Heuristic search

Problem solving is hunting. It is savage pleasure and we are born to it.

- Thomas Harris

How to find solutions?

Exact methods

- Analytical approach
- Explicit enumeration
- Implicit enumeration
- Approximation Algorithms
 - provide a theoretical bound on quality of solution
 - an algorithm is an ϵ -approximation algorithm for a minimization problem with optimal cost z^* , if the algorithm runs in polynomial time and returns a feasible solutions with cost z_h :

$$z_h \leq (1+\epsilon) z^*$$

Heuristic Algorithms

Why don't we always use exact methods?

If a heuristic does not guarantee a good solution, why not use an (exact) algorithm that does?

- The running time of the algorithm
- The link between the real-world problem and the formal problem is already tenuous at best

P vs NP

- However, for some optimization problems we know of no polynomial time algorithm
 - Unless P=NP there are none!
- Sometimes, finding the optimal solution reduces to examining all the possible solutions (i.e., the entire solution space)
 - Some algorithms do implicit enumeration of the solution space (but this sometimes reduces to examining all solutions)

Heuristics

- heuriskein (meaning 'to find')
- Provide a shortcut to solve difficult problems.
- Used under limited time and/or information to make a decision.
- Problem-dependent techniques, i.e., adapted to the problem at hand to take advantage of the particularities of the problem.

Terminology

- The set of all candidate solutions is called a solution space or search space
- Each element in the search space represents one candidate solution.
- Every point x in the search space has a "goodness" value based on the problem specific evaluation function g(x)
- The set of solutions and their objective values form locations and elevation in the search space landscape

- **■** \$13,000-\$14,000
- **■** \$12,000-\$13,000
- **\$11,000-\$12,000**
- **\$10,000-\$11,000**
- **\$9,000-\$10,000**
- **\$8,000-\$9,000**
- **\$7,000-\$8,000**
- **\$6,000-\$7,000**
- **\$5,000-\$6,000**
- **\$4,000-\$5,000**
- **\$3,000-\$4,000**
- **\$2,000-\$3,000**
- **\$1,000-\$2,000**
- **\$0-\$1,000**
- **\$1,000-\$0**
- **3** -\$2,000--\$1,000
- **3** -\$3,000--\$2,000
- **3-\$4,000--\$3,000**
- **5**,000--\$4,000
- **5,000** -\$5,000 **5,000**

Search Space Landscape

- A complex Search Space may have many hills, valleys, ridgelines, shoulders, and plateaus – just like a mountain range.
- •One common problem is to find local maxima or local minima and mistake the solution for the global maximum or global minimum.

Some classes of heuristic search

 $f(x) \equiv \begin{bmatrix} \frac{\partial x_1}{\partial f} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x} \end{bmatrix}$

- Generate and Test guessing
- Gradient Based requires differentiable function
 - gradient vector: vector of partial derivatives w.r.t. each independent variable
- Neighborhood-based
- Population-based

Note: there are two classes of heuristics search and construction heuristics

neighborhood-based terminology

Search: constructing or improving solutions to obtain the optimum or near-optimum

Encoding: method to represent solutions

Evaluation: To compute the solutions' feasibility and objective function value

Neighborhood: "nearby" solutions

Move: Transforming current solution to another (usually a neighbor solution)

Local search: based on greedy heuristic (local optimizers)

formulation

Optimization

- Decisions
- Objective
- Constraints

Heuristic

- Decisions
 - Encoding
- Objective
- Evaluation Function
- Constraints
 - Constraint Handling
- Neighborhood and Moves
- Parameter Tuning
- Stopping Criterion

Encoding

Encoding

Encoding

The n-queens problem is to place *n* queens on an *n*×*n* chessboard so that no two queens threaten each other.

Neighborhoods

Consider a region of the search space that's "near" some particular point:

Neighborhood N(x) of x is a set of all points of search space S that are *close* in some measurable sense to the given point x.

neighborhood operator

- Neighborhoods may be defined by distance measures (e.g., Euclidean, Hamming, Jaccard)
- Neighborhoods may be defined by an operation on a solution
 - Often simple operations
 - Remove an element
 - Add an element element
 - Interchange two or more elements of a solution

Example Neighborhood for TSP: 2-opt

Example Neighborhood for TSP: 2-opt

What is the size of the 2-opt neighborhood for the TSP?

Encoding is a how we represent a solution; it helps us to think about "neighborhoods" of solutions.

A <u>neighborhood</u> is all solutions that are somehow "close" to the solution.

We must determine a way to evaluate a candidate solution.

A good neighborhood definition is fundamentally important!

The n-queens problem is to place *n* queens on an *n*×*n* chessboard so that no two queens threaten each other.

Describe a N(x) for the n-queens problem.

What is the size of N(x)?

How might you evaluate a solution of the 8-queens problem?

8-queens Problem

- Encoding: solution x is a 8d vector of integers representing queens positions in column 1-8 respectively
- Neighborhood: all solutions generated by moving a single queen to another square in the same column.
 - Size of N(x): 8 * 7 = 56 solutions
- Evaluation function: f(x) = number of queens that attack each other in solution s.

Hill climbing

Like climbing Everest in thick fog with amnesia...

Hill Climbing (or descending)

Very simple idea: Start from some solution $s \in S$, move to a neighbor $t \in S$ with better score. Repeat.

Designing the neighborhood is critical. This is the real ingenuity!

- Neighborhood must be small enough to be efficient.
- Problems tend to have structures.

Question: Pick which neighbor?

Question: What if no neighbor is better than current state?

Encoding: (5, 6, 7, 4, 5, 6, 7, 6)

Evaluation: f(s) = 17

Evaluation: f(s) = 15

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	W	13	16	13	16
业	14	17	15	业	14	16	16
17	业	16	18	15	W	15	业
18	14	业	15	15	14	业	16
14	14	13	17	12	14	12	18

8-queens Problem

$$f(s) = 17$$
 best next is 12

Local search:

Best Accept

a.k.a.

Steepest ascent hill climbing

${\bf Local\ Search\ 1}: \ {\bf Best\ Accept}$

```
1: input: starting solution, s_0
 2: input: neighborhood operator, N
 3: input: evaluation function, f
 4: current \Leftarrow s_0
 5: done \Leftarrow false
 6: while done = false do
      best\_neighbor \Leftarrow current
      for each s \in N(current) do
 8:
         if f(s) < f(best\_neighbor) then
 9:
           best\_neighbor \Leftarrow s
10:
         end if
11:
      end for
12:
      if current = best\_neighbor then
13:
         done \Leftarrow true
14:
      else
15:
         current \Leftarrow best\_neighbor
16:
      end if
17:
18: end while
```

Local search:

First Accept

a.k.a.

Simple hill climbing

Local Search 2 : First Accept

```
1: input: starting solution, s_0
 2: input: neighborhood operator, N
 3: input: evaluation function, f
 4: current \Leftarrow s_0
 5: done \Leftarrow false
 6: while done = false do
      best\_neighbor \Leftarrow current
      for each s \in N(current) do
         if f(s) < f(best\_neighbor) then
 9:
           best\_neighbor \Leftarrow s
10:
           exit the for-loop
11:
         end if
12:
      end for
13:
      if current = best\_neighbor then
14:
         done \Leftarrow true
15:
      else
16:
         current \Leftarrow best\_neighbor
17:
      end if
18:
19: end while
```

Hill Climbing Comments

• Pro: Very fast!

• Cons:

- local maxima/minima will cause HC to stop searching.
- plateaus: landscape space with a broad flat region gives the HC search algorithm no direction: it either stops or becomes a random walk.

• Variants:

- Hill Climbing with random walk
- Hill Climbing with random restarts
- Local Beam Search
- Stochastic Beam Search

- Random walk
 - Consider a drunken individual (Barney) stumbling out of a bar one night wanting to go home.
 - For a 1D random walk, Barney stumbles one step to the left with probability p and to the right with probability 1-p

- Random walk
 - Consider a drunken individual (Barney) stumbling out of a bar one night wanting to go home.
 - For a 1D random walk, Barney stumbles one step to the left with probability p and to the right with probability 1-p

- Random walk
 - Consider a drunken individual (Barney) stumbling out of a bar one night wanting to go home.
 - ullet For a 1D random walk, Barney stumbles one step to the left with probability p and to the right with probability 1-p

- Random walk
 - Consider a drunken individual (Barney) stumbling out of a bar one night wanting to go home.
 - For a 1D random walk, Barney stumbles one step to the left with probability p and to the right with probability 1-p

• At each iteration with probability p, the best neighborhood move is made (hill climbing as usual)

• However, with probability 1-p, the algorithm randomly selects a neighbor and moves to it (random walk)

Stochastic Hill climbing

- Another way to introduce randomness in hill climbing
- Stochastic hill climbing: Choose probabilistically from among the improving moves
 - the probability of move can be based on the level of improvement

Hill climbing with random restarts

- Easiest and maybe best way to improve hill climbing
- Use the most promising element of hill climbing to its advantage – its speed
- Perform hill climbing many times (e.g., 1,000's of times) at different random locations each time
- After all hill climbing runs are completed, choose the best overall solution found

Local Beam Search

- Similar to hill climbing with restarts
- Run multiple hill climbing starts but in parallel and share information among the searches

Local Beam Search

- e.g., choose 3 hill climbing searches in parallel, from different starting locations (s₁, s₂, s₃)
- Local beam search chooses the top 3 solutions from across all 3 neighborhoods for next move

Stochastic Beam Search

- Variation of local beam search with more randomness
- A blend between stochastic hill climbing and hill climbing with restarts
- Instead of choosing top k candidates, the k moves are performed probabilistically, with better moves having a higher probability.

Main Challenge in Local Search

How can we avoid stopping at a local optimum?

Metaheuristic

Meta: in an upper level

Heuristic: to find

A metaheuristic is defined as an iterative generation process which guides a subordinate heuristic by combining (in an intelligent way) various strategies for exploring and exploiting the search space (including learning strategies) to efficiently find near-optimal solutions.

Fundamental Properties of Metaheuristics

- Metaheuristics "orchestrate an interaction between local improvement procedures and higher level strategies to create a process capable of escaping from local optima and performing a robust search of solution space."
- Metaheuristic algorithms do not guarantee optimality and usually non-deterministic
- Metaheuristics are not problem-specific

Typical Search Trajectory

Metaheuristic Examples

- Simulated annealing (Kirkpatrick et al. 1983)
- Tabu search (Glover 1980s)
- Variable Neighborhood search (Mladenovic 1997)
- Genetic algorithms (1960s/1970s), Evolutionary strategy (Rechenberg & Swefel 1960s), Evolutionary programming (Fogel et al. 1960s)
- Ant colony optimization (Dorigo 1992), Genetic programming (Koza 1992),
- Particle swarm optimization (Kennedy & Eberhart 1995)
- Guided Local Search (Voudouris 1997)

And more...

- Scatter Search (SS)
- Adaptive Memory Procedures (AMP)
- Iterative Local Search (ILS)
- Threshold Acceptance methods (TA)
- Greedy Randomized Adaptive Search Procedure (GRASP)
- Memetic Algorithms (MA)
- Bees algorithm, Artificial Bee Colony (ABC), Bee Hive Optimization
- Bacteria Swarm Foraging Optimization (BSFO)
- The Harmony Method
- The Great Deluge Method
- Shuffled Leaping-Frog Algorithm
- Squeaky Wheel Optimization