Трансформационная теория музыки и её приложение

И. Афанасьев

МГТУ

META, 02.07.2025

План

- элементарная теория музыки;
- трансформационная теория музыки;
- неоримановский анализ.

Трансформационная теория музыки

Разработана в 1980-х годах теоретиком музыки Дэвидом Левином для анализа тональной и атональной музыки.

Трансформационный анализ смещает фокус с музыкальных объектов как функций тональности на взаимоотношения между музыкальными объектами.

На пути к формализации

Пусть музыкальные объекты — ступени хроматической гаммы. Пусть преобразование T_n повышает звук на n полутонов.

На пути к формализации

Пусть музыкальные объекты — ступени хроматической гаммы. Пусть преобразование T_n повышает звук на n полутонов.

Свойства T_n

- lacktriangle тождественное преобразование: $T_0(k)=k$;
- наличие обратных преобразований: $T_n \circ T_{-n} = T_0$;
- lacktriangle ассоциативность: $T_p + (T_q + T_r) = (T_p + T_q) + T_r$.

На пути к формализации

Пусть музыкальные объекты — ступени хроматической гаммы. Пусть преобразование T_n повышает звук на n полутонов.

Свойства T_n

- lacktriangle тождественное преобразование: $T_0(k)=k$;
- наличие обратных преобразований: $T_n \circ T_{-n} = T_0$;
- lacktriangle ассоциативность: $T_p + (T_q + T_r) = (T_p + T_q) + T_r$.

T-преобразования образуют алгебраическую группу, изоморфную \mathbb{Z}_{12} .

Обобщённая система интервалов

Обобщённая система интервалов (Generalized Interval System, GIS) — упорядоченная тройка $\langle S, \text{ IVLS}, \text{ int} \rangle$, где

- S множество объектов;
- IVLS алгебраическая группа интервалов;
- lacktriangle функция $\mathrm{int}:\mathrm{S} imes\mathrm{S} o\mathrm{IVLS}$ такая, что
 - lacktriangle для всех $r, s, t \in S$ $\operatorname{int}(r, s) \circ \operatorname{int}(s, t) = \operatorname{int}(r, t)$;
 - lacktriangle для каждого $s \in S$ и $i \in IVLS$ существует единственный $t \in S$ такой, что int(s,t) = i.

Неоримановский анализ

Неоримановский анализ использует обобщённую систему интервалов для анализа гармонии, составленной из мажорных и минорных трезвучий.

Неоримановский анализ. Построение S

Множество S состоит из всех мажорных и минорных трезвучий. Пусть n — звук хроматического круга. Тогда

- мажорное трезвучие n_{maj} состоит из звуков n, n+4, n+7;
- мажорное трезвучие n_{min} состоит из звуков n, n + 3, n + 7.

Рис.: Хроматический круг

Неоримановский анализ. Построение S

Неоримановский анализ. Построение IVLS

Неоримановские преобразования

R-преобразование (relative)

- повышает третий звук мажорного трезвучия на 2 полутона;
- понижает первый звук минорного трезвучия на 2 полутона.

L-преобразование (leading-tone exchange)

- понижает первый звук мажорного трезвучия на 1 полутон;
- повышает третий звук минорного трезвучия на 1 полутон.

P-преобразование (parallel) заменяет мажорное трезвучие на минорное и наоборот. Эквивалентно $R(LR)^3$.

Неоримановский анализ. Построение IVLS

Неоримановские преобразования

$$\mathsf{L}(n_{maj}) = (n+4)_{min}$$

$$R(n_{maj}) = (n+9)_{min}$$

$$P(n_{maj}) = n_{min}$$

$$L(n_{min}) = (n+8)_{maj}$$

$$\mathsf{R}(n_{min}) = (n+3)_{maj}$$

$$\mathsf{P}(n_{min}) = n_{maj}$$

Неоримановский анализ. Построение IVLS

Структура группы IVLS

Покажем, что $\mathrm{IVLS}\cong D_{12}.$ Известно, что $\mathrm{ord}(D_n)=2n$ и

$$D_n = \langle s, t \mid s^2 = 1, t^2 = 1, (st)^n = 1 \rangle.$$

Имеем

- ord(IVLS) = 24;
- $L^2 = 1$, $R^2 = 1$;
- \blacksquare Поскольку LR. $n_{maj} = (n+5)_{maj}$ и LR. $n_{min} = (n+7)_{min}$, ord(LR) = 12.

Тоннетц

Для визуализации неоримановского GIS используется **тоннетц** (Tonnetz) — «сеть» трезвучий, связанных неоримановскими преобразованиями.

Рис.: Тоннетц. K аккордам ${\rm C}$ и ${\rm Gm}$ применяются неоримановские преобразования.

Применение неоримановского анализа

Пример (Брамс, концерт для скрипки и виолончели)

Гармония тактов 270-76 партитуры:

Ab, Abm, E, Em, C, Cm, Ab.

Промежуточные аккорды не принадлежат тональности $\mathrm{A}\flat\text{-}\mathrm{dur}$ и не образуют функциональную гармонию.

Применение неоримановского анализа

Пример (Брамс, концерт для скрипки и виолончели)

Неоримановский подход представляет гармонию последовательностью P-, L-преобразований.

Рис.: Гармония тактов 270-76 на тоннетце.