Statistical Inference

"Statistics is the grammar of science." – Karl Pearson

Inference v.s. Prediction

- Prediction: finding the best model that generalizes
- Inference: confirming a hypothetical (causal) relationship from data

Bayesian v.s. Frequentist

- Bayesian: parameters are random but data are fixed
 Uncertainty directly available from the posterior distribution
- Frequentist: true parameters fixed but unknown
 Uncertainty as a result from having finite samples

Sampling distributions

The distribution of a statistics under repeated sampling from the same population using the same sampling mechanism

- Acknowledging uncertainty of evidence from data
- · Foundation of statistical reasoning
- Key to propert statistical inference

Example: Central Limit Theorem and Sampling Distribution

Statistical Reasoning

Given that the observations are finite samples from a true distribution...

- Confidence Interval
 A set of estimators that guarantee chosen coverage probability.
- Hypothesis Testing
 Assuming the null hypothesis, is the dataset an extreme case?

Multiple Testing

If one tests infinite number of hypotheses, one of them might be positive by chance

Other Common Tests

- Model-based Tests
- Rank-based Tests
- Simulation-based Tests

Rank-based Tests

One way to avoid parametric assumptions is to consider the order/ranking instead of the actual numeric values.

Let $x_{(1)}, x_{(2)}, \dots, x_{(n)}$ denote the ordered sample. The **rank** of an observation x_i is

$$R_i \ = \ 1 + \# \{ \, x_j : x_j < x_i \, j
eq i \}.$$

Bottom-line: For similar hypotheses, a parametric test is more efficient than a nonparametric test, while the nonparametric offers more robustness towards violation of assumptions.

Model-based Tests

These tests are based on the comparison between two *nested* models, where the full model contain all parameters in the reduced model.

- F-test/ANOVA
- Likelihood ratio test
- ...

Model-based Tests: F-test/ANOVA

Consider a linear regression model

$$\mathbf{y} = \mathbf{X}oldsymbol{eta} + oldsymbol{arepsilon}, \qquad oldsymbol{arepsilon} \sim \mathcal{N}ig(\mathbf{0},\, \sigma^2 \mathbf{I}ig)$$

Want to test q linear constraints $H_0: \ \mathbf{C}oldsymbol{eta} = \mathbf{0}$

Test statistic

$$F = rac{\left(\mathrm{RSS_r} - \mathrm{RSS_f}
ight)/q}{\mathrm{RSS_f}/(n-p)}.$$

where RSS_r is the residual sum of squares from reduced model and RSS_f is the residual sum of squares from the full model.

Then under the null hypothesis $F \sim F_{q,\ n-p} \ \ q$ = 1 here.

Likelihood Ratio test (LRT)

Using the logistic regression as an example

$$\Pr(Y=1\mid \mathbf{x}) \ = \ \operatorname{logit}^{-1}(eta_0 + eta_1 \operatorname{age} + eta_2 \operatorname{smoke}).$$

To test $H_0: \beta_2 = 0$ ("smoking not associated"):

$$\Lambda = -2 igl[\log \mathcal{L}_{
m r} - \log \mathcal{L}_{
m f} igr],$$

where \mathcal{L}_r is the likelihood of the reduced model and \mathcal{L}_f is the likelihood of the full model.

Under H_0 , $\Lambda
ightarrow \; \chi^2_{df=1}$ as sample size approaches infinity.

Assumptions

Correctly specified likelihood (independence, link function); sample size large enough.

Note: For linear regression with normal errors, F-test is equivalent to LRT as sample size approaches infinity.

Simulation-based Tests

Hypothesis testing hinges on the null distribution of a chosen test statistic.

When the closed-form null distribution is unavailable, we can approximate it.

- Simulation
 - Using Monte-Carlo methods to obtain the null distribution
 - Need to know the true distribution
 - Uncommon in practice but require no calculous
- Permutation
 - Shuffling data to break possible relationships
 - Work for specific null hypotheses
 - Limited applications but assumption-less
- Bootstrap

- Approximate sampling distribution via resampling
- Require large sample size
- Computationally expansive but universal

© 2025 Shizhe Chen. All rights reserved.