- Memorization in neural networks

#### **Autoencoder neural networks**

 Input & output layers: same number of neurons



#### **Autoencoder neural networks**

- Input & output layers: same number of neurons
- **Depth** = number of hidden layers in neural network
  - Example: depth = 1



#### Autoencoder neural networks

- Input & output layers: same number of neurons
- Depth = number of hidden layers in neural network
  - Example: depth = 1
- In this talk:
  - Every hidden layer has the same number of neurons
  - Width refers to this number
  - Example: width = 2



### Machine learning with autoencoders

**Training** is the process that improves weights and biases such that our neural networks produces better results.

#### Goal of an autoencoder:



### **Machine learning with autoencoders**

**Training** is the process that improves weights and biases such that our neural networks produces better results.

#### Requires three ingredients:

- a set of training data
- a loss function: measures how well the autoencoder achieves its task
- an optimizer: changes weights and biases to improve loss

#### Goal of an autoencoder:



#### **Memorization in autoencoders**

Few parameters lead to interpolation.



Too many parameters allow the network to learn the dataset.



#### **Memorization in autoencoders**

Few parameters lead to interpolation.

Overfitting / Memorization

Interpolation

0



Too many parameters allow the network to learn the dataset.

#### Memorization in autoencoders



It is still an open question how neural networks memorize data. For this, articles [1] and [2] suggest to study **attractors** of autoencoders.

<sup>[1] &</sup>quot;Memorization in overparameterized autoencoders" - A. Radhakrishnan, K.D. Yang, M. Belkin and C. Uhler

<sup>[2] &</sup>quot;Overparameterized Neural Networks Can Implement Associative Memory" - A. Radhakrishnan, M. Belkin, C. Uhler







When is a training image \_\_an attractor?

#### **Two** things can go wrong:

- becomes another image when iterating autoencoder
  - → we say that is not an iterative fixed point



When is a training image \_\_an attractor?

#### **Two** things can go wrong:

- becomes another image when iterating autoencoder
  - → we say that is not an iterative fixed point
- other images never become

(can be checked with the eigenvalues of the Jacobian matrix of the autoencoder at NOT attractor



#### **Problem formulation**

We want to extend the experiments in [2] to ReLU autoencoders.



#### **Problem formulation**

We want to extend the experiments in [2] to **ReLU** autoencoders.

We investigate the impact on the amount of attractors:

- changing depth and width
- with and without bias
- using <u>structured</u> and <u>random</u> pictures





### Method: Controlled experiment(s)



### Method: Controlled experiment(s)





### Method: Controlled experiment(s)





Each experiment repeats 4x, totalling 240 experiments

#### Scope:

| width depth | 128                   | 64                                  | 32 |  |
|-------------|-----------------------|-------------------------------------|----|--|
| 11          |                       |                                     |    |  |
| 6           | with and without bias |                                     |    |  |
| 3           |                       | training pictures<br>ndom and CIFAF |    |  |
| 2           |                       |                                     |    |  |
| 1           |                       |                                     |    |  |

### **Implementation**



















 CIFAR10 pictures: greater impact when changing depth  Random pictures: greater impact when changing width





 CIFAR10 pictures: greater impact when changing depth

- Random pictures: greater impact when changing width
- Sufficient depth is required for creating attractors





- CIFAR10 pictures: greater impact when changing depth
- Good loss and number of attractors are not necessarily related

- Random pictures: greater impact when changing width
- Sufficient depth is required for creating attractors









Not using bias, produces no attractors

#### **Future work**

- increase the scope (width and depth) of autoencoders
- the effect of epochs on trained autoencoders was not covered in the thesis (only trained 50k).
- training pictures was always 100, the impact of changing this amount would be interesting.
- training with pictures with a more specific structure could give interesting results.
- optimizing the thesis' notion of iterative fixed points, excluding the "false positives".
- a mathematical proof showing that every data point becomes an attractor for a sufficiently generic training set for a sufficiently large ReLU autoencoder

An autoencoder is a mathematical function; in this thesis:







$$\alpha: \mathbb{R}^{3072} \to \mathbb{R}^{3072}$$

At every picture, we can compute the Jacobian matrix  $J_{\Omega}(\mathbb{F}) \rightarrow \text{this is a 3072 x 3072 matrix.}$ 

[1] and [2] show for a perfectly trained autoencoder with loss 0:

- $\mathbb{F}$  is an attractor if the highest absolute value of the eigenvalues of  $J_{\mathcal{O}}(\mathbb{F})$  is smaller than 1.
- Is not an attractor if this highest absolute value is larger than 1.

| For an autoencoder with loss > 0,  |
|------------------------------------|
| 🔚 is an attractor if this highest  |
| absolute value is smaller than 1   |
| and 🔚 is an iterative fixed point. |

|                        |     | largest absolute val | ue of all eigenvalues: |
|------------------------|-----|----------------------|------------------------|
|                        |     | < 1                  | > 1                    |
| iterative fixed point? | yes | attractor            | not attractor          |
|                        | no  | not attractor        | not attractor          |

<sup>[1] &</sup>quot;Memorization in overparameterized autoencoders" - A. Radhakrishnan, K.D. Yang, M. Belkin and C. Uhler

<sup>[2] &</sup>quot;Overparameterized Neural Networks Can Implement Associative Memory" - A. Radhakrishnan, M. Belkin, C. Uhler







# Results & Analysis (iterative fixed points at lower depths & manual verification)

#### 'false predictions':

- 82% at depth 1
- 36% at depth 2
- 19% at depth 3

