Reinforcement Learning (I)

Javier Martí

- Senior Data Scientist en Aquiles Solutions
- Máster en Inteligencia Artificial

Supervised vs Unsupervised vs Reinforcement Learning

Elementos de Reinforcement Learning

3 Aplicaciones de Reinforcement Learning

4 Historia del Reinforcement Learning

5 K-armed bandit problem

1. Supervised vs Unsupervised vs Reinforcement Learning

machine learning

unsupervised learning supervised learning reinforcement' learning

Datos de entrada: (x,y) x es el dato, y es la etiqueta

Objetivo: aprender la función para mapear $x \rightarrow y$ Aprender de un conjunto de datos etiquetados (1), para poder aplicar el resultado a un conjunto de datos no etiquetados (2).

Ejemplos: clasificación, regresión, detección de objetos, etiquetaje de imágenes, ...

1								
ٺ	x 1	x2	х3	x4	х5	х6	у	
	0	1	0	0	1	0	SPAM	
	1	0	0	0	0	1	NO SPAM	
	0	1	1	0	0	1	SPAM	

\bigcirc	x 1	x2	х3	х4	х5	хб	у
2	0	1	0	0	1	0	??
	1	0	0	0	0	1	??
	0	1	1	0	0	1	??

Unsupervised Learning (aprendizaje no supervisado)

0.8 0.7 0.6 0.3 0.4 0.3 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Datos de entrada: x Sólo datos. NO hay etiquetas!

Objetivo: aprender alguna estructura oculta subyacente en los datos no etiquetados.

Ejemplos: clusterización, reducción de dimensionalidad, aprendizaje de características, estimación de densidad, ...

х1	x2	х3	х4	х5	х6	Cluster
0	1	0	0	1	0	??
1	0	0	0	0	1	??
0	1	1	0	0	1	??

Reinforcement Learning (aprendizaje por refuerzo)

Un agente inteligente tiene que interactuar con un entorno, escogiendo una de las acciones que el entorno ofrece

Objetivo: aprender a realizar acciones para maximizar la recompensa del agente

Aprendizaje por refuerzo: ejemplos

Jugar al ajedrez. Para realizar un movimiento, el jugador tiene en cuenta tanto la planificación (anticipando el movimiento del otro jugador) como la conveniencia inmediata de determinadas posiciones y movimientos.

Un robot que recoge basura. El robot decide si entra a una nueva habitación en busca de más basura para recolectar, o si empezar su camino de vuelta a la estación de recarga de baterías. Toma su decisión en función del nivel de carga actual de su batería y la rapidez y facilidad con que ha podido encontrar el cargador en el pasado.

1. Estático vs dinámico

- El objetivo del aprendizaje supervisado y no supervisado es buscar y aprender sobre patrones en los datos de entrenamiento, lo cual es bastante estático.
- RL trata de desarrollar una política que le diga a un agente qué acción elegir en cada paso, haciéndolo más dinámico.

2. Específico vs global

- Los problemas de ML supervisados y no supervisados son **específicos** de un caso de negocio en particular, sea de clasificación o predicción, y están muy delimitados, por ejemplo, clasificar "SPAM o NO SPAM", o agrupar "k=3" clusters.
- En RL, como en el mundo real, contamos con múltiples variables que por lo general se interrelacionan y que dan lugar a escenarios **globales** más grandes en donde tomar decisiones.

3. Sin respuesta correcta explícita

- En el aprendizaje supervisado, la respuesta correcta se encuentra en los datos de entrenamiento.
- En el <u>aprendizaje</u> por refuerzo, **la respuesta correcta NO se da explícitamente**: el agente necesita aprender por ensayo y error. La única referencia es la recompensa que recibe después de realizar una acción, que le dice al agente si está progresando o ha fallado (o podría actuar mejor).

4. RL requiere exploración

- Los sistemas de aprendizaje supervisados y no supervisados toman la respuesta directamente de los datos de entrenamiento sin tener que explorar otras respuestas.
- Un agente de RL debe encontrar el equilibrio adecuado entre explorar el entorno, buscar nuevas formas de obtener recompensas y explotar las fuentes de recompensa que ya ha descubierto.

x 1	x2	х3	х4	х5	хб	у
0	1	0	0	1	0	SPAM
1	0	0	0	0	1	NO SPAM
0	1	1	0	0	1	SPAM

5. RL es un proceso de decisiones múltiples

- El aprendizaje supervisado es un proceso de decisión única: una instancia, una predicción.
- El aprendizaje por refuerzo es un proceso de **decisiones múltiples**: forma una secuencia de decisiones durante el tiempo necesario para terminar un trabajo específico.

Tres formas de crear una máquina inteligente

Michael Littman

Good Old-Fashioned AI: si queremos que una máquina sea inteligente, la programamos con el comportamiento que queremos que tenga.

Pero a medida que surgen nuevos problemas, la máquina no podrá adaptarse a las nuevas circunstancias. Requiere que siempre estemos ahí, con nuevos programas.

Supervised learning: si queremos que una máquina sea inteligente, le damos ejemplos para entrenar y la máquina escribe su propio programa para que coincida con esos ejemplos.

Pero las situaciones cambian: la mayoría de nosotros no tenemos la oportunidad de pescar nuestros alimentos todos los días.

Reinforcement learning: equivale a darle al hombre el gusto por el pescado. Es la idea de que no tenemos que especificar el mecanismo para conseguir un objetivo. Simplemente podemos codificar este objetivo y la máquina diseñará su propia estrategia para lograrlo.

2. Elementos de Reinforcement Learning

Elementos de Reinforcement Learning:

- Agente
- Entorno
- Acción
- Recompensa

El Reinforcement Learning es una técnica de Inteligencia Artificial en la que un **agente inteligente** (agent) tiene que interactuar con un **entorno** (environment), escogiendo una de las acciones (action), e intentar conseguir la mayor recompensa (reward) posible a través de esas acciones.

El aprendizaje por refuerzo tiene cuatro elementos esenciales:

- 1. Agente. El elemento inteligente que toma decisiones
- 2. Entorno. El mundo, real o virtual, en el que el agente realiza acciones
- 3. Acción. Un movimiento realizado por el agente
- 4. Recompensa. La valoración de una acción, que puede ser positiva o negativa

(5. El concepto de Estado lo veremos más adelante)

3. Aplicaciones de Reinforcement Learning

El primer paso es determinar cuáles son los 4 elementos:

1. Agente

2. Entorno

3. Acción

4. Recompensa

Consideramos 3 problemas y a continuación veremos cómo definir los distintos elementos:

- Caso A: Enseñarle nuevos trucos a nuestro perro
- Caso B: Determinar el número de anuncios en una página web
- Caso C: Controlar un robot que recoge basura

Caso A Enseñarle nuevos trucos a nuestro perro

Agente

Nuestro perro. No habla nuestro idioma, así que no podemos decirle directamente qué tiene que hacer. Tenemos que seguir una estrategia distinta

Entorno

Nuestra casa, dónde el perro se puede mover. Además, el entorno contiene todos los elementos relevantes para nuestra estrategia (ej. pantuflas)

Acción

Levantarse, sentarse, traer pantuflas

Recompensa

Si nuestro perro realiza la acción deseada, le damos un premio

Caso B Determinar el número de anuncios en una página web

Agente

El programa que toma decisiones sobre cuántos anuncios son apropiados para una página

Entorno

La página web

Acción

Una de tres: (1) poner otro anuncio en la página; (2) eliminar un anuncio de la página; (3) ni añadir ni eliminar anuncios

Recompensa

Positiva cuando aumentan los ingresos; negativa cuando los ingresos bajan

Caso C Controlar un robot que recoge basura

Agente

El programa que controla el robot

Entorno

El mundo real

Acción

Una de cuatro: moverse (1) hacia adelante, (2) hacia atrás, (3) izquierda y (4) derecha

Recompensa

Positiva cuando recoge basura; negativa cuando pierde tiempo, se queda sin batería sin volver al punto de carga, va en la dirección equivocada o se cae

Ejercicio: definir los 4 elementos (agente, entorno, acción, recompensa) para el caso de:

Una partida de ajedrez

Aplicaciones prácticas del aprendizaje por refuerzo:

- Robótica para automatización industrial
- Procesamiento de Lenguaje Natural (NLP)
- Sistemas educativos personalizados
- Control de aeronaves
- Construcción de agentes inteligentes para juegos de ordenador

4. Historia del Reinforcement Learning

Desarrollos iniciales

- Aprendizaje por ensayo y error Comenzó con la psicología del aprendizaje animal (1911)
- **Programación dinámica**Referido al problema del control óptimo y su solución mediante funciones de valor (1950s)

Desarrollos posteriores

- **Q-Learning**Combinación del aprendizaje por ensayo y error con la programación dinámica por Watkins (1989)

1992: TD-Gammon

Alcanza el "Nivel Maestro" en el juego de Backgammon 2010s: DeepMind

Utiliza RL en juegos clásicos de Atari 2017: AlphaZero

Aniquila AlphaGo 100-0

1997: Deep Blue de IBM

Gana contra el campeón mundial de ajedrez

2016: AlphaGo

Gana contra el campeón mundial de Go

Documental de Netflix sobre AlphaGo

https://www.youtube.com/watch?v=WXuK6gekU1Y

5. K-armed bandit problem

K-armed bandit problem

One-armed bandit máquinas tragaperras

K-armed bandit problem Cuando hay más máquinas entre las cuales elegir

K-armed bandit problem

Consideraciones previas

- Jugar a estas máquinas tiene una probabilidad de ganar
- No conocemos la distribución de probabilidad y no podemos descubrirla con un número limitado de intentos
- Tenemos 3 máquinas tragaperras diferentes, cada una con una probabilidad de ganar
- Tenemos varias monedas para jugar

Problema

• ¿Qué máquina tragaperras elegimos?

Estrategia de resolución

Aprenderemos como resolver este problema mediante Reinforcement Learning

probabilidad de ganar

probabilidad de ganar

probabilidad de ganar

K-armed bandit problem: definir recompensa

probabilidad de ganar

60%

Recompensa 1 cuando ganamos (60%)

Recompensa 0 cuando perdemos (40%)

Recuerda!

El jugador no conoce a priori la probabilidad de ganar de la máquina

Clase 1: K-armed bandit problem

Expected Price Action (action-value): probabilidad estimada de ganar

$$exp_price_action = exp_price_action + \frac{reward - exp_price_action}{iteration}$$

El jugador no conoce la probabilidad real de ganar de la máquina

Lo que puede hacer para intentar deducirla es jugar varias veces (**iteraciones**) y actualizar sus expectativas en función de los resultados obtenidos (**recompensas**)

Clase 1: K-armed bandit problema: Definir action-value

probabilidad estimada de ganar

100%

Inicializamos a 1 (100%)

 $exp_price_action_0 = 1$

probabilidad estimada de ganar

100%

Iteración 1: GANAMOS

$$\label{eq:exp_price_action_0} \begin{split} \exp_\text{price_action}_0 + \frac{reward_1 - \exp_\text{price_action}_0}{iteration} = \end{split}$$

$$=1+\frac{1-1}{1}=$$

probabilidad estimada de ganar

100%

¿y si hubiéramos inicializado con otro valor?

Iteración 1: GANAMOS

$$\label{eq:exp_price_action_0} \begin{split} \exp_\text{price_action}_0 + \frac{reward_1 - \exp_\text{price_action}_0}{iteration} = \end{split}$$

$$=0+\frac{1-0}{1}=1$$

$$=10+\frac{1-10}{1}=1$$

$$= \underbrace{42} + \frac{1 - \underbrace{42}}{1} = 1$$

probabilidad estimada de ganar

100%

Iteración 2: GANAMOS

¡ nueva iteración!

$$\label{eq:exp_price_action} \begin{split} \exp_\text{price}_\text{action}_1 + \frac{reward_2 - \exp_\text{price}_\text{action}_1}{iteration} = \end{split}$$

$$=1+\frac{1-1}{2}=1$$

probabilidad estimada de ganar

100%

Iteración 3: GANAMOS

¡ nueva iteración!

$$\label{eq:exp_price_action} \begin{split} \exp_\text{price_action}_3 = \exp_\text{price_action}_2 + \frac{reward_3 - \exp_\text{price_action}_2}{iteration} = \end{split}$$

$$=1+\frac{1-1}{3}=1$$

probabilidad estimada de ganar

75%

Iteración 4: PERDEMOS

i reward = 0!

$$=1+\frac{0-1}{4}=0.75$$

probabilidad estimada de ganar

80%

Iteración 5: GANAMOS

¡ exp_price_action actualizada!

$$exp_price_action_5 = exp_price_action_4 + \frac{reward_5 - exp_price_action_4}{iteration} = \frac{reward_5 - exp_price_action_4}{iteration_5} = \frac{reward_5 - exp_price_action_4}{iteration_5} = \frac{reward_5 - exp_price_action_4}{iteration_5} = \frac{reward_5 - exp_price_action_4}{iteration_5} = \frac{reward_5 - exp_price_action_5}{iteration_5} = \frac{reward_5 - exp_price_action_5}{iteration_5} = \frac{reward_5 - exp_price_action_5}{iteration_5} = \frac{reward_5 - exp_price_action_5}{iteration_5} = \frac{reward_5}{iteration_5} = \frac{reward_5}{itera$$

$$= 0.75 + \frac{1 - 0.75}{5} = 0.8$$

probabilidad estimada de ganar

83%

Iteración 6: GANAMOS

i exp_price_action actualizada!

$$\begin{array}{l} \exp_{price_action_6} = \exp_{price_action_5} + \frac{reward_6 - \exp_{price_action_5}}{iteration} = \\ \end{array}$$

$$= 0.8 + \frac{1 - 0.8}{6} = 0.83$$

probabilidad estimada de ganar

86%

Iteración 7: GANAMOS

$$\begin{array}{l} \exp_{price_action_7} = \exp_{price_action_6} + \frac{reward_7 - \exp_{price_action_6}}{iteration} = \\ \end{array}$$

$$= 0.83 + \frac{1 - 0.83}{7} = 0.86$$

probabilidad estimada de ganar

75%

Iteración 8: PERDEMOS

i reward = 0!

$$\begin{array}{l} \exp_{\rm price_action_8} = \exp_{\rm price_action_7} + \frac{reward_8 - \exp_{\rm price_action_7}}{iteration} = \\ \end{array}$$

$$= 0.86 + \frac{0 - 0.86}{8} = 0.75$$

probabilidad estimada de ganar

67%

Iteración 9: PERDEMOS

$$exp_price_action_9 = exp_price_action_8 + \frac{reward_9 - exp_price_action_8}{iteration} = \frac{reward_9 - exp_price_action_8}{iteration_9} = \frac{reward_9 - exp_price_action_9}{iteration_9} = \frac{reward_9}{iteration_9} =$$

$$= 0.75 + \frac{0 - 0.75}{9} = 0.67$$

probabilidad estimada de ganar

70%

Iteración 10: GANAMOS

$$\texttt{exp_price_action}_{10} = \texttt{exp_price_action}_9 + \frac{reward_{10} - \texttt{exp_price_action}_9}{iteration} =$$

$$= 0.67 + \frac{1 - 0.67}{10} = 0.7$$

Probabilidad estimada de ganar después de 10 iteraciones

70%

Probabilidad real de ganar (definida a priori)

60%

K-armed bandit problem: jugar con 3 máquinas

probabilidad de ganar

probabilidad de ganar

probabilidad de ganar

Clase 1: K-armed bandit problema: Jugar con 3 máquinas

...después de 1000 iteraciones, eligiendo una máquina al azar

probabilidad estimada de ganar

92%

probabilidad real: 90%

probabilidad estimada de ganar

52%

probabilidad real: 50%

probabilidad estimada de ganar

11%

probabilidad real: 10%

...después de 1000 iteraciones, eligiendo una máquina al azar

probabilidad estimada de ganar: 92%

322

veces

probabilidad estimada de ganar: 52%

349

veces

probabilidad estimada de ganar: 11%

329

veces

...después de 1000 iteraciones, eligiendo una máquina al azar

Recompensa total: 513 puntos

K-armed bandit problem: definir greedy policy

¿Y si no quisiéramos elegir una máquina al azar, sino la que nos da mayor recompensa?

```
def greedy(exp_price):
index=np.argmax(exp_price)
return index
```

Clase 1: K-armed bandit problema: Definir greedy policy

K-armed bandit problem: aplicar greedy policy (3 máquinas)

Después de 1000 iteraciones, eligiendo la máquina con mayor probabilidad esperada de ganar...

K-armed bandit problem: aplicar greedy policy (3 máquinas)

Después de 1000 iteraciones, eligiendo la máquina con mayor probabilidad esperada de ganar...

Recompensa total: 900 puntos

K-armed bandit problem: aplicar greedy policy (muchas máquinas)

Clase 1: K-armed bandit problema: Jugar con muchas máquinas

K-armed bandit problem: jugar con muchas máquinas

K-armed bandit problem: jugar con muchas máquinas

K-armed bandit problem: exploration vs explotation

Trade-off entre explorar y explotar

```
def greedy_trade_off(exp_price,epsilon):
 if(rd.random() < epsilon):
     index=rd.randint(0,len(exp_price)-1) #explorar
 else:
     index=np.argmax(exp_price) #explotar
 return index</pre>
```

Clase 1: K-armed bandit problema: Exploration vs Explotation

K-armed bandit problem: exploration vs

explotation

K-armed bandit problem: exploration vs explotation

16

veces

probabilidad real: 75%

probabilidad real: 40%

probabilidad real: 90%

probabilidad real: 60%

probabilidad real: 55%

Exploramos el 15% de las veces

probabilidad real: 85%

probabilidad real: 80%

probabilidad real: 20%

probabilidad real: 60%