Лабораторный практикум 1

Компьютерная математика БГУ, ММФ, 1 курс, 2 семестр специальность Математика (направления: научно-производственная деятельность, экономическая деятельность) доц. Щеглова Н.Л. 2019-02-11

Погружение в Mathematica

<u>Цель работы</u>: Приобретение начальных навыков работы в компьютерной математической среде *Mathematica*. Оформление результатов работы в виде электронного документа.

Выполнение работы

1. Структура рабочего документа

Задание 1.1 Создайте электронный документ, который имеет вложенную структуру

Тип ячейки	Содержимое ячейки
Title	Номер лабораторной работы, ее название
Text	Атрибуты исполнителя, дата выполнения
Section	2. Ввод и отображение математических выражений
Subsection	Задание 2.1
Text	Формулировка задания 2.1
Input	Выполнение задания
Subsection	Задание 2.2
Text	Формулировка задания 2.2
Input	Выполнение задания
Section	3. Операции с рациональными функциями
Subsection	Задание 3.1
Text	Формулировка задания 3.1
Input	Выполнение задания
•••	
Subsection	Задание 3.3
Text	Формулировка задания 3.3
Input	Выражения для выполнения задания
Section	4. Решение уравнений, неравенств и систем
Subsection	Задание 4.1
Text	Формулировка задания 4.1
Input	Выполнение задания
•••	
Subsection	Задание 4.5
Text	Формулировка задания 4.5
Input	Выполнение задания

Выполнение задания 1.1.

Визуально описанная выше структура аналогична структуре документа, представленного на рис. 1.1.

Рис. 1.1. Пример оформления электронного документа

- 1) Создайте новый документ *Mathematica*. Сохраните документ в памяти компьютера, на котором Вы работаете, в папке Вашего курса, Вашей группы. Имя документа должно содержать идентификатор работы и Вашу фамилию (КМ1ЛБ01ФамилияИО.nb)
- 2) Внимательно рассмотрите рис.1.1, правую часть рабочей области: для различения ячеек там отображаются скобы. Скобы несут информацию о структуре документа, о размере, типе и степени вложенности каждой ячейки. Каждой скобе, самой левой в структуре, соответствует одна ячейка. Если ячейки объединены в группы, то соответствующие ячейкам скобы справа обрамляет внешняя скоба. Группировать/разобщать ячейки можно вручную или в автоматическом режиме, выбрать режим можно командой меню Cell | Grouping.... Элементы сформированной группы можно сворачивать/раскрывать, используя пункт меню Cell | Grouping... или комбинацию клавиш, там же указанную. Определенный вид верхней части скобы указывает определенный тип ячейки.
- 3) Создайте **первую ячейку** документа, в ней укажите номер и название лабораторной работы. По умолчанию создаваемые ячейки имеют тип Input. Какой вид имеет скоба, соответствующая ячейке типа Input? Нам же следует ее сделать титульной, содержащей в себе все ячейки документа.
- 4) Измените стиль созданной ячейки. Для этого выделите ячейку, указав мышью скобу, обрамляющую ячейку справа. Далее используйте пункты меню Format \ Style \ Title.
- 5) Создайте **вторую ячейку**, в ней разместите атрибуты исполнителя и дату. Форматируйте ячейку, указав тип ячейки посредством команд Format \ Style \ Text. Укажите также выравнивание текста по правому краю, как это выполнено на рис.1.1.

6) Далее создайте **третью ячейку**, в ней разместите заголовок секции «2. Ввод и отображение математических выражений». При этом используйте другой способ установки типа ячейки – комбинацию клавиш, указанную в табл. 1.1.

 Таблица 1.1

 Рекомендуемые типы и содержимое ячеек

Содержимое ячейки	Тип ячейки	Комбинация клавиш
Номер лабораторной работы, ее название	Title	Alt+1
Атрибуты исполнителя, дата выполнения	Text	Alt+7
Название секции	Section	Alt+4
Название подсекции	Subsection	Alt+5
Текстовые комментарии	Text	Alt+7
Выражения для вычисления системой	Input	Alt+9

- 7) Секции должны содержать подсекции. Примем соглашение: в каждой подсекции будем располагать условие одного задания и выполнение этого задания. Назовем заголовок подсекции «Задание 2.1». Внутри подсекции, в первой ячейке, следует расположить формулировку задания. Эта ячейка должна иметь тип Text. Ниже, в этой же подсекции, в ячейках типа Input, следует выполнять задание. Лаконичные комментарии к решению располагаем в ячейках типа Text. Для установки типа ячеек используйте табл. 1.1.
- 8) Проверьте полученную структуру документа: она должна быть **аналогична** структуре, представленной на рис. 1.1.
- 9) Убедитесь в том, что ячейки стилей Title, Section, Subsection правильно отображаются в свернутом и развернутом состоянии. Для этого позиционируйте указатель мыши на общей скобе, указывающей группу ячеек, и выполните двойной щелчок в результате ячейки группы сворачиваются или раскрываются.

Дома изучите основательно возможности создания электронного документа, для этого проработайте материал, расположенный в [1, c. 7 - 11, 20 - 25]. В процессе изучения используйте отдельный тренинг-документ: одновременное чтение практикума и проработка в среде *Mathematica* получаемой информации позволит Вам эффективно приобрести умения и навыки работы в системе.

2. Ввод и отображение математических выражений

Задание 2.1

Введите с клавиатуры в ячейку типа Input выражение y(x), представленное ниже. Вариант задания предлагает преподаватель.

1	$(-1-3x)(-5+x)^2(9+x^2)^3$
2	$y^2(5+2y)^3(1+5y)(9+y^2)^2$

3	$(5-4x)(-5+x)^3(-25+x^2)(-6+x^2)^3$
4	$(5-3t)(2+5t)(-16+t^2)^3(9+t^2)^2$
5	$2(-3-z)^3(-9+z^2)(1+z^2)^2$
6	$5(-5-2c)c(-25+c^2)(9+c^2)^2$
7	$z^4(-1+4z)(-25+z^2)(16+z^2)^2$
8	$(5-3b)(2+4b)(-4+b^2)(1+b^2)^4$
9	$(1+a)(5+4a)(-16+a^2)^2(4+a^2)^3$
10	$2(-5-2a)^3(-4+a^2)(-1+a^2)^2$

Выполнение задания 2.1.

Ознакомьтесь с командами пункта меню Palettes приложения *Mathematica*. Установите палитру Basic Math Assistant.

Введите заданное математическое выражение в вычисляемую ячейку подсекции, именуемой Задание 2.1.

Дома изучите основательно возможности ввода данных, для этого проработайте материал, расположенный в [1, c. 14 - 18, 25 - 27]. В процессе изучения используйте отдельный тренинг-документ: одновременное чтение практикума и проработка в среде *Mathematica* получаемой информации позволит Вам эффективно приобрести умения и навыки работы в системе.

Задание 2.2

Ознакомьтесь с различными форматами отображения выражения. Используйте выражение у (x), введенное при выполнении задания 2.1.

Выполнение задания 2.2.

- 1) Создайте новую подсекцию, именуйте ее Задание 2.2. Для этого достаточно указать/выделить скобу, обрамляющую всю подсекцию с заданием 2.1, скопировать ее в буфер обмена и вставить в секцию 2, ниже подсекции 2.1.
- 2) В текстовой ячейке разместите текст задания 2.2.
- 3) Выражение y(x), введенное в задании 2.1, уже располагается в Іпритячейке подсекции 2.2. С этим выражением будем далее работать.
- 4) Установите курсор в **любом месте** ячейки, содержащей выражение y(x). Последовательно используйте комбинации клавиш Ctrl+Shift+I, Ctrl+Shift+N, чтобы получить соответственно формы InputForm, TraditionalForm, StandardForm выражения. Сделайте выводы о каждом из получаемых форматов.

- 5) Используя встроенную функцию FullForm и ее постфиксную форму записи //, получите полную форму выражения: y(x)//FullForm.
- 6) Подействуйте на выражение у(х) встроенной функцией TreeForm, используя постфиксную форму записи.

Следует отметить, что результат работы функции TreeForm — графическое отображение дерева выражения — является «живым» в Mathematica. А именно, если в электронном документе Mathematica подвести указатель мыши к любому узлу или листу дерева, то на экране радом с этой вершиной всплывет прямоугольник. В нем в стандартной форме будет записано то выражение, для которого указанная вершина является корневым узлом.

7) Сформулируйте вывод о том, как строится полная форма выражения, запишите вывод в текстовую ячейку текущей подсекции.

3. Операции с многочленами

Задание 3.1

Напишите в текстовых ячейках спецификации встроенных функций **Expand**, **FactorList**, **CoefficientList**, **Exponent**, выполняющих операции с многочленами. Демонстрационные примеры стройте, используя многочлен из задания 2.1.

Выполнение задания 3.1.

- 1) Выражение y(x), введенное при выполнении задания 2.1, скопируйте в буфер обмена и вставьте в новую вычисляемую ячейку. Ассоциируйте Выражение y(x) символом myExpr21. Для этого используйте встроенную функцию **Set**, указывая ее в виде операции =, а именно: myExpr21 = выражение y(x).
- 2) Ознакомьтесь с функциями **Definition** и **Information**, представляемыми соответственно операциями ? и ??, используя систему справки (указать имя функции или операцию, клавиша **F1**).
- 3) Вычислите выражение **?myExpr21**. Проверьте закрепленное за символом myExpr21 глобальное правило.
- 4) Представьте многочлен, ассоциируемый с символом myExpr21, в виде суммы одночленов. Вычислите в полученном выражении количество слагаемых. Используйте функции **Expand**, **FullForm**, **TreeForm**, **Length**.
- 5) Представьте многочлен от вещественной переменной, ассоциируемый с символом myExpr21, в виде произведения. Используйте функции Factor, FullForm, TreeForm.
- 6) Опишите структуру результата вычисления myExpr21//FactorList.

¹ Под спецификацией функции будем понимать ее краткое описание: назначение функции, входные параметры, результат вычисления.

- 7) Получите список коэффициентов многочлена ту Expr 21. Используйте функцию CoefficientList.
- 8) Вычислите степень многочлена ту Expr 21. Используйте функцию Exponent.

Задание 3.2

Напишите в текстовых ячейках спецификации встроенных функций Apart, Together, ApartSquareFree, выполняющих рациональными функциями. Для демонстрационных примеров используйте многочлен из задания 2.1.

Выполнение задания 3.2.

- 1) Представьте в суммы дробей рациональную виде функцию (1/myExpr21). Используйте функции **Apart** и **ApartSquareFree**. Укажите отличия в результатах выполнения этих функций.
- 2) Представьте сумму дробей, полученную при выполнении выражения Apart [1/myExpr21], в виде рациональной функции. Используйте функцию Together.

Задание 3.3

Приведите заданное рациональное уравнение к виду $\frac{P(x)}{Q(x)} = 0$, при этом числитель P(x) должен быть разложен на множители, до линейных и квадратичных с отрицательным дискриминантом множителей.

Используйте функции Numerator, Denominator, Factor, Together.

Вариант задания указывает преподаватель.

1)
$$\frac{x-1}{x^3+3x^2+x+3} + \frac{1}{x^4-1} = \frac{x+2}{x^3+3x^2-x-3}$$
 6) $\frac{25}{4x^2+1} - \frac{8x+29}{16x^4-1} = \frac{18x+5}{8x^3+4x^2+2x+1}$

$$\frac{25}{4x^2+1} - \frac{8x+29}{16x^4-1} = \frac{18x+5}{8x^3+4x^2+2x+1}$$

2)
$$\frac{2x+7}{x^2+5x-6} + \frac{3}{x^2+9x+18} = \frac{1}{x+3}$$
 7) $\frac{x^2+x+16}{x^2-x+1} - \frac{36-x}{x^3+1} = \frac{x-6}{x+1}$

7)
$$\frac{x^2+x+16}{x^2-x+1} - \frac{36-x}{x^3+1} = \frac{x-6}{x+1}$$

3)
$$\frac{6}{x^3 - 7x^2 - 7x + 1} - \frac{8}{x^3 - 8x^2 + x} = \frac{1}{x^2 + x}$$
 8) $\frac{x^2 - 2x + 4}{x^3 - 2x^2 + 4x - 8} + \frac{x^2 + 2x + 4}{x^3 + 2x^2 + 4x + 8} = \frac{2x + 2}{x^2 - 4}$

8)
$$\frac{x^2-2x+4}{x^3-2x^2+4x-8} + \frac{x^2+2x+4}{x^3+2x^2+4x+8} = \frac{2x+2}{x^2-4}$$

4)
$$\frac{38}{x^4 - x^2 + 20x - 100} + \frac{x + 10}{x^2 - x + 10} = \frac{x + 10}{x^2 + x - 10}$$

4)
$$\frac{38}{x^4 - x^2 + 20x - 100} + \frac{x + 10}{x^2 - x + 10} = \frac{x + 10}{x^2 + x - 10}$$
 9) $\frac{4x}{8x^3 + 1} + \frac{1}{16x^4 - 4x^2 + 4x - 1} = \frac{2}{4x^2 + 2x - 1}$

5)
$$\frac{1-2x}{6x^2+3x} + \frac{2x+1}{14x^2-7x} = \frac{8}{12x^2-3}$$
 10) $\frac{x+3}{4x^2-9} - \frac{3-x}{4x^2+12x+9} = \frac{2}{2x-3}$

10)
$$\frac{x+3}{4r^2-9} - \frac{3-x}{4r^2+12r+9} = \frac{2}{2r-3}$$

Выполнение задания 3.3.

Выполните самостоятельно двумя способами:

- 1) пошагово, записывая каждый шаг вычислений в отдельной ячейке;
- 2) записав все выполненные над заданным уравнением преобразования в виде суперпозиции (композиции) встроенных функций.

4. Решение уравнений, неравенств и их систем

Задание 4.1

Решите заданное уравнение относительно переменной ж, при условии, что вторая переменная является вещественным параметром. Используйте функции **Solve** и **Reduce**. Сформулируйте выводы об использовании этих функций.

В отдельной текстовой ячейке представьте традиционное математическое решение заданного уравнения, используйте возможности двумерного ввода формул.

Вариант задания указывает преподаватель.

1)
$$\frac{a(x-1)}{x-1} = 0$$
 6) $\frac{x^2 + (3-a)x - 3a}{x^2 - x - 12} = 0$

2)
$$\frac{(x-a)(x-1)}{x-2} = 0$$
7)
$$\frac{x^2 - (a+1)x + 2a - 2}{3x^2 - 7x + 2} = 0$$

3)
$$\frac{x^2 + (1 - 4b)x + 3b^2 - b}{2x^2 + 3x - 5} = 0$$
 8)
$$\frac{x^2 - 5x + 4}{x - a} = 0$$

4)
$$\frac{x-a}{x^2-5x+4} = 0$$

9) $\frac{x^2+(3b-1)x+2b^2-2}{x^2-3x-4} = 0$

5)
$$\frac{x^2 + (3-2k)x + 4k - 10}{\sqrt{2x^2 - 2x - 1}} = 0$$
 10)
$$\frac{x^2 - (3b - 1)x + 2b^2 - 2b}{x^2 - 7x + 6} = 0$$

Выполнение задания 4.1.

Выполните самостоятельно.

Задание 4.2

Продемонстрируйте графически зависимость решения уравнения (задание 4.1) от значений параметра. Вариант задания указывает преподаватель.

Выполнение задания 4.2.

Пусть задано уравнение вида $\frac{P(x,a)}{Q(x,a)} = 0$, содержащее одну неизвестную вещественную переменную x и один вещественный параметр a. Требуется решить заданное уравнение графическим методом.

Графический метод решения (один из многих):

- 1. В плоскости x0a визуализируем заданное уравнение или неравенство.
- 2. **Считываем ответ** при помощи прямой a = const.

Визуализация (одна из...):

• Строим графики кривых P(x,a) = 0 и Q(x,a) = 0, с учетом ОДЗ.

Считывание ответа

- Устанавливаем «считывающую ответ» прямую a=const параллельно оси OX, значение параметра a наименьшее в отображаемой области.
- Изменяем значение параметра a: передвигая прямую a=const вдоль оси Oa внизу вверх. Для каждого фиксированного значения параметра находим точки пересечения «считывающей» прямой с графиком P(x,a) = 0.
- Решениями являются (при фиксированном значении параметра) абсциссы x_i тех найденных точек пересечения, которые не принадлежат графику функции Q(x,a) = 0. Точки пересечения графиков P(x,a) = 0 и Q(x,a) = 0 исключаются из рассмотрения.

$$\frac{x^2-4x+3}{}=0$$

Рассмотрим решение уравнения **x - а** методом, изложенным выше.

ContourPlot[
$$\{x^2 - 4x + 3 == 0, x - a == 0\}, \{x, -5, 5\}, \{a, -5, 5\},$$

Axes \rightarrow True, AxesLabel $\rightarrow \{x, a\}$]

Ответ: при $a \neq 1$ && $a \neq 3$ $x_1 = 1$ | $x_2 = 3$, при a = 1 $x_1 = 3$, при a = 3 $x_1 = 1$ Сравните записанную выше форму ответа с результатом вычисления функции **Reduce**. Сделайте выводы.

Reduce
$$\left[\frac{x^2 - 4x + 3}{x - a} = 0, x\right]$$

 $(x = 1 & -1 + a \neq 0) \mid (x = 3 & -3 + a \neq 0)$

Задание 4.3

Решите заданное неравенство относительно переменной х, при условии, что вторая переменная является вещественным параметром. Используйте функции **Solve** и **Reduce**. Сформулируйте выводы об использовании этих функций.

Вариант задания указывает преподаватель.

1)
$$2|3-5x|+2-3a>0$$

$$2) |3-2x| \geqslant a$$

3)
$$|x-3| < a$$

4)
$$x^2 + 6x + a \ge 0$$

5)
$$(x-2)^2 > a$$

6)
$$|x| + 2a - 1 \ge 0$$

7)
$$|x+5| > a$$

8)
$$|x-2| \leq a$$

9)
$$\dot{x}^2 - 2\dot{x} + 1 + a > 0$$

10)
$$(x-3)^2 \geqslant 2a-7$$

Выполнение задания 4.3.

Выполните самостоятельно.

Задание 4.4

Продемонстрируйте графически зависимость решения неравенства (задание 4.3) от значений параметра. Запишите ответ при каждом значении параметра. Вариант задания указывает преподаватель.

Выполнение задания 4.4.

Придумайте графический метод решения заданного неравенства, аналогичный методу, изложенному в выполнении задания 4.2. Реализуйте этот метод, затем изложите его в текстовой ячейке кратко и понятным языком.

Задание 4.5

Решить графически систему уравнений несколькими способами: используя встроенные функции системы и возможности графики.

Вариант задания указывает преподаватель.

1)
$$\begin{cases} |x+2| + |y| = 2, \\ y+2 = |x+2|; \end{cases}$$

2)
$$\begin{cases} |x-1|+y=4, \\ x-|y-2|=3; \end{cases}$$

3)
$$\begin{cases} |x-2| + |y-5| = 1, \\ y-|x-2| = 5; \end{cases}$$

4)
$$\begin{cases} x+y=2, \\ |3x-y|=1; \end{cases}$$

5)
$$\begin{cases} |x|+y=3, \\ x+2|y|=4; \end{cases}$$

6)
$$\begin{cases} |x-3|+|y-2|=3, \\ y+|x-3|=5. \end{cases}$$

7)
$$\begin{cases} x + |y+1| = 7, \\ |x-1| + y = 5. \end{cases}$$

8)
$$\begin{cases} |x-2|+2|y-1|=2, \\ x+|y-1|=3,5. \end{cases}$$

9)
$$\begin{cases} x + 2y = 2; \\ |2x - 3y| = 1. \end{cases}$$

$$^{10)} \left\{ \begin{array}{l} 2 |x| + y = 4, \\ 4x + 3 |y| = 12. \end{array} \right.$$

Выполнение задания 4.5.

Выполните самостоятельно.

Литература

1. Голубева Л.Л., Малевич А.Э., Щеглова Н.Л. Компьютерная математика. Символьный пакет *Mathematica*. Лаб. практикум в 2 ч. Ч 1. - Минск: БГУ, 2012. – 235 с. http://elib.bsu.by/handle/123456789/95686