Task 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Lunedi, 09 Dicembre 2019												
	05:00	07:00	10:00	14:00	18:00	19:00	21:00					
	<i>(63)</i>	63	63	*	*	*	*					
	Cloud	Cloud	Cloud	PartlyCloud	Sun	Sun	Sun					
Temperatura effettiva	7°C	7°C	8°C	10°C	7°C	6°C	6°C					
Temperatura percepita	7°C	6°C	8°C	10°C	6°C	5°C	4°C					
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm					
Umidità	95 %	97 %	91 %	83 %	93 %	93 %	85 %					
Pressione atmosferica	1010 hPa	1010 hPa	1009 hPa	1007 hPa	1007 hPa	1008 hPa	1008 hPa					
Intensità del vento	3 km/h	7 km/h	3 km/h	6 km/h	6 km/h	6 km/h	10 km/h					
Direzione del vento	Ĺ	\hookrightarrow	\hookrightarrow	Ĺ	< <u> </u>	✓	\hookrightarrow					
	N	0	0	N	NO	SW	0					
Probabilità di nebbia	0 %	0 %	0 %	0 %	0 %	0 %	0 %					
Punto di rugiada	6°C	6°C	7°C	7°C	6°C	5°C	3°C					
Nuvole	100 %	100 %	95 %	56 %	9 %	3 %	0 %					
Nuvole basse	78 %	91 %	95 %	56 %	4 %	0 %	0 %					
Nuvole medie	63 %	6 %	5 %	0 %	5 %	3 %	0 %					
Nuvole alte	99 %	100 %	0 %	0 %	0 %	0 %	0 %					
20 ,												

Current time is 10.00 so the datas are:

Humidity:91% $\phi = Pa$

Presure: 1009 hPa P= 100.9 kPaTemperature: $8 \circ c \text{ T} = 281.15 \text{K}$

From the psychrometric chart we can read that: absolute humidity is $\omega = 0.0055\,$

The web-bulb temperature is $T_{wb} = 7^0 c$

$$P_a = P - P_v$$

$$\omega = 0.0055 = 0.622 \frac{P_v}{P_a}$$

$$\frac{0.622P_v}{101.9 - P_v} = 0.0055$$

$$P_v = 0.893kPa$$

Wather vapour $P_v = 0.893$

Volume of aula A
$$m_{
u} = rac{0.893 {
m V}}{0.4615*230} pprox 8.41 {
m x} 10^{-3} {
m \emph{V}}$$

Maximum water vapor $m_g=rac{m_v}{90\%}pprox 9.34 ext{x}10^{-3} ext{V}$

Task 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

BRINDISI, Italy WMO#: 163200

Lat: 40.65N Long: 17.95E Elev: 10 StdP: 101.2 Time Zone: 1.00 (EUW) Period: 86-10 WBAN: 99999

	Lat	40.65N	Long:	17.95E	Elev:	10	StdP	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	eating and H	lumidificat	on Design C	onditions												
	Coldest	Heatir	no DB			idification D	P/MCDB and HR			Coldest month WS/MCDB			MCWS/PCWD		1		
	Month				99.6%		99%		0.4						6% DB		
	11101101	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD]	
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	ooling, Dehu	umidificatio	n, and Entha	alpy Design	Condition	•										
	Hottest	Hottest				DB/MCWB				Evaporation WB/MCDB					/PCWD		
	Month 0.4%					1% 2%			0.4% 1%			2%		to 0.4% DB			
	INIONIUI	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
				Dehumidific	ation DP/M	CDB and HF	₹			Enthalpy/MCDB						Hours	1
		0.4%			1%	% 2%				0.4% 1			%	2	%	8 to 4 &	
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	Annual Desi	gn Conditio	ons													
	Extr	reme Annual	ws	Extreme	Extreme Annual DB							Values of Extreme DB					
				Max		Mean Standard deviation				n=5 years n=10 years			n=20 years		n=50 years		
	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	j
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

internal gains

Calculate the sensible cooling load from internal gains,

$$q_{ig,s}$$
= 136 + 2.2 A_{cf} + 22 N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W

Calculate the latent cooling load from internal gains,

$$q_{ig,l} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 W$$

Infiltration

for a house with a good construction quality, unit leakage area Aul = 1.4cm²/m²

and the exposed surface
$$A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 \text{ m}^2$$

cooling temperature T_{cooling} = 24 °C, and heating temperature T_{heating} = 20 °C in Brindisi,

$$\Delta T_{cooling} = 31.1 \,^{\circ}\text{C} - 24 \,^{\circ}\text{C} = 7.1 \,^{\circ}\text{C} = 7.1 \,^{\circ}\text{K}$$

$$\Delta T_{heating} = 20 \, ^{\circ}C \, - ^{(-4.1 \, ^{\circ}C)} = 24.1 \, ^{\circ}C = 24.1 \, K$$

$$DR = 7.1 \,^{\circ}\text{C} = 7.1 \,^{\circ}\text{K}$$

Given that IDF_{heating} = $0.073 \frac{L}{s*Cm^2}$

$$IDF_{cooling} = 0.033 \frac{L}{s*cm^2}$$

infiltration airflow rate

$$Q_{i,heating} = A_L * IDF_{heating} = 481.6 * 0.073 \approx 35.157 \frac{L}{s}$$

$$Q_{i,cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 \approx 15.893 \frac{L}{s}$$

The required miminum whole-building vetilation rate is

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 * 200 + 3.5 * (1 + 1) = 17 \frac{L}{s}$$

$$^{\rm Q}$$
i-v,heating = $^{\rm Q}$ i,heating+ $^{\rm Q}$ v $\approx 35.157 + 17 = 52.157 $\frac{L}{s}$$

Qi-v,cooling = Qi,cooling +
$$Q_v \approx 15.893 + 17 = 32.893 \frac{L}{s}$$

Given that
$$C_{sensible} = 1.23$$
, $C_{latent} = 3010$, $11w_{Cooling} = 0.0039$

 \dot{q} inf-ventilation_{coolingsensible} = Csensible Qi-v,cooling Δ^{LT} Cooling $\approx 1.23 * 32.893 * 7.1 \approx 287.25 \text{ W}$

 q inf-ventilation_{coolinglatent} = C latent Q i-v,cooling Lw Cooling $\approx 3010*32893*0.0039 \approx 386.13$ W

 $^{q} inf-ventilation_{heatinggsensible} \ ^{= C} sensible \\ ^{Q} i-v, heating \ ^{LT} heating \approx 1.23*52.157*24.1 \approx 1546.09 \ W$