1 Taux d'accroissement

On considère une fonction f définie sur un intervalle I. Soit a un point de I.

Définition 1 Soit $h \neq 0$ tel que $a + h \in I$. On appelle **taux d'accroissement** entre a et a + h la quantité $\frac{f(a+h)-f(a)}{h}$.

Interprétation géométrique : Le taux d'accroissement est le de la droite passant par les points de coordonnées

Remarque : Si on fixe h=1, et si la fonction f représente un coût de production, les économistes appellent le taux d'accroissement le .

2 Nombre dérivé

Soit f définie sur un intervalle I, a un point de I.

Définition 2 On dit que f est **dérivable en a** si lorsque h tend vers 0, le taux d'accroissement $\frac{f(a+h)-f(a)}{h}$ se rapproche d'un certain nombre. Ce nombre s'appelle le **nombre dérivé de** f **en** a et on le note f'(a).

Remarque : On dit alors que f'(a) est la *limite* du taux d'accroissement quand h tend vers 0.

Exemple:

- 1. Soit la fonction définie par f(x) = x, f est elle dérivable en 1? Si oui, quelle est la valeur du nombre dérivé en 1?
- 2. Soit la fonction définie par $f(x) = x^2$, f est elle dérivable en 2 ? Si oui, quelle est la valeur du nombre dérivé en 1 ?

Interprétation géométrique : Lorsqu'il existe, le nombre dérivé de f en a est le coefficient directeur de la à la courbe représentative de f en a.

3 Équation de la tangente à la courbe de f en un point

Théorème 1 Soit f une fonction dérivable en un point a, $C_{\{}$ sa courbe représentative, alors la tangente à la courbe représentative de f au point a admet pour équation :

$$y = f'(a)(x - a) + f(a).$$

Remarque: Cette équation s'appelle

En développant cette équation, on obtient que le coefficient directeur vaut et l'ordonnée à l'origine .

4 Fonction dérivée

Définition 3 Soit f une fonction définie sur un intervalle I et telle que pour tout $a \in I$, f'(a) existe. On dit alors que f est dérivable sur I et on appelle la fonction $x \mapsto f'(x)$ la **fonction dérivée** de la fonction f.

On appelle Γ la courbe représentative de f dans un repère. **Remarque :** La fonction dérivée f' associe à chaque x de I le de la tangente à Γ au point d'abscisse .