Lec 17: Perceptron and Support Vector Machine (SVM)

Ailin Zhang

Recap: Bayesian Regression

 We can view a Rigde Regression as a MAP (Bayes Least Square) inference with a Gaussian prior.

 $\beta \sim N(0, \tau^2 \mathbf{I}_p)$ be the prior distribution of β .

$$\hat{\beta} = (\mathbf{X}^{\top} \mathbf{X} / \sigma^2 + \mathbf{I}_{\rho} / \tau^2)^{-1} \mathbf{X}^{\top} \mathbf{Y} / \sigma^2.$$

which corresponds to the ridge regression with $\lambda = \sigma^2/\tau^2$.

 We can view a Lasso Regression as a MAP inference with a Laplace prior.

 $p(\beta) = (\frac{\gamma}{2})^p \exp(-\gamma||\beta||_1)$ be the prior distribution of β . corresponds to the lasso regression with $\lambda = \sigma^2 \gamma$.

Bayesian Regression with multiparamters

$$p\left(Y\mid\beta,\sigma^{2}\right)=\left(2\pi\sigma^{2}\right)^{-n/2}\exp\left[-\frac{1}{2\sigma^{2}}||Y-X\beta||^{2}\right]$$

- ullet looks normal as a function of eta
- ullet looks inverse gamma as a function of σ^2

Bayesian Regression Example (Multiparameter case)

Noninformative Prior: $[\beta, \sigma^2] \sim \frac{1}{\sigma^2}$

$$p\left(\beta,\sigma^2\mid Y\right) \propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}||Y-X\beta||^2\right)$$

For Bayesian Inference, we would like to know:

 $p(\sigma^2 \mid Y) = \int p(\beta, \sigma^2 \mid Y) d\beta$

• $\sigma^2 \mid y \sim \text{Inv} - \chi^2 (n - p, s^2)$, where $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \hat{y})^2$

$$p(\beta \mid Y) = \int p(\beta, \sigma^2 \mid Y) d\sigma^2$$

•
$$\beta \mid Y \sim t \left(n - p, \hat{\beta}_{LS}, s^2(X^TX)^{-1} \right)$$

Agenda

- Classification, outcome, and logistic loss
- Perceptron model and margin
- Introduction to SVM

Warm up: Logsitic Regression

obs	$X_{n \times p}$	$Y_{n\times 1}$
1		
2		
i	$X_i^{ op}$	Уi
n		

Let $\eta_i = X_i^{\top} \beta$ be the score, then

$$p_i = \sigma(\eta_i) = rac{1}{1 + e^{-\eta_i}} = rac{1}{1 + e^{-X_i^{ op}eta}} = rac{e^{X_i^{ op}eta}}{1 + e^{X_i^{ op}eta}}, \ 1 -
ho_i = rac{1}{1 + e^{X_i^{ op}eta}}$$

 $\eta_i = \log(\frac{p_i}{1-p_i}) = logit(p_i) = \log$ odds ratio

Warm up: Logsitic Regression

ullet Let the loss function loss(eta) be the negative log-likelihood, then

$$loss(\beta) = \sum_{i=1}^{n} log \left[1 + exp \left(-y_i X_i^{\top} \beta \right) \right].$$

• The gradient

$$loss'(\beta) = -\sum_{i=1}^{n} \sigma\left(-y_i X_i^{\top} \beta\right) y_i X_i.$$

The gradient descent algorithm is

$$\beta^{(t+1)} = \beta^{(t)} + \gamma \sum_{i=1}^{n} \sigma \left(-y_i X_i^{\top} \beta \right) y_i X_i$$

Perceptron

- Logistic Regression is a soft version of perception
- Logistic Regression is also a generalized linear model (GLM)
- Perceptron is a binary classifier: $\hat{y}_i = sign(\mathbf{X}_i^{\top} \beta)$.

The perceptron model

The Perceptron Model

The perceptron model $y_i = \operatorname{sign}(X_i^{\top}\beta)$, where $y_i \in \{+1, -1\}$

Define the loss function:

$$loss(\beta) = \frac{1}{n} \sum_{i=1}^{n} Loss(y_i, f_{\beta}(\mathbf{x}_i))$$

where

Loss
$$(y, \hat{y}) = \mathbf{1}\{\hat{y} \neq y\} = \begin{cases} 1 & \hat{y} \neq y \\ 0 & \text{otherwise} \end{cases}$$

ullet Solve eta by perceptron update

The Perceptron Model: perceptron update

Starting from $\beta_0 = 0$,

$$\beta^{(t+1)} = \beta^{(t)} + \sum_{i=1}^{n} \delta_i y_i X_i,$$

where $\delta_i = 1(y_i \neq \operatorname{sign}(X_i^{\top} \beta^{(t)}))$ to determine whether $\beta^{(t)}$ makes a mistake in classifying y_i .

• Reasoning: (only consider one data point (X_t, y_t) , where $y_t \neq X_i^{\top} \beta^{(t)}$) $\beta_{(t+1)} = \beta_{(t)} + y_t X_t$

$$y_{t}\beta_{(t+1)}^{T}X_{t} = y_{t} \left(\beta_{(t)} + y_{t}X_{t}\right)^{T}X_{t}$$
$$= y_{t}\beta_{(t)}^{T}X_{t} + y_{t}^{2}X_{t}^{T}X_{t}$$
$$= y_{t}\beta_{(t)}^{T}X_{t} + ||X_{t}||^{2}$$

so this quantity either becomes "less negative", or even better, shifts to being positive.

Perceptron Update: Geometric Intuition

Perceptron Update and Margin

 The algorithm can also be considered as the gradient descent algorithm for the loss function

$$loss(\beta) = \frac{1}{n} \sum_{i=1}^{n} \max(0, -y_i X_i^{\top} \beta)$$

- The term $y_i X_i^{\top} \beta$ can be defined as the margin for this observation.
 - If the margin is large, it means the classification is confident.
 - If the margin is small, it means the classification is uncertain.
 - If the margin is negative, it means β makes a mistake. The more negative it is, the bigger the mistake is.

Perceptron and Margin

- If a data set is linearly separable, the perceptron model will find a separating hyperplane in a finite number of updates.
- Margin: the distance between the hyperplane and the observations closest to the hyperplane

$$loss(\beta) = \sum_{i=1}^{n} \max(0, -y_i X_i^{\top} \beta) = \sum_{i=1}^{n} \max(0, -Margin_i),$$

- $\max(0, -Margin_i) = 0$ if $Margin_i \ge 0$, i.e., no mistake is made
- $\max(0, -Margin_i) = -Margin_i$ if $Margin_i < 0$.
- the algorithm learns from the mistakes.

Perceptron Convergence

Theorem

For simplicity, we consider the case where the linear separator must pass through the origin (intercept = 0). If the following conditions hold:

- 1. there exists β^* such that $Y_i \frac{X_i^\top \beta^*}{\|\beta^*\|} \geqslant \gamma$ for all $i=1,\ldots,n$ and for some $\gamma>0$ and
- 2. all the examples have bounded magnitude: $\|X_i\| \leqslant R$ for all $i=1,\ldots n$, then the perceptron algorithm will make at most $\left(\frac{R}{\gamma}\right)^2$ mistakes. At this point, its hypothesis will be a linear separator of the data.
 - ullet γ is also defined as the margin for the hyperplane eta^*

Convergence Proof (1)

- We initialize $\beta^{(0)}=0$, and let $\beta^{(k)}$ define our hyperplane after the perceptron algorithm has made k mistakes. Assume that the $k^{\rm th}$ mistake occurs on the $i^{\rm th}$ example
- So, let's think about the cosine of the angle between $\beta^{(k)}$ and β^* ,

$$\cos\left(\beta^{(k)}, \beta^*\right) = \frac{\beta^{(k)\top}\beta^*}{\|\beta^*\| \|\beta^{(k)}\|}$$

Prove by induction

$$\frac{\beta^{(k)\top}\beta^*}{\|\beta^*\|} = \frac{\left(\beta^{(k-1)} + Y_i X_i\right)^\top \beta^*}{\|\beta^*\|} = \frac{\beta^{(k-1)\top}\beta^*}{\|\beta^*\|} + \frac{Y_i X_i^\top \beta^*}{\|\beta^*\|}$$
$$\geqslant \frac{\beta^{(k-1)\top}\beta^*}{\|\beta^*\|} + \gamma \geqslant k\gamma$$

Convergence Proof (2)

Prove by Induction

$$\|\beta^{(k)}\|^{2} = \|\beta^{(k-1)} + Y_{i}X_{i}\|^{2}$$

$$= \|\beta^{(k-1)}\|^{2} + 2Y_{i}X_{i}^{\top}\beta^{(k-1)} + \|X - i\|^{2}$$

$$\leq \|\beta^{(k-1)}\|^{2} + R^{2}$$

$$\leq kR^{2}$$

Returning to the definition of the dot product, we have

$$\cos\left(\beta^{(k)}, \beta^*\right) = \left(\frac{\beta^{(k)\top}\beta^*}{\|\beta^*\|}\right) \frac{1}{\|\beta^{(k)}\|} \geqslant (k\gamma) \cdot \frac{1}{\sqrt{k}R} = \sqrt{k} \cdot \frac{\gamma}{R}$$

Convergence Proof (3)

• Since the value of the cosine is at most 1 , we have

$$1 \geqslant \sqrt{k} \cdot \frac{\gamma}{R}$$
$$k \leqslant \left(\frac{R}{\gamma}\right)^2.$$

This result endows the margin γ of \mathcal{D}_n with an operational meaning: when using the Perceptron algorithm for classification, at most $(R/\gamma)^2$ classification errors will be made, where R is an upper bound on the magnitude of the training vectors.

Support Vector Machine - Motivation

Consider the perceptron $y_i = \operatorname{sign}(X_i^{\top}\beta)$:

- It separates the positive examples and negative examples by projecting the data on vector β ,
- $oldsymbol{0}$ It separates the examples by a hyperplane that is perpendicular to eta.

If the positive examples and negative examples are separable, there are be many separating hyperplanes.

We want to choose the one with the **maximum margin** in order to guard against the random fluctuations in the unseen testing examples.

Support Vector Machine Geometry

The idea of support vector machine (SVM) is to find the β , so that

- **1** for positive examples $y_i = +, X_i^{\top} \beta \ge 1$,
- ② for negative examples $y_i = -$, $X_i^{\top} \beta \leq -1$.

Here we use +1 and -1, because we can always scale β .

The decision boundary is decided by the training examples that lies on the margin. Those are the support vectors.

Support Vector Machine

Let u be an unit vector that has the same direction as β . $u = \frac{\beta}{|\beta|}$.

Suppose X_i is an example on the margin (i.e., support vector), the projection of X_i on u is

$$\langle X_i, u \rangle = \langle X_i, \frac{\beta}{|\beta|} \rangle = \frac{X_i^{\top} \beta}{|\beta|} = \frac{\pm 1}{|\beta|}.$$

So the margin is $1/|\beta|$. In order to maximize the margin, we should minimize $|\beta|$ or $|\beta|^2$. Hence, the SVM can be formulated as an optimization problem as follows:

$$\begin{aligned} & \text{minimize} & & \frac{1}{2}|\beta|^2, \\ & \text{subject to} & & y_i X_i^\top \beta \geq 1, \forall i. \end{aligned}$$

Recall $X_i^{\top}\beta$ is the score, and $y_iX_i^{\top}\beta$ is the individual margin of observation i. This is the **primal form** of SVM.

Dual Form: Lagrange Multiplier

Let
$$\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n)$$
, where $\alpha_i \ge 0$

$$L(\beta, \alpha) = \frac{1}{2} |\beta|^2 + \sum_{i=1}^n \alpha_i (1 - y_i X_i^\top \beta)$$

The idea is to solve an unconstrained problem because it is easier to solve.

Dual Form: Lagrange Multiplier and saddle point

Dual Form

The primal form of SVM is max margin, and the dual form of SVM is min distance.

max margin = min distance

The margin between the two sets is defined by the minimum distance between two.

Dual Form - Convex Hull

Let $X_+ = \sum_{i \in +} c_i X_i$ and $X_- = \sum_{i \in -} c_i X_i$ $(c_i \geq 0, \sum_{i \in +} c_i = 1, \sum_{i \in -} c_i = 1)$ be two points in the positive and negative convex hulls. The margin is $\min |X_+ - X_-|^2$.

$$\begin{aligned} |X_{+} - X_{-}|^{2} &= \left| \sum_{i \in +} c_{i} X_{i} - \sum_{i \in -} c_{i} X_{i} \right|^{2} \\ &= \left| \sum_{i} y_{i} c_{i} X_{i} \right|^{2} \\ &= \sum_{i,j} c_{i} c_{j} y_{i} y_{j} \langle X_{i}, X_{j} \rangle, \\ \text{subject to} \quad c_{i} \geq 0, \sum_{i \in +} c_{i} = 1, \sum_{i \in +} c_{i} = 1. \end{aligned}$$

Solvable with sequential minimal optimization