Prinis algoritum

the cost adjacuny motive for the above graph is:

tree vertices	Remaining vertices	Resulting graphs
1- 1 (- , -)	2(1,28) $4(1,0)$ $[6(1,10)]$ $3(1,0)$ $5(1,0)$ $7(1,0)$	10 (1)
2. 6(1,10)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 D

3. 5 (6,25)	$\frac{2(1,28)}{3(1,\infty)} \frac{2(6,8)}{3(6,\infty)} \frac{2(5,\infty)}{3(5,\infty)}$ $\frac{3(1,\infty)}{4(1,\infty)} \frac{3(6,\infty)}{4(6,\infty)} \frac{[4(5,22)]}{[4(5,22)]}$ $\frac{7(1,\infty)}{7(6,\infty)} \frac{7(6,\infty)}{7(5,24)}$	10 D 25 3 22 Y
4. 4(5,22)	$2(1,28)$ $2(6,\infty)$ $2(5,\infty)$ $2(4,\infty)$ $3(1,\infty)$ $3(6,\infty)$ $3(5,\infty)$ $3(4,12)$ $7(1,\infty)$ $7(6,\infty)$ $7(5,24)$ $7(4,18)$	10 0 3 (3) 21 (3) 12 (1)
5. 3(4,12)	2(1,28) $2(6,0)$ $2(5,0)7(1,0)$ $7(6,0)$ $7(5,24)2(4,0)$ $[2(3,16)]7(4,18)$ $7(3,0)$	10 (2) 16 (3) (2) (12) (12)
6. 2(3,16)	7(1,0) 7(6,0) 7 (5,24) 7(4,18) 7(3,0) [7(2,14)]	14 D 16 19/ D 3
7. 7(2,14)		

Minimum spanning Tree:

Minimum cost = 10+25+22+12+16+14 = 99 units