VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE

(AUTONOMOUS)

II/IV B. Tech. DEGREE EXAMINATION, March, 2022

Third Semester

20BS3101B COMPLEX ANALYSIS & NUMERICAL METHODS (ECE/EIE/IT)

Time: 3 hours

Max. Marks: 70

Part-A is compulsory

Answer One Question from each Unit of Part - B

Answer to any single question or its part shall be written at one place only

PART-A

 $10 \times 1 = 10M$

- a. Write the Cauchy-Riemann Equations in Polar form.
 - b. Define Analytic function.
 - c. State Cauchy's integral formula.
 - d. Determine the residue of $f(z) = \frac{z+1}{z(z-2)}$ at z=2.
 - · e. Define critical point.
 - f. Find the fixed point of the function $w = \frac{z-1}{z+1}$.
 - g. Define algebraic equation with an example.
 - h. What is the relation between Δ and E?
 - i. Write Newton's backward interpolation formula.
 - j. State Trapezoidal rule.

20BS3101B PART-B

 $4 \times 15 = 60M$

UNIT-I

- 2. a. Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$, where f(z) is an analytic function.
 - b. Show that the function $u = e^{-2xy} \sin(x^2 y^2)$ is harmonic. Find the conjugate function y and express u + iy as an analytic function of Z.

 7M

(or)

a. State and prove Cauchy's Integral theorem.

7M

b. Evaluate contour integral $\int_{c}^{\infty} \frac{z}{z^2 - 3z + 2} dz$ where $C: |z - 2| = \frac{1}{2}$ using Cauchy's integral formula.

UNIT-II

- 4. a. Find a Taylor's series for $f(z) = \frac{1}{(z+1)^2}$ about the point z = -i. 7M
 - b. Evaluate $\oint_c \frac{z}{(z-1)(z-2)^2} dz$ where $c: |z-2| = \frac{1}{2}$ by applying theory of residues.

(or)

- 5. a. Evaluate by using contour integration $\int_0^{2\pi} \frac{\cos 3\theta}{5 4\cos \theta} d\theta$. 7M
 - b. Construct the bilinear the transformation which maps the points (-1, i, 1) of the z-plane onto (1, i, -1) of the w-plane respectively.

UNIT-III

- 6. a. Apply Newton Raphson method to find a positive root of the equation $\cos x xe^x = 0$.
 - Solve the following system of equations by using Gauss Seidel iterative method

method

$$5x + 2y + z = 12$$
, $x + 4y + 2z = 15$, $x + 2y + 5z = 20$. 7M

(or)

7. a. Using Newton's backward interpolation formula, estimate the value of f(4) from the following data 8M

x	0	1	2	3
f(x)	1	2	1	10

 Apply Lagrange's interpolation formula, compute the value of f(9) from the following data

	15	17	11	13	17
f(x)	150	392	1492	2366	5202

20BS3101B

UNIT-IV

8. a. Find first and second derivatives of the function tabulated below at the point x = 1.6

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

b. Find the values of y(0.1) and y(0.2) given that $y' = 2y + 3e^x$, y(0) = 0 by using Taylor's series method.

(or)

9. a. Evaluate
$$\int_{0}^{6} \frac{1}{1+x^2} dx$$
 by using Simpson's 1/3 rule. 7M

b. Apply fourth order Runge-Kutta method to evaluate y(0.1) and y(0.2) given that $y' = x^2 - y$ and y(0) = 1.