

Hierarchical Clustering

Prof. Dr. Jan Kirenz HdM Stuttgart

Hierarchical Clustering

- Builds **nested clusters** by merging or splitting them successively.
- This hierarchy of clusters is represented as a tree (or **dendrogram**)

Simple example of Hierarchical clustering

hierarchical clustering: Single linkage (Step-by-step: combine clusters with the) smallest distance between elements

elements

DISTANCE MATRIX									
	1	2	3	4	5	6	7		
1	0	10	30	40	60	85	82		
2	10	0	24	38	55	87	90		
3	30	24	0	16	26	50	63		
	40								
5	60	55	26	21	0	41	58		
	96	02	50	52	41	0	22		

Treat each element as a cluster

- Find smallest distance between elements in 2 clusters
- -Those clusters get merged.

Now 1 & 2 are a single cluster. Find the 2 clusters with smallest distance between elements, then merge them.

Repeat! Now the 2 clusters with the smallest distance between elements are the (3,4) and 5 clusters, so we merge them!

Yep, do it again! Now, the smallest distance between elements in two clusters is between 2&3, so we merge the clusters they're in!

The next smallest distance between elements in separate clusters is between 6 & 7, so we merge them...

elements

DISTANCE MATRIX

		1	2	3	4	5	9	7
		0						
	2	10	0	24	3%	55	87	90
		30						
	4	46	38	16	0	21	52	67
-	5	60	55	26	21	0	41	58
_								32)
_	7	82	90	63	67	58	32	Ø

build the DENDROGRAM

Now we only have two clusters, so they get merged!

Strategies for hierarchical clustering generally fall into two types

Agglomerative:

- This is a "bottom-up" approach
- Each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
- This is the standard procedure

Divisive:

- This is a "top-down" approach
- All observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.

Different linkage types

Single linkage

- Minimizes the distance between the closest observations of pairs of clusters.
- Is very fast.
- Can perform well on non-globular data
- Performs poorly in the presence of noise.

Source: Sigbert, 2011

Complete linkage (maximum linkage)

- Minimizes the maximum distance between observations of pairs of clusters.
- Performs well on cleanly separated globular clusters but has mixed results otherwise.

Source: Sigbert, 2011

Average linkage

- Minimizes the average of the distances between all observations of pairs of clusters.
- Performs well on cleanly separated globular clusters but has mixed results otherwise.

Source: Sigbert, 2011

Ward method linkage

- Minimizes the sum of squared differences within all clusters.
- Ward is the most effective method for noisy data.
- It is a variance-minimizing approach and in this sense is similar to the k-means objective function but tackled with an agglomerative hierarchical approach.

