Computer Vision II: Assigment #1

Serge Belongie CSE 252B, Winter 2011

James Lue, Yang Liu

1.

If the line connecting the sphere center and the pinhole is perpendicular to the image plane, the silhouette will be a circle. Otherwise, the silhouette will be an ellipse.

2.

Listing 1: Collect the coordinates of n hand-clicked points on an image.

```
function [ Pts ] = CollectPts( ShowLabel )
    *Select points from the current showing figure. Right-click to select
    %the last point and finish.
    hold on;
    bb=1;
    a=1;
    A = [0, 0];
    while bb==1
        [x, y, button] = ginput(1);
        A=vertcat(A,[x,y]);
        if ShowLabel>0
            text(x,y,num2str(a),'BackgroundColor',[1 1 1]);
            plot(x, y, '+');
        end
        a=a+1;
        if button==3
            %right click to select the last point and finish selection
        end
    end
    A(1,:) = [];
    A=horzcat(A, ones(size(A, 1), 1));
    Pts=A';
    hold off;
end
```

Listing 2: Draw a line with homogeneous coordinates.

```
function PlotHomo( line )
    a=line(1,1);
    b=line(2,1);
    c=line(3,1);
    syms x y;
    ezplot(a * x + b * y + c);
    colormap([0, 0, 1]); %blue line
end
```

3.

(a)

The homogeneous coordinates of the four points are

$$a = (6, 8, 1)^{T}$$

 $b = (3, 7, 1)^{T}$
 $c = (4, 2, 1)^{T}$
 $d = (8, 6, 1)^{T}$.

The homogeneous coordinates of the four edges are

$$\mathbf{l_1} = \mathbf{a} \times \mathbf{b} = (0.0556, -0.1667, 1)^T
\mathbf{l_2} = \mathbf{b} \times \mathbf{c} = (-0.2273, -0.0455, 1)^T
\mathbf{l_3} = \mathbf{c} \times \mathbf{d} = (-0.5, 0.5, 1)^T
\mathbf{l_4} = \mathbf{d} \times \mathbf{a} = (-0.0714, -0.0714, 1)^T.$$

The two vanishing points are

$$v_1 = l_1 \times l_3 = (12, 10, 1)^T$$

 $v_2 = l_2 \times l_4 = (2, 12, 1)^T$.

(b)

The homogenous coordinates for the horizon line is

$$h = v_1 \times v_2 = (-0.0161, -0.0806, 1)$$

Therefore its expression is

$$-0.0161x - 0.0806y + z = 0$$

4.

(a)

Let $\omega' = \theta \omega$. According to the formula given by Logarithm of SO(3)

$$\theta = ||\omega'|| = \cos^{-1}\left(\frac{\operatorname{tr}(R) - 1}{2}\right)$$

$$= \cos^{-1}\left(\frac{0.1729 * 3 - 1}{2}\right)$$

$$= 1.8138$$

$$\omega = \frac{\omega'}{||\omega'||} = \frac{1}{2\sin(\theta)} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

$$= \frac{1}{2\sin(\theta)} \begin{bmatrix} 0.9739 + 0.1468 \\ 0.9739 + 0.1468 \\ 0.9739 + 0.1468 \end{bmatrix}$$

$$= (0.5773, 0.5773, 0.5773)^{T}$$