PX915 Summer Project - Ben Gosling

Generated by Doxygen 1.8.17

1 Data Type Index	1
1.1 Data Types List	1
2 Data Type Documentation	3
2.1 py_scripts.distribution_calc.dist_f Class Reference	3
2.1.1 Detailed Description	4
2.1.2 Constructor & Destructor Documentation	4
2.1.2.1init()	4
2.1.3 Member Function Documentation	4
2.1.3.1 plot_p_dist_func()	4
2.1.3.2 read_dist_data()	5
2.2 py_scripts.fields_calc.EM_fields Class Reference	5
2.2.1 Detailed Description	6
2.2.2 Constructor & Destructor Documentation	6
2.2.2.1init()	6
2.2.3 Member Function Documentation	6
2.2.3.1 get_2D_Electric_Field_x()	6
2.2.3.2 get_2D_Electric_Field_y()	7
2.2.3.3 get_2D_FFT()	7
2.2.3.4 get_2D_Magnetic_Field_z()	7
2.2.3.5 get_filtered_signals()	8
2.2.3.6 get_flux()	8
2.2.3.7 get_flux_grid_av()	9
2.2.3.8 get_space_FFT()	9
2.2.3.9 get_time_FFT()	9
2.3 py_scripts.hot_elec_calc.hot_electron Class Reference	10
2.3.1 Constructor & Destructor Documentation	11
2.3.1.1init()	11
2.3.2 Member Function Documentation	11
2.3.2.1 fit_maxwellians()	11
2.3.2.2 get_energy_frac()	11
2.3.2.3 get_flux_dist()	12
2.3.2.4 get_hot_e_temp()	12
2.3.2.5 split_dist()	13
2.4 py_scripts.plasma_calc.Laser_Plasma_Params Class Reference	13
2.4.1 Detailed Description	15
2.4.2 Constructor & Destructor Documentation	15
2.4.2.1init()	15
2.4.3 Member Function Documentation	15
2.4.3.1 get_matching_conds()	15
2.4.3.2 get_plasma_param()	16
2.4.3.3 get_spatio_temporal()	16

 17
 16

Chapter 1

Data Type Index

1.1 Data Types List

Here are the data types with brief descriptions:

py_scripts.distribution_calc.dist_f	
Dist_f Class	3
py_scripts.fields_calc.EM_fields	
EM_fields Class	5
py_scripts.hot_elec_calc.hot_electron	10
py_scripts.plasma_calc.Laser_Plasma_Params	
Laser_Plasma_Params Class	13

2 Data Type Index

Chapter 2

Data Type Documentation

2.1 py_scripts.distribution_calc.dist_f Class Reference

dist_f Class.

Public Member Functions

```
    def __init__ (self, dir)
        init
    def read_dist_data (self)
        read_dist_data
    def plot_p_dist_func (self, smooth=False, scaled_x=False, plot_hot_e=False)
        plot_p_dist_func
```

Public Attributes

- · directory
- files
- · nfiles
- p_range
- p_max
- p_min
- res
- · epoch_data
- v_th
- p_norm
- times
- dist_funcs
- smooth_dist_funcs
- · dist_funcs_av
- smooth_dist_funcs_av
- · momenta_bins
- energy_bins
- · energy_bins_keV
- area_av
- max_boltz_eq
- plot_dist_funcs
- · plot_dist_funcs_av
- y_max
- y_min

2.1.1 Detailed Description

dist_f Class.

Class that reads and outputs the electron momentum distrubution function from output dist_ .. .sdf files.

2.1.2 Constructor & Destructor Documentation

```
2.1.2.1 __init__()
```

init

The constructor

Parameters

se	elf	The object pointer
dii	r	Directory where data is stored (str)

2.1.3 Member Function Documentation

2.1.3.1 plot_p_dist_func()

plot_p_dist_func

Plots all distribution functions

self	The object pointer
smooth	(Logical) Smooths out function of random zeros
scaled_x	(Logical) Scales momentum using p_norm
plot_hot←	(Logical) Plots hot electron tail
e	

2.1.3.2 read dist data()

```
\label{lem:calc.dist_f.read_dist_data} \mbox{def py\_scripts.distribution\_calc.dist\_f.read\_dist\_data} \mbox{ (} \\ self \mbox{ )}
```

read_dist_data

Read and store distrinution functions at output times

Parameters

```
self The object pointer
```

The documentation for this class was generated from the following file:

• /home/u1706745/summer_project/epoch_surra/py_scripts/distribution_calc.py

2.2 py_scripts.fields_calc.EM_fields Class Reference

EM fields Class.

Public Member Functions

```
• def __init__ (self, dir)
• def get_2D_Electric_Field_x (self)
     get_2D_Electric_Field_x

    def get_2D_Electric_Field_y (self)

     get_2D_Electric_Field_y

    def get_2D_Magnetic_Field_z (self)

     get_2D_Magnetic_Field_z
• def get_2D_FFT (self, field, square_mod=True)
     get_2D_FFT
• def get_time_FFT (self, field, square_mod=True)
     get time FFT

    def get_space_FFT (self, field, square_mod=True)

     get_space_FFT
• def get filtered signals (self, laser=False, plot E=False, plot B=False)
     get_filtered_signals

    def get_flux (self, laser=False, time_series=False)

     get_flux
• def get_flux_grid_av (self, ncells=50, laser=False)
     get_flux_grid_av
```

Public Attributes

- directory
- · epoch_data
- timesteps
- nx

2.2.1 Detailed Description

EM fields Class.

Class that reads and calculates field quantities from fields_ output files.

2.2.2 Constructor & Destructor Documentation

init

The constructor

Parameters

self	The object pointer
dir	Directory where data is stored (str)

2.2.3 Member Function Documentation

2.2.3.1 get_2D_Electric_Field_x()

```
\label{lem:continuous} $\operatorname{def\ py\_scripts.fields\_calc.EM\_fields.get\_2D\_Electric\_Field\_x} \ ($\operatorname{self\ }$) $ \operatorname{get\_2D\_Electric\_Field\_x}
```

Get time and space data of Ex field i.e Ex(x,t)

Parameters

self The object po	inter
--------------------	-------

2.2.3.2 get_2D_Electric_Field_y()

```
def py_scripts.fields_calc.EM_fields.get_2D_Electric_Field_y ( self \ )
```

get_2D_Electric_Field_y

Get time and space data of Ey field i.e Ey(x,t)

Parameters

```
self The object pointer
```

2.2.3.3 get_2D_FFT()

get_2D_FFT

Get 2D FFT (i.e space and time) for specific field

Parameters

self	The object pointer
field	EM Field to FFT (inputs are either 'Ex', 'Ey', 'Bz')
square_mod	(Logical) outputs the sqaured modulus of the FFT

2.2.3.4 get_2D_Magnetic_Field_z()

```
def py_scripts.fields_calc.EM_fields.get_2D_Magnetic_Field_z ( self )
```

get_2D_Magnetic_Field_z

Get time and space data of Bz field i.e Bz(x,t)

Parameters

```
self The object pointer
```

2.2.3.5 get_filtered_signals()

get_filtered_signals

Finds filtered signals of Ey and Bz fields (either laser signal or SRS signal)

Parameters

self	The object pointer
laser	(Logical) Whether to output laser sginal (true) or SRS signal (false)
plot⊷ _E	(Logical) Whether to plot the filter result at set grid point to test if it works (Ey field)
plot← _B	(Logical) Whether to plot the filter result at set grid point to test if it works (Bz field)

2.2.3.6 get_flux()

get_flux

Finds Poynting flux in x direction Sx = (EyBz-ByEz)/mu0 (SRS produces scattered light with same polarisation as the laser (i.e Ez and By are negliable) thus Sx = EyBz/mu0)

self	The object pointer
laser	(Logical) Whether to use laser sginal (true) or SRS signal (false)
plot⊷	(Logical) Whether to output the Sx time series (true) or the time average (false)
_ <i>E</i>	

2.2.3.7 get_flux_grid_av()

get_flux_grid_av

Averages Poynting flux over ncells (near LH boundary for backscatter SRS and RH boundary for laser)

Parameters

self	The object pointer
ncells	Number of cells to average over (default 50)
laser	(Logical) Whether to use laser sginal (true) or SRS signal (false)

2.2.3.8 get_space_FFT()

get_space_FFT

Produces 1D space FFT for specific field

Parameters

self	The object pointer
field	EM Field to FFT (inputs are either 'Ex', 'Ey', 'Bz')
square_mod	(Logical) outputs the sqaured modulus of the FFT

2.2.3.9 get_time_FFT()

get_time_FFT

Produces 1D time FFT for specific field

Parameters

self	The object pointer
field	EM Field to FFT (inputs are either 'Ex', 'Ey', 'Bz')
square_mod	(Logical) outputs the sqaured modulus of the FFT

The documentation for this class was generated from the following file:

• /home/u1706745/summer_project/epoch_surra/py_scripts/fields_calc.py

2.3 py_scripts.hot_elec_calc.hot_electron Class Reference

Public Member Functions

```
    def __init__ (self, dir)
        init
    def get_flux_dist (self, plot=False, log=False)
        get_flux_dist
    def split_dist (self, n=3, plot=False, log=False)
        split_dist
    def fit_maxwellians (self, n=3, plot=False, log=False)
        fit_maxwellians
    def get_hot_e_temp (self, n=3, av=True, plot=False)
        get_hot_e_temp
    def get_energy_frac (self)
        get_energy_frac
```

Public Attributes

- · directory
- · epoch_data
- nbins
- E_data
- E_bins
- idx
- flux_parts
- E_parts
- T_vals
- · scaled_fits
- · MB_fits
- · amplitudes
- · scaled_fits_full
- final_fit
- T_hot
- T_hot_av
- E_hot_frac

2.3.1 Constructor & Destructor Documentation

2.3.1.1 __init__()

init

The constructor

Parameters

self	The object pointer
dir	Directory where data is stored (str)

2.3.2 Member Function Documentation

2.3.2.1 fit_maxwellians()

fit_maxwellians

Fit Maxwellian like distributions to split distribution

Parameters

self	The object pointer
n	Number of segments (default is 3)
plot	(Logical) Plot distribution
log	(Logical) Set y-axis scaling to log

2.3.2.2 get_energy_frac()

```
def py_scripts.hot_elec_calc.hot_electron.get_energy_frac ( self \ )
```

get_energy_frac

Estimates the fraction of outgoing energy being due to hot electrons. Taken to be the ratio of the area under the curve of the hot electron region to the area of the whole distribution. The hot electron region is assumed to be zero if distribution never significantly deviates from the initial Maxwellian.

Parameters

self	The object pointer
n	Number of segments (default is 3)
plot	(Logical) Calculate average value across various number of fits
plot	(Logical) Plot T_hot vs number of fits

2.3.2.3 get_flux_dist()

get_flux_dist

Produce energy distribution/histogram of outgoing electron flux

Parameters

self	The object pointer
plot	(Logical) Plot distribution
log	(Logical) Set y-axis scaling to log

2.3.2.4 get_hot_e_temp()

get_hot_e_temp

Estimate singular hot electron temperature from weighted average of T from the Maxwellian fits, where the weights correspond to the found amplitude.

Parameters

self	The object pointer
n	Number of segments (default is 3)
plot	(Logical) Calculate average value across various number of fits
plot	(Logical) Plot T_hot vs number of fits

Generated by Doxygen

2.3.2.5 split_dist()

split_dist

Split found distribution into similar sized segments

Parameters

self	The object pointer
n	Number of segments (default is 3)
plot	(Logical) Plot distribution
log	(Logical) Set y-axis scaling to log

The documentation for this class was generated from the following file:

• /home/u1706745/summer_project/epoch_surra/py_scripts/hot_elec_calc.py

2.4 py_scripts.plasma_calc.Laser_Plasma_Params Class Reference

Laser_Plasma_Params Class.

Public Member Functions

```
    def __init__ (self, dir)
        init
    def read_data (self)
        read_data
    def get_spatio_temporal (self, mic=False)
        get_spatio_temporal
    def get_plasma_param (self)
        get_plasma_param
    def get_matching_conds (self, ne)
        get_matching_conds
    def get_srs_phase_vel (self, ne)
        get_srs_phase_vel
```

Public Attributes

- · directory
- · intensity
- · wavelength
- · timesteps
- omega0
- critical_density
- k0_vac
- ppc
- Ln
- grid_data
- field_data_0
- · field_data_1
- · data_final
- · grid
- nodes
- dx
- Lx
- nx
- · dt
- · t_end
- time
- k_space
- omega_space
- ne_data
- ne
- · ne_min
- ne_max
- · omega_pe_data
- · omega_pe
- omega_pe_min
- omega_pe_max
- k0
- · Te_data
- Te
- · Te_kelvin
- v_th
- · deb_len
- · k_epw_bs
- omega_epw_bs
- k_bs
- omega_bs
- omega_bs_norm
- k_bs_norm
- · k_epw_bs_norm
- k_epw_fs
- omega_epw_fs
- k_fs
- omega_fs
- omega_fs_norm
- k_fs_norm
- k_epw_fs_norm
- v_phase

2.4.1 Detailed Description

Laser_Plasma_Params Class.

Class that reads and calculates plasama and grid quantities from grid_output files.

2.4.2 Constructor & Destructor Documentation

```
2.4.2.1 __init__()
```

init

The constructor

Parameters

self	The object pointer	
dir	Directory where data is stored (str)	1

2.4.3 Member Function Documentation

2.4.3.1 get_matching_conds()

get_matching_conds

Calculates SRS scattered wavenumber and frequency

self	The object pointer
ne	Electron number density

2.4.3.2 get_plasma_param()

```
\label{lem:condition} \mbox{def py\_scripts.plasma\_calc.Laser\_Plasma\_Params.get\_plasma\_param (} \\ self \mbox{)}
```

get_plasma_param

Calculates plasma parameters/variables

Parameters

self	The object pointer

2.4.3.3 get_spatio_temporal()

get_spatio_temporal

Reads the initial grid data and other files required to find sim data

Parameters

self	The object pointer
mic	(Logical) Output grid in microns

2.4.3.4 get_srs_phase_vel()

```
def py_scripts.plasma_calc.Laser_Plasma_Params.get_srs_phase_vel ( self, \\ ne \ )
```

get_srs_phase_vel

Calculates SRS (backscatter) phase velocity at n = ne

self	The object pointer
ne	Electron number density

2.4.3.5 read_data()

```
def py_scripts.plasma_calc.Laser_Plasma_Params.read_data ( self \ )
```

read_data

Reads the initial grid data and other files required to find sim data

Parameters

self T	he object pointer
--------	-------------------

The documentation for this class was generated from the following file:

• /home/u1706745/summer_project/epoch_surra/py_scripts/plasma_calc.py

Index

```
init
                                                                _init___, 4
                                                              plot_p_dist_func, 4
     py_scripts.distribution_calc.dist_f, 4
     py scripts.fields calc.EM fields, 6
                                                              read dist data, 5
    py_scripts.hot_elec_calc.hot_electron, 11
                                                         py_scripts.fields_calc.EM_fields, 5
     py_scripts.plasma_calc.Laser_Plasma_Params,
                                                              ___init___, 6
          15
                                                              get_2D_Electric_Field_x, 6
                                                              get_2D_Electric_Field_y, 7
                                                              get_2D_FFT, 7
fit maxwellians
     py_scripts.hot_elec_calc.hot_electron, 11
                                                              get_2D_Magnetic_Field_z, 7
                                                              get filtered signals, 8
get_2D_Electric_Field_x
                                                              get flux, 8
     py_scripts.fields_calc.EM_fields, 6
                                                              get_flux_grid_av, 8
get 2D Electric Field y
                                                              get_space_FFT, 9
    py_scripts.fields_calc.EM_fields, 7
                                                              get_time_FFT, 9
get_2D_FFT
                                                         py_scripts.hot_elec_calc.hot_electron, 10
     py_scripts.fields_calc.EM_fields, 7
                                                               _init__, 11
get 2D Magnetic Field z
                                                              fit_maxwellians, 11
     py_scripts.fields_calc.EM_fields, 7
                                                              get_energy_frac, 11
get_energy_frac
                                                              get_flux_dist, 12
     py_scripts.hot_elec_calc.hot_electron, 11
                                                              get_hot_e_temp, 12
get_filtered_signals
                                                              split_dist, 13
    py_scripts.fields_calc.EM_fields, 8
                                                         py scripts.plasma calc.Laser Plasma Params, 13
get_flux
                                                               init , 15
     py_scripts.fields_calc.EM_fields, 8
                                                              get_matching_conds, 15
get_flux_dist
                                                              get_plasma_param, 15
     py_scripts.hot_elec_calc.hot_electron, 12
                                                              get spatio temporal, 16
get_flux_grid_av
                                                              get_srs_phase_vel, 16
    py_scripts.fields_calc.EM_fields, 8
                                                              read_data, 16
get_hot_e_temp
                                                         read data
     py_scripts.hot_elec_calc.hot_electron, 12
                                                              py_scripts.plasma_calc.Laser_Plasma_Params,
get_matching_conds
     py_scripts.plasma_calc.Laser_Plasma_Params,
                                                         read dist data
         15
                                                              py_scripts.distribution_calc.dist_f, 5
get plasma param
     py_scripts.plasma_calc.Laser_Plasma Params,
          15
                                                              py_scripts.hot_elec_calc.hot_electron, 13
get_space_FFT
    py_scripts.fields_calc.EM_fields, 9
get_spatio_temporal
    py_scripts.plasma_calc.Laser_Plasma_Params,
get_srs_phase_vel
    py_scripts.plasma_calc.Laser_Plasma_Params,
         16
get time FFT
     py_scripts.fields_calc.EM_fields, 9
plot_p_dist_func
     py_scripts.distribution_calc.dist_f, 4
py_scripts.distribution_calc.dist_f, 3
```