

NS homeshopping shop+ Sales prediction & optimization

5우 좋습니다

Contents Writer:

박준민(조장) jonah12345@naver.com 김윤환 hellohuman@naver.com 박대한 bighan96@naver.com 정규형 tazan852@naver.com 최종문 chlwhdans97@gmail.com

September 2020

Agenda

I. 과제 정의

Ⅱ. 과제 상세

- 1. 데이터 전처리
- 2. 탐색적 자료 분석
- 3. 외부변수 선정
- 4. 변수 pool 설정 / Feature Engineering
- 5. 모델링
- 6. 최적화 방안

Agenda

I. 과제 정의

Ⅱ. 과제 상세

- 1. 데이터 전처리
- 2. 탐색적 자료 분석
- 3. 외부변수 선정
- 4. 변수 pool 설정 / Feature Engineering
- 5. 모델링
- 6. 최적화 방안

I. 과제 정의

• NS Shop+편성데이터(NS홈쇼핑) 를 활용하여 방송편성표에 따른 판매실적을 예측하고, 최적수익을 고려한 요일별/ 시간대별 / 카테고리별 편성 및 최적화 방안(모형) 제시

지 비이터 전처리 - 판매량을 나타내는 target 변수 설정 - 방송일시 카데고리화 - 노출(분) NA imputation

델 선정

I. 과제 정의 - 데이터 개요

2019년 1월 1일부터 2019년 12월 31일 동안 방송된 NS Shop+의 홈쇼핑 편성 정보, 판매 상품 정보, 총 판매액

제공 데이터

1	NS Shop+ 2019	9.01.01~12.3	1						
2	방송일시 ▼	노출(분) ▼	마더코드 ▼	상품코드▼	상품명 ▼	상품군 ▼	판매단기▼	취급맥 🔻	
3	2019-01-01 6:00	20	100346	201072	테이트 남성 셀린니트3종	의류	39,900	2,099,000	
4	2019-01-01 6:00		100346	201079	테이트 여성 셀린니트3종	의류	39,900	4,371,000	
5	2019-01-01 6:20	20	100346	201072	테이트 남성 셀린니트3종	의류	39,900	3,262,000	
6	2019-01-01 6:20		100346	201079	테이트 여성 셀린니트3종	의류	39,900	6,955,000	
7	2019-01-01 6:40	20	100346	201072	테이트 남성 셀린니트3종	의류	39,900	6,672,000	
8	2019-01-01 6:40		100346	201079	테이트 여성 셀린니트3종	의류	39,900	9,337,000	
9	2019-01-01 7:00	20	100305	200974	오모떼 레이스 파운데이션 브라	속옷	59,000	6,819,000	
10	2019-01-01 7:20	20	100305	200974	오모떼 레이스 파운데이션 브라	속옷	59,000	15,689,000	
11	2019-01-01 7:40	20	100305	200974	오모떼 레이스 파운데이션 브라	속옷	59,000	25,370,000	

평가 데이터

NS Shop+ 2020년 6월 편성

- 1								
2	방송일시 ▼	노출(분 ▼	마터코	상품코 ▼	상품명	상품등▼	판매단기▼	취급및▼
3	2020-06-01 6:20	20	100650	201971	잭필드 남성 반팔셔츠 4종	의류	59,800	
4	2020-06-01 6:40	20	100650	201971	잭필드 남성 반팔셔츠 4종	의류	59,800	
5	2020-06-01 7:00	20	100650	201971	잭필드 남성 반팔셔츠 4종	의류	59,800	
6	2020-06-01 7:20	20	100445	202278	쿠미투니카 쿨 레이시 란쥬쉐이퍼&팬티	속옷	69,900	
7	2020-06-01 7:40	20	100445	202278	쿠미투니카 쿨 레이시 란쥬쉐이퍼&팬티	속옷	69,900	
8	2020-06-01 8:00	20	100445	202278	쿠미투니카 쿨 레이시 란쥬쉐이퍼&팬티	속옷	69,900	
9	2020-06-01 8:20	20	100381	201247	바비리스 퍼펙트 볼륨스타일러	이미용	59,000	
10	2020-06-01 8:40	20	100381	201247	바비리스 퍼펙트 볼륨스타일러	이미용	59,000	
11	2020-06-01 9:00	20	100381	201247	바비리스 퍼펙트 볼륨스타일러	이미용	59.000	

데이터 설명

- 기간: '19.01 ~ '19.12
- 총 38309개
- 방송일시
- 노출(분) : 연속 방영 시간
- 마더코드 : 상품 대분류
- 상품코드
- 상품명
- 상품군 : 의류, 속옷, 주방, 농수축, 이미용, 가전, 생활용품, 건강기능, 잡화, 가구, 침구 총 11개
- 판매단가
- 취급액
- 기간: '20.06
- 총 2892개
- 취급액 예측

Agenda

I. 과제 정의

II. 과제 상세

- 1. 데이터 전처리
- 2. 탐색적 자료 분석
- 3. 외부변수 선정
- 4. 변수 pool 설정 / Feature Engineering
- 5. 모델링
- 6. 최적화 방안

1. 데이터 전처리

세 개의 파이썬 파일로 전처리, 외부변수 병합 및 파생변수 생성을 일괄적으로 처리하여 효율성 제고

preprocessing.py

- make_count(): 판매량 변수 생성
- log_sales_cnt : 종속변수 판매량 정규화
- del_comma(): 숫자형 변수 콤마 제거
- divide_time() : 방송일시 변수 분리
- holiday_dummy() : 공휴일 변수 생성
- month order(): 월초, 월말 변수 생성
- pd.merge() : 기상정보 외부변수 병합
- fillna(method='ffill'): 결측값 처리

grouping.py

- make_group(): 모델링 기준 그룹 정보 생성
- make_g1() : 그룹별 데이터프레임 분리
- make_up_ind(): unit_price_group 변수 생성
- Make_cpi_csi(): 소비자물가지수 외부변수

spliting.py

- variable_selection() : 모델링 최종변수 선정
- product_name : 그룹1 상품명 변수 가공

제공데이터 df_train

	month	min	grp	cnt
0				
1				
2				
3				

평가데이터 df_test

	month	min	grp	cnt
0				
1				
2				
3				

<Target 변수> 판매량 (sales_cnt) = 판매액(sell_price) 을 단위가격(unit_price)으로 나눈 값

변환 전 판매량은 지나치게 밀집되어 있어 로그변환한 판매량을 쓰기로 한다.

2. 탐색적 자료 분석 - 판매량

피어슨 상관계수 그래프를 통한 변수들간 상관관계 파악

2. 탐색적 자료 분석 - 시간 변수

월, 분, 요일 등의 시간 변수를 종속변수에 대해 EDA 진행 및 유의미한 변수 추출

• 월별, 상품군별 조합에 따라 판매량 추이가 달라짐

• 그룹별, 요일별에 따른 판매량 추이도 명확히 두드러짐

2. 탐색적 자료 분석 – 방송 순서 그룹화

같은 상품의 방송 송출 순서에 따른 로그-판매량의 분포

방송 순서 그룹(order_group) 별 로그-판매량(log sales_cnt)

그룹화 결과

- 같은 상품을 계속 판매 하는 경우 마지막 방송에서 판매량이 증가
- 같은 상품의 연속 방송의 경우 방송 순서에 따라 시작, 중간, 마지막으로 표시
- 최종적으로 방송순서에 따른 그룹변수 추가

판매량(sales_cnt)에 대한 상품군 상관관계 분석을 통해 그룹화 진행

상품군 별 변수 간 상관관계

2. 탐색적 자료 분석 – 상품군 그룹화

그룹명	상품군
group1	가구, 가전
group2	농수축, 이미용
group3	생활용품, 주방, 잡화
group4	건강기능, 속옷, 의류 ,침구

그룹별 모델 구축

2. 탐색적 자료 분석 – 단위 가격 그룹화

그룹별로 단위가격의 33%, 66% quantile 값을 기준으로 정하여 순서 그룹과 단위 가격별로 저가, 중가, 고가 그룹을 형성

3. 외부변수 설정 – 기상정보 / 이슈정보

기상정보

이슈정보

배경

- 홈쇼핑 시청률은 재택률에 기반한다고 판단
- 재택률 : 집에 머무르는 비율
- 재택률에 영향을 끼치는 기상정보를 외부변수로 설정

- 소비자 동향 및 소비자 심리가 전체 판매액
 에 영향을 끼칠거라 판단
- 최근 가장 큰 이슈는 코로나 19 관련 소비자 동향이 소비자 관련 지표에 담겨있다고 판 단

변수명 및 내용 방송된 시각기준

temp : 기온(°C) rainfall : 강수량

wind_speed : 풍속(m/s)

wind_direction : 풍향(16방위)

humidity : 습도

pressure : 증기압(hPa)

spot_pressure : 현지기압(hPa) sea_level_pressure : 해면기압(hPa)

snow_fall: 적설량(cm)

방송된 시각기준

csi : 소비자 동향 지수 cpi : 소비자 물가 지수

정보 출처

- 기상자료개방포털(data.kma.go.kr)
- 서울 기준

■ e-나라지표 (www.index.go.kr)

4. 변수 pool 설정 / Feature Engineering

탐색적 자료 분석으로 파생변수를 선정하고 외부변수를 추가하여 최종 변수 pool 선정

가공 데이터

	datetime	year	month	day	hour	minute	weekday	holiday	month_order	order_grp	exposure(min)	mother_cd	product_cd	product_name
0	2019-01-01 06:00:00	2019	1	1	6	0	Tuesday	1	초	시작	20.0	100346	201072	테이트 남성 셀 린니트3종
1	2019-01-01 06:00:00	2019	1	1	6	0	Tuesday	1	초	시작	20.0	100346	201079	테이트 여성 셀 린니트3종
2	2019-01-01 06:20:00	2019	1	1	6	20	Tuesday	1	초	중간	20.0	100346	201072	테이트 남성 셀 린니트3종

	product_grp	temp	rainfall	wind_speed	wind_direction	humidity	pressure	spot_pressure	sea_level_pressure	snowfall
0	의류	-7.9	0.0	1.3	290.0	60.0	2.0	1023.6	1034.9	0.0
1	의류	-7.9	0.0	1.3	290.0	60.0	2.0	1023.6	1034.9	0.0
2	의류	-7.9	0.0	1.3	290.0	60.0	2.0	1023.6	1034.9	0.0

	unit_price	sell_price	sales_cnt	group	unit_price_group	срі	csi
0	39900.0	2099000.0	52.606516	group4	cheap	100.8	97.5
1	39900.0	4371000.0	109.548872	group4	cheap	100.8	97.5
2	39900.0	3262000.0	81.754386	group4	cheap	100.8	97.5

변수 설명

- 기간: '19.01 ~ '19.12
- 판매가 0인 행, 취급액 없는 행 삭제 등 총 38309개
- dateline을 year, month, day, hour, minute으로 나눔
- weekday : dateline을 활용한 요일
- holiday : 휴일 여부 (휴일이면 1, 아니면 0)
- month_order : 월초, 중순, 월말
- order_group : 같은 상품을 나눠서 방송 했을 때, 시작, 중간, 마지막
- 기온, 강수량, 풍속, 풍향, 습도 기압, 강설량 등의 기상정보
- sales_cnt : 취급액/단가
- group : 상품군을 4개로 나눔
- unit_price_group : group 내 가격(cheap, medium, expensive)
- cpi : 소비자 물가지수
- csi : 소비자 동향지수

판매량에 영향을 미치는 유의미한 변수를 EDA 과정을 통해 확인하여, 후보변수 중 16개 변수를 변수Pool 대상으로 정의함. 모델링은 그룹을 기준으로 Competition을 통해 최종모델 결정.

모델링 방향

상품 속성과 방송일시 정보를 반영하여 방송일시별 상품 취급액 예측 모델 개발

- 1 Tree 기반 ML 알고리즘 적용
- Rule 기반으로 데이터를 구분할 수 있는 형태이므로 Tree 기반 Regression 알고리즘으로 모델링 가능
- 후보 알고리즘
 - Decision Tree Regression
 - RandomForest Regression
 - Support Vector Machine Regression
 - XGBoost Regression
 - CatBoost
 - LightGBM
- 2 Convolution 활용 DL 알고리즘 적용
- 윈도우를 시간별로 움직이면서 패턴 학습 가능
- X변수들을 Convolution 기법을 통해 패턴 생성
- 후보 알고리즘
 - 1D-CNN Convolutional Neural Network

Competition을 통한 최종모델 결정

5. 모델링

Competition을 통해 그룹별 최적 모델을 선정하고 Bayesian Optimization을 통해 Hyperparameter Tuning 진행

1

MAPE 기준 Best Model 선정 : CatBoost, LightGBM

	DecisionTree	RandomForest	XGBoost	CatBoost	LighGBM	1D-CNN
그룹1	54.32	52.30	57.49	<u>50.45</u>	<u>48.46</u>	59.39
그룹2	33.48	29.80	57.49	<u>29.58</u>	<u>25.98</u>	38.12
그룹3	53.90	<u>42.97</u>	47.14	48.35	<u>39.25</u>	52.32
그룹4	55.39	49.03	62.22	<u>50.70</u>	<u>48.73</u>	55.35

2

Best Model에 Bayesian Optimizatoin 적용

-	-	anOptimization(f = model2_mape, pbounds = pbounds2, verbose = 2, random_state = 4) (init_points=2, n_iter = 100)
iter	target	: baggin learni max_depth min_ch n_esti num_le subsam
[LightGBM] [LightGBM] 1 [LightGBM] [LightGBM] [LightGBM] 2 [LightGBM] [LightGBM]	[Warning] -27.05 Warning] Warning] -29.48 Warning] Warning] -28.35	boosting is set=gbdt, boosting_type=gbdt will be ignored. Current value: boosting=gbdt bagging_freq is set=8, subsample_freq=0.9762744547762418 will be ignored. Current value: 8.703 0.1047 48.66 21.73 1.547e+0 11.59 0.9763 boosting is set=gbdt, boosting_type=gbdt will be ignored. Current value: boosting=gbdt bagging_freq is set=0, subsample_freq=0.9834006771753128 will be ignored. Current value: 0.05607 0.0753 22.3 23.6 796.5 43.29 0.9834 boosting is set=gbdt, boosting_type=gbdt will be ignored. Current value: boosting=gbdt bagging_freq is set=4, subsample_freq=0.6569105071767671 will be ignored. Current value: 4.634 0.1246 46.22 15.09 1.55e+03 13.04 0.6569
[LightGBM] [LightGBM]		boosting is set=gbdt, boosting_type=gbdt will be ignored. Current value: boosting=gbdt bagging_freg is set=8, subsample_freg=0.6186953203513598 will be ignored. Current value:
4	-29.2	8.403 0.09335 11.84 20.91 673.5 35.79 0.6187
[LightGBM]		boosting is set=gbdt, boosting_type=gbdt will be ignored. Current value: boosting=gbdt
[LightGBM]	[Warning]	bagging_freq is set=5, subsample_freq=0.8343752351044571 will be ignored. Current value
5	-28.45	5.312 0.1492 46.85 20.68 1.544e+0 12.03 0.8344

Final Validation Score

	CatBoost	LightGBM
그룹1	49.86	<u>47.60</u>
그룹2	28.01	<u>25.05</u>
그룹3	39.18	<u>37.23</u>
그룹4	49.31	<u>45.40</u>

최종 모델로 LightGBM 선정

그룹 별 모델의 Feature Importance

order_group 순으로 영향을 많이 받음

5. 모델링 – 최종 모델 lightGBM

그룹 별 모델의 Feature Importance

• 세 번째 그룹의 모델은 상품의 단가, mother_cd, 기온, 습도, 시간 order_group 순으로 영향을 많이 받음

train_test_split 한 후 test set에서의 예측

Scatter-Plot (X축은 true-value, Y축은 prediction-value)

6. 최적화 방안 - 상품군별 최적화 <속옷>

요일 별 속옷의 전체 방송건수와 판매량 기준 TOP100개의 요일 별 속옷의 방송건수 비교

- 전체 속옷의 토요일 판매건수는 다른 요일에 비해 비중이 적다. 하지만 판매량 기준 TOP100의 속옷은 토요일에 방송된 비율이 높았다.
- 반대로 전체 속옷의 화요일 판매건수는 다른 요일에 비해 비중이 높다. 하지만 판매량 기준 TOP100의 속옷은 화요일에 방송된 비율이 제일 낮았다.

- 주력 속옷 상품 혹은 인기 있는 속옷 상품을 토요일에 더 배치하면 매출이 증가 할 것이다.
- 반대로 주력 상품 혹은 인기 있는 속옷 상품을 화요일을 피해서 배치해야 더 높은 매출을 기록할 수 있다.

6. 최적화 방안 - 상품군별 최적화 <농수축>

요일 별 농수축의 전체 방송건수와 판매량 기준 TOP100개의 요일 별 농수축의 방송건수 비교

- 전체 농수축 상품의 16시 ~ 18시 방송건수는 다른 시간에 비해 비중이 매우 크다.
- 하지만 판매량 기준 TOP100의 농수축 상품의 16시 ~ 18시 방송건수는 굉장히 적거나 없었다.

• 농수축 상품의 경우 16시 ~ 18시에 배치를 최소화하면 매출이 더욱 증가할 것이다.

6. 최적화 방안 - 상품군별 최적화 <주방>

주방용품의 시간 별 평균 판매량

• 7시 ~ 9시, 14시 ~ 16시에 판매한 주방용품의 평균 판매량이 높다.

• 주력 주방용품 혹은 인기 있는 주방용품을 7시 ~ 9시 또는 14시 ~ 16시에 배치하면 매출이 증가 할 것이다.

6. 최적화 방안 - 상품군별 최적화 <가전제품>

가전제품의 가격대 별 평균 판매량과 평균 판매액

가전제품의 가격대별 평균 판매량

sales_cnt

unit_price_group

54.257131	cheap
9.397112	expensive
13.934400	medium

가전제품의 가격대별 평균 판매액

sell_price

unit_price_group

cheap	24978325.18
expensive	17828543.60
medium	16638421.52

 저렴한 가격대의 가전제품이 비싸거나 중간 가격대의 가전제품에 비해 평균적으로 더 많이 팔리고 판매액 또한 평균적으로 더 높다

• 저렴한 가격대의 가전제품에 집중해서 판매하면 매출이 더욱 증가할 것이다.

6. 최적화 방안 - 상품군별 최적화 <생활용품>

생활용품의 시간 별 평균 판매량 / 가격대 별 평균 판매량과 평균 판매액

 12시 ~ 14시의 평균 판매량이 다른 시간대에 비해 높다.

더 높은 매출을 기록할 것이다.

• 저렴한 가격대의 가격대 별 평균 판매량 가격대 별 평균 판매액 판매액은 비싼 기

sales_cnt
unit_price_group

cheap 338.637110
expensive 91.164592
medium 104.565233

unit_price_group

cheap 19027039.46

expensive 21818785.07

medium 14221059.93

sell_price

• 저렴한 가격대의 평균 판매량이 가장 높고 평균 판매액은 비싼 가격대가 가장 높다.

 생활용품의 경우 저가상품과 고급상품을 주력으로 하면 더 높은 매출을 기록할 수 있다.

6. 최적화 방안 - TOP1000 분석을 통한 효자 상품 도출

판매량 기준 상위 1000개의 상품과 그렇지 않은 상품 비교 분석

- 전체 평균 판매량 : 314.797
- TOP1000 상품 평균 판매량 : 1865.923
- 전체 방송 횟수는 농수축이 11개의 상품군 중 상위 5번째이지만, 판매량 상위 1000개중에서는 62%로 가장 많은 비중을 차지

- 농수축 상품을 주력으로 판매하여 농수축 상품 대표 홈쇼핑이라는 이미지 각인으로 매출 증대 예상
- 추후 다른 상품군에 대해 공격적인 마케팅을 통해 사업 다각화 가능

TOP1000 기준 상품군 비중

효자상품 상위 27 품목

	mother_cd	product_grp	product_name	rate
16	100699	농수축	고창 꿀 고구마 10kg	1.00
12	100548	농수축	완도꼬마활전복 1.3kg	0.95
15	100637	농수축	영산포숙성홍어회7팩	0.80
0	100435	농수축	우리바다 손질왕꼬막 24팩	0.53
1	100253	농수축	안동간고등어 20팩	0.46
13	100161	잡화	시스마르스 플렉시블 웨지 펌프스	0.43
4	100698	농수축	강원도양구 간편시래기 + 시래기 둘깨 무침	0.42
6	100818	의류	보코 에스닉 앙상블	0.42
5	100450	생활용품	코튼데이 유기농 순면 마스크 KF94 60매	0.38
7	100777	속옷	뷰티플렉스 풍기인견 원피스 2종(8월)	0.36
14	100512	농수축	국내산참조기12팩	0.33
9	100019	잡화	AAD 도트펀칭 컴포트 슬립은	0.33
11	100754	잡화	아가타 소가죽 데이쿠션로퍼	0.33
8	100197	잡화	오델로 여성 겨울모자 3종	0.33
3	100797	농수축	장보고 완도매생이 30개	0.33
17	100236	주방	벨라홈 스마트 멀티포트 1+1 세트	0.33
2	100026	농수축	궁중 손질새우 200미 + 동태포 400g	0.32
10	100829	농수축	참바다손질낙지100미+양념장+연포탕육수	0.30

내 용

- NS 홈쇼핑 shop + 주력상품답게 농수축이 압도적
- TOP1000에 포함된 상품군별로 효자 상품 선정

product_grp

- 마더 코드별 총 방송 노출 횟수 대비 TOP1000 포함 비율을 기준으로 0.3이상의 마더코드 호출
- 총 27개의 효자상품 도출

6. 최적화 방안 - 효자 상품 방송 배치 <안동간고등어>

농수축 상품군의 안동간고등어는 제공데이터 기준 318번 방송되었고, 그 중 147번의 방송이 TOP1000에 포함되어 46.2%의 비중을 보임

<u>방송 편성 제안</u>

- 안동간고등어는 전체 평균 판매량인 314.797보다 월등한 판매량을 보임
- 현재 8월에 많은 판매 방송을 시도하지만 TOP 1000의 월별 판매 횟수와 TOP1000 제외 월별 판매 횟수를 살펴보면 11월, 12월에 판매량을 늘리는 것이 우수한 판매량을 보일 가능성이 큼

6. 최적화 방안 - 효자 상품 방송 배치 <국내산 손질 갑오징어>

<u>방송 편성 제안</u>

내 용

- 국내산 손질갑오징어는 방송 노출 기준 처음 방송시에는 TOP1000에 포함되지 않음
- 방송 초반 공략이 새로운 매출 증대의 기회가 될 수 있음
- 초반 할인 이벤트, 연예인 출연 등의 마케팅 전략으로 방송 초반 매출 증대를 기대

End of Document