Disciplina PSI 3451 - Projeto de Circuitos Lógicos Integrados

<u>DUPLA</u>

(1) NOME: Igor Costa D'Oliveira

(2) #USP: 11391446

(1) NOME: Wesley Freitas Bernardino Araujo

(2) #USP: 11808411

1. Dados da Execução da Simulação da Dupla

(mostrar valores, cálculos e resultados)

Preencha com a sua velocidade do discípulo e com a sequência para as <u>rodadas</u> <u>especificadas</u>

Rodada		1	2	3	4
Sequência da Velocidade	N1 = 6	N.A.	X1	Х8	Х4
Sequência de casos	N2 = 3	а	d	b	С

Sequência de casos:

- a) guru sozinho (jogador não age, pois não há aperto do botão)
- d) guru e discípulo com "guru right behind".
- b) guru e discípulo sem interação entre si.
- c) guru e discípulo com encontro formando duo.

Com a realização da simulação com o testbench global, as solicitações (itens) das seções a seguir deverão ser atendidas.

2. Geração de Número Aleatório da Máquina do Discípulo

Nome do aluno cujo número USP é utilizado para obtenção do polinômio característico: Igor Costa D'Oliveira

Número USP utilizado (incluir aqui): 11391446

Preencher a tabela com os primeiros 10 valores gerados pelo software de **leventozturk.com** a partir da semente 111.....1 (em hexadecimal) e respectivos valores utilizados para o endereço do discípulo (2 bits).

	Números pseudoaleatórios (hexa)	Endereços (2 bits)
1	C53	11
2	вов	11
3	5BB	11
4	B76	10
5	541	01
6	A82	10
7	6A9	01
8	D52	10
9	909	01
10	1BF	11

Figura 1. Mudanças realizadas no run_sim.txt.

```
add wave -noupdate -group STATES -label MAIN /tb_wisdom/dut/cir1/basis/control/main/STATE

40 add wave -noupdate -group STATES -label INIT /tb_wisdom/dut/cir1/basis/control/init/STATE

41 add wave -noupdate -group STATES -label GURU /tb_wisdom/dut/cir1/basis/control/guru/STATE

42 add wave -noupdate -group STATES -label DISC /tb_wisdom/dut/cir2/fsm0/state

43 add wave -noupdate -group rand_num -label rand_num /tb_wisdom/dut/cir2/dp0/item_0/rand_number_s

44 add wave -noupdate -group rand_num -label LFSR /tb_wisdom/dut/cir2/dp0/item_0/rand_number_g/vector_lfsr

45 add wave -noupdate -group rand_num -label alu_2_ng_s /tb_wisdom/dut/cir2/dp0/item_0/alu_2_ng_s

46 add wave -noupdate -group rand_num -label load /tb_wisdom/dut/cir2/dp0/item_0/load

48 add wave -noupdate -group rand_num -label ng_2_RB /tb_wisdom/dut/cir2/dp0/item_0/ng_2_RB
```

Foram adicionados os sinais rand_num e STATES DISC no arquivo run_sim.txt como o esperado.

- a) Subir imagem(ns) do ModelSim, <u>evidenciando com anotações</u> enumere a(s) imagen(s) como item_2a_1, item_2a_2, etc...:
 - o valor da semente (após o reset): FFF
 - os primeiros 10 valores aleatórios: C53; BOB; 5BB; B76; 541; A82; 6A9; D52; 909 e 1BF
 - os 10 endereços correspondentes de memória formados no módulo num_gen:

63 (11), 63 (11), 63 (11), 62 (10), 61 (01), 62 (10), 61 (01), 62 (10), 61 (01), 63 (11).

- o(s) estado(s) da FSM_main na geração dos 10 primeiros números: INIT ACTIVATION.

item_2a

b) Compare os valores com os obtidos por software.

Todos os valores foram exatamente iguais aos obtidos no Software do item 2, é possível comparar a tabela do item 2 com a figura 2 no qual a saída do LFSR apresenta a seguinte sequência: C53; BOB; 5BB; B76; 541; A82; 6A9; D52; 909 e 1BF como a simulação do software. Desse modo, podemos concluir que a função rand_num_disc e num_gen_disc estão funcionando como o esperado.

c) Preencha tabela com os tempos (não esquecer as unidades) no Wave em que ocorrem os eventos na simulação

	reset	seed	1º no. aleatório	10º no. aleatório
Tempo	10 ns	10 ns (FFF)	20 ns (C53)	110 ns (1BF)

3. Simulação Geral com Todas as Quatro Rodadas (seguindo a tabela da seção 1)

Preencha com a sua velocidade do discípulo e com a sequência para as <u>rodadas</u> <u>simuladas</u>. Para cada caso diferente da especificada (como na tabela da seção 1), justificar a mudança

Rodada		1	2	3	4
Sequência da Velocidade	N1 = 6	N.A.	X1	Х8	Х4
Sequência de casos	N2 = 3	а	d	b	С

Para as suas quatro (4) rodadas simuladas:

a) Anexe o arquivo de estímulos do testbench onde a sequência de velocidades do discípulo está programada (denominar como item_3a)

item_3a

```
-- SIM 3:

RODADA 3 (b X8)

-- Rodada com o botao pressionado e velocidade X8. Deve-se observar a movimentacao do GURU e DISCIPULO SEM INTERAÇÃO reset_activate;
checkWC('1', 8);
file_open (f_status, l_file, "wisdom_log.txt", append_mode);
write(msg,LF & LF & "-------" & LF & "b X8) Botão apertado com velocidade 8 (SEM ITERACAO)" & LF & "------
writeline(l_file, msg);
file_close (l_file);
wait for 9022*CLK_PERIOD;
checkWC('1', 8);
```

É possível visualizar nas figuras dos itens 3a que as 4 simulações foram desenvolvidas para cada um dos casos. Vale ressaltar que na rodada 2 nós tivemos que **aumentar a velocidade de x1 para x2 para atingir o guru_right_behind**, visto que na velocidade 1 o Guru sempre chegava antes do Discípulo. Os clocks foram encontrados ao observar o rand_num no Wave e analisar a quantidade de passos para ocorrer cada situação.

b) Anexe o arquivo de mapas resultante da simulação com os estímulos do item a). Não realize edições nele, exceto a identificar a sequência de rodadas para cada cenário+velocidade (denominar como item_3b).

Obs. O arquivo deve estar comentado com os inícios e finais de cada rodada e com a velocidade do discípulo (exceto para a rodada do **caso a**).

Estes mapas foram colocado item a item nas respostas 4,5,6 e 7.

Acima é possível observar que a compilação do código do projeto foi um sucesso, fica evidente que apenas aconteceram alguns warnings.

4. Simulação da Rodada 1 (seguindo as tabelas das seções 1 e 3)

Condição a)- guru termina e discípulo não se mexe

Para este caso foi necessário desabilitar o sinal de enable do discípulo, neste caso a velocidade vai ser irrelevante, logo foi utilizado x1.

Subam imagem(ns) do **ModelSim**, <u>evidenciando com anotações</u>, <u>os sinais importantes</u> para a realização e verificação da condição da rodada. Enumere a(s) imagen(s) como:

item4a

item4b

<u>ATENÇÃO: Todos os sinais citados acima devem ser RESSALTADOS</u> **na(s) própria(s) imagen(s).** Garanta que os itens da tabela da próxima sub-seção estejam na(s) imagen(s)..

Preencha tabela com os tempos (não esquecer as unidades) no Wave em que ocorrem os eventos na simulação

	Início da rodada	Fim da rodada	end_of _guru	Retorno ao estado de espera de nova rodada no FSM_main
Tempo (us)	2,7	89,640	89,630	89,640

item4c

Conclusão: Como podemos perceber na imagem acima e nos itens 4a e 4b que neste caso como o botão BUTTON_ENABLE ficou em low durante toda a simulação o discípulo ficou parado até o guru chegar no fim como o esperado.

5. Simulação da Rodada 2 (seguindo a tabela da seção 3)

Condição d)- guru e discípulo com "guru right behind"

Neste caso o guru tem que entrar na casa do tabuleiro que o discípulo acabou de sair, a velocidade que foi solicitada para esta interação foi de X4 entretanto para as casas de tabuleiro em que o discípulo pode partir isto seria impossível para tal velocidade o discípulo sempre acaba saindo muito antes do tabuleiro. Por isto, se fez necessário utilizar uma velocidade X2 e

foi um sucesso, já na primeira interação do game ocorreu o caso "guru right behind" com o discípulo partindo da antepenúltima coluna e o Guru da segunda coluna.

a) Subam imagem(ns) do **ModelSim**, <u>evidenciando com anotações</u>, <u>os sinais importantes</u> para a realização e verificação da condição da rodada.

item5a

item5b

item5c

ATENÇÃO: Todos os sinais citados acima devem ser RESSALTADOS na(s) própria(s) imagen(s). Garanta que os itens da tabela da próxima sub-seção estejam na(s) imagen(s)..

b) Preencha tabela com os tempos (não esquecer as unidades) no Wave em que ocorrem os eventos na simulação

	Início da rodada	Fim da rodada	end_of _guru	end_of _disciple	guru_rig ht_behi nd	Ativação do enable para discípul o	Ativação da velocida de para o discípulo	Retorno ao estado de espera de nova rodada no FSM_mai n
Tempo (us)	117,730	219,480	217,426	166,236	167,270	115,030	115,030	217,450

c) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item a) evidenciam a condição pretendida.

Os sinais que evidenciam este caso são: Guru_end; Disc_end e Guru_Rigth_Behind. Como podemos observar na imagem, o Guru_end ocorre posteriormente ao Disc_end, dado que precisam de muitas casas ainda para andar.

d) Subam imagem(ns) do **ModelSim**, <u>evidenciando com anotações</u>, o valor aleatório pela saída do módulo **rand_num** (para a posição inicial do discípulo), o valor escrito na memória, o estado de geração aleatória da máquina do discípulo; o qual deve ser compatível com o mapa de posições.

| Mage |

e) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item d) evidenciam o número aleatório sendo usado como ponto de partida do discípulo.

Este é evidenciado ao entrar no estado write rand, então é possível notar que continuam sendo gerados números aleatórios, mas mesmo assim o número que foi gerado no estado rand é o que foi alocado em alu_2_ng_s.

Conclusão: Neste caso foi possível visualizar nas figuras anteriores que o circuito atingiu o estado guru_right_behind e todos os sinais respectivos como o esperado.

6. Simulação da Rodada 3 (seguindo a tabela da seção 3)

Condição b) guru e discípulo sem interação entre si.

Neste caso, a velocidade especificada foi de X8 e para que não se encontrem o valor sorteado não pode ser de tal forma que o Guru saia da coluna 4 e o discípulo da coluna 5.

a) Subam imagem(ns) do **ModelSim**, <u>evidenciando com anotações, os sinais importantes</u> para a realização e verificação da condição da rodada.

item6a

item6b

b) Preencha tabela com os tempos (não esquecer as unidades) no Wave em que ocorrem os eventos na simulação

	Início da rodada	Fim da rodada	end_of _guru	end_of _disciple	Ativaçã o do enable para discípul o	Ativação da velocidad e para o discípulo	Retorno ao estado de espera de nova rodada no FSM_main
Tempo (us)	232,760	334,520	332,480	246,080	230,065	230,065	334,520

c) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item a) evidenciam a condição pretendida.

Neste caso os sinais mais importantes são os de término do discípulo e guru, como tempos uma velocidade alta o discípulo termina muito antes de percorrer o tabuleiro que o guru, se faz importante a posição que eles partem.

d) Subam imagem(ns) do ModelSim, evidenciando com anotações, o valor aleatório pela saída do módulo rand_num (para a posição inicial do discípulo), o valor escrito na memória, o estado de geração aleatória da máquina do discípulo; o qual deve ser compatível com o mapa de posições._Enumere a(s) imagen(s) como item_6d_1, item 6d_2, etc...:

e) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item d) evidenciam o número aleatório sendo usado como ponto de partida do discípulo.

Este é evidenciado ao entrar no estado write rand, então é possível notar que continuam sendo gerados números aleatórios, mas mesmo assim o número que foi gerado no estado rand é o que foi alocado em alu_2_ng_s.

7. Simulação da Rodada 4 (seguindo a tabela da seção 3)

Condição c) guru e discípulo com encontro formando duo.

Para este caso foi condicionada uma velocidade X4

Subam imagem(ns) do **ModelSim**, <u>evidenciando com anotações</u>, <u>os sinais importantes</u> para a realização e verificação da condição da rodada.

item7a

item7b

item7c

Preencha tabela com os tempos (não esquecer as unidades) no Wave em que ocorrem os eventos na simulação

	Início da rodada	Fim da rodada	end_of _guru	end_of _disciple	duo_fo rmed	Ativaçã o do enable para discípul o	Ativação da velocidade para o discípulo	Retorno ao estado de espera de nova rodada no FSM_main
Tempo (us)	323,010	386,358	384,320	349,120	347,49 0	320,29 5	320,295	386,358

b) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item a) evidenciam a condição pretendida.

O sinal mais importante neste caso é realmente o duo_formed, que indica na carta de tempo que ocorreu o encontro, é possível visualizar pelo STATE WRITE_DUO como mostrado na figura item7b.

c) Subam imagem(ns) do ModelSim, evidenciando com anotações, o valor aleatório pela saída do módulo rand_num (para a posição inicial do discípulo), o valor escrito na memória, o estado de geração aleatória da máquina do discípulo; o qual deve ser compatível com o mapa de posições.

<u>item7c</u>

d) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item d) evidenciam o número aleatório sendo usado como ponto de partida do discípulo.

Este é evidenciado ao entrar no estado write rand, então é possível notar que continuam sendo gerados números aleatórios, mas mesmo assim o número que foi gerado no estado rand é o que foi alocado em alu_2_ng_s.

******** * NEW ROUND * ***********************************			
NEXT STEP	NEXT STEP	NEXT STEP	NEXT STEP
 	> 	> 	0.
NEXT STEP	NEXT STEP	NEXT STEP	NEXT STEP
 	> 		0
NEXT STEP	NEXT STEP	NEXT STEP	*******
 		0 	* NEW ROUND * ***********************************

Conclusão: É possível visualizar acima que o duo foi formado de acordo com o esperado e ambos finalizaram o jogo juntos. Por fim, resta apenas testarmos o programa na FPGA no qual será realizado na próxima quarta-feira.