Formelsammlung Physik

Mechanik

Bewegungen
$$v = \frac{\Delta s}{\Delta t}$$
 $a = \frac{\Delta v}{\Delta t}$

$$\vec{s} = \vec{v} \cdot t$$
 $\vec{v} = \vec{a} \cdot t$ $\vec{s} = \frac{1}{2} \cdot \vec{a} \cdot t^2$

Kräfte
$$\vec{F} = m \cdot \vec{a}$$
 $|\vec{F}_R| = \mu \cdot |\vec{F}_N|$ $\vec{F}_G = m \cdot \vec{g}$ $\vec{F}_{Feder} = -D \cdot \vec{s}$

Luftwiderstand
$$F_{L} = \frac{1}{2} \cdot c_{W} \cdot \rho_{Luft} \cdot A \cdot v^{2}$$

Dichte, Druck
$$\rho = \frac{m}{V}$$
 $p = \frac{F}{A}$

Arbeit
$$W = \vec{F} \cdot \vec{s}$$
 $W_{\text{Beschleunigung}} = \frac{1}{2} \cdot m \cdot v^2 \ W_{\text{Hub}} = m \cdot g \cdot h$ $W_{\text{Spann}} = \frac{1}{2} \cdot D \cdot s^2$

Energie
$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$
 $E_{Lage} = m \cdot g \cdot h$ $E_{Spann} = \frac{1}{2} \cdot D \cdot s^2$

Leistung
$$P = \frac{W}{t}$$

Wirkungsgrad
$$\eta = \frac{E_{\text{nutz}}}{E_{\text{auf}}} = \frac{P_{\text{nutz}}}{P_{\text{auf}}}$$

Kreisbewegung
$$f = \frac{1}{T}$$
 $\omega = \frac{\Delta \varphi}{\Delta t} = \frac{2\pi}{T} = 2\pi \cdot f$ $|\vec{v}| = \omega \cdot r = \frac{2\pi \cdot r}{T}$

$$a_Z = \omega^2 \cdot r = \frac{v^2}{r}$$
 $F_Z = m \cdot \omega^2 \cdot r = \frac{m \cdot v^2}{r}$

Gravitation
$$F_G = G \cdot \frac{m_1 \cdot m_2}{r^2} \qquad \frac{r^3}{T^2} = const.$$

Wärmelehre

Temperatur
$$^{\circ}\text{C} + 273 \rightarrow \text{K}$$

Wärmeausdehnung
$$\Delta \ell = \alpha \cdot \ell_0 \cdot \Delta T$$
 $\Delta V = \gamma \cdot V_0 \cdot \Delta T$

Gasgesetze
$$\frac{p \cdot V}{T} = const.$$
 $V \propto T$ $p \propto T$ $p \cdot V = const.$

innere Energie
$$\Delta U = Q + W$$
 $\Delta U = c \cdot m \cdot \Delta T$

Schmelz- und Verdampfungswärme
$$Q = L_{\downarrow} \cdot m$$
 $Q = L_{\downarrow} \cdot m$

Wärme und Arbeit
$$\varepsilon = \frac{Q_{\text{nutz}}}{W} = \frac{Q_{\text{nutz}}}{Q_{\text{nutz}} - Q_{\text{auf}}}$$

$$\varepsilon = \frac{T_{\text{hoch}}}{T_{\text{hoch}} - T_{\text{niedrig}}}$$

$$\eta_{\mathsf{Carnot}} = \dfrac{W_{\mathsf{nutz}}}{Q_{\mathsf{auf}}} = \dfrac{Q_{\mathsf{auf}} - Q_{\mathsf{ab}}}{Q_{\mathsf{auf}}} \qquad \qquad \eta_{\mathsf{Carnot}} = \dfrac{T_{\mathsf{hoch}} - T_{\mathsf{niedrig}}}{T_{\mathsf{hoch}}}$$

Mathematik

Trigonometrie	$\sin \alpha = \frac{\text{Gegenkathete}}{}$	$\cos \alpha = \frac{\text{Ankathete}}{}$	$\tan \alpha = \frac{\text{Gegenkathete}}{}$
riigonometrie	Hypothenuse	Hypothenuse	Ankathete

Kreis Umfang
$$u = 2\pi \cdot r$$
 Fläche $A = \pi \cdot r^2$

Kugel Oberfläche
$$M = 4\pi \cdot r^2$$
 Volumen $V = \frac{4\pi}{3} \cdot r^3$

Tabellen

$G = 6.67 \cdot 10^{-11} \frac{\text{N·m}^2}{\text{kg}^2}$ $m_{\text{Erde}} = 5.97 \cdot 10^{24} \text{ kg}$ Gravitationskonstante

Masse der Erde $r_{\rm Erde} = 6'378 \text{ km}$ Radius der Erde

 $r_{\text{Sonne-Erde}} = 1.496 \cdot 10^8 \text{ km}$ $T_{\text{Erde}} = 365.26 \text{ d}$ Abstand der Mittelpunkte Sonne-Erde Umlaufzeit der Erde um die Sonne

 $r_{\text{Erde-Mond}} = 3.844 \cdot 10^{5} \text{ km}$ Abstand der Mittelpunkte Erde-Mond $m_{\text{Venus}} = 4.8673 \cdot 10^{24} \text{ kg}$ Masse der Venus Radius der Venus $r_{Venus} = 6'052 \text{ km}$

 $r_{\text{Sonne-Venus}} = 1.082 \cdot 10^8 \text{ km}$ Abstand der Mittelpunkte Sonne-Venus Umlaufzeit der Venus um die Sonne T_{Venus} = 225 d

 $m_{\rm Mars} = 6.4169 \cdot 10^{23} \, \rm kg$ Masse des Mars

 $r_{\rm Mars} = 3'396 \text{ km}$ Radius des Mars

 $r_{\text{Sonne-Mars}} = 2.279 \cdot 10^8 \text{ km}$ Abstand der Mittelpunkte Sonne-Mars

Umlaufzeit des Mars um die Sonne $T_{\rm Mars} = 687 \, {\rm d}$

 $m_{\text{Sonne}} = 1.99 \cdot 10^{30} \text{ kg}$ Masse der Sonne

Fallbeschleunigungen in $\frac{m}{e^2}$:

Erde (Nordpol)	9.83	Erde (Europa)	9.81	Erde (Äquator)	9.78
Mond	1.62	Venus	8.87	Mars	3.73

Haftreibungszahlen Gleitreibungszahlen Rollreibungszahlen Stahl-Stahl Stahl-Stahl 0.05 Stahl-Stahl 0.15 0.005 0.027 0.014 Stahl-Eis Stahl-Eis Holz-Stein 0.7 Holz-Stein 0.3 Holz-Holz Holz-Holz 0.6 0.4 Gla Au

0.01

las–Glas	0.94	Glas-Glas	0.40	
utoreifen:		Autoreifen:		Autoreifen:
trocken	0.85	trocken	0.65	trocken
nass	0.4	• nass	0.3	

vereist

Widerstandszahlen (Luftwiderstand)

0.1

vereist

Person (aufrecht)	0.78	Kugel	0.47
Auto (geschlossen)	0.36	Kegel ohne Boden, α = 30°	0.34 → <(1)
Motorrad	0.7	Kegel ohne Boden, $\alpha = 60^{\circ}$	0.51
Lastwagen	0.6 - 1.5	Kreisplatte	1.11
Velo mit Fahrer	1	Quadratische Platte	1.10
Fallschirm	1.4	Stromlinienkörper	0.05

0.05

Tabelle für Daten von Festkörpern, Flüssigkeiten und Gasen

Feste Körper	Dichte in kg	Längenausdeh-	Spezifische Wärme-	Schmelzpunkt	Spezifische Schmelz-
	Dichte in $\frac{kg}{m^3}$	nungszahl in $\frac{1}{K}$	kapazität in J	in °C	wärme in J/kg
Aluminium	2.70 · 10 ³	23.8 · 10 ⁻⁶	0.896 · 10 ³	660	3.97 · 10 ⁵
Beton	$2.2 \cdot 10^{3}$	12 · 10 ⁻⁶	0.879 · 10 ³	_	_
Blei	11.34 · 10 ³	31.3 · 10 ⁻⁶	0.129 · 10 ³	327	0.23 · 10 ⁵
Eis	$0.917 \cdot 10^3$	37 · 10 ⁻⁶	2.09 · 10 ³	0	3.34 · 10 ⁵
Eisen (rein)	7.86 · 10 ³	12 · 10⁻6	0.45 · 10 ³	1535	2.77 · 10 ⁵
Glas	2.5 · 10 ³	8.5 · 10 ⁻⁶	$0.84 \cdot 10^{3}$	815	_
Gold	19.29 · 10 ³	14 · 10 ⁻⁶	0.129 · 10 ³	1063	0.64 · 10 ⁵
Holz	$0.4 - 0.8 \cdot 10^3$	$5 - 8 \cdot 10^{-6}$	1.7 – 2.1· 10 ³	_	_
Konstantan	$8.9 \cdot 10^{3}$	15.2 · 10⁻⁶	0.41 · 10 ³	1280	_
Kork	$0.3 \cdot 10^{3}$	1 · 10 ⁻⁶	1.88 · 10 ³	_	_
Kupfer	8.92 · 10 ³	16.8 · 10⁻6	$0.383 \cdot 10^3$	1083	2.05 · 10 ⁵
Magnesium	$1.74 \cdot 10^3$	26 · 10⁻ ⁶	$1.02 \cdot 10^3$	650	3.70 · 10 ⁵
Natrium	$0.97 \cdot 10^3$	70 · 10⁻ ⁶	$1.22 \cdot 10^3$	97,8	1.13 · 10 ⁵
Platin	$21.4 \cdot 10^3$	9.0 · 10 ⁻⁶	$0.133 \cdot 10^3$	1769	1.11 · 10 ⁵
Porzellan	$2.3 \cdot 10^{3}$	4.0 · 10 ⁻⁶	0.846 · 10 ³	_	_
Silber	10.51 · 10 ³	19.7 · 10 ⁻⁶	$0.235 \cdot 10^3$	960.5	1.05 · 10 ⁵
Stahl	$7.9 \cdot 10^{3}$	13.0 · 10 ⁻⁶	$0.47 \cdot 10^3$	ca 1500	2.7 · 10 ⁵
Styropor	17	50 – 80 · 10 ⁻⁶	1.25 · 10 ³	_	_
Wolfram	19.3 · 10 ³	4.3 · 10 ⁻⁶	$0.134 \cdot 10^3$	3390	1.91 · 10 ⁵
Zink	$7.14 \cdot 10^3$	26 · 10 ⁻⁶	0.385 · 10 ³	419.5	1.11 · 10 ⁵

Flüssigkeiten	Dichte bei 20 °C in $\frac{\text{kg}}{\text{m}^3}$	Volumenausdeh- nungszahl in $\frac{1}{K}$	Spezifische Wärme- kapazität in J/kg·K	Siedepunkt bei 1.013 bar in °C	Spezifische Verdampf- ungswärme in J/kg
Allega (Ethanal)	m ³	1.10 · 10 ⁻³		70.2	0.040 406
Alkohol (Ethanol)	$0.789 \cdot 10^{3}$		$2.43 \cdot 10^{3}$	78.3	0.840 · 10 ⁶
Benzol	$0.879 \cdot 10^{3}$	1.23 · 10 ⁻³	1.725 · 10 ³	80.1	0.394 · 10 ⁶
Diäthyläther	0.716 · 10 ³	1.62 · 10 ⁻³	2.310 · 10 ³	34.5	0.384 · 10 ⁶
Glycerin	1.26 · 10 ³	0.49 · 10 ⁻³	2.39 · 10 ³	290.5	0.854 · 10 ⁶
Meerwasser	1.03 · 10 ³	0.25 · 10 ⁻³	3.99 · 10 ³	100.1	_
Olivenöl	0.92 · 10 ³	0.72 · 10 ⁻³	1.97 · 10 ³	300	-
Petroleum	0.85 · 10 ³	0.96 · 10 ⁻³	2.1 · 10 ³	150-300	_
Quecksilber	13.55 · 10 ³	0.182 · 10 ⁻³	0.139 · 10 ³	357	0.285 · 10 ⁶
Wasser	$0.998 \cdot 10^3$	0.207 · 10 ⁻³	4.182 · 10 ³	100.0	2.257 · 10 ⁶

Gase	Dichte bei 0 °C und	:	Spezifische Wärme-	Siedepunkt bei	
	1.013 bar in $\frac{\text{kg}}{\text{m}^3}$	1	kapazität in J	1.013 bar in °C	
Ammoniak	0.771		2.160 · 10 ³	- 33.4	
Chlor	3.21		$0.74 \cdot 10^{3}$	- 34.1	
Helium	0.179		$5.23 \cdot 10^3$	-269	
Isobutan	2.6956		$1.698 \cdot 10^3$	-11.7	
Kohlendioxid (CO ₂)	1.98		$0.837 \cdot 10^3$	- 78.5	
Luft	1.293		1.005 · 10 ³	-191	
Propan	2.01		1.67 · 10 ³	-42	
Sauerstoff	1.43		$0.917 \cdot 10^3$	-183	
Stickstoff	1.250		1.038 · 10 ³	-196	
Wasserdampf	0.6		1.863 · 10 ³	100	
100 °C, 1.013 bar			_		
Wasserstoff	0.0899		14.32 · 10 ³	-253	