ESTATÍSTICA

Michelle Hanne Soares de Andrade

michellehanne.andrade@gmail.com

Teste de Hipótese

Introdução

- Um importante tipo de problema em Inferência Estatística é determinar se uma amostra pode ter vindo de uma população tendo uma distribuição parcial ou completamente especificada.
- **Exemplo1:** se sabemos que uma amostra veio de uma distribuição normal, é razoável dizer que ela veio de uma distribuição com média μ_0 ?
- **Exemplo2:** duas amostras vieram de distribuições normais, é razoável dizer que estas vieram de distribuições que têm médias iguais?

Introdução

Teste de hipóteses

População

Conjectura (hipótese) sobre o comportamento de variáveis

Decisão sobre a admissibilidade da hipótese

Resultados reais obtidos

Hipóteses Estatísticas

Uma hipótese estatística é uma afirmação sobre a distribuição (ou parâmetros) de uma ou mais variáveis aleatórias. Uma hipótese estatística pode ser verdadeira ou não.

Hipóteses Estatísticas - Exemplo

Hipóteses

- a)Substituindo o processador *A* pelo processador *B*, altera-se o tempo de resposta de um computador.
- **b)**Aumentando a dosagem de cimento, aumenta-se a resistência do concreto.
- c) Uma certa campanha publicitária produz efeito positivo nas vendas.
- d) A implementação de um programa de melhoria da qualidade em uma empresa prestadora de serviços melhora a satisfação de seus clientes.

Hipóteses em Termos de Parâmetros

- **a)** A *média* dos tempos de resposta do equipamento com o processador *A é diferente* da *média* dos tempos de resposta com o processador *B*.
- b) A média dos valores de resistência do concreto com a dosagem d₂ de cimento é maior do que a média dos valores de resistência com a dosagem d₁.
- c) A média das vendas depois da campanha publicitária é maior do que a média das vendas antes da campanha publicitária.
- d) A proporção de reclamações após a realização do programa de melhoria da qualidade é menor do que antes da realização do programa.

Hipóteses Nulas

a)
$$H_0$$
: $\mu_A = \mu_B$ e H_1 : $\mu_A \neq \mu_B$ onde: μ_A é o tempo médio de resposta com o processador A ; e μ_B é o tempo médio de resposta com o processador B .

b)
$$H_0$$
: $\mu_2 = \mu_1$ e H_1 : $\mu_2 > \mu_1$ onde:

 μ_2 é a resistência média do concreto com a dosagem d_2 de cimento; e μ_1 é a resistência média do concreto com a dosagem d_1 de cimento.

Hipóteses Nulas

- **c)** H_0 : $\mu_2 = \mu_1$ e H_1 : $\mu_2 > \mu_1$ onde:
- μ_1 é o valor médio das vendas antes da campanha publicitária; e
- μ_2 é o valor médio das vendas depois da campanha publicitária.
- **d)** H_0 : $p_2 = p_1$ e H_1 : $p_2 < p_1$ onde:
- p₁ é a proporção de reclamações antes do programa de melhoria da qualidade; e
- p₂ é a proporção de reclamações depois do programa de melhoria da qualidade.

Hipóteses Estatísticas - Exemplo

Podemos abreviar esta questão dizendo que desejamos testar a hipótese estatística:

$$H_0$$
: $\mu = \mu_0$ contra a alternativa H_1 : $\mu \neq \mu_0$

- lacktriangle usando a amostra de tamanho n e a média \overline{X} .
- H_0 é chamada de Hipótese Nula e H_1 é chamada de Hipótese Alternativa.

Teste de Hipótese

Um teste de hipótese estatística é uma regra geral tal que, quando os valores de uma amostra são obtidos, leva à decisão de aceitar ou rejeitar a hipótese considerada.

Teste de Hipótese

Hipótese Nula H₀

Não há diferença ou correlação $(\mu_{1}=\mu_{2})$

Hipótese Alternativa H₁

Há diferença ou correlação $(\mu_{1\neq}\mu_2)$

ERROS DO TIPO I E TIPO II

- Em um teste de hipótese podem ocorrer dois tipos de erros :
- ERRO TIPO I: rejeitar H_0 quando H_0 é verdadeira.
- ERRO TIPO II: aceitar H_0 quando H_0 é falsa.

 Um fabricante produz pinos sob determinadas condições de trabalho. Verificou-se que a duração de vida (em horas) desses pinos é N (100,9). Um novo esquema de fabricação foi introduzido com o objetivo de aumentar a duração de vida desses pinos. Quer dizer, a expectativa é que a duração de vida X terá distribuição N (μ, 9) onde $\mu > 100$. (Admita que a variância continua a mesma). Deste modo, o fabricante e o comprador potencial desses pinos estão interessados em testar as seguintes hipóteses:

- H_0 : $\mu = 100$
- H_1 : $\mu > 100$ (estamos supondo que nosso processo não pode ser pior que o antigo)

ERRO TIPO I: Rejeitamos que a média seja 100 quando na realidade não houve melhora na qualidade dos pinos (na realidade a média continua sendo 100).

ERRO TIPO II: Aceitamos que a média é 100 (o processo continua o mesmo) quando na realidade a qualidade dos pinos melhora (a média é > 100).

As probabilidades dos dois tipos de erros serão lpha e eta , respectivamente. A probabilidade α do ERRO TIPO I é chamado de NÍVEL DE SIGNIFICÂNCIA. Estas probabilidades, condicionadas à realidade estão resumidas abaixo:

		Realidade	
		H ₀ verdadeira	H₀ falsa
Decisão	Aceitar H ₀	Decisão Correta 1 - α	Erro Tipo II
	Rejeitar H ₀	Erro Tipo I	Decisão Correta
		α	1-β

 Suponha que X é uma variável aleatória com média µ desconhecida e variância conhecida. E queremos testar a hipótese de que a média é igual a um certo valor especificado μ_0 . O teste de hipótese pode ser formu H_0 : $\mu = \mu_0$

 $H_I: \mu \neq \mu_0$

Para testar a hipótese, toma-se uma amostra aleatória de n observações e se calcula a estatística

$$Z_o = \frac{\overline{X} - \mu_o}{\sigma / \sqrt{n}}$$

Passos

$$Z_{colc} = \frac{x - \mu}{\frac{s}{\sqrt{n}}}$$

x = m'edia da amostra

 $\mu=$ média esperada da população

s = desvio padrão da amostra

n = tamanho da amostra

Em seguida consultamos na tabela da curva normal o Z correspondente a cada caso.

Finalmente verificamos se $Z_{cal\,c}$ se encontra na área de rejeição conforme o caso em teste.

Caso 3 - Bilateral:

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

Rejeitar se

$$Z_{cole} < -Z_{\alpha/2}$$

ou se

$$Z_{colc} > Z_{\alpha/2}$$

Caso 1 - Unilateral ou unicaudal à esquerda:

$$H_0: \mu = \mu_0$$

$$H_1: \mu < \mu_0$$

Rejeitar se

$$Z_{colc} < -Z_{\alpha}$$

Caso 2 - Unilateral ou unicaudal à direita:

$$H_0: \mu = \mu_0$$

$$H_1: \mu > \mu_0$$

Rejeitar se

$$Z_{colc} > Z_{\alpha}$$

- A resistência à tração do aço inoxidável produzido numa usina permanecia estável, com uma resistência média de 72 kg/mm² e um desvio padrão de 2,0 kg/mm². Recentemente, a máquina foi ajustada. A fim de determinar o efeito do ajuste, 10 amostras foram testadas
 - 76,2; 78,3; 76,4; 74,7; 72,6; 78,4; 75,7; 70,2; 73,3; 74,2
- Presuma que o desvio padrão seja o mesmo que antes do ajuste. Podemos concluir que o ajuste mudou a resistência à tração de aço? (Adote um nível de significância de 5%)

Definição da Hipótese

- H_0 : μ = 72 kg/mm²
- $H_1 : \mu \neq 72 \text{ kg/mm}^2$
- $\sigma = 2 \text{ kg/mm}^2$

Sendo =
$$75,0$$
 e s = 2 kg/mm^2 , temos:

$$Z_{cal} = \frac{\overline{X} - \mu_o}{\sigma / \sqrt{n}} = \frac{75 - 72}{2 / \sqrt{10}} = \frac{3}{0,6325} = 4,74$$

Isso significa que a média da amostra retirada aleatoriamente da produção está a 4,74 desviospadrão da média alegada em H_0 que é 72.

■ Região Crítica: Como o valor crítico para 5% é 1,96 desvios (Z tabelado), estamos na região de reieição de H_{Ω}

Teste Bilateral de Hipótese para a Região Crítica

• Conclusão: H_0 é rejeitada e concluímos que a resistência à tração do aço mudou.

 Um processo deveria produzir bancadas com 0,85 m de altura. O engenheiro desconfia que as bancadas que estão sendo produzidas são diferentes que o especificado. Uma amostra de 8 valores foi coletada e indicou $\bar{x}=0.87$. Sabendo que o desvio padrão é $\sigma=0.010$, teste a hipótese do engenheiro usando um nível de significância $\propto = 0.05$.

Solução

 $H_o: \mu = 0.85$

 $H_1: \mu \neq 0.85$

$$Z_{\circ} = \frac{0.87 - 0.85}{0.010 / \sqrt{8}} = 5,66$$

$$|Z_o| = |5,66| > Z_{0,025} = 1,96$$

Procedimento Geral dos Testes de hipóteses

- 1) Pelo contexto do problema identificar o parâmetro de interesse
- 2) Especificar a hipótese nula
- 3) Especificar uma hipótese alternativa apropriada
- 4) Escolher o nível de significância, α
- 5) Escolher uma estatística de teste adequada
- 6) Fixar a região crítica do teste
- 7) Recolher uma amostra e calcular o valor observado da estatística de teste
- 8) Decidir sobre a rejeição ou não de H_0

Nível de Significância

• É a probabilidade do erro Tipo 1, isto é, $\alpha = Prob(erro\ tipo\ I)$. Os valores típicos de α são: 0,01, 0,05, 0,10. α é também conhecido como "tamanho do teste"

 Caracteriza a região de rejeição. Define os valores pouco prováveis da estatística da amostra se a hipótese nula é verdadeira.

Teste Bilateral

Teste Unilateral

Região de Rejeição

Unilateral à esquerda:

 H_0 : $\mu = 50$

 H_{Δ} : μ > 50

Unilateral à direita:

 H_0 : $\mu = 50$

 H_{Δ} : μ < 50

Bilateral:

 H_0 : $\mu = 50$

 H_A : $\mu \neq 50$

Região de rejeição para o teste unicaudal para a média (cauda inferior)

Região de rejeição para o teste unicaudal para a média (cauda superior)

Região de rejeição para o teste bicaudal para a média

Teste de Hipótese para a Média da População com Variância Conhecida

Cálculo da estatística do teste:

$$Z_0 = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

$$\begin{array}{lll} H_0\colon & H_a\colon & Crit\acute{e}rios\ de\ rejeiç\~ao\colon \\ H_0\colon \mu=\mu_0 & H_a\colon \mu\neq\mu_0 & Z_0>z_{\alpha/2}\ ou\ Z_0<-z_{\alpha/2} \\ H_0\colon \mu\leq\mu_0 & H_a\colon \mu>\mu_0 & Z_0>z_\alpha \\ H_0\colon \mu\geq\mu_0 & H_a\colon \mu<\mu_0 & Z_0<-z_\alpha \end{array}$$

- * X é uma v.a. que representa o peso de um pacote de açúcar (supõe-se que $X \sim N(\mu, 1)$). A máquina está afinada quando $\mu = 8$. Numa amostra de 25 pacotes (recolhida aleatoriamente) observou-se $\bar{x} = 8,5$.
- Quer-se saber se, ao nível de significância de 5%, se pode afirmar que a máquina continua afinada.

$$H_0: \mu = 8 \text{ versus } H_1: \mu \neq 8$$
 (1. 2. e 3.)

Estatística de teste:
$$Z_0 = \frac{\overline{X} - 8}{1/\sqrt{25}}$$
 (5.)

$$\alpha = 0.05 \Rightarrow a = 1.96$$
 donde

R.C.:
$$Z_0 < -1.96$$
 ou $Z_0 > 1.96$ (6.)

Com
$$\bar{x} = 8.5$$
 obtém-se $z_0 = \frac{8.5 - 8}{1/\sqrt{25}} = 2.5$ (7.)

Como $z_0 > 1.96$ rejeita-se H_0 , ou seja, existe evidência (ao nível de significância considerado) de que a máquina está desafinada.

Valor p (p-value)

- Em vez de fixar α , determinar a região crítica e, em seguida, verificar se o valor observado pertence a essa região.
- **Definição:** Dado o valor observado da estatística de teste, o **valor-p** (*p-value*) é o maior nível de significância que levaria à não rejeição da hipótese nula (ou o menor que levaria à rejeição).

Valor p (p-value)

O <u>p-valor</u> é o valor de significância observado

Se p-valor $\geq \alpha$, NÃO rejeita H₀

Se p-valor $< \alpha$, REJEITA H₀

Quanto mais baixo for o valor-p maior é a evidência contra a hipótese nula

Valor p (p-value)

O p valor é comparado ao nível de significância a prédeterminado.

Se o p valor for menor ou igual ao nível de significância, rejeitamos H₀.

Note as seguintes interpretações de *p-valores*:

- □ p > 0,10 Não existe evidência contra H₀
- □ p < 0,10 Fraca evidência contra H₀
- □ p < 0,05 Evidência significativa contra H₀
- □ p < 0,01 Evidência altamente significativa contra H₀

Levamos ao laboratório uma amostra aleatória de 60 caixas e constatamos uma média do princípio ativo de 135 mmHg. O fabricante especifica que a média de principio ativo é 128 mmHg e que o desvio σ é de 24 mmg. Queremos achar o p valor.

- PASSO 1: H_0 : μ_M =128 *versus* H_A : $\mu_M \neq 128$
- PASSO 2: Nível de significância: 5%

PASSO 3: Estatística do teste:

$$Z_{cal} = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{135 - 128}{\frac{24}{\sqrt{60}}} = \frac{7}{3,1} = 2,28.$$

■PASSO 4: Construir a Região de Rejeição (RR)

TESTE BILATERAL

Pouco provável, logo μ deve ser ≠ 128

- Temos que calcular a probabilidade de observarmos um valor igual ou superior a 2,28, isto é,
- p-value: P(Z>2,28)=0,0113 (distribuição normal)
- Como o teste é bilateral, temos que multiplicar por dois esta probabilidade. Assim, 0,0113 x 2 = 0,0226

Desde que o p-value é menor que o nível de significância do teste (α = 5%), rejeita- se a hipótese nula.

Evample In-valuel

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0.9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884(0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916

$$\text{P-valor} = \mathbb{P}[Z > |Z_{\text{obs}}|] + \mathbb{P}[Z < -|Z_{\text{obs}}|] = \mathbb{P}[Z > 2, 25] + \mathbb{P}[Z < -2.25] = 0,0122 + 0,0122 = 0,0244.$$

Portanto, podemos concluir que, para qualquer nível de significância maior que 0,0244, temos evidências para rejeitar a hipótese nula.

Teste de Hipótese para a Média da População com Variância Desconhecida

 Quando o n<30 e o desvio padrão populacional é desconhecido, temos que aplicar o teste t de Student com a fórmula abaixo:

$$t_{cal} = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \sim t_{(n-1)}$$

 Suposição do teste: A variavei quantitativa e normalmente distribuída na população

A altura média dos estudantes da UFMG é de 1,70 m. Em uma amostra casual de tamanho 25 foi estimada a média de 1,72 m e desvio padrão da amostra de 0,08 m. Pode-se considerar que a média amostral não difere da média da população?

a)
$$H_0: \mu = 1,70m$$
 $H_A: \mu \neq 1,70m$

$$b)\alpha = 0.05; t_{crit; 0.025; 24g.l.} = 2.064$$

c)
$$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{1,72 - 1,70}{\frac{0,08}{\sqrt{25}}} = 1,25$$

d) Decisão: Não há evidência para rejeitar H_{0.}

Teste de Hipótese para uma proporção populacional

 Similar ao procedimento para o teste da média populacional.

$$\begin{array}{ll} H_0: p = p_0 \ (ou \ge \mu_0) & H_0: p = p_0 \ (ou \le \mu_0) & H_0: p = p_0 \\ \underbrace{H_1: p < p_0}_{U.\textit{Esquerdo}} & \underbrace{H_1: p > p_0}_{U\textit{Direito}} & \underbrace{H_1: p \neq p_0}_{\textit{Bilateral}} \end{array}$$

$$Z = \frac{\hat{p} - p_o}{\sqrt{\frac{p_0(1 - p_o)}{n}}} \sim N(0,1)$$

 Um estudo é realizado para determinar a relação entre uma certa droga e certa anomalia em embriões de frango. Injetou-se 50 ovos fertilizados com a droga no quarto dia de incubação. No vigésimo dia de incubação, os embriões foram examinados e 7 apresentaram a anomalia. Suponha que deseja-se averiguar se a proporção verdadeira é inferior a 25% com um nível de significância de 0,05.

(i) As hipóteses de interesse são:

$$H_0: p = 0.25$$

$$H_1: p < 0.25$$

(ii) A estatística de teste

$$Z = \frac{\hat{p} - 0.25}{\sqrt{\frac{0.25(1 - 0.25)}{50}}} \underset{sob\ H_0}{\sim} N(0.1)$$

(iii) A região crítica para um nível de significância α=0,05 fixado

iv) Do enunciado temos n=50, $\hat{p} = \frac{7}{50} = 0.14$: $z_{obs} = \frac{0.14 - 0.25}{\sqrt{\frac{0.025 \times 0.75}{50}}} = -1.7963 \in R_c \implies$ rejeita-se H_0 ao nível de 5% de significância.

Uma companhia de cigarros anuncia que o índice médio de nicotina dos cigarros que fabrica apresenta-se abaixo de 23 mg por cigarro. Um laboratório realiza seis análises desse índice, obtendo: 27, 24, 21, 25, 26, 22. Sabe-se que o índice de nicotina se distribui normalmente, com variância igual a 4.86 mg². Pode-se aceitar, no nível de 10%, a afirmação do fabricante? Fonte: Morettin & Bussab, Estatística Básica 5ª edição, pág 334.

Queremos testar a hipótese que μ , o índice médio de nicotina dos cigarros, seja maior que 23. Ou seja, $H_0: \mu \geq 23$ vs. $H_1: \mu < 23$.

Com um nível $\alpha=0.10$, temos que a hipótese será rejeitada se $\sqrt{6}(\bar{X}-23)/\sqrt{4.86} < c$. Para a normal padrão, $P(Z<c)=0.10 \Leftrightarrow c=-1.28$. Então a região crítica é $\sqrt{6}(\bar{X}-23)/\sqrt{4.86} < -1.28$ ou simplesmente $\bar{X}<21.85$.

Como a média observada é $\bar{x}=24.16$ é superior a 21.85, não rejeitamos a hipótese nula a 10% de significância.

Exemplo

Suponha que queiramos testar H_0 : $\mu = 50$ contra H_1 : $\mu > 50$, onde μ é a média de uma normal $N(\mu, 900)$. Extraída uma amostra de n = 36 elementos da população, obtemos $\bar{x} = 52$. Calcule a probabilidade de significância $\hat{\alpha}$ do teste. Fonte: Morettin & Bussab, Estatística Básica 5^a edição, pág 343.

A probabilidade de significância $\hat{\alpha}$ é mais comumente conhecida como p-valor. Observe que sob H_0 , $\bar{X} \sim N(50, 25)$. Temos que $\bar{x} = 52$. A probabilidade de significância (ou p-valor) é obtida calculando-se a probabilidade do valor observado na estatística do teste, ou seja,

$$P(\bar{X} > 52) = \left(Z > \frac{52 - 50}{5}\right) = 1 - \Phi(2/5) \approx 0.34$$

Devemos interpetar o p-valor como "observados os dados, quão verossímil é a hipótese nula?" e, neste caso, ela é bastante verossímil (a probabilidade de observarmos $\bar{X}>52$, dado H_0 verdadeira, é de 0.34) e portanto não rejeitamos H_0 .

Exemplo

Suponha que queiramos testar H_0 : $\mu=50$ contra H_1 : $\mu>50$, onde μ é a média de uma normal $N(\mu,900)$. Extraída uma amostra de n=36 elementos da população, obtemos $\bar{x}=52$. Calcule a probabilidade de significância $\hat{\alpha}$ do teste. Fonte: Morettin & Bussab, Estatística Básica 5^a edição, pág 343.

A probabilidade de significância é o p-value

A probabilidade de significância $\hat{\alpha}$ é mais comumente conhecida como p-valor. Observe que sob H_0 , $\bar{X} \sim N(50, 25)$. Temos que $\bar{x} = 52$. A probabilidade de significância (ou p-valor) é obtida calculando-se a probabilidade do valor observado na estatística do teste, ou seja,

$$P(\bar{X} > 52) = \left(Z > \frac{52 - 50}{5}\right) = 1 - \Phi(2/5) \approx 0.34$$

Devemos interpetar o p-valor como "observados os dados, quão verossímil é a hipótese nula?" e, neste caso, ela é bastante verossímil (a probabilidade de observarmos $\bar{X} > 52$, dado H_0 verdadeira, é de 0.34) e portanto não rejeitamos H_0 .