Exercice 1.

1.
$$z_1 + 2\overline{z_2} = 4 - 5i$$

$$2. \quad z_1 \times \overline{z_2} = 5 - 5i$$

3.
$$\frac{z_1}{z_2} = \frac{1}{2} - \frac{1}{2}i$$

Exercice 2.

$$\mathbf{1.} \ \mathscr{S}_{\mathbb{C}} = \left\{ -\frac{3}{2} - \frac{1}{2}i \right\}.$$

2.
$$\mathscr{S}_{\mathbb{C}} = \{2 - 2i\}.$$

3.
$$\mathscr{S}_{\mathbb{C}} = \left\{ 3 - 3i; \frac{4}{3} + \frac{1}{3}i \right\}.$$

Exercice 3.

Soient z et Z deux complexes tels que $Z = z^2 - 2\overline{z} + 1$. On pose z = x + iy avec $(x; y) \in \mathbb{R}^2$.

1.
$$Z = (x + iy)^2 - 2(x - iy) + 1$$
 donc $Z = x^2 + 2xyi - y^2 - 2x + 2yi + 1$ d'où : $Z = x^2 - 2x - y^2 + 1 + i(2xy + 2y)$.

2.
$$Z$$
 réel \iff Im $(z) = 0 \iff 2xy + 2y = 0 \iff 2y(x+1) = 0 \iff y = 0$ ou $x = -1$.

3. Z soit imaginaire pur
$$\iff$$
 Re(z) = 0 \iff $x^2 - 2x - y^2 + 1 = 0$.
On fixe, par exemple $x :$ si $x = 0$ on a alors $y^2 = 1$ soit $y = 1$ ou $y = -1$ et donc une proposition possible est i et $-i$.

Exercice 4.

1. On reconnaît l'utilisation de la formule du binôme de Newton avec n = 3, a = 1 et b = 2i. On peut alors écrire : $(1 + 2i)^3 = -11 - 2i$.

2. On a :

$$(1+2i)^3 = 1 \times 1^0 \times (2i)^3 + 3 \times 1^1 \times (2i)^2 + 3 \times 1^2 \times (2i)^1 + 1 \times 1^3 \times (2i)^0$$

= -8i - 12 + 6i + 1
= -11 - 2i

Exercice 5.

1. On a:

$$P(a+ib) = (a+ib)^{2} - 2a(a+ib) + a^{2} + b^{2}$$

$$= a^{2} + 2abi - b^{2} - 2a^{2} - 2abi + a^{2} + b^{2}$$

$$= 0$$

2. $\forall z \in \mathbb{C}$,

$$P(\overline{z}) = (\overline{z})^2 - 2a\overline{z} + a^2 + b^2$$

$$= \overline{z^2} - \overline{2a}\overline{z} + \overline{a^2 + b^2} \quad \text{car} \quad \overline{2a} = 2a, \ \overline{a^2 + b^2} = a^2 + b^2$$

$$= \overline{z^2 - 2az + a^2 + b^2}$$

$$= \overline{P(z)}$$

3. On a démontré que z = a + ib est une racine de P. On utilise la relation précédente avec z = a + ib. Il vient : $P(\overline{a+ib}) = \overline{P(a+ib)}$. Or P(a+ib) = 0 d'après la question 1. Ainsi $P(\overline{a+ib}) = \overline{0} = 0$ ce qui démontre que $\overline{a+ib} = a - ib$ est une autre racine de P.