Memória virtual

- implementada pelo SO c/ auxílio da memória secundária
- implementação
 via paginação
 ou segmentação
- maior que a memória física

Page Fault

- 1ª referência a uma página
 → trap p/ SO
- SO examina tabela de páginas:
 - referência inválida: aborta
 - página fora de memória
 - obtém frame livre
 - traz página do disco p/ o frame
 - reseta a entrada na tabela (bit de validade = 1)
 - repete instrução que causou o page fault

Tabela de páginas com algumas páginas fora da MP

Políticas de busca de páginas

- Paginação por demanda
 - páginas são transferidas da MS p/ MP apenas quando referenciadas
- Paginação antecipada
 - carrega, além da página referenciada, outras páginas que podem ser necessárias ao longo da execução do processo

Substituição de página (1)

- localiza página no disco
- frame livre ?
 - sim → usa
 - não → vítima
- lê a página p/ frame livre, atualiza tabela de páginas e de frames
- reinicia processo

Substituição de página (2)

- bit modificado (dirty bit)
 - só páginas modificadas são gravadas no disco
 - reduz sobrecarga de transferências de páginas
- vítima
 - Algoritmo de substituição de páginas
 - objetivo: menor taxa de page fault

Algoritmo FIFO (1)

- vítima: página que está a mais tempo na memória
- 3 frames (3 páginas podem estar na memória física ao mesmo tempo)

Páginas	1	2	3	4	1	2	5	1	2	3	4	5
Frame 1	1	1	1	4	4	4	5	5	5	5	5	5
Frame 2		2	2	2	1	1	1	1	1	3	3	3
Frame 3			3	3	3	2	2	2	2	2	4	4
PF?	X	X	X	X	X	X	X			X	X	

9 PF

Algoritmo FIFO (2)

supondo 4 frames ...

Páginas	1	2	3	4	1	2	5	1	2	3	4	5
Frame 1	1	1	1	1	1	1	5	5	5	5	4	4
Frame 2		2	2	2	2	2	2	1	1	1	1	5
Frame 3			3	3	3	3	3	3	2	2	2	2
Frame 4				4	4	4	4	4	4	3	3	3
PF?	X	X	X	X			X	X	X	X	X	X

10 PF

anomalia de Belady: > frames ≠ < PF

Algoritmo Ótimo

 substitui a página que não será usada pelo maior período de tempo

Páginas	1	2	3	4	1	2	5	1	2	3	4	5
Frame 1	1	1	1	1	1	1	1	1	1	1	4	4
Frame 2		2	2	2	2	2	2	2	2	2	2	2
Frame 3			3	3	3	3	3	3	3	3	3	3
Frame 4				4	4	4	5	5	5	5	5	5
PF?	X	X	X	X			X				X	

6 PF

implementação ??? → comparações

Algoritmo LRU - Least Recently Used (1)

 substitui a página menos recentemente usada, ou seja, que não foi usada pelo maior período de tempo

Página	1	2	3	4	1	2	5	1	2	3	4	5
Frame 1	1	1	1	1	1	1	1	1	1	1	1	5
Frame 2		2	2	2	2	2	2	2	2	2	2	2
Frame 3			3	3	3	3	5	5	5	5	4	4
Frame 4				4	4	4	4	4	4	3	3	3
PF?	X	X	X	X			X			X	X	X

8 PF

Algoritmo LRU - Least Recently Used: implementações (2)

com contadores

- cada entrada da tabela possui um contador
- a cada referência à página, o valor do clock é copiado p/ o contador
- quando uma página precisa ser substituída, verifica-se os contadores p/ determinar qual trocar

lista encadeada

- páginas mais referenciadas → início da lista
- páginas menos referenciadas → final da lista

Algoritmo Bits de referência

- Variação do LRU
- associa um bit a cada entrada na tabela de páginas
 - início: todos os bits em 0
 - a cada acesso: bit é setado (1)
- troca página que tem 0 (se existir)
- sabe-se que páginas foram acessadas, mas não a ordem

Algoritmo LFU (Least Frequently Used)

- considera a frequência de consulta
- troca a página menos referenciada
- implementação: contador (vítima = menor contador)
- páginas bastante acessadas são mantidas na memória
- processos mais recentes são prejudicados

Páginas	1	2	3	1	3	1	3	1	3	4	Contadores 1 – 4
Frame 1	1	1	1	1	1	1	1	1	1	1	$\frac{1}{2} - \frac{1}{1}$
Frame 2		2	2	2	2	2	2	2	2	4	3 - 4
Frame 3			3	3	3	3	3	3	3	3	
PF?	X	X	X							X	FIFO – substituiria a página 1

Algoritmo NRU - Not Recently Used

- substitui a página não usada recentemente
 - 2 bits: R (referência) e M (modificação)
 - Classe 0 (R = 0 e M = 0) → não referenciada, não modificada
 - Classe 1 (R = 0 e M = 1) → não referenciada, modificada
 - Classe 2 (R = 1 e M = 0) → referenciada, não modificada
 - Classe 3 (R = 1 e M = 1) → referenciada, modificada
 - R e M são atualizados a cada referência à memória
 - periodicamente, R é limpo p/ diferenciar as páginas que não foram referenciadas recentemente
 - a cada tick/interrupção do relógio
 - classe 3 → classe 1

Conjunto de Trabalho (Working Set)

- processo executa: migra de localidade em localidade
 - localidade: conjunto de páginas usadas simultaneamente
 - programa = {localidades} que podem se sobrepor
- Conjunto de trabalho (WS) = conjunto de páginas recém referenciadas
 - Base: modelo de localidade
 - $-\Delta \rightarrow$ define a janela do conjunto de trabalho
 - · Página em uso está no WS

... 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 3 4 4 4 ... $\Delta \qquad \qquad \Delta \qquad \qquad \Delta$

Políticas de alocação de páginas

- Alocação fixa
 - SO estabelece nº máximo de páginas a serem utilizadas
- Alocação variável
 - SO permite que o nº
 máximo de páginas de
 um processo varie
 (função da taxa de
 paginação e ocupação
 na MP)

- Substituição global
 - escolhe páginas de qualquer processo carregado na MP para substituir
- Substituição local
 - escolhe páginas do próprio processo

Exercícios

- 1) Considere um sistema de memória virtual que implemente paginação, onde o limite de frames por processo é igual a três. Descreva para os itens abaixo, onde é apresentada uma sequência de referências à páginas pelo processo, o número total de page faults para as estratégias de realocação de páginas FIFO e LRU.
 - a) 1/2/3/1/4/2/5/3/4/3
 - b) 1/2/3/1/4/1/3/2/3/3
- 2) Considere um processo com limite de páginas reais igual a quatro e um sistema que implemente a política de substituição FIFO. Quantos page faults ocorrerão considerando que as páginas virtuais são referenciadas na seguinte ordem: 0172327103. Repita o problema utilizando a política LRU.