Lecture 3: Exploratory Data Analysis and Base R Graphics

STAT GU4206/GR5206 Statistical Computing & Introduction to Data Science

Gabriel Young Columbia University

September 22, 2017

Last Time

- Filtering. Accessing elements of a structure based on some criteria.
 v[v>5], m[m[,1]!=0,].
- **Lists**. Elements can all be different types. Access like 1[[3]], 1\$name. Create with list().
- NA and NULL values. NA is missing data and NULL doesn't exist.
- Factors and Tables. Factors is how R classifies categorical variables.
- Dataframes. Used for data that is organized with rows indicating cases and columns indicating variables.
- Importing and Exporting Data in R. Use read.csv() and read.table() depending on dataset type. The working directory.
- **Control Statements**. We studied iteration, for loops and while loops, and if, else statements.
- Vectorized Operations. To be used instead of iterations.

Section I

Exploratory Data Analysis and R Graphics

- Download diamonds.csv from the Canvas page.
- Save to your computer and set your working directory to match that location.
- Run diamonds <- read.csv("diamonds.csv", as.is = TRUE).
- Note that we could have just ran the line of code:
- diamonds <- read.csv("diamonds.csv", as.is = FALSE).
- as.is = FALSE converts all character variables to factors.

Info on ~ 54000 diamonds from www.diamondse.info.

Variables

- Carat Weight of the diamond (0.2 5.01).
- Color Diamond color from J (worst) to D (best).
- Clarity A measurement of how clear the diamond is (I1 (worst), SI1, SI2, VS1, VS2, VVS1, VVS2, IF (best)).
- Cut Quality of the cut (Fair, Good, Very Good, Premium, Ideal).
- Price Price in US dollars.

Code example.

Think by yourself for a few minutes: what are some interesting questions we could answer using this dataset?

Think by yourself for a few minutes: what are some interesting questions we could answer using this dataset?

Some ideas:

- What does the distribution of diamond prices look like? Symmetric?
 Skewed?
- How does a diamond's price relate to its weight?
- Does the relationship between the price and the weight change depending on the quality of the diamond's cut?

Exploratory Data Analysis ¹

Exploratory Data Analysis, or EDA for short, is exploring data in a systematic way.

It's an iterative process:

- 1. Generate questions about your data.
- Search for answers by visualizing, transforming, and modelling your data.
- 3. Use what you learn to refine your questions and or generate new questions.

¹EDA slides developed from G. Grolemund and H. Wickham.

Exploratory Data Analysis

EDA is a way for you to learn about and better understand your data.

Asking Questions

- 1. What type of variation occurs within my variables?
- 2. What type of covariation occurs between my variables?

We focus on each of these questions separately.

Variation

Variation is the tendency of measured values of a variable to change measurement-to-measurement.

- Visualizing the distribution of a variable is the best way to understand the patterns of a variable's variance.
- Visualize the distribution of a categorical variable using a bargraph.
- Visualize the distribution of a continuous variable using a histogram (or boxplot).

Produce a bargraph using barplot(heights, labels) where heights is a vector of values for the heights of each bar and labels is an optional vector of labels for each bar.

- Can use table() as input for the bar heights.
- The order that table() uses is the order of the factor levels of its input.

Plotting a Bargraph of Diamond Cut

> table(diamonds\$cut)

```
Fair Good Ideal Premium Very Good
1610 4906 21551 13791 12082
```

> names(table(diamonds\$cut))

```
[1] "Fair" "Good" "Ideal" "Premium"
```

[5] "Very Good"

Plotting a Bargraph of Diamond Cut

```
> barplot(height = table(diamonds$cut),
+ names.arg = names(table(diamonds$cut)))
```


Plotting a Bargraph of Diamond Cut

Oops! The order should be Fair, Good, Very Good, Premium, Ideal.

Plotting a Bargraph of Diamond Cut

```
> levels(diamonds$cut)
[1] "Fair" "Good"
                            "Ideal"
                                        "Premium"
[5] "Very Good"
> diamonds$cut <- factor(diamonds$cut, level = c("Fair",
                        "Good", "Very Good", "Premium",
+
+
                        "Ideal"))
> levels(diamonds$cut)
[1] "Fair"
                "Good"
                            "Very Good" "Premium"
[5] "Ideal"
```

Plotting a Bargraph of Diamond Cut

Histograms in R

Produce a histogram using hist(values) where values is a vector of values.

- A histogram divides the x-axis into equally-spaced bins with the height of the bars used to indicate the number of observations falling within the bin.
- Change the width of the histogram's bins using break = argument.
 This specifies the number of bins.
- Make sure to explore different binwidths as different widths will display different patterns in the data.

Histograms in R

Plotting a Bargraph of Diamond Cut

```
> hist(diamonds$carat, main = "Histogram of Carats",
+ xlab = "Carats")
```

Histogram of Carats

Histograms in R

Plotting a Bargraph of Diamond Cut

```
> hist(diamonds$carat[diamonds$carat < 3], breaks = 100,
+ main = "Histogram of Carats", xlab = "Carats")</pre>
```

Histogram of Carats

Visualizing Variation

What should we be looking for in these plots?

- Use the plots to create new questions.
 - What do you want to learn more about?
 - Are there any interesting patterns I want to explore.
- Use the plots to better understand the data.
 - Do these plots match my expectations? Why or why not?
 - Do the data cluster in interesting ways?
 - What are the typical values? Outliers? Why?
 - How could this be misleading?

Visualizing Variation

Histogram of Carats

Covariation

Covariation is the tendency for the values of two or more variables to vary together in a related way.

- Visualizing the relationship between variables is the best way to spot covariation.
- Visualize the distribution of a categorical variable and a continuous variable using a boxplot.
- Visualize the distribution of two continuous variables using a scatterplot.

Boxplots in R

Produce a boxplot (box-and-whisker plot) using boxplot(values \sim group) where values is a vector of data to be split according to group.

- The box stretches from the 25^{th} percentile of the distribution to the 75^{th} percentile (the IQR).
- The line in the middle is the median.
- The 'whiskers' extend to 1.5 times the IQR on either end.

Boxplots in R

Plotting a Boxplot of Diamond Price by Cut

```
> boxplot(price ~ cut, data = diamonds, ylab = "Price",
+ xlab = "Cut")
```


Scatterplot in R

Produce a scatterplot using plot(x,y) where x is a vector of x-values and y a vector of y-values.

Scatterplot in R

Plotting a Scatterplot of Diamond Price vs. Carat

```
> plot(diamonds$carat, diamonds$price, xlab = "Carats",
+ ylab = "Price ($)")
```


Visualizing Covariation

If a relationship exists between two variables it will show up as patterns in your plots.

Ask yourself the following questions.

- Is that pattern random (due to chance)?
- What relationship does the pattern imply?
- Is the relationship strong, weak, linear, non-linear, etc.?
- What other variables might affect the relationship?
- Does the relationship change if you look at individual subgroups of the data?

Boxplots in R

```
> boxplot(carat ~ cut, data = diamonds, ylab = "Carats",
+ xlab = "Cut")
```


Often Visualization Isn't Enough

- Difficult to understand the relationship between price and cut because price and carat and carat and cut are also related.
- Here we would need to use a model (last class, linear models) to consider all these relationships simultaneously.

Basics of Plotting

The plot() function.

- The foundation of many of R's graphics functions.
- Often one builds up the graph in stages with plot() as a base.
- Each call to plot() begins a new graph window.
- Takes arguments, called *graphical parameters*, to change various aspects of the plot. (?par)

Back to the diamonds.

First, we create a smaller dataset from diamonds by randomly selecting 1000 rows.

```
> rows <- dim(diamonds)[1]
> small_diam <- diamonds[sample(1:rows, 1000), ]</pre>
```

```
> plot(log(small_diam$carat), log(small_diam$price),
+ col = small_diam$cut)
> legend("bottomright", legend = levels(small_diam$cut),
+ fill = 1:length(levels(small_diam$cut)), cex = .5)
```


Adding Lines to a Scatterplot

- Add a straight line with abline(int, slope).
 - int is the intercept of the line.
 - slope is the slope of the line.
- lines() can also be used.
 - Most simply, pass lines() x and y vectors and it connects the points.

```
> abline(8, 0, col = "orange", lty = 2)
> lm1 <- lm(log(small_diam$price) ~ log(small_diam$carat))
> abline(lm1)
```


Let's instead plot a regression line for each cut separately.

How do we do this?

• Think about this task for a moment.

Let's instead plot a regression line for each cut separately.

```
> cuts <- levels(small diam$cut)</pre>
> col counter <- 1
> for (i in cuts) {
  this_cut <- small_diam$cut == i
 this_data <- small_diam[this_cut, ]
 this_lm <- lm(log(this_data$price)
+
                      ~ log(this_data$carat))
+
   abline(this_lm, col = col_counter)
+
+
    col_counter <- col_counter + 1</pre>
+ }
```


Adding Points to a Scatterplot

- Most easily done with points(x,y).
- (x,y) is the location of the point to be added.
- example(points) could be helpful.

We add a new point for a diamond that is \$898 and 0.67 carats.

Adding Text to a Scatterplot

- Most easily done with text(x,y, label).
 - (x,y) is the location of the text to be added.
 - label is the the text to be added at the specified location.
- The locator() function we saw in Lecture 1 can be useful here.

We add text to the new point we just added.

$$> \text{text}(-0.4, 6.8 - .2, "New Diamond", cex = .5)$$

Useful Graphical Parameters

The table below lists a selection of R's graphical parameters. More info at http://www.statmethods.net/advgraphs/parameters.html or using ?par.

Parameter	Description
pch	Point Character. Character of the points in the plot.
main	Title of the plot.
xlab, ylab	Axes labels.
lty	Line Type. E.g. 'dashed', 'dotted', etc.
lwd	Line Width. Line width relative to default $= 1$.
cex	Character Expand. Character size relative to default $= 1$.
xlim, ylim	The limits of the axes.
mfrow	Plot figures in an array (e.g. next to each other).
col	Plotting color.

Saving graphs to Files

Coding Example.

Optional Reading

- Chapter 2 (2.3.2, 2.3.5) An Introduction to Statistical Learning.
- Chapter 7 (Exploratory Data Analysis) in R for Data Science.

Moving on from Base R Graphics

- We will learn about more advanced plotting tools using the ggplot2 package soon.
- Base R graphics are good when you want to produce something quick, like for EDA.
- ggplot2 provides more sophisticated graphing tools for communicating your results.