Equivariant Log-concavity and Equivariant Kahler Packages

(or: Shadows of Hodge Theory)

Tao Gui

joint with Rui Xiong(熊锐)

YMSC Topology Seminar

2022/9/27

- 1 Kähler packages
- 2 Equivariant log-concavity
- 3 Equivariant Kähler packages

- 1 Kähler packages
- 2 Equivariant log-concavity
- 3 Equivariant Kähler packages

What is a Kähler package?

- X: mathematical object of "complex dimension" d
- $H^*(X) = \bigoplus_{k=0}^{2d} H^k(X)$ "cohomology" of X
- $P(-,-): H^k(X) \times H^{2d-k}(X) \to \mathbb{R}, \forall k \leq d$ "Poincaré pairing"
- $L: H^k(X) \to H^{k+2}(X)$ "Lefschetz operator"

We expect that $(H^*, P(-, -), L)$ satisfy:

- Poincaré duality: P(-,-) is non-degenerate.
- Hard Lefschetz ("Théorème de Lefschetz vache"):

$$\forall k \leq d, \quad L^{d-k} : H^k(X) \xrightarrow{\sim} H^{2d-k}(X).$$

Hodge–Riemann relations: the bilinear form

$$\langle -, - \rangle_I = P(-, L^{d-k} -) : H^k(X) \times H^k(X) \longrightarrow \mathbb{R}$$

is $(-1)^k$ -definite on the kernel of L^{d-k+1}

A picture to keep in mind

Kähler packages are both ubiquitous and fundamental

- Smooth complex projective variety/ compact Kähler manifold (Poincaré'1895, Lefschetz'24, Hodge'30s, Chern'51, et. al.)
- Smooth projective variety over \mathbb{F}_q (Grothendieck'68) \Rightarrow Weil conjectures'49
- Singular projective variety (Goresky-MacPherson'80, Beilinson-Bernstein-Deligne'82, et. al.) ⇒ Decomposition theorem
- Polytope (Stanley'80, Bressler-Lunts'03, Karu'04, et. al.)
 - ⇒ Mcmullen g-conjecture'80, Aleksandrov-Fenchel inequality
- Coxeter group (Soergel'92, Elias-Williamson'14, Williamson'16)
 ⇒ Kazhdan-Lusztig conjectures'79, Jantzen conjectures'79
- Matroid (Huh and his collaborators)
 - ⇒ Various combinatorial conjectures

According to Geordie Williamson, this is "A mystery for the 21st century!"

Where and how can we find a Kähler package?

Kähler packages have some numerical shadows:

- Poincaré duality: "Betti numbers" are symmetric! (Poincaré)
- Hard Lefschetz: "Betti numbers" are unimodal in parity! (Stanley)
- Hodge-Riemann relations: "intersection numbers" are log-concave! (Huh)
 Why? Essentially because

$$b^2 \geq ac$$
 if and only if $\begin{vmatrix} a & b \\ b & c \end{vmatrix} \leq 0$.

Miracle: in some cases,

"Betti numbers" = "intersection numbers"!

- 1 Kähler packages
- 2 Equivariant log-concavity
- 3 Equivariant Kähler packages

Log-concavity

• A sequence b_0, b_1, b_2, \ldots of non-negative real numbers is called *log-concave* if, for all i,

$$b_i^2 \geq b_{i-1}b_{i+1}.$$

- A polynomial $f(t) = \sum b_i t^i$ with non-negative coefficients is called log-concave if its sequence of coefficients is log-concave.
- A sequence $b_0, b_1, b_2, ...$ or a polynomial $f(t) = \sum b_i t^i$ is strongly log-concave if, for all $i \leq j \leq k \leq l$ with i+l=j+k, we have

$$b_i b_k \geq b_i b_l$$
.

• It can be shown that a sequence or polynomial is strongly log-concave if and only if it is log-concave with *no internal zeros*.

hyperplane arrangement

- V: finite dimensional vector space over $\mathbb C$
- ullet \mathcal{A} : finite collection of central hyperplanes in V
- Consider the complement

$$U(A) := V \setminus \bigcup_{H \in A} H$$

- $b_i(A) := \dim H^i(U(A); \mathbb{Q})$ Betti numbers
- $\pi_{\mathcal{A}}(t) := \sum_{i \geq 0} b_i(\mathcal{A}) t^i$ Poincaré polynomial

Example: Ordered configuration space / Coxeter arrangement

Let
$$\mathcal{A}_n := \{H_{ij}\}$$
, where $H_{ij} := \{z \in \mathbb{C}^n \mid z_i = z_j\} \subset \mathbb{C}^n$. Then

$$U(\mathcal{A}_n) = \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i \neq z_j, \forall i \neq j\} =: \operatorname{Conf}(n, \mathbb{C}),$$

and (exercise)
$$\pi_{\mathcal{A}_n}(t) = \prod_{k=1}^{n-1} (1+kt)$$
.

990

Thm (Hoggar conj '74 [Huh, 2012])

For any A, $\pi_A(t)$ is strongly log-concave.

Any arrangement A determines a matroid M_A . Given a matroid M, one can define the Orlik-Solomon algebra $OS^*(M)$, and there is a canonical isomorphism

$$OS^*(M_A) \cong H^*(U(A); \mathbb{Z}).$$

Let

$$\pi_{M}(t) := \sum_{i>0} t^{i} \operatorname{dim} \operatorname{OS}^{i}(M).$$

Thm (Heron-Rota-Welsh conj '70s [AHK, 2018])

For any matroid M, $\pi_M(t)$ is strongly log-concave.

Equivariant log-concavity

• Let G be a finite group, and let

$$V = \bigoplus_{i \ge 0} V^i$$

be a graded representation of G with V^i finite dimensional.

We say that V is (weakly) log-concave if, for all i.

 $V^i \otimes V^i$ contains a subrepresentation isomorphic to $V^{i-1} \otimes V^{i+1}$.

• *V* is *strongly equivariantly log-concave* if, for all $i \le j \le k \le l$ with i + l = j + k,

 $V^j \otimes V^k$ contains a subrepresentation isomorphic to $V^i \otimes V^l$.

Equivariant log-concavity conjecture

- V: finite dimensional vector space over \mathbb{C} ,
- \mathcal{A} : finite collection of hyperplanes in V.
- G acts linearly on V, preserving $A \rightsquigarrow$ action of G on U(A).

Example

The symmetric group S_n acts on \mathbb{C}^n preserving A_n . this induces an action on $U(A_n) = \operatorname{Conf}(n,\mathbb{C})$ by permuting labels of the points.

Conjecture (Matherne-Miyata-Proudfoot-Ramos, 2021)

The cohomology ring $H^*(U(A);\mathbb{Q})$ is a strongly equivariantly log-concave graded representation of G.

More generally, if M is a matroid with an action of G, the Orlik-Solomon algebra $OS^*(M)$ is a strongly equivariantly log-concave graded representation of G.

Flag variety

• \mathcal{F}_n : (full) flag variety over \mathbb{C} , parametrizing all complete flags in a n-dimensional \mathbb{C} -vector space V

$$\{0\} = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = V$$

• $\mathcal{F}_n \cong \mathrm{GL}(n,\mathbb{C})/B_n \Rightarrow \dim \mathcal{F}_n = n(n-1)/2$

Theorem (Borel, 1935) "Borel's picture"

As a graded ring,

$$H^*\left(\mathcal{F}_n,\mathbb{Z}\right)\cong\mathbb{Z}\left[t_1,\ldots,t_n\right]/\left(\sigma_1,\ldots,\sigma_n\right),$$

where the t_j 's are of degree 2 and the σ_i 's are the elementary symmetric polynomials in the variables t_i 's.

Equivariant log-concavity conjecture on flag variety

As a corollary, $P_{\mathcal{F}_n}(q) := \sum_i b_{2i} q^i = \prod_{k=0}^{n-1} (1 + q + \cdots + q^k)$, which is a symmetric, unimodal, and log-concave polynomial.

Conj (G., Conjecture 1 in arXiv:2205.05408)

For all integer $n \ge 1$, the cohomology ring of the flag variety is equivariantly log-concave as graded representation of S_n .

In terms of Kronecker coefficients, it is equivalent to

Conj (G., Conjecture 5 in arXiv:2205.05408)

For all natural number n and $1 \le i \le n(n-1)/2 - 1$,

$$\sum_{\lambda \vdash n} \sum_{\mu \vdash n} b_{\lambda,i-1} b_{\mu,i+1} g_{\lambda\mu}^{
u} \leq \sum_{\lambda \vdash n} \sum_{\mu \vdash n} b_{\lambda,i} b_{\mu,i} g_{\lambda\mu}^{
u}$$

hold for all $\nu \vdash n$, where $g^{\nu}_{\lambda\mu}$ are the Kronecker coefficients, and $b_{\lambda,i}$ are the "fake degrees".

990

Using the representation stability theory, we have the following

Theorem (G.)

Above conjectures hold for degree ≤ 3 and co-degree ≤ 3 , i.e., $\forall n$:

The numerical evidence suggests the stronger conjecture

Conj (G., Conjecture 7 in arXiv:2205.05408)

For all natural number n, $\nu \vdash n$, and $1 \le i \le n(n-1)/2 - 1$, the "difference" sequence $d_{\nu,i}$ is symmetric and unimodal, where

$$d_{
u,i} := \sum_{\lambda dash n} \sum_{\mu dash n} b_{\lambda,i} b_{\mu,i} g_{\lambda \mu}^
u - \sum_{\lambda dash n} \sum_{\mu dash n} b_{\lambda,i-1} b_{\mu,i+1} g_{\lambda \mu}^
u.$$

Why equivariant?

- Our feeling: establishing equivariant log-concavity might be simpler than establishing log-concavity!
- Example: a general endomorphism on a vector space is an isomorphism, however establishing a specific one might be very difficult.
- But symmetry reduces choices!
- Our idea: lift the "1-dimensional" sequence to a "2-dimensional" array, and establishing the (equivariant) hard Lefschetz theorem for each "anti-diagonal", which implies the strongly (equivariant) log-concavity of the original sequence.

Illustration

2

0

- 1 Kähler packages
- 2 Equivariant log-concavity
- 3 Equivariant Kähler packages

Equivariant Kähler packages

In attacking the above conjectures, we discover two new Kähler packages that are *equivariant* and have *no geometric origin*. The equivariant log-concavity hints at our discoveries for these structures.

Polynomial rings

- Consider $S_n \curvearrowright B(S^1)^n = (\mathbb{CP}^{\infty})^n$, the classifying space $\rightsquigarrow S_n \curvearrowright H^*((\mathbb{CP}^{\infty})^n, \mathbb{R}) = \mathbb{R}[t_1, \dots, t_n]$
- Betti numbers $b_{2i} = \binom{n+i-1}{i}$, log-concave for fixed n.
- Fix a pair (n, m), consider the graded \mathbb{R} -vector space

$$H_{n,m}=\bigoplus_{i=0}^m H_{n,m}^{-m+2i}$$
 , with $H_{n,m}^{-m+2i}:=D^i\otimes R^{m-i}$,

where $D=\mathbb{R}\left[d_1,\ldots,d_n\right]$, $R=\mathbb{R}\left[x_1,\ldots,x_n\right]$

- Define a pairing $\langle -, \rangle$ on $H_{n,m}$ by interpreting the d_i as differential operators $\frac{\partial}{\partial x_i}$ "homology-cohomology pairing"
- Define $L: H_{n,m}^i \longrightarrow H_{n,m}^{i+2}$ to be the linear map

$$L:=\sum_{i=1}^n d_i\otimes \frac{\partial}{\partial x_i},$$

where d_i acts by multiplication.

Theorem (G.-Xiong)

For any pair of natural numbers (n, m), we have

- (a) (PD) The bilinear pairing $\langle -, \rangle : H_{n,m} \times H_{n,m} \longrightarrow \mathbb{R}$ is S_n -equivariant and graded non-degenerate;
- (b) (HL) $L: H_{n,m}^i \longrightarrow H_{n,m}^{i+2}$ is S_n -equivariant and satisfies the hard Lefschetz theorem;
- (c) (HR) For all $0 \le i \le m/2$, the bilinear form

$$(a,b)_L^{-m+2i} = \langle a, L^{m-2i}b \rangle : H_{n,m}^{-m+2i} \times H_{n,m}^{-m+2i} \longrightarrow \mathbb{R}$$

is S_n -equivariant and $(-1)^i$ -definite on $\ker (L^{m-2i+1})$.

Corollary

 $H^*((\mathbb{CP}^{\infty})^n, \mathbb{R}) = \mathbb{R}[t_1, \dots, t_n]$ is strongly equivariantly log-concave and the inclusions of S_n -representations are given by the operator $L = \sum_{i=1}^n t_i \otimes \frac{\partial}{\partial t_i}$.

Exterior algebras

- $S_n \curvearrowright (S^1)^n \rightsquigarrow S_n \curvearrowright H^*((S^1)^n, \mathbb{R}) = \Lambda_{\mathbb{R}} [\alpha_1, \dots, \alpha_n]$
- Betti numbers $b_{2i} = \binom{n}{i}$, log-concave for fixed n
- Fix a pair (n, m) with $m \le 2n$, consider

$$H'_{n,m}=igoplus_{i=0}^m(H'_{n,m})^{-m+2i}$$
 , with $(H'_{n,m})^{-m+2i}:=\Lambda^i\otimes(\Lambda^*)^{m-i},$

where
$$\Lambda = \Lambda(V) = \Lambda_{\mathbb{R}} [\theta_1, \dots, \theta_n], \ \Lambda^* = \Lambda(V^*)$$

- Define a pairing $\langle -, \rangle$ on $H'_{n,m}$ by the natural duality between V and V^* "homology-cohomology pairing"
- Define

$$L: (H'_{n,m})^i \longrightarrow (H'_{n,m})^{i+2}$$

to be the linear map

$$L:=\sum_{k=1}^n e_{\theta_k}\otimes i_{\theta_k}.$$

Theorem (G.-Xiong)

For any pair of natural numbers (n, m) with $m \le 2n$, we have S_n -equivariant PD, HL and HR for $H'_{n,m}$.

Corollary

 $H^*((S^1)^n, \mathbb{R}) = \Lambda_{\mathbb{R}} [\alpha_1, \dots, \alpha_n]$ is strongly equivariantly log-concave and the inclusions of S_n -representations are given by the operator

$$L = \sum_{k=1}^{n} e_{\alpha_k} \otimes i_{\alpha_k^*}.$$

where e_{α_k} and $i_{\alpha_k^*}$ are the exterior product and interior product, respectively, and α_k^* is the linear functional on $V = \langle \alpha_1, \dots, \alpha_n \rangle$

satisfying
$$\alpha_k^* (\alpha_I) = \delta_{kI} = \begin{cases} 0, & \text{if } k \neq I, \\ 1, & \text{if } k = I. \end{cases}$$

200

Some example of "Betti numbers"...

Tao Gui AMSS Topology Seminar

An "exotic" example

For the exterior algebra, we find that "usual" gradings on tensor products satisfy PD and HL but NOT satisfy HR.

• Fix any n, consider the graded \mathbb{R} -vector space

$$H_n = \bigoplus_{i=0}^{2n} H_n^{-n+i}$$
, with $H_n^{-n+i} := \bigoplus_{j+k=i} \Lambda^j \otimes (\Lambda^*)^k$,

i.e., consider the "usual" gradings (up to a degree shift).

• Define a pairing on H_n by the multiplication map

$$H_n^{-n+i}\otimes H_n^{n-i}\to H_n^n\cong \mathbb{R}.$$

We define

$$L: H_n^i \longrightarrow H_n^{i+2}$$

to be the linear map

$$L:=\sum_{k=0}^n e_{ heta_k}\otimes e_{\xi_k}.$$

Theorem

For any natural numbers n, we have

- (a) (PD) The bilinear pairing $\langle -, \rangle : H_n \times H_n \longrightarrow \mathbb{R}$ is S_n -equivariant and graded non-degenerate;
- (b) (HL) [Kim-Rhoades, 2020; G.-Xiong] $L: H_n^i \longrightarrow H_n^{i+2}$ is S_n -equivariant and satisfies the hard Lefschetz theorem;
- (c) [G.-Xiong] No HR, which can be seen by the signature!

There is also an S_n -equivariant \mathfrak{sl}_2 -action on the "usual" gradings of the tensor product of the polynomial ring. But neither Poincaré duality nor hard Lefschetz holds because the "usual" gradings are infinite-dimensional.

Features of constructions

- The constructions are purely algebraic and have no "geometric origin".
- The Poincaré pairing $\langle -, \rangle$, the Lefschetz operator L, and the Lefschetz form $(a, b)_L^{-m+2i}$ are all S_n -equivariant, which is rare in Lefschetz theory.
- The adjoint ("down") operator f of the Lefschetz operator L
 can be written explicitly. In other algebraic/combinatorial
 setting, direct constructions of f seems difficult.
- The proof of hard Lefschetz and Hodge—Riemann relations is simple/natural and it takes advantage of the geometry of the product of projective spaces.

Questions

I would like to finish with some questions:

- Is there any geometric interpretation of these constructions?
- Do these equivariant Kähler packages, especially the Hodge-Riemann relations, have some implications for the diagonal coinvariant ring and the fermionic diagonal coinvariant ring?
- It would be interesting to know whether our approach could shed some new light on other (equivariant) log-concavity questions and conjectures.
- It is interesting to see whether similar (equivariant)
 Hodge-theoretic structures exist in the settings of other
 (equivalent) log-concavity conjectures.