H1 Lecture 2: Analysis of Algorithms

H2 Data Analysis

Standard Plot

Plot running time T(N) vs. input size N

Log-log Plot

Plot running time T(N) vs. input size N using log-log scale

Conduct *regression analysis* to fit straight line through data points: aN^b ("power law")

$$\begin{split} \lg(T(N)) &= b(\lg(N)) + c \\ b &= 2.999 \\ c &= -33.2103 \\ T(N) &= 2^{-33.2103} N^2.999 \end{split}$$

Hypothesis: the running time is about $1.006 imes 10^{-10} imes N^{2.999}$ seconds

H2 Prediction and Validation

Predictions

- 51.0 seconds for N=8000
- 408.1 seconds for N = 16000

Observations

N	time (seconds)
8000	51.1
8000	51.0
8000	51.1

16000 410.8

Vlalidates hypothesis

H2 Doubling Hypothesis

Doubling hypothesis is a quick way to estimate b in a power-law relationship

Run programme, *doubling* the size of input:

N	time (seconds)	ratio	lg(ratio)
250	0.0	-	-
500	0.0	4.8	2.3
1000	0.1	6.9	2.8
2000	0.8	7.7	2.9
4000	6.4	8.0	3.0
8000	51.1	8.0	3.0

 $\lg(ratio)$ converges to constant bpprox 3

Running time is about aN^b with $b=\lg(ratio)$, solve for a with a sufficently large value of N.

Hypothesis:

Running time is about $0.998 \times 10^{-10} \times N^3$ seconds

H2 Experimental Algorithms

H₃ Determinants of b:

System independent effects:

- Algorithm
- Input data

H₃ Determinants of *a*

System independent effects:

- Algorithm
- Input data

System dependent effects:

- Hardware: CPU, memory, cache, ...
- Software: complier, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

H2 Mathematical Models for Running Time

H₃ Cost Model

Use some basic operation as a proxy for running time.

Example: 2-Sum

```
1 int count = 0;
2 for (int i = 0; i < N; i++) {
3     for (int j = i+1; j < N; j++){
4         if (a[i] + a[j] == 0) count ++;
5     }
6 }</pre>
```

Operation	Frequency
Variable Declaration	N+2
Assignment Statement	N+2
Less than Comparison	$=$ $\frac{1}{2}(N+1)(N+2)$
Equal to Comparison	$0+1+2+\cdots+(N-1)=rac{1}{2}N(N-1)=inom{N}{2}$
Array access - Cost Model	N(N-1)
Increment	$rac{1}{2}N(N-1)$ to $N(N-1)$

Assuming compiler/JVM does not optimise array accesses away

H3 Tilde Notation

- ullet Estimating running time (or memory) as a function of input size N
- Ignore lower order terms
 - \bullet when N is large, terms are negligible
 - \bullet when N is small, omit

Examples

$$egin{split} rac{1}{6}N^3 + 20N + 16 &\sim rac{1}{6}N^3 \ rac{1}{6}N^3 + 100N^rac{4}{3} + 56 &\sim rac{1}{6}N^3 \ rac{1}{6}N^3 - rac{1}{2}N^2 + rac{1}{3}N &\sim rac{1}{6}N^3 \end{split}$$

Leading-term approximation

Discard lower-order terms

Technical Definition

$$f(N) \sim g(N)$$
 means:

$$\lim_{N\to\infty}\frac{f(N)}{g(N)}=1$$

2-Sum Example with Tilde Notation

Operation	Frequency	Tilde Notation
Variable Declaration	N+2	$\sim N$
Assignment Statement	N+2	$\sim N$
Less than Comparison	$rac{1}{2}(N+1)(N+2)$	$\sim rac{1}{2} N^2$
Equal to Comparison	$0+1+2+\cdots+(N-1)=rac{1}{2}N(N-1)=inom{N}{2}$	$\sim rac{1}{2} N^2$
Array access - Proxy	N(N-1)	$\sim N^2$
Increment	$rac{1}{2}N(N-1)$ to $\$$	$\sim rac{1}{2} N^2$ to $\sim N^2$

Example: 3-Sum

```
1 int count = 0;
2 for (int i = 0; i < N; i++){
3     for (int j = i+1; j < N; j++ ){
4         if (a[i] + a[j] + a[k] == 0) count++;
5     }
6 }</pre>
```

Operation	Frequency	Tilde Notation
Equal to Comparison	$\binom{N}{3} = \frac{N(N-1)(N-2)}{3!}$	$\sim rac{1}{6} N^3$
Array access - Proxy	$3 imes inom{N}{3}$	$\sim rac{1}{2} N^3$

Note that:

Each Equal to Comparison has 3 array accesses

Estimating a Discrete Sum

Replace the sum with an integral

$$egin{split} \sum_{i=1}^N i &\sim \int_{x=1}^N x \, dx \sim rac{1}{2} N^2 \ &\sum_{i=1}^N i^k \sim \int_{x=1}^N x^k \, dx \sim rac{1}{k+1} N^{K+1} \ &\sum_{i=1}^N rac{1}{i} \sim \int_{x=1}^N rac{1}{x} \, dx = \ln N \ &\sum_{i=1}^N \sum_{j=1}^N \sum_{k=j}^N 1 \sim \int_{x=1}^N \int_{y=x}^N \int_{z=1y}^N dz \, dy \, dx \sim rac{1}{6} N^3 \end{split}$$

H2 Sample Question:

How many array accesses does the following code fragment make as a function of n?

(Assume the compiler does not optimize away any array accesses in the innermost loop.)

```
1 int sum = 0;
2 for (int i = 0; i < n; i++)
3    for (int j = i+1; j < n; j++)
4         for (int k = 1; k < n; k = k*2)
5         if (a[i] + a[j] >= a[k]) sum++;
```

Running Time of k-loop:

Geometric Progression with a = 1, r = 2:

$$2^T = N$$
 $T = \lg N$

3 array accesses for a[i], a[j], a[k]:

Running Time of *k*-loop:

$$3 \lg N$$

Number of time k-loop is Executed:

The equivalent of 2-Sum problem

$$\binom{N}{2} = \frac{1}{2}N^2$$

Array Accesses of the Function:

$$\frac{1}{2}N^2\times 3\lg N = \frac{3}{2}N^2\lg N$$

H2 Order-of-Growth Classification

Order- of- Growth	Name	Typical Code Framework	Description	Example	$\frac{T(2N)}{T(N)}$
1	Constant	(a = b + c)	Statement	Addition of two numbers	1
$\log N$	Logarithmic	while (N > 1) { N = N/2;}	Divide in half	Binary Search	~ 1
N	Linear	for (int i = 0; i < N; i++) {}	Loop	Find the max	2
$N \log N$	Linearithmic	mergeSort()	Divide and conquer	Merge Sort	~ 2
N^2	Quadratic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) {}	Double loop	Check all pairs	4
N^3	Cubic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) {}	Triple loop	check all triples	8
2^N	Exponential	combinatorial()	Exhaustive search	Checks all subsets	T(N)

Typical orders of growth

H2 Binary Search

Java Implementation

```
public static int binarySearch(int[] a, int key) {
 2
          int lo = 0, hi = a.length-1;
          while (lo <= hi) {</pre>
 3
               int mid = lo + (hi - lo) / 2;
 4
               if (key < a[mid]) hi = mid - 1;</pre>
 5
               else if (key > a[mid]) lo = mid + 1;
 6
               else return mid;
 7
 8
          }
          return -1;
 9
10
    }
```

Function Facts ••

- Firt binary search published in 1946
- First bug-free one published in 1962
- Bug in Java's Arrays.binarySearch() discovered in 2006

Propostion

Binary search uses at most $1+\lg N$ key compares to search in a sorted array of size N

Recurrence

Define T(N) as the number of key compares to binary search a sorted subarray of size < N

$$T(N) \leq T(\frac{N}{2}) + 1$$

for N > 1, with T(1) = 1

Omitting odd N case

Proof Sketch

$$T(N) \le T(rac{N}{2}) + 1$$
 $\le T(rac{N}{4}) + 1 + 1$
 $\le T(rac{N}{8}) + 1 + 1 + 1$
...
 $\le T(rac{N}{N}) + 1 + 1 + \dots + 1$
 $= 1 + \lg N$

H2 An $N^2 \log N$ Algorithm for 3-Sum

Sorting based algorithm

- 1. **Sort** the N (distinct) numbers
- 2. For each pair of numbers a[i] and a[j], binary search for -(a[i] + a[j])

input

30 -40 -20 -10 40 0 10 5

sort

-40 -20 -10 0 5 10 30 40

binary search

Analysis

- N^2 with insertion sort
- $N^2 \lg N$ with **binary search**

H2 Theory of Algorithms

H₃ Cases

Best Case: Lower bound of cost

- Determined by "easiest" input
- Provides a goal for all inputs

Worst Case: Upper bound on cost

- Determined by "most difficult" input
- Provides a guarantee for all inputs

Average Case: Expected cost for random input

- Need a *model* for "random" input
- Provides a way to predict performance

Example: Array Accesses for Brute-Force 3-Sum

• Best : $\sim \frac{1}{2}N^3$

• Average : $\sim \frac{1}{2}N^3$

• Worst : $\sim \frac{1}{2} N^3$

Example: Compares for Binary Search

• Best : ~ 1

• Average : $\sim \lg N$ • Worst : $\sim \lg N$

Actual Data Might Not Match Input Model?

Need to understand input to effectively process it

• Approach 1: design for the worst case

• Approach 2: randomise, depend on probabilistic guarantee

H₃ Goals

• Eastablish "difficulty" of a problem

• Develop "optimal" algorithms

Approaches

• Suppress details in analysis: analyse "to within a constant factor"

• Eliminate variability in input model by focusing on the worst case

Optimal Algorithm

• Performance guarantee (to within a constant factor) for any input

• No algorithm can provide a better performance guarantee

H3 Commonly-Used Notations

Notation	Provides	Example	Shorthand for	Used to
Tilde	Leading term	$\sim 10 N^2$	$10N^2, 10N^2 + 22N\log N, 10N^2 + 2N + 37$	Provide approximate model
Big Theta	Asympototic growth rate	$\Theta(N^2)$	$rac{1}{2}N^2, 10N^2, 5N^2 + 22N\log N + 3N$	Classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	$O(N^2)$	$10N^2, 100N, 22N\log N + 3N$	Develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$rac{1}{2}N^2, N^5, N^3 + 22N\log N + 3N$	Develop lower bounds

Note that:

It is a common mistake to interpret big-Oh as an approximate model. It develops the upper bounds instead

H₃ Example 1

Goals

• Establish "difficulty" of a problem and develop "optimal" algorithms

• Example: 1-Sum: "Is there a 0 in the array?"

Upper Bound: a specific alogrithm

• Example : Brute-force 1-Sum

• Running time of the optimal algorithm for 1-Sum is O(N)

Lower Bound: proof that no algorithm can do better

- ullet For any algorithm, it has to examine all N entries
- Running time of the optimal algorithm for 1-Sum is $\Omega(N)$

Derived Optimal Algorithm

- Lower bound equals upper bound (to within a constant factor)
- Conclusion : Brute-force 1-Sum is optimal: its running time is $\Theta(N)$

H₃ Example 2

Goals

- Establish "difficulty" of a problem and develop "optimal" algorithms
- Example: 3-Sum

Upper Bound: a specific alogrithm

- Example : Brute-force 3-Sum
- However, Sorted-based 3-Sum performance better
- Running time of the optimal algorithm for 1-Sum is $O(N^2 \log N)$

Lower Bound: proof that no algorithm can do better

- ullet For any algorithm, it has to examine all N entries
- Running time of the optimal algorithm for 1-Sum is $\Omega(N)$

Open Problems

- Maybe better algorithm
- Subquadratic algorithm?
- Quadratic lower bound?

H₃ Algorithm Design Approach

Start

- Develop an algorithm
- **Prove** a lower bound

Gap?

- Lower the upper bound discover a new algorithm
- Raise the lower bound more difficult

Cavests

- Overly pessimistic to focus on worst case?
- Need better than "to within a constant factor" to predict performance

H₂ Memory

H₃ Basics

Unit	Coversion
Bit	$\in \{0,1\}$
Byte	8 bits
Megabyte (MB)	2 ²⁰ bytes

Gigabyte (GB)	2^{30} bytes
---------------	----------------

64-bit Machine: we assume 64-bit machine with 8 bytes pointers

- can address more memory
- pointers use more space but some JVMs "compress" ordinary object pointers to 4 bytes to avoid this cost

H3 Typical Memory Usage for Primitive Types and Arrays

Primitive Types

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

One-dimensional Arrays

type	bytes
char[]	2N+24
<pre>int[]</pre>	4N+24
double[]	8N+24

Two-dimensional Arrays

type	bytes
char[][]	$\sim 2MN$
int[][]	$\sim 4MN$
double[][]	$\sim 8MN$

H3 Typical Memory Usage for Objects in Java

object	bytes
Object overhead	16

Reference	8
Padding	each object uses a multiple of 8 bytes

Example 1

A Date object uses 32 bytes of memory

```
public class Date {
   private int day;
   private int month;
   private int year;
   ...
}
```


Example 2

A virgin String of length N uses $\sim 2N$ bytes of memory

```
public class String {
    private char[] value;
    private int offset;
    private int count;
    private int hash;
    ...
}
```


Shallow Memory Usage: don't count referenced objects

Deep Memory Usage: if array entry or instance variable is a reference, add memory (recursively) for referenced object