CIS263 Assignment Six

Dr. Denton Bobeldyk

Complete the following 2 exercises:

1. Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function:

 $h(x) = x \mod 10$

Show the resulting Hash Table. Note: the hash table will start at 0 and end at 9 for a size of 10.

- a. Separate chaining hash table
- b. Hash table using linear probing
- c. Hash table using quadratic probing
- d. Hash table with second hash function $h_2(x) = 7 (x \mod 7)$
- 2. Write a program to compute the number of collisions required in a long random sequence of insertions using linear probing, quadratic probing and double hashing. For simplicity, use only integers for your long random sequence. The simulation should continue until the first 500 numbers from the random sequence have been inserted. Hash function h(x) = x % D where D is the size of the table (fixed size of 1001). Second hash function: h₂(x) = 7 (x mod 7)

Approved programming languages: C, C++, C#, Python, Java.

Hand-in:

- 1. The hash tables for exercise 1.
- 2. The output demonstrating the functionality of your program for exercise number 2
- 3. A file containing the source code for exercise 2 (no zip files)

Grading Rubric

	0%	50%	100%
Separate Chaining Hash	Not completed; 2 or	Completed, but 1	Correct hash table
table	more mistakes in hash	mistake in the hash	
(10%)	table	table	
Hash table using linear probing	Not completed; 2 or more mistakes in hash	Completed, but 1 mistake in the hash	Correct hash table
(10%)	table	table	
Hash table using	Not completed; 2 or	Completed, but 1	Correct hash table
quadratic probing (10%)	more mistakes in hash	mistake in the hash	
	table	table	
Hash table with second	Not completed; 2 or	Completed, but 1	Correct hash table
hash function (10%)	more mistakes in hash	mistake in the hash	
	table	table	
Functionality	Not demonstrated	Limited demonstration	Clearly demonstrated
demonstrated of	clearly		
exercise 2 (60%)			

See blackboard for point breakdown.