Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida

Present	ation · January 2008			
DOI: 10.1314	40/RG.2.1.4364.4565			
CITATIONS	;	READS		
0		1,398		
1 author	a c			
and a	Francisco Gonzalez-Longatt			
	University of South-Eastern Norway			
	360 PUBLICATIONS 2,380 CITATIONS			
	SEE PROFILE			
Some of	the authors of this publication are also working on these related projects:			
Project	Electrical Science A View project			
Project	Modeling and Simulation using Bond Graph Theory View project			

8082139 Sistemas de Generación Distribuida

TEMA 2.5 Energía Solar

Prof. Francisco M. Gonzalez-Longatt

fglongatt@ieee.org

http://www.giaelec.org/fglongatt/SistGD.html

8082139 Sistemas de Generación Distribuida

Energía Solar -Fundamentos-

1. La Energía del Sol

- El sol emite continuamente radiación a todo el espacio.
- El sol irradia aproximadamente $1.7 \times 10^{14} \text{ kW}$.
- La energía que la tierra atrapa es de 174.423.000.000.000 kW

La Energía del Sol

• Radiación Difusa y Directa: alcanza la superficie de la tierra directamente con una pequeña reflexión de la atmósfera.

• Por ejemplo: En cualquier día del año, 80% de la radiación que llega al desierto del Sahara es radiación

directa del sol.

La Energía del Sol

• Un 50% de la radiación solar alcanza la superficie de la tierra.

http://www.physicalgeography.net/fundamentals/7f.html

La Energía del Sol

8082139 Sistemas de Generación Distribuida

Tecnologías Solares

Tecnologías Solares

- Energía Solar Pasiva
 - Calefacción Pasiva Solar
 - Refrigeración Pasiva Solar
 - Iluminación, Daylighting
- Energía Solar Activa
 - Agua Caliente y Calefacción de Espacio y Refrigeración
 - Concentradores Solares

• Energía Solar Fotovoltaica (FV)

8082139 Sistemas de Generación Distribuida

Energía Solar - Térmica -

Colector Solar

- Esta forma de energía solar esta diseñada para colectar la radiación del sol mediante sistemas concentradores solares de avanzada destinadas a la generación de electricidad a través de colectores y concentradores y plantas con turbinas a vapor (ciclo Rankine o ciclo Stirling).
- Las tecnologías de concentradores solares usa materiales reflectivos como espejos para concentrar la energía solar.
- Este energía calórica concentrada es convertida en electricidad.

Tipos de Colectores

- Existen tres diseños de plantas solares de generación de potencia:
 - Colectores Solares Parabólicos (Solar Trough)
 - Torres solares (Solar Power Towers)
 - Concentradores de Discos/Platos (Solar Dish/Engine)

• Los colectores parabólicos emplean espejos curvados para enfocar la luz en un tubo lleno con aceite u otro fluido.

• El aceite caliente se usa para calentar agua y producir vapor el cual es usado para generar

electricidad.

Sistemas de Generación Distribuida

Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org Copyright © 2008

• Desde 1985, nueve (09) plantas en el Desierto de Mojave, llamado *Solar Electric Generatig System* (SEGS) que usan la tocologías de espejos parabólicos, han estado en plena operación comercial.

Table 1. Characteristics of SEGS I through IX [4].

SEGS Plant	1st Year of Operation	Net Output (MW _e)	Solar Field Outlet Temp. (°C/°F)	Solar Field Area (m²)	Solar Turbine Eff. (%)	Fossil Turbine Eff. (%)	Annual Output (MWh)
I	1985	13.8	307/585	82,960	31.5		30,100
II	1986	30	316/601	190,338	29.4	37.3	80,500
III & IV	1987	30	349/660	230,300	30.6	37.4	92,780
V	1988	30	349/660	250,500	30.6	37.4	91,820
VI	1989	30	390/734	188,000	37.5	39.5	90,850
VII	1989	30	390/734	194,280	37.5	39.5	92,646
VIII	1990	80	390/734	464,340	37.6	37.6	252,750
IX	1991	80	390/734	483,960	37.6	37.6	256,125

Vista Aérea de la Planta Kramer, California, EE.UU

Parabolic trough power plant in Spain (Plataforma Solar de Almeria)

http://www.psa.es/webesp/index.html

• Consisten de un gran campo de espejos seguidores del sol llamados Heliostatos, los cuales enfocan la luz solar en un receptor en la parte alta de una torre

centralmente ubicada.

The National Solar Thermal Test Facility in Albuquerque, New Mexico. STACEE uses a subset of the facility's 212 heliostats to collect Cherenkov light produced by electrons in air showers generated by high energy gamma rays.

Sistemas de Generación Distribuida TEMA 2: Tecnologías Empleadas en la Generación Distribuida

Heliostatos

http://http://www.nrel.gov/data/pix/

Manzanares Spain

- El enorme valor de energía, proveniente de los día de sol, concentrado en un punto (el punto medio de la torre), produce temperaturas aproximadas entre 550 y 1500°C.
- La energía térmica ganada puede ser usada para calentar agua o sal fundida, la cual almacena energía para uso posterior.
- El agua calentada produce vapor, el cual es usado para mover un conjunto turbina generador.

Table 1. Experimental power towers.

		Power Output			Operation
Project	Country	(MWe)	Heat Transfer Fluid	Storage Medium	Began
SSPS	Spain	0.5	Liquid Sodium	Sodium	1981
EURELIOS	Italy	1	Steam	Nitrate Salt/Water	1981
SUNSHINE	Japan	1	Steam	Nitrate Salt/Water	1981
Solar One	USA	10	Steam	Oil/Rock	1982
CESA-1	Spain	1	Steam	Nitrate Salt	1983
MSEE/Cat B	USA	1	Molten Nitrate	Nitrate Salt	1984
THEMIS	France	2.5	Hi-Tec Salt	Hi-Tec Salt	1984
SPP-5	Russia	5	Steam	Water/ Steam	1986
TSA	Spain	1	Air	Ceramic	1993
Solar Two	USA	10	Molten Nitrate Salt	Nitrate Salt	1996

The Power Tower Project "Solar II" (California):

- 1,926 sun-tracking helióstato (espejos)
- Sistema de almacenamiento térmico de sal fundida
- Torre (300 ft) con receptor central
- Turbina a vapor convencional que acciona turbina y generador.
- Produce alrededor de 10 MWe, suficiente potencia para servir 10,000 hogares con electricidad

• Es una combinación de un disco satélite, una tecnología de una torre de potencia y un motor

Stirling.

One dish was demonstrated at the Pentagon in Washington, D.C. in 1998.

- Usa un disco parabólico para concentrar la energía solar en el punto focal. Un receptor en el punto focal convierte la energía de los rayos solares en calor.
- La ganancia de calor es de 1200 a 1740°F) es usado para mover un *motor Stirling que genera electricidad*.

http://www.psa.es/webesp/index.html

TEMA 2: Tecnologías Empleadas en la Generación Distribuida

Copyright © 2008

Sistemas de Generación Distribuida TEMA 2: Tecnologías Empleadas en la Generación Distribuida Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org Copyright © 2008

Sistemas de Generación Distribuida TEMA 2: Tecnologías Empleadas en la Generación Distribuida Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org Copyright © 2008

Sistemas de Generación Distribuida TEMA 2: Tecnologías Empleadas en la Generación Distribuida

8082139 Sistemas de Generación Distribuida

Energía Solar - Fotovoltaicos -

Sistema Fotovoltaico

- Un sistema fotovoltaico, efectúa la conversión directamente de la energía contenida en la luz del sol en energía eléctrica.
- Se utilizan ciertos *materiales semiconductores* en la construcción de las celdas solares, que *transforman la energía contenida en el fotón en electricidad*, al ser expuestas al sol.

Sistema Fotovoltaico

- Los sistemas fotovoltaicos son *simples en diseño*, *silenciosos*, *fácil de usar*, *y no requieren de un combustible* diferente a la luz solar.
- Debido a que *no contienen partes móviles*, resultan duraderos, confiables y fáciles de mantener.
- Su *confiabilidad es elevada* y se han empleado desde hace más de 40 años en lugares inhóspitos tales como el espacio, desiertos, selvas, regiones remotas, etc

Materiales Empelados en SFV

Se emplea silicio. NO se requiere que sea ultra puro

Valor optimo 1.5 eV

Materiales Empelados en SFV

- Las celdas solares para sistemas fotovoltaicos son producidas en muchos tipos de materiales
- La mayor parte del material que se emplea actualmente esta basado en el silicio.
- Las celdas más importantes de acuerdo a la estructura cristalina son:
 - Silicio Mono-cristalino y
 - Silicio Multi-cristalino.

Celdas de Silicio Mono-cristalino

- Son hechas usando una corte desde un solo cristal cilíndrico de silicio, esta es la tecnología fotovoltaica más eficiente.
- La ventaja principal de las celdas mono-cristalinas es su eficiencia alta, típicamente alrededor del 15%,
- El proceso de manufactura es complicado, requieres enormes cantidades de energía, causando un

incrementos

Celda de Silicio Monocristalino

Celdas de Silicio Multi-cristalino

- Las celdas *multi-cristalinas son mas baratas de producir que las mono-cristalinas*, debido al proceso simple de fabricación.
- Ellas tienden a ser *ligeramente menos eficientes, con una eficiencia media de alrededor de 12%.*

Celda de Silicio Multi-cristalino

Celdas de Silicio en Película Delgada (Thick-Film)

- El silicio es depositado en un proceso continuo sobre un material base que da un aspecto corrugado y el aspecto brillante.
- Como todas las celdas cristalinas, esta es encapsulada en un polímero de aislamiento transparente con una cubierta de vidrio templado y usualmente rodeado de un fuerte marco de aluminio.

Celda de Silicio en Película Delgada

Celdas de Silicio Amorfo

- Absorbe la luz más con eficacia que el silicio cristalino, entonces las células pueden ser más delgadas.
- Son menos eficientes que celdas cristalinas, con la *eficacia típica en alrededor del 6 %*, pero ellas son más fáciles y por lo tanto *más baratos para producir*.

Celda de Silicio Amorfo

Diseño de SFV

• Los sistemas fotovoltaicos se pueden diseñar para operación autónoma o funcionamiento en sistemas híbridos o alternativamente con sistemas de generación convencionales.

Componentes de un SFV

• Los componentes de un sistema fotovoltaico pueden incluir un conjunto de módulos o paneles solares, regulador de carga, banco de baterías, acondicionador de potencia, además de elementos de montaje.

• La configuración final del sistema depende de la carga (tipo, nivel de corriente, uso, etc.)

Diseños de Sistemas FV

- Hay dos tipos generales de diseños de sistemas fotovoltaicos
 - Sistemas que interactúan con la red comercial de potencia y no poseen una capacidad de respaldo con baterías
 - Sistemas que interactúan e incluyen a su vez, sistemas de almacenamiento.

Sistemas de Almacenamiento

Factores a Favor	Factores en Contra
Demanda de potencia en periodos sin sol	Elevado costo inicial
Cargas que requieren corrientes de arranque elevadas (motores, compresores, etc.)	Requerimientos adicionales de espacio
Demanda a voltaje constante	Dificultad de proteger la batería de condiciones climáticas externas
Capacidad de almacenar energía generada en exceso a la demanda, reduciendo así las pedidas de energía	Perdidas de energía a la ineficiencia de las baterías

Sistemas de Almacenamiento

Tipo	Costo Aproximado (US\$/kWh)	Ciclo de Vida	Profundidad de Descarga	Autodescarga Normal
Plomo- antimonio (carro)	70	150 – 250	10%	7 – 50%/mes
Plomo-ácido (fotovoltaico)	80	1000 – 2000	10 – 30%	3-4%/mes
Plomo puro (fotovoltaico)	140	1000 – 3000	30 – 50%	2%/mes
Plomo-calcio (fotovoltaico)	200	2000 – 6000	20 – 70%	1%/mes
Niquel- Cadmio	300 – 1000	3000 – 10000		5%/mes

SFV Conectado a la Red

• El sistema que interactúa con la red y posee respaldo de baterías, es un sistema que incorpora el almacenamiento de energía.

SFV Conectado a la Red

• El sistema que interactúa con la red comercial y no posee respaldo de batearías se emplea en sitios donde la posibilidad de una falla de suministro comercial es muy improbable.

8082139 Sistemas de Generación Distribuida

Fotovoltaicos -Eficiencia y Costos-

Mercado de SFV

- El mercado mundial de instalaciones de SFV alcanzo el record de 2826 MW e 2007.
- Un crecimiento del 62% en 2007.

Mayores Plantas en el Mundo

Potencia Pico	Ubicacion	GW·h/Anno
154 MW	Mildura/ <u>Swan Hill,</u> <u>Australia</u>	270
62 MW	Moura, Portugal 88	
40 MW	Muldentalkreis, Germany	40
23 MW	Murcia, Spain	41.6
21 MW	Calavéron, Spain	40
20 MW	<u>Trujillo</u> , <u>Spain</u>	
20 MW	Beneixama, Spain	30
18 MW	Olivenza, Spain	32
14 MW	Nellis AFB, Nevada	30
14 MW	Taean, South Korea	20.44
13.8 MW	Salamanca, Spain	
12.7 MW	Murcia, Spain	
12 MW	Arnstein, Germany	14
11 MW	Serpa, Portugal	n.a.
10 MW	Pocking, Germany	11.5
9.5 MW	Milagro, Spain	

Sistemas de Generación Distribuida TEMA 2: Tecnologías Empleadas en la Generación Distribuida Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org Copyright © 2008

Eficiencia

Eficiencia de Paneles Fotovoltaicos

Tipo	Eficiencia tipica del modulo [%]	Eficiencia máxima registrada del modulo [%]	Eficiencia máxima del modulo en laboratorio [%]
Silicio Monocristalino	12 a 15	22.7	24.7
Silicio Multicristalino	11 a 14	15.3	19.8
Silicio Amorfo	5 a 7	-	12.7
Cadmium Telluride	-	10.5	16.0
CIGS	-	12.1	18.2

Costos

Costo/Valor de la energía solar FV integrada a edificaciones

Costo:

Modulo FV+Instalación+Inversor+BOS

Costo del Sistema total

Costos del sistema FV por Watt

Valor:

- ~1.825kWh/ano por KW de FV instalada (5 horas de insolacion)
- Atenuación de picos y compensación de cargas en el día.
- Alta confiabilidad.
- Energía limpia, Imagen verde
- Energía producida en sitio y modular
- Independiente de la variación de precio de la red
- Bajos costos de O y M.

Costos

Crecimiento en la Capacidad por Segmento de actividad y Variaciones en los precios (\$/Wp) de módulos FV

http://www.solarbuzz.com

Costos

Índice de precios de sistemas comerciales solares FV

Instalación Tipo	Tamano	Precio del Sistema (\$)	Costo de Generación Solar FV (\$ cents/kWh)	Costo de Electricidad (\$ cents/kWh
Residencial (Sistema instalada en casa en techo con baterias de respaldo fuera de la red)	2 kWp	18.078 (9.46\$/Wp)	Soleado: 37.78 Nublado: 83.13	8.8
Comercial (Instalado en terreno, conectado a la red sin potencia de respaldo)	50 kWp	342.900 (7.24%/Wp)	Soleado: 27.49 Nublado: 60.47	7.8
Industrial (instalado en techo plano de edificación, conectado a red)	500 kWp	2.484.745 (4.90\$/Wp)	Soleado: 24.41 Nublado: 47.11	5.6

8082139 Sistemas de Generación Distribuida

Fotovoltaicos -Ventajas y Desventajas-

Ventajas del SFV

- Operación *libre de emisiones contaminantes*, siendo una fuente totalmente no contaminante.
- No hay consumo de combustible fósil, de tal modo que los costos de combustible, asociados a este tipo de tecnología, son prácticamente cero.
- Excelente modularidad (casi cualquier carga de una edificación puede ser alimentada por el adecuado ajuste de múltiples unidades).
- Libre de mantenimiento, excepto por las baterías involucradas.
- Excelente eficiencia a carga parcial.

Barreras a los SFV

- El precio de la potencia entregada excede el de las otras tecnologías de generación distribuida, ciertos subsidios existen en algunos países para hacer competitiva a la energía producida por los sistemas fotovoltaicos
- El *ajuste temporal de la potencia producida y las cargas es imperfecto*, de tal modo que se requieren de otros sistemas como dispositivos almacenadotes de energía.

Barreras a los SFV

- Los aspectos climáticos locales y las condiciones solares afectan directamente el potencial del sistema fotovoltaico.
- En algunas localizaciones no es posible el uso de la energía fotovoltaica.

Fortalezas-Debilidades

Fotovoltaica		
Fortalezas	Debilidades	
Trabajan bien en zonas		
remotas	Depende del clima	
Requiere mi mínimo	Algunas localizaciones	
mantenimiento	pueden ser impropio	
Sin emisiones		
Bajo mantenimiento	Altos costos	