High-Throughput Sequencing Course Statistical Interaction

Biostatistics and Bioinformatics

Summer 2018

Example 1: No Interaction

EXAMPLE 2: NO INTERACTION

EXAMPLE 3: INTERACTION

MODEL INTERACTION

- ightharpoonup Y denotes the gene expression
- \blacktriangleright Let x denote the treatment indicator
 - x = 0 if not treated or 1 if treated
- \blacktriangleright Let z denote the knock-out indicator
 - ightharpoonup z = 0 is WT or 1 otherwise
- ightharpoonup The expected value of Y given treatment indicator x and knock out indicator z is denoted by

$$\mu_{x,z} = E[Y|X=x,Z=z]$$

 \blacktriangleright The model will be

$$Y = \mu_{x,z} + \epsilon$$

where ϵ is a the measurement error

EXAMPLE 1: LINEAR MODEL FOR NO INTERACTION

$$Y = \beta_0 + \beta_1 z + \epsilon \ (\beta_2 = 0)$$

EXAMPLE 2: NO INTERACTION

$$Y = \beta_0 + \beta_1 z + \beta_2 x + \epsilon$$

EXAMPLE 3: INTERACTION

$$Y = \beta_0 + \beta_1 z + \beta_2 x + \beta_3 x z + \epsilon$$

INTERACTION EXAMPLES

- ▶ Example 1: What are the signs for β_0 and β_1 ?
- ▶ Example 2: What are the signs for β_0, β_1 and β_2 ?
- ▶ Example 2: What are the signs for $\beta_0, \beta_1, \beta_2$ and β_3 ?

Incorporating Interactions into the NB Model

- ▶ Conditional on x_j and z_j , the observed number of reads mapped to gene i for sample j, K_{ij} , follows a negative binomial distribution with
 - ▶ Mean μ_{ij}
 - ▶ Dispersion parameter α_i (gene specific)
- ▶ Conditional on the treatment status of sample j ($x_j = 0$ or 1) and the temperature z_j , the expected value of K_{ij} is

$$\mu_{ij} = s_j \times q_{ij}$$

where

$$\log q_{ij} = \beta_{i0} + \beta_{i1}x_j + \beta_{i2}z_j + \beta_{i3}x_jz_j$$

► The normalization parameters are assumed to be sample (not gene) specific $(s_{ij} = s_j)$