Course	21MAB101T	Course	CALCULUS AND LINEAR ALGEBRA	Course	В	BASIC SCIENCES	L	Т	Р	С
Code		Name	CALCULUS AND LINEAR ALGEBRA	Category			3	1	0	4

Pre-requisite Nil	Co- requisite	Nil	Progressive Nil
Courses	Courses		Courses
Course Offering Department Mathem	tics	Data Book / Codes / Standards	Nil

Course	Course Learning Rationale (CLR): The purpose of learning this course is to:						Program Outcomes (PO)									
CLR-1: Apply the concept of Matrices in problems of Science and Engineering						4	5	6	7	8	9	10	11	12		
CLR-2:	Utilize Taylor series, Maxim	na minima, composite function and Jacobian in solving various Engineering problems	Ф		o	of		ciety			¥		_			
CLR-3:	CLR-3: Apply the concept of Differential Equations in problems of Science and Engineering					tions	e e	ြလ			Work		Finance			
CLR-4:	Utilize the concepts of radius of curvature, evolute, envelope in problems of Science and Engineering		Knowledge	Analysis) mdc	estigations blems	Usage	and	∞ ∞		eam	₆	& Fin	aming		
CLR-5:	Apply the Sequences and S	s and Series concepts in Science and Engineering			sign/development utions	ct inv	n Tool	enginee	nment		ual &	ommunication	Mgt.	ong Lea		
Course	Outcomes (CO):	At the end of this course, learners will be able to:	Engine	Problem,	Design/d solutions	Condu	Modern	The er	Environ Sustaina	Ethics	Individua	Comm	Project	Life Lo		
CO-1:	Apply the concepts of Matric	es to find Eigenvalues and Eigen Vectors problems solving in Science and Engineering	3	3	-	-	-	-	-	-	-	-	-	-		
CO-2:	Apply Maxima and Minima, J	lacobian, and Taylor series to solve problems in Science and Engineering	3	3	-	-	-	-	-	-	-	-	-	-		
CO-3:	Solve the different types Diff	ferential Equations in Science and Engineering applications	3	3	-	-	-	-	-	-	-	-	-	-		
CO-4:	Identify Radius, Centre, enve	elope and Circle of curvature and apply them in Science and Engineering	3	3	-	-	-	-	-	-	-	-	-	-		
CO-5:	Identify convergence and div	rergence of series using different tests in Engineering applications	3	3	-	-	-		-	-	-	-	-	-		

Unit-1: Matrices 12 Hour

Characteristic equation – Eigen values and eigen vectors of a real matrix – Properties of eigen values – Cayley – Hamilton theorem – Orthogonal reduction of a symmetric matrix to diagonal form – Orthogonal matrices – Reduction of quadratic form to canonical form by orthogonal transformations.

Unit-2: Functions of Several variables 12 Hour

Function of two variables-Partial derivatives - Total differential - Taylor's expansion with two variables up to second order terms -Maxima and Minima - Constrained Maxima and Minima by Lagrangian Multiplier - Jacobians of two Variables - Jacobians Problems - Properties of Jacobians and Problems

Unit-3: Ordinary Differential Equations 12 Hour

Linear equations of second order with constant coefficients when Pl=0 or exponential - Linear equations of second order with constant coefficients when Pl=sinax or cos ax - Linear equations of second order with constant coefficients when Pl=polynomial Linear equations of second order with constant coefficients when Pl=exponential with sinax or Cosax - Linear equations of second order with constant coefficients when Pl=polynomial with sinhax or coshax - Linear equations of second order with constant coefficients of second order variable coefficients - Linear equations of second order variable coefficients - Linear equations of Euler type - Homogeneous equation of Legendre's Type - Homogeneous equation of Legendre's Type - Equations reducible to homogeneous form - Equations reducible to homogeneous form - Variation of parameters - Variation of parameters - Simultaneous first order with constant coefficient. - Simultaneous first order with constant coefficient.

Unit-4: Differential Calculus and Beta Gamma Functions

12 Hour

Radius of Curvature — Cartesian coordinates - Radius of Curvature — Polar coordinates - Circle of curvature - Centre of curvature - Evolute of a parabola - Evolute of an ellipse - Envelope of standard curves - Beta Gamma Functions - Beta Gamma Functions and Their Properties Sequences — Definition and Examples - Series — Types of Convergence - Series of Five terms — Test of Convergence - Comparison test — Integral test

Unit-5: Sequence and Series

12 Hour

Series of Five terms – Test of Convergence - Comparison test – Integral test- Comparison test – Integral test- Comparison test – Integral test- D'Alemberts Ratio test ,D'Alemberts Ratio test, Raabe's root test. - Convergent of Exponential Series - Cauchy's Root test - Log test Log test - Alternating Series: Leibnitz test - Series of positive and Negative terms. - Absolute Convergence - Conditional Convergence

Learning Resources	1. 2.	Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008	4. 5. 6.	Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010 G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002 N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008
	٥.	veerarajan 1., Engineering mathematics for instryear, Tata mcGraw-Fill, New Delii, 2000		

Learning Assessme			Continuous Learni	C				
	Bloom's Level of Thinking	CLA-1 Av	ormative erage of unit test (50%)	Life Lo	ong Learning CLA-2 — (10%)	Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	-	20%	-	20%	-	
Level 2	Understand	20%	-	20%	-	20%	-	
Level 3	Apply	30%	-	30%	-	30%	-	
Level 4	Analyze	30%	-	30%	-	30%	-	
Level 5	Evaluate	-	-	-	-	-	-	
Level 6	Create	-	-	-	-	-	-	
	Total 100 %			100 %	100 %			

Course Designers					
Experts from Industry		Experts from Higher	Technical Institutions	Internal Experts	3
	Mr.V.Maheshwaran, CTS, Chennai, maheshwaranv@yahoo.com	1.	Dr.K.C.Sivakumar, IIT Madras, kcskumar@iitm.ac.in	1.	Dr.A.Govindarajan, SRMIST
		2.	Dr. Y V S S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in	2.	Dr. N. Balaji, SRMIST