DATASCI207-005/007 Applied Machine Learning

Vilena Livinsky, PhD(c)

School of Information, UC Berkeley

Week 3: 01/22/2025 & 01/23/2025

Today's Agenda

- Review: Linear Regression & Gradient Descent
- Feature Engineering
- Walkthroughs:
 - Feature Engineering
 - TensorFlow

Final Project: Step 1 (Reminder)

Form a group

3-4 people, max 4

NO silos or groups of 2

Groups can only be composed of you and your colleagues in your section

Inform me & the class of your formed group in Slack

Include names of group members

Due date: 01/24/2025 EOD

General Plan:

Step 1: form a group

Step 2: submit your group's question to investigate + dataset

Step 3: a baseline presentation

Step 4: final presentation

Linear Regression & Gradient Descent (Review)

- Training:
 - · Get data
 - Initialize weight/s
 - Initialize bias
- Given data
 - Get prediction
 - Get error
 - Update weight, use

Gradient Descent

Repeat

```
# Run gradient descent
learning_rate = 0.1

preds = np.dot(X, W)
loss = ((preds - Y)**2).mean()
gradient = 2 * np.dot((preds - Y), X) / m
W = W - learning_rate * gradient

print('predictions:', preds)
print('loss:', loss)
print('gradient:', gradient)
print('weights:', W)

predictions: [6 5]
loss: 16.0
gradient: [8. 20. 12. 4.]
weights: [0.2 -1. -0.2 0.6]
```


Raschka, S., & Mirjalili, V. (2019). Python Machine Learning, Third Edit.

Single Layer Neural Net & Activation Function(s)

Raschka, S., & Mirjalili, V. (2019). Python Machine Learning, Third Edit.

Practice

What is the activation function for Linear Regression? What does it do?

Consider:

 $net input z = \mathbf{w}^T \mathbf{x}$

linear activation function, $\phi(z)$,

$$\phi(\mathbf{w}^T\mathbf{x}) = \mathbf{w}^T\mathbf{x}$$

Look up in Keras API docs:

- -look in "layer activation functions" section
- what is a "linear" activation function? what does it do?
- -look at the "Dense layer" section
- What does activation=None mean?

```
def build_model(num_features):
    """Return a simple linear regression model using the Keras Seguential API.""
  # Clear session and set a random seed for consistent behavior.
    tf.keras.backend.clear_session()
    tf.random.set seed(0)
  # Use Keras Sequential API to build a linear regression model.
    model = keras.Sequential()
    # create input layer
    model.add(tf.keras.Input(shape=(num_features,),
         name='Input'
    ))
    # create output layer
    model.add(keras.layers.Dense(
      activation = None,
                                           activation is used
                                  # there is a single output
      units=1,
      use bias=True
                                  # include a learned bias parameter
  # Use mean squared error as our loss and the Adam optimizer.
    optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
    model.compile(loss='mse', optimizer=optimizer)
    return model
# Build a model
model = build model(num features=temp X train.shape[1])
```

Gradient Descent

- Consider (ex. Linear Regression):
 - What is the advantage of having a continuous linear activation function?
 (Hint: consider this in the context of the cost function)
 - What about the cost function being convex?

Regression Evaluation Metrics

Squared Loss

Mean Squared Error (MSE)

Mean Absolute Error (MAE)

$$J = \sum_{n=1}^{N} \left(y^{(n)} - f(\mathbf{x}^{(n)}; \mathbf{w}) \right)^2$$

Regression Evaluation Metrics

Squared Loss

$$J = \sum_{n=1}^{N} \left(y^{(n)} - f(\mathbf{x}^{(n)}; \mathbf{w}) \right)^{2}$$

Mean Squared Error (MSE)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$J(w_0, w_1) = \frac{1}{m} \sum_{i} (w_0 + w_1 x_i - y_i)^2$$

- Accounts for data size
- Penalizes large outliers (sensitive to outliers)

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

Scaled to outcome variable

Mean Absolute Error (MAE)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

- Robust to outliers
- Uses absolute value such that large errors do not disproportionately affect the overall loss (vs. MSE where we have squared errors)

Consider:

- Sensitivity of the loss function to outliers
 - Do we want to penalize outliers/skewed data points during training?
- Interpretability
- Some loss functions are more computationally intensive
- Convergence properties: Convexity of a loss function

Visualizing our data

Where to start?

Visualise your data!

Data Visualization

Scatterplot matrix

graphical summary of the relationships

- Chapter Exs.:
 - https://learning.oreilly.com/library/view/python-machinelearning/9781789955750/Text/Chapter_10.xhtml#_idParaDest-194
- Corresponding Git:
 - https://github.com/rasbt/python-machine-learning-book-3rdedition/blob/master/ch10/ch10.ipynb

Correlation Matrix

- The correlation matrix
 - square matrix
 - Pearson product-moment correlation coefficient (Pearson's r)
 - measures the linear dependence between pairs of features
 - range –1 to 1
- correlation matrix array as a heat map:

									•		<u> </u>
1	ID	Ī	Country	y	Ī	Age	Ī	Income	լկ	Loan_Approved	
- -		- -			- -		- -		- - -		
- 1	1	1	United	States	1	25	1	50000	Щ	Yes	
	2	1	United	States	1	30	Т	60000	Щ	No	
- 1	3	1	United	States	1	22	1	40000	Щ	Yes	1
	4	1	United	States	1	28	Т	45000	Ш	Yes	
-1	5	1	United	States	1	35	1	70000	1	No	l
	6	1	United	States	1	40	Т	75000	Ш	Yes	
	7	1	United	States	1	29	Т	52000	Щ.	No	
	8	1	United	States	1	33	Т	68000	1	Yes	
	9		United	States		26		47000	1	No	
	10	1	United	States	I	31	1	65000	ij.	Yes	I
									1		

Which fields (columns) might be on first sight usable for building a predictive model?

• Target variable: Loan_Approved

,					Goal:		Anomaly Detection
Raw Data	Derived	Description	Missing Val	Imputation	Data for the model build:		historical records
Field	Feature		Reason	Strategy	Time frame for training:		?
	Name				Time frame for testing:		?
					root time: string (nul user_id: integer attachment: strin	(nullable	e = true)
					time	+ user_id	attachment
					2025-01-23 16:30:00 2025-01-23 16:32:00		quarterly_report.pdf budget_projection_2025.xlsx
					2025-01-23 16:34:00 2025-01-23 16:36:00 2025-01-23 16:38:00 2025-01-23 16:40:00	1004 1005 1006	client_presentation.pptx employee_handbook_2025.pdf investment_analysis.docx financial_report_2024.pdf
					2025-01-23 16:42:00 2025-01-23 16:44:00 2025-01-23 16:46:00 2025-01-23 16:48:00 +	1008 1009	<pre>project_plan_Q1_2025.xlsx HR_policies_2025.pdf IT_security_policies.pdf compliance_audit_report.pdf </pre>

					Goal:		Anomaly Detection
Raw Data Field	Derived Feature	Description	Missing Val Reason	Imputation	Data for the model build:		historical records
rieta	Name		Neason	Strategy	Time frame for training:		?
user_id,	login_count	Num of			Time frame for testing:		?
time	togiii_count	logins for a user on day			root time: string (nul user_id: integer attachment: strin	(nullable	e = true)
					time	user_id	attachment
					2025-01-23 16:30:00 2025-01-23 16:32:00 2025-01-23 16:34:00 2025-01-23 16:36:00 2025-01-23 16:38:00 2025-01-23 16:40:00 2025-01-23 16:42:00 2025-01-23 16:44:00 2025-01-23 16:44:00	1002 1003 1004 1005 1006 1007	budget_projection_2025.xls client_presentation.pptx employee_handbook_2025.pdf
					2025-01-23 16:48:00		

Raw Data Field	Derived Feature Name	Description	Missing Val Reason	Imputation Strategy
user_id, time	login_count	Num of logins for a user on day		
user_id, time	login_30avg	login_count / avg logins per day for last 30 days for user	Denominato r is Null: last 30 days no logins	Impute denominato r with 1
attachment				
time				

2025-01-23 16:30:00 1001 quarterly_report.pdf 2025-01-23 16:32:00 1002 budget_projection_2025.xlsx 2025-01-23 16:34:00 1003 client_presentation.pptx 2025-01-23 16:36:00 1004 employee_handbook_2025.pdf 2025-01-23 16:38:00 1005 investment_analysis.docx 2025-01-23 16:40:00 1006 financial_report_2024.pdf 2025-01-23 16:42:00 1007 project_plan_Q1_2025.xlsx 2025-01-23 16:44:00 1008 HR_policies_2025.pdf 2025-01-23 16:46:00 1009 IT_security_policies.pdf	time		u:	ser_id		attachment
2025-01-23 16:48:00	2025-01-23 2025-01-23 2025-01-23 2025-01-23 2025-01-23 2025-01-23 2025-01-23	16:32:00 16:34:00 16:36:00 16:38:00 16:40:00 16:42:00 16:44:00	+ 	1002 1003 1004 1005 1006 1007 1008	+	budget_projection_2025.xlsx client_presentation.pptx employee_handbook_2025.pdf investment_analysis.docx financial_report_2024.pdf project_plan_Q1_2025.xlsx HR_policies_2025.pdf

Feature Scaling: PCA

- PCA
 - Reduce dimensions
 - Find features that maximize variance
 - One feature varies more vs others because of their scales, PCA deems feature dominant for direction of the principle component
- Scaling
 - Improves class separability
 - Better model performance
 - https://scikitlearn.org/stable/auto_examples/prepro cessing/plot_scaling_importance.html

Raschka, S., & Mirjalili, V. (2019). Python machine learning: machine learning and deep learning with python, scikit-learn, and tensorflow 2 / Sebastian Raschka, Vahid Mirjalili. (Third edition.). Packt.

Feature Scaling: k-neighbor models

- Ex: subset of 2 features that have values with different orders of magnitude
 - "proline" values: 0 1,000
 - "hue" values: 1 10
 - distances between samples are mostly impacted by differences found in the "proline" feature, while values of the "hue" will be comparatively ignored
- Scaling
 - both scaled values lie on approximately the same scale (-3 – 3)
 - neighbor structure will be impacted by both variables
 - https://scikitlearn.org/stable/auto_examples/prepro cessing/plot_scaling_importance.html

Ref.: Raschka, S., & Mirjalili, V. (2019). Python machine learning: machine learning and deep learning with python, scikit-learn, and tensorflow 2 / Sebastian Raschka, Vahid Mirjalili. (Third edition.). Packt.

Feature Scaling: Common Approaches

Standardization

- Get features to look like standard normally distributed data:
 - zero mean & unit variance

$$x_{std}^{(i)} = \frac{x^{(i)} - \mu_x}{\sigma_x}$$

- Use:
- many ML estimators assume features have vals close to zero/ vary on comparable scales
 - Unscaled data can slow down/ prevent convergence of many gradient-based estimators
 - *Exception: decision tree-based estimators

Normalization

- rescaling of features to a range of [0, 1]
 - · special case of min-max scaling
 - apply the min-max scaling to each feature column

$$x_{norm}^{(i)} = \frac{x^{(i)} - x_{min}}{x_{max} - x_{min}}$$

- Use:
- need values in a bounded interval
 - image processing: pixel intensities have to be normalized to fit within a certain range (ex. consider: 0 to 255 for the RGB color range)
 - typical neural network algorithms require data that's on a 0-1 scale

Refer to Raschka for more info:

Scaling: Implementation

NumPy

```
import numpy as np

# Standardization

x_np = np.asarray(x)
z_scores_np = (x_np - x_np.mean()) / x_np.std()

# Min-Max scaling

np_minmax = (x_np - x_np.min()) / (x_np.max() - x_np.min())
```

```
>>> from sklearn.preprocessing import StandardScaler
>>> stdsc = StandardScaler()
>>> X_train_std = stdsc.fit_transform(X_train)
>>> X_test_std = stdsc.transform(X_test)

>>> from sklearn.preprocessing import MinMaxScaler
>>> mms = MinMaxScaler()
>>> X_train_norm = mms.fit_transform(X_train)
>>> X_test_norm = mms.transform(X_test)
```

Refer to the chapter here:

https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/Text/Chapter_4.xhtml#_idParaDest-89

Corresponding Git:

https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/05_preprocessing-and-sklearn/code/05-preprocessing-and-sklearn_notes.ipynb

Scaling: Implementation

NumPy

```
import numpy as np

# Standardization

x_np = np.asarray(x)
z_scores_np = (x_np - x_np.mean()) / x_np.std()

# Min-Max scaling

np_minmax = (x_np - x_np.min()) / (x_np.max() - x_np.min())
```

```
mu, sigma = X_train.mean(axis=0), X_train.std(axis=0)

X_train_std = (X_train - mu) / sigma
X_valid_std = (X_valid - mu) / sigma
X_test_std = (X_test - mu) / sigma
```

Data Preprocessing: Categorical Values & Missing Data

Notebook:

https://github.com/rasbt/python-machine-learning-book-3rd-edition/blob/master/ch04/ch04.ipynb

Reference Chapter:

https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/Text/Chapter_4.xhtml#_idParaDest-79