

- Attendance verification with EZCheck.me app (In the break)
- Download for iPhone https://apps.apple.com/us/app/ezcheck-me/id1472247186
- Download for Android https://play.google.com/store/apps/details?id=me.ezcheck
- Please enable <u>location</u>, as we need to verify you attended from the classroom.

Image Processing Course

Computer Vision, Computational Photography

Areas of Computer Science

Cyber

Classical CS - Invent Algorithms

Complexity, Algorithms

Computer Graphics

Data Bases

Computer Architectures

Cryptography

Programming Languages, Compilers

Networking

Learn from Data - Al (Artificial Intelligence)

Computer Vision —

Speech Analysis

Natural Language (NLP)

Deep Learning (NN)

Stage 1 – Preprocessing, Tokens

Stage 2 – Deep Learning

Autonomous driving, Medical diagnosis
ChatGPT ... Replace Humans

In AI: Different appearance can have same meaning

- We (people) know most of the times to recognize people
- We (people) can not Explain how we do it
 - No one could invent a face recognition algorithm
- Al can learn to recognize people from many examples, doing a better job than humans!

1984 Same Person

2000

National Geographic: "Afghan Girl"

Nature: Vision = Intelligence = Moving

- Only intelligent and moving organisms can see!
 - Bacteria & Plants do not see
- Visual recognition at early development
 - Babies recognize and track the mother very early
- Most of the human brain is involved in visual processing

Predator or Prey - Vision Used for Survival

Predator: Hunts its food Eyes directed forward Prey: Escape Predators Eye directed sideways

Applications: Image Enhancement

Dehazing

High Dynamic Range Imaging

Panoramic Stereo Mosaics

Developed at HUJI

A previous course exercise

Video Synopsis (Also by Huji)

Original: 9 hours

Synopsis: 30 seconds

- Commercialized by Briefcam
- Acquired by Canon 2018

Hebrew University at Night

The Real Big Data: (i) Video (ii) Without Photographers

- Surveillance Cameras
- Industrial/car cameras
- Wearable Cameras

Video is ~85% of the digital universe
Surveillance ~70%

Characters (Text, numbers): Only ~15%

Computer Vision in 2024

Topic Started in ~1964, Nothing Worked for 50 Years

<u>Started to Work ~2014 (Neural Networks)</u>

- Computer vision products are commonly used now:
 - Face Detection is included in every camera
 - Face Recognition in Facebook, Google, & Passport Control
 - Autonomous Driving (MobilEye..) Robotaxi: Tel-Aviv Oct 2022!
 - Medical Diagnosis
 - OCR (Optical Character Recognition)
 - Image and Video Generation (Deep Fake...)

Image Processing: 2024-25

<u>Teacher</u>: **Shmuel Peleg** peleg@mail.huji.ac.il

Assistant: Leeyam Gabay leeyam.gabay@mail.huji.ac.il

Tzars: Eliahu Horwitz

<u>Textbooks</u>: Web, Wikipedia, Szeliski (Free download https://szeliski.org/Book/), Moodle

<u>Grading</u> (Average of <u>final</u> grade in course is <u>normalized to 83-85</u> **for those that attended**):

3 exams: 1 hour & 2 questions each. From the 6 questions, we use the best 5!

Estimated Exam Dates (All at 6-7pm): (1) Sun 1/12; (2) Sun 5/1; (3) Sun 2/2;

Expected Exercises (Python, GITHUB)

5 individual programming. Show you friends & family... ChatGPT, CoPilot,...

Final Grade: 3 Exams: 75% (25% each); Exercises: 23% (non-equal weight); Attendance: 2%

אינפורמציה חשובה

- אין מועד ב' כי משקל כל בוחן פחות מ 26% מהציון הסופי יינתן מועד מיוחד (ג') למבחן חסר באישור ועדת הוראה (מילואים, מחלה, ...)
 - אנחנו נלחמים בהעתקות
 - בשנה שעברה הוגשו תלונות נגד 10% מהסטודנטים! **בשנה שעברה**
 - בונוס נוכחות: 1 נקודה על 50% נוכחות. 2 נקודות על 70%חישוב אישי להיעדרות מוצדקת מעל 30%)

Relevant "Vision-AI" Courses

1st Semester

- Image Processing (Peleg)
- IML (Introduction to Machine Learning) (Hoshen)
- Medical Image Processing (Joskowicz)

2nd Semester

- IML (Introduction to Machine Learning) (Stanovsky)
- Introduction to Deep Learning (Fattal)
- Advanced Course in Machine Learning (Hoshen)
- 3D Computer Vision 3D Geometry (Werman)
- SLAM (Simultaneous Localization And Mapping) Video Navigation (Vivanti)
- Introduction to Speech Processing (Adi)

Image Formation: Luminance

- Light is emitted by light sources
- Light is reflected from objects
- Reflected light is sensed by eye or by camera

Depends on lighting & viewing directions; color

Reflectance: Shining (Specular) vs. Matt (Diffuse)

A ray is reflected to have same angle with normal

Each surface point has equal reflection to all directions

Graphics in 5 Minutes Class YouTube video clips by Steve Seitz

https://www.youtube.com/playlist?list=PLWfDJ5nla8UpwShx-lzLJqcp575fKpsSO

5 Minute Clips

- Specular reflection
- Diffuse Reflection

Specular reflection in 5 minutes

Graphics in 5 Minutes • 4.9K views • 2 years ago

Diffuse reflection in 5 minutes

Graphics in 5 Minutes • 5.5K views • 2 years ago

Visual Perception: The Human Eye

Pupil

Cornea

Iris •

≈ 10⁸ Rods (B/W) ≈ 10⁷ Cones (RGB Color) מדוכים ≈ 10⁴ Nerves (≈1:10⁴ Reduction)

Ganglion Cells

Bipolar Cells

Receptors: Rods & Cones

Two types of light-sensitive receptors

≈108 Rods - gray-scale vision

- rod-shaped
- highly sensitive
- operate at low light

≈10⁷ Cones - color vision

- cone-shaped
- less sensitive
- operate in bright light

Colors - Electromagnetic Radiation

- Maximum Sun Energy: 450 nm. Is it luck?
- •Best Atmospheric Transmittance: Visible Range

5 Minute Clips

Color Perception

Color Perception in 5 minutes

Graphics in 5 Minutes • 1.2K views • 2 weeks ago

Visual Perception: Mach Bands

Mach Bands (2)

Visual Illusions: Are the Horizontal Lines Parallel?

Visual Illusions: Size

Ebbinghaus Illusion:

Which central circle is larger?

What Do You See?

Image Digitization: 3 Stages

- 1) Transforming the 3D world into 2D image
 - Perspective Projection (Optics, Continuous)

- Finite number of Pixels
- 3) Quantizing the color/gray-level
 - Finite number of colors (e.g. 8 bits per color)

Pinhole Camera (Camera Obscura (Latin) = Dark Room)

- Pinhole model:
 - Captures pencil of rays all rays through a single point
 - The point (pinhole) is called Center of Projection (COP)
 - The image is formed on the Image Plane
 - Focal length f is distance from COP to Image Plane

5 Minute Video Clips

- 12) Perspective projection
- 13) Perspective projection: Part 2 the math!

Perspective Projection

- Transforming the 3D world (X, Y, Z) into 2D image (x, y)
 - Continuous Perspective Projection (optics)
 - All rays pass through one point (f = focal length)

Simple case: Aligned World axis (X, Y, Z) and Image axis (x, y)

$$\frac{Y}{Z} = \frac{y}{f}$$

$$x = \frac{f}{Z}X$$

$$y = \frac{f}{Z}Y$$

Summary: First Stages of Image Acquisition Analog Light

Spatial Sampling to Pixels

- Sampling the Image Plane
 - Finite number of Pixels
 - Do we always want maximum number of pixels?

5 Minute Video Clips

• 4) Images in 5 minutes

Images in 5 minutes: The Case of the Splotched Van Gogh, Part 1

Graphics in 5 Minutes • 4.4K views • 2 years ago

RGB Inside the Camera

Anatomy of the Active Pixel Sensor Photodiode

Millions of light sensors

Bayer Filter

- In 1975, Bruce Bayer invents the color filter array, used in most digital camera.
- ¼ pixels detect red; ¼ pixels blue; ½ pixels green;
- The camera <u>invents</u> 2 missing colors in pixels. How?

- Demosaicing: Invents missing colors
- Many methods, mostly proprietary
- A possible (bad) method:
 - Average 2 or 4 neighbors

Color/Gray-level Quantization

- Quantizing the color/gray-level
 - Finite number of colors

Digital Pictures

- A Matrix of numbers (Greylevel image)
- A Matrix of triplets (RGB Color, etc.)

2	4	5	6	7	8	9	10	11	12	11	10	9	8	7
3	5	6	7	8	9	10	11	12	13	12	11	10	9	8
4	6	7	8	9	10	11	12	13	14	13	12	11	10	9
5	7	8	9	10	11	12	13	14	15	14	13	12	11	10
6	8	9	10	11	12	13	14	15	16	15	14	13	12	11
7	9	10	11	12	13	14	15	16	17	16	15	14	13	12
8	10	11	12	13	14	15	16	17	18	17	16	15	14	13
9	11	12	13	14	15	16	17	18	19	18	17	16	15	14
10	12	13	14	15	16	17	18	19	20	19	18	17	16	15
9	11	12	13	14	15	16	17	18	19	18	17	16	15	14
8	10	11	12	13	14	15	16	17	18	17	16	15	14	13
7	9	10	11	12	13	14	15	16	17	16	15	14	13	12
6	8	9	10	11	12	13	14	15	16	15	14	13	12	11
5	7	8	9	10	11	12	13	14	15	14	13	12	11	10
4	6	7	8	9	10	11	12	13	14	13	12	11	10	9
3	5	6	7	8	9	10	11	12	13	12	11	10	9	8
2	4	5	6	7	8	9	10	11	12	11	10	9	8	7
1	3	4	5	6	7	8	9	10	11	10	9	8	7	6

Color Spaces

RGB (Camera, Projector - Add), CMYK (Print -Subtract), YIQ (TV)

For Color to B/W TV	Y	0.299	0.587	0.114	$\lceil R \rceil$
	I =	0.596	-0.275	-0.321	$\mid G \mid$
For Color to B/W TV Y - Luminance	Q	0.212	-0.523	0.311	$\lfloor B \rfloor$

CIE Chromaticity Diagram (1931) Boundary: Spectral Colors (Single Wavelength)

