCAAAAGCT	TTATTAGCCT	CTGCCAAAAC	4500
CAGACGTGCT	GAATCTGTGG	TAGGATTCGA	TACACCTGTC	AATGATCTCA	AAAGATTTTC	4560
TAAGGTTTGA	GTCTGCTTAC	TAATACTAGA	СТААААТСАА	AAAGTATTAT	ATAACAGTGA	4620
TATGAAATCA	ACTAAAGAAG	AAATCCAAAC	CATCAAAACA	CTTTTAAAAG	ACTCTCGTAC	4680
AGCTAAATAT	CATAAACGCC	TTCAAATCGT	TCTATTTTGT	CTGATGGGCA	AATCTTATAA	4740
AGAGATTATA	GAACTTTTAT	agtagtttga	AATAAGATGT	GAACATCTCT	ATCAGGAAAG	4800
TCAAATTAAT	TTATAGAAAT	ATTTTAGCAG	CCAAGGTGTA	CTGTTATAGA	TTCAATACAC	4860
TATACTTGGT	GGTTTAGCTC	G				4881

(2) INFORMATION FOR SEQ ID NO: 126:

⁽i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13121 base pairs

(B) TYPE: nucleic acid

869

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:

			-		_	
60	TTGCTAATTT	TCTAGCATTT	AGAAAAAATT	CTAAAAATGA	GAAAAGGAGA	AGGATCCCCG
120	GTTTCTGATA	GATTAAGATT	AAGCAGAAAC	GGTATTGCCA	TTTCTCATTA	TATTCCCAAT
180	ATTGATGTTG	TTATAAAGGA	CAGATCAAAC	TTTAAAGATT	ACCTTTTGAG	CCGCCTATGC
240	TATCCTGGAT	TCAGATGTCC	GCTGGAACAT	GAGATTAAAG	CAAAGTCGCT	ACATTATTAA
300	GCAGGGATGA	CGCTATCATG	GGCAAGCCGA	GTTCAAGCTG	AGTCAATGCG	TTGACGCAGC
360	GATACAAAAG	тасттастат	CCATGTCTGA	AAAGTCTTCA	AGAACGTGAA	CAAAGACTAA
420	ACTGGCAAAA	CGACCAATTA	TTAGCAAGTA	TCACACAAAA	TACTACAAAG	TTGTCATTGC
480	AAAGATAAAT	TGAAACAATC	AACGTTTCCT	ACTGCCGCTC	TAAAAACGGA	CCGTTGGTGT
540	TTGAGTGCTG	GAACAACAGC	GTGATTTAAT	TTTGACACTG	TATTAAAACA	ACGGCTTTAC
600	AACCAAGGTC	ATATGCCATT	CTGTTATCGA	GATGACAAAC	TGCCATGATG	GTGCCATCGA
660	GGTGTGAAAA	TTTTGCTTTC	CTGTAGGAAG	GATGGTGAAG	TATTGAAATG	AAGACCTCCA
720	GAAATGAAAA	AGCCTTGTCT	AATTTAACCA	CTGGTTACTG	ATACGAGCAC	AAGGAAGTAA
780	TCAGCAGTGC	TTCATCATCT	AATGGACTGC	ATTATCAAGA	TCTTGATAAA	AAGATGGTAG
840	TATATCATTG	TAAGGCTAAA	CTATTCCTGT	GGATTAAAAG	TACTCTCGCA	CAACTACAAC
900	TACACTGGTA	AAGCAACCAA	TCCAAAATTC	CCTTTTGTTT	TTCTTTTGCC	CCAGCGATTC
960	GAAATCACCA	TTTTGAAATT	AAGACCAAGG	GCAATCGCTA	ATTGATTAAG	TTGATATGGA
1020	GGTATCATCG	TCAAGCCGAT	TCCAAGCTGG	ATCAGTGCTG	TGATGCTGCT	ACCCTGGTTT
1080	TCATACTACA	CTTCTCAGAA	CAACTTTTGA	GCTCGTAAGG	TGTCACAGAT	CTGGTATGTC
1140	GAAGATCTAA	TGCTTCTTAT	CAAGCAATAT	GTCAAAGAAT	CATTCTTGGT	CTGCTAATAC
1200	ACAGAAAATC	AACCTTCCTA	CTGCTTCTCA	AAAAACGGAA	AGTCGGTGTT	AAGGAAAGAC
1260	TATGACAGTT	TTCTTCAATG	TTGCTGATGG	ATCAAAACCT	CGGCTACAAA	AAAGCAAATA
1320	TATTCTATCA	TGTTCTCAAA	ATGATGAACC	GCCGTTATGG	TGCCATTGAT	TAAACACTGG
1380	ACAGCCTTTG	AATCGGTGAA	CTGGAACTCC	ACTCCAATCT	AAAATTGAAA	GCCAAGGTCA
1440	CTTGCAAACC	CAACAACGGA	TTGAAATGTT	CCAGAACTGA	AGGAGCAAAT	CCGTTAAAAA
1500	GAATCTTCAA	CCTAGCTAGC	TTGACAAATA	CAAAAGATTC	CGGTGAATTC	TTAAAGCAAA
1560	AACAACTACA	CTTGCTTCAA	CGCTCTGGGG	GACGAAACAA	AAGTACTGTT	CTGCTTCAAC

			870			
AACAACTCCT	TAGCGGTCTT	GGTATCACTC	TTGCTCTAGC	TCTTATCTCA	TTTGCTATTG	1620
CCATTGTCAT	CGGAATTATC	TTCGGTATGT	TTAGCGTTAG	CCCATACAAA	TCTCTTCGCG	1680
TCATCTCTGA	GATTTTCGTT	GACGTTATTC	GTGGTATTCC	ATTGATGATT	CTTGCAGCCT	1740
TCATCTTCTG	GGGAATTCCA	AACTTCATCG	AGTCTATCAC	AGGCCAACAA	AGCCCAATTA	1800
ACGACTTTGT	AGCTGGAACC	ATTGCCCTCT	CACTCAATGC	GGCTGCTTAT	ATCGCTGAAA	1860
TCGTTCGTGG	TGGTATTCAG	GCCGTTCCAG	TTGGCCAAAT	GGAAGCCAGC	CGAAGCTTGG	1920
GTATCTCTTA	TGGAAAAACC	ATGCGTAAGA	TTATCTTGCC	ACAAGCAACT	AAATTGATGT	1980
TGCCAAACTT	TGTCAACCAA	TTCGTTATCG	CTCTTAAAGA	TACAACTATC	GTATCTGCTA	2040
TCGGTTTGGT	TGAACTCTTC	CAAACTGGTA	AGATTATCAT	TGCTCGTAAC	TACCAAAGTT	2100
TCAAGATGTA	TGCAATCCTT	GCTATCTTCT	ATCTTGTAAT	TATCACACTT	TTGACTAGAC	2160
TAGCGAAACG	CTTAGAAAAG	AGGATTCGTT	AATGGCAAAA	TTAAAAATTG	ATGTAAATGA	2220
TTTACACAAG	CACTATGGAA	AAAATGAAGT	CCTAAAAGGA	ATTACGACTA	AGTTCTATGA	2280
AGGAGATGTT	GTTTGTATCA	TCGGTCCTTC	AGGTTCTGGT	AAGTCAACTT	TCCTCCGTAG	2340
CCTCAATCTT	TTAGAAGAAG	TCACTAGCGG	TCACATCACT	GTGAACGGCT	ATGATTTAAC	2400
TGAAAAAACA	ACCAATGTTG	ACCACGTCCG	TGAAAATATC	GGCATGGTAT	TCCAACACTT	2460
CAACCTCTTC	CCTCATATGT	CTGTATTGGA	CAACATCACC	TTTGCTCCTA	TTGAGCACAA	2520
GTTGATGACT	AAGGAAGAAG	CTGAGGAATT	GGGAATGGAG	TTGCTTGAAA	AGGTTGGACT	2580
AGCAGATAAA	GCTAATGCCA	ATCCAGATAG	CCTATCAGGT	GGTCAAAAAC	AACGTGTGGC	2640
CATCGCTCGT	GGCCTAGCAA	TGAATCCAGA	CATCATGCTC	TTCGATGAAC	CAACTTCTGC	2700
CCTTGACCCT	GAGATGGTTG	GAGACGTACT	TAACGTTATG	AAGGAATTGG	CTGAGCAAGG	2760
CATGACCATG	ATTATCGTAA	CCCATGAGAT	GGGATTTGCT	CGTCAGGTTG	CCAACCGCGT	2820
TATCTTTACT	GCAGATGGCG	AGTTCCTTGA	AGACGGAACA	CCTGACCAAA	TCTTTGATAA	2880
CCCACAACAC	CCTCGTCTGA	AAGAGTTCTT	AGATAAGGTC	TTAAACGTCT	AAACTCAAAC	2940
TGTAAGGATT	TCCTTGCAGT	TTTTCTACCT	CGTATTGGAA	TTTTTGATTT	TTCGGAAAAT	3000
TATGTTAGAA	TTAAGTTTAT	GAAATGAGGT	TTCCTCATAC	CTAGCAAGAC	TAGGAATAAA	3060
AATAGAAATT	AGGTAGCTAG	ATGTCATCTA	AGGTTATTGT	TACAATTTTC	GGTGCGAGTG	3120
GAGACCTGGC	TAAACGCAAG	CTCTACCCTT	CCCTTTTTAG	ACTATATCAA	TCCGGCAATC	3180
TTTCCAAGCA	CTTTGCCGTT	ATTGGAACTG	CCCGTAGACC	TTGGAGTAAG	GAATATTTTG	3240
AATCTGTAGT	TGTCGAGTCC	ATCCTTGATT	TGGCAGATAG	.TACCGAGCAA	GCCCAAGAAT	3300
TTGCTAGCCA	CTTCTACTAT	CAAAGCCATG	ATGTCAATGA	TTCGGAACAT	TATATTGCTT	3360

TGCGTCAATT ACAAGCTGAG CTTA	ATGAAA AATACCAAG	C TGAACACAA1	r AAGCTCTTCT	3420
TCTTGTCTAT GGCACCTCAG TTCT	TTGGAA CCATTGCCA	A ACACCTCAA	TCTGAAAACA	3480
TTGTCGATGG CAAAGGTTTT GAGG	GCTTGA TCGTTGAAA	A ACCATTTGGT	ACAGATTACG	3540
CAACTGCAAG CAAGTTGAAT GACG	AACTCC TAGCAACAT	T TGACGAAGAA	CAAATTTTCC	3600
GTATCGACCA TTATCTTGGT AAGG	AAATGA TCCAAAGCA	T CTTTGCAGTT	CGCTTTGCAA	3660
ACTTGATTTT TGAAAACGTT TGGA	ACAAGG ATTTTATCG	A CAATGTTCAA	ATTACCTTTG	3720
CGGAGCGCTT GGGTGTAGAA GAAC	GTGGTG GCTACTATG	A CCAATCCGGT	GCCCTCCGTG	3780
ACATGGTCCA AAACCACACT CTAC	AACTTC TTTCGCTCC	T CGCCATGGAC	AAACCAGCAA	3840
GCTTCACAAA AGACGAGATT CGTG	CTGAAA AGATTAAGG	CTTTAAAAAC	CTCTATCATC	3900
CAACTGATGA AGAACTCAAA GAAC	ACTITA TCCGTGGGC	A ATACCGCTCT	GGTAAGATTG	3960
ATGGCATGAA ATACATCTCT TATC	STAGCG AGCCAAATG	GAATCCAGAA	TCAACAACTG	4020
AAACCTTTAC ATCTGGTGCC TTCT	TTGTAG ACAGCGATCO	ATTCCGTGGT	GTTCCTTTCT	4080
TTTTCCGTAC AGGTAAACGA CTGA	CTGAAA AAGGAACTC	TGTCAACATC	GTCTTTAAAC	4140
AAATGGATTC TATCTTTGGA GAAC	CACTTG CTCCAAATAT	TTTGACCATC	TATATTCAAC	4200
CAACAGAAGG CTTCTCTCTT AGCC	TAAATG GGAAGCAAG1	AGGAGAAGAA	TTTAACTTGG	4260
CTCCTAACTC ACTTGATTAC CGTAC	CAGATG CGACTGCAAC	TGGTGCTTCT	CCAGAACCAT	4320
ACGAAAAATT GATTTATGAT GTCCT	CAAATA ACAACTCAAC	TAACTTTAGC	CACTGGGATG	4380
AAGTTTGTGC GTCATGGAAG TTGAT	TGACC GTATTGAAAA	GCTCTGGGCT	GAAAATGGTG	4440
CCCCACTTCA TGACTATAAA GCTGC	BAAGCA TGGGACCTCA	AGCCAGCTTT	GACCTACTTG	4500
AAAAATTCGG TGCCAAATGG ACTTC	GCAAC CAGATATCAC	CTATCGTCAA	GATGGTCGCT	4560
TAGAATAAAA AAATTTCCTG CAAGT	TTATG CCTTGCAGGA	TTTTTGCTTC	TGATTAGATT	4620
AAACCTTCCA AGAGACCTTT CATAA	AGTTT TCTGAGTTAA	ACTCTCCAAT	ATCATCGATT	4680
TTTTCACCAA AACCAATCAA TTTTA	CAGGA ATATTGAGTT	CTTCACGAAT	GGCTAGAACC	4740
ACACCTCCTC GAGCAGTTCC ATCAA	TCTTA GTCAAAACAA	TTCCCGTTAA	AGGTGTGATT	4800
TTCGAAAATT CTTTGGCCTG TACTA	GGGCA TTTTGACCTG	TTGATGCATC	AAGTGCCAAG	4860
AAGGTTTCAT GTGGTGCTTC TGGCA	CAACA CGTTTGATAA	TACGACCAAT	CTTTTCCAAC	4920
TCAGCCATAA GGTTATCCTT ATTTT	GCAGA CGACCAGCAG	TATCAATCAT	GAGAATATCG	4980
ATACCTTCAG TCACGGCACG TTCCA	TACCA TCAAAGACCA	СССТСССТСС	ATCAGCTTTT	5040
CAGGTCCAG TTACTACTGG AACAT	CTACT CGTCGGCCCC	ATTCAGCTAG	CTGAGCTACT	5100

			872			
GCACCCGCAC	GGAAGGTATC	TGCTGCAACC	AGCATGACCT	TCTTACCAGC	TTGTTTGTAG	516
CGGTGGGCTA	GTTTTCCGAT	AGAAGTTGTT	TTCCCAACAC	CATTCACACC	AACAAAGAGC	522
ATAACTGTCA	AGTTATCTTG	GAAGTGGATG	CTTTCATCGT	AGCTACCATC	CTTTTCATAA	528
AGCTCAACCA	ATTTCTCAAT	GATGACACGA	CGAAGTACAT	CAGGTTTCTT	GGCATTTTCA	534
AGCTTGGCTT	CGTAACGTAG	TTCCTCCGTT	AAGTTAGAAG	CGACTTGGAC	ACCAACATCA	540
CTCATAATCA	GCAGTTCTTC	CAGTTCCTCG	AAAAATTCTT	CGTCAACAGA	GCGGAAGTTA	546
GCAAAGAAGG	CATTCAAGCG	GGCACCGAAA	CCTGTGCGAG	TTTTCTTAAG	ACTGCGGTCA	552
TATTTTTCCT	GAACAGTTTC	TTCTGTTTGA	GGAGCTTCTG	GTTCAAGCAC	TTCAGAATTA	558
TTTTCTTCTA	CAGTTCCTTC	GTGCTCAAGC	TTCTCTTCCT	CTGGTAATTC	TTCTGAGTTT	564
GGTAATTCTT	CTATTTCTTC	TTGAGAAACC	CCTACAGCTG	GCTCTGAATC	CTGACTTTCT	570
TCAACTGTGT	CTTGGATTTC	CTCTTCTTGG	AACACAGCTT	GTTCAACAAT	TTCAACCTCT	576
GCTTCTTCCT	GAGAAACTTC	CTCAACTTCT	GTGAAGGTAG	GATCAACATC	TTCAGACAAA	582
TCAAGATTTT	CCAGAGCTTC	TTTTACAACT	TCTTCGATTT	TAGGTTCTTC	TTTTTTTCCG	588
AATAGACGGT	CAAACAATCC	CATATCTTAG	TTCTCCTTTA	GCACATATTC	TTCGATAGCC	594
CAGGCGACAG	CTTCCTCATC	GTTGGTCATC	GGCGTCACTA	CATTTGCGGC	TGCCTTTACT	600
TCAGGAACAG	CGTTTTGCAT	AGCAACACCA	AGACCTGCCC	ATTCAATCAT	AGAGAGGTCA	606
TTGGCCTCGT	CACCACAAGC	CATCACTTGA	CTTTGGTCGA	TTCCAAGATG	GCTGATTAGT	612
TTTGCCAAAC	CTGTTGCTTT	ATGAACATTC	TTTGGTGACC	ATTCTAGCAA	CATTTCACGT	618
GATTTAAAGA	TTTCATATTG	GTCAAACAAT	TCTGGAGAAA	TCTTCTGAAT	GGCTGCATCC	624
AAGGGTTCTT	GAGCAAAGGC	AGTCACGCAT	TTGTTGTAGG	TCATTTGACT	AGATAAGTCT	630
TCAAAGTCCA	CTGGAACAAA	GGTCAAAGCT	GGATTGAATT	TGGCATAAAG	ACTITCTTGG	636
TCCGATTGGA	TTTGATAAAC	TGTTCCTTCT	GAGATGGCAT	CAAGAGGCAG	TGATAATTTC	6420
<b>CTGTTTCTT</b>	CATACAAACG	TGCCACATCA	TCATATGAAA	AGACTGTTTT	ATCAAGGATT	648
CTCCTGTAT	TTTTCTGAAC	TAATCCACCA	TTAAAAGTAA	TGGTATACTC	ATCTTCCTGA	654
CCGTCAGTCC	CTAACTCATG	GAGAAAGAAA	TCCATGGCTT	TTAAGGGACG	ACCAGTTGTC	660
AATACGACCT	TGATACCACG	ATCACGCGCA	gCTTGCAAGG	TTTCCTTGGT	ACGATCCGTC	6666
AGCCTTTTAT	CAGTAGTCAG	CAAGGTCCCG	TCCAAGTCCA	ATGCAATCAA	TTTTATATCT	672
GCCATTATAA	GCCCTCCATA	TAAGCTATAA	CCGACCGTTC	CTTATGGTGA	CCAATCACAG	6780
CTTTGCTAA	ттсталаатт	TCAGGTCGTG	CATTTTCAGG	AGCTACAGGA	TGTCCCACAA	6840
CTGCATCAT	ATGTAAGTCA	TTAAGATTGT	CTCCAAAAGC	CATGACCTGA	TCCATTGTGA	6900

873

TACCAACTT	ጥጥጥ አስርጥ አስጥ	TCAACAATGG	<b>ここれごかごごごかか</b>	ATCCACAMAC	TCCACA ACA A	6960
				_		0,700
TATCAATGGA	TTCAAAGCCA	GTTGTCATGG	CCTTAACACC	AGGAACGTTT	TCGTTTACCC	7020
AAGCCTCCCC	ATCTTCCAGC	GTTTCTTCTG	TGAAGTTGGT	TGTAAATTTG	AAAATGTCAT	7080
CTGTGATATC	TTCCAAACTC	GCTACTTTTT	GGATATTTTC	ATTATAGTGC	TGACTCACTT	7140
TCAAATAGGT	CTCATCAACC	GTATCTAGAA	CATATGAACC	CTTCTTACCC	GTCAAGAGCA	7200
GTTTATTGAT	ATCTACATAA	GGTGAAGTTT	TCAGCTTTTC	AAAAGTTGCC	AGATAAAAGT	7260
CACGAGACAT	AGTCGCTTCA	TACAAGTCCT	GACCTTGATA	CTCTACCAAA	CTGCCATTTT	7320
CCGCGATGAA	AATAATGTCA	TCACGAACAC	CAGCAAATAA	TTTTTCTAGA	GACAGAAATC	7380
CCCGACCCGA	AGCTACCGCA	AAGTAAATCC	CTTTTTCCTT	GTAGGAAACC	AAGAGAGACT	7440
TGAGACGATC	CATATCAAAG	CGTCCATTCC	CATCTAGGAA	GGTTCCGTCC	ATATCCGTTG	7500
CTACTAGTTT	AATTGTCATC	CTTCAATACT	TTCTAAATCT	тттаасттаа	CTGAAACAAT	7560
CTTTGAAACA	CCCGATTCTT	GCATGGTCAC	TCCATAGATG	GAATCAGCCG	CTGCCATGGT	7620
TCCCTTACGG	TGGGTTACGA	CGATGAACTG	GCTGTCCTTG	TCAAAGCGGT	TGAGGTAATC	7680
CCCAAAACGT	TTAACATTGG	CTTCATCCAG	CGCAGCTTCC	ACCTCATCCA	AGATAACAAA	7740
TGGAATAGTC	TTGACACGAA	TAATGGAGAA	GAGCAAGGCA	AGAGCCGATA	GGGCTTTTTC	7800
ACCACCACTC	ATGAGATTAA	GAGACTGGAT	TTTCTTGCCT	GGTGGTTGGA	CAGAAATTTC	7860
AACCCCAGCT	GTCAGCAAGT	CTCCTTCAGT	CAAAATGAGG	TCAGCCTGAC	CTCCACCAAA	7920
CATCTGCTTG	AAGGTCACTT	TAAAGGACTC	ACGAATGACC	TCAAAGGTTG	ATTTAAAGCG	7980
TTCCTTGACC	TCATCATTCA	TCTCTGTAAT	GGTCTCAAGG	AGCAGGTTTT	TCGCAGACAA	8040
AATATCATCA	CGTTGGCTAT	TTAGGAAATC	CAGACGGTTG	TGAACTTCTT	CGTACTGTTC	8100
AATAGCGTCT	AAATTGACAG	GACCCAGTGA	GCGTATAGCC	TTCTCTAAAT	CCTTAACTTC	8160
TTGCTCTGCC	AGATTGAGAT	TTTCCAACTC	ATGCGCCTTT	TCTAAAGCTT	CTGTGTAGCT	8220
GATCTGGTAC	TGGTCTGTTA	ATTGACTTTG	TAGATGGCGC	AAGCGCTCGC	TAACCTTITC	8280
TTTCTTGGCT	TCAGCACGAG	TTTGCTTGCG	AATCCACTCT	TCATTCTGCT	GGCGAGCCTG	8340
ATCCAAATGA	CTAGCAATAT	CATCCAGTTG	ACCCTCAATA	TCATCCAACT	CAAACTGCTT	. 8400
GCGAATCAAA	CCTTGTTGGA	GATTTGTTTT	TTGAGTTTTG	GATTCTTCCG	CCTGTTGACT	8460
GAGCAATTCT	GTATCAACCT	TCTCAAGATT	ATCAATCTTT	TCTTGAAGAA	GGCGCTGGAT	8520
TTCCTCTTGT	TCAAAATCAA	GATTGTCCAA	TTCCTTGCCT	AAGCGTTCAA	TATCAGCAAC	8580
TTCATAACGT	TTTTGCCCTT	GCAGTTCTGT	CTTAAGCAAA	CGAGCTTGCG	CTAGCTCTTC	8640

			8/4			
CTGCAAGTTT	TGATAGCGTT	CTTGGATGGC	ATTTTTGTTA	GACTTAATCT	CTTCAATCTC	8700
AGCTTCCAGA	TTTTGCTTGT	CACTGGAGAT	TGCAGCAAGA	CGCTCTTGGC	AGTTTTCCTT	8760
ATCCGCTTGC	CAATCTCCCT	CGGAAAGACG	ATCTATTTCC	TCTTCTTGGA	GTTTCCAAAG	8820
AGTTTCCAGT	TCTTCAACTT	GCTGACTAGT	TTGCTGATAA	GCGAGGAACA	AGCCTTGCTC	8880
CTGAATACGT	GCCTGCTCTC	CTTGAGATTT	AATAGCTTCT	AATGACTCGG	TCAATCTGGC	8940
CATCTCATCT	TGCAAGGTCT	TCAAAGTCGC	CTCTTCTGAA	CCCAAGCTTG	CTTCTTCTTC	9000
AGCAATTTCT	TTTTGTAATT	GCTCCAGTTC	TGGCTTGATA	AAAATGCTGT	TATTCTGGCG	9060
ATTGGCACCA	CCTGCATAAG	AACCACCTGT	GCGCAACTCT	GTCCCATCCA	ATGTCACCAT	9120
ACGAACCTGA	TAACGAACTT	GGCGAGCTGC	TGCACGCGCA	TGTTCTACGG	TATCAAAGAT	9180
AGCCGTCGTA	GCTAGCAAGT	TCTTGAAAAT	GGCTTCCAGT	CTAGTATCAA	AAGTCACCAA	9240
CTCATCTGCC	ATCCCAAGGA	AACCTGGGCT	TACAGCGATA	GCATCTTGGT	TCTGACTAGA	9300
AATCGTACGC	GCCTTGATAG	TGGTCAAAGG	AAGAAAGGTT	GCACGACCGG	CTCTGTTCCG	9360
TTTAAGGAAG	TCAATAGCCT	TGGTTGCCGA	CTCTTCATCT	TCTACGATGA	TATGCTGGCT	9420
ACTTGCCCCT	AAGGCAATCT	CTAGGGCAGT	TTGATAATAA	ACATCAAAGG	TCAGATGCTC	9480
ACTGACTGCA	CCAATAATCC	CACCTAGGCG	ATCTTTTTCT	TGGAGAACAC	TCTTAACACC	9540
TGCATAAAAG	TTACTATGAT	TTCTCAGGAT	ATTTTCCAAA	CTTTGAGCTC	TGGCCTGCTT	9600
GTTTTTGAGA	TTATCCAGAC	GGTCAAAGAG	TTGGCTTTGT	TGAGCTTGAT	AGGAAGTTTT	9660
CTGCTCCTCT	TGCTCCTTGG	CAATAGCTTG	GTAGTCAGCC	AATAATTTCT	GAACCTGCTC	9720
CTTGGCAGTT	TCAAGCTCTT	CCTTTTGCTG	ACTAGCCTTC	TCTTTAGCTA	TAGCTAATTG	9780
CTCTTTCAGC	TTTTCTAGTT	GATCTGCTTG	TTTTTGAGAA	AGCTGACGAC	TATTTTCCAA	9840
CTCATTCTCA	ATACGGGTCA	ACTGGTTTGA	GACATCCGCT	TCTTCTTGTA	AAAGAGCTAC	9900
AAAGCGTTCA	CGTAAGAGCT	CAATCATCTG	ATCAGGATCG	TCTGAGAAAG	CCAGCAATTC	9960
AGCTTCTAAA	CGATTGAGTT	TTTGATTATT	TTGGACTAGA	TTTCCCTCTA	ACAGAGCTAA	10020
AGAGCTTTCT	TTATCAGACT	TTTCTTTGCT	GAGTGAATTT	CTCTTATCCT	CCAAAGCAGC	10080
CAAACGGGCT	TGTGCCTCCT	GTTGATTCAA	GGCCACTTGC	TCGGACTCCA	GTTTCGATAG	10140
GCTAATTTT	CTTTCTAAAT	CACTAATCAG	ACTAGTCAAG	TCCATCAAAC	TGCCTTGGTC	10200
TTTGGCCATT	TCAGCCTGTA	AATCTTGGCG	TTGCTTTTTA	AGAGTTTGAT	TTTCTTCTTC	10260
TAATTTTTCA	CGCTTTTGGT	AATAACTCAT	CAAGAGTTCT	TGAACCTGAG	TCAACTCTTC	10320
TCTGTCGAC	TCTAGTTCAG	CCTTATTTTC	CTTGATTTGA	GCAACCAGAA	CATCTAAATA	10380
ATAGCCTTA	CGTTGTCCTT	CCAAGTCTAA	AAACTTACGG	GCATTCTCAG	CTTGCTTCTC	10440

AAGAGGCTTG	ATTTGATTAT	CCAACTCGTA	GATAATGTCC	TCTAAGCGGT	CCAGATTATC	10500
CTGAGTTTGC	TGCAGTTTAC	TCTCGGTTTC	TTTTCTGCGA	GTCTTGTATT	TTAAAACTCC	10560
AGCAGCTTCT	TCAAAAATAG	CTCGTCGTTC	CTCAGGCTTG	GAATTAAAAA	TCTCCTCAAC	10620
CTTCCCTTGG	GAAATAATAG	AGAAGGAATC	TCGTCCCAAT	CCAGTATCCA	AGAAGAGGTC	10680
ATGAATATCA	CGCAGACGGA	CTTTCTTGCC	GTCAATCTTG	TATTCGCTAT	CTCCACTACG	10740
ATAGACATGG	CGTTCCACCC	TGATTTCTTG	ACCTGCATCC	TTGATAAATC	CGTCATGATT	10800
ATCCAGAGTC	ACAACTACAG	AAGCATAATT	GAGCGGTTTG	CGACTTTCGG	TTCCAGCAAA	10860
GATGATATCC	GGCATCTTGC	CCCCACGGAG	ACTCTTGACA	CTAGACTCCC	CCAAAGCCCA	10920
ACGCAGACTT	TCTGTAATAT	TGGACTTTCC	AGATCCATTG	GGTCCAACAA	CTGCCGTCAC	10980
ACCTTGGTCA	AAAACGACCT	TGGTCTTATC	AGCAAAAGAC	TTGAACCCCT	GAATTTCGAT	11040
TTCCTTTAAA	TACATGAATC	CAGCCCCTTC	TCAACGCCAT	TTTTGGCAGC	TTCCTGCTCT	11100
GCTAATTTCT	TAGAACGACC	TTGGCCTTGA	CCGATGCTCT	TACCTTCAAC	AAGAACTTCT	11160
ACATCAAAAA	CCTTATCGTG	AGCAGGCCCT	GTTTCAGAAA	TCACCTGATA	ACGAATAGCC	11220
ACATCACCAT	TGACCTGAAG	CAACTCTTGG	AGATGGGTTT	TATAGTCTGT	AATCATCTCA	11280
AACTCGCCTG	CTTCAACCTT	AGGAATCATG	ACTTGATAGA	TAAATTCCTT	GACCTTGGCC	11340
ACATCCTTAT	CCAAAAGAAG	GGCACCAAGA	AAGGCTTCAA	AGGCATCACC	AAGAATGGTG	11400
TCACGATTGC	GACCACCTGA	TTTTTCTTCC	CCTTTACCCA	ACTTGATAAA	CTGGTCAAAC	11460
TGGCAATCAC	GCGCAAAACC	AGCTAAACTC	TCCTCACGGA	CAATCATAGC	ACGGAGTTTT	11520
GATAGGTCAC	CTTCAGGCTT	TTTAGGATAT	TTTTTATATA	GATATTCTGA	AATCAATAAC	11580
TGTAGAACAG	CGTCTCCTAA	AAATTCCAAG	CGTTCATTGT	GTGAAATTTT	TAAGAGGCGG	11640
TGCTCATTGG	CATAACTCGT	ATGAGTAAAG	GCAGTTTCCA	GTAACTTTTT	GTCTGCAAAT	11700
TCGATTGCAA	AATGATTCTT	TAGTACAGTT	TGTAATTCTT	TCATACCAAC	CTCTTTCTAA	11760
CTGATAATAG	TCCTTTTTAT	TATATCAAAA	AAAGCCCCCT	GAGTCACTCT	AAAACGGGAC	11820
TGGAAAGCAT	TTGGGAATTC	TTTAGACAGA	GATTCTCAGT	TTTAGCGGCA	AATTTGGGTC	11880
AGGATAAAGA	AAAAAGCCCT	ATTAAAGGCT	TTTTAGGATG	TTTACATCCA	CCCTGAGGGA	11940
ATCGAACCCC	CATCTCAAGA	ACCGGAATCT	TACGTGATAT	CCATTACACT	AAGGGTGGAA	12000
ACTTGTTTTA	TTATAACAGA	AATTTGCTCT	AATAACAAGT	TTTTTGGTCA	AAGACCCCGT	12060
CTTAGTGGGA	AGCATCCCCA	TTCCAGATGG	AGTTTTTCAC	GATCACATAA	TCAACGTGTT	12120
TAAGGTCAGC	AACCTGACGT	CCACCTGCAT	AAGAAATAGC	ACTTTGAAGG	TCTTGTTCCA	12180

			876			
TCTCAGTTA	AGTGTCTTGC	AGATGACCTT	TAGCAGGAAG	CAAGATACGT	TTGCCTTCCA	12240
CATTTTTGTA	AGCACCTTTT	TGATATTGTG	AGGCTGAACC	ATAATATTCT	TTGAACTGTT	12300
CACCATCGAC	TTCAATCGTT	TTCCCTGGAC	TTTCAATGTG	TCCTGCAAAG	AGGGAACCAA	12360
TCATGATCAT	GCTAGCACCG	AAGCGGATAG	ACTTAGCAAT	ATCACCGTGA	GTACGAATTC	12420
CTCCATCAGO	GATAATCGGT	TTACGCGCAG	CCTTGGCACA	CCAGCGTAGA	GCAGCCAACT	12480
GCCAACCACC	TGTACCAAAA	CCAGTCTTAA	CCTTGGTGAT	ACAAACCTTA	CCAGGACCGA	12540
TTCCGACCTT	AGTAGCATCC	GCACCAGCAT	TTTCCAATTC	ACGCACAGCT	TCTGGTGTTC	12600
CCACATTTCC	AGCAATGACA	AAGGTATCTG	GCAATTCTTT	CTTGATGTGT	TGAATCATAG	12660
AAATCACGCT	ATCCGCATGA	CCATGAGCAA	TATCAATAGT	GATATACTCA	GGAGTATCAG	12720
CCTTGAGCTG	GCTAACAAAA	TCATACTCAT	AATCCTTAAC	ACCGACAGAG	ATAGAAGCAA	12780
TGAGCCCTTG	ATTGTGCATT	CGTTTAATAA	AAGGAATGCG	TCCTGCCTCA	TCAAAACGGT	12840
GCATAATGTA	GAAGTAACCA	CCTTTAGCCA	GTTGCTCTGC	TACATTTTCA	TCCAAAATCG	12900
TCTGCATATT	CGCTGGCACA	ACAGGTAGTT	TAAAGGTGTG	АТТТССТААА	GTGACACTTG	12960
TATCCGCTTC	TGCACGGCTT	TTAATGACAC	ATTTATTTGG	AATCAATTGA	ATATCTTCGT	13020
AATCAAAAAT	TGGAAATTCA	TTTAACATAT	CGATGTCTCG	TTTCTTTTGT	AATGACCTAC	13080
CTATGCTCTT	GCATCACTAC	GCCTTTTCCG	ACGTTTCCTG	G		13121
(2) INFORM	ATION FOR SE	ר בר אם ב	7.			

#### (2) INFORMATION FOR SEQ ID NO: 127:

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 9578 base pairs

  (B) TYPE: nucleic acid

  (C) STRANDEDNESS: double

  (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

CC	GAATGCAA	TGTTTACGGT	TGAACTTGAA	AATGGACATC	AGATTTTAGC	AACAGTTTCT	60
GG:	FAAAATTC	GTAAAAACTA	TATTCGTATT	TTAGCGGGAG	ATCGTGTTAC	TGTCGAAATG	120
AG7	CCATATG	ACTTGACACG	TGGACGTATC	ACTTACCGCT	TTAAATAATC	GAAAAACTTG	180
GAC	GGGATAAG	AAATGAAAGT	AAGACCATCG	GTCAAACCAA	TTTGCGAATA	CTGTAAAGTT	240
ATT	CGTCGTA	ATGGTCGTGT	TATGGTAATT	TGCCCAGCAA	ATCCAAAACA	CAAACAACGT	300
CA	AGGATAAG	ATAGAAAGGA	GAAAACATGG	CTCGTATTGC	TGGAGTTGAT	ATTCCAAATG	360
ACA	<b>VAACGCGT</b>	AGTAATCTCA	TTGACTTATG	TTTATGGTAT	CGGACTTGCA	ACATCTAAGA	420
AA.	TTTTGGC	TGCTGCTGGA	ATCTCAGAAG	ATGTTCGTGT	ACGTGATCTT	ACATCAGATC	480

AAGAAGATG	TATCCGTCGT	GAAGTGGATC	CAATCAAAGT	TGAAGGTGA	C CTTCGTCGTG	54
AAGTAAACTT	GAACATCAAA	CGTTTGATGG	AAATCGGTTC	ATACCGTGG	T ATCCGTCACC	60
GTCGTGGACT	TCCTGTCCGT	GGACAAAACA	СТАААААСАА	CGCCCGCAC	r cgtaaaggta	66
AAGCTGTTGC	GATTGCTGGT	AAGAAAAAT	AATATAGGAG	GTAAAAGTC	T TGGCTAAACC	72
AACACGTAAA	CGTCGTGTGA	AAAAGAATAT	CGAATCTGGT	ATTGCTCATA	A TTCACGCTAC	786
ATTTAATAAC	ACTATTGTTA	TGATTACTGA	TGTGCATGGT	` AATGCAATTG	CTTGGTCATC	840
AGCTGGTGCT	' CTTGGTTTCA	AAGGTTCTCG	TAAATCTACA	CCATTCGCTC	CTCAAATGGC	900
TTCTGAAGCT	GCTGCTAAAT	CTGCACAAGA	ACACGGTCTT	AAATCAGTTC	AAGTTACTGT	960
AAAAGGTCCA	GGTTCTGGTC	GTGAGTCAGC	TATTCGTGCG	CTTGCTGCCG	CTGGTCTTGA	1020
AGTAACAGCA	ATTCGTGATG	TGACTCCAGT	GCCACACAAT	GGTGCTCGTC	CTCCAAAACG	1080
TCGCCGTGTA	TAATCATCGC	ATTACACTGC	TTTTCGTTTA	AGAGGGAGTA	ACTAAATGAT	1140
CGAGTTTGAA	AAACCAAATA	TAACAAAAAT	TGATGAAAAT	AAAGATTATG	GCAAGTTTGT	1200
AATCGAACCA	CTTGAACGTG	GCTACGGTAC	AACTCTTGGT	AACTCTCTTC	GTCGTGTACT	1260
TCTAGCTTCT	CTACCAGGAG	CAGCTGTGAC	ATCTATCAAC	ATTGATGGTG	TGTTACATGA	1320
GTTTGACACA	GTTCCAGGTG	TTCGTGAAGA	CGTGATGCAA	ATCATTCTGA	ACATTAAAGG	1380
AATTGCAGTG	AAATCGTACG	TTGAAGACGA	AAAAATCATC	GAACTGGATG	TTGAAGGTCC	1440
TGCTGAAGTA	ACAGCTGGTG	ACATTTTGAC	AGATAGCGAT	ATTGAAATTG	TAAATCCAGA	1500
TCATTATCTC	TTTACAATCG	GTGAAGGTTC	TTCTCTAAAA	GCGACTATGA	CTGTTAACAG	1560
TGGTCGTGGA	TATGTACCTG	CTGATGAAAA	TAAAAAGGAT	AATGCACCAG	TTGGAACACT	1620
TGCTGTAGAT	TCTATTTATA	CACCAGTTAC	AAAAGTCAAC	TATCAAGTGG	AACCTGCTCG	1680
TGTAGGTAGC	AATGATGGTT	TCGACAAATT	AACCCTTGAA	ATCTTGACAA	ATGGAACAAT	1740
<b>FATTCCAGAA</b>	GATGCTTTAG	GGCTTTCAGC	ACGTATTTTG	ACAGAACATC	TTGATTTGTT	1800
PACAAATCTT	ACTGAGATTG	CTAAGTCAAC	TGAAGTGATG	AAAGAAGCTG	ATACTGAATC	1860
rgacgaccgt	ATTTTAGATC	GTACGATTGA	GGAACTGGAC	ттстстстсс	GTTCATACAA	1920
TGTTTAAAA	CGTGCCGGTA '	TCAATACTGT	GCATGATTTG	ACAGAAAAAT	CTGAAGCAGA	1980
SATGATGAAA	GTACGAAATC	TTGGACGCAA	GAGTTTGGAA	GAAGTGAAAC	TCAAACTCAT	2040
GATTTGGGT	CTTGGATTAA	AAGATAAATA .	AAGGAGGAAT	ACATGGCTTA	CCGTAAACTA	2100
GACGCACTA	GCTCACAACG 1	PAAAGCAATG	CTTCGCGATT	TGACAACTGA	CCTTTTGATC	2160
ACGAATCAA	TCGTGACAAC 1	rgaagetegt (	GCTAAAGAAA	TCCGTAAAAC	TCTTCAAAAA	2220

			878			
ATGATTACTC	TAGGTAAACG	TGGTGATTTG	CATGCACGTC	GTCAAGCAGC	TGCTTTCGTA	2280
CGTAATGAAA	TCGCATCTGA	AAACTATGAT	GAAGCAACTG	ATAAGTACAC	TTCTACTACA	2340
GCACTTCAAA	AATTGTTCTC	AGAAATCGCA	CCTCGTTATG	CTGAACGTAA	CGGTGGATAC	2400
ACTCGTATCC	TTAAAACTGA	ATCACGTCGT	GGTGATGCAG	CGCCAATGGC	GATCATCGAA	2460
TTAGTATAAA	ATCATCAATT	TTGTTGAGTG	TTATGATGAT	GGAGTCTTGT	GCTCTTAGTC	2520
TAGCTCTGGT	CTACCGCTAG	GATTTCGGTC	CTAGCGGGAA	CACTCATCAT	AAGTTGGGAT	2580
AGTAGACGCT	TGTTTACGAA	ATTGTTTTTT	TCTTAAGAAC	AACTTCGTAA	GCAGGCGTTT	2640
TTGAGTATTT	TCGTTAGAAT	TATGCTATAC	TATTTGAAAA	GAATCCTGTT	TAATGTTAAG	2700
GTTTCTTATT	TTAAGAAGAA	TTGGAGTTTA	CTTATGAAAG	CCATTATAAC	TGTTGTTGGT	2760
AAAGATAAAT	CTGGAATTGT	TGCAGGTGTT	TCTGGTAAAA	TTGCAGAATT	AGGATTGAAT	2820
ATTGACGATA	TCTCTCAAAC	TGTCTTGGAT	GAATATTTTA	CGATGATGGC	TGTTGTATCT	2880
AGTGATGAAA	AGCAAGATTT	TACCTATCTT	CGTAATGAAT	TTGAAGCTTT	TGGGCAAACT	2940
TTGAATGTAA	AAATCAATAT	TCAGAGTGCA	GCGATTTTCG	AAGCTATGTA	TAATATCTAG	3000
GAGGTCATCA	TGGATATTAG	ACAAGTTACT	GAAACCATCG	CCATGATTGA	GGAGCAAAAC	3060
TTCGATATTA	GAACCATTAC	CATGGGGATT	TCTCTTTTGG	ACTGTATCGA	TCCAGATATC	3120
AATCGTGCTG	CGGAGAAAAT	CTATCAAAAA	ATTACGACAA	AGGCGGCTAA	TTTAGTAGCT	3180
GTTGGTGATG	AAATTGCGGC	TGAGTTGGGA	ATTCCTATCG	TTAATAAGCG	TGTATCGGTG	3240
ACACCTATTT	CTCTGATTGG	GGCAGCGACA	GATGCGACGG	ACTACGTGGT	TCTGGCAAAA	3300
GCGCTTGATA	AGGCTGCGAA	AGAGATTGGT	GTGGACTTTA	TTGGTGGTTT	TTCTGCCTTA	3360
GTACAAAAAG	GTTATCAAAA	GGGAGATGAG	ATTCTCATCA	ATTCCATTCC	TCGCGCTTTG	3420
GCTGAGACGG	ATAAGGTCTG	CTCGTCAGTC	AATATCGGCT	CAACCAAGTC	TGGTATTAAT	3480
ATGACGGCTG	TGGCAGATAT	GGGACGAATT	ATCAAGGAAA	CAGCAAATCT	TTCAGATATG	3540
GGAGTGGCCA	AGTTGGTTGT	ATTCGCTAAT	GCTGTTGAGG	ACAATCCATT	TATGGCGGGT	3600
SCCTTTCATG	GTGTTGGGGA	AGCAGATGTT	ATCATCAATG	TCGGAGTTTC	TGGTCCTGGT	3660
CTTGTGAAAC	GTGCTTTGGA	AAAAGTTCGT	GGACAGAGCT	TTGATGTAGT	AGCCGAAACA	3720
GTTAAGAAAA	CTGCCTTTAA	AATCACTCGT	ATCGGTCAAT	TGGTTGGTCA	AATGGCCAGT	3780
GAGAGACTGG	GTGTGGAGTT	TGGTATTGTG	GACTTGAGTT	TGGCACCAAC	CCCTGCGGTT	3840
GGAGACTCTG	TGGCACGTGT	CCTTGAGGAA	ATGGGGCTAG	AAACAGTTGG	CACGCATGGA	3900
ACGACGGCTG	CCTTGGCCCT	CTTGAACGAC	CAAGTTAAAA	AGGGTGGAGT	GATGGCCTGC	3960
AACCAAGTCG	GTGGTTTATC	<b>ФИТЕГОТИТЕ</b>	ATCCCTCTTT	CTCACCATCA	ACCA AMCAMM	4020

GCTGCAGTGC	AAAATGGCTC	TCTTAATTTA	GAAAAACTAC	AAGCTATGAC	GGCTATCTGT	4080
TCTGTTGGAT	TGGATATGAT	TGCCATCCCA	GAAGATACGC	CTGCTGAAAC	TATTGCGGCT	4140
ATGATTGCGG	ATGAAGCAGC	AATCGGTGTT	ATCAACATGA	AAACAACAGC	TGTTCGTATC	4200
ATTCCCAAAG	GAAAAGAAGG	CGATATGATT	GAGTTTGGTG	GTCTATTAGG	AACTGCACCC	4260
GTTATGAAGG	TTAATGGGGC	TTCGTCTGTC	GACTTCATCT	CTCGCGGTGG	ACAAATCCCA	4320
GCACCAATTC	ATAGTTTTAA	AAATTAAGAA	AATAGGAGAA	ATTTTAAGTT	CTATTTAAGA	4380
TTAGACGTGT	ATACTATAAT	CATTAAATAA	AGACCTCCTA	ATATTATTTG	AAACAGATAA	4440
CACTGAATTA	GTTTGAATTT	GATTTTCATC	TAATATCTTT	ATTTAATGAA	CTCCTAAACT	4500
TTTTCATAAT	AATCTCCTTC	AAAAGTCGCC	TGTATGGGTG	GCTTTTATTT	TATCATTCAT	4560
GATATAATAG	AAGCAAACGG	AGGACGGAAA	ATGGTAAAAG	TACGATTGTA	TTTGGTACGT	4620
CATGGCAAGA	CCATGTTTAA	CACGATTGGT	CGCGCGCAAG	GTTGGAGCGA	TACTCCCTTA	4680
ACTGCTGAAG	GTGAACGAGG	GATTCAAGAG	TTAGGAATCG	GTTTGCGAGA	ATCTGATCTA	4740
CAGTTTGAGC	GTGCTTATTC	GAGTGATTCT	GGTCGTACCA	TTCAGACCAT	GGGAATTATC	4800
CTTGAAGAAC	TTGGCTTGCA	GGGGGAAATC	CCTTATCGCA	TGGACAAGCG	TATCAGAGAA	4860
TGGTGTTTCG	GTAGTTTTGA	TGGAGCCTAT	GATGGCGATC	TTTTCATGGG	CATTATTCCT	4920
CGTATCTTTA	ATGTGGACCA	CGTTCACCAA	TTGTCTTATG	CTGAACTGGC	TGAGGGCTTG	4980
GTAGAGGTCG	ATACAGCTGG	TTGGGCTGAA	GGCTGGGAAA	AACTCAGTGG	CCGAATCAAG	5040
GAAGGCTTTG	AAATGATTGC	AAAAGAAATG	GAAGATCAAG	GTGGAGGTAA	CGCCCTTGTT	5100
GTCAGCCATG	GAATGACTAT	TGGAACCATT	GTTTATCTGA	TTAATGGCAT	GCATCCGCAT	5160
GGTCTGGATA	ATGGTAGCGT	GACAATCCTT	GAATATGAGG	ACGGCCAGTT	TAGGGTTGAA	5220
GTTGTCGGTG	ACCGTAGTTA	CCGAGAGCTA	GGACGTGAGA	AGATGGAAGA	AGGCTCTATT	5280
PAATCAGTCT	AGACTTGCTT	GCCATGAGCT	AGGGATTTGA	TAAGAATATC	AAGATAAGAA	5340
<b>VAAA</b> CAGCCG	AGGGCACTCC	TTTCGGCTGT	TTTTGATGTG	GAAAACTAAA	GTGTAATGCT	5400
ATTGCTTTTA	GAGATTTTCA	TAAACAAGAG	CAAGGAACCT	ACTGTTAGAA	CAGTCAGGAT	5460
GTTGACAAG	GTTGCGGCTA	CACCGTAATT	TCCTCTGAGA	ACCTCTGTAT	AAATAGCTAC	5520
GTCATTGTT	CTTGTTTTGA	CATTGTAGAG	GAGGATAGAA	GTAGAGAGTT	TTGAAATCAT	5580
TGTGACTCAA	GATAAGATGG	CTCCAGAAAT	GATACCAGAT	AGCATCATTG	GAGTTGTAAT	5640
TTAGCAAAG	GTATTGAGAC	GACTACTTCC	TAAGCTTTCA	GCAGCTTCTT	CAATACTTGG	5700
GCTATTTGT	TGTAAGCTAG	CAACAGATGA	GCGAATAGTA	TAÄGGTAATC	TTCTGGCAGA	5760

880 TAGAGACATA ATCAAGATGA AAGCAGTCCC TGTAATCATA AGAAATCCAC TTCCAAATAG 5820 ACCAGTATTG AAGGAAGAAA TGAAGGCAAT CCCTAGAACG GTTCCTGGTA CAATATAAGG 5880 TACCATACTG AGGCTGTCAA TTAAGTTTGT AAACAAATTC CGTTTTCTAA CGGCTAGGTA 5940 GGAGATAAAT GTCGCAAATA GAACAACTAG AACTAAGGCA ATCAAAGGGA TACGAATGGT 6000 ATTGAAAATA GCAGATCCCA TACGATGGAA AGCTACCTTG TAACTGTTTG GAGAATAACC 6060 TTTAACAGAT ACCATACCTG ATGTTTTTAG GAAAGAGGTA TAAATTAAGT AGATTTGAGG 6120 TAAAACAGAG ATAAAGATAA TTCCGTAGAC TGTTGCATAA ATGGCAGCCA TTTTTCCTTT 6180 TGTAGTTTTT TTAGGCTCAA TTGGATGGAG CAGATTCATG CTGAAACTGT AGCGGTTTGC 6240 AATGTGTTTT TGGATAAGGA AAATTGCCAA GGCAATGATA ATCGCCATAA TTGCAAAAGC 6300 AGAATTTCCT CCAACCTCGC TAATAAATTG GGTATAAATC AGGACAGGGA AAGTCCGATA 6360 CCCTTCGCCA ATCAACATAG GCGTTCCAAA GTCTGAGAAT GCTCTCATAA ATACAAGCAA 6420 GGAGCTGCTA GTAAGGTTGG AACTAGGAGA GGTAAAACAA CCGTTACGAT AGGTTTAAAT 6480 CCGAAGGACC CCATGCTTTC AGCTGCTTCA AGTAGAGAAT TGTCAATACT GTTCATTGTT 6540 CCAGCAACAT ATAGAAATAC CAGTGGGAAT AGTTGCAGTG TAAAGACAAG TACAATTCCT 6600 TTGAATCAAT AAATATCGAT AGCTGGAAGA TAAAGGGCAT TTGTCAAAAA TTTAGTGATG 6660 ACCTCATTTC GTCCTAGCAA GAGAACCCAG GAGTAGGCTC CTACGAAAGG AGCTGACATG 6720 GAAGCAATGA TAATCAATAT TTGTAGAAAT TTCTTCCCCT TGAAGTCATA CATAGAGAAG 6780 AGATAAGCTA ATAGGGTTCC TACAACTAAG GAAGTGATAG TAGCGGTAAT GGAAACCTTC 6840 AAACTGTTGA CTAGTGTCTC AGAGTAGTAG GCTTTACTAA AGAAAGTGAC AAAATTAGCT 6900 AGTGAGAATT GTCCTTCATG TATAAGTGCT TGCTTGAGCA CGGTAACGAT AGGATAAACG 6960 AGAAAGATAG GATAGGTAAG AAAGAGGAAG AAAGAGGAAA CTGTCCAAAT ATTTAGTTTT 7020 TTACGTTCCA TGGTTGACTC CTTTTATCAG GTTTTGGGAA CCATCTGCAG AAAAGATGTT 7080 TAATTTTTGC GTATTGATTC GTAGACGAAT ACGATTGCCT TTTTGTAGAT CTTCTTCAAA 7140 AGTTGATTCT TCACTAACTT GAATTTTTGA GGCAAAACCT GTCTCAATGA AATAATCCGT 7200 ATTTAGTCCA AGATAGACGC TATCTCTAAT AGTTCCTTCA ATATCTCCAG ATTCATCTTT 7260 GATAAACTCT TCGGGACGAA TGCTTACATG AATAGCTTGC TCCTCAACCT GATCAAGAGC 7320 TGGCATTCGA AGGGCATAGC CATCTGAAAA GACGATATAA GCGCCGTCGC TCCGTTTTTC 7380 AAGATTGGCA GGGATAATAT TTGTGCGTCC GATAAAGGTT GCCACAAACT CATTAGCTGG 7440 TTTATGATAG AGTTCTTTTG GTCGGCCGAT TTGTTGGATC ACCCCATCTT TCATAACAGC 7500 AATTTGGTCT GAAATAGCCA TGGCTTCTTC TTGGTCGTGG GTTACATAAA CAGTTGTAAT 7560

TCCCACTTCC	TGTTGGATTT	CTCGGATGGC	TTGACGCATA	TCCAAGCGAA	GTTTGGCCTC	7620
CAGATTACTA	AGTGGCTCGT	CCATGAGGAG	AACACTTGGA	TTAACCGCTA	AGGCGCATGC	7680
CAAGGTGACA	CGTTGTTGTT	GTCCACCACT	GAGTTTATCG	GGCTTTCGAT	CCGCATATTG	7740
AGCAATTTGC	ATGAGTTCAA	GATACTTGTT	GGTCTGTTGA	ATCAATTCTT	CTTTTGGAAC	7800
CTTCTTTTGC	ATAAGACCAA	AAGCAACGTT	GTCTCGGACA	GTCAAATGTG	GGAAAATAGC	7860
GTAGTTTTGG	AAAACCATCC	CGATATTGCG	TTTGCTGGGT	TCCATATTAT	TGATTTTTGT	7920
ATCATCGAAG	TAAAATTCTC	CACCTTCGAT	ACTGTTGAAA	CCTGCAATCA	TACGAAGAAG	7980
GGTCGTTTTC	CCACATCCTG	AAGCTCCAAG	AAGGGTAAAG	AGACTTCCTT	TTGGAATTGT	8040
AATGTTCAAA	TTCTCAATAA	CAGGGACATC	GTGGTAGATT	TTTTTGGCGT	TAATAATTTT	8100
GATCTCACTC	ATAGTGAACC	TCTTTTACTG	TTTAGATTGG	ATATCTGTAA	AGACTTCGTT	8160
GTATTTCTTA	ACGATATCTG	ATTTATTCTT	GATGACATAA	TCATAATCTT	CAGTGAGTGT	8220
TTTGATTTTG	TCAATTGGTT	TCATGTTTTC	GCTTGTTTTA	GCATTTTTAC	GAACAGGACG	8280
GTTAGTAGTG	GTTGTACCAA	GTGTATCTTG	TACTTCTTGA	GAGATAATAA	AATCGATAAA	8340
TTTCTTGGCA	TTTTCCATAT	TTTTAGATTT	TTTAACGATA	GCAGCACTAG	CAGGTAGGAA	8400
GACGGTTCCT	TCTTTTGGAT	AGACTACCTT	AATGTTAGCT	CCGTCATTTA	AGAGTTTAAC	8460
TGCTGGATCT	TCATAAGAGA	GACCAACAGC	CATTTCTCCA	TCAGCGACTA	CTTTATAGAC	8520
ACTAGATGAA	CTTGAACCGA	TTTTACCATC	AATAAGTGTG	AAAAGATCTT	TTACATAAGA	8580
CCAAGCCTTA	TCATCTTTGT	AACCACCTTG	AGCTTGTAGC	ATATTTGTTA	ATTGAGCAAA	8640
GGCGCTAGAA	GAGTTTGCTG	GGTCAGCAGT	TGCGATTTTT	CCTTTTAGTT	CAGGTTTGAA	8700
AAGATCGTTA	TATCCTTCGA	TGTTCATGCC	TTTAGTTAAA	TCAGGGTTGA	CGATTAAAAC	8760
ACTACCATCT	AGTGTATAAG	GAGTAGAGTA	GCCAGTTGTG	TTTTGATATT	CTTTGATAAC	8820
ATTATCATTT	TCTTTTGAAG	TATAGTTTTC	AAAGAGTTCT	CCGTGGGTAG	TATATTGTGT	8880
ATAAGAACCA	CCAAAGATAA	CATCAGCTAC	AGGAACTTCT	TTTTCTGACT	CTAGTTTTTT	8940
GAAAAGTTCT	CCAGTACCAG	CTTGAATCAG	TTCTACTTTG	ATACCATATT	TTTCTTCAAA	9000
GGCAGGAATA	GTTGCTCCAA	TTAAGCCCTC	TGAGTTTGGT	GAATAAACGA	CTAGCGAACC	9060
GCCGTCTCCT	TTATCAGATG	AACTGTCATC	GGCAGATTCA	TTAGAAGAAC	AAGCAGCATA	9120
ATACATCCAT	TTCTTTTTCA	TGATGGATAC	CTCCGTTGTG	TTATTTAAGT	AAATTTTAAA	9180
ACAATGTAAG	CGTTTTTAAA	ACATACAATT	CTATTCTATA	GTGTATTGAA	TCTATAACAG	9240
TACACTTTGA	CTGCTAAAAT	ATTTCTATAA	ATTAATTTGA	CTTTCCTGAT	AGAGATGTTC	9300

WO 98/18931 PCT/US97/19588

			882			
ACATCTTATT	TCAATTCACT	ATATTAGAGT	AAAATTCTCT	ACAAAAAGAA	GAATAGCCTA	9360
TTTTACTATT	CTTCTGAGTG	ATTTCAATTC	CTTTGGGGAA	ATATGGAGAT	ACTTTTTAAA	9420
TCCTGACAAA	TGGTTGTTTC	TTTTTCTAAA	TCGGTGATAC	TGTATCGGAG	AATGCGCGTG	9480
AGGTCACAAA	GGCTGCGATA	GAGCTTCTAT	GGAGAATTTC	TTTTTGGAGA	GATTTTTTAA	9540
aggaatgaga	CATCCGCTAC	CTCCTTGGAA	GGTTTTTG			9578

### (2) INFORMATION FOR SEQ ID NO: 128:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 13440 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:

CGGGCTGTTG	TGACGATTCT	TATTTCTATC	TGTGTTATCT	TTTTGGGAAC	TATTTTGGGT	60
GTTGTCTTGG	CTTTTGGGCA	ACGTTCAAAG	TTTAAACCGC	TTGTTTGGTT	GGCCAACTTG	120
TACGTTTGGA	TTTTCCGTGG	GACACCGATG	ATGGTTCAAA	TTATGATTGC	CTTTGCTCTT	180
ATGCATATCA	ATGCTCCGAC	TATTCAGATT	GGAATTTTAG	GTGTTGATTT	TTCGCGTCTG	240
ATTCCAGGGA	TTTTGATTAT	CTCTATGAAT	AGTGGTGCTT	ATGTTTCGGA	GACTGTTCGT	300
GCCGGAATCA	ATGCGGTTCC	AAAAGGTCAG	CTAGAAGCGG	CTTATTCGCT	AGGGATTCGT	360
CCTAAAAATG	CGATGCGTTA	TGTGATTTTG	CCACAAGCAG	TCAAAAATAT	CTTGCCAGCA	420
TTGGGGAACG	AATTTATCAC	CATTATCAAG	GACAGCTCCC	TCTTATCAGC	TATTGGGGTC	480
ATGGAGTTGT	GGAATGGGGC	TACAACAGTT	TCTACAACAA	CCTATCTACC	TTTAACACCA	540
CTTTTATTTG	CAGCATTTTA	CTACTTGATT	ATGACCTCTA	TTCTGACAGT	AGCCTTGAAA	600
GCTTTTGAAA	AACATATGGG	ACAAGGAGAT	AAGAAATAAT	GACAGAAACC	TTGATAAAAA	660
TTGAAAATTT	ACATAAATCC	TTTGGAAAGA	ATGAAGTATT	GAAGGCCATC	AACCTCGAGA	720
TTAAAAGAGG	AGAAGTTGTC	GTTATCATCG	GTCCTTCAGG	GAGCGGGAAA	TCTACCTTGC	780
TTCGCTCTAT	GAATTTGTTG	GAAGAAGCAA	CCAAGGGGAA	GGTTATCTTT	GAGGGAGTCG	840
ATATTACGGA	CAAGAAGAAT	GACCTGTTTG	CCATGCGTGA	GAAGATGGGC	ATGGTTTTTC	900
AACAATTCAA	TCTCTTTCCT	AATATGACTG	TGATGGAAAA	TATCACCTTG	TCCCCTATCA	960
AGACCAAAGG	TGACAGTAAG	GCCGTTGCAG	AGAAAAGAGC	TCAGGAACTT	TTGGAAAAAG	1020
TTGGTTTGCC	AGATAAGGCA	GACGCTTATC	CACAGAGTTT	GTCAGGTGGC	CAGCAACAGC	1080
GGATTGCCAT	CGCGCGTGGG	TTGGCTATGG	AACCAGATGT	TTTGCTCTTT	GACGAGCCAA	1140

CTTCAGCCC1	R AGATCCTGAC	ATGGTTGGAG	AAGTTCTGGC	TGTTATGCAA	GATCTAGCCA	1200
AGTCAGGAAT	GACCATGGTT	ATCGTAACAC	ATGAGATGGG	ATTTGCCCGT	GAGGTGGCAG	1260
ATCGTGTCAT	CTTTATGGCA	GACGGTGTGG	TTGTTGAAGA	CGGAACACCT	GAGCAGATTT	1320
TTGAACAAAC	CCAAGGACAA	AGGACTAAAG	ACTTCTTGAG	TAAGGTTTTA	TAAGTTAGCT	1380
TTGTTTAGCT	ATTTGTAGCC	AGCTTTAAAC	GTTAAAGAGA	AGATTAGTGA	AAAGCTCAAC	1440
CAGAGCTTTT	TCTTATAGTT	TAAAGCTATA	GGATTGCCTA	GGAAAGAAGT	GTTAGAGCTA	1500
CATTGTATTT	TTTGGTATAA	TTAAAGATAT	TTGTAAGAAA	AGAGAAGTGA	TATGACACAG	1560
ATTATTGATG	GGAAAGCTTT	AGCGGCCAAA	TTGCAGGGGC	AGTTGGCTGA	AAAGACTGCA	1620
AAATTAAAGG	AAGAAACAGG	TCTAGTGCCT	GGTTTGGTAG	TGATTTTGGT	TGGGGACAAT	1680
CCAGCCAGCC	AAGTCTACGT	TCGCAACAAG	GAGAGGTCAG	CCCTTGCGGC	TGGTTTCCGT	1740
AGCGAAGTAG	TACGGGTTCC	AGAGACCATT	ACTCAAGAGG	AATTGTTAGA	CCTGATTGCT	1800
AAATACAATC	AGGATCCAGC	TTGGCATGGG	ATTTTGGTTC	AGTTGCCATT	ACCAAAACAC	1860
ATTGATGAAG	AGGCGGTTCT	ATTGGCTATT	GACCCAGAAA	AGGATGTGGA	TGGTTTCCAT	1920
CCTCTAAACA	TGGGGCGTCT	TTGGTCTGGT	CATCCAGTCA	TGATTCCTTC	GACACCGGCA	1980
GGAATTATGG	AAATGTTCCA	TGAATATGGG	ATTGACTTGG	AAGGTAAAAA	TGCAGTCGTC	2040
ATCGGTCGAT	CCAATATTGT	CGGAAAACCT	ATGGCCCAGC	TTCTTTTGGC	AAAGAATGCA	2100
ACAGTAACCT	TGACTCACTC	ACGTACTCAT	AATCTTTCCA	AGGTGGCTGC	AAAAGCAGAT	2160
ATTCTGGTTG	TTGCAATCGG	TCGTGCCAAG	TTTGTGACTG	CTGACTTTGT	CAAACCAGGT	2220
GCGGTAGTCA	TTGACGTTGG	GATGAACCGC	GATGAAAATG	GTAAGCTCTG	TGGGGATGTT	2280
GATTATGAGG	CCCTTCCCCC	ACTTGCTAGC	CACATTACGC	CAGTCCCTGG	AGGTGTCGGT	2340
CCTATGACCA	TTACTATGCT	GATGGAGCAA	ACCTATCAGG	CAGCACTTAG	GACATTGGAT	2400
AGAAAATAAG	TTTAAAAATT	TCTGAGGAAA	GTGTATTTTC	TATAGCTATA	TCTAAAATGA	2460
TAGAAATGAA	TATTAAATTT	TAGAAATAAG	TTTATAAAAG	GAGGTTTGCG	CCTCCTTTTT	2520
GTTGTATAAT	GGAGTGAGGT	GATTAGATGA	TTTTAAAAAT	TTATAATGGG	GAATATAGTT	2580
TACAATGGGA	TGGAATATAC	TACTTAGCAC	TAATTGATTA	TCCAAATATT	CAAGAGTGGG	2640
aattagaaaa	AATTGCTAAA	TTTATAGCTT	ACGAAAAACT	TCATAAACGT	CAAACAAGTA	2700
TTGAGTGTGC	TGATTCTTGT	TTAAAAAAAG	AAATTTTAGA	TTACATCTGT	CAGCATCCCT	2760
TTCTGCCACC	ATTTACTCCT	ACAGATAAAA	GAGTAGCCTC	GACTTATGAC	CTACATAAGA	2820
GGTTAGTGAC	TTCAGACTAC	TGTAGTCATA	CTACGACTAT	AGATGCAGCG	ATTTCTATTT	2880

WO 98/18931 PCT/US97/19588

884 TTAAAACTGG TCGTCTTTTA TCTGCTGTGA AAGCCTTTGG GCGAGATGCT GAGGAGTTGG 2940 TTTTGGATAG TCGAAATGCT GCATCTGATC CGATAGATTA TTTTGACTAT GTCATGTTAG 3000 GGTGGTCAAA TACAAGTTCT GGTTATCGAT TGGCGATGGA GCGTTTATTA GGTCGAGCTC 3060 CTTCAGAGAA AGAATTACAA GACAAGTTTA TTCCTGGAGT AAGTTTTCAT TTTATCTATA 3120 CAGATTTGAT TAAAGTTCCT GGTTATATTT TTGATGGTTA CCATGCTGTA AAAATTAAGG 3180 ACATGCTTAA TTTATTAAGT GAGTTGTATA TTTGCATTAT TCCAACTCAT AATAAGAGCC 3240 AATTTGAAAA TATTATTCCA ACCAAAATAC AAGATAGGGT GTATTATCTT GACTATGCTG 3300 GAGAAGACTT AGAAGAGTGG ACTAAGAAAG TCTATCAAGT TGTTTTAAAA CAATCAGATA 3360 AAGGATAGTT GAGGAAAAAA CGATGAAAGT GATTGATCAA ACCTTACTAG AAAAAGTCAT 3420 TATTGAACGT TCTTGTACAA GTCATAAAGG AGACTACGGT CGTCTGCTGT TGCTTGGTGG 3480 GACTTATCCT TATGGTGGTG CCATCATCAT GGCTGCTTTA GCAGCTGTAA AAAGCGGTGC 3540 AGGATTGGTA ACCGTTGGAA CGGACAGGGA AAATATCCCT GCTCTACACA GCCATTTGCC 3600 TGAGGCTATG GCCTTTTCTC TGCAAGATCA GTAATTGTTA CAAGAGCAAT TGGAGAAGGC 3660 AGAAGTTGTC TTGCTGGGGC CTGGTTTACG AGACGATACG TTTGGAGAAA ATCTTGTAAA 3720 ACAGGTCTTT GCTAGCTTAA AAAAGAATCA GATTTTGATT GTAGATGGAG GGGCCTTAAC 3780 CATCCTTGCT AGGACAAGTT TGTTGTTTCC ATCTAACCAG CTTATCTTAA CTCCCCACCA 3840 AAAAGAATGG GAAAAACTGT CTGGTATTGC TATTGAAAAG CAAAACGAAG GTACAACATC 3900 TAGTGCCCTG ACTTCTTTCC CTCAAGGAAC AATTTTGGTA GAGAAAGGTC CAGCTACTCG 3960 TATTTGGCAA GTTGGCCAGT CTGATTATTA CCAGTTAAAG GTTGGCGGTC CCTATCAGGC 4020 GACTGGTGGT ATGGGTGATA CACTGGCTGG AATGATTGCA GGATTTGCAG GCCAATTTCG 4080 ACAGGCCAGT CTCTACGAAC GTGTGGCAGT AGCAACCCAT CTTCATTCAG CCATAGCCCA 4140 AGAACTATCT CAAGAAAATT ATGTGGTCTT GCCGACGGAA ATTAGTAATT GTCTTCCTAA 4200 AGTAATGAAA AGATATGTCT AAAATAGTTA GACAAAAAAT GTTGATAATT TGTATCATTA 4260 TTCTTAATTC ACAAAAAACG AACGTTTAGT ATTCTTCTTG CTAAGAAACT AAATTTGTTC 4320 GTTTTTTTAC TCTTGTAAAT CTATTTTTGT TAGAGTTGAT TTGGTTTACA TCCGTACTTA 4380 AATTGATTTG TTAGAGCTCT ACTTTTATTA AAAAAATTCA ATTTCAAGGA TAAATAAGCA 4440 GTATTCTAAA GGTACTTTTA GATGAAATAA AAGCCTTTAC ATGGTATAAT AGAGGTAGCT 4500 CTTTAATGGA GGTGTTTGAG TGGAAAATCT GAAGAAAATG GCAGGTATCA CGGCTGCTGA 4560 ATTTATCAAG GATGGGATGG TTGTAGGGCT AGGAACAGGT TCTACTGCCT ATTATTTTGT 4620 CGAAGAAATC GGTCGTCGAA TCAAGGAAGA AGGCTTGCAG ATTACAGCTG TGACGACTTC 4680

TAGTGTGACC	AGTAAACAGG	CTGAAGGGCT	CAATATCCCG	CTCAAGTCTA	TTGACCAAGT	4740
AGACTTTGTC	GATGTGACAG	TCGACGGGGC	GGATGAAGTG	GATAGTCAGT	TTAATGGAAT	4800
CAAAGGCGGT	GGTGGTGCCC	TTCTCATGGA	AAAGGTGGTC	GCAACACCAT	CAAAAGAATA	4860
CATTTGGGTG	GTGGATGAAA	GCAAGCTGGT	CGAAAAACTA	GGTGCTTTTA	AATTGCCAGT	4920
AGAAGTGGTT	CAGTATGGTG	CAGAGCAGGT	CTTTCGTCAT	TTTGAACGAG	CTGGCTACAA	4980
ACCAAGTTTC	CGTGAAAAAG	ACGGCCAACG	TTTTGTGACC	GATATGCAGA	ATTTTATCAT	5040
TGACCTCGCC	TTGGATGTCA	TTGAAAATCC	AATTGCTTTT	GGACAAGAAT	TGGACCATGT	5100
CGTTGGTGTT	GTGGAGCATG	GTTTATTCAA	CCAAATGGTG	GATAAGGTAA	TCGTTGCTGG	5160
ACGAGATGGA	GTTCAGATTT	CAACTTCAAA	AAAAGGAAAA	TAGAAGGGGG	CATAAGATGT	5220
CTAAATTTAA	TCGTATTCAT	TTGGTGGTAC	TGGATTCTGT	AGGAATCGGT	GCAGCACCAG	5280
ATGCTAATAA	CTTTGTCAAT	GCAGGGGTTC	CAGATGGAGC	TTCTGACACA	CTGGGACACA	5340
TTTCAAAAAC	AGTTGGTTTG	AATGTCCCAA	ACATGGCTAA	AATAGGTCTT	GGAAATATTC	5400
CTCGTGAAAC	TCCTCTTAAG	ACTGTAGCAG	CTGAAAGCAA	TCCAACTGGA	TATGCAACAA	5460
AATTAGAGGA	AGTATCTCTT	GGTAAGGATA	CTATGACTGG	ACACTGGGAA	ATCATGGGAC	5520
TCAACATTAC	TGAGCCTTTC	GATACTTTCT	GGAACGGATT	CCCAGAAGAA	ATCCTGACAA	5580
AAATCGAAGA	ATTCTCAGGA	CGCAAGGTTA	TTCGTGAAGC	CAACAAACCT	TATTCAGGAA	5640
CGGCTGTTAT	CTATGATTTT	GGACCACGTC	AGATGGAAAC	TGGAGAGTTG	ATTATCTATA	5700
CTTCAGCTGA	CCCTGTTTTG	CAGATTGCTG	CCCACGAAGA	CATTATTCCT	TTGGATGAAT	5760
TGTACCGTAT	CTGTGAATAC	GCTCGTTCGA	TTACCCTTGA	GCGTCCTGCC	CTTCTTGGTC	5820
GCATCATTGC	TCGCCCTTAT	GTAGGTGAAC	CAGGTAACTT	CACTCGTACG	GCAAACCGTC	5880
GTGACTTGGC	TGTATCTCCA	TTTTTCCCAA	CTGTTTTGGA	TAAATTGAAT	GAGGCTGGTA	5940
TCGATACTTA	TGCTGTGGGT	AAAATCAACG	ATATCTTTAA	CGGTGCTGGT	ATCAACCATG	6000
ACATGGGTCA	CAACAAGTCA	AATAGTCATG	GAATTGATAC	ACTATTGAAG	ACTATGGGAC	6060
TTGCTGAGTT	TGAAAAAGGA	TTCTCATTCA	CAAACCTAGT	TGACTTTGAT	GCCCTTTACG	6120
GCCATCGTCG	TAATGCTCAC	GGTTACCGTG	ATTGCTTGCA	TGAGTTTGAT	GAACGCTTAC	6180
CTGAAATTAT	CGCAGCTATG	AGAGAGAATG	ACCTTCTCTT	GATTACTGCG	GACCATGGAA	6240
ATGACCCAAC	GTATGCAGGA	ACGGATCACA	CTCGGGAATA	TATTCCATTG	TTGGCCTATA	6300
GCCCTGCCTT	TAAAGGAAAT	GGTCTCATTC	CAGTAGGACA	TTTTGCAGAT	ATTTCAGCGA	6360
CTGTTGCCGA	TAACTTTGGT	GTGGAAACTG	CTATGATTGG	GGAAAGTTTC	TTAGATAAAT	6420

			886			
					TGGTAAGAAT	6480
AAGGTCGTC	A TGGCGGAGC	T TCGTCAAGA	A TTGACAAACT	TGGGACTGGA	AAAGGTTGAG	6540
AGCTACATC	A ATAGTGGCA	A TATTTTCTT	T ACTTCGATAC	ATTCCAAAGC	CCAATTGGTT	6600
GAAAAGCTA	G AGACTTTCT	T TGCAGTCCA	T TATCCATTTA	TTCAGAGCTT	TTCTTTACTG	6660
AGTCTAGAG	G ACTTTGAGG	C GGAACTTGA	A AATCTACCAG	CTTGGTGGAG	CAGAGACTTG	6720
GCACGAAAA	G ATTTTCTCT	T TTACACTGAG	G GGTTTGGATG	TGGACCAAGT	CATCGCGACA	6780
GTTGAAAGT	T TAGAGCTGA	A AGATGAAGT	CTTTATTTTG	GAAAACTTGG	GATTTTCTGG	6840
GGGAAATTT	r ctgaagaat	C CTATTCTAAC	ACTGCCTATC	ATAAGTACTT	GCTGAAGGTG	6900
CCTTTCTAC	GCCACATTA	C TATTCGTAA1	GCTAAAACCT	TTGACAAAAT	TGGTCAAATG	6960
СТАААААА	r aataaagga	S ACACACAATO	ACATTTTAA	ACAAAATCCA	TGAAACTGCT	7020
ACTTTCCTG	AAGAAAAGG	AATTGCAGCC	CCTGAGTTCG	GTCTAATCCT	TGGATCAGGA	7080
CTTGGAGAA1	TGGCAGAAGA	AATCGAAAA1	CCAGTTGTAG	TAGACTATGC	TGAGATTCCA	7140
AACTGGGGC	GTTCAACAGT	AGTCGGTCAT	GCTGGTAAAT	TGGTATATGG	TGAACTGGCA	7200
GGTCGCAAGG	TCTTGGCTCT	TCAAGGGCGT	TTCCATTTCT	ATGAAGGGAA	TCCTCTGGAA	7260
GTGGTGACTT	TCCCAGTTCG	TGTGATGAAA	GTTCTTGGAT	GTGAAGGTGT	TATTGTAACC	7320
AATGCAGCTG	GCGGTATCGG	ATTTGGTCCT	GGTACCTTGA	TGGCTATCTC	AGACCATATC	7380
AACATGACGG	GGCAAAATCC	ATTGATGGGT	GAAAACTTGG	ATGACTTTGG	CCCACGTTTC	7440
CCAGATATGT	CTAGGGCCTA	CACACCAGAA	TACCGTGCCA	CTGCCCATGA	AGTGGCTAAA	7500
AAACTTAATA	TCAAGCTTGA	TGAAGGTGTC	TATATCGGAG	TTACTGGTCC	GACTTATGAA	7560
ACACCAGCAG	AAATTCGTTC	CTATAAGACA	CTGGGAGCAG	ATGCAGTTGG	TATGTCTACG	7620
GTTCCTGAAG	TTATCGTGGC	AGCCCACTCT	GGCTTGAAAG	TTCTGGGAAT	TTCATGTATC	7680
ACTAACTTTG	CGGCCGGTTT	CCAAGAAGAA	CTCAATCACG	AAGAAGTTGT	AGAAGTGACT	7740
GAACGTGTTA	AAGGTGATTT	CAAAGGCTTG	CTTAAAGCGA	TTCTTGCTGA	ATTGTAAGAA	7800
AAAAGATTTA	AAAGGGGGAG	TGCCTCTGTT	TTTTCAGGAT	TGACTGCCTA	TCCGGATTAA	7860
AGAAGAAACA	GAGGAATACT	ATGAGCTTCT	TCCTGCTCTT	ATAACTGAAA	GAAGCGGAAG	7920
AATAGGTATG	TCTGATCTGA	TAGCCAGCAT	TGTGAAAGAC	AAGATTCTAG (	GATACTAGCA	7980
TTAGCTTCCT	AGCCAAGCAG	ACTAGTATGA	TAAGGAGAGA	TGAGAATGAA	TTGACTTTCT	8040
GAATTTCTCA	GTCTTATCAT	ATATAGCACA	ATGAGATTTC	GCTTGAGTCT (	CCTTGTAAAT	8100
AAACGAAAAG	AAAGATAAGA	AATAATGAAA	ATTGGTCAAC	GAATTATGCG (	TTTGGCATA	8160
AAAAATTAAG	TATCGGAGTT	GTATCTGTTG	TAGTCGGCTT	TGATTTCTAC (	TCCAGCTCC	8220

AATTTCAGCC	AATGAAGTA	A AGCAAGATG	T AACATCTGA	A GTGGTAATA	G GTGTGCTAGA	8280
TTCTAAGGAC	GAATTGAAA	G AGTCAGAAA	A TGATGCTCC	A AAACTAGAA	A CTCCTCTTAG	8340
AGAGGAGCCA	AGACTAGCT	CTCAAACGC	T TCCGGAAGC	A AGTGAAGTT	C TTGAAAACAA	8400
AAGGGAAGAG	TCAAAAGTAG	G AGATAACAT	A ACCAGCTCA	A GCGGATGAT	A TCCGCAAGGT	8460
TGTTGGGGAA	TTAGCCAAGG	ATATAAGTA	r tactaagtto	G TATATGACA	GTCATTCTCT	8520
TGGATGTTAC	CTAGCTCAGA	TTGCAGCGG	r tgaagettad	CAAAAATAT	CTGATTTTTA	8580
TAACCATGTA	TTGAGGAAAC	TGACAACTT	CAGTGCTCCT	RAAGTGATT	CTTCCAGAAC	8640
TGTTTGGAAT	GCTAAGAATG	GTTTCTGGG	TGTTGGTTTC	GAAAGTCGT#	AATTAGCTGT	8700
TAGTGGAAAA	ATTAAGCATT	ATGTGGTTG	TAATGACAAT	GTTGTGACTC	CCTTGATTCA	8760
TAATAATCGT	GATATTGTTA	CATTTACAGO	TAATTCACGC	TTTAAACACC	GTTCTCGTGG	8820
CTATTTTGAA	AGTCCAATGA	ATGATATTCC	таастттаат	ATTGGTAAAC	AAGCTACCTT	8880
GGATAAACAT	GGTTATCGTG	ATCCGAAATT	GGATAAAGTG	CGATTCTTTA	AGAAACAGGC	8940
TCTGCCTCGA	TCTTCTAGTC	AACCAAGCGC	TGAACCAÁTG	GAAAATATTO	CCTCAGGAAA	9000
ACAGGTTACT	CAAAGTTCGA	CAGCTTTCGG	AGGAGATGCT	AGAAGAGCTG	TGGATGGCAA	9060
AGTCGATGGT	AACTATGGTC	ACAATTCTGT	CACTCATACA	AACTTCCAAT	CTAAGCCTTG	9120
GTGGCAAGTA	GATTTGGCTA	AAGAAGAAAC	CATTCGCCAA	ATCAATATTT	ACAACCGAAC	9180
AGACACTGCC	CAGGATAGAT	TGGCAAACTT	TGATGTCATT	CTTTTAGACA	GTTCTGGTAA	9240
AGAAATTGAG	TGAAAACGTA	TAACATCTCC	TAAAGATGTG	TCAGCACAAA	TTACGATTAA	9300
CCATAAAAAA	GCGCGCTATG	TTCGGATTGA	GCTAGAAGGC	TATAATGCCC	TCAGTCTTGC	9360
AGAAGTTGAA	GTTTTCTGCT	TTATAGCTAC	GAATGCTGAA	ACGGCGACAC	AAGTTTCTAA	9420
GCCAGTTCAA	CCAATCAGTC	AGACTCCTGT	GAAGGATAAA	ACATTGACAA	TTCAACACAG	9480
TGGAGCTTAC	ATTGCCCGCT	ACTCCATAAC	TTGGGAAGAA	GTTCCAGTAG	ATAAAGATGG	9540
AAACCAAGTT	GTTCGTAGTC	ATTCTTGGGA	AGGAAGCGGT	CGCAACCAGA	CTGCAGGTTT	9600
rgtcctcaac	CTCCCAATCA	AAGAAAATAT	GAGAAATCTG	CGAGTTAAGA	TTGAGAAAAA	9660
GACGGGCCTA	CTATGGAATA	GATGGCAAAC	AATCTATGAA	AACAGACCAA	TTTTAGCTCA	9720
ACCCCACCGT	AAAATTACCC	ATTGGGGTAC	GACATTGAAT	TCCAAGGTGA	GTGACGATGA	9780
TGTCTTGTAA	TCTGATGGTA	GAATGACAGT	TAGTTTGTCT	AGTTTATAAG	AAAGTACTAC	9840
ETGAGCTTGA	ATAGGACTCA	GGTAGCTCTC	TATGAAAGAA	СААААТТААТ	ACTCAATGAA	9900
VATCAAAGAG	CAAACTAAGA	AACTAGCCGC	AGGTTGCTCA	AAGCACTGCT	TTGAGGTTGT	, 9960

888 AGATAAGACT GACGAAGTCA GTCACATATA TAATCCAAGG CGACGTTGAC GTGGTTTGAA 10020 GAGATTTTCG AAGAGTATAA ACAGAAAGGT AGAGCGCGTG TTCTAATTTG AACACGAGTA 10080 GAAAACTTTT CTAAAAACAA AAACGAAAGG ATGGGTAAAC TGTATTCGCT GAACTGAATA 10140 CGGGCGACTC TCCTCTAAAT CAAAATTAAG AAAGGAATTG ACCCCACCCT AAAAGTAGTG 10200 GGAAAAAGAT AGTTGATCTA GCGAGCATCG CTCACTGCGC CCAACTCCTA TTTTCCCTTC 10260 GCTTTTTGAT GGGTTTGGTA TCTTTCTCAA TATAAAATAT AAAATAAAGA AAGGTAGAGC 10320 GTGTGTTTTG ATTTGAACAC GAGCGGAAAA CTCGGAAAAT AGATAATCTG ACTGAAAAAT 10380 CAGGATTTCT CGTCAGGTTC CTAATTTTCA GTCGTTTTCT TCTCGCTCTT TGTATCATAA 10440 ATTATGTCTA TCCATATTGC TGCTCAGCAG GGTGAAATTG CTGATAAAAT TCTTCTTCCT 10500 GGGGATCCTC TTCGTGCTAA GTTTATTGCG GAGAATTTCC TTGATGATGC TGTTTGTTTT 10560 AACGAAGTGC GTAACATGTT TGGTTACACT GGTACTTACA AGGGTCACTG TGTATCTGTC 10620 ATGGGAACTG GGATGGGAAT GCCATCTATT TCGATTTATG CGCGTGAGTT AATCGTAGAC 10680 TACGGTGTGA AGAAATTGAT TCGTGTGGGA ACTGCAGGTT CTTTGAATGA AGAGGTTCAT 10740 GTTCGTGAAT TAGTTTTGGC GCAGGCGGCT GCAACCAACT CAAACATCGT TCGTAATGAC 10800 TGGCCACAGT ACGATTTTCC ACAAATTGCT AGCTTTGATT TGCTTGATAA AGCCTACCAT 10860 ATCGCCAAAA AACTTGGTAT GACTACTCAC GTTGGGAACG TTTTGTCATC TGATGTCTTT 10920 TACTCAAATT ACTTTGAAAA GAATATCGAG CTTGGTAAAT GGGGAGTCAA GGCTGTGGAA 10980 ATGGAAGCAG CAGCTCTTTA CTATCTTGCT GCCCAATACC ATGTTGATGC GCTAGCTATC 11040 ATGACCATCT CTGATAGCTT GGTCAATCCA GACGAAGACA CAACTGCAGA AGAACGTCAA 11100 AATACCTTCA CTGATATGAT GAAGGTTGGT TTGGAAACCT TGATTGCAGA ATAATTATAG 11160 11220 CAAATTTCGT CCTTTCTTT TTGATATTCA GGGCGATAAA AATCCGTTTT TTGAAGTTTT 11280 CAAAGTTCCG AAAACCAAAG GCATTGCGCT TGATAAGTTT GATGAGATTA TTGGTCGCTT 11340 CCAGTTTGGC ATTAGAATAG TGTAGTTGAA GGGCGTTGAC GATTTTCTCT TTGTTCTTTA 11400 GAAAGGTTTT AAAGACAGTC TGAAAAAGAG GATGAACCTG CTTCAGATTG TCCTCAATGA 11460 GTCCGAAAAA TTTCTCAGGG TCTTTGTTCT GAAAGTGAAA AAGTAAGAGT TGATAGATCT 11520 GATAGTGGTG TTTCAAGTCT TCTGAATAGC TTAAAATCTT GTCAAGAATT TCTTTATTTG 11580 TTAAGTGCAT GCGAAAAGTA GGGCGATAAA AACGTTTATC GCTSAFTTTA CGACTATCCT 11640 GTTGGATGAG TTTCCAGTAA CGCTTGATAG CCTTGTATTC ATGAGATTTT CGTTCAAACT 11700 GATTCATAAT TTGAACACGA AAACGACTCA TGGCACGGCT GAGATGTTGG ATAATATGGA . 11760

AACGATCTAG	AACGATTTTA	GCACACGGAA	AAAGCTGTTT	AGCCAAGTCA	TAGTAAGGAC	11820
TAAACATATC	CATCGTAATG	ATTTTCACTT	GACAACGAAC	GGCTCTATCG	TAGCGAAGAA	11880
AGTGATTTCG	GATGACAGCT	TGTGTTCTGC	CTTCAAGAAC	AGTGATAATA	TTAAGATTAT	11940
CAAAATCTTG	CGCAATGAAA	CTCATCTTTC	CCTTAGTGAA	GGCATACTCA	TCCCAAGACA	12000
TAATCTTTGG	AAGCCGAGAA	AAATCATGCT	CAAAGTGAAA	GTCATTGAGC	TTGCGAATGA	12060
CAGTTGAAGT	TGAAATGGCC	AGCTGATGGG	CAATATCAGT	CATAGAAATT	TTTTCAATTA	12120
ACTTTTGAGC	AATTTTTTGG	TTGATGATAC	GAGGGATTTG	GTGATTTTTC	TTTACCAGGG	12180
GAGTCTCAGC	AACCATCATT	TTTGAAsAGT	GATAGCACTT	GAAACGGCGT	TTTCTAAGGA	12240
GAATTCTAGA	AGGCATACCA	GTTGTTTCGA	GGTAAGGGAT	CTTAGACGGT	TTTTGAAAGT	12300
CATTTTTCTT	CATTAGACTT	CCACAATCAG	GGCAAGATGG	AGCCTCATAA	TCCAGCTTAG	12360
CGATAATTTC	TTTGTGGGTA	TCCATATTGA	TGATATCTAG	AATCTTGATG	TTTGGGTCTT	12420
TAATATCGAG	CAGTTTTGTG	ATAAAATGTA	ATTGTTCCAT	ATGATTCTTT	CTAATGAGTT	12480
GTTTTGTCGC	TTTTCATTAT	AGGTCATATG	GGACTTTTTT	TCTACACAAA	AATAGGCTCC	12540
ATAATATCTA	TAGTGGATTT	ACCCACTACA	AATATTATAG	AGCCCAAAAA	GGAAGCCCTT	12600
TATGAATTGT	AGGACTTCCT	TTTCTTATCC	AGAAATTGAT	CTAGCTCTCT	CTGATTTCGA	12660
AGAATAGTGA	CTTTATGTGA	ATATTCTTGG	CAAAGTTTTT	GGTAATTTTC	TTTTTGAGTT	12720
TTGCGGACGC	CCATCCCAAA	GAATCCATCT	GATAAACTCC	CACTCAAAGC	GTTCAGGGCA	12780
ATCTACCGCC	ATACTTTCTC	TGACTTTTCC	ACGGTATTTA	AGATAACGCT	TAAAGGCTCT	12840
AAAGAGACAG	GTCAATGGCG	AAAAATTGAG	AAAGATGATT	TGGTCAGCTT	CTTGCATTCG	12900
TTCTTGGTAG	TAGCACCAAG	AATAATTACC	ATCGATGACC	CAAGCTTTAT	GCTTGGTGAG	12960
AAAGTTTTTT	ATCTCGGTTA	ACATCCATTC	GCAGTCACTG	TCTTGCCAAC	CAGGTTGAAA	13020
TTGGAGTGTG	TCCATGTGCA	GTTTTGGAAT	GGAGTAGTAG	TTAGATAACT	TTTCTGCTAT	13080
AGTTGACTTA	CCAGAACCAG	AATATCCGAT	AATTGCGATT	TTCATTTTCT	ACCTTTTCCT	13140
ATTTGGAGAC	AAAAAAACAG	CCTCTATGGA	CTGTTTCTTA	TTTAACAAGT	TTAGCTGAAA	13200
GACGAGCTTT	ATCGCGGCTT	GCTTTGTTTT	TGTGAATCAA	ACCTTTAGTT	TCTGCTTTAT	13260
CGATAGCTGA	GCTAGCAGCA	CGGAAAAGTT	CTTCAGATGG	GTTTGCTTCG	AAAGCTTTTA	13320
TAGCAGTACG	CATAGCTGAT	TTTTGAGCTG	AGTTCTTTTC	GATTCGTCTA	ACGTTCAATT	13380
CAGCGCGTTT	GATAGCTGAT	TTAATGTTTG	CCAATGGTCT	TACCTCCATA	TTTACTAACT	13440
(2) INFORM	ATION FOR S	EQ ID NO: 1	29:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8512 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

60	AAGAAAATTG	AAAGGGTTTC	CAAAAGTAGG	ACTAGTCTAT	AAAACTAGAT	CCTTTTTTCA
120	AAAAGACTGG	CCTAGTATTG	TTAGCTAATC	CATAGAACTA	TTTTGAAAAT	ATTGGAAATT
180	ATAGACTTCC	CAAGTTGGAC	TTTCTCTGGT	TTGTAAACTA	TCAGGTCATC	ATAGCTTCTT
240	TATCGGAAAA	СССТТТСТТС	TAAAAATCCT	GGAAAATTTG	ATCTAAAGTT	ACCAGACAGG
300	TAAAATAGGT	ACTTCCCTTG	TCTTGCTCCA	AGCTACTTGT	TTATCCAAGA	TCAACAGTTT
360	CGACATTCTT	TAAAGCGAAT	TCATCATCTG	ACGCCAATCC	CTCTTGCTAA	TCATAGATCA
420	AAAGTCTGGA	TGTTTTTAGG	TCATGAACTC	ATCAAATACT	GGCCAAGTAT	TTAAATAGTT
480	CCAACCATAC	AAGCGTGAAC	CCATGTGCAA	TAAATCGGCT	CCTCTGTCAG	TGACAAACCA
540	TTGATTTAAA	AGTGCAAGCC	TTTGAAAGAT	ATCCTTTTCT	AACCCCTTGT	TGACTTGAGA
600	CTGGATTTCT	CAAACAACCA	CCCAAATGAT	AGAAGGATTT	GAATTTCTGG	AGGACATTAC
660	ATACATGGTC	GTAAATCTTG	ATTTTTCTTA	TTCTTCTGCT	AATTTGGTTT	TCCTGGTTAT
720	CAATATTGAA	TTAAATGACT	AAAGGCAGTC	AACTGTTCAA	CATTTCTAGC	AATACCTCTA
780	CCAGTTCTAC	ACTATCAATA	GACGTAAATA	GATATAAAAT	AATACAATCT	TTCTCAATTA
840	СТАСААСТАА	TTGAAAATAG	AACGACATTT	CACGACCTTC	AATTTAACAT	AGTAAGTTCA
900	TTTCTATTCC	СТААААААТТ	AAACATCATT	ACAAGCCCAT	ATGACGCTTA	GACAAATAGA
960	GACAAGAATT	AACTGTGTCA	TAATCTGGTC	CTATAGGAGA	CAACTCAGCA	CCTACTCTCC
1020	ATGGCTGACT	ACCGATAATC	AAATATCAGC	TTGTCTGTTG	ACGGAGTGGT	GGATGGTATC
1080	GCTCCAGTTT	CCAGTCTTCA	GGAGATTGAG	CCTGATTTGA	CTTGCTACCA	CAAGTGGTGT
1140	GAGTAAGTGT	TAGTCCTGCT	TCGAGATAAC	TAACCAGCAG	TAGATGAAGG	CAGAATGTTT
1200	GCATCATCGT	AGTCAGAGTT	GGCGCATCCA	TAGTGAGCTT	GCCCATATAG	AACTATACAA
1260	CTGTTGAGCT	CTTCATAATG	TCAAAACTTC	CAGAAATCCG	AGCATCTCCC	CAATTTCAAT
1320	TGGAAGGCGG	CACCTTACGC	TCAATGTATA	CCTTCTTCAA	AAAGGTCTCC	TGCTTGCTCC
1380	TGAGCCAGAG	TGTCAAGCGA	AGTAGGTGTC	AAGTTATGGA	GTGGGTGATA	CTTCCAAGAG
1440	AGTAGCAATT	GTAATCACTG	GGTTCTCCAA	TCATTAGACT	TTGACGTGGG	CGAAGCGTTT
1500	AAGTAACTTT	ATGGGCATTG	AGGTCGACAT	TCAACATAGT	TGACGGTGCT	CATTGAAGGT

GATGATTGTC	TGAAAAGATG	AATTGACCAG	AATGCCCGAT	TTCATGAATC	AAGGTATAGA	1560
CATCGCTCAA	ACGGCCTGTC	CAGCTCATGA	GTACATAAGG	GTGTACGCGA	TATGGGTCCG	1620
CCGCATAACC	ACCGGAATCC	TTGCCACTGT	TAGCAGCAAA	GTCCACCCAG	CGCTCTTCTT	1680
GGTAACGAGC	AACTTCCTGA	CAATATTCTT	GCCCCAAAGG	TTCTACCGAC	TTCATGACCA	1740
AATCATAGGC	ATCGTCAATA	GTCACTTCAG	GATTCAGGGC	GCTGTCCAAG	TCCAATTTCG	1800
AGTCTGCAAA	GGTCATCTTT	TCAAGACCAT	TTACCTTGGC	AACATGCTTG	AGGTATCTCT	1860
GAGCGACTGG	TGCAAAGTCC	TTCATGATGA	GGTCAATCTG	GCGGTCAAAC	ATGACACGGT	1920
CCACTTCTTG	TTCAGCTAGA	AGATAGTCAA	AGACAGAGTC	GTATCCCTTC	ATATCAGCCA	1980
AGAGTTTTTC	AGACTTGACC	TGAGCCAGAT	AGGCTGCTGC	AGCCGTATTT	TGGTGCTTAC	2040
GAAGTCCCTC	TGAGAAGGAA	CGGAAGGATT	TCTCACGAAC	CTCAGCATCC	TCATGGTTTT	2100
GGTAGAAATT	CTCATAGGTC	ACAAAGCTGT	TTTTGTAGGT	CTTGCCATGG	GCTTCAAAGT	2160
CAGCCATTTC	AAAATCCCCA	GCTCGCATCT	TAGTATAAAT	GTCCTGCGGA	CTGTAGAAAA	2220
CTTCACCGAG	ATTTGTCAAG	GCCTTCTCCA	CATCTGCCCC	TAAGTAGTGG	GCTTTTTTGA	2280
TTTTAGCCTG	ACGAATGGCA	GCTGTTAAAT	GTGGCAATTT	ACCCAAACGG	TCCAAGACTT	2340
CCTCATCTGC	TGCCACCAAG	GCATCGTCAA	AGAAGGTCAA	GGCTACGCTG	GCATCTGTTT	2400
CAAATTCCAT	CCCAGCTTGG	GCAATATTGG	CAAATTCGTC	ATTGCTATAG	TCCGTCGTCT	2460
GAGGCATAAA	ACCATAGTTG	CCAATATGGC	TCATCTGAAT	GTAGATCTGT	TCCAATTCCG	2520
CAAAGGCCTT	CTCGAAATCC	TCAAAAGTGT	GAAGATTGCC	CTTGTAATCA	CGGCTAAACT	2580
GGTTGATGTC	TTCGCGAGCT	TTCTCGATTG	CACGCAAGAA	ATCCTCACGG	TCTTGGTATA	2640
GGGCTGTTAA	GTCCCAGAGT	TCCTTCTCTG	GAAATTCTGA	ACGGTGTTTT	TGTTCCATTT	2700
TCTTCCTCTT	ATTTCTCTAA	ТТСТАСТААА	ACACTAAGGG	CTGATAAAGC	GTAAAGCGGT	2760
CCTGTTTCTG	CTCGCAAAAT	ACGAGGACCT	AGGCCTGCCA	AAACGGCTCC	TTTAGCTTCA	2820
AAACTTTCGA	TTTCTGCAGG	TGAGAGACCG	CCTTCTGGAC	CAAAGATAAA	GAGCAGTTTG	2880
SCTCCTGTTT	CAAGACCAGT	GACTGCTTGC	AGAAGCGCAG	CGCCTTCTCC	TTCTTTAGCT	2940
GATTCTTCAT	AGGCTACTAT	GATAGAGTCA	AACTGGTCCA	GCTGAGCTAG	AAAATCTGCT	3000
TTTTCTCGA	AAAGTTTAAT	ACTTGGTACA	ATATTACGCT	TGCTTTGCTC	GGCTGCTCCA	3060
AGGGCAATTT	TTTCTAGTTT	TTCAACTTTT	TTACCCAATT	TCTTGCCATC	CCACTTGGCA	3120
ACTGACCAGT	CTGCAGGAAA	GGCCCAGATT	TGGCTAGCCC	CCAGTTCGGT	TACTTTTTGA	3180
CCGATGAACT	CCAGCTTGTC	TCCCTTGGGA	AATCCAGATG	CGATGGTCAC	TTGGACTGGT	3240

			892			
					CATATCCAGC	3300
ACGCGCGCC	A AGCGCTTGAT	GCCATCATC	A AAGACTAAGO	TAACCTCATO	CTCTTCTTTC	3360
AAGCGCATA	A CCTGAAACA1	P ATGCTTACTO	GTTTCCTTG1	CCTCGATAG	GACAGGAGAG	3420
ATAGCACTG	CTTTTACAA	ATACTGCTG	ATGCTAGCCT	CCAATCACAC	CAGAGATATC	3480
CTTGGTTTTC	TTAAAGACAC	AGGTATTCC	TTCCCCTTGA	ACCATGTGAC	TTTCGAGGAA	3540
AAATCCAGCT	GACTCAGCCC	ACTGGCGCAC	CATGTCCAAC	TTGTCCTTGA	TAATGCCACT	3600
CATGATCAGO	TAGCCTTCAT	CCTTTACCA	GCGATAAGCA	TCGTCTATTA	GATGAATGAG	3660
GATATCCGCC	AAGATATTAG	CCACAATCAC	ATCTGCCTCA	ATTTCCACAC	CCTTAAGCAA	3720
ATCTCCAGCC	GCTACATGGA	TATTTTCCAT	GCCAGGGTTG	AGCTCAATAT	TTTCCTGAGC	3780
CACACGAACC	GCCACATCAT	CCAGGTCATA	GGCGAAAATT	TCTTTAGCCC	CCAGAAGCGA	3840
GCTGGCAATA	GAGAGAACCC	CTGAACCAGT	CCCCACATCT	AGCACCGTTT	CGCCACCACG	3900
AAGAACCTGT	' TCCAAGGCAA	AAAGGCTCAT	CTTGGTAGTT	GGGTGGGTTC	CAGTACCAAA	3960
AGCCATGCCA	GGATCCAGCT	TGATAATCAT	TTCCCCCGCA	GTCGCCTCAT	AGTCTGTCCA	4020
AGAGGGAACG	ATGGTCAAAT	CATGAGTGAT	ACGAGCAGGT	TCATAGTATT	TCTTCCAGTT	4080
GTCTGCCCAG	TCTTCCTCAG	CCAAGGCAGT	CGTACCTATT	TTTAACTCTC	CCAAATCCAT	4140
AAAATCTGTC	AATTCTGCTA	GACGAGCCTG	CAAATCCGCC	TCAACCACTG	TCACATCCAC	4200
CGTGTCAGGG	TAGTAGGCTG	TCACTACGAT	TTCTTCTTGC	TGCTCCACCT	CTGGGAAAAT	4260
CTCTCCAAAG	CGGTCCACAT	TTCCCACATA	GTCCATACTG	TCTTCGATTG	CGACTCCTTG	4320
CGCTCCCAGC	TCAATCAAGA	GATTGGAAAC	CAACTCCTCT	CCCTCACGCT	TCACTGTAAC	4380
TTTTAACTCT	TGCCATGTTT	CCATTATTAA	TACCAAGCCC	GTAAAACACA	AAACCAAAAT	4440
AGGAAATTCT	CTGAAGACGC	TTGTGTCTAA	GAGAAGTTTA	TCTTTTTGGC	ACAGTGTTTA	4500
GGGCGGGTTC	AGTTTAGAAA	TGTAACTGAA	CCATCCTTTC	TAATCACTTA	СТТТТАААТА	4560
ATCTTTTAAT	CTCTCTTGCA	ACTGAGGCAC	AACTTGACTG	GAACTAAGAA	ATTCCTCAAC	4620
ATTCATCAGC	TGATAGCCCT	GTCCTTCATC	TCCGAAGATG	ATATTGTCAA	ATTGTTCTTG	4680
TCTTAGCTGA	CCAACCATAA	AGACCGATTT	CTTGCCTTTA	AAAATTACGC	TAGGATAAAT	4740
CTTGCTCCAA	AGCAGACAGT	CTTCATCTAA	ATGAATTCCC	AGTTCCTCAT	AAACTTCACG	4800
CCGAGCGCAT	TCAAAAGGGC	TTTCGTCCCC	TTCACGGCCA	CCACCTGGCA	GTTCCCACAT	4860
ATTGGCCCAG	GGAATACTTG	CCTTATCATC	GCGTAAGATA	GTCAAAAGCT	TATCCCCACA	4920
AAACAAAGCA	ATCTTGCAAC	CTGTGAAATC	AGAAATTTCT	AGTTCCATCT	TCAGTTCCTT	4980
CTAACATTTC	CTTTTCCAGC	TCGGCTAACC	AGTTTTCATA	ATATCTTTTC	TCATCCCTCA	5040

ACATTCGACT	r actatccat	T TTCTGTCTA	G CAATCTTGA	G AGCCTTACG	A GTTCGATCTA	5100
CATCTTTCT	CACCTTTAA	T TGATACCAG	G CTTGTATCA	C TTGAAGATT	G GACAGTTTGA	5160
GAGACAGAA	CGATTTGAC	C TGTCGAATA	C TAGCATATT	G CTCCGCTTG	C TCAAAATCTC	5220
CTTCCAACAA	GCCGATATG	A AGCAGGGAT.	A GTTGGGCAA	C TGTCTGCAT	CATCGGAGTAG	5280
TTGTCCTCTC	AAGTAATGC	TGAAACTGC	r GTTTAGCTAG	TTCTTCCTT	CCTTCCAAAA	5340
TGGAAACTTC	ACCTTGCAT	CCTAATACA	C CATCCGCAA	A ACTCCCTCG	GCATCCTCAG	5400
GAACTGCTTG	AACAAAGTCT	TTCAAATCA	T ATTCTTGAGG	G AGCTAGCAAC	GTCTGGGCAG	5460
AATGTCTCAA	TACCAGGTAC	GCGTATTTG	G TATTTTCAGO	GTGTTGTAGT	AATTCCCAAA	5520
TTTTTGCTCC	ATCGGTGATC	TCGACTGGC	AAATGTTATT	TAGGAAGAAA	GATAAATTAA	5580
GAAAAATCCA	AGTCCCTGCA	AAATACCAG	TTCTTGTCA	AAATCCAAAC	AATATCGCCA	5640
ATAATATCAA	GCCGAGATGA	ACCATCAAGO	CTCCTGAAAG	CATCAGGATG	ATTCTTTGAT	5700
CGCTTTCATC	CTCTTTTAAA	CCAATGTATT	GAGCACCAAC	ATTTTTCAGA	ATGGCTGTTC	5760
TACTAAGATG	AAACCTGCCT	GACTTTTTGG	тсалалтала	ATGTCCTAAT	CCAAAAGCCA	5820
CCAGCCGATA	GCCTGTCAAG	TAGCCACAAA	AAGCATGACC	CAGCTCATGA	AGAATAAAGA	5880
TTAAATACAT	GCTTAGAAGA	GCGAAGGCAT	AACCAAAAGT	AAAGGCTAAA	ACTGCGGAAT	5940
ACCCCAACTC	TGCAAATGCG	ATTGTTCCAC	AAGCAAAAGC	TAGCATAATA	AAGACAACAG	6000
CTAGCACATA	AACCAAATAA	GTCCCAATTT	TCTTCATAAC	ACCTCCAACC	AACTCCTAGT	6060
ATCTTGGATA	AGGATAAAAT	TCTCCCTTT	CCAAGCCAAT	TTTTCCTTCT	TCAAAGACTT	6120
CTTGGTTCCA	TTCCATGACA	AATTCCTCTG	CTTCTGGGTC	TTCCAAAAAG	TCCATGAGGA	6180
CATCTAGCCC	AACCTCAGCA	GTATCTTTAA	GGAAAAGCGC	AAAATAAGCT	AAAAATTCAC	6240
GGGAAAATCC	TTTTTTAGGC	AGGTAAGGAA	TAACAGTCAA	ATAGTCTTCC	TCATTGACTG	6300
TTGACTTGGC	AGGATTGTAG	AAAAGGACCG	CTTCCTCAAA	AAGAATGTCA	TCTGATGAAA	6360
CCTCTCCGTC	TTCATCCACC	ATCTCCACAC	CGCAGCATTT	TGCGCTTCCA	ATAGAAAACT	6420
CACTTCTACC	GCATGGTTGC	GTTTGTCCCA	GCTAATCTCA	AAGTCAAAGG	GAAAGTTCTT	6480
GTCCAACTCT	TCCTCTAAAA	ТАТСТАААА	TCCGTATGTT	GCCATTTTGT	ССТСТТТСТА	6540
TGCGACTCTT	TAATCGCCCC	GATTGCTCGG	AAATATGCTA	AAATAGATAC	TACCATCTTA	6600
CCACAAAATT	ATTTTATGTC	CTAATTATAC	CATATTACCT	CATTTAAACC	CTTGGTATCA	6660
GTGATTTTCT	TAAAAGTCTG	ATTTCTTCAT	TTCTCATAAA	AATCAATATA	AAAAGCCCTC	6720
GAAAGGGCTA	ATAAATCTAT	AAAATCAATA	GGCGAGTAAC	TAGCACAAGT	GGACGTGCTT	6780

WO 98/18931 PCT/US97/19588

894

			894			
TTTTATTGAC	TATTACCACG	ATACCACGCT	TAATCTTAGG	CTTGAACTTT	CTTATCTGCA	6840
ATAGCGTCTG	TCAAAGTCTG	AGAAAAGTTA	AGCCCCATTT	CTCGTCCCAA	CTTATCTGCC	6900
CATTTTGGTA	TGGTCAAAGT	CTTTTTAATG	GGTTCCTGAC	TTCCTAGGTA	TTCTGATACA	6960
TCAACAGATA	CCATAGAAAT	AAAAGATTTA	TCAAGGTCAT	AGGTTGACAC	GAAATCTTCA	7020
TCATCTTTAA	AAGGATCATT	ATCAATTAAA	GACAAGCTAT	TGATATCTGA	TGGCTGAGGT	7080
AACTCTCCAT	CACTCTCTAT	CAAATCTGCA	ACAGTTATCC	CTAGCCACTC	CGACCCCATA	7140
GCCAAAGCCT	CAGAAATCCC	CTCTCCTTGT	GTAGCTGAGT	ATTCAAAATC	TGGGAAATGG	7200
ACAAAATAAG	TCGCTTCTGT	TCCGTCTGTG	TCGTCATAAT	AAAATAAAGC	TGGATACGTA	7260
ACTAACATTT	CACTACCTCC	ATATCAAAAA	GCAGGGACTG	AATTTTACAA	CCCAGCTTGC	7320
TTTCTTATCC	CTCTTTCAGT	GTACTTATTC	AGCTCACCAT	GAAGGATTGT	GATAGGTCTT	7380
TCCCCTTGCT	TTTCCATTTT	AATATGGGAG	CCTTTACCGC	CTCTAGTCTT	TATCCAACCA	7440
TGGGCCGTAA	GGAGTTTAAC	CATCTCTTTT	TGTGTCATAG	GCATAGCGCT	TTTACCTCCT	7500
GACAACACCA	TTATAACACG	TGTTACACGT	ATTGTAAAGG	AGTGATACTT	ATTATTCTAT	7560
TATACATAAA	AGCCCCTAGA	TGTGGTTCTA	AGGGAAGCCA	ATTTATTCAT	ACCTATTTTT	7620
CTAATGAGTA	GTAAAAACTG	CTTCTTTATC	GAGCAATTCA	TCATCTGTAT	AGTCAATTGT	7680
AAAAGTATCT	CGATCTAAGA	CAGATTGAGG	CGGAGTTGAA	TGAATCATAG	GAACACTGCG	7740
TACTCTATAT	TTTTTATCTC	CAATTTTTAC	AAACTGATAC	TCTTCGAAAA	TCAAATTCAA	7800
ACCACGTCAA	CGTCGCCTTA	CCGTACTCAA	GTACAGCCTG	CGGCTAGTTT	CCTAGTTTGC	7860
TCTTTGATTT	TCATTGAGTA	TGATTAACTC	TCAAGTCTTC	GAAATCAGGA	TTTTCAACAG	7920
TTATTACAAG	GAGGCGATTT	ACTACTTCAA	AAACATCAAT	TATTCTATTT	TTCATATTTT	7980
TTCAACCCAT	TATTAGAATG	AACTTCTTGG	TAAGCAAAAT	CAAGTTTAGA	TTTAATGTTT	8040
TCGTACAAAT	CTAAAATCTC	TTTTGGAGTA	TCTTCCCGGA	AGAAAAGTTT	TCTTTTCCCT	8100
GAAATAACTT	GATCACTAAG	AATCCAATGA	CGAATTTGTT	TTGTAAAAAT	CAAAATTTCC	8160
TGACTTGGTA	GTTCCATCAT	TTCCATTGCT	TATCACCTCT	CTTTTCATTA	TAGTTCATAC	8220
AATGACATTC	AGCAATATTA	TTTCTCAAGT	CAGCACTTCC	ACTTCTTTAG	GCTCAACTAT	8280
CCTATTTTGA	GCTTTAAGGA	AAATCAAATC	TCTCATGCTG	ATACCTCTCC	TCATTAAATT	8340
aaatagtaaa	AAAGATTCTA	TCTCACTCCC	TGATTATTAC	AAAACCATTG	AAATATCACA	8400
ACTAATAGGC	TAGAATGGAC	ATAGTAAGAT	ATAGTAGATG	AGTCATTCTA	CTCAAATCCA	8460
CGTTAGAAAG	GACTGCTATG	CCAGACAATC	TCGCCGTTCG	CATGCGCCCn	GG	8512
					•	

(2) INFORMATION FOR SEQ ID NO: 130:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2869 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:

CTCGTTTCA	GGTTGAGTC	T CTTGCAAAT	C TTGTTCGCG1	r TCTTCCTTT	GCCAAGGCAT	60
CTCTCCCATC	GTTGGTGCc	A GCCATTGTT	G GAATCTTGCT	CTCATTGGT1	CTACCAAACA	120
AGCAAGAAA	CGATGTTTT	r gaaatggaa1	AATCACTTA	ATCACTTTTC	TAGCCAAGTC	180
TACAGGAGTO	ATTKTCTTT	TTTATCCGAT	GATAAATGTC	TTATAATAGO	TAGCGAAAGA	240
GGTGAAGAAA	TGAATCAAA	AGTAGAATA1	T ATCAAAGAAC	TGACAGCCAT	TGCGECGCCA	300
ACAGGCTTTA	CTCGTGAGAT	TGCGGACTAT	TTAGTCAAGA	CTCTAGAAGG	TTTTGGTTAC	360
CAGCCGGTTC	GCACATCCAA	GGGCGGTGTC	AATGTAACTA	TTAAAGGTCA	AAATGATGAG	420
CAACATCGCT	ATGTGACTGC	CCATGTAGAT	ACGCTTGGTG	CTATTGTCCG	TGCTGTCAAA	480
CCAGACGGCC	GTCTCAAAAT	GGACCGTATC	GGTGGCTTTC	CTTGGAACAT	GATTGAAGGA	540
GAAAACTGTA	CCATTCATGT	GGCTAGCACA	GGTGAAAAAG	TATCAGGAAC	CATCCTCATC	600
CACCAAACTT	CTTGCCATGT	CTATAAGGAT	GCAGGAACTG	CAGAACGCAC	GCAAGACAAT	660
				AAACTCGTGC		720
GAGGTCGGTG	ATTTTATCAG	TTTTGACCCA	CGAACTGTCG	TGACAGAGAC	AGGTTTTATC	780
AAGTCTCGCC	ATTTGGATGA	CAAGGTCAGT	GCGGCGATTT	TGCTCAATCT	CCTTCGCATT	840
TATAAGGAAG	AGAAGATTGA	ATTGCCCGTA	ACAACTCATT	TTGCTTTTTC	AGTCTTTGAA	900
GAAGTGGGAC	ACGGTGCAAA	CTCTAACATT	CCTGCTCAGG	TAGTAGAATA	TCTGGCTGTG	960
GATATGGGAG	CCATGGGAGA	TGACCAGCAA	ACAGACGAAT	ATACAGTGTC	TATCTGTGTC	1020
AAGGATGCTT	CTGGACCTTA	TCACTATGAC	TTCCGTCAAC	ATTTGGTGGC	TTTGGCGAAA	1080
GAGCAAGATA	TTCCATTTAA	GCTGGATATC	TATCCATTTT	ATGGTTCGGA	CGCTTCAGCG	1140
GCTATGTCTG	CAGGGGCAGA	AGTCAAACAC	GCCCTTCTCG	GTGCTGGTAT	AGAGTCTAGC	1200
CATTCCTATG	AGCGTACCCA	TATTGACTCG	GTGATCGCAA	CAGAACGAAT	GGTCGATGCT	1260
TATCTTAAGA	GCACGTTGGT	GGACTAATAT	GTGCCTTATT	TGTCAGAGAA	TTGACCTCAT	1320
CAAGAAGGAA	GAAAATCCTT	ACTTTGTCAA	AGAGTTGGAÁ	ACAGGCTATC	TTGTGGTTGG	1380
AGACCACCAG	TATTTTGAAG	GCTATAGTCT	CTTTCTAGCC	AAGGAGCATG	TCAGCGAATT	1440

GCACCATTTG	AAAAAGGAGA	CAAGACTCCG	896 TTTTCTAGAA	GAAATGAGTT	TAGTCCAAGA	1500
GGCAGTTGCC	AAGGCCTTTG	CTGCTGAGAA	AATGAATATC	GAACTGCTAG	GAAATGGCGA	1560
TGCTCATCTT	CATTGGCATC	TGTTTCCACG	ACGGACAGGT	GATATGAATG	GTCATGGTCT	1620
CAAGGGTCGT	GGACCAGTCT	GGTGGGTTCC	CTTTGAAGAA	ATGACAGCAG	AAACCTGCCA	1680
AGCAAAACCG	GATGAGATTA	AAAGATTAGT	CAAACGTTTA	TCGTCAGAAG	TAGATAAACT	1740
ATTAGAAATA	AAGGAGTAGA	aatgaagaaa	AGATACCTAG	TCTTGACAGC	TTTGCTAGCC	1800
TTGAGTCTAG	CAGCTTGTTC	ACAAGAAAAA	ACAAAAAATG	AAGATGGAGA	AACTAAGACA	1860
GAACAGACAG	CCAAAGCTGA	TGGAACAGTC	GGTAGTAAGT	CTCAAGGAGC	TGCCCAGAAG	1920
AAAGCAGAAG	TGGTCAATAA	AGGTGATTAC	TACAGCATTC	AAGGGAAATA	CGATGAAATC	1980
ATCGTAGCCA	ACAAACACTA	TCCATTGTCT	AAAGACTATA	ATCCAGGGGA	AAATCCAACA	2040
GCCAAGGCAG	AGTTGGTCAA	ACTCATCAAA	GCGATGCAAG	AGGCAGGTTT	CCCTATTAGT	2100
GATCATTACA	GTGGTTTTAG	AAGTTATGAA	ACTCAGACCA	AGCTCTATCA	AGATTATGTC	2160
AACCAAGATG	GAAAGGCAGC	AGCTGACCGT	TACTCTGCCC	GTCCTGGCTA	TAGCGAACAC	2220
CAGACAGGCT	TGGCCTTTGA	TGTGATTGGG	ACTGATGGTG	ATTTGGTGAC	AGAAGAAAAA	2280
GCAGCCCAAT	GGCTCTTGGA	TCATGCAGCT	GATTATGGCT	TTGTTGTCCG	TTATCTCAAA	2340
GGCAAGGAAA	AGGAAACAGG	CTATATGGCT	GAAGAATGGC	ACCTGCGTTA	TGTAGGAAAA	2400
GAAGCTAAAG	AAATTGCTGC	AAGTGGTCTC	AGTTTGGAAG	AATACTATGG	CTTTGAAGGC	2460
GGAGACTACG	TCGATTAATA	CTCTTCGAAA	ATCTCTTCAA	ACCACGTCAG	CGTCGCCTTA	2520
CCTACTGACT	GCGTCGGTTC	TATTCACAAC	CTCAAAACAG	TGTTTTGAGT	CGATTCGTCA	2580
GTTTTATCTG	CAACCTCAAA	GCTGTACTTT	GAGCAstGCG	GCTAGCTTCC	TAGTTTGCTC	2640
TTTGATTTTC	ATTGAGTACA	AAAAGTAAAC	TTTTCTCTTG	CAATTCCAGA	TAAATAGTGT	2700
ATAATGGATG	GGTATGTGAA	AAACATACTT	GTGGGAGGTA	AAAATCTCTA	ATTACCGCCA	2760
AAACCACAAA	GGAGGATTTA	AAAATGGCTA	AAAAGTCGA	AAAACTTGTA	AAATTGCAAA	2820
TCCCTGCTGG	TAAAGCTACA	CCAGCTCCAC	CGGTTGGACC	TGCTCTTGG		2869

#### (2) INFORMATION FOR SEQ ID NO: 131:

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 6186 base pairs

  (B) TYPE: nucleic acid

  (C) STRANDEDNESS: double

  (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:

CTGAATCCCT TATAGGAGTC CAGTAACTTT TTAGCCTCTA CTTTGCCTTC ATAGGCAGCT	60
TCAACATCAT TAAAAAAAGA ALGCACTGAA GCAAGTTCTT CAGTGCTCCA CGACAAATCT	120
AGTGGGTAAC TATACTGTTT GTTCATTAAC TAATACCAGC TCTCATTCTT GCTTCTTTTA	180
GTTCTTGCTT ACGATAACTA CGAGGGAGAA AAGCACGAAT CTCATCTTCA TTAAAACCGA	240
TTTGCATACG CTTGGCATCA ATAATAATTG GACGACGCAA AAGACTAGGA TACTGCTCAA	300
TCAAATGAAG CAATTCCGAT ACCGAAATAC TCTCTACATC AATATTCAAT TTTTGAAAAA	360
TTTTTGAACG AGTTGAAATG ATGTCATCAG TACCATTTTC GGTCAAGGAA AGGATGTGTT	420
GCAATTCTTT TCTTGTTAAA GGACTGGTCA TAATATTGTG TTCCACAAAG GGAACTTATG	480
TTTTTCTAAC CAGGCCTTAG CCTTACGACA TGATGTACAG CTCGGTGATA GAAATAGTGT	540
AATCATGCTT TTCTCTTCTT ATCTATACTT TGCTACTTCT ATTATACAAA AAAATAAAGC	600
GCTTGACTAG GGATTTTTAG AAAAAAAGCC TATTTTTTCA AGAAAAATAG GCTTTTTGCG	660
AACGATTGAC ACAATTGGAT TTGGTTAATT CACTCTTAAC GATGGTTTTA AACGATATAT	720
ATTITITATAT ATGTAAATTA AAAACATCTT TCCTTTCACT TCCTACGACT TTTCAGATAC	780
AGATAGCCAA AGAAGTTTTC ATAGAGGGCA AAAAAGAGGA GGAAGGCATG AAGAAAGAAG	840
GTCTCTGGCA AAATCATAAT AACAGGATCC TTGGCTGGAT CAAAAAGCCA GGTATCATCT	900
CCCACAAAGA GAATTTGATG GAAAAGAGTA AAGAATTGGT CAAAACCAAT CAAAACTCCC	960
CCAAGTCCAA TCATCACAGG TAAGACTACT AGAGCCAGGA GACTTTTTCG ATAAAGAGAC	1020
AAAAAGTCCT TTTTCACAAT CCTATTGACA AAGACATAGA AACTTGGCAG TGTCACTAGA	1080
GCTACTAGCT GAACCAAATG AAAGAGATTC TTGACCACTG CGAAATGGTG CAGACCAGCT	1140
GCTGACGAAC GAAAATCAGG CATCTGTAAG ACCTGACTAA AAGGATTGGT CAGATAATTC	1200
ATCAAGATAT GAAAATTGTA TTGAATGGTT TCTGGTTTTA GATAGACTCG ATTCGTTAAG	1260
TTAGCCACT GAATCTCCAT AGGATAGAAA ATCCAAGCCA GATAAATGGT CAGAAGGATG	1320
AGAGGGAGA GGAGAAAGAG CATAGAGCCC CAAAAGATCA ATTTAGTTTT CATCAAAATC	1380
CACTCCGCA AGGCTAGAAA CCACATGTGT CGGTGCGATT GGCAGGCCAG CTACTTCTTC	1440
GCCTTAGTA AAACCTGTCG TCACCAAGAG CGTTGGAATG CCATTGTCAA TCCCAGCCCG	1500
ATATCAGTC AAATAATTGT CCCCAACCAT GATTAACTCT TCACGTTCCA AACCTAAGTG	1560
TCAACCGCC TTGTCCATAA TGATGGCATT TGGTTTTCCG ATATAAACCG GCTTCACTCG	1620
GTCGCTACT TCAAGCAGCG TAATCAGTGA GCCAGCACCT GGCAAAAGAC CGCGTTCCGT	1680
GGGATGTTG AGGTCAGGAT TGGTTCCGAT AAAATGGGCA CCCTTTTGAA TACCAACACT	1740

898 TGCTGTGGCA AATTTTTCAT AGTCGACTTG CCAATCCAGA CCAACTACCA CGTAGGCAGG 1800 TTTTTCCTTG TCTTCCACAT AACCAGCCGC CTTGATGGCT TCCTTGAGTC CTGCTTCTCC 1860 GACGACATAG ACGGTCTTTT CAAGCCCCAA ATCATTCATA TAGTCGATGG TTGCCAAAGT 1920 CGCTGTGTAG ACAGTCGATA GGGGCGTATC GATATTAAAA TTCTGAGCCA ACATCTCCTT 1980 AACACTCTCT GGAGTGCGGG TTGTATTGTT GGTTACAAAG AGATAGGGAA TGTCCCGCTT 2040 TTGCAATTCA TGAACAAAAG TCTCTCCAGC AGGGATTCGG TCTTTCCCCT TATAAATGGT 2100 TCCGTCTAAA TCAATTAAAT AGCCTTTATA TTTCATCTAT TTCTCCCTAA GCCTTTTTTA 2160 TTTCTTGCCA AGTAATGATT GCTTGGGCAT TGATAACCCC ATCACTTGTA ATTTCATGCT 2220 TGCTTTCCAG TCCAGTCCGT TCAACAGCCG ATGTAATCAC CCCACCTGGT CGAACTTCCT 2290 TGACATACTT GAGGTTGATT TTCTTGGGAA TATAGTGGGT CAAAAAATCC GCTCCCATGA 2340 CCTCAAAAAT CCAGTCCAAG TATTTACTGT TATTGACATG ACCATTCATA TCCAAGTCGT 2400 AAAAACGAAC ATGGTAATCC TTGCTGATCG GTTCTTCCAA GGACTCATAC TTCGGTCCAC 2460 GGATAAGTTT TTTATCAAAA TCAGACTGGT AAGGAGCCAC AATCTCAGGT TCAACAACAT 2520 GGACTTTTCG ACTGTCGCGG TCCATGAGAA CAAAGGTCGC CATCATGTGG ATGAGCTCCT 2580 GCTCCGCTTC ATTATAAATA GTAAAGCGAC GGTAGCAAAA AAGTCGATTG TAGCTCAAGG 2640 CTTCCGTTTC GATGGTAATT TCTTCCGCAA AACGAGGCAA ACGAACCACC TCAATATCAT 2700 ATTCTACGAT AATCCAGACC AGATTATATT CTTCCAAAAT GGCCTTATCA CTAACTCCCA 2760 GTTCAATCGA CTGCATCCCT GAAACTTGCA GTGACAGCAA AATCACATCT GGAAGTTTGA 2820 TATGACCGTT CATATCAGCC ATATCAAAAG GAATTTTCAT TTTCATTTGA TAAGTTAAGC 2880 CCATGATCCT ACTCCAAAAT AAATCGTTCT GCTACAGTAT CTCCCAAAAA GAGACCTCTC 2940 TTTGTCATGC GAACGTGGTC ACCCTCAATC TGCATGAGGC CTTGTTGAAC CAAATCTCTG 3000 ACAATTTCTC CATAAAGTCC AGCAAAAGAC TGTCCAAATT TTTCCTCAAA TCGCGCCATG 3060 GAAACCCCGG ATTTCTTGCG GAGTCCCAAG AACATTTCTT CTTCCATTTG CTCCTTTTGA 3120 CTCAGGTGAT CTTCTGTAAT ACAAGCATTG CCTTCCTCAA CCGCACTGAG ATAATGACGA 3180 ATGGGACCAT GATTTTTATA GCGTACTCCA TTGACATAAC CAGATGCCCC TGCACCAATA 3240 CCATAGTATT CAGCATTGTC CCAGTACATG AGATTATGAC GACTTTCAAA ACCGGGTTTG 3300 GAGAAATTAG AAATCTCATA ATGCTCAAAA CCCGCTCGCT CCAGCTCTGC AATGATGTAC 3360 TCAAACATCT CCGCTTCTAG TTCCTCCTTA GGCAGAGGCA ATTTCCCACG TCGCATCCGG 3420 TTCATAAAGA CCGTATGGTT TTCTAAAATC AAACTATACA AACTCATGTG GGGAATATCC 3480 AATCCAATGG CTTTAGCCAC ATTTTCCTTT ACTTGCTCCA TGGTCTGACC AGGCAGAGCA 3540

AGGTTTATCC CTAAATCATC CCCTAACTTT CTAAATCATC CCCTAACTTT CTAAATCATC CCCTAACTTTT CTAAATCATC CCCTAAATCATC CCCTAAACTTTT CTAAATCATC CCCTAAACTTTTT CTAAATCATC CCCTAAACTTTTT CTAAATCATC CCCTAAACTTTTT CTAAATCATC CCCTAAACTTTTTTTT	
AGGTTTATCC CTAAATCATC CGCTAACTTT CTAGCTGCAG GAGTCGCTCT TAGCTTGTCA	4920
TCAGCCATGA CCTCTCCAAT TCTATTTATG ATACAAAGGG CGTCAAAAGC GACTGAAAAA	4980
TAGGAAATCG ACGATGGCTT CGATGAAGCC AAGGAGATTT ATCTTTTTTC CGATCTTTTA	5040
GCCCGTGCTC TAATCTAAGA TATTAATGAC GAAGAGCTCT GCACCTAAAA GATACAAAGT	5100
TTCTCGTCAG CTTTATTTTA TTTACATAAC TTATCTTATG TAACCCTATT CTTTGTTATA	5160
AGTTTTTCGG ATTGCATCTT TGATACTTTC AACTGTTGGA ATCATTGCAT TTTCTAGGTT	5220
TTGTGCATAA GGCATCGGCA CATCTTCTCC TGCACAACGG CGAATTGGTG CATCTAGATA	5280
GTCAAATGCT TCTGATTCTG AAATAATAGC TGAAATTTCA CCGATATAGC CACTTGTTTT	5340
GTGGGCATCG TTGACCAGAA CAACCTTACC AGTCTTCTTC ACTGAGTTTA TGATGATATC	5400
CTTATCAAGC GGAACAAGGG TACGTGGGTC AACAATTTCA ACTGAAATTC CTTCTTCTGC	5460
TAATTCTTCA GCAGCTTGAA CCACACGGCG AAGCATTTTT CCATAAGTAA CAACTGTTAC	5520
ATCCGTTCCT TGGCGTTTGA TTTCACCAAC CCCAAGTGGA ATTGTGTAGT CTGGATCAAC	5580
TGGCACTTCC CCTTTTTGGT TAAATTCTGA CTTGTACTCA AGTATAATAA CTGGGTTGTT	5640
ATCACGGATA GAAGACTTAA GCAGGCCTTT CATGTCCGCA GGTGTTCCAG GTGCCACAAC	5700
CTTAAGTCCT GGAATGTGAG TAAACCAAGA CTCTAGAGAT TGTGAGTGCT GGGCGGCAGA	5760
GCCAACTCCG TTACCAGCTG CACAACGAAC AGTCATTGGA ACCTGACCTT TACCACCAAA	5820
CATGTAACGT GTTTTAGCAG CTTGGTTGAC GATATTGTCC ATGGCAATAA CAGAGAAGTC	5880
CATGAAGGTC ATATCGACGA TTGGACGAAG TCCTGTCATG GCTGCTCCTG CTGCTGCTCC	5940
AGAGATGGCA GCTTCAGAAA TCGGACAGTC ACGGACACGT TCTGGACCAA ATTCTTCAAG	6000
CATTCCAACA GAAGTACCGA AGTCTCCTCC GAAGACACCG ACGTCTTCTC CCATCAAGAA	6060
CACATTTTCA TCGCGACGCA TTTCCTCAGA CATAGCAAGG ATAATGGTGT CACGGAAGGA	6120
CATTGTTTTT GTTTCCATTT TATCTCTTTC TCCTTAGTCT GCGTAAATAT CTTCAAAGGC	6180
TGATTCAAGC GGTGGGAATG GGCTTTCCTC TGCAAATTTA ACAGAAGCTT CTACTGCTTC	6240
CTTTACTTGC GCTTGGATTT CTTCCAATTC TTCGGCACTT GCAATGTTAT TTTCAATAAG	6300
GTAATTGCGG AGGTTTTCGA TTGGATCTTT TTGTTTCCAC AATTCCACTT CTTCACGCGT	6360
ACGATATTTA CCAGGGTCAG ATGATGAGTG ACCGAGCCAG CGATAAGTTA CACTTTCAAT	6420
CAAGACTGGA CCATTGCCAC TGCGAACATG GTCCACAGCT TTCTGAAATC CTTCATAGAC	6480
ATCGATGACA TTGTTACCGT CTTCGATGAA CATTCCAGGA ATTCCATAAG CGGCGCTACG	6540
TTGATGGATA TGTTCTATAT TGGTCATTTT CTTGATATCC GCAGAGATAC CGTAACCGTT	6600
GTTAATGCAA TAGAAAATGA CTGGCAGGTT CCAGATAGAA GCCATGTTCA CTGCTTCGTG	6660

4.

TCAAGCAATT CAGAACCATT TACCAAGACG TTCTTGTCTT TAGTGATTGT ACCAATTCCT	3180
TTATGAACAG TAACTCCGTA GCTACGAAGA AGTCCTGCAA CACCACCAAC AAGAGTATTA	3240
ACAACTTTAG ATTTAGTTTC TAAAAGTTTT TCCATATCAA CAGTGAAGTT AGGATTTTCA	3300
ATCACGATAC CACGATTTGC AGCATGACCG ATATTTTCAA TAATTTCAGC GTTATGAAGG	3360
TAGGTCTTGG TTGGAATACA TCCACGGTTT AAGCAGGTTC CACCAAGTTC AGATTTCTCA	3420
ACAAGGGCAA CCTTACCGCC GAATTGGGCA GCTTTAATGG CTGCAACATA ACCAGCAGGA	3480
CCTCCACCAA TCACAACGAT ATCAAAAGCA TCATCGCTCT TACCATCATC GTTTGAGGTA	3540
CTTGCTACAG GTACAGGGCT AGCTTCTGGC GATGCTGCTC CAGCTGTTGG GATGTTTTCC	3600
CTTTCTTCAC CAAGGTAACC GATAACTTCC GTTACAGGGA CAGTTTCACC ATCTCCTTTG	3660
AGAATGGCAA TCAAGTACCC ATCTTCTTCG GCTTCCAATT CCATGCTGAC TTTATCAGTC	3720
ATGATTTCCA AAAGGATTTC TCCTTCTTTT ACAAATTCTC CGACTTTTTT ATTCCATTGG	3780
ACGATTTGTC CTTCTGTCAT ATCCACGCCG GCTTTTGGCA TAATTACTTC TAAGGCCATG	3840
TCTTCCTTCC TTTATCTATA TCTTAAAAAT GAATACTCTT GCTCTTAAAT TAACATTGAG	3900
ATTGGCGTTT CAATCAACTC TTTCAAGTCC TTCATAAACT TAGCACCAGC CATACCATCT	3960
ACGACACGGT GGTCAATGGT TAATCCTAAA CTCATGATTG GGCGAATCAC AATTTCACCA	4020
TTGACGACAA CTGGCTTCTC GATTGTCGAA CTGACACCAA GGATAGCTGA GTTGGGTTGG	4080
TTAATAATCG GACCAAAGGA CTGAACACCA AACATTCCCA AATTACTGAT TGTGAATGTT	4140
GAATTTTGTA ACTCACTTGG AGCCAATTTA CCATCCAAGG TACGGCCAAT AACATCCTTA	4200
AAGGCTACAA CCAGTTCTGA AAGACTCATC TTCTCAGCAT TGTAAACAAC AGGTGTCATC	4260
AATCCATTAT CCATCCCAAC TGCCATGGCA AGATTGACAT AGTTGTGAGT GATAATAGTC	4320
TTGCCATCTT CTGTCAATGA AGCGTTGATG TATGGGTGTT TCATAAGAGT CTTAACAACT	4380
GCAAGCGAAA GAAGGTCTGT TACAGTAGTC TTCTTCCCAG TTGCTTCCAT GATTGGCTCA	4440
AGAACCTTCT TACGAAGAGC CAACATTTCA GTCATATCAA CTTCATAGTT GAGGGTGAAG	4500
GTTGGCGCAG TCAAGTAAGA TTCAACCATG CGTTGGGCAA TAACCTTACG CATTGGTGTC	4560
ATTGGAATAC GCTCGATTTT ACCATATGGT GTTACGTTAT CAGGGACTTC TTCCACTTTT	4620
TCAATCTGAG CAGGAGATTT GATGCTATCG TTTTCGATAT TTTCAGGAAG CAGGGCCAAA	4680
ACATCCTTCT TCATGATTTT ACCACGATGA CCGGTTCCTT GGATTTCCTG CCAAGCAATG	4740
TTATGTTCGA GGGCAATTCG TTTTGCAAGT GGCGAAATGC GAACCACGTT TGTGTCTTTA	4800
TAAGTTTCCA CGTCTTCTTT GTGGACACGA CCGTTTGCAC CTGAGCCAGA AACGTCGTAG	4860

			986			
CCACGACGG	A CGTTAAATT	C AGGTGATTT	A CCATAGTTC	C AGTCCCAAG	T TCCAAACTTA	1380
GTATCCTTG	TGCGATTGA	T TTCGGCCAAT	TCTTCTTCT	G AAAAGACGT	A TTCAGTCATC	1440
TCTGGGTACT	CTTTTTTCA	r GTATTCCAAC	AGTAAATCA	GGAATTTTT	C GACTGTGATT	1500
TTTTTTGGTA	ATTCATTGA	r aatattggt1	ACACGGGCAG	GGACGGATT	CACACCTTTT	1560
GATTCAAATT	TATCTTTTG	A AACCTTAAGG	GCATTTGCG	A GGACTGACA	ATCAACGTCA	1620
AAGAGCAAGC	AACCGTGGT	G CATGATACGO	CCGTTGATA1	R AGGCTTGGGG	ATTGCCACAG	1680
AACTTCTTAC	CATCAATCT	AAGGTCATTA	CGACCTGTGA	ACTCAGCTTT	AACCCCAAGT	1740
TGAGCCAGGG	TATTGATAA	CGGAGTTGAG	AAGCTCTTGA	AGTCAAATG	CTTATTTTCA	1800
rcttctttgg	AGATGATCGT	GTAGTTGAGG	TTATTTAAAT	CGTGGTAAAC	AGCTCCACCA	1860
CCACTAATAC	GGCGAACTAC	CTCAATACCA	TTTTCGCGAA	CATAATCACG	GTTGATTTCT	1920
rcgatagtgt	TCTGGTGACG	ACCAACAATG	ATAGATGGCT	TGTTAATCCA	AAGTAGGAAG	1980
<b>TTTGATCCT</b>	CATCCAAAAG	GTGTTTAAAG	GCGTATTCTT	CCAAGGCAAT	ATTAAAAGCA	2040
STGTCATTTG	AATGATTGAT	AATGTATTTC	ATGATATCCC	TTTACTTTAT	ATGATAGAAA	2100
TGGAAATAA	CCTTCCAGTC	TAATCTATCT	TCGTTTTATT	TTTTCTTAGG	TGAATGGATG	2160
CCATTCCTA	GAACATCTGC	AAACGCTTCG	TACATCACTT	CAGAGTAAGT	TGGGTGCCCG	2220
GGATGGTCT	TCAGCATTTC	CTCAACAGTG	ATTTCCATTT	CGATGATGCT	TGATGCTTCG	2280
TTATTAATT	CTGCGGCTGC	AGGACCAATA	ATGTGTACAC	CAAGGATTTC	TCCGTATTTC	2340
TATCAGCGA	TAACTITTAC	GAAACCTTGA	GCTGCGTCAG	ATGCAATAGC	ACGACCGTTA	2400
CAGCAAAGT	TAAACTTACC	GATGGCAACA	TCGTATTTCT	CACGGGCTTG	TTCTTCTGTC	2460
AACCTACTG	CTGCTACTTC	AGGGAGAGTG	TAGATGGCTG	CAGGAGTCAA	ATTCAATTTG	2520
CAACTGCAT	GATTTCCTTT	AAGGGCATTT	TCAGCGGAAA	CTTCACCCAT	GCGGAAAGCT	2580
CGTGAGCCA	ACATCTTAGT	ACCGTTGATG	TCACCTGGTG	CATAAATGCC	TGGAACTGAA	2640
TTTCCATGT	ATTCGTTGAC	CTTGATACAA	CCACGATCCA	ATTCAAACTC	AACCTCTCL'A	2700
TACCTTCAA	GGTCTGGCAT	ACGACCAATT	GAAAGAAGAG	CTTTGCTTGC	GATGATATCG	2760
CTTTTCCTT	CAACCTTGAT	ACGAAGTTGA	CCATTTTCCT	CAATGATTTC	TTGCAGTTTA	2820
PACCAGTCA	AGATGGTCAT	TCCTTTACGC	TCAAGAATCA	AGCGAAGGTT	CTTAGAAACT	2880
CCACATCCA	TAGCTGGAAC	TATACGGTCC	ATCATTTCGA	TAACAGTCAC	TTTTGAACCA	2940
ATGTCATGA	AGGCCTGACC	GAGTTCGATA	CCGACAACTC	CACCACCGAT	GATAACAAGG	3000
TTCTGGCA	CTTCGTTCAT	TTCAAGAATG	TCATCACTAG	TCATGACAAG	TGGAGATTCC	3060
PACCAGGGA	CGTTGATCTT	GTTGACTTTT	GAACCACCAG	C3 3 C3 3 TC 3 TC	TOTAL COMPANY	3130

CTCCAGG

11887

# (2) INFORMATION FOR SEQ ID NO: 147:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11340 base pairs

- (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:

CCGGTATGT	T CTGGAATACT	R ACCAATCTAA	GCTGGCTGTG	CCCTACAGTT	TTACAACCCT	60
GTACGAATA	C CTTAAGGAA1	T ATGACCGATT	TTTCAGCTGG	GTTTTGGAGT	CTGGTATTTC	120
AAACGCTGA	r aaaatatccc	ATATTCCTTT	ATCAGTTTTG	GAAAATATGT	CTAAGAAAGA	180
CATGGAATC	TTTATCCTTI	ATCTACGTGA	ACGTCCCTTG	CTGAATGCTA	ATACAACAAA	240
ACAAGGTGTT	TCACAGACAA	CTATCAATCG	AACCTTATCA	GCACTTTCTA	GTCTTTACAA	300
GTATCTAACC	GAGGAGGTTG	AAAACGATCA	GGGGGAACCT	TATTTCTATC	GTAATGTAAT	360
GAAAAAAGTT	TCCACCAAGA	AAAAGAAAGA	AACCCTTGCT	GCCAGAGCTG	AAAATATCAA	420
GCAAAAACTC	TTTCTAGGTG	ATGAAACAGA	AGGTTTTCTA	ACTTATATCG	ATCAAGAGCA	480
CCCACAACAG	CTTTCAAATC	GAGCTCTCTC	ATCATTCAAC	AAAAATAAAG	AACGAGATTT	540
AGCCATTATT	GCCCTTCTCT	TGGCATCTGG	TGTTCGCTTA	TCTGAAGCTG	TTAATCTAGA	600
TCTAAGAGAT	CTCAATCTAA	AAATGATGGT	TATTGATGTT	ACTCGAAAAG	GTTGCAAACG	660
TGACTCAGTC	AATGTCGCTG	CTTTTGCTAA	ACCTTATTTA	GAGAATTATC	TGGCCATTCG	720
GAATCAACGC	TATAAAACGG	AAAAAACAGA	TACAGCCCTT	TTTTTAACTC	TCTACAGAGG	780
TGTTCCTAAT	CGTATCGATG	CTTCTAGCGT	TGAGAAAATG	GTTGCTAAAT	ACTCAGAGGA	840
TTTTAAAGTG	CGTGTAACAC	CCCATAAACT	GCGCCATACA	CTAGCAACTA	GGCTCTATGA	900
TGCGACTAAA	TCACAAGTTT	TAGTCAGTCA	CCAACTAGGA	CATGCTAGCA	CACAAGTCAC	960
TGACCTCTAT	ACCCATATTG	TTAGTGATGA	ACAAAAGAAT	GCTCTGGATA	GTTTATGATT	1020
TTACGTATTT	TAAATTATGT	TATAAATAA	CAAAAAAAGA	AGTTGGCCAA	CTTCTTTTTG	1080
ATTTATCCAA	CTACCGCTTC	AGCGATTTCT	TCACGGCTAA	TACCAGCGAA	GTAGCGTGTG	1140
ATATCAATGG	TTTTTAGCGC	CTTAAGAACA	TCTTCGCGTT	CGTATTTCAC	CCCACGAAGG	1200
ACATCTTCTA	CTGCAGCAAC	GTCTTCAATA	CCAAAGAAGT	CACCATAAAT	CTTGATGTCT	1260
	ATTCAGTAAC					

984 TTCAACATCT TAAACAGTCG CTGGCTGTGC TCCTGAGGTT AAAAGATACC GTCATAC	TAC 10140
TGTTTCTGAC GACCAGTATG ATTGCCATCT TGGATGTGTC CCCTCGGCTG ATTGCCC	rcc 10200
GCTTCATCCA ACAGACACTA GCACAACTGA GCATTGGGCA ACTCCTCGCC CTGCTCTC	CA 10260
TCATCATGTC TTGTGGAGCT ATCCTTGGCA ATATGACCAG CAGTAATCTA TTTAAAAA	ATA 10320
TCCGTTTCAC GCACCTCTTG GTTTTCTGTG AGATTTCCCT ATTGACTCTA ATAACTAC	TA 10380
TCCTTTGTCA AGCCTATATC GTAATTITCA TGACCAGTTT CATCAGTTCT ACGATTAT	CG 10440
GCATTCTCAG CCCTCGCCTA CAAGCAGCTG TCTTTGCCCA TATCCCCAGT GACAAGAT	GG 10500
GGACGGTGGG CTCTGCTCTG AGCACAGTGG ACATTCTCGC CCCGTCCCTG CTCTCCCT	'AT 10560
TAGCCCTATC CATAGCATCG GGCGTTTCGG TGCAGTTAGC ATTGATATTT TTGTATCT	TA 10620
TTTTAATTGC TCTTATCTTT TGTCAATGGT TAGTCAAGTT CAACACTCAT AACTAACG	AA 10680
AAAGCATGTG TAGATTTCAC ATGCTTTTAA TCTCCCCAAT CGTCAGGTCA AGTACAAC	AA 10740
AGTCACTTCT TTGATTAAGC GAGTGTTCTA ATATAATTAT AAGCGCCCTG TCATTACC	GA 10800
ACCCATTCGC CATTATAGTT GACAGAATAG CCATCTACGG TCGTATTCAC TGCCAAAG	CA 10860
CCTGAGCTAT AAGCATAGTA CCAGTTGCCA TTGACCTGGA ACCAACCTGT CTTCATGT	CT 10920
CCATTACCTG CATTTAGGTA GTACCAAGTT GAACCATCTT GATACCAACC AGTTGCCA	TA 10980
GCTCCTGATG AACGGAGATA GTACCATTTG TTCCCAAGGT TTTGCCAACC TGTTTTCA	TA 11040
TCGCCATTTG GGTGGTCTAA ATAATACCAA GTGGTACCTT CCTGATACCA GCCAGTGG	CC 11100
ATTGCTCCTG AGGAACGGAG GTAGTACCAC TTATTACCTA GATATTGCCA ACCTGTTTC	GC 11160
ATAATACCAG TTGTTGGATC TAGGTAGTAC CAAGTCGAAT CATCGTTTAT CCACCCCG	CA 11220
CGTCTTTCAC CACCAAGGTA GTTTTCTCCA TTAATTTCCG TCTTAGCTAG ATAATACCA	AG 11280
TTAGACTGAT CATAAAGCCA ACCTGTCTCT AAAGAATGAT TTTGATTAAA GTAATAGT	rc 11340
GTATAATAAC GCTTCTCTTC TTTATCTTCT GAATCTTCAC GTTTTTCCCC GTACTTTC	PT 11400
CCAACACTGT CTTTAGTTTT AATCTCTAAT GTTTTCCAAC CAACAAACTC TTGTAGCAC	T 11460
CCATTTTTAT CGAAGTAGTA CCACTCTGAC TTTGGAAAAC CTTCTAATCT GATACCATT	T 11520
GGGTAAGGAC CAATTGTACT ACCTTTAGAT GGAAACGGGA TATATTGCCA GCCGACAAC	C 11580
ATCTCTCCAG ATAGAGAATC AAAATAATAG TACTTACCAT CAATCACTCG CCAGTAGGT	T 11640
TCTTTGAGGT CCCCCTTTTT GTAGTAGGTT CTTCCGTTTT CTTGGACAAA CTGCCATCC	
TCAGAATCAT CTGCAAATAC TGTACTGGTC CCTAGCAAAC CAAAGAAAAA TACTGTCAG	T 11760
CCAACTTGCA TAGTTTTTTT CAAAATTTTC ATCTATATAC CCTCCAATAT TAAATCCAC	т 11820
CACCAGATGA GGCGAAATTA TAAACTTTAC CATCGATAGT TTGGCTACCT GTAACCATT	G 11880

AAATTAAAA	AATAGAGGAA	CATAAATATG	ATTACAAAAC	AGAATGTAAT	AGTGTTCTAC	8400
AATTTTTACT	' AGATAAAACT	GTAAATTCTG	AAGGAAGGAT	CACTTCTTCA	ACAGAATTTG	8460
GAAATTTCGT	AAGTAATTTA	TCATTCCAAC	ACGGAATAGC	TGGACTACTG	тттсстстаа	8520
ATAAATTGTA	CCCCCAGAA	CTGGATTCTA	AAATACTCTC	TATCATCAAG	AAGGCAGTGA	8580
CAATTAGAAC	GACACACACA	TATGAATATC	AATACTCACT	GCTATTTGGT	GATGCAGGCT	8640
ATCTATGGTT	ACTCCTACAT	TTATTTTCTA	TCAGTAAAAA	TCAATACTAT	CTACAATTAG	8700
CAAACGTCAC	CGCTAAAAAA	TTAATAGAGA	ATTATGATAC	TCTAGAGGAA	ATAGACTTTG	8760
CATTGGGAAA	ATCTGGTGTC	CTATTATCAT	ТААТАААТА	CTATCAATTT	ACCAATGACA	8820
ATACTCTTAA	AATTTTCATC	CACAATAGTA	TAGGGGAAAT	TTATCATTAT	TTCCTACAAA	8880
GAGATACAGC	CAAAGAAAGC	ATTTTAGACT	ATAGCTTTGC	TCATGGATAT	TGTGGAATTG	8940
CATATGCTTT	ATTTGCCTAT	TCTAAAGTCT	TAGAACCTTC	TATGTTTTAT	AATGATCTCC	9000
ATACATTCCA	TACTGAATTA	AAAAATTAT	TAGAAAAAGT	TACTTCTAAT	ACTGAAAATT	9060
TAGGAAATTT	ACAACTTTCT	TGGTGCAAAG	GAATTTCCGG	AATAATCTTA	TATCTTTGTA	9120
TGTACGATTG	TGACGGAAAC	AAAGATATTA	TTAGTAAATA	TCAAGAATTT	GTTTTTAACC	9180
ATCATCTAAA	AATGATGACA	GGATATTGCC	ACGGAATAAC	TAGCTTACTA	CAAACCACTG	9240
TCTACAATCA	AAACAAATTA	CTGATGAAAA	AAATCCAACA	GGTAATTTTA	GCATGTTCTG	9300
AACGAGATGA	TCACGGTTTA	CTGATGTTTC	AAGGAGATAG	TGGTAAAGCA	GATTTGTTTG	9360
ACTTCGGAAT	AGGAAGCATG	GGGTATATTG	GTGTCTATTA	AATAATAAAT	TCCCATTCGA	9420
TGTGCAGACA	TAAGGAGAAA	AGTATGAAAT	TATTTTGGAC	AAACAACATA	TATAGACAGT	9480
TGCTGCTAAA	CAGCTGTTTT	TCATCATTCG	GCGACAGTAT	TTTCTACCTC	GCCATTATCA	9540
ATTATGTGGC	TCAGTACAAT	TTCGCTCCGC	TAGCGATTTT	ACTGATTTCC	ATTTCAGAGA	9600
TGGTTCCCCT	ACTATCGCAA	CTCTTTCTCG	GGATTCTAGG	AGATTTTCAA	GAAAATAGAG	9660
TCAAACACGC	ACTCTGGATT	GCCAAAATCA	AAATCCTGCT	CTACGCTATT	TTGACAGTAT	9720
TTCTCGTCTT	GTCGCCCTTT	TCATTAGTTT	CAGTCATTAT	GATTGTCATC	ATCAACCTCA	9780
TCTCTGACAC	CTTGAGCTAC	CTGTCTGCCT	ACATGATGAA	CGCCCTCTAC	ATCAGTGTAA	9840
TTAAGGACGA	CCTGCATGAT	GCCATGGGGT	TCAGGCAGTC	TCTGATGAGG	GTTGTCCGTA	9900
TTGTCGCCAA	TCTGGCTGGC	GCATTCCTTA	TCAATGTTAT	AAGTATTCAA	ACTATTTCCC	9960
TTATCAACAC	TCTGACTTTT	GTCATTGCCT	TTTTGGGCCT	GTATGTTATT	CGACATACCT	10020
TGTATGAGGT	TGAAAAAAGA	ATTGAAATGT	CACATACAGC	ACTGAGTTTT	AAGAAATATT	10080

CCCAATATTT CATAATACCA ATATTCCCC 180	
CCCAATATTT GATAATAGCA ATATTTGCGT AGGAACGTAC TGTTACAGGC TCTCTATCCA	6600
TGTCTGAACA GCTCCTTTCT CTTCTAATCT TTCTGCTAGT TCTTGTGCGT GTGTCAAATT	6660
GGTTACCAAG GCTATGATAC AACCTCCTAG CCCACCACCG CTCATCTTGG CACCCAGAGC	6720
ACCATGGCTA AGAGTCGTTT CAACCAAAAA GTCTGCCTCA GGGCTACTGA CTCCAATTTC	6780
TTTTAAATGT AAATGCGCTT GACTGAGGAT TTGTCCCAGT CCTTCAGCAT CTTTTTGTGA	6840
AATCGCAACT TCTGCTTGCT GGGTTAATTC TCCCAAGGCA TGCAAAAACG GTAGGGCATC	6900
CTTGCCCTTA TTTTGAACCA CTTGGATGGC TTCACGAGTA TGACCATAAA CACCCGTATC	6960
GGCAATCACC AAATAGGCGG ATAAATCCAT CTCAAGTTCT GTAAATCCTA CGTTCTTGAT	7020
AAAGCGAATA GGTTGGTCAC TAAGACAGGT CTTAGCATCC AAACCACTAG GATTCATATG	7080
GGCAATCATT TCAGCTCGAT TGACCAAGAT TTCTAGTACA TCATGAGGCA GATCAGCCTG	7140
ATAGTAGTCA AATACTGCAC GAATGGCCGC TATGCTGATA GCCGCTGACG AACCCATCCC	7200
CCGTTTCTCA GGGATAGCCG AGTCAATCTC ACAACGAATG CAGGCTTCTG TGATATTCAA	7260
ATACTCCAGT GAGGCATAAA CCGCCATGGA CAAGGTATCC TCCTCATAAA GGCGCCAAGG	7320
ACTCTCTGCA GGAACTACCT TACAGGTCAC CTCCACCTCC AAAAGAGGCA GGGAAATGGC	7380
AGGATAACCG TAAACGACCG CATGTTCCCC TATTAAAATT ATCTTACTAT GTGCCTGACC	7440
GACACCAACT TTTTTTGTCA TTTTTTCCTT TTACTAGACG AAAAAACGTC TTATTTTTCA	7500
TACAAGTATT AATTCTTTCC TATCTATTTT ATTATATTTT CACAAAAAAA GCGATTGTTT	7560
CCATTCACAA TCGCTTCTTT CATTATTGAA CCCATTCGCC ATTATAGTTG ACAGAATAGC	7620
CATCTACGGT CGTATTCACT GCCAAGGCAC CTGAGCGCTA TAAGCGTAGT ACCATCTGCC	7680
ATTGACCTGG AACCAACCTG TCGTCATAGA ACGACGAAAG AAACTCCATA CCATTAAGTA	7740
AAGAGGAAAG TCGTGAGGGA GCATGCGCCA TTGACAACCT GTTTTAGTGA CGTACAAAGT	7800
CTCATTAACA AGTACTCGTT TCGGCCATTT ATAGGTGCGG TGTTTGGAGA AATAGGGTTC	7860
AATCTTCGCC CATTCTTGAT CGTTTAAATC AGTATCATAT GCTTTGCGTA TCATAACTCT	7920
AGCTTAACAT TTTTTTGTGA ATACAGGTTC TAAATAATCG ACCACGAAAA TTTCTTAAGT	7980
GGAAAACGCC TTATGAAGTA TGCTACGGGA AAGTTATGCA CTTAATTTGA CAATTCAAGA	
TGTAAAAATA TATACTATAG TAGATTGAAA CTAGAATAGT ACACCTCTAC TTCTAAAATA	8040
TTGTTAGAAA TCGATTTGAC TGTCCTGATC GATTTATCCT GTTATTATCT CATTTTACTA	8100
TAATATTTGA TAAGTTATCC TAAAAGTATT ATTATGTTGT TGTGTTATAG ATTGATTG	8160
TCTAACTAAA GGATCCTATT CAATTACTAG AACTATCACA TACTCAAGGT CAGCTCACAG	8220
	8280
ATGAGCAACT ATTTTGGTTA CAATGTCTAC TAAATTTAAG TCAAACAAAT AATTTAGTCA	8340

AACGGTCTG	AAATCTTGAC	TGGCTTCTT	CAACTGTCTA	AGCAAAGGCC	TGTAAATATC	4860
TGTACTCAAC	CCTTCTAAAA	GCTTGCTGGC	TACTTCTACT	TGATCGATAA	TCTTTTCTGA	4920
TTTCCCCTG1	TCCAAGGCTT	CTACCAGAGA	AGTCACCGTT	TCTTTTGAGG	AAGTTAAAAA	4980
ATTTTGATTC	ATATTTTGCT	TGATTTGCTG	GACCATGTGA	CTCGATACAG	CCACTTCCTT	5040
GGTCCATCC	ACTAAGAAAT	CACATTCTAA	AGTTGGTTTC	ACTTGTGAAA	TTGAAAAGCC	5100
CCAATCACGC	TCCAGAACTG	TCGCCAAGTT	TTCTTCTTCT	AACCAAGCAG	CCACCTTCTG	5160
GCGATCAAA1	GACTGGTAGA	GAACCAAATC	CTCTGCCACA	ATACAGGCAA	GGTCGCCCAT	5220
GGAACCATTO	TCTCCTCGCT	TAAGCAAGAC	AGCGCTAGTC	AGCTTGAACA	AGAGCTCCTG	5280
ATCAACAGAA	ACATCATACA	GAGCCAGTAA	AGCCTTGACA	ACCAAGACAA	CGACGCTGCC	5340
ACTAGAACCT	AGACCAAACT	TTTTCCCTTC	TCGTTCCATT	TTGCCACAGA	TTTCTAGAGA	5400
AAAAGGTCTT	AAATTCTGAC	CACGAACAGC	GAGGAAGTCT	CCCATCAAAG	CAATCGTTTC	5460
TTGAATCAAG	CTATAGTCAG	GATTAGGCCT	TAAGTCCACT	GCGAAATCAA	ACATATCTGA	5520
ATAGATACGG	TAGCTGTCAG	AAAAAGCAAT	CTCAGCCCTC	ATATAGATGG	GAATATCCTT	5580
TATCAAAGCT	AACTGCCCTG	GCTCTAAAAT	AGCATATTCA	CCTGCCCAAT	AGAGTTTTCC	5640
GCAAGTTTTA	ACAGCAATCA	TCTTGACTCA	AATCCTTTGT	TTTTGACACA	ATCAAGCGAT	5700
AACGATGACC	GAAAATTTCT	GATAAATGCT	CCAAGTCTTT	CTCCTGACAG	AAGACCTTAA	5760
CATTGGGACC	AGCATCCATG	GTAAAGTAGC	AGGCCTCTCC	TTTCTCACGA	AGCTGGCGAA	5820
CAAAGGCCAT	AGCCTCATAA	GAGGCATCCG	TCAGATAAGA	AAAGGCTGGA	CTAGCAGTCT	5880
TTGTCGTAGC	ATGCATAGCC	AGGGCATTTT	TCTCCGTTAA	TTCTCCAATC	TTGGCAAAAT	5940
CATTTTCCTT	GAGATAAATC	AGCATATCCT	GATAGTCCTT	CTCAGACTGA	CGAACCCAGT	6000
CGTCGAAAGT	CGTCGAGGTT	TCCACACAAA	GTTTCATCCC	GTCACGGCTA	GAGATTGGTT	6060
TTTTCTTGTC	CTCTAGCACC	AACATAATCA	TAGCTAGTTT	CAAGTCTGTC	TCTACAGGGT	6120
AAATTTCTCC	ACTATCCTTA	TCCCAGGCTC	CTAGTGGTCC	ATAAAAACTC	CGAGAAGAAG	6180
AACCTGAGGC	AAATTTGGCT	TCCTGTGCCA	ACTGACTTCT	ATCCAATCCA	AGCTTGAAAT	6240
AAGCATTACA	AGCCTTGACC	AGGGCGGACA	AACCACTAGA	ACTTGAGGAC	AGACCCGCTG	6300
CCGTAGGCAT	ATTGTTTTGA	GTATCGATAC	GGACAAAGCC	CTCACCAGCT	GGACGATAAC	6360
GGTCAATAAT	CTTACTCATC	TTGGCATGCT	CGACCTCATT	TTGTAGCTGA	CCATTGATGT	6420
AAAATTCGTC	AGCTGTTACA	TTGGCTGGTA	AAGGCGACAA	GGTCGTCTCT	GTATACATAT	6480
TTTCCAAAGT	TAGAGAAATA	CTGCTAGTAG	CAGGCACCAT	CTCTTTTTCT	TTTTTCTTTC	6540

			980			
GCTTGGGCT	G GTTGAAAAA	A ATCAAATCC	C CATAGAGACA	GTTAACGCTG	AGACTGACTT	3060
CCACATCTA	C AGGTACGAT	S ATTTTGGTC	TTCCTACCAT	CTTTCTGAGG	ATAATGACAT	3120
TGTCATGAT	T GGTTAAGAT	ACCCTCTCC	A GATGAATAGT	GTCCTTGCCC	ATGAAGCGAA	3180
AGAGATTGA'	T ATCATCGAAT	TGGCAAGTC	r GGTAGCTTGA	AAAATGATGA	AGATTTCCAA	3240
ACCAACGAT	r triciccitic	TTAACCGTC	CGACCTCTTC	AAAAACCAAA	TTGGTCTGCT	3300
CTTTTTCCT	G GTTCATCATC	GGGTAAAGAA	GAAAGAGGCT	ATAGATAACC	GCAACAAAA	3360
TAGCTAGAA1	CACAAAAGGA	TTGAGCATAA	CGATGAAAA	GAAGAGAATG	GTTGCCGCTA	3420
CTAAAAGAAG	ATTATTTCCC	TCTTTACCAC	TGTAGTAGCG	AATCAAAAGC	AAAAAGAGGA	3480
ATAGTATCAG	CAGAAAACGC	GAAAAATGCT	' CTGATACCAT	CAAAATCAGA	GÇTCCTGTCA	3540
GAAGACAGGC	TTCGATAAAT	AAAAAGATTT	TAAATTTTCT	CATAGGTTCA	TCCTCTCCCT	3600
TCTATTTTAT	CACAATTCAA	AAAAGTCACC	TCAGTCTGAG	GATGGAAAAA	AGGCGCTGGT	3660
TACGCCTTTT	TCATCTGATC	CTTTGCTTCT	TTTAATTTTC	CATAAAGAAG	ATAGTCTACT	3720
TTTTGTAGAT	CTGCTATGGT	GGCACAGTTA	AGGGAACACA	TAATCAAGCG	TAGATCTGCT	3780
TTCCAGCCTT	GGACAATGCC	AATCACTTCT	TCAACTGTGT	AGGTTTCAAC	CAATTCCAGA	3840
ACGGTTCGTG	ACAATCCCAC	AGCCTTAGCA	CCAAAAACCA	AGCACTTAAT	CATATCCAGC	3900
GGATTCCGAA	CCCCTCCACT	AACCAAGAGT	TCGACCTTAT	CTTTCCATTC	TTGGGCATTG	3960
AGAAGGGCCT	GCATGGTAGA	CTGACCCCAT	TGATTGAGGT	AATCACGCTG	GCCACTACGA	4020
CGGTTTTCGA	TATAGGCAAA	GCTGGTGCCA	CCACGACCCG	ATAGGTCCAC	TGTACGAACA	4080
CGAATTCAT	AGGCTCTTTC	GATTGTCTTG	GCATCCATTC	CAAAGCCCAC	TTCCTTGAGG	4140
CAATAGGAA	CGGGAATTTG	CTTGCTATAA	TCTGCTAGAT	GCGATTGCCA	GCTTCTAAAC	4200
TCCTTTCTC	CCTCGGGCAT	GAGTAATTCC	TGCATGACAT	TGACATGCAC	TTGCAATAGA	4260
CAGGATTCA	TCTCTTCTAC	AGTCTGAAGT	CCTAACTCGA	CAGGCTTGTC	CAATCCAATA	4320
TGGTTCCAA	GGAGGAGATT	GGGATGACTA	GACTTGACAG	AAAAAGAATC	ATCCGTTGGA	4380
TTTTGAGGG	CTGCGCTATA	AGAACCCGTT	ACAAATAAAA	TACCACAGGA	TTCCGCCACC	4440
GAGCCAGCT	TTTGATTGAT	TTCTCTTCCC	TTATTACTTC	CACCAGTCAT	GGCATTGATA	4500
'AAAAAGGAA	AGTCCCACTT	TCGACCAGCA	AACTCTGTCG	AAAGATCGAT	TTCATCCAGA	4560
TGTAAAGAG	GCAAGGAAGA	ATGAATCAGC	TCCACCTCAT	CAAAGCTATT	ATAGGAACTT.	4620
TCTGCTCAA	GGGCATAGAG	GATATGCTCG	TCCTTACGAT	TTGTCGTCAT	GTCCTATCCT	4680
TCTTGATAT	AAGAGCTCAA	TCCCCAGATC	GGCCCAACGA	TTTTTTAAGG	TTTTGGTTGA	4740
TGCGCATCA	AAACTCAGGG	CGATGCCACA	GTCACCACCA	CCAGCACCAC '	TACTCTTGGC	4800

GCCCCACCAA ATGGTGCTGA AAGGCATAGA CAGCCGCCTG GGTACGATCG CTGACTTCAA	132
GTTTGGCAAG AATATTGGAC ACGTGGGTCT TGACCGTCTT GAGAGAGATA AAGAGGTCAT	138
CTGCGATGCG CTGATTTTCG TAGCCCTTGG CGATGAGTTG GAGAACATCT CGCTCACGCG	144
CAGTCAATTC TTCATGAAGT TCCATATGAT TGCGGTGGTA TTCAACCTTC TTGCTAACCT	1500
CTTGCTCAAT GGCCAGCTCG CCAGCAGCTA CCTTACTGAC GGCATGAAGC AATTCATCTG	1560
CACTAGAAGT CTTGAGCATA TAGCCTTTGG CACCAGCATC TAAGACTGGC ATGATTTTTT	1620
CATTGTCCAA ATAAGAGGTC ACAATCAAAA TCTTGGCTTC AGGCCATTCT TTAAGGATTG	1680
CTAAGGTCGC GTCAATCCCA TTCATCTCAG GCATGACAAT ATCCATGACA ATGACATCTG	1740
GACGCAGTTC CAAGGCCAAG TCAATCCCTT GAGACCCGTT GGACGCCTCA CCCACAACTT	1800
CTACATCGTC TTGGAGGTCA AAGTAGCTTT TCAAGCCCAA TCGGACCATT TCATGGTCAT	1860
CTACTAGTAA AATTTTCATC TTTACTCCTT TATCATTCCT TATCTAACAG GGGAATACGG	1920
ATATCAACCG CCAGCCCTTG CTTGGGAGCT GTCAAGAGTT GAACTGTTCC AGCCATATCT	1980
TCAACCCGCT CCTTGATATT TCGCAGTCCA TAACTCAAGT CGTCTAAGCT CCCTAACTGG	2040
AAACCAATCC CATTGTCCAC CACCTTCAGT TGCAATTCAA CATCTGTCTG ATAGAGGTAG	2100
ACATCTAGGC AAGATGCCTG GGCATGGCGG AGGGTATTGC TAATCAACTC TTGCAGGATA	2160
CGGAAGATAT GCTCCTCGAT TTTCTTAGGC AATTTCGTCA TATTCTGCTT GAGACTAACC	2220
CTAAGATCAC TCTTGTCCTC AAGCTCTTTT AAAAGAATTT GAATCCCTTC TATCAAGCTC	2280
TTCTGCTCCA GTTCAACTGG TCGCAAATGC AAGAGCAAAA CCCGCAAATC CTTCTGGGCT	2340
GTTTCTAAAA TAGCTGTGAC ACTCTGCAAC TGGGTCTGCA TCTTTTCTCT ATCCAATTTC	2400
AAAGCCTGCT GACTGATACC CGATAAAATC ATGTGGGCCG CAAACAACTC CTGACTGACT	2460
GTATCGTGCA AATCCCGAGC AATTCGCTTC CGTTCCTTCT CGATGATTTC CTCTTCCTGA	2520
GCAAGGCTCT GATTTTCAGC TTTTTGAAGA GCCTCTGTCA AAAGGTTAAG TTTACCTGAT	2580
AAGGACTTGA AACTGGCATC CAAATCTGGA TCTGCAACCT GAACCACTTC TTGCCCTGCT	2640
AATAAACGCT TGAGATTAGC CTGCATTTTT CTTAGAGAAA GCTCTTCGAT CCCTCGCCAA	2700
AACAGGGCTA AGAGACAGGT CATGGACATG CTGAAAACCA ACAATAAAAA GACAAATTTT	2760
TCTGTTTTTT CGACATCGTG CAAAAAGATA GACCAGTCAA AATCAAGTAT TTCCAGCAAG	2820
CTGTGGGAGA AAAAAAAGAC AAATAGGAAG GAGGTGAGAG CAATAATGAC ATAGGCTTGT	2880
TTTTTCATCC TCTAACCACC TCCACATCAC CAATCATAGT GGTCAAGAAA ATCTTGACAC	2940
CCTTGTTACT CTTGAGATAG TCTTTTGTTT CTTGATGATA GTGTTCATTG CGGAGGGCTC	3000

978 CTAACTCACA TTAATTGCGT TGCGCTCACT GCCCGCTTTC CAGTCGGGAA ACCTGTCG	NG 10620
CCAGCTGCAT TAATGAATCG GCCAACGCGC GGGGAGAGGC GGTTTGCGTA TTGGGCGCT	
TTCCGCTTCC TCGCTCACTG ACTCGCTGCG C	10711

# (2) INFORMATION FOR SEQ ID NO: 146:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 11887 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:

					G AAGTCGAATA	60
CGGATACTG	r aaagtattat	CAATTTTAA1	CAAATCATC	TTACCGATA	A TACTTCTGAT	120
TGCTTTTGGT	R AGTATGAACO	ATACGTTGGT	GAAATCTCAC	ATAATGAAGA	ATCATTAGAC	180
TCTGGACCTT	TTTCTAGTGT	CTCACTTACC	TCATATTCT1	CACCCTTACT	AGAAATAACA	240
CTCAAAGCAG	ATACTGTCGA	TAACTGGCTA	GCCAATAAAG	TACTCGCAAT	AATTGAAATA	300
CCCAATTTTT	TATAAACAGT	TTTCTTCATT	ATTGTATCCT	CCTAATGTAA	TTATAGCGTA	360
CTATTCTAAA	TTTCTTAATC	TACTATAGAA	TCAAGAAATC	TACCACCTTC	TTTAAATACC	420
CTCCATTATC	ACATAAACAG	GTAAACTTTT	CAATTAATGA	CTGCGCTTTT	CAATCACGCT	480
AGAGGTACTT	GCTTGCTTCT	TTGATACTAA	GTTCAGCCAT	TCTTTCCTTG	TTTTTCTCAA	540
TAAAGCATGT	TACCCAAGTG	GGATTCGTTT	TGGAGTAGTC	TCGCAGAGTC	CAGCCAATGG	600
CTTTATTGAT	AAAAAATTCT	GTTTGGTTCA	AGTTATGAAG	GAGAATCTTT	TCCATTAATT	660
GAGTATTGGT	CTTCTCTTTT	CTTAACAACT	GGTGGTCAAT	AGCGACACGT	CTCAGCCAGA	720
TATTATCTGA	TAGGCTCCAT	TTTATACTCA	ATGAAAATCA	AAGAGCAAAC	TAGGAAGCTA	780
GCCGCAGTTG	CTCAAAACAC	TGTTTTGAGG	TTGCAGATAG	AGCTGACGTG	GTTTGAAGAG	840
ATTTTCGAAG	AGTATTAAGA	TTATTTCTTC	TAGTTCAGGG	TGTTCATACA	CCAAACTCCC	900
TACTACTCGA	TCTAGGATAT	CTACCGTGTC	CCACAAGGAT	TTTGTCACGA	CTAACTGCTC	960
TAGCTTAGGC	AAATCGGTTT	CCTTTAGATA	AGACTGCATT	GCTTTCAAAT	AGTTAGCAGC	1020
CACATATTGG	TATTTTCTAG	GATCCTTTTC	CCAGCAAGTG	TCTGCAAAAT	CCCAATCGAT	1080
AATCTTTGTT	TTTTTCGCTT	CTGGAAAATA	TTTTATAGAG	TTTATTTCTT	TCAGGCACCG	1140
CAATACCTAG	AAAAGAAAAT	TGATGGCGCA	TATAGGCTTC	CATGGACCTT	GCTTTTTTAG	1200
AGTCTTTTGC	TGCTTCTAGC	TCCTCAAGTA	AATCTGCTAA	ACTCATCTAA	AACTCCTCTT	1260

CAACTAGTIT ACTCTCGGAT AGGCTAGGAG CCTTGCTAAC GTAGTAGAAA AAAACTCCTC CGCCTAAGAC AATGGCTGCG ATAACCAAGC TTAAGAAGCT AATGCTCAGA TACTTGATTA GGCGCAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	888 894 900 906 912 918 9240 9360 9360
CTTGCAATTC ATCGTCTGGA TAGGCAACGT ATTCGTCTGT ATTGTAAATA TCCCACAGAT GTTTTTGAGC TTCTTGGTCT ACATTTGTGT AGACATCCAT CCCAGTTGTG AGTAGGTTAT  AGCCTGTTTC TTCTTCAACT TGATTGATGA CTTCCTTGAG GTAATTATCC ATGTAAGCAG GGTAATTACT TGCTGATTTG AGACTTTGTA GTCCATCAGT AATTGGTGTA TTGACTGCTT  TCTCATACTG TTCAGCAGAG ATGTAGCCTT GATTTTCAT TTCAGATAAG ACCAAGTTTC  GGCGGTCTTG GGCTGCTTCT GGATGGAAT AGGGGTCATA TTGGTTTGGT	900 906 912 918 924 9306 9366
AGCCTGTTTC TTCTTCAACT TGATTGATGA GGTAATTATCC GGTAATTACT TGCTGATTG AGACTTTGTA GTCCATCAGT AATTGGTGA GTAATTATCC GGTAATTACT TGCTGATTG AGACTTTGTA GTCCATCAGT TTCAGCAGAG ATGTAGCCTT TCTCATACTG TTCAGCAGAG ATGTAGCCTT GATTTTCAT TTCAGCAGAG ATGTAGCCTT TTCAGCAGAG ATGTAGCCTT TTCAGCAGAG ATGTAGCCTT GGATGTCAT TTCAGCAGAG ACCAAGTTTC GGCGGTCTTG GGCTGCTTCT GGATGTGAAA TTGGTTTGGT	906 912 918 924 930 936
AGCCTGTTTC TTCTCAACT TGATTGATGA CTTCCTTGAG GTAATTATCC ATGTAAGCAG GGTAATTACT TGCTGATTTG AGACTTTGTA GTCCATCAGT AATTGGTGTA TTGACTGCTT TCTCATACTG TTCAGCAGAG ATGTAGCCTT GATTTTCAT TTCAGATAAG ACCAAGTTTC GGCGGTCTTG GGCTGCTTCT GGATGGAAT AGGGGTCATA TTGGTTTGGT	912 918 924 930 936
GGTAATTACT TGCTGATTTG AGACTTTGTA GTCCATCAGT AATTGGTGTA TTGACTGCTT TCTCATACTG TTCAGCAGAG ATGTAGCCTT GATTTTCAT TTCAGATAAG ACCAAGTTTC GGCGGTCTTG GGCTGCTTCT GGATGTAAAC TTGAGTATAT TTGGTTTGGT	918 924 930 936
TCTCATACTG TTCAGCAGAG ATGTAGCCTT GATTTTCAT TTCAGATAAG ACCAAGTTTC GGCGGTCTTG GGCTGCTTCT GGATGGAAT AGGGGTCATA TTGGTTTGGT	9240 9300 9360
GGCGGTCTTG GGCTGCTTCT GGATGTGAAT AGGGGTCATA TTGGTTTGGT	9300
TTCCAGCCAG CAAGGCTAAC TGAGGTAAAC TTAAATTATT GAGGTCTTTA CCATAGTAGT TTTGAGCTGC TGTCTGCATT CCATAGTTCC CATTAGACAT GTAGACCTTA TTTATATAGT AGGTCAAGAT TTCTTGCTTG GTTGCTTTTT GTTCTAACTG AATCGCTAAC CAAGCTTCCT GAGCCTTACG AGAAATAGTC TGGTCGGAAG TCGAAGTTGA AAAGTAAGTC AACTTAATCA ACTGTTGGGT GAGAGTTGAT CCACCTTGGA GGGAATTGCT TTGCAGATTG CGCAAGAAAG CTCCCAGGAT ACGGATGGTA TCAATCCCCC TGTGGTCGAA GAAGCGATGG TCTTCGATAG AAACGATTGC CTTAACCAAA TCTGTGGGAA TATCATTAGC TTGGGCATTG ACGCGGCGTT CAACCAAA GTCAGCAATG AGGTTGATTTT TATTGTCGTA GAATTTTACTA GAAGTTGTTG CAACTAGTTT ACTCTCGGAT AGGCTAGGAG CCTTGCTAAC GTAGTAGAAA AAAACTCCTC CGCCTAAGAC AATGGCTGCG ATAACCAAGC TTAAGAAGCT AATGCTCAGA TACTTGATTA GGCGCCAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	9360
TTTGAGCTGC TGTCTGCATT CCATAGTTCC CATTAGACAT GTAGACCTTA TTTATATAGT  AGGTCAAGAT TTCTTGCTTG GTTGCTTTTT GTTCTAACTG AATCGCTAAC CAAGCTTCCT  GAGCCTTACG AGAAATAGTC TGGTCGGAAG TCGAAGTTGA AAAGTAAGTC AACTTAATCA  ACTGTTGGGT GAGAGTTGAT CCACCTTGGA GGGAATTGCT TTGCAGATTG CGCAAGAAAG  CTCCCAGGAT ACGGATGGTA TCAATCCCCC TGTGGTCGAA GAAGCGATGG TCTTCGATAG  AAACGATTGC CTTAACCAAA TCTGTGGGAA TATCATTAGC TTGGGCATTG ACGCGGCGTT  CAGAACCCAA GTCAGCAATG AGGTTAGTTT TATTGTCGTA GATTTTACTA GAAGTTGTTG  CAACTAGTTT ACTCTCGGAT AGGCTAGGAG CCTTGCTAAC GTAGTAGAAA AAAACTCCTC  CGCCTAAGAC AATGGCTGCG ATAACCAAGC TTAAGAAGCT AATGCTCAGA TACTTGATTA  GGCGCCAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	
AGGTCAAGAT TTCTTGCTTG GTTGCTTTT GTTCTAACTG AATCGCTAAC CAAGCTTCCT GAGCCTTACG AGAAATAGTC TGGTCGGAAG TCGAAGTTGA AAAGTAAGTC AACTTAATCA ACTGTTGGGT GAGAGTTGAT CCACCTTGGA GGGAATTGCT TTGCAGATTG CGCAAGAAAG CTCCCAGGAT ACGGATGGTA TCAATCCCCC TGTGGTCGAA GAAGCGATGG TCTTCGATAG AAACGATTGC CTTAACCAAA TCTGTGGGAA TATCATTAGC TTGGGCATTG ACGCGGCGTT CAGAACCCAA GTCAGCAATG AGGCTAGGAG CCTTGCTAAC GAATTTTACTA GAAGTTGTTG CAACTAGTTT ACTCTCGGAT AGGCTAGGAG CCTTGCTAAC GTAGTAGAAA AAAACTCCTC CGCCTAAGAC AATGGCTGCG ATAACCAAGC TTAAGAAGCT AATGCTCAGA TACTTGATTA GGCGCCAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	9420
AGACCTTACG AGAAATAGTC TGGTCGGAAG TCGAAGTTGA AAAGTAAGTC AACTTAATCA ACTGTTGGGT GAGAGTTGAT CCACCTTGGA GGGAATTGCT TTGCAGATTG CGCAAGAAAG CTCCCAGGAT ACGGATGGTA TCAATCCCCC TGTGGTCGAA GAAGCGATGG TCTTCGATAG AAACGATTGC CTTAACCAAA TCTGTGGGAA TATCATTAGC TTGGGCATTG ACGCGGCGTT CAGAACCCAA GTCAGCAATG AGTTGATTTT TATTGTCGTA GATTTTACTA GAAGTTGTTG CAACTAGTTT ACTCTCGGAT AGGCTAGGAG CCTTGCTAAC GTAGTAGAAA AAAACTCCTC CGCCTAAGAC AATGGCTGCG ATAACCAAGC TTAAGAAGCT AATGCTCAGA TACTTGATTA GGCGCGAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	
ACTGTTGGGT GAGAGTTGAT CCACCTTGGA GGGAATTGCT TTGCAGATTG CGCAAGAAAG CTCCCAGGAT ACGGATGGTA TCAATCCCCC TGTGGTCGAA GAAGCGATGG TCTTCGATAG AAACGATTGC CTTAACCAAA TCTGTGGGAA TATCATTAGC TTGGGCATTG ACGCGGCGTT CAGAACCCAA GTCAGCAATG AGGCTAGGAG CCTTGCTAAC GAATTTACTA GAAGTTGTTG CAACTAGTTT ACTCTCGGAT AGGCTAGGAG CCTTGCTAAC GTAGTAGAAA AAAACTCCTC CGCCTAAGAC AATGGCTGCG ATAACCAAGC TTAAGAAGCT AATGCTCAGA TACTTGATTA GGCGCCAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	9480
CTCCCAGGAT ACGGATGGTA TCAATCCCCC TGTGGTCGAA GAAGCGATGG TCTTCGATAG  AAACGATTGC CTTAACCAAA TCTGTGGGAA TATCATTAGC TTGGGCATTG ACGCGGCGTT  CAGAACCCAA GTCAGCAATG AGGTTGATTTT TATTGTCGTA GAATTTTACTA GAAGTTGTTG  CAACTAGTTT ACTCTCGGAT AGGCTAGGAG CCTTGCTAAC GTAGTAGAAA AAAACTCCTC  CGCCTAAGGAC AATGGCTGCG ATAACCAAGC TTAAGAAGCT AATGCTCAGA TACTTGATTA  GGCGCAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	9540
AAACGATTGC CTTAACCAAA TCTGTGGGAA TATCATTAGC TTGGGCATTG ACGCGGCGTT CAGAACCCAA GTCAGCAATG AGTTGATTTT TATTGTCGTA GATTTTACTA GAAGTTGTTG CAACTAGTTT ACTCTCGGAT AGGCTAGGAG CCTTGCTAAC GTAGTAGAAA AAAACTCCTC CGCCTAAGAC AATGGCTGCG ATAACCAAGC TTAAGAAGCT AATGCTCAGA TACTTGATTA GGCGCAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	9600
CAGAACCCAA GTCAGCAATG AGTTGATTT TATTGTCGTA GATTTTACTA GAAGTTGTTG  CAACTAGTTT ACTCTCGGAT AGGCTAGGAG CCTTGCTAAC GTAGTAGAAA AAAACTCCTC  CGCCTAAGAC AATGGCTGCG ATAACCAAGC TTAAGAAGCT AATGCTCAGA TACTTGATTA  GGCGCAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	9660
CAACTAGTIT ACTCTCGGAT AGGCTAGGAG CCTTGCTAAC GTAGTAGAAA AAAACTCCTC CGCCTAAGAC AATGGCTGCG ATAACCAAGC TTAAGAAGCT AATGCTCAGA TACTTGATTA GGCGCAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	9720
CGCCTAAGAC AATGGCTGCG ATAACCAAGC TTAAGAAGCT AATGCTCAGA TACTTGATTA GGCGCAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	9780
GGCGCAGAAT CGTTGGTTTG TTCATCTTGT TTTACCACCT AATAAATGTT CTTTGATAAC	9840
	9900
AMPCA CAMAA COMA AMPCA CAMAA C	9960
ATTGAGATAA GGAATTTGAG GGAAGGCACC AGCCTTGATT TCATATCCAT ATTCTCGAAT 1	0020
ATATTCAAGT GGCATTGATT TTTGTCCCTT ATCTTGATGA TAGAAGCGAA TCAAATCGAA 1	080
TGCCGGCAAT AAGTAGGTTT CTTGCTGAGA AGAAAAGTGA AGAAGGACAA AGCAGATTCC 1	0140
TTGTTGGGCA AGGACTTGTT CCATATGCTG AATCTGATGT GGATGAAAAT TTTTCATCGG 1	0200
AATCGCACGT TFTTGTTTTG TTTCCTTGAC TTCAAAGTCG ATGTAATATC CATTATAAAC 1	0260
GCCAGAATAG TCCGTCGTTG AAGCTTGTCG AAAATAGGCT TCAACAATCT TGGCACGACT 1	0320
FCGTTGTGGA TAGTCCACTT GTACGATTTG AATAGGAGTT GGTTTCTTAT GTATAACAGC 1	0380
CAAGCCCTGA GACAAATAGT AGTCGTTGGT AGCATTGATC ATCTTTTCAA AGGGTACCGA 10	0440
GCTCGAATTC GTAATCATGT CATAGCTGTT TCCTGTGTGA AATTGTTATC CGCTCACAAT 10	0500
CCACACAAC ATACGAGCCG GAAGCATAAA GTGTAAAGCC TGGGGTGCCT AATGAGTGAG 10	0560

TTTACTGCAA CTGATTGGCC AAATAACAAC AAACCAAAAG ATATTGACTT TGGTAAGACA	7080
ATCAAGGCTA AGAAAATTGT CCTTACTGGT ACCAAGACAT ACGGAGATGG TGGAGATAAA	7140
TACCAATCTG CAGCGGAACT TATCTTTACT CGTCCACAGG TAGCAGAAAC ACCTCTTGAC	7200
TTGTCAGGCT ATGAAGCAGC TTTGGTTAAG GCTCAGAAAT TAACAGACAA AGACAATCAA	7260
GAGGAAGTAG CTAGCGTTCA GGCAAGCATG AAATATGCGA CGGATAACCA TCTCTTGACG	7320
GAAAGAATGG TGGAATACTT TGCAGATTAT CTCAACCAAT TAAAAGATTC TGCTACGAAA	7380
CCAGATGCTC CAACTGTAGA GAAACCTGAG TTTAAACTTA GATCTTTAGC TTCCGAGCAA	7440
GGTAAGACGC CAGATTATAA GCAAGAAATA GCTAGACCAG AAACACCTGA ACAAATCTTG	7500
CCAGCAACAG GTGAGAGTCA ATCTGACACA GCCCTCATCC TAGCAAGTGT TAGTCTAGCC	7560
CTATCTGCTC TCTTTGTAGT AAAAACGAAG AAAGACTAGT ATTTAGTAAA ACCTCTTAAC	7620
AAGATTACGG AAGCAGTCTC TATCTTTTCC AATGAGGTTT ATAGTACAGA AAAAGCCTGA	7680
GAAGATGTCT TCTCAGGCTT TTGTTAAGCA CATAAATACA ATAGTGCTAT GACAAAATCA	7740
CCCAGAAAAA TCTGGGTGAT AAATGTTATG GTTGTGCTGG TTGAGGATTC TGATTTTGTT	7800
GATCAGGGGT TGTATTTGAT TGTTGCGTAT TATTGTTAGG ATTGGTAGTC GTACTATTAT	7860
TTGTGCTTGG AGTGGTTGAG CTAGACTGTG AAGTTGAACT ATCTGATGAT GAGCTTGAAC	7920
TTTCAGTTGA TGGGGGTTGT TGTGGAGCAG GTGAGTTCCA CGTAGAACGA GCACCATTTT	7980
TAAATACGAA TTCTCCATTT CTGTAGAGCC CCTCTGGTAT ATTCCAATCT TCTGGATTGC	8040
TTCCTTCAGA CAGGTAGGTC ATCATAGAGC GGTAAACTTT GGCAGCGACC GTAAGGCCAT	8100
TGÇCTACAAG TGGTGTCAGA CGGTTAGAAT AGCCTGTCCA TACAGCCATT GAATATTTAC	8160
GCGTATAGCC AGCAAATAGT TCATCAGGTG CTACAAATTG AGAGGTCTTG ATGTGGTTTT	8220
CAATTTCCTC GTCTGTATAG TTAGAGGTTC CTGTTTTACC AGCCTGAGGG AGCCAAGCAA	8280
GATAGGCATT TCGTCCAGTT CCATAAGTCA AGACTGTTTT CATCATGTCG GTCATCATAT	8340
AGGCTGTCGT TTCCTTCATG GCACGAGTTC CGACATTAGA GAACTCTTTT TCACTCCCAT	8400
CACTAAAGAC GACTTTATGG ATATACATTG GTTTATAGTA AGTTCCACCA TTTGCAAAGG	8460
CAGCGTAAGC AGCAGCCATC TTTTCACTAC TTGCTCCATA TTTTTTGTCT GATTCGGTTG	8520
TGTTACTTGA AATGGCATTT GAGTAGTGAA TACTTGGGTA GTCGATTCCT AGACCATTTA	8580
GGAAAGTCTT GGCGCGGTTG AGTCCGACCT TGTTTAGAGT TTCCACGGCT GGGACGTTTC	8640
GCGATTGTTG CAGGGCGTAT TGCAAGGTGA TGTTGCCAAA GTAGCCCCTA TCCCAGTTAT	8700
AAACAGGAGT ATTTGTCCCA GGGTAGTTAT AGGGCTCATC GTGAACGATA GTAGCAGTTG	8760
AATCGTAGAC ACCGTACTCC AAGGCAGGAG CATAGTCTGT GATCGGTTTC ATAGTTGATC	8820

ACCC	TTCCAA	GCGATTGGGC	AAAGAGCAAG	GTTTACCTTT	ACAAGCTAAC	TGACCAAGGT	534
AAGA	CAGAAG	AGCAAGAACT	' AACTGTAAAA	GATGGTAAAA	TTACCCTAGA	TCTTCTAGCA	540
AATC	AACCAT	ACGTTCTCTA	TCGTTCGAAA	CAAACTAATC	CTGAAATGTC	ATGGAGTGAA	5460
GGCA ¹	rgcaca	TCTATGACCA	AGGATTTAAT	AGCGGTACCT	TGAAACATTG	GACCATTTCA	5520
GGCG	ATGCTT	CTAAGGCAGA	AATTGTCAAG	TCTCAAGGGG	CAAACGATAT	GCTTCGTATT	5580
CAAGO	GAAACA	AAGAAAAGT	TAGTCTCACT	CAGAAATTAA	CTGGCTTGAA	ACCAAATACC	5640
AAGTA	ATGCCG	TTTATGTTCG	TGTAGATAAC	CGTAGTAATG	CCAAGGCAAG	TATCACTGTG	5700
AATAC	TGGTG	AAAAAGAAGT	GACTACTTAT	ACCAATAAGT	CTCTCGCGCT	CAACTATGTT	5760
AAGGC	CTACG	CCCACAATAC	ACGTCGTGAC	AATGCTACAG	TTGACGATAC	AAGTTACTTC	5820
CAAAA	CATGT	ACGCCTTCTT	TACAACTGGA	GCGGACGTCT	CAAATGTTAC	TCTGACATTG	5880
AGTCC	TGAAG	CTGGTGATCA	AGCAACTTAC	TTTGATGAAA	TTCGTACCTT	TGAAAACAAT	5940
TCAAG	CATGT	ACGGAGACAA	GCATGATACA	GGTAAAGGCA	CCTTCAAGCA	AGACTTTGAA	6000
AATGT	TGCTC	AGGGTATCTT	CCCATTTGTA	GTGGGTGGTG	TCGAAGGTGT	TGAAGATAAC	6060
CGCAC	TCACT	TGTCTGAAAA	ACACAATCCA	TATACACAAC	GTGGTTGGAA	TGGTAAGAAA	6120
GTCGA	TGATG	TTATCGAAGG	AAATTGGTCA	CTCAAGACAA	ATGGACTAGT	GAGCCGTCGT	6180
AACTT	GGTTT	ACCAAACCAT	CCCACAAAAC	TTCCGTTTTG	AAGCAGGTAA	GACCTACCGT	6240
GTAAC	CTTTG	AATACGAAGC	AGGATCAGAC	AATACCTATG	CTTTTGTAGT	CGGTAAGGGA	6300
GAATT	CCAGT	CAGGTCGTCG	TGGTACTCAA	GCAAGCAACT	TGGAAATGCA	TGAATTGCCA	6360
AATAC	TTGGA	CAGATTCTAA	GAAAGCCAAG	AAGGCAACCT	TCCTTGTGAC	AGGTGCAGAA	6420
ACAGG	CGATA	CTTGGGTAGG	TATCTACTCA	ACTGGAAATG	CAAGTAATAC	TCGTGGTGAT	6480
TCTGG	TGGAA	ATGCCAACTT	CCGTGGTTAT	AACGACTTCA	TGATGGATAA	TCTTCAAATC	6540
GAAGA	AATTA	CCCTAACAGG	TAAGATGTTG	ACAGAAAATG	CTCTGAAGAA	CTACTTGCCA	6600
ACGGT	TGCCA	TGACTAACTA	CACCAAAGAG	TCTATGGATG	CTTTGAAAGA	GGCGGTCTTT	6660
AACCT	CAGTC	AGGCCGATGA	TGATATCAGT	GTGGAAGAAG	CGCGTGCAGA	GATTGCCAAG	6720
ATTGA	AGCTT	TGAAGAATGC	TTTGGTTCAG	AAGAAGACGG	CTTTGGTAGC	AGATGACTTT	6780
GCAAG	TCTTA	CAGCTCCTGC	TCAGGCTCAA	GAAGGTCTTG	CAAATGCCTT	TGATGGCAAT	6840
GTGTC	TAGTC	TATGGCATAC	ATCTTGGAAT	GGTGGAGATG	TAGGCAAGCC	TGCAACTATG	6900
GTCTT	GAAAG	AACCAACTGA	AATCACAGGA	CTTCGCTATG	TTCCGCGTGG	ATCAGGTTCA	6960
AATGG	TAACT	TGCGAGATGT	GAAACTTGTT	GTGACAGATG	AGTCTGGCAA	GGAGCATACC	7020

AAGCTTCGC	G ATGATGCTC	A CTTAATCAA	r GCGGAAATG	CAGTACGCT	r gcaagttgta	3540
GACAATCAA	T TGCACTTTG	A TGTGACTAA	ATTGTCAACO	ACAATCAAG1	CACTCCAGGT	3600
CAAAAGATTO	G ATGACGAAAC	CAAACTACT	TCTTCTATTA	GTTTCCTCGC	CAATGCTTTA	3660
GTCTCTGTT	r ctagtaatca	AACTGGTGCT	R AAGTTTGATO	GGGCAACCAT	GTCAAACAAT	3720
ACGCATGTC	A GCGGAGATGA	TCATATCGAT	GTAACCAATC	CAATGAAGGA	TTTGGCTAAG	3780
GGTTACATGT	ATGGATTTGT	TTCTACAGA1	AAGCTTGCTG	CTGGTGTTTG	GAGTAACTCT	3840
CAAAACAGCT	ATGGTGGTGG	TTCGAATGAC	TGGACTCGTT	TGACAGCTTA	TAAAGAAACA	3900
GTCGGAAATG	CCAACTATGT	AGGAATCCAC	AGCTCTGAAT	GGCAATGGGA	AAAAGCTTAT	3960
AAGGGCATTG	TTTTCCCAGA	ATACACGAAG	GAACTTCCAA	GTGCTAAGGT	TGTTATCACT	4020
GAAGATGCCA	ATGCAGACAA	GAACGTTGAT	TGGCAAGATG	GTGCCATTGC	TTATCGTAGC	4080
ATTATGAACA	ATCCTCAAGG	TTGGGAAAAA	GTTAAGGATA	TCACAGCTTA	CCGTATCGCG	4140
ATGAACTTTG	GTTCTCAAGC	ACAAAACCCA	. TTCCTTATGA	CCTTGGATGG	TATCAAGAAA	4200
ATCAATCTCC	ATACAGATGG	TCTTGGGCAA	GGTGTTCTCC	TTAAAGGATA	TGGTAGCGAA	4260
GGCCATGACT	CTGGTCACTT	GAACTATGCT	GATATTGGTA	AGCGTATCGG	TGGTGTCGAA	4320
GACTTCAAGA	CCCTAATTGA	GAAGGCTAAG	AAATATGGAG	CTCATCTAGG	TATCCACGTT	4380
AACGCTTCAG	AAACTTATCC	TGAGTCTAAA	TACTTCAATG	AAAAAATTCT	CCGTAAGAAT	4440
CCAGATGGAA	GCTATAGCTA	TGGTTGGAAC	TGGCTAGATC	AAGGTATCAA	CATTGATGCT	4500
GCCTATGACC	TAGCTCATGG	TCGTTTGGCA	CGTTGGGAAG	ATTTGAAGAA	AAAACTTGGT	4560
GACGGTCTCG	ACTTTATCTA	TGTGGACGTT	TGGGGTAATG	GTCAATCAGG	TGATAACGGT	4620
GCCTGGGCTA	CCCACGTTCT	TGCTAAAGAA	ATTAACAAAC	AAGGCTGGCG	CTTTGCGATC	4680
GAGTGGGGCC	ATGGTGGTGA	GTACGACTCT	ACCTTCCATC	ACTGGGCAGC	TGACTTGACC	4740
TACGGTGGCT	ACACCAATAA	AGGTATCAAC	AGTGCCATCA	CCCGCTTTAT	CCGTAACCAC	4800
CAAAAAGATG	CTTGGGTAGG	GGACTACAGA	AGTTATGGTG	GTGCAGCCAA	CTATCCACTG.	4860
CTAGGTGGCT	ACAGCATGAA	AGACTTTGAA	GGCTGGCAGG	GAAGAAGTGA	CTACAATGGC	4920
TATGTAACCA	ACTTATTTGC	CCATGACGTC	ATGACTAAGT	ACTTCCAACA	CTTCACTGTA	4980
AGTAAATGGG	AAAATGGTAC	ACCGGTGACT	ATGACCGATA	ACGGTAGCAC	CTATAAATGG	5040
ACTCCAGAAA	TGCGAGTGGA	attggtagat	GCTGACAATA	ATAAAGTAGT	TGTAACTCGT	5100
AAGTCAAATG	ATGTCAATAG	TCCACAATAT	CGCGAACGTA	CAGTAACGCT	CAACGGACGT	5160
GTCATCCAAG	ATGGTTCAGC	TTACTTGACT	CCTTGGAACT	GGGATGCAAA	TGGTAAGAAA	5220
CTTTCTACTG	ATAAGGAAAA	GATGTACTAC	TTCAATACGC	AGGCCGGTGC	AACAACTTGG	5280

CAGATAGTG	TTTGATTAT	r ccaactaca	r ctcgtacago	GCGTCCAAT	TTGTCTAAGA	180
TGGTACCATT	TACAATACC	A TITGCATTG	r caggaaataa	AGGTACAAG	GAACCAGTCT	186
TGTATAAATA	CTTGGAACTT	r caagacaag	G CAGTCACTGT	AGATGAATA	CAAAAAGCTC	1920
AGGAAAAATG	GATGAAAGAA	A AAAGAAGAG1	CTAATAAAA	GGCTCAAGA	GATCTCGCAA	1980
AACATGTGAA	ATAACTGTTC	CAAAATATA	GAAAGGATTT	AGTATTTCC	TTGAATGCTG	2040
AATCCTTTTT	TACATTTGTA	AAGAAAGATI	CTAAAATGTA	CGGACCCCC	AAAGTTGGAG	2100
CCTCTTTTTG	TCAGAATAGA	GAAAATTTT	GTTAATTTTA	CTTGTTTCCT	ATTGCTTTCT	2160
CAGCTATTAT	TTGTTATATT	` AAAAGTATAA	TTATTTTTA	TTTATCAGAC	TTAAGCATTG	2220
CACTTTCAGA	GGAAGGAGTA	TTTTTTAAAA	AGAAAATGTA	AACGTTTGCT	CAAAAATGAA	2280
AGGATTTAGA	AGTTTATGAA	TAAAGGATTA	TTTGAAAAAC	GTTGTAAATA	TAGTATTCGG	2340
AAATTTTCAT	TAGGTGTTGC	TTCTGTTATG	ATTGGAGCTG	CATTCTTTGG	GACAAGTCCG	2400
GTTCTTGCAG	ATAGCGTGCA	GTCTGGTTCC	ACGGCGAACT	TACCAGCTGA	TTTAGCTACT	2460
GCTCTTGCAA	CAGCAAAAGA	GAATGATGGG	CGTGATTTTG	AAGCGCCTAA	GGTGGGAGAA	2520
GACCAAGGTT	CTCCAGAAGT	TACAGATGGA	CCTAAGACAG	AAGAAGAACT	ATTAGCACTT	2580
GAAAAAGAAA	AACCGGCTGA	AGAAAAACCA	AAAGAGGATA	AACCTGCAGC	TGCTAAACCT	2640
GAAACACCTA	AGACGGTAAC	CCCTGAATGG	CAAACGGTAG	CGAATAAAGA	GCAACAGGGA	2700
ACAGTCACTA	TCCGAGAAGA	AAAAGGTGTC	CGCTACAACC	AACTATCCTC	AACTGCTCAA	2760
AATGATAACG	CAGGCAAACC	AGCCCTGTTT	GAAAAGAAGG	GCTTGACCGT	TGATGCCAAT	2820
GGAAATGCAA	CTGTTGATTT	AACCTTCAAA	GATGATTCTG	AAAAGGGCAA	ATCACGCTTT	2880
GTGTCTTTT	TGAAATTTAA	AGATACCAAG	AATAATGTTT	TTGTCGGTTA	TGACAAGGAT	2940
GCTGGTTCT	GGGAGTATAA	ATCTCCAACA	ACTAGCACTT	GGTATAGAGG	TAGTCGTGTT	3000
CTCCTCCTG	AAACAGGATC	AACAAACCGT	CTCTCTATCA	CTCTCAAGTC	AGACGGTCAG	3060
TAAATGCCA	GCAATAATGA	TGTCAATCTC	TTTGACACAG	TGACTCTACC	AGCTGCGGTC	3120
<b>LATGACCATC</b>	TTAAAAATGA	GAAGAAGATT	CTTCTCAAGG	CGGGCTCTTA	TGACGATGAG	3180
GAACAGTTG	TTAGCGTTAA	AACGGATAAC	CAAGAGGGGG	TAAAAACAGA	GGATACCCCT	3240
GCTGAAAAAG	AAACAGGTCC	TGAAGTTGAT	GATAGCAAGG	TGACTTATGA	CACGATTCAG	3300
CTAAGGTCC	TCAAAGCAGT	GATTGACCAA	GCCTTCCCTC	GTGTCAAGGA	ATACAGCTTG	3360
ACGGGCATA	CTTTGCCAGG	ACAGGTGCAA	CAGTTCAACC	AAGTCTTTAT	CAATAACCAC	3420
GAATCACCC	CTGAAGTCAC	TTATAAGAAA	ATCAATGAGA	CAACAGCAGA	GTACTTGATG	3480

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:

CCGGAGAA	NA TGATGAAAA	G TTCAAAACT	A TTTGCCCTT	G CGGGCGTGA	C ATTATTGGCG	60
GCGACTACT	TT TAGCTGCAT	G CTCTGGATC	GGTTCAAGC.	A CTAAAGGTG	A GAAGACATTC	120
TCATACATT	T ATGAGACAGA	A CCCTGATAAC	CTCAACTAT	T TGACAACTG	TAAGGCTGCG	180
ACACAAATA	TACCAGTAA	C GTGGTTGATC	GTTTGCTAG	A AMATGATOGO	TACGGGAACT	240
TTGTGCCGT	'C TATGGCTGAC	GATTGGTCTC	TATCCAAGG	A TGGATTGACT	TACACTTATA	300
CTATCCGTA	A GGATGCAAAA	TGGTATACTT	CTGAAGGTG	A AGAATACGCC	GCAGTCAAAG	360
CTCAAGACT	T TGTAACAGGA	TTAAAATATG	CTGCTGATA	AAAATCAGAT	GCTCTTTACC	420
TTGTTCAAG	A ATCAATCAAA	GGGTTGGATG	CCTATGTAAA	AGGGGAAATC	AAAGATTTCT	480
CACAAGTAG	G AATTAAGGCT	CTGGATGAAC	AGACAGTTCA	GTACACTTTG	AACAAACCAG	540
AAAGCTTCT	G GAATTCTAAG	ACAACCATGG	GTGTGCTTGC	GCCAGTTAAT	GAAGAGTTTT	600
TGAATTCAA	A AGGAGATGAT	TTTGCCAAAG	CTACGGATCC	AAGTAGTCTC	TTGTATAACG	660
GTCCTTATT	T GTTGAAATCC	ATTGTGACCA	AATCCTCTGT	TGAATTTGCG	AAAAATCCGA	720
ACTACTGGG	A TAAGGACAAT	GTGCATGTTG	ACAAAGTTAA	ATTGTCATTC	TGGGATGGTC-	780
AAGATACCA	G CAAACCTGCA	GAAAACTTTA	AAGATGGTAG	CCTTACAGCA	GCTCGTCTCT	840
ATCCAACAA	G TGCAAGTTTC	GCAGAACTTG	AGAAGAGTAT	GAAGGACAAT	ATTGTCTATA	900
CTCAACAAG	A CTCTATTACG	TATCTAGTTG	GTACAAATAT	TGACCGTCAG	TCCTATAAAT	960
ACACATCTA	A GACCAGCGAC	GAACAAAAGG	CATCGACTAA	AAAGGCTCTC	TTAAACAAGG	1020
ATTTCCGTC	GCTATTGCC	TTTGGATTTG	ACCGTACAGC	CTATGCCTCT	CAGTTGAATG	1080
GACAAACTGO	AGCAAGTAAA	ATCTTGCGTA	ATCTCTTTGT	GCCACCAACA	TTTGTTCAAG	1140
CAGATGGTAA	AAACTTTGGC	GATATGGTCA	AAGAGAAATT	GGTCACTTAT	GGGGATGAAT	1200
GGAAGGATGT	TAATCTTGCA	GATTCTCAGG	ATGGTCTTTA	CAATCCAGAA	AAAGCCAAGG	1260
CTGAATTTGC	TAAAGCTAAA	TCAGCCTTAC	AAGCAGAAGG	AGTCCAATTC	CCAATTCATT	1320
TGGATATGCC	AGTTGACCAA	ACAGCAACTA	CAAAAGTTCA	GCGCGTCCAA	TCTATGAAAC	1380
AATCCTTGGA	AGCAACTTTA	GGAGCTGATA	ATGTCATTAT	TGATATTCAA	CAACTACAAA	1440
AAGACGAAGT	AAACAATATT	ACATATTTTG	CTGAAAATGC	TGCTGGCGAA	GACTGGGATT	1500
TATCAGATAA	TGTCGGTTGG	GGTCCAGACT	TTGCCGATCC	ATCAACCTAC	CTTGATATTA .	1560
					GGGGAAGATA .	1620
ATGTAGCTGC	TAAAAAAGTA	GGTCTATATG	ACTACGAAAA	ATTGGTTACT	GAGGCTGGTG	- 1680
ATGAGACTAC	AGATGTTGCT	AAACGCTATG	ATAAATACGC	TGCAGCCCAA	GCTTGGTTGA	1740

TGTTGAAGAA	ACTTTAATCO	AACCAACCT	TGTCTATGGA	CATCCAGTAG	CTGTATCTCC	1860
ACTCGCTAAC	AAAAATCCTG	AAGACCAACG	CTTTACTGAC	CGTTTCGAGC	TCTTTATCAT	1920
GACTAAGGAC	TACGGTAATG	CCTTTACTGA	GTTGAACGAC	CCAATCGACC	AACTTAGCCG	1980
TTTTGAAGCC	CAAGCTAAAG	CCAAAGAACT	TGGTGATGAT	GAAGCGACAG	GAATCGACTA	2040
TGACTACATT	GAAGCTCTTG	AATACGGTAT	GCCACCAACA	GGTGGTTTGG	GAATCGGTAT	2100
CGACCGTCTC	TGCATGCTCC	TCACTGATAC	AACAACTATC	CGTGATGTAT	TGCTCTTCCC	2160
AACAATGAAA	ТАААТТСТТА	TCCTCTGGGT	CTTATCAGAG	GATTTTTTGA	TTCAAAAAGA	2220
GACTGAATTT	AAGGAGAAAA	TGAAGTGTAG	TATATTGAAA	TTGAAATAGT	ACACTTTGAT	2280
	TTGTTAGAAA					2340
	TAGTACGCTG					2400
	TTCAGATTCA					2460
	TAGTATCTTG					2520
CTATTAGAGG	ATGTTCTGGT	GTCTTATTCA	CTTGTTTTTT	ATAGTATTAG	TAGATAGAAT	2580
	AAACCCAAAT					2640
	GAGCCACTTT					2700
	TCCTCGCTAG					2760
	ATCTCGACTG					2820
	ACAGGAAGAT					2880
	TAGGCATAGA					2940
	ACCACGTGAA					3000
	GCTAGATGTT					3060
	TCGTTTTTGA					
	TTGATGAAAT					3120
	CCACTCGTCA					3180
	TION FOR SE			·······································	··	3232

# (2) INFORMATION FOR SEQ ID NO: 145:

- (i) SEQUENCE CHARACTERISTICS:

  - (A) LENGTH: 10711 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

			970			
CAGGGGCGT	A TTACGTGAC	A ATTCAATGT	A GGCTGTCGC	r ACTTGCGCC	AAACAAGGAT	60
TCGATAATG	CGGATGATA	TAACGATTA	A ACCGAGCAG	A AAGGATCCCA	AAATTCCCCA	120
AACTGCAATA	TGCAAGGTC	A GAAAGAATGO	CTTTTGATA	r agtggtagat	ATTGTTCAAC	180
AATGGATCA	TCCAAAAAT	GAACCTCCC	TCTAGAAATA	ATACAGTTAT	TGTAGCACTT	240
AAAATCTTCT	TTGGATAATA	TCTATTTTT	ATTGCCGTTA	TAAGGATTT	TATCATAGAC	300
ATAAAATTTC	TGAAATTTCC	: AAACAAAATA	TTTTAAAAGT	TTTGAAAAAG	AGTTAAGATA	360
TTTTTGTAAT	` ACACAAAGTA	AACGCTTACT	'TATTAAGGAG	GACATTTTAT	GTCATACAAA	420
ACAAGCAATG	CAGAAGGTCA	TGTAGATTTC	ATCAATACCT	ATGATTTGGA	GCCAATGGCG	480
CAACAAGTTA	TTCCTAAAGC	AGCATTTGGC	TATATCGCTA	GTGGGGGGG	AGATACTTTC	540
ACTTCTTTCC	AGTGATTTTA	GCGTCAGGTT	CTTTTTAGTT	TTTAAAGATT	ATCCGTGAAT	600.
TTCTTGCTTA	TTTATGATAA	AATGGGAGTG	TCGCAAAAA	TGACTCATCG	TATTCAATTT	660
TGAGTAAAAC	TAGGAGGATC	CCATGTCTAC	AGAACATATG	GAAGAACTAA	ATGACCAGCA	720
GATCGTTCGC	CGTGAAAAAA	TGGCTGCGCT	CCGCGAACAA	GGAATCGATC	CTTTCGGAAA	780
ACGTTTTGAA	CGTACTGCAA	ATTCACAAGA	ATTAAAAGAT	AAATATGCCA	ACCTCGATAA	840
AGAACAATTA	CACGATAAAA	ACGAAACAGC	TACTATCGCA	GGACGCTTGA	TAACCAAACG	900
rggtaaagga	AAAGTTGGTT	TTGCCCACCT	TCAAGACCGC	GAAGGCCAGA	TTCAGATCTA	960
CGTTCGTAAG	GATGCTGTCG	GTGAAGAAAA	CTACGAAATC	TTCAAAAAAG	CAGACCTTGG	1020
rgacttcctt	GGTGTCGAAG	GTGAAGTGAT	GCGTACGGAT	ATGGGAGAAC	TCTCTATCAA	1080
GCAACCCAC	ATCACACACT	TGTCTAAGGC	TCTTCGTCCT	CTTCCTGAGA	AATTCCATGG	1140
TTGACAGAC	GTTGAAACAA	TTTACCGTAA	ACGTTACCTT	GACTTGATTT	CTAATCGTGA	1200
AGCTTTGAA	CGCTTTGTCA	CTCGTTCAAA	AATCATCTCT	GAAATCCGTC	GTTACCTTGA	1260
CAAAAAGGA	TTCCTTGAAG	TGGAAACACC	TGTTCTTCAT	AATGAAGCCG	GTGGTGCTGC	1320
GCCCGTCCA	TTTATCACCC	ACCACAATGC	CCAAAACATT	GACATGGTGC	TTCGTATCGC	1380
ACTGAGCTT	CACTTAAAAC	GCCTTATCGT	GGGTGGTATG	GAACGTGTCT	ATGAAATTGG	1440
CGTATCTTC	CGTAACGAAG	GAATGGACGC	TACTCATAAC	CCTGAGTTCA	CTTCTATCGA	1500
GTTTACCAA	GCTTATGCAG	ACTTCCAAGA	CATCATGGAC	TTGACTGAAG	GCATTATCCA	1560
CACGCTGCT	AAATCAGTCA	AAGGTGATGG	CCCAGTCAAC	TACCAAGGTA	CTGAAATCAA	1620
ATTAACGAA	CCATTTAAGC	GTGTTCATAT	GGTGGATGCT	ATCAGAGAAA	TTACTGGTGT	1680
GATTTCTGG	CAAGACATGA	CTTTGGAAGA	AGCTAAAGCT	ATCGCTGCTG	AGAAGAAAGT	1740
CCAGTTGAG	AAACACTACA	CTGAGGTTGG	TCACATCATC	AATGCCTTCT	TTGAAGAGTT	1800

969

CTGAGCAACT	CTTTGCAGG	AACATCAAA	ACCTTTCTG	CAAAGAGCT	AAACAAGGAC	366
TTCGTGGTGT	GCCCAACTAC	CAAGTACAG	G CAGACGAAA	CAACAATATO	GTGGAACTGC	372
TCGTCTCATC	TGGTATAGTT	· AACTCAÁAAC	GCCAAGCCCC	TGAAGACGTO	CAAAACGGAG	378
CCATCTACGT	' AAACGGCGAC	CGCATCCAAC	AGCTTGACTA	TGTCTTGAGT	GACGCTGATA	3840
AGTTAGAGAA	TGAACTGACT	GTTATCCGTC	GTGGGAAGAA	AAAATACTTI	GTATTGACTT	3900
ACTAAACTAT	TCAACATTTA	TCTATAAACA	AAGGAGTTAA	CCTCGAGAAA	GGTAACTCCT	3960
TTTTGCTGTT	AATAACTCTC	ATCTATCTAT	' TTTTAATAGA	CAGGCTACGC	AGGACAATGC	4020
GCAAGGTTGT	TAGATTATGT	AAGATAGAGA	GATTTGAAGG	ACTGAACCAA	TTAAATAAGC	4080
CAAAGCCAAT	CAAACTACTA	TTTACGACAA	CGGTATCCTG	AATATTTTC	TTGATGAGTG	4140
TTTGCAAAGA	TGATGATAAC	GAATCCAACT	CTTGGAAGAA	ATCCAAACGA	TTATCTAACA	4200
ATAAGATATC	ACTCATCTGC	TTAGAAATAT	CTGCACTCTC	ATTCATCACC	ACACCGATAT	4260
CTGATAGAGT	TAAAGCCGCT	GAGTCATTCA	ATCCATCTCC	AACCATCAAA	ATAGTGTGAC	4320
CTGCTTTCTG	CAGTTTCTCT	ACTAACTCAA	ATTTCCCATC	AGGTTTCAAG	TCTGTATAGA	4380
CCTGATCAAA	GGGCAAATCT	TTGACTAATT	CCTCTGTCCT	AATCAAGGTG	TCTCCTGTTG	4440
CCAGAATCAA	TTTTTTCCCC	TGTGCCTTAA	GTTTATCCAA	GGCTGTTTTT	GCTTCTTTTC	4500
TCAAAGGAGT	ATGAATGCAG	AACATTCCAA	TCAATTCATT	TTGATAAGCC	AAGAATAAGA	4560
GATTGTAGTG	ACTCTTGTAC	TCTTCAATTA	AAGCATTTTG	TTCTGAACTG	ATATGAATCT	4620
GCTCATCCTG	CATCAAGACA	TAATTCCCAA	TAAGAACTGG	TTGGCCATCT	ATATGAGATT	4680
TGATCCCCTT	GCTTGCGATA	TATTGGAGTT	TCCCATGCAT	TTCCTCATGT	TCAATTCCCT	4740
TATCTCAGC	TTGCTTGACG	ATGGCATTAG	CAATAGGATG	ATAAATGTGT	TCCTCAAGAC	4800
AGGCACTGAT	TCTGAGAATA	TCTTCCTCAC	TATAGTCTCC	AAAAGGTAAC	ACCTTTTCAA	4860
TATAGGATA	ACTAGTTGTG	ATTGTTCCTG	TCTTATCAAA	CAAGAAAGTA	TCAACTTCCA	4920
SATATTTCTC	CCTGTTGTGG	CCTCTGGCTG	TCATCTCTGT	GCTGG		4965

# (2) INFORMATION FOR SEQ ID NO: 144:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3232 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

			968			
TTCTGTCCCT	' TATTATTTCG	GCCAAAGGGA		GATAGGTCGT	TAAAATCTCA	1860
TCTTTATTCA	TGGCGCGTTC	CAAGGCAAGA	GCATCCACAA	TCTCTGCCGC	CTTACGAGCC	1920
AAGGTCGGCG	CATCCCCAAC	CACCTGCTGT	TTAATTAGTT	GCTGGGTCAA	GGTTGAACCC	1980
CCACTAGAGG	AACCCAAACC	TACAAATTTC	CCCAAGGTCG	CACGAATCAC	CGCCTTGGGT	2040
ACTACACCCT	TATGTTCTTT	AAAGTGTTCA	TCTTCTGTCG	CAATGATAGC	CTTCTTCAGA	2100
TTTTCCGAAA	TTTGCTCAGA	TGAGATAGAA	GTGCGCAACA	AATCACTCTC	TATGGAAGCA	2160
ATCACCGTCC	CGTCCGAATA	GGTAATCTCT	GAAATAGAAG	AGATGTCCTT	GACCTGATTC	2220
ACCAATTCTT	CTGTCTGAGG	CACCCGAACC	TTGTCAAATA	AGGCCACTCC	GTATCCCAAA	2280
GCAATCCCAG	CTCCCAACAT	TCCTCCTAGA	AAACCGAGTA	CAAAGAGTAA	GTTAAATAAG	2340
GCTTTTATAC	TCAGTAAAAT	AGCTGGGAAA	ATGACTGACT	TATCTAAGGT	TTTAGATTTT	2400
TTGGTACTTG	AACCTTTCTT	GCCAGGTCTA	GCTGATTTTT	TATTTTTTTG	TTTTTGCTGG	2460
AAAAATTCCA	GCATTTTTCG	TTTTAATTCA	TTTAATTGAT	TTTGCATGGA	TTTCCTCACT	2520
ттатстатта	TACCACAAAA	GGGAAATTTT	CAATAAAATA	GCCACTTTCT	TCCCTATTCT	2580
GCTAGGCTAT	TGCCCAAGTT	TGTGATACAA	TAGGTAGAAA	CAATAATTTT	AAAAAGGAGA	2640
AAAAACACAT	GCACATTTTT	GATGAGCTAA	AAGAGCGTGG	TTTGATATTT	CAAACGACTG	2700
ATGAAGAAGC	TTTGCGTAAA	GCCCTAGAAG	AAGGTCAAGT	TTCTTATTAT	ACTGGCTACG	2760
ATCCAACTGC	TGACAGCCTT	CACCTAGGCC	ACCTTGTCGC	AATCTTGACA	AGTCGTCGCT	2820
TGCAACTAGC	AGGTCACAAA	CCTTATGCGC	TCGTTGGCGG	TGCTACAGGT	CTCATCGGAG	2880
ATCCGTCCTT	CAAAGATGCT	GAACGTAGTC	TCCAAACAAA	AGACACAGTA	GATGGCTGGG	2940
TCAAGTCTAT	CCAAGGACAA	CTTTCTCGTT	TTCTTGACTT	TGAAAATGGC	GAAAACAAGG	3000
CTGTCATGGT	CAACAACTAC	GACTGGTTTG	GCAGCATCAG	CTTCATTGAC	TTCCTCCGTG	3060
ATATTGGAAA	ATACTTCACG	GTCAACTACA	TGATGAGTAA	GGAATCTGTT	AAAAAACGGA	3120
TCGAAACAGG	AATTTCTTAC	ACTGAGTTCG	CTTACCAAAT	CATGCAAGGG	TATGACTTCT	3180
TCGTCCTTAA	CCAAGACCAT	AATGTCACTC	TTCAAATCGG	TGGTTCTGAC	CAGTGGGGAA	3240
ATATGACAGC	TGGTACCGAA	TTGCTTCGTC	GTAAGGCGGA	CAAGACTGGT	CACGTTATCA	3300
CTGTTCCACT	AATCACAGAT	GCAACTGGTA	AGAAATTTGG	TAAATCAGAA	GGAAATGCCG	3360
TCTGGCTCAA	TCCCGAAAAG	ACTTCTCCAT	ACGAAATGTA	CCAATTCTGG	ATGAACGTGA	3420
TGGACGCTGA	CGCTGTTCGC	TTCTTGAAAA	TCTTTACTTT	CTTGTCACTT	GATGAGATTG	3480
AAGATATTCG	TAAACAATTT	GAAGCAGCGC	CACACGAACG	CTTGGCTCAA	AAAGTCTTGG	3540
CTCGTGAAGT	TGTTACACTT	GTTCACGGAG	AAGAAGCCTA	CAAAGAAGCA	CTTAACATCA	3600
				*	•	

GAAGAAGGT	C GTGTAGTAC	T TGAGTTACT	G CTATCGCTA	G AACTACTAC	T TGAACTGCTG	12
GAGCTGGAT	G GAGTTGGTA	G ACTCCCCAC	A ATACTAGAC	C AAGCATTCT	G ATAATCCGCA	180
TCACTTCCG	C CAATAGCAA	A GCGATAACT	T GTCGCTGGC	G CTCCTGACT	T ATTAGCCCAA	240
TAGCTGGTA	A CAGTCGAAC	C TGTGACCTC	r actrottre	C CTTCAACAG	A AACCTTCTCT	300
GGTTTTTGA	C CTGTTGATT	CAAGACTTC	GATTTCACT	A CACTAGGAT	C TAAAGCAAAG	360
CGCTCGTTC	C CCCAAATGCT	TGGGGAAGC	T TGCTGAATCO	G CATTTACCA	G ATGAGCCATG	420
TAATTAGAG	T TATTAGAATA	ACCTGCTCT	CGTGACAATO	AATGATTAT	C ATCATGCCCA	480
ATCCAGCCAG	CTAGGGTTA	TCTAGGTGTG	GAAAGCATGA	GCCACATAT	TTCGTCTTGG	540
TTGGTTGTA	CAGTCTTCCC	AATCCAATCT	GCATTAGCCA	GAGTAGGAT	TAAAGAAGTC	600
AGGTTAGACT	TGAAGGTTGT	TGTCACACGA	GAGGATAGAA	CTTCTCGTAC	CAATCCCTGC	660
ATAATCGTCC	CAGTAGCTTT	TGAATAGACT	TGAACCGGTT	TATCCTGATA	CTCATACACC	720
ACTCTACCAT	CTGCTGCTTC	AATCTTTGAA	ATCACATGCT	TCTGATGATA	AACTCCATTA	780
TTAGCTAAGO	TCTGATAGCC	ATTGGTATGC	TGGGCAACTG	TGACTTCAAT	ACCACCACCC	840
ATTGGCAAGC	TCTCAATACC	GTACTCAGGA	ATCTCGTAAC	CCATCTTTTC	CATATAACCC	900
TTGACATCAA	CACCCTTTTC	ACGGAGCATA	CGATAGGTCC	AGTAAGCAGG	GATATTCCAT	960
GAATAGTTCA	GAGCTTCTCC	CAAGGTCATC	ATTCCTGTTC	CCTTGCTATT	AGCATACATA	1020
ATCGGATTGC	CATTAGCAAA	GTTTGTTGGA	TAGTTAGATA	GAATCGTTTC	ACTTCCCATC	1080
AAGCCCTGGT	CAATAGCAAT	ACCGTAGGCC	AGCAAGGGCT	TGGTAGTAGA	AGCTGGCGAA	1140
CGTTTGGTAT	CAAAGGCATG	ATTATTTTGA	TTTTCTTGAT	AATTACGACC	ACCTACAAAG	1200
CCTAGAATAG	CACCTGTTTG	GTTATCCATC	AAGACATTCC	CTACTTCTAC	ACGACCTGTT	1260
CCATCGTCTA	AAAGATAGCC	ATAATCAGCA	ACCGCACTTT	GCATGGCAGA	ATGAATTTTC	1320
TGATCTATGG	TAGTAGTAAT	CTTATAACCA	CCATTTTCAA	TTTCCTTGGC	TGCCAAATCT	1380
CGATAAAACT	TCTGAGTTGC	CTCATTTTTC	AACTCCTTAG	CGGAGACATT	GTCTCTCTGA	1440
GCTAGATAGT	CATACATACG	TTCTTGAGCT	TCTGCCAAAG	TTGTAAAGTA	TAAATAGTCT	1500
CGTGAAATTC	CTGTAACCGT	GCCCGATGGT	AAAAAGTCCT	GTTTAAGGTC	ATAATCCTTG	1560
TACTGAGAAT	ACTCGTCTTT	GCTTAATGCA	CCTGTACGAT	ACATACTGTA	AAGAACTGCC	1620
PTAGCCCGTC	TTAAGCCAAT	TTCTAGGTCT	TCATCACTCT	TCAACTCCCC	AGTATTTTCA	1680
<b>FAAGGAGAGT</b>	AAGTAATGGG	ACTCTGTGGA	AGTCCTGCTA	AAAATGCTGC	TTGAGGAACA	1740
GTCAACTGAC	TGGCATCTAC	ACCGAAAATT	CCCTCAGCTG	CTTGCCGAGC	CCCTGCAATA	1800

			966			
CTGCGGAATT	TCAGGAGACA	ATGACATTAG	AAAGATGTCG	ACTCTTTAGT	CAAAAGTATC	3720
CAGAAAATAC	ATTGATTGCG	ATGGATGGTG	TGAAGATAGT	TGGTTTTATA	AGTTATGGCA	3780
ACTGTCGTGA	TGAGACTATT	CAAGCTGGTG	AAATTATTGC	TTTATATGTT	TTAAAAGACT	3840
ATTATGGAAA	AGGAATCGCA	CAAAAGTTAG	TGAAAGCAGC	TTTGACTGAT	CTTAATCATT	3900
TTTCTGAAAT	TTTCTTATGG	GTATTGAAAG	ATAACAAGCG	CGCCATTGCT	TTCTATCAAA	3960
AAATGGGTTT	TACTTTTGAT	GGACAAGAAA	AAATACTTGA	ACTTGGAAAG	CCTATAAAGG	4020
AAAAACGGAT	GGTATTCTAT	TCTAAATAAT	TCTCAAAAGT	AAAAGCTAAT	ATGGTACCAA	4080
GTCTGAAAAT	TTAATAAATT	AGAAAGCGAG	TAAATTTATG	TCCCGTTCCC	AATTAACAAT	4140
TTTAACAAAT	ATCTGTCTGA	TTGAAGACCT	CGAAACTCAG	CGCGTGGTGA	TGCAGTATCG	4200
CGCCCTGAA	AACAATCGCT	GGTCTGGTTA	TGCCTTTCCT	GGAGGTCATG	TAGAAAATGA	4260
TGAGGCTTTT	GCGGAGTCTG	TCATTCGTGA	AATCTACGAA	GAAACAGGGT	TGACTATCCA	4320
AAATCCTCAA	CTTGTCGGCA	TTAAAAATTG	GCCACTAGAT	ACAGGTGGGC	GCTATATTGT	4380
CATTTGTTAT	AAGGCGACTG	AGTTCTCTGG	TACCCTTCAA	TCTTCAGAAG	AGGGAGAAGT	4440
TTCTTGGGTG	CAAAAAGACC	AGATTCCAAA	CTTAAATCTG	GCCTATGATA	TGCTACCATT	4500
GATGGAAATG	ATGGAAGCTC	CCGACAAGTC	AGAGTTTTTC	TACCCTCGCC	GTACAGAAGA	4560
CGATTGGGAA	AAGAAAATCT	TCTAGTCTTT	TACTAAATAA	CCTAGCTGAT	CCAAGGCCTC	4620
CTCGATATAG	TGGAGGTCTT	GTTGTGTCTC	GGCTTCAACT	AGGTGATAAT	GAATACCATC	4680
rgttaactca	GAAATTGGCT	TAAAGTCAGA	ACCTTCAACT	TGTTCTAGAA	AATGTTGCAC	4740
GTCGCGGCGA	CAGGTCAGTT	TTAGTAAGGT	TTCAATCTCT	CCATAAACAG	GATGATCAAT	4800
CAAGATATTT	TGAACGCGAC	CACCATTATC	TACGATAGCA	AGTAATTCTC	GTCCAATTTC	4860
PTCAACTTCA	TGCTTGACCT	TAAATAATTT	GTGATGATAA	GTATTTGCAT	TAGCATCTTT	4920
<b>NTAGATATAA</b>	CCACGATTGG	TAGATAGAAT	TGGAGATCCA	TCAGCTCTTA	AAATTGCAAT.	4980
ATCTTGAACA	ATAACTTGTC	GAGTGACATG	AAAGTGCTCA			5020

## (2) INFORMATION FOR SEQ ID NO: 143:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 4965 base pairs

  - (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:

AAAAAGTGGC AATCCATTGA TTGGCCACTT CATTTAGAGA ATTATCGTCT CGCCCTTGAA

60

GTATGATATC	GAAATGTTGC	GTGAGATGGG	CTATACCAAT	GGGGTTGAAA	ATTATTCTCG	198
CCACATGGAT	GGACGGAGCG	AAGGAGAGCC	TCCTTATACG	CTTCTCGACT	TCTTCCCAGA	204
TGATTTCTTG	ATTATGATTG	ACGAGAGTCA	TATGACCATA	GGGCAAATCA	AGGGCATGTA	210
CAATGGAGAC	CGTTCGCGTA	AAGAAATGCT	GGTTAATTAT	GGTTTCCGTT	TGCCGTCTGC	2160
TTTGGACAAT	CGTCCTCTCC	GTCGGGAGGA	GTTTGAGAGT	CACGTTCATC	AGATTGTTTA	2226
CGTTTCAGCG	ACACCTGGTG	ACTATGAAAA	TGAACAGACC	GAGACAGTGA	TTGAGCAAAT	2280
CATTCGTCCA	ACGGGACTCT	TGGATCCAGA	GGTGGAAGTC	CGTCCGACTA	TGGGACAGAT	2340
TGATGACCTC	TTGGGTGAAA	TCAATGCCCG	CGTTGAAAAA	AATGAGCGTA	CCTTTATCAC	2400
AACTTTGACC	AAGAAAATGG	CAGAGGATTT	GACCGACTAC	TTCAAGGAAA	TGGGTATCAA	2460
GGTCAAGTAC	ATGCACTCGG	ATATCAAGAC	CTTGGAACGG	ACGGAGATTA	TCCGTGACCT	2520
GCGCTTGGGT	GTCTTTGATG	TCTTGGTCGG	AATTAACCTG	CTCCGTGAAG	GAATTGACGT	2580
TCCTGAAGTG	AGCCTCGTAG	CTATTCTCGA	TGCTGACAAG	GAAGGTTTCC	TTCGCAACGA	2640
ACGTGGACTC	ATCCAGACCA	TTGGACGTGC	TGCACGTAAT	AGCGAAGGTC	ATGTTATCAT	2700
GTATGCGGAC	ACGGTTACCC	AGTCTATGCA	ACGTGCTATC	GATGAAACTG	CCCGCCGTCG	2760
CAAAATCCAG	ATGGCCTATA	ATGAAGAACA	TGGTATCGTT	CCACAAACCA	TCAAGAAAGA	2820
AATCCGTGAC	TTGATTGCTG	TGACCAAGGC	AGTTGCTAAG	GAAGAAGACA	AGGAAGTCGA	2880
TATCAATAGC	CTCAACAAAC	AAGAGCGCAA	AGAACTAGTC	AAAAAGCTTG	AGAAACAAAT	2940
GCAAGAAGCA	GTTGAAGTGC	TTGACTTTGA	ACTAGCAGCT	CAGATTCGTG	ATATGATGCT	3000
GGAAGTCAAG	GCCTTGGATT	AGGGGAATAG	TATGATTTAT	TTAAGAAAGT	TAAAGAAAGA	3060
AGATTTGATG	TCTTTATGGG	AAATGGCTTA	TTCACAGCTT	AATCCAGTTT	GGAAACAGTA	3120
TGATGCTCCC	TATTATGATG	ATTATCAGTA	TTTTTCAAAT	TTTAAAGAAT	TCGAACTACA	3180
AAAATCAGAA	TCCATTTTAA	GCAACTCAAA	TCGCCTTGGT	ATTTTTGTTG	ATGATAAACT	3240
AGTTGGGACT	GTTTCGCGTT	ATTGGGTATG	TAAAGAAACA	AGATGGATGG	AATTGGGAAT	3300
rggtatttat	GATAAAAAAT	TCTGGAACAC	TGGTATTGGG	AAAGTTGCTA	TGTTGCAGTG	3360
GATAGATAGG	ACGTTTCAGG	ATTACTTGGA	GTTGGAGCAT	CTGGGTTTGA	CAACTTGGTC	3420
AGGAAATATT	GGTATGATGA	AACTTGCTGA	AAAATTAAGA	ATGAAAAAAG	AAGCTCATAT	3480
PCCAAAAGTT	CGTTATTATC	AAGGTAAATA	TTTTGACAGT	attaaatatg	GTATTTTGAG	3540
AGAAGACTGG	GAGAAAATAA	ATGACGGTTA	TTATCAAATC	AATGGAAACT	CCTGAAGAGA	3600
PAGAAGGTAA	ATCCTTCGTT	CACTGGCAAA	CGTGGAGAGA	GCCTTATGAT	GACCTTTTGC	3660

			964			
ACTTTGTATG	GTATTGGCTT	GTTAGCTCTC		CTAGAAATTT	TGGAGAGGCT	18
GGTCAAAATC	TTGCAAGCTA	CTTGCAGACC	TTGCATCAGA	GCTTGACGGA	TAAAACAAGT	24
GACTTTCGTT	TAATTTTAGG	ATTACTGGCC	TTTGGTTATT	CTTAACACTG	TGTTCAGATG	30
GACAAGAAAA	GTTGAGAAAA	GACCTATTCG	AACCTTGGGA	TTTTATAGAG	AGAATTTCCT	36
CAGCAATCTT	CTGAAAGGAT	TTAGTCTAGG	CCTGGCACTT	TTTCTTCTGA	CCTTGTTAGG	42
TTTAGTGGTC	TTAGGTCAAT	ATCGTTTGGA	ATCCATTCAC	TTGAATCCTT	ATTCTCTTGC	48
CTTTGTCGTC	TTTACTATCC	CATTTTGGAT	TTTACAGGGG	ACAGCAGAAG	AAGTGGTGGC	54
CCGTGCTTGG	CTACTTCCTC	AATTGGCCTC	AAGAACCAAT	CTAAAACTAG	CTATTCTTAT	60
ATCTAGCCTG	TTCTTTACCC	TGCTTCATAT	GGGCAATTCT	GGTCTCACCC	CTCTATCTCT	66
AGTAAATCTC	TTTTTATTCG	GAGTTGCCAT	GGCTCTTTAC	CTTCTCAAAA	CTGATACAGT	72
TTGGGGTGTT	GCAGGTATTC	ATGGTGCTTG	GAATTTTGCT	CAGGGTAATC	TCTTTGGGAT	78
TTTAGTTAGT	GGTCAACCGT	CAGAACGTCT	CTGATGACCT	TTTTACCACA	AGGCAATCAA	84
GATTGGCTAT	CAGGTGGTTC	TTTTGGCATA	GAAGGTTCCA	TTATGACAAG	TCTGGTATTA	90
CTACTGCTGA	TTGTCTATCT	TGCTAATAAA	TTAAAGAAAG	AAAATGAAAG	GATGTGACTT	96
CGGTCCGTCC	TTTTCTTCGT	GAAAATACTA	TAAGTATGCT	AAAATAGGAA	TAGCACATGG	102
AGAGAGGATT	CTTATGATCA	ATCACATTAC	AGATAATCAA	TTTAAACTAG	TATCAAAATA	108
TCAACCATCA	GGAGATCAAC	CCCAAGCTAT	CGAGCAGTTG	GTGGATAACA	TTGAGGGGG	114
AGAAAAAGCT	CAGATTCTGA	TGGGGGCGAC	TGGAACAGGG	AAGACCTATA	CTATGAGTCA	120
GGTCATTTCT	AAAGTCAATA	AACCAACTCT	GGTTATTGCC	CACAATAAAA	CTCTGGCTGG	126
TCAGCTCTAT	GGGGAGTTTA	AGGAATTTTT	CCCTGAAAAT	GCAGTTGAGT	ATTTCGTATC	132
CTACTATGAT	TATTACCAGC	CAGAGGCCTA	TGTCCCTTCT	AGCGATACCT	ATATTGAGAA	138
GGATAGTTCT	GTCAATGACG	AGATTGACAA	GCTTCGCCAC	TCAGCTACCT	CAGCCCTTTT	144
GGAGCGTAAT	GATGTTATTG	TCGTGGCCTC	AGTCTCTTGT	ATCTATGGTT	TGGGTTCGCC	150
CAAGGAATAC	GCTGATAGTG	TCGTTAGTCT	CCGTCCTGGT	CTAGAGATTT	CTCGTGATAA	156
ACTCTTGAAT	GACTTGGTCG	ATATTCAGTT	TGAACGTAAT	GATATTGATT	TCCAACGCGG	162
AAGATTTCGC	GTTCGTGGGG	ATGTGGTAGA	GATTTTCCCA	GCTTCCCGAG	ATGAACATGC	168
CTTTCGAGTA	GAATTTTTTG	GAGACGAAAT	TGACCGTATT	CGTGAAGTTG	AGGCTCTGAC	174
AGGTCAGGTG	TTGGGAGAAG	TGGATCATTT	AGCGATTTTC	CCAGCGACAC	ACTTTGTGAC	180
CAATGACGAC	CACATGGAAG	TTGCCATTGC	AAAGATTCAG	GCCGAGTTGG	AAGAACAATT	186
AGCTGTCTTT	GAAAAGGAAG	GTAAACTGCT	TGAAGCCCAG	CGTTTGAAAC	AGCGGACAGA	192

AAAATGTTTC	CACGCTTCCA	TCCTACCACT	TGGAGGAAAG	AGATTTCCAC	ATTCCTCAAG	1164
						2104
					GCACGCATTG	1170
TTCTTCCAAA	GAGTGAGGAG	AAGGTCCCAT	TAATCTTCCA	TTTTCATGGT	TATATGGGAC	11760
GTGGCTGGGA	CTGGGCCGAC	ATGCTGGGCT	TCACCGTAGC	TGGTTACGGT	GTTGTTTCCA	11820
TGGATGTGCG	GGGCCAGTCA	GGTTACTCAC	AAGACGGCTT	GCGTTCTCCT	TTAGGAAATA	11880
CCGTGAAGGG	GCATATTATC	CGTGGTGCTG	TGGAAGGTCG	GGACCACCTC	TTTTATAAGG	11940
ATGTTTATCT	GGATATTTAC	CAGTTGGTCG	AAATTGTTGC	TAGTCTGTCT	CAGGTTGATG	12000
AGAAGCGTCT	TTCTAGCTAT	GGTGCCTCAC	AAGGAGGGC	TCTAGCTCTA	GTTGCAGCAG	12060
CGCTCAATCC	TCGAATTCAG	AAAACAGTTG	CCATTTATCC	CTTCTTGTCA	GACTTCAGAC	12120
GGGTGATTGA	GATTGGTAAT	ACTAGCGAGG	CTTACGACGA	ACTTTTCCGT	TATTTCAAGT	12180
TTCACGACCC	CTTCCATGAA	ACAGAGGAGG	AAATCATGGC	GACCCTTGCC	TATATCGATG	12240
TCAAAAATCT	TGCCCATCGT	ATCCAAGGTG	AGGTTAAGAT	GATTACGGGC	TTGGACGACG	12300
ATGTTTGCTA	TCCCATTACC	CAGTTTGCGA	TTTATAATCG	TCTGACCTGC	GATAAAACCT	12360
ATCGCATCAT	GCCTGAGTAT	GCTCACGAAG	CCATGAATGT	ATTTGTCAAT	GACCAAGTCT	12420
<b>CAACTGGCT</b>	CTGTGGAAGT	GAGATTCCTT	TTAAATATCT	AAAATAAGGA	GTCGACTCTA	12480
AGCACAAAAT	CTTAAAAATT	ACAAACACGC	ATAGTATCAG	GGGATTAAGA	AAACTTTATA	12540
TATGCGTTT	TATCATGGAA	ATATAGTAAA	ATGAAATAAG	AACAGGACAA	ATCGATCAGG	12600
CAGTCAAAT	CGATTTCTAA	Caatgttta	GAAACAAATG	TGTACTATTC	TAGTGTCAAT	12660
TATTATATT	TATAGAATTT	TTTGTTGCTA	GATTTGTCAA	ATTGCTTAAA	ATAATTTTTT	12720
CAGAAAGCA	AAAGCCGATA	CCTATCGAGT	AGGGTAGTTC	TTGCTATCGT	CAGGCTTGTC	12780
GTAGGTGTT	AATACTTTTC	AAAAATCTCT	TCAAACCACG	TCAGCTTCGC	CTTGC	12835

# (2) INFORMATION FOR SEQ ID NO: 142:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5020 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:

GGGGATATGA AGAACAAAAG	AATATTTAAA	GACTTCCAAG	CTTCAAAAAT	GAGTTTAAAC	60
ATTTACACAA GCCCCTTGTT	AGCCTTTGTT	TTTGTCTTCA	TAGGAGAGTT	TGTGGCTTTT	120

962	
TCGTCTCCTA CAAGGGGATG TGGGGAGTGG AAAAACGGTA GTCGCTGGCT TGGCCATGTT	9840
TGCGGCAGTG ACAGCAGGTT ATCAGGCTGC CCTAATGGTA CCAACAGAAA TCCTCGCAGA	9900
GCAACACTTT GAGAGTTTAC AGAACCTTTT TCCCAATTTG AAACTGGCTC TCTTGACAGG	9960
TTCCTTGAAA GCTGCAGAAA AGAGAGAAGT CTTGGAGACC ATTGCCAAGG GTGAGGCTGA	10020
TTTGATTATA GGAACTCACG CTCTGATACA AGATGGGGTG GAGTATGCTC GTCTTGGTTT	10080
GATTATTATC GATGAGCAGC ACCGTTTTGG TGTAGGGCAA AGGCGTATTT TACGGGAAAA	10140
AGGTGACAAT CCAGATGTCC TCATGATGAC GGCGACTCCC ATTCCACGGA CGCTTGCCAT	10200
CACAGCCTTT GGAGATATGG ATGTTTCCAT TATCGACCAG ATGCCAGCAG GTCGGAAGCC	10260
TATTGTGACG CGCTGGATCA AACATGAGCA ACTACCTCAG GTCTTGACTT GGTTAGAGGG	10320
GGAAATTCAA AAAGGTTCCC AAGTCTATGT CATCTCTCT TTGATTGAAG AATCAGAAGC	10380
TCTAGATTTG AAAAATGCCA TTGCCTTATC AGAGGAGTTG ACGACTCATT TTGCAGGCAA	10440
GGCAGAGGTG GCTCTTCTAC ATGGTAGGAT GAAGAGTGAC GAAAAAGACC AGATCATGCA	10500
GGATTTCAAG GAGAGAAAGA CGGATATTCT GGTTTCGACG ACGGTTATTG AGGTTCGGGT	10560
CAACGTTCCC AATGCGACTG TCATGATTAT CATGGATGCC GATCGCTTCG GTCTCAGTCA	10620
ACTTCACCAG CTTAGAGGTC GTGTCGGTCG GGGGGACAAG CAGTCCTACG CTGTTCTCGT	10680
TGCTAATCCC AAGACGGATT CTGGGAAAGA CCGCATGCGT ATCATGACAG AAACGACCAA	10740
TGGATTTGTC CTTGCGGAGG AAGATTTGAA AATGCGTGGT TCTGGTGAGA TTTTTGGAAC	10800
CAGACAGTCA GGACTTCCAG AGTTCCAAGT GGCTGATATT ATCGAAGATT TTCCGATTTT	10860
AGAAGAAGCA AGAAAGGTTG CTAGCTACAT TAGTTCTATA GAAGCTTGGC AAGAAGATCC	10920
AGAGTGGCGC ATGATTGCCC TTCATCTGGA AAAGAAAGAA CATCTGGATT AAGCTTTCTC	10980
TAAGGAAAAC TTATACTCAA TGAAAATCAA AGAGCAAACT AGGAAGCTAA CCGCAGGTTG	11040
CTCAAAACAC TGTTTTGAGG TTGTGGATGA AACTGACGAA GTCAGCTCAA AACACCGTTT	11100
TGAGGTGGCA GATAGAACTG ACGAAGTCAG TAACATATAT ATACGGTAAG GCGACGCTGA	11160
CGTGGTTTGA AGAGATTTTC GAAGAGTATT AAGCTAGTTT TTAGGTTTGG CTCTTATACT	11220
AGAGTCATCA AAAAGAAACG AGGACTCTCA TATGACAGTA ACGATTAAAG TAAATTACCA	11280
AACCACTTTC CAAAAGAAGG AAGCAAAAAA CTAGTATAAA CAGAAGAGAG AGCGAAATGC	11340
TCTTTTTCG TTTCTAAAAC TACTTTCAGC CCATCATCCT AAAAGTAAAG AATCTAAATT	11400
CACTTTCTAT TTACCCTTCT TTCTTGCATT GATTACATAG ATATGCTACA GTTGTGGTAA	11460
CGATTACAAA ATAAAAGGAG CATGCTATGA AAAATCCAGC TTTGCTAGAA GAAATTAAGA	11520
CCTATAGAGG AAGGGATGAG GTTCCGGAAG ACTTTGATGA TTTCTGGGAT GGGGAAGTGA	11580

AGC	CATTGAA	CTCAGACAAC	CTGGACTCAC	CAAGCCAATC	CTCATTTTAC	GAGTTTCTGA	810
AAT	CGAAGCT	GTTGCTCTAG	CTAAAGAATA	TGACTTCACC	TTGACAGTG	CTGGACTGGA	816
GTG	GATTCAA	GCACTCTTAG	ATAAGGAAGT	GGACCTAACT	GGATTGACAC	TCCACCTCAA	822
GAT	<b>IGATTCA</b>	GGGATGGGAC	GGATTGGTTT	' TAGAGAGGCA	AGTGAGGTTG	AGCAGGCTCA	828
AGA"	TTGCTC	CAACAACACG	GTGTTTGTGT	TGAAGGAATC	TTTACCCACT	TTGCTACTGC	8340
TGAT	<b>NGAGGAA</b>	TCAGATGACT	ATTTTAATGO	CCAGTTAGAA	CGGTTTAAAA	CTATTTTAGC	8400
TAGT	TATGAAG	GAAGTTCCAG	AGCTGGTTCA	TGCTAGCAAT	TCTGCAACGA	CTCTTTGGCA	8460
TGT	GAGACT	ATTTTCAATG	CGGTTCGTAT	GGGAGATGCC	ATGTATGGCC	TCAATCCAAG	8520
TGGA	GCGCTC	TTGGATTTGC	CTTATGATTT	GATACCGGCC	TTGACCTTGG	AGTCTGCTCT	8580
GGTT	CATGTC	AAGACAGTTC	CAGCTGGAGC	TTGCATGGGC	TATGGAGCAA	CTTATCAAGC	8640
GGAT	AGCGAG	CAAGTCATCG	CGACCGTGCC	AATCGGGTAT	GCAGATGGAT	GGACAAGAGA	8700
CATG	CAAAAT	TTCTCTGTCT	TGGTAGATGG	CCAAGCTTGC	CCAATTGTCG	GCAGGGTTTC	8760
GATG	GACCAA	ATCACTATTC	GATTGCCTAA	GCTTTATCCG	CTAGGAACCA	AGGTAACCTT	8820
GATT	GGCTCC	AATGGGGATA	AGGAAATCAC	TGCAACTCAG	GTAGCGACCT	ACCGCGTAAC	8880
CATT	AACTAT	GAGGTGGTTT	GCCTCCTCAG	CGACCGTATT	CCGAGAGAAT	ATTATTAGAA	8940
AAGA	AAGGAG	TGGAGCATGA	ATCTACATCA	ACCCTTGCAT	GTCTTGCCTG	GTGTGGGACC	9000
AAAG	TCAGCA	GAAAAATACG	CCAAACTAGG	AATTGAAAAC	TTGCAAGATC	TCTTGCTCTA	9060
CTTT	CCTTTC	CGTTATGAAG	ACTTCAAAAC	CAAGCAGGTG	CTGGAGCTGG	AAGACGGTGA	9120
GAAG	GCAGTT	CTTTCTGGTC	AGGTAGTGAC	TCCTGCTAGT	GTCCAGTATT	ATGGTTTCAA	9180
GCGC	AATCGC	CTGCGTTTTA	GTCTCAAGCA	GGGAGAGGTC	GTTTTTGCGG	TGAATTTCTT	9240
TAAC	CAGCCC	TATCTGGCTG	ATAAAATAGA	GTTGGGAGCA	ACCCTTGCTG	TCTTTGGAAA	9300
ATGG	GACCGC	GCTAAGGCTA	GTCTGACTGG	GATGAAGGTT	CTGGCTCAGG	TAGAAGATGA	9360
CCTC	CAGCCT	GTCTATCGTC	TGGCTCAGGG	AATCAGTCAG	GCCAGTCTGG	TCAAGGTCAT	9420
CAAG	ACGGCT	TTTGATCAGG	GACTGGACCT	CTTGATAGAA	GAAAATCTGC	CCCAGTCTTT	9480
ACTA	GACAAA	TACAAACTCA	TGTCCCGTTG	TCAGGCAGTC	CGTGCTATGC	ATTTTCCAAA	9540
GTAT	TTGGCA	GAATACAAGC	AGGCTCTTCG	CCGTATAAAG	TTTGAGGAAC	TCTTTTATTT	9600
CCAA	ATGCAG	CTGCAGATGC	TCAAGTCTGA	AAATAGAGTT	CAGGGAAGTG	GTCTGGTTCT	9660
GAAT	rggtct	CAGGAAAAAG	TGACAGCAGT	TAAAGTAAGT	CTTCCTTTTG	CCCTGACCCA	9720
AGCT	CAGGAA	AAGAGTTTGC	AGGAAATTTT	AACTGATATG	AAGTCCGACC	ACCACATGAA	9780

			960			
GAAAAAATTA	AGCAGTTCGT	TCGTGGTTTT	ATGATTGAGT	CTTATCTGGA	AGATGGTCGA	630
CAAAATGAGC	CAGAAGTATT	TGGTAAGTCT	ATCACAGACC	CTTGCCTGGG	TTGGGATAAC	636
ACAGAAGCTC	TTGTCAGAGA	AATTTACAAA	ACGTTAGGAG	AATAAGATGG	CATTTATTGA	642
AAAAGGTCAA	GAAATCGATA	TGGAAGTCAT	CAAGGCTGAA	ACCCAATTGT	CTGCGGAAGC	648
CTTGAGACTC	AAGGAAAGCC	GTGACAGGGA	ATTGGCAGAT	ATTATTTCAG	GGGAAGATGA	654
CCGTATTCTC	TTGGTGATTG	GTCCTTGCTC	TTCTGATAAT	GAAGAGGCGG	TCTTGGAATA	660
TGCTCGCCGT	TTATCTGCCT	TGCAAAAGAA	GGTAGCGGAT	AAGATTTTCA	TGGTCATGCG	666
CGTGTATACT	GCTAAGCCTC	GTACCAATGG	AGACGGCTAT	AAAGGATTAG	TTCACCAGCC	672
AGATACTTCT	AAGGCTCCAA	GCCTGATTAA	TGGCTTGCAG	CCTGTGCGCC	AGTTGCACTA	678
CCGCGTGATT	ACAGAGACTG	GTTTGACAAC	GGCAGATGAG	ATGCTTTATC	CGTCAAATCT	684
GATCTTGGTG	GATGACTTGG	TCAGCTACCA	TGCCGTTGGA	GCTCGTTCTG	TGGAAGACCA	690
AGAGCACCGC	TTTGTGGCTT	CTGGGATTGA	TGCACCAGTA	GGGATGAAAA	ATCCAACCTC	696
AGGAAATTTG	GGTGTTATGT	TTAACGCCAT	CTATGCTGCT	CAAAACAAGC	AAACCTTCCT	7020
TTATCATGGG	CAGGAAGTTG	AGACATCAGG	TAATCCTTTG	GCCCATGTTA	TCCTCCGTGG	7086
AGCAGTCAAC	GAGTATGGCA	ATTATATGCC	GAATTACTAC	TATGAAAATC	TACTCCAAGC	7140
CATTGAACGC	TATGAAACCA	TGGGACTTGA	AAATCCTTTT	ATCCTCATTG	ACACCAACCA	7200
TGATAACTCA	GGCAAGCAAT	ATATGGAGCA	GATTCGAATT	GTTCGCCAGA	CCTTGCAGAA	7260
TCGTGATTGG	AATGAGAAAA	TTAAAAAGAC	GGTTCGAGGA	TTTATGATTG	AATCTTACCT	7320
AGCAGATGGT	CGTCAAAACC	AACCAGAGAT	CTTTGGTTGC	TCTATTACTG	ACCCTTGCCT	7380
AGGTTGGGAA	AATACAGAGG	CCTTGGTAGA	AGAGATTTAT	GTTACCTTGA	CAAAATAAGT	7440
GAAAAGGATG	GAGTTGGGGA	ATCTCAACTC	CTTTTGATGA	GAATGATAGT	TGGACACGGA	7500
ATTGACATCG	AAGAATTGGC	TTCGATAGAA	AGCGCAGTTA	CACGACATGA	AGGATTTGCT	7560
AAGCGTGTAC	TGACCGCTCA	GGAAATGGAG	CGCTTCACCA	GTCTCAAAGG	ACGCAGGCAA	7620
ATAGAATATT	TAGCTGGTCG	CTGGTCGGCT	AAGGAGGCCT	TTTCCAAGGC	TATGGGAACG	7680
GGCATTAGCA	AGCTCGGTTT	TCAGGATTTG	GAAGTCTTGA	ACAATGAACG	TGGGGCGCCT	7740
TATTTTAGTC	AGGCACCATT	TTCAGGAAAG	ATTTGGCTGT	CTATCAGCCA	CACCGATCAG	7800
TTTGTGACAG	CCAGTGTCAT	TTTGGAGGAA	AATCATGAAA	GCTAGTCCAC	ATAGACCAAC	7860
CAAGGCTCTG	ATTCATCTGG	GAGCTATTCG	ACAAAATATT	CAGCAAATGG	GGGCTCATAT	7920
CCCTCAAGGA	ACGCTCAAGT	TGGCTGTGGT	TAAGGCCAAT	GCTTATGGTC	ATGGAGCTGT	7980
TGCCGTTGCC	AAGGCAATTC	AAGATGATGT	TGATGGCTTT	TGCGTTTCCA	ATATCGATGA	8040

GACGCGTCAG GTTGAAGCAG CTCAGAAACG TGTCGAAGGA AATAACTACG ATACCCGTAA	
	456
ACAAGTCCTT CAATACGATG ATGTCATGCG TGAACAACGT GAGATTATCT ATGCTCAACG	462
TTACGATGTC ATCACTGCAG ATCGTGACTT GGCACCTGAA ATTCAGTCTA TGATCAAACG	468
CACGATTGAA CGTGTCGTTG ATGGTCATGC GCGTGCCAAA CAAGATGAAA AACTAGAGGC	474
AATTTTGAAC TTTGCTAAGT ACAACTTGCT TCCTGAAGAT TCTATTACGA TGGAAGACTT	480
GTCAGGCTTG TCTGATAAGG CCATCAAGGA AGAGCTTTTC CAACGTTCCT TGAAGGTTTA	486
CGATAGTCAG GTTTCAAAAC TACGCGATGA AGAAGCAGTT AAAGAATTCC AAAAAGTTTT	492
GATTCTACGA GTGGTGGATA ACAAGTGGAC AGATCATATC GATGCCCTTG ATCAATTGCG	4980
TAACGCGGTT GGACTTCGTG GCTATGCTCA GAACAACCCT GTTGTTGAGT ATCAGGCAGA	5040
AGGTTTCCGT ATGTTTAATG ATATGATTGG TTCGATTGAG TTTGATGTGA CACGCTTGAT	5100
GATGAAAGCA CAAATTCATG AACAAGAAAG ACCACAGGCA GAACGTCATA TCAGTACAAC	5160
AGCGACTCGC AATATCGCTG CTCACCAAGC AAGTATGCCA GAAGATTTGG ATTTGAGCCA	5220
GATTGGACGC AATGAACTTT GCCCATGTGG TTCTGGTAAG AAATTTAAAA ACTGTCACGG	5280
TAAAAGACAA TAAAATGAGA TAGTTTAGAG GCGGATATCT TGTGAAAAGT AAATTTTTAC	5340
TGGGTATCCG TTTGCTTTAT AAGGAGATGA GTTATGGTAT TTACAGCAAA AAGCTCTAAA	5400
ATAAATATAG AAGAAGTTCG TGCCTTGTCA AAATTAGAAG GTCAGGCTTT GGAGAGGAAA	5460
TCACAGCGAG ATCAAGAGCT AGAAGCCATT ATACGTGGAG AAGACCAGCG AATTCTCTTG	5520
GTAATCGGGC CATGCTCATC TGACAACGAA GAAGCTGTCC TTGAATACGC TAAGCGTTTG	5580
GCAGTCCTAC AAGAAGAAGT GGCAGATCGT ATCTTTATGG TTATGCGTGT TTATACTGCC	5640
AAACCCCGTA CCAACGGAGA TGGCTATAAG GGCTTGATTC ACCAGCCTAA CGCGACAGAA	5700
GCGCCTAGTC TTATCAATGG AATCAAAGCC GTTCGCCATC TTCACTATCG TGTCATCACA	5760
GAAACAGGGA TGACAACTGC TGATGAAATG CTTTATCCTG AAAACCTTCC GCTTGTACAT	5820
GATTTGATTT CTTACATGGC AGTTGGTGCC CGTTCAGTTG AAGACCAGCA ACACCGCTTT	5880
GTGGCAAGTG GGGCAGGATT TTCTACTGGT TTTAAAAATC CAACCTCTGG AAATCTCAAT	5940
GTCATGTTTA ATGGGATTTA TGCTGCTCAA AACAAACAAA GTTTCCTTTT CTTAGGAAAA	6000
GAAGTAGAAA CAACTGGGAA CCCGCTTTCA CACGCTATTC TTCGTGGTGC TCTTAATGAG	6060
PATGGAAAAA ATATTCCCAA CTACTATTAT GACAATTTAA TTGATACCAT TGCCCAGTAT	6120
SAGAAAATGG GCTTGGAAAA TCCTTTTATC ATCATTGATA CCAATCATGA CAATTCTGGT	6180
AAGCAGTATA TTGAACAGAT CCGAATTGTC CGCCAGACCT TGATTAACCG TGCTTGGAAT	6240

		252			
CTTCCTTGAA AATAATCAC	ST AATTGTGCT	958 A AAATTAAAG	G AACATTCTA	A AATATTCGGA	2760
ATTTAAAGTA AGGAAAAA	CA TGGCTAATA	T TTTAAAAAC	A ATTATCGAA	A ATGATAAAGG	2820
AGAAATCCGT CGTCTGGAA	A AGATGGCTG	A CAAGGTTTT	AAATACGAA	G ACCAAATGGC	2880
TGCTTTGACT GACGACCA	C TAAAAGCAA	A AACAGTTGAA	TTTAAGGAAG	GTTATCAAAA	2940
TGGAGAATCA CTGGATTCA	T TGCTTTACG	A AGCATTTGCC	GTTGTCCGT	AAGGTGCCAA	3000
ACGTGTCCTA GGTCTCTTC	C CTTATAAGG	T TCAGGTCATO	GGGGGGATTC	TTCTTCACCA	3060
TGGTGACGTG CCAGAGATG	C GTACAGGGG	A AGGGAAAACC	TTGACTGCGA	CCATGCCGGT	3120
ATACCTCAAT GCCCTTTCA	G GTAAAGGGG	r tcacgtagtt	ACGGTTAATC	AATACCTGTC	3180
AGAACGTGAC GCGACTGAG	A TGGGTGAAT	r gtactcttgg	CTTGGTTTGT	CAGTAGGGAT	3240
TAACTTGGCT ACCAAATCT	C CAATGGAGA	A AAAAGAAGCC	TATGAGTGTG	ATATTACTTA	3300
CTCAACTAAC TCAGAAATC	G GATTTGACT	CCTTCGTGAC	AACATGGTCG	TTCGCGCCGA	3360
AAACATGGTA CAACGTCCG	C TTAACTATGO	CTTGGTCGAT	GAGGTTGACT	CTATCTTGAT	3420
TGACGAGGCT CGTACACCT	r tgattgtato	AGGTGCCAAT	GCGGTTGAAA	CCAGTCAGTT	3480
GTATCACATG GCAGACCAC	r atgtaaaatc	TTTGAACAAA	GATGACTACA	TCATCGATGT	3540
GCAGTCTAAG ACTATTGGT	r tgtctgattc	AGGGATTGAC	AGGGCTGAAA	GCTACTTCAA	3600
ACTTGAAAAC CTCTATGAC	A TCGAAAACGT	GCTTTGACT	CACTTTATCG	ATAACGCCCT	3660
TCGTGCCAAC TACATCATG	TTCTCGATAT	TGACTATGTG	GTGAGCGAAG	AGCAAGAAAT	. 3720
CTTGATTGTC GACCAATTT	CAGGTCGTAC	CATGGAAGGT	CGTCGTTATT	CTGATGGATT	3780
GCACCAAGCT ATTGAAGCCA	AAGAAGGTGT	GCCAATCCAG	GATGAAACCA	AGACATCTGC	3840
CTCAATCACG TACCAAAACC	TCTTCCGTAT	GTACAAGAAA	TTGTCTGGTA	TGACGGGTAC	3900
AGGTAAGACT GAGGAAGAAC	AATTCCGTGA	AATCTACAAC	ATTCGTGTTA	TTCCAATCCC	3960
AACAAACCGT CCTGTTCAAC	GTATTGACCA	CTCAGACCTT	CTTTATGCAA	GTATCGAATC	4020
PAAGTTTAAA GCGGTTGTCG	AAGACGTTAA	GGCTCGTTAC	CAAAAGGGTC	AACCTGTCTT	4080
GTTGGTACA GTAGCGGTTG	AAACTAGTGA	CTACATTTCT	AAGAAATTGG	TTGCAGCTGG	4140
RGTTCCTCAC GAAGTCTTGA	ATGCCAAAAA	CCACTATAGA	GAAGCCCAAA	TCATCATGAA	4200
PGCTGGTCAA CGTGGTGCCG	TTACCATCGC	AACCAACATG	GCGGGTCGTG	GTACCGACAT	4260
CAAGCTTGGT GAAGGTGTTC	GTGAACTTGG	AGGACTTTGT	GTTATTGGTA	CAGAACGTCA	4320
GAAAGTCGT CGTATCGATA	ACCAGCTTCG	TGGACGTTCA	GGTCGTCAAG	GAGATCCAGG	4380
GAGTCACAA TTCTACCTAT	CTCTTGAAGA	TGATTTGATG	AAACGTTTTG	GTTCTGAACG	4440
TTGAAGGGA ATCTTTGAAC	GCTTGAACAT	GTCTGAAGAG	GCCATTGAGT	CTCGCATGTT	4500

GGGATGTAAG TTTGATGAAA CTCTTTACTC CTTATATCCT TTATATTGTC CCTTACATGG	1020
TGCTTGAAAA ATATGAAGAT AATGTTTAAG AATTTTAACA ATATTTTGCT AAATAGAAAG	1080
ATTGTTTTAC TACTTCGTAT AGTTCTGATG ATGATTTTGA TAAACCATCT ATTGTCAACA	1140
GCGGTTCAAA AGCAGGATGC TGTTATCTTT TTCAAGAGAG AATTGATTTC AATTTTTTCC	1200
TATAATGACT ATTCTGAAGC GAATTTAGAA ATCCCCAAAC TATTGTTAAA CCTTTCGCTT	1260
TTCATGGTAG GATGGCTCTC TGTCATTTTA CTTGAAAGTG ATTTGGCAGA CCATTACCAT	1320
CACTTGATTC GCTATCAATC AAGCTCCTTT TTCGATTATA CAAGGAAACG ATTGGTTGTC	1380
ATTTCTAAAT TTTTTACTCA AGATTTGTTT GTCTGGTTTC TTGGTTTACT TCCTCTAGGA	1440
ATTCATTTCA AAACAGTCGC ACTTTTCTTT TTACTTGCTC AGTTAATGAT GTTGTACTTA	1500
CTACTGTCTT ATCTGATAGC ACTGATTAGT GCGGGCGCTG GTTTTTCCTT TTTTCTCTAT	1560
TTTTTAGCAT TTGTGGGACA AGAATGGATG ATGGATCATA TTGTAACAGT GTATTTAGTA	1620
CTCTTAAGTT TATTAGTTAT GTTGATTGTT AGTCGCTTGG AAGAGAAATT TAAGAAAGGA	1680
TAAACGATGA GACTTGAAAT TATAAATGGA CAGAAAATTT ATGGGAAAAG ACCTATTTTA	1740
AATCAGTTGA ATTTGGTGTT TCAATCAGGA AAAATTTATG GACTTAAAGG TGATAATGGA	1800
TCTGGCAAGA CGGTTCTTTT AAAGATACTT GCTGGTTATA TTAAGCTTGA CAAAGGAAAA	1860
GTTCTTCAAG ATGGTAAAGT TTACGGGGTA AAAAATCATT ATATTCAGGA TGCAGGAATT	1920
TTAATTGAAA AAGTCGAGTT TTTATCTCAT TTATCCCTGA GAGAAAATTT GGAACTGTTA	1980
AGGTATTTT CATCTAAAGT TACGGAAAAA AGAATTGCCT ATTGGATTCA ATACTATGAT	2040
TTACAGGAAT TTGAAGACAT TGAATACCGT CATTTATCCT TAGGAACAAA GCAAAAAATG	2100
GCCTTGATTC AAGCCTTTAT TTCCTCTCCT TCTATACTCT TTCTCGATGA ACCTATGAAT	2160
GCTTTGGATG AGAAGAGTGT GAGGTTAACC AAACAGGTCA TTTTATCTTA CCTGAAAAAA	2220
GAAAATGGTC TGGTTATCCT GACGTCGCAC ATATCGGAAG ATATTTCAGA CCTTTGTACA	2280
SATGTATTAG TTGTCGAAAA TGGACATATA CAAATGTAAA GGATATACAA TCCTAGGAGA	2340
GCCTTATGG CACATCTAAA ATCATTTATT ACACGATATT CCAAGGTTTA TATTGGTTTA	2400
TTCTGCTGA TCTGGCTGTC TTTCTTCTTT ATCCCTTGGG ATAAACCACT TCTGGGGATA	2460
GGATTGACA TCTTCATCAT ACAGAAAATC TTGCTAGCTT TTGGAATTCT GTCCATTCTC	2520
TGGCCTTGC TGTCCAAGAA AGTCAGTCTC TTTGTTTTTG GACTGATTTG CTGTCTTTCT	2580
TTTGGATTA ACTTATTTAT CACATTTGCC ATTTTGCCGA TTTTTGGCAA TTAAACAGTC	2640
TAAAAGTCG GAGAGGTTAG CTTGAAAACT AACCTCTTTT TCCTTTTCAA AATGGGGATT	2700

WO 98/18931 PCT/US97/19588

TTCAAAATTG CCAAGTTTAA CGAATTCTT ATAATAATTA GCTACATCAT TACCAAGTAT

AATTTGATAT TGTCCATTCT TTTTCATAAT ACCTATTACA CCTGGTATCT TCTTCACATC

ATCATCATTG ACTAAATTTT CATCTTTAA TTCTAATCTT AAACGTGTTA CACAATGGGT

AACTCTATTG ACATTTTTTT CACCTCCAAT TACATCGAGG ATTTTTTGTA CCGTATCTTT

28500

28560

28620

28680

ATAACTCATG GTATTCTCCT ATTCTATTAA TCTAAATTTT TTGTTAAGCG ACGAATATGA 28740
GCCATCAAAT AAACTAATTC ACTAGAAGTC AGCAAATAAT TGTACTCCGT TTGTATAAAC 28860
ATTGCTACCT GTTCACCACA TTCATATTCT CTAGGATATT TATTTTTCAT TAATGCTAAC 28860

AAGTCTTCAT CATCATCGTC GG 28882

#### (2) INFORMATION FOR SEQ ID NO: 141:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 12835 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:

GCCTATGTCT	TTTTCAAAAA	AATGCTTGAC	TTGAGACGGG	AACTAGGGAA	GTCTAAAGGC	60
GGAAGGCATT	GATTTATACT	CTTCGAAAAT	CTCTTCAAAC	CACGTCAACG	TCGCCTTGGA	120
TTATATATGT	AACTGACTTC	GTCGATGCTT	ATCTACAACC	TCAAAGCAGT	GCTTTGAGCA	180
ACTTGCGGCT	AGTTTCCTAG	TTTGCTCTTT	GATTTTCATT	GAGTATTATA	TTACTTTCTA	240
TTTGTAGGAG	GTGGCTTATG	AAGATTCCTC	TCTTAACTTT	TGCAAGGCAT	AAATTTGTTT	300
ATGTCTTGCT	TACTTTGCTT	TTTCTTGCTT	TGGTTTATCG	TGATGTTTTG	ATGACTTATT	360
TCTTTTTTGA	TATTCATGCG	CCCGATCTAG	CTAAATTCGA	TGGACAAGCA	ATTAAAAATG	420
ACTTATTAAA	ATCAGCATTA	GATTTTCGTA	TTCTCCAGTT	CAATCTAGGT	TTTTATCAAT	480
CATTTATTAT	TCCAATCATC	ATTGTTTTGC	TAGGTTTTCA	ATATATTGAG	СТБАААААТА	540
AAGTTTTACG	ATTGAGTATT	GGAAGAGAAG	TGAGTTATCA	AGGGTTAAAA	AGAAAGTTGA	600
CTTTGCAAGT	TGCAAGTATC	CCTTGTTTGA	TATATTTAGT	GACTGTGCTG	ATAATTGCAA	660
TTATAACCTA	TTTCTTTGGG	ACTTTTTCTC	CTCTTGGATG	GAATTCTCTA	TTTTCTGATG	720
GAAGTGGTTT	ACAAAGACTC	CTAGATGGAG	AGATAAAAAG	CTATTTGTTC	TTTACTTGTG	780
TCCTACTAAT	CGGTATTTTC	ATCAATGCAA	TCTATTTTT	ACAAATAGTT	GATTATGTGG	840
GGAATGTGAC	TCGTTCGGCA	ATCACCTATT	TGATGTTTCT	TTGGCTTGGT	TCTATGCTGC	900
TTTATAGTGC	CTTGCCTTAC	TATATGGTTC	CTATGACGAG	TTTGATGCAA	GCTAGCTATG	960

TTCTGTTGCT	TCTCCTAATC	CACCTTTGGG	TAACACATCC	TGAACTGATA	AGCCCTTACC	26760
ATCTTCATTA	TATGCTCCCI	CTACTTGATT	AGCTGCAACA	GCTCCACCCC	AAAGAAAATC	26820
ATCTGGAAAA	ATGGTCATAA	CTTTCCTCCA	TTATAATATT	ACCAGTAATT	CCTTAGAATG	26880
CTCGATTGTC	TGATTATTAG	GTAATACTAA	TACATCTAGA	AAATCATTGG	TATTCGTTAC	26940
AATTACTGGT	GTAACTGTTT	CGTAGCCTTT	' AGTCTTGATT	AAATTCAAGT	CCATTTCAAA	27000
AATCAACTGA	TTTTTGAAAA	CTCTGTCTCC	TTCTTCTACA	TGACTAATAA	AACCTTGACC	27060
TTTTAGCTCA	ACAGTATCTA	ATCCAATATG	AATTAGTAAC	TCAACACCCT	CATCACTCTT	27120
CAATCCAATT	GCGTGCTTAG	TCGGAAAAAT	ATTTGTAATT	TTCCCATCAA	ATGGTGCATA	27180
AACCTTACCT	TCACTTGGGA	TAATCGCTAC	TCCGTCTCCA	ATTAGTTTAT	CTGAAAATGT	27240
TTTATCCTGG	ACATCGCTTA	ACGGAATGAT	TTCTCCTGAT	ATAGGAGAAA	ATATCATTTT	27300
TTTATTTGAA	ACTCCAGCTT	CAACTTCTAA	ATTGCTAGAA	CTCTCTTCTT	CATCGATTCC	27360
AATATATAA	GCTAATACAA	AGGTAATAAC	AACCGAAATG	ACCGCCACAA	TTAAAGCATT	27420
TACAATATTT	GATGGCACAT	CAGAATAAAT	AAATTGAGGC	AACGCTATCA	AAGATGGGAC	27480
AGCAAATAGA	TATGCTTTAA	CACTAGTAAG	ACCTGCAAAT	AATCCCGCTA	ATCCACCACC	27540
AATCATAGCT	GCATAAAGCG	GTTTTTTATA	TTTTAAAGTC	ACACCATATA	ATGCAGGTTC	27600
GGTAATCCCT	GCAAGTAAGG	CTGAGAAACC	TGCTGCAAAA	GCAATTTGTT	TTGTATTATT	27660
ATTTTTACTC	TTTAATGCAA	CAGCCATCGA	AGCAGCCCCT	TGAGCTAAGT	TTGACCCTAA	27720
CATTGCTGGA	AGAATTAATA	CGTCTGGAGT	AGCAATAGAT	GCCGCCAAAA	AAATAGGTGC	27780 .
AAAAGCCCAA	TGCATTCCAG	TCATAACAAT	AAATGGCATA	ATAGCACCAA	GAATAGCTAA	27840
TGTAAGCCAT	CCAGCTACAC	CATACATTTG	CCCAACTAGA	TTTGATAATC	CTTCACCAAC	27900
AATTACTCCA	ATAGGTCCGA	CTACAACTAA	GGCAATACAG	CTTGATACTA	ATAATACTAG	27960
CGTAGGTTGC	AAAAAACTCT	TAGTAATAGC	TAGTGTTAAT	TTAGCAATTA	TTTTTTCAAT	28020
ATATTTCATC	AACCAAACCA	TAATAAGAAT	TGGAACGACT	GATGAACCAT	AACTAGCTGG	28080
TGTCACAGGT	GCACCAAATA	AACTAAGAGG	ATTCCCTGAT	TGCACCATTT	GAACAAAATT	28140
TGGATGGAGA	AGTACACCTG	CTACAGACAT	AGCTAATGTA	GATGTTACTT	TTAATTTTTG	28200
TGATGCAGAA	TAAGCTAATA	ACAGCGGTAA	GAAATAATAT	GGAGCATCCC	CAAAAAATGT	28260
CAAAAAAGCA	ATAGTCTGAG	AATCTGATTG	CAATATACCA	AGCATTGGTA	AAATGATTAC	28320
CAAGACTTTC	AACATACCTC	CCCCTAACAT	TGCTGGAATG	ATTGGAGTCA	TGGAACCAGC	28380
GATATACTCA	ATGATTCTTT	CTAAAATATT	CCCTTTGTGC	CCTTGAACAA	CTGAATCGGA	28440

TTTCTTCGCC	AAGCGCTTTT	AATTGTTCTT	954 CAATAGTTGA	CATATTTCCT	CCATCAGTCT	24960
CTCGTAGATA	AAAAGAAAAC	CACATGCCAA	AAACTCCACT	CGGAGCGTTG	ACACGCGGTA	25020
CCATCCGTTT	TCATCTGACA	AGTCAGACCT	TCATTTCTAA	ATCCATGCGC	AAGTGAATTC	25080
ACCCAGCTTT	CATATAGAGA	GCTTGCAGTC	ACGGCTCTCC	TCCCTGATAT	ACTTCCCTTG	25140
GGCTACTAGT	CTTTCAGATT	CCTATTCAAT	TACTACTTAG	TTTATCAGAT	TTTTACCATT	25200
CTTGCAAGAC	CTATCTTACT	TCTGCTTGTT	AGCTTATTCT	TATCTAAATT	TATATAAACc	25260
TTATCTAAAT	TAACTATTTA	TAATTITTGT	AACAAAATTA	AATTAATTGA	CACTCCCCTA	25320
TAAAATAAAG	AAGTTTAGAA	TTTAATGTCT	TCCAAACTTC	TTTATTCCAT	ATTTAATGAA	25380
ATGCCACCTT	AACCGTGATA	ATAGCTAGTC	ATCAATAAAA	AACTATTTGA	ATAAGGATTC	25440
TCCATTTGAT	TCAATCACTT	CTTTATACCA	AGTAAAAGAC	ATTTTCTTAT	ATCGATTTAA	25500
TGTACCACTT	CCATCATCGT	TTCGATCAAC	ATAAATGAGA	CCGTACCTTT	TAGAAAGTTG	25560
TGCAGTGGAC	ATAGAAACAC	AGTCAATACA	TCCCCAAGAC	GTATAGCCCA	TAATTŢCAAC	25620
ACCATCCTGT	AGAGCTTCAG	CAACTTGCAA	TAAATGTTCT	TTCATATACT	GAATTCTATA	25680
ATCATCTTGG	ACGGTTAAGT	TATTAAGTTC	ATCTTTTATT	AGTTGATCTT	TAGCACCTAA	25740
TCCATTTTCT	ACTATAAATA	ATGGGATTTG	ATAACGGTCA	TAATATCTAT	ТТААААТТАТ	25800
ACGTAGTCCA	ATTGGATCAA	TTTGCCATCC	CCACTCTGAA	GACTCTAAAT	AAGGATTTAC	25860
TAAACCACCA	ATAATATTCC	CTTCTCCTGA	ATTATACTGT	GTTGGAAGAG	CAGATTGAGT	25920
CACACTCATG	TAATAGCTAA	AGGATAAAA	ATCTACGGTA	TAATTTTTTA	ATAACTCTGC	25980
ATCTTCAGCT	GCAAACTCTA	TGTTAATGTC	ATTTTCCTTA	AAATATCTTT	TTGCATAATT	26040
CGGATAATAA	CCTCTAACAT	GCACATCTGA	AAATAGATAA	TTTAGATTCT	CATACTCATG	26100
AGTCGCCCAT	ACATCTTTTG	GATTTGGAGT	CATTGGATAA	GCTGGCATAG	CTAATACCAT	26160
ACATCCCACC	TTAAACTCTG	AATTAATCTC	ACGAGCAATT	TTTGTAACCA	AACTTGAGGC	26220
GACTAATTCA	TGATGTATAG	CTTGATATAA	TTCTTGTTTC	GAAAGATTCT	CCTTAGGTAT	26280
ATCTATTCCT	CCACTAGTAA	ATGGTAATTC	CAAAACAGAG	TTTACTTCGT	TAAATGTAAG	26340
CCAATATTTA	ACTITATETT	TATACCTTTC	TAAAACTGTT	CGAGCAAATT	TTTCATAAAA	26400
ATGAATCATT	CTCCTATCAA	CCCATCCATG	ATATTTTCTT	GCTAAATATA	ATGGAGTCTC	26460
ATAGTGTGAA	AGAGTTACAA	GTGGTTCTAT	CCCGTGAGCA	TGTAGTTCAT	CAAACAATTC	26520
ATCATAATAT	TTCAACCCAG	CTTCGTTAGG	TTCTTCCTCA	TCTCCTTTTG	GAAAAATTCT	26580
ACTCCATGCA	ATAGAAGTAC	GAAAAACATT	AAAGCCCATT	TCAGAAAACA	AGGATATATC	26640
TTCCTTATAT	TTATGATAAA	AATCAATACC	TATCAATTTT	AAGTTATCTT	CTGTAGGATT	26700.
				•		

AGACCTCAC	GACGACAATT	TTTGAGAGAC	CAGCAGCTGG	TGATTCGAC	CCCTCTACCT	23220
CGATCCCTGT	C AGTTGACATT	TTTTCAGCCA	ACTCTTGTGA	TGGCACATC	ATGTCCACCA	23280
ATTCTTTTA	CCATTTATAA	GATACAAGCA	TAATTTAGTT	CTCCAGAATO	ACAGTTGTCA	23340
CTCTAGTTCT	TTTCCTTTCC	TATCATTTCA	ATAGAAGAAT	CCTCTTCTT	CCTTAATTTC	23400
TTTCTCAGTA	ACCAATCCGT	ATCTACTTTT	TGACCAACCA	TAAAATGATG	TTGGCTAAAT	23460
TTTTCAAAAC	CATATCGGTT	ATAAAACGCT	TGAGCTTTTG	TATTATCCTC	CCAAACACCT	23520
AGCCAAGCCC	AAGAAAAACT	ATTTTTTGTA	GCAAGTTCAA	GTGCGAATTC	AAACAGTTGC	23580
TTACCTAGTO	CAAATCCTTG	GAATTTTTGT	AGCACATAGA	GACGTTGAAT	TTCAAAAGCG	23640
TCCTCTAATT	CTCTCTCAGT	TTGAGCACTT	CCCCAGTTGA	CTTTGAGAAA	ACCAGCTATC	23700
TCCTCCTCAT	GCATAATGAA	ATAGGTTTCA	GAGTCAGGAT	TTCCCAACTC	AGTTGACAAA	23760
	TATAAGCCTC					23820
	CACGAAAGGT					23880
	TAATCATTAT					23940
	GTTGATTCCA					24000
	GTATACAGTC					24060
	CATAATTTCG					24120
	GCAAGAAACA					24180
	AATTTGACGC					24240
	AGCCATAGAG					24300
-	GGTCGCATCG					24360
	TTTAGAAAAA					24420
	CAAGATTTCT			•		24480
	AAGGTTCATA					24540
	ATAACCCATA			•		24600
	GTGACCAGTC					24660
	AGCCGCGACT					24720
	ATCACGAGCT		•			24780
	CATCCCTTTG					24840
CACGCAAATC	TTGCATCTCT	TTTTCATTTC	CAGCAGTAAT	CTGCTTCAAG	CTAGCCAGCG	24900

WO 98/18931 PCT/US97/19588

952 GAAGGCTAAC GATTTCAGAT GTTGCTGTAT AGGTTACTTG GAGTCCCAAA CGAGTAAATA 21420 GGGCTTCAAG GATTCCCTTA GCATAGAAGA AATCAACTGG AACTGCTGCT GTTTGGAAAT 21480 CTTTTTCAGC AACCAAGCCT GTCAAGGCAA AGGCAAAGCT GTTGATCTCA TTTGGAAGTT 21540 CTTCTTTTGG ATTACCTGTT TGTTCAAAGA CTTTTCCAAT CTCATAAAGG GCCAAGTTTT 21600 TATTCTTACG AGCCACGTTG TAGGCAACGG TATCAAGGAT CCCTGAAATC ATATTTTGAC 21660 GGAGGACTGA ACGATCCACA GTCATTGGCC ACATGAGTTC AGTAAGGTTA CTTGGTTGAG 21720 CTGTGAACTC AACTGCTTTT TCAGGAGTTG TCAGAGCATA GGTGATGATT TCTGTCAAAC 21780 CTGCTCCTTC AGCAATGGTA CGAACTTGAC GGCGGAGTTT TTGTATCACA GTCAATTCAC 21840 CAGCTGTACC ATCGTCTTTT GGAAGGCTGG TTGGCAAGCG GTCATATCCA TAGATACGAG 21900 CGATTTCTTC AAAGAGATCA GCTTCGATTG TGATATCCCA ACGACGACGT GGTACGCTGA 21960 CTGTAAAGCT GTCTGCATTT CCAGAAAGAC CAAAGCCAAG ACGACGGAAG ACGTCTTCTA 22020 CATCAGCATA AGACAGCTCA GTTCCGAGGA CACGGTTAAC ATCAGCAAGG GTTGAAGAAA 22080 CTTCCACATC AGAGGTATCA AGCTCACCCG CTGAAACGAT ACCCTTACGC ACCGTCGCGC 22140 CTGCAAGCTC TGCAATCATG CTAGCTGCCG CATCAAGGGC TTCATTAACT GTTGCCACAT 22200 TAATTCCTTT TTCAAAGCGA GAAGATGACT CAGAACGAAG GTTCAGGCGA CCACTTGTCT 22260 TACGGATAGA TTTGCCATTA AAAACAGCAG CTTCAAGGAT AACACGACTA GATTTTTCAG 22320 AAATTTCTGT AGCCTGACCA CCCATAACAC CGGCAAGGGC TACTGGTTTG TCAGCAACTG 22380 TAATCACGAG GTCTGTCTCA GCCAAGTCTC GTTCTTCACC GTCCAGGGTC ACTAATTTTT 22440 CACCATCACG CGCTTCACGC ACACGGATGT CAGTCCCTTC AAATGTGTCC AAGTCAAAAG 22500 CATGCATAGG TTGACCAAAG TAGAGCAGGA TGTAGTTTGT CACGTCTACA ACGTTATTGA 22560 TGGGACGGAT GCCTTCGTTC ATGAGAAGGT TTTGCAACCA TTGTGGACTT GGTGCGATAG 22620 TCACATTGTC CAAGATACGA GCTGCATAGT AAGGCGCCTT GTCTGTCTCA ATGCTGACAG 22680 AAAGGGCATC TGCCGCAGCT TCATTAGTTT CTGTTAGAGT AAATTTTTTA AAGTTGACTG 22740 CCTTGTCATA GATGGCTGCC ACTTCGTGAG CCACTCCACA CATAGAAAGG GCATCTGCAC 22800 GGTTTGGTGT GATGGAAAGT TCGATGATTT CATCATCCAA GTCTAGGTAA GAAAAGACTT 22860 CCTCACCTGG CACGGCATCT TCAGGCAAGA TTTGGATGCC ATCTGCGAAT TCCTTAGGCA 22920 CAACTGAGTC AGAAATTCCC AATTCACCAA GTGAACAGAT CATTCCAAGT GACTCCAAAC 22980 CACGGATTIT TCCTTTTTTG ATTTTGTAGT TATCAGCGAT ACGAGCTCCT GGAAGAGCCA 23040 CCATGACCTT GATCCCAGCA CGCACATTTG GGGCACCACA AACGATCTGA CGCTCTTCTT 23100 CTTCGCCAAC GTTAATCTGA CAAACATGGA GGTGAGTCTC TGGCACATCT TCGCAAGACA 23160

CGATTAAGCG ACGGCTATCG ATTGTCAAAT GTTTGCCTTT TGTAGTATAA TTGTCTTGCA	19680
TTTCTGTGCC TTTTAATCAT TTCAATCTTA AATTGGACTT TTTTTACTTG GGTTGTACTT	19740
AATCTATGAG GAAGACAAGA AAAAGAATAT CAATCAAGTA AAGTCACAAA GTCACATTAG	19800
CTCCGAGCAA CCATTGCAAA TTGAGGTACT CACACAATGA TTAAAACATT TCTCTCTGCC	19860
CTTTCGGTCA TTCTCTTTC TATCCCTATC ATAACTTATT CTTTTTTCCC ATCTTCTAAT	19920
CTTAACATTT GGCTATCTAC CCAACCTATC TTGGCACAGA TTTATGCCTT CCCCTTAGCT	19980
ACTGCAACTA TGGCTGCTAT TTTAAGTTTC TTATTTTTTT TCCTATCTTT TTACAAGAAA	20040
AATAAACAAA TACGGTTTTA CTCTGGCATT TTGCTCTTAC TATCGCTCAT ATTACTATTA	20100
TTCGGAACAG ATAAAACCCT TTCTTCTGCA TCAAATAAGA CTAAAACCTT AAAATTAGTA	20160
ACTTGGAACG TCGCTAATCA AATAGAAGCA CAACATATTG AGCGAATTTT TAGCCATTTT	20220
GACGCCGATA TGGCTATATT CCCTGAACTA GCTACCAATA TCAGAGGTGA GCAAGAAAAC	20280
CAGAGAATCA AACTATTGTT TCATCAAGTT GGACTTTCTA TGGCCAACTA TGATATTTTC	20340
ACTTCTCCAC CTACCAATAG TGGAATAGCT CCTGTGACTG TGATTGTCAA GAAAAGTTAT	20400
GGTTTCTATA CAGAAGCTAA AACTTTTCAT ACAACACGGT TCGGGACAAT TGTATTACAT	20460
TCGAGAAAAC AAAATATACC AGATATCATT GCCTTGCATA CTGCGGCCTCC TCTGCCAGGT	20520
TTAATGGAAA TCTGGAAGCA AGACTTAAAC ATCATTCATA ATCAATTGGC TTCAAAATAT	20580
CCAAAGGCTA TTATTGCAGG TGATTTTAAT GCAACTATGC GTCATGGAGC ACTTGCAAAA	20640
ATAAGCTCTC ATAGGGACGC ATTAAATGCA CTGCCACCTT TTGAAAGAGG AACTTGGAAT	20700
AGCCAAAGTC CAAAACTTTT TAATGCAACA ATAGATCATA TTTTATTGCC TAAAAACCAC	20760
TACTATGTTA AAGATTTAGA CATTGTAAGT TTTCAAAACT CTGATCATAG ATGTATTTTT	20820
ACAGAAATCA CATTTTAATT ATTTTATATA AAATCACCCC TCTAATGTTC ATAAACTAGA	20880
GGGGGAATTT GTATCCTACT ATCGTTTAAC GCACTTCTGC ATTGACTTTT TCTTCGAGAG	20940
ACGCTTGGAT TTTTTCCATA TAGCGTGCGA CTTCTTCGTC CGTTAAGCTG TCTTCTGGAT	21000
TTTGGAAGGT CAAGCTATAA GCCATTGACT TCATACCAAG TCCCAGTTTT TCACCTGAGA	21060
AGACGTCAAA GAGTTTGATA TCTGTCAAAC GTTTCACGCC GGCAGCTTGG ATAGCATCTA	21120
CAACTTCTTG GTGAGTCACT TCTGCCTTGA GGAGAAGGGC AACGTCACGG CTGACTGCTG	21180
GGAATTTGGT GATTTCCACA AATGGAACAG CAGGTTGGAG CGCCCCTTCG ATGGCTGAAA	21240
GGTTAAGCTC AGCTACATAC GTTTCTGGAA TATCGTAAGC CTTGGCAGTG ACTGGATGCA	21300
CTTGGCCAAG GAAACCAAGA ACTTGGTCAC CGAGTGAAAT CACGGCTGTA CGACCTGGAT	21360

WO 98/18931 PCT/US97/19588

950 AGTCAAGACC GATAGCATCT ACTGGTAAGT TTACAAGGTC AGCGTATACG TCACGAACAT 17880 CACCGAAATA AGTTTGAAGC AAGACTTCAA GACCTTTTTT GTCAGCCAAG AGTTTGTTGT 17940 AAAGGTTCAA GAAGAGACCT TTTTCTTCAG CTGTCAAGTC TTTTACAAGA GCCGCTTCAT 18000 CCAATTGGAT GCGAGTCGCA CCAAGTTCAG CCAATTTAGC AAAAACTTCT TGGTAAGCAG 18060 CCACTAAGCT ATCTACGAAG TCGTCTGCTT TCACGCCTTC TTCAAAGTCT GACAATTGAA 18120 GGAAAGTGAA GGGACCTACA AGAACAGGAC GAGTGTTCAA TCCAAGTTCT TTGGCTTCTT 18180 GGAACTCATC GAAAATCTTG TGACCAGCCA ATTTTACTTG AGTGTCTTTT TCAAATTTAG 18240 GAACGATGTA GTGGTAGTTA GTGTTGAACC ATTTCTTCAT TGGAAGGGCG CGAACGTCCC 18300 CTTTTTCTCC CTGGTAACCA CGTCCCAAAG CGAAGTAGCG CTCAAGGTCA GACAAGTCCA 18360 AGTTTTGAAC GGATGCAGGC ACCACGTTGA AAAGGAAAGC CGCATCTAGG AAGTTATCAT 18420 AGTGAGAAAA GTCATTTGAT GGAATTTCAG TGATGCCTTT TTCTTTGACA ATGTTCCAGT 18480 GTTTAGCACG CAAGTCTTTT GCTGCTGCTA AAAGTTCTTC TTCTGAGATT TCTTTTCTAA 18540 AGTATTTTC AGTTGTAAAT TTTAATTCAC GGAATTCGCC CAAACGAGGG AAACCGATGA 18600 TTGTAGTTGA CATGATGTGT CCTCCAAAAT TTGTTGTTGA AACTATCTTA ACAGAAAAGA 18660 AAGCGTCTGT ATAATTGTAA AAAATTAGGG TTTGATATAG TTTGAAACTA TATATCTGTT 18720 TCGGACAAAA GAAAAAGACT TGAAGCAAAC GTCTCAAATC CTTTGTAATT CTTACTTTAC 18780 AGCTATATTC CAATTAGAAT ACTAAAACAT GTTATTAGTA ATTCTTATAA GTGACTATGA 18840 CCTGTTATTA GAAAAGACTA TAACTGATTC TAGTCAACTT TTTCCCTGTT CAAGTGGGAC 18900 GATTGCTAGT GTCTTTCCTA AACTGGCTAG GACTTTTAAG ACTGTATCCA ACTGAGGACT 18960 AGTCTTTCCT GTCTCCATCC TAGCTATGAC AGGCTGGCTT ATTCCACTGA CTTCTTCCAG 19020 CTTTTTCTGA CTGATTCCTT GTTCATACCT AGCCTCAATC AACTCGCTCA TGATAGCCAC 19080 TCGCATATCA CTTTCAAGGA TTTCCTCCTT GCTAAAGAGC TCAGATGGAC ATCCTTCCAA 19140 TTACTCCCAA TAGCACTATT CTTCATCACT TAACCCTCTT TTTTTTACGT CTATGTATTT 19200 TTAAAAAAT GAGCGAATTA TGATTCGATA GATTGACCAG TGGGTTTAAA GTTGGTGCTA 19260 GCCTATTTCT TAAGCGATTT TCCTTTTCTA GGATAAAGCA GTTCCTGCTT GCTTAACCCC 19320 AATTTTCCAC GATGAATCCA ATAGTAAATG GTTGAAATTC CCACGTTAAC CCCTTTAGCC 19380 ATCACCATCA TTTCAGGCGA AAATTTTTGG TTATGTTTTT GGTTATGTAT AGTGGAGAAT 19440 CTTTTCCTTT AGTTTCTTAA GACTGTTGAG CGTAGTCGGC AGAATAAATC TCTTTGAAGC 19500 GCCCTTTTCC AAGACATTGT CGGACTGTCC CACGCTTGAT TTCAGTGTGG ATAGTTTGAG 19560 GAGCTTTTCC AAGTAGAGAG GCAATTTCTC TATTTGATTT TCCTTCTTTT TTCCATCGTT 19620

GCAAGTGGG	C AATGGTCGGA	ATCGCCAAAT	CATTTTGGAT	AAAGTCAGCC	AAACGAACCG	16140
TCGTTTCCT	r gatattaaat	TTATTATTGC	TGGCAGTTAC	ACTGATAAAA	TGGGGAGCCA	16200
ACTCCTGCA	P ATCCTGCAAG	GCTGAAATAA	TGTTATCATT	ACCCACGGCT	GGGTTTGGAG	16260
GGAACACTT	AAATGAGAGT	GACGGTGTTT	GGCGTGACAT	ATGTAATAAC	CTTTTCTAGT	16320
TGATTTCTTT	TTGAACAACC	ACTGTATGGA	GAGAAATCCA	ATCTTACAAT	TTCTCACGCG	16380
CAGCTTTAGG	TGCTTCAACA	AGGCGGATCA	AGCTTTCTTT	TGTTTCTGGG	ATACCACGTG	16440
TTTTCAAACO	ACAGTCAGGG	TTGATCCAAA	CTTTCTTGCT	TGGCACTTTA	GCAAGGATGG	16500
CTTCGATTGT	GTTGTCGATT	TCGCCTTCAT	TTGGTACACG	AGGTGAGTGG	ATATCGTAAA	16560
CCCCAGGTCC	CACTTCTGTT	TGGAAGTTTT	TCGCTTTGAG	TTCGTCCAAG	ATTTCAAGGT	16620
TTGAACGGTT	AGCTTCAAAG	GAAATAACGT	CTGCATCCAT	GTTATCGATA	GCTGGGATGA	16680
TATCTGTAAA	TTCTGAGTAA	CACATGTGAG	TGTGGATTTG	TGTGTCTGGC	GCTACTGTTG	16740
AGTGTACCAA	GCGGAAGGCA	GGAATAGCCC	AGTCAAGGTA	GTCTTCGTAC	CAGTCGCTAC	16800
GGCGGAGTGG	CAATTTTTCA	CGAAGAGCAG	CCTCGTCGAT	TTGGATGATT	TTCACACCAG	16860
CAGCTTCAAG	GTCAAGTACT	TCATCCTTGA	TAGCAAGGGC	GATTTGGAGA	GTTGAATCCT	16920
TGATAGAGAT	GTCTTCACGT	GGGAATGACC	AGTTAAGGAT	GGTAACAGGT	CCAGTCAACA	16980
TACCTTTAAC	AGGTTTGTTT	GTACGACTTT	GTGCATAGCT	AGACCATTTA	ACAGTGATAG	17040
GGTTAAGACG	AGTGACATCA	CCCCAGATGA	TTGGTGGTTT	TACCCCACGC	ATACCGTATG	17100
ATTGTACCCA	TCCATTTTTA	GAGAAGAGGT	ATCCTGACAA	GTTTTGACCG	AAGTACTCAA	17160
CCATGTCATT	ACGCTCAAAT	TCACCGTGAA	CAAGGACATC	AAAGTCAATA	TCTTCTTGCC	17220
	TTCGTCAATC					17280
CACCTTTACG	GTAAGCCAAA	CGTTTGGCAC	GAACTTCTTT	TGTTTGAGGG	AATGAACCAA	17340
TCGTTGTTGT	TGGAAGAGCT	GGAAGTTTGA	AAGCTTCTTC	TTGGATAGCT	TCACGTTCTG	17400
CAAAGGCTGG	CAAACGAGTG	TAGTCTGCGT	CTGTCAAGCC	AGCGATACGC	GCACGAAGTT	17460
CAGCATTTTC	ACCAACACGC	TCAGTCGCAA	AGAGTTCTTT	GTTGGCTGCA	AGAGCTTCTG	17520
AACCTTGACC	ATTTCGGATA	GCATCCAAGT	CACGGATTTC	ATCCAATTTT	TCAACTGCAA	17580
	GTTCAAGAGT					17640
GAAGAAGTGA	GCAAGAGCTT	GTCAAAACGA	TGTTTTCAGC	TGGAATTTGC	TCAAGAACAG	17700
CCAAGCTCTT	TTCGTAGTTG	TTGCGCCAGA	TGTTTTTACC	ATTGACAATA	CCTACATAGA	17760
GAGTCTTGTC	AGCTGGGAAG	CCACCTTTAA	CGAGTTCAAG	AGTTTTCTTA	CCTTCAACAA	17820

			948			
CATCTACAT	A TCCCACTTG	r ACCCCAGCAA	TTGGTCCGTC	AAATGGAATA	TCTGAAATAG	14340
ACAGTGCCA	A AGATGAACC	AACATAGCAG	CCATTGGTGC	AGATGCATTT	TCATCATAAG	14400
AAAGCACTG	r attgatgact	TGGACTTCAT	TACGGAAACC	TTCCGCAAAC	ATAGGACGAA	14460
TCGGACGGT	CAATCAAACGO	GCTGTCAAGG	TCGCATCTGT	TGAAGGACGT	CCTTCACGTT	14520
TCATAAAGC	CACCAGGAAAC	TTCCCAGCCG	CATACATTTT	TTCTTCGTAG	TTGACTTGGA	14580
GTGGGAAGA	ATCCCCAGTT	GCCATTTTCT	TAGACATAAC	GGCAGCAGTC	AAGACAGTTG	14640
ACTCACCGT	A ACGTACGACA	ACAGATCCAT	TTGCTTGCTT	AGCAACCTGA	CCAGTCTCTA	14700
CAATTAACTO	ACGACCCGCA	AAAGTCGTTT	GAAACACTTG	TTTTGCCATT	TTAATCCCCT	14760
TTGGATTGAT	GAAATTATAC	GCCTTGCCTA	CAAAGATCAA	GATACCAAGG	ACGTCAAAAG	14820
CAAAGTAAAA	ATAGGAAACT	GACGAAGTCT	TCGATGAAGA	CAAGACAGTT	TATCTTTTTT	14880
ACACAGCTTT	TCGGCCGTGT	TCAATTACAC	AAGATATTTT	GGACGGTTCG	GCTTGCCGAA	14940
CATTTCTGTA	GAAAAATAGG	AAGGTGACGT	CGCACTCGAC	GAGTGCTAGG	AAGCTTATCT	15000
TTTTTCCTAA	GAAATGAGAC	CAAAATTCAA	GTCATCAAGA	TACCAAGCCG	TCAAGCAACT	15060
CAAAGGAAGA	TAGGAAATCG	AACGACGGAG	CGACTACTCC	TAGGGAGATT	TATCTTTTTC	15120
CACAGAGTTG	TAGGCAAGTT	CAGTTTTCAA	GATACATCAT	TAGAAAGGTT	TAATACTAAA	15180
GTATCTAAAG	CTTTCACGCT	AATCGCTATC	GGGCGATTAG	CTAAATGCTT	TACTAACTCT	15240
CTCGTCAAAT	AACATCGATT	TGACTCACTC	GTGTCGTTAA	ATCTTACAGT	TTAAATGCAT	15300
TGTATTATTT	AATACCTTCA	TCTTTGTATC	AAGTACGTAC	AGAATTTATT	TTATCATATT	15360
TTTCTTAAAA	AGTGAGGTCT	TTACCATTAA	AAAGGAACCA	TTCCCCTCAC	CTGAGAAGAA	15420
TGGTTTGCTT	TTATTATCCT	AGAGACTGGT	GATTAAACAA	GGCATGGGTT	GCTTGÄTGGA	15480
TGTATTTTGC	TGTATCAGCA	TTATTCATCG	TATAGAGATG	CACACCGGCA	ACATCCTGAG	15540
TTACCAAGTC	CACGATTTGG	TCCACTGCAT	AGGCAAGTCC	TGCTGCTCTG	AGCGACTCAG	15600
GGTCATGCTC	ATACTTGTCT	AAGATGGCTT	TAAATTTGCG	TGGAAGATGG	ATATTCTCAC	15660
AAGTCTTCAA	GAGTCGGAGA	GCCTGATTTC	GATTCAGAAT	TGGCATAATT	CCTGCATGAA	15720
TGGGAACATC	AATCCCAGCC	AAGATACACT	TGTCCTGAAA	ATCATAGAAG	CGCTCATTGT	15780
CAAAGAAGAG	CTGAGTTACG	AGGCTCGAAC	AGCCTGCATC	CACTTTCTTC	TTAAGATTTT	15840
GAATATCTGA	AATCTGATTT	GGCGAATCTG	GATGCCCTTC	TGGATAGCAA	GCTCCAATAA	15900
TATCAAAGTG	AGGGGTTTGT	TCCTTGATAA	ACTCAATCAA	GTCGGTTGCA	TAGCGGAAAT	15960
CCTTTTGTGG	TTCCACGTCT	GGAATAATAT	CCCCACGAAG	AGCCAAGATT	TTCTGCACCC	16020
CAACTTTGTC	CAAGTCAGCA	ATAGTTTCAG	CAACCTTGTC	CTTAGTTAGA	TAAATAGCTG	16080

CTGAATCTTT	TGATGTTTCT	GTAAATTCTT	TCTTAGGTTT	GTAATCCTTT	TGATGACGTG	12600
GGCGGTGAGG	GCGCTCAGAC	TTTTCACCTT	TTTCATCATG	CTCAGGTTTT	GGCGGACGAG	12660
GTAGAAGAGC	CTTCATAGAG	GCATCGATAC	GCCCTTTTTC	ATCAATTTTG	ATAACCTTAA	12720
CATCAACTTC	ATCCCCGATT	TCTACCAAAT	CCTCTACACG	ATTGGTACGA	GTCCAAGCCA	12780
TCTCAGAGAT	` ATGAACAAGG	GCATCTGTCT	TATCAAAGAG	GTTAACAAAG	GCACCAAATT	12840
TCTCGATACG	AACGACTTTA	GCACGGTAAA	CTTCATCCAC	TTTGGCTTCA	CGAACCAAAC	12900
CAGCAATAAT	TTCTTTGGCA	CGGTTAATAG	CATCTTGGTC	ACTAGAGTAG	ATAGACACAT	12960
TTCCTTCTTC	GTCTATATCA	ATCTTAACAC	CTGTTTCAGC	GATAATCTTG	TCGATGGTTT	13020
CTCCACCCTT	ACCGATGACA	ATCTTAATCT	TGTCCACATC	AATCTTGATC	GTATCAATTT	13080
TCGGAGCAGT	TGGAGCCAAT	TCTGGACGAA	CTTCTGGAAT	GGTTGCTTCA	ATGACATCAA	13140
GGATTTCAAA	ACGCGCTTTC	TTGGCTTGAG	CAAGAGCCTC	CGTCAAGATT	TCTGCAGTAA	13200
TCCCTTGAAT	CTTGATATCC	ATTTGAAGGG	CTGTAATCCC	ATCACGAGTA	CCTGCAACCT	13260
TGAAGTCCAT	ATCTCCAAAG	TGATCTTCCA	AACCTTGGAT	ATCTGTCAAT	ACTGTGTAGT	13320
TATTTCCATC	TGAGATAAGC	CCCATAGCAA	TACCAGCTAC	TGGCGCCTTG	ATTGGCACAC	13380
CACCAGCCAT	AAGGGCAAGA	GTTCCCGCAC	AGATAGAAGC	TTGAGATGAA	GAACCGTTTG	13440
ATTCCAAAAC	TTCTGCTACT	AGACGGATAG	CGTAGGGGAA	TTCTTCCAAG	CTTGGCAAGA	13500
CTTGAGCAAG	AGCACGCTCA	CCAAGGCCAC	CGTGACCGAT	TTCACGACGA	CCTGGCGCAC	13560
CGTAACGACC	TGTTTCCCCT	ACAGAATATT	GAGGGAAGTT	ATAGTGGTGC	ATAAAGCGTT	13620
TCTTGTACTC	TGGATCCAAA	CCATCAATGA	TTTGAGTTTC	TCCCATCGGA	GCCAAGGTCA	13680
AGACTGAAAG	AGCTTGAGTT	TGCCCACGAG	TAAAGAGACC	TGAACCATGT	ACACGAGGAA	13740
GGAAGTCAAC	AACCGCATCC	AAAGGACGGA	TTTCATCGAC	CTTACGACCA	TCAGGACGCA	13800
CCTTGTCTTC	TGTAATTAAA	CGTCGCACTT	CTGCGTGTTC	CATTTGTTCC	AAGATTTCAG	13860
CCACATCACG	CATAATACGG	TCAAATTCTT	CGTGGTCCGC	ATATTTTTCT	TCGTAAACGG	13920
CAGTCACTTG	GTCTTTCACT	ACTTGAGTCG	CAGCTTCACG	GGCCAATTTC	TCTTCTACTT	13980
GAACTGCCTT	TTGGAGGTCA	CTGTTGTAGG	CTGCAATGAT	TTCAGCTTGC	AATTCAGCAT	14040
CCACGTGAAG	CAATTCCACT	TCTGCTTTTT	CTTTACCGAC	AGCAGCAACG	ATTTCTTCTT	14100
GGAAGGCAAT	CAATTCTTTG	ACAGCTTCGT	GCCCTTTAAG	GAGCGCTTCC	AACATGATTT	14160
CTTCTGACAA	TTCTTTGGCA	CCAGACTCTA	CCATGTTGAT	AGCGTGCTTG	GTTCCAGCTA	14220
CTGTCAATTC	AAGAAGAGAT	TGCTCTGCTT	GTTCTTGACT	TGGGTTGATG	ATGATTTGGC	14280

			0.4.6			
GCAACCTTAT	ACCCACGGTA	CTCAAAATAG	946 CGACGAATCG	TATCAAAAGC	TACCGTCGAA	1080
CGGGCGTTTC	CTACGTGGAT	ATAGTTGTAC	ACCGTTGGCC	САСАААСАТА	CATCTTGATC	10860
TTGCCGTCCT	CAATCGGGAC	AAATTCTCGC	AAATCACGAG	ACATGGTGTC	ATAGATTTTA	10920
ATCATAAATC	ATAATCAGGA	AAGCTGAAAT	CCAAGAACAA	TTAGTTTCAT	CACTAAAAGT	10980
TCAAGTAAAT	TTCAGTCCGA	ATATCTCTAC	ACTTCGGAAT	сееттостсс	TTTCTCATTC	11040
AGATAAACCA	CCTGAGTCTG	TTTGACAAAG	CCAATTTTTT	CATACAAACG	TTTGGCACCT	11100
ACATTGCTAT	CTTCCACTGC	AATCTGAAAT	TCCTTGTCAT	TTTGCTCAAT	TAGTTGGTTG	11160
ACGAGGGATT	TTGCTAAGTA	GCTTCCATAG	CCTTTTCCAC	GTTCAGGTTC	CAATATTGCT	11220
<b>AAACCGTAGA</b>	GGTAATTCGT	ATTAGTCGAT	AAATCAACCG	TACAAGTTCC	AATAACCTGA	11280
CCAGCTTTTA	ATAAAATATA	TAGTCGGCTT	TCTGGATCTT	TCAGAGCTTC	AGCGACATAT	11340
CTATCCACAA	CTTCTCTCGA	TTCATGTTCC	TCTGAAAATG	CCTGAAATTT	TAATTGACTA	11400
ATTTGATCCT	GATACGAACT	ATCTGCTAAC	AAAACTTCAA	GATGGGAAAC	ATTTGCTAAC	11460
GGATAAGGTC	TTCTATCCTT	ACCTAACCAA	GTTTCTGTCT	CTTCATCCTC	GATTAGTCCC	11520
CAGTTACTGG	CAAAGTCAGG	ATGATTCTCT	AAAAAAATAC	GTTCTGTCTG	AAAAGTGACT	11580
GACCGAATGG	GGAAAGAAGC	TGTTTCTCTC	TCAAAACTAG	TAAACAATGC	ACGCGCAATC	11640
CCTGACGGC	GATGACCTGG	ATGAACCAGT	ATCGTCACTT	CTACATCTTG	GTCATCTGCA	11700
PAGACAGTTA	ATAAACCAAC	AAGTTCGCCT	TTTTCATAAT	AAAGGAAAAA	GGCGGGCATG	11760
PTTGGGTCAA	AATTAAGCAT	GTTAGAGAGA	TAGGGATCGC	GATAGGTACC	GTCATAGTTT	11820
rggcaacagt	TAATTACTTT	TTTCGCCTCA	GATAGCTCCT	CTTGGCTTAA	CTTGTTTCTT	11880
CTTGAATCA	TATAGGTATC	CTCTACAAAC	CAGACGATCT	GTGACTGGCA	TCTTTAGCCT	11940
CTCGAGTTT	ATTGACATAA	TACTCTCGTT	TTTCTTCGAC	TTCGTGAATG	ACAGGCTCAT	12000
TTTCTTACC	ATGAAGACGG	ACAATCTTGG	CCGGAATACC	GACAACCGTC	ACGTCACTAG	12060
STACATCTGC	TACGACAACT	GCTGCAGCAC	CGACCTTGGC	ATTTTCACCA	ATTTCCACAG	12120
CCCGATAAC	TTGGGCATGG	GCTGATATGA	GGGCTCCCTT	TCGTACAGTC	GGATGGCGTT	12180
GCCACAGTC	TTTCCCTGTT	CCCCGAGAG	TCACTCCGTG	ATAGAGAAGA	ACGCCTTTTT	12240
CAACAATCGC	TGTCTCTCCA	ATCACCAGAC	CAGAACCATG	GTCAATAAAA	ACACCTGAAT	12300
AATCTGGGC	TCCTGGATGA	ATCTCAATCT	GAGTCCAAAA	GCGCCAAAAC	TGACTGTACA	12360
ACGAGCTAA	TAGTTTGAAG	CCGTGCTTCC	AGAGAAAATG	CGAGAGACGG	TGGGCCGCCA	12420
GCCTTGAC	ACCTGGATAA	GTCAGCAAAA	CCTCCAAAGT	GGTGCGGGCC	GCTGGATCAT	12480
TTCTTTTAC	AATATCAATG	GTTTCGCGCC	ACCACCCCAT	ACATTTCTCC	TTTTCTTATT	12540

ACCAAGGGTT	TAGCGAACGA	GCCTGCTCCT	GCTGGGTCAA	AAGGGCAACC	AACTGCTTTT	9060
CACGCTCGC1	GAGCCCAGCT	TCCTCCAGCA	AAATCCACTG	CTGAGAAGCT	AAAGGGAGCG	9120
TGAGATAGCC	CTCTTTCTCT	ACTGGTTGGT	CTGAAATCCG	AGCCTCAGGA	AACCAGTCTT	9180
GTAGTTCTTT	TGCCCTCATG	TTCTAGCCCT	CCACTTTTTG	GATGCACCAT	GAAACCAAAC	9240
TCTCAAGACG	TTCCAGATTC	TCAGTCATAT	GGAGATAGCC	CATAACCGCT	TCAAATCCCG	9300
TGGACATACG	ATAAGTCACG	ACATCTGCAT	TTTTAGCCTT	TGTGTGGCTA	TTGGTATTGC	9360
GGCCACGTTT	GTAGATTTCT	TCTTCTTTTT	CCGTTAGGAC	CTGCTCCTCC	AACATGAGAG	9420
CAATCAGGCG	AGCCTGAGCC	TTGGCTGACA	CGTACTTAGT	TGCTTCTTGA	TGGAGTTTAT	9480
TGGGTTTGGT	CATACCTTTG	AGGATGAGGT	GACGGCGAAT	ATACATAGAA	TACACCGCAT	9540
CCCCTCAAA	GGCTAGCGCA	ATCCCGTTAA	TGAGATTGAC	ATCAATCACG	TGTCCACCTC	9600
ACTCCATCCT	TGGTATCAAG	GAGCTTAATT	CCTTGAGTAA	CCAATTGGTC	ACGGATTTGG	9,660
TCTGCTGTCG	CAAAGTCACG	ATTGGCACGC	GCCTCTTGGC	GTTTTTGAAT	CAAGTCTTCA	9720
ATCTCTGCAT	CCAAAACTTC	CTCAACAAAG	ACAATTCCAA	AAATTTCTAA	CATATCTGCA	9780
AGAGCTTGCT	TGACACTTGC	ATCATAGTTC	CCTGAGTTGA	TCCATTTGGC	CATTTCAAAG	9840
ACAACTGTGA	TACCGTTGGC	AGCATTAAAA	TCTTCATCCA	TAGCTGCTAC	AAACTTATCT	9900
TTAAAGTTTT	GTAACTCTTG	GGCATCCACA	TTTCCTGTAA	ATGGTTGTTC	GTAAGTATTC	9960
TTGAGATACT	TGAGATTGGT	CTCGGCATCG	CGAACTGCCT	TTTCCGTGAA	GTTGATAGGC	10020
TTACGGTAGT	GCTGGGTCGC	AAAGAAGAAA	CGAAGTACTT	GCCCATCAAG	AGTTTTAAGG	10080
GCATCGTGTA	CCGTAATGAA	GTTACCCAAG	GACTTAGACA	TTTTGACATT	GTCGATATTG	10140
ACAAAGCCAT	TGTGCATCCA	GTAGTTAGCA	AAAGCCTTGC	CTGTTTTAGC	TTCAGACTGG	10200
SCAATTTCAT	TGGTGTGGTG	TGGAAACTCT	AGGTCAGCTC	CACCACCGTG	GATATCAATG	10260
GTATCACCTA	AAATCTCTGT	CGACATGACT	GAACACTCAA	TATGCCAACC	CGGACGTCCA	10320
GCTCCCCAAG	GACTATCCCA	AGAAATCTCA	CCTGGTTTGG	AAGATTTCCA	TAGAGCAAAG	10380
CTACAGGAT	TTTCCTTACG	AGCCGTTTCT	TCATCGGTAC	GACCTGAAGC	ACCTAGCTCC	10440
AATCTTCCA	AGGTTTTATT	AGCCAATTTA	GCATAGTTGT	GGGATTTTTC	TACACGGAAA	10500
PAGACATCCC	CTTGACTCTC	ATAGGCAAAG	CCTTTCTCGA	TCAAGTCTTC	CACAAAACGG	10560
TGATGTCTG	CCATAAACTC	CACTACACGC	GGATGGCGAG	TCGCAGGTTT	CACGCCCAAT	10620
CCGTCACAT	CCTCACGAAA	GGCAGCGATG	TACTTATCCG	CAACCTCCTG	AGGCGTGATA	10680
CTTCTTCCC	TGGCACGGTT	GATAATCTTA	TCATCCACAT	CTGTAAAATT	GGAAATATAG	10740

			799			
AAAATATTG	T TAGAAATCGA	A TTTGACTGTO	CTGAACAATT	CGTCCTATTC	TTATTTCATT	7260
TTACTATAA	T TGATAGTGGT	CGCCCCAGCC	AGATACCTTA	TCTGCTATCC	ATTTAGGAAC	7320
CCCTAACTT	A AGCAATCCCC	ATAATCGTCT	CGATTTCTTC	TTCCATTGCT	TCCAGATAAT	7380
CACTCGTAG	G CGAGTACGCA	AGCGCTCATC	TATGCTAGTG	ACTATACTT	TCATATTTAT	7440
AATTCATTC	TTTCGTTTCA	CTCAAGGCAC	AACACAGAAT	GAAAAAGTGT	TGTGATCTTT	7500
ATTTTGTTT	P ATAATAATAG	TGAGAAAACC	TATCACTACT	ACAAATCACG	GGGAGGTGAA	7560
TAAGTGAGTC	GTACAGCCAC	TACCTCGCAT	ATTTTGTCAC	ATCATTTAAC	GGTACATAAT	7620
AAGTTGTAC	ATCTGAATAA	GTTGCTACAA	TATCATTTGC	ATGCTCTCCT	TCACCTTTAG	7680
CAAAGGTTGG	AGCTCCTGCT	GGATGATTTT	TATTTGCCTC	TTTCAATTTT	TCAATAATGG	7740
CATTTTTTCT	GTATCTTTTA	TATTATCAGG	ATTTTTCACT	AAGATTTTGT	CTGGATATGT	7800
CGGTTTAGCA	GAAACAATTT	TTACTGTTAC	TTCTTTTTTA	TTCGAAGCAC	TTGTCCAGTT	7860
TCCAGCATTA	TCTTTAGCAT	TTAATTTTAC	AGTAATTCCT	GAACTAGGAA	CTTCAGTAGC	7920
AGGTTGATTA	TCAACATTAT	TCAACTTTAA	TTTCAAAAGA	GCTGTTGCAT	CAGACGTTTT	7980
ATCAATCGTT	ATATATAATG	ATGAATTGTT	ATTATAAACA	GTTCCTTCAT	ATTTAGCTGT	8040
TTGTGAGCTA	CTTGAAACAG	AACTGAAATT	ATACCCACTA	CCTCCCTGAT	TATCTTCAAT	8100
GCTTACGTCT	AAATGAACTT	CCCCACTATT	ATTTGGCTTA	GCAACAACTG	TTATAGTAAA	8160
ATAACATAAA	ATTTGCATAA	ATAGATTAGG	GAAATCAAAG	CAGCTTCTAG	GAATGTTTTA	8220
GCAGTCACAG	TGTACTTTCC	CAGCATCAAG	CCACTATAAC	TCTGCACATA	AAAATGGAGA	8280
AGATGGCAAT	CCTCTTCTCC	AAATATTAAC	TTCTTTACAA	ACCAACTATA	GTTGACAAAG	8340
AACCTAAAAT	CAATTGATAA	CACAAGGTCA	GGTCGGTCAA	CTCTTTCAAC	TGAAGCCCTG	8400
TCAACTCTTC	CCATTTATCA	ATCTTGTATT	GGAGAGAATT	GCGGTGCAGA	TAGAGTTGCT	8460
GGGCTGTTTT	AGTGAGAACA	GCACTATTTT	CCCAAAGAGA	GAGAATGATT	TCCTGAATCT	8520
GATCTTGATC	CAAAATCATC	TGGTGTAGAC	ATTCCTTGAT	TGGCTTCAAG	TCCACGAGTC	8580
TTTCTCCCAT	ACTCCAAAGA	TAGAGCTGAG	AAAAAGTATG	AACACCTTGG	TGACCCTGAC	8640
GCCACCATGT	CTTGAACAAA	TCCCGCTCAG	CTTTGATTAA	GTCTGATAGG	GCTTGATGTC	8700
CCGTCTGAGA	CCAAACCTGA	CCCAACATGA	TAGAAAGACG	AAGTCCAAAG	TCATACTCAA	8760
CCGCTTCAAT	CGTATCACTT	AAAATATCTC	TTACAGAAGT	GTATTTGTCT	TGTTGAAGCA	8820
CGAAAACATA	ATCCTGAGCT	CCGACCTGTA	GCACTGTCTG	ACAATTCGGA	AAAAGAGTCC	8880
GCATCATATC	TAGCCAAGAA	GCCAGATTTT	CCTGCTGAAA	ATAAGAAAGA	TGGCAATAAA	8940
CCAACTGAAT	CTTTTTAAAA	ACTTGCGGTG	CCTGTCCCTT	GCCCTCAACC	AGATAGGAAT	9000

GACCAGCAA	G TAGGGACAAC	AGTGTGGATT	TTCCTGCTCC	TGACTCCCCA	ATAATACTGT	552
AAAATTTTC	C GGGTTCAAA	TTATAATTG	A TCTGATATAC	GACTGCTTCA	GCAGTATTCT	558
TATAACGGT	A GGTAACATCI	TGTAATTGTA	ATAAAGTCA1	GATTTCTCCI	TCTTAACTAA	564
TAGATGATA	A AATTTCTTTC	GGTGATTTTC	TAAATAAGAA	TAGGAAACAA	AGGGCTACAG	570
ATAAGCAAC	T AAGCAGAACT	' AGAAAAACAT	AGGATTCTGC	AAAAGATAAG	ATGCTAGTTG	576
ATAAACTGC	T TGCTTTGGCT	AGTGTATCTT	GTAAGCTTGC	CTGATCTCCA	CTTGCTAGTA	582
GAGTTTGGA	G TAGGTAAGTT	GTGATTGCGT	TTCCTGCAAC	AAATGCTGGA	AGCAAAGCTC	588
CAAGAGATA	CAAAACTACC	TCTAAACAGA	ATTGTAGGAA	GATCGAGCTC	TTGCCTTTTC	594
CAAGTGCAAG	TAAAATCCCC	ACTTCATAGA	CCCGTTCTCT	CAACCAGAGA	GACAAAACCA	600
GAATTAAGG	TCCAGCTCCT	GCTATCAACA	TCCCATAAAG	GAAGATGGTC	AGGAAGGTTT	606
GGAAAGTTG	AACTGAGTCT	TTGATTTGTT	CAAAAGCCTT	GTTTTCCTTT	TCGACTTGGT	612
AGCCTTGATT	TTCCAAGGCC	AAGTTTTCTA	CCTGCTTCAT	GAGTCCGTCC	ATTTCCTTAG	618
GATTTTCTAC	ATAGAAGCGT	GCTGCACTGA	CTTGAGCTTC	ACTATTGCCC	AAAAGGGTTT	624
GGCTACTTTC	: ATAGTCTGTA	AAGACTTGAT	TTTCACTGAA	GTCAGAAGAC	AAGCCTGTGA	630
ATTTCTCTTC	TTTTTTACCA	GAAAAGATGC	CGATAATCTC	AAACTCTACT	GTTTGTCCTT	636
TTCCAGATTC	AGACTGACCA	GCATCCAAGC	CAATCTTGTC	ATGAAGCGAA	AGACCGTTCT	642
TCTTAGCCAA	TTCTTCGTGG	ATAAGGATTT	TCTTGGAATC	CCCTTTTTGA	AGGTGTCGCC	648
CTTCTTTTAG	ATTGAAAGCC	GAACTGGTAA	AGGTTACATC	CTTGGATGAA	TCCTCAAGAG	6540
CCGTTAAGCT	' AACCAAGTTA	TTGTCTGCAG	CTGATAAATC	ATCACGCTCC	ACGCTCTGCT	6600
CGCCAGTCAC	TGCTTCCTTG	TCTTTTAGTT	TTGCGACCGT	CTCAAGTTCA	GGAGAGACAT	6660
TTTCCAGCCC	CTTAATCTTG	CTTACAGATG	CTAGGTCTGA	CAACTTGAAT	GTCTGACCAT	6720
CTCTATCTT	CTTAATAGAA	AAAGATGTAT	TGAGTGATTT	ATAAAGATTG	CTTTCTACTG	6780
TTTGTTGGA	CTTCATCAGA	GTCAAACAGG	CTGAAATTCC	GGCCAATAAG	ACCAATAAAA	6840
rcagaaataa	AATAAAACTT	CTCAGTCGCT	TTCTGCTGAC	ATAAGCCCAA	GATCTTTGGA	6900
<b>TTGGATTCAT</b>	TTGTCACCTC	CATATTTGTA	AGACTATTAT	AAAACCCAAA	TATGAAATAT	6960
<b>TTATGAAATA</b>	CGAAAAAAA	ATATCGAGTA	GGGGATAATC	TCTAGCCCCT	CTCACACCAC	7020
CATACGTGCC	GTTCGGCATA	CGGCGGTTCA	ACTAACTTTT	AACGCATGTC	GTTCAAGGTA	7080
<b>ТААТССААА</b>	CACGAAACCA	GTCCACGTTT	TTCAAGGACT	GGTTTTGATA	TAGCACGTTT	7140
AGTACCGAC	TTCTGAGCTA	CTATAGTAGA	TTGAAACTAG	AATAGTACAC	CTCTACTTCT	7200

			942			
TCTGAATGGA	AATGTCTAGG	CTCGACAAGG	TCTTGCTAAA	GCCATCTACT	TCTGCACCAC	3720
CACCAAGGTT	AGAGGCTTGA	GCCGCCTTAC	TAGCCTGTTT	GGCAACACCT	GAAGTCACAT	3780
TGGCAAGGAC	AGTGTTTCCA	ATTGCACGGG	CAGTGTAATT	AGCTAGGAAG	TAAGCAGAAA	3840
CTAGAGCAGG	GATAGCAATC	AAGATAGATT	CGGTGATGAA	TTGACCCAAG	ATACTTGCCT	3900
GCTTGAGGCC	GATAGAGAGG	AGAATTCCCA	CTTCCTTGCG	ACGGGCGTTG	ATCCAAAGGC	3960
TGAGCAAGAG	GGCAAGGAGG	AGAACTGAGA	AGCTCAAGCT	ACCCCAGAAG	AGGAGGTTGG	4020
CCATCTTGTA	CATACCAGAG	ATAGATTGCT	CAAGAGCTGG	GTAGTTAGAG	GAGCTCTTGA	4080
CGAGTGTGTA	GCTCTTCCAG	TTGATACCAC	TGATGCCATT	CAACTCTTTC	ATAACATCAT	4140
CCAAGTTCTT	GTCTGCTGTT	ACAAAGAAGG	TTGCGTCCCC	ATAAATGGCT	GTGTCTTCTG	4200
TGTATCCATA	AAGTTTTGCA	GCAGTGTGAA	TGTCTGTAAT	AGCTGTGTTT	TCGTAAAGTT	4260
CTTGTGAGTA	GGTTACTGCT	GACTTATTAT	GACCATCAAA	GAGTCCCTTG	ATTGTCACTT	4320
CAACTGTTTC	CTTGGCTCCT	TTTTCATTAT	CTGCATCGTA	GATATTAGAG	TCCAGTTTAA	4380
CCTTGTCCCC	TACTTTCCAG	CCGTGTTTGG	CTGCCAAGTC	CTTGTGCAAG	AGGATTTTAT	4440
CCTTGTCGTC	GTTGGTTAAG	TGCTCTCCTT	CGACTAGTTT	ATAAGAACCA	GAGACAAACT	4500
IGTCTTCTTT	AGAGGAGTCA	TTGACACCTG	TAATCATCAA	GCTACTTCCA	AAACGCTTGG	4560
CACGATCAGC	AGTGAGATTC	TTCTTGGTTT	CTGGCGTTTC	AATCAGGTCA	TATCCAGTCA	4620
<b>AATCTC</b> CGAT	AGCGTTGATA	CGTTTGACAT	AAGACTCAAT	GGCCTTGTTT	TCGGTGATTT	4680
TTTTGATGTC	TTCACCCTTG	ATATTCCCAG	CACCACGAGG	CGTTCCTTGG	TTGACGCGAC	4740
CATTGATTTG	CATGGAGAAG	CTATTGGTGA	TATTTTTAAA	GGTCTCCTGA	GAAGCCTTGG	4800
CAGTAGCTCC	CTTGATTGAC	AAGCCGACCA	AACTCAAGCT	CGCCATGAGG	AGAATAATCA	4860
GAAGATGAC	AATCGATTTG	AAAAACTTCC	TTGTAACATA	GGCAAATGCG	TTGTGTAACA	4920
PAGATTCCCT	TTCTAGATTT	TGTTTTAATC	ATTCTATTAA	AATAAGCTCA	AATTATTTAC	4980
PAGTATTGCG	CGTTTCAGTC	AGTTTCTTAT	CCTTTAATTC	AAGTGTAATA	TCTGACGCTT	5040
STGCCACTTC	TTTACTGTGA	GTTACGACAA	TCACACATTT	ACCTGTTTTC	TGGGCAAGTG	5100
TTTGAGTAG	TTCGACAATA	TCTCCAGCAG	TTTTAGGATC	CAGATTTCCT	GTTGGCTCAT	5160
AGCTAGAAT	AACTGGAGCT	TCTGAGACCA	AACTGCGAGC	AATGGCAACA	CGTTGCTGTT	5220
BACCACCTGA	TAACTGGAGA	ACATTCCGCT	TGATCTGGCT	TTCATCCAAA	CCAAGCTCAA	5280
AAGTGTATT	CTTGCTTGCC	TTTTTGTTGA	CCAATCGGAT	ATTTTCCAGC	GGAGAAAGAT	5340
ATCTATCAA	GTTATAATTT	TGAAAGACCA	GGGAAATATG	GTGCATGCGA	TGGTAAGAAT	5400
GCCCTTCTT	ACGAATATCC	TCTCCTTGAA	AAAGGATAGA	ACCTTCĂACA	GGACTATCTA	5460

				-	T GTTCCTTGAG	198
			•		A GGTCCATCAT	204
					G CGTAGATGTA	210
					A ACTGGAGACT	216
					TCATAGTACC-	222
					r GGCGGTCTGT	228
					CTTTGACGGT	2340
CCCCTTGAT	TCACTAGTC1	GGGAATACA	GTCTAACACT	TGCTCGATAC	TCTGCCTATC	2400
TTTCCCTTCT	AGGGACTGGG	CAATGGCTGT	TGCCTTTTG/	CCAATGGTTT	CCTGACGATG	2460
					TAACCAGAAC	2520
					GTTTCATTTT	2580
CGCTCCAATT	TATAACCAAC	ATTGCGCACA	GTGAGGATAC	AATCCAAGTC	TAGCTTTTTC	2640
CGCAATTCCT	TGATATAAAC	ATCAATAACA	CGGTCAAAGG	GAACCTCATC	TGTCGCTTTC	2700
CAGACGGCAT	CGATAATCTG	AGATCGAGTC	AAGGCCCGGC	CTTCATTTTT	CACTAGATAG	2760
TCCAGAATTT	CCAACTCTTT	GGCATTGATA	GGCACTTCTT	GACCTGCGAG	GCTTGCACTG	2820
TAGCTTTCAA	AGTCCACCTT	GGTATCCTTG	TAAGAAAAGA	TTCGTCCTGT	ATCGTAGTAG	2880
CGCTTGAAAA	TCGCGTCCAC	CCTCACTTTT	AAAAGGGAGA	GGGAGAAAGG	TTTTTCCAGA	2940
TAGCCATCTG	CCAAAGAGGC	AAAGGCACTC	ATCTTGTATT	CCTCATCTTG	AAAAGCTGTC	3000
				CTAGGACTTC		3060
				CATAGCTAGA		3120
AGAGCTTCCT	GACCGTCCGC	TGCCTCAATA	GTTTCATAGC	CACAATCCGT	CAAATAATCA	3180
CTGACCCCCT	CACGGATCAT	CTCTTCATCT	TCTACAATTA	AAATTTTCAT	ACTTTAACTG	3240
CTCTCTATTT	TTTATTTTTC	TTAGAATAAA	TACCTACCCT	ATTTTCTATT	ATAGTCTCTT	3300
GCTGGCCTTT	TGTCTGCAAG	CAACTGACCA	CTAGATAAAA	CGTTGTGAAA	TTCCTTTCTC	3360
ATAAATTCCA	TAACTTTAGT	ATATTATATT	TAAGCACTAA	AGTACAAAGA	AAGCAACTGA	3420
AAGCAATGAT	TTTCACCACT	GCTTTCGGAT	TTATTTTGAA	TTGTTAAATA	GCCATTCCTA	3480
TCCACTATTC	TTGAATAGAA	ACACAAGATG	CAATCTTTAT	TCTAGACTCA	ТТТТТСААА	3540
TTTATTCACC	ATCCAGCAAG	AGCTCTTTTG	GTTGTTTTCT	AAGGAGATTG	CTTGAAGCAA	3600
GCGCCATAAC	GAGAACCACT	AGAACCAAGG	CAAGGACAAA	AATGATGATA	AAGTCTGATG	3660

			940			
AGCAGCATTO	TGCTAGTCk	GATTCAGTTT	ACTATACTAA	AACGAGTAGC	TTGAAATCAA	180
AAAACCCAC	CTCACAGGCA	GGTTTTATCT	GTATTATTCA	GCTAGATTAT	GCTTTACCTT	240
CTGAACCGAA	TACGTCGATA	CGTTCTTCAA	CCGATGCTTG	GATAGCTTTT	ACACCGTCAG	300
CCAAGAATT	ACGTGGGTCG	AAGAGTTTTT	TCTTGTCGTA	TTCTGCTTCG	TTTGCTTCGT	360
AGTCACGAGO	AAATTTACGA	GTTGCGTTAG	CGAATGCGAT	TTGGCATTCT	GTGTTAACGT	420
TAACTTTGGC	AACACCAAGT	TTGATAGCTG	CTTGGATTTG	CTCATCAGGA	ATACCTGATC	480
CACCGTGCAA	TACGATTGGG	AATCCTGGAA	GAGCTTCTGT	CAATTTTTGC	AAGTGGTCAA	540
GGTCAAGACC	TTCCCAGTTT	ACTGGGTAAG	GACCGTGGAT	GTTACCGATA	CCAGCTGCCA	600
AGAAGTCGAT	ACCAGTTTCA	ACCATTGCTT	TAGCGTCTTC	GATTGGAGCC	AATTCACCTT	660
TACCGATGAT	TCCATCTTCT	TCACCACCGA	TAGTACCAAC	TTCAGCTTCT	ACTGAGATAC	720
CTTTAGCGTG	TGCTTTTTCA	ACAACTTCTT	TAGCCAATTT	AAGGTTTTCT	TCAACTGGAA	780
GTGTGAACC	GTCAAACATG	ATTGAAGTAT	AACCAACTTC	GATACACTCA	AGTGCATCTT	840
CGTAGTGACC	GTGGTCAAGG	TGGATAGCTA	CTGGTACAGT	GATACCCATT	GATTCAACAA	900
GTTAGCGAT	CAAGTTGCGA	GCAACTTTGT	AACCACCCAT	GTATTTAGCA	GCACCCATTG	960
\AGTTTGGAT	CAAAACTGGA	GCTTTTTTAG	CTTCTGCTGC	GCGCAAGATA	GCTTGAGTCC	1020
CTCAAGGTT	GTTTGTGTTA	AATCCACCAA	CTGCATAACC	GTTGTCACGG	GCTGCTTGGA	1080
AAATTTTTC	TGCTGAAACG	ATTGCCATTT	TATCAGGCCT	CCTGTATATT	TTTATGGGTC	1140
TCCCATTTA	CATTGTTCAT	TTTATCACTT	TTTGCCAAAA	AAATCTAGTT	TTTCCCGCAG	1200
TTCGATTGA	TTTTCTTCTA	ACTCCATCTA	TGTAAACCCT	TTCTCTCCCT	AGTCTTGGAC	1260
ACTTTTGGA	AAATCTATAA	AGAAGGTTAA	ACTATTCTCC	TCCATCTCGA	AACGATAAGC	1320
AATTTTTCA	TGTTCTAATA	GACTCTTAAC	CACAAAGAGC	CCCATACCAG	ACCCCTTGAC	1380
TTGCGACTG	GCATTGTCAG	AAAAAGACTG	GGCTAGTTTT	TCTTGTTCCT	CTGAGCTACA	1440
CTATTTTCG	ATAAAAAGTT	CTCCTTCTCT	TTCTCCAATT	CGAACTAAGC	CACCTGGAAC	1500
GAGTGCTTA	ATGGCATTGC	TGATGAGATT	AGAAAGAATC	AACTTCATAA	CTGATGGGTT	1560
'AGATAAGCC	TGCTGATGGG	TCAAACTATT	GTCTATCTGG	AGCTCTCTTT	CCTTGGCTAG	1620
AAGGCATAA	TCTTTGACCA	GATTTTGCGT	CATCTGGAGG	AGGTCAATTG	TTTCCCTATC	1680
TCTCGCAAT	TCCTGCACAG	AAGAGAGGGA	AAGTATCTGC	AGAACATGGT	GATTGAGTTC	1740
TCCACAATC	CCCAAGGCAA	CTCCCAGATA	CTGGTCTCTA	TCCTTATAAC	GACCGATATT	1800
TCTCTCATA	TTTTCGATTA	GGATTTTCAA	ACTAGCCAGC	GGTGTTTTCA	ATTCATGAGA	1860
GCTCCTCGT	AGGAATTCGA	CCTTCATCTT	CTCCAGCTGG	AGAATGGCTT	CATTCTTTTC	1920

PCT/US97/19588 WO 98/18931

939

GATGAGCAAG	AAGTATAGTG	TCCAAGCAGA	ACCCCAAGTG	ATTGTAGCAA	GTGGTGCCCA	14220
ACCAACGTCG	GTAATACTCA	ATTGGATACC	AGTGTTTTCA	ACGAATTTTG	CTAGTGATGC	14280
TGAGAAAGCA	GTGTTTAGCA	TACCGATGAT	AGCACCGATA	CCTGTAAGAG	CGATGGCAAG	14340
TTTGATACCA	CCTTCAAGCG	CTTTGGAGAA	TTTCACTCCA	AAAAGTAAAG	CCAATACTGT	14400
CAAAATGATT	AACATGATGA	CAGGTCCACC	CATTTCTAAG	ATGGGATTGA	AAACCTTTCC	14460
GATTAGGTCA	AAGATTGCAT	CCATAACAGT	TCCTCCCTTT	TTGATGTTAT	ATGAATGTTA	14520
ACAAATTAGA	ATTAGCTTAA	TCCGTGTTCT	TTAATAGCTG	CTTCAATATT	GTCAAATACT	14580
GGAGCGCTCA	TTGCTGGGAT	ACGGAATAAG	ATTGGCCCAG	CTTCGATAAC	TGGGATACCT	14640
GGTTCAAAAC	CAAGGTCTGT	TGCAGCGATT	GGTGTAAAGA	TATCGTAACC	TTTCATAAGG	14700
TCTTCGTTTA	CATCTTTCAC	CATGACTGCA	TCACAGTGAA	CATCATAACC	ACGGTTTGAA	14760
AGTTCTTCTT	CTAGAGCACT	TTTAATTTGG	TGACTTGAGT	TAACACCTGC	ACCGCAGGCA	14820
GCAAGAATTT	TAATCATTTA	GATTTCCTCC	GATTTTATTT	TTTAATAGAC	AAGATTAAGC	14880
GGTTGCTTCA	GCAATGTAAG	TATAAAGGGC	TTCTGGTTCA	GAAATTTTTG	ATAGGTCTTC	14940
AAGATGACCA	TTTCCTGTGA	AGAAGTCCAT	TAACTGAGCA	AGAATGTTCG	TTTGACTTGA	15000
<b>ACTTGAATTA</b>	TTAATGATAA	AGAAGAGTAG	GGATACTTCT	ACTTCCTTAT	CAGGAGCTAT	15060
CATATTGTGA	AAAGTTATTG	GTTTTTCTAA	TCGAACAACC	ACCACTTTCT	CAGCTAGATT	15120
ATGAACAATA	TCTGTGTGAG	GAATCGCTAC	ATTTGGCAAG	TCCTTTCCTA	GAAATTCCAT	15180
ATCTAAACCA	GTTGGAAATG	ACTTTTCACG	CGTGATCAAG	GCTTCACGAT	AAGTTGGAGT	15240
GACAATTTCT	CGTTCTTCCA	ATAAAGTTGC	AACCTGATCA	AAGAGTTGTT	CTTGACTATC	15300
CGCTTCTAAG	CAAAACACAA	GGTTTTTGTC	AAAGAAATAA	TCTAATACCA	TAAGTTTTTC	15360
CGG						15363

#### (2) INFORMATION FOR SEQ ID NO: 140:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 28882 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

TAAGACTATT TAATAGTGGA GTGAAATAGG ATACGAACAA ATTGATTAGG AAAATCAAAT GAATTTATAG AAATCTTTTA GCAGTTATGT TATCCTATTC TAGTTTCAAA ACGCTATAGA 120

TCACTTTGTT	CTGTCCTTTC	AACTATATTI	TTAGTTTCCA	AAGCTTTATC	AGCCTTTTCT	1242
TCTACTATCA	TTTTTTCCTC	TTTAGGTTTC	TCAGCAGTAT	' GAGTAATAAG	TGTTTCATCC	1248
GCATAAACTA	CAGATTCTCC	: AGCTATATTT	CCTCCTAATA	AAACTGCACA	AGTCCCAATC	1254
ATTACTGAGC	AAGCTCCCAC	: AGCAAACTTA	CGAATGCTAT	AAACTCTTTT	CCGATTCCAA	1260
TGGCCTTTCC	CCATAAAACC	CTCCTTATAT	TATATTTAGT	GCAGTTAGCT	ACTACCAAAG	1266
CCCAAGTGGT	ATACATGGTA	TGACAACCTA	GTTTCAACAA	TTTACACTCT	GCGAAAATCC	1272
AATTCAAACT	TCGTCAGTGT	CGCCTTGCCG	TAGATATGAT	TACTGACTTC	GTCAGTTTCA	1278
TCTACAACCT	CAAAACCATG	TTTTGAGCTG	ACTTCGTCAG	TTTCATCTAC	AACCTCAAAA	1284
CCATGTTTTG	AGCTGACTTC	GTCAGTTTCA	TCTACAACCT	CAAAACCATG	TTTTGAGCTG	1290
ACTTCGTCAG	TCTTATCTAC	AACCTCAAAA	CTGTGTTTTG	AGCAACCTGC	GGCTAGCTTC	1296
CTAGTTTGCT	CTTTGATTTT	CATTGAGTTT	ATATTTTATA	GGAGCGCATT	ATTTTGCTTT	1302
TGCTGCGTAC	TCTTCGTTAC	GTTTGATCAT	TTGTTTTCTG	TACCAAGCAA	AGATACCGAT	13080
ATAGAATACA	AGGAAGACTA	CTGCACCAAG	GATTGCTTTG	ATATCACCAG	TTGTAGTGTT	13140
ACCAATTGTC	CAACCAAGAA	GTTTTTCGAT	TGGTCCTTCA	AGAGTAGAGT	GAGTAATCAA	13200
TTGAGTTTGG	CTCACACCTT	CTGGGAAGGC	ACCTACACCT	TTAGCAAGTT	CTGTTGCAAA	13260
rggtgcaata	AGTGTACCTG	AAAGAAGGAA	GAGTGGCAAC	AAGAGTGTTC	CGAAGATAAT	13320
CATACGGAGC	AATTTACCAC	GAGTTACAAC	CAAGAGAGCT	GGAGTAACAC	CCATAGCGAT	13380
GATACCTGCA	AGTGGCAAGA	TACCATTTCC	AACTTTTGAA	AGAAGCACTG	CTTCAATCAA	13440
CATGATTGGT	GCAAGTACGT	TGGCACAAGC	CCAGATTTCA	GCACGACCAG	CGATGAATGG	13500
CCAGTCAAGA	CCGATATTGA	ATTTACGTCC	TTGAAGACGT	TTAGTAGCAA	CGTTTGTAAT	13560
ACCTTGTGAT	AGTGGTTCTA	CGGCTGCGAT	GAACCATGAA	CCGATAAGTG	AGAAGAGTTC	13620
CAAAGATACA	CCGGCAGTCA	AACCAAGAGA	CAACCATCCT	TTGATAACAA	GACGCCATTT	13680
ATCTGCATCT	GCAACACCTG	CAATTGGATG	TGGAGTTCCC	ATAATACCGA	TAACGATACC	13740
AGGATGAAA	CCGATGAAGA	ATTTAGATCC	CCAGAAACCG	ATTTTCTTGT	TCAATTTAGC	13800
GCATCAAAG	TCATATTTAT	CAAGGCCTGG	GAAGAATTTT	TCAAAAATCT	TATCCAAAAC	13860
CATGATAACT	GGGTTCATCA	TGTAGTTCAT	GTGAGTTGAT	GTCATTGGTG	ATGAACTTGG	13920
GCGTTAAGA	AGGTCATCAA	ATGTAGGTTT	CATCAAGTCA	GAGTTGATAA	TTTTCAACAC	13980
CCGACAAGG	ACGATAGCTG	CTGTAGCAAT	AAAGAGTGAA	ACCCCTTGAC	TCACACCATT	14040
TTATCAGCA	TACCATTTAA	TCAAGAGACC	TGTGATAGAC	AAGTGCCAGA	TATCAAAGAT	14100
TCGACATCA	AGTGTATCTG	TTTTCTTCAT	AGCTAGCATC	ACTATGTTGA	CAATCAACAT	14160

TGTTTCAATT CACGTTCAGG C	GCGATAGTAA	CTTCCACGTC	TACGGGTAG	TGAAGATGTT	1068
TCTGATCCAT AAATCAACCA T	PTTTGGATGC	TTAGCTCTAA	GGGCTTTGT	ATTATCTTCA	1074
GAATAGTTAA ATCCAACAGC A	ATCGAGTTCA	TCAGCAATTT	TCTCATGCCC	TCCGCTACCA	10800
TTACCGAAAC GGAATTTATC I	CCTCCCATG	GTAACATAGC	GAGTCTTATO	AACATCCTTG	10860
ATAACCTTAA CCAAACGTTT A	<b>ACAGT</b> TGCT	AAAGAGTGGG	CATCACCATT	AGCTTCACCT	10920
ATTTCATTAC CAATTGACCA C	ATGAAGATA	GCAGGGTTGT	TTTTGCCTCT	TTCGACCATG	10980
GTACGTAGGT CAAAATCAGA C	CATTTTTCA	CCTTTTCGAG	CTTCTGGGTG	AGTGGCATCT	11040
TTTTCAAAGA AACGTCCATA G	TCATAAGGT	TTCTTGCCAC	CATACCACGT	ATCAAAGGCC	11100
TCTTCCTGAA CGAGTAAACC T	'AGTTCTGCT	GCGATTTGCA	AGGTTTGCTC	ACTAGCAGGG	11160
TTGTGGGTTG TACGGATGGA G	TTAACTCCC	ATCTCCTTCA	TTTGTTTGAG	ACGGCGATAT	11220
TCTGCTTTAT AGTTTTCTTC T	GCTCCAAGC	GCCCCATGGT	CGTGGTGCAA	GGATACTCCA	11280
TGGAATTTAA TACGTTCACC A	TTCAAAGAG	AAACCTTCAT	TTGGAGTCCA	GTGATAGTAA	11340
CGGTAACCAA ACAAATCCTT C	TTAGCATCA	ACCAATTGAC	CGTCACGGTA	AACACGCGTA	11400
ATCAATTCGT ACAAGGCAGG T	TTGTCATTT	AAAACAGTCC	AGAGTTTTGG	TCTTTCAACT	11460
TCTAAAATCG CATCTAGGCT TO	GTTGATTCA	TGTGCTTTTA	AGGTACGACT	CGCTGTACGA	11520
ACTAAGCCTG TTACAGCATG AG	CCACCTCGT	TCAACGATTT	GATATTCGGC	TACAAGTTCA	11580
TGGTCTTTGT CGTCCGTATT G	ACGATTTTG	CTGGTCACAT	GAGTTTCAAC	CTTGCCATGT	11640
TGTTGTTCTT CAAGTTTTGG TO	GTTAAAATA	GTTGTCCCAT	TTTTCTCAAC	ATGCACCTTA	11700
TCTGTCACTT GTAAAGTCAC AT	<b>PCACGATAG</b>	ATACCACTTC	CTGAATACCA	ACGGCTACTT	11760
GGCTGTTTGT TGACTGCATG GA	ACAGCAATC	ACATTCTCAC	GACCATCTTT	TTGAAGGTAT	11820
TTGGTGATAT CATATGAGAA CT	rggttataa	CCATTTGGAT	AATGCCCCAC	TAACTGACCA	11880
TTGACATAAA CTTGAGAATC CA	ATGTAGACG	CCATCAAAAG	TAAGGCGAAC	ATTTTTCTTG	11940
AGGTCTTTTT CATCTAGTTT GA	AAGTCTTG	CGATACCAAG	CTTCCCCACC	GTTGAGCTGT	12000
CCACCTTCAT TTTGTGCAGG AG	GATTCATGA	TCGAAATCGT	TAAAGATACT	CCAGTCATAC	12060
GGTAAATCTA ATTTTTTCCA CG	TAGATACG	TCTGCATCAG	GTTTAATGGC	TTCCTTAGAA	12120
TTTGCATTGA GTTTAAAGTA CO	AATTTTGA	TTAAAATCCA	CTTTCCTGTC	TTCAATCATT	12180
TGATTCACTT CTTCATTTGT TA	CAGCTTTA	GCATCTTCCT	TGAGCGGTTT	TTCTTGATTT	12240
GAAGCTTGTG ATTCTATCCT TG	GAGCTTTT '	TCTTCCGGTT	TAGCAGACAC	TTTTTCCTCT	12300
TTTGGAGTTA CGGCTTCATC TT	CTTTCTTC 1	TCAGATGCAA	TAGCCTCAGT	TGAACTAGGT	12360

936 GTTACTTTAT CAGCTGGTAA TACAGCTTGC GTTCCATCTT GATAGTGAGC TCGAACCGAC 8880 AATTTGACAG TTTGGTCTTC TTTGAGACTG TCAGCTTTTT CCACTTGCAA GCTCAAGTGA 8940 GCAATTTTTG GCGCTTCTTC AAGGAATTGA ATTGCATAGG TTTGAAGAGG GCCACCATCT 9000 TTAGGCTGAA TAAAGATGCT CGCACGCATG CCGTTTGCTG CGCTTGCTTG AAGAACTGTA 9060 ACAGCTGCAT TTTTAGCACT TGCTGTGACT TCTGGCAACT TAGCTCCATA AGCAAGAGTG 9120 CGGTATTGCA TTGGTTTTTG ACTAGTAAGA CCTGTTACTG CCTCACCACC AACCGTTACA 9180 GTTGGTACTG CAGGTGCCGC AGGATTGCCT TCTTCTACCA CAAGGGTTGC ATGAATTGGT 9240 TGACCTTCTA AATAACCGGT CGCTTGAATA CGAGAACCTG GAATTGCTAA CTTAGCTTTA 9300 TCTTCTTCGG CAATCTCCCA CTTGTCCACT TCATACTCTT CAACACTTCC ATCAATCAAA 9360 ACATAGGAAA CAGATTTGTC TACAGAATTC AAGTCAGTAT TTGGAGCAAT ACGTTTCACA 9420 ACTGGTAGCT CTGATTTAAG AGCAATCACT TCTACACGAG CTTCTACTTC TCGTCCGTCA 9480 GCCATACCTT TCACCGTTAC AATACCAGGC TTGCTCACAT CTACTGAAGA CCAGGTTACA 9540 GGACGTTCTG CACGGCTACC ATCACTGTAT ACAAACGGAA CAGTGGTAGG CATTTCAGGT 9600 GCCTCTCCAA TAATGGTCTG TACTTTTGGC ACTTCTGTCC CCAAAACAGT CTTCTCTTGT 9660 CCTTCTTTCT TACCAGTAAA GACAGTGACT TGGTTCGATT TCAAGAGATC AGAGTGGGCA 9720 GTCAGGGTGA ATTTCCCTGC TTGTTCAGTT GATTTGACAA TGGCAACACC TTTACCATTA 9780 AATGCTTTAC GAATCCAAGA ACCATCTGCT TGCGCCTTAT AGCGTTCACG GCTGGCTTGT 9840 TCTCCGTTAT CTACACCGAC CAGTTGACCT TGGCCATGCA ATTGGAAGCG AACCAGATTA 9900 TTAGCAGTTG GAACCACATT CCCCTGGCTG TCAACCACTTT CATAGTAGAT GTAAGTCAAG 9960 TCTTTTCCAT CTGCTGCAAT CGCATGGTCT TCCTTAATAA GACGAACTGC CGCTGGCTTA 10020 CCAGCAGTCG TAATCTTATC TCGAGCAATT TCCTTGCCAG ATTCATCACG AGCAATTGCT 10080 TCCAAGGTAC CTGGTTGATA GGCAACTTTC CATTCAAGAT AAAGTTCATT AGCATTTGCA 10140 CCTTCTTGGT AAGTCCGCCC ATCGCTGGTT TGTTTTTTAT TGAAAGTCTT AAGACCAAGA 10200 GATTTTCCAT TCAAGAACAA TTCTACACTA GAAGCATTCG AATAAGCACG AACTGGAATC 10260 TTACCTTCTG AGTCAGCTAC TTTGGATGCT AATTCTTTGT TTTCCCAGTT CCAGTGAGGA 10320 AGAAGGTGTA CCATCGGTTT CTTCTTAACA GAAACCCATT GGCTTTGGTA GAGATAGAAG 10380 TCATGTTTTG GAATGCCGGC TGTATCTACG ATACCAAAGT AAGAGCTCTT AACAGGAGTT 10440 TGATTTTGGT TGTGCCATGG TGTAGGTTCA CCAATATAGT CCGTACCTGT CCAGATAAAC 10500 TGTCCAGCAT AGCCAGCGTT GTCACGGTCA AAAGTCCATG AAGCGGTTGC TGTTTTCCCC 10560 CAACCCACAC GATCATTTCC ATAATCTGAC TGTTCATAAT TACGCTCAGG TCCATTGCTA 10620

TCATCACACA	
TCATGAGAGT TTTTGTCAAT ATCATTGGTT GCTGAAGCAA AGGCCTGGTT ACTGTTTTCA	7140
TCATAGTTAG GGTTATCTGA AAGAGTCTCA CCAAGTTTGT CTGTCACTCG TACAGTGATC	7200
TCAGCAACAA GGTTACTACC AAGGACACGG CCTCGAACAG TAAATTGACC TGCTTTTGTC	7260
AGATTTTCCG CTGGAACTTC TTCCCATTCA ACTGTCAGGT CTTTTGTTTC GTAGCCGTCT	7320
TTACCTGTGA AGTAAACTGG AACCTTAGTC GGCAATTCAA GTGCTTGACC TACTTGTAGC	7380
AAGCGAGCTT GTTTAACCGC AGCAACTGGT TTATGAGAAA GTAAGCTCTT ATCCTTAGTG	7440
AAGTGCAGAC GGTATTCTCC TAAGATGTCG CCATTTTCAG CTTTCGCGAT GACACGAACT	7500
GGCTCACCTT CACGAACGCT TGGAACGACG GTAGCGAGAC CATTGTTGCT AACACTTGCT	7560
GTGACTGCCG GAACTTTTCC ATCTACAGAC TCAAGGTAGT AGTCTGTCAA ATCAGGGTTG	7620
AAGTTTGCTA AGTCTTTGCC GTCAACTTGG ATTCTTGTTT GTCCTTGCTT GGCTGCCGCA	7680
ACTIGITTCG CAAAGATTTG TACCTCTGTG ATAGACGTTC CACGCTTGTT ATCTGCTTTA	7740
ACCATGCGAA TACGAACAGC ATAGGTTTCA ACTTTATCAA AGCTAAAGTG GTTCATTTCT	7800
CCAGCCTTGA GTTGAGCAGG GGCTTTTAGA TTAGTAACTG GTTTCCAGTT GGCAGAATCA	7860
TTAAAGACAT GGTCCTCATT ACCAACAAAA CTAGGGTTTT TAGGAGCTGT TGGGACAGTC	7920
TTACCAACAT AATACTCAAT CACATAAGAC TTCGGTACAC CAACTCCATG GTCTTCATGG	7980
AATCCGACAC TTAGATTATC AACGGAGCGT TTGCTCAAGA TACCTGAATC TCCAAACAGA	8040
ACACCGACTG AAGCTTCTGG ATTAGTACGA TTCCAGTTTG TCCAACGATT GGCTGGTTGG	8100
TTATTGTAGG AAATGAGCTT GTCATTAACA TTTGAAACTG GGTCGCTTGG ATTTGAGTCT	8160
GAAGCAAAGG CAAGTGGCAA TTCTGAACCG GTCCATTGGT CAGAAATGTT TGCACCTTGC	8220
CAGTTTGAG CAGATACGCG AACATGAAGT TTAGTTGTTA ATTGCGTACC TTCTAAGCGA	8280
CATTAACTG TAAAGACACC TTCCTTAGCG TATTGCTCTG GACGAATCGC ATCCCATGCA	8340
CCTTAGCTG ATGAAACGTG ACCATTTGAA TCATATGTCC GAACACTTTC TGGTAATTGT	8400
GTGCTTCTG CGATTGGAGT TGTCACACTG ACTTCTTCAA CTGAAACGAT ACCTTCTACA	8460
AGACTITIG CACGCGCTTC AAGGTCAATT CCTTCAACTT TACCTAGTAC TTCAAATGTT	8520
GATAGGAGT CTAGTTTTTC TTTCGGAATA GCTTGCCAAG TGACTTTATG AGTTTTAGGG	8580
AACCTTTGT CATACTCAAC TGTTACTGTT GCTGGAAGAC TTGGTTCCTG ATGCAAATCT	8640
TCACTACAT TTACAGGACG GATGGATTGC GCAATCTTCT TCTCAGTATT GGCTTGGATA	
TGAGTTCAA CTTGGTCTTT AGCTCCCTCA TATTCAGCGT TCAGAGTGAC TGCTCCTGGC	8700
PATGCAACT CAAGCATTCC TTTACGAATT GCGACTTCCC CTTCACCACT TGTAGAGAAG	8760
JANDADAG	8820

CTATAATGAC	AAGGAGGATA	GCTACACACA	TCCTGATGGC	TGGTATTATC	GTTTTCACCA	5340
TACCAAATAT	CAGAAAACAC	AGACAGACTT	TCAACAAGAA	ATCAAGGTTT	ACTACGCCGA	5400
CGAACCTGAA	TCAGCCCCTC	AAAAGGGACT	GTATATGAAC	GAACGCTATC	AAAACTTGAA	5460
AGCTAAAGAA	TGTCAGGCGC	TTTTATCTCC	CCAAGGTAGA	CAGATTTTCG	CTCAACGCAA	5520
GATTGATGTG	GAACCTGTCT	TTGGGCAGAT	AAAGGCTTCT	TTGGGTTACA	AGAGATGTAA	5580
TCTGAGAGGG	AAGCGTCAAG	TGAGAATTGA	CATGGGATTG	GTACTTATGG	CCAATAACCT	5640
CCTAAAATAT	AGTAAAATGA	AATAAGAACA	GGACAAATCG	ATAAGGACAA	TCAAATCGAT	5700
TTCTAACAAT	GTTTTAGAAG	TAAAAGTGTA	CTATTCTAGT	TTCAATCTAC	TATACAATAA	5760
GAGAATGACT	CAAAATTAAA	AAGCTAGAGT	TCCACAATTG	GAAATATCTA	GCTTTTTTGT	5820
GGTTGAGAAC	TATTTTGTCT	CAGGCTCTTT	ATCTTCTATT	TAGGACAAGA	GTTTTTCTTT	5880
GGTCTTTAAT	GATAAAGAAG	GTATCAAAAT	TTCTAGTCTT	CTTTTTTACC	TTTAGTAACT	5940
act <b>aa</b> tc <b>ct</b> g	CACTCAAACC	TAGAAGAGTT	AAACCTGCTG	CTACTGCTGC	TTGGCTTGCC	6000
GCACTACCTG	TACTTGGTAA	CTGGGCTTTA	TTAGTTTGAC	TAGCTTCACT	TGAATCAATT	6060
GGTTTTGTAT	CTCCTTTTTC	TGACACTTGT	GGTTTTTTAG	CTTCTTGAGC	TACTGGTTTG	6120
GTTCCAACCA	AGACGATGCG	GTCTGTCGGA	ACTTCTACCA	CTTCACGGAG	TTTTTCTTCC	6180
TTACTTCCAT	CAGGATTAAT	CGCTGTAAAG	ATACGTTCTT	TTCCAACTTT	TCCTTCTTGT	6240
TCTACACGAG	TTTCACCTAG	ATACAGTGTT	GAATCTTTTT	TCTCAACTGT	CTTGTATGCC	6300
AAATCTTTTT	CAACAAATTC	GATTTTTGGA	AGATCTTCTT	GTACAGCAGC	AACTGTCTTC	6360
TCAGAAACTG	GTTTTTCCTT	AGTCAAGTGG	ATACGGTATT	CCTTGACTTG	TTTTCCACTT	6420
TCTGAAACGA	GGCGAACAAG	TACTGGAAAG	CTATCTTCTC	CACTATCTAC	CACAGTTGAA	6480
GCTACTTGAT	TGTTTTCTTC	AACTGAGACT	TTTGGCCGTT	GACCTTTATA	GGTAATTTGA	6540
TAGTCTTGAC	GATTTTCAGC	GAAATCAGCA	AGTTCTTTTC	CATCTACAAG	AATCTTTGAT	6600
TGAGTGCTTT	CTTGAGGCAA	TTCACTTGGT	GCAAGGAAGG	TCATCTCAAT	CATCGCAACA	6660
CCGCTCTTAT	CTGCTTTACG	CTCCATACGC	CATCTCATAG	CTTTGGCTTT	GATAGCTTTA	6720
AATGTTACGT	TGATTTCATC	ACCAGCTGCA	ATGTCTTTAT	CCGCACGATA	AGGAACAGCT	6780
TCCCAATTTT	CTGGATTGTT	GAATGGATGG	TCTGCGTCGT	AGGCTTGGTA	GTTTGAATAG	6840
TAGGTTGGCA	CTTCAAACTC	TGGACCGACA	TAGCGTTCTA	AAACGAGTTT	AGATGGTGCA	6900
TCCGTACCAC	TATCTGCAAA	GAACTGAACT	TTTCCTTGTG	TAACAGTCCG	TTCTACAATC	6960
TTACCATTTT	CACGGAAAAT	CACACCCGCT	GATACTTCTG	GATTAGAAGA	TGGTGTTGGT	7020
GACCAGTTTG	TCCAACGACG	ATTTTCTGAA	TGATCTCCGT	CATTGAGATA	GTCAACGCGG	7080

TCAACCATCA	TCTCATGGGT	TTCACCAGGC	AAACCATTGA	TCAAATGGGA	AACAATCTCA	3600
ATTTTTGGAT	ACTTTCTCAA	ACGCTTGACC	GTTTCCACCT	ACAATTCATA	AGAATGCGCA	3660
CGGTTAATCA	GGTCAGAGGT	TGCTTCATAA	GTAGTTTGCA	AGCCCAATTC	AACCGTCACA	3720
TGCATGCACT	CCGATAACTC	AGCCAAATAT	TCGATGGTTT	CGTCTGGTAA	ACAGTCTGGG	3780
CGCGTTCCAA	TATTGATTCC	TACCACACCT	GGCTCATTGA	TAGCCTGTTC	ATAACGCTCT	3840
CGAATAACTT	CCACCTTTTC	ATGGGTGTTG	GTAAAATTTT	GAAAATAAAC	CAGATACTTC	3900
CGAACATCCG	GCCACTTGCG	GTGCATAAAG	TCAATTTCCT	TATAAAATTG	CTCACGGATA	3960
GGCGCATCCG	GTGCCACAAT	GGCATCTCCA	GAACCAGAAA	CCGTACAAAA	AGTACAGCCC	4020
CCATGAGCCA	CAGTCCCATC	ACGATTGGGA	CAATCAAATC	CCGCATCAAT	AGGGACTTTA	4080
AAAGTCTTTT	CTCCAAAGAG	TTTTCGATAA	TAÁTCATTCA	AGGTATTATA	AGATTTCATG	4140
ACTTTCATTA	TAACAAAAAT	CACCCACAAT	CTCAAAAGCC	TGACTTTCCT	ATAAATTCCT	4200
CTGTTTCTCG	TTTCCATTAG	CCTTTTTTTA	TGATACAATA	TGGGTATGAT	TTTAATGAAA	4260
TTAGCATCTA	. ТТТАТТАТТ	GATACTGACC	TTAGTCGTCT	GCATTATCCT	AACCAAACTT	4320
TTTAGATTAA	AAAAACTAGG	ACGAAACTTT	GCGGATTTGG	CTTTTCCAGT	CTTGGTATTT	4380
GAGTATTACT	TGATTACAGC	TAAAACCTTT	ACCCATAATT	TCCTCCCTAG	ACTGGGGCTA	4440
GCCCTCTCGA	TCCTAGCCAT	TATTCTCGTC	TTTTTCTTCC	TTTTGAAAAA	ACGCAGCTTT	4500
TACTACCCTA	AATTTATCAA	ATTCTTCTGG	CGTGCAGGAT	TCTTATTAAC	CCTTATCATG	4560
TATATAGAAA	TGATTGTTGA	ATTGTTCTTA	ATGAAATAGT	CGAATCCCTA	AGCATTTTCT	4620
AGGGATTTTT	GCTTTCTCTA	CAAAATAGTA	TAGACAATAA	CACTATACAA	TTTTATACAA	4680
AGAAAAGAGT	CTGGGACAAT	AGTCTCTTAT	ATCCAAAAAG	GCAACGGATT	TGCCGTTGCT	4740
	GTTACGATAC					4800
	r GCATATTCAC					4860
CCTTCTTAC	ACAAGATCAT	CTCGTTTTTA	CTATTGAAAA	AGTGGTGAAT	ACCTTGGAGG	4920
	CTACACCTCC					4980
TTGTATCTA	C TCTTCTATT	GCCTATTCAC	: AAGGGATTTT	CTCTGGTCGA	AAAATTGAAA	5040
AATGGAAGAG	G TTAGTGACCT	TAGATTGTT	GTTTATTGAC	AGAACTAAGA	TTGAAGCCAA	5100
TGCCAACAA	G TATAGTTTTC	TGTGGAAGA	AACGACAGAG	* AAATTCTCCC	CCAAACTTCA	5160
AGAACAGAT	A CAGGTCTATT	TTCAAGAAG	AATCACTCCC	CTTCTGATTA	AATATGCCAT	5220
GTTTGATAA	G AAACAAAAG/	GAGGGTATA	A AGAGTCAGCT	AAAAACTTAC	CGAATTGGCA	5280

			734			
TGGCAATATC	CGTTGCGCGC	ACACTTAGCA	AGAAGGTATG	GAGGAAGCGG	TTGGTCATGG	1800
CTGTTAAAAA	TCCAATTAAA	AAACCGCCTA	GGATTGAAAA	GATGAGCGAA	CTGCTAGCTT	1860
GCCCCAGAGA	AAAAGCTCCA	GTTGTCCAAG	CTGTCAAAGC	TACCTGAAAA	GCCACCAAAC	1920
CAGAAGCATC	ATTCAAGAGT	CCTTCGCCCT	TAAGAATATT	GGACACGCGC	TTAGGAAAGC	1980
TAAAACGCTC	CGAAAGAGAG	GCAAAGGCCA	CCAAGTCCGT	AGGACCAAGG	GCTGCCCCAA	2040
CAGCCAAGCA	AGCTGCCAAG	GGAAGGCTGA	ACCAAAGAAG	ATGGGCCAAG	CCACCCAAAC	2100
TCAGGGTCGA	GATAAAAATC	ACTGGAAATA	TGAGATAAAC	AATGATTCGC	CAGTGTTTTA	2160
AAATAGCCGT	AACATCTGCT	TCTTCAGCCT	CTCGGAAAAG	CAAGGGTCCG	ATAACCAGTG	2220
CCAAAAACAA	CTCCGTATTA	AGGTGAAAGT	CAGTATTGGG	TAAAAAGAGA	CCAATCACAA	2280
ITCCCAAAAG	AATTTGCACC	AAAGGGAGAG	GCAAAAAGGG	CAGGAGCTTA	TTGGTTGTAC	2340
ITGAGACAAT	CAAAACCAGT	AAAAATAGGA	TGAGGTAAAT	CAGTAATTCC	ACGCACGTCC	2400
CCTTAATCT	TTTTTACAAC	AGGATTCAAA	TATCTCCTTC	TGCTCTTTGA	TTTTTTGGTC	2460
aatcttggaa	CAGTCTTTGT	GCTCAATTTT	TCTCTGGCAC	CGTTCCATTT	CAAGAGCAAC	2520
PAATTTTTC	TTGATTTTAA	GCATTTTTTT	GCTCATATGC	GCTTGGTCTA	GCACGCCCAT	2580
CGCTCGTTCG	TGGTGGGTTG	ATTCAACAAA	ATTCTGGCGC	ATGGCATCCA	GCTTTTCGTG	2640
<b>FAAGTATTGT</b>	TTATCCATGT	CTGTATCTCT	CTAATTTTTC	AATCATCACT	AAAAACGGCG	2700
EGTTGTTGAC	TTGGTTTAAA	GTTCGGTAAA	TGGCAGCTGT	GTACTCTTGT	TGGTTCAACT	2760
GGATCACAAA	ATCCAAGACA	GCATCTCTCT	CGAGATCGCC	TCCTTCATGA	CCATAGTAAA	2820
CATAATAGC	AATTCGTCCA	CCTTTGACAA	GTAAGCCACA	TAGCTTTTCT	AATGCCTCAA	2880
CGTTGTCTG	CGGTCGGGTG	ATGACAGACT	TATCAGCTGC	CGGCAAATAG	CCCAGATTAA	2940
<b>LAATCCCTGC</b>	CTTAGCTTTT	ATCACAAACT	GGTCCAGTGT	CTCATGGCCT	TGCAAGATTA	3000
CTGGGCATT	TGTCAAGTCA	GCCTGATGCA	AACGCTCTTG	GGTCTTTTCC	AAGGCTTGCT	3060
CTGAATATC	AAAGGCATAG	ACTTGCTTGG	CTAGCTTGGC	TAAAAAAAGC	GTGTCATGAC	3120
CATTTCCCAT	AGTCGCATCC	ACTACGACAT	CCTCTTTTGT	CACGACCTCA	GCCAAAAAAT	3180
CATGTGCCAT	CTCAAGTGGT	CTTTTCATTT	TCAAACTCCT	GTTTTACAGC	CTTGCATCCT	3240
GAACACTTC	CACGACGTCG	CATCTCCATC	TCAATGCTGT	TGAGGACTTC	CCATTTATTG	3300
GGCTCCACA	TAGGACCAAG	CAGCATATCC	CTAGGCGCAT	CTCCTGTAAT	TCGATGGATG	3360
CGATATGTT	TGGGAATAAT	TTCCAGTTGG	TCACAGATGA	CCCTGACATA	TTCGTCCTGA	3420
TCATCAATT	GTAAACGCCC	CTCATGGTAA	TCTCGTTGCA	TACGAGTATT	TGTCATAAGA	3480
GGAGCAAAT	GCAGTTTAAT	CCCTTGAATA	TCGTTATCCG	TGACACAACG	GCGGACATTT	3540

CCGGAGGATA	TTGACCACCA	CCAAAAGCAG	GGGGAAAATC	GAAATCAACC	AATAGTAGGC	60
TACTGCGACA	CTGGTCAACT	CACTATCTGA	TGCTTGATAA	TAATGCAAAA	AAGCTTTTAA	120
TAAAGGTTTG	TCTATCAGCT	CTTTCCACCA	CTTTTTCATG	TCATACTCCT	TCACTTATAA	180
TCTTATACTC	AATGAAAATC	AAAGAGCAAA	CTAGAAAGCT	AGCCGCAAGC	TGCTCAAAAC	240
ACTGTTTTGA	GGTTGTAGAT	AAGACTGACG	AAGTCGATCA	CATACATACG	GTAAGGCGAC	300
GCTGACGTGG	TTTGAAGAGA	TTTTCGAAGA	GTATTAACTA	ATTTCTTCTT	ACCAATTCCA	360
CCATATCATA	CGGTAGGGTA	TTGGCAGCTT	CCTTCAAGGA	ATAGTTCTCT	AAGTTATTTA	420
CATTTTGTCG	TAATTTCTTG	GCATACTTAG	TCGTAATCAA	TCGTTTTTCT	TCGTATTCGA	490
AAATCAACTT	GCGCTCCAGA	TAATAGCCTC	TCAGCATTTC	ATCGATATTG	TTGGGTTTGA	540
CACGATTGAT	AACCCGTTCG	ACAAAGGCAC	CACTGCTGAT	AATAGCTGTT	TCTCGAAGAC	600
GAGACTCCTG	CATAAAACTA	ATCAAAGAGC	GTCTGTAGAC	TCCCTTCAGG	TTTTCCAAAC	660
TTTCAATAAT	CATCTCTGTA	TTGGCAAGAT	AGAGCTCTGC	AATTTGGTCA	TAATCAAGAG	720
CACGGAGACG	GCTTTGCTCC	TTGTTCTTCC	AGCTACGGAA	GGTCTTTCCG	AGAGTAAAAA	780
CTTCATGAAG	GAGAAAACGT	AAAATCCTCA	AGGAAACAAG	AAAATAATAG	GTCAGTCTTG	840
AGGCAAGTTT	ACGATTGATT	CCTTGTTCTA	TATTTTTCAG	ATAACGTTGG	TAAACTCGGT	900
AAGCACGATT	GCTAATGTTC	CCCTCTTCAT	AGGCCTGTTC	CAAACCATCA	CTTTCAATAC	960
TAAGAATCAA	GAGTTTCAAA	GCAGCCCAGT	CTTCTTGATC	ATCCTGGTTT	TCTTGGCTTA	1020
AAATGAGATT	TTCAATACGT	CCATGATAAT	TGTCAATAGC	CGCATAGAGG	GGAAGTTTAT	1080
TTCTGGTGTC	TTCCAACTCT	TTTTCCAACT	CTAGCGTTAC	TTCATTCAAA	ATGGCGATAT .	1140
GCATAAGATA	ATCCTTGCTT	TCTTCCTCTT	CATCAGAAAG	ATGAGGCAAG	ACCAAGAGAC	1200
CTGTTAAAAA	GCTAACAAGC	GTCACACCTG	CAACAAGGAA	AAGCAAAAGA	GGATACTCCT	1260
GTTCTAGATT	ACTTGGTATC	AAGAGAATCG	TAGCAATCGA	CACCGTTCCC	TTAACACCTG	1320
AAAAGGTCAA	GAGAAACATG	TCCTTCATAT	ACTTATTTAG	CTTTTTCTTG	AGGCGTCGGG	1380
TTCTATAGGC	ATAATAGCCA	TAGATCATAA	TAAAACGAAT	GACAAAAAGG	ACAAAGGTAA	1440
GGGCGATAAG	AGATAGCAAT	aaaagtagag	GATTATAGAT	TGGATTGGTC	AAGATAGGTT	1500
CTGCTATCAT	TTCCAACTCC	ATCCCTAAAA	TCACAAAGAC	AGAACCGTTG	AGCATAAAGG	1560
TCACTGTATG	CCAGACCGTC	TCGGTCACCG	TATCCACTTG	GGCTTCGAGG	AGCGTGATTT	1620
TCTTGAAGCG	ACTTGCCTTT	AAAATTCCAG	CAACTACGAC	GGCAATAATA	CCTGAAACAT	1680
GAACTTCTTC	TGCCAGAAAG	AAGGTCACTA	GAGGCAAACT	CAATTCTAAT	AAAAGTTCAC	1740

WO 98/18931 PCT/US97/19588

			930			
CTTCTCTTTC	AAGCGTAATA	CCTGAGTGTT	CCTTGACTTT	TTCGATAACC	GATTGGATCA	1740
AGTCCTCGTA	GTCTTTGGCC	GTTCCATCTG	CGACATTGAT	CATAAATCCT	GCATGCTTTT	1800
CTGACACTTC	TACGCCACCG	ATACGATAGC	CTTTCAAGCC	AGCTTCTGAA	ATTAACTGAC	1860
CTGCAAAATG	CCCGACTGGA	CGCTTAAAGA	CCGAGCCACA	AGATGGGTAT	TCCAAAGGTT	1920
GCTTGAGTTC	ACGTAGGTGC	GTCAAGCGGT	CCATTTCCTG	CTTGATAACC	TGATGGGTTC.	1980
CTGGAGCTAG	GGCAAATTTA	ACTGACAAGA	CAACTGCACC	AGACTCCTGA	ATAGCTGAAT	2040
GACGGTAACC	AAAAGCCAAG	TCTTTAGCAG	ACAGGGTTTC	GATTTCTCCA	TCCTTGGTCA	2100
AGACCTTACA	AGACTGCAAG	ATGTGAGCAA	TCTCGCCACC	ATAGGCACCC	GCATTCATAA	2150
AGACAGCACC	GCCAACGCTT	CCTGGAATAC	CACAAGCAAA	CTCAAAGCCA	GTTAAACTAT	2220
GACGGAGGGC	AATGCGAGTT	GTTTCAATCA	AGTTAGCCCC	AGCTTCTGCT	TCAATGGTAT	2280
AGCCATCAAC	AGAAACGTTA	TTGAGCTTGT	CACACAAGAT	GACAAATCCA	CGAATCCCAC	2340
CATCACGAAC	GATGATATTG	CTTGCATTGC	CAAGAACCAT	CCAAGGGATA	TTTTCTTGGT	2400
TGGCAAATTT	CACAACGCGA	GCCAACTCAA	AACGATTTCG	TGGAAAGACC	AAATAATCAG	2460
CCTCTCCACC	TACTTTTGTA	TAACTATAGC	TATGCAAGGG	TTCCTTAAAA	CGGATATCAA	2520
TTCCTTCTAA	GATTTCAAGC	ATTTTTTCTC	TTACAGACAT	GTCACTCTTC	CTTTTACAAA	2580
ATTCATTCCA	TTATACCATT	TTTAGAGACA	TTTGACGACC	ATAAAAATAC	CTTGTTTGGA	2640
TTTTGCATAA	GAAAAAGAGG	ттсссссстт	TTTATGATTT	TTTACAAAAG	ATTTCCTTGG	2700
TTCCATAGGC	GACCAGAACG	AGCTCCAGTG	CTAGAATCAC	TTCAACCAAG	ACTGGATTTG	2760
TCAACCAGCC	TACTTGGAAA	AGAGATGGTG	CCAGATCAAA	GAAGGCATGC	AAGCCATAGG	2820
CTGCTAGGAG	ATAAATCCAT	TTCTTCTGGC	GAACAGCTTG	GTAAACCCAA	ACTGTCAAAA	2830
GTAATTGGAA	ACCAAGCGCC	AAGATTCGCT	CAAAACCAAG	САВАТАВАТС	TGCCAGACCG	2940
AAAGTGACTG	AATGGTTTTT	AACATATTTT	CAGACAGTAA	TTGCA FAACC	TGTGGATTCT	3.000
GAGTTTGAAC	TGCCGAAAGA	ACAATGTAAA	GATTGAGTAA	ACTAGTAAGG	CCTAGAAAAA	3060
CAACTCCAA	GCCACCATGC	ccc				3083

## (2) INFORMATION FOR SEQ ID NO: 139:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 15363 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

⁽xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

60	GCCATTTTGA	GGTTAATAGA	TCCAAGAATT	TCCGATAAAT	GTGAACCAAT	AGCAACTGTT
120	AGGAAGGATA	TGATCCAGGT	AGGAGCAAAT	ATAGGCTTTA	CGATAAAAGC	CCAAAAATCC
180	CGTCGGATAA	AAAAGAGGGC	AGACGGGTCA	ACGGTGTTTG	GCCAGAGTTG	ATCAGCATGA
240	GAAACTCATT	GCACTGAGTT	CCTGCATAAA	GGTCACAATG	GTGCCACAAA	CTGATAAGCA
300	ACTGAACTGG	AATTTTCTAA	TAAGATTTGT	TGACGCAAAG	TCAAGTTTTG	TTAAGATAGG
360	TACAAAGAGC	AGGGTGCCAA	ATCAAGACCA	TTGACCGAAA	TGAAAAAGGA	CCTTCGATGT
420	CATCTCTTTC	TTGTTTTCTT	AGTTTAGAGC	TACTACAAAG	GCATGTAGGG	GCAATCCAAA
480	ACTCCTCAAT	ATTTCTACGT	TTGCTCTTCG	AACCTGCTTC	GCATTGATCA	CTCCTCGATT
540	CTTCTGGTTC	ATGTGGATGT	GAGACGCATG	CGGTTTCATT	AACTCTTCTT	ACGAGCATCG
600	TCATCCATTC	GTTGAGTGGA	AGCCTTACGG	CACCCACGAT	CCGATTTCCT	AAAGTCCAGA
660	GCTGGGTATC	CCACGGAAAA	ATAATGAACT	CGATAATTTC	TCGTCATAGG	ATTTCCAAGT
720	CTGGACGAAT	CGCAAGTCCT	AAGGGTAATG	CTTCTTCAGG	TGGAGCTTGC	GACCTTAACT
780	AGCGTTTGCC	ACCGCTTCAA	CCCACCATCA	TTGGCTTCAT	ACAGGTTCAT	AACGACCTCA
840	ACTCCCCGAT	AAGATGTTTG	GGTACCTGGC	CCTCAATCAT	ACCAAGTAGT	GTTAAATTCG
900	TTCCAGACTG	TCCACAGGGG	ATCGTAGATG	TGATTGGCTC	ACAAAGTGGT	AAAGGTGGCA
960	CTTCTTCCTG	ATGGCAAGAG	CCAGTCACTC	TAACGAAAAT	CCATCATTCA	GACAATCTCG
1020	GCAATTCGTA	TGTAATTCAC	CAATCGTTGT	AGGTAATGCC	ACAAAGACAA	ATCGTGAGTG
1080	ACAAGACCAC	GGCTCGTCCA	CGCTGATAAA	TCAAGTCCAG	GTTCTCAATT	CTGCATGTCT
1140	CTCCAGAAAG	TGACGTTGTC	GGCCACACGC	CACGGGCGAT	TTGATGATAG	ACGGGGTTGG
1200	CTTCCGCTAC	ATCTTGAGAA	CAACTGAACC	CATAACCTTC	GAACGTTTTT	TTTGCGGATG
1260	CAACATTTTC	AGTGGAAAGG	ACGCAAGCGA	TATCAATTTT	ATTTCTTTCT	ACGCTGCTCG
1320	CGTCGCGCTT	ACGGTATGTA	GGATTGGAAG	ACAAGGCATA	ATATGTGGGA	AAACACATTC
1380	TCGTCGCATC	ATATCTCCTG	GTCTAGCATG	TACGAACACC	ATATCATTGA	GTTGGTTGGA
1440	CACCTAGAAG	GAACCAGATG	TGATTTCCCC	TTAGGATAGT	GCAATAATGT	CAGTAAACCT
1500	TGGTGTTGCT	TTGAGAACCT	GTTGATGTCT	CCAACTCAAA	TTCCCTTCTT	GGTGTAGAAT
1560	ATTGGCATAA	GGCTTTTTCA	TTCGATAATT	CGTTTTTGAA	ACTTTAGAGA	GTCTTCAAAA
1620	TACCTCTTGC	AGGTCCCCAC	GGGCTCTGTC	TAACCGATCG	TTTCATAGAT	ATTCCTTCTT
1680	AAGATCCGGA	GCTTTCACCC	CTACCGATAG	TACATCTTCG	ACCACCTGCA	AGGGAGTAAA

WO-98/18931 PCT/US97/19588

			928			
ATTAATTTCT	AGAAATATGT	TAGAAATTGG	TTTGAATTCC	GCAATCAATT	TGTTCAGTTT	11280
TTATTTCATT	TCATTTTATT	TAATTAGATT	TTCCAATTTT	TTAATTCAAG	CTAAAAATCC	11340
CCAATCGTAG	TGATTGAGGA	TTGAGTAAAT	AAATCTTAAA	CAATACCTTG	TGCAATCATG	11400
GCATTTGCTA	CATTTTCAAA	GGCAGCAATG	TTAGCTCCTG	CAAGGTAGTC	TTTATCAAGA	11460
CCGTATGTTT	CTGAAGTCGT	TTTAGCTGTG	TTGAAGATGT	TTGTCATGAT	GTCTTTGAGA	11520
CGGCCATCAA	CTTCTTCACG	AGTCCATGAG	AGGCGAAGAC	TGTTTTGGCT	CATTTCAAGA	11580
GCTGAAACGG	CTACACCACC	AGCGTTGGCA	GCTTTTGCAG	GTCCGTAGAA	GATACCATTT	11640
TCTTTGTAAA	CTTTGATGGC	ATCAAGGTCG	CTCGGCATGT	TGGCACCTTC	AGATACACAG	11700
ATAACGCCTT	GAGCAACCAA	ACGTTTAGCT	GCTTCACCGT	TGATTTCGTT	TTGAGTGGCA	11760
CATGGAAGAG	CAATGTCATA	GTTTCCAGCG	TAAGTCCATA	CAGTACCTTC	GTGGTAGGTT	11820
GCAGTTGCTT	TTTCAGCTGC	ATACTCAGTC	AAACGAGCAC	GACGTTTTTC	TTTAACATCA	11880
ACCAAAAGAT	CGAAGTCGAT	ACCATTTTCA	TCGATGACAT	AACCATTTGA	GTCAGAAACA	11940
GAAATAACAG	TTGCACCGAG	TTCAGTTGCT	TTTTGAAGAG	CATATTGAGC	AACGTTACCA	12000
GAACCTGAAA	TAACGACTTT	CTTACCAGCA	AAGCTGTTAC	CGTTAGCTTT	GAGCATTTCT	12060
TCAGTATAGT	AAACCAAACC	GTAACCAGTT	GCTTCTGGAC	GAATCAAGCT	ACCACCAAAT	12120
CCAAGAGGTT	TACCAGTCAA	GACACCAGCA	TCAAATTGGT	TAAGACGTTT	GTATTGACCG	12180
TAAAGGTAAC	CAATTTCACG	TCCACCAACA	CCGATATCAC	CAGCAGGTAC	GTCAAGTGAT	12240
GGTCCGATGT	GTTTTTGCAA	TTCAGTCATG	AAGCTTTGGC	AGAAGCGCAT	CACTTCAGCA	12300
TCTGTTTTAC	CTTTAGGATC	GAAGTCTGAT	CCACCTTTAC	CTCCACCGAT	AGGAAGTCCA	12360
GTCAAGACAT	TTTTAAAGAT	TTGTTCAAAT	CCGAGGAATT	TCAAGATCCC	TTGGTTTACA	12420
GTTGGGTGGA	AACGAAGTCC	ACCTTTGTAT	GGTCCAACAG	CTGAGTTGAA	TTGAACACGG	12480
TAACCACGGT	TTACTTGAAT	TTTTCCATCA	CGGTCAACCC	AAGGAACACG	GAAAGAAACC	12540
ACGCGCTCAG	GCTCAGTAAT	ACGTGCCAAG	ATATTTTCTT	CGATATACTC	AGGGTGTTTT	12600
TCAAATACAG	GTTCTAAAGT	GTTGAAAAAT	TCTTCAACAG	CTTGGAGGAA	TTCAGCCTCG	12660
TGCCGG						12666

## (2) INFORMATION FOR SEQ ID NO: 138:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3083 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

TATCGAACT	T ATGAACAAA	T TGCGGCTGT	T TTTGGTATT	C ACGAAAGCA	A CTTAATCCGT	954
CGGAGCCAA'	T GGGTTGAAG	r aactcttgt	T CAAAGTGGT	G TTACGATTT	C AAGAACTCCT	960
CTCAGTTCT	G AGGACACGG	r aatgattga	r gcgacggaa	G TAAAAATCA	A TCGCCCTAAA	966
AAAAGAATTI	A GCGAATTAT	CTGGTAAAA	A GAAATTTCAG	GCTATGAAG	G CTCAAGCGAT	972
TGTCACAAG	r caagggaga/	TTGTTTCTT	r GGATATCACT	r GTGAACTAT	GTCATGATAT	978
GAAGTTGTT	AAAATGAGTO	GCAGAAATA	CAGACAAGC1	GGTAAAATC	TGGCTGACAG	984
TGGTTATCA	A GGGCTCATGA	AGATATATCO	TCAAGCACAA	ACTTCACGT	AATCCAGCAA	990
ACTCAAACCC	CTAACAATTO	AAGATAAAG	CTATAACCA1	GCGCTATCT	AGGAGAGAAG	996
CAAGGTTGAC	AACATCTTTC	CCAAAGTAAA	AACGTTTAAA	ATGATTTCA	CAACCTATCG	1002
AAATCATCTA	AACGCTTCGG	ATTACGAATO	AATTTGATTG	CTGGTATTAT	CAATCATGAA	1008
CTAGGATTCT	AGTTTTGCAG	GAAGTCTATI	ATCAAAAATA	CCATCAAGAT	TATATAAGAT	1014
TGATACAGGA	AAAGTTTTAT	TTGATGGTG1	· AAATATTAAT	' CAAATAGATA	TTATAAAAA	1020
AAGTCAAAAT	TTAGGAGTAG	TTCCACAGGA	TTCATTTTA	TTGAACCGAA	GTATTCTTGA	1026
TAATATAACT	TTAAAGCACG	AAGTTACTTC	ACAAAAGATA	GAGGAAGTTT	GTAAAGCAGT	1032
TCAAATCTAT	GATGAAATCA	TGGCTATGCC	GATGAAATTT	AATACTATCA	TCTCAGAGAT	1038
GGGGTCAAAT	ATTTCAGGTG	GGCAAAGGCA	ACGGATAGCA	CTGGCACGTG	CATTAATAAA	10440
raatcctagt	ATTGTAATTT	TAGATGAAGC	AACTAGTGCA	TTAGACACTA	TTAATGAGGA	10500
<b>AAGAATAACA</b>	AAGTATATAC	AAAGTCAGGG	CTGTACTCAA	ATAATTGTAG	CTCATAGATT	10560
STCAACGATT	AAGGATGCGG	ATGTTATTTT	TGTAATGAAA	GGTGGTAAGA	TTGTTGAGTC	10620
AGGAAATCAT	AAGTACTTAA	TGGATCTTGG	TGGAGAGTAC	TACAGCTTAT	ATACAAAAAG	10680
Gaaatgaggt	GTAAAGAAAA	TGAAGAAAGA	AAATGAATAT	GTAATTTTAA	CAACAGCCTC	10740
CTAGGGGTG	ATGATTGGAA	TAGTGTTTGC	AATTTTTTTA	GATTTTCCAG	TTGAATATGG	10800
ATTTCTTTA	GGCTTGTTGA	ATGGAATAGT	ATTGGGTTCG	CTGATTGTTT	ACAAAAACAA	10860
`AAGAATTAA	GCATAATTTT	TTGCTGTAAA	CTAAGGAGTA	GAGATGGCTA	TAGTTGAAAT	10920
`ATAAATCTA	ACAAAAAGCT	TTAAAGATAT	TGAAGTTATT	CATAACACTT	AAATAATAGA	10980
CAACTACAG	TAGTAGCTTA	AAAACATGAT	TAAATCGCTA	TTCTTAGGAG	TAGCGGTTTT	11040
CTTTTTGTT	TAATACTCTT	TGAAAATCTC	TTCAAACCAC	GTCAGCTTTG	CTTTACCGTA	11100
TCAAGTACA	GCCTGCGGCT	CGCTTCCTAG	TTTGCTCTTT	GATTTTCATT	GAGTATAAAA	11160
GGGTCAAGT	AAGTATAGTA	AATTGAAATA	AGATATGAAC	AAATCGATTA	GAAAAGTCAA	11220

			920			
AAATGAGGAC	TTTCTTTTTA	TACTCATCTG	CTTTCAAAAA	GCATTCTAGT	CCATCTCCGA	7740
TTAACGATGG	ACTTTATCAC	CTCCTTCTCC	AGTCCTTGTA	TAACATCTTG	GAGTTGATTC	7800
ATGACATCTT	CCAAAGTTTA	AAAGGCTTTA	TTCTTAAATC	CACGTTTACG	AATCTCTTTC	7860
CACACTTGTT	CAATGGGGTT	CATCTCTGGT	GTGTATGGAG	GAATAAATGC	AAAGCCAATA	7920
TTAGTCGGAA	TCTTTAAGGT	ACTTGATTTA	TGCCATATAG	CATTGTCCAT	AACGAGTAAA	7980
AGATAATCAT	CTGGATAAGC	TTGTGAAATC	TCCTATTCCT	AAAGCCCCTT	TAGCGCATAA	8040
CTTTGGCTCA	GCTTCTATTA	TCGCTCACAC	CATCCATCAG	AAGTTTAATC	TGAAGGTACC	8100
CAATTATCGC	CAAGAAGAAG	ATTGGGCTAG	GATGGGTTTA	CCAATCACAC	GTAAGGAAAT	8160
CTCTAATTGG	CATATCAAGG	CGAGTCAATA	CTATTTGGAG	CCCCTTTATA	ACCTCTTGCG	8220
AGAGAGACTA	TTGACTCAGC	CCTTACTTCA	TGCGGATGAA	ACTTCTTATA	GGGTGCTAGA	8280
GAGTGATAGT	CAGCTGACTT	ACTATTGGAC	TTTTTTGTCA	GGTAAAGCAG	AGAAACAAGG	8340
GATTACGCTT	TACCACCATG	ATCAGTGTCG	AAGTGGTTCA	GTAGTACAAG	AATTCCTAGG	8400
AGATTATTCT	GGCTATGTGC	ATTGTGATAT	TTTGCGGCAG	TAACTTAGGA	CTTTAGTCCT	8460
CTAGTTCTGC	CTATGCGATA	GCAGTCCAAG	GTTTAGGAGC	AAGGCGACGC	TAAGCTTGGT	8520
AAACTTCGAA	CCGCTCGTCT	GCTTATCGTC	AACTGGAAGA	AGCTGAACTT	GTTGGATGTT	8580
GGGCGCATGT	GAGAAGGAAG	TTTTTTGAAG	CGCCCCCCA	AGCAAGCGGA	TAAATCATCC	8640
TTAGGAGCTA	AAGGTTTAGC	TTATTGTGAT	CAGTTATTTT	CCTTGGAAAG	AGACTGGGAG	8700
GCTTTGCCAG	CTGATGAACG	ACTACAGAAA	CGTCAAGAAC	ATCTCCAGCC	CTTAATGGAA	8760
GACTTCTTTG	CTTAGTGCCG	GCGTCAGTCA	GTTTTAGCAG	GTTCAAAACT	AGGAAGGGCA	8820
ATTGAATACA	GCCTCAAGTA	TGAAGAAACC	TTTAAGACCA	TTTTGAAAGA	CGGACATCTG	8880
GTCCTTTCCA	ATAATCTAGC	TGAACGCGCC	ATTAAATCAT	TGGTTATGGG	ACGGAGTAAA	8940
AGAGTCCAGT	GGACTCTTTT	AGCCTAAGCT	CAGTTTAAAA	AAGCGAGGGT	GGTTATTTTC	9000
rcaaagtttt	GAAGGAGCTA	AAGCAAGAGC	TATTATTATG	AGTTTGTTGG	AAACAGCTAA	9060
ACGTCATCAA	TTAAATAGCG	AGAAATATCT	ATCCTATCTT	CTAGAATGTC	TTCCAAACGA	9120
GGAAACTCTC	GTAAACAAAG	AGGTTTTAGA	GGCTTATTTA	CCATGGACTA	AAGTTGTACA	9180
AGAAAAGTGC	AAATAAGAAA	TCTCCAGATT	AGGAACTATC	CGTGAGTTCT	CCAGTCTGGA	9240
SATTTTTCAA	TAGACTTCCT	GCGAAACAAA	ATATGGTATA	ATAGTTCTAT	GAATGATGAA	9300
GCAAGTAAAC	AACTAACCGA	TGCACGATTT	AAGCGTCTTG	TTGGTGTTCA	ACGCACGACT	9360
PTTGAAGAGA	TGTTAGCTGT	ATTAAAAACA	GCTTATCAAC	TTĄAACACGC	AAAAGGTGGA	9420
GAAAACCTA	AATTAAGTCT	AGAAGACCTT	CTTATGGCCA	СТСТТСААТА	TGTGCGAGAA	9480

GGAGAATCGG	CTTTATCTG	TGTAGATAA	TTGTATGTG	GGTTTACAA	GCGTTTTGAA	6000
GAAGAGTACA	TAAACCAAGG	ATTTTATAA	AATCGAAAT	A TAGAAGATA	GTTGAATCTT	6060
GGGTGGGAAT	TACTATCAAT	TCTTCCTAGA	ACAGAGTTA	AACGTATCA	AGATGATTTG	6120
СТТБАТАААТ	ACTTACCTTT	GGTAGAAGTT	TAATCCGGAA	ATGGAGTGAT	TATCTATGGT	6180
ACGTTTGAAT	GTAAAACCAA	CTCGTATGGA	ATTGAATAAC	TTAAAGGAAG	GTTTGACAAC	6240
AGCTGAACGT	GGACATAAGT	' TATTAAAGGA	TAAAAGAGAT	GAATTGATGA	GGCGATTTAT	6300
TTCTTTGATT	CGTGAGAATA	ATCAACTTCG	GAAAGAAGTO	GAAAGTTATO	TAATTGATAA	6360
TCTAAAATCC	TTTGCAGTTG	CTAAATCATT	AAAGAATTCT	CAAATGGTGG	AGGAATTATT	6420
PTCAATTCCA	TCGAAAGAAA	TTGAATTATT	TGTTGAGAAA	GAAAATATCA	TGAGTGTAAC	6480
AGTTCCTAGA	ATGCATATGA	ATATTACTTC	TCAAAATGAG	AACAGTGAAT	ACAGCTATTT	6540
ATCTTCTAAT	AGTGAAATGG	ATGATGTATT	TGCTACAATG	AATAGTTTAA	TTTATAAATT	6600
ACTAAGACTG	GCAGAAGTTG	AAAAAACGTG	TCAGTTAATG	GCTGATGAAA	TAGAAAAAAC	6660
ACGTAGACGT	GTAAATGGTT	TAGAATACTC	GATTATTCCA	AACTTGTCGG	AAACTATTCA	6720
<b>PTATATAGAA</b>	TTGAAACTAG	AGGAGGCAGA	AAGAGCCAAT	TTAGTTCGTA	TTATGAAAGT	6780
SAAGTAGATC	CTTTATTTAG	ATTATTAATT	AGATGAACAA	ATATCAGCTT	GGATAAGGCT	6840
TAAGCCTTT	CTAAGCTTTT	TTTATTGACA	GTATCAGGAT	ATCTTTTTCA	AAATTTTGGT	6900
TGTTAGATA	ATGAAAATGT	TTCTACTAAT	CTAGATTTAG	GATTAGTAAA	TCGTAAATGT	6960
ATTATATAG	AAAGTAAGCG	CGTCATAACA	AGGTATCTAT	CATTCATGGA	GCTCCTCCTG	7020
'ATACTATTA	GTAAAGTAAA	ACTATTGGAG	GATATTTTAA	TGCCACAACC	TATTGTTCCT	7080
TAGAGATTC	CACAATCTCG	TCGTTTTGAT	TCTAAAAAGA	GAAATGATAT	TCTGCTTAAA	7140
TTCGTATTG	GCAAGCTTGA	AGTAAGTTTT	TTTCAATCTC	TCAATCTCGA	AATGGTAGAA	7200
AGCTTTTGG	ATAAGGTGTT	GCTCTATGAC	AATTCATCTA	TCTAGCCTAG	GGGAGGTCTA	7260
CTCGTGTGT	GGGAAAACTG	ATATGAGACA	AGGAATCGAT	TCACTGGCTT	ATCTGGTTAA	7320
ACCCACTTT	GAATTGGATC	CTTTCTCCGG	TCAAGTCTTT	CTCTTTTGTG	GTGGACGTAA	7380
GACCGCTTT	AAAGTCCTTT	ACTGGGATGG	TCAAGGATTT	TGGCTACTAT	ATAAACGCTT	7440
GAGAACGGC	AGATTGATTT	GGCTAAGTAC	AGAAAAGGAT	GTCAAAGCTC	TCACACCAGA	7500
CAAGTAGAC	TGGCTTATGA	AGGGCTTTTC	TATCACTCCA	AAAATATAGT	AGATTGAAAC	7560
AGAATAGTA	CACCTCTGCT	TCTAAAACAT	TGTTAGAAAT	CGATTTTACT	GTCCTGATCG	7620
TTTGTCCTG	TTCTTATTTC	ATTTTACTAT	AAATCCATCA	GAAAGTCGTG	ATTTCTATTG	7680

WO 98/18931 PCT/US97/19588

			924			
ACGATTACTG	CTATTGGAGC	TGTATCGCCA	CCTGGTGGAG	ATATTTCAGA	ACCAGTTACT	4200
CAAAACACTT	TACGGATTGT	GAAAGTTTTT	TGGGGGCTTG	ATGCTCCGTT	GGCACAGCGA	4260
CGTCATTTTC	CTGCAATTAA	CTGGCTTACA	TCTTATTCAC	TATATAAAGA	CAGTGTGGGC	4320
ACTTATATAG	ATGGTAAAGA	GAAGACAGAT	TGGAATAGTA	AAATAACTCG	TGCGATGAAC	4380
TACTTACAAC	GGGAATCTAG	TTTAGAGGAA	ATTGTTCGTC	TTGTTGGAAT	TGATTCTCTG	4440
TCTGATAATG	AACGACTAAC	GATGGAAATT	GCTAAACAAA	TTCGAGAAGA	TTATTTGCAA	4500
CAGAACGCTT	TTGATTCGGT	AGATACATTC	ACTTCGTTTG	CAAAACAAGA	AGCAATGCTA	4560
AGTAATATTC	TCACTTTTGC	TGATCAGGCA	AATCATGCTT	TAGAGTTGGG	TTCTTACTTT	4620
ACAGAGATTA	TGGAAGGTAC	CGTGGCAGTT	CGAGACCGTA	TGGCGAGAAG	TAAATATGTT	4680
TCAGAAGATA	GATTAGATGA	AATCAAAATT	ATATCAAATG	AGATTACACA	TCAAATTCAT	4740
TTGATATTAG	AAACAGGAGG	TCTATAAATG	AGTGTTATAA	AAGAATACAG	AACTGCTAGT	4800
GAAGTTGTTG	GGCCTCTTAT	GATTGTTGAA	CAAGTAAATA	ATGTGTCTTA	CAATGAGTTA	4860
GTTGAAATTC	AACTTCATAA	TGGAGAAATT	CGTCGTGGAC	AAGTTTTAGA	GATCCACGAA	4920
GATAAAGCAA	TGGTTCAGCT	TTTTGAAGGA	TCTAGTGGAA	TAAATTTAGA	AAAGTCTAAA	4980
ATTCGTTTTG	CTGGTCATGC	ATTAGAATTG	GCTGTATCTG	AGGATATGGT	TGGTCGTATT	5040
TTTAATGGGA	TGGGAAAACC	AATTGATGGT	GGACCAGATT	TAATTCCAGA	G <b>AAATATTTA</b>	5100
GATATTGATG	GTCAAGCTAT	TAATCCTGTA	TCTAGAGATT	ATCCAGATGA	ATTTATTCAG	5160
ACAGGGATCT	CCTCTATTGA	TCATTTGAAT	ACTCTTGTAC	GTGGTCAAAA	ATTACCAGTA	5220
TTTTCAGGTT	CGGGCTTACC	TCATAATGAA	TTAGCTGCTC	AGATAGCAAG	ACAAGCGACT	\$280
GTTTTAAATT	CTGATGAAAA	TTTTGCGGTT	GTATTTGCAG	CAATGGGTAT	TACTTTTGAA	5340
GAAGCTGAGT	TTTTTATGGA	AGAACTCAGA	AAAACAGGAG	CGATCGATCG	TTCGGTTTTA	5400
TTTATGAACT	TGGCAAATGA	TCCTGCAATT	GAGCGTATTG	CAACTCCCCG	CATTGCTTTA	5460
ACTGCGGCAG	AGTATCTAGC	TTTTGAAAAA	GATATGCACG	TTCTAGTTAT	CATGACGGAT	5520
ATGACTAACT	ATTGTGAAGC	GTTACGTGAA	GTCTCGGCAG	CTCGCCGTGA	AGTTCCAGGG	5580
AGACGAGGCT	ATCCGGGATA	TTTATATACA	AATTTATCAA	CTCTATACGA	AAGGGCTGGT	5640
CGCTTAGTTG	GTAAAAAAGG	TTCGGTGACA	CAGATTCCTA	TTTTAACAAT	GCCAGAAGAT	5700
GACATAACAC	ATCCAATTCC	TGATTTAACT	GGATACATTA	CTGAAGGGCA	AATTATTTTG	5760
TCGCATGAGT	TGTATAATCA	AGGTTATCGT	CCACCAATCA	ATGTTTTACC	TTCTCTCTCT	5820
CGATTAAAAG	ATAAGGGATC	TGGAGAAGGT	AAAACTCGTG	GAGATCATGC	TCCAACTATG	5880
ATCAACTGT	TTGCAGCCTA	TGCCCAAGGG	AAAAAGGTTG	AAGAGTTAGC	AGTAGTATTA	5940

ACAATTTCAT	CTTCTGAGTT	AGAATTTTTA	TGTGATTTAC	TATTGTATAA	AACTTTAGAT	246
CAAGGAAGGT	' ACAATGTAGA	GGGGCCGTTA	GTTCTTGCTA	GATATTTATT	GGGATGTGAG	252
TTTGAAGTAA	AGAATCTCAG	AATGATCATA	TCAGCTCTTC	AAAATACAAT	TCCCTTTGAA	2586
TCAATAAAAG	AAAGGATACG	CCCACATTAT	GGAAGCTAAT	AAGTATAAAA	TTGGCATAAT	2640
TGGTAGCCGT	GATATTATTT	TACCATTTAG	CATGATTGGG	TTTGATATAT	TTCCTGCCTA	2700
CCAAGAACAA	GAAGCTATAA	ATACACTAAG	AAAATTAGCT	CAATCTGATT	ATGGTGTCAT	2760
TTATATCACT	GAAGACATTG	CTTCAATGAT	ATTAGATACA	ATTCGCCATT	ATGATTCCCA	2820
AGTTGTGCCT	GCTATTATTT	TATTACCGAC	ТСАТАААСАА	GGTTTAAATT	TAGGATTAAA	2880
ACGTATAGAG	GATAATGTAG	AGAAAGCAGT	AGGACACAAT	ATTTTATAAT	AATGTACAAA	2940
ATTGTCTGTA	ATATTATTCT	ATAATTTTTG	GACTTAGTAA	GGAGAATAAC	TTTGACTCAA	3000
GGGAAGATTA	TAAAAGTATC	GGGACCTCTA	GTTATTGCAT	CAGGTATGCA	GGAGGCTAAT	3060
ATTCAAGATA	TTTGCCGTGT	AGGTAAGCTA	GGGTTAATCG	GTGAAATTAT	TGAAATGAGA	3120
AGAGATCAGG	CATCTATCCA	AGTCTATGAA	GAAACATCTG	GTCTTGGTCC	GGGAGAACCT	3180
GTTGTTACAA	CTGGAGAACC	TCTCTCGGTT	GAATTAGGGC	CAGGATTGAT	TTCTCAAATG	3240
TTTGATGGCA	TACAACGCCC	ATTAGATCGA	TTTAAATTGG	CTACTCATAA	TGATTTTCTA	3300
GTTCGTGGGG	TAGAAGTTCC	AAGTTTGGAT	AGAGATATTA	AGTGGCATTT	TGATTCCACT	3360
ATAGCAATTG	GTCAAAAAGT	GAGTACGGGT	GATATTCTTG	GAACTGTCAA	GGAAACCGAG	3420
GTAGTTAATC	ATAAAATTAT	GGTTCCTTAT	GGAGTATCTG	GAGAAGTCGT	TTCTATTGCA	3480
TCTGGCGATT	TTACAATTGA	TGAAGTTGTA	TATGAAATAA	AAAAATTGGA	CGGTAGTTTC	3540
TATAAAGGAA	CGCTTATGCA	AAAATGGCCT	GTCCGCAAGG	CCCCTCCTGT	TTCTAAACGT	3600
TTAATTCCAG	AAGAACCATT	AATCACAGGT	CAACGAGTTA	TTGATGCATT	CTTTCCAGTA	3660
ACCAAAGGGG	GAGCTGCAGÇ	AGTTCCTGGA	CCGTTTGGAG	CAGGAAAGAC	AGTTGTACAA	3720
CACCAAGTAG	CTAAATTTGC	CAATGTTGAT	ATTGTTATTT	ATGTCGGTTG	TGGAGAACGT	3780
GGAAATGAAA	TGACGGATGT	ACTGAATGAG	TTTCCTGAGT	TGATTGACCC	TAATACCGGA	3840
CAATCAATTA	TGCAACGGAC	AGTTCTGATT	GCTAATACTT	CAAATATGCC	TGTTGCTGCT	. 3900
CGTGAGGCTT	CAATTTATAC	AGGAATTACC	ATGGCTGAGT	ATTTTCGTGA	TATGGGCTAC	3960
TCTGTCGCCA	TTATGGCTGA	TTCAACTTCA	CGTTGGGCAG	AAGCGCTACG	TGAAATGTCA	4020
GGACGTCTAG	AAGAAATGCC	TGGTGATGAG	GGTTATCCTG	CTTATCTGGG	AAGTCGTATC	4080
GCTGAATATT	ATGAAAGAGC	AGGACGTTCT	CAGGTTCTAG	GGCTTCCAGA	ACGTGAAGGA	4140

			922			•
					ACACAAGGAT	660
					CTTCCTTTAG	720
					TACTTTTCAG	780
CTAAGCATC	A AGGAAATGT	A GCAGTAGCGC	G GAATGCAAAT	CTTGGCTAAA	AGACCAAAAG	840
AATTCATGA	A GGGAGCAATT	TTAGCTGCC	TGGTAGAAAC	CTATGCAATT	CTTGCTTTTG	900
TCGTATCAT	T CATTTTGACO	CTTCGTGTAT	r aagaaataaa	TTTGCAATTC	AAAGGAGGTG	960
TCTAAATGA	G CAATTTAGAA	AACTTACGAC	AGTCTGTTAT	TGAACAAGCT	CATGAAAAAG	1020
GGCGTATGA	A ATTATTGGAT	TCCAAAAAGA	AGATTGATGA	TGAATTTGAA	ATGCAAAAGT	1080
CGCTCATTA	T AAAGAAAAA	GAAGCTGAAC	ATGAACGAAA	GTTAAAAGAA	TTGCAACAGA	1140
AATATCAAA'	T AATTTTTCAA	CAATTAAAA	ATAAGGAACG	CCAATCAACG	TTAGTATCAA	1200
AACAGAAAA'	T ATTAAAAGAA	CTTTTTCAAT	CTGCTTTACT	AGAAATGGAA	TCTTGGAGTG	1260
CAGATAAAG	A AATGGAGTTC	ATCTATCGAA	TTCTGGAACG	ATATTCACAA	CAAGAGGTCA	1320
TAGTAACCT	T TGGGGAACGG	ACTTTAGCTA	AATTCAATTT	GGAACAATTA	GAGAAATTGA	1380
AATTCTCTT	г тссаааттат	TTATTTAGTG	AACAACCTAT	CTCAAATGAA	TCAGGCTTAC	1440
TTATTTCAAT	r aggtaaaatt	GATGATAACT	ATTTGTATAA	AACATTAATT	GGATCGATTT	1500
CTAAGGAAGA	AAGTTCAAGT	ATCGCAAATC	AAATTTTTAT	CAATTAAGGA	TGAAATTGGT	1560
TAATCCTTCT	TAGAAATTTG	GAGTATTCCA	ATAAAATTAG	AAAGGTATTT	TATGGATACT	1620
AATCTTTTTT	CAAAAATAAA	TACGACGATT	TCGGTAAAAG	AAAACGATTT	TATTACAGAA	1680
GAAAAATTTC	TATTAAAAAA	ACAATCCAAA	GATACGGAGA	CATTGGCATT	TATCTTAGAA	1740
TCAACTCCCT	ATCATTTATC	GATTGACATC	TTAGAAGATC	CTAGTCAGAC	AGAGATTTCG	1800
CTAATGACAA	AATTAGTCAA	TGATTATAGA	TGGGCCTATG	CTGAAAGTCC	GTCTGATATA	1860
ATTGTGACTT	TATTTGCTTT	ACGATATGTT	TATCATAATA	TCAAAGTTTT	ATTAAAATCT	1920
AAGGCGGCAA	TTAAGAAAGA	TTTTTCTAAA	TTATTAATTC	CAATAGGGAT	TTTTGATATA	1980
GAAAGTTTAA	AACATTTAGT	TTCTTCCTTA	CATTCAGATA	CACTTCCTGA	TTTTATGGTT	2040
CGTGAAGTAG	AATCAATTTG	GAATGAGTAT	GAAACTTTTA	ATAATATTCG	TGTACTTGAT	2100
GTCGGAGCTG	ATCTAGCATA	TTTTAAACAT	CTGAAACTTT	TATCTAATGA	GTTAGATGAG	2160
GTACTGTCTC	AGGTTATTGT	CGAAATGATT	GACTTTTATA	АТАТТАТТАС	TGTAAAACGT	2220
GGTTTATCTC	AAAATAAGAG	TCATGGGGAT	ATTTTACAAT	TACTTTCAGA	TGAAGGAAGT	2280
ATTTCTGCTA	AAGAATTTAT	ATACATTGTA	GAAAATCAAG	AAATATTTGT (	GTGGTTCAAT	2340
AAAATAAATC	CAAGCTTAGA	TTCAATCTTT	TCAACTTĄTG	AATTGAAGAT	GCAGGACGCA	2400
				•		

AAACATACTT	TGATAATCTT	CCTAAAGAAG	AACAATTAGC	ATGTGAAGTA	TTGCAGGCGT	330
GTTTGGATAC	TTCTAGAACT	AGAAGGCCTG	AATATGCAGA	GTTAATACTT	GAGGAACATA	3360
TGCCTCAGAT	TATAGAAAAA	GAAGCTTATT	CAATAAATGA	TATGTTGTTG	ATTCGTTTGT	3420
TTTTTTATCA	AATGCTCATT	AGAAAAGATC	TTGCCAAATT	татааатсаа	ATCGAAAAGC	3480
TAATGCTCTT	TCTTTTGGAA	CAGAAGAAGG	TAACTCAAAT	AGAGAATTAC	ТТТАТААТТА	3540
GAGATACTCT	TATTTCAGGA	ATGTGTTGTC	TTGAAAAGGT	AGGAGTAACT	GATTGTTTTA	3600
ATGATTATCT	ATCGTGTTTA	CAAGAAATTA	TGGATAAAAC	TCAAGATTAT	CAAAAGAAAC	3660
CTCTTGTATT	TATGTTTTTG	TGGAAGCAAG	CATTAAGAGA	AGAAAGAGAT	TTTAGTTTAG	3720
CTGAATCATT	TTATCAGTCT	TCTAAAACAT	TTGCGCAGCT	AATTGGAGAT	GAATTTCTAG	3780
TAAAGAAATT	GACAGAGGAA	TGGCAAGAGG	ATGTCAAAAA	ATATTTATAA	ACATAGTGAA	3840
TCAGTGACAA	AGATGTCCTT	GTCCTCGTAT	CAAAACAGTT	CTAAAGTTCG	TCTTTAGGGA	3900
TGTTTTTTTA	GATATAAGCT	AAAAATGACA	CGAAATGGTT	AGATTTTAAG	GACATTGATG	3960
TCCG						3964

# (2) INFORMATION FOR SEQ ID NO: 137:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 12666 base pairs
- (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:

TGAGACCGTT	ATTTGTATTA	GGGAAATGGG	TATCTATTTT	TAATGCTGTG	GGGATTTTGA	60
TTGTTTCTAT	TATTCAAACC	AAAAGCTTGT	CAGGTATTGG	AGCAGGATTG	TTTAATCTAT	120
ATAACATTTC	ATCTTATATA	GGTGATTTAG	TTAGTTTCAC	TCGATTGATG	GCATTAGGAT	180
TATCTGGAGC	AAGTATAGCA	TCAGCTTTCA	ATTTAATTGT	TGGTTTGTTT	CCGGGAATAT	240
TGGCTAAACT	GACAATTGGA	TTAGTATTAT	TCATTCTTTT	ACATGCGATC	AATATTTTTC	300
TATCGTTACT	ATCAGGATAT	GTTCATGGAG	CACGTCTGAT	ATTTGTTGAA	TTTTTTGGTA	360
AGTTTTATGA	GGGTGGAGGA	AAACCATTTC	AACCTTTGAA	GGCTTCTGAG	AAATATATTA	420
AGGTTATTAC	AAAGAATTAA	TGGAGGATAT	ATATAATGGA	ACATTTAGCA	ACTTATTTTT	480
CAACCTATGG	AGGAGCTTTC	TTCGCTGCAT	TGGGAATTGT	ATTGGCGGTT	GGATTAAGCG	540
GTATGGGGTC	TGCTTATGGA	GTTGGTAAGG	CTGGGCAATC	TGCCGCAGCT	TTACTGAAAG	600

		•				
ATTGAAGAGA	GGAGGGGAAA	CCGAAAAATT	920 AGGTGCCCCT	CCTCTTTTT	GGTATAATAG	1500
AAGATAGAAA	ACGAGGTTAG	AAGAGATGAT	TTTTGATACA	CATACACACT	TGAATGTAGA	1560
AGAATTTGCA	GGTCGTGAGG	CAGAAGAAAT	TGCCTTGGCT	GCTGAGATGG	GTGTGACACA	1620
GATGAATATT	GTTGGTTTTG	ATAAACCGAC	GATTGAGCAT	GCCTTGGAGT	TGGTAGATGA	1680
GTATGAGCAG	CTCTATGCGA	CTATTGGTTG	GCATCCTACA	GAAGCTGGTA	CTTATACAGA	1740
GGAAGTTGAG	GCTTACTTGT	TGGATAAGTT	AAAACATTCC	AAGGTTGTGG	CTTTAGGTGA	1800
AATTGGCTTA	GATTACCATT	GGATGACAGC	GCCCAAAGAG	GTGCAGGAGC	AGGTTTTTCG	1860
CCGTCAGATT	CAGCTATCTA	AGGACTTGGA	TTTGCCTTTT	GTTGTCCATA	CCCGTGATGC	1920
GCTGGAAGAT	ACCTATGAGA	TTATCAAGAG	TGAGGGCGTT	CGTCCTCGTG	GTGGTATCAT	1980
GCATTCATTT	TCAGGGACGC	TTGAGTGGGC	AGAGAAGTTT	GTGGATCTTG	GTATGACCAT	2040
TTCCTTCTCA	GGAGTGGTGA	CTTTTAAGAA	GGCAACTGAC	CTCCAAGAAG	CAGCTAAAGA	2100
GTTACCTTTG	GACAAGATGT	TGGTGGAAAC	AGATGCGCCT	TACTTAGCAC	CTGTACCCAA	2160
GCGTGGTCGT	GAAAATAAAA	CAGCCTATAC	TCGCTATGTG	GTCGACTTTA	TCGCTGACTT	2220
GCGTGGTATG	ACGACAGAAG	AGCTGGCGGT	AGCAACGACT	GCAAATGCAG	AACGAATTTT	2280
TGGACTGGAC	AGCAAGTAAT	GAAAGAGAAA	ATTTCTCAAG	TTATCGTGGT	TGAAGGGCGT	2340
GATGATACGG	TCAATCTCAA	ACGTTATTTC	GATGTGGAGA	CCTATGAGAC	TCGAGGTTCT	2400
GCCATCAATG	CTCAGGATAT	AGAGCGGATT	CAGCGCCTGC	ACCAACGTCA	TGGAGTCATT	2460
GTCTTTACAG	ACCCAGATTT	TAATGGGGAA	CGGATTCGGC	GCATGATCAT	GATGGTCATT	2520
CCAACAGTTC	AGCATGCCTT	TCTCAAGCGA	GATGAAGCTG	TTCCCAAGTC	CAAGACCAAG	2580
GGGCGTTCTC	TGGGAATTGA	GCATGCCAGC	TATGAAGACC	TGAAAACGGC	TCTAGCTCAA	2640
GTGACAGAAC	AATTTGAACA	TGAGAGTCAG	TTTGACATTA	GTCGTAGCGA	TTTGATTCGC	2700
CTTGGTTTTC	TAGCAGGGC	AGACAGCCGT	AAGCGTAGAG	AATATCTCGG	AGAGACTCTC	2760
CGAATCGGCT	ATTCCAACGG	CAAGCAACTC	CTCAAACGCC	TAGAGTTGTT	TGGGGTTACT	2820
TTGGCAGAAG	TGGAAGAAGC	TATGAAATCT	TATGAGTAGG	AAAGATGTAG	CCGTTACAAT	2880
TTTTTAAGTT	TCACAGTATT	TTTCGAAGCA	GGTAGAAGAG	GAGGCGTCTG	ATGTTAATTG	2940
GTCAAAAAAT	TAAAGAGATT	CGGATAGAAA	AAGGAATTAG	TCGTCCAGAT	TTTTGTGGAG	3000
ATGAGCAAGA	ACTGACAGTT	CGTCAACTGT	CGCGAATTGA	AAGTGGAGCT	TCGCAACCGA	3060
GTTTGCCCAA	GTTAGACTAT	ATTGCTCGCC	GGCTAGGAGT	TCCAGTTTAT	AGCCTTATGC	3120
CGGATTTTTC	AGCTCTTCCT	TCTGCTTATT	TAGAATTGAA	ATACCAGATT	TTACGTGAAC	3180
CAATCTATGG	TAAAGAAGAG	GAGTACGATA	AGAAGGAAGC	GTGTTTGGAA	GAGATTTATA	3240
		*				

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3964 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:

60	CGAATTCTAT	ATAATCCAAA	TTTTGGCTGC	GGACGCAAAG	TCGTCGTAAA	TGGCAGCTCC
120	TTCAGTAGAT	TGTAAAAAAG	TTTTTATTT	AGTCTACTGA	TAGGAACTCG	CAAAAATCAC
180	ACCTCTGTTT	AGAATAGTAC	GATTGAAACT	TGTTACAGTA	TCGGAAGCGA	GCAAATGGA1
240	TATTATTTA	TTTGTCCTGT	TCCTGATCGA	GATTTGACTG	GTTAGAAATC	CTAAAACATT
300	TAAAGATGGT	CAATCGTCTT	GGTACAGCAA	AGGTGGAGAT	AAGTTGAAGT	TTTTACTATA
360	ACAAGATAGC	ATCCAAAAGC	GTAGCACAAG	AAATCAATTG	CAATTCCAGG	TCAGCTATTA
420	AGATGTAAAA	CTCAAAGAGT	AAAGCACCTG	ATCAACTGTT	CTGCTGAAAA	ACTAAACTGA
480.	AGCAAATGGT	CTATTTTACA	GTTAAGGTTG	TGAAGAAAAA	ATTTAACAGA	GATATAACTO
540	AATCACATTC	GTACAGCAAC	GCTGGAGATG	AATCAATGTA	ACGGAGCGAC	TCAGCATTAG
600	TGCGAAAGGT	TTCAACAATC	AAAGATACAG	GATTCTAGGA	CAGTAGTGAC	CCAGATGGTT
660	AGGTGGAGAT	AAAATACACC	TATAAGCTAG	TACACCAGAG	CTCAAGAAGC	GAATCTGTAA
720	TAGCCAGGCG	AAGGCGGTGG	AATGCGAATG	CTCAGATGCT	ATACTGGAAG	AAGGGAGGCA
780	TAAGCAATTA	CACAAGCTTC	TCAGCTCAAT	TTCACAAAAC	CTCACACAGG	GGTGGATCAG
840	CAAGCAGGAT	CAGCCAAGGA	ATTGAAAAAG	TAAAAATGCC	AAGAATCAGC	GCTACTGAAA
900	AAGAGTGGAA	AACTTTTAGC	GAAAAAGCAG	TTCTGATAAA	GCGCACCGCT	GAAATCAAAG
960	AGATGTGAAG	AAACTATGGA	GAAAATGCGA	CAAAGAGATT	AAGCAGCTCT	GCAGAAAAAC
1020	GAGACCAGTG	CAGTTCCTAA	GCCATGGTTA	GCAAGCCATT	CGATTGGAGT	GAAGCAGAAA
1080	AACAATGCAA	CAACTGCAGG	GCACCGCAAG	GACAACAAGT	CTGCTCCTAA	GCTCCTAATG
1140	AGCATCAAGT	ACACAGGTTC	CAATTACCTA	TGCTGGCAAA	ACCAGTCACC	GATGTTACCT
1200	GCTAGGAAGA	GTTTTGCTTT	GCAACAAGTG	TCTAGTGGTG	CTAGTCTTGG	GCAGCACTTG
1260	AAGTTAGATT	TCTCTACTTA	AAAATTCTAT	GAACAGCTAG	GTAGAAAATA	AAGACTAGAC
1320	GAGAACCCAA	TGAGAAAAGT	TAGTGATGGG	TCATCAATCC	TTTTGAGAAG	ATAAGGGGGA
1380			ATTCTATCAA			
1440			CGGATAGAAA			

			918		•	
GGAGGTTTTC	AGCCTCTCAT	CTTGAAATAA	GAAAGTGAGA	GAAGGTCTGC	GGGATCTTGA	3660
ACCCCGAGTT	TAGAAATAAG	AAAATGAGGG	AGATTCAGTA	ACTCGAAGAC	TTCGATTTCA	3720
TCGTCTTACC	CCTGCAACGA	TGACTAGGTT	TGAAAAAGCT	TGCTAGAGCC	CATTTCAAAC	3780
CAGGCAGCAA	CTGCGTCAAG	AAATTAGAAG	ACAAACTCGT	TTTCTAGCTG	TTACTGAGTT	3840
GAGCCTTTTT	ACTACGAGTA	TAGAAATAAG	GAAGTGAGGT	AGCATCATGA	AATCTATCGG	3900
TACGCAAATA	TTACAGACAG	AACGTTTGAT	TTTAAGAAGA	TTTGTGGAGA	GTGATGCAGA	3960
AGCCATGTTT	CAAAATTGGG	CTTCATCCGC	TGAGAATCTG	ACCTATGTTA	CCTGGGATCC	4020
CCATCCTGAT	GTCGAAATCA	CTCGAAACTC	GATTTGCAAT	TGGGTTGCTT	CCTATACTAA	4080
TCTCAACTAT	TATAAATGGG	CCATTTGTCT	AAAAGAAAAC	CCAGAGCAAG	TAATAGGAGA	4140
TATCAGCATT	GTTAAGATAG	ACGAGGCTGA	TTTAAGCTGT	GAAATTGGCT	ATGTGTTAGG	4200
CAAGGCTTAC	TGGGGAAATG	GTATGATGAC	AGAGACTTTG	AAAGCTATCT	TGGACTTTTG	4260
TTTTACTCAA	GCAGGTTTTC	AAAAGGTCAG	AGCACGTTAT	GCCAGTCTCA	ACCCAGCTTC	4320
AGGTCGTGTC	ATGGAAAAGG	CTGGAATGTC	CTATCTACAA	ACCATTGTTA	ATGGTGTAGA	4380
GAGAAAAGGC	TATCTTGCGG	ATCTTATTTA	TTATGGTATA	AGTAGGGAAG	AATGTTGAAT	4440
TCTATTTTCT	GTTTCTATCG	AAGTCAACTA	TTTATTGTAA	ATATAATAAT	TAGCATTCCA	4500
AGTTTATTTG	AAACTTTAAA	ATAGCATATT	GATTAGTACA	AGACAGATGT	TCTAGTTCCT	4560
TCTTTAATCT	GGTTTAGTGT	TAGTTAAAAA	ATCGCTTTAA	GCTTGTAACT	AAGAGGGAGC	4620
TAATCGACTA	GATTCTCCAG	CCGAACAGGT	GGTAATGTAC	TTTTTATAGT	GTAATCCTAG	4680
CTGTTGTTAA	ATTAAAATTA	GAATCCTCTA	TCGAGTTAGG	GANTTAAATT	CAACCAATTT	4740
TATTCATGTT	TTTTCTATCA	AATTATCTAA	TATTAAAATA	GTCTCATTCT	GATGAGAAAA	4800
CTATTCCCAA	ATCATTCATA	CCTCTCTCAA	CTAGATGTAA	CTTACAAAAC	CCCTGACCTC	4860
ATGAGCCACT	TTCTTCCTCC	TCATGAGGTC	AGTTTTACTT	TCTGCTGTTC	CAGTATCGTT	4920
TTTCCTCGCT	AGATTTCCTC	AAAAGGGCAG	ACTCCTCCCT	TGGTGCGTCA	CACGATTTTT	4980
TCATCTCGAC	TGTTCTTTAA	TGCATCATTA	ACGACGCTTT	TCTTCTAGGT	GGTTCATAAG	5040
GAACAGGAAG	ATTCAGGTTG	ACTTTTCTAA	TCCTAGAATA	AAGTGCTGAA	AACAATTCGG	5100
AATAGGCATA	GAGACTAGAC .	AATTTGAGGA	GCTGCTTGCG	TCCTGTTCGA	ACACATTTTC	5160
CCACCACGTG .	AAGAAAAAGA	TGGCGGAAGC	GTTTGATTGT	TAAAGTTTGG	AAGTCACCTC	5220
CAGCTAGATG	TTTGAGAAAA .	AGATAGAGAT	TGTAGGCGAT	ACAGCTCATC	ATCATACGAA	5280
CTTCGTTTTT (	GATTAAGGTT (	GAACT				5305

(2) INFORMATION FOR SEQ ID NO: 136:

CTTGGTACAC	GTTTATGGC	ATGACTATGA	AGCTTTCAAG	GCTTACGCTC	GCGACCCACAA	1920
AAATTGTGTG	TTTCTTGTGC	ATACCTATGA	CACCCTTCGC	ATCGGTGTAC	CAGCTGCCAT	1980
TCAGGTGGC	CGTGAGCTGG	GTGATCAGAT	TAACTTTATG	GGTGTGCGGA	TTGACTCTGG	2040
GGATATTGCC	TACATTTCTA	AGAAAGTCCG	TCAGCAACTG	GATGAGGCTC	GATTTACAGA	2100
GGCTAAGATT	TATGCTTCTA	ATGATCTAGA	TGAAAATACC	ATCCTTAACC	TCAAGATGCA	2160
AAAGGCCAAG	ATTGATGTCT	CCCCTCTCCC	TACCAAGCTG	ATTACAGCCT	ATGACCAGCC	2220
GGCTCTTGGC	GCGGTTTACA	AGATTGTTGC	AATCGAAGAT	GAAACTGGTC	AGATGCGCAA	2280
TACGATTAAG	CTGTCTAATA	ATGCTGAAAA	AGTTTCTACG	CCAGGTAAGA	AGCAGGTGTG	2340
GCGCATTACC	AGTCGTGAAA	AAGGCAAGTC	AGAAGGCGAC	TATATCACTT	ATGATGGTGT	2400
GGATATTAGO	GACATGACAG	AAATCAAGAT	GTTCCATCCG	ACCTATACAT	ACATCAAGAA	2460
GACGGTTCGT	AATTTTGATG	CCGTTCCTCT	CTTGGTGGAT	ATCTTCAAAG	AAGGAATATT	2520
AGTTTACAAC	TTGCCTAGTT	TGACTGACAT	TCAGGATTAT	GCCCGTAAGG	AATTTGACAA	2580
GTTGTGGGAT	GAGTATAAGC	GTGTGCTCAA	TCCGCAGCAC	TATCCAGTGG	ATTTGGCGCG	2640
TGATGTATGG	CAAGATAAGA	TGGACTTGAT	TGATAAGATG	CGCAAGGAAG	CCCTTGGTGA	2700
AGGAGAAGAA	GAATGAGTTT	GCAAGAAACG	ATTATCCAAG	AGCTGGGTGT	CAAACCAGTG	2760
ATTGATGCCC	AGGAAGAAAT	CCGTCGTTCT	ATTGATTTCT	TAAAAAGATA	TCTGAAAAAA	2820
CATCCCTTCC	TAAAAACCTT	TGTACTAGGG	ATTTCTGGGG	GACAAGACTC	AACCTTGGCA	2880
GGACGTTTGG	CGCAATTAGC	TATGGAAGAA	CTGCGAGCTG	AAACGGGAGA	CGATAGCTAC	2940
AAATTTATCG	CTGTCCGCCT	GCCATACGGA	GTGCAAGCTG	ATGAAGCAGA	TGCTCAAAAA	3000
GCCCTAGCCT	TCATCCAGCC	AGATGTCAGC	TTGGTTGTGA	ATATCAAGGA	ATCAGCTGAT	3060
GCCATGACAG	CTGCAGTTGA	AGCGACAGGT	AGTCCTGTTT	CAGACTTCAA	CAAGGGGAAT	3120
ATCAAGGCAC	GTTGCCGTAT	GATTGCTCAG	TATGCCCTTG	CTGGTTCCCA	TAGCGGAGCG	3180
GTCATTGGAA	CAGACCACGC	CGCGGAAAAT	ATCACAGGTT	TCTTTACCAA	GTTTGGTGAC	3240
GGCGGTGCGG	ATATTCTCCC	TCTTTACCGC	CTCAATAAAC	GCCAAGGAAA	ACAGCTCTTG	3300
CAGAAACTTG	GCGCAGAGCC	AGCCCTTTAT	GAAAAAATCC	CAACGGCAGA	CCTAGAAGAA	3360
GATAAACCAG	GCCTAGCTGA	CGAAGTCGCA	CTTGGAGTCA	CCTACGCAGA	GATTGACGAC	3420
TACCTAGAAG	GCAAAACAAT	CAGCCCAGAA	GCTCAAGCGA	CCATTGAAAA	CTGGTGGCAC	3480
AAAGGCCAAC	ACAAACGCCA	CTTACCCATC	ACCGTATTTG	ATGACTTTTG	GGAGTAAAAA	3540
GGTCCGGGGG	ACCTTTTTAG	CTTCTTGCCC	TGAAATTAAA	AAGCAAGAAA	AACCTCCACT	3600

120	ATCAGTCATC	ACAGTAAAAA	916 TACCTAAAAT	TTATTTTGCA	TCATTTAGTA	CATTTTAGTT
180	CTCATTTCCA	TTATACTAGG	CGTTTTTGAC	CTATTCAACA	CCTGCTTTCA	TTGGTATGCT
240	TAAGCAATAA	ACAAGAAATA	АСТАЛАСТАЛ	TATGAAACCA	ATAATAGTGA	AAAGCATTAT
300	AGTAAACTAG	AAAATAAAAG	АТАСТАААТА	ACTAAAGCTA	AAAAGATCTT	AAATTCGTTT
360	CTGGAGTGCA	GAAGATAATA	ATTTTCGGCT	TAAAATACTG	TCAAACAACC	GAAGTTTATT
420	TTTTAAGAGT	GTTTTGGATT	GCTTGTGTTG	ATAGCTGATA	GTTATAATAA	AATTAATGGG
480	TTAAAATTAG	AAATTTAAAA	AGGTGGCTAA	AGGAGGACGA	TAAAACTATA	AGATGAGTAT
540	GTGACACGCC	GGCTGTCGGG	AACTGGCAGA	ACACAAGGTC	GCGTGATTTA	CTCGGGTAGA
600	TGCCAGTCTA	TCTCTCGCTC	ACAATCCCAG	GCGGGAAAAT	TTTAATAGAG	AGACTATTGG
660	GATGAAAAAT	GGAGGAAGAA	AACTATTTTG	ACCCTAGACC	TTTAGGGAAA	TTTGCAGATG
720	TAAAGCGGGC	AACTGTTCAA	AGAGAAGAAC	ACTAGACGAA	ATTCTCAATT	AGATTTTATT
780	TTCAGTATTA	CTTATATCAT	TCGCTCCTAT	CATTGCTTTG	TCTATATCTG	TCTGAAAGTT
840	GACATTTTAC	TCATCATAGG	CTAATCGTTA	TAATATGCTG	TTTTTAATTC	GCACCAAGCC
900	TTTTACGATT	GTCGTTTTCA	ACCTACTATG	TCTGGGAGTG	GTGCCCGTTA	TTTTTCAATC
960	GAATTATCAA	TGATGTTGCA	ACGGCTCTTT	CTTGGCTATT	TTTTCCTAAC	TTGGGTTGTT
1020	TGCTTGGGTC	AATACCTGTC	TTGAATTTTA	GCACAATCCT	AAATTTATCA	TTCAACATAG
1080	TAAGAGCTAT	ATCTTGGTCT	TTTATTGGCA	TCCGTGGATC	TCATTTACCT	ATTACTTATA
1140	TGGAGAATAG	AATTGGAGAG	GATATGGATG	ATTTGAACAA	CTCAGAAAAA	GGCGAATGGG
1200	TTATTGGAAT	TAGTACTAAT	TGTGATATAA	CCAGCTAAAA	TTTTCTCAAT	CTTGTTACTC
1260	AAAGTATGTA	GGAAGTAGGA	TTCTAGCTAA	TTTCATGGGT	TCTTGAAAAT	ACATGAAAGT
1320	TGCAGGTTTA	ATCAACATGA	CTTGTACCAG	TGCACACGGA	AGTTTGACAT	TCCAGATGAT
1380	GCCAACAGCC	GTGTATTTCC	GGTCTTTGAG	ATAAGAAGGC	GGGATTCACA	CTTTGACCAA
1440	ATCTTGAAGA	ATTGTGAACT	TTTAGAAAGA	TTTTTGCAGG	GGCTATGCGG	TTTTAAGAAC
1500	ATGGGGCGTT	CTTGGTTATC	TTTGGAGTCG	ATATAGCCTA	TCAGATAGTG	CTTGCGTTTT
1560	AAGAAGGGGA	CGTTCTGCCC	GTTGACCGTT	TCAAGTTGGA	CTTCGCAATT	CTTGGATTAC
1620	AATGTCAGTT	CCTCTAGCCC	GGTGGAAGGA	CGATTGTGCA	GCTAATGAAC	TTTGGTTTTT
1680	CGAAGGCAGC	TTGGTGGCGA	CTACCAGACT	ACATCGTCAA	GCTCTTTTGA	GGTCGAAACG
1740	GTCGGGCTCA	TTTGGGACAC	CTTGATGGAG	AAGATGAACC	TCGGTTATCG	TCGTATTCGT
1800	CCAATGGAAC	ATTGGTGGCG	CGCAGCTGTG	GGGGAACACG	GCGGCCATCT	AGAAATGGAT
1860	ATGCCCATGC	TTGGGAACCC	CATTCCTGTT	AGCTCTTTGA	CGTGCGGGTA	CAGCAACGTG

TGCACCCCAT	GGACCCCCCA	ATAAAGCACC	TATCCTACCA	ATCATATAAC	TGATTCCAGC	1146
ACCAGTCATG	AAGTTAGCGA	ATGTGTTAGC	TTGTTTATTC	CCATGTATTG	TGTTGACGTA	1152
ATTCCAAACA	TTAGGATCGT	ATGATCTAAA	AGATATATTT	AGGTCGATTT	CATTCTTTTG	1158
ATAAGCCATA	TAAAATGCCC	CATTGATATA	GACGCCGTCA	GCACGTCGTT	CAATAGTGTC	1164
TACACTTCCA	TCTGGATTGA	CAACCTCAAG	AACTTCATCG	СТТААААТАТ	TTACTTGCGT	1170
ATCTCCGAAC	CGCACTGATG	AGCCATTCTC	AAACTGAGCC	TCACCAGATA	CAACTTTAGA	11760
GTTTGCCGAT	AAGCTATCAT	CAGCAAAAAC	AAACAAGCGA	CGGGGAAATG	CTAGACATAC	11820
AGAAAACAGA	CATAACTAGC	AAACACATGC	ATTTAAACAT	CTTAGACATA	ACGGAAACTC	11880
CTTTGTATTT	TTGATTTTT	TCAACTTTTA	TTATACAATA	АААССАААТА	AAAAGAAAGC	11940
GGTAACAATA	TGCTTAATGC	GAAAATTTTT	TATATATTT	TATGTTTGAT	CGTTATCGAA	12000
ACTACAGGCT	TGTTGTTGTT	GAAAAGAGGT	CTCGAAATGG	GTTATTTAGA	CACAGAAGCT	12060
ATTATCCTCG	CAGTTTTTTC	ATTTGCTTTT	TACAACCTAT	GTTCATTCGC	TTGGGTCTGC	12120
TCTACAATAA	ААААСААТАА	AAAATAAATA	GACGTATTTT	CAAAAAAAAC	maAATGCATA	12180
TTTATATTAG	CAAAACGACG	ATTTAAATCG	TCGTTTTTT	GTAGTACGAC	GGGCATGTCG	12240
TATATCTGAG	GTGTAAGTCC	TCAGCCTGAC	TATCGTGAGG	TAGCAGGGAG	AGGAAGGGAT	12300
AGCGAAATCG	TGGCTCTACG	AACAGGAACG	TGATAGTAAG	GCGTATATAG	CGGATAAGGA	12360
GGCTTCAAAC	TCTAAAGTCC	AAAAAGGTAG	TCGTAACCTA	TATGTGTAAA	TCACGAGAGT	12420
<b>AATTGAA</b> TTC	GGACTAAGGT	TTGTGTGAAA	AAGATAAATC	TTTCTAGAGT	CTAAAGACTC	12480
TGCGTCAGAT	TTCCTATTTT	CACTGTAACC	TTTTAACGTC	CTCATATCTT	GTATAAACGA	12540
GGAAAGATGT	ACGACTTATC	CCGTGAGGTT	TCATGAGCGT	GAAAGCGTAG	TAACAACGAA	12600
CATGAGAAG	TCAGCCGAGC	CCATAGTAGT	GAGGAAACTT	CCGTAATGGA	AGTGGAGCGA	12660
AGGGG						12665

# (2) INFORMATION FOR SEQ ID NO: 135:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 5305 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

CGCTAATCAC TACAATCATT TTATTGTACT TTTTCACTCT CAAGAAAAGC AAGAAGTATT

				914			
TCAGCTT	rGGC	AGATACTTTG	TCCCTTCACT		CAATGAGTTG	ACTCTTAGCC	9660
CAGTTGA	CTT	CCTTCTTCGT	CGTACCAATC	ACATGCTCTT	TATGCGTGAT	AGCTTGGATA	9720
GTATCGT	rtga	GCCAATTTTG	GATGAAATGG	GACGATTCTA	TGACTGGACA	GAAGAAGAAA	9780
AAGCAAC	TTA	CCGTGCTGAT	GTCGAAGCAG	CTCTCGCTAA	CAACGATTTA	GCAGAATTAA	9840
AAAATTA	AGA	AAAATAAAA	GAGGTGGAGG	GCAGCATTCC	TTGTCGCCCG	TCCCTTCTTT	9900
TTAATGO	BAGA	CAGAAAGATG	ATGAATGAAT	TATTTGGAGA	ATTTCTAGGG	ACTTTAATCC	9960
TGATTCT	TCT	AGGAAATGGT	GTTGTTGCAG	GTGTGGTTCT	TCCTAAAACC	AAGAGCAATA	10020
GCTCAGO	STTG	GATTGTGATT	ACTATGGGTT	GGGGGATTGC	AGTTGCGGTT	GCAGTCTTTG	10080
TATCTGG	CAA	GCTCAGTCCA	GCTTATTTAA	ACCCAGCTGT	GACCATCGGT	GTGGCCTTAA	10140
AAGGTGG	TTT	GCCTTGGGCT	TCCGTTTTGC	CTTATATCTT	AGCCCAGTTC	GCAGGGGCCA	10200
TGCTGGG	TCA	GATTTTGGTT	TGGTTGCAAT	TCAAACCTCA	CTATGAGGCA	GAAGAAAATG	10260
CAGGCAA	TAT	CCTGGCAACC	TTCAGTACTG	GACCAGCCAT	CAAGGATACT	GTATCAAACT	10320
TGATTAG	CGA	AATCCTTGGA	ACTTTTGTTT	TGGTGTTGAC	AATCTTTGCT	TTGGGTCTTT	10380
ACGACTT	TCA	GGCAGGTATC	GGAACCTTTG	CAGTGGGAAC	TTTGATTGTC	GGTATCGGTC	10440
TATCACT	AGG	TGGGACAACA	GGTTATGCCT	TGAACCCAGC	TCGTGACCTT	GGACCTCGTA	10500
TCATGCA	CAG	CATCTTGCCA	ATTCCAAACA	AGGGAGACGG	AGACTGGTCT	TACGCTTGGA	10560
TTCCTGT	TGT	AGGCCCTGTT	ATCGGAGCAG	CCTTGGCAGT	GCTTGTATTC	TCACTTTTCT	10620
AGTTTAT	ACT	CTTCGAAAAT	CAAATTCAAA	CCACGTCAGC	GTCGCCTTAC	CGTACTCAAG	10680
TACAGCT	TGC	GGCTAGCTTC	CTAGTTTGCT	CTTTGATTTT	CATTGAGTAT	TAGAAAACAA	10740
TTATGTT	GAT	AGAGCTTGGG	CAAGAGCCCA	ATTTCAGCAA	AAAATGAAGT	AAATCTTCTC	10800
ATAATAA	AAC	GCATCATATC	AAGCACGAAA	ATTCCACGAG	GTCAACTACA	GTCAGAAAGC	10860
TGAACAA	CAA	GCCAAAACGC	CCAAAAAAGG	CGGCAAAAAG	CAAGCACCTG	CAAGCAACGT	10920
GCCGAAA	TGG	TCAAATCCTG	ATTATGTCAA	CGAATTAGAC	CCAAAAATCG	TTGATATGCT	10980
AGTAGAA	TTT	CACAAGTCAC	AAGGCACTTT	GGAAACTCCC	GAGGCGCAAG	CAGAAATCGC	11040
CCAAAAA	CGT	GAAGAAATCG	AGCAAAGGAG	AGCTGAGCTT	GAGGGTAAAA	AACAAGAGCT	11100
TTTGAAC	CGC	TTGAACAAAT	AGAGTTTCGC	AAGTATTATG	CTTACAAATT	ACTTGAGCAA	11160
TTAACTA	AAA	TATAAACCCT	GCCTTTATAT	CTAGGCAGGG	TTTATATTTT	AGAAATTCAC	11220
GTAGGTT	GTT	ACGGTTTTTA	CATACCCAGT	ATAGTTTGAG	TTTCTATAGT	ATTCAGTGAT	11280
AAACTTC	CAT	TTTCTTTGAG	CAACATGGAT	ATAAGTACTT	GTTATGTAGT	ATGGATATGG	11340
GCTTTGT	GAÁ	TCCAAGTAAG	ACTGATAAGC	TTGTATACCA	AAATATGCTC	CACCAATTAT	11400

TTGAACGAGA	CAGGAGAACT	CTTTGAGCCA	TCTATGAACG	AATCTCGCAA	GGAACAACTC	7920
TACAAGGGCT	GGAAGAAGGC	TGTGAAAGCA	ACTCAAGTCT	TTGCGGAAGT	AGACGACTAA	7980
TACTGGCAGA	ATAAAGCGAT	TTATTTAGAA	AGTGTGTAAA	TATGGAATTT	TCAAAGAAAA	8040
CACGTGAATT	GTCAATTAAA	AAAATGCAGG	AACGTACCCT	GGACCTCTTC	ATTATCGGTG	8100
GAGGAATCAC	AGGAGCTGGT	GTAGCCTTGC	AGGCGGCAGC	TAGCGGTCTT	GAGACTGGTT	8160
TGATTGAAAT	GCAAGACTTT	GCAGAAGGAA	CATCTAGTCG	TTCAACAAAA	TTGGTTCACG	8220
GAGGACTTCG	TTACCTCAAA	CAATTTGACG	TAGAAGTGGT	CTCAGATACG	GTTTCTGAAC	8280
GTGCAGTGGT	TCAACAAATC	GCTCCACACA	TTCCAAAATC	AGATCCAATG	CTCTTACCAG	8340
TTTACGATGA	AGATGGAGCA	ACCTTTAGCC	TCTTCCGTCT	TAAAGTAGCC	ATGGACTTGT	8400
ACGACCTCTT	GGCAGGTGTT	AGCAACACAC	CAGCTGCGAA	CAAGGTTTTG	AGCAAGGATC	8460
AAGTCTTGGA	ACGCCAGCCA	AACTTGAAGA	AGGAAGGCTT	GGTAGGAGGT	GGAGTGTATC	8520
TTGACTTCCG	TAACAACGAT	GCGCGTCTCG	TGATTGAAAA	CATCAAACGT	GCCAACCAAG	8580
ACGGTGCCCT	CATTGCCAAC	CACGTGAAGG	CAGAAGGCTT	CCTCTTTGAC	GAAAGTGGCA	8640
AGATTACAGG	TGTTGTAGCT	CGTGATCTCT	TGACAGACCA	AGTGTTTGAA	ATCAAGGCCC	8700
GTCTGGTTAT	TAATACAACA	GGTCCTTGGA	GTGATAAAGT	ACGTAATTTG	TCTAATAAGG	8760
GAACGCAATT	CTCACAAATG	CGCCCAACTA	AGGGAGTTCA	CTTGGTAGTA	GATTCAAGCA	8820
AAATCAAGGT	TTCACAGCCA	GTTTACTTCG	ACACAGGTTT	GGGTGACGGT	CGTATGGTCT	8880
TTGTTCTCCC	ACGTGAAAAC	AAGACTTACT	TTGGTACAAC	TGATACAGAC	TACACAGGTG	8940
ATTTGGAGCA	TCCAAAAGTA	ACTCAAGAAG	ATGTAGATTA	TCTACTTGGC	ATTGTCAACA	9000
ACCGCTTCCC	AGAATCCAAC	ATCACCATTG	ATGATATCGA	AAGCAGCTGG	GCAGGTCTTC	90,60
GTCCATTGAT	TGCAGGGAAC	AGTGCCTCTG	ACTATAATGG	TGGAAATAAC	GGTACCATCA	9120
GTGATGAAAG	CTTTGACAAC	TTGATTGCGA	CTGTTGAATC	TTATCTCTCC	AAAGAAAAA	9180
CACGTGAAGA	TGTTGAGTCT	GCTGTCAGCA	AGCTTGAAAG	TAGCACATCT	GAGAAACATT	9240
TGGATCCATC	TGCAGTTTCT	CGTGGGTCTA	GCTTGGACCG	TGATGACAAT	GGTCTCTTGA	9300
CTCTTGCTGG	TGGTAAAATC	ACAGACTACC	GTAAGATGGC	TGAAGGAGCT	ATGGAGCGCG	9360
TGGTTGACAT	CCTCAAAGCA	GAATTTGACC	GTAGCTTTAA	ATTGATCAAT	TCTAAAACTT	9420
ACCCTGTTTC	AGGTGGAGAA	TTGAACCCAG	CAAATGTGGA	TTCAGAAATC	GAAGCCTTTG	9480
CGCAACTTGG	AGTATCACGT	GGTTTGGATA	GCAAGGAAGC	TCACTATCTG	GCAAATCTTT	9540
ACGGTTCAAA	TGCACCGAAA	GTCTTTGCAC	TTGCTCACAG	CTTGGAACAA	GCGCCAGGAC	9600

			912			
TGGCCAGCAT	ATGCGGATTC	GTCTGGATTT	GACATCTGGT	TTTCTTGTCT	TTTCAAGGAT	6120
GGCAGCCATI	TTGAAACGGT	ATTTGGAATA	CAATCGTTTT	ATTACCATTG	AAGCTTATGA	6180
CCCTAGTCGG	CATTATGATT	TGCTGGTTAC	CAATAACCCG	ATTCATAAGA	AGGAACAGAC	6240
ACCAGTCTAT	AAAAATTTAT '	ATGACTTGGA	TATGGAGGAT	TTGGTAGCGA	TTCGCCAGTT	6300
ATTATTCACT	TAAAAGGCTT	GGTTAATCCA	GGTCTTTTTT	GTGAAATTCA	CACAATCTCC	6360
TCACATTTTT	ТТАААААТТА	AAAAAAGTTG	ATAAACAAGA	AAGCGCTTTA	TTTTGTATAC	6420
TAGTAAGTGT	AAAGAGGAAA	CACCTCAAGA	TCTTTATCAG	GAGGACAGTA	CATGTCACAA	6480
GAAAAATACA	TCATGGCCAT	TGACCAGGGA	ACTACAAGTT	CTCGTGCCAT	CATTTTCAAC	6540
aaaaagggg	AAAAGGTTAG	CTCGAGTCAA	AAAGAGTTTA	CCCAGATTTT	CCCTCAGGCA	6600
GGTTGGGTTG	AGCACAATGC	CAATGAAATT	TGGAACTCTG	TTCAGTCAGT	TATTGCGGGT	6660
GCTTTCATCG	AAAGTGGTGT	CAAGCCAAAT	CAAATCGAGG	CAATCGGGAT	TACCAACCAA	6720
CGTGAAACAA	CGGTTGTCTG	GGATAAGAAA	ACAGGACTTC	СТАТСТАСАА	TGCTATCGTT	6780
rggcagtcac	GCCAGACAGC	ACCTTTGGCT	GAGCAACTAA	AAAGCCAAGG	TTATGTGGAA	6840
<b>AAATTCCATG</b>	AAAAGACTGG	TTTGATTATT	GATGCTTACT	TCTCTGCTAC	CAAGGTTCGT	6900
rggattttgg	ATCATGTAGA	AGGTGCTCAA	GAGCGAGCAG	AAAAAGGGGA	ATTGCTCTTT	6960
GGTACTATCG	ATACTTGGTT	GGTTTGGAAA	TTGACTGACG	GTGCGGCTCA	CGTGACTGAC	7020
PACTCAAATG	CAGCTCGTAC	CATGCTTTAT	AACATTAAAG	AACTCAAATG	GGATGATGAG	7080
ATTTTGGAAA	TCCTTAACAT	TCCGAAGgCT	ATACTTCCAG	AAGTTCGTTC	TAACTCCGAA	7140
TCTACGGCA	AGACAGCTCC	ATTCCATTTC	TACGGTGGAG	AGGTGCCAAT	CTCAGGTATG	7200
CTGGGGACC	AACAAGCAGC	CCTCTTTGGA	CAGTTGGCTT	TTGAGCCAGG	TATGGTTAAG	7260
ATACTTATG	GAACAGGCTC	TTTCATCATC	ATGAATACTG	GGGAAGAGAT	GCAGTTGTCT	7320
AAAACAACC	TCTTGACAAC	CATTGGTTAC	GGAATCAACG	GTAAGGTTTA	TTATGCCTTG	7380
AAGGTTCTA	TCTTCATCGC	AGGAAGTGCT	ATTCAGTGGC	TTCGTGACGG	TCTTCGCATG	7440
TTGAAAATT	CACCAGAATC	TGAAAAATAC	GCTCGTGATT	CTCACAACAA	CGATGAAGTT	7500
ATGTCGTTC	CAGCCTTTAC	AGGTCTAGGC	GCTCCATACT	GGAACCAAAA	TGCTCGTGGT	7560
CCGTCTTTG	GTTTGACTCG	TGGAACAAGC	AAAGAAGACT	TTATCAAGGC	GACTTTGCAA	7620
CTATTGCTT	ATCAAGTGCG	TGATATCATC	GACACCATGC	AAGTGGATAC	TCAGACCGCC	7680
TTCAAGTAC	TGAAGGTGGA	TGGTGGTGCA	GCCATGAACA	ACTTCCTCAT	GCAGTTCCAG	7740
CGGATATTT	TAGGCATTGA	CATTGCACGT	GCTAAAAACC	TGGAAACAAC	AGCTCTAGGA	7800
CGGCCTTCC	TAGCAGGTTT	GTCAGTAGGG	TACTGGAAAG	ACTTGGACGA	GTTGAAACTC	7860
		•				

					•	
ATGAGGGGA	TTATAGAGTT	GTAAGGATTT	CCAGTACCGT	AGTCTGTGAT	AACGAGGAAT	4380
TGACCATTT	CAACAAAAG	TCCGACTAGO	ACTTCACCAC	TCGCAGTCTT	TTTGATGTCA	4440
ACACCAGGAT	TTTGAACATA	GCCTTTGACC	TTCCCCTTGG	TATCAGCGAC	GGTGATAATA	4500
GCACCTAGAC	AGCTAGATCO	CAACACCTTA	ACTGTAAGTT	TGGTATTTCC	TTTTTCATTG	4560
GCTGCGAGA	TCTGGCTAGC	GATAAGAGTT	' CGACCAAGCG	CTACAGTTGA	GCTAGCTTGG	4620
GTTTGATGTT	TTTCTTGAGC	AGTGCGGACG	GTTTCAGTGC	TATCAAGGAC	AAAAGCACGA	4680
AAGGcTCCGC	TTTCTGATAT	AGTTTTAATA	ATTTTATCCA	TAGCTACTAT	TTTAGCATAA	4740
AAATGCCCAA	AGGGGGAGCC	GTGTGTTTAC	TGATTTTCAG	GATAATGGAC	CAGGAAATCA	4800
GCATGAAAAT	. YYYYYY	ACAGATTATT	TTAGCATTTG	TCAGATTTAT	GCTATGCTTA	4860
AGGTAGAAAA	TGAAAGGGAT	AACAAATGTA	TTTAGGAGAT	TTGATGGAGA	AAGCCGAGTG	4920
TGGTCAATTT	TCAATACTTT	CCTTTCTATT	ACAAGAGTCT	CAGACGACCG	TCAAGGCTGT	4980
AATGGAAGAA	ACAGGATTTT	CAAAAGCAAC	CCTAACCAAA	TATGTCACCC	TGCTCAATGA	5040
CAAGGCTTTG	GATAGTGGCT	TAGAGCTGGC	TATTCACTCA	GAAGATGAAA	ATCTGCGTCT	5100
GTCTATCGGT	GCAGCTACCA	AGGGGAGAGA	TATTCGGAGC	TTGTTTTTGG	AGAGTGCTGT	5160
TAAATACCAG	ATTTTGGTTT	ATCTTCTCTA	CCACCAACAG	TTTTTAGCCC	ATCAGCTGGC	5220
TCAAGAATTG	GTGATTAGCG	AGGCTACGCT	TGGTCGTCAC	TTGGCTGGTT	TAAATCAGAT	5280
TTTGTCAGAA	TTTGATTTAT	CCATCCAAAA	TGGCCGTTGG	CGAGGTCCAG	AGCATCAGAT	5340
TCACTATTTC	TATTTCTGTC	TTTTCCGAAA	GGTCTGGTCG	AGTCAGGAAT	GGGAAGGTCA	5400
CATGCAGAAA	CCAGAGAGAA	AACAGGAGAT	TGCCAATTTA	GAGGAAATCT	GCGGTGCAAG	5460
TTTGTCTGCG	GGGCAGAAAT	TGGACTTGGT	TCTCTGGGCT	CACATCAGTC	AACAACGTCT	5520
TCGGGTCAAT	GCTTGTCAGT	TTCAAGTCAT	AGAAGAGAAA	ATGCGAGGGT	ATTTTGACAA	5580
TATCTTTTAT	CTTCGTTTGC	TGAGAAAGGT	TCCGTCCTTT	TTTGCTGGGC	AACATATTCC	5640
ACTAGGAGTT	GAGGATGGTG	AGATGATGAT	ATTCTTCTCT	TTTCTCCTAT	CTCATCGCAT	5700
TCTTCCTCTT	CATACTATGG	AGTATATTCT	TGGTTTTGGA	GGGCAGTTGG	CAGATTTACT	5760
GACGCAATTG	ATTCAAGAAA	TGAAGAAGGA	GGAACTATTG	GGGGATTATA	CAGAGGACCA	5820
TGTCACCTAT	GAACTCAGTC	AGCTTTGTGC	TCAAGTCTAT	CTCTATAAGG	GCTATATTTT	5880
ACAGGATCGC	TACAAGTACC	AGTTAGAGAA	TCGTCATCCA	TATTTACTGA	TGGAACATGA	5940
TTTTAAAGAG	ACAGCAGAGG	AGATTTTTCA	TGCTCTACCT	GCTTTTCAAC	AGGGGACAGA	6000
TTTAGATAAG	AAGATTCTCT	GGGAATGGCT	CCAGTTAATC	GAATATATGG	CTGAAAACGG	6060

WO 98/18931 PCT/US97/19588

CCTCCTATCA	AAGCAAGCCA	<b>ስጥርርምጥር አ</b> አ አ	910	AATCCTACTA	TCTC NATCCC	2580
						2640
	TTGCAGTCAA					
TGGGTAAACT	AAACCTAATA	TAACTAGTTA	ATACTGACTT	CCTGTAAGAA	CTCTTTAAAG	2700
TATTCCCTAC	AAATACCATA	TCCTTTCAGT	AGATAATATA	CCCTTGTAGG	AAGTTTAGAT	2760
TAAAAAATAA	CTCTGTAATC	TCTAGCCGGA	TTTATAGCGC	TAGAGACTAC	GGAGTTTTTT	2820
TGATGAGGAA	AGAATGGCGG	CATTCAAGAG	GCTCTTTAAG	AGAGTTACGG	GTTTTAAACT	2880
ATTAAGCCTT	CTCCAATTGC	AAGAGGGTTT	CAATCTCTGC	CAGGGTGCTG	GCTTGCGAAA	2940
TGGCTCCACG	GAGTTTGGCA	GCGCCAGATG	TTCCACGGAG	ATAGTGAGGA	GCGAGACCGC	3000
GGAATTCACG	AACTGCGACG	TTTTCTCCTT	TGAGGTTAAT	CAATCGTTTC	AAGTGTTCGT	3060
AGGCGATCTT	CATCTTGTCT	TCAAAGGTCA	AATCAGGTAG	GATTTCTCCT	GTTTCAAAGT	3120
AATGGTTGAT	TTGGTTGAAG	AGGTAAGGAT	TTCCCATGGC	AGCTCGGCCA	ATCATGACTG	3180
CGTCAGCACC	AACTTCTTCG	ATGCGTTGCT	TGGCTTCTTG	GACAGTACGG	ATATCACCGT	3240
TGGCGATGAA	TGGAATCTTG	GTTAGAGCTT	GGGCAACCTT	GTAAAGGGTC	TCAAGGTCTG	3300
CGTGGCCAGT	ATACATTTGT	TCACGGGTAC	GGCCATGCAT	GGCGAGGGCA	GAAACACCTG	3360
CAGCTTCAGC	AGCGAGAGCA	TTTTCTACTG	CAAGAGATGG	GTCCGCCCAG	CCGGTACGCA	3420
TTTTGACAGT	AAGTGGGATA	TCAAGGACAG	ACTGGACCTT	GTTGATGATG	GAGTAAATCT	3480
TGTCTGGATC	CTTGAGCCAC	ATAGCACCAG	CTTCGTTCTT	CACGATTTTG	TTGACAGGGC	3540
AGCCCATGTT	GATATCGACG	ATATCGGTCT	TGGTGTTTTC	TTGGATGAAT	TCTGCTGCGC	3600
GTGCTAGGCT	GTCTTCATCG	CTACCAAAAA	GTTGGATAGA	GACAGGGTTT	TCGCCCTCAT	3660
CGATATGAAG	CATGTGCAGG	GTTTTTTCGT	TGTTGTATTG	GATTCCCTTG	TCAGAGACCA	3720
TTTCCATTAC	AACGAGTCCA	GCTCCGAGCT	CCTTTGCGAT	AGTACGAAAG	GCTGAGTTGG	3780
TCACGCCAGC	CATAGGCGCT	AAAACGGTAC	GATTGGGAAT	CTCAATATTG	CCAATCATAA	3840
AAGGTGTATT	AAGATTTGTC	ACGAATGAGT	TCCTCCAGGT	CCTTTTCATC	AAAGTTGTAA	3900
GTAGTTTGGC	AGAATTGACA	AGTGATTTCT	GCCCCGTGGT	CTTCCTCTTT	CATTTCCTGT	3960
AAGTCTGAGC	TTGGAAGGCT	GGCAAGAGCG	TTCATAAAGC	GTTCATGGCT	ACAGTCACAT	4020
TGGAAACGGA	TTTCTTCTTC	AGAAAGACGC	TTGTAGGCTT	CGTCCCCGTA	GATAGCCTTG	4080
AGGAGGCTT	CGATATGGTC	GTCGCTTTCG	AGAAGAGTAG	AGATAGCTGG	CATTTCTTGG	4140
ATGCGTTTTT	CAAAGCGAGC	AATCTCTTCT	TTCTTGGCTC	CTGGCAAGAC	TTGAACTAGG	4200
AAACCACCTG	CAACCTTGAC	CTTGTCTTCC	TCGTCCAAAA	GGACATTGAG	GCCGACCGCT	4260
GAAGGCGTTT	GTTGGCTTTC	AGTAAGGTAA	AAGGCAAGGT	CTTCACCGAT	TTCTCCAGAG	4320.

840	TGAGAGCTAT	AAATAGTGGG	TATGTAAAAA	GGTCGAGGAA	CAAGGAAAGA	CGAGATAAGG
900	GTTGAACAAC	TAGTTAACGA	ACTGTAGCTC	ACATACAATT	CTAAAAAGCG	GCAAAATCAA
960	ACTACAGATA	CAGAAAGCCA	GAATCAACCT	TAAAATAGTT	AGTATTTGAA	ATTAAGAACG
1020	AAAGGACTCA	CTAAGTTTGA	GAAGCTGTGT	AAAAGTAGAT	AGAGTCGATC	CTGATGATGG
1080	AGCGAAGCCA	CTTCAGATAC	AAACCGGAAG	CTCTTCCACT	CAAGTTCAGA	TCTTCTTCGT
1140	TGAAGAAGCT	AGAAGAAGGT	GCAGAAGCTA	AGAAAAGGTA	CAGAACCAGG	AACAAGCCGA
1200	CATTACTTAC	ACTACCCAAC	GATCGTCGTA	AAAAGAAGAA	CCAAGGATCA	GAGAAAAAG
1260	GGAGCTTGAA	TTAAAAAAGC	GATGTGGAAG	TGCTGAGTCC	AACTTGAAAT	AAAACGCTTG
1320	AGCAGAAGCG	AAATTAAGCA	GACGAGCAAA	CGAACCTCGA	TGAAAGCTAA	CTAGTAAAAG
1380	AGATCGTGAA	AAATCAAGAC	AGGTTAAAAA	TGAGGCTACA	GTAAACAAGC	GAAGTTGAGA
1440	ACCAAAGGGG	AGCAAGGTAA	GATGCTAAAG	ACGAAGAGCA	AAGAAGCTAA	GAAGCAGAAG
1500	AAATGATGCG	ATAAAAAAGA	GCAACACCTG	TGGAGAGCTA	GAGGAGTTCC	CGGGCAAAAC
1560	GAAACCAGAA	GCCCATCCCT	ACTCTTCCAA	AGGTGAAGAA	ATTCTAGCGT	AAGTCTTCAG
1620	CGAGGATCAA	AGAAAAAAGC	GAAGAAGCTA	GAAGAAGGTT	CAGAAGCTGA	AAAAAGGTAG
1680	ACTTGAAATT	AAACGCTTGA	AATACTTACA	CTACCCAACC	ATCGCCGTAA	AAAGAAGAAG
1740	GGAAGCTAAG	TAGTAAAAGA	GAGCTTGAAC	TAAAAAAGCG	ATGTGGAAGT	GCTGAGTCCG
1800	TAAAAAAGCT	AAGTTGAGAG	GCAAAAGCGG	AGTTAAGCAA	ACGAGGAAAA	GAACCTCGAA
1860	AGAAGCTAAA	AAGCAGAAGA	GATCGTAAAA	AATCAAGACA	GGTTAGAAAA	GAGGCTACAA
1920	ACAACCAGCG	CTGAACAACC	GAAAAACCAG	TAAAGTTAAA	CAGAAGAAGA	CGAAAAGCAG
1980	AGCTGAACAA	CAGAGAATCC	GCTCCAAAAC	ACCAGCTCCA	AAGCAGAAAA	CCGGCTCCAA
2040	TAGATCAGAA	ACTATGCTCG	GCTGAAGAAG	TGATCAACAA	AAAAACCAGC	CCAAAAGCAG
2100	AGCACAACCA	CTGAAAAACC	CCGCCAAAAA	TCAACAGCAA	ATCGCTTGAC	GAAGAATATA
2160	CAATACTGAT	GGTACTȚCTA	AACGGTATGT	GAAACAAGAA	AAACAGGCTG	CTACTCCAA
2220	CAACAGCAAT	GGTACTACCT	AATGGCTCAT	GCTCCAAAAC	CGACAGGATG	GGTTCAATGG
2280	AAACGCTAAT	GGTACTATCT	AATGGTTCAT	GCTCCAAAAC	CGACAGGATG	GCCCTATGG
2340	AAACGCTAAT	GGTACTACCT	AATGGTTCAT	GCTCCAAAAC	CAACAGGATG	GGTTCAATGG
2400	AAACGCTAAT	GGTACTACCT	AATGGCTCAT	GCTCCAATAC	CGACAGGATG	GTTCAATGG
2460	AAACGCTAAT	GGTACTACCT	AATGGCTCAT	GCTCCAATAC	CGACAGGATG	GTTCAATGG
2520	TGAAGCATCA	GGTACTATCT	GGAGATACCT	GGTGAAAGAT	CGACAGGTTG	GTGATATCG

PCT/US97/19588 WO 98/18931

			908			
GTCCCAGTTT	CACTAGCTTT	TCCGACCATA	CGAATGTTGA	GAAGGCCAAC	GACCGTACCG	2940
ATAAGCTTGC	TCAAACGGCC	GTTCTTCACC	AAGTTATCGA	CTTTGGCTAG	GACAAAGAGC	3000
AACTTAGTTT	TTTCTTGATA	GGCGGTGATA	GCTTCAACCA	CTTCTTCAAA	AGACAAGCCC	3060
TGGTCAATCA	AGTCATTCAA	TTTTTCTACG	AGTAGGTCAA	CTTCACCACC	AGCAGATAAA	3120
CTATCAATCA	CATGAATCTT	AGTGTCAGGA	TGGTCTTCCA	GATAAATATT	CTTTGCTAGT	3180
TGAGCACTAT	TGTGACTGCC	AGAAAGGGTA	CCTGTGATGG	TTACTAGGAA	AATGTTTTTG	3240
GCACCTTCAA	ATGCTCGCAA	ATAGTCATCT	GGGCTTGGAC	AAGCCGATTT	TGAAGCTTCT	3300
GCAGTTGCAT	ACATGGTTTC	CATCATTTGG	TCAATATCGA	GACTGGCGTC	ATCAACAAAG	3360
ACCTGATCAG	CTACTTGAAT	GGTTAAGGGG	ACACTTACAA	AGGTTGTGTT	AATAGCTGGT	3420
GTTGGCAGTT	GACGATAATC	ACAACCAGAG	TCAGCAATAA	TCTTCCAAGT	CATAGAAATT	3480
CTCCATCTTT	GTCAGGAACG	AT				3502

## (2) INFORMATION FOR SEQ ID NO: 134:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 12665 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:

60	CAATGGCGGG	GAATCCTTAG	AATGAGAAAC	TTCGATAGAG	TTTTAAAGCG	CGATTGATTT
120	TTTTTATCTC	CTCATATTGT	TTAACTATGG	TACAAAACGA	GAGTTGAGAA	AAAGAATTTG
180	CATGGTTGGT	ATGGCATGGG	ACAATTTTTG	GGTGCACAAG	TTGAGGCAAT	TCTTGCTTGG
240	GTTGGGAGAT	TGATTCACTT	ITGATGTTGG	TATGCTGATG	TTATTTTTTC	TTAGTCTTGC
300	TATCTTGTTT	ATGTAGATCA	AATCACAAAT	GCTTGTCAAT	TGAAGCTTAT	ATTTGGACAG
360	TGGCTTGACC	CTGAGTTGAT	AATATTCTTC	TTACTTTTTA	AACACCCTAA	AGGACAGTAA
420	AGTTATTTTG	CAGTTTATGC	TTAGTTTTTC	GACTTTTGTT	ATGCTTATGT	TTGTTGAGTC
480	AAATGGAAGC	TTATAATCCC	TTACATGAAG	GGAAAAGCTA	TAGCTGAAGA	TATCGACGAA
540	ATATAGTAAG	TATTGAAGTG	ATACAGTTCA	TTCGATTTAT	AAATACAAAA	ATAAAGAGAT
600	AAGAAAAGTA	CAAAAAGCGA	ATGTTTGCAT	GGAAATAAAC	AAATATAGAA	GTTAAAGAAA
660	CAGTCTTGTT	TAGTTGTTGC	GTAGCTAGTG	TAGTGTTGGA	TTCGTAAATT	CATTATTCAA
720	CACTTCTTCT	CCCAAGTACC	GAGGGAGCTA	GACAGAGAAC	TGGTTCATGC	ATGGGAAGTG
. 780	CGATTCAGAA	CTAAAAAACT	GGAGAACAAC	GGCAGAACAA	ATGAAAGTCA	AATAGGGCAA

CTTGTCGTCA TACCAGTTTT TGATACCACA GAGTTGGGGT TTGGAAATGA TCAGACCAGT	1200
TTCTTCTTTC ACTTCACGAA TGACAGCATC GACAAAGGAT TCGCCACGTT CAACATGACC	1260
ACCAGGAAAA GTAATGCCAG ACCAGTCGGG ATTAACTCGG TCTTGGACCA GGACCTTATC	1320
TCCGTTTTTA ATCATACACA TGTTAACAAA TTCGACTGCC TCTCTTCTGT TCATTCTTCA	1380
CAACCTTTAA TCTTTAATCA TAATGCAGAC TTCCCGCCAC CCAGCCGGTA CAGAGGGCAG	1440
AAGTGATGTT AAAGCCACCC GTGTGGGCAT TGATATCCAT AACTTCGCCT GCAAAGTGGA	1500
GGCCAGGTAC CAGCTTACTT TCAAGGGTTT TAGGATTGAT TTCCTTGAGA CTGACTCCAC	1560
CCTTGGTAAC AAAGGACTTT GCAAGGGACA TTTTTCCAGT TACAGGAATT TTAAGTTCTT	1620
TAATGGACTG GACAAGTTGT TCTCGTTCCT TTTCAGTCAG TTGTTTGACT TTTTCAGGAT	1680
ATCCTTGTAC AAAAAATTCG GCCAAGCGTT CTGGTAACAA GGTTTTTAAA GCGTTTTTCA	1740
AGGATTTTTC CCGATTTTCT TCTAGAAATG TAACCAAGTC CTTCTCAGAA AGTTGAGGCA	1800
AAACATCGAG TGAGAGAACC TCCCCACCTT TGACAAAGCT AGACATGCGT AGGGCAGCAG	1860
GACCTGACAA ACCAAAGTGG GTAAAGAGTA AATCATGAGT GATGACATGC TTACCATAAC	1920
TTAGGGTCAC ATCGTCCAGA GAAATACCTT GTAAGGCTTT ATGTGGAAAA TCTGTTAATA	1980
AAGGACTTTC AGCAGCCTCA AGATCGGTGA TGGTATGCTT AAAATGGCGA GCAATCTCGT	2040
GACCAAAACC AGTCGAACCA GTCGAAGGAT AAGACTTACC ACCTGTTGTG ACAATGAGTT	2100
TCTCACAAGT GAAGGTTTGA TCCGCTGACT TAAGGACAAA CTGGTCATCT ACTTTTTTAA	2160
CAGAAACGAT TTCTATTTGA GTAGCAACTT GACCACCTAG TTCGGTGATT TTCTTTTCCA	2220
AAGCTTCGAT AATAGTCCGA GACTTGTCAC TGGCTGGAAA GACGCGTCCG TGGTCTTCGA	2280
CCTTAAGTTT AACACCATTT TCTGTAAAAA AGTTGATGAT GTCATGATTA TCGAACTGGG	2340
AGAAAACACT GTAAAGAAAG CGTCCGTTTC CAGGAATTCC AGCTAGCAGG TTGTCTAAGC	2400
FACCATTGTT GGTCACATTG CAACGTCCCC CACCAGTCCC AGCTAATTTT TTTCCAAGTT	2460
FCCGATTTTT TTCGATGAGG AGGGTTTTCT GTCCATAAAA GCTACTGGAA ATCGTAGCCA	2520
CATACCAGC AGGTCCCCCA CCGATGACAA TAGTATCAAA ATGTTTCATA GCTCTATTGT	2580
ACCACAAAAA AACAAGAGAT GATGGTCACC TCTTGTCAAG AATGCAATTA ATCAATTTCA	2640
PAGCCCATCA GCAAACCGCC CTCTTCTGCA TAGAAACTGC AGAGACCAGA GGTTGGTAGA	2700
TTTTAATAT CCGCTTGTGG GAAGGTTTCA CGGATTCGCT CTGAGAGCTG TTGACAACAT	2760
TTTCGTTAT TGCGTTGGGC CATGACAATA CGGCCACCAG CATATCCAGC TTTTACTAAC	2820
CATCATAGG CAGCTTGAAC TGATTTCTTT GATCCCCTTG CTTTTTGTAG CAATTCGAGA	2880

			906			
TTTTAACTCT	ATTTATTACT	AGATTTCATA	ATTAAAAAAAC	CTACTGACCA	AGCTAGAAAG	9360
CTTGATACAA	TAGGCTTTTT	AAAGACTGAT	TATTTAACAG	CGTCTTTAAG	AGCTTTACCA	9420
GCTTTGAATG	CTGGTACTTT	AGAAGCTGCA	ATTGTCATTT	CTTTACCAGT	TTGTGGGTTG	9480
CGACCTTTAC	GTTCTGCGCG	CTCACGAACT	TCAAAGTTAC	CAAAACCGAT	CAATTGAACT	9540
T						9541

#### (2) INFORMATION FOR SEQ ID NO: 133:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3502 base pairs
- (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:

TTGACTATCC	TATCATGCTT	TCTAAGGTCT	ACTCAAGAAA	ATCATTTTCA	AGTTTTCACA	60
CCTTTCTCAA	AAAAGTTAAA	AAATTTTCTC	AAAAACGCTT	GACTCTGACC	TAAGGCGAAG	120
GGTTATACTA	TCATTGTAAG	GAGGAAATCA	TGTACCATAT	AAAAGAAGCT	GCGCAGCTTT	180
CAGGTGTCTC	TGTCAAGACC	CTGCATCACT	ATGACAAGAT	AGGACTCTTG	GTCCCCTTAA	240
AGTCGGAAAA	CGGCTATCGA	ACCTACAGTC	AAGAGGATTT	GGAACGCCTT	CAGGTCATTC	300
TTTACTACAA	ATATCTAGGC	TTTTCTTTAG	AGAAAATAGC	AGAGCTGTTA	AAGGAAGAAA	360
GGACAGATTT	ATTGCCCCAT	TTGACTAGGC	AGTTGGACTA	TCTAACTCGC	GAAAGGCAAC	420
ATCTGGATAC	CTTGATTTCC	ACCTTGCAAA	AAACTATTCA	AGAACAAAAA	GGAGAAAGAA	480
AAATGACCAT	TGAGGAAAAA	TTCACGGGAT	TTAGCTATCA	AGACAATCAA	AAATACCACC	540
AAGAAGCGGT	AGAGAAATAT	GGTCAAGAAG	TCATGGGACA	AGCGCTCGAA	CGCCAAAAAG	600
GTCACGAAGA	CGAGGCTACG	GCCGCCTTTA	ACCAAGTCTT	TCAAACTTTG	GCACAAAATC	660
TTCAAGTTGG	TTTACCTGCA	ACAGCAACCG	AAAACCAGGA	GCAAGCAGCC	AAGCTCTTGC	720
AAGCCATTCG	CACTTATGGA	TTTGACTGCT	CTATTGAGGT	ATTCGGTCAT	ATCGGTAAAG	780
GTTACGTCTA	CAACCCAGAG	TTTAAGGAAA	ACATTGACAA	GTTTGGTTCT	GAAACAGCCC	840
AGTACACGTC	AGATGCCATT	GCGGTTTACG	TTCAGACAAA	TGCAGAATAA	ATAGGCTAGG	900
AATTTCCTAG	CCTATTTTTT	ACTTCAAATC	ATAAAGCCAG	TCGTCACCGT	TTTTGTAGTA	960
AAAGAATTCA	CTGAGATCTT	CTTCTAGAAA	CACACGAAGC	ATATCAGACA	TATCATCGGT	1020
TGCAAGTTTT	AGATGAGAAA	GATTTTCAAA	GTCCTCCCAC	CAAACTTTCC	CTTCGTCTGA	1080
AGACTGGAGT	TCACCAGTAA	AGTGTTCTGT	CTTGTAAAAA	AGGACGACAT	AACGATAATC	1140

ATCCAGAATC	AAAAAGTTAT	TGTTTTCCAT	AGACAATTTA	GCTAAAAGCA	AACGAGCTTT	7620
TTCGCCACCA	GATAGCATGC	CGACTGATT	TTTAACATCA	TCTCCTGAGA	AAAGGAAGGC	7680
TCCAAGACGG	TTGCGGATTT	CAACTTCTGG	TGTCAGTTTG	AAATCATTCC	AGAGTTCATC	7740
CAGCACCGTA	TTACTTGGTG	TCAGCTTGCT	TTGGGTTTGG	TCATAGTAAC	CAACCTCAAC	7800
ATTAGCGCCA	AAGCGCTTTT	CTCCCTTGAT	' AAAAGGAATC	TGGTCCACAA	TAGACTTGAT	7860
AAAGGTTGAC	TTGCCGATAC	CATTTGGACC	AACGATAGCG	ACAGCATTCA	TCTTACGAAG	7920
ATCTAGGTTA	ATCGGTTGTG	ACAAGACTTC	CCCGTCATAG	CCAACAGCTG	CATTTTCAAC	7980
AGTCAAAACA	ACATTGCCCG	ACGTTTTTTC	AGACTGGAAG	GTCATGTTGG	CTGATTTCTT	8040
GCCAGCTTCA	GGCTTGTCCA	AACGTTCCAT	TTTTTCCAGT	TGTTTACGGC	GAGATTGAGC	8100
ACGTTTAGTC	GTTGAAGCAC	GAACTAGATT	GCGATTGACA	AAGTCTTCCA	GAGCAGCGAT	8160
TTCCTTCTGT	TGCTTTTCAT	AGTTTTTTGC	CTCAGTAACT	AGCTTTTGCT	CCTTCAATTC	8220
GACAAAACGA	GAGTAATTCC	CCACATAGCG	ATCCAAGGAA	TGCTTGGTCA	AATCTAGCGT	8280
AATTGTCGCA	ACCTTGTCCA	AGAAATAACG	GTCGTGGCTG	ACGATAATGA	GGGCACCGCT	8340
ATAGTTTACC	AAGTAATTCT	CTAGCCAGGC	GATGGTTTCA	ATATCCAAGT	GGTTAGTTGG	8400
CTCGTCCAAG	ACCAAGAGAT	TGGGCTTTTC	AAGGAGCATT	TTGGCAAGTG	CCAAACGAGT	8460
ATTTTGACCA	CCAGAAAGCT	CAGCAATTTT	CATCTGCCAC	ATAGACTCGT	CAAACTTGAA	8520
TCCATTCAAA	ATCGCTCGAA	TATCAGCTTC	ATAGGTAAAG	CCACCTGCTT	GGCGAAAATT	8580
CTCAGATAAG	CGGTCATAAT	CTGACATCAG	TTTATCCAAA	TCCTCACCAG	ACTTTTCACC	8640
CATCTCCAGC	TCCATCTGAC	GCAGTTGTCT	CTCCGTCCGA	CGCAAATCAT	TAAAGACATG	8700
AAGCATTTCA	TCGTAGATGG	TATTTTCAGA	CTCAAAACGG	CTATCTTGGG	CTAGGTAAGA	8760
CAGAGAAATA	TCTTTTTTCT	TATTGATTTC	TCCGCTAGTT	GGCTCCTCTT	CTCCAACTAA	8820
AATCTTCAAA	AGAGTAGACT	TACCTGCACC	ATTTTTCCCA	ACAAGAGCAA	TCCGATCTCG	8880
TTCATCAACC	TGCAGGTTGA	TATTATCGAA	AAGAACCTCT	CCTGCAAAAG	AACGTTCAAT	8940
TTTATTAGCT	TGTAAAATAA	TCATACAAGT	AGTATAGCAT	GTTTCCCTAA	GGCATTCAAG	9000
ATAATCGTAA	GTCTTTTAGT	ACAACTTTTA	TAACATAAAA	TAAACTAAAT	TATGTATATT	9060
TTATATTAGA	TTACTTCACT	ATCTTGTTGG	ATTTTCTAAC	CAGCTAATCT	TGTTTCAAAT	9120
AGTTATCGCA	CAAGTCTATT	ATTTAATTCT	TTTCATCATT	TACGTACGTA	TAGCAGATTG	9180
AAATAAGATG	AGAACAAATC	GATTGGGAAA	GTAAAATTAA	TTTCTATAAA	TGTTTTAGCA	9240
ATTGTTTCGT	ACTATTTAG	ATTCAGTCTA	СТАТАТАСАА	TATTTTCGGA	ACATTCAACT	9300

AGCTTTAT	TG	GCTGTGCGAG	AAAAGGCAAA	AGCAATAGCO	TGCACAATGT	TAGCAACAAT	5820
						AAAGAATCCC	5880
						AAATAACTCC	5940
						TTCCTAAAAC	
					•		6000
						CATAGAGCAT	6060
						GATTCATATT	6120
						TTTATTTTT	6180
						TAATAGGCTA	6240
CTTGCTCT	GG	AAGACCTAAC	ACATCAAAAA	TATGCATGGC	CTCTTGCATC	TGCTTACAGC	6300
CTTCTTTA	CA	CTGTCCTTTT	TGATATAAGG	CAAAACCTTT	TAAATAATGG	AAAACATTAC	6360
GCTCATAA	AG	CTTAATACCT	TTGTCAATAA	TCTTCTCTGT	ATAAGCCTCA	AAATAGTTGG	6420
CATTATAA	AA	AGAAGAATGC	TCTAAACAAT	GCTGGTAACA	ATTGAGGGCC	AAAATCAACA	6480
CTAATCTC	TT	ATGGCGACTA	ATCTCTTGGT	AAAATTCCTC	CCTCTCCATA	ACTTCTCTAC	6540
CAATCCGA	GТ	GACATAGTCT	ACATCGTAGA	AACTATAGAG	GTTACCGAAA	AGAATCAACT	6600
CATACATG	GT	CCATTCTTCT	GTTTTGAAGA	GATAATCTGC	TACCTTACCC	AAATCATCCT	6660
GCTTCATA	TC	ATAACTCGCA	TCTCTTTGAC	AAATCAGACC	TTGTAGCAAA	ATCCAGTTCA	6720
GCTCAAAA	TA	AAGGGGAGTC	GTCGAACTCT	TAGACTTTTC	AAGTTGTTCT	CTTTGAAGCT	6780
TTTGAAAA	cc	TGCAATATCG	TTTGAATAGT	AAAGTGGGAT	AATCTGTGCC	ATCATAGACA	6840
CATGTTCA	TG	ATTATGAAAA	TTCCTTGCCT	TATCCATGAA	ATTTTCGATT	GTTACATGAA	6900
TGTTATCC	AA .	AATCTCAAAG	AAACGGGAGA	CTGCCAGGTC	AGACTCCCCA	AGCTCAAAGC	6960
GAGATAACT	TG .	AGAGGTAGAG	CAGGATTCGC	CTGCTGCTTC	CTTTAAAGAA	TAATTTCCAC	7020
TTGTTCGA	A.A	TTCACGAAAT	ACTTTTCCAA	GATGTTCCAT	CTTTACACCT	GCTCTGATAA	7080
PTCTTCCC#	AC	TCAAGCATAG	CTTCTTCCTG	ACGATGGCTG	ATTTTGTCCA	GCTCAGCCTG	7140
						TGGCTTGGCT	7200
						TGAGTTTGCG	7260
					ACTGGACTTG		7320
						TCTTCTCAAC	7380
						CCAAAACATG	7440
					AACAGCAAGG		7500
JT'CAATCAA	AG (	GCATTTTCTA	GCACTTCCTT	ACTATCAATA	TCCAAGTGGT	TGGTCGGCTC	7560

				_	T TGGATAAAAT	408
					A AAACCTAGTT	414
GTTCTAGGT	A CTTCAAACC	C TTTTCTTGG	C TATCACGAG	T TGAAGGGCT	G GCTTCTTGAT	420
AGAGAAACG	T TGCAAGATT	A CGCTTGGCA	A CTACTGCTG	T ATCCAACTG	A CGCAGAGTTC	4260
CTGCTGCCG	C ATTACGAGG	A TTAGCAAAT	T CAGGCTCTC	C ATTTTCTTG	G CGCGCTTGGT	4320
TAACTTGGT	C AAAGGAAGCO	G CGTGGCATG	T AACATTCCC	C ACGAACTGT	G ATATCTAGTT	4380
CTTCTGGCA	A AGTCAAAGG	G ATGTCCTTA	A CACGCTTGA	G GTTTTCTGT	G ATATTTTCAC	4440
CAATTGAAC	C ATCTCCACGT	GTTACCCCA	G CAACCAAAA	r ccccttttc/	A TAAGTCAGCG	4500
AGATAGATA	A GCCATCGATT	TTCAGCTCA	C AAATATAGG	r CGGATGAGC	ACTTCCTTAC	4560
GAACACGCGG	2 ATCAAAAGCA	TCTAGCTCC	T CACATGAAA	A AGCATCCTG	AAACTATAAA	4620
GAGGATACTO	3 ATGACTGTAT	TTTTCAAAA	CATCTAAAA	CTTGCCACCA	ACACGATGAG	4680
TCGGACTGTC	TGCTAGCACT	TGCTCTGGAT	AAGCAGTTT	TAACTCGACC	AACTCACGGT	4740
AAAGGCGGTC	ATACTCACTG	TCTGAAACCC	AGGGATTATO	GCTGGTATAG	TACTCAGTCG	4800
CATAGCGATT	' GAGCAAAGCG	ACTAACTCAT	TCATTCTTT	ATTCATAAGA	CCATTTTACC	4860
ATAAAACAAG	CCCTCCTCAC	AAACGAGAAG	GGCGGAAAAA	ACACTTAGTT	TGAAATTATT	4920
TTTGAAACTC	AAGCAACCTT	ATATCAATTT	TTCAAAATGA	GTTCGAACAT	ATCCGAGAGC	4980
TAAGAAATAT	AAGGCTACAA	CTCCAAGTCC	AATAATCAAG	AAAGAATAAA	GATGGACACT	5040
TGGCAAGACT	GTCATAAATC	CTTTTGCAAT	AGGCATAAAT	AGAATAGCTA	AGGTAAAAAT	5100
TGTACTCAGT	ACTCTTCCAA	GAAATTCGCT	CTCAACCTTG	GTTTGTACTT	GAGTAAAAA	5160
GTGAATATTA	AAAATCGTCA	TAAACAATTC	ACAAACTAAA	TTTCCAGAAA	AGGAAAGAAA	5220
AGTTGGAAGT	GGTAATCCCA	TCATAAAAAC	TCCGACACCT	GTCAAAGCCA	GTAAAATCAA	5280
AAGATTATAA	ATATTAGCTT	TAATTTTACT	AGCTAGAAGA	GCCCCAATGA	TGGAACCAAT	5340
AGCCCCCATA	GTTAAAATAC	TTGCATAGGC	TCCTTCTGAC	CCGTAAAGCT	GATTCGAAAA	5400
GGGAAGTAGA	AATTCAAAAG	CTGCAAAAA	GAAATTAACG	CTGGAAGCTA	CCAGCAAAAG	5460
GAAGAAAATT	TCTTGCTGAT	GCCAGATATA	GTGTAACCCA	TCCTTGATAT	СТАСААААТ	5520
ATCTCTCCCA	GTAAAAGCCT	TTTTCTCTTG	AACTTTTGCT	TCCTCTTTTG	GAAGGAAAGC	5580
CACTAGAACA	AAAGCAATGA	AAAAAGTCAG	CGAGTCTAGC	AGTAGCGTCA	TATGGAGACT	5640
rgcaaactgt	AAAACAAGGA	AGGAAAGAAC	AGGAGAGCTA	ACACCTACAA	CCTGCAAAAC	5700
CAGCTCTAAG	CGAGAATTAT	AGATCACAAT	CTCATCTTTC	TCCACCACTT	CAGTTATGAT	5760

			902			
					TTCCAAACGG	2280
					GTAGGTGACC	2340
					TGGTAACCCC	2400
AATGATGAT	C AAAACTAGC	CTGTTAATGG	CCTTATCAAA	GGCAAAAGGA	TTTTGATTTT	2460
TATAGAAAG	G ACTGGCAATA	A GCAGGATTTT	' CAGAGTAATA	AATCCTATCA	TCGCCTTCCA	2520
AAATCCAGA	CTCTGTTAA1	AGGGGATAGT	GATTAAAACG	GATAGAATAT	TCTTTACTAG	2580
TTTGACCTG	r atgaaccaca	AAATTCAAGC	TTTCTATAAC	ATGTGAACTT	GGGTGTTCAA	2640
AGCTAAATA	A AGCTCCAAAA	TAATCTTCTT	TGTAGGTTAG	CAAATCAATT	CGTTGATCCT	2700
GACTTTTTAC	C AAAGGAGCAA	GTGTCATATT	CTCCATTCTT	ACGATGGTAA	TGAATGCGCA	2760
TAGGGTAGTT	T ATACATTTT	TATTTTTCCT	TTTTACTTTG	TTTCTATTTC	ACTAATAAAT	2820
TTTTGTCAAT	CTCGTCTCAA	TTAACAGACA	TAGTCATATT	CTCTAAACTC	TGTTTTTAAA	2880
CGATCCATTA	CAAACTTTCT	AGCCATGCCT	CATCTCTGAC	CTGGATACCA	AGTTCTTGTG	2940
CTTTTTGCAG	TTTACTTCCA	GCGTCTGCAC	CTACCACGAC	GAGGTCGGTC	TTTTTAGAAA	3000
TACTACCTGT	CACTTTGGCA	CCCAGACTTT	CGAGTTTACT	TTTAGCTTCT	GAGCGCTTGA	3060
GTCGTTCCAA	TTTTCCTGTC	AATACCACGG	TCAAACCTGA	CAAGGCCGCA	TCCGCTACTA	3120
CCGTCTGTCC	TTTATAGTCC	AGATTGACCC	CAGTTTCTTT	CAATTCTCTG	AGCAGAATTT	3180
CAGAGCCTTC	TGTCGCAAAA	TAAGTCTGAA	GACTTTTGGC	AATCACGCCA	CCTAGACTTT	3240
CAATACTAGC	CACTTCCTCT	GAATCTGCCT	GAGACAGATT	TTCAATTGAA	TGGAAATATT	3300
GAAGTAAAAG	CTGACTAACC	TTGCTTCCGA	CATGACGAAT	TCCCAAACCA	AATAAGAGCT	3360
TCTCGGCAGA	ATTTTCCTTT	GATGCTTGGA	TAGCCTGATA	CAGTTTAGCA	GCGGACTTTT	3420
CCTTAACTCC	CTCTAAAAGG	AGGAAATCCT	CTTCTTGCAA	ACGATAAATA	TCCGCCACAT	3480
CCTTGACTAA	ATTAGCAGCA	AAAAGCTTCT	CAACAATAGA	TGGACCAAGG	CCTGTAATAT	3540
TCATAGCATC	ACGAGAAGCA	AAGTGAATCA	AGCCTTCCAT	GATTTGAGCA	GGGCAACGCG	3600
GATTGATACA	ACGTAGGGCC	ACTTCATCTT	CAAAGTGCAA	CAAGTCAGAG	TTACAACTTG	3660
GACAGTTTGT	AGGGATATCT	AGTTTTTCTT	CAGAAACCCG	TTTGGACTCT	ACCACACGTA	3720
AAACGGCAGG	GATGATGTCA	CCAGCCTTAT	ATACAATGAC	CGTATCGTCT	TTTCGGATAT	3780
CTTTTTCAGC	AATATAATCT	ACATTGTGCA	GGGTCGCACG	GCTAACAGTC	GTACCGGCAA	3840
GTTGTACTGG	TGTTAGATTA	GCAGTTGGAG	TTACAACACC	GGTACGGCCA	ACTGTCCAGT	3900
CAACTGATAA	GAGTTGAGCT	TCTTTTTCTT	CGGCAGGGAA	CTTGTAGGCT	ACTGCCCACT	3960
TTGGAGCCTT	AACTGTAAAA	CCAAGTTCTT	CTTGACTTGC	TAGGTCGTTG	ACCTTGATTA	4020
					•	

GCGAGATAGA	A TGGTATTTAT	· AAAACACTC	A AGACAGCTA	ACTAATATC	A TTTAAAACAT	54
TATCTTCTT	T TGAGCGACTO	TTGGTTACC	A ACATAGCTA	ATTTCCTGC	A TTTTCAAATT	60
GATAGGGTTC	TGATTTAGCA	TTCACAACC	A CCAAGAGGTO	TTCTTTGCC	G TGAACTTCAT	66
AGATAAGGTA	GCCGCTATGT	TCAATCGCAG	G AATGCACAA	GACATGATG	G ТАААТТТСАТ	720
CATAGCTAGA	GTAAGAAAAG	GCACCAGTT	TTGTCTTCA	TCGGATGAC	T TGACGGATAA	780
ACTCAATACT	GTCTTGACGC	TCATTAATC	AGTTCCAGTT	CACTTGGTT	ACACTGTCAG	840
GAGCATTATA	GCTATTCATC	GCACGCTCTC	TATCATCATG	GGTCAACTC	CCATTTTCAC	900
CAGTCGCAAC	CAGTTTGGTA	CGACCAAATT	CTTGACCGAT	TTCCATAAA	GCCATCCCCT	960
GCATGAGCAG	ATTCATGGCT	GTGGCAGTTT	CGACCTTGCG	CATGATTTG	TCTGAACTTT	1020
GGTCTGGATG	AAGGGTTGCC	AATAAATCGT	GAAGATTGTA	ATTGTCATGG	GCTTCTACAT	1080
AGTTAAGCAC	CTGATTTGGA	TGTGTATAGC	TTCCTAATTC	ACGACTTCCT	AGGATTGCTT	1140
TAGCTAGAAT	TGGCTCTGTC	GCAGCACCAC	TGACAAAACC	TGACTTGATA	GCACCATAAA	1200
CTTCTCCCCC	TTTGACAGCA	TCGCGCTGAT	TGTCATTAAA	GAAACCAATA	TTTGGCATCT	1260
GGTAGGCATT	GTCCTTCTTG	GCCTTATCAT	AAGGGGCAAG	ACCTGTTCCC	ATATCCCATC	1320
CTTCTCCATA	GAGGATAATG	TTGGAGTCGA	TTTCATCCAA	GCTTTGACGA	ATCATCTGCA	1380
TGGTCTTGAC	ATCATGAATC	CCCATCAAGT	CAAAACGGAA	GCCGTCAATA	TTATATTCCT	1440
GCACCCAGTA	TAGAAGAGAA	TCAATCATAT	ACTTGCGAAA	CATTTCGTGT	TCACTGGCTG	1500
TTTCATTTCC	AACACCCGTT	CCATTCTGGA	AGGTACCATC	TGGATTCATA	CGATAATAGT	1560
AATCAGGGAC	TGTTGTTTGG	AATGGTGCAT	CAACAACTGA	GAAGGTATCG	TTATAGACTA	1620
CATCCATAAT	GACTCCAATA	CCCGCATCGT	GATAAGCTTG	AACCATCACC	TTCAAATCAC	1680
GAATGACCTG	AGCTGGATCA	TCTGGATTAG	TTGAAAAACT	AGTTTCTGGC	GCGTTATAGT	1740
TTTGTGGATC	ATAACCCCAG	TTGTAGGTTA	CATTTCCATC	CTCATCGTAT	TCTTTATCAC	1800
GGTCTGCAAT	TGGTTGCAAT	TGAACATAAT	TGTAGCCCAG	CTTCTTGATG	TAATCAAAAG	1860
CAGTTGACTG	GCCGTATTGG	TTAACTGTTC	CAGCCTGAGC	AGCACCCAAG	AAAGTTCCTC	1920
GAAGATGTTC	ATCTACACCC	GATGTAGGTG	ATTTAGTCAA	ATCACGAATG	TGCATTTCAC	1980
AGATAACTGC	CTTACATGGA	TTTTCCAAGC	GCCAAGTAGC	CTCCGAACCG	TGCTTAACCT	2040
GAAGTTTTC	AACTTGCTTT	TCTACATGGC	TCAGAATAGC	TGAACGTTTG	CCATCAGGGC	2100
GGTCGCGAT	TGTATAAGGA	TCACGTGTCA	GTGTTTGGTG	ATGAGGGAAT	TGGACTTGAT	2160
CTGATAAGT	CTTACCTACC	AAATCTTCTT	CAACATCCAA	ACTCCAGACA	CCGATTGTAT	2220

			900			
TACCCCAACG	CCCCAAACTT	TGAGCAATCA	TAACGCTAGG	CGCCGCAATA	TCTAGAAAAT	5340
CCCAAGTATT	GATGAGTTTA	CGGTCAGCAA	AGATATAGAG	CACAAGAGCC	CCAGTTATCA	5400
AACCACCGTA	AATGGCCAAA	CCACCATTCC	AAATGGCAAA	AATCTCTCCT	AAATTCTGAC	5460
TATAGTAATC	AAATCGGAAA	ATAACATAGT	AGAGACGAGC	TCCTAAAATA	GCCAAGGGAA	5520
AGGCTACTAA	GATAAAATCT	AAAATATCGT	CTGGTATGAT	CTTCTTTCTA	GGTGCTTCTT	5580
TCATGGTCAA	ATAAACCGCA	AGAATCAAGC	CTGTCACAAT	ACATAAGGCA	TACCAACGAA	5640
TGGCTAGGGG	TCCTAGTTGA	ATAGCAATTG	GATCAAGCAT	TTTGCACCTC	ATTTCGAGCG	5700
ATTAGACTTG	TCAGTCGTTC	GTCGAACAAA	CGGGTCGCAT	CAAAGCCCAT	TTCCTTGGCA	5760
CGATAATTCA	TGGCAGCTGC	CTCAATCACA	ACAGAGATAT	TACGACCTGT	TTTAACTGGA	5820
ATACGAATAC	GAGGAATGEA	CGCCAGAAAC	TTCAAGTTCC	TCTGCATTAT	TTCCAAGACG	5880
ATCAAAGGTC	TTATGCGTAT	CGTAATTTTC	CAAATAGACA	GCAAGCTGAA	CCTGTGAAGA	5940
ATCCTTGACA	GCACTCGCAC	CGTAGAGACT	CATAACATCG	ATAATACCAA	CCCCACGAAT	6000
TTCAATCAAG	TGTTTCAAAA	TTTCAGCTGG	TTCACCCCAG	AGAGTAATCT	CATCCTTGGC	6060
AAAGATATCG	ACACGGTCAT	CGGCTACCAA	ACGGTGACCA	CGTTTGACAA	GCTCAAGACC	6120
тстстссстс	TTACCAATTC	CACTATCTCC	CTGAATCAAG	ACGCCCATCC	CATAAATATC	6180
CATCAA						6186

# (2) INFORMATION FOR SEQ ID NO: 132:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 9541 base pairs

  - (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

GAAAATCACA	ACCCTTTTTG	CAAAATTTTT	GAGATTATTT	TCACAAACTT	GATTTTTCAA	60
AGTATACTCA	АТАААААТТА	AAAAAATCCA	CTACGTCAAG	GCGAGGCTAA	TGTGGTTTGA	120
AGAAATTTTC	GAAGAGCGTG	AATGAGTATC	ATCTATAGTA	AAATAAAAA	ACTGAACAAT	180
TTGGTTGGGG	ACAGCCAAAC	CAATTTCTCA	CAATGTTTCA	GAAACAAGGG	TGTGCTATTC	240
CAATTTCAGC	СТАСТАТААС	TGTCATAGAT	TGCTGAAACA	AAGTCTAGGT	AAAAGTCTTC	300
АТААТАААА	GACCTCCTAT	CAAGTGTTCA	AAAACTTTGA	TAGGAGGTCT	TGTTTTGTGA	360
AAATATTTAT	CAAATTTTCT	ATACAAGTGA	GCTGTTAGCC	AGGTTCTTTC	TATTCTTTCA	420
ATTTCAATCA	<b>ልጥና</b> ርልምምምም	TACTAATACT	CATAACTGGG	AATTTGTCTG	TGTAAAAATA	480

TAAATCAAAT	CAATGGAGAT	ATTGTCAAAA	CCAGCCAGT	T TCAGGCGAT	GATATTTTCA	3600
TAAATATCCT	TCTCCAAATC	ACTGCGCCCA	ATCTTTTTC	ACATCTTATO	ATCAAAGGTC	3660
TGGACACCTA	GCGAAACACG	ATTGACAGCC	GAATTTTTC	AAACAGCTA	CTTATCCGCA	3720
TCCAAATCGC	CTGGATTGGC	TTCAATGGTC	AACTCTTCC/	AGACAGACA	ATCCAAGTTT	3780
TTAGTCAAGC	CATTCAGTAA	CACCTCCAGT	TGCGGAGCCC	ACAGGGCTG1	CGGTGTTCCA	3840
CCACCGATAT	AAAGGGTTGA	CAACTTTTCA	ATATCATAAC	AACGAAACTO	TTCCAGCAGA	3900
TGCTCTAAAT	AGCTGTCGAC	TGGCTGATTT	TTGATGAAGA	CCTTTGAAAA	ATCACAATAA	3960
TAACAAATCT	GGGTACAAAA	TGGGATGTGC	ACATAGGCTG	ACGTTGGTT	TTTCTGCATA	4020
GTAATTATTA	TACCACAAAG	ACTAGATTCC	AGATAAAAAT	CACCATCCCC	AGATACATAG	4080
TCCGTCCGGA	GATGGTGATG	GTTTATTCTT	CTGTTATATC	AATCACAATC	TCTTCTGAGT	4140
CATCAAGAGC	TTCGGCTTTT	TCTTGCCATT	GCTCCTTGAG	ATTATTTAAT	TGATTTTTTG	4200
ATGCTTCTGT	CGCTTGAAAA	GCATAGGATT	TAGTTTGAGC	AAGTATACTG	TCCACAGTGA	4260
TTTCACCTGA	CTCAACCTGT	TCTTTTGTTT	TCAGAACAAA	ATCTGTAGCC	TGCTCCTTAA	4320
CTTCTGTCAG	TTTTTCACAG	ACTTGCTCCT	TGGCATACTC	CGGATCTTCT	CTCAAATCAT	4380
CTAGAAAATC	TTGAGCCTGA	CTGCAAACTT	GTTTGCCCTT	ATCACTTGTT	AAAAACAAGG	4440
CAAGAGCTGC	ACCTGAAACG	GTTCCTAAAA	GGATTGAGGA	TAATTTACCC	ATAAGGATTC	4500
TCCTTTTTTA	TTTTTGAAA	AATTTACTTG	CAAGACGAAG	AGCTGACAGA	CTTGCACCAG	4560
TCTTGAGTGT	TTTTGAACCA	GCTGATGAAG	CTTTCTTGCT	CAAGACACGC	GCATGGTCAT	4620
TGAGGTCTGA	AACAGATAGA	GATAAATCTG	CAACAGCACT	GAAGAGTGGA	TCAATCGTAG	4680
CCACCTTGAC	ATTGATATCA	TCTGCCAAGA	CATTGACCTT	AGCCAACAAC	TCATTGGTGT	4740
GATGCAAGGT	CACATCCACA	TCTGAAGTCA	AGGTTTTAAT	CGTCTTTTCT	GTTTCATCGA	4800
rgacacgacc	AAGCTTTTGT	ACAGTAATGA	TCAGATAGAC	CAAAAAGACA	ATCAAAGCTA	4860
GGGCAACAAG	AATATATGCA	ACTTCTAACA	TTTAGTTTTC	CTCCTCTGTA	ATATAGTAAG	4920
GGCCTTCTT	TCGATTTTGA	TAAATAACGA	TCATTATACC	GAGACCGATA	AGGACAACTG	4980
CAGCCATTG	GGACACTCGA	AAGCCGAAGA	ACATGAGACT	ATCTGTTCGC	ATACCTTCGA	5040
PAACCATACG	ACCGAAACCA	TACCAAATCA	AGTAAAAGGC	CGTGATATGA	CCTCGTCTGA	5100
SACTCTTCCA	TTTCCGTCTA	AAAATCAGAA	TCAAGGCAAA	GCCAAGCAGA	TTCCATAGAG	5160
CTCATAAAG	GAAAGTCGGT	TGACGGTAGC	TCCCCTCAAT	ATACATCTGG	TCACGGATAA	5220
GCCAGGTAG	ATAATCCAGA	TTATCCACTG	TTGCACCATA	AGCTTCTTGG	TTAAAGAAAT	5280

TTTATTCATA GAAATCAACT TGGGTATCCA ACAATTTATC CCCATCATAA ACAAACTTGG	10260
CTGAAAAGAA GGGTTTATCC TCTAAAAGCC ACTCAACAAA GGTGTGGTCA CCTTCCCAAG	10320
TCGGCTTGCT CAAAACCTCA TCATAGGGAA CCCATTCTAG CGTCCCCTCA TTGCAGTCAA	10380
TCAAGTCGCC CTCAAACTCC GTCACCTTAA AAACATAGGT GTACCAGTCT AAATCTGGTG	10440
TAAATTCAGG AAAAGTGATG ACACCTTTTA GAACTGGCTT GGCTTTGAGC CCTGTTTCTT	10500
CAAGGATTTC ACGCGCCGCG CATTCCTGGG GCGTCTCTCC TCTCTCTAGC TTACCACCCA	10560
CACCAATCCA TTTCCCTTCA TGGACATCAT TGGGTTTCTT ATTACGATGG AGCATGAGCA	10620
GTTCTTTCCC ATTATCAATG TAGCAAATCG TCGCTAACTG AGGCATATTT TCTCCTTATC	10680
TAAGCCAATC GATTGGCTCT TGTCCTGTCT CTTTTAAGAA TGCATTGGCC TTGGAAAAGG	10740
GCTTGGAACC CCAAAATCCT CTATAAACCG ACAAAGGACT TGGATGGGCT GATTCGATAA	10800
TCAAGTGATG AGGATTGGTA ACTAATGCCT TCTTCTTACG TGCATAAGCT CCCCAGAGTA	10860
CAAAAACGAC TGGTCTATCT AGATGATTGA CCACCTGAAT CACAGCATCA GTAAAAGGCT	10920
CCCAGATTTG ACCAGCATGA CCATTGGCCT GTCCAGCAGG AACAGTCAAA CAAGCATTAA	10980
GAAGCAAGAC TCCTTGCTCA GCCCAAGCTG TCAAATCATG AGATTTCTTA ACTCCGATAT	11040
CATCTGACAA TTCTTTCAAG ATATTTTGCA AGGATGGTGG AGCTGGGATA GAGTCAGGTA	11100
CAGAAAAACT CAAGCCCTGC GCTTGACCTG GTCCGTGATA GGGGTCTTGC CCTAGAATTA	11160
CCACCTTAAC TTCTTCAAGC AGTGTTGTCA AGAGAGCCTG AAAAACCTTT TCCTTGGGTG	11220
GATAAATAAT CCCCTGAGAA TAGACCTGCT CCATAAACTG ATTGATTTTC CCGAAATAAC	11280
CCTCAGGTAA TTGCGCCTTA ATCAAAGCAT GCCAAGACGA GTGTTCCATA GCCGACTCGG	11340
(2) INFORMATION FOR SEQ ID NO: 148:	

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 12127 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

AAAAAATAGA	CTTGTTAGAC	TATAAATGTA	GTAAGCCTAC	ACAAGAAAAA	TACATAGAGA	60
TAAAGGTGAT	TATTATGAAA	TTCAAAAAA	TGCTTACTCT	TGCAGCCATT	GGCTTATCAG	120
GATTTGGGCT	TGTTGCCTGT	GGCAATCAGT	CAGCTGCTTC	CAAACAGTCA	GCTTCAGGAA	180
CGATTGAGGT	GATTTCACGA	GAAAATGGCT	CTGGGACACG	GGGTGCCTTC	ACAGAAATCA	240

CAGGGATTCT CAAAAAAGAC GGTGATAAAA AAATTGACAA CACTGCCAAA ACAGCTGTGA	. 30
TTCAAAATAG TACAGAAGGT GTTCTCTCAG CAGTTCAAGG GAATGCTAAT GCTATCGGCT	36
ACATCTCCTT GGGATCTTTA ACGAAATCTG TCAAGGCTTT AGAGATTGAT GGTGTCAAGG	42
CTAGTCGAGA CACAGTTTTA GATGGTGAAT ACCCTCTTCA ACGTCCCTTC AACATTGTTT	48
GGTCTTCTAA TCTTTCCAAG CTAGGTCAAG ATTTTATCAG CTTTATCCAC TCCAAACAAG	54
GTCAACAAGT GGTCACAGAT AATAAATTTA TTGAAGCTAA AACCGAAACC ACGGAATATA	60
CAAGCCAACA CTTATCAGGC AAGTTGTCTG TTGTAGGTTC CACTTCAGTA TCTTCTTTAA	66
TGGAAAAATT AGCAGAAGCT TATAAAAAAG AAAATCCAGA AGTTACGATT GATATTACCT	720
CTAATGGGTC TTCAGCAGGT ATTACCGCTG TTAAGGAGAA AACCGCTGAT ATTGGTATGG	780
TTTCTAGGGA ATTAACTCCT GAAGAAGGTA AGAGTCTCAC CCATGATGCT ATTGCTTTAG	840
ACGGTATTGC TGTTGTGGTC AATAATGACA ATAAGGCAAG CCAAGTCAGT ATGGCTGAAC	900
TTGCAGACGT TTTTAGTGGC AAATTAACCA CCTGGGACAA GATTAAATAA AATGTTTGCT	960
CCATAAATCT CTAAAGAGAT GCAGACGTTT CATCGTACAA TAAGATAAAG AAGGCAAGTA	1020
GGGAGGTGTC GTATCTCCCT TACTTTCTTC ACTAGAAAGG ACAAGATGTG ACAAAACAAG	1080
CCTTCAAAGA AGCAGTTTTT AGGGCAATTT TTTTCATGAG TGCAACAGTA GCTGTTGTAG	1140
CTATTTTGCT AATCIGTTIC TITATTITTA GTAATGGCTT ACCITTCATA GCTAACTACG	1200
GCTTTGCCCG TTTTTTATTA GGCAGTGATT GGTCGCCAAC GAACATTCCG GCAAGCTATG	1260
STATTITACC AATGATCGTT GGTTCCTTAT TAATTACCTT AGGAGCGATT GTGATTGGGG	1320
RGCCAACAGG CATCTTGACA TCGGTGTTTA TGGTTTATTA TTGTCCAAAG CCCGTCTATG	1380
SCTTCTTAAA ATCAGCTATC AACTTGATGG CAGCCATTCC ATCTATTGTT TATGGTTTTT	1440
CGGCCTACA ATTATTGGTG CCTTGGATTA GAAGCTTTTT AGGAAATGGC ATGAGTGTCC	1500
PAACCGCTTC GTTACTATTA GGAATAATGA TTTTGCCAAC CATTATCAGT TTGTCAGAAT	1560
TGCTATCCG AACAGTTCCC AAAACGTATT ATTCTGGTAG CTTGGCTCTA GGAGCTAGTC	1620
TGAACGGAG TATTTTTAGT GTCATCTTGC CAGCTGCGAG ATCTGGTATT TTATCAGCAG	1680
TATTTTAGG AATCGGTCGC GCAGTAGGTG AAACCATGGC AGTTATTTTG GTGGCAGGCA	1740
CCAGCCGAT TATTCCAAGT GGACTCTTTT CAGGAACCAG AACCTTAACA ACCAATATTG	1800
TCTGGAAAT GGCTTACGCA TCAGGTCAGC ATAGGGAAGC CCTTATTGCA ACCTCAGCAG	1860
TCTCTTTTT CCTTATTCTC TTGATTAATG CCTACTTTGC CTACTTGAAA GGAAAATCAT	1920
TTATGAGTA AATACCTGCT AAAACTTCTC GTTTATTGTT TTTCAGCTTT AACCTTTGGC	1980
CTCTCTTTT TAATCATTGG TTTTATCCTC ATCAAAGGCT TACCTCATCT AAGTCTATCC	2040

GAAAACACC	TCATTCCTC	CACCATCTC	C		TACCGGTATT	
						6720
TTGCATTTG	TGACTGAGG	G CTGCACCGA	C AGCGATCCCC	ATACCACCAC	CTACGATACC	6780
ATTGGCACC	AGGTTCCCA	CATCAAGGT	C AGCGATATGC	ATAGATCCAC	CTTTCCCTTT	6840
ACAGGTTCCA	GTGTATTTAG	CAAGGATTT	AGCCATCATT	CCGTTGAGGT	CAATCCCTTT	6900
AGCAATAGCT	TGCCCGTGTC	CACGGTGGT	TGAGGTAATC	AGATCATCTG	GATTGAGAGC	6960
TAACATAGCC	CCCACGTTAG	CTGCCTCTTC	ACCAACAGAA	AAGTGCGTCA	TTCCTGGCAC	7020
TTTCCCTTTC	TTTACTAATT	GTGCAATTT	TAAGTCCATG	CGACGGATTT	CTTCCATCTT	7080
ACGGAACATT	TCTAGCAAAA	GATTTTATO	TAAAGTTGAC	ATCTTCTTGC	CTTTCTAACT	7140
TTCTTCTTAC	CTTACTATTT	TACCGCTTTT	GGCAAATACT	GTCAAAGTTT	TTCTAAAAGA	7200
AATTTCACAA	AATAAAAAA	AAAACCCCGT	GAAAACAAGG	GATTTTCTTG	TCAAGAATAT	7260
TTTTTCACAA	ACTTTTTAGC	ATTTGGATTT	'TGCTAAAGAT	TCAAATCTCT	TCATAATCAC	7320
AGTTAAACGC	CAACGGTAGA	GCGCCCCGCT	CACAATCAAA	CTAATAATCA	AGCCGATCCA	7380
GTAAGAATAA	GCTCCAAAAT	CTGTTAGGGA	ATCAAATAGC	GTAnCACAGG	GATTGCTACG	7440
CCCCAATAAC	CAAGCAAACC	AAGGTAAAAA	GGAATAACTG	TATCCTTATA	CCCCGCAAA	7500
ATTCCCTGAA	GCGGCGCCGC	AAAGGTATCT	GCTAACTGGA	AGAAAAGACT	ATAAGTTAAA	7560
AAACGCACTG	TCAAATCGAT	AAATTTTGGG	TCGTTACCAT	AAAGACTGGC	CACATTTCCC	7620
CTAAAAATGT	AAAGGAAGGT	TAAGGTGAAG	GCCGCAAAAA	TGAGGGCAGT	CCATCTTCCT	7680
AGACCAATAT	AGGTTTTCGC	ATCATCAAAT	CCCTTCCCTC	CCACTTCATA	GGAAACGACA	7740
ATAGCCATAG	CCGATGAGAT	ACTCATAGGA	AAGGCGTACA	TAAGACTTGA	AAAGTTCATA	7800
GCTGACTGGT	GACTAGCTAT	AATCAAGGGC	GAAAACTTAG	CCATAATCAA	GCCAACCACT	7860
GAAAAGATAG	CCACTTCCGC	GAAGACAGTT	CCCCCAATAG	GCAGACCTAA	ACGAACTCCT	7920
TCCTTAATTT	TATCCATATT	AAGTGGAATT	CGTTTCTCAA	GGTGTAAGGC	TTTGAGCTTC	7980
TCCTGTTTAA	ATAAAACCAG	AACAGAAATC	CCAAGCAAGA	CCCAGTAGGC	CAAGGATGTT	8040
CCTAAACCAG	CACCAGCCCC	TCCCAGTTCT	GGAACACCAA	AGGCACCGTA	AATCAAGAGA	8100
TAGTTAAATC	CGCTATTGAG	AGGGAGTAAC	AAAAGCATGA	GGTACATGGA	CAGTTTGGTC	8160
AAGCCCAGCG	AATCCAGCAA	GGAACGAATG	ACGCTAAAGA	GCAACAAGGG	GATAATCCCG	8220
ATAGATAAAA	ACCAAAGATA	GCGAACCGCT	ACTGCCGCTA	CTGCTGCTTC	TAACCCAATA	8280
TGATTCAAGA	TTATTGGTGC	CAAGAAAAGT	ACCATCCCCA	GCAAGACCAC	AGATAGGCCC	8340
AAGGCCAAAT	AAATAAATTG	GTAAAAATCA	GACGCAACTT	CTTCCTTTTT	GCCTCGACCA	8400

990 AGATGGTGAC CAATGATAGG CACCAAGGCT GACACAATCC CTGTTAGAAA TGTAAAGAAA 8460 GGATTCCAGA TACTGGTTGC CATAGATACA CCAGCCAAGT CCATAGTGTT GTATTGACCT 8520 GTCATTGCAG TATCAACAAA AGAGGCAGAA TAATTGGCAA ATTGGTAGAT CAGGATTGGG 8580 AAGAAAATTT TTAAAAATAA TACTAACTTC TCTCGTAAAC ACTTTGTCTT ATACATACTT 8640 CTCTTTCTAT TCTGATTTAT CTAAACCAAA GAGTTTCAGA CCATAGTTTT TCAAACTTAG 8700 CGGAGGTTTA TTAGATTTTG AAGTAGTATG CCAACACGCA CATGTACGAC AATAATAGCT 8760 TCTAACTAAA CCTCCGTTAT CATATTGAAC CGCATGGTCA GCTTTTTCTT TAGTTTCATA 8820 TTGAATTTTG GAACGATTAG CTGCGGGACA GTAAATTCCA CTATTAGATT TCGCTTGTCT 8880 CTCCCTACGT TTTCGAAAAT AATTCATATT CTAACTCCTA TCAAGCTTGA TAGACGATTT 8940 GTCCCTTACA GATGGTATAT TTAACCTGCC CTTTTAAGGT TTCACCGATG AATGGTGAAT 9000 TAGCTGCTTT GGAAGCAAAA TGGGAGTCCA CAAAGCGGTC AGCCTTGGCA TCAAAAATAG 9060 TGATATCTGC TGGACCATTC TCAGCCAAGT AACCTGCTTC AAAGTTGTAA AGCTTGGCTG 9120 GGTTGTATGT CATTITTCA AGTAATTCCA TCAAGCTCAA CTCACCAGCT TCTACTAAAT 9180 AGGTCAAGCT GAGAGACAGG GATGTTTCTA AGCCAGTCAT ACCAGATGGC GCTTTGGTAA 9240 TATCCTCAAC ATTTTTTCA TCTACATGAT GAGGCGCGTG GTCAGTCGCA ATAACTGTGA 9300 TGACACCTGA TTTGAGACCT TCGATAACGG CACGACGGTC TGATTCCAAA CGAAGCGGTG 9360 GATTCATCTT AGCATTGCTA CCTTGTGTTA AAAGAAGTGC TTCTGTCTTA GAGAAATGCT 9420 GTGGCGCTAC TTCTGCTGTG ACTTCTGCAC CTAACCCCTG AGCAAACTCC ACTACTTTAA 9480 CACTITCTTC CTTAGACAAA TGCTGGATGT GAACATGGGC TTTAGTTGCA TAGGCAATCA 9540 TGACATCACG CGCCATCATA GCGTACTCAG CCACCCCAGT AGCACCGCAG ATATGGAAAT 9600 GTTCTCTAGC AATATTTTCA TTAAAGCCAA GAACACCGTT CAAACCTGGA TCTTCCTCAT 9660 GAAGGCTGAT AAAGGTATTG AGTTTTTTGG CTTCCTCCAT GGCTTCCTTG ACAATCTTAC 9720 TGCTCTCAAG CGGAATACCG TCATCAGAGA AACCAACCGC ACCAGCTTCT AAGAGTGCCT 9780 TAAAGTCAGT CAAGTTTTTA CCATTAAAGT TTTTAGTAAT GGTCGCAACT GTCTTGACAT 9840 TAATCTTCTC TTTGGCAGCT GACTGGAGAA CTGCTTGCAA AGTCTCCACG TCTGAAATGG 9900 TTGGACTGGT ATTAGCCATC ATGACGACAG TAGTAAAACC ACCTGCAGCG GCTGCTAGGG 9960 CACCAGTATG AATGTCTTCT TTATGTGTTT GACCAGGTTC ACGGAAATGA ACATGAATAT 10020 CGACCAAGCC AGGAGCAACC ACAAGACCAG TAGCATCAAT CGTTTCTGCT CCTTCTTCCG 10080 TGATCTCAGA CGCAATTTTG ATAATTTTCC CATCTTGAAC TAAGACATCA CAAACTTGAT 10140 CCAAACCAGA CTTGGGATCC ATTACACGAC CATTTTTGAT TAGTAGCATC TGCTTTCTCC 10200

CTCTTTTCTT GGACTTATAC TTCTGAGAAC ATTTCCCTTA TGCCAGCGAT TATTTCCACC	2100
GTTATTCTGG TCTTTGGTGC TCTTCTTTTA GCCTTGCCCA TAGGGATTTT TGCTGGTTTT	2160
TATCTTGTGG AATATACAAA AAAAGATTCC CTTTGTGTTA AAATCATGCG ATTGGCCTCA	2220
GATACCTTAT CTGGGATTCC TTCCATTGTT TTTGGTCTGT TTGGCATGCT CTTCTTTGTA	2280
GTCTTCTTAG GTTTTCAATA CTCTCTGTTA TCAGGAATCT TAACCTCAGT TATCATGGTG	2340
TTGCCAGTCA TTATTCGCTC AACAGAAGAA GCCCTTTTAT CTGTTAGTGA TAGCATGCGT	2400
CAAGCAAGTT ATGGACTTGG GGCAGGTAAG TTACGGACTG TTTTTAGAAT TGTTCTACCA	2460
GTTGCCATGC CAGGTATTTT AGCTGGAGTG ATACTAGCTA TTGGCCGTAT CGTTGGTGAA	2520
ACAGCTGCCC TCATGTATAC ATTAGGTACC TCTACCAATA CGCCAAGTAG TCTCATGTCT	2580
TCAGGCCGTT CTCTAGCCCT ACATATGTAT ATGCTGTCAA GTGAGGGGCT ACATGTCAAT	2640
GAAGCCTATG CTACCGGCGT GATTTTGATT ATTACTGTTT TAATGATAAA TACTCTATCA	2700
AGCTTATTAT CTCGAAAACT TGTGAAAGGA GCTTCCTAGT ATGGGAACAT TTTCAGTCAG	2760
ACACCTAGAC TTATTTTACG GGGATTTTCA AGCCTTAAAA AATATTTCGA TTCAATTACC	2820
AGAAAGACAG ATTACTGCCT TGATAGGCCC ATCTGGTTGT GGCAAATCAA CTTTTCTAAA	2880
AACCCTTAAC CGGATGAACG ATTTGGTTCC TTCTTGCCAT ATTGAAGGCC AAGTCCTCTT	2940
AGATGAGCAA GATATTTATA GTAGCAAATT CAACCTTAAT CAGCTACGTA AGCGTGTAGG	3000
GATGGTTTTT CAACAGCCTA ATCCCTTTGC CATGTCTATC TATGATAACG TGGCTTATGG	3060
CCCAAGGACA CATGGTATTC GAGACAAAAA ACAATTAGAT GCCTTAGTGG AGAAATCTTT	3120
AAAAGGGGCA GCCATTTGGG AAGAAGTCAA AGATGATCTT AAAAAGAGTG CCATGTCCTT	3180
ATCTGGCGGT CAGCAGCAAC GCCTTTGCAT TGCGCGAGCT TTAGCAGTAG AACCTGATAT	3240
TCTGTTAATG GATGAGCCGA CTTCAGCCTT AGACCCTATC TCCACTTTAA AAATTGAAGA	3300
CCTCATTCAG CAACTAAAAA AGGATTATAC GATTATCATT GTTACCCATA ACATGCAACA	3360
AGCTTCACGT ATTTCAGATA AAACTGCTTT TTTCTTAACA GGAGAAATTT GCGAATTTGG	3420
AGATACCGTT GACGTGTTTA CCAATCCAAA AGATCAGCGC ACAGAAGACT ATATTTCAGG	3480
ACGGTTCGGA TAAGGAAGGA AAAACCTATG AGAAATCAAT TTGACTTAGA ATTGCATGAA	3540
TTAGAACAAT CCTTTTTAGG ACTAGGGCAA CTTGTCCTTG AAACAGCCTTC AAAAGCCTTA	3600
CTGGCCTTAG CCTCCAAAGA CAAGGAGATG GCAGAGCTAA TTATCAATAA GGATCATGCT	3660
ATCAACCAAG GTCAAAGCGC TATCGAATTG ACCTGTGCCC GTTTGTTGGC CTTGCAGCAG	3720
CCACAAGTGT CTGACCTTCG ATTTGTGATT AGCATCATGT CTTCTTGTTC AGACCTTGAA	3780
·	

CGTATGGGA	G ACCATATGG	C AGGCATTGC	AAAGCTGTT	TGCAACTAAA	AGAAAATCAA	3840
CTAGCCCCT	G ACGAAGAACA	A GTTACACCA	ATGGGTAAA1	TATCCCTCAG	CATGCTAGCC	3900
GATTTATTG	G TTGCCTTTCC	TTTGCACCA	GCCTCAAAAG	CTATTAGTAT	TGCTCAAAAA	3960
GATGAACAG	A TTGACCAATA	TTATTATGC	TTATCAAAGG	AAATCATTGG	ACTTATGAAA	4020
GACCAAGAA	A CCTCAATTCC	CAATGGAACT	CAATACCTTT	ATATCATAGG	GCATCTGGAA	4080
CGCTCGCTG	A TTACATTGCT	AACATTTGTG	AACGCCTAGT	CTACCTAGAA	ACAGGAGAAC	4140
TAGTGGATT	r gaattaatto	AACTAATCCT	' TAAAAGAGAA	GAGTACGATT	AAGTACTCTT	4200
TTTTATGGT	CTAAAAAAGT	TCATTTGACC	AATTTAAGCA	GTGTAGATAG	TGAGGAGTTG	4260
TTTCAATTCT	T ATCGTGAACG	AGGGAATGCT	GAAAACTTTA	TCAAAGAAAG	GAAAGCAGGA	4320
TTCTTTGGGG	ATAAGACAGA	TAGTTCGACC	ATGATTAAGA	ATGAAGTACG	TATGATGATG	4380
GGCTGTCTGC	CTTATAATCT	CTACCTCTTT	TTAAAGCAGC	TAGCTGGTGA	TGAAGTAAAG	4440
TCCTTGACTA	TCAAGCGTTT	TCGACGTCTC	TTCCTTCATA	TTGCCGGAAA	ATATGTCTCT	4500
ACTGCTAGAC	GACATATTCT	CAAATTCTCA	AGTCTATACG	CCTATTCAAA	ACAGTTTCAA	4560
GCCTTATTTG	ATACAATCTG	CCAGATAAAT	CTGATACTCC	CTGTTCCATA	TAGAGCTAGA	4620
GGCAGGGGA	AAACATGCCT	AACAGAATAA	GTCACCTTAT	TTTAAAAATC	GAGCATCAAA	4680
CCAAGGGAGG	AGTCTGCCCT	TTTTTAGGAA	AAAATCAAGA	CAAATCTCCT	CAATTATGTC	4740
rcgaacatca	GAAATTAAGC	AAAATCACCA	GAAGGACAGT	ATTTCAACTA	GCTTTTCTGG	4800
raatttttga	ACTGTGTAGT	TCGTTAGTGC	CAGATATGAA	TAATTTGGGA	TGATAAATCT	4860
TCTTCCTCA	GGTAGCCTAT	CATAATACTC	TTCAAAAATC	TTATCAAAAA	CACTCTCTTT	4920
TTTTGGGCG	ATAGTTTCAT	CTTCGTATGT	AGGAGTCCTC	ATCAAGAAAT	ACTTCAATTC	4980
PAGGTATTCC	TTATCCAACT	CTATATAACT	TGGCATCAAC	TTGTAATCTT	CAACCCCCAA	5040
CGTTCAGCA	ATATATTTA	ACTTTGTTAG	TATTGGTCTG	GATTCTCCAT	TTTCAATTCT	5100
ATTAATTGA	CGGATACTTA	ATTCAGACTC	ATCACCACAA	AATTCTGAAC	GACTGATTI r	5160
TTAGCCAAA	CGTAATCTTT	TAATTTTTC	GCCAAACTCT	CGCAACCTAC	AAGAACTTCC	5220
GAGTTGTTT	ACCTCTATTA	TAAGCATATA	CTGAATCAAA	CTATCTATCA	GATTTCTTCT	5280
ACTTTAACT	AAAGACTAAG	AGTTTATCCC	TTCGTCTCGG	TTTTTGTGTA	TTTTTCCACC	5340
TACCCCAGT	AATGCAAGTG	CAAAATCCCC	TAGAATATGA	TAGAATAAGA	GAAAGAACTC	5400
'ATCAAGGAG	GAAATCATGG	AAAAACAAAC	CGTCGCCGTC	TTGGGGCCTG	GTTCTTGGGG	5460
ACCGCCCTT	TCACAAGTCT	TAAATGACAA	TGGACACGAG	GTACGTATTT	GGGGAAATCT	5520
CCCGAGCAA	ATCAATGAAA	TTAATACACA	CCATACTAAT	AAGCACTACT	TTAAAGATGT	5580

CGTTCTAGA	C GAAAATATC	A TTGCCTACA	C CGACTTAGCA	GAAACATTGA	AAGATGTGGA	5640
TGCGATTTT	G TTTGTTGTC	CAACAAAAG	r gacacgacti	GTTGCCCAGC	AAGTTGCACA	5700
AACCTTGGA	C CATAAGGTT	A TCATCATGC	CGCATCAAAG	GGATTAGAAC	CTGATAGCCA	5760
TAAACGATT	A TCAACCATTO	TTGAAGAAG	AATTCCTGAA	CATCTCCGTA	GTGATATCGT	5820
CGTTGTTTC	A GGGCCTAGTO	ATGCAGAAGA	GACCATTGTG	CGTGACCTAA	CTTTAATAAC	5880
TGCTGCTTCT	RAAGATTTAC	AAACAGCTCA	ATACGTTCAG	AAGCTATTTA	GTAATCACTA	5940
CTTCCGACTT	TATACCAATA	CGGATGTTAT	CGGGGTTGAA	ACTGCTGGTG	CTCTTAAAAA	6000
TATTATTGCT	GTCGGTGCTG	GAGCTTTACA	TGGTCTTGGA	TTTGGTGATA	ATGCTAAGGC	6060
AGCCATCATO	GCTCGAGGTT	TAGCAGAAAT	CACCCGCCTA	GGGGTAGCAC	TCGGGGCCAG	6120
TCCATTGACC	TATAGCGGCT	TATCTGGTGT	GGGAGATTTG	ATCGTAACGG	GAACTTCCAT	6180
CCACTCTCGT	' AACTGGAGAG	CTGGAGATGC	TCTCGGACGA	GGAGAATCCC	TAGCTGATAT	6240
AGAAGCTAAT	ATGGGCATGG	TAATCGAAGG	AATTTCAACG	ACTCGAGCAG	CCTATGAACT	6300
AGCCCAAGAA	CTTGGAGTCT	ATATGCCCAT	TACACAGGCT	ATTTACCAAG	TTATTTATCA	6360
CGGAACCAAT	ATCAAAGATG	CCATTTATGA	CATCATGAAC	AATGAATTTA	AAGCAGAAAA	6420
TGAGTGGTCT	TAACCCTCTA	TAGAAAGGAT	TTTTATGACA	TCAAAAGTTA	GAAAGGCAGT	6480
CATCCCTGCT	GCTGGACTAG	GAACTCGATT	TTTACCAGCA	ACCAAGGCCC	TTGCCAAAGA	6540
AATGTTGCCA	ATCGTAGACA	AACCAACTAT	CCAGTTTATC	GTGGAAGAAG	CTCTCAAATC	6600
AGGTATTGAA	GATATTCTAG	TTGTCACTGG	ТАААТСАААА	CGTTCTATTG	AGGACCACTT	6660
TGATTCAAAC	TTCGAATTGG	AATATAACCT	CAAAGAAAAA	GGGAAAACAG	ATCTTTTGAA	6720
GCTAGTTGAT	AAAACAACTG	ACATGCGTCT	GCATTTTATC	CGCCAAACTC	ATCCACGCGG	6780
TCTCGGAGAT	GCTGTTTTGC	AAGCCAAGGC	TTTCGTCGGA	AATGAACCTT	TTGTCGTTAT	6840
GCTTGGTGAT	GACTTGATGG	ATATCACAGA	CGAAAAGGCT	GTTCCACTTA	CCAAACAACT	6900
CATGGATGAC	TACGAGCGTA	CCCACGCGTC	TACTATCGCT	GTCATGCCAG	TCCCTCATGA	6960
CGAAGTATCT	GCTTACGGGG	TTATTGCTCC	GCAAGGCGAA	GGAAAAGATG	GTCTTTACAG	7020
TGTTGAAACC	TTTGTTGAAA	AACCAGCTCC	AGAGGACGCT	CCTAGCGACC	TTGCTATTAT	7080
CGGACGCTAC	CTCCTCACGC	CTGAAATTTT	TGAGATTCTC	G <b>AAAAG</b> CAAG	CTCCAGGTGC	7140
AGGAAATGAA	ATTCAGCTGA	CAGATGCAAT	CGACACCCTC .	AATAAAACAC	AACGTGTATT	7200
IGCTCGTGAG	TTCAAAGGGG	CTCGTTACGA	TGTCGGAGAC	AAGTTTGGCT	TCATGAAAAC	7260
ATCCATCGAC	TACGCCCTCA	AACACCCACA	AGTCAAAGAT (	GATTTGAAGA	ATTACCTCAT	7320

CCAACTTGG	A AAAGAATTG	A CTGAGAAGGA	ATAACAAAA	CATTTATATA	AAGATTAGCC	7380
ACACATAAA	r taagtaaat:	r ctctacttga	ATCTACCTAT	LAAAATAAAT 1	CTAATGAAAA	7440
CGCTATACTT	CTATTTGTT	TTTCATTAAA	ATAAGAGTAG	AATAAATTAG	TATAGTAAAA	7500
CAAAAAAGC	A CCGAATCGG1	GCGCACTTT	TCAAGTTGTC	TACGGACAA	GCCTTATTTT	7560
AACTTTGCT	A TGTTGTTTCT	AATGGTTCCA	AAATAATAA	LAATTTTAAT	TTTGACTTAA	7620
CTGTTGGAG1	AGTCATGGTT	AAATTAAATC	AACCGAGCCG	AACATAAGT1	GTTTAATTTT	7680
GTGGAAGCTA	A TTAATAAAA	TATAATAAGG	GAGAAAGATA	GGTGTAATTT	TAATTTTAAA	7740
GTAATTGCGG	ACACTATCAA	AGAAAAAGAT	TATGGAGAAC	AAATTTGTAG	AATTTATCGA	7800
AAACAATAAA	AAAGTAATCA	TTTCATCAGT	TGCAGTTGGT	GTTGTATTGG	TATTAGGGTT	7860
TGGATGGTAT	TCATATAACC	AACAACAAGC	AGAACAACAA	GCAAAAATTG	TACAATTAGA	7920
AAAAGATAGC	AAATCAGACA	AAGAACAAGT	TGATAAACTA	TTTGAATCAT	TTGATGCATC	7980
TTCAGATGAA	TCTATTTCTA	AATTAAAAGA	ACTATCTGAA	ACTTCACTTA	AAACCGATGC	8040
AGGTAAAGAC	TATCTTAATA	ACAAAGTCAA	AGAATCATCT	AAAGCAATTG	TAGATTTTCA	8100
ITTGCAAAAA	GGTTTGGCTT	ATGATGTTAA	AGATTCAGAT	GACAAATTTA	AAGATAAAGC	8160
<b>NACTCTTGAA</b>	ACAAATGTAA	AAGAAATTAC	AAAACAAATT	GATTTTATCA	AAAAAGTTGA	8220
rgaaactttt	AAACAAGAGA	ATTTGGAAGA	AACTCTTAAA	TCTCTAAATG	ATCTTGTTGA	8280
raaatätcaa	AAACAAATCG	AACTTTTGAA	GAAAGAAGAA	GAAAAAGCTG	CTGAAAAAGC	8340
rgctgaaaaa	GCAAAGGAAT	CTTCTAGTCA	AAGTAATTCT	TCTGGTAGTG	CTTCTAATGA	8400
TCTTATAAT	GGATCTTCCA	ATTCAAATGT	AGATTATAGT	TCATCTGAAC	AAACTAATGG	8460
TATTCAAAT	AATTATGGCG	GTCAAGATTA	TTCTGGTTCA	GGAGATAGTT	CAACAAATGG	8520
GGATCATCA	GAACAATATT	CATCTAGCAA	TTCAAACAGC	GGAGCAAATA	ATGTCTACAG	8580
TATAAAGGC	ACTGGTGCTG	ACGGCTATCA	AAGATACTAC	TACAAAGATC	ATAATAATGG	8640
GATGTGTAT	GATGACGATG	GAAATTACCT	TGGGAACTTT	GGTGGCGGCA	TTGCAGAACC	8700
AGTCAACGC	TAATAACTAT	TTTAGAGCTG	TGTTGTTTCG	AATGGTTCCA	AAACACATTA	8760
AAGCTACTC	ATTTTTTAAG	TAGCTTTTTT	CTTATTCAAG	TTTACATATT	ATACTCAATG	8820
AAATCAAAT	TCAAACCACG	TCAGCATCGC	CTTACCGTAG	GTATGGTTAC	TGACTTCGTC	8880
GTTTCATCT	ACAACCTCAA	AACCATGTTT	TGAGCTGACT	TCGTCAGTTC	TATCTACAAC	8940
TCAAAGCAG	TGCTTTGAGC	AACCTGCGGC	TAGCTTCCTA	GTTTGCTCTT	TGATTTTCAT	9000
GAGTATTAG	TCGTCACAAT	CCCATTCCCT	TGTAGAAAAG	CAAAATGGCG	AGTCCTACGA	9060
CAAGACTAC	CGCTCCTAAT	CTCTGGCTGG	TGTTATACAT	CCGTTTTTCT	CCTCTAACTG	9120

GAAAGATA	AC TGCTAGAA	AT GCGCCACCA	A CTGCACCAC	C GATATGGCC	T .GCTAGGCTGA	9180
TTCCTGGA	AT CAGAACACT	TT CCAATAATO	TAACCACAA	A AAGTGTCAG	A TAGGATTGCC	9240
CTAGCTGTT	rg gatataago	A TTGCGAGTT	G CATAGCGAA	G AACAATAAT	C GCGGCAAATA	9300
GCCCATAA	AG AGAGGTAGA	G GCGCCTGCT	G CTAAGGATT	T AGGACTAAA	ACAAAAACAA	9360
AGAGATTGO	C CATCATTCC	T GATAAAAGA	T AGAGAAAGA	A AAACTGCTT/	GAACCGAAAA	9420
TCTCCTCTA	C CTGCCTTCC	A AGATAATAA	A GTGAAAGCA	T ATTAACAATO	AAATGTTCCC	9480
ACCCAATAT	G AACAAAAAT	G GCAGACAAG	A GACGCCAAA	CTGCTCGGGA	AAGAGGCGAA	9540
TAGCTGGCC	C ATACATGGC	T CCAAATCGA	A ATAATGTATO	TGCCCTGTCA	AAGTTTCCGC	9600
CTGCAGTGA	C CAACATTAG	T AAAAATACC	A AGGCCGTCAC	TAAGAGGAAG	AAACTCGTCA	9660
CAGGGTAAC	G TCTATCAAA	G ATTTCCTTC	A TCAATTAATA	CCTCCTGAAC	AGGAATATCA	9720
TGGTTTTCA	G GTATAAAGT	CTGAATTTG	A CAAGGATATA	TCGTACTCAA	AGTACGACCA	9780
GAAAAATGT	T CCAGATAGC	G GTCATAATAC	CCTCCACCGT	ATCCTATCCG	ATATCCTTTC	9840
GTCGTAAAA	G CCAGACCAGO	AACATGAAT	AAATCAATCT	GAGATGCATC	CACCACTTCC	9900
AAATCTCCC	T GTAGCTCCAC	TAAGGCAAAG	AAAGTTTTTA	CCAACTGTTG	CGGATCATAG	9960
ACCACAAAG	r ccatgcgccc	CTTGGGATAA	GTTTTGGGTA	TTAAAACCTT	CTTGCCGTCC	10020
TTCAGCGCCT	GCTCAATCAG	TTCCTGCGTT	TGAAACTCAT	GAGAAAAAGA	GAGGTAGGTT	10080
GCGATGACCT	TGGCTTCTTG	ATAAAAGGGG	TGTTGTAAAA	GCCGCTCGGT	TAAAGCTTGG	10140
TCTATAGCCT	GTTTTTGCTC	TTGAGATATA	GCCTTCATTT	CATGCAAGAC	TTGCTTGCGT	10200
AATTCCGATT	TCATAGACAA	GCCCTCTATT	CTGCTGCCTT	CTTTTTCAGG	AAACTAGACA	10260
CCGCAGCCAC	CCCAATAGCT	AAGACTTCTT	CCTTAGGACT	CATTTGAGGG	TGATGAAGAG	10320
CGTAGGGACT	ATCGATACCT	AGCCAAAACA	TCACGCCATC	AACCTTTGAA	AGGAGATAAC	10380
CAAAGTCCTC	GCCTGTCATA	GCAGGTTCGA	TATCAATCAA	CTCGATTCCG	TCTTTTTCGT	10440
CAAAGAAGTC	CATCAGTTCA	CGCGCCAAGG	CTGGATTGTT	CTCAACAGGT	AGGTATCCAC	10500
CTTGTTTGAG	TTCCACTTCG	ACTTCCATAT	CAAAGGCAGC	TGCAACCCCT	TCTGCAACTG	10560
			TGTCCTGTGT			10620
			TGGTGGTTCC			10680
			TGCGGCTAAC			10740
			TGGCTTCATG	,		10800
CTTTGCCTTT	GAAACGGATC	TTCACCTCGC	AAGTTCCTGC	AAAGAGTGTA	TGAGTATTAG	10860
			•			

			998			
TCGCAATCT	GCCGACTTTC	AAATCTGGAG	GAACATGGAG	ACCATAGAAT	TGATCTGGCA	1092
ACCAATCTCC	AAAAGCACCG	TCCTCATACA	TGAGCATACC	ACCAGCTTCA	TTTTCTTCAG	1098
CAGGCTGAAA	TAGAAAGAGC	AGATTATTCT	TEGETTECTO	CTCAAGGGCG	CGCTCAAGAC	1104
AGCCTAAGGC	AATGGTCATA	TGAAAATCAT	GGACACAGGC	ATGCATGCGA	CCTTGGTGTT	1110
GAGAAGCAAA	AGGTAGACCT	GTTTGTTCGA	CGATAGGCAG	GCCATCAATA	TCTGTCCGCC	1116
AACCAATGGT	TCGCTCCGGC	TGACTTCCCT	GCAGGTAGAC	CAAAATCCCT	GTCCGCCAAG	11220
TACGAATTTG	AACAAAATCC	TTGCCCGTAG	TCAATTTCTC	AATCACATCC	AGCAAATAAG	11280
CCTGAGTCTT	GAACTCCTCC	AAGCCAATCT	CTGGAATCTG	GTGTAAATCT	CGTCTAGTCT	11340
GAATCAAATC	TAACATCTAT	CTGTCCTCCG	ATATAGCAGA	AAGAGGCTGG	AAAAAGGGTT	11400
CCGCCTCTTT	TTTACTTTTA	CAATTACAAG	GTACGAAGCG	CATCCTCTAG	CGCTGTTTTT	11460
TGTTGAGTTT	GGGCATCAAT	TTCTTTGATA	ATACGAGCTG	GAACACCTGC	TACTACCACG	11520
TTTTCTGGGA	CATCTTGGGT	AACAATAGCT	CCTGCTGCGA	CAACTGAACC	ACTACCGATT	11580
TGGACTCCTT	CGATAACCAC	TGCATTAGCA	CCGATAAGAA	CATTGTCTCC	GACACGGACT	11640
GGTTCAGCAC	TAGCTGGCTC	AATCACACCT	GCCAAAACTG	CACCTGCACC	AACGTGGCTA	11700
TTTTTTCCAA	CGATGGCACG	GCCACCAAGG	ATGGCACCCA	TGTCAATCAT	GGTTCCAGCA	11760
	CACCGATATT					11820
rccacctggt	CACGGATAAT	CGCACCTGGC	TCGATACGAG	CGTTGATAGC	ACGCTTATCT	11880
	CTGCAGAATT					11940
	GAAGCGGAGC					12000
	TAGGCACAGC					12060
	CATTGGCGAT					12120
TAGGTG					. O. MOCAGIC	12120
						12127

# (2) INFORMATION FOR SEQ ID NO: 149:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 12566 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:

CCATCCTTCT GTTGATGTGA CAGGAATGAT GATAAATCAA CCAGTAGCTA GTCGCGAAGA 60 GGTGACAGAG GCTTTGAGTC ACTTGGCGGT AGAGCACAAT AGTCTCATTG CTCGTCGAAT 120

CGTTGAGCCA AATGAAGCTG GAGAAACACG CTTTACCTAT GCCACTTATG GTGAGGGAAA	18
GCTTCCAGAA GGTCTGACCA TTTCCTCCAA GGAGAGTGCA GAAACGAGTG ATTTATTAGG	24
GTCTTACTTG ATTGTATCAG GAAGTTTGGA TGGAGTGAGC TTACAGACCA CCTTGAAAGA	30
GCTTGGTTAT CAAGGCTTTG TTTCGAATGG AGAAGATCCA TTTTCGATAG TCTTACTATT	36
GACGGCCACC CCTATGGTGC TACTGAGTTT AGCTATTTTT CTGCTGACCT TTATGAGTCT	42
GACCCTGATT TATCGGATCA AATCCCTTCG TCAGGCAGGG ATTCGCTTAA TAGCTGGTGA	480
GAGCTTGTTT GGAGTTGCTC TCAGACCAGT GTTAGAAGAT GTGAGACAGC TTATCTGCTC	540
AGTGCTGGTA TCCAGTCTTT TGGGATTGGG GATTCTCTGG TATCAAGGTG CCTTGTTTAT	600
GGCAACGGTG CAACTGGTCA TCATTGCTCT TCTACTTTAT GGATTGACCT TGGCAGGGAT	660
TTCTACCTTA CTAAGTGTCG TCTATCTACT TGGTTTACAG GAAAATAGTC TGGTGGATCT	720
ATTGAAAGGG AAACTCCCTC TCAAACGTAT GATGACATTG ATGATGGTGG GGCAACTCTT	780
AGCTGTATTG GTGGTCGGAT CGAGTGCGAC AGCTCTCCTA CCCCACTACC GTGAAATGCA	840
GGAAATGGAG AGAGCTAGCA ATAAATGGAG CCAGTCCTCA GACCGTTACC GTCTATCCTT	900
TGGTTGGTCT AGTGCATTTG CCGATGAAGA AGGAACGCGT AAGGATAATC GTGAGTGGCA	960
GACATTTACT GAAGAACGGT TAGCCAATAC AGACTCTTTT TATATTATGA GCAATGTTGA	1020
CAATTTCTCA GATGGAGCAG AAGTGGACCT AGATGGCAAT CGTCTCAGTG ACTACACACC	1080
GTCAGGGAAT GTTATCTATG TCTCACCGCG CTATCTGATA GAAGAAAAGA TTACCGTTTC	1140
TTCAGAGTTT ATGGACAAGA TGCAAAACTT GTCTGAGGGA GAGTTTGGGC TGATCTTGCC	1200
TGAGAGCTTG CGAGAGCAGT CTGTCTACTA CCAAGGATTG TTTACAGATT ACCTGCAAAA	1260
CTTTTCATCT GAAAGTGTAG AAGTGACGAG TCAGAAACAC TACCTCCCAC AGGTAAGGCT	1320
AGCTTTTACA GAAACAGGAC AGGAACGTTT CCTCTATAAT GATGGGTACA AGACAACACG	1380
CCAGTACCTA AAAGATCCGA TTATTGTAGT TCTAACGCCG CAAGCGACTG GAACAAGACC	1440
TGTTGCAGGG ATGTTGTGGG GAACTACGGC TAATAGTGCC TTGAAACTAG ATCGATATGG	1500
AGACAGCATC ACAGCTCTAA AAGAGAAAGG TCTGTATCAC AAGGTTTCTT ACTTGGTAAA	1560
AGCCAGCTA TTTTTTGCCA AGGTACTAAA TGACAAACGG GTGGAGTTTT ACTCTCTCT	1620
CATTGGGACG ATTTTGACCC TGTCTACGGC TATCTTGTTA TTTGATTCCA TGAATCTTCT	1680
TATTTTGAG CAGTTCAGAC GGGAACTTAT GATTAAACGT CTTGCTGGTA TGACAATCTA	1740
GAGCTTCAT GGCAAGTATT TACTGGCGCA AGGAGGAGTT CTCTTGCTTG GCCTAGTCCT	1800
TCTAGTATT TTGACAAGAG ATGGTTTGAT TAGCGCTCTA GTTGTAGCTT TGTTTACGCT	1860

			1000			
					A GCATGGCAGT	1920
					T AATGACCGCG	1980
					C TTAATCGGAA	2040
					A AAGATAGATG	2100
GTGGAAGGG	T TCTCTATCA	g gggaaagat	T TAAAAACCA	T TCCCACTCG	r GAGTATTTTC	2160
GAGACCAGA ⁴	T GGGCTATCT	C TTTCAAAAT	T TCGGCCTCT	R AGAAAACCA	A TCAATCAAAG	2220
AAAATTTGG	A TTTGGGTTT	r GTTGGTCAG	A AAATCTCAA	A AGTAGAACG	TTGGAAAGGC	2280
AAGTGGGGG	TTTAGAAAA	GTTAATCTA	G GGTATTTGG/	TTTAGAACA	A AAAATCTATA	2340
CTTTATCTG	GGGAGAGGC	CAACGAGTT	CCCTTGCTA	GACTATTTT	AAAAATCCAC	2400
CCTTGATTT	GGCAGATGA	CCAACAGCAG	CTCTTGATCC	TGAAAATTC	GAGGAGGTTA	2460
TGAATCTCTT	GGTGGATTT	AAAGATGAA	ATCGAATTAT	CATCATTGCC	ACCCATAATC	2520
CCCTAGTCTC	GAATAAGGCT	GATGAAATCA	TTGATATGAG	GAAACTTGCT	' CATGTGTGAA	2580
AAAATCCGTA	TTCGCAGGGT	ATCTGATTAT	CCTAGTGCCA	GAGGTGGTTT	AGAAGATATC	2640
CTCATCATGG	AAAATATGAC	CAATCATCTC	CTTTTGGTTC	AAATCCGAGT	GCATGGCTAT	2700
TTGCTTGATT	TTGCTAGTAT	TGAAGGGCAA	AGGCAAAAGC	ATTATCGTTT	GAAAAATTTA	2760
CCTCAGACGG	TTGAACTGAC	AGTGGATGAT	GTGGAGGAGG	ATGTGGATTT	GACCCTACCT	2820
GAAAATCGAA	GTTATCAAGA	AGCTGATTTT	TTTGAACGCA	TGTTTCGAGA	GAACTGCTAA	2880
GGCCACTTTT	AAAGATTTCC	AAGACTATCT	TTCTTCATGA	GGAAAGATAG	TTTTTTGGTA	2940
TGATTTTCAT	TCCCAAAATA	CAAGGGGAAT	GTGTTACAAT	AGTAGTAACA	GATAATAGAA	3000
AAGAGAATAG	ATGAGAATTG	CAGATTATAG	CGTGACCAAG	GCAGTGCTGG	AGCGTCACGG	3060
TTTTACCTTT	AAAAAGTCCT	TTGGGCAAAA	TTTTTTGACG	GATACCAATA	TCCTTCAAAA	3120
AATTGTGGAT	ACGGCTGAAA	TTGATGATCA	GGTCAATGTC	ATCGAAATCG	GGCCAGGTAT	3180
TGGTGCCTTG	ACAGAATTTT	TGGCTGAGCG	TGCAGCCCAA	GTCATGGCTT	TTGAGATTGA	3240
CCACCGTTTG	GTGCCAATTT	TGGCAGATAC	CCTGCGTGAT	TTTGATAATG	TGACCGTAGT	3300
TAACGAAGAT	ATTCTCAAGG	TTGATTTGGC	GCAACATATC	CAGAATTTTA	AAAATCCTGA	3360
CCTGCCAATC	AAGGTAGTGG	CTAATTTGCC	TTACTACATC	ACGACGCCTA	TTCTCATGCA	3420
CTTGATTGAG	AGTGGCATTC	CTTTTTGTGA	GTTTGTGGTC	ATGATGCAGA	AAGAAGTAGC	3480
GGACCGCATT	TCAGCCCAGC	CTAACACCAA	GGCTTACGGT	AGCTTGTCTA	TCGCCGTGCA	3540
GTATTACATG	ACAGCCAAGG	TTGCCTTTAT	CGTGCCTCGT	ACGGTCTTTG.	TGCCAGCGCC	. 3600
AAATGTGGAT	TCAGCCATCT	TGAAAATGGT	GCGTCGTCCA	GAGCCAGCCG	TAGCAGTAGA	3660

AGATGAGAAC TTTTTCTTTA AGGTTTCCAA GGCTAGTTTT ACCCATCGCC GCAAGACCTT	3720
GTGGAATAAC TTGACAGGTT ACTTTGGTAA GACTGAAGAG GTCAAGGACA AGCTGACCAA	3780
GGCTTTGGAC CAGGCAGGCT TGTCACCAAG TGTGCGTGGG GAAGCTCTCA GCTTGGCAGA	3840
ATTTGCCGGT CTAGCAGACG CACTTAAAGG GCAAGGACTC TAAGATGCAG GGACAAATCA	3900
TTAAAGCCTT GGCAGGTTTC TACTATGTGG AGAGTGATGG CCAGGTTTAT CAAACACGCG	3960
CGCGTGGGAA TTTCCGTAAA AAAGGCCATA CCCCTTATGT TGGGGACTGG GTAGATTTCT	4020
CTGCCGAGGA AAATTCAGAA GGCTATATCC TCAAAATTCA CGAACGGAAA AACAGTCTGG	4080
TTCGTCCGCC TATTGTCAAT ATCGATCAAG CTGTAGTAAT CATGTCCGTC AAGGAACCTG	4140
ATTITAACAG CAATTIGCIG GATCGTITCI IGGITCTITI GGAGCACAAG GGCATCCATC	4200
CCATTGTCTA TATTTCCAAA ATGGATTTGT TGGAAGATAG GGGAGAACTG GATTTTTACC	4260
AGCAGACCTA TGGTGACATC GGCTATGACT TTGTGACCAG TAAAGAGGAA CTCCTGTCTT	4320
TGTTAACAGG CAAGGTTACG GTCTTTATGG GGCAGACAGG TGTTGGGAAG TCAACTCTTC	4380
TCAATAAAAT CGCACCAGAC CTCAATCTTG AAACGGGAGA AATTTCAGAC AGTCTAGGTC	4440
GCGGTCGCCA TACCACTCGA GCTGTTAGTT TTTACAATCT CAACGGGGGT AAAATCGCAG	4500
ATACACCAGG ATTTTCATCC TTGGACTATG AAGTATCAAG GGCTGAAGAC CTCAATCAGG	4560
CTTTCCCAGA GATTGCTACT GTTAGCCGAG ATTGTAAGTT CCGTACTTGT ACCCATACCC	4620
ATGAGCCGTC TTGTGCCGTC AAACCAGCTG TTGAAGAGGG TGTTATTGCA ACCTTCCGTT	4680
TTGACAATTA CCTGCAATTC CTTAGTGAAA TTGAAAATCG TAGAGAAACC TATAAAAAAG	4740
TCAGCAAAAA AATTCCAAAA TAAGGAGAAA CCTATGTCTC AATACAAGAT TGCTCCGTCA	4800
ATTCTGGCAG CAGATTATGC CAACTTTGAA CGTGAAATCA AACGTCTAGA AGCAACTGGG	4860
GCAGAATATG CCCATATCGA TATCATGGAC AGTCATTTTG TACCGCAAAT CAGTTTTGGT	4920
GCAGGTGTGG TCGAGAGCCT TCGTCCTCAT AGTAAGATGG TTTTCGATTG CCACTTGATG	4980
GTGTCAAACC CTGAGCATCA TCTGGAAGAT TTTGCGCGTG CAGGTGCAGA CATCATCAGT	5040
ATCCATGTAG AAGCAACGCC TCATATTCAT GGCGCCCTCC AAAAAATTCG TTCACTCGGA	5100
GTTAAGCCTT CAGTCGTTAT CAATCCTGGC ACATCAGTTG AAGCCATCAA GCACGTCCTT	5160
CATCTAGTTG ACCAAGTTTT AGTCATGACG GTTAATCCAG GTTTTGGTGG GCAAGCCTTT	5220
CTGCCAGAAA CCATGGATAA GGTCCGTGAG TTGGTTGCTC TTCGTGAGGA AAAAGGTTTG	5280
AACTTTGAAA TCGAAGTGGA TGGTGGGATT GATGACCAAA CTATTGCTCA AGCCAAAGAA	5340
GCCGGTGCGA CTGTTTTTGT AGCAGGTTCC TATGTCTTTA AGGGAGAAGT CAATGAGCGA	5400

			1002			
GTACAAACTC	TCAGAAAACA	ACTGGACTAG		TTTGCAGGCG	GAAACCGCGG	546
TCATTATCGG	ACAGATTTTG	ATGCTTTTGT	TGGGGTGGAT	CGAGGCTCGC	TCTGGGTCTT	552
GGAAGAAGAC	TTACCTCTTG	CTCTAGCAGT	CGGAGATTTT	GATTCTGTGA	CGGAAGAAGA	558
GCGACAGGTG	ATTCAAAAAG	GTGCCCAGTA	TTTTGTCCAA	GCACGACCAG	AAAAGGATGA	564
TACAGATCTG	GAATTGGCTC	TCTTAACCAT	CTTTGAACAA	AATCCTCAGG	CTCAGGTCAC	570
TATTTTCGGT	GCCTTGGGTG	GCCGTATTGA	CCATATGTTG	GCCAATGTCT	TTCTGCCTAG	576
CAATCCTAAG	TTGGCACCCT	ATATGCATCA	AATAGAAATT	GAGGATGGGC	AAAACTTGAT	582
TACTTATTGT	CCAGAAGGAA	TCAGTCAGCT	AGAACCTCGT	TCAGACTACG	ACTATCTAGC	588
CTTTATGCCA	GTTCGGGATA	GCCAGCTGAC	TATTCTTGGA	GCCAAGTATG	AGTTGACAGA	594
GGAAAATTTT	TTCTTTAAAA	AAGTGTACGC	TTCTAACGAA	TATATAGATA	GGGAAGTGTC	600
GGTAACTTGC	CCAGATGGTT	ATGTGGTCGT	ACTGCATAGC	AAGGACAGGA	GGTAGGATGG	606
AAAGTTTACT	TATTCTATTA	TTAATTGCCA	ATCTAGCTGG	TCTCTTTCTG	ATTTGGCAAA	612
GGCAGGATAG	GCAGGAGAAA	CACTTAAGTA	AGAGCTTGGA	GGATCAGGCA	GATCATTTGT	618
CAGACCAGTT	GGATTACCGC	TTTGACCAAG	CCAGACAAGC	CAGCCAGTTA	GACCAAAAAG	624
ATTTGGAAGT	GGTTGTCAGC	GACCGTTTGC	AAGAAGTGCG	GATTGAATTG	CACCAAGGTC	630
rgacccaagt	CCGTCAAGAA	ATGACAGATA	ATCTCCTCCA	AACTAGAGAC	AAGACAGACC	636
<b>ACGTCTCCA</b>	AGCCTTGCAG	GAATCAAATG	AGCAACGTTT	GGAACAAATG	CGCCAGACGG	6420
rcgaggaaaa	ACTAGAAAAG	ACCTTGCAGA	CACGCTTACA	GGCTTCCTTT	GAGACAGTTT	6486
TAAACAACT	GGAGTCTGTC	AATCGTGGCC	TTGGAGAAAT	GCAGACAGTT	GCCCGTGATG	6540
CCGGAGCTCT	TAACAAGGTT	CTCTCTGGAA	CCAAGACGCG	AGGGATTCTG	GGAGAATTGC	6600
VACTGGGGCA	AATTATTGAA	GACATCATGA	CACCTGCCCA	GTACGAACGA	GAATACGCAA	6660
GGTTGAAAA	CTCTAGTGAA	CGAGTGGAGT	ATGCCATCAA	GTTACCCGGA	CAAGGCGACC	6720
AGAATACGT	CTATCTGCCA	ATTGACTCTA	AGTTTCCACT	GGCAGATTAT	TACCGCTTUG	6780
AGAAGCCTA	TGAGACAGGT	GACAAGGATG	AGATTGAACG	CTGTCGTAAG	TCACTCCTAG	6840
CAAGCGTCAA	GCGCTTTGCT	AGGGATATTA	GGAACAAGTA	CATAGCACCA	CCTCGGACGA	6900
CAATTTTGG	AGTTTTGTTT	GTTCCGACAG	AAGGTCTCTA	CTCAGAAATC	GTCCGCAATC	6960
GGTCTTCTT	TGATGATTTG	AGACGGGAAG	AACAGATTAT	TGTTGCAGGA	CCAAGTACCC	7020
ATCAGCCCT	TCTTAACTCC	CTATCAGTTG	GTTTCAAGAC	CCTTAATATC	CAAAAGAGTG	7080
CGACCATAT	CAGCAAGACT	CTTGCCAGTG	TCAAGACCGA	GTTTGGCAAG	TTTGGTGGTA	7140
TCTGGTCAA	GGCACAAAAA	CATCTCCAAC	ATGCCTCTGG	CAATATTGAT	GAATTATTAA	7200
			· ·			

ACCGTCGTAC CATAGCTATC GAGCGGACGC TCCGTCACAT TGAGTTGTCA GAAGGTGAGC	7260
CTGCGCTTGA TCTACTCCAT TTTCAAGAAA ATGAGGAAGA ATATGAAGAT TAGTCACATG	7320
AAAAAAGATG AGTTATTTGA AGGCTTTTAC CTAATCAAAT CAGCTGACCT GAGGCAAACT	7380
CGAGCTGGGA AAAACTACCT AGCCTTTACC TTCCAAGATG ATAGTGGCGA GATTGATGGG	7440
AAGCTCTGGG ATGCCCAACC TCATAACATT GAGGCCTTTA CCGCAGGTAA GGTTGTCCAC	7500
ATGAAAGGAC GCCGAGAAGT TTATAACAAT ACCCCTCAAG TCAATCAAAT TACTCTCCGC	7560
CTGCCTCAAG CTGGTGAACC CAATGACCCA GCTGATTTCA AGGTCAAGTC ACCAGTTGAT	7620
GTCAAGGAAA TTCGTGACTA CATGTCGCAA ATGATTTTCA AAATTGAAAA TCCTGTCTGG	7680
CAACGGATTG TCCGAAATCT CTACACCAAG TATGATAAGG AATTCTACTC CTATCCAGCT	7740
GCCAAGACCA ACCACCATGC CTTTGAAACG GGCTTGGCCT ATCATACGGC GACCATGGTG	7800
CGTTTGGCAG ACGCTATTAG CGAAGTTTAT CCTCAGCTCA ATAAGAGCCT GCTCTATGCG	7860
GGGATTATGT TGCATGACTT AGCTAAGGTC ATCGAGTTGA CGGGGCCAGA CCAGACAGAG	7920
TACACAGTGC GAGGTAATCT TCTTGGACAT ATCGCTCTCA TTGATAGCGA AATTACCAAG	7980
ACAGTTATGG AACTCGGCAT CGATGATACC AAGGAAGAAG TCGTTTTGCT TCGTCATGTC	8040
ATCCTCAGTC ACCACGGCTT GCTTGAGTAT GGAAGCCCAG TCCGTCCACG CATTATGGAA	8100
GCAGAGATTA TCCATATGAT TGACAATCTG GATGCAAGCA TGATGATGAT GTCAACAGCT	8160
CTTGCTTTGG TGGATAAAGG AGAGATGACC AATAAAATCT TCGCTATGGA TAATCGTTCC	8220
TTCTATAAAC CAGATTTAGA TTAATAATTT AAGAAAAATG AGCATTTTTT AGGATAAGAA	8280
TGTTCGTTTT TTTATGTGAA TATGGTATAA TAAGTAAAAG ACAAAAATGA ATACTCTTCG	8340
AAAATCTCTT CAAACTAGGG TAGTATCGCC TTGTCGTATG TATATATGCA GGTATATTAC	8400
AGGGTTTGTC AGTTCTATTG ACAATCTCAA AACAGTGTTT TGAACCACCA GCGACCAGCT	8460
TTCTAGTTTG CTTTTTGAAT AAATGGAATA GGAAATAGAA ATGAAATTAA	8520
GAAGAAGTGA TCGGATGGTT GTCATTTCCA ACTATTTGAT TAATAATCCT TATAAACTAA	8580
CTAGTCTCAA TACTTTTGCT GAAAAGTATG AGTCTGCTAA ATCATCCATC TCAGAAGATA	8640
TCGTCATTAT CAAACGCGCC TTTGAGGAAA TTGAAATCGG TCATATCCAG ACAGTGACTG	8700
GGGCTGGCGG AGGTGTCATC TTCACACCGT CTATTTCGAG TCAGGATGCT AAGGAAATGG	8760
TTGAAGACTT GCGTACCAAG TTGTCAGAAA GTGACCGTAT CTTGCCAGGT GGTTATATCT	8820
ATCTGTCTGA TTTGCTTAGC ACACCAGCCA TCTTGAAAAA TATTGGTCGT ATTATTGCCA	8880
AAGCTTTAT GGACCAAAAA ATTGACGCGG TTATGACCGT AGCAACTAAG GGTGTGCCAC	8940

TTGCAAATGC	AGTTGCCAAT	GTCCTCAATG	1004 TCTCTTTTGT	CATTGTGCGC	CGTGACCTGA	9000
AAATTACCGA	AGGTTCAACT	GTTAGCGTCA	ACTATGTTTC	AGGTTCAAGT	GGTGACCGTA	9060
TCGAGAAAAT	GTTCCTTTCA	AAACGTAGTC	TTAAGGCAGG	CAGCCGTGTC	TTGATTGTGG	9120
ATGACTTCTT	GAAAGGTGGC	GGAACGGTCA	ATGGTATGAT	TAGTCTCTTG	CGCGAGTTCG	9180
ACTCAGAACT	GGCAGGTGTA	GCGGTCTTTG	CGGACAATGC	CCAAGAAGAA	CGTGAAAAGC	9240
AGTTTGACTA	CAAGTCÁCTC	TTGAAGGTAA	CCAATATTGA	TGTCAAGAAC	CAAGCCATCG	9300
ATGTTGAGGT	TGGCAATATC	TTTGACGAAG	ATAAATAAGA	GATAGAACTA	AAGGTTGGAA	9360
CGATTGTCCC	AGCCTTTCTT	TGCAAACAGA	ATAGAAGGAA	GCTTATGAAA	ACACCATTTA	9420
TCAATAGAGA	AGAGTTAGAA	GCGATTGTTG	CCGAGTTCCC	GACTCCCTTT	CACTTGTATG	9480
ATGAGAAGGG	GATTCGTGAG	AAGGCAAGAG	CCGTCAACCA	AGCTTTTTCG	TGGAACAAGG	9540
GCTTTAAGGA	ATATTTTGCA	GTTAAGGCTA	CTCCAACTCC	AGCTATTTTG	AAAATTCTCC	9600
AAGAAGAAGG	TTGTGGTGTG	GACTGCTCTA	GTTATGTAGA	GCTTTTGATG	AGCCATAAAC	9660
TGGACTTTCT	GGGTTCTGAG	ATTATGTTCT	CTTCCAACAA	CACGCCAGAC	AAGGAATACG	9720
CCTATGCACG	TGAATTGGGT	GCGACCATTA	ACTTGGATGC	CTTTGAAGAT	ATTGAACATC	9780
TGGAGAGAGT	AGCAGGCATT	CCAGAAATCA	TCTCTTGTCG	TTATAATCCT	GGAGGCGTTT	9840
TTGAACTGGG	GACAGACATT	ATGGACAATC	CTGGGGAGGC	TAAGTTTGGC	ATGACCAAGG	9900
ACCAGCTCTT	TGAAGCCTTT	GCTATCTTGA	AGGAAAAAGG	AGCCAAGACT	TTTGGGATTC	9960
ACTCCTTCCT	AGCGTCCAAT	ACCGTGACCC	ATCTCTATTA	TCCAGAGTTG	GCTCGTCAGC	10020
TCTTTGAACT	GGCTGTTGAA	ATCAAGGAAA	AGTTGGGCAT	TTCGCTAGAC	TTTATCAATC	10080
TTTCTGGCGG	TATTGGTGTT	AATTATCATC	CAGACCAGGA	GCCGAACGAT	ATCGCCTTGA	10140
TTGGTGAGGG	AGTTCGTAAG	GTGTATGAAG	AGGTTCTTAC	GTCAGCAGGT	CTTGGTCAGG	10200
TCAAGATTTT	CACCGAATTG	GGTCGTTTTA	TGCTGGCACC	TCACGGTGCT	CTAGTCACAA	10260
GAGTCACTCA	TAAGAAGGAA	ACCTACCGTA	CCTATCTAGG	TGTGGATGCC	TCAGCAGTCA	10320
ACCTCATGCG	TCCAGCTATG	TACGGAGCTT	ACCATCATAT	TAGCAACGTG	ACCCATCCAG	10380
ATGGACCAGC	TGAAGTGGTA	GATGTGGTCG	GTTCACTCTG	TGAAAACAAT	GATAAATTTG	10440
CAGTTAATCG	CGAACTGCCT	CATACAGAAA	TCGGTGATTT	GCTGGTCATT	CATGATACAG	10500
GTGCCCACGG	ATTTTCAATG	GGCTACCAGT	ATAATGCCAA	ATTACGTTCT	GCGGAAATCC	10560
TCTATACCGA	AGAAGGTAAA	GCCCGTCAAA	TCCGCCGTGC,	AGAGCGCCCT	GAGGACTATT	10620
TTGCAACCTT	ATATGGCTTC	GATTTTGAAG	AATAATCTGA	TAATAGATTG	AAAATGAAAT	10680
TGAAAAACAG	ATTGCTTTCT	AAAAAATAGG	CAAAAATCTT	GTTTTTCCTT	CAAGTCGTGA	10740

TATAATAAAA CTATAAAACG TTTTCAAGGA AGGTAACGAT ATGTCTGAAG AAACAATTGA	1080
TTATGGACAA GTGACAGGAA TGGTGCATTC GACAGAAAGC TTTGGGTCAG TAGATGGGCC	1086
TGGTATTCGC TTTATTGTCT TTTTGCAGGG CTGTCACATG CGTTGCCAGT ATTGCCACAA	1092
CCCAGACACT TGGGCTATGG AGTCCAATAA GTCACGTGAA CGGACGGTAG ATGATGTCTT	10980
GACAGAGGCC TTGCGCTACC GTGGTTTCTG GGGAAATAAG GGTGGGATTA CAGTCAGTGG	11040
AGGAGAAGCT CTCTTGCAGA TTGATTTCCT GATTGCTCTC TTCACCAAGG CTAAGGAACA	11100
AGGAATCCAC TGTACCTTGG ACACCTGTGC TCTTCCTTTC CGTAATAAAC CACGTTACCT	11160
TGAGAAGTTT GACAAACTCA TGGCTGTCAC TGACTTGGTT CTTTTGGATA TCAAGGAAAT	11220
CAACGAAGAA CAGCACAAGA TTGTCACTAG CCAAACCAAT AAAAATATCT TGGCTTGTGC	11280
CCAGTATCTA TCAGATATTG GAAAACCTGT CTGGATTCGC CACGTGCTAG TTCCAGGATT	11340
GACAGACAGA GATGATGACT TGATTGAACT TGGTAAGTTC GTCAAGACCC TCAAAAATGT	11400
TGATAAGTTT GAAATTCTAC CTTATCACAC CATGGGTGAG TTCAAGTGGC GTGAACTTGG	11460
AATTCCATAT TCCCTCGAAG GAGTCAAACC ACCAACAGCA GATCGCGTCA AGAACGCTAA	11520
ACAACTCATG GATACCGAAA GTTATCAAGA TTATATGAAA CGTGTACATG GATAGAAAAG	11580
AAGCCTGATG GAAACATCGG GCTTTTGACT TGCAAAAAGA CTTAGCAAAT CAGCTAAGCC	11640
TTTTTCTTCT TATCTCGAAC GTTGTTTTCC AGCGTTGCGA TTTTTGTGTT TTTTCTTGCT	11700
TGTGATAGCA GTTGGTTGTT CAGGGGTAAC GTCTTTTCGT CCACTTGGTT TAGAGAAAGC	11760
ACTTGCTTTT GGTGGGTTCT TGGCTAGTTC TTCACGGACT TTTTTGCGAA GTTTTGGACG	11820
AACGATATAG TTGACGATAA ACTGTTGGAG AATCATCATG AAACCACCGA CAACCCAGTA	11880
AAGTGTGACA CTAGCTGGTG AGAAGAGGGA GAAGACGACG ATCATGAGTG GGCTCATGTA	11940
AATCATTTTC TTGATTTGTT CTCTTTGCAT TTCATCTTCT ACTCCGTGAA GTGAAAGGAG	12000
CGATTGAAGA TAGTAAAGGA CACCAGCACA GGCAACCAAA ATCATACTTG GAGAACCTAG	12060
AGGAATGCCT AGGTAGCTTG CTTGAGCAAC CCCTTCAGTA TGTTGGGCAG CAAAGTAGAT	12120
AGCAGAGAAG AAAGGCATTT GAAGGAGGAT AGGGAAACAT CCTACACCGC CAAACATGCT	12180
GATACCGTGC TCTTTTGAG CAGCAAAGAG AGCTTGTTGG GCTTCGAGTT TTTCTTCTTG	12240
AGTAGTCGCT TCTTTGAGAC GCGTTTGGTG TGGCTCAAGG ACGTGCTTGA GGGCGTTCAT	12300
CTTTTCAGAG TGAAGCGTTG CCTTCCATGA TTGGTAGATA CCAAGTGGTA AGATAATCAA	12360
GCGTACGATA ATGGTTACGA TAATGATAGC GACACCAAAG CCTAGACCTT TATCAGTAGC	12420
GAAGTACTTG ATGGCTTCAG CCATAGGCGC TCCGATCGTA TTCCAAATAA ATCCTGTTGG	12480

CTGACCTGTG	GTTTTATCGA	CATTGACACA	1006 GCCAGTCAAG	ACAAGCAACA	TAGCCACTCC	12540
CATAGCCGAG	AGTGCAAAAT	CGGGGT		-		12566

# (2) INFORMATION FOR SEQ ID NO: 150:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5238 base pairs (B) TYPE: nuclei acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:

TGACACTCTG	TAGGATTGTC	GTTAATTGAT	TGCTCGTACT	CTCTACAATA	ACCACCAAAG	60
TAAAAACGAC	ATAGAAAGAT	AGCATCAGCT	GTAGCCATAG	CGCCTTTGAC	ACCTTCTGGA	120
TGATTATGAG	TTACCTCTGC	AGAAAGACTC	GTAAGTCCTC	TAGATGATGG	CCATATACCA	180
GTTTTCGCAT	AAAAACCACA	GTCCATGATC	CAAGCACATG	GAGAAATACG	CATAGCTGAT	240
CCATTCCCAA	AGCTATTATA	AGGCTCACGG	TTATCGCTGT	TTAGCCATGC	ATTAAACCGA	300
GCACCGTAAT	CAGCATTCGG	ATACATTCTG	CCATATTTCT	TCATCGCGTC	AATGAAGTCA	360
TCTTTTTGTC	CACCATTCAT	AATTGCTTCT	GCAACAGCAC	AGGTCATAAC	CGTGTCATCT	420
				TTTTGATATT		480
				TCAGATTCCT		540
				AGAAAATAAC		600
				TTTCTTTCCA		660
				CCAATGCATA		720
				TATCTAGTCC		780
				TTGCATCAAA		
				CTAACACAAA		840
						900
				AGTCGAAAGG		960
				AGACTTTTGA		1020
GGCTTAATAA	ATTTTCCCCA	ATTATCAGGT	ATATTCACAA	TCTCTCCTAA	AATACCAGCA	1080
TAAATCTTTC	GACCATAAAA	CTCTTTAAGC	TCAATAGGAT	AGTCATGAAC	CGGAACGTTT	1140
AAGCCCATCA	TTTTTAGTAA	TGCTCTAGTC	TCCATTATAT	AATCTACAAC	ТАТАТСТТСА	1200
CTTGTTAACT	CTTTTATTTC	AGAAAAAGAT	TGATATAAAA	TAACTTCTTC	TCCTTGTAAG	1260
TAGGCACCTA	CTTGAGCATT	GTATTTATTA	ATTGAAACCT	CACTTGGTAA	ТТТАСТТТСТ	1320

CTAATATAAA CAACCATTTC ATCACTCCTA TATCACTAGT GTTACACCAA TTTGTAAAAA	1380
ATAATAGCAA TTTTGCTCTT ATTTTTTTGA GTAAATAGCC CCCATAATAT CATCGAAATA	1440
ATCAACGGTA TTTAGGAGTA ATTCAATAAC CTGGGACTTT GTTAGTCGCA TTCCCCTTCT	1500
ATCTCTAGCA TCTTCTACTA AATTTTCAAG TTTCTCTAGA TTTTTATCAT CCAAGCTAAT	1560
CATTATTCTA TTTTTATCGG TTGCCATTTT CATCACCTCA AGTTAATTCT ATCACAGGTG	1620
TAACACTAGT GTCAACTGGC TTTTATAATA CATTAGTTTA AAAGTGGAGA GGATTTTTAA	1680
CACAGTAACT TTAAATCTTT GGTATTAAAA AATTTTCACA ATATTTATAG AAATAAAATC	1740
TGTCTCAAAT CAGTTATCAA ATCTAGTATA AATTATGAGC GGCTACTCTA ATACTTTCCC	1800
TCTAAACAAG AAAAAGACTT ACACTCAAGG GTTTTCTTCC CCCCCTTCGT TATAACGTTT	1860
TGACTCTTTT ACTAGCAAAG GTATATACTC ACAAGGAACT TTGGTTGACT ATTGAATCTC	1920
TCCAACTTCT TCTTTAACAT ATCCTTCTAC ATCTTCAATC TCTACAAACA TTGGGTCTAA	1980
GTGACACAAG AAATGCCAAA CTTCGATCCC TTTTTTTCTG TAAAGAATCG CTTCACCGTC	2040
TTCACTTCCG AAAAAGCTTC TGTCGATTTC ATATCCGCGG CTTTCTAAGA AGTCTTTTGC	2100
TTTACGATAG TTCGTTTCTC TTGTTTCGAC ATAGGCTTTA ACTTCATGGT TGTTAACGAC	2160
ATATGCATCA ATTITTGAAT ATCCTTCGAT CACTCTATCA TTTTTGAGGG ATAAATTTGA	2220
AATCTCTTTC CAAATAATGT TTACATTTTC CTCAGGATCG AACATAAATT TAGATAAAGG	2280
AACAATATTT CCGTTAAAAA TAATTTCCAT ATAATCCGGT ATGTTTTTAG GATTAAAATA	2340
CTCCACTTCA AAACCATCTT CTGTTTCCAG AGTGTATCCC GGGATTTGAG CTACAAAGGC	2400
TTTCCCATCT TCTATGGAAT CAAATGCTAC TAAATCTTTA GAATAATCAT TTTGGTACAA	2460
TTCCAATATA ACCATCGATA ATCTCTCCAT TTTCATTATC AGGCTAATGT AAATAAGCAC	2520
GTCACCTGAC CAATTCAGGC TCTCTGTATC ATCTCATCAT ATTTCCTACT TACTTTACGA	2580
GTCTTATACC CAGAACACAC CTTATCGACC TTCGGTCTCA CCTCGTCGCA TTGGCTGAAC	2640
ATCTACTTT ACTTTGCTGA TGCTTCAACT CGTACAAGCA GTGATACCGC CTCAGCGTGA	2700
TGCGTCAGTG GGACTCAAAA GGTTCGGGGA ACCTTTTGAG GATTAACTAC GTTTCTCTAA	2760
FAAACTTACA CATTCAACTT GTTCATCATT GTCCAAACCT ATGTTGAGAT TTTCTTCTAT	2820
AATTGGTAGC TTAAAAGTAA TGGATTTTAG CCATTGTCCG TTAGATTGTT TTTCTTCATA	2880
AACTTGAATT TCAGAAATCA AAGCTGAAAT TAACTGCCTA CGCTCTACAT CATTCATGAC	2940
TTTATAGAGC TTATCAAAAT AGATCAGAAC CTTATATATG TTATCTCCTG TAAGCTTTTC	3000
AGCTTCAATA GTCTGTTTCT TTGCTTTCGC ATCAATTAGT GATGATTCTA ATTCATCTAG	3060

TTTGTCATA	C ATACGATAT	A GTCTATCAT	C TAAATCCTC	T TTCCTTCTC	T TATAATGCTT	3120
ATCTTCAAC	А ТСТАААТТА	T CTATTTCCT	C AATTAGCTT	A AACTTTGTA	G AATGACTCTT	3180
TCTCAATTC	C TTTTGGTAA	TATCTATTY	C TTTTTCTAT	T TCAGAGGTA	CCACCTTCAT	3240
GTTGATTTT	T TCTTGCATC	A TAGAAGCAA	A TTTCGGATT	A CTTACTATO	T TGACAATCAC	3300
CTCTGCAAC	A GCATCATCT	A ACAATTCTTO	TCTAATTTG	C TTACTGAAT	G TACACTTATT	3360
ACCTCTTAT	C ATCTGCCTA1	r ggttacaaco	ATAGTAATA	A AAATCTTTA	ACTTTGTGCC	3420
ATCTTTCTT	T TTCTTGATAC	ACTTGTTCC	AAACATTCC	C ACTCCACATA	TCGGGCATTT	3480
TACAATTCC.	A GAAAGCAAG1	GTGTGCGTG1	ATCTTTTCC	r TTATTCACA1	GCTCATATTT	3540
CTTTGCTTG	A GATTTTAGCT	TAACCTGAGC	AGCTTGCCA	A ACTTCATCG	AAACTATAGC	3600
TTCATGTATO	C CCTTCAGATA	TTAGATATTC	ATCTTGTTC	A ACCTGCTTAT	ATTCATTTCT	3660
TGTACCATG	A ACTTTTTCTA	AAGTTCTTCT	TCCAAATGC	r attttcccat	TATATACAGG	3720
ATTCTTTAA	r atctttctta	TAAGACCTGC	ATCAAACAA	GGATTCTTAC	CATTCTGTCT	3780
TGGGATTTT	CTAATTCCAT	GATTCTCTAA	GTATTTAGAT	T ATCCCATTGG	CTCCTATCGT	3840
AGTATTTACA	TACTGGTCGA	AAATCGTTCT	TATTGCAACT	GCCTCTTCCT	САТТТАТААА	3900
CAGCTTGCCC	TCTTCAAGTT	TATATCCATA	CGGAGCAAAG	CCACCATTCC	ATTTTCCTTC	3960
CCTGCTTT	TGAATGCGAC	CTTCCATTGT	TTGAATACTG	ATGTTTTCTC	TTTCTATTTC	4020
AGCCACAGCT	GATAAAACAG	AAATCATTAG	TTTCCCAGCA	TCTTTAGATG	AATCAATGCC	4080
ATCTTCAACG	CAGATAAGAT	TAACTCCATA	ATCCTGCATT	ATATGAAGTG	TAGAAAGAAC	4140
ATCAGCGGCA	TTTCTTGCAA	ATCTTGATAA	CTTAAACACA	AGAACAAAAG	ATACTCCATC	4200
PTTTCCAGAT	TTTATATCTT	CCATCATTCG	ATTGAACTGT	ATTCTACCTT	CAATAGACTT	4260
TCAGACTTC	CCGGCATCTT	CATACTCTCC	AACAATTTCA	TAATCGTTGT	AAATAGCAAA	4320
GCTTTCATT	CGTGATTTTT	GTGCCTCTAA	CGAATACCCC	TCTATCTGTA	TTGACGTAGA	4380
ACTCGTGTA	TAGAGGTATA	CTTTTATTTT	TTCTTTTGAC	ATAGTATTAA	CCTCAATATA	4440
TTTTTCTAT	ATCATATATA	ATTTTTTTAA	TTTAAGTTTG	GACTATCATT	TCAAGTATAT	4500
'ATAACACTT	TTATTAGTCC	GTCTCAATTT	GTGTTTTTGC	CATGTCAAAA	CTATTTTCA	4560
					GCACCAGCAT	
TTTTGCAAT	CAGATTTGCT	ATTAAATCAG	CCAATCCATT	CCAGTCATTG	TCCAATATAT	4680
CCTCCTCTA	AAGTTTTATA	тстаатаатт	ATTTGTTTAA	TTAAGTTTTT	TGACATTGAC	4740
AGTGCTTTG	GATTAGCAAC	ATAGGAATCT	CACTTCCGCC	TCTATTCCGG	ATGAGCCGGC	4800
				CGGATAGGGT		4860

ATATTCAAAC	TCTTACTTAT	CGCTCACTTT	CTTTTTGCTT	AGCAGAACTT	TTTTTGCCGA	492
ATTATTCAGC	CGAAAGATCT	TGACGGATAG	GTTATTACGC	тссааааата	ATTAACGTCT	498
TGTCTTGGTC	TATTCAATTG	TTAAGGTTCA	AAATTTATCG	AGAGTTATTA	ATCTTTTTAA	504
AATTTGACCA	TCAGAAAATA	TTTATCTTGA	TGTAACAAAA	TTCTATAAAT	TACCCTCTTA	510
TACTTAACAG	TGAAAAGAAG	TCTTTCTTGG	TAACCAATTT	TGAAATAGAA	TTTGCTTATA	5160
TAAAAAGGTC	CAATTCCCAC	TGCATAAATA	GCAGTGAAAA	TTAGACCCTC	TTGGTAACTG	5220
TCATCTAAAA	GTCTTCTA					5238

#### (2) INFORMATION FOR SEQ ID NO: 151:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13425 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

GACGATTTAC	GAAGAATCGA	ACAAGAACCT	GCTCCTATCA	ATTCCCAACC	TCTATCTCTA	60
AAATCTTGCA	GTTCATGCTT	ATACTTTTTT	AAGAAATCTA	GAATCATAGA	TACGGTAGAT	120
GACATCGTCT	GGTTGACATT	GGTCAAAATA	GAACAAACCA	AAACGACTCG	TTCTATACCT	180
CCAACCTTTC	AAATGCATCT	CATGTAAATG	TTCTTCTTCC	TTGTCCAAAT	CAACAATGGT	240
GAAAATCCGA	AATTCTACTC	TGCTATTCAT	TGTCTTACCC	CAAAATTAGA	AAACATGCCT	300
GGCGTTATTT	ATTAGATAAT	TCTTTCCACT	TTTGACTCAA	TCTCCAAAAA	ATATAAGAAA	360
TCTGAATCGC	AAAAACTATC	AATAAAACCC	AATCTATTAT	GAAAATCAAA	AACACTTTCC	420
AACTGAAAGA	ACTACCTCCA	GTGACAAACT	TTGAGAAAAA	CGGTAGTAGA	GCTAAAAAGA	480
GAAATAAAAT	AGGAAGCATC	CGCATTGTTA	AAATCCGTTT	GGCATAAAAA	AATCTTTATT	540
TAAACGAAAA	TATTATGGCA	AAATTTACGC	CAGTTTTTGA	ACGGCTGATG	TAGATATTTT	600
ATACTTTCAA	aatgtttaaa	TGTGATTATT	TATTTTTGAA	AAATAGATCA	CCAGCCCGAC	660
TGAAAGTGCT	TATAGAATGA	TAATAAGTCG	CCTGCCGAAA	ACAGCGAAAA	ATAGCGGTGT	720
TATGCGGAGA	TAATCTGACG	CGATGCGAAA	GTATATTGCA	TACTTATTTT	CAACAATTTA	780
GCAGAGTATT	TTTATAAGTG	TGATATAATA	GAAGTATAAT	TTGTTCTGAT	AGTTTATTTT	840
ATGGAGAAGT	agattttag	AATGCGGAGG	GTTCAATATG	GTTGAGTTTA	TAAAGTCTAA	900
GAAAGAAATG	AGTGAGGAGG	ATATTAAAGC	AAATTTCATC	ACTCCTGCTA	TTGTATCCAA	960

			1010			
AGGATGGAAA	AATGGTGAGC	ATATCGCTTA	CGAAGAATAC	TTCACTGATG	GTCGAATTGA	1020
AGTTAGAGGA	GATAAGGCTC	GTCGTAAAGA	AGGAAAAAA	TCAGACTATT	CACTGTATTA	1080
CCAATTTGGA	ACTCGAATTG	CAATTGTTGA	GGCAAAGGAT	AATAAACACA	GCGTTCGAGC	1140
AGGATTACAA	CAAGCTATTG	AATATGGAGA	GATTTTAGAT	GTTCCATTTG	TTTATTCTTC	1200
GAATGGTGAT	GGCTTTATTG	AACACGACCG	TATCACGAGA	GAAGAACGTG	AGCTGGAGTT	1260
AGACGAATTC	CCTACTCGTG	AAGAATTATT	TTCTCGTATG	ACGAAGGAAA	AAGGATTGAC	1320
GTACGAAATT	ACAGAAGCTA	TCTCAACTCC	ATACTATACA	GACGCCTTCT	CAATGAAAAC	1380
GCCACGCTAT	TATCAGCAAA	TAGCTATCAA	CCGTACTATT	GAAACAGTTG	CCAGAGGACA	1440
AAAACGAGTA	ATGTTTGTGA	TGGCAACAGG	AACGGGGAAA	ACGTTCATGG	CTTTTCAAAT	1500
PATTCATCGC	CTTCGAAAAG	CTGGTTTGGC	TAAACGAGTT	TTATTCTTAG	CAGATAGAAA	1560
CATCTTAGTA	GACCAAACGA	TGGCTGAAGA	CTTTAGGCCA	TTCGAAAAGG	TAATGACGAA	1620
AATTACACCA	AAACTTTTGA	CTGCTCCTGA	AAAATTAAAT	TĊTTTTGAAA	TTTATCTAGG	1680
GCTTTATCAG	CAACTAACTG	GTGAAGATGG	AACTGAAACA	CATTATCAAA	AATTTGACAA	1740
AGACTTCTTT	GATTTAATCG	TAATTGATGA	AGCGCACCGT	GGTTCAGCTA	AGGAAAACAG	1800
TAACTGGCGT	AAGGTAATTG	ATTATTTCAG	TTCTGCGACA	CAGATTGGGA	TGACCGCTAC	1860
rcttaaagaa	ACCAAGAATG	CTTCCAATAC	GGAATACTTT	GGTGAGCCAA	TCTATACTTA	1920
AAAATTTAAA	CAGGGAATCG	AGGATGGTTT	TTTGGCTCCA	TATCGTGTTA	TGAGGGTTAA	1980
TTAGATGTG	GATGTGGATG	GTTATCGTCC	AGAAACTGGA	AAAGTTGATG	CTAACGGACA	2040
TTAATAGAA	GATAGGTACT	ACGGCAGGAA	AGATTTTGAT	AAAACCATTG	TCATTGATGA	2100
AGAACGCAA	AGAGTTGCCA	AGTTTGTTTC	TGATTATATG	AAGCAAAACA	ATGCACGATT	2160
GATAAAACA	ATTGTTTTTT	GTGTTGATAT	TGACCATGCC	GAGCGAATGC	GTGCTGCACT	2220
GTAAAAGAG	AATCTAGACT	TAGTCCAAGA	AGACTATCGT	TATGTCATGC	AAGTAACTGG	2280
GACAACGCT	GAAGGAAAAG	CTCAACTGGA	TAACTTTATG	GATGTCAATT	CTAATTTCC	2340
GCTATTGTA	ACAACGTCTA	AATTATTAAC	GACAGGAGTT	AATGCTAAAA	CATGTCGTTT	2400
ATTGTTTTA	GACTCTAATA	TCCAATCCAT	GACTGAATTT	AAACAAATTA	TTGGTCGTGG	2460
ACACGTCTT	TATCCTCAAA	AGGGGAAAGA	ATTTTTTACG	ATTATTGATT	TTCGAAATGT	2520
ACCAATTTG	TTTGCTGACC	CTGATTTTGA	TGGTGATCCA	GTGAAGGTGC	TAGAAACAGG	2580
GCGAAAACA	GTCAGTGGTT	CTACGCCCGG	TTTCGTAGAT	GAGGAAGGTG	ACCCAGTAGA	2640
AAATATATC	GTTACAGACA	AGCAGGTTAC	CATTCTTAAT	TCTACTGTTC	AAGTATTGGA .	2700
GAAAACGGG	AAACTGATTA	CCGAAAGCCT	GACCGACTAC	ACTCGAAAGA	ATATCTTAGG	2760

TAGCTACGCC ACTITGAACG ATTITATCAC AGTITGGCAT ACGGCAGATA AGAAGAAGCT	2820
TATCTTAGAC GAACTITATA AAAAAGGAGT TTATCTAGAT GCTATTCGAG AGTCGGAGGG	2880
AATATCAGAA CAAGAAATCG ATGATTTTGA TTTACTCCTA AAACTTGCCT ATGGTCAAAA	2940
AGAATTAACC AAAACGGAAC GTATCAATAA ACTCAAACAA AGCGGATATT TATATAAATA	3000
TAGTGAGGAA GCGCGTGCTG TTTTGGAAAT TTTACTGAAC AAATACATGG ATAAAGGTAT	3060
TGGAGAACTC GAAAGCATTG AAACATTAAA ACTTCCAGAA TTTCAGATAT ATGGTGGAAC	3120
CTTCAAAATC ATCAATACTT ATTTTGGAGA TAAAAAACGA TATTTACAAG CAATTAAAGA	3180
ATTGGAGCAA GAGCTATTTA CAGTAGCTTA ATGAAAGGAA AGTATGTCAA TTACATCATT	3240
TCTAAAAAGA ATTCAAGATA TCACTCGAAA CGATGCTGGT GTTAATGGTG ATGCTCAACG	3300
TATTGAGCAA ATGTCTTGGT TATTATTCTT AAAAATTTAT GATAGCCGTG AAATGGTTTG	3360
GGAATTAGAA GAAGACGAGT ATGAGTCAAT TATCCCAGAG GAATTAAAAT GGCGAAATTG	3420
GGCTCATGCT CAAAATGGGG AACGGGTATT GACAGGCGAT GAATTACTTG ATTTTGTCAA	3480
TAACAAGTTA TTCAAAGAGT TGAAAGAGCT TGAAATAACT TCAAATATGC CTATTCGAAA	3540
AACGATTGTT AAATCAGCTT TTGAAGATGC GAACAACTAT ATGAAAAATG GCGTCTTGTT	3600
ACGCCAAGTC ATCAATGTTA TTGATGAAGT TGATTTCAAT AGCCCTGAAG ATCGTCATTC	3660
GTTTAATGAT ATTTACGAAA AAATTCTTAA AGATATTCAA AATGCTGGGA ACTCAGGAGA	3720
ATTTTATACG CCACGTGCAG CGACTGATTT TATTGCCGAA GTTCTTGACC CAAAACTTGG	3780
AGAATCAATG GCAGACCTTG CTTGCGGAAC AGGAGGCTTC TTGACTTCGA CTCTGAACCG	3840
TTTAAGTAGT CAACGTAAAA CTAGTGAAGA TACCAAAAAA TATAATACAG CTGTTTTTGG	3900
TATTGAAAAG AAAGCATTTC CTCATCTTTT AGCAGTTACA AATCTGTTTC TTCACGAAAT	3960
TGATGACCCT AAAATTGTTC ATGGAAATAC TTTGGAGAAA AATGTTCGTG AATATACGGA	4020
TGATGAAAAA TTTGACATTA TTATGATGAA TCCACCTTTT GGAGGGTCAG AATTAGAAAC	4080
AATAAAAAAT AACTTTCCAG CAGAATTACG GAGTTCTGAA ACAGCTGATT TATTTATGGC	4140
IGTCATTATG TATCGTTTGA AAGAAAATGG TCGTGTTGGA GTTATTTTAC CTGATGGTTT	4200
CTATTTGGT GAAGGTGTAA AAACTCGCTT GAAACAAAAA CTGGTAGATG AGTTCAACTT	4260
GCATACGATT ATTAGGTTGC CTCATAGTGT CTTTGCACCG TATACAGGAA TCCATACGAA	4320
CATTCTTTTC TTTGATAAAA CAAAGAAAAC AGAAGAAACT TGGTTTTATC GTTTAGATAT	4380
CCAGATGGT TATAAAAATT TCTCGAAAAC TAAGCCGATG AAGTCAGAAC ACTTCAATCC	4440
GTTCGTGAC TGGTGGGAAA ATCGTGAAGA GATTCTGGAA GGTAAGTTCT ACAAATCTAA	4500

			1015			
•					T GTGACTTTCC	4560
					AAGCGGAAAG	4620
					TGTTGGAGGA	4680
CAAATAATG	A CÁCCAGAAC.	A ACTTAAAGC	A AGTATTCTC	C AAAGAGCGAT	GGAAGGGAAA	4740
TTAGTGCCG	C AAAATCCCA	A TGACGAACCT	r gcaagtgaa	T TATTAAAGAG	AATTAAAGCT	4800
GAAAAAGAA	A AACTTATCA	G TGAAGGAAAA	A ATCAAACGA	G ATAAAAAGGA	AACTGAGATA	4860
TTTCGTGGT	G ATGATGGGA	A ACATTATGGG	G AAGTTTGCT	G ATGGAAGCAC	TCAAGAAATT	4920
GATGTTCCT	T ATGATATTC	TGATACTTGC	GAGTGGGTG	GGTTTTCTAC	ATTGGTTGAA	4980
ATTGTCAGA	G GTGGCTCTCC	CACGACCAATO	AAAGATTATO	TTACTTCTGA	AGTAGATGGA	5040
ATAAATTGG	A TAAAAATAGO	G TGATACTGAA	AAGGGTGAA	AGTATATAAA	TAATGTTAAA	5100
GAAAAAATC	A AAAAATCAGO	GCTTAACAAA	ACTAGATTTC	TAAAAAAAGG	TACATTTTTG	5160
TTAACTAAT1	CTATGAGTTI	TGGTAGACCT	TATATTTTGA	ATGTTGATGG	TGCAATACAC	5220
GATGGATGG1	TGGCTATTTC	GAACTATGAA	AACTCATTAA	ATAAAGATTA	CCTATTCTAT	5280
ATTCTTTCAT	CAAATGTAGT	TTATTCTCAA	TTTCTATCTC	TAATTAGTGG	AGCTGTTGTG	5340
AAAAACTTGA	ATAGTGATAA	AGTTGCTTCT	ATTCTTATCC	CTCTCCCCCC	ACTATCCGAA	5400
CAACAACGAA	TAGTAGAAGC	AATCGAATCA	GCTTTAGAAA	AAGTAGATGA	ATATGCTGAA	5460
AGTTATAATA	GACTAGAACA	GCTAGATAAA	GAATTTCCAG	ATAAACTAAA	AAAATCTATT	5520
CTTCAATATG	CTATGCAAGG	AAAATTAGTT	GAACAAGACC	CAAATGATGA	ATCAGTCGAA	5580
GTTTTACTTG	AAAAAATACG	AGCAGAAAAA	CAAAAACTCT	TTGAAGAAGG	CAAGATTAAA	5640
<b>AGAAAGA</b> TT	TGGACATTTC	TATTGTTTCC	CAAGGAGATG	ATAACTCTTA	TTATGGGAAT	5700
<b>ATACCTATGA</b>	ATTGGGTTGT	TATAAAAATA	AAAGATATTT	TTTCAATAAA	TACAGGTCTT	5760
CTTACAAGA	AGGGCGATTT	AAGCATTAAT	AATAAAGGTG	TTAGAATTAT	ACGTGGTGGT	5820
<b>LATATTAAGC</b>	CTTTAGAATT	TTCTCTGTTG	GATAATGATT	ACTACATTGA	TACACAATTC	5880
TCTCCTCTG	AGCAAGTTTA	TTTAAAACAT	AATCAGCTAA	TAACACCTGT	ATCAACCTCT	5940
TAGAACATA	TTGGAAAGTT	TGCAAGAATC	GATAAAGACT	ATGATGGTGT	TGTGGCTGGT	6000
GATTTATTT	TCCAATTAAC	ACCATTCGAA	AGTTCAGAGA	TTATTTCAAA	ATTTCTATTA	6060
TTAACTTGT	CCTCTCCGTT	ATTTTATAAA	CAATTGAAAG	CAATAACTAA	ACTATCAGGT	6120
AAGCTTTAT	ATAATATTCC	TAAAACTACA	CTGAGCGAGC	TATTAATTCC	GTTAGCTCCT	6180
TTGAGGAAC	AGGAACTTAT	ТАСТСААААА	GTTGAGAAAC	TTTTTGAAAA	AGTAAATCAA	6240
TTTGAAAAT	GATTCTTTTC	ATCTCTTCAT	GATTAGAAAT	AGGGATTAAT	AATTCGGAGA	6300

TACTGGTACT ATTTAATGTT TTCCCTTTGA TAGCATCTTT TG		636
TAAGTGGCAA AAATATCATT AAGTAATCTC TGATAATATT TT		642
ATATCGATAT AATGGCTTCA TTATGAGTGG CAGGAATATC CA		6486
TAGATAATTT AAAACTCATT AATAAAGTTC CTTTAGGTGA AA		6540
TTAATGCTAA TTTAGAAATA GATTCTCTCG CATTAGTTAC AT	AACCAGAT ATAGGCATAT	6600
CTGATATAGA TACCCAAGGT ATTTCAGTTC CCCAAAAAGT AGG	CTTCACTG CGTGGAGGAG	6660
TTTTTCCTAT TCTGAAGTTA ACTAGGCTAG CAAATTTAAT ATA		6720
TTTCATATAT AGGATAAGAG GTTGTTTCGT CTTTGTTCCC ATA	AATAAGAG CCATAATCAC	6780
AAAAATAGCA GGTAGTCAGT TTGACCACCT GTTATTTTTT ACC	CAATTAAC AATTTTATCT	6840
ACAATATITT GTTGTTCAGT AGCTGTTTTC CTTAGATAAA TTC	GAGTAGT TTCTATACTT	6900
TCGTGTCCCA TCAAATCTGC AAGCAAGGCA ATATCATTAT ACT	TTCGCTAA AAAATTCTTA	6960
GCAAATAAAT GCCTAAAAGA ATGAGGGTAA ATTACGTTAG GAT	TCATTTT GTATTTATCA	7020
GCATAATTTT TTAACTGTTG AGCAACTCCT CTTGCTGTAA TTG	GTTCGTT AAATTTATTC	7080
AAAAATAAAT AACCACTTCG GCGATTTTCT GATTCTAACC AAC	TAAGACA ACTATTTCTT	7140
AATTTTTTAG GAATGTACAG TCTACGAATT TTACCACCTT TTG	AGTAAAT GTCAAAATAA	7200
CCGATTTCTA CATGCTCTAC TTTTAGTTTA ATAAGTTCAC TTA	CACGAGC CCCAGTTGCA	7260
CCTAAAAACC AAACGACAAA ATGCCATTTT AAAATACCAT CTT	TTTTCAA ACTACGTTTA	7320
AGAAAAAGGT AATCAGCATG GCTAATGACA TCTTCTAAAA ACG	GTTTTTG CTGTACTTTG	7380
ACAAATTTTA ATTTCAAATC ATCATGACCA ATAAAAGCCA GATA	ATTTATT TACTCCTTGT	7440
AGTCGCAAAT TGACAGTTTT AGGTTTAAAA TTGTCTAATA AATA	ATCCTTT GTATTCAAAT	7500
AAATCTTCCA TTTTGAGTTC GTAATTCTCC AAGAAAAATC GAAG	CACCATA AAGGTACGAA	7560
CGCACAGTAT TTTCAGCTAA ACCAGCTTTC TTCAAATGTA ATTC	CAAAATC TTTCAACGTA	7620
AAACTCCTAT CTTATGTTTG ATAGAAATTC CACCGCACGT AAAA	ACTATTA TACTAAATTA	7680
GTGCGTCAAT ATGGGCGAAA AATTGTTCGA TTTTATCAAC GATT	CTGGAT TGTTCAGGAA	7740
GGGGTGGGAG GGGGATTAAA TATTCTTTTA TAGTTTTCGT TAA1	AATTCT TTTTGTTTTG	7800
FACTACCCGA CGCTTTTTCT TCAATAACTG ACTGAACAAT AGGA	GAGGAA AGAAAATTAT	7860
AGATGAAATG GCAATTAATA ACCCCCGATA AGACTCTTAT AACT	GTAACA TGGCTATCTG	7920
CAACAGCCCA GCCATAAGGA TTTTTATTTT CATGGTAAAT AGCT	'AATCGT CCTAACGTAC	7980
TAGACCTGT TGAATTCCAC ATTAAATCAC CATCTCTTAG TAAT	CTTTCT TTCTGGTAAC	8040

TATGAACTGT	TTCGGGATCA	ATAAATCTTC	CTAAGTCAAT	' AGAAAAGCCA	GACCATTGAT	810
TACATTTCTG	AGCAATCACA	GGGTATATAC	GAATATTTGA	ATATTTTGGA	GACTTCCCTC	816
TTTGAATGTA	GGAGGTTATA	TCGTTTAACC	TCACCCATTC	CCAACTTTCT	GGTATTTCAC	822
AAGGTACTTC	CTCATAATAA	GAGTTATCAT	CTCCTTGGGA	AACAATAGAA	ATGTCCAAAT	828
CTTTCTTTT	AATCTTGCCT	TCTTCAAAGA	GTTTTTGTTT	TTCTGCTCGT	ATTTTTCAA	834
GTAAAACTTC	GACTGATTCA	TCATTTGGGT	CTTGTTCAAC	TAATTTTCCT	TGCATAGCAT	840
ATTGAAGAAT	AGATTTTTT	AGTTTATCTG	GAAATTCTTT	ATCTAGCTGT	ТСТАСТСТАТ	846
TATAACTTTC	AGCATATTCA	TCTACTTTTT	CTAAAGCTGA	TTCGATTGCT	TCTACTATTC	852
GTTGTTGTTC	GGATAGTGGG	GGGAGAGCAA	TTAATAATAG	ATTAAAATTA	TAATCATTGA	858
TTGCAGGATA	ACTTGTTCCA	GTAGATTTAT	TATTAACACG	ATTGATAAAA	TTATCTGATA	864
AT <b>AA</b> ATAATA	TTTCAAATAT	GTTTCGTTAA	GTAAAGTATC	СААААСААТА	AATGCTGTAC	870
TAGCTATCAA	ATACTCTTTA	AGTTCTCTAA	CTACAGCAAT	ATTTTTTAGA	TATGGTCTAA	876
CTGTTGAAAA	TAAGACACTA	TTCTGCGAAA	CTAATTTTCT	AGCACGGGAA	GGCGCTTGTT	882
CAGGTGAAAG	ATATTGTAGA	TTTTTGTAGT	TGATTATGTT	СТТТТТТСТА	TCAATACTAG	888
ACGTATCTAT	ATACCTAAAG	GATTTCTCTG	GCTTATTTTG	CCCAAAATTC	CAATAAATTG	894
ATTTTATCCT	CACCCACTCC	CAAGTATCAG	GAATATCATA	AGGAACATCA	ATTTCTTGAG	900
<b>IGCTTCCATC</b>	AGCAAACTTC	CCATAATGTT	TCTTATGTGC	TTCAAGTATA	TAAAAAGGCG	906
<b>PAAAAATACG</b>	CCTATAGATA	ATGGGGTTGA	AATAGGTTTA	TTGTTGATGA	GATTGTAGAT	912
<b>VATTCAATTT</b>	TTTACTTCCA	ATCGAATATT	CAAATCCTCC	ACCTTTTCTG	CCTGTAATTG	918
TTCATCATAA	AATTCAATAT	CTTCAGGATT	TTCCCCTTGG	CAACCTCGGC	AGAAATATTC	9240
TCCGCTCGA	TCAGGATTCA	AAAATCGACA	AGCACAAACA	AAACAGTCGC	CATCATCATT	930
ATTGAGATA	ATATAGTAGA	TTGAAATAAG	ATGTAAACAA	ATCGATTAGG	AAAGTTAAAT	9360
AGTTTCTAG	AAATTTTTAG	CAGATGTAGT	GTACTATTCT	AGTCTCAATT	TACTATGGCT	9420
CAAATATAT	CTTTCGAAAA	AATATTTACA	GATGTGTAAT	TTTGAAGCTT	GCAAAAGTTA	9480
TAAACTTGT	AGATTTCGAT	TTGAAGTAAC	TIGTTTTCTT	GCCCGATATT	GTTTTTGAAA	9540
TGAATTTTT	CCATAGTGAC	TCCTTAATTT	TCTTCTACAC	GTCTGATGAT	AAATCTAATT	9600
GCAAAAGAG	TCAAGAGGAT	TTTTCGAAAA	ATAAATAGCG	ACCGAAATCG	CTATTTTAAG	9660
GTTATAGGT	ATTTGATGGC	TTAGACTGCT	GTGTGACTGT	TTACCCACAG	GCAATCTTTC	9720
TCTATATTA	GTATTAGTAA	AGGTCTAAAT	AATTATCAAT	TTCCCATTGT	GAAACGAAGG	9780
TGCATAACT	TGCCCATTCG	ATTCGTTTGG	CTTCAAGGAA	GCTAGTATAG	ATGTGATCTC	9840

WO 98/18931 PCT/US97/19588

CGAGAGCAGC	TTTAACCACT	TCATCTTCTG	TCAAAGCTTT	CAAAGCGTTG	TGAAGAGTTG	9900
ATGGAAGGTC	TGTAATACCA	GCTTCCTTGC	GCTCTTCTGC	TGTCATGATG	TAGATATTTT	9960
CTTCGATAGG	AGCTGGTGCT	TCGATTTTAT	TTTCAATACC	ATACAAACCA	ACTTCCAAAA	10020
GAACAGCCAT	AGCAACGTAA	GGGTTCGCCA	TTGGATCCAC	TGAACGCAAC	TCAAGACGAG	10080
TTCCCATACC	ACGTGAAGCA	GGTACGCGCA	CAAGTGGCGA	ACGGTTACGA	CCAGCCCAAG	10140
CAATGTAAAC	AGGCGCTTCA	TAACCTGGAA	CCAAACGTTT	GTATGAGTTA	ACTGTTGGGT	10200
TCATGATGGC	AGTATAGTTG	TAAGCATGCT	TGATCAAACC	GCCTAGGAAA	TGGTAAGCTG	10260
TTTCTGACAA	CTGCATTCCT	TTTGGATCAT	TTGGATCAAA	GAAGGCGTTA	TTTCCTTCTG	10320
CATCAAACAA	GGACATATTA	CAGTGCATAC	CTGATCCAGC	AATACCAAAT	TTTGGCTTCG	10380
CCATAAATGT	TGCGTAAAGT	CCGTGTTTGC	GAGCAATGGT	TTTAACAACA	AGCTTAAAGA	10440
TTTGAATCTT	ATCACAAGCA	CGGAGAACTT	CATCGTACTT	AAAGTCAATC	TCATGCTGTC	10500
CAACCGCAAC	CTCGTGGTGA	CTCGCTTCTA	CTTCAAATCC	CATTTTGGTC	AAGACATTCA	10560
CAATCTCACG	ACGTGTGTTG	TCCGCAAGGT	CAGTAGGTGC	CAAGTCAAAG	TAGCCACCCT	10620
TGTCATTCAC	TTCAAGTGTT	GGGTCCCCAT	TTTCATCCAA	CTTAAATAGG	AAGAATTCTG	10680
GCTCTGGACC	AAGGTTGAAG	GATTTGAATC	CAACTTCTTC	CATGTGACGA	AGAGCTCGTT	10740
TCAAATTACC	ACGAGGGTCA	CCCGCAAATG	GTTCACCTTC	TGTTGTATAG	ACATCACAGA	10800
TCAGACCTGC	AACACTTCCA	TTTTCATCTC	CCCAAGGGAA	GACTGTCCAT	GTATCCAAGT	10860
CCGGGTACAA	GTACATATCC	GACTCATTGA	TACGTACAAA	ACCTTCAATA	GAAGATCCAT	10920
CAAACATAAC	CTTGTTCGAC	AAGACCTTAT	CTAACTGTTC	ATCTGTAGCA	GGAATTTCGA	10980
CGTTTTTCAT	GGTTCCCAAA	ATATCTGAGA	ACATAAGACG	AATAAAGGTA	ACATTTTTT	11040
CCTTGACTTC	ACGACGAATA	TCTGCAGCTG	TGATTGGCAT	AAGTTTTCTC	CTTAATCTAT	11100
GACTACTTGC	GGTTGCCTAA	CCGCGACCAA	AAGGTGACTG	TACTGAAGCA	AAACGCCCCT	11160
GTTGGAGGAG	TTCATTGTGA	AGTGCACGAC	GTACTTCAGT	CTGACTAACC	GCTTTCTTGG	11220
ATTTCGCTTC	ACGTTCAGCA	TATTTTTCT	TAATGGCAGC	GATATTATAA	CCTTCAGAGA	11280
TATAATCTTT	GATTTCAAGC	AGACGATCCA	TGTCATTCAA	GGAATACATG	CGACGATTTC	11340
CTTCGTTTCG	ATCGGGCTTG	ATCAACTCTT	GATCTTCATA	ATAACGAATC	TGACGCGCCG	11400
ATAGATCGGT	CAACTTCATA	ACACTGCCGA	TAGGAAAAAC	AGCCATATTT	CGGCGAAATT	11460
CTTTTTCCTT	CATTTACAAT	TTCCTTCTTT	CTGTCTATTA	TAGTCTAAAA	AAAGACAAAC	11520
GTCAATTGAT	AATGTTATAA	AATGTAACAT	TATTTTTCTT	TTTTCTCTAA	AAAGAGACGA	11580

WO 98/18931 PCT/US97/19588

1016 ATACGATCAA TATCGTAATT TACGATAATT GCGACAAAAA CTCCCATAAA CGTTTCTAAT 11640 ACACGCACAA ACACGTACAA AATTGTCTCA CCACTTGGAA TTGATAGGGT AATGATTAAC 11700 ATAGCTGCTA CACCACCAAT AACCCCTGCT TTGTTATTCA TGGCTACATT TGTCATAATG 11760 GTTAACATGG TGCAGATTGG AACAACTACC AAGGTCACCC AAAAGGCTTC GTGGAAAAAG 11820 GTATTTAATA AGAAGAAGAC CAAGGCATAG AGTCCACCGA TACTATTTCC TAGAATACGC 11880 GAAGTCCCAA AATGAACACT CTCATCAAAA CTCTCCCTCA GGCTAAAAAC GGCTGTCAAA 11940 GCACCAATTT GAAGACCTTT CCAGCCAAAA AAGCCAAAAA TCAAGAGAAC TAGAAAAACA 12000 GCAATACCTG TTTTAAAGGT TCGCATACCA AGTTTGAACT GGGATTTATC GAATTTATAT 12060 TTTTTAAAAT AACTCATAAT CTCAACTTTC TATTTCCATT TTATCATAAA TCGGTGATTT 12120 12180 ATCCCTCTCT TCTTTGATTT ATTTATAAAA TCTTATTTTT CTGTCAAGGC TGCAAGTCCT 12240 GGAAGAACCT TACCTTCAAG AAGTTCCATT GATGCTCCAC CACCCGTACT AATCCATGAG 12300 AACTTGTCTG CACGGCCAAG GTTAATCGCT GCGGCAGCTG AGTCACCACC ACCGATGATT 12360 GATTTAACTC CTGGTTGTTT CACGATAGCG TCCATCACAC CGATTGTACC AGCTTGGAAA 12420 TCTGGGTTTT CAAATACACC CATAGGTCCG TTCCATACGA CTGTTTTGGC ACCAGTCAAA 12480 GCTTCGTCAA ATTTGGCGAT AGATTTTGGA CCGATGTCAA GACCAAGGAA GCCTTCAGAA 12540 ACTGCTTCAC CTTCAGTGTC ACGCACTTCA GTGTAACCAG CAAATGCGTT AGCTTCTTTT 12600 GAGTCAACTG GCAAGATCAA TTTACCATTT GCTTTTTCAA GAAGAGCTTT CGCAACATCC 12660 AATTTGTCTT CTTCTACAAG TGAGTTACCG ATTTCGATAC CTTGTGCTTT GTAGAATGTG 12720 TAAGTCATCC CACCACCGAT AAGGACGTTA TCAGCTTTTT CAAGCAAGTT TTCGATAACA 12780 CCGATCTTGT CTGAAACTTT TGAACCACCA AGGATAGCCA CGAATGGACG TTCTGGAGTT 12840 TCAACTGCTT CTTGGATGTA GGCAATTTCG TTTTCAAGAA GGAAACCAGC AACTGCTTTT 12900 TCAACGTTTG CTGAGATACC AACGTTAGAT GCGTGTGCAC GGTGAGCTGT ACCGAATGCA 12960 TCGTTTACGA AGATACCATC TCCAAGTGAT GCCCAGTATT TACCAAGTTC AGGATCGTTT 13020 TTAGATTCTT TCTTGCCGTC AACATCTTCG TAACGAGTGT TTTCAACCAA GAGAACTTGT 13080 CCATCTTCAA GAGCGTTGAT TGCCGCTTCT AATTCAGCAC CACGAGTGAC ACCTGGGAAA 13140 ACAACATCTT GACCAAGTTT TGCTGCCAAG TCAGCTGCTA CAGGAGCAAG TGATTTACCA 13200 GCTTTATCAG CTTCTTCTTT CACACGTCCA AGGTGAGAGA AAAGAATTGC ACGTCCACCT 13260 TGTTCGATGA TGTACTTAAT AGTTGGAAGA GCTGCTGTGA TACGGTTATC GTTAGTGATT 13320 ACGCCATCTT TCAATGGTAC GTTGAAGTCA ACACGAACGA GGACTTTTTT ACCTTTCAAG 13380

TCAACGTCTT TAACAGTAAG TTTTGCCATG TTACAAAAAC TCCGG	1342
(2) INFORMATION FOR SEQ ID NO: 152:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 905 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: double  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:	
GATTTATCCT ACCGGRGAAT TTCCGGAGGG GTTCTAGCAG CAATCTTAGG AATCTATGAA	60
CGAATGATTG GCTTTCTGGC CCATCCCTTT AAAGACTTTA AAGAAAATGT TTTGTACTTT	120
ATTCCAGTTG CCATCGGTAT GCTTCTGGGA ATCGGCTTAT TTTCCTACCC GATTGAATAC	180
CTGCTTGAAA ATTATCAGGT TTTTGTATTA TGGAGCTTTG CGGGAGCTAT TATCGGTACA	240
GTTCCTAGCC TCCTCAAAGA ATCAACTCGA GAATCTGACC GAGACAAGAT TGATTTAGCT	300
TGGTTATGGA CAACCTTTAT CATTTCTGGA TTAGGACTCT ATGCCTTAAA TTTTGTCGTT	360
GGAACCTTAA GCGCCAGCTT TCTTAACTTC GTCCTAGCAG GCGCACTATT GGCCCTTGGC	420
GTCTTGGTTC CTGGCCTCAG CCCATCAAAT TTACTTTTGA TTTTGGGACT CTATGCTCCT	480
ATGTTGACTG GTTTTAAAAC TTTTGATTTC TTGGGAACCT TCTTTCCGAT TGGAATTGGT	540
GCAGGTGCAA CTCTCATCGT TTTTTCAAAA TTGATAGATT ATGCCTTAAA CAACTACCAC	600
TCACGCGTCT ATCATTTCAT CATCGGTATC GTCCTATCAA GTACCCTTTT GATCTTAATT	660
CCAAATGCAG GAAACGCTGA AAGTATCCAA TACACAGGAC TTTCACTTGT CGGTTATGTC	720
ATCATCGCCT TCTTCTTTGC GCTGGGAATC TGGCTTGGTA TTTGGATGAG TCAATTGGAG	780
GATAAATATA AATAATGGCA AAAAAAGTTA AAATCAAAAA AACATTGGTG GAACAAATCC	840
TATCTAAAGC AGCTATCCCT CATCAGGGGA TTCAAATCAA TGCCCTAGAA GGAGAGCTTC	900
CTCAA	905

- (2) INFORMATION FOR SEQ ID NO: 153:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 4278 base pairs
      (B) TYPE: nucleic acid
      (C) STRANDEDNESS: double

    - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:

			1010			
CTTGAATTAA	ATAAAAAAC	TCATGCGACT	1018 F AAGCATTT7	CTGATAAGC	TGTTGATCCC	6
AAAGATGTGC	GTACGGCTAT	CGAAATTGC	ACCTTAGCG	CAAGCGCCC	CAACAGCCAG	12
CCTTGGAAAT	TTGTGGTGG1	ACGTGAGAA	AATGCTGAAG	TGGCAAAGTT	AGCTTATGGT	18
TCCAATTTTG	AACAGGTATO	ATCAGCGCCT	GTAACCATTO	CCTTGTTTAC	AGATACGGAC	24
TTAGCCAAAC	GTGCTCGTAA	GATTGCCCGT	GTTGGTGGTG	CTAATAACTI	TTCTGAAGAG	30
CAACTTCAAT	ATTTTATGAA	AAATCTGCCA	GCTGAGTTTC	CCCGTTACAC	TGAGCAACAA	36
GTCAGCGACT	ACCTAGCTCT	CAATGCAGGT	TTGGTTGCCA	TGAACTTGG1	TCTTGCATTG	42
ACAGACCAAG	GAATTGGTTC	TAACATTATT	CTTGGTTTTG	ACAAATCAAA	AGTTAATGAA	48
GTTTTGGAAA	TCGAAGACCG	TTTCCGCCCA	GAACTCTTGA	TCACAGTGGG	TTATACAGAC	54
GAAAAATTGG	AACCAAGCTA	CCGCTTGCCA	GTAGATGAAA	TCATCGAGAA	AAGATAGAAA	60
GAAGAAAAA	TGACAGCAAT	TGATTTTACA	GCAGAAGTAG	AAAAACGCAA	AGAAGACCTC	66
TTGGCTGACT	TGTTTAGCCT	TTTGGAAATC	AATTCAGAAC	GTGATGACAG	CAAGGCTGAT	72
GCCCAGCATC	CATTTGGGCC	TGGTCCAGTA	AAAGCCTTGG	AGAAATTCCT	TGAAATCGCA	78
GACCGCGATG	GCTACCCAAC	TAAGAATGTT	GATAACTATG	CAGGACATTT	TCAGTTTGGT	84
GATGGAGAAG	AAGTTCTCGG	AATCTTTGCC	CATATGGATG	TGGTGCCTGC	TGGTAGCGGT	900
rgggacacag	ACCCTTACAC	ACCAACTATC	AAAGATGGTC	GCCTTTATGC	GCGCGGGGCT	96
rcggacgata	AGGGTCCTAC	AACAGCTTGT	TACTATGGTT	TGAAAATCAT	CAAAGAATTG	102
GTCTTCCAA	CTTCTAAGAA	AGTTCGCTTC	ATCGTTGGAA	CAGACGAAGA	ATCAGGCTGG	1086
GCAGACATGG	ACTACTACTT	TGAGCACGTA	GGACTTGCCA	AACCAGATTT	CGGTTTCTCA	1140
CAGATGCTG	AATTTCCAAT	CATCAATGGT	GAAAAAGGAA	ATATCACGGA	ATACCTCCAC	1200
TTGCAGGAG	AAAATACAGG	TGTTGCCCGT	CTTCACAGCT	TTACAGGTGG	TTTACGTGAA	1260
ATATGGTAC	CAGAATCAGC	AACAGCAGTC	GTTTCAGGTG	ACTTGGCTGA	CTTGCAAGCT	1320
AACTAGATG	CCTTTGTTGC	AGAACACAAA	CTTAGAGGAG	AACTCCAAGA	AGAAGCTGGC	1380
AATACAAGG	TGACGATCAT	TGGTAAATCA	GCCCACGGTG	CTATGCCTGC	TTCAGGTGTC	440
ATGGCGCAA	CTTACCTTGC	CCTCTTCCTC	AGCCAGTTTG	GCTTTGCTGG	TCCAGCCAAA	1500
ACTACCTTG	ACATCGCAGG	TAAAATTCTC	TTGAACGATC	ATGAGGGTGA	AAATCTTAAG	1560
TTGCTCATG	TGGATGAAAA	GATGGGTGCT	CTTTCTATGA	ATGCCGGCGT	CTTCCACTTC	1620
ATGAAACAA	GTGCTGATAA	TACCATTGCC	CTCAACATCC	GCTATCCAAA	AGGAACAAGT	1680
CAGAACAAA	TCAAGTCAAT	CCTTGAAAAC	TTGCCAGTTG	TTTCTGTTAG	CCTGTCTGAA	1740
ACGGTCACA	CGCCTCACTA	TGTGCCAATG	GAAGATCCAC	TTGTGCAAAC	CTTGTTGAAT	1800

ATCTATGAA	A AACAAACTG	G CTTTAAAGG	T CATGAACAA	G TCATCGGTG	G TGGAACCTTT	186
GGTCGCTTG	C TAGAACGCG	G AGTTGCCTA	C GGTGCTATG1	TCCCAGACT	C GATTGATACC	192
ATGCACCAA	G CCAATGAAT	T TATCGCCTT	G GATGATCTT	TCCGAGCAG	CAGCAATTTAT	198
GCCGAAGCT	A TTTACGAAT	T GATCAAATA	A AACGATAGAA	GTCTGAGAT	TTATGCTTGG	204
ACTTCTTTT	T GGAGGGAAA	G TAGATGTCT	AAATCGAAAG	AATCAAACA	GCTATCATGG	210
CGGATTCGC	A GAATGCCAG	C TATACAGAGO	GTGGCATTGA	GCCTCTCTT	GCAGCGCCAA	216
AAACTGCTC	G CATCAATAT	C ATCGGTCAGO	CTCCGGGACT	TAAAACTCAA	GAAGCAGGCC	2220
TTTACTGGAI	A AGATAAAAG	r GGTGACCGCT	TGCGGGACTG	GCTAGGTGTG	GATGAAGATA	2280
CCTTTTACA	A TTCAGGTTA	r tttgctgttt	TGCCTATGGA	TTTCTACTT	CCAGGACATG	2340
GCAAGTCGGC	G TGATCTTCC	CCTCGTACAG	GTTTTGCAGA	AAAATGGCAT	CCGCAGGTCT	2400
TACAGGAATT	GCCTGATATT	CAGTTAACCC	TCTTGATTGG	GCAATATGCC	CAAGCCTACT	2460
ATTTACAGGA	GAAAATCAGI	GGGAAGGTAA	CGGAGAGGGT	GAAACACTAT	AAAGACTATC	2520
TGCCAGCCTA	TTTTCCGCTA	GTTCACCCAT	CACCACGAAA	TCAAATCTGG	ATGGCCAAAA	2580
ATCCTTGGTT	' TGAGGCAGAA	GTAGTGCCAG	ATTTGAAAAA	AAGAATTAAA	ACCATTTTAT	2640
AGTCAATGAA	AATCAAAGAG	CAAACTAGGA	AGCTAGTCGT	AGGCTGCTCA	AAGTACAGCT	2700
TTGAAGTTGC	AGATAAAACT	GACGAAGTCG	GTAACATACG	CACGGTAAGG	CGACGCTGAC	2760
GTGGTTTGAA	GAGATTTTCG	AAGAGTATTA	GAAGAAAAAG	AATGAAAGAA	ATAGCCTTTG	2820
ACGCATTTTA	CCAGCTTTAC	CAAAACGACC	AGCTTTCTTT	AGTGGATGTG	AGAGAAGTGG	2880
ATGAGTTTGC	AGCTCTTCAT	TTAGAAGGTG	CCCACAACCT	ACCGCTTAGT	CAATTGGCTG	2940
ATAGTTATGA	TTAATTGGAC	AAAGATCGCT	TGCATTATAT	TATTTGCAAA	TCTGGAATGA	3000
GATCGGCGCG	TGCTTGCCAA	TTCCTATTAG	AACAAGGTTA	TAATGTTATC	AATGTCCAGG	3060
GTGGCATGTT	AGCCTTTGAA	GAACTTTAAA	ATTTTGCATT	TCTCCTACTT	GGTGTGGACT	3120
GGGTAGGAGA	GTTTTATTTT	TAGATAATTC	TTATTTTTAA	Gaaaattgaa	AACATTTAAT	3180
ATTTGCCTCG	TGATGCTTTT	TTCAGACTCC	TAATCGTGGT	ATACTAGGTC	AGTATTTTAT	3240
<b>AAA</b> TATGAAG	GAGATTTTTA	TGGCTAAAAA	AGGTACCCTA	ACAGGTTTGC	TCCTGTTTGG	3300
<b>ATATTTTTT</b>	GGTGCGGGGA	ACTTGATTTT	TCCGCCTTCT	CTAGGTGCTC	TATCTGGAGA	3360
CATTTTCTT	CCTGCCATCG	CAGGTTTTGT	CTTTTCAGGC	GTTGGTATCG	CCGTCTTGAC	3420
CTTATTATT	GGAACGCTAA	ATCCTAAAGG	ATATATCTAC	GAGATTTCAA	CGAAGATAGC	3480
CCTTGGTTT	GCGACTCTTT	ACCTCTCAGT	TCTTTACTTG	TCAATCGGTC	CATTCTTTGC	3540

WO 98/18931 PCT/US97/19588

		-	1020			
TACCCCACGT	ACTGCTACAA	CAGCTTACGA		AGCCCCCTTT	TGTCGGATGC	3600
AAATAAAGGA	CTTGGCTTGA	TTGTATTTAC	GGTTCTGTAT	TTTGCGGCAG	CCTATTTGAT	3660
TTCGCTTAAT	CCATCAAAAA	TCTTAGACCG	CATTGGACGT	ATTTTAACGC	CAGTCTTTGC	3720
AATTTTGATT	GTTATCTTGG	TCGTTCTGGG	AGCTATCAAA	TATGGTGGAA	CAAGTCCTCA	3780
AGCTGCTTCA	CTGCTTATCA	AGCTTCTGCC	TTTGGTACAG	GTTTCCTAGA	AGGTTACAAT	3840
ACCTTGGACG	CCCTTGCCTC	AGTGGCCTTT	AGCGTAATCG	CAGTTCAAAC	CTTGAAACAA	3900
CTTGGATTTT	CAAGTAAGAA	AGAATACATT	TCAACTATTT	GGGTTGTTGG	TATCGTTGTT	3960
GCCCTTGCCT	TCAGCGCTCT	TTACATCGGT	TTAGGTTTTC	TTGGAAATCA	TTTCCCAGTA	4020
CCAGCTGAAG	CGATGAAGGG	TGGAACACCA	GGTGTTTACA	TCTTGTCACA	AGCCACTCAA	4080
GAAATCTTTG	GCTCAACAGC	TCAACTCTTC	CTTGCAGCTA	TGGTTACCGT	AACCTGCTTC	4140
ACAACGACTG	TTGGTTTGAT	TGTGTCAACA	GCTGAGTTCT	TTAATGAGCG	CTTCCCACAA	4200
ATCAGCTACA	AGGTTTATGC	GACAGCCTTT	ACCTTGATTG	GATTTGCTAT	TGCCAATTTG	4260
GGTCTTGATG	CGATTATC				•	4278

#### (2) INFORMATION FOR SEQ ID NO: 154:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1953 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:

ACCCGATCAA ATGACAAAAG CTAACTTTGG TGTCGTAGGT ATGGCCGTAA TGGGTCGTAA 60 CCTTGCCCTT AATATTGAAT CTCGTGGTTA CACAGTTGCT ATCTACAACC GTAGTAAAGA 120 AAAAACGGAA GATGTGATTG CTTGCCATCC TGAAAAGAAC TTTGTACCAA GCTATGACGT 180 TGAAAGTTTT GTAAACTCAA TCGAAAAACC TCGTCGTATC ATGCTGATGG TTCAAGCTGG 240 ACCTGGTACA GATGCTACTA TCCAAGCCCT TCTTCCACAC CTTGACAAGG GTGATATCTT 300 GATTGACGGA GGAAATACTT TCTACAAAGA TACCATCCGT CGTAATGAAG AATTGGCAAA 360 CTCTGGTATC AACTTTATCG GTACTGGGGT TTCTGGTGGT GAAAAAGGTG CCCTTGAAGG 420 TCCTTCTATC ATGCCTGGTG GACAAAAAGA AGCCTACGAA TTGGTTGCGG ATGTTCTTGA 480 AGAAATCTCA GCTAAAGCAC CAGAAGATGG CAAACCATGT GTGACTTACA TCGGTCCTGA 540 TGGAGCTGGT CACTATGTGA AAATGGTTCA CAATGGTATT GAGTACGGTG ATATGCAATT 600 GATCGCAGAA AGCTATGACT TGATGCAACA CTTGCTAGGC CTTTCTGCAG AAGATATGGC 660

TGAAATCTTT	' ACTGAGTGGA	ACAAGGGTG	ATTAGACAGO	TACTTGATTC	AAATCACAGC	720
TGATATCTTG	AGCCGTAAAG	ACGATGAAGO	CCAAGATGGA	CCAATCGTAC	ACTACATCCT	780
TGATGCTGCA	GGTAACAAGG	GAACTGGTAA	ATGGACTAGO	CAATCATCTC	TTGACCTTGG	840
TGTACCATTG	TCACTGATTA	CTGAGTCAGT	GTTTGCACGC	TACATTTCAA	CTTACAAAGA	900
AGAACGTGTA	CATGCTAGCA	AGGTGCTTCC	AAAACCAGCT	GCCTTCAACT	TTGAAGGAGA	960
CAAGGCTGAA	TTGATTGAAA	AGATCCGTCA	AGCCCTTTAC	TTCTCAAAAA	TCATTTCATA	1020
CGCACAAGGA	TTTGCTCAAT	TGCGTGTAGC	CTCTAAAGAA	AACAACTGGA	ACTTGCCATT	1080
TGCAGATATC	GCATCTATCT	GGCGTGATGG	CTGTATCATC	CGTTCTCGTT	TCTTGCAAAA	1140
GATTACAGAT	GCTTACAACC	GCGATGCAGA	TCTTGCCAAC	CTTCTTTTGG	ACGAGTACTT	1200
CTTGGATGTT	ACTGCTAAGT	ACCAACAAGC	AGTACGTGAT	ATCGTAGCTC	TTGCGGTTCA	1260
AGCAGGTGTG	CCAGTGCCAA	CTTTCTCAGC	AGCTATTACT	TACTTTGATA	GCTACCGTTC	1320
AGCTGACCTT	CCAGCTAACT	TGATCCAAGC	ACAACGTGAC	TACTTTGGTG	CTCACACTTA	1380
CCAACGTAAA	GACAAAGAAG	GAACCTTCCA	CTACTCTTGG	TATGACGAAA	AATAAGTAGG	1440
TCAGCCATGG	GGAAACGGAT	TTTATTACTT	GAGAAAGAAC	GAAATCTAGC	TCATTTTTTA	1500
AGTTTGGAAC	TCCAGAAAGA	GCAGTATCGG	GTTGATCTGG	TAGAGGAGGG	GCAAAAAGCC	1560
CTCTCCATGG	CTCTTCAGAC	AGACTATGAT	TTGATGTTAT	TGAACGTTAA	TCTGGGAGAT	1620
ATGATGGCTC	AGGATTTTGC	AGAAAAATTG	AGCCGAACTA	AACCTGCCTC	AGTCATCATG	1680
ATTTTAGATC	ATTGGGAAGA	CTTGCAAGAA	GAGCTGGAAG	TTGTTCAGCG	TTTTGCAGTT	1740
TCATACATCT	ATAAGCCAGT	CCTTATCGAA	AATCTGGTAG	CGCGTATTTC	GGCGATCTTC	1800
CGAGGTCGGG	ACTTCATTGA	TCAACACTGC	AGTCTGATGA	AAGTTCCAAG	GACCTACCGC	1860
AATCTTAGGA	TAGATGTTGA	ACATCACACG	GTTTATCGTG	GTGAAGAGAT	GATTGCTCTG	1920
ACACGCCGTG	AGTATGACCT	TTTGGCGACA	CGG			1953

#### (2) INFORMATION FOR SEQ ID NO: 155:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 6474 base pairs
  (B) TYPE: nucleic acid

  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155: CCGGCAGTAC ACGAGCTTGG GGAACAGCCA CTGGAACGAT GAGGTGTGAG CTCAAAATAT

			1022			
CCTCCAGTTA	TGTTTTTCCT	AATAGTATAC	CGGAAGAGTG	AAAĢGATTTT	ATAATGGAGC	120
GGTTACAAAG	AACCTACTTT	CTATTAAACA	GTATACTATG	AAAATGTGAA	AATTTAACAT	180
TTTTTTGTAC	AAATTTTATA	AATTATTGCC	TTTTTAATAT	CAATAGTTAA	TCTCTTATCC	240
AGATCCCCCT	TGTGTAAACT	TTATCTTTAT	AAGCTTCAAG	GCCCCTATCC	CATCTATTTG	300
CAACAATTAG	ATCACTTTGT	TTTGTAAATA	GTTCAAAATT	C <del>TT</del> TTCAATA	ATTACGTTAT	360
CTATACTAAC	GTTTAAATTT	GGTTCATATA	СТААААТТТТ	TATACCGACA	ATCAATAGTT	420
Cattaattat	АСТТАВАВТА	GCTGACTCTT	TGTAATTATC	TGAATTATAT	TTCATCCCCA	480
ATTTATATAT	TCCTACTATC	TTTGGCTTTC	GTTCCAATAT	TTGTTTAACT	ATGAACTGTT	540
TTCTATTTGT	GTTTGAAATA	TCAATCGCTT	CTATCACTGG	GGCATTTATT	TCTATAAATT	600
CTTTTTTTAA	TTGTTTAGTA	TCTTTGGGAA	GACAATATCC	TCCAAATCCA	AAAGAAGGAT	660
TATTATAAAA	ATTTCCAATT	CTTGGATCTA	AACAAACACC	TTTTATTACA	ACTTCAGCAT	720
TTAAGCTTCT	CCTCTCAGCA	AAAGAATCTA	GTTCATTAAA	AAAGCAACAC	GGAGAGCTAA	780
GAATGTGTTA	GAAAAAAGCT	TAATTGCTTC	TGCTTCAGTA	GGAGAAACTA	ACATAACATT	840
TTTAATATTG	GCAGTACTAT	GAGTACTAAT	CGAAAGGAAC	AACTCTGCAA	TTTTTCTTCC	900
TTCAACTGTC	TCATCTCCAA	CAACTATGCG	ACTTGGATAT	AAATTATCAT	ATATAGAACA	960
ACCTTCTCTC	AAAAATTCAG	GGACAAAAAT	GATATTTTTT	GTATCAAACA	GCCTTTTTAA	1020
PTTGTTTGAA	AAGCCGATCG	GAACTGTTGA	CTTTAAAATA	ATCTTTCCAT	TAGGTTTTAC	1080
CCTCAGAATC	TTCGATACCG	TTTGTTCGAT	TTCATATGTA	TTAAAACTAC	CAATTTTCTC	1140
ATCATAATCT	GTCGGAAGCG	CAATAATATA	ATAATCAATA	TTATTTTTAA	TTTCAGAAAA	1200
rgtatcaaaa	AAAGTAATAT	TTAAGTTATT	CTCGCAAAAA	AACTTCATAA	GCTCTTCATT	1260
<b>PTTAGATGGA</b>	AGAATGCCCT	TTTTTAAATT	ATTTATTTT	ACAGAATCTA	TATCATATGC	1320
ACAACTTTA	TATTTAGATG	CAAATAGTAA	CGCGTAGGCC	AGCCCAACAT	GCCCCAAACC	1380
ATTACTGCT	ATATTCATAA	AACTACTTCC	TTATTTCTTA	ATCCAAAATC	TAATAGAATA	1440
AGCTGCCCCA	TTCCTTAAAT	ACAACTCTTT	AATATTGTTT	AAAAGTTTTT	CAACTGATTT	1500
CAGATTATC	AAAATCTGAG	ATTTATAGÇA	CAATATTGAT	GATATTCTAT	CAATATAATT	1560
TTTTCATCA	AGTTCCTCTT	GATACATTTT	TAATTCTTTA	GTTTTTCCCA	TATAACTAAC	1620
ATACTACTA	TCACTTACAT	ATGGGAAGTC	CTCATAATAT	ATTACTTTAT	AACGCATAAA	1680
TCAAGCGCC	CTTCCAATAC	TATTCACAAA	AACATGAGCA	ACATGGTCAC	CAAGTGAAAG	1740
GGACAATAT	ACGACACATT	TGTCGTCTAA	ATGCATTAAC .	AGCTCTTTTA	TGATATCATT	1800
TTTAATGTG	TCCTCATTTT	TTAATTCACT	ATAGATATGA	СССТАЙАСАА	AATTCCCATT	1860

TCTATCTTTC	CTATAGAGAC	ATTCATAGTA	CGATAAGTGT	CTAAAATCAC	ATTGTAGACG	1920
TTCACAAGCT	AACCTGTCTT	CTTTCTTCCT	TTCTTCAATC	GGATATTTCC	CAAGGTTACA	1980
CAACTTATGA	AATTGCTTAG	CAGAGGGCTG	TAGCTGTTGG	CTCAAAGGGT	AACCAGAAAA	2040
TATAGTAATA	ACAAGTACAA	TTTCTCCTTC	TGAAGTTAAT	TTTGAAATAT	AATCACCACA	2100
GGAAAAAATT	GCGTCATCTA	AATGTGGAGA	TAAAAAGATA	TACTTAGTAT	TGTTACTCAT	2160
AACCATTCCC	TCTACAATTT	ATCTAAAAAC	TCACTAAGTG	TCTGATTAAA	TTCCACATCA	2220
TCAAAAAAAT	TCACCTTATT	CTTAATAATG	AATATTTCGT	TAAATAAACA	TATATAAA	2280
TATTTCAATA	TCCTTTCAAT	ATCATCCTCT	AAATTCTCCT	CAATATTTTG	TATCAGCCCA	2340
TTTACAATCT	TATTAAAAAA	GATAAGCTCT	TTATCTCTAA	AATTAAATAT	TTTCATACAA	2400
CTGTTGTATC	GAAAAATATA	TAAAATAATT	TTTACTAATG	TTTGAATATT	TAAACAACTA	2460
AATAAATGAG	TTGTACCCGG	GACACTATTT	ATGTTATCAA	GAACACTATC	TTGAAACCTC	2520
AACTCACAGT	TCTTTTTGTG	AAATTCTTTT	TTATCGTTTA	GATCTGATAT	TTTTTTAGAC	2580
ATTTCAACAA	TCTCAGACAT	TTTATATGGA	TATCTAGGAT	GAATGCCAAA	ACTATGCAAA	2640
ATGAACTGCA	CCCCAAAAGT	TAGACAGAAT	AAATCTAACT	TTTGGGGTGC	AGTTCATAAG	2700
ATTGGGATAT	TTTTTTTAG	CTAGAACTAG	TAGAAATATA	TAGTCAAATA	ACAGATACCT	2760
TAAGGGTTTC	TCATCTACAT	AAAAAAATGA	TACTTTTTTC	TCTTCAGTAA	TTACCTCATA	2820
AGCTTCACAA	TAGAATCTCA	TGTTTCCCTC	CCCTATATTC	TTAAATAAAA	TCCTTTGGAA	2880
ATTGATATAT	CTTAGTAAAA	TATTGTTTAA	GTTCCGGATG	CGGAGCATGG	GTAACAATAA	2940
TGACAGTCAA	ATCCTCTCTA	тстаататст	TACGTTCAAT	CGCTAACGAA	GTTCTCCTAT	3000
CGATAGCAGA	AGTTCCCTCG	TCAATTAATA	CTATTITCTT	ATTTCTAATT	AGCCCTCTAG	3060
CTAAAGTAAT	TTTTTGTTTC	тоссстесто	ACAGTAATCT	CCCATCATCA	CCAACATAAT	3120
AATCTAAAAT	GTTATTAGGA	AAATCTTTTA	CACTCAAACC	AACTTGCTCT	AAAGACTGTA	3180
GTATTTCTTC	ATCAGTATAA	TTTTCTTCCA	<b>ТТАТАААТАТ</b>	ATCTCTAATC	GTACCTTCAA	3240
ACAAATAAGC	TTTTTGATCT	ACATATAGAA	CATTCGAAAC	CATATTTAAA	TAGGAGGTTT	3300
TTTTATATC	ATCCCCGCAG	AATCGCAATT	СТССАСТАТА	ATCTCTCAAA	AAGCCATTCA	3360
AATTTTAA	TAATGTAGAT	TTCCCCCTTC	CACTTTCACC	TAAAATTAAA	TACTTTTCAT	3420
racgitgaaa .	ACAAAAATTT	AAGTTTTTTA	ATATTTCTTT	ATCTCCATAC	TTATAGCAAA	3480
PATTTTTTGC	TTCATATAAC	GGAAAATCTC	TATTCACCTC	ATTTGGTTCG	ATATCATTCA	3540
TTTTATTTGA	CTCAATTGGA	TTAATTGAAT	ACAATTTTAA	AAAAATAGGC	TTCGTACCAA	3600

			1024			
TAATAGAGGA	TAATTGACCT	CCTAATTCAC	CTAGCGCTGT	· AAAAATAACA	CCTGTTAGTG	366
CTCCTATTGC	TTCAATAGTA	CCAATTTTC	CTATTCCTTT	TATTGCAAGA	TAGCCTGTTA	372
AAAAAACGAG	AGATATCTGA	AAAAAAATAT	TGAGAAAGAA	GCTAATAGCG	CCTGCTAACG	378
PTTCTACAGT	TGTCTTTCTT	TGTATAACCA	TCTTTAATAA	AATTCCTGCT	TCTTTAATTT	384
TCTTAGGCAA	TACATATAA	AGATTCAAGG	ACGCTAACAC	ATCAAATCCA	TTCAATATAG	390
rctcactaga	AAAAAATTTT .	GCTTCATTTT	GGTTAGTTAA	ATTTAGACTA	ACTTCTCGCA	396
TTTCGATGC	AAAGATTTTT	GGTACAAGTA	GCATAATCAT	TAATGAAAAC	AAGGTGGCTA	402
CAGTCAATGA	CCAATGATAG	TGATTAAGAG	TCACAACTGC	AAATATAGTA	CCAGAAATTC	408
TTTTATTAC	TAAAAAAAGT	TGTTTAAACG	CCTGATCATT	TAAAGTCTGA	ACATCATTAT	414
TTAGCCACGA	AAGATATGTT	CCTGATGATT	TACTATGAAA	TTCTTGATAG	GTAGAGTTAG	420
GATGTCTGT	GGCAACTCTA	TTTCGAATCT	CTAGATTAAA	CTCTTGGATC	ACTTCAACCT	426
SATAATTTTT	CACTACCCAG	TCAAGGAATA	TTATCCCACA	CCAGACAATC	ATTTGGTAGA	4320
TGACAATTT	CAAAAACCGC	TCTAAATTCA	TCGCAATTAA	TTCATTCAAC	ACCAGAGCAT	4380
PAATAGTTGC	TGCATAAATT	AGCAATAATT	GACCAGCAAC	AATAAATATC	GTTAATAAAC	4440
TTTTTTAAA	TATATTTGAT	TTTATAATAG	TATACACAAT	AGTTTCTCAC	TTTCTAAATT	4500
TAATTGAAC	ATAGTTTTCA	TATATACAAT	AGAAAAAACC	AAAATGATAT	AATAACATAT	4560
тттсааааа	AGAAATTCGT	TAAAAATTTT	TTCTTCTCTT	GCCTTCTTGA	TTACTTTTAA	4620
GCCTTGCAT	TTGTCTCCTA	TTAATAGTAA	CCGCTTTATG	TTTAAAGAAT	AATATTTCTT	4680
GTAACCAAT	ATTCTCTCGT	TGAAACTCAA	TAAATTAAAA	TATTTCCTAC	AGTAATTATA	4740
TATTCTTCA	TCTGCATTAA	TTGTTTTTTG	TGTCACTCCA	GTGATACCGT	TTTCTTTACT	4800
TGAGCGTAG	TAATTCACCA	AGAATTCTCG	CACTATATCA	ATTTGGTATC	CTTGAACAAG	4860
AGTTTTAAT	AAAACAACAC	CGTCCTGATG	TGAATCTATT	TTCTCAAAAC	CATTAATTAA	4920
TCTAGCACC	TCTTTTTTAC	ACAACCAAAA	TGACGTACCT	GCTATATTGT	GAACCATTTG	4980
ACAAACAAG	GGATTTCCAA	CAAAATCGGT	CTTCTCCTCT	TCTCGTGTAC	CATTTGGATA	5040
ATTATTATT	CCATAACTAC	AAACTAAAGC	TAAATTCTTC	ATTCTACTCT	TTTTAAAACA	5100
GCCATCAAC	TTTAAAATTC	GATCTGGCAT	ATATTCATCA	TCATCGTCTA	AAAATGATAT	5160
TACTTACCT	CTAGAATTTT	TGATACCTAT	GTTTCTGGCA	TTAGTTGCAC	CTAAATCTTC	5220
TTACTTAAA	ATTAACTTAA	TTCTATGATT	GGTATAGCCA	<b>AATTGAT</b> GGA	TAATTTTATT	5280
CTTAAATTT	ACATTACTAT	AATTATCATC	AATAATTATA	ACTTCGATAT	TTTTATAACT	5340
TGATGTAAA	CAACTTTTCA	CAGCTCTAAT	CAGAGATTCA	TACCTATTAT	GTGTTGGTAT	5400

TATAATACT	T ACTAATTCTT	GATCTATATT	CCTATCCATG	ACTACTCTTC	TCTAATAATT	5460
CATCATATA	C TCTCATGGTT	TCTACAAACA	TTTTTTGCAC	AGAAAAATGT	TTTCTTATTT	5520
TTGATTTAC	r atteteacet	ATATATTTCA	AATACTCAGA	ATCATTGAGT	AAAAAATTAG	5580
CACAAGCAC	A CACTCCCTCA	ACATCTTCCT	TCTCAAATAA	AAATCCATCA	ACCCTATGTT	5640
CAATAATTT	ACTTAACCCG	CCAACATTAC	TAGCTAAAAC	CGGAGTTCCT	TGTGACATTG	5700
ACTCTAAAA	ACACATAGGT	ATTCCTTCTG	TATCAGAAGG	AATATACAAT	AAATCCGATA	5760
TTTGGTAAAC	TATAGTAGCT	GGATAGATTT	CACCAAGTAA	CCTGAAATTA	TCTCTACATT	5820
TCAAATGGCA	AATTTTTCT	TTCAAAGCAG	CCCACATACT	ACCATTTCCA	GCCATAATAA	5880
AAATCACATC	TTCTCTGACT	AAAAATAATT	TTTCTGCAAA	TTCAAGGAAT	CTATCCGGCC	5940
TTTTTTCTGG	ATCCAACCTT	CCAACATAAC	AAATGATTTT	TTGTTATTTG	GAATACAAAA	6000
TTCTTTTTA	AAGTCTTGAA	CACCTACTAC	ATCTAAATCG	CTATTTGATA	CATTAATTCC	6060
GTTATTTATT	GCAACTATCT	TCTTATTTTT	TATTATACTC	TCCAATCTTT	TTTTTCATAG	6120
TTTCAGATAC	ACAAATAAAA	GCATCTCCCA	TAGAATATGT	CCAAAAATCA	AAATAAGTCA	6180
AGAATTTCTT	TTTTAAGTTA	TATTCAACCC	ATCCATGGCA	TGTTATCACT	GTCTTAACCT	6240
TTCCAAATCC	ATTCTTGTCA	AGTTTTTTTA	ACATATATAA	AAAATAATTA	GTTGAGTAGC	63,00
CATGACAGTG	TATAAGTTGG	ATTTTTAATA	ATTTTAAAAT	ATTTTTAACG	TGTAAGGCAG	6360
TTTCAAAATT	ATTTGAACAT	TGAGTACAAT	CAACATAGGC	AATATCTAAA	TTTTTATAAT	6420
CATCAATAAC	CTTTGAATCT	CTAGATACAA	TTATCAAAAT	AGGGAATAGA	GACA	6474

#### (2) INFORMATION FOR SEQ ID NO: 156:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4792 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:

TATTTAACGA	TTTTTTTCAT	GTCATTTCCT	CCAAAATAGA	ATACCTTATA	ATCTTAACAG	60
AAAAAGAGCA	TTTACGCCAT	TATATGATAT	CTATCTCTGT	GATAAGTTTT	TTTTATGGGT	120
AATTTAAAAG	ACCAAACGCA	AGATGGCAAT	CAAGACCACT	CCAAAGAGAA	CTGTTCCGAC	180
TAGATTGCGG	TAGCGAAAGG	CTACCCAAGC	TGTTGGAAAG	ACGGCTAAGA	AGTCCAGTCA	240
TTTGATTTGA	GGAAGACTGC	CAACCTTACC	TGTCACTACG	CTTGAAAGAA	TCAGGGCAAA	300

			1026			
GATAATGGAA	ACAGGCAAAA	ACTTCAAAAA	ACGCTCAACA	ATCGCAGGCA	GGCCCTTATA	36
CTTGACCAAG	ATGAAGGGAA	TCATACGGGG	AATCCAAGTC	ACCAAGCCAG	AGAAAATAAC	42
TGCTAATAAA	AGATACTTAC	TGACCATCTA	AAACCACCCC	CATGCTACAA	CCAAGTAGCG	48
TCGCAAACAG	AACAGCTAGT	GACTGAGACA	TCACTGTCAA	GAGCAAAAAG	AAGGACACCG	54
CAACAACTGC	TAGGATAATG	AGCAGATTGC	GGACAGGAAT	CCGTCTTTGC	ATAATCTGAA	60
ATTGCGAAGC	AAAATACCAA	TAAACATCCC	AACCAGGGCA	AAATCCAAGC	CAAAGATTTC	66
TGGATTTGGT	AGCAGGCCAC	CCAGAGCCGT	TCCGACTACT	GTCCCCACAA	ACCAAGCCAC	72
ATAGCTGTTA	AGATTGTTTC	CGTGCATCCA	CATAGGATTT	ACCTTGTCTG	TATGGGCCAA	78
TTCACCCATC	AAAACGCCAT	AGGTCTCATC	TGTCAAGATA	CTAGACATAC	CGATATTGTA	84
CCAAAGACTG	GTATGACGGA	AATAAGTCGA	TGCGTGTAAA	CTCAACAAAA	AGAGACGCAA	90
GTTGATTAGA	AAAACCGTCA	TAGCAATAGC	TGCCACAGGA	GCTTGAACCA	CAATCAGTGC	96
CAACATGGCA	AACTGGGCAC	TCCCAGCATA	AACAAAGAGA	CTCATCAAGC	CCATCTCAAC	102
AGGTGTCACA	TAGGGCGCAC	CGATAATTCC	ACAGGCCAGG	CCGATACTGA	CATAGCCAAG	108
AGCCGTTGGC	ATGGCTGCCT	GCGCCCCCTC	CTAAAATCCT	TTTTCTTTCA	TCTTTCTCCT	114
CATATTGTCT	TAATAATACT	CAATGAAAAT	CAAAGAGCAA	ACTAGGAAAC	TAGCCGCAGG	120
ITGCTCAAAA	CACTGTTTTG	AGGTTGCAGA	TAGAACTGAT	GAAGTCAGCT	CAAAACACTG	126
TTTTGAGGTT	GTGGATAGAA	CTGACGAAGT	CAGCTCAAAA	CACCGTTTTG	AGGTTGTGGA	132
TAGAACTGAC	GAAGTCAGTA	ACCATACCTA	CGGCAAAGTG	AAGCTGACGT	GGTTTGAAGA	138
GAGTTTCGAA	GAGTACAAGT	AGGCTGAAAA	GAATCCAACC	ACAGCATGGA	СТАТТАТАТА	144
GCAGATTGAA	ATAAGATGAG	AACAAATCGA	TTGGGAAAGT	AAAATTAATT	TCTATAAATG	150
TTTAGCAAT	TGTTTCGTAC	TATTTTAGAT	TCAGTCTATT	ATAACACATT	CAGAAAAGAG	1560
<b>VAAAAAGTCT</b>	GTTGATTTTG	ACCATCATAA	AAAGACTGGC	AATCCAGTCT	CAAACATATA	1620
TTATAGAAAT	TCTCCACTAA	ATACTTTCAC	GAATATTCAG	AAGCATAACA	AAGGCAACTA	1680
GAAGAAATAG	CAATAAAACA	AAGCTAACTG	CCAGAGTTCC	AAAGCTAGTA	GCAATGGTTA	1740
CAAAGCTAT	TGTAAATAAG	CTAGGTAAAA	CAACCGTAAT	GGCACCGATA	GAGGATTGAA	1800
TGCTCCCAT	TGACTCCTCA	GGTATTTGTT	TAAAAACGAG	TTCTTGCAAT	CTAGGAGAGA	1860
GAACACCTGC	GAAAAAGGCA	TCCAAGGTAC	TAAAGATGAG	AATCCAGTCA	AAACGAACTG	1920
'GGCAAATCC	TACTAGAAGA	AGCAACTGGA	TGACAAGTGA	GGCATAGAGA	GCTGTTTTTA	1980
rggaaatggt	ATGTTGCAGA	TAGCCACTTA	CAAGGCTTCC	GACAATCAGG	GCTGATAATT	2040
TAGTGTGGC	TAACAAGGCA	AGAGATTGAC	CAGTTTGTAA	ATTCAAAAAG	GGCTGGTTCC	2100

				-	A GTAGAGATAA	216
					T TGGAGCAAAT	222
GCTGGCAAAA	GGATTTTACA	GAGAGTCCTT	CTTGATAGCT	AATCGTTTT	T TCTACTTTCA	228
AGAGGTCAGT	TTTTATGAAG	AGGATACCTA	AAAATGCGA1	TAAAAAGGT	A AGAGCGTTCA	234
GTAAGGAAAT	AAACTGGATG	GATAGAATGO	CTAGTAAGAG	TCCTCCTAG	G ATATTACTGA	240
TTGTTTTCAC	TAAACTAACA	GTTGACTGTT	TAAAGCCAAT	AGCTTCTGC	AGATGGTCTT	246
GCCCAATAAT	TCTAATGAAA	ATCGGAGTGA	GCATGGCGCC	TGAAAAATA	CTCAATGTGT	252
CAGACAAGAG	GTTAATCAGA	CAAATAAATG	CTACTAGCAA	CAAGGAGAA	GACTGCCCTG	258
Aaagtgataa	AGACACTATA	GAGTAAAGCA	AAAATTTTGC	AAAACTAATO	ACTGTGTATT	2640
TCAAGACACG	ATGATGTTGA	AAATCCGCCA	AAACTCCCAG	AAAGATTTGT	AGAACTTGGG	2700
GCAGGGTTTC	TGAAATCGTG	ATGAGTAAAA	TCGCCAAAGG	GGCAAAAGAT	GCATCTGCCA	2760
CATAATTCAG	GAAGGCCAGA	TAAAAAATCG	TATCCCCAAG	CGTTGAAATC	CACTGGTTGA	2820
TAGTTAATTG	CCTAAAATCT	CTATTTTGAA	GAAATACTTT	CATCACAACT	CCTTCTTAAG	2880
TTCAAATGGG	AATCTTTCCC	CAAGGATAGA	CCGCGATACT	ACTAACAACC	AAAATTACAG	2940
TAACATCAAA	AGCTGACCAA	TGCCATTGTA	GACTATATGC	AGTCCAATAG	GCCAATAAAT	3000
TGACTTTGTC	ATTCTAAATA	AGACTGCAAA	TATAAGACCT	CCACCCATAT	AGAAGACAAA	3060
GTCTGTCAAG	ACCCAACCGT	GATTACTAAT	GTGCGAGACC	ССАААТАААА	CAGCGGAACC	3120
AAGTACATCT	AGCCCCCATT	TCTTTCCTTT	TTCCAGAGCA	GTCATCACTA	ATCCACGATA	3180
AATCATGTCT	TCAAAAATGG	GACCTGCAAT	CACAGGATAA	AAAAAATACA	TCAAAAATGC	3240
rgtagcccct.	GTAAAAGTCG	GAGCAGCATG	TTGATAAGAA	ATTTCATTTC	GAGTAGGTGG	3300
GAAAAGAAAA	AAGGTAACGA	AATTCCAAAC	AACAAAAGCA	AGCAGAGCTA	GGAAGGAATA	3360
GAAAAGATAG	GATCCTTTAA	ACTTTCTACT	ATTGATTTTC	TGCCATTTCC	CCGACCAAAT	3420
CATAGCAATA	AGAGCAAATA .	AAACCACAAG	AAAATTCAAC	ATCATATCCG	ACAGATAATA	3480
GCAAAGTCA	GATAGCCCAG	TAACAAGGTC	GCTGCGTAAA	ACTAGAACAC	TGAACTTCTG	3540
TCAGCAATA .	ACTAGTAGAA	АААСТАТААТ	AAAGTAGCGG	TGTGAGATTA	TCTTTTTCAT	3600
TATCACCTT	TCTAATATCC	AAATACCAAT	AAAGTAACAA	TGAGTAAGAA	ACTATTCCAT	3660
AAGCATGCA	GAGCTATAGC (	CCAATAGATG	GATCGGGTGT	AGCGAAACAT	CATACAAAAT	3720
TCAAGCCCA	TTCCAAAATA (	CTTTATGAAA	TCTGTCGTTA	TCCAACCATA	CTGCAAAACA	3780
GCATAGCGC (	CAAATATGGC /	AGCGGAAACA .	AGAACATCAA	GATAGTATCT	CTTAACTTTA	3840

GATAAACT	rtg '	TCATCAAAAG	ACCACGACAA	1028 ACAACCTCTT	CTGATACAGG	TGCGATAATA	390
CTAGTATA	AAA (	GTATTCGCGT	AACAAAATAG	CTAATTCCTG	TTAAATTGGT	GGCTACTTCT	3960
ACGACTGT	rac 1	TTCCATTCTG	GGTACGAGGA	AAGATATAGG	TTGTTAGATT	TGCCCACACG	4026
AACAATAA	AGA A	AAAAAGAAAG	AAGGAAAACA	CCCAGGTAAG	ACCAACGAAA	CTGGAAACGA	4080
CCACACTO	TT	CCAATGTTC	ACTITITGACA	AAAGCAATTG	TAGCTATAGT	TCCCAGAATA	4140
AGTACCAA	TA A	<b>AAACTTGGAA</b>	CACATAGTAC	ATATTATCAG	ACAAAGCAAC	CATAAAATCT	4200
AAGTCTGA	TG 1	rgacattaaa	AATGAGGTAA	TAAGTCAAAA	TCAACAAGCC	AGTTGCTAGG	4260
TGAAATTT	'CA C	TTCTTTCAT	TTTCTTCATC	CTATTATCTC	CTATAAGAGC	CTATCTTCTA	4320
ceeceece	AA A	CAATCCATC	TGCTAAATCT	ATAGTCCAAT	CAAAAGCTCC	ACGATTAGGA	4380
CTCATCCC	TT C	ATTGCCCCA	ACCAGGGTAA	ATTCCTGGGA	CGCCCAACC	AGATATACCA	4440
				AGGTTGCCTC			4500
				TGTAAATTTA			4560
				CCTAGGATTT			4620
				GAAAATCGCA			4680
				TTGATTACTT			4740
				ACAAATTTTA	ACATTATTGA	AA	4792
			Q ID NO: 15	i7:			
/ i \	CEO	TIPMOP OTTAN					

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 2156 base pairs
   (B) TYPE: nucleic acid
   (C) STRANDEDNESS: double
   (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:

CCGTTCTCGG	CGACGGCCAT	CTGATGAAGC	TATTTATGAG	GGAAACTGGC	AAGCTGGAGA	60
GTCAGAGTAT	CTAGTCTTTC	ACCGATTGCT	GTGGCAGCAG	ATGTGCAGGG	AAAAGGAGTT	120
GCTCAAACCT	TCTTAGAGGG	CTTGATTGAA	GGTTTTGATT	ATCTTGATTT	TCGCTCAGAT	180
ACGCATGCTG	AAAACAAGGT	TATGCAACAT	ATTTTTGAAA	AACTTGGTTT	TAAACAAGTC	240
GGTAAGATGC	CAGTAGATGG	CGAACGCTTG	GCCTATCAAG	AATTAAAGAA	ATAATGCAAA	300
AGAAGTATGT	AAAAATCCTC	TACTCCTCAC	CAATTGGTAT	TCTATCACTT	GTAGCTGATG	360
ACCATTATTT	GTATGGAATT	TGGGTTCAGG	AGCAGAAGCA	TTTTGAGAGG	GGACTAGGAG	420
ATGAAACGAT	AGAAGAAGTT	GTTAGTCATC	CTATTTTAGA	CCCAGTTATT	GCTTGCTTAG	480

ATGATTACTT TAAAGGCAAG	CCTCAGGATT	TATCCAACTT	GCTCTTGGC	CCAATCGGAA	540
CGAATTTTGA AAAGAGAGTT	TGGGACTATT	TACAGGGCAT	TCCTTATGGT	CAGACAGTGA	600
CCTATGGACA AATTGCTCAA	GACCTGCAAG	TGGCTTCTGC	TCAAGCAATT	GGTGGAGCAG	660
TGGGACGCAA TCCTTGGTCT	ATCCTAGTAC	CTTGTCATCG	TGTGTTGGGA	GCAGGCAAGC	720
GTCTGACAGG TTATGCTGCA	GGAGTGGAAA	AGAAAGCTTG	GCTCTTGGAG	CATGAAGGAG	780
TAGATTTTAA AGATAGAAGC	AATAGAAGGA	GAAGCACATG	TTAGAATTTA	TCGAATACCC	840
CAAATGTTCA ACTTGTAAAA	AAGCAAAACA	AGAATTAAAT	CAATTAGGTG	TGGACTATAA	900
AGCCGTCCAT ATCGTGGAAG	AAACACCTAG	CCAAGAAGTC	ATTTTGAATT	GGCTAGAAAC	960
CTCAGGATTT GAATTGAAGC	AATTTTTCAA	CACCAGTGGT	ATCAAATACC	GTGAATTAGG	1020
GCTAAAAGAT AAGGTAGGAA	GTTTGTCAAA	CCAAGAAGCG	GCTGAGTTGC	TAGCAAGTGA	1080
CGGTATGTTG TTAAAACGGC	CCATTTTAGT	AGAAAATGGA	ACTGTTAAGC	AAATCGGTTA	1140
TCGAAAATCT TATGAGGAAC	TGGGACTGAA	ATAGTTTTTA	TCTATCTCTT	TGATAGATAA	1200
AATATATAAC TTCCCTGTTT	CAAAGTATGA	TAAACTAGTA	GGTAGACAAA	GTCTGTATCT	1260
GACCGTAGCA AATAATTTCA	TTGACGGCAG	AAGCATGGTA	GCATGAATCA	TTATCAGAAG	1320
AGGATGTTTT TATGAATGTT	ACAACGATTT	TAGCATCAGA	TTGGTACCAA	AACTTGATGC	1380
AATTGATTCC GGATGGCAAG					1440
TTGTCCAACA ACTTCCAACA	ACAATTATGT	TGACAATTGG	TGGTGCCCTT	TTTGGCTTGG	1500
TTTTGGCGCT TCTTTTTGCC /					1560
AGGCCTTCTT TGTTAGTTTC 1	TTAAAAGGGA	CACcGATTTT	GGTGCAACTC	ATGTTGACCT	1620
ACTACGGAAT CCCTTTGGCT 1	TTGAAAGCCC '	TCAATCAGCA	ATGGGGAACT	GGTCTCAATA	1680
TCAATGCGAT TCCAGCTGCA G					1740
ATGCTAGTGA AACCATTCGT G					1800
CACGCAGTCT GGGTATGACC C					1860
CGGTGGTAGC TACTCCAACC T					1920
TAGCTTTTAG TGCGGGTGTT G					1980
ATTATCGCTA TTTTGAACGC T					2040
GAATTGAAAG CCTCGGTCGT T					2100
TGCAACAGAT GTGAAAGGAG A			TTTCGAATTT	AAGCAA	2156
(2) INFORMATION FOR SEQ	ID NO: 158	):	* •		

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3140 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158:

		130:	SEQ ID NO:	SCRII I ION.		,,
60	CTTATATGCT	AATTTAATTC	GTTGTCCTCC	AATCGATTTT	ACATGTCTTC	GTATCTCTAC
120	AATATTTATAA	GTCTTGGAAC	TCTCCTGAAC	AGTTGCAACG	TTGCATAACA	TTGTCTGCAT
180	ACTAGTGCCT	GTTGTAATAC	GTATTTACAA	ACTITICAAAT	TCTTATTAAC	GGAATAGGGA
240	TTCTAAAGCT	CAGATACTTT	TCTGTTTTT	GATATAAACA	CTAGGTTATA	TCTCCCGAGC
300	AGTACCATCA	CACGCACACC	TGGATATAAT	ATCTACTACA	CTATTGCTAA	TTTATATGTC
360	CGCTACTTGT	GCTTACCTAC	AGCTCTGATA	GAACACACTT	AATCATTTCC	AGCGTATCAT
420	CAAACCAGAC	CTTCCCCAAT	CCTGAGGGAT	GTTAGGAATT	GCATCAAGTT	GCAATATAAG
480	TGAATCTGCC	TACTCCATTC	AGCAACGCAA	GAAATAACGA	CAATTGGATT	TCATGAGCAC
540	AGGATTTGTC	TATACCCATA	ATCACTTTCG	TTGCTCAAGC	CTTTTAAAAT	ACATGAACAT
600	TACAGTCGCA	TAATTCCATA	GACTGATTGT	AATTAGAGGT	GCATCGTCTC	GCACTTGTTT
660	AAGTGCCAAT	TCACTTCAAC	AATTCTGACA	TTTAACATTA	AGACAATCTT	CTTGAAGAAA
720	TCCGACAGCT	GCACGGATTC	ACAGGCTTTT	GTAGTACATC	TATTATTTTT	GTACTCATAA
780	CTTTCTCAAT	GTTCAAATAC	ATCGATTCTT	TGCAGCATCA	CAAAATGAAT	TTATAACCTG
840	AATTGCTTCA	GTATTCCTGT	AACACGGGAC	TAATTCGTAA	CACAAACATC	GCTTGTTTAT
900	AACTTCCTTT	CGACAATGAT	GAAAGGTTGT	GCTAGAGTTC	GCACCAAGAT	ATACGGTCTA
960	GCCTGTTACC	AACCAGCTCC	СТАССААТАТ	TACGGTATGG	GTAATTCTAC	CCTAAATTTA
1020	TCTCATAAAC	ACTTAACAAA	ATTCCAACCG	CTCCTAATTA	TCTGGGTTTC	AATATTGCCA
1080	TCTCGCAA#.C	CTTCCAGAAC	ACTCCTGCAT	ATTCTTATAA	CAGACGGTGT	GCTTCATGCC
1140	GCGAGGATAT	CTTTATTAAT	TTAACCTCTT	AACTACGCTA	CTTCGTGTTG	ACTTGTCCTG
1200	ATCCTCTCCT	CAATTGCATT	TGATAATCCG	CCATTCTAAA	ATTGGTCGGC	TTTTCTTTCA
1260	TATCGCAAGT	GAGGTGGTAA	GGTTTCAAAC	TTCTAACTCT	TTCCAACTTC	AAAAGATATT
1320	TTGATGAGGA	GTTGTACATC	TTTTTAATAT	GATATTTTCC	CGATTAACCC	CCCATCACTT
1380	AATATCTAAT	CTCTTAGAAC	GTATGATTAT	TTGTTCAGTA	CATCTGGGTA	TGGAAAACAC
1440	GACATCTTCA	TATGGTGTGG	GGAGTCACCG	ACGAGCAATA	CGTCCACTTT	TCGTATCTCC
1500	TAGAATTTTA	TCCACTTATT	GAATATTCTC	TTCTAAATCT	TGATGTCTAC	GTCATAGCAA

GTAGCTAAAT	CTAACAAGCG	ATTTTTATTT	TCACTTTGTA	ACCTAATTAC	TGACATTGGC	156
CATTTTACAA	TACCAGCATT	AACATCCTCA	AAGTCTTTAA	AACAAAATTC	ACTCTCAAAT	162
TTTGCTTTTT	CCATTGGGAA	AATATGTTTC	CCTCCCTGGT	AGTGGTTATG	ACTAAGAATG	168
GAGCCTCCTG	AGATAGGAAG	ATCAGAATTT	GAACCAGCAA	AATATCCTGG	CAAAATATCA	174
ACAATCTCCA	ATAATTGTTC	AAATGTTTTA	GAGGTAATAG	CCATTGGTAC	ATGTTGACTA	180
TTCAAAAATA	TCGCATGCTC	ATTAAAGTAT	GAGTAGGGAG	AATACTGGAA	TCCCCATACT	1860
TCGTCACCAA	GTTTCAACCG	AATAATTCTA	TGATTCGAAC	GTGCTGGATA	ATTTATTCGC	1920
CCCTGATATC	CTTCATTTTC	CATACATAGT	AAACATTTGG	GATAATTAGT	TGCTTTTACT	1980
AATTTTTCAG	CAGCAATTGT	TTTTGGATCT	TTTTCGGGTT	TTGACAAATT	TATCGTAATC	2040
TCTAGCTCTC	CGTATTTAGT	TGATGCTCGA	AACTCAATAT	TCTTAGCAAT	AGCAGAAGTT	2100
TTAATATAAT	CACTATCTTT	ACTTAACTTA	TAAAACTCTT	CAACTGCTTC	TTGAGGTGAT	2160
ATATCATATG	AACTCCAAAA	AATATCATTT	AATCGACTAG	GTAAAGGAAC	TATGAAATTC	2220
ATTAACTCTG	CTCCTAAACA	TTCCTTTTCC	TCGATTAAAT	CTTTAATTTT	ACCGTTTTTT	2280
AAGGCGATTT	CCACTAAGTA	ATCTTTTATT	TGTTTCAGGT	CATTTTCATC	GGAAATGCGA	2340
TCAATTCCCT	CCTCACCTAT	TAACGCTAGT	ACTCTATTTT	TCACATATAT	TTTGTCAATT	2400
TCATTATACA	TTCCGTATTC	AATTACTCTA	TCAACAAAAT	TATCAATAAT	TGTTTTCATA	2460
TATTTTTCTT	TCTAATTTAT	GTTCCCATAT	TTTCTATACA	TTATCCATTT	ATAAATTGCT	2520
TGCGTAGTAT	GAGCAATTTT	ATCAAGGTGA	TGAATAATAT	CTAAAGCACT	AATTACTTCA	2580
GAAACGTTCC	CATCATCTTC	AAATATGTAA	TTCATTATTT	TCTTTTCCAT	ATTTATACTA	2640
AGCTCTTCTA	TCTCATTCTG	TTTTTGTATA	ACAACCATAT	CTAAACATCC	AGATTGTTCC	2700
TCTCTATAAC	AAGATATAGC	CCTATTCATA	TGCAGTCCGA	TAACTTCATG	AAGTATTTTT	2760
atttttgaaa	TAATTTTCTT	CAAAATTTCA	TTATTTTGAA	GAATCTGTAG	ATTTTTTAAA	2820
ATTTCAACAA	TTCTATCCCC	AATACGTTCA	ATGTCAGTTG	ATATTTTTAT	TACACTAATA	2880
ATTCTTCTTA	AGTCATATGA	AACAGGATGT	TGTAAACAAA	TTAACTCATA	TCCTTTTTTA	2940
TCAATATTTA	GAACTGACTC	ATTTATGATT	AAATCTTCTT	TAATCAATTC	TACTCGTTCT	3000
TCATTTGATA	AATATTCAAA	TAACTTCTCA	TATTTATCAA	GCACAGATAC	CCAAATGGTC	3060
TCTAAATTAT	TTGATAATTC	TATAATTTCA	TTTTCTAAAT	ATAACCTTAA	CATTTAGGTA	3120
CCTCTTCTTA	ACAAAGTTCG					3140

(2) INFORMATION FOR SEQ ID NO: 159:

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 9048 base pairs

  (B) TYPE: nucleic acid

  (C) STRANDEDNESS: double

  (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:

CCGGATGATT	TCCTGGTCAG	ATAGGGGGAA	AGTGACTTCC	TCAGCAATCG	CGCGTAGAGT	60
AGGATTCCCT	TCACGGATAA	TATCGTTCAT	ATCAATTAAG	TGAGCAGCTT	TTGTAATACG	120
TTCTATTGCA	GACATTTTCT	CTCCTTATAT	TATGTTTAGT	GCAGTTAGCT	ACTGCCAAAG	180
CCCAAGTGGT	ATACTTGGAA	TAAGCCACTG	TGGATTAGTT	CATTTTCTTT	CATTACCTCT	240
ACATGATATC	ACAAAATGAC	AAGAATTGAA	AGCATTATGG	CATTTAGGAT	TTATAGAAAA	300
TAGATAGGAA	GTTCAATTCA	ATTGTGAAAG	AAATACTTAT	CTGTGATATA	ATAAAAAGAA	360
AAGGCTTGCA	TAAGAAAGTA	GGGAGAACGA	AGATACAAAG	AAGACAAAAT	CGAAATCAGG	420
GTGGTTTAGC	TTTTCGTTTT	ATGAAGGGCT	TGGTAAACTT	TTTAGGAGTT	ATCGCAAGTG	480
GAGCAATAAG	GGATTTGTGG	CGATACTCTT	GCTAGCAGTT	GGTTTATCAA	TGGGCTTGGT	540
CTTGTTGTTT	GAAAGCTTCC	AAGGAATCCC	TTGACTAGTC	AAAAACGAGA	TACTATTTCT	600
CAAGAGGGGA	CTAAGCAAAA	GTCTCAGGAG	TAGGAAGAGG	AAAAAACTGC	CAGAATTATG	660
GCCCACGGGG	ATTTGCTCTA	CCACGATGGA	CTTTTCTTTT	CAGCTAAAAA	AGAAGACGGT	720
ACCTATGACT	TTCATGAAAA	TTTTGAGTAT	GTGACTCCTT	GGCTCAAGCA	AGGGGACTAA	780
GCAGCAGATT	TAGCTATTGG	TGATTTTGAA	GGAACCATTA	ATAAGGATCA	TTATTTAGCG	840
GGTTATCTTC	TCTTTAATGC	TCCTGTTGAA	GTTATGGATG	CTATTAAGGA	GGCAGGTTAT	900
CATGTGCTGG	ATTTAGCTCA	TAATCATATT	TTGGATTCGC	AAATTGAGGG	AGTTATTTCA	960
ACGGCCGATA	TTATTGAGAA	AGCTGGAATC	ACTCCAATCG	GAGTTTATAC	GCACGAACCA	1020
CGTGATCAGG	CTCCGCTGGT	CATTAAGGAA	GTGAATGGTA	TCAAGGTTGC	ATTGTTAGCC	1080
TATTCCTATG	GTTTCAATGG	AATTGAGCAG	TATATTTCTC	AGGAAGACTA	TAATCGTTAT	1140
CTTTCAGATT	TAAACGAAGA	TAAGATGAAG	GTTGAAATTG	AACGGGCAGA	GAAGGAAGCA	1200
GATATCACCA	TTATCATGCT	TCAGATGGGT	GTTGAGTATC	GATTGGAACC	AACTGAAGAA	1260
CAAAAAGCTC	TTTATCACAA	GATGATCGAT	TTGGGAGCGG	ATATTATCTT	TGGAGGGCAT	1320
CCTCACGTTG	TTGAACCATC	TGAAACGGTT	GAAAAAGATG	GAGATAAGAA	ACTCATTATC	1380
TATTAAATGG	GGAACTTCAT	TTCCAATCAA	CGAATTGAAT	CTATGGGAGA	TGAAGAGAAT	1440
GCTAAGTGGA	CTGAACGTGG	TGTTCTCATG	GATGTCACCA	TCAAGAÁGAA	GGATGGAAAA	1500

ACAACTATCO	G GAACAGCTAA	AGCTCATCCT	ACTTGGGTCA	ATCGAACACC	AAAGGGAACC	156
TTTTCACCAC	AAGGATATCO	CTTGTATCAT	TACCAAACTT	ATATTTTGGA	AGATTTTATA	162
GAGGATGGCA	GTCATCGTGA	CCAGTTAGAT	GAAGCGACTA	AGGAACGAAT	TGATACAGCC	168
TATAAAGAAA	TGAATGAACA	TGTGGGATTG	AAGTGGTATT	AGCTTGAATC	CAGAGGAAAG	174
TAAATGATGA	TTAAGGTAAT	TGCGACAGAT	' ATGGATGGGA	CCTTGCTGGA	TGCTAGAGGT	180
CAGCTTGATC	TCCCACGATT	GGAAAAGATT	TTAGATCAGT	TGGATCAAAG	GGGCATTCGT	186
TTTGTCATTG	CGACGGGCAA	TGAAATTCAC	CGCATGAGAC	AACTACTGAG	TCCCTTGGTG	1920
GATCGAGTGG	TTCTGGTTGT	TGCTAATGGC	GCTCGTATTT	TTGAAAACAA	TGAATTGATT	1980
CAGGCTCAGA	CATGGGATGA	CGCCATTGTC	AACAAGGCTT	TGACTCATTT	CAAGGGTCGA	2040
GCGTGTCAGG	ACCAGTTTGT	TGTAACGGGG	ATGAAGGGTG	ATTTTGTCAA	GGAAGGTACG	2100
ATTTTTACAG	ATCTTGAAAG	TTTTATGACT	CCAGAAATGA	TTGAAAAATT	CTACCAACGG	2160
ATGCAATTTG	TGGATGAATT	AACATCTGAC	CTCTTTGGTG	GTGTGCTCAA	GATGAGCATG	2220
GTTGTTGGTG	AGGAACGTTT	GAGTTCGGTT	TTGGAAGAAA	TCAATGCTCT	CTTTGATGGC	2280
CGTGTCCGAG	CTGTATCCAG	TGGCTATGGT	TGCATTGATA	TCCTCCAAGC	TGGGATTCAT	2340
AAAGCATGGG	GCTTGGAGGA	ATTACTCAAG	CGCTGGGACT	TGAAATCCCA	AGAAATCATG	2400
GCTTTTGGTG	ATAGTGAAAA	TGATGTTGAA	ATGCTTGAAA	TGGCTGGAAT	TGCCTATGCG	2460
ATGGAAAATG	CTGATGAGAA	AGCCAAAGCT	GTGGCGACTG	CTCTAGCACC	AGCCAACAGC	2520
CAAGGAGGAG	TTTATCAAGT	CTTGGAAAAC	TGGTTAGAAA	AAGGAGAATG	AAGTGGCAGT	2580
ACAGTTATTA	GAAAATTGGC	TCCTAAAGGA	ACAAGAAAAA	ATTCAAACTA	AGTATCGTCA	2640
CCTAAATCAC	ATTTCTGTTG	TAGAACCAAA	CATTCTTTTT	ATTGGGGATT	CCATTGTCGA	2700
GTATTATCCT	CTACAGGAGC	TATTTGGGAC	TTCAAAGACG	ATTGTCAATC	GAGGAATTCG	2760
TGGCTATCAG	ACAGGACTGT	TACTAGAGAA	CCTTGATGCT	CATCTATATG	GTGGAGCAGT	2820
AGATAAAATT	TTTCTTCTGA	TTGGGACAAA	TGATATCGGA	AAGGATGTTC	CTGTGAATGA	2880
GGCTCTCAAT	AATCTCGAAG	CTATCATTCA	ATCCGTTGCT	CGCGATTATC	CATTGACAGA	2940
GATTAAATTG	CTTTCCATTT	TGCCTGTCAA	TGAGAGAGAG	GAGTACCAGC	AGGCAGTCTA	3000
TATCCGCTCG	AATGAAAAA	TTCAGAACTG	GAATCAAGCC	TATCAAGAGC	TTGCATCTGC	3060
CTATATGCAG	GTGGAATTTG	TGCCAGTATT	TGATTGTTTG	ACAGACCAAG	CAGGCCAACT	3120
CAAAAAAGAA	TATACAACTG	ATGGACTGCA	CCTCAGTATT	GCTGGTTATC	AGGCTTTGTC	3180
AAAATCCTTG	AAAGACTATC	TTTACTAAAT	AGCTAAATAA	TGTTAAATTT	GAGCATAATA	3240

TCTTGTAAAA	AATTCTAAAA	TCCTTTAAAA	TAAAAAGTGA	CGGAGGAATT	TATGAATGTA	3300
AATCAGATTG	TACGGATTAT	TCCTACTTTA	AAAGCTAATA	ATAGAAAATT	AAATGAAACA	3360
TTTTATATTG	AAACCCTTGG	AATGAAGGCC	TTGTTAGAAG	AATCGGCCTT	TCTGTCACTA	3420
GGTGACCAAA	CGGGTCTTGA	AAAGCTGGTT	TTAGAAGAAG	CTCCCAGTAT	GCGTACTCGT	3480
AAGGTAGAGG	GAAGAAAAA	ACTAGCTAGA	TTGATTGTCA	<del>agg</del> tggaaaa	TCCCTTAGAA	3540
ATTGAAGGAA	TCTTATCTAA	AACAGATTCG	ATTCATCGAT	TATATAAAGG	TCAAAATGGC	3600
TACGCTTTTG	AAATTTTCTC	ACCAGAAGAT	GATTTGATTT	TGATTCATGC	GGAAGATGAC	3660
ATAGCAAGTC	TAGTAGAAGT	AGGAGAAAAG	CCTGAATTTC	AAACAGATTT	GGCATCAATT	3720
TCTTTAAGTA	AATTTGAGAT	TTCTATGGAA	TTACATCTCC	CAACTGATAT	CGAAAGTTTC	3780
TTGGAATCAT	CTGAAATTGG	GGCATCCCTT	GATTTTATTC	CAGCTCAGGG	GCAGGATTTG	3840
ACTGTGGACA	ATACGGTTAC	CTGGGACTTA	TCTATGCTCA	AGTTCTTGGT	CAATGAATTA	3900
GACATAGCAA	GTCTTCGCCA	GAAGTTTGAG	TCTACTGAAT	ATTTTATTCC	TAAGTCTGAA	3960
AAATTCTTCC	TTGGTAAAGA	TAGAAATAAT	GTTGAATTGT	GGTTTGAAGA	AGTATGAAGT	4020
GGACCAAGAT	TATTAAAAAA	ATAGAAGAAC	AAATCGAGGC	AGGGATTTAT	CCCGGAGCCT	4080
CTTTTGCGTA	TTTTAAGGAC	AATCAATGGA	CAGAGTTCTA	TTTAGGCCAG	AGTGACCCAG	4140
AGCATGGCTT	GCAGACTGAG	GCAGGACTAG	TTTATGACCT	AGCTAGTGTC	AGCAAGGTTG	4200
TTGGGGTTGG	CACAGTTTGT	ACCTTCTTGT	GGGAAATAGG	TCAATTAGAT	ATTGATAGAC	4260
TGGTAATAGA	TTTTTTACCT	GAGAGTGATT	ATCCAGACAT	CACTATTCGC	CAGCTCTTGA	4320
CTCATGCAAC	AGACCTTGAT	CCTTTTATTC	CTAATCGTGA	TCTTTTAACA	GCCCCTGAAT	4380
TAAAGGAAGC	GATGTTTCAT	CTCAACAGAC	GAAGTCAGCC	AGCCTTTCTT	TATTCGGATG	4440
TCCATTTTTT	GCTGTTGGGC	TTTATTTTGG	AAAGAATTTT	TAATCAAGAT	TTGGATGTGA	4500
TTTTAAAGGA	TCAAGTCTGG	AAACCTTGGG	GAATGACGGA	AACTAAGTTT	GGGCCAGTTG	4560
AGCTTGCTGT	TCCAACAGTT	AGAGGTGTAG	AGGCAGGCAT	AGTGCATGAT	CCCAAGGCTC	4620
GTCTCCTGGG	TAGACATGCT	GGGAGTGCTG	GTTTATTTTC	GACTATAAAG	GATTTACAAA	4680
TCTTTTTAGA	ACACTATTTA	GCAGATGATT	TTGCAAGAGA	CTTAAATCAA	AATTTTTCTC	4740
CTTTGGATGA	CAAGGAACGT	TCTTTAGCAT	GGAATTTGGA	AGGAGATTGG	CTAGACCATA	4800
CGGGCTATAC	AGGTACCTTT	ATCATGTGGA	ATCGTCAGAA	GCAAGAAGCC	ACTATTTTCC	4860
TATCGAATCG	TACCTATGAA	AAGGACGAGA	GAGCTCAATG	GATATTAGAC	CGCAATCAAG	4920
TGATGAACTT	GATTCGCAAA	GAAGAGTAAG	GAGAGACATG	TCAAATAGTT	TAAAAGGGAC	4980
TTTACTAACA	GTTGTGGCTG	GTATTGCTTG	GGGGTTGTCA	GGAACGAGTG	GCCAATACCT	5040

AATGGCACAC	GGAATTTCGG	CTCTGGTCTT	GACTAACTTG	CGTCTTTTAA	TCCCTGGTGG	5100
AATTCTCATG	CTCTTGGCTT	ATGCTACTGC	AAAGGATAAA	ATACTGGTCT	TTTTAAAGGA	5160
TAGAAAGAGT	TTGCTGTCTC	TTCTTATTTT	TGCTCTGATT	GGTCTTTTTC	TCAACCAATT	5220
CGCCTATCTG	TCTGCTATTC	AGGAGACCAA	TGCGGGAACA	GCGACGGTGC	TTCAGTATGT	5280
TTGTCCTGTC	GGAATTTTAA	TTTATAGCTG	TATCAAGGAT	AGGGTGGCAC	CGACACTGGG	5340
AGAGATAGTT	TCCATCATAT	TCGCCATCGG	AGGAACCTTC	CTGATCGCAA	CACATGGGCA	5400
GTTGGACCAG	TTATCCATGA	CACCTGCTGG	TCTGTTCTGG	GGTCTCTTTT	CTGCCTTGAC	5460
TTATGCTCTG	TATATCATTT	TACCCATAGC	CTTGATTAAA	AAGTGGGGGA	GCAGCTTGGT	5520
CATTGGTGTG	GGAATGGTCA	TAGCAGGTTT	GGTCGCCCTT	CCTTTTACAG	GGGTTCTACA	5580
GGCCGATATC	CCGACTAGTC	TTGATTTTCT	CCTTGCGTTT	GCAGGCATTA	TCCTTATCGG	5640
GACTGTCTTT	GCCTATACAG	CTTTCCTTAA	AGGAGCCAGT	CTGATAGGAC	CGGTCAAGTC	5700
AAGCTTGTTG	GCTTCAATTG	AGCCAATATC	GGCGATTTTC	TTTGCCTTCT	TAATAATGAA	5760
TGAACAATTT	TATCCCATTG	ATTTTCTTGG	TATGGCAATG	ATATTGTTTG	CTGTAACTTT	5820
GATTTCTTTG	AAAGATTTAT	TCTTAGAAAA	ATAAAAAAGA	CTCTTTGTCC	GTGACAGAGA	5880
GTTTTTGCGT	GGTAATCTAA	TTATTTTCAA	GATAAAATTC	AAAGCGTTCG	CCTACATATT	5940
GACTTTTTAC	GTATTCAAAA	GCAGTACCAT	CTTCTAGGTA	GGAAACCTGG	GTCAATCCAA	6000
GAATAGCATG	TCCTTTTTCA	ACTTCCAAAT	AGTGGGCAAT	CTTTTCTTTA	GCAAGGCGAG	6060
CATAGATGGT	CTGTTGAGAT	TTGCCGATAC	GATAGCCATG	TTTTTGCAAG	GTTTGGAAGA	61.20
AATGACTGGT	GATTTCTTCT	TTTTTAAAGT	CCTTAATGAA	TTTTTCAGGA	ATAGAAGCAA	6180
CTTCATAAAC	TAGGGGAACT	TGGTCGGCAT	AGCGGACCCG	CTCCATTCGG	ATAATATTGT	6240
CCGTTGGAAA	AATTCCTAGC	TTGGCAACTT	CTTGCTCATT	GGGAATGGTT	TTTTTGTAGG	6300
AAATGAGCTG	GCTAGAGGGA	ACTTTACCTT	GGGATTTGAC	AATTTCAGTA	AAACTGGTTG	6360
TCCCTCGCAT	CTTTTCTTGT	ACTCGAGTAC	TGGAAACAAA	GGTGCCGCTT	CCTACACGGC	6420
GCTCTAAGAC	GCCTTCTTCG	ACTAATAGAG	ATACGGCTTG	GCGGAGGGTC	ATGCGACTGA	6480
CCGCAAACTG	CTCAGCTAAA	TCTCTTTCAC	TGGGAAGCCT	CTCACCAATA	GCCCAACGGT	6540
ACTCGTCAAT	ATCCTTTTTT	ATCTGATCAT	GGATTTTTAT	ATAAGCAGGT	AGCATATTTT	6600
TCACTTCATT	TCTATCTTTT	CTCTATTGTA	CCCCAATAAA	CTAGAAAAAG	TCAAACTTCG	6660
CCTTGTTTAG	TTGGTAATTC	GCCCTTATTT	GTGATAGAAT	ATTGAGAAAA	GATATTTCTT	6720
TTGAGAAAGG	AAAAAGATGA	GCAACATTTC	AACTGATTTG	CAAGATGTAG	AAAAAATCAT	6780

			1036			
CGTATTGGA	C TATGGTAGCC	AGTACAACCA	GCTGATTTCA	CGCCGTATCC	GTGAGATTGG	6840
TGTTTTTTC	A GAACTAAAAA	GCCATAAAAT	TTCAGCTGCT	GAAGTTCGTG	AAGTCAATCC	6900
TGTAGGAAT	T ATTCTATCAG	GTGGTCCAAA	TTCTGTATAT	GAAGATGGTT	CATTTGATAT	6960
TGACCCAGA	A ATCTTCGAAC	TCGGAATTCC	AATTTTGGGA	ATCTGTTATG	GTATGCAGTT	7020
ATTGACCCA	T AAACTTGGAG	GAAAAGTTGT	TCCTGCAGGT	GATGCTGGAA	ATCGTGAATA	7080
CGGTCAATC	A ACCCTAACTC	ACACACCATC	AGCGCTTTTT	GAATCAACAC	CTGATGAACA	7140
GACTGTTTT	G ATGAGCCATG	GTGATGCGGT	TACTGAGATT	CCTGCTGACT	TTGTTCGTAC	7200
AGGTACATC	A GCTGACTGCC	CATACGCAGC	CATCGAAAAC	CCAGATAAAC	ACATTTACGG	7260
TATCCAATT	C CACCCAGAAG	TTCGTCATTC	TGTATACGGA	AATGATATCC	TTCGTAACTT	7320
TGCCCTTAA	CATTTGTAAGG	CTAAAGGTGA	CTGGTCAATG	GATAATTTCA	TTGACATGCA	7380
GATCAAAAA	A ATTCGTGAAA	CCGTCGGTGA	TAAACGTGTC	CTTCTTGGTC	TATCAGGTGG	7440
TGTTGACTC	A TCTGTCGTTG	GGGTTCTTCT	CCAAAAAGCG	ATTGGCGATC	AATTGATCTG	7500
TATCTTCGT	A GACCACGGTC	TTCTTCGTAA	AGGCGAAGCT	GATCAAGTTA	TGGACATGCT	7560
CGGTGGTAAC	TTTGGTTTGA	ATATCGTCAA	AGCAGACGCT	GCTAAACGTT	TCCTTGACAA	7620
ACTTGCTGG	GTTTCTGACC	CTGAACAAAA	ACGTAAAATC	ATCGGTAACG	AGTTTGTCTA	7680
TGTATTCGAT	GACGAAGCAA	GCAAGCTCAA	AGATGTGAAA	TTCCTTGCTC	AAGGTACTTT	7740
ATATACAGAT	GTTATCGAGT	CTGGTACGGA	TACAGCTCAA	ACTATCAAGT	CACACCACAA	7800
CGTGGEGGTC	TTCCAGAAGA	TATGCAGTTT	GAATTGATTG	AACCACTCAA	TACTCTTTAC	7860
AAGGATGAAG	TTCGTGCTCT	TGGTACAGAG	CTTGGTATGC	CAGACCATAT	CGTATGGCGC	7920
CAACCATTCC	CAGGACCAGG	ACTTGCTATC	CGTGTCATGG	GTGAAATCAC	TGAAGAGAAA	7980
CTTGAAACCG	TTCGTGAATC	AGACGCTATT	CTTCGTGAAG	AAATCGCTAA	AGCTGGACTT	8040
GACCGCGATA	TTTGGCAATA	CTTCACTGTT	AACACAGGCG	TTCGTTCAGT	CGGTGTTATG	8100
GGTGACGGTC	GTACGTATGA	CTACACGATT	GCAATCCGTG	CTATCACTTC	TATCGATGGT	8160
ATGACTGCTG	ATTTTGCCAA	AATTCCATGG	GAAGTACTTC	AAAAAATCTC	AGTACGTATC	8220
GTAAATGAAG	TGGATCATGT	TAACCGTATC	GTCTACGATA	TTACAAGTAA	ACCACCTGCA	8280
ACAGTTGAGT	'GGGAATAATC	GCAAAAAAAT	TAAAAGCTTT	GTAAAATCAA	CGGTTACAGA	8340
GGATTAAAAA	CTGTAACTGG	GATTAAAACG	GGAACATTTG	CTAAAAAGAA	TAAATTGAAT	8400
AATAGTTCCA	AGTGGTTTAC	ATTTGGACAA	AAAATTAGAC	CGTAGTTTTC	AAGCTGCGGT	8460
CTTTTGATAT	ATATAATGAG	AATTAATGGC	TCTTTGTCAA	CTGTAGTGGG	TTGAAGTCAG	8520
CTAAGCTCGA	GAAAGGACAA	ATTTTGTCCT	TTCTTTTTTG	ATATTCAGAG	CGATAAAAAT	8580

CCGTTTTTTG	AAGTTTTCAA	AGTTCCGAAA	ACCAAAGGCA	TTGCGCTTGA	TAAGTTTGAT	8640
GAGATTATTG	GTCGCTTCCA	ATTTGGCGTT	AGAATAGTGT	AGTTGAAGGG	CGTTGACGAT	8700
TTTCTCTTTG	TCCTTTAGAA	AGGTTTTAAA	GACAGTCTGA	AAAAGAGGAT	GAACCTGCTT	8760
TAGATTGTCC	TCAATGAGTC	CGAAAAATTT	CTCCGGTTCC	TTATTCTGAA	AGTGAAACAG	8820
CAAGAGTTGA	TAGAGCTGAT	AGTGATGTTT	CAAGTCTTGT	GAATAGCTCA	AAAGCTTGTT	8880
TAAAATCTCT	TTATTGGTTA	AATGCATACG	AAAAGTAGGG	CGATAAAAAT	GTTTATCGCT	8940
GAGTTTACGA	CTATCCTGTT	GTATGAGCTT	CCAGTAGCGC	TTGATAGCCT	TGTATTCATG	9000
AGACTTTCGA	TCCAATTGAT	TCATGATTTG	AACACGCACA	CGACTCGG		9048

# (2) INFORMATION FOR SEQ ID NO: 160:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10399 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

60	TATGCTTTCT	GCCAACCAGA	TCAGTAGCAC	ACTGTTTAAA	TGATGAATGG	GTACCTTTAT
120	CTTTGTAACT	AAGGAACTTT	GCCTTTATTG	TTTAGGTGTT	GTTTGATGTT	GAGTTTCGTA
180	GAGGATTTTA	GAAGAAAAGG	CATGGAACGA	CAAATAAATA	CATTTATTAT	CTTGTCTTCT
240	ATCTGACTAT	GTTATCTTCA	TATTGGTCCT	CAATCATCTC	AGTATTAATC	GATGGAAGAA
300	GGGCAAGCCG	TTTATTTATT	TATTTTTGTC	TTGTGGGAGT	ACTTTGTTGA	GTTAGCCATG
360	ATGACTTTGT	GAGTATGTCT	AAATGTACTT	AAGGAAAGCA	TTGAAACCCA	CAATATGACC
420	CACTCTTTTT	AAAGATTACT	GCGCTACATG	ACATTGGTTC	ACAGAACCTA	TATTGGATTT
480	CAAAGCTTCA	GGCTTAATGA	CAATAACCTT	TGGTGATTGC	TTCCTTTTCA	CCTTTGTTTA
540	ATGACTTAAC	AATTTACAGT	GCCAACCGCT	GGTGGAGTTC	GGGACTAACT	AACGATCGAT
600	GTGGATTTAA	GTTCGTCGTC	TATAGAAAGC	TGTTGACACA	CTTGTCATTT	CTTATCTTTT
660	TCTTGGAAGA	CCGATGAATA	TTTTGTCATA	TGAGTCCTGT	AAATCTTTTA	AAAAAGTATA
720	CAGGAGAGGT	AATATCTTTG	GATTTTTGGG	TGGCTTTGCG	TTCTTATCTT	ATTTACAAAC
780	CAGTAGCCTT	TATTGGTATC	CCAAGCTATT	TTCTTTCCCA	TTGTTACTTC	CATGACGAGT
840	AAGCTTATGT	TCCTGCATCC	TGTCTTTATT	CTGCATTTTC	TTGGCTTGGA	TGGAGCTAAT
900	AGGAATAGAA	AATATTGAAG	GAATAAGATT	TGTATTTAGG	TTGACATCTG	TTTTACTCTT

			1038			
AGGAGTAACT	GATGCACGTA	ACAGTAGGTG	AATTAATTGG	TAATTTTATT	TTAATCACTG	960
GCTCTTTTAT	TCTTTTGCTA	GTCTTGATTA	AAAAATTTGC	ATGGTCTAAT	ATTACAGGCA	1020
TTTTCGAAGA	AAGAGCTGAA	AAAATTGCTT	CAGATATTGA	CAGAGCTGAA	GAAGCCCGTC	1080
AAAAAGCAGA	AGTATTGGCT	CAAAAACGCG	AAGATGAATT	GGCTGGTAGC	CGTAAAGAAG	1140
CTAAGACAAT	CATTGAAAAT	GCAAAGGAAA	CAGCTGAGCA	AAGTAAGGCT	AATATCTTAG	1200
CAGATGCTAA	ACTAGAAGCA	GGACACTTAA	AAGAAAAAGC	CAATCAAGAA	ATTGCTCAAA	1260
ATAAAGTAGA	AGCTTTACAG	AGTGTTAAGG	GTGAGGTCGC	AGATTTGACC	ATCAGCTTAG	1320
CTGGTAAAAT	CATCTCACAA	AACCTTGACA	GTCATGCCCA	TAAAGCACTC	ATTGATCAGT	1380
ATATCGATCA	GCTAGGAGAA	GCTTAATGGA	CAAGAAAACA	GTAAAGGTAA	TTGAAAAATA	1440
CAGCATGCCT	TTTGTCCAAT	TGGTACTTGA	AAAAGGAGAA	GAAGACCGTA	TCTTTTCAGA	1500
CTTGACTCAA	ATCAAGCAAG	TTGTTGAAAA	AACAGGTCTG	CCTTCTTTTT	TAAAACAAGT	1560
GGCAGTAGAC	GAGTCGGATA	AGGAAAAAAC	AATTGCTTTT	TTCCAAGATT	CTGTGTCGCC	1620
TTTATTACAA	AACTTTATCC	AGGTTCTGGC	CTACAATCAC	AGAGCAAATC	TTTTTTATGA	1680
TGTGCTTGTA	GATTGCTTGA	ACCGACTTGA	AAAAGAAACA	AATCGATTTG	AAGTGACGAT	1740
TACGTCTGCT	CATCCTCTAA	CTGATGAACA	GAAGACTCGT	TTGCTCCCTT	TGATTGAGAA	1800
AAAAATGTCT	CTGAAAGTAA	GGAGTGTAAA	AGAACAAATC	GATGAAAGTC	TCATTGGTGG	1860
TTTTGTCATT	TTTGCCAATC	ACAAGACAAT	TGATGTGAGT	ATTAAACAAC	AACTTAAAGT	1920
TGTTAAAGAA	AATTTGAAAT	AGAAAGTGGT	GTTCTTTTGG	CAATTAACGC	ACAAGAAATC	1980
AGCGCTTTAA	TTAAGCAACA	aattgaaaat	TTCAAACCCA	ATTTTGATGT	GACTGAAACA	2040
GGTGTTGTAA	CCTATATCGG	GGACGGTATC	GCGCGTGCTC	ACGGCCTTGA	AAATGTCATG	2100
AGTGGAGAGT	TGTTGAATTT	TGAAAACGGC	TCTTATGGTA	TGGCTCAAAA	CTTGGAGTCA	2160
ACAGACGTTG	GTATTATCAT	CCTAGGTGAC	TTTACAGATA	TCCGTGAAGG	CGATACAATC	2220
CGCCGTACAG	GGAAAATCAT	GGAAGTCCCT	GTAGGTGAAA	GTCTGATTGG	TCGTGTTGTG	2280
GATCCGCTTG	GTCGTCCAGT	TGACGGTCTT	GGAGAAATCC	ACACTGATAA	AACTCGTCCA	2340
GTAGAAGCAC	CAGCTCCTGG	TGTTATGCAA	CGTAAGTCTG	TTTCAGAACC	ATTGCAAACT	2400
GGTTTGAAAG	CTATTGACGC	CCTTGTACCG	ATTGGTCGTG	GTCAACG <b>T</b> GA	GTTGATTATC	2460
GGTGACCGTC	AGACAGGGAA	AACAACCATT	GCGATTGATA	CAATCTTGAA	CCAAAAAGAT	2520
CAAGATATGA	TCTGTATCTA	CGTCGCGATT	GGACAAAAAG	AATCAACAGT	TCGTACGCAA	2580
GTAGAAACAC	TTCGTCAGTA	CGGTGCCTTG	GACTACACAA	TCGTTGTGAC	AGCCTCTGCT	2640
CACAACCAT	CTCCATTGCT	CTTCCTAGCT	CCTTATGCTG	GGGTTGCTAT	GGCGGAAGAA	2700

TTTATGTATC	AAGGTAAGCA	TGTTTTGATT	GTATACGATG	ATCTATCAAA	ACAAGCGGTA	2760
GCTTATCGTG	AACTGTCGCT	CTTGCTTCGT	CGTCCTCCAG	GTCGTGAAGC	CTTCCCAGGG	2820
GATGTTTTCT	ATCTCCACAG	CCGTTTGCTT	GAGCGCTCAG	CTAAAGTTTC	TGATGAACTT	2880
GGTGGTGGAT	CAATTACAGC	CCTACCATTT	ATCGAGACAC	AAGCAGGAGA	TATCTCAGCC	2940
TATATCGCAA	CCAACGTGAT	TTCTATCACT	GATGGACAAA	TCTTCCTTGG	CGATGGCCTC .	3000
TTCAATGCAG	GTATTCGTCC	AGCCATCGAT	GCGGGTTCAT	CTGTATCTCG	TGTAGGTGGT	3060
TCTGCACAAA	TCAAAGCCAT	GAAGAAGGTT	GCTGGTACAC	TTCGTATCGA	CCTTGCTTCA	3120
TACCGTGAGT	TGGAAGCCTT	TACTAAGTTT	GGTTCTGACT	TGGACGCAGC	AACACAGGCT	3180
AAGTTGAACC	GTGGACGTCG	TACCGTTGAG	GTCTTGAAAC	AACCTGTTCA	CAÁACCATTA	3240
CCTGTTGAGA	AACAAGTAAC	CATTCTTTAT	GCTTTGACAC	ATGGTTTCTT	GGATACTGTT	3300
CCAGTAGATG	ATATTGTTCG	TTTCGAGGAA	GAGTTCCATG	CCTTCTTTGA	TGCTCAACAT	3360
CCAGAGATTT	TGGAAACCAT	TCGTGATACA	AAAGACTTGC	CAGAAGAAGC	AGTCTTGGAT	3420
GCTGCGATTA	CAGAGTTTCT	CAATCAATCT	AGCTTCCAAT	AAGAATAGAG	GTGTCAGATG	3480
GCAGTATCTC	TAAATGATAT	TAAAACAAAA	ATCGCCTCAA	CAAAAAATAC	GAGTCAAATC	3540
ACTAATGCCA	TGCAAATGGT	ATCGGCTGCT	AAGCTAGGTC	GTTCTGAAGA	AGCTGCTCGC	3600
AACTTCCAAG	TTTACGCTCA	GAAAGTGCGT	AAACTTTTGA	CAGATATCCT	TCATGGTAAT	3660
GGAGCTGGTG	CTTCAACTAA	TCCGATGTTG	ATTAGCCGTT	CTGTGAAGAA	GACAGGCTAT	3720
ATCGTTATCA	CTTCAGACCG	CGGTTTGGTT	GGAGGTTATA	ATTCCTCTAT	TTTGAAAGCT	3780
GTTATGGAGT	TGAAAGAAGA	ATACCACCCA	GACGGTAAAG	GTTTTGAAAT	GATCTGTATC	3840
GTGGGATGG	GAGCTGATTT	CTTTAAGGCT	CGCGGTATTC	AACCACTTTA	TGAATTACGT	3900
GCTTGTCAG	ACCAACCTAG	CTTTGATCAA	GTTCGTAAGA	TTATTTCAAA	AACTGTTGAA	3960
ATGTACCAAA	ATGAACTCTT	TGATGAGCTT	TATGTTTGCT	ACAACCACCA	TGTCAATACG	4020
CTAACCAGTC	AAATGCGTGT	GGAACAAATG	CTTCCGATTG	TTGACTTGGA	TCCAAATGAA	4080
GCGGATGAAG	AGTACAGCTT	GACTTTTGAA	TTGGAAACCA	GCCGAGAAGA	AATTCTGGAG	4140
CAGTTGTTGC	CTCAGTTTGC	AGAAAGTATG	ATTTACGGTG	CCATTATCGA	TGCCAAGACA	4200
GCTGAGAATG	CTGCGGGCAT	GACAGCCATG	CAAACAGCGA	CAGATAATGC	TAAGAAAGTC	4260
ATCAATGATT	TGACAATTCA	GTATAACCGT	GCCAGACAGG	CGGCGATTAC	ACAAGAAATT	4320
ACAGAAATCG	TAGCAGGTGC	TAGTGCCTTA	GAATAGGCTC	TAGTCCAGCT	CGTATGAAAA	4380
rgaac <u>t</u> tagg	ACCTAGTTGA	GCTAGGAACC	GACAGTATCT	TATATAGAAT	AGGAGAAGGA	4440

			1040			
GATGAGTTC.	A CGTAAAATTC	CTCAGGTTAT	CGGTCCCGTT	GTAGACGTTT	TGTTTGCAGC	4500
AGGGGAAAA	A CTTCCTGAGA	TTAACAATGO	ACTTGTCGTC	TACAAAAATG	ACGAAAGAAA	4560
AACAAAAAT	C GTCCTTGAAG	TAGCCTTGGA	GTTAGGAGAT	GGTATGGTTC	GTACTATCGC	4620
CATGGAATC	A ACAGATGGGT	TGACTCGTGG	AATGGAAGTA	TTGGACACAG	GTCGTCCAAT	4680
CTCTGTACC	A GTAGGTAAAG	AAACTTTGGG	ACGTGTCTTC	AACGTTTTGG	GAGATACCAT	4740
TGACTTGGA	A GCTCCTTTTA	CAGAAGACGC	AGAGCGTCAG	CCAATTCATA	AAAAAGCTCC	4800
AACTTTTGA:	GAGTTGTCTA	CCTCTTCTGA	AATCCTTGAA	ACAGGGATCA	AGGTTATTGA	4860
CCTTCTTGC	CCTTACCTTA	AAGGTGGTAA	AGTTGGACTT	TTCGGTGGTG	CCGGAGTTGG	4920
TAAAACTGT	TTAATCCAAG	AATTGATTCA	CAACATTGCC	CAAGAGCACG	GTGGTATTTC	4980
AGTATTTGCT	GGTGTTGGGG	AACGTACTCG	TGAGGGGAAT	GACCTTTACT	GGGAAATGAA	5040
AGAATCAGG	GTTATCGAGA	AAACAGCCAT	GGTCTTTGGT	CAGATGAATG	AGCCACCAGG	5100
AGCACGTATO	CGTGTTGCCC	TTACTGGTTT	GACAATCGCT	GAATACTTCC	GTGATGTGGA	5160
AGGCCAAGAC	GTGCTTCTCT	TTATCGATAA	TATCTTCCGT	TTCACTCAGG	CTGGTTCAGA	5220
AGTATCTGCC	CTTTTGGGTC	GTATGCCATC	AGCCGTTGGT	TACCAACCAA	CACTTGCTAC	5280
GGAAATGGGT	CAATTGCAAG	AACGTATCAC	ATCAACCAAG	AAGGGTTCTG	TAACCTCTAT	5340
CCAGGCTATC	TATGTGCCAG	CGGATGACTA	TACTGACCCA	GCGCCAGCAA	CAGCCTTCGC	5400
TCACTTGGAT	TCAACAACAA	ACTTGGAACG	TAAGTTGGTA	CAATTGGGTA	TCTACCCAGC	5460
CGTTGACCCA	CTTGCTTCAA	GCTCACGTGC	CTTGGCACCT	GAAATCGTTG	GAGAAGAGCA	5520
CTATGCAGTT	GCTGCTGAAG	TAAAACGTGT	CCTTCAACGT	TACCATGAAT	TGCAAGATAT	5580
CATTGCTATC	CTTGGTATGG	ATGAGCTTTC	TGATGAAGAA	AAGACCTTGG	TTGCTCGCGC	5640
CCGTCGTATC	CAGTTCTTCT	TGTCACAAAA	CTTCAACGTT	GCGGAACAAT	TTACTGGTCA	5700
SCCAGGTTCT	TATGTTCCAG	TTGCTGAAAC	TGTACGTGGC	TTTAAGGAAA	TCCTTGATGG	5760
<b>FAAATACGAC</b>	CACTTGCCAG	AAGATGCCTT	CCGTGGTGTA	GGTTCTATCG	AAGATGTGAT	5820
rgcaaaagct	GAAAAAATGG	GATTTTAAGA	GGTGATCTAT	GGCTCAGTTA	ACTGTCCAGA	5880
CGTGACACC	AGATGGTCTC	GTCTATGATC	ACCATGCCAG	CTATGTATCG	GTTCGAACTC	5940
rggatggtga	GATGGGGATC	TTGCCACGAC	ATGAAAATAT	GATTGCGGTT	TTAGCAGTTG	6000
ATGAAGTAAA	GGTAAAACGT	ATCGATGATA	AAGATCACGT	GAACTGGATT	GCAGTAAACG	6060
TGGCGTTAT	TGAAATTGCC	AATGATATGA	TCACAATCGT	CGCTGACTCT	GCAGAACGTG	6120
TCGTGATAT	CGATATCAGT	CGTGCAGAAC	GTGCCAAACT	TCGTGCAGAA	CGTGCAATTG	6180
AGAAGCACA	AGACAAACAT	TTGATTGACC	AAGAACGTCG	TGCTAAGATT	GCTTTGCAAC	6240

GTGCTATTA	CCGTATTAAT	GTCGGAAATA	GACTATAAGA	AAAAATGAAC	TTGAAAATAC	6300
CAAGTTCATT	TTTTATGGTG	TTTTAAGGAC	CAAAACGGAT	GCAGACTGCT	TCGGGAACAT	6360
GGAAGTCGTT	GGAGAGTTCT	GCTAGACGAC	CATTGTCACA	ATTACGTTTA	AAGACAGTTG	6420
CATTGTCAG	GTCTTGATGG	ACAACAATGA	GAAATTTTTG	GTCGGGTGTC	AAATCAAAAT	6480
CACGTGGAGT	CTGACCATGC	GTTGGAACGA	TTTCTAATAA	CTCTAAGCTA	CCGTCCGCAA	6540
GGATGGTATA	TACTGCGATA	GAATCATGGC	CACGGTTAGA	AGCGTAGAGG	TATTTACCGT	6600
CTTTAGAGAG	ATGAATAGCA	GCGGTTCCAT	TAAAGCCTTC	GTAAGCTTCC	GGTAAAGTTG	6660
AAATGACCTG	CATACGTTCA	AATTCGCCAA	CGCCATCGTA	GATTAAAACT	TCGATAGTAC	6720
TATTGAGTTC	ACAAATGAGA	TAAGCGATTT	TATAGTGGTT	ATGGAAAATG	ATATGGCGTG	6780
AGCCTGCTCC	TGGCTTGCTG	TGATAGGTAT	AGAGCTTAGA	TAATTTTCCT	TCTTGATCGA	6840
GGTCATAGGT	GATGACTTGG	TCAGTTCCCA	AGTCGCAGGT	CACTAGATAG	TGGTCAGGTG	6900
TTAAATCTGT	ATAGTGAACA	TGGGGGAAG	CTTGATTTTC	ATGTGGACCT	TGGCCACTGT	6960
GTTGATCCAT	ATCACTAAGT	AGAAGACTAC	CATCTTCCTG	GCGTTTATAA	ACAAGGACTT	7020
GTCCCTTGTG	ATAGTTAGCT	GCGTAAACCA	AATCACGCTT	TTCATCGACA	GCAACATAAC	7080
AGTGGGGAGC	TCCTTCTTCA	ACAACATGAT	TTAACACAGT	CCCGTCAGTT	TGATAGGCTG	7140
CAATTCCCCC	CTTATCGTCT	TGGCTACCAA	CAGTGTATAA	ATGTTGGTGC	TGGTCAAAGG	7200
CAAGGTAGGT	TGGACTTGGC	TCAGCTGCAA	AAAGTTCTAG	ATTTGAAAGC	TGACCAGTTT	7260
CTGTATCAAA	GTCTGCCTTG	TAAATCCCTT	GAGAAGTACG	ACGTGTATAA	GTTCCAAAAT	7320
AAACAGTTTC	TTTCATTACT	ATACCTCTGT	GTAAAGATAA	GACTATTATA	TCACAAAAAC	7380
AAGTAAATTA	AAGATATCCA	ATTAGATGTA	AGCACTTTAA	AAAAGAGTTA	TTTTGTTTCA	7440
AAAATGGTAT	AATGAGAGAA	CAATAGAAAG	GAAGTATTTA	TGGAGCAAAA	AGAGAAACAT	7500
TTTAGCCTAT	CTTGGTTTTT	CAAGTGGTTT	TTAGATAACA	AGGCAATTAC	GGTATTTTTA	7560
GTAACCTTAT	TATTGGGACT	GAATCTTTTT	ATTTTAAGTA	AGATTAGTTT	TCTATTTTCA	7620
CCTGTTTTAG	ACTTTTTAGC	AGTTGTGATG	TTGCCAGTCA	TTTTGTCTGG	TTTGTTATAT	7680
TATTTGTTGA	ATCCTATTGT	TGATTGGATG	GAGAAGCATA	AGGTTAATCG	TGTTATAGCT	7740
ATCACTATTG	TCTTTGTTAT	CATCGCTCTC	TTTATCATTT	GGGGCTTGGC	AGTCGCCATT	7800
CCAAATCTGC	AACGTCAGGT	TTTGACCTTT	GCAAGAAACG	TTCCTGTTTA	CTTAGAAGAT	7860
ATAGATAGGA	TTGTTAATGG	ATTGGTAGCC	CAGCACCTGC	CAGATGATTT	CAGACCTCAA	7920
TTAGAGCAAG	TTTTGACCAA	TTTTTCTAGC	CAGGCTACAG	TTTTGGCAAG	TAAGGTTTCA	7980

			1042		•	
TCTCAGGCAG	TCAACTGGGT	GAGTGCCTTT	ATTAGCGGGG	CTTCTCAAGT	GATTGTTGCC	8040
TTGATTATCG	TTCCTTTCAT	GCTCTTTTAT	CTCTTGCGTG	ATGGGAAAGG	CTTGCGTAAC	8100
TATTTGACCC	AATTCATTCC	AAGAAAATTG	AAGGAACCTG	TTGGACAAGT	TTTATCAGAT	8160
GTGAATCAAC	AGTTGTCCAA	CTATGTTCGA	GGGCAAGTGA	CAGTGGCTAT	TATTGTAGCA	8220
GTAATGTTTA	TCATCTTCTT	CAAGATTATT	GGTCTACGCT	ATGCGGTTAC	GCTGGGGGTT	8280
ACTGCTGGTA	TTTTAAATCT	GGTCCCTTAT	CTTGGTAGCT	TTCTAGCCAT	GCTTCCTGCT	8340
CTAGTATTGG	GTTTGATTGC	TGGTCCAGTC	ATGCTTTTGA	AAGTAGTGAT	TGTCTTTATC	8400
GTAGAACAAA	CTATTGAAGG	CCGTTTTGTC	TCTCCATTGA	TTTTGGGAAG	TCAATTAAAC	8460
ATCCACCCTA	TTAATGTTCT	CTTTGTTTTG	TTAACTTCAG	GATCTATGTT	TGGTATCTGG	8520
GGAGTTTTAC	TTGGTATTCC	GGTTTATGCC	TCTGCTAAGG	TTGTCATTTC	AGCCATTTTC	8580
GAATGGTATA	AGGTAGTCAG	TGGTCTATAT	GAATTAGAGG	GTGAGGAAGT	CAAGAGTGAA	8640
CAATAGTCAA	CAGATGTTAC	AGGCTTTGGA	GGAGCAAGAT	TTAACTAAGG	CTGAGCATTA	8700
TTTCGCCAAA	GCTTTAGAAA	ATGATTCAAG	TGATCTTCTG	TATGAATTGG	CAACTTATCT	8760
TGAAGGGATT	GGTTTCTATC	CTCAGGCCAA	GGAAATTTAC	CTGAAAATTG	TAGAGGATTT	8820
TCCAGAGGTT	CATCTTAATC	TAGCTGCAAT	TGCTAGCGAG	GATGGTCAAA	TAGAAGAAGC	8880
CTTTACCTAT	CTTGAGGAAA	TCCAAGCTGA	CAGTGACTGG	TATGTCTCGT	CTTTGGCTCT	8940
GAAGGCAGAC	CTTTACCAGC	TGGAAGGTTT	GACAGATGTG	GCACGTGAGA	AATTATTGGA	9000
GGCCTTGACC	TACTCAGAGG	ATTCTCTCTT	GATATTGGGT	TTGGCAGAGT	TGGATAGTGA	9060
GTTGGAAAAT	TACCAAGCGG	CTATTCAAGC	CTATGCCCAG	TTAGATAATC	GCTCGATTTA	9120
TGAGCAAACG	GGCATTTCCA	CCTATCAACG	AATTGGCTTT	GCCTATGCTC	AGTTAGGGAA	9180
ATTTGAAACG	GCTACTGAGT	TTTTAGAAAA	AGCCCTGGAG	TTAGAATACG	ATGACTTAAC	9240
AGCTTTTGAG	TTGGCCAGTC	TTTATTTTGA	TCAAGAAGAA	TATCAAAAAG	CCACCCTCTA	9300
CTTTAAGCAG	CTTGATACCA	TTTCTCCTGA	CTTTGAAGGC	TATGAGTATG	GGTACAGTCA	9360
GGCTTTACAT	AAGGAACATC	AAGTTCAAGA	AGCCCTGCGT	ATCGCTAAGC	AAGGATTAGA	9420
GAAAAATCCC	TTTGAAACTC	GCCTCTTGCT	AGCTGCTTCA	CAATTTTCTT	ATGAATTGCA	9480
TGATGCTAGT	GGTGCAGAAA	ATTATCTCCT	TACTGCAAAA	GAAGACGCTG	AGGATACAGA	9540
AGAAATCTTG	CTTCGTTTAG	CCACTATTTA	TCTGGAGCAG	GAGCGTTATG	AGGATATTCT	9600
AGAATTGCAG	AGTGAGGAGC	CAGAAAATCT	TTTGACCAAG	TGGATGATTG	CTCGTTCTTA	9660
TCAAGAAATG	GACGATTTGG	ATACTGCTTA	TGAGTATTAT	CAAGAGTTGA	CAGGAGATTT	9720
GAAGGACAAT	CCAGAATTTC	TGGAACACTA	TATCTATCTC	TTGCGTGAAT	TGGGACATTT	9780
				•		

1043

TGAAGAAGCA	AAAGTCCATG	CTCACACTTA	CTTAAAACTG	GTTCCAGATG	ATGTGCAAAT	984
GCAAGAACTG	TTTGAGAGAT	TGTAAGAATG	TTTAACCCAA	ATCATTCATA	CCTCTCTCAA	990
CTAGATGTAA	CTTACAAAAC	CCCTGACCTC	ATGAGCCACT	TTCTTCCTCC	TCATGAGGTC	9960
AGTTTTACTT	TCTGCTGTTC	CAGTATCGTT	TTTCCTCGCT	AGATTTCCTC	AAAAGGGCAG	1002
ACTCCTCCCT	TGGTGCGTCA	CACGATTTTT	TCATCTCGAC	TGTTCTTTAA	TGCATCATTA	10080
ACGACGCTTT	TCTTCTAGGT	GGTTCATAAG	GAACAGGAAG	ATTCAGGTTG	ACTTTTCTAA	10140
TCCTAGAATA	AAGTGCTGAA	AACAATTCGG	AATAGGCATA	GAGACTAGAC	AATTTGAGGA	10200
GCTGCTTGCG	TCCTGTTCGA	ACACATTTTC	CCACCACGTG	AAGAAAAAGA	TGGCGGAAGC	10260
GTTTGATTGT	TAAAGTTTGG	AAGTCACCTC	CAGCTAGATG	TTTGAGAAAA	AGATAGAGAT	10320
TGTAGGCGAT	ACAGCTCATC	ATCATACGAA	TTCGTTTTTG	ATTAAGGTTG	AACTATCCGT	10380
TTTATCGCCA	AAAAATCGG					10399

#### (2) INFORMATION FOR SEQ ID NO: 161:

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 9409 base pairs

  (B) TYPE: nucleic acid

  (C) STRANDEDNESS: double

  (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:

GATAAGATTA	AGTTAGAAAA	GAAAGAACTA	GGACATATCT	ACCAGATTCA	GGTTTTTAAT	63
AGCTATGGGC	AGGAAGAAAT	CTATCGTGTG	ATTTTGATGG	AGACCAATAT	TAGTTCGGTT	120
TCAACCAATA	TCAAGTATGC	TGCTGTCTTG	ATTAATACCA	GTCAGTTGGA	ACAGGCTAGT	180
CAAAAGCATG	AGCAATTGAT	TGTGGTCGTG	ATGGCTAGTT	TCTGGATTTT	GTCTTTACTT	240
GCCAGTCTCT	ATCTAGCTAG	GGTCAGTGTT	AGGCCCCTGC	TTGAGAGTAT	GCAGAAGCAA	300
CAGTCTTTTG	TGGAAAATGC	CAGTCATGAG	TTACGAACTC	CACTCGCAGT	TTTGCAAAAT	360
CGCTTAGAGA	CCCTTTTTCG	TAAGCCAGAA	GCTACCATTA	TGGATGTGAG	CGAAAGCATT	420
GCATCGAGTT	TGGAAGAAGT	CCGAAATATG	CGTTTTTTAA	CGACAAGCTT	GCTGAACTTA	480
GCTCGGAGAG	ATGATGGGAT	TAAGCCGGAG	CTTGCAGAAG	TTCCAACTAG	CTTTTTTAAT	540
ACAACTTTCA	CAAACTACGA	GATGATTGCT	TCGGAAAATA	ATCGTGTCTT	CCGTTTTGAA	600
AATCGTATCC	ATCGAACAAT	TGTCACAGAT	CAGCTTCTTC	TGAAACAACT	GATGACCATT	660
CTTTTCGATA	ATGCCGTCAA	GTATACTGAG	GAGGATGGTG	AAATTGATTT	TCTTATCTCG	720

			1044			
GCGACCGATC	GCAATCTTTA	TTTACTTGTT	TCTGATAATC	GAATCGGTAT	TTCGACAGAA	78
GATAAAAAGA	AAATTTTTGA	CCGTTTTTAT	CGAGTAGACA	AGGCTAGAAC	CCGGCAAAAA	84
GGTGGTTTTG	GTTTAGGATT	ATCCCTAGCC	: AAGCAAATTO	TAGATGCTCT	AAAAGGAACT	90
GTTACTGTCA	AAGATAATAA	ACCCAAGGGA	ACAATCTTTC	AAGTGAAGAT	TGCCATTCAG	96
ACACCATCTA	AAAAGAAAAA	АТАААААТАТ	CGCTCCAATT	' GGGGCGATAT	TTTGGATTTA	102
TCTTCTACGT	TTTCGTTTGA	TAATAGACCG	TTGAACTTTT	' AAAACAAGTA	AGCTGAATCC	108
GATTGCTGCG	GCAAAGGCAA	GAGCAGTTGA	TAATTTTAAT	GCTAAAAAGA	ТААААСТААА	114
GATAGCAATA	CAGATACAAA	AAACAGCGAT	ATTAATAAAA	AATAGGATTT	CCTTGAGATT	120
GGCATCAGAT	TGCGCTTCAG	GTGTATAAGC	TTGGTAATGA	GGAAGCTGCT	GGTTTAATTC	1260
TTCTTGATAG	TCTACCTCAT	AGGATTGTAA	TTTTCTTACG	GGCATGATTC	TCTCCTTAAC	1320
AGTACATACC	TATTTTATCA	TTTTTTCGGC	AGAGAATTAT	TACAGAAAGG	TTACAAAAAG	1380
AATAAAGTCC	CTTTTCATTT	TCAAAGCATG	GCTGATTTTG	GAGAAATGTG	GTATAATTTT	1440
TCTTATGGAA	AAGATTGTCA	TTACAGCAAC	TGCTGAAAGT	ATTGAACAAG	TTGAACAACT	1500
ACTCGAAGCT	GGCGTAGACC	GTATCTATGT	CGGTGAGAAA	GATTTTGGTC	TTCGTCTGCC	1560
AACGACCTTT	AGTTATGACC	AATTACGTGA	AATCGCTAAG	TTGGTTCATG	ATGCTGGTAA	1620
GGAATTGATC	GTTGCGGTCA	ATGCTCTCAT	GCACCAAGAT	ATGATGGACC	GTATCAAGCC	1680
TTTCTTAAAC	TTCTTGGAAG	AAATCAAGAC	AGACTATATT	ACGATTGGGG	ATGCAGGCGT	1740
CTTTTACGTA	GTTAACCGCG	ATGGTTATTC	ATTTAAGACC	ATCTACGATG	CTTCAACCAT	1800
GGTAACTAGC	AGTCGTCAGA	TTAACTTCTG	GGGACAAAAG	GCTGGCGCAT	CTGAGGCTGT	1860
TTTGGCGCGT	GAAATTCCAT	CAGCTGAACT	TTTCAAAATG	CCAGAGATTT	TGGAAATTCC	1920
FGCTGAAGTT	TTGGTTTACG	GTGCTAGCGT	CATCCATCAT	TCTAAACGTC	CACTCTTGCA	1980
AAACTACTAT	AACTTTACAC	ATATCGATGA	TGAAAAGACG	CATAAACGTG	ACCTCTTCTT	2040
GCTGAGCCA	AGTGATCCAG	AGAGCCACTA	TTCCATTTTT	GAAGATAATC	ATGGGACCCA	2100
PATCTTTGCC	AACAATGACC	TTGATTTGAT	GATCAAATTA	ACAGAATTGG	TGGAGCATGG	2160
TTTACTCGC	TGGAAACTAG	AAGGCTCTA	CACTCCTGGT	CAGAACTTTG	TTGAGATTGC	2220
VAAACTCTTT	ATCCAAGCGC	GTAGCTTGAT	TCAAGAGGC	AACTTTAGTC	ATGCTCAAGC	2280
CTTCTTGCTG	GATGAAGAAG	TTCGTAAACT	TCACCCTAAA	AACCGTTTCC	TTGATACAGG	2340
TTTTATGAC	TACGATCCTG	ACATGGTTAG	ATAAAATACA	TGATTCGTTG	AGAGAAGGAA	2400
SATGCAAACA	TTTCTTCTCT	CAATTTTTCG	TATTTCTTCA	CTATTTTACA	AAAATCAGCA	2460
GCTAGAATG	CTCTATTCGA	TGGGATTTTT	AAGAAAAGTA	GTGTTCTTGA	GTTTGAAAAT	2520

T	ATCCTATGT	TTGCAGGTGC	CAAATGGCCC	TTTTTTTGGT	* ATAATTTTT	r ataatgaaaa	2580
C	GATTGGTAA	TCGCTATGTT	GTGGTGGATT	TAGAGGCAAC	TAGCACAGG1	AGTAAGGCTA	2640
A	AATTATCCA	AGTGGGAATT	GTCGTGATTC	AGGACGGAGA	AATCGTCGAT	CACTATACGA	2700
C	GGATGTCAA	TCCACATGAA	CCCTTGGATG	CTCATATCAA	AGAACTGACA	GGATTGACAG	2760
A	CCAACGTCT	GGCGCAAGCA	CCTGATTTTT	CGCAAGTTGC	CAGAAAAATA	TTTGACTTGG	2820
T	GGAGGATGG	GATTTTTGTA	GCCCATAATG	TTCAGTTTGA	TGCTAATCTC	TTGGCGGAAA	2880
A7	TTATTT	TGAAGGCTAT	GAGCTAAGAA	ACCCTCGTGT	TGATACGGTC	GAATTGGCCC	2940
AC	GTCTTTTT	CCCTGAACTG	GAAAAATATA	GCTTGCCGAT	TTTGTGTCCA	GAATTAGGAA	3000
TI	CCTCTTAA	ACACGCACAC	ACAGCCCTTT	CAGATGCCCA	AGCTACAGCA	GAATTACTTC	3060
T	TTTTTACG	GAAAAAGATG	ACCCAGCTTC	CTAAAGGTCT	CTTGGAACGC	TTGCTGGAAA	3120
TC	GCTGACGC	TCTCCTATAT	GAGTCCTACC	TGGTTATTGA	GGAAACTTAT	CGCAACCAAT	3180
Cī	'ATCCTGAG	TTCTCCAGAC	TTGGTCCAAG	TTCAAGGTCT	ATATTTTAAG	AAAACGGAAG	3240
CI	TCTCTGGA	GCCACGAAAA	CTATCTCAAG	ACTTTTCTAA	AAATATTTCT	CTGTTGAACC	3300
TI	'GAAGTGAG	GGAGGAACAA	GAAAGTTTTG	CTAAAGAGGT	TGGCTTGCTA	TTGAAAGATG	3360
AA	CCTGTCTC	TCTGATTCAA	GCGCCGACAG	GGATTGGGAA	AACCTATGGC	TATCTCTTAC	3420
CC	GCTTTATC	TCAATCCAAA	GAGCGACAAA	TTGTTCTTAG	TGTTCCGACA	AAGATTCTTC	3480
AA	AATCAAAT	CATGGAAGAA	GAAGGTAAAC	GCCTCAAGGA	AGTGTTCCAT	ACAGATATTC	3540
AT	'AGCTTAAA	GGGACCACAA	AATTATCTGA	AGTTGGATGC	CTTTTATCAT	TCCTTGCAGG	3600
AA	aatgatga	AAATCGCTTA	TTTAGACGCT	TTAAAATGCA	AGTCTTGGTC	TGGCTTACTG	3660
AG	ACAGAGAC	AGGAGATTTG	GATGAAATCG	GGCAACTCTA	CCGTTACCAA	CATTTTCTAG	3720
CA	GACCTTCG	TCATGATGGG	AATTTATCAT	CCCAGAGCTT	ATTTGTGACG	GAAGATTTTT	3780
GG	AAACGTAG	TCAAGAAAGG	GCAGAGACTT	GCAAGCTTTT	AGTGACTAAT	CATGCCTATC	3840
TC	GTAACCAG	ACTTGAAGAT	AATCCTGAAT	TTGTCAGTGA	CCGTTTACTG	ATTATTGATG	3900
AA	GTCCAAAA	GATTTTGTTA	GCTCTAGAAA	ATCTGCTTCA	AGAGACCTAC	GATATACAAT	3960
CT.	ATTATCGA	TTTAATTGAT	AAGGCTTTAG	TAGGAGAAGA	AAACAGGGTT	CAACAACGGA	4020
TA	CTAGAAAG	TATTCGCTTT	GAGTGTCTCT	ACTTGATAGA	ACAATTTCAG	TCTGGCAAAT	4080
CT.	AGGAAAAA	TATCTTAGAT	TCTCTGGACA	ATCTCCATCA	GTATTTTTCA	GAATTGGAAG	4140
TA	GAAGACTT	TGATGAGCTG	GTTCGCTATT	TTACAGCTGA	AGGTGATTAC	TGGCTTGAAG	4200
TA	ACTGAAAC	GAGTCAAAAG	AAAATTCAGA	TTTCTTCTAC	AAAATCAGGC	CGTACTCTTC	4260

			1046			
TGTCCTCTT	r ACTTCCTGAC	AGTTGCCAAC	TCTTGGGAGT	ATCGGCTACT	CTTGAGATTA	4320
GTCAGAGGG1	TTCTTTGGC#	GACCTTTTAC	GCTATCCTGA	AGCTAAATTI	GTCAAGATTG	4380
AATCTCGGGG	AAAACAGGAA	CAAGAAGTGG	TCATGGTCAA	AGATTTCCCT	CTGGTAACAG	4440
AAACCTCCTT	AGAAGTCTAT	GCCAGAGAGG	TAGCTGCTTT	ACTAGTGGAA	ATTCAAGCTT	4500
TCCAGCAACC	GATTTTGGTT	CTCTTTACCG	CTAAAGACAT	GCTTCTAGCA	GTATCGGATT	4560
TACTTACAGT	TAGCCACTTG	GCCCAGTATA	AAAATGGGGA	TGTTCATCAG	CTAAAGAAAC	4620
GCTTTGAAAA	AGGTGAACAA	CAAATCTTGC	TTGGTGCAGC	AAGTTTCTGG	GAGGGAGTTG	4680
ATTTTTCAAG	CCATCCTTCT	GTGATTCAAG	TTGTACCGAG	GCTTCCTTTC	CAAAATCCTC	4740
AAGAACCCTT	GACGAAAAAG	ATTAATCAAG	AACTGAATCA	AGAAGGGAAA	AATGCCTTTT	4800
ATGATTATCA	ATTGCCAATG	GCCATTATTC	GTTTAAAACA	GGCTTTGGGA	AGAAGTATGA	4860
GACGTGAATA	CCAACGTTCC	TTAACTCTTA	TTTTGGATAG	GAGAATCGTC	GGAAAACGAT	4920
ACGGCAAACA	AATAGTAGCA	TCTCTAGCAG	AAGAAGCGAC	TGTTAAAACC	ATCTCTCGAT	4980
CCGAAGTTGA	CGAGGCTATT	GATAGATTTT	TTAATGAGCT	TTGATAAATA	GTATTGTATG	5040
AAAGTATAAG	GTTAGTATAT	ATGAAACGTT	CTCTCGACTC	AAGAGTCGAT	TACAGTTTGC	5100
TCTTGCCAGT	ATTTTTTCTA	CTGGTCATCG	GTGTGGTGGC	TATCTATATA	GCCGTTAGTC	5160
ATGATTATCC	CAATAATATT	CTGCCCATTT	TAGGGCAGCA	GGTCGCCTGG	ATTGCCTTGG	5220
GGCTTGTGAT	TCGTTTTGTG	GTCATGCTCT	TTAATACAGA	ATTTCTTTGG	AAGGTGACCC	5280
CCTTTCTATA	TATTTTAGGC	TTGGGACTTA	TGATCTTGCC	GATTGTATTT	TATAATCCAA	5340
GCTTAGTTGC	ATCAACGGGT	GCCAAAAACT	GGGTATCAAT	AAATGGAATT	ACCCTATTCC	5400
AACCGTCAGA	ATTTATGAAG	ATATCCTATA	TCCTCATGTT	GGCTCGTGTC	ATTGTCCAAT	5460
TTACAAAGAA	ACATAAGGAA	TGGAGACGCA	CGGTTCCGCT	GGACTTTTTG	TTAATTTTCT	5520
GGATGATTCT	CTTTACCATT	CCAGTCCTAG	TTCTTTTAGC	ACTTCAAAGT	GACTTGGGGA	5580
CGGCTTTGGT	TTTTGTAGCC	ATTTTCTCAG	GAATCGTTTT	ATTATCAGGG	GTTTCTTGG.A	5640
<b>TATTATTAA</b>	CCCAGTATTT	GTGACTGCTG	TAACAGGAGT	TGCTGGTTTC	TTAGCTATCT	5700
TTATTAGCAA	GGACGGACGA	GCTTTTCTTC	ACCAGATTGG	AATGCCGACC	TACCAAATTA	5760
ATCGGATTTT	GGCTTGGCTC	AATCCCTTTG	AGTTTGCCCA	AACAACGACT	TACCAGCAGG	5820
CTCAAGGGCA	GATTGCCATT	GGGAGTGGTG	GCTTATTTGG	TCAGGGATTT	AATGCTTCGA	5880
ATCTGCTTAT	CCCAGTTCGA	GAGTCAGATA	TGATTTTTAC	GGTTATTGCA	GAAGATTTTG	5940
CTTTATTGG	CTCTGTCCTG	GTTATTGCCC	TCTATCTCAT	GTTGATTTAC	CGTATGTTGA	6000
AGATTACTCT	TAAATCAAAT	AACCAGTTCT	ACACTTATAT	TTCCACAGGT	TTGATTATGA	6060

TGTTGCTCTT	CCACATCTTT	GAGAATATCG	GTGCTGTGAC	TGGACTACTT	CCTTTGACGG	6120
GGATTCCCTT	GCCTTTCATT	TCGCAAGGGG	GATCAGCTAT	TATCAGTAAT	CTGATTGGTG	6180
TTGGTTTGCT	TTTATCGATG	AGTTACCAGA	CTAATCTAGC	TGAAGAAAAG	AGCGGAAAAG	6240
TCCCATTCAA	ACGGAAAAAG	GTTGTATTAA	AACAAATTAA	ATAAGGAGAA	AATCATGGTA	6300
AAAGTAGCAG	TTATATTAGC	TCAGGGCTTT	GAAGAAATTG	AAGCCTTGAC	AGTTGTAGAT	6360
GTCTTGCGTC	GAGCCAATAT	CACATGTGAT	ATGGTTGGTT	TTGAAGAGCA	AGTAACGGGT	6420
TCGCATGCAA	TCCAAGTAAG	AGCAGATCAT	GTCTTTGATG	GAGATTTATC	AGACTATGAT	6480
ATGATTGTTC	TTCCTGGAGG	TATGCCTGGT	TCTGCACATT	TACGTGATAA	TCAGACCTTG	6540
ATTCAAGAAT	TGCAAAGCTT	CGAGCAAGAA	GGGAAGAAAC	TAGCAGCCAT	TTGTGCGGCA	6600
CCAATTGCCC	TCAATCAAGC	AGAGATATTG	AAAAATAAGC	GATACACTTG	TTATGACGGC	6660
GTTCAAGAGC	AAATCCTTGA	TGGTCACTAC	GTCAAGGAAA	CAGTAGTGGT	AGATGGTCAG	6720
TTGACAACCA	GTCGGGGTCC	TTCAACAGCC	CTTGCCTTTG	CCTACGAGTT	GGTGGAGCAA	6780
CTAGGAGGG	ACGCAGAGAG	TTTACGAACA	GGAATGCTCT	ATCGAGATGT	CTTTGGTAAA	6840
AATCAGTAAA	ACGGGAGTTA	TTCTCTCGTT	TTTTATGTGG	AAAACTCAGG	GAAATCATCG	6900
CTTTTTTCAT	AAAAAAATGC	TATAATGAAG	GGTATGAAAT	ATCACGATTA	CATCTGGGAT	6960
TTAGGTGGAA	CTTTACTGGA	TAATTATGAA	ACTTCAACAG	CTGCATTTGT	TGAAACATTG	7020
GCACTGTATG	GTATCACACA	AGACCATGAC	AGTGTCTATC	AAGCTTTAAA	GGTTTCTACT	7080
CCTTTTGCGA	TTGAGACATT	CGCTCCCAAT	TTAGAGAATT	TTTTAGAAAA	GTACAAGGAA	7140
AATGAAGCCA	GAGAGCTTGA	ACACCCGATT	TTATTTGAAG	GAGTTTCTGA	CCTATTGGAA	7200
GACATTTCAA	ATCAAGGTGG	CCGTCATTTT	TTGGTCTCTC	ATCGAAATGA	TCAGGTTTTG	7260
GAAATTTTAG	AAAAAACCTC	TATAGCAGCT	TATTTTACAG	AAGTGGTGAC	TTCTAGCTCA	7320
GGCTTTAAGA	GAAAGCCAAA	TCCCGAATCC	ATGCTTTATT	TAAGAGAAAA	GTATCAGATT	7380
AGCTCTGGTC	TTGTCATTGG	TGATCGGCCG	ATTGATATCG	AAGCAGGTCA	AGCTGCAGGA	7440
CTTGATACCC	ACTTGTTTAC	CAGTATCGTG	AATTTAAGAC	AAGTATTAGA	CATATAAGAA	7500
AAAGGAATAA	GATGACAGAA	GAAATCAAAA	ATCTGCAGGC	ACAGGATTAT	GATGCCAGTC	7560
AAATTCAAGT	TTTAGAGGGC	TTAGAGGCTG	TTCGTATGCG	TCCAGGGATG	TACATTGGAT	7620
CAACCTCAAA	AGAAGGTCTT	CACCATCTAG	TCTGGGAAAT	TGTTGATAAC	TCAATTGACG	7680
AGGCCTTGGC	AGGATTTGCC	AGCCATATTC	AAGTTTTTAT	TGAGCCAGAT	GATTCGATTA	7740
CTGTTGTGGA	TGATGGGCGT	GGTATCCCAG	TCGATATTCA	GGAAAAAACA	GGCCGTCCTG	7800

			1048			
CTGTTGAGAC	CGTCTTTACA	GTCCTTCACG		GTTCGGCGGT	GGTGGATACA	7860
AGGTTTCAGG	TGGTCTTCAC	GGGGTGGGGT	CGTCAGTAGT	TAATGCCCTT	TCCACTCAAT	7920
TAGACGTTCA	TGTTCACAAA	AATGGTAAGA	TTCATTACCA	AGAATACCGT	CGTGGTCATG	7980
TTGTCGCAGA	TCTTGAAATA	GTTGGAGATA	CGGATAAAAC	AGGAACAACT	GTTCACTTCA	8040
CACCGGACCC	AAAAATCTTC	ACTGAAACAA	CAATCTTTGA	TTTTGATAAA	TTAAATAAAC	8100
GGATTCAAGA	GTTGGCCTTT	CTAAATCGCG	GTCTTCAAAT	TTCAATTACA	GATAAGCGCC	8160
aaggtttgga	ACAAACCAAG	CATTATCATT	ATGAAGGTGG	GATTGCTAGT	TACGTTGAAT	8220
ATATCAACGA	GAACAAGGAT	GTAATCTTTG	ATACACCAAT	CTATACAGAC	GGTGAGATGG	8280
ATGATATCAC	AGTTGAGGTA	GCCATGCAGT	ACACAACTGG	TTACCATGAA	AATGTCATGA	8340
GTTTCGCCAA	TAATATTCAT	ACCCATGAAG	GTGGAACACA	TGAACAAGGT	TTCCGTACAG	8400
CCTTGACACG	TGTTATCAAC	GATTATGCTC	GTAAAAATAA	GTTACTGAAA	GACAATGAAG	8460
<b>ATAATTTAAC</b>	AGGGGAAGAT	GTTCGCGAAG	GCTTAACTGC	AGTTATCTCA	GTTAAACACC	8520
CAAATCCACA	CTTTGAAGGA	CAAACCAAGA	CCAAATTGGG	AAATAGCGAA	GTGGTCAAGA	8580
TTACCAATCG	CCTCTTCAGT	GAAGCTTTCT	CCGATTTCCT	CATGGAAAAT	CCACAGATTG	8640
CAAACGTAT	CGTAGAAAAA	GGAATTTTGG	CTGCCAAGGC	TCGTGTGGCT	GCCAAGCGTG	8700
CCCTGAAGT	CACACGTAAA	AAATCTGGTT	TGGAAATTTC	CAACCTTCCA	GGGAAACTAG	8760
AGACTGTTC	TTCTAATAAC	CCTGCTGAAA	CAGAACTCTT	CATCGTCGAA	GGAGACTCAG	8820
TGGTGGATC	AGCCAAATCT	GGTCGTAACC	GTGAGTTTCA	GGCTATCCTT	CCAATTCGCG	8880
TAAGATTTT	GAACGTTGAA	AAAGCAAGTA	TGGATAAGAT	TCTAGCCAAC	GAAGAAATTC	8940
TAGTCTTTT	CACAGCCATG	GGAACAGGAT	TTGGCGCAGA	ATTTGATGTT	TCGAAAGCCC	9000
TTACCAAAA	ACTCGTTTTG	ATGACCGATG	CCGATGTCGA	TGGAGCCCAC	ATTCGTACCC	9060
TCTTTTAAC	CTTGATTTAT	CGTTATATGA	AACCAATCCT	AGAAGCTGGT	TATGTTTATA	9120
TGCCCAACC	ACCAATCTAT	GGTGTCAAGG	TTGGAAGCGA	GATTAAAGAA	TATATCCAGC	9180
GGGTGCAGA	TCAAGAAATC	AAACTCCAAG	AAGCTTTAGC	CCGTTATAGT	GAAGGTCGTA	9240
CAAACCGAC	TATTCAGCGT	TATAAGGGGC	TAGGTGAAAT	GGACGATCAT	CAGCTGTGGG	9300
AACAACCAT	GGATCCCGAA	CATCGCTTGA	TGGCTAGAGT	TTCTGTAGAT	GATGTGCAGA	9360
GCAGATAAA	ATCTTTGATA	TGTTGATGGG	GATCGAGTTG	TCCTCGTCG	•	9409

(2) INFORMATION FOR SEQ ID NO: 162:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6415 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:

60	GAGAGTAGTA	AAAAATTCAG	TGGTGGAAGG	TATGATAGAA	TCTTGAAAAT	CCTGGGAAAC
120	CAATGAAGAA	TCAGTGCATA	TCCATTGTAA	TCTTCTCGTA	ATGTTGAAAG	GTGACTCAAA
180	AGAGGATATT	CCTATCCTAA	AAAAATCAAA	TGAAGACTTA	CTGGTCTAAT	AAATATCTGC
240	TCAGCAATTT	CAGCTATCAT	GATGGGACCA	TATGTCCACA	TTATAAATGO	GAAATTCTAT
300	GAAAAATCAA	ACAATCCTAA	AGATTGTATA	TAACTCAATT	ATACAGAGTT	ATAAAGGAAG
360	AAAAATTGAT	ACCTTATTTT	TCTGTAGGGG	AGTTAAACAT	TTAACCTGGG	GCTAGTGGTT
420	TCAACAAGGT	TGGCTATTAT	ATGAACAATG	GACTTTTGTA	AAGTTACTGA	GCTCATTCAA
480	ATGGGCAGAG	GAAAAGGAAA	ATTGTCGAAG	TAGACCGACG	GTGGGGGGCC	GAATTTGTCT
540	TCGAAATAGT	TTGCCAATTA	GGCAGTAGCA	AAATATGTTT	TTGTTGAGGA	ACCTTGCATC
600	GGTTTTCCAG	ATAAACGAGA	CATGGAATGT	TTCTATTTTT	GATATGTTTC	TCTGAGGATA
660	TCATTATAGA	ATAATGATAT	CGAACTGAAG	GCAACTTGGC	TAGTAAATGA	AAGGTTGGTT
720	TCAGTATATT	TTCTATCTTA	AGCCCAAGTA	AATCCGCTAT	ATGGTTATAA	ATTCGAGAAT
780	GATTGGCTTG	ATGGTTTGTG	AAGTATTCAA	GCTGCATCAA	TCAAGAAAAT	CGACCAACAT
840	TTTATTTGTT	ATGTTCCTTG	TTATTTCACT	GTGTTTATCA	TTCAGTTTAA	ACAAGTCATG
900	AACTTTACTA	TCGTATTCAT	CCGATCACAT	AGCATTGTTA	TGTTTAGTCT	TTGAGTCTTG
960	AAAACATAAA	TGACTTTATT	CTCACTTTGC	TTTGTCATTA	ATTTTCTACT	TTAGGTGCCT
1020	TTATGGCCTT	TTCACTTTGC	TTATTTTCCA	GCCCTTTATT	TAATTGTGAT	AATGGATTTC
1080	GAGAACAATA	AGGAGTACAA	AAATGGAAGA	TAGAGGATTT	TAGGTTTAAT	GGGACGATTG
1140	ATATAGTAAA	TATAATAACA	CAAAATATGC	CCAAATAAAT	ATAAAATAAG	ATTTATTTGG
1200	GTGATTGATC	AACAGATTAT	ATAAAAAACT	ATTTCTATGA	GGAGGAGTAG	ACTCTTTTAA
1260	GATATTTTCA	GGGAATATTT	AGGTTTTCTG	CAACAAAAGC	TTTAAATAAA	TGGTGGAAAT
1320	AATCCAGCAC	TGGGCTGATT	TTTTATTTTA	GTATCTTATA	TTCCATCATT	GTATGGTGGT
1380	ATGATTGGTT	CTATCAATTG	CCTTCCTGTT	ACGAGTTTGG	CATTATCTAT	CTGTTGACTA
1440	ATGAAAATCT	TACGGATTTC	ACAGCAAGAT	ATTAGTCGTT	GAACGCGAGC	TTTGGGGGTT
1500	TTCTTGCCAC	CTGTTATGCC	CATATAGTAT	AGTGTCTTGT	GACTGCTAGC	TTTTTGGTGT
1560	ATTTTATTGC	TACCTTCTTG	TCTTGTTGAG	ATTCTCTTTA	CCGTTTCATC	TCTTCTCCAT

			1050			
CACGGATTA	TTGGCAGTT	A ATCTACTCCA	GACGCAAAAA	AGGTAGTGGT	GATGGAGAAC	1620
ACCGTCGGA	CTTCTTGATT	GGTGCCGGTG	ATGGTGGGGC	TCTTTTTATO	GATAGTTACC	1680
AACATCCAA	CAGTGAATTA	GAACTGGTCG	GTATTTTGGA	TAAGGATTCT	AAGAAAAAGG	1740
GTCAAAAACT	TGGTGGTATT	CCTGTTTTGG	GCTCTTATGA	CAATCTGCCT	GAATTAGCCA	1800
AACGCCATCA	AATCGAGCGT	GTCATCGTTG	CGATTCCGTC	GCTGGATCCG	TCAGAATATG	1860
AGCGTATCTT	GCAGATGTGT	AATAAGCTGG	GTGTCAAATG	TTACAAGATG	CCTAAGGTTG	1920
AAACTGTTGT	TCAGGGCCTT	CACCAAGCAG	GTACTGGCTT	CCAAAAAATT	GATATTACGG	1980
ACCTTTTGGG	TCGTCAGGAA	ATCCGTCTTG	ACGAATCGCG	TCTGGGTGCA	GAACTGACAG	2040
GTAAGACCAT	CTTAGTCACA	GGAGCTGGAG	GTTCAATCGG	TTCTGAAATC	TGTCGTCAAG	2100
TTAGTCGCTT	CAATCCTGAA	CGCATTGTCT	TGCTCGGTCA	TGGGGAAAAC	TCAATCTACC	2160
TTGTTTATCA	TGAATTGATT	CGTAAGTTCC	AAGGGATTGA	TTATGTACCT	GTGATTGCGG	2220
ACATTCAAGA	CTATGATCGT	TTGTTGCAAG	TCTTTGAGCA	GTACAAACCT	GCTATTGTTT	2280
ATCATGCGGC	AGCCCACAAG	CATGTTCCTA	TGATGGAGCG	CAATCCAAAA	GAAGCCTTCA	2340
<b>AAAACAAT</b> AT	CCGTGGAACT	TACAATGTTG	CTAAGGCTGT	TGATGAAGCT	AAAGTGTCTA	2400
AGATGGTTAT	GATTTCGACA	GATAAGGCAG	TCAATCCACC	AAATGTTATG	GGAGCAACCA	2460
AGCGCGTGGC	GGAGTTGATT	GTCACTGGCT	TTAACCAACG	TAGCCAATCA	ACCTACTGTG	2520
CAGTTCGTTT	TGGGAATGTT	CTTGGTAGCC	GTGGTAGTGT	CATTCCAGTC	TTTGAACGTC	2580
GATTGCTGA	AGGTGGGCCT	GTAACGGTGA	CAGACTTCCG	TATGACCCGT	TACTTTATGA	2640
CATTCCAGA	AGCTAGCCGT	CTGGTTATCC	ATGCTGGTGC	TTATGCCAAA	GATGGGGAAG	2700
CTTTATCCT	TGATATGGGC	AAACCAGTCA	AGATTTATGA	CTTGGCCAAG	AAGATGGTGC	2760
TCTAAGTGG	CCACACTGAA	AGTGAAATTC	CAATCGTTGA	AGTTGGAATC	CGCCCAGGTG	2820
AAAACTCTA	CGAAGAACTC	TTGGTATCAA	CCGAACTCGT	TGATAATCAA	GTTATGGATA	2880
GATTTTCGT	TGGTAAGGTT	AATGTCATGC	CTTTAGAATC	CATCAATCAA	AAGATTGGAG	2940
GTTCCGCAC	TCTCAGTGGA	GATGAGTTGA	AGCAAGCTAT	TATCGCCTTT	GCTAATCAAA	3000
AACCCACAT	TGAATAAAAA	AGAAAAACGC	ATAGTATCAA	GTTACACAAC	CTTGGTAATA	3060
GCGTTTTAT	TATGTAGAGA	CTTATACTCT	TCGAAAATCT	CTTCAAACCA	CGTCAACGTC	3120
CCTTGCCGT	ATATGGTTAC	TGACTECGTC	AGTTCTATCC	ACAACCTCAA	AACAGTGTTT	3180
GAGYEGACT	TCGTCAGTTC	TATCCACAAC	CTCAAAACAG	TGTTTTGAGc	TGACETCGTC	3240
GTTCTATCC	ACAACCTCAA	AACAGTGTTT	TGAGCTGACT	TCGTCAGTTC	CATCCACAAC	3300
TTAAAACAG	TGTTTTGAGy	TGACnTTCGT	CAGTTCCATC	TACAACCTTA	AAACAGTGTT	3360

TTGAGCTGC	C CGCAGCTAG	r ttcctagtt1	GCTCTTTGAT	TTTCATTGAG	TATTACTTCA	3420
TTTTCTTCT	G AAATGGAAT	r GTTACCCAGT	CTATGCTATT	GAAAATACGC	CAAAACTTCT	3480
AAGGGTTTG	T GAGCGATAT	A ATCAGGTTGA	TAGTTTAGTA	GATCTGCTTG	CTCTCCAAAT	3540
CCCCAAGTG	A TGGCCAATTI	r ctgaatacct	GTTTCTCGAG	CTCCCAGCAT	ATCAAACTTG	3600
GTATCTCCG	A TGATGATGGG	TTGTTCTGGT	GCTAGTTGAT	GTGTCTGCAA	GGCTTGGTGA	3660
ATGACATCT	G CCTTATGGGG	TGCTTCAGGG	CTAGAACCAT	AAATGCCATC	AAAGAAATGA	3720
TGGATTTCC	A AGTTTTTGC	CATGTCTTGA	GCAGTAGATG	TATCCTTTGT	CGTGGTGATG	3780
TAGAGTGGA	T AACTGCTCGA	TAACTCCTCA	AGCAAGTCTA	TAATCTGAGG	AAAGAGTTGA	3840
GCTTCATAG	A TGCCTTTTGC	CTTATAGTAA	GAACGATATA	TCTGCACGGC	TTCAGAAATT	3900
TGGTCTTTG	G ACAGGCAGGT	CGCAAAACTA	CTTTCGAGAG	GTGGTCCCAT	AAAACCACGA	3960
ATAGTTTTG	G CATCAGGGCT	AGGCACCCC	AGCTCTTTAA	AGGTATAGGT	AAAGGCATTG	4020
TGAATCCCG	A TAGAACTATC	AACGAGGGTT	CCATCCAAAT	CGAAAAAAAT	CGCTGTGATA	4080
GAGGTCATG	G TTTCTCCTAT	TTGATAAGCT	TATTCTCCGA	AAATTTCTTT	TTGGAGGCGA	4140
CGACCAGTA	G GGGTGGTAGC	GAGTCCACCT	TCAGCTGTTT	CACGAAAGGC	AGTTGGCATG	4200
CTTGCTCCT	A CTTGGTACAT	GGCATCGATC	ACTTCATCCA	CAGGGATTTT	AGATTCGATA	4260
CCTGCCAAG	G CCATGTCTGC	TGCGATGAAA	GCAAAGCTAG	CTCCCATGGC	ATTACGTTTG	4320
ACACAGGGA	A CTTCGACCAA	ACCTGCAACA	GGGTCACAGA	TGAGGCCTAG	CATATTTTTA	4380
ATGACAAAG	G CAATAGCTTG	ACTGGCCTGA	TAAGGTGTTC	CACCTGCAGC	CAGAGTCAAG	4440
GCGGCAGCA	C TCATAGCAGA	GGCTGAACCA	ACTTCAGCTT	GACACCCACC	CTCAGCACCT	4500
GAGATGGAG	G CATTGTTTGC	GATGACTAGT	CCAAAGGCAC	CAGCAGCAAA	GAGGAAATCC	4560
AATTGTTGCT	T CGTGGCTGAG	GTCTAATTTT	TCAATAGCAG	CAGTGAGAAC	GGATGGCAGA	4620
CAGCCAGCAG	C TTCCAGCGGT	TGGAGTGGCA	CAGACCAAGC	CCATTTTGGC	ATTGTGTTCA	4680
TTGACTGCG	A TGGCATTTCG	GGCAGCCGAG	AGAATCGTAT	AATCTGACAG	AGTTTTTCCG	4740
TTTTCGATGT	T AGTGATCCAA	TTTGGCAGCA	TCTCCACCTG	TCAGGCCACT	ACGAGATTTA	4800
TTTTCATTG	A GGCCAAGTTG	GACAGAGGCT	TTCATAACTT	CCAGATTGCG	TTCCATGAGA	4860
AGGAAGACTT	CTTCACGTTC	GCGACCGGTC	AATTCAAACT	CTGTTGTAAT	CATGAGTTCT	4920
GCGACATTTC	CTTGAAAGTC	CAGATCTGCT	TGCTCGACCA	ATTCTTTGAT	AGAATAAAAC	4980
ATGCTTCCTC	CTATTTAAAG	AAATTGACAT	TGTGGAGATG	AGGGATTTTT	CGAATTTCTT	5040
CGATAGCCTC	TATCACAGTTG	CGACTGTCAA	CTTCGATAAT	CATAATGGCT	TTTTCACCAG	5100

			1052			
CTTTTTCACG	AGTGACATTC	ATCTGGGCGA	TATTGATACC	ATAGCGGGAA	AGCGCCTCTG	5160
TAACAAGGGC	AATCATACCT	GGAATATCTT	GATGAACGAT	GATGATAGTO	GGTGTATTCA	5220
TATTGAGAGA	GACGGCAAAA	CCATTGAGTT	CGGTTACCTG	AATATTTCCT	CCACCGATAG	5280
AAATACCAGT	CACGCTGATG	GTCTTGTGGG	CATTTTTAAC	AGTAATTTTA	GTGGTGTTAG	5340
GGTGAGGGGC	ATTGCTGTCT	TTCTGAATGG	TCCAGACAAT	CTTGATACCA	CGCTTGTGGG	5400
CAATTTCCAG	ACTATTTGGA	ATTTCAGGAT	CATCTGTATC	CATTCCTAAA	ATACCTGCAA	5460
CAAGGGCTAG	GTCTGTTCCG	TGACCACGAT	AGGTCTTGGC	AAATGAGTTA	AAAAGTTGGA	5520
ATTCAACTTC	TGTCGGAGTA	TCATCAAAAA	TGGAAGAGAC	AATCTTCCCA	ATACGAACAG	5580
CACCAGCGGT	ATGGCTACTA	GATGGGCCAA	TCATAACTGG	TCCGATGATA	TCAAAGACAG	5640
ATTGAAAACG	AAGTGATTTC	ATCAGTTTCC	CCTTATAAAA	ATTCTTATCT	CTATTATATC	5700
AAAGAATGAG	GGGCTTGGCT	TTAATTGTGG	ATGAAAACCT	TTCTAATACC	TCAAATAGCA	5760
TAAAAATAGT	ATCTTTTATG	ACAAAAAACA	CCTTATTTAG	GGAAATAAAA	AATAATTTTG	5820
TAATATTTCT	ACATAAAAGT	GTCAAGAAAC	GGTAATATTT	AAAGGGTATG	ATAGAACTAT	5880
AGAAAGAAGG	AGAATTTTCG	AATATGAAAT	CAATAACTAA	AAAGATTAAA	GCAACTCTTG	5940
CAGGAGTAGC	TGCCTTGTTT	GCAGTATTTG	CTCCATCATT	TGTATCTGCT	CAAGAATCAT	6000
CAACTTACAC	TGTTAAAGAA	GGTGATACAC	TTTCAGAAAT	CGCTGAAACT	CACAACACAA	6060
CAGTTGAAAA .	ATTGGCAGAA	AACAACCACA	TTGATAACAT	TCATTTGATT	TATGTTGATC	6120
AAGAGTTGGT	TATCGATGGC	CCTGTAGCGC	CTGTTGCAAC	ACCAGCGCCA	GCTACTTATG	6180
GGCACCAGC (	CGCTCAAGAT	GAAACTGTTT	CAGCTCCAGT	AGCAGAAACT	CCAGTAGTAA	6240
GTGAAACAGT	<b>IGTTTCAACT</b>	GTAAGCGGAT	CTGAAGCAGA	AGCCAAAGAA	TGGATCGCTC	6300
VAAAAGAATC	AGGTGGTAGT	ATACAGCTAC	AAATGGACGT	TATATCGGAC	GTTACCAATT	6360
ACAGATTCA	PACCTGAACG	GTGACTACTC	AGCTGAAAAC	CAAGAACGGG	TACCG	6415
2) INFORMAT	TION FOR SE	Q ID NO: 16	3:		••	

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 8494 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:

TACCCCTTTC	GAATTTTGGC	AAAAATTCGG	TAAGGCTTTG	ATGGTAGTTA	TCGCGGTTAT	60
GCCGGCTGCT	GGTTTGATGA	TTTCAATCGG	TAAGTCTATC	GTGATGATTA	ACCCAACCTT	120

TGCACCACTT	GTCATCACAC	GTGGAATTC	TGAGCAAATC	GGTTGGGGG	TTATCGGTAA	18
CCTTCACATT	TTGTTTGCCC	TAGCCATTG	AGGAAGCTGC	GCTAAAGAA	GTGCTGGTGG	24
TGCTTTCGCC	GCTGGTCTTG	CCTTCATCTT	GATTAACCGT	ATCACTGGT	CAATCTTTGG	30
TGTATCAGGC	GATATGTTGA	AAAATCCAGA	TGCTATGGTA	ACTACTTTC	TTGGTGGTTC	36
AATCAAAGTT	GCTGATTACT	TTATCAGTGT	TCTTGAAGCT	CCAGCCTTGA	ACATGGGGGT	426
ATTCGTAGGG	ATTATCTCAG	GTTTTGTAGG	GGCAACTGCT	TACAACAAAT	ACTACAACTT	486
CCGTAAACTT	CCTGATGCAC	TTTCATTCTT	' CAACGGGAAA	CGTTTCGTAC	CATTTGTAGT	540
TATTCTTCGT	TCAGCAATCG	CTGCAATTCT	ACTTGCTGCT	TTCTGGCCAG	TAGTTCAAAC	600
AGGTATCAAT	AACTTCGGTA	TCTGGATTGC	CAACTCACAA	GAAACTGCTC	CAATTCTTGC	660
ACCATTCTTG	TATGGTACTT	TGGAACGTTT	GCTCTTGCCA	TTTGGTCTTC	ACCACATGTT	720
GACTATCCCA	ATGAACTACA	CAGCTCTTGG	TGGTACTTAT	GACATTTTAA	CTGGTGCAGC	780
TAAAGGTACT	CAAGTATTCG	GTCAAGACCC	ACTATGGCTT	GCATGGGTAA	CAGACCTTGT	840
AAACCTTAAA	GGTACTGATG	CTAGTCAATA	TCAACACTTG	TTAGATACAG	TACATCCAGC	900
TCGTTTCAAA	GTTGGACAAA	TGATCGGTTC	ATTCGGTATC	TTGATGGGTG	TGATTGTTGC	960
TATCTACCGT	AATGTTGATG	CTGACAAGAA	ACATAAATAC	AAAGGTATGA	TGATTGCAAC	1020
AGCTCTTGCA	ACATTCTTGA	CAGGGGTTAC	TGAACCAATC	GAATACATGT	TCATGTTCAT	1080
CGCAACACCT	ATGTATCTTG	TTTACTCACT	TGTTCAAGGT	GCTGCCTTCG	CTATGGCTGA	1140
CGTCGTAAAC	CTACGTATGC	ACTCATTCGG	TTCAATCGAG	TTCTTGACTC	GTACACCTAT	1200
TGCAATCAGT	GCTGGTATTG	GTATGGATAT	CGTTAACTTC	GTTTGGGTAA	CIGTICTCTT	1260
IGCTGTAATC	ATGTACTTTA	TCGCAAACTT	CATGATTCAA	AAATTCAACT	ACGCAACTCC	1320
AGGGCGCAAC	GGAAACTACG	AAACTGCTGA	AGGTTCAGAA	GAAACCAGCA	GCGAAGTGAA	1380
AGTTGCAGCA	GGCTCTCAAG	CTGTAAACAT	TATCAACCTT	CTTGGTGGAC	GTGTAAACAT	1440
CGTTGATGTT	GATGCATGTA	TGACTCGTCT	TCGTGTAACT	GTTAAAGATG	CAGATAAAGT	1500
AGGAAATGCA	GAGCAATGGA	AAGCAGAAGG	AGCTATGGGT	CTTGTCATGA	AAGGACAAGG	1560
GTTCAAGCT	ATCTACGGTC	CAAAAGCTGA	CATTTTGAAA	TCTGATATCC	AAGATATCCT	1620
rgattcaggt	GAAATCATTC	CTGAAACTCT	TCCAAGCCAA	ATGACTGAAG	CACAACAAAA	1680
CACTGTTCAC	TTCAAAGATC	TTACTGAGGA	AGTTTACTCA	GTAGCAGACG	GTCAAGTTGT	1740
GCTTTGGAA	CAAGTAAAGG	ATCCAGTATT	TGCTCAAAAA	ATGATGGGTG	ATGGATTTGC	1800
GTAGAACCT	GCAAATGGAA	ACATTGTATC	TCCAGTTTCA	GGTACTGTGT	CAAGCATCTT	1860

1054 CCCAACAAAA CATGCTTTTG GTATTGTGAC GGAAGCAGGT CTTGAAGTAT TGGTTCACAT 1920 TGGTTTGGAC ACAGTAAGTC TTGAAGGTAA ACCATTTACA GTTCATGTTG CTGAAGGACA 1980 AAAAGTTGCA GCAGGAGATC TCCTTGTCAC AGCTGACTTG GATGCTATCC GTGCAGCAGG 2040 ACGTGAAACT TCAACAGTAG TTGTCTTCAC AAATGGTGAT GCAATTAAAT CAGTTAAGTT 2100 AGAAAAACA GGTTCTCTTG CAGCTAAAAC AGCAGTTGCT AAAGTAGAAT TGTAATATAC 2160 TTGAGGTTGG AAGCTGTATT CCAACCTCTT ATTTTGGGAG AAAAGAATGA AATTTTTAAC 2220 ACTCAATACT CACAGTTGGA TGGAGAAAGA AGCAGAGGAA AAATTCCAGA TTTTGCTTGA 2280 AGATATTCTT GAAAAGGACT ATGATTTGAT TTGTTTTCAA GAAATCAATC AGGAGATGAC 2340 CTCGTCAGAG GTGGAGGTTA ATGACCTTTA TCAAGCTTTG CCAGCAGCTG AGCCTATTCA 2400 CCAAGACCAT TATGTTAGAC TCTTGGTTGA AAAGTTGTCT GAGCAAGGGA AAAATTACTA 2460 CTGGACCTGG GCCTATAACC ATATCGGCTA TAACCGCTAC CACGAAGGTG TGGCTATCTT 2520 GTCTAAAACA CCTATTGAAG CCAGAGAAAT TTTGGTTTCA GATGTGGATG ATCCAACAGA 2580 CTATCATACT CGCCGTGTTG CCCTAGCTGA AACTGTAGTC GATGGCAAGG AGCTAGCAGT 2640 TGCCAGTGTT CATCTCTTT GGTGGGATAA AGGTTTCCAA GAAGAATGGG CACGATTTGA 2700 GGCTGTCTTG AAAAAATTGA ACAAGCCACT TTTACTAGCT GGAGATTTCA ACAATCCGGC 2760 TGGACAGGAA GGTTACCAAG CTATTTTAGC TAGTCCATTA GGCTTACAAG ACGCATTTGA 2820 AGTTGCTCAA GAGAAAAGTG GTAGCTATAC TGTTCCGCCT GAAATTGATG GCTGGAAAGG 2880 GAACACTGAA CCCCTTCGAA TCGATTATGT CTTTACTACC AAAGAGTTAG CGGTGGAAAA 2940 TTTACATGTC GTATTTGATG GTAACAAGAG TCCACAAGTG AGTGATCACT ATGGCTTGAA 3000 TGCTATATTA AACTGGAAAT AATAACTGAA AAGAGGTTGG AACTATAAAA TTCCAGCCTT 3060 TTCTTACTAG AGAAGCTACT GGAAATAGCC TAAATAAGTG AGACTACTGT AATGGAATAA 3120 AATATGGTAT AATTGATAAG GTAGATAGAA TCGAGGATGT TATGTCATTT ACGAAATTTC 3180 AATTTAAAAA CTATATTAGA GAAGCCTTGA AGGAGTTAAA ATTTACAACT CCAACAGAGG 3240 TGCAAGACAA GTTGATTCCT ATTGTTTTGG CAGGTCGTGA CCTAGTAGGA GAATCAAAAA 3300 CAGGTTCAGG TAAGACTCAT ACTTTCTTGT TACCGATTTT CCAGCAATTA GATGAAGCTA 3360 GCGATAGTGT ACAAGCAGTG ATTACTGCAC CGAGTCGTGA GTTGGCTACT CAAATTTACC 3420 AAGTAGCGCG TCAGATTTCA GCTCACTCAG ATGTCGAAGT TCGTGTGGTT AATTATGTGG 3480 GTGGTACGGA TAAGGCTCGC CAGATTGAGA AATTGGCAAG CAATCAGCCT CATATTGTTA 3540 TTGGAACACC AGGCCGTATC TACGACTTGG TTAAATCTGG TGATTTAGCT ATTCATAAAG 3600 CCAAGACATT TGTTGTTGAT GAAGCAGATA TGACCTTGGA TATGGGATTC TTGGAAACTG 3660

TTGATAAGAT	TGCTGGCAGT	CTTCCAAAA	ACTTGCAATT	r categrette	TCAGCGACTA	372
TCCCACAAAA	ACTGCAACCA	TTCTTGAAAA	AATACTTATO	AAATCCTGT	n atggagaaaa	378
TTAAGACCAA	AACGGTTATT	TCTGACACCA	TTGATAATTC	GTTGATTTC	ACCAAGGGAC	384
ATGATAAGAA	TGCTCAAATT	TACCAGTTGA	CTCAGTTGAT	GCAGCCGTAT	TTGGCAATGA	390
TTTTTGTTAA	CACTAAAACG	CGTGCTGATG	AATTGCATTC	ATATCTGACT	GCTCAAGGCT	396
TGAAGGTTGC	AAAAATCCAT	GGCGATATTG	CCCCTCGTGA	ACGCAAGCGA	ATCATGAATC	4026
AGGTGCAAAA	TCTGGATTTT	GAGTATATTG	TCGCAACAGA	TTTGGCAGCG	CGTGGGATTG	4080
ACATTGAAGG	TGTCAGCCAT	GTCATCAATG	ATGCCATTCC	GCAAGACTTA	TCTTTTTTTG	4140
TTCATCGTGT	TGGTCGTACT	GGACGAAATG	GCCTACCAGG	TACAGCTATT	ACCCTTTATC	4200
AGCCAAGTGA	TGACTCGGAT	ATCCGTGAGT	TGGAGAAATT	GGGAATCAAG	TTTAGTCCTA	4260
AGATGGTCAA	AGACGGGGAA	TTTCAAGATA	CCTATGACCG	TGATCGTCGT	GCCAACCGTG	4320
AGAAAAAACA	AGATAAACTT	GATATCGAAA	TGATTGGTTT	GGTTAAAAAG	AAAAAGAAAA	4380
AAGTCAAACC	GGGTTATAAG	AAGAAAATTC	AATGGGCGGT	TGATGAAAAG	CGCCGTAAAA	4440
CCAAGCGTGC	TGAAAATCGC	GCTCGCGGTC	GTGCAGAGCG	TAAAGCTAAA	CGCCAAACAT	4500
TTTAATAGAA	attgttggag	TATTGAGCTC	CAACTTTTTT	ATTTATGAGA	ACGAACTATC	4560
TAAACCGAAA	CACTACATTA	AAGACTGCAA	ATTGCGATTA	AAAATGGTAT	AATGATAAAG	4620
TTATATAGTC	CCGATAAGAT	GGTAGGTATT	TATTACGAAG	AGTTTTCCTA	TCAGTACTTT	4680
GTAACTCTAT	AACAATATTT	TTTAAGGGGG	GACATTTTTA	TGTCAGAGCG	TAAATTATTC	4740
ACGTCTGAAT	CTGTATCTGA	GGGGCATCCG	GATAAGATTG	CAGACCAAAT	TTCAGATGCG	4800
ATTTTGGATG	CTATTTTAGC	AAAGGATCCA	GAGGCGCACG	TTGCTGCTGA	AACAGCTGTA	4860
TATACTGGTT (	CTGTCCACGT	TTTTGGTGAA	ATTTCTACAA	ATGCCTATGT	GGATATTAAC	4920
CGTGTGGTTC (	GTGATACCAT .	TGCAGAGATT	GGTTATACCA	ATACAGAATA	TGGATTTTCT	4980
GCTGAGACGG 1	rgggagtaca	CCCATCTTTG	GTGGAACAAT	CTCCTGACAT	CGCTCAAGGT	5040
GTTAACGAAG (	CTTGGAGGT	TCGTGGAAAT	GCTGATCAAG	ATCCACTGGA	CTTGATTGGA	5100
GCAGGTGACC /	AAGGCTCAT	GTTTGGATTT	GCAGTAGATG	AAACAGAAGA	GCTTATGCCA	5160
TTGCCAATTG (	CACTCAGTCA	TAAATTGGTT	CGTCGTCTGG	CAGAACTTCG	TAAGTCTGGA	5220
GAAATTAGCT A	ATCTCCGTCC	AGATGCAAAA	TCACAAGTTA	CAGTTGAGTA	CGATGAAAAT	5280
SACCGTCCGG 1	PACGTGTAGA	TACAGTCGTT	ATTTCTACTC	AGCATGATCC	AGAGGCCACT	5340
ATGAACAAA T	CCATCAAGA	TGTGATTGAC	AAGGTCATCA	AAGAAGTTAT	TCCATCTTCT	5400

			1020			
TATCTTGATG	ATAAGACAAA	ATTCTTTATC	AATCCGACAG	GTCGTTTTGT	AATCGGTGGT	546
CCTCAAGGGG	ACTCAGGTTT	GACTGGTCGT	AAGATTATTG	TAGATACTTA	TGGTGGCTAC	552
TCTCGTCATG	GTGGTGGTGC	CTTCTCTGGT	AAAGATGCGA	CTAAGGTGGA	TCGTTCAGCC	558
TCTTATGCGG	CTCGCTATAT	TGCCAAGAAT	ATCGTTGCAG	CAGACCTTGC	TAAGAAGGCA	564
GAAGTGCAGT	TGGCCTATGC	TATCGGTGTT	GCGCAACCTG	TTTCTGTTCG	TATCGATACT	570
TTCGGTACAG	GAACAGTAGC	TGAAAGTCAA	CTTGAAAAAG	CGGCTCGTCA	AATCTTTGAC	5760
CTTCGCCCTG	CAGGGATTAT	CCAAATGCTG	GACCTCAAGC	GTCCAATTTA	CCGTCAAACA	5820
rcgccttacg	GTCACATGGG	ACGTACAGAT	ATTGATCTTC	CATGGGAACG	TTTGGATAAG	5880
GTAGATGCTT	TGAAAGAAGC	AGTAAAATAA	GATTTTAAGA	GGGGAACGTC	CTCTCTTTTT	5940
PATAGTTTTT	AACTATACTG	GGATACTGTT	CTGAAAATCC	ATTTTGCGAA	AGTAGAGATT	6000
<b>FACATGTATA</b>	GTAGATTGAA	ACTAGAATAG	TACACCTCAA	CTTCTAAAAC	ATTGTTAGCA	6060
ATCAATTTGA	CTGTCCTGAT	CGATTTCTCC	TGTTCTTGTT	TCATTTTACT	ATATTTCTTT	6120
<b>AAAAATGATA</b>	AAGGTTAAGA	TTTCTCCTCG	TAATAGATAA	TCTTGGGGAT	ATTTCAATCC	6180
\AAGTTTTAT	TCGTTATCAC	TTGACTATTG	CAAGGTTTTC	TAGAGCAACA	GAGTCATGGA	6240
ATGGACTCAT	GGTTGAGATT	TCTCCTTGTT	GCTTGGACTT	CATTCAAAAG	TCTGTTACCC	6300
VAGCCTTGTT	CAAACTTCTA	ATACACTAGC	TGTTTCCATA	GCATGACTTC	TGTACTAGAC	6360
TTCTTTTCC	GAATAAATAG	ATAGAACCAC	AGAATCTAGT	AAACCTAGAA	TTAAAATTAT	6420
GTATAATAT	TAGCAATAAA	AGAAATCTGG	AGGATTAGAA	TCATGGTATC	AACGAAAACA	6480
CAAATTGCTG	GTTTTGAGTT	TGACAATTGC	TTGATGAATG	CAGCAGGTGT	GGCTTGTATG	6540
CGATAGAGG	agttagaaga	GGTCAAAAAC	TCAGCGGCAG	GAACCTTTGT	TACTAAGACA	6600
CGACCTTGG	ACTTCCGTCA	GGGGAATCCT	GAGCCACGCT	ACCAAGATGT	TCCACTTGGT	6660
CCATCAACT	CTATGGGCTT	GCCAAATAAT	GGCTTAGACT	ATTATTTGGA	TTATCTTTTA	6720
SATTTGCAGG	AAAAAGAGTC	GAACCGAACT	TTCTTCTTAT	CTCTGGTCGG	CATGTCTCCA	6780
AGGAAACCC	ATACTATTTT	GAAAAAAGTC	CAAGAGAGTG	ATTTTCGTGG	TCTGACTGAG	6840
TAAATCTTT	CCTGTCCAAA	TGTTCCAGGT	AAACCTCAGA	TTGCCTATGA	TTTTGAGACA	6900
CAGACCGGA	TTTTGGCAGA	AGTGTTTGCT	TACTTCACCA	AACCTCTTGG	AATTAAATTG	6960
CACCTTATT	TTGATATTGT	TCACTTTGAC	CAAGCGGCAG	CTATTTTCAA	CAAATATCCG	7020
TCAAGTTTG	TCAACTGCGT	TAACTCTATC	GGAAACGGCC	TCTATATAGA	AGACGAATCT	7080
TCGTTATTC	GGCCTAAGAA	TGGTTTTGGT	GGAATTGGTG	GAGAATACAT	CAAACCGACT	7140
CTTTAGCCÁ	ATGTTCACGC	CTTTTATCAA	CGTTTAAATC	CTCAAATCCA	AATTATCGGA	7200

ACAGGTGGCC	TTCTGACTG	TCGAGATGC	TTTGAACACA	TCCTCTGTGG	AGCAAGTATG	726
GTGCAGGTGG	GAACGACCCT	TCACAAAGA	A GGCGTCAGTG	CTTTTGACCG	CATTACCAAT	732
GAACTGAAAG	CAATCATGGT	GGAAAAAGG	TACGAGAGCT	TAGAAGATTT	CCGTGGGAAA	738
TTGCGCTATA	TTGACTAAA1	TAAATCGAAA	AATCTGAAGA	AAGGAGAGAC	GATGCTAGCC	744
ATTGAAGAAA	GTCAGAAGTT	GACTTTATCA	AATTTACCGA	GCCTGAGCCT	ATTTACAGGG	750
ACAGATCAGG	GTCAGTTTGA	AGTGATGAAG	AGTCAAATGT	TGAAACAGAT	TGGGTATGAT	756
TCTGCTGACC	TCAACTTTGC	CTACTTTGAT	' ATGAAAGAAG	TAGTTTACAA	GGATGTGGAA	762
CTGGAGTTGG	TCAGCCTTCC	TTTCTTTGCG	GATGAGAAAA	TCGTGATATT	AGATTATTT	7680
ATGGATATCA	CGACTGCTAA	GAAACGCTTT	TTGACAGATG	ATGAGCTTAA	GTCATTTGAG	7740
GAATACCTTG	ACAATCCTTC	TCCAACAACC	AAGTTGATAA	TCTTTGCAGA	AGGAAAGCTG	7800
GATAGCAAAA	GACGGTTAGT	CAAATTACTT	AAGCGTGATG	CCAAGGCCTT	CGATGCAGTA	7860
GAAGTAAAAG	AACAAGAATT	GCGCCAGTAC	TTCCAAAAGT	GGAGTCAGAA	ACAAGGTCTG	7920
CAGTTTACCA	ATCATTCTTT	TGAAAATCTC	CTCATCAAGT	CGGGGTTTCA	ATTTAGCGAA	7980
ATCCAGAAAA	ATCTTCTCTT	TTTACAGTCC	TATAAGGCGA	ATTCTGTTAT	TGAGGAAGAG	8040
GATATTGTTA	ACGCAATTCC	CAAGACTTGC	AGGACAATAT	TTTTGATTTA	ACTCAGTTTA	8100
TTCTGACTAA	AAAGATGGAT	CAGGCGCGCG	ATTTGGTGAG	AGACTTGACC	TTGCAAGGGG	8160
aagatgaaat	CAAACTGATT	GCAGTCATGC	TGGGACAATT	TCGGACTTTT	ACTCAGGTGA	8220
AGATTTTGGC	GGAGTCTGGC	CAAACAGAAT	CGCAGATTGC	AAGTAGTTTA	GGTAGTTATC	8280
TGGGACGTAA	CCCAAATCCT	TATCAAATCA	AGTTTGCATT	AAGAGATTCG	AGAGGACTTT	8340
CTTTGAGCTT	TTTGAAGCAA	GCTATTTCCT	ATTTGATTGA	GACAGACTAT	CAGATTAAGA	8400
CAGGTCTTTA	TGAAAAAGGT	TTCCTTTTTG	AAAAGGCACT	CTTACAGATT	GCTAGTCAGG	8460
CAATTGACA	TTTGTTGAAA	CTACTAACCC	GCGG			8494

## (2) INFORMATION FOR SEQ ID NO: 164:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 9707 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double

  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:

CCGGTCAGTT CGTTCAGTAC AAGGAATCAT AATGAACGAT CAATCAGAAA AAAAGACTAG

1058 AAAGAAGACT GTATGGATAA TCGACCAATT GGTTTTTTGG ATTCGGGTGT CGGGGGCTTG 120 ACCGTTGTGC GCGAGCTCAT GCGCCAGCTT CCCCATGAAG AAATCGTCTA TATTGGAGAT 180 TCGGCGCGG CGCCCTATGG CCCCCGTCCT GCTGAGCAAA TTCGTGAATA TACTTGGCAG 240 CTGGTCAACT TTCTCTTGAC CAAGGATGTC AAAATGATTG TCATTGCTTG TAACACTGCG 300 ACTGCGGTCG TCTGGGAAGA AATCAAGGCT CAACTAGATA TTCCTGTCTT GGGTGTAATT 360 TTGCCAGGAG CTTCGGCAGC CATCAAGTCC AGTCAAGGTG GGAAAATCGG AGTGATTGGA 420 ACGCCCATGA CGGTACAATC AGACATATAC CGTCAGAAAA TCCATGATCT GGATCCCGAC 480 TTACAGGTGG AGAGCTTGGC CTGTCCCAAG TTTGCTCCCT TGGTTGAGTC AGGTGCCCTG 540 TCAACCAGTG TTACCAAGAA GGTGGTCTAT GAAACCCTGC GTCCCTTGGT TGGAAAGGTG 600 GATAGCCTGA TTTTGGGCTG TACTCATTAT CCACTCCTTC GCCCTATTAT CCAAAATGTG 660 ATGGGGCCAA AGGTTCAGCT CATCGATAGT GGGGCAGAGT GCGTACGGGA TATCTCAGTC 720 TTACTCAATT ATTTTGAAAT CAATCGTGGT CGCGATGCTG GACCACTCCA TCACCGTTTT 780 TACACAACAG CCAGTAGCCA AAGTTTTGCA CAAATTGGTG AAGAATGGCT GGAAAAAGAG 840 ATTCATGTGG AGCATGTAGA ATTATGACAA ATAAAATTTA TGAATATAAG GATGACCAGG 900 ACTGGTATGT TGGGTCTTAT AGTATTTTTG GTGGCGTTAA CAGTTTGAGC GACTATAAGA 960 CAGATTTTCC TCTGTTTGAA TTCTCCAAAA TATTTGGAGA TGAAGAGTAT GGTTTCCCGC 1020 TTTCAGTTAC TGTTTTACGC TATGGTTCTA TCTACCGTTT GTTCTCCTTT GTGGTAGACA 1080 TGCTTAATCA AGAAATGGGA CGAAACTTGG AAGTTATTCA ACGTCATGGG GCCCTGCTCT 1140 TGGTTGAAAA TGGGCAACTC TTGTATGTAG AATTGCCTAA AGAAGGGGTC AATGTTCATG 1200 ATTTCTTTGA GACAAGCAAG GTCAGAGAAA CCTTGTTGAT TGCGACTCGT AACGAAGGTA 1260 AAACCAAGGA ATTCCGAGCT ATCTTTGATA AGTTAGGCTA CGATGTGGAA AATCTTAATG 1320 ACTACCCTGA CCTGCCTGAA GTAGCAGAAA CAGGTATGAC CTTTGAAGAA AATGCCCGCC 1380 TTAAGGCAGA AACCATTTCT CAATTAACGG GCAAGATGGT TTTGGCAGAT GATTCTGGTC 1440 TCAAAGTCGA TGTCCTTGGT GGCTTACCAG GCGTCTGGTC AGCTCGTTTC GCAGGTGTGG 1500 GAGCAACTGA CCGTGAAAAT AATGCCAAAC TCTTGCACGA ATTGGCCATG GTCTTTGAAC 1560 TCAAGGACCG CTCGGCTCAG TTCCACACAA CCCTAGTCGT AGCCAGCCCA AATAAGGAAA 1620 GTTTAGTTGT TGAAGCAGAC TGGTCAGGTT ATATTAACTT TGAACCTAAG GGTGAAAATG 1680 GCTTTGGCTA TGATCCCCTC TTCCTTGTAG GAGAAACAGG TGAGTCATCA GCTGAATTAA 1740 CCCTGGAAGA AAAAAATAGT CAATCTCACC GTGCCTTAGC CGTTAAGAAA CTTTTGGAGG 1800 TATTTCCATC ATGGCAAAGC AAACCATCAT TGTAATGAGC GATTCCCATG GCGATAGCTT 1860

	GATTGTGGAA	GAAGTCCGTG	ATCGCTATGT	GGGCAAAGTC	GATGCTGTTT	TTCATAACGG	1920
		CTACGTCCGG					1980
	CATGGACTTC	TACGCCGGCT	ACCCAGAACG	TCTGGTGACT	GAGCTTGGTT	CGACCAAGAT	2040
		CATGGTCACT					2100
		GAAGAGGCCG					2160
	GTTGGAAGGC	AAGATCCTCT	TTCTAAATCC	AGGTTCTATC	AGTCAACCAC	GAGGTACCAT	2220
	CAGAGAATGT	CTCTATGCTC	GTGTGGAGAT	TGATGATAGT	TACTTCAAAG	TGGACTTTTT	2280
•	GACACGAGAT	CACGAGGTGT	ATCCAGGTTT	GTCCAAGGAG	TTTAGCCGAT	GATTGCCAAG	2340
(	GAGTTTGAGA	CTTTCTTGTT	GGGGCAGGAG	GAAACTTTTT	TGACCCCTGC	TAAAAATCTA	2400
•	GCTGTGTTGA	TTGATACCCA	CAATGCGGAT	CATGCGACCC	TCTTGCTCAG	TCAGATGACC	2460
•	PATACCCGTG	TTCCCGTTGT	GACAGATGAA	AAACAGTTTG	TTGGGACGAT	TGGACTCAGA	2520
(	GATATTATGG	CTTATCAGAT	GGAGCATGAC	TTGAGCCAAG	AAATCATGGC	GGATACGGAT	2580
4	ATCGTTCATA	TGACAAAAAC	GGACGTAGCG	GTTGTTTCGC	CTGATTTCAC	CATTACGGAG	2640
(	STCTTGCACA	AGCTAGTAGA	TGAGTCCTTC	TTACCGGTTG	TGGATGCAGA	GGGTATTTTC	2700
(	CAAGGGATTA	TTACGCGCAA	GTCCATCCTC	AAGGCCGTTA	ATGCCCTCTT	GCATGACTTT	2760
1	AGTAAGGAAT	ATGAGATTCG	ATGCCAATGA	GAGACAGGAT	TTCAGCCTTT	TTAGAGGAAA	2820
1	AGCAGGGCTT	GTCTGTCAAT	TCCAAGCAGT	CCTATAAGTA	TGATTTGGAG	CAATTTTTAG	2880
1	ACATGGTAGG	TGAGCGGATT	TCTGAGACCA	GTCTCAAGAT	TTACCAAGCC	CAGCTAGCCA	2940
2	ATCTAAAAAT	CAGCGCCCAG	AAGCGAAAGA	TTTCGGCCTG	TAACCAATTT	CTATACTTTC	3000
•	rctatcaaaa _.	AGGAGAGGTG	GACAGCTTTT	ACCGCTTGGA	ATTAGCCAAA	CAAGCTGAAA	3060
1	AGAAGACGGA	AAAGCCAGAG	ATTCTATACC	TAGACTCTTT	TTGGCAGGAA	AGCGACCATC	3120
(	CAGAGGGCCG	CTTGCTAGCG	CTCTTAATCC	TAGAAATGGG	GCTCTTGCCC	AGTGAGATTT	3180
7	PAGCCATCAA	GGTTGCGGAC	ATCAATCTGG	ATTTTCAGGT	GTTGCGAATC	AGCAAGGCTT	3240
(	CCAACAGAG	GATTGTCACC	ATTCCCACGG	CCTTGCTTTC	AGAATTGGAA	CCCTTGATGG	3300
C	GCAGACCTA	TCTTTTTGAA	AGAGGAGAGA	AACCCTATTC	TCGTCAGTGG	GCCTTTCGTC	3360
2	AGTTAGAATC	TTTTGTCAAG	GAGAAAGGTT	TTCCATCCTT	ATCAGCTCAA	GTCTTACGTG	3420
2	ACAGTTTAT	TCTAAGACAA	ATAGAAAACA	AGGTCGATTT	GTACGAAATT	GCAAAAAAAT	3480
7	PAGGATTAAA	AACAGTCCTG	ACCTTAGAAA	AATATAGATA	ATGGATATTA	AATTAAAAGA	3540
7	TTTGAAGGÄ	CCCCTGGACT	TGCTCTTGCA	TCTGGTTTCT	AAGTACCAGA	TGGATATCTA	3600

			IUDU			
CGATGTGCCC	ATTACGGAAG	TCATCGAACA	GTATCTAGCC	TATGTCTCAA	CCCTGCAGGC	366
CATGCGTCTG	GAAGTGACGG	GTGAGTACAT	GGTCATGGCT	AGTCAGCTCA	TGCTGATTAA	372
GAGTCGTAAA	CTCCTTCCGA	AGGTAGCAGA	AGTGACAGAC	TTGGGGGATG	ACCTGGAGCA	3780
GGACCTCCTC	TCTCAAATCG	AAGAATATCG	CAAGTTCAAG	CTCTTGGGTG	AGCACTTGGA	3840
AGCCAAGCAC	CAAGAACGGG	CCCAGTATTA	TTCCAAAGCG	CCGACAGAGT	TGATTTACGA	3900
AGATGCGGÄG	CTTGTGCATG	ACAAGACGAC	CATTGACCTC	TTTTTGACTT	TTTCAAATAT	3960
CCTAGCCAAG	AAAAAAGAGG	AGTTTGCACA	AAATCACACG	ACGATCTTGC	GGGATGAGTA	4020
TAAGATTGAG	GACATGATGA	TTATCGTGAA	AGAGTCCTTG	ATTGGACGAG	ATCAATTGCG	4080
CTTGCAGGAT	TTGTTCAAGG	AAGCCCAGAA	TGTCCAAGAG	GTCATCACCC	TCTTTTTGGC	4140
AACCCTAGAG	TTAATCAAAA	CCCAGGAGTT	GATCCTCGTG	CAAGAGGAGA	GTTTTGGAGA	4200
TATCTATCTC	ATGGAAAAGA	AGGAAGAAAG	TCAAGTGCCT	CAAAGCTAGA	CTTGATAGAG	4260
aggaaagatg	AGTACTTTAG	CAAAAATAGA	AGCGCTCTTG	TTTGTAGCGG	GTGAAGATGG	4320
GATTCGGGTC	CGCCAGTTAG	CTGAACTCCT	CTCTCTGCCA	CCGACAGGCA	TCCAGCAAAG	4380
TTTAGGAAAA	TTAGCCCAGA	AGTATGAAAA	GGACCCAGAT	TCCAGTTTGG	CTTTGATTGA	4440
GACAAGTGGT	GCTTATAGAT	TGGTGACCAA	GCCTCAATTT	GCAGAGATTT	TGAAGGAATA	4500
CTCTAAGGCG	CCTATCAACC	AGAGCTTGTC	TCGGGCTGCC	CTTGAGACCT	TGTCCATTAT	4560
TGCCTACAAA	CAGCCGATTA	CGCGGATAGA	AATTGATGCC	ATCCGTGGAG	TTAACTCGAG	4620
rggagccttg	GCAAAGTTGC	AGGCTTTTGA	CCTGATAAAG	GAAGACGGGA	AAAAGGAAGT	4680
ATTGGGGCGC	CCCAACCTCT	ATGTGACTAC	GGATTATTTC	CTAGATTACA	TGGGGATAAA	4740
CCATTTAGAA	GAATTACCAG	TGATTGATGA	GCTTGAGATT	CAAGCCCAAG	AAAGCCAATT	4800
atttggtgaa	AGGATAGAAG	AAGATGAGAA	TCAATAAGTA	TATTGCCCAC	GCAGGTGTGG	4860
CCAGTAGGAG	AAAAGCAGAA	GAGCTGATTA	AGCAAGGCTT	GGTGACGGTT	AACGGCCAAG	4920
rggtgcgtga	ACTAGCAACC	actatcaagt	CAGGCGACAA	GGTCGAAGTT	GAAGGTCAAC	4980
CTATCTACAA	CGAAGAAAAG	GTCTACTATC	TGCTTAACAA	ACCACGCGGT	GTGATTTCCA	5040
GTGTGACAGA	TGATAAGGGT	CGCAAGACGG	TTGTCGACCT	CTTGCCCAAT	GTCAAAGAGC	5100
STATTTACCC	TGTGGGTCGT	TTGGACTGGG	ATACATCAGG	TGTCTTGATT	TTGACCAATG	5160
ATGGGGACTT	TACAGACGAG	ATGATTCACC	CTCGTAATGA	GATTGACAAG	GTTTATGTCG	5220
CGCGTGTTAA	AGGTGTGGCC	AATAAGGACA	ATCTCCGCCC	CTTGACCCGT	GGTCTTGAGA	5280
TTGATGGTAA	GAAAACCAAG	CCAGCTGTTT	ATGAAATTCT	CAAAGTGGAC	CCAGTCAAAA	5340
ATCGCTCTGT	GGTGCAGTTG	ACCATCCATG	AAGGGCGTAA	CCATCAGGTT	AAAAAGATGT	5400

TTGAAGCTG	T TGGTCTCCAA	GTAGATAAG	T TGTCTCGGA	TCGTTTCGG/	A CACCTAGACT	5460
TGACAGGACT	r ccgtccagga	GAATCCCGT	C GTCTTAATA	AAAAGAAAT	AGCCAACTAC	5520
ACACCATGG	TGTAACTAAG	AAATAATGA	A ACGAATTTT	ATAGCGCCTC	TGCGCTTTTA	5580
CCAACGTTTT	TATCTCACCAG	TCTTTCCAC	CTCTTGTCGC	TTTGAGCTGA	CTTGTTCCAA	5640
CTACATGATT	CAGGCTATTG	AAAAACATG	GTTTAAGGGG	GTATTGATGG	GCTTGGCTCG	5700
GATTTTACGT	TGTCATCCCT	GGTCGAAAA	AGGTAAGGAC	CCCGTTCCAG	ACCGCTTTTC	5760
CCTTAAACGA	AATCAAGAAG	GGGAATGAGG	TGGGGTAAAT	' AGATTTCAAA	ATGATAAAAA	5820
CGCATCCTAT	CAGGTTTGAG	TGAACTTGAT	AGGATGCGTT	TTAGAATGTC	AAAATTTTAT	5880
ACTCTTCGAA	AATCTCTTCA	AACCGCGTCA	GCTTTCATCT	GCAACCTCAA	AACAGTGTTT	5940
TGAGCAACCT	GCGGCTAGTT	TCCTAGTTTG	CTCTTTGATT	TTCATTGAGT	ATTAAATTGA	6000
GTTTGAAGTG	GCTTATTTCA	AAGCTTTTTG	TATGTCTTCA	ATCATGAGTT	TTGTTGATTC	6060
AAGTCCGCCT	CCGCTTAGAT	ACCAGAGGTC	TGGTGTTAGT	TGGATAATCT	TACCATTTTT	6120
AGCAGCAGGT	GTTTCAGCGA	TAAGGGCATT	TTCTAGGACA	CCGTCGTTGC	TAGAGTTGTC	6180
CCCACCGATG	GCAAGGGTAC	GGTTGATGAC	AAAGAGGATG	TCAGGGTTGA	TTTCTTTGAC	6240
ACTTTCAAAG	CTGACTTCTT	GTCCGTGGCG	TGAGTCTTCA	AATTTTGTAT	CAGTTGGTTT	6300
GAATTTCAAG	GTTTGGTACA	AGAAAGAGAA	ACGAGATTTG	GCACCAAAGG	CTGCCATTTT	6360
CCTTCATTA	AGGAGGATCG	CAAGGGCTTT	TTTGTCAGAG	CTTTCATTTT	TAGTAGCGAC	6420
TTCTTGGATG	CTCTTGTCTA	GCTTGGTCAA	TTCTTCCTTG	GCTTTCTGTG	TACCAGTTTC	6480
CCGAAGGCA	CTTGCTAAGG	ATTCGATATT	AGCCTTGGTA	GAAGTCCAGT	AGTCGTCCTT	6540
CTTGCTTGG	AAGAGAACGG	TTGGGGCGAT	TTCTTTGAAT	TTGTCTACGA	ATTTTTGTGT	6600
CGTGGCGAA	GCGATAATCA	AATCAGGCTC	AAGGCCGCCG	ATAGCTTCTA	AATCAGGTTC	6660
TTCATAGAA	CCAACATTTT	TGACAGTTCC	CACTAGGTCT	TTTAGATAAG	TCGGAACAGT	6720
TTTGTAGGC	ATTCCGACGA	TATTTTTTC	AAATCCTAAA	GCGCGAATAG	TATCCGCAGC	6780
CCGAGGTCA	AAGGTCACAA	TCTTTTCAGG	AACTTTGGAA	AGTTTGACCT	CGTCCAGTGA	6840
CTTTTAATG	GTTACCTCTG	TTGGAGCAGA	GCTACTGGTC	TCTGTCTGAC	TAGTGCTTGA	6900
TTTGTACTA	CATGCACCAA	GTAGGAGCAA	GAAGCTGGCC	ACTAGGGCAG	TGAAATAAAG	6960
TTAAGGGAT	GTTTTCATAA	TTTCTCCTTT	TTAAAATGTG	ATAACGATTT	AGGGAGTCTC	7020
ТААТСТТАТ	TGACTAAGAG	ACTGAAGGTT	CTCTAACTTG	AGCTTTTATG	TTACTAGCTA	7080
AGATACAGA	TCTTTTTGTC	ATTGATATCA	GCTAGCGTGA	TGGGAATCTC	ATAAAGTTGA	7140

WO 98/18931 PCT/US97/19588

1062 CTGAGCAGGT CAGCCTGCAT GATTTGATCG GTTCTTCCCT TGCTAAAGAC CTGGCCGTCC 7200 TTGAAGGCGA CAATTTCATC TGCATACTGA CTGGCCATGT TGATATCGTG GAGGACGATG 7260 ATAATGGTCT TGCCGAGTTC CTCCACCAGT CGTCGAAGAA TCTGCATCAT GCTGACGCTT 7320 TGCTTGATAT CGAGATTGTT GAGTGGTTCG TCCAGCAAGA TAAAGTCCGT ATCCTGGGCC AGTACCATAG CGATAAAGAC GCGCTGGAGT TGCCCCCCTG ACAGGCTATT GATGTAGCGG 7440 TCTTTTAAGT TGGTCAGTTC TAAATAGTTC AGAGTTTCTC GGATTTTTTC CCAGTCTTCT 7500 GATCTAAGTC GACCTCGGCT GTAGGGAAAA CGTCCAAAAC TGACCAGTTC TTCAACAGTC 7560 AATTTGGCTT GGTAATTGAT TTTCTGTTTT AGGATGGTTA GTTCTTGGGC CAGTTCTTGC 7620 GAATTCCAGC TCTCGATTTC ACGTCCTTTG ATACTGAGAA CTCCCTGATC TTTCTTGGTT 7680 AGCCTGCTCA TGATGGAGAG GAGAGTCGAT TTTCCAGCAC CATTTGGACC AATAAAGGCT 7740 GTCAGTTTTT GAGGACTGAC TTCAAGCGAA ATGCCTTGCA AAATATCCTG TTTTTGAATG 7800 GATTTGTCAA TGTTTTCCAG TTTCACTGAC GAGACCTCCT ATATAGTAAG ATAAAGAATA 7860 AGAAGCCACC CACACTCTCA ATGATCATAC TGATACGAAT TTCCAGTGCA AAGACTCGTT 7920 CAATCAAGGC TTGCCCCAAG GTTAAGCTAA TAAATCCAAC CAGAATGGCC ACTATAAAGA 7980 GTAACTTGTG CTGATAGTCT TTGACAATCA GGTAGGTGAG GTTGGCCAGT ATAAAGCCGA 8040 AGAAGGCCAT AGGTCCTACC AAGGCAGTGG CCGTTGAGGT CAAAAGCACG ATTCCCCAGA 8100 GGAGCTCTTT CTGTTCTTTT TCAACATCGA GTCCCAATAT CTGAGCCGTT TCTCTTTGCA 8160 GGTGCAAGAC ATCTAGAACG ACTGCTTTTC GAAAGAAAAA GATTGTCAAA GCGAGGATGA 8220 TCAGAGAACC GATGGCTAGG ATGGAAGTGT TGAGATGTTG AAAGGAGGCA AAAAGACTAT 8280 TTTGCAGTTT ATCGTATTCG TTTGGATCCA TTAGGACTTG AAGGAAGGTG CTGATATTTC 8340 GAAAGAGACT TCTGAGCGCT AGACAGATCA GCAGGACGAA GACCAGGTCT TGCTTCATCA 8400 GTGTCTTCAA GTAACCTTGT AAGGCGAGAA AGAAGAGGGA CTGGACAAGA AGTAAGACTA 8460 GGAATTCTAA GATAGGGGAT TTGCCAAGTT GAAGAAACTT GCTTTCAAAA ACCAGTAGLA 8520 GGGTTTGTAG TAGGACGTAG AAGGATTCAA TTCCCAAAAT ACTAGGCGTC AGGAAGCGAT 3580 TTTCCGTCAG GGTTTGAAAA CTAATGGTCG AAATCCCAGT CGCGATGGCT ACCAAGAGAT 8640 AAACGATGAT CTTTTGGGAA CGCAACTTCC AAGCAAAGGC TGACAAGTGA GTGATGGGCC 8700 AAAAGTAGAG AAGACAAGCT CCGATGGCAA GAATAATGAG AATCCAGAAG AGCTTGGTAT 8760 GTTTGCTTTT AGTCTGCATC TTTTCGTCCC CCTCTCCAGA GAAGTAGGAT AAAGACGAGA 8820 CTACCGATGA TTCCTAGCAA GAGACTGACA GACAACTCAT AGGGCCTAAT CAGAACTCGG 8880 GATAGGATAT CGCAAGCCAG AACTAGATTG GCACCAACCA GTGCGACCAT GAGTTTGGTT 8940

TGACTTAGAT	TATCTCCATA	GCGCTTGCGA	ACAAGATTGG	GAACGATAAC	TCCGAGAAAT	9000
GGTAGGCCAC	CCACGGTAAT	CATGGTGACG	CTTGTCGTTA	GCGCCACCAG	AAAGAGGCC	9060
AGTTTTTCAA	GTAGGGAGTA	GGAAATCCCC	AAACTCTCGC	TGGTTTCTTT	CCCTAGATTC	9120
ATGATGGTGA	AGGTTTGGGA	TAATTTCCAA	ACGGTTATCA	GGATGATGAG	GCCTAAGAAG	9180
AGCCACTCAT	ACTGATGGGT	CTGAATCATG	GAGAAGGAGC	CCTGGGTCCA	GGCAGTCATA	9240
CTCTGAACCA	GATTGAAACG	ATAGGCGATA	ACTTCTGTGA	CTGAGCCGAT	AATCCCGCTA	9300
TAGATGATCC	CAATCAGAGG	CAACATCCAC	CTTTCCTTTA	CAGTAAAAAT	GGTCATAAAG	9360
GCTAGGAAGA	AGAGGGTGAA	TACGATGGAT	GAAACAAAAG	CGAAGAGCAT	CTTGTGGGTC	9420
AGACTAGCCG	ATGGAAAGAC	AAAAAGGCTC	AGCACCATTC	CCAGTTTGGC	GGCTTCAGTC	9480
GTTCCAACTG	TACTCGGTGC	AGCAAACTGA	TTTTGGGTAA	TAGTCTGCAT	GAGAAGGCCT	9540
GCCATACTCA	TACTAGAGGC	AGTCAGGAGA	ATACTGATAG	TTCTTGGGAG	ACGGGACTCT	9600
TGAAAGAGGA	GCCAGGTCTG	CTGGTCGAAA	TCAAATAGCT	TTCCCCATGA	AAAATCACTG	9660
GTCCCAATGC	TAATAGAGAG	AAAGACTAGG	AGTAGAAGTA	AGCCAGG		9707

### (2) INFORMATION FOR SEQ ID NO: 165:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5910 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

CCGCAAT	TAT	GCTTGAAAAG	GAGTATACTT	ATAAGTAACG	CAAACGTTTG	CGTCTGAAAA	60
ATACGCA	ACG	TTCCATTATT	TTAACACACG	AGGTGCTATT	ATGAAAAAAC	GTCAAAGTGG	120
TGTGTTC	ATG	CACATCTCTT	CTCTTCCAGG	AGCTTACGGA	ATCGGATCAT	TTGGTCAAAG	180
TGCTTAC	GAC	TTCGTTGATT	TCTTGGTCCG	TACAAAACAA	CGTTACTGGC	AAATCCTTCC	240
ATTAGGA	GCA	ACTAGTTACG	GGGATTCTCC	TTACCAATCT	TTCTCAGCCT	TCGCAGGAAA	300
CACTCAT	TTT	ATCGATTTAG	ATATCTTGGT	GGAGCAAGGT	TTGTTGGAAG	CAAGTGACCT	360
TGAAGGA	GTT	GACTTTGGTA	GCGATGCGTC	TGAAGTTGAC	TATGCTAAAA	TCTACTATGC	420
ACGTCGT	CCT	CTTTTAGAAA	AAGCGGTGAA	ACGTTTCTTT	GAAGTCGGAG	ATGTTAAAGA	480
TTTTGAG	AAA	TTTGCTCAAG	ACAACCAATC	ATGGCTTGAG	CTCTTTGCTG	AGTATATGGC	540
TATCAAA	GAG	TATTTTGACA	ATCTTGCTTG	GACTGAATGG	CCAGATGCAG	ATGCTCGTGC	600

1064 TCGTAAAGCT TCAGCACTTG AAAGCTATCG TGAGCAATTG GCAGACAAGT TGGTTTACCA 660 CCGTGTGACT CAATACTTCT TCTTCCAACA ATGGTTGAAA TTGAAAGCTT ACGCTAACGA 720 CAACCACATC GAAATCGTTG GGGACATGCC AATCTACGTA GCGGAAGATT CAAGTGATAT 780 GTGGGCAAAT CCACATCTCT TCAAAACAGA TGTCAATGGT AAGGCTACTT GTATCGCAGG 840 ATGCCCACCA GATGAGTTTT CTGTAACTGG TCAGCTTTGG GGTAATCCAA TCTATGACTG 900 GGAAGCAATG GACAAAGACG GCTACAAATG GTGGATTGAA CGCTTGCGTG AAAGCTTCAA 960 AATCTACGAT ATCGTTCGTA TCGACCACTT CCGTGGCTTC GAATCTTACT GGGAAATCCC 1020 TGCTGGTTCC GATACAGCAG CACCTGGTGA GTGGGTGAAA GGTCCAGGTT ACAAGCTTTT 1080 TGCAGCCGTT AAGGAAGAAC TTGGTGAGCT AAACATCATC GCAGAAGACC TTGGCTTCAT 1140 GACAGATGAA GTGATCGAAT TGCGTGAACG TACTGGCTTC CCAGGAATGA AGATTCTTCA 1200 ATTTGCCTTC AACCAGAAG ACGAAAGCAT TGATAGCCCA CACTTGGCAC CTGCTAACTC 1260 AGTTATGTAC ACAGGAACAC ACGATAACAA TACGGTTCTT GGTTGGTACC GTAATGAGAT 1320 TGATGATGCG ACTCGTGAGT ACATGGCTCG TTACACGAAC CGTAAAGAAT ACGAAACAGT 1380 GGTACACGCT ATGCTTCGTA CAGTATTTTC ATCAGTTAGC TTTATGGCAA TTGCAACTAT 1440 GCAAGATTTA CTAGAATTGG ATGAGGCAGC TCGTATGAAC TTCCCATCTA CCCTTGGTGG 1500 AAACTGGTCT TGGCGTATGA CTGAAGATCA ATTGACACCA GCTGTCGAGG AAGGTTTGCT 1560 TGACTTGACA ACAATTTATC GCCGAATTAA TGAAAATTTG GTAGATTTAA AGAAATAAGA 1620 CAATAATCAG GAGACAACTA AACATGTTAT CACTACAAGA ATTTGTACAA AATCGTTACA 1680 ATAAAACCAT TGCAGAATGT AGCAATGAAG AGCTTTACCT TGCTCTTCTT AACTACAGCA 1740 AGCTTGCAAG CAGCCAAAAA CCAGTCAACA CTGGTAAGAA AAAAGTTTAC TACATCTCAG 1800 CTGAGTTCTT GATTGGTAAA CTCTTGTCAA ACAACTTGAT TAACCTTGGT CTTTACGACG 1860 ATGTTAAAAA AGAACTTGCA GCTGCAGGTA AAGACTTGAT CGAAGTTGAA GAAGTTGAAT 1920 TGGAACCATC TCTTGGTAAT GGTGGTTTGG GACGTTTGGC TGCCTGCTTT ATCGACTCAA 1980 TTGCTACTCT TGGTTTGAAT GGTGACGGTG TTGGTCTTAA CTACCACTTT GGTCTTTTCC 2040 AACAAGTTCT TAAAAACAAC CAACAAGAAA CAATTCCAAA TGCATGGTTG ACAGAGCAAA 2100 ACTGGTTGGT TCGCTCAAGC CGTAGCTACC AAGTACCATT TGCAGACTTT ACTTTGACAT 2160 CAACTCTTTA CGATATTGAT GTTACTGGTT ATGAAACAGC GACTAAAAAC CGCTTGCGTT 2220 TGTTTGACTT GGATTCAGTT GATTCTTCTA TTATTAAAGA TGGTATCAAC TTTGACAAGA 2280 CAGATATOGC TOGCAACTTA ACTOTOTOC TITACCCAGA TGATAGTGAC CGTCAAGGTG 2340 AATTGCTCCG TATCTTCCAA CAATACTTCA TGGTTTCAAA CGGTGCGCAA TTGATCATCG 2400

			•			
ACGAAGCAAT	CGAAAAAGGA	AGCAACTTGC	ATGACCTTGC	TGACTACGCA	GTTGTCCAAA	2460
TCAACGATAC	TCACCCATCA	ATGGTGATTC	CTGAATTGAT	TCGTCTTTTG	ACTGCACGTG	2520
GTATCGATCT	TGACGAAGCA	ATCTCAATTG	TTCGTAGCAT	GACTGCCTAC	ACTAACCACA	2580
CAATCCTTGC	TGAAGCGCTT	GAAAAATGGC	CTCTTGAATT	CTTGCAAGAA	GTGGTTCCTC	2640
ACTTGGTACC	AATCATCGAA	GAATTGGACC	GTCGTGTGAA	GGCAGAGTAC	AAAGATCCAG	2700
CTGTTCAAAT	CATCGATGAG	AGCGGACGTG	TTCACATGGC	TCACATGGAT	ATCCACTACG	2760
GATACAGTGT	TAACGGGGTT	GCAGCACTCC	ATACTGAAAT	CTTGAAAAAT	TCTGAGTTGA	2820
AAGCCTTCTA	CGACCTTTAC	CCAGAAAAGT	TCAACAACAA	AACAAACGGT	ATCACTTTCC	2880
GTCGTTGGCT	TATGCATGCT	AACCCAAGAT	TGTCTCACTA	CTTGGATGAG	ATTCTTGGAG	2940
ATGGTTGGCA	CCATGAAGCA	GATGAGCTTG	AAAAACTTTT	GTCTTATGAA	GACAAAGCAG	3000
TTGTCAAAGA	AAAATTGGAA	AGCATCAAGG	CTCACAACAA	ACGTAAATTG	GCTCGTCACT	3060
TGAAAGAACA	CCAAGGTGTG	GAAATCAATC	CAAATTCTAT	CTTTGATATC	CAAATCAAAC	3120
GTCTTCACGA	GTACAAACGC	CAACAAATGA	ACGCTTTGTA	CGTGATCCAC	AAATACCTTG	3180
ACATCAAAGC	TGGTAACATC	CCTGCTCGTC	CAATCACAAT	CTTCTTTGGT	GGTAAAGCAG	3240
CTCCAGCCTA	CACAATCGCT	CAAGACATTA	TCCATTTAAT	CCTTTGCATG	TCAGAAGTTA	3300
TTGCTAACGA	TCCAGCAGTA	GCTCCACACT	TGCAAGTAGT	TATGGTTGAA	AACTACAACG	3360
TTACTGCAGC	AAGTTTCCTT	ATCCCAGCAT	GTGATATCTC	AGAACAAATC	TCACTTGCTT	3420
CTAAAGAAGC	TTCAGGTACT	GGTAACATGA	AATTCATGTT	GAACGGAGCT	TTGACACTTG	3480
GTACTATGGA	CGGTGCTAAC	GTGGAAATCG	CTGAGTTGGT	TGGAGAAGAA	AACATCTACA	3540
TCTTCGGTGA	AGATTCAGAA	ACTGTTATCG	ACCTTTACGC	AAAAGCAGCT	TACAAATCAA	3600
GCGAATTCTA	CGCTCGTGAA	GCTATCAAAC	CATTGGTTGA	CTTCATCGTT	AGTGATGCAG	3660
TTCTTGCAGC	TGGAAACAAA	GAGCGCTTGG	AACGTTTTTA	CAATGAATTG	ATCAACAAAG	3720
ACTGGTTCAT	GACTCTTCTT	GATTTGGAAG	ACTACATCAA	AGTCAAAGAG	CAAATGCTTG	3780
CTGACTACGA	AGACCGTGAC	GCATGGTTGG	ATAAAGTCAT	CGTTAACATT	TCTAAAGCAG	3840
GATTCTTCTC	ATCTGACCGT	ACAATCGCTC	AGTATAACGA	AGACATCTGG	CACTTGAACT	3900
AATACTCTTC	GAAAATCTCT	TCAAACCACG	TCAGCTTTAT	CTGCAACCTC	AAAGCAGTGC	3960
TTTGAGCAAC	TGCGGCTAGC	TTCCTAGTTT	GCTCTTTGAT	TTTCATTGAG	TATAAGATAC	4020
AAATTTATAC	TAATACATTT	TGTAAAAAAG	CGAGTTTCGA	TTGAAATTCG	CTTTTTTAAT	4080
GATGTAGATT	TGGGTCAATC	TTGTCTAAAA	ATAGGGAAAT	CCTAGATACA	GTGAAGGCTT	4140

			1066			
	G TTTTTACTGT					4200
	C GCTTACATAA					4260
ATATACACA	C TTAAATTGGT	GTTGTTTATT	ACCTTTCTTG	TAATAAGCTT	GTTACCTGAT	4320
AAGATTTTT	G GAAAAAATAA	AAAAATTTGG	AAAATAGTTT	TTGCAATATT	GACGGCAGTG	4380
GCAGCATTG	T CATTTATGTA	CTAAGTTATT	TTAAGAATGT	AGGGAAATAA	ACCCTACATT	4440
CTTTTTAGT	r tretctgttt	TCTAAATTCT	ATTTATCCAA	GCGATTCAAC	ATTTCTTGCT	4500
TCTTCGCTT	C AAGTTCTGCA	CGCTTTTCTT	CGATTTCGGC	ATGTTTTTTC	TCGAGTTCAG	4560
AACAACTTG	ACCATTGCTA	AATTCTTTTC	GCCATCAGGA	GATAGGGTGA	GTCGACATGT	4620
CTATTACTC	A CCCAAAGCAG	TCCTACAAAG	CAGGAATTTT	CTSTTACTTT	TTTGGAAATA	4680
GTAACGTTTA	A TACAGCTTTG	ACACTTCGTA	TCAAAGCGCC	AAACACACTC	CGAGGGGTTT	4740
ACAGAAAGCA	GAAAAGGAAT	GATCTGGTAT	AAGATCATTC	СТТТТСУСТС	TTTTTCTTTA	4800
AGTAATTATA	TACAATGTAC	GACGAAGTCG	TCATTGCAAT	GCTGATCCAC	CACCTAAAGG	4860
GAACTTTAAA	CAACATTGAT	AAGATAAAGA	ATATAAACAA	CGAAAATACG	TTATACCCAA	4920
TAATTTTAT	TGTATATCTC	ATGATTAAAA	GTTAATCCTT	CCGTTGTTAG	GAATGGCATC	4980
ATTTTTATCO	CATAATTGTG	CTAAATAAGT	CCCCGGTGAT	AATAAATTCA	TAGCGAATTC	5040
<b>PAAAGCAACA</b>	TCATTTACAA	ACCAACTACC	TAGATATCTA	GAAATTGCTG	AACGAATAGC	5100
CTTTTTGCT	GCATGTTTTC	CTTTTACTTT	AATTAGATTT	GCAAGGCCTG	CAGTAGTTCC	5160
CCTAATGCT	AAAGCTATTG	CAGTATCTAA	TAGAGCACCC	ATTTGATTAA	CTGTAATACC	5220
TGCCAAACT	GCTCTAAATG	GAGAGTATGT	AGGTGGGATT	GTATAATCGC	CTTGTAATTG	5280
'CGGTTAATT	ACTTCTTTGA	TCCATTGTTG	TGAGACGTCT	GGATGAAAAG	ATTGGATTTC	5340
TTTGCAAGT	GTATTGATTT	GTTCTTCTGT	TAGAGAAGTG	ACAGGTTGAA	GTTCCATATT	5400
GTTTCAATT	TGTGATACTT	GTTCAGAAGC	GTATACAGCT	GAAACACTTG	GAATCGCTGA	5460
ACAATTAAC	ACAATTGACG	TCAAAAAAAC	CGAAATAAAT	TTCATTAATT	TGTTCATGAG	5520
TTTTCTCCT	TTTTATTTGC	ATCTGCTTAC	ATTTTATCAT	ATACTGTTAT	TATAGTCAAA	5580
AAATATGCT	ATTATGTTAA	AAAAATATTT	TTCAAAATAT	AAATGGACGG	ATTTATTTTG	5640
ATTTTATTT	GTTATTTTGA	CCTGCCTCTA	TATTGGTAAC	CATGATTTGT	TTACTCTCAA	5700
CATCAAGAA	TTCTCTTTTC	GTGGTAGCGT	TTGGGGTCTG	GTACTGGCCT	TATATCACTT	5760
CTATTCATT	GATAAGTTTG	TTATATCGAA	TCGAAAATAA	AGATTAGAGC '	TATGCTTGAC	5820
GTGTACTTT	TAGGATTTAT	TTTGGAGGAA	GATTTTGTCT	CTATTATTTA '	TTATTTAAA	5880
TTATTTATT	TTGTATAAGA	TCTATTCTTT				5910

### (2) INFORMATION FOR SEQ ID NO: 166:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5406 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:

GGCATAGCGA CTCATTTTTT CAACTGTCCA GGCTGGATAC CAGACTAATT TAACCTCAGT	60
ATCCGTTACT TCTGGAACCT CTATCATAGC ATCATAAATC TGGTCTGTCA AAAGGTCTGC	120
TAAGGGACAA CCCATAGTTG TCAAAGTCAT GTCAATCTCT GTTTGCCCTG TGTCACCGTC	180
AAAACGAATC TCATAGATCA AACCAAGATT GACAATATCG ATTCCCAACT CAGGGTCGAT	240
GACTTCTTCC AAGGCTGTTA AAATCCGTGT TTTGATGTTT TCAATTTGCT CTTCTGTATA	300
AGCCATATTT TCCTCACTCT TAGTCTTCAA TAAAATCACG AAGCGGTTTG CTACGACTTG	360
GTTGGCGTAG TTTTCTCAAA GCCTTTGCTT CAATCTGACG GATACGCTCA CGAGTTACGT	420
TAAAGACTTT CCCCACATCT TCAAGTGTGC GCATTTTTCC ATCATCTAGT CCAAAACGTA	480
GACGCAGAAC ATTTCTTCA CGGTCTGTAA GAGTATCTAA GATTTCATCC AATTGCTCAC	540
GCAAGACGAT ACGAGTCGTA TAATCCACTG GATTTTCAAT CACTTCATCT TCGATAAAGT	600
CTCCAAGGTG GCTATCGTCC TCTTCACCGA TAGGAGTTTC AAGAGATACT GGTTCTTGGG	660
CAATCTTCAA GATTTCACGA ACCTTATCAG GTGTCATATC CATTCGTTCA GCAATCTGTT	720
CTGGTGTCGG ATCTTGCCCC AATTCTTGAA GGAGATTCCG CTGTTCACGA ACCAATTTAT	780
TGATAGTTTC AACCATGTGA ACTGGGATAC GGATGGTACG AGCTTGGTCC GCAATAGCAC	840
GAGTGATAGC CTGACGAATC CACCAAGTTG CATAAGTTGA AAACTTGAAC CCTTTAGAAT	900
AGTCAAACTT GTCAACCGCC TTCATCAAGC CCATATTTCC TTCTTGAATC AAGTCAAGGA	960
ACTGCATACC ACGACCGACA TAGCGTTTGG CAATGGAAAC AACCAAACGA AGATTGGCTT	1020
CCGCAAGACG TTGTTTGGCT TCGATATCAC CAGCTTCAAC AGCCAGTGCC AACTCTTTCT	1080
CCTCTTCATT GGTCAAGAGA GGAACGACCC CTATTTCTTT CAAGTACATA CGGACAGGGT	1140
CATTGACCTT AGCAGAAGTT GACCCAATCA AGTCCTCATC GCTGAGTTCT GGTTCTTCTT	1200
CATTGCTGAG AACACGCGCA CTTGGATTTC CTTCGTTATC TGTGATAGAA ATGCCTGCAT	1260
CCTGAATCCG TTGCAAGAGA TCTTCAATCC CATCAGCGTC CAAGGTAAAA GGAATAACCA	1320
GACTTGCATT GATTTCATCA TCTGTTGCTG TCCCTTTTTG CTTATGATTA CGGATAAATT	1380

			1068			
CTGCTACCTG	TACGTCAAAT	GTTGTTACTT	CTTTTTGTTT	TGTTGCCATT	ATTACTCCAT	1440
TCTTCTCTTT	TGGGAAATTA	AACGTTCCAA	TTCTTCTAGG	GCTGTATCTG	TATCTCCTAC	1500
ATGGCTAGCT	TCCTGCACCT	TCTTTTTGAT	TCTCATATTG	TCCTGATTCA	AGAGAGCCTT	1560
GTTTCGAGTC	ATCTCTACTT	CACTAAGTTC	CTGCGGCGAT	ATCTCAGCAG	GCAAATCCTG	1620
AGCTAAAACT	TGGTACCAAG	CTCTTTCAAC	TTCCTCTGTC	TGCTCTGCTA	AAACTTCTGG	1680
AGGAAGATTT	CCATACTGGC	CAAGCAAGTC	ATATAAGACC	TGAAATTCAG	GTGTAGCAAA	1740
TGCAAAGTCT	TCTCGCAAAC	GGTAATCGTT	CAAAACAAGA	GGGGATTCCA	TCATCCGATA	1800
GAGTAGATGG	GCTTCTGCCC	TCATAATAGC	CGATAACTGC	TTGGTGACAG	GCATGGTGAT	1860
TGGCGTCGGT	CTGGAAATTC	CTTCCATGCG	ATTCTGCCTT	TGCACCTGAC	GACTCTCATT	1920
AACAATCTGC	TCAATCTGGG	TATAATCAAA	GGACGCCAGA	CTGTCAGCTA	AAATATGAAT	1980
ATAGCTGTTT	TGAGCAGCGA	TGGACTTTTC	TTGAACAATC	AAGGGAGCTA	TTTTTTCAAG	2040
AAACTCAATC	TGAGCCTGCA	GATTTTCACT	GTTTTCAGGT	TTGTACTGAT	GAATGTAGAA	2100
CTCAATCGGA	CTAATACGAG	TTTTCGTTAA	TAGATAGGCC	AAGTCTTCTG	GACCATTTTT	2160
TTGTAGATAC	TCATCAGGAT	CCAAGTTATC	AGGCATGCTG	ACGATTTGCA	CAGGCATATC	2220
ACCAATTTCA	TCCAATGCTT	TCAATGTCGC	GGCTTGCCCA	GCCTTATCTC	CATCGTAAAC	2280
AAGAACCAAT	TTCTTGGTTA	ACCTTTTCAG	ATGCTCAACA	TGCTCTCGAC	TCAAGGCTGT	2340
TCCCATCGAC	GCCACAGCAT	TTTCGATTCC	AGCCCGATAG	GCTGCAATAA	CATCCATGAA	2400
TCCTTCCATC	AGGTAAATCT	CACTAGCTTT	TCCAGAAGAT	CTTTTTGCCC	TATCCATATG	2460
ATATAATTCG	TAACTTTTGT	TAAAAATTGC	AGTCGATCGG	CTGTTTTAT	ACTTAGAAGT	2520
TTGTGAATCC	GTTTTTTGCC	AGATACGACC	TGAGAAGGCA	ATGACCTTTC	CTTGGTCATT	2580
TGTCAGGGGA	AACATAATGC	GATTGTGAAA	GGTGTCTACA	AATTGATTGG	CATCCGAGAG	2640
ATAAAACAGG	CCTGAATCCA	GTAAATCCTC	TTCACGATAC	TGATCAGACA	AACGTTGATA	2700
GAGATAGTTT	CGTTCTGGAG	GTGCTAAACC	AATCCAAAAA	TGTTTAAGCA	CTTCATCTGT	2760
CAACCCCCGC	TGATAAAGGT	AATTTCTGGC	CTCTTCGCCC	ATAGTCGTTG	TCATGAGAAT	2820
AGCATGGTAA	AATTTGGCTG	CATCTTCGTG	CATATCATAA	AGAGCTTGGT	GAGGTGAGGC	2880
TGACTTCTGC	TCACTATAAA	GCGGTTTTTC	AACCTCAATT	CCAACACGCT	GACCTAAGAT	2940
TTGGACTGCT	TCTATAAAGG	GAACCCCTTG	GTACTCCTCG	ATGAACTTAA	AGACATCACC	3000
TGAGCGACCA	CAACCGAAAC	AGTGATAAAA	CTGCTTGTCC	TCTACAACAT	TGAAAGATGG	3060
TGTTTTTCA	CCATGAAAAG	GACAGAGCCC	TAGATAGTTC	CGTCCTGCCT	TTTGTAAAGA	3120
AATCACATCT	CCTATGACTT	CCACAATGTT	GGCATTGTTT	TTGATTTCTT	CAATGACTTG	3180

TITOTCARCC	ATACACAATA	CCTCCATGTT	ATCATAGTTT	ACTTTATATA	GTATACTTTA	3240
TTTCAGAAAA	AAAGTAAACC	ATTTCACTCA	TTTTCCCTAC	TTTATTCAAA	GAGTTGATAA	3300
TAATCAGAGA	TTTTCATTTT	TGCTTTTTCT	TCTTGGTTTA	AATCTTGGAT	AATTCGTCCT	3360
TCTTTCATGA	CAATCAAGCG	ATTGCCGTAT	TTGAGAGCAT	CTTCCATATG	ATGAGTAATC	3420
ATAAGGGCTG	TTAGCTGATC	TTTCTTAACA	AATTCATCTG	TCAATTCCAT	CAAAGCAACA	3480
CTAGTCTTTG	GATCCAGGGC	AGCAGTATGC	TCATCTAACA	GGAGTAATTC	AGGTCGCTTC	3540
AAGGTTGCCA	TCAAGAGACT	CAAAGCCTGT	CTTTGTCCAC	CTGATAAGAA	CTCAATCGGT	3600
GTATTCAAGT	GTTTCTCAAG	ACCATTTCCT	ACTTTTTCAA	TGGTTGCCTG	AAATTCATCC	3660
TTATAGCTAG	TCAAGCGTCG	TGGTAACAAT	CCACGCTTTT	CACCACGAAA	CTTGGCGATT	3720
AAAAGATTTT	CAGCGACCGT	CATACGGGGA	GCTGTCCCCA	TCTTTGGATC	TTGGAAGACA	3780
CGAGACAGGT	ACTTGGCACG	CTTCTCGGGT	GAAAACTTAG	TGAGATCTTC	ACCTAAAATA	3840
CGGATAGTTC	CACTAGTTAG	TGATAAGGTC	CCTGCTATAG	TGTTAAAGAG	AGTTGATTTT	3900
CCAGCACCAT	TTCCGCCCAA	AATCGTGATA	AAGTCCCGTT	CAAAAATTTC	TAAGGAAACA	3960
TCATTTAAAA	TAATCTTTTC	TTCATCAAAG	CCATTTTTAA	CGATTTTGGT	TGCATTTTTT	4020
AATTCTACAA	TTGCTGTCAT	TTGCTTAACT	TGGCTCCTTT	CAAGATTGTT	TGCTTAAATG	4080
TTGGAATCAT	GAGGCAGACT	GCTAAAATCA	AGGCACTGTA	TAAACGAAGG	TAACTTGTAT	4140
TAAAGCCAAG	TGCGATAACT	GCCCACACTA	AAAATTGATA	AGCGATAGAA	CCTACAACGA	4200
TAGTAACCAA	ACGCTCTGCC	AAGCTCAAAC	TCTTGAAAAT	AACTTCTCCA	ATAATCAAAC	4260
TTGCAAGCCC	CACAACGATA	ACCCCGATCC	CTCGAGACAC	ATCGGCATAA	CCTTCTTGCT	4320
GAGCAATGAG	GGCACCTGCA	AGGGCAATCA	CACCATTTGA	TAAGACCAAG	CCCATGAGCT	4380
CCATGCGTCC	AGTATGAATC	CCGAAACTTC	TAGCCATATC	AGGATTATCC	CCTGTAGCAA	4440
TATAGGCTTG	TCCGAGTTTA	GTGTCCAAGA	AAAAGAGCAT	GAGAGCAATA	ACAATACTCA	4500
CAAAGATGAG	ACCTGTCAAG	AGTTGATTCA	AATCCGAATC	AAAAGGCAAA	ACATCCTGAA	4560
TTTGCTTGGT	TCCAAGCAGG	CCTAAATTCG	CACGTCCCAT	AATCAAGAGC	ATGATTGAGT	4620
GACAAGAAGT	CATCACCAAA	ATCCCTGAGA	GCAAGGTTGG	GATCTTCCCT	TTTGTATAAA	4680
GAAGGCCTGC	TGCCATTCCA	GCCAAACAAC	CTGCTCCTAC	AGCAACAAGT	GTCGCTAAAA	4740
ATGGGTTCAC	GCCTTTGGTT	ATCAAAGTGA	CAGCAACAGC	TCCCCCAAGA	GGGAAGGAAC	4800
CTTCTGTCGT	CATATCTGGA	AAGTTTAAAA	TCCTAAATGT	CATAAAGATT	CCCAGACCTA	4860
GAATAGCCCA	GACAAATCCT	TGAGAAATAA	TGGAAACAAT	CATATTTTAT	TTAATCCTTT	4920

			1070			
CTATATTCAT	CTTTTTAAAA	AATGGGAAGA	GTCTCCTCCT	CCCTACCTTA	TTTATTCGAT	4980
GACTTGTCCT	GCTTCTTTGA	GAACAGACTC	AGGAATAGTA	ATACCTAGTT	CTTGTGCTAT	5040
TTTTTTATTG	ATGACTGACT	TACCAGTTGA	AAAGACATTG	ACTGGGGTAT	CGGCTGGTTT	5100
TGCACCTTTC	AAGACTTGCA	CAATCATTTT	ACCTGTTGCC	ACACCAAGGT	CATGTTGGTC	5160
AATTACAACT	GATGCCAAAC	CACCTACTTC	TACCATAGCT	GTCGCACTGG	GATAAATTGG	5220
TTTCTTAGAA	CTTTGATTGC	TAGAGACAAC	CGTTGGAAAT	CCTGATGCAA	TGGTGTTATC	5280
AATTGGAACC	CAAATAGCAT	CTACCTTGCT	AGTCATAACA	GTGACAGTTG	AGGCAATTTC	5340
ATTTGTTGAA	GGAACTGCAA	ATGTTTCCAC	TGTCAGACCT	GCCTTTTCAG	CATAAGCCTT	5400
AAATTC						5406

#### (2) INFORMATION FOR SEQ ID NO: 167:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9711 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:

CAGCTTGCTC	TTACTATTAT	AGCAGATGTT	ATAGCTGGAA	TTATCTTGTA	TTTCGTCTGC	60
AAATGGCTAG	ATGGTAAGAA	GTAGACCGAA	TGACTAGCCT	ATAAACACCC	GTTAAATCGC	120
TAAGATACGT	CAAAAAAGCC	CTTAACTATG	GCACTAGTTA	GGGGCTTTGG	TGTTCTAATG	180
AACCTTATAC	ACTAACTACA	TTCTAGCATA	TAAGCCCAGA	TATTTCAAGA	GTTTTATTTA	240
TTGTTTAAAG	TTCTGAAAGG	TCTATAATGA	AGTTAGCCAT	CTAGTATCAA	AAAACCGACT	300
AGCTCTTATG	AACTAGTCGA	TTTCTCATCA	ATGCGCCAAC	ATTTCTTGGG	CGATTTCTTG	360
GCCAGATAGG	TTATCTGGGT	AGTAGGTTGG	CCAGTTGTCC	ATTTCTTCAA	AGAGGGCTTC	420
TTGGCTTGTG	CCTCCAAAGA	AGATATGGAA	ATGTTCTGCC	TTAACTGGGG	CAACATTG'.G	480
GTCACTAAAC	TGAACATACT	TGAATTGTCC	AGCGTCAGCA	TCTGTGGCTT	CAAAGAGGAA	540
ACGCACGCCA	CGATTGCCTT	TCTTGTAAGT	CAAAATTTTC	TTACCGACAT	ACTTGTAAGT	600
GTATTTCTTG	CTTTGTCCAC	CTTGAACAAA	TTCCATAGTA	TTATCAGTAA	TGTTAATCTT	660
AGTCACATCT	GTATGATAGC	CTTTTGTATA	GTAAGCCTTG	TACTCAGCCT	GGGTCATCTT	720
ACCAGTCAAC	TTAGCCTTGT	AGTCAAAGAC	TTGGTCAAAC	GTGCCGTCTT	CAAGGAAAGG	780
ATAAACTGAT	TGCCAGTTAC	CTGCATAGTC	ACTCAAGGTG	CGGTCCTTGA	CAGCTGCATC	840
CTCGAAGTAA	CCATTTTGGA	CTGTCTTGGT	ATCCTCTGCC	TTTTCAGGTT	CAATTGCTGG	900

GCCTTCTTG	G TCTGTTGTT	GTTTCAAAG	CTTGAGGTT	TTCTCCATCA	CGGAAATGTA	960
GTTTTCTCC	A GCCTTGGTG1	CCTCTTCTG	CAGACTTTCT	` AAAGGATTGA	GGACATCAGT	1020
TTTGACACC	T GCTTCTTTTC	AAAGTGTGTT	AGCAAGGGC1	TGTGAGGCAT	TTCTTCAAAA	1080
TAGATATAG	G CGATTTTATT	TTTCTTGACA	TACTCTGTCA	ATTCTGCCAA	GCGAGCAGCT	1140
GATGGCTCT	G CATCTGGAGA	AAGTCCTGAG	ATTGCGACTT	GTTTGAGTCC	ATAGTCCAAG	1200
GCAAGATAG	T TAAAGGCTGC	GTGTTGAGTC	ACAAAGCTCT	TTTGTTTTGC	TTGAGACAAA	1260
CCTTCTGCG	T AAGCCTTATC	CAAGGCTTGC	AATTTTTCGA	TATAGGCAGC	TGCATTCTTC	1320
TCAAAGGTC	r ctttttttatc	AGGATAATCT	GCTGACAAGC	TGTCGCGGAT	GTGCTCTACT	1380
AGTTTAATG	CACGAACTGG	TGATAACCAA	ACATGGGGGT	CAAACTCATG	GTGATGACCT	1440
TCTTCTCCAT	r ggtcatggtc	TCCCTCTTCT	TCCTCGCCAC	CTGGCAAGAG	CAACATATCG	1500
CCTGTCGCCT	TGATGGTTTT	CACTTTTTTC	TTATCCAAGG	TATCTAGCAA	TTTAGGTACC	1560
CATGTTTCC	TGTTTTCATT	TTCATAAACG	AAGGTATCTG	CATCTTGGAT	TTTGGCAACT	1620
GCCTTGGCAC	ATGGTTCGTA	TTCATGAGGT	TCTGTCCCAG	CACCGATTAG	GAGTTCTACA	1680
TTAGCCGTAT	CTCCTGCGAC	TTGCTTGGTA	AATTCATAGA	CAGGGTAAAA	GGTTGTCACG	1740
ATATTGAGTT	TACCATCTGC	CTGTTTTTGA	TTGGAACAAG	CCACTAAAAA	CAAGGCACAT	1800
AGACTGGCTA	GTAATAAGCT	AATTTTTTC	ACGTTCGTCT	CCTATTTGAT	AAAACGTCTT	1860
ACTAAACTGA	TTAGTATAAA	GACAGTTACA	AAAATAATGG	TAATACTTGC	ACTTGCAGGT	1920
GTTTCTGCAT	AGTAGGAAAT	GTAAAGTCCT	GCTACCATTC	CCAAAAAGCC	AATCGCACTG	1980
GCAAGCAGCA	TAACCGATTT	AAAGTTTTTC	CCCAGACGCA	GGGCAATACT	AGCTGGCAAG	2040
ACCATAATGG	TCGATACCAG	AAGAGCTCCT	GCTGCAGGAA	TCATAAGGGC	AATAGCCACC	2100
CCTGTCACCA	TGTTAAAAAG	AATGGACATG	GTACGAACTG	GCAAGCCATC	CACAAAGGCC	2160
GTATCTTCGT	CAAAAGTTAA	GATATACATA	GGACGAAGAA	AGAGAAAGGT	CAAAATCAAA	2220
ACAACCGCCG	CAATGACAAA	GAGGGAAATG	ACCTGTTCTT	CACTGATAGT	CACGATCGAA	2280
CCAAAGAGAT	ATTGGTCCAA	ACTCATTGAA	CTCGAGCTTT	TACCCTTGCT	CATGACAATC	2340
AGAGAAACAG	CCAGACCTGT	TGACATGAGG	ATAGCTGTCC	CGATTTCCAT	AAAGCTCTTG	2400
TAAACCGTAC	GGAGATACTC	CAGAAAGACC	GCCGCAATCA	AGACAATGGC	AATAGTAGAA	2460
ACAGTTGGAG	AAATCCCCAA	AACCAGACCA	AAGGCTACAC	CTGAAAGTGA (	GACGTGGCTA	2520
AGGGTATCAC	TCATCAAACT	CTGACGACGC	aagatgagga	AGGTTCCCAA	PACCGGTGAG	2580
AAAAGACTCA	TAGCAATAAC	CGCCAAAAAG	GCGCGTTGTA	TAAAGTCGTA	AGATAATAAA	2640

CTAAGCATGG	CCCACCTCCT	GGCCATTCTC	1072 ATGAACATTG	AAACAACGCC	ATGGCGAGTC	2700
TTGGTTACGG	ACTAGATGAA	TATTGCGATC	CGCATAATCC	TTAACTTCTT	CAGGGTCATG	2760
GGTAATCATC	AAAACAGCCT	TGCCATGATG	ATGGGCGCTG	TGGTGCATGA	GTTCGTAAAA	2820
TTCATTTTTA	CTTCCTGCAT	CCATCCCCGT	TGTCGGCTCG	TCTAGGATAA	ACACATCAGG	2880
GTCAGAAGCA	AACATACGCG	CAATTACCGC	TCGCTGCTTT	TGTCCCCCAG	ATAGAGACCC	2940
CAAGCGTTTG	TCTCGATGTT	CCCACATGCC	AACTGAGTCC	AGACTAGCCT	TGATATGCTC	3000
CTCATCATGA	GCATTCAAAC	GACGGAACCA	GCCTTTTCTC	GGATAGCGAC	CCGACTTGAC	3060
AAATTCATAG	ACCGTACTTG	GAAAACCAGC	ATTAAAACTG	GCAATTTGTT	GAGGAAGATA	3120
GGCTATTCTC	AATTTCTTAC	CTTGCGTATT	TGTCTTTGAA	ATAGCCACCT	TTCCAATGCG	3180
TGGTTGCAGA	ATTCCAAGAC	TAGCCTTGAT	GAGCGTCGTC	TTAGCCGCTC	CATTITCCCC	3240
AGTCAAGGTA	ACAAATTCCC	CACTATCAAC	ACAATAATTG	ATATGTTCAA	GAACAGGCTC	3300
CTTATCATAA	TAGAAGGACA	AATCCTCTAC	CGTAATATAT	CTCATTATTT	GATTTCTCCT	3360
ACTAAAGCAG	TCAAAAACCG	CTGAATCACT	TTTTGTTCAT	TTGGAGTAAA	CTGAGTCGCC	3420
ACTTGTTCAT	AGGTTAAAAG	TGTATGCTCA	TGGTGATGGT	GGTGCTCCTC	AGCGATTGGA	3480
CGAGCCAAGT	CAGTCAACTG	ATAAAAAATC	ACACGCGCAT	CTTTAGAATC	TTTAGATGTT	3540
CCAACATCC	CTTCCTTGAC	CAAAGACTTA	ATGGCCTTGG	TAACTGCCGC	CTGACTGACA	3600
PTGAGACGAC	GGGCCAATTC	TGAATTTGTT	AAAGATTCCT	CTGACAAGAG	CATAAGGATA	3660
TGCTCCTGAG	TATTGGTCAG	GGCCACCTCG	CTAGTGCAAT	GACCTATTAG	GATTTCATGC	3720
rgattttccg	CCTGCAAAAT	CACCTCATTC	AAAAAAGCAT	TGATATCCTT	TGCTAGCTGT	3780
CTCATATCTG	ACTCCTTTCC	TTTTAGACTT	СТСТТТТТТА	AGAGAAAAAT	ACTATTCTTT	3840
GACATTTTGT	TTACCAGTTA	ATTATATCAC	AAGCAAAAAA	AGAGTCAAGA	AAAAACGTGA	3900
<b>AACTAGTTT</b>	CATTCTTGAA	CTCTTCTATA	TTATATTATC	TATTGAAATT	CTTTGACATC	3960
CCATCATAA	GTCGCCCAAT	CTTTGCTGAA	AAAGCGCTCA	TTCAGATGGT	AAGTCGGAGC	4020
GGTGTGGGA	TTGGATAGGA	AAGGATCAAC	TGCCTTGTCA	AAAGCCAACC	AACCCAACCA	4080
CCAAGGTGA	ATGGTGTCCT	TCATAAAGAA	AGGCTCCCCG	CCGTCCTTAG	AAAAATCTGC	4140
ATATTGGTA	AAACCTTGAC	TTTCTAACTG	GTAGCGAATC	TTCTGCACCG	TTTGTTGGTA	4200
CATATCCTCT	CGTAGACCAG	CATAGTTCAT	CCATTTTTTA	TTAACAGGTG	GAATGATAAA	4260
ATCGGGTTT	ACCTTAGATT	TAGAAAACTG	TGTTAAAACC	AACTGCAAGT	CATTATACTC	4320
GGCGACTTG	AGATAGGTAA	AGCTTTTCTG	AGAATCCTTT	AATTTCTTCA	AATCCTTCTT	4380
ATCTGCTCA	TTATAGAAAT	AATTTTCCAT	TCCCATCTCA	TTATTGĠAAG	TATTTTTTC	4440

AGCATCTGC	T TTGACAACA	r cttctattg	C CTGATAAGAA	A AACTGGTCT	G GCAAGATTTT	450
TAAATACTT	A GCTACATGC	r tatcgtagt	T AACATAGCCT	CTAACCGAA	A ACTGACCAAA	456
AAAGGAAGC	T TGGCGTTCA	TAAAACGAG	CAATAATTC	ATCATTTCA	T TGTCTGCTGT	462
CGACAATTC	T TCTTTACTT	CCAACTTCT	AACCAGGTCC	TTCATAGCT	A CGTTTGGGAA	468
CTGTTGCAG	T AAGCGAGTC	CTGCATATT	G ACTAGCCTGA	TCCCCAGAT	CATGTTTCAG	474
AAAACTAGTO	AACTGGTCTC	CATTAAAAT	CTGCTGGAAG	GCTGCTGGAT	CATAGCCATT	480
TTTACTGAAC	CACTGAGGTO	G AGATAACATA	CACAACTTGT	TTATTCTCC	GCTGTGGTAA	4860
CATCTGTTGC	ATTCCAAAAT	ATTGGTTAAC	CGATGCAGCT	CCCCCTGT	CTAAAAGATA	4920
AGGACGGTAG	GAACGATTGT	ATTTCTCAGO	TAATACCGCA	GGATGAGCAC	CGTCAAAACG	4980
AAGCCATTCA	CTAGAGCCAA	AGAAGGGAAC	AAAACGCACA	TTTGGATCAG	ATAGTGCTCT	5040
GACTTTTTGA	CTTCGCTCCT	TAAAACTATO	GATAGTAGTA	GCCACTGCTG	AACGCTTTTC	5100
AGCTCCTAGA	TTATGATGCA	TCTCAGTAGG	ATAAAAGAAA	ATGAGCAGAA	AAACCAACAA	5160
ACCAGCGATC	AAGACCGGTC	CGAAGATCAT	CCATAAGCGT	TTAAGCATTT	TGTAGCTCCA	5220
CAATACCAGC	TATGATTTTA	TTAGCTGTAT	TCCAGTCGTC	ACGACCAAAC	TCTGTTACAG	5280
GGACACGAAT	GTCAAAACGG	TTCTCAATCT	CCACAATCAA	CTCAACCGTT	CCCATACTAT	5340
CCAAGACACC	TGCATCAAAA	AGATCTTCAT	CCATCATGTC	AGAAACATCT	TCCATAAACA	5400
ACTCATCAAT	AATTTCAATA	ACTTCTGATT	TGATATCCAT	ATTTTATTTC	CTTTTATTTT	5460
тталассата	GATTATTCAA	GAATCCAGAA	AAGATTAAGA	ATGACAACAT	GACAACATGG	5520
AAAGTGACAA	CCATGCCAAG	CAACTGAATC	CAGCGATTCT	CAGGTAGGGC	AGCCTTCCCT	5580
GCTTTTTTCC	GTTCCTTATT	GAGCGTTTTT	TTCTTGCGAA	CCCAGGCATC	ATTGATGACC	5640
AAGCCTAGTC	CATGAAAGAG	TCCATAGGCG	ATATAGTACC	AGGTCACACC	ATGCCAAAAT	5700
CCCATAATCA	GCATATTTAC	AATGTAGGCC	ATGCTTGAGG	TTACATTACG	ATTTTTAAAG	5760
ACTTTCTTTC	TGGTTAACAC	CATCACCATT	CGCATAAAGA	CAAAGTCACG	GAACCAGAAG	5820
GACAGACTCA	TATGCCAGCG	ATTCCAAAAC	тсстттааат	CCCTTGATAA	AAAGGGCTTG	5880
TTAAAGTTGA	TAGGGCTACG	GATTCCCATC	AAGTTTGAGA	TGGCCAAAGC	AAACATAGAA	5940
TAACCTGCAA	AGTCAAAGAA	GAGTTCCAGA	CCAAAAGTAT	ACATAACTGC	CAAGGCATAG	6000
AGATTAAAGA	AGCCACCTGA	CTGCAAGGCT	AAATTCTTCA	GAGGAGGTAG	TAAGGTCTCT	6060
CTAAAACAT	GAGCTAGGAT	AAACTTATAC	AAAAAGCCCC	ACATGATATA	GCGGACAGAT	6120
rcatccagca	TATCCATCAA	CTCATCTCGC	TCAGGAATAG	CCTGATAATT	TTCATTAAAT	6180

WO 98/18931 PCT/US97/19588

1074

CGCTTAAAGC GATCGATTGG ACCACTCGAG AAAGTTGGCA TGAAGAGAAG GAAACGGAGG 6240 AATTCCCAGA GGGTAAAATC CTTAATCACT CCATCTCTCA GCTCGATGAC AATTCCAACC 6300 GAACGAAAGG TCAGGTAAGA AATTCCCAAG AACCCAAGCA AAGACTGCGT TCCATTGATA 6360 GCTGGTTGCA CCTTGACAAA GATAATCGGA AGTAGGGACA GAAAACTAAC TAAGTAGAAG 6420 ACCCACTTGC CATCCTTGCT TTTTCGATAA TGCTTGTAGA AAAGCAGGAG CAATATTTCC 6480 CAGCAAAGGT AAATACCCAA GGCAGCTAGT TGATTGGTCT TTCCACCCAC CAACATGGTG 6540 ACAATAAAGA AGAGACTTAC CAACACTTCA TACCAGGCAA AGCGTTTCTT GAAAAAGAGA 6600 CCTATAAAGA TGGGCAAGGT TGCAGCAATC ACATAAACAA AATACTGAGG ATTGCCATAT 6660 GGCTCTAAAT GAGGAAGCTG TTGAAAAAAC TCCATCATCT CTTATTCACC TCGTTAATCA 6720 ATCCTTTGAT GTCAATCTTT CCATTTGGAG TTAGTGGCAA ACTGTCTCGG TAAAGGAATT 6780 TAGATGGCAT CATATAGGAC ATCATGATGT CTGTCAGGTC TTCCTTGATG GCCTTGGTAA 6840 TATCGATATC TCGCTCAAAC TGCTCACGAA CACCGTCTTT TAAGATGACA TAAGCCAATA 6900 GATTTTGTAC CTTGTGGTCC TTGTTATAGC GCGGTACTGC GACAGCAGAT TCGATAAAGC 6960 GAGACTTGTT GAGGTTTTGA GAGACATCTT CTAACTCAAT GCGGTAACCG TTAAACTTAA 7020 TCTGGAAGTC CATGCGTCCG CCGTAGAGAA GCAAGCCCTC ATCTGTCATG GTTCCCACAT 7080 CGCCTGTGTG ATAGGCTGGC AGATCTTCAA ACTCAAAGAA GGCTTCTGCT GTTTTTTCAG 7140 GATTGTTCAT ATAACCTTTT GAAACAGCTG GCCCAGAAAC AATGATTTCT CCCTGCTCAC 7200 CATTTGGCAG TTTATTTCCT TCCTCGTCAA TGATAAAGGT TGGAGAATCA GCCTTGGTAT 7260 AGCCGATTGG TAGGCGTTTG AGAGTCGCTA ACATCTCGTC TGTCACGGCA ACTGCTGACA 7320 GAGCTACTGT CGCTTCTGTT GGGCCGTAAG CATTGATGAT ACGGGCATTT GGGAAACGCT 7380 CGCGCAGTTT TTGACCTGTT TTGACCGTCA ATTCTTCACC ATCAAAGTAG AAATGCGTGA 7440 TTCCAGGCAT TTTCTCACTG TTGAAGTATT CAGACAACAT GGCCATATCT GCAAAGGATG 7500 GTGTTGATGT CCAGATAGCG ATTGGCAATG AAAAGATAGC CGCAAAGAGT TGCTTAAAUT 7560 CCTGAGTGAT GACTGAAGGA AGAGTGAAAA GCGTACCACC AAGTGCCAAG GTCGGTGCCC 7620 AATACATGAC AGACAAGTCA AAAGAATAAG GTGGCTGTGC CAGCATTTGC GGACGACTCG 7680 GTGTCGCAAA TTCCTTATCC GTAATCATCC AGTTTGTAAA GCTGAGGAGA TTATCATGTG 7740 AAATCTGCAC TCCCTTAGGC TTACCAGTCG TACCAGAAGT AAAGATAATG TAGTAATTAT 7800 CATCTCCCTT GACTGGATGC GTGATTTCAT AGTTATTCCC TTGGGCAAAG GCTTCTTGAA 7860 CCTGAGCTAG ATTTATCATT GGTGTAGAAA CCTGCTCCAA GGGAAAGGCT GAAATGGCAA 7920 TAATCAAGCT TGGCTCTGCT ACTTCTAAAA TAGCTGAAAC TCGCTCCAAG GCCGAATGGC 7980

TATCAATTGG	AATGTAGGCA	TGACCTGACT	TAGTCAGCGC	TACAAAGGTT	GCCAACATTT	8040
CATATTCTTG	GCCACCAAAA	ACAACCACAG	GAGACTTCTC	AGGCAAGCCT	AGTTGGTCAA	8100
TGACTGCAGC	CAAACTATCC	GAATCAGCCT	TTAAATCGCC	ATAAGTGTGT	TCCTGCCCCA	8160
AAACATTATA	GACAGGATAG	CTAGGCTGTG	TCTGAGCAAA	ATGCTCAATG	GTTTCAATCA	8220
TATCTGCTAT	TGGTTTATTT	GACACAATAG	GGATTCTCCT	TCAAGTTAAA	ATTCATTATA	8280
GATAAAGCTT	CCTTGACCCT	GACCAAGATA	GCTAAAGAAG	TAAAGCAGCC	CTAGAAAGAT	8340
AAGAAAATAC	AAGGCTGTCC	GACCAAGAAA	GAGGTACAAT	TCTTTTCTCT	GTTTCATCAA	8400
GAAAAACCAT	TCATTTCTGT	AATTTTTCGC	TAAAATAAGA	GTGATTCTTA	CTAGCTTATT	8460
TTTCTACCAT	TGTACCACTT	TATATAGTAT	CTTTTCAATT	GTTTACCGTA	TGTTTCCAAT	8520
AGATTTCAGC	TTATTTTAAG	GATTATACAG	TTTTTCTATG	TATATTTTCA	AATAGAGTGA	8580
TCCTGCTTCA	AAACTCCATT	TCAGGAGACA	ATGAAGTAAA	TCTTCCCATA	ATAAAACACA	8640
CAATATCAAG	TTTTTCAAC	ACCTGATACT	ATGCGCTTTT	CTGATTTTTA	AAGACTTTTT	8700
AACCACTCTC	TCATTTAAAA	TAATCTCGTC	TGATATAAAT	TAAAATAGCT	TCTATCATCA	8760
GACAAATGGC	TGATAGCCAA	AAACTGATGC	TAATACCAAA	ACTCTCAGTA	ATATAGCTCA	8820
TTAGCAAAAC	AAATACTGAA	AATGCTAATG	TAGAAATCAC	TTCAAGAACG	GAATAGACAT	8880
TAACTAAATG	ATTTTCCTCT	ACTGTTTCCT	GAAGAAATAC	ACTTTCAGGA	ACTTCTTTTA	8940
GTTGCGATAA	CATACCAACT	AAAGCTGAAA	ATAATAAAA	CATCTGTGCG	TTTGGAAAAT	9000
ATAGAATAGT	CAGTGTCACT	ATTTCCATAG	CTACAAGAGG	AAAAAGAATA	CTTTCCCCCC	90.60
AAATCATTCA	TACCTCTCTC	AACTAGATGT	AACTTACAAA	ACCCCTGACC	TCATGAGCCA	9120
CTTTCTTCCT	CCTCATGAGG	TCAGTTTTAC	TTTCTGCTGT	TCCAGTATCG	TTTTTCCTCG	9180
CTAGATTTCC	TCAAAAGGGC	AGACTCCTCC	CTTGGTGCGT	CACACGATTT	TTTCATCTCG	9240
ACTGTTCTTT	AATGCATCAT	TAACGACGCT	TTTCTTCTAG	GTGGTTCATA	AGGAACAGGA	9300
AGATTCAGGT	TGACTTTTCT	AATCCTAGAA	TAAAGTGCTG	AAAACAATTC	GGAATAGGCA	9360
TAGAGACTAG	ACAATTTGAG	GAGCTGCTTG	CGTCCTGTTC	GAACACATTT	TCCCACCACG	9420
TGAAGAAAA	GATGGCGGAA	GCGTTTGATT	GTTAAAGTTT	GGAAGTCACC	TCCAGCTAGA	9480
TGTTTGAGAA	AAAGATAGAG	ATTGTAGGCG	ATACAGCTCA	TCATCATACG	AACTTCGTTT	9540
TTGATTAAGG	TTGAACTATC	CGTTTTATCG	CCAAAAAATC	CCTCCTTCAT	CTCCTTGATG	9600
AAATTCTCGG	CTTGACCACG	TCCACGATAA	AGCTGAAACT	GGTCTTGGcT	gTTCCACTCG	9660
. TCATATTTGT	AACGAGAGAA	ATAACATCGT	AGAACAAGTA	TCCTTCTTTT	С	9711

### (2) INFORMATION FOR SEQ ID NO: 168:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3025 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

CCCCTTTGTC	AAAACTGTAA	AATTAACGAC	TCAACAATTC	ATCTTTACAC	CAATCTCAAT	60
GGAAAACAAA	AACAAATTGA	CCTCTGTCAA	AACTGCTATA	AGATTATCAA	AACAGATCCT	120
AACAATAGCC	TCTTCAAAGG	TATGACGGAT	CTGAACAATC	GTGACTTCGA	TCCCTTTGGT	180
GATTTCTTCA	ATGATCTAAA	CAATTTCAGA	CCTTCTAGCA	ATACTCCTCC	TATTCCCCCA	240
ACCCAATCAG	GTGGAGGTTA	CGGTGGAAAC	GGCGGTTATG	GTTCCCAAAA	TCGTGGATCT	300
GCTCAAACTC	CGCCACCTAG	CCAAGAAAAA	GGCCTGCTGG	AAGAATTTGG	TATTAATGTA	360
ACTGAAATTG	CCCGTCGTGG	AGACATTGAC	CCCGTTATTG	GGCGCGACGA	TGAGATTATC	420
CGTGTCATCG	AGATTCTCAA	TCGTAGAACC	AAGAATAATC	CTGTCCTTAT	CGGTGAACCT	480
GGTGTCGGAA	AAACGGCCGT	TGTCGAAGGT	CTAGCTCAGA	AAATTGTCGA	TGGCGATGTG	540
CCACATAAAC	TCCAAGGTAA	ACAAGTCATC	CGTCTGGATG	TGGTTAGCTT	AGTTCAAGGA	600
ACGGGGATTC	GAGGACAATT	TGAAGAACGC	ATGCAAAAAC	TCATGGAAGA	AATTCGCAAA	660
CGTGAAGACA	TCATCCTCTT	TATCGATGAA	ATCCATGAAA	TTGTTGGTGC	TGGTTCTGCG	720
AGTGATGGTA	ATATGGACGC	AGGAAATATC	CTCAAGCCAG	CCCTTGCTCG	TGGAGAACTG	780
CAACTAGTCG	GTGCTACTAC	CCTCAATGAA	TACCGTATCA	TTGAAAAGGA	TGCTGCCCTC	840
GAGCGTCGTA	TGCAGCCTGT	TAAAGTCGAT	GAACCAACGG	TGGACGAAAC	AATCACTATT	900
CTCAAAGGGA	TTCAAAAGAA	ATACGAAGAT	TACCACCACG	TTCAATATAC	AGATGCTGCG	960
ATTGAAGCAG	CTGCAACTCT	TTCCAATCGC	TACATCCAAG	ATCGCTTCTT	GCCTGACAAG	1020
GCCATTGACC	TCCTAGATGA	AGCTGGTTCT	AAGATGAACT	TGACCTTGAA	TTTTGTGGAT	1080
CCTAAAGTAA	TTGATCAGCG	CTTGATTGAG	GCTGAAAATC	TCAAGTCTCA	AGCTACACGA	1140
GAAGAAGATT	TTGAGAAGGC	GGCCTACTTC	CGCGACCAGA	TTGCCAAGTA	TAAGGAAATG	1200
CAAAAGAAAA	AGATCACAGA	CCAGGATACT	CCTAGCATCA	GCGAGAAAAC	TATTGAGCAC	1260
ATTATCGAGC	AGAAAACCAA	TATCCCTGTT	GGTGATTTGA	AAGAGAAAGA	ACAATCTCAA	1320
CTCATCCATC	TAGCCGAAGA	TCTCAAGTCT	CATGTTATTG	GTCAAGATGA	TGCAGTCGAT	1380
AAGATTGCCA	AGGCTATTCG	CCGTAATCGT	GTCGGACTTG	GTACCCCTAA	CCGCCCAATC	1440

GGAAG	CTTCC	TCTTCGTTGG	GCCAACTGGT	GTCGGTAAGA	CAGAACTTTC	CAAACAACTG	1500
GCTAT	CGAAC	TTTTTGGTTC	TGCTGATAGT	ATGATTCGCT	TTGATATGAG	TGAATACATG	1560
GAAAA	ACATA	GTGTGGCTAA	GTTGGTCGGC	GCTCCTCCAG	GTTATGTTGG	CTATGATGAG	1620
GCTGGT	CAAT	TAACTGAAAA	AGTTCGCCAC	AATCCATATT	CTCTCATCCT	TCTCGATGAA	1680
GTGGA	AAAAG	CTCACCCAGA	TGTTATGCAC	ATGTTTCTTC	AAGTCTTGGA	CGATGGTCGT	1740
TTGAC	AGACG	GGCAAGGACG	CACCGTTAGC	TTCAAGGATG	CCATCATTAT	CATGACCTCA	1800
AATGC#	AGGTA	CAGGAAAGAC	CGAAGCTAGC	GTTGGATTTG	GTGCTGCTAG	AGAAGGACGT	1860
ACCAAT	TCTG	TCCTCGGTGA	ACTCGGTAAC	TTCTTTAGCC	CAGAGTTTAT	GAACCGTTTT	1920
GATGGC	ATTA	TCGAATTTAA	GGCTCTCAGC	AAGGATAACC	TCCTTCAGAT	TGTCGAGCTC	1980
ATGCTA	GCAG	ATGTTAACAA	GCGCCTCTCT	AGCAACAACA	TTCGTTTGGA	TGTAACTGAT	2040
AAGGTC	CAAGG	AAAAGTTGGT	TGACCTAGGT	TATGATCCAA	AAATGGGAGC	ACGCCCACTT	2100
CGTCGG	ACTA	TTCAAGACTA	TATTGAGGAC	ACAATCACTG	ACTACTACCT	TGAAAATCCA	2160
AGCG <b>AA</b>	AAAG	ATCTCAAAGC	AGTTATGACT	AGCAAGGGAA	ACATTCAGAT	TAAATCTGCC	2220
аааааа	CCTG	AAGTTAAAAG	TTCTGAAAAA	GAAAAATAAA	TCCTATAAAA	AAGGAGTAGA	2280
AAATGA	AATT	TTTCTGCTTC	TTTTTTACT	AAAATAACTG	TAATTTCTTG	ACAGCTTGCC	2340
CTTTGT	CCAT	TATGATATAT	AGTAGACTGA	ATCTGAAATA	GTACGAAACA	ATTGCTAAAA	2400
CATTTA	TAGA	AATTAATTTT	ACTTTCCCAA	TCGATTTGTT	CTCATCTTAT	TTCAATCTGC	2460
TATAGT	CAAT	TGAAACAAGA	ACAAGACAAA	AGAGCCTCAT	AAAAGGTATT	GCAACTTGGT	2520
AATACC	TTTT	TGAGGTGCTT	TTTGATATGA	GCCCATGTTT	TCTCAATAGG	ATTGTACTCA	2580
GGTGAG	TAGG	GAGGAAGAGG	TAAAAGTTTA	TACCCAAACT	CTTCACACAA	GAGTTCTAAC	2640
TTACCC	ATTC	TATGGAATCT	TGCATTATCC	ATAATAATAA	CCGATGGTGT	GGTTAATGTT	2700
GGTAAG	AGAA	ACTTCTGAAA	CCAAGCTTCA	AAAAAGTCGC	TCGTCATCGT	CTCTTCGTAA	2760
GTCATT	GGAG	CGATTAACTC	ACCATTCATT	TGTTAGACCT	GCAACCAAAG	AAATTCTCTG	2820
ATATCT	TCTT	CCAGATACTT	TGCCTCTTCT	TAACTGACCT	TTTAATGAGC	GACCATATTC	2880
rcgata	AAAA	TAAGTATCGA	ATCCTGTTTC	GTCAATCTAA	ACAGGTGCTA	GGTGCTTTAA	2940
ACTATT.	AAAA	TTCTTAAGAA	ATAAGGCTAC	TTTTTCTGGG	TCTTGTTCAT	AGTAGGTGTA	3000
GTTCTT	لملململ	TTTTCACTC	TAGCC	•			3025

⁽²⁾ INFORMATION FOR SEQ ID NO: 169:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4104 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169:

TTTAAGGTTT	TAAAAAAAGT	TTTCGAAAGG	TTTCTTCTTT	ATTTTTTAAG	GGAGAGATAA	60
CGTTGATATC	TAAATCGTGG	TCAAAGCCGG	CAATTTTTCC	TTTAGATGTG	TATTGGTGAA	120
TATCATAATC	TAAATCAGTT	TTAGGACTGC	TCTCCAAAAA	TCCTGAGTCT	GAGCCGTAGA	180
CGGAATCCAA	ACAGAGGTAA	ACTTGCCTGT	ATCAATACTG	TGTTCTTCCA	TGAAGTAGAC	240
ACCAACGTAG	ATGCCGATGT	TTTTAGCACC	CAGTGATGCT	AGTTTTGCTC	GAAAGTTTTC	300
GACACCTTCG	TTCATATTAG	ACATGGTTTT	GTCTTCCACG	TCAAGCCAAT	AGTAACTAGG	360
GCTGTAAGGA	GAGGCAGCAT	TGTAGAAAAC	TTCGGCAGCC	TTTTCCATTT	CTTGGACACT	420
TTTTCCAGCT	ACATAAGCGT	AGACAGCAAC	TGGGACATTC	CGCTTTTGAA	GTTCAGTGAT	480
ATGACTCTTA	TAGGCCTTGT	CTATTCCATT	GATAAATGAA	GCATCATTTT	CTTTTGTCGT	540
TTGAGCACCA	CTGTGAACAC	GAACAATAGC	ACCTGAAATA	TTTTGTGAGA	GGGCATCGTA	600
GTTGATTTCC	TCAGGACGCT	GCCAGCCAGA	GAGGTCAATA	ATCGGTTTGT	CTAAGTGTTT	660
CAAAGCCTGT	GCTTCAATCT	GTGCTATATT	GGATTTTGTT	TTAAACGATT	GGCTGTCATT	720
AAGTGGGCGA	TTGATGATTA	AAATGAACAT	CATAATCCCA	ААААААСТАА	ATAAAATAAG	780
TGGATGAATT	TGTTTTCTCA	ТАТСТТАТАА	TTCTACCCTA	AAAATCAAAA	AAAATCAAAA	840
AAATGGGTTA	AGGAAGAGAC	TTTAGAGCAT	TTTTTCATTC	AAGAGTGCGG	AATGATTTGA	900
AATATGGTAT	AATAAAAGGG	AATTTCTACA	GAAAAGAGAA	GATTATGTCA	AATTTTGCCA	960
TTATTTTAGC	AGCGGGTAAA	GGGACTCGCA	TGAAATCTGA	TTTGCCAAAA	GTTTTGCACA	1020
AGGTTGCGGG	TATTTCTATG	TTGGAACATG	TTTTCCGTAG	TGTGGGAGCT	ATCCAACCTG	1080
AAAAGACAGT	AACAGTTGTA	GGACACAAGG	CAGAATTGGT	TGAGGAGGTC	TTGGCTGGAC	1140
AGACAGAATT	TGTGACTCAA	TCTGAACAGT	TGGGAACTGG	TCATGCAGTT	ATGATGACAG	1200
AGCCTATCTT	AGAAGGTTTG	TCAGGACACA	CCTTGGTCAT	TGCAGGAGAT	ACTCCTTTAA	1260
TCACTGGTGA	AAGCTTGAAA	AACTTGATTG	ATTTCCATAT	СААТСАТААА	AATGTGGCCA	1320
CTATCTTGAC	TGCTGAAACG	GATAATCCTT	TTGGTTATGG	ACGAATTGTT	CGTAATGACA	1380
ATGCTGAGGT	TCTTCGTATT	GTTGAGCAGA	AGGATGCTAC	AGATTTTGAA	AAGCAAATCA	1440
AGGAAATCAA	CACTGGAACA	TACGTCTTTG	ACAACGAGCG	TTTGTTTGAG	GCTTTGAAAA	1500
ATATCAATAC	CAATAACGCT	CAAGGCGAAT	ACTATATTAC	AGACGTCATT	GGTATTTTCC	1560

GTGAAACTGG	TGAAAAAGTT	GGCGCTTATA	CTTTGAAAGA	TTTTGATGAA	AGTCTTGGGG	1620
TAAATGACCG	TGTGGCGCTT	GCGACAGCTG	AGTCAGTTAT	GCGTCGTCGC	ATCAATCATA	1680
AACACATGGT	CAACGGTGTT	AGCTTTGTCA	ATCCAGAAGC	AACTTATATC	GATATTGATG	1740
TTGAGATTGC	TTCGGAAGTT	CAAATCGAAG	CCAATGTTAC	CTTGAAAGGG	CAAACGAAAA	1800
TTGGTGCTGA	GACTGTTTTG	ACAAACGGTA	CTTATGTAGT	GGACAGCACT	ATCGGAGCAG	1860
GAGCGGTCAT	TACCAATTCT	ATGATTGAGG	AAAGTAGTGT	TGCAGACGGT	GTGATAGTCG	1920
STCCTTATGC	TCACATTCGT	CCAAATTCAA	CTCTGGGTGC	CCAAGTTCAT	ATTGGTAACT	1980
TTGTTGAGGT	GAAAGGATCT	TCAATCGGTG	AGAATACCAA	GGCTGGTCAT	TTGACTTATA	2040
TCGGAAACTG	TGAAGTGGGA	AGCAACGTTA	ATTTCGGTGC	TGGAACTATT	ACAGTCAACT	2100
ATGACGGCAA	AAACAAATAC	AAGACAGTCA	TTGGAAACAA	TGTCTTTGTT	GGTTCAAATT	2160
CAACCATTAT	TGCACCAGTA	GAACTTGGTG	ACAATTCCCT	CGTTGGTGCT	GGTTCAACTA	2220
<b>TTACTAAAGA</b>	CGTGCCAGCA	GATGCTATTG	CTATTGGTCG	CGGTCGTCAG	ATCAATAAAG	2280
ACGAATATGC	AACACGTCTT	CCTCATCATC	CTAAGAACCA	GTAGGAGCCT	ATCATGGAGT	2340
PTGAAGAAAA	AACGCTTAGC	CGAAAAGAAA	TCTATCAAGG	ACCAATATTT	AAACTGGTCC	2400
AAGATCAGGT	TGAATTACCA	GAAGGCAAGG	GAACTGCCCA	ACGGGATTTG	ATTTTCCACA	2460
ATGGGGCTGT	CTGTGTTTTA	GCAGTAACGG	ATGAACAAAA	ACTTATCTTG	GTCAAGCAGT	2520
ACCGCAAAGC	TATCGAGGCT	GTCTCTTACG	AAATTCCAGC	CGGAAAATTG	GAAGTAGGAG	2580
AAAACACAGC	CCCTGTGGCA	GCTGCCCTTC	GTGAATTAGA	GGAAGAAACA	GCCTATACAG	2640
ggaaattaga	ACTCTTGTAC	GATTTTTATT	CAGCTATTGG	CTTTTGTAAT	GAGAAGTTAA	2700
AACTATATTT	AGCAAGCGAT	TTGACAAAAG	TGGAAAATCC	GCGTCCGCAG	GATGAGGATG	2760
AAACCTTGGA	AGTCCTTGAA	GTGAGCTTAG	AAGAAGCGAA	AGAATTAATC	CAATCAGGTC	2820
ATATCTGTGA	TGCCAAGACA	ATTATGGCTG	TTCAGTATTG	GGAGTTGCAG	AAAAATAGA	2880
GGAGGTCAGT	ATGGGTAAAT	CTTTATTAAC	GGATGAAATG	ATTGAAAGAG	CTAATAGAGG	2940
CGAAAAAATT	TCAGGTCCTC	CTTTGCTAGA	TGATAATGAG	GAAACTAAGA	TTTTACCAAC	3000
CTCTTCTTCC	CGTTTTGGTT	ATGCCAATCC	TAAGGATCAT	GGTTTTAGCC	AGGAAACCTT	3060
GAAGATTCAG	GTCGAACCAT	CTATTCATAA	AAGCCGTCGT	ATTGAAAATA	CCAAGAGAAA	3120
rgtcttcaat	TCTAAGTTGA	ATAAAATCTT	ATTTGCGGTC	ATCTTTCTCT	TGATTTTGCT	3180
TGTTTTAGCA	ATGAAACTTT	TGTAATAGAA	AAGGAATTGA	AATGAAAATA	GGAATTATTG	3240
~~~~	BCAACAACTC	CCTTATCTCC	TOTACOATTO	ACATAATOCC	CACCACCAAG	3300

PCT/US97/19588 WO 98/18931

			1080			
TTGTTTTTGG	GAATACCTAT	CATACAGGAA	CCATTGCTTC	TCATGAAGTC	GTTCTTGTAG	3360
aaagtggaat	TGGTAAGGTC	ATGTCTGCTA	TGAGTGTGGC	GATTTTGGCT	GATCATTTCC	3420
AGGTGGATGC	CCTTATTAAT	ACGGGTTCAG	CTGGGGCAGT	AGCAGAAGGT	ATCGCTGTTG	3480
GGGATGTCGT	GATTGCTGAC	AAATTAGCCT	ATCATGACGT	GGATGTCACA	GCTTTTGGCT	3540
ATGCTTATGG	ACAAATGGCG	CAACAACCGC	TTTATTTCGA	ATCAGACAAA	ACCTTTGTTG	3600
CTCAAATCCA	AAAGAGTTTA	TCTCAATTGG	ACCAAAACTG	GCATCTTGGT	TTGATTGCTA	3660
CAGGAGATAG	TTTTGTTGCA	GGAAATGACA	AGATAGAAGC	GATTAAGTCC	CATTTCCCAG	3720
AAGTTTTAGC	CGTGGAGATG	GAGGGGGCAG	CTATTGCTCA	AGCAGCGCAT	GCCCTCAATC	3780
TCCCAGTCTT	AGTCATCCGA	GCTATGAGTG	ACAATGCCAA	CCATGAAGCA	AAÇATCTTTT	3840
TTGATGAGTT	TATTATCGAA	GCTGGACGTC	GCTCTGCCCA	AGTCTTGTTG	ACCTTTTTGA	3900
AGGCTTTAGA	TTAAGCGGAA	ATTTGACAGT	TTTTCTAGCT	TATGATAAGA	TTTAAGTAAA	3960
GAAAAGCTAG	AAAACGTTTC	AGAGGATATT	ATGAGTATTG	AAATGACCGT	CAGTGAGATT	4020
GCAGAGGTCT	TAGGATTATC	TCGCCAAGCA	ATCAATAACC	GTGTCAAAGA	ATTACCAGAA	4080
GAAGACACAG	ATAAAAATGA	CAAG				4104

(2) INFORMATION FOR SEQ ID NO: 170:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8876 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

CACGGATAGG	CTCGGCTTTC	ATCAGTCCTC	AGGCTGATTT	ACTAATAGCA	ACTTTCCTCG	60
ACAAAGTCCA	CAGCGATACG	TnTGGGTATC	AATCCTACGC	TTACGCTGAT	ACCTTTGCTG	120
GCAGGATTGG	CAACGATAGA	GCTTGATTGG	CTTGGAGTTA	CTATTGGGCA	AGGATGGTAC	180
AAACCGTAAT	CCATCCACTG	CTTTCAACAG	TTCCTTAAAA	TCCCGATCCT	TGTGTTGATA	240
GCCTTTCCCT	TGAAAATAGA	GGTGATAATG	ACAGAGTTCA	TGTCGGACAA	TTTTCCTAAA	300
AACGTCCAAC	CCCAGTTCCT	GATAAACCTT	GGGATTAAAA	TCCAAATGCC	CATCTTTGGG	360
GAAAAATCGC	CCACCTGTCG	AACGTAGACG	CCTATTCCAC	TGGACATGAT	GGATAAAAGG	420
TCTGCCGAAG	TCTTCTAGTG	AAACCTGCTT	GACGTAATCA	GTCAGTTTCA	TTTGGAGCTA	480
GGAGAGACAG	ATTAACTTTT	TCACGTTCAG	TATCAATTTT	CTTAACCCAA	ACGCTCACCA	540
AATCTCCAAC	TGCCACCACT	TGACTAGGGT	GTTTGATAAA	CTTGCGACTC	ATÄTGGGAAA	600

TATGGATGAG	ACCGTCCTCA	TGAATTCCGA	TATCAACAAA	AGCACCGAAA	TCAACAACGT	660
TACGCACCAC	TCCTTCTAGC	TTTTGTCCAA	CCACTAAGTC	CTTGATATCT	AGGACATCTT	720
GGCGAaCACA	GGTGCGTCAA	AGGAATCACG	GAAATCTCGA	CCTGGTTTGA	GAAGATCTGC	780
AATGATATCT	TTAAGAGTTT	CTGGACCAAG	GTCTAACTCT	TGCGCCATTT	CCTTGACTGA	840
AAGCGACTTG	AGTTTGCTTT	GGGCTTCTTC	GTTTAGGTCT	TTAATATCTA	AACGTTTGAA	900
GAGTTCCTTA	ACTGCAGTGT	AATTCTCTGG	GTGAACTCCT	GTATTATCAA	GGATATTGCT	960
ACTTTCAGGG	ATACGAAGGA	AACCAGCAGC	CTGCTCAAAG	GCCTTGGCTC	CCAGACGAGG	1020
AACTTTCTTG	ATTTGGGCGC	GTGAAGTGAT	TTTTCCTTCT	TCCTCGCGGT	ATTTGACAAT	1080
ATTTTCAGAG	ATAGTTTTGT	TGAGTCCAGC	TACGTGTGAA	AGAAGAGCTG	GGCTAGCTGT	1140
ATTGACATTG	ACACCAACTT	GGTTAACCAC	TGTATCGACA	ACAAAGTCCA	GACTCTCAGA	1200
TAGTTTCTTC	TGACTGACAT	CGTGTTGGTA	TTGACCGACA	CCAATTGACT	TAGGATCGAT	1260
TTTGACCAAT	TCCGCAAGAG	GATCTTGCAA	ACGACGGGCG	ATAGAAATGG	CAGAGCGTTT	1320
TTCAACGGTC	AAGTCTGGAA	ACTCCTGACG	AGCAAGTTCG	CTGGCAGAAT	AGACAGAAGC	1380
ACCACTTTCA	TTAACGATAA	CATAGCTGAC	TTCAGGGAAA	TCTTTCAGAA	CTTCCGCTAC	1440
AAAAGCTTCA	CTTTCACGAC	TGGCCGTTCC	ATTTCCAATG	GCAATAATCT	CTACACCGTA	1500
TTGACCAATT	AAATCTGCTA	AATCTTTCTT	GGCTTCTTCG	ATTTGACGAG	CTGATGCTGG	1560
TTTAACAGGA	TAAATAACCT	GAGTTGTCAG	CATTTTTCCT	GTTGCATCCA	CGACAGCTAG	1620
CTTGGCACCT	GTACGAAAGG	CTGGGTCAAA	TCCAAGAACC	ACGCGCCCTT	TCAGTGGAGC	1680
AACCAAGAGG	AGATTGCGCA	GATTGTCAGA	AAAAAGTTGG	ATAGCTCCTT	CTTCAGCTTT	1740
CTCAGTTAAT	TCTGTCCGAA	TACGACGCTC	GATAGCAGGC	AAGACCTTTT	TCTTAACGGA	1800
rtgctgaaca	ACTTCATCAA	TATAAGCATT	TTTCACCTTG	AAACGAGTAG	CAAAGAAGGC	1860
AAGAATACGG	TCCGTCGCAT	GTTCAAAACC	GATCTTCAAG	ACACCAAGTT	TCTCCCCACG	1920
ATTGAGAGCC	AAGGTACGAT	AGCCTTGCAT	AGTTCCAACT	GTCTCTGAAA	AATCATAATA	1980
AATCTGAAAA	ACCTGCTTTT	CATCAAGACT	TTCATCCTTG	GCTTGAGAAG	TAAGTTTAGA	2040
GTGTCTCAGC	ACTTCCTGAT	AAGTCATAGA	ACGCAAGGTC	ACATCTTCCG	ATAAGGCTTC	2100
GACCAAAATA	TCAACTGCAC	CGGTCAAGGC	TTCCTTGCCA	GTCGCAAATC	CTTCACAGAC	2160
GAACTTTTCA	GCTTCTTTCT	CTAAGTCAAC	TATATTCTGC	AAAATCAAGC	GAGCAAGAGG	2220
AAAGAGTCCA	GCTTCACGGG	CAATGGTTGC	CTTGGTACGA	CGCTTTTCCT	TATAAGGAAG	2280
ATAGAGTTCT	TCAACGTCTG	CTAATTTTTC	GGCAACTAAG	ATAGCTTCTT	CCAATTCCTT	2340

WO 98/18931 PCT/US97/19588

			1082			
GGTCAACTTA	CCTTGTTCTT	GAATCTTAGC	TAAGACAGCT	TCCTTACGGT	CATTGAGATT	240
TGTCAGACTT	TTATCCAAAT	CAATAATAGC	CTTAATCGCC	ACCTCATCCA	GACTACCAGT	246
CATGTCCTTG	CGATAACGCG	CGATAAAGGG	AATAGTCGCC	CCTTCAGCTG	TCAAACTTAG	252
AACGGTATCA	ATTTGCTTTA	ACGŢCACTCC	CAAATCCTGA	GAGATTTTT	CATATTTTTT	2586
ATCCATAAAT	CTATTATACC	ACAAGCTAAA	CGTTTCAAAT	TAACTCGTAG	AACATTTAAA	2640
AAATATGTAG	GAAATAGATT	TATATGCTAC	AGCGCAATAA	CTTGCACTTA	AAGAGCATTG	2700
CCACCTTTTT	TTAACCAAGC	CATGATATCA	AAAGTATTTA	ATGGATCAGA	CATAATAGCC	2760
AGTTCTGGAA	GATGTTCCTG	ACCTGGAATA	ACACATTGAC	TTTTCAAATT	TTTATATGGA	2820
CGATTGACTA	AAATTAATTT	ATTAGAATAA	GGAAGATTAT	CCATCTTATT	TAAAATTTCT	2880
TCACTAGCTG	AATCTTTATT	ATCAAATTTA	AAATAAAGAT	TATTCCAATT	TATGCGTTTT	2940
TTTCTTTTTT	CCCACTTAGT	TCGTGCTTCT	TCAATACTAG	AATAATGTAG	AAAATGAATA	3000
TCTATATCTC	CTAAGTGCCC	CAAAGGATAA	ACTTCATGAG	TCCAGCTCGG	TGAAATAAGT	3060
TCCTCTTCGA	AAACAAGTTC	TTGTTCCATA	TAATAACGAA	AATGCTTTGT	AAGTTTATAA	3120
TAATCATCAG	GAAGAATAAA	TAAACCAACA	AAAGGTGTTC	TATATTGAAA	ACCAAGCTGT	3180
TTATAAATTA	ATCCTCCAAC	ACAATTATTA	CTTATAATCG	TAAAATCTAA	TCTATCAAGC	3240
TCAAGAAAAG	GGAAAATTCC	TTTCTCTGCA	GCTATTAACT	TATGATAAAC	AATATCAGAA	3300
TCTAAATATT	CACCGTCATT	TTTTAACCAA	GCACTAAAAT	TTGCCAATTC	TTGAATATAT	3360
rGTTTTTTCG	CTCTTTCTAT	ATCATAGTTT	TCTAAGACGG	CGCAATCTTT	GATTCTATTT	3420
CATAATTTT	CTAATATGAT	TTTGTAGGAG	TCTTTTAGAG	GTTTAGCATC	TATAACAGGT	3480
TTATAGATAT	ATGTCGGGAA	ATTAATATAG	GTTGCAGTTT	TAGAGTGAAT	ATAAAGTCTC	3540
CAAATAAGGT	TGTTTATATC	AAATTGATTT	ATTTTTCGTA	AAAGCTTACT	ATTGAATAAT	3600
TTTCCAAATA	ATGAGCGATA	TTGTTTTCTA	ATTCGATGAT	CTGTATCATC	CATCTTTTGT	3660
AAAACTTGAA	CATTCGTTAA	ATTTTCTGTC	AACCAATTAT	CCCCCAAAA	AGGATAAAAG	3720
PAAAATACTC	CATCAACCAA	ATCAGCAAAA	TGACCAAGAA	CAACATCAGA	ATCGGATAAT	3780
TTATCGCAT	GATACATCTT	TTCAAATGTC	СААТСАААТА	ATGAATCATT	TGAAGATAGA	3840
AACGTAATAT	AATCTCCTGT	AATCATATCA	GACAACTCAG	CAAAAGAATT	CTCATCTATA	3900
ATCTTAATAT	TAAATGATAG	ATTCATCTGT	TGGCTAATGG	AAGCTATCTC	CTCTGTAGAT	3960
rgatttacaa	TAATAACTTC	тататстттт	AATGTTTGTC	TCTCCACTAT	TGACAAAGAC	4020
CTAATAAAC	TATTTTTATC	TCCTTGATGT	AACAAAACAA	CACTAATTGA	GTAAGTCAGT	4080
TGACTACCT	CCCATAATTT	TCTGATAATG	ATTTTTTTTTTT	TATTTAATTA	TAGCACAATT	4140

ATGATATATA TO	CAGGTAATA	TCAAGCTATA	TTATCTCTTA	GCTACTCAAT	TTGAAATTTT	4200
AACTTTTCCC TT	TTTCCGCAA	AATAATAGTA	TAATAGAGGT	' AGAATCTAGA	ATCGAGGTAC	4260
ACCTATGGCT GT	CAAATTTA	CAAAACGAGA	CGACTTGGAC	AAGATGTTTG	AAGAGTTTGC	4320
TAAACTCCCT GA	TTTGAAAC	AAGTTACTTT	CCCTGATGAC	AAAGAGAAAA	AAGTCAAAGC	4380
AGAAAAGAAA AA	CTAGATGA	CTGCTTTTCA	ACAACTCCCA	TCTAGTGTAC	TTCAAACTGG	4440
AGCCATTTTT CT	CTCCATTA	TCATTGAAGC	CCTTCCCTTC	GTTCTGATAG	GAAGCATTGT	4500
CTCAGGGCTG AT	TGAAGTTT	ATATCACACC	TGACAAGGTT	TATCATTTTC	TCCCTCGAAA	4560
TCGTTGGGGG AG	AATCTTTT	TTGGGACCTT	TGTCGGTATA	CTTTTCCCTT	CTTGTGAATG	4620
TGGAATCGTC CC	CATCATCA	ATCGTTTTCT	GGAAAAAAAG	GTTCCAAGTT	ACACGGCCGT	4680
TCCTTTTCTT GT	GACAGCAC	CTGTTATCAA	TCCCATTGTT	CTTTTTGCGA	CCTATTCTGC	4740
CTTTGGCAAC TC	CTTCCATG	TCGCCCTATT	ACGAGCTCTG	GGTTCCATTC	TTGTGGCTGT	4800
AATACTAGGA AT	TTTTCTAG	GATTTTTCTG	GCAAGAACCG	ATTCAGAAAG	AAAATCGTCT	4860
GGCTTGTCAT GA	GCATGATT	TTTCTTACTT	GAGTTCTGCA	AAAAAAGTTT	TTCAAGTCTT	4920
TGTGCAGGCC AT	TGATGAAT	TTTTTGATAC	GGGGCGTTAT	TTGGTATTTG	GCTGCCTCTT	4980
TGCTTCTATA AT	ACAGGTCT	ACGTTCCGAC	TCGGATTCTG	ACCTCTATCA	GTGCGACCCC	5040
TCTTTTTGCC AT	CCTGCTCT	TGATGATTTT	AGCCTTTCTT	CTTTCGCTCT	GTAGTGAGGC	5100
GGATGCCTTT AT	AGGTGCTT	стсттстстс	GAGTTTCGGT	TTGGCACCAG	TTCTGGCCTT	5160
TCTCGTCATT GG	TCCAATGC	TGGATATCAA	AAATATTCTC	ATGATGAAAA	ATTACTTGAA	5220
AGCACGATTT ATO	CAGTCACT	TCATAACAAT	TGTAACTCTT	GTCGTCTTAG	TCTATTCTCT	5280
CTTGATTGGA GT1	TATCCTAT	GATTCGATTT	TTAGTTTTAG	CTGGCTATTT	TGAACTGACT	5340
ATTTACCTCC ATO	CTGTCGGG (CAAACTAAAC	CAGTACATCA	ACATGCACTA	TTCCTATCTG	5400
GCCTATATCT CCA	ATGGTGCT	TTCTTTTATC	TTGGCTATCG	TTCAATTGTA	TATCTGGATG	5460
AAGCAAGTCA AA	ACCCACAG	TCATCTGAAC	AGCCGATTAG	CCAAGAȚAAC	GAGTATTTCT	5520
CTTCTGGCTA TTC	CACTTGT (CATCGGCTTA	ACTTTCCCAA	CTGTTAGCTT	GGATTCTCAG	5580
ACTGTTTCTG CTA	WAGGTTA 1	CATTTCCCC	CTATCGGAAG	GAACGGATCT	AGCCATTCAG	5640
ACAAGCGAAG GGA	ACGACAAG (CCAATATTTG	AAACCAGATA	CCAGTTCTTA	TTTTTCAAAA	5700
rcagcetatg aaa	AGGAAAT (GCGAACGGCG	GCGGATAAAT	ACTTATCCCA	AGATAGTATT	5760
CAGATCÁCTA ATO	SAAAACTA 1	TATGGAAGTC	ATGGAGGCTA	TCTACGACTA	TCCAGATGAG	5820
TTTGAGGGCA AGA	CAATCCA (STTTACAGGC	TTTGTCTATA	ACGACCCCAG	TCATGCCAAT	5880

			1084			
AGTCAATTTC	TGTTCCGATT	CGGCATTATC	CACTGTATCG	CAGATTCTGG	TGTCTATGGA	5940
TTGCTGACCA	AGGGCAATAC	CCGGCAGTAT	GAAAACAACA	CTTGGATAAC	AGCCAAAGGA	6000
AAACTGGTCA	ATCACTACCA	TAAAGAACTC	AAACAAAACC	TTCCAACCTT	GGAAATCGAC	6060
AGCTTTACCA	AAGTCGATAA	ACCAGAAAAT	CCCTATGTAT	ATAGAGCTTT	TTAAGAAAAT	6120
CAAGATAAAA	ACGAACAAGT	TCTCTTCTGA	ATAACAGAAA	AAGAGCCTGT	TCGTTTTTTG	6180
TTATATGAAA	ATTAGTGACT	TGTAGATTTT	CATCTTATAC	CATTCCCAGC	AATACAAGTA	6240
GCTCATAGAA	AATAAGCGAG	CCACTCATTC	ATTAGACTAG	CGATTTCTTT	AGGTGCTTGA	6300
GTATAAAGCT	CATGGCCAAA	GTTTTCTAAA	AAAATAGTAT	CAAAATAGTC	TGGCAATTCT	6360
TTTAGGGCTT	CCTCTCTCCA	TGTAGCTTCA	TTAGGATAGC	GAGGACTAAT	AAACAAGGTA	6420
TCTCCCACTT	CTCTCTTAAA	AGCTTGTATT	TTTCTCCGTA	GCGGAGTATC	GCTTCTATAT	6480
TTTCATAATT	TATAGCCAAC	TCATATCTAT	TATACTCAAC	ATTCCAGTGA	TAAGACTGTC	6540
TTACAGCTTT	CTCCATATTT	TCTGACCAAT	GCTTTGCTTC	AGATTTTTCT	TTAGAAGTAA	6600
GAACATCTAA	GTCCGAAACA	ATTTGAGATT	TGATATAATT	TTTAGTTTCC	TCTAACTCTG	6660
PATCCAAAGG	TAAAATCTTA	TCTAAATCTA	GATAGCCACC	ATCCAAAAGA	ATCAGTTTCT	6720
TACTTCTTC	AAATTCCGAT	GCGAAATAAC	GAGCTAAATC	TCCTCCAAGA	GAATGGCCTA	6780
PCAGACAGAT	AGATTCTTCC	TCTACAATTT	CATTTTTAAA	CCATGATTTC	AATTCTGTTT	6840
CATCTCĞAAG	ATGCTTTTCA	TATGGATTTA	GAAAATAGAC	CTGCGAATCT	AGTTCTTGAA	6900
GAAAATCCTT	GCTATGATAG	GCATTGCTTC	CCAAACCGCC	AATAAAATAT	TTTTTCATTC	6960
PCTACTTAAT	ACTATGCTTA	TTCATCTTTT	GTTCAAAGAT	AGTTGTGATA	ATCTGACGCA	7020
ATTCTTCGCG	TTTTTTTTCT	GGAATCTCAC	CACTTGTTTG	AGCTACAGCG	TAGAGTTCAG	7080
GTATTCAAT	TGAAATGCGT	TTAATCGTAC	GTGTTGTAGC	ATGTTTTCTG	ACAAAAAACG	7140
GGATTCGCTT	AATCAAGTCT	TGTGGGACTA	GCGCCAGAAT	CTTCTCAGTA	GTTTCTTTGT	7200
CACTAATATT	AGACATTGTA	AGCCTTTTCT	TAATCATTTC	CTGTTCTTTT	TCTGTAAAAT	7260
TTTTAATTC	CATTCGATTA	GTCCTCCTAT	TTTCTCTAAG	TTAAATTATG	TACTAATACA	7320
GATGAAACTA	CAAAGAATAA	ACTTTAAGAA	ATCTTCTCAC	TGATAAGATT	TTAGCATTAG	7380
ACTTCCTGCG	AAACAAAATA	TGGTATAGTA	GTTCTATGAA	TTATGAAGCA	AGTAAACAAC	7440
PAACTGATGC	ACGATTTAAA	CGTCTTGTTG	GTGTTCAGCG	CACGACTTTT	GAAGAGATAT	7500
PAGCTGTATT	AAAAACAGCT	TATCAACTTA	AACACGCAAA	AGGTGGACGA	AAACCTAAAT	7560
PAAGCCTAGA	AGACCTTCTT	ATGGCCACTC	TTCAATATGT	GCGAGAATAC	CGCACTTATG	7620
LAGAAATTGC	GGCTGATTTT	GGTATTCACG	AAAGCAACTT	AATCCGTCGG	AGCCAATGGG	7680

PCT/US97/19588 WO 98/18931

1085

TTTAAGTAAC	TCTTGTTCAA	AGTGGTGTTA	CGATTTCAAG	AACTCCTCTC	AGTTCTGAGG	7740
ACACGGTAAT	GATTGATAGC	CATTCCCATC	AATATCGTAT	CTTTGGACAT	AGCCAATAAA	7800
TGTTTCATTT	TTGCGTGGTT	TCTGGCTATT	AACGATTGAA	ATAACCCACC	AACTTATCAA	7860
AAATAGAAAT	AAAAATCCTA	AGATTACTGT	CATATCATAA	CACTATTAAA	GTTTAACCCA	7920
CTTATCATTA	TCCATGATAA	AAGGCTTAGC	CAGTCCCTCG	CCTGTATAAT	CCGCATACTT	7980
GGTGCCCAAA	TACTTGTAGC	AATCTTCCTT	ACTAGCAAAT	TTAATCGCTT	GGTAGGGCTC	8040
TTCGAAAGTC	AATTTCTCTA	CAAATAAGAA	ACCGTCATCA	GCAGGTACTA	AGACCCCAAC	8100
GTGGCCTACA	AACAGATACT	CGCCATCCAA	ATTGTCGTGC	AAGACTACAG	ACAGCATTCG	8160
AGCTTTTTCA	TTGAATTGAA	ATTGTGAGAA	GAATGCTTCC	ATCTTTTCAG	CGTGAACCTT	8220
GACATCTGTA	GTTGACTCAG	TTGGAACTCT	CGAAAATAGA	ATATCAAACT	CTTCCTTATC	8280
TTGTGAATCA	AAGACCTTTC	CTTTATCAAT	CGCATCATTA	TCTAGGAAAA	GCAACTGGTC	8340
ATTCTTTTCA	AGCTTTGGAA	TGGTGACTGA	ATTTTTCAAA	AGACAATAAC	TATTGATACG	8400
GCAGTTGGTC	CCAACAAAAT	CGCCCTTCTT	TTGATTCCAG	AGATGACTGA	TTTTCTCAAC	8460
ATCGTATTCG	GTGTGAGTAA	aggaagtgaa	ATCTCCTGAT	AAGCCAGTTG	AGCCGACAAT	8520
GGTATTATAG	TCATTAACGA	GATTAAAAAA	TGCATCAACA	CTATTTGGAT	CCAAGTGAGC	8580
TGATAAGAGA	GATTTGACCT	CTTCTGTACT	TACCTGGTTG	TTTAGGTTGG	TGTATGAAGC	8640
TTTCCATGGA	ACTTTCGCTG	AACTGCTTTG	CCTTTGATTC	GTCCCCTCAG	AAGTAGCATG	8700
TTGTTGTTGA	CAAGCAGCCA	AGCCTAAAAA	CAAGGCTGAA	CAGATTCCTA	ATGTGGCTAA	8760
TTTTCTTGAT	TTCTTCATTT	CTTTCTCCTA	AATGTCTTGG	ATTAAAGTTT	CTTTAACTAT	8820
TGCTTTACAG	ATATTGATTA	CTTTCTCATT	TAATGTGTTC	ATCGTCTTTC	CTCCGG	8876

(2) INFORMATION FOR SEQ ID NO: 171:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14736 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

CGCAAACTTT	CGCGGTCGGA	AGGTAGTTTT	ATGACACGAT	TTGAGATACG	AGATGATTTC	60
TATCTCGATG	GAAAATCATT	TAAGATTTTA	TCTGGTGCCA	TTCATTATTT	TAGGGTTCCT	120
CCAGAGGATT	GGTATCATTC	GCTCTATAAC	TTGAAGGCTC	TTGGTTTTAA	TACGGTAGAG	180

			1086			
ACTTATGTTG	CTTGGAATTT	ACACGAGCCT	TGTGAAGGTG	AGTTTCATTT	TGAAGGTGAT	24
CTGGATTTAG	AGAAATTTCT	CCAAATAGCG	CAGGATTTGG	GTCTCTACGC	AATTGTGCGT	30
CCGTCTCCAT	TTATCTGTGC	GGAATGGGAA	TTCGGTGGCT	TACCAGCTTG	GCTCTTGACC	36
AAGAACATGC	GAATTCGCTC	ATCCGACCCA	GCATATATCG	AGGCAGTTGG	TCGCTACTAT	42
GATCAGTTAT	TGCCAAGACT	GGTGCCTCGT	TTGTTGGACA	ATGGTGGCAA	TATTCTCATG	48
ATGCAGGTTG	AAAATGAGTA	TGGTTCTTAC	GGAGAAGATA	AGGCTTACCT	GAGAGCGATT	54
CGACAGCTAA	TGGAAGAGTG	TGGCGTAACC	TGTCCCCTCT	TTACATCAGA	TGGTCCATGG	60
CGAGCTACTC	TGAAAGCTGG	AACCTTAATT	GAAGAGGACC	TCTTTGTAAC	AGGAAACTTT	66
GGTTCTAAGG	CACCTTACAA	CTTTTCGCAG	ATGCAGGAAT	TCTTTGATGA	ACATGGTAAG	72
AAATGGCCAC	TCATGTGTAT	GGAGTTCTGG	GATGGTTGGT	TCAATCGCTG	GAAAGAACCG	78
ATTATCACAC	GGGATCCTAA	GGAATTGGCA	GATGCAGTTC	GAGAGGTTTT	GGAACAAGGC	84
TCTATCAATC	TTTACATGTT	CCACGGTGGT	ACAAACTTTG	GTTTCATGAA	TGGTTGCTCA	90
GCTCGAGGAA	CTTTGGACCT	GCCACAAGTT	ACGTCTTATG	ATTACGATGC	CCTTCTGGAT	96
gaagaaggaa	ATCCAACTGC	TAAATATCTT	GCAGTCAAGA	AGATGATGGC	AACACATTTT	102
TCAGAGTATC	CGCAGTTGGA	ACCACTCTAC	AAAGAGAGTA	TGGAGTTGGA	TGCTATTCCA	108
CTAGTTGAAA	AAGTTTCTTT	GTTTGAAACC	TTAGATAGCT	TGTCAAGTCC	TGTAGAAAGT	114
CTCTATCCTC	AAAAGATGGA	GGAGCTGGGA	CAAAGTTATG	GCTACCTACT	TTATCGAACA	120
GAAACAAACT	GGGATGCAGA	AGAAGAAAGA	CTTCGTATCA	TTGATGGTCG	AGATAGGGCC	126
CAGCTGTATG	TCGATGGTCA	GTGGGTTAAA	ACTCAATATC	AGACAGAGAT	TGGGGAAGAT	1320
ATTTTTTATC	AAGGTAAAAA	GAAAGGGCTA	TCTAGGTTAG	ATATCTTGAT	AGAAAATATG	1380
GGCGTGTCA	ACTATGGGCA	TAAGTTCTTA	GCGGATACGC	AACGTAAGGG	AATTCGGACA	1440
GGGTCTGTA	AGGATCTGCA	TTTCTTACTA	AACTGGAAAC	ACTATCCACT	CCCACTAGAC	1500
VATCCTGAGA	AAATTGATTT	TTCAAAAGGA	TGGACTCAAG	GACAACCAGC	CTTTTACGCT	1560
TATGACTTTA	CAGTCGAAGA	GCCAAAAGAT	ACTTACCTAG	ACTTGTCTGA	GTTTGGTAAG	1620
GGGTTGCCT	TTGTCAATGG	GCAGAATCTA	GGACGTTTTT	GGAACGTTGG	CCCAACTCTC	1680
CACTTTATA	TCCCTCATAG	CTATCTCAAG	GAAGGTGCCA	ACCGCATCAT	TATCTTTGAA	1740
CAGAAGGTC	aatataaaga	AGAGATTCAT	TTAACTCGTA	AACCTACACT	AAAACATATA	1800
AGGGGGAAA	ACTTATGACA	ATTGTAGGAT	GCCGTATTGA	TGGACGTTTG	ATCCACGGAC	1860
AGTAGCCAA	TCTTTGGGCT	GGAAAACTAA	ATGTTTCACG	CATTATGGTT	GTAGACGACG	1920

AAGTTGTCAA CAACGATATT GAAAAGAGTG GTTTGAAACT TGCGACACCA CCAGGTGTGA

AATTGAGTAT	TTTGCCAGTT	GAGAAAGCTG	CAGCCAATAT	TCTTGGTGGC	AAATACGATA	2040
GCCAACGTCT	CTTTATCGTG	GCTCGTAAAC	CAGACCGCTT	CCTTGGTTTG	GTAGAAGCAG	2100
GTGTACCACT	TGAAACCCTT	AATGTTGGGA	ATATGTCTCA	AACACCAGAA	ACTCGTTCTA	2160
TTACACGTTC	TATCAACGTA	GTAGACAAGG	ATGTGGAAGA	CTTCCACAAA	CTGGCAGAAA	2220
AAGGTGTTAA	ACTTACTGCT	CAGATGGTTC	CAAATGATCC	AATTTCAGAC	TTTTTGAGCT	2280
TATTAAAATA	GGAAAAAAT	TTTTAGGAGG	TCATTGTTAT	GATACAATGG	TGGCAAATTT	2340
TACTTCTCAC	TTTGTACTCA	GCTTATCAAA	TCTGTGATGA	GTTGACGATC	GTTTCATCTG	2400
CAGGTTCCCC	TGTATTTGCT	GGTTTCATTA	CTGGTTTAAT	CATGGGAGAT	GTGACTACTG	2460
GTTTACTTAT	CGGTGGTAAC	TTGCAACTGT	TCGTTCTTGG	GGTTGGTACC	TTCGGTGGTG	2520
CTTCTCGTAT	CGACGCAACT	TCTGGTGCGG	TTCTTGCGAC	ACCTTCTCTG	TTTCACAAGG	2580
AATTGATGCA	CCGCTTGCCA	TTACTACAAT	CGCTGTACCA	GTAGCAGCTC	TCTTGACTTA	2640
CTTCGACGTT	CTTGGTCGTA	TGACTACTAC	CTTCTTCGCT	CACCGTGTGG	ATGCTGCAAT	2700
CGAACGCTTT	GACTATAAAG	GTATTGAACG	CAACTACTTG	CTTGGTGCGA	TTCCGTGGGC	2760
TCTATCTCGT	GCCCTTCCAG	TCTTCTTTGC	CCTTGCTTTT	GGTGGTGCCT	TTGTACAATC	2820
AGTAGTAGAC	TTCGTTGAAG	CCTACAAATG	GGTTGCAGAT	GGCTTGACAC	TTGCAGGACG	2880
TATGCTTCCA	GGTCTTGGAT	TTGCAATCTT	GCTTCGTTAC	CTTCCAGTTA	AACGTAACCT	2940
TCACTACCTT	GCTATGGGAT	TTGGTTTGAC	AGCTATGTTG	ACTGTTCTTT	ACTCATATGT	3000
AACAGGTCTT	GGTGGCGCTG	TTGCTGGTAT	CGTAGGTACT	CTTCCTGCTG	AAGTTGCTGA	3060
aaaaattggt	TTCGTGAACA	ACTTCAAAGG	TTTGTCTATG	ATTGGTATTT	CTATCGTAGG	3120
TATTTTCCTT	GCAGTGCTTC	ACTTCAAAAA	TAGCCAAAAA	GTAGCTGTAG	CAGCACCTTC	3180
TACACCATCA	GAAAGTGGGG	AAATCGAAGA	TGACGAATTC	TAATTACAAA	CTTACAAAAG	3240
AAGATTTTAA	TCAAATCAAC	AAACGTAGCT	TGTTTACTTT	CCAATTAGGT	TGGAACTACG	3300
AACGTATGCA	AGCTTCTGGT	TACCTTTACA	TGATCTTGCC	TCAGTTGCGT	AAAATGTATG	3360
GTGATGGAAC	TCCTGAATTG	AAAGAAATGA	TGAAAGTTCA	TACTCAATTC	TTCAATACTT	3420
CACCATTCTT	CCATACCATT	ATCGCTGGTT	TTGACCTTGC	CATGGAAGAA	AAAGATGGTG	3480
TAGGTTCAAA	AGACGCCGTT	AACGGTATCA	AGACAGGTTT	GATGGGACCA	TTCGCTCCTC	3540
TTGGGGATAC	AATCTTTGGT	TCACTTGTAC	CTGCTATCAT	GGGGTCAGTC	GCAGCAACTA	3600
TGGCTATCGC	TGGCCAACCT	TGGGGGATCT	TCCTTTGGAT	TGCAGTTGCA	GTAGCGTATG	3660
ACATCTTCCG	TTGGAAACAG	TTGGAATTTG	CTTACAAAGA	AGGGGTTAAC	CTTATCAACA	3720

			1088			
ACATGCAAAG	TACCTTGACA	GCTTTGATTG	ACGCTGCATC	TGTACTTGGT	GTCTTCATGA	3780
TGGGTGCTCT	TGTAGCAACA	GTGATTAACT	TTGAAATTTC	TTACAAGTTG	CCAATCGGTG	3840
AAAAGATGAT	TGATTTCCAA	GACATCTTGA	ACCAAATCTT	CCCACGTTTG	CTTCCAGCAA	3900
TCTTTACTGC	CTTTATCTTC	TGGTTGCTTG	GTAAGAAAGG	TATGAACTCT	ACTAAAGCTA	3960
TCGGTATTAT	TATCGTACTT	GCTTTGGCTC	TTTCTGCCCT	TGGTCACTTT	GCACTTGGAA	4020
TGTAATTCCT	TATGACTAAA	TCATTAATTT	TGGTGAGCCA	TGGTCGCTTC	TGTGAGGAGC	4080
TTAGAGGTAG	CACAGAAATG	ATTATGGGCC	CACAAGACAA	CATTTACACA	GTAGCTCTTC	4140
TTCCAGAAGA	TGGCCCAGAA	GAATTTACTG	CTAAATTTGA	AGCTGTTATT	GAAGGATTGG	4200
ATGATTTCCT	AGTCTTTGCG	GATCTTCTCG	GTGGGACACC	TTGTAATGTG	GTGAGTCGCT	4260
TGATCATGGA	AGGTCGTGAT	ATTGACCTTT	ACGCAGGGAT	GAATCTTCCA	ATGGTGATTG	4320
AATTTATCAA	TGCGAGCCTT	ACAGGCGCAG	ATGCGGACTA	CAAGAGCCGT	GCTGCAGAAA	4380
GCATTGTGAA	AGTTAATGAC	CTGTTAGCGG	GCTTCGATGA	TGACGAAGAT	GAATAATACT	4440
CTTCGAAAAT	CTCTTCAAAC	TACGTCAACG	TCGCCTTGCC	GTAGGTATAT	GTTACTGACT	4500
TCGTCAGTCT	TATCCGGCAA	CCTCAAAACG	GTGTTTTGAG	CTGACTTCGT	CAGTCTTATC	4560
CGGCAACCTC	AAAGCAGTGC	TTTGAGCAGC	CTGCGGCTAG	TTTCCTACAG	ATTTTAGTTG	4620
GAACTCGATT	CAATTCATGT	GACAACGTGA	AAATCGTTAG	AGCATTTTAT	ATAGAATATA	4680
CATGGGAATG	TAGCTTACTC	CCATTCCCAT	ATTTAATAGA	AAAAGAGGAA	CTCAATGCTA	4740
CATTATACAA	AAGAAGACTT	GCTCGAATTG	GGTGCAGAAA	TCACTACGCG	TGAAATCTAC	4800
CAACAGCCTG	ATGTATGGAG	AGAAGCTTTT	GAATTTTATC	AAGCAAAACG	TGAAGAAATT	4860
GCAGCCTTCC	TACAAGAAAT	CGCTGATAAA	CATGACTATA	TTAAGGTTAT	CTTGACAGGT	4920
GCTGGGACTT	CTGCTTATGT	GGGAGATACC	TTGCTACCTT	ATTTTAAGGA	AGTCTATGAC	4980
GAACGCAAAT	GGAATTTCAA	TGCTATTGCG	ACAACAGATA	TCGTTGCCAA	TCCAGCAACC	5040
TATTTGAAAA	AAGATGTGGC	AACTGTCCTT	GTGTCTTTTG	CTCGTAGTGG	GAATTCGCCT	5100
GAAAGTTTGG	CGACTGTTGA	TTTGGCCAAA	TCCTTGGTGG	ATGAGCTTTA	TCAAGTGACG	5160
ATTACTTGTG	CAGCAGATGG	TAAATTGGCT	CTTCAAGCTC	ACGGTGATGA	TCGTAATCTC	5220
TTGCTCTTGC	AACCAGCTGT	CTCTAATGAT	GCTGGATTTG	CCATGACTTC	TAGCTTTACG	5280
TCTATGATGT	TGACAACTCT	CTTGGTCTTT	GATCCTACAG	AATTTGCTGT	TAAGTCTGAA	5340
CGTTTTGAAG	TTGTATCTAG	TCTTGCCCGT	AAAGTTTTAG	ACAAGGCAGA	AGATGTCAAA	5400
GAGCTCGTTG	ATTTAGACTT	TAACCGTGTC	ATCTATCTAG	GCGCTGGTCC	TTTCTTTGGA	5460
CTTGCTCATG	AAGCTCAGCT	CAAGATTTTG	GAATTAACTG	CTGGTCAAGT	TGCGACCATG	5520

TATGAAAGCC	CAGTTGGCTT	CCGTCACGGT	CCAAAATCTC	TTATCAACGA	CAATACAGTT	5580
GTTTTGGTCT	TTGGTACAAC	GACAGACTAC	ACTCGTAAGT	ACGACTTGGA	CTTGGTTCGT	5640
GAAGTTGCTG	GTGACCAGAT	TGCTCGTCGT	GTTGTGCTTT	TGAGTGATCA	AGCTTTTGGT	5700
CTTGAAAATG	TCAAAGAAGT	GGCCCTTGGT	TGTGGCGGTG	TCTTGAATGA	TATTTACCGT	5760
GTCTTCCCTT	ACATCGTTTA	TGCCCAACTC	TTTGCTTTAT	TGACTTCACT	CAAGGTAGAA -	5820
AATAAACCAG	ATACACCGTC	TCCTACAGGT	ACAGTAAACC	GTGTAGTACA	AGGTGTCATA	5880
ATTCACGAAT	ATCAAAAGTA	AGACAGTGTT	TATGAATTCT	TGACAAGAGG	ATTTGTAAAT	5940
TATCAGATAA	ACCATAGATT	GTCAGTACGC	TTTCTATGGT	TTGTTTGCTT	GAGAGAAATA	6000
GTAAAAGGAG	AACAGAATGA	AAGCATACAC	AGAGCGTGTA	TTTGGAAATG	TTGAGGGTGA	6060
GGATGTCTTG	GCCTATCGAT	TTGAGACAGA	CGGTGGCTAC	CAACTTGAGG	TTATGACTTA	6120
TGGTGCGACT	ATCTTGCGCT	ATGTCGCACC	TGACAAGGCT	GGAAATTTTG	CCAATGTTAT	6180
CTTGGGATTT	GATGACTTTG	ATAGTTATGT	AGGCAATAGT	CCCAAGCATG	GAGCAAGTGT	6240
AGGTCCTGTA	GCGGGTCGTA	TTGCAGGTGC	GACCTTTGAG	CTCAATGGTA	AGACCTATGA	6300
CCTTGAGGTT	AATAATGCTA	GCAACTGTAA	TCACAGTGGT	TCAACTGGTT	GGGATTCCAG	6360
CTTGTTTGAA	GTTGAAGAAG	TAAGCGATCA	TGGCTTGACT	CTCTACACAG	AGCGTACAGA	6420
TGGGACAGGA	GGGTTCCCTG	GAAATCTCAA	GATTTGGATC	AGTTATCACT	TGGAAGAAAC	6480
TGGTGCCTAT	GAAATCAGCT	ACAAGGTAAC	GACCGATCAG	GATACGCTGG	TCAATCCAAC	6540
CAACCACAGC	TATTTCAACT	TGTCTGGTGA	TTTCACGCAG	ACGATTGACC	GTCATGTCTT	6600
CCAACTAAAC	ACAGAGGGCA	TTTACTCAAT	CGCTCCTGAC	GGTGTTCCTG	CCAAAACTCC	6660
AGAAGCCAAC	CGTGATGTGG	TCAAACACGT	CTACAATGGT	ACCTTGTTGA	AGGATATCTT	6720
TGCAGAAGAA	GATGAGCAAA	TCCAGCTGGC	ATCAGGTTTG	GATCATCCAT	TTGCCCTTCC	6780
TGCAGGCCAT	GACAATGCTG	GATTCCTTTA	TGACCAAAAT	TCAGGTCGCT	TCCTGCTTTT	6840
CAAGACAGAA	GCTCCTTGCT	TTGTGGTCTA	CACAGCAAAC	TTTGTGGATG	AAAGTGTCAT	6900
CATAGGAGGT	CAGCCAATGC	TACAGCACAA	TGGGATTGCT	CTTGAAGCGC	AAGCTTTACC	6960
AGATGCCATT	CACAGTGACC	TTAAAGGCCA	AGTCATTCTT	AAAGCTGGTC	AAACCTTCAC	7020
CAGTAAGACA	CGTTATGAAC	TTGTTGTGAA	GTAAAAGAGT	CATTGCGCCT	ACTTTTGGGA	7080
GCTAGGAATA	GGTACGCAGA	GACAAATAGT	AGGAAAATAT	GATATAACTA	AGCGTTGAAA	7140
GCTATCTGTT	AATATAATAT	TCAAACTACA	ATAAGGAGTA	AGAAAGAAAC	GAAGAAAATT	7200
GTATTTGCTA	GTGCCTTGGC	TTTGACCTTG	GCTGGAGCAG	TTTTGACAAA	TGATGTTTTT	7260

			1090			•
	GACTTGTGGC					7320
TCAGAGGTGC	TAAAACCTTC	TAGTGGCAAT	CTTTTGGTTG	GAATCAAAGG	AGAATTTGTG	7380
GCTCCTCATC	AACAATCTAT	TTTGGATGCC	ATCAATGCTA	TCTGTAAAGA	AGCGGCTGAC	7440
GAAGGTTTGG	TAGATAAGTA	TGTCCCTATC	AAATGATCAA	CTGACCTAGA	AAAGGCAGCT	7500
TTTGCCAGAG	CTACAGAAGC	ATCTATAACC	ATGGATCATA	CCCGTCTTTC	TAGCAAAGAT	7560
CTTTGGAGTG	CCTTTCCAAC	TTCTAATAGT	ATAATGGGAG	AAAATTTGGC	ATGGAATCAT	7620
GACGGTTTTC	TAAAAGCTAT	TGAACAATGG	CGTGCTGAAA	AAGCAGATTA	TGTGGAGAAA	7680
AAAATAGTGG	TTCAGACAAC	GGGAAATCTG	GTCACTATGA	GTCGCTAATT	AACCCTAAAT	7740
TTACACACAT	GGGGATGGCA	GCTTTTAAAA	ATCCTAACAA	TCAATACAAA	GCTATTACAA	7800
TTGCTCAAAC	TCTAGGTGAT	GATGCTTCTT	CAGAGGAATT	GGCTGGTAGA	TATGGTTCTG	7860
CTGTTCAGTG	TACAGAAGTG	ACTGCCTCAA	ACCTTTCAAC	AGTTAAAACT	AAAGCTACGG	7920
TTGTAGAAAA	ACCACTGAAA	GATTTTAGAG	CGTCTACGTC	TGATCAGTCT	GGTTGGGTGG	7980
AATCTAATGG	TAAATGGTAT	TTCTATGAGT	CTGGTGATGT	GAAGACAGGT	TGGGTGAAAA	8040
CAGATGGTAA	ATGGTACTAT	TTGAATGACT	TAGGTGTCAT	GCAGACTGGA	TTTGTAAAAT	8100
TTTCTGGTAG	CTGGTATTAC	TTGAGCAATT	CAGGTGCTAT	GTTTACAGGC	TGGGGAACAG	8160
ATGGTAGCAG	ATGGTTCTAC	TTTGACGGCT	CAGGAGCTAT	GAAGACAGGC	TGGTACAAGG	8220
AAAATGGCAC	TTGGTATTAC	CTTGACGAAG	CAGGTATCAT	GAAGACAGGT	TGGTTTAAAG	8280
TCGGACCACA	CTGGTACTAT	GCCTACGGTT	CAGGAGCTTT	GGCTGTGAGC	ACAACAACAC	8340
CAGATGGTTA	CCGTGTAAAT	GGTAATGGTG	AATGGGTAAA	CTAGGCTCAG	GCCATAGGTA	8400
AAGCATTCAT	CTTACTTAGO	AAAAAGAATO	AACGATAAGA	AAGAGGTTG#	TGGCGAACAT	8460
TGGCCTCTTT	TGATTTATA	AGATTGGATT	CTTGTCGCCT	CAATTTCAG	CTTTTCTATT	8520
GTAAGCTAAT	COATTTTATAG	CCATTAAAA	CATAAGCGGT	T AATCTAATT	TAAAAATGCT	8580
GTAATTAGT	TGAAGTCCAG	ACTTACTTG	TGAGATGTT	A TCTCTGTTT	TTATCGTTAT	8640
AATTTACTG	TATTTTTAT	GTATGCAGA	A TATTTTAAG	TATATTTCA	TAGAAATTTC	8700
TATCGATTT	A TTGTATAAT	ATAAGTAAT	T GTTGAAAAG	r actcagaaa	TTCCATACTA	8760
TATTATTTT	r atgtttata	TTTTATGCT	A TAAAATATA	G ATTGATATA	A AGAATATAGA	8820
AAAAGCGAG	G TTAATATGA	G CCGAAAAAG	C ATTGGTGAG	A AACGCCATA	G TTTCTCGATG	8880
AGAAAGTTG	T CAGTGGGAT	r GGTATCAGT	T ACTGTATCT	A GTTTCTTTT	T GATGAGTCAA	8940
GGGATTCAA	T CGGTATCGG	C CGATAATAT	g gaaagtcca	A TTCATTATA	A GTATATGACC	9000
GAGGGTAAA	T TGACAGACG	A. GGAAAAATC	C TTGCTGGTA	G AGGCCCTTC	C ACAACTGGCT	9060
	•					

GAAGAATCAG	ATGATACTTA	TTACTTGGTT	TATAGATCTC	AACAGTTTTT	ACCGAATACA	9120
GGTTTTAACC	CAACTGTTGG	TACTTTCCTT	TTTACTGCAG	GATTGAGCTT	GTTAGTTTTA	9180,
TTGGTTTCTA	AAAGGGAAAA	TGGAAAGAAA	CGACTTGTTC	ATTTTCTGCT	GTTGACTAGC	9240
ATGGGAGTTC	AATTGTTGCC	GGCCAGTGCT	TTTGGGTTGA	CCAGCCAGAT	TTTATCTGCC	9300
TATAATAGTC	AGCTTTCTAT	CGGAGTCGGG	GAACATTTAC	CAGAGCCTCT	GAAAATCGAA	9360
GGTTATCAAT	ATATTGGTTA	TATCAAAACT	AAGAAACAGG	ATAATACAGA	GCTTTCAAGG	9420
ACAGTTGATG	GGAAATACTC	TGCTCAAAGA	GATAGTCAAC	CAAACTCTAC	AAAAACATCA	9480
GATGTAGTTC	ATTCAGCTGA	TTTAGAATGG	AACCAAGGAC	AGGGGAAGGT	TAGTTTACAA	9540
GGTGAAGCAT	CAGGGGATGA	TGGACTTTCA	GAAAAATCTT	CTATAGCAGC	AGACAATCTA	9600
TCTTCTAATG	ATTCATTCGC	AAGTCAAGTT	GAGCAGAATC	CGGATCACAA	AGGAGAATCT	9660
GTAGTTCGAC	CAACAGTGCC	AGAACAAGGA	AATCCTGTGT	CTGCTACAAC	GGTGCAGAGT	9720
GCGGAAGAGG	AAGTATTGGC	GACGACAAAT	GATCGACCAG	AGTATAAACT	TCCATTGGAA	9780
ACCAAAGGCA	CGCAAGAACC	CGGTCATGAG	GGTGAAGCCG	CAGTCCGTGA	AGACTTACCA	9840
GTCTACACTA	AGCCACTAGA	AACCAAAGGT	ACACAAGGAC	CCGGACATGA	AGGTGAAGCT	9900
GCAGTTCGCG	AGGAAGAACC	AGCTTACACA	GAACCGTTAG	CAACGAAAGG	CACGCAAGAG	9960
CCAGGTCATG	AGGGCAAAGC	TACAGTCCGC	GAAGAGACTC	TAGAGTACAC	GGAACCGGTA	10020
GCGACAAAAG	GCACACAAGA	ACCCGAACAT	GAGGGCGAAg	CGGCAGTAGA	AGAAGAACTT	10080
			ACGGAAATCC			10140
GAAGAAATTC	AGGATCCAAC	ACTTCTGAAA	AATCGTCGTA	AGATTGAACG	ACAAGGGCAA	10200
			TACATCGTAA			10260
AAAGAAGTGT	CACGAACTGA	AGTAGCTCCG	GTCAACGAAG	TCGTTAAAGT	AGGAACACTT	10320
			AACTTAACAA			10380
					AAAAACGCAA	10440
					CAAAGAGCAA	10500
					AACTTATAAT	10560
					ATTAGAGTAT	10620
					AAATGATCGT	10680
					CTTTGTAAAA	10740
GTGAAATCAG	ATCGCTTCAA	AGAAATGTAC	CTACCTGTAA	AATCTATTAC	AGAAAATACG	10800

1092 GATGGAACGT ATAAAGTGAC GGTAGCCGTT GATCAACTTG TCGAAGAAGG TACAGACGGT 10860 TACAAAGATG ATTACACATT TACTGTAGCT AAATCTAAAG CAGAGCAACC AGGAGTTTAC 10920 ACATCCTTTA AACAGCTGGT AACAGCCATG CAAAGCAATC TGTCTGGTGT CTATACATTG 10980 GCTTCAGATA TGACCGCAGA TGAGGTGAGC TTAGGCGATA AGCAGACAAG TTATCTCACA 11040 GGTGCATTTA CAGGGAGCTT GATCGGTTCT GATGGAACAA AATCGTATGC CATTTATGAT 11100 TTGAAGAAAC CATTATTTGA TACATTAAAT GGTGCTACAG TTAGAGATTT GGATATTAAA 11160 ACTGTTTCTG CTGATAGTAA AGAAAATGTC GCAGCGCTGG CGAAGGCAGC GAATAGCGCG 11220 AATATTAATA ATGTTGCAGT AGAAGGAAAA ATCTCAGGTG CGAAATCTGT TGCGGGATTA 11280 GTAGCGAGCG CAACAAATAC AGTGATAGAA AACAGCTCGT TTACAGGGAA ACTTATCGCA 11340 AATCACCAGG ACAGTAATAA AAATGATACT GGAGGAATAG TAGGTAATAT AACAGGAAAT 11400 AGTTCGAGAG TTAATAAAGT TAGGGTAGAT GCCTTAATCT CTACTAATGC ACGCAATAAT 11460 AACCAAACAG CTGGAGGGAT AGTAGGTAGA TTAGAAAATG GTGCATTGAT ATCTAATTCG 11520 CTTGCTACTG GAGAAATACG AAATGGTCAA GGATATTCTA GAGTCGGAGG AATAGTAGGA 11580 TCTACGTGGC AAAACGGTCG AGTAAATAAT GTTGTGAGTA ACGTAGATGT TGGAGATGGT 11640 TATGTTATCA CCGGTGATCA ATACGCAGCA GCAGATGTGA AAAATGCAAG TACATCAGTT 11700 GATAATAGAA AAGCAGACAG ATTCGCTACA AAATTATCAA AAGACCAAAT AGACGCGAAA 11760 GTTGCTGATT ATGGAATCAC AGTAACTCTT GATGATACTG GGCAAGATTT AAAACGTAAT 11820 CTAAGAGAAG TTGATTATAC AAGACTAAAT AAAGCAGAAG CTGAAAGAAA AGTAGCTTAT 11880 AGCAACATAG AAAAACTGAT GCCATTCTAC AATAAAGACC TAGTAGTTCA CTATGGTAAC 11940 AAAGTAGCGA CAACAGATAA ACTTTACACT ACAGAATTGT TAGATGTTGT GCCGATGAAA 12000 GATGATGAAG TAGTAACGGA TATTAATAAT AAGAAAAATT CAATAAATAA AGTTATGTTA 12060 CATTTCAAAG ATAATACAGT AGAATACCTA GATGTAACAT TCAAAGAAAA CTTCATAAAC 12120 AGTCAAGTAA TCGAATACAA TGTTACAGGA AAAGAATATA TATTCACACC AGAAGCATTT 12180 GTTTCAGACT ATACAGCGAT AACGAATAAC GTACTAAGCG ACTTGCAAAA TGTAACACTT 12240 AACTCAGAAG CTACTAAAAA AGTACTAGGA GCAGCGAATG ATGCAGCCTT AGATAACCTA 12300 TACTTAGATA GACAATTTGA AGAAGTTAAA GCTAATATAG CAGAACACCT AAGAAAAGTA 12360 TTAGCGATGG ATAAATCAAT CAATACTACA GGAGACGGTG TAGTTGAATA CGTAAGTGAG 12420 AAAATCAAAA ATAACAAAGA AGCATTTATG CTAGGTCTTA CTTATATGAA CCGTTGGTAC 12480 GATATTAATT ATGGTAAAAT GAATACAAAA GATTTATCTA CGTACAAGTT TGACTTTAAC 12540 GGAAATAATG AGACTTCAAC GTTGGATACT ATTGTCGCAT TAGGAAATAG TGGACTAGAT 12600

AACCTCACAC	CTTCAAATAC	тстассттта	TATCCGAATA	AACTTGCATC	GGTAAAAGGA	12660
						-
GAAGATTCAG	TCTTTGACTT	CGTAGAAGCG	TATAGAAAAC	TGTTCTTACC	AAACAAAACA	12720
AATAACGAGT	GGTTTAAAGA	AAATACAAAG	GCATATATAG	TCGAAATGAA	GTCTGATATT	12780
GCAGAAGTAC	GAGAAAAACA	AGAATCACCA	ACAGCCGATA	GAAAATATTC	ATTAGGAGTT	12840
TACGATAGAA	TATCAGCACC	AAGTTGGGGG	CATAAGAGTA	TGTTATTACC	ACTACTAACT	12900
TTACCTGAAG	AATCTGTGTA	TATTTCATCG	AATATGTCTA	CACTTGCATT	CGGTTCGTAT	12960
GAAAGATATC	GTGATAGTGT	GGATGGAGTT	ATTCTTTCAG	GAGATGCTTT	ACGAACTTAT	13020
GTAAGAAATA	GAGTTGATAT	AGCAGCGAAA	AGGCATAGAG	ACCATTATGA	TATTTGGTAC	13080
AATCTTCTTG	ACAGTGCTTC	AAAAGAAAAA	CTTTTCCGTT	CTGTGATAGT	TTATGATGGA	13140
TTCAATGTAA	AAGATGAGAC	AGGAAGAACT	TATTGGGCAA	GGTTAACGGA	TAAAAACATC	13200
GGCTCTATTA	AAGAATTCTT	CGGACCTGTT	GGGAAATGGT	ATGAGTATAA	TAGTAGTGCA	13260
GGAGCGTATG	CGyAtGGAAG	TTTAACGCAC	TTTGTGTTAG	ATAGATTATT	AGATGCTTAT	13320
GGAACGTCGG	TTTATACTCA	TGAAATGGTT	CATAATTCTG	ATTCTGCAAT	CTACTTTGAA	13380
GGAAATGGTA	GACGTGAAGG	ATTGGGAGCG	GAGTTATACG	CACTTGGTTT	ACTGCAATCT	13440
GTAGATAGTG	TAAATTCTCA	TATTTTAGCT	TTAAATACGT	TATATAAAGC	AGAAAAAGAT	13500
GATTTGAATA	GATTGCATAC	ATATAATCCG	GTGGAACGTT	TCGATTCGGA	TGAGGCGCTT	13560
CAAAGTTATA	TGCATGGATC	ATATGATGTA	ATGTATACAC	TTGATGCGAT	GGAAGCAAAA	13620
GCGATATTAG	CTCAAAATAA	TGATGTTAAG	AAAAAATGGT	TTAGAAAAAT	AGAAAATTAT	13680
TACGTTCGTG	ATACTAGACA	TAATAAAGAT	ACACATGCAG	GAAATAAAGT	CCGTCCATTA	13740
ACAGATGAAG	AAGTAGCTAA	CTTAACATCG	TTAAACTCAT	TAATCGACAA	CGACATCATA	13800
AATAGACGTA	GCTATGATGA	TAGTAGAGAA	TATAAACGAA	ATGGCTACTA	TACTATAAGT	13860
ATGTTCTCTC	CTGTATACGC	AGCGCTAAGC	AATTCGAAAG	GTGCTCCTGG	AGATATTATG	13920
TTTAGAAAAA	TAGCTTATGA	ATTACTTGCG	GAAAAAGGTT	ATCACAAAGG	ATTCCTACCT	13980
TATGTTTCTA	ATCAGTACGG	AGCAGAAGCA	TTTGCCAGCG	GAAGCAAAAC	ATTCTCATCA	14040
TGGCATGGAA	GAGATGTTGC	TTTAGTGACA	GATGATTTAG	TATTTAAGAA	AGTATTCAAT	14100
GGTGAGTACT	CATCATGGGC	TGATTTCAAA	AAAGCAATGT	TTAAACAACG	TATAGATAAA	14160
CAAGATAATC	TGAAACCAAT	AACAATTCAA	TACGAATTAG	GTAATCCTAA	TAGTACAAAA	14220
GAAGTAACTA	TAACAACGGC	TGCACAAATG	CAACAATTAA	TTAATGAAGC	GGCTGCGAAA	14280
GATATTACTA	ATATAGATCG	TGCAACGAGT	CATACCCCAG	CAAGTTGGGT	GCATTTATTA	14340

AAACAAAAA 1	CTATAATGC	ATATCTTCGC	1094 ACTACAGATG	ACTTTAGAAA	TTCTATATAT	14400
AAATAAGATT C	STAGAGTTTC	ATTGTTGAGT	AGTGTTTCTT	GTAAGGATGA	GGAGTCAGAT	14460
GACAAATCGA C	CTCCTTTTTC	TTATGGATCG	ATGTAGAGAT	TTGATTGAAT	GCAGATTGCA	14520
GGAATCATCT T	CAACTCATC	AACGACCAAT	GGTGACAAGG	TGGATTTCAA	TCCCACAGAA	14580
AATGTTGATT 1	rgagaaataa	CTTTGCTAGT	CTAGTAAAAT	AAATACAAAA	CAATCCTAGA	14640
AGATTTTTTC 1	rgggattgtt	TTTTGCTGAG	TGGGATGCTT	CAAGTTGTCT	GGCTTGACTT	14700
TCTTGAGGGA A	AGTTATATAA	TAGTTGTAAT	AATTAG			14736

(2) INFORMATION FOR SEQ ID NO: 172:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11770 base pairs

- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

60	AAAGTTTCGC	AATATTCCTC	AGATTTAAAA	TCTCTTTGGA	ACGATAGCAA	ACAGGAAAGC
120	CTAATTTAGT	GTCTTGCGTG	GATTCTCTCT	AAGTATCTTC	GGTGATACGA	TGTTGCTTAC
180	ATGGGGATTT	TTGGAAGAAG	TTTAAAAGTT	AAAATACAAT	ATTACAGACA	AAATCATTTG
240	ATCGTTTTTC	GATTCAGTTT	ATGATAGACT	GTGAGTGAAA	GAGATTCTAG	GACTTTTAGA
300	GTTGTTTTTG	TAGTTTATCT	TAAACAAAAA	TGTGCTTATA	ATTGCACATT	TTTTTAGTTG
360	TTAAAATTTC	AAAGAAAATT	TATAGTTACA	AGTTGTATTC	TTTATTATGT	GATTGACAAC
420	GATTGTTCCA	TTATGGAAAT	GAGGAGGAAT	ATAGTGAAAT	AGCTTTTTAC	AAATGAAAAA
480	TATTTATAAA	CGAAACAACA	GCTGGTGATG	AATTTTATAT	TCATGGGTTT	GATCAAATTA
540	ACAGTTAGCT	AAGAAGAAAT	GAACGGTGTG	TGGTACATGT	ACATAAAAA	GCGTTAGATT
600	GGAAGCGTUT	TTTTGGCACA	САЛАСЛАЛАТ	TCATAATCTA	TATTAGAAĢC	GATGCAGCCT
660	CATGACCAGT	AAGATCATCT	GTTCATTCAC	AGCTCTCTTT	CAGAAATTAC	GGTACAAAGA
720	TCATAAAAAA	GAAAAGAACT	ATTAGTTTGA	CAAAGAAATT	TTAATTTAAT	ATGACGGAGA
780	GGTGAAGATT	AAAACATAAT	ATAGAGGAGG	TGTTATTAAC	GTATTATCAT	TAATACTAGA
840	GAAAATTGCA	тааатаатат	GGTATGCTTG	TTTTTCTACT	GTGCAGCAGG	GGTTTGTTTT
900	ATTAGCGGAT	CTCAGTCTAA	GAGGCGTTTT	GGCAGAAATA	GTGGAGTTGA	GCGCAATCTA
960	ATTAGATAAA	TTGCTTATAC	GGTCCACAAG	TGCACTATTG	ATATAGATGT	TATGCGCCAA
1020	GATGGACTAT	TTATTCCGAT	CCGATAGCTG	GTGTGATGTT	TTTGTGATAA	TCAAAAGAAA

				COMMON COMMON	MCCCMA ACA A	1080
				CTTTGATTAG		
AAGGAGATTT	ATTATGTCAA	AGATGGATGT	TCAGAAAATC	ATTGCACCGA	TGATGAAGTT	1140
TGTGAATATG	CGTGGCATTA	TAGCTCTAAA	AGATGGGATG	TTAGCAATTT	TGCCATTGAC	1200
AGTAGTTGGT	AGTTTGTTCT	TGATTATGGG	ACAATTGCCG	TTCGAAGGAT	TAAATAAGAG	1260
CATTGCTAGT	GTTTTTGGAG	CTAATTGGAC	AGAGCCGTTT	ATGCAAGTAT	ATTCAGGAAC	1320
TTTTGCTATT	ATGGGTCTAA	TTTCTTGTTT	TTCAATTGCC	TATTCTTATG	CTAAGAATAG	1380
CGGAGTAGAG	GCTTTACCAG	CTGGAGTTCT	ATCTGTATCT	GCATTCTTTA	TTTTGCTAAG	1440
ATCATCTTAT	ATCCCTAAAC	AAGGTGAGGC	GATTGGGGAC	GCTATTAGTA	AAGTTTGGTT	1500
TGGAGGCCAA	GGAATTATCG	GTGCTATCAT	TATAGGTTTG	GTAGTAGGAA	GTATTTATAC	1560
CTTCTTTATA	AAGAGAAAAA	TTGTTATTAA	GATGCCAGAA	CAAGTTCCAC	AAGCTATTGC	1620
CAAACAGTTT	GAAGCAATGA	TTCCAGCATT	TGTAATTTTC	TTATCTTCTA	TGATTGTATA	1680
TATTTTAGCG	AAGTCATTGA	CTAATGGCGG	AACATTCATA	GAAATGATTT	ATTCTGCTAT	1740
TCAAGTTCCG	TTGCAAGGTT	TAACTGGATC	TTTGTATGGT	GCTATTGGAA	TTGCATTCTT	1800
TATATCATTT	TTGTGGTGGT	TTGGTGTTCA	TGGGCAATCG	GTAGTAAATG	GAGTAGTGAC	1860
AGCTCTGCTT	TTATCTAATC	TTGATGCTAA	TAAAGCTATG	TTAGCCTCTG	CTAATCTATC	1920
ATTAGAAAAT	GGTGCACATA	TTGTTACTCA	ACAATTTTTA	GATTCATTTT	TAATTCTATC	1980
AGGTTCAGGG	ATTACGTTTG	GTCTTGTAGT	TGCCATGCTT	TTTGCAGCAA	AATCAAAACA	2040
ATACCAAGCC	TTAGGAAAAG	TTGCAGCTTT	TCCAGCAATA	TTTAACGTAA	ATGAGCCAGT	2100
TGTATTTGGA	TTTCCGATTG	TCATGAATCC	AGTTATGTTT	GTACCTTTCA	TTCTTGTTCC	2160
TGTACTTGCA	GCTGTGATAG	TATATGGAGC	TATTGCAACA	GGTTTCATGC	AGCCATTCTC	2220
AGGGGTAACA	TTGCCTTGGA	GTACACCAGC	TATTTTATCA	GGATTTTTGG	TGGGTGGATG	2280
GCAAGGAGTT	ATTACTCAGC	TGGTGATATT	AGCGATGTCT	ACATTGGTTT	ATTTTCCATT	2340
CTTTAAAGTA	CAGGATCGTT	TAGCTTACCA	AAATGAAATC	AAACAATCTT	AGAGGTATTT	2400
GTGTGTTACT	GTTAAACTCA	CACATTTGTG	CTAAAAATTA	GAGAGTTAAA	ATTTTTCTAG	2460
TTAAAAGCTT	GAAAATTTCT	ATAAAAATCG	GTATTATATT	TTCGAAAGAA	TATAAAATAT	2520
TTTCGAAAGA	AAGGTGCTTA	CGATGGTAAA	TACAGAAGTA	GCAAGAACAA	CAATCAAGAC	2580
AGAATATTTT	GGCAGCCTTA	CTGAAAGGAT	GAACAAATAT	CGAGAAGATG	AATAAATTT	2640
AAAACCTTAT	ATTGATGCTG	AGAGAGCAGT	TCTAGCAACA	CGCGCCTATG	AACGATACAA	2700
GGAACAACCT	AATGTCCTAA	AACGTGCATA	TATGCTGAAA	GAAATTTTGG	AAAATATGAC	2760

WO 98/18931 PCT/US97/19588

1096

TATCTATATT GAAGAAGAAT CTATGATTGC GGGAAATCAA GCTTCTTCCA ATAAAGATGC 2820 TCCTATTTT CCGGAATATA CGCTAGAATT TGTTCTCAAT GAGTTGGATC TTTTTGAAAA 2880 GCGTGATGGA GATGTTTTCT ATATTACAGA AGAAACAAAA GAACAACTTA GAAGTATTGC 2940 TCCGTTTTGG GAAAATAATA ATTTACGTGC TAGAGCTGGT GCCTTATTAC CTGAAGAAGT 3000 GTCTGTTTAT ATGGAAACAG GATTCTTCGG TATGGAAGGT AAGATGAATT CTGGAGATGC 3060 TCACTTAGCA GTTAACTATC AGAAACTTTT GCAATTTGGT TTAAGAGGGTT TTGAAGAGCG 3120 GGCTCGTAAA GCAAAAGTAG CTCTAGATTT AACAGATCCA GCAAGTATTG ATAAATATCA 3180 TTTTTACGAC TCTATATTTA TCGTAATCGA TGCTATTAAA GTATATGCAA AGCGCTTTGT 3240 TGCTCTTGCT AAAAGTTTAG CCGAAAATGC AAATCCTAAA CGTAAGAAAG AATTACTTGA 3300 GATTGCAGAT ATTTGCTCTA GAGTCCCATA TGAACCGGCA ACTACTTTTG CAGAAGCTAT 3360 TCAATCAGTT TGGTTTATTC AATGTATTTT ACAAATTGAA TCTAATGGCC ACTCTTTC 3420 ATATGGCCGT TTTGATCAAT ATATGTATCC ATATATGAAG GCTGATTTAG AAAGTGGTAA 3480 AGAAACAGAA GATAGCATTG TTGAACGTCT GACAAATCTT TGGATTAAGA CAATTACAAT 3540 TAATAAGGTT CGCAGTCAAT CACATACATT TTCTTCAGCA GGAAGTCCTT TATATCAAAA 3600 TGTTACAATT GGTGGACAGA CTCGAGATAA GAAGGATGCT GTTAACCCAT TATCTTATTT 3660 GGTATTAAAA TCAGTTGCAC AAACCCATCT ACCGCAACCT AATCTAACTG TACGTTACCA 3720 TGCAGGTTTA GATGCTCGTT TCATGAATGA GTGTATTGAA GTGATGAAAC TTGGTTTTGG 3780 TATGCCTGCA TTTAATAATG ATGAGATTAT TATTCCTTCT TTTATTGCAA AAGGAGTATT 3840 GGAAGATGAT GCTTATGATT ACAGTGCCAT TGGATGTGTT GAAACGGCAG TTCCAGGGAA 3900 ATGGGGCTAT CGTTGCACAG GTATGAGTTA TATGAACTTC CCTAAGGTTC TACTTATCAC 3960 GATGAATGAT GGAATTGATC CGGCTTCGGG TAAACGGTTT GCACCAAGCT TTGGTCGTTT 4020 TAAGGATATG AAGAACTTTT CTGAATTAGA AAATGCTTGG GATAAAACAC TAAGATATTT 4080 GACACGAATG AGTGTTATTG TTGAAAATTC TATTGATTTA TCATTGGAAC GAGAAGTTCC 4140 TGATATTCTA TGTTCAGCAT TGACTGATGA TTGTATTGGT CGTGGAAAAC ACCTTAAAGA 4200 AGGTGGAGCA GTATATGATT ATATATCAGG ATTGCAAGTT GGAATTGCAA ATTTGTCGGA 4260 TTCATTAGCT GCAATTAAAA AATTGGTGTT TGAGGAAGAA CGTATAAGCC CAAGTCAGCT 4320 TTGGCATGCA CTGGAAACAG ATTATGCCGG AGAAGAAGGT AAGGTCATTC AAGAAATGTT 4380 GATTCATGAT GCACCTAAGT ATGGTAATGA TGATGATTAT GCTGACAAAT TGGTTACTGC 4440 TGCTTATGAC ATTTATGTTG ATGAAATTGC TAAATATCCT AATACACGTT ATGGAAGAGG 4500 GCCTATTGGA GGAATTCGTT ATTCAGGAAC ATCTTCTATC TCAGCCAACG TAGGGCAGGG 4560

ACGTGGAACA	TTAGCAACTC	CAGATGGACG	CAACGCGGGT	ACACCGTTAG	CAGAGGGTTG	4620
TTCACCATCA	CATAATATGG	ATCAACACGG	CCCTACATCT	GTTTTAAAAT	CTGTTTCAAA	4680
ATTACCAACA	GATGAAATCG	TAGGTGGGGT	TCTCTTAAAT	CAGAAAGTAA	ATCCTCAAAC	4740
GTTAGCCAAA	GAAGAAGATA	AATTAAAACT	AATTGCTTTG	TTACGAACAT	TCTTTAATCG	4800
TTTACATGGG	TACCATATTC	AATACAATGT	TGTTTCCAGA	GAGACGCTGA	TTGACGCTCA	4860
GAAACATCCT	GAAAAACACA	GAGACTTAAT	TGTTCGTGTT	GCAGGATACT	CTGCATTCTT	4920
CAATGTTCTT	TCTAAGGCAA	CCCAAGATGA	CATTATAGGA	CGTACTGAGC	ATACTTTGTA	4980
AAATAAAGAG	GTTCTTTTTA	TGGAATTTAT	GCTTGACACA	TTAAATTTAG	ATGAGATTAA	5040
AAAGTGGTCT	GAAATTTTGC	CGCTAGCTGG	GGTAACTTCA	AATCCCACTA	TTGCAAAAAG	5100
AGAGGGTTCT	ATTAATTTT	TTGAACGAAT	CAAAGATGTA	AGAGAATTGA	TTGGCTCTAC	5160
ACCCTCTATT	CATGTTCAGG	TGATTTCTCA	AGATTTTGAA	GGCATCTTAA	AGGATGCTCA	5220
TAAAATTCGA	AGACAAGCAG	GAGATGATAT	ATTTATCAAA	GTACCTGTTA	CTCCAGCTGG	5280
ATTACGTGCA	ATAAAGGCGC	TAAAAAAAGA	GGGCTACCAT	ATCACTGCAA	CAGCTATTTA	5340
TACAGTTATT	CAGGGATTAT	TAGCTATCGA	AGCAGGAGCG	GATTACCTAG	CTCCATATTA	5400
TAATAGAATG	GAAAATCTGA	ACATTGATTC	AAATTCTGTC	ATTCGTCAAT	TAGCTCTTGC	5460
TATTGATAGA	CAGAACTCTC	CTAGTAAGAT	TTTAGCTGCA	TCCTTTAAAA	ATGTAGCACA	5520
AGTAAATAAT	GCTTTAGCTG	CAGGTGCGCA	TGCTGTTACA	GCAGGAGCGG	ATGTTTTTGA	5580
ATCAGCTTTC	GCCATGCCAT	CTATCCAAAA	GGCGGTTGAT	GATTTTTCTG	ACGATTGGTT	5640
TGTTATTCAA	AATAGTCGTT	CCATTTAGAT	AGAGAGGAAA	TACATATGAG	AATTTTTGCT	5700
AGTCCTTCTA	GATATATTCA	GGGGGAAAAT	GCCTTGTTTG	AAAATGCCAA	ATCAATTTTG	5760
GATTTGGGAA	ATTGCCCTAT	TCTATTATGC	GATCAGTTGG	TTTATGATAT	TGTTGGAAAA	5820
CGATTTGAAG	ATTACCTACA	TAGGTATGGT	TTCCATATTG	TTCTGGCGCT	ATTTAATGGT	5880
GAAGCTTCTG	ACAATGAAAT	CAATCGAGTT	GTTGCCTTGG	CTGAGAAAGA	AAATTGTGAT	5940
AGTATTATCG	GTCTTGGTGG	GGGAAAGACG	ATTGATAGCG	CAAAAGCTAT	TGCAGATTTG	6000
ATTGAAAAGC	CTGTTATTAT	TGCTCCAACA	ATTGCATCGA	CCGACGCACC	TGTATCTGCT	6060
TTATCTGTTA	TTTATACAGA	TGAAGGTGCA	TTTGATCATT	ATCTATTTTA	TTCTAAAAAT	6120
CCAGATTTAG	TTTTGGTTGA	TACAAAAGTT	ATTTCACAAG	CCCCTAAGCG	TTTATTAGCG	6180
TCTGGTATTC	CAGATGGTTT	AGCAACTTGG	GTTGAGGCGC	GTGCGGTTAT	GCAGGCAAAT	6240
GGAAAAACTA	TGTTGGGACA	ACAGCAAACA	TTGGCTGGAG	TTGCAATTGC	GAAGAAATGT	6300

GAAGAAACGC	TGTTTGCAGA	TGGTTTACAG	1098 GCTATGGCAG	CTTGTGAAGC	TAAAGTGGTG	6360
ACACCAGCAT	TAGAAAATAT	TGTTGAAGCT	AATACTTTAT	TGAGTGGTCT	AGGTTTTGAA	6420
AGTGGAGGAT	TAGCTGCGGC	GCATGCAATT	CATAATGGTT	TTACTGCATT	GACAGGTGAC	6480
ATTCATCATT	TAACACATGG	TGAAAAAGTA	GCTTATGGAA	CTTTAGTACA	ACTATTATTG	6540
GAAAATAGAC	CTAAAGAAGA	ACTTGATAAG	TATATTGAGT	TTTACAAAAA	AATTGGTATG	6600
CCAACAACTC	TAAAAGAAAT	GCATTTGGAT	CAAGTTGGAT	ATGATGATTT	AATAAAAGTT	6660
GGTAAACAAG	CAACTATGGA	GGGTGAGACA	ATTCATCAGA	TGCCGTTTAA	GATTTCGCCT	6720
TCAGATGTTG	CTCAAGCTAT	TATCGCTGTA	GATGCCTATG	TAAATTCAAA	ATAAACAATA	6780
AGGACTACTG	TTTTCCAAAT	GGTAGTCTTT	TATTGATCCC	TGTATTGAAT	TCTATAGAAG	6840
ATTGAAATAG	GATGAGAACA	AATCGATTGG	GAAAGTAAAA	TTAATTTCTA	TAAATGTTTT	6900
AGCAATTGTT	TCGTACTATT	TCAGATTCAG	TCTACTATAT	GTTCTTCATA	AATCAAAAAG	6960
CGACATAGGT	TGTCGGCTAT	TTATTGTGAA	TACATTAATT	AGCATTCCAG	TTTTATCTTC	7020
GGTCTAAAAT	AAGTATTTTG	TGCTATACGA	GATAAGCTTC	TTGACTTACT	CCTTGATTTA	7080
CTGCATAACA	ATGGGATAAA	aagtgggaga	TAGAGCAATT	CATAGTCATC	AAAATTAATG	7140
AGATACAGTA	TACAGTTTTT	CCTTTAAACA	CATTTCAAAT	TCCCTCAAAA	ATGGTATAAT	7200
AGTAACATCA	CAAAATTGGA	GAGAGACCAT	GAGTTTTTAC	AATCATAAAG	AAATTGAGCC	7260
TAAGTGGCAG	GGCTACTGGG	CAGAACATCA	TACATTTAAG	ACAGGAACAG	ATACATCAAA	7320
ACCTAAGTTT	TATGCGCTTG	ATATGTTCCC	TTATCCGTCT	GGAGCTGGTC	TGCACGTAGG	7380
ACACCCAGAA	GGTTATACTG	CAACCGATAT	CCTCAGTCGT	TACAAACGTG	CGCAAGGCTA	7440
CAATGTCCTT	CACCCAATGG	GTTGGGATGC	TTTTGGTTTG	CCTGCAGAGC	AATACGCTAT	7500
GGATACTGGT	AATGACCCAG	CAGAATTTAC	AGCGGAAAAC	ATTGCCAACT	TCAAACGTCA	7560
AATTAATGCG	CTTGGATTTT	CTTATGACTO	GGATCGTGAA	GTCAACACAA	CAGATCCAAA	7620
CTACTACAAC	TGGACTCAAT	GGATTTTCAC	CAAGCTTTAC	GAAAAAGGCT	TGGCCTATCA	7680
AGCTGAAGTC	CCAGTAAACT	GGGTTGAGGA	ATTGGGAACT	GCCATTGCCA	ATGAAGAAGT	7740
GCTTCCTGAC	: GGAACTTCTG	AGCGTGGAGG	CTATCCAGTT	GTCCGCAAAC	CAATGCGCCA	7800
ATGGATGCT	: AAAATCACGG	CTTACGCAGA	GCGCTTGCTC	AATGACTTAC	ATGAACTAGA	7860
TTGGTCAGAC	TCTATCAAGG	ATATGCAACO	CAACTGGATT	GGTAAATCA	CTGGTGCCAA	7920
TGTAACTTT	AAAGTAAAAC	GAACAGACA	GGAATTTACA	GTCTTTACT	A CTCGTCCGGA	7980
CACACTTTT	GGTGCGACTT	TCACTGTCT	r GGCTCCTGAA	CATGAATTAG	TAGACGCTAT	8040
CACAAGTTC	A GAGCAAGCAC	AAGCTGTAG	C AGACTATAA	CACCAAGCC	A GCCTTAAGTC	8100

WO 98/18931 PCT/US97/19588

TGACTTGGCT	CGTACAGACC	TTGCTAAAGA	AAAAACAGGG	GTTTGGACTG	GTGCTTATGC	8160
CATCAACCCT	GTCAATGGTA	AGGAAATGCC	AATCTGGATT	GCAGACTATC	TCCTTGCTAG	8220
TTATGGAACA	GGTGCGGTTA	TGGCTGTGCC	TGCCCACGAC	CAACGTGACT	GGGAATTTGC	8280
CAAACAATTT	GACCTTCCAA	TCGTCGAAGT	ACTTGAAGGT	GGAAATGTCG	AAGAAGCTGC	8340
CTACACAGAG	GATGGCCTGC	ATGTCAATTC	AGACTTCCTA	GATGGATTGA	ACAAAGAAGA	8400
CGCTATTGCC	AAGATTGTGG	CTTGGTTGGA	AGAAAAAGGC	TGTGGTCAGG	AGAAGGTTAC	8460
CTACCGTCTC	CGCGACTGGC	TCTTTAGCCG	TCAACGTTAC	TGGGGTGAGC	CAATTCCAAT	8520
CATTCATTGG	GAAGATGGAA	CTTCAACAGC	TGTTCCTGAA	ACTGAATTGC	CGCTTGTCTT	8580
GCCTGTAACC	AAGGATATCC	GTCCTTCAGG	TACTGGTGAA	AGTCCACTAG	CTAACTTGAC	8640
AGATTGGCTT	GAAGTGACTC	GTGAAGATGG	TGTCAAAGGT	CGTCGTGAAA	CCAACACTAT	8700
GCCACAATGG	GCTGGTTCAA	GCTGGTACTA	CCTCCGCTAT	ATTGACCCGC	ACAATACTGA	8760
GAAATTGGCT	GATGAGGACC	TCCTCAAACA	ATGGTTGCCA	GTAGATATCT	ACGTGGGTGG	8820
TGCGGAACAT	GCTGTACTTC	ACTTGCTTTA	TGCTCGTTTC	TGGCATAAAT	TCCTCTATGA	8880
CCTCGGTGTT	GTTCCGACTA	AGGAACCATT	CCAAAAACTC	TTTAACCAAG	GGATGATTTT	8940
GGGAACAAGC	TACCGTGACC	ACCGTGGTGC	TCTTGTGGCA	ACCGACAAGG	TTGAAAAACG	9000
TGATGGTTCC	TTCTTCCATG	TAGAAACAGG	GGAAGAGTTG	GAGCAAGCGC	CAGCCAAGAT	9060
GTCTAAATCG	CTCAAGAACG	TTGTTAACCC	AGACGATGTG	GTGGAACAAT	ACGGTGCCGA	9120
TACCCTTCGT	GTTTATGAAA	TGTTTATGGG	ACCACTCGAT	GCTTCGATTG	CTTGGTCAGA	9180
AGAAGGTTTG	GAAGGAAGCC	GTAAGTTCCT	TGACCGAGTT	TACCGTTTGA	TTACAAGTAA	9240
AGAAATCCTT	GCGGAAAACA	ATGGTGCTCT	TGACAAGGTT	TACAACGAAA	CAGTCAAAGC	9300
TGTTACTGAG	CAAATTGAGT	CTCTCAAATT	CAACACAGCT	ATTGCCCAAC	TTATGGTCTT	9360
TGTCAATGCT	GCTAACAAGG	AAGATAAGCT	TTATGTTGAC	TATGCCAAAG	GCTTTATTCA	9420
ATTGATTGCA	CCATTTGCAC	CTCACTTGGC	AGAAGAACTC	TGGCAAACAG	TCGCAGAAAC	9480
AGGTGAGTCA	ATCTCTTATG	TAGCTTGGCC	AACTTGGGAC	GAAAGCAAAT	TGGTTGAAGA	9540
TGAAATTGAA	ATTGTCGTCC	AAATCAAAGG	AAAAGTTCGT	GCCAAACTCA	TGGTTGCTAA	9600
AGATCTATCA	CGTGAAGAAT	TACAAGAAAT	CGCTTTAGCT	GATGAAAAAG	TCAAAGCAGA	9660
AATTGACGGT	AAGGAAATCG	TGAAAGTAAT	TGCGGTACCG	AATAAACTCG	TTAATATCGT	9720
CGTTAAATAA	CGAGTTTATT	AGCTCTATCT	GCCACCTTCA	ATAGTCCACT	GGACTATTGA	9780
ASCCAACTAA	ATTAGTTAAC	ATTGTTGTGA	AATAAGATAG	GAGTCCTTCA	GAGTAGAATC	9840

TGGAGGATTT	TTTGAATCTT	CTTATGAAAG	1100 TATGATATAC	TATGGGCAAC	TATAAAGTTT	9900
GAAAAGTGAA	ATAAGGAGAA	TAAGATGCCA	GTAAATGAAT	ATGGTCAAAT	GATTGGGGAG	9960
				ATTTCTTAGA		10020
GCTAGGATAG	AGGCTCTTTC	AGTGGAAAAG	CATGCGGAGG	ATTTATTAGC	TGTTTATGGC	10080
CCTGATACGC	CTCGGGAGAT	GTGGACCTAC	CTCTTTCAGG	AGTCAGTAGC	AGACATGGAG	10140
GAACTGGTCA	GCCTTTTAAA	TCAGATGTTG	GCTCGTAAGG	ACCGTTTTTA	TTATGCAATC	10200
				TCATGCGAAT		10260
AACCGAGTAA	TAGAAGTGGG	AGCTGTCACT	TTTTCTCCAG	AGCTCAGGGG	GACACGGATA	10320
GGAACAGAAG	CCCAGTATCT	CTTGGCTTGC	TATGTCTTTG	AGGAGCTTAA	CTATCGTCGC	10380
TATGAGTGGA	AATGCGATGC	TCTTAACCTG	CCATCCAGAC	GAGCAGCGGA	ACGTTTGGGA	10440
TTTATTTATG	AAGGAACCTT	CCGTCAGGCA	GTGGTTTATA	AGGGGCGTAC	AAGAGATACG	10500
GATTGGTTGT	CTATGATTGA	TAAGGACTGG	CCTCAAGTCA	AAGCTCGATT	GGAAATATGG	10560
				AGAGCTTGAG		10620
GAGGTGTTGA	GATGATTACT	ATTAAAAAGC	AAGAAATTGT	CAAGCTAGAG	GATGTTTTGC	10680
ATCTCTATCA	GGCTGTCGGT	TGGACAAACT	ATACCCATCA	AACAGAGATG	CTGGAGCAGG	10740
CCTTATCTCA	TTCATTAGTA	ATTTATCTGG	CACTTGATGG	TGATGCTGTG	GTGGGCTTGA	10800
TTCGTTTGGT	TGGAGATGGT	TTTTCATCAG	TTTTTGTACA	GGATTTGATT	GTTTTGCCTA	10860
GCTATCAGCG	TCAAGGGATT	GGTAGCTCCT	TGATGAAAGA	GGCTTTAGGA	AATTTTAAAG	10920
AGGCCTATCA	AGTCCAGCTG	GCGACAGAAG	AGACAGAAAA	AAACGTGGGA	TTTTATCGTT	10980
CTATGGGCTT	TGAAATCTTA	TCCACCTATG	ACTGTACAGG	AATGATTTGG	ATAAACAGAG	11040
AAAAATAAAA	AAACTTGTTT	GTTCTTAAGC	AAAGTTTAAG	GATGGTCTAG	TATCATATAG	11100
TCATTAAATA	AAGACCTCCT	AACTTTATTT	AATAAAATCC	TAAACTTTTT	TCATCACAAT	11160
CTCCTAATGA	AGCCACCCAA	TCAGGTGGCT	TTTTTGCGGT	ACGACGGGCA	TGTCGTATAT	11220
CTGAGGTGTA	AGTCCTCAGC	CTGACTATCG	TGAGGTAGCA	GGGAGAGGAA	GGGATAGCGA	11280
AATCGTGGCT	CTACGAACAG	GAACGTGATA	GTAAGGCGTA	TATAGCGGAT	AAGGAGGCTT	11340
CAAACTCTAA	AGTCCAAAAA	GGTAGTCGTA	ACCTATATGT	GTAAATCACG	AGAGTAATTG	11400
AATTCGGACT	AAGGTTTGTG	TGAAAAAGAT	AAATCTTTCT	AGAGTCTAAA	GACTCTGCGT	11460
CAGATTTCCT	ATTTTCACTG	TAACCTTTTA	ACGTCCTCAT	ATCTTGTATA	AACGAGGAAA	11520
GATGTACGAC	TTATCCCGTG	AGGTTTCATG	AGCGCTGAAA	GCGTAGTAAC	AACGAATCAT	11580
GAGAAGTCAG	CCGAGCCCAT	AGTAGTGAGG	AAACTTCCGT	AATGGAAGTG	GAGCGAAGGG	11640

ا دو مو مشته

1101

GTGAATACTC AAACAGTCTG GGGAGAGACT GTTTGAGGTC TGTCGCTAGA AAGAGAAAAC 11700 GACAGATCGA AGTAATCCTA CTTCACTTGT GTCTGTAAAA TGAGTGGTCT GATAGAACTG 11760 11770 GACTTTGAGG

(2) INFORMATION FOR SEQ ID NO: 173:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4185 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:

CGCGAAACTA	CTTTCTTAGT	ATAACACTTT	CAGAATCATT	GTCAATAGAA	ATGACTTGAT	60
TTTTTCAATT	TTTTCAAGCT	ATTTCCAAGG	GTTGTAAAAT	CGTCCCTGAT	TCTGCAAGAT	120
aagtagtaaa	CTAACTACTA	AAAACAAGGT	TGCCAAGAGC	AAGGTAATAT	AGTCTCCTTT	180
TTTCAAGGCC	TGATAACTAT	ACCATGTGCG	TTTTTTCTCT	TTCCCAAAGC	GGCGAACTCC	240
ATGGCAGTCG	CAATGGTATC	AATGCGTTCT	AGCGAGCTAA	AAATCAAGGG	CGTAATAATG	300
AGCAGATTGC	CTTTGATTCG	TTGCATAAGA	GAAGCTTTCT	TGGATAATTC	CATCCCACGC	360
GCCTCCTGAG	ACATCTTGAT	AGTAAAGAAT	TCTTCCTGCA	AATCTGGAAT	ATAGCGCAAG	420
GTCAGGCTGA	CAGAATAAGC	AATCTTATAG	GGCACACCAA	TTTGATTTAA	ACTGGAAGCA	480
AACTGACTAG	GATGGGTTGT	CATCAAAAAG	ATAATAGCCA	GAGGAATGGT	GCAAAGATAC	540
TTAATGGCCA	AATTTAGCAG	ATAAAAGAGC	TCCTGGCTGG	TTAGAGTGTA	GACACCGATT	600
CCCTGCCAAA	TCACACTTCT	CTCTCCATAA	AGTCCAACCC	CATACTCGGG	AGAAAAGAGA	660
TAGACCATCA	AAACGTTTAA	AACGGCAAAT	ATCGTCGCAA	AAACGGCTAC	AAAGGAAACA	720
TCTTTAAAGC	GAATTTCTGA	TAAATAGAGG	AGAAAGACTG	AAAAGATGGC	AATCAGCAAG	780
AGCATTCTGG	TATCATAGCT	AATCATGGCC	GCCAATGATA	CCAGAATGAA	AAAGAGAAGT	840
TTCCCAGCTC	CTGACAAGCG	ATGAATCACA	GTATCTCTAT	GCTGGTAACC	GATTAATTTA	900
GCTTGCATCC	CTCTCTCCTT	TCTTTGTAAA	ATGCCGTTAA	ATCCAGTGGA	TCCACATCTA	960
GTTTCTTAGC	CAAGTTAAAG	ATGGAGGTTT	CTTTTAGATT	GGCTTTTACT	AACAGCTCAG	1020
GATCGCTCAA	CAGACTGGCT	GGAACAGTAT	CGGCAATCAA	TTCTCCATCC	ACCATGACAA	1080
GGACCCGGTC	TGAATAATCC	AGCATCAATT	GCATATCATG	GGTAATCATG	ACAATGGTAT	1140
GCCCTTTTTG	ATGTAACTCT	TCGAGAAATT	CCATAATCTC	AGTATAGTTC	TTCTGATCTT	1200

WO 98/18931 PCT/US97/19588

	GACCTGCAGT	CGGTTCATCT	AGGAGAATAA	1102 TTTCAGCTCC	TAAGACCAAA	ATTGAAGCAA	1260
	TGGTGACACG	TTTTTTCTGA	CCAAATGACA	GGGCAGAAAT	AGGCCAATTA	CGGAATTCAT	1320
	AAAGTCCACA	GATTTTCAAG	GTTTCATATA	CTCTCGTTTC	AATTTCCTTC	TCATCCACAC	1380
	CTCGCAAACG	GAGCCCTAGA	GCCACCTCAT	CAAAAATCAT	ATTGGTTGAA	ATCATTTGAT	1440
	TAGGATTTTG	TAGCACATAT	CCTACTCGTT	CCGCCCGCTC	TGCAACAGAA	TCGCCTTTTA	1500
	TATCCTGTTT	TTCCCAAAGA	TAGCGTCCTT	CCGTCTGAAT	AAAGCTACTT	ATAGCCTTGG	1560
	CTAGAGTTGA	TTTCCCTGCT	CCATTTTTC	CGACAATAGC	AATCTTTTCA	CCCTTTTTAA	1620
	TATCTAAATG	TAGGGATTTT	AAAATCGGTC	TATCATCATA	AGAAAAAGAT	ACTTCCTCTA	1680
	GTCTAAAGAG	TGACTGCAAT	GCTGGGGTTT	CTTTTGCCAG	TTCATTCTGC	AACTGAACCT	1740
	GACCTTTTGA	GATAGACAAG	TTATCCAGAT	TCGCTAATTG	TTCTTCCTTG	ACTAAGTCCA	1800
	CACCTAATTG	ACGGAGAGTC	GTTAGATAAA	GGGGTTCTCG	AATTCCATTT	TGAGTCAATA	1860
	AATCAGTCGC	AAGCAACTGG	TCAGGGCTCC	CATTAAAAAG	GATACGACCA	TCGTTTATCA	1920
	AGACAATCCG	ATCCACAGGG	CGATGCAGAA	CGTCCTCCAA	ACGGTGCTCG	ATAATAAGAG	1980
,	TCGTCGTCCC	CTCTTCCTTA	TGAATCTGGT	CAATCAATTC	GATAATATCC	TGACCTGACT	2040
	TGGGATCTAG	ATTGGCGAGT	GGCTCATCAA	ACAAGAGAAT	CGGACTTTCA	TCAATCAAGA	2100
	CACCAGCCAG	ACTGACTCGC	TGCTTTTGTC	CACCTGACAA	ATCCTGAGGA	CGCTGATCCA	2160
,	GTAAAGGAAG	AAGGTCCAGC	TTTTCAGCCC	ATTTATAAAC	ACGACCTTTC	ATCTCATCTA	2220
	GGGCTGTCAC	ATCATTTTCC	AGAGCAAACG	CCAAATCTTC	TGCCACAGAC	AAGCCAATAA	2280
	ACTGCCCATC	TGTATCCTGC	AAAACTGTGC	TAACCAGATG	AGACTTATCA	TAGATGCTCA	2340
	TATCAAAGGC	TACTTGACCC	TTTATCAAAA	ATTCTCCATA	TGTCTGACCC	TTGTAAATAT	2400
٠	TGGGAATAAT	CCCATTCAAA	CACTGACCCA	AGGTAGATTT	ACCTGACCCA	GATGGTCCAA	2460
,	CAATTAAGAC	TTTCTCTCCC	TTGTAAATGG	TCAAGTCTAT	CCCTTGCAAG	GTCGGTTCTT	2520
1	CTTGTGTTTC	ATACCGGAAA	GAGAAATCCT	TCCACTCAAT	TaTAGCTTCT	TTCATCT1 AC	2580
•	TCTCTTCATT	CGCTTCTTAG	ACTTCTATTT	TATCATAAAT	CAAGCCCTTC	TTGCAGTCTC	2640
•	rcctcttaaa	ATCTTAGCGC	CAAAAAGATT	CCTATCCTAG	CTTACTTGCC	TAACTAATCT	2700
	ATAAACATCG	AAAAAGACTA	GTTGCCCAGC	CTTCCCCATC	ATTTTATACT	CTTCGAAAAT	2760
1	CTCTTCAAAC	CACGTCAGcT	TCGCCTTGCC	GTAGGTATGG	TTACTGACTE	CGTCAGTTTC	2820
	ATCTACAACC	TCAAAACCAT	GTTTTGAGCc	TGCTTCGTCA	GTTCTATCCA	CAATCTCAAA	2880
•	ACACTGTTTT	GAGCAACtGC	GGCTAGCTTC	CTAGTTTGCT	CTTTGATTTT	CATTGAGTAT	2940
•	PAGTCCTTTT	TCAAACTTCC	TGCACGAGTT	TGGGTTCCTG	CATAGGCAAG	TAAGAGAAGA	3000

_ ;

1103

GTTCCTGCAA	TAGCTACAGA	TACACCATTG	GCAATTCCCG	CAACAATCCC	TTGTGCAAAT	3060
ACTTTTTCTG	CCGCTTCTTG	ATAAATCACA	ACATCTCCAA	GTGGTGCCAA	GACACCCCAA	3120
ACAAGGCAT	TTGCAAGTAG	TTGAATGAGA	TTAAAAATAA	GAATATCTTT	CCAGTCAAAA	3180
ACACCATTGA	TCACGCGAAC	GTACTTTCTA	AAAAGTCCCA	CAACTAAACC	AAAGAGTCCG	3240
CTAGCGATAA	TCCAAGTCCA	CCATAGACCA	TAACCAACAA	GAGAGTCCTT	GATTGCATGA	3300
CCAATCAACC	CGACAAGCAA	ACCGATAATC	GGTCCAAAAA	TAATAGAAAG	TAGCGCTTGT	3360
ACCGCATACT	GAAGCTGGAT	GCTTGTATTT	GGAACAGGGG	TTGGAATGTT	GATCATCCCG	3420
ATGACGACAA	AGAGGGCAGC	GCCAATTCCG	ACAGCAACAA	CTTGTTTAAT	TGTAAATTTG	3480
ATTTCCATAC	TATTCTCCTA	TTTTATCCTT	CTATTTTCTT	TATTTCAATG	GTCCAAGATG	3540
AACCGACACC	TACATTATAG	GCCTTGGCAA	AGGAACCTTG	GTTGATAGCC	AAACCTAAAC	3600
GATAGAGAGA	GTTGATGTAA	AGGATGGGTT	GCCCAATTCT	CACATCTGCA	AATGATTTGC	3660
CATAGACAAC	CTGATTTTGA	TAGACCAGCA	TATCAGCATG	ATAGATGGTC	ACTTCAAAAC	3720
GATCACCAAA	TTCTGGTTCC	AGCTTGTAAA	ATTCTTCCCG	TGTGATAGAG	GTCCAAAGCG	3780
AACCGAAACG	CACATCCAGA	ATATCAATGG	CTCCCTTCAC	CAGATGATCT	TCTATGATGG	3840
TCGCTACGAC	TGGAAGCTCT	ACAATCTGTT	CCACACTGAG	CTCTGGCCCT	ACTTCCTCAA	3900
AAGTAATGTG	ACCACTGGCC	AGTTTAGCAC	CAGTATAGGC	ATAGACATCA	CGACCGTGGA	3960
AGGTATAAGA	ATGCTCTGTG	TTTTGACGCC	TATTGGCCAC	CTCAGAAATC	TCACGAATGG	4020
CTACAATGCC	AACGTGTTTC	TTGATAAAGG	AAAGCGTCCC	ATTATCTGGC	GTGACAATGT	4080
ATTGATTTT	TGCAGTCTTG	GCAACTACAC	TCTTACGTTT	CGAACCGACA	CCTGGATCGA	4140
CAACCGATAC	AAACGTCGTT	CCCTCAGGCC	AGTAATCCAC	CGTCT		4185

(2) INFORMATION FOR SEQ ID NO: 174:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 2069 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:

TGATAGAGTT AAAGCCGCTG	AGTCATTCAA	TCCATCTCCA	ACCATCAAAA	TAGTGTGACC	60
TGCTTTCTGC AGTTTCTCTA	CTAACTCAAA	TTTCCCATCA	GGTTTCAAGT	CTGTATAGAC	120
CTGATCAAAG GGCAAATCTT	TGACTAATTC	CTCTGTCCTA	ATCAAGGTGT	CTCCTGTTGC	180

1104 CAGAATCAAT TTTTYCCCCT GTGCCTTAAG TTTATCCAAG GCTGTTTTTG CTTCTTTTCT 240 CAAAGGAGTA TGAATGCAGA ACATTCCAAT CAATTCATTT TGATAAGCCA AGAATAAGAG 300 ATTGTAGTGA CTCTTGTACT CTTCAATTAA AGCATTTTGT TCTGAACTGA TATGAATCTG 360 CTCATCCTGC ATCAAGACAT AATTCCCAAT AAGAACTGGT TGGCCATCTA TATGAGATTT 420 GATCCCCTTG CTTGCGATAT ATTGGAGTTT CCCATGCATT TCCTCATGTT CAATTCCCTC 480 TATCTCAGCT TGCTTGACGA TGGCATTAGC AATAGGATGA TAAATGTGTT CCTCAAGACA 540 600 GGCACTGATT CTGAGAATAT CTTCCTCACT ATAGTCTCCA AAAGGTAACA CCTTTTCAAC TATAGGATAA CTAGTTGTGA TTGTTCCTGT CTTATCAAAC AAGAAAGTAT CAACTTCCAG 660 ATATTTCTCC AGAACATCTC CATCCTTAAT CACCATTCA CGGTTCAACC CTTCCTTGAT 720 780 AACTGTCAAA TAAGCTACAG GAGTAGAGAT TTTCAAAGCG CAGGAGAAAT CGACCAATAG GAAAGAAATA GCCTTAGAAA AAGAACCTGT CAATAGGTAA GTCAGCCCAG CCCCCAAGAA 840 ATTATATTTG ACGACTTTAT CCGCCATCTT GATGAAATAG CGTTGTTTCG TTTTCTTGTT 900 TTCTTCAGAT TTCTTCATCA ACTCAATCAG CTGTAAAATA CGGCTGTTCA TCTGATTATC 960 TGTTACACGA ATGCGTAACT CTCCAGTTTC TAATACTGTA TTTGCACAAA CCAAATCAGA 1020 CTCTCTTTTT TCAACTGGAA AACTCTCTCC TGTCAAGGAA CTTTCGTTGA CCATACCTAA 1080 ACCTGARACT ACTTGTCCAT CARACAGART TTCATTTCCT TGAGATAAGA TCAAGACATC 1140 TCCTATTTGA ACATCGGAAC TCTTGATACT AACAACCGTA TCGCCCTGTA CTAGGAATAC 1200 ATCGCTCTCT TTTGCAAGAA GACTCTGTTC TAAATCTGTT GCAGTTTTTT TCAAGGACCA 1260 CTGATCTAAA TGATTCCCCA AATCAAGCAT AAACATGATA TTGCTAGCTG TCTTGGATTG 1320 GTTCATAAAC AAAGACAATA AAATAGCCGA ACAGTCCAAG ACTTCCATCG TTAGTYCCTT 1380 ACGCGCTAGT GTTTGATAGG CTTCTCTAAT ATAACCCAAA GCCTGATAAC AAGTCCATAT 1440 ATAGCGAATA GGATACGGCA CAAAACTACG AAAAAGTACA CGCTTAACCG CTGCACCTGA 1500 AACAATAGAA TAAGCACTCT CTTCTCTACG AATGGGAAGA GTCATCAACT CAGAAACTTT 1560 1620 CCCTTTATCA ATTCTTTTTA AAAAGGCTTC TGCATTATCT AATACAGAAA AGCCTTCTTT TATGCGTAGA GTAAAGTGCT GTTGATCCAT GTAAAACTGG ATAGACTCAA TCCCCTTTTC 1680 1740 ATCTCTCGCC AAGGAACGAA GATAGTCTTG AATATCCAAG GTAAGTGAAA AAGAAGATGA TAGTCGGATA TGTTGGTATC CTCTATGTAG CACTTTAAAA GACATATTAT TCACCTATAA 1800 GGCTATCTAA TTGCTCTTCT TTTTTCTCTT GCTCGTACAA ATATTTGGCA TCTTGCAAGA 1860 CATCGTCTCC ATGTTGCTTC ACAACAGAAA CAGATGCATC TAGCTCGTCT TTCAACTTGT 1920 AAGCCTTAGC CAAAGCTTTA GAATAACCTT TTTTAGCTTC CTTACTTGCT AAGATTTTCA 1980

AACCAAGGGT ACCAAATGCG ACACCACCCA AAAATAATGA AGATTTTTTC GCAACTTTTG	204
CAACGGTTAA TACTTCTTTT AACATAGGG	206
(2) INFORMATION FOR SEQ ID NO: 175:	
The state of the s	

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4597 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:

					CCCCCACTG	60
	CAATAAAGCT					
TTTCAACGTC	CCAAGACATA	ATCTTAGGCA	GATTTCTAAA	ATTACACTCA	AAGTGGAAGT	120
CATTGAGCTT	TCGAATGACA	GTTGAAGTTG	AAATGGCCAG	CTGATGGGCA	ATATCGGTCA	180
TAGAAATCTT	TTCAATTAAC	TTTTGCGCAA	TCTTTTGGTT	GATAATACGA	GGAATTTGGT	240
GATTTTTCTT	GACGATAGAA	GTTTCAGCGA	CCATCATTTT	CAAGCAATGA	TAGCACTTAA	300
AACGACGTTT	TCTAAGGAGA	ATTCTAGTAG	GCATACCAGT	CGTTTCAAGG	TAAGGAATTT	360
TATAGGGTCT	TTAATGTCTA	GTAATTTTGT	GATAAAATGT	AATTGTTCCA	TATGATTCTT	420
TCTAATGAGT	TGTTTTGTCG	CTTTTCATTA	TAGATCTTAT	GGGACTTTTT	TTCTACCCAA	480
AATAGGCTCC	ATAATATCCA	TAGGGAATTT	ACCCACTACA	AATATTATAG	AGCCCAAAGT	540
TTTAGGTCGC	TTGATAATAT	GCGTTTTTTC	AATTTTATAG	ACTGCTCGTT	TAAACTCTAT	600
TTACTTCGTA	CCTTCTGGAG	CGAGACGGAA	TATTAGTCAC	ATACAAAATO	AGTACTATTA	660
GGATTTTATI	TTCATGTACA	ATTTCAGCCA	GTCTTGTTAT	AATCAGCCT	TAGGAATCAA	720
GGAGGTGACT	CTTATGGCTG	TTTTTGTGTG	TTTGGATGGA	ATTGTGGTAG	AAGTCCTTGA	780
					TTTGAATCTG	840
					T CCTAATCAAT	900
					C AGTTTGTTAT	960
GGAACGCTC	T CAGTTCGAG	AGATGTTCC.	A ACTTCAAAG	r AGTCGCTTG	A CGACGCAAGA	1020
					G CTAAGAATTT	1080
					T GGAAGCAGTT	1140
					T CTCATTTTCG	1200
					T ATTITTIGGT	1260

WO 98/18931 PCT/US97/19588

1106 ACTGGATTTG GATGAAGGAG ATTGGAAAGA AGCTGGTTTA ACCATTCGAA GAATAGCCAG 1320 GGAACGCCAG ATGGAAGCCC ATTTAGAGAT TTCTCGTTCG GGTCACGGAC TCCATATTTG 1380 GTTCTTCTTT GAGGAAGCGA TTCCGAGTCG AGAGGCTCGC TTGTTTGGAA AGAAACTGAT 1440 AGAACTGGCA ATGCAGGAAA GTATGCAACT GTCCTTTGAT TCTTTTGATC GCATGTTTCC 1500 AAATCAGGAT GTCCTTCCTA AGGGGGGGATT TGGAAATTTG ATTGCCTTGC CTTTTCAAGG 1560 AGAAGCTTAC CATCAAGGGC GAACGGTCTT TGTGGATGAA CAGTTTCAGC CTTATGAAGA 1620 CCAATGGAGG TATCTACAAG AAATTCAGAG GATTTCAACT GCTAAAGTGG CACTGTTAAT 1680 CCAAGAGGG TTAGGCAAGC AAGAATTGGA TAAGGAGTTG AAGGTCGTTT TATCCAATAT 1740 GATCCAACTT GAAAAATCGT CTGTGACATC CAAGGCACTT TTTTCTTGAA AAATATGGCT 1800 TCCTTTCTA ATCCCGAATT TTATAGTAGA TTGAAACTAG AATAGTACAC CTCTGCTTCT 1860 AAAACATTGT TAGAAATCGA TTTGACTTTC CTGATCGATT TGTCCTGTTA TTATTTCATT 1920 TTACTATATT TAAAGCAGGC TATGCGACAG CCAACCTATC AAATTCCTGA GAGAATGTAT 1980 TTATTTGGAG AATCCGATCA TTATTTATGG TTGCCAAGAG GTTTGCTGTA TCCATTGCAA 2040 GATAAATTTA AGCAGGTATC TGTGGAAGAT AGGAGAAAGG TACAAAGGTC TATTAGCGTG 2100 GAATTTAAGG GAGAACTCAC TTTTGAGCAA GAGTTAGCCC TGTCAGATAT GACTTCTAAA 2160 GAAAATGGTT TACTTCATGC GGAGACTGGT TTTGGGAAGA CCGTTTTAGG TGCTGCTCTT 2220 ATCTCTGAAC GGAAACAAA AACAATTATT CTAGTCCATA ATAAGCAACT CTTAGACCAA 2280 TGGCTAGATC GCTTAAACTG CTTTTTGACT TTCGAAGAGG AGGAGGCTAT CCGTTATACG 2340 GCATCAGGTC GTGAAAAGGT AATCGGCTAT GTTGGGCAGT ACGGTGGGAC TAAGAAATGG 2400 CTGAGTAAAC TGGTTGATGT CGTTATGATT CAATCTCTAT TTAAGTTGGA AAATAGTCAA 2460 AGTCTTTTGG ATGAGTATGA GATGATGATT GTGGATGAGT GTCATCATGT CTCTGCCTTG 2520 ATGTTTGAAA AAGTTGTTGC TCAGTTTAGA GGGAAGTATC TTTACGGTTT GACGGCTACG 2580 CCTGAGCGTA AGAATGGTCA TGAGCCTATT GTTTTTCAGA GAATTGGTGA GATACTCCAT 2640 ACTGCTGATA AGAGGGAAAC GGATTTTAAA CGGCAATTGC AATTAAGATT CACTTCTTTT 2700 GGTCATTTGG AAATTGAAAA GACCAAAGCA AGTAATTTTA TACAGCTTAG TGATTGGATT 2760 GCTACTGACT CAGTGAGGAA TCAGATGATT CTCAAGGATA TTCTAGCCCA AGTGGCAGAA 2820 GGACGGAATA TCTTGGTTTT AGTTAATCGA ATTCAACAGA TAGATGTCTT TGAAAAATTA 2880 TTGAAAGAGA AAGAGGTTGA TGACTGTTAC ATTATTAGCG GAAAAACCAA AGTCCGAGAG 2940 AGAACGAGTT TACTGGAGAC GTTAGAACAG TTAGATAAAG GGTTTGTTTT GTTGTCTACT 3000 GGAAAATACA TTGGCGAAGG TTTTGACTTA CCTCAGTTGG ACACGCTTAT CTTGGCAGCA 3060

CCCTTTTCTT	GGAAAAATAA	TTTGATTCAG	TATGCAGGTC	GGATTCATAG	AAACTACAAG	3120
GATAAGTCTT	TGGTGCGTAT	TTTCGATTAT	GTGGATATTC	ATGTTCCTTA	TTTAGAAAAG	3180
ATGTTTCAGA	AACGACAAGT	AGCTTATCGA	AAGATGGATT	ATCGTGTCAT	CGAGGGTGAG	3240
GAGAAACAAT	TCGTTTATGT	TGATAGTAGA	TATGAGAAGG	TGTTGAGAGA	GGACTTAGCA	3300
GGGGAAAGAC	AGGAATGTCT	GCTTATTTTA	CCTTATGTGC	ACCAGACAAA	ACTGATGAAT	3360
TTTCTAAAAG	AATTTAGGAT	TAGTCAAATT	GAGATATGTA	TACCAGAGAC	GGTTGCAAAT	3420
AAAGCATGGC	TAGACCAGTT	GAAGAGCCAG	AAAATTAAAG	TGTCTTTTAC	TCAATCAAAA	3480
ATAGTAACGC	CTATTCTTTT	GGTGAATAAG	ACTATTGTTT	GGTATGGTGC	AATGCCATTA	3540
TTAGGGAAGG	TAGATGAGAT	GACCATATTA	CGTTTGGAAT	CAGCTAGTAT	AGTTTCTGAA	3600
CTAGTGGCAG	GTTTACGATA	GAGAAAATTT	TTAAAAATTT	CTATGTATGA	TTTTCATTTC	3660
TTTAGTGAGA	CTGTTGCCAT	TATCACATTC	GAATCACACA	AAATAAAA	ATTTTTATAA	3720
GTACTTGACA	AATAGATTGA	AATATCATAA	AATAAAAACG	GTTACAGAGT	TATTAATTAT	3780
TTAAGCTTCA	TGTCACCATT	AAAAATTGAA	ATAAAAGGAT	GTTATCACTA	ATACAAGTGA	3840
GCAGGAACCT	ATTTAATCAC	ATCAGAAGAA	GTTTCTTGAT	GTTTTTAAGT	AGGTTCCTTT	3900
TATTTTAAAA	GGGAAATTTT	ATGATCATAA	AACGAATACT	AAACCACAAT	GCCGTAATTG	3960
CGCAAAGTAA	AAAAGATATC	GATATTCTTC	TTTTTGGAAG	GGGAATAGCT	TTTGGAAGAA	4020
AAACTGGAGA	TAAAGTAAAT	CCAATTGATA	TTGAGAAAAG	TTTTTTTCTC	AAAAATAGAG	4080
ATAATATGAC	CCGTTTTACA	GAGATGTTTA	TTAACGTTCC	TTTGGAGTTG	GTGTACATCA	4140
CCGAAAAAAT	AATTAACCTA	GGTAAAATAA	CATTGGGTAA	TAATTTTGAT	GAAATTATCT	4200
ATATTAATTT	AACGGATCAT	ATTTCTTCGA	GCATAGAACG	TTATAAAGAA	GGGATTATTA	4260
TTTCGAATCC	CCTACGCTGG	GAAATATCGA	AATATTATAA	AGAAGAATTT	GAACTTGGGA	4320
AAAGGGCTTT	ACAAATAATA	AAAAAAGAGT	TAGGTATTGA	ACTTCCAATT	GACGAAGCTG	4380
CATTCATAGC	GCTACATTTT	GTTAATGCTA	ATTTAGAAAA	TAATTTTCAA	GAGTCGTATA	4440
AAATCACTGA	AATAATTATG	GGAATTGAGA	AAATCATTCA	AGATTTCTAT	TGTACTGAGT	4500
TTAACCAAGA	TTCTATTGAT	TATTATAGAT	TCATAACTCA	TATGAAATTA	TTTGCCCATC	4560
GCTTGGTTGA	GAATACAACT	TATTGTGACG	ATGATGA			4597

(2) INFORMATION FOR SEQ ID NO: 176:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3984 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:

60	CTCTCATATT	ATGAAACCTG	TGGAATATGC	CCATCATATA	ACTACTTGTT	CGGCTTATTT
120	AAACAAAGGT	AAATGATTGC	TTGGTACATC	AATAAAGAGC	TTATCCACTA	AGGGAATTTT
180	GTACCATCGC	TTGATAGCTT	TCCCTGTTTT	CTGCCGGAAG	TTGGATACAA	TCCTGCACTA
240	GTGTATCAAT	ATACGAATCG	TGCTCCATCA	AATAGGCCGA	AAACTACTAA	TTTGATAGGT
300	CCACTCGTTC	TGATTAATAG	AGCATCATCT	CAGGTATGCG	CCTTCGTTAT	TGGTTGATTG
360	CTGGTTGATA	AGTACAGCAT	TCCAATACAA	CGCCTGCTTG	CCGGTCCTGC	AGGTGTTAAG
420	GAATTTCTAC	AAAACCGTTG	CGACTTATAA	AAACTTCTGA	TCTGCCTCTA	TCGTAATATT
480	CCAAAGCTGG	TTTACAGCCT	TGGTAATAAT	TAATCTCAGA	TCAGCCCCAT	CCAGCGAACT
540	TTTTATTTTC	AATATTTTCA	ACCTGTAACC	AAGGATTAAA	TCACCTCCAA	ATTAATCTTT
600	TACTAGAGCA	TAACAATCAT	AATATGTGAA	GTACATTAAG	ATGCGAGAAA	CTTTACTAAA
660	TGCTGCTGGT	TATCCATCAA	TGATCTTTCA	AACGCCATTC	GAGCCTTTAT	ACACCTGCTT
720	TGCTGTCATG	CACAATAACC	AATAAGGTCC	CATTGGGGTC	AATTAGCAGC	AGAGCGTTAA
780	AACTCCAACA	ATACAAAGGG	CCCAGAGCAA	TGGATTAGCT	CAGCCACAAT	GCAAGAGCAC
840	GAATAGAACC	TAATCATTGT	GCATTTCCCA	TGCTGCAAAA	TAACGGTGAA	CCTGCTĞTAA
900	AATACCGCTA	CTGAAGGAAC	AAGCGACTAT	AACTCCTATA	CATAGGCCAA	ATTCCAAGAA
960	CAAAGCCCCT	AAATAGCCCC	GCTACAGTAA	ACCAACACCT	AGATAACATC	ATCAGATGAG
1020	ATTTTCTGAT	TCATTCGATT	ACTTGCTGAG	ACTTGTTGAA	GAACAATCCC	AATAATTGAG
1080	AAACAAGGCG	AAATTGTAGC	ACAAGAACAG	ATTGGTAATC	TAGGGTGACT	AACAGACTCT
1140	CAACGCAAGT	GCGCTAAGAC	GGAATCATTT	GCTAAATTCT	TCGAAATCTT	GCAAGGCTAA
1200	TTCAATATTG	ACCTGTTAGA	TTATTTTTCA	AATAAAAATT	GCATAACTGG	ATTGCCATCA
1260	CAATGTTAAC	CTTGCTTAAA	CCGATACGGA	TGGCAAGGTT	CATCTAAGGA	GCTTTCATTT
1320	ACCACCTATA	GCATATAGGA	CTCATATTTG	AATACCAATA	GGATTACAAT	AGCGATAATA
1380	GTTTGTTTTA	GTCGAACTGG	GATGTCCCAA	CCAAAATGCA	ACAATAGAGT	AACGTAATAG
1440	ATAGGTCAAC	CAATCACAAT	AATTGACAAC	TGTATGGAGA	TACAATAGGO	TCTTTATAAC
1500	TTTTTTGATA	TCCCCTAGTC	TTTGTTCTCC	CTCTGTCATT	GCTTTGCCAA	TCTAATAGTT
1560	ATAACAGCAA	AATAAGTGTT	TCCCCACTAC	TAATTATAAA	атсалатала	TCAATTTTT
1620	TGATCTAATG	ATAGCCTAAC	AATTGCTTTC	ATCCCTGCAT	TGTAGAAGCA	CAATAATAGA

	TTCCCCCTAT	CAAGAGGACT	CCCCAGCAC	CTACAAACGT	ATTTTGAGCA	AAGAAATTTC	1680
(CAAAATTTTC	ATTCGCAGCC	GCACGCGCTT	TTATTGTCTC	ATCTTCAACC	TCTGTTAACT	1740
•	TTCTACCTAA	TTGAGACTCT	GCAGCTGCTT	CTCCCATAGG	TTGAACCAAA	GGTCTGACAA	1800
	ACTGAGGGTG	TCCTCCTAGA	CGAATTGAAA	AGAAACCAGC	TAACTCTCGA	ATAAAGAAAT	1860
	aaactgtata	GAAGTTTCCA	ACTGTCAGAC	CTTTAATCTT	TCGAATCAAA	TCGATTGATC	1920
•	GTTGCTTGAG	TCCAAAGGTT	TCTGACAGCC	CCACAAGAGG	CAAGGTAACC	ATAAAAATCG	1980
•	TGAGCACTCG	CTGATTGCTA	AATTCTTTTC	CCAAAATCTC	CAAAAATTCA	ACGAGAGAAA	2040
,	CACCTGAAAC	TAAAGCTGTA	ACCAAACCAG	CTAAGACTAC	TGTTGCAATT	GTATCAAATT	2100
,	KAATAAAT T	ACCCACAACA	ATGATTGCTA	TTCCTATTAA	TCTAATCCAC	TCCATATCAA	2160
	ACTCCTTTAT	ATTCAAAATG	ACAGTATTTT	TAAAATTTTA	TCAAGATCAA	TACCATTCCT	2220
	TATTTAATGT	GTTTTTCTAG	TTCTTTTTGG	TATTTGCTAT	TGGATTCCAA	TTTTTCTTTT	2280
	TGCCATTTTT	TAAAAACCTC	GTTATATTCT	TTTGTTGTAA	CAATATCTTT	TTGCAATTTC	2340
	ATTCCTTTAA	AGATATATGG	ATCCCCCTTA	ATACCAACTT	GTGAGTATGG	TTTTGAGAAT	2400
	GGTACTACGT	TACTTACAAC	TGGAGAACCA	CCAGATGAAG	CTGTTGGCAT	CAATAATGAA	2460
	CTATCTGTCG	ACCAAGCTTG	AGCTTTGGCA	TATTTTTCAT	ATCTTTTCTC	TAGGTCAGTG	2520
	GTCTCAGAAA	CAGCATCTTC	TAACAATTTC	TTATATTTAT	CCAAACCAGG	TTTAGCTACA	2580
	ACATCCTTAT	CTTTTCCTTT	CGTAATACCA	AGGTGTTTCA	TGGCAGAACC	AGATTTTGGA	2640
	тстатаатат	TCAAGTGAGA	CGCTGGATCT	TGATAGCTTG	GAGCCCATCC	TGTACTGTTC	2700
	AAATCATAGT	CTTTTTGAGA	AGGAGCAACA	TTGCCGTATT	TATCATTTTC	CATCAAACCA	2760
	TCAATAACAT	TTCCAATAAC	GTCTGTCCTC	GATGTTCGAG	TCGCTATACT	GTAGCCCAAT	2820
	GATGCTGGAT	CTACTGCATA	GACATAAGAA	AATGTTGTCG	GTGCATCTGC	TTCTTTATCA	2880
	GTTTTTCCAC	AAGCCACTAA	AATAGCTGAC	GTGCTCAGGA	CCACTCCTGC	TGTTAAGAGC	2940
	CACTTTTTCT	ATTTCATAAA	GAATCTCCTT	TGGTTTATTT	TAATCTACTT	TTACAATCCA	3000
	ACCTTCTGGC	GCTTCAATAT	CGCCAAACTG	AATACCCGTC	AATTCATTAT	ATAATTTACG	3060
	CGTCACAGGA	CCTACTTCTG	TTTCACTATA	GAATACATGG	AAATCATCAC	CATGTTGAAT	3120
	ACCTCCAATT	GGAGAAATAA	CCGCTGCTGT	ACCACAGGCA	CCTGCCTCTA	CAAAACGGTC	3180
	AAGATTATCA	ATTGGAACAT	CACCCTCAAT	AGGAGTTAAT	CCCAAGCGAT	GTTCTGCCAA	3240
	ATAAAGCAAG	GAATACTTGG	TAATAGATGG	CAAGATAGAT	GGACTCAATG	GTGTTACAAA	3300
	TTCATTATCA	GCTGTAATTC	CAAAGAAGTT	AGCTGATCCG	ACTTCTTCAA	TCTTTGTATG	3360

PCT/US97/19588 WO 98/18931

			1110			
AGTTGATGGG	TCCAGATAGA	TAACATCTGA	GAAATGACGT	GACTTGGCCA	TTTTTCCTGG	3420
TAAGAGACTT	GCAGCATAGT	TTCCACCAAC	CTTAGCCGCA	CCTGTACCAT	TTGGTGCTGC	3480
ACGGTCGTAC	TCATCCTGAA	TCAAGAAGTT	GGTTGGGACC	AAACCACCTT	TAAAGTAATT	3540
TCCAACTGGC	ATAGCAAAGA	TGGTGAAAAT	GTACTCTTCT	GCCGGTTTTA	CCCCGATAAT	3600
ATCTCCGACA	CCAATCAAAA	GAGGGCGAAG	ATATAAGGTT	CCACCTGTTC	CGTATGGTGG	3660
TACGTATTCT	TCATTCGCAC	GGACAACTGC	TTTACAAGCT	TCTACAAACA	TGTCTGTCGG	3720
AACTTGTGGC	ATCAAGAGAC	GGTCACATGT	ACGTTGCAGA	CGTTTAGCAT	TTTCATCAGG	3780
ACGGAACAGT	TGAACACTGC	CATCCTTAGT	ACGATAAGCT	TTCAAACCTT	CAAATGCTTG	3840
TTGTCCATAG	TGAAGACTTG	GAGAAGACTC	TGAAATATGC	AAAGTTGCAT	CCTCTGTAAG	3900
CTCTCCTTGA	TCCCATTGTC	CATTTTTGAA	ATGAGCAAGA	TAGCGATAAG	GTAATTTCAT	3960
ATAGGAAAAA	CCGAGGTTTT	CCGG				3984

(2) INFORMATION FOR SEQ ID NO: 177:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8703 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:

TATCTAATTA	TTGGTTTTTA	TCGCTGACCT	TGGCTATTGT	TGGGGTTGTT	TTACCCTTGT	60
TGCCTACAAC	ACCITTCCTT	TTGTTGTCTA	TTGCTTGTTT	CTCCAGAAGT	TCCAAGCGAT	120
TCGAAGATTG	GCTTTATCAT	ACCAAGCTCT	ATCAAGCATA	TGTAGCTGAT	TTTCGTGAGA	180
CCAAGTCTAT	TGCGCGTGAA	CGAAAGAAAA	AAATCATCGT	CTCTATCTAC	GTCTTGATGG	240
GAATTTCTAT	TTATTTTGCA	CCTCTTTTAC	CAGTCAAAAT	CGGTCTGGGT	GCTTTGACCA	300
TCTTTATTAC	TTATTATCTC	TTCAAGGTCA	TTCCAGACAA	AGAATAGTTA	AAACAGTAGT	360
TATTTGCCTT	GATAAAATTG	AAAGCATATT	CATAACAATA	TGATATÄATA	AAATTGAAGT	420
AATATTCAAG	GAGAATCAAA	TGATTTACGA	ATTTTGTGCT	GAAAATGTGA	CTTTACTTGA	480
AAAAGCGATG	CAGGCTGGAG	CTCGTCGGAT	TGAACTCTGT	GATAATCTAG	CAGTTGGTGG	540
GACAACACCC	AGCTATGGAG	TGACTAAGGC	AGCGGTTGAA	CTGGCAGCTA	ACTACGATAC	600
AACCATCATG	ACCATGATTC	GGCCACGTGG	TGGTGACTTT	GTCTATAATG	ACCTAGAAAT	660
TGCTATCATG	CTAGAAGACA	TTCGTTTGAC	TGCTCAGGCT	GGAAGTCAAG	GGGTTGTATT	720
TGGAGCTTTA	ACTGCTGATA	AAAAGTTGGA	TAAGCCTAAT	CTGGAAAAGT	TAATTGCTGC	780

ATCAAAAGGA	ATGGAAATTG	TCTTTCACAT	GGCCTTTGAT	GAACTAAGTG	ATGAAGATCA	840
AGCGGAAGCT	ATTGACTGGC	TCAGTCAAGC	CGGTGTCACT	CGTATCCTAA	CTCGTGCTGG	900
TGTGTCTGGC	GACTCCTTAG	AAAAACGTTT	TGTTCACTAT	CACAGAATTT	TGGAGTACGC	960
TAAAGGTAAA	ATTGAAATTC	TACCAGGTGG	GGGGATTGAC	CTTGAAAACC	GTCAAACCTT	1020
TATCGACCAG	GTGGGGGTAA	CACAATTGCA	TGGTACTAAG	GTTGTTTTT	AAAAAATAGA	1080
AAGGAACTGC	TAGCTTTGGG	TAGCAGTTTT	CACTTATGTT	TGAAATTTTT	AAATCCTATC	1140
AATTTAATCA	AGAAAAGGCT	CATGATTATG	GTTTTATAGA	AAATAGCGAA	GTCTGGACAT	1200
ATAGTTGCCA	GATTTTGCAA	GGTGACTTTG	TCATGACTGT	GTCCATCACT	GCTGATAATG	1260
TGAACTTTCA	AGTCTTTGAC	CAAGAGACTG	GTGACCTCTA	TCCTCACGTT	TATATGGAAA	1320
GCATGAGGGG	AAGTTTTGTC	GGAAATGTCC	GTGAGGCTTG	TCTGGAGATT	CTTTACCAGA	1380
TTCGGAAGGC	TTGTTTTGAT	GTGCAAGATT	TTATCTGTCA	TCAGACTAAG	CGTATCATGA	1440
CTCAAGTTCA	GGAAAAGTAT	GGAAACCAGT	TGGAGTATCT	GTGGGAAAAA	TCGCCTGATA	1500
CAGCTGTATT	GCGCCATGAA	GGCAATCAAA	AGTGGTATGC	CGTCTTGATG	AAAATCTCTT	1560
GGAATAAGCT	GGAAAAGGGC	AGAGAAGGAC	AAGTGGAAGC	AGTCAACCTC	AAGCATGACC	1620
AAGTAGCTAA	TTTGCTTTCA	CAAAAGGGGA	TTTATCCAGC	CTTCCATATG	AGCAAGCGCT	1680
ACTGGATTAG	TGTGTCCCTT	GATGATACTT	TATCAGATGA	AGAAGTACTG	GAATTGATAG	1740
aaaaagttg	GAACTTAACC	TCTAAAAAAT	GAAATATTTT	AATAATTTTC	ATGAACTTTC	1800
AATTAGCTAA	ATATTCTTTA	CTGAAGAGAT	TTTTAGAAAA	TATAGGATTT	ACCACACTAG	1860
AGGAATATGG	TGCCATCTTC	AAATACCTGA	TTGAGAATGT	CAAGACGGAT	CGTCAGATCA	1920
TCTATTCGCC	TCACTGTCAT	GATGACCTCG	GAATGGCAGT	GGCAAATAGC	CTTGCTGCTG	1980
TCAAGAATGG	TGCAGGACGT	GTTGAAGGGA	CTATCAATGG	TATTAGGGAG	CGAGCTGAAA	2040
ATGCTGCTTT	GGAAGAAATT	GCAGTGGCTC	TCAATATTCG	CCAAGATTAC	TACCAAGTAG	2100
AAACCAGTAT	TGTCCTAAAT	GAGACCATCA	ATACGTCAGA	AATGGTTTCT	CGCTTCTCTG	2160
GTATTCCAGT	TCCTAAAAAC	AAAGCCGTCG	TTGGTGGCAA	TACCTTCTCC	CACGAATCTG	2220
GTATTCACCA	AGATGGAGTC	CTTAAAAATC	CTCTCACTTA	TGAGATCATC	ACACCTGAAT	2280
TGGTTGGTGT	TAAGATTCTG	CTTGGAAAAT	TATCTGGTCG	CCATGCTTTT	GTTGAGAAAC	2340
TGAGAGAATT	GCCCTAGAT	TTTACAGAAG	AGGATATCAA	ACCACTCTTT	GCTAAGTTCA	2400
AGGCACTGGT	CGATAAGAAG	CAAGAAATCA	CAGATGCAGA	TATTCGAGCT	TTGGTAGCTG	2460
GAACCATGGT	TGAAAATCCA	GAAGGCTTCC	ACTTTGATGA	TTTACAACTT	CAAACTCATG	2520

CAGATAATGA	CATTGAAGCG	CTCGTTAGCC	1112 TAGCCAATAT	GGATGGTGAG	AAAGTCGAAT	2580
TTAATGCGAC	AGGGCAAGGT	TCCGTTGAAG	CAATCTTTAA	TGCTATCGAT	AAGTTCTTTA	2640
ACCAATCTGT	TCGTTTGGTG	TCCTACACTA	TCGATGCGGT	AACAGATGGA	ATCGATACCC	2700
AGGATCGGGT	TTTGGTCACT	GTTGAAAACA	GAGATACAGA	AACCATCTTT	AATGCAGCAG	2760
GGCTTGATTT	TGATGTGTTG	AAGGCTTCTG	CTATTGTCTA	TATAAACGCT	AATACCTTTG	2820
TTCAAAAAGA	GAATGCAGGT	GAGATGGGAC	GCAGTGTTTC	TTACCACGAT	ATGCCTAGTG	2880
TGTAAAGGAG	AAGGCTATGG	CAAAGAAAAT	AGTAGCTCTA	GCAGGAGACG	GAATTGGCCC	2940
AGAAATCATG	GAGGTTGGTT	TAGAAGTTCT	GGAGGCTCTA	GCTGAAAAA	CAGGTTTTGA	3000
CTATGAGATT	GACAGACGAC	CGTTCGGAGG	TGCAGATATT	GATGCAGCAT	GACCTCCCTT	3060
ACCTGATGAA	ACCCTTAAGG	CAAGTAGGGA	AGCAGATGCT	ATCCTACTAG	TAGCTATCGG	3120
TAGTCCTCAG	TATGATGGAG	CAGTGGTTCG	CCCTGAACAA	GGCCTGATGG	CTCTCCGTAA	3180
GGAACTCAAT	CTTTACGCTA	ATATTCGTCC	TGTAAAAATC	TTTGACAGTC	TCAAGCATTT	3240
GTCACCACTC	AAACTGGAAC	GAATTGCTGG	TGTAGACTTT	GTCGTGGTGC	GTGAATTGAC	3300
AGGCGGGATT	TACTTTGGAT	ATCATATTCT	TGAAGAGCGC	AATGCGCGTG	ATATCAACGA	3360
CTATAGCTAT	GAGGAAGTGG	AGCGGATTAT	TCGCAAAGCC	TTTGAAATTG	CAAGAAATCG	3420
CAGAAAAATC	GTTACTAGTA	TCGATAAGCA	AAATGTTCTA	GCGACCTCAA	AACTCTGGCG	3480
GAAAGTAGCT	GAGGAAGTCG	CACAGGATTT	CCCAGATGTA	ACCTTGGAAC	ATCAGCTGGT	3540
AGACTCAGCT	GCTATGCTTA	TGATTACCAA	TCCTGCTAAG	TTTGATGTTA	TTGTAACGGA	3600
GAATCTTTTT	GGAGATATTT	TATCTGATGA	ATCAAGCGTC	TTATCTGGTA	CACTTGGGGT	3660
TATGCCATCA	GCCAGTCATT	CTGAAAATGG	ACCAAGTCTC	TATGAACCTA	TTCACGGTTC	3720
AGCACCTGAT	ATTGCAGGTC	AAGGAATTGC	CAATCCTATT	TCCATGATTT	TATCAGTTTC	3780
CATGATGTTG	AGAGATAGTT	TCGGACGTTA	TGAGGATGCA	GAGCGTATCA	AACGTGCTGT	3840
TGAGACAAGT	CTGGCGGCAG	GAATTTTAAC	GAGAGATATA	GGAGGTCAGG	CTTCAACAAA	3900
GGAAATGACG	GAAGCTATTA	TTGCAAGGTT	ATGAAGTTAG	ACGAAAAAAT	TACTCTAGTC	3960
CTTTTGATTT	GGAATGTCAT	CATTTTCTTG	ATTTATGGTA	TTGACAAATC	TAAGGCAAGG	4020
AGAAGAGTTT	GGCGCATCCC	TGAGAAAATC	TTACTTATTT	TAGCCTTTAC	TTTTGGTGGT	4080
TTTGGTGCCT	GGCTAGCAGG	AATCATCTTT	CACCACAAGA	CTCGAAAATG	GTACTTTAAA	4140
ATAGTTTGGT	TTCTTGGGAT	GGTGACCACA	CTAGTAGCCT	TATATTTAT	TTGGAGGTAA	4200
TGGATGGCAG	GGTCTTCGAG	GGAATACGCT	GCTTGGGCTC	TAGCGGACTA	TGGTTTTAAG	4260
GTCGTGATTG	CAGGATCTTT	CGGTGACATT	CATTACAATA	ATGAACTCÁA	TAATGGCATG	4320

TTGCCAATCG TTCAGCCTAG AGAGGTTAGA GAGAAACTAG CCCAGCTAAA ACCAAUCGAC	4360
PAGGTAACTG TGGACTTGGA ACAACAAAAA ATCATCTCAC CAGTTGAAGA ATTCACCTTC	4440
GAGATAGATA GCGAGTGGAA ACATAAACTC CTAAATAGTT TGGATGATAT CGGTATTACC	4500
TTGCAGTATG AAGAGTTGAT TGCTGCTTAT GAAAAACAAC GACCAGCCTA CTGGCAGGAT	4560
TAGAAAAAAT AGAAAAGGAG ATATAGTAAA CTGAAATAAG ATGTAAACAA ATGAATTGGA	4620
GCTTAACATC CATTTCCAGC AATTTTTTAG AAACTACAGT GGACTATTCT GGATTCAACA	4680
CATTATAAAA TTATGACAAA ACACATTCAC AAGAAGGCTA CGACATTTTA AAAGGTGAGG	4740
GCGGATGTAT CGTTTGCCCT ACTAAAGTTG GTTACATTAT CATGACCAGT GACAAGGCAG	4800
GACTTGAGCG TAAGTTCGCA GCCAAAGAAC GTAAGCGTAA CAAACCAGGT GTTGTTCTCT	4860
GCGGTAGCAT GGATGAACTT TGCGCTTTAG CGCAACTCAA CCCAGAAATT GAAGCATTCT	4920
ACTAAAAACA TTGGGATGAA GATATTCTTC TTGGTTGTAT CCTTCCTTGG AAACCAGAAG	4980
CCTTTGAAAA ACTCAAAGCA TACGGGGATG GCCGTGAAGA ACTTATTACT GATGTACGTG	5040
GTACTAGCTG TTTTGTTATC AAGTTTGGAA AAGCAGGTGA ACAATTGGCT GCCAAGCTTT	5100
CGGAAGAAGG TAAAATGGTC TACGCCTCAT CTGCTTCAAT GACAAAACGA TTGAAACTCG	5160
CTATGAGCAA GGTGTAATGG TGTCTATGGT CGATAAGGAC GGCAAACTCA TCCCAGAACA	5220
AGGAGGAGCA CGTTCAACTT CACCAGCTCC AGTTGTGATC CGTAAAGGGC TTGACATTGA	5280
TAAAATCATG ATGCACCTGT CAGATACTTT TAACTCATGG GACTACCGTC AGGTTGAGTA	5340
TTATTAGGAT AGAGAAGAAG TCTAGTGTTA TGAGATATTA AAGCTCCTAA CACTGGGCTT	5400
TTGTTTAGAA TTTCTTTTCT TTTTCTATAG GATATGGTAT TCTATGTAGA AAATATATGT	5460
TAATAAGTAA TGCCAATATT TAAACATCAT TAGTAAAAGG AGTTAGATTG ATGAATAAAA	5520
GAAAAGTTAG TTTAGAAGAT TTTTATAAAT GGTATAGTCT AAATAAAGAA GAGTTATTAA	5580
ATAAGGCAAC TGTTGGTGAA AAGTTTAATG ATAAATTAAA AGAAGAGTTT CTCCAGGAAT	5640
GGCCTTTGGA TAGGATTTTA ACAATGTCAA TCGATGAATA TGTAATAGGA AAGGGACAGC	5700
AAAATAAGTC TTTATGCTAC GCTCTTGAGA AGGGAAAATA CAAAAATCTA TTTCTTGGAA	5760
TTTCTGGTGG CTCAGCTTCA AAATTTGGTA TTTATTGGAA TAAAAAAACA AACAAATATA	5820
AAGATCAAGC TAATAATGAG ATTTCAGAGT TGGATCAGCG ATTTTCAAAA TTAAAATCAG	5880
ATTTGTATGA AATTATCAAA GAAGGTATTC GTTTTAACTT TGAAAATCCT ATTTTTGATA	5940
TGAAAAGATC AACAAATGAA TTTATTGGTC GTTCTGCTAT GGTGACAAAA TTACTTTGTA	6000
TCTATACTGA GGGAGATCCT TTCTTTGGTG TAAATATTAA TAGTCAGAAA GAATTTTGGA	6060

ACCACTTTGT TTCTCAGA	CA AATCAAGGTG	1114 GACCTTATCT	GCAAAATCAT	AAAATAATTG	6120
AACTGGTGTC CAAAACTT	AT CCTGAGTTGG	AGCCATCGAA	ATTAGGAACT	ATGCTTTTTG	6180
AGTATTCTAA GCTTTTTA	NTG GAAAATAAGG	AAGACAATAG	TACAATGGAT	TCATCAAACA	6240
ATTTTCGTCA TCAATTA	CT CAATCTCTAT	TAAAGTCTCC	AAACCTCATC	CTCCGCGGTG	6300
CTCCTGGCAC GGGAAAA	CT TATCTTGCTA	AAGAAATTGC	TAAAGAATTA	ACGGATGGCA	6360
ACGAAGATCA AATCGGAT	TTT GTACAATTTC	ACCCATCATA	TGATTATACG	GATTTTGTAG	6420
AAGGTTTAAG ACCAGTA	ICA AATGGGGATG	GAGCTATTGA	GTTTAGGCTA	CAGGACGGTA	6480
TTTTTAAAGA TTTTTGT	CAG AAAGCAAAAG	AAACCCAATT	GATTGGAGGA	CAAGATAATT	6540
TTGATGAGGC TTGGGAT	TCT TACTTAGAAT	ATATAAATGT	TGCTGAAGAA	AAAGAATATA	6600
TAACAAAAAC ATCTTAC	TTA TCTGTTAATA	GTAGACAAAA	TTTGTCAGTA	AATTATGATA	6660
GTGGTGTTCC AGGATGG	TCA CTACCTAGCA	AATATGTTTA	CGAGTTGTAT	AAAGATAAAA	6720
ATTATAATAA GCAAGAA	TAC TACAAAAGTG	GTGGAAAAAC	TGTCCTAGAA	ACATTGAGAA	6780
AGAGATTTGG TTTGAAA	GAC TATGTTTCCC	CAACAGAAAT	TGATACTGAT	AAGAATTTTG	6840
TCTTCATCAT CGATGAG	ATC AATCGTGGGG	AGATTTCTAA	GATTTTTGGC	GAACTCTTTT	6900
TCTCTATCGA CCCCGGC	TAT CGTGGTGAA	AAGGAAGTGT	TTCTACCCAA	TATGCAAATC	6960
TACACGAAAC TGATGAA	AAG TTCTATATCO	CCGAAAATGT	TTACATCATO	GGAACTATGA	7020
ATGATATTGA TCGTTCA	GTG GATACCTTTC	ATTTTGCTAT	GCGTCGTCGT	TTTCGTTTTG	7080
TTGAAGTTAC TGTCGAG	GGT CAAGCTGGC	A TGTTGGATA	AGAGTTGAAT	ATCCATGCAG	7140
AAGAAGCAAA AATTCGT	CTA AGAAACTTG	A ACGCTGCTAT	CGAAAATAT	CAGGAATTAA	7200
ACAGTCATTA TCATATT	GGA CCAAGTTAT	r ttcttaagt	CAAGGATGT	GATTTTGACT	7260
ATGAATTACT CTGGTCT	GAT TATATTAAG	C CTCTCCTAG	A AGACTACTT	G CGAGGTTCTT	7320
ATGATGAGGT TGAAACT					7380
AAAAAGATCA GGCAGTA	AGCT GATGACAAT	G AAGGCGATG	A AAACGATGA	r GCGGATTAUT	7440
GATAATCAAC ACAAGA					7500
CCTCTTTTAG ACAGAA					7560
AATGATTWGA CTCATA					7620
CAGAAAATCA AGACAG					7680
ATTTCCTCAC GATTTT					7740
GTTCTTCATA TCAATC					7800
CAACTTTTGG TGTATC	TOTT TOCCAAGT	AT CTACAAGCT	G CTATTCGAA	A AGGTCTTAT	7860

AAGGAATATC	ATCGATTTTC	TCATAACGAC	AGTCATGTTA	AGGGAGTGAT	TGATGTAAGA	792
AACCATCTCA	AGAAAAATCT	TCCTTTCACG	GGAAATATTG	CCTACGCAAC	GAGAGAGTTC	7980
ACCTATGATA	ATCCCCTCAT	GCAGTTGGTC	CGTCACACTA	TTGAATACAT	TAAGAATCAG	8040
AAAAGCATTG	GTCAAGGGGT	ACTAGATAAT	CTCTCAACTA	GTCGTGAAAA	CGTATCTGAA	8100
ATCGTGCGTG	TAACGCCCTC	ттаталаста	GCTGATCGTG	CTAAGATTAT	TCGGGGAAAT	8160
CAATCTAAAC	CTATACGTCA	TGCATACTTT	CACGAGTACA	GAAACTTACA	AGAACTTTGT	8220
CTGATGATCC	TAAACCAAGA	AAAGCACGGT	TTAGGGTATC	AAGATCAAAA	AATCTATGGT	8280
ATTCTCTTTG	ATGTTGCCTG	GCTTTGGGAA	GAGTATGTTT	ACACCTTGTT	GCCAAAAGGT	8340
TTTGTACATC	CCAGAAATAA	GGATAAGACG	GATGGAATTT	CAGTATTTTC	TGTTGGGAAA	8400
CGAAAAGTAT	ATCCAGATTT	TTATGACAGA	GAACGAAAGA	TTGTTCTAGA	TGCAAAATAT	8460
AAAAAACTGG	AATTGACTGA	AAAAGGAATC	AACCGTGAGG	ACTTATTCCA	GCTGATTTCC	8520
ТАТТСТТАТА	TTTTAAAAGC	TGAGAAGGCT	GGACTGATTT	TTCCTAGTAT	GGAGCAGTCA	8580
GTAAATAGTG	AAATAGGAAA	AGTAGCTGGC	TATGGAGCTC	AATTGAAGAA	GTGGTCTATT	8640
CGAATCCCTC	AGAATGCCTC	ATTCTATAGT	ACATTTTGTA	aaatgatgga	AAATTCAGAA	8700
GAG						8703

(2) INFORMATION FOR SEQ ID NO: 178:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4854 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:

CATCACCAGT	TTTAGATGGC	TTTAACAGTG	AAATTATTGC	TTTTAATCTT	TCTTGTTCGC	60
CTAATTTAGA	ACAAGTACAA	ACAATGTTGG	AACAGGCATT	CAAAGAGAAG	CACTACGAGA	120
ATACGATTCT	CCATAGTGAC	CAAGGCTGGC	AATATCAACA	CGATTCTTAT	CATCGGTTCC	180
TAGAGAGTAA	GGGAATTCAA	GCATCCATGT	CACGTAAGGG	CAACAGCCAA	GACAACGGTA	240
GGATGGAATC	TTTCTTTGGC	ATTTTAAAAT	CCGAAATGTT	TTATGGCTAT	GAGAAAACAT	300
TTAAATCACT	TAACCAATTG	GAACAAGCCA	TTATAGACTA	TATTGATTAT	TACAACAATA	360
AGAAAATTAA	GATAAAACTA	AAAGGACTTA	GTCCTGTGCA	GTACAGAACT	AAATCCTTTG	420
GATAAATTAT	TTGTCTAACT	GTTTGGGGGC	AGTACACAAG	AAAGCGCTTT	AAAACCAGTA	480

			1110			
					T AGAATCAGTA	
					T CACTATATAC	
					A TTTTTCTTAA	
TAGCTGGTG	G ATGTAATAC	T GAGTGGATG	A ACGCCTTTT	T AGAAGAGCT	T TCACAAGCTT	720
ATCCAGATG	A TTATCTTTT.	A CTCGTTATGO	G ACAATGCTA	T ATGGCATAA	A TCAAGTACCT	780
TAAAGATTC	C GACTAATAT	r ggttttacci	TTATTCCTC	C ATACACACC	A GAGATGAACC	840
CATTGAACA	A GTGTGGAAA	G AGATTCGTA	ACGTGGATT	T AAGAATAAA	G CCTTTCGAAC	900
TTTGGAAGA	T GTCATGAAT	C AACTCCAAGA	TGTCATACA	A GGATTGGAG	AGGAGGTGAT	960
AAAGTCCAT	C GTTAATCGG	A GATGGACTAC	AATGCTTTT	r gaaaacaga	GAGTATAAAA	1020
TTGAATTGC	AAAAAATAT 1	G CTCCATACAC	TGGATGTGT	A TAGAGCAATO	GGGCTTTATT	1080
rgatataga:	G TTCTTGGTT	TTTAGGACAA	TTTCTCGGAT	ACTTGCAAAC	TTTTTAAGTT	1140
TTTGATTT	TTCTGGATGA	GTGACGAGAG	TGATAACATA	ACCTTCCTTC	CCCATACGAC	1200
CAGTACGGC	AGCACGGTGT	GTGTAGGTTT	CGCTATCTCT	AGGAATATCA	AAGTTTACGA	1260
CACATTCTAC	GCTATCGATA	TCAATTCCAC	GAGCCAAAAG	GTCAGTTGCA	AGAAGCAGGG	1320
TAGTTGGT	ATCTTTAAAC	TTTTCTAAGA	TGATTTTCT	' AAATTTAACA	TTAACATCAC	1380
'AGCGAGGGA	AACAGCCAAT	* ATATCACGAT	ACTGTAGTTT	TTCCTCGGCA	TTCCCAAGGT	1440
TGACAGGC1	` ATTGAAGAAG	ACTAGACCAC	GGAAATCCTC	TACATGAGCC	AGTTTTCGTA	1500
CATATCCAC	TCGATGACGT	TGGTCTACCT	GCATGTAGAA	ATGCTGGATA	TTGTCCAATT	1560
TTGATCAGA	GAGATCAATA	GTGCGTGTAT	TCGGCACAAT	CTTTTCTTGG	TCAAACTTGG	1620
CGTGGCACT	CATGTAGACC	AGTTGGTGGT	CACGAGGTGC	GTAGTGAGTG	ATTTTTTCTA	1680
AAAGTGAAT	CTGAGAATCA	TCTAGTAATT	GGTCAAATTC	ATCCAGGATG	ATGGTTTCCA	1740
ATTCATCAT	CTTGATTTTT	TTAAGTTTAA	TGAGTTCAAA	GATACGGCCA	GGAGTTCCAA	1800
CAGAATTTC	TGGCCCCTTT	TTAAGACGTT	CAATTTGTCG	TTTCTGACTT	GAACCTGAAA	1860
GAAGAGTTG	AGCAGTCAAT	CCGATAGCTT	CTGCCCACGT	TTTACATACA	TCAAAAATCT	1920
TCCAGCAAG	TTCCGTATTT	GGTGCTAGAA	TCAAGAGTTG	TTGGGCTTTT	TTCTTTTGTA	1980
TCTGAGAAG	ACTTGGTAGG	AGATACGCTA	GGGTCTTACC	AGTTCCGGTT	TGGCTCACTC	2040
Taggaggtt	TTCTCCAGCA	AGAAGGGGCT	CAAATAGTTG	AGTTTGAATG	GGGGTGAATT	2100
TGGAAACC	GAGTTGGTCA	CTCAGTTCTT	GCCATTCAGT	CGGTAGTTTG	GTTTTCATTT	2160
CTGCCTCA	AATCTAATGC	CAGCAGTCTG	GCGCATGGTA	TATAGTAGCT	CATGAACAGA	2220
CCTGCATCA	TACAGCCAAG	TTTGGTAGAG	ATTCAGATCT	GGTTGCTGGA	TCATGTGTGC	2280

AAATGCAGC	G ACTTCCTCAC	G TCATCGTATO	G AGGAGCCTG1	TGGATAGGA	GCTGGACTTG	2340
ATTTCCTTG	G TGGTCGGTA	AAATAGCTG/	A GCGAATATGO	TCAATCGTGT	TGAGAGTCAA	2400
GGTTCCATC	r gttgtataa	TCTCGCAAG	G AAGATTGGAA	GTGATGTTT	TTCCAGCCTT	2460
GATGTGAACT	TGATAGTCTC	GGTAGAAGAG	G GATACCATCT	CCATTTAGGT	CAATGCTATT	2520
GTCAAGCTGT	TGAGCATGGT	AAGTCGCGTC	ATTGGCTTTT	CCAAAAAGAC	GAACAGCAGC	2580
ATAGAGGGGA	TAAATCCCCA	AATCCATGAC	GGCTCCACCA	GCAAAACGGT	CTGAAAAGAC	2640
ATTTGGTGTT	TGTCCAGCCA	ACAAGTCAGG	CATCTTGGAA	GAGTATTTGG	CATAGTTGAA	2700
ATCTGCTCCT	AACACTTGCT	TATCTGCTAA	AAAGTTTTTG	ATAGTAGTAA	AGGCTTTCTC	2760
GTGGTAATTA	CGAGCTGCTT	' CAAAGATAAA	ACAGTTATTT	TTTTCAGCTG	TTTGAATCAA	2820
ATCAAACCAT	TCTTGTGGTT	GAGAGACAGC	TGGCTTTTCG	AGAATAACAT	GTTTACCAGC	2880
AGACAAGGCA	GCTTTTGCCT	GAGCAAAATG	TAAGGAGTTT	GGACTGGCGA	TATAGACTAA	2940
ATCAAAAGAA	GATTTGAAGA	AGACTTCTAA	TTGATCGAAT	AGTTGGATAT	TCTGATAGCG	3000
AGAAGCAAAG	GTTGCTGCAG	TTTCTAGTTT	TCTAGAATAG	ATTGCGACCA	GTTGGTATTC	3060
TCCACTGGTA	TGGGCTGCTT	CTATGAAATG	ATGGCTGATA	GCGCCAGTTC	CGATGACACC	3120
TAATTTTAGC	ATAAATACTC	CTTTTCCGAT	TTTAAATCCT	TCTTTCATTA	TAACATAGAT	3180
AGACGGGACT	ATCCAACAGA	GAGGAGAAAA	TTTCAAATAA	GCTATTAGCT	TTCTTTTCCG	3240
AATAAATAGA	TAGAAGCATA	GAATCTAGCA	AACCTAGATT	TAAAAATGTG	CTATAATAGA	3300
AGGAGGAAAA	GGAGGATTCT	CAGACATCTA	GGTATCAGCC	CAACTAATGA	TTTGTCAATT	3360
TATCCGCGAT	ATGCTGGACT	TGCCAGCAAA	AAATGTGACG	ATTTTGGAGG	GAAGTAACAT	3420
TCACGTCTTG	CCTTCCATGC	CCTACTCAGC	GTAAGATTTC	TATACTAGTA	TAGACGTCTT	3480
GGCGGAGTTA	GATAATGGAA	TCCAAGTTAT	CATCGAAATT	CAGGTTCATC	ATCAGAATTT	3540
TTTCATCAAT	CGCCTATGGC	CTTATCTGTG	CAGTCAGGTT	AATCAAAACC	TAGAAAAAT	3600
TCGCCAACGT	GAAGGTGATA	CCCACCAGAG	CTACAAACAA	ATCGCACTAG	TATACGCTAT	3660
CGCAATTGTC	GATAGTAATT	ACTTCTCAGA	TGACCTAGCT	TTTCATAGTT	TTATAGTAAA	3720
ATGAAATGAG	AACAGGACAA	ATCGATCAGG	ACAGTCAAAT	CGATTTCTAA	CAATGTTTTA	3780
GAAGTATAGG	TCTACTATTC	TAGCTTCAAT	CTACTAGAAA	TTCCATAGAT	AGAAAACTAC	3840
ATAATCTCTA	CAGATACGGA	TGTTGGAGTT	GATGTAAGAT	GCTTTGGCTT	GCTAGAGGAA	3900
TTGTGGATTG	CCAAATTGTA	TCATTGAAAT	TATTGCTCAA	ATTTGTTATG	ATATAAATAT	3960
GAATAAAAGT	AGACTAGGAC	GTGGCAGACA	CGGGAAAACG	AGACATGTAT	TATTGGCTTT	4020

			1118		•	
GATTGGTATT	TTAGCAATTT	CTATTTGCCT	ATTAGGCGCA	TTTATTGCTT	TTAAGATCTA	408
CCAGCAAAAA	AGTTTTGAGC	AAAAGATTGA	ATCGCTCAAA	AAAGAGAAAG	ATGATCAATT	414
GAGTGAGGGA	AATCAGAAGG	AGCATTTTCG	TCAGGGGCAA	GCCGAAGTGA	TTGCCTATTA	420
TCCTCTCCAA	GGGGAGAAAG	TGATTTCCTC	TGTTAGGGAG	CTGATAAATC	AAGATGTTAA	426
					AAGAGTCAGG	4320
					TTGCTTTTAA	4380
					ATGGGCAACC	4440
					TGATAAAAGA	
					AGATTGTAAA	4500
					GTCAGATTAT	4560
					TATCTGCTTT	4620
						4680
					ACCAATCTTA	4740
					CAAATCCAGC	4800
ACGACCCCG	CAGGTATTAG	AGACCCTAGC	TAAATATGAT	ATTACAAGCG	GGGT	4854
2) INFORMA	TION FOR SE	Q ID NO: 17	9:			

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2186 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:

TAAACAGGTG	TTAGGTGCTC	TAAACTATTA	AAATTCTAAG	GAAATAAGGC	TACTTTTTCT	60
GGGTCTTGTT	CATAGTAGGT	GTGGTTCTTT	TTTTCGAGTG	TAGCCCATAG	CTTTGAGCGC	120
ATAGTGGATG	GTAGTTGGAT	GACAGCCAAA	TTCAGAAGCT	ATTTCAGTCA	AATAAGCATC	180
TGGATTGTCA	GTAAGATAGT	TTTTAAGTCT	ATCTCTATCA	ACTTTTCTTG	GTTTTGTTCC	240
TTTTACTTGG	TGGTTTAGCT	CTCCTGTTTT	CTCTTTTAGC	TTTAACCAGC	CATAAATGGT	300
ATTACGTGAG	ATTTGGAAAA	CGTGTGATGC	TTCTGTTATA	CTACCTGTTC	GCTCACAATA	360
AGAGAGAACT	TTTTTACGAA	AATCTATTGA	ATATGCCATA	AGAAGATTAT	ACCACATTGT	420
GTACTATTTT	TGGTTCATTT	TACTATATTT	CTAAACACTT	AGAAATAATA	AAACAAATTA	480
AATATTATTT	CTAAATATTT	GAAAATAACA	TCTATTTGTA	TTATACTATC	TTTGAGGTAA	540
CTATTATGAA	CTATATCAAA	AGACCACATT	ATTTAGATTT	TTTAAGAAAA	CATCGTGACC	600

GACCAATCAT CAAAGTTGTG AGTGGAGTTA GACGAGCTGG TAAATCTGTG CTTTTTCAAC	660
TCTATAAAGA GGAGTTACTA GCAACTGGGG TAGACGAGGA TCAGATTATA TTCATCAATT	720
TCGAAGATTT GAGTTACTAT GATCTGCGAC ATTTTCAAAC ATTATTCGCT TATATAAAAG	780
ATCAATTAGT TAGCAAGAAA ACATACTATA TCTTTTTAGA TGAAATTCAA TATGTTGAAA	840
AATTTGAACT GGTAGCAGAT AGTCTATTCA TCTTAGCAAA TGTAGACCTC TATTTGACTG	900
GATCTAACGC CTACTTTATG AGTAGCCAAT TAGCAACAAA CTTGACTGGT CGGTATGTTG	960
AGATAGAGGT TCTTCCTTTG TCATTTGAAG AATATCTATC AGGTCAATCT CTCACAGAGA	1020
ATCTGAATAC AACAGAAATT TTTAACAATT ATCTCTTTAG TGCTTTCCCT TACTTATTGC	1080
AAACATCATC TTACGATGAA AAAATTGACT ATCTCAGAGG AATATATAAC TCCATACTGT	1140
TAAATGATAT TGTCACTAGA TTGGGAAAAC CAAATCCTAC TATTATTGAG CGCATTGTCC	1200
GAACCCTTCT CAGTAGTACA GGTAGCTTAA TATCAACAAA TAAGATTCGC AATACCCTAG	1260
TCAGCCAAAA TGTTTCAATA TCCCATAATA CTTTGGAAAA TTATTTGACA ACTTTGACAG	1320
ATAGTTTACT TTTTTATTCC GTTCCACGTT TTGATGTAAA AGGTAGAGCA TTATTGCAAC	1380
GTTTAGAAAA ATATTATCCC GTTGATTTAG GTTTACGACA TCTCTTATTA CCAGACCAGA	1440
AAGAAGACAT TAGGCATATC TTGGAAAATA TGGTATATTT GGAATTGAGA CGTAGATATT	1500
CACAAGTATA TGTTGGTAAT TTAGATAAGT ATGAGGTTGA TTTTGTTGTT GTAACTGATC	1560
TTGGCCACTA CGCTTATTAT CAGGTCAGTG AAACAACACT TGCTCCAGAA ACACTAGAAA	1620
GAGAACTTAG ACCACTAGAA GCCATTAAAG ATCAATTCCC TAAATATCTA TTAACAATGG	1680
ATACGATTCA GCCAACAGCC AATTACAATG GAATCGAGAA GAAAAGCATT ATAGATTGGT	1740
TACTAGAAAA ATAGATAAAT ATAAATCATA CAGCTAATTA GATTTGCAAC AGTCTGTTAT	1800
CAATGATTCT ACCCAAATCC TAACAAGATA TAGTGAATTT CGAATACGCT ATATAATACG	1860
GACACTTGAA AATAGAAATT GGGGATGAAA GGGGATCTAT AATTTCTGGA AGTACTATCA	1920
AAAATTAATA TCATAGTCTT ATTAGAGAAT AGCATCACCC ACTTTCTCAA ATAAGATTAA	1980
ATTGTAACTG AATTATAATG AAAAAGAGAC TGAGCAATCA GTCTTTAAAA TCAGAAAAGC	2040
GCATAGTATC AGGTATTGAA CAACCTTGAT AATATGCGTT TTATTATGGA AATATTTGCT	2100
TCATTTTCTC CTGAAATAGA GCTTTTGCTA TCCTATTTTT CTCTATTTCT AATGATTTAC	2160
TTCAACTTCT TACCTCTTGG GAAAAA	2186

⁽²⁾ INFORMATION FOR SEQ ID NO: 180:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3236 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180:

60	GGTTAGATAA	TATTTTTATC	GTATAAACTT	TATTTCATAA	TGACTTCACG	GTCACACGTT
120	AGCATTATCA	ACATTTTATT	GGAGAAAATA	ATTATCTAAA	CATTTTTAGC	ATCTTCATGC
180	TTGCTCGCGT	CTCCCATTAC	TAATTTCCTT	AGCTAGACTA	TATGGTGACT	ACACCAAAGA
240	AATCGGCAAA	GTCCTTTAAA	ACATTATCAA	GAAGAGATTA	CAGCTCCGTA	TTCATTGTAC
300	AGCATCCCAT	GTAATTTTTG	CCAATAACTG	TGCAATTCCC	ATTCAGGAAT	TTCATTTCCA
360	AAAATTGCCT	AATCAAAGTC	GCTTTGACAG	CGAAGAGATA	GAACAGCTTC	TGAGAAGTTA
420	ATACTTATTG	GGCTAACTTG	TTTGATACCT	TAATTTTTCT	GATTTTCTTC	TCTGTATCCT
480	CAGTGACAGT	AAATCAAAGC	TGAGTATTAA	ATTTCGAATT	CTATGAAAAT	GTATTCCAGA
540	TTTCTTTTTA	TTCGCTTGTT	AGCAGATTTT	GATATTTGTC	ATCCTGCTAG	AATATCAGAA
600	ACTTCTTCTT	TTCTGTCCCA	CTGTTTCGTT	GCTTCACCTT	GAGACATTAT	TTATTTTTTT
660	AGGCGCATTA	ATCTTGATCC	CTATCTGAGC	GTGAAAGTCA	CGCAACCGTT	TTTCTGCCAC
720	GTTCGAATCA	GGCAAGATTG	GTGAAATATT	CGTCCTGTTT	CATAGTTGCA	CTTTAACTCC
780	ATAAGACCGG	TTGAACAGTC	CCTCATCCCC	ATCATCAAAT	ATCAGTGATA	TGACACCTGT
840	CCACGACCTT	TCCCTTACCA	CTGTCTGCAT	GTAATTTTAG	ATTTTTTCG	CCAGCAAGCC
900	ATAATAAGAA	TTTTTCTGTG	TACCATATCC	ACTGTACGCT	TTCAGTAGCG	TTGTTGGGTA
960	CGAAGGTTAA	GTCTCCTTCA	CAACAACTGT	AAGCTGGCAC	ATCAGTAATC	CCTCATCTTG
1020	TTAAAGCGAA	GGCTGATTGA	TACCACGAAC	ATACGGCTCA	ACCAGTGGCG	CACCTTTCAC
1080	AACAAGACAT	TCCTTCTGCC	TATCCATATC	CCAATGATAA	AAACTTGGTA	CTGCATAACC
1140	CGAATATTGG	ACCATTTTGA	GCGCTTTGAG	TTTAAATTCA	ATCTTCATCC	TGATTAACTC
1200	AAGAGATAAG	GGTTGTAAAG	TACCGTGACG	CTCTTCACAA	AACACTGGTT	CAAACTCCTT
1260	TCTTCATCCA	AATACTTTCG	TAACCGTCTG	TCAACATTGA	GCGATCAGAC	CATCATCACT
1320	GGAATTTCAT	ACCATACTCA	TGGCAGTCCG	GGTAGCCCTT	ATTGACTACT	ATTTCAAGAG
1380	TCATGGGTGC	GAGCAGATGA	TTGTGAAGAA	CGTCCCTTGT	ACGATAGACA	AACCTTTAAG
1440	TGGACACCAC	TCCCGTTCCT	CATCTTTCAC	ACAAAGTCAT	TAACTCACGA	TAGTTGACAC
1500	TAGCCTCTGT	ACGCTTAATG	CCTGATCCAA	GTGAACTCGT	TTTTTGAGCA	GACCCCCACG
1560	AĞACTCAAGA	CTCATCCTCG	CAATCAAGTC	TCCGATTCTT	AATCAAGACA	TAGAAAGGGT

CCTGTCCAAT CATCAACTCT GTACGGCGCT TATCAGAAAA TTTACGTTTA ACTTCATCCA	1620
ATTCGTCTTT GATAATTTGA GAAACACGTT CAGGCTTAGC AAGAATATCT GCTAAATCCG	1680
CAATCAGAGC CAAGAGGTCA TCATACTCAG ATTGAATCTT ATCGCGTTCC AAACCTGTCA	1740
AACGACGAAG ACGCATATCA AGGATAGCTT GACTTTGACG TTCAGAAAGC TTAAACTTGC	1800
TCATCAACTC AGCTTGAGCT TCCGCATCCG LTTCACTAGC ACGGATGATA CGAATCAYTC	1860
GTCGATATGG TCTAGCGCAA TCAAGAGACC TTCTAAGATA TGAGCGCGCG CTTCCGCTTT	1920
TTCCTTATCA AAACGTGTAC GACGAACAAC CACTTCTTTT TGGTGCTCGA TATAAGCATC	1980
CAAAATCTGA CGAAGAGACA AAATTTTCGG TATACCATTT TGGATAGCGA GCATATTGAA	2040
ACCAAAATTG GTTTGCATTT GGGTCATTIT GAAGAGGTTA TTGAGAATAA CATTGGCTGA	2100
GGCGTCGCGC TTGACTTCAA TAACAAATCG AACACCTTCA CGGTTTGACT CATCACGTAC	2160
TGCTGTGATA CCCTCAATGC GTTTTTCCTG AACCAAGCGA ACAATATGCT CATGCACCTT	2220
GGTTTTATTG ACCATGTAAG GAAATTCTGT TACAACGATA CGCTCACGAC CAGTCTTAGT	2280
CGTTTCAATC TCTGTACGAG AACGTAGGAC AATCGAACCT TTACCTGTTT CATAAGCCTT	2340
ATGGATACCT GATTTCCCCA TGACAAGAGC ACCAGTTGGA AAATCTGGTC CAGGCAAGAC	2400
TTCCATCAAG TCCTTGGTAG TCACTTCAGG ATTATCCATG ACCAACTTCA CTGCATCAAT	2460
GGTTTCACCC AGATTATGAG GTGGAATATT GGTTGCCATC CCAACCGCGA TACCAGTTGC	2520
TCCATTAACC AAAAGGTTTG GAAAACGCGC TGGCAAGACC AAGGGTTCCC GTTCATTGGC	2580
ATCATAGTTA TCAACGAAAT CAACTGTATT TTTGTTGATA TCACGAAGCA TTTCCAGAGC	2640
AATCTTGCTC ATACGTGCCT CGGTATAACG TTGAGCGGCA GCACTATCTC CATCCATGGA	2700
ACCAAAATTC CCATGACCAT CTACAAGCAT GTAACGGTAG CTCCACCATT GAGCCATACG	2760
GACCATGGCT TCATAAATAG AGGAATCCCC GTGTGGGTGA TATTTACCCA TGACATCCCC	2820
TGTAATACGA GCAGATTTTT TATGGGGTTT GTCTGGGGTC ACACCCAATT CATTCATTCC	2880
GTAGAGAATG CGACGGTGAA CAGGTTTTAA GCCATCTCGA ACATCAGGAA GAGCTCGCGC	2940
TACGATAACA CTCATGGCGT AGTCGATAAA ACTTGCCTTC ATCTCCTTTG TCAGATTGAC	3000
ATTCACTAAA TTTTTATCCT GCATTAATAA ATGCCTCATT TCACAATTAG TAAGTAACAA	3060
CATTATACCA TAAATTCCCA TCTATTTCAG CCTCTAAACC ACTAAAACGT TTACATCGAG	3120
AACTATAAGG CATATTCGTG ACAAAGTTTT TTAAAAGTGA TAGAATGAAG TTGTCTAGGG	3180
AAAACCCCTA ATAGAATAAG GAGATGGTTA NACAATGACT CTGACTAACA CACAAA	3236
(2) INFORMATION FOR SEQ ID NO: 181:	

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 8651 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181:

AGGTCCTGAA	GTATTGGAAC	AGGAAGGTCA	AGAGTTTTTG	GAACATTTCA	AAAAACTCTT	60
GGAGTCAGTT	GAAGTAGTAG	CCATCTCAGG	TAGTCTGCCA	GCTGGCCTTC	CAGTTGATTA	120
CTATGCGAGC	TTGGTAGAAC	TTGCTAATCA	AGCTGGCAAG	CATGTAGTCT	TGGACTGCTC	180
AGGTGCAGCA	CTTCAGGCTG	TTCTTGAATC	ACCCCATAAA	CCAACAGTCA	TCAAACCAAA	240
TAATGAAGAA	TTGTCTCAGC	TTCTTGGAAG	AGAAGTTTCT	GAGGATTTGG	ATGAATTAAA	300
AGAAGTACTT	CAAGAACCTT	TGTTTGCAGG	GATTGAATGG	ATTATCGTTT	CACTTGGTGC	360
CAACGGTACT	TTTGCCAAAC	ATGGTGACAC	TTTCTACAAG	GTAGATATTC	CTAGAATTCA	420
GGTGGTAAAT	CCTGTTGGAT	CTGGAGACTC	TACTGTGGCA	GGAATTTCTT	CAGGACTTCT	480
TCACAAAGAA	TCGGATGCAG	AATTACTCAT	CAAGGCAAAT	GTCCTTGGTA	TGCTCAATGC	540
TCAAGAAAA	ATGACTGGTC	ATGTCAACAT	GGCCAACTAT	CAAGCTCTAT	ATGATCAATT	600
AATAGTAAAA	GAGGTATAAA	ATGGCTTTAA	CAGAACAAAA	ACGTGTACGC	TTAGAAAAAC	660
TTTCTGATGA	AAATGGTATC	ATCTCAGCTC	TTGCATTTGA	CCAACGTGGT	GCTTTGAAAC	720
GCCTCATGGT	TAAACACCAA	ACAGAAGAAC	CAACTGTGGC	CCAAATGGAA	GAACTTAAAG	780
TCTTGGTAGC	AGATGAATTG	ACTAAATATG	CTTCATCTAT	GCTTCTTGAC	CCTGAGTATG	840
GACTTCCAGC	AACTAAAGCT	CTTGATGAAA	AAGCTGGTCT	TCTCCTTGCT	TATGAAAAA	900
CAGGTTATGA	CACAACAAGC	ACAAAACGCT	TGCCAGACTG	CTTGGATGTT	TGGTCTGCAA	960
AACGTATTAA	AGAAGAAGGT	GCAGATGCAG	TTAAATTCTT	GCTTTACTAT	GATGTAGATA	1020
GCTCAGACGA	ACTCAATCAA	GAAAAACAAG	CCTACATCGA	ACGCATCGGT	TCTGAGTGI'G	1080
TGGCTGAAGA	TATCCCATTC	TTCCTTGAAA	TCCTTGCTTA	CGATGAAAAA	ATTGCGGATG	1140
CAGGTTCTGT	AGAATACGCT	AAAGTAAAAC	CACACAAAGT	TATCGGCGCT	ATGAAAGTCT	1200
TTTCAGACCC	ACGCTTTAAC	ATTGATGTTT	TGAAAGTTGA	AGTTCCTGTT	AACATTAAAT	1260
ATGTTGAAGc	kTCGCTGAAG	GTGAAGTAGT	TTATACACGT	GAAGAAGCAG	CAGCCTTCTT	1320
CAAAGCGCAA	GATGAAGCAA	CGAACTTGCC	ATACATCTAC	TTGAGTGCTG	GTGTATCAGC	1380
TAAACTCTTC	CAAGATACTC	TTGTATTTGC	TCATGAATCA	GGTGCGAACT	TTAACGGAGT	1440
TCTTTGTGGC	CGTGCTACAT	GGGCAGGATC	AGTTGAAGCT	TACATCAAAG	ATGGTGAAGC	1500

AGCAGCTCGC	GAATGGECG	C ACAACTGGA	TTGAAAACA	T TGACGAACT	C AACAAAGTTC	1560
TTCAAAGAAC	AGCAACTTC	A TGGAAAGAA	C GCGTGTAAG	A AAGTCCTCC	T AGTTTAGGAA	1620
CATGAATCTA	AAAAAATTT	A AAAAAAGTT	G TATGTAAAG	G CTTACAAAA	T AACTTACTTG	1680
TGCTATACTT	AAATCACAA	G TTAATATGA	A' TTAGAAAGT.	A ACTATATGA	A GTATAATAAA	1740
AATAGGATAT	AGTTTATTT	ACGAGCTAG	G AAGGAAAAA	T ACGGAAACA	A TATTGCCAGA	1800
ATAAACTATA	TTTAGATGC	CATTTCATT	C ATTGTTTTA	T AAAAGGAGA	A GATAAACGGC	1860
TACTAAAAAG	AGTTTTAAAC	CGTTAGTTG	T AGGACTAGG	r attgtttca	A TATTCTTATC	1920
AGCCTTACCT	ATGGTTAGTG	GTTCTGTAT	r tgcagatagi	CCCTAACT	A CAGTAGATAA	1980
	•				r cggtttcaga	2040
					AATTTGGAAA	2100
					CTGTACAAGA	2160
AGCAAGTTTG						2220
AGGTTTTCGT			•			2280
TTTCGCTACT						2340
TGGATTTGTT (2400
TTATTGGACA (2460
AGATTTACCT 1						2520
GTTTTATAGT 1						2580
CTTTTTTATT 1						
GCCTCTGTTT G						2640
ттасаааата а						2700
TAAGTAATAT T						2760
GTGGTCATTT T						2820
						2880
PTCTAAATCC A						2940
TTGTAATTGG T						3000
AGGTTGAGAA A						3060
CAAAGATGT T						3120
AGAAATATCA T						3180
STTCTTATCA A	GCTCTAACT	CAAGGAAGGT	ACAAGGATAG	TAATCTGCCA	GATATTTCCG	3240

			1124			
CTAAGTATCO	TGTCGCTTTT	CAAATCGCAA	ATGAAGCTTT	TGAAATTTAC	CGTCAGAAGC	3300
TAGCAGATCA	TTTTCCTGAG	GACGAAATTA	TTCGGATTGC	TTATCATTTC	ATTAATGCTG	3360
AAGGTGAAAA	TGAAGTGGAA	CTTGTGGAGT	CGATTGATAA	GAGGAAAGAA	ATTCTCAGGA	3420
ATGTTGAAGA	AGTTTTAACG	GACTATGCAA	TTCAACGAAC	TAAAAAGAAT	AACCATTTCT	3480
ATGATCGCTT	TATGATCCAT	TTGAATTATT	TCTTGGATTA	TTTAGACAGA	TCTAGAGATG	3540
ATAACCAATC	ACTTCTGGAT	ATGGAAGATC	ATATTAAACA	ATCCTATCCA	AAAGCCTTCG	3600
AGATTGGTTC	CAAGATCTAT	GATGTGATTA	CGCAACATAC	GGGTCTTGAT	TTGTATAAAA	3660
GTGAACGAGT	TTATCTAGTT	CTACATATCC	AACGTTTATT	GTCATAAAAA	TTTATTTAAA	3720
ACTATATAAG	GAGAATTCTA	TCATGAATAG	AGAAGAAGTA	ACATTGTTAG	GTTTTGAAAT	3780
CGTAGCCTAT	GCTGGCGATG	CTCGTTCAAA	ACTATTGGAA	GCCTTGAAGG	CTGCTGAAGC	3840
TGGTGATTTT	GAAAAAGCGG	ACGCTCTGGT	AGAGGAAGCT	GGTAGCTGTA	TTGCAGAGGC	3900
TCACCACGCG	CAAACAAGTC	TATTGACTAA	GGAAGCTTCA	GGTGAGGACT	TGGCTTATAG	3960
TGTAACCATG	ATGCATGGCC	AAGACCACTT	AATGACAACT	ATCTTGTTAA	AAGATTTGAT	4020
GCATCATTTA	ATTGAACTCT	ACAAGAGAGG	AGTTCAATAA	TGAATAAACT	AATTGCATTT	4080
ATCGAGAAAG	GAAAGCCTTT	CTTTGAAAAA	CTATCTCGTA	ATATCTATCT	TCGTGCTATT	4140
CGTGATGGTT	TCATTGCAGG	TATGCCTGTT	ATTCTCTTCT	CAAGTATCTT	TATCTTGATT	4200
CCTTTGTAC	CAAACTCATG	GGGCTTTAAA	TGGTCTGATG	AAGTTGTAGC	CTTTCTGATG	4260
AACCTTATA	GCTATTCTAT	GGGTATTCTG	GCTCTCTTGG	TAGCTGGTAC	AACAGCTAAG	4320
CATTGACTG	ACTCAGTAAA	CCGGAGCATG	GAAAAAACCA	ATCAAATCAA	GTATATGTCA	4380
CATTGTTGG	CAGCAATTGT	TGGTTTGTTG	ATGTTGGCAG	CTGATCCTAT	CGAAAGTGGT	4440
TAGCTACTG	GATTCTTGGG	GACAAAAGGT	TTGCTTTCAG	CCTTCCTTGC	TGCCTTTGTT	4500
CTGTAGCCA	TCTATAAGGT	TTGTGTTAAG	AACAACGTCA	CTATTCGTAT	GCCTGACGAA	4560
STTCCACCAA	ATATCTCACA	AGTCTTTAAA	GATGTGATTC	CATTCACTCT	ATCTGTTGTT	4620
CTCTTTATG	CTCTTGACTT	ATTAGCACGT	TATTTTGTTG	GTTCTAGTGT	GGCAGAATCA	4680
TCGGTAAAT	TCTTCGCACC	ACTCTTCTCA	GCAGCAGACG	GATACCTTGG	TATTACCATT	4740
TCTTTGGTG	CCTTTGCCTT	CTTCTGGTTT	GTTGGGATTC	ATGGTCCATC	TATCGTTGAA	4800
CAGCTATCG	CAGCTATTAC	CTATGCCAAT	GCCGAAGTTA	ACTTGAACCT	TCTCCAACAA	4860
GGATGCATG	CAGACAAGAT	TCTTACTTCT	GGTACACAAA	TGTTTATCGT	TACCATGGGT	4920
GTACAGGTG	CGACATTGGT	CGTTCCATTT	ATGTTCATGT	GGTTGACAAA	ATCGAAACGT	4980
ACCGTGCAA	TCGGACGTGC	TTCAGTAGTT	CCTACCTTCT	TCGGTGTAAA	TGAACCAATC	5040

					r ctttgctcca	5100
					A CTCATTCACT	5160
					TAACTTCCAA	5220
GTGCTATCAT	TCATTCTTGC	TGCCCTTCT	A ATCGTGGTTC	ACGTTGTCAT	TTACTATCCA	5280
TTCCTTAAGG	TCTATGATGA	ACAAATTCT	GAAGAAGAA	GTTCAGGTA	GTCTAATGAT	5340
GAATTGAAAG	AAAAAGTTGC	TGCAAACTTC	AACACTGCAA	AAGCGGATGC	TATTCTTGAA	5400
AAAGCGGGTG	TCGATGCAGC	ACAAAATACC	ATCACTGAAC	AAACAAATGT	CCTCGTTCTC	5460
TGTGCAGGTG	GAGGAACAAG	TGGTCTCCTT	GCAAATGCTT	TGAATAAGGC	AGCAGCAGAA	5520
TACAATGTCC	CTGTGAAAGC	AGCAGCAGGC	GGCTATGGTG	CTCACCGTGA	AATGTTACCA	5580
GAGTTTGATC	ITGTTATCCT	TGCCCCTCAA	GTTGCTTCAA	ACTTTGAAGA	TATGAAAGCA	5640
GAAACAGATA	AGCTCGGTAT	TAAACTAGCG	AAAACAGAAG	GCGCTCAATA	CATCAAATTA	5700
ACTCGTGATG	GAAAAGGTGC	TCTTGCATTC	GTACAAGCGC	AATTCGATTA	AGGCTAGAGA	5760
CTCTGAAATA (STCTCCCATC	GTTACGGAAA	TCGCTATGGC	GAATTTCCTA	TTATTAATTC	5820
GTCGGTAAAA A	GATATCGTT	TTTACCTCCT	CATGTCACAA	TTCGGTGACT	TGGTACAAGA	5880
AGTGAGATGG A	GAAGGATGG	CTCACTGACT	CCTCTCCTCT	CACTTTTACT	TTATTTAAAT	5940
CAAGAAATAG G	TGAAAAAA	TGACAAAAAC	ACTTCCAAAA	GACTTTATTT	TTGGTGGCGC	6000
AACAGCTGCT T	'ATCAAGCAG	AAGGTGCTAC	ACATACTGAT	GGAAAAGGAC	CAGTTGCTTG	6060
GGATAAATAT C	TTGAGGATA	ACTACTGGTA	CACTGCCGAA	CCAGCTAGTG	ATTTTTACAA	6120
TCGATATCCA G	TTGACCTCA	AGCTAGCAGA	AGAGTATGGT	GTCAATGGTA	TTCGAATTTC	6180
TATTGCTTGG T	CACGTATTT	TCCCGACTGG	TTACGGCCAA	GTAAATGCTA	AAGGTGTTGA	6240
GTTTTATCAT A	ATTTATTTG	CAGAGTGTCA	CAAACGTCAT	GTTGAGCCTT	TTGTAACTCT	6300
TCATCACTTT G	ACACGCCAG	AAGCTCTCCA	CTCAAATGGA	GACTTCTTAA	ACCGTGAAAA	6360
PATCGAACAT T	TTGTAGACT	ACGCTGCCTT	CTGTTTTGAA	GAATTTCCAG	AAGTAAACTA	6420
TTGGACAACC T	TTAATGAAA	TTGGACCAAT	CGGTGATGGT	CAATATTTGG	TTGGGAAATT	6480
CCTCCAGGT A	TCCAGTACG .	ACCTTGCCAA	AGTCTTTCAA	TCACACCACA	ATATGATGGT	6540
STCTCATGCA CO	GCGCGGTAA .	AATTGTACAA	AGAGAAAGGC	TATAAAGGGG	Aaattggtgt	6600
GTTCACGCC C	IGCCAACTA	AATATCCTCT	AGATCCTGAA	AATCCAGCAG	ATGTTCGTGC	6660
GCTGAGTTG G	AAGATATCA '	rccacaataa	ATTCATCTTA	GACGCAACTT	ATCTAGGTCG	6720
TATTCAGCT G	VAACCATGG A	AAGGTGTCAA	CCATATCTTA	TTAGTCAATG	GTGGTAGTTT	6780

WO 98/18931 PCT/US97/19588

1126 GGATCTTCGT GAAGAAGATT TTACAGCATT AGAAGCTGCA AAAGACTTGA ATGATTTCCT 6840 AGGAATCAAC TACTATATGA GTGACTGGAT GGAAGCCTTT GATGGAGAAA CTGAAATTAT 6900 CCATAATGGT AAAGGTGAAA AAGGAAGCTC TAAGTATCAA ATCAAAGGTG TTGGTCGTCG 6960 TGTAGCTCCT GACTATGTAC CACGCACGGA TTGGGATTGG ATTATCTACC CTCAAGGTTT 7020 GTATGACCAA ATCATGCGTG TGAAGAAAGA TTATCCTAAC TACAAGAAGA TTTACATCAC 7080 TGAAAATGGT CTCGGCTATA AAGATGAGTT CGTTGATAAC ACTGTTTACG ATGATGGTCG 7140 TATTGATTAC GTGAAGCAAC ACTTGGAGGT TTTATCTGAT GCGATTGCAG ATGGAGCTAA 7200 TGTAAAAGGT TACTTCATTT GGTCATTAAT GGATGTCTTC TCATGGTCAA ACGGTTATGA 7260 GAAACGTTAT GGTCTCTTCT ACGTAGATTT TGAAACTCAA GAACGTTATC CTAAGAAATC 7320 AGCTCACTGG TACAAGAAAG TAGCGGAAAC TCAGATTATA GACTAGTAGA ATTAGTCATT 7380 AGATATAGAA TTTTAGTGAG TCAAAAAGAT GTTCAAAGAT TTTATCCAAT CTATTTATGA 7440 AAAAAAGTTT ATATTAAA TTTCGAAAAA TGCTCTCAAA TACCGTGTTT GACGAGTGAA 7500 GAATTGAAAA GTCTTGGAAA ATGGTATGTC TCGACTGGTA AAGAATGGAT TTGTCATTCA 7560 GATGATGAGC TGGAAGAATT TAAAAATCTA TTTTTAAATT TTATCAATCC TGAAGAATGG 7620 GATACTATCT CCTTTGATTC AGATTTTATG CCGTTTCAAC AATCGTAACC AATTTCTCAA 7680 AAAAGTTAAA TCTTATATTT AGTACTCTGT AAAACTCTTA TCTAATCACG TTGCTTATAC TCAATGAAAA TCAAAGAGCA ACTTTAAACT AGGAAGCGAG TCGCAGATTT CTCAATGCAT 7800 AGCTTTGAGG AATTGGGCAA AAAGTCTTTG ATATAGAAAA ACGCATAGTA TCAGGTGTTT 7860 CAACACCTGA TACTATGCGT TTTATTGTGG GAAGATTTAC TTTTTTTCTT CTGAAATTGA 7920 GTTGTTACCC AGGCTCTTTC AGTTTATTAA GGCTTGATGA CTTTAATGTG TTTAGATAGC 7980 TTAAAAAGGA TTGAATCACT TAGTTTAGAA TCTGAAACAA TAGTATCAAG ATTTGATACA 8040 TTATAAAAG TATAAAAATC AAACTTATTG AACTTGCTAT GATCTGCGAG TAAATATTTT 8100 TTATTAGAAT TATTTAAAGC GATGCGTTGA GCCTCTCCCT CTTCCTCGCT AAAAGTAGLT 8160 AGAGCTCCGT TTTGAATACC ATTACAGCTA ACGAAAGCTT TAGAAAATTG GAGATTAGAG 8220 AGATTTTGTA GGGTCAATGT ACCAACAAAA GCACCTGTAA TATCGCGATA ATTTCCACCT 8280 ATTAAAATCA AATCTGTTAA TTTTCGTTCG CTTAAAATCA GAAAAACAGG TAGACTGTTG 8340 GTTACGACGC GGATATTGTC AATAGGCAAC TCACGCGCAA AAAACTCTAA TGTTGTTCCT 8400 GGTCCAATGA AAATAGTTTC TCTTTCTTCT ACTAGACTGC CTGCAAAATG GGCTATTTCT 8460 TGTTTTTCTG CCGTTTGGAG GGCTTGTTTT TCAATATTTG ATCGCTCATT AGTCAAAAGG GAGTTGGTTC GAAGTTTTTC AGCTCCACCA TGCACACGAA TCAGCAAATC TTTATCAGCT 8580

AATTCCTGTA	AATAGCGCCT	TGCAGTCATA	TCTGAAACGG		CATAATCTGT	8640
TTAACTGTTA	т			-		8651

(2) INFORMATION FOR SEQ ID NO: 182:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3786 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182:

AATCTCCAAT	CAGTGCCACT	TCAGCTACA	AGAAGAGGAG	GATAATAAC1	CCGTTCACAA	60
GGACAGACAA	GAATAATTGA	TAGAAGGAG1	CGGTTTCACT	TGCTTGACTT	GGTCTTGTAA	120
TGATWTGGAG	ACTGGCAAGO	AGAATGATTO	CAATGCTAAT	CACACACAA	AGGGCTGTAA	180
ATCGTAGGCT	`ATCAAAGAAA	GCAAAGAAAC	TAGCAATAGO	AGTGAGGAmG	ATTGGAATTG	240
CCAAGAGTTG	ACTATATTGT	TGGAGAACCT	TGTCTAGCGT	CCAGTCCTTT	TCCTGGTGGA	300
TAAATCGTCT	CACAACGAAA	CTACCCAAGA	GGAATGAAAA	GAAGAAGAGT	GTTGTCGCTA	360
CTAGGATAGA	GATGATAGAA	AAAAGAGTTA	AAGGAGCTAG	CTGCTCAGGG	AAGCGACTGT	420
TAATGCTTGC	TATATGTCCA	TAGTAAGCAT	GTTTGATGTG	ATAGATACTA	AAGAAAAAGG	480
AAGATGCAGA	AAACAGAATG	AGCAAGAGAA	AGGCTGTGTA	ACTGTGTGTG	ATACTTGTTT	540
CCAACTTACT	TGTAGGAGAT	TTGATCGCTT	CCACTAGCCA	AGACCAAAAA	TCAAGCACTT	600
GCTCTTTCCA	TTTATCCCTA	GATTTTGGAG	CTTGGTCGGG	GATATAAGGA	CTTTCTAAAG	660
ATTTACTGAT	AAGAAGTGGC	TCTTTCGTGG	TTGCTTTTTG	CTGAGGAAGA	GCTTCTTGGC	720
TCTCTTCAGC	TATAGTGACT	TTTTCTGTTT	CTTTAGAAAG	GTCTGGCTCT	TCTTCAGTAG	780
AATTAGATGC	CITCTTTTCT	TCTATTTCTG	TTCTCGCTTC	ACTGTCTTCA	GGAGCTTCAA	840
TTTTCTCTTC	TTGCTGGCTT	TCCAATTCGA	CTTCAGCTTG	AGGGACTTCC	TCCTCTAACT	900
GAGTATTTT	TTCAATTGGT	GTATCGAGAT	CGGCTATCGT	TTCTTCAGCC	TTGTCTGCAA	960
CCTCTTGAGC	TTGCTCTTCA	GGCTTGTTCT	TGCTTGTTGT	TTTTACAAAA	TCATTACTTT	1020
CAAACCATTC	TTGTTTCATG	GTAGAACCTC	CTTTTTAGTT	AGATAAATAT	GTTTCCATAG	1080
TAGCAAATGT	AAGCGTTTTT	GTCAACGTCT	GCTTGGTGTG	GATATTAGAT	CAATATTATC	1140
ATCAGATCTC	GCAATGAGTT	GATCCTTGAC	ATCGGTTTTT	TCAGTTTTGT	AAGGGTTGCT	1200
TAATTCCGTA	CCTCTTGATT	CAGGCTTTTC	TCTTGTGAAT	TGGAAGATAG	AACCATAGTT	1260

			1128		•	
GCTTGAGATG	TCCCAGTTAA	TTCGTTGGCT	TTCTTTCTGG	TCTAGGATGA	TTCTGAGATA	1320
ATCTTTGGCA	GTCAGTTCAA	CCTTGCCATG	GACTTGGATA	TTTTCAGCGT	GGAAGTGATT	1380
CTCTGTTGAC	TCTAGCTGAC	TATCTGTAAG	AACTGTATCA	AAGATATTAA	CGATATTGGG	1440
CGTTGTGAGT	TTACTGTTTT	TGATACGACT	TCCTTCAATT	CGGAGGATAT	AGCTGTTTGT	1500
ATTGAGGGTC	GCATTTTCAA	GGCTAGCATT	TATGATGGTG	GTTTGTCCGC	GATTGGCTGA	1560
GATGTTGATC	CCTTTTAGAG	TTCTCCCTTT	TGGTAGTCGG	AGAATAACTT	CTTCAAAACG	1620
ACTAGAGTAG	CTACTTGCGA	TATGAAGAAT	CCCACCAATT	CCAGAAGAGA	GAAACGGAGT	1680
TTCAGACAGT	TTCTTATCAG	TGAGACTCAG	AGTTCTATCG	TTCTGATTGG	TGATAAGATC	1740
ATGGTGAGCA	GAAAGAGATG	GATGGTAAGA	AATGTGGATT	TGATCATCGA	AAGAGTCTGT	1800
GATGGTGAGC	GTGTGTTGGT	GGAGAGTAAT	TTCTAGGTTT	TCGACTTCCT	TGCCAAAGGT	1860
TAGCTTTTCC	GTACGCCTAT	CATAGACAGG	TTCTTTGGAC	ATGGAAAGTA	GGCTCTTAAt	1920
CCCGTCAGAT	TGGATACCTA	CAAAAAGCAG	GATAAAGCCG	ATAACGGTAG	TCACCACACC	1980
aaagatgaga	AATCCTTTTG	TCCATTTACG	CATGCTGATT	ACCTCTCTTT	CCTTTTTTAA	2040
GAACAAATTG	TACCAGACGA	ACAATGAGTA	GACCGAAGAA	GCGAGTTGCA	TAGGAAATGC	2100
CAAGTAAAAC	TAGCGAAGAA	GCACCGATAG	CCAGTAAACC	AGAACCAAAA	ATCAAGATAA	2160
AGGCTGATTT	GGCTTGGGCG	AGGACAGTGA	AACTTTCAAC	TAAAAATAGG	AATCCGCCGA	2220
rgatacccag	TATGGAAACT	GCAAAGAAAG	CCAGAATGAC	AGTCAAAGCG	GCTACAAGAA	2280
TTGCGAACAG	GGTCACGAGG	ATGGCGATTC	CCAGAGGAAT	GCCGATAGGT	GCTGCAAGGA	2340
GGCTAACAA	GGCGATATGT	AAAATTTGTC	GGTTATTTTT	TTGAGCGGGT	GCTTCATTGA	2400
TTTTTTTTTT	GAGAAGATTG	GATAGAACTT	CGTGGGCCGC	TTCTTTGGGA	GTTCCCAAAC	2460
PAGCGATGAG	TTCTTCTTCT	CCTTCGACTC	CAGCATCGTC	AAAGAGCTCT	CTGAAATAGT	2520
CATGGCTTC	GATACGGTCA	GCTTCAGGTA	GTTTCTTGAG	ATAGAGTTCT	AGCTGAGTCA	2580
GTATTCAGT	TCTTGTCATG	GCGGATACTC	CCTTCTATGA	TGCCATTGAT	GGTGTCTGTA	2640
AGAGTGCCC	ATTCATCTTT	TAGGGTCAAG	AGCTGCTCTA	TACCACCGTT	TGTCAAGGAG	2700
AGTATTTGC	GCATGCGACC	TTGGAACTCT	CTAGAATAGG	TTGTCAGAAA	GCTATTGCCT	2760
CCAATTTTT	TGAGAATGGG	ATAGAGTGTG	GATTCTTTGA	TATTAGCGAT	CAGCTTAATG	2820
TTTGGCTAA	TCTCATAACC	ATAAGAATCA	CCCTGCTCCA	GTACAGCCAA	GATGAGAAAT	2880
CAATCAAGG	CAGAGGATGT	TGGAAAGTAC	ATGGGAAACC	TCCTTTTCTA	ATGTGTAAGA	2940
TTTTATATA	TAATTTTTCT	ÀCACATACAT	TGTACATCTA	AAAGAAAGCC	CTGTCAAGAG	3000
AATGTGTAA .	AATTTTTATA	TATAAAAAAC	TTCTAGCTAA	AACTAGAAGT	TTAAAGGATC	3060

WO 98/18931 PCT/US97/19588

1129

TTATCCGCTC	TGTCCACTGT	AAAGAGGGCC	ACAGTCATCA	GGATATCGAT	GAGCAAGAGG	3120
GCAGCTACAG	ATGGTACCCA	AGAGTGGAAC	AGGTCAAAAC	TGTAACCAAA	GAGGGTTGGC	3180
CCAAAGGCTG	CTAGGATATA	GCCTCCTGTT	TGAGATAGGC	CGGACAATTG	GGCTGTCTTT	3240
TCAGGGGCGC	TTGTCTTGAG	TGAAAAGTTG	ACCATGAGAT	AAGGGAAGAG	GGCACTGGTT	3300
GCGGTTCCGA	TGAGGAGATG	GATGGCAAGC	CAGTAAATGA	AATTATTGAT	TGGGAAAAAG	3360
AGCATGGAAA	TGCCGACCAC	ACCAGCTAGT	GAAACCAGAG	TGAGCATGAG	CTGACGGTTG	3420
CGAGTAGATA	AACTGGTTGT	CAGGCTTGGG	ATGGTCATTG	AAAAAGGAAT	GCTAATCAGA	3480
GATAAGATAG	AAGTCAGCAA	GCCAGCTTCG	TGACTGGATA	GACCTGCATG	GATAGACATG	3540
GTAGGTAACC	AGGTCATGAC	GGTGTAAAAG	ATCAAGGATT	GAAAACCTGA	AAAGATAATA	3600
ATTGCCCAAA	CCTGTTTATT	ACGCATGACC	TTTATTTGAC	TTTTTTTTTT	GGTTTGTGGA	3660
GCTAGTCTAT	GATTATAGCG	GTGATTTGGG	AGCCAGACCA	AAAAAGTTGC	TAGACAGAGT	3720
AACGTGAGGA	GAAGGATAAG	TCCTTTCCAA	GAACTGGCTT	GTGTAATGGG	CACAGCTAGA	3780
TAGGAA						3786

(2) INFORMATION FOR SEQ ID NO: 183:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3054 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:

TCAGCTAAAA	AACATTGCTA	AATTGATTGA	AGCTGGTGCT	ACACATTCCG	ATTCAACTTC	60
TCACACGGCG	ACCACCAAGA	ACAAGGTGAG	CGTATGGCAA	CTGTTAAACT	TGCGGAAAAA	120
ATTGCAGGTA	AAAAAGTTGG	TTTCCTTCTT	GATACAAAAG	GACCTGAAAT	CCGTACAGAA	180
TTGTTCGAAG	GTGAAGCTAA	AGAATATTCA	TACAAAACTG	GTGAAAAAAT	TCGTGTTGCA	240
ACTAÁACAAG	GAATCAAATC	AACTCGTGAA	GTGATTGCGT	TGAACGTTGC	TGGTGCTCTT	300
GATATCTATG	ATGATGTTGA	AGTTGGTCGT	CAAGTTTTGG	TTGACGATGG	TAAACTTGGT	360
CTTCGTGTGG	TTGCTAAAGA	TGATGCAACT	CGTGAATTTG	AAGTTGAAGT	TGAAAACGAT	420
GGTATCATCG	CTAAACAAAA	AGGTGTGAAC	ATCCCTAACA	CTAAAATTCC	TTTCCCAGCT	480
CTTGCTGAAC	GCGATAACGA	CGATATCCGT	TTCGGTCTTG	AACAAGGTAT	CAACTTCATC	540
GCAATTTCAT	TCGTACGTAC	TGCAAAAGAT	GTGAACGAAG	TTCGTGCAAT	CTGTGAAGAA	600

			1130			
66	TATCGATAAC	ACCAACAAGG	AAAATCGAAA	ATTGTTCGCT	GACATGTTCA	ACTGGAAACG
72	TATGGGTATC	CTCGTGGTGA	ATTATGATTG	AGCTGATGGT	TCATCGAAGC	TTAGATGAAA
78	AGTCAATGCT	TTATCAAGAA	CAAAAAATGA	TCCAGTTTAT	TCGAAATGGT	GAAGTACCGT
84	AAAACCACGT	CAATGACTGA	ATGCTTGAAA	TGCAACAAAC	TTGTTATCAC	GCAGGTAAAG
90	TGACGCTACA	TCGACGGAAC	AACGCTGTTA	AGATGTATTC	CAGAAGTATC	GCAACTCGTT
96	TACAATGGCT	AGTCAGTAAC	TACCCACTCG	AAACGGTAAA	GCGAGTCTGC	ATGTTGTCAG
102	TTCAGATTCA	GACGTCTTGA	AATGAATACG	AGCTCTTCTT	AGAACGCTCA	ACAATCGACA
108	TACTAGCTCA	TTAAAGATGC	GCTTCTGCTG	AGAAGTAATG	ACTCTAAGAC	TTTGAGCGTA
114	TTTGATTTCT	ATACTGCACG	AAGACAGGTC	AACTCTTACT	AATTGGTTGT	ATGGATATCA
120	AGAACGTGGC	ACGAATTGAC	TTGACATTTG	CATCTTAGCA	CAAATGCTGA	AAATACCGTC
126	AACTGACGAT	CTCCATCTTC	TTGACAGATG	TATCCCAATG	ACTGGGGTGT	TTGATGTTGA
132	AGGCGATGAT	TCGTTGAGTC	GAAGCAGGTC	TAAAGCGGTA	TCGCTGAACG	atgttcgaaa
138	AATGCGTATC	GCACAAACAC	GAAGCTGTTC	GCCAGTAGGA	TTGCTGGTGT	ATCGTTATCG
144	GCTTGTGTGA	CAGCTTTAGA	CTATCATATC	ATATAAAAAC	GTTAAGAAAA	CGCACAGTAC
150	TGATACTCTT	CATAATGGAT	GCAAAACTTT	TAAGAAATAG	GTATAGAGGG	PAGGCTTTTT
156	TGACTTCGTC	TATATGTTAC	CCTTACCGTA	GTCAGCGTCG	TTCAAACCAC	CGAAAATCTC
162	CCTAGTTTGC	CGGCTAGCTT	TGAGCAACtG	AGCAGTGCTT	ACAACCTCAA	AGTTCTATCT
168	AGTCAAATGA	TTGATTAGAA	TATGCACAAA	TGAAATAAGA	TCATTGAGTA	PCTTTGATTT
174	GATATATTTT	GATTCGATCT	TACTTGTCTA	AATCGTAATG	ATGTTTTAGC	ATTTCTACAA
180	TTTACTTACG	ACTCCATTCT	AAAGTAGCTT	TAAAACCTCC	ATATGGTATT	GATTTAATG
186	CATTATAGCA	CCACTCTAAC	TTTTTGTGTT	TGTTTTAGCG	TGTTATTTAC	rgagtgtaga
192	AAGGGGCTGG	TATGGGAACT	TGCCTGAAAA	AAGGAGTGTG	CTAGTGTACT	TCTTCTCAG
198	TGCCTTTCTC	TGATCTTAAA	TTTTGCAAAG	AGTATTTGCC	TCTCTAGTTT	TTATCGGTT
204	CTTATTCTTT	TTTTAGGTCA	ATCTAATCTA	GTTTAACAAA	TATCACTATT	PAAATTTACA
2100	CIGTITGCTT	CTTTTAAAAT	TTTTTCGAAT	TTTTTCAAAG	TAGAATGAAC	PTTTGAAATG
2160	CTTTCCCGAT	AGCCTGACAG	CTCCCTATAT	TTTTTTAATT	TTCTCCCCCC	PATATCGCCA
2220	TGAGTTTTTT	TATTCGGGAT	GATGTCGGGG	CGTCTAGGTG	TGGTTGCTTT	GTACGAATA
2280	AAGATGCCGA	GTCTACTTGG	AGTTAGTGCC	TTCTTGACAT	TTGGCGGAGT	GAGGCAGCC
2340	TTTCTTATCT	GTAGTCGCTG	TGATAAATAG	GGGGTATTCT	GTCAATCTGT	GGTATTATA
2400	GGGATAATGG	GTAGTCGTCT	CGATTGGGTC	ACGACATAAG	GGACTTGCTG	TGGCTCCAT

AAACTCCATA	TCTAAATCGT	TGTCCTGCAT	CGAGCGGCTA	CCTGCAGAGA	TAAACTACCT	2460
AACACGAGAG	TAAGTAGTCT	GTCTGTAGTC	GTCCAGTCTG	ATGATTTTTA	CGATACTTCG	2520
TTTTTCTGAT	CATACAGTTG	CCTCTCGGCA	TAGGTCAGAA	CTTTACCTTG	TCTGGGTGGT	2580
TCCCGTTGGT	CGTAGATAGA	TTGGATATCG	CTAGGAGAAT	CCTTTTGAAC	TGGAGGAAAG	2640
AGGGCATCGA	TCAAGCTACT	GAATACTTTA	ACTAAGTCAA	ATATAGTATT	TTTCTTAGTA	2700
GACCTAACCC	TTTTTTCATA	ATTTCTAATG	GTGTTTTTAC	TTATACCTAT	CTTAGTACCC	2760
AATTCTTATT	GAGTCCAACC	ATTACTAGTC	TATATTGTTT	TATAGTTGAT	TGAGTTTGGA	2820
ATAGTACGCT	GTAGCTGCTA	AAACATTTCT	AGAAATTAAT	TTGACTTTCC	TAATAGAGTT	2880
GTTCATATCT	TATTTCAATC	TATTATGTTT	TTCACCTCTA	ACAATCGCAA	TCTCTTCTTT	2940
ATCCATGAAT	GAAATCGCTT	TCTATTTTTG	TAAGTAAAGC	ATAACACGAA	ATCCACGAAA	3000
ATGAAAACCT	TTGTTGTGTT	TTCGTAAAAA	ATTTGTTGAC	AGAGCACGAA	ACGC	3054

(2) INFORMATION FOR SEQ ID NO: 184:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1590 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:

TGTGATTTTC	yGAAAATTTG	GTAAAATATA	TCTTAATCAT	TTTCAGGAGG	ACAAAAATTT	60
GACAAGATAT	CAGAATTTAG	TAAATGGAAA	ATGGAAATCA	TCTGAACAAG	AAATTACGAT	120
TTATTCACCA	ATCAATCAAG	AAGAATTGGG	TACAGTTCCA	GCCATGACTC	AGACTGAAGC	180
TGATGAGGCT	ATGCAAGCTG	CGCGTGCAGC	CCTGCCAGCA	TGGCGAGCTT	TATCAGCAGT	240
TGAACGTGCG	GCTTATTTGC	ATAAAACAGC	AGCTATTTTA	GAACGCGATA	AGGAAGAAAT	300
TGGTACTATC	CTTGCCAAAG	AAGTAGCAAA	AGGGATTAAA	GCAGCAATTG	GAGAAGTAGT	360
GCGTACAGCA	GACTTGATTC	GTTATGCTGC	TGAGGAAGGT	CTCCGTATCA	CTGGACAAGC	420
AATGGAAGGT	GGTGGTTTTG	AGGCAACAAG	TAAAAACAAA	CTGGCTGTTG	TCCGTCGTGA	480
ACCAGTTGGT	ATCGTGCTAG	CGATTGCTCC	CTTTAATTAT	CCAGTTAATT	TATCTGCTTC	540
TAAAATTGCA	CCTGCCTTGA	TTGCAGGGAA	TGTGGTCATG	TTTAAGCCAC	CAACACAAGG	600
TTCCATTTCT	GGACTCTTGT	TGGCTAAAGC	ATTTGAAGAA	GCAGGGATTC	CGGCAGGTGT	660
TTTCAACACC	ATTACAGGTC	GTGGTTCAGA	AATTGGGGAT	TATATCATTG	AGCACAAAGA	720

			1132			
AGTCAACTTC	ATCAACTTTA	CAGGTTCAAC	TCCTATTGGA	GAACGTATTG	GTCGTTTAGC	780
TGGTATGCGT	CCTATCATGT	TGGAACTTGG	TGGGAAAGAT	GCAGCTCTTG	TACTAGAAGA	840
TGCAGATTTG	GAACATGCTG	CCAAGCAAAT	TGTTGCGGGA	GCCTTTAGCT	ACTCAGGACA	900
ACGTTGCACG	GCCATTAAAC	GTGTCATTGT	TCTCGAAAGT	GTAGCAGATA	AATTAGCTAC	960
TTTGCTTCAG	GAAGAAGTTT	CTAAATTAAC	AGTTGGTGAT	CCATTTGACA	ATGCTGATAT	1020
TACACCTGTT	ATTGACAATG	CTTCAGCCGA	CTTCATTTGG	GGCTTGATTG	AGGATGCACA	1080
AGAAAAAGAA	GCTCAGGCTC	TTACACCAAT	CAAACGTGAG	GGCAATCTTC	TCTGGCCAGT	1140
GCTTTTTGAC	CAAGTTACAA	AAGATATGAA	AGTGGCATGG	GAAGAGCCAT	TTGGTCCTGT	1200
TTTACCAATC	ATTCGTGTGG	CTAGTGTAGA	GGAAGCTATT	GCCTTTGCCA	ACGAATCTGA	1260
ATTCGGCCTT	CAATCATCAG	TCTTTACAAA	TGATTTCAAA	AAAGCCTTTG	AAATTGCTGA	1320
AAAACTTGAA	GTAGGTACAG	TCCACATTAA	TAATAAAACC	CAGCGTGGTC	CAGATAATTT	1380
CCCATTCCTT	GGTGTCAAAG	GTTCTGGAGC	TGGAGTGCAA	GGAATTAAAT	ATAGCATTGA	1440
AGCGATGACA	AAȚGTCAAAT	CCATTGTTTT	TGATGTGAAA	TAACGTGTAA	AACCAGGAAA	1500
TTGTTTTCCT	GGTTTTATTT	TTTTGCTATA	AAATAATAAT	AATTATAGAA	AAAATACGAA	1560
CTTTTTGGTA	TTATAATAGA	TTGAAACCGG				1590

(2) INFORMATION FOR SEQ ID NO: 185:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4848 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:

	CCTGCAGTTG	TCAGACCTGT	AATTTTCTTT	TTATCTGTAA	TAAGAATCGT	TCCAGCGCCT	60
	AGAAAACCCA	CACCTGATAT	AACTTGAGCT	CCTAATCGTG	TAGGATCTCC	TGTCCCAAAT	120
	TTATAAGATA	CGTATTCATT	CGTCATCATA	ATCAAACATG	CAGCTAGACA	AACAATACTA	180
٠	TAAGTTCGGA	TGCCTGCAGG	CTGGGATTTG	CTCCCTCTCT	CTAAACCAAT	TATACTACCA	240
	ATGACTACTG	ATAAAACAAT	CCTGACAACT	ATTTCAATAT	TTGATAACCC	AAGACTAGTG	300
•	GCTGTCATGA	TTATTTCCTT	ACTTTACGCC	CCGGTCTTTG	TGTGAAGTAT	AATACCGTTC	360
•	CAGAAATAAT	CATCAGAACA	ATTGTATAAA	CAAATACCAG	AGCTTGTGCA	TTAGATGTTG	420
•	CTGTTTCATC	ACCTGCAGAT	CGAATCGTAA	TACCTAATGG	TTGAGCTAGG	GGATGGTAAA	480
•	GGAATACAGA	TAAGTCGAAG	TCAGTTAATA	AAGAGTTAAA	GTTTAAAGCA	ATAACAGAGA	540
			•	•	•		

600	GGTGAAGCAC	AGTATAAAAA	CCTTCATCAT	GGAATGATAA	TAAAATAAAT	GAACAACCGG
660	GCACGTACCA	AAATAAAATA	CATCAACACT	TCCATCTCAT	TGCTGCATCT	CCATACTTCT
720	ACCAAACTAC	AAGTAGAATT	TATATGCAAT	TTTACAACTA	AAATGGGATT	TTCTATAAGA
780	AATAAACTTA	AAAAGTAAAT	GTGGCTGATT	ACAAGAAATT	CTGATTCAAG	CTACCAAAAT
840	AATAAGAAAT	ACCATATTCA	GAAGTAGAGC	AGTAACCAAG	TGTACTTGGT	CTGCTAAAAG
900	ATTGTTGCTG	AACTGCGAGA	GAGCAAATAC	CTGACAACAC	TTTATGTTTT	CAAAACGAGA
960	GCCGCACTAT	TGGAGAGAAT	TGACCAAGAA	TAAATAAAGC	AATAATAGAA	TTGTCGCAGC
1020	TTACCTGTTT	TAATGTTAAG	TAAAGTTTGA	TTTTCTAAAG	TAAGCGATAA	TACTAAAGAA
1080	AGCATGAAAA	AATTAGTGGA	ATACTATAAA	AATGAGTATA	TGGATCTGTA	GAATTGCAAC
1140	GACGCAATTT	CCAAGGCTTA	CAATGATATT	ACAATGTGAG	TCCATATGCT	CTGTGAACAA
1200	ССТТТТТСТА	ATAATTTCCA	AGATAGAAAT	TTAGTCTTAG	AAGAGGCGCT	TTTGTTTTT
1260	GCAAGTAGGG	TAAAATAATT	TTGCAATACC	AAAATTGTAG	GATAGTAAGC	TCTTATTCAT
1320	TTTATAGTTT	AATCATTGGA	CAAATGTAAT	CCCATCCCTG	ACGAGAATTC	CAGCTAAATC
1380	CTAAGAAAAA	AGATAAACCA	CTGCTACTGC	ATCATGGGTG	ACCACCAACA	GAAATTCTTT
1440	TTTCGGAAAA	TAACACTACT	TTAAGGTTGG	AGAGTTGGAA	AAGTGCAAAT	CCATAATAGT
1500	TCAACGCTTC	AGTGTGATAG	CAGCCTCAAT	ATATTTCGAG	TTTTGCTCCC	CAGTAAATGG
1560	ATAATGAATA	TGAAAATGTC	TAGCAGTTCC	AATGTATGAT	TGTTAAAAAC	GAATTGTATT
1620	TTTTGTAAAA	AGGGATAACA	GGTCTAAAGA	AACCAGTTAG	ATACCCAATA	AGACTGCACC
1680	AAAACCACTC	TCCAGTCGCT	CAAATTTATA	GGACCATAGA	CAATCCATAA	ATTTTGTAAT
1740	TTAATATCAA	TTTAGCACCT	TAAAATTTTA	ATATAACCTA	TAAAGAGGTC	CTCCATAAAT
1800	ATGAGTGAAA	AACTGTAATA	CTACGACATT	CAAAGAATAC	AAATAGAACA	AGTACTCTGT
1860	AGAACACGAT	CTGAGATTTT	GAAGTGCCCT	ATAATACTCT	AAAACTGTTC	ATGCTAACTT
1920	AGATCAAAGT	ATTCACTACT	TTACAAATAC	TCTCCTCCTT	AAGGGAAAAT	GTACAGCATC
1980	AGCCAATCTT	TAAACGAATA	AGATTAACCC	ACTAAGAACC	AATAAATGTT	TTGGATAAAT
2040	CTGATGGTGT	TGCAGAACGT	TCCTTAAAAT	ATACTGCACC	TTTATGACGC	TTAAATTTAA
2100	CAATACTTGT	GCCTGACTAT	TCTAATAGCA	CTCCGACAGA	TCCACACTTT	GATAAATAAT
2160	CTCCAGAAAA	TGAATTGTAA	TATTGTATAG	CAGAAACTTT	ATCTGACTTT	TACATTAAGA
2220	GATTGAATCG	TCAGTTTCAC	AAAATCTTGT	CTTTTAGAAT	ATAATTGTCC	CTCAACATCA
2280	TATTTTTCAA	AAAACGCTTG	ATCCTCTAAG	ATCCTTTTTT	AATCGAATGT	AACTITCTCT

			1134			
TAATACTTCG	TGGACTGTTT	CATCGGTCAA	AACATTAATA	TCTCCAATAA	AATCACATAC	2340
AAATTCAGTT	TGAGAATTAT	GATAAATCTC	TACTGGTGTA	CCGACCTGTT	CGATGTATCC	2400
ATTGTTAAAG	ACTGCAATTC	TATCAGATAA	AGTCAAGGCT	TCCTCTTGAT	CATGAGTAAC	2460
atataaagta	GTAATACCTA	ACTCTTTTTG	AAGTCTTTTC	AACTCTTTTC	TCAAATCTAC	2520
ACGTAATTT	GCGTCAAGGT	TTGACAATGG	TTCATCTAGA	CAAAGAATTT	TAGGTTCAAG	2580
AACCAGAGCA	CGAGCCAATG	CTACCCTTTG	TTGTTGACCC	CCAGATAATT	CTGATACATT	2640
acgetgtaac	TGTTGATCAG	AGATCTTAAT	TTTTGCTGCC	ACTGCTGATA	CTTTAGCTTT	2700
AATAACATCT	GGAGCTACCT	TCTTAACTTT	TAAACCAAAT	GCAATATTAT	CAAAAACAGT	2760
CATAGTTGGA	AATAGCGCAT	AAGATTGAAA	TACAATACCA	ATTCCACGCT	TTTCAGGTTC	2920
CAAATGAGTG	ACATCTGTTC	CATTAACTTC	AATACTTCCT	GATGATGGAT	CTAGAAAACC	2880
racc aa tgct	CTCAAAGTAG	TTGATTTACC	ACATCCTGAA	GGCCCAAGAA	ATGTAAAAA	2940
TCCCCTTCA	TGTATATCTA	AATTCAGATT	ATCAATTGCA	ACAAAATCAC	CATATTTAAT	3000
TTGAATATTA	TCAAATTTAA	TCATCTCACT	AACTCCCTCT	ATTACTAAAC	CAAAAGCCTC	3060
CTTTATTTC	TTCCATAAAT	TTAGAAATAA	TAGAGAGACT	TGGACATAAA	AATTAACTCT	3120
TATTTCTTAT	TGTACGTATT	CTAATTCAGC	TTTTTCTACC	CATTCATCCA	AATGCTTTCC	3180
ACAGCTTCC	CAGTCAATAT	TTTGTGGTTT	CACTTGATCA	ACAAATTTCT	TCGTATCTTC	3240
GGTAGATCT	TTGAGGGCAT	CTTTATTTGC	AGGAATAGAT	CCAAAGTTCT	TACTATATTC	3300
ACTTGAATT	TCTGATTGAC	CAAACCAATC	AATAAATTCT	TTAGCTAACG	CTTGTTTTTT	3360
CTAGTGCTT	AAAACCATAG	TTTGTTCAGT	TACAAATGGT	ACACCAATCT	CAGGAGTCAT	3420
VACTTTGAAA	ACAACATTTT	GTTCTTTTTG	TCCAACTAAT	GCACCAGAAC	CCCACATCAT	3480
CCATATTGT	ATTGGATCTT	CTTTGTCTAA	CATCTTAACA	ATTGAACTTT	CTCCCTTTTG	3540
AGAGTGTAT	GCATTTTTCA	AATATTCTTT	TGCTACTTCC	CAACCTTTTT	CGGAAACACC	3600
AATTCACCT	TTATCATCAA	GGTATCGAAC	TAAGATACTT	GCTAGAATTG	CCCGTCCTGT	3660
CCTCCTTGA	AGACCAGAAA	TTGAATATTT	ACCTTTATAC	ТТАСТАССТА	ATTCAGTCCA	3720
TCTTTAGGC	ATTTCTTTTA	CATCAGGCGC	CCCAATTAAA	ACTAATGGTT	GAACAATCAC	3780
GGATTATAA	TAATTATCTT	TATCTGATAA	AGATTGATCA	ATTTTATCTA	ACCATTTAGG	3840
TTGTACTGT	ACTAGTAATT	TTTGATCTCT	AATTTTATTT	GAATCAACAG	CACCAATTCC	3900
AATACCATA	TCTGCAACTG	CATTATTCTT	CTCAGCAATA	ACACGGTCTG	CTAATTGAGC	3960
CCAGCGATA	TCAACCATTT	TTATATTAAA	ACCAGCTTCT	TTTGCTTTAG	CAGTTAACCA	4020
TCACCACGA	CCATTTGAGA	CTGAGTTCGA	ATAGATAACT	AATTCTTGAC	TTTTATCAGC	4080

1135

TTTTTCTTCA	GATGAAGAAG	CAGTCGTAGA	ATTTGAACCT	CCAGAGCAAG	CAGCAAGTGT	4140
AGTAAgAGCA	ACTCCCGTTG	CAAGTACAGT	AGACCAAACT	TTCATTTTTT	TCATGATAAG	4200
TTCTCCTTTT	TTATTATTTT	ATTTAAATTT	TTCGTGATAT	GGAACAAATT	GTCTCATATC	4260
TTCAAATACA	GTATAGTCAA	TACGGTTTAC	AGTAATAGTT	GGAATCTTCT	CTAATAAAAT	4320
TTCAGTTAAT	TCTGCTCTGA	CTTTAGTAAA	CTCTTCTTCC	TCCTCTTCGG	TTAGAGGAAT	4380
CCGAAGATAC	CCAATTGAAA	TATGGAATTG	ATATCTATCA	TGATTAGGGA	AACAAACACC	4440
TGCTTTTTCT	GAGACATAAG	TACGAATTTC	TTCTAATCTC	TTTGCAGAAG	CTTCATCTGC	4500
AGGTTCAACT	AGTATGTTTT	GTTTTCCCAT	TTCAGTTATA	CGCATATGAA	TTTCTTCATC	4560
CAACAATGGA	AAAATTTCAA	GTTGTTTAGC	AAAGTAATCA	TGTATTTCCT	GTAAAGGTGT	4620
ATCTAGAGGA	AGATTACTGC	TCCAAAACTC	gtTCACGATT	TTCATGGCAC	AACAATTCAA	4680
TTACAGTCAT	GTGAATAGAA	TTCCTTGGAG	TTAAAGTAAA	CTTATCGATA	AATGGTAATT	4740
CTCTATAACG	TGATTGAATA	ATATCAACAA	CTTCCATCAA	ATCTTGTTTA	GTATAAAGAT	4800
TTGCTACAAC	TGTATTCCCA	GGGAAATGAT	TAAATTCCCC	ATTCTCGG		4848

(2) INFORMATION FOR SEQ ID NO: 186:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3763 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:

GTTATAAGCA	ACACCTTCTT	GCTTGCCATA	AGTTGTGAAA	TGGGTAGAAT	CGATATCTAC	60
					commente	00
AATGAGTTGG	TTTAGCTGGT	GAAACTGTAA	AAAGAATTCG	ACCAATTCAA	GGTTGAGGCA	120
TCGCAAACTA	TGGACTGTTT	CCTCGTCAGT	TCTGGAAAGA	AAACGGGATA	AGGTTGGCTG	180
TGAAGCAAGC	TGCCCTCCTT	CCAATAATTT	TGGAAAGTAG	GCATCAGCTG	ACAATTCTTT	240
ACAAGCATAG	TCCGTTCCAT	AACCTGTTAA	CAGTTGAAAG	AGGAACTGGA	CAAGGATATC	300
TGAATCCGAA	TAACGACAGT	AGCGGCGTTG	GTCATTCGTT	ACTAAATACT	TAGAAATCCG	360
CTCTTTTAGT	TTCAACTGGG	AAAAAAGTTC	CTGAAAAAAG	ATAAGACCAC	CATACTGGGT	420
TAAATGACCT	CCATCGAAAG	ATAGTTGGTA	AAAAGACTTG	TTTTGGAAGT	GATGATTTGG	480
TAAACTGTTC	ATGTGAGTTT	CCTTTCTTTT	TGTGTTTTTT	TCTACACTTA	TACCATAAAG	540
GGGAAACTCT	TTTTTGTCTA	GTAAAAAACA	CCCATTGGGT	GAAAAAAGAA	ACCATCCAGG	600

ATCTAAGCTA	AGGCAAGGAT	TCTGGATGGT	TTTTAGATTT	GGGGTGAATA	ATTGGGGATT	660
TAGGAGAAAT	GATGGTATCT	TCCAAATCAA	AATCAACTTC	ACTCCATAGT	CTCAACTGAT	720
TGATTTTCCC	ATCTTGATAG	GTCACATCCT	TGTCAAGGAT	AAACTGAGTC	AACACCTCAT	780
GTTGACCTTG	ACACCTGATG	TCATCTACCA	AGAGCCAGAC	ATCCTCTACC	AACATGAGGA	840
TTTTTCTCCT	GTGAAGATAA	GGCAAATCAG	GTTCTGCTGA	CCAATAAGCC	CCCTCAATAT	900
AATGCACTCC	CTCCCTTTCT	TTATGGTGAC	AAAACAGGGA	GTGAGGATAG	TATTCATATT	960
CCCAGGATCC	CGTGATTCTT	TCCGGAGCTT	TCCCATCTAC	AATGCAGGTC	GAATGACTCC	1020
AAGCACTCTT	TAAGAGATAA	CGTTCATATA	TCTCCCGATA	AGAATAACGC	CCAGCATCTA	1080
TGAAAATAGG	TTGGCCTTGA	TACTGTAAGC	AAAAACTATT	CTCGTCACTA	TGACTATGGG	1140
CACTTCCTAG	CGGACCATTT	TTGAAAAATA	GATAACGATG	TTCATCCTTA	ATGCAGACAT	1200
GTCCAGAGTC	TTCAAAGATC	ATGGACTTAG	GCTGCCAAGC	TCTCTTTTCA	AATTCCTGCA	1260
GTCGCTTGAC	CTTTTCTCGC	CCCAGGAACA	AGAGGCTAAG	CAAATCAACT	TTAACATCCA	1320
GACCGTTAAG	AAGGTCTTCC	TGGTTCAAAA	CCACAGCAGA	CAGGCTCAAA	ATTTCTGTCG	1380
TTTCTGTAGA	ATCGCTATCA	CCAAAAGCCA	AAGTCCGTCC	ATCTAAGCCT	GTCATCATTT	1440
GAATATAGGT	CGCCATCTTT	TCCAGCAACT	CTTGGTAACT	ATCTTGCAAG	TCTGGAAGCA	1500
AGAGACACAA	ATCCAGCAAG	GCTTTATAAA	CCTCTACATG	ATAGAGAATC	GACTGTTCAA	1560
ACTGGCTTCC	ATCTCCTAAA	ATCTGTGTCT	CAATTTGCTG	TTTCAACTCC	TCTGAAGCAA	1620
AATGGTAAGC	TTCTTCTAGA	TCCATCTTAT	CTGAAAAGAA	ATGATAGATA	GCAAGCATCG	1680
GAATTGTTTG	TAAAATCCCC	CAGTTACTAA	GGGTGTACTT	GGCGCGATAG	TAGCTTTTCA	1740
TAAAGTCAAT	CTGCTTTTCT	AGACTGACCA	AAATTTTCTC	TAGTTCTTTC	TCCTCTAGCA	1800
AGTCAAATTT	CAAGAGGAGC	AAGAGTAGTT	TCAACCAAGT	AAAGGAACGA	ATACCCGTAT	1860
CCAAGGTTCT	AGTCATCAAG	GATTGAGGAG	AAAATTCTCT	CACCTGCTCA	ATCCAATCAA	1920
atagaaagaa	CTTGCACTTT	TGAATATAGT	CCTTATCTCC	TTCTACCAGA	TACCCTATCA	1980
raaactgcaa	GAGATATTCT	TGTCGATTGA	GCATATAAGA	CCATTCTGGA	TCATCTTCAA	2040
ATACTTGATC	CCATACCATC	GGCTGGATTT	GATGGATTTT	TGAACAAGGC	TCCATATCCC	2100
AAGGACTATC	AAACATAAAA	CGATTGTCCA	TCAAGCGTTC	AAGGGAACTC	TTGACTTTCT	2160
CATAGTCTTT	TGAACAGTGC	GACAAGATAT	AATCACGACA	TTGATTTCCA	TCGACTCTTT	2220
CAAAAAATTG	TCTTCTTTCT	TCTTTCATTA	TCTATTACCA	GAAAAAGAAC	TACTTAAAAA	2280
CAGTTCTTT	TGTCTTTCCC	ATTACACTTT	CCTTTTCTAC	ATGGATGACC	ACACCTTTTG	2340
CAATCTGCAA	GGAGACCAAG	TCATCTTGGA	TAGAAATGAT	TTTTCCATGA	ATTCCAGACA	2400

ATAACAACAC	TTCATCACCA	AATGTTAAAG	AAGCTAAATA	CTCTTGTCGT	TGCTCCATCT	246
GTTTGCGAAG	CAACTTTTGC	TGACGAATAG	AATGAAAGCT	TGACAGTAAA	AGGGGACTCA	252
CTGCCAAGAC	AATCACTATT	CCATAAAACA	ATGTTGTATC	CATTAAGCTA	TAATCTTAAG	258
CCAGCTTCCG	ATAATTCCGA	TGATAACTGT	TAAAATAACG	AGTTTATATG	TTGTCCATTT	264
CTTTTCTTTG	ATCAAGTAGT	AAACTAAAAG	TGTAAATAGG	GCTGGTAGAA	GAGCTGGAGC	270
AACCTTATCA	AGCATTCCCT	GAATACTTAC	GATACTTTGT	TTAGCGTCTG	CTTTAACTTC	276
CCCTGCAGCA	AAGGTAATCG	GCACCATAAT	CTTAACAGAT	GTCGCTGCCA	AACCAGCAAT	282
TACGETACAC	CGATAATATT	GGCAATACGA	GAAATCGTTG	CCATCTGTTC	GCTTAGTTTA	2886
TCAATCACAG	TTGTTCCTAG	TTTGTATCCA	TACAGACCAG	TTGACAATTT	AATCGCTGTT	2940
AAAATCGTAT	TCATCGCAAG	GAAGAACAAG	ATTGGACCGA	CAACCAAGCC	TTCTTGAGCA	3000
AACG AA GCTG	CGATGGTTGA	GAACAATGGA	GCTAAACAGA	ĄTTGAGAAAG	AGAATCCCCA	3060
ATACCTGCCA	ATGGTCCCAT	CAAGGCCATC	TTGATGCTAC	GTGTTTCTTT	TGCCGGACGG	3120
CCATTTTCCA	ACATTACAAG	ATGCAAGCTG	GTAATAAAAG	GCAGGAAGTG	TGGGTTGGTA	3180
TTATAGAATT	CACAGTTTTC	TTCCAAGGCT	TGGTAGAAAC	CTTCCTGATC	CTCTCCATAG	3240
TGTTTTTCA	AAGCAGGATA	CATCACATTG	GCATATCCCA	ACCCTTGATA	GTTACTATAG	3300
PTAAATCCAT	TTTGACAAAA	GAATGCCCGC	AAAGACGTTT	TAAGATAATC	ACGTTTTGTT	3360
AATTTGTTAG	ATCCAGTCAT	CGTGTGCTTC	CTCCTCTACC	ACATGATCCG	CTGTTTTTGG	3420
CTTGTTATAA	AATTCAATCA	AAGCAAAGAT	AGTACCTACA	ATTGCAATAC	CAATTGTTGG	3480
GATGTTTAGA	TAAGCTGCAC	AAACATATCC	CAACAAGACA	AAGGGAATCA	ACTCTTTCTT	3540
AGCCATCACT	GACAAGATCA	TCGCAAAACC	GATAGCTGGG	AGCATTTTAC	CAGCAACTGT	3600
CAAACCTGTA	AGTAATACCG	GTGGAATGTA	GTCTACGAGT	TTCAACAAGG	TATCCATTGA	3660
AAGGGCACCA	AGCAACCCAA	GGTAAATCCA	ATAAAGGCAA	ACAACCAAAT	TGTTGCATTT	3720
AGAGTGAACT	TAAATTTCTT	CAAATTATGG	TTTTTCAAGT	GCT		3763

(2) INFORMATION FOR SEQ ID NO: 187:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5053 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:

6	AAGTAATGTT	ycctgacgtc	CAAAGGGAAT	TCAATACTA	GTATGTGCGG	CAATCTCTGA
12	AACATCTCCA	ATTATGACGC	CATCAACTTT	GCAACCACTO	ATAGGTAATG	CAATTGGmCT
18	TTATTTCTCT	GAGTAATTTG	TAGAACATAA	GTACCATTGA	CTCTCTATTT	GATAGTCTTG
24	CAGATACTTG	GAAGGGATGC	ATTCTGAAAA	TGCATAGCAA	ATTTTCCACA	TATAGACTTC
30	TAGTAATCTG	TCCTCTAGCG	TTTTTTCAT	TCTGTTCGAT	TGCAATCGTT	GTACAATGAT
36	TCTTTAATGC	CAAAGTTACT	CCACTTTTTT	ATCGCTTGTT	CAAAGTTTTA	GAATGTAATT
42	TCTAAAGCAA	AACTCCTGCT	TTCCAACACT	CGTGAAACAG	ATTAATTACA	CTTTTTCTTT
48	TTCAATATAT	ATCACCTCCT	CTACCATATT	TTTCTTTGTT	GGTAATTGAT	CATCTTTCAT
54	AGATCATTTA	ATTTTTGGCC	TTTCTCAATC	TAAGCAACTA	AAATGCTTTT	AGTATCATGC
60	TTCATGTGTA	TACTTCAATT	CTTTTGAAAA	CTCCAATTAG	AATAAAATCA	rcccatcatg
66	CTTCTATAAA	TTTTTCGTAT	TTTCATGGCT	AAAGCCTTGG	TAAAACAGGA	AACATCTACA
72	ATGATTGAAG	TTTTGCTTAA	TAGATGTACA	GCTATAAATC	GTTTTAGATG	AAAAGCAAGA
78	TTTGAGGTAC	CTGTCTAACT	TAGACTTTTT	CCCCCAAAAT	AACAAAAACA	STCTTTTCTT
84	TCGAATAAAC	ACTCATCTAA	ATTTTTGGTT	TTTTTTTGTT	CGAAATAGCG	AGTTCAAACG
90	ATAGATGAGT	TATTATTTGA	ACCGTGTTTA	TATGAGTGAG	TTAACAAGTA	ATCATGGCAT
96	AGGTGAATCT	TGATATCATA	TTAGAAATAA	AATAATAAA	CAATAGGAGG	TCTTATTTT
1020	ATTATTGCTA	CCAGTTCAAA	GTCCAAACTT	TTCTAATTCA	CCTTTGATAA	TCTAAAGATT
1080	ATTACTCATA	ACTGATCAAA	TTTGCATGAT	TGCAACGAAT	AAAGTGTCTC	CAATAATAAG
1140	TTTGGTATGA	TCACCAAATG	AGCAAATTAA	CTGATTTTGT	TTAGTTTAGG	CTAAAACCT
1200	CTCAAGAGTC	TAGAACAAAC	ATCATTGAAC	ATGATTTACC	TATAAGATAG	TGATGAAGG
1260	AATATTTTGA	ATTTTGGAAA	TCTGAAACAA	TTTTTTTATA	GAGAAAGCTC	CTAAATAGT
1320	CAACTCTTGA	ACTCAGTAAA	AATAAAATAA	TTTTTGATCA	TTGTATTCCC	AGTTCCTGA
1380	CTCCATTTCA	TATCCTTATT	CAAATCAGAT	ATGCAGATGC	GTGCGGTATT	GATACAGAT
:440	AGATTTTTCA	ATAGATGGTA	AAATCACTCA	CTGATCAATA	TGACTGAAAT	TCTGATACT
1500	AAACATTTTT	CATCTATGAA	AAGAGACTTT	GCATTTCATA	CCTTTTTTAC	CATAACTAT
1560	ATTGTATTCT	CTAAAGAGAT	ACTTCTTCAT	TTGGCAAACA	ACACAAATAA	GAAAGTAAG
1620	ATCCAAACTT	GCATTAAAAA	CCTTCTGCCT	ACCTTCTATT	TCTGAGCAAC	ATTCAAAAC
1680	TCTATATAGG	CAAACTTTAT	ATAAAATGAC	ATCTACTTCC	AAGAATCTTT	GGTCGTTAA
1740	AAAGCTTGTT	AATTCATTGG	TGCGTTGACA	TAGCATTCTA	GGAGCAACTT	TCGTAACTA
1800	TTCAAATGGC	ATGAAAAATT	AGTGGCTCTG	CAATTGAGAT	CCAATTCTAA	CCTTATAAA

CATTCTAGGA	AATAATATTT	TTCTGAAAAA	TATTGTGCAA	AAAAGTAACG	AATGTCTCTC	1860
TCATTTCCAA	TGATTTGAAC	AGGGGTCAGA	CTAACTTCAA	ATTGAAATTG	CCTTTTAATC	1920
ACTTTATTGA	TTTGGCTAAT	AATACGATAG	AGCGAAGATG	AACTGATATA	AAATTCTTTA	1980
CAAATACTCT	CAGCTTGACA	ACCTTCATTA	AAGAAGATGA	ATTCTAAAAT	CGAAAAATGA	2040
GTTGAATGTT	TAAAGAAATG	ATGGTAAACC	ATTTCAATAT	CACTATCATC	GGTATTAATA.	2100
ATGCGTATAC	CATTAGTAGA	AGAATGAAAA	ATCAAGTCAG	GAAAAGCAGA	TTTAACATGG	2160
GATAGATCAT	CTTTGACTGC	ACGTTCTGTA	CAATTTAATA	ACTCTGCTAG	TTCAGAACGA	2220
TGAAACCAAC	GTTTATGTTC	AAATAATAAT	TCTAATAATT	CTAATTGCCT	ATGACTTTTT	2280
ттасатаата	AATCTCTCAT	GAATATCTTT	CTCTCTTTAT	AAATTATCGG	ATTAAACCTC	2340
TTGCAATTAT	ACCACAAAGA	ATAGGTATAG	CATGATATAA	CGACTTTTCC	TAAAATCTTT	2400
TATTTCGTAT	AATAACACTA	CGGAGACAAT	ATATAAACAA	TTTTCTTATT	TTACCGTCTA	2460
TTGAGGGCGT	GAATACAGAA	TCAAATTCAA	GTCTAAAGAT	TATATTTTTA	ATTTTAAAAA	2520
TTATATAATA	GCAACAATTA	AAGAATTTGA	AAAATTTTTT	TTATATAATA	ATAACAATCG	2580
AAATAATTGA	CTTTTCTATA	TTAAAGTTAT	ATAATAGTAA	TAATCAAAGA	AATTGATTTT	2640
TTGATATTAA	AATAAAAAAG	GAGGGTAGGC	agtgttgtga	TCAATTATTG	CTGGAGGTCT	2700
TATTGGTCTC	TTGGCAGGTA	AAATCACTAA	AAAAGTAGTT	CTATGGGAAT	CATCGCAAAT	2760
GTATTCGCTG	GTTTAGTCGG	GGCATATGCA	GGACAATCTC	TTTTAGGTAG	TTGGGGTCCA	2820
GCAATCGCTG	GAATGGCTTT	GCTCCCATCT	ATTGTAGGTG	CAGCGATTGT	GATTACTGTA	2880
GTGTCATTCT	TTACAGGTAG	AAAGTAAACT	TTTCGCCAGT	AAAGTTAGCA	AACTATTTTT	2940
AAATCAATGA	CGGGAAAAAT	agtttaaatg	TTAAATCGAA	AGGATTGTAT	ATGTCAAAAG	3000
CAAAGAAAAT	ATGTTTCATT	ATTTTCTGTA	TTTTAATCTT	GACAATTTTC	CTTCCTGTTT	3060
TGATAGATTA	TCATCAAGTT	AGTGATCTAG	GTATTCATCT	ACTTAGCTGG	AGACAGAACT	3120
CCGTAGTTGA	ATTCTATCTT	GCTAGATATG	TCTTTTGGGG	GACAGTGGTT	CTATCAACTT	3180
PAGTTTTATT	ATCCATTTTA	GTTGTGATGT	TTTATCCTAA	ACGTTACTTG	GAAATCCAAC	3240
PTGAAACTAA	AAACGATACA	TTAAAATTAA	AGAATTCGGC	AATCGAAGGT	TTTGTTAGAA	3300
GTTTGGTGAG	TGATCATAGA	TTGATCAAGA	ACCCAACTGT	TCATGTAAAT	TTACGAAAAA	3360
ATAAATGTTT	CGTTCATGTA	GAAGGTAAAA	TTCTTCCTTC	AGACAACATC	GCTGACAGAT	3420
GCCAAATAAT	TCAAAATGAA	ATAACTAATG	GATTGAAGCA	GTTTTTTGGT	ATTGAGCGTC	3480
AAGTAAAACT	TGAAGTTGCA	GTAAAAAATT	ACCAACCAAA	ACCTCAAAAC	AAAAAGACTG	3540

			1140			
TTAGTCGTGT	`GAAGTAAGGA	AGTAAAAAAT	GGAATGGCTT	AAACAATATC	GATATCCAAT	360
TATCGCTGGT	CTCATAGGCG	TATTTCTGGC	TTGTTTGATT	GTCTCCTTTG	GCTTCTTCAA	366
AACAATATTI	GTATTGATTT	TAGGAGCACT	GGGAGTTGCA	GCTGGATTAT	ATATCGAAAA	372
AAACTATATA	GATAAATAAA	ААААТАААА	TTACTAATTT	AATTAAAGGA	GTTTCATATG	378
TCAAACGAAA	AAAACACAAA	CACTAACGTA	GAAAAGAAAG	ATGCTACTGT	TGTAGCTCAC	384
GAAATCAAAG	GGGAACTTAC	TTACGAAGAT	AAAGTTATCC	AAAAAATCAT	TGGTCTTTCA	390
CTAGAAAACG	TTTCAGGTCT	TTTGGGAATC	GATGGTGGTT	TCTTCTCAAA	TCTTAAAGAA	396
AAAATCGTTA	ACAGCGATGA	CGTAACAAGT	GGTGTTAACG	TAGAAGTTGG	TAAAACACAA	402
GTTGCAGTTG	ACTTAAACGT	TATTGTTGAG	TACCAAAAA	ATGTTCCAGC	TTTATATTCA	408
GAAATCAGAG	AAATCGTATC	TTCAGAAGTT	GCTAAAATGA	CTGACTTGGA	AATTGTTGAA	4140
ATCAACGTAA	ACGTTGTCGA	CATCAAAACT	AAAGAACAGC	ATGAAGCAGA	CTCAGTAAGC	4200
CTTCAAGATC	GCGTATCTGA	CGTTGCTGAA	TCAACAGGAG	AATTCACTTC	AGAACAATTC	4260
GAAAAAGCTA	AATCTGGTCT	TGGATCTGGT	TTCTCAACTG	TTCAAGAAAA	AGTTAGCGAA	4320
GGTGTAGAAG	CTGTTAAAGG	TGCAGCAAAT	GGTGTAGTAT	CTCACGAAAA	CACTCGTGTA	4380
AACTAAGATA	AAATAAATAT	AACAGGAGAA	ATTATCATGT	CAGTAGAAGA	AAAATTAAAT	4440
CAAGCTAAAG	GTTCTATTAA	AGAAGGTGTT	GGGAAAGCCA	TCGGTGATGA	AAAAATGGAA	4500
AAAGAAGGTG	CAGCTGAAAA	AGTTGTTTCT	AAAGTAAAAG	AAGTTGCCGA	AGACGCTAAA	4560
GACGCTGTAG	AAGGTGCTGT	AGAAGGTGTT	AAAAACATGT	TGAGTGGCGA	CGATAAATAA	4620
ggttaaaagt	TACTTTATCT	TTTTAGTAAT	ATTAGTCAAA	AGAGTCTGAG	TCAAGATGAT	4680
TCTCAGAAAA	CAAAAAGCTA	GAGATTCCCA	ATTGCGGAAC	TCTAGCTTTT	TAATTTTGCC	4740
тстттстстт	ATTATATTTC	AGCAGGTTGT	TGGCCATGAG	TACGAATCCC	ATGTCAATTC	4800
TCACTTGACG	CTTACCTCTC	AGATGACATC	TCTTATAACC	CAAACAAACC	TTTATCTGCC	4860
CAAAGACAGA	TTTCATATCA	ATCTTACGTT	TAGCGAAAAT	TTGTCTACCC	TTGGAAGATA	4920
AAAGTGCCTG	ATATTCTTTA	GTTTTTAAAC	ACTGGTAACG	TTCATTCATA	TACAGTCTCT	4980
TTTGAGGGGC	TGATTCAGGT	TCATAATCGC	AGTCAACATT	GATTTCAAGG	CTGTTTGCTT	5040
TCTATCTCCC	CGG					5053

(2) INFORMATION FOR SEQ ID NO: 188:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6492 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

1141

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:

AATTCTCTTT	TTTCCAACAA	AATGTATGAC	CTGCACTTGA	ATACTTCTCA	TTGTTTGTAC	60
ATTCATCTAC	TTTCATATAA	TCTTTTACAA	AATCATAATA	TGACATAACA	CACTATCCCT	120
TTTAGACAAT	ATTCCAATTA	GCCTTATTAA	TTCAAAACTA	TTGTATTAGT	AATTATAACA	180
GATGTATAAT	AGAAAAGCAA	TGATAGATAT	TATCAATTAA	GCGAATTTAT	ATCTAAAAGG	240
GATATTAAAG	AAAGGAGATA	TGCTTATGAA	GATTTACAAA	AAACTATTTG	CTTATGTCCA	300
AGATAAGAAA	TATCTTGGGG	TTTTGGCCAT	AATTTTTTCT	GCTATATCTG	CTGCACTTAC	360
AGTATATGGA	TATTATTTAA	TCTACAAATT	TCTAGATAAG	TTAATAATTA	ATTCAAACTT	420
ATCCGGTGCA	GAGAGTATAG	CATTAAAATC	TGTTATTACA	CTAACAAGTG	GAGCGATATT	480
TTATTTTGTC	TCAGGAATGT	TTTCACATAT	CTTGGGATTC	AGGCTTGAAA	CAAATTTAAG	540
AAAAAGGGaA	TCGATGGTCT	GGAAAAAGCA	AGTTTTAGGT	TCTTTGACTT	AAATCCATCT	600
GGTÇAAATAA	GAAAGATTAT	AGATGACAAT	GCTGCACAAA	CTCATCAGGT	GGTAGCACAC	660
ATGATTCCCG	ATAGTTCTCA	GGCAATAATC	ACACCCGTAC	TTGTACTTGC	ACTTGGCTTT	720
ATAGTAAGTA	TAAGAGTTGG	CATAATTTTG	CTTGCTCTTA	CTATAATTGG	TGGCTTAATT	780
TTAGGGGCAA	TGATGGGCGA	GCAAGAATTT	ATGAAGATAT	ACCAAGAATC	CCTATCTAAA	840
CTAAGTGCTG	AAACTGTTGA	GTACGTGAGA	GGAATGCAAG	TTGTAAAAAT	ATTTAAAGCA	900
AATGTAGAGT	CTTTTAAAAG	CTTTTATAAG	GCGATAAAAG	ATTACTCAAA	GTATGCTTAT	960
GATTATTCCC	TATCTTGTAA	AAGGCCTTAT	GTTTTGTATC	AATGGTTATT	TTTTGGACTG	1020
ATTGCAATTT	TAATTATTCC	TATAGTTTAT	TTTATGACTA	GCTTAGCTAG	CGCAAAGGTG	1080
ATTTTACTIG	AGCTTATCAT	GATTTTATT	TTATCAGGAG	TTCTCTTTGT	TTCATTCATG	1140
AGAATGATGT	GEACTCCATG	TATATTTCTC	AAGGAAATTA	TGCAGTAGAT	ACTTTAGAGG	1200
CGCTTTACGA	AGATATGCAA	AAAGACAAAT	TAGTGCATGG	TAATGTCAAT	AAAATTTTAAAA	1260
ACTATAATAT	AGAATTTGAG	AATGTTAGCT	TTGCTTATAA	TGATAAAGCT	GTCATTGAAA	1320
ATTTATCCTT	TAATTTAGAA	GAAGGAAAGT	CCTACGCACT	TGTCGGTTCA	TCTGGATCAG	1380
GCAAATCAAC	AGTAGCAAAA	CTTATATCAG	GTTTTTACAA	TGTTAATAAA	GGAAGCATAA	1440
AGATAGGCGG	GATAGCAATA	AGTGAATATT	CTGACGAAGC	CTTAATTAAA	GCCATTTCCT	1500
TTGTTTTTCA	AGATTCAAAA	TTATTCAAGA	AGAGCATTTA	TGATAATGTA	GCGTTAGCTA	1560
ATAAAGATGC	GACGAAAGAT	GACGTTATGA	GAGCCTTAAA	ATTAGCAGGA	TGCGATTTAA	1620

			1142		•	
TATTAGACA	ATTCCCAGA	A AGAGAAAATA	CAATCATAGO	CTCAAAAGGT	GTTTATTTAT	1680
CCGGTGGAG	AAAACAAAGA	ATTGCAATTG	CTAGAGCAAT	TTTAAAGGAT	TCCAAAATTA	1740
TTATTATGG	TGAAGCATCA	GCATCTATTG	ACCCAGATAA	CGAGTTTGAA	TTGCAAAAAG	1800
CTTTTAAAA	TCTTATGAAC	GATAAAACAG	TTATCATGAT	TGCACACAGG	CTATCTACAA	1860
TTAAAGACCT	TGATGAAATT	* ATTGTCATGG	ATAGTGGAAA	AATTATAGAA	AGAGGGTCTG	1920
ACAAAGAATT	' AATGTCAAAA	GATACAAGGT	ATAAGAGCCT	GCAAGAGATG	TTTAACAGTG	1980
CGAATGAATG	GAGGGTTTCA	AATGAAAGAG	TTTTATAAAA	AAAGATTTGC	TCTTACAGAT	2040
GGAGGAGCAA	GAAATTTAAG	TAAAGCAACA	CTGGCTTCAT	TTTTCGTTTA	TTGTATAAAC	2100
ATGCTTCCTG	CCATATTACT	TATGATTTT	GCTCAGGAAG	TTTTGGAAAA	TATGGGCAAA	2160
AGCAATGGCT	TTTATATAGT	ATTCTCAGTT	TTGATTTTGA	TAGCAATGTA	TATTTTGCTT	2220
TCTATCGAAT	ACGATAAATT	ATATAACACA	ACCTATCAAG	AAAGTGCAGA	TTTAAGAATA	2280
AGGACAGCGG	AGAATTTATC	AAAATTACCT	CTATCTTACT	TTTCTAAACA	TGACATTTCC	2340
GACATTTCAC	AAACAATCAT	GGCTGATATT	GAAGGCATAG	AGCATGCAAT	GAGCCACTCA	2400
ATACCAAAGG	TGGGCGGCAT	GGTACTGTTT	TTCCCATTAA	TATCTGTAAT	GATGCTAGCG	2460
GGCAATGTCA	AGATGGGTTT	AGCTGTAATT	ATTCCATCTA	TTTTAAGCTT	TATATTTATA	2520
CTTTATCTA	AAAAATATCA	GGTTAATGGA	CAGAATAGAT	ATTATGATGT	CTTAAGAAAA	2580
VACTCAGAAA	GCTTTCAAGA	AAATATCGAA	ATGCAAATGG	AGATTAAAGC	ATATAATTTA	2640
CGAAGGATA	TTAAAGATGA	CTTATATAAA	AAAATGGAAG	ATAGTGAGAA	AGTACACTTA	2700
AGGCGGAAG	TAACTACAAT	TTTAACTTTG	TCTATATCTT	CAATATTTAG	CTTTATATCT	2760
TTGCTGTTG	TGATATTTGT	CGGCGTAAAT	CTAATTATTA	ATAAAGAGAT	AAATTCTCTC	2820
ACCTTATAG	GATATTTACT	AGCTGCTATG	AAGATAACAG	ACTCTTTAGA	TGCATCTAAA	2880
				AAAGATTAAA		2940
ATCAAGATT	TACAAGAAGG	CGATGACTAT	AGCTTAAAAA	AATTTGATAT	TGATCTAAAA	3000
				ATGGTGTAAG		3060
AGCAGGGAG	AGGTCACTGC	TTTGGTAGGT	GCAAGTGGCT	GCGGTAAAAC	AACTATCTTG	3120
AACTTATAT	CAAGACTTTA	TGATTATGAC	AAGGGACAAA	TCTTAATCGA	TGGCAAAGAT	3180
TAAAGGAAA	TATCAACAGA	ATCCCTTTTT	GATAAGGTGT	CTATTGTTTT	CCAAGATGTG	3240
				GTAAGCAAGA		3300
				ATTTTATAGA		3360
AAGGTTTCG	ATACAGTTAT	TGGTGAAAAC	GGAGCTGAGC	TATCAGGAGG	AGAAAGACAA	3420

AGATTATCAA	TAGCCAGAGC	CTTCTTAAAA	GATGCGCCGA	TATTGATCTT	AGATGAGATA	348
ACAGCAAGCC	TTGATGTTAA	CAACGAGAAA	AAGATTCAAG	AGTCTTTAAA	TAATTTAGTT	354
AAAGATAAAA	CTGTTGTAAT	CATTTCACAT	AGAATGAAAT	CCATAGAAAA	TGCAGACAAG	360
ATAGTAGTTC	TTCAAAACGG	AAGAGTAGAA	AGCGAAGGTA	AGCATGAAGA	GCTTTTACAA	366
AAATCAAAAA	TTTACAAAAA	TTTAATAGAA	AAGACAAAAA	TGGCAGAAGA	ATTTATTTAT	372
TAGGAGGACT	ACAATGGATA	ATAAAAAATT	AAAAGTAAAA	GATTTAGTAA	GCATCGGTGT	378
TTTTGGCGTA	ATTTATTTTG	CCTTCATGTT	TGGAGTTGGT	ATGATGGGCT	TGATTCCAAT	384
ATTGTTCTTA	ATATACCCGA	CAGTATTAGC	CATAGTTGCA	GGAACTGTTG	TTATGTTATT	390
TATGGCTAAG	GTTCAAAAGC	CATGGGCACT	ATTTATATTT	GGTATGATAT	CACCACTTGT	396
GATGTTTGCA	GCTGGTCATA	CCTACGTAGT	TGTGGTTTTA	TCACTTATAG	TAATGATAAT	4026
AGCAG AA TTA	ATTAGAAAGA	TTGGTAATTA	TAATTCATTT	AAATACAATA	TGCTTTCTTA	4080
rgcaatcttc	AGCACATgGA	TATGTAGCTC	TTTAATGCAA	ATGCTTTTAG	CAAAAGAAAA	4140
ATATATGGAG	TGGTCTTTGA	TGACTATGGG	AAAAGATTAT	GTTGATGTAT	TAGAAAAGTT	4200
AATAACTTAT	CCTCACATGG	CTTTAGTAGC	CTTAGGTGCT	TTCTTAGGAG	GAATTCTTGG	4260
AGCATATATA	GGCAAGGCTC	TATTGAAAAA	ACACTTTTCA	AATGGATTAT	ATTGTGTGGG	4320
TACTTTACT	CCTTGCCTAA	TTTTATGGTG	CTATCTGAAT	TAAACCCTAT	AGTTAAGATG	4380
TTTTGAGTA	TACCTATTGT	TATTAGAATG	TTTATTTTAC	CATTTATGGC	AGCAAGCTTT	4440
ATGATAAAGA	CCTCGGATGT	AGGCGCAATA	ATTTCATCGA	TGGATAAGCT	TAAGATTTCA	4500
AGAATGTAT	CCATACCTAT	TGCGGTTATG	TTTAGATTCT	TCCCATCTTT	TAAGGAGGAG	4560
AGAAAAACA	TCAAAATGGC	TATGAGAGTA	AĢAGGGATAA	ATTTTAAAAA	CCCAGTCAAA	4620
ATCTTGAAT	ATGTTTCTGT	GCCACTACTC	ATTATATCAT	CTAATATATC	AGATGACATT	4680
CAAAAGCGG	CAGAAACAAA	GGCAATAGAA	AATCCAATTG	CCAAGACCAG	ATACATTCGC	4740
TAAAGATAC	AGCTAATTGA	TTTTGTTTAT	GTTTTAGCGG	TTGCTGGACT	TATTGTGGGA	4800
GCTTAATAT	GGTTGAAATA	AAAAATTTAA	GTCTTGATTA	TGGTGAAGAG	CATATATTAG	4860
TGATATATC	ACTATCCATA	GCCGAGGGAG	AGTGCGTGCT	ATTTACAGGA	AAAAGTGGAA	4920
TGGTAAGTC	ATCTTTAATA	AATTCAATCA	ATGGACTAGC	TGTAAGGTAT	GATAACGCAA	4980
GACAAAGGG	CGAAATAATT	attgatggt a	AGAATATAAA	AAATTTGGAA	CTTTATCAAA	5040
CTCAATGCT	TGTTTCAACT	GTTTTTCAAA	ATCCTAAGAC	ATATTTTTT	AATGTCAATA	5100
GACATTAGA	ATTATTATTT	TATTTGGAAA	ATATCGGTCT	TGCAAGAGAA	GAGATGGACA	5160

			1144			
GGCGTTTGAA	GGATATACTT	GAGATATTCC	CGATAAAAAA	TCTTTTGAAC	AGAAATATAT	5220
TTAATCTATC	CGGCGGTGAA	AAACAAATTC	TTTGCATTGC	AGCTTCTTAT	ATAGCAGGTA	5280
CAAAGATTAT	AGTTATGGAT	GAGCCTTCAT	CGAATTTAGA	TATTAAAAGC	ATAAGTGTTT	5340
TGGCAAAGAT	GCTAAAGATA	TTAAAAGAGA	AAGGCATAAG	CATAATTGTT	GCAGAGCATA	5400
GAATTTATTA	TTTGATGGAC	ATAGTTGACC	GTGTATTTTT	AATAGATAAA	GGAAAGCTTA	5460
AAAAAACTTA	TACTAGAAGT	GAATTTTAA	AGCTAGATAA	AAATGAATTA	AATGCTTTAA	5520
GTTTAAGAGA	TAAAGAATTA	AGTAAATTAA	AAGTTCCTTA	TTTAAAAGAA	GGTGGAGAGT	5580
ATCAGATAAA	AAATCTTAGT	TACAAATTTA	CTGATGATGA	GTGTTTAAGC	TTAAAAGATA	5640
TTTCGTTCAA	GCTTGGGAAA	ATTTATGGCA	TAATAGGATC	CAACGGACGA	GGAAAATCAA	5700
CGCTTTTAAG	ATGTTTAATA	GGTCTTGAGA	AAAAATCAAA	AGAAGAAATT	TATTTTAAGG	5760
GAGAGAAGCT	ATCTAAAAA	GAAAGACTCA	AAAACTCTTC	ACTTGTTATG	CAAGATGTAA	5820
ATCATCAATT	ATTCACAGAT	GAAGTATTCA	ACGAGCTTAG	ATTAGGAGTA	AAGAATTTTG	5880
atgaagaaaa	GGCGAAAATC	ATTTTAAACC	CCAATTATTC	ACCCCAAATC	TAAAAACCAT	5940
CCAGAATCCT	TGCCTTAGCT	TAGATCCTGG	ATGGTTTCTT	TTTTCACCCA	ATGGGTGTTT	6000
TTTACTAGAC	AAAAAAGAGT	TTCCCCTTTA	TGGTATAAGT	GTAGAAAAA	ACACAAAAAG	6060
AAAGGAAACT	CACATGAACA	GTTTACCAAA	TCATCACTTC	CAAAACAAGT	CTTTTTACCA	6120
ACTATCTTTC	GATGGAGGTC	ATTTAACCCA	GTATGGTGGT	CTTATCTTTT	TTCAGGAACT	6180
TTTTTCCCAG	TTGAAACTAA	AAGAGCGGAT	TTCTAAGTAT	TTAGTAACGA	ATGACCAACG	6240
CCGCTACTGT	CGTTATTCGG	ATTCAGATAT	CCTTGTCCAG	TTCCTCTTTC	AACTGTTAAC	6300
aggttatgga	ACGGACTATG	CTTGTAAAGA	ATTGTCAGCT	GATGCCTACT	TTCCAAAATT	6360
GTTGGAAGGA	GGGCAGCTTG	TTCACAGCCA	ACCTTATCCC	GTTTTCTTTC	CAGAACTGAC	6420
GAGGAAACAG	TCCATAGTTT	GCGATGCCTC	AACCTTGAAT	TGGTCGAATT	CTTTTTACAT	6480
GTTCACCAGC	TG					6492

(2) INFORMATION FOR SEQ ID NO: 189:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7174 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189: AACTGAAGGT AAAGGCTTCG ACGCAGAACG TGACGCTGCC CAAGCTGCCC TTGATGACCT 60 -

TAAGAAAGCT	CAAGAAGACA	ACAACTTGGA	CGACATGAAA	ACAAAACTTG	AAGCATTGAA	120
CGAAAAAGCT	CAAGGACTTG	CTGTTAAACT	CTACGAACAA	GCCGCAGCAG	CGCAACAAGC	180
TCAAGAAGGA	GCAGAAGGCG	CACAAGCAAC	AGGGAACGCA	GGCGATGACG	TCGTAGACGG	240
AGAGTTTACG	GAAAAGTAAG	ATGAGTGTAT	TGGATGAAGA	GTATCTAAAA	AATACACGAA	300
AAGTTTATAA	TGATTTTTGT	AATCAAGCTG	ATAACTATAG	AACATCAAAA	GATTTTATTG	360
ATAATATTCC	AATAGAATAT	TTAGCTAGAT	ATAGAGAATT	ATATTAGCTG	AACATGATAG	420
TTGTATCAAA	AATGATGAAG	CGGTAAGGAA	TTTTGTTACC	TCAGTATTGT	TGTCTGCATT	480
TGTATCGGCG	ATGGTACCAG	CTATGATATC	ATTAGAAATA	CAAACATATA	AATTTGTAAT	540
ACCGTTCATA	ATTGGTATGA	TTTGGACAGT	AGTTGTATTT	CTTATGATCA	ATTGGAATTA	600
TATAGGCAAA	TACTAAGAAG	AGACAAAAAT	TATAAATAT	TTCTGTACTT	ATAGGATATT	660
TAAAATCAAA	ATAAAGTTAA	TTTACTTATT	TGCAGAGGTT	GCAACCCAGC	CTCTGTTTTT	720
CGATAAAAAG	GGACGGAATC	TCATTTGTTT	GGGTTTTGTC	TCATCAATAG	AAAGGAACAA	780
AGAGTGTTCG	TAACTGAACA	CGGGTTTCAG	AATTTCTTAC	TAAATATAAA	AGAAAGGAAT	840
TGAACCCGAC	CTAAATGGTG	GTTCGATTCA	GAACATCAAT	AGAAAGGAAT	AAGGGTGTTC	900
GTAACTGAAC	ACGGGCTATG	GACTGTGCCA	AAAAGATAGT	TTTTTCTAGG	ACGTAAGCGT	960
CCGTCGTCAA	AACTCCTAGA	TGGCTGTGTC	CGTTTGACGC	CCTTTGTATC	TTGAATTATG	1020
AACAATACTG	AATTTTATGA	TCGTCTGGGG	GTATCCAAAA	ACGCTTCGGC	AGACGAAATC	1080
AAAAAGGCTT	ATCGTAAGCT	TTCCAAAAA	TATCACCCAG	ATATCAACAA	GGAGCCTGGT	1140
GCTGAGGACA	AGTACAAGGA	AGTTCAAGAA	GCCTATGAGA	CTTTGAGTGA	CGACCAAAAA	1200
CGTGCTGCCT	ATGACCAGTA	TGGTGCTGCA	GGCGCCAATG	GTGGTTTTGG	TGGAGCTGGT	1260
GGTTTCGGCG	GTTTCAATGG	GGCAGGTGGC	TTCGGTGGTT	TTGAGGATAT	TTTCTCAAGT	1320
TTCTTCGGCG	GAGGCGGTTC	TTCGCGCAAT	CCAAACGCTC	CTCGCCAAGG	AGATGATCTC	1380
CAGTATCGTG	TCAATTTGAC	CTTTGAAGAA	GCTATCTTCG	GAACTGAGAA	GGAAGTTAAG	1440
TATCATCGTG	AAGCTGGCTG	TCGTACATGT	AATGGATCTG	GTGCTAAGCC	AGGGACAAGT	1500
CCAGTCACTT	GTGGACGCTG	TCATGGCGCT	GGTGTCATTA	ACGTCGATAC	GCAGACTCCT	1560
CTTGGTATGA	TGCGTCGCCA	AGTAACCTGT	GATGTCTGTC	ACGGTCGAGG	AAAAGAAATC	1620
AAATATCCAT	GTACAACCTG	TCATGGAACA	GGTCATGAGA	AACAAGCTCA	TAGCGTACAT	1680
GTGAAAATCC	CTGCTGGTGT	GGAAACAGGT	CAACAAATTC	GCCTCGCTGG	TCAAGGTGAA	1740
GCAGGCTTTA	ACGGTGGACC	TTATGGTGAC	TTGTATGTAG	TAGTTTCTGT	GGAAGCTAGC	1800

_			1140			
					CTTTGTCCAA	
					ATTGGTTATT	1920
CCAGAGGGA	A CTCAGACTG	G TAAGAAGTT	CCCCTACGT	A GTAAGGGGG	ACCGAGCCTT	1980
CGTGGCGGT	G CAGTTGGTG	A CCAATACGT	r actgttaat	G TCGTAACAC	GACAGGCTTG	2040
AACGACCGC	C AAAAAGTAG	C CTTGAAAGA	A TTCGCGGCT	G CTGGTGACT1	GAAAGTAAAT	2100
CCAAAGAAA	A AAGGCTTCT	T TGACCATAT	RAAGATGCC	T TTGATGGAGA	ATAATACTCT	2160
TCGAAAATC	T CTTCAAACC	A CGTCAGCGT	GCCTTGCCG	T ATATATGTGA	CTGACTTCGT	2220
CAGTCGTAT	C TACAACCTC	A AAACAGTGTT	TTGAGCAGC	C CGTGGCTAGT	TTCCTAGTTT	2280
GCTTTTTAC	T TTATAGATI	TTTAAGACTT	TCCTAAGTA	A TGACGGACGG	TAGTGACCTC	2340
CTTCGAAGT	T CCATACCTA	ACTTTGAACC	TAAGTTTTA	A AGTTTCCGGA	CAGCTGAAAC	2400
CAAGCTGTT	r caggtgttt	CATTACGGCA	GAAAGTCTTC	GATTTAGTTG	TGAAATGGTG	2460
AATGATACT	TTCAAAAATT	TCTTCAAACC	ACGTCAGCG1	CGGCTTGTCA	TGGGTATGGT	2520
TACTGACTT	C GTCAGTTCTA	TCCACAACCT	CAAAACAGTO	TTTGAGCTGA	CTTCGTCAGT	2580
TCTATCCAC	ACCTTAAAAC	GGTGTTTTGA	GCAGTCTGTG	CCTAGCTTTC	TAGTTTGCTT	2640
TTTGATTTT	T ATTGAGTATG	AATTACCTAA	ATTATGATGO	ATAGTTGATG	GGATATATAT	2700
aatagattg <i>i</i>	AATAGAATAT	GAACAAATTG	ATAAGAGGAT	TTTAAAGTAA	TCTCTAACAA	2760
rgctttàga.	ACTATGGTGT	GCTATTCTAA	ATTCAATTCA	CTATAACTTG	TTTACGTTTT	2820
VAAAAAG AGG	CGTCGGGCTC	TTTTTACTTA	TCTTCAGTTC	CCTGCATTTC	TTTTATCACA	2880
CTAGTCTAG	TCTGGATATC	CTTTTCCAAG	ACCTTAAACT	TGTAAGTCAA	GTCTTCTTGG	2940
PATTCCTTGA	TAAGTTCTTT	TTGCTGGTTA	ATGATTTGCA	GGCTGTTTTG	GATAATATCC	3000
CATCGTCCT	TGATAGCTTG	AACGCGGTCA	GTGGTATTCA	AGACTTCATC	TGTGATGGTT	3060
GGCGATTTT	TTGTAACCAG	ATAACTTCCG	GCTGCAGCTC	CTGCAAATAG	CAGTAGGTTG	3120
ATAATTTCA	TAGCAACTCC	TTAAGCGTTT	TTGATGGTTT	CAGCGACTTG	AGCAAGTTTG	3180
CAAAGTCTG	GTTCGTGGGC	GATAAAATCA	ATCTTGAGGT	CATCGTCAGC	ACTGTAGCGA	3240
GCACAAGGT	GAACGTGAGT	ATGAAAAACT	GTTTGACCAG	CGACTTCTTC	ACAGTTGGAA	3300
TGATATTCA	TACCAGCAGC	CTTAGTGACT	TTCATGACTT	TTTGAGCTAC	TTTTGGTACT	3360
GGGCAAAGA	GTTGGcTGGC	GCTCGTAGCA	TCCATCTCCA	AAAGATTGCG	ATAGTGTTCT	3420
TTGGCACGA	CCAAGGTGTG	TCCTAGTGTT	ACTTGAGAGA	TATCAAGAAA	GGCAAGGACC	3480
				CGATGATTTT		3540
					GCTACATTAT	3600

ACCAGATTTG	GAGAAAATAT	GTTAGAAATT	AAAAACCTGA	CAGGTGGCTA	TGTTCATGTT	3660
CCTGTTTTGA	AAGATGTGTC	CTTTACTGTT	GAAAGTGGGC	AGTTGGTCGG	TTTGATTGGT	3720
CTCAATGGTG	CTGGGAAATC	AACGACGATC	AATGAGATTA	TCGGTCTGTT	GGCACCTTAT	3780
AGTGGCTCCA	TCAATATCAA	TGGCCTGACT	CTGCAAGGAG	ATGCGACTAG	CTACCGCAAG	3840
CAGATTGGCT	ACATTCCTGA	GACGCCTAGT	CTGTATGAGG	AATTGACCCT	CAGAGAGCAT	3900
ATCGAAACGG	TTGCTATGGC	TTACGGTATT	GAGCAAAAAG	TGGCTTTCGA	ACGAGTAGAG	3960
CCCTTGTTAA	AAATGTTCCG	TTTGGAACAG	AAATTAGACT	GGTTCCCTGT	TCATTTTCA	4020
AAAGGGATGA	AGCAGAAGGT	CATGATTATC	TGTGCTTTTG	TGGTGGATCC	AAGTCTTTTC	4080
ATCGTGGATG	AGCCTTTCCT	TGGTCTTGAT	CCGCTGGCTA	TTTCTGATTT	GATTCAGCTT	4140
TTGGAAGTGG	AGAAGCAAAA	GGGCAAGTCT	ATTCTCATGA	GTACCCACGT	GCTGGATTCG	4200
GCGGAGAAGA	TGTGTGATGC	CTTTGTCATT	CTTCACAAGG	GAGAGGTGCG	TTCCAAAGGC	4260
AATCTCCTGC	AACTACGTGA	AGCCTTTGAT	ATGCCTGAGG	CTAGTTTGAA	TGATATTTAC	4320
TTGGCTCTGA	CCAAAGAGGA	GGATCTATGA	AAGACTTGTT	TTTAAAGAGA	AAGCAGGCCT	4380
TTCGTAAGGA	GTGTCTTGGT	TATCTGCGCT	ATGTGCTCAA	TGACCACTTT	GTCTTGTTCC	4440
TGCTTGTCCT	GTTGGGCTTT	CTAGCCTACC	AGTACAGTCA	ACTCTTACAA	CATTTTCCTG	4500
AAAATCATTG	GCCTATCCTT	TTGTTTGTAG	GAATTACGTC	TGTTTTACTT	TTACTTTGGG	4560
GAGGAACTGC	CACCTATATG	GAGGCTCCAG	ACAAGCTCTT	TCTCTTAGTT	GGAGAAGAGG	4620
AAATTAAGCT	CCATCTCAAG	CGTCAAACTG	GCATTTCCCT	AGTCTTTTGG	CTCTTTGTAC	4680
AGACCCTTTT	CTTGCTGTTA	TTTGCGCCTT	TATTTTTAGC	aatgggttat	GGCTTGCCAG	4740
TTTTTCTGCT	CTATGTGCTT	TTATTGGGGG	TAGGAAAATA	TTTCCACTTT	TGTCAAAAGG	4800
CCAGCAAATT	TTTCACTGAA	ACTGGACTGG	ACTGGGACTA	TGTTATTTCT	CAAGAAAGCA	4860
AGCGTAAGCA	AGTCTTGCTT	CGTTTCTTTG	CCCTCTTTAC	GCAGGTCAAG	GGAATTTCAA	4920
ACAGCGTTAA	GCGTCGTGCC	TATCTGGACT	TTATTTTÄAA	GGCTGTTCAG	AAGGTGCCTG	4980
GGAAGATTTG	GCAAAATCTC	TATCTGCGTT	CTTATCTGCG	AAATGGCGAC	CTCTTTGCTC	5040
TCAGTCTTCG	TCTTCTCTTG	CTTTCCTTGC	TGGCGCAGGT	TTTTATCGAG	CAAGCTTGGA	5100
TTGCGACAGC	AGTGGTAGTT	CTCTTTAACT	ACCTCTTGCT	CTTCCAGTTG	CTGGCCCTCT	5160
ATCATGCCTT	TGACTACCAG	TATTTGACCC	AACTCTTTCC	GCTGGACAAG	GGGCAAAAGG	5220
AAAAAGGCTT	ACAGGAGGTA	GTTCGAGGAT	TGACCAGTTT	TGTTTTACTT	GTGGAATTAG	5280
TTGTTGGGTT	GATTACCTTC	CAAGAAAAAC	TAGCCCTTCT	AGCCTTACTA	GGAGCTGGTT	5340

			1148			
					G GACTAACATT	
					T TTTTGTTACT	
					C AAACCACGTC	
					T GCTCTTTGAT	5580
					A TAGGCCCGCC	5640
AAGCGGCGC	G AGTTGGAGC	A TCTGGATCA	A GAGCGCTGA	G TCCCATGAG	A AGACTGGAAG	5700
TCTGGTAAA	A TTTTTCTAG	T TCAATCAAG	A ATCGATTAT	C CACTGTTTC	A GCCTTGGCTA	5760
GAAAACCAA	G AATAGAGTT	r AATTGCTCCT	GAAAGCGGA	C GTCGTCAGC	CTTGCCTGTT	5820
TGCATGCTT	G GTAGGCTTT	G TTTAAGTCA	TAATCAAAG	T ATGAGCTCTT	TTGATGGGGT	5880
CTGTATCTG	T CATGGGAAT	CCTCCTTTA	TCTGGGTGC	C AGTCTTACTT	CTGGCAACTG	5940
TGTTTTGAT	A CTGTTAGTT	T ATCACTTTTA	ATTCTTTTT	TTTATTCAA	TCTTTAATTG	6000
rcattgaaa1	GTCTTGAAT1	GCGCTGAGTG	AATTTTATG!	TAAAATAGT1	GTAAGCTCAT	6060
CATGATGTTC	TAGAAAATAA	TCCTTTTAGG	AGTTTTCAA	GACTGTTTAG	GATTGGGTGT	6120
GCTTGGGCT	GACCTTTTCT	GTTATTCTTT	TCTTAGGAGG	AGAATCCAAT	GAAATATATG	6180
ATTATTCAGA	CGCAGAAAAC	AGTCTATAAA	GTAAACATCG	ACGATATCTA	CTATATCCAA	6240
CACATCCAA	CTAAAGCCCA	TACCGTACAG	ATTGTTACAG	AAGAAGCTAG	TTTTAATATG	6300
TTCAAAATT	TAAGTAATCT	TGAGAACCAA	TGTGGGGAAA	CCTTGATGAG	ATGTCATCGA	6360
ATTGTTTGG	TTAATCTTGA	TAAATTAAAA	TCGATTGATT	TTCAAGAAAG	AATCCTTTTT	6420
TCGGAGAAG	AAGGTCAATA	CGCTGTCAAG	TATGCCAGAC	GTCGCTATAG	AGAAATTCGT	6480
AAAAATGGT	TGAAAGAGGG	agagtaagaa	GATGAGAATA	TTTGTTTTAG	AGGATGATTT	6540
TCCCAACAG	ACTAGAATTG	AAACGACGAT	TGAGAAACTT	TTGAAAGCAC	ATCATATCAT	6600
CCTAGCTCT	TTTGAGGTAT	TTGGCAAGCC	GGACCAACTG	CTGGCTGAAG	TGCATGAGAA	6660
GGGGCCCAT	CAGCTATTCT	TTTTGGATAT	TGAGATTCGA	AATGAAGAGA	TGAAGGGACT	6720
GAAGTGGCT	AGAAAGATTC	GGGATCGGGA	TCCTTATGCC	CTGATTGTCT	TTGTGACGAC	6780
CACTCGGAG	TTTATGCCCC	TGTCTTTTCG	CTACCAAGTG	TCTGCTTTGG	ACTACATTGA	6840,
AAGGCCTTG	TCAGCAGAGG	AGTTTGAATC	TCGGATCGAG	ACAGCCCTCC	TCTATGCCAA	6900
AGTCAAGAT	AGTAAAAGTC	TGGCGGAAGA	TTGCTTTTAC	TTTAAATCAA	AATTTGCCCA	6960
TTTCAGTAT	CCTTTTAAAG	AGGTTTACTA	TCTCGAAACG	TCGCCCAGAG	CCCATCGTGT	7020
ATTCTCTAT	ACCAAGACAG	ACAGGCTGGA	ATTTACAGCG	AGTTTAGAGG	AGGTTTTCAA	7080
CAGGAGCCC	CGTCTCTTGC	AGTGCCACCG	CTCTTTTCTC	ATCAATCCTG	CAAATGTGGT.	7140

GCATTTGGAT AAGAAAGAAA AACTGCTTTT CTTT

7174

(2) INFORMATION FOR SEQ ID NO: 190:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3207 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:

CCACCAGGGA	AAATCATTGA	AGTTGGTAGT	CACCAAGAGT	TAATGCAGGC	GCAAAGTTTC	60
TACCATCATO	TATTCAATAA	ATAAGGAGAA	TGTCATGAAT	CCTAATCTTT	TTAGAAGCGT	120
CGAGTTTTAT	CAGAGACGTT	ACCATAACTA	TGCGACAGTG	TTAATTATAC	CTCTTTCATT	180
ACTATTACT	TTCATCTTGA	TTTTCTCCCT	TGTTGCCACA	AAAGAAATTA	CTGTTACTTC	240
CCAAGGAGAA	ATCGCCCCTA	CAGTGTCATT	GCCTCCATTC	AGTCAACCAG	TGATAATCCT	300
ATCCTAGCTA	ATCATTTAGT	GGCAAATCAA	GTAGTTGAAA	AAGGGGACTT	ACTCATCAAA	360
TACTCTGAAA	CAATGGAAGA	AAGTCAGAAA	ACTGCCTTAG	CAACTCAATT	ACAAAGACTT	420
GAGAAGCAAA	AAGAAGGACT	TGGAATTTTG	AAACAAAGCT	TAGAAAAAGC	GACTGATCTT	480
TTTTCTGGCG	AGGATGAATT	TGGCTACCAT	AATACCTTTA	TGAATTTTAC	TAAACAATCC	540
CATGATATTG	AACTGGGTAT	CACAAAGACT	AACACCGAAG	TTTCAAATCA	AGCTAATCTT	600
TCCAATAGCA	GTTCATCAGC	TATTGAACAA	GAAATTACAA	AAGTTCAACA	ACAAATTGGA	660
GAATATCAAG	AGTTGAGAGA	TGCTATCATA	AATAACAGAG	CACGCTTACC	AACTGGCAAT	720
CCGCACCAGT	CAATTTTGAA	TCGTTATCTT	GTAGCCTCAC	AAGGACAAAC	ACAAGGAACT	780
GCAGAGGAGC	CATTTTTATC	TCAAATTAAT	CAAAGTATTG	CAGGTCTTGA	ATCATCTATC	840
GCAAGCCTCA	AAATTCAGCA	AGCTGGTATC	GGAAGTGTAG	CAACTTATGA	TAACAGTTTA	900
GCAACCAAAA	TTGAAGTACT	CCGCACTCAG	TTTTTACAGA	CAGCCTCACA	GCAACAACTA	960
ACTGTGGAGA	ATCAATTAAC	AGAATTAAAA	GTACAACTAG	ATCAAGCCAC	ACAGCGTTTG	1020
GAAAACAATA	CCTTAACCTC	CCCAAGTAAA	GGTATCGTTC	ATCTGAACAG	CGAATTTGAA	1080
GGTAAAAATA	GAATTCCAAC	TGGTACAGAA	ATTGCTCAAA	TATTCCCTGT	CATCACAGAT	1140
ACAAGAGAAG	TACTAATCAC	TTACTACGTA	TCTTCTGACT	ATCTACCTCT	ACTAGATAAA	1200
GGACAAACTG	TAAGATTAAA	ACTGGAGAAG	ATTGGAAATC	ACGGCACCAC	CATCATCGGC	1260
CAACTTCAGA	CAATTGATCA	AACTCCTACC	AGAACAGAGC	AAGGAAATCT	CTTTAAATTA	1320

ACCGCTCTTG	CAAAACTATC	TAACGAGGAT	AGTAAACTCA	TCCAATATGG	CTTACAAGGT	1380
CGCGTCACTA	GTGTAACTAC	AAAGAAAACA	TATTTTGATT	ATTTCAAAGA	ATTTTAAAAT	1440
ACACATTCTG	ATTAATTTTC	AGATAACACT	CTATAACTAT	TTATTATCTT	ATCAAAAAGG	1500
AGAATCATAA	CATGGATAAG	AAACAAAACC	TAACTTCATT	TCAAGAACTA	ACAACTACCG	1560
AACTCAATCA	AATTACAGGT	GGAGGATTGT	GGGAAGATTT	ATTATATAAC	ATTAATAGAT	1620
ATGCTCATTA	CATCACATAA	GAACTTCATC	ATCCAATACA	ACTATAAAAA	AATAAGACCG	1680
AGAAACAAGT	ACTCTCGGTC	TTATTTTTCA	TCATTCTGTA	TGTATCACAG	TAAGTACCTG	1740
ACGAAAGACT	TGATTTTGAC	AGGTGGTATT	TAGACTGGTA	TTAGGATGGC	TTTCCACAAT	1800
TTCATGACG	GTATAGAGAC	CAACTCCTCT	CTCCTCCCCT	TTAGAACTGG	CTCCAAAGGA	1860
GAAGATTTCA	GAAATATCGA	TGCCCTCTTC	TTTGATGGAG	TTTTCGATGA	TAAAGGTCTC	1920
CTGTGCTCCA	TTTTTTAAAA	AGGCGATTGA	AACATGAGGT	TGACTAGCTT	CCACACTGGC	1980
PTCAATAGCA	TTGTCACAAA	GGATAGACAC	AATGGTTAGA	AAATCAAGTA	GACTCATCCC	2040
CTCGACCTGA	ATCTCCTCAG	GAACTTCGAC	ATTAAAGACA	ATGTTCTTAT	CTCTGGCTTT	2100
TAAAAATTTC	CCTGCTAGAA	GACTTTTGAG	GGCTTTATCA	CGAATATTTA	CCAATCTGCC	2160
CAGGTCATAT	TTATTGTTCT	GCAATTTCTG	ACTGGAATCC	TTTAAGACGG	AGCCATAGAC	2220
TCTTTTATC	TGCTCCATAT	CCTCCTCTTC	AATGCCCAGA	CGTAAGCTAG	TCAAGAGGTT	2280
GTATAATCA	TGACGAAAGC	TCCGTACTTC	CTTGTAAAGC	TCCTCTATAT	GCCGACTATA	2340
CCTTCCATA	TCTCTATAGC	GCAGGGCCTG	CTCTTGTTCC	AATCTCTCAT	AGAGTTTTTC	2400
CTTCAAATAG	GTATCCAATT	TCTTGATAAC	CCCCATAAAA	AAGAGTAGGT	AAAAGACTAG	2460
GATGAGATGG	CGAACAGTCT	TTGATTGAAT	ACTTTGTTCA	TATTCAAAAA	AAGACAGACT	2520
TTCCATGACT	AGATAGTAGC	CACCCATTAT	CCAGTTAATC	TGAGTCAGGG	ACTTTTGAAA	2580
GCTTTATCG	AGAATCTCCT	TTCTCAAGCT	AGTAAAATCG	TAGTCCAACC	ATTTCAAAAA	2640
AGCTAGAGAA	ATGAAGAAAT	TGAAAATTAT	TATACATAAC	CCAGTAAATG	AGTAGCCATC	2700
ATATACTTGC	CCTTGTCCCA	AAAATGGAAG	CACAAAATAG	GAGACTCCTC	TATAAAAGAG	276
ATTCACCAAT	ATCATTGGAA	AGAGACCATA	AAAGAAAAGG	AGTTTTTTAG	GAAGCCCTCT	2820
CAATAATAAG	AAAGATAAGC	CTATGCCGTA	CAAGGGTTCC	ATAAAATAAG	ATAGGTAAAC	2880
ATTTCCTACT	ATATAGCTAA	TCATCACAAA	AACAAAGGCC	AACAGTATCT	TCAAAAGAAA	294
GCCTTAAAA	ATCCTCTCGA	AAGTAAGATC	AATTCCATCC	ACCTTAAAGA	AGATGACAAT	300
TCTAGTCCA	TTAGTAACAA	GTGTATACAA	CAATATCCAA	GCAATGTTCA	TAAATTCTCC	306
PAGCTCAGTG	TAATTTATTG	ATGGCCTCAG	ACACTTCCCT	GACCTTATAA	CGGGCGATTA	312

::

1151

GACAACTTCC	ACCATTGGGA	GAGAAGAGCA	GTTTTTCTTT	CTTATCCAAA	TGCACCACAT	3180
TTGCAGGATT	GATGAGAAAA	GAGCGGT	•			3207
(2) INFORM	ATION FOR SE	EQ ID NO: 19	91:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10357 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:

CTGAATCAAG	TGTACTGCAC	CAGTTCGTGC	ATCAGGCATA	ACAACATCTA	CAGATATAAT	60
ATTGTTTTCT	GAGTCCGCCT	CATAAGTTAA	AATCATAAAT	TTTTCGATAT	TCGAATTTTT	120
AGTAGCTTGT	TCAATTTCTT	GAATCATTTC	ATCAGAAACT	AACTCCATCT	GAATTGGAAA	180
GGAATGACTA	TTTTCATCAT	TTTTGTAGGA	AGAATGTTGA	TTAAGATAAA	GTGTATTCAT	240
CTGAGCATAT	TCAAATAAGT	AGCCACTCTT	ATTITTITGT	ACCAAAGGAA	ATTGGTTTGT	300
AAGTCGCTTC	TTACCCTTTA	TAATTAACAA	TACTTTCCCA	TATTTTTCTG	TATTTGTTTC	360
AAATTCTAAA	TATCCCCAAG	TCTGTCCTGC	TAATTGTAAT	TTATACTCAA	ACAAATCTGC	420
TGATGCAAAT	GCAGTATCAA	TATGATTAGG	TCGCGTCCAT	GCATAACCAT	TCGACACTAT	480
CATTGTCTCT	CTTTTTTCTA	GACGTTCATC	TACATAATCT	TTTTGCCCTT	TCATCAAAGT	540
ATCTACAATT	TTTTGTGCCT	CAAGCGAATC	AAAGAGATCC	TGATTCAACA	TAATTCTTCC	600
TCCTCCAAAT	ACTTTTTAAT	GAATTATACC	ATTTTCTTAA	AGAAATTACT	ACAATAATTA	660
TCTTTTTCTT	AAAGTTCTGT	GTCAGAGTAA	TTTAGAAAAT	TATATCTTCT	ATAGTAAAAT	720
CAATTAAAAA	CTGAACAAAT	TTATTGGGAA	ATTCAAATCG	CTTTCTGAAA	ATATTTTAGG	780
AACCGTAGTG	TAATATTCCA	GATTCAATTC	ACTATAAAAC	TGACCTTTCT	CCTGCAAAAG	840
AAAAAGGAAA	GACTTCCTTT	CGTGCCTTTC	CTCTTACTTG	CTACTTGTTT	GATTATTTTT	900
GGTAAGCTAC	TGCTTGTCTG	ATAAAATCCT	GAATCGGCTC	TCCTTGGTGG	AGAGCTTTTA	960
CTATTTTCGA	ACCGACGATA	ACACCATCTG	ACACCGCATT	GAAGCGTTCC	AGATCGGCTT	1020
GACTAGATAC	ACCAAAACCT	GTCAAGACTG	GGATGTCGGC	CACTTGATGA	AGTTGCGCCA	1080
AGTGCTTGTC	CAAATCTGCA	CGGTAATTGC	CTGATTTCCC	TGTCACTCCA	TTGATGGCAA	1140
CGGCATAGAT	GAATCCCTCC	GCCCCTTCAA	TCAACTCTTT	CTGGCGCTCA	ATTCCTGTGG	1200
TCAAGCTTAC	TAAAGGAATC	AAGGCGATAT	CTGTATTTGC	CAAAAATGGT	TCTACAAAGT	1260

			1152			
TGGCATGTTC	ATGAGGCAGG	TCTGGGATAA	TCAAGCCCTT	CACAGCTGTA	TCAGCCAGAT	1320
CTTTGACAAA	GTTCTCCACA	CCGTACTGAA	AGAGGGGGTT	GAAGTAGGTC	ATGATGACCA	1380
GTGGAATCTC	TGTTTCAATG	GTTTTCAAGG	TTTCAACTAA	AGCCTGGGTA	GAGGTCCCGT	1440
GGGCTAAACT	GCGCAAGCCA	GCTTCTTCGA	TAACAGGTCC	ATCTGCAACA	GGGTCTGAAA	1500
AGGGAATACC	CACTTCAATT	GCAGAGACAC	CCAAATCTTC	TAAAAAGTGA	ATTGTTTCAG	1560
CAAGACCGTC	CAAACCTTTC	TCGTGGTCAC	CAGCCATGAT	ATAGGGAACA	AAAATTCCTT	1620
TTCCAGCTGC	TTTAATAGCA	TTTAATTTT	CTGTTAGTGT	CTTAGGCATG	AGCTTCTCCC	1680
TTCTTTGCTG	CATCTGCTTC	CAAGCGGTCC	TTGACTTGAA	CCACATCCTT	GTCCCCACGA	1740
CCTGATAGGC	AGACAATCAT	AGACTTTTCT	GGTCCAAGTT	CTTTGGCCAA	TTTCACCGCA	1800
AAGGCGATAG	CATGGCTAGA	TTCCAAGGCT	GGGATAATCC	CTTCCACACG	AGACAAGAGT	1860
TGGAATCCTT	CCAAGGCTTC	TTCGTCTGTC	ACAGGGACAT	AGCTGGCACG	TTTAATATCG	1920
TGGTAGTGAG	AATGCTCTGG	ACCGATACCA	GGATAGTCCA	AACCTGCTGA	GATAGAGAAG	1980
GCTTCAAGAA	TTTGACCATG	GGCATCTTGG	AGCACATCCA	TGAGGGAACC	GTGAAGGACA	2040
CCTGGACGAC	CCTTGGTCAA	GGTAGCTGCG	TGGTGCTCTG	TATCCACACC	AAGCCCTGCT	2100
GCTTCAGTTC	CATACATAGC	TACTGACTCA	TCTTCTACAA	AGGGATGGAA	GAGCCCGATA	2160
GCATTCGACC	CACCACCAAC	ACAGGCTACT	AGGGCATCTG	GCAGATCTCG	ACCTGTCAAG	2220
TCACGGTACT	GTTGTTTAGC	CTCTCGACCG	ATGACACTTT	GGAAGTCACG	AACGATTTCT	2280
GGAAATGGAT	GAGGCCCCAA	GGCAGAACCA	AGGATATAGT	GGGTATCGTC	GATATTAGCC	2340
ACCCATGAAC	GAAGGGCTGC	ATTGACCGCA	TCCTTGAGCA	CGCGCGAACC	ATCTGTTACA	2400
GCCTCGACCT	TGGCTCCCAA	AAGCTCCATG	CGGAAGACAT	TGAGGGCTTG	GCGTTTGACA	2460
TCTTCCTCAC	CCATGTAGAT	GGTACATTCC	ATGTTAAAGA	GGGCTGCAGC	AGTTGCAGTT	2520
GCCACACCGT	GCTGACCAGC	ACCCGTTTCT	GCGATAATTT	TCTTTTTACC	CATGCGTTTG	2580
GCAAGCCAAA	CTTGTCCTAA	GGCATTGTTA	ATCTTGTGGG	CTCCTGTATG	GTTAAGGTCT	2640
rcccgtttga	GATAAATCTT	GGCTCCGCCA	ATATGCTGGG	TCAAGTTTTT	TGCGTAATAA	2700
AGAGGAGTTT	CACGTCCTAC	GTACTGGCGC	AAAAGCTGGT	TTAATTCCTC	TTGGAAACTT	2760
GGTCTGCCT	GACTTTCACG	GTAGGCCTTC	TCCAACTCCA	AAACTGCTGT	CATCAATGTT	2820
TCTGGGACAA	AACGTCCGCC	GAATTTTCCG	TAAAAȚCCAT	CTTTATTTGG	TTCCTGATAT	2880
CCATGCTTT	ACCCTCTCTA	TAAATCTTCT	AATCTTTTCA	TGATCTTTTT	GTCCATCTGT	2940
CTCCACTCCG	CTCGATACAT	CTACTGCATA	GGGAGTAAAG	TGTTGAATTG	CTTTTACTAC	3000
ATTATCTTCA	TTAAGGCCAC	CTGCGATAAA	GAAGGGCTGT	GCTAGTCCAG	TCGTATCCAG	3060

7.6

TTGACCCCAA TCAAAGC	GCT GGCCACTTC	C TGCCACAGGG	GCATCAAAGA	GTAGATAATC	3120
TGCCTGAGAA TTGGGGA	CAT GCCCATTTC	C ATCTACCTGC	ACAGCCTGAA	TACTGGCACA	3180
AGGCAAATTC TCAAATA	AAT CATCTGCCA	CTGACCGTGA	ACTTGAACCA	AGTCCAAGCC	3240
AACTTTGTCA ATCGCTT	CCA GCAGTTCTA	CCGACTTGGT	GAAACAAATA	CTCCAACCTT	3300
TTTCACATCT GCAGGAA	TAA GCTTTGCCA	CTCAGCTGCC	TCTTCTAAAG	TCACCTGTCT	3360
TTTACTAGGT GCAAAGA	CAA AACCGATATA	GTCGGCTCCT	GCTGAAACGG	CTGTTTCCAC	3420
CGCTTCTTTG GTCGATA	GTC CACAAATTT	AACCTTTGTC	AATCTGCAAC	TCCTTGATTC	3480
TCTGGGCCAC ATTTTCT	GCC TGCATAAGAC	CTGTCCCTAC	CAAAATTCCG	TTAAAGTATG	3540
GGGCTAGTCG TTCCGCA	TCC TGCCCTGTGA	AAATGGCAGA	TTCAGAAATG	TAATAGCGAC	3600
CTTCCTCAAA GTAAGGG	GCT AAATCTACAC	TGGTCTGCAA	GTCGACCTCA	AAGGTAGTCA	3660
AGTTGCGGTT GTTGACCO	CCG ATAATCTCAG	CACCAAGTCT	GTGGGCTACC	TCTAGTTCAG	3720
CTAGATTGTG AGTCTCC	ACT AAGACTTCCA	GACCAAGCTC	TGTCGCGTAG	TCATACAGTT	3780
CCTTGAGGCG TTCTTCGC	GAC AAGGCTGCCA	CAATGAGCAA	GATAACTGTC	GCACCTGCAT	3840
TGCGAGCGCG GATGATTI	TGC TTTTCATCGA	TGATAAAGTC	TTTGTTGAGC	GTCGGAATCT	3900
CTACCTGACT GGAAATT1	CC CGTAGATAAT	CCAAATGCCC	TTTAAAGAAA	ACCTCATCTG	3960
TCAACACCGA AATCATCA	CT GCTCCGTTTT	CTTCATAAGT	CTGGGCCTGT	TGCACAATAT	4020
CCACATCGAG ATTGATAT	CT CCCAAACTAG	GGCTAGCTTT	CTTGACCTCA	GCGATTACCT	4080
GCAAGCGGTC CTGATGAT	TC TTCAAAATT	CTGCCAAGCG	ATAGGTCTGG	CGCAGAGGCT	4140
GGATTTGCTC CAGCTTCA	TC TGCTCCACCT	CACGCGCCTT	CTGCTCTAAG	ATTCGTGCTA	4200
AAATTCCTG ACTCATTT	TT GGTACTCCTG	TAACAGTCTG	AGTTTTTCAA	GGGCCTTGCC	4260
CTAGCAATC ACTTGACG	GG CCAAGGCAAC	CCCTTCCTTG	ATGCTATCAA	TCTTACCATT	4320
AGCATAGAAA CCAAGACC	AG CATTCAAGAC	TGTCGTTTCC .	AAGAATGGAC	TTGCTTCGTT	4380
TTCAGAACG CTAAGCAA	AA TTTCTGCATT	TTCCTGAGCA	TTCCCACCAC	GAATATCTTC	4440
CATAGCATAG CCTTCCAT	TC CCAAATCCTC	TGGAGTAAAG	CTTGACAAGC	TGATTTCGCC	4500
TTTTCAAGA AGTGCAAT	CT TGGTTGTTCC	GTTCAAGCCA (GCTTCATCCA .	ACCCTTCTGG	4560
CCAGCAACC ACGATGGC	AC GTTTGCGACC	CATATTTTTC /	AAAACCTGAG	CTGTACTTTC	4620
AGGAGTTCT GGACGACT	AA TTCCAAGAAG	CTGTGTTTCT /	AAAGCCATTG	GATGAATCAG	4680
GGACCAGTC AAGTTCATA	AA TCGTTGGAAT	TCCCAATTCC A	VAACGAGCTG	GCATGATGTA	4740
TTCATAGCT GGGTGCAT	AT TTTTAGCGAA	GAGAAAGACG A	TTCCAGTTT	TATCAAAGAC	4800

			1154		•	
CTTACCTAGT	TCAGCTGGTT	TGAGGTCAAG		AAGGCTTCGA	GGACATCTGC	4860
GGAACCAGAT	TTAGAAGATA	TCGAGCGGTT	ACCGTGTTTG	GCCATGTGAA	TACCGCCACC	4920
AGCCAAGACA	AAGGCTGCAG	TTGTGGAAAT	ATTAAAACTG	AAAGACTTGT	CCCCACCTGT	4980
ACCACAGTTG	TCCATGGCAT	CATGAATCTC	AGTTGGAATA	TGCTGGGCAT	GTCCTCTCAT	5040
GACTTGGGCA	ATGGCTGTGC	GTTCTTCAGG	TGTTTCCCCC	TTCATCTTAA	GAGCTAAGAG	5100
GAGAGAAGCA	ATCTGCGCTT	CAGTTACACG	CCCAGTTACG	ATACGCTCAA	TGACATCCGT	5160
CATTTCCACA	CCTGATAAAT	TTTCAAATTT	TGCTAGTTTT	TCAATAATCT	CTTTCATCCT	5220
AGTTTCCTCA	CTTTACAACC	TCCTCGATAA	AATTCCGAAT	AGAAGACAAG	CCGTCTGGCG	5280
TTCCAATGCT	CTCTGGATGG	TACTGGAAGC	CATAAATCGG	TAGGTTTTTA	TGTTGAATCC	5340
CCATGATGGC	TTGGTCATCA	GTCGAACGAG	CTGTCACTTC	AAAGTCTTCT	GGCATTTCCT	5400
CAATCAAAAT	ACTGTGATAA	CGCATGACCG	CACGGCCATC	CTCAATACCT	TGATACAAAA	5460
CAGATGGCGC	TTCAAAGTTG	ATATTGCTCT	GTTTCCCATG	CATGACTTTT	GGAGCCAAAC	5520
CTAGCTTACC	ACCAAAGACT	TCTGCAATGG	CTTGGTGGCC	CAAACAAATC	CCAAGAATCG	5580
GCTTCTTGCC	TGCAAAATCA	CGAATCATGT	CTTCCATCTT	TCCAGCATCA	ACTGGCCAAC	5640
CAGGACCAGG	AGAAAAGACC	AGACCATCTG	CTTTTTCAGC	TTCTTCATAC	AGCTTGGAAT	5700
CATCATTTCT	CAGAACCTGA	ACTTCTGCAA	AATTCCCAAT	GTATTGGGCC	AAGTTATAGG	5760
TAAAAGAATC	ATAGTTGTCA	ATCAATAAAA	TCATGGTCTT	AGTTCTCCAA	TTCTAGTCAT	5820
AGATTTTGCT	TTGTTAATGG	TTTCTTGGTA	TTCGTTTTGG	GCGATAGAGT	CGTAGACAAT	5880
CCCTGCCCCA	GCCTGCACAT	AGGCTCTTTG	ATTTTTGAGA	ATCATGGTTC	GGATGGCGAT	5940
GGCCAAATCC	ATATCACCCG	TCGCAGACAA	GTAGCCGATT	GCCCCAGCGT	ATACTCCCCG	6000
TTTTTCCGTT	TCCAGTTCAT	AGATACGTCT	CATCGCTCGA	ATCTTTGGTG	CTCCAGAAAC	6060
GGTTCCAGCA	GGAAGCGTTG	CTTTCAAGGC	ATCCATGGCA	GTGAGTTCTG	GAAGCAAACG	6120
CCCCTTGACT	ACGCTGGTCA	AATGCATGAC	GTAGCGGAAG	AGCTCCACTT	CCATATACTT	6180
AGTGACTTGG	ACACTGGTCG	TTTCAGAGAT	GCGGCCAATA	TCGTTACGCC	CCAAGTCTAC	6240
CAACATTCGA	TGTTCTGCTG	TTTCCTTCTC	ATCAGAGAGG	AGGTCAGTCG	CCAAGGCCTT	6300
GTCTTCTTCA	TCCGTAGCCC	CTCTTGGTCG	CGTCCCTGCA	ATCGGATTGG	TTGTCACGAT	6360
GCCATTTTTG	ACAGAAACCA	AACTTTCTGG	ACTAGCTCCG	ATGATTTGAT	AATCCCCAAA	6420
ATCATAGAAA	TAAAGGTAAT	TAGAAGGATT	AGTCACGCGG	AGATTTCTGT	AGAAGTCAAA	6480
TGGATTTCCA	GTAACTTCTG	CTGAAAAACG	CTGGCTGAGT	ACACATTGGA	ACATATCTCC	6540
GTTACGAATC	AAGTCACGAG	CTGTTTCTAC	CATTCCCTCA	AACTTATGTG	GAGCGATATG	6600

CGGTTTGAAG	TCTAACGGAG	ATAGATCCAA	ATCTTCAAAT	TCATTTGGAG	CAGGAATGCG	6660
TAATTCCTCA	AGCACTTGGT	TCAAGGATTT	TTCCAAGGCC	TCTTGACTGC	GCTCACTATA	6720
AAGTGCATCC	TCTATGACAT	GTATCTTCTC	CTTCTTGTGG	TCAAAGACCA	TATAGCTCTC	6780
ATAGACAAAG	AAATGCATGT	CTGGCGTCCC	AATTGTATCC	TCAGGGATTT	GACCAATTTC	6840
TTCATAAAGC	GAAATCATAT	CGTAACCCAC	AAAACCAATG	GCTCCACCAC	CAAAAGGTAG	6900
CTCTGAGTGG	TGCTGACTCT	TATGAATCAC	TTCATAAAGG	AAATCCAAGG	GATCCCGATC	6960
AATCACTTGA	CCATTTTGAT	AGAGAACCCC	ATTTTCAAAC	TTAATCTCAA	AAACTGGATT	7020
ATAGGCTAGG	ATAGAAAAAC	GAGCTGTTTC	CTTGTCTCTC	GGAATACTCT	CTAAAATAAC	7080
CTTATGTTGC	CCCTTTAAGC	GCATATAAGC	CAAGATTGGT	GATAAGACAT	CTCCATGAAT	7140
GATTCGTTCC	ATTGTAATTT	CCCTTTCAGT	TCTACTTCTA	GTCCGTGGTG	ACTGTATGAA	7200
AAATCCCCAC	GCAAAATAAC	TTGCGTGAGG	ACGAAATTCG	CGGTGCCACC	TCAATTATAG	7260
GATTTCTCCT	ATCTCTCATT	CCTGTCTCAG	ATATCTCCTG	TAACAGGCTG	TGCGATAAAG	7320
GGCACTCCCT	TGAGAATGAT	GTTTTCTTCT	CTCGTTTCAG	ATGAACCCAA	CTTTACAGCT	7380
TTCTCTGCTT	GTTTTCAGCA	ACCACAAGCT	CTCTGTGAGA	GAAAGAACTG	TAATTTTTCC	7440
ATCTATTATT	TTTTAGCTTC	TAGTAGTCTG	CAATCGCAGC	TAGGTCCTTG	CCTCCACGAC	7500
CAGAGACATT	GATGAAGAGA	TGTTCATCTC	GGTACACCTT	TATACTCTTC	GAAAATCTCT	7560
TCAAACCGCG	TCAACGTCGC	CTTGCCGTAG	GTATGGTTAC	TGACTTCGTC	AGTTCTATCT	7620
GCAACCTCAA	AACAGTGTTT	TGAGCTGACT	TCGTCAGTTC	TATCCACAAC	CTCAAAACAG	7680
TGTTTTGAGC	TGACTTCGTC	AGTTCTATCC	ACAACCTCAA	AACAGTGTTT	TGAGCTGACT	7740
TCGTCAGTTC	TATCCACAAC	CTCAAAACAG	TGTTTTGAGC	AGCCTGCGGC	TAGTTTCCTA	7800
GTTTGCTCTT	TGATTTTCAT	TGAGTATTAC	TAGCTTTTTT	CGTATTAGTC	CAGCCTTTTT	7860
GTTTGCTTTT	AGTAGTAGGC	ATGGAGCTGT	AGATAGAACT	CAAGTTCATC	AAAGCGACTT	7920
AAGGCCCTAA	TAAAAGATAA	ACCAAACGAC	GGATAGAAAA	AAGCCCACAC	ACAGAATATA	7980
CTTCCGTGTG	AGGCCGTTGG	TAACGCGGTG	CCACCTCAAT	TATAAAGGGA	CTATCCCTTT	8040
ACATCTCTGC	CTTGTTTAAC	AACAAGCTGC	ACTGTAAGGT	GTGCGCACCG	AATTTTCATT	8100
GTTTCAAATT	CATTTTCAAA	ATCAGCCCAC	TTTCACTACT	TCCAACCACC	TATTCACAAT	8160
CACCACAGGC	TCCCTGAAGA	TCAAAAATAG	TTACTTTTCT	GATTTGTTGA	ACTTATTTTA	8220
ATACTTTGTT	TTTTCTTTGT	CAAGACTTTT	TTACGATTTT	TTTGAAAATA	TCATTCGAAT	8280
ATGACCATGT	CTTCCTTAGA	TCGAACATGA	ACATGTCCCA	CTTCTTAGAA	ATTGGATCCA	8340

ACTCAATAGA	AACTGAATGG	AGGCTAAACA	GAACTTATT	TAGAACACTC	CATCTTTTCC	840
	TCAAGAATTA					
	GATGTGACAC					852
	TTAACATAAT					858
	TTATCAAATC					864
	CGAATCAAGC					870
ATAATTTTGG	GTAGTCAAGT	GCTGCATTGC	ATAAGAATAA	ACTGAATCAA	TTGTAGATAA	876
CCATAAATG	ACTTTTAAAT	CCATAAAGTA	ATTTTTATCA	TTCAGAAAAG	AACGCACACC	882
CTTTCACGA	TCCTTATTAA	CATGGGATTC	TCCTCCCATA	AGCAACCACA	TATTTTTAAA	888
TTTTCTTCA	GTTACAGCTT	TCATCATATC	ATAAGTAGCT	TGAAAATTAT	TATTAGATAC	8940
TAGACTACT	CCAGACGTTT	GAGATTCACC	GAAAACAAGA	AAAGGCATAT	GGTTCTTCTT	9000
AAATACTGA	ATTCTGATAT	CATCTACACT	TTCATAAAAA	ACAATAACAC	CATCTACTAG	9060
CTACCTGTG	CTTGATATAA	TTGAATTACT	AATTGTATCC	TCCTCTCCAA	AGTACTCAAC	9120
'ATAGCATTA	ACACCAAATT	CTTTACACGT	CCGTAACACT	TTATCTAACA	GCGTATGAAA	9180
CAAATTAAA	GGAAAAGAGT	CGATTTTTTT	TACAGAAATC	AATATATTTA	TAGCTTCTTT	9240
TTAGTTAAA	TTTTTTGCAT	ACGCATTTGG	AATATACGAC	AATTCCTCTA	TAACTTTTTG	9300
ATCGCTTGA	TAAGTTTCTT	CTTTAACATT	TACTCCACCA	TTAATAACTC	GTGAAACTGT	9360
TTTGGAGAA	AAACCTGATA	AACGTGCAAT	ATCATAAATA	GTTACCTTTT	TCCCATTTAT	9420
TTTTTCATT	TCAGTCCTCC	ATTACGAACA	TTCTAATATT	ACTATACAAT	ATTTAATTTT	9480
TTTAACAAG	AGAATTTAGT	AAATTATTTA	AGATCCACAA	ATTCACAAAA	TTAATTTTAC	9540
	CCCCTTCAAA					9600
	CACGACAAAT					9660
	TAAAATGTGT					9720
	AGTTAATTTT					9780
	CAAACACCAT					
	TATTATCAAA					9840
						9900
	CCTCTGAGCA					9960
	AAAAACATCT					10020
	TACAATATTA					10080
TAATTCCAG	AGTAATAAAT	GACGCTATTT	TTTTCTCCGG	AACATCAAAG	TATTCAATTC	10140

TGTCAGAATT	AACATCTCCA	AACGCTGTTC	TTGAATCGGT	CATTCTGATA	CCATTTTCTG	10200
CACAATAAAC	CAATACACGA	TTATAGGCTT	CTGTAGATTT	AACCACTATA	TACAATTCAA	10260
TCATTTTAGA	ACGATTTTGC	AGATATTTTT	TTAGTGGTTG	GAACATGGAT	ATCACACCC	10320
AAACAGAAAT	GGCTACTAAA	AGAGCTCCCT	CATAAGG			10357

(2) INFORMATION FOR SEQ ID NO: 192:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6867 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

CGGGACATTC	TCAATCTTCT	GTCTTTTGTT	TTTCTCTTCT	TTCTATGATA	CAATGGAAAA	60
AATAAATTCA	AAAGGAGTTT	TTTTATGACT	TATCCAAATC	TCTTGGACCG	CTTCTTAACC	120
TATGTTAAGG	TCAÁCACGCG	CTCTGATGAA	CACTCTACTA	CTACTCCAAG	TACACAGAGT	180
CAGGTTGACT	TCGCAACAAA	TGTCCTAATT	CCTGAAATGA	AACGTGTTGG	ACTGCAAAAT	240
GTTTACTATC	TACCGAATGG	TTTTGCTATT	GGAACCTTGC	CAGCCAACGA	TCCGTCTTTA	300
ACACGTAAGA	TTGGTTTTAT	ATCGCACATG	GATACTGCTG	ATTTTAATGC	TGAAGGAGTC	360
AATCCACAGG	TAATTGAAAA	CTACGATGGT	GGTGTGATTG	AACTAGGGAA	TTCTGGTTTC	420
AAACTCGATC	CAGCTGACTT	CAAGAGTCTT	GAAAAATATC	CAGGACAAAC	GCTCATCACA	480
ACAGATGGAA	CAACCTTGCT	AGGTGCTGAT	GACAAGTCAG	GAATTGCTGA	AATTATGACA	540
GCCATTGAAT	ATCTAACTGC	TCATCCTGAA	ATTAAGCACT	GTGAGATTCG	TGTTGGTTTT	600
GGTCCAGATG	AAGAAATCGG	TGTTGGTGCC	AATAAATTTG	ATGCAGAAGA	TTTTGATGTG	660
GATTTTGCCT	ACACTGTTGA	TGGTGGTCCA	CTAGGTGAAC	TTCAGTACGA	GACTTTCTCA	720
GCCGCTGGTG	CTGAATTGCA	TTTCCAAGGT	CGTAATGTCC	ACCCTGGTAC	TGCCAAAGGG	780
CAGATGGTCA	ATGCCCTTCA	GCTAGCAATT	GATTTTCATA	ATCAACTTCC	AGAAAATGAC	840
CGACCTGAGT	TAACTGAAGG	TTACCAAGGT	TTTTACCATC	TAATGGATGT	GACAGGTAGT	900
GTTGAGGAGG	CGCGTGCAAG	CTACATCATT	CGTGATTTTG	AAAAAGATGC	CTTTGAAGCG	960
CGTAAAGCAT	CCATGCAATC	TATCGCTGAT	AAGATGAATG	AAGAACTTGG	GAGCGACCGT	1020
GTCACTCTCA	ACTTGACAGA	CCAGTACTAC	AATATGAAAG	AAGTCATTGA	AAAAGATATG	1080
ACTCCAATTA	CCATTGCTAA	AGCCGTTATG	GAAGATCTAG	GTATCACGCC	TATTATCGAA	1140

			1158			
CCAATCCGG	G GTGGAACAG	A CGGCTCTAA	G ATTTCCTTT	A TGGGAATCC	AACTCCGAAT	1200
ATCTTTGCA	G GTGGCGAAA	A TATGCACGG	A CGTTTTGAAT	r acgttagcc	T TCAGACTATG	1260
GAACGTGCA	G TTGATACCA	CATTGGCAT	C GTAGCTTATA	AAGGCTAAA	AGACGAGGTA	1320
GCTCAGCTA	C TTCGCCTTTC	TTTTTATTC	r actggtttt	CTTGATTTC	AGTAGTTGTA	1380
GAAGATTCT	G TTGTTTCATT	TTCTGAAGT	GATTCAGCAC	GTTTAGAAT	TCTTGTATTG	1440
CTTGGTTTG	r trtcgtcgci	AGCAGTTTC	ATGTTAGATT	CTGCAGTTGC	CTTTGGTTGG	1500
TTCTCAGCA	C TGGTGTTATC	ACCATTTGCT	TCAGCATTTC	TTGCTGGACT	TGTTTCTTCA	1560
CTTGCGCTA	G CTTTTGACTO	GATTTGATGA	TTCAAAACTA	GAATAGCTTT	TGTCGATTCA	1620
AGTAAAGCT	TTTTGTCTT	ACTCTTAGCA	GAAAGTTGAT	CTAATAATGC	ATCCACCTTA	1680
TCAAAGTCC	CATCAGATCO	ATTATTACTI	TCTAAATAAG	AGTGAAGCGA	CATGAGAATA	1740
TCGTAGAGT	TTTGATAGAG	TACAAGTGTC	TGAGGATCTT	GCTCAGCATT	TTCCTTTTCT	1800
TGTTGAAGG	GCTAGCGAT	ACGAGTCAAG	ACATCTTTTA	CCTGACTGTT	TACTTCATCC	1860
AAGTCTGCAT	CAGCCTTGTT	TGTGGCAGCT	TTTAGATTTT	CTACTTCTTC	TGCCAAGGAT	1920
TGTCTGATTC	CTTCTTCATG	GATTTGTTCC	AAGAGTTGAT	TTGCCTTGCT	CAAAAGACTT	1980
TCTACTTCTT	CCTTGCTATC	TGTCGCAGAT	TATTGGTTGC	TATCTACCAT	GTACTCCTAA	2040
AACAGGAGAG	TTATAATCCA	AGATTACAAG	GCCTTACAGA	AATAAGAAAT	CCAGATAAGA	2100
CAATGTTCGT	CCAAGACGCT	ATTCGCTTCG	CACAGCAGCA	CGGATTCAAT	ATGCTTTAAT	2160
TTTAAAGTTT	AGGTGTCAAG	ACCTCTTTTT	AGTGTGCCCA	AAATTTAGAG	AAGTAATCAA	2220
TCAACTAACT	TTTATTTTT	TCAAACTTTC	AGTAAACTGA	CCTAAAGCTA	ACTCAATCTG	2280
TCTTTGTAGA	TGCTTCTGCT	ATCAGCTAGA	AGTTGATCTA	CTTTTGCCAA	GACTGCCTTC	2340
TCATCAAAAG	TTCCAGGTTG	ATAGTTGGAT	TGCAGGGATG	GAATCTTGTT	TTTCAAAGCC	2400
GCTTCATATC	CCTTAGTTTG	AACCTTGATG	TAGTGATTGT	GGTCGCCATG	AGGAATCACA	2460
AAACCTTCTG	AATCTTCACT	TATAATTCGA	TTGGCATCAA	AACCATGACC	ATCTTCTTCC	2520
TCATGATGGA	CATGTAGTGA	CGGATTACTT	AATACAGAAC	TAGAAGAACT	TCCTACCTCT	2580
TCCGTGTTAG	AGTGTGATGG	GGGATTGTTA	AGAGATGACT	TAGGAATATA	GTGATAGTGA	2640
TCCCCATGTC	TTACTATATA	AGCATCACCT	GTATCTCTGA	CAATATCATT	AGGGTTAAAG	2700
ACATATGTGG	CTGCTAATTC	ACCTGCCGAC	AAGTCACTCT	CAGGAATGAA	ATGATAGTGA	2760
CCACCATGTG	GTACTATAGT	AGATTGAAAT	AGAATATGAG	CAAATTGATA	AGGGGATTTT	2820
AAAGTAATTT	CTAACAATGA	TTTAGAAACT	ATGATGTGCT	ATTCTAAATT	CAACTCACTA	2880
TATATAACCA	TCATCGGTAG	TATAACGTCC	CTGTAATTTT	GCTACAGATA	CTTCTGCACT	2940

AGCTCCTTTA	TCGTCTTTAC	CATGTTCTTG	TTTTTGGCGA	TTGATTTCAT	CTTTTGTTCG	3000
TACATITICT	GCATGAGCTT	GATCTTTAAG	GTAAACATAA	TACTTTCCAT	CTACCTTAAT	3060
AATATATCCT	CCCTTAACCT	AACTGACGAT	ATCTTGATCT	TTCGGCTGAT	AGTTGGGGGC	3120
TTTCATTAAT	AGCTCTTCAC	TAAAGAGCGC	ATCAAAAGGA	ACTITACCAT	TATAGTAGTG	3180
ATAATGATCG	CCATGAGAAG	TTACATAACC	TTGATCTGTA	ATCTTAATAA	CAATTTGTTT	3240
TGCTTGAATT	CCTTCTTTTT	GACTAACCTA	GTCTGGAGTC	AAATTTTCAG	TCTTCTTAGT	3300
GTCTTTATTA	CTGTTTACAT	ATGAAACACG	ATTTTTATCT	GTATTGGCCT	GTTAGCTATG	3360
TTGGTTCAGA	GCATAAACAC	ACAGACTTAA	GGAAAGGATA	ACAACAGATC	CAGCTGCTAT	3420
ATATTTCTTT	TTAAATTTCA	TAATTACCTC	ATTTCTATAA	TTATTTATAT	GATGTCTTCA	3480
TTATTAAATG	ATTAAATAAA	TTAATTAACC	AATTAATTAA	CTAGTAAATA	TTCCACCTCT	3540
TTTTAAGTTG	TATGTCAAGA	AATTTTATAT	ATTAATAATA	AAATGAAATT	CTCCCAAAGT	3600
CAGAGTTTTA	TTTCTAACTT	TTGAGAGAAC	TTCATTTTTG	ATTCAGACTT	TTTCTACTGC	3660
TATTCCTTAC	GCTATGAGAT	CAGATAAATT	CTTTTTTATC	ACTTCTCCAC	TTGGCAATCT	3720
TAATTCAATC	GTTCCATCCA	TATTGAATAT	AACACTATCT	AAGCCTAATC	CGTAACTAGC	3780
TGTAAATTTT	TCTAATTTTT	CTTGTACAGG	ATCTACTGCT	GGAGCTTCCT	CTAATGCTGG	3840
ATCTAACATA	GGGTCACTCC	CCACATTCCC	TTCTGGATTC	AACATTCCAT	TATCCGTTGA	3900
GTTTTCTGGT	TTTACAGGTT	TTTCGTTTGG	TGCCTCTGGT	AAAGAATCTG	CTGGTTTATT	3960
TTCTGTTGGT	TGGTTCTCAA	CTGTTCCAGT	AGATACTTTT	CCATTTTCAG	ATGGTTTATT	4020
TTCACCATTT	CCTTGAGGTG	CTTCTCCTGT	AAAATCTGCC	ATATTCTTTT	TAATGACTTC	4080
rcccgatggt	AAATATAATT	CAATTGTTCC	GTCCATATTA	AACAAGACAT	TTTCTAGCTT	4140
CATCCCATAA	CTTTCAGCAA	ATTTTGCTAC	TTTTTCTTGT	ACAGGATCCA	CTGTAGGAAC	4200
PARTOTTOT	GTTGAATTAC	TAGTACTATT	CCCAGTTTCA	GAAAGTTTTT	CTTTTTCTAC	4260
CTTCTCACTA	GTCTTTGGTT	CTTCTACCTT	TTCATCAAGT	TTTAAGTTTT	CTTGTGCTTT	4320
ATTCCTTTTA	AATTGTGGTA	GAATACTTGG	TTTATCAGTT	TGATTTTCTT	TTTCCAAGAT	4380
AGGTACTTCC	ACAATATAAG	TCGATTGATT	GTCCAAATAA	GCATTTGCCA	TGAAGGTTAC	4440
AGGAATTTTA	TTTCCGGCCG	TTCTGGTTGT	TCCTTGGTTT	AATTTCGGAA	TCGGTAATTT	4500
GATTTCACCA	ACTTTATAGT	TATTTTCTAA	ATAAGCATTT	CCATGAAATT	CATCAAACAC	4560
PCTGACTAAA	GCATCAGTTC	CTTTAGGCAC	TGCAAATTGA	GGGTTCACTC	TTAAATAAGT	4620
ATCCCCTGC A	TOCABACCAT	ACA	MMC 3 CMCCCC	A MONOMOCOTA A C	CT 1 1 C 1 C C T	4600

			1160			•
TGGAACTGTA	AATGTACCA	r cataacttac	TTCTGGATA	TCTTTTGAAC	G CGATAGTATA	4740
CTTAAATGTT	TGTCCTGGT	A AATAAGGTTG	ATCTAATTC	AAGTTTGCAA	TATTCCCTAC	4800
TCCTTCTCCA	AATACTTTAC	CAGATACTTT	CTCCAATACT	TTTCCATCTG	GTGTTATTAA	4860
TTTTACTAGC	ATATTGATAC	CTAATTTTT	CTCCAATTC	GGCGGAAAAC	TAAAAGAAAC	4920
GCGTTTTTGA	CCATTGGCTA	A GAGTAAAGTT	TTGATTATTA	AACGTACTAT	TTTTTAACAA	4980
ATTAACAACA	TTCGTTAATT	CTTCTCCAGT	ATAAACTTTA	TTCCCTTCTT	TTTTAGCAAC	5040
TCCTTCTTCG	GGTTTAAACA	GTTCATAGTT	ACTGTGAGAA	TGACCAATTC	CAACCGGTTT	5100
ATGTTCATCA	ATCGGATCTG	CATGATGGTG	ATCTCCATGC	GGATAAATAA	TCGCATTTTT	5160
TTCTTTATTC	ACGACAATAC	TTTCACGTTT	GACACCATAT	TGTTTCATAA	TGCCAGCAAT	5220
TTTTTCTTCG	ATTTTTTAT	CTAAATCTTT	CATTTCTTTG	GCATTACTTG	GATAATCCTG	5280
TTCATGAGAT	GACAAAGAAT	CTAATCCATT	ATGACTAGTT	TTAACTTCCT	CTAAATGTTT	5340
TTGCGCAsCT	TAATTTGCTC	TTCTGTCAAG	TCCTTCTTGA	AGAAATAATG	ATTGTGGTCT	5400
CCGTGACTCA	TGACAAAACC	TGATTCATCT	TCAGCGATAA	TACGATTAGC	ATCAAATCCG	5460
TATCCATCTT	CTTCATGTTT	CTCATGTGAA	GTTCCTGGAT	TGATTGGAAG	AGATGGAGAA	5520
GGTGTTGCTA	GACTATTGTT	TGGAAGAGTC	GGTTGCCCAA	TTTGATTTGA	TTTTGGAATG	5580
TAATGGAAAT	GATCACCATG	TCTTACAATA	TAAGCTGTAG	CCGTTTCTTC	AACGATATCT	5640
TTTGGATTAA	AAATATAACC	ATCAGATGCT	GAAGAGAGCT	CCTTACTTGT	CGTTAAAGAA	5700
GAAGGATTGC	TTGAAAGACT	GCCTAGACTA	GACACTACTT	CATTAGGTTT	TGCATTTGTA	5760
GAAACTGTAG	AACCAGTTCC	ACTGATAGGC	ACCATTCTGG	CAATCTTTTC	TTCTAAGGCA	5820
GAAAGCTTGC	TGTAAGGAAT	AAAGTGGTAA	TGGTCGCCAT	GCGGAATCGC	AACTCCATTT	5880
GGTGTACGAC	TGATAATCTT	AGCAGGGTCA	AAGACCAGGC	CATCTGATTC	ACTGTAACGT	5940
rgggcgctag	GTGAATCATA	GAGTTCCTTC	AAAAGACTCT	GGAGATTTTC	AGATTTATTT	6000
CTGGCTTGC	TAGTTGATCC	TTTTGCTACA	GATTGCGTGT	TATTGTCACT	AGCTGTTGAA	6060
GAATAGCTTA	ACTGACTCGG	TTGCATATTT	TTTCCAGCCA	GATGTGCTTT	AGCTGCTGCT	6120
VATTCACTAG	CAGATAAATC	GCTTTTGGGA	ATGTAGTGAT	AGTGACCTCC	ATGAGGAACG	6180
TATAAGCAT	TACCCGTATC	TTCGATAATA	TCAGCTGGAT	TAAAGACATA	ACCATCATTT	6240
STCGTATATC	GTCCCTGAGA	CCTTGCTACA	GCAACATTAG	AGTTAACCTT	CTCATTATCT	6300
TGACATGTT	CTTGTTTTTG	ACGATTGATT	TCATCTTTAG	TTCGAACATT	ATCAGCATGA	6360
CTGCATCTT	TCAGGTAGAC	ATAATATTTT	CCATCGACCT	TGATGATATA	ACCACCCTTG	6420
CTTCATTGA	CAATATCAGC	GTCTTTAAGT	TGATAGTTTG	GATCCTTCAT	CAAGAGTTCT	6480

TCACTAAAGA	GGGCATCATA	AGGAACTTTC	CCATTATAGT	AATGATAGTG	GTCACCGTGT	654
GACGTTACAT	AGCCCTGATC	TGTAATTTTG	ATTACAATTT	GCTCAGCCTG	AATTCCTTCT	660
TTCTGGCTAA	CCTGGTCTGG	TGTCAAGTTT	TCACTTTTCT	GACTTGACTG	GCTGCCATCC	666
ACATAAGAGA	CACGATTATT	GTCCTTATTT	TCCTGCGAAC	GATGCTGGTT	TAGTGCATAG	672
GCACATAGAC	TCAAGGATAC	GATAACAGCT	GATCCAGCTG	CTATATATTT	TTTACTAAAT	678
TTCATAAATC	CCTCATTTCA	ATAAATGATG	AAGTTTTTC	TCAACTTCTT	TTACTTTATT	6840
AAATAGTTTT	CTAAACCCGG	GGGTACC				6867

(2) INFORMATION FOR SEQ ID NO: 193:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 999 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193:

CGTTCTAAAA	ATGCAGTACG	TTTGATTGAG	AAATCAGTTA	AAGGTATGCT	TCCACACAAT	60
ACACTTGGAC	GCGCTCAAGG	TATGAAGTTG	AAAGTATTTG	TTGGAGCTGA	GCACACTCAC	120
GCTGCACAAC	AACCAGAAGT	TCTTGACATT	TCAGGACTTA	TCTAAGGAAA	GGAACAATAA	180
AGTATGTCAC	AAGCACAATA	TGCAGGTACT	GGACGTCGTA	AAAACGCTGT	TGCACGCGTT	240
CGCCTTGTTC	CAGGAACTGG	TAAAATCACT	GTTAACAAAA	AAGATGTTGA	AGAGTACATC	300
CCACACGCTG	ACCTTCGTCT	TGTCATCAAC	CAACCATTCG	CAGTTACTTC	AACTGTAGGT	360
TCATACGACG	TTTTCGTTAA	CGTTATAGGT	GGTGGATACG	CTGGTCAATC	AGGAGCTATC	420
CGTCACGGTA	TCGCTCGTGC	CCTTCTTCAA	GTAGACCCAG	ACTTCCGCGA	TTCATTGAAA	480
CGCGCAGGAC	TTCTTACACG	TGACTCACGT	AAAGTTGAAC	GTAAGAAACC	AGGTCTTAAG	540
AAÁGCTCGTA	AAGCATCACA	AŢTTAGTAAA	CGTTAATTCG	AAAGAATTAC	TATACTTATA	600
CAGAGCACCT	TTCGGGGTGT	TCTTTTTTTA	TACTTTCTTA	CTAAATTGGT	GCAATTGACA	660
CAGTTGTTGC	GACTTTAGTC	GCTTACAAAT	GTGGCTGCAA	CCTGACATGG	TCAGTTGCCT	720
CAAAACGTTA	ATCAATACGA	TTATATCAAC	GTTTCAAAGC	ACTCAAGGGT	TTACCCTATG	780
GGTGCTTTTT	TCTATACTTT	CTAAAAAAGT	TTACCCTAAA	ATTTGCCCTA	AAATTACCCT	840
ACTTATTTT	AAGATGTTGG	TAGGCAACTT	GTCCAGCAGA	TAATGGAACT	ATGTTTGAAG	900
TATTAACATA	AGTCTTAGTT	GTAACGGTAT	CGCTATGAGT	TAATGCTTCA	GAAATGGCTT	960

1162 CTAAGCTCAT TCCTGCTTTT TTAGCAAGTG TCGCTCCTG

999

(2) INFORMATION FOR SEQ ID NO: 194:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2315 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194:

AATATTATCA CTGTTCTTGA AGGCAGA	AACA CAAGCTGTCA TCCGAAATCA CTTTCTTCGC 60
TACGATAGAG CCGTTCGTTG TCAAGTG	GAAA ATCATTACGA TGGATATGTT TAGTCCTTAC 120
TATGACTTGG CTAAACAGCT TTTTCCG	GTGT GCTAAAATCG TTCTAGATCG TTTCCATATT 180
ATCCAACATC TCAGCCGTGC CATGAGT	TCGT TTTCGTGTTC AAATTATGAA TCAGTTTGAA 240
CGAAAATCTC ATGAATACAA GGCTATC	CAAG CGTTACTGGA AACTCATCCA ACAGGATAGT 300
CGTAAACTCA GCGATAAACG TTTTTAT	PCGC CCTACTITTC GCATGCACTT AACAAATAAA 360
GAAATTCTTG ACAAGATTTT AAGCTAT	TTCA GAAGACTTGA AACACCACTA TCAGATCTAT 420
CAACTCTTAC TTTTTCACTT TCAGAAC	CAAA GACCCTGAGA AATTTTTCGG ACTCATTGAG 480
GACAATCTGA AGCAGGTTCA TCCTCTT	TTT CAGACTGTCT TTAAAACCTT TCTAAAGAAC 540
AAAGAGAAAA TCGTCAACGC CCTTCAA	CTA CCCTATTCAA ACGCCAAATT GGAAGCGACC 600
AATAATCTCA TCAAACTTAT CAAACGC	AAT GCCTTTGGTT TTCGAAACTT TGAAAACTTC 660
AAAAAACGGA TTTTTATCGC TCTGAAC	ATC AAAAAAGAAA GGACGAAATT TGTCCTTTCT 720
CAAGCTTAGC TTTTCTTCAA CCCACTA	CAG TTGACAAAGA GCCTATTTTC GCTGATTCTC 780
CACTACATTT GACTGGATTC TAATTTT	TTA GAGAAATACA AAAGAGCTAG CTTTAGCTAG 840
CTCTTTTCCT ATGCGGAGAG AGGGACT	TGA ACCCTCACGA CCTAAAGCGG TCACAGGATC 900
CTTAGTCCTG CGCGTCTGCC AATTCCG	CCA TCCCCGCGTC GATTACTTTA CTAGTATATC 960
AACTTTTGGG ATGCTTGTCA ACACTTT	TTT TCAAATTTTT TCATTTTCAC CAACCAGGTT 1020
ACTCAAAAG TTCATTTAGA TTTTCATC	CTA CTAACTTAGC TCCGAGTGTA TTTTTGAAAT 1080
GACCTAGGGC AAATTGATGA TTTTCAGG	GCC AGATGGAAGC AACAGCTGGT TTAACAATCT 1140
CGATGTCATA TCCTAGATTA TAGGCATO	CTA TAGCTGTATG TAGGACACAG ATATCCGTCA 1200
AGACACCTGT TAAGATAACG GTAGACAC	CTC TACGCTCTCT CAAACGAATA TCTAGGTCAG 1260
TCCCTGAAAA AGCTGAGTAA TGGCGTTT	TAT CCATCCAAAA GACACGACTG TCTGAACCAT 1320
GCTCTTGATA AAAGATCCCC AAATCTCC	CAT ATAAATTCCG TCCACTCGTC CCAATCAGAT 1380

TATGAGGAGG	AAATAACTTA	CTTTCCGGAT	GGAAACAATC	GTTTTCTTCA	TGAGCATCAA	1440
TAGTAAAGAA	GATATAATCT	CCTCGTTCAA	AAGCTAATCG	AGTTACCTTG	CTGATGGCAT	1500
CCGAAATCGC	CTGAGCTGGA	GCACCTGCTG	TTAGTTTCCC	ACTATCAGCA	ACAAAATCTT	1560
CTGTATAATC	AATCGAAATT	AAAGCCTTTG	TCATTAGTAA	TCTCTTTTCT	TCACTTCTTC	1620
AAAAATATCT	GAAATCAAGA	CCTTAAGATA	GGTTCCCTTC	ATTCCAAGTG	AGCGACTTTC	1680
AATAATCCCC	GCAGACTCAA	GTTTACGAAG	AGCATTGACA	ATCACAGAGC	GAGTGATTCC	1740
GATACGATCT	GCAATCACTG	ACGCAGTCAA	CTTCCCTTCA	TTTCCATTTA	ATTCCCCTAA	1800
AATTGCTGAA	ACAGCACGGA	GTTCGGAGTA	AGAAAGGGTA	TTGACCGCCA	TGGTGACAGC	1860
AGTACGACGA	CGAATATTTT	TCTCATCTTC	TTCACGTTGG	AAGTTAAGAA	GCTGAATCCC	1920
AACAACGGTA	CTGGCAATCT	CAACAAGAAC	CAAGTCCTCA	TCTTCGAATT	TTTTATCATT	1980
ACGCCAAATA	ATCAAAGAAC	CAAGGCGAAT	CCCCGATACA	TGAATCGGTG	CAATAGTCGT	2040
CAAGCCATCT	GGAAAATCAT	CTCTACTCTC	AATAGGGAAA	ATACTCATAT	CATGCTCAAC	2100
AGGCAAGTTT	GCTTCTGTTT	CGTAAATCAT	ATTAGCCCCT	TGAACGTAGT	CATCTGGGAA	2160
AATCTTAGTT	TGGAAGAATT	GCTtACGCGA	TCTGTATTTG	TTTTATAACG	CATAAAATAG	2220
CCAAGCAGAC	GTCCCTTACT	ATTGATAATG	CAGGCATTGC	AATGAATAAT	ATCCGCTAAC	2280
TGACGCGTAA	TAGCGTTGTA	AGGGAGCTCA	TCTCG			2315

(2) INFORMATION FOR SEQ ID NO: 195:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6693 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195:

CGATTTCTTC	CATTTCTTCA	aataagaata	CTTCATCTGA	CATATGTGTT	ACCTTCTTCA	60
TCAAAAATTA	TTTTGTAATC	GATTACATTG	CAGATCGTAA	CATAAAGAAA	AACAGATGTC	120
AAATATTAAA	CGTAAAAACA	TGGTCACTAA	AGAACTATAA	GAGAAAAGGT	AAACCTAGCG	180
ACGCGATGAA	CGCTGGGTCG	TTTGGTTTCG	ATTGCTCTCT	TCCTCTTGTT	TTTTCTGTTC	240
TTCTTCTTGT	TTTTTCTCAG	CTTCCTTGGC	CTCTTGTTTG	GCTTTTTCCT	CAGCTTCCAT	300
AATTAATTTA	TCCGCCACAG	TGTAGCTGTA	GATTCCAGCT	TCCATGTCGA	CCACACTCGG	360
TTCTGACAAT	TGAGGCTTAA	TCTTACTGTA	ATATGGCAGT	TTCTTACTCA	TTTCAGATAG	420

ACCAACCAAC	ACTED CONCCC	A ATCATTCAT	CCTCAATCCA	ATTAAATCGG	ATCTC ACCTT	480
GCTTGGGGCT	AATTCCACCT	TTTGGATAGC	CGCCTTGAGT	TCTGGGCTAA	TTTGAGCAAG	540
TTCTGAGACA	AAAACTTTGA	TTTGTTCACT	ATCATTAAAG	AGAACTGATA	AATAAGTTTC	600
TGGTAAACTG	TTCAGACTCA	CAGAACTAGT	CTCAAGCTGA	CCACTGGAAA	GAATAGGATA	660
ATGATTTTCA	CCAGAAATAT	AGTAGGCCAC	AATATCATAT	TCCTTGACCT	TAATAGTGAA	720
CTTAGTTGGA	AATTGATAGA	CAAGTTGAGC	TGATTCAACC	CAATAGTTAG	ACTTAATCTG	780
CTTTTCATAT	TTTGCCTTGT	CTAGCAGAAG	GTTAATCGTA	TAATCCGAAT	CCTGAATGCC	840
TGAAGCCTGT	CGAATATCAT	CAGCTGTAGT	TTGCACCGTT	CCCTCAACAC	GAATATCTTT	900
CATGGTCGCA	TAAGGACTGA	GCAAGTAGGC	AGAGACAAAC	AATAGAAGCA	GACTTGGAAA	960
TAAAATCGTG	AAGGCTCGCA	AGATATGGAT	ACCAGGAATC	TTTGCTTTGG	CTGGTTTTTC	1020
CTTTGTAGCC	TTTTTAGCAA	GCTTTTTATC	CTGTTCCTCC	TTCTCTTTAG	ACTCTGGTTC	1080
TTCTTTCTCT	TCTTTCTCTT	TGTCAGCCTC	TGAGGATGCT	ACTTTTTCTT	CAGACTCTTC	1140
CTTAGCTGAT	TCTGAATCTT	CCTGGTCTGT	TTCACTCTCC	TGGTCCTGTT	TATCCTCTGA	1200
CTTCTCAGAT	TCTTCTCCCA	TTCGAGCTTG	TCTTTCCTTT	TCCTTCTCCT	CAGCTAGAGC	1260
CGCCTCTTCT	TCAGCCTTCT	TTTTTAGATA	TTCTTGGTTT	CGTTTCTGCC	ATTCTGATAA	1320
CTCTTTCAAT	TCTTCGAGGG	TTTCTTTGTC	CTCATTTTTC	TTATCTTTTG	ACATTTACTT	1380
TCCTTATGAT	AAATCTTTTT	TCAACAATTG	ATAAAAATCT	GCTAGAGATT	TCAATTCCTT	1440
AGAAGCTTTC	ATCTTAGCTT	GGTAATCTTC	CTTGTGACTT	AGTAAGTGAG	AAAGCTTCTC	1500
TTCCAAACTA	TCCAAGGTCA	AATCGCTTTC	TTGAAGGTCT	TCTGCATAGC	CTTTCTTAAC	1560
AAAGTAAGCT	GCATTTTCAA	TCTGGTCACC	ACGACTAGCT	TCACGACCAA	GCGGCACAAT	1620
GACATGCAAT	TTTGCTATCG	CCAAGAGCTC	AAAAATCGTA	TTGGCACCAC	CTCGTGTCAC	1680
AACAATATCA	GCCAATTCCA	TCAAGGGTTG	ATAGAGATCG	GTCACATAGT	CAACACGAAA	1740
AAGATTTTGC	CTCAACTCAT	TCAGACTAGA	ATCTCCAGTT	AGATTGATAA	TATTGTAGCG	1800
CTCTGTTAGT	TCTTTCTTAT	GGTCTGTCAC	CAATTGGTTA	AAGACACGAG	CGCCTGCAGA	186
ACCGCCAACA	AACAATACAG	TTGGCAATTT	GGGATTAAAG	TGGGTTTGAA	TATCCACCAA	1920
TTCATCTGGT	TCTGGAGTGT	TTTTGTCCGA	AACCTTGGTC	ACCGCTCCCA	CATGCTCAAC	1986
CTTAGCCAAA	CTCGAAGCTT	GTTCAAAGGT	TGAATACATC	TTAGTCGCAA	ATTTATAGGC	204
GATTTTATTG	GCCAAGCCCA	TAGACAGGTC	AGATTCGTGA	ATAAAGACAG	GCACTCCTGA	210
CACACGCGCA	GCGATAACAG	GCGGTACTGA	GACAAAGCCC	CCCTTTGAAA	AAAGGGTCTG	216
mcc a ccc a cm	CCCNACATCA	TN N N C N C C C N	##CC&C&&##</td><td>CCCCNACCNA</td><td>CTTTC A ACAC</td><td>22.2</td></tr></tbody></table>			

GTCCAGCATA TTTTGCCAAG	AGAAATAGCO	ACGCAATTTT	CCAGTCGCA	TAGAATGGAA	2280
GGTGACATCC AAACCTGACT	TAAGGATTTC	TTGGTGTTCG	ATACCACACT	TGTCCCCGAT	2340
ATAGTGGACT TCCCAACCAT	CTTCGATGAA	CTTGGGCATT	. AACAAAAGAT	TGAGGGTAAC	2400
GTGTCCAACC GTCCCCCCAC	CTGTAAAGAC	AATTTTTTTC	ATATTATTCT	TTTAACTCCG	2460
CTACTGTGTC GATAAAGAG	TCGCCACGTA	CTTCAAAGTT	AGCATACATA	TCCCAGCTAG	2520
CATTGGCAGG ACTAAGAAGA	ACCACATCTC	CTTGAGTCGC	AAGCTCATAG	GCCTTGCGGG	2580
TCGCATCTGC AATATCTGTC	GCCTCCACAT	AAGCGACACC	AGCCTTGTCT	GCTGCCCGTT	2640
TGACACGTTC TGCAGATTGA	CCCAGGATGA	CCATCTTCTT	GAGTCCAGTA	ATGTCTGGCA	2700
CCAATTCGTC AAACTCATTG	CCACGGTCCA	AACCACCTGC	AATCAAGACG	ACCTTGCTGT	2760
TGTCAAATCC TGACAAGGCT	TTTTGAGTAG	CCAAGATATT	AGTTGATTTA	CTGTCGTTAT	2820
AGAATTTAAC ACCCTTGATG	TCATCCACAA	ACTGGAGACG	GTGTTTGACA	CCACCGAAGG	2880
CTGAAAGAGT TTCCTTGATG	GTTTGATTGT	CCACATCACG	AAGCTTGGCT	ACAGCAATAG	2940
TCGCAAGGGC ATTTTCCACA	TTGTGGCTAC	CTGGAACACC	GATTTCATTC	GCTGCCATGA	3000
CTACTTCACC ACGGAAGTAG	AGTTGACCAT	CTTCCAGATA	AGCTCCATCA	ACCTTTTCAA	3060
GTGTTGAAAA TGGTACAACA	GTGGCTTCTG	TCTTGGAAGT	CAAGTCTTTT	GCCAAGTCTT	3120
GATTAAAGTT CAAGACAAGG	AAATCAGCTG	CTGTCATCTT	GTTCTGGATA	TTCCACTTGG	3180
CTGCTACATA TTCCGAAAAT	GACCCATGGT	AGTCGATATG	AGTTGGCATG	AGGTTGGTAA	3240
TAACCGCAAT CTCTGGATGG	AATTCTTGAA	CACCCATGAG	TTGGAAAGAA	GAAAGTTCCA	3300
TAACAAGCGT GTCCTTATCT	GATGCTATTT	GAGCAACCTG	ACTAGCTGGA	TAGCCGATAT	3360
TCCCTGATAA AAGACCATGT	TGGCCAGCAG	CAGTCAAAAC	TTCCCCAATC	ATAGTCGTTG	3420
TGGTTGTCTT ACCGTTCGAT	CCTGTGATAC	CAATAATCGG	TGCTTCTGAA	ATCAAATAAG	3480
CCAATTCCAC CTCAGTCAAG	ACTGGAATTC	CCTTGGCCAA	AGCCTTTTCA	ATCATGGGAT	3540
TGTTGTAGGG GATACCTGGA	TTTTTCACCA	TAAGGCAAA	CTCTTCATCC	AAGAGTTCCA	3600
AAGGATGGCC ACCTGTAATG	ACCTTGATCC	CTTCTTCCAG	CAAACTTTGG	GCAGCTGGAT	3660
TGTCCTCGAA AGGTTTCCCA	TCATTTACTG	TCACAATGGC	ACCTAGCTTG	TCCAACAAAC	3720
GAGCTGCAGA TTCACCAGAC	TTGGCCAAAC	CTAAAACAAG	GACTTTCTTA	TTTTTAAATT	3780
GATCTATTAC TTTCATGTCT	CGAACTCCAT	TTCTACTCCT	ACTATTTAC	CATTTTTATG	3840
GAAATAAAAA AGCCACAAAG	TGTGTTTGTG	ACTCTTTCTT	CTAACTGAAT	CTTACCATAT	3900
CATCTATGTG ATAAATCGGT	AACTCGAATG	ACCTGATCCA	CTTGCTCCCA	AATCAGAGGA	3960

TTATGGGTC	G СААТААТААТ	GGTCCGATTC	1166 GGATTTTTA	AAGATTCTAG	GATGGAAAGT	402
AATTCCTCAC	AGTTTTTGGG	GTCTAAGGAA	GCGGTTGGTT	CATCTGCGAG	GATCAAAGGT	408
GGATCCTTTA	A AAATTATCTT	CGCTAGTGCA	ACACGTTGTG	CTTCTCCTCC	TGATAACTCA	414
AATATAGGTT	GCTTCAAATC	CAAATAAGAG	AGGTTTACAC	GGTTTAGAGC	TTGTTTCATC	420
AAAGAGATTT	TCTCTTTTTC	CTTCAACTTT	TTACCAACTA	AACCCAGATT	GAGATTCTCT	426
TTGACGGTTT	GGCTTTCAAT	TAAGCCAAAA	TCTTGAAATA	AGTATCCTAA	GTAATCTCTA	432
AAGAAAACAG	AAGGCTTGAT	GTCCTTAAGA	GAAGTGCCAT	CATAGATGAT	TTGCCCTTTG	438
TCATATGGCT	CCAATCGTCC	AATCATATTC	AAGAGTGTTG	TCTTACCACA	GCCACTTGTA	444
CCGATTAAGG	CATAAATTTT	CCCACCTTCA	AAATGAAGAT	TCATATCTGA	AAATAGCTGA	450
CGGCTTCCAA	ATTTTTTAGA	TATATTCTTT	AGTTCAATCA	TCCTATTTTC	CTTTCATAAT	456
TGTCATAGAA	ACACGAGATT	CTTTCTGCGC	TTGACGGTAA	AGCGTCAAAA	CTGCACTAGC	462
TAGAAAGACC	AATAAAGTGA	GCAAGCCAAT	CACCAAGTCT	CGACTGCTTA	AAATAAAGAG	468
ACTAGCACCA	AATACAAAAC	TAGCAAATTG	GCTAACCATA	TACTGAGCAT	GTGTTTCAAA	474
AAATCGTAAA	CCTGAAATTC	GTTTAATCAA	GATATCTCGG	CGGAATTGCT	CGAAATATAG	480
AAGATTGACA	GAATAAAAGA	GTAACAAGGA	ACTGGCTATT	CCAACAATAG	CTCCTAAGAT	486
TAAAGTTGCT	GTTTCAGTTT	GAACTTCATT	ATAACGAGTT	AGATAAACAC	TTCTTCCTTC	492
	GATACTTGCT					498
	ATAAAGAGTT					504
	GTAGAAGTCG					510
	TTCTCACCGT					5160
	TTCATCTCAT					5220
	CTTTCTTCAA					5280
	AGGATAAACT					5340
	ACCTTTTCCT					5400
	GTATCCAGTG					5460
	TCCTTTACAT					5520
	CTCTGATTTT					5580
	GCTCTGTCCT					5640
	AAACCTGTCT					5700
CAATAGGGTT	AAAGCCATCA	AGCGTTTAAG	GGGTAATCTT	CCCTTAATAA	CGGGAACTAA	5760

TGCTTTGTAA	CTCAAACTCA	TTAGGTAAAG	GAGCATTAGT	AAAATTGAAA	TCGCCAATAA	5820
AAACAACAGA	TAGAAACTAA	TCCCAAAACC	ATAGGTGGCT	AACAAGATAG	GATAAAACAA	5880
ACCTTGACTA	AAAAGAACGA	CTCCCCCACC	TAGGAAGGAA	AGGAGGCTG	ATAGAAGGAG	5940
CCATTTGATA	TCAGTAGATA	AAGAATGCCC	CATGATGGAT	AAGAGAGTCT	GACCAGAAAA	6000
GAGTTTTATA	CCTGCTGCTC	TCATTTCCTT	ÄATCCGAGTG	ATAATCACTA	AAGCAAAGAA	6060
AGATAAGCCA	AATATTGCTA	AACTAATTAA	AATAAGGGGA	TTTAGTAATA	TTCGAAAAGC	6120
AAGAAAATAG	GGCGGTATCT	TTCGGTCAGC	ACTTGCTTTA	TAACCCAAAT	CTCCTAATTT	6180
ATCGGCAAGC	TTTTCTTTCG	TCAAGGAGCC	TGACAAAAGG	AGATAACTAT	TTAGCGGAnT	6240
Atacgttcac	GACTTTCTTG	GCTAGCTTCT	TGGAATTCTT	TTGGTAAAGT	TCCCTGACCA	6300
TAAGTTGCAT	AAGTAAAGTG	AGTCGTCCCA	TCCTTACTCG	GCTCTACAAT	TCTTCTAGCT	6360
ATTAAACTCT	GTTCTGAGTT	TGCAAAATTC	TCCAATTCCT	GTTCAAATAC	CTCACGCGTC	6420
GGTTCCTGAG	TATCTTTTTT	GACACGAAGT	AAAGAAACGG	AATCATAGCT	TGCATATAAA	6480
TATTGTGGCG	CACGTAAGAC	AATAATCCAA	GCAAGGAAGA	AGCTGAGAAA	AAAAGTTGAT	6540
AATAATATGA	ATAGTTTCTT	CATAGTAGAC	TCCTTGTAAA	CAAAATTCCC	CCTGTAATTT	6600
CTTACAAGGG	GAACGATTTA	AATCAATGAA	CGATTAGTCA	TAATCACAGT	AAAATGCTAC	6660
TTGTTCTCCC	CATTTAGTCC	AAATCCATGC	AGG			6693

(2) INFORMATION FOR SEQ ID NO: 196:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1847 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:

CCGGTCTATG TACCCACTAC TTTGGGACAA TATGGGGATC AGCTACCCAA AACTAATCGA 60
GCGTTTGGTT GACCTTGCCA AGGAAAGTTT TGACAAGCGC GACGATTTGA TATAAAATGA 120
AAGAGAGGGT AGAAGCCAGA ACCATCACTG CACGGTGACT AGAGTTCTCG GACTTCAGCC 180
CTTTTTAAAG GAGTAGAAAT GAAATTAACA ATCCATGAAA TTGCCCAAGT TGTTGGAGCC 240
AAAAATGATA TCAGTATCTT TGAGGACACC CAGTTAGAAA AAGCTGAGTT TGATAGTCGT 300
TTGATTGGAA CTGGAGATTT ATTTGTGCCA CTTAAAGGTG CGCGTGATGG CCATGACTTT 360
ATTGAAACAG CCTTTGAAAA TGGTGCAGCA GTAACCTTGT CTGAGAAAGA GGTCTCAAAT 420

			1168			
CATCCTTACA	TTCTAGTAGA	TGATGTTTTG		AATCCTTAGC	ATCCTACTAT	48
CTTGAAAAAA	CGACTGTTGA	TGTCTTTGCT	GTTACAGGTT	CAAATGGCAA	GACAACGACT	54
AAGGATATGT	TGGCGCATTT	ACTGTCAACA	AGATACAAGA	CCTACAAAAC	ACAAGGCAAT	60
TACAATAATG	AGATTGGCCT	TCCTTACACA	GTTCTTCATA	TGCCTGAAGG	AACAGAAAAG	660
TTGGTTTTGG	AGATGGGACA	GGATCACTTG	GGCGATATTC	ATCTCTTGTC	TGAATTGGCT	720
CGTCCAAAAA	CAGCCATCGT	GACCTTGGTT	GGAGAAGCCC	ATTTGGCCTT	TTTCAAAGAC	780
CGTTCAGAGA	TTGCTAAGGG	AAAAATGCAA	ATTGCAGACG	GAATGGCTTC	AGGTTCCTTG	840
CTTTTAGCGC	CGGCTGACCC	TATCGTAGAG	GACTATTTGC	CAACTGATAA	AAAGGTGGTT	900
CGTTTTGGGC	AAGGGGCAGA	GCTGGAAATT	ACTGACTTGG	TTGAGCGCAA	AGATAGTCTG	960
ACCTTCAAGG	CCAATTTCTT	AGAGCAAGCC	CTTGATTTGC	CAGTAACTGG	CAAGTACAAT	1020
GCGACAAATG	CTATGATTGC	ATCCTATGTT	GCCTTGCAAG	AAGGAGTTTC	AGAGGAGCAA	1080
ATTCGTTTGG	CCTTCCAAGA	TCTTGAATTG	ACGCGTAACC	GTACCGAGTG	GAAGAAAGCA	1140
GCCAATGGAG	CAGATATCCT	GTCAGATGTT	TACAATGCCA	ATCCAACTGC	TATGAAACTG	1200
attttagaga	CTTTCTCTGC	CATTCCAGCC	AATGAAGGTG	GCAAGAAAAT	TGCAGTGTTG	1260
GCGGATATGA	AGGAGCTTGG	TGACCAGTCT	GTTCAACTTC	ATAATCAGAT	GATTTTGAGC	1320
CTTTCTCCAG	ATGTGCTTGA	TACCGTGATT	TTCTATGGAG	AAAATATTGC	TGAATTAGCC	1380
CAATTGGCCA	GTCAAATGTT	CCCAATCGGC	CACGTTTACT	ACTTCAAGAA	AACAGAAGAC	1440
CAGGATCAAT	TTGAAGACCT	AGTCAAGCAG	GTCAAGGAAA	GCCTTGGAGC	CCATGACCAA	1500
ATCCTGCTCA	AAGGCTCTAA	CTCTATGAAT	CTAGCCAAGT	TGGTAGAAAG	TTTAGAAAAT	1560
SAAGACAAGT	GATTTTGTCA	AGTATTTGCA	AAGAATGATT	GCCATTACAG	ATACTGGCTT	1620
ACCTTTACA	AAAGATCCGT	TTGACCGTGA	GCGCTACGAA	GACTTGCGAA	GTCTGTTATC	1680
GAAATGTTG	AATCAAGCAT	CAGACCTTGA	TTCCGAAGAA	GTGGCAGAAG	TCTTGAAGCC	1740
ACTTCTGCT	TATGCGACTC	CGTTAATGGA	CGTCCGTGCT	TGGATTGTTG	AGGATGAGAA	1800
ATTTGTCTG	GTTAGGGGAC	AAGGAGAGGA	TAGTTGGGCT	TTGCCGG		1847

(2) INFORMATION FOR SEQ ID NO: 197:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1062 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197:

CAAGCGAAAA	CATTTTTAT	TCCAAATAA	CAGAGCATT	TAGGAGAACA	AGAGATTTTG	60
AATGCCAAGT	CGATCTTGGC	CTTGCTAGAC	GGTTTGGAGT	CACATAGCTA	TGATGTAGTC	120
TATCTCCGTC	AGCCTCTTAA	TCGTCTCGAA	TATATCGAGT	GTGCGATAGT	GGGGCAATCA	180
CAATTTCTCT	TTAAGGTCAG	TTATGCTGAT	GGTCAAAAGG	CTTACCGTGT	CGATCTTCCT	240
GACCTACTAA	CAAAGACAGA	CTGGCAGATT	ATCAAGTCAT	TTTTAGATGC	TTTGCTTGCT	300
TATACAGGGA	CTGATATTGA	AGGGCTAGAT	GGTTTTGATT	TTGAAGCTTA	TTTCCAAGCA	360
AGTATTCAAG	CCTATCTAGC	AGACCCTGTA	GCTCGTTTTA	CGATTTGCCA	AGGAATTTTT	420
AATCCTATTT	TCTTTAGTCG	TGAGAACTTG	AAAAGCTTTT	TAGAGGCAGA	TGGCTTGGCT	480
CAGTTTGAAG	CGCGTGTGCG	TGCGGTTCAA	GAGACAGATG	CCTACTTTGC	GAGAGTTTCC	540
TTCTATCAGG	ATGGAGAAGG	AAAAGTGCAT	GGCGTTTACC	ATCTAGCTCA	AGGAGTCAAG	600
ACAGTTTTAC	CGAGAGAACC	GTTTGTTCCT	GCAGCCTATA	TTGAGCAATT	GGTGGATAAG	660
GAAGTCCAGT	GGGAGATTGA	CTTGGTTCAA	ATCACAGGAG	ATGGCTCTAA	ACCAGAAGAC	720
TATGAAGCCA	TTGCTCGCTT	GGACTATGCA	AAATTCTTAG	AGGTATTACC	CCCATCTTTT	780
TACCACCAAC	TAGACGCCAA	TCAAATAGAA	GTGCAACCCA	TATTAGACAA	AGATTTTAAA	840
ACATTAGCAC	AAGAAAAGTA	AAGCAGAAGC	AGGTCAATCG	ACTTGCTTTT	TTGACATAGA	900
AAAAATCCTG	CCAAGaTGAC	AGGATTGCTA	CTCAATGAAA	ATCAAAGAGC	AAACTAGGAA	960
GCTAGCCGCA	GCTGTACTTG	AGTACGGTAA	GGCGAAGCTG	ACGTGGTTTG	AATTTGATTT	1020
PTGAAGAGTA	TGAAGTTTAA	AGAAAAGCCA	AGATACGAAG	ΤA		1062

(2) INFORMATION FOR SEQ ID NO: 198:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6846 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:

TATCTACAAC	CTCAAAAACA	TGTTTTGawG	gCTCGTCAGT	CTATCTACAA	CCTCAAAAAC	60
	kGCtcGTCAG					120
CAGITCTATC	TACAACCTCA	AAAACATGTT	TTGAGCTGAC	TTCGTTAGTT	TCATCTACAA	180
CCTCAAAAAC	ATGTTTTGAG	CTGACTTCGT	TAGTTTCATC	TACAACCTCA	AAAACATGTT	240
TTGangnCnT	CGTCAGTTCT	ATCTGCAACC	TCAAAGCAGT	GCTTTgagcG	CTTCGTCAGT	300

			11/0			
TCTATCTACA	ACCTCAAAAC	AGTGTGTTGC	GCAGCCTTTA	ATCAGCCGCC	TAGTCCGCTC	360
TATGGTATTC	ATTAAGTCAA	CATCTCTTGT	TTAAGAGCAC	CAAATCAGGA	AATCTTCTCG	420
ATTCCCTGAT	TTTTTCTATT	TACGTTTTCG	TGTTGAGCTA	CGTTCTGTCA	AACCATGAGG	480
TAAGAGAACT	TCACGTTCTT	CCAACTCTTC	CTTATGCATA	ATCTTGGTCA	ACATACGCAT	540
ACTAATGGCA	CCAAGGTCAT	AAAGAGGTTG	GGCAATCGTT	GTCAAGTTTG	GACGGGTAAA	600
GCGTGAGATT	TGTGAATCAT	CACTAGTAAT	AATTTCAAAA	TCTTCTGGCA	CAGAAACACC	660
CTTATCAGCC	AAACCGTTCA	AGACTCCTGC	TGCCAACTCA	TCACCTGTCA	CAACTGCTGC	720
AGTTGCATTT	GATGAAATCA	AACGCTCTGC	TAAGGCGTAA	CCATCATCAT	AGCTATATTT	780
AGATTCAAAT	ACCAAACCCT	CACTATAAGT	GATTCCTGCT	TTTTTCAAGG	TTTCCTTGTA	840
GCCAACTAAA	CGAACCTTAC	CATTGATGTC	ATCCACTAGC	GGACCGCTAA	CGAAAGCAAT	900
ACGCTCATTT	TCTTTAGCAA	GGTAACTCAC	TGCATCAATT	GTTGCTTGCT	TATAGTCAAT	960
ATTGACACTT	GGCAACTGGT	GCTCAACATC	GACAGTTCCT	GCGAGAACAA	TCGGAGTACG	1020
TGAACGCGAA	AATTCTGAGC	GAATTTTATC	TGTCAAGTGA	TACCCCATAT	AGATAATGCC	1080
ATCTACCTGC	TTTGAAAAGA	GGGTATTGAC	AACAGAAACT	TCTTTCTCGT	TATCTTCATC	1140
GCTATTAGCT	AGGACAATAT	TGTACTTGTA	CATTTCTGCA	ATATCATCAA	TCCCCTTAGC	1200
CAAACTCGAA	AAATAACCAT	TGGTAATATT	TGGAATCACG	ACACCGACAG	TGGTTGTCTT	1260
TTTACTTGCA	AGACCACGCG	CAACTGCATT	TGGACGATAA	TCCAAACGAT	CAATTACCTC	1320
TAGCACTTTT	TTACGGGTAT	TCTCTTTTAC	ATTTTTATTG	CCATTGACCA	CACGGCTGAC	1380
CGTCGCCATG	GAAACACCTG	CTTCACGAGC	GACATCATAA	ATGGTTACTG	TATCATCTGC	1440
ATTCATTCCT	TTTCCTGTCC	TTTCTATCTC	ACACATTCTT	TTACAAGTAG	AGGTACTGAT	1500
TGAAGCTCTA	TATCTACTTA	CAAAAGTGAA	GATGTGAAAA	TTTCGTTTTC	ATATTTCTAC	1560
TTATTCCATT	CTATCACTAA	TTGTAAACAC	TTTCAAGTGT	TTTTTGAAGA	TTGATTGAAA	1620
AAATTTCATA	GAAAACCTAG	GTTTAGCTCC	TTGCTACCAC	CTTAGACTAA	ACAAAAAGGA	1680
GGAAACTAAG	CCCTCCTAAA	GTTATAGTAA	aatgaaataa	GAACAGGATA	AATCGATCAG	1740
GACAGTCAAA	TCGATTTCTA	ACAATGTTTT	AGAAGTAGAG	GTGTACTATT	CTAGTTTCAA	1800
TCTACTATAG	GTATTGTTCC	ATTCACTACC	GTCAATTTTA	GCACATAGTC	TTCATGAAAA	1860
ТАТТАТАТСА	TCATAACCAA	CCAGATTCTT	TCGCGATATT	AGCTGCCTCT	GTTCGATTAC	1920
CTGCATCTAG	TTTCGAAAGA	ATATTGGTGA	CATAGTTTCG	GACTGTTCCG	TTGGATAGAT	1980
AAAGTTTGTC	TGCAATTTCT	TGGTTAGAGA	AGCCCTGAGC	AATTCCCTTT	AAAACTGCGA	2040
TTTCTTGCTC	CGTTAATGGA	TTGGGATGCA	TCATCACCAC	TTCCATCAAT	TCAGGCGAAT	2100

ACTCCTTGCG	TCCTTCGAGG	ACGGTGTGCA	AGGTTTGCAT	GAGGTCTGCA	ATGTTTCTTT	216
CTTTTAATAC	ATAAGCATCT	ACTCCAGCCT	TGACCGCACG	TTCAAAATAC	CCAGGACGCT	2220
TGAAGGTCGT	CACCACAACC	ACCTTTGTTT	CAAGCTTTTC	TGCTCGTATC	CACTCCAAGA	2280
CTTCAAGACC	TGTCTTAACA	GGCATTTCTA	CGTCAAGGAT	GGCGATATCT	ACAGACTCCT	2340
TTTCTAATAG	TTGGATTGCT	TCTTGCCCAT	TCTTGGCTTG	AAAGACAGAC	TCTACATCCG	2400
GTTGAAGCAT	GAGCAACTGG	CACATGGCAT	CTCGCAACAT	ACTTTGATCT	TCTGCGACTA	2460
ATACTTTCAT	CTACTTTCTC	TCCTTATAAA	GTAGTCGAAC	CTGCACTTCA	GTTGGATGTT	2520
TCTGACTGAT	TACACTTACT	TCTCCTGAAA	ATGGAAAAAC	ACGATTTCGG	ACTGTATGGA	2580
GCTCATCCCC	GCTTATAGAG	GCAAAGCCAC	AGCCATCATC	TCTCACTGTT	AGAATGAGTT	2640
CTTTCTCTGT	CCGTTCTAAT	TTCAAGTAGA	CTTTAGACGC	TTTAGCATGT	TTGATGATAT	2700
TGGTCACTAA	TTCAAGCAAA	ATCATGGAAG	CCGTTGACTC	CAATTCCTGA	GTTAAGCTAG	2760
ACTTGTCCAA	GTGATTCTCA	ACTTGAACCT	CAATTCCAGC	AATTTCTAAC	ATCTTTTCA	2820
CAGTCTCTAG	TTCGGATGTC	AAAGTTCTAG	ACTTAAGATT	TTCCACAATG	GTTCGCACTT	2880
CATTCATGGA	tCCTTGCTGA	TCTGGTGAAT	TTCTTTTAAT	TCCTTTTCCA	CCTGTGGATA	2940
AGCCTCCATC	TGAAATAACT	GCAAGGCTAA	ATCTGTCTTG	ACACTCAGCA	TAGCAAAGGT	3000
ATGTCCCAGA	CTATCATGCA	AATCCTGACC	GATACGACTA	CGTTCATTTT	CAGCAAGCAA	3060
TAGATTTATC	TGAGCATTTT	GCTTGACCTG	AGCTTCTTTC	AAATCCTCGA	CAATACGAAT	3120
CCGAACCAAT	CCAAAAGTCA	TTAAATCGAC	AAAAGTAAGA	ATTACAAGTA	GATAGAATAG	3180
AAACTCAACT	TCGATTCTCT	GAAAAATCAA	CAGTTGCCCC	ACAACAAGGA	CTTGAGCAAG	3240
AAGAAAAGTC	CAGACATGTA	AAGACTTTAA	ACTACGTACG	CTGAAATGAT	AACTTAAGAG	3300
ATTGGATAGG	AAAAAGAAAA	ACCAGATATA	ATTAACAGCA	ACAAAGGCAG	TATTCCCAAC	3360
TACATAAGTC	AGCATGAGGC	CCCAATATAG	CCAAGATAGG	CGCTGGCTCT	TAGTTGTTAA	3420
AACACCCAAA	TATGCCACTA	CAAATAGAAT	ATCAATCAAT	AAATGCCAGG	CAGAAAGCCA	3480
CCCAGTCACT	ACAGACAGGA	TGGGGAAAAT	САТАААААТТ	AAACTGATCC	AAAACATATA	3540
ATGTATTCTT	TTCAGTCTTT	CAAGCATTAA	GCATTCTCCT	TATGACCTTG	AAGGTAAATG	3600
GTCAAACCAA	ACAAAACTAC	TGAAAAAACA	agtaaataaa	CTGTGGCTGA	TAGATTGATG	3660
CCACCCTCAT	TTAAGAAGGT	CTTGAGCAAC	TCCATCAACT	GATAGGTCGG	GAGACACTTA	3720
CCTACTACTT	GCATCCAGTC	TGGAAATAAA	GAGATAGGCA	TCCAGAGTCC	ACCTAAAACA	3780
GCCAACCCTA	GATAAAGAAG	ATTGCCCACG	ACAGACATCA	ACTGACTAGT	TCCTAACACA	3840

			1112			
GTCAAGGTCA	AACCAAGCGC	TACGAAGGCA	ATACTTCCTA	CTATCAGCAA	AAGTGCAGCC	390
CCAATCCAAT	TTCCAAGAGA	CATGTCCACA	CCTCTTACAA	AATGCCCAAC	TGAGAAAACC	396
ACCAAGATTO	AAACCAAATA	ATCAACCAGC	ATACTTGTTA	TCTTTGATAG	ATAATATTCT	402
ACCATATTTA	CAGGGCTATG	ACGCAATGTT	TTCTGCCAGT	TGTTGATCTT	GTCGGTATGT	408
AAAACAACTG	GGAATGAGAA	GATAGCTGTT	GACATCATGG	AAAATGCAGT	CATGGAGATA	414
AGATAATCAC	GCATAAAATT	CGCGAGTTCA	CCTGGTGTGT	CCTGATAGAT	ACCAGAAAAA	420
AATAAATAGA	AAGCCGTCGG	CATCCCTACT	GACAATAGAT	AATAGATCAA	TTGTCGTTTG	426
GTCAATAAAA	ATTCTATCTT	ACTAAGTGCT	AGCCATCGTT	TCATCTTAGT	TATCTCCCTT	432
CTGCGTTTCT	TCAAAGATTG	TATCCAACAA	ACTACGATTA	TTAACTTCAA	TTTCTTGTAT	438
GCCACATCCT	GCTTGAACTA	ACAGTTCCCA	AAAAGCATCT	GCTTCGCGTG	TGACTACTTG	444
TAGAGCATCC	TGTTTTTGTG	ACCAGTTTTC	AACCAAGTTA	GACTGCTCAA	TGACTTCCTT	4500
GTATGCCAGA	GGAAGGATAA	AATGCTTTTC	AATTCCCTCA	CTACGCATAG	CTAGAGGCGT	4560
CGTATCACGA	ATCAACTCTC	CCTTATTTAA	AACCAAAATC	CGGTCAGCCG	TATGCTCTAC	4620
CTCTTCAATA	TAATGAGACG	AATAGAGAAT	CGTGACTCCT	TGCGCTTTTA	GGTCCCGAAC	4680
GATTTCCCAA	AAGCGTTGAC	GAGTTGAAGT	ATCCATGGCA	GCAGTTGGTT	CATCTAAAAA	4740
GACAAGCTTT	GGTCGCCCAA	TCAAGGTCAA	GACAAAAGAG	AAGAGACGCT	TTTGCCCGCC	4800
TGACAATTTT	TCTGCGAATT	GCTCTTTTTG	TTGCTGGTCA	AACTGCAATA	GTTGATCGAT	4860
TTCCTGATCG	CTCAAGGAAT	TTGGATAGAT	ACGTTGAAAG	AAAGCAATCA	ACTCTTTGAC	4920
CTTTAATTTC	TGAACGATGA	CATTTTCTTG	AGGCAGATAA	CCTCTAATAT	AGTCTAACTG	4980
AGAACTCGTC	ACTGACAAGC	CTTGGATGGA	TACTTGACCG	CTTGTGACCA	GTTTATCTCC	5040
AAGCAGACAG	TCCAAGAGTG	TGGTCTTCCC	AGCACCATTG	GGCCCAATCA	AGGCGACGCA	5100
TCACCTTCA	GCTACCTCAA	AGGAAATACC	CTTCAAAATA	GCCTTGCCCT	TGATGTTTTT	5160
ATTTAGGCTT	TCTACCTTAA	TCATATTCAT	GATATTCTCC	TTTCAACCAC	TCCATTCTCA	5220
PAAGGAAAAC	GACGAAAATC	ATAAATCCAA	ACCCCAAAGC	ACCACGAATG	AATTGGCGAA	5280
CAAGGTTTG	GTCAAACCAA	CCTGTAAACA	TTTCCACTAA	CCATACCAAG	AGTGACAGGC	5340
GATAAAGAA	ATAGATGATC	CCTCTCTTCA	TTCCTCAAGC	TCCTTTTTCA	CATCTCCGAC	5400
TAATTTCAAA	CCTTCTCTAA	CAAGCCAAGA	CATCATTCCA	AAGCCAGCAA	AGAGCTCCCA	5460
AGGAAAATGA	TAGAAACTCT	CATCCAATCC	CGAAAACATG	AGTTAGGTCA	TAACTCCTGC	5520
PACTACTAAA	CTCACTGCGA	TAATCATTTT	ATTTCTCATC	TCTTCTTCCT	CCATTTCATA	5580
TACAATTAT	AGTCTTTTGA	AATCAGAGGA	GACAGAAGCT	TCTGTCACTA	GAAAATATGA	5640

CAAATGTCAT	AAAAAATTCT	GTTCAAAACA	AGCAAGATAC	ACTATACAAT	AAAACACAAT	5700
TAGAAAAATC	TAAGGCAACT	TCCTCAAAAG	AGATATCAAA	CCCAATTCAC	ACCATAATGT	5760
AAACTAATAC	TTATTTAAAA	TCAAAAAGAG	TAGAAATTTT	TATCAGACAA	ACACATATAT	5820
AGTGTATTGA	ATCTATAACA	GTAGGCCTTA	ААТАСТАААА	TATTTCTATA	AATTAATTTA	5880
ACTTTCCTGA	TAGAGCTGTT	CATATCTTAT	TTCAATTCTC	TAAATTATAC	GTTGAACAAA	5940
ACCCTTCTAT	TTCTTTCTTA	AAGATTTATA	AGAGTTATAA	AATCTGTTAA	ATTTCAATGT	6000
GTATACCTAA	ACTACGGTAT	TTATTGAAAA	GACTGGAGAC	AAAAAGTATA	CGCTGCCAAA	6060
ATGAATTACT	GAAAATCAAA	AAAGAGAGAA	CCAAACTGAT	TCCCTCTTAA	TGTATATAAT	6120
ATCTAGTTTT	AAAAATACAC	ACTCACATAT	CTCTGTAATG	AATCGGGAAG	ACAGGATTCG	6180
AACCTGCGAC	ACCTTGGTCC	CAAACCAAGC	ACTCTACCAA	GCTGAGCTAC	TTCCCGAGTT	6240
AAATAGAAAA	ATGCACCCTA	GAGGAGTCGA	ACCTCTAACC	GCCTGATTCG	TAGTCAGGTA	6300
CTCTATCCAG	TTGAGCTAAG	GGTGCTCCAT	ATTATGCCGA	GGACCGGAAT	CGAACCGGTA	6360
CGATCGTTAC	CAATCGCAGG	ATTTTAAGTC	CTGTGCGTCT	GCCAGTTCCG	CCACCCCGGC	6420
CTCTCTAAGC	GAACGACGGG	ATTCGAACCC	GCGACCCCCA	CCTTGGCAAG	GTGGTGTTCT	6480
ACCACTGAAC	TACGTTCGCA	CTGTTTTCTT	CTATCTAAAA	ATGCCGGCTA	CATGACTTGA	6540
ACACGCGACC	CTCTGATTAC	AAATCAGATG	CTCTACCAAC	TGAGCTAAGC	CGGCTCATTT	6600
GTTATATCTT	AATGCGGGTT	AAGGGACTTG	AACCCCCACG	CCGTTAAGCG	CCAGATCCTA	6660
AATCTGGTGC	GTCTGCCAAT	TCCGCCAAAC	CCGCATATAT	GACCCGTACT	GGGCTCGAAC	6720
CAGTGACCCA	TTGATTAAAA	GTCAATTGCT	CTACCAACTG	AGCTAACGAG	TCTAAAATAA	6780
CTTGCGTTAC	CTTAAACGGT	CCCGACGGGA	ATCGAACCCG	CGATCTcGCC	GTGACAAGGC	6840
GACGTG						6846

(2) INFORMATION FOR SEQ ID NO: 199:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2911 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:

GAATTCATTT TAAATAAAGA TACGGGAGAG GTAAGTGAAT TAAAACCTCA TAGGGTAACT 60 GTGACCATTC AAAATGGAAA AGAAATGAGT TCAACGATAG TGTCGGAAGA AGATTTTATT 120

TTACCTGTTT	ATAAGGGTGA	ATTAGAAAAA	1174 GGATACCAAT	TTGATGGTTG	GGAAATTTCT	180
GGTTTCGAAG	GTAAAAAAGA	CGCTGGCTAT	GTTATTAATC	TATCAAAAGA	TACCTTTATA	240
AAACCTGTAT	TCAAGAAAAT	AGAGGAGAAA	AAGGAGGAAG	AAAATAAACC	TACTTTTGAT	300
GTATCGAAAA	AGAAAGATAA	CCCACAAGTA	AACCATAGTC	aattaaatga	AAGTCACAGA	360
AAAGAGGATT	TACAAAGAGA	AGAGCATTCA	CAAAAATCTG	ATTCAACTAA	GGATGTTACA	420
GCTACAGTTC	TTGATAAAA	CAATATCAGT	AGTAAATCAA	CTACTAACAA	TCCTAATAAG	480
TTGCCAAAAA	CTGGAACAGC	AAGCGGAGCC	CAGACACTAT	TAGCTGCCGG	AATAATGTTT	540
ATAGTAGGAA	TTTTTCTTGG	ATTGAAGAAA	AAAAATCAAG	ATTAAGATAA	AAGCTATAGA	600
AAAAAATGGT	TTATGTACTG	AGATTAGATA	GTGAGGTGAT	GACATAGTTT	TGTGAAAATA	660
GCCATTTATA	ACTCAATTAT	TTAGTTTACT	TTACTTTACT	AGTGATACTA	TTTGGAGTTA	720
TTAATGGACT	TAGTTTATAT	AACTAATGAA	TTGATTGAAA	GGGTTAGTAT	TGACAATATT	780
GGTCATATTG	ACTAGAAAAT	AGAGTCTATC	AAATTTAAA	GGCTAATAGA	GGTGATGAGA	840
CAATTTCGGC	TCTTTGTCAA	CTGTAGTGGG	TTGAAGTCAG	CTAAGCTCGA	GAAAGGACAA	900
ATTTTGTCCT	TTCTTTTTTG	ATATTCAGAG	CGATAAAAAT	CCGTTTTTTG	AAGTTTTCAA	960
AGTTTCGAAA	ACCAAAGGCA	TTGCGCTTGA	TAAGTTTGAT	GAGATTATTG	GTCGCTTCCA	1020
GTTTGGCATT	AGAATAGTGT	AGTTGAAGGG	CATTGACAAT	CTTCTCTTTA	TCTTTGAGGA	1080
AGGTTTTAGA	GGATGAACTT	GATTCAGATT	GTCCTCAATG	AGTCCGAAAA	ATTTGTCAGG	1140
CTCCTTATTC	TGAAAGTGAA	AAAGCAAGAG	TTGATAGAGA	TTATAGTGGT	GTTTCAAGTC	1200
TTCTGAATAG	CTCAAAAGTT	TATCTATAGT	AGATTGAAAC	TAGAATAGTA	CACCTCTGCT	1260
TCTAAAACAT	TGTTAGAAAT	CGATTTGACT	GTCCTGAATG	ATTTGTCCTG	TTATTATTTC	1320
ATTTTACTAT	AAATCCACGT	TTACGAATCT	CTTTCCACAC	TTGTTCAATG	GGGTTCATCT	1380
CTGGTGTGTA	TGGAGGAATA	AATGCAAAAC	CAATATTAGT	CGGAATCTTT	AAGGTACTTG	1440
ATTTATGCCA	TATAGCATTG	TCCATAACGA	GTAAAAGATA	ATCATCTGGA	TAAGCTTGTG	1500
AAAGCTCCTA	TTCCTAAAGC	CCCTTTATAA	CCTCTTGCGA	GAGAGACTAT	TGACTCAGCC	1560
CTTACTTCAT	GCGGATGAAA	CTTCTTATCG	GGTTCTAGAG	AGTCATAGCC	ATCTGACCTA	1620
CTATTGGACC	TTTTTGTCTG	GGAAAGTTGA	GAATCAAGCA	ATCACGCTGT	ACCATCATGA	1680
TCAGAGTCGG	AGTGGTTCGG	TAGTACAAGA	ATTCCTAGGA	GATTATTCTG	GCTATGTTCA	1740
TTGTGATATG	TTGCGGCAGT	AACTTAGGAC	TTTAGTCCTC	TAGTTCTGCC	TATGCGATAG	1800
CAGTCCAAGG	TTTAGGAGCA	AGGCGACGCT	AAGCTTGGTA	AACTGCGAAC	CGCTAGAAGC	1860
TTATCGTCAA	CTGGAAGAAG	CTGAACTTGT	TGGATGTTGG	GCGCATGTGA	GAAGGAAATT	1920

TTTTGAAGCG	ACCCCCAAGC	AAGCAGATA	A ATCATCCTTA	GGAGCTAAAG	GTTTAGCTTA	198
TTGTGATCAG	TTATTTTCCT	TGGAAAkAGA	CTGGGAGGCT	TTGCCAGCTG	ATGAACGACT	204
ACAGAAACGT	CAAGAACATC	TCCAGCCCCT	* AATGGAAGAC	TTCTTTGCTT	GGTGCCGCCG	2100
TCAGTCAGTT	TTAGCAGGTT	CAAAACTAGG	AAGGGCAATT	GAATACAGCC	TCAAGTATGA	2160
AGAAACCTTT	AAGACTATTT	TGAAAGACGG	ACATCTGGTC	CTTTCCAATA	ATCTAGCTGA	2220
ACGCGCCATT	AAATCATTGG	TTATGGGACG	GAGTAAAAGA	GTCCAGTGGA	CTCTTTTAGC	2280
CTGAGCTCAG	TTTAAAAAAAG	CGAGGGTGGT	TATTTTCTCA	AAGTTTTGAA	GGAGCTAAAG	2340
CAAGAGCTAT	TGTTATGAGC	TTGTTGGAAA	CAGCTAAACG	TCATCAATTA	TAGTGCGTTG	2400
AATCTATAAC	AGTACGCATC	GACTGCTAAA	ACATTTCTAT	AAATCAATTT	ТССТТТССТА	2460
ATCGATTTGT	TCATATCTTA	TTTCAATCCA	TTATAAATAG	CGAGAAATAT	CTATCCTATC	2520
TTCTAGAATG	TCTTCCAAAC	GAGGAAACTC	TCGTAAACAA	AGAGGTTTTA	GAGGTTTATT	2580
TACCATGGAC	TAAAGTTGTA	CAAGAAAAGT	GCAAATAAGA	AATCTCCAGA	TTAGGAACTA	2640
TCCGTGAGTT	CACTAATCTG	GAGATTTTTC	AATAGALTCG	TTATTGGGCG	GTTACGATAT	2700
GATCACTACT	TCGTCAGTCT	TATCTACAAC	CTCAAAACAG	TGTTTTGAGC	AACCTGCGAC	2760
PAGCTTCCTA	GTTTACTCTT	TGATTTTCAT	TGAATATTAG	AACAGAAAAA	ATGCTTGGAG	2820
PATTTGTTTG	TGTGTTTATT	TTTATATAAC	AAACTATAAA	CAAAATAAAA	AAAAATATA	2880
AGAGACAAAA	AAGAACAGAA	AGTAATTGAC	A .			2911

(2) INFORMATION FOR SEQ ID NO: 200:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6854 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:

GAAAATAAGT	CTTGACAGAA	AGCGCTATCA	ATGATAGAAT	GAATTCAGAT	AAAAAGATTT	60
ATTTTTAAAA	CAAAAATGAA	ACGTTTCAAA	AAAAGAAATA	AAGAGACAGC	GCCAAGCGCT	120
ATCTTTTCTA	GAAAAAAATG	AAACGTTTCA	AAAAAGGAGG	TTGCTATGAA	TAGCAAAGCG	180
AAGCAAGTTT	CTCTTTGGGA	AAGAATCAAG	AAACAAAAAC	TCTTGTTATT	GATGACTGTC	240
CCCGGTTTAG	TTTTAACCTT	TATCTTTAAA	TACATCCCTA	TGTATGGGGT	TTTAATCGCA	300
TTTAAAGATT	ACAATCCTTT	AAAAGGAATT	TTAGGGAGTG	ATTGGATTGG	TTTTTCTGAG	360

TTTACAAAAT	TCATATCCTC	TCCCAACTTT	1176 GGTATCTTGT	TAGCCAACAC	ATTAAAATTA	420
AGTATCTATG	GTTTATTGCT	TGGCTTTTTA	CCACCAATCA	TTCTCGCGAT	TATGCTCAAT	480
CAACTCTTGA	GTGAAAAAGT	CAAAAAACGA	ATTCAGCTCA	TTTTATACGC	ACCAAACTTT	540
ATCTCAGTCG	TTGTTATTGT	CGGTATGATT	TTCCTCTTCT	TTTCAGTGGG	AGGACCAATC	600
AACAATTTTC	TTTCTATGTT	TGGAATGAAG	GCTGACTTCT	TGACAAATCC	AGACTTCTTT	660
AGACCTTTAT	ACATCTTTAG	TGGTATCTGG	CAAGGAATGG	GCTGGGCTTC	AACGCTCTAC	720
ACGGCAACAT	TGGTAAATGT	AGATCCAGCC	TTAGTAGAAG	CAGCCCGACT	GGATGGAGCC	780
AATATCTTCC	AACGAATCTG	GCACATTGAT	ATTCCAGCTC	TTAAGCCTAT	TATGGTTATC	840
CAATTTGTTT	TAGCTGCAGG	TGGAATTATG	AATGTCGGAT	ATGAAAAAGC	ATTCTTGATG	900
CAGACATCGT	TAAATTTGCC	AACTTCTGAA	ATTATCTCGA	CATATGTCTA	TAAAGTTGGT	960
CTTGTATCAG	GAGACTATTC	TTACTCAACA	GCGGTTGGTT	TGTTTAATGC	AGTGATTAAC	1020
GTAGTATTGC	TTGTTGCAGT	TAACCAAATC	GTTAAACGCA	TGAATAATGG	TGAAGGAATT	1080
TAAGGAGGAA	AGTATGAAAA	ATTCGATTAT	GGATACAAAA	TTTGATAGAC	GTATCTTACT	1140
CTTAAATAAA	ATCATTATTG	TCTTTATCGT	TTTGATGACT	TTGCTTCCTT	TACTTTATAT	1200
CGTCGTAGCA	TCCTTTATGG	ATCCTAAGGT	TCTGGTTAGT	AGAGGGATTA	GCTTTAATCC	1260
AGCCGATTGG	ACTGTAGAAG	GTTACCAGCG	TGTATTCAGT	GACCAATCTA	TTCTAAGAGG	1320
TTTTATCAAT	TCTCTACTAT	ACTCTTTTGG	ATTTGCAGCT	TTAACAGTCT	TGCTATCTGT	1380
GTTTACAGCT	TATCCTCTTT	CTAAGAAAGA	CTTGGTTGGA	CGTCGTTGGA	TTAACTACTT	1440
CTTGATTGTA	ACTATGTTCT	TTGGTGGTGG	TTTAGTCCCA	ACTTACTTGC	TCGTAAAAGA	1500
ATTGGGAATG	CTCAATACTC	CATGGGCTAT	CATTGTTCCA	GGTGCTGTTA	ACGTTTGGAA	1560
TATTATTCTT	GCTAGGGCCT	ATTTCCAAGG	ATTGCCTGAA	GAATTAGTTG	AAGCTGCTGT	1620
CATTGATGGT	GCAAATGATT	TACAGATTTT	CTTCAAAATC	ATGCTTCCTC	TTGCAAAACC	1680
AATTATGTTT	GTTCTCTTCC	TTTATGCTTT	TGTAGGACAG	TGGAACTCAT	ACTTTGATGC	1740
AATGATTTAT	ATCAAGGATC	CAAACTTGGA	ACCATTGCAA	CTTGTACTTC	GTAAAATTCT	1800
CATTCAGAGC	CAACCAGGTC	AAGACATGAT	TGGAGCACAA	GCGGCTATGA	ATGAAATGAA	1860
ACGTTTAGCT	GAATTGATTA	AATACGCAAC	TATTGTCATT	TCCAGCTTGC	CATTGATTGT	1920
TATGTATCCA	TTCTTCCAAA	AATACTTTGA	TAAAGGAATT	ATGGCTGGTT	CACTTAAAGG	1980
ATAAAAAAAG	AAAAAATAAA	AGGAGTTTTC	TCATGAAATT	CAAAACATTC	TCAAAATCAG	2040
CAGTTTTGTT	GACAGCTAGT	TTAGCAGTAC	TTGCAGCCTG	TGGCTCAAAA	AATACAGCTT	2100
CAAGTCCAGA	TTATAAGTTG	GAAGGTGTAA	CATTCCCGCT	TCAAGAAAAG	AAAACATTGA	2160

AGTTTATGAC AGCCAGTTCA CCGTTATCTC CTAAAGACCC AAATGAAAAG TTAATTTTGC	222
AACGTTTGGA GAAGGAAACT GGCGTTCATA TTGACTGGAC CAACTACCAA TCCGACTTTG	228
CAGAAAAACG TAACTTGGAT ATTTCTAGTG GTGATTTACC AGATGCTATC CACAACGACG	234
GAGCTTCAGA TGTGGACTTG ATGAACTGGG CTAAAAAAGG TGTTATTATT CCAGTTGAAG	240
ATTTGATTGA TAAATACATG CCAAATCTTA AGAAAATTTT GGATGAGAAA CCAGAGTACA	246
AGGCCTTGAT GACAGCACCT GATGGGCACA TTTACTCATT TCCATGGATT GAAGAGCTTG	252
GAGATGGTAA AGAGTCTATT CACAGTGTCA ACGATATGGC TTGGATTAAC AAAGATTGGC	258
TTAAGAAACT TGGTCTTGAA ATGCCAAAAA CTACTGATGA TTTGATTAAA GTCCTAGAAG	264
CTTTCAAAAA CGGGGATCCA AATGGAAATG GAGAGGCTGA TGAAATTCCA TTTTCATTTA	270
TTAGTGGTAA CGGAAACGAA GATTTTAAAT TCCTATTTGC TGCATTTGGT ATAGGGGATA	2760
ACGATGATCA TTTAGTAGTA GGAAATGATG GCAAAGTTGA CTTCACAGCA GATAACGATA	2820
ACTATAAAGA AGGTGTCAAA TTTATCCGTC AATTGCAAGA AAAAGGCCTG ATTGATAAAG	2880
AAGCTTTCGA ACATGATTGG AATAGTTACA TTGCTAAAGG TCATGATCAG AAATTTGGTG	2940
TTTACTTTAC ATGGGATAAG AATAATGTTA CTGGAAGTTAA CGAAAGTTAT GATGTTTTAC	3000
CAGTACTTGC TGGACCAAGT GGTCAAAAAC ACGTAGCTCG TACAAACGGT ATGGGATTTG	3060
CACGTGACAA GATGGTTATT ACCAGTGTAA ACAAAAACCT AGAATTGACA GCTAAATGGA	3120
TTGATGCACA ATACGCTCCA CTCCAATCTG TGCAAAATAA CTGGGGAACT TACGGAGATG	3180
ACAAACAACA AAACATCTTT GAATTGGATC AAGCGTCAAA TAGTCTAAAA CACTTACCAC	3240
TAAACGGAAC TGCACCAGCA GAACTTCGTC AAAAGACTGA AGTAGGAGGA CCACTAGCTA	3300
TCCTAGATTC ATACTATGGT AAAGTAACAA CCATGCCTGA TGATGCCAAA TGGCGTTTGG	3360
ATCTTATCAA AGAATATTAT GTTCCTTACA TGAGCAATGT CAATAACTAT CCAAGAGTCT	3420
TTATGACACA GGAAGATTTG GACAAGATTG CCCATATCGA AGCAGATATG AATGACTATA	3480
CCTACCGTAA ACGTGCTGAA TGGATTGTAA ATGGCAATAT TGATACTGAG TGGGATGATT	3540
ACAAGAAAGA ACTTGAAAAA TACGGACTTT CTGATTACCT CGCTATTAAA CAAAAATACT	3600
ACGACCAATA CCAAGCAAAC AAAAACTAGA GGTTGATTAT GGGAGATAAG AAATACACAG	3660
AGAAAAAGC CAATCGTTTT ATAGCAGAAA ATAAACATCT CGTTAATACT CAATATAAGC	3720
TGAAGAACA TTTTTCAGCT GAGATTGGTT GGATCAATGA TCCAAATGGA TTTGTCTATT	3780
TCGTGGAGA ATACCATCTC TTTTATCAAT TCTATCCATA TGATAGTGTT TGGGGGCCTA	3840
GCACTGGGG ACATGCTAAA AGTAAGGACT TGGTGACTTG GGAGCACTTG CCAGTGGCAC	3900

1178 TTGCTCCTGA CCAAGATTAT GACCGAAATG GTTGTTTCTC AGGCTCTGCC ATTGTCAAGG 3960 ATGATCGCCT CTGGCTCATG TACACTGGAC ATATCGAAGA AGAAACCGGT CTCCGCCAAG 4020 TGCAAAATAT GGTATTTTCA GATGACGGGA TTCACTTTGA AAAGATTTCC CAAAATCCAG 4080 TTGCAACTGG ATCAGACTTA CCAGATGAGT TGATTGCTGC TGATTTCCGT GATCCAAAAC 4140 TCTTTGAAAA AGATGGACGC TATTACTCCG TAGTAGCTGC CAAACACAAG GATAATGTGG 4200 GCTGTATCGT TCTACTAGGG TCCGATAACC TAGTAGAATG GCAGTTCGAA TCCATCTTTT 4260 TAAAAGGGG AGAACACCAA GGTTTTATGT GGGAATGCCC AGATTACTTC GAGTTAGATG 4320 4380 ACATCAACTC ATCGCTTTTG TTCACGGGTA AGGTAGATTG GAGAGAAAAA CGTTTTATCC 4440 CAGAATCAGT TCAAGAAATT GATCATGGCC AAGACTTCTA TGCGCCTCAA ACATTGTTGG 4500 ACGATCAAAA TCGTCGTATC CTGATTGCTT GGATGCAGAC ATGGGGGCGT ACCCTTCCAA 4560 CCCATGACCA AGAACACAAG TGGGCATGTG CCATGACTCT ACCTAGAATT CTAAGATTGG 4620 AAGATGGCAA ACTAAGACAA TTCCCTGTTA AAAAAGGCCA ATATCAAATC CAAATAGATA 4680 AAGATTGTCA TTACCACTTA GGAAATGATA TAGATTATCT TGAATTTGGT TATGACAGTA 4740 ATGCGCAGCA AGTTTACATT GATCGTAGCC ATCTTATTCA AAAAATTCTA GGTGAAGAAG 4800 AACAGGACAC TAGTCGACGG TATGTAGATA TTGAAGCTAA AGAATTGGAA GTTGTTCTAG 4860 ATAAAAATTC CATCGAGATT TTTGTCAATC AAGGTGAAGC AAGCTTGACT GCAACTTATT 4920 ACTTAACGGT GCCAGCTGAG CTATCACGAA TTGATTAAAA ATTAAGTTAT TTCTCCTAAA 4980 GAAAAAGTTC TCTTTCTAAA ATAGTGGAAA GAGGACTTTT TGTGTTTTTGG GTATATAAGC 5040 TTAGTTTATG GTATTTGTAA AATTGGTGTT GGATTATGAT TTAAGCTAGT TTTCTAAAGA 5100 ATTTGAAAAA AATTTTATTT AAGCAAAAAA ACCTTGGTTC CAAGGCTTTT CCTGTTGTAT 5160 TTAGATGCCC CCTACAGGGA TTGTAGGAGA TATGTTGCTT AGATGTTCTT GATTTTCTGG 5220 TGTTTTGTAA CGTTTAAATG AGTTTTTTGA GTTTGTTGGT GGGGCGTTGC CCGGCAATTG 5280 CCCGACTTAT TGCTTGAAAA AGAATTTAAA ATATAGTATA GTTAATTATA GATTAACACT 5340 TGCTTGGAGG AACTGATGAA GAACAATGAA AGATTAGGTA TTAAATTAAG TAGAGATAGC 5400 GTTTTAGGAT TGAGGGAAGT TAGAAGGCTT TATTTAGGCA GTTCAGATAT CCCAGTTTCT 5460 GATGGCTATG TGATTGAAGT TGCTTATAAC CAGATATCAC ATGAGATTGA TATTATTGAT 5520 TGGGTAGAGT TGAACAAGTC AAAAATTAAG ATAAGTGAAA TTAGTGAAAG CGTGGATATA 5580 GATGCCACTA GCTTGAGAAC AACTTTGACT TTAGACACAT TAGTATATGA AGGTATGAGA 5640 GATATACAGT TAAAGTTGAG AGAGCTTACA AAGGGGAGAG TATTCTTTTC ATTTGTAGTG 5700

::-

1179

AAGTTAGTTT	TGTTTGCTTC	TATTTTAAAG	AAAAAAGATT	TACTAGAAAA	ATTTCAAGAA	5760
AAGTGTTAAT	CAAGTATTGA	CACTTTATCT	GGATTTCGGT	ATAATATGCT	TAGAAAGGAA	5820
TCTTTCTAAA	TTTTTTTCGT	CCTTATGTGT	TAATCAAAGA	CGAATACAAA	AACATATTTT	5880
TTTACTCTAA	AAAGTGTTAA	TCAATGATGT	ATTTGTTAGA	GAGGTAGATA	AATGGAATTG	5940
AGAGCACCAC	CAGTTATAAT	AGTATAAAAC	GTATAATAAA	AATATTTTAA	CTTGAATTAT	6000
AGAAAAGGAG	AAACAAATCA	TGAAACAAAA	ACAACCGATT	GTTTCTAGAA	CGAAACAACA	6060
TACATTTGAA	GAGCTTATTC	AAGACCAAAA	GTTAGAAAGA	TTGGCTAAGT	TGTCGCCCGA	6120
TTTGGTTGGA	AGGTATGGTT	TTACTGCTAG	CTGTGCGTCT	TCATTTGCGA	ACTTGATTAA	6180
AGAAGCGTAT	GGGGGTAAAA	ATCTAAACGT	AGTTTATGCG	AGTCGGATGT	TGGCTCTCTG	6240
GAATATTGCT	TGCAGTTGTT	ATCATAAGGC	TGATGGGTAT	TCTTTAGCAG	ATGCGCTTTT	6300
TAGTGATAAA	AAAATTTGTC	TAGATTCTTA	CTATTACCAC	AAGAATACCT	CTAATACCAT	6360
AACTAGTGAT	GTGATAAAAG	ATGTTTACGA	TAATTATAAT	AATTATATGG	TTTTAACTCG	6420
AGAAGCGACA	CCTGAATACA	TTTATGTTGT	ACAAACTGAA	ATGCCAAAAG	ATTCAGATTT	6480
ATATTTTAT	ATTAGAGAAG	TTCTGGGATT	ATCGTTTAGT	ACCATGCATT	ATGCATTTTT	6540
AGTCAAGGTT	CTTGCAGGAG	CGCTTGCTAG	AAAATATAAG	CCATATCGAA	ATTGAATTAT	6600
TAAATTTAT	ACTCTTCGAA	AATCAAATTC	AAACCAAGTC	AGCTTCGCCT	TGCTGTACTC	6660
AAGTGCTGTC	TGTGGCTAGC	TTCTTAGTTT	GCTTTTTGAT	TTTCATTGAG	TATTACTCTT	6720
ATGGTAGTTA	TTTATGGCAT	AATAATATTG	ATTTGGGAGT	TATAGCGAAA	ATTTTAGGTT	6780
CTATAATATT	TGTAGTGGGT	AAACCACTAT	AGATATTATG	GAGCCTATTT	ATTGTAGAAA	6840
AAAGTCCCAT	ATGA					6854

(2) INFORMATION FOR SEQ ID NO: 201:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3895 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201:

TCCTTGCTAA GTTTATACTC AATG	AAAATC AAAGAACAAA	CTAGGAAGCT	AGCCACAGGT	60
TGCTCAAAGC ACCGCTTTGA GGTTC	GCAGAT AAAACTGACA	CGGTTTGAAG	AGATTTTCGA 1	120
AGAGTATTAA TTTACATAAA TAGCO	CAGTGT TTGATAGGGT	TTGAGTAGAA	TTTTCTCAGA 1	180

			1180		•	
CACTTCTGC	TCTTCATAGT	TTGATATCA	AATCTGTCCA	TTTTGGTAGA	CTGCTGGCAA	240
GTCGATTTC	CTTCTTTAGC	ATAAAAGTTA	TTGAGCACTA	GTAACTTTTC	ATCCTCAAAC	300
TGGCGTTCAA	AAGCGTAGAC	TTGTTTGCTA	TCTTCAAAGG	CTGGTTTGTA	ACTTCCTTCT	360
GAAATGATTG	GCATTTCCTT	ACGCATCGAA	TCAAGTCTTG	ATAGAAGGTA	AAAATCGGAC	420
CCTGGATTTC	: ATTTTCTACA	TTGATGTATT	TATAGGATTT	ACCAGCTTTC	AACCAAGGAG	480
TGCCTGTTGA	AAATCCTGCA	TTTTCCGAAG	CATCCCACTG	CATGGGAATG	CGTGAATTAT	540
CACGCGACTT	AGCTTGAATA	ATCTGGAAGG	CTTCTTGCTG	ACTCTTTCCT	TCTTCTAAGA	600
GCATCTGATA	GGCATTAAGC	GATTCGACAT	CCACATAATC	AGCCATAGAA	TCATAGTCTG	660
GGTCAATCAT	CCCGATTTCC	TCACCCATGT	AGATATAAGG	TGTCCCACGT	GACAGGTGAA	720
TGCTGGCTGC	TAGCATGGTG	GCTCCTTCCT	TGCGGAAGTT	TTGAATATCG	ACAAAACGGT	780
TCAAGGCACG	TGGTTGATCG	TGATTATTCC	AAAAGAGGGC	ACTCCAACCG	TCTTTATCAC	840
TCATTTCCTT	ACCCCAACTA	TGGTAAAGAC	TCTTCAACTC	TTCAAAATCA	AAGGGAGCCA	900
AGGTCCACTT	TTGTCCATCC	TTATAGTCCA	CCTTGAGGTG	ATGAAAATTA	AAGGTCATGG	960
ATAATTCCTG	ACGATCAGGC	GACGAATAGA	GGACACAGTT	TTCCATGGTG	GTAGAAGACA	1020
TTTCCCCAAC	TGTCATAAAG	CTATCGTCGG	ATCCAAAAGT	GGCTTGGTTC	ATCATACGCA	1080
AATAGTTATG	AACGATGGGT	TTGTCTGTAT	AAGCTGGCTT	CCCTTCATTT	TCAGGACAGT	1140
CCACTGAAAC	CTCGTCCTTA	CCGATCAAAT	TGATCACATC	AAATCGGAAA	CCTTTGACAC	1200
CCTTGTCGCG	CCAGAAATTA	ACAACCTTGA	AAAGCTCCTT	ACGGACATTG	GAATTGCGCC	1260
AGTTAAGGTC	AGCCTGGGTC	TCATCAAATA	GGTGAAGATA	GTATTTCCCA	GTATCCCCGA	1320
AAGGCGTCCA	TGCAGAACCA	CCAAACTTAG	ACTGCCAATC	TGTTGGTTGG	TCTTGGATGA	1380
AGAAAAAGTC	TTGATAATAC	TTATCACCAG	CTAGGGCTTT	CTGAAACCAT	TCATGCTCTG	1440
TCGAACAATG	ATTAAGTACC	ATGTCCAGCA	TAAAGTCAAT	CTTGTGCTCT	TTACCGACAC	1500
ACACCATTTT	CTCAAAATCA	GCCATATCAC	CAAAAAGAGG	ATCCACTGCC	ATATAATCTG	1560
AAATATCGTA	ACCATTATCC	CGTTGAGGGC	TTGGATAGAA	TGGATTGAGC	CAGACCATAT	1620
CCACACCTAG	TTTGGCTAAA	TAGGGAATTT	TTTCGATAAT	CCCACGGAAA	TCCCCAATAC	1680
CGTTTTCAGT	GGTGTCTTTG	TAAGATTTTG	GATAGATTTG	ATAGACTACT	TTTCCTTTAT	1740
CAAGTGTCAT	CTGTTTCTCC	TTTTCTGATA	AAAGGGAGGA	AGCAGTCTTC	CGTCCCTATT	1800
TGTGCTATTT	CAATTATACT	CAATGAAAAT	CAAAGAACAA	ACTAGGAAGC	TAGCCACAGG	1860
TTGCTCAAAA	CACTATTTTG	AGGTTGCAGA	TAGAGCTGAC	GTGGTTTGAA	GAGATTTTCG	1920
AAGAGTATTA	GATTCGTGTA	GCGACCATGA	GAGATGCTCC	AGCTTGGATC	GTTGTCGGAT	1980

AAGTTCCGG	G AATAGTCGC1	GTATAAGCAT	CTTGGTTGGT	GATGATAACA	GGAGTTTCTG	2040
TCACCAGAC	C TGCAGCCTTA	ATGACATCC	TATCAAAACC	AATCAGTTGC	TGACCAACTG	2100
TAACGTGAT	C TCCTTGGACT	ACAAGACTTT	CAAAACCTTI	GCCATCAAGA	CCTACTGTAT	2160
CCATACCGA	r gtggatgago	AATTCAACTC	CCTCGTCAGA	GACAATGCCG	ATGGCATGCT	2220
TGGTAGGGA	A AAGAACCGTC	ACTGTCCCAT	TAACTGGAGA	GGTCAACTCA	CCTTGGCTTG	2280
GTTCAATGAC	TAGACCTTGC	CCCATGACAC	CTGATGCAAA	AATAGGATCC	GTCGCTTGAC	2340
TCAATTCTTT	CACTTGGCCA	GTTAGTGGGC	TGATAATTTC	TACCGAAGTA	AGTTCTACTG	2400
GTTCATGGTT	CACAAATTCT	GCTTCTTCTT	GAGCAACGAA	TTCTGCCTGC	AAGTTCGTAT	2460
CGCCCTCTGT	TTTTGTAAAG	AGACCAGCCT	TGCGGAAGAA	GAAAGTCAAG	AGCATTGGAA	2520
CAACAATCGC	AACTAGCATA	GTTCCTGCAA	ATGGCAGCAT	GTATTGAGGT	TGAATAGAGA	2580
GAATACCTGG	CAAACCACCG	ATACCAATAG	AAGCCGCAGT	TACATTAAAA	GTAACGGATA	2640
ACATGCCTGC	AAGGGCTGAA	CCAGTCATCC	CAGCAACAAA	TGGATAAATA	TATTTTACGT	2700
TAACCCCAAA	AAGAGCTGGT	TCTGTAACAC	CGAGATAGGC	TGAAATGGTT	GCAGGAAGTG	2760
AAACCTGAGC	CTCACGCTCA	TCATGGCGAT	GCATGAAATA	ATAGGCAAAC	ACGGCTGAGC	2820
CTTGAGCAAT	ATTAGAAAGA	GCAATCATTG	GCCATAGGGC	AGTGCCACCA	GCATCCGCAA	2880
TCAATTGTGT	ATCAATGGCA	TTGGTCATAT	GGTGCAGACC	TGTGATGACA	AATGGAGCGT	2940
AGAGGGCGCC	AAAAATTGCA	CCGAAGAGCC	ATTTAACTGG	ACCAGTTAAA	CCTGCCAAGA	3000
CAACTGATGA	AAGTCCTTGT	CCAATTGTCC	AACCGATTGG	TCCCAAAACA	GTATGAGCCA	3060
AAATCAAGGC	TGGAATCAAT	GACAAGAAAG	GTACAAAAAT	CATAGAAATG	ACTTCTGGGA	3120
TATGCTTGTG	CCAGAAGATT	TCAAGATAAG	ACAGACTCAA	ACCTGCAAGC	AAGGCTGGGA	3180
TAACTTGGGC	TTGGTAACCG	ATACGATTAA	CAGTAAAATA	GCCAAAATTC	CAAACCCAGT	3240
TTGCCGCGAT	ATCAGCTGCT	GGCGTTGAAG	CAACCGCATA	GGCATTGAGC	AACTGAGGTG	3300
ATACCAAACA	GATTCCGAGA	ACAATTCCCA	AAATTTGGCT	GGTTCCCATC	TTACGAGAAA	3360
CAGACCAAGT	AATCCCTACT	GGTAAGAACT	GGAAGATAGC	TTCACCAGGC	AACCAGAGGA	3420
AGTGATTGAC	ACCTGCCCAA	AACTGAGAGG	ATTCTGTGAT	GGTCTTGCCA	TCCAACATCG	3480
ACCAATGGAC	ACCTTCCAAG	ACATTACGGA	AACCGAGGAT	CAATCCTCCG	ACTATCAAGG	3540
CTGGAATAAT	CGGAGTAAAA	ATCTCCGCCA	GAGTGGTCAT	AACACCTTGG	ACCACGTTTT	3600
GATTACTCTT	AGCTGCAGAC	TTGGCTGCTT	CTTTGGAAAC	ACCCTCAATA	CCTGAAACGG	3660
CTGTAAAATC	ATTATAAAAG	ATGGGCACGT	CATTTCCAAT	GATTACCTGA	AATTGACCTG	3720

CATTTGTAAA	GGTTCCTTTA	ACAGCTGGAA	1182 TTGACTCGAT	AGCTTTAACA	TTAGCCTTCT	3780
TATCATCTCC	TAAAACAAAC	CGCATCCGTG	TCGCACAGTG	AGTTACGGCA	GTCACATTTT	3840
CTTTGCCTCC	GATTGCCTGA	AGCAGATCTT	TGGCTTCTTG	TTCAAATTTT	cccgg	3895

(2) INFORMATION FOR SEQ ID NO: 202:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3936 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:

AGGATCGCCG	CTCCAGCTAC	TAAGTCTCGT	GCAGTGCCGA	TTTATCAAAC	AACATTTTT	60
GTTTTTGATG	ACACGTAGGA	AGGTGCCGAT	CTGTTTGCCT	TGAGGAAACC	AGGGAACATT	120
TATACTCGTA	TCACCAATCC	TACAACAGCT	GCCCTTGAAG	GTGGTGTTGA	AGCGCTAgcA	180
ACAGCATCAG	GTATGACTGC	AGTGACTTAT	ACGATTTTGG	CGATTGCCCA	TGCTGGTGAC	240
CATGTAGTGG	CTGCTTCGAC	TATTTACGGT	GGAACCTTCA	ATCTTTTGAA	AGAACCCCTT	300
CCTCGTTATG	GTATCACAAC	AACCTTTTTC	GATATTGATA	ATTTGGAGGA	AGTAGAAGCA	360
GCTATCAAAG	ACAATACCAA	GCTTGTCTTG	ATTGAAACCT	TGGGTAACCC	CTTGATTAAT	420
ATTCCAGACC	TGGAAAAACT	GGCAGAGATT	GCTCATAAAC	ATCAAATCCC	ACTTGTGTCA	480
GACAATACTT	TTGCAACACC	TTATTTGATT	AACGTCTTCT	CTCATGGCGT	TGACATTGCC	540
ATTCACTCTG	TGACTAAGTT	TATCGGTGGG	CATGGTACAA	CTATTGGAGG	AATAATTGTC	600
GATAGTGGTC	GTTTTGACTG	GACGGCTTCA	GGGAAATTCC	CTCAATTTGT	TGACGAGGGT	660
CCAAGCTGCC	ACAATTTGAG	CTATACTCGT	GATGTGGGTG	CAGCAGCCTT	TATTATAGCT	720
GTTCGAGTTC	AATTGCTTCG	TGATACAGGT	GCAGCCTTGT	CACCATTCAA	TGCTTTCCTC	780
TTGCTACAAA	GACTTGAAAC	CTCTTCACTT	CGTGTGGAAC	GCCATGTACA	AAATGCTGAG	840
ACAATTGTTG	ATTTTCTTGT	CAACCATCCT	AAGGTAGAAA	AGGTAAATTA	TCCAAAACTT	900
GCAGATAGTC	CTTATCATGC	CTTGGCTGAG	AAATACTTGC	CAAAAGGTGT	CGGTTCAATC	960
TTTACCTTCC	ACGTCAAAGG	TGGCGAGGAA	GAAGCACGCA	AGGTCATTGA	TAATTTAGAA	1020
ATCTTTTCTG	ACCTTGCAAA	CGCGGCAGAT	GCTAAATCGC	TTGTTGTCCA	TCCAGCAACA	1080
ACCACTCACG	GTCAATTGTC	AGAAAAAGAC	CTAGAAGCAG	CAGGTGTCAC	ACCAAACTAA	1140
ATTCGTTTGT	CAATCGGTCT	TGAAAATGTA	GAAGATTTGA	TTGAAGACTT	GCGCTTGGCC	1200
TTGGAAAAAA	TTTAAAGTAA	AAGAAGATAA	ACAGTGGGCT	TCGACTCACT	GTTTTTGATT	1260

TTCCCTCAG	G CATGATATA	A TGGTTACAG	A AGTCTAGAA	A GAGGAACGA	T ATGAACGAAA	132
TCAAATGTC	C CAACTGTGG	G GAAGTCTTT	A CAGTAAATG	A GAGTCAGTA	T GCCGAACTCT	138
TGTCCCAAG	T GAGAACGGC	A GAGTTTGAT	A AGGAACTAC	A CGATAGGAT	G AAGCAGGAAC	144
TGGCCTTGG	C TGAGCAAAA	G GCCATGAAT	G AGCAAÇAGA	C TAAACTGGC	T CAGAAGGATC	150
AAGAAATTG	C GCAATTACA	G AGTCAGATC	C AAAACTTTG	A TACAGAAAA	A GAATTGGCCA	1560
					G GAAGTACAGC	1620
					A CAAAAGACCC	1680
					G CAGGAAAAGG	1740
					AAGGCAGCTA	1800
					A GCGATTGGGG	1860
					GCCTTTCCAA	1920
	•				GACTTTATCT	1980
					ATGAAAAACG	2040
					TTGGACAAGG	2100
					GCTGATAATG	2160
					TATGTTGTTC	2220
					AATTCCCTAA	2280
					CATTTTGAGG	2340
					TCGACTAACT	2400
					GTTAAGAAAT	2460
					GATGTCTCTG	2520
					CTGAAGGGGG	2520
					ATGACCTCGC	
					CATGGTGGAA	2640
		GGTGTTTTGC				2700
		GGTAAGATCT				2760
					TCTCTCTTGG	2820
						2880
		GCGATTGCTA				2940
CALGIATIC	GGCAG I TAAG	GTTAATGGTC	GCAAGCTCTA	TGAGTATGCG	CGTGCTGGTC	3000

			1184			
AGGAAGTGGA	GCGTCCAGAA	CGTCAGGTGA	CCATTTATCA	ATTTGAGCGA	ACAAGTCCGA	3060
TTTCTTATGA	TGGCCAACTT	GCCCGATTCA	CTTTTCGTGT	AAAATGCAGT	AAAGGGACGT	3120
ACATCCGTAC	TTTGTCAGTT	GATTTGGGTG	AAAAGCTTGG	TTATGCGGCT	CATATGTCCC	3180
ATTTGACTCC	TACTAGTGCT	GCTGGCTTAC	AATTAGAAGA	CGCTCTTGCC	TTGGAGGAAA	3240
TTGCTGAAAA	AGTAGAGGCT	GGGCAATTAG	ATTTTCTCCA	TCCTTTAGAG	ATTGGGACAG	3300
GTGACCTTGT	CAAAGTTTTC	CTAAGTCCAG	AAGAGGCTAC	AGAAGTTCGC	TTTGGTCGTT	3360
TTATTGAGCT	AGACCAAACG	GACAAAGAAC	TGGCTGCCTT	TGAAGATGAT	AAATTGTTAG	3420
CCATTCTAGA	AAAACGGGGC	AATCTCTATA	AGCCAAGGAA	GGTTTTTAGC	TAGATCGTTT	3480
AGGAATAAAA	ATCGGGTGAT	AGATAACAAT	TGCTTGATAA	AACCCCATAC	TAATAGTAGA	3540
ATGGTTTTGG	GAATTATAAT	ATTCCAATTG	TTGCGAGTTG	TAGGTACTCA	AATAATCTAT	3600
ATAGAAATTI	AGAGGTGTGA	AATGAAGCAA	TTTAAAATTC	TTTCAGATAA	ATATTTAGAG	3660
TCCATTACAG	GTTCTGATGG	GAACTTAGGC	CCAGGATTTG	GTGTGATAAT	TCCATGATGC	3720
GAAATGAGTT	TCGAGAAAGG	GTGGAGCAAC	TTCTTCAACA	AAAAGAAATA	AATGAAAATA	3780
GTGAGTTGAG	TCACCTGTTT	CGTCTTGCTA	TACAAAATTT	AGACAGAAAT	GAAAAATACC	3840
AATCGGTCÄT	GGCCAATTTG	AGTCAAGGGT	TGTCACTTTA	CCTCATGACG	CATCATTACC	3900
AGGCACCTAA	GTCTGTCATT	GATTTTGGTT	TATGGA			3936

(2) INFORMATION FOR SEQ ID NO: 203:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3230 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203:

(CATCCAGCAA	CTGCTCCTCT	GAGCGTTTCA	AAATTGATGT	AATTTTTCTA	GTTTTTTCTA	60
2	ATAAATGTGC	CATTTTTCAC	CTCGAATTTA	ATCGCTATCA	TTATAACATA	AAAACGTCTC	120
5	PTTTTCAATA	ATTATCTGAA	AATTCCTTAT	TGACTTGCAT	TGACTTACAA	TTTAATTAAA	180
ž	ACCAGAATA	TTTTTAATTA	AATTGTTCCT	TTTCTATTGA	CAAGTTGCCT	ATTTTTGTGT	240
ì	ATCATAATAT	TATAAAAGAT	AATATAATAA	TTTTATTTGT	CTTTTCACAT	TCGGTCTCCT	300
1	CAAAA TATAA	AGCGATTCAT	TTTGAACCGC	TTTTTCTTAT	TTATCGCCTT	TGTTACGAAT	360
1	ACAAAGCCT	GTTTGCTTTT	CGCTTAAAGT	ATTGCGTGGT	TTTTTATTAT	CCTTACGGTA	420
1	CGTTTTTCC	TTATCAAAAC	GATCGTTGCC	ACGACTTCCT	TTTTTGAACT	CATCACGGCG	480

ACCATTGCCA CGG	CGATCAC GCTCTCC	ACG GTCGTCC	CCA CGACGGCC	C CACGACCTCC	540
CTTAGCTTTA CCAC	CCGAAAC CATTACC	TGA TGGTTTA	AAC GGTAGTGG	TTTCACGTGC	600
AATCTCCACT TCTC	GGAAGGC TATCTGG	GTC TTGGACT	GTC AGACTCAAC	SA TATACATTGC	660
CAATTCTTCT GGAC	GTAAACT CAGCAGO	CAA TTTGCGA	GCA TCCTTACCA	A ATTTCTCAAA	720
GTTGGCACGA ATGC	STTTCAT CTGCAAA	ATC ACGTTCG	ATT TTCTTGAGA	G CTACCTGTTT	780
TTTTGATTGG AAGO	GATTCTT CTACACT	TGC AGGTTTG	AGA CCTTTCATO	C GTTTCTTAGT	840
CAAGTTTTCA ATGA	ATTTGAA GGTAACC	CAT TTCGTTT	GGA GCAACAAAA	G TAATAGATTG	900
ACCTGACTTA CCAG	CACGAC CTGTACG	ACC GATACGG	TGA ACATAACTO	T CAGGATCTTG	960
TGGAATATCG TAGT	TGTAGA CATGGGT	CAC ACCTGAA	ATA TCCAAACCA	C GCGCTGCAAC	1020
GTCTGTCGCA ACCA	AAACAT CAAGATT	GCC ATTTTTA	AAG TCACGAAGG	A CACGAAGACG	1080
TTTGTTTTGG _, TCTA	GGTCGC CATGAAT	TCC TTCTGCA	CGG AAGCCACGA	A TTTTCAAACC	1140
ACGAGTCAAT TCAT	CCACAC GGCGTTT	GGT ACGACCA	AAT ACAATAGCG	A GTTCTGGTTG	1200
TGCCACATCC ATGA	GACGAG TCATGGT	GTC AAATTTT	TCT TGTTCCTTA	A CACGGATATA	1260
GTACTGGTCA ACCA	ATTCTG TTGTCAA	TTC CTTAGCC	GCA ATCTTGACA	T GTTCAGGGGC	1320
TTTCATAAAC TGAA	CACCGA TACGTTT	GAT GGCATCT	GC ATAGTTGCT	G AGAAAAGCAA	1380
AGTTTGACGG TTCT	CAGGTA CACGGGA	AAT AATGGCT	rcg atgtcttca	A GGAAGCCCAT	1440
GTTAAGCATT TCAT	CCGCTT CGTCAAG	GAT AAGGGTT	ICA ATGTCTTGT	A ATTTCAAGGC	1500
CTTGCGTTTA ATCA	AGTCCA AGAGGCG	ACC TGGAGTT	CC ACCACAATA	T GGGCACCAGA	1560
TTTAAGAGCC TTAA	TTTGTT TTTCAAT	GCT TGATCCG	CA TATACTGAA	C GGACTTTGAC	1620
TCCCTTACTA CGAC	CAAAGC GGAAGAG	TTC TTCTTGAG	TT TGGACAGCT	A GTTCACGAGT	1680
TGGAGCGATG ACCA	AGGCTT GGATAGT	CGC TTCTTCTC	TA CGGATTTT	T CAAGGGTAGG	1740
CAAGCCAAAG GCTG	CAGTTT TTCCTGT	ACC AGTCTGAC	CT TGACCGATA	A CATCCTTGCC	1800
TTCAAGGGCC AAAG	GAATAG TTTGTTC	TTG GATAGGA	TA GCTTCTACA	A AACCAGCTTT	1860
PTCAATTTCT GCTA	GCAAAT CAGCAGAG	CAA GTTTAATT	CA TTAAATTTC	A CGTTATTCTT	1920
CTTTCTAAAG GTGG	TGCGAA GCCACCC	TAT AGGGCTTA	GT TTATACTTT	r ctttttatga	1980
CGTATTTTCA TATA	ACTAGA TATAAAA	rcg tgttgct1	CT TTTCCACAA	A AGAAAAGTAC	2040
IGTTTTCTTT GCAAG	CCTATC TAGTATA	ACA CAAGACCA	GA GCAAAAGAT	A GCCCCATTTC	2100
TACAGAAAAT CATG	TAAGCG CTTTTTGA	CT TTCTTTT	TG ATTGAACGA	CTAGATAATA	2160
AGACAAAGCC AAGGG	CGATAC TGTATAA	LAT GAGAAAA	CG AACAAGGTT	r GTGTGTACGA	2220

			1186			
ATGAGCCATT	TTATAAGTCT	CTGCTAATAA	AATAGGTCCC	GCTAAACCAG	CCATTGCCCA	228
AGCTGTTAAA	ATATAACCAT	GCAGAGCGGC	CAATTCCTTG	GTTCCAAAAA	TATCACTGAG	234
ATAAGCTGGA	ATCAAAGAAA	AACCAGCTCC	ATAGCAAGTC	ATCAAAATAG	ACATAGCAAC	240
TACAAATAAA	ACGGAATCTG	TAAAGAGCCA	AAGTGAGAGA	GAAAAGAAAA	GATTGACAAG	246
CAGTAATATA	CTAAAGGTTA	GAGGGCGACC	GATATAGTCA	GACAAACTCG	CCCAGAGCAA	2520
GCGACCAAAT	CCATTGAAAA	TCCCCAAAAC	ACCCACCATT	ACTGCTGCAT	GACTTGTAGA	2580
CAAGCCAGCC	ATCTCCTGTG	CCATTGGCGA	TGCCGCTGAA	ATTAAGCCTA	AACCACAAGC	2640
TATGTTGATA	AAGAAAATAA	TCCAAAGCAT	ATAAAACCGA	TTGCTTTTTA	GAGCCTGATT	2700
TGCAGCCATT	CCTTGCGTCA	AAGAGGCTGT	TTTTTCTTTC	CCTGAAGAAG	ATAAAATTGC	2760
AAGCTCTTGC	TCATTTGGAC	GCTTAATGAA	TTGTGAAGCT	AGGAGCATGA	TAATAAAGTA	2820
ACTTGCTCCT	ААААТАТААА	AAGTTTCTAC	AAGCCCTACC	CCTGCGATGA	GCTGTTGCGC	2880
TATGGGACTA	GTCAATAAAG	AAGCAAAACC	AAACCCCATA	ATCGCTAAAC	CTGTTGCGAG	2940
ACCACGTTTA	TCAGGAAACC	ATTTTATAAT	CGTCGACACA	GGGGTAATAT	AGCCTGCTCC	3000
CAAACCAAGC	CCACCTAAAA	TGCCATAAGC	GAGATACAAC	AACCACAGCT	CTGACGGTCT	3060
ATTGCAAATC	CTGTTAAGAT	ATTTCCACCT	GCGTATAGAA	AAGCAGATAG	ACTTCCCATG	3120
ACTTTCGGAC	CAAATTTTTC	TACCAAACGC	CCCATAAATG	CAGCCGATAA	GCCCAAACAA	3180
AAGATTGCTA	GACTAAAGGC	GAAGGCAACA	GAAGCCTGAT	CCCATCCCGT		3230
(2) INFORMA	TION FOR SE	O TD NO: 20	A ·			

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5096 base pairs

- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:

CCTATGAAGA	CTGTCCCAAC	TGGGTGTCCT	TCTAGGCTAT	CTGGTCCTGC	CACTCCAGTC	60
AAACTAATTC	CAAAATCAGA	CTGGGTCTTG	CTTCGTGCCT	GCTCAGCCAT	CTTCTGAGCT	120
GTAAATTCAG	ACACCACACC	ATGTTCTTCC	AAATTCTTGG	CAGGAATATC	CAACATCCTT	180
GATTTTTCCT	CCAAGCTATA	GGTCACAAAA	CCACCCTTAA	ATATACTTGA	AACTCCAGAA	240
AAATTCGCCA	CGGTAGCTTG	GAAAAGACCT	GCCGTCAAAC	TCTCTGCAGC	CGCGATGGTT	300
TTCCCTTGCC	TTTTCAGTTC	TTCTACCACA	ATGCTGGCTA	AACTAGTTTC	TTCCCCATAA	360
CCATAGCAAA	AGTCTCGTAA	AGAAATTCCT	TCGAAAGTCT	GGCAGTCCAA	GATTTGATTT	420

TCCAAGATA	r ccagcgcttc	ATTCGCCTC	T TCTTGACTG	TAGCCTTTGT	TGACAGACGT	48
AGAGTGACT	CTCCTGTCT1	GGCATAAGG	GCCAAGGTAG	GATCGATCTC	ATTATCAATT	54
AAATCAGCC	A AAATCGTAAC	CAACTGGCT	TCGCCAATCC	CAAAGAAACG	AAGAACTCGG	60
GAATACAGCT	r TGCTCCCTG1	CATCAACTTO	GGTAGAAGTT	GGTTTAAGAC	CATGGGTTTC	666
AATTCACTTC	GCGGACCTGG	AAGGACGACA	TAGGTCACTC	CGTCTACTTC	TAATTTTCCT	720
CCAACAGCCA	GTCCTGTTTC	GTTTGGCAG1	GGAATCGCTC	CTTCTACAAT	TTGAGCTTGT	780
CTTTCGTTAT	TCGGTGTTCG	GGCATAGTCT	GGTCGCAGGG	TAAAAAAGAT	ATCCAACTTC	840
TCCTGAGCCT	GAGGATCAAA	GACTAATGCI	TTCCCTAAAA	ATTTAGCTAG	GGTTTGTTTG	900
GTTAGGTCGT	CCTCAGTTGG	CCCCAAACCC	CCTGTCAAAA	TCACCAGACT	GCTACGTTGA	960
CTGGCAATCT	CAAGCAAAGA	CAAGAGACGA	ACTTCATTGT	CTCCTACAGC	CGTCTGAAAA	1020
TATACATCTA	CCCCAATCTC	AGCTAGTTTT	TCCGACAAAA	ACTGGGCATT	GGTGTTGACA	1080
ATCTGCCCTG	TCAAAATCTC	TGTTCCAACA	GCAATGATTT	CTGCTTTCAT	GTTTCCTCCT	1140
ACCTATCTAT	TCGTATTTT	TTGAAAAAT	CGCAGGAATT	TTCCTACGAT	TGATTTTTTT	1200
ATTTGTATCA	ÄAAGTTAATT	ATCTTCATCA	CCAACAGGTG	CTCTGCCAAA	TAAATCTTCA	1260
AATAAAACCG	CATTGGTTTC	AAGCTGAGTA	ACTTCTTCTT	GTCCCAAAGA	ACGTCGGAGT	1320
AGATTTTGCA	TTTCCAACAT	ATGTGCTCTC	GAAACAATCT	GGTAAGAAAC	ACCTTGAAGT	1380
ATCTCTCCTT	CACCCTGCAA	CTGCTGAGTT	TCAATGGTTT	TAAATGAATC	TTTATAGCCT	1440
AGCAAGTTAG	GGATACTTTT	TGCAGACAAA	TCAATATTGG	TCTGCATATT	GTCACTCAAA	1500
GCTTTTAGAA	TCTCTTGATA	ATGACCAATG	CTATTTAAAC	TGAGAGCTTT	TTCCATGACT	1560
TTTTGAATAA	CTTCACGTTG	ACGTTTTTGA	CGACCATAAT	CCCCTCAGG	ATCTTGGTAA	1620
CGCATTCGTG	CATAGACTAG	GGCTTCTTCT	CCCCCAATAT	GTTGCTCCCC	AACACCGATA	1680
GAAATAGTAT	TAAATTCTTC	TTGGTCACTG	ATAGAAATTG	GGAAACCTAG	GATATTATTG	1740
ACTGTAATAC	CTCCTACTGC	ATCCACTAGT	TTTTGCAATC	CTCTCATATT	GACCATCACA	1800
TAGCGATCAA	TATGGATATT	CATCATITIT	TGAATGGTTT	CTATAGCAAG	CTCTGCTCCA	1860
CCATCTGCAT	ATGCTGAGTT	CAGTTTCGCT	TCATGAGCCT	GACCATTCCC	TGATTCAATG	1920
CGCGTCAGAA	TATCCCGCTC	TAAACTCATC	ATTGTTGTTT	TTTTCGTTTT	AGGATTCACT	1980
GTCATCAAGA	TCATGCTATC	ACTTCTACCG	ACCCAAGTTT	CAGTTCGTTC	AACATTTCCG	2040
GTGTCCACTC	CCATTAACAG	AATGGTTAGA	GGTTCAGTCG	CTTCAATAAC	CTTGGTTTCT	2100
TCACCGATTT	TTTTATAGGT	TTTAGCTAAG	GTTTCTGTCC	CTTGTTGATA	AATAGTATAA	2160

			1188			
CAAAAACAC	CTACTCCTAC	TACAGTTACA	GAAAGTAAAG	CTAGCACCAT	TCCAATAATT	2220
TTTTAACCA	TATTTCTACT	AACCTATCAG	TTTACCCATC	AAGTAAACAT	CGATAAATTT	2280
CCTTCTTCT	ATATATGCCC	CACGCTCTTG	GCTACCTTCA	ATGACAAAGC	CATGCTTTTG	2340
ATAAAGATGG	ACTGCTGCTT	GATTACGAGT	TTGGACAGTC	AGTTGGAGAC	GACGCAGAAT	2400
CCACTTGCT	TGTGCCCACT	CTATCGCTTC	TTCTAGCAAC	AAACTTCCCA	AGCCATTATT	2460
CAATATCTT	TTTCCAATCA	CAATGAAGAG	ATCTCCAATA	TGACGGACTC	TCTTACGCTG	2520
ATCAGCTGTA	ATATTTACAA	TACCAGCAAT	TTTGCCATTT	AAGAATGCAA	GTAAGGTTAT	2580
CTGATTGTCC	GAACTAGCTT	GCTTGTTGAG	GAATATTTCC	ATCTCCTCAC	TAGTCAAGAG	2640
AATACCATCT	CCGTCTAGGC	TGGTAAAGTC	TGTCTCCAAA	CTCACACGAT	TTAAAAAGGC	2700
CACTAATTCA	GCTGCATCTT	TGGGCTCTGC	TTCCCTAATG	AGCAATTCAT	ACTCCATATT	2760
GAAGCTCCTC	TAACAATTTC	TCAGCACGCA	AACCCTTTGC	CTGAAAATTT	AAACGGCGTC	2820
CATCTGCTTC	TTTTAGAATT	TCCAATTCTA	AATAAGCATC	TGGCAAGGCA	TCTCCTAAGA	2880
GATTTCCCCA	CTCAATAACA	GTCACGCCGC	CACCAAAGAT	AAACTCATCC	AAGTCGATAG	2940
AATCAGCATC	TCCTTCAATA	CGATAAACAT	CTAGGTGATA	AAGTGGAAGT	CGACCTTCAT	3000
ACTCTCTCAC	GATAGTATAG	GTGGGACTTT	TAATCATTTG	AGAAATCTGT	AATCCTTTTG	3060
CAAGTCCTTT	AGTAAAGGTC	GTTTTACCTG	CACCCAGTTC	TCCAGTTAAG	ATTAAAACAT	3120
CATTCTTTGC	TAATAGATGG	CCCAAACGCT	CCCCTAAGGC	TTGCAACTCT	TCTTCATTTT	3180
TTGTGTACAT	ACTCTTATTA	TACCAAAAAC	TTTTCTTTTG	TGTCTATTTT	CCTACTAAAC	3240
TTATCATCAT	AACATCCATA	AAAAACAGGC	TTTCTCTAAA	AGAAAATGAG	CGTAACAATG	3300
ACCAATACAA	GATCTCGGAA	AATATGACCA	TAAAAGGAAA	CTTCCTTCTT	AACCGAATTT	3360
GGGACAAGAT	AGGCTGCAAA	AAACAAGCCC	AGTCCAATAT	AAATCAGAAG	TGAGACAATG	3420
GTCATTGGAT	TTCTTAAGAA	AAGAAGTGTT	GCTAAAATAG	TCACCAACAC	TGTCTTTTTT	3480
CTGTCCAGCA	TAGCAAGAAA	ATCGCGCACG	TATTTTTCA	AGGGTAAAAA	AATCAGCAAA	3540
TCTAGCCCAA	ATAĞGAAAAA	GAAGGATGGC	AATAAAAAGT	CAACTAATTC	TTGCTGCAGC	3600
GTATTTTGA	TGAACAAGTT	ATCTGACAAA	ACAAGAACAG	CTCCTAACAA	ATTAATTAAG	3660
AGTAACATAC	TGTAAAAAAG	CTTCACCGAC	TTCTTACTGG	CTAGGACACT	ATGGACTTCT	3720
TGCTTACGGG	TATAAAGATA	ATTTACTCCA	GCACAGATTC	CTGAAACGAA	AACCATGCTT	3780
CCGATGAAAA	AAGCTGTACT	TTGTTTAAAG	GACAAGATGC	ATTCCTTCCA	TAGGAAACAG	3840
CTACTCAAAC	TGATTTGAAT	TAAAGCTAAC	AAAAATAAGA	TTCTCATTGA	TTTCATCTTC	3900
TCTCTCCCTT	CCTACCAATC	ATTATACTAG	GAGAAAAGAG	AGAACTGTTT	CTAATCTTCT	396

CAAATGTCTC	TTTAAGACGC	TAAACAAACA	CTAGAGACTA	ATACTCAATG	AAAATCAAAG	4020
ATCAAACTAG	GTAGCTAGCC	ACAGGTTGCT	CAAAACAGTG	TTTTGAGATT	GCAGATAGAG	4080
CTGACGTGAT	TTGAAGAGAT	TTTCGAAGAA	TATAAATTTG	AAATCATGAA	AATCCGTCAA	4140
ACGGGTGGTT	GTTTTGTCTC	GCACCTCACG	GAGCGAGACG	GACTCAGAGT	CACATAATTA	4200
TAAGGCTGAT	AGTATTAATC	TAACTATCAG	CtTmCAGGTT	ATTTAACGTT	TCAGAAAAAC	4260
TATAATGTCA	AGATTAACTA	AACAGTATCT	AGTTCCTTCA	AATAATTTTC	TATCTTCATC	4320
AACATTAAAG	GATTGTTATA	AATCTTACAT	AACTCTCTTG	СТТСТАТАТА	ATAATTTTTG	4380
ACTTGTTCTC	TGTCTAGAAA	TTTGGCTCCA	GCATTTCCTA	CAAGAATAAG	TAGAGGAGCC	4440
AATTGGTAGC	TTGTCTGTCT	TTGTTTACAG	AGTTCAATCG	TTTCAAGAGC	TTCTTGGATG	4500
GCTTCATTAT	ATTTTTCCTT	TGATACTAGG	TAGTGAGCGT	AGTTGTAACG	AACTCTGATG	4560
TAGCCAAATA	AAAACTCTTG	ATGGTCCAAA	TTTTTTGTCT	GATACAACTC	TATTAAATGA	4620
GAGTAGTTTG	CCTCATATTC	TTGTTCACGA	CCCACTAAGG	AATAGAAATT	AGATAGAGTA	4680
TTCAACGCCT	TTAAATAAAT	CAGAGTATTT	GAAGAGACTT	TTAATAATAT	ATTTTCCAAT	4740
GACGAAATTG	CCTCACACTT	ACTGTCATAT	TGATAGAAGT	CAATTATAGA	TTTAATCCAT	4800
TCAAGGTAAG	TTCGGTCTTC	TAATGTTAGA	AAAGTGCTTC	GTTCTACTTC	TATTTTATAA	4860
AGATATTCTA	AATCGTCATA	ATTTCTGTCA	TCTAATAGGC	GAGCAGATAG	ATGTTTGAAA	4920
TTAGAGAGGT	TAGACTTAAC	TTCGATTTGT	TCATTGAAAA	AGTAATCCAA	AGGGACTTCA	4980
AGTCGTTGAG	AGAGTTTGAA	TAACAAGTCT	GCGGAGGGAA	TAAAATGACC	TCTTTCAATT	5040
TTACTAATCT	GGCTTTGTTC	ACAAATTCCT	TCTGCAAGAG	TTTGTTGGGA	GAGTCT	5096

(2) INFORMATION FOR SEQ ID NO: 205:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2395 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205:

ACAAGATAAA	AATAAAGGAT	TACAATGGGG	AATATAAAGT	AAACCGGTAA	ACCTAAAAAG	60
AAAGGAGAAA	AGATGAAAAT	TGTACTTGTA	GGGCATGGAC	ATTTTGCTAC	AGGGATTTAT	120
AGTTCTTTAC	AATTGATTGC	AGGTAATCAA	GAAAATGTGG	AGGCGATTGA	CTTTGTGGAA	180
GGAATGTCAG	CAGATGAACT	CAAGCAAAAA	ATCTTACTTG	CAATTTCAAA	TGAAGAAGAA	240

			1190			
GTTTTAATCC	TAAGTGATCT	CTTGGGAGGA	TCGCCATTCA	AGGTTTCTTC	TACCATAATG	300
GGAGAAAATC	CAGCCAAGAC	AATGAATGTT	CTCTCGGGTT	TGAACTTAGC	CATGTTAATG	360
GAAGCAGTCT	TTGCTAGAAT	GGCTCATAGC	TTTGATGAGG	TTGTTAATAA	ATCAGTAGTG	420
GCGGCCCAGG	GCGGAGTCGT	AAATGGTAAA	GAATTGTTTT	CAACGGATGC	AGAGGAAGAG	480
GAAGAAGATT	TCGAATCGGG	TATTTAAAGG	GTAAAAGAAT	GATAAAAAAG	GTTACGATTG	540
AAAAAATAAA	ATCGCCTGAG	CGCTTCTTAG	AAGTACCACT	TCTGACGAAA	GAAGAAGTCG	600
GCCAGGCAAT	CGATAAGGTT	ATTCGGCAGT	TAGAACTCAA	CCTTGACTAT	TTCAAGGAAG	660
ATTTCCCGAC	GCCAGCTACC	TTTGATAATG	TCTATCCAAT	CATGGATAAC	ACGGAATGGA	720
CCAATGGTTT	CTGGACAGGA	GAACTGTGGT	TGGCTTATGA	ATACAGTCAA	CAGGATGCAT	780
TAAAAACAT	CGCTCATAAA	AATGTTCTTT	CTTTCCTGGA	TCGTGTCAAT	AAGAGAGTAG	840
AATTGGATCA	CCATGATCTC	GGCTTCTTGT	ACACACCGTC	TTGTATGGCT	GAATATAAGA	900
raaatggaga	TGGAGAGGCT	AGAGAAGCAA	CCTTGAAAGC	TGCAGATAAG	TTGATTGAAC	960
GCTATCAAGA	AAAAGGTGGT	TTTATTCAAG	CTTGGGGAGA	CTTGGGCAAG	AAAGAGCATT	1020
ACCGTTTGAT	TATCGACTGC	TTGCTCAATA	TCCAACTCTT	ATTCTTTGCT	TATCAAGAAA	1080
CAGGCGATCA	AAAATACTAC	GATATTGCAG	AAAGCCATTT	CTATGCTTCA	GCTAATAATG	1140
PAATCCGTGA	TGACGCTTCG	TCCTTCCACA	CCTTCTATTT	TGATCCTGAG	ACAGGTCAAC	1200
CTTTAAAGG	TGTAACGAGA	CAAGGGTATA	GTGATGATTC	ATGCTGGGCA	CGTGGTCAAT	1260
ATGGGGAGT	CTATGGTATT	CCTTTGACTT	ATCGTCACTT	AAAAGACGAG	tCCTGCTTTG	1320
CTTGTTTAA	GGGTGTGACC	AATTATTTCT	TGAATCGTCT	GCCAAAAGAT	CATGTGTCCT	1380
NTTGGGATTT	GATTTTTAAT	GATGGTAGTG	ATCAATCACG	AGATTCTTCA	GCAACAGCTA	1440
CGCCGTCTG	TGGGATTCAT	GAAATGCTAA	AACATCTCCC	AGAGGTGGAT	GCTGACAAAG	1500
AATATTATAA	ACATGCTATG	CATGCCATGC	TTCGTTCCTT	GATCGAACAT	TATGCAAATG	1560
ATCAATTTAC	CCCTGGTGGG	ACAAGTCTCC	TCCACGGTGT	GTACTCATGG	CATTCAGGTA	1620
LAGGAGTGGA	TGAAGGCAAT	ATCTGGGGTG	ACTACTATTA	CCTAGAAGCC	CTTATCCGTT	1680
CTACAAAGA	CTGGAACCTA	TATTGGTAGG	AGGAGAAATA	TGACAATGCC	AAATATTATT	1740
ATGACCCGTA	TCGATGAACG	GTTGATTCAT	GGACAAGGAC	AACTTTGGGT	AAAATACCTA	1800
GTTGTAATA	CGGTCATTGT	TGCCAATGAC	GAAGTAAGCA	CGGACAAGAT	GCAACAAACT	1860
TGATGAAAA	CAGTTGTGCC	AGACTCAGTT	GCCATGCGTT	TCTTCCCTTT	GCAAAAGGTG	1920
ATTGATATCA	TTCACAAGGC	TAATCCTGCT	CAAACGATCT	TTATCGTTGT	AAAGGATGTG	1980
AGGACGCTT	TAACCTTGGT	AGAAGGTGGT	GTCACTATCA	AAGAAATCAA	TATTGGGAAC	2040

1191

ATTCACAATG CCCCTGGTAA AGAGCAAGTG ACACGCTCCA TCTTCCTGGG TGAAGAGGAC 2100
AAGGCGGCCC TCAAGGAATT GAGCCAAACT CATCAAGTAA CATTTAATAC GAAAACAACT 2160
CCAACAGGAA ATGATGGAGC TGTTCAAGTC AACATTATGG ACTATATTTA ACAGAGGAGA 2220
TCGTTATGTC GATTAATGTA TTTCAAGCGA TTTTAATTGG ATTATGGACA GCTTTCTGTT 2280
TTAGTGGAAT GCTGTTAGGA ATTTACACCA ATAGATGTAT TGTTCTGTCA TTTGGTGTCG 2340
GAATTATTCT AGGTGATCTG TCATGCTCTT GCAATGGGAG CCCAATGGTGA ATTGG 2395

(2) INFORMATION FOR SEQ ID NO: 206:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3342 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206:

CCTTCTTAG AGGTTAATTT TGCAAAATCG TCGATTGTTA TATAAGGATT ATTATAGAGA 60 CTGTTCGCAA AGAATCTCTG ATATGTTTTT GAATCTTTTG AATACAAAAC TATCTCTCTA 120 ATAGCATTGC CATCTGTTCC ATCAATTGGT AAACATACCG TAACTAGAAA AAGAATTATA 180 TTCAAAATAA AAAATTCTGA TGCGTACGGC ACAAATCCCA AAAGTGCTAA TATTGCGACA 240 ATTAGGTTAG CTCCACCTCC CCCAAAGAAG TAGAACACCA AATTCCTATC ACTATTTTTT 300 TCATTAGTAA TGTTTCTATT ACTCATTTGA CAATAACCGA ATGCTAATAA CACTGGAAAT 360 TTGAAATATA TTTTTTTCT GAAATAGAAG AAAAAGGGAG TAGCAAGCAT CTCTAGTTTA 420 480 GAAATTAAAA TCAATCGAAA ATAATAGATT AATGAATCAT TTGGAAAAAT TATCAATAAT 540 AGGAACAATA ACGGAATCAA ACATAAATAT ATGACAGAGT TATTTAATAT TTTCAACATA 600 ATACCATTCC TCTAAACTAT TAGCTTCAAA AAGGCGTTTT TTCTCCCAAT ACATCTTCTC 660 AAAATGTTCG GAATCATAAT TTTCTAAAAT TAATTTTALG TCTGGTAAGC TCTTTCTTGA 720 TAATCCGTTG TTTTGTACTT AATTTTCCCT TCAAGTACAT CTTCAATTTT ATAAGTTGCC 780 TCCATCAACT GAGCCTCTGC AATATCTTTG AGTGAATTGG TAATTGAAAC TTGGTGTAAT 840 ATCTGTCCts CCATATATGA AAATATATCT CTAAGATATT CTGACACATT ATCAGAGCCG 900 TTACTCTCAG CAACATCTAA TGTTACAACA AACTTTCCAG CTAATCGAAA AAGATGGCTC 960 CACCCCCAA TCCTTTCAAT AAAGTTTTTT GTGTCCACAG ATACGTTTTG TAAATATACA 1020

.7.2

1192

GGAGAAGAGA TAATTATAAT ATCAGACTCT AATAACTCTT TTTTTATAAC ACCTCCATCA 1080 TCAGCATTAC TTTGCCTATC AATTCCTTTC TTAAACAACT CTTCTGAATC AGAATTAGAT 1140 ATTTCTAGCT CTGAATTGAA AGGTGTCCTG AAAGATATAT CAACATTATT TCTACTAGAA 1200 ATGATACTTG AAAGTCTCTT AGTATACTCT AAAGTCTTAG AGTTATGATT TCGCACTCCT 1260 GCATATATA ATATTTTATT CATTTTAATT CATCCTCTCA ATTTGAATTT AGTAGATTTT 1320 TCAAGATAGT ATGGTACAAA AACAGACTTT TGTTGACTCA CATTATTACA TATGTTTTGT 1380 ATTAAACCAA AATCAATACT ATTTTTGGAG TAATTTTGAT TTTAGTTTAA AATCATTTCT 1440 ATAACAGTAG CATATACCTC AAGCCGTTTA GCAATTAGAA TAGAACTTTT CTTTATTATA 1500 TTATTATCTC AACGAAAAGC TACACTATTA AAAATATTTT ATAGAATTAC ATATTAAACT 1560 AGTCAATCTT GGTATTTTTA TATTGCTTAA TGAGTGGACA CCTCTATTTT AGAAACAAAA 1620 CTATAAATTA AGCTAGATTT CAAGTAATGA GGGGATAACT ATCTTTTTGT CATTCTGATT 1680 CAGTGCGATA TACCTTAAAA AAGTATAAGC AATACCAGTC ACACCTGTAT ACAAAGAAAA 1740 ATCTGGGAAA TTGCTTGTTT GGACGATACG ATACTCTCCT TCTTTTGATT TATTCATTAC 1800 AACACTACAC AATAAAGACT CCAATTCCAT ACTAGTATCC ATTTCTTTCA TGTAGTCGAT 1860 GTAAAAATTT ATTATGGCCA TACTTCCATG GCAAAATGTA TCATTATCTA AACTAGCTAC 1920 AATTCCCTCT GGAACACTTT GGGGATGATT AACTAATGTC CCAAATTCTC CACTACACCA 1980 CTTCAAAGAA TGAATTTTGA TTTTCTCCCT AGGAACTAGT TGTAAAATTA ATTCTTTATA 2040 TTTTTTAAGT CTTGTCACTT TATAAATATT TTTTAATGTA AAAATTACAC CTGATAGTCC 2100 ATGGCCAAAA CTATATCCAA AATTACTATT ATCTCTCTCG CTTACATCAT TATATAGCGT 2160 ATCACCTAAA CTTAATACTA GCCTTAGAAC ACGTTCCTTC TCTATTCCTC TCCTATAATA 2220 TCTTACCAGT GTATTAATTA AAGGTAGAAG ACCATTAATA TAGTCAGACT TGTTTGAAAC 2280 ACTTGCAAAA TCAGTCTTTT CAAGCTCAGT TAAAACACTC TTTATATAAT TTAAGCATGC 2340 GAGAGTATTT GTATCGTAAT CCTCTATAAT GGATAGAACA ATGAAATATC CTATATCCCC 2400 AGTTAAACCA AATGTGGTCT TAGATAAAGA AACAGATGGC GGAATTGCAG ATAACATTTT 2460 ATTGTACAGT TGAGTATATG ATGATTTATC TTTCAATAAT TTTACATAGT ACATAAACAG 2520 TAATATTCCA GCTCTACCCC TATACATATC ATTMCCCGTT TGTTCAAGAC ACCATTTAGA 2580 ACCTTTAAAA TTAACAGGTA TACTCCAAAT TGGATATTCG TCATAAATAT TATTAATAAC 2640 CAAAGAGTCT GCAATATTTT CTACTTCATT ATGCAGAATA GTAACTAAAC TTTCATTTGG 2700 GAGTTTTTTT CTATTAGATA AGTTTAATTT ATATCCTTTT TTTCGCTGAT CAAAGCTTGG 2760 AAAATAAATT TCAATGATAT CAAGTTGCTT TTCTAAATTT TCCAAATTAT TATTAGGTAA 2820

ATATTTCATA	AAATAGTCAT	ATCCAGAAAA	TTGATGTAGG	GAAATAAAAT	GATTTCCAAA	2880
ATCATCGTAG	ATTTCATTGA	TATTTGTATC	TGTATAAAAA	ATCGGAATAT	CTAATAACCT	2940
CATTTGTTCA	CATTCGCTTG	CTACAATACC	TTGATTAGAA	AACTTATTGC	TCCAGAGATT	3000
TTCCAATGCT	TTTTCTCTAT	CTAACATTTC	TTCATAAAAA	TCAGGATGAT	ATAAAAAAGA	3060
TAGTACTGAA	GCATAGCTAT	TTGTGTCTCT	AAAAAGTACC	CTTGTCTTTA	AACCATACAA	3120
GTTTGCTTTT	AATAGCATTT	TAAATTCTTC	TGTTTTATTT	AACTCTTCAA	ATATCAGATA	3180
AAAATCCCTA	AAACCTTTTT	TGAAATCTTT	TATATACTTA	TCAAATTCTA	TATCACCATC	3240
CCGAACAGGC	AGGTTTTTCC	CACCTTCAAA	ATCAATTTTC	CCAATATCAA	ACTTTACCTT	3300
ATCAGTATTT	AAATTAATTA	AAACTTGACC	AGGGATCCTC	TA		3342

(2) INFORMATION FOR SEQ ID NO: 207:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3454 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:

60	TTTGACCCAT	AAATTGTTGA	GTAGAAGTTG	AAATGATATT	TGTTAAAGAA	GAGAAAAGAA
120	TGCTTTACCG	TTGTAGAGAA	TTGGTCTTTT	GGTAGATGGT	GAGTTGCCAA	GAAGGGCAG
180	TGGAAAAGTT	AGATTGGCTT	GTCAATAAAA	TGTCCTCAAG	TTCTCATGCG	AGTGAAAAA
240	TTACCTGCGT	TAGATTTGGC	AATCAAGATC	ACCACACCGT	TTGTCCAGTC	GAAAAATACC
300	TAAAACCAAG	AGCTCAAGTT	TATCCAGAAC	ACACCTTTCT	CGGATTTAGG	TCAGGAATCG
360	TGCTGAAACG	ATGTAGAAGT	GGAATTGCAG	CAAGATTGCT	ACAGTCTCTA	CAAGTCAAGG
420	TCGTCGAGTG	AGGTGCCCGT	AATAAGGCGC	CAAGTATCGC	AACATCCAGT	CTTGGTATGG
480	GCCCCTTGAA	ATAACCTCAT	AAGAATTCGC	ATTTTTCCGT	TGGAAACAGG	AATGGTGTCT
540	AGACCTGCTC	TAGCTCTTCG	CAAGTCGTAG	TGTCATTGAC	TCCAGGATCC	GATTTCTTTA
600	TCGGAATCTT	CTGGATTGAT	AAGGAACAGT	TTATGACGAA	ATTTAAAACC	CGTCGTTTTG
660	AACTCGTCCA	TTTTGGTGAC	ATCATGGTCG	TTCAGGACAA	GTGGTCACTA	GTGGTGCGTC
720	AGAGATTGTG	AGCAGTTCCC	CAAGTTATCA	ATTGATTGAA	GTGTTGACCA	AAAGTTTTTC
780	GGAGTGGCGC	TTTTTGGTAA	ACCAATGCGA	CGACCAGAAT	AAAATATCAA	TCTGTCATGC
840	CCAAATCGCT	GAAATGACTT	CAGATGTTGG	TATTACGGAC	GTCAAGACTA	ACTCTTTATG

1194 GGCCCAGCCT TTTACCAAGT CAATACTGAA ATGGCGGAGA AACTCTATCA AACAGCCATT 900 GACTTTGCAG AGTTAAAAAA AGATGATGTG ATTATTGATG CCTATTCTGG TATTGGAACC 960 ATTGGTTTAT CAGTCGCCAA GCATGTCAAA GAAGTCTACG GTGTTGAACT GATTCCAGAA 1020 GCAGTAGAGA ATAGCCAGAA GAATGCTTCT TTGAACAAGA TTACTAATGC CCACTATGTC 1080 TGTGACACGG CTGAAAATGC CATGAAGAAA TGGCTCAAGG AAGGTATTCA ACCAACCGTT 1140 ATCTTGGTTG ATCCTCCACG CAAGGGCTTG ACAGAAAGCT TTATCAAAGC AAGCGCCCAA 1200 ACAGGAGCCG ATCGCATCGC CTATATCTCC TGCAATGTCG CAACCATGGC GCGTGATATT 1260 AAACTATACC AAGAGTTGGG ATATGAATTG AAGAAAGTCC AGCCGGTGGA TCTATTTCCT 1320 CAAACGCATC ACGTCGAGAC GGTAGCACTT TTGTCCAAAC TCGATGTCGA TAAGCACATA 1.380 AGTGTTGAAA TTGAGCTGGA TGAGATGGAT TTGACAAGTG CGGAGAGCAA AGCAACATAT 1440 GCTCAAATCA AAGAATATGT TTGGAATAAA TTTGAATTAA AAGTTTCGAC ATTATATATT 1500 GCACAGATAA AAAAGAAATG TGGAATAGAA TTACGAGAAC ATTACAACAA GTCTAAAAAG 1560 GATAAACAAA TTATTCCACA GTGTACACCT GAAAAAGAAG AAGCCATCAT GGATGCTTTG 1620 AGACACTTCA AAATGATTTA ATAGAAAAGA ATGACAGTAT ATGACTTTCT GCATTTATTA 1680 CATTCCTACT TGGTATAGGA ACAGCTATTA TTCCTTTCTT GCAAGGTATC AATTAGAAAA 1740 TAGGCTCAAT ATAAAGATTG ATAGGATCAT TTTTATATTT AAAGGAGCGT TGAAATGATT 1800 GATAAAGGCA ACAAAAAATT TTAGGATAAA TTTGCTAAGT TGTATGCCTC TTTTATGAAA 1860 AAAGATAAAG AGGTTTATGA TAAAGTTTGT GAATATCTTA GTCCTCATTT GAATAAAGAT 1920 ATGGAGGTGC TTGAACTTGC TTGTTGGTTT CGTGTCATAA CAGTTATAGA GGCAAATAGT 1980 TATGTAAATA TAAGGAGTTC AAGACTTCTA CCAAAGTTTA AAACTCAAAA AATAAATAGT 2040 TGGTGTGCTG CTTACAATAT CCATTTTAAT AATGGATATT GTAAGCAGCA CCCCCALGAA 2100 TTTAAAGATT CTTTAAAGAG TCTTATTTTG TGATGAAAAT TTAATATGTA AATCTCAGAC 2160 GATAGAAATT AAAAACTCTA TCGTCTTTTT TATACTCAAA ATTAGGAGGT AAAAATGGTA 2220 AGGATAAGAG GTCCCACTTA AAACAATTTA TGGCAAAATA AGGACGGAAT AACACAACAA 2280 ATTCTCTAAA ACAAATCACT AAATCAATGT AAGATTGAAT GAAATCAATA TTTATGCTAT 2340 AATTAAATAA ATTTAATGAA GAAAAAAAGA GGGATATTAT GGCACTTAAC TATAAACCAT 2400 TATGGATACA GTTAGCAAAA AAAGGACTAA AGAAAACAGA TGTAATAGCT ATGGCAGGAC 2460 TTACAACAA TGTTATGGCA CAAATGGGAA AGGATAAACC AATTACATTT AAGAATTTAG 2520 AAAGAATATG TAAGGCTTTA TCTTGCACTC CTAATGATAT TATTAGTTTT GAAGATAATT 2580 TTAGTGACGA GGAATAGAAA ATGACTTTAA GGACAGAAGA TCAAGTTAGG GATTATGCAA 2640 .

1195

GAGAAGTATA	GGCTTTAATG	AAGTTGAAGA	AAACATCAAT	CAAGGTACTG	GTCAAATAAC	2700
TACTTTTAAT	CAATTAGGCT	TCAAGGGATA	TTCAAATAAG	CCAGATGGTT	GGTATTTACC	2760
TAAAAATATG	AATGATGTAG	CAATAATCCT	TGAAACAAAA	TCAGAAGAAA	GAGATATTAG	2820
CAAACAAATT	TTTATTGATG	AGTTAATGAA	AAATATAGAC	ATAATTTAAC	TAAAAATAAA	2880
AACTAGATCC	TTTTTTGAAA	AAATTATATT	ATTAAATTTG	TAACTGTATC	TATTGACAAT	2940
GATAATTATT	ATCGATACAA	TAGACTTGAA	ATATGTTTAA	GGAGTTTTTA	TGAAAaCAAA	3000
TTTTTTCTAA	TmGCTATTTT	AGCTATGTGT	ATAGTTTTTA	GCGCTTGTTC	TTCTAATTCT	3060
GTTAAAAATG	AAGAAAATAC	TTCTAAAGAG	CATGCGCCTG	ATAAAATAGT	TTTAGATCAT	3120
GCTITCGGTC	AAACTATATT	AGATAAAAA	CCTGAAAGAG	TTGCAACTAT	TGCTTGGGGA	3180
AATCATGATG	TAGCATTAGC	TTTAGGAATA	GTTCCTGTTG	GATTTTCAAA	AGCAAATTAC	3240
GGTGTAAGTG	CTGATAAAGG	AGTTTTACCA	TGGACAGAAG	AAAAAATCAA	AGAACTAAAT	3300
GGTAAAGCTA	ACCTATTTGA	CGATTTGGAT	GGACTTAACT	TTGAAGCAAT	ATCAAATTCT	3360
AAACCAGATG	TTATCTTAGC	AGGTTATTCT	GGTATAACTA	AAGAAGATTA	TGACACTCTA	3420
TCAAAAATTG	CTCCTGTAGC	AGCATACAAA	TCTG			3454

(2) INFORMATION FOR SEQ ID NO: 208:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3752 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 208:

CGGGAGTATA	CTTAATATAA	TTATAGTCTA	AAAATGACTA	TCAGAAAAGA	GGTAAATTTA	60
GATGAATAAG	AAAAAAATGA	TTTTAACAAG	TCTAGCCAGC	GTCGCTATCT	TAGGGGCTGG	120
TTTTGTTACG	TCTCAGCCTA	CTTTTGTAAG	AGCAGAAGAA	TCTCCAÇAAG	TTGTCGAAAA	180
ATCTTCATTA	GAGAAGAAAT	ATGAGGAAGC	AAAAGCAAAA	GCTGATACTG	CCAAGAAAGA	240
TTACGAAACG	GCTAAAAAGA	AAGCAGAAGA	CGCTCAGAAA	AAGTATGAAG	ATGATCAGAA	300
GAGAACTGAG	GAGAAAGCTC	GAAAAGAAGC	AGAAGCATCT	CAAAAATTGA	ATGATGTGGC	360
GCTTGTTGTT	CAAAATGCAT	ATAAAGAGTA	CCGAGAAGTT	CAAAATCAAC	GTAGTAAATA	420
TAAATCTGAC	GCTGAATATC	AGAAAAAATT	AACAGAGGTC	GACTCTAAAA	TAGAGAAGGC	480
TAGGAAAGAG	CAACAGGACT	TGCAAAATAA	ATTTAATGAA	GTAAGAGCAG	TTGTAGTTCC	540

. . .

			1196			
TGAACCAAAT	GCGTTGGCTG	AGACTAAGAA		GAAGCTAAAG	CAGAAGAAAA	600
AGTAGCTAAG	AGAAAATATG	ATTATGCAAC	TCTAAAGGTA	GCACTAGCGA	AGAAAGAAGT	660
AGAGGCTAAG	GAACTTGAAA	TTGAAAAACT	TCAATATGAA	ATTTCTACTT	TGGAACAAGA	720
AGTTGCTACT	GCTCAACATC	AAGTAGATAA	TTTGAAAAA	CTTCTTGCTG	GTGCGGATCC	780
TGATGATGGC	ACAGAAGTTA	TAGAAGCTAA	АТТААААААА	G 0A GAAGCTG	AGCTAAACGC	840
TAAACAAGCT	GAGTTAGCAA	AAAAACAAAC	AGAACTTGAA	AAACTTCTTG	ACAGCCTTGA	900
TCCTGAAGGT	AAGACTCAGG	ATGAATTAGA	TAAAGAAGCA	GAAGAAGCTG	AGTTGGATAA	960
AAAAGCTGAT	GAACTTCAAA	ATAAAGTTGC	TGATTTAGAA	AAAGAAATTA	GTAACCTTGA	1020
AATATTACTT	GGAGGGGCTG	ATCCTGAAGA	TGATACTGCT	GCTCTTCAAA	ATAAATTAGC	1080
TGCTAAAAAA	GCTGAGTTAG	CAAAAAAACA	AACAGAACTT	GAAAAACTTC	TTGACAGCCT	1140
TGATCCTGAA	GGTAAGACTC	AGGATGAATT	AGATAAAGAA	GCAGAAGAAG	CTGAGTTGGA	1200
TAAAAAAGCT	GATGAACTTC	AAAATAAAGT	TGCTGATTTA	GAAAAAGAAA	TTAGTAACCT	1260
TGAAATATTA	CTTGGAGGGG	CTGATTCTGA	AGATGATACT	GCTGCTCTTC	AAAATAAATT	1320
AGCTACTAAA	AAAGCTGAAT	TGGAAAAAAC	TCAAAAAGAA	TTAGATGCAG	CTCTTAATGA	1380
GTTAGGCCCT	GATGGAGATG	AAGAAGAAAC	TCCAGCGCCG	GCTCCTCAAC	CAGAGCAACC	1440
AGCTCCTGCA	CCAAAACCAG	AGCAACCAGC	TCCAGCTCCA	AAACCAGAGC	AACCAGCTCC	1500
TGCACCAAAA	CCAGAGCAAC	CAGCTCCAGC	TCCAAAACCA	GAGCAACCAG	CTCCAGCTCC	1560
AAAACCAGAG	CAACCAGCTA	AGCCGGAGAA	ACCAGCTGAA	GAGCCTACTC	AACCAGAAAA	1620
ACCAGCCACT	CCAAAAACAG	GCTGGAAACA	AGAAAACGGT	ATGTGGTATT	TCTACAATAC	1680
TGATGGTTCA	ATGGCAATAG	GTTGGCTCCA	AAACAACGGT	TCATGGTACT	ACCTAAACGC	1740
TAACGGCGCT	ATGGCAACAG	GTTGGGTGAA	AGATGGAGAT	ACCTGGTACT	ATCTTGAAGC	1800
ATCAGGTGCT	ATGAAAGCAA	GCCAATGGTT	CAAAGTATCA	GATAAATGGT	ACTATGTCAA	1860
CAGCAATGGC	GCTATGGCGA	CAGGCTGGCT	CCAATACAAT	GGCTCATGGT	ACTACCTCAA	1920
CGCTAATGGT	GATATGGCGA	CAGGATGGCT	CCAATACAAC	GGTTCATGGT	ATTACCTCAA	1980
CGCTAATGGT	GATATGGCGA	CAGGATGGGC	TAAAGTCAAC	GGTTCATGGT	ACTACCTAAA	2040
CGCTAACGGT	GCTATGGCTA	CAGGTTGGGC	TAAAGTCAAC	GGTTCATGGT	ACTACCTAAA	2100
CGCTAACGGT	TCAATGGCAA	CAGGTTGGGT	GAAAGATGGA	GATACCTGGT	ACTATCTTGA	2160
AGCATCAGGT	GCTATGAAAG	CAAGCCAATG	GTTCAAAGTA	TCAGATAAAT	GGTACTATGT	2220
CAATGGCTTA	GGTGCCCTTG	CAGTCAACAC	AACTGTAGAT	GGCTÁTAAAG	TCAATGCCAA	2280
TGGTGAATGG	GTTTAAGCCG	ATTAAATTAA	ATCATGTTAA	GAACATTTGA	CATTTTAATT	2340

- a.r ٠:.

TTGAAACAAA C	GATAAGGTTC	GATTGAATAG	ATTTATGTTC	GTATTCTTTA	GGTACCTATC	2400
TTATGATTTC A	AGGAAATGTC	ATTAAAAAA	CGACTCATTT	TCTCTAACCT	GAAAAATAGA	2460
TTAGAGAAAA T	GGGTTGTTT	TATCTATTAT	' AGTTATTTGA	ATGAAGmTAA	GAAGAAGGTA	2520
TACTCACATC A	TTCACATAA	TCTGTATATT	GACTATAAGT	TTTAAAAAAC	AATTTTTAAG	2580
CTCTTCCTTG T	CTTCTCTAA	CCAAGCGTGT	TATAATGAAT	ACTGCTCAAG	CGACCTTCAA	2640
TCGTGAAGCA C	ACACGACCT	TCAATCGTGA	ATAAACGAAT	AGATGGGAGA	CTTACCATGA	2700
GTGATAACTC T	AAAACACGT	GTTGTCGTGG	GGATGAGTGG	TGGTGTTGAT	TCGTCGGTGA	2760
CGGCTCTTTT G	CTCAAGGAG	CAGGGCTACG	ATGTGATCGG	TATCTTCATG	AAGAACTGGG	2820
ATGACACAGA T	GAAAACGGC	GTCTGTACGG	CGACCGAAGA	TTACAAGGAT	GTGGTTGCGG	2880
TGGCAGACCA G	ATTGGCATT	CCCTACTACT	CTGTCAATTT	TGAAAAAGAG	TACTGGGACC	2940
GCGTTTTTGA G	TATTTCCTA	GCGGAATACC	GTGCAGGGCG	CACGCCAAAT	CCGGACGTTA	3000
TGTGCAACAA G	GAAATCAAG	TTCAAGGCCT	TTTTGGACTA	TGCCATAACC	TTGGGGGCAG	3060
ACTATGTAGC G	ACTGGGCAT	TATGCTCGAG	TGGCGCGTGA	TGAGGATGGT	ACCGTTCACA	3120
TGCTTCGTGG C	GTGGACAAT	GGCAAGGATC	AGACCTATTT	CCTCAGCCAA	CTTTCGCAAG	3180
AACAACTTCA A	AAAACCATG	TTCCCACTAG	GACATTTGGA	AAAGCCTGAA	GTACGCAGAC	3240
TAGCAGAAGA AG	SCAGGCCTT	TCGACTGCTA	AGAAGAAAGA	CTCGACAGGG	ATTTGCTTTA	3300
TCGGAGAAAA GA	ACTTTAAA	AACTTTCTCA	GCAACTACCT	GCCAGCTCAG	CCTGGTCGCA	3360
TGATGACTGT GO	SATGGTCGC	GATATGGGCG	AGCATGCAGG	TCTTATGTAC	TATACAATCG	3420
GTCAGCGTGG CC	GGACTCGGT	ATCGGTGGGC	AACACGGCGG	TGACAATGCC	CCTTGGTTCG	3480
TTGTCGGAAA AC	SATCTAAGC	AAGAATATTC	TCTATGTAGG	ACAAGGATTC	TACCATGATT	3540
CGCTCATGTC AA	CTAGCCTA	GAAGCCAGTC	AAGTCCACTT	TACTCGTGAA	ATGCCAGAAG	3600
AGTTTACGCT AG	SAATGTACG (GCTAAATTCC	GTTACCGTCA	GCCTGACTCT	AAGGTGACCG	3660
TTCATGTCAA AG	GAGAAAAG A	ACAGAGGTCA	TCTTTGCGGA	ACCACAACGC	GCGATTACAC	3720
CAGGACAGGC AG	TTGTCTTT 1	PACGATGGCG	GG			3752

(2) INFORMATION FOR SEQ ID NO: 209:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3580 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

1198 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209:

TATTTATATT	TTTTTATCTC	TGGCATACTT	TGATACCTTT	TTAGACTTAA	AGTCTTTAAT	60
AGTGCCTTTC	CACCTCTTTT	TATCTATAAA	GATTCTCCTA	CATCATAATT	CATTTTTTTA	120
TTTAAACCTT	TCTGTCTTAG	TTTGTCTTTA	TCTTCTTCAT	ACCATTTTAA	GATTGTCACA	180
TAGTGGTTTT	GATAGGTCTT	ACCACTGCTT	TCCATGTATC	TGGATAGTTT	ATTTATCATT	240
ATATCTGTGT	GTGAGTTTAA	TTTTTCTTT	AGATTTTTAT	ATTCTTCTTT	GCTTAACCTT	300
ACATTTTTGA	ATTCTCCATA	AAAAATGGGG	GTGGACTTTT	TATCTATCTC	TCCCTCTCTC	360
TCTTTATCTA	TCTCTATATC	TTTCCATGTA	ATTCCAATCT	GGAGTACCTC	TACTGTCTAT	420
CGGTAATTTA	ATTTTGATAT	CTGGCAATAC	TGTGCTAGAT	ATTTGATCTT	TATATTCAGT	480
ATTTTTTAAA	GCTTGCCTAA	TAATTGAAGT	TAAATAGAAT	GCTACTTCTT	TATTCAATTC	540
TTTATTTTTT	AATTTTAAAC	AATGAATTTT	CATATCTAGG	CTTGCTTTAT	ATTTATGATA	600
AAAGACTGCT	CCTAAAAATG	AAACAGATAT	AAAATTTTCA	AAAACTCTAT	AATTTTTATC	660
ATCTATATCT	TCGTAGTAAC	CTAAGATACC	ATTGTCAATA	TTTGTAGCAC	TAATTCTAGG	720
AGTTTTTCCA	TCGAGTAAAT	ATCTTTTTGG	AATAGATGAG	CCTGTTGGTA	CTTAACTCGA	780
TTTCCCCTTT	TTTTCGGTAA	TAAATATTTC	TTTTTATTT	GTTGTCTGAT	ATTTTTCCTA	840
CCTGTCCTTT	GTAGGATGAG	TATTTTCTAG	ATTTTCYTGA	ATAACTTTTT	ACTTGAAGTT	900
TTAGCTTTTG	AACTAGTCGT	TGTACTTTCT	TTTTGTTTAT	TATCAGTCCT	GATCTTTTTA	960
ATATTGCTGT	TATTCTCTAT	ATCCTATTTT	TCATTCATGA	TATTCTTTTA	CTAATTTTAT	1020
CTTAAATTCT	GTGCTGTATT	TGCCATTAAA	AAACTGACCT	CCTTTAGTTA	GTTTTTTGGC	1080
CTAACTTTTG	AGGGTCAGTT	CAAAATTTGC	GACTTTTAAA	TGAATTCCAA	TATTCAATTA	1140
TTAAGAGTTA	ACATGGTGCT	TGCCAATAGG	AATCATTAGA	GGCGAATTGC	AAATAGGGTC	1200
ACGTATAATT	TTTGCTTCAA	GATTAAAGAT	ATCTTTAACT	AGTTTATCAT	TTAGTATATC	1260
TTCAGGCTTT	CCCTCTGCAA	CAAGTTTACC	TTCTTTAATT	GCAAATAGGT	AATCAGCGTA	1320
TCTTGCTGTT	AGATTTATAT	CGTGCAAAAT	CATGCAAATC	GTTGTCTTAT	ATTTTTGGTT	1380
TAGATCAGTO	AAGAGGTCTA	ATAGTTCTAT	TTGATATGAG	ATATCCAAG1	AAGTAGTTGG	1440
CTCATCTAA	AGTAGGATAG	TTGTATCTT	GGCTAGGGCT	AGAGCTATCO	ATACTCTTTG	1500
CCTTTGACCC	CCAGAAAGTT	CTTCAACTAC	GTTATTTGCT	R AGATETTEAL	CATTGGCCTT	1560
AACCATTGA?	CTGTTTATT	TTTCAAGGT	C ATCTTTTCC	A AGACTCTTAL	AAGGCTTTCT	1620
GTAGGGGAA	A CGACCACGG	TTACAAGAT	C AGCTACTGT	r ATTGATTCA	G GGATTATTGG	1680
AGATTGAGG'	r aatatagcti	A TGTGTTTTG	C TAAATCTTT	TCTTTATAA	G AATTAATTGA	1740

. .

TTTATTATCA AGCAATAC	TT CTCCCTCTAA	TGGCTTTATA	AGTCGAGACA	AGGTTTTAAT	1800
GAGTGTTGAT TTCCCACA	AC CATTTGACCO	AATAATAACT	GATATTTTTT	CTTCAGGTAT	1860
TTTTATATTT ATATTTTC	CA AGATTATTT	TTCATCATAA	CCGCAGGTAA	GATTATTTGA	1920
CCACAGACCT TTCATTAT	AT ATTCCTCCTC	TTCATTTTTA	TTAGTAAGTA	TATTAAGTAT	1980
GGTGAACCTA ACAAGCCA	GT TACAACACCT	ACTGGATATC	TAGCTGGTAA	AATATTTTGA	2040
GAGAATATGT CTGATAAC	AA AACTAGTAAA	ATTCCAACCA	ATCCAGCTAA	TATTGGGCTT	2100
CTTTTCTTGC CAATATTT	AA GGCTATGGGA	CCAGCTAAAA	AAGATATACA	AGCTATTGGT	2160
CCTGTAATTG AAGTAGAA	AA AGCAGTTAAA	GATACAGCGC	AAAAAATTAA	AACAAGCCTT	2220
GAAAGCTCGG GATTTGCT	CC AAGTCCGATI	GCTATTTCTT	CACCAAGTTC	AATAATTTCT	2280
AGTCTTTTAT TAAAAAAT	AA AACTAATATA	GTAGCAATAA	TACTTACTAT	TAGAACAAGA	2340
GGTATGTCAT CTAACTTT	GT AAAAGATAAA	GAGCCACTGA	GCCATCTCAT	AACTTCTTGT	2400
AATTCATATC TTGCTACT	TT CAACAATAAA	AATGAGGTGC	CTGCTCTTGT	GACAGCTTGA	2460
AAACCAATAC CTAATATT	AT CAGTCTTGCT	GCTGAAAAAC	CATCTTTTTT	AGCTAGTAAA	2520
AATAATATTA AAGATGAT	GT TAGTCCACA	GTTATTGAAA	TAATTCCAGT	AGTTAAACTA	2580
TTTGTTTTTA ATACCAAT	AT GCAAAAGACO	GCTGCAATAG	ATGAAGAACT	TGTGACACCG	2640
ATTATATCAG GACTTGCA	AG AGGATTTCTT	AACATAGTTT	GAAAGATAAA	TCCTGCCAAT	2700
CCAAAAGACC AGCCAGCT	AT AATTCCTGCT	AATAATTTTG	GTAATCTAAT	TTCCATAATC	2760
GAAAAACTAG CTCCAGGA	AC AGTTTCACTA	TTTAAGACTT	TAATCAAAGT	TGAAAAAGAA	2820
TAACTTTCAT CTCCGATA	AG TAAAATGAAA	AATGATAGAC	TGATTATTAT	TAATAAAAT	2880
AGTGAGGAAA ATAGTGTT	AT TCTATTTTT	CTTTTTTGAA	TACCTATAAT	TAAATTTTGC	2940
ATTAGTTATT AACCCCTC	TA TTTTTCATAC	TTACATAAAT	AAGTACTGGA	CCCCCGATTA	3000
TTGCAGTAAT TATCCCTA	CT TCAATTTCAC	CTGGTTTACC	TAACATACGG	CCGATTATAT	3060
CACATATAAG CAAGAGCT	'CT ['] GCACCTATAI	AAGATGAAGA	AATGGTCATT	GTGCGTATAT	3120
CTTTGCTTAT AAATAAGO	CA CAAAAGTGAG	GAACTATAAG	ACCTACGAAG	CCAATAGGTC	3180
CACCAATTGC AGTAATAC	TT GAACATAAA	GCACACTTGC	AATTATTGCA	AGTGATCTTA	3240
TCCTATTAAC ATTAACTO	CA AGACCAACA	CCATTTCATC	ACCCATAGeT	AAAGCGTTTA	3300
AATCTGATGA AATAAATA	ATA GCTATCAAG	GACCTAAAAT	TATAAAAGGT	AGTAGTGTAG	3360
ATATAGAAGA TAATGTAG	CT GCTCCAAGG	TACCTÁTTTG	CCAAAATCTA	AATTTGTCTA	3420
AGACGTTATT ATTCGGT	AAAAAATTA AAA	TTACAAAACT	GCTTAAAGCC	ATACTAACAC	3480

AAGTTCCTGA	TAAGGCAAGT	TTTATAGGGG	1200 TAAGGCCTGC	TTTTCCGTTA	CAGCAATCGC	3540
GTATACAAAA	ATTGCACTTA	CTAAGCCACC	AATGATTGCG			3580

(2) INFORMATION FOR SEQ ID NO: 210:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 11378 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:

CCAAATTGCT	CCACAATTAT	TATGGAGTCG	TCGTTTGGCA	GATGGGCGTG	ATATGTGTGC	60
TCAAGAATGG	TTGACAGGCA	AGATATTGAC	CCCCTATGAT	ATGAATCGTA	AGCAAATCGT	120
CAATATTTTA	ACCCGTCTTC	ATCGCTCACG	TCCGTTGATG	ACACAATTGA	GTCGTTTGGG	180
CTATGCCATG	GAAACACCTG	TAGATTTACT	ACAGTCTTGG	CAGGAAACGG	CTCCAGATGC	240
TTTGCGTAAA	AATCATTTTA	TCAGTGAAGT	GATGGCTGAT	TTACGTCAGA	CTATTCCAGG	300
ATTTAGAGAG	GACCATGCGA	CCATTGTCCA	TGGAGATGTA	CGACATAGTA	ATTGGATTGA	360
GACAGATAGT	GGCTTGATTT	ATTTAGTAGA	TTGGGATTCG	GTTCGCTTGA	CCGATCGCAT	420
GTTTGATGTG	GCCCATATGC	TCTGCCATTA	TATTTCAGAA	CATCAGTGGA	AGGAATGGTT	480
GACCTACTAC	GGTTACAAGT	ACAATCAAAC	GGTATTAAGT	AAATTGTATT	GGTATGGTCA	540
ATTGTCTTAT	TTGAGTCAGA	TTTCCAAGTA	TTATATGAAC	CAAGATTTAG	AAAATGTCAA	600
TCGGGAGATT	CATGGTTTGC	GTCATTTCCG	AGACAAGTAT	GGAAAGAGAA	GATGAGAGTT	660
AGAAATCGTA	AAGGGCAAC	AGAATTACTA	GAGGCAAATC	CCCAGTATGT	GGTCCTCAAT	720
CCCTTGGAAG	CCAAGGCAAA	ATGGCGGGAC	TTGTTTGGCA	ATGATAATCC	CATTCATGTG	780
GAAGTTGGAA	GTGGAAAGGG	TGCCTTTGTT	TCAGGTATGG	CCAAGCAAAA	CCCTGACATC	840
AACTATATCG	GGATTGATAT	TCAAAAGTCT	GTTTTGAGCT	ACGCTTTGGA	CAAGGTGCTT	900
GAAGTTGGAG	TGCCTAACAT	CAAGCTCTTG	TGGGTAGATG	GTTCTGACTT	AACTGACTAC	960
TTTGAAGACG	GTGAGATTGA	TCGCTTGTAT	CTGAACTTTT	CAGATCCATG	GCCGAAAAAA	1020
CGCCATGAAA	AGCGTCGTTT	GACCTACAAG	ACCTTCTTGG	ATACCTTCAA	ACGTATCTTG	1080
CCTGAAAATG	GAGAAATTCA	TTTCAAGACG	GATAACCGTG	GCTTGTTTGA	GTACAGTTTA	1140
GTGAGCTTTT	CTCAATATGG	CATGAAACTC	AATGGTGTCT	GGTTAGATTT	GCATGCCAGT	1200
GATTTTGAAG	GCAATGTCAT	GACAGAATAC	GAGCAAAAAT	TCTCAAACAA	GGGGCAAGTT	1260
ATCTACCGAG	TTGAGGCAGA	ATTTTAAGAG	АТААССТААА	ATTAGGCTGT	ACAAGTGCTT	1320

TTGCTTTACA	TAAGTTGGCA	AACGTGCTAT	ACTGATAGTA	AGAATATGAA	AAGTGAGGCG	1380
GGGAAATATC	TTCGCCTCTT	GCTTATGAGG	AGGTGGACGC	AATCGCAACA	ATCGTAGAAT	1440
TAGTCAGAGA	agttgtagaa	CCTGTCATAG	AAGCTCCTTT	TGAACTCGTG	GATATCGAGT	1500
ATGGAAAGAT	TGGCAGTGAC	ATGATTCTCA	GTATTTTTGT	AGATAAACCC	GAAGAATTAC	1560
CTTGAACGAC	ACGGCAGACT	TGACAGAAAT	TATCAGTCCT	GTCCTAGACA	CCATCAAGCC-	1620
AGATCCCTTC	CCAGAACAAT	ATTTCCTAGA	AATTACCAGT	CCAGGTTTGG	AACGTCCTTT	1680
GAAAACCAAG	GATGCCGTCG	CTGGAGCGGT	TGGAAAATAC	ATCCATGTCG	GGCTCTACCA	1740
AGCCATCGAT	AAGCAAAAGG	TCTTTGAAGG	AACCTTGTTG	GCCTTCGAAG	AGGACGAGTT	1800
GACTATGGAA	TATATGGACA	AGACGCGTAA	GAAAACCGTC	CAAATTCCAT	ACAGTTTAGT	1860
ATCAAAAGCA	CGTTTAGCAG	TTAAATTATA	GAAAAAGAAA	GGATAGCTTT	TGAGGATTCA	1920
aaagtgaaga	AAACATGAGT	AAAGAAATGC	TAGAGGCCTT	CCGCATTTTG	GAAGAAGACA	1980
AGGGAATCAA	AAAAGAAGAT	ATCATCGACG	CAGTAGTAGA	GTCGCTTCGT	TCCGCTTATC	2040
GCAGACGCTA	TGGTCAGTCA	GACAGCGTAG	CTATTGACTT	CAACGAAAAA	ACAGGTGACT	2100
TTACAGTTTA	TACTGTCCGT	GAAGTTGTTG	ATGAAGTATT	TGATAGCCGT	TTGGAAATCA	2160
GCTTGAAAGA	TGCTCTTGCC	ATTAATTCAG	CTTATGAACT	TGGAGACAAA	ATCAAGTTTG	2220
AAGAAGCACC	AGCTGAGTTT	GGTCGTGTAG	CAGCCCAATC	TGCCAAACAA	ACCATCATGG	2280
AAAAAATGCG	CAAgCAAACA	CGTGCCATCA	CTTACAATAC	TTACAAAGAA	CATGAGCAAG	2340
AAATCATGTC	TGGTACAGTA	GAACGCTTTG	ACAACCGCTT	TATCTATGTC	AACCTTGGTA	2400
GCATCGAAGC	CCAATTGTCA	AAACAAGACC	AAATTCCTGG	AGAAGTTTTT	GCTTCTCATG	2460
ATCGTATCGA	AGTTTATGTT	TACAAGGTTG	AAGACAACCC	TCGTGGTGTG	AACGTCTTTG	2520
TTAGCCGTAG	TCATCCAGAA	ATGATCAAAC	GTTTAATGGA	GCAAGAAATT	CCAGAAGTTT	2580
ATGATGGAAC	TGTTGAAATC	ATGAGCGTGG	CTCGTGAAGC	AGGTGACCGT	ACGAAGGTTG	2640
CTGTTCGTAG	CCACAATCCA	AACGTGGATG	CTATCGGTAC	AATCGTTGGA	CGTGGTGGTG	2700
CTAATATCAA	GAAGATTACT	AGCAAATTCC	ACCCAGCTCG	TTACGATGCT	AAAAATGACC	2760
GCATGGTACC	AATCGAAGAA	AATATCGATG	TTATCGAGTG	GGTAGCAGAT	CCAGCTGAAT	2820
TTATCTACAA	TGCCATCGCT	CCTGCTGAGG	TTGACCAAGT	TATCTTTGAT	GAAAACGACA	2880
GCAAACGTGC	CTTGGTGGTT	GTTCCAGATA	ACAAGCTTTC	TCTTGCCATT	GGTCGTCGTG	2940
GACAAAACGT	GCGCTTGGCG	GCTCACTTGA	CTGGTTACCG	TATCGATATC	AAGTCTGCTA	3000
GCGAATTTGA	AGCCATGGAA	GACGCTGCTT	CAGTAGAGTT	GGAAGTAGAA	AACGATACTG	3060

			1202			
TAGAAGAATA	AAAGCTGCTA	GAGGAGGGAA	AGATGAAAAC	AAGAAAAATC	CCTTTGCGCA	3120
AGTCTGTTGT	GTCTAACGAA	GTGATTGATA	AGCGTGATTT	GCTCCGCATT	GTCAAGAACA	3180
AGGAAGGACA	AGTCTTTATT	GATCCTACGG	GCAAGGCCAA	TGGCCGCGGC	GCTTATATCA	3240
AACTAGACAA	TGCAGAAGCC	CTAGAGGCGA	AAAAGAAGAA	GGTCTTTAAC	CGCAGCTTTA	3300
GCATGGAAGT	GGAAGAAAGC	TTTTATGACG	AGTTGATCGC	TTATGTGGAT	CACAAAGTGA	3360
AAAGAAGAGA	GTTGGGACTT	GAATAAGCAA	AAGATAAGTA	ATCTCTTGGG	GCTTGCTCAG	3420
CGAGCAGGGC	GCATCATATC	GGGTGAAGAA	TTGGTGGTCA	AGGCCATTCA	AGACGGCAAG	3480
GCCAAGTTGG	TCTTTCTAGC	TCATGATGCT	GGACCCAATC	TGACCAAGAA	GATTCAAGAT	3540
A AAAGT CATT	ATTATCAAGT	AGAAATTGTA	ACCGTGTTTT	CAACACTGGA	ATTAAGCATA	3600
GCAGTCGGGA	AATCGAGAAA	GGTTTTGGCT	GTAACAGATG	CTGGATTTAC	AAAGAAAATG	3660
AGGTCTCTTA	TGGAATAGAA	GAGGAGGACA	TGATTTGTCT	AAGAAAAGAT	TGTACGAAAT	3720
CGCAAAAGAA	CTTGGAAAAG	AAAGTAAAGA	AGTTGTAGCG	CGTGCAAAAG	AGTTGGGCTT	3780
GGATGTGAAA	AGCCACTCAT	CAAGTGTGGA	AGAAGCTGTC	GCTGCAAAAA	TTGCTGCCAG	3840
CTTTAAGCCT	GCAGCTGCTC	CGAAAGTAGA	AGCAAAACCT	GCAGCCCCAA	AAGTAAGTGC	3900
AGAAAAGAAA	GCCGAAAAAT	CTGAGCCAGC	TAAACCAGCT	GTAGCTAAGG	AAGAGGCAAA	3960
ACCTGCAGCC	CCAAAAGCAA	GTGCAGAAAA	GAAAGCCGAA	AAGTCTGAAC	CAGTAAAACC	4020
AGCTGTAGCC	AAGGAAGAGG	CAAAACCAGC	TGAGCCAGTC	ACTCCGAAAA	CAGAAAAAGT	4080
AGCGGCTAAA	CCGCAAAGTC	GTAATTTCAA	GGCTGAGCGT	GAAGCACGTG	CTAAAGAGCA	4140
GGCAGAGCGA	CGCAAGCAAA	ATAAGGGCAA	TAACCGTGAC	CAACAACAAA	ACGGAAACCG	4200
TCAGAAAAAC	GACGGCCGTA	ATGGTGGAAA	ACAAGGTCAA	AGCAACCGCG	ACAATCGTCG	4260
CTTTAATGAC	CAAGCTAAGA	AGCAGCAAGG	TCAGCAAAAA	CGTAGAAATG	AGCGCCGTCA	4320
GCAAGAGGAT	AAACGTTCAA	ATCAAGCGGC	TCCACGTATT	GACTTTAAAG	CCCGTGCAGC	4380
AGCCCTAAAA	GCAGAGCAAA	ATGCAGAGTA	CGCTCGTTCA	AGTGAGGAAC	GCTTCAAGCA	4440
GTATCAGGCT	GCTAAAGAAG	CCTTGGCTCA	AGCTAACAAA	CGCAAGGAAC	CAGAGGAAAT	4500
CTTTGAAGAA	GCGGCTAAGT	TAGCTGAACA	AGCACAGCAA	GTTCAAGCAG	TGGTTGAAGT	4560
CGTCCCTGAG	AAAAAAGAAC	CTGCAGTGGA	TACACGTCGT	AAAAAACAAG	CTCGACCAGA	4620
CAAAAATCGT	GACGATTATG	ATCATGAAGA	AGATGGTCCT	AGAAAACAAC	AAAAGAATCG	4680
AAGTAGTCAA	AATCAAGTGA	GAAATCAAAA	GAATAGTAAC	TGGAATAACA	ACAAAAAGAA	4740
CAAAAAAGGC	AATAACAAGA	ACAACCGTAA	TCAGACTCCA	AAACCTGTTA	CGGAGCGTAA	4800
ATTCCATGAA	TTGCCAACAG	AATTTGAATA	TACAGATGGT	ATGACCGTTG	CGGAAATCGC	4860

AAAACGT	ATC	AAACGTGAAC	CAGCTGAAAT	TGTTAAGAAA	CTTTTCATGA	TGGGTGTCAT	492
GGCCACA	CAA	AACCAATCCT	TGGATGGGGA	AACAATTGAA	CTCCTCATGG	TGGATTACGG	498
TATCGAA	GCC	AAACAAAAGG	TTGAAGTGGA	TAATGCTGAC	ATCGAACGTT	TCTTTGTCGA	504
agatggt	TAT	CTCAATGAAG	ATGAATTGGT	TGAGCGTCCA	CCAGTTGTTA	CTATCATGGG	510
ACACGTT	GAC	CACGGTAAAA	CAACCCTTTT	GGATACTCTT	CGTAACTCAC	GTGTTGCGAC	5160
AGGTGAA	GCA	GGTGGTATTA	CTCAGCATAT	CGGTGCCTAC	CAAATCGTGG	AAAATGGTAA	5220
GAAGATT	ACC	TTCCTTGATA	CACCAGGACA	CGCGGCCTTT	ACATCAATGC	GTGCGCGTGG	5280
TGCTTCT	GTT	ACCGATATTA	CGATCTTGGT	CGTAGCGGCA	GATGACGGG	TTATGCCTCA	5340
GACTATT	GAA	GCCATCAACC	ACTCAAAAGC	AGCTAACGTT	CCAATCATCG	TAGCTATTAA	5400
CAAGATT	GAT	AAACCAGGTG	CTAACCCAGA	ACGCGTTATC	GGTGAATTGG	CAGAGCATGG	5460
TGTGATG	TCA	ACTGCTTGGG	GTGGAGATTC	TGAATTTGTT	GAAATTTCGG	CTAAATTCAA	5520
CCAAAAT	ATC	GAAGAATTGT	TGGAAACAGT	CCTTCTTGTG	GCTGAAATCC	AAGAACTCAA	5580
AGCAGAC	CCA	ACAGTTCGTG	CGATCGGTAC	GGTTATCGAA	GCGCGCTTGG	ATAAAGGAAA	5640
AGGTGCG	STC	GCAACCCTTC	TTGTACAACA	AGGTACCTTG	AATGTTCAAG	ACCCAATCGT	5700
rgtcggaj	AAT	ACCTTCGGTC	GTGTCCGTGC	TATGACCAAC	GACCTTGGTC	GTCGTGTTAA	5760
AGTTGCT	GGA	CCATCAACAC	CAGTCTCTAT	CACAGGTTTG	AACGAAGCAC	CGATGGCGGG	5820
rgaccac	rtt	GCCGTTTACG	AGGATGAAAA	ATCTGCGCGT	GCAGCAGGTG	AAGAGCGTGC	5880
CAAACGTO	SCC	CTCATGAAAC	AACGTCAAGC	TACCCAACGT	GTTAGCCTTG	AAAACCTCTT	5940
rgatacco	TT	AAAGCTGGGG	AACTCAAATC	TGTTAATGTT	ATCATCAAGG	CTGATGTACA	6000
AGGTTCTO	STT	GAAGCCCTTT	CTGCCTCACT	TCAAAAGATT	GACGTGGAAG	GTGTCAAAGT	6060
GACTATCO	GTC	CACTCAGCGG	TCGGTGCTAT	CAACGAATCA	GACGTGACCC	TTGCCGAAGC	6120
TCAAATO	GCC	TTTATCGTTG	GTTTCAACGT	ACGCCCTACA	CCACAAGCTC	GTCAACAAGC	6180
AGAAGCTO	GAC	GATGTGGAAA	TCCGTCTTCA	CAGCATTATC	TACAAGGTTA	TCGAAGAGAT	6240
GAAGAAC	CT	ATGAAAGGGA	TGCTTGATCC	AGAATTTGAA	Gaaaaagtta	TTGGTGAAGC	6300
GTTATCO	CGT	GAAACCTTCA	AGGTGTCTAA	AGTGGGAACT	ATCGGTGGAT	TTATGGTTAT	6360
CAACGGTA	LAG	GTTGCCCGTG	ACTCTAAAGT	CCGTGTTATC	CGTGATGGTG	TCGTTATCTA	6420
GATGGTC	SAA	CTCGCAAGCT	TGAAACACTA	TAAAGACGAC	GTGAAAGAAG	TGACAAACGG	6480
CCTGAAC	GT	GGATTGATGA	TCGACGGCTA	CAATGATATT	AAGATGGATG	ATGTGATTGA	6540
GCGTATC	STC .	ATGGAAGAAA	TCAAGAGATA	AGATTTTTTG	CTCCTTTCTT	AGGTGGTGAG	6600

			1204		•	
GGACGCAAGC	AAACCGATGG	TTTCATTGCT	TATTTTTGAG	CCTAGGGTCT	CAAAAATCCC	666
CTGTGATGGG	ACTGATAAAT	CAGTTCCATC	ACTTTCACCA	CGGCGAAAGA	AGCAGATGAC	672
TTCAAATTGA	ACTTCGTTTC	AATTTAAACT	GAAAATCAAG	AAGTTTAAAA	TAGCTAGGTC	678
TGCTGGCCTA	GCTTTTGGTT	CAAAGTAGAG	AAAGGAATAT	CATGGCAAAT	CATTTCCGTA	684
CAGATCGTGT	GGGCATGGAA	ATCAAGCGTG	AAGTCAATGA	GATTTTGCAA	AAGAAAGTCC	690
GTGATCCACG	TGTCCAAGGT	GTGACCATCA	TAGATGTTCA	GATGCTGGGT	GACTTGTCTG	696
TTGCCAAGGT	TTATTACACC	ATTTTGAGTA	ACCTTGCTTC	GGATAACCAA	AAAGCCCAAA	702
rcgggcttga	AAAAGCAACT	GGTACCATCA	AACGTGAACT	TGGTCGCAAT	TTGAAATTGT	708
ACAAAATCCC	AGATTTGACC	TTCGTCAAAG	ACGAGTCCAT	CGAGTATGGA	AACAAGATTG	714
ACGAGATGCT	ACGCAATCTG	GATAAGAACT	AAAGAAGAGG	GGTTGCCCCT	CTTTTTTGGT	720
GAGGAAAAT	AGGTTGAATT	TGAAATGGAA	AAATATTCTT	TTATAATAGA	TTGAAACTAG	726
ATAGTACGC	CTCTACTTCT	AAAATATTGT	TAGAAATCGA	TTTGACTGTC	CTGATCGATT	732
rgtcctgttc	TTGTTTCATT	TTAATATAAA	AAAGGGATTC	TGTATTTTTT	AATGTTATCT	7386
ATTAGAAA A	TGCTTTTTTT	GTAGGAAATA	TAATATGATA	AGGTGCAAAA	AAGAAATAAG	7440
SAGTTTGTAT	ATGGCTGAAC	AAGACTTAGC	TATGCAAGTA	TTGCAACAAG	TGGTGAAACT	750
CCTGTTGTT	AAGGTTGATC	GTTCGAAATT	TTTAGTGGAT	AAGTTTTCCA	AAGAATTGGA	7560
CCAAAAGAT	ATTCCTACCT	TATTGGAACA	AGGTCCAACG	ACTCTTCTAT	CTCAAGAAAT	762
TTAGATCGT	GTAGCTAATG	CTTGTATTCG	GGACAATGTA	TTATTAGCGA	GTGGGACTTC	7680
GTTTTGGCA	GGATTACCTG	GAGGGCTTGC	TATGGCAATT	ACCATTCCAG	CTGATGTGGC	7740
CAATTTTAT	GCTTTCTCTC	TGAAATTGGC	TCAAGAATTA	GGTTATATTT	ATGGTTATGA	7800
GATCTTTGG	GCTTCACGAG	AGGAGTTGAG	TGAAGATGCT	CAAAATACCC	TCTTGCTTTA	7860
CTAGGCGTA	ATGTTAGGGG	TGAATGGAAC	CGCTGCTTTG	CTACGTGTTG	GTAGTATAAC	7920
ATTGCCAAA	CAGGTAATGA	AAATAGTGCC	TAATAAAGCT	TTAACAAAGA	CGCTTTGGTA	7980
CCTATTTTG	AAAAAAGTCT	TAAAAATATT	TGGTGTGAAT	CTTACCAAGG	GAGGGTTGGC	8040
AAAGGAATG	GGGAAATTTA	TTCCTATCTT	GGGTGGTATC	ATTTCAGGTG	GTTTAACCTT	8100
GCAACTATG	AAACCAATGG	GGGAAAGCTT	GCAGAAAGAA	TTATCCAAGC	TAGTCAACTA	8160
'AGTGAAGTT	CAATATCAAG	aagatgttga	AACAATCCGA	AAAGAGGCTG	AAATCATCAA	8220
GGAGAGTAA	TATGAATCCT	ATCAAAGCTT	TTGCTAAAAT	TTATGGTAAT	TACTTTTTGA	8280
CGTGCAAGG	TGTAAAAGTG	ATGAAAACGA	TAAAGAAAGC	TGACCATGTC	GTTGTTGGTC	8340
GGGGAAACT	TTTTATTGCC	GACAAGTTAA	TGGATACGGC	TCGGTGGCTC	ATTAAGCCAG	8400

1205

AGGAGAGAGA	ATGAAATTTT	TTTGGTCTTC	TTGCTATTCT	TTTTATCAAA	CCGATTATTG	8460
GGATTGTGAA	ATTCTTTTGG	ATGATCATCT	CTTTTGCAGT	CCAATTGCTG	TTTTACAAGA	8520
TAGTGTTTAA	GATATTGGAT	TGGCTCTTTA	AACTTATCTA	GATGGTAATC	CAAGTTGCAG	8580
AGAACTAGCA	GGAACTCCAC	TGCTAGTTTT	TTATTCTCTT	TCCATATGGT	ATAATATAAG	8640
CAGTAAAATC	ATTTTATACT	CTTCGAAAAT	CTCTTCAAAC	CACGTCAGCT	TCACCTTGCA	8700
GTATATATGT	TACTGACTTC	GTCAGTTCTA	TCCACAACCT	CAAAACGGTG	TTTTGAGCTG	8760
ACTTCGTCAG	TTCTATCTAC	AACCTCAAAA	CACTGTTTTG	AGCAACCTGC	GGCTAGCTTC	8820
CTAGTTTGCT	CTTTGATTTT	CATTGAGTAT	TAGAACATAC	AATGGAGGTC	GTCATGGACA	8880
ATATCATCGA	TGTGTCAATT	CCTGTTGCAG	AAGTGGTGGA	CAAGCATCCA	GAAGTCTTGG	8940
AAATTCTAGT	GGAGTTGGGT	TTTAAACCCC	TTGCCAATCC	CTTAATGCGC	AATACAGTTG	9000
GTCGTAAAGT	ATCACTTAAA	CAGGGTTCTA	AGCTAGCAGG	AACTCCTATG	GACAAGATTG	9060
TACGCACACT	GGAAGCGAAT	GGCTACGAAG	TGATTGGATT	AGACTAATGA	CAGATGAACG	9120
GATTCATATC	CTACGGGATA	TTTTGTTAGA	ATTGCACAAT	GGCGCCTCTC	CTGAGTCGGT	9180
TCAAGATCGC	TTTGATGCGA	CCTTTACGGG	CGTGTCAGCC	ATCGAGATTT	CCCTTATGGA	9240
GCACGAGCTG	ATGAACTCGG	ATTCGGGCGT	CACTTTTGAA	GATGTTATGG	AACTCTGTGA	9300
TGTCCATGCC	AATCTTTTTA	AAAATGCTAT	CAAAGGTGTC	GAAGTTTCAG	ATACTGAGCA	9360
TCCAGGTCAC	CCAGTTCGTG	TCTTCAAAGA	AGAAAATCTG	GCTCTCCGTG	CGGCCTTGAT	9420
TCGCATTCGT	AGATTGTTAG	ATACCTATGA	GTCTATGGAA	GACGAGGAAA	TGCTGGCGGA	9480
GATGCGTAAG	GGTTTGGTGC	GTCAGATGGG	ACTTGTGGGT	CAATTTGACA	TCCATTACCA	9540
ACGTAAGGAA	GAACTCTTCT	TTCCTATCAT	GGAGCGCTAT	GGACACGATT	CACCTCCCAA	9600
AGTTATGTGG	GGAGTGGATG	ATCAGATTAG	GGAACTCTTT	CAAACAGCTC	TAACGACAGC	9660
CAAGTCACTA	CCAGAAGTGT	CAATTAGCAG	TGTAAAGGAA	GCTTTTGAAG	CTTTTGCGAC	9720
AGAGTTTGAA	AGTATGATTT	TCAAGGAAGA	GTCCATCCTC	CTCATGATTC	TCCTTGAGTC	9780
TTTTACTCAG	GATGACTGGC	TTCAGATTGC	GGAGGAGAGC	GATGCCTATG	GCTATGCCAT	9840
CATCCGTCCG	TCAGAGAAAT	GGGTGCCAGA	ACGACAGAGC	TTTATTGAGG	AAAAGATTGC	9900
AGAGGAGCCT	GTACAGCTAG	ATACGGCAGA	AGGTCAAGTT	CAACAAGTCA	TAGATACGCC	9960
AGAAGGCCAT	TTTACCATTA	CCTTTACCCC	TAAGGAAAAG	GAAGCTGTGC	TGGACCGCCA	10020
TAGTCAACAG	GCTTTTGGTA	ATGGCTATCT	TTCAGTCGAG	CAGGCCAATC	TCATCCTCAA	10080
TCATCTCCCT	ATGGAGATTA	CCTTTGTCAA	TAAAGAAGAT	ATTTTCCAGT	ATTACAATGA	10140

			1206			
CAATACGCCA	GCTGATGAGA	TGATTTTCAA		TCCCAAGTCG	GGCGCAATGT	10200
CGAACTCTGC	CATCCGCCTA	AGTACTTGGA	CAAGGTCAAA	ACTATCATGA	AGGGGCTTCG	10260
TGAGGGAAGC	AAAGACAAGT	atgaaatgtg	GTTCAAGTCT	GAGTCGCGAG	GTAAGTTTGT	10320
CCACATCACC	TATGCTGCAG	TACACGATGA	AGACGGAGAA	TTCCAAGGAG	TGTTGGAGTA	10380
TGTTCAGGAT	ATCCAGCCCT	ACCGTGAGAT	TGATACGGAC	TATTTTCGTG	GATTAGAATA	10440
aggagaaaa	ATGAGTTACG	AACAAGAATT	TATGAAGGAA	TTTGAAGCTT	GGGTCAATAC	10500
CCAAATCATG	ATTAACGACA	TGGCGCACAA	GGAAAGCCAA	AAAGTTTACG	AAGAAGACCA	10560
GGACGAGCGT	GCCAAAGATG	CCATGATTCG	CTACGAGAGT	CGCTTGGATG	CTTATCAGTT	10620
CTTGCTTGGT	AAGTTTGAAA	ACTTCAAAGT	AGGCAAGGGA	TTCCATGATT	TGCCAGAAGG	10690
CTTGTTTGGT	GAGCGAAATT	ATTAAACGAG	AAAGATTCTT	GATTTTTCAC	TAAAATCTTG	10740
ATAGAATGTT	TATGTTAAAT	CCTTGTCAGA	GCAGGGATTT	TTTATTGAAA	GGATTTTATC	10800
ATGTCAAAGA	AACTCAATCG	таааааасаа	TTACGAAATG	GCCTCCGTCG	CGCAGGTGCC	10860
TTTTCAAGTA	CGGTGACTAA	GGTTGTAGAT	GAGACAAAAA	AAGTCGTGAA	GCGTGCAGAA	10920
CAGTCAGCAA	GCGCAGCTGG	TAAGGCTGTT	TCTAAAAAAG	TTGAACAAGC	AGTAGAAGCT	10980
ACCAAAGAGC	AAGCTCAAAA	AGTAGCTAAT	TCTGTAGAAG	ATTTTGCAGC	AAATTTGGGT	11040
GGACTTCCAC	TTGATCGTGC	CAAGACTTTC	TATGATGAAG	GAATCAAGTC	TGCTTCAGAT	11100
TTCAAAAACT	GGACTGAAAA	AGAACTCCTT	GCCTTGAAAG	GAATCGGCCC	AGCTACCATC	11160
AAGAAATTGA	AAGAAAATGG	CATCAAGTTC	AAGTAATTTT	TCTTGAGCCT	TGCATTTCCG	11220
AAAAAATCTT	GCTACAATAG	AGCCATTAGA	GGTGTTTTGA	ATCCCACATT	TTACAGAAAG	11280
TGGCGGCGCT	GAGAAGTCCA	CAAATGTGTC	AAAACTGGTT	GCTAATGGAT	GAAAAATTGA	11340
AATAAAAGTG	TCTTTTTGCT	TTAAAGACGA	GAGTTGCG			11378
(2) INFORMA	TION FOR SE	Q ID NO: 21	.1:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4156 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:

CCGCGAGCCA	CGGCGAATTT	GCTGCGGGTA	TTCATCAGTC	AGGATCTATG	ATCTTTGGTG	60
AACAAGAAAA	GGTTCAAGTT	GTGACCTTTA	TGCCAAATGA	AGGTCCTGAT	GATCTATACG	120
CTAAGTTTAA	TAACGCTGTT	GCTGCATTTG	ACGCAGAAGA	TGAGGTTCTA	GTTTTGGCTG	180

ACCTTTGGAG TGGTTCTCCA TTTAACCAAG CTA	AGTCGCGT GATGGGAGAA AATCCTGAGC	240
GTAAGTTTGC CATCATCACA GGACTTAACT TAC	CCGATGTT GATTCAAGCC TACACAGAGC	300
GCCTCATGGA CGCTGCTGCA GGTGTAGAAA AAG	TCGCTGC TAATATCATT AAAGAAGCCA	360
AAGATGGCAT CAAAGCTCTT CCAGAAGAGC TAA	ATCCAGT CGAAGAAGTT GCAAGCGCTG	420
CAGCTGCTCC AGTTGCCCAA ACTGCTATCC CAG	AAGGAAC TGTTATCGGA GACGGTAAAT	480
TGAAAATCAA TCTTGCCCGT CTTGACACAC GTC	TACTTCA CGGTCAGGTT GCAACTGCTT	540
GGACTCCAGA TTCAAAAGCA AATCGTATCA TCG	TTGCTTC AGATAACGTG GCTAAAGACG	600
ACCTTCGTAA AGAATTGATT AAACAAGCAG CTC	CAGGTAA TGTCAAGGCT AACGTGGTTC	660
CAATTCAAAA ACTGATTGAG ATTTCAAAAG ACC	CACGTTT TGGAGAAACA CATGCCCTTA	720
TCTTGTTTGA AACACCTCAA GATGCCCTTC GTG	CCATCGA AGGCGGCGTG CCAATCAAGA	780
CTCTTAATGT TGGTTCTATG GCTCACTCAA CAGG	GTAAAAC ATTGGTCAAT ACCGTTTTGT	840
CTATGGACAA AGAAGACGTT GCTACATTTG AAAJ	AAATGCG TGACTTGGGT GTTGAATTTG	900
ATGTCCGTAA AGTACCAAAT GATTCTAAAA AAGA	ATTTGTT TGACTTGATT AACAAAGCCA	960
ATGTCAAATA AGCCATTATT TATGAAAGGA TTTT	FAAACAT GTCTATTATT TCTATGGTTT	1020
TAGTAGTCGT TGTAGCCTTC TTTGCAGGTC TTGA	AGGCAT CCTCGACCAG TTCCAATTTC	1080
ACCAACCACT TGTAGCCTGT ACCCTTATTG GGCT	TTGTAAC AGGTCACTTG GAAGCAGGGA	1140
TTATCCTCGG TGGATCGCTT CAAATGATTG CCCT	TGGTTG GTCAAATATC GGTGCTGCTA	1200
TCGCTCCTGA TGCTGCACTT GCTTCTGTCG CTGC	TGCCAT TATCATGGTT CTTGGTGGTG	1260
ACTTTACCAA GACTGGTATC GGTGTTGCCC AAGC	GGTTGC TATCCCTCTT GCTGTAGCTG	1320
GACTTTTCTT GACAATGATT GTTCGTACAA TTTC	AGTTGG TTTGGTTCAT ACTGCAGATG	1380
CTGCCGCTAA AAAAGGTGAC TTCGGCGCTG TGGA	GCGTGC GCATTTCATC GCGCTACTTT	1440
TCCAAGGACT TCGTATCGCG CTTCCTGCAG CTCT	TCTCCT TATGGTACCA ACTGAAACTG	1500
FACAAAGTAT CCTTAGTGCC ATGCCAGACT GGCT	CAAAGA TGGTATGGCT ATCGGTGGTG	1560
STATGGTCGT TGCCGTTGGT TACGCCATGG TTAT	CAACAT GATGGCAACT CGTGAAGTAT	.1620
GGCCATTCTT CGCTCTTGGT TTCGTTCTCG CTGC	TGTGTC AGATATTACT CTAATCGGAT	1680
CCGCTGCTAT CGGCGTTGCT ATCGCTCTTA TCTA	CCTTCA CCTTTCTAAA ACTGGTGGAA	1740
ATGGTGGCGG AGGAGCCGCA ACTTCTAACG ACCC	AATCGG CGATATCCTA GAAGACTACT	1800
AGATAAGAA AGGACTGAAA ACATCATGAC TGAAA	AAACTT CAATTAACTA AATCAGATCG	1860
CAAAAAAGTT TGGTGGCGTT CAACCTTCTT ACAAC	GGGTCT TGGAACTTTG AACGGATGCA	1920

AAACTTG	SGC	TGGGCTTATA	CACTCATTCC	1208 AGCTATCAAA	AAACTCTATA	CTAAAAAAGA	1980
AGATCAA	ATC	GCTGCTCTTG	AGCGTCACCT	TGAGTTCTTC	AACACTCATC	CATACGTAGC	2040
TGCTCCA	STC	ATGGGGGTTA	CTCTTGCGCT	TGAAGAAGAA	CGTGCTAACG	GTGTGGAAAT	2100
CGATGAC	CT	GCTATCCAAG	GGGTTAAAAT	CGGTATGATG	GGACCTCTTG	CTGGTATCGG	2160
TGACCCA	GTA	TTCTGGTTTA	CAGTACGCCC	AATCCTTGGA	T CTC TCGGTG	CTTCACTTGC	2220
CCTTACTO	GGC	AATATCTTGG	GGCCACTCCT	CTTCTTTGTT	GCATGGAACT	TGATTCGTAT	2280
GTCATTC	ГТG	TGGTATGTTC	AAGAGATTGG	ATACAAGGCT	GGATCAGAAA	TCACTAAAGA	2340
TATGTCT	GGT	GGTATCCTTC	AAGATATCAC	TAAAGGAGCT	TCTATCCTTG	GGATGTTCAT	2400
TCTTGCT	GTC	CTTGTTCAAC	GCTGGGTAAA	TATTAAATTT	GCTTTCGATG	TTTCTAAAGT	2460
TCAACTA	GAT	GAAAAGGCTT	ATATCCATTG	GGATAAATTG	CCAGAAGGGT	CTAAAGGTAT	2520
CCAAGAA	GCA	TTCGCACAAG	TAGGACAAGG	ATTGTCTCAA	ACTCCTGAAA	AAGTTACTAC	2580
TTTCCAA	CAA	AACTTGGATA	TGTTGATTCC	TGGATTATCA	GGACTACTCC	TTACTTTACT	2640
TTGCATG'	TAC	TTACTTAAGA	AAAAAGTATC	TCCAATCACT	ATTATCCTTG	CCCTCTTCGC	2700
AGTGGGT	ATT	GTGGCACATG	TTCTTCACAT	CATGTAATCA	AGCAACTAAA	AAGGAACCAG	2760
GTTCTAA	AA T	CTGATTCCTT	TTTTCTATGC	TTTTATTCAG	CCAAGGCTCC	CATTGGATCC	2820
CATGGTG	CAA	GTACGATTGG	TTCTGCTCCA	TAGGCAGCTT	GTTCTTCTGC	TGTCAGCAAT	2880
TCCTTAC	GAA	CAACGATTTG	GTATGTGTAT	TCGTCCATCC	AAGCGTCTGA	GGCAACAAAG	2940
TAACCAT	CTG	TACCGACCTT	GTCTCCCCAT	GAGTTTTCAA	CCTTCCACTT	GGTTGATTTA	3000
CCATTTT	CGT	CCAAGTCAAC	ACCTGTCAAG	ACCATGGCGT	GGGTCATCAA	GCTTTCACTA	3060
TAGTCCA	AAC	GTCCAGCCTT	GTCTTGAGTA	AGTTTAATGT	CCATGCTTGA	TTCAAAGTCA	3120
TAAACAT	CTG	TCGCAAGGAT	GCCAGCTTAC	GGTTGCTGAG	CTGGCCGACA	TCAGAACCAA	3180
ACCAAAC	AGT	CTCACCTGCT	TGCATTTGGG	CAATCGCCAA	TTCTTTCAAG	CGCTCCATTG	3240
GAACGTT	GAT	GTAGCGAACT	GCACGGCTAC	CAACCACATT	CCCCAACATC	TCAACTGTGT	3300
AAGATTT	TCC	GTAAGGTTTA	TCAGCAGTTG	GAGCATTGAT	AACAGAAACG	TAGTCTTCTA	3360
AAGGAAG	ATT	GACATATTTC	TTGTAAAACT	CTTGTGGTGT	GATTCCTTTT	TCACTTTTGT	3420
AGTTGTT	ATC	TTTATCGCGA	TAAGCAAAGT	CAAACTTGCG	TGGTGGAAGT	CCTAATGACA	3480
TAGCAAG	AAA	GTTAAAGATT	TCTTGCAAGA	GGTCTTCTTT	CTTAGCTTGA	ACAGTCGCTT	3540
GATCTGC	ACC	AGAAACAAGC	AAGTCACGCA	AGATTTGAGC	ATCTTGACGA	AGCAATTTAT	3600
TAAGGAT	CGC	ATTTAGCTCA	CGACTGCTGC	TAGATGAAAC	AGACTCAGGA	TAAACTGACT	3660
TAGGCAC	GAC	ACCGTATTTT	TCAAAGAGGG	AAACGACCAT	ATCCCATTGA	CCGCCATCTT	3720

PCT/US97/19588 WO 98/18931

1209

GTTGAGGTGT	TTGGAGTAAG	AAGCTAACtT	GCGGCTAGTC	AATTCTTGGT	CTGAAGTCGC	3780
AATGACTTGC	TCCAAGAACC	AGTTTGATTT	CTCATACTTA	TCCCAGAAGA	AAGTGTGGGC	3840
TTGTGACAAC	TCAAAGTTCT	CCAATTTGTA	TTGCGAGATG	AGTTTGTGGC	GGAAGGTGTT	3900
GAGAGCCGCA	AACATCCAGC	AACGACCAGA	CGCTTTCTGG	TTAGTGACCT	TGTCCTTGGT	3960
TAAATCCAAT	GAGAAAACAG	GTGTGTTGTC	TACATGGCTT	TGGCGACGTT	CCAGAGCTGC	4020
AAAAATTCCG	TTGTGGCTGG	CAGCATTTTC	AATCGCTTGG	TATTTTACAT	TŢGCTTCATA	4080
GTTGGCAAAT	AGTTTATCAG	TAAATGATTC	TTGAATCGCG	TTCATAGATT	CCTCCTTTTA	4140
GTCTACAGTG	TATTGG					4156

(2) INFORMATION FOR SEQ ID NO: 212:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3902 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:

AAAAACAACA	AAATAAAACA	AAAACAAAAA	TATCGAGGTT	TATTTTCAAA	ACTTTCGATA	60
TTTTTATTAA	GTTATTATTT	TGTTGTTTCT	AGTTTACTTT	TTGATGGTTA	AGAGTGGTGG	120
AGAATTATAC	TCAATGAAAA	TCAAAGAGCA	AACTAGGAAG	CTAGCCGCAG	GCTGTACTTG	180
AGTACGGCAA	GGCGAAGCTG	ACGTGGTTTG	AATTTGATTT	TCGAAGAGTA	TTAGTGCAAA	240
CCGTAGTTGT	AGTCATCATC	TTGCATGGCT	TCAACTTCGC	CAAGAAGGTA	ACCATTTCCG	300
ACTTGAGAGA	AGAAGTCATG	GTTGGAAGTT	CCTGTTGAAA	TACCGTTCAT	AACGATTGGG	360
TTGACATCTT	CAGCTGAATC	TGGGAAAAGT	GGATCTTGTC	CCATGTTCAT	GAGAGCTTTA	420
TTGGCATTGT	AGCGAAGGAA	GGTTTTAACC	TCTTCAGTCC	AACCAACACC	GTCATAAAGA	480
CTCTCTGTGT	AGCCTTCTTC	ATTTTCATAA	AGAGTATAGA	GTAGGTCGTA	CATCCATTCT	540
TTGAGTTTTT	CTTGCTCTTC	TTCAGGTAAT	TCATTGAAAC	CAAGTTGGAA	TTTGTAACCA	600
ATGTAGGTTC	CGTGAACAGA	CTCGTCACGA	ATAATCAATT	TAATGATTTC	TGCAACGTTG	660
GCAAGTTTGT	TGTTACCGAG	ATAGTAGAGG	GGAGTGAAGA	AACCAGAGTA	GAAGAGGAAG	720
GTTTCGAGGA	AGACGCTGGC	AACTTTCTTT	TCAAGTGGGC	TGCCGTTTAG	GTAGATTTCG	780
TTGACAATCT	CAGCCTTCTT	TTGTAGGTAA	GGATTGGTAT	TGGTCCATTC	GAAAATTTCT	840
TCAATCTCAG	CCTTAGTATT	CAAGGTAGAA	AAGATTGATG	AGTAAGATTT	AGCGTGGACA	900

1210 GATTCCATAA ATTGGATGTT ATTGAAGACA GCTTCCTCAT GTGGTGTACG GATGTCTGCG 960 CGAAGGGCTT GAACCCCAGT TTCAGATTGC ATAGTGTCAA GAAGGGTTAA ACCACCAAAA 1020 ACTITICCGA CCAAGICITT CICITIGITA GATAGCITIC TCCAGICATC CAAGICGITI 1080 GATAAGGGAA TACGTGTATC GAGCCAAAAT TGCTCCGTCA GTTTTTCCCA AGTTGATTTG 1140 TCGATGACAT CTTCGATGGC ATTCCAGTTA ATGGCTTTGT AGTAAGTTTC CATTTAAAAT 1200 CTCTTTCTGT GTTTAGTATT GCGAACTCAC AATTATTTCT ACTTTACCAT AATTCTATÂG 1260 GAGTATCGCA CAAAAAGTCG GAAGCCCGAC TTTTAAAATG TTACATAAAT TATGTTATGA 1320 CATAGTAGAT TTGATTTTAT CAGTGCTGCT TAGGGAAAAA TAGTGTTTCT ATGCTAGAAA 1380 CTAAATCACA CAGCTTTCAC ATTGGTTGGC GCCGACTTCT CCACCGTCAT CTGTAAAGGT 1440 ACGGACGTAG TAGATAGACT TGATTCCCTT GTTAAAGGCA TAGTTACGAA GGATGGACAA 1500 GTCACGTGTC GTTTGTTTAT TTTCCCTCTT CCATTCGTAA AGGCCTTTTG GAATGTCACT 1560 GCGCATGAAG AGGGTGAGTG AAAGTCCTTG ATCCACGTGT TCAGTCGCAG CAGCGTAAAC 1620 ATCGATGACT TTACGCATAT CCATATCGTA GGCAGAAGTG TAGTAAGGAA TGGTTTCTGT 1680 AGACAAGCCA GCAGCAGGGT AATAGATTTT ACCAATTTTC TTCTCTTGGC GTTCTTCGAT ACGTTGCGTA ATCGGGTGGA TAGAAGCAGA AACGTCGTTG ATATAGCTGA TAGAACCATT 1800 TGGCGCTACA GCAAGGCGAT TTTGGTGGTA AAGACCATCT TCTTGAACCT TGTCGCGAAG 1860 TTCAGCCCAA TCAGCAACAC CAGGGATAAA GACATTTTTG AAGAGTTCTT TAACACGGTC 1920 TGATGTTGGA ACAAATTCAC CAGTTACATA CTTGTCAAAG TAACTTCCGT TAGCATAGTC 1980 TGATTTTCA AAGTTGTGGA AGGTAATACC ACGTTCACGT GCAATATTGT TTGACTCTAC 2040 CAAGGTCCAG TAGTTCATAA GCATAAAGTA GATGCTTGTA AATTCAACAG ACTCAGGTGA 2100 ACCATATTCA ATGAGTTGTT GGGCAAGGTA GCTGTGCAGT CCCATGGCAC CGAGACCAAA 2160 GGTGTGGGCT TGGCTATTTC CATGGTCAAT CGTTGGTACA GCTACGATAT GTGAACTATC 2220 TGTAACGAAA GTAAGGGCAC GAACCATAGC ACGGATAGAA CGACCAAAAT CAGGTGAAGT 2280 CATCATGTTA ACCACGTTGG TTGAACCCAG GTTACATGAA ACATCTGTTC CCATTTGAAG 2340 GAATTCTTGA GCATCGTTGA TCAAGCTTGG TTCTTGAACT TGAAGAATCT CAGAACACAA 2400 GTTACTCATG ATAATCTTTC CATCAACAGG ATTTGCACGG TTAGCCGTAT CGATGTTGAC 2460 TACATAAGGA TAGCCAGACT CTTGTTGCAA TTTAGAGATT TCAGTTTCCA AATCCCGCGC 2520 CTTGATTTTT GTCTTGCGAA TATTTGGATT TGCGACCAAT TCATCGTATT TTTCAGTAAT 2580 GTCGATGTAA TTGAATGGCA CACCGTATTC TTTTTCTACA GAGTAAGGGC TGAAGAGGTA 2640 CATTTCTTCA TTTTTACGAG CCAATTCGTA GAATTTATCA GGTACTACAA CACCAAGTGA 2700

TAGAGTCTTG	ACACGTACTT	TTTCATCAGC	GTTTTCTTTC	TTAGTTGAAA	GGAAAGCGAT	2760
GATATCTGGG	TGAAAGACGT	TGAGGTAGAC	AACACCAGCA	CCTTGACGTT	GCCCCAATTG	2820
GTTGGAGTAA	GAGAAGCTGT	CTTCAAAAAG	CTTCATAACA	GGAACGACAC	CTGAAGCAGC	2880
TCCTTCATAG	CCTTTGATAG	GTGCACCAGC	TTCACGAAGG	TTGCTGAGGG	TAATTCCCAC	2940
ACCACCACCA	ATACGTGAAA	GTTGAAGAGC	TGAGTTGATA	GAACGCCCGA	TAGAGTTCAT	3000
ATCATCCGTC	ACTTGGATTA	GGAAACAAGA	TACCAACTCC	CCACGACGAG	CACGTCCAGC	3060
attc aa gaag	GAAGGAGTAG	CAGGTTGGTA	GCGTTGGTGG	ATGATTTCAT	TGGCAATATC	3120
GATTGCAACA	GCTTCATTCC	CATCAGCGAA	ATAAAGGGCA	TTGAAGAAGA	CACGGTCTTC	3180
CATATTTTCA	AGATAGTATT	CACCGTCATT	AGTCTTTAAG	GCATATTGAT	TGTAAAATTT	3240
ATAAGCTGCC	ATGAATGACT	TGAATTGGAA	GTTTTGGTCT	TTGATAAATT	GAGCTAATTC	3300
PTCCAAGAAC	TCTGGACGGT	ATTTCTTGAT	AAAGGCTGTT	TCGATGTAGT	TGTGTTCAAT	3360
GAGGTAATTG	ATTTTGTCTT	TGATTGAATC	AAAAACCATA	GTGTTTGGAA	CTACATTTTC	3420
rtt aa agaaa	GCATCCAAGG	CTTCCTTGTC	TTTATGAAGC	ATGATTTGTC	CATTAACAGG	3480
ACGGTTAATT	TCGTTATTAA	GACGGAAGTA	AGTCACGTCT	TCAAGATGTT	TTAATCCCAT	3540
VAAATTTCCC	TTATCTAATT	ACAAAAGAAA	GGCTTCTAAG	TTAGCCCTAA	AAGCAGTTTC	3600
TTCTGGATGA	TGTACTAAGA	TTATGCTAAT	TGTTTCAGTT	TTCCTGGTTG	GAAACCTGAA	3660
AGACTTCAG	TTGGTGTTTG	GATAACAGGA	GCTGCGCTAA	AACCGAGCTC	TTTAACTTGA	3720
CGACGTACT	CAGGTTGCTC	ATCAAGATTG	ATTTCACGAT	AAGAGACATT	ATTACTGTCC	3780
AGAAACGCT	TGGTCATTTT	ACATTGGACA	CAATTGTTTT	TAGAATAAAC	GGTTACCATT	3840
TGTAACTCC	TCTTCAAAAT	TTAATACTAT	CTTAGTATAT	CAGAAAATAA	AATTTTGTCG	3900
G						3902

(2) INFORMATION FOR SEQ ID NO: 213:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2456 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213:

TATTGAAGCT ATTGTAGACT ACAAAGATAA GGATTTGCAG TTAGTAGGCG GTGAGACTCA 60 CTGATAACCT AAAAAGGATA GTCAATTATG CTTGTTTACT AACTATTAAC TATGCTAAAT 120

1212

			1212			
CAATTGAGGT	TGTTTACATA	AAACTCTATA	TCAGAGAAGC	CTGATATAGA	GTTTTTTCTT	180
GCTAGTTTTA	GGATTTTTT	GTAAAATAGA	AAAAGTGAAG	AGAGGTATGA	AATGAGCAAG	240
AAAGATAAAA	AAATCGAAAT	TCAAGTAGCG	GATGCCAAAG	TTAATGTTGG	TAAAGACAGT	300
TTTGAAGGTT	ATACATTGAC	TATCGGTAAA	AAAGTTATCG	GAGAAATTGC	CGAATTAGAC	360
GGACAATTTG	CCATTATAAA	GAATGGGAAT	GTCGATAGTT	TTTATAAAAA	ATTGGAAAAA	420
GCTGTGGAAA	TTTTGATTGA	AAATTATAAT	TTAGCAAAAT	AAGTCTTGTT	TTTTTGAAAT	480
TTTCATGATA	TAATAGTCCA	TGTTGATTGT	AGGAGAGATA	GCGAAGAGGC	TAAACGCGGC	540
GGACTGTAAA	TCCGCCCCTT	CGGGTTCGGG	GGTTCGAATC	сстстстстс	CATTTCATTA	600
ATGGGGTATA	GCCAAGCGGT	AAGGCAAGGG	ACTTTGACTC	CCTCATGCGT	TGGTTCGAAT	660
CCAGCTACCC	CAGTTCTTAG	GTAATAATCA	AGATAGAAAG	CAAAATATCT	TAGGGTATTT	720
TATTTTTATA	ATTGAAAGAC	GTGAATGATA	TGAACATGTC	CTTGCGGGTG	CTTAGGAAAA	780
AAATTATAAG	TATGTCAAGT	TTAAGAAAAA	CTTGATTGTT	GGAGGATTTT	TTAGATGAAC	840
GAATTTGAAG	ATTTGCTAAA	TAGCGTTAGT	CAAGTTGAGA	CTGGTGATGT	TGTTAGTGCT	900
GAAGTATTGA	CAGTTGATGC	GACTCAAGCT	AACGTTGCAA	TCTCTGGAAC	TGGTGTTGAA	960
GGTGTCTTGA	CTCTTCGCGA	ATTGACAAAC	GATCGTGATG	CAGATATCAA	TGACTTTGTT	1020
AAAGTAGGAG	AAGTATTGGA	TGTTCTTGTA	CTTCGTCAAG	TAGTTGGTAA	AGATACTGAT	1080
ACAGTTACAT	ACCTTGTATC	TAAAAAACGC	CTTGAAGCTC	GCAAAGCATG	GGACAAACTT	1140
GTTGGTCGCG	AAGAAGAAGT	TGTTACTGTT	AAAGGAACGC	GTGCCGTTAA	AGGTGGACTT	1200
TCAGTAGAAT	TTGAAGGTGT	TCGTGGATTT	ATCCCAGCTT	CAATGTTGGA	TACTCGTTTC	1260
GTACGTAACG	CTGAGCGTTT	TGTAGGTCAA	GAATTTGATA	CTAAAATCAA	AGAAGTTAAC	1320
GCTAAAGAAA	ACCGCTTCAT	CCTTTCACGT	CGTGAAGTTG	TTGAAGCAGC	TACTGCAGCA	1380
GCTCGCGCTG	AAGTATTCGG	TAAATTGGCT	GTTGGTGATG	TTGTAACTGG	TAAAGTTGCT	1440
CGTATCACAA	GCTTCGGCGC	TTTCGTCGAC	CTTGGTGGTG	TTGACGGATT	GGTTCACTTG	1500
ACTGAATTGT	CACATGAACG	TAATGTATCA	CCAAAATCAG	TTGTAACTGT	TGGTGAAGAA	1560
attgaagtga	AAATCCTTGA	TCTTAACGAA	GAAGAAGGAC	GTGTATCACT	TTCACTTAAA	1620
GCAACAGTAC	CAGGACCATG	GGATGGCGTT	GAGCAAAAAT	TGGCTAAAGG	TGATGTAGTA	1680
GAAGGAACAG	TTAAACGTTT	GACTGACTTC	GGTGCATTTG	TTGAAGTATT	GCCAGGTATC	1740
GATGGACTTG	TTCACGTATC	ACAAATTTCA	CACAAACGGA	TTGAAAATCC	AAAAGAAGCT	1800
CTTAAAGTTG	GTCAAGAAGT	TCAAGTTAAA	GTTCTTGAAG	TTAACGCAGA	TGCAGAACGC	1860
GTGTCACTTT	CTATTAAAGC	TCTTGAAGAA	CGTCCAGCCC	AAGAAGAAGG	ACAAAAAGAA	1920

1980 GAAAAACGTG CTGCTCGTCC ACGTCGTCCA AGACGTCAAG AAAAGCGTGA TTTCGAACTT CCAGAAACAC AAACAGGATT TTCAATGGCT GATTTGTTTG GTGATATCGA ACTTTAATCA 2040 AATTGAAAAT TCACAAAATC CTTTGTTTAC TAAACAAGGG ATTTTTCTGG CTCTTTGTCA 2100 ACTGTAGTGG GTTGAAGAAA AGCTAAGCTC GAGAAAGGAC AAATTTTGTC CTTTCTTTTT 2160 TGATATTCAG AGCGATAAAA ATCCGTTTTT TGAAGTTTTC AAAGTTCCGA AAACCAAAGG 2220 CATTGCGCTT GATAAGTTTG ATGAGATTAT TGGTCGCTTC CAGTTTGGCG TTAGAATAGT 2280 GTAGTTGAAG GGTGTTGACA AGCTTTTCTT TATCTTTGAG GAAGGTTTTA AAGACAGTCT 2340 GAAAAATAGG ATGAACCTGC TTAAGATTGT CCTCAATAAG TCCGAAAAAT TTCTCCGGTT 2400 CCTTATTCTG AAAGTGAAAC AGCAAGAGTT GATAGAGCTG ATAGTGGTGT TTCAGG 2456

(2) INFORMATION FOR SEQ ID NO: 214:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10974 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214:

AAATAGGATA TAGAGACATC CTTCTGATCT GCTTTTWACA AAGTCCAATT ATATGCGGAT CTATACCTCC ACAATGTCCA TTATTATMCC TAACTATAAT ATGAGCCGAA AACACTATAT 120 CCTTAATGTC TCCATATCCA TCAGGGATAT TAATATTTAT TTTTCCACAA CTATATTGCA 180 240 TTGTAACCAT CTCCTTAAAC GACGCATTAT GATATTTGAT AGAGAAATTT TTATGAATAA CTCAATAATT TTATAGTAAA TCATGCTTAT ATCTCAAAGA TACCTATTTT ATCTTGTCTC 300 GACCTTCTCC AAAGAATTGC TATAATACTA TTACAAATCC ATCTGCACTA CACTTCAAAT 360 420 TTTAGCACTG TATAAAAACG TTTCAATACA CTAACTTCAA GAAAACTTCC ACTATTAATT GAAAAATTG ATAGAGATAA ATTAAAAATC TATATTGAAA CTCATCCCGA TGCTTATTTG 480 ACTGAAATAG CTGCTGAATT CAACTGTCCT CCAACAACTA TTCATTACGC TCTAAAGGCT 540 ATGGGATATA GTCTAAAAAA GAGCCGTACC TACTGCGAAC AAGACCCAGA AAAAGTAAAT 600 CGGTTCCTTA AAGAATTGAA TCACTTAAGC TACCTGACTC CTATTTATAT TTATGAGACA 720 GGGGTTGAGA CCTATTTTTA TCTCGAATAT GATCGAGCCT TGAGCAGGCA GTTAGTCTCT CTGGAAGAAG ATATAATTAT TTGAATTAAG ATCGAGACAA CGCACACCAG AGATTGCGAT 780 ACTGTTATAG AAGTACTAAT GCCCTTTTTT GTTTCAATAT ACTATGGCTC CGATGACCTA 840

			1414			
TAAAGATACO	ATGACGAGTC	ACTTTTTCG	AGCTTGCTTC	CAAAAATTCT	TACTACCTAC	90
TTTAGATACA	CCATCCCTTA	TCATTATGGA	CAATGCAAGG	TTTCACAGAA	TGAACATGTG	96
TAAGGAGCAC	GGCATAGACT	GTTACCACTT	CCTACCTATT	CACCCGAGTA	TAATCCCATT	102
GAGAAAATAT	GGGCTTACAT	CAAAAACATC	TCAGAATAAT	ATTGTCAAAT	TACGATGCTT	108
TTCTTGAGGC	ACTTTTGTCC	TATTCTTGTT	TCAGCCGACT	ATACTCCGTT	ATTGGGCAGC	114
TATGGAACAG	TCGATGGGAC	GATGGGGGA	CATAAAAAA	TCCTCCAGTT	TTGTTTTTTA	120
TAACAGTATA	CTGGAGAATT	GACAATCTCG	GTAGATACCT	CGTTATAGCG	CGGTTACTTA	126
TTAGGCAGTT	ACAAAACAAC	TGTGAACAGA	AAACATTCCA	GAGTCAGACA	AGACTTTGGA	132
ATGTTTTGGC	TCTATAATTT	CTGTAGTGGG	TAATCCCACC	CCAGGAATTA	TAGGGTCGTT	138
TCTTGTAGAA	AAAAAGCCCC	ATATGACCTA	TAATGAAAAG	CGTCTAACCA	ACTCATTAGA	144
AAGGGTTCAT	ATGGAACAAC	TTAAGAATAC	CACAGATTTG	CTCGGATTGG	AAGACAAAAA	150
TATCAAAATC	TTGTCTGTTC	TGAAATACCA	AACCCATCTA	GTCGTTCAGG	CAAAGTTGGA	156
TTCCCCCGCT	CCTCCTTGTC	CTCATTGTCA	AGGGAAGATG	ATCAAATACG	ACTTCCAGAA	162
AGCCTCTAAA	ATTCCGCTTC	TCGACTGTCA	GGGTTTACCC	ACGGTACTGC	ATCTCAAAAA	168
GCGCCGCTTT	CAGTGCAAGA	ATTGCCTTAA	GGTGGTCGTT	TCTCAAACAT	CCATTGTCAA	174
GAAAAATTGC	CAGATTTCCA	ACATGGTGAG	ACAAAAAATC	GCTCAGCTCC	TCCTTGAAAA	180
GCAGTCTATG	ACTGAGATTG	CCCACAGATT	GGCGGTCTCA	ACTTCCACCG	TCATCCGAAA	186
ACTGAGGGAA	TTTAAGTTTG	AAACCGATTG	GACCAAGTTG	CCAAAAGTTA	TGAGTTGGGA	192
TGAGTATAGC	TTCAAAAAGA	GCAAAATGAG	CTTCATTGCC	CAAGATTTTG	AGTCCAAATC	1980
CATCCTCGCA	ATTTTAGACG	GGCGAACTCA	TGCGGTGATT	CGAAACCATT	TCCAACGCTA	2040
rcagagagag	GTTCGGGAGC	TGGTCGAGGT	CATCACCATG	GACATGTACA	GCCCTTATTA	2100
rcggctcgct	AAGCAACTCT	TTCCAAAGGC	GAAGATTGTT	CTTGACCGCT	TCCACATTGT	2160
CCAACATCTG	AGCCGAGCTA	TGAACCGAGT	ACGAATCCAA	ATCATGAACC	AATTTGACCG	2220
AAAATCCTTG	GAGTATCGGG	CGCTCAAGCG	CTTTTGGAAC	CCTCGCTTTT	TCGTTTCTAG	2280
GCTCGGGCTA	AATCAGTCCA	CTGGACTGAT	TTACTACACC	AGTATAGCTT	CAAGCTCTGT	2340
CAGAAACGAT	TCTATCAGCC	CACGTTTCGA	ATGCACTTAA	CCCATCGGGA	AGTACGAGAT	2400
AGCTGCTTT	CTTACTCTGA	GGGATTACAG	GTTCACTACG	AACTCTATCA	ACTCCTGCTC	2460
TTTCATTTTC	AAGAGAAGAA	TGCCGACCAT	TTCTTTGGAT	TGATTGAGCA	AGAACTGCCA	2520
CGGTTCATC	CGCTTTTTCA	AACGGTCTTT	TGGACTTTTT	TAAGGGATAG	AGATAAGATT	2580
TCAACGCAC	TTAAGCTGCC	TTATTCCAAC	GCTAAACTTG	AAGCGACCAA	TAATTTGATT	2640

AAGATTATCA	AGCGCAAAGC	CTTTGGTTTC	CGGAACTTTA	ACAATTTTAA	AAAACGGATT	2700
TTGATGACTT	TGAACATCAA	AAAAGAGAGT	ACGAATTTCG	TACTCTCCAG	ATTGCAGCTT	2760
TTCGCCTACC	CACTACACTT	GACAAAGAGC	CACTCTTTAT	TCCATGGTAT	CAAAGGCAAG	2820
ACTTGGTTTG	GCATTGAGGT	CCCAGCCTGC	GAAGTTTTCT	TTGTTCCACT	CGCTGACGCT	2880
GGCATAGGCA	ATCATACCTG	CATTGTCTCC	GCAGAGTCGC	AGAGGGGGA	TGATAACCTT	2940
GACATCTGTG	ATTTCGGCTG	CTAGGCGTTC	TCTGAGACCT	TTATTGGCTG	CCACACCACC	3000
TGCCACAACT	AGGATTTTAA	CAGGATATTT	CTCCAAAGCC	TTCTTGGTTT	TTGCCATGAG	3060
AATGTCCATA	ACTGCTGCTT	GGAAGGAAGC	ACACAAATCT	TCTGTAGACA	GGCTTTCTCC	3120
CTTTTGCTCG	GCATTGTGAT	GAAGATTGAT	AAAGGCAGAT	TTCAAACCTG	AGAAGGAGAA	3180
CTCCAGATTA	TCTTCCTTAA	TCATGGCACG	GGGGAAATCA	TAAATATCCT	GCCCCTGATG	3240
AGCCAGCTCG	TCAATCTCAC	GACCTGCAGG	ATAGGTCAAG	CCCATGACAC	GGCCGACCTT	3300
ATCATAAGCC	TCACCAACCG	CATCATCACG	GGTTTCCCCA	ACAATCTTAT	AATCTCCTGC	3360
CTCCGAAACA	TAAACCAACT	CTGTGTGTCC	GCCGCTGACC	AAGAGGGCTA	GCAAGGGAAA	3420
CTCCAAAGGC	TCCACACTCT	GAGCTGCCAT	GAGGTGCCCA	GCCATGTGAT	TAACAGGAAT	3480
CAGTGGAAGT	CCGTGAGCCC	AAGCAAAGGC	CTTGGCAGCT	GACAAACCAA	CTAGCAAGGC	3540
TCCGACCAAG	CCTGGTCCGT	AGGTAACCGC	AACAGCTGTC	ACGTCCTCTT	CGGTAATCCC	3600
TGCTTCTGCC	AATGCCTCCT	CGATACAGGC	TGTAATGACC	TCGACATGGT	GACGACTGGC	3660
TACTTCGGGC	ACTACGCCAC	CAAAACGTTT	GTGACTCTCA	ATTTGACTAG	CAATGACATT	3720
GGACAAGAGC	TCATCGTCGT	TTTTCAAGAC	GGCGACACTG	GTCTCATCAC	AGGATGTCTC	3780
AAATGCTAAA	ATATATCTAT	CCTTCATCTA	TTTCTCTCTT	CATGATAATG	GCGTCCTCGA	3840
CTGGGTCATG	GTAGTAGGCC	TTTCGCTCAG	CGATAACTGT	CATCTTTTCT	TTCTTGTAAA	3900
ATGCTTGCGC	TCGTTGATTT	GACTGTCTGA	CTTCGAGGAA	AATTTCCTTG	TCTGTCGGCA	3960
ATTGAGCAAA	CAAGGCTGAC	GCAATCCCCT	GACCCTGATA	AGCTCCTTTG	ACAGCGATTT	4020
GCAGGACTTC	TGCTTCAAAA	AGATTCTCCT	GCACAGCTAG	AAATCCAATC	ACTTCTGCCC	4080
CATCATAAGC	CAATGCATAC	CAAGTCTGGT	CTTGGGACAG	ATCTGCTTGG	ATTTGCTCCA	4140
GAGTCCAAGG	ACTGACTAGG	TAAACAGCTG	CCATAACAGC	GTAGATGGCT	TGAGCTAGGT	4200
CAGGCTGTTG	TTGAATTCGC	TTGATTTCTA	TCATAGGCGT	TTAATGTAAG	ACTCGCCAGA	4260
CTCGGTATGG	TTCTTGAGCC	AGTTTTCCTC	AGCCTCGACT	CGTTTGAGGT	AATTCGGCAC	4320
AAAATCATGC	AAGGAGTCTG	CTTCCTTGTC	CCAGGCCAAA	AGAGCTAGAT	TAGCTGCATT	4380

			1216		•	
GGGCAATGTT	TCTTTGTAAT	CAGTCCTTGG		TGAATCTGCT	CAACAAAGGG	444
GCCAACTTCT	CCGACAAAGG	TTACCTGACT	AGTACCCTTG	ACTTTTTCTA	GCACCTCTTC	450
AAAAGATAGG	TGCGCTTCTG	CCATGACAGG	TTTGGCATTT	TCATAAAATC	CTGCATAAAC	456
ATTATTGCGA	CGCGCATCCA	TCAAGGGGAC	AAACAAACCT	TCTTGTTGAT	GGGCACCAG	462
AGCCAAGAGA	CTCGACATAC	CAACCAACTC	GATGTTCAGG	GTGTGAGCTA	AGGTCTTAGC	468
AGTTGCTACC	GCAATTCGCA	AGCCTGTATA	GCTACCCGGC	CCTTCAGCTA	CCACGATTCG	474
GTCCAAATCC	TTGGGTGTCC	AATCCAAACT	TGCCATCAAA	AAATCGATGG	CAGGCATAAG	480
AGTAATACTG	TGATTTTTCT	TAATATTAAT	CGTCGTCTCG	GCAAGAACCT	GCTTATCCTC	486
TAAAATAGCC	AGAGAAAGAG	CCTTGCTGGA	CGTATCAAAA	GCTAATACTT	TÇATAACACA	492
TTCCTATCTT	TTTGTCTGCT	TACTATTATA	CTACAAAAGC	TGGCACATGG	GAATTTTCTT	498
TGCCCCCAGA	CAAGAGTGCC	CTCACTTAAC	TAAAAATAAT	TTAAAAAAAT	GCTCACTTTT	504
CCTTTTCTTT	TCCGAATATA	AAAGTGAACA	AGAAAAAAGG	AGGAAAGTTC	AATGACAAAT	510
TTTGACATTC	TTGACAATCA	ATTTTTATCC	TTATCTGAAA	ATGAATTATC	AGATATTGAT	516
GGCGGTCTCG	CTCCCTTGGT	TATCTTTGGA	GTAGCAGTAT	CTTGGAAGGC	TATTGCAGGT	522
GGAACAGCAC	TTATAGGTTC	TGGTTTGGCA	GCTGGTTATT	TTTTAGGAGG	AGATTAATAT	528
GATGAAAGAT	TTGAACAATT	ATCGTGAAAT	TTCTAATAAG	GAATTGCAAG	AAATCAAGGG	534
TGGCTTTGGT	GTCGGTGTTG	GTATCGCTTT	ATTTATGGCA	GGTTATACCA	TTGGAAAAGA	540
CCTTCGTAAA	AAGTTTGGTA	AGTCATGCTA	GATAAGAAAC	ACATTTTTAG	AAGGATAAAT	546
TTTATTGTCT	TCATCTCTTA	CAGTTTGCTC	AGCATTCTCA	ATGATTTGAA	CATTACTACC	552
ATCCCTTTAC	CATTCGATTT	ATCTGTTTGT	ATTGTTTTAT	TTTTATGCTT	CAACTCTATT	558
TTTGATCAGA	ACAATGACTC	CCATAAAAAT	AATAAGCTTT	GAAAATTCCA	TTGTCATGTC	564
ATGTTAGAAA	AATGCAAAGA	CCACCTCATC	TTGATAGATG	GGGTGGAATT	TTCGTGTCGT	570
AAATCTACTA	TCTCTACATT	CCCAAACAAA	AAACCCCAGC	ATAAGCAGGG	CATCTAAGCA	576
TTTAATTCAA	AGTAAAATAC	AAACCAAACG	ACATAGGTCA	CGAGGAGGAG	AAAAAGCGAG	582
TAGAGAGTCA	CAAAGGTCAT	TTTCCACAAG	AACTTGGTTT	GTCGTCGTTC	CAGTTTGGCA	588
AATAGAAGAT	TCCCCGCATA	AACGCAAGCA	ACAAAAACAA	TAAAAGCTAC	CAAGCGAGCT	594
CCGATAGCAA	AAGCAAATAA	GTTATACATA	GGGCAACCTC	CTTGACTTAA	AATCTATATG	600
GAATTATGAC	AAGCAATAAA	TTTCACTTCC	GTTATCAACA	TAATACATTT	TCTTTATTTT	606
TGAAAACGCT	TACCAAAGAA	ATCGTCCCCT	AACTTTCTCG	TTTCCGTCTT	TTACTAATTT	612
سنحسوسا والملع	CCTATAAAATTC	3 3 3 m 3 3 mm/cm	NACCNAMCNA	CCMCNAMOTA	CACACAAAA	619

c	GAATGAAAT	CAAGCAAATA	TCTGCTAAAA	GTTTGGAATA	AGCTGACCTG	TAAATAGAAA	6240
(GAACTATAT	GATTTACAAA	GTTTTTTATC	AAGAAACAAA	AGAACGTAGC	CCACGCCGTG	6300
7	AAACAACACG	CACGCTTTAC	CTAGACATCG	ATGCCAGCTC	AGAACTTGAG	GGCCGTATCA	6360
C	TGCTCGCCA	ACTTGTCGAA	GAAAATCGCC	CAGAGTACAA	TATCGAGTAT	ATCGAACTCT	6420
7	TGTCTGACAA	ATTGCTCGAT	TACGAAAAAG	AAACTGGCGC	CTTCGAAATT	ACGGAGTTCT	6480
7	VATATGGCCT	ACACTCTTAA	ACCTGAAGAA	GTCGGCGTTT	TTGCCATCGG	TGGTCTAGGA	6540
c	GAAATCGGGA	AAAACACTTA	CGGAATTGAA	TACCAAGACG	AGATTATCAT	CGTCGATGCT	6600
c	GGATTAAAT	TCCCAGAAGA	TGACTTGCTT	GGTATCGACT	ATGTCATTCC	TGACTACTCT	6660
1	PACATCGTGG	ACAATATCGA	CCGCGTCAAG	GCTGTTTTAA	TCACACACGG	ACACGAGGAC	6720
c	CACATTGGTG	GGATTCCGTT	CCTACTCAAG	CAAGCAAATG	TCCCTATTTA	TGCTGGACCG	6780
c	CTTGCCTTGG	CTTTGATCCG	TGGGAAACTC	GAAGAACACG	GCCTCTTGCG	CAACGCCAAA	6840
C	TTTACGAAA	TCAACCACAA	CACCGAGTTG	ACCTTTAAAA	ATCTCAAGGC	AACTTTCTTT	6900
2	GAACGACTC	ACTCTATTCC	AGAGCCTTTG	GGGATTGTCA	TTCATACTCC	TCAAGGGAAA	6960
7	TCGTCTGTA	CGGGTGACTT	TAAGTTCGAC	TTTACTCCAG	TTGGAGAACC	TGCGGACTTG	7020
C	CATCGTATGG	CTGCGCTTGG	TGAAGAAGGC	GTGCTCTGTC	TCCTGTCTGA	CTCGACAAAT	7080
C	CCGGAAGTAC	CAACCTTTAC	CAACTCTGAA	AAAGTCGTTG	GTCAGTCCAT	TATGAAGATT	7140
7	ATCCAAGGTA	TTGAAGGACG	TATCATCTTT	GCATCCTTTG	CCTCAAATAT	CTTCCGTCTC	7200
c	CAGCAGGCAA	CAGAAGCTGC	TGTTAAGACT	GGACGCAAGA	TTGCGGTCTT	TGGTCGTTCT	7260
7	\TGGAAAAGG	CCATTGTCAA	CGGAATCGAT	CTTGGCTACA	TCAAAGCTCC	TAAGGGAACC	7320
1	TTATCGAGC	CAAATGAAAT	CAAAGATTAT	CCTGCAGGAG	AAGTTCTTAT	CCTCTGTACA	7380
C	GGTAGTCAGG	GTGAGCCTAT	GGCAGCCCTC	TCTCGTATCG	CCAACGGAAC	CCACCGTCAA	7440
¢	STACAATTAC	AACCAGGTGA	TACCGTTATC	TTCTCTTCTA	GTCCCATCCC	TGGAAACACT	7500
ž	ACTAGTGTCA	ACAAGCTGAT	TAACATCATT	TCTGAAGCTG	GTGTCGAAGT	TATCCACGGT	7560
ž	\AAGTGAACA	ATATCCATAC	ATCTGGACAC	GGTGGTCAGC	AAGAGCAAAA	ACTCATGCTC	7620
7	rgcttgatta	AGCCAAAATA	CTTCATGCCT	GTCCACGGTG	AATACCGCAT	GCAAAAAGTC	7680
(CACGCTGGAC	TAGCAGTGGA	TACTGGTGTT	GAGAAGGACA	ATATCTTTAT	CATGAGCAAT	7740
(GCGATGTGC	TTGCCCTTAC	TGCTGACTCA	GCTCGTATCG	CAGGTCATTT	CAACGCCCAA	7800
(GATATCTATG	TCGATGGAAA	TCGTATCGGT	GAAATTGGCG	CAGCTGTCCT	CAAAGATCGT	7860
(CGCGATCTAT	CTGAAGACGG	TGTCGTTCTG	GCAGTTGCAA	CTGTTGACTT	CAAATCGCAG	7920

ATGATTCTAT	CTGGTCCAGA	CATCCTCAGC	1218 CGAGGCTTTG	TCTACATGAG	AGAGTCTGGC	7980
GACTTGATTC	GCCAAAGCCA	GCGTATCCTC	TTCAATGCCA	TTCGTATCGC	ACTGAAAAAT	8040
AAGGATGCTA	GCGTGCAATC	TGTCAATGGT	GCCATTGTCA	ACGCTATTCG	CCCCTTCCTC	8100
татсалалта	CCGAACGTGA	ACCGATCATC	ATCCCGATGA	TCCTCACACC	AGATGAAGAA	8160
TAAAGCAAGA	AAACAGCCCC	GTCCTCGGAG	CTGTTTTTCT	CTATGCTTTC	TTTTGAGATT	8220
AAAACTCATA	CTCAATGAAA	ATCAAAGAGC	AAACTAGGAA	GCTAGCCGTA	GGTTGCTCAA	8280
AGCACTGCTT	TGAGGTTGTA	GATAGAACTG	ACGAAGTCAG	TAGCCATACC	TACGGCAAGG	8340
CGACGTTGAC	GCGGTTTGAA	GAGATTTTCG	AAGAGTATCA	ATAAAAATCG	AAATCAGACT	8400
AGAAGGCTAA	GCGAAAGCAT	AACTTGAGTT	AGCTCCCATA	GTTCGGGAAA	CTATGGGAGG	8460
CTGGAGATGA	ATCAAAGCCA	AGCTTTGAAC	TCATTCGTAA	GAAGCCGACG	ACGTATCATT	8520
TTGATTTTTG	AAGAGTTTTA	GAAATACTAC	GATTTTTACC	TTCCAGATAC	ACCATCAAAA	8580
TAGAAATATC	TGCTGGGTTT	ACTCCCGAAA	TACGGCTGGC	TTGGCCGATG	GTTTCTGGAT	8640
TGATGAGTTT	GAACTTCTGA	CGGGCTTCGG	TTGCGATAGA	ATCAATGTCA	TCCCAGTCGA	8700
TATTGGCCGG	AATGCGTTTT	TCTTCCATGC	GTTTCATCTT	GGCAACCTGG	TCCATGGCTT	8760
TGGAAATATA	GCCTTCATAC	TTGATTTCTG	TTTCAATCAA	TTCGATAATC	TTGTCATCCA	8820
AGTCTTCTGC	AGCTGGTCCG	ATGAAGGCCA	CCACATCTTG	GTAAGAAACT	TCTGGACGGC	8880
GAAGGAATTC	CTTGGCTGTC	ACTGCATCGG	TCAAGGGTTT	GAAGCCCATC	TCCTCAACCT	8940
TGGCATTGGT	TTCCTTGACT	GGCTTGAGTT	TGATACTGTC	TAGGCGCTTC	ATCTCATTAT	9000
CAAATTGATT	TITCTTGATT	TCAAAACGAG	CCCAGCGTTC	ATCGTCCACA	AGGCCAATCT	9060
CGCGTCCCAT	CTCAGTCAAG	CGCATATCAG	CATTGTCATG	ACGAAGAATG	AGACGGTATT	9120
CAGCACGACT	GGTCAAGAGA	CGGTAGGGTT	CAATGGTTCC	CTTGGTCACC	AAGTCGTCGA	9180
TCATCACCCC	GATATAACCA	TCACTGCGCT	TCAAAATCAA	TTCAGGCTTG	CCTTGGATTT	9240
TCAGAGCCGC	ATTGATACCC	GCGATAATCC	CTTGGCCTGC	TGCCTCTTCG	TAACCTGATG	9300
TTCCATTTGT	CTGACCAGCA	GTGAAGAGAC	CTGAGATTTT	CTTGGTTTCC	AAAGTCGCAC	9360
GCAACTGATG	AGGCAAGACC	ATATCATACT	CAATAGCATA	ACCTGTCCGC	ATCATCTCTG	9420
CATTTTCCAA	ACCTTTGATG	GAATGCACCA	AGTCACGCTG	GACATCCTCA	GGCAGACTGG	9480
TTGAAAGTCC	TTGCACATAG	ACTTCCTCAG	TATTGCGCCC	TTCTGGCTCA	AGGAAGAGTT	9540
GGTGACGTTC	CTTGTCCGCA	AAGCGCACAA	TCTTGTCTTC	AATCGACGGA	CAGTAACGAG	9600
GCCCCACTCC	CTTGACCACA	CCTGTAAACA	TAGGCGCACG	GTGGAGGTTG	TTTTGGATAA	9660
TCTCATGACT	GGTACCATTG	GTATAGGTCA	ACCAGCATGG	TACTTGGTCC	TTGACATAAT	9720

CCTCATCAC	G TGAAGTGTAT	CACAAATCAT	ሞ ልርርርልርምፓር	CTCTCCTCCC	TGAATTTCTG	9780
CCICAICAC	3 IGAAGIGIAI	GAGAANIGNI	raddenerie	0101001000	IGARTITETS	
TCACATCGT	A ATTGATAGAA	GAAGCCTTGA	CACGTGGAGG	GGTTCCTGTC	TTGAAACGAC	9840
CGATTTCGA	G ACCCAGTTCC	TTGAGATTGT	CAGCTAGGTT	AATAGAAGCC	AAGCTGTGGT	9900
TAGGACCTG	TGAGTACTTG	AGGTCTCCGA	TGATAATTTC	CCCACGGAGA	GCAGTCCCTG	9960
TCGTCACAA	r AACAGCCTTA	GCAGCATATT	CTTGATGGGT	GGCTGTACGC	ACACCGACAA	10020
CCTTGCCAT	TTCCACCAAA	ATCTCATCAA	TCATGGTTTG	ACGAAGGGTC	AGATTTTCTT	10080
GGTTTTCAA	CGTCTTGCGC	ATCTCCTTAG	AGTAAAGTTC	CTTGTCAGCC	TGCGCACGAA	10140
GGGCACGGA	AGCTGGCCCC	TTCCCTGTGT	TTAGCATCTT	CATCTGGATG	TAAGTCTTGT	10200
CAATGGTTT	GGCCATCTCG	CCACCGAGGG	CATCGACTTC	ACGCACGACA	ATCCCCTTGG	10260
CAGAACCAC	GATAGAGGGA	TTACAAGGCA	TGAAAGCCAG	CATTTCAATA	TTGATGGTCG	10320
CAAGCAGGA	CTTACAGCCC	ATACGGCTAG	CGGCCAAGGA	AGCCTCAACC	CCAGCGTGTC	10380
CCGCACCAA	тасаатаата	TCGTATTCTT	CAGTAAAATG	ATAAGTCATG	TTTCTCTCCT	10440
ATTCCTCAA	ATGAATGTGT	CTTAGTTGGC	CTTCCCAATC	TGGTAGGGCT	GTTTTTAAAA	10500
AGACTGGAA	TAGCTGGATA	TTCTGGAGCT	TATCCAAGTC	AATCCACTCA	CAGGGCTGCC	10560
TTTTCTCAT	TTCCTGCATG	GTCAACGGGG	CATCTTCAAG	CAAATCCACC	AGATAATGAA	10620
ACTCGATAT	GTGATAGGAA	ACGCCGTCCA	CTTCAAAACG	ATTTTCAACC	ACAAAAGCTA	10680
GCTGCCCAG	TTGAGCTTTG	ACACCCAGTT	CTTCCTTCAC	TTCACGGACT	ACCGCGTCTT	10740
CCGTGCTTT	ATTGACTTGA	ATCGCACCTC	CAATAGTGTA	ATACTTGCCC	TTGTCTTTGG	10800
TAACTAGAA	CTTGTGATTT	TGGACAATCA	AGGCTGTAGC	CCGAACACCA	AAAACCGTAT	10860
TGTCTACTT	TGTCCGAAAG	TCTTGTTGAG	TCATTCTTGT	CCTTTCCCTT	AAACGACACA	10920
AAAACAGTC	AAACTACAAA	GAAGTGCAGG	ACAAAAAAGC	CTGCAACATC	CAGG	10974

(2) INFORMATION FOR SEQ ID NO: 215:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 987 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215:

60 CCCGTTATGA TTATGGATAG CGCTTTCAAA TTTTTAAACT CCTATCCCAT CCTTTTATCT ATATAATAAG TGAAAATATA ATAACTGTCA AGTAACTGAA GTGAATTTTA TAAAAAAATT 120

			1220			
ACAAGCCAAA	TTTGTAAAGT	TTACACTAAG	CCGCTAGgCA	ATCGTCTATC	AGAATATCCG	180
TTATTTGTC	AATAATCCGA	GAAAATCTTG	CAACGCTTAG	AAGTCTATAA	AAACTATCAA	240
CATTTATATG	ACTTGCGAAT	AGCAATCCTG	CTAAACCTTT	CCACACTCTA	TCTATACAAT	300
CAAGATAAAA	ACATGTGTAA	GCAAATCTGC	TACACTTTAC	TGGAGGACGC	CAAGAATAAG	360
AAAAGCTACG	ATAGGCTTGC	TATCTGCTAT	GTCCGTATTG	GGATTTGTAC	AGACGATTCT	420
AAACTTATCC	AAAAAGGGTT	стессттетс	GAGCTGACCG	AGGAAACTTC	TATGCTGTCT	480
CATCTCAAAA	AAGAAGTAGA	GACCCATTAT	CAACCAAAGA	AATTATAAAA	AAAGTCGAGG	540
GAGCTCCTCG	ACCTTTTCAT	AGAATCGCCG	AACGATTTAA	CGAGAAAGTA	TGACTTTTAC	600
GTTTATCCCA	ACTCAATTAT	GACATTTTTT	TCAAAAGTCA	ATATATCTCA	CTTTTTCAAC	660
GACAAGAAAG	AGGCTGATAA	TCTACCAACC	TCTTATTCTG	AACCCATCAC	TCCATCACTT	720
TTTAGCTTCA	TTCGCTTTCT	TAGCGACTGC	AATCTGGTAT	TCGACTTGGT	CATTCCCCTT	780
ACCGGTACAA	CCATGAGCAA	TTGTAGTCGC	TCCTATCTGA	TGCGCTATTT	CAACCAATTT	840
TTTAGAAATC	AGAGGCCGC	TCAAGGCAGA	TACCAAGAGA	TACTTTTGTT	CATAATAGGC	900
ATGTGACTGA	TGAGCCACTA	GCACATAATC	TGTAGCAAAT	TCGTCCTTAA	CATCAATGAC	960
ATAAGATTCT	ACTGCCCAAA	CCTTAAG				987

(2) INFORMATION FOR SEQ ID NO: 216:

(I) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2651 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:

60	AGCTTTGAGC	TGTAGCCCAT	TTTTTTCGAG	GTGTGGTtCT	TTCATAGTAG	CTGGGTCTTG
120	CAAATAAGCA	CTATTTCAGT	AAGTCAGAAG	ATGACAGCCA	TGGTAGTTGG	GCATAGTGGA
180	TGGTTTTGTT	CAACTTTTCT	CTATCTCTAT	GTTTTTAAGT	CAGTAAGATA	TCTGGATTGT
240	GCCATAAATG	GCTTTAACCA	TTCTCTTTTA	CTCTCCTGTT	GGTGGTTTAG	CCTTTTACTT
300	TCGCTCACAA	TACTACCTAT	GCTTCTGTTA	AACGTGTGAT	AGATTTGGAA	GTATTACGTG
360	ATACCACATT	TAAGAAGATT	GAATATGCCA	AAAATCTATT	CTTTTTTACG	TAAGAGAGAA
420	ATTCCAACTT	ATAGTGTAGC	TTTATAAGTT	TTTACTATAT	TTTGGTTCAT	GTGTACTATT
480	AAACGGATTG	CAATTCTCGT	ACAATACAAA	TGAAACAAGA	TAAAGTAAAT	CAAAGCACTA
• 540	AACAACCGTT	TCATGGGAGG	TACTTACCTA	TTCACAAGAA	AAAGCAAGCA	CAACCACAAA

CCTCTTTTTT	АТТАСТАААА	TTCAAAGAAT	TCCAATGCTT	TTTTCAAGAG	CAAATCCGTA	600
TATTCTGGAT	CTTCTTGGGC	TACTTCTATT	TCCCGCTGAA	CTTTTTCCAA	ATCATCTGTA	660
ATCACTCCAT	СТАСТССТАА	GTGAAGAGAT	TTGCTGATAG	CTTCTGAATC	ATTGACAGTC	720
CAGACATAAA	GTTTCTGATC	CGTTGTCCAT	AGTTTGCTTA	CAAAATATTC	ATCCAAGGTT	780
GAGTACTCCA	TAGTATATCC	TGTCGCTCTT	GTTTTAGGAA	AGACAGAATT	GTAGGGCATG	840
ATGAAATAAA	CTGGTAGTTC	GGCATCATAC	TGTCTTACTT	TTTCGACAAC	ATGGTAGTCT	900
AAAGACTGGA	TTTGATGTCC	ATAAATCTTG	AGCTTTGCAG	CATAACGGGC	TAAAAAGCGG	960
TTCATCATGT	CTGGACTATC	TTTTTTACTG	GTTTTAATTT	CAATTAGTAA	TTTTTGACCA	1020
AGTTCGTTGG	CTCGACTGAG	ATAATCTTCA	AAGCTTGAAA	TTTTAGTCTG	GTAGCCATTT	1080
TCAAAAATAT	CAATCCCTTT	AAGCTCCTCC	AAGTTTAAGT	CTTGAGGACT	TTTATTGATA	1140
CCTGCTAGAT	TTTTCAAGTT	AGCATCATGC	ATCATGACAA	ACTGCCCATC	TTTTGTTTCC	1200
TGCACGTCCG	TCTCCACCAA	GTCTGGTTTG	AGTTGTGCTG	TAGTTTCCAA	GGACTCTACT	1260
GTATTTTGAA	TCCCATTTGC	ATTGGAAACC	CCTCGGTGAG	AAATAAGTTG	AGGTAGATGA	1320
ACCATGGGAG	CCTCCAGATA	AATATAACCT	TCTAAGGCAA	AGAAAAGACT	GGCACAAGTC	1380
ATGACACCCC	ATCGCACGAT	GTGATCTTTT	TCTCTCCTAG	GAAGCATATC	CAGCTCCTTT	1440
CCTGTCAAAA	ATGAAACAAA	TTTAACCAAA	AAATAAGTCA	GAGCCATATA	ATAGAGATTT	1500
TTAATCACGA	CAAAATTCAA	AATACCAAGA	ATCAGAGACT	CTCTCTGAGT	GATATCATCT	1560
ACCAAAGTTT	GAGCCAATAA	TAAAGGAATC	AAAGGAAGAT	Araataataa	ATGTGCTTTG	1620
AGCAAGATGT	TTAAATAAAA	CCAAGCATAA	AAAGTAACTC	TCTTCTTGGT	TTTCTCCAAG	1680
CTAAACATCA	CTGCTTCTCG	AACAGTCAGC	TGATCATATA	CAATCTTCGG	AAGGGCAAAC	1740
ATCAATCTGA	CAGAGACATA	GAGAAAGATA	AGAGATAGAA	GTAGGATGCT	CAGCCACCAC	1800
ATCCAATATC	TATCTTCTAA	ATAAGCTTGG	ATAAACTCTG	GAATGACGAT	TTTATTAAGA	1860
TAATAAATCT	TCAGCATTTT	CCGTATAAAA	GGAAACAGCA	TAGCTATATA	GAAAAAGATA	1920
AACAAGGCTT	TAGCGCAAGT	TAGCTTTTTC	ATAAATCCAA	AACTTTCATG	GAAAACCTTG	1980
CGGATATACT	CAATTAGCCT	TCGCTTTTCA	TTATAGAGGA	GATGACGAGC	ACCAATAAAG	2040
AGGAGTCCTA	TTTGAAAATA	AGCAACCAGA	AGGTTAATTA	CAATCAAGGC	TAAAAAAGCT	2100
AGACTAATCA	ATGGAGAATG	AGTAAGGATG	GCTAAGACAT	TGTTATAGGA	AATAAAAAGA	2160
TAACCTGTCT	GATCTAATAA	GAAGCTAGCC	AACCATGAAT	TGAATGGTAC	CCACAAATAC	2220
TCCACTATCA	TAAAAATCAA	GAAAAATAGA	AAGAGGATTT	TATCAAGATC	GAGGTAAATC	2280

			1222			
TGTTTAAGAC	CCAATTTTTT	AGGTTTTTCA	GGTTTCATAG	GCACTCCTAG	TCAAATAATT	2340
GAGACAAGTC	CAAGCCACCA	AAAGGATTGT	TTGATAAGCT	ACTTTCTGTC	TCTAACAATT	2400
CCCTAGCTTG	ATCCGACTCT	AAGAAGGATT	CGTAAACACG	CGCCGTCATC	CGAGCATCCT	2460
CTAAACTATT	ATGAGACTGA	CCTTGAAATC	CAAGAAATGA	GGCAACAGTT	TGCAATTTGA	2520
GATTGGCAAT	ACCATGTAAA	TCTGAACTCC	GACGTTCAAA	AGCTTCATCA	TACAAATCCA	2580
CCTTGTACTG	TTGGCTATAG	TCTAAACCAT	GCTCTGCTAA	AATAGGTAAA	TCACTTTTAG	2640
CAGCATTGTA	G				•	2651

(2) INFORMATION FOR SEQ ID NO: 217:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5638 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:

60	GCTATGGAGG	TTCCTTGAAA	AAGGATATCG	AAAATTAACA	AACTTGTGAA	CGTTATAATA
120	GCTGAAAAAC	GAAACTCGTT	CAGAGGAAAA	ACTGTGACAC	ТСАТААААА	AAAATATGGC
180	AAATTGGATC	AGAAATGCGT	TTGCCCTTGA	AAAGCTCTAG	GTTGGTTCAA	ACGTAGATGA
240	GCCCACGGAG	AGCTTTGGAT	CATCAGTAGC	GTTGCCAAAG	TGACTACATC	AAGAACAAGT
300	AAAGCAACTA	ATTTGAAGAC	GACGTGGTGT	GAAGAAACAG	ACATGCCTTT	AATTGGCTTT
360	ACAGTTGGCG	CCACACTAAG	ACAACATGCG	CACGTAGTAA	TGCCTGTGAA	AGAACTTGTT
420	GGTGTTGTTT	TGAACCAGTT	CTCTTATTGC	ACAGGATTGA	AGACGATGTA	TTATCGAAGA
480	TTGATTTCAT	CTTCAAATCA	CAACAGCAAT	AACCCAACAT	TCCAACAACA	GTGGTATTAC
540	TCATCTGCTC	AGCACAAGAA	TCCATCCATC	GTCTTTGCCT	TAACCCAATC	TGAAGACACG
600	AACTGTGTGC	TGCTCCTGAA	TCGCAGCTGG	GATGCAGCTA	TATCGTCCGC	ATGCAGCTCG
660	GAAGGTGTTG	TATGAACCAC	CAAGTGCCCT	ATGGAAGCAA	TCAACCATCT	AATGGATTAC
720	TGTGGTAAAC	GGCTTATTCA	TGGTTAAGGC	GGTAATGCCA	TGCAACAGGT	CGACAATCCT
780	GCAAACATTC	TGAAAAATCA	CAGCTTATGT	GGAAACGTTC	GGTAGGTGCC	CAGCTCTTGG
840	GTCTGTGCAT	TAACGGTATG	AATCATTTGA	GTCATGTCTA	ACACGATATC	GTCAAGCAGC
900	GAGTTCAAAT	ATTTGTAGCA	TTTACGATGA	GATAAAGAAA	AGTTATCATT	CTGAACAAGC
960	TTCTGCTTCG	TCTTGAAGAG	AAAAAGCTCT	AACAAAAAAG	TTACTTTGTA	CTTACCACAC
1020	ATCGTTGGTA	GAACGCTGAC	GTGCAAAATT	AACTGTGCTG	AAACAGCAAA	GCGTCAAAGC

AACCAGCAAC	TTGGATTGCA	GAACAAGCAG	GATTTACAGT	TCCAGAAGGA	ACAAACATTC	1080
TTGCTGCAGA	ATGTAAAGAA	GTTGGCGAAA	ATGAGCCATT	GACTCGTGAA	AAATTGTCAC	1140
CAGTTATTGC	AGTTTTGAAA	TCTGAAAGCC	GTGAAGATGG	TATTACTAAG	GCTCGTCAAA	1200
TGGTTGAATT	TAACGGTCTT	GGACACTCAG	CAGCTATCCA	CACAGCTGAC	GAAGAATTGA	1260
CTAAAGAATT	TGGTAAAGCT	GTTAAAGCTA	TTCGTGTTAT	CTGTAACTCA	CCTTCTACTT	1320
TTGGTGGTAT	CGGGGACGTT	TACAATGCCT	TCTTGCCATC	ATTGACACTT	GGATGTGGTT	1380
CTTACGGACG	CAACTCAGTT	GGGGATAACG	TTAGTGCCAT	TAACCTCTTG	AATATCAAAA	1440
AAGTCGGAAG	ACGGAGAAAT	AACATGCAAT	GGATGAAACT	TCCTTCAAAA	ACATACTTTG	1500
AACGTGATTC	AATTCAATAC	CTTCAAAAAT	GTCGTGACGT	TGAACGTGTC	ATGATCGTTA	1560
CTGACCATGC	CATGGTAGAG	CTTGGTTTCC	TTGATCGTAT	CATCGAACAA	CTGGACCTTC	1620
GTCGCAATAA	GGTTGTTTAC	CAAATCTTTG	CGGATGTAGA	ACCGGATCCA	GATATCACAA	1680
CTGTAAACCG	TGGTACTGAG	ATTATGCGTG	CCTTCAAACC	AGATACCATC	ATCGCACTCG	1740
GTGGTGGGTC	TCCAATGGAT	GCTGCCAAAG	TAATGTGGCT	CTTCTACGAG	CAACCAGAAG	1800
TGGACTTCCG	TGACCTTGTC	CAAAAATTCA	TGGATATCCG	TAAACGTGCC	TTCAAGTTCC	1860
CATTGCTTGG	TAAGAAGACT	AAATTCATCG	CGATTCCAAC	TACATCTGGT	ACAGGATCTG	1920
AAGTAĄCACC	ATTTGCCGTT	ATCTCTGATA	AAGCAAACAA	CCGTAAATAC	CCAATCGCTG	1980
ACTACTCATT	GACACCAACT	GTGGCAATCG	TAGATCCTGC	TTTGGTATTG	ACAGTTCCAG	2040
GATT TGTT GC	TGCTGATACT	GGTATGGACG	TATTGACTCA	CGCGACAGAA	GCATACGTAT	2100
CACAAATGGC	TAGTGACTAC	ACTGATGGTT	TAGCACTTCA	AGCCATTAAA	TTGGTCTTTG	2160
AAAATCTCGA	AAGCTCAGTT	AAGAATGCAG	ACTTCCACTC	ACGTGAGAAA	ATGCATAACG	2220
CTTCAACAAT	CGCTGGTATG	GCCTTTGCCA	ATGCCTTCCT	AGGTATTTCT	CACTCAATGG	2280
CCCATAAGAT	TGGTGCGCAA	TTCCACACAA	TCCACGGTCG	TACAAATGCT	ATCTTGCTTC	2340
CATACGTTAT	CCGTTACAAC	GGTACACGTC	CAGCTAAGAC	AGCAACATGG	CCTAAGTACA	2400
ACTACTACCG	TGCAGATGAA	AAATACCAAG	ATATCGCACG	CATGCTTGGA	CTTCCAGCTT	2460
CTACTCCAGA	AGAAGGGGTT	GAATCTTACG	CAAAAGCTGT	CTACGAACTC	GGTGAACGTA	2520
TTGGGATCCA	AATGAATTTT	AGAGACCAAG	GAATTGACGA	AAAAGAATGG	AAAGAACATT	2580
CTCGTAAATT	AGCCTTCCTG	GCTTATGAAG	ACCAATGTTC	ACCAGCTAAC	CCACGTCTTC	2640
CAATGGTAGA	CCATATGCAA	GAAATCATCG	AAGATGCATA	CTATGGCTAC	AAAGAAAGAC	2700
CAGGACGCCG	TAAATAATTG	TTTATCAGTC	TAGAAGCAAG	ACAAAAACTC	AATTTGAGGG	2760

			1224			
AAAGATCCAC	TAATTTTTCT	ATGATAAAAG	GCATCCTATC	AAGGTTTTTG	AACACCTGAT	2820
AGGATGCCTT	TTTATGATAT	TGAGGCCTTT	TTGCCCTTTT	TGAAAAACTA	GAATAGAAAC	2880
AAAATATAAAA	ATAGATTGAA	ACTAGAATAG	TACATATCTG	CTTCTAAAAC	ATTGTTAGAA	2940
TTCGATTTGA	CTGTCCTGAT	CGATTTGTCC	TGTTCTTATT	TCATTTTGAT	ATATAAAAA	3000
TATAGTATAG	TAGACTGAAT	CTAAAATAGT	ACGAAACAAT	TGCTAAAACA	TTTATAGAAA	3060
TTAATTTAC	TTTTCTGATA	GAGTTGTTCA	CATCTTATTT	CAATTCACTA	TAGTTTAATT	3120
TAAGAGTAGT	ATTTACTAAG	GCCCAATTAA	AATCAAAGAG	CAAACTAGAA	AACGAGTGCC	3180
ATTCAGCTCA	AAACACTGAT	TTGAGATTGC	AGATAAGACT	AGCCCCCTCA	TTAACAGATT	3240
TACGATAAAA	CGATGACAAG	GTGTGTTGCT	TTTTGATTTC	TAAAGAGTAT	AATGATAGAT	3300
CTCTATAAAA	TAAGTGCGAA	GGAAATGAGC	TTTTATAGTC	CTTTCGTTTT	AAAATACTAT	3360
CTCAGATATT	CTTATATCGA	CAAGAAGTTT	TTGAGTCATT	CCCTCATCAT	ACATATTAAA	3420
Paaatagtgg	CTCATTCAAT	TTTTCACTAG	AATAATAAGC	TAGTATAGTA	AACTGAAATA	3480
AGATATAAAC	AAATAAATTG	GAGCTTAACA	TCCATTTCCA	GCAATTTTTT	AGAAACTACA	3540
GTGGACTATT	CTAGATTCAA	CATATTATAA	AAACTAGAGT	AAAAGAAAAG	GATTGGATCT	3600
rgtgtaatgc	AGGATCCAAT	CCTTTCAATC	ATTTTGTCCA	ACTTTTGGAG	GTTCCTACAA	3660
GTAGTCGTC	ATTAATAAAG	ACAGATGGGA	ATGACAGTGT	TCCTATTTAT	TTTGATAGAG	3720
TCGATGAAT	TCTTTAGATA	GCAACTGAAT	AATCTCTGTT	GAAGCCATTT	GGTCTTCTGC	3780
TGCATAAAT	AGCAAGGAGA	ATCCTATTTT	TTCTCCAGTA	GCTTCTTTTT	GTATGAGATT	3840
GAGTGAATC	TTGTGCGCTT	CTACTAAGGA	GTCTTCCGCT	TCTTCAACTT	TAATTTTCGC	3900
TCTTTTAAA	TTTCCTGCCT	TAGCTAGTTG	GATGGCTTCA	ATAAAGGATG	ATTTGGCTGC	3960
CCACTATTG	GCAATGAGCT	GAAAACAGAT	ATATTCCATT	TCTTCTGTCA	TCTTATTTCT	4020
CTATCCATG	CAAGTGCTTG	TTCCAGAACT	TTTGCTCCAT	TCATCATTCC	GTAATCCCGC	4080
TATCAATGG	TATCTACAGG	GATATTTCCT	GCAATTTCTT	TCACAGCAAG	TAACTCATAA	4140
GAATTTGTG	GCCCAATTAG	AATGACATCT	GCTTCATGGA	TATTCTTTTT	AGCTTCTGTC	4200
TTGATTTTG	CTTGGATAGA	GATTTCAATC	CCACGTTCAG	TCGCACTTTG	TTGCATTTTT	4260
TAACAAGCA	TACTTGTCGA	CATTCCCGCA	TTACATACTA	ATAAAATTTG	TTTCATAATC	4320
TAACCTTCC	ATTTCTTGTT	CAACAACTTT	GTCATTAACT	TTGATAAATG	GAATGTATAG	4380
AGAACTCCA	AGTGCAAAGA	TGATGAATTG	AACTAGAACT	GCTCTCACGT	CCCCTGCTGT	4440
GCTAACCAT	GCATTTAAGA	ATACTGGTGT	AGTCCAAGGA	ACTTGTATAA	ATGCAGGACT	4500
ATGAATTCT	GTAACTGTTG	CTAAGTAGCT	GATTAAAATA	CCAAGGACTG	GAACTGTGAT	4560

PCT/US97/19588 WO 98/18931

1225

aaatggaata	GCTAATGAAA	TGTTATAAAC	GATTGGGTAA	CCGAATAATA	CTGGTTCATT	4620
GATATTGAAG	ATACCAGGTC	CAAAAGATAA	TTTAGCCACG	TTTTTAGAGA	CAGCATTGCG	4680
ACTCACTAAG	AATGTTGCTA	TTAATAAACA	TAATGTAGAT	CCACTACCAC	CCATTAAAGC	4740
GAATGTTTGT	ATTTGTGATA	GGTTGATGAT	GTGTGGAATG	GCTTGTCCAT	TATTTGCTGC	4800
AGTGATGTTT	TCAGTAATGT	TAATTAATAG	TAATGGTTCT	AGGATGGCAC	TGTAAATAAC	4860
rgcttggtga	ATACCAAATA	GCCATAACAT	ATTTCCTAAA	GAGTAAATAA	TAATGACCCC	4920
GATTAAGCTT	GTACCAATAT	GACGAATTGG	TTCTTGAATA	AAGATTGTAA	TGATTGAGAT	4980
FAAGTTCATT	CCAGTTATAT	TGAATAATAA	TGCTGAAACA	ACCCCAAATA	AGGAGATGAC	5040
GCTCATGACT	GGAAGTAATA	CGCTAAATGA	TCTACTAACA	GCTGGTGGAA	TATTTTCACC	5100
AAGGTTCATT	TGTAAAGCTT	TAACGTTTGA	TAATTCAATG	AATAATTCTG	TTGCAATAAT	5160
CGtACGATAA	CCCCGGCGAA	CATTGCGCCT	GTACCTGTGT	TGTTGAATGA	AAGAACACCT	5220
GAAATGTTTA	CCGCATCTTT	TGCTCCGTCA	GGAACTACAG	AAACTGTATT	TGGCATCATC	5280
ACAATTAAAG	AAACTAATGA	TAGCATTGAT	GCTGCTAACG	GGTTTTCGAA	ATCTCTGTTT	5340
TTAGCTAAGA	AATAACCAAC	CATTACAGCA	ATAATCATAC	CTGAAATACT	TAAAGTACCG	5400
TTTGCAATTG	TTATTCCCCA	ATATTGGAAT	CTTGTTAATG	TATCCCCTTG	GAAAATCCAC	5460
TAAATACCG	TGTTGTTCAA	AAGAACGATT	AAACCTGCCA	AAATATATAA	TGGCATTACT	5520
GTTACGAATG	CATCTCTTAG	GGTTTTTAAA	TGAATTTGGT	TCCCTAGTTT	ACCAGCAAAG	5580
GATGGCAAAA	AAATTTTTTT	GGGGGGGGG	GTTATTAAAC	CCCCCTTTTT	AAAAAAA	5638

(2) INFORMATION FOR SEQ ID NO: 218:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4745 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:

CCGGAAGCTG	TTGCCCTTGG	AACTCCAAAT	GAAGAAACAG	CCTTTGTCTT	GAACTATTTT	60
GGTGTGGAAG	CACCACGTGT	TATCACTTCT	GCCAAAGCAG	AGGGGGCAGA	GCAAGTTATC	120
TTGACTGACC	ACAATGAATT	CCAACAATCT	GTATCAGATA	TCGCTGAAGT	AGAAGTTTAC	180
GGTGTTGTAG	ACCACCACCG	TGTGGCTAAC	TTTGAAACTG	CAAGCCCACT	TTACATGCGT	240
TTGGAGCCAG	TTGGATCAGC	GTCTTCAATC	GTTTACCGTA	TGTTCAAAGA	ACATGGTGTA	300

1226

GCTGTGCCTA AAGAGATTGC AGGTTTGATG CTTTCAGGTT TGATTTCAGA TACCCTTCTT 360 TTGAAATCAC CAACAACAC CCCAACAGAT AAAATCATTG CTCCTGAATT GGCTGAATTG 420 GCTGGTGTGA ACTTGGAAGA ATATGGTTTG GCAATGTTGA AAGCTGGTAC CAACTTGGCT 480 AGCAAATCTG CTGAAGAATT GATTGATATC GATGCTAAGA CTTTTGAACT CAACGGAAAT 540 AATGTCCGTG TTGCCCAAGT GAACACAGTT GACATCGCTG AAGTTTTGGA ACGCCAAGCA 600 GAAATTGAAG CTGCAATGCA AGCTGCCAAC GAATCAAACG GCTACTCTGA CTTTGTCTTG 660 ATGATTACAG ATATCGTCAA CTCAAACTCA GAAATCTTGG CTCTTGGTGC CAATATGGAC 720 AAGGTCGAAG CGGCTTTCAA CTTCAAACTT GAAAACAATC ATGCCTTCCT TGCTGGTGCC 780 GTTTCACGTA AGAAACAAGT GGTACCTCAA TTGACTGAAA GCTTTAATGC GTAAGATTTT 840 GGGTGTCAGC TCAAAATCGG AAAGTCTAGT TTGCCTTATA TCGCAAGGAG TTTCGGCTCC 900 TTTTTTCTAG GAGTGAAGTA TGTTAGAAAA TGGCGATTTG ATTTTTGTGA GAGATGGGTC 960 AGACATGGGA CAGGCCATCC AGACTTCCAC AGGTAACTAT AGCCATGTTG CCATTTATTT 1020 GGATGGGATG ATTTATCATG CTAGTGGACA GGCTGGTGTT GTCTGTCAAG AACCGGCAGA 1080 CTTCTTTGAG TCCAATCATT TATACGACCT CTATGTTTAC CCAGAAATGG ATATCCAGTC 1140 GGTGAAGGAA AGAGCTTGCA AACATCTTGG AGCACCCTAC AATGCTTCTT TCTATCCAGA 1200 TGCAGCTGGT TTTTACTGCT CCCAGTATAT AGCAGAAATC CTACCTATTT TTGAAACTAT 1260 TCCTATGAAA TTTGGAGWTG GGGAGCAGGA GATTAGTGAT TTTTGGAGGG AGTATTACAT 1320 AGAACTAGGT CTGCCTGTTC CTCTGAACCA AGCTGGTACC AATCCTAGTC AGTTGGCAGC 1380 ATCGCCTCTG TTACAATGTA AAGAAAGGAA TCTTCATGAT TCAGATTTTT AATCCATCTC 1440 GTTTGACGAG ACAGCCATTT TTGGAGAATT GATCCGCTAT CTGGATCAGT ATGAGGATGT 1500 GATTCTACGG GAAATTAAGG CTCAATTTCC AGATGTTGCA GTTGATAAAC TCATGGAAGA 1560 GTATATAAAG GCAGGCTTGA TTCTACGTGA AAATAAGCGC TATTACCTCA ATTTTCCTAC 1620 GCTTGAATCA CTTGATAGTC TTGAACTGGA TCAAGAGATT TTTGTCAGAG AAGCTAGTCC 1680 GGTCTATCAA GCCTTGTTGG AGCAGAGTTT TGAGACGGAA TTGCGCAATC AAATCAATGC 1740 AGCTATTTTA GTTGAAAAGA CGGACTTTGC GCGCATTAAA ATGACCCTGT CCAATTATTT 1800 TTACAAGGTC AAACAGCAGT ATCCTTTGAC AGAAAAACAG CAGGAGCTCT ATGACATTTT 1860 AGGAGATGTT AATCCTGAGT ATGCCCTCAA GTATATGACG GCTTTTTTGT TGAAATTTCT 1920 CAAAAAAGAC CAGCTTATGC AGAAATGCCG TGATATCTTT GTGGACAGTT AGGTTGTCTT 1980 AGGCTATATT GTGCAAAATG AAGATGGAAA GTATGAGTTG GCTATCGATT TTGATAAGGA 2040 GAGGTTAACT TTCTACTTAG CGTGATTTCT TGTTTCTGAG TACATTGTTT GACTTTCCTT 2100

AGTATTCGCT	' ATAAACTATA	TGTAACCGGT	AACACATATO	GGAATAAACT	AAAGGAGACA	216
ATCATATGTC	ACTTGAAAAC	AAATTGGAAC	AAGCAACAGG	CGCTGTCAAA	GAAGGTTTTG	222
GTAAAGTTAC	TGGAGACAGC	AAGACAGAAC	TTGAAGGAGC	TGTTGAAAAA	ACAGTTGCTA	228
AGGCAAAAGA	CGTTGTAGAA	GACGCAAAAG	GTGCTGTAGA	AGGTGCCGTT	GAAGGTTTGA	234
AAAACGTTTT	TACTAAAGAA	TAGGAAAAA	TCAAGGGTTT	CATTTTCCCT	TGATTTTTTC	240
TATTCTTATA	AATAATTTTC	TGCGACGGCT	GTATCTCCTG	GGTAGGATTC	TTTCTTGCCC	246
TGGATGATTT	GGTAACAATC	GGCTCCCTTA	CCCGCAATAA	TAACTGCATC	TAATTCGTGA	252
TTTGTGATAG	CCATTGCCGC	CTTGATGGCT	TCTTGGCGAT	CCGCAATCTT	TTCAACAGGA	258
TGATTGATGT	AGCTACTAAT	TTCATCTGCA	ATGGCCATTG	GGTCTTCATA	GTTAGGGTCA	264
TCAGCAGTCA	GAAAGACTTG	AATCTCAGGG	TGTTGATTGA	GGAGGAGGCC	AAAGTCCTTA	270
CGACGACTTT	CTCCCTTGTT	TCCTGTTGAT	CCCAGAACCA	GAGCAATCTT	TCCGGTTTGA	276
TGAGTTTCAA	CCACATTGAT	GAGTTTTTTC	AGACTATCCC	CATTGTGGGC	ATAGTCGATG	2820
AAGACCTTGG	CTCCATTTTT	CTGAGTGAGG	ACTTCCATAC	GACCAGGAAC	GCGGGTTGCA	288
GCGATGCCTT	TTTTGATGTC	CTCAAGACTT	GCTCCGAGAC	GGAGACAAGC	AAGTCCAGCA	2940
GCAACTGCAT	TTTCTTGGTT	GAAGTTGCCA	ATGAGTTGAA	TATCATAATC	TCCAGCGAGT	3000
TTACCCGTAG	CTGAAAAGCT	AAAGGCTTTG	GAATTCTCGA	TTTGGTTATC	AAATTGGCTA	3060
CCATAGAAAT	CATGGTCTTG	ATCTTCAACC	TGTTCTTTCA	AGACTGAGAA	GTGGTCCATG	3120
TCACTGTTAA	TGATGACTGC	TCGGCTCTTT	TCCATCAAGA	GACGCTTGTG	GTAGAAATAG	3180
TCTTCAAAGC	TAGGGTGTTC	AATCGGGCCG	ATATGGTCTG	GGCTGATATT	TAGGAAAACT	3240
CCCACATCAA	AGGTTAGACC	ATAGACACGT	TTGACCAGAT	AGGCTTGACT	GGAGACTTCC	3300
ATGATGAGGT	GGGTACGGTC	ATTTTGCACA	GCCTGATTCA	TCATGTCAAA	GAGGTCAATA	3360
CTCTCAGGGG	TTGTCAACGC	TGACTTAAAG	AAAGTCTCGC	CATCAAGAGT	TGTGTTCATG	3420
GTCGACAACA	TAGCAGGTCT	ATGCCCTTGA	GATAAGATGT	TATAGGCGAA	ATAGGCTGCT	3480
GTTGTCTTAC	CCTTAGTACC	AGTAAAGGCA	AGGAGTTTGA	GTTTTTCCTG	TGGATTACCA	3540
TAGAACTCCA	TGGCAATCAA	ACTCATGGCT	TTCTTTATAT	CGTTCACAAT	GATGACAGGG	3600
ATACCGACTT	CGTAGTCCTT	TTCAGCTACA	TACCAAGCTA	ATCCTTGTGT	TATAGCAGAA	3660
AGAAGGTATT	CTTTTTTAAA	GGCAGCGCCT	TTTGCGAAAA	AAAGAGTGTC	TTCTGTTACT	3720
PTTCGGCTGT	CGTAGCTGAT	GCTATCAAAA	ATAACTTTGC	TGTAGTTGTA	GTGGTAATGA	3780
CCTTGGTCAA	TAATTTCGCG	AAAAAGGCCA	TCTTTCTTTA	AAATATCTAA	TACGGTTTCA	3840

			1228			
ATCTTAATCA	TACTTTCTAT	TGTAAACCGA	AAGTCGTAAA	TTTACAAGTA	ACAAGGAAAA	3900
GTTTATAATG	GAAGATAAGG	AGTTTTTCCT	AGTTATCAAA	ATTGAATGAG	GAATCTATGT	3960
CGCACGAAAA	CAATCACCAG	CAGGCCCAGA	TGTTACGGGG	GACTGCTTGG	CTAACGGCTA	4020
GTAACTTTAT	CAGTCGCCTA	CTCGGGGCTG	TTTACATTAT	CCCTTGGTAC	ATCTGGATGG	4080
GGGCTTATGC	AGCTAAGGCA	AATGGTCTCT	TTACCATGGG	TTACAATATC	TATGCTTGGT	4140
TCTTGTTGGT	TTCAACAGCG	GGGATTCCAG	TTGCGGTGGC	CAAGCAAGTT	GCCAAGTATA	4200
ATACCATGCG	AGAAGAAGAG	CATAGCTTTG	CCCTGATTCG	GAGCTTCTTA	GGCTTTATGA	4260
CAGGACTAGG	CCTGGTTTTT	GCTTTAGTCT	TGTATGTCTT	TGCTCCTTGG	CTAGCAGACT	4320
TGTCTGGCGT	GGGCAAAGAC	TTGATCCCAA	TCATGCAAAG	CTTGGCTTGG	GGAGTCTTGA:	4380
TTTTCCCGTC	TATGAGTGTT	ATCCGAGGAT	TTTTCCAAGG	GATGAATAAC	CTCAAACCCT	4440
ATGCCATGAG	CCAAATTGCT	GAGCAGGTCA	TTCGTGTTAT	CTGGATGCTC	CTAGCAACCT	4500
TTATCATTAT	GAAGCTCGGT	TCAGGAGATT	ATCTAGCAGC	CGTTACCCAA	TCAACCTTTG	4560
CTGCCTTTGT	CGGTATGGTA	GCCAGTTTTG	CAGTCTTGAT	TTATTTCCTT	GCCCAAGAAG	.4620
GTTCACTCAA	AAGAATCTTT	GAAACAGGAG	ATAAGATTAA	CAGTAAGCGT	CTCTTGGTTG	4680
ATACCATTAA	GGAAGCCATT	CCTTTTATCC	TGACAGGGTC	TGCCATCCAG	CTCTTCCAGA	4740
TTTTG						4745

(2) INFORMATION FOR SEQ ID NO: 219:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1900 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:

CCTGATTGAC	CTTATAATAA	GGAACAAAAC	ACAATGCACT	ACCTTTTCAA	CAAAAGAGTT	60
GCTGCTTGAT	TAAAACCATC	ACACCAGTTA	TACCATTTTG	CTTCATACCC	ATCTTGAGCT	120
AGGATACGAT	CTTCTAAATC	AAAAACAGAG	TAAATCTTTC	TTTCCTCGCA	AGCTTGCGCA	180
TAGAGATGAT	ATAGTTCATC	ACCACCATCT	CTATCCCACT	CAGCAGAAAT	CGTATCCCGA	240
CCTGCCAATA	AAGCCTGATA	AGCCCTGTGA	TGCCCATCTG	TAATCAGCAA	ACAATCTCCA	300
AAGGCAAGAA	TACTGATTGG	ATCGACTTGG	ATTGTTTCTG	CCGACTGGTA	AAGCATCTGA	360
ATATCTTGCA	ACTTCTTTTC	TGATAAATAT	AGTTGAGTCA	GATGAAGATC	TGCTATATTG	420
ACTTTCATTT	CTTTCTCCTC	AAGGGAATTC	GATACTCACT	TCTGTTTGCC	TTTAAATCGC	480

CATTGGAAGC	GGAgCTTGTC	ATAAAAGGGA	AACTCGATAA	ACAGGACTCC	CAAGCCCACA	540
CAGAGACTGG	CAAGGACGTC	TGATGGGTAA	TGAACTCCCA	GATAGACTCT	TGATACCAGC	600
ACACTGACTA	GGTAGAGGCC	AAGGACGATT	TGTACGATTT	TTCTCCAGAC	CTGATCTTTA	660
ATCCGCTGAC	TAAGAATAAC	AATCAAAGTC	CCTACCATCA	GCGTTACAGC	TAGAGAATGC	720
CCACTTGGGA	AGGAAAATCC	CTTCTCCTCC	ACCAGATGTA	AAATAGCTGG	TCGTGGGCGC	780
TGGTAGATAT	TTTTAAAGGT	CACGATTAAA	AGACCTGCCA	AAGCCAGATT	TCCCAGCATG	840
AAGAAACTTT	CTATCTTCCA	TCGCTTACGA	TAAAAGACAA	AAGCTGTAAT	GACAACCCAA	900
GTGATAATCA	CTGGGATATC	AATCAGACGT	GTGAGGGCTC	GAAAAAGAAT	AGTCAAATAA	960
TCTGGTAAGT	CTCCTCGAAT	GGCAGTCTGA	ATCGATTGGT	CAAAATTGAC	CAACATTTCA	1020
GGGTAAAATT	TGACCATGTA	GCCAAGAATA	ACGAAAAGTA	AAAGGGCAAA	ACTGCCCTTC	1080
a ttaaaaa tg	TTTGTTTATC	TCTCATAATG	TTTTAAGGTT	GGTTTCAAGA	GAACATACAA	1140
CAACCAGAAT	GAAACGGAAA	AGATAACACC	TTCAATCAAG	TTAAAAGGTA	ATACCATGGT	1200
CATTAGGTAG	TTGGAAAGTC	CCAAAATTTT	TCCAATATCA	AAGTTAGCAA	ACTTAGCGTA	1260
CAAAGGAACA	GCATAAACAT	AGTTGAGAAC	CAACATGGCC	AAGGTTAAAC	CAATAGTTCC	1320
AGCTAGAGAG	CCTAGTAGGA	AACGAAGGGT	TGTCCGTTCC	TTTTTCCAAA	TCAAAGCAAA	1380
PACGATGACA	AAAACTCCCA	AAGCTACGAT	ATTCATCGGC	AAACCAATGT	AAGTATTCAC	1440
TCCTTGGCTG	TTAAGAAGCA	ATTTCAAGAG	TGAGCGAAGC	AAGAGCACTC	CTAGAGmCsC	1500
AGGCAAATCC	ATGACCACCA	GACCCACAAG	GACTGGCAAG	ATACTAAATT	CGATCTTGAG	1560
GAAAGATGCC	GCTGGTAAAA	GCGGAAAGTC	AAAGTACATC	AGCACAAA TG	AGATGGCTGA	1620
TAGAATTGCA	ATGGTCGAAA	GTCGACGTGT	GTTTGTCATA	ACAGGTTCCT	CCAATTTTCT	1680
ATAAAATCAG	AAGAAGTTGG	AAAGGATTCC	TCTATCTATT	CTCACTTTTT	ATATCCCAAA	1740
AGTTCCCTCT	TACTCTATTA	AAGAAAAACA	AAGCAAGTGG	TTACAATCCG	GCTATAAATC	1800
PATCAAAACA	GACAAGGCTA	TTCTTTCGTC	TTCTCCCATC	CAGACTATAC	TGTCGGTTGT	1860
GGAATCTCAC	CACATCACGT	TGCGCTCACG	GACTTCTTTA			1900

(2) INFORMATION FOR SEQ ID NO: 220:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4692 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220:

			JEQ 15 110	carrion.	SEQUENCE DE	(A1)
60	CACGATAGAT	CCCATCTGCT	GAATGACCAT	TCCTTTATCA	CAGGAGCTTC	GGTTTTCCAG
120	TCCTGAACCT	CCTAACCACC	TTTGAAAAAG	ATGATAGTAA	ATTTTTTACC	GAATAATGAT
180	AGCTCCCAAT	CAGCTGATGC	TATTATACAG	TCCATCTGGA	TCCATACTCC	TCTCCATATG
240	TTTCATTTTA	GTTTTTTCGT	AGTAATCTAT	AGCTAGAGCA	TTGAAATAAG	AATGTAAAAC
300	тестестете	ACAAAATAAA	CAACAATGCA	ACACCTTGAG	CAAAAAAAGC	TTTTTTCTTT
360	TTGTTGTCAA	TTTTTATLAT	AAGAATAACT	CTTATGTGAT	AAACCGCTTT	TCTTTTATTG
420	TATTATATAG	CTGTGAATAA	TATATTACCT	GATATTTTAC	GAATTTTTTA	GGAAAAAATC
480	GATGCCATTA	АТАТААААТА	TACTAACCAA	ATGCAACCAG	TCAAAATAAT	TAGTTTTATT
540	GGTGTTAACT	TAAAAGAGAT	ACTATACAAG	TCCCATTCAT	TTCAAGTTTT	ACGAATTITA
600	CTCTCTTTTT	AGAGCCGAAA	TAGCAAAAAG	GTAAAATTCC	TCAAACTATT	AAAAAGCAAT
660	AAAGTAAGCT	CTCTAACACT	AGTGTGATGT	GACTGGCATG	TACTTTTTT	TATCTTCTTT
720	TTTCAGAAAA	ATTGAAAAAT	TCTGTTGGTA	TAGGAATATT	TGGCTATTGC	AGGATCAACA
780	GATATTGACA	CCATAGCGAC	AAAATACATA	GAGTGCCACT	АТААААТ САА	GATAGAACCA
840	AATTCCTAGG	GGAGCAGTAA	ACATAGAGTA	TGTCGCAAAT	TGCTTTCTGG	GTCCCTTTAA
900	TCTTCTTGTT	GCTGATTTTT	CTCTTATTCA	CTCTTTCTAG	CCATCTTTCT	ACTAAATAGA
960	ACTCAGGCGT	AAACGGATAG	TTGTTTACGC	TGTTAAGGAT	CGCTCTGCTT	AGCTTTCTCA
1020	TCAAGATACG	TCTTCAAGTG	CTCAAGAGAC	CGTTCAAGAA	TACTCATCGT	TACTTCCATG
1080	TCATTTGTTT	CGAACGTTGG	AGTAGCTGAA	TTTGGTCCTT	ATAACAGCTG	AGGCGTCTTG
1140	TGATCATTCC	TTTTCACCGA	TTCACGAGAG	TCAAGTCATT	ATGTTAACTG	TGCCTTCGTG
1200	TAGACATGAT	CGTTCTTCGA	GATCGTACCA	GGTTGACAAA	TCAGTACCTG	TTCATAAACC
1260	GACGTCCACC	GCACCACGGT	AGAAACAAGG	CAGCATCGAT	GTAGCCTTAC	TGAGTAAGTT
1320	TACCGTAACC	TGGTTCATGA	GTCGAAGGTA	GCAAGTATTG	GGAATCAATG	AATTTCCCCT
1380	GAACAAGGAA	CCACGCGCTG	TCCAATCAAA	CAGTTGAGTA	GATAAGAACT	ACGAGTCATT
1440	CTTTACGTTC	AACATTTCAC	AATCATATCC	TACCAGTTGA	GTTTGACCAT	GACCAAACGA
1500	GTACACGTTC	GTGTCGATTT	TTCTTCTGGA	ACCCTTGGTA	TGGATAACAG	AGAAAGGCTT
1560	GAGATACTTG	ACTTCTGGAC	TTTTACGATA	CGTCGATTTC	CATTTAATAC	AAATGGTTCA
1620	ATTCTCCACG	GACAAGTGCA	GATAAGGATT	GCATTGTTTC	CCCTCACGAC	AAGTTCATAG
1680	AAACGTCTGT	AÇACGAAGGG	AGTTGGGTCA	CTGGTGAATC	GTCCATTTAT	TCCTGAAACA
1740	TACCTTCTTT	GTTACCCATT	CTTACGAGAA	GTTCTTCCAC	GCCTGCAAGC	TTGCAATTCT

ACCAGCAAAT	GGTGAGTTGT	TGACCAAGAA	AGTCATTTGA	AGAGTTGGCT	CATCGATGTG	180
TAGGATTGGA	AGAGCTTCTA	CTGCATCTGT	CGGAGTGATG	GTTTCACCGA	CAAAGATGTC	186
TTCCATACCT	GAAACGGCAA	TCAAGTCACC	CGCTTTGGCT	TCTTGGATTT	CACGACGTTC	1926
CAAACCAAAG	AAACCGAAGA	GTTTTGTAAC	ACGGAAGTTT	TTAGTTGTAC	CGTCAAGTTT	1986
AGAAAGGGTA	ACTTGGTCCC	CAACCTTAAC	TGTACCACGG	AAGACACGAC	CGATACCGAT	204
ACGTCCAACG	AAGTCATTGT	AGTCCAAAAG	TGACACTTGG	AACTGCAAAG	GCTCATCTGA	2100
GTTATCTACT	GGAGCTGGGA	TATGGTCGAT	AATCGTGTCA	AAGATTGGTG	CCATAGTCGC	2160
TTCTTGGTCA	GCTGGATCAT	CTGACAATGA	AGAAGTTCCG	TTGATCGCTG	AAGCATAAAC	2220
CACTGGGAAA	TCAAGCTGGT	CGTCATCTGC	ACCAAGCTCG	ATGAAAAGTT	CCAAGACTTC	2280
ATCCACTACT	TCTGCTGGAC	GAGCTGATGG	CTTATCGATT	TTGTTAACAA	CCACGATTGG	2340
GACAAGGTCT	TGTTCCAAGG	CTTTTTTCAA	TACGAAACGA	GTTTGTGGCA	TGGTTCCTTC	2400
ATAGGCATCT	ACGACCAAGA	CAACACCGTC	AACCATTTTC	ATGATACGCT	CAACTTCTCC	2460
ACCAAAGTCC	GCGTGTCCTG	GTGTGTCCAT	AATGTTGATA	CGAGTTCCGT	TGTAAGCAAC	2520
GGCAGTATTT	TTAGCAAGGA	TGGTAATTCC	ACGCTCTTTT	TCGATATCGT	TTGAGTCCAT	2580
AGCACGCTCT	GCCAATTCAG	TCCGTGCATC	AAGCGTTTCT	GATTGTTTCA	ATAATTCGTC	2640
AACCAGGGTT	GTTTTACCGT	GGTCAACGTG	GGCGATAATC	GCAA-TGTTAC	GGATATCTTC	2700
TCTTAATTTT	GTCATGATTT	CCTCTATAAT	ATTCAAAATT	TATTTTCTAA	CTGAACGATT	2760
ATACCATAAT	TTCAAATAAA	TAACATAACT	CAAGCAAGTG	TAAATGTTTT	CACTCTGCTT	2820
TTCTTTTCAC	GTCAAGCCTT	TTCAAAGCGA	GCGACTTATG	ATAAGATAGG	CACAGTATGC	2880
GTTTAGATAA	TTTATTAGCT	CAAGAAAAA	TCAGCCGAAA	GGCCATGAAG	CAAGCACTCC	2940
TCAGAGGGGA	AATTCTAGTC	GATGGTTGCC	CAGCCCGCTC	CCTAGCTCAA	AATATCGATA	3000
CAGGACTACA	AGAACTCCTT	TTTCAGGATC	GAATCATTCA	AGGCTATGAA	CACACCTATC	3060
TTATGCTTCA	TAAACCTGCT	GGTGCCGTTA	CAGCCAACAA	AGACAAGGAA	CTTCCGACCG	3120
TCATGGACCT	GCTTCCATCT	AACATCCAGT	CTGACAAGCT	CTATGCCGTT	GGCCGACTGG	3180
ACCGAGATAC	AACGGGACTC	CTCCTCTTGA	CCGATAACGG	TCCCTTGGGC	TTTCAGCTCC	3240
TCCATCCCCA	ATATCATGTC	GATAAGACTT	ACCAAGTTGA	GGTTAATGGA	CTTCTAACAC	3300
CTGACCATAT	CCAAACCTTT	CAAAAAGGAA	TTGTCTTTTT	AGATGACACT	GTCTGTAAAC	3360
CCGCAAAACT	AGAGATTCTA	TCTGCAAGTC	SCTCCCTCAG	TCAAGCCTCT	ATCACCATTT	3420
CAGAAGGAAA	ATTTCATCAA	ATCAAGAAAA	TGTTCCTCTC	GGTTGGTGTT	AAGGTGACTA	3480

			_					
GCCTCAAAAG	AATCCAATTT	GGGGACTTCA	1232 CATTGAACCC	AGATTTAGCA	GAAGGTAACT	3540		
ACCGCCCTTT	GAACCAAAAA	GAGTTACAAA	TCATTAAAAA	CTATTTAGAG	ATGAGTCGAT	3600		
AAAACAAAAA	AAGCTTTAAA	ACTAAAGCTT	TTTTCTTTTA	TTTACCGAAA	AATTAAGGCG	3660		
ATTGCTACAA	TCCAGTTAAC	TACAGAAATC	ACAATTCCTA	AGATATTAAG	AATCTTTTCT	3720		
ATTTTATAGT	CTAATTGTGA	CTCTTTTTGG	TATGAAATAG	CCAAGACCAA	TCCTATGATA	3780		
CCCAAAATCA	GGCCTACAAT	TGGAAATAAC	AAACCAAGAA	TAATCGACAA	GATACCCACA	3840		
AAAAGTGGAT	TTTTCTTCTT	TTCTTTTATG	TTCTAAGAAC	TCCTTAÄATT	TTATACAAAT	3900		
TAATTATACT	ATAAAACAAT	AGCTTCATCC	TATCATTCGA	CTAATTTGGA	AATAAGGTTA	3960		
GCTAGTCTTC	ACTITICCCTT	TCCAAGAATC	CAAGCCATAA	GAAAGGATAT	AAATCTCAGA	4020		
AAAACCTTGT	TTTTTCAAGT	AAAGAGCTGC	ATTTGTAACT	CGTTGCGCAC	GTTGGTTTTC	4080		
GTAGAGAAGG	ACAGGTTTAT	CTTTACGAAG	GGCTGCAAGA	CTAGTTTTCA	ACTGACTTGA	4140		
AGGAATATTG	CGTGCACCAA	GGATATGTTT	TCTGTGGAAT	TCTGCTGGGT	CGCGCAAATC	4200		
AATCAATTGA	CCCGTACGAA	TCAAGGCTTC	AAACTCCTCA	TTGTCCACAA	TTTTAGCCGC	4260		
ACGGCGAATA	CGAAGATAGT	TAAAGCCCAT	CCACGCCAAC	ATTGCTAGTA	TAAGTGCCCA	4320		
CAAAATCCAA	GTAACCATTA	GTTCTTTTCT	CCATTTTTCT	CAATATAATC	CAATTCTACC	4380		
TTGTGCTCTC	TGCGAAGAAC	TGCTTCTGCC	TCTAGATAGT	CTAATTTATC	CATCAACCCT	4440		
GCATCGTAAA	TCCGAGATAG	TTCCAACTTC	ATCAGTTCAA	TATCATATAA	GCGTTTTCCC	4500		
ATGTAAACAA	TAATACCAAA	TCGTTTGAGG	AATTGCTGCA	CATCATAGAA	TGTTTTCATA	4560		
AGACTCATTC	TAGCAAAATT	TTGTGTTTTT	TTCAAGAAGA	GACTCACACA	ATGCTCCTTA	4620		
TTTTCCTATC	TTCTTTAGCG	ATTCTAAGGC	AAGTATGGTA	CAATAAAAAC	ATGGGGATTC	4680		
AACAATTACA	TT					4692		
(2) INFORMA	TION FOR SE	Q ID NO: 22	21:					
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 706 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double								

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:

A.	AAAGATAAG	TGAATTTGAC	AAAGAAAGTC	AAAAGAACTA	GGAAACCAAA	GCCTCCTCCA	180
G	CCGCCAGAA	TCATGGCAAG	AGCTGCAAGA	CTGGCAAGTA	AGAAGCCGAT	AAGATAGGCA	120
G	CTAAAAAGC	TGATAATCTT	CGACTCCTGT	ATATGATGTG	TCTTTTCATG	TAAGACACGC	60

AAAACTACCA	AAGTCTTTCG	TAAATCCCAG	ATTTTATCCA	ACTGCTTGAC	GAGGGAAGTC	240
GTCTGACGAA	CGCCTACAAT	AGTTGCTAAC	ATACTTCCTA	AAAAGAATGG	ATAGACATGA	300
GTTAAACTGG	AGAAATAAAC	AGAGGAATAA	GAGGTCACTA	GAAAACTACC	AATAAACATG	360
GAGAAGAAAC	TGATCAAGAA	GGCAACAGCA	GATAAGAGAA	AGACCATCCC	CTTCAACTGA	420
CCATTTGATT	TAGCTTGTTT	GGATAAGAAC	CAAACTGCCA	ATCCCCAAAG	AATATAGTAG	480
TGAACCTCAA	CTGCCAAACT	CCAATTATGA	ACAAACAAAT	GAGGAATGAA	CTGAGATTCA	540
TAACTCCCAC	CTGTTAGGAG	TTCATAGAAG	TTGGTCATAA	AGCCTAAGAC	GCCCGCAATC	600
TGGCCACCAA	TTCCAGCAAC	ATAGTCTTGG	CGAACCAAGA	AAGTAAAAGG	CATGGTCACC	660
AAGACCATCA	AAACCACAGG	TGGCACAATC	TCGATAAAAG	CGTCTT		706

(2) INFORMATION FOR SEQ ID NO: 222:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3236 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222:

CAGCTGATGG	GCAATATCAG	TCATAGAAAT	TTTTTCAATT	AACTTTTGAG	CAATTTTTTG	60
GTTGATGATA	CGAGGGATTT	GGTGATTTTT	CTTTACCAGG	GGAGTCTCAG	CAACCATCAT	120
TTTTGAACAG	TGATAGCACT	TGAAACGGCG	TTTTCTAAGG	AGAATTCTAG	AAGGCATACC	180
AGTTGTTTCG	AGGTAAGGGA	TCTTAGACGG	TTTTTGAAAG	TCATATTTCT	TCATTAGACT	240
TCCACAATCA	GGGCAAGATG	GAGCCTCATA	ATCCAGCTTA	GCGATAATTT	CTTTGTGGGT	300
ATCCATATTG	ATGATATCTA	GAATCTTGAT	GTTTGGGTCT	TTAATATCGA	GCAGTTTTGT	360
GATAAAATGT	AATTGTTCCA	TATGATTCTT	TCTAATGAGT	TGTTTTGTCG	СТТТТСАТТА	420
TAGGTCATAT	GGGACTTTTT	TTCTACACAA	AAATAAGCTC	CATAATATCC	ATAGGGGATT	480
TACCCACTAC	AAATATTATA	GAGCCCGAAA	ATATGGGAAA	ACTGATCCTT	GTTTCTGCTT	540
TTGTCTATAG	AAGAATAATA	AAGATTATCT	TCTTCAAATT	CTCCGATATT	CTCTAAAGTT	600
TTGTGCAAGT	TGCACAGAAC	TTGTTTATTT	TTTTGGTCAT	CTTGCCATAG	AAATATAAAG	660
CGTTTTCATA	TATAATATAA	TTATCAAAAG	ACAAAAGGAG	TTCACCTCAT	GGTAGAATTG	720
AATCTTAAAA	ATATTTACAA	AAAATATCCA	AACAGCGAAC	ACTATTCAGT	TGAAGATTTC	780
AACTTGAACA	TCAAAGATAA	AGAATTTATC	GTTTTCGTAG	GACCTTCAGG	ATGTGGTAAA	840

1234 TCAACTACAC TCCGTATGAT TGCTGGTCTT GAAGACATTA CAGAAGGTAC TGCATCTATC 900 GATGGCGTAG TTGTCAACGA CGTAGCTCCA AAAGACCGTG ATATCGCCAT GGTATTCCAA 960 AACTACGCTC TTTACCCACA CATGACTGTT TATGACAACA TGGCTTTCGG TTTGAAATTG 1020 CGTAAATACA GCAAAGAAGA CATTAACAAA CGTGTTCAAG AAGCAGCTGA AATACTTGGA 1080 TTGAAAGAAT TCTTGGAACG TAAACCAGCT GACCTTTCAG GTGGTCAACG TCAACGTGTT 1140 GCCATGGGGC GTGCGATTGT CCGTGATGCG AAAGTATTCT TGATGGACGA ACCTTTGTCA 1200 AACTTGGATG CCAAACTTCG TGTATCAATG CGTGCTGAAA TCGCTAAAAT TCACCGTCGT 1260 ATCGGAGCTA CAACTATCTA TGTAACTCAC GACCAAACAG AAGCGATGAC ACTTGCAGAC 1320 CGTATCGTTA TTATGTCAGC TACTAAGAAC CCTGCTGGTA CAGGTACTAT CGGACGTGTA 1380 GAACAAATCG GTACTCCTCA AGAAGTTTAC AAAAATCCAG TTAACAAATT CGTTGCAGGA 1440 TTCATCGGAA GCCCAGCTAT GAACTTCATC ACCGTGAAAT TGGTTGGTAG CGAAATTGTT 1500 TCTGACGGTT TCCGTTTGAA AGTGCCAGAA GGAGCATTGA AAGTTCTTCG TGAAAAAGGC 1560 TACGAAGGAA AAGAATTGAT CTTTGGTATC CGTCCAGAAG ACGTGAATGC AGAACCTGCT 1620 TTCCTTGAAA CATTCCCAGA CTGTGTTGTA AAAGCGACTA TCTCTGTATC AGAACTGCTT 1680 GGTTCAGAAT CTCACCTTTA CTGTCAAGTT GGTAAAGACG AGTTTGTTGC AAAAGTTGAT 1740 GCTCGTGACT ACTTGCAAAC AGGTGCAACA GTTGAGCTTG GATTTGACTT GAACAAAGCA 1800 CACTTCTTCG ATGTAGAAAC TGAAAAAACA ATCTACTAAA ATAAATAAAA TTCAAAGCAC 1860 TACAAGAAAA GATATCTCTT TATCAATTGT AGTGGAGAGA TATCAGTTAA TCTAGGGAGA 1920 GAAACAAAAT GCTTCTCCC TTTTTGCTAG AGAAGTCATA TTATGCATCT ATATTGTGAT 1980 GCTCTTTAAT ACTCTTCGAA AATCTCTTCA AACCACGTCA ACGTCGCCTT GCCGTACGTA 2040 TGATTACTGA TTTCGTCAGT TTTATCTGCA ACCTCAAAGA TGTACTTTGA GCAGCTTACG 2100 GCTAGTTTCC TAGTTTGCTC TTTGATTTCC ATTGAGTATT ATTTGTGGGT ACCATCTACA 2160 AGTGAAGCTA TATGCGTAAA CTACGTGAGC AATTGAATTC GAACTAGAGA GGTAATAATA 2220 AATTTATGCT ATAGTTATGG TGACTTGTAT GCTTTTGATT CTAGTTTATC AAATAATAGA 2280 TTAGAATTGT CAGATAATAT CATTTTGTGT TATAATGAAG AAAAAACAGA GGTGTTCAAA 2340 TGTCAGAAGC AGGTCATAAG TTTTTAGCAA AATTGGGGAA AAAACGCTTA CGTCCAGGTG 2400 GAAAGCGTGC CACAGATTGG TTAATTGCAG AAGGAGGATT TTCAAAAGAA AAGAGAATAC 2460 TAGAGGTTGC GTGTAATAGG GGAACTACAG CAATTGAGTT GGCACAGCGT TTTGGTTGCA 2520 AGATAACTGC TGTTGATATG GATGCTCAAG CTTTAGAAGT GGCTAAAAAA TCTGCTGGAA 2580 CGGCAGGTGT TGCTCATTTA ATCAGTTTTG AAAGAGCAAA TGCAATGAAA CTTCCTTATC 2640.

AAGATGCTAG	TTTTGATATT	GTTATAAATG	AAGCTATGCT	GACTATGCAA	GCCGATCAAG	2700
CTAAGAAAA	ATGTGTAATG	GAATATCTAA	GGGTATTAAA	ACCTGGAGGT	CTTCTCTTGA	2760
CACATGATGT	GCTTCTTAAG	GAAGCTAAAG	AGTCTATCAG	ACAGGAATTA	TCACAAGCAA	2820
TTCATGTAAA	TGTAGGTCCT	TTAACTCAAG	ATGGTTGGGA	ACAGGTGATG	ATAGAATCAG	2880
GTTATTGTGA	TGTGAAAGCA	TTGACTGGTG	AAATGACATT	AATGAAATTA	TCGGGTATGA	2940
TTTATGACGA	AGGTTTGCTA	GGAACTTTGA	AAATTTGTGT	AAATGCTTGT	AAAAAGGAGA	3000
ATAGAAAGCA	GTTTTTAACT	ATGTATAAAA	TGTTTGCTAA	GAATAAACAG	AAATTGGGCT	3060
TTATTGCGAT	GGCTAGTTAT	AAATCGTCAA	AACGTTAGAT	AATTATTGAA	GTTAACTTTT	3120
CCTTTTTTCT	TTCTTAAAAA	ATATGCTATA	ATAGAGAGTA	AAAAACTTTG	AAAGAAAGAA	3180
AAAGATGAAT	TTAAAAGATT	ACATTGCAAC	AATTGAAAAT	TATCCAAAGG	GTACCG	3236
(2) THEODH	TION FOR CE	O TO NO. 22	. •			

(2) INFORMATION FOR SEQ ID NO: 223:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2885 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:

CCTGACTTTT	CAAATTGGTT	AGTTTGCCAC	ACTTGGTTTA	TATGGTCGTG	GAAAGCATGG	60
CTATTACTTC	TCAAAGGGCG	ATTTCTCACC	CCATGAAAAG	TGTCTATTTT	TGTTTAGGTT	120
TGTAAGTTAA	TTCATTGTCA	CATATTACTC	TTTAACTGAT	TGAGTGAGTA	CCGCTTATAT	180
TTGATGCCAA	ACGCCTTAAA	AGTGTTACCC	TCAAGTCCTT	TTAGAATACG	GCTATAATTC	240
CGCTCATTGT	AAACTATCTT	AAGCTCATCA	CTATCTAGGT	TGGTATTAAA	AATGGTATTT	300
TCACGATTGT	TTAGCACGTC	AAAGAGTAAA	TCCTGCTCCC	AGTCACTCTT	AGGCTTAATA	360
ACAGCATTTT	TTGCTCCTAA	ATCATCAATA	ATTAAGTAAT	CAACAGACTT	CATGAGTTCA	420
GTAGCTTCAA	ACTCTGTAAG	TGTTGCACCT	TTACCATAAT	TCCACCCCTC	TTTAATTTGT	480
TTGATCATTT	CGGTTAGGCT	TACAAAAAGC	ACACTCTTAG	GTTCTCCTTT	TGTCTTATAC	540
CCCTCATTTA	TACCTTTGGC	AATAGCAACT	GATAAAAGTG	TTTTTCCAAT	CCCTGTACCT	600
CCTGTGATAA	GCGTATTTCC	CCTCATGCCA	TCAAGATATT	TTTGTACCTG	ACCTTTTGCA	660
AATTCTAAAA	ATCGCTTTTC	TTCTGATGTT	ACAGCATTAA	AATCATCAAA	AGTTTTAGTT	720
TTAAACTCAT	CTGCTACATA	GCTCTTATTG	CTCATCAACA	CATTATAAGT	TTGCATATAT	780

AGTTTAGCAT	TCAAATTATC	AGCAATCGCA	TCTTCTTCAT	CTTGCTTTTT	CTGTTCTTCT	84
TGGCATTGTT	CACAATAGGG	TGGGATACAG	CGAACTTCTT	TTATTGCCTC	TCCGTTCTCA	90
TTCCACCCCA	CTACTACATG	TCTTTCTCCT	TTGATTTGTG	TTAGCTGTAT	TTCATGCTTA	96
GGACACAATT	CGTCTAGTTT	AAATGTCTCA	ATATTTCCTA	AACTAGATTG	TAATGATTTC	102
ATTTTCTGAC	CTCCTAAAAT	GGTTTTTCTT	GTGTTGGTAT	CCAATCTTCA	TAGCTGGTAG	108
GCTCTAGTTG	ATTGGTTTGC	TGTTTTTAG	CCTCACGCGC	TGCCCTGCTA	TTTCTAACAA	114
GTTCCACCGT	CAATAAATTG	TCCTGTTTCC	AACGGTTAAG	GATTACCTTG	ATGTATGCAA	120
AGTTTGCTTT	ACCCTGACTG	ACAGCCTCTT	TTAACGCCTC	ATGGATAAGC	TCTGGGCTAA	126
AATCTTCTAG	CATATACTGC	AATTCTTGAA	TCTGTAACGG	TGACAATGCT	TTACCTGTCT	132
CAGCTCGCTT	CATATTCAAC	AAGTCGTCTA	TTTCCACACT	GGTTACTTTT	TTATTTACAA	138
AATCAGAAAT	CAGTTGAAAA	ATGTTTGGAC	TTTGTAGCTG	GATTTCAGCC	ATTACCTCAT	144
CAAATTCTGC	TTGTGTCATG	TTGTCTAAAT	CTAGTGTCAT	TGCATTGCCT	CCTCAAACTT	150
CTCTATAAGA	CAACTTTTAT	TTGCTTTCTG	AGTTCCATTT	TTAGAGTTAA	AAAGAATATC	156
TTTTAAGGTT	ACAGTAGCCT	CTAAATACTC	CTTTTCAGCA	TGCTCTATAT	ACGCCTGTTG	162
CTCTGCTTCG	TTCTCAAAAA	AGTGCTTAGC	TTGGCGTTTA	AAGAATGCTT	TTCGCATAGC	168
GTCCATTTCA	AAAATACCAG	GGGCGAAAAA	CATTCCCGTA	GTGCTTTTAG	AGACCGCTTC	174
GATTTTATGG	CTTTCATTCA	ATTCAGGAAG	TTCAATCCAA	AGTAAACGGG	ACAACTCATC	180
TTTGATGGAT	TTTGTCTGAC	TTTCCAATAA	AGAAAGGATT	CTTAGGCCAT	TTTCTTCGCT	186
AATTTCTCGC	ATTTCTGCGC	TAATTCTGTC	TATACGTCTA	GTTAAATTCT	CATATGTTGT	192
TTCTGTCATG	TTTTTACCTC	TGTTTCTTTG	TTGGTGTGAT	TTTTTAGCTT	ATTTTTTAC	198
TTCTAAACAT	CATTGTCTTA	ATTTCCTGAT	AACTCATTTT	CAATTCAATC	ATAGCTATTG	204
CCATATCCTC	AAATGCCTGG	TACTGCTCCA	ACTCCTCACT	AGTCAAGCTA	TCGATACCGT	210
TATAGCCCCC	ACGCTCTTCT	CTTAACTGCT	TAGCGTTCAT	GTCTGTTACT	GCCTTTAGTA	216
GCAAGTTGTT	CATGGTGCTA	TGCGCGTGCT	TTGGTGCATT	AGGCCATGTT	TCTATACTGT	222
CATGCAAGGT	TTTTCTTTTC	GGTTTTTCTA	GCGCCCTCTG	CAGACGAATT	TCAGAAAGTT	228
CCTCACGCAT	TTCAAAGAAT	GCTTTGACTA	GGTTTAGTTT	GAATTGCCGT	ACTGTTTCGG	234
TATTCTTTAA	ATAAGTGATC	AGAAAAGTAG	CCTGTTGCTC	GTTCAGAATA	TAGGATTTTT	240
TAGGTTGTCC	TCTAGTATCT	aatttatgga	TTTTAAATCC	AAGTATTCCC	AACTCTTCAA	246
AGTCAGCCTT	ATTTTCTCTT	ATTAAGCGCG	TGATAGTGTG	GTGTTGTACT	TCAGCACATT	252
CAGCGATGAT	CTCGCTTGTG	GTGTACGGCT	CTTTCTTACC	GTCCATGTAA	ACTAGTTCCA	258

TTACGGTTCT	ACCTCCTGTA	TAAATCTGGT	TAGCTTACTT	TTTAATTGCC	TCCTCTAGCC	2640
TCTTTTTTAG	CCTCTAAAAC	GGCTTTGGCT	AGTGGTTAAT	ATTATTTACC	ACTTGTCTCT	2700
ATAAACGTGT	TAGAGGCCTT	TATAACGACT	TGTATCGCTG	TATCGATATC	CTCCGTGGAA	2760
TAGTAGATTT	ATTTTCTAAT	ATCATTCAAG	ACTTGTTTAA	CCCATTTCTT	GAAAGAAATA	2820
AAATTACATC	TTCTTTATCC	TTGGCATCTG	CTTTGTCTGA	GACAAATTAG	AATGTCAATA	2880
CTTGG	•					2885

(2) INFORMATION FOR SEQ ID NO: 224:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3144 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:

TATCAATCC	TTCCCATTAT	AGGAGCAAC	GAGTGGGAGT	AGTCATCTA	GGACTAATTT	60
ATGTATTTT	r acgagtcagt	ATCTTGGGAT	ACTGGTTTT	ACTTTTCTAC	ACTTTTTGAC	120
TACTTGTTA	A AACTGGGATA	ATTTTCGACT	GTTTAACAGT	TATTATGCAA	AGTCTAAAAG	180
ATTAGAATTO	TCAAAACAAT	CCGTCTAGGC	TTGATTTTAT	CCTTTATTTA	CTATAAAATG	240
AGAAGGAAA	ATGTCAAACT	TTTATATTGC	AAATAGGAGA	AATCATGACA	AAAACATTAA	300
AACGTCCTGA	GGTTTTATCA	CCTGCAGGGA	CTTTAGAGAA	GCTAAAGGTA	GCTGTTCAGT	360
ATGGAGCAGA	TGCTGTCTTT	ATCGGTGGTC	AGGCCTATGG	TCTTCGTAGC	CGTGCGGGAA	420
ACTITACTIT	CGAACAGATG	GAAGAAGGCG	TGCAGTTTGC	GGCCAAGTAT	GGTGCCAAGG	480
TCTATGTAGC	GGCTAATATG	GTTATGCACG	AAGGAAATGA	AGCTGGTGCT	GGTGAGTGGT	540
TCCGTAAACT	GCGTGATATC	GGGATTGCAG	CAGTTATCGT	ATCTGACCCA	GCCTTGATTA	600
TGATTGCAGT	GACTGAAGCA	CCAGGCCTTG	AAATCCACCT	TTCTACCCAA	GCCAGTGCCA	660
CTAACTATGA	AACCCTTGAG	TTCTGGAAAG	AGCTAGGCTT	GACTCGTGTC	GTTTTAGCGC	720
GTGAGGTTTC	AATGGAAGAA	TTAGCTGAGA	TCCGCAAACG	TACAGATGTT	GAAATTGAAG	780
CCTTTGTCCA	TGGAGCTATG	TGTATTTCAT	ACTCTGGACG	TTGTACTCTT	TCAAACCACA	840
TGAGTATGCG	TGATGCCAAC	CGTGGTGGAT	GTTCTCAGTC	ATGCCGTTGG	AAATACGACC	900
TTTACGATAT	GCCATTTGGG	AAAGAACGTA	AGAGTTTGCA	GGGTGAGATT	CCAGAAGAAT	960
TTTCAATGTC	AGCCGTTGAy	ATGTCTATGA	TTGACCACAT	TCcAGATATG	ATTGAAAATG	1020

GTGTGGACAG	тсталалатс	GAAGGACGTA	1238 TGrAGTCTAT	TCACTAYGTA	TCAACAGTAA	1080
CCAACTGCTA	CAAGGCGGCT	GTGGATGCCT	ATCTTGAAAG	TCCTGAAAAG	TTTGAAGCTA	1140
TCAAACAAGA	CTTGGTGGAC	GAGATGTGGA	AGGTTGCCCA	ACGTGAACTG	GCTACAGGAT	1200
TTTACTATGG	TACACCATCT	GAAAATGAGC	AGTTGTTTGG	TGCTCGTCGT	AAAATCCCTG	1260
AGTACAAGTT	TGTCGCTGAA	GTGGTTTCTT	ATGATGATGC	GGCACAAACA	GCAACTATTC	1320
GTCAACGAAA	CGTCATTAAC	GAAGGGGACC	AAGTTGAGTT	TTATGGTCCA	GGTTTCCGTC	1380
ATTTTGAAAC	CTATATTGAA	GATTTGCATG	ATGCTAAAGG	CAATAAAATC	GACCGCGCTC	1440
CAAATCCAAT	GGAACTATTG	ACTATTAAAG	TCCCACAACC	TGTTCAATCA	GGAGACATGG	1500
TTCGAGCTCT	TAAAGAGGGG	CTTATCAATC	TTTATAAGGA	AGATGGAACC	AGCGTCACAG	1560
TTCGTGCTTA	ATGTAGTTGT	TTAGTTTTAA	AAAACTATGC	AAAGCTCCAT	ATACAACACT	1620
TAAACGAGAT	TAAAGAATGG	CGAAATCCCT	TGATGCGCAA	GAGATTAGCT	GTCTTTTTTA	1680
TTTTTTAAGT	GATAAAGTCG	GAGTTTAGGC	ATCAAAGCCT	ATCAAATTAA	ACAAAGAAGC	1740
GATGTCTTAG	ATATTTTGAA	AAAAATTAAT	AAGCAGAAAA	CTCTCTATTA	TTTTGTTGTA	1800
GAGAGTTTTT	TGTTAATAAA	ATTTCACAAA	ATGACATTTA	TATATTGCAT	TAAGTTAGAT	1860
ATATGATATA	ATATTGTTAA	AAAGAGGCGC	AACTTTTTAA	AATTAATGAG	AATCAAAGAG	1920
AAAACCAATA	ATATTAATGG	AGGAATAAAA	AATGTAAGTA	AGCATTATGG	TCATTCAATC	1980
ATTCTCAAAG	ATATAAATTT	TGCACTTAAC	AAGGGTGAAA	TTGTTGGTCT	AGCAGGGAGA	2040
AATGGAGTTG	GTAAGAGTAC	GTTGATGAAA	ATTCTTGTTC	AGAATAATCA	ACCGACTTCA	2100
GGTAATATTA	TAAGCAGTGA	TAATGTTGGG	TATTTAATCG	AAGAACCAAA	ATTATTTTTA	2160
TCTAAAACAG	GTTTAGAGAA	TTTAAAATAT	TTGTCAAATT	TATATGGTGT	TGACTACAAT	2220
CAAGAAAGAT	TTAGATGTTT	GATCCAAGAG	TTAGATTTGA	CTCAGTCTAT	TAATAAAAA	2280
GTAAAGACCT	ATTCTTTGGG	TACAAAACAA	AAATTAGCTT	TGCTTCTAAC	TCTCGTTACG	2340
GAACCTGATA	TATTGATTTT	AGATGAACCG	ACTAATGGTT	TAGATATTGA	ATCATCACAA	2400
ATAGTTTTAG	CGGTTCTAAA	AAAATTAGCT	TTACATGAAA	ATGTGGGAAT	TTTAATATCG	2460
AGTCATAAAT	TAGAAGACAT	TGAAGAAATT	TGTGAGAGAG	TTCTTTTCTT	GGAGAACGGG	2520
CTTTTGACAT	TTCAAAAAGT	AGGAAAAGAT	AGTCATAATT	TCTTGTTTGA	GATAGCTTTT	2580
TCATCAGCTA	CAGATAGAGA	CATTTTCATT	ACCAAACAAG	AATTTTGGGA	TATTGTTTAG	2640
GAAGAGGGAT	TGAGAATTAC	TATGTCTGGG	AATATTCAAA	ATAGTGAGCT	TTTTAAATTT	2700
TTTAACGAAA	ACTCTATTAA	AGTAGTTGAT	TTTGAAACTA	AAAAAGAGAC	GCTTAAAGAT	2760
ATTTACCTAA	ATCGTTCAAA	ATAAAGGAAG	GTTATAATCA	TGAAATTAAA	TAAACAGAAG	2820

AATCGGATGA	TTTACGTCTT	GTCTAATTTT	CTATATGCTA	TCTCAGTTTC	CATTATTTAT	2880
GCTTTGAATG	GCATTGTGTT	ACTAGTCATA	GTAAGTAAAT	TGGGTATTCC	AGGTGATTTA	2940
GGATTAAATT	TTATAGTAGC	TATTGTAGTC	AATACAATTT	TGTTAGTCCT	GTTTTATTTT	3000
CTATTATCTT	ACATTTTCTA	TTTATACAAA	TTGAAAAGTG	GCTTGGTATW	TGGTATTTTA	3060
GTAGCTTTAC	TACTCTTTAT	CTCTAATATA	TTAAATACGA	TGATGATGAA	TACTAGTAAT-	3120
GATTTGTTTA	TCAAAGCAAT	TGAA				3144

(2) INFORMATION FOR SEQ ID NO: 225:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1766 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

TA	CGGTATTA	TTTTTAAGGA	GAAAGAATCA	TGAAAATCAA	AAAATGGCTT	GGTCTAGCAG	60
CC	CTTGCTAC	AGTCGCAGGT	TTGGCTCTTG	CAGCTTGCGG	AAACTCAGAA	AAGAAAGCAG	120
AC	AATGCAAC	AACTATCAAA	ATCGCAACTG	TTAACCGTAĠ	CGGTTCTGAA	GAAAAACGTT	180
GG	GACAAAAT	CCAAGAATTG	GTTAAAAAAG	ACGGAATTAC	CTTGGAATTT	ACAGAGTTCA	240
CA	GACTACTC	ACAACCAAAC	AAAGCAACTG	CTGATGGCGA	AGTAGATTTG	AACGCTTTCC	300
AA	CACTATAA	CTTCTTGAAC	AACTGGAACA	AAGAAAACGG	AAAAGACCTT	GTAGCGATTG	360
CA	GATACTTA	CATCTCTCCA	ATCCGCCTTT	ACTCAGGTTT	GAATGGAAGT	GCCAACAAGT	420
AC	ACTAAAGT	AGAAGACATC	CCAGCAAACG	GAGAAATCGC	TGTACCGAAT	GACGCTACAA	480
AC	GAAAGCCG	TGCGCTTTAT	TTGCTTCAAT	CAGCTGGCTT	GATTAAATTG	GATGTTTCTG	540
GA	ACTGCTCT	TGCAACAGTT	GCCAACATCA	AAGAAAATCC	AAAGAACTTG	AAAATCACTG	600
AA	TTGGACGC	TAGCCAAACA	GCTCGTTCAT	TGTCATCAGT	TGACGCTGCC	GTTGTAAACA	660
ΑT	ACCTTCGT	TACAGAAGCA	AAATTGGACT	ACAAGAAATC	ACTTTTCAAA	GAACAAGCTG	720
ΑТ	GAAAACTC	AAAACAATGG	TACAACATCA	TTGTTGCAAA	AAAAGATTGG	GAAACATCAC	780
СТ	AAGGCTGA	TGCTATCAAG	AAAGTAATCG	CAGCTTACCA	CACAGATGAC	GTGAAAAAAG	840
TT	ATCGAAGA	ATCATCAGAT	GGTTTGGATC	AACCAGTTTG	GTAATAAGAA	ACAGGGAGGT	900
GG	GAGAGAAA	ATTCCACCTC	TTGCTTTTGT	ATAGAGTATA	GATTGTAAAG	AAGACTATTC	960
GT	TCATAGAA	AGGTAGAGAG	AATATGGTTT	TTCCTAGCGA	ACAAGAACAG	ATTGAAAAAT	1020

TTGAAAAGGA	TCATGTAGCC	CAGCATTATT	TTGAGGTTTT	GCGTACCTTG	ATTTCTAAGA	1080
AATCAGTCTT	TGCCCAGCAG	GTTGGACTCA	AGGAAGTCGC	AAATTATCTG	GGTGAGATTT	1140
TCAAGCGTGT	TGGAGCTGAA	GTGGAGATTG	ATGAGAGCTA	TACAGCGCCC	TTTGTCATGG	1200
CACATTTCAA	GAGTTCGCGT	CCAGATGCCA	AGACCTTGAT	TTTCTATAAC	CACTATGACA	1260
CTGTGCCAGC	GGATGGGGAT	CAGGTCTGGA	CAGAGGATCC	ktttaccctt	TCGGTCCGCA	1320
ATGGCTTCAT	GTATGGGCGT	GGGGTTGATG	ACGACAAGGG	TCATATCACA	GCTCGCTTGA	1380
GTGCTTTGAG	AAAATATATG	CAGCACCATG	ATGATTTACC	TGTCAATATC	AGCTTTATCA	1440
TGGAGGGAGC	GGAGGAATCG	GCTTCAACAG	ACCTAGATAA	GTATTTGGAA	AAGCATGCAG	1500
ACAAACTCCG	TGGGGCGGAT	TTGTTGGTCT	GGGAACAAGG	GACCAAAAAT	GCCTTGGAAC	1560
AGCTGGAAAT	TTCTGGTGGC	AATAAGGGGA	TTGTGACCTT	TGATGCCAAG	GTAAAAAGCG	1620
CTGATGTGGA	TATCCACTCG	AGTTATGGTG	GTGTTGTGGA	ATCAGCTCCT	TGGTATCTCC	1680
TCCAAGCCTT	ACAGTCTCTT	CGTGCTGCGG	ATGGCCGTAT	CTTGGTTGAA	GGCTTGTACG	1740
AAGAAGTACA	AGAGCCCAAT	GAACGAGAAA	TGGCCTTGCT	AGAAACTTAT	GGTCAACGAA	1800
ACCCAGAGGA	AGTTAGTCGG	ATTTATGGAT	TGGAGTTGCC	TCTCTTACAG	GAGGAGCGGA	1860
TGGCCTTTCT	AAAACGTTTC	TTTTTCGATC	CAGCGCTTAA	TATCGAAGGA	ATCCAGTCTG	1920
GTTATCAAGG	TCAGGGTGTT	AAGACTATTT	TACCTGCAGA	AGCCAGTGCC	AAGCTAGAGG	1980
TTCGTCTGGT	TCCGGGCCTA	GAACCGCATG	ATGTTCTGGA	AAAAATTCGG	AAACAGCTAG	2040
ac aa aaatgg	CTTTGATAAG	GTAGAATTAT	ACTATACCTT	GGGAGAGATG	AGCTATCGAA	2100
GCGATATGAG	CGCACCAGCC	ATTCTCAATG	TGATCGAGTT	GGCCAAGAAA	TTCTATCCAC	2160
AGGGCGTTTC	AGTCTTGCCG	ACGACAGCGG	GGACAGGACC	TATGCATACG	GTCTTTGATG	2220
CCCTAGAGGT	ACCAATGGTT	GCATTCGGTC	TAGGAAATGC	CAATAGCCGA	GACCACGGTG	2280
GAGATGAAAA	TGTGCGAATC	GCTGATTATT	ACACCCATAT	CGAATTAGTA	GAGGAGCTGA	2340
TTAGAAGCTA	TGAGTAGAGA	TATTATCAAG	TTAGATCAGA	TCGATGTGAC	TTTTCACCAA	2400
AAGAAGAGAA	CCATCACAGC	GGTTAAGGAT	GTGACCATTC	ACATCCAAGA	AGGGGATATC	2460
TACGGAATCG	TTGGATATTC	TGGAGCAGGA	AAATCAACCC	TTGTACGGGT	GATTAATCTC	2520
TTGCAAAAAC	CATCTGCAGG	GAAAATTACC	ATTGACGACG	ATGTGATTTT	TGACGGCAAG	2580
GTGACCTTGA	CGGCAGAGCA	GTTGCGTCGT	AAACGTCAAG	ATATCGGAAT	GATTTTCCAG	2640
CATTTTAACC	TGATGAGCCA	AAAGACAGCA	GAGGAGAATG	TAGCCTTTGC	CCTTAAACAC	2700
TCTGAACTCA	GCAAGGAAGA	AAAGAAGGCT	AAAGTAGCTA	AGTTGTTGGA	CTTGGTTGGT	2760
TTGGCAGATC	GTGCTGAAAA	CTACCCTTCA	СААСТАТСТС	GAGGGCAAAA	ACAGCGTGTG	2820

<u>:</u>:

1241

	GCAATTGCGC	GTGCCTTGGC	CAATGATCCA	AAAATCTTGA	TTTCAGACGA	GTCAACTTCT	2880
	GCCCTTGATC	CGAAGACAAC	CAAGCAGATT	TTGGCCTTGT	TGCAAGATTT	GAACCAAAAA	2940
	TTAGGCTTGA	CTGTTGTCTT	GATTACGCAT	GAAATGCAGA	TTGTCAAAGA	CATTGCCAAC	3000
	CGTGTTGCAG	TTATGCAGGA	TGGGCATTTG	ATTGAAGAGG	GTAGTGTGCT	TGAAATCTTC	3060
	TCAAACCCTA	AACAACCTTT	GACTCAAGAC	TTTATCTCAA	CAGCTACAGG	TATTGACGAA	3120
	GCCATGGTCA	AAATCGAGAA	GCAAGAAATC	GTGGAACACT	TGTCTGAAAA	CAGTCTCTTG	3180
	GTGCAACTCA	AGTACGCTGG	AGCTTCAACA	GACGAGCCAC	TTTTGAATGA	ATTGTACAAG	3240
	CATTACCAAG	TAATGGCTAA	TATTCTCTAT	GGGAATATCG	AAATTCTCGA	TGGTACTCCT	3300
	GTTGGAGAAT	TGGTGGTGGT	TTTGTCAGGT	GAAAAAGCAG	CGTTGGCAGG	TGCCCAAGAA	3360
	GCCATTCGTC	AAGCAGGTGT	ACAACTAAAA	GTATTGAAGG	GAGTACAGTA	AGATGGAATC	3420
	ATTGATTCAA	ACCTATTTAC	CAAATGTCTA	TAAGATGGGT	TGGGCTGGTC	AGGCAGGCTG	3480
	GGGAACGGCT	ATCTACTTAA	CTCTTTATAT	GACAGTTCTT	TCCTTCATTA	TCGGAGGCTT	3540
	CTTGGGGCTA	GTGGCAGGTC	TCTTTCTCGT	CTTGACAGCG	CCAGGTGGTG	TCTTGGAGAA	3600
	TAAAGTCGTA	TTCTGGATTT	TAGACAAAAT	TACCTCAATT	TTTCGTGCGG	TTCCCTTTAT	3660
,	CATCCTCTTG	GCAATCTTGT	CACCACTTTC	TCACTTGATT	GTTAAAACAA	GTATCGGGCC	3720
4	AAATGCAGCC	CTTGTCCCAC	TTTCTTTTGC	AGTCTTTGCC	TTCTGG		3766

(2) INFORMATION FOR SEQ ID NO: 226:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2520 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226:

TGTTGCTGAG	TTAATCGGTA	CGTTCATGTT	TGTATTCGTC	GGGACAGGAG	CTGTTGTTTT	60
TGGAAATGGT	CTTGATGGCC	TTGGTCACCT	TGGAATCGCC	TTTGCCTTTG	GTTTGGCAAT	120
CGTGGTGGCA	GCCTACTCAA	TCGGAACTGT	TTCAGGTGCT	CACTTGAACC	CGGCTGTTTC	180
GATTGCTATG	TTTGTAAACA	AACGTTTGTC	ATCTTCAGAA	CTTGTAAACT	ACATCCTTGG	240
TCAGGTTGTT	GGAGCTTTCA	TCGCTTCTGG	CGCTGTCTTC	TTCCTCTTGG	CTAACTCAGG	300
TATGTCAACT	GCTAGTCTTG	GTGAAAATGC	CTTGGCAAAC	GGTGTCACTG	TCTTTGGTGG	360
TTTCTTGTTT	GAAGTCATCG	CAACTTTCTT	GTTTGTATTG	GTTATCATGA	CTGTGACTTC	420

			1242			
AGAAAGCAAG	GGCAATGGCG	CGATTGCTGG		GGTTTGTCAT	TGATGGCGAT	480
GATTCTTGTC	GGATTGAAGA	TTACTGGACT	TTCAGTAAAC	CCAGCTCGTA	GCTTGGCACC	540
AGCTGTCTTG	GTAGGCGGCG	CASCCTTCAA	CAAGTTTGGA	TTTTCATCCT	TGCACCAATC	600
GCTGGTGGAG	TTCTTGCAGC	CCTTGTTGCA	AAAAATTTCC	TTGGAACAGA	AGAATAATTG	660
AAACTCAAAA	AGCCTTGCTC	CTCATCTTGA	GGAACAGGGC	TTTTTCGTAT	GATACTCTTC	720
GAAAATCTCT	TCAAACCACG	TCAGCTTCAT	CTTGCCGTAG	TATGGTTACT	GACTTCGTCA	780
GTTCTATCCA	CAACCTCAAA	ACAGTGTTTT	GATCTGACTT	CGTCAGTTCT	ATCTGCAACC	840
TCAAAACAGT	GTTTTAAGCT	GACTTCGTCÁ	GTTCTATCTG	CAACCTCAAA	ACAGTGTTTT	900
AAGCTGACTT	CGTCAGTTCT	ATCTGCAACC	TCAAAACAGT	GTTTTAAGCT	GACTTCGTCA	960
GTTCTATCTG	CAACCTCAAA	ACAGTGTTTT	AAGCTGACTT	CGTCAGTTCT	ATCCACAACC	1020
TCAAAACAGT	GTTTTGATCT	GACTTCGTCA	GTTCTATCCA	CAACCTCAAA	ACAGTGTTTT	1080
GATCTGACTT	CGTCAGTTCT	ATCCACAACC	TCAAAACAGT	GCTTTGAGCA	ACcTGCGGCT	1140
AACTTCCTAG	TTTGCTCTTT	GATTTTCATT	GAGTATGACT	TTAGCGGTTG	TCAATTTTCT	1200
CTGGATAAAG	GTCGTGTTGG	AAGAGGCGTT	GTTCTGCCAA	GCCCTCATAC	TTAGTTCCTT	1260
CCTTACCGTA	GTTGTAGTAG	GGGTCGATTG	AAATGCCACC	GCGCGGAGTG	AATTTTCCCC	1320
AGACTTCTAA	ATAGCGAGGG	TCTAGCAAGT	TGACCAAGTC	TTTCCCGATG	GTGTTGATAC	1380
AGTTTTCGTG	GAAATCTCCG	TGGTTTCGGT	AGCTAAATAG	ATATAGTTTG	AGGGATTTTG	1440
ACTCGACACA	GAGCTTGTCA	GGAATGTAGG	AAATATGAAT	CGTCGCAAAG	TCTGGCTGAG	1500
CAGTGATTTG	TCCCAGCAGA	GACATATCGA	GGATATGGTG	ACGAATGCCC	TGTTCCTTAG	1560
CGATTTCTCT	AGTAATTTGA	ATTTCGAGGT	GATGACGTTG	GCCGTAGGCA	AAGGTGACAG	1620
TTCGACTGT	TTCATAGTGT	TGCATGACCC	AGAAAAGGCA	GGTTGTTGAA	TCTTGACCAC	1680
CACTAAAGAC	GACCAAGGCT	AATTGACGTT	TCATAGTACT	CCTTCCAAAA	TGGGAAATGT	1740
CCAGAGCACG	CAAAAAGCTC	CCATTAGGGA	GCTAAAAAAT	ACCAAATCGA	GGTTTTTTTA	1800
CGATGGCAT	ATCCCAAACA	TCGTAATATT	CTACTTATAT	AGTAAAATGA	AATAAGAACA	1860
GACAAATCG	ATCAGGACAG	TCAAATCGAT	TTCTAACAAT	GTTTTAGAAG	TAGAGGTGTA	1920
TATTCTAGT	TTCAATCTAC	TATAGTCTAG	CATATTTTTT	GAAAAATGGC	AAAGGGCAAG	1980
AAAAAGAGA	CCAAAGAAAG	TACTTGGTCT	CTCGTTTGAT	TAGCTCAATT	CAGCAATGAT	2040
GCCTTGATT	TGTTCTGCTG	TGTGAACACC	TGCAACTTGT	TTGACAACTT	GCCCTCTTT	2100
TTGAAGAGA	AGAGTTGGAA	TAGACATGAT	TCCAAAAGCA	CGAGCTGTGT	TTGGATTTTC	2160
TCAACGTCC	ATTTTAACGA	TTTTCAAGAC	ATCTTCTGAA	AGTTCTTCAG	ACAATTTGTC	2220

WO 98/18931 PCT/US97/19588

1243

CAAGATTGGA	CCTTGCATAC	GACATGGACC	ACACCAAGTT	GCCCAGAAGT	CTACTAAGAC	2286
CAAACCGTCT	TTTGTTTCTT	GTTCGAATGT	TGCATCTGTA	ATTGCTTTTG	CCATTGTATT	2340
TCTCCTTTTT	TTAGTTATAT	TGGCTTAAAT	CTTGTTTCAT	GAGATAGAAG	AAGATATCTC	2400
CATAAGTCCC	ATGGTAGTCC	AAATTATGAC	CCTTGTAAGT	TAATTTTTGG	ACAGGGTAGT	2460
AkkCTGCGAC	GCCGATAAGG	CAAGCTTGTT	GCGAACGTTC	AAAGTCTTCA	TAAGACTCGG	2520

(2) INFORMATION FOR SEQ ID NO: 227:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 5278 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

ACTCAGTTAG	ATTTTGTTTT	CAAAAACAAC	GAAGAAAAG	ACCATGTTGC	TCTACTTGGA	60
AGAATTGGCT	CCGAACGTGT	TTATCGATAT	ATTAATAAAA	AATATTTAGA	TTTACCGGAA	120
ACATTCGAAA	ATTATAATGT	TTTTGTACCA	GAAGCTAATG	GAAGTGGTGC	CTTAGGTGAA	180
GTCTTATCAA	CACCCCTAAT	CGGGGAACCC	CTAATCGGGC	ATACAGATAC	TTTTTTATCT	240
ATTGGTAATT	TTAAAACAAA	ATTTGAAGCC	GATGCTTGTA	TTAAATTTAT	таааастааа	300
TTCGCTAGAG	TATTATTAGG	TGTTTTGAAA	GTTACTCAGC	ATAATTCACG	CAAAACTTGG	360
TATTACGTCC	CCCTCCAAGA	CTTTACGGTC	AATTCGGACA	TTGATTGGAC	ACAATCAGTG	420
ACTGATATTG	ACCGCCAGCT	TGATCAAAAA	TATGACTTTT	CCCCTGAAGA	AATTGCCTTT	480
ATTGAGAATC	ATGTAAGGGA	GATGGATTAG	AAAAGTATTT	TTATTTGACA	AATAGTGCTC	540
AATGATCTAA	AATGACTATA	TAGGATTAGG	TCAGGAAGCA	TACGATGCCC	TGACCCTTTT	600
TGTACTTATG	AGATGAGAAA	GTCATTTGTT	AGATAAATTG	ACTCGTTAGC	AAACGTTCAA	660
AAAAGGAAAA	CTTATGCCAG	TAGAAATTAA	AACCACTAAA	GAAATTCATC	СТААААТСТА	720
TGCCTACACC	ACACCGACAG	TAACCAGTAA	TGAAGGCTGG	ATTAAGATTG	GGTATACAGA	780
ACGTGATGTC	ACACAACGTA	TCAAGGAGCA	AACGCATACA	GCTCATATAG	CTACAGATGT	840
CTTATGGACT	GGTGATGCAG	CTTATACAGA	AGAGCCTGAT	AAGGGGAAAA	CTTTCAAGGA	900
CCATGATTTC	CACCATTTCC	TTTCTTTCCA	TGATGTAGAA	CGTCGTCCCA	AGACGGAATG	960
GTTCTATTTT	AATGGAACTC	CTGAAAAATC	AAAAAATCTT	TTTGATAAGT	TTGTTCAGCA	1020
TGATTTGTCT	GGTTATCAGC	CTGGAAAAGG	ACAGGACTAT	ACTCTGCGAC	AAGAGCAAGA	1080

			1244			
AGAAGCAGTT	GCTAAGACAT	TAGCTTATTT		GCTGGAGGCA	AGTTTCTCTG	1140
GAATGCCAAG	CCACGCTTTG	GTAAAACCTT	GTCTACCTAT	GACCTAGCTC	GACGGATGGA	1200
AGCTGTCAAT	GTCCTAATTG	TAACAAACCG	CCCTGCCATT	GCTAACTCAT	GGTATGATGA	1260
PTTTGAAACA	TTCATAGCAG	GTCAAACGAC	TTACAAGTTT	GTTTCTGAAT	CAGATAGCCT	1320
Paagagtcgt	CCAATCTTGT	CACGACAAGA	ATTTCTTGGT	ATTTTAGCTG	ACGATGTAAG	1380
ACAACTTGCT	TTTATCAGTC	TCCAAGACTT	GAAAGGATCT	GTTTATTTAG	GTGGAGAGCA	1440
CGATAAACTC	AAATGGGTAA	CTGATCTGCA	TTGGGACTTG	TTGGTTATTG	ACGAGGCTCA	1500
IGAAGGAGTT	GATACCTTCA	AGACTGACCA	AGCCTTTAAT	AAGATTCGAC	GAAATTTTAC	1560
rctgcatttg	TCAGGTACAT	CATTTAAAGC	ATTGGCTAAA	GGAGATTTTA	CAGAGGAACA	1620
AATCTACAAC	TGGTCTTATG	CTGATGAGCA	GGCTGCTAAG	TATTCGTGGT	CTCTTGAGCA	1680
AGAAGAGGAA	AATCCTTATG	AAAGCTTGCC	TCAGTTGAAT	CTCTTTACCT	ATCAAATGTC	1740
CAGATGATT	GGCGAAAAGT	TAGAAAAAGG	CGCTCAGATC	GATGGTGAAA	ATATTGACTA	1800
'GTTTTTGAC	TTAAGTGAAT	TTTTCGCTAC	AGATGATAAA	GGGAAATTTA	TTCATGAGCA	1860
rgatgtcaga	AATTGGTTAG	ATACTCTATC	AAGCAATGAA	AAATATCCAT	TTTCAACCAA	1920
AGAACTCCGT	AATGAACTCA	AGCATACTTT	TTGGCTTTTA	GAACGTGTCG	CTTCGGCCAA	1980
GCATTAAAA	GCCCTACTAG	AAGAACACCC	AATCTATGAA	AACTATGAGA	TCGTTCTAGC	2040
GCTGGTGAC	GGACGTATGT	CCGAAGAAGA	CGATAAAGTC	AAACTCAAAT	CCTTGGACTT	2100
GTTAGAAAA	GCGATAGCAG	AGAATGACAA	AACCATTACC	CTATCCGTTG	GTCAGCTGAC	2160
BACAGGTGTC	ACTATCCCTG	AATGGACAGG	TGTATTGATG	TTATCAAATT	TGAAATCACC	2220
GCTCTTTAT	ATGCAGGCCG	CCTTCCGTGC	TCAAAATCCT	TACTCATGGA	GCGATAACAA	2280
GGAAATCAC	TTTCGCAAAG	AAAGAGCCTA	TGTATTTGAC	TTTGCGCCGG	AAAGAACCTT	2340
ATTCTCTTT	GATGAGTTTG	CCAACAACTT	ATTGCTTGTA	ACTGCAGCTG	GTAGAGGAAC	2400
TCAGCTACA	CGCGAAGAAA	ATATTAGAGA	ATTATTAAAC	TTCTTTCCAA	TTATTGCCCA	2460
GACCGTGCT	GGTAAGATGG	TTGAAATTGA	TGCAAAGGCA	GTTCTAACCA	CTCCTCGCCA	2520
ATAAAAGCT	AGAGAAGTTC	TTAAACGAGG	TTTTATGTCC	AATCTCTTAT	TTGATAATAT	2580
AGTGGTATT	TTCCAAGCAA	GTCAAACAGT	TTTAGATATT	TTAAATGAGC	TGCCAGTTGA	2640
AAGGAAGGG	AAGGTACAAG	ATAGTTCTGA	TTTATTAGAT	TTTTCAGATG	TTACAGTCGA	2700
GATGAGGGA	AATGCAGTAG	TAGACCATGA	AATTGTAGTT	AATCAGCAAA	TGCGACTTTT	2760
GGTGAAAAA	GTTTATGGAC	TTGGTGAATC	TGTTGCTGAG	TTAGTCACAA	AAGATGAGGA	2820
CGAACTCAA	AAACAGCTGG	TCAATGACTT	GAGTAAGACC	GTTTCTTCAG	TGATTGTAGA	2880

GGAATTGAA	A GCAGATTATT	CTCTAAAAAC	AAGGGAAACT	GAGCAAATTA	AGAAACAAAT	2940
TACAGCAAC	A CTTGAGAATO	AAATTCGAAA	AAATGATATC	GAAAGAAAA	TTTCTGAAGC	3000
TCATATCAA	G CAAGAGTTGC	AACAGCAGCT	CAAAGAAGCA	AATGATAAAG	CGCAAAAAGA	3060
TAAGATTCA	A GAAGATTTGG	AAAAACGTTT	AGAAGAAAAT	AAACTCATTC	ATAAAGAAAA	3120
ACTAGAACA	A ACACTCAAAA	AAGAAGTGGA	AAAAATGCCT	GAGAAATTTA	TCGAACAGGT	3180
TGAGATAAA	A CGTGTGGAAC	AGTTGAAACA	ATCAGCTCAA	GATGAAATTC	GTGACCATTT	3240
ACGAGGGTT	T GCAAGAACAA	TTCCAAGTTT	TATTATGGCT	TACGGTGATC	AAACTCTAAC	3300
ACTTGATAA	T TTTGATGCCT	TTGTTCCTGA	ACATGTTTTT	TATGAAGTAA	CAGGGATTAC	3360
GATTGATCA	G TTTAGATATT	TGCGAGATGG	TGGGCAGGAT	TTTGCAGGGC	ATCTCTTTGA	3420
TAAAGCAACA	TTTGACGAAG	CTATTCAAGA	ATTTCTTCGC	AAGAAAAAGG	AGTTGGCGGA	3480
TTATTTTAA	GATCAAAAAG	AAGACATTTT	TGACTATATT	CCACCGCAGA	AGACCAACCA	3540
AATTTTCACT	CCTAAACGAG	TGGTGAAAAG	GATGGTAGAT	GATTTGGAAA	AGGAAAATCC	3600
AGGGATTTTT	GATGATCCAT	CTAAGACTTT	TATTGATTTA	TATATGAAGT	CAGGCCTCTA	3660
TATTGCAGAA	CTTGTGAAGC	GGTTATATAA	TAGCAATGGC	TTGAAAGAGG	CCTTTCCAAA	3720
TCCTGAAGAA	CGCTTAAAAC	ATATTTTGGA	AAAGCAAGTT	TATGGATTTG	CTCCGTCTGA	3780
GATTATCTAT	' AACATTTCCA	CTAATTTTAT	ATTTGGCAAT	CTTTCTAAAG	ATATCAGTAG	3840
GAAGAATTTT	GTTTTAGCAG	ATACCATTCC	AGCGGCTAAA	GAAGGGAGCA	TTCAAAAGTT	3900
GGTTGATTCC	TATTTTGAAA	ATAATTAAAA	AGAAGGCCGA	GTCAAAATTC	TTTGAAATCA	3960
GAAAAAACGC	ATAATATTGA	GTGCTTTTGT	ACTGCCCCC	AAAAGTTAGA	CAGAAAAAAT	4020
CTAACTTTTG	GGGGGCAGTT	CAGACAATCC	TTGGTATTAT	GCGTTTTATT	GTGGGAAGAT	4080
GTATAATGGA	TTGAAATAAG	ATATGAACAA	ATCAATTAGG	AATTTAAAGC	ATTTTATAAC	4140
AACGTTTTAG	AGTAATGGGG	GGCTATTTCA	ACTTCAACCT	ACTATAATAC	AGAAAAAAC	4200
AACTCCCTGA	TAATTCAAGG	AGTTGTCTAT	AGTTAAATTA	GTTTTTAGAA	GCTTCTTGGA	4260
ATTCTGGGTT	TTTCCATGCT	TCGTCAATGA	TAGCTTGTAA	TTCTTTAGCA	GATGCTTGCA	4320
TTTTTTGAGT	TTCTGCGTCG	TTCAATGGGA	TATTTACTGG .	ACGAACGATA	CCATGTGCAC	4380
CAACAACAGC	TGGTTGACCG	ATAAAGACAT	TCTCAACTCC	GTATTGACCT	TCTTGGAATA	4440
CTGAAAGTGG	AAGTACTGCG	TTTTCATCGT	CAAGGATTGC	PTTAGTGATA	CGAGCAAGGG	4500
CTACTGCGAT	ACCGTAGTAT	GTTGCACCTT	TTTTGTTGAT (GATTGTGTAG (GCTGCATCAC	4560
GAACACCTTC	GAACAATTCA	ATCAATTCAG	CTTCTTGAAC	ATTTTGAGTG '	TCTTTAAGGA	4620
					,	

			1246			
ATTCTTCAAG	GTTTACACCA	GCGATGTTAG	CGTGTGACCA	AACAGCGAAC	TCAGAGTCAC	4680
CGTGTTCACC	CATGATGTAG	GCGTGCACTG	AACGAGCATC	CACATCCAAT	TTTTCAGCAA	4740
	GAAACGAGCT	GAGTCAAGTG	AAGTACCTGA	ACCGATAACG	CGTTCTTTAG	4800
GGAAACCAGA	GAATTTCCAA	GTTGAGTAAG	TCAAAACGTC	AACTGGGTTA	GCAGCAACAA	4860
GGAAGATACC	TTTGAAACCA	GATTCAACAA	CTTGAGTTAC	GATTGATTTG	TTGATAGCAA	4920
GGTTTTTACC	TACAAGGTCA	AGACGAGTTT	CACCTGGTTT	TTGAGGTGCA	CCTGCAGTGA	4980
TCACAACAAG	GTCAGCGTCT	GCACAGTCAG	AGTATTGAGC	TGCATAGATT	TTTTTAGGTG	5040
AAGTGAAGGC	AAGGGCGTGA	CTAAGGTCAA	GCGCATCACC	AACAGCTTTT	TCATGCAATT	5100
GTGGAATTTC	GATAATTCCA	AGCTCTTGTG	CAATTCCTTG	GTTAACAAGT	GCAAAAGCGT	5160
AAGATGAACC	TACAGCACCA	TCACCGACAA	GGATAACTTT	TTTGTGTTGT	TTAGTTGAAG	5220
TCATTGTTTT	AAACATCTCC	TTAATTTTAT	TAGGGGATTT	TCCCTAGACA	ACTTCATT	5278

(2) INFORMATION FOR SEQ ID NO: 228:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1941 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:

ATAAGGAATC	TCTAAAAAAT	TTTAAGGAGA	ATCTAGCAAA	TGGATTTCAC	ATGGGCACTG	60
AAGTATGCCA	CTGAATTTTT	GGGAACTGCC	ATTTTGATCA	TTCTTGGGAA	TGGTGCAGTT	120
GCCAACGTTG	AACTTAAAGG	TACGAAAGGT	CACCAAAGTG	GCTGGATCGT	CATCGCTGTT	180
GGTTATGGTA	TGGGGGTTAT	GATCCCAGCC	TTGATGTTTG	GTAACGTATC	TGGGAATCAC	240
ATCAACCCTG	CTTTCACTCT	AGGGCTTGCA	GTTAGCGGTC	TTTTCCCTTG	GGCACAAGTG	300
GTACCTTACA	TTATCGCGCA	AGTCTTGGGG	GCTATCTTTG	GCCAAGCCTT	AGTTGTGGCA	360
ACATACCGTC	CATTCTACTT	GAAAACTGAA	AACCCAAATA	ACATCTTGGG	AACTTTCTCA	420
ACTATTTCAA	GTATTGACCA	TGGTACAAAA	GAAAGTCGCT	ATGCAGCAAC	TGTCAATGGT	480
TTGATTAATG	AGTTTGTTGG	TTCATTTGTT	TTGTTCTTTG	CAGCTCTTGG	TTTGACTAAA	540
AACTTCTTTG	GTGCTGAAGT	GCTTCAATTC	ATGAAACAAA	AGGCAACAGA	AGCAGGACAA	600
ACAGTTGATT	TTTCTGACTT	GGCTATTAAA	GCACAGGTGG	CTCCACACAC	TGCTTCAGGA	660
CTTTCTGTGG	CTCACTTGGC	ACTTGGATTC	CTCGTTATGG	CTTTGGTAAC	ATCACTTGGA	720
GGACCTACAG	GACCTGCCTT	GAACCCAGCC	CGTGACTTGG	GACCACGTCT	CCTTCATGCT	780

TTCCTTCCCA	AATCAGTTCT	TGGTGAGCAT	AAAGGCGATT	CAAAATGGTG	GTATTCTTGG	840
GTACCAGTAG	TAGCACCTAT	CGCAGCAGCA	ATTGCGGCAG	TAGCTGTATT	CAAATTCCTT	900
TATCTCTAAG	AAATAGCTCC	TTTAACATTT	GAGTGAGCAC	CATCTATAAG	TAAGAGAGGA	960
TCAGACTGGk	TCTCTCTTTT	kGATTTTTaG	GGAAATGAAA	GAACTCTAAA	CAAACTCCTC	1020
TCCAGCAGTG	GTTTAGAAGT	CTCAGTGGGC	TATTCCAGCT	TCAATGGACT	ATAGTAGGTT	1080
GCAGTTGAAA	TAATAGACCC	TTGTTTCTAA	AACATTGTGA	GAAATTGGTT	TGAATTCTCC	1140
AATCAAATT G	TGCAGTTTTC	ATTCTACTAT	ATATTATCGG	AATATTATCG	GAGATGGGTT	1200
CCCTATCTTG	TAAGTCTGCT	TTATAGTGGG	TTGAAGTTGG	AATAGTCCTC	CCTTCTTTCT	1260
CAAACATTGT	GAGGAATTGA	TTTACCTTCC	TCAACAAAAT	GTTCAGTTTC	TATTTCATTT	1320
TACTATAAAA	TAAGCGATTA	GGGGGGCTAT	TCTTCGACCT	ACATTGACTC	TGCTGAGTCC	1380
TATGATTGTT	ATCGTTTTAT	CTGCAATTTT	ATACTCAATG	AAAATCAAAG	GGCAAACTAA	1440
GAAGCTAGCC	GCAGGTTGTT	CAAAACACAG	TTTTGAGGTT	GTATAGTAGA	TTGAAACTAG	1500
AATAGTACAC	ATCTACTTCT	AAAACATTGT	TAGAAATCGA	TTTGACTGTC	CTGAACGATT	1560
TGCCCTATTC	TTGTTTCATT	TTACTATATA	AACCAGAGAC	TGTTTACATT	TTCAGCAAGT	1620
GAGTGGATGG	ATAATGCTGA	AAACTCCTTG	AAGGATAAGT	CTATTTAGTA	СТТТСТАТТА	1680
attagttaaa	TTTTTACCAA	GAATAATTCA	CAAAAACGTT	GTAAAACACT	TGCAATTTAG	1740
CTGAAATTTG	ATAAAATAGT	AAGGAAAGTT	AGACTGTATT	GCCTACTGTC	TATCTATAAA	1800
ATATATTTA	TTGGAGGCTT	TTACTCAAAT	GGCAAAAGAA	AAATACGATC	GTAGTAAACC	1860
ACACGTTAAC	ATTGGTACTA	TCGGACACGT	TGACCACGGT	AAAACTACCC	TAACTGCAGC	1920
TATCACAACT	GTTTTGGCAC	G				1941

(2) INFORMATION FOR SEQ ID NO: 229:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 755 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:

ATTTGAAGAA	ATTGAAGAAA	TCGTAGCCCC	TACAGATGGT	GAATTTTTGG	GGGAAGTTTT	60
ACTTGGAACT	GGGGTAGTTC	TCTTAATTGG	AGTAGCCTGT	TGTTAAAAAG	ATAGGGAGTG	120
ATAATCATGC	AAGATAACTT	TTTATTTGAG	GAAATTGAAG	AAATTTCAGT	ACCAGTTAAT	180

WO 98/18931 PCT/US97/19588

			1248					
GATTTTTCAG	CTGGACTTGC	AACAGGTATC	GGATTTGGTT	TAGCAATCCT	TGCTCTTGCT	240		
GGTTGTTGAA	GTTTGTTCAT	TTACTAACAT	CAAGCTTTTT	CAATTTCATT	TTAGACAGTC	300		
тттаааттт	TCCGTATTAG	TCTTGCAGCA	AGAGATTAAT	AGAATTAGTC	ATTATTTAT	360		
TGATTGCGGA	CTGAGGGACT	AGAGTATGTT	TTACTTAACC	CCTCTTTTAT	TTATTAAAGG	420		
PTAGGTTTGT	TATGAGAATT	GTTGATAAGA	TTAAGATATT	ACCTACTCCT	TATGAGGGAC	480		
ACTATCATTT	ATATATACCA	TCCAGTAAGA	AACATGTATT	AGTTGGGAAA	CAGGAAAAA	540		
atggttagag	CAACTAATAG	GTCAAGAATT	TACCATATCG	GACTTATTAG	TGTTAGTAGG	600		
GAAGAAATAT	TTTTAAAATA	TCTTGGGACT	TTAATATAAC	ATTATCTGAA	AAATTAAACT	660		
ATAAAAGATT	TAATAAGAAT	TTTGAAAAAA	TCCTATCTTG	TTGTCATTAT	ATTTGCAACG	720		
ATACATGAAA	TTAGTCATGC	AATAATTGCT	AATAA			755		
(2) INFORMATION FOR SEQ ID NO: 230:								

- - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1483 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:

C	CAGAAAAAC	CGTAGTGGAG	CTCGTGGAAC	AGTGGAATTG	ATTTTCCAAA	AAGAATACAA	60
T	AAATTTTCA	AGTATCTCAA	AGAGGGAGGC	ATAAGATGTC	AGATGCATTT	ACAGATGTAG	120
С	CAAGATGAA	AAAAATCAAA	GAAGAAATCA	AGGCACATGA	GGGACAAGTC	GTAGAAATGA	180
C	TTTGGAGAA	TGGTCGTAAG	CGCCAAAAAA	ATAGATTGGG	TAAGCTAATT	GAAGTTTATC	240
С	ATCTCTATT	TATTGTGGAG	TTTGGGGATG	TGGAAGGAGA	TAAACAAGTT	AATGTTTACG	300
T	TGAATCCTT	TACTTACTCA	GATATTCTTA	CAGAAAAGAA	TTTGATTCAT	TATCTTGACT	360
A	aagtgagaa	ATTTTCTCAC	TTTTTCTTTT	TTCTCCGAAT	AATTTAGGTG	AAGGCAATCA	420
т	CGCTTTATA	TTATTTTTCA	AGGAGGAAGA	ATGAAAATTT	TACCGTTTAT	AGCAAGAGGA	480
A	CAAGTTATT	ACTTGAAGAT	GTCAGTTAAA	AAGCTTGTTC	CTTTTTTAGT	AGTAGGATTG	540
A	TGCTAGCAG	CTGGTGATAG	TGTCTATGCC	TATTCCAGAG	GAAATGGATC	GATTGCGCGT	600
G	GGGATGATT	ATCCTGCTTA	TTATAAAAAT	GGGAGCCAGG	AGATTGATCA	GTGGCGCATG	660
T	ATTCTCGTC	AGTGTACTTC	TTTTGTAGCC	TTTCGTTTGA	GTAATGTCAA	TGGTTTTGAA	720
A	TTCCGGCAG	CTTATGGAAA	TGCGAATGAA	TGGGGACATC	GTGCTCGTCG	GGAAGGTTAT	780
c	GTGTAGATA	ATACACCGAC	GATTGGTTCC	ATTACTTGGT	CTACTGCAGG	AACTTATGGT	840

CATGTTGCCT	GGGTGTCAAA	TGTAATGGGA	GATCAGATTG	AGATTGAGGA	ATATAACTAT	900
GGTTATACAG	AATCCTATAA	TAAACGAGTT	ATAAAAGCAA	ACACGATGAC	AGGATTTATT	960
CATTTTAAAG	ATTTGGATGG	TGGCAGTGTT	GGGAATAGTC	AATCCTCAAC	TTCAACAGGC	1026
GGAACTCATT	ATTTTAAGAC	CAAGTCTGCT	ATTAAAACTG	AACCTCTAGC	TAGCGGAACT	1080
GTGATTGATT	ACTATTATCC	TGGGGAGAAG	GTTCATTATG	ATCAGATACT	TGAAAAAGAC	1140
GGCTATAAGT	GGTTGAGTTA	TACTGCCTAT	AATGGAAGCT	ATCGTTATGT	TCAATTGGAG	1200
GCTGTGAATA	AAAATCCTCT	AGGTAALTCT	GTTCTTTCTT	CAACAGGTGG	AACTCATTAT	1260
TTTAAGACCA	AGTCTGCTAT	CAAAACTGAA	CCCCTAGTTA	GTGCAACTGT	GATTGATTAC	1320
TATTATCCTG	GAGAGAAGGT	TCATTATGAT	CAAATTCTCG	AAAAAGACGG	CTACAAGTGG	1380
TTGAGTTATA	CGGCTTATAA	CGGAAGTCGT	CGCTATATAC	AGCTAGAGGG	AGTGACTTCT	1440
TCACAAAATT	ATCAGAATCA	ATCAGGAAAC	ATCTCTAGCT	ATG		1483

(2) INFORMATION FOR SEQ ID NO: 231:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1027 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:

CCCCCAAAAC	* ***********					
CCCGGAAAA	AAG CTAAAGT	TGAAGTTGGT	CAAGCAGTTT	ACGTTGAAAA	ATTGAACGTT	60
GAAGCTGGTC	AAGAAGTTAC	TTTTAACGAA	TTGTTCTTGT	TGGTGGTGAA	AACACTGTTG	120
TCGGAACTCC	ACTTGTTGCT	GGAGCTACTG	TAGTTGGAAC	TGTTGAAAAA	CAAGGAAAAC	180
AAAAGAAAGT	GGTTACTTAC	AAGTACAAAC	CTAAAAAAGG	TAGCCACCGT	AAACAAGGTC	240
ACCGTCAACC	ATATACAAAA	GTTGTCATCA	ACGCAATCAA	CGCTTAATTT	TAAGGAGAAC	300
ACATGATACA	GGCAGTCTTT	GAGAGAGCCG	AAGATGGCGA	GCTGAGGAGT	GCGGAAATTA	360
CTGGACACGC	CGAGAGTGGC	GAATACGGCT	TAGATGTCGT	GTGTGCATCG	GTTTCTACGC	420
TTGCCATTAA	CTTTATCAAT	TCTATTGAGA	AATTTGCAGG	CTATGAACCA	ATCCTAGAAT	480
TAAACGAAGA	TGAAGGTGGC	TATCTGATGG	TTGAAATACC	AAAAGATCTT	CCTTCACACC	540
AGAGAGAAAT	GACCCAGTTA	TTCTTTGAAT	CATTTTTCTT	AGGTATGGCA	AACTTATCGG	600
AGAACTATTC	TGAGTTCGTC	CAAACCAGAG	TTATCACAGA	AAACTAACAC	GGAGGAAAAC	660
ATTATGTTAA	AAATGACTCT	TAACAACTTG	CAACTTTTCG	CCCACAAAAA	AGGTGGAGGT	720

WO 98/18931 PCT/US97/19588

			1250			
TCTACATCAA	ACGGACGTGA	TTCACAAGCA	AAACGTCTTG	GAGCTAAAGC	AGCTGACGGA	786
CAAACTGTAA	CAGGTGGATC	AATCCTTTAC	CGTCAACGTG	GTACACACAT	CTATCCAGGT	840
GTAAACGTTG	GTCGTGGTGG	AGATGATACT	TTGTTCGCTA	AAGTTGAAGG	CGTAGTACGC	900
TTTGAACGTA	AAGGACGCGA	TAAAAAACAA	GTGTCTGTTT	ACCCAATCGC	ТАААТАААА	960
GGTCCATTGA	ACCTTTTATC	CCGAACCTTG	AAATGTAGAG	GTGAGGAAGC	TAGAAACAGC	1020
ТТААААТ						1027

(2) INFORMATION FOR SEQ ID NO: 232:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1990 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:

60	TTCAAGAGAT	ATTGTAGGTT	AATTAATTCT	AATCTACGTT	GGTGCAGGTA	CGGTTCAAAT
120	AACCTTTTGC	GTTAGTTCTC	AGATTTGATA	ATTGTGATAA	GAAATAGAGT	TTATTTAGGA
180	TGAAGGACAA	TATACTACTG	AATTGATTTT	AAACCACAGT	TTTACTCCTC	TCATTTAGGC
240	AGTTGTGTCA	AATGCTGAGA	GTTTGGGAAA	TTGCTGGAAA	GGGCTGAACC	TGTAATATTG
300	AAACATTGTC	AATTTGGTAG	TAAAAAAAAT	GGTTAGCTGA	GAAATTGTTG	AATAGCCTTA
360	CAGATTTTTA	GCTCATAATC	TAGAGCAATA	TCCAGATTGC	CTGCAACGCG	AGGTGGACAA
420	TTTTAATGTA	GCCGAAAAAT	TACTGAATCT	TTGGTTTAGA	GAACCTACCG	TATTTTAGAT
480	ACATAAATCT	TCTTCACATG	TATTATCATA	AAGGAAAAAC	AAGAGTTTGG	TTTAAAAGAT
540	CATTTTTTGG	GGCTCCATAT	TTTACAAAAT	AAATACTTTT	TTTTGTAAAA	ACTCGAAAAG
600	TGCAGAATAG	AATTTTTCAA	TATCAAATTA	ATAATTCAAC	GACTTTGTAG	TGATATGCGT
660	ACATCGAAGA	TTTAAAGTTC	AAATTTTAGA	AATTTTTAGA	TATCAAATTG	AATTTCTAGA
720	TTATCAATGA	ATCTTAGATG	AGAAGAAAAG	AAGTCCCTAT	TTTACAATAG	TAATGATAGT
780	TACAAGAAAG	AAATTAACCT	TTCAACAAGT	TTAAAAACTT	GCATGTGAAA	GGTAGGAAAA
840	CAAATCGGAC	AATTAAGGCA	AAGGCTGATC	GAGAAAAATG	AGAATAGGAG	TTATTTGCAA
900	TTTTAGAAGT	TTATTGCTTT	AAAAATGAGA	GATTATTGCT	GAGGTCTAGC	TTAGGTTTAA
960	TATAATAATA	ATGTTGTTTT	CCAATCTTAT	GTTTCTACAA	TTATTTCTCA	AAAGGTTTAA
1020	TTATGCAGAA	TAAAAACCTC	TTTAATGATA	GAACATTCAG	CTTCGATAAA	GGATTAAATT
1080	AGTTATTTAT	AGATGACTCA.	ATAATCGGGC	AGCTTTATTG	TTGGTGTTAT	TATACAATCA

AGGGTGACAA	TAGATAAAA	ATATGGGCTA	CTTGCTCTTA	AGTTATGCAG	TGGAGTTCGT	1140
CCTTTATATT	ATATTTTAGG	GATGAGTATC	TATTCTATAT	TAGGGTTGAT	AGTTCAAGAA	1200
ATTATTATAT	ATATAATTAC	GTTAGCGTTT	GAGATAAATA	TCGCAATGGA	TAGATTTTTT	1260
TATACAGTTT	TGTTATCTAT	TGTTGTTTTA	TTATTTTGGG	ACTCCCTTGC	AATTTTACTT	1320
ACAATGTTTA	TCAATGATTA	CAGAAGACGT	GATATTGTAA	TACGTTTTGT	ACTAACACCG	1380
CTTGGTTTTA	CAGCTCCTGT	TTTCTACTTA	ATAGATTCTG	CTCCTAGTAT	TGTGAGATGG	1440
ATTGGTCAGT	TAAATCCCTT	AACTTATCAA	TTAACTATTT	TGAGAAACTT	TTATTTAAA	1500
AATTCAACAA	CTTTGGAATT	AGTTTTCTTA	TTGTTAACAT	CATTACTTGT	CCTTATATCT	1560
GTATCTTTTA	TTATACCAAA	GATAAAATTG	ATACTGATAG	AAAGATAAAA	GTTGGGTCAT	1620
CCAACTTTTT	TGTTGTCTCC	CGAAAACCAC	TAGCTATGCT	AGTGGTTCCA	TAGAGCTTTT	1680
AGCGTGGTAA	CAAAAAGAAC	СТССТААААТ	GATAAGATAG	AAGTGGTTTC	TCCGCCACTA	1740
CAACATATCA	TACAGGAGGT	ACCTCATGAG	AGAGGATAAT	CAAAGTTTAT	CACATACCAC	1800
ATGGAATTGT	AAATATCATA	TTGTTTTTGC	ACCCAAATAT	CGTCGTCAAA	TCATTTATGG	1860
CAGATACAAA	GCTAGTATCG	GAAGAATCAT	ACGTGACTTA	TGTGAGCGTA	AGGGTGTAAT	1920
AATCCATGAA	GCGAATGCTT	GTTCAGACCA	TATTCACATG	CTTATCAGTA	TTCCTCCGAA	1980
CTTAGTGTT						1990

(2) INFORMATION FOR SEQ ID NO: 233:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4766 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:

GAACTATATT	GCATATATTT	CTAGCAATGA	TCATGGCGAA	TCTTGGTCTG	CACCAACTTT	60
ATTACCTCCT	ATAATGGGAC	TTAATCGGAA	TGCGCCATAT	TTAGGTCCTG	GACGTGGAAT	120
CATTGAAAGC	TCAACTGGAC	GTATTCTTAT	TCCGTCTTAC	ACTGGTAAAG	AGTCTGCGTT	180
CATTTATAGT	GACGATAATG	GAGCATCTTG	GAAAGTTAAA	GTAGTGCCAC	TTCCTTCTAG	240
TTGGTCAGCA	GAAGCACAAT	TTGTAGAATT	GAGTCCAGGA	GTAATTCAAG	CATATATGCG	300
TACAAATAAT	GGTAAAATTG	CATATTTAAC	AAGTAAAGAC	GCAGGTACTA	CTTGGAGTGC	360
ACCGGAATAT	TTGAAATTTG	TTTCAAATCC	AAGTTATGGA	ACACAATTAT	CAATCATCAA	420

WO 98/18931 PCT/US97/19588

1252 TTATAGCCAA TTGATTGATG GTAAAAAGGC TGTCATTTTA AGTACTCCAA ACTCCACAAA 480 TGGTCGTAAA CACGGACAAA TTTGGATTGG TCTAATTAAT GATGATAATA CAATTGATTG 540 GCGTTATCAT CACGACGTTG ATTATAGTAA CTATGGATAC TCATATTCAA CATTGACAGA 600 GTTACCAAAT CATGAAATTG GATTGATGTT TGAAAAATTT GATTCATGGT CTCGTAATGA 660 ACTTCATATG AAAAATGTTG TACCATATAT AACATTTAAG ATTGAAGATC TGAAAAAGAA TTAAAGCTGA AATTTGAAAA TATATAAAAA GAGGATAAAA ATTATGGTAA ATTACGGTAT 780 TGTTGGAGCT GGATATTTTG GAGCTGATTT AGCTCGCTCA ATGAACAAAA TTGAAGATGC 840 AAAAGTGGTT GCGGTATTTG ACCCAAATCA TGGAGAAGAA GTTGCTCAAG AGTTGGGATC 900 AGATGTTTGT GCAAGTTTAG ATGAACTTGT AGCACGTGAA GATATTGATT GTGTGATCGT 960 AGCTTCACCT AGCTACCTTC ACCGTGAACC AGTTGTGAAA GCTGCTCAAC ATGGCAAACA 1020 CGTATTTTGT GAAAAGCCAA TTGCATTGTC TTATGAAGAT TGTAAAGCCA TGGTTGACGC 1080 ATGTAAAGAA AATAATGTCA TCTTTATGGC TGGTCACATC ATGAACTTCT TTAACGGTGT 1140 ACACCATGCT AAAGAATTGA TTACTCAAGG TAAAATCGGT AAAGTTCTTT ATTGCCATGC 1200 TGCTCGTACA GGTTGGGAAG AACAACAACC AACTGTATCA TGGAAGAAAC TTCGTTCTCA 1260 ATCTGGAGGA CATTTGTACC ACCATATTCA TGAATTAGAT TGCATTCAGT TTATCATGGG 1320 AGGACTTCCT GAAAAAGCGA CAATGGTAGG AGGCAATGTA TATCATAAAG GTGAAAACTT 1380 TGGTGATGAA GATGATATGC TCATTGTAAA CTTAGAATAC TCTGATGATC GTTATGCTGT 1440 TTTGGAATAT GGTAATGCTT TCCGTTGGGG TGAACACTAC GTCTTGATTC AAGGAACTGA 1500 AGGAGCTATC AAACTTGACT TGTTCAATAC TGGCGGTACT CTTCGTGTTA AAGGTGAAGG 1560 AGAATCACAC TTCTTAGTTC ATGAAACTCA AGAGGAAGAT GATGATCGTA CAGCTATCTA 1620 TACCGGTCGT GGTATGGATG GAGCAATTGC GTACGGTAAA CCAGGAGTAC GTTGCCCATT 1680 ATGGTTGCAA ACATGTATTG ATAAAGAAAT GGAATATCTA CATGACATCA TTAAAGGTGG 1740 AGAAATTACA GAAGAATTTG AAAAACTTCT CAATGGTGTA GCTGCTTTAG AATCAATCGC 1800 TACCGCTGAT GCATGTACTT TATCAGTTAA AGAAGATCGA AAAGTAAGTC TTTCAGAAAT 1860 CACAAATGCT TAACTTTTGT AAAACAGAAT AGTAAATTCT TGTCATTATA TAATTTCTAA 1920 AGTTCTGTGA TACAACTCAT TGAATAAAGA AATAGAGATG GGACTGGGAT AATGCCCAGT 1980 CCCATTTTT ATCAAAAGT AATGAGATCA AAAATGTGGG AGTGTTGAAA TGAAGATTAT 2040 AGGTATCGAT ATTGGCGGAA CAACAATTAA GGCAGATTTA TACGATGAGT TTGGAACGAG 2100 TTTGAATCAT TTCAAAGAGA TAGAAACAAT TATTGACTAT GATTTGGGAA CGAATCAGAT 2160 ATTAAATCAG GTCTGTGATT TAATTGGTGA GTATACTTTA AATCATTCAA TTGATGGTGT 2220

T	GGATTTCC	ACTGCTGGAG	TTGTTAATGO	TAATACTGGA	GAAATCATCI	ATGCAGGCTA	228
T/	ACAATACCA	GGGTATATCG	GAGTAAACTT	TACTGCCGAA	ATAGAAAAA	GTTTTGGGTT	234
G1	PATACTTTT	GTTGAAAATG	ATGTTAATTG	TGCTGCATTA	GGTGAATTGT	GGAAGGGACA	240
AC	CCAAAGAT	AAGAAAAATG	TAGTAATGGT	TACTATTGGA	ACAGGTATAG	GAGGCAGTAT	246
TA	TTGTCAAC	GGACAAATTG	TTAACGGATT	TAACTATACT	GCTGGTGAAG	TAGGTTATAT	252
TC	CTGTAGGT	AATTCGGATT	GGCAAAGTAA	AGCCTCAACA	ACCGCATTGA	TTCATTTATA	258
TC	:AAAAAAAG	AGCTTGAAAA	CTAATCAAAC	TGGACGTACT	TTCTTCACTG	ATTTAAGATC	264
TG	GAGATAAA	GTTGCTGAAG	AAACTTTTGA	AATTTTTGTA	GAAAATCTAA	CAAAAGGTTT	2700
ΑT	TAACGATT	TCTTATCTAC	TTAATCCAGA	AATTCTCATA	TTAGGAGGTG	GGATTCTGGA	2760
TA	GTAAGGAT	ATTTTGTTAC	CTGAAATTCA	AAGTTCTTTA	GCTAAAAATG	CAATGGATAA	2820
TA	GGTTTTTA	CCTAAAAATC	TTGTGGCAGC	TACATTAGGA	AATGAAGCTG	GTCGTATAGG	2880
AG	CTGTAAAA	AATTTCTTAG	ATAGAATTTC	TAATAAATAG	TATGTAAGAT	AAGGAGGTGT	2940
CA	CAATGACT	AACTCTGTAT	TTTCGACAAT	GCAAGATATT	GAGAATGTTG	CAACCGATAT	3000
TA	TAAAATCA	TATGATAATG	AGATTTATAC	TTATAAAGCT	GTTTCCCAAG	AAGAATTGGA	3060
AΑ	AACTAGAA	AAAAGTTATG	ATGAAAAAAG	TCACGAAGAA	TTAGTTTCAA	TAGAAAGCAA	3120
TT	TAGAAATG	AAACAACAGA	ACCTTATTGA	TGAGGTTAAT	AAAACAATCA	AGGAAAATGA	3180
TG	CAAATATT	CAGTATATTT	CATCAAGTAG	GAGAGGAGAA	TTTGTAGAAA	AAATTATTGG	3240
TA	GGGTGGTA	GAAAAATATG	GCCATTAGTC	AGATGAAAAG	AATCTCTCTA	CTATTTTCTA	3300
AA	AGTAGTCT	TGATGATGTT	TTAAAAACTA	TTCAAGAACT	AGAGTCAGTG	CAGTTCCGTG	3360
ΑT	TTAAAGGT	TCAGGATAAC	TGGTCAGAAG	CTCTAGAAAA	AGATGAAGTT	GTATTTCCAA	3420
CT.	ATTCAAAT	TTTTCATACT	TCTAATTCCA	ATCATGGGGT	TATTGAGGGA	AATGATGCCT	3480
TG.	ACTTATTT	GATGAATCAA	CAACAACATT	TAGAAGCAAC	TGTAGAGAAA	TTACAAGAAT	3540
AC	CTACCGAA	AGAAAACACG	TATAAATTAT	TGCAGCAACC	TCCGATAACT	ACCTCTTATG	3600
AA	GAATTAGA	GAAATTTGGT	AAAGCTAATG	TTGCTGAGGG	TGTTCTTAAA	AAAGTGAATC	3660
AT	CAAATTAA	CAGAGTTCAT	GAATTAGAAA	GACACATTCA	AAGTAATAAT	GAGGAAATAG	3720
AG	CGATTAAT	AAAGTGGGAA	aaattagaaa	TTGTTCCTGC	GAATTTAGAA	CAATTITCTT	3780
TC	TGTAAAGG	AAAAGTCGGA	ACAATTCCAA	GGACTGAAGA	TAATCGCTTA	TACAATAGTC	3840
TT.	TAGAAAA	CAATATTGAA	GTTCAAGAAA	TATTTTCTAA	TGATAGAGAG	TACGGTGTTG	3900
TT	STTTTCTA	TCAGTCTAGT	TACTCTATAG	ATTTTGATGA	ATACTTATTT	GAACCATTTG	3960

PCT/US97/19588 WO 98/18931

			1254			
ATTATTCTAG	AAAGGAATTA	CCGAAGCAGC		TTTAGATCAA	GAAAACATGC	4020
AGTTAATAAC	TGAAAAAGAG	AATATTATCG	CATCGTTGCA	AGATTCAAAG	AAATATTTGA	4080
TAGATTTACA	ATGGCAAATA	GACTATATTT	TATCTATCTA	TGCTCGTCAA	ATCTCTAAGA	4140
ATAACTTTTT	GTGCACTCCG	CATCTAGTTG	CATTAGAAGG	ATGGATAGAA	GAAACTCGTA	4200
TTTTATATTT	TATAAAAGTT	ATGGATGAGC	ATTTTGGACA	TTCTATTTAT	ATTTATGAAT	4260
CGGAAACATT	GACGGATAAT	CAAGATGAAA	TACCTATCAA	ATTAACGAAT	CATTCTTTAA	4320
TTGAACCATT	TGAATTATTG	ACAGAAATGT	ATGCTCTGCC	CAAATATTAT	GAGAAAGATC	4380
CTACACCTGT	ATTAGCACCA	TTTTACTTTA	CATTTTTTGG	AATGATGGTT	GCTGATTTAG	4440
GCTATGGTTT	ACTATTGTTT	TTAGGAACAA	TGTTAGCATT	AAAAATTTTT	CATCTACCTT	4500
CAGCAACTAA	GAGATTTTTA	AAATTCTTTA	ATATATTAGG	GGTAGCCGTT	GCAATTTGGG	4560
GTGGAATCTA	TGGCTCATTT	TTTGGATATG	AGTTGCCATT	TCATCTGATA	TCTACAACCT	4620
CTGATGTCAT	GACTATATTA	GTAGTGTCAG	TTCTCTTTGG	GTTTATTACA	GTATTTGCAG	4680
GTTTGTTAGC	TTCAGGACTA	CAAAAAGTAA	GAATGAATAA	ATATGCAGAA	GCATATAATT	4740
CAGGATTTGC	GTGGTGTGTT	ATTCTG				4766
(2) INFORMA	TION FOR SE	Q ID NO: 23	14:			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2484 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:

60	TGAAACCAGA	CATCGTCATA	CATTATCATT	AATACGACAC	AAAATTAAAG	CCTTTTAGAA
120	ATTTCCCAGA	CTGGAACATC	GAAAGCCTTG	AGGTGGGATT	TTGGGAAGTC	CCCTGATGCC
180	CTGAGATGGA	ACTTGGATGG	ACCAACTCTT	GTTTTGATGA	AAAGCCGTCG	AAAAACCATC
240	CAGCTAATAC	GTCTGTGATA	ACTTGTCATC	ACCAAGGCGC	GATAGAGCCT	TCTTGTTGAA
300	TTGACCACCA	CTCATTAAGA	AGGTGATTTT	GCTATAGTCA	GATGATAAGC	TGCTCGTATC
360	GTAGCGCTAg	ACTAGTTCAA	TTGGGTCGAT	GTGACCTGTC	GATGTATACG	TCCAAATGAT
420	GATGCTGAGT	GGCAGATCGC	AACTAGCCTT	CAAACAACCC	CCTATTTGCC	aGaTGATTAC
480	ACCACTGCAC	CTACCCTTCT	GTCGCTTCCT	GGTGATACAG	AGGAATTGTC	TGCTCTTTGC
540	GCTCTCACTC	TGACTTTGCG	AACATAACTT	TATTTGAGAG	CCTGGCTGCT	GGACTCTTCG
600	TACGACCATC	AGGCTACATC	CTAAACTGCA	TACAAAATTG	CACTATGAGC	GCAAAATGGA

TGGAAGTGGA	TGAAAATGGT	GCTGCTCGCG	TTATCCTGAG	TCAGAAAATC	TTGAAACAAT	660
ACAATATAA	CGATGCTGAA	ACTGCGGCCA	TTGTAGGTGC	ACCTGGACGC	ATTGACAGAG	720
TGAGTCTCTC	GGGAATTTTT	GTCGAACAGG	CTGATGGCCA	CTACCGAGTT	CGCTTACGCA	780
GTAAAGTCCA	TCCTATCAAT	GAAATTGCCA	AGGAGCATGA	TGGTGGAGGC	CACCCTCTAG	840
CAAGTGGTGC	TAATTCCTAT	AGCCTAGAAG	AAAACGAAAT	CATCTACCAA	AAGTTAGAAG	900
ACTTGCTTAA	AAACTGATAA	AATACTTGCC	AAACTTTTCA	GAATCTGATA	GACTAGTATA	960
GTAACAATCT	ATGGCTCGCA	AAGAGACCAT	GGCAGAAAGG	AAATATTGCA	AAATGAAAAr	1020
AGATATCCAT	CCAGAATATC	GCCCAGTTGT	CTTCATGGAC	ACAACTACTG	GTTACCArTT	1080
CCTTAGCGGT	TCAACAAAAC	GCTCTAACGA	AACAGTTGAG	TTCGAAGGCG	AAACTTACCC	1140
ATTGATCCGT	GTGGAAATTT	CATCAGACTC	ACACCCATTC	TACACTGGAC	GTCAAAAGTT	1200
CACTCAAGCA	GATGGACGCG	TGGATCGTTT	CAACAAAAA	TACGGTCTCA	AATAATGATA	1260
AGAGAACAGT	TTTGGCTGTT	CTTTTTTGTT	TCTTGAAATC	AACTGCTGTT	TTCATGTTCC	1320
AGACTCATCT	GTAGGTTCGA	TTTCCATGCT	ACTAGGCAGG	AAGGAAATAG	CTGTTTCAAC	1380
ACGTCCATAA	TGAGCTATAC	TATTGTCACG	AACCACACTT	TCATTGATGG	TCCAAGTGGA	1440
ATTCATTTTC	TTAAAAGCTT	CTCGGACTTT	TTCCAAATCT	TTGGAGGCAA	TGGCCTGCTC	1500
TAAGGTTTCA	AAACGAGGAC	TTATACTCAT	CTGCTTTCAA	AAAGCATTCT	AGTCCATCTC	1560
CGATTACCGA	TGGACTTTAT	CACCTCCTTC	TCCAGTCCTT	GTATGACATC	TTGAAGTTGA	1620
TTCATGACAT	CTTCCAAAGT	TCgAAAGGCT	TTATTCTTAA	ATCCACGTTT	ACGAATCTCT	1680
TTCCACACTT	GTTCAATGGG	TTCATCTCTG	GTGTGTATGG	AGGAATAAAG	GTAAAATCAA	1740
TATTAGTCGG	AATATTTAAG	GTACTTGATT	TATGCCATAT	AGCATTGTCC	ATAACGAGTA	1800
AAAGGATAAG	CTTGTGAAAG	CTCTTCTAAA	AAGGCGTTCA	TCCACACTCC	TTTTTATAAA	1860
CCTGAAATAA	GGCATCAATT	GTAACAAATT	CTCCTGCCTC	TGTAGCCTTC	AAATGACGGG	1920
CAAGAAAGGC	TTTCTCTTCC	TCAACTGTCA	TATATGCATG	GTTACGACCA	CCACGTGTTT	1980
CTTGAAGGAG	AGAGTCGAGT	CCGAACTCCT	CATATTTTTT	TACGTTTCGC	CAAATCGTTG	2040
TTTGATTACA	GTCTAAAAGC	TCTATAATCT	CTTTATAAGA	TTTGCCCATC	AGACGAAATA	2100
TAGTAGATTG	AAACTAGAAT	AGTACACCTC	TACTTCTAAA	ACATTGTTAG	AAATCGATTT	2160
GTCCTGTTCT	TGTTTCATTT	TACTATAGAA	CGATTTGAAG	GCGTTTATAA	TATTTAGCTG	2220
TACGAGAGTC	TTTTAAAAGT	GTTTTGATGG	TTTGGATTTC	TTCTTTAGTT	GATTTCATAT	2280
TACTATTATA	TAATGCTTTT	TGATTTTAGT	CTGGTATAAA	TATTGCTTTC	CTCCAAAATG	2340

GTCATAGTTT	TACTGGCAAA	TCTAACATAT	1256 CACGGATAAA	TTAACAAGTG	ATTTCTGAAT	2400
TGCTAAACAT	TTTCTTTTCT	TATAGCATAC	TTTAAGATTT	TGTCTTTGAG	AAAGATATTT	2460
CCAAGAAAAA	CGTTCGTTTT	TTGG	•			2484

(2) INFORMATION FOR SEQ ID NO: 235:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1766 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:

CTAGATATAG	CTATAATTTT	ATTTATAACA	AGAGGATAGA	AATGACCGAA	TTAGAAAGAA	60
AAAATCGAAA	AATTAGCTAA	GAAATATTCT	GATAACTTAA	ACATCAAAGT	TCAAGAGAGA	120
GTTCGTGAAA	TGGCAAATGA	TAATAAGAGC	CATTATTTGA	TATACAGAGT	TTTAGGTATT	180
TCATTTGAAG	AAGGAGAAAA	TATCGATTTG	TATCAAAATA	AAGGTCGTTT	TTTATACAAA	240
TATGCTGGTT	CATTTTTAGA	AGAAGCTGCA	GTACTATGCT	TTAACGAAAA	ATTTGGTACA	300
GAAAATACTT	AAAAAGTTAA	CATTCCTAAT	TCTGAAAGTA	CAAAACCTAA	GACTTTTGAA	360
ATTGATTGTT	TAGTCGGAGA	AAAACACGCA	TACGAAATAA	AATGGTGGGA	TGCAACTACA	420
GATGGAGACC	ATATAACTAA	AGAACACACT	AGAATAAAAG	TTATTCATAA	CAAAGGATAT	480
ATACCAATTC	GGTTAATGTT	CTACTATCCA	AATAGAACTC	AAGCTATAAA	AATTCAGCAA	540
ACTTTAGAAA	CATTGTATAA	CGGTATTGGA	GGGAAATATT	ATTATGGAGA	TTCTGCCTGG	600
GAACATTTAA	GAGCAGTGAC	CGGTATTGAT	TTACTTAGTA	TTCTAACAGA	TATTGCAAAT	660
AAAAAAACAG	GGGTAAAATC	AAAATGACAG	TATTAAAAGG	AGATAACTTA	GAAATATTAA	720
AAACTATTGA	ATCCTCAAGT	ATTGATTTAA	TCTATATGGA	CCCTCCTTTC	TTTACACAGA	780
AAACCCAAAA	ATTATCTAAT	AACAAAAATA	TTATGTATTC	ATTCGAAGAT	ACGTGGAC1 T	840
CGATTGAGGA	TTACAAAGAA	TTTTTGTCTG	TAAGATTAGA	AGAATGCAAA	AGAGTGCTAA	900
AAAATAGTGG	CAGTATTTTC	GTTCATTGTG	ATAAAATTGC	AAATCATCAT	ATTAGATTAA	960
TTTTAGATAA	TATCTTTGGA	GTAGATATGT	TTCAAAGCGA	AATTATATGG	AACTATAAAC	1020
GGTGGTCTAA	TTCAAAAAAG	GGATTATTGA	ACAATCATCA	AAACATTTAC	TTTTATTCAA	1080
AGTCAAAAGA	TTTTAAATTT	AATACAATTT	TTACAGAGTA	TTCTTCTACT	ACAAATATCG	1140
ACCAAATACT	AGTGGAACGA	AAACGAGATG	GAAACTCTAA	AACTATATAT	AAGGTTGATA	1200
ATAATGGTAA	CTATATTCTA	GCAAAAGAGA	AAAATGGAGT	TCCCCTTTCA	GATGTTTGGA	1260

ATATACCA	TT TCTTAATCCA	AAAGCTAAAG	AAAGAGTAGG	TTATCCTACA	CAAAAACCTA	132
TTCTGTTA	TT AGAACAAATT	ATAAAGATTG	CTACTGATAA	AAATGATATA	GTTTTAGACC	138
CGTTCTGTC	G AAGTGGAACT	ACTTTAGTAG	CCTCCAAGAT	TTTGAATAGA	AATTATATGG	144
GGATTGATT	T ATCTGAGGAA	GCTATCAATA	TAACTCAGCA	ACGTCTGGAA	AATGTTATAA	150
AAACAAGTT	C AAATTTATTG	AATAAAGGAA	TCGAAGCATA	TAGAACCAAA	ACTGAGGAAG	1560
AGGAAAACA	T TCTTAAATTA	TTACAGGCAA	AAATTGTTCA	AAGAAATAAA	GGAATTGATG	1620
GTTTTTAC	C TAAACATTTT	CAAAAAAAAC	CGATACCTAT	AAAAATTCAA	AAAAATAATG	1680
AATGTCTGA	A TGAGAGTATC	TCTTTATTAC	AGAATGCTAT	AAACTCCAAA	AAACTTGATT	1740
TTGGAGTAG	т татаааааст	CATTCG				1766

(2) INFORMATION FOR SEQ ID NO: 236:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 748 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236:

CCGAAAATCA	AATTCAAACC	ACGTCAACGT	CGCCTTGCCG	TACTCAAGTA	CAGCCTGCGG	60
CTAGTTTCCT	AGTTTGCTCT	TTGATTTTCA	TTGAGTATTA	AACTAAATTA	AATAATATTA	120
GCGCGGAGAA	TTTCTAATTC	TTCCTTGGTC	AAGCGACGCC	ATTCCCCTCG	TTCTAGGTTC	180
TCATCTAATA	CTAAAGTTCC	CATAGTCAAT	CGTTGCAAGT	CCACCACTTC	CTTGCCACAG	240
TAGCCCACCA	TACGCTTGAT	CTGATGAAAC	TTCCCTTCTG	CAATGGTCAC	ACGGATTTGG	300
CTTTGATTCT	TTTCTGTATC	TATGGATACA	AGCTCCAGTA	TAGCGGGTTG	ACAGGTAAAG	360
TCTTTGAGAG	GAATACCCTC	AGCAAATGTC	TCCACATCTT	CTTGGGTCAT	GATTCCCTTG	420
ACTTGTGCCA	GATAAGTCTT	GTCCACATGA	CGCTTGGGCG	AAAGAAGAAC	ATGAGCCAGC	480
TGACCATCAT	TGGTCAAGAG	CAAAAGACCA	TGCGTGTCAA	TATCCAAGCG	TCCTACTGGG	540
AAAACTTCCT	TACTCCGCGC	CAAGTCATCC	AACAAGTCCA	GAACGGTTCT	GTGCTTGGGA	600
TCCTCAGTCG	CTGAGATAAC	TCCTTTGGGC	TTGTTCATCA	TGTAGTAGAC	AAACTCTTCA	660
TACTCCAACA	CTTGCCCATC	AAAGCGAATC	TCATCTATTT	TTTCATCAAT	CTGCAATTTA	720
GCTGATTTTT	CTTTTTGACC	ATTTACAG			٠	748

(2) INFORMATION FOR SEQ ID NO: 237:

WO 98/18931 PCT/US97/19588

1258

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1449 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:

AAAAGATTAC	ATTGCAACAA	TTGAAAATTA	TCCAAAGGAA	GGCATTACCT	TCCGTGATAT	60
TAGTCCTTTG	ATGGCTGATG	GAAATGCTTA	TAGCTACGCT	GTTCGTGAAA	TCGTTCAGTA	120
TGCTACTGAC	AAGAAAGTCG	ACATGATCGT	GGGACCTGAA	GCTCGTGGAT	TTATCGTGGG	180
TTGTCCAGTT	GCCTTTGAGT	TGGGAATTGG	TTTTGCGCCT	GTTCGTAAGC	CAGGTAAATT	240
GCCACGCGAA	GTTATTTCTG	CTGACTATGA	AAAAGAGTAC	GGTGTCGATA	CCTTGACTAT	300
GCACGCGGAT	GCCATTAAGC	CAGGTCAACG	TGTTCTTATT	GTAGATGACC	TTTTGGCGAC	360
AGGTGGAACT	GTTAAGGCAA	CTATCGAGAT	GATTGAAAAA	CTTGGTGGTG	TTATGGCAGG	420
TTGTGCCTTC	CTTGTTGAAT	TGGATGAATT	GAACGGCCGT	GAAAAAATTG	GTGACTACGA	480
CTACAAAGTT	CTTATGCATT	ATTAATGAAA	ACAGTCCCTA	GGGCTGTTTT	CTCTACACTA	540
GGATATAAAA	ATAGACTATA	ACTAGTTAGA	GAAAAACTAT	AATTGAAAAC	TATATCTTCT	600
TGCAGTATAA	TAAAAGGACT	AAGTGTTTGA	GATTTGTCTT	CAAACATATG	CAATTATTCC	660
TGAAAGĀGTA	CAGTTAGGAG	AGGGTTATGC	CGATTCGAAT	TGATAAAAA	TTGCCAGCTG	720
TTGAGATTTT	ACGGACAGAG	AATATCTTTG	TCATGGATGA	TCAACGTGCT	GCCCACCAAG	780
ATATCCGTCC	TTTGAAGATT	TTAATTTTAA	ATCTCATGCC	ACAGAAAATG	GTCACAGAGA	840
CCCAGTTGTT	GCGCCACTTG	GCTAATACAC	CCCTACAACT	GGATATTGAT	TTTCTCTATA	900
TGGAGAGCCA	CCGTTCTAAA	ACAACTCGTT	CAGAGCACAT	GGAGACCTTC	TATAAAACTT	960
TTCCTGAAGT	CAAGGATGAG	TATTTTGATG	GGATGATCAT	CACGGGTGCT	CCAGTTGAGC	1020
ATTTACCATT	TGAGGAAGTG	GACTATTGGG	AGGAATTTAG	ACAGATGCTT	GAGTGGTCTA	1080
AGACTCATGT	CTATTCGACC	CTTCATATCT	GTTGGGGGGC	TCAGGCTGGG	CTTTATCTGC	1140
GCTATGGTGT	AGAAAAATAC	CAGATGGACA	GTAAGCTATC	AGGTATTTAT	CCTCAGGACA	1200
CCCTAAAAGA	GGGTCACCTT	CTATTTAGAG	GCTTTGATGA	TAGCTATGTA	TCCCCTCATT	1260
CACGGCACAC	GGAGATTTCT	AAGGAAGAGG	TCTTAAACAA	GACCAATCTC	GAGATTTTAT	1320
CAGAAGGACC	TCAGGTTGGG	GTTTCTATTW	TGGCCAGTCG	TGATTTACGA	GAAATTTATA	1380
GTTTTGGTCA	TTTGGAGTAT	GACCGTGATA	CTTTGGCAAA	AGAGTATTTT	CGAGATCGTG	1440
ATGCAGGTT						1449

(2) INFORMATION FOR SEQ ID NO: 238:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 904 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:

TACCCGCTTC	TTTCAAGAGT	TGGAGCAGGG	CTTGTTTGCG	ATCTTTTGTC	ATAGTTCTTC	60
CTTTTAACGG	CGTTTTCGAA	GCACTTTATA	GACAGCTAGT	GCTAATGTAT	AGTCTACCAT	120
ACTATGGATA	ATTGTACCAA	ATCCAACTAG	TACAAATAGA	ACATAAAACA	TATTTTCTAC	180
ATTGGTACCA	GAAGTTGCGT	AAAAAACGAC	ACAGGCCAAT	ACTTCAGCAA	GGGCATGAAC	240
AACAGCCAAA	ACAAAGTTGA	AAATCCAGGA	AGATTTTGGT	TTATCTAGGG	TATCGGGGAA	300
TTTTTGTAGG	TAAAGAGCTC	CTAAAGCACC	AAAAGATATA	TGGGAAAAAG	CCCGAAAAAC	360
GATAACCATG	GGATAGCCAG	CCATCAAAAA	TCCAAAACTA	GAGGCTAGGA	TGACAAAAAC	420
TGCCATCAAG	GGCGACAAGA	ACATGGCTAT	AAAAATAGCG	ATGTGGCTCC	CCAAAGTATA	480
GGAAGCAGGT	GGAATGACAA	TCTTGAAAGG	CATAACAATT	GGAATCAAAA	TCGCAATAGC	540
CGTTAAAAGG	GCTGTCATTG	TCATAAATTG	TGTCTTTTTC	CGTGTATTCA	CAAGAATCTC	600
СТТТТТААСТ	GCATATACAC	TAGTATGGTA	CAATAAACCA	GACAATAAAG	CAAGAATTTA	660
CTTGGGTTTA	TAGATCATTT	TTTAGTTAAA	AGTTATAGTA	GATTGAAACT	AGAATAGTCC	720 🤾
ACCTCTACTT	CTAAAACATT	GTTAGAAATC	GATTTGGCTG	TCCTGATCGA	TTTGTCCTGT	780
TCTTATTTCG	TTTTACTATA	GTAAAGATTT	CATTAAAAAG	AAACTGTATA	GAGCAAAATC	840
TCCACCTTCA	GGTTTGGAAA	GCGGAGATTG	TTTnTTATTT	TTTCCAGGGT	TTGTAGTCGT	900
GGGA	·			•	•	904 .

(2) INFORMATION FOR SEQ ID NO: 239:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 946 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:

CACTCAAACA TGACTTATAT CAAGACGGAT GGACTTCAAG ACGATGCCAA TCGCTTGAAT

60

			1260			
CGTAACATTC	AGTTTGGTGT	TCGTGAATTT	GCAATGGGAA	CAATCTTGAA	CGGGATGGCC	120
CTTCATGGTG	GACTTCGTGT	ATACGGTGGA	ACTTTCTTCG	TCTTCTCTGA	CTATGTGAAG	180
GCAGCTGTCC	GCTTGTCAGC	CTTACAAGGA	CTTCCTGTGA	CTTATGTCTT	TACCCATGAT	240
TCAATCGCAG	TTGGGGAAGA	TGGTCCGACT	CATGAACCAG	TTGAGCATTT	AGCAGGTCTT	300
CGTGCTATGC	САААТСТААА	TGTTTTCCGT	CCAGCAGATG	CGCGTGAAAC	GCAAGCAGCT	360
TGGTACCTTG	CAGTGACAAG	TGAGAAAACA	CCAACTGCCC	TTGTCTTGAC	ACGTCAAAAT	420
TTGACTGTTG	AAGATGGAAC	AGACTTCGAÇ	AAGGTTGCTA	AAGGTGCTTA	TGTTGTATAT	480
GAAAATGCAG	CCGACTTTGA	TACCATCTTG	ATTGCGACAG	GTTCAGAGGT	TAATCTTGCT	540
GTCTCAGCTG	CTAAAGAATT	GGCTAGTCAA	GGCGAAAAA	TCCGCGTAGT	CAGCATGCCA	600
TCTACAGATG	TCTTTGATAA	ACAAGATGCA	GCTTACAAGG	AAGAAATTCT	TCCAAATGCA	660
GTCCGCCGTC	GTGTTGCAGT	CGAAATGGGT	GCAAGTCAAA	ACTGGTACAA	ATATGTTGGT	720
CTCGATGGTG	CCGTTCTAGG	TATTGATACT	TCGGAGCCTC	TGCCCCAGCA	CCAAAAGTAT	780
TGGCAGAATA	TGGCTTTACT	GTAGAAAATC	TTGTAAAAGT	TGTTCGAAAC	TTGAAATAAT	840
CCTAAAAATC	AGGGCGTAAG	CTCTGGTTTT	TCTTACCAGA	AAAGTAAGGT	ACAATCTTGT	900
AAAAGTAGCT	GAAATTTGAT	ATAGTAGTCC	TATGTAAAAG	ACAAAG		946
(2) INFORMA	TION FOR SE	Q ID NO: 24	0:			

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2764 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240:

CGGGG	CTCCc	TAGTTCTTAG	GGAGCTATTT	TTGTTTTTTC	AAGAAGTTAT	CTTCTTGTAT	60
TTTAT	ACTCA	ATGAAAATCA	AAGAGCAAGC	TAGGAAACTA	GCCGTASSTG	CTCAAAACAC	120
TGTTT	rgagg	TTGTAGATAA	GACTGACAAA	GTCAGGAACA	CATATCTACG	GCAAGGCGAC	180
GTTGA	CGCGG	TTTGAAGAGA	TTTTCGAAGA	GTATTAGTTG	TGAATCTGGT	GCAGTCGTCC	240
CAGAT	PATTC	TTATTAGTAG	GGTCTTGTTT	TCTATATCCC	CTCGTAGTTA	ACAAGACCTT	300
GAGCAT	TTTTA	GAAAGAGGAA	TCTATGTCTA	CGAAATATAT	TTTTGTAACT	GCTGGTGTGG	360
TATCGT	CCAT	TGGGAAAGGG	ATTGTGGCAG	CGAGTCTAGG	CCGTCTCTTG	AAAAATCGTG	420
GTCTC	LAA GT	AACCATTCAA	AAGTTTGACC	CTTATATCAA	TATTGATCCG	GGAACCATGA	480
GTCCTI	ACCA	GCACGGGGAA	GTTTTTGTGA	CAGATGACGG	AGCTGAGACA	GATTTGGACT	540

TGGGTCACTA TGAACGTTTC ATC	GATATCA ATCTCAACA	A ATATTCCAAC	GTGACAACTG	600
GGAAAATTTA CAGTGAAGTT CTT	CGTAAAG AACGCCGTG	G AGAATACCTT	GGGGCAACTG	660
TTCAAGTCAT TCCTCATATC ACAC	GATGCTT TGAAAGAAA	A AATCAAGCG1	GCCGCTCTAA	720
CGACCGACTC TGATGTCATT ATC	ACAGAGG TTGGTGGAA	C AGTAGGAGAT	ATCGAGTCCT	780
TGCCATTCCT AGAGGCTCTT CGTC	CAGATGA AGGCAGATG	T GGGTGCGGAT	AATGTCATGT	840
ATATCCATAC AACCTTGCTT CCTT	PACCTCA AGGCTGCTG	G TGAAATGAAA	ACCAAACCAA	900
CCCAACACTC TGTCAAAGAA TTGC	GTGGCT TGGGAATCC	A ACCAAATATG	TTGGTTATTC	960
GTACAGAAGA GCCAGCTGGT CAAC	GAATTA AAAATAAAC	T GGCCCAGTTC	TGTGATGTGG	1020
CACCAGAAGC CGTTATCGAA TCG1	TTGGATG TTGAACACC	TTACCAAATT	CCACTGAACT	1080
TGCAGGCACA AGGGATGGAC CAAA	TTGTTT GTGATCATT	r gaaattagac	GCACCAGCAG	1140
CGGATATGAC AGAATGGTCA GCCA	TGGTGG ACAAGGTCA	r gaacctcaag	AAACAAGTTA	1200
AGATTTCCCT TGTTGGTAAG TATG	TGGAGT TGCAAGATG	СТАТАТСТСА	GTGGTCGAAG	1260
CCTTGAAACA CTCTGGCTAT GTCA	ATGATG CAGAAGTTA	A AATCAATTGG	GTCAATGCCA	1320
ATGATGTGAC AGCAGAGAAT GTAG	CAGAAC TCTTGTCTG	TGCGGACGGG	ATCATCGTAC	1380
CAGGTGGTTT TGGTCAACGT GGTA	CAGAAG GGAAAATCC	AGCCATCCGC	TATGCGCGTG	1440
AAAATGATGT TCCAATGTTG GGAG	TCTGCT TGGGAATGC	GTTGACATGT	ATCGAGTTTG	1500
CTCGTCACGT TTTAGGTCTT GAAG	GTGCCA ATTCTGCAGA	GCTTGCACCA	GAAACAAAAT	1560
ACCCTATCAT TGATATCATG CGTG	ATCAGA TTGATATTGA	GGATATGGGT	GGAACCCTTC	1620
STTTGGGACT TTATCCGTCT AAGT	TGAAAC GTGGCTCTAA	GCTGCTGCT	GCTTATCACA	1680
ATCAAGAAGT GGTGCAACGC CGTC	ACCGTC ACCGTTATGA	GTTTAATAAT	GCCTTCCGTG	1740
AGCAGTTTGA GGCAGCAGGT TTTG	TCTTTT CAGGAGTTTC	TCCAGACAAT	CGTTTGGTAG	1800
AAATCGTGGA AATTCCTGAA AATA	AATTCT TTGTAGCTTG	TCAGTATCAC	CCTGAACTGT	1860
CAAGCCGTCC AAACCGACCA GAAG	AACTCT ACACTGCCTT	TGTTACTGCA	GCAGTTGAGA	1920
CAGCAATTA GCAAAATCAG AACC	TTTGAG AAAAATCTCA	GAGGTTTTTT	GCATACGATG	1980
TATTGCAGT ATATCTGAGG TAGG	GGTCCT CTGTATGTAC	CTGCTACCGT	TGAAATCAAT	2040
GCGACTCCC TCTTGCCCTG TGCT	AGTGAA TGGATTTATC	AGTATATTGA	AATGAAATAA	2100
ATTTGAACA AATTAATTCG GAAAG	GCCAAA TCAATTTCTA	GCAAAGTTTT	AGGAACTGGA	2160
TGTATAGTG AATTGAAATA AGATG	GTGAAC ATCTCTATCA	GGAAAGTCAA	ATTAATTTAT	2220
GAAATATTT TAGCAGTCAA GATG	FACTGT TATAGATTCA	ATACATTATA	CTTTTTTAAT	2280

			1262			
TTAATCCACT	ATAGTAAAAT	GAAATAATAA	CAGGACAAAT	CGATCAGGAC	AGTCAAATCG	234
ATTTCTAACA	ATGTTTTAGA	AATAGAGGTG	TACTATTCTA	GTTTCAATAT	ACTATCCCAA	240
ATCATTCATA	CCTCTCTCAA	CTAGATGTAA	CTTACAAAAC	CCCTGACCTC	ATGAGCCACT	2460
TTCTTCCTCC	TCATGAGGTC	AGTTTTACTT	TCTGCTGTTC	CAGTATCGTT	TTTCCTCGCT	2520
AGATTTCCTC	AAAAGGGCAG	ACTCCTCCCT	TGGTGCGTCA	CACGATTTTT	TCATCTCGAC	2580
TGTTCTTTAA	TGCATCATTA	ACGACGCTTT	TCTTCTAGGT	GGTTCATAAG	GAACAGGAAG	2640
ATTCAGGTTG	ACTTTTCTAA	TCCTAGAATA	AAGTGCTGAA	AACAATTCGG	AATAGGCATA	2700
GAGACTAGAC	AATTTGAGGA	GCTGCTTGCG	TCCTGTTCGA	ACACATTTTC	CCACCACGTG	2760
AAGA						2764

(2) INFORMATION FOR SEQ ID NO: 241:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1682 base pairs (B) TYPE: nucleic acid

- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241:

CCGTTTTTT	CATTGTTCAG	TACTACAACT	TACGTTGTAG	CGCCCTGCAC	ATTGGTTCGT	60
CTTGTTCAGT	TTTCAAAGGT	CTTTGTCACT	TGCTTCTCTC	AAGCGACAAC	TATATTAGTA	120
TATCACAACT	GCTTTCGCTT	GTCAACACTT	TTTTGAAGAT	TTTTAAGTTT	TTTTAAACTT	180
TTTTTCATCA	AGTGGTCCTG	ACGCAACATA	CCATAGTCCG	TACGGGATTC	GAACCCGTGT	240
TACCGCCGTG	AAAAGGCGGT	GTCTTAACCC	CTTGACCAAC	GGACCTGAGT	TGTTATTTTC	300
AACTCTTACT	ATTATACAGT	CTTTTCAAAC	TTTGTCAACT	ACTTTTTTAA	ACTTTTTTTA	360
TTAATTTTAC	AACAGCTTCA	GTTCGAGCTG	TATGTGGGAA	CATATCGACC	GACTGGATAT	420
AATĢAAGATC	ATAGACTTCT	ACTAAGCGTA	CCAAATCACG	AGCCAAGGTC	GAAACATTAC	480
AAGAAATATA	AACCATTTTT	TCTGGTACAT	AAGTAAGAAT	AGTATCTAAT	AACTTATCAT	540
CCAGACCTGT	ACGTGGTGGG	TCAACAATCA	AAGCATCTGC	TCGGTAGCCT	TCCTTGTACC	600
AACGAGGAAT	AATCTCTTCT	GCCGTTCCAG	CTTCATAATG	AGTATTGTCA	AATCCCATTC	660
TTTTAGCATT	TCGCTTGGCA	TCTTCAATAG	CTTCTGGAAT	AATATCCATA	CCTCTGAGTG	720
TTTTTACTTT	CTTTGCAAAG	GCAAATCCAA	TCGTTCCAAC	TCCACAATAA	GCGTCAATCA	780
AATGGTCTTC	TTTATCAACA	TCCAGCGCTT	TTACTGCTTC	GCTATAGAGG	ACTTCTGTTT	840
•	TAGTTGATAA					900
					_	•

PCT/US97/19588

1263

CTTCTTGAAT ACTCTCTTGC CCCCAGATAA TCTCTGTCTT TTCACCATAT ATCTCACTGG 960 TTTTAGCTGT ATTTGTATTA ACAGCTACTG TCACAACTTC TGGGAAATCT TTAACCAACT 1020 1080 CTTTTACCAA TTGAGTTAAA TTAAGCTGGC GGTTTGTAAC AATAATAATC TGAACCTGTC CGGTCTTTCT CGCGCGTCGG ACCATAATAG TACGGACACC TAGAACTTTT CTCTCATCCG 1140 TGATTGGAAT CTGGTGATAA GTAAGTAATT CTGCTAAGCG ATTAGCAATC ACTTGGGTTT 1200 CCTTATCTTG TACCAGGCAG TCTTTCAACT CTACTAAATA GTGAGAGTTT TGTGCATATA 1260 AGCCCGCCTT GACCTGATTT TTAAATTTTC GAGTCTGAAA TTGTAACTTA GCTCTGTAAT 1320 ATTTTGGTTC CTGCATTCCA ATAGTTGGAC GAATTTCATA ATTTTCATAT CCTGCAGGAG 1380 CAAATTTTT CAGCGCTTGA TGAAGTAAGT CCGTCTTGAA CTCCAGCTGC TTATCATAAT 1440 GCAGGTGCAT GATTTGGCAG CCTCCGCATT CATTATAAAT AGTACAAGAT GGCACAATTC 1500 GAAATTTAGA CTTCTTGTTG ACCTTCAGTA ATTTTGCTTC AACAAAGTTG CGTCTAATAG 1560 1620 AAGTAATCTG ACAATAGATA TCTTCGCCTT TGAGAGCTCC TGGTACAAAG ACTAATGTTT TTTGGTAAAA GCCGATTCCC TCACCGTTAA TTCCCATGCG CTTGATTTTT AATGGTATTT 1680 1682 TT

(2) INFORMATION FOR SEQ ID NO: 242:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2524 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242:

60	TTGATGTTTC	TGTCTAACCA	TCTGTAAGCA	AAAGTCATCC	TCAATTCTTT	TTAACTTTGG
120	CCAACTATTT	CTAAATCTTT	ACAGCTATAT	AATTCCGACT	TAAAATCACC	CCTTTATTGC
180	ATTTTCTTGC	CTAACAATTT	ATACCATCTG	TGATTGCAAA	CAAAATATCT	TTCAAATTTT
240	TTCATAAATC	TTCTAGACAT	CCATGAAATT	TGTACACTCT	CATTCATAAA	ACAATCGTTG
300	AGGATAGAAG	CACCTGCTAG	TGACTAGGAC	AGCGTGTATG	CATGGTATTT	AGTGTATTCA
360	ACTTTTCCCC	AATTACTTAA	AAATCTACTA	ACTGTGAATT	GGACACTTTT	TGAACATTTC
420	TGCTGCAACT	TAAGGACGCC	ATTAGATTCC	ATTATCATCA	CAATTTTCAT	CAAGAAAAGC
480	AATAATTTCT	ATTCATTTGG	GTATCATCAA	AATTGTTGGA	TTTCAGATAA	TGAGAAATTC
540	ATTGGTATCA	ACTTAAACAT	TAATTTTCCA	TTCTTTTACA	AACTGTATTT	AAACTTTCCA

WO 98/18931 PCT/US97/19588

1264 AAATTCTCTA TTTCAATTTT AACAATTCCT ACATTCCTTG CTTCTGTTAA CATTCTACTA 600 ATAGAGGTTC TATAAATTCC TAATTTTGCT GCTATTTGTG ACTGATTTAA GTTTTCAATA 660 TAATACAGAT AAGCAATTTT AGAAAGCAGT TTATTCCTAT CTTGATTCAT ACACTTAACC 720 TCTTACGAAA CTACCTTAAC CATTATCCCA GCATTTTCTA ATGTAGCTAT ATTTTGTTTA 780 GAAAGTTTTT CGTCTGTTAT TACTTCATAG ACTTGACTTA AAGCAAATCT TCTTACTGTA 840 CCTCTTTTAT CAAATTTACT TGAGTCAGTT AGGACAATGA CTTTATCCGA CACTGCTGAA 900 ATATATTGAA CTACCTCACT GCGCATTAAA TCTTTTCCGG TAAAGCCCAT CTCTTTATCG 960 TAACCATCTG TCCCAACAAA AGCTTGACAC ACATGAAAAG TCTGTATCAT TTCTTTTAAT 1020 AAAGGTCCTA CAGTCACCTG TGAATCTTTC TGAAACTCAC CACCAAGAAC AATAACACGA 1080 CATGAATCAT AAGCTCTCAC AAAATTTGCT ATAAAAAACG AATTTGTTAC AATCGTAACA 1140 TTTCTTTTTT GCTTGCAAAT TTCCTCAGCA AGTAAAGCAC AGGTCGATCC AGATTCTATC 1200 ATTATTGTTT CATTATCTGA CACCAATTTT ACTGCTTCCT GAACAATTTT TCTCTTAGTT 1260 TCATAATTAA TTGACAAACG TACATTTAAG TCATCTCCAC TATTTAATAC AGCATATCCA 1320 TGCTCTCTGT GTAATAAACC TTTTGACTCT AATTTATCTA AATCTTTTCT AATCGTTACT 1380 TTCGATACAT TTAATTTTTC CGATAATGTA TTAACGTCGA TCTTTTCATA TTCTGATACT 1440 AATTTAATAA TTTGTTCCAA TCTTTCATT TTACACCTCC GTTTTATTCT ACCAAAATAA 1500 AAAGCAAAAA ACAACAAATT AACCTTTCGT TCGTAATTGT TTTTCTTTCG TTTTTGTGAT 1560 AGGATAGACT TATGAAGAGG AGGAACTCTT ATGGAAATAT CTAAAGGAAT TATTTTTAAT 1620 ATTCAACACT TTTCAATTCA TGACGGTCCG GGTATTCGTA CAACTGTTTT TTTAAAAGGA 1680 TGTCCTCTGC GCTGTCCATG GTGTTCTAAT CCTGAATCTC AAAGAATGAA ACCTGAAAAA 1740 ATGAAAGATG CTCAACGAGA GAAATTCACC TTAGTCGGTG AAGAAAAGAC TGTAGAAGAA 1800 ATTATTACAG AGGTATTAAA AGACAAAGAA TITTACGAAG AATCCGGTGG AGGTTTAACT 1860 TTATCAGGAG GTGAAATATT TGCTCAGTTT GAATTTGCTA AAGCCATCTT AAAATCAGCT 1920 AAAGAACATC ACATACACAC TGCCATTGAA ACTACTGCCT TTGTTGATCA TGAAAAATTT 1980 ATTGATTTAA TTCAATATGT GGATTTTATC TACACAGACC TAAAACATTA TAATTCTATA 2040 AAACATAAAA AAGTGACTGG GGTTTTTAAT CAAATGATTA TTAAAAACAT TCATTATGCT 2100 TTTTCACAAA ATAAAACTAT CGTTTTAAGA ATCCCAGTTA TTCCTAATTT TAACAATAGT 2160 TTAGAGGATG CAGAAAAATT CGCTACTCTA TTTAACTCAT TAAATATCGA CCAAGTTCAA 2220 CTACTCCCTT TTCATCAATT TGGTGAAAAC AAATATCGTT TATTAAATCG GAAATATGAA 2280 ATGGATGGAA TCAACGCACT TCATCCWGAA GATCTTATTG ATTATCAAAA GGTATTTCTG 2340

AACCACCATA	TTAATTGTTA	TTTCTAGTTT	ATTTCCTTGA	AATGCTCTAG	CTATTTGCAG	2400
ATAACAAGCA	TCTATAATAC	ATACTTAACT	TTTCAAAAGG	TTTAGCTAAA	AAATTTTAGC	2460
CAAACCTTTT	CTATTTTACC	TTGCTCTAGA	ATTTTTAAAC	TGCTATACTT	ATCACAAAAA	2520
AACG						2524

(2) INFORMATION FOR SEQ ID NO: 243:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2359 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:

CGTGCTTGGC	GCCTTGTGGT	' CAAAAGGAAA	GTCAGACAGG	AAAGGGGATG	AAAATTGTGA	60
CCAGTTTTTA	TCCTATCTAC	GCTATGGTTA	AGGAAGTATC	TGGTGACTTG	AATGATGTTC	120
GGATGATTCA	GTCAAGTAGT	GGTATTCACT	CCTTTGAACC	TTCGGCAAAT	GATATCGCAG	180
CCATCTATGA	TGCAGATGTC	TTTGTTTACC	ATTCTCATAC	ACTCGAATCT	TGGGCAGGAA	240
GTCTGGATCC	AAATCTAAAA	AAATCCAAAG	TGAAGGTCTT	AGAGGCTTCT	GAGGGAATGA	300
CCTTGGAACG	TGTCCCTGGA	CTAGAGGATG	TGGAAGCAGG	GGATGGAGTT	GATGAAAAA	360
CGCTCTATGA	CCCTCACACA	TGGCTAGATC	CTGAAAAAGC	TGGAGAAGAA	GCCCAAATTA	420
TCGCTGATAA	ACTTTCAGAG	GTGGATAGTG	AGCATAAAGA	GACTTATCAA	AAAAATGCGC	480
AAGCCTTTAT	CAAAAAAGCT	CAGGAATTGA	CTAAGAAATT	CCAACCAAAA	TTTGAAAAAG	540
CGACTCAGAA	AACATTTGTA	ACACAACATA	CAGCCTTTTC	TTATCTAGCG	AAGAGATTTG	600
GGCTTAATCA	ACTTGGTATT	GCAGGTATCT	CTCCTGAACA	AGAACCAAGT	CCACGACAAC	660
TAACAGAAAT	TCAGGAATTT	GTTAAGACCT	ATAAGGTTAA	AACGATTTTT	ACAGAAAGTA	720
ACCCTTCTTC	AAAAGTAGCT	GAAACTCTTG	TCAAATCAAC	AGGTGTGGGT	CTTAAAACTC	780
TGAATCCTTT	AGAGTCAGAC	CCACAAAATG	ACAAGACCTA	TTTAGAAAAT	CTTGAAGAAA	840
ATATGAGTAT	TCTAGCAGAA	GAATTAAAGT	GAGGAAAGAA	TGAAAATTAA	TAAAAAATAT	900
CTAGCAGGTT	CAGTGGCAGT	CCTTGCCCTA	AGTGTTTGTT	CCTATGAGCT	TGGACGTTAC	960
CAAGCTGGTC	AGGATAAGAA	AGAGTCTAAT	CGAGTTGCTT	ATATAGATGG	TGATCAGGCT	1020
GGTCAAAAGG	CAGAAAACTT	GACACCAGAT	GAAGTCAGTA	AGAGGGAGGG	GATCAACGCC	1080
GAACAAATTG	TTATCAAGAT	TACGGATCAA	GGTTATGTGA	CCTCTCATGG	AGACCATTAT	1140

			1266			
CATTACTATA	ATGGCAAGGT	TCCTTATGAT		GTGAAGAGCT	CCTCATGAAA	120
GATCCGAATT	ATCAGTTGAA	GGATTCAGAC	ATTGTCAATG	AAATCAAGGG	TGGTTATGTC	126
ATTAAGGTAA	ACGGTAAATA	CTATGTTTAC	CTTAAGGATG	CAGCTCATGC	GGATAATATT	132
CGGACAAAAG	AAGAGATTAA	ACGTCAGAAG	CAGGAACGCA	GTCATAATCA	TAACTCAAGA	138
GCAGATAATG	CTGTTGCTGC	AGCCAGAGCC	CAAGGACGTT	ATACAACGGA	TGATGGGTAT	144
ATCTTCAATG	CATCTGATAT	CATTGAGGAC	ACGGGTGATG	CTTATATCGT	TCCTCACGGC	150
GACCATTACC	ATTACATTCC	TAAGAATGAG	TTATCAGCTA	GCGAGTTAGC	TGCTGCAGAA	156
GCCTATTGGA	ATGGGAAGCA	GGGATCTCGT	CCTTCTTCAA	GTTCTAGTTA	TAATGCAAAT	162
CCAGCTCAAC	CAAGATTGTC	AGAGAACCAC	AATCTGACTG	TCACTCCAAC	TŢATCATCAA	1680
AATCAAGGGG	AAAACATTTC	AAGCCTTTTA	CGTGAATTGT	ATGCTAAACC	CTTATCAGAA	1740
CGCCATGTGG	AATCTGATGG	CCTTATTTTC	GACCCAGCGC	AAATCACAAG	TCGAACCGCC	1800
AGAGGTGTAG	CTGTCCCTCA	TGGTAACCAT	TACCACTTTA	TCCCTTATGA	ACAAATGTCT	1860
Gaattggaaa	AACGAATTGC	TCGTATTATT	CCCCTTCGTT	ATCGTTCAAA	CCATTGGGTA	1920
CCAGATTCAA	GACCAGAAGA	ACCAAGTCCA	CAACCGACTC	CAGAACCTAG	TCCAAGTCCG	1980
CAACCAGCTC	CAAGCAATCC	AATTGATGAG	AAATTGGTCA	AAGAAGCTGT	TCGAAAAGTA	2040
GGCGATGGTT	ATGTCTTTGA	GGAGAATGGA	GTTTCTCGTT	ATATCCCAGC	CAAGGATCTT	2100
TCAGCAGAAA	CAGCAGCAGG	CATTGATAGC	AAACTGGCCA	AGCAGGAAAG	TTTATCTCAT	2160
aagctaggaa	CTAAGAAAAC	TGACCTCCCA	TCTAGTGATC	GAGAATTTTA	CAATAAGGCT	2220
TATGACTTAC	TAGCAAGAAT	TCACCAAGAT	TTACTTGATA	ATAAAGGTCG	ACAAGTTGAT	2280
TTTGAGGCTT	TGGATAACCT	GTTGGAACGA	CTCAAGGATG	TCTCAAGTGA	TAAAGTCAAG	2340
TTAGTGGAAG	ATATTCTTG					2359
(2) INFORMA	TTON FOR SE	O TO NO. 24	۱4 -			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1052 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:

TTCTTTCTGC	TATAATCGTA	TAAAATACTT	ACTTTAGGAG	TTCTTATGAA	AGTTGTTAAA	60
TTTGGAGGTA	GTTCTCTTGC	CTCTGCTAGT	CAATTAGAAA	AAGTTTTAAA	CATCGTCAAA	120
AGCGATTCAG	AGCGTCGTTT	TGTAGTCGTT	TCTGCGCCTG	GTAAACGCAA	TGCTGAAGAT	180

					TAACGATATT	240
AGCAAGAACC	AAAGCTGGAT	TATCGACCGC	TATGCTGCTA	TGGTTAGTGA	ATTGGGACTA	300
AAACCAGCTG	TGCTAGAAAA	AATTTCTAAA	AGCATTCACG	CCTTGGCCAC	TCTTCCTATT	360
GAAGAAAATG	AATTTCTCTA	CGATACTTTC	CTAGCAGCCG	GTGAAAATAA	CAATGCCAAA	420
TTGATTGCTG	CCTACTTTAA	CCAAAATGGT	ATCGATGCAC	GCTATATGCA	CCCTAGAGAA	480
GCTGGGATTG	TGGTCACAAG	TGAACCTGGT	CACGCTCGCA	TCATTCCATC	AAGTTATGAC	540
AAGATTGAAG	AATTGACAAA	CACCAATGAA	GTCCTTGTCA	TTCCTGGTTT	CTTTGGTGTC	600
ACTAAGGAAA	ATCAAATCTG	TACTTTCTCA	CGTGGAGGTT	CTGATATTAC	AGGTTCTATC	660
ATTGCTGCTG	GTGTCAAAGC	TGACCTCTAT	GAAAACTTTA	CGGACGTTGA	TGGTATCTTT	720
GCAGCCCACC	CTGGTATTAT	CCACCAACCA	CACTCGATTC	CTGAGTTGAC	CTACCGTGAA	780
ATGCGCGAGT	TGGCCTATGC	AGGCTTCTCA	GTCCTTCATG	ACGAGGCTCT	TCTTCCTGCC	840
TACCGTGGAA	AAATTCCTCT	GGTTATCAAG	AATACCAACA	ACCCTGACCA	TCCAGGTACT	900
CGTATCGTTC	TAAAACACAG	TAATGATGAA	TTTCCAGTTG	TGGGAATTGC	TGGTGACTCA	960
GGCTTTGTCA	GCATTAACAT	GTCGAAATAC	CTCATGAACC	GTGAGGTTGG	ATTTGGCCGC	1020
AAGGTTCTGC	AAATCCTGGA	AGAACTTAAC	AT			1052

(2) INFORMATION FOR SEQ ID NO: 245:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 855 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245:

CCCTCGAAAA	CTAAGCCGAT	GAAGTCAGAA	CACTTCAATC	CTGTTCGTGA	CTGGTGGGAA	60
AATCGTGAAG	AGATTCTGGA	AGGTAAGTTC	TACAAATCTA	AATCATTTAC	ACCTAGTGAA	120
TTGGCTGAGT	TGAATTATAA	TTTAGACCAG	TGTGACTTTC	CAAAAGAGGA	AGAGGAAATC	180
TTAAATCCCT	TTGAGTTGAT	TCAGAATTAT	CAAGCGGAAA	GAGCAACTTT	AAATCATAAG	240
ATTGATAATG	TATTAGCTGA	TATTTTGCAG	TTGTTGGAGG	ACAAATAATG	ACACCAGAAC	300
AACTTAAAGC	AAGTATTCTC	CAAAGAGCGA	TGGAAGGGAA	ATTAGTGCCG	CAAAATCCCA	360
ATGACGAACC	TGCAAGTGAA	TTATTAAAGA	GAATTAAAGC	TGAAAAAGAA	AAACTTATCA	420
GTGAAGGAAA	AATCAAACGA	GATAAAAAGG	AAACTGAGAT	ATTTCGTGGT	GATGATGGGA	480

AACATTATGG GAAGTTTGCT GATGGAAGCA	1268 CTCAAGAAAT	TGATGTTCCT	TATGATATTC	540
CTGATACTTG GGAGTGGGTG AGGATAAAAT	CAATTTATTG	GAATTTTGGG	CAAAATAAGC	600
CAGAGAAATC CTTTAGGTAT ATAGATACGT	CTAGTATTGA	TAGAAAAAAG	AACATAATCA	660
ACTACAAAAA TCTACAATAT CTTTCACCTG	AACAAGCGCC	TTCCCGTGCT	AGAAAATTAG	720
TTTCGCAGAA TAGTGTCTTA TTTTCAACAG	TTAGACCATA	TCTAAAAAAT	ATTGCTGTAG	780
TTAGAGAACT TAAAGAGTAT TTGATAGCTA	GTACAGCATT	TAATGTTTTG	GGATACTITA	840
CTTAACGAAA CATAT				855
(2) INFORMATION FOR SEQ ID NO: 2	46:			
(i) SEQUENCE CHARACTERISTIC (A) LENGTH: 660 base p (B) TYPE: nucleic acid (C) STRANDEDNESS: doub (D) TOPOLOGY: linear	airs			
(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:	246:		
TTTAGGAAGG CTATCCGTAA TTTTACAAAG	GATTTAGATA	TTACAGAGGA	ACATTTAGAT	60
ATTATCAAAA GAGAGATGTT TGGCGAATTT	TTCAGTAGCA	TGAACTCTCT	TGAATTTATT	120
GCAACGCAAT ATGATGCTTT TGAAAATGGT	GAGATAATTT	TTGATTTGCC	GAAAATTTTA	180
CAGGAAATTA CTTTAGAGGA TGTCCTTGAT	GCTGGACATC	ATTTAATAGA	TGATGGTGAC	240
ATAGTTGATT TTACAATATT CCCATCGTAG	TAACCTATTA	TAATAGACAC	TAGAAAGAAG	300
GGATGACAAG TATGAGAAAA AAAACAATTG	GAGAGGTTTT	ACGATTAGCT	AGAATCAATC	360
AGGGATTGAG TTTAGATGAA TTGCAGAAAA	AGACAGAAAT	CCAGTTAGAT	ATGTTGGAAG	420
CAATGGAAGC AGACGATTTC GATCAACTTC	CAAGTCCTTT	TTACACGCGT	TCTTTCTTGA	480
AAAAATATGC ATGGGCTGTT GAGTTAGATG	ACCAAATTGT	TTTGGATGCT	TATGATTCTG	540
GGAGTATGAT TACTTATGAG GAAGTAGATG	TTGATGAAGA	TGAGTTGACA	GGTCGTAGA2	600
GTTCAAGTAA GAAAAAGAAG AAAAAAACAT (2) INFORMATION FOR SEQ ID NO: 2		TTTATTTTAT	TTTATCCTGG	660

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1805 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247:

CCGGTTGCAC	AGGATCGTGC	ATAGTCAACT	CTTCAAGTAT	' AGCATATCTC	CTATTTTCTT	6
ACAAGTAATA	ACACCTAAAA	TGAAGCTTTT	TCTTTTACTI	TTTTCTGCCA	AGAGGCAAAA	12
AGCATGCTGA	GGTAAAAAAC	GCTCATCATA	ATAGGAACAC	CAAGAATGGT	CTTTTCATGA	18
TAGAAAATCG	TCAAATAGGC	TGAAAAGACA	ACGCCAAGGA	CAAAACTACT	AAGCAGGCTA	24
ACAAATATGA	ATCCTTCACG	CAAAAAAGGA	GTGTGCTTGG	TTCGGAAATA	ATCTCCAAAA	300
GCCAGCATGG	TCCGTTTGAT	ATTCCCTGTC	ATAAAAGCGT	TATTATAGGC	AATACCCGAC	360
ACTTCTCCAA	AAGCAGTTGT	CACCAGTCCC	ATACAGAAGG	CCAAGGGCGG	CACTAGATAG	420
ATATTATCCA	CAGTTTGCGG	CACAAAAGCA	ATAATGATTG	ATAAGATTGC	CAAGGGAATC	480
AAGGACAGAA	TAGGTTTTTT	CACAATTCTC	AATTTTTCCT	TATAAATCGT	TAATAAAAAG	540
ACTCCCATCA	TAAACGCTAG	CAAGGTGAGA	ACCTTGTCCC	TAACATCCGA	AACATTATTT	600
TTAATTAATT	CTACTGAAAG	AAAGACAACA	TTTCCAGTTT	GTCCAGCTAC	AAGGGTATTC	660
CCGCGAACAA	TAAAAGTGTA	AGCATCCACA	TATCCAGCAC	AAAACGTCAA	AAAAAGTGCT	720
AACCTTTTAG	ACTGACGTGA	TATTTTTCTT	ATAGGTAATA	ACCTCATTTT	ACCTCCCATT	780
GTATTTTCTC	TTAGAAATAT	TGTACCATTT	TCTTTCTAAA	AAATCGTAGG	CTACCATTTA	840
GATTTTACTA	TTAGCATAAA	AATAATAATA	GACAACTATT	TATCCAAAAA	TAGATAGATG	900
PAACATGTTT	GCAAACAAAG	CATACGAACC	TTTAGTAAAA	TCATTTCCAT	GAAACTAGAA	960
PAGAGCCCTC	TTAGCAAAAA	TCATTATTTT	AATTTATTTC	TAATCACTCC	TTGACATAAA	1020
TAACTCTCAC	CAATAAAAGA	CTATGTCTTA	AAAAATGGT	ATAATAAAAT	CAATACTTGG	1080
GCTTGATGGC	TATGCTACTA	ATAACAATTA	GGAGAGAAAA	TCAGGCACTT	GTTAACAACA	1140
AGGATTATCC	CCTTGAGATG	AAAGGAACTT	TAGAAATCTT	ATGATGAACA	TGCAAAACAT	1200
GATGCGTCAA	GCACAAAAAC	TTCAAAAACA	AATGGAACAA	AGCCAAGCTG	AACTTGCTGC	1260
PATGCAATTT	GTTGGCAAAT	CTGCTCAAGA	TCTTGTCCAA	GCGACCTTAA	CTGGCGATAA	1320
GAAAGTTGTC	AGCATTGATT	TCAATCCAGC	TGTCGTTGAC	CCAGAGGACC	TTGAGACTCT	1380
TTCTGATATG	ACCGTTCAAG	CCATCAACTC	TGCTCTTGAA	CAAATCGATG	AAACTACCAA	1440
SAAAAAACTG	GGTGCTTTCG	CTGGGAAATT	ACCTTTCTAA	AAACAAGGAG	CTAGAACAAT	1500
CTTGTCGAT	AACAAAGGCT	AAGAAAGGTG	CAAAAATGAC	TCTATAATAT	TTGTAGTGGG	1560
TAAATCCCCT	ATGGATATTA	TGGAGCCTAT	TTTTGTGTAG	AAAAAAGTCC	CATATGACCT	1620
TAATGAAAA	GCGACAAAAC	AACTCATTAG	AAAGAATCAT	ATGGAACAAT	TACATTTTAT	1680
ACAAAATTA	CTAGACATTA	AACACCCTAA	ጥልጥርርልር፡ልጥጥ	THE ACTOR OF THE CO	TC 3 3 T 3 3 C C 3	1740

1270 TACACACAAG GWAATCATCG CCAAACTGG: CTATGAAGCT CCATCTTGTC CTGAGTGCGG	1800
AAGTC	1809
(2) INFORMATION FOR SEQ ID NO: 248:	

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2516 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:

CTGCATCTAG	TTTGTTTCTC	CCTACAGTTT	TAGCTAGACA	GATTGGAGAT	TATGATTTAA	60
CGTCGCCGCG	TTGGGGTTCG	GATACAACTA	GTGAGCTTGA	GAAAGAAAAC	TCCTCTGCTG	120
GAATTAATAA	TAATGACAGC	ACTGGTGGCG	GTAAAAGGTT	AAATACCTCT	ATTCGTAGCG	180
CCTATAGTGG	GTCAGATATT	ACCCCGGTAT	ATTCATTGGG	GTCTGGCTCT	AGGATTGTCA	240
TGTACTATAA	TGGAGGTGGT	GACAATTATA	TTGGTTCTGG	TACTAGATTA	GCTATGGCGC	300
CACAATTTGG	AAATCATGTA	AGAATTCATA	CTTCAGGTTC	TTGGAATCCA	GATTCTTATT	360
AACTTACTTG	TCAGAGTAAG	CCTTAAAGAT	GGTTGATTGT	GGGTGTAGCA	TGAAAAAAGA	420
ATGCTACACC	CTATTTTTAT	TATAAGGAGG	AGTAAGGATG	GAATTTTTCA	TTTGTAATCT	480
TGTACGAGTC	GTTCAATCAC	CTCGATTTTA	TATGTCTTTA	TTTTTGACCC	TTCTTTGCAT	540
GAGTTTAGGA	AATTTCCTTG	CTTTCAATGG	TATTTATAAA	ATTGAAGGTT	TATCGATTTT	600
TTTTGCCGCT	TCTTCTATTC	GAGGATTTTC	ACCGATTAGC	CTAGTAGCTG	CACTTATCTG	660
TACACTGCCC	TATTCTAGTC	AGATAATAGA	GGATGCTGAG	AGTCATTTTC	TAACAGCACA	720
ATTGTGTCGA	ATTTCTAAAA	AGAAGTATCT	GGCTATTGTG	GGTAGTACTG	TAATTATTTC	780
TTCTTTTCTA	GTCTTTTTTC	TCCCCTATTT	ATTATTATTA	GGAATTAATC	TTTTAGTGAC	840
TCCTTATCAG	GAAATTTATA	TTGGAGATTA	TAGTGGTGCC	TTAAAAGAAT	TATTTGATTC	900
CAATCAGTTT	CTCTATAGTC	TTGTAACGAC	TCTCTGGTAT	GGAGTTTGGG	GCGCTGTGTT	960
CTCTATTTT	GGACTAGCTA	GTGCTTTGCT	AGTGAAGAAA	AAAATAGGAG	CTATTTTCAT	1020
CCCAGTTGCC	TATATGATGG	TTGGTGGTAT	TTTTTGGGCT	ATTTTAGGGC	TATCTTACTT	1080
AGAACCTGTG	ACAACGCTAG	CTTTGGGATA	TCAGAAAGAT	ATCAGTCTTT	CCTTAGTTAG	1140
TGCTCATCTT	GCTTTTATTT	TATTTGTTAG	TTGTTTGGTT	GTTTATGGTA	CATTTTTTCT	1200
ACATTCAGAG	GACTATGTAT	AATGAAACAA	TTTGTTCAAT	TTTATAAAAA	AGATTTCTTA	1260
GCAGTATTGG	TTTATTTTAT	ATTACTGCTA	TCCTGTGTTT	TATCTAGTAC	AGTATATTTA	1320

TTGCGCtGTC	GCCAATATTC	AATCCATCCA	AATGTATTAG	AATGGATCTT	AGTTTTACTT	1380
CAAGATATGA	CGACTGGAGT	ATATTGCTTT	CCGTTCACAT	ATATATTGTT	CTTTTTTAT	1440
TTGATGAATA	ACTATTTTAA	TAGGTTGGAG	TGTCGCATTC	GTCTGAAATC	AATTAAGCAC	1500
TTTACCAGTT	TTAGTTTCAA	ATTAGCAGCT	CTTAGTACGG	GGATTTGGAC	GGCGACTTTA	1560
TTTTTATTGA	TTTTTCTAAT	TGCATTTAGT	AATGGTTTTA	GCTTCTCTTT	GGAGATAAAG	1620
GAGGTTGATT	TTTTAAGAGA	ATTTTATGGT	ATAAGTATTG	CAAACAATGC	TAGTTTCTTT	1680
ATAGGATTTT	TTTTCTCTTA	TATAGCATAC	TATTTCTTTT	TATCCTTACT	TACTATTAGC	1740
AGTTTTTCTT	GGTTTAAAAA	ATCAAACATG	AGCTTAGTAT	TTCTGTTTAC	TTTTTTATTT	1800
GTAGAATCCT	TATTCTGGAT	TTATCAGTTG	GACAATGGGA	TAATTGGATT	ATTGCCAATT	1860
TTTCAGTATA	TGGTAAATTC	CAATCCGTAT	GCATTGATTT	ATTGGCTTAC	ATTACTATCT	1920
ATCATAATTC	CATTGACTGT	ATTTTCTGTT	CATAGAAACT	GGAGGAGAGT	GTAAAAGTTG	1980
GAAATGGGAA	AGTTAAGTAG	TCACATGTGG	AGGTTGAATC	AGATAATCTA	TACCAAGTAC	2040
TTTTGGGGTT	ATGTTCTTTT	TTGGATATTG	ATTTGTTTAG	GATTATGGTA	TTGGTTAGAA	2100
GGAAATGATA	GACTTGTTAT	AGAAATTTTA	AAAGGCCTA	ATCTGAGTCA	AAACTCTTTT	2160
TTAGTCTTAT	CTATATGGTT	GCTTCATTGG	TTTATTATTC	ATACATTTTT	TCTAGCAGTT	2220
GTATATCGTA	GAAGAGCATC	CGATTTCTTT	ATGGAAGTGA	TTCGATTTTC	TTCTATTAAG	2280
CTCTGGATTA	GGTATCAGAT	TTGGACCTGT	TTTCTTTATG	GACTCATTTT	AATCATGGTA	2340
AAAGTTCTAG	TGATTCAATT	TATGTTACAG	TTACCAAACT	GGGATATAGG	AGTTTTGTTT	2400
ATAGTTGATT	CTTTGAATGC	TTGTGTGTTA	GTCTTGTTTT	GCTTTATGTT	ATACGCACTA	2460
GGAGCGAATG	TACAAATGAA	CTTTGCTTGC	GTTAGTTTCT	TTTTACTCAT	GATTGG	2516

(2) INFORMATION FOR SEQ ID NO: 249:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1364 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 249:

	CGGTGTTTTT	TTGTAAATTT	TCTAGCACTT	GTATGGTAAA	ATAGATACAG	GTGTTCATTA	60
,	AACTAGACTA	AAAACCTATT	TAAGCAGGCA	AAATGAAGAA	ATACCAACAA	TTATTTAAGC	120
	AAATCCAAGA	AACCATTCAA	AACGAGACTT	ACGCTGTCGG	AGATTTCCTT	CCTAGCGAGC	180

			1272			
ACGACCTTAT	GGAGCAATAT	CAAGTGAGTC		CCGAAAGcCC	TGTCTCTCCT	24
CCAAGAGGAA	GGATTGATCA	AAAAGATAAG	AGGGCAAGGT	TCTCAAGTCG	TCAAAGAAGA	30
AACCGTCAAT	TTCCCTGTAT	CCAACCTAAC	CAGCTACCAA	GAACTAGTTA	AAGAACTTGG	36
ACTGCGCTCT	AAAACCAACG	TGGTCAGTCT	GGACAAGATT	ATTATTGATA	AAAAATCCTC	42
ACTGATAACC	GGTTTCCCAG	AGTTTCGGAT	GGTTTGGAAG	GTGGTCCGCC	AGCGTGTGGT	48
GGATGATCTG	GTATCCGTTC	TGGATACGGA	CTATCTGGAT	ATGGAACTCA	TCCCAAATCT	54
CACTCGCCAA	ATTGCTGAGC	AGTCTATCTA	TTCTTATATA	GAAAATGGCC	TCAAACTCCT	60
TATTGATTAT	GCTCAGAAGG	AAATCACCAT	TGACCACTCA	AGCGACCGAG	ACAAGATTCT	66
CATGGACATT	GGCAAAGACC	CTTATGTCGT	TTCGATTAAA	TCAAAAGTCT	ATCTCCAAGA	721
CGGACGCCAA	TTTCAGTTTA	CCGAAAGTCG	CCATAAGTTA	GAGAAATTTA	GATTTGTAGA	780
				CTCAGCCTTT		840
				GCCTATTTTG		900
				CATTAGAAAG		960
				CCCAAACATC		1020
				GCTGGATTAT		1080
				TCAAAAACCG		
				TAGAAAGCGT		1140
				CGTCAAGAAG		1200
						1260
				TGAGAAGATT	TCTATGACCG	1320
			CAACTGTCAT	TCGG		1364
2) INFORMA	TION FOR SE	Q ID NO: 25	0:			
(i) SE	OHENCE CHAP	ACTED TOMEOR				

EQUENCE CHARACTERISTICS:

(A) LENGTH: 1227 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:

CCATGAAGAC CGCTTGGAAT TGGAATGGCA CAAGTCTTTG TTGAATGGTC TATTCCCATT 60 GACAATCGGT GGAGGAATTG GACAATCTCG TATGGCCATG TTCCTACTTC GCAAGAGACA 120 CATCGGAGAA GTGCAAACAA GTGTTTGGCC TCAAGAAGTC CGCGATACTT ACGAAAATAT 180 TTTGTAGAGA ATCGAACCGC AAGGTTCGGT TTTCTTTCTC TTTTTGTCTA TAATTTGGTA 240

TAATAAACAG	TATGAAAATC	GTATCAGGAA	TCTATGGGGG	ACGTCCCCTC	AAGACACTAG	30
AAGGCAAGAC	GACAAGACCT	ACTTCGGATA	AGGTTAGGGG	AGCCATTTTT	AACATGATTG	36
GTCCCTACTT	TGAAGTGGGA	CGAGTCTTGG	ACCTTTATGC	AGGTAGTGGT	GGTTTATCTA	42
TCGAAGCAGT	ATCGCGTGGC	ATGTCCAGTG	CTGTTTTGGT	GGAGCGAGAC	CGTAAGCTCA	48
GACCATCGTG	GCTGAAAATA	TCCAGATGAC	CAAGGAAGTT	GGAAAATTTC	AACTCCTCAA	54
GATGGATGCA	GAAAGGGCAT	TGGAACAGGT	ATCTGGGGAA	TTTGACCTCG	TTTTCTTAGA	60
CCCTCCCTAT	GCCAAGGAAC	AAATCGTAGC	AGATATTGAA	AAAATGGCTG	AGAGAGAGCT	66
TTTTTCTGAA	GATGTTATGG	TTGTGTGCGA	GACGGATAAA	GCCGTTGAAC	TTCCAGAAGA	72
AATTGCCTGT	CTGGGTATCT	GGAAGGAAAA	GATTTATGGA	ATTAGTAAGG	TGACAGTCTA	78
TGTCAGATAA	GATTGGCTTA	TTCACAGGCT	CATTTGATCC	GATGACAAAT	GGGCATCTGG	. 840
ATATCATTGA	ACGGGCGAGC	AGACTTTTTG	ATAAGCTTTA	TGTGGGTATT	TTTTTTAATC	900
CCCACAAACA	AGGATTTCTC	CCTCTTGAAA	ATCGTAAACG	GGGGTTAGAA	AAGGCTGTGA	960
AACATTTGGG	AAATGTTAAA	GTCGTGTCTT	CTCATGATAA	ATTGGTGGTC	GATGTCGCAA	1020
AAGACTGGG	GGCTACTTGC	CTAGTGCGAG	GTTTGAGAAA	TGCGTCGGAT	TTGCAATATG	1080
AGCCAGTTT	TGATTACTAC	AATCATCAGC	TGTCTTCTGA	TATAGAGACT	ATTTATTTAC	1140
TAGTCGACC	TGAACATCTC	TATATCAGTT	CATCAGGCGT	TAGAGAGCTT	TTGAAGTTTG	1200
TCAGGATAT	TGCCTGCTAT	GTTCCCG				1227

(2) INFORMATION FOR SEQ ID NO: 251:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3652 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:

CCGGTCAAGT	TAAAAACGCT	ATTTCTTCCC	ATTTTATTTA	TTTTTTAGGA	GTGGTAACGT	60
ATCAAAATAG	CCCAAGCGTT	CTCACCCGTG	TGAGTTTGAA	TAATGGAACC	CGTTTCCAAA	120
ACAGAAATTG	GCTTTTCAAC	ATAAGCTTGT	AAGCTTTCTT	TCATCTCTTT	TGCCCAATCA	180
TCACTACCAG	AATATGAAAT	TCCAATCTCT	GCTACAGCAC	GTTCAGAAAG	CGATGTTATC	240
AACTCATCTA	ACCATTTTTT	AAATGTTTTA	GTTCCACGAC	CTTTAACCAT	TGGCTGCAAT	300
TCATGGTCTT	TCATTTGCAT	GACAGCACGG	ATATTGAGAA	GAGAGCTCAA	CAAGCCAGTT	360

			1274			
ACACGGCTAA	TTCGTCCACC	TTTGACAAGA	TTTTCCAAAG	TTGAAACACC	AATATAAAGC	420
TCTGTATGGT	TTTTAACCTC	TTCTACATGA	GATAAAATTG	CCTCCATATC	TTTACCTTCT	480
TGAGCTAACT	TCGCAGCCTC	AACAACTTGG	AATTTCAGGG	CTTGGTCAGT	GAAGGAACTA	540
TCAACAACAG	TCACATCTGC	AGTAGATAGG	CTAGCACCTT	GGCGTGCTGC	TTCTACCGTA	600
CCCGAAAGAG	CATGGGACAT	ATGAATAGCA	AGAATCTGGC	CACCATCTTT	GCATAGGTCT	660
TCAAAAATCT	CAGCAAAGAC	ACCTACAGGT	GGCTGACTTG	TTTTCGGAAG	ATTCTTACTT	720
TCTTGCATCA	ACTGAAGAAA	TTTACCTTCT	TCTTTCAAAT	CCGCATCAGA	ATAAACAACA	780
TTATCAATCA	TTACAGATAA	TGGAACAATT	GTAATATCTA	ATTGCTTTAC	TAGTTCAGGT	840
TCAATAGTAA	CAGATGAATC	GGTTACAATC	TTAATTTTTG	TCATAGTATC	AATCTTTCTA	900
TTTTAGGATT	CAGATTGGTT	TCCTTACTTC	TAATTATATC	AAAAAAAAGA	TTAAAAATCC	960
TAATGGAGTC	AATCAAATTT	TCCGTAAAAT	TTGATATAAT	CAACTTATAA	GAAAAGAGGT	1020
GTCCTATGAT	TAAAAAAATT	TACCCCATTT	TTACCATTTT	ACTAGGTGCT	GCTATTTATG	1080
CTTTTGGACT	GACTTATTTT	GTAGTTCCCC	ATCATCTCTT	TGAAGGAGGG	GCGACAGGCA	1140
TTACCCTCAT	CACCTTTTAT	CTTTTTAAAA	TCCCTGTTTC	CCTCATGAAC	CTGCTGATTA	1200
ATATTCCCCT	TTTCATCCTA	GCTTGGAAGA	TTTTTGGAGC	CAAATCCCTC	TATTCTAGTT	1260
TACTAGGAAC	CTTAGCTTTG	TCCGGCTGGT	TAGCTTTTTT	TGAGCATATT	CCCCTTCATA	1320
TTGATCTTCA	AGGTGATTTA	CTAATCACAG	CCCTTATAGC	GGGAATCCTA	TTGGGAATTG	1380
GCCTTGGAAT	TATTTTTAAT	GCTGGAGGTA	CAACTGGCGG	AACTGATATT	CTAGCTCGTA	1440
TTCTCAACAA	ATACACTCAT	ATATCCATAG	GAAAACTGCT	CTTTATCTTA	GATTTTTGTA	1500
TTCTCATGTT	GATTCTCCTA	ATCTTCAAGG	ATTTGAGATT	GGTTTCCTAC	ACGCTTTTGT	1560
TTGATTTTAT	TGTTTCTCGT	GTTATTGATT	TGATTGGTGA	AGGAGGATAT	GCCGGCAAAG	1620
CCTTTATGAT	TATCACAAAA	CGTCCTGACC	AACTTGCTAA	GGCGATTAAT	GATGACCTCG	1680
GAAGAGGTGT	TACTTTTATT	TCTGGTCAAG	GCTACTATAG	TAAAGAAAAT	TTGAAAATCA	1740
CTACTGTAT	TGTCGGAAGA	AATGAAATTG	TGAAAACGAA	GGAAATGATT	CATCGAATCG	1800
ATCCTCAAGC	CTTTATAACT	ATTACAGAAG	CCCATGAAAT	CCTAGGAGAA	GGCTTCACCT	1860
PTGAAAAAGA	ATAAAAAGAG	GTAATGTCGT	GACCTCAAAA	GTTAGACTAA	ATCATCTATC	1920
TTTTGGGTTA	CAGACAACCT	CTTTTTTATT	TTATTTACTC	AAGCTCTTAA	GACCAATTCC	1980
SAGTTACTTC	TTCATCAGCC	TTTAACTGAT	CCACTAATTG	GTCAACTGAG	TCAAATTTGG	2040
CATATCTCG	AATGCGATCA	AGCCAATAAA	CCATGACGGT	TTCCCCATAA	ATATCTTGAT	2100
TAAAATCAAA	AATATTGACT	TCAAAACGTG	CTTCTTCTCC	ATCAAAGGTC	ACATTTTTCC	2160

CGACACTA	\GC	CATAGCACGA	A TACTTCTGTC	TTTGAATCT	AACATCAACA	ACATAAACGC	2220
CATCTGCT	rgg	CATATAAGTA	CGGTCTAAAA	GCACTAAATT	CGCTGTCGGA	TAACCAATTG	2280
TACGACCA	CG	AGCATTACCA	TGAACCACCA	TACCTCTTGA	TGGAAGCGGT	GCCCCAAAA	2340
GTTTTCCT	'GC	TTCTTTCACA	TTTCCATCTA	AAATAGCTTC	ACGGATACGA	GTTGAACTAA	2400
TCTTTCCT	TŢ	CTCATCTTCT	ACAGGTGGAA	CAATGATAAC	TTCTCCATCA	AAGTAATTCT	2460
TTAAATCT	TC	TGCTGTTTTT	TTGTCAGAAC	CAAATGTATA	ATCAAAACCT	GCAACAATAA	2520
TTTTGGCA	TT	CATAGCCTTG	ATATAAGTTG	CAAAGAATTC	TTGTGCAGTG	AGACTAGCGA	2580
ATTGACTA	CT	AAAATCAAGG	AGATATAATT	CTTCTACACC	TTCGCGCTTT	AATTTTCTTT	2640
CACGTTCA	GC	AGGGTTCAAA	ATATGCAAAA	ACAAATCTGG	ATGATAAGGC	TCTAAAGCGA	2700
TCTTTGGA	GA	TTCATTAAAG	GTCATAACGA	CGATAGGCAA	CAAATCCTTT	CTCGCAGCCT	2760
TGTTGGCA	AC .	ACGAAATAAT	TCTTGATGCC	CCTTATGTAT	GCCATCAAAA	TAGCCGAGAA	2820
CAACGACT	GA .	ATCAGATGGT	GTGCCAATAT	CTTTTTGGTT	TTTTATAGGA	ATAGTAATAA	2880
TCATAAAA	ΓA.	ATTATATCAT	AGCGATAGCT	ATTTCTGGAA	CAGAAAATCT	GAAATGTTGT	2940
TTTTTTCA	CA '	TGAAGTGTAC	CTGTTTTCAA	AAAGCACTTT	ATTCTATCGT	TGCTTAACTA	3000
TGAACTTT	GC .	AATATTCTTC	TCAAAAACTT	GTAGGACATC	TTCAAAATTT	TGCAAGGAGT	3060
GATTAGACT	rr (GTTCGGTAAC	CATAAAGTGT	CATACTATGC	TTATGTATGA	AAAAGCAATG	3120
CAACTAACT	rc (CTGAGAACTT	TAAATTACTA	ATTGGTGCCG	AAAAGGTAGA	ATTTAGAATC	3180
GAGGTACAC	C 1	PATGGCTGTA	AAATTTACAA	AATGAGACAA	CTTGGGCAAG	ATGTTTGAAG	3240
AATTTCCTA	AA A	ACTCCCTGAT	TTGAAGCAAG	TCACTTTCCC	TAATGACAAA	GAAAAAGCC	3300
AAAACAGC	AA A	AGAAAAACTA	GATGACTGCT	TTCCAACAAC	TCCCATCTAG	TGTGCTTCAG	3360
ACTGGGCTA	AT 1	TTTTCTCTCC	ATCTGTTAGC	TTGGATTCTC	AGACCGTTTC	AGCTAAAGAA	3420
TATCTTTTC	c c	TTATCAGAA	GGAACGGCTC	AAGCCATTCA	GACAAGTGAA	GGGACGACAA	3480
GCCAATATT	ፕ ር	SAAACCAGAT	AGCAGTTCTT	ATAGTCAATT	GAAATAAAAT	CTGAAGAAAT	3540
CGAGTAGGA	A A	CTCATATCA	ATGTTTAACA	GTGTTCTATT	CCAGATTCAT	ACTCAATGAW	3600
AATTAAAGT	'G C	AAACTAGGA	AGTTAGCCGC	AGGTGATACT	TTGGGTACGG	CA	3652

(2) INFORMATION FOR SEQ ID NO: 252:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 743 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(vi)	SECTIONS	DESCRIPTION .	CEO	TD	NO.	262
(X1)	SECUENCE	DESCRIPTION:	SEU	112	NO:	252.

(STACCGTGGT	GCCAAAGTAC	AGCAAGGTTG	GCTTTTTGAC	AAACAATACC	AATCTTGGTT	60
1	TACATCAAA	GAAAATGGAA	ACTATGCTGA	TAAAGAATGG	ATTTTCGAGA	ATGGTCACTA	120
3	TATTATCTA	AAATCCGGTG	GCTACATGGC	AGCCAATGAA	TGGATTTGGG	ATAAGGAATC	180
7	TGGTTTTAT	CTCAAATTTG	ATGGGAAAAT	GGCTGAAAAA	GAATGGGTCT	ACGATTCTCA	240
1	AGTCAAGCT	TGGTACTACT	TCAAATCCGG	TGGTTACATG	ACAGCCAATG	AATGGATTTG	300
C	Gataaggaa	TCTTGGTTTT	ATCTCAAATC	TGATGGGAAA	ATAGCTGAAA	AAGAATGGGT	360
C	TACGATTCT	CATAGTCAAG	CTTGGTACTA	CTTCAAATCC	GGTGGTTACA	TGACAGCCAA	420
1	GAATGGATT	TGGGATAAGG	AATCTTGGTT	TTACCTCAAA	TCTGATGGGA	AAATAGCTGA	480
A	AAAGAATGG	GTCTACGATT	CTCATAGTCA	AGCTTGGTAC	TACTTCAAAT	CTGGTGGCTA	540
c	ATGGCGAAA	AATGAGACAG	TAGATGGTTA	TCAGCTTGGA	AGCGATGGTA	AATGGCTTGG	600
A	GGAAAAACT	ACAAATGAAA	ATGCTGCTTA	CTATCAAGTA	GTGCCTGTTA	CAGCCAATGT	660
T	TATGATTCA	GATGGTGAAA	AGCTTTCCTA	TATATCGCAA	AGTAGTGTCG	TATGGCTAGA	720
T	AAGGATAGA	AAAAGTGATG	ACA				743

(2) INFORMATION FOR SEQ ID NO: 253:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4010 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253:

60	TTCAGCGACC	CGATAGAAGT	TTCTTCTTGA	GATTTGGTGA	TGATACGAGG	TTTTGGTTGA
120	TCTAGTAGGC	TAAGGAGAAT	CGACGCTTTC	GCACTTGAAT	AACAGTGATA	ATCATTTTTG
180	TTTCTTCAAT	GAAAGTCATA	GAAGGTTTTT	AGGAATTTTA	TTTCAAGATA	ATACCAGTCG
240	GATTTCCTTG	GTTTGGCGAT	TCGTAGTCCA	AGATGGGGCG	ACTCAGGGCA	TGGTTTCCGC
300	GTCTAGTAAT	GGTCTTTAAT	TGGATATTAG	GTCTAAAATC	TATTGATGAT	TGTGTATCCT
360	TGTCGCTTTT	TGAGTTGTTT	TTCTTTCTAA	TTCCATATGA	AATGTAATTG	TTTGTGATAA
420	TATCTATAGT	GGCTCCATAA	CAATAAAATA	TTTTTTTCTA	CATATGGGAC	CATTATAGGT
480	CCAACTTTCT	AATTAGAGAG	GAATTAATTT	TTATAGAACC	ACTACAAATA	GGATTTACCC
540	CTGTATACTA	GGAGTTCCTC	TATCATTCAT	ACAAGGTATC	TCGCGTCATA	AATATAGTAA

TTAGTAAAGT AAAACTATTG GAG	CATATTO TAATCCCA			
		_		600
TTCCACAATC TCGTCGTTTT GAT				660
TTGGCAAGCT TGAAGTAAGT TTT	TTTCAAT CTCTCAATO	T CGAAATGGTA	GAACAGCTTT	720
TGGATAAAGT GTTGCTCTAT GAC	AATTCAT CTATCTAGO	C TAGGGCAGGT	CTATCTCGTA	780
TGTGGGAAAA CGGATATGAG GCA	AGGCATT GATTCATTG	G CTTATCTGGT	TAAAACCCAG	840
TTTGAATTAG ATCCTTTCTC CGG	CAAGIT TTTCTCTT	T GTGGTGGACG	TAAAGACCGC	900
TTTAAAGCCC TTTACTGGGA TGGT	CAAGGA TTTTGGCTA	C TATATAAACG	CTTTGAGAAC	960
GGAAAACTGA CTTGGCCCAG TACA	GAAAAG GATGTCAAA	G CTCTCACACC	TGAACAAGTA	1020
GATTGGCTTA TGAAGGGCTT TTCT	ATCACT CCAAAAATA	A ATTTATCAGA	AAGTCGTGAT	1080
TTCTATTGAA ATGAGGACTT TCTT	TTTAGT TATAATAAA	G TTAGGAAATA	AGGAGAGGAA	1140
GCCCATGGAA GAAGATTGAA AATC	ATTCAA CAACAGAGT	G CTACAATTGA	TAGTCTCACC	1200
AATGAACTTG CCCTTCTTCG TGAA	CAAGTG GCTTATCTA	A CGCAAAAGCT	CTATGGAAAA	1260
TCCTCTGAGA AAAGTGTTTG CCCA	TCTGGA CAACTCAGT	TTTTTGAAGA	GGAACAAAAT	1320
ATGGAAGAAG ACTCTGACTT ACCC	AGTTGA AAGAGAAGA	A ATCACCTATA	AACGTAAGAA	1380
AGCTAAAGGG AAACGTCAAG CTCT	TCTTGC CCAATTTGAT	TCAGAAGAAG	TTCATCATCA	1440
AGTAGAAGAG AGCATTTGCC CTGA	TTGTCA GGGAGATCTA	AAAGAGATTG	GAGCAACCCT	1500
TCAACGACAA GAATTAGTCT TTAT	TCCTGC GCAATTAAA	CGAATAGATC	ATATCCAACA	1560
CGCTTATAAG TGCCAAGCAT GCAG	IGATAA AAATCCGAGI	GATAAAATCG	TGAAAGCTCC	1620
TATTCCTAAA GCCCCTTTGG CGCA	PAGCCT TGGCTCAGCT	TCTATTATCG	CTCACACCAT	1680
CCATCAGAAG TTTAATCTGA AGGT	ACCCAA TTATCGCCAA	GAAGAAGATT	GGGCTAAGAT	1740
GGGTTTACCA ATCACACGTA AGGA	AATTGC TAATTGGCAT	ATCAAGGCGA	GTCAATACTA	1800
TTTGGAGCCC CTTTATAATC TTTT	ACGAGA AAAGTTGTTA	GAACAAGCTC	TTCTTCATGC	1860
GGATGAAACC TCTTATCGGG TTCT/	AGAGAG TGATAGTCAG	TTGCCTTACT .	ATTGGACTTT	1920
TTTGTCTGGG AAAGCTGAGA ATCAA	GCAAT CACGCTGTAC	CACCATGATC	AGCGTCGGAG	1980
GGTTTAGTA GTACAAGAAT TCCTA	GGAGA TTATTCTGGC	TATGTTCATT (GTGACATGTT	2040
GCGGCAGTAA CTTAGGACTT TAGTC	CTCTA GTTCTGCCTA	TGCGATAGCA	STCCAAGGTT	2100
'AGGAGTAAG GCGACGCTAA GCTTG	GTAAA CTGCGAACAG	CTAGAAGCTT A	ATCGTCAACT	2160
GAAGAAGCT GCACTTGTTG GATGT				2220
CCCAAGCAA GCAGATAAAT CATCO				2280

	1220			
ATTTTCCTTG GAAAGAGACT GGGAG	1278 GCTTT GCCAGCTGA	T GAACGACTAC	AGAAACGTCA	2340
AGAACATCTC CAGCCCCTAA TGGAA	GACTT CTTTGCTTG	G TGCCGCCGTC	AGTCAGTTTT	2400
AGCAGGTTCA AAACTAGGAA GGGCA	ATTGA ATACAGCCT	C AAGTATGAAG	AAACCTTTAA	2460
GACTATTTTG AAAGACGGAC ATCTG	GTCCT TTCCAATAA	T CTAGCTGAAC	GCGCCATTAA	2520
ATCATTGGTT ATGGGACGGA GTAAA	AGAGT CCAGTGGACT	r cttttagcct	GAGCTCAGTT	2580
TAAAAAAGCG AGGGTGGTTA TTTTC	TCAAA GTTTTGAAGG	G AGCTAAAGCA	AGAGCTATTG	2640
TTATGAGCTT GTTGGAAACA GCTAA	ACGTC ATCAATTAT	GTGCGTTGAA	TCTATAACAG	2700
TACGCATCGA CTGCTAAAAC ATTTC	TATAA ATCAATTTT	CTTTCCTAAT	CGATTTGTTC	2760
ATATCTTATT TCAATCCATT ATAAA	TAGCG AGAAATATCT	ATCCTATCTT	CTÁGAATGTC	2820
TTCCAAACGA GGAAACTCTC GTAAA	CAAAG AGGTTTTAG	GCCTATTTA	CCGTGGACTA	2880
AAGTTGTACA AGAAAAGTGC AAATA	AGAAA TCTCCAGATT	AGGAACTATC	CGTGAGTTCT	2940
CTAGTCTGGA GATTTTCAA TAGACT	TTCGT TATTGGACGO	TTACAATTTA	TTATATGAAA	3000
ATCCCATATT ATTCTCCAAT TCTAT	ATTTT ACCTTTCTA	ATGTATAGAT	TAACTACCTA	3060
ATTATAGCAT ATAACGCAGA TTCCT	TTCAA TCGTATGATT	TACTGCATTA	AATTAAGTAA	3120
AAAAATAAAG GCAGTCCGAA GACTGO	CGAT ATTTATCTCT	САТСТСТТТА	ATTATGGTAA	3180
GTAAATAAAT AATTTCCCTA AAGATA	TGGA AATTATTAAT	ACTATAAATA	CATATTATAA	3240
AGTTTATAAA TACTGTAAAA ATCCTC	AAGT TAATTTTCTA	ATAAATATCA	ATATGTGTTA	3300
GTATCTTTTA AATTTTTAGA CAATTT	ACTA GTTCTATAGA	CATGTTTAAC	AGACTCTATT	3360
TTACAATTCA AAAATTTCAT CTGCCA	CTTC ATTTAAAAAT	TCTATATCAT	GGGAAACAAT	3420
AAAAATTATT TTATCCATGG TTTTAT	ACTT ATTAATCAGT	TCAGATATTT	TTATCATATT	3480
GGAATAATCC ATACCACTTG AAGGTT	CGTC AAAAAAGACA	AATGGAGAAT	TCTTGCACAT	3540
AACAGATGCT ATTGCAAGCC TTTGCT	TTTG CCCTCCTGAT	AAACTCATCG	GATGCCTTTC	3600
AATAAATTCG TCCAGGCATA AATCTT	TTAA CCCAAATCAT	TCATACCTCT	CTCAACTAGA	3660
TGTAACTTAC AAAACCCCTG ACCTCA	TGAG CCACTTTCTT	CCTCCTCATG	AGGTCAGTTT	3720
TACTTTCTGC TGTTCCAGTA TCGTTT	TTCC TCGCTAGATT	TCCTCAAAAG	GGCAGACTCC	3780
TCCCTTGGTT CGTCACACGA TTTTTT	CATC TCGACTGTTC	TTTAATGCAT	CATTAACGAC	3840
GCTTTTCTTC TAGGTGGTTC ATAAGG	AACA GGAAGATTCA	GGTTGACTTT	TCTAATCCTA	3900
GAATAAAGTG CTGAAAACAA TTCGGA	ATAG GCATAGAGAC	TAGACAATTT	GAGGAGCTGC	3960
TTGCGTCCTG TTCGAACACA TTTTCC	CACC ACGTGAAGAA	AAAGATGGCG		4010
(2) INFORMATION FOR SEQ ID N	0: 254:			

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2789 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254:

ATGCATCCGT	TTGTCAAGC	TAAATTGTA	TTTTTTTCA	TTTAAAACA	S AAAAACCCAG	6
GAAAATGACA	TAAAAATATO	ATTCCTAGG	CTATTTATG	TATTTCTCTC	TGAAAAATAT	12
GAGTATTCAG	TCGGTCAAAT	GAAGCTGAAG	GAACTCATT	TCCCTCGCCT	AATTCAATGA	18
TTCGATGACA	TTGTTGGGCT	ACATAAGCA1	CGTGGGTCAC	GATAATGAC1	GTTTTCCCCT	240
CTCGATTCAT	' CTCTAAGAGA	AACTTCAAGA	CCAAATCTCT	ATTTTCAGG	TCCAGAGAAC	300
CTGTCGGTTC	ATCGGCTAAA	ATCAGCTGGC	TGGGTTTTAA	GATGGCTCTA	GCAACTGCAA	360
TTCGTTGTTG	TTCGCCCCCA	GACAACTCGG	AGACCCTTTG	ATGCAAAGTA	GCTGATAAAC	420
CTACTCTCTC	TAAAATCTCT	TCCACCTTTT	TGAGCTTGTC	TTTCTTAGGC	AATTTCACAT	480
ATTTCAGCGC	CACATGAGAT	TGTACTCGAC	CGTTTCATCA	TCAATCAGGG	CAAAATTTTG	540
AAACAGATAA	GAGATATGTT	CACGGATTAT	TGTTTGCGAC	TTAGCAGAAT	TAACCGCTAG	600
ATTTGTCTGA	CCAAAAATCT	CATACCGTCC	GCTATAATCA	CCATCTATCA	AACCCAATAA	660
ATTTAACAAG	GTCGACTTCC	CACTACCACT	CTTACCAACA	ATAGCTACCA	AATCCCCCTG	720
ATCAATCCTG	AGAGATAAGT	TATCCAAAAT	CACTTTTCCC	CCAATGGTTT	TGGTAATATT	780
TTTCAACTCA	ATCATAAGAT	GCCCCTTTC	AATAACTCTA	CTAGACTTCT	TTTCTCCATC	840
CTAGAAGCTA	AGCCTAGCAC	AAATAGTATA	TCCAGACATG	TAAAACCTGC	AAACAGTAGA	900
agtggtaaga	ACGCATGGGC	AAAGAAAATC	AAGACTAGAA	GAGGGAAACT	ATAGCCCAGC	960
AAGAGCAGAA	CGAGGAGAGG	ACGGTAGCGA	TCGACCAGTT	TCCACCCCAT	AAACTTCTTG	1020
GTAATGATAT	CCCTGCGCTT	CAATAAGAAA	GTTGTTACTA	GTAAGAAGTA	GGAAATCATC	1080
ATGCTAAGGA	GACCAAACAA	AGCAAAGAGT	AGGTTAAAAT	TCCGAACAGC	ATCTCGATAA	1140
GAATCCACTT	TCTCTTGTTG	AATGGCTTGA	ATAGATGAAA	ATTTTAAATA	ATTTCCATCT	1200
SACAATTTCT	CAACTAACTC	TGTAATCTCT	TTTTGATGTT	GAACCGTATT	TTCAATTTTA	1260
TCGGATTAT	TTAAGCCAGT	TGTTGACAGG	GAGGCTTTCT	CATCCCACAT	CATATCAGAA	1320
CATTGACCA	AGCTAATAAT	TGGATTGGAG	AGATTTTCCT	TTCGCTTATC	ACTATATGGG	1380
AAAATGACC	AATCTCCTTC	ATAATAGGCA	ATCTCGACAT	CCATCTCCTC	ጥልጥርር ውጥርር ውጥ	1440

			1280			
TTTTGCTGCT	CTTCATACTT	CATCGAATGA	AAGGCAATTA	ACTTCCCCAA	GAGCTGATTT	1500
TTATCTTCTT	CACCTTTCGT	ACTTGCTGGC	ATCAAAATAA	CTTTTTTAAT	ACCGGTATTT	1560
GGTAGCTTGA	ATCCCTTGCT	CTTTAGAAAA	TTGCGATTGG	CATAGTAAAC	ATCCACCGTA	1620
TCTGTTAACT	GATATTGCTG	AATCTGTTCT	GATTGGACAA	AATTTTTTAC	AGGAAGACTG	1680
CTACTCTGCA	CATAGCCCGC	CTGCGTTTTT	TCTACCAAAT	CCTGATAAAA	TCGATAGAAA	1740
TAATCTGTAG	ATTTCCCTGA	CCCTGCTAGC	TCTTCTTGCC	ACAGATTATC	ATTGAGTTTG	1800
AAGGTTTCTA	AGGTCAGGTA	ATTACCTTGA	CTTACCCACT	GTTGCTGATA	AGCAAGTTCT	1860
TTGTTTTCTT	GTTCTAAACT	TCTGCCCACC	CCAATCAGTA	AGGCCGTCAG	TAAAATAGTT	1920
GTCCCTATTT	TCATCACATA	ATTGAAGATA	AGACCAAATT	TGAAAGATGA	AAAACCTTTC	1980
AGCAGAGAGC	TGATTGTCAT	TTTTTGGATT	AAGAGGTAAG	TCAACCAACT	GATAAAGAGA	2040
TAAAGCTGCA	ACAGCAAAAA	ATGAGACAAC	CACAGCATAG	GAAACAAATC	TTTTGGCTTA	2100
TAATCAAGCA	AGAAAAACAC	GCCTAGATTG	ATCACAAGAG	CCCCACCTAG	GAGGAGGTAA	2160
AGGTTGCCTT	TTACAACATC	AGCTAAAACA	GCCCTATCTT	GAAAACCAAG	TAATTTTTGT	2220
ACCCCAACTC	TTTTCATCTC	CATCATCGGT	TGATACACTG	TCACTAACAC	AAGAAGCAAA	2280
ATAGCCAAGA	CAAAAACAAT	GGCAGATAAA	AGCAAATCTC	GATTTATGAC	TTCCACTGCA	2340
CTTTTGTAGG	TCGGCTCTAG	CAAGGTAGCC	TGGTCTATCT	TGAAAAAATC	GCTCCATTTC	2400
TGTACAATCC	TATCCTTGTC	CATCTCTTGT	GTAGAAGTTA	TCGTATAGCG	ACCATTTAAA	2460
CTACGAGATG	TATCCTTGAT	ATAGGTTTGA	AAAGTCATAA	GCTGAATAGG	TTTGGCTTTT	2520
AGAAAGGTCG	GAATCGTACC	AAGTTTATTG	GAAATTTCTT	TATTACTATA	GACTCCTTCA	2580
CCATCTGTGG	TAAAATCAAG	AGAAGAAATC	CCAAACTCTT	GGTAGGGGAA	GGTATCTTTA	2640
CAAAAACAC	CAGACTTGAC	CACCTCATCA	CCACTGTCTG	TTTTGATGAT	GGAGACTTTA	2700
				CTGCAGGTTC		2760
	AATCCAAAGA					2789

(2) INFORMATION FOR SEQ ID NO: 255:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2495 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255: CTGCGAATTT TATTAAAGAT AATGTGTTAA TTACAGCGGC TCACAACTAC TACAGACATG 60

ACTATGGGAA	A AGAAGCGGA1	GATATTTATO	TTCTTCCGGC	TGTTAGTCC	AGTCAAGAAC	12
CATTTGGAAA	GATCAAAGTA	AAGGAAGTTO	GTTATTTGAA	GGAATTTAGA	TTAAATTTAA	18
CTAAGGATGC	: AAGGGAATA1	GACTTGGCTT	TATTAATTCT	' AGAAGAGCCC	ATTGGTGCAA	24
AATTAGGGAC	TTTGGGTCTT	CCTACTAGTO	**************************************	' GACAGGAATA	ACTGTGACTA	30
TCACAGGCTA	TCCATCATAT	' AATTTTAAAA	TTCATCAAAT	GTATACAGAT	AAGAAACAAG	36
TTTTAAGTGA	TGATGGCATG	TTCTTGGATT	ACCAAGTTGA	TACTTTAGAG	GCGTCTAGTG	42
GATCTACAGT	TTATGATGCT	AGTCACCGTG	TAGTAGGAGT	GCATACTTTA	GGAGATGGAG	48
CTAATCAAAT	TAACAGTGCA	GTTAAATTAA	ATGAACGAAA	TTTGCCATTT	ATTTAWTCGG	54
TTCTTAAAGG	TTACTCTCTT	GAAGGATGGA	AGAAAATAAA	TGGTAGTTGG	TACCATTATA	60
GACAACATGA	TAAACAAACG	GGTTGGCAGG	AGATAAATGA	TACCTGGTAT	TATTTAGACA	66
GTTCCGGTAA	GATGCTTACA	GATTGGCAAA	AAGTCCATGG	AAAATGGTAT	TATCTCAATT	72
CAAATGGAGC	AATGGTTACA	GGTAGCCAAA	CTATCGATGG	TAAAGTTTAT	AACTTCGCTT	780
CATCTGGTGA	GTGGATTTAA	TGTTGGAGGA	TATATAAAAT	GAAGCTTTTG	AAAAAAATGA	840
TGCAAATCGC	ACTAGCCACA	TTTTTCTTCG	GTTTGTTAGC	GACAAATACA	GTATTTGCAG	900
ATGATTCTGA	AGGATGGCAG	TTTGTCCAAG	AAAATGGTAG	AACCTACTAC	AAAAAGGGGG	960
ATCTAAAAGA	AACCTACTGG	AGAGTGATAG	ATGGGAAGTA	CTATTATTTT	GATCCTTTAT	1020
CCGGAGAGAT	GGTTGTCGGC	TGGCAATATA	TACCTGCTCC	ACACAAGGGG	GTTACGATTG	1080
GTCCTTCTCC	AAGAATAGAG	ATTGCTCTTA	GACCAGATTG	GTTTTATTTT	GGTCAAGATG	1140
GTGTATTACA	AGAATTTGTT	GGCAAGCAAG	TTTTAGAAGC	AAAAACTGCT	ACGAATACCA	1200
ACAAACATCA	TGGGGAAGAA	TATGATAGCC	AAGCAGAGAA	ACGAGTCTAT	TATTTTGAAG	1260
ATCAGCGTAG	TTATCATACT	TTAAAAACTG	GTTGGATTTA	TGAAGAGGGT	CATTGGTATT	1320
ATTTACAGAA	GGATGGTGGC	TTTGATTCGC	GCATCAACAG	ATTGACGGTT	GGAGAGCTAG	1380
CACGTGGTTG	GGTTAAGGAT	TACCCTCTTA	CGTATGATGA	AGAGAAGCTA	AAAGCAGCTC	1440
CATGGTACTA	TCTAAATCCA	GCAACTGGCA	TTATGCAAAC	AGGTTGGCAA	TATCTAGGTA	1500
ATAGATGGTA	CTACCTCCAT	TCGTCAGGAG	CTATGGCAAC	TGGCTGGTAT	AAGGAAGGCT	1560
CAACTTGGTA	CTATCTAGAT	GCTGAAAATG	GTGATATGAG	AACTGGCTGG	CAAAACCTTG	1620
GGAACAAATG	GTACTATCTC	CGTTCATCAG	GAGCTATGGC	AACTGGTTGG	TATCAGGAAA	1680
GTTCGACTTG	GTACTATCTA	AATGCAAGTA	ATGGAGATAT	GAAAACAGGC	TGGTTCCAAG	1740
PCAATGGTAA	CTGGTACTAT	GCCTATGATT	CAGGTGCTTT	AGCTGTŢAAT	ACCACAGTAG	1800

			1282			
GTGGTTACTA	CTTAAACTAT	AATGGTGAAT	GGGTTAAGTA	ATGAAGGCTA	ATTGTAAACT	1860
GTGATGGATA	CTTAACTTTG	TATAATAGGT	GGATAAAAGT	CTTCACAATC	AAAAAACGCA	1920
TAGTATCAAG	GTTTTTCTGT	ACTGCCCTCA	AACAGTTAGA	CAATTAATTT	ATCCGAAGGA	1980
TTTAGTTCTG	TATTGCACAG	GGCTAAGTCC	TTTTAGTTTT	ACCTTAATTC	GTTTATTGTT	2040
GTAGTAATCA	ATATAGTCTA	TAATGGCTTG	TTCCAATTGC	TTAAGCGACT	GAAACGACTT	2100
CTCATAACCG	TAAAACATTT	CCGATTTCAG	AATCCCAAAG	AAGGACTCCA	TCATACTATT	2160
GTCTGGGCTG	TTTCCCTTAC	GTGACATGGA	TGCTTGAATT	CCCTTACTCT	CTAGGAACCG	2220
ATGATAAGAA	TCGTGTTGGT	ATTGCCAGCC	TTGGTCACTA	TGGAGAATCG	TATTCTCGTA	2280
GTGCTTCTCT	GTGAATGCCT	GTTCCAACAT	TGTTTGTACT	TGTTCTAAGT	TGGGTGAAGT	2340
TGAAAGATTA	TAGGCGATAA	TTTCGCTATT	AAAGCCATCT	AAAACTGGTG	ATAAGTAAAG	2400
CTTTTGAGTA	CTTGCTGGAA	TGGCAAATTC	TGTCACATCT	GTGTAGCACT	TTTCCATTGT	2460
TTTAGAGCCT	TCAAATTGGC	CTTGAATGAG	ATTCG			2495

(2) INFORMATION FOR SEQ ID NO: 256:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 870 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256:

TACCACCGTA	TTCATCCAGC	AAGATTGCCA	TTTGTCTTTG	GGTATTTCGC	AGTTCTTTTA	60
GCAAGTCATC	CACAAAAATA	GTTTCAGGTA	CAAAAAGTGG	ATCTTGTAAA	ATTCTCTTCC	120
AAACAATATT	GTCAAAACCG	TCCACAAAGC	CTGCCTTAAG	GAGACTCTTG	GTGTGAATGA	180
TTCCAATTAC	ATTGTCCTTA	TCCCCATCAT	AAACCGGGAT	ACGAGAATAA	TTTTGTTTTA	240
AAATACTTTG	GATAATGGCT	TGACTATCAT	CCTGAATATC	CACCATAAAG	GCATCCGTTC	300
GAGGAACCAT	AACCTCTCGT	GCCATCAGTT	CATCGAGCGA	AAAGACACCT	TGTAGCATCT	360
CAATCTCATC	AGCATCCAAT	GTTTCTTCAC	TATTTGTCAG	CATATAGGCA	ATTTCATCAC	420
GGGTCATCTT	TTCATCCGCA	TCATCGAATG	ACATAGGAGT	CAAATGGCTC	AAGAAATTGG	480
TCGAAGCAGC	TAAAAGCCAA	ACAAAAGGAC	TGACTAGTTT	TCCGATCCCA	ATGATAATCG	540
GCGCTGTACG	AATTGCCAAG	GCATCCTTTA	GATTAAGAGC	GATTCTCTTA	GGATATAATT	600
CCCCAAAAAC	GATGGAAATA	TAGGTCAAAA	ATGCCAAGGA	TAGAAAAGTT	GCCACGGCTT	660
GTGCTGTTTC	GCCATTCCCA	AGCCAAGAGG	CAATCACACG	TCCTAGAGTA	TCAGTTAAAC	720

TCGCCCCTGA	TAAGATTGTA	ATCAGGGTGA	TTCCTACCTG	GATGGTTGAT	AAAAAGTGGT	78
TAGGATTTTC	TAGTACCTTC	AGCAGGCGGA	TGTAGCGTCT	GTCTCCTTCT	TCCGCCTTTT	840
GTTCAACTCG	GGCACGATTA	AGAGAAACGG	·			870

(2) INFORMATION FOR SEQ ID NO: 257:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1245 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257:

CGTTCCCAGA	AGCCCGCATT	CTCATCGCCA	ATGTCGTGAT	TGATTTGGCC	CTTTCTCCAA	60
AATCCAACTC	AGCCTATGTA	GCTATGGATA	AGGCACTTGC	TGACCTCAAA	ACATCAGGGC	120
ACTTGCCTAT	TCCGCGACAC	CTGCGTGATG	GGCACTACAG	TGGAAGCAAG	GAACTGGGGA	180
ATGCCCAAGA	CTATCTCTAT	CCACACAACT	ATCCTGGAAA	TTGGGTCAAG	CAAGACTATC	240
TGCCAGAAAA	AATTCGTAAT	CATCACTATT	TCCAAGCAGA	AGATACTGGT	AAATATGAAC	300
GGGCTTTGGC	TCAAAGAAAG	GAAGCTATCG	ACCGTTTGCG	AAAAATCTGA	AATCCTTTTC	360
AAAAAATTGC	ACTTTCCTCT	TGATTTTTT	TGAAAAAGTG	GTATCATATA	AATATAGAAA	420
CGCTGTGGTG	TACGACTTCA	CACTTAAGTG	TTGACCGACT	ATTTTTTGTA	TTATTAGGGA	480
AACAAAAGTC	TTCTAACAGC	ATGTAGGCCG	TCTCACACGG	AAACAGCTTC	AGTTAGAGCG	540
AGTTGCCCAC	CTGCTTAATT	GCGCGGGTTC	AATACAAACC	GTGAAGTTTC	GGCACCAATA	600
CAGCTTTTTT	CTTTGCCTCC	TTAGCTCAGC	TGGCAGAGCA	GCGGACTCTT	AATCCGTGGG	660
TCACAGGTTC	GATCCCTGTA	GGGGCATAT	AAATACAACA	GGAAAAGCCT	TATAATATAG	720
GGCTTTTTTT	GCTTTCCTTT	TAAAAATTGT	CGTGCAATTT	GCCGTGTTTT	TACAACAAAC	780
TTTTCACAGC	CATAAACTCC	TCACTAATTT	TTTCCTCCAA	GGTATGCCCA	TAAACGTCAA	840
TCAACATGGA	GATATCTTTA	TGTCCTAAAA	TTTGGCTCTT	TGTCAACTGT	AGTGGGTTGA	900
AGTCAGCTAA	GCTCGAGAAA	GGACAAATTT	тстсстттст	TTTTTGATAT	TCAGAGCGAT	960
AAAAATCCGT	TTTTTGAAGT	TTTCAAAGTT	CCGAAAACCA	AAGGCATTGC	GCTTGATAAG	1020
TTTGATGAGA	TTATTGGTCG	CTTCCAATTT	GGCGTTAGAA	TAGTGTAGTT	GAAGGGCGTT	1080
GACGATTTTC	TCTTTGTCCT	TTAGAAAGGT	TTTAAAGACA	GTCTGAAAAA	GAGGAGGAAC	1140
CTGCTTTAGA	TTGTCCTCAA	TGAGTCCGAA	AAATTTCTCC	GGTGCCTTAT	TCTGAAAGTG	1200

1284 AAACAGCAAG AGTTGATAGA GCTGATAGTG ATGTTTCAAG TCTTG

1245

(2) INFORMATION FOR SEQ ID NO: 258:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1684 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258:

	ATGCCTATGT	AACTCCACAT	ATGACCCATA	GCCACTGGA	T TAAAAAAGA	T AGTTTGTCTG	60
	AAGCTGAGAG	AGCGGCACCC	AGGCTTATG	TAAAGAGAA	A GGTTTGACC	C CTCCTTCGAC	120
	AGACCATCAG	GATTCAGGAA	ATACTGAGGC	AAAAGGAGC	A GAAGCTATC	T ACAACCGCGT	180
	GAAAGCAGCT	AAGAAGGTGC	CACTTGATCO	TATGCCTTAC	AATCTTCAA	T ATACTGTAGA	240
	AGTCAAAAAC	GGTAGTTTAA	TCATACCTCA	TTATGACCAT	TACCATAAC	A TCAAATTTGA	300
						ATCTTTTGGC	360
						ATGGTTTTGG	420
						ATCAAACGGA	
						CTCGAGAAGA	480
						AAGAATCACC	540
						TGAGAGAGGC	600
							660
						AAGAGACTCT	720
						TTATGGCAGA	780
	AGCTGAAAAA			•			840
						TGAGTTCTAG	900
	TTCTCATTTT	TTTCATGAAA	ATGTGCAAAA	TATAGTAGAT	TGAAACTAGA	ATAGTATACC	960
	TCTACTTCTA	AAACATTGTT	AGAAATCGAT	TTGACTGTCC	TGTTCTTATT	TCATTTTACT	1020
	ATATCTTAAC	AGATAGTGTA	AATAAAGATA	AACTATTTAC	TGGCTAATTA	ATCAGTTAAA	1080
	CACTAGTTAA (GGAGTAATGA '	TGAAAAAAAG	AACAATACTA	TTATTGATGG	CCAGTCTGTT	1140
	AGCTCTTGTC	TAGGAGCAT (GTGGTTTCTT	GGACATATTG	ATCCTGGATC	ATTCTCATCA	1200
•	GGATTACTCT 1	TACTGCTAT	TTAGAAACT	GGGGTGGTTT	GATGGAAAGT	ATTGGTCTTG	1260
	TTATCGTTTC I	CATTCCAAA	CACATTGCAG	AAGGTGTTGT	TGAACTGATT	AGTAAAGTAG	1320
	CTAAAGATGT 1						1380
					,		1300

PCT/US97/19588 WO 98/18931

1285

TTGAACAAGT	AGATAGGGTT	GTTTCCGAAA	ATCCAGCAGA	TACTTTACTT	GCCTTTTTTG	1440
ACCTAGGTTC	TGCTAAAATG	AACTTAAAAA	TGGTGACTGA	TTTCAGTGAT	AAAAGTATCA	1500
TCATCAACAG	GGTTCCAATT	GTAGAAGGTG	CCTATAATGC	AGCTGCTCTT	CTTCAGGCTG	1560
GTGCAGAACT	GTCAGTTATT	CAAACACAGT	TaGCGGAgCt	TGAAATCAAT	AAATAAGGAA	1620
TTTTACTATA	ACTCTTTTTA	TAGATAAGCT	ATTGATTATC	TCAACTATAA	TAATGTTAAG	1680
TnAA						1684

(2) INFORMATION FOR SEQ ID NO: 259:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 970 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259:

AGGAGTGGAG	Anatatgaag	ACACAAATTT	TCACATTATT	GAAAATCGTT	GCTGAGATTA	60
TTATTATTTT	GCCATTTCTA	ACTAATCTAT	AAGTTCTTTA	TATTGCTGAA	AACGCAATTC	120
AAAAAGGGCT	ATTAATTGTG	GATTTTCTAA	TACCTGCAGA	GATTGGATAA	AGCGTTCAAT	180
CTCTTTTTGA	TTGCTTCCCT	TTGTTTGAAG	AAAGACACTC	ATCTTCTTTA	AAAATTGCCA	240
CGATACTTTT	TCAAAAACAT	CATACGGTCG	TAACATCCTC	TCCAACTCGG	CTTCGAAGAT	300
TGGGATGTAG	GAGAAAAGTT	TTCGCTCCAT	GAGTTCTGAT	AAGATATTTA	AGAGTCCTTG	360
CTTCATATAC	AATCGATTGT	GTACTAACTC	TTTAAATTCT	TTGGATTTTT	CGAGTAAGGA	420
GGTTGATAAA	AAAATCAGAT	CTTGATTGCT	CAAGAAGGGC	ATGGTATTGC	AAAAGAGATA	480
GAGTTCAAAC	CAGGTCCAAG	ACTCGATAGC	ATAGAGATAG	GTGGTCAAAA	ACTCGCTATC	540
CTCCTCTGCT	AGTGGGTAGC	TTTTATTTAG	TGAATGGATG	GCATCTTTAA	TCACGATGGC	600
ATTCAAACGA	CGATAGGTCT	GCGCCATCTG	TTCTTGATCG	ACTTCCTCCA	ATAGCTGCTC	660
TAAAGCAGCT	ATATCCTGAT	GGGCAAAGCG	ATTCACAACC	TTTCGACCGA	TTCGCATATG	720
TGGAGATTCT	TGATAGTTGT	TGAGCTTGTG	CCCAAACTCA	TCAAAGGTCA	CATTTATACC	780
TTGGATAGCT	AGAATCAACT	TATCCGCAGA	CAGCATAGAC	TGCCCTAGTT	CAAACTTGGA	840
CAACTGAGAA	GCTGTTAGAC	CCTCACAAGC	CACATCTGAC	TGCTTGAGCT	TTCTCGCCAA	900
ACGTAATTCC	TTGTAAAATT	CCCCCAGTTC	CATTCTCTCA	ATCATCTGAC	CACCTCCTAG	960
CTTTTGCAGG						970

(2) INFORMATION FOR SEQ ID NO: 260:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2996 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260:

			•			
GTTGACCACG	GGTAAAACTA	CCCTAACTGC	AGCTATCACA	ACTGTTTTGG	CACGTCGCTT	60
GCCTTCATCA	GTTAACCAAC	CTAAAGACTA	TGCGTCTATC	GATGCTGCTC	CAGAAGAACG	120
CGAACGCGGT	ATCACTATCA	ACACTGCGCA	CGTTGAGTAC	GAAACTGAAA	AACGTCACTA	180
CGCTCACATC	GACGCTCCAG	GACACGCGGA	CTACGTTAAA	AACATGATCA	CTGGTGCTGC	240
TCAAATGGAC	GGAGCTATCC	TTGTAGTAGC	TTCAACTGAC	GGACCAATGC	CACAAACTCG	300
TGAGCACATC	CTTCTTTCAC	GTCAGGTTGG	TGTTAAACAC	CTTATCGTCT	TCATGAACAA	360
AGTTGACTTG	GTTGACGACG	AAGAATTGCT	TGAATTGGTT	GAAATGGAAA	TCCGTGACCT	420
ATTGTCAGAA	TACGACTTCC	CAGGTGACGA	TCTTCCAGTT	ATCCAAGGTT	CAGCACTTAA	480
AGCTCTTGAA	GGTGACTCTA	AATACGAAGA	CATCGTTATG	GAATTGATGA	ACACAGTTGA	540
TGAGTATATC	CCAGAACCAG	AACGTGACAC	TGACAAACCA	TTGCTTCTTC	CAGTCGAGGA	600
CGTATTCTCA	ATCACTGGAC	GTGGTACAGT	TGCTTCAGGA	CGTATCGACC	GTGGTATCGT	660
TAAAGTCAAC	GACGAAATCG	AAATCGTTGG	TATCAAAGAA	GAAACTCAAA	AAGCAGTTGT	720
TACTGGTGTT	GAAATGTTCC	GTAAACAACT	TGACGAAGGT	CTTGCTGGAG	ATAACGTAGG	780
TGTCCTTCTT	CGTGGTGTTC	AACGTGATGA	AATCGAACGT	GGACAAGTTA	TCGCTAAACC	840
AGGTTCAATC	AACCCACACA	CTAAATTCAA	AGGTGAAGTC	TACATCCTTA	CTAAAGAAGA	900
AGGTGGACGT	CACACTCCAT	TCTTCAACAA	CTACCGTCCA	CAATTCTACT	TCCGTACTAC	960
TGAÇGTTACA	GGTTCAATCG	AACTTCCAGC	AGGTACTGAA	ATGGTAATGC	CTGGTGATAA	1020
CGTGACAATC	GACGTTGAGT	TGATTCACCC	AATCGCCGTA	GAACAAGGTA	CTACATTCTC	1080
TATCCGTGAG	GGTGGACGTA	CTGTTGGTTC	AGGTATGGTT	ACAGAAATCG	AAGCTTAATT	1140
CGATTTAGTT	CCCAGAAGAA	CAATTATTTA	AGTTAGACAC	TAAAAGAATC	TTGCTTGGCA	1200
AGGTTCTTTT	TTTAGATATT	GAACTAATAC	TCAATGAAAA	TCAAAGAGCA	AACTATAATA	1260
TATTGAAACT	AGAATAGTAC	ACATCTACTT	CTAAAACATT	GTTAGAAATC	GATTTGACTG	1320
TCCTGATCGA	TTTGTCTTGT	TCTTATTTCA	ттттастата	GAAAGTTAGC	TACAGACTGC	1380
TCAAAACATT	GTTTTTAGGT	TGTAGATAGA	ACTGACGAAG	TCAGLAACAT	CTATACGACA	1440

AGGCGAAGCT GACGCGGTT	T GAAGAGATT	T TCGAAGAGT.	A TAATACTAG	A CTAAAATCAA	1500
AAAGCATTAT ACAATAGTA	A TATGAAATC	A ATTAAAGAA	G AAATCCAAA	C CATCAAAACA	1560
CTTTTAAAAG ACTCTCGTA	C AGCTAAATA	r cataaacgc	TTCAAATCG	r rctatttcgt	1620
CTGATGGGCA AATCTTATA	A AGAGATTATA	A GAACTTTTA	r agtggtttg	A AATAAGATGT	1680
GAACAACTCT ATCAGGAAA	TCAAACTAA1	TTATAGAAA	r ATTTTAGCA	G CCAAGGTGTA	1740
CTGTTATAGA TTCAATACAG	TTTAGACTG1	AATCAAACA	CGATTTGGC	S AAATGTAAAA	1800
AATATGAGGA GTTCGGACTC	GACTCTCTCC	TTCAAGAAA	ACGTGGTGGT	CGTAACCATG	1860
CTTATATGAC GGTTGAGCAA	GAGAAAGTCT	TTCTTGCCCC	CCATTTGAAC	GCTACAGAGG	1920
CAGGAGAATT TGTTACAATT	GATGCCTTAT	TTCAGGCTTA	TAAAAAGGAG	TTAGGTCGTT	1980
CCTACACACG TGATGCCTTC	TATCAACTGT	' TGAAGCGCCA	TGGTTGGCGA	AATATTACGC	2040
CACGTCCAGA ACATCCTAAG	AAAGCAGATG	CTCAAACCAT	TGTCGCGTCT	AAAAATAAAG	2100
TCTCAATTCA AGAAGACAAG	TGAACTGCAC	CCCAAAAGTT	AGACAGAAAA	AATCTAACTT	2160
TTGGGGTGTT TTTATTATGA	AATTAACTTA	TGATGATAAA	GTTCAGATCT	ATGAACTTAG	2220
AAAACAAGGA TATAGCTTAG	AGAAGCTTTC	AAATAAATTT	GGGATAAACA	ATTCTAATCT	2280
TAGGTACATG ATTAAATTGA	TTGATCGTTA	CGGAATAGAG	TTCGTCAAAA	AAGGAAAAA	2340
TCGTTACTAT TCTCCTGATT	TAAAACAAGA	AATGATTCAT	AAAGTCTGAC	ATGAAGGCTG	2400
GACTAAAGAT AGAGTTTCTC	TTGAATACTG	TCTCCCAAGT	CGTACGATAC	TTCTTAACTG	2460
GCTAGCACAA TACAGGAAAA	ACGGGTATAC	TATTGTTGAG	AAAACAAGAG	GGAGAGTACC	2520
TGAGAGCGGA GAATGCCATC	CTAAAAAAGT	TAAGAGAACT	CCGATTGAAG	GAGGAAAAAG	2580
AGAAAGAAGA AAGACAGAAA	TTATTCAAGA	ATTAATGACT	GAGTTTTCGT	TAGATATTCT	2640
TCTAAAAGCC ATTAAACTAG	CTCGTTTGAC	СТАСТАСТАТ	CACTTGAAAC	AGCTAGATAA	2700
ACCAGATAAG GACCAAGAGC	TTAAAGCTGA	AATTCAATCC	ATTTTTATCG	AACACAAGGG	2760
AAATTATGCT TATCGTCGGA	TTTATTTAGA	ACTAAGAAAT	CGTGGTTATC	TGGTAAATCA	2820
TAAAAGAGTT CAAGGCTTGA	TAAAAGTACT	CAATTTACAA	GCTAAAATGC	GACAGAAACG	2880
AAAATATTCT TCTCATAAAG	GAGACGTTGG	CAAGAAGGCA	GAGAATCTCA	TTCAAGGACA	2940
ATTTGAAGGC TCTAAAACAA	TGGAAAAGTG	CTACACAGAT	GTGACAGAAT	TTGCCG	2996

(2) INFORMATION FOR SEQ ID NO: 261:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 837 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261: CTTATCAACT CCCGACATGG CTCTCAGACC AATCCAAATC CCTAAAAAAA TCAGAACAAG 60 GATGGTGGTC AAGATCAAAC TCTCGAAATA TAAAGAAAAT AGTTGCAGTA GCATGATTTC 120 TCTCATTTCT ATCTTTTTA AAGAGTAAAC TCAGCTAGTC CAACTAACTG AGTTTTCCTT 180 TATCTATTAT ATCAAATATA AGTCCGTTTG TAACTAGCGA AGAATTCTTT TGTCCGCTCT 240 TCTTTAGGGG TGTGGATAAT CTCATCCGGA GTTCCAGACT CGATGATTTT CCCCTTATCT 300 AAGAAGAGAA TTTTATCCGC AACTTGGGCT ACAAAGGACA TGTCATGACT GACCAAAATC 360 ATGGTCTGAC CTGACTTAGC AGCATCTGCA ATAGACTTTT CTACTTCACC GACCAATTCT 420 GGGTCAAGGG CTGAAGTTGG TTCGTCTAAG AGCAAACAT CTGGTTTCAT AGCAAGCGCA 480 CGCGCTAGGG CAACCCGTTG CTTCTGTCCA CCTGATAAAT GGCGAGGATA ATGGTTTTCA 540 CGGTCCGAAA GCCCAACCTT AGCCAACTCT TCCTTGGCAA TCTTAGTCGC TTCTTGGTCA 600 GATAATTTCT TGACAACAAC CAAGCCTTCT TTCACATTAT CAAGTGCTGT TCGGCGTTCA 660 AACAAATTAA ACTGTTGGAA AACCATAGAC AACTTACGAC GTAGGGCAAG GATTTCTTCT 720 TGAGTGATTT TAGAAAAATC AACTGAAAAA CCATCAATCT GAATAGAGCC ACTGTCAGGT GTTTCTAGAT AATTGAGACT GCGAGAAAGG TTGATTTTCA GCTCTGAAGA CCAATCA 837 (2) INFORMATION FOR SEQ ID NO: 262:

...

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 868 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 262:

CCGAACAAAA	TGGGCTAATT	AGATTATAGT	AAGAAAGGTA	AGTTAAAAAT	GAGAATTGCA	60
ATTGGATGTG	ACCACATCGT	AACTGATGAA	AAAATGGCGG	TTTCAGAATT	TTTGAAATCA	120
AAAGGATATG	AAGTCATTGA	CTTTGGTACC	TATGACCATA	CACGGACTCA	CTACCCAATC	180
TTTGGTAAAA	AAGTAGGGGA	AGCTGTAACT	AGCGGTCAAG	CTGATCTTGG	AGTATGTATC	240
TGTGGTACTG	GTGTTGGTAT	CAACAACGCT	GTAAATAAAG	TTCCAGGTGT	TCGTTCTGCC	300
TTGGTTCGTG	ATATGACAAC	AGCCCTTTAT	GCTAAAGAAC	AATTGAACGC	TAACGTTATT	360
GGTTTTGGTG	GTAAAATTAC	TGGTGAATTG	CTTATGTGTG	ATATCATCGA	AGCTTTCATC	420

CATGCTGAAT	ACAAACCAAC	TGAAGAAAAC	AAAAAATTGA	TTGCGAAAAT	TGAACATGTT	480
GAAAGTCACA	ATGCTCAACA	AACAGACGCA	AACTTCTTTA	CAGAATTCCT	TGAGAAATGG	540
GATCGTGGAG	AATACCACGA	CTAAGAGGTG	ACCTATGATT	TTAACAGTCA	CAATGAACCC	600
ATCCATCGAT	ATTTCCTATC	CCTTGGATGA	GTTGAAGATT	GATACTGTCA	ATCGTGTGGT	660
GGATGTAACC	AAAACGGCTG	GTGGTAAGGG	ACTCAATGTT	ACCCGAGTAC	TTTCAGAATT	720
TGGCGATTCT	GTTCTTGCTA	CTGGTTTAGT	GGGTGGCAAA	CTTGGTGAGT	TTTTGGTTGA	780
ACATATCGAT	AATCAAGTAA	AGAAAGATTT	CTTCTCAATT	AAGGGAGAAA	CTCGTAACTG	840
TATCGCTATT	CTCCACGGAG	ACAACCAA				868

(2) INFORMATION FOR SEQ ID NO: 263:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3744 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263:

CCGTTCAAAG	TCTTCATAAG	ACTCGAAAGT	CACAGTTCTT	TCGTTCTTGC	TGGCATCTAT	60
ATAGGTAATT	TCAATCATGT	TTAAAACTCC	TTTGTTTAAT	GCTAACTTTA	TTTTACTCCT	120
TATAAAAGAG	AATGTCAAGA	AAAATGATTG	CGCACGCAAC	TTTTTTTAAA	ATCATCTTAA	180
ATCAAGAAAT	CCAAACCTGC	TTCCAAGCTT	TCTTCGACAG	TCTTTTGTAG	CGAGGCCAGT	240
GTCTTTTGCC	CATCATTTGT	CAGGCAGATA	AAACTAGAGC	GTCTATCTTG	ATGGCAACAC	300
ATGCGACTGA	GTAGACCGCA	ATTTTTAGCT	TCCAAGCGAG	CCACCATCCT	AGAAACTGCG	360
CTCGGGCTCA	GATGAAGCTT	ATCTGGCAGG	TCAATCTGGC	GTAGAGATTT	TTCTTCAGCC	420
AAGTCCAGAT	AGTAGAGCAG	GTAGAACTCT	TTCAAGGTCA	GACTTTGCTC	GCTCTGTTGG	480
GCAATGGTCT	CTTCCAAGAG	ACTTTCAATT	TCTTTCTGAC	GCCGATTGAA	GTCAAACCAT	540
TTTTCCAAAT	AGGTCATAGT	GTCTCCTTTC	TTTTTAGAGT	CATAAATAGA	AGAAAGTCCA	600
TTAACGGGCA	GTCTCTGCGT	CACAAGATGA	TTGCGCATGC	AATAATTATA	CTACTTTTCA	660
AGAATGCTGG	CAAGCTCTGT	TTTTTAGTGG	TTTTATTTT	GTGTGAATAA	TGGGGGAATC	720
CTATTGTTTC	AATTTCTAAC	TCCTTATCAC	ATTCGAATTC	AGATTTTATT	TCATTTCTCT	780
ATCTATAGTT	GCTTAGTTTA	AAATAAGCAT	GGTCTAATAA	AGCTATGCAT	ATAGTACTGA	840
TTTTAAACAA	GGAGCATTAG	АТТССАТТАА	AGGAGGCAC	AGACATGTCG	AGGCGGCCAA	900

AGTTTTGAT GTCGCCCTCA CAACTCTCTT CAACTCTCTT CAACTCTCTT CAACTCTCTT CAACTCTCTTCTT CAACTCTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTT	
AGTTTTTGAT GTCGGCGTCA GAACTCTCTT CACGTGGGAA AAGAAAGACG TAAACAAGGG	960
AACTTAGAGC GGAAAAAGCG AGTCGTCAAA AAGCGTAAGA TCCCTTTAGA AGAATTGAAA	1020
GCCTTTGTAG AGGCTCATCC AGACGCTTTT TTACGGGAAA TTGCGGCCCG TTTTGATTGT	1080
GCTTTGCCCT CCGTATGGGC AGTTTTAAAG CAGATTAAGG TCATTTTAAA AAAGACGACC	1140
AGTTTTAGGG AACAAAAGCC TGAGAAAGTT TCTGAGTTTC TTGATATTTT GGATAACCTA	1200
AAAGATTTAC CAGTCCTATA TATTGACGAA ACGGGAATCG ACCGCTACCT CTATCGTCCT	1260
TATGCAGGG CTCCTAGAGG GGAGAAAGTC TATGGCAAGA TTAGCGGACG GCGTTTTGAG	1320
CGGACTAATG AGGTGGAGCA AAAACTCAAT GGTAGTTTTC TAATCAGATA TATTGATTCA	1380
CAAATTAGAG AATGAAAGAA TAATTATGCA TAAAAATAGG AATATAAACC AAAAATTAGC	1440
TGATTTATAC TCATTTGCGT GTCTTTATAA AAAACTTATC TTATAATATA TATATATA	1500
TATACAAAAT AGTAAAATGC TTTTTTTTTT TAGCAAAAAT ACCTCAAGTT TCTTGCTATT	1560
TTGGGTTCCC TATTCTATAA TTATAGTATG GTAATTTATT TATATCCATA CATGAAAATA	1620
ATACTCGAAA GGAAATTTCA AAATATTTTT TAGACGTCAG AAGGGTGAAT ATAGAGAAAC	1680
AGACCGAGTA ACTCGGTTCA AATTAATCAA ATCAGGGAAG CATTGGCTAC GGGCCTCGAC	1740
TTCTCTTTTT GGCTTGTTTA AGGTCTTGCG AGGTGGTGTT GATACTACTC AGGTCATGAC	1800
CGAAACGGTA GAAGATAAAG TAAGTCATTC AATTACTGGG CTTGATATCC TCAAGGGGAT	1860
AGTTGCTGCG GGAGCTGTCA TAAGTGGAAC CGTTGCAACT CAAACGAAGG TATTTACAAA	1920
GAGTCAGCA GTACTTGAAA AAACTGTAGA GAAAACGGAT GCTTTGGCAA CAAATGATAC	1980
GTAGTTCTA GGTACGATAT CTACAAGTAA TTCAGCGAGT TCAACTAGTT TGTCAGCTTC	2040
GAGTCGGCA AGTACATCTG CATCTGAGTC AGCCTCAACC AGCGCTTCGA CCTCAGCAAG	2100
ACAAGTGCA TCAGAATCAG CAAGTACATC GGCTTCGACA AGTATTTCTG CATCATCTAC	2160
GTGGTAGGT TCACAAACAG CTGCCGCTAC AGAAGCAACT GCTAAGAAGG TCGAAGAAGA	2220
CGTAAGAAA CCAGCTAGTG ATTATGTAGC ATCAGTTACA AATGTCAATC TCCAATCTTA	2280
GCTAAGCGA CGCAAGCGTT CAGTGGATTC CATCGAGCAA TTGCTGGCTT CTATAAAAAA	2340
GCTGCTGTT TTTTCTGGCA ATACGATTGT AAATGGCGCC CCTGCAATTA ATGCAAGTCT	2400
AACATTGCT AAAAGTGAGA CAAAAGTTTA TACAGGTGAA GGTGTAGATT CGGTATATCG	2460
GTTCCAATT TACTATAAAT TGAAAGTGAC AAATGATGGT TCAAAATTGA CCTTTACCTA	
ACGGTTACG TATGTGAATC CTAAAACAAA TGATCTTGGT AATATATCAA GTATGCGTCC	2520
GGATATTCT ATCTATAATT CAGGTACTTC AACACAAACA ATGTTAACCC TTGGCAGTGA	2580
CTTGGTAAA CCTTCAGGTG TAAAGAACTA CATTACTGAC AAAAATGGTA GACAGGTTCT	2640
THE CAPTACIGAC AAAAATGGTA GACAGGTTCT	2700

ATCCTATAAT	ACATCTACAA	TGACGACGCA	GGGTAGTGGG	TATACTTGGG	GAAATGGTGC	276
CCAAATGAAT	GGTTTCTTTG	CTAAGAAAGG	ATATGGATTA	ACATCATCTT	GGACTGTACC	282
AATTACTGGA	ACGGATACAT	CCTTTACATT	TACCCCTTAC	GCTGCTAGAA	CAGATAGAAT	288
TGGAATTAAC	TACTTCAATG	GTGGAGGAAA	GGTAGTTGAA	TCTAGCACGA	CCAGTCAGTC	2940
ACTTTCACAG	TCTAAGTCAC	TCTCAGTAAG	TGCTAGTCAA	AGCGCCTCAG	CTTCAGCATC	3000
AACAAGTGCG	TCGGCTTCAG	CATCAACCAG	TGCCTCGGCT	TCAGCGTCAA	CCAGTGCGTC	3060
AGCTTCAGCA	AGTACCAGTG	CTTCAGTCTC	AGCATCAACA	AGTGCTTCAG	CCTCAGCATC	3120
GACAAGTGCC	TCGGCTTCAG	CAAGCACATC	AGCATCTGAA	TCAGCGTCAA	CCAGTGCTTC	3180
GGCTTCAGCA	AGTACCAGTG	CTTCAGCTTC	AGCATCAACC	AGCGCCTCGG	CCTCAGCAAG	3240
CACCTCAGCT	TCTGAATCGG	CCTCAACCAG	CGCCTCGGCC	TCAGCAAGCA	CCTCAGCTTC	3300
TGAATCGGCC	TCAACCAGCG	CCTCAGCCTC	AGCATCAACG	AGTGCTTCGG	CTTCAGCAAG	3360
CACAAGCGCC	TCGGGTTCAG	CATCAACGAG	TACGTCAGCT	TCAGCGTCAA	CCAGTGCTTC	3420
AGCCTCAGCA	TCAACAAGTG	CGTCAGCTCA	GCAAGTATCT	CAGCGTCTGA	ATCGGCATCA	3480
ACGAGTGCGT	CTGAGTCAGC	ATCAACGAGT	ACGTCAGCCT	CAGCAAGCAC	CTCAGCTTCT	3540
GAATCGGCCT	CAACCAGTGC	GTCACCTCAG	CATCGACAAG	CGCCTCAGCT	TCAGCAAGTA	3600
CCAGTGCTTC	AGCCTCAGCG	TCGACAAGTG	CGTCGGCCTC	AACCAGTGCA	TCTGAATCGG	3660
CATCAACCAG	TGCGTCAGCC	TCAGCAAGTA	CTAGTGCATC	GGCTTCAGCA	TCAACCAGTG	3720
CCTCGGCTTC	AGCGTCAAAC	AGTG				3744

(2) INFORMATION FOR SEQ ID NO: 264:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 795 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264:

CGATAAAGAC	GCCTTGAGTA	ATCTCAATTT	GCAGATTGAA	AATGGAGAGA	TTATGGGCTT	60
GATTGGTCAT	AATGGGGCTG	GAAAATCGAC	CACTATAAAA	TCCCTAGTCA	GTATCATTTC	120
ACCCAGCAGT	GGTCGTATTT	TGGTAGACGG	TCAGGAGTTA	TCGGAAAATC	GCTTGGCTAT	180
TAAACGAAAG	ATTGGCTACG	TAGCAGACTC	GCCTGACTTA	TTTTTACGCT	TAACGGCCAA	240
TGAATTTTGG	GAATTGATCG	CCTCATCCTA	TGATCTGAGT	AGATCTGACT	TGGAGGCTAG	300

			1292			
TCTAGCTAGG	CTATTGAACG	TTTTTGATTT	TGCTGAAAAT	CGCTATCAGG	TTATTGAAAC	360
TCTTTCTCAC	GGAATGCGTC	AGAAAGTCTT	TGTCATCGGA	GCACTCTTGT	CTGATCCCGA	420
TATTTGGGTC	TTGGATGAAC	CCTTGACTGG	TTTGGATCCC	CAGGCTGCCT	TTGATTTGAA	480
ACAGATGATG	AAGGAACATG	CACAAAAAGG	GAAGACAGTC	TTGTTTTCAA	CTCATGTCCT	540
AGAGGTGGCA	GAGCAAGTCT	GTGATCGGAT	TGCCATTTTG	AAAAAGGGGC	ATTTGATTTA	600
TTGTGGTAGT	GTAGAGGACT	TGAGAAAAGA	TTACCCAGAC	CAGTCTTTGG	AAAGTATCTA	660
CCTTAGTCTT	GCTGGTAGAA	AAGAGGAGGT	TGCGGATGCG	TCTCAAGGTC	TAAAAAATTA	720
TAGTTGATAT	CAATATCCTT	TATTCATCTC	AAGAAGCTAA	TCTGGCTAAT	CTACGAAAGA	780
AGCAGGCTAA	GAATC			•		795
(2) INFORMA	TION FOR SE	Q ID NO: 26	55:			
(; ()	QUENCE CHAR A) LENGTH: B) TYPE: nu C) STRANDED D) TOPOLOGY	2231 base p cleic acid NESS: doubl	pairs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265:

TGGTAATGTG	CTTGGCAGCW	TCCTTGACAC	TGCTACTACC	ATTTCCCATA	GCGACCGACA	60
TACCAACGCC	AGCCAGCATT	TCAAGATCAT	TATCTGAGTC	ACCAAAAGCC	ATGACTTGGT	120
TGAGGTCAAA	GCCATATTCT	TTCCCAACTC	GGCGAATGCC	TTCTAATTTA	GAATTTCCCT	180
GATTGATGAC	ATCCGATGCA	AAAGGATTGC	TACGTGTCAA	TTTCAAGTCT	TCAAAATCAG	240
CTGCCGCCTT	CTCAGATTCT	TCTGGTGTCA	TCAGCATCAA	AACTTGGTAG	ATAGGCTGAT	300
TCATCAGGTG	AAGCAGGTCC	TCTTCCTTTT	GGGGAACAAC	CTTGCTGACC	ATGCGATTAA	360
AAGACTGACT	CACCGTCCGA	GTTAAAACAG	AGGGAACGAA	GCGACTAATT	CGTTGGGAAA	420
AAGAACCCAG	ACCAAAGGAC	ATGATTTTAG	AACCCAACAT	GGCATCCTTG	GTCCCTAGAG	480
CAATCTCCGT	GCCCTCTTTT	TTAGCATAGC	TAATTAGATG	GCGCAAATGT	AACTTGGAAA	540
TAGGGCTCGT	GAACAAGACT	CTGTCTTTAC	TAAAGATATA	CTGGCCATTA	TAGGTTACCG	600
CAAAATCCAG	ATCCAAATCG	TCCATCAATT	CCTTAACAAA	AAAAGGTCCT	CGCCCTGTCG	660
CTACGCCAAC	TAGTACCCCT	TGTTCTTTGA	CAATCTTAAT	CGCATCCTTA	GTGGATTTCA	720
AAACACTCTT	GCGATTGTTG	ACCAAGGTTC	CATCGATATC	ааааааааса	GCTTTGACTT	780
CCATCCTATC	CCAATCTCCC	CTTTTGTGAT	ACAATGATTA	TACCACATTT	CAGAAAGAGT	840
GAGTAAATCA	TGCCTAAGAA	AATCCTTGTT	TTACATACGG	GTGGAACTAT	TTCCATGCAG	900

AACCGCCGAC ATTCAAGGTG GCA	ATAATGC GGGG	ATTGAC ACTATCTGGT	ATAATCCTCA	1020
TCACCTCGAA AATCACACAC AAC	GCCCAGCC GACT	PACGAA GTCTATTCTT	ACCAAGACTT	1080
GCTGGATTGT TTAGATAAAA ATA	ATTCTTGA AAAG	ATCACA TTTTAAAGGA	GACGAGCTAA	1140
TGACTACAAA AAAGCTAATA TTA	CTATTGA AGAG	PACATT GAAATGTCTC	AAGTTGATTT	1200
TAATGAAGCT GTTAATTATG AAT	TTACATC TGAC	ACTIGT CAATTAGCAA	ATAGTATTTA	1260
TCAATCTCTT TTTAAGTTTT TTG	ATAAGAA AAAT	TTCTCT GGCGATTTAA	TTTTTACTTG	1320
GAAATCTCCA TCATTAGTCA AAG	AAGGGGA TTAT	ATTGGG AGAAGGGATT	CACAAGTAGA	1380
TAATCTTAGA GTAATAGGAA ATA	TATTTCC GAATT	PATCTT ACTAATCGAA	AATATAGCCT	1440
CAATATGAAT CGTAATGGCT GTA	TGGGAGA TTTT	CCTCAT GACTTTTTTG	ATATATACCT	1500
AGATCATGTA GCAAAATATG CCT	ACGAACA AAAAC	TTAAT AATATTAAAG	AGTATTATCC	1560
TTTAAAAAGA GCGATTTTAC ACC	AAGAGAA TGCAT	TTGTAT TTTCGATTTT	TTTCTAATTT	1620
TGACGACTTT TTAGAAAAA ATT	ATTTAAA GACTA	TATGG CAAGTTTCTA	AAGAAACTCC	1680
(2) INFORMATION FOR SEQ I	D NO: 271:			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 598 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 271:

AGCTCGGTAC GTAGTATHTG TGGTGCATAA	atgagtgaaa	AGAGGATAGA	GAGGATGAGG	60
CCGATAAGAA CACCGGTAGC TGCATCGTGA	AATACTTGTT	TTTTCATAGT	TCTAATTTCT	120
CCTTGATGGT TTTTAGATAA CGGCGTGAAG	AGTAGGTGAA	GCTTTCGTTT	TTCAAGAAAA	180
TTTCTACCAG ACCGTTTGGC GTGAGCTTGA	GGTGAGAGAT	GGAATCGATA	TTGATGATTT	240
CTGATTGGGA AATTTGGATA AAATTGGTTG	GCAAGAGTTT	AAGAACCTGA	TAGAGTCGCA	300
AATCAATGCT GTAGGTCTGA CTCGCGGTTT	CTGCTAGAAC	CTTCCGATTC	TCGATATAGA	360
AGCGCTGAAT CTTGCCAATC TCAACTAGAT	AGACCTGATC	ATCGATTTTT	CCTTTGATTT	420
TTTCTCTTTG GTCCAGATTT TCTGCGAACT	CGATGACTTT	CTGGACTTTT	TCGGTTTCTT	480
GAGGTGCTTG GACAATCAGC TTTTCCTCCT	CGTAAGTCTC	ACTAATCTGT	AGTTCTACTT	540
TCATAGTTTT CTCTCCTTTT CAGTTATACA	AGGTTGTGAT	CACTTCCTGT	ATATCCGG	598
(2) INFORMATION FOR SEQ ID NO: 27	2:	•		

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1099 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272:

CCAGCAAATC	AATAACTGCA	ATTGCTATAA	AATGGATTCT	ATAGAGTTTT	TTCATGACAA	60
GACCTCCCTC	TTTTATCTAA	CTTCATTCTA	CTCCAAAAGA	ATGGGAGTTA	CAACTAAAAT	120
GATAAAAATA	GCAGAAGGGA	GATTCTCTTA	AGTTGGCTAG	TATTCTTTAT	TTGAGTTTCC	180
TTCTATTATC	TAACTTCTTC	ATCATTCCAG	ACAAATAAAG	CTCCGATTGC	ATTGAGGATA	240
TAAAAGATGT	ATTTACCGAT	ATTGGCGAAG	TTTCCTTGAA	TACCAGCTTT	TGTCAGCTGA	300
ACGAAATTGT	AAATCAACCA	AAAGCCCCAC	TGAGTTGTTA	GTTTTAATGC	ATTCAAAGCA	360
TTGGCAATGA	GGGACAGTGC	AAAGGCAATA	GTTGTTACGT	AGGCAAGGAG	ATTCATCTTG	420
CCCCCATATC	CGATATAGTT	GGTCACAAAG	GCAAAGAGGA	AGGCGATGAT	GGAAATGATG	480
ATGGCCGCCA	ATTTTACCTG	TTTTTGGCTC	ATTTGGTTGG	GTCTGCCTTC	TTGCGAAGCT	540
TCCCACTTCT	TTATAGCAAA	GGTATAAATG	AGGAAGGTGA	CGGGATAGGT	AATGATGGCC	600
GCCTTATTTC	CAAGGATATA	ATCAATAGCA	CCGGACAAAA	TGGTATTAAC	AATACCAAAG	660
TAATTTCCCC	ATTTGCTTAA	TTTCCCCGTG	AAACGAGTGG	ACAACATGGA	AATCCCAACG	720
TTGGTTACGG	AAATCAATCC	AAAGGGTACA	AGAGCTGTCC	ATGATCCCCA	GTCTACAAAT	780
TTATCGAGGT	GTGAGTTGAG	GTAACCAGAT	GCAATCGCAA	TCCCAACGAC	CAAAGCAACC	840
CCGAAGAGGT	CAAACTATTT	AGATGTAGCA	AAAATTTTTA	GTGATTTTTT	CATAGGTTAA	900
ACTACCTTTC	TTTTTTCAA	ATATTCTCCC	ACCAAATGAA	AGTAAAATAA	AATGATAGAA	960
ATAAAACCCT	GAAAATAAAG	GTTCTATAAT	ATTTGTAGTG	GGTAAATCCA	CTATAGATAT	1020
TATGGAGCCT	ATTTTATTGT	AGAAAAAAAG	TCCCATATGA	CCTATAATGA	AAAGCGACAA	1080
AACAACTCAT	TAGAAAGAT					1099

(2) INFORMATION FOR SEQ ID NO: 273:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2723 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273:

CTGGGATTCA CGTGAAAAGG AAGCCCAGAG AGTAGCCAGG TGTACTGCTA GAACAGTGAG	60
TGAAATTGAA TATTACCATA GAGAGTCAAC CCAGATAGCT CAGGCTTTAG TTGAAAATCA	120
AGCTCGTATC GAGGGAATCT ATAAATACTT TAGCCTTAGC ATGCCAGACT ATTTTTACTG	180
GCAATTAGAG CGGAAAGCTT CGCCTTATAT ATCAGTCTCT CTGTATGAAA ATGTTGATGA	240
CCTCTATGTT CGAAATGATT TTGTAACTGG GGTGGCCATT GCTTTTCAAG ATTACAAGGA	300
AGTCTATGTT TCTACTAAAG ACAAACGTAG GKKAGAAAAA ATCAGGGCTG AGGATTTCAA	360
ACCAGCAGGA AATAGTTTTG CCATTCCAGT GTCAGATCCA GTGTCAGATC AAGACTTAGG	420
AGTGATTTAC ATCTCCTTGG ATCCTGCTGT TTTATACCAT GCCATTGATA ATACTAGAGG	480
TCATACTCCG ATGGCAGTAA CAGTGACCTC ACCTTTTGAT ACGGAGATTT TTCATATGGG	540
TGAGACAGTT GATAAGGAGA GTGAAAATTG GCTAGTTGGC TTAACTTCTC ATGGATATCA	600
GGTTCAGGTG GCAGTTCCTA AAAACTTTGT TTTACAAGGA ACAGTGACTA GCTCTGCTTT	660
GATTGTGGGT TTGAGCCTTC TCTTTATTGT CATTCTTTAT CTGACTTTGA GGCAGACTTT	720
TGCTAATTAC CAAAAGCAGG TAGTGGATTT AGTAGAATCC ATTCAAGTCA TTGCTCAAGG	780
CGAAGAGGGG CGTCGGATTG ACATTTCCGA GAAAGATCAG GAATTACTCC TAATCGCGGA	840
GACGACCAAT GATATGTTGG ATCGATTGGA AAAGAATATC CATGATATTT ACCAGTTAGA	900
GCTTAGTCAA AAAGATGCCA ATATGCGAGC CTTGCAGGCG CAAATCAATC CTCATTTTAT	960
GTATAATACG CTGGAGTTCT TGCGCATGTA TGCAGTTATG CAGAGTCAAG ATGAGTTGGC	1020
AGATATCATT TATGAATTCA GTAGTCTCTT GCGTAACAAT ATTTCCGACG AAAGAGAGAC	1080
CCTCCTCAAA CAGGAATTAG AATTTTGCCG TAAATACAGC TATCTCTGCA TGGTTCGCTA	1140
TCCCAAGTCC ATTGCCTATG GTTTCAAGAT AGATCCAGAG TTAGAGAATA TGAAGATTCC	1200
CAAGTTTACC TTGCAACCGC TGGTAGAAAA CTATTTCGCG CATGGTGTTG ACCACAGGCG	1260
GACAGATAAT GTGATTAGCA TCAAGGCTCT TAAACAGGAT GGTTTTGTGG AAATTTTGGT	1320
GGTCGATAAT GGTAGAGGAA TGTCGGCTGA AAAGTTGGCA AATATCCGAG AAAAATTAAG	1380
PCAGAGATAT TITGAACACC AAGCCAGCTA CAGTGATCAA AGGCAGTCTA TCGGGATTGT	1440
CAATGTACAC GAGCGTTTTG TGCTCTATTT TGGAGACCGC TATGCCATTA CTATAGAGTC	1500
PGCAGAGCAA GCCGGTGTTC AGTATCGTAT TACAATTCAA GATGAGTAGA AAGGGAGAAA	1560
ATGTATAAAG TATTATTAGT AGATGATGAG TACATGGTGA CAGAAGGTCT GAAGCGTTTG	1620
ATTCCCTTTG ATAAGTGGGA TATGGAGGTC GTCGCAACAG CCAGTCATGC CGATGAAGCT	1680
TAGAATATG TTCAGGAAAA TCCTGTCGAT GTCATCATTT CCGATGTCAA TATGCCAGAC	1740

			1304			
AAAACAGGGC	TTGATATGAT	TCGGGAGATG	AAAGAGATCT	TACCAGATGC	TGCCTATATC	1800
CTGCTCTCAG	GTTATCAGGA	GTTTGATTAT	GTAAAAAGAG	CAATGAACCT	TAGTGTGGTG	1860
GACTATTTGG	TCAAGCCTGT	TGATAAGGTA	GAGCTGGGAA	ATCTGCTGGA	GAAGATTGCA	1920
GGTCAGCTCG	GCGAGAGAGG	GAAGAAAAGT	CAGACTCTTA	GTCAAGAATT	AGACGAGGCT	1980
GGATTTGTTA	GTTATTTAGG	GGATAAGGAG	AATTGGTGGA	TAGGTCTATC	CAAGGAAAAA	2040
CAAGGTTCCT	TCACCATTCC	CTACTATGTC	TTGGGTCAAG	ACTGGCAGAT	TTTCATTTCT	2100
GGCCACCCCC	TAGATGGTTT	AGTCGTTACA	CCTTTTGAAG	CTCCTTATCA	AGAACACTTT	2160
GAACGCTGGA	AGCTGAATGC	TGAGAAAACC	CTCTTTTACG	GTTCTGTAAA	TCTGCAGCAG	2220
TCTGAGAGTC	TCTTTGCCTA	TTACGAACCG	ATTTATAGGG	TTATCATTCA	GGGAAATCTC	2280
AATCAAATCG	TAGAAGAGTT	AAATCTCTTG	GAGAAGGTAG	TTCTTGAAAA	TACACCTCGT	2340
GTTTCGATTA	CTAAACAGCT	TTTTATCCAG	TTTGTCATGG	ATGTTTTCCA	TTTATTTGAA	2400
CATCTCAAAG	CTGATGATAT	GACGGACATT	GTCAAAACCA	TTCATGCTAT	TCAATCCTTC	2460
GATGAATTGG	TTTCTTATAT	CAAGGAAACT	CTGATCAGCT	TTTTCGGTCA	ATACCGTATG	2520
AATGAAAATG	TGGTCAGTGT	GCTGGAAGTC	ATTGGTCGTG	ATTACCAAAA	AGAGCTTTCC	2580
CTCAAGGATA	TCAGTAAGGC	CCTCTTTATC	AATCCTGTCT	ATCTAGGGCA	GTTGATTAAG	2640
CGTGAAACCG	ATTCGACCTT	TGCAGAGTTA	CTAAACAAAC	AACGTATTAA	GGCTGCCCAG	2700
CAGCTCTTGC	TTTCAACTAG	TGA				2723

(2) INFORMATION FOR SEQ ID NO: 274:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 836 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 274:

60	GCAAGATTTT	AAAAAAGAAT	AGCATAGTCA	ATATAAGTAT	TTTAAACCGT	CCGCAGTTTT
120	CAGGACTTGA	GTTCTACTGT	TTCTTTTAAA	TTCGTAATTT	TTTAAAATTT	TGCAAACTTT
180	AGATTTAACT	CTACATCACT	TAAACATCAT	TCCGGCGATA	CAACCTGTTC	CCTTGCTTAA
240	CCCTTGTGGT	GATGAATTTT	TGAGGTTGGA	CATATTTTCC	GGTGAGACAG	GCATAAACCA
300	ATTTTCCATT	TTCCTATCTG	ACTTCCAGAC	TTGCTTGCCG	GAAAATCTGC	TGAATGACCA
360	TGGAAACTGG	CTGTTTCGAT	ACCTTGAGAG	GATTGTCAGT	TAGCCCCTTC	CCAAGGACCT
420	CTCAAACATA	TCCTTCCTTC	AGAGCTGCAG	CTTCTGAAGA	CACTTTTCAT	CTGGCATCCC

TCTAGATTGT	TATTGGAAGC	AACCGAGTCA	GTCGCAATTC	CGACTGCTAC	TCCCGCTTTT	48
TGGAGCTGGA	TAATTGGAGC	AATTCCTGAT	GCCAGTTTGA	GGTTACTGAT	AGGATTGTGG	54
GCGATAGCnA	CTTGAGAAGA	TGCCAAGCGT	TCAATTTCTC	TCTCGTTTAA	TTCGACCCCG	60
TGAGCAAATA	CGGACGGATG	ATCTAAATAA	CCCAGTTCTT	CAAGAAAAGC	AAGGGGGCGT	66
TTGCCGTATC	GTTTGAGGAT	AATTCCTGAC	TCCTCCTTGG	TCTCCGCCAC	ATGGACATGG	720
AGCGGAATAT	TTAGCTCTTT	TGCCATTTCC	AAACTCGCTT	CCAGCAAGTC	TCTACTGCAG	780
CTATACGGAG	AATGAGGTGC	TACCATAACC	TTGAAATTTG	GATTTTTATA	TTTTAA	836
(3)						

(2) INFORMATION FOR SEQ ID NO: 275:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2335 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 275:

ATTTTATTTC	ACTTTTTAGG	TGGTCTGGGG	CTATTCTTAT	ATAGCnTCAA	GACCATGGGA	60
GACGGTTTAC	AACAAGCTGC	TGGAGATCGC	CTGGGTTTTT	ACATTGACAA	ATATACTAGT	120
AATCCTTTGT	TTGGAGTTCT	GGTTGGTATT	GGGATGACTG	CTCTAATTCA	GTCTAGTTCT	180
GGTGTAACAG	TTATCACAGT	CGGCCTGGTC	AGTGCCGGTC	TCTTAACCTT	ACGTCAGGCT	240
ATCGGGATTG	TCATGGGTGC	TAATATTGGG	ACAACTGTCA	CATCCTTTCT	CATCGGTTTT	300
AAATTAGGTA	ACTATGCCCT	ACCTATGCTC	TTTATCGGTG	CCGTCTGTCT	TTTTTTTACG	360
AAAAATCGGA	CAGTCAATAA	TATCGGACGC	ATCCTCTTTG	GTGTCGGTGG	TATCTTTTTT	420
GCCCTCAATC	TCATGAGCGG	CGCAATGGCT	CCACTCAAGG	ATTTACAGGT	CTTTAAGGAC	480
TATATGATTG	AGCTAAGTAA	GAATCCTGTT	TTGGGTGTCT	TTGTCGGTAC	TGGCTTGACC	540
TTGCTAATTC	AAGCTTCTTC	GGCTACCATT	GGGATTTTAC	AAAACCTCTA	CGCCGGCAAT	600
CTAATTGATC	TACAGGGAGC	TTTGCCAGTT	CTATTTGGTG	ACAATATCGG	GACAACCATT	660
ACAGCCATCA	TTGCCTCTTT	AGGGGCTAAT	ATTGCAGCTA	AACGGGTAGC	AGGAGCTCAT	720
GTTGCCTTCA	ACGTTATCGG	AACAGTTGTC	TGCGTTATTT	TTCTAGTTCC	TTTTACTGTC	780
CTGATTCATT	GGTTTGAAGC	TACGCTAAAT	CTAGCACCGG	AAATGACCAT	CGCCTTTGCT	840
CACGGAACCT	TTAATATTAC	CAACACCATT	GTCCAATTTC	CATTTATCGG	AGCTCTGGCT	900
TACTTTGTAA	CCAAGATTAT	TCCTGGAGAG	GACGAGGTTG	TCAAATACGA	ACCCTTATAT	960

			1306			
CTTGATGAAC	ATTTCATCAA	ACAGGCCCCA	TCTATCGCTC	TAGGAAATGC	TAAGAAAGAG	1020
CTCTTGCACT	TAGGAAACTA	CGCTGCTAAA	GCCTTTGACC	TTTCCTATAA	GTACATCATT	1080
GACTTGGATG	AAAAAGTTGC	TGAAAAAGGG	CATAAAACCG	AAGAAGCAAT	TAACACCATC	1140
GATGAGCAAT	TAACACGTTA	TCTCATTGCC	CTTTCAAGCG	AAGCTCTCAG	CCAAAAAGAA	1200
AGTGAAGTGC	TTACCAATAT	CCTTGATTCC	TCCCGTGATT	TGGAACGGAT	TGGAGACCAC	1260
ACGGAGGCTC	TACTCAATCT	GACTGACTAT	CTTCAACGGA	AAAATGTTGA	ATTTTCTGAT	1320
GCCGCCTTGA	AAGAATTAGA	GGAAGTTTAC	CGCCAAACTA	GTGACTTTAT	CAAAGATGCT	1380
CTGGATAGTG	TGGAAAACAA	TGATATTGAA	AAAGCACGCA	GTCTTGTAGA	ACGTCATGAA	1440
GCAATCAATA	AGATAGAACG	TGTTCTCAGA	AAAACCCACA	TCAAACGCCT	CAACAAAGGC	1500
GAATGTTCAA	CACAAGCTGG	GGTCAACTTT	ATCGACATCA	TCTCACACTA	CACTCGTGTA	1560
TCAGACCACG	CTATGAACCT	TGCTGAAAAG	GTTTTTGCAG	AACAAATCTA	AGAACCAAGA	1620
AGCTATCCAT	CATAATTGGA	TGGCTTTTTA	CTTTTTCCTA	AGCAAGACTA	GGATGAATGA	1680
AACTGAAAGA	GTATTCTGCA	GATATATAGT	CCCCAATTAT	TCACCCCAAA	TCTAAAAACC	1740
ATCCAGAATC	CTTGCCTTAG	CTTAGATCCT	GGATGGTTTC	TTTTTTCACC	CAATGGGTGT	1800
TTTTTACTAG	ACAAA AAAGA	GTTTCCCCTT	TATGGTATAA	GTGTAGAAAA	AAACACAAAA	1860
AGAAAGGAAA	CTCACATGAA	CAGTTTACCA	AATCATCACT	TCCAAAACAA	GTCTTTTTAC	1920
CAACTATCTT	TCGATGGAGG	TCATTTAACC	CAGTATGGTG	GTCTTATCTT	TTTTCAGGAA	1980
	AGTTGAAACT					2040
	GTCGTTATTC					2100
	GAACGGACTA					2160
	GAGGGCAGCT					2220
	CAGTCCATAG '					2280
	GCTAAACCAA (2335
3) 7)						

(2) INFORMATION FOR SEQ ID NO: 276:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 752 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 276: CGGATTCACT GTTGTTGACT AATCAATAAC ACAGTAGAAA ATCTCACAGC AGTCTATTAG 60

TTGCTTTTCA	TACTAGGCAA	GTGACTGAGG	CTTGTACTTG	GGTACAGCAA	GGGAGCTTAA	12
GGCCGTAGAA	GAGAAAAATA	GTAGACTGAA	AACCCGCAAG	ACTTCATCAT	TTCGAGAAGT	18
GACGTGGGAG	ATGAAAATCG	ATTGAACCAC	TTACAAGGAG	AATAGAAAAT	GGCTAAAAAA	240
AGCAAACAAC	TTCGTGCTGC	TCTTGAGAAA	ATCGACAGCA	CAAAAGCATA	CAGTGTAGAA	300
GAAGCTGTAG	CACTTGCAAA	AGAAACTAAC	TTTGCAAAAT	TTGATGCAAC	TGTAGAAGTT	360
GCTTACAACT	TGAACATCGA	CGTTAAAAAA	GCTGACCAAC	AAATCCGTGG	AGCAATGGTA	420
TTGCCAAACG	GTACTGGTAA	AACTTCACGT	GTTCTTGTTT	TCGCACGTGG	TGCAAAAGCT	480
GAAGAAGCAA	AAGCTGCTGG	TGCAGACTTT	GTTGGTGAAG	ATGACCTTGT	TGCTAAAATC	540
AACGACGGTT	GGTTGGACTT	CGACGTAGLT	ATCGCTACAC	CTGATATGAT	GGCTCTTGTT	600
GGACGTCTTG	GACGTGTCCT	TGGACCACGT	AACTTGATGC	CAAACCCTAA	AACTGGTACT	660
GTAACAATGG	ATGTTGGEAA	AGCGGTTGAA	GAGTCTAAAG	GTGGTAAAAT	CACTTACCGT	720
GCTGACCGTG	CAGGTAACGT	TCAAGCAATC	AT			752

(2) INFORMATION FOR SEQ ID NO: 277:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2643 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 277:

GTCAACATTG	ATTTCAAGGC	TGTTTGCTTT	CTATCTCCCC	TTTTTCATAA	TGTATAATAA	60
AATGAAATAA	TAACAGGACG	AATTGATCGG	GACAGTCAAA	TCGATTTCTA	ACAATGTTTT	120
AGAAGTAGAG	GTGTACTATT	CTAGTTTCAA	TCTACTATAT	TTTCGTACAG	GTGCTTCAAC	180
CATTTGAACG	ATTTCAAATC	CTTCTTTTTG	GTAAAGATTC	TGAGCTCTTT	GATTTGCCTC	240
GAAGACATTT	AGAGAAATAC	TGTCTATATC	TCTATTTTCA	AATGCTAAAC	TAACAAATTT	300
CCTTAAAGCC	TTGCTACCTA	AGCCTTGCTC	CTGTTTCTGG	GGGTTGATAA	AAAATCTCCC	360
GATATGAAGA	TTGCTGTCTT	CTAGCCTGAT	TTTCTGGATA	AATCCCACAA	ACTOTTOTTO	420
ATCAAAGATT	GAAAAGACTC	CTTCCAAGGC	TTGAAGTGTC	AGTAGAAAAG	GAATCCTTGG	480
TCCCATCCAT	TGTTCTTGAA	AGGATTTGCC	TAGGGAGTTG	GACCACTGGC	ATACAAATTG	540
AGCGTTTTCT	GTGCTCACCT	TTTCTTCAAA	ACGAATTGTC	ATCTTTTCCT	CACCACCTTA	600
TCTATGTTTC	TCCATTATAC	TATTTCTCCC	ATTTTTTACG	AATAGATAAG	TATGATTGAT	660

TTTTATTTTT	TTCTCGTCGG	GAGCATTCTA	GCTTCCTTTC	TTGGTTTGGT	CATTGACCGT	72
TTTCCAGAGC	AATCCATTAT	CAGTTCAGCC	AGTCACTGCG	ATTCCTGTCA	GACTCCCTTG	78
CCTCCCTTAG	ATTTGATTCC	GATTCTCTCA	CAGGTCTTCA	ATCGCTTTCG	CTGTCGCTAC	84
TGCAAAGTTC	GCTATCCTGT	CTGGTATGCC	CTCTTTGAAT	TAAGCTTAGG	ACTCCTCTTT	90
CTGCTTTACT	CTTGGGGATG	GCTCTCCTTG	GGGCAAGTCG	TCCTAATCAC	CGCTGGTTTG	96
ACCTTGGGTA	TCTACGACTT	TCACCATCAG	GAATATCCCT	TACTGGTCTG	GATGACTTTC	102
CAGCTAATCC	TAATAGCTTC	CTCTGGCTGG	AATCTGGTCA	TGGTCTCCTT	CCTCATACTT	108
GGAATTTTGG	CTCATTTTAT	CGATATCCGC	ATGGGTGCAG	GGGATTTCCT	CTTTTTAGCT	114
TCTTGTGCTC	TCGTCTTTAG	CGTAACGGAG	TTACTGATCT	TGATTCAGTT	CGCTTCTGCG	120
ACGGGTATCC	TGGCCTTTCT	CCTGCAAAAG	AAAAAGGAAA	GACTTCCTTT	CGTGCCTTTC	126
CTCTTACTTG	CTACTTGTTT	GATTATTTT	GGTAAGCTAC	TGCTTGTCTG	ATAAAATCCA	132
ATTTCTGCCA	TATATCCTTC	ATGAAATTAT	TTCACAGTTA	AATTATAAAT	TATTTCTTTT	138
GTACAAAGGG	ATGATGTTAT	CAAATCGATC	TGTTCTTCTA	TCTTCTTGAT	ACTGATCAAA	144
AAATTTCATT	TCGACTGAAA	ATATTTCGCT	TATAAACTGT	AAACGAATAC	TTTGTTTAGA	150
CATTATAGTC	GCTAGACTGA	CTAGATGATT	ACTCAAAACG	ACGTCCAGAA	TACTCTTTAC	156
TTTGCTTGGT	TTTTTAACAA	AAATTTGATC	ATCCAAGGGT	TCAATCATTT	TGTAACCTTT	162
TTGCGCÄATT	TGACGATAAA	AGTAAGAATG	TTGCTTTGGA	GTCAATAATC	CTAACTTAAA	168
AGCTCGATAC	TCTAAAGCCT	GTATCGAAAC	ATTCAAATCC	GACTTCAATA	AAATATAACT	174
ATCAGGATTG	CTGACACGCT	TGCCAACCCT	CTCTTCAAAT	TTGACTAAAA	ACTCTTCTTT	180
TGGCAATAAA	ÄAACATGATG	CAAAATAATT	TGCTTCTTGC	TCCAAACGAT	CGCCATCTTC	186
ATTCATATCT	TTATATTTAT	GTAAAAGAAT	ATGTCCTAGC	TCATGAGCTA	AGTCAAAATT	192
TCGACGTACA	GATGATTTAT	TCGTTCCTAA	CACAATATAA	GGTCTTCCCA	ATTTTGACCA	198
TGCGCTATAA	GCATCAGCTT	GGCCATTAAT	TAATCGTTCC	ACGATATAGA	TGCCTGAACG	204
TTCTAATTTA	TAAAGCAAAT	CATGATTATC	TTTTGAAATA	CCTAATTTTT	CCCTGGCATA	110
AAGAGCCAAT	TCCTCAATGG	ATTCTCCCTT	ATGATAAGAT	TCACTCACTA	CATTACTTAG	216
GTCATGAATT	ATAATATTAG	GTATAATTAC	AAAACTTTCA	AAATAATCAA	TCAAACTATC	222
TACCTTATGT	AAATACATAG	TTTGAATATC	TATTGTTTTC	CGTGTTGCTA	GGTCTGCATT	228
TCTAAAGGCA	ATTACAGAAG	AATCAAATCG	AATGCTCTCT	TCTTCCTGTT	CAAAATAAGT	234
TAAATCAACA	TGAAATTGGT	TGGCCAAATG	CATTTTGGTT	GATAATTTAG	GTTTCGTTTC	240
GTTGGACTCA	AACTGCCAAA	TGGCTTGTTC	CGTTAAATTA	ATTCTCTGAG	CTAATTCTGC	246

1	3	0	9
---	---	---	---

77.75	
TCTACTTAAA CCATTTAACA GCCGTAATTC TTTCAATACC CGACCATTAA ACATTTACAT	2520
ACTCCTTACT ACTTTTGACC TTCTTGTTTT TCTATTCTTG GAATAATTTC AAAATCTTCT	2580
GTTTCCGATA ATTCTGAAAA ATTAGGAATA TCTTGATATT TAGCTTCTTC GAAATGGTAC	2640
GGG	2643
(2) INFORMATION FOR SEQ ID NO: 278:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 582 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 278:	
TGACCAGTGG CAAAATGGCT ATCCAAATGC AGATGTTATT ATCGATGATA TCATCTCAGG	60
GCAAGCCTAC GTAGCCTTGG AAGAGGGAGA ACTGCTAGCC TATGCTGCTG TGACCAAGAG	120
TCCAGAGGAG GCCTATGAAG CTATTTATGA GGGAAACTGG CAAGCTGGAG AGTCAGAGTA	180
TCTAGTCTTT CACCGTATTG CTGTGGCAGC AGATGTGCAG GGAALAGGAG TTGCTCAAAC	240
CTTCTTAGAG GGCTTGATTG AAGGTTTTGA TTATCTTGAT TTTCGCTCAG ATACGCATGC	300
TGAAAACAAG GTTATGCAAC ATATTTTTGA AAAACTTGGT TTTAAACAAG TCGGTAAGAT	360
GCCAGTAGAT GGCGAACGCT TGGCCTATCA AAAATTAAAG AAATAATGCA AAAGAAGTAT	420
GTAAAAATCC TCTACTCCTC ACCAATTGGT ATTCTATCAC TTGTAGCTGA TGACCATTAT	480
TTGTATGGAA TTTGGGTTCA GGAGCAGAAG CATTTTGAGA GGGGACTAGG AGATGAAACG	540
ATAGAAGAAG TTGTWAGTCA TCCTATTTTA GACCCAGTTA TT	582
(2) INFORMATION FOR SEQ ID NO: 279:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 554 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 279:	
CCAAGCTAC TAAGAGACTA AAACTTGCTA GAGAAGCAAG AGAAAGTGTG AATCTTTTA	60
TTTCATGAT GAATTTCCTT TCTGCTACCA ATTTAGAGAA ATTTTCTCTA ACCAGCAATT	120
CCCTAGTAT AACAAGTTCA AAAAATGGAG TCAATTTATC TGCTCACGGT CCAGCAGGTA	180

GCCCCGTACT TCTGAG	ATAA AATAGAGAGA	1310 CCCTGTAACG	AACAGCAAGT	CTTGAGCGTC	24
TGCCCTTTCT TCAAAA	TCGC TGATAAATTC	TCGGTAAGAA	GAAACTATAT	CGTAACCTGT	300
CACATCCCTT TCGTCC	AAAG CCCCTGATA	GTCAAAGCCG	GTCACCTTGA	GTTCCACCTG	360
AGGCAATTTT TCAGTC	AGAT AACCCAACAT	CCCTTGATAA	TCCTTACGTT	TCAAGGATCC	420
AAAGAGGATT TGAGGT	CGAT AGCCTTCCTG	CTCTTTTTCT	TTGATAAACT	CAGCCAAGCG	480
AGTCAAGGCA GGGAGG	TTAT GAGCACCATC	CAAATAAATC	TGTGGGCGAA	TACGCTCCAA	540
GCGAsCAGCC CAAT					554
(2) INFORMATION F	OR SEQ ID NO: 28	0:			
(A) LENG (B) TYP (C) STR	CHARACTERISTICS GTH: 766 base pa E: nucleic acid ANDEDNESS: doubl DLOGY: linear	irs			
(xi) SEQUENCE	E DESCRIPTION: S	EQ ID NO: 2	80:		
CCGGTTTTTC AAATGA	ATTT CTTGGTTGTG	GCTAAAAAAT	ATGCTACACT	ATCAATATGA	60
AAATTTTAAT CCCAACA	AGCA AAAGAAATGA	ACACAGACTT	CCCAAGTATC	GAGGCAATTC	120
CTTTAAAACC AGAAAGT	CAG GCCGTGCTTG	ATGCCTTGGC	TCTCTATTCT	GCCAGTCAAT	180
TGGAGAGTTT CTACAAG	GTA TCAGCTGAGA	AAGCGGCGGA	AGAATTTCAA	AATATCCAAG	240
CTTTGAAAAG GCAAACT	GCT CAACACTATC	CAGCCTTGAA .	ACTTTTTGAT	GGGCTTATGT	300
ACCGCAACAT TAAGAGA	GAT AAGCTGACCG	AGGCGGAACA	AGATTATCTT	GAAAATCATG	360
TTTTCATTAC CTCGGCT	TTG TACGGTGTTG	TTCCAGTCTT (GTCACCCATG	GCTCCTCACC	420
GTTTGGATTT TTTGATG	AAA TTAAAAGTCG (CTGGTAAGAC	TTTGAAGAGC	CATTGGAAGG	480
CAGCCTATGA TGAAACT	CTG AAGAAGGAAG	AAGTGATTTT	CTCTCTCTTG	TCATCAGAGT	540
TTGAGACTGT ATTTTCT	'AAG GAAATCAGAG	CAAAGATGGT (GACCTTCAAA	TTCATGGAGG	600
ATAGAGGCGG TCAGCTG	AAG ATTCACTCAA	CTATCTCCAA (GAAAGCGCGC	GGGCCTTTC	660
TAACAGCTTT AATAGAA	AAT CAAGTACAAA (CTGTGGGGGa A	AGCACGTCGC	TTGAACTTTG	720
CTGGATTTGT TTACCGA	GAA GATTTGTCAC /	AACCACAGGG (GGATGG		766
(2) INFORMATION FO	R SEQ ID NO: 28	1 :			
	CHARACTERISTICS: TH: 901 base pai				
(B) TYPE	: nucleic acid NDEDNESS: double				
	LOGY: linear	•		•	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281:	
CCGGCCACGG TTCCATCCAA CTTCACAGGT GTGCACTTGA TTGTGTATGT AATTGTCACT	6
AACGGTAGAA TTTCACCTAT CCCTCCTATC TGCTCGCAGT ACCCGCAGAC TTTCTGAAAG	12
AAGAAGATAA CCTACTTATC CGTTGCTATG ATTATACTAA AGTTTCTACT TTTTTGCAAA	18
TAGATTTTTA AATTTTTGGC TAATTGTCTG AATCAGGGTC GGAAGTTTGA CGACCTTGTC	24
ATTGCCTAGT TTTTCGCGTG CAATTTTGAG AATGGCACCT GAGTCTTTTG AAGCAAAGAG	30
GAATTTTCCT TTGTCTGTAA AGACTTCGAA GTGGCGGCTG ATTTTGCGTC CAGTGACATT	36
GGCTCCAATC TGATTGATAT GGCTCCAAGG AATCTGGATA AATTGTTCGA CATTGACATC	42
TGGGTAAAAT TCCAAAGCCT GATCTCCGAC AAGGAATTTC CCAACTTTCC CAGCGATAGA	48
GAGGTAGGAA GTGCCTGTCG TACTGAGGAG TACTGTTTTG TTAAGTGATT GGGCCATGCT	54
TAGTCTTCCT TACTTTCTCC AAAAAAGGCA TTGTAGAGGG CTTTAATTGC TGCTTTCTCT	60
TGGTCTTTAT TGACAACAAA CATAATAGAA ACTTCACTAG AACCTTGAGA CATCATCTGG	66
ATGTTGATTT TGTTTTCAGA TAGAGCGCGT GTCGCAGTAG CAGTCACTCC GATATGGCTC	72
TTCATTTTTT CACCAACAAT CATAATGATA GAAAGGTCGT GTTCGATTTC TGCATGATCT	780
ACTITAGECT TITGAACCAA CIGAEGEAGG ATTICTICIT CETIGATGGG AGTTAGTIGG	840
CGAGAACGGA GAATGATAGA AAGAWCGTCG ATACCTGTTG GCATATGTTC CCAACCGATG	900
T	901
(2) INFORMATION FOR SEQ ID NO: 282:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1765 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(XI) SEQUENCE DESCRIPTION, CEO ID NO. 202	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282:

CCCTGTTACG	TGGATAATAG	GGTAAGACTG	CTCAGGATTT	CCTAACAAAT	CCACCGCTTG	60
CTGCATTCGA	CCCAAACCTG	ATCGAAAATT	CAAACCAATC	CGACTATGGA	GCCATTCTTC	120
TACTTCAAAC	ATACACATCT	CCTTGACAAA	AGTCCAATCA	ATTATCGCAT	TAAAGTATGG	180
TTACTAATAA	AAACAAGGCC	AGGATTTTCG	TCCCGACCTC	TTACCTGGTT	AGCTAATAAC	240
TAGCTACTAT	GAATGTGAAT	ATGGGCTAAA	AACATCCACT	GGACGTTCCA	ACTCTTCCCC	300

			1312			
ATTTCTGGGA	GTTGGGGTA	AAATGTTCA	TGGACGTTCC	AACTCTTCCC	CATTTCTGGG	360
AGTTGGGCTG	ATACAGTCTC	CCAGACTGT	A TCACTCCTCC	ATAAAGCTG1	TGAAGACTTC	420
TTCAATCATO	TTCCATTCGT	CTTCTGAGT	TTCTGGGATT	GGTTGCAATT	CCCCTTCTGT	480
TCCATCTTCG	TTTTCGATGA	ATGAGTAAG	TTGGATTTCA	ACTTGTCCGT	CTTCGTCTTC	540
TTCTGCGTTA	ACTGGTACTA	GAAGAACATA	GTTTTTACCA	AATTCTTCTT	TTCCATCAAT	600
TGTCAAAAGG	ATTTCAAACA	AGGTTTCATT	TCCTTGCTCA	TCTACTAGTG	TGATTAGTTC	660
ACGTTCTTCG	TGGTCGTGGT	TATGATCGTC	TGACATAGCC	TCGCCTTTAT	ATTAAAATTT	720
TCTATCTAAA	TAATTTTGTA	AAATCAGCTG	AGCTGCTAAC	TTATCAATGA	CTTTCTTGCG	780
CTTATTGCGA	CTGATATCTG	CTTGTTCAAT	CAACATGCGC	TCAGCAGCCA	CTGTTGTCAA	840
GCGTTCATCC	TGATAGTCTA	CTGGTAAACC	AAAAAACTCT	TCTAGCTTTG	CTCCGTAGCT	900
TGACTAGCTT	CTACGCGCGG	TCCACTTGTA	TTGTTCATGT	TTTTAGGCAA	GCCCACTACA	960
AATCGTTCCA	CCTTGTAAGT	ATCAACCAAT	TCCTTAACGC	GGTCAAAACC	AAATTGGCCT	1020
TGTTCTTCAT	TTATCTGGAT	GATTTCAAGC	CCTTGAGCTG	TAAAACCAAG	CGGATCGCTA	1080
ATCGCCACCC	CTACCGTTTT	TGAACCGACG	TCCAATCCCA	TAATTCTCAT	AGGTTATAGA	1140
TCGACTCCTT	GTCCTTTGAG	GTAGTAGCGA	ACCAATTCCT	CAACGATTTC	ATCACGCTCA	1200
TACTTACGGA	TTTGATTTCG	TGCATTATTA	TAACGAGGAA	CGTAGGCAGG	GTCTCCACTC	1260
AATACGTAAC	CTACGATTTG	GTTAATTGGG	TTGTAaCCCT	TATCGTTCAA	CGAAGCATAA	1320
ACATCTGTCA	AAGTTTCGCT	AATTTCTTTT	TTATTGGAAT	CGTCCAATTT	AAAACGTACT	1380
GTTTCTTCAG	TAAATCCCAT	TCTAACACCC	TCTTTCCTTA	GAATAGTACC	ATTATAGCAT	1440
AATTCCTTAC	CTTCTACAAT	TCAGGCAGTC	TATTTATTTG	GATTTTCTAT	TGTTCTGTCG	1500
CGCCATTTGC	CAATCTATCT	GAAATATATT	TGCTTGGTTC	ATTTTTCAAA	AGATTTTCCA	1560
AACCAATATT	CTTCAGATGT	TCCAACTGGG	AAGCCTTCTT	GACATCCAGA	ACTTGAAAAT	1620
CAAAACTAGT	CGTTGTTTGA	AGTTCCGTTG	CGCTCAATAG	TTTTGTTTCA	AGTTTGAAAC	1680
CTGCCAATTT	ACGAGCTTCA	ATGATAGACT	TATCCTTCTC	CTCCGCTTCA	AGAAGAGCTT	1740
TTGAGTTTC	CTCCACTCCA	TGTTG				1765

(2) INFORMATION FOR SEQ ID NO: 283:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1346 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283:

CTTATCCATT CACTTTCTTG TCT	GTTATTC TATAAATCTT	ACTCCTAAGT	ATACCACATT	60
TGCCCCTAGA TGTGAACGAG AGA	AACGCTC TAGACATTGC	CAAGAAGGAA	AAAAAAGGGT	120
ACAATGTAAC AAAATCAAGG GAG	GTCTGGA ATGAAGAAAC	AAAGCAAGTA	CAAAGAGGTC	180
GTTTCCTATC TGAAAAATGG TAT	CGAGTCT GGACGATTTC	CGACGGGTAG	TCGCCTGCCT	240
TCTATCCGTC AACTGAGCCT TGA	CTTTCAC TGCAGCAAGG	ACACCATTCA	ACGAGCCCTG	300
CTGGAATTAC GGCACGAACA ATA	CCTCTAT GCCAAGCCTC	AGAGTGGCTA	CTATGTATTA	360
GAACAAGGC AACATCAAGA CCTA	AGAAATC GAGGTTACCG	ACGAACATGC	CAGTGCCTAT	420
GACGATTTCC GACTCTGTGT CAA	TGAAACC TTGATTGGCC	GAGAAAACTA	ĆCTCTTCAAC	480
TACTATGACA ATCAAGAAGG ATTA				540
GAGCAAGCTC TCTACTGCAA GGCT				600
TTGTTTATCC TCTCTCAAAT ATCC				660
CCAACCTACC ATCGGATGAA TCGC				720
GAACGAGGCA TTGATGGGAT TGAC				780
ATTAAGTTTT TCTACACCAT TCCC				840
CAAGACAAAC GATCTATTCT TAAC				900
GATTATCTGG GTGATTTGGA CTCC				960
GAGCGTGTCA TTTATATCAA GTCC				1020
GCACTCATTC TTCCAAATGC TATC				1080
TACGACAGCA ACCTCATTAT GCAA				1140
SAAAAAAATC GTTTGGCTCG CTTG				1200
AGGATAACTA AAACACCTTG TCCCC				1260
GACCTGAGAC AGTATCCTAA AATCO				1320
TTTGAAGAGG CCTATTTAAG CACCT				1346

(2) INFORMATION FOR SEQ ID NO: 284:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 900 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

1314 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:

	CTATATTCAG	AATATGCCAA	AAATTCGGAA	TGGTATAAAT	TTGCGGAGGG	TTCATTTGAC	60
	ATATTTAGAA	AACTCCCCCA	AAGAATTAAT	TTTAAGAAAG	ATTTTTCTAG	AATTTTGGCC	120
	CCCTTTATTA	TTAATTTGCT	TAAATTAATC	AATAATTATC	TAGAGAATAA	AGAATACGAG	180
	TGGATTGACA	AGAATGGAAA	TATTTTTCC	TCTCTAGTAT	TTTATTTAGA	AGATTTAATC	240
	TATCCTTGGA	TTGTTAAACC	TTTGGTTTTA	GAGATAAATT	CATTGCGTGA	AAAAGGTTTA	300
	CTTGAAGGGG	AATCGGAGCA	GCAACGGTAC	AAATATTTTA	TAACATTGTT	TGACAAGGAA	360
	GAGAATATAT	TAAATTTTTA	TAACAAATAT	CCCGTTTTAC	TGAGGCAAAT	ATCGGAGTCT	420
	TGTCTTCGGT	тстатастта	TTTTATAGAA	ATTTTATCAA	ATTTAGAAAA	TGATTTTAGT	480
	GTGCTAGAAG	aagaattagg	GCTAAGGGGG	AAATTAAATG	ATATAAAATT	TGGAAAGGGT	540
	GATACACACA	GCCAAGGAAA	AACTGTTTTG	ATACTCTTCT	TTGATGACGC	GAAAATTGTT	600
	TACAAGCCTA	TAATTTAAA	AATCAATAAC	TCACTAAATA	CTATTGCTGA	GTATATCCGA	660
	AAGGTTGATG	AAAAAATTAG	GATAAGAATA	CCTCGAACTA	TTGCTTATTC	GGATCACAGC	720
	TATGAAGAAT	TTATTGATTA	тстасстста	GAGCAAAAGA	AAAATTTACC	TGAATATTAT	780
	TATAATTTTG	GTGTGCTTTT	AGCATTTATA	TATTTATTTA	ATGGGAGTGA	TATACATTTT	840
,	GAAAATTTAA	TTTCCTATGG	AGATATGCCT	GTAATAATAG	ACTTTGAAAC	AATGTTACGG	900
	(2) INFORMA	TION FOR SE	Q ID NO: 28	5:	*		

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 862 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285:

TTATTTAGCA	GAGGCAGTTT	TAAATGTGAA	GGATTTGGTC	AGTCAAACAG	TTTTTTTTATCA	60
GCAGATTATT	GGTTTAGAAA	TCCTATCTCA	AACGGATACA	GAGGTCGTTC	TGGGACTTGG	120
AGGAAAAGCC	TTGGTACACT	TGATTCAAGC	ACAAGAGGGT	GGAGAAGTAA	GGGAACATTA	180
TGGTCTTTAC	CATCTGGCTA	TTCTTTTGCC	GACACGAAAG	GCTTTGGCGG	ATGTCTTGAA	240
GCACCTGACG	GATTTACAGA	TTCCTCTTGT	TGGCGGTGCA	GATCACGGTT	ACAGTGAGGC	300
CCTTTACTTA	GAGGACTTGG	AGGGAAATGG	CATTGAACTC	TATCGAGATA	AGCCAGTTTC	360
CACATGGGAT	ATTCGAGAAG	ATGGACGTAT	TATCGGGGTG	ACTGAAGTCC	TTGCGGCTCA	420
GGATATCTAT	GAGTTGGGGG	AAAGAGTAGA	GCCTTTTATC	CTAGCAGAGG	GTACGAGAAT	480

GGGGCATATT	CATCTTTCTG	TCAAGGATAG	TCGAAAGTCC	AGACAGTTTT	ATCAAACGGT	540
GTTAGGGCTC	GAGGATAAAT	TCAGTGTGCC	TAGTGCTAGT	TGGATCGCAG	CTGGGGACTA	600
CCATCATCAT	TTAGCAGTCA	ACGAATGGGG	AGGAAAAGGT	CTGGATCCGC	GTAAACAAGT	660
CCTACCAGGT	TTAGCCTACT	ATGTCATCGA	AGTCGCACAT	AAAGAAGAAC	TGTTAACGAT	720
TGCCCAACGA	GCACAAGAAG	TTGACGCACC	AATCAAATGG	ATGACATCGA	TCCAATTGGA	780
AATCACAGAC	TCAGATGGCA	TCGTGACCCG	TATTCGTTTA	GCTAGATAGA	TGGTATGTGA	840
TGAAGGTAGA	GCATCAATTG	TA				862

(2) INFORMATION FOR SEQ ID NO: 286:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 650 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286:

TCGTTTACAA	GATCGCTAAA	ATGCATCTCA	TGATCGCGAC	CACGAATTCC	AAGATAGCAC	60
GCGCTACCTC	AATCATAGAT	AGTTCACTTT	TTTCTTGCCC	AGCAAATACT	TCTAATTCCA	120
AAGCGTTTCT	CCTCATTTAT	ACTACTATCG	CCAGAGCGAA	CAGACTCTGA	CCTCATTTTA	180
TCATTTACTC	TTTATTTTAC	GATAATTTTG	CGGAATAGTC	AAAGGTTAAG	GGGGAGAAAG	240
TGGCAGGATT	AGACTAATTC	CAATATAAAA	CTCATTCCTT	TTTCTGTTGC	TCCATTTTCC	300
ACAAATCCAA	GCGACTTGAA	ACACCTCCTA	GAAGCATGAT	TGTAGGTGTA	GATTTTCTTG	360
ACTCTCAATT	CTTTCCATCC	TTTTACTCGA	GCCAATTCAA	TCAAAGCACT	TAGAATCTTT	420
TTTCCAAGTC	CTCGATGTTG	GTAAGCGGAA	TTCCCAATCA	CAATGGGGAG	ATTATCCTGA	480
GATAGTGTAA	TATCCCCAAT	TGGAAACCAT	TCTCCCTTCT	CCTTGACTTC	AATCCAAAAA	540
AGCTCACCAT	GCCGATyCAr	ATAGGAATAC	ATGGCTTCCA	AGGTCGcTtG	ACTGTAAGGA	600
AGCTTCACCC	CATCTACGAG	Gtaaccaagt	TCACATCCGT	GATACCAAGC		650

(2) INFORMATION FOR SEQ ID NO: 287:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1119 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

1316 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 287:

GATAGCAATC CGCTTCAGAA ACTTCTCGCT TACCTCTAAC TCCGATCGCT AGTTTGGGAG 60 AAGATACTTC CATTCTCATA CTATCTGTTG GCTTTGCAGG CTGTAAAAAC AACTTTTCTC 120 TTGCTACTTC CTGAAAATCT GAATCTTGCA GTTCTTTGCT TTCAAAATAG TCCTGTACTC 180 GCTCCACATC AAAATTCCCA GCTAAAGACA GAGACATGTT TACAGGTTTG TAAAACTTTG TAAAATTTTC TTGCAAATTA GTTAGATTGA TTTGGGAAAT GGACTCCTCA CTTCCAACTA 300 TATCAGTTGC TAAAGGTGTA CCAGGATACA AATTCGCTAA AGTTGAAAAG AATAAACACG 360 AATCTGGATC ATCTTGGTAC ATTTCTCGTT CTTGCTGAAT AATATCCTGC TCTGTCAGAA 420 TGGAAGCTTC AGTAAAGTGT GCTGATGTTA CCAATTCATC AAGTAAATCT AAATTTTCTA 480 AAAAATAATC CGTTGCTGAA AAAAGATAGT TTGTTTTTGT AAAGCTTGTA AAGGCATTAC 540 TATCTGCACC TAGACTCGTA AAAGCCGACA TCAAATCACT AGAATCTTCT CTCTCAAATA 600 ATTTATGTTC AAGAAAATGA GCAATTCCTC CAGGATATTG TTTTACATCT CCGTCAACTT 660 CTGTGACAAA CGTATCTACC GAACCAAACT GTACAGTGAC ACTCCCGTAA ACCTCTTTAA 720 ATTCCTTTTT AGGCAAAAGA GCAACTGTCA ATCCGTTGGC CAAACGAGTT CGATAAACCA 780 TTTCTTTAC AGCTGGATAG TATTTTCTT CAAAAACAAC CTTTGTCATT CTATTCCTTC 840 CATAAAGTAA ATCGCTTGTA GTTTCACATT ATTAGCTACT CTACAAATAG CATCTTTGTC 900 AATTTGTTCA AGCTTTGCAA TCCAACTTTT AAAGTCTGCT GAAGATTTTC CAAATAAGGC 960 ATTTTGATAA GCACGTTCAA TCAATGAAGA ATGATTATCT TGAGAAAGTA ACAACGACCA 1020 ACGAATCATT TCCTTGGTCT GATTTAACTC AAACTCTGTA AAAAAACCTT TTTTTAAATC 1080

(2) INFORMATION FOR SEQ ID NO: 288:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 540 base pairs
 - (B) TYPE: nucleic acid

AAGCCGTTGA TTATTCATCA ATTTACGAGC CTGGTTACG

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 288:

ACGCCCTCGC GGGGACATGA CGAATTCCCC GTTCATCACG AAGGCCGCCG AGGAGTGGGG 60

GGTGCCGTCC AAGTCAAAAG CGGCCCCACA TCGATTCAGT TCCCCGACGA ACAGCCCTTT 120

CCCCCAGCGT TCCTGGCTTT GCAACGGTT CACAACAGCC TCGTAAAGTA GGCCGGACAA 180

GGCAGACGGA CTCCAAAGGA GTTCTTCCAT CTGCAAGTGC GCCTGCGTTA TGTGATCCCG 240

GTCTTTTGCA	TGTGTGTGGC	ATGAATGCTG	TTCCCAATCC	CACTCCAGAA	CATTCTCCTC	300
AAAAGTGCGC	AACGTCGCCC	TGAATGAATC	CTGCCTTGTA	GTCGTGACCA	TTCCTATGAA	360
GGGTCGCAGA	GGATTTTCCC	CGAGTGCAAG	CGCATCCTCC	GGCTCAAATC	GGGTGCATTT	420
CACAGTCCCG	CTCAACGCTA	GCCCGATCCC	TTTTTGGCAT	GGTGACTCAA	GCGTCCTTTC	480
AAACAAAAGC	TCCTCATCCG	CTCCAACCGG	CCCGACGTAG	ACGCGTAGAC	CGAAGTCGTC	540
/21						

(2) INFORMATION FOR SEQ ID NO: 289:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1949 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 289:

60	CCCCGTCAGT	TGGACTGTTC	TCGCAAACTA	GGTTGAGGCA	ACCAATTCA	AAAGAATTCG
120	CCAACAATTT	TGCCCTCCTA	TGAAGCAAGC	AGGTTGGCTG	AAACGGGATA	TCTGGACAGA
180	AACCTGTTAA	TCCGTTCCAT	ACAAGCATAG	ACAATTCTTT	GCATCAGCTC	TGGAAAGTAG
240	AGCGGCGTTG	TAACGACAGT	TGAATCCGAA	CAAGGATATC	AGGAACTGGA	CAGTTGAAAG
300	AAAAAAGTTC	TTCAACTGGG	CTCTTTTAGT	TAGAAATCCG	ACTAAATACT	GTCATTCGTT
360	ATAGTTGGTA	CCATCGAAAG	TAAATGACCT	CATACTGGGT	ATAAGACCAC	CTGAAAAAAG
420	CCTTTCTTTT	ATGTGAGTTT	TAAACTGTTC	GATGATTTGG	TTTTGGAAGT	AAAAGACTTG
480	GTAAAAAACA	TTTTTGTCTA	GGGAAACTCT	TACCATAAAG	TCTACACTTA	TGTGTTTTTT
540	TCTGGATGGT	AGGCAAGGAT	ATCTAAGCTA	ACCATCCAGG	GAAAAAAGAA	CCCATTGGGT
600	TAGTCATGAG	ACTCCCATGA	TACAATATCA	ATTGGGGTTT	GGGGTGAATA	TTTTAGATTT
660	CCTCCGAAAC	TGCATAATTA	TCCTTCCTTT	GTGATGACTG	ACGAATTGAC	ATGACTCTTC
720	ACAAAAATCC	GTTTATTAAA	ACCCCCGAAA	TCTAGTGTCT	GGGTAGACAA	ACAAAAAAA
780	ATCGCTTATC	GTTTCTATCA	CAATTTATCA	GAAACCAAAT	TTTTTGGCAG	TGCCAAAGAA
840	ATTATTTAAG	GCGATACTCT	CAATCAAATT	AGGGATTCCG	ACTGGTAAAT	GCTCTCAAAG
900	CTGCAGTTGC	TCTTCAGCTT	AGCTTTGATT	CTTCCAATTT	GCTCCAGCTT	AGTAACTGAA
960	CTTTAAGACC	TCTTTAGCTT	GTCAACAAGT	CTGGTGCACC	TTAACAAGTG	AACGCCTTCT
1020	CTGCAGATGT	TTTTTGTCGC	AACGCCAACT	CAACTTTGAT	ATTTCACGTA	AAGACCAGTG
1080	CTGCAGCAAC	GCTGCATCAG	ACCAGCATCA	CTTTAGCAGC	TCGAATGAAT	CAATTCAACG

			1318			
AGCTACAGGA	GCAGCTGCAG	TTACACCAAA		ATAGCTTTTA	CAAGGTCGTT	114
CAATTCAAGG	ATTGAAGCTT	CTTTAATTTC	AGCAATAATG	TTTTCAATGT	TCAATGCCAT	120
TGTTATTTCC	TCCAAATAAG	TTTTAAATTT	TATAATAGTT	TTTTTCGTAG	CTAGKSTACG	126
CTGTGTAGCT	TAAGATTAAG	CCGCGTCTTC	TTTGCTTTCT	GCAACCGCTT	TGACTGCAAG	132
AGCAACGTTG	CGCACTGGCG	CTTGAAGTAC	AGAAAGGAGC	ATAGAAAGAA	GTCCTTCGCG	138
GTTTGGAAGA	GTTGCAAGTG	CAAGAATCTC	TTCTTTAGAT	GCGACAGCGC	CTTCGATTGC	144
ACCACCTTTA	ATTTCAAGTG	CTTCAGCGTT	TTTAGAAAAG	TCGTTCAAGA	TTTTCGCTGG	150
TGCGATAACA	TCTTCATTAG	AAAATGCTAC	TGCAGATGGT	CCAACAAATA	CAGATGCAAG	156
ATCTTCAAGA	CCAGCTTTTT	CAGCTGCACG	ACGCAAGATT	GAGTTTTTAA	TAACTTTATA	1629
CTCAACTTCG	CTTCCACGAA	GCTCACGACG	AAGAACTGTA	TCTTGCTCAA	CTGTCAAACC	1680
ACGAGCGTCT	ACAACGACGA	TAGATGCAGC	AGCTTTCATT	TTTTCAGCTA	LACGTCAACT	1740
AGTTCCGCTT	TTTTAGCAAT	AATTGCTTCA	CTCATTAGTG	TGTTCACCTC	CGTAATTATT	1800
rtgcttgggg	AATTTTTCAA	AAAGAAAAAC	GCGCCCAATC	CTAGACACGA	AAGTACAATA	1860
CGCTTCTTTT	TACATGATAC	GTTTTGTCCT	CGGTAGGATA	TTTATGAGTC	GAGCTCCCCT	1920
ACTGTCTTAG	GCAGTTTTTT	TAGATACGG				1949

(2) INFORMATION FOR SEQ ID NO: 290:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1023 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290:

GGACTGTTTG ATCTTATACA GTAGCTGCTT GATCCAAGCT TTCACCGATA GCGGCTAGGC 60 GCTCGATAAC TTCAGCTTGT GTCAATTCAT TTTTTGAAAC ATAGCGGTTA CGTGGGTG.AA 120 CACGGCACTC GTGTGAGCAT CCACGAAGGT ACTTGTCTTC ATTTTCTTCT GATGTCAAGA 180 TACGACGGTT ACAGAATGGA TTTCCACAGT TGACATAACG TTCACATGGT GTTCCATCAA 240 ACCAGTCTTT CCCTACGATA GTTGGGTTGA CATGGTTGAC ATCAACGGCA ATACGCTCGT 300 CAAAGACGTA CATTTTCCCA TCCCAAAGCT CACCTTGAAC TTCTGGGTCT TTACCGTAAG TTGCGATTCC TCCGTGCAAT TGGCCGACAT CTTTGTAGCC TTCACGGACC ATCCAGCCTG 420 AGAATTTCTC ACAGCGAACG CCACCTGTAC AGTAAACCAC GACACGCTTG TCCATGAATT 480 TTTCCTTGTT ATCACGGACC CATTGTGGTA ACTCACGGAA GTTGCGAATA TCTGGGCGAA 540

TAGCTCCACG	GAAATGTCCT	AGGTCGTACT	CATAATCGTT	ACGTGTGTCA	AGGACAACGG	600
TATCTTTATC	AAGAAGCGCT	TCTTTGAACT	CTTTTGGAGA	CAAGTAAGCA	CCTGTTGTTT	660
CAAGTGGGTT	GATGTCATTG	TCAAAGTCGT	TGTCTTCCAA	ACCAAGGTGG	ACAATTTCTT	720
TCTTGTAGCG	AACAAACATC	TTCTTGAAGG	CTTGTTCATT	TTCTTCGTCA	ATCTTGAACC	780
				GTATTTTTGA		840
AGTCACCTGA	AACTGTTCCG	TTAATTCCCT	CGTCAGCGAC	TAGGATACGG	CCTTTAAGGn	900
				CTCTGCATTT		960
TATAAAGGTA	GTAAAGTAAG	ACACGAATAT	CTTTTGkCaw	AAGATTTGTA	TCTCTTTATC	1020
TAT						1023

(2) INFORMATION FOR SEQ ID NO: 291:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3831 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291:

ACTATGAAC	A AGACCCAGAA	AAAGTAGCCT	TATTTCTTAA	GAATTTTAAT	AGTTTAAAGC	60
ACCTAGCAC	TGTTTAGATT	GACGAAACAG	GATTCGATAC	TTATTTTTAT	CGAGAATATG	120
GTCGCTCATT	AAAAGGTCAA	TTAATAAGAG	GCAAAGTATC	TGGAAGAAGA	TATCAGAGGA	180
TTTCTTTGG1	TGCAGGTCTA	ACAAATGGTG	AATTAATCGC	TCCAATGACT	TACGAAGAGA	240
CGATGACGAC	CGACTTTTTT	GAAGCTTGGT	TTCAGAATTT	TCTCTTACCA	ACATTAAACA	300
CACCATCGGT	TATTATTATG	GATAATGTAA	GATTCCATAG	AATGGGGAAG	CTAGAACTTT	360
		AAACTTTTAC				420
		CATATCAAAA				480
		TTATCCTGCT				540
		AACTGTAGTG				
		TGAAGTTTTC				600
		TGGTGGCTTC				660
						720
		TATCTTTGAG				780
	ACAGCIGATA	GAGATTATAG	TGGTGTTTAA	AGTCTTCGGA	ATACCTCAAA	940

			1320			
					ATAAAATCGT	900
					GATAGCCTTG	960
TATTCATGG	ATTTCGGATC	ATGGCTTGTG	TTCTGCTCTC	AAGAACAGTT	ATGATATTGA	1020
GTTTATCAA	GTCCTGAGCA	ATAAAGCTCA	TCTCCATCTC	CCGATTGAAA	CAGTCACTCC	1080
CCGGACTGTT	TCAACSTCCT	AGGACATAAT	' CTCAGGAAGA	· egegaaaaat	CATGCTCAAA	1140
GTGAAAATCA	TTGTTCTTGC	GAATGACAGT	TGAAGTTGAA	ATAGACAACT	GATGATCAAT	1200
GTCGGTCATA	GAAGTCTTTT	TAATTAGCTT	CTGAGCAATO	TTTTGGTTGA	TGATACAAGG	1260
AATTTGATGA	TTCTTCTTGA	CGATAGAAGT	CTCAGCGAGC	TCCATTTTTG	AGCAATGATA	1320
GCACTTAAAA	CGGCCTTTTC	TAAGAAGAAT	TCTAGTTTGA	ATTTTTTAT	ACTAGAAAAT	1380
CAGAACCATA	ATACCTATAT	AAAAATATTA	TAGTTCTAAT	AGGATTTACC	CAAAAGTTTT	1440
AAGGCGGTCT	TTTTAGAACT	TTAATTGTTT	GAAATTTAGG	TAGCAAATTT	GTTTCTATTT	1500
TGTCAACTTT	TCCTATTTT	ATCTTGTTGA	GGCTGGTATT	TTAACAATTC	AGGAATTGAT	1560
agtgaatgtg	TAAAATTTTT	TGTTAGAATA	AGTTTATAAA	AAAGAAAAGG	AGTATTTGAT	1620
TATGTTACAA	AAAATTTATG	AGCAGATGGC	TAATTTCTAT	GATAGTATTG	AAGAAGAGTA	1680
TGGTCCTACA	TTTGGTGATA	ATTTTGACTG	GGAACATGTT	CATTTTAAAT	ТТТТААТТТА	1740
TTATTTAGTG	AGATATGGCA	TTGGTTGTCG	TAAGGATTTT	ATTGTTTACC	ATTATCGTGT	1800
TGCTTATCGT	TTGTATCTTG	AAAAATTGGT	AATGAATCGG	GGTTTTATTT	CTTGTTGAGG	1860
Paattttagt	AAATTTCCGA	ACTAATTTAC	TCTTTTATGG	AAAGATGATA	GTAAATAGCT	1920
AGTAATTTTT	CTAAATCATT	TTTTAATAGT	TGGAAATAGC	AAATCTTTCT	ATTGTTTCTT	1980
TTGATAAAA	AGGCGATTTT	TTATTATAAT	AAATTGTAAG	ATATAATTGC	AGGTGAGAGT	2040
CCTGCCATGT	ATGTGAGAAA	GGAAGAGCCT	GATGGCTCAG	ACAAGATTAT	GACTTCAGTT	2100
GTTGTTGTAG	GTACCCAATG	GGGTGATGAA	GGTAAAGGGA	AGATTACAGA	CTTCCTTTCA	2160
GCGAATGCAG	AAGTGATTGC	ACGTTACCAA	GGTGGTGATA	ATGCTGGTCA	CACGATTGTG	2220
TTGACGGTA	AGAAATTTAA	GTTGCACTTG	ATTCCATCTG	GGATTTTCTT	CCCTGAAAAA	2280
TATCTGTCA	TTGGGAATGG	TATGGTTGTA	AATCCTAAAT	CTCTTGTAAA	AGAGTTGAGC	2340
ATCTTCATG	AGGAAGGTGT	AACAACTGAT	AACTTGCGTA	TTTCTGATCG	TGCGCATGTT	2400
TTTTGCCTT	ATCATATCGA	GTTGGATCGC	TTGCAAGAAG	AAGCTAAGGG	CGACAATAAG	2460
TTGGTACGA	CAATTAAGGG	AATTGGTCCA	GCTTATATGG	ACAAGGCTGC	TCGTGTTGGA	2520
TTCGTATTG	CAGATCTTTT	AGATAAAGAT	ATTTTCCGTG	AGCGTTTAGA	ACGTAACCTT	2580
CTGAAAAGA	ATCGTCTTTT	TGAAAAATTG	TATGACAGTA	AAGCGATTGT	TTTCGATGAT	2640

ATTTTTGAAG	AATATTACGA	ATATGGTCAA	CAAATCAAGA	AATACGTGAT	AGATACATCT	2700
GTTATCTTGA	ATGATGCGCT	TGATAATGGC	AAACGTGTGC	TTTTTGAAGG	TGCACAAGGT	2760
GTTATGCTAG	ATATCGACCA	AGGTACTTAT	CCATTTGTTA	CGTCATCAAA	CCCTGTAGCT	2820
GGTGGTGTGA	CAATTGGTTC	TGGTGTCGGT	CCAAGCAAGA	TTGACAAGGT	TGTAGGTGTA	2880
TGTAAAGCTT	ATACGAGTCG	TGTAGGAGAT	GGTCCTTTCC	CAACTGAGTT	GTTTGATGAA	2940
GTGGGAGAAC	GTATCCGTGA	, AGTGGGTCAT	GAATATGGTA	CAACAACTGG	TCGTCCACGT	3000
CGTGTAGGTT	GGTTTGACTC	AGTTGTGATG	CGTCATAGCC	GTCGTGTTTC	TGGTATTACT	3060
AACCTTTCTT	TGAACTCTAT	TGATGTTTTG	AGCGGTTTGG	ATACTGTGAA	AATCTGTGTG	3120
GCCTATGATC	TTGACGGTCA	ACGTATTGAC	TACTATCCAG	CTAGTCTTGA	ACAATTGAAA	3180
CGTTGCAAGC	CTATCTATGA	AGAGTTGCCA	GGTTGGTCAG	AAGATATTAC	CGGAGTTCGC	3240
AATTTGGÄAG	ATCTTCCTGA	GAATGCGCGT	AACTATGTTC	GTCGTGTGAG	TGAATTGGTT	3300
GGCGTTCGTA	TTTCTACTTT	CTCAGTAGGT	CCTGGTCGTG	AACAAACAAA	TATTTTAGAA	3360
AGTGTTTGGT	CCTAAGAGAT	TTTTAAGATT	TGTTTAAGAT	AGGTCGGGTA	TACTATAGAC	3420
GGTTACAAGA	AGACCTCCTA	ACTTGTTGTA	ACAAATATCC	TAAACTTTTC	TTTTTCATAA	3480
TAATCTCCCT	ATAGAGTCAC	CGCATTCGGT	GCCTTTTTT	GTGTTGGGAT	TCATGATATA	3540
атаатааат	CGATAAGTAG	GAAAAGAGAA	AAGAGATGTA	TTATACGCTT	GAAGAAAAG	3600
AAGTCTTTAT	GAGGGAGGCT	TTGAGAGAGG	CTGAGATTGC	TCTTGAACAC	GATGAAATTC	3660
CAATTGGTTG	TGTGATTGTC	AAAGATGGGG	AAATCATTGG	TCGTGGGCAT	AATGCGCGTG	3720
AGGAATTACA	GCGAGCGGTT	ATGCATGCGG	AAATTATGGC	TATAGAGGAT	GCGAACTTGA	3780
GTGAGGAGAG	TGCGCTTGCT	GGATTGCACA	CTTTTTGTGA	CCATTGAACC	G	3831

(2) INFORMATION FOR SEQ ID NO: 292:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1441 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 292:

TGAAAAGGCG GATGACTTAA CCCCTTGACC AACGGACCTG AGTTGTTATT TTCAACTCTT 120	
120	TGAAAAGGCG GATGACTTAA CCCCTTGACC AACGGACCTG ACTTGTTATT TTCAACTCTT

1322	
CAACTTATAG TAAAAAAAGC CAGAATTATA CTGACTCTTC TATCGCTCAT TAAACTTAGA	240
AGCACGTTCT TTTCCCCACC AATAAGGGAT TAGTTCTGCG ACTTTAACTG TTTTTCTTAT	300
ATTATAGTCC ATCATGAATT CTGCATCTTT ATTTTCAGCA TTAAGCTCTA AAAGGAATTC	360
TCTACAAGCA CCGCAAGGCA TGGCTGAACT TCCACCATAA GGTGGTTTGT CTCGAAAGGC	420
TAATACTTTC TTAACCTTAG TTTGTCCTGA AAATTGGTAC ATATTGAAGA GGGCCGCCCG	480
TTCTGCGCAG AGATGGAAAA CACCACAGGT TCCCTCCATA CAGAATCCTG TAAATATTTG	540
TCCATCTCCT GCTTCTACTG CAGCTACAAC ATGATTGGCA TAAACAAAGT CTGATACTTC	600
ATGTGGATTG TATAGTTTCT GTGCTTCTTC GTACATCTTT TCCCAGATGT CCATTATTGT	
	660
ATCCTCTTTA TTTAGAGATT TCTTTTAGCA TGTTTTCGAT ATGCTGAATT GATTTTTCAC	720
GTCCAAGCAA GAAAATTGTA TCTGGTAATT CTGGCCCATG CATTTCGCCT GAAACTGCGA	780
TACGAATAGG CATGAAAAGA TTTTTCCCTT TAATACCTGT TTCTTTTTGG ACTGCTTTAA	840
TTTGTGGGAA GATATTTTCT GTCACAAATT CATCATCTGT CATCGCTTCA AGTTTTGCTT	900
TGAATGCTTC AAGAACTGTT GGAACTGTTT CACCCGTCAT GACTTCGCGC TCTGCTTCTG	960
TCAATTCTGG GAAATCTGAG AAGAAAAGAT CTGTCAATGG GATAATCTCA TCTACTGATT	1020
TCATTTGTGG TTTATAGAGC TCAACTAATT TTTCAGCCTT GTCAGTCAAA CGGCCTGCTT	1080
CCTCTAAGAA TGGTTTTGCC ATTTCAAAGA TGGTTTCAAG GTCTGCATTC TTGATATAAT	1140
CATTGCTCAT CCAGTCTAGT TTTTTCTGAT CAAAGGCTGC TGGTGACTTG CTGAGGCGGT	
	1200
TTTCATCAAA AAGTTTAATG AATTCTTCAC GAGAGAAAAT CTCATCCCCA CCACCTGGGT	1260
TCCAACCAAG AAGAGCAATA AAGTTAAAGA CTGCTTCTGG AAGGTAACCT TTCTTTCGGT	1320
PATCTTCGAT AAATTGAAGT GTATTAGTAT CACGTTTAGA TAACTTCTTA CCAGTTTCAG	1380
AGTTGATAAT CAAGTGTCAT GTGACCGAAC TCTGGAGCTT CCTCAACCTA AGAGCGGGTA	1440
r	1441
(2) INFORMATION FOR STATE OF S	1441
(2) INFORMATION FOR SEQ ID NO: 293:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4398 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 293:

CGGCTTATGT AGTGGCAATC TTTCTACGTA AGCGAAACGA GGGGAGATTA GAGGCGCTAG 60 AAGAAAAAA AGAAGAACTA TACAATCTTC CAGTAAATGA TGAAGTAGAA GCTGTAAAAA

ATATGCACTT	GATTGGACAA	AGTCAAGTGC	CTTTCCGTGA	ATGGAATCAA	AAATGGGTCG	180
ATTTATCTCT	CAACTCTTTT	GCCGATATTC	AAAATAATCI	CTTTGAAGCA	GAAGGCTATA	240
ACCATTCATT	TCGTTTTCTC	AAGGCCAGTC	ATCAAATTGA	CCAAATTGAG	AGTCAAATTA	300
CTTTGATTGA	AGAAGATATT	GCGGCAATTC	GCAATGCTTT	GGCAGACTTA	GAGAAGCAAG	360
ААТСТААААА	TAGTGGTCGT	GTTCTTCATG	CTTTGGATTT	ATTTGAGGAA	CTTCAGCATA	420
GAGTTGCTGA	AAATTCAGAA	CAGTATGGTC	AAGCCTTGGA	TGAAATTGAA	AAACAATTAG	480
AAAATATCCA	ATCTGAATTT	TCACAATTTG	TAACCTTGAA	TTCATCGGGT	GACCCTGTGG	540
AAGCCGCAGT	GATTTTGGAT	AATACAGAAA	ATCACATTTT	GGCCTTAAGT	CATATTGTGG	600
ATCGTGTTCC	AGCCTTGGTT	ACGACGCTTT	CTACAGAATT	GCCAGATCAA	TTACAGGATT	660
TGGAAGCCGG	TTATCGTAAA	CTAATTGATG	CTAATTATCA	TTTTGTTGAA	ACGGATATTG	720
AAGCGCGTTT	CCACTTGCTT	TATGAAGCAT	TCAAGAAAAA	CCAAGAGAAT	ATTCGTCAGT	780
TGGAATTGGA	TAATGCCGAA	TATGAGAATG	GACAGGCACA	AGAGGAAATC	AATGCCTTGT	840
ATGATATTTT '	TACTCGAGAA	ATTGCTGCTC	AGAAAGTAGT	GGAAAATCTA	CTTGCAACTC	900
TTCCAACTTA '	TCTTCAACAT	ATGAAAGAGA	ATAATACTTT	ATTGGGAGAA	GATATTGCAC	960
GTTTGAACAA (GACCTATTTA	CTTCCTGAGA	CAGCTGCAAG	CCATGTTCGT	CGTATTCAGA	1020
CAGAATTAGA (GAGTTTTGAG	GCAGCTATTG	TTGAGGTAAC	TTCAAATCAA	GAAGAACCAA	1080
CCCAAGCTTA 1	TTCAGTTCTT	GAAGAAAATC	TTGAGGATTT	ACAAACTCAA	CTAAAAGATA	1140
TTGAAGATGA (CAAATTTCA	GTTAGTGAGC	GCCTGACACA	AATTGAGAAA	GATGATATTA	1200
ATGCACGTCA A	AAGGCCAAT	GTTTATGTCA	ATCGTCTCCA	TACTATCAAG	CGATACATGG	1260
AAAAACGCAA 1	CTGCCAGGT	ATTCCACAAA	CTTTCTTGAA	GTTATTCTTT	ACGGCAAGCA	1320
ATAATACCGA G	GATTTAATG	GTTGAGTTAG	AACAAAAAT	GATTAACATT	GAATCTGTTA	1380
CCCGAGTTCT 1	GAAATTGCA	ACGAATGATA	TGGAAGCTTT	AGAAACGGAA	ACTTATAATA	1440
TTGTACAATA T	GCAACTTTG	ACAGAGCAAC	TCTTGCAATA	TTCTAACCGC	PATCGCTCAT	1500
TGATGAACG C	ATTCAAGAA	GCATTTAACG	Aagctttaga '	TATTTTGAA .	AAAGAATTTG	1560
TTATCACGC T	TCATTTGAC	AAGATTTCTC .	AAGCATTGGA .	AGTGGCAGAG (CTGGTGTAA	1620
CAATCGCTT T	GTTACCTCA	Patgagaaaa (CACGTGAAAC	GATTCGTTTT 1	PAATAAAAGA	1680
AAAGATTTT A	TTGTGTGAG (GAGCAGAATC .	AAATCTTTTT (CTATAGTTGT (GGGAGATTT	1740
CTTCATTTT C	TCCTGAGAT 1	rgagtttttg (CCCAGCCGAT :	PTATCCACTA (CTCAAAACA	1800
TGTTTTATA C	TCTTCGAAA A	ATCTTTTCAA	ATCACGTCAG (CGTCGCCTTA (CGTACTCAA	1860

GTACAGCCT	G AGGCTAGCT	r cttagtttg	1324 C TTTTTGATT1	TCATTACT	TTAAAGTGAT	
					ACCGTCCAAT	1920
						1980
					TAATCTGGAG	2040
					CTCTAAAACC	2100
					TAGATATTTC	2160
					GAAATCAACT	2220
					TAAATATCAT	2280
					CGATCAGGAC	2340
					GTTTCAATCT	2400
					ATAGTAGATT	2460
GAAATAAGAT	GTGAACAACT	CTATCAGGAA	AGTCAAATTA	ATTTATAGAA	ATATTTTAGC	2520
AGCCAAGGTG	TACTGTTATA	GATTCAATAC	ACTATAGACT	GTAATCAAAC	AACGATTTGG	2580
CGAAATGTAA	AAAAATATGA	GGAGTTCGGA	CTCGACTCTC	TCCTTCAAGA	AACACGTGGT	2640
GGTCGTAACC	ATGCATATAT	GACAGTTGAG	GAAAAGAAAG	TCTTTCTTGC	CCGCCATTTG	2700
AAGGCTGCAG	AGGCAGGAGA	ATTTGTTACA	ATTGATGCCT	TATTTCAGGC	TTATAAAAAG	2760
GAGTTAGGTC	GTTCCTACAC	ACGTGATGCC	TTCTATCAAC	TGTTGAAGTG	CCATGGTTGG	2820
CGAAATATTA	TGCCACGTCC	AGAACATCCT	AAGAAAGCAG	ACGCTCAAAC	CATTGTCGCG	2880
тсталалата	AAATCTCAAT	TCAAGAAGAA	AAGAAAGCGC	TTTAAAACCA	GTAGACGTTT	2940
TCGTAAGGTT	CGCTTGATGT	ACCAAGATGA	GGCTGGTTTC	GGTAGAATCA	GTAAACTGGG	3000
ATCTTGTTGG	GCTCCAATAG	GAGTAGGTCC	ACATATCCAT	AGTCACTATA	TACGAGAATT	3060
TCGCTATTGT	TATGGAGCTG	TTGATGCCCA	TACAGGCGAA	TCATTTTTCT	TAATAGCTGG	3120
	ACTGAGTGGA					3180
	TTACTCGTTA					3240
	ATTGGTTTTA					3300
	AAAGAGATTC					3360
	AATCAACTCC					3420
	CGGAGATGGA					3480
	AATAGAAATC					
	GATCAGGACA					3540
	TTTCAATCTA					3600
			CONGLOWING I	MANGECCE IT	LATAAGCTAG	3660

TCTACTTGTT	CAGGTGCGAG	AGCTTTGACA	TCTTTTTCTG	TACTTAGCCA	AGTCAGTTTT	3720
CCGTTCTCAA	AGCGTTTATA	TAGTAGCCAA	AATCCTTGAC	CATCCCAGTA	AAGGGCTTTA	3780
AAGCGGTCTT	TACGTCCACC	ACAAAAGAGA	AAGACTTGAC	CGGAGAAAGA	ATCCAATTCA	3840
AAGTGGGTTT	TAACTACATA	GGCTAATGAG	TCTATTCCCT	GCCTCATATC	TGTCTTGCCA	3900
CAAACAAGGT	GAACTTGACC	TAAATCACTT	AGTTGAATTA	TCATAGTACA	ATACCTTTCC	3960
TCCGATAATT	ATTTTTTATC	TAGTATACTG	GAAGTTGGGG	AATTAGGATA	GATACCTTGT	4020
TATGACGCGC	TTACGTAACT	TGTAACTAGC	TGCCTAGTTT	GATCTTTGCT	TCTTCATTGA	4080
TTAGCAGTAG	ATTTCAAAAT	GATAAAAACG	CATAGTATCA	GGTATTGAAA	TGTACTGCCC	4140
CAAAAGTTAG	ACAGAAAAA	TCTAACTTTT	GGGGTGTTTT	TGTTATGAAA	TTAAGTTATG	4200
ATGATAAAGT	TCAGATCTAT	GAACTTAGAA	AACAAGGATA	TAGCTTAGAG	AAGCTTTCAA	4260
ATAAATTTGG	GATAAATAAT	тстаатстта	GGTATATGAT	TAAATTGATT	GATCGTTACG	4320
GAATAGAGTT	CGTCAAAAAA	GGAAAAAATC	GTTACTATTT	TCCTGATTTA	AAACAAGAAA	4380
rgattaataa	AGTCTTAC	•				4398

(2) INFORMATION FOR SEQ ID NO: 294:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 718 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294:

AGATTTTTAG	ACTITGTCTT	TAATCGTTTC	TTTTTAGGGA	TGATTGCGAC	ACCITCTTTT	60
GGCTATTAAC	TTTAGCAGGA	GGGATTATCC	TTGGTCTAGC	GCCGGCTAGT	GCCACCTTGA	120
TGAGCTTATA	TGCAGAACAT	GGTTATAGCT	TTCGGGAATA	CAGTTTGAAG	GAGGCTTGGT	180
CTCTTTACAA	GCAAAATTTT	GTCTCAAGCA	ACCTGATTTT	CTATAGCTTT	TTAGGTGTGG	240
GTCTAGTTTT	GACCTATGGT	TTGTATCTCT	TGGTGCAATT	GCCTCATCAG	ACCATTGTTC	300
ATTTGATTGC	GACCCTTTTG	AATGTCCTAG	TAGTTGCCCT	GATCTTTTTG	GCTTATACAG	360
TATCTTTAAA	ATTACAAGTT	TATTTTGCCT	TGTCCTATCG	AAATAGTCTC	AAATTATCCT	420
TGATTGGCAT	CTTTATGAGT	CTAGCAGCTG	TGGCTAAGGT	TCTCCTTGGG	ACTGTGCTAC	480
TTGTAGCAAT	TGGTTATTAT	ATGCCTGCCC	TGCTATTTTT	TGTAGGAATT	GGGATGTGGC	540
ATTTCTTTAT	CAGTGATATG	TTGGAACCTG	TCTATGAAAT	CATCCATGAA	AAATTGGCGT	600

1326 CAAAATAGAA TGAAGCAGTT TTGGCTACAT ACGCTTCTAA GAACCTATAG TTCAGTGATG	66
ATCATTATCA TTGCGAGTTT TGCAATCTTA CTCTCTTACG CTGTCTGGGA TTCACGTG	
(2) INFORMATION FOR SEQ ID NO: 295:	71
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 718 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295:	
TCGGTACCAA AATTCTGGAT TTATACTAGC AAAGATCCAA GAGCAAATTA TTTAACAGAT	60
TTAGGTCTAG TTTTCCCTGA ATCATTAAAA GAATTTGAGA GTGAAGATAG TTTTGCAAAG	120
GAAATTTCTG CAGAAGAAGC AAATAAGATA AATGATGCTG ATGTAATCAT AACTTATGGT	180
GATGATAAAA CTCTTGAAGC TTTACAAAAA GATCCTCTTT TAGGTAAAAT AAATGCAATT	240
AAAAATGGTG CCGTTGCTGT AATTCCAGAT AATACACCGT TAGCAGCCTC ATGCACTCCA	300
ACACCACTTT CAATAAACTA TACTATTGAA GAATACCTAA ATCTTTTAGG AAATGCATGC	360
AAAAATGCGA AATAAAAAC AAATAAACCT AGGCATAATT TTTATAATCT GCCTAGGTCT	420
TCTTATTACA ATATTTTTGT CATTAAAGCT TGGAACAAAA GAAATTAATA TCAGAGATTT	480
TTTAGCAGCT TTTGGAATGG GTAATACAAA TGATGATTTT ATTAAATCAA TTATATATAA	540
RAGAATACCT AGAACTATTT TIGCAATTIT AGCAGGTTCT AGTCTIGCCA TAAGCGGTGT	600
ATTGATGCAA TCAGTTACTA GAAACCCAAT AGCTGATCCA GGTATACTCG GTATAAACAC	660
AGGAGCAAGT CTTAGTGTAG TAATTGGTCC TTCLTTTTAG GGAATTCATC AAGCATAA	718
(2) INFORMATION FOR SEQ ID NO: 296:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1436 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296:	
GAACTAATCA TTTTTACAGG ATGAGATTTA CAGCAGAGAG TTTGAAGGCT TTATCAAAGG	60
TTTTCTTGG CATAATGACT TTTCCTCGTT TCCACTTAAT TTTGTGTCTA CTTTATTATA	120
CCAAGTCCAC SCTTAAGTTA GATAATAAAT CTAACTTAAG GAAGCTAGAA GGATGAGAAT	180
CAGGTGGTC AAGAGTCCCA AACTTAAGCT GATGGGGACA CCCAGAATAA TTTGCTTTTT	240

GAAGGCAAGG CCACGTTCCT CTATATTGGG AAGTGAGAGT TGAATGAGAG AACCAGCTGA	300
TGAAAAGGGT GAGATATTAG TAGATAGAGC GCCAATAACG GTGGCTGTTG TGAGTAAGTG	360
AATATCAATC TGAGGATTTT GAGCACTGAT GATAGCAATG ATGGGAAAGA GGGCTGGAGC	420
TACAACGGAT AGGGTGGAAC TAAAGAGTGA CATCACTCCG GCTATCACAC AAAAGAACAG	480
AGGTAACCAG AAATGAGGAA TGGTTGTTGT CATGAGGTGC CCTATCAGTG TGACTAAACC	540
TGACTTGACC GCTAGAGACA TTAGTAAGCT CATGCCGCAG AGCATGATAA TTGTAGCCCA	600
GGGAACCTTA GCTAAAATGG CTTCTTGCTT CCCTAATTTG AGCCTTAAGG CGAGGCAGAC	660
CATGAGTATT GAGACAAAGC CAATATCAAA TGTTTTTTGA TAAGTAGCTA TCCAGGCGAT	720
GTTTGGGAAA ATGAGATGCA ACAAGGGAAA AAGCCAAACC AAAACCATGC TGCTGATCAT	780
GAGCAAGGTG GTTTGTCTTT GAACCTTGCT GAGGAGTGGT GGTTGGTCAA TAGTCAAGGA	840
TGAGTTTGTT CTTCCCTTAC TATAGTGACT GTAACAGGAT AATAAAAGCA AGACGATGAG	900
TGGGTAGATA ATGCTGACGA TAAAGATATG ATTGCCAAGT GAAAAAGCTT GCTCTTCCCA	960
TCCCATTTGC TTAAACAGGC CTTGAAAGAC AATGCCTGAG CTACTGGTTA TCAAATTAGC	1020
CCCTCCTGAA GCTCCCCAAT TGACGGCTTG AGCTCCAATC AAAGGGTGTT TGTCCGCTTT	1080
TTGACAGAGG GTAATCGCTA GAGGACAGCA AACGGCCATA GTAGTGAAAA ATCCAGCACC	1140
TARAGCAGAC AAAAGGGTTG CCATCAGGTA TAAAATCATG TAGAGGGCGT TAGGGTGGGT	1200
GCGTGTGCGG TAGAGAATGT GTTGAGCCAA AACATCAAGA GTACCGTTAG TTGTTGCAAC	1260
GTTATAAAAG AGAGAGACGC TAAAAATGGT AAAAAAGAGT GAGGTTGGCC AAAAATGAAG	1320
AAGTTCTTTG GGGCTTAATC CCATGAGAGT GGTTGCGATG AGGTAAGAAA AAGCAATAGC	1380
CAGCAGGCCA ATATTGATTT TGGTGCGGTA ACCAATTCCA ATGGCTAGAG CAATGG	1436
(2) INFORMATION FOR SEQ ID NO: 297:	- -

(2) INFORMATION FOR SEQ ID NO: 297:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1696 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297:

CC	ATTTGGGA	AAGAACGTAA	GAGTTTGCAG	GGTGAGATTC	CAGAAGAATT	TTCAATGTCA	60
GC	CGTTGACA	TGTCTATGAT	TGACCACATT	CCAGATATGA	TTGAAAATGG	TGTGGACAGT	120
CTA	AAAAATCG	AAGGACGTAT	GAAGTCTATT	CACTACGTAT	CAACAGTAAC	CAACTGCTAC	180

1100000			1328		•	
					r caaacaagac	240
TTGGTGGAC	G AGATGTGGA	A GGTTGCCCA	A CGTGAACTG	G CTACAGGAT	T TTACTATGGT	300
ACACCATCT	G AAAATGAGC	A GTTGTTTGG	T GCTCGCCGT.	A AAATTCCTG	GTACAAGTTT	360
GTCGCTGAA	G TGGTTTCTT	A TGATGATGO	G GCACAAACA	G CAACAATTC	TCAACGAAAT	420
GTCATTAAC	G AAGGGGACC	AGTTGAGTT	T TATGGTCCA	GTTTCCGTC	TTTTGAAACC	480
TATATTGAA	G ATTTGCATG	A TGCCAAAGG	C AATAAAATC	ACCGCGCTCC	AAATCCAATG	540
GAACTATTG	A CTATTAAGG1	GCCTCAACC	GTTCAATCA	GAGATATGGT	TCGTGCATTA	600
AAAGAAGGA	C TCATCAATCT	TTATAAGGA	A GATGGAACC	GCGTCACAGT	TCGAGCTTAA	660
					ACAAGATGCA	720
TTCATTACC	A TAGCAAGCTG	GATATTATTO	CTTTACAATC	CTATGATTGT	AAAAAGTATT	780
ATGCTTGTT	TCGGTGTCAT	GATTCATTAC	AACATCACCC	TTTTGAGCCG	TATCCCTTAT	840
CTTTGATACA	GGATAAGCCT	ATTTTATGTG	GTGTTTGTCT	AAAACTACTA	ACATATAAGC	900
AATATAAAGA	AAGCTTAAGT	TGCCCCTTTT	GTTTTTCTCG	CTTTAATCCA	GGTTGCCAAA	960
ATCATAAGGA	ACGCTATTTT	AAATAGCAAA	TCATCTAGTT	TTGAAGTAGG	AGAAAACTCA	1020
ATTTCAAGAG	AAAATGAAGT	AAATCTTCCC	ACAATAAAAC	GCATAATATC	AAGATTGTTC	1080
AATACCTGAT	ACTATGCGTT	TTTAAGATTT	TAAAGACTTT	TTTCCTTTAT	CTGGTATTTT	1140
GACTACTTGT	TAAAACTGGG	TTAATTTTCG	ACTGTTTAAT	AGTTATTATG	CAAAGTCTAA	1200
AAGGTTAGAA	TTGTCAAAAC	AATCCGTCTA	GAGTATGCGT	GATGCCAACC	GTGGTGGATG	1260
TTCTCAGTCA	TGCCGTTGGA	AGTACGACCT	TTACGATATG	CCATTTGGGA	AAGAACGTAA	1320
GAGTTTGCAG	GGTGAGATTC	CAGAAGAATT	TTCAATGTCA	GCCGTTGATA	TGTCTATGAT	1380
TGACCATATC	TCAGATATGA	TTGAAAATGG	TGTGGACAGT	CTAAAAATCG	AAGGACGTAT	1440
GGAGTCTATT	CACTATGTAT	CAACAGTAAC	CAACTGCTAC	AAGGCGGCTG	TGGATGCCTA	1500
TCTTGAAAGT	CCTGAAAAGT	TTGAAGCTAT	CAAACAAGAC	TTGGTGGACG	AGATGTGGAA	1560
GGTTGCCCAA	CGTGAACTGG	CTACAGGATT	TTACTATGGT	ACACCATCTG	AAAATGAGCA	1620
	GCTCGTCGTA					1680
TGATGATGCG						1696

(2) INFORMATION FOR SEQ ID NO: 298:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1022 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	298:		
CCGAGTTTAT	TATGGTTTCT	TCGGAATTTA	TCTCAAAGAT	TGAATTTGCT	TGCAATAAGA	60
AAGAAAGTCT	TTATAGTCAA	AGCAAATTTA	AGTATGCGAT	TCGTTCGATG	TTCGCAGGTG	120
CATTTTTAAC	CTTCAGTACT	GCTGCAGGTG	CAGTTGGGGC	TGACTTGATT	AATAAAATTG	180
CACCAGGTAG	TGGACGCTTC	CTCTTTCCAT	TCGTTTTTGC	TTGGGGCTTG	GCCTACATTG	240
TTTTTTGAA	TGCCGAGTTG	GTCACTTCAA	ACATGATGTT	CTTGACTGCT	GGTAGTTTCT	300
TAAAAAAAT	CTCTTGGAGA	AAAACAGCTG	AGATTTTACT	ATACTGTACC	TTGTTCAACC	360
TTATCGGAGC	CTTGATAGCA	GGGTGGGGCT	TTGCTCATTC	GGCAGCCTAT	GCGAATCTGA	420
CACACGATAG	TTTCATCTCA	GGTGTTGTTG	AGATGAAGTT	AGGCCGCTCA	AATGAATTGG	480
TCTTGCTTGA	GGCGATTTTG	GCAAATATTT	TTGTAAATAT	TGCGATTCTG	TCATTTATTT	540
TGGTCAAAGA	TGGTGGTGCC	AAACTTTGGC	TTGTGTTGTC	AGCTATTTAC	ATGTTTGTAT	600
TCTTAACAAA	CGAGCACATT	GCGGCGAACT	TTGCTTCTTT	CGCGATTGTG	AAATTCAGTG	660
TTGCTGCGGA	TTCAATTGCC	AACTTCGGTG	TTGGAAATAT	GCTTCGCCAC	TGGGGTGTGA	720
CTTTCATCGG	AAACTTTATC	GGAGGAGGCC	TCTTGATGGG	TCTTCCATAT	GCCTTCCTCA	780
ATAAAAACGA	AGATACTTAT	GTAGATTAAG	AAAATGAGCA	CGATTGAGTC	GTGCTTTTTT	840
CATTTTCAAA	ATAAGGTAAT	AGCTATTTCT	TATATCAAAA	TATAGAAAAC	TGATATTTGT	900
AFACTATAAC	TCAAGGTGCT	ACAATATCCT	TAATAAAATA	ATATGGAGGT	CACCTTATGA	960
CTTGTGATTT	TAAATnTGAA	ACTCTACAAC	TACATGCTGG	TCAAGTTGTG	GCTCCAGCTA	1020
CT						1022
(3)						

(2) INFORMATION FOR SEQ ID NO: 299:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 663 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299:

CCTTAAGTAA TCTCTGATAA TATTTCTTT ATTAGCATAG GGGAATATCG ATATAATGGC 60 TTCATTATGA GTGGCAGGAA TATCCAATAT GGCAACTTTT CCAATAGATA ATTTAAAACT 120 CATTAATAAA GTTCCTTTAG GTGAAATGTC TATTTTCTTT GATTTTAATG CTAATTTAGA 180

			1330			
AATAGATTCT	CTCGCATTAG	TTACATAACC	AGATATAGGC	ATATCTGATA	TAGATACCCA	24
AGGTATTTCA	GTTCCCCAAA	AAGTAGCTTC	ACTGCGTGGA	GGAGTTTTTC	CTATTCTGAA	300
GTTAACTAGG	CTAGCAAATT	TAATATATCT	CCATGCTTCT	GGGATTTCAT	ATATAGGATA	360
AGAGGTTGTT	TCGTCTTTGT	TCCCATAATA	AGAGTTATCA	TCTCCTTGGG	AAACAATAGA	420
AATGTCCAAA	TCTTTCTTTT	TAATCTTGCC	TTCTTCAAAG	AGTTTTTGTT	TTTCTGCTCG	480
TATTTTTCA	AGTAAAACTT	CGACTGATTC	ATCATTTGGG	TCTTGTTCAA	CTAATTTTCC	540
TTGCATAGCA	TATTGAAGAA	TAGATTTTTT	TAGTTTATCT	GGAAATTCTT	TATCTAGCTG	600
TTCTAGTCTA	TTATAACTTT	CAGCATATTC	ATCTACTTTT.	TCTAAAGCTG	ATTCGATTGC	660
TTC						663
(2) INFORMA	TION FOR SE	ור יחוא מד חיי	۱۸ ۰			

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 881 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300:

CGTCGCTGAA	CATGTCAACA	GCAAATTAAA	CTAAACAAAC	TAAAATTATG	TGATACTTCA	60
CATAATTTTC	TTTAGAAAAT	ATTATCAGAA	GAAAGTTGAG	AAAAATGGCA	GAAAAAACAT	120
ATCCTATGAC	CCTTGAGGAA	AAGGAAAAAC	TTGAAAAAGA	ATTAGAAGAA	TTGAAATTGG	180
TTCGTCGACC	AGAAGTGGTA	GAACGCATTA	AGATTGCCCG	TTCATACGGT	GACCTTTCAG	240
AAAACAGTGA	GTACGAAGCA	GCTAAGGATG	AACAAGCCTT	TGTCGAAGGA	CAAATCTCTA	300
GCTTAGAAAC	AAAAATCCGC	TATGCTGAAA	TCGTCAATAG	CGACGCAGTT	GCCCAGGACG	360
AAGTAGCGAT	TGGTAAAACA	GTCACCATCC	AAGAAATTGG	TGAGGACGAA	GAAGAAGTTT	420
ATATTATCGT	AGGTTCAGCT	GGTGCAGATG	CCTTTGTAGG	TAAGGTTTCA	AATGAAAGCC	480
CAATTGGGCA	GGCCTTGATT	GGCAAGAAAA	CAGGTGATAC	AGCAACCATT	GAAACGCCTG	540
TTGGTAGCTA	TGATGTAAAA	ATCTTGAAGG	TTGAAAAAAC	AGCCTAAAAA	CAGAAAAAGG	600
AGTGGGGAGG	CGATGTGCTT	CACTCACTCC	TTTTTCCATT	TTGCTACTCT	TCGAAAATCT	660
CTTCAAACCA	CGTCAGCGTC	GCCTTGCCGT	ATGTATGGTT	ACTGACTTTG	TCAGTTTCAT	720
CTACAACCTC	AAAACAGTGT	TTTGAGCTAA	CTTCGTCAGT	TTCATCTACA	ACCTCAAAAC	780
TATGTTTTGA	GCTGACTTCG	TCAGTTTCAT	CTACAACCTC	AAAACCATGT	TTTGAGCCGA	840
CTTCGTCAGT	TTCATCTACA	ACCTCAAAAC	TATGTTTTGA	G .		881

PCT/US97/19588 WO 98/18931

1331

(2) INFORMATION FOR SEQ ID NO: 301:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 949 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301:

CCTTTTTTAA TACAAGTT	AT TTTGATTTAA	CCGGCTTGTC	TTGAGCTGTC	TGCAAAGCTG	60
TGGCAATCGT ATCTGCAT	AC AATTTTGCTC	CTGCTTCGAT	AGTGCTACTC	TCACTCCCGA	120
AATGAACCTG GTCTGTTC	CA GCCCAAATTT	CTGGATGCTC	TTTCGCAACT	TGATTCCAAT	180
CTGCTATCGT AATGTAAG	ст стсттстстс	CCAATTCTCT	CATATAGGCA	GCAGCCTTCT	240
CAACGATGGC ATAGGTCT	CT TTTGTCTTAT	CTCCCTCATA	AGGAGTCACC	AAAATCATAT	300
GGTGTCCCTT AGGAAGAT	TT TTCACGATAC	TGTCCCAGTC	ATCCTTGTAA	TTCTCAGGAT	360
TATTTACCCC AGTCGCAA	TG ACCACCGTCT	TAGGTAAAAA	TTTATTCTGG	CTATTATTTA	420
GCATGATTTC ATTTGCGG	TC TTGGTTGTTA	CGCTGACCTG	CGCGTTAATC	TGTGCTCCAG	480
GAAGAGCTGT CTGTAGTG	CT GTATTTGCCC	TTAAAGCCAC	TGAGTCACCA	ATTAACATAG	540
TGCCATCAGC AATTCCCA	AA CTGTTTGCAT	CTGCCCGTTC	TGCCATCACC	TTGGTCTGGC	600
CAATATTTGT TGCAGCTT	GC TTCAAGCCAT	TGACAGTCAA	GTCTGTCTCA	AACGCTCCCA	660
CTTGTGGTGC CAACAAGG	TC ACCGTGCAGA	CAATGATGGT	CAAGATTCCT	GTACCTGCTG	720
CAAGAATTGC GTGAATAT	AA GGCAGGGGAC	GAAsGGTTTG	GACAATAGGT	GTGTTCTTGC	780
CTGCAATCCA AGGTTCCA	AT ACATAAAATG	ACAGACTGGC	AAAGCCATAA	GAACAAATCA	840
GAGTCAGTAA TACAGCAA	GA AGATTTGATG	TCAACTGTGA	GAAAATGATA	TAGAAAGGCC	900
AATGGAAAAG ATAAACCG	CA TAGCTAGTAT	CCGCTAAAAA	GCTGATAAT		949

(2) INFORMATION FOR SEQ ID NO: 302:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 622 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302:

AAGATATATT TTTTACACAG AAGTATGCAA AAGTAAAGAG TGCAAAAAAT GGAATTAAAG

60

			1332			
CGAAAATAAA	AGCCGTGTAC	AGGCGACCAA	ACCAACGTAC	ACGGCTAAGG	AAAAATAACA	120
AAACTCAAGC	AAAGGCAAGG	CGCGTGGTTT	TGTTAGGTAT	TTAGCAAGGG	GACAAACCCC	180
TTTGTAAATA	ATCTCCTCTT	ATTTTATCAA	AATTAGAGGA	AAATGACAAC	TTAATTTATA	240
AAAAGGAAAA	ATGGAGGATA	TAAATGGAAA	TTCTGTCTAA	AGAAATACAG	TTACAGGGCT	300
TACAACTTCT	TAAACAGACT	CTTGAAACTT	TAGTTGAGCT	AGAAAAACAA	CGATCTAGTA	360
AGTTAGATTT	AATTTCTCGT	Aaagaattaa	TGGATCTGCT	AGGTATAAGT	GCTACAACCC	420
TTGATAACTG	GGAGGATCTT	GGTCTTAAAC	GATATCAGAC	TCCGATGGAT	GGAGCTAAGA	480
AAGTATTCTA	TCGTCCGTCA	GATGTGTATT	TATTTTTAGC	AATAAAATAG	GAGTTATGAA	540
ATGAAAATTG	TTACTTTCAA	ACCAACTAAA	CAAATAGACG	ATGGGTTTTA	ACTGCCAGGT	600
ATTGACATTC	TATTTGTCTC	AG				622
(2) INFORMA	TION FOR SE	O ID NO: 30	3:			

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1929 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303:

CGCTAACTTG	CAAACAAAAG	AAGAACGCAA	ACTCCACAAA	TCCTTTACGC	AGAAACTCAA	60
TCTCATCTAC	TTACCTTGCT	GACTTGGTAG	AGTATGTTGC	AGACAAAGAC	TTCTCAGTAA	120
ACGTAATTTC	TAAATCAGGT	ACAACAACTG	AACCAGCGAT	TGCTTTCCGT	GTCTTTAAAG	180
AACTCTTGGT	TAAGAAATAC	GGTCAAGAAG	AAGCTAACAA	ACGTATCTAT	GCAACAACTG	240
ACCGCCAAAA	GGGTGCTGTT	AAGGTTGAAG	CAGACGCTAA	CGGTTGGGGA	ACATTTGTTG	300
TTCCAGATGA	TATCGGTGGA	CGCTTCTCAG	TATTGACAGC	CGTTGGTTTG	CTTTCAATCG	360
CAGCATCAGG	AGCTGACATA	AAAGCTCTTA	TGGAAGGTGC	GAATGCAGCT	CGCAAAGACT	420
ACACTTCAGA	CAAAATCTCT	GAAAACGAAG	CTTACCAATA	CGCAGCTGTT	CGTAACATCC	480
TTTATCGTAA	AGGCTATGCA	ACTGAGATCT	TGGTAAACTA	TGAGCCATCA	CTTCAATACT	540
TCTCAGAATG	GTGGAAACAA	TTGGCTGGTG	AATCAGAAGG	AAAAGACCAA	AAAGGTATCT	600
ACCCAACTTC	AGCCAACTTC	TCAACTGACT	TGCACTCACT	TGGTCAATTT	ATCCAAGAAG	660
GAACTCGTAT	CATGTTTGAA	ACAGTTGTCC	GTGTTGACAA	ACCTCGTAAA	AACGTGCTTA	720
TTCCTACTTT	GGAAGAAGAC	CTTGACGGAC	TTGGTTACCT	TCAAGGAAAA	GACGTTGACT	780
TTGTAAACAA	AAAAGCAACT	GACGGTGTTC	TTCTTGCCCA	CACAGATGGT	GATGTACCAA	840

ACATGTATGT	GACTCTTCCA	GAGCAAGACG	CTTTCACTCT	TGGTTACACT	ATCTACTTCT	900
TCGAATTGGC	AATTGCCCTT	TCAGGTTACT	TGAATGCTAT	CAACCCATTT	GACCAACCAG	960
GTGTTGAAGC	TTATAAACGT	AACATGTTTG	CCCTTCTTGG	AAAACCAGGA	TTTGAAGAAT	1020
TGAGCAAAGA	ACTTAACGCA	CGTCTATAAT	AGAAGAAAAG	AGTGGTTTGC	CCACTCTTTT	1080
TACTCTCTTT	ATCCATAGAA	ATTGGACTCA	GCCAAGACTT	GTGATATAAT	ATAGAAAGCA	1140
AAAAGGCAGA	CGCCTAGATA	ATAGGAGAAA	CTATGTCAAA	AGATATCCGC	GTACGTTACG	1200
CACCAAGTCC	AACAGGACTA	CTACACATCG	GAAATGCTCG	TACAGCATTG	TTTAATTACT	1260
TGTATGCGCG	CCATCATGGT	GGAACATTTC	TCATCCGTAT	CGAAGATACT	GACCGTAAAC	1320
GCCATGTCGA	GGATGGTGAA	CGTTCACAAC	TTGAAAACCT	TCGCTGGTTA	GGCATGGATT	1380
GGGATGAAAG	TCCAGAATCA	CATGAGAATT	ATCGCCAGTC	TGAGCGTTTG	GACTTGTATC	1440
AAAAATATAT	TGACCAACTA	TTAGCTGAAG	GAAAAGCCTA	TAAATCTTAC	GTTACAGAAG	1500
AAGAGTTGGC	AGCTGAACGC	GAACGCCAAG	AAGTAGCTGG	CGAAACACCA	CGCTACATCA	1560
ATGAATACCT	TGGTATGAGT	GAAGAAGAAA	AAGCAGCTTA	CATCGCAGAA	CGTGAAGCAG	1620
CAGGGATCAT	CCCAACTGTT	CGTTTGGCTG	TCAATGAGTC	AGGTATCTAC	AAGTGGCATG	1680
ATATGGTCAA	AGGCGATATC	GAATTTGAAG	GTGGCAATAT	CGGTGGTGAC	TGGGTTATCC	1740
AAAAGAAAGA	CGGTTACCCA	ACTTACAACT	TTGCCGTTGT	TATCGATGAC	CACGATATGC	1800
AAATCTCTCA	TGTTATCCGT	GGAGATGACC	ATATTGCTAA	TACACCAAAA	CAGCTTATGG	1860
TCTATGAAGC	TCTTGGTTGG	GAAGCTCCAG	AGTTCGGTCA	CATGACCTTG	ATTATCCACT	1920
CTGAAACTG						1929

(2) INFORMATION FOR SEQ ID NO: 304:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 708 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304:

AAATTTAAGA	AAAAGGAGAC	ACATCATGTC	TAAAAAAGTA	TTATTTATCG	TCGGATCACT	60
ACGTCAAGGT	TCTTTCAACC	ACCAAATGGC	GCTCGAAGCT	GAGAAAGCAC	TTGCTGGTAA	120
AGCGGAAGTT	AGCTACCTTG	ATTATTCAGC	CCTTCCTCTC	TTCAGCCAAG	ATTTGGAAGT	180
TCCAACACAT	CCAGCTGTAG	CTGCTGCTCG	TGAAGCAGTT	CTCGTTGCGG	ATGCTATCTG	240

1334 GATTTTCTCT CCAGTCTACA ACTTCTCTAT CCCTGGTACA	GTGAAAAACT	TGCTTGACTG	300
GCTATCTCGT GCCCTTGACT TGTCTGATAC ACGTGGCGTT	TCTGCCCTTC	AAGACAAGTT	360
TGTCACAGTA TCATCTGTAG CCAATGCAGG GCACGATCAA	CTTTTCGCTA	TCTACAAAGA	420
CCTCTTGCCA TTTATCCGTA CACAAGGCGT TGGTGATTTC	ACTGCTGCAC	GTGTTAATGA	480
CTCTGCCTGG GCASACGGAA AATTGGTTCT TGAAGAAACA	GTCCTAAACT	CACTTGAAAA	540
ACAAGCTCAA GACTTGGTCG AAGCTATCAA GTAACTAACA	CTCAATAAAA	ATCAAAAAGC	600
AAACTAKGAA GCTACCGCA AGCTACTCAA GCACTGCTTT	GAGGTTGTAG	ATAGAACTGA	660
CGAGTGTnna ACATATATAC GGTAAGGCGA CACTGACGTG	GCTTGAAn		708
(2) INFORMATION FOR SEQ ID NO: 305:			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 781 base pairs			

- (A) LENGTH: 781 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305:

CTTCTTTTCT	TGGAAATAGG	TGTATAATAC	GTTTATTAAA	TTTTTGAGGA	GTTGTCTATG	60
AAGAAAAGTT	TTATCCATCA	acaagaagaá	ATTTCCTTTG	TCAAAAACAC	TTTTACCCAG	120
TATTTGAAAG	ATAAGCTAGA	AGTTGTCGAA	GTTCAAGGTC	CTATCTTGAG	TAAGGTCGGT	180
GACGGAATGC	AGGACAACCT	GTCTGGTGTG	GAAAATCCAG	TATCGGTCAA	GGTTCTCCAA	240
ATCCCTGATG	CTACTTATGA	AGTGGTGCAC	TCACTTGCTA	AATGGAAACG	CCACACCTTG	300
GCTCGTTTTG	GCTTTGGTGA	AGGAGAGGGT	CTCTTTGTCC	ACATGAAAGC	CCTTCGTCCA	360
GATGAGGATT	CCTTGGATGC	AACCCACTCT	GTTTATGTTG	ACCAGTGGGA	CTGGGAGAAG	420
GTTATCCCAA	ATGGTAAGCG	TAACATCGTT	TATCTAAAAG	AAACAGTTGA	GAAGATTTAT	480
AAGGCTATTC	GCCTGACTGA	GCTAGCTGTT	GAAGCCCGCT	ATGACATCGA	GTCTATCTYG	540
CCAAAACAAA	TTACCTTTAT	CCATACAGAA	GAATTGGTAG	AACGCTACCC	AGACTTGACA	600
CCGAAAGAAC	GTGAAAATGC	GATTTGTAAA	GAATTTGGAG	CCGTCTTTTT	GATTGGTATC	660
GGTGGCGAGT	TGCCAGATGG	TAAACCGCAC	GATGGACGTG	CACCAGACTA	TGATGACTGG	720
ACAAGCGAGT	CTGAGAATGG	CTACAAGGGT	CTAAATGGTG	ATATTCTTGT	CTGGAATGAG	780
T						781

(2) INFORMATION FOR SEQ ID NO: 306:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 846 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306:

CCCGCATCTT GTAGGGTTTT AACGGGCACG ATTTTCATAT CCGTCTTGAT TGTTTTAGCC 60 GCTTCTAGGG CTGTTTGGTA GTTGTTTTTC GCGTCCGGAT GCGCCTTTTG TTCTTCTTCG 120 CTAACAGGGT TATCAGGAGC AAAGAAAATA GCAGCACCTG CCCTAGCCGA AGCTACAACC 180 TTCTTATCAA TACCTCCAAT GTCTCCCACA TTACCATCGC GGTCAATGGT ACCTGTACCG 240 GCAACAATAC GACCATTACG AAGATCTGGG TGAGCTATTT GAGTATAGAT AGCTAGACTA 300 AACATGAGAC CAGCACTTGG ACCGCCAATA CCAGCTGTTG AAAAGCTAAT TGGGACATTG 360 CTGATTACCT CTGTACGGTC AATCAAGCCG ATTCCAATTC CATTTTTGCC ATTTTCCAAG 420 GTGATGATTT TTCCTTCTGC AGACTTGGTT TGCCCATCCT CTTCATAGGT GACCTTGACG 480 GAATCCCCTA ATTTTTGAGA ACTGACGTAA TCAATCAAGT CTTTGGAACT ATCAAAGGTC TGATCATTGA CTGCTGTGAC TGTATCAGAG ATATTGAGAA TCCCTTTAAA GGTTGAATTA 600 TCCGTCACAT TCAAAACATA AACTCCAAAG TACTTGAGTT CGATATCCTT ACCAGCTGTT 660 TTTAGTCCTT GATACTTGGC CATATTTTGC GATGTTTGCA TGTAGAATTG ATTGATTCGC 720 ATAAATTCAA CATCGGAAGA ACCACCTGTA GTCTCCTGAG CACTACGAAT ATCTGTAAAA 780 GGTGTCAACC AAGCATAAAT CATATGAGCT AAAGTGGCAT GTTGAACACC AACCGTAACG 840 AATTGT 846

(2) INFORMATION FOR SEQ ID NO: 307:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 829 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307:

GCGATCTGCT TGGGCTTTTC CTATTACCTT ATCTAATAAA TAGGTACGCA GACTCATAAC 60
CATATAAAGT CCACCCCCA TGGCACCGAC AAGAGCTACA TAAAAGAAGC TCCACAAACG 120
TCCACTTGGT TGGAAGAAAA ATCCTAACAG CCACTGGATG GTTCCTATTA ACAGAAACAT 180
GACTAGGGTC AGCAAACTGA TTAAAATGGT TCGCTTCAAA ATCACCTTGC GCTTGACACC 240

			1336			
AGTTACTTTA	CAAATATCCC	GATACATCAA	GACGTTAGGA	ATGATGAGAG	CAATGGTTGT	30
TGAAATCAAA	GGACCATAAC	TGTGGAAGAG	GGCGATGGTA	GGTAGTTGCA	AGACTAGCTT	36
GGCAATAGAA	CCATAGATAA	AATAGAGAAC	GGCCTTGCGG	TTGCGGAACA	TGGCCTGAAG	42
CATTGGAGAC	AAGACCATGT	ACAAGCCTAA	AATAATAGAC	TGCAAAACTG	CAAAGACAAA	48
TAAGCCCAGA	GCCAAACTAT	CTGGCTTACC	ATAGAAGACC	GTATAAAGAG	GTTCTCCTAC	54
CATAACCACT	CCAACCGTTG	CTGGTAGCAA	GAACATAAAG	AGTAGGGTGA	GACTGTCCTG	60
AACGAGACGA	GAAGCTGCTT	TCAAGTCCCC	CTTGACATAG	TTTTCCGTCA	AAAGTGGCAA	66
ACCAACACTC	CCAATCGAAA	CCCCTACAGA	AATCAAAATC	ATCGTGATTT	TATTAGGATT	72
GGCTGAGAAA	TAAGAAAACA	TGACAACCAA	GTCCTCATTG	CTGTAGTTGG	TAAACCAGCT	78
CATACTATTG	ATAAAGGTCA	GCTGAGTCCA	aatctggaag	AGCTGGATG		82
(2) INFORM	TION FOR SE	Q ID NO: 30	98 :	·		
(B) TYPE: nu C) STRANDED D) TOPOLOGY	NESS: doubl	.e			
(xi) S	EQUENCE DES	CRIPTION: S	EQ ID NO: 3	08:		
CGAACATCTT	GCTGGCTGAT	TCGTCTGCCG	CCATCGCAGC	CCCGAACACA	TTGCGACCCA	60
TGGCAAGCGG	GCTCAATCCG	CACATGGGAT	CCGTGCCAAA	GCCCCGCGTG	TGCATCATTT	120
GCTCATCTAG	TAACGTATGA	GGTTTGCCTT	CGCTGTCGAT	AAACCGATAT	TCAATCGCAC	180
CACTGCTCGT	TCTCCGCGGA	GGGGAAACCG	ACTGCGGTAG	GATGAACTCC	AGAGAAGAGA	240
GATCACGACC	TACCAGGTGC	GGCTCGTTGA	AGCTGTTGCC	GCTTAGCAGC	AGGCTCGCCA	300
CCACGCATTC	CCAGAACTCA	ACGGGGGTTT	GATCGGCGTT	CGGTTGCTGA	CTAATAACTC	360
GGTGCACGGG	ATGCGAAGTG	GCCACTTCTG	GCACACCGTT	CTTGTCTTCG	TAGAGAGCAA	420
TTGGGAGGGT	GGCCAGCGTT	TCGGCGATGA	GGCGCACGCA	GGCC		464
(2) INFORMA	TION FOR SE	Q ID NO: 30	9 :			
((QUENCE CHAR A) LENGTH: B) TYPE: nu C) STRANDED D) TOPOLOGY	982 base pa cleic acid NESS: doubl	irs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309:

CCGTCTATAA	TGGTAATAGA	TTTTATTTGG	AGGTTTTTAT	GTCATTTCTA	TCAAAAAATG	60
GAGCAGGTAT	CTTGGCCTGC	CTTCTCATTT	CCATCCTATC	TTGGTACTTA	GGAGGATTCT	120
TCCCTGTGGT	TGGCGCGCCC	GTTTTTGCCA	TTTTCATAGG	CATGCTCCTA	CATCCCTTTC	180
TCTCGTCCTA	TAAACAACTG	GATGCTGGTT	TGACCTTTAG	TTCCAAGAAG	TTGCTCCAAT	240
ATGCCGTTGT	CTTGCTTGGT	TTTGGTCTCA	ATATCTCGCA	GGTCTTCGCA	GTTGGCCAAT	300
CTTCACTCCC	TGTCATCCTG	TCCACTATCT	CAATAGCTCT	GATTATTGCC	TACCTCTTCC	360
AGCGTTTCTT	TGCCCTGGAT	ACAAAACTGG	CTACCTTGGT	TGGAGTAGGT	TCTTCTATCT	420
GTGGGGGTTC	TGCCATTGCA	GCGACAGgCC	CGTTATTGAT	GCTAAGGAAA	AGGAAGTAGC	480
CCAAGCCATT	TCCGTTATCT	TTTTCTTCAA	TGTCTTGGCT	GCGCTCATCT	TTCCAACCCT	540
CGGCACCTGG	CTTCATCTAT	CCAATGAAGG	CTTCGCCCTC	TTTGCAGGGA	CTGCGGTCAA	600
CGACACTTCC	TCTGTAACGG	CTGCCGCCAG	CGCTTGGGAC	AGTCTTTACC	AAAGCAATAC	660
CCTCGAGTCT	GCAACCATTG	TTAAACTCAC	ACGTACTTTG	GCCATTATCC	CTATCACGCT	720
CTTTCTATCC	TACTGGCAAA	GTCGCCAACA	AGAAAACAAG	CAAAGCCTGC	AACTGAAAAA	780
AGTCTTCCCA	CTTTTTATCC	ТТТАСТТТАТ	CCTTGCCTCT	CTCCTCACTA	CACTACTCAC	840
CTCTCTAGGT	GTGTCCAGTA	GTTTCTTTAC	TCCTCTCAAA	GAACTCTCTA	AATTCCTTAT	900
TGTCATGGAC	ATGAGTGCTA	TCGGTCTCAA	AACCAATCTG	GTCGCTATGG	TCAAATCCAG	960
TGGAAAATCC	ATTCATCATG	GA				982

(2) INFORMATION FOR SEQ ID NO: 310:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1939 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310:

CTAGCTGCCA ATATGATTGG GGTGCAGAAG CGCGTGATTA TCTTTAATCT TGGCTTGGTT 60

CCTGTGGTCA TGTTTAACCC AGTGCTTCTG TCCTTTGAAG GATCCTATGA GGCAGAAGAA 120

GGCTGTTTGT CCTTGGTAGG TGTGAGATCA ACTAAGCGTT ATGAAACCAT AAGGCTTGCC 180

TATCGTGACA GCAAGTGGCA GGAACAGACC ATTACCTTGA CAGGCTTCCC AGCTCAGATT 240

TGCCAGCATG AGCTGGATCA CTTGGAAGGA CGAATCATTT AGGAGGAAAG CAAATGAAAC 300

GAATAGTCTT TGAACTTATT TTTATCGCAA CGACCTGGTA TATCTTTTTA CCGCCCCTTA 360

1338		
ACCTGACCAG CTGGGAATTT CTCTTCTTCC TCTGTGGGCA T		420
TATTTGGCTT TGGCAAGGGG ATAAACCTTG TCAAAACGGT TO		480
CGGAAGCTGC CTTAAATCTT GAGGGTTTCA AAATCAATCG G	TTAGGGAAA ATTCTGTTAG	540
CTTCGATTGG AGGAATTCTT CTCTTGGCAG CTTTGGTTTC CT	TTGGTAACT TCCAGCATGT	600
TTCAGGCTAA AAATTATGCC AATGTAGTCA CGGTTACGGA AA	AAAGACTTT ACTGAATTTC	660
CTAAGAGTGA CACCAGTAAG GTTCCTATCC TAGATAGAAG TA	ACTGCTGAA AAAATTGGAG	720
ACCGCTACTT GGGTTCCCTA ACCGATAAGG TGTCGCAATA CC	GTAGCGGCA GATACCTATA	780
CCCAATTGAC AATTGATGGG AAACCTTATC GGGTCACACC AC	CTAGAATAT GCAGACCCTA	840
TCAAATGGTT TAACAATCAA GCCAAGGGAA TCGGTGAGTA TA	ATTAAGGTG GACATGGTAA	900
CTGGAAATGC GGATTTGGTG GACTTGAAGA CACCAATCAA GT	PATTCAGAC TCGGAGTATT	960
TTAACCGTGA TGTCAAACGT CACCTGCGCT TGAAGTACCC GA	ACCAAAATC TTTAAAACTC	1020
CATCTTTTGA GGTGGACGAT GAGGGCAATC CTTTCTATGT AG	GCAACGGTT TACCAAAAGC	1080
AATTTGGACT TGCTGTTCCT CGTCCTGCTT CAGTCATTAT CT	TGGATGCT ACAAATGGAG	1140
AAACCAAGGA ATACAGCTTA TCAGATGTTC CAGAATGGGT GG.	ACAGGATC TATCCAGCAG	1200
AGGAAACCAT TGAGCAAATC AACTACAACG GCAAGTACAA GG	ACGGTTTC TTGAATGCCA	1260
TGATTTCCAA GAAAAACGTG ACCCAGACTA CCAATGGCTA TA	ATTACTTG TCTATCGGTA	1320
ATGACATCTA TCTCTACACA GGTGTGACGT CGGCTAATGC GG/	ATGAGAGT AATCTTGGTT	1380
CCATCCTTGA AAATATGCGA ACAGGAGAAA TCACTAAGTA TAG	GCTTGGCT TCTGCGACAG	1440
AAGAATCAGC CCGTGAATCA GCAGAAGGTG CTGTTCAGGA GAA	AATCCTAC AAAGCAACCT	1500
CCCAATCCT CATCAACCTC AATGACAAGC CTCTCTACAT CAT	TGGGCTTG AAGGACAATG	1560
TIGGCTIGGT CAAAGAGTAC GCCCTGGTAG ACGCAGTCGA GTA	ACCAAAAT GTTATCGTTG	1620
TACTACAGT GGAAGAGATG CTCAGCAAGT ATGCCAATAA AAA	ACGACCTT GAAATTGACA	1680
TGCAACGAC AGAAAGCATC AATGGAGTAG TAGCAGACCT CAA	AATCAGCT GTTATCAAGG	1740
AGACACTGT CTACTTCTTT AAAGTTGATG GCAACATCTA CAA	AGGTCAAG GCTTCAGTAT	1800
CGATGACCT TCCTTACCTT GAAAATGGTA AAACCTTCGA AGG	STCAAGTA GGAAAAGACA	1860
TTATCTCAA GACCTTTAAG CTACGGTAAA AATAGGTTTT TTT		1920
ATAAGGTAA ATTAAGCCG		1939
		,

(2) INFORMATION FOR SEQ ID NO: 311:

⁽i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 907 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311:

CCTGCTAATA	GAGAGAAAGA	CTAGGAGTAG	AAGTAAGCCA	АТТАААТААТ	GAGAAAGTTT	60
CATACCCCGT	CCTTTCATGT	AGATTTGGTA	TCGAAAGATA	TCTGCGGATA	TAAATGTAAC	120
ATTATTTTC	TAATCTGTCA	ATAAAATTTC	TGACAATTTA	ATAAATACAA	CAAGGAGAGA	180
GCAACAAGAC	TTTCTCCTTT	GTTATCCTAT	TCTAAAATGT	TTTTACCTTA	ATCTGATAAA	240
ATAATATCTT	CGAGGGAGTA	GCTAGCCGTC	CAATCAAGAT	ATTGTTTAGC	TTTTGAAGCA	300
TCTGCTAGGA	CACTGGCTGG	GTCACTAGCA	CGTCGAGCAA	CAATCTCGTG	TGGGATTTTT	360
TAATTTAGTA	ATTCTTCAGC	AGTTTTAAAG	ATTTCTTTGA	TAGTATAGCC	TTTTTTAGTT	420
CCTAAGTTAA	AGATTTGAGA	AGAACTGTCT	TCTTGAAATA	GGTAGTTCAT	TCCTTTAACA	480
TGAGCCTATG	CAAGGTCCAA	GACATAAATG	TAATCTCGAA	TACATGAACC	GTCACGTGTA	540
TCGTAGTCAT	CTCCAAATAT	TTTTAAGCTA	TCATTTTGTC	CCAATGCGGT	CTTGTTGATA	600
TTTGGAATGA	TGTGAGTTGG	ATTTTTCACA	CGCAGACCGT	TTGAAGCATC	CATTTCAGCC	660
CCAGCAACAT	TAAAGTAACG	GAAAATAACA	TATTTCCAGT	CGTAGCGATT	GGCCATCCAG	720
TAAATCATTC	GTTCGCCCAT	CAGTTTTGTC	TCTGCATAAG	GGTTGACAGG	GTCGAGCAGG	780
GTATCTTCAG	TCACCGGCTT	GTCAATACAG	TTATTTCCAT	AGAGAGAAGC	AGTCGAAGAG	840
AACATGATTT	TTTGAATGCC	AACTTCAGAT	AAGACTTTGA	GAACTTGGTT	CATACCAGCA	900
ACGTTGG						907

(2) INFORMATION FOR SEQ ID NO: 312:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2170 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312:

CCACATAAAG	GTAAATATCT	TTTGTACTAT	CTTGGGCATC	CAAGAAAAGC	AATTGGGCAA	60
TAACAGAGTT	AGCCATATTG	TCTTCAACCG	GACCTGTCAG	CATAATGATG	CGGTCTTTGA	120
GAAGACGTGA	GTAAATATCG	TAAGAACGTT	CTCCACGGCT	TGTTTGTTCA	ATAACTACAG	180
GAATCATTCA	TTTCTCCTTT	TGAGTTTTAA	TTTTGTTGGT	CAAATGACTG	AAGATAAGAC	240

			1340			
TATTATAATA	TCTTGGTCAA	AAAAGGTCAA	ATTTTTGCTC	TGCTTTCATT	AGACAGAAAC	300
AAAAACCCAA	CCTCCTTTCG	TGACTGGAAA	TACTTTTCCA	AGTCATTCTT	CTTTTCGATC	360
TTATTTTGTA	CCGAACAAGC	GGTCTCCAGC	ATCTCCAAGA	CCTGGAACGA	TATAACCGTG	420
TTCGTTCAAA	CGTTCATCCA	AGGCTGCTGT	AAAGATTTCT	ACATCTGGAT	GAGCTTCTTG	480
AAGGGCTTTT	ACACCCTCTG	GAGCAGATAC	AAGGCAGACA	AATTTGATAT	TTGATGCGCC	540
ACGTTTTTTA	AGAGAATCAA	CAGCCAAGAT	TGCTGAGCCA	CCTGTTGCCA	ACATTGGGTC	600
TACTACAAAA	ATTTGACGTT	GGTCAATGTC	CTCAGGCAAT	TTCACCAAGT	ATTCAACTGG	660
TTGAAGTGTT	TCTTCATCAC	GGTACATACC	GATGTGGCCA	ACTTTAGCAG	CTGGAACCAA	720
GTTCAAGAGA	CCATCAACCA	TCCCGATACC	TGCACGCAAG	ATTGGGACGA	TGGCCAATTT	780
CTTACCTGCC	AATTGTTTTT	GAACTGTTTT	TGTAATTGGT	GTTTCGATTT	CCACATCTTC	840
TAGTGGAAGA	TCACGAAGTA	CTTCATACCC	CATCAACATT	GCAATCTCAT	CTACTAGCTC	900
ACGAAAAGCT	TTTGTAGAAG	TATCTGTACG	ACGCAAGATT	GACAATTTGT	GTTGAATCAG	960
TGGGTGATTA	ATAACTTCAA	TTTTTCCCAT	TTTTGGAATT	CCTTCTTTCA	ATTTATTCTT	1020
CTTATTATAC	CAAAAAACGG	TTTAAAAATC	TTTCTAAACC	ATTTATTTT	GATAATTTTT	1080
ACATTAGATC	AGCCTCTTTA	AGAGCTGTCT	GTACTGTCTC	AAGTGGTAAA	TGGGTCAATT	1140
CTGTCCCTTT	TTCTTGATAA	AGGTATTGGG	CGTAGTCGTC	CATTCGGTAC	TGGTTGATAT	1200
AAACCACGCG	CTTGCAGCCG	ACCTGAAGCA	ATTGTTTTGT	ACAGTTGAGA	CAAGGAAAAT	1260
GGGTTACATA	GGCTGTAAAG	CCTTTGGGAA	CACCACGCTC	AGCACCTTGA	AGGATAGCAT	1320
TGACCTCAGC	GTGAAGGGTG	CGAACGCAGT	GGCCTTCAAT	GACCAAACAT	TCGTGATCAA	1380
TACAATGCTC	AGTCCCTGAC	ACCGAACCAT	TGTAACCAGT	GGAAATAACC	TTATTATCTT	1440
TTACCAGAAT	CGCGCCCACT	TTAGCACGTT	TACAAGTGGA	ACGATTCGCA	ATTAGTAGAG	1500
CTTGGGCTGC	AAAATACTCA	TCCCAGGCCA	GTCTTTTTTC	AGTCATCTCT	TTTCTCCTTT	1560
TTCTCTATTT	TTAAAAAAT	GGTAAACCTA	AATCTGCAAT	CTTTTCAGCT	GGTACCTTCA	1620
TGCCATCCTT	GATCCATTTT	AGAAGGACAG	AGACGATGGC	TGAGCTCCAG	AAGGAATGAA	1680
GATAAGAGCT	GACACCTTTT	GATTTCCCAT	GGTATTTTTC	TAGAAATTCC	TGCATGGCTT	1740
GGACAAAGAT	TTTTTCCAGA	TGGTAATCCA	AGGCCAATTG	AATTACTCTA	GCTTCCTTTC	1800
TGGCCTCCCG	GAAAAGGTGA	ACCCAAACCA	AATAAAGGTC	TGTCTTTAAA	TCGTAATGAT	1860
GCAGCTGTTC	CATAATATTG	TGGACAGTTC	GTTTAAAGAC	GCTCTCTAAA	ATTTCCTCTT	1920
TGGAGTCATA	ATTGCGATAA	AAGGCCGCAC	GCGAAACACC	TGCACGTTTG	ACCAATTCAG	1980
3 A A T A CT A A T	COMPCCORC & COR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CCAACACTTC	CARCACCCCT	CERTIFICA A TICC	2040

CTTCTCTGGT TAATAAATTG GATTCTTGGT TTGATTTTCT GAGATTTTCA AGAGACTTTT	2100
CAGAGATTCT ACGTTCAGAC ATAACATTTT CTTTCTACTT GTCACAACAG ACGGATGATG	2160
CTTTTGTTTC	2170
(2) INFORMATION FOR SEQ ID NO: 313:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 539 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313:	
ATCTGCACGA ATCAGGGCTT TCTAAGTGAC TATTTCCACC GAAATATTAT TTATATCAGG	60
AGGACATTCA TATGTCACGT TATACAGGAC CATCTTGGAA ACAAGCTCGT CGTCTTGGCC	120
TTTCACTTAC AGGTACAGGT AAAGAATTGG CACGTCGTAA CTACGTACCA GGACAACACG	180
GACCAAACAA CCGTTCTAAA TTGTCAGAAT ACGGTTTGCA ATTGGCTGAA AAACAAAAAC	240
TTCGTTTCAC TTACGGTGTA GGTGAAAAAC AATTCCGTAA CTTGTTCGTA CAAGCTACAA	300
AAATCAAAGG CGGAATCCTA GGTTTCAACT TTATGCTTCT TTTGGAACGT CGTTTGGATA	360
ACGTTGTTTA CCGTCTTGGT CTCGCGACTA CTCGTCGTCA AGCTCGTCAA TTCGTAAACC	420
ACGGTCACAT CCTTGTTGAC GGGAAACGCG TTGATATCCC ATCATTCCGC GTAACTCCAG	480
GTCAAGTGAT CTCAGTTCGT GAAALATCAT TGAAAGTTCC AGCAATCCTT GAAGCAGTA	539
(2) INFORMATION FOR SEQ ID NO: 314:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 667 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314:	
CCGGTTTTGC TCCTTCTCA CGGCTACGAC GTGATGTATC TCTGATGATA TCCACTGTTT	60
CTGTAGCAGG CGTAGGTGTT TCTGGACCTG CTTGTTCTGC TTTTTTCTCT GCCGTCGTAT	120
AGGAAACAGC TACCCTTGTT GGGGTTTCAT TGTATTCTCT TTCAAGTTTC TTAGGTCTAA	180
CAGGACCTGG ACCTGGTCTT GATCCACTTT CTTCCGCTGG AGAAGAAGGT ACATCTTGAC	240
TTGGATGACT TGGAACACCA GGAGTTTCTC TTTGAATCTC ATCTGCTGGA GAAGCTGGTA	300

			1342		-	
CACCTTGACT	TGGGTGAGTA	GGCACGGTAG	GAGCTTTTCT	CATAATCTCC	TCTACCGTTG	360
ACAAGGAATC	AGCCATGAGT	TCTTCAGTTG	AAGGTTCATT	TGCAGGAGTG	CGAACTACTG	420
CCTCATCTTC	TTTCAGAACT	TCATCATAGC	CTTTTACTTT	TTCTAAATCT	CTCAGAATCT	480
GCTCTTTAAA	GCGTAATTTC	TCTTCTGCTC	TTGACTTTTC	ACTCAAAAGT	TTTTCCTCCT	540
TGTTGAGAAT	CCATAATATT	AGAGCTGAGA	AGTCCAAAAA	AAGCAATCTA	TGATACTTTT	600
CCTAACGGAT	TTTGTCATTT	CCCAGACCAT	ATCATACCAT	GTTTCCCCTG	CAAAGGTTGA	660
CTGGGAA						667

(2) INFORMATION FOR SEQ ID NO: 315:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1483 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 315:

GGGAAGCCAA	GGTATTTTAT	CGGATGAAGT	TGTTACTAGT	TCTTCACCGA	TGGCTACAAA	60
AGAGTCTTCT	AATGCAATTA	CTAATGATTT	AGATAATTCA	CCAACTGTTA	ATCAGAATCG	120
TTCTGCTGAA	ATGATTGCCT	CTAATTCAAC	CACTAATGGT	TTAGATAATT	CGTTAAGTGT	180
TAATAGTATC	AGCTCTAATG	GTACTATTCG	TTCCAATTCA	CAATTAGACA	ACAGAACAGT	240
TGAATCTACA	GTAACATCTA	CTAATGAAAA	TAAGAGTTAT	AAGGAAGATG	TTATAAGTGA	300
CAGAATTATC	AAAAAAGAAT	TTGAAGATAC	TGCTTTAAGT	GTAAAAGATT	ATGGTGCGGT	360
AGGTGATGGG	ATTCATGATG	ATCGACAAGC	AATTCAAGAT	GCAATAGATG	CTGCAGCTCA	420
AGGGCTAGGT	GGAGGAAATG	TATATTTTCC	TGAAGGAACT	TATTTAGTAA	AAGAAATTGT	480
TTTTTTAAAA	AGTCATACAC	ACTTAGAATT	GAATGAGAAA	GCTACAATTC	TAAATGGTAT	540
AAATATTAAG	AATCACCCTT	CCATTGTTTT	TATGACAGGT	TTATTTACGG	ATGATGGTUC	600
GCAAGTAGAA	TGGGGCCCAA	CAGAAGATAT	TAGTTATTCT	GGTGGTACGA	TTGATATGAA	660
CGGTGCTTTG	AATGAAGAAG	GAACTAAAGC	AAAAAATCTA	CCACTTATAA	ATTCTTCAGG	720
TGCATTTGCT	ATTGGGAATT	CAAATAACGT	ААСТАТАААА	AATGTAACAT	TCAAGGATAG	780
TTATCAAGGG	CATGCTATTC	AAATTGCAGG	TTCGAAAAAT	GTATTAGTTG	ATAATTCTCG	840
TTTTCTTGGG	CAAGCCTTAC	CCAAAACGAT	GAAGGATGGG	CAAATCATAA	GTAAGGAGAG	900
CATTCAGATT	GAACCATTAA	CTAGAAAAGG	TTTTCCTTAT	GCCTTGAATG	ATGATGGGAA	960
AAAATCTGAA	AATGTGACTA	TTCAAAATTC	CTATTTTGGC	AAAAGTGATA	AATCTGGGGA	1020

ATTAGTAACA	GCAATTGGCA	CACACTATCA	AACATTGTCG	ACACAGAACC	CCTCTAATAT	1080
TAAAATTCAA	AATAATCATT	TTGATAACAT	GATGTATGCA	GGTGTACGTT	TTACAGGATT	1140
CACTGATGTA	TTAATCAAAG	GAAATCGCTT	TGATAAGAAA	GTTAAAGGAG	AGAGTGTACA	1200
TTATCGAGAA	AGCGGAGCAG	CTTTAGTAAA	TGCTTATAGC	TATAAAAACA	CTAAAGACCT	1260
ATTAGATTTA	AATAAACAGG	TGGTTATCGC	CGAAAATATA	TTTAATATTG	CCGATCCTAA	1320
AACAAAAGCG	ATACGAGTTG	CAAAAGATAG	TGCAGAATWT	TTAGGAAAAG	TATCAGATAT	1380
TACTGTAACA	AAAAATGTAA	TTAATAATAA	TTCTAAGGAA	ACAGAACAAC	CAAATATTGA	1440
ATTATTACGA	GTTAGTGATA	ATTTAGTAGT	CTCAGAGAAT	AGT		1483

(2) INFORMATION FOR SEQ ID NO: 316:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2453 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 316:

CCTGAAC	CCT	TTTTTATAAA	TATCATAAAG	CCAATCTGAT	TTATCAAGTG	TGTCTAAGCG	60
ACGCGAA	TTA	AAATTCATTG	CATACTCCAT	CGCTTCTAAA	AAACTCATTT	TTGAAAAGAC	120
GTTAAAA	TCA	TCTAAATTCT	GACTCCAATA	TAATAACAAA	ACCAATCCCA	TAATATCCTC	180
TGGTTGA	TTA	TTCAATAAAT	TTAAGTTGGT	TTCATAAAAC	CCTGGAGTTC	CAAATAGAGG	240
CAACTTT	TTT	TCTTCAATTT	GAGTTTCTTT	CCTTAGGGCA	TGCTCAAAGT	CTATAATATA	300
AATATTA	TTT	CTATTATCAA	TAAGTATATT	ATTAAATGAT	AAATCTCTAT	AGGAAAGATT	360
ATATTTG	GAG	TTTATTATCT	CCATATAATC	AATTAATGTT	AAAAACCAAT	CATACGAGCC	420
ACTAACC	ATA	TTATACTCGC	TTAATTTATC	TGCAATAATA	AACTCAAATT	CCACAAAATA	480
CGAATTC	LLL	ATGTAAAAAT	CGTTAAAAAC	TTTTGGAGTA	AATTCCTCCT	TTTCCAATTC	540
TACTAATA	ATT	TCTCTTTCAT	TTATTAAACG	ATTCACAGAA	TCTCTATTTG	TAAAATCAAC	600
CAACGATA	AAA	TCACTAGCTT	СТТТТААТАА	AGAATAAACT	CGCTTTTGAG	TATTAAATAC	660
TTTATAA	ACT	CCACCTTTGG	CATTTTTAGA	AATCACTTCC	AAAATAATAT	ATTGATCAGG	720
AATAGTG1	PTA	TATCTTGGAA	TATAGTAATC	CCTTATTGGA	ACATTCACAT	TTGAAGGGAT	780
TTTCTTAT	rct	CTTTTATCCT	TGAAAGTGCT	ATCTTTTACG	AACTCCCCAT	ATCTGTAATA	840
TACAACCT	rcg	CTAAGTTGAA	ATCTGAAATC	TGATGGTATG	TTTACACCCT	TTACACCTTT	900

ATACAAMAMA MOTAA		1344			
ATACAATATT TCTAATT					960
TGTAATGAAT TTCCCGA	CTT GTGAATAACC	ATTAAGCCCT	GTATTTTGCA	AAGAAAGTTC	1020
TTTAATGCTA ACCAAAA	TTT TGAAATTTAT	CTTCTTCTCT	CTAGAAAATA	TAAAATCAAA	1080
GAATTTTTTA GCAACCA	AAT TAGCATTTAA	TATTGAAGCG	CTCAGGTGTA	TTTTAAATCC	1140
CTTAGATTGG GTGATAT	TAG ACGGCAAATT	ATATAACCAA	TGTTCATCAC	TAAAATTATC	1200
ACTAATTTTA TATTCTA	ATA ATAAATTATG	GTATGCGTCT	TCTATTTCAG	TTTCATAGTC	1260
CAAATAGTTT AAATACT	TTT CGTAATTCAT	ATTAAGAAAT	CTTCTCCATA	AATTTTTAGA	1320
CCATCATTTA AAGCCAA	ACA ATTTAAAGCG	TGATAATAAA	TGTTGATAAT	CAATGTAACT	1380
TTCAGTCCTC TATTTTG	TAA TTCCTTCACC	AATAATTTTA	TGCTATATCT	ATTTTCTCGA	1440
GGCAATTTAT AGGACTT	CAA GATAAAACCA	TAAAAGAGAT	AAGTATTATA	ATCTGACAAT	1500
CCAGTTTCAG AATAATT	TTT TAGAAAAATA	TCTAGTGATT	CTGATAATTC	ATCCGGAATA	1560
ATTCTTTTAA CATCGTA	TTT ATTTTTCATA	TCGGCCACTC	TTCCTTAAAA	AGCTCACAAT	1620
AAAATTTTAA ATTTCTA	TAC AACAATCCGA	GAGTAGTCTC	ACAATTTGAA	CATTTCACAT	1680
CACTCTTAAT ATATAAA	AAA TGAATTAATC	AGAAACCTCT	GACTAAGATT	TCCTAATTAA	1740
TTCACTTTCT ATATCAT	AGT AAGGAATTCT	ATTATCCCTA	ATTGAAAATT	GAAATTTTAT	1800
GTTTTATATA TTAACAA	TTA TGCGGATTGT	AAATCTTGTC	TAACAAAATG	GCAAGTGCTA	1860
CTATGTGCCC CAGAAGGG	CGA TGCAACGCTA	TTTTGAATTG	AAAGAGCATA	ATCATCCATA	1920
TCATTTAAGT CACGGATT	FAG CAATGCTTCC	TTCTCTCTTC	CGACAATTCC	AAATTTTCTA	1980
ATTACCTTTT CAGGATTA	ATC AAAAATTCT	CCAACAACTT	CCATATTTCC	TTGAAGTTCA	2040
TTCAAGAAAG CTTTCATT	TTG ACTACTCATT	ATATAGCTCC	TTTTCTATTA	CTTTATTTGG	2100
AATCAAAACT TACTTGTA	CA TTGGAAACAC	CTCTATTCTA	CGCTTTCATA	TTGCTGCATG	2160
ACACTITCAA AATCAAAT	TG CTAAAAATAA	TTTTTTAAAG	CTTAATTTAG	ATTTAATTAC	2220
ATATATCTCA AAAAATTC	STT TTGAAATTAG	TAAATTAAAA	TAGGTTTCTG	TACTTATAGG	2280
AACTAGTTAT AAAAACTT	CG CCCATCATAA	AATATCTATT	TAAGTAAAAC	ATTTTAAAAA	2340
TAATTTTTTG ATTTTTAA	GT GACTATAATC	TCCTATCTAT	AAATACCATT	CGCAGGACCT	2400
GGATCAATCC CTCTAGCC	AT CTTATGAACT	TGAGTTCCTC	CAGACAGTCC	CGG	2453
(2) INFORMATION FOR	CEO TO NO. 21	-			

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1049 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

WO 98/18931

1345

(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	317:		
CCAATTTGAA	GGCTCTAAAA	CAATGGAAAA	GTGCTACACA	GATGTGACAG	AATTTGCCAT	. 6
TCCAGCAGTA	CTCAAAAACT	TTACTTATCA	CCAGTTTTAG	ATGGCTTTAA	CAGCGAAATT	12
ATTGCTTTTA	ATCTTTCTTG	TTCGCCTAAT	TTAGAATAAG	TACAAACAAT	GTTGGAACAG	18
GCATTCAAAG	AGAAGCACTA	TGAGAATACG	ATTCTCCATA	GTGACCAAGG	CTGGCAATAC	24
CAACACGATT	CTTATCATCG	GTTCCTAGAG	AGTAAGGGAA	TTCAAGCATC	CATGTCACGC	30
AAGGGCAACA	GCCCAGACAA	CGGCATGATG	GAATCTTTCT	TTGGCATTTT	GAAATCGGAG	36
ATGTTTTATG	GTTATGAGAA	GAACTTTAGA	TCTTTAGAAA	ACCTTGAACA	AGCTATTGTG	42
GACTACATTG	ATTATTACAA	CAACAAGAGA	ATTAAGGTAA	AGCTAAAAGG	ACTTAGCCCT	48
GTGCAATACA	GAACTAAATC	CTTCGGATAA	ATTAATTGTC	TAACTTTTGG	GGTGCAGTAC	540
ATTTTTGGTA	TATATAAAAT	TTGTAGGAGC	TATATCTACA	ATTTTATATT	CCCAGTTTAT	60
GGATGTAACT	TACTATATTC	ACAATGTTAT	CCAGTGTTTT	ТТСТСТААТА	TTTAAGGAGT	66
GTTCTGTTTC	TCGAATAAAT	TCTTCAAAGT	TTAACCCGTC	AACTTGTTCC	TGAACAAGAA	72
AATAATCATC	CACGATATAA	AATTCATCAG	TTAAATTAGT	AGTATAACTT	TTATCGGCTA	786
ATTTTTTAG	CATGTGAGCT	TCATTTTTTA	TATCATCAAG	AGCTGTCCAT	TCTCCTTCAG	840
CATCATAATT	CACAAAAGGT	CTTGACTGCT	TGATGATTAC	TTTTTGCCCG	TCCGATTTTC	900
PAATTGCCCG	ATAAACATTT	CCTTTATTTG	ATCTCTTAAT	AATTTTTTCC	ATT TT GTATT	960
PATITATTGC	AGAGTCCTTA	CTTGAAACTT	CACATGTGGT	TTGAAAATAA	ATCCTTTTTT	1020
CTTCTTCTGA	AAATAAATCC	ATTTTCCGG		•		1049
(2) INFORM	ATION FOR SE	Q ID NO: 31	18:			
	EQUENCE CHAP (A) LENGTH: (B) TYPE: nu	776 base pa cleic acid	irs			

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318:

TTAGTTGGTT AGAATCAGAA AATCGCCGAA GTGGTTATTT ATTTTTGAAT AAATTTAACG AACCAATTAC AGCAAGAGGA GTTGCTCAAC AGTTAAAAAA TTATGCTGAT AAATACAAAA 120 TGAATCCTAA AGTAATTTAC CCTCATTCTT TTAGGCATTT ATTTGCTAAG AATTTTTTAG 180

			1346			
CGAAGTATAA	TGATATTGCC	TTGCTTGCAG	ATTTGATGGG	ACACGAAAGT	ATAGAAACTA	240
CTCGAATTTA	TCTAAGGAAA	ACAGCTACTG	AACAACAAAA	TATTGTAGAT	AAAATTGTTA	300
ATTGGTAAAA	AATAACAGGT	GGTCAAACTG	ACTACCTGCT	ATTTTTGTGA	TTATGGCTCT	360
TATTATGGGA	ATATACCTAT	GAATTGGGTT	GTTATAAAAA	TAAAAGATAT	TTTTTCAATA	420
AATACAGGTC	TTTCTTACAA	GAAGGGCGAT	TTAAGCATTA	ATAATAAAGG	TGTTAGAATT	480
ATACGTGGTG	GTAATATTAA	GCCTTTAGAA	TTTTCTCTGT	TGGATAATGA	TTACTACATT	540
GATACACAAT	TCATCTCCTC	TGAGCAAGTT	TATTTAAAAC	ATAATCAGCT	AATAACACCT	600
GTATCAACCT	CTTTAGAACA	TATTGGAAAG	TTTGCAAGAA	TCGAGAAAGA	CTATGATGGT	660
GTTGTGGCTG	GTGGATGTAT	TTTCCAATTA	ACACCATTCG	AAAGTGCAGA	GATGATGTCA	720
AAATGTCTAT	TATGTAACTT	GTCCTCTCCG	TTATTTTATA	AACAATTGAA	AGCAAT	776
(2) INFORMA	TION FOR SE	O TD NO. 31	a .			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 658 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319:

TGCAATGCGG	CGGCTGCATA	CGCTTGATCC	GGCTACCTGC	CCATTCGACC	ACCAAGCGAA	60
ACATCGCATC	GAGCGAGCAC	GTACTCGGAT	GGAAGCCGGT	CTTGTCGATC	AGGATGATCT	120
GGACGAAGAG	CATCAGGGGC	TCGCGCCACC	GAACTGTTCG	CCAGGCTCAA	GGCGCGCATG	180
CCCGACGGCG	AGGATCTCGT	CGTGACCCAT	GGCGATGCCT	GCTTGCCGAA	TATCATGGTG	240
GAAAATGGCC	GCTTTTCTGG	ATTCATCGAC	TGTGGCCGGC	TGGGTGTGGC	GGACCGCTAT	300
CAGGACATAG	CGTTGGCTAC	CCGTGATATT	GCTGAAGAGC	TTGGCGGCGA	ATGGGCTGAC	360
CCCLLCCLCC	TGCTTTACGG	TATCGCCGCT	CCCGATTCGC	AGCGCATCGC	CTTCTATCGC	420
CTTCTTGACG	AGTTCTTCTG	AGCGGGACTC	TGGGGTTCGA	TGTCGACAGC	CCGCCTAATG	480
AGCGGGCTTT	TTTTTCCTGA	GGCTGGACGA	CCTCGCGGAG	TTCTACCGGC	AGTGCAAATC	540
CGTCGGCATC	CAGGAAACCA	GCAGCGGCTA	TCCGCGCATC	CATGCCCCCG	AACTGCAGGA	600
GTGGGGAGGC	ACGATGGCCG	CTTTGGTCCC	GGATCAATTC	GCGCGACCGG	ATCGATCC	658

- (2) INFORMATION FOR SEQ ID NO: 320:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1475 base pairs
 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320:

CCGGCTTAAT TTTTAGAAAA CGTGGGCAGG GAACCTTTGT TCTCTCTCGT GGCAGCTCAA	60
AAAGAAAATT AATCGTTCCA GAAAGAGATA TCCGGGGACT GACAAAAATA TCTGAAGATG	120
CTCATTCTAC AATTGACTCG AGGATTATTC ACTTCAAATT AGAATTTGCA AATGAATTTT	180
TAGCAGAAAA ACTACAGGTC GCTTTGCAGA GTCCAGTTTA TAATATTTAC CGCCTGCGTA	240
TTATTGACGG TAAACCTTAT GTTCTGGAAC AAACTTATAT GAGTACCGAT GTTATTCCAG	300
GTATTACTGA AGATATTTTA CAAAAATCGA TTTACAATTA CATTGAAGGA AAGTTAGGAT	360
TGCATATTGC CAGTGCTACA AAAATCTTAC GAGCTTCTTC TAGTTCAGAA AATGAGCAAC	420
ATTACTTGCA GCTCCTTCCA ACGGAACCGG TATTTGAAGT AGAACAAGTG GCTTATTTGG	480
ATAACGGAAC TCCGTTTGAG TACTCGATTA GTCGTCATCG CTATGATTTA TTTGAATTTA	540
ATTCTTTTGC ATTACGACAT TCCTCCTAGG AGAAAATGTG AAAATGAAGC CAATCTTTTA	600
CAGACTCTAG TTTAAGAAAA ATTTAAAACA GGGCAAGAAG GTCCCATCTA TGCTTAAATG	660
GTTTCTCTTT TCTAAATAAG ATGGCTTTAA AAGAGTGATC GTTGTATCCA TCATGTTGAA	720
AAATATCTTC GTATAGCTTA TAGAGTAGGT ACTGAAATTG TTCACCTGAT CTACTTCTTA	780
TAGTTATTTA GTTTTAAATA GTGTTTCAAA CATTCTTACA CTGACGAGAA GTTTTTGAGT	840
CTTTTCTTGT AACACATATA GTATACTGTG GTTAGAATAG TAGACTGTGA CTTCTAACAA	900
ATTGCTAGAA ATGAATTTCA ATCTCCCAAT TTATTTGTTC ATATCTTCTT TTAATATATT	960
AAATAAATTC TAAATCATAA TCATTTAAAA AAATTTTATT TTTTATTTTT CATTACGAAT	1020
AATATAGATG AAGGGGAAAG AGTATGAAAA CAGAACTGTT TCTTTTGCTA TTAGTTCAAA	1080
AGGAGAAAAA ATGAAAGTAG AAAATATTTC GTATAGGGTG GATCATCGTA AATTGTTTGA	1140
TAATATTTCT TTTGATACTT CGAGTTCAGA CGTGACATTA ATTACTGGTA AAAATGGTAC	1200
AGGAAAGTCA ACTITACTAT AGTAGATTGA AACTAGAATA GTACACATCT ACTICTAAAA	1260
TATTGTTAGA AATCGATTTG ACTATCCTGA TCTATTTGTC CTGTTCTTAT TTCATTTCAC	1320
TATATCTCAA ATTGAGTATG ACGAAGTGCG CTCCCATGTC CTGGGAACGC ACTTTCTTCA	1380
TATTTTCAT ATTCTTGAAT CCATCGATAA AGACTATTGG GATGAATTTT TAAAGTTGAA	1440
CTAATCATT TTACAGGATG AGATTTACAG CAGAG	1475

(2) INFORMATION FOR SEQ ID NO: 321:

PCT/US97/19588

1348

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 560 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 321:

GAAATATATA	TACTTCATCT	TAATAGTGAG	CAAGCTAAAC	TTAGCATTTC	ATGCCCTCAT	60
ATGGGATGTT	CTTTGACTAA	ATAATATGAT	TATCGAGATA	TATCTGGATA	AATGAACTAA	120
TAAGTCTGAC	GCGTAGACTT	ATCAAAGTCA	TTGGCATACA	CCACTATGAA	CTCGTTGGTC	180
TGTTCAAATC	CCAACACATT	ACCTGAGAAG	AAAGTTGCAA	TGTTGTTTTT	GGTGCGGGTT	240
TGAATTTAAA	AAATTTGTTA	TGTAGTACCT	AATCTAAGGA	ATTAGAACAA	TGCCTCTAAT	300
TTTTCTTTAA	TACACTGAAA	CATTGATGAT	TCTGGCTGTA	TTTTTGAAAC	AGCTCTTCTT	360
TGCTCCTGGA	AAATATCTTC	AGAAGTTATA	TTCTCTATTC	CTAACGCTAC	TTGAGTTTTT	420
TTTCTAAAAT	ATTCTTTTCC	GTTGCCATCT	TTAGAAAAAT	CATAACCTTC	CCTATCTACG	480
CTGTTACACA	AATTAGCTAA	AAAArACTCT	GGGGTTGGGA	AAGGAAGATA	AGAAaCGTAT	540
TTAGCCCATA	ATCTATAAAG					560

(2) INFORMATION FOR SEQ ID NO: 322:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 643 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 322:

ccgcccggcc	ACCGCTGCCT	ATCCTCGGGA	GAGGGTCACC	TGGAGTGAAC	CTAGAACGAT	60
AGACACGGTG	CGGTACGACC	TCGTACTACT	TTCGCCGACG	GCCTCGTCCG	TTGTCATCCA	120
CGAACTGATC	GGACATGGGT	GCGAACACTT	CAGAGAAAAA	ATCGTTGGAC	TGCGTGTCGG	180
GCCTGAGGAA	CTACGGGTGG	TGGCTTTTCC	GAAGAACGGC	TCCGGGTTTG	ATGACGAGGG	240
TACACCCTCC	GAAGAGATTG	TACTTGTGGA	GAACGGCATT	GTGAGGCACG	CTGTCAGGGA	300
TCGGGCGACT	GGAGGAATGG	CGCCTTTTTC	CGGTTTGACC	AAAGTGGCAT	CACATGGTGT	360
CAAACCTGGC	TCAAGATGTA	CGCATCTCAA	GGCGGAAGGG	GAATCGTCAC	AGGAAGGAGT	420
TACCGGAGTA	CCCGCCGAAC	GCACCGTTTG	GATAGAGCAT	TTTTCTGCAG	CGAACTACCA	480
TTCAGGTCGA	GCCTTTTTCA	GGTCTGGCCT	TGCCTGGGTA	GGCAGCCGAG	AAGAACTCTT	540

1	3	4	9

ATATCCCTTA ATGCCTTTCA CCATGTCAAT TGATATCTAC GAACTGGCCA GCTTATTGTG	600
GCATTTAGAC GGTCAAACGG AACGAGCACG TAGGGTACTG TGC	643
(2) INFORMATION FOR SEQ ID NO: 323:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 780 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 323:	
GGTACCCACT CATTCTTGAT GAATTGTGAA CAGTTGCCCT TGGGTCGTTT TGCGAGTTGA	60
AGTCAAGAAG AGGAAAAAAA CAAAAAGGAG AAATACTCAT GGCAGTAATT TCAATGAAAC	120
AACTTCTTGA GGCTGGTGTA CACTTTGGTC ACCAAACTCG TCGCTGGAAT CCTAAGATGG	180
CTAAGTACAT CTTTACTGAA CGTAACGGAA TCCACGTTAT CGACTTGCAA CAAACTGTAA	240
AATACGCTGA CCAAGCATAC GACTTCATGC GTGATGCAGC AGCTAACGAT GCAGTTGTAT	300
TGTTCGTTGG TACTAAGAAA CAAGCAGCTG ATGCAGTTGC TGAAGAAGCA GTACGTTCAG	360
GTCAATACTT CATCAACCAC CGTTGGTTGG GTGGAACTCT TACAAACTGG GGAACAATCC	420
AAAAACGTAT CGCTCGTTTG AAAGAAATTA AACGTATGGA AGAAGATGGA ACTTTCGAAG	480
TTCTTCCTAA GAAAGAAGTT GCACTTCTTA ACAAACAACG TGCGCGTCTT GAAAAATTCT	540
TGGGCGGTAT CGAAGATATG CCTCGTATCC CAGATGTGAT GTACGTALTG ACCCACATAA	600
AGAGCAAATC GCTGTTAAAG AAGCTAAAAA ATTGGGAATC CCAGTTGTAG CGATGGTTGA	660
CACCAATACT GATCCAGATG ATATCGATGT AATCATCCCA GCTAACGATG ACGCTATCCG	720
TGCTGTTAAA TTGATCACAG CTAAATTGGC TGACGCTATT ATCGAAGGAC GTCAAGGTGT	780
(2) INFORMATION FOR SEQ ID NO: 324:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 624 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 324:	

CGGGAAAAAT CAGATTGTGG GTTCAGATAT CGAATTAGCC AAGGCTATCG CAACAAAACT
AGGTGTCGAA TTGGAACTAT CTCCCATGAG TTTTGATAAT GTACTGGCTA GTGTTCAATC

180
240
300
360
420
480
540
600
624

(2) INFORMATION FOR SEQ ID NO: 325:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1237 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 325:

TCTTATGAAG	CCGAAGCGTG	ATTTATGGCG	GATAGGTTTG	GTCTGCAGAA	AGTGACAAAT	60
CTAGTGCCAT	CAGCGTATAT	GGAATCTnTG	GCTGAGAAAC	AGTCCCGGGG	TGAACTGACT	120
TATGAGCAGG	TTTATGAGGA	TGCAACGGCT	TATCATCATA	CCATTGATGC	GAGTACAGAG	180
GAGGCAGACT	TGGTTTCTCT	ACGTATTGTA	GAACTATTGT	CTCGAAGAGG	CTTTAGCTTC	240
AGTCCTGCGA	TCTTACTTGC	TATTCATAAG	GAGTTGTTTC	AAGATATATT	TGAACCCTCG	300
ATTCCGGTAG	GTCAATTTCG	TCAGACTAAT	ATCACAAAGA	ATGAACCTGT	TTTGAATGGT	360
GAAAGTGTTG	TGTACTCTGA	TTACTCCATG	ATTCAAATGA	CCTTGGATTA	TGATTTTAAT	420
CAGGAAAAAC	AAGTTGCATA	TGCGACACTA	ACCCAGGCGG	ATATGGTTAA	AAAAATCCAG	480
CATTTTATTT	CAGGAATCTG	GCAGATTCAT	CCATTTCGCG	AAGGAAACAC	TCGGACGGTA	540
ACGGTATTTT	TGATTCAGTA	TCTTCGTGAG	TTTGGTTTTG	ATATTGATAA	TACACCATTT	600
CAGCAACATT	CCAAGTATTT	TCGTGATGCC	TTAGTGTTAG	ATAATGCAAA	GATTTTACAG	660
CGACGTCCTG	AGTTTTTAAC	AGCTTTTTTT	GAAAATCTCT	TGCTCGGTGG	TCAAAATGAT	720
TTGTCTTCAG	AAAAAATGTA	TCTAGATTTA	GACCTCGATC	TTTCATAATC	CTAATACTGA	780
GTAAACATTG	AATTTTAGGA	AAAAATGÄAG	TAAATATTCT	CACAAGAAAA	CGTATATCAT	840.
CAAAGTTTGG	CTCTTTGTCA	ATTGTAGTGG	GTTGAAGAAA	AGCTAAGTTC	GAGAAAGGGC	900

AAATTTCGGC CTTTCCTTTT TGATGTTCAG AGCGATAAAA ATCCGGTTTT TTGAAGTTTT	960
CAAAGTTTCG AAAACCAAAG GCATTGCGCT TGATAAGTTT GATGAGATTA TTGGGCGCTT	1020
CCAGTTTGGC ATTAGAATAG TGTAGTTGAA GGGCGTTGAT AACCTTTTCT TTATCTTTGA	1080
GGAAGGGTTT AAAGACAGTC TGAAAAATAG GATGAACCTG CTTAAGATTG TCCTCGATAA	1140
GTTCGAAAAA TTTCTCCGGG TCCTTATTCT GAAAGTGAAA CAGCAAGAGT TTGAAGAGCC	1200
GATAGTGATG TATCAAGTCT TGTGAATAGC TCAAAAG	1237
(2) INFORMATION FOR SEQ ID NO: 326:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 461 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 326:	
TTTGATTTTT CTGAATTAGA AGAGATTGAA TTGCCTGCAT CTCTAGAATA TATTGGAACA	60
AGTGCATTTT CTTTTAGTCA AAAATTGAAA AAGCTAACCT TTTCCTCAAG TTCAAAATTA	120
GAATTAATAT CACATGAGGC TTTTGCTAAT TTATCAAATT TAGAGAAACT AACATTACCA	180
AAATCGGTTA AAACATTAGG AAGTAATCTA TTTAGACTCA CTACTAGCTT AAAACATGTT	240
GATGTTGAAG AAGGAAATGA ATCGTTTGCC TCAGTTGATG GTGTTTTGTT TTCAAAAGAT	300
AAAACCCAAT TAATITATTA TCCAAGTCAA AAAAATGACG AAAGTTATAA AACGCCTAAG	360
GAGACAAAAG AACTTGCATC ATATTCGTTT AATAAAAATT CTTACTTGAA AAAACTCGAA	420
TTGAATGAAG GTTTAGAAAA AATCGGTACT TTTGCATTTG C	461
(2) INFORMATION FOR SEQ ID NO: 327:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1436 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 327:	
TAACATTTAG GTACCTCTTC TTAACAAGT TCAATAGTAA CAATTAATAT TTTAAACAAT	60
ATATCAAACA TCAATGACTA GAATACTTGC ATCATCCTTC TTTCCATAGA TTGGATCAAT	120
AGCAGAAGAA TTAAATCTCA TCTTAATTAA CTCTTCAAAA GTTTTATTTT GATTATTTTG	180

		1352			
ATAGAATTCA TAA	AAGCCAT CGCTCAT	TAA AACAATTTG	T TCACTAGTAA	CATCTATTTG	24
ATTAATAATA GCA	TGGTCTA AAAATCT	CTC ATCCAACGA	A CCTATCCAGT	ACCCACTCGG	300
TTGATTAGAT AAT	TTTCTGA TTTTTTG	TTTTAÄTAA AAT	AAAATTTATT T	CACTATTTGT	360
ACCAATTGAA TCT	TTTATCT CATTTTT	CCC TTTTTCAAA'	I AAGTTATCTA	CTCTATGATC	420
AGTTATTTCC ATT	TCGTTTA CTAACAT	GAC GCAGTCACC	r AGCATCATAT	ACTCCAACTT	480
TTTTTCTGAA AGT	TTAGCAA ATATTGG	TAA GCGATAATA	r agtatattga	AACTAGAATA	540
GTACACCTCT ACT	TCTAAAA CATTGTT	AGA AATCGATTT	ACTGTCCTGA	TTGATTTGTC	600
CTATTATTAT TTC	ATTTTAC TATACTC	GT TAATTTATA1	GAGTTTAAAC	CGATTTCATC	660
TTTAACCTCG AGT	AAAGCAG TTTCAAA	TAT TTGTTTAAGA	GTTTTTGATT	CTTTACAATT	720
AACCGACAAA CTT	rctgata aaatatgi	TAC AACTTCTGAC	ACTGAATAAC	CTATCTCCTC	780
TTTAGAATTA TATI	AAATCTG TAGCTCC	CC AATAATCCAA	AAATACTGAT	TTTGTGAACC	840
TACAATATCC TCAT	TTTTCTA CGGAACTT	CC TTGTATCGAA	CAAATTTTAT	TTATCTTTAC	900
CATAATACTT CAAC	CCTTTT AGTGTCA	AA GTAAACCAAT	TCCTGTCACT	GTTAAGAATA	960
GTTCCATAAT CTT	ATTCGAA CCAGTCTT	TG GTAATTTTTG	TTTKACATCT	ACTATYTCTT	1020
TAGATTTATT AATA	ATGATTT TCAGTTTC	TC TGCCATCTCC	AACTATTTA	TAGTTTACTT	1080
CTTCTGTCTT ATT	ATCTTGT TTATTGTC	GA TCTTGTCATT	CATTTGTCTA	TTATCTTTAC	1140
TTGAGTTAAA CTCT	CCGTTC TTCTGGTT	'AC TATCAATTAC	ATTATTTGAA	TTAGATTGTT	1200
TTTCCTCTTT GTT1	TTTTCT TTTTCGTT	ТТ ТАТСАСТТАА	ATTATTTGTT	ACAATTTTGT	1260
AAAGCCCATT CTCC	GTTACA ATATTGAA	AT TACCATCGCT	ATCACGTATA	ACAGGTTCTT	1320
rcccattigc atta	GATTTG ATGAATGA	та татасттасс	GGATAAATTA	TAAAATTGGT	1380
TATTTAAAAC GGTT	ATTTTA CCCTTTGA	AT CCTCAATAAC	AATTCCTTCT	TTACCC	1436
(2) INFORMATION	FOR SEQ ID NO:	328:			
	CE CHARACTERIST				
(A) L	ENGTH: 646 base	pairs			

- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 328:

CCGGCAGACA GGAGAAGGTG TTAAATATCA ATCTCAAATG GTTCGTCAAT GGTTTCT	rgat 60
ACGTATTTTC CGTCTTTCTT CCGTTGCTTG ACACACTCTG TGAGGAGATA TTCGATT	TTGC 120
CCATTGACTG AACGAAAGTC GTCTTCTGCC CATGATGCGA GTGCAGCGTA TAACTTT	GTT 180

PCT/US97/19588 WO 98/18931

1353

GAGAGTCGAA	GGGGGATCTG	CTTTTTTTA	GCTTCAGCCA	TCTTTAGTAA	AGGCTTCCTG	240
TGTTGACAAT	TGGTTGTGCA	TCATGATTGC	CACAAAGAAC	GACAAGGAGA	TTTGAAACCA	300
TGGCAGCTTT	TCGTTCTTCG	TCAAGTTCTA	CCAATTCCCC	TTCATTGAGC	CGTTCTAGTG	360
CCATTTCAAC	CATTCCTACA	GCACCATCTA	CAATCATCTT	CCGTGCATCA	ATAATGGCAG	420
ATGCTTGTTG	GCGTTGAAGC	ATAACGGCAG	CAATTTCTGG	AGCATAAGCT	AGGTAAGTGA	480
TACGTGCTTC	AAGGATTTCC	AAGCCAGCAT	CCTCAACACG	ACTTTGGATT	TCTTCACGAA	540
TACGGGTAGC	AACAATTTCG	CTAGAGCCAC	GGAGACTACC	TTCATCTGCG	TGCCCATCAC	600
CCGGAGTATC	CACATTAGGA	GACACATCGT	AAGGATAGAT	GCGGAC		646

(2) INFORMATION FOR SEQ ID NO: 329:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1653 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 329:

GTTGCAGGTG	CAGTAGGTGT	TACTTCAGAT	ACATTTGAAC	GTGCAGAGGC	TCTTTTTGAG	60
GCAGGAGCGG	ATGCGATTGT	TATTGATACT	GCACATGGTC	ATTCTGCAGG	TGTCTTGCGT	120
AAAATTGCCG	AGATTCGTGC	TCATTTCCCA	GATCGGACTT	TGATTGCTGG	AAATATTGCT	180
ACTGCTGAAG	GTGCACGTGC	CCTTTATGAA	GCGGGTGTAG	ACGTTGTTAA	GGTTGGTATT	240
GGACCAGGTT	CTATCTGTAC	TACTCGTGTG	ATTGCTGGTG	TTGGTGTTCC	GCAAGTAACA	300
GCTATCTACG	ATGCTGCAGC	TGTTGCGCGC	GAATATGGTA	AAACGATTAT	TGCTGACGGT	360
GGGATCAAGT	ATTCTGGAGA	TATTGTAAAA	GCACTTGCTG	CAGGTGGAAA	TGCTGTTATG	420
CTTGGATCTA	TGTTTGCTGG	AACTGATGAA	GCTCCAGGCG	AAACTGAAAT	CTTCCAAGGA	480
CGTAAATTCA	AGACTTACCG	TGGTATGGGA	TCAATTGCTG	CTATGAAGAA	AGGTTCAAGC	540
GACCGTTATT	TCCAAGGTTC	TGTCAATGAA	GCAAACAAGC	TTGTTCCAGA	AGGAATTGAA	600
GGTCGTGTTG	CTTATAAAGG	AGCGGCAGCT	GATATTGTTT	TCCAAATGAT	TGGTGGTATT	6 60
CGCTCTGGTA	TGGGTTACTG	TGGTGCAGCT	AACCTTAAAG	AACTACACGA	TAATGCTCAA	720
TTTATTGAAA	TGTCTGGTGC	TGGTTTGAAA	GAAAGCCATC	CTCATGATGT	GCAAATTACT	780
AATGAGGCAC	CAAATTATTC	TATGTAAAAA	ACAATGAAAA	GAACTCCAGT	GAAAACAGGA	840
GTTCTTTTAC	AATGTTGTCA	ATTTCCATTT	ACAGCAGCTT	TACCATCCTG	AATAGTGAAG	900

PCT/US97/19588 WO 98/18931

			1354		•	
ATACTTAGAT	TTTCTGGCAG	ATTTTGAAGA	TGGTCTAAGC	TTGTTGTTGT	GATAAAGGTT	960
TGGATTGATT	GAGAAATCGT	TTCTAATAAT	TTTAACTGTC	TAGTGTTGTC	AAGTTCACTC	1020
ATCACATCGT	CAAGCAGTAA	TATAGGAGAT	TCTGTGGTAA	TGCTTTCCAT	TAATTCGATT	1080
TCTGCTAATT	TTATCGAGAG	GACGAGACTA	CGATGTTGAC	CTTGGCTTCC	GAAACTAGCA	1140
TCCATCCCAT	TTATATAAAA	AGAAATGTCA	TCTCGATGAG	GACCGACACC	AGTATTCTTT	1200
TAAATAAAT	CTCTGGATCT	ACTTTTTTCT	AAAGCAATTT	TGAAAGATTC	GGATAAGTTT	1260
TGTTTGTCAG	TTATATTGAC	AGAAGATTGA	TAGGATATTG	ACAACTCTTC	GATCTGATTA	1320
GAGAGTTCAA	AATGTTTCTT	ACGCCCAAAT	GATTCTAGTT	TTTTTATGAA	ATCTAAGCGG	1380
TGATTCATTA	CACGACATCC	ATAATCAACT	AGCTGATCAT	CTAACACAGA	AAGGAATGTT	1440
TCATCTATTT	TTTGAGCTGA	TTTTAGGTAA	GTGTTTCTTT	GCTTTAGGAT	GTGGTTATAA	1500
TTGGTTAAGT	CAGATAAATA	GATTGGCTTA	ATTTGCCCAA	GTTCCATATC	AATGAATTTT	1560
CGTCGAATCG	AAGGTGCTCC	TTTAATTAGT	TGTAAATCTT	CAGGAGCAAA	TAAGACAACA	1620
TTCATGTGTC	CTACATAATC	TGAAAGGCGT	GCC			1653
(2) INFORMA	ATION FOR SE	Q ID NO: 33	10:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1340 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 330:

60	CTTCTTTTCC	TACTCCCATT	AGTTTAAAAT	ATTTTTTGTT	ATTTCAAAGC	GAAACACTGT
120	TAATATCACT	CTATTTTTTA	ATACTAGATT	ACCATTCAAA	TATATCCAAA	AAACGTACAA
180	ACCGGAGAAA	CAGTCCCAGT	TTTTTAGTCC	CGTTTTCAGA	AATTATAGGA	AAATCCACCT
240	AAGAACAAGT	TTAAAAGCAA	TTCTAAGCTC	TCTTTTTGTC	ATATAATATC	TATTGTTTTA
300	TTAAGACAGA	ATAAAAAGCT	ATTAGGGCAA	AAAAGTCCAT	GACAAGGATA	AAAGAGTCAA
360	AAATATTGGC	GCAGAGAGAT	TAGCAAAGGT	AGAAAGACCA	AAGTCAAATA	TGACAAATCT
420	TCAGACTATA	TCAAATTTAT	ATTTTTCAAA	TTTTTTATCC	CTGCCTTTAT	GGTCTTCGGA
480	ACTITAATCA	GTAAAAAATT	AACATGGCTT	TTCATATAAA	TACACTTAAA	TATGCACATA
540	ACTTGGAAGT	TACGGACTTC	CAAGCTAAAT	GTGATGTTTG	ATTTAAAATT	CAATAATCGC
600	TCCAACAGAT	CAGATGAATA	AATTTGCTGG	ATAGATAGAA	ATCTTTTATA	TTTCCCTTGT
660	TACATTCATT	GAGTTTCAGC	TTTAAAAGAA	TAGTTCAGTG	CTTTTATAGG	TCTGCTATCT

CTTTTTCTTT	GAGTGTACTC	TGTAATGCTT	TGACAATATT	TTTCCTTAAA	TAAATTTTTT	720
AATTTAGTAC	CACTCATTTT	AGATATTTT	TCAAGCGTGC	CTTGATTTAC	ATTCGTTGCA	780
AAATGATCAT	CTAAGAATCT	TGCTACATCT	TCAAGTGCTT	TATCATCATC	AATTTCAATT	840
TTATATTTT	TTCTATTTAA	GTATGTGTCA	ATTACTATAC	TTATCCATTC	ATTTGCCTTT	900
GCTTTAAAGA	AAAAATCAGC	GGCAGGAGCG	TCCATCTTAC	AATTTAATAT	TTCCATTGCC	960
ACTCTTTCTA	AGGCCTTTGT	AAGTATTATT	TGATTCGGTT	GAAGCAAGGT	TGAATAAAA	1020
GATTCTGGAT	TAATGTTAAT	AGATGCTAAA	TGTTTTTCTA	TTAGCTCTTT	TTTAAAACCm	1080
ATGGAAACAG	CAAGATAACA	ACAATTCTCG	TGTAATAAAA	AAACAAAATT	ATCTTTTATA	1140
TTATCAAAAT	CAAAAGTACA	TAGAGAGTTT	GCGGTAATAG	TTTGATACGG	ATTAAACTTT	1200
TCTCCGTTTG	CACTGACAAT	GTAACTTGAA	TAAATTGAAA	CATAGTCTGA	CATACTATAA	1260
GTGCTATTTT	GAACTACTTC	CTCTTTGATA	TAAAAATCAT	GTATATCGAT	AATGAAGATG	1320
CCTCCTTCAT	AAAACCGGTA					1340

(2) INFORMATION FOR SEQ ID NO: 331:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 607 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 331:

TATGTTCGTG ATGAGTTTTT AAGTAGGAAA AACGTGCTAA CCTCTCAGAT TTTGGAACTT 60 GTAAAAGAAA CTCTTTTTC ACCCGTAGTA GTTGATAATG GGTTTGATCC GGCCTTATTT 120 GAAATTGAGA AAAAACAATT GCTAGCAAGT TTAGCAGCTG ATATGGATGA TTCTTTTTAT 180 TTTGCACATA AAGAATTGGA TAAATTGTTT TTTCATGATG AACGTCTTCA ATTGGAATAT 240 AGTGATTTAC GAAATCGTAT TTTAGCTGAA ACTCCACAAA GTTCTTATTC TTGTTTCCAA 300 GAATTTTAG CCAATGATCG AATAGATTTC TTTTTCCTAG GTGATTTTAA TGAGGTTGAA 360 ATTCAAAATG TATTAGAATC ATTTGGCTTT AAAGGTCGAA AAGGAGATGT GAAGGTTCAG 420 TATTGTCAAC CTTATTCTAA TATCCTTCAG GAAGGTATGG TTCGGAAAAA TGTGGGACAA 480 TCCATTTTGG AATTAGGTTA TCATTACTGT TCTAAATATG GTGATGAGCA ACATTTACCC ATGGATTGAA TGAATGGTTT ACTTGGTGGA TTTGCTCACT CTAAGCTCTT TACAAATGTC 600 CGGGAAA 607

PCT/US97/19588 WO 98/18931

(2) INFORMATION FOR SEQ ID NO: 332:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 900 base pairs
 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 332:

TTAAAATACC	GAATTTTGTT	TTGTCCTCTA	TTTCAACATT	GTGAATCGCC	TCAGGCAGAG	60
AACCGATACT	AAAGATATAA	CCAAAATAGT	TGTCATTTGC	TTTACCGATA	TCAATCTTAT	120
TGGTTAAATC	AAAATCCAGT	TCGTCAATTG	CGCCATCGAT	GTCTTGATTG	ATTTCCAAAA	180
GTTTTGTAAT	GAGGTTACCC	GTACCGCCTG	GGATAATCCC	TAACTTAGGA	ATGTAGTCTC	240
TCTCATCAAT	ACCTGAAATG	ACTTCATTGA	CAGTTCCATC	TCCACCAAAC	ACAACCACTG	300
CATCATACTG	CTCACGAGAA	GCTTCTTCAG	CAAAATGTGT	TGCATCCAGC	GCTTTTTCGG	360
TAATTTTGGT	TTCAACATAT	TCAAAGTATT	CTTTTGCTTT	ATTCTCCAGC	TTTTCTTTGT	420
AATCCAAAGC	CTTCTCGCCA	CCAGAAGTAG	GGTTGATAAT	TACCATTGCT	TTTTTCATTG	480
ATTTTATCCT	TAATTTTAAA	CAGAAATGTT	TACATTTCGT	CGTATGCAAG	TAAATGTAAT	540
CCTATTATAC	AATGAAAATA	CAGAAAAGAG	AAATCTGACG	TACTGGAGAT	TAATACGCTT	600
TTATTCTATT	TTCCCATCGC	CTAACTACAT	CCTTTAAGGG	TTCATCCAAG	TAAGAATAGG	660
CCTTATCCTT	GATCCAATCA	GGAATACCGT	AAGCTGCCTC	TGCTAWGCTA	CAAGTGATTG	720
CTGCGAGAGT	ATCACTGTCG	CCACCAAGTG	AGATGGCATT	TCTTATCGCA	TCTTCGAAGT	780
CTCTACTTTC	AAGAAAGGCG	ATAATGGCTT	GAGGGACAGT	TTCCTGACAT	GTTTCGTTAA	840
AACGATAGTT	AGGACGGATT	TCATCTAAAG	TTTGAGATAG	ATTGTAATCG	TATTCTTTTT	900

(2) INFORMATION FOR SEQ ID NO: 333:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 533 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 333:

60	ATGCTGGAAT	GAAAATATCT	CAAAACCTCT	TGGAATACGG	ACACTGGTCT	CCTTTCTGGC
120	CAGCCAAACA	TGGTACGAAA	CATCATCACT	ATCAGCCTGC	TACCGTCGTT	GGACGAGGAA
180	CCTCAAGGGC	TCGAAAACGA	ATGGGTGGAA	TTGGCAAAAT	CGCGGACAGA	TGCTTTTGAT

1357	
GGTCTCTACA GCTTTAAATC CAAGTTCAAT CCGACCATTG AGGAATTCGC TGGTGAGTTC	24
AACCTGCCAA CTAATCCTCT TTACCACCTC TCCAATCTGG CCTACACTCT CAGAAAGAAA	30
CTGCGCAGAA GCATTAACAG AAAGGAAGCC TATGACCTTT AAACTTCTCA GCCAAGAAGA	36
ATTCATCCAG CATACCTCAG CTAGATCCCA ACGCTCTTTT ATGCAGACCG TAGAAATGGC	420
AGAGCTGCTG AGCAAGCGTG GCTTCAGTAC CCAGTATGTC GGCTACACTG ACCCACAAGG	480
GAAGGTAGTG GTGTCAGCTG TCCTCTACAG CATGCCTATG ACTGGTGGCC TTC	533
(2) INFORMATION FOR SEQ ID NO: 334:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 544 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 334:	
CCAGCAAACT AGGAAGCTAG CCGTAGTTGC TCAAAGCACA GCTTTGAGGT TGTAGATAAG	60
ACTGACGAAG TCATGTACAA AACACTGTTT TGAGGTTGCA GATAGAACTG ACGAAGTCAC	120
TCAAAACACT GTTTTGAGGT TGCAGATAGA ACTGACGAAG TCACTCAAAA CACTGTTTTG	180
AGGTTGCAGA TAGAACTGAC GAAGTCANNA ACCACACCTA CGGCAAAGTG AATCTGAAGT	240
GGTTTGAAGA GAGTACAACT TGTCTTTTAG AAAAGGAGCC TATAATGAAA GTCTTTCAGC	300
ATGTAAATAT CGTGACTTGT GATCAAGATT TCCATGTTTA TCTTGATGGA ATCTTAGCAG	360
TCAAGGATTC TCAAATCGTC TATGTCGGTC AAGATAAGCC AGCGTTTTTA GAGCAAGCTG	420
AGCAGATTAT AGACTATCAG GGAGCTTGGA TTATGCCTGG TTTGGTCAAT TGTCACACCC	480
ATTCTGCAAT GACAGGTCTG AGAGGGATCC GAGATGACAG CAATCTCCAT GAATGGCTCA	540
ATGA	544
(2) INFORMATION FOR SEQ ID NO: 335:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 349 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 335:

CCAGGAACTC AAATGTAAGT AGGGGTTCCT TTTTTGTATA TTTTTCAAAT AACGCCTCTA

CACTATTTGT	AGCAAATTCA	CCAACTACAG	1358 TTGTATCTTA	GTTAAAATAA	GTTAGAATAT	120
GTAAGTGAGT	ACCAGATATA	CCAAGACATC	GTCACCATCT	AAGGTATATT	CAAAATACAA	180
AAGTTGACCA	ACTAGATTTC	TGAATATCCT	TATATATCCA	TTCTTAAAAT	TGGTTTAAAT	240
AGCGTAGTCT	TTTAAACTAG	TTTTGAGAAT	CCAAAAAATC	TTCCTACATA	TGTAAGAAGA	300
TTTTTTAGTT	CAGAATGATT	AGaTTTAGCT	AATGGATACC	TATCCTACC		349
(2) INFORMATION FOR SEQ ID NO: 336:						

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 336:

CTCCGATAAC	CACACCAGCA	ATGGAAATAA	TTCCATCGTT	AGCATCAAGA	ACACCCGCAC	60
GCAGGATATT	TAAACGACCT	GCAAAATTTG	AATCAATTTC	GTGATTTGTT	TCTGACGCTA	120
AATTTCAAGT	TCAAGTTAGC	CATCAAGAAG	TCTTCTCTGG	GTGACTTGTA	GTCCAAGCAT	180
TTTTTAGGAT	AGTTGTTAAT	CCACTTTTCG	ATGAATGCGA	CTTCTTTGGG	AGTCATTTTC	240
TTGGTTCCCT	TAGGTAACCA	TCTACGAATG	AGCCTGTTGT	GATTCTCATT	AGTTCCCGGG	300
ATCCTCTAGA	GTCGACCTGC	AGGCATGCAA	GCTTGGCACT	GGCCGTCGTT	TTACAACGTC	360
GATGACTGGG	GAAAACCCTG	GCGTTACCCA	ACTTAATCGC	CTTGCAGCAC	ATCCCCCTTT	420
CGCCAGCTGG	CGTAATAGCG	AAGAGGCCCG	CACCGATCGC	CCTTCCCAAC	AGTTGCGCAG	480
CCTGAATGGC	GAATGGGGCC	TGATGCGGTA	TTTTCTCCTT	ACGCATCTGT	GCGGTATTTC	540
ACACCGCATA	TGGTGCACTC	TCAGTACAAT	CTGCTCTGAT	GCCGCATAGT	TAAGCCAGCC	600
CCGACACCCG	CCAACACCCG	CTGACGCGCC	CTGACGGGCT	TGTCTGCTCC	CGGCATCCGC	660
TTACAGACAA	GCTGTGACCG	TCTCCGGGAG	CTGCATGTGT	CAGAAGTTTT	CACCGTCATC	720
ACCGAAACGC	GCGAAACGAA	AGGGCCTCGT	GATACGCCTA	TTTTTATAGG	TTAATGTCAT	780
GATAAGGATG	GTTTCTTAGA	CGTCAAGTGG	CACTTATCGG	GGAAATGTGC	GCCGAGACCC	840
TATTTGTTTA	TTTGTCTAAA	TACATTCAAA	TATGTATCCG	CTCGTGAGAA	AATAAACCTG	900
ATAAATGCGT	CAATAATATT	GAAAAATGAA	GAGTATGAGT	ATTCTACATT	TCCGTGTCGC	960
CCTTATACCC	TTTTTTGCGG	CATGTTGCCT	TCCTGTTTTT	GCTCACCCAG	AAAACGCTGG	1020
TGAAAGTTTA	AGATGCTGAA	AAATCATTTG	GGTGCACAAC	TGGGGTTACA	TCCAACTGGA	1080
ATCTCCAnCA	GCAGTTAAGA	TCCTCTGACA	GTTGTACACG	CCGCAAGAAC	TATTCCCGAT	1140

WO 98/18931 PCT/US97/19588

1359

GAATGAGCAA CTTTTAAAAG TCCTGCGAAT GTTGGGGCGG TAATAATCCC CGTGTTGTAG	1200					
GCCCGG	1206					
(2) INFORMATION FOR SEQ ID NO: 337:						
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 813 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear						
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 337:						
CTGCTCAACT CAGACAGTCA AATTTCTGAC TTTACCAAAA GAACCATCAA AAAAGTTGCT	60					
GAAAAAGGCC ATCAGGTTAT TATTACGACA GGTCGCCCTT ACCGTATGTC AAAAGATTTT	120					
TACCGTGAAC TGGGCTTAGA CACTCCTATG ATTAACTTCA ACGGATCCCT TACTCATTTA	180					
CCAGACCAAG TTTGGGATTT TGAAAAGTGT TTGACTGTAG ACAAAAAATA TCTGCTAGAT	240					
ATGGTTCAAC GTTCAGAGGA CATTCAAGCC GATTTTATCG CTGGAGAATA TCGTAAAAA	300					
TTCTACATTA CAAATCCCAA TGAAGAAATT GCCAATCCCA AACTATTTGG TGTAGAAGCT	360					
TTCCAGCCTG AAGATCAATT CCAGCCTGAA TTGGTGACCA AGGACCCTAA CTGTATCCTC	420					
TTGCAGACTA GAGCCAGTGA CAAATATTCC TTGGCAAAAG AAATGAACGC CTTCTACCAG	480					
CATCAACTTT CTATCAATAC CTGGGGAGGT CCGCTCAATA TCCTTGAATG TACCCCAAAA	540					
GGTGTCAACA AGGCCTTTGC TTTGGACTAC TTGCTCAAGA TAATGAATCG TGACAAAAAA	600					
GATTTGATTG CCTTTGGAGA TGAACACAAT GATACCGAAA TGCTCGCTTT TGCTGGGAAG	660					
GGTTATGCCA TGAAAAATGC CAATCCAGAG CTACTCCCTT ATGCAGATGA GCAAATTTCC	720					
CTTACCAACG ACCAAGATGG GGTTGCCAAA ACCCTACAAG ACTTATTCTT ATAACCTATA	780					
CTGATACTCA ATGAGGGGCA AAGAGCGAAC TTA	813					
(2) INFORMATION FOR SEQ ID NO: 338:						
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 683 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear						

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 338:

CCTAGATAAA TGATATAATT CTATTATTGT TCGTAAAAAT TAAAAGGAGA TTGATGATGG

				1360			
,	ACAAATTATT	TAAACTAAAA	GAGAACGGTA	CAGACGTTCG	TACAGAGGTT	CTCGCTGGTT	120
•	TAACAACTTT	CTTTGCAATG	AGCTATATTC	TCTTTGTAAA	CCCACAAATA	CTTTCACAAA	180
(CAGGAATGCC	TGCTCAGGGC	GTCTTCCTAG	CGACGATTAT	TGGTGCAGTA	GCGGGTACCT	240
•	rgatgatggc	TTTTTATGCT	AACTTACCTT	ATGCCCAAGC	GCCAGGTATG	GGACTCAATG	300
•	CCTTCTTTAC	CTTTACAGTT	GTATTCGGGC	TTGGTTATTC	TTGGCAAGAA	GCCCTAGCTA	360
•	TGGTCTTCAT	CTGTGGGATT	ATTTCATTGA	TTATTACCTT	GACAAATGTT	CGTAAAATGA	420
•	TCATTGAATC	GATTCCCAAT	GCTCTTCGCT	CAGCTATTTC	AGCTGGTATC	GGTGTCTTCC	480
•	TTGCCTATGT	AGGGATTAAG	AATGCTGGAC	TTTTGAAATT	CACGATTGAT	CCAGGCAACT	540
,	ATACTGTTGT	AGGAGAAGGG	GCTGACAAAG	CTCAAGCAAC	GATTGCAGCA	AACTCTTCAG	600
,	CAGTTCCAGG	ATTGGTCAGC	TTTAATAATC	CAGCTGTTTT	AGTGGCTCTT	GCAGGACTTG	660
	CCATTACTAT	CTTCTTTGTC	ATC				683

(2) INFORMATION FOR SEQ ID NO: 339:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 852 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 339:

CTACTTTACA TGGAAGTAGT	CACTGAATTC	CAGTTAGAAA	TTACTTTGTA	ACTACGTTTT	60
GAGGAGGAGT AAAATGCTTT	CCTACGTTCG	ATATTACCCA	CTAGCGATAG	CTAAATTAAT	120
GTGTCTGTGC TCTCCTAAAA	TCTGCTGATT	TATTACTGAC	TAATACAGGA	GGTTTTTTT	180
ATGGACAGAC AATCATATCT	GCTATTGGTG	TTTATATTTC	CACCAGTATC	GATTATTTAA	240
TTATTTTAAT TATTTTATTT	GCACAGCTAT	CACAGAATAA	ACAGAAATGG	CATATTTATG	300
CGGGGCAATA TCTAGGCACA	GGCTTACTTG	TAGGGGCGAG	TTTAGTTGCT	GCTTATGTCG	360
TTAATTTCGT GCCTGAAGAA	TGGATGGTTG	GATTGCTTGG	TTTAATCCCT	ATCTATTTAG	420
GGATTCGCTT TGCAATTGTT	GGAGAAGATG	CGGAAGAAGA	AGAGGAAGAA	ATTATTGAAA	480
GATTAGAACA AAGCAAGGCA	AATCAACTGT	TTTGGACAGT	TACATTGCTG	ACAATTGCGT	540
CTGGCGGAGA TAATTTAGGT	ATCTATATAC	CTTATTTTGC	TTCGTTAGAT	TGGTCACAGA	600
CCCTCGTGGC CTTGCTTGTG	TTTGTAATCG	GCATAATTAT	CTTTTGCGAG	ATTAGTCGGG	660
TGTTATCCTC TATTCCGTTA	ATATTCGAGA	CAATTGAAAA	ATACGAGCGA	ATCATTGTGC	720
CCTTAGTATT CATTCTACTT	GGACTATACA	TCATGTATGA	AAATGGCACG	ATAGAGACTT	780

TTCTGATCGT GTAGATTTTT TTGTTTCACT AGGGATTTAG CCCGAGCTCA AATCAGCTCT	840
CTGATTTTCA GA	852
(2) INFORMATION FOR SEQ ID NO: 340:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 754 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 340:	
CCGCACAAAA GCGCATAGTA TCAAGATTCT ATAAAGCCTT GATACTATGC CTTTTTAATG	60
GATAAATAGT TAGTCTTTTT TAAAGACCGG ATCTTTCAAA CTCTGCATAC TGGCATTGAT	120
CACCGCGCCT AGGATAACAA TTTTAGCAAT CAAGATAAAC CAAAACATCA TAACAACAAG	180
AAGAACGGAA CCTAAAATTC GGACATCCAC CAAATGATGG ACATAGTAAT TGAGATAACT	240
AGAGAACAGA GTTAGTAAAC CTAAAATCAC TAAGAGAACA AAGGCACTGC CTGGTAGGGT	300
ATAGCTAATT TTCCTGTTAG ATAGATTGGG AAGAAAATAA TAAAGCATGA CCAAGATAGC	360
AAAGAGGAGG GCGTAAATCA GAGGACCTGC CAACCCTTGT AAAGCCTGAT AGATAATGCC	420
ATCTTTTGTC CAATAATGAG CAAGTAAAGC CAAAATCATC TGACCAAATA AGATCAAAAA	480
CAAGGCAAAC GCAAAGAGGA GCTGCAACCA AAACTGACTA GGAGACTTAG CATCTGATGG	540
GAAATAAGTC CACGACTCTT TTCGACGCCA TAAGCCTTGT TAAAAGCTTT TTGCAAGAAA	600
TTCATAGATT TTGAAAAACT CCATAACGCC GATAAAACAG AAAAACTCAA TAAACCTGTT	660
GAAGGTTGCG TCAAGACTTC TCTGGCTATT TTTTCCACAC CTTCATAGAG GCTTGGGGGG	720
CAGACGTCTT TCATAAAGCC CAAAAATTCT CCCA	754
(2) INFORMATION FOR SEQ ID NO: 341:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 707 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 341:	
GGGGATAACT CTAGGAGTAC CGCTATTACT CGACTTAATG ACTGCACAAG AAGTCAGGAT	60
TTTTATGCAG GTTGGGCGCT TCATCAGACA GGGAAGATTT ACAGCGACTA TTATGGAAGT	120
and the control of th	

			1362			
CAAGGTTTGC	TTTATTATTT	GCTGACTTAC	GTGAGTCAGG	GCGGATTTTT	CTTTGCCATC	18
TTTGAGTGGT	TAGCCTTGGT	AGCAGGAGGA	TTTTTCCTTT	TTAGATCAGC	GGACACCTTG	24
ACAGAGCAAG	GAGACCAAGC	TGGACATCTG	GTGACTATTT	TTTACATGCT	AGTTACAGGT	30
CTTGCTTTTG	GTGGAGGCTA	TGCGACTCTT	TTAGCGCTTC	CTTTCTTATT	CGCAGCCTTT	36
AGTTTAGTTG	CGGCTTACCT	AAGCAATCCA	AGCCATGATA	AGGGATTTGT	ACGGATTGGG	42
CTAGCTTTGG	CAGGCGGATT	TTTCTTTGCT	CCCTTATCAT	CGCTCCTGTT	TATTGCTGTA	48
GTGAGTTTAG	GCTTGTTGGT	CTTTAACCTT	GGGCATAGAC	GCTTTGCGCA	TGGGTTTTAT	54
CAGTTTCTTG	CAGTGGCTTT	AGGTTTTTCA	CTTGTCTTTT	ATCCAACTGC	CTACTATAGT	60
GCTGCAACAG	GAAGTTTTGG	GGATGCGWTT	AGTGGTATTC	GTTATCCTAT	TGACAGTATT	66
CGCTTTGATT	TTACTTCTAA	AATTTTAGAG	AATATGTTTT	TTTAAGG		70
(2) INFORM	ATION FOR SI	EO ID NO: 34	42:	-		

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 762 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 342:

ACCGTCGTTG ATTTACCACT ACCATTATGC CCTACAATCG AAAGCCATTC TCCACGTTTC ACGTGAAAGT AATATCCTTC ACATCGTAGT AGTTCTGATT TTCTTTATAG CGAAAAGAAA GATTTTTTAC ATCAATTATT GATTTCATTT CGAACCAAAT GTCCCTTTAA ATACATAGGC ACTACCCTTG AAATAGTCAT AGCCAGAGTA GATAGTGAAA AATAAGGCTA CATAAAGTAG AACTTGACCA AGCAAAGTCC AATGTAATAG CAAGAAAATA ATGGCAAACA TCTGACTAAA AGTTTTAATT TTTCCAGGCA TTGCTGCTGC TAAAATTGTT CCACCAGTTT CAACCAATAA AAGCCTTAAA CCTGTCACAG CTAACTCACG ACAGATAATC ACTGCAACAA TCCAAGCCGG AGCCATACCT AACTCAATCA ACATAATAAA AGCCGACATA ACTAGTAACT TATCCGCCAT AGGATCTGCA AATTTACCAA AATTACTGAC CACATTCCAT TTACGAGCTA AATATCCATC 666	GGATTTTGAA	AAACCATACC	GATTTGACGA	CGTATATTCC	AAACATTTTC	CTCAGTCAAA	60
ACGTGAAAGT AATATCCTTC ACATCGTAGT AGTTCTGATT TTCTTTATAG CGAAAAGAAA GATTTTTTAC ATCAATTATT GATTTCATTT CGAACCAAAT GTCCCTTTAA ATACATAGGC ACTACCCTTG AAATAGTCAT AGCCAGAGTA GATAGTGAAA AATAAGGCTA CATAAAGTAG AACTTGACCA AGCAAAGTCC AATGTAATAG CAAGAAAATA ATGGCAAACA TCTGACTAAA AGGTTTAATT TTTCCAGGCA TTGCTGCTGC TAAAATTGTT CCACCAGTTT CAACCAATAA AAGCCTTAAA CCTGTCACAG CTAACTCACG ACAGATAATC ACTGCAACAA TCCAAGCCGG AGCCATACCT AACTCAATCA ACATAATAAA AGCCGACATA ACTAGTAACT TATCCGCCAT AGGATCTGCA AATTTACCAA AATTACTGAC CACATTCCAT TTACGAGCTA AATATCCATC 666	CGTTGGCCAT	CAATTACAAT	CTCTCCGGAT	TCTGCTTCCA	GTAAGCCATC	AATTAATCGA	120
GATTTTTTAC ATCAATTATT GATTTCATTT CGAACCAAAT GTCCCTTTAA ATACATAGGC ACTACCCTTG AAATAGTCAT AGCCAGAGTA GATAGTGAAA AATAAGGCTA CATAAAGTAG AACTTGACCA AGCAAAGTCC AATGTAATAG CAAGAAAATA ATGGCAAACA TCTGACTAAA AGTTTTAATT TTTCCAGGCA TTGCTGCTGC TAAAATTGTT CCACCAGTTT CAACCAATAA AAGCCTTAAA CCTGTCACAG CTAACTCACG ACAGATAATC ACTGCAACAA TCCAAGCCGG AGCCATACCT AACTCAATCA ACATAATAAA AGCCGACATA ACTAGTAACT TATCCGCCAT AGGATCTGCA AATTTACCAA AATTACTGAC CACATTCCAT TTACGAGCTA AATATCCATC 666	ACCGTCGTTG	ATTTACCACT	ACCATTATGC	CCTACAATCG	AAAGCCATTC	TCCACGTTTC	180
ACTACCCTTG AAATAGTCAT AGCCAGAGTA GATAGTGAAA AATAAGGCTA CATAAAGTAG AACTTGACCA AGCAAAGTCC AATGTAATAG CAAGAAAATA ATGGCAAACA TCTGACTAAA AGTTTTAATT TTTCCAGGCA TTGCTGCTGC TAAAATTGTT CCACCAGTTT CAACCAATAA AAGCCTTAAA CCTGTCACAG CTAACTCACG ACAGATAATC ACTGCAACAA TCCAAGCCGG AGCCATACCT AACTCAATCA ACATAATAAA AGCCGACATA ACTAGTAACT TATCCGCCAT AGGATCTGCA AATTTACCAA AATTACTGAC CACATTCCAT TTACGAGCTA AATATCCATC 666	ACGTGAAAgT	AATATCCTTC	ACATCGTAGT	AGTTCTGATT	TTCTTTATAG	CGAAAAGAAA	240
AACTTGACCA AGCAAAGTCC AATGTAATAG CAAGAAAATA ATGGCAAACA TCTGACTAAA 420 AGTTTTAATT TTTCCAGGCA TTGCTGCTGC TAAAATTGTT CCACCAGTTT CAACCAATAA 480 AAGCCTTAAA CCTGTCACAG CTAACTCACG ACAGATAATC ACTGCAACAA TCCAAGCCGG 540 AGCCATACCT AACTCAATCA ACATAATAAA AGCCGACATA ACTAGTAACT TATCCGCCAT 600 AGGATCTGCA AATTTACCAA AATTACTGAC CACATTCCAT TTACGAGCTA AATATCCATC 660	GATTTTTTAC	ATCAATTATT	GATTTCATTT	CGAACCAAAT	GTCCCTTTAA	ATACATAGGC	300
AGCCATACCT AACTCAATCA ACATAATAAA AGCCGACATA ACTAGTAACT TATCCGCCAT AGGATCTGCA AATTTACCAA AATTACCGA CACATTCCAT TTACGAGCTA AATATCCATC 666	ACTACCCTTG	AAATAGTCAT	AGCCAGAGTA	GATAGTGAAA	AATAAGGCTA	CATAAAGTAG	360
AAGCCTTAAA CCTGTCACAG CTAACTCACG ACAGATAATC ACTGCAACAA TCCAAGCCGG 540 AGCCATACCT AACTCAATCA ACATAATAAA AGCCGACATA ACTAGTAACT TATCCGCCAT 600 AGGATCTGCA AATTTACCAA AATTACTGAC CACATTCCAT TTACGAGCTA AATATCCATC 660	AACTTGACCA	AGCAAAGTCC	AATGTAATAG	CAAGAAAATA	ATGGCAAACA	TCTGACTA4A	420
AGCCATACCT AACTCAATCA ACATAATAAA AGCCGACATA ACTAGTAACT TATCCGCCAT AGGATCTGCA AATTTACCAA AATTACTGAC CACATTCCAT TTACGAGCTA AATATCCATC 666	AGTTTTAATT	TTTCCAGGCA	TTGCTGCTGC	TAAAATTGTT	CCACCAGTTT	CAACCAATAA	480
AGGATCTGCA AATTACCAA AATTACTGAC CACATTCCAT TTACGAGCTA AATATCCATC 660	AAGCCTTAAA	CCTGTCACAG	CTAACTCACG	ACAGATAATC	ACTGCAACAA	TCCAAGCCGG	540
Addition willinging manifest and	AGCCATACCT	AACTCAATCA	ACATAATAAA	AGCCGACATA	ACTAGTAACT	TATCCGCCAT	600
The state of the s	AGGATCTGCA	AATTTACCAA	AATTACTGAC	CACATTCCAT	TTACGAGCTA	AATATCCATC	660
TARATAGTEG GTARTACTGG CARCAGCAAA GATARTAGET GCAACTATAT GACTETETAT	TAAATAGTCG	GTAATACTGG	CAACAGCAAA	GATAATAGCT	GCAACTATAT	GACTCTCTAT	720
CGAATTTCCT ATCGTTAAAA TAAAGATAAA AATAGGTATA AA 76	CGAATTTCCT	ATCGTŢAAAA	TAAAGATAAA	AATAGGTATA	AA		762

(2) INFORMATION FOR SEQ ID NO: 343:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 482 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 343:	
CTTTTGATAC ACTTAAACTA TGAATACAAA TCTCAAGCCC AAACTTCAGC GTTTTGCTTC	6
TGCGACTGCC TTTGCCTGTC CTATCTGTCA AGAAAATCTG ACTCTGTTAG AGACTAATTT	120
CAAGTGCTGC AACCGTCATT CTTTTGACTT GGCGAAATTT GGCTATGTCA ATCTAGTCCC	180
TCAAATCAAG CAATCTGCTA ACTACGACAA GGAAAATTTT CAAAACCGTC AACAAATCCT	24
AGAAGCCGGC TTTTACCAAG CTATCTTAGA TGCTGTATCT GACTTGCTTG CAAGCTCAAA	300
AACTACCACA ACAATTTTGG ATATCGGTTG TGGTGAAGGA TTCTATTCTC GCAAACTACA	360
AGAAAGTCAC TCTGAAAAAA CTTTCTATGC CTTTGACATC TCCAAAGATT CAGTCCAAAT	420
CGCGGCTAAA AGTGAACCCA ACTGGGCAGT CAATTGGTTC GTTGGCGACT TGGCACGACT	480
тс	483
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 520 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 344:	
TTTATTTTA TAAAGTCAAT ACCTGTCTTT ACTTTTCTT AAAAAAAGTT TATTATGTTC	60
TTTAAGGAGG TGTAAAACAT GAAAATAAAT AATAAACTCG TTGGAGAACG TATTCAAAAT	120
ATCCGTTTAA GCCATGGCGA CTCTATGGAA AAATTTGGAG AAAAATTTAA TACTAGCAAA	180
GGTACAGTTA ACAACTGGGA AAAAGGTCGC AATTTACCAA ATAAAGAAAA CCTACTAAAA	240
ATTGCATCTA TTGGAAAAAT GAGTGTTGAA GAGTTACTCT ACGGCGATTA CAATACTTAT	300
CTACACTTAA AGATTATGGA TTTAGCTCCT GAATGTATAA AAAATTATGA TGAGTATAAC	360
TCTTTACACG ATGATATAAC AAATAAAGCG TTACAGATCG CTCAAAATAC CATTTCTAAG	420
ATTGATTATC AAATTTCAGA CGAAACGATC AAAAAATTTA TTGATTTAGC TATCGAACAA	480
TCGAGAGATT TGCAAGGAAA TTTGTTGAAA AATAACGGGT	520

(2) INFORMATION FOR SEQ ID NO: 345:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1003 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 345:

GCATCAAATC	CGCCATCAAA	GAAGTTCTCT	GGATTTACCA	AGACCAGTCA	AATAGCTTAG	60
AAGTGCTTAA	TGACAAGTAC	AATGTTCACT	ACTGGAATGA	CTGGGAAGTT	GGAGACACGG	120
GAACCATTGG	TGAGCGCTAT	GGTGCCGTTG	TTAAGAAACA	CGACATTATC	AATAAGCTTC	180
TCAAACAGTT	GGAAACCAAT	CCTTGGAACC	GCCGCAATAT	TATTTCGCTC	TGGGATTACC	240
AAGCTTTCGA	AGAAACAGAT	GGGCTGCTCC	CGTGCGCCTT	TCAGACCATG	TTTGATGTTC	300
GGCGTGTTGA	TGGGGAAATC	TATCTGGATG	CGACCTTGAC	CCAGCGCTCC	AATGATATGC	360
TGGTGGCCCA	CCACATCAAC	GCTATGCAGT	ATGTGGCTTT	GCAGATGATG	ATTGCCAAAC	420
ATTTTGGCTG	GAAGGTTGGG	AAGTTCTTCT	ACTTCATCAA	CAACCTCCAT	ATCTATGATA	480
ATCAATTTGA	ACAAGCTCAG	GAATTGCTCC	GTCGGGAgCC	GTCAAACTGC	CAACCACGCT	540
TGGTTTTAAA	TGTTCCTGAT	GGGACTAATT	TCTTTGATAT	CAAAGCAGAA	GATTTTGAGT	600
TGGTGGATTA	TGACCCTGTT	AAGCCACAGT	TGAAGTTTGA	CCTAGCTATT	TAAAAGAATA	660
GAAAAAAGAA	GTTGAGAATA	ATCCCAACTT	CTTTTGTTTC	TTAACGTGAT	ACGCGGCGAC	720
GAGCTGCTTT	TTTACGGTTT	TCTTCGATGA	AAGCTGCTTT	TIGCTCTTCT	GGTTCGATTA	780
CTTTCTTTTT	AAATGCGTAT	ACTGCACCTG	CAACGGCAGC	GACAGTTCCT	GCGACACCTG	840
TTACAAGACC	TTTAGCGAAT	CCTTTAGCCA	TGAGTCTTCC	TCCTTTATAT	TCTCAATCAG	900
CCAGCCTCCT	CAAGAGGTCA	CATTTTTCTG	ACTGACCTTT	TTGTGTTATA	АТААТАСТАА	960
CGAAAAAATG	GGAATTTTTC	AAGGAAAAA	GATGAGAACA	AAA		1003

(2) INFORMATION FOR SEQ ID NO: 346:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 750 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 346:

CCGCACGTAC TATTCCAGAT GCCGAGGAAG TGGACCTCAT CCTCGTTGGC GCAACTGGTC

60

TCAACGCCTT	TGAACGCCTC	TTGGTCGGCT	CTTCATCTGA	ATACATACTC	CGCCATGCTA	120
AGGTCGATTT	GCTGGTTGTG	AGAGAACAAG	AAAAAACCTT	ATAATCACAA	AGAAAAGGAG	180
CCCCTAGCTC	CTTTTTGTTT	ACGATTTATT	TCTCTCTTTA	TGGCGTTCGT	AAGCCTTGAG .	240
CTGGCGCTGC	AGTTCCTTTT	TAATAGCAGG	TTCTGGAGCA	TATTTTTCTT	CCCAATTATC	300
TGGTTTTAAG	ATTTTATGGG	TCACTGGATC	AAAATGAGCC	TTGCCATCTG	GAAAAATTTT	360
CCCCATATTG	GCCTGATGGA	CAATATCAAA	AATACGTTCT	GGGTCCACCC	CCATCAAGAC	420
AAAACTGCCG	TAGGTGAAGT	AAAGCGTGTC	AATCAAGGCA	TCCACTTGCC	CTATCAAATC	480
TTGCTGAGCA	GGTGTCTTCT	TGGCTACTTT	ATCTGCTGCC	TTATCAAGGG	CCTGATGAAG	540
TTGCGATACA	GCTTGACCAA	AATCTTCTTC	AGAAGGACTG	GCTGCTCGAA	CAAACTCCAC	600
CAATTCTTCT	ATTTTAAAAC	CAGCCCTATG	GGTTGCACCC	TCTAAATCCC	AAGCTCGAGG	660
TTCTTCTTGG	GTTCGTTCAT	CCATCATGTG	GTGGAAAGTC	TTGACCTTAT	TGAAATGATA	720
GTCACGGCTG	ACAAAGACTT	TTTCTGAAGA				750

(2) INFORMATION FOR SEQ ID NO: 347:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 596 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 347:

CGCAACATAC GGATAACCTC	CAAAGAATAT	TTTTATATTA	TAGCAAAGCT	TTAAATTGAA	60
TGTTAGAGTC TTGTTCAAAA	CAATCATCAA	AACCACGTGG	ATGATGGTAT	TCTACTAAGT	120
GTTGATCTTG AGGATAAGTG	TACTTACCGC	CAACTTCCCA	GATAAATGGA	TGGAAATCGT	180
ATTGCAAGCG ATCTTTTCGC	ATTTTCCAAA	GTTCTAGAAT	CTCATTAGTA	GAAGCCATGA	240
AGTTAGACCA GATATCATAG	TGAACTGGGA	TAATGACTTT	GGTACGCAGA	TTTTCTGCCA	300
TACGAAGAAG GTCGATAGAT	GTCAKTTTGT	CTTGGATACC	TACCGGATTT	TCACCATAGT	360
TATTCAAAGC AACATCAATT	TTAAAGTCTT	TACCATGTTT	TGCAAAATAG	TTTGAGAAGT	420
GAGAATCTGC ACCATGATAG	ATGGTTCCAC	CTGGTGTTTC	AAAGATATAG	TTAACAGCCT	480
TTTGAGCCAT TTCTTCATCT	GTAACAGCCA	AGCCAGCAGT	TCACCGCCTG	TCTCATCAGC	540
ACCGTTCACT GGGAGAGTTA	CCAAGCAAGT	ACGGTCAAAT	GATTCTACTG	CATGAA	596
(2) INFORMATION FOR SE	Q ID NO: 34	8:			•

WO 98/18931 PCT/US97/19588

1366

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 673 base pairs (B) TYPE: nucleic acid - (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 348:	
CAGAGTCAAC AGCCTGAGTT GAAGGCAACT TTAGACACAG CAGTTACGAC AGCTGAATGA	6
GCTCCTCCAT CAGTTTTTC TTTAATGAGT CCAGCTACAT CTTCAACTTC GAGGCCGTTA	12
ATCACAATGT CAGCGCCTAC TTCTTTTGCA AGGGCAAGTT TGTCATTGTT GATATCGACT	18
GCGATAACAT GAGCATTGAA TACTTTTTTA GCGTATTGAA CAGCGAGGTT ACCAAGTCCA	24
CCAGCACCGT AAAGAACAAC CCATTGGCCT GGTTCAACTT TTGCTTCTTT GATAGCTTTA	30
TAGGTTGTTA CTCCAGCACA TGTGATAGAA GAAGCTTGGG CTGGATCAAG TCCGTCAGGA	36
ACTTTGACAG CATAGTCAGC AGTTACGATA CATTGTTCAG CCATACCACC GTCTACTGAG	42
TAGCCAGCAT TTTTCACTGT ACGGCAAAGG GTTTCGCGAC CAGTTGTACA GTATTCGCAA	48
GTGCCACATC CTTCAAAGAA CCAAGCAACG CTGACGCGGT CACCGACTTT AAGGCTTTTC	54
ACATCTGGAG CAATCTCTTT AACGATACCG ATACCTTCGT GCCCAAGAAC ACGTCCTGGG	60
ACTTGACCAA AGTCACCATG AGCAACGTGG AGGTCGGTGT GGCAAACGCC CACAGTATTC	66
ACTTCTACAA GTG	67
(2) INFORMATION FOR SEQ ID NO: 349:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 198 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 349:	
GTACCCTACA AATGCTTTAC AGTATGGGTT GAGGGTGGTC AATGGAACTA TGGAGTAGGT	6
TGGACAGGAA CTTTTGGATA TTCTGATTAC TTACATTCTA CTCGATATCA TACAGCAACT	12
GTTAGACATG GGGGTAGAAC CTCTAAGGAT TATGCAAAAC CTGAGGCATG GGCTAGAGCT	18
TCCCTCACCA AGATTCCG	19
(2) INFORMATION FOR SEQ ID NO: 350:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 891 base pairs (B) TYPE: nucleic acid	

PCT/US97/19588

1367

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

WO 98/18931

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 350: GCTTCTTCTA TAGACAAAAA TATCATGGGT AAAATAATCA AGGCTATAGC TAGAAGGAGG 60 GACCAATCCA CTACTAATCC TAAGAACAAA ACACTCAAGA GAGCAGAAGA GAGAGGTTCA 120 CTGGCACTGA TAACGGCAAC CACCAAAGGA GAAACCAAGG ACACAGCCTT CATGGAAATG 180 AAAAAAGCAA AAGCCGTTCC AAAGAAAGCG ATAATGAGGC AAATCAAGAT ACTCCAAATA 240 TCAAGAGTAA AGGAAAGCTG ATAAACCGGC GAGAGGACAT TGCTAAACAA ACCTGCCAAA 300 360 ATCATCCCC ACCCAACCGT AGGAACAAA CCATAACGCT TAGCAAAAGG TTGGGGCAAG ATAACATTAA ACATAACACC CATGGCACTC AGCAAACCTG TTATAAGAGC TAGCGGCGTC 420 -ATGGATAACT GAGAGAGGTC TCCCTTTGTC GCCATCAAGC AAACACCCAG CATGGCAACC 480 540 AAAACATAGA AAACAGCGCT TTTTGACGCT CGTTTTTGAT AAACCAAGCG ATTGTAAAAG AGGATAAAGA CAGGGCTAAT AAACTGTAAA ATAGTTGCTG TCGTAGCATT TGAGTATTCT 600 ACACAGAGAT AGAAAAAATA CTGAACTGAA AAAATCCCCA AAATAGCATA GGCTAAAAAG 660 GGCAGGTAAT TTTTCTTGTC TCGCCAAATA TCTAGCACTT GCGATTTTAA TTGTATTGCA 720 GACCAAATGA GTACAAGACT CCCTGCCAGT GTCAAACGCA TAGAGGTAAT CCAGCCCGAA 780 GACACCTGAT AATGAGTAAA GAAGTACTCT CCTAAAATTC CACAGATTCC CCATATTAAG 840 CCGGATAGGA GCGAATAAAT TTTTCCGTTA ACAATCTTTT TCTGATACTG A 891

(2) INFORMATION FOR SEQ ID NO: 351:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 325 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 351:

60	CTTCAGCATC	AAGCTAAGCG	TTTTTAGAGT	TGCTTTTTTA	AATAGAACAT	GAAAGCGTTC
120	TCTCAGTCAC	GCAGGTAGGT	GAGGCTACTT	GGTGATTTTG	GTTACATCAG	TGCGATGATG
180	CAAAAAGAAT	TCACCGTAAG	TGCTTTCGAC	CAATGGCTTC	ACTGTTCCGG	TGGGCCAGAT
240	TTGGGACGTC	ATAGCTTGGG	CCCCATTGAA	TGTTTTTAAT	GCATCCAAAA	AATAGACTTG
300	GTTCTACTAG	GACTGGTCAA	TTCGATAGTA	GTGCATTGGC	GCAAAGAAGC	TTCAATCTTG

ATGCGTTTGA CTGTCAAATG GAGTG	200
(2) INFORMATION FOR SEQ ID NO: 352:	325
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 344 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 352:	
CAAGAGCAGT TTGATGATTT TTGATAAGCA TGCGAATTTA AAATACAAAT ATGGCAATCG	60
CAAGTTTTGG TGTAGAGGCT ATTATGTAGA TACGGTAGGC CGTAATCAGA AAGTGATAGC	120
TGAATATATT CAGAATCAAT TACAAGAAGA CAGAGTAGCA GACCTAGCTC ACGTTATTCG	180
AGTCAGTAGA TCCGTTTACT GGCGAAATAA ATAAGAGGAA GTAACGTHAA GTGCTTTAGC	240
ACCTGCTCGG GAAAGTGGTG CGCGAGGAAG CTATTTCAGG ATGCTTTGGC CCTGGCCGGT	300
AGAAGCGTTA TAGCCGCAGA CTACGACACT TCACACTGGT GGTT	344
(2) INFORMATION FOR SEQ ID NO: 353:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 692 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 353:	
CCCTATCCCT GCTATTGGGG CTGCTCTCAT TGCTGCTTTG GCACAAATCA GTCTTCCAAT	60
TGGACCTGTT CCCTTCACTC TGCAAACTT TGCAATCGGC TTGATTCTAC TGTCTTTAGA	120
CCGAGAGAGG CTGTACTTTC TGCTGGACTC TATCTTCTTC TAGGTGCTAT CGGTCTTCCT	180
CTCTTTGCAG GAGGTGGAGC TGGTTTTCAG GCTTTAGTTG GCCCTACTGC AGGCTATCTT	240
GGTTTTATC TCGTTTACTC TGGACTTACT TCCTCTAA CCAACAGCAA GAGTGGTGTT	300
TTAAGATTT TTCTTGCAAA CCTCTTGGGT GATGCCCTTG TCTTTGTCGG CGGGATTCTC	360
AGCTTGCATT TCCTAGCTGG AATGGCATTT GAAAAAGCTC TTGCTGTGGG GGTTCTTCCC	420
TTATCATTC CAGACCTTGG CAAACTTCTA GCTATTAGTT TTATTAGCCG TCCCCTACTT	480
CAACGCCTTA AAAATCAGGC TTACTTTACT AACTAAAAAA GGATATCGAG TTATCATGAC	540
CAATATCCT TTTCTTTTAT TTTGAAAACT TATACTCAAT GAAAATCAAA GAGCAAACTA	600
GAAGCTAGC CGCAGGCTHG CAAAACACTG TTTTGAGGTT GTGGATGAAA CTGACGAGTA	660

WO 98/18931 PCT/US97/19588

1369

ANATOTOATA CATACGGCAA GGCAAAGCTG AC	692
(2) INFORMATION FOR SEQ ID NO: 354:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 1005 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 354:

GTGATGGACT ACTGGTTCAA AACGCATCCA GAAGATTTTT TCGATAATGT CGGACCTCTT 60 GTAGCCAGTA ACTITITICA TACTTACACC GAAGATTICC ACTIGATGAA GGAAATTGGA 120 GTTAATTCTT TCCGCACTTC CATCCAATGG AGTCGACTCA TCAAGAATTT AGAGACAGGT 180 GAGCCTGATC CAAAAGGTAT TGCTTTCTAC AATGCCATCA TTGAAGAAGC TAAAAAGAAC 240 CAGATGGATC TTGTGATGAA TTTACATCAT TTTGATTTAC CAGTGGAACT TCTTCAAAAA 300 TACGGTGGTT GGGAAAGCAA ACATGTAGTG GAGTTATTCG TGAAGTTTGC CAAGACTGCT 360 TTCACATGCT TTGGAGATAA GGTTCATTAC TGGACAACTT TCAATGAGCC AATGGTCATT 420 CCAGAAGCAG GGTACTTATA TGCTTTCCAT TATCCAAATC TAAAAGGAAA GGGAAAAGAG 480 GCCGTACAAG TCATCTATAA TCTAAACCTT GCTAGTGCAA AAGTGATTCA ACTATATCGC 540 TCATTAGAAC TTGATGGAAA GATTGGGATT ATTTTAAACT TGACACCTGC TTATCCAAGA 600 AGTAATTCTC CAGAAGACTT AGAAGCAAGT CGATTTACAG ATGACTTCTT TAACAAAGTC 660 TTCTTGAATC CAGCTGTTAA AGGAACTTTC CCAGAAAGAT TGGTAAAACA GCTAGAGAGA 720 GATGGCGTGT TATGGAGTCA TACCGAAAAA GAGCTTCAAC TGATGAAATC AAATACGGTT 780 GATTTTCTTG GAGTAAACTA CTACCATCCA AAACGTGTTC AAGCACAAGC AAATCCTGAG 840 GAATATCAGA CGCCCTGGAT GCCAGACCAA TACTTCAAAG AGTATGAATG GCTGGAGCGT 900 CGCATGAATC CATATCGTGG TTGGGAAATT TTTCCGAAAG CCATTTATGA TATTGCTATG 960 ATTGTGAAGG AAGAATATGG TAATATCCCA TGGTTTATCA GTGAA 1005

(2) INFORMATION FOR SEQ ID NO: 355:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 973 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 355:

С	CGACAAGCA	ATATTAAAA	GAGTAAACTA	TTAACTAGTT	AATTAACCGG	TTTATTACTT	60
T	atagtgaat	CAAATATACT	TAAGAAAAGA	GGAAAGAATG	AAAATTAATA	AAAAATATCT	120
A	GCAGGTTCA	GTGGCAGTCC	TTGCCCTAAG	TGTTTGTTCC	TATGAGCTTG	GACGTTACCA	180
A	SCTGGTCAG	GATAAGAAAG	AGTCTAATCG	AGTTGCTTAT	ATAGATGGTG	ATCAGGCTGG	240
T	CAAAAGGCA	GAAAACTTGA	CACCAGATGA	AGTCAGTAAG	AGGGAGGGA	TCAACGCCGA	300
A	CAAATTGTT	ATCAAGATTA	CGGATCAAGG	TTATGTGACC	TCTCATGGAG	ACCATTATCA	360
T	TACTATAAT	GGCAAGGTTC	CTTATGATGC	CATCATCAGT	GAAGAGCTCC	TCATGAAAGA	420
T	CCGAATTAT	CAGTTGAAGG	ATTCAGACAT	TGTCAATGAA	ATCAAGGGTG	GTTATGTCAT	480
T	AAGGTAAAC	GGTAAATACT	ATGTTTACCT	TAAGGATGCA	GCTCATGCGG	ATAATATTCG	540
G?	ACAAAAGAA	GAGATTAAAC	GTCAGAAGCA	GGAACGCAGT	САТААТСАТА	ACTCAAGAGC	600
AC	SATAATGCT	GTTGCTGCAG	CCAGAGCCCA	AGGACGTTAT	ACAACGGATG	ATGGGTATAT	660
CI	TCAATGCA	TCTGATATCA	TTGAGGACAC	GGGTGATGCT	TATATCGTTC	CTCACGGCGA	720
CC	ATTACCAT	TACATTCCTA	AGAATGAGTT	ATCAGCTAGC	GAGTTAGCTG	CTGCAGAAGC	780
CI	ATTGGAAT	GGGAAGCAGG	GATCTCGTCC	TTCTTCAAGT	TCTAGTTATA	ATGCAAATCC	840
AG	CTCAACCA	AGATTGTCAG	AGAACCACAA	TCTGACTGTC	ACTCCAACTT	ATCATCAAAA	900
TC	AAGGGGGA	AACATTTCAA	GCCTTTTACG	TGAATTGTAT	GCTAACCCTT	ATCAGAACGC	960
CA	TGTGGGAT	CTG				•	973

(2) INFORMATION FOR SEQ ID NO: 356:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 843 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 356:

GGTCGCATCT	GCAATATCTG	TCGCCTCCAC	ATAAGCGACA	CCAGCCTTGT	CTGCTGCCCG	60
TTTGACACGT	TCTGCAGATT	GACCCAGGAT	GACCATCTTC	TTGAGTCCAG	TAATGTCTGG	120
CACCAATTCG	TCAAACTCAT	TGCCACGGTC	CAAACCACCT	GCAATCAAGA	CGACCTTGCT	180
GTTGTCAAAT	CCTGACAAGC	TTTTTGAGTA	GCCAAGATAT	TAGTTGATTT	ACTGTCGTTA	240
TAGAATTTAA	CACSCTTGAT	GTCATCCACA	AACTGGAGAC	GGTGŢTTGAC	ACCACCGAAG	300
GCTGAAAGAG	TTTCCTTGAT	GGTTTGATTG	TCCACATCAC	GAAGCTTGGC	TACAGCAATA	360

GTCGCAAGGG	CATTTTCCAC	ATTGTGGCTA	CCTGGAACAC	CGATTTCATT	CGCTGCCATG	420
ACTACTTCAC	CACGGAAGTA	GAGTTGACCA	TCTTCCAGAT	AAGCTCCATC	AACCTTTTCA	480
agtgttgaaa	ATGGTACAAC	AGTGGCTTCT	GTCTTGGAAG	TCAAGTCTTT	TGCCAAGTCT	540
TGATTAAAGT	TCAAGACAAG	GAAATCAGCT	GCTGTCATCT	TGTTCTGGAT	ATTCCACTTG	60
GCTGCTACAT	ATTCCGAAAA	TGACCCATGG	TAGTCGATAT	GAGTTGGCAT	GAGGTTGGTA	666
ATAACCGCAA	TCTCTGGATG	GAATTCTTGA	ACACCCATGA	GTTGGAAAGA	AGAAAGTTCC	720
ATAACAAGCG	TGTCCTTATC	TGATGCTATT	TGAGCAACCT	GACTAGCTGG	ATAGCCGATA	780
TTCCCTGATA	AAAGACCATG	TTGGCCAGCA	GCAGTCAAAA	CTTCCCGGGn	TCCTCTAGAG	840
TCG						843

(2) INFORMATION FOR SEQ ID NO: 357:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 807 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 357:

TTTTTTTAT	ATTTTTTTA	TTTATTATTT	TTTGGCAAAA	AAGACCAATT	TGCTTTGGAG	60
CATTGCTTCT	GCATTAAATT	GTCTATTTT	CCTCGTGCTG	TTACGCTCTT	TGTATCATGT	120
ATTAACTAGC	AAGTGCAACT	TGCAAACTAC	TAGTAAGAGG	AGAAAAACAA	AATGGTTATG	180
ACTGACCCAA	TCGCAGACTT	CCTAACTCGT	ATTCGTAATG	CTAACCAAGC	TAAACACGAA	240
GTACTTGAAG	TACCTGCATC	AAACATCAAA	AAAGGGATTG	CTGAAATCCT	TAAACGCGAA	300
GGTTTTGTAA	AAAACGTTGA	AATCATTGAA	GATGACAAAC	AAGGCGTCAT	CCGTGTATTT	360
CTTAAATACG	GACCAAATGG	TGAGAAAGTT	ATCACTAACT	TGAAACGTGT	TTCTAAACCA	420
GGACTTCGTG	TCTACAAAAA	ACGTGAAGAC	CTTCCAAAAG	TTCTTAACGG	ACTTGGAATT	480
GCCATCCTTT	CAACTTCTGA	AGGTTTGCTT	ACTGATAAAG	AAGCACGCCA	AAAGAATGTT	540
GGTGGTGAGG	TTATCGCTTA	CGTTTGGTAA	AATCAAGATA	CAAAGCTCGT	AAAGAACAAA	600
GCAAAATTAG	GAAGTTGGAG	AAGTTTGTTT	ACAAACAGGC	CAACTTATCT	ATTTTGCACA	660
GTTCTTAGAG	CGTGTTCAGT	TCAGCTCTTG	AGCTAAGTAA	GTATCTGAAC	CCCGTGAAAA	720
CTGGCCGTGC	TGGCATGTTC	GGGTAACAGG	AGAnAATAAA	CATGTCACGT	ATTGGTAATA	780
AGTTCAGCTA	AGGCCTTCGT	AAAAGTT				807

WO 98/18931 PCT/US97/19588

1372

(2) INFORMATION FOR SEQ ID NO: 358:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 653 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 358:

CCCAGTATTT	TTGTCCAAGC	ACGACCAGAA	AAGGATGATA	CAGATCTGGA	ATTGGCTCTC	60
TTAACCATCT	ttgaacaaa a	TCCTCAGGCT	CAGGTCACTA	TTTTCGGTGC	CTTGGGTGGC	120
CGTATTGACC	ATATGTTGGC	CAATGTCTTT	CTGCCTAGCA	ATCCTAAGTT	GGCACCCTAT	180
ATGCATCAAA	TAGAAATTGA	GGATGGGCAA	AACTTGATTA	CTTATTGTCC	AGAAGGAATC	240
AGTCAGCTAG	AACCTCGTTC	AGACTACGAC	TATCTAGCCT	TTATGCCAGT	TCGGGATAGC	300
CAAGTATGAG	TTGACAGAGG	TTTTTAAAA	CTTTAAAAAA	GTGTACGCTT	CTAACGAATA	360
TATAGATAGG	GAAGTGTCGG	TAACTTGCCC	AGATGGTTAT	GTGGTCGTAC	TGCATAGCAA	420
GGACAGGAGG	TAGGATGGAA	AGTTTACTTA	TTCTATTATT	AATTGCCAAT	CTAGCTGGTC	480
TCTTTCTGAT	TTGGCAAAGG	CAGGATAGGC	AGGAGAAACA	CTTAAGTAAG	AGCTTGGAGG	540
ATCAGGCAGA	TCATTTGTCA	GACCAGCTGG	ATTACCGCTT	TGACCAAGCC	AGACAAGCCA	600
GCCAGTTAGA	CCAAAAAGAT	TTGGAAGTGG	TTGTCAGCGA	CCGTTTGCAA	GAA	653

(2) INFORMATION FOR SEQ ID NO: 359:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 641 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 359:

CACCATGTGA	TGTGACGCTG	GCCACAGCTG	TCAGAAATCT	GGCGAGCCAT	CGTGTGCAAT	60
GACTCTTCCC	GATGTAATCT	TGTTCATAGT	CCTTTGATGA	ATATGTTCAA	GCTGTAGAAG	120
GTGCGCTTCC	TGAACACTTA	TCAACTGTTA	CAGGCGAGTT	GACCAGTCAG	GAAACAGATG	180
GCTGGTACAC	ACTTGCCAAC	ACTTCTTCAT	CCCGCATTTA	CCTAAAACAA	GCCTTCCAAG	240
AAAATAGCAA	CCTCCTAGAG	CAAGTGGTAG	AACCCTTGAC	TATTATCACT	GGTGGACACA	300
ACCACAAGGA	CCAGTTGACC	TATGCTTGGA	AAACACTTTT	GCAGAATGCG	CCACATGATA	360
GTATCTGTGG	CTGTAGCGTG	GACGAAGTTC	ACCGCGAGAT	GGAAACGCGT	TTTGCCAAGG	420

WO 98/18931 PCT/US97/19588

1373

TCAACCAAGT	AGGAAACTTT	GTTAAAAGTA	ACTTGCTCAA	CGAGTGGAAG	GGTAAAATTG	480
CTACGGATAA	GGCTCAAAGT	GACTATCTCT	TTACTGTCAT	TAACACAGGC	TTGCATGATA	540
AGGTCGATAC	TGTCAGCACA	GTGATTGATG	TGGCGACTTG	TGATTTCAAG	GAATTGCACC	600
CAACAGAAGG	CTACAAAAAG	ATGGCTGCTC	TTATCTTGCC	G		641

(2) INFORMATION FOR SEQ ID NO: 360:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1958 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 360:

CCTCAAGGCC	AATTTGAAGG	CTCTAAAACA	ATGGAAAAGT	GCTACACAGA	TGTGACAGAA	60
TTTGCCATTC	CAGCAAGTAC	TCAAAAGCTT	TACTTATCAC	CAGTTTTAGA	TGGCTTTAAT	120
AGCGAAATTA	TTGCTTTTAA	TCTTTCGACT	TCACCCAACT	TAGAACAAGT	ACAAACAATG	180
TTAGAACAGG	CATTCAAAGA	GAAGCACTAC	GAGAATACGA	TTCTCCATAG	TGACCAAGGC	240
TGGCAATATC	AACACGATTC	TTATCATCGG	TTCCTAGAGA	GTAAGGGAAT	TCAAGCATCT	300
ATGTCACGCA	AGGGCAACAG	CCAAGACAAC	GGTATGATGG	AATCTTTCTT	TGGCATTTTA	360
AAATCCGAAA	TGTTTTATGG	CTATGAGAAA	ACATTTAAAT	CACTTAACCA	ATTGGAACAA	420
GCCATTATAG	ACTATATTGA	TTACTACAAC	AACAAACGAA	TTAAGGTAAA	ACTAAAAGGA	480
CTTAGTCCTG	TGCAGTACAG	AACTAAATCC	TTTGGATAAA	TTAATTGTCT	AACTTTTTGG	540
GGTCAGTACA	AAACTCTTGC	TACTATGCGT	TTTATTATTG	AAAGACTTAT	TGGACTTTCT	600
CTCAAATCGA	GTTTTTACTC	AATTTTCTTA	CTTGATTGGG	ATTGAAATTC	CAATTAATTT	660
CTCTGAGTAG	AGTGTCTTGA	TATTGGCTTC	ATCAACAGAG	GCCTTATCAA	TTTTACGTTT	720
CAAGAAAAAT	TCTTGAATGG	TTTCGATTTC	AGGCTCACGA	ATAGCACGGT	GTTTGTTTGA	780
GATGAGGATT	TCATAGTGAA	GCGGAGCTTG	GGTAAAAATA	ACATCTGTAT	TCCCTGCAGA	840
ATAAACCTCA	ACAAGGGTTG	CATCGGTACT	TTCTAGCTGA	CTTTTTACAA	GTTGCGAGTG	900
TGAGTTTGTC	GTATTGATAA	GCTTCATAAT	ATTTCCTCCG	ATTTTCTAAT	TCTATTATAG	960
CACTTTTTGA	ATAAAGTCGC	TTGATTTATA	CTCAATGAAA	ATCAAAGAGC	AAACTAGGAA	1020
GCTAGCCGCA	GGCTATACTT	GAGTACGGTA	AGGCGACGCT	GACGTGGTTT	GAATTTTATT	1080
TTCGAAGAGT	ATTAGCCAAT	CTTATGCTGT	TTTTTCCAAG	ATTCAATGGC	CCATTTATGG	1140

PCT/US97/19588 WO 98/18931

			1374			
CTACCACGTT	TAAGGTTTTT	GATAGCCTCG	TCAATAGGGA	ACCAGGCAAT	ATGATTAAAG	1200
TTTTCTAGTG	GCTTTTGTAC	TTCTTTGAAA	GGAGTTGCTT	CATAGAGGTA	GGCAGGATTG	1260
TAGTAGTAGG	TATCACGATG	ACGAGAATAG	AAATATTCGT	CAGCTTGTCC	GTAATAGGTA	1320
CCAATTTCTG	CTGTGAAACC	AAGCTCTTCA	ATCAACTCAT	GCTTTAGGGC	TTCCTGATGA	1380
TTTTCACCTG	CTTCAATTTC	TCCACATGGT	AGGAACCAAG	CACCATTTGG	TTCTTGAACA	1440
AGAACAATTT	GTTTTTGTTC	aggattaggg	ATAACTGCAT	ATACGCCATA	GCGAGCAATA	1500
TAGTCTGTAT	TCACTTTTTT	TCTCCGAAAG	TTGGGTTTGC	CATTGCATTT	TCCTCATTAT	1560
CTAGTATCGT	TATTATTATA	GTGAAATGAA	CCAAAAATAG	TACACAATGT	GGTATAATCT	1620
TCTTATGGCA	TATTCAATAG	ATTTTCGTAA	AAAAGTTCTC	TCTTATTGTG	AGCGAACAGG	1680
TAGTATAACA	GAAGCATCAC	ACGTTTTCCA	AATCTCACGT	AATACCATTT	ATGGCTGGTT	1740
AAAGCTAAAA	GAGAAAACAG	GAGAGCTAAA	CCACCAAGTA	AAAGGAATAA	AACCAAGAAA	1800
GGTTGATAGA	GATAGACTTA	AAAACTATCT	TACTGACAAT	CCAGACGCTT	ATTTGACTGA	1860
AATAGCTTCT	GAATTTGGCT	GTCATCCAAC	TACCATCCAC	TATGCGCTCA	AAGCTATGGG	1920
LACACTCGAA	AAAAAAAAGA	ACTACACCTA	CTATGAAC			1958

(2) INFORMATION FOR SEQ ID NO: 361:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 851 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 361:

7	ATGAAATTA	AGTTATGATG	ATAAAGTTCA	GATCTATGAA	CTTAGAAAAC	AAGGATATAG	60
c	TTAGAGAAG	CTTTCAAATA	AATTTGGGAT	AMACAATTCT	AATCTTAGGT	ATATGATTAA	120
A	TTGATTGAT	CGTTACGGAA	TAGAGTTCGT	CAAAAAAGGA	AAAAATCGTT	ACTATTCTCC	180
T	GATTTAAAA	CAAGAAATGA	TTAATAAAGT	CTGACATGAA	GGCTGGACTA	AAGATAGAGT	240
7	TCTCTTGAA	TACGGTCTCC	CAAGTCGTAC	GATACTTCTT	AACTGGCTAG	CACAATACAG	300
G	BAAAAACGGG	TATACTATTG	TTGAGAAACC	AAGAGGGAGA	GTACCTGAGA	GCGGAGAATG	360
c	CATCCTAAA	AAAGTTAAGA	GAACTCCGAT	TGAAGGAGGA	AAAAGAGAAA	GAAGAAAGAC	420
A	(GAAATTGTT	TAAGAATTAA	TGACTGAGTT	TTCGTTAGAT	CTTCTTTTAA	AAGTCATTAA	480
A	CTAGCTCGT	TCGACCTACT	ACTATCACTT	GAAACAGCTA	GATAAACCAG	ATAAGGACCA	540
P	GAGCTTAAA	GCTGAAATTC	AATCCATTTT	TATCGAACAC	AAAGGAAATT	ATGCTTATCG	600

TCGGATTTAT	TTAGAACTAA	GAAATCGTGG	TTATCTGGTA	AATCATAAAA	GAGTTCAAGG	660
CTTGATGAAA	GTACTCAATt	TACAAGCTAA	AACGCGACAG	AAACGAAAAT	ATTCTTCTCA	720
TAAAGGAGAC	GTTGGCAAGA	AGGCAGAGAA	TCTCATTCAA	GGCCAATTTG	AAGGCTCTAA	780
AACAATGGAA	CAGTGCTACA	CAGATGTGAC	AGAATTTGCC	ATTCCAGTAA	GTACTTAAAA	840
GCTTTACTTA	т	•			-	851

(2) INFORMATION FOR SEQ ID NO: 362:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1168 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 362:

GGGTAGAATC	GATATCTCCA	ATGAGTTGGT	tTAGCTGGTG	AAACTGTAAA	AAGATTTCGW	60
CCAATTCAAG	GTTGAGGCAT	CGCAAACTAT	GGACTGTTTC	CTCGTCAGTT	CTGGAAAGAA	120
AACGGGATAA	GGTTGGCTGT	GAAGCAAGCT	GCCCTCCTTC	CAACAATTTT	GGAAAGTAGG	180
CATCAGCTGA	CAATTCTTTA	CAAGCATAGT	CCGTTCCATA	ACCTGTTAAC	AGTTGAAAGA	240
GGAACTGGAC	AAGGATATCT	GAATCCGAAT	AACGACAGTA	GCGGCGTTGG	TCATTCGTTA	300
CTAAATACTT	AGAAATCCGC	TCTTTTAGTT	TCAACTGGGA	AAAAAGTTCC	TGAAAAAAGA	360
TAAGACCACC	ATACTGGGTT	AAATGACCTC	CATCGAAAGA	TAGTTGGTAA	AAAGACTTGT	420
TTTGGAAGTG	ATGATTTGGT	AAACTGTTCA	TGTGAGTTTC	CTTTCTTTTT	GTGTTTTTTT	480
CTACACTTAT	ACCATAAAGG	GGAAACTCTT	TTTTGTCTAG	TAAAAAACAC	CCATTGGGTG	540
AAAAAAGAAA	CCATCCAGGA	TCTAAGCTAA	GGCAAGGATT	CTGGATGGTT	TTTAGATTTG	600
GGGTGAATAA	TTGGGGTTTT	AGCTGCTTGC	GGCCAATCAG	GTTCAGATAC	AAAAACTTAC	660
TCATCAACCT	TTAGTGGAAA	TCCAACTACA	TTTAACTATC	TATTAGACTA	TTACGCTGAT	720
AATATAGTCA	ATTGAAACAA	GAACAAGACA	AAAGAGCCTC	ATAAAAGGTA	TTGCAACTTG	780
GTAATACCTT	TTTGAGGTGC	TTTTTGATAT	GAGCCCATGT	TTTCTCAATA	GGATTGTACT	840
CAGGTGAGTA	GGGAGGAAGA	GGTAAAAGTT	TATACCCAAA	CTCTTCACAC	AAGAGTTCTA	900
ACTTACCCAT	TCTATGGAAT	CTTGCATTAT	CCATAATAAT	AACCGATGGT	GTGTTTAATG	960
TTGGTAAGAG	AAATTTCTGA	AACCAAGCTT	CAAAAAAGTC	GCTCGTCATC	GTCTCTTCGT	1020
AAGTTATTGG	AGCGATTAAC	TCACCATTTG	TTAGACCTGC	AACCAAAGAA	ATCCTCTGAT	1080

1376 1140 ATCTTCTCC AGATACTTTG CCTCTTCTTA ACTGACCTTT TAATGAGCGA CCATATTCTC GATAAAAATA AGTATCGAAT CCTGTTTC 1168

(2) INFORMATION FOR SEQ ID NO: 363:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4483 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 363:

60	CCGCTTCAGC	ACCAGTGCGT	ATCTGCATCA	CAGCTTCTGA	GCAAGCCCAT	GTCAGCTTCA
120	CAACGAGTGC	GCTTCAGCAT	AAGTGCTTCG	CAGCGTCGAC	GCGTCGGCTT	GTCAACCAGT
180	GTGCGTCGGC	GCCTCAACCA	GTCAGCTTCC	GTACCTCAGC	GCAAGCGCAA	GTCGGCCTCA
240	CGGCATCAAC	GCGTCTGAAT	AAGTATCTCA	CAGCCTCAGC	ACAAGTGCGT	TTCAGCAAGC
300	CAGCTTCTGA	GCAAGCACAT	GTCAGCCTCA	CAACGAGTAC	GAGTCAGCAT	GAGTGCGTCT
360	CAGCAAGTAC	GCCTCAGCTT	ATCGACAAGC	CAGCCTCAGC	ACCAGTGCGT	ATCTGCATCA
420	CTGAATCGGC	ACCAGTGCAT	GTCGGCCTCA	CGACAAGTGC	GCCTCAGCGT	CAGTGCTTCA
480	CAACGAGTGC	GCTTCAGCAT	TAGTGCATCA	CAGCAAGTAC	GCGTCAGCCT	ATCAACCAGT
540	CAGCTTCAGC	ACCAGTGCGT	TTCAGCGTCA	GTGCCTCGGC	GCATCAACCA	ATCGGCTTCA
600	CGACAAGTGC	GCCTCAGCAT	AAGTGCTTCA	CAGCATCAAC	GCTTCAGTCT	AAGTACCAGT
660	CAGCTTCAGC	ACAAGCGCCT	ATCAGCGTCG	CAGCATCTGA	GCAAGCACAT	CTCGGCTTCA
720	GTACTAGTGC	GCCTCAGCAA	AAGTGCGTCA	CAGCGTCGAC	GCGTCAGCCT	AAGTACCAGT
780	CAGAGTCAGC	ACCAGTGCAT	TTCGGCGTCA	GTGCATCGGC	GCATCAACGA	ATCAGCTTCA
840	GCACCAGTGC	GCTTCAGCAA	AAGTGCCTCG	CCGCATCAAC	GCGTCAGCTT	AAGTACCAGT
900	CAGCCTCAGC	ACCAGTGCGT	CTCAGCCTCA	GCGCCTCAGC	GCAAGTACTA	GTCGGCTTCA
960	GTACTAGCGC	GCTTCAGCAA	GAGTGCGTCC	CGGCATCAAC	GCGTCTGAAT	AAGTATCTCA
1020	CTGAATCGGC	ACGAGTGCGT	TTCAGCGTCA	GTGCATCGGC	GCGTCAACAA	CTCAGCCTCA
1080	CAACAAGTGC	GCCTCAGCGT	TAGCGCCTCA	CAGCAAGTAC	GCGTCCGCTT	ATCAACGAGT
1140	CAGCCTCAGC	ACTAGCGCCT	TTCAGCAAGT	GTGCGTCCGC	GCATCAACGA	ATCGGCTTCA
1200	CAACGAGTGC	GAGTCAGCAT	GAGTGCGTCT	CAGCGTCAAC	GCATCGGCTT	GTCAACAAGT
1260	CAGCCTCAGC	ACCAGTGCGT	ATCTGCATCA	CAGCTTCTGA	GCAAGCACAT	GTCAGCCTCA
1320	GACAAGTGCs	GCTCAGCGTC	CAGTGCGTCA	CAGCAAGTAC	GCCTCAGCTT	ATCGACAAGC

TCrGCTTCAG	CAAGTACCAG	TGCGTCAGCC	TCAGCAAGTA	CCAGTGCkTC	AGCCTCAGCG	1380
TCGACAAGTG	CGTCGGCCTC	AACCAGTGCA	TCTGAATCGG	CATCAACCAG	TGCGTCAGCC	1440
TCAGCAAGTA	CTAGCGCCTC	AGCCTCAGCA	TCAACGAGTG	CGTCCGCTTC	AGCAAGTACT	1500
AGTGCATCAG	CTTCAGCAAG	TACTAGCGCC	TCAGCCTCAG	CGTCGACAAG	CGCCTCAGCT	1560
TCAGCAAGTA	CCAGTGCGTC	AGCCTCAGCG	TCGACAAGTG	CGTCGGCTTC	AGCAAGTACC	1620
TCAGCGTCTG	AATCAGCATC	AACAAGTGCG	TCGGCTTCAG	CATCAACGAG	TGCATCAGCT	1680
TCAGCATCAA	CAAGTGCTTC	AGCTTCAGCA	AGTACCAGTG	CGTCGGCTTC	AGCATCAACG	1740
AGTGCTTCAG	TCTCAGCGTC	AACCAGTGCC	TCTGAATCCG	CATCAACAAG	TGCCTCGGCT	1800
TCAGCAAGCA	CCAGTGCTTC	GGCTTCAGCG	TCAACGAGTG	CGTCTGAGTC	AGCATCAACG	1860
AGTGCGTCAC	CTCAGCAAGC	ACATCAGCTT	CTGAATCTGC	ATCAACCAGT	GCGTCACTTC	1920
CGCATCAACA	AGCGCCTCGG	CCTCAGCAAG	TACAAGTGCT	TCAGCCTCAG	CATCAACCAG	1980
TGCATCAGCT	TCAGCCTCAA	CAAGTGCTTC	AGCCTCAGCG	TCAACCAGTG	CCTCGGCTTC	2040
AGCAAGTACC	AGTGCGTCAG	CTTCAGCAAG	CACAAGTGCG	TCAGCTTCAG	CATCAACCAG	2100
TGCTTCGGCT	TCGGCATCAA	CAAGTGCCTC	AGCATCAGCA	TCAACGAGTG	CGTCAsCTCA	2160
GCAAGTACTA	GTGCATCAGC	ATCAGCATCA	ACCAGTGCAT	CAGCCTCAGC	AAGTATCTCA	2220
GCGTCTGAAT	CGGCATCAAC	GAGTGCATCA	GCATCAGCAT	CAACGAGTGC	ATCGGCTTCA	2280
GCGTCAACCA	GTGCATCAGT	CTCAGCAAGC	ACCAGTGCGT	CGGCTTCAGC	ATCAACCAGT	2340
GCCTCAGCCT	CAGCAAGTAT	CTCAGCGTCT	GAATCGGCAT	CAACGAGTGC	GTCAGCCTCA	2400
GCAAGTACTA	GTGCATCAGC	ATCAGCATCA	ACGAGTGCAT	CGGCTTCAGC	AAGTACCAGC	2460
GCCTCAGCTT	CAGCAAGCAC	CAGTGCGTCA	GCCTCAGCAA	GTACCAGCGC	CTCAGCCTCA	2520
GCAAGCACCA	GTGCCTCAGC	TTCAGCAAGT	ACCAGTGCGT	CAGCCTCAGC	GTCGACAAGT	2580
GCGTCGGCTT	CAGCAAGTAC	CTCAGCGTCT	GAATCAGCAT	CAACGAGTGC	ATCAGCTTCA	2640
GCATCAACAA	GTGCTTCAGC	TTCAGCAAGT	ACCAGTGCGT	CGGCTTCAGC	ATCAACGAGT	2700
GCTTCAGTCT	CAGCGTCAAC	CAGTGCCTCT	GAATCAGCAT	CAACAAGTGC	CTCGGCTTCA	2760
GCAAGCACCA	GTGCGTCGGC	TTCAGCAAGT	ACTAGTGCAT	CGGCTTCAGC	ATCGACAAGT	2820
GCGTCTGAAT	CGGCATCAAC	GAGTGCTTCG	GCTTCAGCAT	CAACGAGTGC	GTCAGCCTCA	2880
GCAAGCACAT	CAGCTTCTGA	ATCTGCATCA	ACCAGTGCGT	CCGCTTCAGC	GTCAACCAGT	2940
GCGTCGGCTT	CAGCGTCGAC	AAGTGCTTCG	GCTTCAGCAT	CAACGAGTGC	GTCGGCCTCA	3000
GCAAGCGCAA	GTACCTCAGC	GTCAGCTTCC	GCCTCAACCA	GTGCGTCCGC	TTCAGCAAGC	3060

			1378		•	
ACAAGTGCG1	CAGCCTCAGC	AAGTATCTC	GCGTCTGAA1	CGGCATCAAC	GAGTGCGTCG	3120
GCCTCAGCA	GCGCAAGTAC	CTCAGCGTCA	GCTTCCGCCT	CAACCAGTGO	GTCGGCTTCA	3180
GCAAGCACAA	GTGCGTCAGC	CTCAGCAAGT	ATCTCAGCGT	CTGAATCGGC	ATCAACGAGT	3240
GCGTCTGAGT	CAGCATCAAC	GAGTACGTCA	GCCTCAGCAA	GCACATCAGO	TTCTGAATCG	3300
GCATCAACCA	GTGCGTCAGC	CTCAGCATCG	ACAAGCGCCT	CAGCTTCAGC	AAGTACCAGT	3360
GCTTCAGCCT	CAGCGTCGAC	AAGTGCGTCG	GCCTCAACCA	GTGCATCTGA	ATCGGCATCA	3420
ACCAGTGCGT	CAGCCTCAGC	AAGTACTAGT	GCATCAGCTT	CAGCATCAAC	GAGTGCATCG	3480
GCTTCAGCAT	CAACCAGTGC	CTCGGCTTCA	GCGTCAACCA	GTGCGTCAGC	TTCAGCAAGT	3540
ACCAGTGCTT	CAGTCTCAGC	ATCAACAAGT	GCTTCAGCCT	CAGCATCGAC	AAGTGCCTCG	3600
GCTTCAGCAA	GCACATCAGC	ATCTGAATCA	GCGTCGACAA	GCGCCTCAGC	TTCAGCAAGT	3660
ACCAGTGCGT	CAGCCTCAGC	GTCGACAAGT	GCGTCAGCCT	CAGCAAGTAC	TAGTGCATCA	3720
GCTTCAGCAT	CAACGAGTGC	ATCGGCTTCG	GCGTCAACCA	GTGCATCAGA	GTCAGCAAGT	3780
ACCAGTGCGT	CAGCTTCCGC	ATCAACAAGT	GCCTCGGCTT	CAGCAAGCAC	CAGTGCGTCG	3840
GCTTCAGCAA	GTACTAGCGC	CTCAGCCTCA	GCCTCAACCA	GTGCGTCAGC	CTCAGCAAGT	3900
ATCTCAGCGT	CTGAATCGGC	ATCAACGAGT	GCGTCCGCTT	CAGCAAGTAC	TAGCGCCTCA	3960
GCCTCAGCGT	CAACAAGTGC	ATCGGCTTCA	GCGTCAACGA	GTGCGTCTGA	ATCGGCATCA	4020
ACGAGTGCGT	CCGCTTCAGC	AAGTACTAGC	GCCTCAGCCT	CAGCGTCAAC	AAGTGCATCG	4080
GCTTCAGCAT	CAACGAGTGC	GTCCGCTTCA	GCAAGTACTA	GCGCCTCAGC	CTCAGCGTCA	4140
ACAAGTGCAT	CGGGTTCAGC	GTCAACGAGT	GCGTCTGAGT	CAGCATCAAC	GAGTGCGTCA	4200
CCTCARCAAG	CACATCAGCT	TCTGAATCTG	CATCAACCAG	TGCGTCACTT	CCGCATCAAC	4260
AAGCGCCTCG	GCCTCAGCAA	GTACAAGTGC	TTCAGCCTCA	GCATCAACCA	GTGCATCAGC	4320
TTCAGCCTCA	ACAAGTGCTT	CAGCCTCAGC	GTCAGACCAG	TGCCTCGGCT	TCAGCAAGTA	4380
CCAGTGCGTC	ACTTCAGCAA	GCACAAGTGC	GTCAGCTTCA	GCATCAACCA	GTGCTTCGL;3	4440
TTCGGCATCA	ACAAGTGCCT	CAGCATCAGC	ATCAACGAGT	GCG		4483

(2) INFORMATION FOR SEQ ID NO: 364:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2550 base pairs
 (B) TYPE: nucleic acid
 (C) STRANGEDNESS: double

 - (D) TOPOLOGY: linear

⁽x1) SEQUENCE DESCRIPTION: SEQ ID NO: 364:

GTACCTCAGC	GTCCTTCCGC	CTCAACCAGT	GCGTCCGCTT	CAGCAAGCAC	AAGTGCGTCA	60
CCTCAGCAAG	TATCTCAGCG	TCTGAATCGG	CATCAACGAG	TGCGTCGGCC	TCAGCAAGCG	120
CAAGTACCTC	AGCGTCACTT	CCGCCTCAAC	CAGTGCGTCG	GCTTCAGCAA	GCACAAGTGC	180
GTCASCTCAG	CAAGTATCTC	AGCGTCTGAA	TCGGCATCAA	CGAGTGCGTC	TGAGTCAGCA	240
TCAACGAGTA	CGTCAGCCTC	AGCAAGCACA	TCAGCTTCTG	AATCGGCATC	AACCAGTGCG	300
TCAGCCTCAG	CATCGACAAG	CGCCTCAGCT	TCAGCAAGTA	CCAGTGCTTC	AGCCTCAGCG	360
TCGACAAGTG	CGTCGGCCTC	AACCAGTGCA	TCTGAATCGG	CATCAACCAG	TGCGTCAGCC	420
TCAGCAAGTA	CTAGTGCATC	AGCTTCAGCA	TCAACGAGTG	CATCGGCTTC	AGCATCAACC	480
AGTGCCTCGG	CTTCAGCGTC	AACCAGTGCG	TCAGCTTCAG	CAAGTACCAG	TGCTTCAGTC	540
TCAGCATCAA	CAAGTGCTTC	AGCCTCAGCA	TCGACAAGTG	CCTCGGCTTC	AGCAAGCACA	600
TCAGCATCTG	AATCAGCGTC	GACAAGTGCG	TCGGCCTCAA	CCAGTGCATC	TGAATCGCCA	660
TCAACCAGTG	CGTCAGCCTC	AGCAAGTACT	AGTGCATCAG	CTTCAGCATC	AACGAGTGCA	720
TCGGCTTCGG	CGTCAACCAG	TGCATCAGAG	TCAGCAAGTA	CCAGTGCGTC	AGCTTCCGCA	780
TCAACAAGTG	CCTCGGCTTC	AGCAAGCACA	TCAGCATCTG	AATCAGCGTC	AACCAGTGCT	840
TCGGCTTCAG	CAAGTACCAG	TGCTTCAGCT	TCAGCATCAA	CCAGCGCCTC	GGCCTCAGCA	900
AGCACCTCAG	CTTCTGAATC	GGCCTCAACC	AGCGCCTCGG	CCTCAGCAAG	CACCTCAGCT	960
TCTGAATCGG	CCTCAACCAG	CGCCTCAGCC	TCAGCATCAA	CGAGTGCTTC	GGCTTCAGCA	1020
AGCACAAGCG	CCTCGGGTTC	AGCATCAACG	AGTACGTCAG	CTTCAGCGTC	AACCAGTGCT	1080
TCAGCCTCAG	CATCAACAAG	TGCGTCAGCC	TCAGCAAGTA	TCTCAGCGTC	TGAATCGGCA	1140
TCAACGAGTG	CGTCTGAGTC	AGCATCAACG	AGTACGTCAG	CCTCAGCAAG	CACAAGTGCT	1200
TCAGCCTCAG	CAAGTATCTC	AGCGTCTGAA	TCGGCATCAA	CGAGTGCGTC	CGCTTCAGCA	1260
AGTACTAGCG	CCTCAGCATC	AGCGTCAACA	AGTGCTTCGG	CTTCAGCGTC	AACGAGTGCG	1320
TCTGAGTCAG	CATCAACGAG	TACGTCAGCC	TCAGCAAGCA	CATCAGCTTC	TGAATCTGCA	1380
TCAACCAGTG	CGTCAGCCTC	AGCATCGACA	AGCGCCTCAG	CTTCAGCAAG	TACCAGTGCG	1440
TCAGCCTCAG	CAAGTACCAG	TGCTTCAGCC	TCAGCGTCGA	CAAGTGCGTC	GGCCTCAACC	1500
AGTGCATCTG	AATCGGCATC	AACCAGTGCG	TCAGCTCAGC	AAGTACTAGT	GCATCAGCTT	1560
CAGCATCAAC	GAGTGCATCG	GCTTCGGCGT	CAACCAGTGC	ATCAGAGTCA	GCAAGTACCA	1620
GTGCGTCACt	TCCGCATCAA	CAAGTGCCTC	GGCTTCAGCA	AGCACATCAG	CATCTGAATC	1680
AGCGTCAACC	AGTGCTTCGG	CTTCAGCAAG	TACCAGTGCT	TCAGCTTCAG	CATCAACCAG	1740
					•	

CGCCTCG	GCC	TCAGCAAGCA	CCTCAGCTTC	1380 TGAATCGGCC	TCAACCAGCG	CCTCGGCCTC	1800
AGCAAGC.	ACC	TCAGCTTCTG	AATCGGCCTC	AACCAGCGCC	TCAGCCTCAG	CATCAACGAG	1860
TGCTTCG	CCT	TCAGCAAGCA	CAAGCGCCTC	GGGTTCAGCA	TCAACGAGTA	CGTCAGCTTC	1920
AGCGTCA	ACC	AGTGCTTCAG	CCTCAGCATC	AACAAGTGCG	TCAGCCTCAG	CAAGTATCTC	1980
AGCGTCT	GAA	TCGGCATCAA	CGAGTGCGTC	TGAGTCAGCA	TCAACGAGTA	CGTCAGCCTC	2040
AGCAAGC	ACC	TCAGCTTCTG	AATCGGCCTC	AACCAGTGCG	TCAGCCTCAG	CATCGACAAG	2100
CGCCTCAC	CT	TCAGCAAGTA	CCAGTGCTTC	AGCCTCAGCG	TCGACAAGTG	CGTCGGCCTC	2160
AACCAGTO	GCA	TCTGAATCGG	CATCAACCAG	TGCGTCAGCC	TCAGCAAGTA	CTAGTGCATC	2220
GGCTTCAC	GCA	TCAACCAGTG	CCTCGGCTTC	AGCGTCAACC	AGTGCGTCAG	CTTCAGCAAG	2280
TACCAGTO	CT	TCAGTCTCAG	CATCAACAAG	TGCTTCAGCC	TCAGCATCGA	CAAGTGCCTC	2340
GGCTTCAG	CA	AGCACATCAG	CATCTGAATC	AGCGTCGACA	AGCGCCTCAG	CTTCAGCAAG	2400
TACCAGTO	CG	TCAGCCTCAG	CGTCGACAAG	TGCGTCAGCT	ACAGCAAGTA	CTAGTGCATC	2460
AGCTTCAG	CA	TCAACGAGTG	CATCGGCTTC	GGCGTCAACC	AGTGCATCAG	AGTCAGCAAG	2520
TACCAGTG	CG	TCAGTTCACG	CATCAACAAG				2550
(2) INFO	RMA	TION FOR SE	Q ID NO: 36	55:			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1436 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 365:

ACCCAGCAAG	TACTAGTGCA	TCGGCTTCAG	CAAGCACCAG	TGCGTCGGCT	TCAGCATCAA	60
CCAGTGCCTC	AGCCTCAGCA	AGTATCTCAG	CGTCTGAATC	GGCATCAACG	AGTGCGTCAC	120
CTCAGCAAGT	ACTAGTGCAT	CAGCATCAGC	ATCAACGAGT	GCATCGGCTT	CAGCAAGTAC	180
CAGCGCCTCA	GCTTCAGCAA	GCACCAGTGC	GTCAsCTCAG	CAAGTACCAG	CGCCTCAGCC	240
TCAGCAAGCA	CCAGTGCCTC	AGCTTCAGCA	AGTACCAGTG	CGTCAGCCTC	AGCGTCGACA	300
AGTGCGTCGG	CTTCAGCAAG	TACCTCAGCG	TCTGAATCAG	CATCAACGAG	TGCATCAGCT	360
TCAGCATCAA	CAAGTGCTTC	AGCTTCAGCA	AGTATCTCAG	CGTCTGAATC	GGCATCAACG	420
AGTGCGTCCG	CTTCAGCAAG	TACTAGCGCC	TCAGCATCAG	CGTCAACAAG	TGCTTCGGCT	480
TCAGCGTCAA	CGAGTGCGTC	TGAGTCAGCA	TCAACGAGTA	CGTCAGCCTC	AGCAAGCACA	540
TCAGCTTCTG	AATCTGCATC	AACCAGTGCG	TCAGCCTCAG	CATCGACAAG	CGCCTCAGCT	600

TCAGCAAGTA	CCAGTGCGTC	AgCCTCAGCA	AGTACCAGTG	CTTCAGCCTC	AGCGTCGACA	660
AGTGCGTCGG	CCTCAACCAG	TGCATCTGAA	TCGGCATCAA	CCAGTGCGTC	AGCCTCAGCA	720
AGTACTAGCG	CCTCAGCCTC	AGCATCAACG	AGTGCGTCCG	CTTCAGCAAG	TACTAGTGCA	780
TCAGCTTCAG	CAAGTACTAG	CGCCTCAGCC	TCAGCGTCGA	CAAGCGCCTC	AGCTTCAGCA	840
AGTACCAGTG	CGTCAGCCTC	AGCGTCGACA	AGTGCGTCGG	CTTCAGCAAG	TACCTCAGCG	900
TCTGAATCAG	CATCAACAAG	TGCGTCGGCT	TCAGCATCAA	CGAGTGCATC	AGCTTCAGCA	960
TCAACAAGTG	CTTCAGCTTC	AGCAAGTACC	AGTGCGTCGG	CTTCAGCATC	AACGAGTGCT	1020
TCAGTCTCAG	CGTCAACCAG	TGCCTCTGAA	TCCGCATCAA	CAAGTGCCTC	GGCTTCAGCA	1080
AGCACCAGTG	CTTCGGCTTC	AGCGTCAACG	AGTGCGTCTG	AGTCAGCATC	AACGAGTGCG	1140
TCAGCCTCAG	CAAGCACATC	AGCTTCTGAA	TCTGCATCAA	CCAGTGCGTC	AGCTTCCGCA	1200
TCAACAAGCG	CCTCGGCCTC	AGCAAGTACA	AGTGCTTCAG	CCTCAGCATC	AACCAGTGCA	1260
TCAGCTTCAG	CCTCAACAAG	TGCTTCAGCC	TCAGCGTCAA	CCAGTGCCTC	GGCTTCAGCA	1320
AGTACCAGTG	CGTCAGCTTC	AGCAAGCACA	AGTGCGTCAG	CTTCAGCATC	AACCAGTGCT	1380
TCGGCTTCGG	CATCAACAAG	TGCCTCAGCA	TCAGCATCAA	CGAGTGCGTC	AGCCGG	1436

(2) INFORMATION FOR SEQ ID NO: 366:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 735 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 366:

60	TTTACCCATG	TAATTTTCTT	GTTCCTGCGA	ACCAGCACCC	CACCGTGCTG	GCAGTTGCCA
120	TGTATGGTTA	TGTGGGCTCC	TTGTTAATCT	TCCTAAGGCA	GCCAAACTTG	CGTWTGGCAA
180	TTTTTTGCGT	CTGGGTCAAG	CGCCAATATG	AATCTTGCTC	GTTTGAGATA	AGGTCTTCCC
240	TCCTCTTGGA	CTGGTTTAAT	GGCGCAAAAG	CCTACGTACT	AGTTTCACGT	AATAAAGAGG
300	GCTGTCATCA	CTCCAAAACT	CCTTCTCCAA	TCACGGTAGG	TGCCTGACTT	AACTTGGGTC
360	TTTGGTTCCT	TCCATCTTTA	TTCCGTAAAA	CCGCCGAATT	GACAAAACGT	ATGTTTCTGG
420	TTTTTGTCCA	TTTCATGATC	CTTCTAATCT	CTCTATAAAT	GCTTTACCCT	GATATGCCAT
480	AATTGCTTTT	TAAAGTGTTG	GCATAGGGAG	TACATCTACT	CTCCGCTCGA	TCTGTCTCCA
540	TCCAGTCGTA	GCTGTGCTAG	ATAAAGAAGG	GCCACCTGCG	CTTCATTAAG	ACTACATTAT

			1382			
TCCAGTTGAC	CCCAATCAAA	GGGCTGGCCA	CTTCCTGCCA	CAGGGGCATC	AAAGAGTAGA	600
TAATCTGCCT	GAGAATTGGG	GACATGCCCA	TTTCCATCTA	CCTGCACAGC	CTGAATACTG	660
GCACAAGGCA	AATTCTCAAA	TAAATCATCT	GCCACCTGAC	CGTGAACTTG	AACCAAGTCC	720
AAGCCGGGGA	TCCTC					735

(2) INFORMATION FOR SEQ ID NO: 367:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1702 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 367:

TACTAGCGCC TCAGCCTCAG CGTCAACAAG TGCATCGGCT TCAGCATCAA CGAGTGCGTC 60 CGCTTCAGCA AGTACTAGCG CCTCAGCCTC AGCGTCAACA AGTGCATCGG CTTCAGCGTC 120 AACGAGTGCG TCTGAGTCAG CATCAACGAG TGCGTCAGCC TCAGCAAGCA CATCAGCTTC 180 TGAATCTGCA TCAACCAGTG CGTCAGCCTC AGCATCGACA AGCGCCTCAG CTTCAGCAAG 240 TACCAGTGCG TCAGCCTCAG CGTCGACAAG TGCGTCGGCT TCAGCAAGTA CCAGTGCGTC 300 AGCCTCAGCA AGTACCAGTG CGTCAGCCTC AGCGTCGACA AGTGCGTCGG CCTCAACCAG 360 TGCATCTGAA TCGGCATCAA CCAGTGCGTC AGCCTCAGCA AGTACTAGTG CATCAGCTTC 420 AGCATCAACG AGTGCATCGG CTTCAGCATC AACCAGTGCA TCAGAGTCAG CAAGTACCAG 480 TGCGTCAGCT TCCGCATCAA CAAGTGCCTC GGCTTCAGCA AGTACTAGCG CCTCAGCCTC 540 AGCGTCAACA AGTGCTTCAG CTTCCGCGTC AACCAGCGCC TCGGCCTCAG CAAGTATCTC 600 AGCGTCTGAA TCGGCATCAA CAAGTGCCTC GGCTTCAGCA TCAACGAGTG CATCAGTCTC 660 AGCAAGCACC AGTGCGTCGG CCTCAGCAAG CACCAGCGCG TCTGAATCCG CATCAACCAG 720 TGCCTCAGCT TCAGCAAGTA CCTCAGCATC TGAATCAGCA TCAACAAGTG CATCGGCTTC 780 AGCAAGCACA AGTGCTTCAG CCTCAGCAAG TATCTCAGCG TCTGAATCGG CATCAACGAG 840 TGCGTCCGCT TCAGCAAGTA CTAGCGCCTC AGCATCAGCG TCAACAAGTG CTTCGGCTTC 900 AGCGTCAACG AGTGCGTCTG AGTCAGCATC AACGAGTACG TCAGCCTCAG CAAGCACATC 960 AGCTTCTGAA TCTGCATCAA CCAGTGCGTC AGCCTCAGCA TCGACAAGCG CCTCAGCTTC 1020 AGCAAGTACC AGTGCGTCAG CCTCAGCAAG TACCAGTGCT TCAGCCTCAG CGTCGACAAG 1080 TGCGTCGGCC TCAACCAGTG CATCTGAATC GGCATCAACC AGTGCGTCAG CCTCAGCAAG 1140 TACTAGGGCC TCAGCCTCAG CATCAACGAG TGCGTCCGCT TCAGCAAGTA CTAGTGCATC 1200

AGCATCAGCA	TCAACGAGTG	CATCGGCTTC	AGCAAGTACC	AGCGCCTCAG	CTTCAGCAAG	1260
CACCAGTGCG	TCAGCCTCAG	CAAGTACCAG	CGCCTCAGCC	TCAGCAAGCA	CCAGTGCCTC .	1320
AGCTTCAGCA	AGTACCAGTG	CGTCAGCCTC	AGCGTCGACA	AGTGCGTCGG	CTTCAGCAAG	1380
TACCTCAGCG	TCTGAATCAG	CATCAACGAG	TGCATCAGCT	TCAGCATCAA	CAAGTGCTTC	1440
AGCTTCAGCA	AGTACCAGTG	CGTCGGCTTC	AGCATCAACG	AGTGCTTCAG	TCTCAGCGTC	1500
AACCAGTGCC	TCTGAATCAG	CATCAACAAG	TGCCTCGGCT	TCAGCAAGCA	CCAGTGCGTC	1560
GGCTTCAGCA	AGTACTAGTG	CATCGGCTTC	AGCATCGACA	AGTGCGTCTG	AATCGGCATC	1620
AACGAGTGCT	TCGGCTTCAG	CATCAACGAG	TGCGTCAGCC	TCAGCAAGCA	CATCAGCTTC	1680
TGAATCTGCA	TCAACCAGTG	CG				1702

(2) INFORMATION FOR SEQ ID NO: 368:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 941 base pairs

- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 368:

ACCAGTGCAT	CAGCTTCAGC	CTCAACAAGT	GCTTCAGCCT	CAGCGTCAAC	CAGTGCCTCG	60
GCTTCAGCAA	GTACCAGTGC	GTCACTTCAG	CAAGCACAAG	TGCGTCACTT	CAGCATCAAC	120
CAGTGCTTCG	GCTTCGGCAT	CAACAAGTGC	CTCAGCATCA	GCATCAACGA	GTGCGTCACC	180
TCAGCAAGTA	CTAGTGCATC	AGCATCAGCA	TCAACCAGTG	CATCAGCCTC	AGCAAGTATC	240
TCAGCGTCTG	AATCGGCATC	AACGAGTGCA	TCAGCATCAG	CATCAACGAG	TGCATCGGCT	300
TCAGCGTCAA	CCAGTGCATC	AGTCTCAGCA	AGCACCAGTG	CGTCGGCTTC	AGCATCAACG	360
AGTGCCTCAG	CCTCAGCAAG	TATCTCAGCG	TCTGAATCGG	CATCAACGAG	TGCGTCAGCC	420
TCAGCAAGTA	CTAGTGCATC	GGCTTCAGCA	AGCACCAGTG	CGTCGGCTTC	AGCATCAACC	480
AGTGCCTCAG	CCTCAGCAAG	TATCTCAGCG	TCTGAATCGG	CATCAACGAG	TGCGTCAGCC	540
TCAGCAAGTA	CTAGTGCATC	AGCATCAGCA	TCAACGAGTG	CATCGGCTTC	AGCAAGTACC	600
AGCGCCTCAG	CTTCAGCAAG	CACCAGTGCG	TCAGCCTCAG	CAAGTACCAG	CGCCTCAGCC	660
TCAGCAAGCA	CCAGTGCCTC	AGCTTCAGCA	AGTACCAGTG	CGTCAGCCTC	AGCGTCGACA	720
AGTGCGTCGG	CTTCAGCAAG	TACCTCAGCG	TCTGAATCAG	CATCAACGAG	TGCATCAGCT	780
TCAGCATCAA	CAAGTGCTTC	AGCTTCAGCA	AGTACCAGTG	CGTCGGCTTC	AGCATCAACG	840

ACCAGIGC TOTGASTCAG CATCASCAAG TGCCTCGGCT	900
TCAGCAAGCA CCAGTGCGTC GGCTTCAGCA AGTACTAGTG C	941
(2) INFORMATION FOR SEQ ID NO: 369:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 869 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 369:	
CAGCAAGTAC TAGTGCATCA GCTTCAGCAT CAACGAGTGC ATCGGCTTCT GCGTCAACCA	60
GTGCATCAGA GTCAGCAAGT ACCAGTGCGT CAGCTTCCGC ATCAACAAGT GCCTCGGCTT	120
CAGCAAGCAC CAGTGCGTCG GCTTCAGCAA GTACTAGCGC CTCAGCCTCA GCCTCAACCA	180
GTGCGTCAGC CTCAGCAAGT ATCTCAGCGT CTGAATCGGC ATCAACGAGT GCGTCCGCTT	240
CAGCAAGTAC TAGCGCCTCA GCCTCAGCGT CAACAAGTGC ATCGGCTTCA GCGTCAACGA	300
GTGCGTCTGA ATCGGCATCA ACGAGTGCGT CCGCTTCAGC AAGTACTAGC GCCTCAGCCT	360
CAGCGTCAAC AAGTGCATCG GCTTCAGCAT CAACGAGTGC GTCCGCTTCA GCAAGTACTA	420
GCGCCTCAGC CTCAGCGTCA ACAAGTGCAT CGGCTTCAGC GTCAACGAGT GCGTCTGAGT	480
CAGCATCAAC GAGTGCGTCA GCCTCAGCAA GCACATCAGC TTCTGAATCT GCATCAACCA	540
GTGCGTCAGC CTCAGCATCG ACAAGCGCCT CAGCTTCAGC AAGTACCAGT GCGTCAGCCT	600
CAGCGTCGAC AAGTGCGTCG GCTTCAGCAA GTACCAGTGC GTCAGCCTCA GCAAGTACCA	660
GTGCGTCAGC CTCAGCGTCG ACAAGTGCGT CGGCCTCAAC CAGTGCATCT GAATCGGCAT	720
CAACCAGTGC GTCAGCCTCA GCAAGTACTA GTGCATCAGC TTCAGCATCA ACGAGTGCAT	780
CGGCTTCAGC ATCAACCAGT GCATCAGAGT CAGCAAGTAC CAGTGCGTCA GNTTCCGCAT	840
GCAACAAGTG CCTCGGCTTC AGCAAGTAC	869
(2) INFORMATION FOR SEQ ID NO: 370:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 750 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 370:	
TCAACAAGTG CCTCAGCATC ACCATCAACC ACTCCCTCAG CCTCAG CCTCAG	

TCAGCATCAG	CATCAACCAG	TGCATCAGCC	TCAGCAAGTA	TCTCAGCGTC	TGAATCGGCA	120
TCAACGAGTG	CATCAGCATC	AGCATCAACG	AGTGCATCGG	CTTCAGCGTC	AACCAGTGCA	180
TCAGTCTCAG	CAAGCACCAG	TGCGTCGGCT	TCAGCATCAA	CGAGTGCCTC	AGCCTCAGCA	240
AGTATCTCAG	CGTCTGAATC	GGCATCAACG	AGTGCGTCAG	CCTCAGCAAG	TACTAGTGCA	300
TCGGCTTCAG	CAAGCACCAG	TGCGTCGGCT	TCAGCATCAA	CCAGTGCCTC	AGCCTCAGCA	360
AGTATCTCAG	CGTCTGAATC	GGCATCAACG	AGTGCGTCAG	CCTCAGCAAG	TACTAGTGCA	420
TCAGCATCAG	CATCAACGAG	TGCATCGGCT	TCAGCAAGTA	CCAGCGCCTC	AGCTTCAGCA	480
AGCACCAGTG	CGTCAGCCTC	AGCAAGTACC	AGCGCCTCAG	CCTCAGCAAG	CACCAGTGCC	540
TCAGCTTCAG	CAAGTACCAG	TGCGTCAGCC	TCAGCGTCGA	CAAGTGCGTC	GGCTTCAGCA	600
AGTACCTCAG	CGTCTGAATC	AGCATCAACG	AGTGCATCAG	CTTCAGCATC	AACAAGTGCT	660
TCAGCTTCAG	CAAGTATCTC	AGCGTCTGAA	TCGGCATCAA	CGAGTGCGTC	CGCTTCAGCA	720
AGTACTAGCG	CCTCAGCATC	AGCGTCAACG				750

(2) INFORMATION FOR SEQ ID NO: 371:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 957 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 371:

CCGGAAAACA GCTCTGG	CGC TTGGTCTTGC	CCAGCGTATT	GCTAGTGGTG	ACGTGCCTGC	60
GGAAATGGCT AAGATGC	GCG TGTTAGAACT	TGATTTGATG	AATGTCGTTG	CAGGGACACG	120
CTTCCGTGGT GACTTTG	AAG AACGCATGAA	TAATATCATC	AAGGATATTG	AAGAAGATGG	180
CCAAGTCATC CTCTTTA	TCG ATGAACTCCA	CACCATCATG	GGTTCTGGTA	GCGGGATTGA	240
TTCGACTCTG GATGCGG	CCA ATATCTTGAA	ACCAGCCTTG	GCGCGTGGAA	CTTTGAGAAC	300
GGTTGGTGCC ACTACTC	AGG AAGAATATCA	AAAACATATC	GAAAAAGATG	CGGCACTTTC	360
TCGTCGTTTC GCTAAAG	TGA CGATTGAAGA	ACCAAGTGTG	GCAGATAGTA	TGACTATTTT	420
ACAAGGTTTG AAGGCGA	CTT ATGAGAAACA	TCACCGTGTA	CAAATCACAG	ATGAAGCGGT	480
TGAAACAGCG GTTAAGA	TGG CTCATCGTTA	TTTAACCAGT	CGTCACTTGC	CAGACTCTGC	540
TATCGATCTC TTGGATG	AGG CGGCAGCAAC	AGTGCAAAAT	AAGGCAAAGC	ATGTAAAAGC	600
AGACGATTCA GATTTGA	GTC CAGCTGACAA	GGCCCTGATG	GATGGCAAGT	GGAAACAGGC	660

AGCCCAGCTA ATCGCAAAAG AAGAGGAAGT AC	1386 CTGTCTAC AAAGACTTG	G TGACAGAGTC	72
TGATATTTTG ACCACCTTGA GTCGCTTGTC AG	GAATCCCA GTTCAAAAA	C TGACTCAAAC	78
GGATGCTAAG AAGTATTTAA ATCTTGAAGC AG	AACTCCAT AAACGGGTT	A TCGGTCAAGA	84
TCAAGCTGTT TCAAGCATTA GCCGTGCCAT TC	GCCGCAAC CAGTCAGGG	A TTCGCAGTCA	900
TAAGCGTCCG ATTGGTTCCT TTATGTTCCT AGG	GCCTACA GGTGTCGGG	G TATCCGA	95
(2) INFORMATION FOR SEQ ID NO: 372:			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 807 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	5		
(xi) SEQUENCE DESCRIPTION: SEQ	ID NO: 372:		
CAAAGCGCCT CAGCTTCAGC ATCAACAAGT GCC	TCGGCTT CAGCATCAAC	CAGTGCCTCG	60
GCTTCAGCGT CAACCAGTGC GTCACATTCA GC	AGTACCA GTGCTTCAG	CTCAGCATCA	120

ACAAGTGCTT CAGCCTCAGC ATCGACAAGT GCCTCGGCTT CAGCAAGCAC ATCAGCATCT GAATCAGCGT CAACCAGTGC TTCGGCTTCA GCAAGTACCA GTGCTTCAGC TTCAGCATCA

180 240

ACCAGCGCCT CGGCCTCAGC AAGCACCTCA GCTTCTGAAT CGGCCTCAAC CAGCGCCTCG

300 360

GCCTCAGCAA GCACCTCAGC TTCTGAATCG GCCTCAACCA GCGCCTCAGC CTCAGCATCA ACGAGTGCTT CGGCTTCAGC AAGCACAAGC GCCTCGGGTT CAGCATCAAC GAGTACGTCA

420

GCTTCAGCGT CAACCAGTGC TTCAGCCTCA GCATCAACAA GTGCGTCAGC CTCAGCAAGT

480 540

ATCTCAGCGT CTGAATCGGC ATCAACGAGT GCGTCTGAGT CAGCATCAAC GAGTACGTCA

600

GCCTCAGCAA GCACCTCAGC TTCTGAATCG GCCTCAACCA GTGCGTCAGC CTCAGCATCG ACAAGCGCCT CAGCTTCAGC AAGTACCAGT GCTTCAGCCT CAGCGTCGAC AAGTGCGTCG

660 720

GCCTCAACCA GTGCATCTGA ATCGGCATCA ACCAGTGCGT CAGCCTCAGC AAGTACTAGT

780

GCATCGGCTT CAGCATCAAC CAGTGCCTCG GCTTCAGCGT CAACCAGTGC GTCAGCTTCA

807

(2) INFORMATION FOR SEQ ID NO: 373:

GCAAGTACCA TGTGCTTCAT GTCTCAG

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1068 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 373: CATCGGCTTC AGCATCAACG AGTGCGTCCG CTTCAGCAAG TACTACCGCC TCAGCCTCAG 60 CGTCAACAAG TGCATCGGCT TCAGCGTCAA CGAGTGCGTC TGAGTCAGCA TCAACGAGTG 120 CGTCACCTCA GCAAGCACAT CAGCTTCTGA ATCTGCATCA ACCAGTGCGT CACCTCAGCA 180 TCGACAAGCG CCTCAGCTTC AGCAAGTACC AGTGCGTCAC CTCAGCGTCG ACAAGTGCGT 240 CGGCTTCAGC AAGTACCAGT GCGTCASCTC AGCAAGTACC AGTGCGTCAC CTCAGCGTCG 300 ACAAGTGCGT CGGCCTCAAC CAGTGCATCT GAATCGGCAT CAACCAGTGC GTCACCTCAG 360 CAAGTACTAG TGCATCAGCT TCAGCATCAA CGAGTGCATC GGCTTCAGCA TCAACCAGTG 420 CATCAGAGTC AGCAAGTACC AGTGCGTCAG CTTCCGCATC AACAAGTGCC TCGGCTTCAG 480 CAAGTACTAG CGCCTCAGCC TCAGCGTCAA CAAGTGCTTC AGCTTCCGCG TCAACCAGCG 540 CCTCGGCCTC AGCAAGTATC TCAGCGTCTG AATCGGCATC AACAAGTGCC TCGGCTTCAG 600 CATCAACGAG TGCATCAGTC TCAGCAAGCA CCAGTGCGTC GGCCTCAGCA AGCACCAGCG 660 CGTCTGAATC CGCATCAACC AGTGCCTCAG CTTCAGCAAG TACCTCAGCA TCTGAATCAG 720 CATCAACAAG TGCATCGGCT TCAGCAAGCA CAAGTGCTTC AGCCTCAGCA AGTATCTCAG 780 CGTCTGAATC GGCATCAACG AGTGCGTCCG CTTCAGCAAG TACTAGCGCC TCAGCATCAG 840 900 CGTCAACAG TGCTTCGGCT TCAGCGTCAA CGAGTGCGTC TGAGTCAGCA TCAACGAGTA CGTCAGCCTC AGCAAGCACA TCAGCTTCTG AATCTGCATC AACCAGTGCG TCAGCCTCAG 960 1020 CATCGACAAG CGCCTCAGCT TCAGCAAGTA CCAGTGCGTC AGCCTCAGCA AGTACCAGTG CTTCAGCCTC AGCGTCGACA AGTGCGTCGG GCTCAACCAG TGCATCTG 1068

(2) INFORMATION FOR SEQ ID NO: 374:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 620 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 374:

60	GCTTCAACAA	CTCTGAATCA	CAACCAGTGC	GTTTCAGCGT	GAGTGCTTCA	CAGCATCAAC
120	GCATCGGCTT	AAGTACTAGT	CGGCTTCAGC	CCCAGTGCGT	TTCAGCAAGC	GTGCCTCGGC
180	GCATCAACGA	TTCGGCTTCA	CAACGAGTGC	GAATCGGCAT	AAGTGCGTCT	CAGCATCGAC
240	GCGTCCGyTT	ATCAACCAGT	CTGAATCTGC	ACATCAGCTT	CTCAGCAAGC	GTGCGTCAGC

			1388			
CAGCGTCAAC	CAGTGCGTCG	GCTTCAGCGT	CGACAAGTGC	TTCGGCTTCA	GCATCAACGA	300
GTGCGTCGGC	CTCAGCAAGC	GCAAGTACCT	CAGCGTCAGC	TTCCGCCTCA	ACCAGTGCGT	360
CGGCTTCAGC	AAGCACAAGT	GCGTCAGCCT	CAGCAAGTAT	CTCAGCGTCT	GAATCGGCAT	420
CAACGAGTGC	GTCTGAGTCA	GCATCAACGA	GTACGTCAGC	CTCAGCAAGC	ACATCAGCTT	480
CTGAATCTGC	ATCAACCAGT	GCGTCAGCCT	CAGCATCGAC	AAGCGCCTCA	GCTTCAGCAA	540
GTACCAGTGC	TTCAGCCTCA	GCGTCGACAA	GTGCGTCGGC	CTCAACCAGT	GCATCTGAAT	600
CGGCATCAAC	CAGTGCGTCA					620

(2) INFORMATION FOR SEQ ID NO: 375:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 720 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 375:

GTATTGGGGC	GCCCCAACCT	CTATGTGACT	ACGGATTATT	TCCTAGATTA	CATGGGGATA	60
AACCATTTAG	AAGAATTACC	AGTGATTGAT	GAGCTTGAGA	TTCAAGCCCA	AGAAAGCCAA	120
TTATTTGGTG	AAAGGATAGA	AGAAGATGAG	AATCAATAAG	TATATTGCCC	ACGCAGGTGT	180
GGCCAGTAGG	AGAAAAGCAG	AAGAGCTGAT	TAAGCAAGGC	TTGGTGACGG	TTAACGGCCA	240
AGTGGTGCGT	GAACTAGCAA	CCACTATCAA	GTCAGGCGAC	AAGGTCGAAG	TTGAAGGTCA	300
ACCTATCTAC	AACGAAGAAA	AGGTCTACTA	TCTGCTTAAC	AAACCACGCG	GTGTGATTTC	360
CAGTGTGACA	GATGATAAGG	GTCGCAAGAC	GGTTGTCGAC	CTCTTGCCCA	ATGTCAAAGA	420
GCGTATTTAC	CCTGTGGGTC	GTTTGGACTG	GGATACATCA	GGTGTCTTGA	TTTTGACCAA	480
TGATGGGGAC	TTTACAGACG	AGATGATTCA	CCCTCGTAAT	GAGATTGACA	AGGTTTATGT	540
CGCGCGTGTT	AAAGGTGTGG	CCAATAAGGA	CAATCTCCGC	CCCTTGACCC	GTGGTCTTGA	600
GATTGATGGT	AAGAAAACCA	AGCCATAATA	TATAGGTTTT	GTAGCCTCTA	CACCATAAAT	660
ATTTGCTAAT	AAAAATACTG	TATTATTACC	CTCTTAAGGT	GCGAAATTAT	TCAAGTTCTT	720

(2) INFORMATION FOR SEQ ID NO: 376:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 648 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	376:		
CGCCATTT	CC CATCGTACC	G CCGAAAATCC	CAGCGCCTCA	GCCATCAAAT	ATCCTATCAA	6
CGTTCTCA	A AAAAGTGAC	C GCTCTCTCAT	CATGTTTCCA	AGTGGTAGCC	GCCACTCAAA	12
CGATGTCA	AG GGGGGCGCA	C ACTSKATTGC	CAAAATGGCC	AAGGTCCGTA	TCATGCCGGT	18
TACCTACAC	C GGTCCCATG	A CTTTGAAGGG	CTTGATTAGC	CGTGAACGTG	TCGATATGAA	24
CTTTGGAAA	T CCAATCGAT	A TCTCAGATAT	CAAGAAAATG	AATGATGAAG	GCATTGAAAC	30
AGTCGCCAA	T CGTATTCAA	A CAGAATTCCA	ACGTCTGGAC	GAAGAAACGA	AACAATGGCA	36
CAATGATAA	A AAACCAAAT	C CACTCTGGTG	GTTTATCCGC	ATCCCTGCCC	TCATCCTTGC	42
TATTATCCT	C GCTATCCTA	A CCATCATCTT	TAGCTTTATC	GCAAGCTTCA	TCTGGAACCC	48
AGATAAGAA	A AGAGAAGAA	C TTGCATAGAA	GAAATGAACC	TTGGCCAAAC	AGCTAAGGTT	54
TTCATTTAT	'A TAGTAGATT	G GWACTAGAAT	AGTACACCTC	TACTTCTAAA	ACATTTTTAG	60
AAAT CGATT	T GACTGTCCT	G ATCGATTTGT	CCTAATCTTA	TTTCAATT		64
(2) INFOR	MATION FOR	SEQ ID NO: 3	77 :			
(i)	(A) LENGTH (B) TYPE:	ARACTERISTIC: : 690 base ponucleic acid	airs			

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 377:

GTGCATCGCT	TTCAGCATCG	ACAAGTGCGT	CTGAATCGGC	ATCAACGAGT	GCTTCGGCTT	60
CAGCATCAAC	GAGTGCGTCA	GCTTCAGCAA	GCACATCAGC	TTCTGAATCT	GCATCAACCA	120
GTGCGTCCGC	TTCAGCGTCA	ACCAGTGCGT	CGGCTTCAGC	GTCGACAAGT	GCTTCGGCTT	180
CAGCATCAAC	GAGTGCGTCG	GCCTCAGCAA	GCGCAAGTAC	CTCAGCGTCA	GCTTCCGCCT	240
CAACCAGTGC	GTCCGCTTCA	GCAAGCACAA	GTGCGTCAGC	CTCAGCAAGT	ATCTCAGCGT	300
CTGAATCGGC	ATCAACGAGT	GCGTCGGCCT	CAGCAAGCGC	AAGTACCTCA	GCGTCAGCTT	360
CCGCCTCAAC	CAGTGCGTCG	GCTTCAGCAA	GCACAAGTGC	GTCAGCCTCA	GCAAGTATCT	420
CAGCGTCTGA	ATCGGCATCA	ACGAGTGCGT	CTGAGTCAGC	ATCAACGAGT	ACGTCAGCCT	480
CAGCAAGCAC	ATCAGCTTCT	GAATCGGCAT	CAACCAGTGC	GTCAGCCTCA	GCATCGACAA	540
GCGCCTCAGC	TTCAGCAAGT	ACCAGTGCTT	CAGCCTCAGC	GTCGACAAGT	GCGTCGGCCT	600
CAACCAGTGC	ATCTGAATCG	GCATCAACCA	GTGCGTCAGC	CTCAGCAAGT	ACTAGTGCAT	660

CAGCTTCAGC ATCAACGAGT GCATCGGCTT

690

(2) INFORMATION FOR SEQ ID NO: 378:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1003 base pairs
 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 378:

CGAGATTCTC TGGAGTTATG GATGTCGTTC CAATATGTGC ACGTTGGAAT G	STTAGTGCTT 60
ATATGGGGGG AACAGAATCC TCTCTTGATT GAAGACAAGC TAGTCATTAG G	CTGGTTTGT 120
CTTTTTGTCA ACTGTAGTGG GTTGATATAA TAGTATTAGT GAGTGGGATA A	AAGTTTCAT 180
TTAGTTTATT CAGTACAAAT TTAACGGGTC AAGATTTATA TACTAGTGGT G	STTTTTGGGG 240
CTGAGAGAAG TATCTTGATT TTATGTGTGG TTTTTATACT TACAGTTGTT C	TTGCTCCAAA 300
GAGCTTGTAG AGAAGAATTA GCTCATAAAG GAGATTGATT ATTTTGATAT C	CAAAAAAATG 360
CACAGGATAA CCTGATGCAT TTTTTTAGCG ACAATGCTTG CTACTTCCTT C	TTGTCGAATT 420
TAGACAATTT TAAACCCCAA TTATTCACCC CAAATCTAAA AACCATCCAG A	AATCCTTGCC 480
TTAGCTTAGA TCCTGGATGG TTTCTTTTTT CACCCAATGG GTGTTTTTTA C	CTAGACAAAA 540
AAGAGTTTCC CCTTTATGGT ATAAGTGTAG AAAAAAACAC AAAAAGAAAG	GAAACTCACA 600
TGAACAGTTT ACCAAATCAT CACTTCCAAA ACAAGTCTTT TTACCAACTA 1	TCTTTCGATG 660
GAGGTCATTT AACCCAGTAT GGTGGTCTTA TCTTTTTTCA GGAACTTTTT 1	rcccagttga 720
AACTAAAAGA GCGGATTTCT AAGTATTTAG TAACGAATGA CCAACGCCGC 1	TACTGTCGTT 780
ATTCGGATTC AGATATCCTT GTCCAGTTCC TCTTTCAACT GTTAACAGGT 1	TATGGAACGG 840
ACTATGCTTG TAAAGAATTG TCAGCTGATG CCTACTTTCC AAAATTATTG	GAAGGAGGC 900
AGCTTGCTTC ACAGCCAACC TTATCCCGTT TTCTTTCCAG AACTGACGAG	GAAACAGTCC 960
ATAGTTTGCG ATGCCTCAAC CTTGAATTGG TCGAATTCTT TTT	1003

(2) INFORMATION FOR SEQ ID NO: 379:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 738 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

⁽xi) SEQUENCE DESCRIPTION: SEQ ID NO: 379:

CCGATGATTC	TGATTGGTTT	GCTCTTTACT	TTGCTGGGAA	TTTTGAGGTA	GATCTATGAT	6
TGAAATACTA	ATTGTTTTAG	CTATTATCCT	ATCTCTTGCT	TTGATTGTAT	TGGTAACTAT	12
ACAACCCCGT	CAAAATCAAC	TATTTTCCAT	GGATGCCACT	AGTAATATTG	GTAAACCAAG	18
CTACTGGCAG	AGCAACACCT	TGGTCAAGGT	GCTCACTTTA	TTGGTGAGTT	TGGCTTTATT	246
таттстаста	TTAACCTTTA	TGGTGATTAC	TTATAAATAA	AAGAAAACTT	CAGATATTCA	300
CCTTTTGTGG	ATTGGTCTGA	AGTTTTCTTT	TTTATACTCA	ATGAAAATCA	AAGAGCAAAC	360
TAGGAAGCTA	GCCGCAckGC	TCAAAACACC	GTTTTGAGGT	TGTAGATATA	ACTGACGAGC	420
GACTCAAAAC	ACCGTTTTGA	GGTTGTAGAT	ATAACTGACG	AGCGACTCAA	AACACCGTTT	486
TGAGGTTGTG	GATAGAACTG	ACGAGCGACT	CAAAACACCG	TTTTGAGGTT	GTGGATAGAA	540
CTGACGAAGT	CGCTCAAAAC	ACCGTTTTGA	GGTTGTGGAT	AGAACTGACG	AAtgctCAAA	600
ACACCGTTTT	GAGGTTGTGG	ATAGAACTGA	CGAAGCgaaC	ATATATACAG	CAAGGCGACG	660
CTGACGTGGT	TTGAAGAGTA	TTACTGTCTA	TATTTTTGGT	AAAAATCAAC	TTTTACTTGG	720
ATGAAGGTTT	TTTTTTT					738

(2) INFORMATION FOR SEQ ID NO: 380:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 695 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 380:

CCGTCTTATC	AAAGAGGTTA	ACAAAGGCAC	CAAATTTCTC	GATACGAACG	ACTTTAGCAC	60
GGTAAACTTC	ATCCACTTTG	GCTTCACGAA	CCAAACCAGC	AATAATTTCT	TTGGCACGGT	120
TAATAGCATC	TTGGTCACTA	GAGTAGATAG	ACACATTTCC	TTCTTCGTCT	ATATCAATCT	180
TAACACCTGT	TTCAGCGATA	ATCTTGTCGA	TGGTTTCTCC	ACCCTTACCG	ATGACAATCT	240
TAATCTTGTC	CACATCAATC	TTGATCGTAT	CAATTTTCGG	AGCAGTTGGA	GCCAATTCTG	300
GACGAACTTC	TGGAATGGTT	GCTTCAATGA	CATCAAGGAT	TTCAAAACGC	GCTTTCTTGG	360
CTTGAGCAAG	AGCCTCCGTC	AAGATTTCTG	CAGTAATCCC	TTGAATCTTG	ATATCCATTT	420
GAAGGGCTGT	AATCCCATCA	CGAGTACCTG	CAACCTTGAA	GTCCATATCT	CCAAAGTGAT	480
CTTCCAAACC	TTGGATATCT	GTCAATACTG	TGTAGTTATT	TCCATCTGAG	ATAAGCCCCA	540
TAGCAATACC	AGCTACTGGC	GCCTTGATTG	GCACACCACC	AGCCATAAGG	GCAAGAGTTC	600

WO 98/18931 PCT/US97/19588

1392						
CCGCACAGAT AGAAGCTTGA GATGAAGAAC CGTTTGATTC CAAAACTTCT GCTACTAGAC	660					
GGATAGCGTA GGGGAATTCT TCCAAGCTTG GCAGG	695					
(2) INFORMATION FOR SEQ ID NO: 381:						
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 691 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear						
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 381:						
GACATCTTAT CTAAATACAT GCTAATATAT TTAGATACAA ACATTCCAAC TTGATAATTT	60					
TCACTCATCT TTCATCATTC CTTATACAAC TATGCAGTAT AAATAGAATA GTTTTCTCAT	120					
CAGAATGAGA CTATTTTAAT ATTAGATCCC CAATTATTCA CCCCAAATCT AAAAACCATC	180					
CAGAATCCTT GCCTTAGCTT AGATCCTGGA TGGTTTCTTT TTTCACCCAA TGGGTGTTTT	240					
TTACTAGACA AAAAAGAGTT TCCCCTTTAT GGTATAAGTG TAGAAAAAAA CACAAAAAGA	300					
AAGGAAACTC ACATGAACAG TTTACCAAAT CATCACTTCC AAAACAAGTC TTTTTACCAA	360					
CTATCTTTCG ATGGAGGTCA TTTAACCCAG TATGGTGGTC TTATCTTTTT TCAGGAACTT	420					
TTTTCCCAGT TGAAACTAAA AGAGCGGATT TCTAAGTATT TAGTAACGAA TGACCAACGC	480					
CGCTACTGTC GTTATTCGGA TTCAGATATC CTTGTCCAGT TCCTCTTTCA ACTGTTAACA	540					
GGTTATGGAA CGGACTATGC TTGTAAAGAA TTGTCAGCTG ATGCCTACTT TCCAAAATTG	600					
TTGGAAGGAG GGCAGCTTGc TTCACAGCCA ACCTTATCCC GWTTTCTTTC CAGAACTGAC	660					
GAGGAAACAG TCCATAGTTT GCGATGCCTC A	691					
(2) INFORMATION FOR SEQ ID NO: 382:						
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 750 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear						
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 382:						
ATCTCTCTGC GTAATGGTCC TCAGATAACT CTGATGATGT GTGGCGATAT AGAACTGAGC	60					
CAAGTTATGC CTAAAGGGCC TTAGGAATAG GAGCTTTCAC AAGCTTATCC AGATGATTAT	120					
CTTTTACTCG TTATGGACAA TGCTATATGG CATAAATCAA GTACCTTAAA GATTCCGACT	180					
AATATTGGCT TTGCATTTAT TCCTCCATAC ACACCAGA TGAACCCCAT TGAACAACTG	240					

WO 98/18931 PCT/US97/19588

1393

T	GGAAAGAGA	TTCGTAAACG	TGGATTTAAG	AATAAAGCCT	TTCGAACTTT	GGAAGATGTC	30
A'	TACAAGGAC	TGGAGAAGGA	GGTGATAAAG	TCCATCGTTA	ATCGGAGACG	GACTAGAATG	360
Ç.	PTTTTGAAA	ACAGATGAGT	ATAAAAAGAA	AGTCCTCATT	TCAATAGAAA	TCACGACTTT	420
C	rgatgaatt	TATAGTAAAA	TGAAATAAGA	ACAGGATAGT	CAAATCGATT	TCTAACAATG	480
T	TTAGAAGC	AGAGGTGTAC	TATTCTAGTT	TAAATCCACT	ATATTTGGGG	AGTGATAGAA	540
A	AGCCCTTCA	TCAGCCAATC	TACTTGTTCA	GGTGCGAGAG	CTTTGACATC	CTTTTCTGTA	600
C	rggaccaag	TCAGTTTTCC	GTTCTCAAAG	CGTTTATATA	ATATCCAAAA	TCCTTGACCA	660
T	CCAGTAAA	GAACTTTAAA	GCGGTCTTTA	CGTCCACCAC	AAAAGAGAAA	GACTTGATCG	720
G.	GAAAGGAT	CCAATTCAAA	GTGGGTTTGG				750

(2) INFORMATION FOR SEQ ID NO: 383:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 738 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 383:

TCAAATTCTT	CGTGGTCCGC	ATATCTnTCT	TCGTACACGG	CAGTCACTTG	GTCTTTCACT	60
ACTCGAGTCG	CAGCTTCACG	GGCCAATTTC	TCTTCTACTT	GAACTGCCTT	TTGGAGGTCA	120
CTGTTGTAGG	CTGCAATGAT	TTCAGCTTGC	AATTCAGCAT	CCACGTGAAG	CAATTCCACT	180
TCTGCTTTTT	CTTTACCGAC	AGCAGCAACG	ATTTCTTCTT	GGAAGGCAAT	CAATTCTTTG	240
ACAGCTTCGT	GCCCTTTAAG	GAGCGCTTCC	AACATGATTT	CTTCTGACAA	TTCTTTGGCA	300
CCAGACTCTA	CCATGTTGAT	AGCGTGCTTG	GTTCCAGCTA	CTGTCAATTC	AAGAAGAGAT	360
TGCTCTGCTT	GTTCTTGACT	TGGGTTGATG	ATGATTTGGC	CATCTACATA	TCCCACTTGT	420
ACCCCAGCAA	TTGGTCCGTC	AAATGGAATA	TCTGAAATAG	ACAGTGCCAA	AGATGAACCA	480
AACATAGCAG	CCATTGGTGC	AGATGCATTT	TCATCATAAG	AAAGCACTGT	ATTGATGACT	540
TGGACTTCAT	TACGGAAACC	TTCCGCAAAC	ATAGGACGAA	TCGGACGGTC	AATCAAACGC	600
GCTGTCAAGG	TCGCATCTGT	TGAAGGACGT	CCTTCACGTT	TCATAAAGCC	ACCAGGAAAC	660
TTCCCAGCCG	CATACATTTT	TTCTTCGTAG	TTGACTTGGA	GTGGGAAGAA	ATCCTCAGTT	720
GCCATTTTCT	GGGGATCC					738

(2) INFORMATION FOR SEQ ID NO: 384:

WO 98/18931 PCT/US97/19588

1394

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 657 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 384:

CCCCCTATTT	ACCGTGGACT	AAAGTTGTAC	AAGAAAAGTG	CAAATAAGAA	ATCTCCAGAT	60
						100
TAGGAACTAT	ATATGAGTTC	TCTAGTCTGG	AGATTTTTCA	ATAGACTICG	TTATTGGGCG	120
GTTACTTTCG	AAACTTTGAA	AACTTCAAAA	AACGGATTTT	TATCGCTTTC	AAATTCTTTT	180
GGGGTCAAAC	TCAGTAACTT	ATTCGCCTTG	TAGACTTCAT	GACGCTCAGG	GTATACTTTC	240
AAGGTCCCAA	ATAGCCAAGA	ATCGTCAGCG	ATATTATCTG	AATCATCTCC	TTCTTGTTCT	300
CCTTTAGTTC	GCCTGAGGAC	AGCCTTGACA	CGCGCCAGAA	TTCTCTAGGG	CTAAAAGGCT	360
TGGTCAGGTA	GTCATCAGCC	CCTAATTCCA	AGGCCAAAAC	CTTATCAAAT	TCATCACTTT	420
TCGCAGAAAC	CATCATAATT	GGAGTTTTGA	CGCCTTTGGC	TCTCAGCCGC	TTACAAACTT	480
CCATGCCATC	TAATTGTGGT	AACATGATAT	CAAGCAAGAT	AAAATCAAAG	GGTTCTGTTT	540
						,
Crgccaaage	TAAGGCCTTC	CGTCCATTTG	TCACCAATTG	AGTAGAAAAG	CCTTCCTTAC	600
TTAAATGGTA	GTCAAGCAAT	TTCAGAATGT	GTTCTTCATC	ATCCACTAAT	AAGACTT	657

(2) INFORMATION FOR SEQ ID NO: 385:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 586 base pairs
 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 385:

CCGCATCAGC ATCA	ACGAGT GCATCGGCTT	CACGTCAACC	AGTGCATCAG	TCTCAGCALG	60
CACCAGTGCG TCGG	CTTCAG CATCAACGAG	TGCCTCAGCC	TCAGCAAGTA	TCTCAGCGTC	120
TGAATCGGCA TCAA	CGAGTG CGTCAGCTCA	GCAAGTACTA	GTGCATCGGC	TTCAGCAAGC	180
ACCAGTGCGT CGGC	TTCAGC ATCAACCAGT	GCCTCAGCCT	CAGCAAGTAT	CTCAGCGTCT	240
GAATCGGCAT CAAC	GAGTGC GTCACCTCAG	CAAGTACTAG	TGCATCAGCA	TCAGCATCAA	300
CGAGTGCATC GGCT	TCAGCA AGTACCAGCO	CCTCAGCTTC	AGCAAGCACC	AGTGCGTCAC	360
CTCAGCAAGT ACCA	GCGCCT CAGCCTCAGC	AAGCACCAGT	GCCTCAGCTT	CAGCAAGTAC	420
CAGTGCGTCA CCTC	AGCATC GACAAGTGCG	TCGGCTTCAG	CAAGTACCTC	AGCGTCTGAA	480

TCAGCATCAA CGAGTGCGTC AGCTTCAGCA TCAACCAGTG CCTCAGCCTC AGCAAGTATC	540
AGTGCGTCAG CTTCAGCATC AACGAGTGCG TCAGCTGCAG CAAGTA	586
(2) INFORMATION FOR SEQ ID NO: 386:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 451 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 386:	
CGTCGGCTTC AGCATCAACG AGTGCATCAG CTTCAGCATC AACAAGTGCT TCAGCTTCAG	60
CAAGTACCAG TGCGTCGGCT TCAGCATCAA CGAGTGCTTC AGTCTCAGCG TCAACCAGTG	120
CCTCTGAATC CGCATCAACA AGTGCCTCGG CTTCAGCAAG CACCAGTGCT TCGGCTTCAG	180
CGTCAACGAG TGCGTCTGAG TCAGCATCAA CGAGTGCGTC ACCTCAGCAA GCACATCAGC	240
TTCTGAATCT GCATCAACCA GTGCGTCAGC TTCCGCATCA ACAAGCGCCT CGGCCTCAGC	300
AAGTACAAGT GCTTCAGCCT CAGCATCAAC CAGTGCATCA GCTTCAGCCT CAACAAGTGC	360
TTCAGCCTCA GCGTCAACCA GTGCCTCGGC TTCAGCAAGT ACCAGTGCGT CAGTTCAGCA	420
AGCACAAGTG CGTCAATTTA GCATCAACCA G	451
(2) INFORMATION FOR SEQ ID NO: 387:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 425 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 387:	
TCTCAGCAAG CACCATTGCG TCGGCTTCAT CAAGCACCAG CGCGTTTGAA TCCGCATCAA	60
CCAGTGCTTC AGCTTCAGCC AAGTTACCTC AGCATCTGAA TCAGCATCAA CAAGTGCATC	120
GGCTTCAGCA AGCACAAGTG CTTCAGCtCA GCAAGTATCT CAGCGTCTGA ATCGGCATCA	180
ACGAGTGCGT CCGCTTCAGC AAGTACTAGC GCCTCAGCAT CAGCGTCAAC AAGTGCTTCG	240
GCTTCAGCGT CAACGAGTGC GTCTGAGTCA GCATCAACGA GTACGTCAGC CTCAGCAAGC	300
ACATCAGCTT CTGAATCTGC ATCAACCAGT GCGTCAGCCT CAGCATCGAC AAGCGCCTCA	360
COMPANIES CONTROLOGICO CONTROLO	420

360

420

1396 ACAAG	425
(2) INFORMATION FOR SEQ ID NO: 388:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 572 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 388:	
AGAGGATCCC CGGATCCTCA GTCGCTGAGA TAACTCCTTT GGGCTTGTTC ATCATGTAGT	60
AGACAAACTC TTCATACTCC AACACTTGCC CATTTTATGC GAATCTCATC TATTTTTTCT	120
TTTTTTTGCA ATTTAGCTGA TTTTTCTTTT TTACCATTTA CAGTCACGCG CCCAGCCTTG	180
AGCAAGTTTT TGACCTCAGT CCGACTTCCC ACCGCACAGG CAACTAAAAA TTTATCTAAT	240
CTCATAGAAC TATTATATCA TATCAAAAGG AGGCTAGTAC AATGACCAAC CTCCTTTTCG	300
TTTCATACTC TTCAAAAATC TCTTCAAACC GCGTCAACGT CGCCTTGCCG TATATATGTT	360
ACTGACTTCG TCAGTTCTAT CTGCAACCTC AAAACAGTGT TTTGAGCTGA CTTCGTCAGT	420
TCTATCTGCA ACCTCAAAGC AGTGCTTTGA GCATCCTGCG GCTAGTTTCC KAGTKTGCTC	480
TTTGATTTWC ATTGAGTATC AGATTTAGGA AATTAACTTC CTCGKCTCCA AAAAAKAGCT	540
AAAACAATCA AGGCTCCTAA AATCGCTGGG AT	572
(2) INFORMATION FOR SEQ ID NO: 389:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 505 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 389:	
CAACAAGTGC CTCGGCTTCA GCATGCACAA GTGCTTCAGC TTCAGCATGT ACCTGAGCGT	60
CTGAATCAGC ATCAACGTGT GCGTCCGCTT CAGCATGTAC TGCTGCCTCA GCATCAGCGT	120
CAACAWGTGC TTCGGCTTCA GCGTCAACGA GTGCGTCTGA GTCAGCATCA ACGAGTACGT	180
CAGCCTCAGC AAGCACATCA GCTTCTGAAT CTGCATCAAC CAGTGCGTCA GCCTCAGCAT	240

CGACAAGCGC CTCAGCTTCA GCAAGTACCA GTGCGTCAGC CTCAGCAAGT ACCAGTGCTT

CAGCCTCAGC GTCGACAAGT GCGTCGGCCT CAACCAGTGC ATCTGAATCG GCATCAACCA

GTGCGTCAGC CTCAGCAAGT ACTAGCGCCT CAGCCTCAGC ATCAACGAGT GCGTCCGCTT

WO 98/18931 PCT/US97/19588

CAGCAAGTAC TAGTGCATCA GCATCAGCAT CAACGAGTGC ATCGGCTTCA GCAAGTACCA	48
GCGCCTCAGC TTCAGCAAGC ACCGG	50
(2) INFORMATION FOR SEQ ID NO: 390:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 447 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 390:	
GCTAAGACTA CCTCATTAGG GGCATAGGCT GCTAAAATAA CTGCAGCTGT GGTTAATGAC	6
AATACTGTAC TTTTTTCAT TTTAATTCCT TACATATTTA TATAACTTCC AATAGATAAT	120
AAACTTTAAC TITGCTAGCC TITGTTATAA AAAGTTTTAC TAAGTATTAT CTAGGAAATA	180
GAGTAGTACA TITATATATA ATTGTTATCT CTCTATAAAA ACAGTATATC ATTTAAAAAA	240
ATTTAAGTCA AAAAAATTAA CATTAGTTAA TTTATTTTTT AGCACACATT AAAAAATAAG	300
ATTAGTACTC AATGAAAATC AAAGAGCAAA CTAGGAAACT AGCCGCAGAT TGCTCAAAAC	360
AGTGTTTTGA GGTTGTAGAT GGAATGACGT AGTCAGCTCA AAACACTGTT TTGAAGTTGT	420
GGATAGAACT GACGAAGTCG GTACCGA	44
(2) INFORMATION FOR SEQ ID NO: 391:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 572 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 391:	
AGCACTTGTC GTTGAATTCT ACAACAAAAT GTTGTAATAT TTTATTGAAT AAGATAGGCC	60
TIGATATTAA GCACTITIGGG ACGITCTCCC TTAGTGCTTT TTTGATTTCT CTTAGTATCC	12
AGCTATAATC GTTGAGACAT AACTAGACCG ATATAGTCCA AAGTGATATA GTAAAATGAA	18
CCAAAAATAG TACACAATGT GGTATAATCC TTTTATGGCA TATTCAATAG ATTTTCGTAA	24
AAAAGTTCTC TCTTATTGTG AGCGAACAGG TAGTATAACA GAAGCATCAC ACGTTTTCCA	30
AATCTCACGT AATACCATTT ATGGCTGGTT AAAGCTAAAA GAGAAAACAG GAGAGCTAAA	36
CCACCAAGTA TAGTGTATTG AATCTATAAC AGTACACCTT GGCTGCTAAA ATATTTCTAT	42

WO 98/18931 PCT/US97/19588

AAATTAATTT	GACTTTCCTG	ATAGAGATGT	1398 TCACATCTTA	TTTCAAACTA	CTATATAAGT	480
TCTATAATCT	CTTTATAAGA	TTTGCCCATC	AGACAAAATA	GAACGATTTG	AAGGCGTTTA	540
TGATATTTAG	CTGTACGAGA	GTCTTTTAAA	AG			572

MISSING UPON TIME OF PUBLICATION

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person approved by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PUT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the International publication of the application.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapse, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever two dates occurs earlier.

Page 2

1401

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegians Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

ICELAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected in the art.

What Is Claimed Is:

25

1. Computer readable medium having recorded thereon the nucleotide sequence depicted in SEQ ID NOS:1-391, a representative fragment thereof or a nucleotide sequence at least 95% identical to a nucleotide sequence depicted in SEQ ID NOS:1-391.

30

2. Computer readable medium having recorded thereon any one of the fragments of SEQ ID NOS:1-391 depicted in Tables 2 and 3 or a degenerate variant thereof.

35

3. The computer readable medium of claim 1, wherein said medium is selected from the group consisting of a floppy disc, a hard disc, random access memory (RAM), read only memory (ROM), and CD-ROM.

40

4. The computer readable medium of claim 3, wherein said medium is selected from the group consisting of a floppy disc, a hard disc, random access memory (RAM), read only memory (ROM), and CD-ROM.

5. A computer-based system for identifying fragments of the *Streptococcus* pneumoniae genome of commercial importance comprising the following elements:

45

a) a data storage means comprising the nucleotide sequence of SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95% identical to a nucleotide sequence of SEQ ID NOS:1-391;

43

b) search means for comparing a target sequence to the nucleotide sequence of the data storage means of step (a) to identify homologous sequence(s), and

50

c) retrieval means for obtaining said homologous sequence(s) of step (b).6. A method for identifying commercially important nucleic acid fragments

of the Streptococcus pneumoniae genome comprising the step of comparing a database comprising the nucleotide sequences depicted in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95% identical to a nucleotide sequence of SEQ ID NOS:1-391 with a target sequence to obtain a nucleic acid molecule comprised of a complementary nucleotide sequence to said—target sequence, wherein said target sequence is not randomly selected.

65

70

75

80

85

- 7. A method for identifying an expression modulating fragment of Streptococcus pneumoniae genome comprising the step of comparing a database comprising the nucleotide sequences depicted in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95% identical to the nucleotide sequence of SEQ ID NOS:1-391 with a target sequence to obtain a nucleic acid molecule comprised of a complementary nucleotide sequence to said target sequence, wherein said target sequence comprises sequences known to regulate gene expression.
- 8. An isolated protein-encoding nucleic acid fragment of the *Streptococcus* pneumoniae genome, wherein said fragment consists of the nucleotide sequence of any one of the fragments of SEQ ID NOS:1-391 depicted in Tables 2 and 3, or a degenerate variant thereof.
- 9. A vector comprising any one of the fragments of the *Streptococcus* pneumoniae genome SEQ ID NOS:1-391 depicted in Tables 2 and 3 or a degenerate variant thereof.
- 10. An isolated fragment of the *Streptococcus pneumoniae* genome, wherein said fragment modulates the expression of an operably linked open reading frame, wherein said fragment consists of the nucleotide sequence from about 10 to 200 bases in length which is 5' to any one of the open reading frames depicted in Tables 2 and 3 or a degenerate variant thereof.
- 11. A vector comprising any one of the fragments of the Streptococcus pneumoniae genome of claim 8.
- 12. An organism which has been altered to contain any one of the fragments of the *Streptococcus pneumoniae* genome of claim 8.
- 13. An organism which has been altered to contain any one of the fragments of the *Streptococcus pneumoniae* genome of claim 10.

- 14. A method for regulating the expression of a nucleic acid molecule comprising the step of covalently attaching to said nucleic acid molecule a nucleic acid molecule consisting of the nucleotide sequence from about 10 to 100 bases 5' to any one of the fragments of the *Streptococcus pneumoniae* genome depicted in SEQ ID NOS:1-391 and Tables 2 and 3 or a degenerate variant thereof.
- 15. An isolated nucleic acid molecule encoding a homolog of any of the fragments of the *Streptococcus pneumoniae* genome of SEQ ID NOS:1-391 and Tables 2 and 3, wherein said nucleic acid molecule is produced by a process comprising steps of:
- a) screening a genomic DNA library using as a probe a target sequence defined by any of SEQ ID NOS:1-391 and Tables 2 and 3, including fragments thereof;
- b) identifying members of said library which contain sequences that hybridize to said target sequence; and
- c) isolating the nucleic acid molecules from said members identified in step (b).
- 16. An isolated DNA molecule encoding a homolog of any one of the fragments of the *Streptococcus pneumoniae* genome of SEQ ID NOS:1-391 and Tables 2 and 3, wherein said nucleic acid molecule is produced a process comprising steps of:
 - a) isolating mRNA, DNA, or cDNA produced from an organism;
- b) amplifying nucleic acid molecules whose nucleotide sequence is homologous to amplification primers derived from said fragment of said Streptococcus pneumoniae genome to prime said amplification;
 - c) isolating said amplified sequences produced in step (b).
- 17. An isolated polypeptide encoded by any of the fragments of the *Streptococcus pneumoniae* genome of SEQ ID NOS:1-391 and depicted in Table 2 and 3 or by a degenerate variant of said fragments.
- 18. An isolated polynucleotide molecule encoding any one of the polypeptides of claim 17.

100

105

110

115

120

WO 98/18931

19. An antibody which selectively binds to any one of the polypeptides of claim 17.

130

20. A method for producing a polypeptide in a host cell comprising the steps of:

- a) incubating a host containing a heterologous nucleic acid molecule whose nucleotide sequence consists of any one of the fragments of the *Streptococcus* pneumoniae genome of SEQ ID NOS:1-391 and depicted in Tables 2 and 3, under conditions where said heterologous nucleic acid molecule is expressed to produce said protein, and
 - b) isolating said protein.

Figure 1 Removable Storage 911 Medium Secondary Storage Devices 110 108 901 Removable Medium Storage Device Hard Drive Majn Memory Processor Computer System 102 104 BUS

DNA Sample Files

(Macintosh)

AB 373 and 377

Figure 2

Rapid Assembly and Ordering of Thousands of Sequences [TIGR Assembler] fasm_align]

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/31, C07K 14/315, 16/12, C12Q 1/68

(11) International Publication Number:

WO 98/18931

(43) International Publication Date:

7 May 1998 (07.05.98)

(21) International Application Number:

PCT/US97/19588

A3

(22) International Filing Date:

30 October 1997 (30.10.97)

(30) Priority Data:

60/029,960

31 October 1996 (31.10.96)

US

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KUNSCH, Charles, A. [US/US]; 2398B Dunwoody Crossing, Atlanta, GA 30338 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). BARASH, Steven, C. [US/US]; 582 College Parkway #303, Rockville, MD 20850 (US). FANNON, Michael [US/US]; 13501 Rippling Brook Drive, Silver Spring, MD 20850 (US). DOUGHERTY, Brian, A. [US/US]; 708 Meadow Field Court, Mount Airy, MD 21771 (US).

(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:
20 August 1998 (20.08.98)

(54) Title: STREPTOCOCCUS PNEUMONIAE POLYNUCLEOTIDES AND SEQUENCES

(57) Abstract

The present invention provides polynucleotide sequences of the genome of *Streptococcus pneumoniae*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LÜ	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	тј	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda ·
BY	Belarus	IS	Iceland	. MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany -	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

In. .ational Application No PCT/US 97/19588

A. CLASSII	FICATION OF SUBJECT MATTER						
IPC 6	C12N15/31 C07K14/315 C07K16	/12 C12Q1/68					
According to	nternational Patent Classification (IPC) or to both national classifi	cation and IPC					
	SEARCHED	D					
IPC 6	ocumentation searched (classification system followed by classifica C12N C07K C12Q	ition symbols)					
Documentat	tion searched other than minimum documentation to the extent that	such documents are included in the fields seal	rched				
Electronic d	ata base consulted during the international search (name of data b	ase and, where practical, search terms used)					
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT						
Category °	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.				
A	WO 96 33276 A (HUMAN GENOME SCI ;UNIV JOHNS HOPKINS (US)) 24 Oc see claims 1-7	ENCES INC tober 1996	1-7				
A	ALTSCHUL S F ET AL: "BASIL LOC ALIGNMENT SEARCH TOOL" JOURNAL OF MOLECULAR BIOLOGY, vol. 215, 1990, pages 403-410, XP000604562 cited in the application see the whole document	AL	1-7				
		-/					
X Furt	l her documents are listed in the continuation of box C.	X Patent family members are listed in	annex.				
° Special of	ategories of cited documents :		national filing data				
A docum	ent defining the general state of the art which is not	T later document published after the inter or priority date and not in conflict with to cited to understand the principle or the	the application but				
"E" earlier	dered to be of particular relevance document but published on or after the international	invention "X" document of particular relevance; the of					
	ent which may throw doubts on priority claim(s) or	cannot be considered novel or cannot involve an inventive step when the do	be considered to				
citatio	is cited to establish the publication date of another in or other special reason (as specified)	"Y" document of particular relevance; the considered to involve an inv	rentive step when the				
other	ent referring to an oral disclosure, use, exhibition or means	document is combined with one or mo ments, such combination being obviou	re other such docu-				
"P" docum	ent published prior to the international filing date but han the priority date claimed	in the art. "&" document member of the same patent 1	amily				
Date of the	actual completion of the international search	Date of mailing of the international sear	roh report				
2	27 March 1998	0 8. 07. 98	3				
Name and	mailing address of the ISA	Authorized officer					
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.						
	Fax: (+31-70) 340-2040, 1X: 31 651 epo nl, Fax: (+31-70) 340-3016 HORNIG H.						

Int. .iional Application No PCT/US 97/19588

C (Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 97/19588
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
		New York to Charle 140.
A	W.R. PEARSON AND D.J. LIPMAN: "Improved tools for biological sequence comparison" PROC. NATL. ACAD. SCI., vol. 85, April 1988, NATL. ACAD. SCI., WASHINGTON, DC, US;, pages 2444-2448, XP002060460 cited in the application see the whole document	1-7
A	WO 95 06732 A (UNIV ROCKEFELLER ;MASURE H ROBERT (US); PEARCE BARBARA J (US); TUO) 9 March 1995 see the whole document	1-7
A	WO 95 31548 A (UAB RESEARCH FOUNDATION ;YOTHER JANET (US); DILLARD JOSEPH P (US)) 23 November 1995 see the whole document	1-7
A	WO 95 14712 A (RES CORP TECHNOLOGIES INC) 1 June 1995 see the whole document	1-7
Α	WO 96 05859 A (AMERICAN CYANAMID CO) 29 February 1996 see the whole document	1-7
A	WO 93 10238 A (US HEALTH) 27 May 1993 see the whole document	1-7
A	EP 0 687 688 A (UNIV OVIEDO ;UNIV LEICESTER (GB)) 20 December 1995 see the whole document	1-7
A	EP 0 622 081 A (UAB RESEARCH FOUNDATION) 2 November 1994 see the whole document	1-7
	·	
	<u> </u>	

... cernational application No.

PCT/US 97/19588

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X 2	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 1-4 could be, at least partially be considered as a mere presentation of information Rule 39.1(v), and claims 5-7 at least partially as a computer program, Rule 39.1(vi)PCT, the search has been carried out as far as possible in our systematic documentation. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
se	e continuation-sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
 1	·
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is
	restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
	1-7
Remari	The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

1. Claims: 1-7\ ()

Computer readable medium having recorded thereon the nucleotide sequence depicted in SEQ ID nos. 1-391, a representative fragment thereof or a nucleotide sequence at least 95% identical to a nucleotide sequence depicted in SEQ ID nos. 1-391; a computer-based system for identifying fragments of the Streptococcus pneumoniae genome of commercial importance comprising: a) a data storage means comprising said nucleotide sequence(s); b) search means for comparing a target sequence to the nucleotide sequence of the data storage means of step (a) to identify homologous sequence(s), and c) retrieval means for obtaining said homologous sequence(s) of step (b); a method for identifying commercially important nucleic acid fragments of the Streptococcus pneumoniae genome comprising the step of comparing a database comprising said nucleotide sequence(s) with a target sequence to obtain a nucleic acid molecule comprised of a complementary nucleotide sequence to said target sequence, wherein said target sequence is not randomly selected; a method for identifying an expression modulating fragments of the Streptococcus pneumoniae genome comprising the step of comparing a database comprising said nucleotide sequence(s) with a target sequence to obtain a nucleic acid molecule comprised of a complementary nucleotide sequence to said target sequence, wherein said target sequence comprises sequences known to regulate gene expression;

2. Claims: (8-20) partially

An isolated protein-encoded nucleic acid fragment of the Streptococcus pneumoniae genome, wherein said fragment consists of the nucleotide sequence of the fragment of SEQ ID no.1 depicted in Tables 2 and 3, or a degenerate variant thereof; a vector comprising the fragment of the Streptococcus pneumoniae genome SEQ ID no.1; an isolated fragment of the Streptococcus pneumoniae genome, wherein said fragment modulates the expression of an operably linked open reading frame, wherein said fragment consists of the nucleotide sequence from about 10 to 200 bases in length which is 5' to any one of the open reading frame of SEQ ID no.1 depicted in Tables 2 and 3 or a degenerate variant thereof; a method for regulating the expression of a nucleic acid molecule comprising the step of covalently attaching to said nucleic acid molecule a nucleic acid molecule consisting of the nucleotide sequence from about 10 to 100 bases 5' to any one of the open reading frame of SEQ ID no.1 and Tables 2 and 3 or a degenerate variant thereof; an isolated nucleic acid molecule encoding a homolog of SEQ ID no.1; an isolated polypeptide encoded by SEQ ID no.1 and depicted in Table 2 and 3; an antibody which selectively binds to any one of said polypeptides, a method for producing a polypeptide in a host cell comprising a) incubating a host containing a heterologous nucleic acid

Information on patent family members

Int ational Application No PCT/US 97/ L9588

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9633276 A	24-10-96	AU 5552396 A EP 0821737 A	,07-11-96 ,04-02-98
WO 9506732 A	09-03-95	AU 7680994 A CA 2170726 A EP 0721506 A FI 960977 A JP 9504686 T NO 960839 A	22-03-95 09-03-95 17-07-96 30-04-96 13-05-97 19-04-96
WO 9531548 A	23-11-95	AU 2638595 A EP 0804582 A	05-12-95 05-11-97
WG 9514712 A	01-06-95	US 5474905 A	12-12-95
WO 9605859 A	29-02-96	US 5565204 A AU 3363695 A CA 2198251 A EP 0778781 A JP 10504717 T	15-10-96 14-03-96 29-02-96 18-06-97 12-05-98
WO 9310238 A	27-05-93	AU 3065892 A	15-06-93
EP 0687688 A	20-12-95	ES 2075803 A ES 2088820 A WO 9516711 A	01-10-95 16-09-96 22-06-95
EP 0622081 A	02-11-94	AU 682018 B AU 5769694 A CA 2116261 A FI 941695 A JP 7126291 A NO 941420 A US 5679768 A ZA 9401584 A	18-09-97 27-10-94 21-10-94 21-10-94 16-05-95 21-10-94 21-10-97

08/8/10 DE

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

molecule whose nucleotide sequence consists of SEQ ID no.1 and depicted in Table 2 and 3, under conditions where said heterologous nucleic acid molecule is expressed to produce said protein, and b) isolating said protein;

3-392. Claims: (8-20) partially

Idem as subject 2 but limited to each of the sequences of SEQ ID no. 2 to 391:

For the sake of conciseness, the second subject matter is explicitly defined, the other subject matters are defined by analogy hereto.