

SRM Institute of Science and Technology Ramapuram campus Department of Mathematics 18MAB101T-Calculus and linear algebra

Year/Sem: I/I Part-A Branch: Common to All

Unit -II

Functions of several variables

1.	If u and v are functionally dependent then their Jacobian value is	1 Mark			
	a)zero b) one c) non-zero d)greater than zero	Ans (a) (CLO-2 / Remember)			
2.	If $rt - s^2 < 0$ then the point is		1 Mark		
	a)maximum point b) minimum point c) saddle point d) fixed point	Ans (c)	(CLO-2 / Remember)		
3.	If $z = x^2 + y^2 + 3xy$ then $\frac{\partial z}{\partial x} =$		1 Mark		
	a)2y+3x b) 3y c) 2x+3y d) 2x	Ans (c)	(CLO-2 / Apply)		
4.	If $u = \sin^{-1}(\frac{x^2 + y^2}{x - y})$ is a homogeneous function of degree		1 Mark		
	a) 2 b) 3 c)1 d) 4	Ans (c)	(CLO-2 / Apply)		
5.	If f(x,y) is an implicit function then $\frac{dy}{dx}$ =		1 Mark		

a) $-\frac{\partial f}{\partial x}$ b) $\frac{\partial f}{\partial y}$ c) $\frac{\partial f}{\partial y}$ c) $\frac{\partial f}{\partial y}$ d) $-\frac{\partial f}{\partial y}$ d) $-\frac{\partial f}{\partial y}$ Ans (a) (CLO-2/Remember) 6. If $x = r\cos\theta$ and $y = r\sin\theta$ then $\frac{\partial(x, y)}{\partial(r, \theta)} =$ 1 Mark a) r b) r ² c) 2r d) 1/r Ans (a) (CLO-2/Apply) If u is a homogeneous function of degree n then $x = \frac{\partial f}{\partial x} + y \frac{\partial u}{\partial y} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y}$ 1 Mark a) n b) nu c) u d) n ² u Ans (b) (CLO-2/Remember) 8. If $x = u^2 - v^2$ and $y = 2uv$ then $\frac{\partial(x, y)}{\partial(u, v)} = \frac{\partial f}{\partial(u, v)} = \frac{\partial f}{\partial(u, v)}$ 1 Mark a) $u^2 + v^2$ b) $2(u^2 + v^2)$ c) $4(u^2 + v^2)$ d) $4v^2$ Ans (c) (CLO-2/Apply) 9. If $J_1 = J\left(\frac{x, y}{u, v}\right)$ and $J_2 = J\left(\frac{u, v}{x, y}\right)$ then $J_1J_2 = \frac{\partial f}{\partial(u, v)}$ 1 Mark a) 0 b) -1 c) 2 d) 1 Ans (d) (CLO-2/Remember) The point (0.0) for $f(x, y) = x^3 + y^3 - 3axy$ is 1 Mark a) maximum point b) minimum point Ans (c) (CLO-2/Apply)				
6. a) r b) r^2 c) $2r$ d) $1/r$ Ans (a) (CLO-2/Apply) If u is a homogeneous function of degree n then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$ 1 Mark a) n b) nu c) u d) n^2u Ans (b) (CLO-2/Remember) 8. If $x = u^2 - v^2$ and $y = 2uv$ then $\frac{\partial(x, y)}{\partial(u, v)} = 1$ 1 Mark a) $u^2 + v^2$ b) $2(u^2 + v^2)$ c) $4(u^2 + v^2)$ d) $4v^2$ Ans (c) (CLO-2/Apply) 9. If $J_1 = J\left(\frac{x, y}{u, v}\right)$ and $J_2 = J\left(\frac{u, v}{x, y}\right)$ then $J_2J_2 = 1$ 1 Mark a) 0 b) -1 c) 2 d) 1 Ans (d) (CLO-2/Remember) The point (0.0) for $f(x, y) = x^3 + y^3 - 3axy$ is 1 Mark		a) $-\frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)}$ b) $\frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)}$ c) $\frac{\left(\frac{\partial f}{\partial y}\right)}{\left(\frac{\partial f}{\partial x}\right)}$ d) $-\frac{\left(\frac{\partial f}{\partial y}\right)}{\left(\frac{\partial f}{\partial x}\right)}$	Ans (a)	(CLO-2 / Remember)
If u is a homogeneous function of degree n then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = $ $a) n b) nu c) u d) n^{2}u$ $a) n b) nu c) u d) n^{2}u$ $Ans (b)$ $If x = u^{2} - v^{2} \text{ and } y = 2uv \text{ then } \frac{\partial(x, y)}{\partial(u, v)} = a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) c) 4(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2}) d) 4v^{2} a) u^{2} + v^{2} b) 2(u^{2} + v^{2} b) 2(u$	6.	If $x = r \cos \theta$ and $y = r \sin \theta$ then $\frac{\partial(x, y)}{\partial(r, \theta)} =$		1 Mark
7. $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = $ 1 Mark a) n b) nu c) u d) n ² u Ans (b) (CLO-2/Remember) 8. If $x = u^2 - v^2$ and $y = 2uv$ then $\frac{\partial(x, y)}{\partial(u, v)} = $ 1 Mark a) $u^2 + v^2$ b) $2(u^2 + v^2)$ c) $4(u^2 + v^2)$ d) $4v^2$ Ans (c) (CLO-2/Apply) 9. If $J_1 = J\left(\frac{x, y}{u, v}\right)$ and $J_2 = J\left(\frac{u, v}{x, y}\right)$ then $J_1J_2 = $ 1 Mark a) 0 b) -1 c) 2 d) 1 Ans (d) (CLO-2/Remember) 10. The point (0.0) for $f(x, y) = x^3 + y^3 - 3axy$ is 1 Mark		a) r b) r ² c) 2r d) 1/r	Ans (a)	(CLO-2 / Apply)
8. If $x = u^2 - v^2$ and $y = 2uv$ then $\frac{\partial(x, y)}{\partial(u, v)} = \frac{1 \text{ Mark}}{1 \text{ Mark}}$ a) $u^2 + v^2$ b) $2(u^2 + v^2)$ c) $4(u^2 + v^2)$ d) $4v^2$ Ans (c) (CLO-2 / Apply) 9. If $J_1 = J\left(\frac{x, y}{u, v}\right)$ and $J_2 = J\left(\frac{u, v}{x, y}\right)$ then $J_1J_2 = \frac{1 \text{ Mark}}{1 \text{ Ans (d)}}$ (CLO-2 / Remember) 10. The point (0.0) for $f(x, y) = x^3 + y^3 - 3axy$ is 1 Mark	7.			1 Mark
a) $u^{2} + v^{2}$ b) $2(u^{2} + v^{2})$ c) $4(u^{2} + v^{2})$ d) $4v^{2}$ Ans (c) (CLO-2 / Apply) 9. If $J_{1} = J\left(\frac{x, y}{u, v}\right)$ and $J_{2} = J\left(\frac{u, v}{x, y}\right)$ then $J_{1}J_{2} = 1$ Mark a) 0 b) -1 c) 2 d) 1 The point (0.0) for $f(x, y) = x^{3} + y^{3} - 3axy$ is 1 Mark a) maximum point b) minimum point		a) n b) nu c) u d) n ² u	Ans (b)	(CLO-2 / Remember)
Ans (c) Ans (c) Ans (c) Ans (c) Ans (c) Ans (d)	8.	If $x = u^2 - v^2$ and $y = 2uv$ then $\frac{\partial(x, y)}{\partial(u, v)} =$		1 Mark
a) 0 b) -1 c) 2 d) 1 Ans (d) (CLO-2 / Remember) The point (0.0) for $f(x, y) = x^3 + y^3 - 3axy$ is 1 Mark		a) $u^2 + v^2$ b) $2(u^2 + v^2)$ c) $4(u^2 + v^2)$ d) $4v^2$	Ans (c)	(CLO-2 / Apply)
Ans (d) Ans (d) (CLO-2 / Remember) The point (0.0) for $f(x, y) = x^3 + y^3 - 3axy$ is 1 Mark a) maximum point b) minimum point	9.	If $J_1 = J\left(\frac{x, y}{u, v}\right)$ and $J_2 = J\left(\frac{u, v}{x, y}\right)$ then $J_1 J_2 =$		1 Mark
a)maximum point b) minimum point		a) 0 b) -1 c) 2 d) 1	Ans (d)	(CLO-2 / Remember)
a)maximum point b) minimum point Ans (c) (CLO-2 / Apply)	10.	The point (0.0) for $f(x, y) = x^3 + y^3 - 3axy$ is		1 Mark
		a)maximum point b) minimum point	Ans (c)	(CLO-2 / Apply)

	c) saddle point d) fixed point		
11.	If $f(x, y) = x^2 y + \sin y + e^x$ then $f_x(1, \pi)$ is is		1 Mark
	a) $2\pi - e$ b) 2π c) $2\pi + e$ d) 0	Ans (c)	(CLO-2 / Apply)
12.	The stationary points of $x^2 + y^2 + 6x + 12$ are		1 Mark
	a) (-3,0) b) (0,3) c) (0,-3) d) (3,0)	Ans (a)	(CLO-2 / Apply)
13.	The stationary points for $f(x, y) = \sin x + \sin y + \sin(x + y)$ are		1 Mark
	a) $\left(\frac{\pi}{2}, \frac{\pi}{3}\right)$ b) $\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$ c) $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ d) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$	Ans (b)	(CLO-2 / Apply)
14.	If $u = x^2 - y^2$ and $v = 2xy$ then $J\left(\frac{x, y}{u, v}\right) X J\left(\frac{u, v}{x, y}\right) =$		1 Mark
	a) 0 b) -1 c) 2 d) 1	Ans (d)	(CLO-2 / Apply)
15.	If $f(x, y) = e^x \cos y$ then $f_{xy}(0,0)$ is		1 Mark
	a) 0 b) -1 c) 2 d) 1	Ans (a)	(CLO-2 / Apply)
16.	If $u = ax^2 + by^2 + 2hxy$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$		1 Mark

	a) u b) 2u c) 3u d) 4u	Ans (b)	(CLO-2 / Apply)	
	,	THIS (b)	1 Moule	
17.	If $x^y = y^x$, then $\frac{dy}{dx} =$	1 Mark		
	a) $(x \log y - y)y/x(y \log x - x)$			
	b) $(x \log x - x)/x(y \log y - y)$			
	c) $(x \log x - y)y/(y \log x - x)$	Ans (a)	(CLO-2 / Apply)	
	d) Does not exists			
18.	If $f(x, y) = e^{xy}$ then $f_{yyy}(1,1)$ is		1 Mark	
	a) $-e$ b) $\frac{1}{e}$ c) e d) $-\frac{1}{e}$	Ans (c)	(CLO-2 / Apply)	
19.	If $z = \log(x^2 + y^2 + xy)$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$		1 Mark	
	a) 1 b) 2 c) 0 d) 4	Ans (b)	(CLO-2 / Apply)	
20.	If $f(x, y) = \tan^{-1}(y/x)$ then $f_x(1,1)$ is		1 Mark	
	a) 1/2 b) -1/2 c) 2 d) 1	Ans (b)	(CLO-2 / Apply)	
21.	If V= x/y, then $x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} =$		1 Mark	
	(a) 2V (b) 3V (c) 4V (d) 0V	Ans (d)	(CLO-2 / Apply)	

22.	Saddle points are	1 Mark		
	(a) a minimum (b) a maximum (c) neither a minimum nor a maximum (d) None	Ans (c)	(CLO-2 / Remember)	
23.	If $u = x+y/1-xy$, $v = tan^{-1}x+tan^{-1}y$ then the functional relationship between u and v is		1 Mark	
	a) $u = \tan v$ (b) $v = \tan u$ (c) $x = \tan y$ (d) $y = \tan x$	Ans (a)	(CLO-2 / Apply)	
24.	Lagrange's method of undetermined multipliers is to find the maximum or minimum value of a function of	1 Mark		
	a) Two variables (b) Three or more variables (c) One variable (d) None	Ans (b)	(CLO-2 / Remember)	
25.	The condition for a function $f(x,y)$ to have a maximum value is that	1 Mark		
	(a) $rt-s^2$ (b) $rt-s^2>0$, $r>0$ or $s>0$ (c) $rt-s^2>0$, $r<0$ or $s<0$ (d) $rt-s^2=0$, $r>0$	Ans (C)	(CLO-2 / Remember)	

26.	The condition for a function f(x,y) to have a minimum value is that	1 Mark		
	(a) $rt-s^2$ (b) $rt-s^2>0$, $r>0$ or $s>0$		(CLO-2 /	
	(c) rt-s ² >0, r<0 or s <0 (d) rt-s ² = 0,r >0	Ans (b)	Remember)	
27.	The condition for a function f(x,y) to have neither a maximum nor a minimum value is that	1 Mark		
	(a) $rt-s^2 < 0$ (b) $rt-s^2 > 0$, $r > 0$ or $s > 0$ (c) $rt-s^2 > 0$, $r < 0$ or $s < 0$ (d) $rt-s^2 = 0$, $r > 0$	Ans (a)	(CLO-2 / Remember)	
28.	The point (a,b) is called a stationary point if	1 Mark		
	(a) $f_x(a,b)=0$, $f_y(a,b)=0$ (b) $f_{xx}(a,b)=0$ (c) $f_{yy}(a,b)=0$ (d) $f_{xx}(a,b)=0$, $f_{yy}(a,b)=0$	Ans (a)	(CLO-2 / Remember)	
29.	The minimum value of the function $x^2+y^2+6x+12$ is	1 Mark		
	(a) $\frac{1}{2}$ (b)2 (c)1 (d)3	Ans (d)	(CLO-2 / Apply)	
30.	The maximum value of the function $x^3+y^3-12x-3y+20$ is	1 Mark		
	(a) 75 (b)27 (c)35 (d)38	Ans (d)	(CLO-2 / Apply)	
31.	The points at which there is no extreme value are called		1 Mark	

	(a) maximum points (b) minimum points		(CLO-2 /	
	(c) saddle points (d) none	Ans (C)	Remember)	
32.	If $u = xe^y sinx$ $v = xe^y cosx$ $w = x^2 e^{2y}$ then the functional relationship is	1 Mark		
	(a) $u^2+w^2 = v$ (b) $v^2 + w^2 = u$ (c) $x^2+y^2 = u$ (d) $u^2+v^2 = w$	Ans (d)	(CLO-2 / Apply)	
33.	In PDE, a real function depends		1 Mark	
	(a) One independent variable (b) More than one independent variable (c) No independent variable (d) None	Ans (b)	(CLO-2 / Remember)	
34.	If $z=x^2+y^2+2xy$ then $\partial z/\partial x$ is	1 Mark		
	(a) $2x^2+2y$ (b) $2x+2y$ (c) $2x-2y$ (d) $2y$	Ans (b)	(CLO-2 / Apply)	
35.	If $x = r\cos\theta$ $y = r\sin\theta$ then $\frac{\partial(r,\theta)}{\partial(x,y)}$	1 Mark		
	(a) 0 (b) 1 (c) r (d) 1/r	Ans (d)	(CLO-2 / Apply)	
36.	If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} =$		1 Mark	

(a) 1	(b) 3 <i>u</i>	(c) - 1	(d) 0		
				Ans (d)	(CLO-2 / Apply)