

uklon

Project:P02. X fare forecasting

Project description

Model for fare estimate, which outputs most accurate recommended fare

Dataset

Input - data of X city for Y month

Constraints - locations (pickup and dropoff)

ride distance

suburb rides

search time

seasonality

Output

Predict fare estimate, which outputs most accurate recommended fare for maximisation of supply and demand balancing.

Predictive modeling — Regression task

Feature Engineering

We added weather data to our model

34,000000

43.000000

1.000000

1039.000000

Feature Engineering

➤ Holidays

In [34]: holidays.head()

Out[34]:

	date	isHolidays
0	2017-08-24	1
1	2017-10-14	1

Feature engineering:

Clustering for

- pickup location
- dropoff location
- ride

Models selection

- We started from simple Linear Regression (mape = 12%)
- Explored different models:
 - XGBoost
 - LightGBM
 - RandomForestRegressor
 - ExtraTreesRegressor

LightGBM demonstrated the best result and speed among other models on the validation subset

Regression performance accuracy

LightGBM:

```
In [83]: # The mean squared error
    print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred))

Mean squared error: 300.03

In [84]: # The mean absolute percentage error
    print("Mean absolute percentage error: %.3f" % mean_absolute_percentage_error(y_test, y_pred) + '%')
    Mean absolute percentage error: 6.961%
```


Feature importances

