

Non-Technical Overview & Potential Impact

- Opens doors to making environmentally responsible decision within a tight budget given the increased cost of living
 - environmentally friendly i.e. fuel efficient, low CO2 emissions, best smog rating
 - cost efficient i.e. within budget for purchase & fuel efficiency

Overview of the Dataset & Preprocessing Procedures

6,951 rows and 8 columns; 19 columns after 1 hot encoding

Model_Year	Make		Model	Vehicle_Class		Fuel_Type	Fuel_Consumption- Comb(L/100 km)	CO2_Emissions(g/km)	Smog_Rating
Vehicle_Class		Fuel_Consumption- Comb(L/100 km)		CO2_Emissions(g/km)		og_Rating			

- Prices data was brought in from other datasets, some of them included Price by Make, Model, Year and Mileage so I grouped by the 3 columns and took average then joined the grouped data with the main dataset. 1 of them required currency conversion.
- Found data quality issues in the prices dataset where prices for cars were in 100s and the mileage wasn't even > 10,000. The cars in the dataset were from 2017-2020.
- Chi2 test (Model & Vehicle Class)
- Domain Knowledge & Correlation Matrix
- VIF Analysis for multicollinear columns

Few Important Findings from EDA

Baseline Model & Evaluation Metrics

Model_Year

Make

Mode

Vehicle_Class

Fuel_Type

Fuel_Consumption-Comb(L/100 km)

CO2_Emissions(g/km)

Smog_Rating

Data Processing And Feature Engineering:

- Try backward feature selection & see what # of clusters work best
- One hot encoding for Model_Year, Make and Fuel Type
 - One hot encoding can lead to dimensionality issues, so will need to handle that if it appears
- Handle the missing prices values

Modelling

- Baseline Modeling:
 - K-Means clustering algorithm
 - Simple to implement
 - Computationally efficient for moderately sized dataset
 - Easy interpretations as it assigns each data point to the nearest cluster center
- Advanced Modelling:
 - DBScan
- Find better way for cluster visualization
- Look into the data and label clusters as green or not green

Build the website and host it on heroku