Series 2a

1. Monte Carlo Approximation for Numerical Integration

Let $A, B \subseteq \mathbb{R}^2$ be the sets defined by

$$A = \{(x, y) \in \mathbb{R}^2 : (x - 2)^2 + y^2 \le 4\}$$
 and $B = \{(x, y) \in \mathbb{R}^2 : x^2 + (y - 2)^2 \le 4\}$,

and consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \mathbb{1}_{A \cap B}(x,y) \cdot |x|^{2/3}.$$

Let (Ω, \mathcal{F}, P) be a probability space, and let $Y_n, Z_n : \Omega \to \mathbb{R}, n \in \mathbb{N}$, be independent $\mathcal{U}_{(0,1)}$ -distributed random variables. For each $N \in \mathbb{N}$, define the random variable $I_N : \Omega \to \mathbb{R}$ by

$$I_N = \frac{4}{N} \sum_{n=1}^{N} f(2Y_n, 2Z_n).$$

The random variables $I_N, N \in \mathbb{N}$, are thus Monte Carlo approximations of $\mathbb{E}_P[4f(2Y_1, 2Z_1)]$.

a) Prove or disprove the following statement: The random variables I_N , $N \in \mathbb{N}$, are P-unbiased estimators of the integral

$$\int_0^2 \int_0^2 f(x,y) \, \mathrm{d}x \mathrm{d}y.$$

- b) Write a MATLAB function MonteCarlo(N) with input $N \in \mathbb{N}$ and output a realization of I_N .
- c) Write a MATLAB function MonteCarloPlot() which, for each $k \in \{2, 3, 4, 5, 6\}$, plots five realizations of I_{10^k} , each represented by a blue star in a coordinate plane. Plot the values of k on the x-axis and the corresponding realizations of I_{10^k} on the y-axis. The plot should contain a total of 25 blue stars.

2. Approximative Realizations of a One-Dimensional Standard Brownian Motion

In this exercise, we do not distinguish between pseudo-random numbers and actual random numbers. Let A be the set defined by

$$A = \bigcup_{n=1}^{\infty} \{ \mathbf{t} = (t_1, \dots, t_n) \in [0, \infty)^n \colon \#_{\mathbb{R}}(\{t_1, \dots, t_n\}) = n \},$$

and define the function length: $A \to \mathbb{N}$ such that for all $n \in \mathbb{N}$ and all $\mathbf{t} = (t_1, \dots, t_n) \in [0, \infty)^n \cap A$,

$$length(\mathbf{t}) = n.$$

Let further $Q: A \to \bigcup_{n=1}^{\infty} \mathbb{R}^{n \times n}$ be the function defined such that for all $n \in \mathbb{N}$ and for all $\mathbf{t} = (t_1, \dots, t_n) \in [0, \infty)^n \cap A$, we have

$$Q(\mathbf{t}) = (\min\{t_i, t_j\})_{(i,j) \in \{1, \dots, n\}^2}.$$

Write a Matlab function StandardBrownianMotion(t) with input $\mathbf{t} \in A$ and output a realization of an $\mathcal{N}_{0,Q(\mathbf{t})}$ -distributed random variable. The Matlab function StandardBrownianMotion(t) may use at most length(t) realizations of an $\mathcal{N}_{0,I_{\mathbb{R}}}$ -distributed random variable.

Test your implementation by calling the following MATLAB commands:

```
% Set random number generator to default
rng('default');
% Define parameters
N = 10^3;
preimage = linspace(0, 1, N+1);
% Generate and plot realizations of the standard Brownian motion
X = StandardBrownianMotion(preimage);
plot(preimage, X, 'b');
hold on:
X = StandardBrownianMotion(preimage);
plot(preimage, X, 'r');
X = StandardBrownianMotion(preimage);
plot(preimage, X, 'g');
% Add labels and a title
xlabel('t');
ylabel('X(t)');
title('Realizations of Standard Brownian Motion');
legend('BM (blue)', 'BM (red)', 'BM (green)');
hold off;
```

3. Brownian Motion and Monte Carlo Simulation

Let (Ω, \mathcal{F}, P) be a probability space and $W: [0, T] \times \Omega \to \mathbb{R}$ be a standard Brownian motion (T > 0).

a) For $N \in \mathbb{N}$, define a temporal discretization (or mesh) on the time interval [0,T] by:

$$0 = t_0 < t_1 < \dots < t_{N-1} < t_N = T, \quad t_n := \frac{n}{N}T.$$
(1)

Write a MATLAB function BrownianMotion(T, N) with inputs $T \in (0, \infty)$ and $N \in \mathbb{N}$, and output a realization of a $(W_0, W_{t_1}, \ldots, W_{t_{N-1}}, W_T)(P_{\mathcal{B}(\mathbb{R}^{N+1})})$ -distributed random variable. (You may use your results from Problem 2.) Now, assume T = 1. Write a MATLAB function BrownianMotionPlot() which uses the function BrownianMotion(T, N) to generate and plot 5 sample paths of the process \widetilde{W}^{1000} over the time interval [0,1], where, for $N \in \mathbb{N}$, the process $\widetilde{W}^N : [0,T] \times \Omega \to \mathbb{R}$ is defined by the linear interpolation of W at the mesh points $\{t_0,t_1,\ldots,t_N\}$, that is:

$$\widetilde{W}_{t}^{N} = \left(n + 1 - \frac{tN}{T}\right) W_{t_{n}} + \left(\frac{tN}{T} - n\right) W_{t_{n+1}},$$

for all $n \in \{0, 1, ..., N-1\}$ and each $t \in [t_n, t_{n+1}]$.

b) Let $X = (X_t)_{t \in [0,1]}$ be the stochastic process defined by $X_t = 1 + t + 3W_t$. First, prove that $\mathbb{E}[e^{\sigma W_t}] = \exp(\frac{1}{2}\sigma^2 t)$, for all $\sigma \in \mathbb{R}$ and $t \in [0,1]$.

Then, perform the following tasks:

- (i) Plot 10 sample paths of X, using the discretization (1) for $N = 10^3$.
- (ii) Compute $\mu := \mathbb{E}[\exp(X_1)]$ exactly and then approximate it using a Monte Carlo simulation with $M=10^5$ samples. Provide a 95% confidence interval for your estimate based on the Central Limit Theorem (CLT), and compare the exact value of μ with your simulation result.

Submission Deadline: Wednesday, 23 October 2024, by 2:00 PM.

1) In order to get a realization of N(0,04)), let's construct
the following:
· Given t= (t,,tr) & A, we reorder t with a new array
called t' which ti are ordered (tizti if icj)
$t'=(t'_1,\ldots,t'_n)$
· Now, as we are asked to use at most n=len(t) realizations
of a N(0,1) random variable, we construct the following:
aiven 2: NN(0,1), X:= 2: - (ti-ti-)
Where X: ~ N(0, 1:-1:-1)
5 this X realizations are going to be the merenents of
the stendard brownian motion. Hence, if we take the
values of the brownian motion:
51,5 Sin + Xx
S = X.
Now, we see how $Ver(S_j-S_i) = Ver(S_i+X_{i+1}++X_j-S_i)$ $= \sum_{k=i+1}^{j} Ver(X_k) = \frac{1}{i+1} - \frac{1}{i+1} + + \frac{1}{j} - \frac{1}{j-1} = \frac{1}{j}$
= { Var(Xx) = t' -t' + + 1 - t' =
Vor (5-5)= 1j-1: V
Let's proof, also, how lov (Si, Sj)= min / ti, 1j
let's proof, also, how lev (Si, Sj)= min ti, 1j By construction, Cov (Si, Sj) = Cov (Si, Si + ŽXx)
U COM
= (or (Exj, Si) + (or (Si, Si) = ti = min Striti) O (independence of increments)
of increments)
So, the stochastic process anstructed of Sig it is distributed
N(0, QH'), that if we reconstruct to de initial order we get
N(0, QH), that if we reconstruct to de initial order we get a sample of N(0, Q(t)) with Q = min)ti.tj'y for to unordered.

Note: the meen = 0 of each S_i is straightforward by construction $E[S_i] = \hat{\Sigma} E[X_j] = 0$ See code for the implementation // (3) (Brownian Motion and Montecorlo simulations) 1) (X+)+=10,13 be the stochastic process defined by X+ = 1+++3W+. $\begin{aligned}
\mathbb{E}\left[e^{\sigma W_{t}}\right] &= \int e^{\sigma x} \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^{2}}{2t}} J_{x} = \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \\
\mathbb{E}\left[e^{\sigma W_{t}}\right] &= \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \\
\mathbb{E}\left[e^{\sigma W_{t}}\right] &= \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \\
\mathbb{E}\left[e^{\sigma W_{t}}\right] &= \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \\
\mathbb{E}\left[e^{\sigma W_{t}}\right] &= \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \\
\mathbb{E}\left[e^{\sigma W_{t}}\right] &= \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \\
\mathbb{E}\left[e^{\sigma W_{t}}\right] &= \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \\
\mathbb{E}\left[e^{\sigma W_{t}}\right] &= \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \\
\mathbb{E}\left[e^{\sigma W_{t}}\right] &= \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \\
\mathbb{E}\left[e^{\sigma W_{t}}\right] &= \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \\
\mathbb{E}\left[e^{\sigma W_{t}}\right] &= \int \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})}{2t}} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t^{2})} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x^{2}-2\sigma x^{4}+\sigma^{2}t$

(ii) $\mu = \mathbb{E}\left[e^{1+1+3W_1}\right] e^2 \cdot \mathbb{E}\left[e^{3W_1}\right] = e^2 \cdot e^2 = \left[e^{\frac{13}{2}}\right]$

In the code, we only 2 line steps to and to -1.

ons we know that the distribution of We only depends

Based on CLT, we can estimate a 95% confidence interval.