Problem Set #3

$\begin{array}{c} {\rm Danny~Edgel} \\ {\rm Econ~709:~Economic~Statistics~and~Econometrics~I} \\ {\rm Fall~2020} \end{array}$

September 23, 2020

Collaborated with Sarah Bass, Emily Case, Michael Nattinger, and Alex Von Hafften

Question 1

A random point (X,Y) is distributed uniformly on the square with vertices (1,1), (1,-1), (-1.1), and (-1,-1). That is, the joint PDF is f(x,y)=1/4 on the square and f(x,y)=0 outside the square. Determine the probability of:

(a) $X^2 + Y^2 < 1$

 $P(X^2+Y^2<1)$ is the area of the circle inscribed within the square. Therefore, $P(X^2+Y^2<1)=\frac{\pi}{4}$.

(b) |X + Y| < 2

P(|X + Y| < 2) = P(-2 < X + Y < 2). Note that |X + Y| = 2 only if X = Y = -1 or X = Y = 1. Since X and Y are continuous, P(X = 1) = P(Y = 1) = P(X = -1) = P(Y = -1) = 0. Therefore, P(|X + Y| < 2) = 0.

Question 2

Let the joint PDF of X and Y be given by $f(x,y)=g(x)h(y) \ \forall x,y\in\mathbb{R}$. Let a denote $\int_{-\infty}^{\infty}g(x)dx$ and b denote $\int_{-\infty}^{\infty}h(x)dx$.

(a) What conditions should a and b satisfy in order for f(x,y) to be a bivariate PDF?

If f is a bivariate PDF, then $\int_{-\infty}^{\infty} f(x,y) dx dy = 1$. Then,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)dxdy = \left(\int_{-\infty}^{\infty} g(x)dx\right)\left(\int_{-\infty}^{\infty} h(y)dy\right) = ab$$

Thus, ab = 1 if f is a bivariable PDF.

(b) Find the marginal PDF of X and Y.

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{-\infty}^{\infty} g(x) h(y) dy = bg(x)$$
$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{-\infty}^{\infty} g(x) h(y) dx = ah(y)$$

(c) Show that X and Y are independent.

X and Y are independent if and only if $f(x,y) = f_X(x)f_Y(y)$. From (a) and (b), we can derive:

$$f_X(x)f_Y(y) = ag(x)bh(y) = g(x)h(y) = f(x,y)$$

Thus, X and Y are independent.

Question 3

Let the joint PDF of X and Y be given by

$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \begin{cases} cxy & \text{if } x, y \in [0, 1], \ x + y \le 1\\ 0 & \text{otherwise} \end{cases}$$

(a) Find the value of c such that f(x,y) is a joint PDF.

If f is a PDF, then $\int_{-\infty}^{\infty} f(x,y) dx dy = 1$. Thus,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$

$$\int_{0}^{1} \int_{0}^{1-x} cxy dy dx = 1$$

$$\int_{0}^{1} cx \frac{1}{2} [y^{2}]_{0}^{1-x} dx = 1$$

$$\int_{0}^{1} cx \frac{1}{2} (1-x)^{2} dx = 1$$

$$c \left[\frac{1}{2} x^{2} - \frac{2}{3} x^{3} + \frac{1}{4} x^{4} \right]_{0}^{1} = 2$$

$$\frac{1}{12} c = 2$$

$$c = 24$$

(b) Find the marginal distributions of X and Y.

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_0^1 \int_0^{1-x} cxy dy dx = \frac{1}{2} cx (1-x)^2$$
$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_0^1 \int_0^{1-y} cxy dx dy = \frac{1}{2} cy (1-y)^2$$

(c) Are X and Y independent? Compare your answer to Problem 2 and discuss.

X and Y are independent if and only if $f(x,y) = f_X(x)f_Y(y)$. From (a) and (b), we can derive:

$$f_X(x)f_Y(y) = \frac{1}{4}c^2x(1-x)^2y(1-y)^2 \neq cxy$$

Thus, X and Y are **not** independent.

Question 4

Show that any random variable is uncorrelated with a constant.

Let X be a random variable and a be a constant. Then,

$$Cov(X, a) = E[Xa] - E[X]E[a] = aE[X] - aE[X] = 0$$

Thus, $Corr(X, a) = Cov(X, a) / \sqrt{Var(X)Var(a)} = 0$, so X and a are uncorrelated.

Question 5

Let X and Y be independent random variables with means μ_X , μ_Y , and variances σ_X^2 , σ_Y^2 . Find an expression for the correlation of XY and Y in terms of these means and variances.

Given the definition of correlation and covariance, we have:

$$Corr(XY,Y) = \frac{E(XY^2) - E(XY)E(Y)}{\sqrt{Var(XY)Var(Y)}}$$

Separately, since X and Y are independent, we can solve:

$$\begin{split} E(XY^2) - E(XY)E(Y) &= E(X)E(Y^2) - E(X)E(Y)^2 = E(X)(E(Y^2) - E(Y)^2) = \mu_X \sigma_Y^2 \\ Var(XY)Var(Y) &= (E(X^2Y^2) - E(XY)^2)\sigma_Y^2 \\ &= ((\sigma_X^2 - \mu_X^2)(\sigma_Y^2 - \mu_Y^2) - E(X)^2 E(Y)^2)\sigma_Y^2 \\ &= (\sigma_X^2 \sigma_Y^2 - \mu_X^2 \sigma_Y^2 + \mu_Y^2 \sigma_X^2 + \mu_X^2 \mu_Y^2 - \mu_X^2 \mu_Y^2)\sigma_Y^2 \\ &= (\sigma_X^2 \sigma_Y^2 - \mu_X^2 \sigma_Y^2 + \mu_Y^2 \sigma_X^2)\sigma_Y^2 \end{split}$$

Thus, we can write the correlation as:

$$Corr(XY,Y) = \frac{\mu_X \sigma_Y^2}{\sqrt{(\sigma_X^2 \sigma_Y^2 - \mu_X^2 \sigma_Y^2 + \mu_Y^2 \sigma_X^2)\sigma_Y^2}} = \frac{\mu_X \sigma_Y}{\sqrt{\sigma_X^2 \sigma_Y^2 - \mu_X^2 \sigma_Y^2 + \mu_Y^2 \sigma_X^2}}$$

Question 6

Prove the following: For any random vector $(X_1, X_2, ..., X_n)$,

$$Var\left(\sum_{i=1}^{n}X_{i}\right) = \sum_{i=1}^{n}Var(X_{i}) + 2\sum_{i \leq i < j \leq n}Cov(X_{i}, Y_{j})$$

Question 7

Suppose that X and Y are joint normal, i.e., they have the joint PDF:

$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \frac{1}{2\pi\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}\sqrt{1-\rho^2}} \exp(-(2(1-\rho^2))^{-1}(\mathbf{x}^2/\sigma_{\mathbf{X}}^2 - 2\rho\mathbf{x}\mathbf{y}/\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}} + \mathbf{y}^2/\sigma_{\mathbf{Y}}^{\mathbf{w}}))$$

(a) Derive the marginal distribution of X and Y, and observe that both are normal distributions.

- (b) Derive the conditional distribution of Y given X=x, Observe that it is also a normal distribution.
- (c) Derive the joint distribution of (X, Z) where $Z = (Y/\sigma_Y) (\rho X/\sigma)$, and then show that X and Z are independent.

Question 8

Consider a function $g: \mathbb{R} \to \mathbb{R}$. Recall that the inverse image of a set A, denoted $g^{-1}(A)$, is $g^{-1}(A) = \{x \in \mathbb{R} : g(x) \in A\}$.Let there be two functions, $g_1: \mathbb{R} \to \mathbb{R}$ and $g_2: \mathbb{R} \to \mathbb{R}$. Let X and Y be two random variables that are independent. Suppose that g_1 and g_2 are both Borel-measurable, which means that $g_1^{-1}(A)$ and $g_2^{-1}(A)$ are both in the Borel σ -field whenever A is in the Borel σ -field. Show that the two random variables $Z:=g_1(X)$ and $W:=g_2(Y)$ are independent. (Hint: use the 1st or the 2nd definition of independence.)