HATRNet: Human Activity/Transition Recognition using Deep Neural Networks

Nicholas Gaudio, Akash Levy, Jonas Messner, {nsgaudio, akashl, messnerj}@stanford.edu

Stanford ENGINEERING Computer Science

Electrical Engineering

BACKGROUND and **MOTIVATION**

- Human Activity Recognition has great potential for customized healthcare
- Smartphones incorporate sensors (accelerometer, gyroscope etc.)

Department of Electrical Engineering, Stanford University

- Sensor data can be used to classify human activities and transitions
- Improvements compared to state of the art:
 - 1. Advanced preprocessing including data augmentation
 - 2. End-to-end deep learning solution (no feature extraction)
 - 3. Improved architecture enabling accurate classification of transitions

1. DATASET

- SBHAR dataset of 6 activities and 6 postural transitions from the Galaxy SII
- 3-axial linear acceleration and 3-axial angular velocities traces at 50 Hz
- Augmented to 3,640 examples with no feature selection (beyond FFT)

FUTURE WORK

- Model ensembling using data representations from sequence models
- Implement the model on a smartphone for real-time inference
- Incorporate frequency and phase traces into the sequence model

2. NEURAL NETWORK ARCHITECTURE

Siamese (non-weight sharing) CNN

REFERENCES

[2] P. Kasnesis, C. Z. Patrikakis, and I. S. Venieris, "Perceptionnet: A deep convolutional neural network for late sensor fusion," CoRR, vol. abs/1811.00170, 2018 [3] C. A. J. O. D. Fuentes, L. Gonzalez-Abril, "Online motion recognition using an accelerometer in a mobile device," Expert systems with applications, 2011 [4] M. Kose, O. Incel, and C. Ersoy, "Online human activity recognition on smart phones," Workshop on Mobile Sensing: From Smartphones and Wearables to Big Data, 01 2012. [5] J. Qi, P. Yang, M. Hanneghan, and S. Tang, "Multiple density maps information fusion for effectively assessing intensity pattern of lifelogging physical activity," Neurocomputing, vol. 220, pp. 199–209 [6] C. Reiff, K. Marlatt, and D. Dengel, "Difference in caloric expenditure in sitting versus standing desks," Journal of physical activity & health, vol. 9, pp. 1009–11, 09 2012. [7] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L Reyes-Ortiz, "A public domain dataset for human activity recognition using smartphones," 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN, 01 2013

[9] F. Chollet et al., "Keras." https://keras.io, 2015. [10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskeyer, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, "TensorFlow: Large-scale machine learning on heterogeneous systems," 2015. Software available from tensorflow.org.

[11] E. Jones, T. Oliphant, P. Peterson, et al., "SciPy: Open source scientific tools for Python," 2001. [12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine Learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[13] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer, "cudnn: Efficient primitives for deep learning," arXiv preprint arXiv:1410.0759, 2014.

Siamese (non-weight sharing) CNN

- Left subnetwork takes time traces as input (6 zero-padded channels)
- Right subnetwork takes frequency and phase traces as input (12 interpolated channels)

Stanford ENGINEERING

- Late sensor fusion employed for encoded, efficient feature extraction
- Conv1D filter size: 1x14 Conv2D filter size: 3x42 Filter #: 60 learning rate: 0.0026

Sequence (LSTM) Model

- Takes time traces as input (6 channels of variable length)
- Two LSTM layers (128 to 32 output channels)

Random Coarse- to Fine-grain Hyperparameter Search

3. RESULTS and DISCUSSION

Literature comparison (grouped postural transitions):

SVM, 561 features extracted [1]

	WA	WU	WD	SI	ST	LD	PT
WA	1834	64	5	3	2	0	1
WU	10	1743	51	5	5	0	16
WD	0	2	1671	1	7	0	1
SI	0	0	0	1875	94	6	3
ST	0	2	0	109	2049	0	1
LD	0	0	0	1	0	2148	2
PT	0	1	2	0	0	0	1036

CNN (2.5 second traces) [2]

	WA	WU	WD	SI	ST	LD
WA	487	0	9	0	0	0
WU	2	468	0	0	0	1
WD	0	0	420	0	0	0
SI	0	2	0	443	46	0
ST	0	0	0	16	516	0
LD	0	0	0	0	0	537

HATRNet Results (ungrouped postural transitions):

Siamese (non-weight sharing) CNN

Architecture Comparison:

	CNN1	CNN2	LSTM	SVM [1]	Perceptionnet (CNN) [2]
Number of categories	12	7	12	7	6
Error Rate	3.29 %	0.82~%	18.11 %	3.22 %	2.75 %