Initiating an Experiment in the public service

Noushin Nabavi

2020-09-01

Contents

1	Preface 5			
	1.1	Prerequisites		
	1.2	Learning objectives		
	1.3	Outline		
2	Experiment components 7			
	2.1	Endorsements		
	2.2	Collaboration agreements		
	2.3	Funding models and budget targets		
	2.4	Past research and literature search		
	2.5	Defining relevant and specific questions		
	2.6	Project scoping and problem statement		
	2.7	Experimental design		
	2.8	Project timelines and milestones 8		
	2.9	Communication matrix		
3	Decision to experiment 9			
	3.1	Deciding to experiment		
	3.2	Steps involved in designing an experiment		
	3.3	Experimental design cycle		
4	Mechanics of endoresement 13			
	4.1	requirements		
	4.2	Communication matrix		
	4.3	Code of conduct		
5	Cas	e study 15		

4 CONTENTS

Preface

This is a repository to house course materials related to module 2 of Government of Canada's Experimentation Course, Initiating an Experiment.

1.1 Prerequisites

An interest in experimentation and apetite for informed consumation of evidence. Additionally, being part of a team of knowledgeable partners with interests in experimentation with policies, programs, and services, helps with developing contexts.

1.2 Learning objectives

- Identify the steps needed before starting an experimental project
- Explain the steps involved when deciding to experiment
- Define the problems before running an experiment
- Design a research experiment
- Provide examples of Experimentation

1.3 Outline

Chapter	Title
1	Before initiating an experiment
2	Components of an experimental project
3	Mechanics of endorsement
4	Case study
5	References

Experiment components

2.1 Endorsements

- executive support
- 2.2 Collaboration agreements
 - team support
- 2.3 Funding models and budget targets
- 2.4 Past research and literature search
- 2.5 Defining relevant and specific questions
 - context and significance
- 2.6 Project scoping and problem statement
 - objectives and aims
- 2.7 Experimental design
 - controlled experimentation

2.8 Project timelines and milestones

2.9 Communication matrix

• stakeholder consensus

Decision to experiment

3.1 Deciding to experiment

- Do you need to experiment? Why or why not?
- Find a behaviour or object to test and think short term
- Keep it simple
- Start with a proof-of-concept test
- Have control and treatment groups (e.g. randomization)
- When results are in slice the data
- Try out of the box thinking
- Measure everything that matters
- Look for natural experiments

3.2 Steps involved in designing an experiment

3.2.1 Step 1: Choose a topic

• Ask yourself the following question: 1. What do I find interesting about the subject? 2. What is known about the subject? 3. What is missing and the gaps?

3.2.2 Step 2: Narrow the topic

- Ask yourself the following questions: 1. What do you need to know more about on the topic? 2. Are you interested in social, political, economic, gender, religious issues related to your topic? (General example) Find a "slant" on your topic;
- Will the results reveal something new or unexpected?
- What is in scope and what is out of scope?
- Clearly define hypotheses and explicitly state research questions

3.2.3 Step 3: Find Resources

- Use the keywords you have compiled and use them to search for books in Library Catalogs or articles in online article databases.
- Team expertise

3.2.4 Step 4: Solicit feedback and collaboration

- Make sure the question is one that other people can get behind and support
- Establish collaboration agreements and executive buy-in
- Peer-review for clarity, scientific accuracy, and feasibility
- Does the team have the expertise required to complete the project? If not, who else needs to be on team

3.3 Experimental design cycle

- Problem statement
- Question
- Research
- Hypotheses (It....then...)
- Identify controls and experimental group as well as interventions/treatments
- A control group is a group of 'test' items in an experiment. The control group will be used to compare with the experimental group
- The control group doesn't get the treatment
- An experimental group is the group(s) of test items where only one change (called the experimental or independent variable) has been made
- The experimental group gets the treatment
- The experimental group may have dependent or independent variables
- Sample size
- Maximize sample size: the larger the number of test items the more accurate the estimate
- Use representative groups: the samples must reflect the natural variation in the population. Use random or systematic sampling to reduce inherent bias in data.
- Determine outcome measures and visualization of outcome
- Independent variable or the factor that is manipulated or changed in placed on x-axis when grouping
- Dependent variable or the factor that is being measured is placed on y-axis during grouping
- Identify sources of error
- Mind the constants: the conditions that are kept the same for control and experimental groups
- Not controlling for factors or parameters that are kept the same in both control and experimental groups can result in error
- Report back and adapt
- Data analysis

 $\bullet\,$ Implement intervention and measure outcomes and impacts

Mechanics of endoresement

4.1 requirements

- Use communication matrix to relay information to stakeholders/executive
- Importance: Why do we need to answer this scientific question now?
- Novelty: Has this question been answered? Has it been attempted?
- Impact: What's the risk, and what's the potential upside?
- Design: Is the design of the experiment sound? how?
- Qualifications: What makes this researcher/research uniquely qualified?

4.2 Communication matrix

- Establish a communication matrix
- Experiment status project updates to whom and how
- Foster a culture of experimentation in the organization Explain the business value of experimentation to decision-makers
- Establish accountabilities
- Frequency and content of communications
- Structural report updates

4.3 Code of conduct

- Ethical considerations
- Information sharing agreements and memorandums of understanding
- Identify situations where experimentations are appropriate and relevant
- Check Institutional Review Board (IRB) approval requirements prior to the launch of the experiment
- Perform privacy impact assessments
- Get ethics committee approvals

Case study

- City of Vancouver Solution Lab's Principles of Experimentation (pg. 38), adapted from Nesta's Innovation Playbook, 2018
- Nesta's Competency Framework for Experimental Problem Solving (pg. 2)
- States of Change's Core Elements of Innovation Craft
- Tatyana Mamut's eight Innovation Elements (pg. 6)
- The Moment's Culture Scan
- Innovation Designer Capability Map