TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

The Fundamental Equations of Deep Learning

What is a Deep Network? VGG, Zisserman, 2014

Davi Frossard

138 Million Parameters

What is a Deep Network?

We assume some set \mathcal{X} of possible inputs, some set \mathcal{Y} of possible outputs, and a parameter vector $\Phi \in \mathbb{R}^d$.

For $\Phi \in \mathbb{R}^d$ and $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ a deep network computes a probability $P_{\Phi}(y|x)$.

The Fundamental Equation of Deep Learning

We assume a "population" probability distribution Pop on pairs (x, y).

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{(x,y) \sim \operatorname{Pop}} \left[-\ln P_{\Phi}(y|x) \right]$$

This loss function $\mathcal{L}(x, y, \Phi) = -\ln P_{\Phi}(y|x)$ is called cross entropy loss.

A Second Fundamental Equation Softmax: Converting Scores to Probabilities

We start from a "score" function $s_{\Phi}(y|x) \in \mathbb{R}$.

$$P_{\Phi}(y|x) = \frac{1}{Z} e^{s_{\Phi}(y|x)}; \quad Z = \sum_{y} e^{s_{\Phi}(y|x)}$$
$$= \operatorname{softmax}_{y} s_{\Phi}(y|x)$$

Note the Final Softmax Layer

Davi Frossard

How Many Possibilities

We have $y \in \mathcal{Y}$ where \mathcal{Y} is some set of "possibilities".

Binary: $Y = \{-1, 1\}$

Multiclass: $Y = \{y_1, \dots, y_k\}$ k manageable.

Structured: y is a "structured object" like a sentence. Here |Y| is unmanageable.

Binary Classification Does This Image Contain a Bicycle?

We have a population distribution over (x, y) with $y \in \{-1, 1\}$.

We compute a single score $s_{\Phi}(x)$ where

for
$$s_{\Phi}(x) \geq 0$$
 predict $y = 1$

for
$$s_{\Phi}(x) < 0$$
 predict $y = -1$

Binary Classification: Softmax Cross Entropy

$$P_{\Phi}(y|x) = \underset{y \in \{-1,1\}}{\text{softmax}} ys_{\Phi}(x) = \frac{1}{Z} e^{ys(x)}$$

$$= \frac{e^{ys(x)}}{e^{ys(x)} + e^{-ys(x)}}$$

$$= \frac{1}{1 + e^{-2ys(x)}}$$

$$=\frac{1}{1+e^{-m}}$$
 $m=2ys(x)$ is the margin

Binary Classification

Softmax Cross Entropy: $-\ln P_{\Phi}(y|x) = \ln(1 + e^{-m})$

SVM Hinge loss: $\max(0, 1 - m)$

Multiclass Classification (Next Token Prediction)

We have a population distribution over (x, y) with $y \in \{y_1, \ldots, y_k\}$.

$$P_{\Phi}(y|x) = \operatorname{softmax} \ s_{\Phi}(y|x)$$

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{(x,y) \sim \operatorname{Pop}} \mathcal{L}(x,y,\Phi)$$
$$= \underset{\Phi}{\operatorname{argmin}} E_{(x,y) \sim \operatorname{Pop}} \left[-\ln P_{\Phi}(y|x) \right]$$

Structured Labeling (Machine Translation)

We have a population of translation pairs (x, y) with $x \in V_x^*$ and $y \in V_y^*$ where V_x and V_y are source and target vocabularies respectively.

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{x,y \sim \operatorname{Pop}} \left[-\ln P_{\Phi}(y|x) \right]$$

AutoRegresive Models

For langage we typically use an **autoregressive model**:

$$P_{\Phi}(y_{t+1}|x, y_1, \dots, y_t) = \underset{y \in V_y \cup < EOS>}{\text{softmax}} s_{\Phi}(y \mid x, y_1, \dots, y_t)$$

$$P_{\Phi}(y|x) = \prod_{t=0}^{|y|} P_{\Phi}(y_{t+1} \mid x, y_1, \dots, y_t)$$

$$-\ln P(y|x) = \sum_{t=0}^{|y|} -\ln P_{\Phi}(y_{t+1} \mid x, y_1, \dots, y_t)$$

Other Models For Structured Labels

Alternatives to autoregressive models for the structured case include (old school) graphical models and diffusion models.

Fundamental Equation: Unconditional Form

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} \left[-\ln P_{\Phi}(y) \right]$$

Summary

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{(x,y) \sim \operatorname{Pop}} \left[-\ln P_{\Phi}(y|x) \right]$$

$$P_{\Phi}(y|x) = \frac{1}{Z} e^{s_{\Phi}(y|x)}; \quad Z = \sum_{y} e^{s_{\Phi}(y|x)}$$
$$= \operatorname{softmax}_{y} s_{\Phi}(y|x)$$

\mathbf{END}