

IEEE 1115 battery sizing example

Battery sizing parameters

- Voltage window

Minimum system voltage: 105V Maximum system voltage: 150V

- Load profile

- <u>Average temperature</u> T = 25°C (77°F)
- Design margin: 1.00
- Aging factor: 1.15

IEEE battery sizing

- Number of cell = 150 / 1.43 = 105
- Final voltage = 105/105 = 1.00 volts/cell
- Load profile

- Capacity rating factor Kt

For this type of load profile in this battery sizing, the H type is chosen. However, in some cases the choice of cell range is not obvious and it is necessary to perform the calculation for different ranges in order to find the most cost effective solution.

For this example, the K_{t} factor is determined from curves.

Final voltage: 1.00 Volts/cell

 $- K_t (1 second) = 0.12$

- K_t (8 Hours) = 8

- Battery calculation worksheet

 A_3 is larger than A_2 , so Section2 is omitted.

Section3

- IEEE1115 calculation worksheet

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(9)
Period	Load (ampe- res)	Change in Load (amperes)	Duration of Period (minutes)	End of Section (minutes)	K _t Factor	Temperature Derating Factor (T _f)	Required Section Size (3)*(6)*(7)
Section1 - First 1 Periods Only - if A ₂ >A ₁ , go to Section 2- No							
1	A ₁ = 155	A ₁ -0= 155	M ₁ = 0.02	t=M ₁ = 0.02	0.12	1.00	18.6
						Total	18.6
Section2 - First 2 Periods Only - if A ₃ >A ₂ , go to Section 3- Yes							
Section3 - First 3 Periods Only - if A ₄ >A ₃ , go to Section 4- No							
1	A ₁ = 155	A ₁ -0= 155	M ₁ = 0.02	t=M ₁ +M ₂ + M ₃ = 480	8	1.00	1240
2	A ₂ = 5	A ₂ -A ₁ = -150	M ₂ = 479.97	t=M ₂ +M ₃ = 479.98	8	1.00	-1200
3	A ₃ = 90	A ₃ -A ₂ = 85	M ₃ = 0.02	t=M ₃ = 0.02	0.12	1.00	10.2
Total							50.2
Random Equipment Load Only (if needed)							
R	A_R	A _R -0=	M_{R}	t=M _R			0

Maximum Section Size(9) **50.2** + Random Section Size **0.00** = Uncorrected Size **50.2** Uncorrected Size **50.2** * Design Margin **1.00** * Aging factor **1.15** = **(15) 57.73** when the cell size **(15)** is greater than a standard size. The next larger size cell is required. Required cell size **57.73** Ampere hours. Therefore cell **SBH59** is required.