Exam on Dynamical Systems June 18, 2010

1. (2p) Find the general solution of the following differential equations

$$x' + ax = -at + 1$$
, $x'' - ax' + (a - 1)x = 0$,

where $a \in \mathbb{R} \setminus \{0, 1\}$ is a real parameter. Here the unknown is the function denoted x of independent variable t.

- 2. (3p) Let $\varphi_1, \ \varphi_2 : \mathbb{R} \to \mathbb{R}$ be two distinct solutions of the differential equation $y' = \sqrt[3]{y-1}$ (the unknown is the function denoted y of independent variable x). Decide whether or not the following situations are possible:
 - (a) $\varphi_1(0) = 2$ and $\varphi'_1(0) = -1$;
 - (b) $\varphi_1(0) = \varphi_2(0) = 2;$
 - (c) $\varphi_1(0) = \varphi_2(0) = 1$ and $\varphi'_1(0) \neq \varphi'_2(0)$.
 - 3. (1.5p) Represent the phase portrait of the scalar differential equations:
 - (a) $\dot{x} = 2x x^2$;
 - (b) $\dot{x} = 1 + x + x^2$;
 - (c) $\dot{x} = 1 + x + x^3$.

Exam on Dynamical Systems June 18, 2010 II

1. (2p) Find the general solution of the following differential equations

$$x' + x = -2e^t$$
, $x'' = \frac{2}{t}x'$.

Here the unknown is the function denoted x of independent variable t.

2. (3p) Let $\varphi_1, \ \varphi_2 : \mathbb{R} \to \mathbb{R}$ be two distinct solutions of the differential equation $y' = \sqrt[3]{y+2}$ (the unknown is the function denoted y of independent variable x). Decide whether or not the following situations are possible:

- (a) $\varphi_1(0) = 1$ and $\varphi'_1(0) = -1$;
- (b) $\varphi_1(0) = \varphi_2(0) = 1;$
- (c) $\varphi_1(0) = \varphi_2(0) = -2$ and $\varphi_1'(0) \neq \varphi_2'(0)$.

3. (1.5p) Decide the type and stability of the equilibrium point (0,0) of the differential systems:

- (a) $\dot{x} = 2x$, $\dot{y} = -x 3y$;
- (b) $\dot{x} = 2x + y$, $\dot{y} = -x + 3y$.

Here the unknowns are the functions denoted x and, respectively, y, of independent variable t.

Exam on Dynamical Systems June 19, 2010

1. (3p) Integrate the following differential equations

(a)
$$y' = \frac{-x - x^3}{1 - x^3}$$

(a)
$$y' = \frac{-x - x^3}{y}$$

(b) $y' = \frac{-x - y^2}{y}$

and than find a first integral of each of it.

- 2. (2p) Let $\varphi:(-\varepsilon,\varepsilon)\to\mathbb{R}$ be some solution of the differential equation $y'=\frac{y-2}{1-x^2-y^2}$ (the unknown is the function denoted y of independent variable x, while $\varepsilon > 0$ is a positive constant). Decide whether or not the following situations are possible:
 - (a) $\varphi(0) = -2$ and φ is a strictly increasing function;
 - (b) $\varphi(0) = 2$ and φ is a strictly increasing function;
 - (c) $\varphi_1(0) = -2$ and $\varphi'_1(0) = 0$.
 - 3. (1.5p) Find the flow of the planar linear differential system:

$$\dot{x} = x + y, \quad \dot{y} = -2x + 4y.$$

Exam on Dynamical Systems June 19, 2010 II

1. (3p) Integrate the following differential equations

(a)
$$y' = \frac{x - 2x^3}{y}$$

(a)
$$y' = \frac{x - 2x^3}{y}$$

(b) $y' = \frac{x - y^2}{y}$

and than find a first integral of each of it.

- 2. (2p) Let $\varphi:(-\varepsilon,\varepsilon)\to\mathbb{R}$ be some solution of the differential equation $y'=\frac{y-1}{1+x^2+y}$ (the unknown is the function denoted y of independent variable x, while $\varepsilon > 0$ is a positive constant). Decide whether or not the following situations are possible:
 - (a) $\varphi(0) = 1$ and φ is a strictly increasing function;
 - (b) $\varphi(0) = 0$ and φ is a strictly increasing function;
 - (c) $\varphi_1(0) = -2$ and $\varphi'_1(0) = 0$.
 - 3. (1.5p) Find the flow of the planar linear differential system:

$$\dot{x} = x - y, \quad \dot{y} = 2x + 4y.$$

Exam on Dynamical Systems July 8, 2010

- 1. (2p) Write the general solution of $x'' a^2x = e^{bt}$, where a > 0 and $b \in \mathbb{R}$ are parameters. Here the unknown is the function denoted x of independent variable t.
- 2. (1.5p) Integrate the differential equation $y' = \frac{-x y^2}{y}$. Here the unknown is the function denoted y of independent variable x.
- 3. (2p) Write the definition of the first integral for a differential equation in symmetrical form. Give examples.

Write the definition of the first integral for a differential equation in normal form. Give examples.

- 4. (1p) Find the general solution and represent the phase portrait of the planar system $\dot{x} = -y$, $\dot{y} = x$. Here the unknowns are the functions denoted x and, respectively, y, of independent variable t.
 - 5. (1p) (instead of the point from the seminar partial exam) Find the solution of the following Initial Value Problem: $\frac{t^2 x'' + t x'}{t^2 + t^2} = \frac{x}{t^2} = \frac{x}{t^2}$

 $t^2x'' + tx' - x = 0$, x(1) = 1, x'(1) = -1.

Here the unknown is the function denoted x of independent variable t.

Exam on Dynamical Systems. June 08, 2009

1. (1p) Find the general solution of the following differential equation

$$x' - 2x = 2t - 3.$$

- 2. (0.5p) Find the second order linear homogeneous differential equation with constant coefficients that has as solutions e^{-t} and $5e^{-2t}$.
- 3. (1.5p) Find the coefficients of the power series solution (around t=0) of the Initial Value Problem

$$\begin{cases} x'' + t^2 x = 0 \\ x(0) = 0 \\ x'(0) = 1. \end{cases}$$

4. (2p) Specify the type and stability of the equilibrium point (0,0) of the differential system:

$$\dot{x} = -2x, \quad \dot{y} = -y.$$

Represent the phase portrait of this system.

5. (1.5p) Find the equilibria and study their stability for the differential equation

$$\ddot{\theta} + 4\dot{\theta} + \sin\theta = 0.$$

Exam on Dynamical Systems June 09, 2009

1. (1.5p)

(a) Find the general solution of the following differential equation

$$\varphi'' + \frac{9}{4}\varphi = 0.$$

- (b) (True or False) "All the solutions of $\varphi'' + \frac{9}{4}\varphi = 0$ are periodic with a period $T = 4\pi$."
- 2. (1.5p) Let $I \subset \mathbb{R}$ be an open interval and $a, f : I \to \mathbb{R}$ be continuous functions. Write the general solution of the differential equations:
 - (a) x' + a(t)x = 0,
 - (b) x' + a(t)x = f(t).
- 3. (0.5p) Write the Euler numerical formula for a first order differential equation.
 - 4. (3p) We consider the differential system:

$$\dot{x} = -y + y^3, \quad \dot{y} = -x + x^3.$$

- (a) Study the stability of the equilibrium point (0,0).
- (b) Find a first integral.
- (c) Find all the equilibria.

Exam on Dynamical Systems June 09, 2009 II

1. (3.5p) We consider the differential system

$$\dot{x} = -x + 2y, \quad \dot{y} = -2x - y.$$

- (a) Study the type and stability of its equilibrium point (0,0).
- (b) Find its general solution.
- (c) Pass to polar coordinates.
- (d) Represent its phase portrait.
- 2. (1p) Write the statements of
- (a) the existence theorem (Peano)
- (b) the existence and uniqueness theorem (Cauchy-Lipschitz) for a first order differential equation.
- 3. (2p) (a) Find the solution of the Initial Value Problem

$$y' = \frac{2y}{x}, \quad y(1) = \pi.$$

(b) (True or False) "The solution of the previous IVP is a bounded function."

Exam on Dynamical Systems June 27, 2009 I

- 1. (1.5p) Find the general solution of the differential equation:
- (a) $t^2x'' 3tx' + 3x = 0$, for $t \in (0, \infty)$;
- (b) $t^2x'' + tx' + 4x = 0$, for $t \in (0, \infty)$.
- 2. (3p) We consider the differential equation:

$$y' = -\frac{x}{2y} \,.$$

- (a) (True or False) "Through the point $(1,1) \in \mathbb{R}^2$ passes one and only one integral curve of the given differential equation." Justify the answer.
- (b) Find the maximal solution of the Initial Value Problem for the given differential equation with the condition y(1) = 1. Plot its graph.
- (c) Represent the 3-level curve of the function $H: \mathbb{R}^2 \to \mathbb{R}$, $H(x,y) = x^2 + 2y^2$. What is the relation between this curve and the one plotted at (b)? What is the relation between H and the given differential equation?
 - 3. (2p) Represent the phase portrait of:
 - (a) $\dot{x} = 4x x^3$;
 - (b) $\dot{x} = 4x x^3 + 1$;
 - (c) $\dot{x} = 4x x^3 + 5$.

Exam on Dynamical Systems June 27, 2009 II

1. (3.5p) We consider the differential system

$$\dot{x} = -x + 2y, \quad \dot{y} = -2x - y.$$

- (a) Study the type and stability of its equilibrium point (0,0).
- (b) Find its general solution.
- (c) Pass to polar coordinates.
- (d) Represent its phase portrait.
- 2. (1p) Write the statements of
- (a) the existence theorem (Peano)
- (b) the existence and uniqueness theorem (Cauchy-Lipschitz) for a first order differential equation.
- 3. (2p) (a) Find the solution of the Initial Value Problem

$$y' = \frac{2y}{x}, \quad y(1) = \pi.$$

(b) (True or False) "The solution of the previous IVP is a bounded function."

Exam on Dynamical Systems. August 31, 2009 I

1. (3p) Specify the type and stability of the equilibrium point (0,0) of the differential system:

$$\dot{x} = 3x + 2y, \quad \dot{y} = 4x + y.$$

Find the general solution of the above differential system.

2. (2.5p) Represent the phase portrait of the scalar differential equation

$$\dot{x} = 2x \left(3 - \frac{x}{100} \right) .$$

What remarkable property has the solution of the above equation with the initial value x(0) = 100? (*Hint: "read" its phase portrait*) Find the general solution of the above equation.

- 3. (1p) Find a first integral of $(x^2 5xy^2)dx + (y^3 5x^2y + 3)dy = 0$.
- 4. (1p, not compulsory) Determine the equilibria and study the stability of one of them for the following planar differential system:

$$\dot{x} = -2x + y^2, \quad \dot{y} = y - 2xy.$$

Exam on Dynamical Systems. August 31, 2009 II

1. (3p) Specify the type and stability of the equilibrium point (0,0) of the differential system:

$$\dot{x} = 5x - 7y, \quad \dot{y} = 2x - 4y.$$

Find the general solution of the above differential system.

2. (2.5p) Represent the phase portrait of the scalar differential equation

$$\dot{x} = 3x \left(-2 + \frac{x}{100} \right) .$$

What remarkable property has the solution of the above equation with the initial value x(0) = 100? (*Hint: "read" its phase portrait*) Find the general solution of the above equation.

- 3. (1p) Find a first integral of $(x^3 3xy^2 + 2)dx + (y^2 3x^2y)dy = 0$.
- 4. (1p, not compulsory) Determine the equilibria and study the stability of one of them for the following planar differential system:

$$\dot{x} = x - 2xy, \quad \dot{y} = x^2 - 2y.$$

Exam on Dynamical Systems. June 11, 2008

1. Find the general solutions of the following differential equations:

$$x' = -x$$
, $x' = 3x + 2 - 3t + e^{-3t}$, $x'' - x' + 2x = 0$, $x''' = 0$.

2. We consider the differential equation

$$y' = \frac{1 - \sqrt[3]{y}}{1 - xy}$$

and three Initial Value Problems for it with the conditions: y(0) = 1, y(1) = 1 and y(0) = 0, respectively. Here the unknown function is y = y(x).

- a) Are the above Initial Value Problems well-defined?
- b) If they are well–defined, decide whether or not the Local Existence and Uniqueness Theorem is applicable.
- c) If the Local Existence and Uniqueness Theorem is applicable, find the solution.
- 3. Find the differential equation of the family of planar curves described by $x^2 + 9y^2 = c$, $c \in \mathbb{R}$. Find also a planar autonomous system whose trajectories are these curves.
- 4. We consider the logistic map $f_{\lambda}: [0,1] \to [0,1]$ $f_{\lambda}(x) = \lambda x(1-x)$, where $\lambda \in (0,4)$ is a parameter. Find the fixed points of the logistic map and study their stability (discuss with respect to the parameter λ).

Exam on Dynamical Systems. June 12, 2008

1. We say that a differential equation exhibit resonance when all its solutions are unbounded.

For what values of the mass m will $mx'' + 25x = 12\cos(36\pi t)$ exhibit resonance?

2. Find the solution of the following Initial Value Problem

$$y'' - \frac{y'}{x} = x^2$$
 $y(2) = 0$, $y'(2) = 4$.

3. Represent the phase portrait of the following differential equation:

$$\dot{x} = 4x - x^3.$$

4. We consider the nonlinear autonomous planar system:

$$\begin{cases} \dot{x} = -x + xy \\ \dot{y} = -4y + 8xy \,. \end{cases}$$

Find its equilibria and study their stability.

- 5. Write the definition of the first integral for a differential equation in symmetrical form.
 - 6. Write the definition of a fixed point of some scalar map.

Exam on Dynamical Systems. June 28, 2008

- 1. Let $\alpha \in \mathbb{R}$. We consider the differential equation $x'' + \alpha x' + 9x = 0$.
- (a) Find the general solution when $\alpha = 4$ and $\alpha = 0$, respectively.
- (b) Find α such that all the solutions are periodic. What is the period in this case? Does it depend on α ?
- 2. We consider the Initial Value Problem $x' + \alpha(t)x = f(t)$, where $\alpha, f \in C(\mathbb{R})$.
 - (a) Find the solution when $\alpha(t) = 2t$ and $f(t) = 3e^{-t^2}$.
- (b) Find the solution (eventually only an integral representation of it) when $\alpha(t) = 2t$ and f(t) = 1.
- (c) Write an integral representation of the solution of this IVP for arbitrary α and f .
 - 3. Find a first integral for the differential equation

$$(5x - 2xy)dx + (3y^2 - x^2)dy = 0.$$

4. Represent the phase portrait of the following differential equation:

$$\dot{x} = \frac{1}{2}x(1-x).$$

5. We consider the map $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{2}x(1-x)$. Find its fixed points and study their stability. For what type of values of $\eta \in \mathbb{R}$ we can deduce from the above study that the sequence $(x_n)_{n\geq 0}$ given by the recurrence $x_{n+1} = \frac{1}{2}x_n(1-x_n)$, $n\geq 0$, $x_0 = \eta$ is convergent?

Exam on Dynamical Systems. September 1, 2008

1. We consider the following differential system:

$$\begin{cases} x' = y \\ y' = -6x + 5y. \end{cases}$$

- a) Find its general solution.
- b) Study the type and stability of its equilibrium point.

2. Find the solution of the following Initial Value Problem:

$$y' = -\frac{2x}{y}, \quad y(0) = 3.$$

3. We consider the Initial Value Problem (IVP):

$$y' = \frac{y+x}{y-2x}, \quad y(0) = 1.$$

- a) Find the domain of definition of the given differential equation and show that the point (0,1) belongs to it.
- b) Find the set of all existence and uniqueness points of the given differential equation and show that the point (0,1) belongs to it.
- c) Show that the solution of this IVP is strictly increasing in a small neighborhood of x = 0.
 - d) Write the Euler numerical formula for this IVP.
 - e) Write the Runge–Kutta numerical formula for this IVP.
- f) Write the recurrence formula for the Picard sequence of successive approximations for this IVP.
- 4. (instead of the partial exam) Find the solution of the following Initial Value Problem:

$$y' = -\frac{y}{2x} + x$$
, $y(1) = 0$.

Dynamical systems. Final exam 20-06-2007

- 1. Find the general solution of $\ddot{\theta} + \dot{\theta} + \theta = 0$. Prove that $\lim_{t \to \infty} \theta(t) = 0$ for any solution θ of this differential equation.
- 2. Prove that $\lim_{t\to\infty} \theta(t) = 0$ for any solution θ of the differential equation $\ddot{\theta} + \dot{\theta} + \sin \theta = 0$ with $|\theta(0)|$ sufficiently small.
 - 3. Find the general solution of the differential equation

$$y' = \frac{3x - y}{x + 3y}.$$

(Hint: write it in symmetrical form)

- 4. Specify the type and study the stability of the equilibrium (0,0) of the planar system $\dot{x}=x+3y$, $\dot{y}=3x-y$. Find also a first integral for this system.
 - 5. Define the notion of first integral for a planar autonomous system.
- 6. Write the statements of the Existence Theorem of Peano and of the Local Existence and Uniqueness Theorem for a first order scalar Initial Value Problem.
 - 7. Prove that the Initial Value Problem

$$y' = \frac{y}{x^2 - 2x + 1}$$
, $y(0) = 2$

has a unique maximal solution and than find it.

Dynamical systems. Final exam 06-09-2007

- 1. Find the solution of each of the following Initial Value Problems:
- x' = x, x(0) = 1.
- x' = y, y' = x, x(0) = 2, y(0) = -2. $t^2x'' + tx' x = 0$, x(1) = 1, x'(1) = -1.
- 2. Galileo's pendulum.
- a) Deduce its differential equation.
- b) Find the general solution of the linearized equation $\theta'' + \omega^2 \theta = 0$, where $\omega = g/L > 0$ (g the gravitational constant and L the length of the rod). Interpret the result.
- 3. Represent the phase portrait and find a first integral for the planar system:

$$\dot{x} = -y \,, \quad \dot{y} = x \,.$$

- 4. The statement of the Local Existence and Uniqueness Theorem for a first order scalar Initial Value Problem.
- 5. Determine the equilibria and study their stability for the planar system:

$$\dot{x} = x - 2xy \,, \quad \dot{y} = x^2 - 2y \,.$$

6. (instead of the point from the seminar partial exam) Find the value of the real parameter b for which the given equation is exact and than find a first integral using the value of b:

$$(2xy^2 + bx^2y)dx + x^2(x+2y)dy = 0.$$

Dynamical systems. Final exam 25-01-2005

- 1. Find a first integral of (2x+1)dx + 2ydy = 0.
- 2. Represent the phase portrait of $x' = \lambda x^2$, where $\lambda \in \mathbb{R}$ is a parameter. Study the stability of the equilibrium points.
 - 3. Find the maximal solution of the Initial Value Problem: $x^2y'' - 2xy' + 2y = x^3$, y(1) = 1, y'(1) = 1.
 - 4. We consider the system $\dot{x} = 3x + 2y$, $\dot{y} = -x + y$.
 - a) Write its general solution.
 - b) Specify the type and study the stability of the equilibrium point.
- 5. Write the Euler's numerical formula to find the approximate solution of the Initial Value Problem: $y' = y + \sin y, \quad y(0) = 2$ on the interval [0, 1.5].
- 6. We consider the Initial Value Problem: $y' = f(x, y), \quad y(x_0) = y_0 \quad ,$ $f: [x_0 - a, x_0 + a] \times \mathbb{R} \to \mathbb{R}$ and $a > 0, y_0 \in \mathbb{R}$.
- a) Write the definition and state sufficient conditions for the function fto be Lipschitz with respect to y.
 - b) Write the statement of the Global Existence and Uniqueness Theorem.
- c) Prove the convergence of the sequence of functions $\varphi_n \in C[-1,1]$, for all $n \ge 0$ given by the recurrence:

$$\varphi_{n+1}(x) = 1 + 2 \int_0^x s \varphi_n(s) ds, \quad n \ge 0, \quad \varphi_0(x) = 1 \quad \text{for all } x \in [-1, 1].$$
(Hint: use b) and the formula
$$\left(\int_0^x u(s) ds \right)' = u(x).$$

Dynamical systems. Final exam 26-01-2005

- 1. We consider the system $\dot{x}=x\,,\quad \dot{y}=1+y\,.$ Write its general solution and represent its phase portrait.
 - 2. Represent the phase portrait of $\dot{x} = 2x \sin x$.
- 3. Write the general solution of $y'' a^2y = e^{bx}$, where a>0 and $b\in\mathbb{R}$ are parameters.
 - 4. a) Verify that $y_1 = x$ and $y_2 = e^{-2x}$ are solutions of (2x+1)y'' + 4xy' 4y = 0.
 - b) Find the maximal solution of the Initial Value Problem: $(2x+1)y'' + 4xy' 4y = (2x+1)^2$, y(0) = 1, y'(0) = 0.
- 5. Write the definitions for a fixed point of a scalar map for an asymptotically stable fixed point.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous map and $\eta, \eta^* \in \mathbb{R}$ be such that $f^n(\eta) \to \eta^*$ as $n \to \infty$. Prove that η^* is a fixed point of f.
- 7. Let $\eta \in \mathbb{R}$ be such that $|\eta|$ is sufficiently small. Study the convergence of the sequence given by the recurrence

of the sequence given by the recurrence
$$x_{n+1} = \frac{1}{2}x_n - 3x_n^3$$
, $n \ge 0$, $x_0 = \eta$.

Dynamical systems. Final exam 13-02-2005

- 1. Find the general solution of $y' = 3y + x^2$.
- 2. We consider the Initial Value Problem:

$$y' = \frac{1}{y - x^2} + 2x$$
, $y(0) = -1$.

- a) Write the domain of the differential equation, denoted D_f , as $D_f = U_1 \cup U_2$, where U_1 and U_2 are open and connected.
 - b) Do the change of the variable $u = y x^2$, where u = u(x).
 - c) Find the maximal solution of this IVP.
- 3. We consider the differential equation $y' = \lambda + 2y y^2$ where $\lambda \in \mathbb{R}$ is a parameter.
 - a) Find the equilibrium points and study their stability.
- b) Write the Euler's numerical formula to find the approximate solution of this differential equation on the interval [0,1] that satisfies y(0) = 0.5.
- 4. We consider the scalar map $f: \mathbb{R} \to \mathbb{R}$ f(x) = (1+x)/2. Find the fixed points of f. Draw the stair–step diagram starting with $x_0 = 3$.
 - 5. Write the definition of the Wronski–an of two C^1 functions.
- 6. Linear homogeneous second order differential equations with constant coefficients.