

DBSSE

Evolutionary Dynamics

Exercises 2

Prof. Dr. Niko Beerenwinkel Monica Dragan Kevin Rupp Lara Fuhrmann

6th October 2022

Exercises marked with a "\sum are programming exercises. These can be solved in a programming language of your choice. Please make sure to hand in your code along with your answers to these exercises.

Problem 1: Sequence space and Hamming distance

Consider an alphabet \mathcal{A} of size $|\mathcal{A}| = B$. For a binary alphabet, one has $\mathcal{A} = \{0,1\}$ and B = 2, and for DNA, one has $A = \{A, T, C, G\}$ and B = 4. We are studying sequences $S \in A^L$ of length L. Assume sequences are random with a uniform distribution,

- (a) How many unique binary and DNA sequences exists for L = 28? (1 point)
- (b) What is the average Hamming distance between two random binary sequences? What is the expected Hamming distance for two random DNA sequences? (1 point)
- (c) Given a binary sequence of length L, how many sequences exist at a Hamming distance three from it? How many at distance K with $K \le L$? Repeat the calculation for DNA sequences. (2 points)

Problem 2: Quasispecies

Consider the quasispecies equation with two genotypes 0,1 (i.e., binary sequences of length 1). Let re

the fitness of genotype 0 be $f_0 > 1$, and the fitness of genotype 1 be $f_1 = 1$. Moreover, genotypes are replicated error-free with probability q ,	
(a) Write down the mutation-selection matrix W and find its eigenvalues.	(2 points)
(b) To which eigenvalue corresponds the non-trivial equilibrium point? <i>Hint</i> : Perron-Frobenius theorem.	(1 point)
(c) Examine the dynamics of the quasispecies equation and confirm the results obtained in (b). Assume that $q=0.6$ and $f_0=1.5$, and initial condition $(0.65,0.35)$. \square	(1 point)
(d) What is the equilibrium point for $f_0 = f_1 = 1$?	(1 point)
(e) Calculate the equilibrium point in the limit of low mutation rate $(q \approx 1)$.	(1 point)