ADVERSARIAL ATTACKS AND DEFENSES

Salma ELGHOURBAL Matteo BARBIERI Lea AMAR Hassan EL MANSOURI KHOUDARI

1.

Fast gradient method

Attack and defense

FGSM (Goodfellow et al. 2015)

1- Modèle de base pour la classification des images de CIFAR-10

Images test normales	attaques avec $eps = 0.01$	attaques avec $eps = 0.03$
85%	31%	8%

Performance du modèle de base sur une attaque FGSM

2- Modèle entraîné sur des images normales et des images générées par FGSM

Images test normales	attaques avec $eps = 0.01$	attaques avec $eps = 0.03$
77%	33%	21%

Performance du modèle robuste sur une attaque FGSM

$$x' = x + \epsilon \cdot \nabla_x (J(x, \theta, y))$$

Feature denoising for improving adversarial robustness (Facebook 2019)

2- A denoising block

1×1 conv

denoising

operation

Modèle

3-Comparison with a normal model adversially trained

1- Noise in the feature maps

2.

Projected gradient descent

Attack and defense

Présentation de l'attaque

Paramètres utilisées:

$$-x_{t+1} = \Pi_{B(0,\delta)}[x_t + \varepsilon \nabla J(x_t, y, \theta)]$$

$$-\varepsilon = 0.006$$

$$-\delta = 0.03$$

Images test normales	attaques avec $iter = 3$	attaque avec $iter > 5$
83.58%	3.27%	< 0.12%

FIGURE 9 - Performance du modèle de base

On préfère avoir de petites perturbations à chaque itération et choisir un nb_iter relativement grand.

Défense adversariale

$$\tilde{J}(x, \theta, y) = a \cdot J(x, \theta, y) + (1 - a) \cdot J(pgd(x), \theta, y)$$

Images test normales	attaques avec $iter = 5$	attaque FGSM $\epsilon = 0.03$
62%	15%	30%

Figure 8 – Performance du modèle robuste

- La précision sur les images originale passe de 80% à 60%, ce qui est normal dans ce cas (nous n'avons pas pu entraîner le modèle aussi longtemps que le modèle de base, donc la différence pourrait en découler)
- Le modèle robuste fonctionne mieux sur les images attaquées que son homologue régulier stagnant à environ 17% pour les itérations> 5, tandis que le modèle de base chute à 0% de précision.
- Le modèle robuste se défend mieux contre les attaques FGSM avec une précision de 30% contre 21% pour la défense utilisant FGSM.

Generative Adversarial Network

Attack and defense

Générer des exemples contradictoires

2 types d'attaques : Targeted #Untargeted

- Targeted : image perturbée à classifier dans une classe donnée
- Untargeted: L'image n'est pas correctement labellisée

White-box attack sur le modèle de base

- *x* : image originale
- \rightarrow Génération d'une perturbation $\mathcal{G}(x)$
- \rightarrow Discrimant s'assure que $x+\mathcal{G}(x)$ est réaliste
- → Adversarial loss:

 $\mathcal{L} = \operatorname{Ex} \log \mathcal{D}(x) + \operatorname{Ex} \log (1 - \mathcal{D}(x + \mathcal{G}(x)))$

→ Loss du générateur :

Figure 1: Overview of AdvGAN

Test des exemples contradictoires

Target model loss

Target model accuracy

Perturbation size

ANNEXE

FGSM (Goodfellow et al. 2015)

Visualisations d'attaques avec les prédictions et confiances du modèle