Алгоритм Касаи

Гусев Илья

Московский физико-технический институт

Москва, 2018

Содержание

- 🕕 Алгоритм Касаи
 - Задача
 - Алгоритм Касаи
- \bigcirc Поиск подстроки за O(log|S| + |pattern|)
- Нахождение числа уникальных подстрок

Задача

Вычислить длину наибольших общих префиксов (LCP) для всех соседних суффиксов строки, отсортированных в лексикографическом порядке

Str	а	а	b	а	а	С	a	#
ldx	0	1	2	3	4	5	6	7
Suf	7	6	0	3	1	4	2	5
0	#	а	a	a	a	a	b	С
1		#	a	a	b	С	a	a
2			b	С	a	a	a	#
1 2 3 4 5 6			a	a	a	#	С	
4			a	#	С		a	
5			С		a		а #	
6			a		#			
7			#					
LCP	#	0	1	2	1	1	0	0

Утверждение 1: $\forall x < y \le z, LCP(S_{Suf[y-1]}, S_{Suf[y]}) \ge LCP(S_{Suf[x]}, S_{Suf[z]})$ Пример: LCP(S_3, S_0) $\ge LCP(S_4, S_6)$

ld×	0	1	2	3	4	5	6	7
Suf	7	6	0	3	1	4	2	5
0	#	a	a	a	а	a	b	С
1		а #	a	a	b	С	a	а
2			b	С	a	a	a	#
1 2 3 4 5 6			a	a	a	#	С	
4			a	#	С		a	
5			С		a		#	
6			a		#			
7			#					
LCP	#	0	1	2	1	1	0	0

Утверждение 2: LCP(
$$S_{Suf[x-1]}, S_{Suf[x]}$$
) > 1 \Rightarrow $S_{Suf[x-1]+1} < S_{Suf[x]+1}, Suf^{-1}[Suf[x-1]+1] < Suf^{-1}[Suf[x]+1]$ Пример: $x=3$, LCP(S_0, S_3) = 2 $\Rightarrow S_1 < S_4, 4 < 5$

4 D L 4 D L 4 E L 4 E L 5 D C C

Str

Str	а	а	b	а	a	С	а	#
ldx	0	1	2	3	4	5	6	7
Suf	7	6	0	3	1	4	2	5
0	#	а	а	а	а	а	b	С
1		#	a	а	b	С	a	a
2 3 4 5 6			b	С	a	a	a	#
3			a	а	a	#	С	
4			a	#	С		a	
5			С		a		#	
6			a		#			
7			#					
LCP	#	0	1	2	1	1	0	0

Утверждение 3: LCP(
$$S_{Suf[x-1]}, S_{Suf[x]}$$
) $> 1 \Rightarrow LCP(S_{Suf[x-1]+1}, S_{Suf[x]+1}) = LCP(S_{Suf[x-1]}, S_{Suf[x]}) - 1$

Пример: x = 3, $LCP(S_0, S_3) = 2 \Rightarrow LCP(S_1, S_4) = LCP(S_0, S_3) - 1 = 1$

◆□▶ ◆周▶ ◆団▶ ◆団▶ 昼間 めの○

$$p = Suf^{-1}[i-1], q = Suf^{-1}[i], j-1 = Suf[p-1], k = Suf[q-1]$$
 S_{j-1} - сосед слева S_{i-1} в суфф.массе, S_k - сосед слева S_i в суфф. массе Теорема: $\mathsf{LCP}(\mathsf{S}_{j-1}, S_{i-1}) > 1 \Rightarrow \mathsf{LCP}(S_k, S_i) \geq \mathsf{LCP}(S_{j-1}, S_{i-1}) + 1.$

- $Suf^{-1}[j] < Suf^{-1}[i]$

Итерации: $S_1 \dots S_n$. На каждой итерации текущее значение LCP может быть не более чем на единицу меньше предыдущего. $\Rightarrow O(2n)$

Поиск подстроки за O(log|S| + |pattern|)

- L левая граница текущего диапазона поиска (изначально равна 0),
- ullet R правая граница текущего диапазона поиска (изначально равна $|\mathsf{S}|1$),
- M=(L+R)/2 середина текущего диапазона поиска,
- $I = LCP(S_L, p)$ длина общего префикса образца и левого края текущего диапазона поиска,
- $r = LCP(S_R, p)$ длина общего префикса образца и правого края текущего диапазона поиска,
- $m_l = LCP(S_L, S_M)$ длина общего префикса середины текущего диапазона и левого края текущего диапазона поиска,
- $m_r = LCP(S_R, S_M)$ длина общего префикса середины текущего диапазона и правого края текущего диапазона поиска.

Поиск подстроки за O(log|S| + |pattern|)

Нахождение числа уникальных подстрок

- Построение суфф. массива
- Построение массива LCP

$$\sum_{i=0}^{n-1} |S_{Suf[i]}| - LCP[i]$$

Полезные ссылки І

- Викиконспекты: алгоритм Касаи https://bit.ly/2ygcpHb
- Викиконспекты: алгоритм поиска подстроки в строке с помощью суффиксного массива https://bit.ly/20ahBqT
- Emaxx: суффиксный массив http://e-maxx.ru/algo/suffix_array