Online Payment Fraud Detection

Data Source: /https://www.kaggle.com/datasets/jainilcoder/online-payment-fraud-detection/data (https://www.kaggle.com/datasets/jainilcoder/online-payment-fraud-detection/data)

Importing Packages

```
In [1]: import numpy as np
   import pandas as pd
   import datetime as dt
   import warnings
   import missingno as msno
   import matplotlib.pyplot as plt
   import plotly.express as px
   import plotly.graph_objects as go
   import seaborn as sns
   from sklearn.model_selection import train_test_split, GridSearchCV
   from sklearn.preprocessing import StandardScaler, PolynomialFeatures
   from sklearn.linear_model import LogisticRegression
```

Ignores all warning messages

```
In [2]: warnings.filterwarnings("ignore")
```

Reading the csv file

```
In [3]: df = pd.read_csv("onlinefraud.csv")
# DispLaying top 5 rows
df.head()
```

Out[3]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalaı
0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M1979787155	
1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M2044282225	
2	1	TRANSFER	181.00	C1305486145	181.0	0.00	C553264065	
3	1	CASH_OUT	181.00	C840083671	181.0	0.00	C38997010	
4	1	PAYMENT	11668.14	C2048537720	41554.0	29885.86	M1230701703	
4								•

```
# Dispalying rows and columns
In [4]:
        df.shape
Out[4]: (6362620, 11)
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 6362620 entries, 0 to 6362619
        Data columns (total 11 columns):
             Column
                             Dtype
             -----
                             ----
                             int64
         0
             step
                             object
         1
             type
         2
             amount
                             float64
         3
             nameOrig
                             object
                             float64
         4
             oldbalanceOrg
         5
             newbalanceOrig float64
         6
             nameDest
                             object
         7
             oldbalanceDest float64
         8
             newbalanceDest float64
             isFraud
                             int64
         10 isFlaggedFraud int64
        dtypes: float64(5), int64(3), object(3)
        memory usage: 534.0+ MB
In [6]:
        df.columns
Out[6]: Index(['step', 'type', 'amount', 'nameOrig', 'oldbalanceOrg', 'newbalanceOrig',
                'nameDest', 'oldbalanceDest', 'newbalanceDest', 'isFraud',
               'isFlaggedFraud'],
              dtype='object')
```

In [7]: df.head().T

Out[7]:

	0	1	2	3	4
step	1	1	1	1	1
type	PAYMENT	PAYMENT	TRANSFER	CASH_OUT	PAYMENT
amount	9839.64	1864.28	181.0	181.0	11668.14
nameOrig	C1231006815	C1666544295	C1305486145	C840083671	C2048537720
oldbalanceOrg	170136.0	21249.0	181.0	181.0	41554.0
newbalanceOrig	160296.36	19384.72	0.0	0.0	29885.86
nameDest	M1979787155	M2044282225	C553264065	C38997010	M1230701703
oldbalanceDest	0.0	0.0	0.0	21182.0	0.0
newbalanceDest	0.0	0.0	0.0	0.0	0.0
isFraud	0	0	1	1	0
isFlaggedFraud	0	0	0	0	0

Data Cleaning

In [8]: # Displaying datatypes
 df.dtypes

Out[8]: step type

int64 type object float64 amount nameOrig object oldbalanceOrg float64 newbalanceOrig float64 nameDest object oldbalanceDest float64 newbalanceDest float64 isFraud int64 isFlaggedFraud int64 dtype: object

```
In [9]: # Converting datatypes from objects
    df = df.convert_dtypes()
    df.dtypes
```

Out[9]: step Int64 type string[python] Float64 amount nameOrig string[python] oldbalanceOrg Float64 newbalanceOrig Float64 nameDest string[python] oldbalanceDest Float64 newbalanceDest Float64 isFraud Int64 isFlaggedFraud Int64 dtype: object

Analysing missing values

In [10]: # Displaying missing values
 msno.bar(df)
 plt.show()

In [12]: | df.isnull().sum()

Out[12]:	step	0
	type	0
	amount	0
	nameOrig	0
	oldbalanceOrg	0
	newbalanceOrig	0
	nameDest	0
	oldbalanceDest	0
	newbalanceDest	0
	isFraud	0
	isFlaggedFraud	0
	dtype: int64	

Checking for outliers

In [13]: plt.figure(figsize=(12,8))
 df.boxplot()

Out[13]: <Axes: >

Data profile report

```
In [15]: from ydata_profiling import ProfileReport
profile = ProfileReport(df, title="Profiling Report")
profile
```

Summarize dataset: 0% | 0/5 [00:00<?, ?it/s]

Generate report structure: 0% | 0/1 [00:00<?, ?it/s]

Render HTML: 0% | 0/1 [00:00<?, ?it/s]

Overview

Dataset statistics Number of variables 11 **Number of observations** 6362620 Missing cells 0 0.0% Missing cells (%) 0 **Duplicate rows Duplicate rows (%)** 0.0% Total size in memory 582.5 MiB Average record size in memory 96.0 B Variable types **Numeric** 6 3 Categorical **Text** 2 **Alerts** amount is highly overall correlated with oldbalanceDest and High correlation 1 other fields (oldbalanceDest, newbalanceDest)

aldhalancoung is highly overall correlated with

Out[15]:

Ulah samalatian

Exploratory Data Analysis

Count Plot of Fraud Transactions

There are very few fraud identified transactions. There is high chances of imbalance class so need to balance the classes using oversampling or undersampling.

Proportion of Fraud vs. Non-Fraud Transactions

There are very few fraud identified transactions. There is high chances of imbalance class so need to balance the classes using oversampling or undersampling.

```
# Displaying the correlation Heatmap
In [18]:
         numeric_df = df.select_dtypes(include=[np.number])
         # Calculate the correlation matrix on numeric data only
         correlation_matrix = numeric_df.corr()
         fig = go.Figure(data=go.Heatmap(
             z=correlation_matrix.values, # Correlation values
             x=correlation_matrix.columns, # Feature names for x-axis
             y=correlation_matrix.index, # Feature names for y-axis
             colorscale='BrBG', # Valid colorscale for correlation
             colorbar=dict(title='Correlation'),
         ))
         # Update the Layout
         fig.update_layout(
             title='Correlation Heatmap',
             xaxis=dict(tickmode='linear'),
             yaxis=dict(tickmode='linear'),
             width=800,
             height=600,
         )
         # Show the plot
         fig.show()
```

Correlation Heatmap

There is a strong corelation between newbalanceOrg and oldbalanceOrg

Transaction Type Distribution

'Transfer' type of transaction has maximum amount of amount processed. Least amount of transaction happend on 'Debit'.

```
import pandas as pd
In [20]:
         import plotly.express as px
         transaction_type_counts = df['type'].value_counts()
         # Convert the Series to a DataFrame for Plotly
         transaction_type_counts_df = transaction_type_counts.reset_index()
         transaction_type_counts_df.columns = ['Transaction Type', 'Count']
         # Create a bar chart using Plotly Express
         fig = px.bar(transaction_type_counts_df, x='Transaction Type', y='Count',
                      title='Transaction Type Distribution',
                      labels={'Count': 'Count', 'Transaction Type': 'Transaction Type'},
                      color_discrete_sequence=['green']) # Sets the bar color
         # Customize the chart
         fig.update_layout(xaxis_title='Transaction Type',
                           yaxis_title='Count',
                           xaxis=dict(tickangle=45)) # Rotate the x-axis labels for bette
         # Show the plot
         fig.show()
```

Transaction Type Distribution

'Cash_out' type of transaction has maximum count of amount processed. Least number of transaction happend on 'Debit'.

Analysing which of Transaction has Fraud transactions

There are five types of transactions named Payment, Transfer, Cash_out, Debit and Cash_in. In this only 'Transfer' and 'Cash_out' have fraud transactions.

```
In [22]: Result = pd.crosstab(index=df.type,columns=df.isFraud)
    Result
```

Out[22]:

```
        isFraud
        0
        1

        type
        0
        1

        CASH_IN
        1399284
        0

        CASH_OUT
        2233384
        4116

        DEBIT
        41432
        0

        PAYMENT
        2151495
        0

        TRANSFER
        528812
        4097
```

```
In [23]: transfer_total = 528812+4097
transfer_fraud = 4097/(transfer_total) * 100
transfer_fraud
```

Out[23]: 0.7687991758442811

```
In [24]: cashout_total=2233384+4116
    cashout_fraud= 4116/(cashout_total) * 100
    cashout_fraud
```

Out[24]: 0.18395530726256984

76% of the fraud transactions happened in 'Transfer' and 18% of the fraud transactions happened in 'Cash_out'.

Calculating the % of Fraud transactions

```
In [25]: df.isFlaggedFraud.value_counts()
Out[25]: isFlaggedFraud
     0   6362604
     1     16
     Name: count, dtype: Int64
```

In [26]: isFraud_flagged_fraud_records = df[(df.isFraud==1) & (df.isFlaggedFraud==1)]
isFraud_flagged_fraud_records

Out[26]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest
2736446	212	TRANSFER	4953893.08	C728984460	4953893.08	4953893.08	C639921569
3247297	250	TRANSFER	1343002.08	C1100582606	1343002.08	1343002.08	C1147517658
3760288	279	TRANSFER	536624.41	C1035541766	536624.41	536624.41	C1100697970
5563713	387	TRANSFER	4892193.09	C908544136	4892193.09	4892193.09	C891140444
5996407	425	TRANSFER	10000000.0	C689608084	19585040.37	19585040.37	C1392803603
5996409	425	TRANSFER	9585040.37	C452586515	19585040.37	19585040.37	C1109166882
6168499	554	TRANSFER	3576297.1	C193696150	3576297.1	3576297.1	C484597480
6205439	586	TRANSFER	353874.22	C1684585475	353874.22	353874.22	C1770418982
6266413	617	TRANSFER	2542664.27	C786455622	2542664.27	2542664.27	C661958277
6281482	646	TRANSFER	10000000.0	C19004745	10399045.08	10399045.08	C1806199534
6281484	646	TRANSFER	399045.08	C724693370	10399045.08	10399045.08	C1909486199
6296014	671	TRANSFER	3441041.46	C917414431	3441041.46	3441041.46	C1082139865
6351225	702	TRANSFER	3171085.59	C1892216157	3171085.59	3171085.59	C1308068787
6362460	730	TRANSFER	10000000.0	C2140038573	17316255.05	17316255.05	C1395467927
6362462	730	TRANSFER	7316255.05	C1869569059	17316255.05	17316255.05	C1861208726
6362584	741	TRANSFER	5674547.89	C992223106	5674547.89	5674547.89	C1366804249

```
In [27]: isFraud_flagged_fraud_records.shape
```

Out[27]: (16, 11)

```
In [28]: total_fraud= df[df.isFlaggedFraud ==1]
    total_fraud = total_fraud.shape[0]
    total_fraud
```

Out[28]: 16

```
In [29]: total_fraud= df[df.isFraud ==1]
  total_fraud = total_fraud.shape[0]
  total_fraud
```

Out[29]: 8213

```
In [30]: total_isflaggedFraud= isFraud_flagged_fraud_records.shape[0]
total_isflaggedFraud

Out[30]: 16

In [31]: flagged_percent = total_isflaggedFraud/total_fraud * 100
    print('Percentage of flagged fraud: ',round(flagged_percent,3))
    unflagged_percent= (total_fraud-total_isflaggedFraud)/total_fraud * 100
    print('Percentage of incorrectly flagged fraud: ',round(unflagged_percent,3))

    Percentage of flagged fraud: 0.195
    Percentage of incorrectly flagged fraud: 99.805
```

The data reveals a critical challenge in fraud detection, with a mere 0.195% of transactions correctly identified as fraud, against a high 99.805% of transactions that were incorrectly flagged as fraudulent. This significant imbalance suggests the fraud detection mechanism is overly cautious, producing a vast number of false positives. Such inefficiency could strain resources, erode customer trust, and diminish user experience due to unwarranted scrutiny on legitimate transactions.

Fraud amount

In [34]: fraud_amount= df[df.isFraud==1]
 fraud_amount=fraud_amount.sort_values(by=['amount'],ascending=False)
 fraud_amount

Out[34]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest
3760283	279	CASH_OUT	10000000.0	C1214015158	10000000.0	0.0	C2110157840
5987587	409	CASH_OUT	10000000.0	C97242201	10000000.0	0.0	C786701128
1707592	160	CASH_OUT	10000000.0	C525906402	10000000.0	0.0	C43869769
1707591	160	TRANSFER	10000000.0	C752627210	27670038.08	17670038.08	C1853789265
1707590	160	CASH_OUT	10000000.0	C2068007279	10000000.0	0.0	C836488544
5996410	425	CASH_OUT	0.0	C69493310	0.0	0.0	C719711728
5996408	425	CASH_OUT	0.0	C832555372	0.0	0.0	C1462759334
6362461	730	CASH_OUT	0.0	C729003789	0.0	0.0	C1388096959
6362463	730	CASH_OUT	0.0	C2088151490	0.0	0.0	C1156763710
3760289	279	CASH_OUT	0.0	C539112012	0.0	0.0	C1106468520
8213 row	8213 rows × 11 columns						

Distribution of Fraud Amount

Most of the fraud transaction amount is in between 1 million.

Calculating max frequency of Steps

Distribution of Step

Maximum distribution are between 150 to 400 of step.

Balancing the data

```
In [37]: df['isFraud'].value_counts()
```

Out[37]: isFraud

0 6354407 1 8213

Name: count, dtype: Int64

OverSampling: SMOTE

```
In [38]: X = df.drop(columns=['isFraud','type','nameDest','nameOrig'], axis=1)# Remove the
print(X)
```

	step	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	\
0	1	9839.64	170136.0	160296.36	0.0	
1	1	1864.28	21249.0	19384.72	0.0	
2	1	181.0	181.0	0.0	0.0	
3	1	181.0	181.0	0.0	21182.0	
4	1	11668.14	41554.0	29885.86	0.0	
• • •	• • •	• • •	• • •	• • •	• • •	
6362615	743	339682.13	339682.13	0.0	0.0	
6362616	743	6311409.28	6311409.28	0.0	0.0	
6362617	743	6311409.28	6311409.28	0.0	68488.84	
6362618	743	850002.52	850002.52	0.0	0.0	
6362619	743	850002.52	850002.52	0.0	6510099.11	

	newbalanceDest	isFlaggedFraud
0	0.0	0
1	0.0	0
2	0.0	0
3	0.0	0
4	0.0	0
• • •	• • •	• • •
6362615	339682.13	0
6362616	0.0	0
6362617	6379898.11	0
6362618	0.0	0
6362619	7360101.63	0

[6362620 rows x 7 columns]

```
In [39]: Y = df['isFraud']
         print(Y)
         0
                     0
         1
                     0
         2
                    1
         3
                    1
                     0
         6362615
                    1
         6362616
                    1
         6362617
                    1
         6362618
         6362619
                    1
         Name: isFraud, Length: 6362620, dtype: Int64
In [40]: | X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify
In [41]: print(X.shape, X_train.shape, X_test.shape)
         (6362620, 7) (5090096, 7) (1272524, 7)
         from imblearn.over_sampling import SMOTE #SMOTE = synthetic minority oversampling
In [42]:
         smote = SMOTE()
In [43]: X_train = X_train.astype(float)
In [44]: X_train_smote, Y_train_smote = smote.fit_resample(X_train, Y_train)
         print(X_train_smote.shape)
         print(Y_train_smote.shape)
         (10167052, 7)
         (10167052,)
```

UnderSampling

```
legit_sample = legit_txns.sample(n=8213) # Samples 8213 transactions out of the U
In [47]:
          undersampled_dataset = pd.concat([legit_sample, fraud_txns], axis=0)
         undersampled_dataset['isFraud'].value_counts()
In [48]:
Out[48]:
         isFraud
               8213
          1
               8213
          Name: count, dtype: Int64
         X = undersampled dataset.drop(columns=['isFraud', 'type', 'nameDest', 'nameOrig'], a
In [49]:
          print(X)
                                                       newbalanceOrig
                                                                        oldbalanceDest
                   step
                              amount
                                       oldbalanceOrg
          125675
                           219285.14
                                            215272.0
                                                                   0.0
                                                                                30636.0
                     11
          1716579
                    160
                             14157.4
                                             10927.0
                                                                   0.0
                                                                                    0.0
          5133432
                    356
                           231295.34
                                                 0.0
                                                                   0.0
                                                                              314740.87
          954479
                     44
                            22553.28
                                                 0.0
                                                                   0.0
                                                                                    0.0
          5921102
                    404
                             1278.81
                                              9028.0
                                                              7749.19
                                                                                    0.0
                    . . .
                                                                   . . .
                                                                                    . . .
                           339682.13
                                           339682.13
                                                                   0.0
          6362615
                    743
                                                                                    0.0
                          6311409.28
                                                                   0.0
          6362616
                    743
                                          6311409.28
                                                                                    0.0
                    743
                                                                   0.0
                                                                               68488.84
          6362617
                          6311409.28
                                          6311409.28
          6362618
                    743
                           850002.52
                                           850002.52
                                                                   0.0
                                                                                    0.0
          6362619
                    743
                           850002.52
                                           850002.52
                                                                   0.0
                                                                            6510099.11
                   newbalanceDest isFlaggedFraud
                         249921.14
          125675
          1716579
                                                   0
                               0.0
                                                   0
          5133432
                         546036.22
          954479
                               0.0
                                                   0
          5921102
                               0.0
                                                   0
          . . .
                               . . .
                                                 . . .
                         339682.13
          6362615
                                                   0
          6362616
                               0.0
                                                   0
          6362617
                        6379898.11
                                                   0
          6362618
                               0.0
                                                   0
          6362619
                        7360101.63
                                                   0
          [16426 rows x 7 columns]
```

```
In [50]: Y = undersampled_dataset['isFraud']
         print(Y)
         125675
                     0
         1716579
                     0
         5133432
                    0
         954479
         5921102
         6362615
                    1
         6362616
         6362617
                    1
         6362618
         6362619
                    1
         Name: isFraud, Length: 16426, dtype: Int64
In [51]: X_train_undersampled, X_test_undersampled, Y_train_undersampled, Y_test_undersamp
In [52]: print(X.shape, X_train_undersampled.shape, X_test_undersampled.shape)
         (16426, 7) (13140, 7) (3286, 7)
```

Model training

Oversampling

```
In [53]: scaler = StandardScaler()
X_train_scaled_smote = scaler.fit_transform(X_train_smote)
```

Undersampling

```
In [54]: X_train_scaled_undersampled = scaler.fit_transform(X_train_undersampled)
X_test_scaled_undersampled = scaler.transform(X_test_undersampled)
```

Creating the Model instances/objects

```
In [55]: LogisticRegressionModel = LogisticRegression()
```

Oversampling

```
In [56]:
          LogisticRegressionModel.fit(X_train_scaled_smote, Y_train_smote)
Out[56]:
               LogisticRegression 1 ?
                                      (https://scikit-
                                      learn.org/1.4/modules/generated/sklearn.linear_model.LogisticRegre
          LogisticRegression()
          Undersampling
In [57]:
          LogisticRegressionModel.fit(X_train_scaled_undersampled, Y_train_undersampled)
Out[57]:
               LogisticRegression (i) (https://scikit-
                                      learn.org/1.4/modules/generated/sklearn.linear_model.LogisticRegre
          LogisticRegression()
 In [ ]:
 In [ ]:
```