Formalizing Commonsense Reasoning

Lecture 7

February 27, 2018

Take a Deep Breath . . .

- So what have we learned so far?
- A lot: We have learned that there is a powerful logic (namely FOPL) for which there are sound and complete, albeit semi-decidable, inference procedures.
- Two things remain, however:
 - 1. How powerful is FOPL? Is it appropriate for the kind of commonsense reasoning that we need?
 - 2. Assuming it is powerful enough, how easy is it to formalize commonsense reasoning?
- In the coming lectures, we look at these two points in depth.
- In this lecture, we venture into a brief investigation of the second point.
- Take a deep breath . . .

Translation

- We have seen that reasoning could be reduced to the formal manipulation of symbol structures.
- Commonsense reasoning is the formal manipulation of symbol structures representing commonsense knowledge.
- Commonsense knowledge is naturally expressible in natural language statements.
- Thus, before attempting to formalize commonsense reasoning, we need to look at issues in the translation from natural language to symbol structures, namely FOPL.
- Without loss of generality, we will concentrate on the case of English.

Translation Basics

- A typical translation scheme:
 - Proper nouns \leftrightarrow Constants.
 - Verbs (verb to-be is special, though) \leftrightarrow Predicate symbols (of arity 1, 2 or 3).
 - Nouns \leftrightarrow Unary predicate symbols.
 - Adjectives \leftrightarrow Unary predicate symbols.
 - Prepositions \leftrightarrow Predicate symbols of arity 2 or more.
- Possible paper topics:
 - Study linguistic theories of one of the above categories and propose a more elaborate representation scheme.
 - What about adverbs? Determiners?
- For auxiliary verbs, tense, and aspect, wait for the coming lectures.

Examples

- - Fido is a dog.
 - Dog(Fido)
- - Fido is a black dog.
 - Dog(Fido) \wedge Black(Fido)
- - Fido likes Lacy.
 - LIKES(Fido, Lacy)

Beware!

- - Dog(Fido)
- —
 - Dog(Fido) \wedge Black(Fido)
- - LIKES(Fido, Lacy)
- The pretend-it's-English semantics is often convenient, but it is often dangerous.
 - It gives the false impression of completeness.
- Informal intensional semantics is useful here.
 - Extensional semantics is useful when we need to prove something about the system, but it is often not convenient.

Life is Not That Simple

- - Fido is a smart dog.
 - $??? \operatorname{Dog}(\mathsf{Fido}) \wedge \operatorname{SMART}(\mathsf{Fido})$
- - Scooby-Doo is a cartoon dog.
 - $-??? \operatorname{Dog}(SD) \wedge \operatorname{Cartoon}(SD)$
- - Tweety is a water bird.
 - $??? BIRD(Tweety) \wedge WATER(Tweety)$

Quantification

- - Some lion is brave.
 - There is a brave lion.
 - $-\exists x \; (\text{Lion}(x) \land \text{Brave}(x))$
- - All lions are brave.
 - Every lion is brave.
 - Each lion is brave.
 - $\forall x (LION(x) \Rightarrow BRAVE(x))$
- What is wrong with
 - $-\exists x \; (\text{Lion}(x) \Rightarrow \text{Brave}(x))$ and
 - $\forall x (\text{Lion}(x) \land \text{Brave}(x))$

respectively?

Scope and Ambiguity

- - Every man loves a woman.
 - $\forall x (\text{Man}(x) \Rightarrow \exists y (\text{Woman}(y) \land \text{Loves}(x, y)))$
 - $-\exists y (\text{Woman}(y) \land \forall x (\text{Man}(x) \Rightarrow \text{Loves}(x, y)))$
- How about
 - All men love a woman.
- — There is a barber in town who shaves every man that does not shave himself.
 - Do it.

Uniqueness

- - There is exactly one brave lion.
 - ?

Uniqueness

- — There is exactly one brave lion.
 - $\exists x [\text{Lion}(x) \land \text{Brave}(x) \land \forall y [(\text{Lion}(y) \land \text{Brave}(y)) \Rightarrow y = x]]$
- How about two lions? At least? At most?

Tricky Cases

- Generics
 - A lion is brave.
- Donkey sentences
 - Every farmer who owns a donkey beats it.

Generalized Light-Switch World: I

- Consider attempting to formalize a generalized light-switch world.
- We start with a rather simple world:
 - Parallel branches each consisting of a single switch and a single light source connected in series.
- We need to setup a KB such that a "user" may enter a description of any particular situation and query the KB about which lights are on.

Language

- Constants:
 - Si $(i \in \mathbb{N})$, which we will use to name switches.
 - Li $(i \in \mathbb{N})$, which we will use to name light sources.
- Predicate symbols:
 - 1. Lt, where [Lt(x)] = [x] is a light source.
 - 2. Sw, where [Sw(x)] = [x] is a switch.
 - 3. On, where [On(x)] = light source [x] is on.
 - 4. Down, where [Down(x)] = switch [x] is down.
 - 5. Con, where [Con(x, y)] = light source [x] is connected to the power supply through switch [y].
 - 6. =, where [x = y] = [x] is identical to [y].
- Note: we probably need a **sorted logic** here.

Axioms

- 1. $\forall x[\text{LT}(x) \Rightarrow (\text{ON}(x) \Leftrightarrow \exists y[\text{SW}(y) \land \text{CON}(x,y) \land \text{DOWN}(y)])]$
- 2. $\forall x, y[(\operatorname{LT}(x) \wedge \operatorname{SW}(y) \wedge \operatorname{Con}(x, y)) \Rightarrow \forall z[(\operatorname{LT}(z) \wedge \operatorname{Con}(z, y)) \Rightarrow z = x]]$
- 3. $\forall x, y[(\operatorname{LT}(x) \wedge \operatorname{SW}(y) \wedge \operatorname{Con}(x, y)) \Rightarrow \forall z[(\operatorname{SW}(z) \wedge \operatorname{Con}(x, z)) \Rightarrow z = y]]$

Example

- Situation I:
 - LT(L1), LT(L2), LT(L3)
 - Sw(S1), Sw(S2), Sw(S3)
 - Con(L1, S1)
 - Con(L2, S2)
 - Con(L3, S3)
 - Down(S1)
 - Down(S2)
 - $-\neg Down(S3)$
- Can we now infer which lights are on and which are not?
 - Yes, but we need to enhance our inference engine with a rule for dealing with "=". This rule is referred to as paramodulation.

Generalized Switch-World: II

- Consider the following generalization:
 - A single light source may be connected to multiple switches.
- Remove Axiom 3.

Example

- Situation II:
 - LT(L1), LT(L2), LT(L3)
 - Sw(S1), Sw(S2), Sw(S3)
 - Con(L1, S1)
 - Con(L2, S2)
 - Con(L3, S3)
 - Down(S1)
 - Down(S2)
 - $\neg Down(S3)$
- Can we now infer which lights are on and which are not?

Domain Closure

- We can infer ON(L1) and ON(L2).
- We cannot infer $\neg ON(L3)$, though.
- Why?
 - There could be other switches in addition to [S1], [S2], and [S3].
- Add the **domain closure axiom**:

$$\forall x[\mathrm{SW}(x) \Rightarrow (x = \mathsf{S1} \ \lor \ x = \mathsf{S2} \ \lor \ x = \mathsf{S3})]$$

• Can we now derive $\neg ON(L3)$?

Unique Names Axioms

- No, we'll get stuck trying to prove that [L3] is neither [L1] nor [L2]!
- We need to add the **unique names axioms**:

$$L1 \neq L2$$

$$L1 \neq L3$$

$$L2 \neq L3$$

• Do we need to add axioms of the form

$$Li \neq Sj$$
?

- How many such axioms would we need, in general?
- Note that, now, we can derive $\neg ON(L3)$.

Generalized Switch-World: III

- Consider the following generalization:

 Multiple light sources may be connected to multiple switches.
- Remove Axiom 2.

Sad News

- We can infer ON(L1) and ON(L2).
- We cannot infer $\neg ON(L3)$, though.
- Why?
 - Nothing prevents [L3] from being connected to [S1], [S2], or [S3].
- Here, we have to explicitly state, not only which connections do exist, but also which connections do not!
- How do we deal with this mess? Wait for "non-monotonic logic".