Teoria de Homotopia Abstrata

Edmundo Martins

23 de agosto de 2023

1 Categorias modelo

- 1.1 Definição. Seja M uma categoria localmente pequena, completa e co-completa. Uma estrutura modelo em M consiste de três classes de morfismos \mathcal{W} , \mathcal{F} , $\mathcal{C} \subseteq \operatorname{Mor}(M)$ cujos elementos são chamados, respectivamente, equivalências fracas, fibrações e cofibrações, as quais devem satisfazer as seguintes condições:
- (M1) A categoria M é bicompleta, ou seja, admite todos os limites e colimites indexados por categorias pequenas.
- (M2) (Propriedade 2-de-3) Dados morfismos $f: X \to Y \in g: Y \to Z$ em M, se dois dos morfismos do conjunto $\{f, g, g \circ f\}$ estiverem em \mathcal{W} , então o terceiro também deve estar.
- (M3) (Propriedade de retração) Se um morfismo $f:A\to X$ é retração de um outro morfismo $g:B\to Y$, ou seja, se existe um diagrama comutativo como abaixo,

$$A \xrightarrow{\operatorname{id}_{A}} B \xrightarrow{A} A$$

$$f \downarrow \qquad \downarrow g \qquad \downarrow f$$

$$X \xrightarrow{\operatorname{id}_{X}} X$$

e g pertence a \mathcal{W} (ou a \mathcal{F} , ou a \mathcal{C}), então f também pertence a \mathcal{W} (ou a \mathcal{F} , ou a \mathcal{C} , respectivamente). Em suma, as classes \mathcal{W} , \mathcal{F} e \mathcal{C} são fechadas por retrações.

(M4) (Propriedade de levantamento) Dado um diagrama comutativo como abaixo,

$$\begin{array}{ccc} A & \longrightarrow & X \\ \downarrow & & & \downarrow p \\ B & \longrightarrow & Y \end{array}$$

onde i é uma cofibração, e p é uma fibração; se um dos dois morfismos i ou p é também uma equivalência fraca, então o diagrama admite um levantamento, ou seja, existe um morfismo $f: B \to X$ que faz comutar o diagrama abaixo.

$$\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow & & \downarrow & \uparrow & \downarrow p \\
B & \longrightarrow & Y
\end{array}$$

1

(M5) (Propriedade de fatoração) Qualquer morfismo $f: X \to Y$ em M pode ser fatorado nas duas formas mostradas abaixo,

onde p é simultaneamente uma fibração e uma equivalência fraca, enquanto j é simultaneamente uma cofibração e uma equivalência fraca.

Vamos introduzir um pouco de terminologia antes de fazermos alguns comentários sobre a definição acima. Os morfismos de M que pertencem à classe $\mathcal{W} \cap \mathcal{F}$ são chamados de **fibrações triviais** ou **fibrações acíclicas**, enquanto os morfismos que pertencem à classe $\mathcal{W} \cap \mathcal{C}$ são chamados de **cofibrações triviais** ou **cofibrações acíclicas**. Usando essa terminologia o axioma de fatoração (M5) pode ser enunciado da seguinte forma: todo morfismo em uma categoria modelo pode ser fatorado como uma cofibração seguido de uma fibração trivial, ou como uma cofibração trivial seguido de uma fibração.

1.2 Observação. Lembremos que, dados objetos X e Y de uma categoria C qualquer, dizemos que X é um **retrato** de Y se existem morfismos $s: X \to Y$ e $r: Y \to X$ tais que $r \circ s = \mathrm{id}_X$. Comumente nos referimos ao morfismo s por **seção** e ao morfismo r por **retração**. A condição $r \circ s = \mathrm{id}_X$ garante que s seja um monomorfismo. De fato, se $f, g: W \to X$ são morfismos tais que $s \circ f = s \circ g$, então

$$f = id_X \circ f = r \circ s \circ f = r \circ s \circ g = id_X \circ g = g.$$

Isso nos permite encarar X como um subobjeto de Y, e o morfismo r então intuitivamente deforma Y para esse subobjeto, mas de forma a mantê-lo fixado. Note que a condição $r \circ s = \mathrm{id}_X$ garante também que o morfismo r seja um epimorfismo.

A noção de retração que aparece no axioma (M3) de uma estrutura modelo enunciado acima pode ser interpretada nesse sentido em uma categoria adequada. Lembremos que toda categoria C dá origem a uma categoria de setas Arr(C). Os objetos dessa categorias são precisamente morfismos $f:A\to B$ na categoria incial C, e dados dois tais objetos $f:A\to B$ e $g:X\to Y$, um morfismo do tipo $(f:A\to B)\to (g:X\to Y)$ na categoria de setas Arr(C) é dado por um par de morfismos $(\alpha:A\to X,\beta:B\to Y)$ satisfazendo a igualdade $\beta\circ f=g\circ\alpha$. Podemos então visualizar esse morfismo em Arr(C) na forma de um quadrado comutativo como mostrado abaixo.

$$\begin{array}{ccc} A & \stackrel{\alpha}{\longrightarrow} & X \\ f \downarrow & & \downarrow^g \\ B & \stackrel{\beta}{\longrightarrow} & Y \end{array}$$

A composição de morfismos é definida "colando" quadrados comutativos adjacentes. Mais precisamente, dados três objetos $f: X_1 \to Y_1, \ g: X_2 \to Y_2$ e $h: X_3 \to Y_3$ na categoria $Arr(\mathsf{C})$, e dados também dois morfismos componíveis

$$(\alpha_1: X_1 \to X_2, \beta_1: Y_1 \to Y_2)$$
 $(\alpha_2: X_2 \to X_3, \beta_2: Y_2 \to Y_3),$

sua composição é o morfismo

$$(\alpha_2, \beta_2) \circ (\alpha_1, \beta_1) : (f : X_1 \to Y_1) \to (h : X_3 \to Y_3)$$

em Arr(C) definido pelo par

$$(\alpha_2, \beta_2) \circ (\alpha_1, \beta_1) := (\alpha_2 \circ \alpha_1 : X_1 \to X_3, \beta_2 \circ \beta_1 : Y_1 \to Y_3).$$

Essa composição pode também ser visualizada como mostrado abaixo.

A associatividade dessa composição via colagem segue diretamente da associatividade da composição na categoria inicial C. Por fim, dado um objeto $f:X\to Y$ qualquer, o morfismo idêntico associado a ele é dado pelo par $\mathrm{id}_f\coloneqq(\mathrm{id}_X,\mathrm{id}_Y)$, conforme mostrado no quadrado comutativo abaixo.

$$X \xrightarrow{\operatorname{id}_X} X$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$Y \xrightarrow{\operatorname{id}_Y} Y$$

Note agora que, se o objeto $f:A\to B$ é um retrato do objeto $g:X\to Y$ na categoria de setas $\operatorname{Arr}(\mathsf{M})$, então por definição existem morfismos $s_1:A\to X,\,s_2:B\to Y,\,r_1:X\to A$ e $r_2:Y\to B$ tais que $(r_1,r_2)\circ(s_1,s_2)=\operatorname{id}_f$, o que também pode ser expresso pelo diagrama comutativo abaixo.

Esse é precisamente o diagrama que aparece no axioma de retração na definição de uma estrutura modelo. Podemos então reformular tal axioma dizendo que as classes de equivalências fracas, fibrações e cofibrações são todas fechadas por retrações na categoria de setas Arr(C).

- 1.3 Observação. Quando trabalhamos com categorias modelo, no lugar de dizermos explicitamente que um morfismo é uma equivalência fraca, ou uma cofibração, ou uma fibração, simplesmente adornarmos de alguma forma a seta que representa o morfismo em questão. A convenção notacional que seguiremos nesse aspecto é a seguinte:
 - uma equivalência fraca será denotada por $\stackrel{\sim}{\rightarrow}$;
 - uma cofibração será denotada por

 ;
 - $\bullet\,$ uma fibração será denotada por $\twoheadrightarrow.$

Também denotaremos cofibrações ou fibrações trivias por uma combinação dos símbolos acima:

- uma cofibração trivial será denotada por $\stackrel{\sim}{\rightarrowtail}$;
- uma fibração trivial será denotada por $\stackrel{\sim}{\twoheadrightarrow}$.

Seguindo essa convenção notacional, podemos, por exemplo, enunciar o axioma de levantamento (M4) da seguinte forma: em uma categoria modelo, todo quadrado comutativo da forma

$$\begin{array}{ccc} A & \longrightarrow & X \\ \downarrow \downarrow \downarrow \downarrow p \\ B & \longrightarrow & Y \end{array}$$

admite um levantamento $f: B \to X$

$$\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow \downarrow \downarrow & & \downarrow p \\
B & \longrightarrow & Y,
\end{array}$$

e todo quadrado comutativo da forma

$$\begin{array}{ccc} A & \longrightarrow & X \\ \downarrow & & \downarrow \downarrow p \\ B & \longrightarrow & Y \end{array}$$

admite um levantamento $f: B \to X$

$$\begin{array}{ccc}
A & \longrightarrow X \\
\downarrow & & \downarrow & \uparrow \\
\downarrow & \downarrow & \downarrow & p \\
B & \longrightarrow Y.
\end{array}$$

Usando a mesma convenção, o axioma de fatoração (M5) pode ser enunciado da seguinte maneira: em uma categoria modelo, todo morfismo $f:X\to Y$ possui duas fotarações como mostrado abaixo.

1.1 Fatorações em categorias

Antes de investigarmos mais a fundo as propriedades de categorias modelo, vamos investigar parte de sua estrutura sob uma perspectiva mais geral. O ponto central da discussão é que a definição de uma categoria modelo pode ser encapsulada totalmente pela existência de fatorações em cofibrações e fibrações que estão relacionadas por condições de levantamento.

Inicialmente, definimos a noção de levantamento de forma mais geral.

1.4 Definição. Sejam C uma categoria e $\mathcal{A} \subseteq \operatorname{Mor}(\mathsf{C})$ uma classe qualquer de morfismos. Dizemos que um morfismo $f: A \to B$ em C satisfaz a propriedade de levantamento à esquerda com relação a \mathcal{A} se todo quadrado comutativo como abaixo,

$$\begin{array}{ccc}
A & \longrightarrow & X \\
f \downarrow & & \downarrow p \\
B & \longrightarrow & Y
\end{array}$$

4

onde $p: X \to Y$ pertence a \mathcal{A} , admite um levantamento, ou seja, existe um morfismo $h: B \to X$ que faz comutar o diagrama abaixo.

$$\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow f & & \downarrow p \\
B & \longrightarrow & Y
\end{array}$$

Dualmente, dizemos que um morfismo $g: X \to Y$ satisfaz a propriedade de levantamento à direita com relação a A se todo quadrado comutativo como abaixo,

$$\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow i & & \downarrow g \\
B & \longrightarrow & Y
\end{array}$$

onde $i: A \to B$ pertence a \mathcal{A} , admite um levantamento $h: B \to X$ como mostrado abaixo.

$$\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow & & \downarrow & \downarrow g \\
B & \longrightarrow & Y
\end{array}$$

Tendo a definição acima em mãos, podemos formular uma noção categórica de fatoração geral o suficiente para englobar a situação que aparece no estudo de categorias modelo.

- **1.5 Definição.** Um **sistema de fatoração fraco** em uma categoria C consiste de um par $(\mathcal{L}, \mathcal{R})$, onde $\mathcal{L}, \mathcal{R} \subseteq \operatorname{Mor}(C)$ são duas classes de morfismos, satisfazendo as seguintes condições:
 - (i) Todo morfismo $f \in \text{Mor}(C)$ pode ser escrito na forma $f = f_L \circ f_R$ com $f_L \in \mathcal{L}$ e $f_R \in \mathcal{R}$;

$$X \xrightarrow{f_L \in \mathcal{L}} Y \xrightarrow{f_R \in \mathcal{R}} Z$$

- (ii) \mathcal{L} consiste precisamente dos morfismos de C que satisfazem a propriedade de levantamente à esquerda com relação a \mathcal{R} ;
- (iii) \mathcal{R} consiste precisamente dos morfismos de C que satisfazem a propriedade de levantamento à direita com relação a \mathcal{L} .

Os principais exemplos de sistemas de fatoração fracos nos quais estaremos interessados envolvem as cofibrações e fibrações triviais em uma categoria modelo, embora talves ainda não seja claro como essas classes dão origem a um sistema de fatoração. Antes de detalharmos esse exemplo, entretanto, vamos demonstrar algumas propriedades gerais de sistemas de fatoração fracos.

- **1.6 Proposição.** Suponha que $(\mathcal{L}, \mathcal{R})$ seja um sistema de fatoração fraco em uma categoria C. Valem as seguintes propriedades:
 - 1. Ambas as classes contêm todos os isomorfismos de C.
 - 2. Ambas as classes são fechadas por composição.
 - 3. Ambas as classes são fechadas por retratos na categoria de setas Arr(C).
 - 4. \mathcal{L} é fechada pela formação de pushouts, enquanto \mathcal{R} é fechada pela formação de pullbacks.

Demonstração. 1. Suponha que $f:A\to B$ seja um isomorfismo. Sabemos da definição de sistema de fatoração fraco que $\mathcal L$ consiste precisamente dos morfismos de C que satisfazem a propriedade de levantamento à esquerda com relação a $\mathcal R$. Considere então um quadrado comutativo como abaixo, onde $g:X\to Y$ é um morfismo pertencente à classe $\mathcal R$.

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & X \\
f \downarrow & & \downarrow g \\
B & \xrightarrow{\beta} & Y
\end{array}$$

Sendo f um isomorfismo por hipótese, podemos considerar o morfismo inverso $f^{-1}: B \to A$, e definir então um morfismo $h: B \to X$ por meio da composição $h := \alpha \circ f^{-1}$. Note então que por um lado

$$h \circ f = \alpha \circ f^{-1} \circ f = \alpha \circ \mathrm{id}_A = \alpha,$$

e por outro

$$g \circ h = g \circ \alpha \circ f^{-1} = \beta \circ f \circ f^{-1} = \beta \circ \mathrm{id}_B = \beta;$$

mostando que h faz comutar o diagrama abaixo, definindo então um levantamento para o quadrado comutativo original.

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & X \\
f \downarrow & \xrightarrow{\beta} & \downarrow^{g} \\
B & \xrightarrow{\beta} & Y
\end{array}$$

A demonstração de que \mathcal{R} contém todos os isomorfismos é análoga. Se $g: X \to Y$ é um isomorfismo, considere o quadrado comutativo abaixo onde $f: A \to B$ pertence à classe \mathcal{L} .

$$\begin{array}{ccc} A & \stackrel{\alpha}{\longrightarrow} & X \\ f \downarrow & & \downarrow g \\ B & \stackrel{\beta}{\longrightarrow} & Y \end{array}$$

Dessa vez definimos um morfismo $h: B \to Y$ pela composição $h := g^{-1} \circ \beta$, e notamos que esse morfismo satisfaz a igualdade

$$q \circ h = q \circ q^{-1} \circ \beta = \mathrm{id}_Y \circ \beta = \beta$$
,

e também a igualdade

$$h \circ f = g^{-1} \circ \beta \circ f = g^{-1} \circ g \circ \alpha = \mathrm{id}_X \circ \alpha = \alpha;$$

portanto h define um levantamento neste caso também.

2. Suponha que $f_1: A \to B$ e $f_2: B \to C$ sejam dois morfismos pertencentes à classe \mathcal{L} . A fim de mostrarmos que sua composição $f_2 \circ f_1: A \to C$ também pertence a \mathcal{L} , vamos mostrar que essa composição satisfaz a condição de levantamento à esquerda com relação à \mathcal{R} . Considere então um quadrado comutativo como abaixo, onde $g: X \to Y$ pertence à classe \mathcal{R} .

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & X \\
f_2 \circ f_1 \downarrow & & \downarrow g \\
C & \xrightarrow{\beta} & Y
\end{array}$$

A partir do quadrado acima podemos obter o quadrado comutativo mostrado abaixo, o qual admite um levantamento $h_1: B \to Y$ pois $f_1 \in \mathcal{L}$.

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} X \\
f_1 \downarrow & & \downarrow g \\
f_1 \downarrow & & \downarrow g \\
B & \xrightarrow{\beta \circ f_2} Y
\end{array}$$

Usando o levantamento h_1 obtemos um terceiro quadrado comutativo como mostrado abaixo, o qual admite um levantamento $h_2: C \to X$ pois $f_2 \in \mathcal{L}$.

$$B \xrightarrow{h_1} X$$

$$f_2 \downarrow \qquad \qquad \downarrow g$$

$$C \xrightarrow{\beta} Y$$

Afirmamos que $h_2: C \to X$ define também um levantamento para o quadrado comutativo considerado inicialmente. De fato, por um lado a igualade $g \circ h_2 = \beta$ segue diretamente da comutatividade do último quadrado acima, e por outro temos a sequência de igualdades

$$h_2 \circ f_2 \circ f_1 = h_1 \circ f_1 = \alpha;$$

portanto h_2 satisfaz as condições de comutatividades necessárias.

A demonstração da segunda parte é análoga. Suponha que $g_1: X \to Y$ e $g_2: Y \to Z$ sejam dois morfismos pertencentes à classe \mathcal{R} , e considere o quadrado comutativo abaixo, onde $f: A \to B$ pertence à classe \mathcal{L} .

$$\begin{array}{ccc} A & \stackrel{\alpha}{\longrightarrow} X \\ f \!\!\! \downarrow & & \downarrow^{g_2 \circ g_1} \\ B & \stackrel{\beta}{\longrightarrow} Z \end{array}$$

Considere então o quadrado comutativo abaixo, o qual admite um levantamento $h_2: B \to Y$ pois g_2 pertence a \mathcal{R} .

$$\begin{array}{ccc}
A & \xrightarrow{g_1 \circ \alpha} Y \\
f \downarrow & h_2 & \downarrow g_2 \\
B & \xrightarrow{\beta} Z
\end{array}$$

Usando h_2 consideramos então o quadrado comutativo abaixo, o qual também admite um levantamento $h_1: B \to X$ pois $g_1 \in \mathcal{R}$.

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & X \\
f \downarrow & & \downarrow^{\beta_1} & \downarrow^{g_1} \\
B & \xrightarrow{h_2} & Y
\end{array}$$

O morfismo h_1 é precisamente o procurado, já que por um lado a igualdade $h_1 \circ f = \alpha$ segue diretamente da comutatividade acima, e por outro temos a sequência de igualdades

$$g_2 \circ g_1 \circ h_1 = g_2 \circ h_2 = \beta;$$

mostrando então que h_1 define um levantamento para o quadrado comutativo inicial.