Informativo Técnico-Científico ITC04-Amortecimento/ATCP

Amortecimento: classificação e métodos de determinação

ATCP Engenharia Física www.atcp.com.br

São Carlos - Brasil

Autores: Cossolino LC; Pereira AHA [Revisado e publicado online em 01/11/2010]

ÍNDICE

1.	II	NTRC)DUÇÃO	3
2.	T	TPOS	DE AMORTECIMENTO	3
	2.1	Amo	ortecimento Interno	3
	2.	1.1	Amortecimento Viscoelástico	4
	2.	1.2	Amortecimento Histerético	6
	2.2	Amo	ortecimento Estrutural	7
	2.3	Amo	ortecimento Fluídico	7
3.	N	⁄IÉTO	DOS DE DETERMINAÇÃO	7
	3.1	Méte	odo do Decremento Logarítmico	8
	3.2	Méte	odo da largura de banda	9
4.	A	PLIC	AÇÕES DO AMORTECIMENTO	10
5.	C	CONC	LUSÕES	13
6.	R	EFER	RÊNCIAS BIBLIOGRÁFICAS	13

1. INTRODUÇÃO

O amortecimento, ou atrito interno, é uma das propriedades mais sensíveis de materiais e estruturas, tanto em escala macro quanto microscópica, sendo particularmente sensível à presença de trincas e micro-trincas. É o fenômeno pelo qual a energia mecânica de um sistema é dissipada (principalmente pela geração de calor e/ou energia). O amortecimento determina a amplitude de vibração na ressonância e o tempo de persistência da vibração depois de cessada a excitação.

Além da aplicação clássica no estudo de metais e em engenharia civil (devido à importância do amortecimento para a integridade de estruturas no caso de abalos sísmicos), a caracterização do amortecimento também vem sendo empregada no estudo de concretos para a avaliação do dano.^{4,5}

Por exemplo, no caso de danos por choque térmico, a tensão mecânica induzida pelo gradiente de temperatura provoca a nucleação e propagação de micro-trincas e trincas que degradam as propriedades mecânicas do material determinando em grande parte a sua vida útil. A nucleação e evolução destas micro-trincas e trincas podem ser monitoradas com a caracterização do amortecimento, que aumenta devido ao atrito entre as paredes destas trincas. Esta caracterização também é empregada para a verificação da qualidade e resistência de soldas e juntas, análise de dano a maquinário industrial e motores e adequação de salas acústicas.

O amortecimento de um sistema ou material pode ser classificado de três formas principais: interno, estrutural e fluídico. O interno está associado aos defeitos na microestrutura, granularidade e impurezas do material e a efeitos termoelásticos causados por gradientes locais de temperatura. Já o estrutural está associado a perdas de energia por atrito em juntas, parafusos e articulações semi-rígidas. Por último, o fluídico ocorre por resistência ao arraste em meio fluídico, por exemplo, a conversão de energia cinética de um pêndulo em energia térmica para o ar.

Existem diversos métodos para determinação do amortecimento, os quais podem ser obtidos basicamente por dois caminhos: mediante a duração da resposta do sistema a uma excitação transitória (exemplo: método do decremento logarítmico) e em função da resposta do sistema em função da frequência (exemplo: método da largura de meia banda de potência). O método do decremento logarítmico calcula o amortecimento a partir da atenuação da resposta acústica do material ou estrutura após uma excitação por impulso. O método da largura de meia banda de potência calcula o amortecimento através da análise da frequência do sinal oriundo da vibração, a partir da relação entre a largura de banda e a frequência central de uma ressonância. Ambos os métodos consideram um modelo para os cálculos, normalmente o modelo de amortecimento viscoelástico. A escolha do método depende principalmente da faixa do amortecimento e da frequência de vibração.³

Nos tópicos seguintes apresentamos os tipos de amortecimento e as maneiras de calculá-los.

2. TIPOS DE AMORTECIMENTO

Como mencionamos anteriormente, ocorrem três formas principais de dissipação de energia em um sistema oscilatório:

- Amortecimento ou atrito interno;
- Amortecimento estrutural;
- Amortecimento fluídico.

A caracterização do sistema é importante para entender como a energia mecânica é dissipada e sua dependência com a velocidade e com a amplitude de vibração. Um modelo de amortecimento deve ser escolhido para representar essa dissipação de energia mecânica e permitir o cálculo de parâmetros comparativos de amortecimento.

Faremos uma breve explicação de cada um, dando especial atenção àquele que é objeto de maior interesse neste Informativo Técnico Científico, o chamado amortecimento interno.

2.1 Amortecimento Interno

O amortecimento interno está associado aos defeitos de microestrutura, como por exemplo, contornos de grãos e impurezas; efeitos termoelásticos causados por gradientes locais de temperatura; efeitos de correntes de Foucault em materiais ferromagnéticos; movimentos de discordâncias em metais; e

movimento das cadeias em polímeros. Existem dois tipos diferentes de modelos que são utilizados para representar o amortecimento interno, o amortecimento viscoelástico e o amortecimento histerético. O nome histerético é hoje impróprio, porque todos os tipos de amortecimento interno estão associados com efeitos da curva de histerese. 3 A tensão (σ) e a deformação (ε) estão relacionadas como mostra a Figura 1.

Figura 1: Curva de histerese típica para amortecimento mecânico.³

Desta forma, a capacidade de amortecimento por unidade de volume, chamada de d, é dada por uma integral cíclica:

$$d = \oint \sigma \, d\varepsilon \tag{1}$$

Para qualquer dispositivo amortecedor há uma curva de histerese correspondente. Neste caso, a integral cíclica da força com o respectivo deslocamento, que corresponde à área da curva de histerese, é igual ao trabalho feito pela força de amortecimento. Daí resulta que esta integral é a energia dissipada por ciclo de movimento. Isto é, a capacidade de amortecimento, quando dividida pelo volume do material, fornece a capacidade de amortecimento por unidade de volume.³

2.1.1 Amortecimento Viscoelástico

O movimento de um sistema pode ser descrito por equações diferenciais, baseadas na Lei de Newton, que envolvem parâmetros variáveis no tempo. Os sistemas podem também ser classificados de acordo com o número de graus de liberdade (GDL) do movimento, ou seja, o número de coordenadas independentes para descrever o movimento.⁹

No modelo viscoelástico parte-se do pressuposto de que a natureza do amortecimento é viscosa e a força de atrito é proporcional à velocidade, representando uma oposição ao movimento, sendo descrita pela equação:

$$F = -c \dot{x}, \tag{2}$$

onde c é uma constante de proporcionalidade e \dot{x} a velocidade de deslocamento de uma massa em relação a um ponto fixo. Como exemplo de um sistema com amortecimento, podemos imaginar um pistão dentro de um cilindro preenchido com um líquido, considerando o sistema como massa-mola-amortecedor com um grau de liberdade³ como ilustrado na Figura 2. Sendo m a massa, k a constante elástica da mola e c o coeficiente de amortecimento viscoso, podemos representar este sistema pela seguinte equação:

$$m\ddot{x} + c\dot{x} + kx = 0 \tag{3}$$

Figura 2: Modelo de um oscilador harmônico amortecido (amortecedor viscoelástico).

Reescrevendo esta equação, temos:

$$\ddot{x} + \frac{c}{m}\dot{x} + \frac{k}{m}x = 0 \tag{4}$$

Definindo-se

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 e $\zeta = \frac{c}{2\sqrt{km}}$ (5)

onde ω_0 é a frequência natural de vibração e ζ representa a taxa de amortecimento ou apenas amortecimento. Desta forma, reescrevendo a equação, e utilizando-se os novos parâmetros temos que:

$$\ddot{x} + 2 \zeta \omega_0 \dot{x} + \omega_0^2 x = 0 \tag{6}$$

e assumindo a solução 10

$$x = e^{\gamma t}, \tag{7}$$

chegamos a y descrito por

$$\gamma = \omega_0(-\zeta \pm \sqrt{\zeta^2 - 1}) \tag{8}$$

Desta forma, o comportamento descrito pela equação acima depende da solução de γ:

- ✓ Para $\zeta > 1$: há duas soluções reais e chamamos de caso superamortecido;
- ✓ Para $\zeta = 1$: há uma solução real e chamamos de caso criticamente amortecido;
- ✓ Para $0 \le \zeta < 1$: há duas soluções complexas e chamamos de caso sub-amortecido.

Os casos superamortecido e criticamente amortecido são não-oscilatórios (Figura 3) e, portanto, não serão discutidos neste Informativo Técnico Científico.

Figura 3: Ilustração dos fatores de amortecimento.

A solução em que $0 \le \zeta < 1$, sistema sub-amortecido, possui a equação:

$$x(t) = A_0 e^{-\zeta \omega_0 t} \cos(\omega_d t + \varphi)$$
(9)

em que A_0 é a amplitude inicial de vibração, ϕ é a fase inicial da vibração e ω_d é chamada de frequência natural amortecida e é descrita por:

$$\omega_d = \omega_0 \sqrt{1 - \zeta^2} \tag{10}$$

Este modelo é conhecido como sistema linear amortecido com um grau de liberdade. ^{3,10} Assumindo que a ressonância de materiais pode ser vista como uma associação de vários sistemas de um grau de liberdade, o modelo de vibração é dado por:

$$x(t) = \left[\sum_{i=1}^{N} A_i e^{-\zeta_i \omega_{ni} t} \cos(\omega_{di} t + \varphi_i)\right] + R_{wn}$$
(11)

em que A_i , ζ_i , ω_{ni} , ω_{di} , ϕ_i são, respectivamente, amplitude inicial, amortecimento, frequência natural de vibração, frequência natural amortecida e fase inicial do i-*ésimo* modo de vibração. O termo R_{wn} é um ruído branco descorrelacionado do sinal.

2.1.2 Amortecimento Histerético

Para alguns tipos de materiais, observa-se que a força do amortecimento não depende significativamente da frequência de oscilação (ou frequência do movimento harmônico). Este tipo de amortecimento interno é chamado de amortecimento histerético.

A constante de amortecimento neste caso pode ser representada por:

$$c = \frac{h}{\omega} \tag{12}$$

que é válida para o movimento harmônico de frequência ω. Esta situação é vista na Figura 4.

Figura 4: Modelo de um oscilador harmônico amortecido (amortecedor histerético).

Assim, a equação que descreve o amortecimento histerético é:

$$F = -\frac{h}{\omega} \dot{x},\tag{13}$$

2.2 Amortecimento Estrutural

O amortecimento estrutural é resultado da dissipação de energia mecânica causada por fricção devido ao movimento relativo entre componentes e por impacto ou contato intermitente nas articulações de um sistema mecânico ou estrutura. O comportamento da energia de dissipação depende do sistema mecânico em particular e, portanto, é extremamente difícil desenvolver um modelo analítico generalizado. A dissipação de energia é normalmente representada pelo modelo de Coulomb.

Uma grande proporção da energia mecânica dissipada em edifícios, pontes, trilhos e muitas outras estruturas de engenharia civil e maquinários, como robôs e veículos, ocorre através do mecanismo de amortecimento estrutural. Neste sentido o amortecimento interno torna-se normalmente insignificante comparado ao amortecimento estrutural.

Este tipo de amortecimento é também conhecido como amortecimento de Coulomb (deslizamento entre superfícies secas ou com lubrificação deficiente); a força é constante e proporcional à normal às superfícies deslizantes e em sentido contrário ao movimento.¹¹

$$F = c \operatorname{sng}(\dot{q}) \tag{14}$$

onde c representa uma constante de fricção e \dot{q} o deslocamento relativo. A função signum é definida por:

$$sgn(v) = \begin{cases} 1 & para \ v \ge 0 \\ -1 & para \ v < 0 \end{cases}$$
 (15)

2.3 Amortecimento Fluídico

Este tipo de amortecimento corresponde a um componente mecânico movendo-se em um fluido. A força de arraste é expressa em função da densidade do fluido, ρ , de uma constante de arraste, c, (em função do número de Reynold's e da geometria) e da velocidade relativa, \dot{q} .

$$F = \frac{1}{2} c_d \rho \dot{q}^2 \operatorname{sng}(\dot{q})$$
 (16)

3. MÉTODOS DE DETERMINAÇÃO

Os métodos de determinação do amortecimento são diversos e a escolha depende principalmente da faixa de amortecimento e da frequência de vibração.³ Os mais utilizados, o do decremento logarítmico e o da meia banda serão vistos com maiores detalhes, enquanto que os demais podem ser encontrados nas referências aqui citadas, como por exemplo na referência 3.

É importante ressaltar que para os cálculos que se seguem, utilizamos o modelo do amortecimento viscoelástico (descrito acima).

3.1 Método do Decremento Logarítmico

O decremento logarítmico, que é consequência de um simples impulso provocado no sistema (em vibração livre) é obtido através da razão entre duas amplitudes sucessivas do sinal. O termo decremento logarítmico refere-se à taxa de redução logarítmica, relacionada com a redução do movimento após o impulso, pois a energia é transferida para outras partes do sistema ou é absorvida pelo próprio elemento. Representa o método mais utilizado para calcular o amortecimento.

Quando um sistema oscilatório com um grau de liberdade, com amortecimento viscoso é excitado por um impulso (técnica de excitação por impulso, <u>Sonelastic</u>®) sua resposta vem na forma de decaimento no tempo (Figura 5), dada por:

Figura 5: Resposta ao impulso para um oscilador simples.³

$$y(t) = y e^{-\zeta \omega_0 t} \sin(\omega_d t)$$
 (17)

Esta equação é análoga à equação 9, onde a frequência natural amortecida, dada pela equação 10, é:

$$\omega_d = \omega_0 \sqrt{1 - \zeta^2}.$$

Se a resposta no tempo $t=t_n$ é denotada por y, e a resposta no tempo $t=t_n+2\pi$ r / ω_d é denotada por y_n, então, da equação 17, temos que:

$$\frac{y_n}{y} = \exp\left(-\zeta \frac{\omega_0}{\omega_d} 2\pi r\right), \quad n = 1, 2, \dots$$
 (18)

Suponha que y corresponde a um ponto no decaimento da função com magnitude igual a A, e que y_n corresponde ao pico, r ciclos mais tarde, com magnitude A_n . Assim, temos que:

$$\frac{A_n}{A} = \exp\left(-\zeta \frac{\omega_0}{\omega_d} 2\pi r\right) = \exp\left[-\frac{\zeta}{\sqrt{1-\zeta^2}} 2\pi r\right]$$
 (19)

onde o valor da frequência amortecida (Equação 10) foi utilizado. Desta forma, o decremento logarítmico (δ) , é obtido por:

$$\delta = \frac{1}{n} \ln \left(\frac{A}{A_n} \right) = \frac{2\pi \zeta}{\sqrt{1 - \zeta^2}}$$
 (20)

Em termos do amortecimento (ζ), temos:

$$\zeta = \frac{1}{\sqrt{1 + (2\pi/\delta)^2}} \tag{21}$$

Quando o amortecimento é baixo ($\zeta < 0.1$), a frequência de amortecimento é praticamente igual à frequência natural, ou seja, $\omega_d \cong \omega_0$, e então a Equação 19 pode ser escrita como:

$$\frac{A_n}{A} \cong \exp(-\zeta 2\pi r) \tag{22}$$

ou ainda,

$$\zeta = \frac{1}{2\pi} \ln(\frac{A}{A_n}) = \frac{\delta}{2\pi}$$
 para $\zeta < 0,1$ (23)

A figura abaixo apresenta um resumo dos principais conceitos apresentados a respeito do método do decremento logarítmico.

Quadro Resumo - Método do Decremento Logarítmico

Modelo matemático

1-) Amplitudes $A_1 e A_2$ \longrightarrow Decremento Logarítmico

 δ = decremento logarítmico, adimensional.

n = número de picos, adimensional.

A = amplitude do primeiro pico, unidade igual ao A_1 .

 A_n = amplitude do último pico, unidade igual ao A_2 .

$$\delta = \frac{1}{n} \ln(\frac{A}{A_n})$$

2-) Decremento Logarítmico

Índice de Amortecimento

 ζ = indice de amortecimento, adimensional.

$$\delta = \frac{2\pi\zeta}{\sqrt{1-\zeta^2}}$$

3-) Índice de Amortecimento e Frequência Natural Amortecida — Frequência Natural

ω₀ = frequência natural, em rad/s.

 ω_d = frequência natural amortecida do sistema, em

$$\omega_0 = \frac{\omega_d}{\sqrt{1 - \zeta^2}}$$

Figura 6: Resumo das principais informações para a determinação do amortecimento pelo método do decremento logarítmico.

3.2 Método da largura de banda

Neste método a medida do amortecimento é baseada na resposta da frequência. A largura da banda (a meia potência) é definida como a largura da curva da resposta de frequência quando a magnitude (Q) é $(1/\sqrt{2})$ vezes o valor do pico. Este valor é denotado por $\Delta\omega$, como pode ser visto pela Figura 7.

Figura 7: Método da largura de banda para determinação do amortecimento em um sistema com um grau de liberdade.³

O valor de $\Delta\omega$ pode ser relacionado com o amortecimento da seguinte forma:

$$\Delta \omega = 2\zeta \omega_0 = 2\zeta \omega_r \tag{24}$$

e portanto, o amortecimento pode ser estimado através da largura de banda, usando a relação:

$$\zeta = \frac{1}{2} \frac{\Delta \omega}{\omega_r} \tag{25}$$

Há ainda outros métodos para determinação do amortecimento, que não serão tratados neste Informativo Técnico Científico, uma vez que os principais métodos (Decremento Logarítmico e Largura de Banda) foram explicitados.

4. APLICAÇÕES DO AMORTECIMENTO

A aplicação clássica do amortecimento diz respeito à área de engenharia civil, no sentido de garantir a integridade das estruturas no caso de abalos sísmicos. Porém a caracterização do amortecimento é empregada também para verificação da qualidade e resistência de soldas e juntas, análise de dano a maquinário industrial e motores, ajuste de salas acústicas e estudo de concretos refratários para a avaliação do dano por choque térmico. Dada a sua grande importância, apresentamos abaixo, com maiores detalhes, as aplicações mais relevantes.

✓ Engenharia Civil: Nas duas últimas décadas, o uso da chamada técnica de isolamento sísmico de base em estruturas civis, para a proteção de edifícios contra eventuais terremotos, tem-se desenvolvido rapidamente e tem alcançado ampla aceitação na engenharia sísmica. As vantagens que esta tecnologia fornece no comportamento dinâmico de estruturas submetidas à ação sísmica fazem desta técnica uma alternativa dos métodos convencionais para combater terremotos, que são baseados somente na resistência estrutural e na capacidade de dissipação de energia. Esta nova estratégia tecnológica tem como principal objetivo a prevenção de danos dos elementos estruturais e não estruturais dos edifícios, os quais podem conter pessoas, equipamentos valiosos, ou material perigoso. Desta maneira os edifícios isolados, fornecem mais segurança do que os edifícios não isolados. 12

O conceito de isolamento de base¹³ consiste em desacoplar o edifício ou a superestrutura das componentes horizontais do movimento do solo, pela interposição de elementos estruturais de baixa rigidez horizontal, entre a superestrutura e a fundação. Isto permite que a frequência fundamental do edifício com isolamento de base seja inferior à frequência fundamental deste, se executado com base fixa, bem como à frequência predominante de excitação sísmica.

Este tipo de isolamento vem sendo empregado em diversos países, em usinas nucleares, edifícios, pontes e plataformas de petróleo.

✓ **Concretos Refratários:** O conhecimento do amortecimento tem sido empregado no estudo de concretos refratários para a avaliação do dano por choque térmico. A tensão mecânica induzida pelo gradiente de temperatura do choque térmico provoca a nucleação e propagação de micro-trincas e trincas que degradam as propriedades mecânicas do material determinando em grande parte a sua vida útil. A nucleação e a evolução destas micro-trincas e trincas podem ser monitoradas com a caracterização do amortecimento. A,5,8

A técnica de excitação por impulso é utilizada no cálculo do amortecimento. O impacto de um pino metálico excita as frequências flexionais e torcionais do corpo de prova; utilizando-se o método do decremento logarítmico (para o modelo de amortecimento viscoelástico) determina-se o amortecimento. Equipamentos modernos, como o Sonelastic®, fornecem as frequências naturais, além das harmônicas e o amortecimento dos mais diversos tipos de materiais, de maneira prática e rápida. O equipamento utiliza um software, especialmente desenvolvido, para calcular o decremento logarítmico e fornecer o valor do amortecimento além dos módulos elásticos (http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic.html).

Este equipamento possibilita ainda, medições em função da temperatura, permitindo um estudo das mudanças nas características microestruturais dos materiais. O ensaio é não-destrutivo e, portanto, o corpo de prova pode voltar às suas condições normais de trabalho, se for o caso.

A medição dos módulos elásticos juntamente com o amortecimento através da técnica de excitação por impulso possibilita um estudo detalhado do amortecimento associado ao atrito interno e sua microestrutura, uma vez que amostras com dano apresentam um aumento significativo no valor do amortecimento.

Figura 8: Equipamento desenvolvido pela ATCP do Brasil, <u>Sonelastic</u>®, para medição do amortecimento e dos módulos elásticos através do método de excitação por impulso.

Figura 9: Equipamento desenvolvido pela ATCP do Brasil, <u>Sonelastic</u>®, para medição do amortecimento e dos módulos elásticos através do método de excitação por impulso. Nesta configuração o software está embarcado em um hardware.

O software desenvolvido para o equipamento <u>Sonelastic</u>®, gera gráfico como o que é mostrado a seguir:

Figura 10: Comparação entre o sinal no tempo de um concreto que possui dano e um concreto sem dano. (Fonte: MUSOLINO, B.C., PEREIRA, A.H.A., RODRIGUES, J.A., MACIEL, C.D., Algoritmo para a determinação do coeficiente de amortecimento de materiais pela técnica da excitação por impulso. Trabalho completo submetido para o XVIII Congresso Brasileiro de Automática).

A Figura 10 permite a visualização das mudanças no amortecimento, temos um gráfico de duas amostras irmãs de refratários, sendo uma com dano (representada pela cor preta) e outra sem dano (cor cinza). Ambas foram excitadas com impacto com força análoga, mesmo assim é possível observar uma maior absorção de energia no sinal da amostra com dano, ou seja, um amortecimento maior.

Assim, fica evidente a importância do amortecimento na investigação da qualidade e resistência dos diferentes tipos de materiais.

5. CONCLUSÕES

Apresentamos neste Informativo Técnico Científico o conceito de amortecimento e os tipos de classificação nos quais ele se divide. Mostramos os métodos de determinação experimental bem como as importantes aplicações e desta forma, podemos inferir que:

O amortecimento é uma das propriedades mais sensíveis de materiais e estruturas, sendo seu conhecimento fundamental para diversas aplicações, como:

- ✓ Estudo de materiais, para a avaliação de alterações microestruturais e ocorrência de defeitos
- ✓ Estudo de concretos refratários, para avaliação do dano por choque térmico;
- ✓ Construção civil, a fim de evitar os desastres causados por abalos sísmicos;
- ✓ Verificação da qualidade e resistência de soldas e juntas;
- ✓ Ajuste de salas acústicas, etc.

A determinação desta importante propriedade pode ser conseguida facilmente através de equipamentos avançados e disponíveis no mercado nacional (<u>Sonelastic</u>®).

6. REFERÊNCIAS BIBLIOGRÁFICAS

¹ LAZAN, B.J. **Damping of Materials and Members in Structural Mechanics**. Oxford, USA: Pergamon Press, 1968.

² DIETERLE, R., BANCHMANN, H. Experiments and Models for the Damping Behaviour. **International Association for Bridge and Structural Engineering Report of the Working Comissions,** v. 34, p. 69-82, 1981.

³ SILVA, C.W. **Vibration Damping, control, and design.** Vancouver, Canada: Taylor & Francis Group, 2007.

⁴ COPPOLA, J.A., BRADT, R.C. Thermal-Shock Damage in SiC. **Journal of the American Ceramic Society**, v. 56(4), p. 214-218, 1973.

⁵ TONNESEN, T., TELLE, R. Thermal Shock Damage in Castables: Microstructural Changes and Evaluation by a Damping Method. **Ceramic Forum Internacional,** v. 84(9), p. E132-136, 2007.

⁶ HASSELMAN, D.P.H. Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics. **Journal of the American Ceramic Society**, v. 82(11), p. 600-604, 1969.

⁷ KINERY, W.D. Factors Affecting Thermal Stress Resistance of Ceramic Materials. **Journal of the American Ceramic Society,** v. 38(1), p. 3-15, 1955.

⁸ CHOWDHURY, S.H. **Damping Characteristics of Reinforced and Partially Prestressed Concrete Beams,** PhD Thesis, Griffith University, 1999.

⁹ ALMEIDA, S.F. Análise Dinâmica Experimental da Rigidez de Elementos de Concreto Submetidos à Danificação Progressiva até a Ruptura. 2005. 193f. Dissertação (Mestrado em Engenharia de Estruturas) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, SP, 2005.

¹⁰ THORBY, D. **Structural Dynamics and Vibrations in Practice** - **An Engineering Handbook**. Oxford, UK: Elsevier Ltd, 2008.

¹¹ DIÓGENES, H.J.F. Análise Tipológica de Elementos e Sistemas Construtivos Pré-Moldados de Concreto do Ponte de Vista de Sensibilidade a Vibração em Serviço. 2010. 248f. Dissertação (Mestrado em Engenharia de Estruturas) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, SP, 2010.

¹² CANO, N.A.O. Resposta Sísmica de Edifícios com Sistemas de Isolamento de Base. 2008. 110f. Dissertação (Mestrado em Estruturas e Construção Civil) – Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 2008.

¹³ KELLY, J.M., NAEIM, F. **Design of Seismic Isolated Structures: From Theory to Practice**. John Wiley & Sons, New YOrk: United States of America, 1999.

http://www.atcp.com.br/pt/produtos/caracterizacao-materiais/sonelastic.html

Você tem sugestões e/ou críticas para melhorar este informativo? Envie para apl@atcp.com.br. Obrigado!