PROJEKT INŻYNIERSKI

Aplikacja do zarządzania pracownikami

Emilia Pawela 303242

Wojciech Olech 303232

Kierunek: Informatyka Specjalność: Aplikacje mobilne, gry i multimedia

PROWADZĄCY PRACĘ dr inż. Rafał Brociek WYDZIAŁ MATEMATYKI STOSOWANEJ

GLIWICE 2025

Spis treści

1 Wstęp		
	1.1	Opis projektu
	1.2	Założenia i cele projektu
	1.3	Docelowa grupa odbiorców
	1.4	Baza danych
		1.4.1 Diagram związków encji
		1.4.2 Relacyjny model bazy danych

1 Wstęp

Poniższy rozdział będzie przedstawiał całokształt projektu z jego szczegółowym opisem, funkcjonalności podstawowe oraz grupę użytkowników, do których jest skierowana ta aplikacja.

1.1 Opis projektu

Projekt "Smart Manager" jest aplikacją internetową składającą się z aplikacji serwerowej napisanej w języku C#, pzry użyciu platformy .NET oraz z aplikacji klienckiej, utworzonej przy pomocy frameworka Blazor i języka C#. Do przechowywania danych na temat użytkowników został wykorzystany Microsoft SQL Server oraz frameworka Entity.

Tu będzie uzupełniane z czasem tworzenia się projektu

1.2 Założenia i cele projektu

- Rejestracja i logowanie
- Podawanie dyspozycyjności do pracy
- Naliczanie czasu pracy pracownika
- Układanie grafiku przez pracodawcę

1.3 Docelowa grupa odbiorców

Aplikacja jest skonstruowana na rzecz małych, średnich oraz dużych firm, gdzie wynagrodzenie liczy się w godzinach.

1.4 Baza danych

Baza danych to zbiór danych istniejący przez długi czas który opisuję wybraną cześć świta rzeczywistego, w spójny logiczny sposób, zaprojektowany w konkretnym celu, do którego dostęp ma konkretna grupa użytkowników.

1.4.1 Diagram związków encji

Diagram związków encji (entity-relationship -E/R) jest jednym z formalizmów wykorzystywanych do projektowania bazy danych. Przedstawia on najważniejsze części danych oraz powiązania między nimi za pomocą kształtów geometrycznych.

W naszym przypadku należy rozwinąć kilka pojęć aby poprawnie zrozumieć poniżej przedstawiane schematy:

- Atrybut najprostsza właściwość, wyraża w typach prostych cechy encji
- Encja reprezentacja pojedyńczego obiektu rzeczywistego lub wymyślonego
- Związek zalezności występujące między encjami

Rysunek 1: Legenda Z

W przypadku naszego projektu bazy danych wyróżnić możemy następujące typy encji:

- UŻYTKOWNICY id_u, imię, nazwisko, email, hasło, rola
- **PRACE** <u>id_p</u>, data, czas_rozpoczęcia, czas_zakończenia, przerwa_początek, przerwa_koniec, status
- DYSPOZYCYJNOŚCI <u>id_d</u>, data, typ, godzina_rozpoczęcia, godzina zakończenia, status
- **GRAFIKI_DZIENNE** <u>id_gd</u>, data, godziny_do_wyrobienia, status

• ZESPOŁY - id_z, nazwa, menedżer_id

Rysunek 2: Legenda Z

Związki które reprezentują zależności występujące między encjami znajdują się poniżej:

- Wykonał (Użytkownicy Prace) (1:N)
- Podał (Użytkownicy Dyspozycyjności) (1:N)
- Należy do (Użytkownicy Zespoły) (N:1)
- **Dostał zmiane** (Użytkownicy Grafiki_dzienne) (N:M): godzina_rozpoczęcia, godzina_zakończenia

Powyższe dane zostały zebrane i przekształcone w graficzną reprezntacje diagramu związków encji gdzie kształty kolejno oznaczają:

- Romb związek między encjami
- Prostokat Typ encji
- Strzałka związek o liczebności jeden do wielu (N:1) encja typu A może być związana z jedną encją typu B, zaś encja typu B może być związana z wieloma encjami typu A
- Linia związek o liczebności wiele do wielu (N:M) encja typu A może być związana z wieloma encjami typu B, jak i encja typu B może być związana z wieloma encjami typu A - taki związek w bazie ma swoje odzwierciedlenie jako niezależna tabela

1.4.2 Relacyjny model bazy danych

Co to relacyjny model bazy danych? Opisać tą tabelke Opis tabel znajdujących się w bazie

Rysunek 3: Diagram związków encji

Rysunek 4: Relacyjny model bazy danych

Kolumna	Opis	Typ danych
id_u	Uniklany identyfikator użytkow-	PK, AI, INTEGER
	nika	
email	Email użytkownika	VARCHAR
first_name	Imie użytkownika	VARCHAR
last_name	Nazwisko użytkowika	VARCHAR
password	Hasło użytkownika	VARCHAR
role	Rola użytkownika	VARCHAR
id_t	Klucz obcy wskazujący na krotke	FK, INTEGER
	z tabeli TEAMS	

Tabela 1: Tabela - Users (odpowiada encji UŻYTKOWNICY)

Kolumna	Opis	Typ danych
id_t	Unikalny identyfikator zespołu	PK, AI, INTEGER
name	Nazwa zespołu	VARCHAR
id_manager	Idetyfikator menedżera	INTEGER

Tabela 2: Tabela - Teams (odpowiada encji ZESPOŁY)

Kolumna	Opis	Typ danych
id_a	Unikalny identyfikator dostępno-	PK, AI, INTEGER
	ści pracownika	
time_start	Godzina od której zaczyna się	DATETIME
	dostępność pracownika w danym	
	dniu	
time_end	Godzina do której kończy się do-	DATETIME
	stępność pracownika w danym	
	dniu	
date	Data określająca dzień na który	DATETIME
	podawana jest dostępność	
status	Status określający czy nadal iste-	VARCHAR
	nieje możlwiość edytcji podanej	
	dostępnosci	
type	Typ określający czy dostępność	VARCHAR
	podawana przez pracownika jest	
	między określanymi godzinami	
	czy całodniowa	
id_u	Klucz obcy wskazujący na krotke	FK, INTEGER
	z tabeli Users	

Tabela 3: Tabela - Availability (odpowiada encji DOSTEPNOŚCI)

Kolumna	Opis	Typ danych
id_w	Uniklany identyfikator rejestru	PK, AI, INTEGER
	godzin przepracowanych przez	
	pracownika	
date	Data określająca dzień pracy pra-	DATETIME
	cownika	
status	Status określający czy można	VARCHAR
	edytować przepracowane godziny	
	pracownika	
time_start	Godzina od której nalicza się czas	DATETIME
	pracy pracownika	
time_end	Godzina do której nalicza się czas	DATETIME
	pracy pracownika	
break_start	Godzina od której nalicza się czas	DATETIME
	przerwy pracownika	
break_end	Godzina do której nalicza się czas	DATETIME
	przerwy pracownika	
id_u	Klucz obcy wskazujący na krotke	FK, INTEGER
	z tabeli Users	

Tabela 4: Tabela - Work (odpowiada encji Prace)

Kolumna	Opis	Typ danych
id_d	Uniklany identyfikator grafiku na	PK, AI, INTEGER
	konkretny dzień	
date	Data grafiku	
hours_amount	Określona lość godzin do obłoże-	INTEGER
	nia przez pracowników	
status	Status określający czy grafik jest	VARCHAR
	gotowy do publikacji	

Tabela 5: Tabela - Daily_Schedule (odpowiada encji GRAFIKI_DZIENNE)

Kolumna	Opis	Typ danych
id_s	Uniklany identyfikator grafiku na	PK, AI, INTEGER
	konkretny dzień dla konkretnego	
	pracownika	
time_start	Godzina określająca planowy czas	DATETIME
	rozpoczęcia pracy przez pracow-	
	nika	
time_end	Godzina określająca planowy czas	DATETIME
	zakończenia pracy przez pracow-	
	nika	
id_d	Klucz obcy wskazujący na krotke	FK, INTEGER
	z tabeli Daily_Schedule	
id_u	Klucz obcy wskazujący na krotke	FK, INTEGER
	z tabeli Users	

Tabela 6: Tabela - UserDaily_Schedule (odpowiada związkowi wieloargumentowemu Dostał zmiane)