# Applied Machine Learning

Lecture: 7-1
Model Evaluation

Ekarat Rattagan, Ph.D.

Slides adapted from Andrew NG, Eric Eaton, Raquel Urtasun, and Patrick Winston

## Model selection & evaluation

#### **Model Selection**

Model selection: estimating the performance of different models in order to choose the best one.

1. 
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2. 
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3. 
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

$$\vdots$$

10. 
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

Which one to choose? how a model generalizes to unseen test data.

#### **Model Evaluation**

- A part of the model development process to find the best model
- Two methods of evaluating models are
  - 1. Hold-out
  - 2. Cross validation

#### 1. Hold-out method

| Size | Price | _                                                                               |
|------|-------|---------------------------------------------------------------------------------|
| 2104 | 400   | $(x^{(1)}, y^{(1)})$                                                            |
| 1600 | 330   | $(x^{(2)}, y^{(2)})$                                                            |
| 2400 | 369   |                                                                                 |
| 1416 | 232   |                                                                                 |
| 3000 | 540   | Train $(x^{(m)}, y^{(m)})$                                                      |
| 1985 | 300   |                                                                                 |
| 1534 | 315   | (1) (1)                                                                         |
| 1427 | 199   | $(x_{test}^{(1)}, y_{test}^{(1)})$                                              |
| 1380 | 212   | $(x_{test}^{(2)}, y_{test}^{(2)})$                                              |
| 1494 | 243   | $ \text{Test} \qquad \vdots \\ (x_{test}^{(m_{test})}, y_{test}^{(m_{test})}) $ |

```
>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> X, y = np.arange(10).reshape((5, 2)), range(5)
>>> X
array([[0, 1],
    [2, 3],
    [4, 5],
    [6, 7],
    [8, 9]])
>>> list(y)
[0, 1, 2, 3, 4]
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.30, random_state=42)
>>> X train
array([[4, 5],
    [0, 1],
    [6, 7]]
>>> y_train
[2, 0, 3]
>>> X_test
array([[2, 3],
    [8, 9]])
>>> y_test
[1, 4]
```

#### 1. Hold-out method

- Learn parameter  $\theta$  from training data (70%)
- Compute test set (30%)

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

### 1. Hold-out method

| Method     | Advantage                                                     | Disadvantage                           |
|------------|---------------------------------------------------------------|----------------------------------------|
| 1. Holdout | <ul><li> Simple</li><li> Takes no longer to compute</li></ul> | • Its evaluation can have a high error |

#### 2. Cross-Validation

|      | ∠.    | Ci USS-Yalluati | <b>~</b>                                         |
|------|-------|-----------------|--------------------------------------------------|
|      |       |                 | $(x^{(1)}, y^{(1)})$                             |
| Size | Price | 50%             | $(x^{(2)}, y^{(2)})$ :                           |
| 2104 | 400   |                 | $(x^{(m)}, y^{(m)})$                             |
| 1600 | 330   |                 | (1) (1)                                          |
| 2400 | 369   |                 | $(x_{cv}^{(1)}, y_{cv}^{(1)})$                   |
| 1416 | 232   | 25%             | $(x_{cv}^{(2)},y_{cv}^{(2)})$                    |
| 3000 | 540   |                 | •                                                |
| 1985 | 300   |                 | $(x_{cv}^{(m_{cv})}, y_{cv}^{(m_{cv})})$         |
| 1534 | 315   |                 | (a(1) a(1))                                      |
| 1427 | 199   |                 | $(x_{test}^{(1)}, y_{test}^{(1)})$               |
| 1380 | 212   | 25%             | $(x_{test}^{(2)}, y_{test}^{(2)})$               |
| 1494 | 243   |                 | • • • • • • • • • • • • • • • • • • • •          |
|      |       |                 | $(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$ |

#### Train/validation/test error

#### Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

#### **Cross Validation error:**

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

#### Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

#### 2. Cross Validation (K-fold)



Figure from Hands-on Machine Learning

The training set is divided into k subsets, and the **holdout method** is repeated k times.

Each time, one of the k subsets is used as the test set and the other k-1 subsets are put together to form a training set.

Then the average error across all k trials is computed.

```
>>> import numpy as np
>>> from sklearn.model_selection import KFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = KFold(n_splits=2)
>>> kf.get_n_splits(X)
2
>>> print(kf)
KFold(n_splits=2, random_state=None, shuffle=False)
>>> for train_index, test_index in kf.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]
```

#### **Evaluation method**

| Method              | Advantage                                                                                                                                                                                            | Disadvantage                              |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 1. Holdout          | <ul><li>Simple</li><li>Low computation</li></ul>                                                                                                                                                     | • Its evaluation can have a high variance |
| 2. Cross validation | <ul> <li>Every data point gets to be in a test set exactly once, and gets to be in a training set k-1 times.</li> <li>The variance of the resulting estimate is reduced as k is increased</li> </ul> | High computation                          |

#### **LOOCV** (Leave-one-out Cross Validation)



K-fold cross validation taken to its logical extreme, with K equal to N.

```
>>> from sklearn.model_selection import LeaveOneOut
>>> X = [1, 2, 3, 4]
>>> loo = LeaveOneOut()
>>> for train, test in loo.split(X):
...     print("%s %s" % (train, test))
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]
```

#### **Evaluation method**

| Method              | Advantage                                                                                             | Disadvantage                                                                                     |
|---------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1. Holdout          | <ul><li> Simple</li><li> Low computation</li></ul>                                                    | <ul><li>Waste data (30% in this slide)</li><li>Its evaluation can have a high variance</li></ul> |
|                     | • Every data point gets to be in a test set exactly once, and gets to be in a training set k-1 times. | High computation                                                                                 |
| 2. Cross validation | • The variance of the resulting estimate is reduced as <i>k</i> is increased                          |                                                                                                  |
| 3. Leave-One-Out    | •                                                                                                     | High computation                                                                                 |

- Zero randomness
- Lower bias as model is trained on the entire dataset

# Diagnosing bias vs. variance

### Machine learning diagnostic

Suppose you have implemented regularized linear regression to predict housing prices.

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \underline{\lambda} \sum_{j=1}^{n} \theta_j^2$$

However, when you test your hypothesis on a new set of houses, you find that it makes unacceptably large errors in its predictions. What should you try next?

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features  $(x_1^2, x_2^2, x_1x_2, \text{etc.})$
- Try decreasing  $\lambda$
- Try increasing  $\lambda$

#### **Machine learning diagnostic:**

#### **Diagnostic:**

A test that you can run to gain insight what is/isn't working with a learning algorithm, and gain guidance as to how best to improve its performance.

Diagnostics can take time to implement, but doing so can be a very good use of your time.

#### Bias/variance



High bias (underfit)





#### Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping ( $J_{cv}(\theta)$  or  $J_{test}(\theta)$  is high.). Is it a bias problem or a variance problem?



# Regularization and bias/ variance

#### Linear regression with regularization

Model: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n} \theta_j^2$$



Large  $\lambda$  High bias (underfit)

$$\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$$

$$h_{\theta}(x) \approx \theta_0$$



Intermediate  $\lambda$  "Just right"



Size Small  $\lambda$  High variance (overfit)

#### Choosing the regularization parameter $\lambda$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^{2}$$

#Training data and bias/variance

# Error VS #Training data



https://rmartinshort.jimdofree.com/2019/02/17/overfitting-bias-variance-and-leaning-curves/

#### High bias



If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.



#### High variance



If a learning algorithm is suffering from high variance, getting more training data is likely to help.

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{100} x^{100}$$
(and small  $\lambda$ )



#### Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features  $(x_1^2, x_2^2, x_1x_2, \text{etc})$
- Try decreasing  $\lambda$
- Try increasing  $\lambda$

# Error metrics

#### **Error metrics**

- Confusion Matrix
- Precision , Recall , and Accuracy
- F1-score
- ROC AUC Curve and score

#### **Confusion Matrix**

- A performance measurement for ML classification





 $\underline{https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62}$ 

#### **Confusion Matrix**

| у | y pred | output for threshold 0.6 | Recall | Precision | Accuracy |
|---|--------|--------------------------|--------|-----------|----------|
| 0 | 0.5    | 0                        |        |           |          |
| 1 | 0.9    | 1                        |        |           |          |
| 0 | 0.7    | 1                        |        |           |          |
| 1 | 0.7    | 1                        | 1/2    | 2/3       | 4/7      |
| 1 | 0.3    | 0                        |        |           |          |
| 0 | 0.4    | 0                        |        |           |          |
| 1 | 0.5    | 0                        |        |           |          |



https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

#### Precision/Recall

y = 1 in presence of rare class that we want to detect

#### **Precision**

(Of all patients where we predicted y = 1, what fraction actually has cancer?)

#### Recall

(Of all patients that actually have cancer, what fraction did we correctly detect as having cancer?)

#### Trading off precision and recall

**Logistic regression:**  $0 \le h_{\theta}(x) \le 1$ 

Predict 1 if  $h_{\theta}(x) \geq 0.5$ 

Predict 0 if  $h_{\theta}(x) < 0.5$ 

Suppose we want to predict y = 1 (cancer) only if very confident.

Suppose we want to avoid missing too many cases of cancer (avoid false negatives).

More generally: Predict 1 if  $h_{\theta}(x) \geq$  threshold.





F<sub>1</sub> Score (F score)

How to compare precision/recall numbers?

|             | Precision(P) | Recall (R) |
|-------------|--------------|------------|
| Algorithm 1 | 0.5          | 0.4        |
| Algorithm 2 | 0.7          | 0.1        |
| Algorithm 3 | 0.02         | 1.0        |

Average:  $\frac{P+R}{2}$ 

 $F_1$  Score:  $2\frac{PR}{P+R}$ 



https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/

# Imbalanced data

## What is imbalanced data

Class Distributions (0: No Fraud || 1: Fraud)



https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets