NAME:	INDEX NO:
SCHOOL:	ADM NO:

MUSLIM SCHOOLS JOINT EXAMINATIONS (MUSJET)

Kenya Certificate of Secondary Education (K.C.S.E)

233/3

CHEMISTRY

PAPER 3

JULY - 2024

TIME: 2 1/4 HRS

Instructions to candidates:

- Answer all the questions in the spaces provided.
- Write your name and index number in the spaces provided above.
- You are not allowed to start working with the apparatus for the first 15 minutes of the 2 ½ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you needed.
- Mathematical tables and electronic calculators may be used for calculations.
- All workings must be clearly shown where necessary.

For examiner's use only

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
	21	
1		
	9	
2		
	10	
3		
	40	
Total Score		

QUESTION 1 (20 MARKS)

You are provided with:

- Solution A, containing copper (II) ions
- Solution B, 0.1M sodium thiosulphate
- Aqueous potassium iodide, solution C
- Starch indicator, solution E

You are required to determine the:

- Concentration of copper (II) ions in solution A.
- Enthalpy change of reaction between copper (II) ions and hydroxide ions.

PROCEDURE I

- a) Using a pipette and pipette filter, place 25.0cm³ of solution A in a 250ml volumetric flask. Add distilled water to make up to the mark. Label this as solution A₂. Retain solution A for use in procedure II.
- b) Place solution B in a burette. Using a clean pipette and pipette filler, place 25cm³ of solution A₂ in a 250ml conical flask. Add 10cm³ of potassium iodide, solution C. Shake well, then add 2cm³ of starch indicator, solution E. Titrate until a blue black colour appears and continue until the blue black colour just disappears (white colour just forms)
 - Record your readings in Table I below.
- c) Repeat step (b) two more times and complete table I

Table I

Calculate:

Titration	I	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution B used (cm ³)			

(i).	The average volume of solution B used.	(1mk)
(ii).	Moles of sodium thiosulphate used;	(1mk)

(iii).	Concentration in moles per litre of copper (II) ions in solution A given that the of moles of copper (II) ions in 25.0cm^3 of solution A ₂ are the same as the same	
	moles of sodium thiosulphate used.	(3mks)
		•••••
		• • • • • • • • • • • • • • • • • • • •
		•••••

PROCEDURE II

- (a). Using a clean burette, place 5.0cm³ of solution D into each of six (6) test tubes.
- (b). Using a 100ml measuring cylinder, place 20cm³ of solution A in a 100ml plastic beaker. Measure the temperature of solution A and record in table II below.
- (c). To solution A in the beaker, add sodium hydroxide solution D from one of the test tubes. Stir the mixture with the thermometer and record in table II, the maximum temperature reached. Continue with step (d) immediately.
- (d). Add the sodium hydroxide, solution D from another test tube to the mixture obtained in (c) above, stir and record the maximum temperature reached in table II.Continue adding the sodium hydroxide, solution D from each of the other four test tubes, while stirring the mixture and record the maximum temperature each time in order to complete table II

Table II

Titration	0	5	10	15	20	25	30
Volume of sodium hydroxide							
solution D added (cm ³)							
Maximum temperature (°C)							

(i) On the provided grid, plot a graph of temperature (y - axis) against volume of sodium hydroxide, solution D added. (3mks)

i) comp the graph, determine the.	
a) Volume of sodium hydroxide, solution D that reacted completely with 20cm ³ or	f solution
A.	(1mk)
	• • • • • • • • • • • • • • • • • • • •
h) Tamparatura shares AT for the resettion.	(11-)
b) Temperature change, $\triangle T$, for the reaction;	(1mk)
	· · · · · · · · · · · · · · · · · · ·
(iii) Enthalpy change of the reaction per mole of copper (II) ions. (Heat capacity = 4.2Jg^{-1}	K ⁻¹ ,
density of the mixture = 1.0gcm ⁻³)	(3mks)

QUESTION 2 (9 MARKS)

You are provided with solid J. carry out the tests below and write your observations and inferences in the spaces provided.

(a).	Place all of solid J in a clean dry test tube and heat it strongly until no further change
	occurs. Test any gases produced with both blue and red litmus papers. Allow the residue
	to cool and use it for test. (b)

Observations	Inferences	
(2mks)	(1mk)	

(b). Add about 10cm3 of 2M hydrochloric acid to the residue and shake for about three minutes. Keep the mixture for test (c) (i) and C (ii)

Observations	Inferences
(1mk)	(1mk)

(c). (i) Place about 1cm³ of the mixture in a test tube and add aqueous ammonia dropwise until in excess.

Observations	Inferences	
(1mk)	(1mk)	

(ii) To the rest of the mixture, add all of solid K provided and shake the mixture well.

Observations	Inferences	
(1mk)	(1mk)	

QUESTION 3 (10 MARKS)

You are provided with solid M. carry out the tests below and write your observations and inferences in the spaces provide.

a. Place about one third of solid M on a metallic spatula and burn it using a Bunsen burner flame.

Observations	Inferences	
(1mk)	(1mk)	

b. Place the remaining solid M in a test tube. Add about 6cm^3 of distilled water and shake well. Retain the mixture for use in test ©

Inferences
(1mk)
(

c. (i) To about 2cm³ of the mixture, add a small amount of solid sodium hydrogencarbonate.

Observations	Inferences
(1mk)	(1mk)

(ii) To about 1cm³ of the mixture, add 1cm³ of acidified potassium dichromate (VI) and warm.

Observations	Inferences	
(1mk)	(1mk)	

(iii) To about 2cm3 of the mixture, add two drops of acidified potassium manganite (VII)

	, 1	U	` /
Observations	Inferences		
(1mk)	(1mk)		