# Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA



#### Teste 1 de Análise Matemática I - Engenharia Informática

20 de novembro de 2019 Duração: 1h45m

#### Não é permitido utilizar máquina de calcular ou telemóvel durante a prova

| [2.0val.] | 1. | (a) | Considere a | função | f(x) | $= 3 + 2 \ln($ | (x-2). |
|-----------|----|-----|-------------|--------|------|----------------|--------|
|-----------|----|-----|-------------|--------|------|----------------|--------|

[0.625 val.] i) Caracterize a função inversa de f, indicando o domínio, o contradomínio e a expressão apolítico

analítica

 $[0.375 \ val.]$ 

 $[1.5 \, val.]$ 

 $[0.25 \, val.]$ 

 $[1.75\ val.]$ 

ii) Calcule os valores de f(3) e  $f^{-1}(3)$ . Comente os resultados.

[0.375 val.] (b) i) Calcule o valor numérico da expressão  $\sin\left(\frac{7\pi}{2} - \arccos\left(-\frac{1}{2}\right)\right)$ .

[0.625 val.] ii) Resolva a equação  $1 + \cos(2x - \pi) = \frac{1}{2}$ .

 $[1.0\,val.]$  2. A equação  $e^{x-3}=-x+3$  tem uma única solução, mas não pode ser determinada analiticamente.

[0.5 val.] (a) Recorrendo ao método gráfico, localize a solução da equação.

[0.5 val.] (b) Partindo do intervalo indicado na alínea anterior, efectue 2 iterações de um método numérico (bissecção ou Newton) para estimar a solução da equação dada. Indique um majorante para o erro dessa estimativa.

[1.0 val.] 3. (a) Recorrendo à definição de primitiva, mostre que

 $\int \frac{e^{2x} - e^x}{\sqrt{1 - e^{2x}}} dx = -(1 - e^{2x})^{\frac{1}{2}} - \arcsin(e^x) + c, \quad c \in \mathbb{R}.$ 

[0.5 val.] (b) Calcule a primitiva  $\int \frac{\arcsin(x)}{\sqrt{9-9x^2}} dx.$ 

[1.25 val.] 4. (a) Calcule o integral definido  $\int_1^{27} \frac{\sqrt{x} + \sqrt[3]{x}}{\sqrt{x^3}} dx .$ 

[1.0 val.] (b) O cálculo do integral  $\int_{1}^{2} \ln\left(\frac{x}{2}\right) dx$  requer a utilização da técnica de primitivação por partes pelo que não pode, ainda, ser determinado de forma exacta. Determine uma estimativa para o integral, recorrendo à regra dos trapézios e a uma partição uniforme em 5 sub-intervalos.

 $[4.75\,val.]$  5. Considere a região  $\mathcal{A}$ , sombreada, da figura seguinte.



[0.5 val.] (a) Defina a região  $\mathcal{A}$  na forma  $\{(x,y) \in \mathbb{R}^2 : a \leq y \leq b \land f(y) \leq x \leq g(y)\}$ .

(b) Usando integrais, indique expressões simplificadas que permitam calcular a área de  $\mathcal{A}$  i) em função da variável y; ii) em função da variável x.

(c) Analise as vantagens e as desvantagens de cada uma das expressões da alínea anterior.

(d) Usando integrais, indique expressões simplificadas que permitam calcular o volume da região que se obtém pela rotação da região  $\mathcal A$  em torno do eixo

i) Ox; ii) Oy.

[0.75 val.] (e) Indique, justificando, o que representa o integral  $\int_0^1 \sqrt{1+4x^2} \, dx.$ 

# Métodos numéricos para resolução de equações

Método da bissecção: 
$$x_n=\frac{a_n+b_n}{2}, \quad n=1,2,\ldots$$
 erro  $\leq |x_n-x_{n-1}|$  Método de Newton:  $x_n=x_{n-1}-\frac{f(x_{n-1})}{f'(x_{n-1})}, \quad n=1,2,\ldots$  erro  $\approx |x_n-x_{n-1}|$ 

## Integração numérica

Regra dos trapézios: 
$$\int_a^b f(x) dx \simeq \frac{h}{2} \Big[ f(x_0) + \frac{2}{2} f(x_1) + \dots + \frac{2}{2} f(x_{n-1}) + f(x_n) \Big]$$
erro  $\leq \frac{(b-a)^3}{12 n^2} \times \max_{[a,b]} |f''(x)|$ 

Regra de Simpson: 
$$\int_{a}^{b} f(x) dx \simeq \frac{h}{3} \Big[ f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \Big]$$

$$\text{erro } \leq \frac{(b-a)^5}{180 \, n^4} \times \max_{[a,b]} |f''''(x)|$$

| x     | $\sqrt{x}$ | $x^2$ | $e^x$ | ln(x) | $\frac{1}{x}$ | $\sin(x)$ | $\cos(x)$ |
|-------|------------|-------|-------|-------|---------------|-----------|-----------|
| -1.00 | -          | 1.00  | 0.37  |       | -1.00         | -0.84     | 0.54      |
| -0.90 | _          | 0.81  | 0.41  | _     | -1.11         | -0.78     | 0.62      |
| -0.80 | _          | 0.64  | 0.45  | _     | -1.25         | -0.72     | 0.70      |
| -0.75 | _          | 0.56  | 0.47  | _     | -1.33         | -0.68     | 0.73      |
| -0.70 | _          | 0.49  | 0.50  | _     | -1.43         | -0.64     | 0.76      |
| -0.60 | _          | 0.36  | 0.55  | _     | -1.67         | -0.56     | 0.83      |
| -0.50 | _          | 0.25  | 0.61  | _     | -2.00         | -0.48     | 0.88      |
| -0.40 | _          | 0.16  | 0.67  | _     | -2.50         | -0.39     | 0.92      |
| -0.30 | _          | 0.09  | 0.74  | _     | -3.33         | -0.30     | 0.96      |
| -0.25 | _          | 0.06  | 0.78  | _     | -4.00         | -0.25     | 0.97      |
| -0.20 | _          | 0.04  | 0.82  | _     | -5.00         | -0.20     | 0.98      |
| -0.10 | _          | 0.01  | 0.90  | _     | -10.00        | -0.10     | 1.00      |
| 0.00  | 0.00       | 0.00  | 1.00  | _     | _             | 0.00      | 1.00      |
| 0.10  | 0.32       | 0.01  | 1.11  | -2.30 | 10.00         | 0.10      | 1.00      |
| 0.20  | 0.45       | 0.04  | 1.22  | -1.61 | 5.00          | 0.20      | 0.98      |
| 0.25  | 0.50       | 0.06  | 1.28  | -1.39 | 4.00          | 0.25      | 0.97      |
| 0.30  | 0.55       | 0.09  | 1.35  | -1.20 | 3.33          | 0.30      | 0.96      |
| 0.40  | 0.63       | 0.16  | 1.49  | -0.92 | 2.50          | 0.39      | 0.92      |
| 0.50  | 0.71       | 0.25  | 1.65  | -0.69 | 2.00          | 0.48      | 0.88      |
| 0.60  | 0.77       | 0.36  | 1.82  | -0.51 | 1.67          | 0.56      | 0.83      |
| 0.70  | 0.84       | 0.49  | 2.01  | -0.36 | 1.43          | 0.64      | 0.76      |
| 0.75  | 0.87       | 0.56  | 2.12  | -0.29 | 1.33          | 0.68      | 0.73      |
| 0.80  | 0.89       | 0.64  | 2.23  | -0.22 | 1.25          | 0.72      | 0.70      |
| 0.90  | 0.95       | 0.81  | 2.46  | -0.11 | 1.11          | 0.78      | 0.62      |
| 1.00  | 1.00       | 1.00  | 2.72  | 0.00  | 1.00          | 0.84      | 0.54      |

## DEPARTMENT OF PHYSICS AND MATHEMATICS



1h45m

Calculus I - Informatics Engineering - test 1

[2.0 val.] 1. (a) Consider the function  $f(x) = 3 + 2\ln(x-2)$ .

November 20th, 2019

- i) Define the inverse function  $f^{-1}$  (domain, codomain and analytical expression).
- ii) Determine f(3) and  $f^{-1}(3)$ . Comment the results.
- (b) i) Perform the numerical value of  $\sin\left(\frac{7\pi}{2} \arccos\left(-\frac{1}{2}\right)\right)$ .
  - ii) Solve the equation  $1 + \cos(2x \pi) = \frac{1}{2}$ .

[1.0 val.] 2. The equation  $e^{x-3} = -x + 3$  has one single solution, but can not be determined using analytical techniques.

- (a) Using graphical method, locate the solution.
- (b) Using the interval from paragraph (a), perform 2 iterations of a numerical method (bisection or Newton) to estimate the solution. Present an upper bound for the error of this estimate.

[1.0 val.] 3. (a) Using indefinite integral definition, prove that

$$\int \frac{e^{2x} - e^x}{\sqrt{1 - e^{2x}}} dx = -(1 - e^{2x})^{\frac{1}{2}} - \arcsin(e^x) + c, \quad c \in \mathbb{R}.$$

(b) Determine the indefinite integral  $\int \frac{\arcsin(x)}{\sqrt{9-9x^2}} dx$ .

[2.25 val.] 4. (a) Determine the definite integral  $\int_{1}^{27} \frac{\sqrt{x} + \sqrt[3]{x}}{\sqrt{x^3}} dx.$ 

(b) The value of the definite integral  $\int_1^2 \ln\left(\frac{x}{2}\right) dx$  requires integration by parts technique so it cannot, yet, be determined exactly. Using trapezoidal rule and an uniform partition with 5 sub-intervals, determine an estimate for the definite integral.

[4.75 val.] 5. Consider the region  $\mathcal{A}$  presented in the following figure.



- (a) Define region  $\mathcal{A}$  using the form  $\{(x,y) \in \mathbb{R}^2 : a \leq y \leq b \land f(y) \leq x \leq g(y)\}$
- (b) Using definite integrals, determine simplified analytical expressions that allow to determine the area of region  $\mathcal A$ 
  - i) using the variable y; ii) using the variable x.
- (c) Analyze the advantages and disadvantages of each of the expressions of the previous paragraph.
- (d) Using definite integrals, define simplified expressions that allow to determine the volume of solids obtained by rotating the region  $\mathcal{A}$  about
  - i) x-axis;

- ii) y-axis.
- (e) Explain, justifying, what represents the definite integral  $\int_0^1 \sqrt{1+4x^2} \, dx$ .

### Numerical methods for equations

Bisection method: 
$$x_n = \frac{a_n + \overline{b_n}}{2}$$
,  $n = 1, 2, \dots$  error  $\leq |x_n - \overline{x_{n-1}}|$ 

Newton's method: 
$$x_n = \frac{x_{n-1}}{f'(x_{n-1})}, \quad n = 1, 2, ...$$
 error  $\approx |x_n - x_{n-1}|$ 

## Numerical integration

Trapezoidal rule: 
$$\int_a^b f(x) dx \simeq \frac{h}{2} \Big[ f(x_0) + \frac{2}{2} f(x_1) + \dots + \frac{2}{2} f(x_{n-1}) + f(x_n) \Big]$$
$$\operatorname{error} \leq \frac{(b-a)^3}{12 n^2} \times \max_{[a,b]} |f''(x)|$$

Simpson's rule: 
$$\int_{a}^{b} f(x) dx \simeq \frac{h}{3} \Big[ f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \Big]$$

$$\operatorname{error} \leq \frac{(b-a)^5}{180 n^4} \times \max_{[a,b]} |f''''(x)|$$

| x     | $\sqrt{x}$ | $x^2$ | $e^x$ | ln(x) | $\frac{1}{x}$ | $\sin(x)$ | $\cos(x)$ |
|-------|------------|-------|-------|-------|---------------|-----------|-----------|
| -1.00 | -          | 1.00  | 0.37  | _     | -1.00         | -0.84     | 0.54      |
| -0.90 | _          | 0.81  | 0.41  | _     | -1.11         | -0.78     | 0.62      |
| -0.80 | _          | 0.64  | 0.45  | _     | -1.25         | -0.72     | 0.70      |
| -0.75 | _          | 0.56  | 0.47  | _     | -1.33         | -0.68     | 0.73      |
| -0.70 | _          | 0.49  | 0.50  | _     | -1.43         | -0.64     | 0.76      |
| -0.60 | _          | 0.36  | 0.55  | _     | -1.67         | -0.56     | 0.83      |
| -0.50 | _          | 0.25  | 0.61  | _     | -2.00         | -0.48     | 0.88      |
| -0.40 | _          | 0.16  | 0.67  | _     | -2.50         | -0.39     | 0.92      |
| -0.30 | _          | 0.09  | 0.74  | _     | -3.33         | -0.30     | 0.96      |
| -0.25 | _          | 0.06  | 0.78  | _     | -4.00         | -0.25     | 0.97      |
| -0.20 | _          | 0.04  | 0.82  | _     | -5.00         | -0.20     | 0.98      |
| -0.10 | _          | 0.01  | 0.90  | _     | -10.00        | -0.10     | 1.00      |
| 0.00  | 0.00       | 0.00  | 1.00  | _     | _             | 0.00      | 1.00      |
| 0.10  | 0.32       | 0.01  | 1.11  | -2.30 | 10.00         | 0.10      | 1.00      |
| 0.20  | 0.45       | 0.04  | 1.22  | -1.61 | 5.00          | 0.20      | 0.98      |
| 0.25  | 0.50       | 0.06  | 1.28  | -1.39 | 4.00          | 0.25      | 0.97      |
| 0.30  | 0.55       | 0.09  | 1.35  | -1.20 | 3.33          | 0.30      | 0.96      |
| 0.40  | 0.63       | 0.16  | 1.49  | -0.92 | 2.50          | 0.39      | 0.92      |
| 0.50  | 0.71       | 0.25  | 1.65  | -0.69 | 2.00          | 0.48      | 0.88      |
| 0.60  | 0.77       | 0.36  | 1.82  | -0.51 | 1.67          | 0.56      | 0.83      |
| 0.70  | 0.84       | 0.49  | 2.01  | -0.36 | 1.43          | 0.64      | 0.76      |
| 0.75  | 0.87       | 0.56  | 2.12  | -0.29 | 1.33          | 0.68      | 0.73      |
| 0.80  | 0.89       | 0.64  | 2.23  | -0.22 | 1.25          | 0.72      | 0.70      |
| 0.90  | 0.95       | 0.81  | 2.46  | -0.11 | 1.11          | 0.78      | 0.62      |
| 1.00  | 1.00       | 1.00  | 2.72  | 0.00  | 1.00          | 0.84      | 0.54      |

 (a) i) Começamos por notar que a função f é injectiva e portanto é invertível. Para caracterizar a função inversa é necessário definir o domínio, o contradomínio e a expressão analítica, ou seja, é necessário completar o seguinte diagrama:

O contradomínio da função inversa coincide com o domínio da função original pelo que, tendo em conta o domínio do logaritmo, tem-se

$$CD_{f^{-1}} = D_f = \{x \in \mathbb{R} : x - 2 > 0\} = \{x \in \mathbb{R} : x > 2\} = ]2, +\infty[.$$

A função inversa tem expressão analítica dada por

$$y = 3 + 2\ln(x - 2) \iff y - 3 = 2\ln(x - 2)$$

$$\Leftrightarrow \frac{y - 3}{2} = \ln(x - 2)$$

$$\Leftrightarrow e^{\frac{y - 3}{2}} = x - 2$$

$$\Leftrightarrow 2 + e^{\frac{y - 3}{2}} = x.$$

e, consequentemente, tem domínio

$$D_{f^{-1}} = \mathbb{R}.$$

Tem-se então

$$D_{f} = CD_{f^{-1}} = ]2, +\infty[ \xrightarrow{f} CD_{f} = D_{f^{-1}} = \mathbb{R}$$

$$2 + e^{\frac{y-3}{2}} = x = f^{-1}(y) \longleftrightarrow f(x) = y = 3 + 2\ln(x - 2)$$

ii) Tendo em conta a expressão da função f(x), tem-se

$$f(3) = 3 + 2\ln(3 - 2) = 3 + 2\ln(1) = 3 + 0 = 3$$

e portanto, por definição de função inversa  $(y = f(x) \Leftrightarrow f^{-1}(y) = x)$ , tem-se também

$$f^{-1}(3) = 3$$
.

(b) i) Tendo em conta a restrição principal do cosseno, tem-se

$$\sin\left(\frac{7\pi}{2} - \arccos\left(-\frac{1}{2}\right)\right) = \sin\left(\frac{7\pi}{2} - \frac{2\pi}{3}\right)$$



$$=$$
  $\sin\left(\frac{17\pi}{6}\right)$ 



$$= \sin\left(\frac{\pi}{6}\right)$$
$$= \frac{1}{2}.$$

ii) Recorrendo ao círculo trigonométrico e aos ângulos de referência, tem-se

$$1 + \cos(2x - \pi) = \frac{1}{2} \Leftrightarrow \cos(2x - \pi) = -\frac{1}{2}$$

$$\pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

$$-\frac{2\pi}{3}$$

$$\Leftrightarrow 2x - \pi = \frac{2\pi}{3} + k \, 2\pi \, \vee \, 2x - \pi = -\frac{2\pi}{3} + k \, 2\pi \,, \quad k \in \mathbb{Z}$$

$$\Leftrightarrow 2x = \frac{5\pi}{3} + k \, 2\pi \, \vee \, 2x = \frac{\pi}{3} + k \, 2\pi \,, \quad k \in \mathbb{Z}$$

$$\Leftrightarrow x = \frac{5\pi}{6} + k \, \pi \, \vee \, x = \frac{\pi}{6} + k \, \pi \,, \quad k \in \mathbb{Z}.$$

2. (a) Tendo em conta que

$$e^{x-3} = -x + 3$$

as soluções da equação correspondem às abcissas dos pontos de intersecção dos gráficos das funções  $f_1(x)=e^{x-3}$  e  $f_2(x)=-x+3$ . Então, a solução pertence ao intervalo [2,3]:



(b) Tendo em conta que

$$e^{x-3} = -x+3 \Leftrightarrow e^{x-3}+x-3=0$$
.

vamos considerar a função  $f(x) = e^{x-3} + x - 3$ .

Recorrendo ao método da bissecção, tem-se

| n | [a, b]   | $x_n$ | erro máximo | f(a)                             | $f(x_n)$                                  | f(b)                 |
|---|----------|-------|-------------|----------------------------------|-------------------------------------------|----------------------|
| 1 | [2, 3]   | 2.5   | 0.5         | $f(2) = e^{-1} - 1 \simeq -0.63$ | $f(2.5) = e^{-0.5} - 0.5 \simeq 0.11$     | $f(3) = e^0 - 0 = 1$ |
| 2 | [2, 2.5] | 2.25  | 0.25        | $f(2) \simeq -0.63$              | $f(2.25) = e^{-0.75} - 0.75 \simeq -0.28$ | $f(2.5) \simeq 0.11$ |

Então,  $\overline{x} = 2.25$  é uma aproximação para a solução, com erro máximo 0.25.

Recorrendo ao método de Newton, tem-se  $f'(x) = e^{x-3} + 1$  e

| n | $x_n$                                                                                                                           | erro               |
|---|---------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 0 | 3                                                                                                                               | _                  |
| 1 | $3 - \frac{f(3)}{f'(3)} = 3 - \frac{e^0 + 0}{e^0 + 1} = 3 - \frac{1}{2} = 2.5$                                                  | 3 - 2.5  = 0.5     |
| 2 | $2.5 - \frac{f(2.5)}{f'(2.5)} = 2.5 - \frac{e^{-0.5} - 0.5}{e^{-0.5} + 1} \simeq 2.5 - \frac{0.61 - 0.5}{0.61 + 1} \simeq 2.43$ | 2.5 - 2.43  = 0.07 |

Então,  $\overline{x} = 2.43$  é uma aproximação para a solução, com erro máximo 0.07.

3. (a) Basta notar que

$$\underbrace{\left(-(1-e^{2x})^{\frac{1}{2}} - \arcsin(e^{x}) + c\right)'}_{R4+R3} = -\underbrace{\left((1-e^{2x})^{\frac{1}{2}}\right)'}_{R7} - \underbrace{\left(\arcsin(e^{x})\right)'}_{R19} + \underbrace{\left(c\right)'}_{R1} + \underbrace{\left(c\right)'}_{R1} = -\frac{1}{2}(1-e^{2x})^{-\frac{1}{2}}\underbrace{\left(1-e^{2x}\right)'}_{R4+R3} - \underbrace{\frac{R9}{(e^{x})'}}_{R4+R3} + 0$$

$$= -\frac{1}{2}\frac{1}{(1-e^{2x})^{\frac{1}{2}}}\underbrace{\left(\underbrace{(1)'}_{R1} - \underbrace{(e^{2x})'}_{R9}\right) - \frac{e^{x}}{\sqrt{1-e^{2x}}}}_{q} = -\frac{1}{2}\frac{1}{\sqrt{1-e^{2x}}}\underbrace{\left(0-2e^{2x}\right) - \frac{e^{x}}{\sqrt{1-e^{2x}}}}_{q} = \underbrace{\frac{e^{2x}}{\sqrt{1-e^{2x}}} - \frac{e^{x}}{\sqrt{1-e^{2x}}}}_{q}$$

$$= \underbrace{\frac{e^{2x}}{\sqrt{1-e^{2x}}}}_{q} \checkmark$$

(b) Tem-se

$$\int \frac{\arcsin(x)}{\sqrt{9 - 9x^2}} dx = \int \frac{1}{\sqrt{9(1 - x^2)}} \arcsin(x) dx = \frac{1}{\sqrt{9}} \int \underbrace{\frac{1}{\sqrt{1 - x^2}} \arcsin(x)}_{R2} dx$$
$$= \frac{1}{3} \frac{\left(\arcsin(x)\right)^2}{2} + c = \frac{1}{6} \arcsin^2(x) + c, \quad c \in \mathbb{R}.$$

4. (a) Tem-se

$$\int_{1}^{27} \frac{\sqrt{x} + \sqrt[3]{x}}{\sqrt{x^{3}}} dx = \int_{1}^{27} \frac{x^{\frac{1}{2}} + x^{\frac{1}{3}}}{x^{\frac{3}{2}}} dx$$

$$= \int_{1}^{27} \frac{1}{x} + x^{\frac{1}{3} - \frac{3}{2}} dx$$

$$= \int_{1}^{27} \underbrace{\frac{1}{x}}_{R5} dx + \int_{1}^{27} \underbrace{x^{-\frac{7}{6}} \cdot 1}_{R2} dx$$

$$= \left[ \ln|x| + \frac{x^{-\frac{1}{6}}}{-\frac{1}{6}} \right]_{1}^{27}$$

$$= \ln(27) - 6 \frac{1}{\sqrt[6]{27}} - \left( \ln(1) - 6 \frac{1}{\sqrt[6]{1}} \right)$$

$$= \ln(27) - \frac{6}{\sqrt{3}} + 6.$$

(b) Considerando a regra dos trapézios e uma partição uniforme do intervalo [1,2] em 5 subintervalos, tem-se

$$\int_{1}^{2} \underbrace{\ln\left(\frac{x}{2}\right)}_{f(x)} dx \simeq \frac{0.2}{2} \Big( f(1) + 2f(1.2) + 2f(1.4) + 2f(1.6) + 2f(1.8) + f(2) \Big)$$

$$= 0.1 \Big( \ln(0.5) + 2\ln(0.6) + 2\ln(0.7) + 2\ln(0.8) + 2\ln(0.9) + \ln(1) \Big)$$

$$\simeq 0.1 \Big( -0.69 + 2 \times (-0.51) + 2 \times (-0.36) + 2 \times (-0.22) + 2 \times (-0.11) + 0 \Big)$$

$$= 0.1 \Big( -0.69 - 1.02 - 0.72 - 0.44 - 0.22 \Big)$$

$$= -0.309$$

- 5. (a) Comecemos por explicitar as funções que delimitam a região:
  - $y = \sin(2x) \Leftrightarrow \arcsin(y) = 2x \Leftrightarrow \frac{1}{2}\arcsin(y) = x$ , na restrição principal!  $y = -x^2 \Leftrightarrow -y = x^2 \Leftrightarrow x = \pm \sqrt{-y}$



Tem-se então

$$\mathcal{A} = \left\{ (x, y) \in \mathbb{R}^2 : -1 \le y \le 0 \quad \land \quad \frac{1}{2} \arcsin(y) \le x \le \sqrt{-y} \right\}.$$

i. Atendendo à alínea anterior, tem-se imediatamente

$$\text{Área}(\mathcal{A}) = \int_{-1}^{0} \underbrace{\sqrt{-y}}_{f_{sup}} - \underbrace{\frac{1}{2} \arcsin(y)}_{f_{inf}} dy$$

- ii. Comecemos por determinar os valores dos extremos de integração:
  - $\sin(2x) = -1 \Leftrightarrow 2x = -\frac{\pi}{2} + k \, 2\pi \Leftrightarrow x = -\frac{\pi}{4} + k \, \pi, \ k \in \mathbb{Z} \Rightarrow x = -\frac{\pi}{4}$
  - $-x^2 = -1 \Leftrightarrow x^2 = 1 \Leftrightarrow x = \pm 1$

Atendendo à representação dada, tem-se então



$$\text{Área}(\mathcal{A}) = \int_{-\frac{\pi}{4}}^{0} \underbrace{\sin(2x)}_{f_{sup}} - \underbrace{(-1)}_{f_{inf}} dx + \int_{0}^{1} \underbrace{-x^{2}}_{f_{sup}} - \underbrace{(-1)}_{f_{inf}} dx 
= \int_{-\frac{\pi}{4}}^{0} \sin(2x) + 1 dx + \int_{0}^{1} -x^{2} + 1 dx$$

- (c) A expressão da alínea b(i) tem a vantagem de envolver apenas um integral, mas tem a desvantagem de esse integral envolver uma função que não tem primitiva imediata (o arco seno). A expressão da alínea b(ii) tem a desvantagem de envolver dois integrais, mas tem a vantagem de todas as funções desses integrais admitirem primitivas imediatas.
- i. O volume do sólido de revolução que se obtém pela rotação da região  $\mathcal A$  em torno do eixo  $Ox ext{ \'e dado por}$

Volume(
$$\mathcal{A}_{Ox}$$
) =  $\pi \int_{-\frac{\pi}{4}}^{0} \left(\underbrace{-1}_{R_{ext}}\right)^{2} - \left(\underbrace{\sin(2x)}_{R_{int}}\right)^{2} dx + \pi \int_{0}^{1} \left(\underbrace{-1}_{R_{ext}}\right)^{2} - \left(\underbrace{-x^{2}}_{R_{int}}\right)^{2} dx$   
=  $\pi \int_{-\frac{\pi}{4}}^{0} 1 - \sin^{2}(2x) dx + \pi \int_{0}^{1} 1 - x^{4} dx$ .



ii. Na rotação da região  $\mathcal{A}$  em torno do eixo Oy o sólido gerado pela parte esquerda vai ficar embutido no sólido gerado pela parte direita, pelo que temos que considerar apenas a rotação desta última:



Assim,

Volume
$$(\mathcal{A}_{Oy})$$
 =  $\pi \int_{-1}^{0} \left( \underbrace{\sqrt{-y}}_{R_{ext}} \right)^{2} - \left( \underbrace{0}_{R_{int}} \right)^{2} dy$   
 =  $\pi \int_{-1}^{0} -y \, dy$ .



(e) O integral representa o comprimento da fronteira  $A_2$ :



Comprimento(
$$\mathcal{A}_2$$
) =  $\int_0^1 \sqrt{1 + \left[ (-x^2)' \right]^2} dx = \int_0^1 \sqrt{1 + \left[ -2x \right]^2} dx = \int_0^1 \sqrt{1 + 4x^2} dx$ .