01 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2971 Chaitra

Exam.		Regular	
Level	BE	Foli Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
	II / I		2 3 hrs.

Subject: - Engineering Mathematics III (SHS01)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Using the properties, evaluate the determinant:

151

- 2. Prove that every square matrix can uniquely be expressed as the sum of a symmetric and a skew symmetric matrix. [5]
- 3. Test the consistency of the system:

[5]

$$x-6y-z=10$$
, $2x-2y+3z=10$, $3x-8y+2z=20$

And solve completely, if found consistent.

- 4. Find the eigen values and eigenvectors of the matrix $\begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$. [5]
- 5. Using the line integral, compute the workdone by the force

[5]

$$\vec{F} = (2x - y + 2z) \vec{i} + (x + y - z) \vec{j} + (3x - 2y - 5z) \vec{k}$$

when it moves once around a circle $x^2 + y^2 = 4$; z = 0

6. State and prove Green's Theorem in plane.

[5]

- 7. Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\vec{i} 2xy\vec{j}$ taken around the rectangle bounded by the lines $x = \pm a$, y = 0, y = b. [5]
- 8. Evaluate $\iint_{\vec{F}} \vec{F} \cdot \vec{n}$ ds where $\vec{F} = (2xy + z)\vec{i} + y^2\vec{j} (x + 3y)\vec{K}$ by Gauss divergence theorem; where S is surface of the plane 2x + 2y + z = 6 in the first octant bounding the volume V. [5]
 - 9. Find the Laplace transform of the following:

[2.5×2]

- a) ic-21 cost
- b) Sinhat.cost

10. Find the inverse Laplace transform of :

a)
$$\frac{1}{S(S+1)}$$

b)
$$\frac{S^2}{(S^2 + b^2)^2}$$

1.1. Solve the differential equation $y'+2y'+5y=e^{-t}\sin t$, y(0)=0, y'(0)=1, by using Laplace transform. [5]

2. Expand the function $f(x) = x \sin x$ as a Fourier series in the interval $-\pi \le x \le \pi$. [5]

< 13. Obtain half range sine series for the function $f(x) = x - x^2$ for 0 < x < 1.

14. Graphically maximize and minimize [5]

z = 9x + 40y subjected to the constraints

 $y-x \ge 1, y-x \le 3, 2 \le x \le 5$

15. Solve the following Linear Programming Problem by Simplex method:

[10]

Maximize, $P = 20x_2 - 5x_1$

Subjected to, $10x_2 - 2x_1 \le 5$

 $2x_1 + 5x_2 \le 10$ and $x_1, x_2 \ge 0$

01	TRIBHUVAN UNIVERSITY
INST	TIUTE OF ENGINEERING

Examination Control Division 2070 Chaitra

Exam. Regular			
Level	BE	Full Marks 80	3
Programme	All (Except B.Arch)	Pass Marks - 32	
Year / Part	11/1	Time 31	ITS.

Subject: - Mathematics III (SH501)

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.
- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.
- 1. Using the properties of determinant prove

 $\begin{vmatrix} (b+c)^{2} & a^{2} & a^{2} \\ b^{2} & (c+a)^{2} & b^{2} \\ c^{2} & c^{2} & (a+b)^{2} \end{vmatrix} = 2abc(a+b+c)^{3}$

- 2. Prove that $(AB)^T = B^T A^T$ where A is the matrix of size m×p and B is the matrix of size [5]
- 3. Find the rank of the following matrix by reducing normal form. [5]
- 4. Find the eigen values and eigen vectors of the following matrix. $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{bmatrix}$. [5]
- 5. Prove that the line integral $\int_A^B \vec{F}.d\vec{r}$ is independent of the path joining any two points A and B in a region if $\int_{c}^{\infty} \vec{F} \cdot d\vec{r} = 0$ for any simple closed curve C in the region. [5]
- 6. Evaluate $\iint_S \vec{F} \cdot \vec{n}$ ds where $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ and S is the finite plane x + y + z = 1between the coordinate planes.

Evaluate $\iint_{S} \overrightarrow{F} \cdot \overrightarrow{n} \, ds$ for $\overrightarrow{F} = yz \overrightarrow{i} + zx \overrightarrow{j} + xy \overrightarrow{k}$ where S is the surface of sphere $x^2 + y^2 + z^2 = 1$ in the first octant.

7. Evaluate, $\iint_S \vec{F} \cdot \hat{n} ds$ for $\vec{F} = x \vec{i} - y \vec{j} + (z^2 - 1) \vec{k}$ where S is the surface bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and z = 1

ξĸţ

[5]

- 8. Verify the stoke's theorem for $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ where S is the upper part of the sphere $x^2 + y^2 + z^2 = a^2C$ is its boundary. [5]
- 9. Find the Laplace transform of (a) $t^2 \sin zt$ and (b) $\frac{1-c^4}{t}$ [2.5×2]
- 10. Find the inverse Laplace transform of (a) $\frac{2s+3}{s^2+5s-6}$ (b) $\frac{s^3}{s^4-a^4}$ [2.5×2]
- 11. Solve the following differential equation by using Laplace transform $y''+y'-2y=x,\ y(0)=1,\ y'(0)=0$
- 12. Obtain the Fourior series for $f(x) = x^7$ in the interval $-\pi \le x \le \pi$ and hence prove that

$$\sum_{x^2} \frac{1}{1^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} = \frac{\pi^2}{6}$$
 [5]

[10]

- 13. Obtain half range sine series for $f(x) = \pi x x^2$ in $(0, \pi)$ [5]
- 14. Graphically minimize $z = 4x_1 + 3x_2 + x_3$ [5]

Subject to $x_1 + 2x_2 + 4x_3 \ge 12$

$$3x_1 + 2x_2 + x_3 \ge 8$$
 and $x_1, x_2, x_3 \ge 0$

15. Minimize $z = 8x_1 + 9x_2$

Subject to $x_1 + 3x_2 \ge 4$

$$2x_1 + x_2 \ge 5$$
 with $x_1, x_2 \ge 0$

62. TRIBUTAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division. 2069 Ashad

Eram.	New Back (2066 & Later Batch)		
Level	BE	Full Marks	80
Programme	All (Buope & Arch)	Pass Marks	32
Year / Port	П/1	Time ·	3 hrs.

[5]

Subject: - Engineering Mathematics III (SH 501)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt AII questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Find the value of the determinant:

1 a
$$a^2$$
 $a^3 + bcd$
1 b b^2 $b^3 + cda$
1 c c^2 $c^3 + dab$
1 d d^2 $d^3 + abc$

- 2. Prove that every square matrix can be uniquely expressed as the sum of a symmetric and a skew-symmetric matrices.
- 3. Find the rank of matrix: $\begin{bmatrix} 1 & 3 & -2 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 0 & -3 & 2 \\ 3 & 3 & -3 & 3 \end{bmatrix}$ reducing to echelon form. [5]
- 4. Verify Cayley-flamiltan theorem for the matrix: $\begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ [5]
- 5. Find the Laplace transforms of: (a) te^{-t} sipt (b) $\frac{e^{at} \cos 6t}{t}$ [5]
- 6. If L[f(t)]=F(s), then prove that $L[f^{1}(t)]=SF(s)-f(s)$. [5]
- Use Laplace transform to solve: $x''+2x'+5x=e^{-t}$ sint given x(0)=0; x'(0)=1. [5]
- 8. Obtain the Fourier series for f(x)=x³ in the interval -π≤x≤n.
 - 9. Obtain half-range sine series for e^x in (0, 1). [5]
- 10. Maximize $z=2x_1+3x_2$ subject to constraints $x_1-x_2\le 2$, $x_1+x_2\ge 4$ and x_1 , $x_2\ge 0$ graphically. [5]
 - 11. Solve the linear programming problems by simplex method constructing the duality [10]

Minimize $Z = 3x_1 + 2x_2$

Subject to 2x₁+4x₂≥10

 $4x_1+2x_2\geq 10$

 $x_2 \ge 4$ and $x_1, x_2 \ge 0$

- 12. Prove that $\vec{F} = (2xz^3 + 6y)\vec{i} + (6x-2yz)\vec{j} + (3x^2z^2-y^2)\vec{k}$ is conservative vector field and find its scalar potential function. [5]
- 13. Evaluate $\iint_S \vec{F} \cdot \hat{n} \, ds$ where $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ and S is the finite plane x+y+z=1 between the co-ordinate planes. [5]
- 14. Using Green's theorem, find the area of the hypocycloid $\frac{x^{2/3}}{a^{2/3}} + \frac{y^{2/3}}{b^{2/3}} = 1$. [5]
- 15. Evaluate $\iint_S \hat{\mathbf{r}} \, \hat{\mathbf{n}} \, ds$ where $\hat{\mathbf{r}} = 2x \, \hat{\mathbf{i}} + 3y \, \hat{\mathbf{j}} + 4z \, \hat{\mathbf{k}}$ and S is the surface of sphere $x^2 + y^2 + z^2 = 1$ by Gauss divergence theorem. [5]

OR

Verify Stoke's theorem for $\overrightarrow{F} = 2y \overrightarrow{i} + 3x \overrightarrow{j} - z^2 \overrightarrow{k}$ where S is the upper half of the sphere $x^2 + y^2 + z^2 = 9$ and 'C' is its boundary. [5]

TRIBUUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2069 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	All (Except B.Arch)	Pass Marks	32
Year / Part	H/1	Time	3 hrs.

Subject: - Engineering Mathematics III (SII501)

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.
- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.

1. Find the value of the determinant
$$\begin{vmatrix} a^2 & a^2 - (b-c)^2 & bc \\ b^2 & b^2 - (c-a)^2 & ca \\ c^2 & c^2 - (a-b)^2 & ab \end{vmatrix}$$
 [5]

- Show that the matrix B⁶ AB is Hermitian or skew-Hermitian according as A is Hermitian and skew- Hermitian. [5]
- 3. Find the rank of the matrix $\begin{bmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{bmatrix}$ reducing this into the triangular form. [5]
- 4. Obtain the characteristic equation of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ and verify that it is satisfied by A. [5]
- 5. Evaluate $\vec{F} \cdot \vec{dr}$, where $\vec{F} = (x y)\vec{i} + (x + y)\vec{j}$ along the closed curve C bounded by $y^2 = x$ and $x^2 = y$ [5]
- 6. Find the value of the normal surface integral $\iint \vec{F} \cdot \vec{n} \, ds$ for $\vec{F} = x \vec{i} y \vec{j} + (z^2 1) \vec{k}$, where S is the surface bounded by the cylinder $x^2 + y^2 = 4$ between the planes Z = 0 and Z - I. [5]
- 7. Using Green's theorem, find the area of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ [5]
- 8. Verify stoke's theorem for $\vec{F} = 2y \vec{i} + 3x \vec{j} z^2 \vec{k}$ where S is the upper half of the sphere $x^2 + y^2 + z^2 = 9$ and C is its boundary. [5]

OR

Evaluate the volume integral $\iiint F dv$, where V is the region bounded by the surface x = 0, y = 0, y = 6, $z = x^2$, z = 4 and $\vec{F} = 2xz \vec{i} - x \vec{j} + y^2 \vec{k}$

9. Find the Laplace transforms of the following functions

[2.5x2]

a) te^{-4t} sin3t

- 10. State and prove the second shifting theorem of the Laplace transform.
- 11. Solve the following differential equation using Laplace transform. [5]

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = x$$
 given $y(0) = 1$, $y'(0) = 0$

12. Obtain the Fourier series for $f(x) = x^2$ in the interval $-\pi \le x \le \pi$ and hence show that

$$\sum \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$
 (5)

- 13. Express f(x) = x as a half-range sine series in $0 \le x \le 2$ [5]
- 14. Maximize $Z = 4x_1+5x_2$ subject to constraints

 $2x_1 + 5x_2 \le 25$ $6x_1 + 5x_2 \le 45$ $x_1 \ge 0 \text{ and } x_2 \ge 0$ graphically $(X \ Y \ S)$

15. Solve the following linear programming problem using the simplex method.

Maximize $P = 50x_1 + 80x_2$ Subject to $x_1 + 2x_2 \le 32$ $3x_1 + 4x_2 \le 84$ $x_4, x_2 \ge 0$.[10]

[5]

[5]

72 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

Exam.		Regular	
Level	BE	Full Marks	80 -
Programme	BCE, BEL, BEX, BCT, BME, BIE, B. AGRI	Pass Marks	<u></u>
Year / Part	III	Time	3 hrs.

[5]

2068 Chaitra

Subject: - Engineering Mathematics III (SH 501)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.

1. Prove that:
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}^2 = \begin{vmatrix} 2bc - a^2 & c^2 & b^2 \\ c^2 & 2ac & b^2 & a^2 \\ b^2 & a^2 & 2ab - c^2 \end{vmatrix} = (a^3 + b^3 + c^3 - 3abc)^2.$$
 [5]

- 2. Define Hermition and Skew Hermition matrix. Show that every square matrix can be uniquely expressed as the sum of a Hermition and a skew Hermition. [5]
- 3. For what value of λ the equation x + y + z = 1, $x + 4y + 10z = \lambda^2$ and $x + 2y + 4z = \lambda$ have a solution? Solve them completely in each case. [5]
- 4. Find the eigen values and eigen vectors of $A = \begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}$. [5]
- 5. Evaluate $\int_{C} \vec{F} \cdot \vec{dr}$, Where C: $x^2 = y$ and $y^2 = x$ and $\vec{F} = (x+y)\vec{i} + (x+y)\vec{j}$. [5]
- State and prove Green theorem in a plane.
- 7. Verify Guess divergence theorem for $\vec{F} = x^2 \vec{i} + 3 \vec{j} + yz \vec{k}$. Taken over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. [5]
- 8. Find the Laplace transform of the given function (i) t²sint (ii) cosat sinhat. [5]
- 9. Evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 3\vec{i} + x\vec{j} yz\vec{k}$ and s is the surface of the cylinder $x^2 + y^2 = 9$ included in the first octant between the plane z = 0, z = 4. [5]
- 10. Find the inverse Laplace transform: (a) $\frac{1}{(S-2)(S+4)}$ (b) $\log\left(\frac{s^2+a^2}{s^2}\right)$ [5]
- 11. Solve the equation using Laplace transform y'' + 4y' + 3y = t, t>0 y(0) = 0, y'(0) = 1. [5]

12. Obtain a Fourier series to represent the function f(x) = /x/ for $-\pi \le x \le \pi$ and hence

deduce
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 [5]

13. Obtain the half Range Sine Series f(x) = ex in $0 \le x \le 1$. [5]

OR

Obtain the Fourier series for $f(x) = x - x^2$ where $-1 \le x \le 1$ as a Fourier series of period 2.

14. Solve the following by using the simplex method:

Maximize $P = 15x_1 + 10x_2$, Subject to $2x_1 \div x_2 \le 10$,

 $x_1 + 3x_2 \le 10$, $x_1, x_2 \ge 0$.

15. Solve by using the dual method:

[7.5]

Minimize $C = 21x_1 + 50x_2$, Subject to $2x_1 \div 5x_2 \le 12$, $3x_1 + 7x_2 \le 17$, $x_1, x_2 \ge 0.$

Solve the following LPP by using the big M-method:

Maximize $P = 2x_1 + x_2$,

Subject to

 $x_1 + x_2 \le 10$,

 $-x_1+x_2\geq 2$,

 $x_1, x_2 \ge 0$.

02 TRIBIIOVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2068 Baishakh

Exam.	Regular / Back		
Level	BE	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
Year / Part	II/I	Time	3 hrs.

[5]

[5]

[5]

[5]

[5]

[5]

[5].

Subject: - Engineering Mathematics III

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the murgin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Using the properties of determinant prove that:

$$\begin{vmatrix} x & 1 & y & 1 \\ 1 & y & 1 & x \\ 1 & x & 1 & y \\ y & 1 & x & 1 \end{vmatrix} = (x + y + 2)(x - y)^{2}(x + y - 2)$$

- 2. If A and B are two non singular matrices of the same order, prove that $(AB)^{-1} = B^{-1} A^{-1}$. [5]
- 3. Find the rank of the following matrix reducing to normal form $\begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 6 \end{bmatrix}$ [5]
- 4. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$. [5]
- 5. Find the Laplace transform of the following functions:
 - a) $1e^{-3t}\cos 2t$

- b) $\frac{e^{at} \cos 6t}{t}$
- 6. Find the inverse Laplace transform of the following functions:
 - a) $\frac{1}{(s-2)(s+2)^2}$

- b) $\frac{1}{s^2(s+2)}$
- 7. Solve using Laplace transform $(D^2 + 4D + 3)x = e^{-1}$, where x(0) = x'(0) = 1.
- 8. Obtain a Fourier series for $f(x) = x^3$ in the interval $-\pi \le x \le \pi$.
- 9. Find the half range sine series for the function $f(x) = x x^2$ in the interval 0 < x < 1.
- 10. Maximize $Z = x_1 + 1.5 x_2$ subject to constraints

$$2x_1 + 2x_2 \le 160$$

$$x_1 \pm 2x_2 \le 120$$

$$4x_1 + 2x_2 \le 280$$

$$x_1 \ge 0$$
 and $x_2 \ge 0$ graphically.

11. Solve the following innear programming problems by simplex method

Maximize $Z = 15x_1 + 10x_2$ Subject to $2x_1 + 2x_2 \le 10$ $x_1 + 3x_2 \le 10$ and $x_1, x_2 \ge 0$

- 12. Show that the vector field $\vec{F} = (x^2 yz)\hat{i} + (y^2 zx)\hat{j} + (z^2 xy)\hat{k}$ is irrotational. Find the sector function $\phi(x, y, z)$ such that $\vec{F} = \nabla \phi$. [5]
- 13. If S be the part of the surface $Z = 9 x^2 y^2$ with $Z \ge 0$ and $\vec{F} = 3x\vec{i} + 3y\vec{j} + Z\vec{k}$, find the flux of F through S.
- 14. State and prove that Green's theorem in the plane. [5]

[5]

15. Evaluate by Stoke's theorem: [5]

$$\int (e^x dx + 2y dy - dz)$$

Where c is the curve: $x^2 + y^2 = 4$, z = 2.

OR

Verify Gauss divergence theorem for the vector function $\hat{F} = x^2 \hat{i} + z \hat{j} + yz \hat{k}$, taken over the unit cube bounded by the planes: x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

15 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2067 Ashadh

Exam.	Regular/Back		
Level	BR	Full Marks	80
Programme	All (Except B. Arch.)	Pass Marks	32
Year / Part	11/1	Time	3 hrs.

Subject: - Mathematics III

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ <u>All</u> questions carry equal marks.
- Assume suitable data if necessary.
- 1. Using the properties of determinant prove:

$$\begin{vmatrix} a^{2} + 1 & ba & ca & da \\ ab & b^{2} + 1 & cb & db \\ ac & bc & c^{2} + 1 & dc \\ ad & bd & cd & d^{2} + 1 \end{vmatrix} = a^{2} + b^{2} + c^{2} + d^{2} + 1$$

- 2. Show that every square matrix can be uniquely expressed as the sum of hermitian and a skew-hermitian matrix.
- 3. Reduce to normal form and find the rank of the matrix:

$$\begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}$$

4. Find the eigen values and eigne vectors of the matrix

- 5. Find the Laplace transform of:
 - a) coshat sin at

b)
$$\frac{\cos 2t - \cos 3t}{t}$$

6. Find the inverse Laplace transform of:

a)
$$\frac{1}{s^2(s^2+a^2)}$$

b)
$$\log \frac{s+1}{s-1}$$

- 7. State and prove the integral theorem of the Laplace transform.
- 8. Solve the following differential equation using the Laplace transform,

$$y''' + 2y'' - y' - 2y = 0$$
 where $y(0) = y'(0) = 0$ and $y''(0) = 6$

9. Find a Fourier series to represent $x = x^3 f_0 + a x = 1$. Hence show that

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

- 10. Express f(x) = x as a cosine half range series in $0 \le x \le 2$.
- 11. The acceleration of a moving particle at any time t is given by $\frac{d^2 \vec{r}}{dt^2} = 12\cos 2t\hat{i} 8\sin 2t\hat{j} + 16t\hat{k}.$ Find the velocity \vec{v} and displacement \vec{r} at anytime t if

$$t = 0$$
, $\overrightarrow{v} = 0$ and $\overrightarrow{r} = 0$.

- 12. Find the angle between the normals to the surface $xy = z^2$ at the points (1,4,2) and (-3,-3,3)
- 13. Find the work done in moving a particle once round the circle $x^2 + y^2 = 9$, z = 0 under the force field \vec{F} given by $\vec{F} = (2x y + z) \vec{i} + (x + y z^2) \vec{j} + (3x 2y + 4z) \vec{k}$.
- 14. Evaluate $\iint_{\mathbb{R}} \vec{F} \cdot \vec{n} ds$ where s is the upper side of triangle with vertices (1,0,0), (0,1,0),

(0,0,1) where
$$\vec{F} = (x-2z) \cdot \vec{i} + (x+3y+z) \cdot \vec{j} + (5x+y) \cdot \vec{k}$$
.

- 15. State Green's theorem in a plane. Using Green's theorem find the area of $x^{2/3} + y^{2/3} = a^{2/3}$.
- 16. Verify Stoke's theorem for $F = (2x y) i yz^2 j y^2z k$ where s is the upper part of the sphere $x^2 + y^2 + z^2 = a^2$ and c is its boundary.

OR

Verify Gauss theorem for $\overrightarrow{F} = y \overrightarrow{i} + x \overrightarrow{j} + z^2 \overrightarrow{k}$ over the region bounded by $x^2 + y^2 = a^2$, z = 0 and z = h.

04 TRIBUUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2067 Magh -

Exam.		Back	
Level	BE	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
Year / Part	П/І	Time	3 hrs.

Subject: - Mathematics III

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ All questions carry equal marks.
- √ Assume suitable data if necessary.

1. Show that
$$\begin{vmatrix} a & b & b & b \\ a & b & a & a \\ a & a & b & a \end{vmatrix} = -(b-a)^{4}$$

2. If P and Q are two orthogonal matrices of the same order, prove that their product is also orthogonal.

3. Reducing to normal form, find the rank of matrix
$$\begin{bmatrix} 0 & -1 & 2 & -3i \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 0 & 4 \end{bmatrix}$$

4. Find the eigen values and eigen vectors of the matrix
$$\begin{bmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

- 5. Find a Fourier series for $f(x) = x^3$, $-\pi < x < \pi$.
- 6. Find the half range sine series for the function $f(x) = e^x$ for $0 < x < \pi$.
- 7. Find the Laplace transform of
 - a) t²cosat
 - b) the h
- 8. Find the Inverse Laplace transform of

a)
$$\frac{5}{(s-3)(s^2+4)}$$

5)
$$\log \frac{s(s+1)}{(s^2+4)}$$

9. If $L\{f(t)\} = F(s)$, then prove $L\{e^{at}|f(t)\} = F(s-a)$.

- $10. \ Use the \ Laplace transform to solve \ \frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = e^{-t}, \ y(0) = y^1(0) = 1.$
- 11. The position vector of a thoving particle at any time t is given by $\vec{r} = (t^2 + 1)\vec{i} + (4t 3)\vec{j} + (2t^2 6)\vec{k}$. Find the velocity and acceleration at t = 1. Also find their magnitudes.
- 12. Define divergence and curl of \overrightarrow{V} . Prove that $\operatorname{div}(\operatorname{Curi} \overrightarrow{V}) = 0$.
- 13. Evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ where $\vec{F} = Z \vec{i} + x \vec{j} + y \vec{k}$ and C is the arc of curve, $x = t^2 \div 1$, $y \cdot 2t^2$, $z = t^2$ from t = 1 to t = 2.
- 14. Evaluate $\iint_{S} \vec{F} \cdot \vec{n} \, ds$ where $\vec{F} = x \vec{i} y \vec{j} + z \vec{k}$ and S is the outside of the lateral surface of circular cylinder, $x^2 + y^2 = a^2$ between planes z = 0 and z = 4.
- 15. Use Green's theorem to find the area of ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 16. Verify Stoke's theorem for $\overrightarrow{F} = x \overrightarrow{i} z^2 \overrightarrow{j} + y^2 \overrightarrow{k}$ over the plane surface x + y + z = 1 lying in first octant.

OI

Verify Gauss's theorem for $\vec{k}=4x\ i+2y^2\ \vec{j}+z^2\ \vec{k}$ taken over the region bounded by $x^2+y^2=4$, z=0 and z=3.