# CSC209 Week 9 Notes

Hyungmo Gu

May 17, 2020

# Signals 1 of 2

- Introduction to Signals
  - Signals
    - \* are mechanisms that allow process or the os to interrupt currently running process and notify that an event has occured

| No<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | Name SIGHUP SIGINT SIGQUIT SIGILL SIGTRAP SIGABRT SIGEMT SIGFPE SIGKILL SIGBUS SIGSEGV SIGSEGV SIGSEGV SIGSEGV SIGSEFPE SIGALRM SIGTERM SIGURG SIGSTOP SIGTSTP | Default Action terminate process terminate process create core image terminate process create core image terminate process terminate process terminate process terminate process discard signal stop process | Description  terminal line hangup interrupt program quit program illegal instruction trace trap abort program (formerly SIGIOT) emulate instruction executed floating-point exception kill program bus error segmentation violation non-existent system call invoked write on a pipe with no reader real-time timer expired software termination signal urgent condition present on socket stop (cannot be caught or ignored) stop signal generated from keyboard continue after stop |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

- How it Works
  - 1. Using hotkey
    - \* i.e. CTRL + C in terminal sends SIGINT
    - $\ast\,$  i.e.  $CTRL\,+\,Z$  in terminal sends SIGSTOP
  - 2. Using kill command

## Signals 2 of 2

- Signals Handling
  - sigaction
    - \* Syntax: int sigaction(int signum, const struct sigaction \*act, NULL);
    - \* Is a part of signal.h library
    - \* Is used to change the action taken by a process on receipt of a specific signal
    - \* Works like try and catch in Python
    - \* Don't worry about NULL:). Not knowing won't bite.

```
#include <stdio.h>
      #include <stdlib.h>
      #include <signal.h>
3
4
      void handler(int);
5
6
      int main () {
          struct sigaction newact;
          newact.sa_handler = handler; // <- like catch statement in</pre>
9
      python
          newact.sa_flags = 0;
10
          sigemptyset(&newact.sa_mask);
```

```
return(0);
}

void handler(int code) {
    fprintf(stderr, "Signal %d caught\n", code);
}
```

- \* Use CTRL + Z to terminate
- \* kill -KILL <PID > and kill -QUIT <PID > are two guarenteed ways to terminate a program.

## Bit Manipulation 1 of 4

- Introducing Bitwise Operations
  - When to use Bitwise Operations?
    - \* Lowlevel programming on embedded systems
  - Bitwise Operators in C
    - \* **&:** AND

| a | b | a & b |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 0     |
| 1 | 1 | 1     |

#### Example:

\* |: OR

| a | b | a   b |  |  |  |  |
|---|---|-------|--|--|--|--|
| 0 | 0 | 0     |  |  |  |  |
| 0 | 1 | 1     |  |  |  |  |
| 1 | 0 | 1     |  |  |  |  |
| 1 | 1 | 1     |  |  |  |  |

## Example:

```
0 1 1 1 //<- this is 7
0 1 0 0 //<- this is 4

------
0 1 1 1 //<- this is 7

so, 7 | 4 = 4
```

\* : NOT

| a | $\sim$ a |  |  |  |
|---|----------|--|--|--|
| 0 | 1        |  |  |  |
| 1 | 0        |  |  |  |

### Example:

```
0 1 1 1 //<- this is 7
------
1 0 0 0 //<- this is 8

so, ~ 7 = 8
```

\* : XOR

| a | b | a ^ b |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 0     |

## Example:

```
0 1 1 1 //<- this is 7
0 1 0 0 //<- this is 4

------
0 0 1 1 //<- this is 3

so, 7 ^ 4 = 3
```

# Bit Manipulation 2 of 4

- Hexadecimal Numbers
  - Starts with '0x' at front
    - \* '0x' is for uncapitalized letters, i.e. '0XFFFF'
    - \* '0X' is for capitalized letters, i.e. 0xffff
  - Uses 10 symbols '0, 1, 2, 3, 4, 5, 6, 7, 8, 9' and 6 extras 'A=10, B=11, C=12, D=13, E=14, F=15'.
    - \* i.e.  $0xFFFF = 15 \cdot 16^0 + 15 \cdot 16^1 + 15 \cdot 16^2 + 15 \cdot 16^3 + 15 \cdot 16^4 = 65535$
- The Shift Operators
  - << n: LEFT SHIFT
    - \* Shifts all bits to left by n

#### Example:

- >> n: RIGHT SHIFT
  - \* Shifts all bits to right by n

#### Example:

# Bit Manipulation 3 of 4

- Bit Flags
  - Bit flags are boolean variables represented using 0 and 1
    - \* bool variables consume 1 byte (8 bits)
    - \* 0 or 1 consume 1 bit
    - \* Bit Flags are clean and fast :)
  - Use of Bit Flags
    - \* Embedded Software Programming
    - \* Graphics card
  - Example
    - 1. chmod and unix file system

| drwxr-xr-x | 2  | root | root | 4096   | Mar | 21 | 2002  | bin     |
|------------|----|------|------|--------|-----|----|-------|---------|
| drwxr-xr-x | 17 | root | root | 77824  | Aug | 11 | 14:40 | dev     |
| drwxr-xr-x | 69 | root | root | 8192   | Sep | 25 | 18:15 | etc     |
| drwxr-xr-x | 66 | root | root | 4096   | Sep | 25 | 18:15 | home    |
| dr-xr-xr-x | 46 | root | root | 0      | Aug | 11 | 10:39 | proc    |
| drwxr-x    | 12 | root | root | 4096   | Aug | 7  | 2002  | root    |
| drwxr-xr-x | 2  | root | root | 8192   | Mar | 21 | 2002  | sbin    |
| drwxrwxrwx | 6  | root | root | 4096   | Sep | 29 | 04:02 | tmp     |
| drwxr-xr-x | 16 | root | root | 4096   | Mar | 21 | 2002  | usr     |
| -rw-rr     | 1  | root | root | 802068 | Sep | 6  | 2001  | vmlinuz |
|            |    |      |      |        |     |    |       |         |