

Task I: Find the Max value in a given Array

Task I: Find the max value in an Array

■ To find the maximum element in a given array (each element is a byte size). The array starts from the location \$1000

- 1. Max_value = Array [1]
- 2. Scan the array from Array[2] to Array [N]
- 3. For loop i=2 to N:

```
if Max_value < Array[i] then
Max_value = Array[i]
```

4 After scanning all the array elements, max_value = the max. element in the array

Task I: Find the max in an Array (II)

How to build the Array Data

Task I: Find the max in an Array (III)

- 1. Load the first array element into register A
- Load the address of the second element into register X

```
LDX #Array1+1 ; X = the address of the second element = $1001
```

3. Load the array length N-1 into register B

```
LDAB #N -1
```

Loop:

- 1. Compare register A with the content at the memory location given by register X.
- 2. If [A] >= Mem[X], branch to **SKIP** ; use unsigned branch instruction **BHS** if not, replace A with Mem[x]

SKIP:

- 4. Increment register X ;X will hold the address of the next element in the array
- 5. Decrement the counter B register
- .6. If B register is not equal to 0, branch to Loop

Task II: Number Conversion to the BCD Format

Task2: Binary to BCD Conversion

- A binary number can be converted to the BCD format using repeated division by 10.
- □ The first division by 10 generates the least significant digit in the remainder

Binary to BCD Conversion

Data allocation for BCD digits	\$1000	
□ The converted BCD digits are saved in the memory locations from \$1010 (= BCDNum) to \$1013.	\$1001	
; The memory allocation for the BCD number for the array maximul	Υ	
ORG \$1010		
BCDNum: DS.B 4		
BCDNum:	\$1010	
	\$1011	
	\$1012	
	\$1013	
	\$1014	
jpark@kettering.edu $Kettering$ College of Engineering		

Binary to BCD Conversion

		\$1000	
1. Transfe	er A register into B register,	\$1001	
2. Clear A	A register. So D= A and B registers		
D:	A B		
•	gister Y holds the address of the BCD digit. It arting from the least significant digit first.		
LDV #	DCDNum · 2		
LUT #	BCDNum+3 BCDNum: 9	\$1010	
		\$1011	
		\$1012	
	Y S	\$1013	
		\$1014	

Binary to BCD Conversion

DODI	\$1000	
BCDLoop:	\$1001	
i) Assign X register with the value of the Divider	* 1001	
ii) Do the integer division:		
IDIV ; D/X, X=Quotient, D=Remainder		•••
iii) Store the remainder(in B register) at the address in Y register		
iv) Decrement Y A B		
v) Exchange X register with D register BCDNu	m : \$1010	
XGDX	\$1011	
vi) If D register is not equal to 0, then go to BCDLoop	\$1012	
Υ	\$1013	
vii) Move \$00 to BCDNum.	\$1014	
jpark@kettering.edu Kettering College of Engineering		

PART III 7-SEGMENT LED DISPLAY

Drangon12plus - LEDs

- Port B: All of these LED outputs are wired to share the Port B pins for controlling the output on the LEDs.
- □ J1 pin (Bit 1) in port J is used to enable/disable 8 flashing LEDs
- □ P0 to P3 pins (Bit 0 to Bit 3) in port P is used to select one of 7-segment LEDs

A. Defining Ports:

- 1) First, you need to define the data direction registers for PORT B, PORT P and PORT J.
- 2) Then disable the flashing LEDs by setting a value in PJ1 pin in PORT J.

```
BSET
         DDRB,
                  %11111111
                                      ;configure Port B as a output
BSET
         DDRJ,
                  %0000010
                                       configure PJ1 pin as a output pin
BSET
         DDRP,
                  %00001111
                                     ; configure P port as a output port
Disabling PJ1 by setting the value 1
BSET
         PTJ,
                %00000010
                                         ; Disable flashing LEDs
```


- Data needed to display on the 7-segment LEDs
- □ PORT P data to enable the 7-segment LED#0 LED #3

PORTP_Data: DC.B %00001110, %00001101, %00001011, %000000111

- Data needed to display on the 7-segment LEDs
- □ Port B Data: The LED_Data contains the hex-values for PORT B to represent the digit 0-9.

LED_Data: DC.B \$3F, \$06, \$5B, \$4F, \$66, \$6D, \$7D, \$07, \$7F, \$6F

Overall Data :to display the digit on the 7-segment LEDs

□ To display BCD digits on 7-segment LEDs, following steps are required.

LEDLoop:

i) Load A register from the memory location pointed by X

ii) Load B register for the address Y + A ; B register has the data for PORT B

ex)
$$B = \$3F$$

- iii) Save B register to PORT B
- IV) The data in memory location X+4 to PORT P.

Move the byte in X+4 to PTP

