Chapter 1

Thiết kế CPU RICSV 32 đơn chu kỳ

1.1 Thiết kế phần cứng

Phần cứng được thiết kế theo sơ đồ sau:

Trong đó, các tín hiệu kết nối được đặt tên theo bảng sau:

Name	Khối bắt đầu	Khối đích	Ý nghĩa				
clk	Input của CPU	PC, Register bank, DMEM	Xung clock điều khiển chu kỳ lệnh				
pc_in	PCmux	PC	PC của lệnh tiếp theo				
pc_out	PC	IMEM, PC+4, ALUmux1	PC hiện tại				
pc_plus4_out	PC+4	PCmux	PC<-PC+4				
rs1	IMEM	Register Bank	Địa chỉ của rs1				
rs2	IMEM	Register Bank	Địa chỉ của rs2				
rd	IMEM	Register Bank	Địa chỉ của rd				
rs1_out	Register Bank	BranchComp, ALUmux1	Data của rs1				
rs2_out	Register Bank	BranchComp, ALUmux2, DMEM	Data của rs2				
imm_in	IMEM	ImmGen	Data vào ImmGen				
imm_out	ImmGen	ALUmux2	Data sau khi qua khối ImmGen				
alumux1_out	ALUmux1	ALU	Toán hạng 1 vào ALU				
alumux2_out	ALUmux2	ALU	Toán hạng 2 vào ALU				
aluout	ALU	DMEM, Wbmux, PCmux	Ngõ ra của ALU				
dmem_out	DMEM	Wbmux	Data đọc của DMEM				
wb_out	Wbmux	Register Bank	Data ghi ngược				

Thiết kế khối Control

Tiến hành lập bảng bao gồm các lệnh, các tín hiệu vào và tín hiệu ra, sau đó phân tích từng lệnh vè điền vào bảng như hình sau:

Index	No	Туре	MNEMONIC	Inst[30]	Inst[14:12]	Inst[6:2]	BrEq	BrLT	PcSel	ImmSel	RegWEN	BrUn	Bsel	Asel	ALUsel	MemRW	Datain	DataOutAddj	WBSel
									19	18:16	15	14	13	12	11:8	7	6:5	4:2	1:0
							0 => Not EQ	0 => Not LT	0 => PC + 4	000 => ins[31:20], ext sign, 12	0 => Read	0 => Signed	0 => Data B	0 => Data	0000 => ADD	0 => Read Only	00 => SB	000 => exB	00 => DMEM
							1 => EQ	1 => LT	1 = > ALU	001 => ins[31:20], ext usign, 12	1 => Write	1 => Usigned	1 => Imm Gen	1 => PC	0001 => SUB	1 => Read Write	01 => SHW	001 => exHW	01 => ALU
										010 => ins[24:20], ext usign, 5					0010 => SLL		11 => SW	010 => W	10 => PC +4
										011 => ins[31:25][11:7], ext sign, :	12				0011 => SLT			011 => exBU	
										100 => ins[31][7][30:25][11:8]0, e	xt sign, 12				0100 => SLTU			100 => exHU	
										101 => ins[31:12]00,					0101 => XOR				
										110 => ins[31][19:12][20][30:21]0	, ext sign, :	20			0110 => SRL				
															0111 => SRA				
															1000 => OR				
															1001 => AND				
															1110 => PC + ImmGen + 4				
															1111 => Sel B				
0	0	R	ADD	0	000	01100	x	x	0	x	1	x	0	0	0000	0	x	x	01
1		R	SUB	1	000	01100	x	х	0	x	1	x	0		0001	0	x	x	01
2	2	R	SLL	0	001	01100	x	X	0	x	1	×	0	0	0010	0	x	x	01
3		R	SLT	0	010	01100	x	X	0	x	1	x	0	0	0011	0	x	x	01
4		R		0	011	01100	X	X	0	×	1	X	0			0	X	x	01
5		R	XOR	0	100	01100	X		0	x	1	X	0	-	0101	0	X	x	01
6		R		0	101	01100	x	Х	0	x	1	×	0	0	0110	0	x	x	01
7		R	SRA	1	101	01100	X	х	0	x	1	X	0	0	0111	0	X	x	01
8		R		0	110	01100	X	X	0	x	1	X	0	0	1000	0	X	x	01
9	9	R	AND	0	111	01100	x	X	0	x	1	x	0	0	1001	0	x	x	01

Sau đó, chuyển bảng vừa lập thành khối Control. Viết theo kiểu ${\rm ROM}$

Thiết kế các khối chức năng

Phân tích từng khối: chức năng, ngõ vào, ngõ ra và viết riêng từng module.

1.2 Thực hiện mô phỏng

1.2.1 Viết đoạn chương trình test

- Lấy 10 số lưu trong DMEM và sắp xếp lại rồi lưu vào DMEM ở 10 vị trí tiếp theo.
- Tính giai thừa số lớn nhất và lưu ở vị trí tiếp theo.
- Tính số Fibonanci của số lớn nhất và lưu ở vị trí tiếp theo.

1.2.2 Test dạng sóng trên ModelSim và kết quả mô phỏng

Kết quả sau khi chạy đoạn code trên:

Dạng sóng của đoạn code trên:

Kết quả mô phỏng của khối ALU:

Kết quả mô phỏng khối Branch Comp:

Kết quả mô phỏng khối DMEM:

Kết quả mô phỏng khối Reg:

Kết quả mô phỏng khối Imm:

