Página Principal / Mis cursos / 22-630411 / Tests de repaso/auto-evaluación / Tema1: Complejidad

Comenzado el jueves, 20 de octubre de 2022, 16:12

Estado Finalizado

Finalizado en jueves, 20 de octubre de 2022, 16:29

Tiempo 16 minutos 17 segundos empleado

Calificación 3,33 de 10,00 (33%)

Pregunta 1

Incorrecta

Se puntúa -0,33 sobre 1,00

Indica cuál de las siguientes afirmaciones es correcta para todo k tal que $0 \leq k < 2$

Seleccione una:

- igcup a. $\Omega(n^2)\subset\Omega(n^k)$
- \bigcirc b. $O(n \log n) \subset O(n^k)$
- lacksquare c. $\Omega(n^k)\subset\Omega(n^2)$
- \bigcirc d. $O(n^k) = O(n^2)$

- Afirmación incorrecta para ambos valores de k, ya que $1 \notin \Omega(n^2)$ y $n \notin \Omega(n^2)$.
- a. Afirmación correcta según la jerarquía de órdenes de complejidad.
- b. Afirmación incorrecta: para ambos valores de k se cumple que $O(n^k) \subset O(n \log n)$ pero $n \log n \notin O(1)$ y $n \log n \notin O(n)$.
- c. Afirmación incorrecta para ambos valores de k, ya que $1 \notin \Omega(n^2)$ y $n \notin \Omega(n^2)$.
- d. Afirmación incorrecta, para ambos valores de k $O(n^k) \subset O(n^2)$ pero $n^2 \notin O(1)$ y $n^2 \notin O(n)$.

La respuesta correcta es: $\Omega(n^2)\subset\Omega(n^k)$

Pregunta **2**

Se puntúa 1,00 sobre 1,00

Un algoritmo óptimo que busca el máximo en un vector ordenado de n elementos tiene complejidad en el caso peor:

Seleccione una:

- igorplus a. $\Theta(n^2)$
- \bigcirc b. $\Theta(n \log n)$
- \odot c. $\Theta(n)$
- od. Ninguna de las anteriores.

- \checkmark Cierto. La respuesta correcta es $\Theta(1)$.
- a. Falso. Basta con consultar el primer o último elemento del vector dependiendo de si está ordenado creciente o decrecientemente.
- b. Falso. Basta con consultar el primer o último elemento del vector dependiendo de si está ordenado creciente o decrecientemente.
- c. Falso. Basta con consultar el primer o último elemento del vector dependiendo de si está ordenado creciente o decrecientemente.
- d. Cierto. La respuesta correcta es $\Theta(1)$.

La respuesta correcta es: Ninguna de las anteriores.

Indica la complejidad del siguiente algoritmo

Seleccione una:

 \odot a. $\Theta(n \log m)$

- Falso. El bucle no da un número de vueltas proporcional a $n \log m$.

- igorplus b. $\Theta(n^m)$
- \bigcirc c. $\Theta(n+m)$
- od. Ninguna de las anteriores.
 - a. Falso. El bucle no da un número de vueltas proporcional a $n \log m$.
 - b. Falso. El bucle no da un número de vueltas proporcional a n^m .
 - c. Falso. El bucle no da un número de vueltas proporcional a n+m.
 - d. Cierto. La respuesta correcta es $\Theta(\log n + \log m)$.

La respuesta correcta es: Ninguna de las anteriores.

Pregunta **4**Incorrecta
Se puntúa -0,33 sobre 1,00

Un algoritmo óptimo que comprueba si un vector de n elementos es creciente tiene complejidad en el caso mejor:

Seleccione una:

- \bigcirc a. O(1)
- \odot b. O(n)

Falso. En el caso mejor el vector no cumple la propiedad y se detiene inmediatamente.

- \bigcirc c. $O(n^2)$
- od. Ninguna de las anteriores
 - a. Cierto. En el caso mejor, el vector no cumple la propiedad y se detiene inmediatamente.
 - b. Falso. En el caso mejor el vector no cumple la propiedad y se detiene inmediatamente.
 - c. Falso. En el caso mejor, el vector no cumple la propiedad y se detiene inmediatamente.
 - d. Falso. La respuesta correcta es O(1) .

La respuesta correcta es: O(1)

10/22, 16:34	Tema1: Complejidad: Revision del Intento	
Pregunta 5		
Correcta		
Se puntúa 1,00 sobre	e 1,00	
Indica la comp	lejidad del siguiente algoritmo	
<pre>int c = 0; for (int i = 0</pre>	0; i < 4*n; ++i)	
Seleccione una	a:	
\bigcirc a. $\Theta(n$ $f l$	$\log n)$	
\bigcirc b. $\Theta(1)$		
○ c. Θ(log	$(\mathbf{g}[n])$	
d. Ningu	na de las anteriores.	$ullet$ Cierto. La respuesta correcta es $\Theta(n)$.
b. Falso. El c. Falso. El d. Cierto. La	bucle no da un número de vueltas proporcional a $n\log n$. número de vueltas del bucle no es constante. bucle no da un número de vueltas proporcional a $\log n$. a respuesta correcta es $\Theta(n)$. orrecta es: Ninguna de las anteriores.	
Pregunta 6		
Correcta Se puntúa 1,00 sobre	0.1.00	
se puntua 1,00 sobre		
Un algoritmo c	de coste cuadrático, ¿es preferible a uno de coste constante?	
Seleccione una		
O b. Sí, si e	el tamaño de los datos es suficientemente grande.	
oc. Podría	en algunos casos, para tamaño de datos pequeños.	Cierto.
O d. Nunca	1	
b. False. Pa c. Cierto.	ra tamaños grandes será mejor el constante ra casos grandes será mejor el constante ra tamaños pequeños podría ser mejor el cuadrático	

La respuesta correcta es: Podría en algunos casos, para tamaño de datos pequeños.

Indica cuál de las siguientes afirmaciones es incorrecta

Seleccione una:

- \bigcirc a. $O(\sqrt{n}) \subset O(n^3)$
- igcup b. $\Omega(1)\subset\Omega(n^2)$
- \bigcirc c. $O(\log n) \subset O(2^n)$
- lacksquare d. $\Omega(n!)\subset\Omega(2^n)$

- Afirmación correcta según la jerarquía de órdenes de complejidad.
- a. Afirmación correcta según la jerarquía de órdenes de complejidad.
- b. Afirmación incorrecta. Según la jerarquía de órdenes de complejidad $\Omega(1) \supset \Omega(n^2)$, pero no al revés. En particular, $n \in \Omega(1)$ pero $n \notin \Omega(n^2)$.
- c. Afirmación correcta según la jerarquía de órdenes de complejidad.
- d. Afirmación correcta según la jerarquía de órdenes de complejidad.

La respuesta correcta es: $\Omega(1)\subset\Omega(n^2)$

Pregunta 8

Correcta

Se puntúa 1,00 sobre 1,00

Indica la complejidad del siguiente algoritmo

Seleccione una:

- \odot a. $\Theta(n)$
- \bigcirc b. $\Theta(n \log n)$
- \bigcirc c. $\Theta(n^2)$
- od. Ninguna de las anteriores.

 \checkmark Cierto. El número de vueltas es del orden de n y cada vuelta es de coste constante.

- a. Cierto. El número de vueltas es del orden de n y cada vuelta es de coste constante.
- b. Falso. El número de vueltas es del orden de n.
- c. Falso. El número de vueltas no aumenta con el cuadrado de $\it n$.
- d. Falso. La respuesta correcta es $\Theta(n)$.

La respuesta correcta es: $\Theta(n)$

Pregunta **9**Incorrecta
Se puntúa -0,33 sobre 1,00

Indica la complejidad del siguiente algoritmo

Seleccione una:

- \bigcirc a. $\Theta(1)$
- \odot b. $\Theta(\max(n,m))$

Falso. Del bucle se sale en cuanto una de las dos condiciones se cumple (y no cuando se cumplen las dos).

- igcup c. $\Theta(\mathbf{min}(n,m))$
- Od. Ninguna de las anteriores.
 - a. Falso. El número de vueltas del bucle no es constante.
 - b. Falso. Del bucle se sale en cuanto una de las dos condiciones se cumple (y no cuando se cumplen las dos).
 - c. Cierto. Del bucle se sale en cuanto una de las dos condiciones se cumpla, por lo que el número de vueltas del bucle es proporcional a $\min(n, m)$, y el cuerpo del bucle es de coste constante.
 - d. Falso. La respuesta correcta es $\Theta(\min(n,m))$.

La respuesta correcta es: $\Theta(\min(n,m))$

Pregunta 10

Correcta

Se puntúa 1,00 sobre 1,00

Supongamos una matriz cuadrada v de n filas y columnas, y sea m el número de elementos de la matriz. Indica cuales de las siguientes respuestas representan la complejidad en tiempo del siguiente bucle.

```
int x=0;
for (int i = 1; i < n-1; ++i)
  for (int j = i-1; j <= i+1; ++j)
    x += v[i][j];</pre>
```

Seleccione una o más de una:

- \square a. $\Theta(m^2)$
- lacksquare b. $\Theta(n)$
- \square c. $\Theta(\sqrt{m})$
- \square d. $\Theta(n^2)$

- Cierto. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n ya que el bucle interno da una cantidad constante de vueltas.
- Cierto. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n ya que el bucle interno da una cantidad constante de vueltas y $m=n^2$.
- a. Falso. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n ya que el bucle interno da una cantidad constante de vueltas.
- b. Cierto. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n ya que el bucle interno da una cantidad constante de vueltas.
- c. Cierto. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n ya que el bucle interno da una cantidad constante de vueltas y $m=n^2$.
- d. Falso. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n ya que el bucle interno da una cantidad constante de vueltas.

Las respuestas correctas son: $\Theta(n)$

, $\Theta(\sqrt{m})$

Avisos

Ir a...

Tema 2: Especificacion ►