Inference with Implicit Likelihoods

Murali Haran¹

Roman Jandarov¹, Ottar Bjørnstad², and Bryan Grenfell³

¹Department of Biostatistics, University of Washington
 ²Center for Infectious Disease Dynamics, Penn State University
 ³Ecology and Evolutionary Biology, Princeton University

Bayesian Inference in Stochastic Processes CNR-IMATI, Milano. June 2013

What This Talk is About

- Some richly parameterized statistical models pose inferential challenges
 - Large number of latent variables
 - Expensive likelihood function
 - Likelihood-based inference obtains poor results
- I will use the gravity TSIR model for measles dynamics as a motivating example
- I will describe an approach that addresses these issues in some contexts, borrowing from methods used in computer model emulation and calibration

Basic SIR Model

- A model to explain and predict the spread of an infectious disease.
- SIR model: The population is subdivided into a set of distinct classes: individuals are either susceptible (S), infectious (I) or recovered (R).
- The SIR model describes the dynamics of the sizes of each group.

Gravity TSIR Model

- Models the number of incidences of measles in K different communities (cities)
- Time series SIR (TSIR) model for local dynamics (Bjørnstad et al., 2002; Grenfell et al. 2002) + explicit formulation for spatial transmission between different communities

Notation

- ▶ I_{kt}: number of infected individuals in city k at time t
- $ightharpoonup S_{kt}$: number of susceptible individuals in city k at time t
- ► L_{kt}: number of infected people moved to city k at time t
- $ightharpoonup d_{kj}$: distance between cities k and j
- $ightharpoonup N_{kt}, B_{kt}$: size and birth rate of city k at time t

Gravity TSIR Model

- Number of incidences of a disease at time t+1 for city k $I_{k(t+1)} \sim \text{Poisson}(\lambda_{k(t+1)})$, where $\lambda_{k(t+1)} = \beta_t S_{kt} (I_{kt} + L_{kt})^{\alpha}$
- ▶ $I_{k(t+1)}$ increases with I_{kt} , S_{kt} , and L_{kt} (number of infected immigrants coming to city k at time t)
- $\{\beta_t\}$: seasonal transmission

(Xia, Bjørnstad and Grenfell, 2004)

Gravity TSIR Model

- Number of susceptible individuals at time t+1 for city k $S_{k(t+1)} = S_{kt} + B_{kt} I_{k(t+1)}$
- Infected immigrants (latent) at time t for city k $L_{kt} \sim \text{Gamma}(m_{kt}, 1), \text{ where } m_{kt} = \theta N_{kt}^{\tau_1} \sum_{i=1, i \neq k}^{K} \frac{(\textit{ljt})^{\tau_2}}{d_{kj}^{\rho}}$
- $ightharpoonup L_{kt}$ increases with size of city k, number of infected people in all other cities, taking into account distances

Inference for Measles Dynamics

- Parameters of the model:
 - ▶ Reliable estimates of local transition parameters α and β are known (Bjørnstad et al. 2001).
 - Gravity parameters θ , τ_1 , τ_2 and ρ are unknown.
- Sources of information:
 - The UK Registrar General's data for 952 cities in England and Wales for years 1944-1966 of biweekly incidences of measles.
 - Susceptibles from standard reconstruction algorithms (cf.
 Fine and Clarkson 1982a, Finkenstadt and Grenfell 2000).

Goal: Infer spatial transmission parameters $\Theta = (\theta, \tau_1, \tau_2, \rho)$

Measles Data: London and Birmingham

Measles Data: Willesden and North Allerton

Notice: 952 cities of varying sizes and levels of infecteds.

Challenges

MLE or Bayesian inference is simple in principle

- ► MLE: $\hat{\Theta}$ = arg max $\int \mathcal{L}(\Theta, \{L_{k,t}\}; \{I_{k,t}\}) dL$
- Bayesian inference,

$$\pi(\boldsymbol{\Theta}, \{\boldsymbol{L}_{k,t}\} \mid \{\boldsymbol{I}_{k,t}\}) \propto \mathcal{L}(\{\boldsymbol{I}_{k,t}\} \mid \{\boldsymbol{L}_{k,t}\}, \boldsymbol{\Theta}) \times \boldsymbol{p}(\boldsymbol{L}, \boldsymbol{\Theta})$$

But:

- ▶ Dimensions $K \times T = 546*952 = 519,792$
- Therefore:
 - Expensive calculations per iteration of optimizer or MCMC
 - Involves integrating over 519,792 latent variables

Simplifications and Gridded MCMC

- A simple solution:
 - 1. Fix number of immigrants (latent variables) at expected values. Likelihood function is still expensive \approx 72 hours to find MLE alone.
 - 2. Discretize parameter space, parallelize pre-calculation of expensive parts of the likelihood.
- Good news: Greatly speeds up computing, permits maximum likelihood and Bayesian inference

Problems ...

True
$$\Theta = (\theta = 0.71, \tau_1 = 0.5, \tau_2 = 1, \rho = 1).$$

Posterior surface for (θ, ρ) . $(\tau_1, \tau_2 \text{ fixed at true values})$

Poor inference for ⊖.

Important Biological Characteristics

What do the biologists care about? "Signatures" of the process:

- ▶ Maximum number of incidences. $\mathbf{M} = (M_1, \dots, M_K)$, where M_i is the maximum number of incidences for i-th city.
- Proportions of biweeks without any cases of infection.
 - $\mathbf{P} = (P_1, \dots, P_K)$, where P_i is the proportion of incidence free bi-weeks for *i*-th city.

Problems with Fitting Key Characteristics

Fitted model does not capture well important characteristics of the observations.

Back to the Drawing Board

- Likelihood-based approaches apparently do not give enough importance to features that are of scientific interest
- A careful study confirms that these issues are not due to our simplifications or gridded MCMC

New Approach

- Idea: instead of classical likelihood-based approach, build inferential approach that focuses on fitting scientifically relevant features of the data.
- Modeling/inference using summary statistics (features).
- Approximate Bayesian computing (ABC) (Pritchard et al., 1999; Beaumont et al. 2002; Marjoram et al., 2002) seems appropriate but is infeasible since simulating draws from this model is also time consuming.

Gaussian Process Emulation and Calibration

 Gaussian processes are useful for emulating (approximating) complex computer models (Sacks et al., 1989; Kennedy and O'Hagan, 2001 etc.) May be useful here.

Gaussian Process Model Basics

- ▶ Process at location $\Theta \in D \subset \mathbb{R}^d$ is $Z(\Theta) = \mu_{\beta}(\Theta) + w(\Theta)$. Here:"Location" Θ is a parameter setting
- Model dependence among random variables by modeling {w(Θ) : Θ ∈ D} as a Gaussian process
- ▶ Infinite-dimensional process. If $\Theta_1, \ldots, \Theta_n \in D$, $\mathbf{w} = (w(\Theta_1), \ldots, w(\Theta_n))^T$ is multivariate normal
- ▶ Parametric covariance, decays with distance. E.g. $Cov(Z(\Theta_i), Z(\Theta_j)) = \kappa \exp(-\|\Theta_i \Theta_j\|/\phi), \ \kappa > 0, \phi > 0.$
- ▶ Let $\mathbf{Z} = (Z(\Theta_1), \dots, Z(\Theta_n))^T$, so

$$\mathbf{Z}|\kappa,\phi,\boldsymbol{eta}\sim \mathcal{N}(\mu_{oldsymbol{eta}},\Sigma(\kappa,\phi))$$

GP Linear Model Prediction

- ► Can predict the process at any new parameter setting (Θ) by using simple multivariate normal theory
 - MLE plug-in to get predictive distribution
 - ▶ Bayes: same, but averaging over κ , ϕ , β | **Z**. This is the posterior predictive distribution.
 - This is a stochastic emulator/interpolator
- This provides a distribution for the observations at any given parameter setting. Parametric family!
- For a given data set, therefore, can carry out likelihood-based inference (ML or Bayes).

An Emulation-Based Solution

- Let vector of summary statistics from observations be Z. Example: Maximum number of incidences for ith city.
- ▶ Simulate realizations of the gravity TSIR model at various parameter settings $\Theta_1, \Theta_2, \dots, \Theta_p$.
- Let Y(⊖) be the vector of summary statistics obtained at parameter setting ⊖.
- ► Consider: $(\Theta_1, \mathbf{Y}(\Theta_1)), \dots, (\Theta_p, \mathbf{Y}(\Theta_p)).$
- Stochastic emulation: Fit a Gaussian Process (GP) to above simulations.
 - Thus for any new parameter setting Θ*, we have a predictive distribution for the process Y(Θ*).

New Inferential Approach

- 1. Gaussian process emulation provides a probability model for observations **Z**. Emulator likelihood, $\mathcal{L}^*(\{I_{k,t}\} \mid \Theta)$
- 2. Bayesian inference to infer Θ
 - Original approach:

$$\pi(\boldsymbol{\Theta}, \{\boldsymbol{L}_{k,t}\} \mid \{\boldsymbol{I}_{k,t}\}) \propto \mathcal{L}(\{\boldsymbol{I}_{k,t}\} \mid \{\boldsymbol{L}_{k,t}\}, \boldsymbol{\Theta}) \times p(\boldsymbol{L}, \boldsymbol{\Theta})$$

New approach:

$$\pi^*(\Theta \mid \{I_{k,t}\}) \propto \mathcal{L}^*(\{I_{k,t}\} \mid \Theta) \times p(\Theta)$$

Skipping lots of important details: computational issues, data-model discrepancy, design points . . .

Improved Inference for **⊙**

95% C.I.'s for (θ, ρ) : Solid black line: the likelihood-based method; Solid red line: the Gaussian process emulator.

Fitting Biological Characteristics using GP-approach

Fitted model better captures important characteristics of the data.

Summary

- Our Gaussian process-based inferential approach focuses directly on scientifically relevant characteristics.
- Improves inference, model fit, addresses computational challenges, circumvents latent variable issues.
- We are able to apply our approach to the England-Wales data set and obtain scientific conclusions.
- Caveats:
 - ightharpoonup Will not readily apply when Θ is high-dimensional
 - Open questions: choice of summary statistics if scientists have multiple criteria; design of simulations etc.

Collaborators

- Roman Jandarov, Postdoctoral fellow, University of Washington
- Ottar Bjørnstad, Center for Infectious Disease Dynamics,
 Penn State University
- Bryan Grenfell, Ecology and Evolutionary Biology,
 Princeton University

Support from Bill & Melinda Gates Foundation

References

- ► Grenfell, B.T., Bjørnstad, O. N. and Kappey, J. (2001), "Traveling waves and spatial hierarchies in measles epidemics." *Nature*.
- Bhat, K.S., Haran, M., Olson, R., and Keller, K. (2012), "Inferring likelihoods and climate system characteristics from climate models and multiple tracers," *Environmetrics*.
- Bhat, K.S., Haran, M. and Goes, M. (2010) "Computer model calibration with multivariate spatial output."
- Jandarov, R., Haran, M., Bjornstad, O.N. and Grenfell, B. (2013) "Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease."

Gaussian Process Prediction/Interpolation

- Let the predictions at the new locations $\mathbf{s}_1^*, \dots, \mathbf{s}_m^* \in D$ be $\mathbf{Z}^* = (Z(\mathbf{s}_1^*), \dots, Z(\mathbf{s}_m^*))^T$.
- ▶ Under the GP assumption $(\mu_1, \mu_2, \Sigma \text{ depend on } \beta, \Theta)$:

$$\begin{bmatrix} \mathbf{Z} \\ \mathbf{Z}^* \end{bmatrix} \mid \Theta, \boldsymbol{\beta} \sim N \begin{pmatrix} \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \end{pmatrix}, \tag{1}$$

ML: use above with ML estimates plugged-in.

Bayes: use above, while averaging over Θ , $\beta \mid \mathbf{Z}$. This is the *posterior predictive distribution*.

GP Model Emulation

Interpolations using simple GP random effects model:

$$y(x) = \mu + w(x), \{w(x), x \in (0, 20)\}$$
 is a zero-mean GP.

Increase data from 10 to 20 points

GP Model Emulation

Increase data from 20 to 40 points

Modeling with Gaussian Processes

- Gaussian processes (GPs) are useful models for dependent processes, e.g. time series, spatial data.
- GPs are also very useful for modeling complicated functions.

Key idea: dependence (spatial random effects) adjusts for non-linear relationships between input and output.

Summary of Inferential Problem

Let parameter of interest be θ (here $\theta = K_v$).

Statistical problem:

- Model output is a bivariate spatial process at each θ : $\mathbf{Y} = ((\mathbf{Y}_1(\psi_1), \mathbf{Y}_2(\psi_1)), (\mathbf{Y}_1(\psi_2), \mathbf{Y}_2(\psi_2)), \dots, (\mathbf{Y}_1(\psi_K), \mathbf{Y}_2(\psi_K)),$ where $\{\psi_1, \psi_2, \dots, \psi_K\}$ is a set of plausible θ values.
- ▶ Observations: $\mathbf{Z} = (\mathbf{Z}_1, \mathbf{Z}_2)$.
- ▶ What can we learn about θ given **Z**, **Y**?

Bayesian Approach

A Bayesian framework is useful for computer model calibration:

- ▶ There is usually real prior information about θ .
- The likelihood surface for θ may often be highly multimodal and there may be identifiability issues; useful to have easy access to the full posterior distribution.
- If θ is multivariate, important to look at bivariate and marginal distributions: easier w/ sample-based approach.
- Amenable to hierarchical specification: we will exploit this for multivariate spatial process model.

Kennedy and O'Hagan (2001); Bayarri, Berger et al. (2007, 2008).

Latter provides wavelets-based approach for functional output.

Two-stage Approach to Inference

- 1. Find probability model for **Z** (data) using **Y** (simulations.)
 - Model relationship between $\mathbf{Z} = (\mathbf{Z}_1, \mathbf{Z}_2)$ and $\boldsymbol{\theta}$ via flexible emulator for model output $\mathbf{Y} = (\mathbf{Y}_1, \mathbf{Y}_2)$.
 - Add model discrepancy and measurement error:

$$\mathbf{Z} = \boldsymbol{\eta}(\mathbf{Y}, \boldsymbol{\theta}) + \boldsymbol{\delta}(\mathbf{Y}) + \boldsymbol{\epsilon}$$

where $\delta(\mathbf{Y}) = (\delta_1, \ \delta_2)^T$ is the model discrepancy, also modeled as a GP. $\epsilon = (\epsilon_1, \ \epsilon_2)^T$ is the observation error.

2. Posterior distribution $\pi(\theta \mid \mathbf{Y}, \mathbf{Z})$ derived from prior on θ and likelihood based on above model.