Using open addressing with linear probing

N = 13

1+1×1 1+2×1 1+3'3

Using open addressing with quadratic probing

N = 13

Arra	y:
0	13
1	119
2	15
3 4 5	54
4	27
5	135
6	174
7	1 1
8	
9	
10	10
11	_
12	114
	24

• Using open addressing (division hashing) and the linear-quotient collision path algorithm

$$N = 13, 4k+3 \text{ prime} = 19$$

LQHashing:

- 1. $i_p = pk \% N$
- 2. q=pk/N
 - if (q%N != 0)
 - offset = q
 - else offset = 4k+3 prime
- 3. While collisions:
 - $i_p = (i_p + offset) \% N$
- 4. Set Array[ip]=key

54/13 = 4 2+4 9613 = 6 49/13 = 3 10+39013 = 0 0+39013 = 3 174/13 = 13 5+199013 = 11 24/13 = 1 11+1-9013 = 12

• Bucket hashing where (N=10) and ip = (p_k) % N

- Come up with your own 15 elements with an array size of 21 using an open addressing algorithm of your choice
- Challenge yourself! Use an algorithm that you are most unfamiliar with to maximize your learning experience

Elements: 15 [3, 5, 13, 62, 17, 1, 0, 99, 113, 23, 73, 48, 56,81, 66]

La Hashing From Previous Problem

11+29021=13

Array:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
N. W.	0	1		3	56	5	81	66	99	1/3	62	23		13	73	48		17			

23/21 = 1 10+1 0021 = 11 3+3 90 21 = 6 3+3 90 21 = 6 66[2] = 3 1+3 90 21 = 11 11+3 90 21 = 14 48/21 = 2 q+2 9021 = 11