Handout Models with Continuous Symmetry

Philipp Ligtenberg

15. Juli 2021

Grundlegende Definitionen

Definition 1 (Single-Spin Raum)

Wir betrachten Modelle, für die die Spins N-dimensionale Einheitsvektoren sind, in den Knoten von \mathbb{Z}^d . Sei $N \in \mathbb{N}$, dann ist der Single-Spin Raum:

$$\Omega_0 := \{ \nu \in \mathbb{R}^N \colon \|\nu\|_2 = 1 \} \equiv \mathbb{S}^{N-1}.$$

Definition 2 (Konfiguration)

Entsprechend ist die Menge an Konfiguration auf einer endliche Teilmenge $\Lambda \in \mathbb{Z}^d$ gegeben als:

$$\Omega_{\Lambda} := \Omega_{0}^{\Lambda}$$

und wir assoziieren zu jedem Knoten $i \in \mathbb{Z}^d$ eine Zufallsvariable $\mathbf{S}_i = (S_i^1, S_i^2, \dots, S_i^N)$ definiert durch:

$$\mathbf{S}_i(\omega) := \omega_i$$

und wird **Spin** bei i genannt.

Definition 3 (Hamiltonian)

Sei $W: [-1,1] \to \mathbb{R}$. Der **Hamiltonian eines O(N)-symmetrischen Models** in $\Lambda \in \mathbb{Z}^d$ ist definiert als:

$$\mathcal{H}_{\Lambda,\beta} := \beta \sum_{\{i,j\} \in \mathcal{E}_{\Lambda}^{b}} W\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right).$$

Definition 4 (Gibbs-Verteilung)

Sei $\Lambda \in \mathbb{Z}^d$ und $\eta \in \Omega$. Die **Gibbs Verteilung** in Λ mit Randbedinung η ist das Wahrscheinlichkeitsmaß $\mu_{\Lambda,\beta}^{\eta}$ auf (Ω,\mathcal{F}) definiert durch:

$$\forall A \in \mathcal{F}, \, \mu_{\Lambda,\beta}^{\eta}(A) := \int_{\Omega_{\Lambda}} \frac{e^{-\mathcal{H}_{\Lambda,\beta}(\omega_{\Lambda}\eta_{\Lambda^{c}})}}{\mathbf{Z}_{\Lambda,\beta}^{\eta}} \mathbb{1}_{A}(\omega_{\Lambda}\eta_{\Lambda^{c}}) \prod_{i \in \Lambda} \mathrm{d}\omega_{i} \,,$$

wobei mit d ω_i das Lebesgue Maß aus \mathbb{S}^{N-1} bezeichnet wird. Außerdem ist wie gehabt die Partitionsfunktion gegeben durch

$$\mathbf{Z}^{\eta}_{\Lambda,\beta} := \int_{\Omega_{\Lambda}} e^{-\mathcal{H}_{\Lambda,\beta}(\omega_{\Lambda}\eta_{\Lambda^{c}})} \prod_{i \in \Lambda} \mathrm{d}\omega_{i} .$$

Definition 5 (Rotationen)

Sei $R \in SO(N)$.

(i) Wir definieren eine **globale Rotation** r auf einer Konfiguration $\omega \in \Omega$ durch:

$$(r\omega)_i := R\omega_i, \quad \forall i \in \mathbb{Z}^d.$$

(ii) Analog defineren wir Rotationen auf Ereignissen $A \in \mathcal{F}$ durch

$$rA := \{r\omega \colon \omega \in A\}$$

als auch auf Funktionen und Wahrscheinlichkeitsmaßen durch

$$rf(\omega) := f(r^{-1}\omega), \quad r(\mu)(A) := \mu(r^{-1}A).$$

Wir schreiben $r \in SO(N)$ und meinen, dass r eine globale Rotation assoziiert mit einem Element von SO(N) ist.

Mermin - Wagner Theorem

Theorem 6 (Mermin-Wagner Theorem)

Sei $N \ge 2$ und W zweimal stetig differenzierbar. Dann gilt für d = 1, 2, dass alle unendlich-volumen Gibbs Maße invariant unter SO(N) sind.

$$\forall \mu \in \mathcal{G}(N) : r(\mu) = \mu, \quad \forall r \in SO(N).$$

Notation 7

Für N=2 notieren wir:

1. Eine Konfiguration durch eine Familie $(\vartheta_i)_{i \in \mathbb{Z}^2}$ von Winkeln: $\vartheta_i \in (-\pi, \pi]$, derart, dass gilt:

$$\mathbf{S}_i = (\cos \vartheta_i, \sin \vartheta_i)$$

2. Außerdem: $V(\theta) = W(\cos \theta)$, sodass:

$$\mathcal{H}_{B(n);\beta} = \beta \sum_{\{i,j\} \in \mathcal{E}_{\Lambda}^{b}} W\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right) = \beta \sum_{\{i,j\} \in \mathcal{E}_{\Lambda}^{b}} V\left(\vartheta_{i} - \vartheta_{j}\right).$$

Definition 8

Definieren die Konfiguration $\omega_i^{\text{SW}} = \left(\cos \vartheta_i^{\text{SW}}, \sin \vartheta_i^{\text{SW}}\right)$ durch:

$$\vartheta_i^{\text{SW}} := \left(1 - \frac{\log\left(1 + \|i\|_{\infty}\right)}{\log\left(1 + n\right)}\right) \pi, \qquad i \in B(n).$$

Proposition 9

Sei d=1,2 und N=2. Unter den Voraussetzungen des Mermin-Wagner Theorems gilt: Es existieren Konstanten $c_1,c_2,$ sodass für eine beliebige Randbedingung $\eta\in\Omega$, beliebige inverse Temperatur $\beta<\infty$, bliebigen Winkel $\Psi\in(-\pi,\pi]$ und beliebiges $l\in\mathbb{Z}_{\geq 0}$ gilt:

$$\left| \langle f \rangle_{B(n);\beta}^{\eta} - \langle r_{\psi} f \rangle_{B(n);\beta}^{\eta} \right| \leq \beta^{1/2} |\Psi| \, \|f\|_{\infty} \times \left\{ \begin{array}{l} \frac{c_1}{\sqrt{n-l}}, & d = 1\\ \frac{c_2\sqrt{l}}{\sqrt{\log{(n-l)}}}, & d = 2 \end{array} \right.$$

für alle n > l und beschränkte Funktionen f mit $supp(f) \subset B(l)$.

Notation 10

Mit $\langle \cdot \rangle_{\Lambda;\beta}^{\eta;\Psi}$ notieren wir den Erwartungswert unter dem Maß:

$$\mu_{\Lambda;\beta}^{\eta;\Psi}(A) = \left(Z_{\Lambda;\beta}^{\eta;\Psi}\right)^{-1} \int_{\Omega_{\Lambda}} e^{-\mathcal{H}_{\Lambda,\beta}(t_{\Psi}(\omega_{\Lambda}\eta_{\Lambda^{c}}))} \mathbb{1}_{A}(\omega_{\Lambda}\eta_{\Lambda^{c}}) \prod_{i \in \Lambda} \mathrm{d}\omega_{i}$$

für $A \in \mathcal{F}$.

Definition 11 (relative Entropie)

Wir definieren die **relative Entropie** zweier Maße μ, ν als:

$$h(\mu|\nu) = \begin{cases} \left\langle \frac{\mathrm{d}\mu}{\mathrm{d}\nu} \log \left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu} \right) \right\rangle_{\nu}, & \text{falls } \mu \ll \nu^{1} \\ \infty, & \text{sonst} \end{cases},$$

wobei mit $\frac{\mathrm{d}\mu}{\mathrm{d}\nu}$ die Radon-Nykodym Ableitung von μ bzgl. ν bezeichnet wird.

Lemma 12 (Pinkers Ungleichung)

Für jede Messbare Funktion f mit $||f||_{\infty} \leq 1$ gilt:

$$\left| \langle f \rangle_{\mu} - \langle f \rangle_{\nu} \right| \leq \sqrt{2h(\mu|\nu)}.$$

Notation 13

Wir schreiben

$$(\nabla \Psi)_{ij} := \Psi_j - \Psi_i.$$

Definition 14 (Dirichlet Energie)

Die **Dirichlet Energie** einer Funktion $\Psi \colon \mathbb{Z}^d \to \mathbb{R}$ ist definiert als

$$\mathcal{E}(\Psi) := \frac{1}{2} \sum_{\{i,j\} \in \mathcal{E}_{\Lambda \setminus B(I)}^b} (\nabla \Psi)_{ij}^2 \,.$$

Lemma 15

Die Dirichlet Energie hat einen eindeutigen Minimierer unter allen Funktionen $U: \mathbb{Z}^d \to \mathbb{R}$, welcher $U_i = 0, \forall i \notin \Lambda \text{ und } U_i = 1 \forall i \in B(l) \text{ erfüllt. Dieser ist gegeben durch:}$

$$u_i^* := \mathbb{P}_i(X \text{ kommt nach } B(l) \text{ bevor } er \Lambda \text{ verl\"{a}sst}),$$

 $mit\ X = (X_k)_{k \ge 0}\ dem\ symmetrischen\ random-walk\ auf\ \mathbb{Z}^d\ und\ \mathbb{P}_i\ (X_0 = i) = 1.$ Es gilt:

$$\mathcal{E}(u^*) = d \sum_{\partial^{\mathrm{int}} B(l)} \mathbb{P}_j \left(X \ verl\"{a}sst \ \Lambda bevor \ er \ nach \ B(l) \ zur\"{u}ckkehrt \right).$$

Abfall der Korrelation

Theorem 16

Für jedes $d \ge 1$, $N \ge 1$, $\beta \ge 0$ und jedes Gibbs Ma β μ des O(N) Modells bei inverser Temperatur β auf \mathbb{Z}^d gilt:

$$\left| \left\langle \mathbf{S}_0 \cdot \mathbf{S}_i \right\rangle_{\mu} \right| \leq N \left\langle \sigma_0 \sigma_i \right\rangle_{\beta,0}^{+,\text{Ising}}$$

wobei der Erwartungswert auf der rechten Seite bzg. des Gibbs Maß $\mu_{\beta,0}^+$ des Ising Modells auf \mathbb{Z}^d bei inverser Temperatur β und h=0 ist.

Korollar 16.1

Sei μ das eindeutige Gibbs Ma β des O(N) Modells auf \mathbb{Z} . Dann gilt für jede inverse Temperatur $0 \leq \beta < \infty$:

$$\left| \left\langle \mathbf{S}_0 \cdot \mathbf{S}_i \right\rangle_{\mu} \right| \le N \left(\tanh \beta \right)^{|i|}$$

Theorem 17

Sei μ ein infinite-volume Gibbs Ma β assoziiert mit dme zwei dimensionalen XY Modell bei inverser Temperatur β . $\forall \epsilon > 0$: $\exists \beta_0(\epsilon) < \infty$ sodass $\forall \beta > \beta_0(\epsilon)$ und $i \neq j \in \mathbb{Z}^2$ gilt:

$$\left| \left\langle \mathbf{S}_i \cdot \mathbf{S}_j \right\rangle_{\mu} \right| \le \left\| j - i \right\|_2^{-(1-\epsilon)/(2\pi\beta)}$$
.

Grundlage des Vortrags: S.Friedli und Y.Velenik(2017): Models with Continuous Symmetry. In: S.Friedli und Y.Velenik: StatisticalMechanics of Lattice Systems: A Concrete Mathematical Introduction. (CambridgeUniversityPress) Cambridge. S. 411 - 435