

Section Summary | Introduction to Statistics
The Central Limit Theorem

Sample Statistics and The Law of Large Numbers

- 1) Sample vs. Population
 - a) It is often impossible to get data for an entire population
 - b) Instead, we can collect data for a small sample of the population
 - c) We can then use the statistics of that sample to estimate the population parameters
 - d) Parameter: a summary measure or characteristic of an entire population
 - i) Population Mean: μ
 - ii) Population Variance: σ^2
 - e) Statistic: a summary measure or characteristic of a sample
 - i) Sample Mean: \overline{x}
 - ii) Sample Variance: s²
 - iii) Sample Standard Deviation: s
- 2) Law of Large Numbers
 - a) We can estimate population parameters by comparing the statistics of many samples
 - b) Larger samples tend to produce more accurate estimations of the population

c)
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} \overline{x_i} \to \mu \text{ as } n \to N$$

where n is the sample size and N is the population size.

- 3) Sample Distributions
 - a) Statistics will change from sample to sample
 - b) We should ask several questions about our samples
 - i) What is the mean of our sample statistic across all samples?
 - ii) What is the variance of our sample statistic across all samples?
 - iii) If we make a histogram of that statistic for all samples, what is the shape of that histogram?
 - iv) How do the mean, variance, and histogram shape of this statistic behave as we alter the size of the sample?
 - c) As the sample size increases, the mean of the statistic should approach the population parameter

- d) As the sample size increases, the variance between different samples should decrease
- e) As the sample size increases, the histogram of the samples should look more like a normal distribution with smaller and smaller standard deviation

Section Summary | Introduction to Statistics The Central Limit Theorem

Central Limit Theorem

- 1. CLT for Means
 - a. Sample means will be normally distributed
 - b. $\bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$
 - c. $\bar{x} = sample mean$
 - d. $\mu = population mean$
 - e. $\sigma = population standard deviation$
 - f. n = sample size
 - g. By taking many samples we can fit the sample means to a normal distribution and estimate the population mean and standard deviation
 - h. As the sample size increases, the distribution of sample means becomes more normal and the width of the distribution decreases
 - i. The rule of thumb for very large samples is to keep $n \ge 30$
 - j. z-transformation of CLT: $z = \frac{\bar{x} \mu}{\sigma/\sqrt{n}}$
 - k. With this z-transformation we can calculate certain probabilities
 - I. If we have the population mean and standard deviation, we can calculate the probability of selecting a sample with a given range of means
 - m. Given the sample mean and standard deviation, we can calculate the probability of being a certain distance from the actual population parameter (this requires approximating the population standard deviation with the sample standard deviation)
- 2. Standard Error
 - a. Standard Error $=\frac{\sigma}{\sqrt{n}}$
 - b. This shouldn't be confused with the standard deviation
 - c. Standard deviation of the population, σ , gives the variability in the population's data

Outlier

- d. Standard deviation of the sample, s, gives the variability in a sample's data
- e. Standard error, $\frac{\sigma}{\sqrt{n}}$, gives the variability of all the sample means
- 3. CLT for Sums
 - a. The sum of random samples is also normally distributed

$$\sum_{i=1}^{n} x_i \sim N(n\mu, \sigma\sqrt{n})$$

b. z-transformation:

$$z = \frac{\sum_{i=1}^{n} x_i - n\mu}{\sigma\sqrt{n}}$$

c. Given the population mean, μ , and population standard deviation, σ , you can calculate the accumulation of a certain result after n data points.