DATA MINING TECHNOLOGY FOR BUSINESS AND SOCIETY HW1

Cecilia Martinez Oliva, Giorgio Giannone

Contents

Introduction

- 1. A simple statistic on the used dataset
- 2. A list of used stemmers
- 3. A list of used scorer functions
- 4. Collection, 5. Inverted indexes, 6. Results search engine
- 7. The Average R-Precision
- 8. The plot of the average nMDCG
- 9. Q/A

Conclusion

References

Introduction

This work uses *The Cranfield Collection* to perform a simple Information Retrieval analysis. Collected in the United Kingdom starting in the late 1950s, it contains 1398 abstracts of aerodynamics journal articles, a set of 225 queries and exhaustive relevance judgments of all (query, document) pairs.[1]

1. A simple statistic on the used dataset

1400 documents and 225 queries (3 of these queries return always zero results)

```
more cran_defaultStemmer-title.properties
documents=1400
terms = 1800
postings=15742
maxcount=6
indexclass=it.unimi.di.big.mg4j.index.
   → QuasiSuccinctIndex
skipquantum=256
byteorder=LITTLE_ENDIAN
termprocessor=it.unimi.di.big.mg4j.index.
   → DowncaseTermProcessor
batches=1
field=title
size = 228551
maxdocsize=43
occurrences=16619
```

2. A list of used stemmers

Three different Stemming methods:

- Default Stemmer
- Stemmer English language
- Stemmer English language filter stopwords

3. A list of used scorer functions

Three different Scoring functions:

- Count occurrences
- *Tf-Idf*
- bm25 (this is a statistical improvement of the normal tf-idf scoring function)

4. Collection, 5. Inverted indexes, 6. Results search engine

Script to create the collections, the inverted indexes (for all stemmers) and to obtain the results from the search engine (for all scorer function)

```
#!/bin/bash
printf "Start!\n"
sleep 1s
mkdir output
cd output
mkdir defaultStemmer
mkdir englishStemmer
mkdir englishStopwords
cd ...
printf "\n create collections \n"
sleep 1s
#1 Create a collection on the set of html documents with MG4J.
find ./Cranfield_DATASET/Cranfield_DATASET/cran -iname \*.html
  → | java it.unimi.di.big.mg4j.document.
   → FileSetDocumentCollection -f HtmlDocumentFactory -p
  → encoding=UTF-8 cran_defaultStemmer.collection
find ./Cranfield_DATASET/Cranfield_DATASET/cran -iname \*.html
   → | java it.unimi.di.big.mg4j.document.
   \hookrightarrow FileSetDocumentCollection -f HtmlDocumentFactory -p
   → encoding=UTF-8 cran_englishStemmer.collection
find ./Cranfield_DATASET/Cranfield_DATASET/cran -iname \*.html
   → | java it.unimi.di.big.mg4j.document.
   → FileSetDocumentCollection -f HtmlDocumentFactory -p
  → encoding=UTF-8 cran_englishStopwords.collection
```

```
#2 Create an inverted index (with MG4J) on the collection
  #a. default stemmer,
#b. English stemmer and
#c. English stemmer able to filter stopwords.
printf "\n create inverted indices \n"
sleep 1s
java it.unimi.di.big.mg4j.tool.IndexBuilder —downcase —S
  java it.unimi.di.big.mg4j.tool.IndexBuilder -t it.unimi.di.big.
  → mg4j.index.snowball.EnglishStemmer -S cran_englishStemmer
  → .collection cran_englishStemmer
java it.unimi.di.big.mg4j.tool.IndexBuilder -t homework.
  → EnglishStemmerStopwords -S cran_englishStopwords.
  #3 Obtain results for each query using the software "homework.
  → RunAllQueries_HW " trying different scorer functions:
  \hookrightarrow CountScorer, TfIdfScorer and BM25Scorer.
printf "\n run queries on cran_defaultStemmer \n"
sleep 1s
#cran1
java homework.RunAllQueries_HW "cran_defaultStemmer" ./
  → "CountScorer" "text_and_title" ./output/defaultStemmer/
  → output_cran_defaultStemmer_count.tsv
java homework.RunAllQueries_HW "cran_defaultStemmer" ./
  → Cranfield_DATASET/Cranfield_DATASET/cran_all_queries.tsv
  → "TfIdfScorer" "text_and_title" ./output/defaultStemmer/
  → output_cran_defaultStemmer_tfidf.tsv
java homework.RunAllQueries_HW "cran_defaultStemmer" ./
```

```
→ Cranfield_DATASET/Cranfield_DATASET/cran_all_queries.tsv
  → "BM25Scorer" "text_and_title" ./output/defaultStemmer/
  \hookrightarrow output_cran_defaultStemmer_bm25.tsv
printf "\n run queries on cran_englishStemmer \n"
sleep 1s
#cran2
java homework.RunAllQueries_HW "cran_englishStemmer" ./
  → Cranfield_DATASET/Cranfield_DATASET/cran_all_queries.tsv
  → "CountScorer" "text_and_title" ./output/englishStemmer/
  → output_cran_englishStemmer_count.tsv
java homework.RunAllQueries_HW "cran_englishStemmer" ./
  → Cranfield_DATASET/Cranfield_DATASET/cran_all_queries.tsv
  → "TfIdfScorer" "text_and_title" ./output/englishStemmer/
  → output_cran_englishStemmer_tfidf.tsv
java homework.RunAllQueries_HW "cran_englishStemmer" ./
  → Cranfield_DATASET/Cranfield_DATASET/cran_all_queries.tsv
  → "BM25Scorer" "text_and_title" ./output/englishStemmer/
  → output_cran_englishStemmer_bm25.tsv
printf "\n run queries on cran_englishStopwords \n"
sleep 1s
#cran3
java homework.RunAllQueries_HW "cran_englishStopwords" ./
   → "CountScorer" "text_and_title" ./output/englishStopwords/
  \hookrightarrow output_cran_englishStopwords_count.tsv
java homework.RunAllQueries_HW "cran_englishStopwords" ./
  → Cranfield_DATASET/Cranfield_DATASET/cran_all_queries.tsv
  → "TfIdfScorer" "text_and_title" ./output/englishStopwords/
  → output_cran_englishStopwords_tfidf.tsv
java homework.RunAllQueries_HW "cran_englishStopwords" ./
  → Cranfield_DATASET/Cranfield_DATASET/cran_all_queries.tsv
  → "BM25Scorer" "text_and_title" ./output/englishStopwords/
  → output_cran_englishStopwords_bm25.tsv
```

7. The Average R-Precision

The Average R-Precision for each stemmer scorer function configuration(9) and for the aggregation algorithm(3)

```
R
defaultStemmer_count
averaged R-precision: 0.0234

defaultStemmer_tfidf
averaged R-precision: 0.1793

defaultStemmer_bm25
averaged R-precision: 0.2549
```

englishStemmer_count

averaged R-precision: 0.0266

 $englishStemmer_tfidf$

averaged R-precision: 0.1894

 $english Stemmer_bm25$

averaged R-precision: 0.2624

 $english Stopwords_count$

averaged R-precision: 0.1577

 $english Stopwords_tfidf$

averaged R-precision: 0.1909

 $english Stopwords_bm25$

averaged R-precision: 0.2665

englishStopwords_bm25_title averaged R-precision: 0.2211

englishStopwords_bm25_text averaged R-precision: 0.2515

englishStopwords_bm25_title_text averaged R-precision: 0.248

8. The plot of the average nMDCG

Plot of the average nMDCG for each stemmer scorer function configuration (next page)

9. Q/A

- 1. Which is the best combination stemmer scorer function?
 - Using the average R-precision the best combination is englishStopwords as Stemmer and bm25 as scoring function (0.2665)
- 2. Which is the best stemmer?
 - Using the average R-precision the best stemmer is englishStopwords
- 3. Which is the best scorer function?
 - Using the average R-precision the best scoring function is bm25

Conclusion

The R-precision metric gives importance to the relevant results in general; instead the nMDCG gives importance also to the position of these relevant results. Comparing the results obtained we see some differences: for the nMDCG metric the best combination stemmer/scorer is englishStemmer-bm25; instead for the R-precision is englishStepwords-bm25. Using this information we can suppose that the englishStemmer returns less relevant results but with a better position; instead the englishStopwords returns more relevant results but less ordered.

The best average nMDCG is obtained using a k = 5: with k = 10 we have more relevant results but also a higher possibility to have a not correct position; instead for k = 1 we are constrained to have in the first place a relevant result or the metric will be zero.

A worst score (0.248) is obtained, in terms of R-precision, using the aggregation algorithm than using only the text score (0.2515): the aggregation algorithm tends to create a mean between the two ranking and, because one is not so good in terms of relevance(title: 0.2211), the final result using text and title will be a little worst than the result obtained considering only the best rank(in this case the text rank).

```
nMDCG
defaultStemmer_count
averaged nMDCG:
                  0.0315
k:
averaged nMDCG:
                  0.0609
averaged nMDCG:
                  0.0818
averaged nMDCG:
                  0.1038
defaultStemmer_tfidf
k :
averaged nMDCG:
                  0.2387
k :
averaged nMDCG:
                  0.4219
k:
averaged nMDCG:
                  0.4516
averaged nMDCG:
                  0.4661
```

```
defaultStemmer_bm25
k: 1
averaged nMDCG: 0.3018
k: 3
averaged nMDCG: 0.5461
averaged nMDCG: 0.578
k: 10
                0.5622
averaged nMDCG:
englishStemmer_count
k: 1
averaged nMDCG: 0.045
k: 3
averaged nMDCG: 0.0801
k: 5
averaged nMDCG: 0.0977
k: 10
averaged nMDCG: 0.1202
englishStemmer\_tfidf
k: 1
averaged nMDCG: 0.2568
k: 3
averaged nMDCG: 0.448
k: 5
averaged nMDCG: 0.4848
k: 10
averaged nMDCG:
                0.4922
englishStemmer\_bm25
k: 1
averaged nMDCG: 0.3018
k: 3
averaged nMDCG: 0.6207
averaged nMDCG:
               0.6153
k: 10
averaged nMDCG:
                0.5946
```

```
englishStopwords_count
k: 1
averaged nMDCG: 0.2387
averaged nMDCG: 0.3774
k: 5
averaged nMDCG:
                0.408
k: 10
averaged nMDCG:
                0.439
english Stopwords\_tfidf
k: 1
averaged nMDCG: 0.2477
k: 3
averaged nMDCG: 0.427
averaged nMDCG: 0.4643
k: 10
averaged nMDCG:
                0.4673
englishStopwords\_bm25
k: 1
averaged nMDCG: 0.3018
k: 3
averaged nMDCG: 0.5864
k: 5
averaged nMDCG: 0.5953
k: 10
averaged nMDCG: 0.5846
englishStopwords\_bm25\_title
averaged nMDCG: 0.2703
```

k: 3

averaged nMDCG:

0.4883

5 averaged nMDCG: 0.525210 averaged nMDCG: 0.5328 $englishStopwords_bm25_text$ k: 1 averaged nMDCG: 0.2928k: 3 averaged nMDCG: 0.5429averaged nMDCG: 0.564910 averaged nMDCG: 0.5625 $english Stopwords_bm25_title_text$ averaged nMDCG: 0.2883averaged nMDCG: 0.5696k: 5 averaged nMDCG: 0.5658k: 10 averaged nMDCG: 0.5607

References

[1] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schtze. An Introduction to Information Retrieval. Cambridge university press, Cambridge, 2009.