

Econ 2250: Stats for Econ

Fall 2022

Source for pic stats above.

Announcements

Homework 6 is due on Tuesday

Resources:

- https://www.probabilitycourse.com/chapter3/3 2 2 expectation.php
- https://mixtape.scunning.com/02-probability_and_regression#variance

What we will do today?

- Deep dive on summary operator
- Deep dive on Expected value
- Revisit Variance
- Revisit Covariance
- Introduce Correlation

Summary Operator

 $\sum X = X_1 + X_2 + ... + X_n$

Summary

$$\sum_{i=1}^n x_i \equiv x_1 + x_2 + \ldots + x_n$$

Summary Operator Properties

$$\sum_{i=1}^{n} c = nc$$

2.)
$$\sum_{i=1}^{n} cx_i = c \sum_{i=1}^{n} x_i$$

3.) For any constant
$$a$$
 and b : $\sum_{i=1}^n (ax_i + by_i) = a\sum_{i=1}^n x_i + b\sum_{j=1}^n y_i$

Gotchas! Be Careful

$$\sum_i^n rac{x_i}{y_i}
eq rac{\sum_{i=1}^n x_i}{\sum_{i=1}^n y_i}$$

$$\sum_{i=1}^n x_i^2
eq \left(\sum_{i=1}^n x_i
ight)^2$$

Summary Operator Property 1:

$$\sum_{i=1}^{n} c = nc$$

$$\Sigma_1^3 10 = 10 + 10 + 10 = 30 = 3 * 10$$

sum_	x = 0
for	<pre>i in range(3):</pre>
su	$m_x = sum_x + 10$
pr	int(sum_x)
10	
20	
30	

х	cumsum
10	10
10	20
10	30

Summary Operator Property 2:

$$\sum_{i=1}^n cx_i = c\sum_{i=1}^n x_i$$

$$\Sigma_i^n x_i * c = (3 * 10) + (5 * 10) + (2 * 10)$$
$$= 10 * (3 + 5 + 2) = c * \Sigma_i^n x_i$$

```
x = [3,5,2]
c = 10
sum_x = 0
for i in range(3):
    sum_x = sum_x + x[i] * c
    print( sum_x)

sum_x == sum(x)*c
```

Summary Operator Property 3:

For any constant
$$a$$
 and b : $\sum_{i=1}^n (ax_i + by_i) = a\sum_{i=1}^n x_i + b\sum_{j=1}^n y_i$

$$\Sigma_{i}^{n}(a * x_{i} + b * y_{i}) =$$

$$(a * x_{1} + b * y_{1}) + (a * x_{2} + b * y_{2}) + (a * x_{3} + b * y_{3}) =$$

$$a * x_{1} + b * y_{1} + a * x_{2} + b * y_{2} + a * x_{3} + b * y_{3} =$$

$$a(x_{1} + x_{2} + x_{3}) + b(y_{1} + y_{2} + y_{3}) =$$

$$a\Sigma_{i}^{n} x_{i} + b\Sigma_{i}^{n} y_{i}$$

Show that...using x = (1,2,3)

$$\sum_i^n rac{x_i}{y_i}
eq rac{\sum_{i=1}^n x_i}{\sum_{i=1}^n y_i}$$

And

$$\sum_{i=1}^n x_i^2
eq \left(\sum_{i=1}^n x_i
ight)^2$$

Expected Value Operator

$$E(x) = \sum_{i} x_{i} * Pr(x_{i})$$

Expected Value Operator Property 1: E(c) = c

C = 10

E(c) = c * p(c) = c * 1 = c

While this is kind of obvious, it will come in handy in lots of proofs.

Expected Value Operator Property 2:

$$E(aX + b) = E(aX) + E(b) = aE(X) + b$$

```
x = [3,6,2]
p(x) = \frac{1}{3}
a = 5
b = 4
E(aX + b) = E(aX) + E(b)
= ax_{1}*p(x_{1}) + ax_{2}*p(x_{2}) + ax_{3}*p(x_{3}) + b = a(x_{1}*p(x_{1}) + x_{2}*p(x_{2}) + x_{3}*p(x_{3})) + b
= a(E(x)) + b = 5(3*\frac{1}{3} + 6*\frac{1}{3} + 2*\frac{1}{3}) + 4 = 22\frac{1}{3}
```

An important extension of this linearity is that

$$E(W+H) = E(W) + E(H)$$

Variance

$$V(X) = E((X - E(X))^2)$$

Variance is a measure of the spread of the data

We get the central tendency using the expected value E(X), and to get a measure of the spread of the data we take the expectation of the squared deviations

Expected value of X:
$$E[X] = x_1p_1 + x_2p_2 + \cdots + x_kp_k$$

which is the average for equally weighted data $E(X) = \frac{\sum x}{n} = \mu_x$

To get a deviation we subtract off the mean

deviation of
$$x = X - \mu_x = X - E(X)$$

And square this so that it does sum to zero

squared deviation of
$$x = (X - \mu_x)^2 = (X - E(X))^2$$

Example: demean squared

$$x = [3,12,4]$$

$$E(x) = mu = xbar = 3*\frac{1}{3} + 12*\frac{1}{3} + 4*\frac{1}{3} = (3+12+4)/3=6.3$$

х	mu	demean	demean_sq
3	6.3	-3.3	11.1
12	6.3	5.7	32.1
4	6.3	-2.3	5.4

Expectation is our best guess of what something will equal, so take the expectation of the squared deviation

$$E[(X - \mu_x)^2] = \sum (x_i - \mu_x)^2 * P(x_i)$$

if $P(x_i)$ is $\frac{1}{n}$ for all $i=1,2,\ldots,n$

$$V(X) = \sum (x_i - \mu_x)^2 * \frac{1}{n} = \frac{1}{n} \sum (x_i - \mu_x)^2$$

From the example above

$$\sigma^2 = \frac{1}{n} \sum (x_i - \mu_x)^2$$

Sum of demean_sq = 11.1 + 32.1 + 5.4 = 48.6

х	mu	demean	demean_sq
3	6.3	-3.3	11.1
12	6.3	5.7	32.1
4	6.3	-2.3	5.4

48.6/3 = 16.2

But, notice our deviations (-3.3, 5.7, -2.3), 16.2 is an awful absolute value estimate. That is because we squared the errors, and x is in levels (not squared).

Standard Deviation = square root of σ^2 , sqrt(16.2) = 4.02

Variance Overview

$$V(X) \equiv \sigma^2 = E[(X - E(X))^2]$$

Population model:

$$V(X) = \sigma^2 = E[(X - E(X))^2]$$
$$= E[(X - \mu_x)^2] = \sum_{i=1}^n (x_i - \mu_x)^2 * P(x_i)$$

if $P(x_i)$ is $\frac{1}{n}$ for all $i=1,2,\ldots,n$

$$V(X) = \sum (x_i - \mu_x)^2 * \frac{1}{n} = \frac{1}{n} \sum (x_i - \mu_x)^2$$

bring squared values back the units of x

$$\sqrt{V(X)} = \sqrt{\frac{1}{n} \sum (x_i - \mu_x)^2}$$

Nice correlation app

https://shiny.rit.albany.edu/stat/rectangles/

Covariance Cov(X, Y) = E[(X-E(X)(Y-E(Y))]

Covariance

$$Cov(x, y) = E[(X - E(X))(Y - E(Y))]$$

= $\frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{n - 1}$

Example covariance

$$\frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{n-1}$$

x	у		demean_x	demean_y	demean_x*demean_y
	3	6	-2.4	1.6	-3.84
	5	9	-0.4	4.6	-1.84
	2	2	-3.4	-2.4	8.16
	8	1	2.6	-3.4	-8.84
	9	4	3.6	-0.4	-1.44

mean_y 4.4 mean_x 5.4

Correlation

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{\operatorname{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}, \quad ext{if } \sigma_X \sigma_Y > 0$$

$$r_{xy} \ \stackrel{ ext{def}}{=} \ rac{\sum\limits_{i=1}^{n}(x_i-ar{x})(y_i-ar{y})}{(n-1)s_xs_y} = rac{\sum\limits_{i=1}^{n}(x_i-ar{x})(y_i-ar{y})}{\sqrt{\sum\limits_{i=1}^{n}(x_i-ar{x})^2\sum\limits_{i=1}^{n}(y_i-ar{y})^2}}$$

Example

$$\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})$$

$$\sqrt{\sum\limits_{i=1}^{n}(x_{i}-ar{x})^{2}\sum\limits_{i=1}^{n}(y_{i}-ar{y})^{2}}$$

x	у	demean_x	demean_x_sq	demean_y	demean_y_sq	demean_x*demean_y	
3	6	-2.4	5.76	1.6	2.56	-3.84	
5	9	-0.4	0.16	4.6	21.16	-1.84	
2	2	-3.4	11.56	-2.4	5.76	8.16	
8	1	2.6	6.76	-3.4	11.56	-8.84	
9	4	3.6	12.96	-0.4	0.16	-1.44	
	92	000	37.2		41.2	-7.8	sum
mean_y	4.4			1.5		-1.95	sum/(n-1)

mean_y	4.4
mean_x	5.4

numerator denom

-1.95	-1.95	-0.22	correlation	
sqrt(37.2 + 41.2)	8.85		N/A	

End of class form

https://forms.gle/kgT2w9wPZo3vJcjA8