СВЯЗИ

корреляции

регресси

регрессия

dummyпеременные

множественн регрессия

сравнение

моделей

перебор моделей

синтаксическа заметка

другие регресии

Корреляции и другие связи переменных. Регрессионный анализ

Г. Мороз

Связаны ли одни переменные с другими?

две количественные переменные

как связаны?

⇒ коэффициенты корреляции Пирсона, Спирмана, Кенделла

• две качественные переменные

 \Rightarrow aggregate(), χ^2 , тест Фишера

связи нет?

одна количественная и одна качественная переменная

⇒ ANOVA связи нет?

К сожалению, слово "корреляция" и его однокоренные в языке используется куда шире (примеры из НКРЯ):

- "...существует четкая корреляция между континентом проведения соревнований и результатом..."
- "...существует прямая корреляция между владением азиатскими «тональными» языками и хорошим музыкальным слухом..."
- "...прямая корреляция количества крыс в доме зависит от наличия мусоропровода и его состояния..."

В статистике корреляция — это отношение между числовыми переменными. презентация доступна: http://goo.gl/AdqRQl

связи переменных

Коэффициент корреляции Пирсона

Коэффициент корреляции позволяет показать степень взаимосвязи между двумя величинами. Коэффициент корреляции изменяется от -1 до 1, где \circ обозначает отсутствие взаимосвязи, положительное значение коэффициента указывает на прямую взаимосвязь (чем больше x, тем больше y), а отрицательное — на обратную (чем больше x, тем меньше y).

связи

корреляции

регресси

линейная

dummyпеременные

множественна регрессия

сравнение

моделей

синтаксическая

заметка

регреси

Коэффициент корреляции Пирсона

Значение коэффициента корреляции Пирсона зависит от удаленности точек от регрессионной прямой и никак не зависит от наклона данной прямой. См. примеры из Википедии.

```
x <- c(2, 8, 3, 7, 11, 3)
y <- c(12, 7, 10, 8, 5, 11)
```

cor(x,y) # по умолчанию считается коэффициент корреляции Пирсона cor.test(x,y) # H_0 : коэффициент равен нулю

Pearson's product-moment correlation

data: x and y

t = -12.03, df = 4, p-value = 0.0002737

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.985831 -0.8770124 доверительный интервал для коэффициента sample estimates:

-0.9864609 коэффициент корреляции

тип данных: числовой

параметрический (требует линейности связи)

регресии

корреляции

Коэффициенты корреляции Спирмана, Кенделла

регресси

линейная регрессия

dummyпеременны

множественна регрессия

сравнение моделей

синтаксическая

заметка

другие регресии


```
x <- c(2, 8, 3, 7, 11, 3)

y <- c(12, 7, 10, 8, 5, 11)

cor(x, y, method = "spea")
```

cor(x, y, method = "spearman") # коэффициент корреляции Спирмана cor.test(x, y, method = "spearman") cor(x, y, method = "kendall") # коэффициент корреляции Кенделла

cor.test(x, y, method = "kendall") # коэффициент корреляции кенделлі

тип данных: числовой непараметрический

Корреляционная матрица: PerformanceAnalytics

library(PerformanceAnalytics)
chart.Correlation(mydata)
chart.Correlation(mydata, method = "spearman")
chart.Correlation(mydata, method = "kendall")

корреляции

презентация доступна: http://goo.gl/AdqRQl

Корреляционная матрица: ellipse

Здесь пример использованием пакета ellipse.

корреляции

aggregate()

В работе [Cedergren 1973] ис следовались отпадение согласного [s] в конце слова в речи жителей Панамы. При каких условиях выпадение [s] происходит чаще всего?

tail(dat)

aggregate()

nt	phon.cont	gramm.cat	s.deletion	
se	pause	noun	not deleted	8841
se	pause	noun	not deleted	8842
se	pause	noun	not deleted	8843
se	pause	noun	not deleted	8844
se	pause	noun	not deleted	8845
se	pause	noun	not deleted	8846
	•			

sapply(dat, table)

\$s.deletion deleted not deleted 5091 3755

\$gramm.cat

adjective determiner noun separate morpheme verb 609 1393 2268 4460 116

\$phon.cont

consonant pause vowel 5600 1304 1942

\$social

2 3 4

579 2547 2385 3335 зентация доступна: http://goo.gl/AdqRQl

8/4

	aggre data	# формула # данные			
связи	sumr	nary)			# функция
переменных		gramm.cat	s.deletion.no	s.deletion.yes	
корреляции	1	adjective	311	2 98	
aggregate()	2	determiner	789	604	
регрессии	3	noun	674	1594	
линейная	4	separate morpheme	1904	2556	;
регрессия	5	verb	77	39	1
	aggre	egate(s.deletion~grami	m.cat + phon.c	ont.	# формула
переменные	data			,	# данные
множественная	sumr				# функция
регрессия		gramm.cat	phon.cont	s.deletion.no	s.deletion.yes
	1	adjective	consonant	261	205
сравнение моделей	2	determiner	consonant	678	524
	3	noun	consonant	418	733
перебор моделей	4	separate morpheme	consonant	1361	1355
	5	verb	consonant	42	23
синтаксическая заметка	6	adjective	pause	22	48
заметка	7	noun	pause	132	485
другие	8	separate morpheme	pause	146	471
регресии	9	adjective	vowell	28	45
	10	determiner	vowell	111	80
	11	noun	vowell	124	376
	12	separate morpheme	vowell	397	730
	13	verb	vowell	35	16
		гация доступна: http://		33	9/40
	F	- 1 11= - J	00,1-1-		314*

СВЯЗИ
ПЕРЕМЕННЫХ
корреляции
aggregate()

регресси

линейная регрессия

dummyпеременные

множественна регрессия

сравнени моделей

перебор моделей

синтаксическая заметка

другие регресии b <- aggregate(s.deletion~gramm.cat, data = a, summary) # лучше смотреть на соотношения в процентах # apply(df, 1, FUN) применяет функцию FUN к каждой строчке df b\$prop.no <- apply(b[.length(b)], 1, prop.table)[1,]

apply(df, 1, FUN) применяет функцию FUN к каждой строчке df b\$prop.no <- apply(b[,length(b)], 1, prop.table)[1,] b\$prop.yes <- apply(b[,length(b)-1], 1, prop.table)[2,]

	gramm.cat	s.delet.no	s.delet.yes	prop.no	prop.yes
1	adjective	311	298	0.51	0.49
2	determiner	789	604	0.57	0.43
3	noun	674	1594	0.30	0.70
4	separate morpheme	1904	2556	0.43	0.57
5	verb	77	39	0.66	0.34

Correlation does not imply causation!

Это говорят на всех курсах по статистике. Примером могут служить сайт и сделанная на его основе книга Spurious correlations.

Если есть корреляция между двумя переменными a и b, то может быть один из следующих вариантов:

- а вызывает b
- \circ b вызывает a
- \circ a вызывает b, а b вызывает a
- \circ a вызывает c, а c вызывает b
- \circ *c* вызывает *a* и *b*, но *a* и *b* не связаны
- \circ a и b не связаны

Однако часто приводят примеры лишь на последнее. Кстати, вы знали, что количество пиратов влияет на глобальное потепление? А еще... чем больше пожарников посылают тушить пожар, тем больше ущерба он наносит.

переменных корреляции aggregate()

линейная

dummyпеременные

множественн регрессия

сравнение моделей

перебор

синтаксическа

другие регрест

Статистическая модель

Когда мы работаем с данными и находим отношения между какими-то из переменных, мы создаем упрощенное представление некоторой системы, которые мы в дальнейшем будем называть моделью. Получившаяся модель позволяет нам с некоторой точностью предсказывать некоторый результат на основе той или иной конфигурации параметров модели. Чаще всего в статистические модели закладывается стохастический элемент, т. е. даже в самой простой модели будет случайная переменная, которую еще называют остатками модели:

$$y = 4 + \varepsilon_i$$

Таким образом любое статистическое моделирование — это поиск наилучшей аппроксимация закона распределения исследуемой переменной, так чтобы обеспечить минимум средней ошибки ε_i .

корреляции

регрессии

линейна регресси

dummyпеременные

множественн регрессия

сравнение моделей

перебор моделей

синтаксическа заметка

регреси

Линейная регрессия

В работе исследовалась зависимость средней значения частоты основного тона от возраста (мужчины и женщины следует считать отдельно). Какие коэффициенты получит регрессионные линии и сколько процентов дисперсии объяснят наши модели, если мы предположим линейную зависимость между переменными?

связи переменный

корреляции

регресси

линейная регрессия

диттупеременны

множественна регрессия

спавнение

моделей

моделей

синтаксическая заметка

Линейная регрессия

В работе исследовалась зависимость средней значения частоты основного тона от возраста (мужчины и женщины следует считать отдельно). Какие коэффициенты получит регрессионные линии и сколько процентов дисперсии объяснят наши модели, если мы предположим линейную зависимость между переменными?

$$y = \beta_0 + \beta_1 \cdot x + \varepsilon_i,$$

где x — предиктор, β_0 — свободный член, β_1 — угловой коэффициент, ε_i — средняя ошибка.

связи

корреляции

регресси

линейная регрессия

переменны

множественна регрессия

сравнение

моделей

синтаксическа

заметка

другие регресь

Линейная регрессия: строим модель

связи переменны

корреляции aggregate()

регресси

линейная регрессия

dummyпеременные

множественна регрессия

регрессия

моделей

моделей

заметка

другие регреси

summary(df)

sex	age		pit	.cn	
f:20	Min.	:23.00	Min.	:139.3	
m:20	1st Qu.	:46.50	1st Qu.	:154.3	
	Median	:62.50	Median	:158.8	
	Mean	:59.12	Mean	:159.3	
	3rd Qu.	:71.25	3rd Qu.	:162.4	
	Max.	:83.00	Max.	:176.4	

```
dfm <- subset(df, sex=="m")</td># сгруппируем по полуdff <- subset(df, sex=="f")</td># сгруппируем по полуfit.f <- lm(pitch~age, dff)</td># строим регрессиюfit.m <- lm(pitch~age, dfm)</td># строим регрессию
```

В случае, если в задаче требуется исключить свободный член, то в формулу нужно добавить -1:

```
fit.m2 <- lm(pitch~age - 1, dfm) # исключаем свободный член
```

Линейная регрессия: анализ результатов

теременных корреляции

регрессии

линейная регрессия

переменные

множественна регрессия

сравнение моделей

перебор моделей

синтаксическа заметка

регреси

fit.f <- $lm(pitch \sim age, dff)$	# строим регрессию по данным женщин
summary(fit.f)	

Call:

lm(formula = pitch ~age, data = dff) # формула, вдруг забыли

Residuals: # распределение остатков
Min 1Q Median 3Q Max
-2.33997 -0.62471 -0.06519 0.70728 1.66992

Coefficients: # коэффициенты модели **Fstimate** Std. Frror t value Pr(>|t|)189.87935 1.00978 188.04 < 2e-16(Intercept) # β₀ -0.398200.01605 -24.81 2.27e-15 *** # β₁ age

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.134 on 18 degrees of freedom Multiple R-squared: 0.9716, Adjusted R-squared: 0.97 F-statistic: 615.5 on 1 and 18 DF, p-value: 2.267e-15

Что означают p-values?

Линейная регрессия: анализ результатов

fit.m <- lm(pitch~age, dfm) # строим регрессию по данным женщин summary(fit.m)

Call:

линейная

регрессия

lm(formula = pitch ~age, data = dfm) # формула, вдруг забыли

Residuals: # распределение остатков
Min 1Q Median 3Q Мах

-1.87771 -0.54867 0.05222 0.88251 1.79433

Coefficients: # коэффициенты модели Estimate Std. Error t value Pr(>|t|)(Intercept) 130.07015 0.90750 143.33 < 2e-16# β₀ 0.39790 0.01534 25.94 1.04e-15 *** # B₁ age

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9985 on 18 degrees of freedom Multiple R-squared: 0.974, Adjusted R-squared: 0.9725 F-statistic: 673 on 1 and 18 DF, p-value: 1.036e-15

Что означают p-values?

Линейная регрессия: визуализация, R-base

связи переменні

корреляции

регресси

линейная регрессия

dummyпеременные

множественна регрессия

спарионно

поделе

синтаксическая

заметка

другие регресии

ЧОТ vs. возраст: женщины

fit.f <- Im(pitch~age, dff)
plot(dff\$age, dff\$pitch)
abline(fit.f)</pre>

Линейная регрессия: визуализация, ggplot2

линейная регрессия


```
ggplot(dfm, aes(x=age, y = pitch))+
geom point()+
geom smooth(method = "lm")
                               # уже встроена линейная регрессия
```

library(ggplot2)

Линейная регрессия: доверительный интервал

Так как регрессия строится по выборочным данным, мы не знаем, как бы проходила линия, если бы мы взяли другую выборку. Т. е. значения коэффициентов β_0 и β_1 , вычисленные функцией Im(), являются лишь некоторым приближением к коэффициентам регрессии, которая бы описывала параметры генеральной совокупности.

В вязи с этим стоит строить доверительный интервал регрессии, что позволяет делать команда predict().

head(predict(fit.f, interval = "conf"))						
	fit	lwr	upr			
1	158.4218	157.6118	159.2319			
2	162.8020	162.2180	163.3859			
3	162.4038	161.8052	163.0023			
4	163.2002	162.6292	163.7711			
5	161.6074	160.9752	162.2396			
6	161.2092	160.5582	161.8602			

регрессии

линейная регрессия

переменные

множественн регрессия

сравнение моделей

моделей

синтаксическая заметка

регреси

Линейная регрессия: CI, R-base

ЧОТ vs. возраст: женщины


```
fit.f <- Im(pitch~age, dff)
pred.f <- predict(fit.f, interval = "conf")
plot(dff$age, dff$pitch)
lines(dff$age, pred.f[,1])
lines(dff$age, pred.f[,2], col = "skyblue3")
lines(dff$age, pred.f[,3], col = "skyblue3")
lines(dff$age, pred.f[,3], col = "skyblue3")
```

линейная регрессия

> # строим модель # строим границы

линия регрессии # нижняя гр. CI # верхняя гр. CI

20/4

Линейная perpeccuя: CI, ggplot2

связи переменных

aggregate()

регресси

линейная регрессия

dummyпеременные

множественна регрессия

спарионно

перебот

синтаксичесь

другие

уже встроен СІ

ЧОТ vs. возраст: мужчины

В регрессионные модели можно включить и категориальные предикторы. Для этого вводятся фиктивные переменные (dummy variables), принимающие значение либо 1, либо 0. При этом фиктивных переменных должно быть на одну меньше, чем значений, которые принимает категориальные переменные.

связи переменны

корреляции

регрессии

линейная регрессия

dummyпеременные

множественна регрессия

регрессия

моделей

перебор моделей

синтаксическая заметка

Проанализируем данные, содержащих выборку языков с указанием количества согласных и наличия в данном языке абруптивных согласных. На графике представлен результат (можно посмотреть более интерактивный вариант):

связи переменны

корреляции aggregate()

регресси

линейная регрессия

dummyпеременные

множественна регрессия

сравнение молелей

моделей

синтаксическая

заметка

регреси

связи перемення

корреляции

регрессии

линейная регрессия

dummyпеременные

множественна регрессия

сравнение моделей

моделей

синтаксическая заметка

другие регреси $m <-lm(n.cons.lapsyd \sim ejectives, data = ejectives)$ summary(m)

Call:

Im(formula = n.cons.lapsyd ~ ejectives, data = ejectives)

Residuals:

Min 1Q Median 3Q Max -14.400 -4.229 -1.059 2.441 23.600

Coefficients:

	Estimate	Std. Error	t	value	Pr(> t)
(Intercept)	19.059	1.953	9.758	5.25e-10	***
ejectivesyes	15.341	3.209	4.780	6.59e-05	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.053 on 25 degrees of freedom Multiple R-squared: 0.4775, Adjusted R-squared: 0.4566 F-statistic: 22.85 on 1 and 25 DF, p-value: 6.588e-05

Естественно в модели переменная может принимать больше двух значений.

Регрессионное моделирование, в котором предсказываемая переменная — количественная, а все предикторы — категориальные, называют ANOVA (Analysis of Variance).

корреляции

регресси

линейная регрессия

dummyпеременные

множественн

регрессия

моделей

моделей

синтаксическа заметка

регресии

А что если количество предикторов больше двух?

- попарное сравнение pairs()
- несколько регрессий
- множественная регрессия

множественная

регрессия

А что если количество предикторов больше двух?

• попарное сравнение pairs()

связи

корреляции

регресси

линейная регрессия

dummyпеременны

множественная регрессия

сравнени

моделей

моделеи

синтаксическая заметка

А что если количество предикторов больше двух?

несколько регрессий

возраст

множественная регрессия

Множественная регрессия

Естественным обобщением линейной регрессии является множественная регрессия, в которой имеется не один предиктор, а несколько:

$$y = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \cdots + \beta_k \cdot x_k + \varepsilon_i$$

где x_1, x_2, \ldots, x_k — предиктор, β_0 — свободный член, $\beta_1, \beta_2, \ldots, \beta_k$ — коэффициенты регрессии, ε_i — средняя ошибка.

множественная

регрессия

Как сравнить модели?

Для сравнения моделей используют несколько параметров:

- o p-value модели, и p-value коэффициентов регрессии
- R² и adjusted R² доля дисперсии, объясняемая моделью
- $\circ\;$ AIC информационный критерий Акаике (чем меньше, тем лучше)
- $\circ\;$ ВІС байесовский информационный критерий Шварца (чем меньше, тем лучше)
- результаты перекрестной проверки (cross-validation) существует много разных техник

В работе [Stone 1977], видимо, показано, что AIC и некоторые методы перекрестной проверки асимптотически эквивалентны.

переменны

регресси

линейная регрессия

ашттупеременные

множественна регрессия

сравнение

моделей

моделей

заметка

другие регресь

Как сравнить модели? p-value

Для сравнения моделей используют несколько параметров:

o p-value модели, и p-value коэффициентов регрессии.

```
Call:
```

lm(formula = pitch ~age, data = dfm) # формула, вдруг забыли

Residuals:

распределение остатков n 30 Max

иножественная Min

Min 1Q Median 3Q Max -1.87771 -0.54867 0.05222 0.88251 1.79433

сравнение моделей

Coefficients: # коэффициенты модели Estimate Std. Error t value Pr(>|t|)

моделей

(Intercept) 130.07015 0.90750 143.33 <2e-16 *** # β_0 age 0.39790 0.01534 25.94 1.04e-15 *** # β_1

Sign

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9985 on 18 degrees of freedom Multiple R-squared: 0.974, Adjusted R-squared: 0.9725

F-statistic: 673 on 1 and 18 DF, p-value: 1.036e-15

Как сравнить модели? R^2 и adjusted R^2

Для сравнения моделей используют несколько параметров:

• R² и adjusted R² — доля дисперсии, объясняемая моделью.

Call:

lm(formula = pitch ~age, data = dfm) # формула, вдруг забыли

Residuals: # распределение остатков
Min 10 Median 30 Max

-1.87771 -0.54867 0.05222 0.88251 1.79433

Coefficients: # коэффициенты модели Estimate Std. Error t value Pr(>|t|)

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9985 on 18 degrees of freedom Multiple R-squared: 0.974, Adjusted R-squared: 0.9725

F-statistic: 673 on 1 and 18 DF, p-value: 1.036e-15

сравнение

моделей

Как сравнить модели? R² и adjusted R²

Для сравнения моделей используют несколько параметров:

o R² и adjusted R² — доля дисперсии, объясняемая моделью

пр Во многих дисциплинах достаточно высокими считаются значения

связи переменны

регрессии

линейная

dummyпеременные

множественна регрессия

сравнение моделей

перебор моделей

синтаксическая заметка

Как сравнить модели? AIC, BIC

Для сравнения моделей используют несколько параметров:

АІС — информационный критерий Акаике (чем меньше, тем лучше)
 АІС()

ВІС — байесовский информационный критерий Шварца (чем меньше, тем лучше)
 ВІС()

... надо сказать, разных вариантов этих критериев много, AIC и BIC — самые популярные.

связи переменны

корреляции

регресси

линейная регрессия

dummyпеременные

множественная регрессия

регрессия сравнение

моделей перебор

синтаксическа

заметка

Перебор моделей

Существует несколько стратегий перебора моделей:

- построить модель из всех предикторов, а потом "выкидывать"не значимые
- строить модель снизу вверх добавляя по одному предиктору, выясняя какие значимы, а какие нет
 - о смешанная

Если много предикторов, то возникает желание перебрать все возможные варианты и узнать, в какой модели лучше скорректированный R², AIC и BIC. Для этого, естественно, уже написаны готовые функции (см. функцию step, regsubsets в пакете leaps, bestglm в пакете bestglm или пакет FWDselect и его описание [Sestelo et al. 2016]). Можно встретить отрицательное отношение к такой стратегии выискивания лучшей из моделей, построенных на одних и тех же данных, так как некоторые приравнивают ее к data fishing.

связи переменнь корреляции

регресси

линейная регрессия

ашттупеременныє

множественн регрессия

сравнение моделей

перебор моделей

синтаксическая заметка

perpeci

Перебор моделей: step

Функция stepпepeбирает модели на основе AIC. Аргумент directionпозволяет выбрать стратегию перебора: backward, forward или both. По умолчанию функция показывает ход своей работы, чтобы вывести на экран характеристики выбранной модели, следует использовать функцию summary.

```
step(Im(duration~., data = vowels))
step(Im(duration~., data = vowels), method = "both")
summary(step(Im(duration~., data = vowels), method = "both"))
```

корреляции

регрессии

линейная регрессия

dummyпеременны

множественн регрессия

сравнени

моделей перебор моделей

синтаксическа

другие

Aspects of the Theory of Syntax

связи переменны

корреляции

perpecci

линейная регрессия

переменные

регрессия

сравнение

перебор

синтаксическая

синтаксическа: заметка

другие регресии $y = \beta_0 + \beta_1 \cdot x_1 + \epsilon_i$ обычная формула у~х

 $y = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \epsilon_i$ обычная формула y~x + z

 $y = \beta_0 + \beta_1 \cdot x_2 \cdot x_1 + \epsilon_i$ только взаимодействие y~x:z

 $y=eta_0+eta_1\cdot x_1+eta_2\cdot x_2+eta_3\cdot x_2\cdot x_1+eta_i$ с взаимодействием y~x*z

 $y=eta_0+arepsilon_i$ формула без предикторов y~1

 $\circ \; y = eta_1 \cdot x_1 + arepsilon_i$ формула без свободного члена y~x - 1

 $y = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \dots + \beta_k \cdot x_k + \varepsilon_i$ все предикторы $y \sim x_0$

В данной презентации не рассказано о...

- о полиномиальной регрессии,
- о нелинейной регрессии,
- о логистической регрессии,
- о гребневой и лассо-регрессии,
- о и, наверное, о массе всего другого.

aggregate()

линейная

dummyпеременные

множественна

регрессия

сравнени моделей

перебор

синтаксическа

СВЯЗИ

переменн

корреляции aggregate()

регрессии

регрессия

dummyпеременные

множественна регрессия

perpecent

моделей

перебор моделей

синтаксическа

другие регресии

Спасибо за внимание

Пишите письма

agricolamz@gmail.com

Список литературы

СВЯЗИ

корреляции aggregate()

регресси

линейная регресси

dummyпеременны

множественна регрессия

сравнени моделей

перебор моделей

заметка

- Cedergren, H. C. J. (1973). The interplay of social and linguistic factors in Panama. Cornell University.
- Sestelo, M., N. M. Villanueva, and J. Roca-Pardiñas (2016). FWDselect: An R package for selecting variables in regression models. <u>Discussion Papers in Statistics and Operation Research 13</u>(02).
- Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and akaike's criterion. <u>Journal of the Royal Statistical Society.</u> Series B (Methodological), 44--47.