INF3405 Réseaux informatiques

Module 6 : Architecture technologique TCP/IP

Partie 5 : La Voix sur IP

Contenu du module 6, partie 5

Ce module a pour but de présenter une introduction à la Voix sur IP (VoIP).

Les concepts traités dans ce module sont les suivants

- VoIP et « Triple play »
- Digitalisation de la voix
- Protocoles de signalisation (Architectures VoIP)
 - H.323
 - SIP
 - IAX
- Applications Clients/Serveurs et autres

La VoIP

- Avec Internet, les communications se modifient. Le courriel prend une place prédominante en entreprise. Avec les réseaux sociaux, les usagers clavardent aussi de plus en plus sur Internet.
- Il n'y a plus de raison de maintenir un système de communication vocales en parallèle car l'infrastructure actuelle pour Internet (réseau TCP/IP) peut dorénavant l'intéger dans ses liens de télécommunifications et l'intégrer en seul système moins dispendieux à utiliser et gérer.
- À la base, la voix sur IP consiste à acheminer les anciennes communications téléphoniques sur un réseau IP.

Problématique associé à la VoIP

• La méthode d'accès originale CSMA/CD ne garantie pas la livraison des trames dans un certain temps. Cette méthode est bâtie sur le principe du meilleur effort possible (best effort basis) pour acheminer une communication. Ceci peut occasionner certains délais qui, bien que tout à fait acceptable pour le transfert de données ou fichiers seront totalement inappropriés pour la voix.

Distinction importante enVoIP

QoS locale : Dans un environnement interne où l'on maîtrise tous les équipements impliqués entre 2 communications, l'utilisation de la QoS est relativement facile.

QoS globale : Lorsque l'utilisateur communique avec des sites distants, outremer ou non, en passant par des fournisseurs de service, la QoS est possible, mais dépend alors des configurations des fournisseurs de services, sinon le principe du 'Best Effort' s'appliquera.

Le Triple play

Les 3 services suivants forment ce qu'on appelle le triple play :

- Internet
- Téléphonie (VoIP)
- Télévision (IPTV)

Un fournisseur de services qui peut offrir tous ces services combinés possède définitivement un avantage concurrentiel sur ses compétiteurs. Les clients préfèrent de beaucoup payer une seule facture à une seule entreprise. Ces mêmes clients s'attendent aussi de plus en plus à des forfaits spéciaux qui représente des rabais car ils consolident leurs besoins au même endroit.

Quelques acronymes en VoIP

FoIP: Fax over IP (Internet Protocol)

FXO: Foreign eXchange Office

FXS: Foreign eXchange Subscriber

Gatekeeper : Unité réseau qui procure l'adressage H.323 pour un client de vidéoconférence

Gateway: Passerelle, interconnection de 2 protocoles différents.

H.323 : Pile de protocoles de communications pour l'audio, la vidéo et les données sur IP.

IPTV: Télévision sur IP

PABX : Private Automatic Branch eXchange

PBX : Private Branch eXchange

POTS: Public Old Telephone Service

SIP: Session Initiation Protocol, Pile de protocoles de communications

multimédia sur IP.

VOD: Vidéo on demand

VoIP: Voice over IP

Digitalisation de la voix

Voix : ondes sonores qui se propagent dans l'air (Ne sont pas des ondes électromagnétiques RF (radio fréquences), comme 802.11 WIFI par exemple) qui peuvent se propager dans le vide et qui dépendent des équations de Maxwell.

Spectre des fréquences audibles (Musique haute fidélité) Approximativement de 200 Hz (Hertz) à 20 KHz

Spectre de fréquences de la voix humaine (Parole) Approximativement 250 à 10 KHz

Spectre de fréquences des lignes téléphoniques typiques (POTS) Approximativement 300 à 3000 Hz (3200 Hz, ...)

Digitalisation de la voix (Suite)

Critère de Nyquist

La fréquence d'échantillonage d'un signal doit être d'au moins 2 fois sa fréquence maximal afin de permettre sa reconstruction.

Les lignes téléphonique ont une fréquence maximale d'environ 3000 et parfois plus 3200 ou 3600 Hz (le signal présent a perdu la moitié de sa puissance (-3 dB))

De façon sécuritaire, prenons 4000 Hz (échantillons par seconde) que l'on double selon Nyquist, ceci donne 8000 Hz.

Si les échantillons sont sur un octet, soit 8 bits, il y aura 256 niveau d'échantillonnage.

Un canal de voix sans compression de signal donnera alors : **8000 échantillons/sec* 8 bits/échantillon = 64 Kbits/sec** (communément appelé un DS0 en télécommunications).

Digitalisation du signal.

CODEC pour la digitalisation de la voix

CODEC	Débit	Modulation (kbps)	Délai de com- pression (ms)	Mean Opinion Score	
G.711	64	PCM	0,75	4.1	
G.726	32	ADPCM	1	3.85	
G.728	16	LD = CELP	3-5	3.61	
G.729	8	CS- ACELP	10	3.92	
G.729a	8	CS- ACELP	10	3.7	
G.723.1	6.3	MP-MLQ	30	3.9	

Délai ajouté par les méthode d'encodage (compression/modulation.)

Délai VoIP

Table 1-2 Voice Bandwidth (without Layer 2 Overhead)

Bandwidth Consumption	Sampling Rate	Voice Payload in Bytes	Packets per Second	ond Bandwidth per Conversation	
G.711	20 ms	160	50	80 kbps	
G.711	30 ms	240	33	74 kbps	
G.729A	20 ms	20	50	24 kbps	
G.729A	30 ms	30	33	19 kbps	

Table 1-3 Voice Bandwidth (Including Layer 2 Overhead)

Bandwidth Consumption	802.1Q Ethernet	PPP		Frame-Relay w/FRF.12	ATM
G.711 at 50 pps	93 kbps	84 kbps	86 kbps	84 kbps	106 kbps
G.711 at 33 pps	83 kbps	77 kbps	78 kbps	77 kbps	84 kbps
G.729A at 50 pps	37 kbps	28 kbps	30 kbps	28 kbps	43 kbps
G.729A at 33 pps	27 kbps	21 kbps	22 kbps	21 kbps	28 kbps

Source: Cisco

Protocoles H.323

- Developpé par l'ITU-T (International Telecommunications Union-Telecommunications).
- Famille de protocoles de communications qui permet à des équipements d'interconnections H.323 de communiquer entre eux, inclus :
 - ✓ la signalisation entre les postes
 - ✓ des codecs audio
 - ✓ des codecs vidéo
 - ✓ des applications pour le transfert de fichiers
- Version 1 approuvée en 1996 (Version 6, juin 2006, <u>www.h323forum.org</u>)
- Principalement utilisé pour permettre les appels vidéoconférence sur IP.

Pile de protocole H.323

Pile de protocoles H.323

H.225.0 = Établissement des connexions

H.245 = Contrôle des connexions

RAS control = Registration, Admission and Status control.

Q.931= Protocole de signalisation pour RNIS (ISDN)

Pour établir et terminer une connexion

TPKT = Transport Packet (TPKT well known TCP port = 102)

RTP/RTCP

RTP = Real Time Protocol

RTCP = Real Time Control Protocol

T.120 = Architecture de communication de données multipoint dans un environnement de conférence multimédia

Échanges H.323 simple

Protocole SIP

- Développé par l'IETF (Internet Engineering Task Force)
- Conçu en 1996 pour établir, modifier et terminer des sessions multimedia sur Internet.
- Protocole très populaire sur Internet pour la VoIP
- Plus simple que H.323

Échanges SIP simple

Appelé Appelant Invite Rigning Ok Ack Data Bye Ok

VoIP avec gestionnaire d'appel

Signalisation : Le noeud local communique avec son gestionnaire d'appel (ici le serveur Asterisk nommé poseidon) qui est alors responsable de trouver le gestionnaire d'appel distant. Cette partie se fait en signalisation (SIP, H.323 ou AIX) entre les 2 gestionnaires d'appel. AIX étant un protocole propriétaire des serveurs Asterisk.

Échanges de données: Lorsque les 2 gestionnaires d'appel ont réussi à établir la communication, alors les 2 postes de travail communique directement entre eux avec les protocoles RTP/RTCP (Real Time Protocole/ Real Time Control Protocole).

Gestionnaire d'appel (serveurs)

Call Manager

- Propriétaire Cisco
 - Grappe de Call Manager assure une redondance

Asterisk

- Tribox
- Asterisknow
- Asterisk@home

Cartes analogues Digium permet l'ajout de vieux télépnoes analogues.

Application: VoIP avec Routeurs

Application: VoIP avec gestionnaire d'appel

Trames H.323 et G.711

Applications clients VoIP

Quelques applications de Voix sur IP ou Voix/Vidéo (appel conférence ou point à point) sur IP populaires.

- Skype (Propriétaire)
- Linphone (IPv6)
- Ekiga (protocole ouvert SIP, H.323 pour audio/vidéo)

• • •

VoD - Video-on-Demand

Playing media over the Web via simple downloads.

Source: Tanenbaum - networking

VoD - Video-on-Demand

Streaming media using the Web and a media server.

Source: Tanenbaum - networking

VoD - Video-on-Demand

Figure 1. Example of a network for VoD distribution

Conclusion

La Voix sur IP ou Voix/Vidéo sur IP est de plus en plus populaire pour intégrer les services avec Internet et la télévision.

- La VoIP demande de la QoS
- Il y a des canaux virtuels de signalisation et transfert de données
- La VoIP est là pour y rester et évoluer avec la vidéo et la mobilité