

IN THE CLAIMS:

- 1 1. (PREVIOUSLY PRESENTED) A method for operating a node in a computer network,
2 the node connected to other nodes by links, comprising:
 - 3 determining a path to a destination, the path including one or more links;
 - 4 determining at least one alternate path having at least some of its one or more
5 links differing from the links of the path;
 - 6 reserving resources for said at least one alternate path;
 - 7 subsequent to reserving resources, detecting a link failure on the path; and
8 rerouting traffic on said at least one alternate path in case of a link failure.
- 1 2. (ORIGINAL) A method as in claim 1, further comprising:
2 periodically updating said at least one alternate path.
- 1 3. (PREVIOUSLY PRESENTED) A method as in claim 1, further comprising:
2 determining a plurality of alternate paths for the path, and said plurality of alter-
3 nate paths do not have any link in common.
- 1 4. (ORIGINAL) A method as in claim 1, further comprising:
2 rerouting user traffic substantially simultaneously to each link of said at least one
3 alternate path.
- 1 5. (ORIGINAL) A method as in claim 1, further comprising:

2 reserving resources on said at least one alternate path for switching real-time con-
3 nections first.

1 6. (PREVIOUSLY PRESENTED) A node in a computer network connected by links,
2 said node comprising:

3 means for determining a path to a destination, the path including one or more
4 links;

5 means for determining at least one alternate path having at least some of its one or
6 more links differing from the links of the path;

7 means for reserving resources for said at least one alternate path prior to detecting
8 a link failure on the path; and

9 means for rerouting traffic on said at least one alternate path in case of a link fail-
10 ure.

1 7. (ORIGINAL) A node as in claim 6, further comprising:

2 means for periodically updating said at least one alternate path.

1 8. (PREVIOUSLY PRESENTED) A node as in claim 6, further comprising:

2 means for determining a plurality of alternate paths for the path, and said plurality
3 of alternate paths do not have any link in common.

1 9. (ORIGINAL) A node as in claim 6, further comprising:

2 means for rerouting user traffic substantially simultaneously to each link of said at
3 least one alternate path.

1 10. (ORIGINAL) A node as in claim 6, further comprising:
2 means for reserving resources on said at least one alternate path for switching
3 real-time connections first.

1 11. (PREVIOUSLY PRESENTED) A node in a computer network connected by links,
2 said node comprising:

3 a transit connection manager (TCM) adapted to
4 set up transit connections for a path,
5 update routing tables,
6 route traffic; and
7 an alternate path manager adapted to
8 determine at least one alternate path for use in case of failure of a
9 link of the path,
10 allocate connections on said at least one alternate path prior to a link fail-
11 ure on the path,
12 reserve resources on said at least one alternate path prior to a link failure
13 on the path,
14 request to said TCM the rerouting of traffic on said at least one alternate
15 path in case of a link failure.

1 12. (PREVIOUSLY PRESENTED) The node according to claim 11, further comprising:
2 said at least one alternate path is a plurality of alternate paths that each include
3 one or more links and the plurality of alternate paths do not have any link in common.

- 1 13. (PREVIOUSLY PRESENTED) The node according to claim 11, further comprising:
 - 2 said alternate path manager adapted to reroute user traffic to each link of said at least one alternate path.
- 1 14. (ORIGINAL) The node according to claim 11, further comprising:
 - 2 said alternate path manager adapted to reserve resources on said at least one alternate path for making real-time connections first.
- 1 15. (PREVIOUSLY PRESENTED) A node in a computer network connected by links, said node comprising:
 - 3 a transit connection manager (TCM) adapted to
 - 4 set up transit connections for a path,
 - 5 update routing tables,
 - 6 route traffic; and
 - 7 an alternate path manager adapted to
 - 8 determine at least one alternate path for use in case of failure of a link of the path,
 - 9 allocate connections on said at least one alternate path prior to a link failure on the path,
 - 10 reserve resources on said at least one alternate path prior to a link failure on the path,
 - 11 request to said TCM the rerouting of traffic on said at least one alternate path in case of the link failure,

16 periodically re-determine at least one alternate path for the path in re-
17 sponse to user traffic, network resources, and quality of service changes.

1 16. (ORIGINAL) The node according to claim 15 further comprising:
2 said alternate path manager adapted to periodically update said re-determined at
3 least one alternate path after a predetermined period of time.

1 17. (PREVIOUSLY PRESENTED) A method of non-disruptive packet switching in a
2 network having nodes interconnected with transmission trunks, said method comprising:
3 pre-selecting at least one alternate path for each trunk;
4 reserving connections at each node to make said at least one alternate path;
5 reserving bandwidth resources to transmit packets on said at least one alternate
6 path;
7 subsequent to the reserving connections and reserving resources, detecting a fail-
8 ure of a particular trunk; and
9 switching the path of a packet from said particular trunk, in response to failure of
10 said particular trunk, to said at least one alternate path.

1 18. (PREVIOUSLY PRESENTED) The method according to claim 17 further compris-
2 ing:
3 said at least one pre-selected alternate path is a plurality of alternate paths that
4 each include one or more trunks, and the plurality of paths do not have any trunk in
5 common.

1 19. (PREVIOUSLY PRESENTED) The method according to claim 17 further comprising:
2

3 rerouting user traffic to each trunk of said at least one alternate path.

1 20. (ORIGINAL) The method according to claim 17 further comprising:

2 reserving resources said at least one alternate path for making a real-time connection first.
3

1 21. (PREVIOUSLY PRESENTED) A method of non-disruptive packet switching in a
2 network having nodes interconnected with transmission trunks, said method comprising:

3 pre-selecting at least one alternate path for each trunk;

4 reserving connections at each node to make said at least one alternate path;

5 reserving bandwidth resources to transmit packets on said at least one alternate
6 path;

7 subsequent to the reserving connections and reserving resources, detecting a failure
8 of a particular trunk;

9 switching the path of a packet from said particular trunk, in response to failure of
10 said particular trunk, to said at least one alternate path; and

11 re-selecting at least one new alternate path for each trunk in response to user traffic,
12 network resources, and quality of service changes.

1 22. (ORIGINAL) The method according to claim 21 further comprising:

2 periodically updating said re-selected at least one new pre-selected alternate path
3 after a predetermined period of time.

- 1 23. (PREVIOUSLY PRESENTED) A packet switching computer network comprising:
 - 2 a plurality of nodes interconnected by links, said nodes having
 - 3 a transit connection manager (TCM) adapted to
 - 4 set up transit connections,
 - 5 update routing tables,
 - 6 route traffic; and
 - 7 an alternate path manager adapted to
 - 8 determine at least one alternate path for each link,
 - 9 allocate connections on said at least one alternate path prior to a
 - 10 link failure,
 - 11 reserve resources on said at least one alternate path prior to a link
 - 12 failure,
 - 13 request to said TCM the rerouting of traffic on said at least one alternate path in case of a
 - 14 link failure.
 - 1 24. (PREVIOUSLY PRESENTED) The network according to claim 23 further comprising:
 - 2 for each outbound trunk, said at least one pre-selected alternate path is a plurality
 - 3 of alternate paths that each include one or more trunks, and the plurality of alternate paths
 - 4 do not have any trunk in common.
 - 1 25. (PREVIOUSLY PRESENTED) The network according to claim 23, further comprising:
 - 2

3 said alternate path manager adapted to reroute user traffic to each trunk of said at
4 least one alternate path.

1 26. (ORIGINAL) The network according to claim 23 further comprising:
2 said alternate path manager adapted to reserve resources on said at least one alter-
3 nate path for real-time connections first.

1 27. (PREVIOUSLY PRESENTED) A packet switching computer network comprising:
2 a plurality of nodes interconnected by links, said nodes having
3 a transit connection manager (TCM) adapted to
4 set up transit connections,
5 update routing tables,
6 route traffic; and
7 an alternate path manager adapted to
8 determine at least one alternate path for each link,
9 allocate connections on said at least one alternate path prior to a
10 link failure,
11 reserve resources on said at least one alternate path prior to a link
12 failure,
13 request to said TCM the rerouting of traffic on said at least one al-
14 ternate path in case of a link failure,
15 periodically re-determine at least one alternate path for each link in
16 response to user traffic, network resources, and quality of
17 service changes.

- 1 28. (ORIGINAL) The network according to claim 27 further comprising:
 - 2 said alternate path manager adapted to periodically update said re-determined at
 - 3 least one alternate path after a predetermined period of time.
- 1 29. (PREVIOUSLY PRESENTED) A method in a node of a packet switching communication network having a plurality of access and transit nodes interconnected with transmission trunks , for, in case of failure or unavailability of an outbound trunk , rerouting user traffic to an alternate path , said method comprising:
 - 5 searching, pre-selecting, and storing at least one alternate path between origin node and destination node for each outbound trunk , said searching, pre-selecting and
 - 6 storing done in response to existing user traffic, network resources, and requested quality
 - 7 of service;
 - 9 pre-allocating connections to said at least one alternate path;
 - 10 reserving resources on said at least one alternate path prior to failure or unavailability of an outbound trunk;
 - 12 and, in case of failure or unavailability of an outbound trunk, the further steps of:
 - 13 activating said at least one alternate path; and
 - 14 rerouting the user traffic on said activated at least one alternate path.
- 1 30. (ORIGINAL) The method according to claim 29 further comprising:
 - 2 updating said stored at least one pre-selected alternate path in response to user
 - 3 traffic, network resources, and quality of service changes.
- 1 31. (ORIGINAL) The method according to claim 29 further comprising:

2 periodically updating said stored at least one pre-selected alternate path after a
3 predetermined period of time.

1 32. (ORIGINAL) The method according to claim 29, further comprising:
2 for each outbound trunk, said at least one pre-selected alternate path is a plurality
3 of alternate paths and the plurality of paths do not have any trunk in common.

1 33. (ORIGINAL) The method according to claim 29 further comprising:
2 transmitting said user traffic over the network in at least one end-to-end connec-
3 tion established between access nodes.

1 34. (ORIGINAL) The method according to claim 29 further comprising:
2 rerouting said user traffic to each trunk of said at least one alternate path.

1 35. (ORIGINAL) The method according to claim 29 further comprising:
2 reserving resources on said at least one alternate path for real-time connections
3 first.

1 36-40. (CANCELLED)

1 41. (PREVIOUSLY PRESENTED) The method as in claim 1, wherein the resources in-
2 clude bandwidth for passing traffic, and reserving resources for said at least one alternate
3 path further comprises:

4 sending a message to one or more nodes associated with the alternate path, the
5 message to request the one or more nodes to reserve bandwidth for use by the alternate
6 path.

1 42. (PREVIOUSLY PRESENTED) The method as in claim 1, further comprising:
2 sending one or more set-up request messages to one or more nodes associated
3 with each of the one or more alternate paths, to allocate a connection along each of the
4 one or more alternate paths;

5 maintaining the connection along each of the one or more alternate paths in a
6 standby mode; and
7 in response to a link failure on the path, activating the connection along at least
8 one of the one or more alternate paths.

1 43. (PREVIOUSLY PRESENTED) The node as in claim 11, wherein the resources in-
2 clude bandwidth for passing traffic, and the TCM reserves resources for said at least one
3 alternate path with a message to one or more nodes associated with the alternate path, the
4 message to request the one or more nodes to reserve bandwidth for use by the alternate
5 path.

1 44. (PREVIOUSLY PRESENTED) The node as in claim 11, wherein the TCM is con-
2 figured to allocate connections by transmission of one or more set-up request messages to
3 one or more nodes associated with each of the one or more alternate paths, to maintain a
4 connection along each of the one or more alternate paths in a standby mode, and to acti-
5 vate the connection along at least one of the one or more alternate paths in response to a
6 link failure.