

Université de Strasbourg

Rapport de Thèse

Développement de méthodes hybrides éléments finis/réseaux neuronaux pour aider à la création de jumeaux chirurgicaux numériques

Auteurs : Frédérique Lecourtier Superviseurs: Michel Duprez Emmanuel Franck Vanessa Lleras

Ínría_

Date: 3 avril 2024

Table des matières

_		relset	2
	1.1	Introduction	3
	1.2	Théorie d'approximation	5
		Apprentissage	
2	Intr	roduction	7
	2.1	Domaine applicatif	8
	9 9	Ma contribution	C

Chapitre 1

Levelset

1.1 Introduction

On se place ici dans le contexte de la résolution d'EDP par des méthodes types PINNs.

On cherche dans un premier temps à se concentrer sur le problème de Poisson avec conditions de Dirichlet défini par

$$\begin{cases} -\Delta u(X) = f(X) & \text{dans } \Omega, \\ u(X) = g(X) & \text{sur } \partial \Omega \end{cases}$$

La méthode PINNs standard consiste alors à chercher θ_u tel que

$$\theta_u = \operatorname*{argmin}_{\theta} w_r \ J_r(\theta) + w_{bc} \ J_{bc}(\theta)$$

où w_r et w_{bc} sont les poids respectifs associés à

$$J_r = \int_{\Omega} (\Delta u_{\theta} + f)^2 \text{ et } J_{bc} = \int_{\partial \Omega} (u_{\theta} - g)^2.$$

Remarque. En pratique, on utilise une méthode de Monte-Carlo pour discrétiser les fonctions de coût par des processus aléatoires.

Dans ce contexte, l'idée reçue sur les PINNs est la suivante :

Comme il n'y a pas de maillage, c'est très facile de passer à des géométries complexes!

Sauf que en pratique ce n'est pas si simple, en fait on va devoir trouver comment sampler (échantillonner) à l'intérieur de Ω .

Dans le cas des géométries simples, on peut facilement trouver des méthodes permettant de sampler dans notre géométrie, c'est-à-dire récupérer un ensemble de points à l'intérieur de celle-ci.

Figure 1.1 – Représentation de formes simples.

Comme on se place dans le contexte présenté en Section rajouter REF, on considère des formes qui peuvent être beaucoup plus compliquée et on se heurte à un premier problème qui consiste à trouver comment sampler à l'intérieur de géométrie plus complexe.

On regroupe alors ce problème en deux approches principales : sampling par mapping ou sampling par levelset.

• Mapping: Dans cette première approche, on considère un domaine simple Ω_0 , facile à sampler tel qu'un cercle. Cette méthode consiste à trouver une transformation ϕ tel que

$$\Omega = \phi(\Omega_0)$$

où Ω est la géométrie cible.

FIGURE 1.2 – Représentation d'un sampling par mapping.

• Levelset : Dans cette seconde approche, on cherche à trouver une fonction levelset permettant de décrire notre géométrie.

FIGURE 1.3 – Définition d'une fonction LevelSet.

Cette fonction est définie comme étant nulle sur le bord de notre domaine, strictement négative à l'intérieur et strictement positive à l'extérieur. Ainsi déterminer un sampling à l'intérieur de Ω revient seulement à déterminer des points tel que ϕ soit strictement négative.

Dans le travail fait ici, on ne s'intéressera en fait que l'approche par LevelSet pour les raisons suivantes :

- Dans notre contexte, on cherche à utiliser une méthode qui est en développement dans l'équipe Mimesis. Cette méthode appelée ϕ -FEM (Section Rajouter ref) est une méthode élément finie non-conforme qui nécessite l'utilisation d'une fonction LevelSet. Ainsi, cette fonction Levelset sera utilisée pour sampler le domaine mais également dans la méthode ϕ -FEM pour corriger et certifier les predcitions du PINNs.
- Ensuite, on s'est basé sur un papier Rajouter ref qui permet d'imposer en dure les conditions au bord dans le PINNs en écrivant notre solution sous la forme

$$u_{\theta}(X) = \phi(X)w_{\theta}(X) + g(X)$$

Ce papier semblait donner dans certains cas de meilleurs résultats qu'avec des PINNs standard.

Remarque. Ils présentent également des façons d'imposer des conditions de Neumann et de Robin mais on ne considérera ici qu le cas des conditions de Dirichlet.

Ainsi, on utilisera la fonction levelset pour générer un sampling dans notre géométrie, pour imposer les conditions en dure dans le PINNs mais également pour corriger et certifier les prédictions du PINNs en utilisant la méthode ϕ -FEM.

Remarque. Une fonction levelset naturelle est la Fonction Distance Signée. Cette fonction est totalement utilisable pour générer un sampling dans notre domaine. Cependant dans l'approche où on impose les conditions en dure, ses dérivées explosent trop pour obtenir des résultats satisfaisant. On se heurte alors au problème : Comment construire une fonction levelset suffisamment régulière pour pouvoir être utilisé pour imposer les conditions en dure ?

On cherche à présent à déterminer comment obtenir une fonction levelset pour des géométrie complexes. On distinguera alors deux approches :

- Dans la première, on reprend le papier où sont imposés les conditions en dure et on utilise les théories d'approximation qui y sont proposées (Section rajouter REF).
- Dans la seconde, on utilise une approche par apprentissage basé sur un second papier REF (Section rajouter REF).

1.2 Théorie d'approximation

1.3 Apprentissage

Chapitre 2

Introduction

2.1 Domaine applicatif

L'équipe de recherche MIMESIS travaille sur un ensemble de défis dans le but de créer des jumeaux numériques en temps réel d'un organe. Leurs principaux domaines d'application sont la formation chirurgicale et le guidage chirurgical lors d'interventions complexes. Leurs principaux objectifs cliniques sont la chirurgie hépatique, la chirurgie pulmonaire et la Neuro-stimulation.

Dans mon cas, je travaille sur le sujet intitulé : **« Développement de méthodes hybrides éléments finis/réseaux neuronaux pour aider à créer des jumeaux chirurgicaux numériques »**. Pour fair simple, l'idée est de simuler numériquement en temps réel certains comportements physiques qui peuvent avoir lieu pendant une intervention chirurgicale.

FIGURE 2.1 – Représentation d'un foie.

Le terme « jumeaux chirurgicaux numériques » désigne en fait la modélisation numérique d'un organe (en particulier le foie). Mon travail ne consiste pas à modéliser ces organes numériquement, mais à développer de nouvelles méthodes pour simuler, le plus rapidement possible, certains phénomènes physiques appliqués à l'organe en question. Un exemple d'un de ces phénomènes physiques pourraient être les déformations de l'organe si le chirurgien applique une pression à un endroit précis. La modélisation aura alors pour objectif de simuler quelle forme prendra le foie à partir, par exemple, de la force appliquée et de l'endroit où le chirurgien appuie.

Un exemple plus simple et assez classique de ce type de phénomène est le cas d'un ressort. Imaginons que l'on possède un ressort à son état normal.

- En appuyant sur le ressort, on applique une certaine force sur le ressort en haut et en bas et on force le ressort à se déformer, en se resserrant.
- En tirant sur le ressort, on applique une force inverse sur celui-ci et on le force à se déformer, en s'étirant cette fois-ci.

Dans le contexte d'un organe, l'idée (très simplifiée ici) est en principe la même (excepté qu'un foie n'aura pas les mêmes propriétés physiques qu'un ressort).

FIGURE 2.2 – Déformation d'un ressort.

En pratique, ces phénomènes physiques sont décrits par des équations mathématiques qui peuvent être assez complexes à résoudre. Les équations qui décrivent ces phénomènes sont déjà connus et un ensemble de méthodes numériques visant à les résoudre ont déjà été développées au cours des années précédentes. La complexité là-dedans réside dans la rapidité d'exécution des simulations, en rappelant qu'encore une fois l'objectif est que ces modélisations soient utilisables en temps réel, c'est-à-dire assez rapide pour être applicable pendant une intervention chirurgicale.

2.2 Ma contribution

Comme je l'expliquais précédemment, mon objectif est de développer une méthode pour résoudre des Équations aux Dérivées Partielles (EDP) le plus rapidement possible, méthode qui va combiner deux types de méthodes déjà connues : les méthodes appelées FEM (pour Finites Elemnts Methods) et des approches avec des réseaux de neurones (méthodes plus récentes dans le domaine de l'Intelligence Artificielle).

Pour être plus précis, une des méthodes classiques pour résoudre les EDP, c'est-à-dire pour trouver la solution au problème considéré, est d'utiliser ce qu'on appelle des Méthodes Éléments Finis. Pour faire très simple, si notre organe est représenté par un cercle en 2D, résoudre l'équation va se ramener à résoudre le problème en un nombre fini de points. Pour cela, on va introduire ce que l'on appelle un maillage du domaine (ici, un ensemble de triangles) et on va résoudre numériquement l'équation en un nombre de points finis (par exemple, les nœuds du maillage, c'est-à-dire les sommets de tous les triangles).

FIGURE 2.3 – Maillage d'un cercle en 2D. Ce type de méthode a en fait plusieurs limitations très importantes.

- Comme vous devez vous en douter, en pratique le foie n'est pas représenté par un cercle, ce qui rend les choses plus compliquées. En fait, générer un maillage précis d'une géométrie aussi complexe qu'un organe comme le foie en 3D peut être très coûteux, notamment prendre beaucoup de temps, ce qui rend pas ce type de méthodes difficilement utilisables en temps réel.
- Un autre point important est que la géométrie du foie reste similaire entre différents patients, mais elle ne sera jamais identique. Comme les mains de chaque personne, les organes de celle-ci ne seront pas exactement les mêmes. Ainsi, on doit générer des maillages de l'organe pour chaque nouveau patient et c'est ainsi qu'on a vu apparaître de nouvelles méthodes, dites inter-patients. Ces méthodes ont pour objectif entre-autre de trouver une solution, disons générique, qui devra être améliorée ensuite pour s'adapter au cas par cas. Autrement dit, comme les foies de chaque patient se ressemblent, on cherche à prédire une solution pas obligatoirement très précise qui pourra être utilisé pour tous les patients et on souhaiteras l'améliorer ensuite pour un patient donné.

De ce fait, de nouvelles méthodes ont vue le jour, notamment avec l'apparition des réseaux de neurones, qui peuvent être des outils très rapides pour résoudre ce type de problème. Mais ces méthodes, qui sont applicables cette fois-ci en temps réel, peuvent produire des solutions qui ne sont pas suffisamment précises et/ou même encore se tromper complètement.

Ma contribution là-dedans va être de combiner ces deux types de méthodes pour obtenir une solution rapide, précise et inter-patients. On commence alors par récupérer la solution prédite par un réseau de neurones, puis on utilise une méthode type Éléments finis pour corriger et certifier la solution, c'est-à-dire l'améliorer en la rendant plus précise et faire en sorte qu'elle soit correcte partout.