Definición 0.1 Dado un plano Π se puede establecer un sistema de coordenadas formado por dos ejes perpendiculares con origen común.

Si OX, OY son los ejes, denotamos por OXY al sistema de coordenadas

Definición 0.2 Si tenemos un sistema de coordenadas OXY sobre el plano Π , se establece una correspondencia biunívoca entre π y \mathbb{R}^2 , de la siguiente manera

- (1) $A P \in OX \longmapsto (x, 0) \in \mathbb{R}^2$
- (2) $A P \in OY \longmapsto (0,y) \in \mathbb{R}^2$ donde y es la coordenada de P sobre OY
- (3) Al punto $P \in \Pi$, $P \notin OX$, $P \notin OY$ le corresponde el par $(x,y) \in \mathbb{R}^2$. Donde $P_1 \longmapsto (x,0)$ $y \mapsto P_2 \longmapsto (0,y)$.
 - A P₁ se le llama la proyección de P sobre OX
 - \blacksquare A P_2 se le llama la proyección de P sobre OY

Así podemos sobreponer el plano Π con \mathbb{R}^2

OBS.- Para simplificar la expresión tenemos P = (x, y).

Objetivo: Tenemos Π , $OXY \longleftrightarrow \mathbb{R}^2$

- Estudiamos Π a partir de \mathbb{R}^2 .
- Estudiamos \mathbb{R}^2 a partir de Π .