#### Fundação Getúlio Vargas



Matemática Aplicada

Nome:

Monitor: Jeann

### Exercício 1 - Limite de Subsequências

- (a) Se uma sequência é convergente para L, toda subsequência também é convergente para L? A recíproca é verdadeira?
- (b) Se alguma subsequência de uma sequência converge para L, então a sequência converge para L?
- (c) Se  $(x_n)$  é uma sequência tal que a subsequência formada pelos índices pares  $x_{2n}$  e a formada pelos índices ímpares  $x_{2n-1}$  de  $(x_n)$  são convergentes para um mesmo limite L, então  $(x_n)$  é convergente e  $x_n \to L$ ?
- (d) Uma sequência limitada é convergente se, e somente se, existe um único valor L que é limite de alguma subsequência? E se a sequência não for limitada?

# Exercício 2 - Cálculo de Limites

(a) Sejam  $(a_n)$  e  $(b_n)$  duas sequências convergentes, com  $\lim_{n\to\infty}a_n=a$  e  $\lim_{n\to\infty}b_n=b$ . Mostre que

$$\exists k_0 \in \mathbb{N} ext{ tal que } |b_k - a| < r < |a_k - b|, orall k > k_0 \Rightarrow |a - b| = r$$

- (b) Para cada  $\lambda, \mu \in \mathbb{R}$ , com  $|\mu| > 1$ , calcule (se existir)  $\lim_{n \to \infty} \frac{\lambda^n(\mu^{n+1}-1)}{n!}$ .
- (c) Calcule  $\lim_{n\to\infty} \sqrt[n]{n!}$  e  $\lim_{n\to\infty} \frac{\log n}{n}$ .

Dica: Você pode utilizar que  $\lim a^{1/n}=1, \forall a>0$  e que  $\log x\leq x, \forall x\geq 0.$ 

# Exercício 3 - Frações Contínuas

Nati, amiga de Robertinha, soube que sua amiga conseguiu escrever 2 com a construção de radicais aninhados, ou seja

$$2=\sqrt{2+\sqrt{2+\sqrt{2+\dots}}}$$

Mas, Nati queria uma forma iterada de obter  $\sqrt{2}$  (e não, ela não tomou simplesmente a raiz quadrada de  $\sqrt{2+\sqrt{2+\sqrt{2+\dots}}}$ ). Então, ela considerou o conjunto

$$X = \left\{1 + \frac{1}{2}, 1 + \frac{1}{2 + \frac{1}{2}}, 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}, 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}} \dots\right\}$$

- (a) Deduza a sequência  $(x_n)$  que descreve esse conjunto e, em seguida, descreva as subsequências  $(y_n) = (x_{2n})$  e  $(z_n) = (x_{2n-1})$ .
- (b) Mostre que  $y_n < \sqrt{2} < z_n$ ,  $\forall n \in \mathbb{N}.$
- (c) Mostre que  $y_n$  é crescente e  $z_n$  é decrescente e, portanto, conclua a existência dos limites  $\lim y_n$  e  $\lim z_n$ .
- (d) Quais são os limites  $\lim y_n$  e  $\lim z_n$ ?
- (e) Conclua que  $(x_n)$  é convergente. Qual é o valor de  $\lim x_n$ ?

# Exercício 4 - O Número de Euler

Analise a convergência das sequências  $(x_n)$  e  $(y_n)$  dadas por

(a) 
$$x_0 = 1, x_n = x_{n-1} + \frac{1}{n!}$$

(b) 
$$y_n=\left(1+rac{1}{n}
ight)^n$$

O limite destas sequências é igual?

Dica: Talvez seja necessário utilizar a Desigualdade de Bernoulli, que afirma o seguinte:

"se x>-1, então para qualquer  $n\in\mathbb{N}$ , vale que  $(1+x)^n\geq 1+nx$ "

# Exercício 5 - Aproximação Racional

Seja A>0 um número irracional e  $\left(\frac{p_n}{q_n}\right)_{n\in\mathbb{N}}$  uma sequência de números racionais tais que  $p_n,q_n>0$  e  $\lim \frac{p_n}{q_n}=A$ . Mostre que  $\lim q_n=+\infty$ .

#### Exercício 1 - Solução

- (a) Seja  $(x_n)$  tal que  $x_n \to L$ . Dada  $(x_{n_k})$  subsequência de  $x_n$ , temos que dado  $\varepsilon > 0$ , existe  $m \in \mathbb{N}$  tal que  $|x_n L| < \varepsilon, \forall n > m$ . Seja  $k \in \mathbb{N}$  tal que  $n_k > m$ . Então,  $|x_{n_k} L| < \varepsilon$ , donde  $x_{n_k} \to L$ . A recíproca é claramente verdadeira, uma vez que a própria sequência é uma subsequência de si mesma.
- (b) Isto é falso. Basta considerar a sequência  $(x_n) = (0, 1, 0, 1, 0, 1, 0, ...)$ , que claramente não é convergente, mas  $x_{2n} = 1, \forall n \in \mathbb{N}$ , isto é,  $x_{2n} \to 1$ .
- (c) Como  $x_{2n}, x_{2n-1} \to L$ . Dado  $\varepsilon > 0$ , devem existir  $m_1, m_2 \in \mathbb{N}$  tais que

$$|x_{2n}-L|m_1$$
 e  $|x_{2n-1}-L|m_2$ 

Tomando  $m=\max\{m_1,m_2\}$ , obtemos que  $|x_n-L|<arepsilon, orall n>m$ . (Corrigir)

(d) Se  $(x_n)$  é convergente (para L), então toda subsequência converge para L (pelo item (a)).

Reciprocamente, se  $(x_n)$  é limitado e alguma subsequência de  $(y_n)$  de  $(x_n)$  converge para algum valor L, então  $x_n \to L$ . Com efeito, se não o fosse, existiria algum  $\varepsilon > 0$  tal que para todo  $m \in \mathbb{N}$ , existiria n > m tal que  $|x_n - L| \ge \varepsilon$ . Assim, existe  $n_1 > 1$  tal que  $|x_{n_1} - L| \ge \varepsilon$ . Além disso, existe  $n_2 > n_1$  tal que  $|x_{n_2} - L| \ge \varepsilon$ . Ademais, existe  $n_3 > n_2$  tal que  $|x_{n_3} - L| \ge \varepsilon$ . Prosseguindo com o raciocínio, construímos uma subequência  $(x_{n_k})$  de  $(x_n)$  tal que  $|x_{n_k} - L| \ge \varepsilon$ ,  $\forall k \in \mathbb{N}$ . Mas, como  $(x_n)$  é limitada, temos  $(x_{n_k})$  limitada e, pelo Teorema de Bolzano-Weierstrass, segue que  $(x_{n_k})$  admite uma subsequência  $(z_n)$  convergente, que não pode ter limite em L, já que  $|z_n - L| \ge \varepsilon$ ,  $\forall n \in \mathbb{N}$ . Ora, sendo uma subsequência de uma subsequência de  $(x_n)$ , é ainda uma subsequência de  $(x_n)$ , mas com limite distinto de  $(y_n)$ , o que contraria a hipótese. Logo, deve ser  $x_n \to L$ .

Comentário do item (d): Como  $(x_n)$  é limitada, deve necessariamente existir alguma subsequência convergente para algum valor L, por Bolzano-Weierstrass.

# Exercício 2 - Solução

(a) Tomando o limite quando  $k \to \infty$ , temos

$$|b-a| \leq r \leq |b-a|$$

Logo, |b-a|=r.

(b) Se  $a_n = \frac{\lambda^n(\mu^{n+1}-1)}{n!}$ , então

$$rac{a_{n+1}}{a_n} = rac{rac{\lambda^{n+1}(\mu^{n+2}-1)}{(n+1)!}}{rac{\lambda^n(\mu^{n+1}-1)}{n!}} = rac{\lambda}{n+1} \cdot rac{\mu^{n+2}-1}{\mu^{n+1}-1} = rac{\lambda}{n+1} \cdot rac{\mu - rac{1}{\mu^{n+1}}}{1 - rac{1}{\mu^{n+1}}} \stackrel{n o \infty}{\longrightarrow} 0$$

Logo,  $a_n \to 0$ .

(c) • Dado  $k \in \mathbb{N}$ , seja n > k. Assim

$$egin{aligned} \sqrt[n]{n!} &= \sqrt[n]{k!\cdot (k+1)(k+2)...n} \geq \sqrt[n]{k!\cdot k^{n-k}} = \sqrt[n]{k!}\cdot \sqrt[n]{k^{n-k}} \geq \sqrt[n]{k^{n-k}} \ &= k^{(n-k)/n} = rac{k}{k^{k/n}} = rac{k}{(k^{k/n})} \end{aligned}$$

Como  $\lim (k^k)^{1/n}=1$ , temos que  $(k^k)^{1/n}<2$  para n suficientemente grande e, consequentemente,  $\sqrt[n]{n!}>\frac{k}{2}$  para n suficientemente grande. Ou seja, obtemos que  $\sqrt[n]{n!}\to +\infty$ .

ullet Desde que  $\log x \leq x, \forall x > 0$ , temos

$$\log \sqrt{n} = \sqrt{n} \Leftrightarrow rac{1}{2} \log n \leq \sqrt{n} \Leftrightarrow \log n \leq 2\sqrt{n} \Leftrightarrow rac{\log n}{n} \leq rac{2\sqrt{n}}{n}$$

Mas, como  $\frac{2\sqrt{n}}{n} o 0$  e  $\frac{\log n}{n} \geq 0$ , temos pelo Teorema do Sanduíche que  $\frac{\log n}{n} o 0$ .

# Exercício 3 - Solução

(a) Considere a sequência  $(a_n)$  dada por  $a_1=rac{1}{2}$  e  $a_{n+1}=rac{1}{2+a_n}, orall n\in \mathbb{N}.$  Então,  $x_n=1+a_n, orall n\in \mathbb{N}.$  Agora, temos

$$x_{2n+2} = 1 + a_{2n+2} = 1 + rac{1}{2 + a_{2n+1}} = 1 + rac{1}{2 + rac{1}{2 + a_{2n}}} = 1 + rac{1}{2 + rac{1}{1 + x_{2n}}}$$
  $x_{2n+1} = 1 + a_{2n+1} = 1 + rac{1}{2 + a_{2n}} = 1 + rac{1}{2 + rac{1}{2 + a_{2n-1}}} = 1 + rac{1}{2 + rac{1}{1 + x_{2n-1}}}$ 

Logo, temos 
$$y_1=rac{7}{5}$$
 e  $z_1=rac{3}{2}$  e  $y_{n+1}=1+rac{1}{2+rac{1}{1+y_n}}$  e  $z_{n+1}=1+rac{1}{2+rac{1}{1+z_n}}, orall n\in \mathbb{N}$ 

(b) Provaremos por indução para  $(y_n)$  e para  $(z_n)$  será análogo. Temos, por hipótese, que  $y_n < \sqrt{2}$ . Assim

$$y_{n+1}<\sqrt{2}\Leftrightarrow 1+rac{1}{2+rac{1}{1+y_n}}<\sqrt{2}\Leftrightarrow y_n<rac{3\sqrt{2}-4}{3-2\sqrt{2}}=\sqrt{2}$$

Além disso, é claro que  $y_1=rac{7}{5}<\sqrt{2}.$ 

(c) Provaremos para  $(y_n)$  e para  $(z_n)$  será análogo. Com efeito, temos

$$y_{n+1} > y_n \Leftrightarrow 1 + rac{1}{2 + rac{1}{1 + y_n}} > y_n \Leftrightarrow y_n^2 < 2 \Leftrightarrow -\sqrt{2} < y_n < \sqrt{2}$$

que já foi provado no item anterior.

(d) Passando ao limite, temos em  $(y_n)$ 

$$L=1+rac{1}{2+rac{1}{1+L}}\Leftrightarrow L^2=2\Leftrightarrow L=\pm\sqrt{2}$$

Como L deve ser  $\geq 0$ , temos  $L = \sqrt{2}$ . Análogamente, pela mesma definição da sequência  $(z_n)$ , encontramos o mesmo limite L.

(e) Como  $(x_{2n})$  e  $(x_{2n-1})$  convergem para o mesmo limite, pelo item c) do Exercício 1, temos que  $x_n$  é convergente e converge para esse limite. Logo,  $x_n \to \sqrt{2}$ .

8

# Exercício 4 - Solução

(a)  $(x_n)$  é claramente crescente (pois  $x_n = x_{n-1} + \frac{1}{n!} \ge x_{n-1}$ ). Além disso,  $(x_n)$  é limitada superiormente (por 3). Com efeito,

$$x_n = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \le 1 + \frac{1}{2^0} + \frac{1}{2^1} + \dots + \frac{1}{2^{n-1}}$$

$$\le 1 + \sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + 2 = 3$$

Logo,  $(x_n)$  é convergente.

Comentário: É necessário provar que  $2^n \leq (n+1)!, \forall n \in \mathbb{N}$ , mas isto é feito por indução e é deixado para o leitor :)

(b)  $(y_n)$  é crescente. Com efeito,

$$egin{aligned} rac{y_{n+1}}{y_n} &= rac{(1+1/(n+1))^{n+1}}{(1+1/n)^n} = \left(1+rac{1}{n}
ight) \left(rac{1+1/(n+1)}{1+1/n}
ight)^{n+1} \ &= \left(1+rac{1}{n}
ight) \left(1-rac{1}{(n+1)^2}
ight)^{n+1} \geq \left(1+rac{1}{n}
ight) \left(1-rac{1}{n+1}
ight) = 1 \end{aligned}$$

Além disso,  $(y_n)$  é limitada superiormente (por 3), já que

$$y_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \sum_{k=0}^n \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{n \cdot n \cdot \ldots \cdot n} \frac{1}{k!}$$

$$\leq \sum_{k=0}^n \frac{1}{k!} = x_n \leq 3$$

Portanto,  $(y_n)$  é convergente.

Comentário: Utilizou-se a Desigualdade de Bernoulli:  $(1+x)^n \geq 1+nx, \forall n \in \mathbb{N}$  e x>-1.

É possível mostrar que  $\lim x_n = \lim y_n$ , basta observar que para n suficientemente grande

$$egin{aligned} y_n &= \left(1+rac{1}{n}
ight)^n = \sum\limits_{k=0}^n inom{n}{k}rac{1}{n^k} \leq \sum\limits_{k=0}^n rac{1}{k!} = x_n \Rightarrow \lim y_n \leq \lim x_n \ x_n &= \sum\limits_{k=0}^n rac{1}{k!} \leq \left(rac{n+1}{n}
ight) \left(1+rac{1}{n}
ight)^n = \left(rac{n+1}{n}
ight) y_n \Rightarrow \lim x_n \leq \lim y_n \end{aligned}$$

Os detalhes são feitos por indução e fica a cargo do leitor :)

# Exercício 5 - Solução

Se  $(q_n)$  fosse limitada, então pelo Teorema de Bolzano-Weierstrass, existiria  $(q_{n_k})$  subsequência convergente de  $(q_n)$  para algum valor  $L \in \mathbb{Z}_+^*$ . Em particular, teríamos  $\lim \frac{p_{n_k}}{q_{n_k}} = A$ . Se alguma subsequência  $(p_{n_{k_j}})$  de  $(p_{n_k})$  fosse tal que  $p_{n_{k_j}} \to \infty$ , teríamos  $\lim \frac{p_{n_{k_j}}}{q_{n_{k_j}}} = \infty$ , o que não pode ocorrer. Logo,  $(p_{n_k})$  é limitada e, portanto, admite subsequência  $(p_{n_{k_j}})$  convergente para algum valor  $M \in \mathbb{Z}_+^*$ . Daí,  $\lim \frac{p_{n_{k_j}}}{q_{n_{k_j}}} = \frac{M}{L} \in \mathbb{Q}$ , que é um absurdo. Portanto,  $(q_n)$  é ilimitada. Se  $(q_n)$  admitir alguma subsequência convergente, então podemos aplicar o mesmo raciocínio acima sobre esta subsequência. Assim, segue que  $q_n \to +\infty$ .