ARTMENT OF MMERCE
BLICATION

NBS SPECIAL PUBLICATION 333

Research Materials Developed Under the NBS Inorganic Materials Program

U.S.
ARTMENT
OF
OMMERCE
National

National Bureau of Standards

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

• Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$9.50; foreign, \$11.75*.

Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

* Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

Superintendent of Documents Government Printing Office Washington, D.C. 20402

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standard adopted and promulgated under the Public Lav 89–306, and Bureau of the Budget Circular A–81 entitled, Standardization of Data Elements and Code in Data Systems.

UNITED STATES DEPARTMENT OF COMMERCE • MAURICE H. STANS, Secretary NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Director

Research Materials Developed Under the NBS Inorganic Materials Program

Edited by F. E. Brinckman and J. B. Wachtman, Jr.

Inorganic Materials Division Institute for Materials Research National Bureau of Standards Washington, D.C. 20234

National Bureau of Standards Special Publication 333 Nat. Bur. Stand. (U.S.), Spec. Publ. 333, 71 pages (September 1970) CODEN: XNBSA

Issued September 1970

Library of Congress Catalog Card Number: 70-608227

Contents

1	Introduction	Page
1.		
2.	Demitted of recognition management and the second of the s	V
	2.1. General Definition	v
	2.2. Differences in Degree of Characterization Needed for Research on Properties With Vary-	
	ing Degrees of Structure Sensitivity	VI
	2.3. Inhomogeneity	VI
	2.3. Inhomogeneity 2.4. Metastable Materials	
3.	Relation to Standard Reference Materials	VI
4.	Organization of the Tables	VI
	4.1. Rationale	VI
	4.2. Use of Tables—Key	VII
5.	References	VII
	Tables	
	I. Gases	1
	II. Liquids	
	III. Glasses	
	IV. Single Crystals	20
	V. Polycrystals	41
	VI. Multiphase Systems	61

Research Materials Developed Under the NBS Inorganic Materials Program

F. E. Brinckman and J. B. Wachtman, Jr.

The National Bureau of Standards develops many specialized materials in the process of carrying out research supporting its measurements, standards, and service activities. These materials include gases, liquids, glasses, single crystals, polycrystals, and various multiphase materials; their compositions (including trace elements in some cases) and physical characteristics are tailored to specific research needs, but the materials are often of use for other research purposes. Production is usually limited to immediate internal needs and samples are not generally available for distribution, but knowledge of production techniques and materials characteristics which may be helpful to other scientists is available. The present listing of research materials developed in the Inorganic Materials Division accordingly gives names of scientific staff members who may be contacted for this type of information as well as giving a brief summary of the nature, method of preparation and properties determined for each material.

Key words: Chemical properties; composition; gases; glasses; liquids; multiphase materials; physical properties; polycrystals; preparation; research.

1. Introduction

Improved materials are critically needed in many areas of technology. Attempts to provide such superior materials are frequently 'empirical and sometimes wasteful of time and funds [1].1 An empirical component will probably always be present in any materials development program, but the establishment of a science of materials that increasingly affords predictable and reliable results in devising new materials for specific tasks is most desirable. Not only will this increase the efficiency of materials development programs, but also can ultimately lead to development of completely new materials or new applications. Much thought has been given to opportunities arising from recent developments in materials science [2] and to roadblocks preventing engineering achievement of scientifically feasible materials including the areas of characterization [1] and processing [3]. Advances in materials science assist materials development on the one hand, but depend upon development of materials suitable for research on the other. This interdependence of materials development and materials science is widely recognized and new programs on the properties of materials increasingly have as a major component a research material development subprogram. The experimental and theoretical competence needed to produce and characterize specimens is frequently quite different from that needed for the subsequent property study so that the decision to undertake a property study on a new material frequently means that a large investment of time and resources, perhaps comparable to the property measuring effort itself, must be made before the property study can begin. In these circumstances the availability of a few trial specimens, even if not of completely satisfactory quality for the final study, can be very valuable in permitting a test of the experimental feasibility of the contemplated measurements and perhaps in providing guidance on how closely the character of the specimen must be controlled for the final study. When trial specimens are not available, knowledge of previous preparation techniques and of the nature and quality of specimens which have

been produced successfully is usually quite valuable in planning and carrying out the sample preparation aspect of a new research program. The present listing of research materials produced in the Inorganic Materials Division is offered as a means of promoting direct scientist-to-scientist exchange of information on production and characterization of materials for which the division has some special competence. In some cases, specimens may be on hand and available on request; in other cases, facilities and staff may be available to produce additional specimens for purposes coming within the NBS mission. Provision of information, rather than specimens, is the principal goal, however, because maintenance of a stock of the numerous and extremely varied materials produced in small batches or maintenance of specialized production facilities on a standby basis is not feasible.

Information concerning nationwide sources of many research materials, especially single crystals, is available from the Oak Ridge Research Materials Information Center [4].

The present listing of materials may be useful to scientists and engineers interested in the production of a material or its general availability for purposes other than research. No claim is made concerning exhaustive knowledge of the materials listed, but the staff members involved in the production or characterization of unusual materials sometimes have special knowledge relevant to other applications in addition to research.

2. Definition of Research Materials

2.1. General Definition

A research material is here considered to be one sufficiently well-characterized to be useful for a particular type of current research. Ideally, a fully characterized material is desirable; that is, the character (chemical composition, structure, microstructure, etc.) should be uniform and held within such narrow and known limits that all the chemical and physical properties of the material are well determined. Practical considerations usually limit the characterization to

¹ Figures in brackets indicate the literature references on page 3.

the factors thought to control the property being studied and limit the accuracy of the characterization. Thus, a material useful at a particular stage of research may no longer be useful for the same type of research as measurement techniques improve and finer details of behavior are studied or as new factors are discovered to have an influence on properties at the level being studied. A valid research material can cease to have this distinction as a field of study progresses but the same material can sometimes again become an important research material as new phenomena are investigated. For example, ruby grown by the Verneuil process for bearings, wear surfaces, or jewels suddenly became an exciting research material when the ruby laser was invented.

2.2. Differences in Degree of Characterization Needed for Research on Properties with Varying Degrees of Structure Sensitivity.

The characterization needed for certain research, such as phase equilibria, is sometimes limited primarily to the major element composition and such factors as trace impurities or surface condition are relatively unimportant. This fact is reflected in the listing, for example, of a number of crystalline materials developed for phase equilibria studies and a number of glasses developed for bulk optical or elasticity studies; major component characterization was sufficient for these purposes. Some of these materials have subsequently become the object of renewed research interest in connection with other properties dependent primarily upon major component composition such as electro-optic properties, photoelasticity, and mechanical properties under pressure. Certain structure-sensitive properties, such as transport, plastic deformation, and fracture depend upon trace impurities and upon small deviations from stoichiometry. Samples made for research in these areas, even though of the same major component composition as some of those mentioned previously, require more careful processing and characterization and are accordingly listed as separate entries with an indication of their special features.

2.3. Inhomogeneity

Among both the bulk composition and trace impurity types there are cases where a deliberate degree of inhomogeneity is required. Thus, a series of glasses with the same total composition but differing degrees of phase separation forms an interesting family of research materials. An example of an even finer scale of deliberately produced inhomogeneity is a series of crystals of CaF₂ all having the same level of Gd additive but differing in the degree of association of point defects with Gd atoms. This last example illustrates another feature of some of the listed materials; in this case specimens of given bulk composition were produced by a commercial supplier to NBS specifications. The NBS contribution was the development of special treatments and measurement tech-

niques needed to produce and determine different degrees of association.

2.4. Metastable Materials

Still another category of research materials involves those which are not stable or have a very short lifetime under ordinary conditions but which occur as important components under special conditions such as high temperature vapor species, high pressure crystalline phases, or short-lived reactive inter-mediates. Such materials generally cannot be kept in stock but the technology of preparation and the techniques for measurement of concentration and properties during the brief lifetime of the material are important aspects of research material information. An overlapping family of research materials consists of those which are dangerous (toxic, explosive, or corrosive) and so require special handling procedures during processing, storage, or property measurement. An example of such a difficult research material is the high pressure polymorph of the detonator explosive lead azide.

3. Relation to Standard Reference Materials

A few of the research materials listed here have been developed into Standard Reference Materials and many of the Standard Reference Materials are used as research materials but the two categories should not be confused despite the fact that there is some overlap. Standard Reference Materials are kept in stock by the National Bureau of Standards and sold by the Office of Standard Reference Materials. Each Standard Reference Material is certified with respect to the aspects of chemical and/or physical properties relevant to the material's intended application. Perhaps the greatest use of these materials is for calibration of instruments and checking of mea surement procedures, but the high degree of homo geneity and extensive characterization associated with Standard Reference Materials frequently makes then useful as research materials. A full listing of Stan dard Reference Materials is available [5].

4. Organization of the Tables 4.1. Rationale

As noted in the Introduction, entries have been tabulated into sections derived chiefly from gros physical state at ordinary conditions (e.g., gases polycrystals, multiphases, etc.). Clearly a number of exceptions occur, particularly for research material of low stability or transient existence, but their location will be fairly obvious to the reader.

Since this compilation tends to emphasize composition rather than properties, special care was taken in organizing the tables. Use of the widely accepted Chemical Abstracts Formula Index does not always generate familiar empirical chemical formulae, no

does this system readily lend itself to classification of glasses, but we chose it for its rational basis. Moreover, signflicant progress has been achieved for computer searching and retrieval; indeed, the parent program is now in use by the Patent Office.

4.2. Use of Tables—Key

a. The arrangement of symbols in formulae is alphabetic except that in carbon compounds C always comes first followed immediately by H if hydrogen

is also present.

b. The arrangement of formulae or entries is also alphabetic, except that the number of atoms of any specific kind influences the order of listing; e.g., all C₁ compounds appear before C₂, thus CCl₂O, CCl₄, CHCl₃, CHN, CH₂O, CO, C₂Ca, C₂H₄O₂.

c. Water of hydration is not made a part of the

formulae indexed.

d. Polymers having different names and recognized as different substances, e.g., acetaldehyde and paraldehyde, are all entered under their accepted formulae; but a definite compound for which different polymeric formulae are in use is entered under the simplest formula.

e. For series of compounds listed under a single entry heading "M" refers to metallic or metalloidal components (e.g., K, Li, Rb) and "X" denotes electronegative substituents such as C1, F, O, S, etc.

f. Approximate compositions are indicated by enclosing listing in quotation marks, "-", such as in

interstitial compounds or alloys.

g. Glasses, polyphases, and compounds of given stoichiometry but indefinite structure are cited alphabetically by M, followed by X; thus B2O3·3Nb2O5; Cr₂O₃-IrO₂; B₂O₃-BaO-SiO₂; etc.

h. Isotopic compositions are presumed to be of ter-

restrial abundance unless otherwise indicated.

i. Wherever practicable conventional formulae and/or nomenclature is listed to the right of the index formula.

j. Great effort has been made to maintain accuracy and provide current information. In some instances, through staff changes, some authors cited are no

longer in the Inorganic Materials Division, yet inclusion of their recent efforts was deemed significant to this compendium. Hence, these individuals are signified by an asterisk. The reader may contact these individuals for further information, but it would probably be more expedient if the editors were contacted.

Many of the materials listed in this report were produced as part of programs sponsored by other agencies. Acknowledgements for specific materials are given in the references and are too numerous to repeat in detail here. The support by the Air Force Materials Laboratory, the Air Force Cambridge Research Laboratory, the Army Research Office (Durham), the Advanced Projects Research Agency (Materials Office), the Atomic Energy Commission (Research Division), the National Aeronautics and Space Administration, and the Office of Naval Research is 'gratefully acknowledged.

5. References

[1] Characterization of Materials, prepared by the Committee on Characterization of Materials of the Materials Advisory Board, H. W. Leverenz, Committee Chairman. National Academy of Sciences—National Academy of

Engineering Publication MAB-229-M, March 1967.
[2] Research in Solid-State Sciences—Opportunities and Relevance to National Needs, prepared by a Committee of the Solid State Sciences Panel for the Coordinating Committee for Materials Research and Development of the Office of Science and Technology, R. Smoluchowski, Committee Chairman, Publication 1600, National Academy of Sciences, 1968.

[3] Ceramic Processing, prepared by the Committee on Ceramic Processing, of the Materials Advisory Board,
Joseph A. Pask, Committee Chairman, Publication 1576,

National Academy of Sciences, 1968.

[4] J. W. Cleland, Purity and Perfection of Research Specimens of Oxides in Mass Transport in Oxides, Nat. Bur. Stand. (U.S.), Spec. Pub. 296, (224 pages) edited by J. B Wachtman, Jr. and A. D. Franklin, issued August The address of the Research Materials Information Center is Building 3001, Oak Ridge National Laboratory, Box X, Oak Ridge, Tennessee 37830.

[5] Catalog of Standard Materials, Nat. Bur. Stand. (U.S.), Spec. Publ. 260, July 1970. See also supplements for

price lists and changes.

REFERENCES (Author, Title, Journal)		(1) T. C. Farrar and T. D. Coyle, "Proton and Fluorine NMR Spectra of HBF2", J. Chem. Phys., 41, 2612 (1964).	(2) E. B. Whipple, T. H. Brown, T. C. Farrar, and T. D. Coyle, "Relative Signs of Nuclear Spin Coupling in !H'11B1'F2" J. Chem. Phys., #3,	(3) T. D. Coyle, J. J. Ritter, and T. C. Farrar, "Prepar- ation and Properties of Difluoroborane", Proc. Chem. Soc., 25, (1964).	(4) T. D. Coyle, J. Cooper, and J. J. Ritter, "Preparation and Some Reactions of Difluoroborane", Inorg. Chem., Z, 1014 (1968).
NBS STAFF MEMBERS TO BE CONTACTED FOR ADDITIONAL INFORMATION	I. C. Farrar	T. D. Coyle T. C. Farrar in.			
COMMENTS	attempt to determine chemical exchange rates in equilibrium	qualitative structural detms; only known mono- boron fluoro- hydride; synth.	radell, all moisture sensitive		
METHOD OF CHARACTERIZATION	NMR (11B,19F) spectrometry	mol. wt., infrared NMR (1H, 11B, 19F) spectrometry, active H, chemical reactivity			
NATURE OF PREPARATION	BCl ₃ + BF ₃ ⇒ at < 25°C	(3) BF3+ B2H6 at 250°C (4) BF3 + (CH30)2BH B2F4 + LCH3)3SiH) -		
NATURE OF MATERIAL	equilibrium soln. of all species, where n = 0-3, studied as liquids	also studied as liquid (1,2)			
COMPOSITION	BClnF3-n	$\mathrm{BF}_2\mathrm{H}$	difluoroborane		

(1) F. E. Brinckman and G. Gordon, "Energetic Intermediates in Inorganic Synthesis: Reactions of Covalent Main Group Fluorides in Electric Discharges", Fourth Int. Symp. on Fluorine Chem., Estes Park, Colo., July 1967, Abstr. of Papers, p. 132. (2) F. E. Brinckman and G. Gordon, "Energetic Intermediates in Inorganic Synthesis: Characterization of Transport Species in Electric Discharges", Proc. Int. Symp. on Decomposition of Composition of Composition of Composition of Composition of Composition of Coramics, Metals, and Metal Alloys, Univ. Dayton Press (1967), p. 29.	V. H. Dibeler and S. K. Liston, "Mass Spectrometric Study of Photoionization. XII. Boron Tri- fluoride and Diboron Tetrafluoride", Inorg. Chem., 7, 1742 (1968).	See refs. 1, 2 under BF50Si.
novel Si-0-B F. E. Brinckman structure suitable for bond angle and dissn. studies; unstable at r.t.	simplest T. D. Coyle polyboron T. C. Farrar fluoride; potential source of BF2 function in free radical reactions; B-B bond dissn.	novel B-0-B F. E. Brinckman molecular structure suitable for bond angle and dissn. measurements; unstable even at low pressures
infrared, mass spectrometry using full isotopic anal.	infrared, mass, NMR (11B,19F) spectrometry	direct inlet mass spectrometry, isotopic anal.
electric dis- charge rxn of BF3 in SiO ₂ reactor	B ₂ Cl ₄ + SbF ₃ at -80°C	microwave dis- charge of BF3 in Si02 reactor
	also studied as liquid	obsd. as parent- daughter ions
BF ₂ OSiF ₃	B ₂ F ₄ diboron tetrafluoride tetrafluorodi- borane-4	BF20BF2

(1) W. J. Lafferty, A. G. Maki, and T. D. Coyle, "High Resolution Infrared Spectrum and Structure of Diborane", J. Mol. Spectroscopy, 33, 345 (1970). (2) T. C. Farrar, R. B. Johannesen, and T. D. Coyle, "Magnetic Non-Equivalence in the High Resolution NMR Spectra of Diborane", J. Chem. Phys., 49, 281 (1968). See also C ₂ H ¹¹ BD ₆ O ₂ in SECTION II.		V. H. Dibeler and S. K. Liston, "Mass Spectrometric Study of Photoionization. IX. Hydrogen Cyanide and Acetonitrile", J. Chem. Phys., 48, 4765 (1968).	
parent mat- T. D. Coyle erial for T. C. Farrar synthesis of R. B. Johannesen isotope (H, D,10B,11B) boranes; detailed interpretation of NMR spectra	model com- pound for structure in liquid; aniso- tropic motions in liquids; angular momen- tum cross- sections	used for T. D. Coyle photoioni-zation studies: parrent compound for X-CN series	prepd. for T. D. Coyle photoioniza- tion study
infrared (1), NMR (1H, 10B, 11B) spectrometry (2)	infrared, NMR (19F,35Cl,37Cl) spectrometry, volatility, m.p.	infrared and mass spectro- metry	infrared, ultra- violet, mass spectrometry; vapor phase chromatography
$^{n}_{BF_{3}} \cdot 0(C_{2}H_{5})_{2} + ^{L}LAlH_{4} \rightarrow ^{+}$ $(n = 10 \text{ or } 11)$	commercial	NaCN + H ₂ SO ₄	NaNO2 + CH3OH + H2SO4
studied as liquid	also studied as liquid, soli		
n _{B2} H ₆ diborane	CCl ₃ F Freon-11	сни нси	CH ₃ NO ₂ CH ₃ ONO methyl nitrite

J. J. Ritter, T. C. Coyle, and J. M. Bellama, "Synthesis of Ethynylboron Halides", Chem. Comm., 908 (1969).	See ref. under C2HBCl2. W. J. Lafferty, J. J. Ritter, "Microwave Spectrum, Structure, and Dipole Moment of Ethynyldifluoroborane, HCECBF2", Chem. Comm., 909		(1) R. B. Johannessen, F. E. Brinckman, and T. D. Coyle, "Nuclear Magnetic Resonance Studies of Inorganic Fluorides V. Fluorosilanes", J. Phys. Chem., 72, 660 (1968). (2) See refs. under BF,0Si. (3) See ref. under F,si.
J. J. Ritter T. D. Coyle if	J. J. Ritter T. D. Coyle ble e sitive	T. C. Farrar	F. E. Brinckman T. D. Coyle T. C. Farrar ind
first ethy- nylboron chloride iso- lated; novel substituted acetylene; suitable for studies on coordination saturation saturation of air/moisture sensitive	first ethy- J. nylboron T. fluoride iso- lated; suitable for extensive structural anal.; air/ moisture sensitive	see CCl ₃ F	model com- pounds for structural, dipole moment (n = 1,3), and magnetic resonance properties; synthetic intermediates
mass, infrared spectrometry; cleavage with propionic acid → C ₂ H ₂ + HCl	mass, infrared, and microwave spectrometry, cleavage in glass with propionic acid → C2H2 + SiF4	see CCl ₃ F	infrared, mass (full isotopic anal.), NMR [19F(29Si))] spectrometry; volatility, mol. wt.; vapor phase chromatography
trans-C1CH = CHBCl ₂ + hv	(CH ₃) ₃ SnC≡ CH + BF ₃ at -80°C	commercial	SiCl ₄ + SiF ₄ + AlCl ₃ (cat.) at 150°C (1) electric dis- charge in SiCl ₄ + SiF ₄ (2)
	C _{2v} symmetry	also studied as liquid, solid	n = 1-3 also studied as liquids
C ₂ HBCl ₂ ethynyldichloro- borane	C ₂ HBF ₂ ethynyldifluoro- borane	C1F0 ₃ FC10 ₃ Perchlory1 fluoride	Cl _n F _{4-n} Si chlorofluoro- silanes

M. Linzer, "Measurement of the Proton g-factor in Cyclo-hexane and the Electron g-factors in Atomic Deuterium and Atomic Nitrogen", Bull. Am. Phys. Soc., 12, 507 (1967).	(1) R. W. Rudolph and R. W. Parry, "Fluorophosphine Ligands. I. The Preparation and Characterization of Difluorophosphine", Inorg. Chem., 4, 1339 (1965). (2) R. B. Johannesen, "MR Studies of Inorganic Fluorides. IV. Relative Signs of Coupling Constants in CH3SiF3, HSiF3, and HPF2", J. Chem. Phys., 47, 3088 (1967).	(1) F. E. Brinckman, and G. Gordon, "Formation of u- Oxyfluorophosphines and Polyphosphines in Gaseous Discharge Reactions", 4th Middle Atlantic Regional Mtg of the Am. Chem. Soc., Wash. D. C., February 1969, Abstr. of Papers, p. 41.	T. D. Coyle, R. B. Johannesen, F. E. Brinckman, and T. C. Farrar, "NMR Studies of Inorganic Fluorides. II. Solvent Effects on J(29Si-19F) in SiF4,", J. Phys. TO, 1682 (1966).
experimental M. Linzer test of quantum electrodynamic calculations	NMR relative T. D. Coyle sign measure-ments; reagent uses; air/moisture sensitive	related to F. E. Brinckman study of T. C. Farrar (2) electric discharge rxns in PF3 (1); model compounds for study of structures and electron anisotropies (2)	Si-F coupling T. D. Coyle constant; T. C. Farrar double resonance
measurement of electron g-factor relative to g_J of H atoms	mol. wt.; infrared NMR (¹ H, ¹ ⁹ F, ³¹ P)(²) spectrometry	infrared, mass (1), NMR (¹⁹ F, ³¹ P)(2) Spectrometry; volatility	infrared, mass, NMR (19F) spectro- metry; volatility, mol. wt., vapor phase chromato- graphy
microwave discharge in D ₂ O(g)	PF ₂ I + HI (1)	commercial; fractional distillation	commercial, fractional distillation
отs)	HP HPF ₂ difluorophosphine	studied as liquids also	Si Also obsd. as liquid (1) SiF ₄ tetrafluorosilane
D D(atoms)	F ₂ HP HPF ₂ difluoro	F ₃ 0P OPF ₃ F ₃ P PF ₃	F ₄ Si SiF ₄ tetraflu

See ref. 2 under BF ₅ 0Si.	(1) R. B. Johannesen, T. C. Farrar, F. E. Brinckman, and T. D. Coyle, "NMR Studies of Inorganic Fluorides. I. High-Resolution 19F Spectra of Si2F6 and (SiF3)20", J. Chem. Phys., 44, 962 (1966). (2) See ref. 2 under BF ₅ OSi.	(1) See ref. 1 under F ₆ OSi ₂ . (2) F. E. Brinckman, T. D. Coyle, and L. Fishman, "Formation of a Perfluorotish and L. Fishman, "Formation of a Perfluorociested Cleavage Reactions of Silazanes", Fourth Int. Conf. on Organometallic Chemistry, Bristol, England, July 1969, Abstr. of Papers,			See ref. under D.
F. E. Brinckman	on F. E. Brinckman	F. E. Brinckman	R. C. Paule	R. C. Paule	M. Linzer
candidates for molecular structure and bond dissn. energy measure- ments; yields very small	suitable for determination of Si-0-Si bond angle; purified by vapor phase chromatography; air/moisture sensitive	parent com- pound for perfluoro- disilanyl chemistry; suit able for detm. of Si-Si bond energy; purified by vapor phase chromatography; air/moisture sensitive			see D
direct inlet mass spectrometry, full isotopic anal.	NMR [¹⁹ F, (¹⁹ F{ ²⁹ Si})] (1); mass (2) spectrometry	NMR [19F,(19F{29Si})] (1); spectrometry chemical reactivity (2)	mass spectrometry	mass spectrometry	see D
microwave dis- charge rxns. of GeF _t and GeF _t + SiF _t in SiO ₂ reactors	Si ₂ OCl ₆ + SbF ₃ (1); electric discharge rxn of SiF ₄ with SiO ₂ (2)	·Si ₂ Cl ₆ + SbF ₃ (1)	Ga ₂ O ₃ (s) heated to 1200-1500°C	Ga ₂ O ₃ (s) + W heated to 1200°C	microwave discharge in N ₂ (g)
obsd as parent and daughter ions	also studied as liquid	also studied as liquid			
F ₆ Ge ₂ 0 (GeF ₃) ₂ 0 F ₆ GeOSi GeF ₃ OSiF ₃	F ₆ 0Si ₂ Si ₂ 0F ₆ hexafluoro- disiloxane	F ₆ Si ₂ Si ₂ F ₆ hexafluorodisilane	Ga ₂ 0	Ga ₂ O ₄ W Ga ₂ WO ₄	N N(atoms)

REFERENCES (Author, Title, Journal)	R. Kuczkowski and D. Lide, "Microwave Spectrum, Structure, Dipole Moment, and Barrier to Internal Rotation of Phosphorus Trifluoride-Borane", Jr. Chem. Phys., 46, 357 (1967).	P. L. Timms, T. C. Ehlert, J. A. Margrave, F. E. Brinckman, T. C. Farrar, and T. D. Coyle, "Silicon- Fluorine Chemistry. II. Silicon-Borane Fluorides, J. Am. Chem. Soc., 87, 3819 (1965).
NBS STAFF MEMBERS TO BE CONTACTED FOR ADDITIONAL INFORMATION	T. D. Coyle	F. E. Brinckman T. D. Coyle T. C. Farrar
COMMENTS	rotational spectrum, barrier to internal rotation	series of novel Si-B compounds; qualitative detm. of structure; air/moisture sensitive
METHOD OF CHARACTERIZATION	synthesis, microwave spectrometry	infrared, NMR (11B,19F) spectro- metry
NATURE OF PREPARATION	PF ₃ +B ₂ H ₆ (deuterated)	prepd. at Rice Univ. (a) SiF ₂ (g) + BF ₃ (g) (b) co- condensed at -196°C
NATURE OF MATERIAL	n = 1-3 (2)	
COMPOSITION	^{BD} 3-ո ^F 3 ^H ո ^P F3 ^P • ^{BH} ո ^D 3-ո	BF7Si2 SiF3SiF2BF2 BF9Si3 n-Si3F7BF2

(1) T. Wartik, et. al., "Diboron Tetra- chloride", Inorg. Syn. 10, 118 (1967); (2) V. H. Dibeler and J. A. Walker, "Mass Spectrometric Study of Photoionization. XIII. Boron Trichlo- ride and Diboron Tetrachloride", Inorg. Chem., 8, 50 (1969);	(3) T. D. Coyle and J. J. Ritter, "Reac- tions of Diboron Tetrahalides with Some Unsaturated Organometallic Com- pounds", J. Organomet. Chem., 12, 269 (1968).	(1) T. D. Coyle, R. B. Johannesen, F. E. Brinckman, and T. C. Farrar, "Nuclear Magnetic Resonance Studies of Inorganic Fluorides. II. Solvent Effects on J(29Si-19F) in Silicon Tetra-fluoride", J. Phys. Chem., 70, 1682	(2) R. B. Johannesen, F. E. Brinckman, and T. D. Coyle, "Nuclear Magnetic Resonance Studies of Inorganic Fluorides. V. Fluorosilanes", J. Phys. Chem., 72,
J. J. Ritter		F. E. Brinckman T. D. Coyle	
parent material for chemistry of diboron compounds; detm. of B-B bond energy		dipole moments detmd. for SiF3Br and SiBr3F (with A. Marryot, NBS)	
infrared, mass (2) spectrometry; chemical reactiv- ity (3)		infrared, mass spectrometry; NMR [19F, (19F(281))] (1,2) spectrometry; volatility	,
electric dis- charge reduc- tion of BCl ₃ (1)		SiFt + SiBrt + Albrt = 1yst at 150°C	
unstable liquid		n = 1-3 studied as liquids and gases	
B ₂ Cl ₄ tetrachlorodi- borane-4		Br F3-n Si bromofluoro- silanes	

T. D. Coyle and J. J. Ritter, "Recent Studies in Organo- boron Chemistry. Some Chemical Consequences of the Boron Sub- halides", Fourth Int. Conf. on Organo- metallic Chemistry, Bristol, England, July 1969, Proc. of the Conf., P. Rl.	See also $C_2 H_4 O_2$.	(1) T. C. Farrar, J. Cooper, and T. D. Coyle, "Proton Broad-Line NMR Study of [24,6]Dimethoxy- [11B]borane", Chem. Comm., 610 (1966). (2) N. Boden, H. S. Gutowsky, J. R. Hansen, and T. C. Farrar, "Nuclear Magnetic Relaxation Studies of (CD ₃ O ₂ BH", J. Chem. Phys., 46, 2849 (1967). (3) T. C. Farrar and T. Tsang, "A Nuclear Magnetic Resonance and Relaxation Study of Dimethoxyborane", J. Res. NBS, 73A, 195 (1969).
unsymmetrical J. J. Ritter diboron halide; use- ful for studies of additions to olefinic and and acetylenic systems; air/ moisture sensitive	model compounds for study of 13°C T and T2 values	isotopic T. D. Coyle composition T. C. Farrar provides selected nuclear spin properties only example of B-H bond distance measturement in 3-coordinate boron compounds; motional studies; precursors of HBF2
infrared, mass spectrometry; cleavage rxns. with Ag20 + NH3(aq)→ CH ₄ + H ₂	infrared, NMR (1H,13C) spectrometry; m. p.	infrared, NMR (1H, 11B) spectrometry; mol. wt.; m. p.
B ₂ Cl ₄ + (CH ₃) ₄ M (M = Ge, Sn, or Pb)	commercial, high-vacuum degassed	СD ₃ OH +
unstable	also studied as gas	n = 10,11; also studied as solid
CH ₃ B ₂ Cl ₃ methyltrichloro- diborane-4	13CH ₄ O 13CH ₄ O [13C]-methanol	С ₂ Н ^п ВD ₆ O ₂ (СD ₃ O) ₂ ^п ВН

T. D. Coyle and J. J. Ritter, "Structure, Isomerization, and Cleavage of 1,2- Bis-(dichloroboryl)- ethylene", J. Am. Chem. Soc., 89, 5739 (1967).	(1) J. J. Ritter, T. D. Coyle, J. M. M. Enlama, "The Interaction of B2Cl4 with Halo-olefins", Abstracts, 156th National Meeting of Amer. Chem. Soc., Atlantic City, N. J., (1968) p.INOR 166; (2) C. Chambers, A. K. Holliday, and S. M. Walker, "1,2 Tetrakidichloroborylethane", Proc. Chem. Soc., 286 (1964).
established J. J. Ritter the mode of T. D. Coyle addition of E.D. Coyle 2.14. to C.2H.; pointed up the utility of I MMR while irradiating at the boron frequency in distinguishing between 1,1 and 1,2 demonstrating the dangers of assigning structures on the basis of JH-H; demonstrated utility of Ag20/NH; agact with refention of configuration; air/moisture sensitive	further con- J. J. Ritter firmation of T. D. Coyle the reaction between B ₂ Cl ₄ and halo-olefins to produce a known compound; air/moisture sensitive
infrared, mass, NMR spectrometry; cleavage rxn of deutero-compound with Ag ₂ O + NH ₃ (a _q) → trans- dideuteroethylene	elemental anal. mol. wt., rxn. ratios
ois- (BCl ₂) ₂ C ₂ H ₂ + hv	C1CH=CHBC12+ 2B2C14 or HC=CH+2B2C14
	white solid, melts at 30°C
C ₂ H ₂ B ₂ Cl ₄ trans-(BCl ₂)CH= CH(BCl ₂)	C ₂ H ₂ B ₄ Cl ₄ 1,1,2,2-tetrakis (dichloroboryl) ethane

See ref. (3) under B ₂ Cl ₄ .	(1) See ref. under C ₂ H ₃ B ₂ Cl ₂ MX ₃ . (2) See ref. (1) under C ₂ H ₂ B ₄ Cl ₄ .	See also $^{13}\mathrm{CH}_{4}\mathrm{J}$ and $^{13}\mathrm{CH}_{4}\mathrm{J}$.
provides J. J. Ritter series of T. D. Coyle model com- pounds for structure- reactivity relationships in vicinal- and geminal- substituted organo- metal systems	demonstrated J. J. Ritter a reaction T. D. Coyle pathway between B ₂ Cl ₄ and halo olefins contrary to earlier reports of no reaction; suggested "BCl" as a possible "reactive intermediate" responsible for the observed product; sensitive	model compound for study of $^{13}\mathrm{C}$ T, C. Farrar study of $^{13}\mathrm{C}$ T, and Tz values
elemental anal.; mol. wt., rxn. ratios	complete elemental anal.; mol. wt.; infrared, NMR spectrometry, rxn. ratio	infrared, NMR (¹ H, ¹³ C) spectro- metry; m.p.
B ₂ Cl ₄ +CH ₂ = CHMX ₃	CH ₂ =CHCl + 2B ₂ Cl ₄ or CH ₂ =CHBCl ₂ + B ₂ Cl ₄	commercial; high-vacuum degassed
C2H3B2Cl2MX3 involatile (M=C,Si,Ge,Sn; X=Cl,CH3)	C ₂ H ₃ B ₃ Cl ₆ 1,1,2-tris(dichloro-boryl)-ethane	$C_2H_4O_2$ $CH_3^{13}COOH$ $\alpha[^{13}C]$ -acetic acid

See ref. 2 under Br. 3-n. F. E. Brinckman, T. D. Coyle, and L. Fishman, "Formation of a Perfluoro- disilanyl-silazane: Selected Cleavage Reactions of Sila- zanes", Fourth Int. Conf. on Organo- metallic Chemistry, Bristol, England, July 1969, Proc. of the Conf., p. Dl4.	(1) T. C. Farrar, E. E. Brinckman, T. D. Coyle, A.Davidson and J. W. Faller, "A Broad-Line Proton Magnetic Resonance Study of Cobalt Tetracarbonyl Hydride", Inorg. Chem., 6, 161 (1967). (2) D. L. VanderHart, H. S. Gutowsky, and T. C. Farrar, "Dipole- Dipole Interactions of a Spin 1/2 Nucleus with a Quadrupole- Coupled Nucleus", J. Am. Chem. Soc., 89, 5056 (1967).	See C ₅ HMnO ₅ .
model com- pound for pound for preparative route to perfluorosilazanes model compound for derivative chemistry of perfluoropolysilanes based cleavage of Si-N	model com- pound for application of NMR in detm. metal- H bond dis- tances; basis for reexamin- ation of basic CsHMNOs	candidate F. E. Brinckman compound T. C. Farrar for Fe-H distance detm.,
infrared, mass, NMR (1H,19F) Spectrometry, elemental anal., sub- sequent rxns.	NMR (¹ H) spectrometry (1,2)	infrared, NMR (1H) spectro- metry
[(CH ₃) ₃ Si ₃ NH + SiF _{t_t} [(CH ₃) ₃ Si ₃ NH +Si ₂ F ₆	studied as see ref. (1) solid; liquid unstable at > -45°C	studied as liquid
C3H10F3NSi2 (CH3)3SiNHSiF3 C3H10F5NSi3 (CH3)3SiNHSi2F5	C _{t,} HCOO _{t,} HCo(CO) _{t,}	C4H2FeO4 H2Fe(CO)4

R. N. Grimes, "A New Isomer of C2B3H5,C,3-Dimethyl- 1,2-dicarbaclovo- pentaborane(5)", J. Am. Chem. Soc., 88,	T. C. Farrar, Sister W. Ryan, A. Davidson, and J. W. Faller, "Manganese-Hydrogen Bond Distance in HMn(CO)4", J. Am. Chem. Soc., 88, 184 (1966).	(1) F. E. Brinckman, H. S. Haiss, and R. A. Robb, "Metal- Nitrogen Bonding, Covalent Complexes of 1,3-Dimethyltriazene with Elements of Groups I, II, III, IV, and V", Inorg. Chem., \(\frac{\pi}{4}\), \(\frac{\pi}{936}\)	(2) F. E. Brinckman, K. Nelson, R. Barefoot, and H. Haiss, "Silicon- Nitrogen Bonding. Penta- and Hexa- coordinated Inter- mediates in Methyl- silazanes", in preparation.
clarification T. C. Farrar of molecular structure	model com- T. C. Farrar pound for application of NMR in detm. metal-H bond distance; see also C ₄ HCoO ₄	parent com- F. E. Brinckman pounds for synthesis of 1,3-dimethyl-triazeno- metal(loid) deriv.; novel bidentate ligand for coordination studies; air/ moisture	sensitive
NMR (¹ H, ¹¹ B) spectrometry	infrared, NMR ('H) spectro- metry	infrared, NWR (1H) spectrometry (1,2), elemental anal., mol. wt.	
supplied by Prof. R. N. Grimes, Univ. of Virginia, Charlottsville,	prepared at Mass. Inst, Tech., and at NBS by F. E. Brinckman	(a) CH ₃ N ₃ + CH ₃ MgCl (b) a + (CH ₃) _n SiCl ₄ -n at -40 to -80°C; see ref. (l)	
	also studied as solid	ii E	и п
C ₄ H ₉ B ₃ C,3-dimethyl-1,2-dicarbaclovo-pentaborane(5)	C ₅ HMnO ₅ HMn(CO) ₅ C ₅ HReO ₅ HRe(CO) ₅	C ₅ H ₁₅ N ₃ S <u>1</u>	C6H18N6Si (CH3) _n Si(CH3N- N=NCH3)4-n

See also C ₆ H ₆ I under SECTION IV.	M. Linzer, "Measure- ment of the Proton g-factor in Cyclo- hexane and the Elec- tron g-factors in Atomic Deuterium and Atomic Nitrogen", Bull, Am. Phys. Soc., 12, 507 (1967).	n R. B. Johannesen, G. A. Candela, and T. Tsang, "Jahn- Teller Distortion: Magnetic Studies of Vanadium Tetra- chloride", J. Chem. Phys., 48, 5544	See ref. 2 under Br.F.a.si. R. B. Johannesen, F. E. Brinckman, and T. D. Coyle, "Nuclear Magnetic Resonance Studies of Some Fluorinated Mono- and Polysilanes", 153rd Natl. Mtg. Am. Chem. Soc., Miami Beach, Fla., April 1967, Abstr. of Papers, P. Lll3.
application T. C. Farrar u of Fast- u Fourier trans- form NMR spectrometry to natural abundance	measurement M. Linzer M factor relative to g of H atoms; H atoms; secondary for standard for g-factor detms; culation of shielding parameter for H2 meter for H2 molecule	detm. magnetic R. B. Johannessen parameters, distortion; paramagnetic Matortion; relaxation time, T1; air/moisture P	first ex- mixed per- mixed per- halogenated disilane; 19F "tag" permits double- resonance NMR of Si nuclei A A A A
NMR (¹ H, ¹³ C) spectrometry	NMR (¹ H) Spectrometry	EPR spectrometry (as a function of frequency, temp.); magnetic susceptibility between 78-3070%; optical spectrophotometry of VCl ₄ in TiCl ₄	infrared, mass, NMR [19F,(19F{29si})] spectrometry
commercial	commercial, spectro- grade	commercial, fractionally distilled	Si ₂ Cl ₆ + SiF ₄ + AlCl ₃ (cat.) at 150°C
studied also as solid		obsd. as neat liquid and in TiCl ₄ soln.; also obsd. as polycrystalline solid	- LO
C ₆ H ₆ benzene	C ₆ H ₁₂ cyclohexane	Cl ₄ V VCl ₄	Si ₂ Cl ₅ F pentachlorofluoro- disilane

F. E. Brinckman F. E. Brinckman, J. Cooper, and T. D. Coyle, "Interactions of Some Halosilanes with Nitrogen Bases", 153rd Natl. Mtg. Am. Chem. Soc., Miami Beach, Fla., April 1967, Abstr. of Papers, p. L112. See SECTION I under F.6512.	
of -Si able bond m.	T. C. Farrar E. D. Lippincott rk NBS)
parent material for synthesis of compounds bearing Si-Si bond; suitable for Si-Si bond energy detm. air/moisture sensitive	attempt to establish nature of protons in sample (work with M.
infrared, mass (full isotopic anal.), spectro- metry; vapor phase chromato- graphy; volati- lity, cleavage rxn with H₂0 → H₂+C1-	infrared, NMR (¹ H) spectrometry
commercial, fractional distillation; electric dis- charge in SiCl4	not available
	polymeric
Cl ₆ Si ₂ hexachlorodisilane	H ₂ O "polywater"

GLASSES	
III	

NBS STAFF MEMBERS TO BE CONTACTED FOR ADDITIONAL REFERENCES (Author, INFORMATION	Cleek R. L. Bowen and G. W. Cleek, "X-Ray Opaque Reinforcing Fillers for Composite Materials", J. Dental Res., 48, 79 (1969).	Cleek	Napolitano ASTM draft in preparation.	W. Cleek E. H. Hamilton, G. W. Cleek, and O. H. Grauer, "Some Properties of Glasses in the System Barium Oxide-Boric Oxide-Silica", Amer. Ceram. Soc., 41, 209 (1958).	E. M. Levin E. M. Levin, "Liquid Immiscibility in the Rare Earth Oxide-Boric Oxide Systems", Phys. Chem. Glasses, 7,90 (1966).
NBS ST TO BE FOR AI COMMENTS INFOR	filler mat- G. W. erial for dental composites	specimens may G. W. be used for detm. of other properties	not NBS certification this method but suitable as standard; used in ASTM round robin tests	specimens G. W. may be used for detm. of other properties	high-index E. M. solid state
METHOD OF CHARACTERIZATION	refractive index, thermal expansion, sphere size	refractive index, transmittance, liquidus temp.	Knoop hardness	chemical analysis; refractive index; density; liquidus temp.	polarizing microscopy
NATURE OF PREPARATION	melting, chill- ing, size reduction, flame spheriz- ing	melting, annealing	melting, chilling	melting, annealing	gravity separated from two inmiscible liquids
NATURE OF MATERIAL	microspheres, 5-50 µ dia.	glass blocks	NBS Standard Reference Material # 715	glass blocks	small fragments
COMPOSITION	barium aluminoboro- fluorosilicate glasses; example: Al ₂ O ₃ 12 mol% BaC ₃ 16 BaF ₂ 20 BaO ₃ 8 SiO ₂ 44	glasses from $\mathrm{Al}_2\mathrm{O}_3$ -BaO-SiO $_2$ system	aluminosilicate glass, alkali- free	glasses from B ₂ 03-Ba0-Si0 ₂ system	glasses from B ₂ 03-Ln ₂ 03 system

H. E. R. J. Meta-ibility e System	for Measure- echnical 965, P.		sharp, M. J. and G. W. "Energy Trans- ng in Eu and ed Silicate "," J. Appl. 1, 364 (1970).		
W. Haller, D. H. Blackburn, F. E. Wagstaff, and R. J. Charles, "The Meta- stable Immiscibility Surface in the System Na ₂ O-B ₂ O ₃ -SiO ₂ ", J. Am. Ceram. Soc. 53, 34 (1970).	"Glass Beads for Neutron Flux Measure- ments", NBS Technical Highlights, 1965, p.		E. J. Sharp, M. J. Weber, and G. W. Cleck, "Energy Trans. fer and Fluorescence Quenching in Eu and Nd Doped Silicate Glasses", J. Appl. Phys. 41, 364 (1970)		
W. Haller	D. H. Blackburn	G. W. Cleek es	G. W. Cleek	G. W. Cleek	G. W. Cleek es
specimens used for theoretical studies of immiscibility	tested as possible method to detm. neutron flux	specimens may be used for detm. of other properties	specimens are being evaluated for fluorescence lifetime	specimens may be used for detm. of other properties	specimens may be used for detm. of other properties
domain develop- ment kinetics; critical immiscibility temp.	neutron acti- vation anal.	refractive index, trans- mittance, liquidus temp.	evaluation for laser use	refractive index, trans- mittance, liquidus temp.	refractive index, transmittance, liquidus temp.
melting,	melting, chilling, grinding	melting, annealing	melting, chilling, annealing	melting, annealing	melting, annealing
glass blocks	glass prisms	glass blocks	blocks 3 x 3 x 3 cm.	glass blocks	glass blocks
glasses from B ₂ O ₃ -Na ₂ O-SiO ₂ system	10B-enriched borate glasses doped with Co, Dy, or In	glasses from BaO-La ₂ 0 ₃ -Si0 ₂ system	a base glass: Ba0 5 mol% Na20 15 Si02 75 Zn0 doped with various rare earths: Eu,	glasses from BaO-Nb ₂ O ₅ -SiO ₂ system	glasses from BaO-SiO ₂ -TiO ₂ system

	(1) ASTM C598 and H. E. Hagy, "Calibration of Beam Bending Apparatus", J. Amer. Ceram. Soc., 46, 93 (1963).	(2) D. R. Secrist, "Measurement of Surface Tension of Glasses by a Capillary Flow Technique", Bull. Amer. Ceram. Soc., 48, 563 (1969).	(3) ASTM draft in preparation.	(4) J. E. Kelley, T. D. Robert, and H. M. Hanes, "A Penetro-meter for Measuring the Absolute Viscosity of Glass", U. S. Bureau of Mines RI 6358 (1964).	
specimens G. W. Cleek may be used for detm. of other properties	not NBS A. Napolitano certified for this method but suitable as standard	not NBS A. Napolitano certified for this method but suitable as standard	not NBS A. Napolitano certified for this method but suitable as standard; used in ASTM round robin tests	not NBS A. Napolitano certified for this method but suitable as standard for ASTM flow point detm.	specimens G. W. Cleek covering a wide range of Fe content may be used for characterization by Mossbauer spectroscopy
refractive index, transmittance, liquidus, temp.	viscosity by beam bending	surface tension at elevated temp.	Knoop hardness	viscosity by penetrometer	Mossbauer spectrometry
melting, annealing	melting, chilling				melting, chilling
glass blocks	NBS Standard Reference Material # 710				30 × 30 × 2 mm
glasses from BaO-SiO ₂ -ZnO system	alkali-lime- silica glass: ca0 11.6 mol% K20 7.7 Na20 8.7 SiO2 70.5				Fe-containing silicate glasses

See ref. 2 under alkali-lime-silica glass.	ASTM draft in preparation.	E. H. Hamilton and G. W. Cleek, "Pro- perties of Sodium Titanium Silicate Glasses", "J. Res. NBS, 61, 89 (1958).	(1) W. Haller, "Rearrangement Kinetics of the Liquid-Liquid Im- miscible Microphases in Alkali-Boro- silicate Melts", J. Chem. Phys., 42, 686, (1965).	(2) N. M. Winslow and J. J. Shapiro, "An Instrument for the Measurement of Pore-Size Distribution by Mercury Penetration", ASTM Bull, 39 (Feb. 1959).	
not NBS A. Napolitano certified for this method but suitable as standard	not NBS A. Napolitano certified for this method but suitable as standard; used in ASTM round robin tests	specimens G. W. Cleek may be used for detm. of other glass properties	possible W. Haller surface area and porosity standards	-	prisms cover- G. W. Cleek ing range of refractive indices 1.5 to 1.9 measured by minimum method for NC, ND, and NF
surface tension at elevated temp.	Knoop hardness	refractive index, transmittance, liquidus temp.	mercury intrusion porosimetry, nitrogen absorption		refractive index
melting, chilling		melting, annealing	melting, chilling, thermal domain develop- ment, dif- ferential dissolution		melting, chilling, annealing, polishing
NBS Standard Reference Material # 711		glass blocks	powders, 50-200 mesh particles		glass prisms
alkali-lead- silica glass: K20 5.6 mol% Na20 2.5	0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	glasses from Na ₂ 0-Si0 ₂ -Ti0 ₂ system	porous silica glass SiO ₂		various

TAT	1
_	ī
<	C
	Ī
ODAC	1
ν	7
Ω	_
-	,
-	
-	
TIT	
	7
-	
C	y
CINIC	>
-	-
\vdash	
11	,
v	-
	4
-	
11	>
-	4

REFERENCES (Author, Title, Journal)	S. J. Schneider and C. L. McDaniel, "Effect of Environment upon the Melting Point of Al ₂ 0 ₃ ", J. Res. NBS, 7lA, 317 (1967).	S. J. Schneider, "Cooperative Determin- ation of the Melting Point of Al ₂ 03", Pure and Applied Chemistry, to be	C. E. Weir, "Com- pressibility of Eleven Inorganic Materials", J. Res. NBS, 69A, 29 (1965).	A. Harding, "Vapor Growth of Aluminum Oxide Bicrystals", Abstracts, ACGG- NBS Conference on Crrystal Growth, Aug. 11-13, 1969, Washington, D. C.,	C. M. Stickley, et al, "Color Centers and Ruby-Laser Output-Energy Degradation", J. Appl. Phys., 40, 1792 (1969).
NBS STAFF MEMBERS TO BE CONTACTED FOR ADDITIONAL INFORMATION	S. J. Schneider		C. E. Weir*	H. S. Parker	R. F. Blunt T. Chang
COMMENTS	melting point detm. for SRM		see also under BH303, SECTION V	material of high physical perfection and chemical purity; suit- able for dif- fusion studies, physical properties	laser properties (optical and x-ray damage)
METHOD OF CHARACTERIZATION	melting point		compressibility to 10Kb	spectrochemical and activation anal., optical microscopy, x-ray diffractometry	optical, EPR spectrometry
NATURE OF PREPARATION	(1) commercial powder and crystals (2) purified powder by solar furnace		commercial	chemical vapor de- position, fold to the control of the control	flame fusion, prepd. by D. E. Roberts
NATURE OF MATERIAL	also stud- ied as powder, see SECTION V		single crystal bar	single crystals and bi- crystals, 3 x 8 x 20 mm	∿ lcm
COMPOSITION	Al ₂ O ₃ alumina				pure and with following dopants: Cr, Ti+Cr, Ti, V, Mn, Mn+Cr, Zn +Cr, Fe+Cr

	(1) N. N. Winogradoff Emission and Electrical Characteristics of Epitaxial GaAs Lasers and Tunnel Diodes", Solid State Comm., 2, 119 (1964). (2) N. N. Winogradoff, K. Owen and R. Cutnutt Pinch Effect and Pinch Effect and Pinch Effect and Pinch Effect and Temperature Dependence of Radiative Recom- bination in GaAs", Int. J. Electronics, 22, 229 (1967). (3) N. Winogradoff, "Field Control of the Quantum Efficiency of Radiative Recombi- nation in Semicon- ductors", Phys. Rev., 138A, 1562 (1965). (4) N. Winogradoff and A. H. Neill, "Band the Temperature De- pendence of Radiation Recombination in Gcompensated Epitaxial GaAs Laser Junctions", IEEE J. Quant. Electronics, 4.
ic, S. F. Stokowski* so 852.	understanding A. H. Neill* of band structure of GaAs responsible for unusual absorption- edge exhibited; GaAs semi- conductor injection injection provement of room temp. present efficient use of GaAs as a laser necessitates cryogenic condi- tions, cause in efficiency at room temp. not fully understood, should lead to specific material useful for improved laser performance
ferro- electric, see also CrH4N08S2	u u
optical, magnetic	spectral examination of temp. dependence of radiative recombination induced by electrical injection across pon junction or by optical excitation
grown from aq. soln.	vapor phase epitaxy on GaAs substrate, GaCl3 + AsCl3 *; prepared by Monsanto Co.
n = 1 to 0.02	highly doped and compensated
All-nCrnKO8S2·12H2 ^O KAll-nCrn(SO4)2· 12H2 ^O	AsGa GaAs gallium arsenide

A. D. Mighell, A. Perloff and S. Block, "The Crystal Structure of the High Temperature Form of Barium Borate, Ba0.B ₂ 03", Acta Cryst., 20,	A. Perloff, paper in prepn. for submission to Acta Cryst.	A. Perloff and S. Block, "The Crystal Structure of the Strontium and Lead Tetraborates, Sr0. 2B ₂ O ₃ and Pbo. 2B ₂ O ₃ , Acta Cryst., 2C ₀ , 274 (1566).	See ref. under B ₄ 0 ₇ Pb.	C. R. Robbins and E. M. Levin, "Phase Transformation in Barium Tetraborate", J. Res. NBS, 73A, 615 (1969).	A. Hyman, A. Perloff, F. Mauer, and S. Block, "The Crystal Structure of Sodium Tetraborate", Acta Cryst., 22, 815 (1967).
A. Mighell A. Perloff P a a a a B. A.	A. Perloff A	A. Perloff B. S.	A. Perloff S. B	C. R. Robbins C. E. M. Levin T. E. M. J.	A. Perloff A B B B S S C C C C C C C C C C C C C C C
high-temp form, meta- stable at room temp.		structure by analogy to isomorphous Sr0.2B203	see B ₄ 07Pb	piezo- electric at ambient temp. (ortho- rhombic form); transforms reversibly to tetragonal form at 700°C	high temp. form, meta- stable at room temp.
complete single crystal x-ray structure anal.	complete single crystal x-ray structure anal.	unit cell and diffraction symbol from single crystal data	complete single crystal x-ray structure anal.	spectrochemical anal.; optical, x-ray powder diffractometry (from ambient to 850°C); differ- ential thermal anal.	complete single crystal x-ray structure anal.
crystallized from melt of stoichiometric composition on hot wire loop	crystallized from melt of stoichiometric composition	crystallized from melt of stoichiometric composition	crystallized from melt of stoichiometric composition	melt solidi- fication, required seeding for crystallization	crystallized from melt of stoichiometric composition on hot wire loop
small, tenths of mm	~ 0.1 mm range	~ 0.1 mm range	needles; length ~ 0.1 mm, cross- section ~ .01 mm	twinned crystal, 1 x 1 x 2 mm	small (\(\nabla_0.1\) mm range)
BaO.B ₂ O ₃	B ₂ BiO ₄ 2Bi ₂ O3·B ₂ O3	B ₄ 07Pb Pb0·2B ₂ 0 ₃	B ₄ 07Sr Sr0.2B ₂ 03	4B203.BaO BaB ₈ 013	4B ₂ O ₃ ·Na ₂ O Na ₂ O·4B ₂ O ₃

(1) C. R. Robbins and E. M. Levin, "Tetragermanates of Strontium, Lead and Barium of Formula Type Ab ₄ 09", J. Res. NBS, 65A, 127 (1961). (2) C. Robbins, A. Perloff, and S. Block, "Crystal Structure of Bage [Ge ₃ 0 ₉] and its Relation to Benitoite", J. Res. NBS, 70A, 385 (1966).	(1) Work in progress with particular interest in the crystal chemistry, domain structure and piezotelectric property of the compound. (C. R. Robbins, 1969). (2) G. Blasse, "Fluoresence of Compounds with Fresnoite (Ba_ZTiSi_20g) Structure", J. Inorg. Nucl. Chem., 30, 2283 (1968).	(1) C. R. Robbins, "Growth of Fresnoite (Ba_TiSi_20_8) From a TiO_2 Flux and Relation to the System BaTiO_3 - SiO_2", J. Res. NBS, 74A, 229 (1970). (2) See ref. under Ba_2Ge_2O_8Ti.
C. R. Robbins	C. R. Robbins	C. R. Robbins
type structure for AB ₄ O ₉ germanates, see also Ge ₄ O ₉ Pb and Ge ₄ O ₉ Sr in SECTION V	crystals exhibit pronounced domain struc- ture, show very strong piezoelectric response (1); phosphor (2)	piezoelectric (1); phosphor (2); type structure
optical and x-ray diffractometry (1), including single crystal structure detm. (2)	spectrochemical; optical and x-ray powder diffracto- metry; differential thermal anal.	spectrochemical; optical, x-ray powder diffracto- metry (powder and single crystal), differential thermal anal. (1)
melt solidi- fication of stoichiometric composition	melt solidi- fication and melt solidi- fication using TiO ₂ as flux (1)	melt solidi- fication using TiO ₂ as flux (1)
	1 × 1 × 3 mm 3 mm	1 × 1 × 5 mm
BaGe409	Ba ₂ Ge ₂ 0 ₈ Ti Ba ₂ TiGe ₂ 0 ₈	Ba ₂ O ₈ Si ₂ Ti Ba ₂ TiSi ₂ O ₈

J. Ito, "The Synthesis of Gado-linite", Proc. Jap. Acad., 41, 404 (1965). J. Ito, "A Note on the Gadolinite Synthesis", Proc. Jap. Acad., 42, 634 (1966). J. Ito, "Synthesis of Calciogadolinite", Amer. Mineral., 52, 1523 (1967).	C. Frondel and J. Ito, "Synthesis of the Scandium Ana- logues of Beryl", Amer. Mineral., 53, 943 (1968).		E. L. Venturini, E. G. Spencer and A. A. Ballman, "Elasto-Optic Properties of Bil26020, Bil2Si020, Sr. Ball-x Nb206", J. Appl. Phys., 40, 1622 (1969).		
see under Be_Ln_MO_10Si_2 (M = Mg, Mh, Zn, Co,Cu,Fe,Mn, Cd), SECTION V	H. S. Peiser	see Bi ₃₂ 6a ₂ 0 ₅₁ A. Feldman D. Horowitz	Faraday W. S. Brower rotation; piezoelectric electro-optic	W. S. Brower W. S. Brower	optically A. Feldman active, high D. Horowitz Faraday ro-tation; see also Bil2GeO20
precession and x-ray powder diffraction anal.	precession and x-ray powder diffraction anal.	optical	see also Bi ₁₂ Ge0 ₂₀ , Bi ₃₂ Ga ₂ O ₅₁		optical
slow cooling from Na ₂ W ₀ ₄ or Na ₂ W ₂ O ₇ flux	slow cooling from V ₂ O ₅ or Ba ₃ (VO ₄) ₂ flux	see Bi ₁₂ MO ₂₀	melt grown	melt grown	pulled from melt, prepd. by W. S. Brower
light blue, 1 mm; also studied as poly- crystalline material	bright blue, 2 mm		M = Ge, Si, Ti; 0.5 x l cm	0.5 x l cm	
Be ₂ CuO ₁₀ Si ₂ Y ₂ CuY ₂ Be ₂ Si ₂ O ₁₀ copper yttrium gadolinite	Be ₂ O ₄ Si(V ⁺ ⁴) Be ₂ SiO ₄ doped with V ⁺ ⁴	Bi ₁₂ GeO ₂₀ GeBi ₁₂ O ₂₀	Bi ₁₂ M020 6Bi ₂ 03·M0 ₂	7Bi ₂ 03.Zn0 17Bi ₂ 03.Ga ₂ 03	Bi ₃₂ Ga ₂ O ₅₁ 16Bi ₂ O ₃ ·Ga ₂ O ₃

G. J. , and S. stallo- ome High rms of Br2, CCl4, J. Chem.	Br2.		Br ₂ .	n, D. M. er er of 260- ss- ence ss- opy", bull.,	Br ₂ .
C. E. Weir, G. J. Piermarini, and S. Block, "Crystallo- graphy of Some High Pressure Forms of C6H6, CS2, Br2, CCl4, and KNO3", J. Chem. Phys., 50, 2089 (1969	See ref. under Br ₂		See ref. under Br ₂	J. J. Spijkerman, D. K. Snediker, F. M. Ruegs, and J. R. Devoe, "Mossbauer Spectroscopy the Standard for the Chemical Shift of Iron Compounds", NBS Misc. Publ. 260-13 (1967). "Standard Reference Material for Mossbauer Spectroscopy", NBS Tech. News Bull., 550, 73 (May 1966).	See ref. under Br_2 .
S. Block G. J. Piermarini C. E. Weir*	S. Block G. J. Piermarini C. E. Weir*		S. Block G. J. Piermarini C. E. Weir*	A. T. Horton	S. Block G. J. Piermarini C. E. Weir*
unit cell; space group; phase equi- librium	unit cell; space group; phase equi- librium		unit cell; space group; phase equi- librium	crystal structure, Standard Reference Material #725; Mossbauer spectroscopy	unit cell; space group; phase equi- librium
x-ray diffracto- metry	x-ray diffracto- metry		x-ray diffracto- metry	Mossbauer spectro-scopy	x-ray diffracto- metry
from liquid at 20°C, SKb	from liquid at 20°C, lKb from CCl ₄ -I	from CCl ₄ -I at 120°C, 10Kb	frozen from liquid at 20°C, 12Kb	controlled growth from aq. soln.	frozen from liguid at 20°C, 0.6 Kb
	I structure II structure	III structure		1 x 1 x 3 in.	I structure, see also SECTION II
Br ₂ bromine	CCl ₄		CS ₂	C ₅ FeN ₆ Na ₂ O·2H ₂ O Na ₂ Fe(CN) ₅ NO· 2H ₂ O sodium nitro- prusside	С ₆ Н ₆

R. W. Duerst and G. F. Kokoszka, "Hyperfine Fields in Dimeric Coordination Complexes", J. Chem. Phys., 51, 1673 (1969).		A. D. Mighell, and F. A. Mauer, "The Crystal and Molecular Structure of Diaguo-Dis(2,2'-Biimidazole) NiCchel (II) Dinitrate, (NO 3)2". Acta Cryst., B25, 60 (1969).	A. D. Mighell, C. W. Reimann, and A. Santoro, "The Crystal and Molecular Structure of Di- bromotetrapyrazole Nickel (II)", Acta Cryst., B25, 595 (1969).	C. W. Reimann, A. D. Mighell, and F. Mauer, "The Crystal and Molecular Struc- ture of Tetrakis- pyrazole-nickel Chloride, Ni(C ₃ H ₄ N ₂) ₄ Cl ₂ ", Acta Cryst., 23, 135 (1967).
metal-metal G. F. Kokoszka interaction study	infrared and A. T. Horton Raman spectra vibrational transitions	study of C. W. Reimann hydrogen broken be- broken co- ordinated water and biimidazole molecules with nitrate groups	role of C. W. Reimann internal hydrogen bond in detm. electronic energy levels of Ni [†] 2	
optical and EPR spectrometry; i chemical anal.	infrared and Raman is spectrophotometry R	single crystal sharms x-ray anal.	<pre>x-ray anal.,single crystal structure detm.; optical spectrophotometry</pre>	
grown from methanol soln.	melt solidi- fication	C6H6N4 (2,2'- bi-imidazole) + Ni(N03)2 + H20	C ₃ H ₄ N ₂ -(pyrozole) + NiBr ₂ + H ₂ O	C ₃ H ₄ N ₂ (pyro- zole) + NiCl ₂ + H ₂ O
CloHloCL2CuN2O2 1 x 1 x 1 Cu(C5H5NO)2Cl2 5 mm with the follow- ing dopants: Ba,Cd,Ni,61Ni (0.1-2%),Pb, and Zn bis(pyridine-N- oxide)copper (II)	CloHloFe lx 4 in (C ₅ H ₅) ₂ Fe ferrocene	C12H12N10NiO6·2H2O Ni(C6H6N4,)2 (H2O)2(NO3)2	C ₁₂ H ₁₆ Br ₂ N ₈ Ni (C ₃ H ₄ N ₉) ₄ NiBr ₂ tetrakis (pyrazolo)- nickel (II) bromide	C ₁₂ H ₁₆ Cl ₂ N ₈ Ni (C ₃ H ₄ N ₂) ₄ NiCl ₂ tetrakis(pyrazolo)- nickel (II) chloride

	C. W. Reimann and M. Zocchi, "The Structure of the Trinuclear Cation Bis-[µ-(tri-1,2,4- triazolo-N¹,N²)- triaquonickel] nickel", Chem. Comm.,	C. W. Reimann, A. Santoro, and A. D. Mighell, "The Crystal and Molecular Structure of Hexapprazolenickel- (II) Nitrate, Ni(C3H, 0W03)2", Acta Cryst., 826, (1970).	A. Santoro, A. D. Mighell, M. Zocchi, and C. W. Reiman, "The Crystal and Molecular Structure of Hexakis (Imidazole) Nickel (II) Nitrate, (C3H4N3)6 Ni(N03)2", Acta (Cryst., B25, 842 (1969).
crystal A. T. Horton structure; phase transitions; lattice dynamics	optical and C. W. Reimann magnetic properties of polynuclear species	study of competition between hydrogen bonding and coordinate bonding in cationic packing	studies of C. W. Reimann single crystal visible and vibrational spectra
<pre>x-ray, neutron diffractometry; differential thermal anal.</pre>	single crystal x-ray anal.	single crystal x-ray anal.	single crystal x-ray anal.
melt solidi- fication	C ₂ H ₃ N ₃ (1,2,4- triazole) + Ni(NO ₃) ₂ + H ₂ O	C ₃ H ₄ N ₂ (pyra- zole) + Ni(No ₃) ₂ + H ₂ O	C ₃ H ₄ N ₂ (imida- zole) + M(NO ₃) ₂ + H ₂ O
C ₁₂ H ₁₈ 1" dia. x C ₆ (CH ₃) ₆ hexamethyl- benzene	$C_{12}H_{18}N_{24}N_{13}O_{18}$ $E(H_{2}O)_{3}(C_{2}H_{3}N_{3})_{3}$ $N_{1}J_{2}-N_{1}(NO_{3})_{6}(H_{2}O)_{2}$	C ₁₂ H ₂ μ _{N1} μ _{N1} O ₆ (C ₂ H ₄ N ₂) ₆ Ni(NO ₃) ₂	C ₁₈ H ₂₄ MN ₁₄ O ₆ M = Cd,Co, (C ₃ H ₄ N ₂) ₆ Cd(NO ₃) ₂ (C ₃ H ₄ N ₂) ₆ Co(NO ₃) ₂ (C ₃ H ₄ N ₂) ₆ N ₁ (NO ₃) ₂

	A. Franklin, "Mass Transport in Non- metallic Solids", Proc. of Mtg. of Basic Science Div. of British Ceramic Soc., London, Dec. 1969, in press.	A. Franklin and S. Marzullo, "Orientation Kinetics of Gd3+-F-Interstitial Pairs in CaF2", J. Physics C, British Institute of Physics, to be published.	C. R. Robbins, "Synthetic CaTiSiO ₅ and its Germanium Analogue (CaTiGeO ₅)", Mat. Res. Bull., 3, 693 (1968).	
A. T. Horton	A. Franklin		C. R. Robbins	
detm. free carrier mobility and G values; radiolysis measurements by use of optical absorption techniques	controlled point-defect equilibria studies; oxygen free		isostructural with synthetic CaO ₅ SiTi	
electrical, optical ab- sorption measurements	absorption (200 to 2500 nm), EPR spectrometry; chemical anal. for 6d and accidental impurities		spectrochemical anal.; optical, x-ray diffracto-metry (powder and single crystal)	
melt solidi- fication	commercially obtained; crystals annealed in He + HF at 500-1200°C, rapidly quenched		melt solidi- fication from stoichiometric composition	
2" dia. x 4"	1 × 3 × 5 mm		1 × 1 × 2 mm	see under MMoO ₄
$C_{20}H_{42}$ $n-C_{20}H_{42}$ $n-eicosane$	CaF ₂ also Gd-doped (0.1 to 1.0%)		CaGeO ₅ Ti CaTiGeO ₅	CaMoO ₄

(1) W. S. Brower and C. R. Robbins, "Growth of CaTiSiO ₅ by the Czochralski Method", J. Cryst. Growth, 3, (1969). (2) See ref. under CaGeO ₅ Ti.		J. Ito and C. Frondel, "Synthetic Zirconium and Titanium Garnets", Amer. Mineral., 52, 773 (1967).			P. Eisenberger and P. S. Pershan, "Electron Spin-Resonance and Infrared Studies of Semiconducting, Rare-Earth-Doped CdF2", Phys. Rev., 167, 292 (1968).
serves as C. R. Robbins type structure W. S. Brower for pure CaTiSiO ₅ (space group P ₂ ,/n); mineral with impurities, CaTiSiO ₄ (O,OH, F), has symmetry C ₂ /c; see also CaGeO ₅ Ti		crystallo- graphic sites detm. for both Ti and Zr in garnet structure			W. R. Hosler W. S. Brower
<pre>spectrochemical anal.; optical, x-ray diffracto- metry [powder and single crystal (2)]</pre>		powder and precession x-ray diffraction anal.			electrical
melt solidi- fication (2), and Czochralski growth (1)		slow cooling of Li ₂ MoO ₄ flux			Bridgman growth
1 x 2.5 cm (1) 0.5 x 0.5 x 1.5 cm (2)	see under MO ₄ W	M = Ti,Zr	titanium garnet, dark brown, 2 mm also poly- crystalline	zirconium garnet, chestnut brown, 0.55 mm, also polycrystal-	l cm
CaO ₅ SiTi CaTiSiO ₅	CaO _t W CaWo _t	Ca ₃ Fe ₂ MO ₁₂ Si ₂	Ca ₃ TiFe ₂ Si ₂ O ₁₂	Ca ₃ ZrFe ₂ Si ₂ O ₁₂	CdF ₂ also with dopings

F. Sterzer, et al., "Cuprous Chloride Light Modulators", J. Opt. Soc. Am., 54, 62 (1964). A. Feldman and D. Horowitz, "Refractive Index of CuCl", J. Opt. Soc. Am. 59, 1406 (1969). NBS Tech. Rpt. 10013.	M. Linzer and R. A. Forman, "NMR Studies of Single Crystal ND ₄ Cl", J. Chem. Phys., 46,	R. D. Deslattes, B. G. Simsom, A. T. Horton, "Solution Polishing of Oriented Single Crystals", Rev. of Sci. Inst., 36, 944 (1965). R. Brooks, A. T. Horton, and J. L. Torgesen, "Occlusion of Mother Liquor in Solution-Grown Crystals", J. Cryst. Growth, 2, 279 (1968).
optical A. Feldman modulator D. Horowitz	measurement R. A. Forman of quadrupole M. Linzer coupling const. for D on ND4+ configuration; torsional motion of ND4+; crystal	optical, x-ray A. T. Horton measurements
optical, dielectric	NMR (D, ^{1 4} N) spectrometry	optical micro- scopy (etch pits); x-ray topography
Vapor and Bridgman growth; prepd. by D. E. Roberts, also supplied by A. F. Armington AFCRL, Bedford, Mass., and by A. Linz, Mass. Inst. Tech., Cambridge, Mass.	evaporation aq. soln. ND ₄ Cl + deuterourea	controlled solm. growth
∿ 1 cm	3 x 3 x 13 mn see also H _t NX	1 × 1 in.
cucl	ClD ₄ N ND ₄ Cl	C103Na NaC103

R. Z. Bachrach and F. C. Brown. "Exciton Structure of TIC1 and TIBr", Phys. Rev. Ltrs., 21, 685 (1968). A. Feldman, "Anoma- lous Splitting of the Exciton Peak in the Exciton Peak in the Reflectivity of TIC1 and TIBr", Bull. Am. Phys. Soc., 14, 428 (1969). L. H. Grabner, "Edge Fluorescence in TIBr", Bull. Am. Phys. Soc., 14, 131 (1969).	C. K. Moller, "Structure of Perovskite-like Ce Pb Trihalides", Kgel. Danske Videnskab. Selskab, Mat. Fys. Medd., 32, 1 (1959);also see Nature, 182, 1u36 (1958).		J. Ito and H. S. Peiser, "Distorted Tetrahedra in Strontium Copper Akermanite", J. Res. NBS, 73A, 69 (1969).
1 A. Feldman L. H. Grabner	K. F. Young	A. T. Horton	H. S. Peiser
piezo-optical luminescent properties	measured from 4.2K through phase trans- ition at 320K	second and higher order phase transitions	
optical	dielectric constant	ultra-sonic attenuation	x-ray powder diffractometry
Bridgman growth; prepd. by D. E. Roberts	grown by W. S. Brower, Bridgman method	controlled evaporation, from soln.	slow cooling, flux Na ₂ WO ₄
∿ 2 mm, very soft	yellow, l cm. dia. x 2 cm.	o mm size	M = Ca,Sr; dark blue, 2 mm. Ca- and Sr cobalt akermanite; also poly- crystalline analogues with M = Cd,Cu,Fe,Mg, and Mn
TIC1 also with dopants Cd, Pb, Nd, T	Cl ₃ CsPb CsPbCl ₃	Cl ₆ K ₂ Re K ₂ ReCl ₆	CoM207Si2 Ca2CoSi207 Sr2CoSi207

CrH ₆ Mc			32	CrH ₄ N	Cu0 ₄ S
CrH ₆ Mo ₆ Na ₃ 0 ² 4° nA ₂ 0 ⁴ H ₆)°				CrH4N08S2·12H20 NH4Cr(S04)2·	CuO ₄ S·5H ₂ O CuSo ₄ ·5H ₂ O
n = 8, prepn. leads to mm size crystals, no comm- ercial supply available			<pre>n = 13, prepn. leads to mm size crystals, no commercial supply available</pre>		1 cm ²
aq. soln. of Na ₂ MoO ₄ .2H ₂ O + Cr(NO ₃)3.9H ₂ O at pH = 4.5			crystallizes on evaporation of aq. soln. of octahydrate at room temp.	from aq. soln.	controlled evaporation from soln.
<pre>complete single crystal x-ray structure anal.</pre>			complete single crystal x-ray structure anal.	optical, magnetic	NMR spectrometry
readily A. Perloff dehydrates to a composition approximating (Na ₃ (CrMo ₆ O ₂ , H ₆).			readily dehydrates to a lower hydrate	ferro- G. A. Candela electric S. E. Stokowski* see also Aln-1 ^{Cr} n- K0852·12H20	NMR spectro- A. T. Horton scopy, wave guide experiments
(1) A. Perloff, "The Crystal Structure of Sodium Hexamolybdochromate (III) Octahydrate: Na ₃ (CrMo ₆ O ₂ 4 H ₆)' 8H ₂ O", Inorg. Chem., in press.	(2) A. Perloff, Doctoral Dissertation, Georgetown Univ. (1966).	(3) G. A. Tsigdinos, Doctoral Dissertation, Boston Univ. (1961).	(1) A. Perloff, paper in prepn.	44	

W. S. Brower and H. S. Parker, "Melt Growth of Large Cuprous Oxide Single Crystals", Abstracts, ACG- NBS Conf. on Crystal Growth, August 11-13, 1969, Washington, D. C., P. 115.		J. Ito, "Silicate Apatites and Oxya- patites", Amer. Mineral., 53, 890 (1968).	R. F. Blunt and M. I. Cohen, "Irradiation- Induced Color Centers in Magnesium Fluoride", Phys. Rev., 153, 1031 1967).	D. A. Jones, "Growth of Lead Fluoride Crystals from the Melt", Proc. Phys. Soc., (1955).
optical and W. S. Brower electrical H. S. Parker measurements; air sensitive	oxide- R. A. Forman semiconductor W. R. Hosler dielectric K. F. Young constant	strong red H. S. Peiser and green fluorescence when activated by Eu and Tb in Gd analogues	color M. I. Cohen centers, optical coatings	W. R. Hosler W. S. Brower
	electrical	<pre>x-ray powder diffraction anal.; visible emmission spectrometry</pre>	optical; EPR spectrometry	
grown from melt	prepd. by W. S. Brower	flux (NaF) isothermal evaporation	pulled from melt, D. E. Roberts	Bridgeman growth
1.5 x 6 cm		largest crystal 2 x 2 x 6 cm colorless colorless purple green	~ 1 cm³	
Cu ₂ 0		$F_2M_8Na_2O_24Si_6$ $M = Gd$ La Nd Pr Sm	F2Mg MgF ₂	F ₂ Pb PbF ₂ also Y, rare- earth dopings

C. E. Weir, S. Block, and G. Piermarini, "Single Crystal X-ray Diffraction at High Pressures", J. Res. NBS, 69C, 275 (1965).		R. D. Deslattes, J. L. Torgesen, B. Paretzkin, and A. T. Horton, "Preliminary Studies on the Characterization of Solution-Grown ADP Crystals", Adv. in X-ray Anal., 8, p. 315 (1965). R. D. Deslattes, J. L. Torgesen, B. Paretzkin, and A. T. Horton, "Observation of Dislocations in ADP: Production of Dislocation-Free Crystals", J. Appl. Phys., 37, 541 (1966).	J. Ito, "Synthetic Indium Silicates and Hydrogarnet", Am. Mineral., 53, 1663 (1968).
S. Block G. Piermarini C. E. Weir*	R. A. Forman	A. T. Horton	H. S. Peiser
unit cell, space group, phase equi- librium	relation to alkali halides	monochro- A meters, electro- optics, x-ray reference crystals	see also NaO ₆ ScSi ₂
x-ray diffracto- metry	optical	optical microscopy (etch pits); x-ray topography	powder and precession x-ray diffraction anal.
from liquid at 100°C and 30 Kb	from aq. soln. by evaporation	controlled growth from soln.	slow cooling from Na ₂ WO ₄ or Na ₂ MOO ₄ flux
structure VII	∿ l cm³	3/4 x 3 in	colorless indium aegirine, l cm; also obtained as polycrystal- line
H ₂ O - VII ice VII	H ₄ NX NH ₄ X X = Br,Cl,I also with Tl doping	Н ₆ NO ₄ Р NH ₄ H ₂ РО ₄ "ADP"	InNaO ₆ Si ₂ NaInSi ₂ O ₆

M. I. Cohen, et al., "Lattice Absorption in Strontium Tita- nate", Bull. Am. Phys. Soc., 14, 498 (1969). W. R. Hosler and H. P. R. Frederikse, "Magnetoresistive Effects in KTaO3", Sol. State Comm., 7, 1443 (1969).
M. I. Cohen W. R. Hosler
oxide semiconductor
electrical, optical
prepd. by W. S. Brower; also obtained with doping from A. Linz, Mass. Inst. Tech., Cambridge, Mass., flux growth
KTaO3, also doped with Mn

W. S. Brower and P. H. Fang, "Dielectric Constants of PbMoO ₄	and CaMoO ₄ ", Phys. Rev., <u>149</u> , 646 (1966).	W. S. Brower and P. H. Fang, "Dielectric Constants of PbWO ₄ and CaWO ₄ ", J. Appl. Phys., 38, 2391 (1967).	W. S. Brower, Jr., W. S. Brower, Jr. and E. N. Farabaugh, "Elastic Constants of Single Crystal Calcium Molybdate (CaMOO ₄)", J. Am. Ceram. Soc., 51, 341 (1968).	W. A. Bonner, "Growth of Large Single Crystal Lead Molybdate for Acousto-Optic Applications", Abstr. ACCG-NBS Conf., August, 1969, p. 116.	See refs. under MMoO ₄ .	
	W. S. Brower		J. Wachtman, Jr.		W. S. Brower	R. F. Blunt
see also MnMoO ₄	acousto- optic	de V1 ces	elastic constants of CaMoO _t		acousto- optical devices	magneto- optical properties
	x-ray topography; dielectric constant,	eton pıts	mechanical		<pre>x-ray topography; dielectric constant; etch pits</pre>	optical
	melt grown				melt grown	
M = Ca,Pb, Sr	1 x 3 cm				M = Ca,Pb, Sr,Zn; l x 3 cm	1 cm
MMo04	CaMoO ₄ PbMoO ₄	SYMOU ₄			Mo ₄ W CaWo ₄ Pbwo ₄ SrWo ₄ ZnWo ₄	ZnWO ₄

See also under MMoO ₄ and MO ₄ W for additional refs. to Scheelite crystals.	See also MO ₄ W.		J. Ito and C. Frondel, "Synthesis of Scandium Analogues of Aegirine, Andradite and Melanotekite", Am. Mineral., 53, 1276 (1968).	F. E. Wang, B. F. DeSavage, W. J. Buehler, and W. R. Hosler, "The Irr- reversible Critical Range in the TiNi Transition", J. Appl. Phys. 39, 2166 (1968).	P. B. Macedo, W. Capps, and J. B. Wachtman, Jr., "Elastic Constants of Single Crystal Tho ₂ at 25°C", J. Am. Ceram. Soc., $\frac{47}{7}$, 651 (1964).
R. F. Blunt	R. F. Blunt		H. S. Peiser	W. R. Hosler h	J. Wachtman, Jr.
magneto- optical properties	magneto- optical properties		see also InNaO ₆ Si ₂	exhibits martinsitic transition; i.e., shows mechanical memory through transition	elastic
optical	optical		powder and pre- cession x-ray diffraction anal.	electrical and magnetic	Laue diffraction
pulled from melt; prepd. by D. E.	pulled from melt; prepd. by D. E. Roberts.		slow cooling from Na ₂ WO ₄ or Na ₂ MoO ₄ flux	obtained from NOL, White Oak, Md.	selected from arc melt by G. R. Findlay, Norton Co.
l cm	1 cm	see MMoO ₄	colorless, scandium aegirine, 0.5 cm; also as poly-crystalline	wire	2 x 1 x 1 cm
МпМоО ₄	MnO ₄ W MnWO ₄	Moou, Pb Moou, Sr	NaO ₆ ScSi ₂ NaScSi ₂ O ₆	NiTi TiNi	O ₂ Th ThO ₂

See ref. under Al ₂ 0 ₃ .	T. Chang, "Electron Spin Resonance of Mo5+ in Rutile", Phys. Rev., 136, Alula (1964); "Paramagnetic Resonance Spectrum of W5+ in Rutile (TiO2)", Phys. Rev., 147, 264 (1966).	H. P. R. Frederikse, "Recent Studies on Rutile", J. Appl. Phys. Suppl., 32, 2211 (1961).	r. J. B. Wachtman, Jr., W. E. Tefft, and D. G. Lam, Jr., "Elastic Constants of Rutile (TiO ₂)", J. Res. NBS, 66A, 465 (1962).	S. Spinner and J. B. Wachtman, Jr., "Some Elastic Compliances of Single Crystal Rutile from 25 to 1000°C", J. Res. NBS, 68A, 669 (1964).	J. B. Wachtman, Jr. and L. R. Doyle, "Internal Friction in Rutile Containing Point Defects", Phys. Rev., 135, A276 (1964).	J. B. Wachtman, Jr., S. Spinner, W. S. Brower, T. Fridinger, and R. W. Dickson, "Internal Friction in Rutile Containing Ni or Cr", Phys. Rev., 148, 811 (1966).
C. E. Weir*	R. F. Blunt T. Chang T. C. Ensign* W. R. Hosler		J. Wachtman, Jr.			
	maser, high dielectric constant, oxide semi- conductor		elastic constants; internal friction			
compressibility to 10 Kb	EPR spectrometry; electrical, optical		Laue diffraction patterns			
Verneuil process, re- heated in O ₂	flame fusion, prepd. by D. E. Roberts		flame fusion			
single crystal bar	l cm		single crystal rod			
O ₂ Ti TiO ₂	TiO ₂ pure, also with dopants: Al, Cr,Cu,Fe,Mo, Nb, rare earths, V,W,Zn		Tio2 pure, also with dopants: Cr, Ni; oxidized and reduced conditions			

3 x 1 x 1 selecte cm arc me H. J. J. Vof Han: Atomic Produc Operati	alamosite, hydroth colorless, spontan 2 mm; also nuclear prepd. as isother line
selected from darc melt by t: H. J. Anderson an of Hanford Atomic Products Operation	hydrothermal, x spontaneous an nucleation Conisothermal
density, coulometric titration, spec. analysis, Laue diffraction	x-ray structural anal. (M. Mydlar, Ceramic Engr. Dept., Univ. of Mo.)
elastic	structure
J. Wachtman, Jr.	H. S. Peiser
J. Wachtman, Jr. J. B. Wachtman, Jr., M. L. Wheat, H. J. Anderson and J. L. Bates, "Elastic Constants of Single Crystal U0_at 25°C", J. Nuclear Materials, 16, 39 (1965).	J. Ito, "Synthesis of Some Lead Calcium Zinc Silicates", Amer. Mineral., 53, 231 (1968).

A. H. Kahn and A. J. Leyendecker, "Electronic Energy Bands in Strontium Titanate", Phys. Rev., 135, Al321 (1964).	H. P. R. Frederikse, W. R. Hosler, and W. R. Thurber, "Experi- mental Evidence Concerning the Conduction and Band of SrI103", J. Phys. Soc. Japan, 21, Suppl., 32 (1966).	J. F. Schooley and W. R. Thurber, "Super-conductivity in Semiconducting SrTio3", J. Phys. Soc. Japan, 21, Suppl., 639 (1966).	A. Feldman and D. Horowitz, "Stress-Induced Dichroism at the Absorption Edge of Strontium Titanate", Sol. State Comm., 6, 607 (1968).	C. R. Robbins, "Growth of Strontium Titanate from a Silica Flux", J. Cryst. Growth, 2, 402 (1968).
T. Chang r, M. I. Cohen A. Feldman L. H. Grabner W. R. Hosler c; A. H. Kahn				C. R. Robbins
insulator; semiconductor, super- conductor; pseudo- ferroelectric; photochromic				prepd. in absence of fluorides, etc.
optical, electrical; EPR spectrometry				spectrochemical, optical and x-ray powder diffracto-metry
flame fusion; also supplied by D. Beals, National Lead Co., South Amboy, N. J.				melt solidi- fication using SiO ₂ as flux
l cm				1 - 2.5 mm
SrTi SrTiO3 pure, also with dopants: Al,Ga,Nb				$SrTiO_3$

COMPOSITION	NATURE OF MATERIAL	NATURE OF PREPARATION	METHOD OF CHARACTERIZATION	NI TO LOOMENTS IN	NBS STAFF MEMBERS TO BE CONTACTED FOR ADDITIONAL INFORMATION	REFERENCES (Author, Title, Journal)
PB	high-purity rod, 1/4 in. dia. x 2-1/2 in.	special prepn. for Office of Standard Reference Materials, SRM # 748	Knudsen, torque Knudsen, and mass spectrometric detm. of vapor pressure as function of temperature; detm. heat of sub-	calibrn. of R. vapor pressure apparatus and techniques (10-8 to 10-3 atm.), this and other elements (see Au, Cd, Pt, and W) will each cover a different temperature range; these five materials cover 400-3000°C	. C. Paule	R. C. Paule and J. Mandel, NBS Special Publication # 260.
			vapor pressure, Knudsen effusion collection	develop E. vapor pressure standard	. R. Plante	See ref. above.
AgNO ₃ "high-AgNO ₃ "	polycrystal- line surface, αν50μ	high temp- erature x-ray diffracto- meter furnace	x-ray powder diffractometry	unstable at E.	. M. Levin	E. M. Levin, "X-Ray Determination of the Thermal Expansion of Silver Nitrate", J. Am. Ceram. Soc., 52, 53 (1969).
AlN aluminum nitride	100-300 mesh	four commer- cial sources	x-ray diffractometry	parent com- F. pound for study of transport chemistry	. E. Brinckman	
Al ₂ BaO ₄ BaAi ₂ O ₄		Y-A1203 + BaC03 at 1200°C for 1.5 hr.	x-ray diffractometry; petrographic microscopy	н.	Swanson deGroot McMurdie	H. Swanson et al., "Standard X-Ray Diffraction Powder Patterns", NBS Monograph No. 25, Sect. 5, p. 11 (1967).

S. J. Schneider S. J. Schneider and C. L. McDaniel, idard Material "Effect of Environment Upon the Melting Point of Al203", J. Res. NBS, 71A, 317 (1967).	mination of the Melting Point of Al ₂ 03", to be published in Pure and Applied Chemistry (1970).	R. C. Paule and J. Mandel, "Analysis of Interlaboratory Measurements on the Vapor Pressure of Gold", NBS Special Publication # 260-19.	E. R. Plante See ref. above.	F. E. Brinckman T. C. Farrar Lution	C. E. Weir* C. E. Weir, "Compress- ibility of Eleven In- organic Materials", J. Res. NBS, 69A,
melting point melting S. detm. point stand- ards; Standard Reference Material		see under Ag temp, range 1300-2100°K; see also under Ag	see under Ag see under Ag	NMR (¹¹ B, ¹⁹ F) model com- spectrometry high resolution and broad- line NMR; ^{JB} F as related to	compressibility see also to 10 Kb Al ₂ 0 ₃ under Section IV.
(a) commercial me powder and ecrystals (b) powder purified by solar furnace		special prepn. for Office of Standard Reference Materials, SRM # 745	available as SRM # 745	commercial NP S _E	commercial co
See also IV. SINGLE CRYSTALS		high purity wire, 0.055 in. dia. x 6 in; Standard Reference Material # 745	0.055" wire	M = K, Na; obsd. also in aq. soln.	
A1 ₂ 0 ₃		n h		ВF ₄ М КВF ₄ NaBF ₄	BH ₃ O ₃ H ₃ BO ₃

T. C. Farrar and T. Tsang, "A Nuclear Magnetic Resonance and Relaxation Study of Dimethoxyborane", J. Res. NBS, 73A, 195 (1969).	E. M. Levin, "System Sc ₂ 0 ₃ -B ₂ 0 ₃ ", J. Am. Ceram. Soc., <u>50</u> , 53 (1967).	See ref. under BH ₃ O ₃ .	E. M. Levin, "Phase Equilibria on the System Niobium Pentoxide-Boric Oxide", J. Res. NBS,	C. E. Weir and R. A. Schroeder, "Infrared Spectra of the Crystalline Inorganic Borates", J. Res. NBS, 68A, 465 (1965).	C. E. Weir, "Infrared Spectra of the Hydrated Borates", J. Res. NBS, 70A, 153 (1966).	See ref. under Al ₂ BaO ₄ , p. 35.
T. C. Farrar	E. M. Levin	C. E. Weir*	E. M. Levin	C. E. Weir#	C. E. Weir*	H. Swanson J. deGroot H. McMurdie
model com- pounds, detm. phase trans- itions and motions in solids	phase diagram		phase diagram	correlation of anion and spectra	evaluation of limita- tions of spectra in identification, effects of treatment on spectra	
NMR (¹ H, ¹¹ B) spectrometry	x-ray powder diffractometry, polarizing microscopy	compressibility to 10 Kb	x-ray powder diffractometry	infrared (2000- 300 cm-1) spectro- metry	infrared spectro- metry, principally in 2000-300 cm- region	x-ray diffracto- metry, petrographic microscopy
commercial	solid state rxn. of Sc ₂ 0 ₃ + B ₂ 0 ₃ in sealed tube	controlled dehydration of H ₃ BO ₃	solid state rxn. of B ₂ 0 ₃ + Nb ₂ 0 ₅ in sealed Pt tube	metal oxide + H ₃ BO ₃ at elevated temp.	obtained from the Smithsonian Inst. U. S. Geological Survey, Wash- ington, D. C. and Menlo	fuse stoichio- metric amt. LiF + BaF2 at 800°, annealed at 500° to re- move BaF2 ppt.
M = Li, K, Na; obsd. also in aq. soln.	v50u part- icles, calcite type		∿50µ	v80 in number, fine powders	∿42 natural and synthetic	
ВН ₄ М КВН ₄ LiBH ₄ NaBH ₄	B03Sc ScB03	B ₂ O ₃	B ₂ O ₃ ·3Nb ₂ O ₅ "3Nb ₂ O ₅ ·B ₂ O ₃ "	Borate minerals, anhydrous	Borate minerals, hydrated	BaF ₃ Li LiBaF ₃

C. R. Robbins, "The Compound BaTiGe309", J. Am. Ceram. Soc., 43, 610 (1960).	J. Ito, "The Synthesis of Gadolinite", Proc. Jap. Acad., "1, "0, "1, "1, "1, "1, "2, "3, "2, "3, "4, "2, "3, "4, "2, "3, "4, "2, "3, "4, "2, "3, "4, "2, "3, "4, "3, "4, "3, "4, "3, "4, "3, "4, "3, "4, "3, "4, "3, "4, "5, "4, "5, "4, "5, "5, "5, "5, "5, "5, "5, "5, "5, "5	R. S. Roth and J. L. Waring, "Synthesis and Stability of Bismutotantalite, Stibiotantalite and Chemically Similar ABO ₄ Compounds", Am. Mineral., 48, 1348 (1963).	See ref. under BiNbO ₄ .	See ref. under BiNbO ₄ .
stable from C. R. Robbins 1132° to 1235°C but readily obtainable by quenching to ambient temp.; serves as a structural intermediate between BaGe ₄ 09 and BaTiSi ₃ 09	H. S. Peiser	R. S. Roth J. L. Waring	R. S. Roth J. L. Waring	R. S. Roth J. L. Waring
optical and x-ray powder diffracto- metry	precession and powder x-ray diffractometry	x-ray powder diffractometry	see BiNbO _t d	see BiNbO ₄
solid state rxn. of BaTiO ₃ + GeO ₂ in sealed Pt tube at 1160°C	slow cooling of solute in Na ₂ WO ₄ or Na ₂ W ₂ O ₇ flux	solid state rxn. of Bi ₂ O ₃ + Nb ₂ O ₅ in sealed Pt tubes at 950 - 1250°C	solid state srxn. of Bi ₂ 03 + Ta ₂ 05 in sealed Pt tubes at 845 - 1150°C	solid state rxn. of Bi ₂ 03 + V ₂ 05 in sealed Pt tubes at 500-1000°C
20-40µ	polycrystal- line for all possible combinations with MLn2Be2- Si2010, where M=Mg, Ni, Zn, Co, Cu, Fe, Mn, and Cd, single crystal (lmm) also studied	see also: Bio4Ta Bio4V Nb04Sb 04SbTa 04SbV		
BaGe309Ti BaTiGe309	Be ₂ CuO ₁₀ Si ₂ Y ₂ CuY ₂ Be ₂ Si ₂ O ₁₀	BiNbO ₄	BiO ₄ Ta BiTaO ₄	BiO ₄ V BiVO ₄

, phism IBS,		unium	and 197).	n and lag- ities scts m.,
E. M. Levin and R. S. Roth, "Polymorphism of Bismuth Ses- quioxide. I. Pure Bi ₂ 03", J. Res. NBS, 68A, 189 (1964); ibid, II, 197-206.	under, p. 32.	U. M. Sherfey, "Titanium-(III) (III) Bromide", Inorg. Synth., 6, 57 (1960).	R. B. Johannesen and L. Gordon, Titanium (IV) romide", Inorg. ynth., 9, 46 (1967).	R. B. Johannesen and G. A. Candela, "Magnetic Susceptibilities and Dilution Effects in Low-Spin d* Complexes: Osmium (IV)", Inorg. Chem., 2, 67 (1963).
E. M. Le S. Roth, of Bism quioxid BizO3", 68A, 188	See ref.		0 = 40	
	on oot die	Johannesen	Johannesen	Johannesen
E. M. Levin	H. Swanson J. deGroot H. McMurdie	m m	R. B. Jo	R. B. Jo
obsd. at room temp. as metastable phase		sublimes with dis- proportionation, strong re- ducing agent; catalyst for olefin poly- merization; air/ moisture sensitive	hcid ties, isture ive	parent com- pounds for magnetic susceptibility studies
obsd. at room temp. as metasta phase		sublimes at ~ 500°C with dis- proportionat strong re- ducing agent catalyst for olefin poly- merization; moisture sensitive	strong Lewis Acid properties, air/moisture sensitive	parent com- pounds for magnetic susceptibil
	to- graphic	.u.	11.,	11., sto-
differential thermal anal.; x-ray diffracto- metry	x-ray diffracto- metry, petrographic microscopy	elemental anal.	elemental anal., m.p., b.p.	elemental anal., x-ray diffracto- metry
diffe therm x-ray metry		eleme for 1	eleme m.p.,	eleme x-ray metry
dif- ometer e; nnmed ng and	heat stoichio- metric Pb0 (red) + PbBr ₂ in Au boat, in vacuo, at 350°C for 45 min.	TiBr ₄ +H ₂ * using hot Ir filament	+HBr → p. of -n Br n	80 _t + + (a) + (a) + (a) + (b) + (a) + (b) + (b
high- temp. x-ray dif- fractometer furnace; programmed heating and	heat stoich metric PbB (red) + PbB in Au boat, in vacuo, a' 350°C For 45 min.	TiBr ₄ +H ₂ using ho filament	Ticl4+HBr → at b.p. of Ticl4-nBrn	(a) 0s0, HBr(aq) (b) (a) + NH ₄ Br
cubic		dark purple, fine powder or small crystals; see also Cl3Ti	38°C	mixed crystals (solid soln.) of (NH,)2- (Ss-Pt)Bre, also prepd. where Os/Os +Pt = 0.0763
cubic		dark purp fine powd or small crystals; see also Cl3Ti	yellow, m.p. 38°C	mixed crystals (solid soln.) of (NH,)2- (Solr.) where Ore where ore here of the tensor
	Br_2			.0sBr ₆
Bi ₂ 0 ₃	Br ₂ 0 ₂ Pb ₃ Pb ₃ 0 ₂ Br ₂	Br ₃ Ti TiBr ₃	Br ₄ Ti TiBr ₄	Br ₆ H ₈ N ₂ Os (NH ₄) ₂ OsBr ₆

	H. Swanson, et al, "Standard X-Ray Diffraction Powder Patterns", NBS Monograph No. 25, Sect. 6, p. 70 (1968).	E. R. Plante and C. H. Schreyer, "Dissociation Pressure of Aluminum Carbide Using a Rotating Knudsen Cell", J. Res. NBS,	See SECTION II.	L. B. Handy, F. E. Brinckman, "Chemistry of the Methoxyfluoro- tungsten (VI) Series", Chem. Comm., 214 (1970).
E. R. Plante	H. Swanson J. deGroot H. McMurdie		T. C. Farrar	F. E. Brinckman L. B. Handy* sereo- r/
other poly- morphs pre- sent, C- contaminated		usually contains excess C; moisture sensitive	see SECTION II	one of a F. series of table tungsten (VI) compounds; easily purified by sublimation; cis-difluoro configuration; provides basis for W (VI) stereochemistry; air/moisture sensitive.
x-ray diffracto- metry, vapor pressure	assay 99.9% Na_C_2O_4; x-ray diffractometry, petrographic microscopy	x-ray diffracto- metry, vapor pressure	see SECTION II	NMR(¹ H, ¹⁹ F) mol. wt. elemental analysis
Si + C above m.p. of Si	NBS stand- ard sample No. 40d	Al(1) + C at 1400°C	see SECTION II	WF ₆ + 4CH ₃ OSi(CH ₃) ₃ in C ₆ F ₆
cubic, ~200 mesh	NBS stand- ard sample	large cry- stallites embedded in polycrystal- line matrix	unstable liquid, studied as solid	colorless crystals m.p. 81-88°C cis-stereo- isomer only
csi sic	C ₂ Na ₂ O ₄ Na ₂ C ₂ O ₄ sodium oxalate	C3Al4	C4HCoO4 HCo(CO)4	С ₄ Н ₁₂ F ₂ O ₄ W (СН ₃ О) ₄ WF ₂

G. F. Kokoszka, M. Linzer, G. Gordon, "Electron Paramagnetic Resonance Spectra of Polycrystalline Dimeric Complexes. Copper Propionate Monohydrate and Zinc- Doped Copper Pro- Doped Copper Pro- Inorg. Chem., 7, 1730 (1968).	(1) E. Wiberg, et. al, "Recent Developments in the Chemistry of Metal Silyls of the Type M(SiR ₃)n", Angew. Chem. internat. Edit., 2, 507 (1963). (2) C. Eaborn, R. A. Jackson, and R. W. Walsingham, "The Reduction of Organo- Silicon Radicals in Solution", Chem. Comm., 1965, 300.	D. Mootz, A. Zinnius, and B. Bottcher, "Association in the Solid State of Bis(trimethylsily1) amidolithium and Methyltrimethyl- silanatoberyllium", Angew. Chem., 81, 398 (1969).	R. W. Duerst, S. J. Baum, and G. F. Kokoszka, "Exchange Coupling in Two Dimeric Copper Adenine Complexes", Nature, 222, 665 (1969).
M. Linzer on f	F. E. Brinckman L. B. Handy*	M. Linzer	G. F. Kokoszka
model com- pounds for detm. magnetic parameters in dimeric Cu(II) alkanoates from EPR studies of polycrystalline samples	source of trimethyl- silyl group or radical (2); toxic, volatile Hg compound, soln, light- sensitive	first ex- ample of NMR measure- ment of a mixed dimeric electron- deficient com- pound in the solid state	metal-metal bond inter- actions pertinent to biochemical processes involving nucleic acids
EPR spectrometry	NMR (¹ H) Spectrometry	See ref., NMR (1H, ⁷ Li, 14N, ²³ Na) Spectrometry spectrometry	chemical anal., optical and EPR spectroscopy
heat Cu(Zn)CO ₃ + [CH ₃ CH ₂ CO] ₂ O + H ₂ O	(CH ₃) ₃ SiX + Na/Hg at 55°C (X=Cl,Br) (1)	metallation of N-H on disilazanes; sample supplied s by Prof. U. Wannagat, T. U. Carolo-Wilhelmina, Braunschweig, Germany	Cu(ClO4)2(aq) + adenine, adjust pH
also Zn- doped	yellow		(C ₅ H ₅ N)= adenine moiety
C ₆ H ₁₀ CuO ₄ ·H ₂ O Copper (II) propionate monohydrate	C ₆ H ₁₈ HgSi ₂ [(CH ₃) ₃ SiJ ₂ Hg	C ₁₂ H ₃₆ LiN ₂ NaSi ₄ [(CH ₃) ₃ SiJ ₂ N ^L Li ₂ >N[Si(CH ₃) ₃ J ₂	C ₂ 0H ₁ 6Cu ₂ N ₂ 0·4H ₂ 0 Cu ₂ (C ₅ H ₄ N ₅) ₄ · 4H ₂ 0 C ₂ 0H ₂ 0Cl ₄ Cu ₂ N ₂ 00 ₁ 6 · 3H ₂ 0 Cu ₂ (C ₅ H ₅ N ₅) ₄ - (ClO ₄) ₄ ·3H ₂ 0

CaCl ₃ Cs CsCaCl ₃		CsCl + CaCl ₂ at ∿ 900°C	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO _t , p. 21.
CaNa ₂ 08S ₂ Na ₂ Ca(SO ₄) ₂	glauberite	CaCl2+Na ₂ SO ₄ in aq. soln.; intermediate CaSO ₄ forms, desired product after several hr., washed with alcohol	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 59.
Cd	high purity rod, 1/4 in. dia. x 2-1/2 in.	special prepn. for Office of Standard Reference Materials; SRM # 746	see Ag	temp, range 400-600°K; see also under Ag	R. C. Paule	See ref. under Ag.
cdcl ₃ cs Cscdcl ₃		stoichiometric CsCl+CdCl ₂ fusion	x-ray diffracto- metry, petrographic microscopy	q	H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 19.
CdCl ₃ H ₄ N NH ₄ CdCl ₃		stoichiometric NH ₄ C1+CdC1 ₂ (aq. soln.) > PPt.	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 6.
cdcl ₃ K Kcdcl ₃		fuse KC1 + CdC12.2.5H20 at 550°C	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 38.
CdCl ₃ Rb	orthorhombic	Ppt. from aq. soln. RbCl + CdCl2 fuse RbCl + CdCl2 at ~ 500°C	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 41. Same, p. 43.

				man, agnetic ss of lining lining lining lining line live
. under	. under			G. F. Kokoszka and F. E. Brinckman, "Electron Paramagnetic Resonance Studies of Phosphorus-Containing Reactive Inter- mediates", Chem. Comm., 349 (1969). G. F. Kokoszka and F. E. Brinckman, "Electron Paramagnetic of Phosphorus- Containing Reactive Intermediates", J. Am. Chem. Soc., 122, 1199 (1970).
See ref. Al ₂ BaO ₄ ,	See ref.	same, p.		G. F. Kokoszka and F. E. Brin "Electron Para Resonance Stud Phosphorus-Con Reactive Inter- mediates", Che Comm., 349 (19 G. F. Kokoszka F. E. Brinckma "Electron Para Resonance Para Resonance Containing Rea Containing Rea Untermediates", J. Am. Chem. S
Swanson deGroot McMurdie	Swanson deGroot McMurdie		C. Farrar	E. Brinckman F. Kokoszka
#5# #5#	in i	l- sary of	, • E	
		high humid- ity necessary to prevent formation of monohydrate	study of phase changes and motions in solids	formation of F. FOLL, by G. Sequential rxns.; evaluation of molecular bonding, relation to chlorophosphorylation via radical intermediates
x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	ω	NMR (1H) spectrometry, vapor pressure	EPR spectrometry
(a) Cd0 + Cr203 heated in vacue at 300°C for 17 hr. (b) ground, pelletized, heated at 1050°C for 1.5 hr.	(a) crystal- lized from aq. soln. at 95°C; (b) also prepd. from CdSO4, or CdSO4, 8H20 on prolonged exposure to air of RH =	obtained from Johnson, Mathey Co., Ltd.	obtained from Naval Ordnance Plant, Indian Head, Md.	PC13+hv → PC12+PC14+ C1
				at 77K in PCl ₃ matrix, C _{2v} symmetry C _{2v} symmetry
CdCr ₂ O ₄	cdso ₄ ·H ₂ O	3CdO ₄ S·8H ₂ O	сінь, мо	Cl ₂ P PCl ₂ (free radical) Cl ₄ P PCl ₄ (free radical)

Cl ₃ CoCs CsCoCl ₃		co-pptd. CsCl + CoCl ₂ heated in sealed glass tube at 500°C	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 11.
Cl ₃ CoH ₄ N NH ₄ CoCl ₃		co-pptd. NH ₄ Cl + CoCl ₂ heated in sealed glass tube at 500°C	x-ray diffracto- metry, petrographic microscopy	hydrates readily in moist air	H. Swanson J. deGroot H. McMurdie	See ref. under C2Na204, P. 5.
Cl ₃ CoRb RbCoCl ₃		co-pptd. RbCl + CoCl ₂ heated in sealed glass tube at 500°C	x-ray diffracto- metry, petrographic microscopy	moderately hygroscopic	H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 57.
Cl ₃ CsCu CsCuCl ₃	dark red hex. prisms terminated by bipyramids	crystallized from aq. CsCl + CuCl ₂	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 22.
Cl ₃ CsNi CsNiCl ₃		co-pptd. CsCl + NiCl2 heated in sealed glass tube at 500°C	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 12.
Cl ₃ CsPb CsPbCl ₃		fuse csc1 + PbCl ₂ at ~ 500°C	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under Al2BaO4, p. 24. See also in SECTION IV.
Cl ₃ CsSr CsSrCl ₃		SrCl ₂ + CsCl melted at 900°C	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 13.
Cl ₃ H ₄ HgN NH ₄ HgCl ₃		pptd. from soln. of NH ₄ Cl + HgCl ₂	x-ray diffracto- metry, petrographic microscopy		H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 9.

· D· 6.	. under	. under	Q.	under, p. 37.	. under	. under	under, p. 35.
See ref. VC2Na204,	See ref.	See ref. under C2Na204, p. 58	see Cl ₂ P	See ref.	See ref. under C2Na204, p. 61	See ref.	See ref. under C ₂ Na ₂ O ₄ , p. 35
H. Swanson J. deGroot H. McMurdie	H. Swanson J. deGroot H. McMurdie	H. Swanson J. deGroot H. McMurdie		H. Swanson J. deGroot H. McMurdie	H. Swanson J. deGroot H. McMurdie	H. Swanson J. deGroot H. McMurdie	H. Swanson J. deGroot H. McMurdie
		moderately hygroscopic					
racto- rographic	racto-			racto- rographic	racto- rographic	racto- rographic	racto- rographic
x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy			x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy
(a) NiCl ₂ · 2H ₂ O + HCl at 150°C + NiCl ₂ (b) (a) + NH ₄ Cl in sealed glass tube at 300°C for 72 hr.	crystalli- zation from aq.soln. of equimolar amts of NaCl + HgCl ₂	co-pptd. RbCl + NiCl ₂ heated in sealed glass tube at 500°C		pptd. from mixt. KF + CoF ₂ soln.,	crystallized from aq. soln. Na ₂ SO ₄ + CaSO ₄ at room temp.	CCC ₂ O ₄ + Sb ₂ O ₅ → at 1000°C for 30 min. in Au boat	K ₂ SO ₄ + CoSo ₄ melted at 600°C
			see Cl ₂ P				
- m	0 2H ₂ 0		Ø		H ₂ O) ₂ ·чH ₂ O	-	1,) 3
Cl ₃ H ₄ NNi NH ₄ NiCl	Cl ₃ HgNa·2H ₂ O NaHgCl ₃ ·2H ₂ O	Cl ₃ NiRb RbNiCl ₃	Cl4P	CoF3K KCoF3	CONa ₂ 0 ₈ S ₂ ·4H ₂ 0 Na ₂ Co(SO ₄) ₂ ·4H ₂ 0	CoO ₆ Sb ₂ CoSb ₂ O ₆	Co ₂ K ₂ O ₁₂ S ₃ K ₂ Co ₂ (SO ₁₁) ₃

CuF ₃ K KCuF ₃	add CuCl ₂ to excess KF in soln. → ppt.	x-ray diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 38.
CuSb ₂ O ₆	solid state rxn. of CuO + Sb ₂ O ₅ in Ag boat at 945°C in vacuo for 7 hr.	x-ray diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 27.
ErO ₄ V ErVO ₄	ErC ₂ O ₄ + V ₂ O ₅ heated at 1100°C for 30 min.	x-ray diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 29.
also studied BaPO ₃ F CaPO ₃ F K ₂ PO ₃ F Na ₂ PO ₃ F	Na ₂ PO ₃ F + MC1 ₂ ; M= Ba,Ca,K	x-ray diffracto- metry, NMR (¹⁹ F, ³¹ P) spectrometry	first detm. T. C. Farrar of absolute A. Perloff sign of a D. VanderHart spin-coupling constant; high resolution, pulsed and wide-line NMR	D. L. VanderHart, H. S. Gutowsky, and T. C. Farrar, "NMR Study of BaFP03: 31P and 19F Chemical- Shift Anisotropies and the Absolute Sign of the F-P Coupling Constant", J. Chem. Phys., 50, 1050 (1969).
F ₃ FeK KFeF ₃	aq. soln. FeCl2 + KF > ppt., washed, heated to 400°C in vacuo	x-ray diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 39.
F ₃ KMgF ₃	HF + slurry. of K ₂ CO ₃ + MgCO ₃ , evaporated to dryness; x-ray pattern sharpened by heating sample to m.p.	x-ray diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 42.

on See ref. under ot C2Na2O4, p. 45.	on See ref. under ot C ₂ Na ₂ O ₄ , p. 65.	on See ref. under ot C ₂ Na ₂ O ₄ , p. 74.	Roth R. S. Roth and J. Waring L. Waring, "Ixiolite and Other Polymorphic Types of FeNbO ₄ ", Am. Mineral., 49, 242 (1964).	on See ref. under ot Al ₂ BaO ₄ , p. 30.	vin E. M. Levin, "Phase Equilibria in the System Niobium Pentoxide-Germanium Dioxide", J. Res. NBS, 70A, 5 (1966).	Robbins C. R. Robbins and E. M. Levin, "Tetragermantes of Strontium Lead and Barium of Formula Type AB ₄ 09", J. Res. NBS, 65A, 127
H. Swanson J. deGroot H. McMurdie	H. Swanson J. deGroot H. McMurdie	H. Swanson J. deGroot H. McMurdie	polymorphism R. S. Roth J. L. Wari	H. Swanson J. deGroot H. McMurdie	stable below E. M. Levin 1420°C, phase diagram	isostructural C. R. Rol with BaGe ₄ 0 ₉ SrGe ₄ 0 ₉
x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray diffracto- metry, petrographic microscopy	x-ray powder diffractometry	x-ray diffracto- metry, petrographic microscopy	x-ray powder diffractometry	optical and x-ray powder diffracto- metry
aq. MnCl ₂ + excess KF in soln. + ppt.	aq. MnCl ₂ + excess KF in soln. + ppt.	soln. ZnCl ₂ + conc. soln. NaF + ppt., washed, annealed at 500°C	solid state rxn. of Fe ₂ 03 + Nb ₂ 05 in sealed Pt tube at 1000- 1475°C	Gd ₂ (C ₂ O ₄) ₃ + V ₂ O ₅ at 800°C for 15 min.	solid state rxn. in sealed Pt tube	solid state rxn. of Pb0 N + GeO ₂ in sealed Pt tube at 700°C
					у 50н	20-40 u see BaGe ₄ 0 ₉ under SECTION IV
F ₃ KMn KMnF ₃	F ₃ MnNa NaMnF ₃	F ₃ NaZn NaZnF ₃	FeNb0 ₄	Gdo ₄ v GdVo ₄	GeO2.9Nb2O5	Ge ₄ O ₉ Pb PbGe ₄ O ₉

	ri c	rar.
olecula hos- de", Pry ymp. ynamics e of Specia:	C. J. J. m Magne d Hinde: Phos-des and ide", J.	Melveger, T. C. Farrar and T. Tsang, "Laser-Raman Spectra and thindered Rotation in the Phosphonium Halides", Chem. Phys. Letters, 2, 621 (1968).
es of M ns in P nm Iodi d IMR S cular D tructur tructur (1) NBS	T., and "Proto "Proto ance an ion in um Hali Ium Iod Phys.,	Melveger, T. C. Frand T. Tsang, "La and T. Tsang, "La Raman Spectra and Hindered Rotation Helides", Chem. Pl Letters, 2, 621 (1968).
Studios Motion Phomito Second (Molecand Stand Stolids Solids Publ.	T. Tse Farran Rush, Resona Rotati Phoniv Ammoni Chem.	J. J. Rus Melveger, and T. Ts Raman Spe Hindered the Phosp Halides", Letters, (1968).
	rrar	
	ပံ	
ure	ω ω	
olids; oxic, rr/moist ensitive	odel com vunds, I ransitic nd motic n solids	
ric toc se	m ppc tr tr ir	
	P), n ry; sure,	
3500	er Rama: ctromett or presi tron in stic	
) 	NMR lass spec vapo neu elas scar	
	† ×	
	РН ₃ + н	
	:°	
	=Br,Cl, olatile olid	
	× > ω	
	\$ E	
	PH _t B3 PH _t C3 PH _t C3 PH _t C4	
	solids; solids; toxic, air/moisture sensitive sensitive sensition Publ. 301 (1969), pressure solids; motions in Pactuar Motions in Phos- phomium Iodide", Proc. sensitive (Molecular Dynamics and Structure of solids), NBS Special Publ. 301 (1969),	pressure fortions in protections fortions in Phose- toxic, air/moisture sensitive fortions in Phose- sensitive fortions in Phose- sensitive fortions in Phose- sensitive fortions in Phose- sensitive fortions fortions fortions forth fortion in Phose- sensitions fortion in Phose- scattering fortion in Phose- scattering fortion in Phose- phonium Halides fortion in Phose- phonium Iodide", Chem. Phys., 49, 4403 (1968).

IrO2 Dowder Oxidation X-r heat treat- equiment in air ment in air k_2 SO4+Na 2SO4, met k_2 Mg_2 O12 S3 k_2 Mg_2 O12 S3 k_2 Mg_2 (SO4,)	x-ray diffracto- metry, phase equilibrium x-ray diffracto- metry, petrographic microscopy x-ray diffracto- metry, petrographic microscopy x-ray diffracto- metry, petrographic microscopy metry, petrographic microscopy	lographically different anions; illustrates different reorientation energies illustrates container materials; dissociates at 1020°C in air to Ir+02; see also 02Ru H H H H H H H H H H H H H H H H H H H	C. L. McDaniel S. J. Schneider H. Swanson J. deGroot H. Swanson J. deGroot H. McMurdie H. Swanson J. deGroot H. McMurdie	Reorientation in R2 ReH9 via Wide- Line and Pulsed Line and Pulsed Resonance Studies", J. Chem. Phys., 51, 3595 (1969). C. L. McDaniel and S. J. Schneider, "Phase Ru-Ir-0. System", J. Res. NBS, 72A, See ref. under C2Na2O4, P. 50. See ref. under C2Na2O4, P. 40. See ref. under C2Na2O4, P. 43.
K ₂ Na ₄ O ₁₂ S ₃ melt stoi- x-r chiometric met	x-ray diffracto- metry, petrographic		H. Swanson J. deGroot.	See ref. under C ₂ Na ₂ O ₄ , p. 48.

LuV0 ₄ V LuV0 ₄		soln. Na ₃ VO ₄ + Lu ₂ (SO ₄) ₃ + ppt., annealed at 1300°C for 15 hr.	x-ray diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under Al ₂ BaO ₄ , p. 37.
Na ₂ NiO ₈ S ₂ ·4H ₂ O Na ₂ Ni(SO ₄) ₂ · 4H ₂ O		crystallized from aq. soln. of Na ₂ SO ₄ + NiSO ₄ at room temp.	x-nay diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 68.
Na ₂ O ₈ S ₂ Zn·4H ₂ O Na ₂ Zn(SO ₄) ₂ · 4H ₂ O		crystallized from soln. of Na ₂ SO ₄ + ZnSO ₄ at room temp.	x-ray diffracto- metry, petrographic microscopy	H. Swanson J. deGroot H. McMurdie	See ref. under C ₂ Na ₂ O ₄ , p. 72.
NbO ₄ Sb SbNbO ₄		solid state rxn. of Sb ₂ 03 + Nb ₂ 0 ₅ in sealed Pt tube at 1000-	see BiNbO ₄	R. S. Roth J. L. Waring	See ref. under BiNDO ₄ .
"Nbo ₅ P" "h "NbPo ₅ " 22Nb ₂ O ₅ •P ₂ O ₅	."high-low" ^ 50µ	solid state rxn. of Nb ₂ 0 ₅ +P ₂ 0 ₅ in sealed Pt. tube	x-ray powder diffractometry	E. M. Levin	E. M. Levin and R. S. Roth, "The System Niobium Pentoxide-Phosphorus Pentoxide", J. Solid State Chemistry 2, (1970).
Nb ₂₄ 06 ₂ Ti 1 TiNb ₂₄ 0 ₆₂	10-25 и	solid state rxn. of TiO ₂ + Nb ₂ O ₅ at 1450°C	x-ray powder and single crystal diffractometry; crystal structure detm.	systematics R. S. Roth of "non-stoichiometry"	R. S. Roth and A. D. Wadsley, "Mixed Oxides of Titanium and Niobium: The Crystal Structure of TiND ₂ 4062 (TiO ₂ ·12Nb ₂ 063)", Acta Cryst., 18, 724 (1965).

See ref. under ${ m Ir}{ m 0}_{2}$.	J. B. Wachtman, Jr., "Mechanical and Electrical Relaxa- tion in ThO ₂ Containing CaO", Phys. Rev., 131.	J. B. Wachtman, Jr. and W. C. Corwin, "Internal Friction in Zro ₂ Containing cao", J. Res. NBS, 69A, 457 (1965).	See ref. under Al ₂ BaO ₄ , p. 40.	See ref. under BiNbO ₄ .	See ref. under BiNbO ₄ .
C. L. McDaniel S. J. Schneider	J. Wachtman, Jr.	J. Wachtman, Jr.	E. SwansonJ. deGrootH. McMurdie	R. S. Roth J. L. Waring	R. S. Roth J. L. Waring
illustrates behavior of container materials, dissociates at l045°C in air to Ru + 02; see also Ir02	character of point defect; electrical and mechanical	spans range of stability of cubic solid solution and includes 2-phase region below x=.10 as test of change in character of point defects			
x-ray diffracto- metry, phase equilibrium	spectroscopic analysis	porosity, grain size	x-ray diffracto- metry, petrographic microscopy	see BiNbO ₄	see BiNbO _t
oxidation of Ru by heat treatment in air	isostatically cold pressed and sintered 1 hr. at 1800°C	isostatically cold pressed and sintered 1 hr. at 1800°C	Pr ₂ (C ₂ O ₄) ₃ + V ₂ O ₅ heated at 850°C for 30 min.	solid state rxn. of Sb ₂ 0 ₃ + Ta ₂ 0 ₅ in sealed Pt tube at 1000-	solid state rxn. of Sb203 + V205 in sealed Pt tube at 700- 865°C
powder	porous	porous			
0 ₂ Ru Ru0 ₂	(1-x)0 ₂ Th + xCa0 0 <u><x<< u="">0.10</x<<></u>	(1-x)0 ₂ Zr + xca0	O ₄ PrV PrVO ₄	O ₄ SbTa SbTaO ₄	O ₄ SbV

Sm ₂ (C ₂ O ₄) ₃ + x-ray diffracto- V ₂ O ₅ heated metry, petrographic 45 min.	${\rm Tb}_2({\rm C}_2{\rm O}_4)_3$ + x-ray diffracto- ${\rm V}_2{\rm O}_5$ heated metry, petrographic at 1400°C microscopy for 1 hr.	Tm ₂ (C ₂ O ₄) ₃ + x-ray diffracto- V ₂ O ₅ heated metry, petrographic at 1400°C microscopy for 1 hr.	Yb ₂ (C ₂ O ₄) ₃ + x-ray diffracto- V ₂ O ₅ heated metry, petrographic at 1400°C microscopy for 1 hr.	special Langmuir detm. prepn. for of vapor pressure Office of as function of Standard temp.; detm. of Reference heat of sublimation proposed SRM # 747	M # 747 vapor pressure M # 680 Langmuir method	commercial, vapor pressure
$O_4 \mathrm{SmV}$ $Sm_2 \left(\begin{array}{c} \mathrm{Sm_2} \left(\begin{array}{c} \mathrm{V_2O_5} \\ \mathrm{V_2O_5} \\ \mathrm{at} \mathrm{g} \end{array} \right)$. $O_4 TbV$ $O_4 TbV$ $V_2 O_5$ at 1 for for	O ₄ TmV Tm ₂ (V ₂ O ₅ Tm ₂ C	0_4VXb $\frac{\text{Yb}_2}{\text{V}_2^{0.5}}$ Yb 0_4 $\frac{\text{Yb}_2}{\text{at}}$ $\frac{\text{Tb}_2}{\text{for}}$	high- purity rod, prep purity rod, offi 1/8 in. dia. Offi x 1.5 in. Refe Mate	SRM	rod, .25 cm. comm dia. x 1.5 cm.

~ 50µ solid state x-ray powder rxn.in diffractometry sealed Pt tube	high- purity prepn. for rod, 1/4 in. dia. x Reference 2-1/2 in. Materials, proposed SRM # 749	polycry- commercial vapor pressure, stalline Langmuir rod
phosphors E. M. Levin	see Pt R. C. Paule	vapor pressure standard; container for high-temp. studies
In E. M. Levin, "System Y ₂ 0 ₃ -V ₂ 0 ₅ ", J. Am. Ceram. Soc., <u>50</u> , 381 (1967).	Le See ref. under Pt.	Plante, and J. J. Plante, and J. J. Diamond, "Vapor Pressure and Heat of Sublimation of Tungsten", J. Res. NBS, 69A, 417 (1965).

REFERENCES (Author, Title, Journal)	J. L. Waring, "Phase Equilibria in the System Aluminum Oxide-Tungsten Oxide", J. Am. Ceram. Soc., 48, 493 (1965). D. C. Craig and N. C. Stephenson, "A Structural Study in the System Al ₂ O ₃ . WO ₃ ", Acta. Cryst., B24, 1250 (1969).	J. L. Waring and R. S. Roth, "Tetragonal Phases of the General Type 10M ₂ O ₅ 90M ₂ O ₅ apparently isostructural with Ta ₂ O ₅ . Nb ₂ O ₅ , Acta Cryst., 17, 455 (1964). R. S. Roth and A. D. Wadsley, "The Crystal Structure of PNb ₉ O ₂ (P ₂ O ₅ 9Nb ₂ O ₅)", Acta Cryst., 18, 643 (1965).		R. S. Roth, J. L. Waring, and E. M. Levin, "Polymorphism of AB03-Type Rare Earth Borate Solid Solutions", Rare Earth Research II, Gordon E Breach, N.Y., (1964), p. 153.
NBS STAFF MEMBERS TO BE CONTACTED FOR ADDITIONAL INFORMATION	J. L. Waring	J. L. Waring R. S. Roth		R. S. Roth J. L. Waring E. M. Levin
COMMENTS	phase equilibria	illustrates nature of apparent iso- structural phases in related systems; see also; Asyo5-9Ta205, Ge02-9Nb205, 9Nb205-P205, 9Nb205-P205, 9Nb205-P205, 9Nb205-P205, 9Nb205-P205,	b ₂ 0 ₅	most specimens exhibit polymorphic inversions
METHOD OF CHARACTERIZATION	phase equilibria; x-ray powder and single crystal diffraction studies	phase equilibria; x-ray diffraction powder and single crystal structure	and ref. under $\mathrm{As_{2}0_{5}}\text{-}9\mathrm{Nb}_{2}\mathrm{0}_{5}$	x-ray powder diffractometry; high-temp. x-ray phase equilibria
NATURE OF PREPARATION	solid state rxn. of com- ponents in sealed Pt tubes	solid state rxn. in sealed Pt tube	see comments	solid state rwns. of mix- tures of M203 + B203 in sealed Pt tubes
NATURE OF MATERIAL	polycrystal- line, 1-25 μ	polycrystal- line, 1-25 µ	partial system,	solid solns. of rare-earth borates, M = Dy,Er,Eu,Gd, Ho,La,Lu,Nd, Sm,Tm,Y,Yb; polycrystal- line
COMPOSITION	Al ₂ 03-W03 entire system	As ₂ O ₅ -9Nb ₂ O ₅ partial system	As ₂ 0 ₅ -9Ta ₂ 0 ₅	BO ₃ M MBO ₃

s. of in NBS,	J. L. Equi- nns in cem cobium Res.	and "The	with wish cate", Isaa hism	Gui- Gui- Gui- ide- e",
"Synthesis" "Synthesis" Ferrates ", J. Res.	R. S. Roth and J. L. Waring, "Phase Equilibrium Relations in the Binary System Barium Oxide-Niobium Pentoxide", J. Res. NBS, 65A, 337 (1961)	S. J. Schneider and C. L. McDaniel, "Th Bad-Pt System in Air", J. Am. Ceram. Soc., 52, 518 (1969).	R. S. Roth and E. M. Levin, "Phase Equi- libria in the System Barium Disilicate- Dibarium Trisilicate", J. Res. NBS, 62, 193 (1959). R. S. Roth and E. M. Levin, "Polymorphism in Barium Disilicate", Am. Mineral: 44,	th and "Phase "Phase Relati ry Sys Sesqui Pentox
T. Neg Roth, Barium Oxygen	R. S. Waring librithe B. Bariun Penton NBS.	S. J. C. L. Bao-P. Air", Soc., (1969)	R. S. levin, libria Barium Dibarium Di Resi (1959) R. S. Levin, in Barium Am. Mil.	R. S. Ro Waring, librium the Bina Bismuth Niobium J. Res.
T. Negas R. S. Roth	R. S. Roth J. L. Waring	S. J. Schneider C. L. McDaniel	R. S. Roth E. M. Levin	R. S. Roth J. L. Waring
illustrates influence of stoichiometry on structure		all inter- mediate phases dis- sociate; illustrates behavior of container material		
phase equilibria; x-ray diffractometry	x-ray powder diffractometry; phase equilibria	x-ray diffracto- metry, phase equilibria	<pre>x-ray powder diffractometry; phase equilibria; single crystal x-ray diffractometry</pre>	x-ray powder diffractometry; phase equilibria
solid state rxn. in Au tubes under 02	solid state rxns. of com- ponents in sealed Pt tubes	solid state rxn. conducted in air in Pt and Au con- tainers	solid state rxn.	solid state rxns. in sealed Pt tubes
0>n<0.5; system in the vicinity of 1:1 cation ratio; poly- crystalline, 1-25 µ	polycrystal- line	powders	polycrystal- line	polycrystal- line
BaFeO3_n BaO. "iron oxide"	BaO-Nb ₂ O ₅ entire system	BaO-Pt entire system	BaSi ₂ 0s-Ba ₂ Si ₃ 0g entire system	Bi ₂ O ₃ -Nb ₂ O ₅ entire system

"Chromium objects tall system and 125 m rivis in air metry; gravimetrio redox behavior R. S. Roth Regas and R. S. Societties system and 125 m rivis in air metry; gravimetrio of Cr. in the System of	Cr ₂ 0 ₃ -Ir0 ₂ entire system	powders	solid state rxns. in Pt, Vycor, ir containers, conducted in air	x-ray diffracto- metry; phase equilibria	illustrates C. 1 behavior of S. container materials	L. McDaniel J. Schneider	C. L. McDaniel and S. J. Schneider, "Phase Relations between Cr ₂ O ₃ and IrO ₂ in Air", J. Am. Ceram. Soc., 49, 285 (1966).
-TiO ₂ partial system, see comments and ref. under Gd ₂ O ₃ -TiO ₂ -TiO ₂ partial system, see comments and ref. under Gd ₂ O ₃ -TiO ₂ -TiO ₂ partial system, see comments and ref. under Gd ₂ O ₃ -TiO ₂ -TiO ₂ partial system, see comments and ref. under Gd ₂ O ₃ -TiO ₂ -TiO ₂ partial system, see comments and refs. under As ₂ O ₅ -SND ₂ O ₅ ; also see GeO ₂ -SND ₂ O ₅ in SECI-2110 ₂ -TiO ₂ partial system, see comments and refs. under As ₂ O ₅ -SND ₂ O ₅ ; also see GeO ₂ -SND ₂ O ₅ in SECI-2110 ₂ -TiO ₂ partial system, see comments and refs. under Gd ₂ O ₃ -TiO ₂	E 1 %	polycrystal- line, 1-25 µ		x-ray diffracto- metry; gravimetric anal.; phase equilibria	E K	Negas S. Roth	T. Negas and R. S. Roth. "The System Sro-"chromium oxide" in Air and Oxygen", J. Res. NBS, 73A (1969).
TiO ₂ partial system, see comments and ref. under Gd_2O_3 -TiO ₂ TiO ₂ partial system, see comments and ref. under Gd_2O_3 -TiO ₂ TiO ₂ polycrystal— solid state x-ray diffracto— illustrates J. L. Waring nature of metry, polarizing nature of solid state metry; polarizing nature of solid state metry; plase form and relation— solid state metry; plase and relation— solid system; sealed Pt metry; plase and relation— solid system; sealed Pt metry; plase and relation— solid system; sealed Pt metry; plase and ref. Under As ₂ O ₃ -TiO ₂ , Er ₂ O	Dy ₂ 03-Ti02		see comments	ref. under	2		
partial system, see comments and ref. under Gd ₂ O ₃ -TiO ₂ polycrystal solid state x-ray diffracto illustrates J. L. Waring nature of sealed pt metry; polarizing phases form tubes generally systems; see also: Dy ₂ O ₃ -TiO ₂ , Er ₂ O ₃ -TiO ₂	-2Tio		, see comments	ref. under Gd ₂ 03-Ti0	2		
polycrystal- solid state x-ray diffracto- illustrates J. L. Waring nature of sealed promatubes phase form and relation- solubes equilibria phase form and relation- ship to analose also: Dy203-Ti02	Eu ₂ 03-Ti0 ₂ Eu ₂ 03-2Ti0 ₂		see comments	ref. under	2		
partial system, see comments and refs. under ${\rm As_20_5\text{9Nb_20_5}};$ also see ${\rm GeO_2\text{9Nb_20_5}}$ in SECTION partial system, see comments and ref. under ${\rm Gd_2O_3\text{TiO_2}}$	Gd ₂ 0 ₃ -Ti0 ₂ entire system	polycrystal- line, 1-25 µ	.d o o o o o o o o o o o o o o o o o o o	x-ray diffracto- metry; polarizing microscopy; phase equilibria	· · · · · · · · · · · · · · · · · · ·		J. L. Waring and S. J. Schneider, "Phase Equilibrium Relation- ships in the System 6d.05-Ti0.", J. Res. NBS, 69A, 255 (1965).
partial system, see comments and ref. under	GeO ₂ -9Nb ₂ O ₅	Į.	see comments	refs. under	also see	in	
	Ho ₂ 0 ₃ -2Ti0 ₂		8 9 9	and ref. under $6d_20_3$ -Ti0,	2		

IrO ₂ -SnO ₂ entire system IrO ₂ -TiO ₂ entire system	powders	solid state rxns. in Pt, Vycor, and Ir containers, conducted in air	x-ray diffracto- metry, phase equilibria	illustrates behavior of container materials	C. L. McDaniel S. J. Schneider	C. L. McDaniel and S. J. Schneider, "Phase Relations in the Systems Ti02-Ir02 and Sn02-Ir02 in Air", J. Res. NBS, 71A,
Ln ₂ 03-Pd0 entire system	powders	solid state rxns. in Pt, Vycor con- tainers	x-ray diffracto- metry; phase equilibria	all inter- mediate phases dissociate; illustrates behavior of container materials	C. L. McDaniel S. J. Schneider	C. L. McDaniel and S. J. Schneider, "Phase Relations between Palladium Oxide and the Rare- Earth Sesquioxides in Air", J. Res. NBS,
Lu ₂ 0 ₃ -2Ti0 ₂	partial system,	see comments	and ref. under $\operatorname{Gd}_2\operatorname{O}_3\text{-TiO}_2$	12		
9Nb ₂ 05-P ₂ 05	partial system,	see comments	and refs. under As ₂ 05-9N	5-9Nb ₂ 0 ₅ ; also see	"NbO5P" in SECTION	Λ
2Nb ₂ 05-Ta ₂ 05	partial system,	see comments	and refs. under $\mathrm{As}_2\mathrm{O}_5-9\mathrm{Nb}_2\mathrm{O}_5$	lb 2 0 5		
Nb ₂ 0 ₅ -V ₂ 0 ₅ entire system	polycrystal- line, 1-25 µ	solid state rxns.in sealed Pt tubes	x-ray powder diffractometry; phase equilibria	illustrates nature of multi-phase formation and non- stoichiometric phases; see also 9Nb ₂ 05- V ₂ 05	J. L. Waring R. S. Roth c	J. L. Waring and R. S. Roth, "Phase Equilibria in the System Vanadium Oxide-Niobium Oxide", J. Res. NBS, 69A, 119 (1964).
9Nb ₂ 0 ₅ -V ₂ 0 ₅	partial system,	see comments	and refs. under $As_2O_5-9Nb_2O_5$;	also see	Nb ₂ 0 ₅ -V ₂ 0 ₅	
P ₂ 0 ₅ -9Ta ₂ 0 ₅	partial system,	m, see comments and	nd refs. under $\mathrm{As_20_5} ext{-9Nb}_2\mathrm{O}_5$	b205		
Sm ₂ 0 ₃ -Ti0 ₂	partial system,	see comments	and ref. under $\mathrm{Gd}_2\mathrm{O}_3\mathrm{-TiO}_2$	2		

Waring J. L. Waring and R. S. Roth, "Effects of Oxide Additions on the Polymorphism of Tantalum Pentoxide (System Ta20,7102)", J. Res. NBS, 72A, 175 (1967).		
illustrates J. L. Waring various stable R. S. Roth and metastable phases formed in the system	Nb205	.02
<pre>x-ray powder diffractometry; high-temp. x-ray powder diffracto- metry; phase equilibria</pre>	comments and refs. under $\mathrm{As_20_5-9Nb_20_5}$	comments and ref. under $\ensuremath{\operatorname{Gd}}_2\ensuremath{\mathrm{0}}_3-\ensuremath{\mathrm{TiO}}_2$
solid state rxns. in sealed Pt tubes		
polycrystal- line	partial system, see	partial system, see
Ta ₂ 0 ₅ -Ti _{0₂ entire system}	9Ta ₂ 05-V ₂ 05	2Ti02-Tm203

Latest developments in the subject area of this publication, as well as in other areas where the National Bureau of Standards is active, are reported in the NBS Technical News Bulletin. See following page.

HOW TO KEEP ABREAST OF NBS ACTIVITIES

Your purchase of this publication indicates an interest in the research, development, technology, or service activities of the National Bureau of Standards.

The best source of current awareness in your specific area, as well as in other NBS programs of possible interest, is the TECHNICAL NEWS BULLETIN, a monthly magazine designed for engineers, chemists, physicists, research and product development managers, librarians, and company executives.

If you do not now receive the TECHNICAL NEWS BULLETIN and would like to subscribe, and/or to review some recent issues, please fill out and return the form below.

Mail to: Office of Technical Information and Publications National Bureau of Standards Washington, D. C. 20234
Name
Affiliation
Address
City State Zip
Please send complimentary past issues of the Technical News Bulletin.
Please enter my 1-yr subscription. Enclosed is my check or money order for \$3.00 (additional \$1.00 for foreign mailing). Check is made payable to: SUPERINTENDENT OF DOCUMENTS. SP-333

U.S. DEPARTMENT OF COMMERCE

Washington, D.C. 20230

OFFICIAL BUSINESS
Penalty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE