Wykład 3 czwartek, 18 października 2018	11:15
	KONSULTACJE
	• od 23 pazdeiernika • wtorek 14°°-16°° p.1.07 C11 • czmortek 10°°-11°°, 17°°-18°° p.1.07 C11
	KÓWNANIE RÓŻNICZKOWE BERNOULLIEGO
	· równanie, letóre można zapisar w postaci
	y'(+) + p(+)y(+) = h(+)[y(+)]" r & R\{0,1}
	nazywomy vownaziem Bernoulliego
	· kiedy r=0 to y'(t) + p(t)y(t) = h(t) czyli równanie linioue
	• kiely $r = 1$ to $y'(t) + p(t)y(t) = h(t)y(t)$
	s+ad y'(t) + y(t)(p(t) - h(t)) = 0
	s+a, y'(t) + y(t)g(t) = 0
	• równanie A sprowadzamy do vównania liniowego przez podstanienie $z(t) = (y(t))^{1-r}$
	mnożymy równanie A przez y(+)-
	stad: y'(t)(y(t))~~+p(t)_y(t)·(y(t))~~~=h(t) (y(t))~~~
	jeżeli zróżniczkujemy: dz = (1-r) (y(t)) · dy to somo
	z'(+)=(1-~)(y(+))~ y'(+)
	mnozymy przez 1 : 1-r z'(+)= (y(+)) y'(+)
	$\frac{1}{1-r} z'(t) + p(t)z(t) = h(t)$
	z'(t) + (1-r)p(t)z(t) = (1-r)h(t)
	• PRZYKŁAD: y'(t) - 4 y(t) = + · \(\sqrt{y(t)} \) y(t) > 0 +>0
	$y'(t) - \frac{4}{t}y(t) = + \cdot (y(t))^{\frac{1}{2}} / \cdot y(t)^{-\frac{2}{2}}$

 $y'(t) - \frac{4}{t}y(t) = t \cdot (y(t))^{\frac{1}{2}} / \cdot y(t)^{-\frac{2}{2}}$ $(y'(+),y(+)^{-\frac{1}{2}}-\frac{4}{+}(y(+))^{\frac{1}{2}}=+$ $z(t) = (y(t))^{\frac{1}{2}} \longrightarrow z'(t) = \frac{1}{2}y(t)^{-\frac{1}{2}} \cdot y'(t) / \cdot 2$ $2z'(t) = y(t)^{-\frac{1}{2}} \cdot y'(t)$ $2z'(t) - \frac{4}{7}z(t) = + 12$ $z'(t) - \frac{2}{t}z(t) = \frac{1}{2}t$ Forwigzujemy romanie linione p(+) = -2 h(+)= 2+ [p(+)d+= -2|n|+| = |n|+|-2 e (2) 1 = e (1) -2 = 12 = (2) mile callerjorcy rómnanie mnożymy przez czynnik całkujący z(t), $\frac{1}{t^1}$ - $\frac{2}{t^1}z(t) = \frac{1}{2t}$ $\left(2\left(\frac{1}{7}\right)\cdot\frac{1}{4^2}\right)^{\frac{1}{2}}=\frac{1}{2+}$ $z(+)\cdot\frac{1}{+^2}=\int\frac{1}{2+}d+$ $_{2}(t) \cdot \frac{1}{t^{2}} = \frac{1}{2} |_{n} |_{t} |_{t} + c |_{t} |_{t}^{2}$ 2(+) = 1/2 | n | + 1 + c + 2 2(t)= y(t) 2 - Vozuizzanie y(+) = (1/2 + 2 | n | + 1 + c + 2)2 / · PRZYKŁAD 2: y (+) + + y(+) = + · y3(+) r=3 Pozostale vozminzanie: y = O $y'(t) + y(t) = t \cdot y^{3}(t)$ /· + -3 (1/(+). (-3/+) + + (1-2/+) = +

```
y (t) + + y (+) = + y (+) / · +
   y'(t) \cdot y^{-1}(t) + t \cdot y^{-2}(t) = +
z(t) = y^{-2}(t) z'(t) = -2y^{-3}(t) \cdot y'(t) | : -2|
 - 2 z (+)= y-3(+) y'(+)
-\frac{1}{2}z'(t)++z(t)=+ | • (-2)
  z (t) - 2+z(t) = -2+
   metoda czymila calkującego
   \int_{P}(+)d+ = \int_{-2}^{2}+d+ = -2 \cdot \frac{1}{2}+^{2} = -+^{2}
   elp(+) dt = e-+2 -> czynnik całkujący
   z'(t) - 2 + z(t) = -2 + (-e^{-t^2})
   z (+) e - 2 + z (+) e - 2 + e - 2 + e - 12
  (z(t) \cdot e^{-t^2})' = -2 + e^{-t^2}
  \int (2(+) \cdot e^{-1^2})^1 dt = \int -2 + e^{-1^2} dt
   [-2+e-+2+= |-+2=v| = [e ] v= e+2+c1
   z(t) \cdot e^{-t^2} = e^{-t^2} + c, |\cdot e^{+2}|
   z(+)=1+ce+2
 z(t) = y^{-2}(t)
  y^{-2}(+) = 1 + ce^{+2} / (-\frac{1}{2})
    y(t) = (1 + ce^{t^2})^{-\frac{\pi}{2}}
RÓWNANIA RÓŻNICZKOWE II-EGO RZĘDU
· Równanie różniczkowe w postaci
   y"(+) = f(+, y (+) y (+)) } rownanie B
   nazywamy vounoniem voznicakonym dvugiego uzadu
· funkcia y (t) jest rozmiazaniem vomania B na pewnym
ovzedziale (a, b) ieżeli jest dwykrotnie rożniczkowalna na (a.b)
```

•	f,	بامر	• (ز)		u ((+)		ies.	Ļ	10	·~io	yza	nic	m	٧	ر سا د	าคท	۱۵		В		N	a	Dev	~ n 4 n	1
	PY:	s c d	z ia	ار	٦ (a,	b)	J	eie	li	je.	st	du	Juk	Y 9.	lui	e	Υō	i nì (, ko	ha	lna		1 Na	unyn (a,	6)
									ani																•	
		-		'	· - '					_																

Rómanie tego typu spromadzamy do rómnania piermszego rządu przez podstanienie y (+)= u (+).

· PRZYKŁAD

$$y''(t) = 1 + (y'(t))^{2}$$

$$y'(t) = y'(t)$$

$$y'(t) = 1 + (y'(t))^{2}$$

 $\int f_3(1+c) dt = \int \frac{\sin(1+c)}{\cos(1+c)} dt = \int \frac{\cos(1+c)}{\cos(1+c)} dt = \int \frac{1}{2} dz = -\int \frac{1}{2}$

$$y(t) = -\left(\frac{\cos(4+c)}{c}\right) \cdot c,$$

$$PRZYRLAD 2:$$

$$\begin{cases} y''(t) - \frac{1}{4}y'(t) = e^{\frac{1}{4}t} \\ y'(4) = 2 \end{cases}$$

$$y''(t) - \frac{1}{4}y'(t) = e^{\frac{1}{4}t}$$

$$y''(t) = v(t)$$

$$y''(t) - \frac{1}{4}v(t) = e^{\frac{1}{4}t}$$

$$p''(t) = v(t)$$

$$v'(t) - \frac{1}{4}v(t) = e^{\frac{1}{4}t}$$

$$p''(t) + \frac{1}{4} - \frac{1}{4}t = -\ln|t| = \ln|t|^{-1}$$

$$c^{1/40+1} = e^{\frac{1}{4}t} \cdot c^{\frac{1}{4}t} = e^{\frac{1}{4}t}$$

$$v'(t) - \frac{1}{4}v'(t) = e^{\frac{1}{4}t}$$

$$v'(t) - \frac{1}{4}v'(t) = e^{\frac{1}{4}t}$$

$$v'(t) - \frac{1}{4}v'' = e^{\frac{1}{4}t}$$

$$v''(t) - \frac{1}{4}v'' = e^{\frac{1}{4$$

