Model-Based Software Engineering

Lecture 09 – Transformation

Prof. Dr. Joel Greenyer

June 21, 2016

5.3. Model-to-model transformation – graph transformations

Describe Structural Changes

in the last lecture...

 Most children understand this way of describing structural changes:

View the System as a Graph

in the last lecture...

- Idea: View the model as a graph
- Example: train system "RailCab"

Graph Transformation Rule

in the last lecture...

 Describe the necessary context of the change and the change itself in a graph transformation rule

Graph Grammar Rule

in the last lecture...

- A graph grammar rule consists of two typed graphs
 - called left-hand side (LHS) and right-hand side (RHS)

Eclipse Henshin

in the last lecture...

- An Eclipse project that supports the modeling, execution, and analysis of EMF-based graph transformation systems
 - https://www.eclipse.org/henshin/

Eclipse Henshin

in the last lecture...

- An Eclipse project that supports the modeling, execution, and analysis of EMF-based graph transformation systems
 - https://www.eclipse.org/henshin/

Exploring the State Space

in the last lecture...

 A rule application can be considered a transition in a Labeled Transition System

- source state: host graph before the rule application
- transition: rule application
- target state: host graph
 after the rule application

state space
explored with
Henshin: 4
different graphs;
(graph after 4
applications of
move rule is
isomorphic=equal
to the first)

Exploring the State Space

in the last lecture...

rule as specified in Henshin

A match of a rule graph
in a host graph is a typed
graph isomorphism between
the rule graph and a
subgraph of the host graph

- A match of a rule graph
 in a host graph is a typed
 graph isomorphism between
 the rule graph and a
 subgraph of the host graph
 - What is a morphism?

- A match of a rule graph
 in a host graph is a typed
 graph isomorphism between
 the rule graph and a
 subgraph of the host graph
 - What is a morphism?
 - What is a graph morphism?

- A match of a rule graph
 in a host graph is a typed
 graph isomorphism between
 the rule graph and a
 subgraph of the host graph
 - What is a morphism?
 - What is a graph morphism?
 - What is a graph isomorphism?

- A match of a rule graph
 in a host graph is a typed
 graph isomorphism between
 the rule graph and a
 subgraph of the host graph
 - What is a morphism?
 - What is a graph morphism?
 - What is a graph isomorphism?
 - What is a typed graph isomorphism?

 In mathematics, a morphism is a structure-preserving mapping from one mathematical structure to another

- In mathematics, a morphism is a structure-preserving mapping from one mathematical structure to another
- Example: A group (homo)morphism is a function that maps one group to another in an operation-preserving way

- In mathematics, a morphism is a structure-preserving mapping from one mathematical structure to another
- Example: A group (homo)morphism is a function that maps one group to another in an operation-preserving way
 - group: a set of elements and an operation that maps any two elements from that set to a third element from that set

- In mathematics, a morphism is a structure-preserving mapping from one mathematical structure to another
- Example: A group (homo)morphism is a function that maps one group to another in an operation-preserving way
 - group: a set of elements and an operation that maps any two elements from that set to a third element from that set
 - example: natural numbers with addition $(\mathbb{N}, +)$

- In mathematics, a morphism is a structure-preserving mapping from one mathematical structure to another
- Example: A group (homo)morphism is a function that maps one group to another in an operation-preserving way
 - group: a set of elements and an operation that maps any two elements from that set to a third element from that set
 - example: natural numbers with addition $(\mathbb{N}, +)$
 - given two groups $(G_1, *)$ and $(G_2, \#)$, a **homomorphism** $h: G_1 \to G_2$ is an operation-preserving function, i.e., for $a, b \in G_1$ it holds that h(a * b) = h(a) # h(b)

- In mathematics, a morphism is a structure-preserving mapping from one mathematical structure to another
- Example: A group (homo)morphism is a function that maps one group to another in an operation-preserving way
 - group: a set of elements and an operation that maps any two elements from that set to a third element from that set
 - example: natural numbers with addition $(\mathbb{N}, +)$
 - given two groups $(G_1, *)$ and $(G_2, \#)$, a **homomorphism** $h: G_1 \to G_2$ is an operation-preserving function, i.e., for $a, b \in G_1$ it holds that h(a * b) = h(a) # h(b)
 - **example**: given (STRING, ·) and $(\mathbb{N}_{\geq 0}, +)$, then $length: STRING \to \mathbb{N}$ is a homomorphism, since for two strings a and b, it holds that $length(a \cdot b) = length(a) + length(b)$ ("·" means the concatenation of two strings)

• We define a graph G as a tuple G = (V, E, s, t) where

- We define a graph G as a tuple G = (V, E, s, t) where
 - − V is a finite set of nodes (vertices)

- We define a graph G as a tuple G = (V, E, s, t) where
 - − V is a finite set of nodes (vertices)
 - -E is a finite set of edges

- We define a graph G as a tuple G = (V, E, s, t) where
 - − V is a finite set of nodes (vertices)
 - − *E* is a finite set of edges
 - $-s: E \rightarrow V$ is the source function, defining edges' source nodes

- We define a graph G as a tuple G = (V, E, s, t) where
 - − V is a finite set of nodes (vertices)
 - − *E* is a finite set of edges
 - $-s: E \rightarrow V$ is the source function, defining edges' source nodes
 - $-t: E \rightarrow V$ is the target function, defining edges' target nodes

- We define a graph G as a tuple G = (V, E, s, t) where
 - − V is a finite set of nodes (vertices)
 - − *E* is a finite set of edges
 - $-s: E \rightarrow V$ is the source function, defining edges' source nodes
 - $-t: E \rightarrow V$ is the target function, defining edges' target nodes
- Example: How to interpret this graph mathematically?

- We define a graph G as a tuple G = (V, E, s, t) where
 - − V is a finite set of nodes (vertices)
 - − *E* is a finite set of edges
 - $-s: E \rightarrow V$ is the source function, defining edges' source nodes
 - $-t: E \rightarrow V$ is the target function, defining edges' target nodes
- Example: How to interpret this graph mathematically?

$$-V = \{v1, v2, v3\}$$

- We define a graph G as a tuple G = (V, E, s, t) where
 - − V is a finite set of nodes (vertices)
 - − *E* is a finite set of edges
 - $-s: E \rightarrow V$ is the source function, defining edges' source nodes
 - $-t: E \rightarrow V$ is the target function, defining edges' target nodes
- Example: How to interpret this graph mathematically?
 - $-V = \{v1, v2, v3\}$
 - $-E = \{e1, e2, e3\}$

- We define a graph G as a tuple G = (V, E, s, t) where
 - − V is a finite set of nodes (vertices)
 - − *E* is a finite set of edges
 - $-s: E \rightarrow V$ is the source function, defining edges' source nodes
 - $-t: E \rightarrow V$ is the target function, defining edges' target nodes
- Example: How to interpret this graph mathematically?

```
-V = \{v1, v2, v3\}
-E = \{e1, e2, e3\}
-s = \{(e1, v1), (e2, v2), (e3, v2)\}
```


Definition: Graph

- We define a graph G as a tuple G = (V, E, s, t) where
 - − V is a finite set of nodes (vertices)
 - -E is a finite set of edges
 - $-s: E \rightarrow V$ is the source function, defining edges' source nodes
 - $-t: E \rightarrow V$ is the target function, defining edges' target nodes
- Example: How to interpret this graph mathematically?

```
-V = \{v1, v2, v3\}
-E = \{e1, e2, e3\}
-s = \{(e1, v1), (e2, v2), (e3, v2)\}
-t = \{(e1, v2), (e2, v1), (e3, v3)\}
```


Definition: Graph

- We define a graph G as a tuple G = (V, E, s, t) where
 - − V is a finite set of nodes (vertices)
 - -E is a finite set of edges
 - $-s: E \rightarrow V$ is the source function, defining edges' source nodes
 - $-t: E \rightarrow V$ is the target function, defining edges' target nodes
- Example: How to interpret this graph mathematically?

```
-V = \{v1, v2, v3\}
-E = \{e1, e2, e3\}
-s = \{(e1, v1), (e2, v2), (e3, v2)\}
-t = \{(e1, v2), (e2, v1), (e3, v3)\}
```


Definition: Graph

- We define a graph G as a tuple G = (V, E, s, t) where
 - − V is a finite set of nodes (vertices)
 - − *E* is a finite set of edges
 - $-s: E \rightarrow V$ is the source function, defining edges' source nodes
 - $-t: E \rightarrow V$ is the target function, defining edges' target nodes
- Example: How to interpret this graph mathematically?

$$-V = \{v1, v2, v3\}$$

$$-E = \{e1, e2, e3\}$$

$$-s = \{(e1, v1), (e2, v2), (e3, v2)\}$$

$$-t = \{(e1, v2), (e2, v1), (e3, v3)\}$$

We also write for example s(e1) = v2

Problem: How to formalize the following graph?

- Problem: How to formalize the following graph?
 - multiple nodes called ":Track"

- Problem: How to formalize the following graph?
 - multiple nodes called ":Track"
 - multiple edges called "isOn"

- Problem: How to formalize the following graph?
 - multiple nodes called ":Track"
 - multiple edges called "isOn"
- Element names are the same, but identities are not

- Problem: How to formalize the following graph?
 - multiple nodes called ":Track"
 - multiple edges called "isOn"
- Element names are the same, but identities are not
- We cannot have a set with the same element occurring multiple times, e.g. E = {isOn, next, next, next, next}

- Problem: How to formalize the following graph?
 - multiple nodes called ":Track"
 - multiple edges called "isOn"
- Element names are the same, but identities are not
- We cannot have a set with the same element occurring multiple times, e.g. $E = \{isOn, next, next, next, next\}$
- Solution: Model labels explicitly

• Labels: Giving names to nodes and edges

- Labels: Giving names to nodes and edges
- A graph G can be extended by labeling functions $L_{\!\scriptscriptstyle V}$ and $L_{\!\scriptscriptstyle E}$

- Labels: Giving names to nodes and edges
- A graph G can be extended by labeling functions $L_{\!\scriptscriptstyle V}$ and $L_{\!\scriptscriptstyle E}$
 - L_V : V → Σ is a node labeling function

- Labels: Giving names to nodes and edges
- A graph G can be extended by labeling functions $L_{\!\scriptscriptstyle V}$ and $L_{\scriptscriptstyle E}$
 - L_V : V → Σ is a node labeling function
 - L_E : V → Σ is an edge labeling function

- Labels: Giving names to nodes and edges
- A graph G can be extended by labeling functions $L_{\!\scriptscriptstyle V}$ and $L_{\!\scriptscriptstyle E}$
 - L_V : V → Σ is a node labeling function
 - L_E : V → Σ is an edge labeling function
 - $-\Sigma$: is a set of labels

- Labels: Giving names to nodes and edges
- A graph G can be extended by labeling functions $L_{\!\scriptscriptstyle V}$ and $L_{\scriptscriptstyle E}$
 - L_V : V → Σ is a node labeling function
 - L_E : V → Σ is an edge labeling function
 - $-\Sigma$: is a set of labels
- Example: How to interpret the given graph mathematically?

- Labels: Giving names to nodes and edges
- A graph G can be extended by labeling functions $L_{\!\scriptscriptstyle V}$ and $L_{\!\scriptscriptstyle E}$
 - L_V : V → Σ is a node labeling function
 - L_E : V → Σ is an edge labeling function
 - $-\Sigma$: is a set of labels
- Example: How to interpret the given graph mathematically?

$$-V = \{v1, v2\}$$

- Labels: Giving names to nodes and edges
- A graph G can be extended by labeling functions $L_{\!\scriptscriptstyle V}$ and $L_{\scriptscriptstyle E}$
 - L_V : V → Σ is a node labeling function
 - L_E : V → Σ is an edge labeling function
 - $-\Sigma$: is a set of labels
- Example: How to interpret the given graph mathematically?
 - $-V = \{v1, v2\}$
 - $-E = \{e1\}$

- Labels: Giving names to nodes and edges
- ullet A graph G can be extended by labeling functions $L_{\!\scriptscriptstyle V}$ and $L_{\scriptscriptstyle E}$
 - L_V : V → Σ is a node labeling function
 - L_E : V → Σ is an edge labeling function
 - $-\Sigma$: is a set of labels
- Example: How to interpret the given graph mathematically?

$$-V = \{v1, v2\}$$

$$-E = \{e1\}$$

$$-s = \{(e1, v1)\}$$

- Labels: Giving names to nodes and edges
- A graph G can be extended by labeling functions $L_{\!\scriptscriptstyle V}$ and $L_{\scriptscriptstyle E}$
 - L_V : V → Σ is a node labeling function
 - L_E : V → Σ is an edge labeling function
 - $-\Sigma$: is a set of labels
- Example: How to interpret the given graph mathematically?

$$-V = \{v1, v2\}$$

$$-E = \{e1\}$$

$$-s = \{(e1, v1)\}$$

$$-t = \{(e1, v2)\}$$

- Labels: Giving names to nodes and edges
- A graph G can be extended by labeling functions $L_{\!\scriptscriptstyle V}$ and $L_{\!\scriptscriptstyle E}$
 - L_V : V → Σ is a node labeling function
 - L_E : V → Σ is an edge labeling function
 - $-\Sigma$: is a set of labels
- Example: How to interpret the given graph mathematically?

```
-V = \{v1, v2\}
-E = \{e1\}
-s = \{(e1, v1)\}
-t = \{(e1, v2)\}
-L_V = \{(v1, RailCab), (v2, Track)\}
```


- Labels: Giving names to nodes and edges
- ullet A graph G can be extended by labeling functions $L_{\!\scriptscriptstyle V}$ and $L_{\!\scriptscriptstyle E}$
 - L_V : V → Σ is a node labeling function
 - L_E : V → Σ is an edge labeling function
 - $-\Sigma$: is a set of labels
- Example: How to interpret the given graph mathematically?

```
-V = \{v1, v2\}
-E = \{e1\}
-s = \{(e1, v1)\}
-t = \{(e1, v2)\}
-L_{V} = \{(v1, RailCab), (v2, Track)\}
-L_{E} = \{(e1, isOn)\}
```


• Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$

$$-f_{V}: V_1 \rightarrow V_2$$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$

$$-f_{V}: V_1 \rightarrow V_2$$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$
 - $-f_{V}: V_1 \rightarrow V_2$
 - $-f_E: E_1 \rightarrow E_2$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$
 - $-f_{V}: V_1 \rightarrow V_2$
 - $-f_E: E_1 \rightarrow E_2$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$
 - $-f_{V}: V_1 \rightarrow V_2$
 - $-f_E: E_1 \rightarrow E_2$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$

$$-f_{V}: V_1 \rightarrow V_2$$

$$-f_E: E_1 \rightarrow E_2$$

$$- f_{V} \circ s_{1} = s_{2} \circ f_{E}$$
 and

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$

$$-f_{V}: V_1 \rightarrow V_2$$

$$-f_E: E_1 \rightarrow E_2$$

$$- f_V \circ s_1 = s_2 \circ f_E$$
 and

$$- f_{V} \circ t_{1} = t_{2} \circ f_{E}$$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$

$$-f_{V}: V_1 \rightarrow V_2$$

$$-f_E: E_1 \rightarrow E_2$$

that preserve the source and target functions, i.e.,

$$- f_V \circ s_1 = s_2 \circ f_E$$
 and

$$- f_{V} \circ t_{1} = t_{2} \circ f_{E}$$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$

$$-f_{V}: V_1 \rightarrow V_2$$

$$-f_E: E_1 \rightarrow E_2$$

that preserve the source and target functions, i.e.,

$$- f_{V} \circ s_{1} = s_{2} \circ f_{E} \text{ and}$$

$$- f_{V} \circ t_{1} = t_{2} \circ f_{E}$$

$$- f_{V} = \{(v_{11}, v_{21}), (v_{12}, v_{22})\}\$$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$
 - $-f_{V}: V_1 \rightarrow V_2$
 - $-f_E: E_1 \rightarrow E_2$

that preserve the source and target functions, i.e.,

$$- f_{V} \circ s_{1} = s_{2} \circ f_{E} \text{ and }$$

$$- f_{V} \circ t_{1} = t_{2} \circ f_{E}$$

$$- f_{V} = \{ (v_{11}, v_{21}), (v_{12}, v_{22}) \}$$

$$-f_E = \{(e_{11}, e_{21})\}$$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$ Example:
 - $-f_{V}: V_1 \rightarrow V_2$
 - $-f_E: E_1 \rightarrow E_2$

that preserve the source and target functions, i.e.,

$$- f_{V} \circ s_{1} = s_{2} \circ f_{E} \text{ and}$$

$$- f_{V} \circ t_{1} = t_{2} \circ f_{E}$$

$$- f_{V} = \{(v_{11}, v_{21}), (v_{12}, v_{22})\}\$$

$$-f_E = \{(e_{11}, e_{21})\}$$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$ Example: $f: V \to V$
 - $-f_{V}: V_1 \rightarrow V_2$
 - $-f_E: E_1 \rightarrow E_2$

-
$$f_V \circ s_1 = s_2 \circ f_E$$
 and
- $f_V \circ t_1 = t_2 \circ f_E$

- Example: for these two graphs a graph morphism would be
 - $-f_{V} = \{(v_{11}, v_{21}), (v_{12}, v_{22})\}\$
 - $-f_E = \{(e_{11}, e_{21})\}$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \rightarrow G_2$ consists of two functions $f = (f_{V}, f_{E})$ Example: $f_{v}(s_{1}(e11))$
 - $-f_{V}: V_1 \rightarrow V_2$
 - $-f_F: E_1 \rightarrow E_2$

-
$$f_V \circ s_1 = s_2 \circ f_E$$
 and
- $f_V \circ t_1 = t_2 \circ f_E$

- Example: for these two graphs a graph morphism would be
 - $-f_{V} = \{(v_{11}, v_{21}), (v_{12}, v_{22})\}$
 - $-f_F = \{(e_{11}, e_{21})\}$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$
 - $-f_{V}:V_{1}\rightarrow V_{2}$
 - $-f_E: E_1 \rightarrow E_2$

Example:

$$f_{V}(s_{1}(e11))$$

= $s_{2}(f_{E}(e11))$

that preserve the source and target functions, i.e.,

$$- f_{V} \circ s_{1} = s_{2} \circ f_{E} \text{ and}$$
$$- f_{V} \circ t_{1} = t_{2} \circ f_{E}$$

 Example: for these two graphs a graph morphism would be

$$-f_V = \{(v_{11}, v_{21}), (v_{12}, v_{22})\}$$

- $f_E = \{(e_{11}, e_{21})\}$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$

$$-f_{V}:V_{1}\rightarrow V_{2}$$

$$-f_E: E_1 \rightarrow E_2$$

Example:

$$f_V(s_1(e11))$$

= $s_2(f_E(e11))$

that preserve the source and target functions, i.e.,

$$- f_{V} \circ s_{1} = s_{2} \circ f_{E} \text{ and}$$
$$- f_{V} \circ t_{1} = t_{2} \circ f_{E}$$

 Example: for these two graphs a graph morphism would be

$$-f_V = \{(v_{11}, v_{21}), (v_{12}, v_{22})\}$$

- $f_E = \{(e_{11}, e_{21})\}$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$

$$-f_{V}: V_1 \rightarrow V_2$$

$$-f_E: E_1 \rightarrow E_2$$

that preserve the source and target functions, i.e.,

$$- f_{V} \circ s_{1} = s_{2} \circ f_{E} \text{ and}$$
$$- f_{V} \circ t_{1} = t_{2} \circ f_{E}$$

 Example: for these two graphs a graph morphism would be

$$-f_V = \{(v_{11}, v_{21}), (v_{12}, v_{22})\}$$

- $f_E = \{(e_{11}, e_{21})\}$

$$f_V(s_1(e11))$$

= $s_2(f_E(e11))$
 $f_V(t_1(e11))$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$

$$-f_{V}: V_1 \rightarrow V_2$$

$$-f_E: E_1 \rightarrow E_2$$

that preserve the source and target functions, i.e.,

$$- f_{V} \circ s_{1} = s_{2} \circ f_{E} \text{ and}$$
$$- f_{V} \circ t_{1} = t_{2} \circ f_{E}$$

 Example: for these two graphs a graph morphism would be

$$- f_V = \{(v_{11}, v_{21}), (v_{12}, v_{22})\}$$

$$- f_E = \{(e_{11}, e_{21})\}$$

$$f_V(s_1(e11))$$

= $s_2(f_E(e11))$
 $f_V(t_1(e11))$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$

$$-f_{V}: V_1 \rightarrow V_2$$

$$-f_E: E_1 \rightarrow E_2$$

that preserve the source and target functions, i.e.,

$$- f_{V} \circ s_{1} = s_{2} \circ f_{E} \text{ and}$$
$$- f_{V} \circ t_{1} = t_{2} \circ f_{E}$$

 Example: for these two graphs a graph morphism would be

$$-f_V = \{(v_{11}, v_{21}), (v_{12}, v_{22})\}$$
$$-f_F = \{(e_{11}, e_{21})\}$$

$$f_V(s_1(e11))$$

= $s_2(f_E(e11))$
 $f_V(t_1(e11))$
= $t_2(f_E(e11))$

- Given two graphs $G_i = (V_i, E_i, s_i, t_i), i \in \{1, 2\}$
- A graph morphism $f: G_1 \to G_2$ consists of two functions $f = (f_V, f_E)$
 - $-f_{V}: V_1 \rightarrow V_2$
 - $-f_E: E_1 \rightarrow E_2$

that preserve the source and target functions, i.e.,

$$- f_{V} \circ s_{1} = s_{2} \circ f_{E} \text{ and}$$
$$- f_{V} \circ t_{1} = t_{2} \circ f_{E}$$

- Example: for these two graphs a graph morphism would be
 - $-f_V = \{(v_{11}, v_{21}), (v_{12}, v_{22})\}\$
 - $-f_E = \{(e_{11}, e_{21})\}$

$$f_V(s_1(e11))$$

= $s_2(f_E(e11))$
 $f_V(t_1(e11))$
= $t_2(f_E(e11))$

 A graph G can be typed by giving a graph morphism type: G → G_{Type}

- A graph G can be typed by giving a graph morphism type: G → G_{Type}
 - $-G_{Type}$ is the **type graph**, the tuple (*G*, type) is the **typed graph**

- A graph G can be typed by giving a graph morphism type: G → G_{Type}
 - $-G_{Type}$ is the **type graph**, the tuple (*G*, type) is the **typed graph**
- A graph morphism (also graph homomorphism) is a total function

- A graph G can be typed by giving a graph morphism type: G → G_{Type}
 - $-G_{Type}$ is the **type graph**, the tuple (G, type) is the **typed graph**
- A graph morphism (also graph homomorphism) is a total function
 - $-f_V$ and f_E are total

- A graph G can be typed by giving a graph morphism type: G → G_{Type}
 - G_{Type} is the **type graph**, the tuple (G, type) is the **typed graph**
- A graph morphism (also graph homomorphism) is a total function
 - $-f_V$ and f_E are total
 - every element in the domain (typed graph) has to be related to exactly one element of the co-domain (type graph)

Graph Isomorphism

- A graph morphism $f = (f_V, f_E)$ is called a **graph isomorphism** if f_V and f_F are **bijective**
 - each element in the domain corresponds to exactly one element of the co-domain
 - the graph morphism is reversible

Graph Isomorphism

- A graph morphism $f = (f_V, f_E)$ is called a **graph isomorphism** if f_V and f_F are **bijective**
 - each element in the domain corresponds to exactly one element of the co-domain
 - the graph morphism is reversible

Example: (from before)

Graph Isomorphism

- A graph morphism $f = (f_V, f_E)$ is called a **graph isomorphism** if f_V and f_F are **bijective**
 - each element in the domain corresponds to exactly one element of the co-domain
 - the graph morphism is reversible

Example: (from before)

Graph Grammar Rule Application

Graph Grammar Rule Application

• A graph $G_{Sub} = (V_{Sub}, E_{Sub}, s_{Sub}, t_{Sub})$ is a **subgraph** of graph G = (V, E, s, t) if

- A graph $G_{Sub} = (V_{Sub}, E_{Sub}, s_{Sub}, t_{Sub})$ is a **subgraph** of graph G = (V, E, s, t) if
 - $-V_{Sub} \subseteq V$
 - $E_{Sub} \subseteq E$
 - $-s_{Sub} = s|E_{Sub}|$
 - $-t_{Sub}=t|E_{Sub}|$

- A graph $G_{Sub} = (V_{Sub}, E_{Sub}, s_{Sub}, t_{Sub})$ is a **subgraph** of graph G = (V, E, s, t) if
 - $-V_{Sub} \subseteq V$
 - $E_{Sub} \subseteq E$
 - $s_{Sub} = s|E_{Sub}$ $t_{Sub} = t|E_{Sub}$

It means that the source and target functions for the subgraph are reduced to the edges which are in it.

- A graph $G_{Sub} = (V_{Sub}, E_{Sub}, s_{Sub}, t_{Sub})$ is a **subgraph** of graph G = (V, E, s, t) if
 - $-V_{Sub} \subseteq V$
 - $E_{Sub} \subseteq E$
 - $s_{Sub} = s|E_{Sub}$ $t_{Sub} = t|E_{Sub}$

It means that the source and target functions for the subgraph are reduced to the edges which are in it.

If G_{Sub} is a subgraph of G, we also write $G_{Sub} \leq G$

When matching a rule graph to the host graph:

- When matching a rule graph to the host graph:
 - rule graph and host graph have the same type graph

- When matching a rule graph to the host graph:
 - rule graph and host graph have the same type graph
 - the match must respect the typing of the graphs

- When matching a rule graph to the host graph:
 - rule graph and host graph have the same type graph
 - the match must respect the typing of the graphs
 - there must be a *typed subgraph isomorphism*

- When matching a rule graph to the host graph:
 - rule graph and host graph have the same type graph
 - the match must respect the typing of the graphs
 - there must be a typed subgraph isomorphism
- Let $G_1 = (V_1, E_1, s_1, t_1)$ and $G_2 = (V_2, E_2, s_2, t_2)$ be two graphs

- When matching a rule graph to the host graph:
 - rule graph and host graph have the same type graph
 - the match must respect the typing of the graphs
 - there must be a typed subgraph isomorphism
- Let $G_1 = (V_1, E_1, s_1, t_1)$ and $G_2 = (V_2, E_2, s_2, t_2)$ be two graphs
 - typed by graph morphisms $type_1 = (type_{1V}, type_{1E}): G_1 \rightarrow G_{Type} \text{ and } type_2 = (type_{2V}, type_{2E}): G_2 \rightarrow G_{Type}$

- When matching a rule graph to the host graph:
 - rule graph and host graph have the same type graph
 - the match must respect the typing of the graphs
 - there must be a typed subgraph isomorphism
- Let $G_1 = (V_1, E_1, s_1, t_1)$ and $G_2 = (V_2, E_2, s_2, t_2)$ be two graphs
 - typed by graph morphisms $type_1 = (type_{1V}, type_{1E}): G_1 \rightarrow G_{Type} \text{ and } type_2 = (type_{2V}, type_{2E}): G_2 \rightarrow G_{Type}$
- An (iso)morphism $f = G_1 \rightarrow G_2$, $f = (f_V, f_E)$ is typed when

- When matching a rule graph to the host graph:
 - rule graph and host graph have the same type graph
 - the match must respect the typing of the graphs
 - there must be a *typed subgraph isomorphism*
- Let $G_1 = (V_1, E_1, s_1, t_1)$ and $G_2 = (V_2, E_2, s_2, t_2)$ be two graphs
 - typed by graph morphisms $type_1 = (type_{1V}, type_{1E}) \colon G_1 \to G_{Type} \text{ and } type_2 = (type_{2V}, type_{2E}) \colon G_2 \to G_{Type}$
- An (iso)morphism $f = G_1 \rightarrow G_2$, $f = (f_V, f_E)$ is typed when
 - $-type_1 = type_2 \circ f$, i.e.,

- When matching a rule graph to the host graph:
 - rule graph and host graph have the same type graph
 - the match must respect the typing of the graphs
 - there must be a *typed subgraph isomorphism*
- Let $G_1 = (V_1, E_1, s_1, t_1)$ and $G_2 = (V_2, E_2, s_2, t_2)$ be two graphs
 - typed by graph morphisms $type_1 = (type_{1V}, type_{1E}) \colon G_1 \to G_{Type} \text{ and } type_2 = (type_{2V}, type_{2E}) \colon G_2 \to G_{Type}$
- An (iso)morphism $f = G_1 \rightarrow G_2$, $f = (f_V, f_E)$ is typed when
 - $-type_1 = type_2 \circ f$, i.e.,
 - for all $v \in V_1$ it holds that $type_{1V}(v) = type_{2V}(f_V(v))$ and

- When matching a rule graph to the host graph:
 - rule graph and host graph have the same type graph
 - the match must respect the typing of the graphs
 - there must be a *typed subgraph isomorphism*
- Let $G_1 = (V_1, E_1, s_1, t_1)$ and $G_2 = (V_2, E_2, s_2, t_2)$ be two graphs
 - typed by graph morphisms $type_1 = (type_{1V}, type_{1E}): G_1 \rightarrow G_{Type} \text{ and } type_2 = (type_{2V}, type_{2E}): G_2 \rightarrow G_{Type}$
- An (iso)morphism $f = G_1 \rightarrow G_2$, $f = (f_V, f_E)$ is typed when
 - $-type_1 = type_2 \circ f$, i.e.,
 - for all $v \in V_1$ it holds that $type_{1V}(v) = type_{2V}(f_V(v))$ and
 - for all $e \in E_1$ it holds that $type_{1F}(e) = type_{2F}(f_F(e))$

Graph Grammar Rule Application

Graph Grammar Rule Application

- How do we treat the concept of generalization (inheritance)?
 - this makes matters a bit more complicated...

- How do we treat the concept of generalization (inheritance)?
 - this makes matters a bit more complicated...
- How do we treat attribute values?

- How do we treat the concept of generalization (inheritance)?
 - this makes matters a bit more complicated...
- How do we treat attribute values?

see for example: Juan de Lara, Roswitha Bardohl, Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, Gabriele Taentzer, Fundamental Aspects of Software Engineering, *Attributed graph transformation with node type inheritance*, Theoretical Computer Science, Volume 376, Issue 3, 2007, Pages 139-163.

Finding an isomorphic subgraph is an NP-complete problem

- Finding an isomorphic subgraph is an NP-complete problem
 - exponential in the size of the involved graphs
- In the MBSE context, the graphs are usually typed and often strongly structured
 - so matching graph transformation rule patterns can happen in practically acceptable time
- In some applications, graphs are not that structured, but then also heuristics can be employed to find close matches

- Finding an isomorphic subgraph is an NP-complete problem
 - exponential in the size of the involved graphs
- In the MBSE context, the graphs are usually typed and often strongly structured
 - so matching graph transformation rule patterns can happen in practically acceptable time
- In some applications, graphs are not that structured, but then also heuristics can be employed to find close matches

- Finding an isomorphic subgraph is an NP-complete problem
 - exponential in the size of the involved graphs
- In the MBSE context, the graphs are usually typed and often strongly structured
 - so matching graph transformation rule patterns can happen in practically acceptable time
- In some applications, graphs are not that structured, but then also heuristics can be employed to find close matches

Intermediate Summary

Graph transformation rules allow us

Intermediate Summary

- Graph transformation rules allow us
 - to describe the behavior of systems (e.g. RailCab) formally

Intermediate Summary

- Graph transformation rules allow us
 - to describe the behavior of systems (e.g. RailCab) formally
 - to describe the behavior of object-oriented programs formally

- Intermediate Summary

- Graph transformation rules allow us
 - to describe the behavior of systems (e.g. RailCab) formally
 - to describe the behavior of object-oriented programs formally
- The behavior can be analyzed formally

- Intermediate Summary

- Graph transformation rules allow us
 - to describe the behavior of systems (e.g. RailCab) formally
 - to describe the behavior of object-oriented programs formally
- The behavior can be analyzed formally
- And the behavior can be execute

- Intermediate Summary

- Graph transformation rules allow us
 - to describe the behavior of systems (e.g. RailCab) formally
 - to describe the behavior of object-oriented programs formally
- The behavior can be analyzed formally
- And the behavior can be execute
 - by and interpreter (like Henshin)

Intermediate Summary

- Graph transformation rules allow us
 - to describe the behavior of systems (e.g. RailCab) formally
 - to describe the behavior of object-oriented programs formally
- The behavior can be analyzed formally
- And the behavior can be execute
 - by and interpreter (like Henshin)
 - or by code generation (like SDMTools

https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/story-diagram-tools/

Intermediate Summary

- Graph transformation rules allow us
 - to describe the behavior of systems (e.g. RailCab) formally
 - to describe the behavior of object-oriented programs formally
- The behavior can be analyzed formally
- And the behavior can be execute
 - by and interpreter (like Henshin)
 - or by code generation (like SDMTools

https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/story-diagram-tools/

 So far, we have mainly considered endogenous model transformations, how about exogenous ones?

5.4. Model-to-model transformation – Triple Graph Grammars

- Let's start simple: How to transform
 - Initial nodes?
 - Final nodes?
 - Action nodes?
 - Control flow edges?

Relations Between Model Patterns Example: Activity to Petri net

Relations Between Model Patterns Example: Activity to Petri net

Final node
 ← Empty Place

Relations Between Model Patterns Example: Activity to Petri net

Final node
 ← Empty Place

Example: Transform Activity Diagrams to Petri nets

- Let's start simple: How to transform
 - Initial nodes?
 - Final nodes?
 - Action nodes?
 - Control flow edges?

Relations Between Model Patterns Example: Activity to Petri net

Example: Transform Activity Diagrams to Petri nets

- Let's start simple: How to transform
 - Initial nodes?
 - Final nodes?
 - Action nodes?
 - Control flow edges?

Relations Between Model Patterns Example: Activity to Petri net

Relations Between Model Patterns Example: Activity to Petri net

Idea 1: describe the mapping of models as a triple graph

- Idea 1: describe the mapping of models as a triple graph
- What does a triple graph consist of?

- Idea 1: describe the mapping of models as a triple graph
- What does a triple graph consist of?
 - source graph (model)

- Idea 1: describe the mapping of models as a triple graph
- What does a triple graph consist of?
 - source graph (model)

- Idea 1: describe the mapping of models as a triple graph
- What does a triple graph consist of?
 - source graph (model)
 - target graph (model)

- Idea 1: describe the mapping of models as a triple graph
- What does a triple graph consist of?
 - source graph (model)
 - target graph (model)

- Idea 1: describe the mapping of models as a triple graph
- What does a triple graph consist of?
 - source graph (model)
 - target graph (model)
 - correspondence graph (model) that connects the source and target graphs (models)

- Idea 1: describe the mapping of models as a triple graph
- What does a triple graph consist of?
 - source graph (model)
 - target graph (model)
 - correspondence graph (model) that connects the source and target graphs (models)

 The three different graphs (source, target, correspondence) are typed over (usually different) type graphs (metamodels)

- The three different graphs (source, target, correspondence) are typed over (usually different) type graphs (metamodels)
- Also called source-, target-, and correspondence- domain

- The three different graphs (source, target, correspondence) are typed over (usually different) type graphs (metamodels)
- Also called source-, target-, and correspondence- domain
 - source domain: Activity Diagrams

- The three different graphs (source, target, correspondence) are typed over (usually different) type graphs (metamodels)
- Also called source-, target-, and correspondence- domain
 - source domain: Activity Diagrams
 - target domain: Petri net

- The three different graphs (source, target, correspondence) are typed over (usually different) type graphs (metamodels)
- Also called source-, target-, and correspondence- domain
 - source domain: Activity Diagrams
 - target domain: Petri net
 - correspondence domain: AD2PN

Example of a bigger triple graph

An "invalid" triple graph

An "invalid" triple graph

An "invalid" triple graph

Triple Graph Grammar (TGG)

- How to describe which triple graphs are valid in which ones are not?
 - i.e., express which mappings are valid and which ones are not

Triple Graph Grammar (TGG)

- How to describe which triple graphs are valid in which ones are not?
 - i.e., express which mappings are valid and which ones are not
- Idea 2: Use a graph grammar that describes the production of valid triple graphs

Triple Graph Grammar (TGG)

- How to describe which triple graphs are valid in which ones are not?
 - i.e., express which mappings are valid and which ones are not
- Idea 2: Use a graph grammar that describes the production of valid triple graphs
 - − → Triple Graph Grammar (TGG)