

[07/01/22 GTS Research Seminar]

# Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo

Ignacio Peis<sup>1</sup>, Chao Ma<sup>2,3</sup>, José Miguel Hernández-Lobato<sup>2</sup>

<sup>1</sup>Dept. of Signal Theory and Communications, Universidad Carlos III de Madrid

<sup>2</sup>Dept. of Engineering, University of Cambridge

<sup>3</sup>Microsoft Research Cambridge

# Introduction

### Challenges

- Improve approximate inference in advanced VAEs
- Improve missing data imputation
- Improve predictions under missing data condition
- Improve active information acquisition
- Deal with partial, mixed-type data

# Introduction

### Contributions

- Improved Hierarchical VAE for mixed-type partial data.
- Improved inference via Hamiltonian Monte Carlo with automatic hyperparameter optimization.
- Improved active learning with novel sampling-based active information acquisition technique.



[Preprint] [Code]

### Definition<sup>1</sup>

- Generative, explicit models with intractable probability.
- Goal: optimize parameters to maximize the marginal likelihood:

$$p(\boldsymbol{x}) = \int p(\boldsymbol{x}, \boldsymbol{z}) d\boldsymbol{z} = \int p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z}) d\boldsymbol{z}$$

Z





$$p(\boldsymbol{z}|\boldsymbol{x}) = rac{p_{\theta}(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{p_{\theta}(\boldsymbol{x})}$$

<sup>&</sup>lt;sup>1</sup> Kigma et at., 2013

### **Amortized Variational Inference**

Optimize a Gaussian approximation of the posterior

$$D_{KL}\left(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z}|\boldsymbol{x})\right)$$

• Minimizing this KL is equivalent to maximizing the Evidence Lower Bound

$$\mathcal{L}(oldsymbol{x}) = \mathbb{E}_{q_{\phi}(oldsymbol{z} | oldsymbol{x})} \log rac{p_{ heta}(oldsymbol{x}, oldsymbol{z})}{q_{\phi}(oldsymbol{z} | oldsymbol{x})},$$

Alternatively:

$$\mathcal{L}(m{x}) = \mathbb{E}_{q_{\phi}(m{z}|m{x})} \log p_{ heta}(m{x}|m{z}) - D_{KL}\left(q_{\phi}(m{z}|m{x})||p(m{z})
ight)$$
 $m{\downarrow}$ 
Decoder
 $\mathcal{N}\left(m{0},m{I}
ight)$ 

### **Training**

- For each batch:
  - 1. Encode to parameters of the approximate posterior.
  - 2. Sample from  $q_{\phi}(oldsymbol{z}|oldsymbol{x})$  .
  - 3. Obtain the Monte Carlo approximation of the ELBO.
  - 4. Optimization step on  $\theta$  and  $\phi$ .

$$\nabla_{(\theta,\phi)} \left( \frac{1}{B} \sum_{i=1}^{B} \left[ \log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) - D_{KL} \left( q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}) \right) \right] \right)$$



### Recent advances

- Handling incomplete and heterogeneous data.
- Improving approximate inference VS increasing flexibility of the prior.



# Hierarchical Variational Autoencoders

### **Definition**\*

Add flexibility to the prior with an autoregressive path of latent variables

$$ELBO(\mathbf{x}) = \mathbb{E}_{Q(\mathbf{z}_1, \mathbf{z}_2 | \mathbf{x})} \left[ \ln p(\mathbf{x} | \mathbf{z}_1) - KL[q(\mathbf{z}_1 | \mathbf{x}) | | p(\mathbf{z}_1 | \mathbf{z}_2)] - KL[q(\mathbf{z}_2 | \mathbf{z}_1) | | p(\mathbf{z}_2)] \right]$$

$$q(\mathbf{z}_2 | \mathbf{z}_1) \approx p(\mathbf{z}_2) \approx \mathcal{N}(0, 1)$$
Generative part

- Inductive bias: hierarchical flow of information.
- Potential pitfalls: posterior collapse.

Figure 4. A two-level VAE.

Generative part Variational part  ${f Z}_2$   ${f Z}_2$   ${f Z}_2$   ${f Z}_1$   ${f Z}_1$   ${f Z}_1$   ${f X}$ 

<sup>\*</sup> https://jmtomczak.github.io/blog/9/9 hierarchical lvm p1.html

# Hierarchical Variational Autoencoders

### **Definition**

• To avoid posterior collapse, the variational networks learn a residual difference of the posterior from a deterministic bottom-up path<sup>1,2,3</sup>.

$$q(\mathbf{z}_i | \mathbf{x}) = \mathcal{N}(\mu_i + \Delta \mu_i(\mathbf{x}), \, \sigma_i^2 \Delta \sigma_i^2)$$

The generative and variational posterior are tightly connected:

$$KL\left(q\left(z^{i}\mid x\right)\|p\left(z^{i}\right)\right) = \frac{1}{2}\left(\frac{\Delta\mu_{i}^{2}}{\sigma_{i}^{2}} + \Delta\sigma_{i}^{2} - \log\Delta\sigma_{i}^{2} - 1\right)$$



Figure 1: 256×256-pixel samples generated by NVAE, trained on CelebA HQ [28].



Figure 5. A top-down VAE.

<sup>&</sup>lt;sup>1</sup> Vahdat et at., 2020 <sup>2</sup> Maaløe et at., 2019

<sup>&</sup>lt;sup>3</sup> Child, 2019

### VAEs for partial, heterogeneous data







$$\mathcal{L}(\boldsymbol{x}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[ \sum_{d=1}^{D} \mathbb{I}(x_d \in \boldsymbol{x}_O) \log p_{\theta}(x_d|\boldsymbol{z}) \right] - D_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_O) || p(\boldsymbol{z}))$$

- Naïve approach for heterogeneous¹: use a different likelihood per dimension.
- Problem: unbalanced likelihoods.







<sup>&</sup>lt;sup>1</sup> Nazabal et at., 2020

### VAEM for partial heterogeneous data

• Solution<sup>1</sup>: learn first D marginal VAEs  $(\theta_d, \gamma_d)$ :

$$\mathcal{L}_d(x_d; \{\theta_d, \gamma_d\}) = \mathbb{I}(x_d \in \boldsymbol{x}_o) \mathbb{E}_{q_{\gamma_d}(z_d|x_d)} \log \frac{p_{\theta_d}(x_d, z_d)}{q_{\gamma_d}(z_d|x_d)}$$

And and a joint dependency VAE  $(\theta, \phi)$  on the marginally encoded data:

$$\mathcal{L}(\boldsymbol{z}) = \mathbb{E}_{q_{\phi}(\boldsymbol{h}|\boldsymbol{z})} \left[ \sum_{d=1}^{D} \mathbb{I}(z_d \in \boldsymbol{z}_O) \mathbb{E}_{q_{\gamma_d}(z_d|x_d)} \left[ \log p_{\theta}(z_d|\boldsymbol{h}) \right] \right] - D_{KL}(q_{\phi}(\boldsymbol{h}|\boldsymbol{z}_O) || p(\boldsymbol{h}))$$

- The marginal encodings  $z_d$  are Gaussian, thus, the likelihoods are balanced.
- Interdependencies between heterogenous variables are better captured by the model.

<sup>&</sup>lt;sup>1</sup> Ma et at., 2020

# Approximate Inference in VAEs

### **Variational Inference**

VAEs are restricted by purely Gaussian approximations of the true posterior.



<sup>2</sup>Samples from the true posterior (orange)



Figure 1. Gaps in Inference

<sup>&</sup>lt;sup>1</sup> Cremer et at., 2018

<sup>&</sup>lt;sup>2</sup> Peis et at., 2022

# **Bayesian active information acquisition Encoder-based**

• Reward function as an expected gain of information<sup>1</sup>:

$$R(i, \mathbf{x}_O) = \mathbb{E}_{\mathbf{x}_i \sim p(\mathbf{x}_i | \mathbf{x}_O)} D_{\mathrm{KL}} \left[ p(\mathbf{x}_{\phi} | \mathbf{x}_i, \mathbf{x}_O) \| p(\mathbf{x}_{\phi} | \mathbf{x}_O) \right]$$

• Intractable. Solved by transforming into **z** space<sup>2</sup>:

$$\hat{R}(i, \mathbf{x}_o) = \mathbb{E}_{\mathbf{x}_i \sim \hat{p}(\mathbf{x}_i | \mathbf{x}_o)} D_{KL} [q(\mathbf{z} | \mathbf{x}_i, \mathbf{x}_o) | | q(\mathbf{z} | \mathbf{x}_o)] - \mathbb{E}_{\mathbf{x}_{\phi}, \mathbf{x}_i \sim \hat{p}(\mathbf{x}_{\phi}, \mathbf{x}_i | \mathbf{x}_o)} D_{KL} [q(\mathbf{z} | \mathbf{x}_{\phi}, \mathbf{x}_i, \mathbf{x}_o) | | q(\mathbf{z} | \mathbf{x}_{\phi}, \mathbf{x}_o)]$$

• Extension for the VAEM model<sup>3</sup>:

$$\hat{R}_{I}(\mathbf{x}_{i}, \mathbf{x}_{O}) = \mathbb{E}_{p_{\theta}(\mathbf{x}_{i}, \mathbf{z}_{i}, \mathbf{z}_{O} | \mathbf{x}_{O})} \left\{ \mathbb{KL} \left[ q_{\lambda}(\mathbf{h} | \mathbf{z}_{i}, \mathbf{z}_{O}) || q_{\lambda}(\mathbf{h} | \mathbf{z}_{O}) \right] - \mathbb{E}_{p_{\theta}(\mathbf{x}_{\phi}, \mathbf{z}_{\Phi}, |\mathbf{x}_{O})} \mathbb{KL} \left[ q_{\lambda}(\mathbf{h} | \mathbf{z}_{\Phi}, \mathbf{z}_{i}, \mathbf{z}_{O}) || q_{\lambda}(\mathbf{h} | \mathbf{z}_{\Phi}, \mathbf{z}_{O}) \right] \right\}$$

• Restriction: this approximation metric still relies on the Gaussian approximation of the encoder.

# Hamiltonian Monte Carlo<sup>1,2</sup>

### Definition

- Sample from complex distributions via unnormalised targets  $p(z) = \frac{1}{z}p^*(z)$
- Highly efficient exploration using differential geometry and conservative dynamics
  - 1. Expand to phase space with momentum variable:



$$(z) \rightarrow (z, r) \qquad p(z, r) = p(r|z)p(z)$$

$$H(z, r) = -\log p(z, r) = -\log p(r|z) - \log p(z) = K(r, z) + V(z)$$

$$H(\boldsymbol{z}, \boldsymbol{r}) = -\log p^*(\boldsymbol{z}) + \frac{1}{2} \boldsymbol{r}^T \boldsymbol{M}^{-1} \boldsymbol{r}.$$

2. Hamiltonian equations

$$\frac{d\mathbf{z}}{dt} = +\frac{\partial H}{\partial \mathbf{r}} = \frac{\partial K}{\partial \mathbf{r}}$$

$$\frac{d\mathbf{r}}{dt} = -\frac{\partial H}{\partial \mathbf{z}} = -\frac{\partial K}{\partial \mathbf{z}} - \frac{\partial V}{\partial \mathbf{z}}$$



<sup>&</sup>lt;sup>1</sup> Betancourt, 2017

# Hamiltonian Monte Carlo<sup>1</sup>

### **HMC** in practice

- Leapfrog integrator for Hamiltonian equations.
- Discrete trajectories (chains) of T updates.
- ullet From an initial proposal, each update consists on L cyclic Leapfrog steps:

$$egin{aligned} oldsymbol{r}_{l+rac{1}{2}} &= oldsymbol{r}_l + rac{1}{2} oldsymbol{\phi} \odot 
abla_{z_l} \log p^*(oldsymbol{z}_l) \,, \ oldsymbol{z}_{l+1} &= oldsymbol{z}_k + oldsymbol{r}_{l+rac{1}{2}} \odot oldsymbol{\phi} \odot rac{1}{M} \,, & ext{Hyperparameters} \ oldsymbol{r}_{l+1} &= oldsymbol{r}_{l+rac{1}{2}} + rac{1}{2} oldsymbol{\phi} \odot 
abla_{z_{l+1}} \log p^*(oldsymbol{z}_{l+1}) \,, \end{aligned}$$

• Ending in a new proposal (z', r'), which is accepted with probability:

$$min\left[1, \exp(-H(\boldsymbol{z}', \boldsymbol{r}') + H(\boldsymbol{z}, \boldsymbol{r}))\right]$$





# Training Hamiltonian Monte Carlo [code] (7) ipeis



### Effect of the hyperparameter choice





### Gradient-based Optimization<sup>1</sup>

• Tuning the hyperparameters via Variational Inference:

$$\phi^* = \underset{\phi}{\operatorname{argmax}} \ \mathbb{E}_{q_{\phi}^{(T)}(\boldsymbol{z})} \left[ \log p^*(\boldsymbol{z}) \right] + H \left[ q_{\phi}^{(T)}(\boldsymbol{z}) \right]$$

• Add an inflation parameter, **s**, for scaling the proposal  $q^{(0)}(z) = \mathcal{N}(\mu_0, s^2 \Sigma_0)$ 

$$oldsymbol{s}^* = \operatorname*{argmin}_{s} \ d(oldsymbol{q}_{\phi}^{(T)}(oldsymbol{z}), p(oldsymbol{z}))$$

- Sliced Kernelized Stein Discrepancy<sup>2</sup> (SKSD) measures discrepancy between  $p(\mathbf{z})$  and  $q(\mathbf{z})$  using:
  - √ Samples of the approximated distribution
  - √ Gradients of the true target

$$s^* = \underset{s}{\operatorname{argmin}} \operatorname{SKSD}(\boldsymbol{z}^{(T)}, \nabla_z \log p^*(\boldsymbol{z}))$$

√ Robust in high-dimensional spaces.

### **Gradient-based Optimization**

- For each step:
  - 1. Update HMC hyperparameters:

$$\phi^* = \underset{\phi}{\operatorname{argmax}} \ \mathbb{E}_{q_{\phi}^{(T)}(\boldsymbol{z})} \left[ \log p^*(\boldsymbol{z}) \right]$$

2. Update scaling factor:

$$s^* = \underset{s}{\operatorname{argmin}} \operatorname{SKSD}(\boldsymbol{z}^{(T)}, \nabla_z \log p^*(\boldsymbol{z}))$$



### **Gradient-based Optimization**





### **Gradient-based Optimization**



Optimization (gif)



# Hamiltonian Monte Carlo [code]

### Application to VAEs<sup>1,2</sup>

• Approximation of  $p(\mathbf{z} \mid \mathbf{x})$  improved with  $q^{(T)}(\mathbf{z} \mid \mathbf{x})$ , using as initial proposal  $q^{(0)}(\mathbf{z} \mid \mathbf{x})$  given by the encoder.

#### Stage 1:

\* Pretrain VAE  $(\theta, \psi)$  using ELBO.

#### Stage 2:

 $\star$  Keep training encoder parameters  $\psi$  using ELBO:

$$\psi^* \leftarrow \operatorname{Adam}_{\psi} \left( \log p_{\theta} \left( \boldsymbol{x} \mid \boldsymbol{z}^{(0)} \right) - D_{KL} \left( q_{\psi}^{(0)} (\boldsymbol{z} \mid \boldsymbol{x}) || p(\boldsymbol{z}) \right) \right)$$

\* Train decoder parameters  $\theta$  and HMC hyperparameters  $\phi$ :

$$(\theta, \phi)^* \leftarrow \operatorname{Adam}_{(\theta, \phi)} \left( \mathbb{E}_{q^{(T)}(\boldsymbol{z}|\boldsymbol{x})} \left[ \log p(\boldsymbol{z}, \boldsymbol{x}) \right] \right)$$

★ Train inflation parameter using:

$$\boldsymbol{s^*} \leftarrow \operatorname{Adam}_{\boldsymbol{s}} \left( \operatorname{SKSD} \left( \boldsymbol{z^{(T)}}, \nabla_{\boldsymbol{z}} \log p(\boldsymbol{z}, \boldsymbol{x}) \right) \right)$$



<sup>2</sup>Samples from the true posterior (orange)

|                            | MNIST   |        |      | Fas              | <b>Fashion MNIST</b> |      |  |  |
|----------------------------|---------|--------|------|------------------|----------------------|------|--|--|
| Model                      | Scale   | Mean   | SE   | Scale            | Mean                 | SE   |  |  |
| VAE                        | =       | -85.08 | 0.22 | len              | -108.54              | 0.60 |  |  |
| DReG-IWAE                  | -       | -83.73 | 0.21 | ( <del>) (</del> | -104.48              | 0.58 |  |  |
| $maxELT\ \alpha = 0$       | 1.0     | -83.48 | 0.21 | 1.0              | -104.08              | 0.58 |  |  |
| $maxELT\ \alpha = 1$       | 1.0     | -82.46 | 0.21 | 1.0              | -103.57              | 0.58 |  |  |
| $maxELT\ \alpha = 0\ SKSD$ | 6.79    | -81.91 | 0.20 | 5.58             | -103.18              | 0.58 |  |  |
| $maxELT\ \alpha = 1\ SKSD$ | 3.90    | -81.94 | 0.20 | 3.59             | -102.29              | 0.57 |  |  |
| Hoffman                    | -       | -81.74 | 0.20 | ten.             | -103.04              | 0.58 |  |  |
| Ruiz & Titsias             | -       | -82.45 | 0.21 | 10               | -105.13              | 0.59 |  |  |
| Salimans et al.            | <u></u> | -81.94 | 2    | _                | -104.44              | 0.59 |  |  |
| Caterini et al.            | -       | -82.62 | -    | -                | -104.26              | 0.58 |  |  |

Approximated test  $\log p(\mathbf{x})$ 

<sup>&</sup>lt;sup>1</sup> Campbell et at., 2021

<sup>&</sup>lt;sup>2</sup> Peis et at., 2022

# The Hierarchical Hamiltonian VAE for Mixed-type incomplete data

- Generates data and predictions.
- Models heterogeneous, incomplete data.
- Flexible hierarchical latent space.
- Improved inference via tuned HMC.



### Mixed-type incomplete data

• Marginal VAEs  $(\theta_d, \gamma_d)$  are pretrained independently on each dimension, with different likelihoods:

$$\mathcal{L}_d(x_d; \{\theta_d, \gamma_d\}) = \mathbb{I}(x_d \in \boldsymbol{x}_o) \mathbb{E}_{q_{\gamma_d}(z_d|x_d)} \log \frac{p_{\theta_d}(x_d, z_d)}{q_{\gamma_d}(z_d|x_d)}$$

 Dependency VAE over Gaussian factored dimensions allows dealing with partial heterogeneous data and capture dependencies from balanced likelihoods.



### Hierarchical latent space

- Hierarchical latent space with L variables  $\mathbf{h} = \{\mathbf{h}_1, \dots, \mathbf{h}_L\}$ .
- Problem¹: HMC fails in densities with huge correlations (AR variables).

$$\nabla_{\boldsymbol{h}_{1:L}} \log p^*(\boldsymbol{h}) \uparrow \uparrow$$

#### • Solution:

√ Reparameterization, deterministic hierarchy, relaxed posterior

$$oldsymbol{h}_l = f_{\mu_l}(oldsymbol{h}_{l+1}) + f_{\sigma_l}(oldsymbol{h}_{l+1}) \cdot oldsymbol{\epsilon}_l$$

NNs with parameters  $\theta_{\mu_l} o f_{\mu_l}$ ,  $\theta_{\sigma_l} o f_{\sigma_l}$ . Then  $\theta_l = \{\theta_{\mu_l}, \theta_{\sigma_l}\}$ 

- ✓ Perform inference on  $\epsilon = \{\epsilon_1, \dots, \epsilon_1\}$  with standard Gaussian prior.
- √ No need to increase complexity of the HMC method.





- (a) AR hierarchy
- (b) Reparameterization

<sup>&</sup>lt;sup>1</sup> Betancourt et at., 2015

### **Generative model**

- Generate from the superficial layer:
  - 1. Data:  $p(z|h_1)$  as NN with parameters  $\theta_z$
  - 2. Predictions:  $p(y|\hat{x}, h_1)$  as NN with parameters  $\theta_y$
- $\hat{\boldsymbol{x}}$  is the concatenation  $[\boldsymbol{x}_O, \hat{\boldsymbol{x}}_U]$  with the imputed missing part.
- The predictor parameters are jointly trained with the model.
- Generative parameters:  $\theta = \{\theta_z, \theta_y, \theta_1, ... \theta_L\}$



### Hierarchical encoder



Bottom-up path, but no sharing parts needed! 1,2

$$oldsymbol{r}_0 = \{oldsymbol{x}_O, oldsymbol{y}_O\}$$
,  $oldsymbol{r}_l = f_r(oldsymbol{r}_{l-1})$ 

NNs with parameters  $\psi_{r_l} o f_{r_l}$  .

Posterior approximation for each layer:

$$q_{\psi_l}(\boldsymbol{\epsilon}_l|\boldsymbol{x}_O,\boldsymbol{y}_O) = \mathcal{N}(g_{\mu_l}(\boldsymbol{r}_l),g_{\sigma_l}(\boldsymbol{r}_l))$$

as NNs with parameters  $\psi_{\mu_l} o g_{\mu_l}, \psi_{\sigma_l} o g_{\sigma_l}$ 

• Encoder parameters:  $\psi = \{\psi_{r_l}, \psi_{\mu_l}, \psi_{\sigma_l}\}_{l=1}^L$ 



<sup>&</sup>lt;sup>1</sup> Vahdat et at., 2020 <sup>1</sup> Maaløe et at., 2019

### **ELBO**

$$egin{aligned} \mathcal{L}_{VI}(oldsymbol{x}_O, oldsymbol{y}_O; \{ heta, \psi\}) &= \mathbb{E}_{q_{\psi}}\left[\log rac{p_{ heta}(oldsymbol{z}_O, oldsymbol{\epsilon})}{q_{\psi}(oldsymbol{\epsilon} | oldsymbol{z}_O, oldsymbol{x}_O, oldsymbol{y}_O)}
ight] &= \\ \mathbb{E}_{q_{\psi}}\left[\log p_{ heta}(oldsymbol{z}_O | oldsymbol{h}_1) + \log p_{ heta}(oldsymbol{y}_O | \hat{oldsymbol{x}}, oldsymbol{h}_1)
ight] - \sum_{l=1}^{L} D_{ ext{KL}}\left(q_{\psi}(oldsymbol{\epsilon}_l | oldsymbol{x}_O, oldsymbol{y}_O) || p(oldsymbol{\epsilon}_l)
ight) \end{aligned}$$

 The sum of KLs needs extra manipulation: balance during an warming stage<sup>1</sup>:

$$\gamma_l = \frac{d_l \; \mathbb{E}_{x \sim B} \left[ \text{KL}(q(\boldsymbol{\epsilon}_l | \boldsymbol{x}) || p(\boldsymbol{\epsilon})) \right]}{\sum_{i=1}^L d_i \; \mathbb{E}_{x \sim B} \left[ \text{KL}(q(\boldsymbol{\epsilon}_i | \boldsymbol{x}) || p(\boldsymbol{\epsilon})) \right]}$$



<sup>&</sup>lt;sup>1</sup> Vahdat et at., 2020

### Training HMC on the posterior distribution

- Include HMC with hyper parameters  $\phi$ .
- Define HMC target as the unnormalised posterior for sampling  $\epsilon = \{\epsilon_1, ..., \epsilon_L\}$  from the posterior:

$$p^*(\epsilon_1,...,\epsilon_L,z_O,y_O) = p_{\theta}(z_O|h_1) p_{\theta}(y_O|\hat{x},h_1) \prod_{i=1}^L p(\epsilon_i)$$

Define the HMC objective as

$$\mathcal{L}_{HMC}(oldsymbol{z}_O, oldsymbol{y}_O; \{ heta, \psi, \phi\}) = \mathbb{E}_{q_{\phi}^{(T)}(oldsymbol{\epsilon})} \left[ \log p_{ heta}(oldsymbol{z}_O | oldsymbol{h}_1) + \log p_{ heta}(oldsymbol{y}_O | \hat{oldsymbol{x}}, oldsymbol{h}_1) + \sum_{l=1}^{L} p(oldsymbol{\epsilon}_l^{(T)}) 
ight]$$

• Tune the scale factor *s* using the SKSD discrepancy:

$$\mathcal{L}_{SKSD}(oldsymbol{x}_O, oldsymbol{y}_O; oldsymbol{s}) = ext{SKSD}\left(q_\phi^{(T)}(oldsymbol{\epsilon}|oldsymbol{z}_O, oldsymbol{x}_O, oldsymbol{y}_O; oldsymbol{s}), p(oldsymbol{\epsilon}|oldsymbol{z}_O, oldsymbol{x}_O, oldsymbol{y}_O)
ight)$$

### Training algorithm

- Stage 1: train marginal VAEs on each dimension.
- Stage 2: pretrain using ELBO.
- Stage 3: jointly train VAE + HMC.



#### **Algorithm 1** Training algorithm for HH-VAEM

```
Input: data \left(\boldsymbol{x}_O^{(1:N)}, \boldsymbol{y}_O^{(1:N)}\right), steps: T_d, T_{VI}, T_{HMC}
Parameters: \gamma, \theta, \psi, \phi, s
STAGE 1: MARGINAL VAES
for d = 1 to D do
    Initialize marginal VAE \{\theta_d, \gamma_d\}
    for t=1 to T_d do
        \gamma_d^{t+1}, \theta_d^{t+1} \leftarrow \operatorname{Adam}_{\gamma_d^t, \theta_d^t}(\mathcal{L}_d)
    end for
end for
STAGE 2: DEPENDENCY VAE
for t = 1 to T_{VAE} do
   \theta^{t+1}, \psi^{t+1} \leftarrow \mathrm{Adam}_{\theta^t, \psi^t}(\mathcal{L}_{VI})
end for
STAGE 3: JOINTLY OPTIMIZING VAE + HMC
for t = 1 to T_{HMC} do
    \psi^{t+1} \leftarrow \mathrm{Adam}_{\psi^t}(\mathcal{L}_{VI})
    \theta^{t+1}, \phi^{t+1} \leftarrow \operatorname{Adam}_{\theta^t, \phi^t}(\mathcal{L}_{HMC})
    s^{t+1} \leftarrow \operatorname{Adam}_{s^t}(\mathcal{L}_{SKSD})
end for
```

### **Computational cost**



• The L Leapfrog steps are executed each cycle in t=1:T

 $egin{aligned} oldsymbol{r}_{i+rac{1}{2}} &= oldsymbol{r}_i + rac{1}{2}oldsymbol{\phi}\odotoldsymbol{
abla}_{\epsilon_i} \log p^*(oldsymbol{\epsilon}_i), \ oldsymbol{\epsilon}_{i+1} &= oldsymbol{\epsilon}_i + oldsymbol{r}_{i+rac{1}{2}}\odotoldsymbol{\phi}\odotrac{1}{oldsymbol{M}}, \ oldsymbol{r}_{i+1} &= oldsymbol{r}_{i+rac{1}{2}} + rac{1}{2}oldsymbol{\phi}\odotoldsymbol{
abla}_{\epsilon_{i+1}} \log p^*(oldsymbol{\epsilon}_{i+1}) \end{aligned}$ 

- Where  $\log p^*(\epsilon) = \log p(\epsilon, \boldsymbol{z}, \boldsymbol{y}) = \log p(\boldsymbol{z}|\boldsymbol{h}_1) + p(\boldsymbol{y}|\boldsymbol{h}_1, \hat{\boldsymbol{x}}) + p(\epsilon)$
- Computing the gradients requires:
  - 1.Obtaining likelihood parameters (decoder for  $p(\mathbf{z} | \mathbf{h}_1)$ , predictor for  $p(\mathbf{y} | \mathbf{h}_1, \hat{\mathbf{x}})$ .
  - 2. Evaluating and perform the automatic differentiation.
- The extra computational cost is approximately a factor of 2TL.



(batch\_size, parallel\_chains, latent\_dimension)

# Bayesian active feature acquisition

### Proposed method: sampling-based

• Bayesian reward<sup>1</sup> can also be expressed in terms of the Mutual Information:

$$R(i, \boldsymbol{x}_{O}) = D_{\text{KL}} \left[ p(\boldsymbol{y}, x_{i} | \boldsymbol{x}_{O}) || p(\boldsymbol{y} | \boldsymbol{x}_{O}) p(x_{i} | \boldsymbol{x}_{O}) \right] = \mathcal{I}(\boldsymbol{y}; x_{i} | \boldsymbol{x}_{O}) =$$

$$= \iint_{x_{i}, \boldsymbol{y}} p_{x_{i}, \boldsymbol{y} | \boldsymbol{x}_{O}}(x_{i}, \boldsymbol{y} | \boldsymbol{x}_{O}) \log \left( \frac{p_{x_{i}, \boldsymbol{y} | \boldsymbol{x}_{O}}(x_{i}, \boldsymbol{y} | \boldsymbol{x}_{O})}{p_{x_{i} | \boldsymbol{x}_{O}}(x_{i} | \boldsymbol{x}_{O}) p_{\boldsymbol{y} | \boldsymbol{x}_{O}}(\boldsymbol{y} | \boldsymbol{x}_{O})} \right)$$

Sampling-based estimator of the Mutual Information<sup>2</sup>:

$$\hat{I}(\boldsymbol{y}; x_i \mid \boldsymbol{x}_O) \approx \sum_{ij} p_{x_i, \boldsymbol{y} \mid \boldsymbol{x}_O}(i, j) \log \frac{p_{x_i, \boldsymbol{y} \mid \boldsymbol{x}_O}(i, j)}{p_{x_i \mid \boldsymbol{x}_O}(i) p_{\boldsymbol{y} \mid \boldsymbol{x}_O}(j)}$$

- ✓ More flexible than the encoder-based method.
- ✓ Efficient, easy parallelization.

# **Experiments**Set up

- **HH-VAEM** with 2 layers of latent variables.
- Baseline models:
  - **VAEM**: The VAEM¹ strategy.
  - MIWAEM: VAEM combined with the importance weighted estimation proposed in MIWAE2.
  - H-VAEM: A Hierarchical VAEM with two layers of latent variables and a Gaussian encoder.
  - HMC-VAEM: A VAEM that includes a tuned HMC sampler for the true posterior.
- Datasets:
  - MNIST, Fashion-MNIST -> without marginal VAEs.





- 10 UCI Datasets with mixed-type data: Bank, Insurance, Avocado, Naval, Yatch, Diabetes, Concrete, Wine, Energy, Boston.
- Configuration: manually introduced missing features and target with a probability sampled from  $U(0.01,\,0.99)$  each batch.

<sup>&</sup>lt;sup>1</sup> Ma et at., 2020 <sup>2</sup> Mattei et at., 2019

# Experiments

### Mixed-type data

$$\log p(\boldsymbol{x}_{U}|\boldsymbol{x}_{O}) = \log \mathbb{E}_{\boldsymbol{\epsilon} \sim q^{(T)}(\boldsymbol{\epsilon}|\boldsymbol{x}_{O})} \left[ p(\boldsymbol{x}_{U}|\boldsymbol{\epsilon}) \right] \approx \log \frac{1}{k} \sum_{i}^{k} p(\boldsymbol{x}_{U}|\boldsymbol{\epsilon}_{i})$$

|          | Bank                         | Insurance       | Avocado                      | Naval                        | Yatch                        | Diabetes                     | Concrete                     | Wine            | Energy                       | Boston                       |
|----------|------------------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------|------------------------------|------------------------------|
| VAEM     | $2.84 \pm 0.07$              | $1.81 \pm 0.03$ | $1.89 \pm 0.01$              | $0.55 \pm 0.05$              | $3.15 \pm 0.28$              | $2.78 \pm 0.16$              | $2.45 \pm 0.26$              | $3.01 \pm 0.61$ | $2.09 \pm 0.10$              | $2.01 \pm 0.23$              |
| MIWAEM   | $2.74 \pm 0.05$              | $1.88 \pm 0.04$ | $1.92 \pm 0.04$              | $0.57 \pm 0.03$              | $2.66 \pm 0.11$              | $2.55 \pm 0.09$              | $2.34 \pm 0.51$              | $2.76 \pm 0.48$ | $2.06 \pm 0.14$              | $1.94 \pm 0.23$              |
| H-VAEM   | $2.82 \pm 0.06$              | $1.80 \pm 0.04$ | $1.89 \pm 0.01$              | $0.48 \pm 0.06$              | $3.06 \pm 0.31$              | $2.74 \pm 0.09$              | $2.42 \pm 0.21$              | $2.85 \pm 0.56$ | $1.72 \pm 0.11$              | $1.89 \pm 0.24$              |
| HMC-VAEM | $2.69 \pm 0.05$              | $1.77 \pm 0.06$ | $1.89 \pm 0.02$              | $0.49 \pm 0.07$              | $\boldsymbol{2.21 \pm 0.24}$ | $2.72 \pm 0.20$              | $2.28 \pm 0.29$              | $2.83 \pm 0.46$ | $1.73 \pm 0.05$              | $1.83 \pm 0.16$              |
| HH-VAEM  | $\boldsymbol{2.63 \pm 0.04}$ | $1.75 \pm 0.03$ | $\boldsymbol{1.88 \pm 0.05}$ | $\boldsymbol{0.40 \pm 0.05}$ | $2.47 \pm 0.27$              | $\boldsymbol{2.54 \pm 0.13}$ | $\boldsymbol{2.28 \pm 0.09}$ | $1.90 \pm 0.17$ | $\boldsymbol{1.71 \pm 0.04}$ | $\boldsymbol{1.83 \pm 0.11}$ |

Table 1: Test negative log likelihood of the unobserved features for our model and baselines.

$$\log p(\boldsymbol{y}|\boldsymbol{x}_O) = \log \mathbb{E}_{\boldsymbol{\epsilon} \sim q^{(T)}(\boldsymbol{\epsilon}|\boldsymbol{x}_O)} \left[ p(\boldsymbol{y}|\boldsymbol{\epsilon}) \right] \approx \log \frac{1}{k} \sum_{i}^{k} p(\boldsymbol{y}|\boldsymbol{\epsilon}_i),$$

|                 | Bank            | Insurance       | Avocado         | Naval                        | Yatch           | Diabetes                     | Concrete        | Wine                         | Energy          | Boston          |
|-----------------|-----------------|-----------------|-----------------|------------------------------|-----------------|------------------------------|-----------------|------------------------------|-----------------|-----------------|
| VAEM            | $0.56 \pm 0.06$ | $1.20 \pm 0.03$ | $1.18 \pm 0.02$ | $2.69 \pm 0.01$              | $0.61 \pm 0.02$ | $1.59 \pm 0.19$              | $1.07 \pm 0.09$ | $0.28 \pm 0.09$              | $0.61 \pm 0.14$ | $0.85 \pm 0.21$ |
| MIWAEM          | $0.51 \pm 0.03$ | $1.15 \pm 0.03$ | $1.15 \pm 0.03$ | $2.70 \pm 0.01$              | $0.60 \pm 0.03$ | $\boldsymbol{1.36 \pm 0.10}$ | $0.95 \pm 0.22$ | $0.28 \pm 0.13$              | $0.54 \pm 0.12$ | $0.80 \pm 0.21$ |
| H-VAEM          | $0.50 \pm 0.03$ | $1.06 \pm 0.02$ | $1.18 \pm 0.02$ | $2.68 \pm 0.01$              | $0.60 \pm 0.02$ | $1.71 \pm 0.14$              | $1.02 \pm 0.09$ | $0.26 \pm 0.11$              | $0.46 \pm 0.14$ | $0.90 \pm 0.22$ |
| <b>HMC-VAEM</b> | $0.52 \pm 0.02$ | $1.00 \pm 0.03$ | $1.12 \pm 0.03$ | $2.71 \pm 0.01$              | $0.52 \pm 0.15$ | $1.55 \pm 0.29$              | $0.95 \pm 0.26$ | $0.28 \pm 0.09$              | $0.41 \pm 0.07$ | $0.71 \pm 0.13$ |
| HH-VAEM         | $0.49 \pm 0.03$ | $0.93 \pm 0.06$ | $1.10 \pm 0.01$ | $\boldsymbol{2.62 \pm 0.01}$ | $0.56 \pm 0.02$ | $1.38 \pm 0.18$              | $0.95 \pm 0.08$ | $\boldsymbol{0.20 \pm 0.04}$ | $0.32 \pm 0.05$ | $0.55 \pm 0.04$ |

Table 2: Test negative log likelihood of the predicted target for our model and baselines.

# Experiments

### **MNIST** datasets

|         | VAE               | MIWAE             | H-VAE             | HMC-VAE           | HH-VAE                         |
|---------|-------------------|-------------------|-------------------|-------------------|--------------------------------|
| MNIST   | $0.124 \pm 0.001$ | $0.121 \pm 0.001$ | $0.119 \pm 0.001$ | $0.101 \pm 0.004$ | $\boldsymbol{0.094 \pm 0.003}$ |
| F-MNIST | $0.162\pm0.002$   | $0.160 \pm 0.002$ | $0.156\pm0.002$   | $0.150\pm0.002$   | $\boldsymbol{0.144 \pm 0.002}$ |

Table 3: Test negative log likelihood of the unobserved features for the MNIST datasets.

|         | VAE               | MIWAE           | H-VAE             | HMC-VAE           | HH-VAE            |
|---------|-------------------|-----------------|-------------------|-------------------|-------------------|
| MNIST   | $0.153 \pm 0.009$ | $0.151\pm0.007$ | $0.146 \pm 0.006$ | $0.067 \pm 0.007$ | $0.056 \pm 0.019$ |
| F-MNIST | $0.501\pm0.012$   | $0.496\pm0.008$ | $0.494\pm0.007$   | $0.357 \pm 0.060$ | $0.337 \pm 0.069$ |

Table 4: Test negative log likelihood of the predicted target for the MNIST datasets.

|         | VAE               | MIWAE             | H-VAE             | HMC-VAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HH-VAE            |
|---------|-------------------|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| MNIST   |                   |                   |                   | Service of the control of the contro | $0.981 \pm 0.005$ |
| F-MNIST | $0.824 \pm 0.005$ | $0.824 \pm 0.004$ | $0.824 \pm 0.004$ | $0.869 \pm 0.015$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.876\pm0.017$   |

Table 5: Test accuracy of the predicted digits for the MNIST datasets.

# Experiments

### Sequential Active Information Acquisition (SAIA)

• Sequentially acquiring high-value information by selecting features that maximize  $\hat{I}(m{y};x_i \mid m{x}_O)$ 





Figure 5: SAIA metric curves. Horizontal axis shows acquisition steps (number of discovered features). Vertical axis is the RMSE.

# Conclusion

- We presented:
  - 1. **HH-VAEM**: novel Hierarchical VAE improved with HMC with automatic hyperparameter optimization.
  - 2. Novel sampling-based technique based on the Mutual Information estimation for efficient information acquisition.
- Based on the provided experiments, we demonstrate that our methods:
  - ✓ Improve approximate inference in hierarchical VAEs wrt to the Gaussian approximation.
  - ✓ Improve missing data imputation task.
  - ✓ Improve prediction task.
  - ✓ Improve active learning task.

# References

- Peis, I., Ma, C., & Hernández-Lobato, J. M. (2022). Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo. arXiv preprint arXiv:2202.04599.
- Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
- Nazabal, A., Olmos, P. M., Ghahramani, Z., & Valera, I. (2020). Handling incomplete heterogeneous data using vaes. *Pattern Recognition*, 107, 107501.
- Ma, C., Tschiatschek, S., Turner, R., Hernández-Lobato, J. M., & Zhang, C. (2020). VAEM: a deep generative model for heterogeneous mixed type data. *Advances in Neural Information Processing Systems*, 33, 11237-11247.
- Ma, C., Tschiatschek, S., Palla, K., Hernández-Lobato, J. M., Nowozin, S., & Zhang, C. (2018). Eddi: Efficient dynamic discovery of high-value information with partial vae. arXiv preprint arXiv:1809.11142.
- Vahdat, A., & Kautz, J. (2020). NVAE: A deep hierarchical variational autoencoder. *Advances in Neural Information Processing Systems*, 33, 19667-19679.
- Maaløe, L., Fraccaro, M., Liévin, V., & Winther, O. (2019). Biva: A very deep hierarchy of latent variables for generative modeling. *Advances in neural information processing systems*, 32.

### References

- Child, R. (2020). Very deep vaes generalize autoregressive models and can outperform them on images. arXiv preprint arXiv:2011.10650.
- Tomczak, J., & Welling, M. (2018, March). VAE with a VampPrior. In *International Conference on Artificial Intelligence and Statistics* (pp. 1214-1223). PMLR.
- Ruiz, F. J., Titsias, M. K., Cemgil, T., & Doucet, A. (2021, December). Unbiased gradient estimation for variational autoencoders using coupled Markov chains. In *Uncertainty in Artificial Intelligence* (pp. 707-717). PMLR.
- Cremer, C., Li, X., & Duvenaud, D. (2018, July). Inference suboptimality in variational autoencoders. In *International Conference on Machine Learning* (pp. 1078-1086). PMLR.
- Mattei, P. A., & Frellsen, J. (2019, May). MIWAE: Deep generative modelling and imputation of incomplete data sets. In *International conference on machine learning* (pp. 4413-4423). PMLR.
- Bernardo, J. M. (1979). Expected information as expected utility. the Annals of Statistics, 686-690.
- Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint arXiv:1701.02434.
- Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of markov chain monte carlo, 2(11), 2.

### References

- Betancourt, M., & Girolami, M. (2015). Hamiltonian Monte Carlo for hierarchical models. *Current trends in Bayesian methodology with applications*, 79(30), 2-4.
- Campbell, A., Chen, W., Stimper, V., Hernandez-Lobato, J. M., & Zhang, Y. (2021, July). A gradient based strategy for hamiltonian monte carlo hyperparameter optimization. In *International Conference on Machine Learning* (pp. 1238-1248). PMLR.
- Gong, W., Li, Y., & Hernández-Lobato, J. M. (2020). Sliced kernelized Stein discrepancy. arXiv preprint arXiv:2006.16531.
- Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information. *Physical review E*, 69(6), 066138.