MTH3121 Algebra Problem Sheet 2: Saral 30618428

Question 3 a

Lets call the group represented by R⁺ under multiplication,

M and the group represented by R⁺ under the operation $x * y = \frac{1}{3}xy$,

O. So for M and O to be isomorphic there must be a bijection such that :

 $f: M \rightarrow 0$ such that:

$$f(a*b) = f(a) * f(b)$$
, for all a, b $\in M$

From looking at the $\frac{1}{3}$ it seems like a bijection could be f (x) = 3 x. Lets see if this is it.

f(a * b) = f(ab) (Just applying the multiplication binary operation)

$$f(ab) = 3ab (Applying f(x) = 3x)$$

$$3 a b = \frac{1}{3} (3 a) (3 b)$$
 (Separating out some terms)

$$\frac{1}{3}$$
 (3 a) (3 b) = $\frac{1}{3}$ f (a) f (b) (Applying f (x) = 3 x)

$$\frac{1}{3}$$
 f (a) f (b) = f (a) * f (b) (Applying the binary operation x * y = $\frac{1}{3}$ xy)

Thus we have shown that f(a * b) = f(a) * f(b)

But wait is the supposed bijection, f(x) = 3x, even a bijection?

First we have to show that it is injective (one - to - one) :

For any $a, b \in R$

$$f(a) = 3a$$

$$f(b) = 3b$$

iff (a) =
$$f(b)$$
 then $3a = 3b$

$$3a = 3b \implies a = b$$

Therefore f (x) is injective

Now is it surjective?

For this to be the case we would need that for anthing $y \in (some\ codomain)$ there exists an $x \in (some\ domain)$ such that:

$$f(x) = y$$

This would imply that:

$$y = 3x$$

and thus $x = \frac{y}{3}$, we have found an x for every y in the codomain.

This means that f(x) is surjective.

Since it is both injective and surjective, f(x) = 3x, is a bijection.

Question 4

- a) Max order of an element of S_6 is 6, whereas for D_{720} it is 720. Therefore S_6 and D_{720} are not isomorphic.
- b) Max order of an element of D_{18} is 18, where as for Z_{36} it is 36. Therefore D_{18} and Z_{36} are not isomorphic.
- c) Max order of an element of $D_{6\theta}$ is 60, whereas for S_5 it is 6. Therefore D_{60} and S_5 are not isomorphic.
- d) The only element of finite order in R under addition is 0. This has order 1. For R* under multiplication - 1 has order 2 and 1 has order 1.

Thus R⁺ and R^{*} have different numbers of elements of finite order and therefore they are not isomorphic.

Question 5