Clase 05 - Inferencia estadística Curso Análisis de Datos con R para Biociencias.

Dra. María Angélica Rueda | https://genomics.pucv.cl/

Pontificia Universidad Católica de Valparaíso

15 January 2023

PLAN DE LA CLASE

1.- Introducción

- ¿Qué es la inferencia estadística?.
- ¿Cómo someter a prueba una hipótesis?
- Pruebas paramétricas
- Interpretar resultados de análisis de datos con R.

2.- Práctica con R y Rstudio cloud

- Someter a prueba diferentes hipótesis estadísticas.
- Realizar gráficas avanzadas con ggplot2.

¿QUÉ ES LA INFERENCIA ESTADÍSTICA?

Inferencia estadística : Son procedimientos que permiten obtener o extraer conclusiones sobre los parámetros de una población a partir de una muestra de datos tomada de ella.

¿Qué inferencia puede hacer de los datos de esta población? ¿Qué ocurre si la muestra no es aleatoria?

INFERENCIA ESTADÍSTICA

¿Par qué es importante la inferencia estadística?

- Es más económico que hacer un Censo. ¿Cuántas especies hay en una bahía, en una laguna, en un bosque?
- Bajo ciertos supuestos permite hacer afirmaciones.
 Con fertilizante A las plantas crecen más que con fertilizante B.
- ▶ Bajo ciertos supuestos permite hacer predicciones. Mujeres con genotipos mutante del gen BCRA1 tiene 7 veces más probabilidad de tener cáncer ovárico que mujeres con genotipo normal.

INFERENCIA ESTADÍSTICA: MÉTODOS

Los métodos de inferencia estadística que revisaremos en este curso son:

1. Estimación de parámetros a partir de una muestra.

Ej. Estimación puntual o por intervalos

2. Pruebas de contraste de hipótesis.

Ej. Pueba de correlación, comparación de medias, Anova.

3. Modelamiento predictivo.

Ej. Regresión lineal, logistica, machine learning, validación cruzada.

PRUEBAS DE HIPÓTESIS

Objetivo

Realizar una afirmación acerca del valor de un parámetro, usualmente contrastando con alguna hipótesis.

Hipótesis estadísticas

 $Hipótesis nula (H_0)$ es una afirmación, usualmente de igualdad.

Hipótesis alternativa (H_A) es una afirmación que se deduce de la observación previa o de los antecedentes de literatura y que el investigador cree que es verdadera.

Ejemplo

 $\mathbf{H_0}$: El nivel medio de cortisol es =15 microgramos por decilitro.

 H_A : El nivel medio de cortisol es > 15 microgramos por decilitro.

¿POR QUÉ DOS HIPÓTESIS?

- Las pruebas estadísticas tienen como propósito someter a prueba una hipótesis nula con la intención de *rechazarla* o refutarla (Falsacionismo de Karl Popper).
- Por lo tanto, los datos nos dirán si existen o no evidencias para rechazar la hipótesis nula.

¿Por qué no simplemente aceptar la hipótesis alternativa?

Porque pueden existir otros fenómenos no conocidos o no considerados en nuestro experimento que posteriormente permitan a otro investigador rechazar nuestra hipótesis alternativa.

Lectura complementaria: El método científico según Juan José Ibáñez. 2006

¿CUÁNDO RECHAZAR H₀?

Regla de decisión

Rechazo $\mathbf{H_0}$ cuando la evidencia observada es poco probable que ocurra bajo el supuesto de que la hipótesis sea verdadera.

Generalmente $\alpha = 0.05$ o 0.01.

Es decir, rechazamos cuando el valor del estadístico está en el 5% inferior de la función de distribución muestral.

PRUEBA DE HIPÓTESIS: UNA COLA O DOS COLAS

¿PUEDO COMETER UN ERROR EN LAS PRUEBAS DE HIPÓTESIS?

Por supuesto, siempre es posible llegar a una conclusión incorrecta.

Tipos de errores

Tipo I (α) y tipo II (β) , ambos están inversamente relacionados.

Decisión	H ₀ es cierta	H ₀ es falsa
Aceptamos H ₀	Decisión correcta	Error tipo II
Rechazamos H ₀	Error tipo I	Decisión correcta

TIPOS DE PRUEBAS ESTADÍSTICAS

Según la forma de la distribución de la variable aleatoria.

1. Métodos paramétricos

- Las pruebas de hipótesis usualmente asumen una distribución normal de la variable aleatoria.
- ▶ Útil para la mayoría de las variables cuantitativas continuas.

2. Métodos NO paramétricos

- Las pruebas de hipótesis no asumen una distribución normal de la variable aleatoria.
- Útil para todas las variables, incluyendo cuantitativas discretas y cualitativas.

CORRELACIÓN ENTRE VARIABLES

ESTUDIO DE CASO: RELACIÓN ESTATURA PADRES - HIJOS

Figure 1: Relación estatura de padres e hijos evaluados por Karl Pearson en sus estudios de regresión.

HIPÓTESIS PRUEBA DE CORRELACIÓN

Hipótesis

 H_0 : $\rho = 0$ ausencia de correlación. H_1 : $\rho \neq 0$ existencia de correlación.

Supuestos:

- 1) Las variables X e Y son continuas y su relación en lineal.
- 2) La distribución conjunta de (X,Y) es una distribución Bivariable normal.

PRUEBA DE CORRELACIÓN DE PEARSON

```
cor.test(father.son$fheight, father.son$sheight)
##
    Pearson's product-moment correlation
##
##
## data: father.son$fheight and father.son$sheight
## t = 19.006, df = 1076, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to
## 95 percent confidence interval:
## 0.4552586 0.5447396
## sample estimates:
##
        cor
## 0.5013383
```

PRUEBA DE COMPARACIÓN DE MEDIAS

ESTUDIO DE CASO: CORTIZOL

Figure 2: Nivel de cortisol luego de caminar en zona urbana v/s zona boscosa.

Adaptado de Kobayashi, et al 2019

HIPÓTESIS COMPARACIÓN DE MEDIAS

Hipótesis

 $H_0: \mu_1 = \mu_2.$ $H_1: \mu_1 \neq \mu_2$

Supuestos

- 1) Las variables X es continua.
- 2) Distribución normal.

PRUEBA DE T PARA DOS MUESTRAS INDEPENDIENTES

```
t.test(Cortisol ~ Zona, dat, alternative = c("two.sided"),
       var.equal=TRUE)
##
## Two Sample t-test
##
## data: Cortisol by Zona
## t = -0.27153, df = 18, p-value = 0.7891
## alternative hypothesis: true difference in means is not
## 95 percent confidence interval:
## -1.533583 1.182547
## sample estimates:
## mean in group Bosque mean in group Urbano
               9.202381
                                    9.377899
##
```

PRÁCTICA ANÁLISIS DE DATOS

RESUMEN DE LA CLASE

- 1. Conceptos básicos de inferencia estadística
- 2. Conceptos básicos de pruebas de hipótesis
 - ► Hipótesis nula, hipótesis alternativa.
- 3. Realizar pruebas de hipótesis
 - Test de correlación.
 - Test de comparación de medias para 2 muestras independientes.
- 4. Realizar gráficas avanzadas con ggplot2.