음계

- 음계 scale
 - 음을 일정한 음정의 순서로 차례대로 늘어 놓은 것
 - 피타고라스 음계
 - 순정률(純正律, just intonation)
 - 평균율(平均律, equal temperament)

- 피타고라스 음계
- 기본 음계 (音階, scale)
 - 옥타브 (octave)
 - 도에서 다음 도, 솔에서 다음 솔 등
 - 주파수가 2배
 - 도의 주파수 *t*
 - 다음 도의 주파수 2*t*
 - 도와 도 사이의 평균 주파수 3t/2
 - $t: \frac{3t}{2}$ 를 비율로 쓰면 2:3
 - $\frac{3t}{2}$: 2t를 비율로 쓰면 3:4
 - 도에서 도까지 8개의 음으로 채운다
 - 즉, 도, 레, 미, 파, 솔, 라, 시, 도 해서 8개 음
 - 2:3은 3:4와 비교하여 주파수 간격이 더 넓음
 - 따라서 ?는 **솔**이 됨

• 도~도를 한 옥타브 올림

• 각 음계에 해당하는 x를 결정

• 완전 5도 : 2:3

• 완전 4도 : 3:4

 x_{re} x_{mi} x_{fa} $\frac{3}{2}t$

• 레 주파수 결정

완전 5도 (perfect fifth)

• 솔과 한 옥타브 위의 레가 완전 5도

$$\frac{3}{2}t : 2x_{re} = 2 : 3 \rightarrow 4x_{re} = \frac{9}{2}t \rightarrow x_{re} = \frac{9}{8}t$$

• 따라서 레는 $\frac{9}{9}t$ 이다.

- 미 주파수 결정
 - 미에서 완전 4도 올리면 라
 - 이 라에서 완전 4도 또 올리면 레

$$\begin{cases} x_{mi} : x_{la} = 3 : 4 & \to & 3x_{la} = 4x_{mi} & \to & x_{la} = \frac{4}{3}x_{mi} \\ x_{la} : \frac{9}{4}t = 3 : 4 & \to & 4x_{la} = \frac{27}{4}t & \to & x_{la} = \frac{27}{16}t \end{cases} \rightarrow x_{la} = \frac{4}{3}x_{mi} = \frac{27}{16}t \rightarrow x_{mi} = \frac{81}{64}t$$

• 따라서 미는 $\frac{81}{64}$ t이다.

- 파 주파수 결정
 - **파**에서 완전 5도 올리면 **도**

$$x_{fa}: 2t = 2:3 \rightarrow 3x_{fa} = 4t \rightarrow x_{fa} = \frac{4}{3}t$$

• 따라서 파는 $\frac{4}{3}t$ 이다.

- 라 주파수 결정
 - **라**에서 완전 5도 내리면 **레**

$$\frac{9}{8}t: x_{la} = 2:3 \rightarrow 2x_{la} = \frac{27}{8}t \rightarrow x_{la} = \frac{27}{16}t$$

• 따라서 라는 $\frac{27}{16}t$ 이다.

- •시 주파수 결정
 - **시**에서 완전 5도 내리면 **미**

• 따라서 $\frac{1}{128}$ t이다.

- 피타고라스 음계의 단점
 - (1) 미 81/64, 라 27/16, 시 243/128의 너무 큰 분모와 분자이므로 다른 음과 작은 정수배가 되지 않음
 - (2) 음계 사이의 비율 온음 9/8(= 1.1250)과 반음 256/243(= 1.0535)에서 반음을 두 번 올리면 온음이 되지 않음

 $1.1250 > 1.0535 \times 1.0535 = 1.0535^2 = 1.1099$

- 피타고라스 기타 Pythagoras' guitar
 - 피타고라스의 음계를 따라 기타
 - 주파수는 파장의 역수이므로 기타 줄의 길이는 피타고라스 음계 주파수의 역수

Pythagoras' Guitar

- 순정률 (純正律, just intonation)
 - 피타고라스 음계에서 미, 라, 시를 약간 고침

•
$$\square$$
 : $\frac{81}{64}t \rightarrow \frac{5}{4}t$ $\Rightarrow \frac{5}{3}t$

라 :
$$\frac{27}{16}t \rightarrow \frac{5}{3}t$$

$$|\lambda|: \frac{243}{128}t \to \frac{15}{8}t$$

• 도미솔, 솔시레, 파라도 진동수 비율 → 4:5:6

	c 도	D 레	E 0	F파	G 솔	Α 라	в시	c 도
피타고라스 음계	t	$\frac{9}{8}t$	$\frac{81}{64}t$	$\frac{4}{3}t$	$\frac{3}{2}t$	$\frac{27}{16}t$	$\frac{243}{128}t$	2t
순정률	t	$\frac{9}{8}t$	$\frac{5}{4}t$	$\frac{4}{3}t$	$\frac{3}{2}t$	$\frac{5}{3}t$	$\frac{15}{8}t$	2 <i>t</i>
순정률 음계 사이의 비율			$\frac{10}{9}$ $\frac{1}{1}$	$\frac{6}{5}$ $\frac{9}{8}$	· <u>-</u>	$\frac{10}{9}$	_	<u>6</u> 5

• 순정률의 단점

- (1) 한 음 사이의 간격이 $\frac{9}{8}$, $\frac{10}{9}$ 두 가지가 혼재
- (2) 미-파, 시-도 사이의 반음을 두 번 적용하면 두 개의 한 음보다 더 큼

$$\frac{9}{8} = 1.1250$$
 $\frac{10}{9} = 1.1111$ $\left(\frac{16}{15}\right)^2 = 1.1378$

$$\rightarrow \left(\frac{16}{15}\right)^2 > \frac{9}{8}, \frac{10}{9}$$

	c 도	D 레	티미	F파	G 솔	A 라	B시	c 도
피타고라스 음계	t	$\frac{9}{8}t$	$\frac{81}{64}t$	$\frac{4}{3}t$	$\frac{3}{2}t$	$\frac{27}{16}t$	$\frac{243}{128}t$	2t
순정률	t	$\frac{9}{8}t$	$\frac{5}{4}t$	$\frac{4}{3}t$	$\frac{3}{2}t$	$\frac{5}{3}t$	$\frac{15}{8}t$	2 <i>t</i>

순정률 음계 사이의 비율

$$\frac{9}{8}$$

$$\frac{10}{9}$$

$$\frac{16}{15}$$

$$\frac{9}{8}$$

$$\frac{10}{9}$$

$$\frac{9}{8}$$
 $\frac{10}{9}$ $\frac{16}{15}$ $\frac{9}{8}$ $\frac{10}{9}$ $\frac{9}{8}$ $\frac{16}{15}$

- 평균율 (平均律, equal temperament)
 - 바흐
 - 평균율 이론을 이용한 작품 발표
 - 도~도까지 12개의 반음 간격을 일정하게 놓은 것

	도 C	C#/Db	레 D	D#/Eb	III E	파 F	F#/Gb	솔 G	G#/Ab	라 A	A#/Bb	시 B	도 C
피타고라스	t		$\frac{9}{8}t$		$\frac{81}{64}t$	$\frac{4}{3}t$		$\frac{3}{2}t$		$\frac{27}{16}t$		$\frac{243}{128}t$	2t
순정률	t		$\frac{9}{8}t$		$\frac{5}{4}t$	$\frac{4}{3}t$		$\frac{3}{2}t$		$\frac{5}{3}t$		$\frac{15}{8}t$	2t
평균율	t	$2^{1/12}t$	$2^{2/12}t$	$2^{3/12}t$	$2^{4/12}t$	$2^{5/12}t$	$2^{6/12}t$	$2^{7/12}t$	$2^{8/12}t$	$2^{9/12}t$	$2^{10/12}t$	$2^{11/12}t$	$2^{12/12}t$
$2^{1/12} 2^{1/12} 2^{1/12} 2^{1/12} 2^{1/12} 2^{1/12} 2^{1/12} 2^{1/12} 2^{1/12} 2^{1/12} 2^{1/12} 2^{1/12} 2^{1/12} 2^{1/12}$													

• 여기서 어떤 수를 12번 곱하여 2되는 수를 *X*라 한다.

$$X^{12} = 2 \rightarrow X = 2^{\frac{1}{12}} = 1.0595 \rightarrow X^2 = \left(2^{\frac{1}{12}}\right)^2 = 2^{\frac{2}{12}} = X^2 = 1.1225$$

- 평균율의 장단점
 - 평균율의 장점
 - 모든 음이 동일한 조성을 갖음 → 변조가 자유로움
 - 평균율의 단점
 - 완전 8도를 제외한 어떤 음정도 완전히 협화음이 되지 않음

- 평균율, 순정률
 - 평균율 사용 : 피아노
 - 순정률과 평균율 사용 : 현악기, 합창
- 평균율, 순정률 관련 유튜브
 - https://www.youtube.com/watch?v=EOwnwUS9Pr8
 - https://www.youtube.com/watch?v=dAUeXF5EdCM

- 12음계 평균율 (Exact value in 12-TET)
- 순정률 (Just Intonation)

평균율과 순정율의 비교

Name	Exact value in 12-TET	Decimal value in 12-TET	Cents	Just intonation interval	Cents in just intonation	Error
Unison (C)	$2^{0/12} = 1$	1.000000	0	$\frac{1}{1} = 1.0000000$	0.00	0
Minor second (C#/Db)	$2^{1/12} = \sqrt[12]{2}$	1.059463	100	16/15 ≈ 1.06666	111.73	-11.73
Major second (D)	$2^{2/12} = \sqrt[6]{2}$	1.122462	200	$\frac{9}{8}$ = 1.1250000	203.91	-3.91
Minor third (D♯/E♭)	$2^{3/12} = \sqrt[4]{2}$	1.189207	300	$\frac{6}{5}$ = 1.2000000	315.64	-15.64
Major third (E)	$2^{4/12} = \sqrt[3]{2}$	1.259921	400	$\frac{5}{4}$ = 1.2500000	386.31	+13.69
Perfect fourth (F)	$2^{5/12} = \sqrt[12]{32}$	1.334840	500	4/3 ≈ 1.33333	498.04	+1.96
Augmented fourth (F#/G*)	$2^{6/12} = \sqrt{2}$	1.414214	600	$\frac{7}{5}$ = 1.4000000	582.51	+17.49
Perfect fifth (G)	$2^{7/12} = \sqrt[12]{128}$	1.498307	700	$\frac{3}{2}$ = 1.5000000	701.96	-1.96
Minor sixth (G#/A)	$2^{8/12} = \sqrt[3]{4}$	1.587401	800	$\frac{8}{5}$ = 1.6000000	813.69	-13.69
Major sixth (A)	$2^{9/12} = \sqrt[4]{8}$	1.681793	900	⁵ / ₃ ≈ 1.66666	884.36	+15.64
Minor seventh (A#/Bb)	$2^{10/12} = \sqrt[6]{32}$	1.781797	1000	16/9 ≈ 1.777777	996.09	+3.91
Major seventh (B)	$2^{11/12} = \sqrt[12]{2048}$	1.887749	1100	$\frac{15}{8}$ = 1.8750000	1088.27	+11.73
Octave (C)	$2^{12/12} = 2$	2.000000	1200	$\frac{2}{1} = 2.0000000$	1200.00	0