

bracklet

CRYPTOGRAPHY (CTG)

Diploma in Information Security and Forensics (Dip in ISF)
Academic Year (AY) `21/`22 – Semester 2

WEEK 2.1

CLASSICAL CRYPTOGRAPHY – PART 2

Last Updated: 14/10/2021

Contents

Substitution Ciphers Part 2

Research on One-Time Pad

Summary

Week 2.1 - Summary

SUBSTITUTION CIPHERS 1
TRANSPOSITION CIPHER EXERCISES
SUMMARY

Component	You learnt
Skills & Knowledge	Modular Arithmetic Shift Cipher with Modular Arithmetic
Activities	 Substitution Ciphers Pigpen Cipher Shift Cipher with Cipher Disks Shift Cipher with Modular Arithmetic Transposition Ciphers Columnar Transposition Cipher Bifid Cipher ADFGX Cipher
Thinking	The concept of "Shift" Modular Arithmetic calculations
Feedback	Pigpen Cipher Shift Cipher Modular Arithmetic

Substitution Ciphers Part 2

Affine Cipher

Vigenere Cipher

One Time Pad (Vernam)

Affine Cipher

Affine Cipher

SUBSTITUTION CIPHERS 2

- Affine Cipher
- Vigenere Cipher

ONE-TIME PAD

- □ The affine cipher is a type of monoalphabetic substitution cipher
- The monoalphabetic substitution takes a letter of an alphabet and substitutes it with another letter. The way of converting is fixed. A character of the plaintext will be replaced by the same ciphertext character, during the entire ciphertext.

Affine Cipher - Encryption

SUBSTITUTION CIPHERS 2

- Affine Cipher
- Vigenere Cipher

ONE-TIME PAD

- \square Affine cipher consists of 2 Keys, we'll call them a and b
- □ Let:

- \square Select key "a" between 0,...,25
 - Condition for a: gcd(a,26) = 1
 - gcd: Greatest Common Divisor
 - So, a = 1,3,5,7,9,11,15,17,19,21,23,25
- \square Select another key "b" between 0,...,25
- $CT = ((a \times PT) + b) \mod 26$
 - CT: Cipher Text, PT: Plain Text

Affine Cipher – Why gdc(a,26)=1?

SUBSTITUTION CIPHERS 2

- Affine Cipher
- Vigenere Cipher

ONE-TIME PAD

SUMMARY

- Let *a* = 4
 - $\gcd(4,26) = 2$
- \Box CT = ((4 x PT) + 7) mod 26

PT	а	b	С	d	е	f	g	h	i	j
	0	1	2	3	4	5	6	7	8	9
CT	7	11	15	19	23	1	5	9	13	17
	Н	L	Р	Т	X	В	F	J	N	R
PT	k	1	m	n	0	р	q	r	S	t
PT	k 0	1	m 2	n 3	o 4	р 5	q 6	r 7	s	t 9
PT CT		1 25								

Different Plain Text lead to same Cipher Text. Therefore gcd(a,26) must be equal to 1

Affine Cipher: Encryption - Decryption

10

- \Box CT = ((a x PT) + b) mod 26
- □ PT = $(a^{-1} \times (CT b)) \mod 26$
 - a⁻¹ is called "modular <u>multiplicative</u> inverse" of a
- Select any one of the following values for a
 - 1,3,5,7,9,11,15,17,19,21,23,25
 - Since gcd(a,26) = 1
- Select "b" between 0,...,25
- We will learn how to calculate a-1 later in this module, for now just use the values provided in the table below

а	1	3	5	7	9	11	15	17	19	21	23	25
a ⁻¹	1	9	21	15	3	19	7	23	11	5	17	25

□ Let a = 3, b = 7

Encryption

PT	С	а	t
	2	0	19
$CT = ((3 \times PT) + 7) \mod 26$	13	7	12
	N	Н	M

Decryption

СТ	N	Н	M
	13	7	12
PT = (3 ⁻¹ x (CT - 7)) mod 26 PT = (9 x (CT - 7)) mod 26	2	0	19
	С	а	t

Affine Cipher – Possible Keys

SUBSTITUTION CIPHERS 2

- Affine Cipher
- Vigenere Cipher

ONE-TIME PAD

- □ "a" can only take 12 values
 - a = 1,3,5,7,9,11,15,17,19,21,23,25
 - □ Since gcd(a,26) = 1
 - "b" can take 26 values between 0,...,25
 - Therefore the no. of possible keys
 - 12x26 = 312
- NOTE: Shift Cipher has only 26–1=25 possible keys

Affine Cipher: Exercises

SUBSTITUTION CIPHERS 2

- Affine Cipher
- Vigenere Cipher

ONE-TIME PAD

- Decrypt the following
 - Ex1
 - CT: apmfmgfzcm
 - Keys: a= 3, b= 7
 - **□** Ex2
 - CT: cxoahnetnhmzekf
 - Keys: a= 7, b= 10
 - **□** Ex3
 - CT: mbcyjcwnczmwkmvvdozf
 - Keys: a= 15, b= 12

Vigenere Cipher

Vigenere Cipher

SUBSTITUTION CIPHERS 2

- Affine Cipher
- Vigenere Cipher

ONE-TIME PAD

- □ The Vigenère Cipher is a polyalphabetic substitution cipher.
 - A polyalphabetic cipher uses a number of substitutions at different positions in the message, where a unit from the plaintext is mapped to one of several possibilities in the ciphertext and vice versa
- □ Vigenere Cipher was actually first described by Giovan Battista Bellaso in 1553.
- However, in the 19th Century, it was misattributed to Blaise de Vigenère, who had presented a similar cipher (theAutokey Cipher) in 1586.
- The Vigenère Cipher was renowned for being a very secure cipher, and for a very long time it was believed to be unbreakable.
- □ It was fully broken by Friedrich Kasiski in 1863, it is still a very secure cipher in terms of paper and pen methods.

Vigenere Cipher

15

□ The cipher is implemented using the Vigenère Square, which is made up of 26 distinct cipher alphabets

\times	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z
Α	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z
В	В	С	D	Ε	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α
С	С	D	Ε	F	G	Н	Ι	J	K	L	Μ	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В
D	D	Е	F	G	Н	Ι	J	K	L	Μ	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С
Ε	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D
F	F	G	Н	Ι	J	Κ	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε
G	G	Н	Ι	J	Κ	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F
Н	Н	I	J	Κ	L	Μ	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G
1	1	J	K	L	Μ	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н
J	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	1
K	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	Ι	J
L	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	I	J	K
M	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	I	J	K	L
N	N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	М
0	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	N
Р	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	М	Ν	0
Q	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	Ν	0	Р
R	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	N	0	Р	Q
S	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R
T	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	N	0	Р	Q	R	S
U	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	I	J	Κ	L	М	Ν	0	Р	Q	R	S	Т
٧	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	Μ	Ν	0	Р	Q	R	S	Т	U
W	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	٧
X	Х	Υ	Z	Α	В	С	D	Е	F	G	Н	Ī	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W
Υ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х
Z	Z	Α	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ

Vigenere Cipher

Suppose the plaintext message was "EXAM QUESTIONS ENCLOSED" and the keyword was SINGAPORE. Hence, the following:

> S I N G A P O R E S I N G A P O R E S I N E X A M Q U E S T I O N S E N C L O S E D

- To perform the substitution:
 - Combination of keyword and message letters, SE.
 - Use the keyword letter to locate the column, the message letter to find the row, and look for the letter at their intersection.
 - For column "S" and row "E," the ciphertext letter "W" will be found.
 - Hence, each of the letters in the message will produce the encrypted ciphertext: WFNSQJSJXAWAYECQCSKMQ.

Vigenere Cipher: Exercises

17

SUBSTITUTION CIPHERS 2

- Affine Cipher
- Vigenere Cipher

ONE-TIME PAD

- Decrypt the following
 - Ex1
 - CT: WZVFINLSOHCWAQMERTBJAHIHVPEIEHZCS
 - Key: wonderland
 - Ex2
 - CT: IIPQIFYSTQWWBTNUIUREUF
 - Key: MEC
 - **■** Ex3
 - CT: HHWKSWXSLGNTCG
 - Keys: PASCAL

Shift vs. Affine vs. Vigenere Ciphers

□ Shift

- Monoalphabetic Cipher
- Possible Keys:
 - **2**5
- Can be broken using Frequency Analysis
 - http://practicalcry ptography.com/ci phers/classicalera/caesar/

□ Affine

- Monoalphabetic Cipher
- Possible Keys:
 - **312**
- Can be broken
 - using Frequency Analysis
 - if the plaintext of any two ciphertext characters is known
 - http://practicalcryp tography.com/ciph ers/classicalera/affine/

Vigenere

- PolyalphabeticCipher
- A key phrase/word of any length
- Cryptanalysis of the Vigenere cipher has 2 main steps: identify the period of the cipher (the length of the key), then find the specific key.
 - http://practicalcrypto graphy.com/cryptanal ysis/stochasticsearching/cryptanalys is-vigenere-cipher/

19

One Time Pad

Homework Exercise:

- * Read the article given in Wikipedia on one-time pad (vernam cipher)
 - https://en.wikipedia.org/wiki/One-time_pad
 - (i) Figure out yourself how the one-time pad works
 - (ii) What are the possible advantages & disadvantages of this cipher algorithm?
- * Other reference:
- https://genesisdatabase.wordpress.com/2010/12/13/cryptography-caesar-vigenerevernam-columnar/

Summary

Week 2.2

Week 2.2 - Summary

21

SUBSTITUTION CIPHERS 2

- Affine Cipher

- Vigenere Cipher

ONE-TIME PAD

Component	You learnt						
Skills & Knowledge	Affine Cipher Vigenere Cipher						
Activities	Affine Cipher Vigenere Cipher						
Thinking	Concept of $gcd(a,26) = 1$ Possible number of keys for Affine Cipher Shift vs. Affine vs. Vigenere Ciphers One-Time Pad						
Feedback	Affine Cipher Vigenere Cipher Shift vs. Affine vs. Vigenere Ciphers						