

PerkLab research methodology overview

Andras Lasso, PhD

Associate Director

Laboratory for Percutaneous Surgery (PerkLab)

School of Computing

Queen's University, Kingston, ON, Canada

PerkLab

- About 20-25 members
- From computer science, electrical engineering, and mechanical engineering departments and medical school
- 1/4 undergrad
 1/4 Masters
 1/4 PhD, postdoc
 1/4 faculty, staff research engineers continuity

Research focus:

- Percutaneous interventions
- Image guidance
- Tool navigation
- Translational research

Scope

From algorithms to tools

- Can it be done?
 - Prototypes
- Is it worth doing?
 - Tools for translational research
- Standard of care
 - Commercially available clinical "devices" with regulatory approval

Ron Kikinis, Harvard SPL, 2012

Reproducible research – theory

- Scientific method: propose hypothesis, prove it by experiments
- Mistakes, bias, ... => repeatability
- Full specification

Victoria Stodden, Enabling reproducible research: licensing for scientific innovation

- Research paper
- Data (with description the data, how it was acquired, processed, including the source code that was used for processing, ...)
- Experiment (source code, instructions, parameters, ...)
- Results (source code, documentation, data, ...)
- Reduced duplicate efforts, higher credibility, higher quality outcome, community, ...

J.P.A. Ioannidis,

Why Most Published

Research Findings are

False,

PLoS Med 2(8), 2004

Reproducible research – practice

- By default openly available source code, full documentation, all data
- Permissive license no strings attached
 - BSD: redistribution, modification, ... all allowed
 - Provided as is
 - Don't use the author name for endorsement
 - Don't remove the license
- Can we afford to give away all these?
 - Full disclosure mostly delayed until publication
 - Exceptional ideas are patented before publication
 - Maintain competitive advantage by continuous improvement
 - We get a lot in return

Industry best practices

- Brought in by industry-trained staff members
- Adopt procedures that increase quality & productivity
- Keep overhead at the minimum
 - Usually no need to comply to external regulations (Health Canada, FDA, CE, ...)
- Learning these: investment with a short payback period

Planning, design, implementation

- Web-based, integrated project management:
 - <u>GitHub</u>: unlimited public repositories for free; free private repositories for university research labs
 - Tools: revision control, code review, bugtracking, project boards, releases, website hosting; very limited: messaging, discussion
- Automated build and API documentation generation (<u>CMake</u>, <u>Doxygen</u>), <u>tutorials</u>

Verification

- Automatic continuous and nightly build and test (CTest)
- Web-based dashboard (CDash)
- Automatic GUI testing with QtTesting: record&replay Qt events

CTest results reported on CDash

Validation

- Fidelity levels: Simulated < Synthetic phantoms <
 Animal tissue (butcher shop) < Cadaver < Patient
- Ethics approval: required for human subject studies, evaluation on patient cases

Phantoms

- Hard tissue (bone): 3D printed, with Barium coating for X-ray visibility
- Soft tissue: water based (agar, gelatin), PVC, silicon
- Skin: super soft silicon rubber
- Vessels: rubber tubes
- Targets, validation points

http://perk-software.cs.queensu.ca/plus/doc/nightly/modelcatalog/

Software platform

Without an application platform

Building on an application platform

- Each application is developed from ground up
- Completely new software is developed for each problem/procedure/device
- Significant work is needed to integrate new, advanced algorithms

- Core functionalities are already implemented
- New software modules can be developed for specific needs
- Many new, advanced algorithms are available
- Well-supported with a large user and developer community

Quick start.

Huge waste of time, money, and effort overall.

Investment at the beginning: learning.

Minimal wasted efforts.

3D Slicer and the NA-MIC Kit

PerkLab systems overview

Building on a platform

LINES OF SOURCE CODE - ILLUSTRATED THROUGH LUMPNAV

Summary

Translational research

Reproducible research

Industry best practices

Building on one platform

not

