Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчёт по курсовой работе По курсу «Методы машинного обучения»

«Классификация звёздных типов»

ИСПОЛНИТЕЛЬ:

Лосева Светлана Сергеевна Группа ИУ5-34М

Решение задачи:

- 1. Поиск и выбор набора данных для построения модели машинного обучения. На основе выбранного набора данных строится модель для задачи классификации.
 - 2. Для выбранного датасета решить следующие задачи:
 - устранение пропусков в данных;
 - кодирование категориальных признаков;
 - нормализацию числовых признаков;
 - масштабирование признаков;
 - обработку выбросов для числовых признаков;
- обработку нестандартных признаков (которые не является числовым или категориальным);
 - отбор признаков, наиболее подходящих для построения модели;
 - 3. Обучить модель и оценить метрики качества для двух выборок :
- исходная выборка, которая содержит только минимальную предобработку данных, необходимую для построения модели (например, кодирование категориальных признаков).
- улучшенная выборка, полученная в результате полной предобработки данных в пункте 2.
- 4. Построить модель с использованием произвольной библиотеки AutoML.
 - 5. Сравнить метрики для трех полученных моделей.

```
!pip install numpy pandas scikit-surprise sklearn seaborn matplotlib automl mljar-supervis
        Collecting scipy>=1.0.0
       Downloading scipy-1.4.1-cp37-cp37m-manylinux1_x86_64.whl (26.1 MB)
                                      26.1 MB 115.1 MB/s
     Collecting scikit-learn
       Using cached scikit_learn-0.23.2-cp37-cp37m-manylinux1_x86_64.whl (6.8 MB)
     Collecting xgboost==1.2.0
       Using cached xgboost-1.2.0-py3-none-manylinux2010 x86 64.whl (148.9 MB)
     Collecting mljar-supervised
       Using cached mljar-supervised-0.7.0.tar.gz (69 kB)
       Using cached mljar-supervised-0.6.1.tar.gz (65 kB)
     Collecting scikit-learn
       Using cached scikit_learn-0.22.2-cp37-cp37m-manylinux1_x86_64.whl (7.1 MB)
     Collecting xgboost==1.0.2
       Using cached xgboost-1.0.2-py3-none-manylinux1_x86_64.whl (109.7 MB)
     Collecting mljar-supervised
       Using cached mljar-supervised-0.6.0.tar.gz (61 kB)
       Using cached mljar-supervised-0.5.5.tar.gz (58 kB)
       Using cached mljar-supervised-0.5.4.tar.gz (58 kB)
       Using cached mljar-supervised-0.5.3.tar.gz (57 kB)
       Using cached mljar-supervised-0.5.2.tar.gz (55 kB)
       Using cached mljar-supervised-0.5.1.tar.gz (55 kB)
       Using cached mljar-supervised-0.5.0.tar.gz (55 kB)
       Using cached mljar-supervised-0.4.1.tar.gz (52 kB)
       Using cached mljar-supervised-0.4.0.tar.gz (52 kB)
       Using cached mljar-supervised-0.3.5.tar.gz (43 kB)
       Using cached mljar-supervised-0.3.4.tar.gz (43 kB)
       Using cached mljar-supervised-0.3.3.tar.gz (43 kB)
       Using cached mljar-supervised-0.3.2.tar.gz (43 kB)
       Using cached mljar-supervised-0.3.1.tar.gz (43 kB)
       Using cached mljar-supervised-0.3.0.tar.gz (43 kB)
       Using cached mljar-supervised-0.2.8.tar.gz (37 kB)
       Using cached mljar-supervised-0.2.7.tar.gz (37 kB)
       Using cached mljar-supervised-0.2.6.tar.gz (37 kB)
       Using cached mljar-supervised-0.2.5.tar.gz (37 kB)
       Using cached mljar-supervised-0.2.4.tar.gz (37 kB)
       Using cached mljar-supervised-0.2.3.tar.gz (37 kB)
       Using cached mljar-supervised-0.2.2.tar.gz (37 kB)
       Using cached mljar-supervised-0.2.1.tar.gz (36 kB)
     WARNING: Discarding <a href="https://files.pythonhosted.org/packages/2d/af/f9471b6e5c9e4fb6">https://files.pythonhosted.org/packages/2d/af/f9471b6e5c9e4fb6</a>
       Using cached mljar-supervised-0.2.0.tar.gz (36 kB)
     WARNING: Discarding https://files.pythonhosted.org/packages/4f/54/0905eff999200251
       Using cached mljar-supervised-0.1.7.tar.gz (25 kB)
     Collecting xgboost==0.80
       Using cached xgboost-0.80-py2.py3-none-manylinux1_x86_64.whl (15.8 MB)
     Collecting mljar-supervised
       Using cached mljar-supervised-0.1.6.tar.gz (25 kB)
       Using cached mljar-supervised-0.1.5.tar.gz (25 kB)
       Using cached mljar-supervised-0.1.4.tar.gz (25 kB)
       Using cached mljar-supervised-0.1.3.tar.gz (25 kB)
       Using cached mljar-supervised-0.1.2.tar.gz (24 kB)
       Using cached mljar-supervised-0.1.1.tar.gz (23 kB)
       Using cached mljar-supervised-0.1.0.tar.gz (21 kB)
     INFO: pip is looking at multiple versions of threadpoolctl to determine which vers
     Collecting threadpoolctl>=2.0.0
       Using cached threadpoolctl-3.0.0-py3-none-any.whl (14 kB)
```

```
!pip install --upgrade numpy
!pip install --upgrade pandas
!pip install --upgrade lightgbm
!pip install --upgrade scikit-learn
!pip install --upgrade scipy
!pip install --upgrade tabulate
```

Found existing installation: numpy 1.19.5 Uninstalling numpy-1.19.5:

Successfully uninstalled numpy-1.19.5

ERROR: pip's dependency resolver does not currently take into account all the package yellowbrick 1.3.post1 requires numpy<1.20,>=1.16.0, but you have numpy 1.21.4 which i datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompalbumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which Successfully installed numpy-1.21.4

WARNING: The following packages were previously imported in this runtime: [numpy]

You must restart the runtime in order to use newly installed versions.

RESTART RUNTIME

Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (1.1

!pip install mljar-supervised

```
Collecting stevedore>=2.0.1
    Downloading <a href="https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307aeac3df3384ff1fcd@">https://files.pythonhosted.org/packages/d4/49/b602307a
                                                                                          | 51kB 6.3MB/s
Requirement already satisfied: PrettyTable>=0.7.2 in /usr/local/lib/python3.7/dist-page 1.00 in /usr/local/lib/
Requirement already satisfied: PyYAML>=3.12 in /usr/local/lib/python3.7/dist-packages
Collecting pbr!=2.1.0,>=2.0.0
    Downloading <a href="https://files.pythonhosted.org/packages/18/e0/1d4702dd81121d04a477c272c">https://files.pythonhosted.org/packages/18/e0/1d4702dd81121d04a477c272c</a>
                                                                        112kB 47.0MB/s
Collecting Mako
    Downloading <a href="https://files.pythonhosted.org/packages/f3/54/dbc07fbb20865d3b78fdb7cf7">https://files.pythonhosted.org/packages/f3/54/dbc07fbb20865d3b78fdb7cf7</a>
                                                                                         81kB 8.5MB/s
Collecting python-editor>=0.3
    Downloading <a href="https://files.pythonhosted.org/packages/c6/d3/201fc3abe391bbae6606e6f1">https://files.pythonhosted.org/packages/c6/d3/201fc3abe391bbae6606e6f1</a>
Requirement already satisfied: typing-extensions>=3.6.4; python_version < "3.8" in /u
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (1
Collecting colorama>=0.3.7
    Downloading <a href="https://files.pythonhosted.org/packages/44/98/5b86278fbbf250d239ae0ecb">https://files.pythonhosted.org/packages/44/98/5b86278fbbf250d239ae0ecb</a>;
Collecting pyperclip>=1.6
    Downloading <a href="https://files.pythonhosted.org/packages/a7/2c/4c64579f847bd5d539803c8bf">https://files.pythonhosted.org/packages/a7/2c/4c64579f847bd5d539803c8bf</a>
Requirement already satisfied: wcwidth>=0.1.7 in /usr/local/lib/python3.7/dist-packas
Requirement already satisfied: MarkupSafe>=0.9.2 in /usr/local/lib/python3.7/dist-pac
Building wheels for collected packages: mljar-supervised, dtreeviz, shap, pyperclip
    Building wheel for mljar-supervised (setup.py) ... done
    Created wheel for mljar-supervised: filename=mljar_supervised-0.10.4-cp37-none-any
    Stored in directory: /root/.cache/pip/wheels/a3/ea/35/583dcb9528d9a561e490f431abeas
    Building wheel for dtreeviz (setup.py) ... done
    Created wheel for dtreeviz: filename=dtreeviz-1.3-cp37-none-any.whl size=66642 sha?
    Stored in directory: /root/.cache/pip/wheels/60/36/b1/188ee35c677e48463f6482d580f81
    Building wheel for shap (setup.py) ... done
    Created wheel for shap: filename=shap-0.36.0-cp37-cp37m-linux_x86_64.whl size=45761
    Stored in directory: /root/.cache/pip/wheels/fb/15/e1/8f61106790da27e0765aaa6e6645!
    Building wheel for pyperclip (setup.py) ... done
    Created wheel for pyperclip: filename=pyperclip-1.8.2-cp37-none-any.whl size=11107
    Stored in directory: /root/.cache/pip/wheels/25/af/b8/3407109267803f4015e1ee2ff23b6
Successfully built mljar-supervised dtreeviz shap pyperclip
ERROR: google-colab 1.0.0 has requirement pandas~=1.1.0; python_version >= "3.0", but
ERROR: albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have in
Installing collected packages: pandas, scipy, xgboost, lightgbm, catboost, tabulate,
    Found existing installation: pandas 1.2.4
         Uninstalling pandas-1.2.4:
              Successfully uninstalled pandas-1.2.4
    Found existing installation: scipy 1.6.3
         Uninstalling scipy-1.6.3:
              Successfully uninstalled scipy-1.6.3
    Found existing installation: xgboost 0.90
         Uninstalling xgboost-0.90:
              Successfully uninstalled xgboost-0.90
    Found existing installation: lightgbm 3.2.1
         Uninstalling lightgbm-3.2.1:
              Successfully uninstalled lightgbm-3.2.1
    Found existing installation: tabulate 0.8.9
         Uninstalling tabulate-0.8.9:
              Successfully uninstalled tabulate-0.8.9
    Found existing installation: wordcloud 1.5.0
         Uninstalling wordcloud-1.5.0:
              Successfully uninstalled wordcloud-1.5.0
Successfully installed Mako-1.1.4 alembic-1.6.5 catboost-0.24.4 category-encoders-2.2
```

from sklearn.model_selection import train_test_split
from supervised.automl import AutoML

pandas.util.testing is deprecated. Use the functions in the public API at pandas.test

→

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

```
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import MaxAbsScaler
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
from sklearn.impute import KNNImputer
import scipy.stats as stats
import sklearn
from sklearn.svm import SVR
from sklearn.svm import LinearSVC
from sklearn.feature_selection import SelectFromModel
from sklearn.linear model import Lasso
from sklearn.linear model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean squared error
from sklearn.model selection import train test split
from sklearn.feature_selection import VarianceThreshold
from sklearn.feature selection import mutual info classif, mutual info regression
from sklearn.feature selection import SelectKBest, SelectPercentile
from sklearn.linear model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean squared error
from sklearn.model_selection import train_test_split
from IPython.display import Image
%matplotlib inline
sns.set(style="ticks")
def draw_kde(col_list, df1, df2, label1, label2):
    fig, (ax1, ax2) = plt.subplots(
        ncols=2, figsize=(12, 5))
    # первый график
    ax1.set title(label1)
    sns.kdeplot(data=df1[col list], ax=ax1)
    # второй график
    ax2.set title(label2)
    sns.kdeplot(data=df2[col list], ax=ax2)
    plt.show()
def impute_column(dataset, column, strategy_param, fill_value_param=None):
    temp data = dataset[[column]].values
    size = temp_data.shape[0]
```

```
indicator = MissingIndicator()
    mask missing values only = indicator.fit transform(temp data)
    imputer = SimpleImputer(strategy_strategy_param,
                            fill_value=fill_value_param)
    all_data = imputer.fit_transform(temp_data)
    missed_data = temp_data[mask_missing_values_only]
    filled_data = all_data[mask_missing_values_only]
    return all_data.reshape((size,)), filled_data, missed_data
def diagnostic plots(df, variable):
    plt.figure(figsize=(15,6))
    # гистограмма
    plt.subplot(1, 2, 1)
    df[variable].hist(bins=30)
    ## Q-Q plot
    plt.subplot(1, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    plt.show()
from google.colab import drive
drive.mount('/content/gdrive')
     Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive
df = pd.read_csv('/content/gdrive/My Drive/MMO/stars.csv')
df.head(15)
```

NaN

11.790

Red

M

		Temperature O	tnosit_yarkost	Otnosit_radius	Abs_Velichina	Color	Spectr_class	
	0	3068	NaN	0.170	16.120	Red	М	
	1	3042	0 00050	NaN	16 600	Red	M	
df.inf	fo()							
F	Rang	ss 'pandas.core eIndex: 240 ent columns (total Column	ries, 0 to 239					
	0	Temperature	240 non-null	int64				
	1	Otnosit_yarkos	t 237 non-null	float64				
	2	Otnosit_radius	228 non-null	float64				
	3	Abs_Velichina	237 non-null	float64				
	4	Color	233 non-null	object				
	5	Spectr_class	240 non-null	object				
	6	Туре	240 non-null	int64				
	<pre>dtypes: float64(3), int64(2), object(2) memory usage: 13.2+ KB</pre>							

- Устранение пропусков

3129

11

Методы заполнения медианой и заполнения наиболее распространенным значением категории

Устранение пропусков с использованием метода заполнения медианой

0.01220

```
median_oy = df['Otnosit_yarkost'].median()
median_or = df['Otnosit_radius'].median()
median_av = df['Abs_Velichina'].median()

df['Otnosit_yarkost'] = df['Otnosit_yarkost'].fillna(median_oy)
df['Otnosit_radius'] = df['Otnosit_radius'].fillna(median_or)
df['Abs_Velichina'] = df['Abs_Velichina'].fillna(median_av)
```

Устранение пропусков с использованием метода заполнения наиболее распространенным значением категории

```
Color_new, _, _ = impute_column(df, 'Color', 'most_frequent')
df['Color'] = Color_new

df.head(15)
```

	Temperature	Otnosit_yarkost	Otnosit_radius	Abs_Velichina	Color	Spectr_class
0	3068	0.15300	0.170	16.120	Red	M
1	3042	0.00050	0.945	16.600	Red	M
2	2600	0.00030	0.102	6.228	Red	M
3	2800	0.00020	0.945	16.650	Red	M
4	1939	0.15300	0.103	20.060	Red	M
5	2840	0.00065	0.110	16.980	Red	M
6	2637	0.00073	0.127	17.220	Red	M
7	2600	0.00040	0.945	17.400	Red	M
8	2650	0.00069	0.110	17.450	Red	M
9	2700	0.00018	0.945	16.050	Red	M
10	3600	0.00290	0.945	10.690	Red	M
11	3129	0.01220	0.945	11.790	Red	M
12	3134	0.00040	0.196	13.210	Red	M
40	0000	0.00550	0045	40 400	DI	B. A.

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 240 entries, 0 to 239
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Temperature	240 non-null	int64
1	Otnosit_yarkost	240 non-null	float64
2	Otnosit_radius	240 non-null	float64
3	Abs_Velichina	240 non-null	float64
4	Color	240 non-null	object
5	Spectr_class	240 non-null	object
6	Туре	240 non-null	int64

dtypes: float64(3), int64(2), object(2)

memory usage: 13.2+ KB

Кодирование категориальных признаков

```
df['Spectr_class'].unique()
    array(['M', 'B', 'A', 'F', 'O', 'K', 'G'], dtype=object)

df.loc[df['Spectr_class'] == 'M', 'Spectr_class'] = 1
df.loc[df['Spectr_class'] == 'B', 'Spectr_class'] = 2
df.loc[df['Spectr_class'] == 'A', 'Spectr_class'] = 3
df.loc[df['Spectr_class'] == 'F', 'Spectr_class'] = 4
```

```
df.loc[df['Spectr_class'] == '0', 'Spectr_class'] = 5
df.loc[df['Spectr_class'] == 'K', 'Spectr_class'] = 6
df.loc[df['Spectr_class'] == 'G', 'Spectr class'] = 7
df['Spectr class'] = pd.to numeric(df['Spectr class'])
df['Spectr class'].unique()
     array([1, 2, 3, 4, 5, 6, 7])
df['Color'].unique()
     array(['Red', 'Blue White', 'White', 'Yellowish White',
            'Pale yellow orange', 'Blue', 'Blue-white', 'yellow-white',
            'Whitish', 'Orange', 'White-Yellow', 'white', 'yellowish',
            'Yellowish', 'Orange-Red', 'Blue white', 'Blue-White'],
           dtype=object)
df['Color'] = df['Color'].replace(['Blue-White', 'Blue White', 'Blue-White'], 'Blue White'
df['Color'] = df['Color'].replace(['Yellowish White', 'yellow-white', 'White-Yellow'], 'Ye
df['Color'] = df['Color'].replace(['white', 'Whitish'], 'White')
df['Color'] = df['Color'].replace(['yellowish'], 'Yellowish')
df['Color'] = df['Color'].replace(['Pale yellow orange', 'Orange', 'Orange-Red'], 'Yellow
df['Color'].unique()
     array(['Red', 'Blue White', 'White', 'Yellow White', 'Yellow Red', 'Blue',
            'Yellowish'], dtype=object)
df.loc[df['Color'] == 'Red', 'Color'] = 1
df.loc[df['Color'] == 'Blue White', 'Color'] = 2
df.loc[df['Color'] == 'White', 'Color'] = 3
df.loc[df['Color'] == 'Yellow White', 'Color'] = 4
df.loc[df['Color'] == 'Yellow Red', 'Color'] = 5
df.loc[df['Color'] == 'Blue', 'Color'] = 6
df.loc[df['Color'] == 'Yellowish', 'Color'] = 7
df['Color'] = pd.to numeric(df['Color'])
df['Color'].unique()
     array([1, 2, 3, 4, 5, 6, 7])
df.head(15)
```

	Temperature	Otnosit_yarkost	Otnosit_radius	Abs_Velichina	Color	Spectr_class
0	3068	0.15300	0.170	16.120	1	1
1	3042	0.00050	0.945	16.600	1	1
2	2600	0.00030	0.102	6.228	1	1
3	2800	0.00020	0.945	16.650	1	1
4	1939	0.15300	0.103	20.060	1	1
5	2840	0.00065	0.110	16.980	1	1
6	2637	0.00073	0.127	17.220	1	1
7	2600	0.00040	0.945	17.400	1	1
8	2650	0.00069	0.110	17.450	1	1
9	2700	0.00018	0.945	16.050	1	1
10	3600	0.00290	0.945	10.690	1	1

0045

40 400

- Нормализация числовых признаков

0 00550

df_new = df.copy()
df_new.hist(figsize=(20,20))
plt.show()

0000


```
df_new['Temperature'] = np.log(df_new['Temperature'])
df_new['Otnosit_yarkost'] = np.log(df_new['Otnosit_yarkost'])
df_new['Otnosit_radius'] = np.log(df_new['Otnosit_radius'])

diagnostic_plots(df_new, 'Temperature')
diagnostic_plots(df_new, 'Otnosit_yarkost')
diagnostic_plots(df_new, 'Otnosit_radius')
```


Масштабирование признаков

Нужно ли масштабирование df new.describe()

	Temperature	Otnosit_yarkost	Otnosit_radius	Abs_Velichina	Color	Spect
count	240.000000	240.000000	240.000000	240.000000	240.000000	24
mean	8.880989	1.684978	0.790533	4.272204	2.700000	
std	0.857104	9.088714	3.892261	10.461630	2.108362	
min	7.569928	-9.433484	-4.779524	-11.920000	1.000000	
25%	8.114998	-7.038446	-2.207275	-6.232500	1.000000	
50%	8.661458	-1.877317	-0.056570	6.228000	2.000000	
75%	9.619463	12.196275	3.754918	13.564250	5.000000	
max	10.596635	13.652309	7.574815	20.060000	7.000000	

DataFrame не содержащий целевой признак. Здесь введём и далее будем использовать новую в # для дальнейшего сравнения обучения моделей df_ne_cel = df_new.drop('Type', axis=1)

```
NameError Traceback (most recent call last)
<ipython-input-1-a29967b4704c> in <module>()

1 # DataFrame не содержащий целевой признак. Здесь введём и далее будем использовать новую выборку

2 # для дальнейшего сравнения обучения моделей
----> 3 df_ne_cel = df_new.drop('Type', axis=1)
```

SEARCH STACK OVERFLOW

NameError: name 'df_new' is not defined

Функция для восстановления датафрейма на основе масштабированных данных def arr_to_df(arr_scaled):
 res = pd.DataFrame(arr_scaled, columns=df_ne_cel.columns)
 return res

Деление выборки на обучающую и тестовую
X_train, X_test, y_train, y_test = train_test_split(
 df_ne_cel, df_new['Type'], test_size= 0.2, random_state= 1)

Размер обучающей выборки X_train.shape, y_train.shape ((192, 6), (192,))

Размер тестовой выборки X_test.shape, y_test.shape ((48, 6), (48,))

```
# Преобразуем массивы в DataFrame
X_train_df = arr_to_df(X_train)
X_test_df = arr_to_df(X_test)

X_train_df.shape, X_test_df.shape

((192, 6), (48, 6))
```

Min-Max Масштабирование

```
# Обучаем StandardScaler на всей выборке и масштабируем cs31 = MinMaxScaler()
data_cs31_scaled_temp = cs31.fit_transform(df_ne_cel)
# формируем DataFrame на основе массива
data_cs31_scaled = arr_to_df(data_cs31_scaled_temp)
data_cs31_scaled.describe()
```

	Temperature	Otnosit_yarkost	Otnosit_radius	Abs_Velichina	Color	Spec1
count	240.000000	240.000000	240.000000	240.000000	240.000000	24
mean	0.433164	0.481615	0.450858	0.506323	0.283333	
std	0.283180	0.393693	0.315052	0.327130	0.351394	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.180087	0.103745	0.208206	0.177846	0.000000	
50%	0.360633	0.327308	0.382291	0.567480	0.166667	
75%	0.677150	0.936929	0.690805	0.796881	0.666667	
max	1.000000	1.000000	1.000000	1.000000	1.000000	

```
cs32 = MinMaxScaler()
cs32.fit(X_train)
data_cs32_scaled_train_temp = cs32.transform(X_train)
data_cs32_scaled_test_temp = cs32.transform(X_test)
# формируем DataFrame на основе массива
data_cs32_scaled_train = arr_to_df(data_cs32_scaled_train_temp)
data_cs32_scaled_test = arr_to_df(data_cs32_scaled_test_temp)

draw_kde(['Temperature', 'Otnosit_yarkost', 'Otnosit_radius', 'Abs_Velichina', 'Color', 'S
```


draw_kde(['Temperature', 'Otnosit_yarkost', 'Otnosit_radius', 'Abs_Velichina', 'Color', 'S

Отбор признаков

Filter methods

sns.heatmap(df_ne_cel.corr(), annot=True, fmt='.3f')

```
<matplotlib.axes. subplots.AxesSubplot at 0x7f4c12d6eb50>
                                                               - 1.00
         Temperature - 1.000 0.427 0.152 -0.435 0.709 0.615
                                                                0.75
      Otnosit varkost - 0.427 1.000 0.905 -0.968 0.355 0.426
def make_corr_df(df):
    cr = df.corr()
    cr = cr.abs().unstack()
    cr = cr.sort_values(ascending=False)
    cr = cr[cr >= 0.5]
    cr = cr[cr < 1]
    cr = pd.DataFrame(cr).reset_index()
    cr.columns = ['f1', 'f2', 'corr']
    return cr
                      ā
make_corr_df(df_ne_cel)
                      f1
                                       f2
                                               corr
                            Abs Velichina
                                          0.968208
       0
           Otnosit yarkost
       1
            Abs Velichina
                           Otnosit yarkost
                                          0.968208
           Otnosit yarkost
                            Otnosit radius 0.905371
       2
       3
            Otnosit radius
                           Otnosit yarkost
                                          0.905371
                            Abs_Velichina
       4
            Otnosit radius
                                           0.894831
       5
            Abs Velichina
                            Otnosit radius
                                           0.894831
       6
             Spectr class
                                    Color
                                          0.800388
       7
                    Color
                             Spectr_class
                                          0.800388
       8
             Temperature
                                    Color 0.709379
       9
                    Color
                             Temperature 0.709379
      10
             Temperature
                             Spectr class
                                           0.615497
      11
             Spectr class
```

Обнаружение групп коррелирующих признаков

Temperature 0.615497

```
def corr groups(cr):
   grouped_feature_list = []
   correlated_groups = []
   for feature in cr['f1'].unique():
        if feature not in grouped_feature_list:
            # находим коррелирующие признаки
            correlated_block = cr[cr['f1'] == feature]
            cur_dups = list(correlated_block['f2'].unique()) + [feature]
```

Обучение модели и оценка метрики

Для исходной выборки

```
# Разделим выборку на обучающую и тестовую
X_train_basic, X_test_basic, y_train_basic, y_test_basic = train_test_split(
    df_new, df_new['Type'], test_size=0.2, random_state=1)

# Преобразуем массивы в DataFrame
X_train_basic_df = arr_to_df(X_train_basic)
X_test_basic_df = arr_to_df(X_test_basic)

X_train_basic_df.shape, X_test_basic_df.shape

    ((192, 6), (48, 6))
```

Для улучшенной выборки

```
def add(self, metric, alg, value):
        Добавление значения
        # Удаление значения если оно уже было ранее добавлено
        self.df.drop(self.df[(self.df['metric']==metric)&(self.df['alg']==alg)].index, inp
        # Добавление нового значения
        temp = [{'metric':metric, 'alg':alg, 'value':value}]
        self.df = self.df.append(temp, ignore_index=True)
    def get_data_for_metric(self, metric, ascending=True):
        Формирование данных с фильтром по метрике
        temp data = self.df[self.df['metric']==metric]
        temp_data_2 = temp_data.sort_values(by='value', ascending=ascending)
        return temp_data_2['alg'].values, temp_data_2['value'].values
    def plot(self, str_header, metric, ascending=True, figsize=(5, 5)):
        Вывод графика
        array_labels, array_metric = self.get_data_for_metric(metric, ascending)
        fig, ax1 = plt.subplots(figsize=figsize)
        pos = np.arange(len(array metric))
        rects = ax1.barh(pos, array_metric,
                         align='center',
                         height=0.5,
                         tick_label=array_labels)
        ax1.set_title(str_header)
        for a,b in zip(pos, array_metric):
            plt.text(0.5, a-0.05, str(round(b,3)), color='white')
        plt.xscale('log')
        plt.show()
clas_models_dict = {'LinR': LogisticRegression(),
                    'KNN_5':KNeighborsClassifier(n_neighbors=5),
                    'Tree':DecisionTreeClassifier(random state=1),
                    'GB': GradientBoostingClassifier(random state=1),
                    'RF':RandomForestClassifier(n_estimators=20, random_state=1)}
X data dict = {'Basic': (X train basic df, X test basic df),
               'Upgrade': (X_train_upgrade_df_new, X_test_upgrade_df_new)}
from sklearn.metrics import f1 score, recall score
def test models(clas models dict, X data dict, y train, y test):
    logger = MetricLogger()
    for model name, model in clas models dict.items():
        for data_name, data_tuple in X_data_dict.items():
```

```
X train, X test = data tuple
            model.fit(X_train, y_train)
            y_pred = model.predict(X_test)
            # mse = mean_squared_error(y_test, y_pred)/
            f1_res = f1_score(y_test, y_pred, average='weighted')
            print(model, f1_res)
            logger.add(model_name, data_name, f1_res)
    return logger
%%time
logger = test_models(clas_models_dict, X_data_dict, y_train_basic, y_test_basic)
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:765: Convers
     lbfgs failed to converge (status=1):
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:765: Conver&
     lbfgs failed to converge (status=1):
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
     LogisticRegression() 1.0
     LogisticRegression() 1.0
     KNeighborsClassifier() 0.9396739130434782
     KNeighborsClassifier() 0.9396739130434782
     DecisionTreeClassifier(random state=1) 1.0
     DecisionTreeClassifier(random state=1) 1.0
     GradientBoostingClassifier(random_state=1) 1.0
     GradientBoostingClassifier(random state=1) 1.0
     RandomForestClassifier(n estimators=20, random state=1) 1.0
     RandomForestClassifier(n_estimators=20, random_state=1) 1.0
     CPU times: user 1.32 s, sys: 2.77 ms, total: 1.32 s
     Wall time: 1.33 s
```

Построим графики метрик качества модели

```
for model in clas_models_dict:
    logger.plot('Модель: ' + model, model, figsize=(7, 4))
```

