Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Practice Problem Sheet 3

1. Show that the following limits are correct by using the $\epsilon - \delta$ definition of limit:

(a)
$$\lim_{x \to 0} x^3 \cos\left(\frac{1}{x}\right) = 0$$
, (b) $\lim_{x \to a} x^{1/3} = a^{1/3}$ in \mathbb{R}^+ , (c) $\lim_{x \to 2} (2x^2 + 10x + 4) = 32$,

(d)
$$\lim_{x \to c} x^2 = c^2$$
, (e) $\lim_{x \to c} \sqrt{x} = \sqrt{c}$, $x \ge 0$, (f) $\lim_{x \to a} \frac{1}{x} = \frac{1}{a}$, where $a \in \mathbb{R} \setminus \{0\}$.

- 2. Show that a polynomial of odd degree has at least one real root.
- 3. Show that the equation $(1-x)\cos x = \sin x$ has at least one solution in (0,1).
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be such that for every $x, y \in \mathbb{R}$, $|f(x) f(y)| \le \alpha |x y|$, $\alpha > 0$. Show that f is continuous.
- 5. Let $f:(-1,1)\to\mathbb{R}$ be a continuous function such that in every neighbourhood of 0, there exists a point x such that f(x)=0. Then show that f(0)=0.
- 6. Determine the points and nature of discontinuity of the following functions:

(a)
$$\frac{x \tan x}{x^2 + 1}$$
, (b) $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q}. \end{cases}$

Solutions for Practice Problem Sheet 3

- 1. (a) Choose $\delta = \epsilon^{\frac{1}{3}}$.
 - (b) Use $(a^3 b^3) = (a b)(a^2 + b^2 + ab)$ and choose $\delta = \frac{\epsilon}{a^{2/3}}$.
 - (c) Choose $\delta > 0$ such that $(7 + \delta)\delta = \epsilon$.
 - (d) Choose $\delta > 0$ such that $(c + \delta)\delta = \epsilon$.
 - (e) Choose $\delta = \frac{\epsilon}{\sqrt{c}}$.
 - (f) Choose $\delta = \min \left\{ \frac{|a|}{2}, \frac{\epsilon |a|^2}{2} \right\}$.
- 2. Let $p(x) = a_n x^n + \cdots + a_1 x + a_0$, $a_n \neq 0$ and n is odd.

Then $p(x) = x^n \left(a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \right)$. If $a_n > 0$ then $p(x) \to \infty$ as $x \to \infty$ and $p(x) \to -\infty$ as $x \to -\infty$. Thus by IVT, there exist x_0 such that $p(x_0) = 0$. Similar argument for $a_n < 0$.

- 3. f(0) = 1, $f(1) = -\sin 1 < 0$. Now use IVT.
- 4. Choose $\delta = \frac{\epsilon}{\alpha}$.
- 5. For every n, there exists $x_n \in (-1/n, 1/n)$ such that $f(x_n) = 0$, Since f is continuous at 0 and $x_n \to 0$, we have $f(x_n) \to f(0)$. Therefore, f(0) = 0.
- 6. (a) $\frac{x \tan x}{x^2+1} = \frac{x \sin x}{\cos x(x^2+1)}$. The points of infinite discontinuities are $(2n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$.
 - (b) This function is discontinuous everywhere and has discontinuity of second kind at all points. To prove this first take $q \in \mathbb{Q}$. Then consider the sequence $\{q+\frac{1}{n}\}\in \mathbb{Q}$ which converges to q. Therefore $\lim_{n\to\infty}f(q+\frac{1}{n})=1$. Now we can also take a sequence $\{q+\frac{e}{n}\}$ of irrational numbers which converges to q and $f(q+\frac{e}{n})=0$. So the $\lim_{x\to q^+}f(x)$ does not exist. By taking sequences $\{q-\frac{1}{n}\}$ and $\{q-\frac{e}{n}\}$ one can see that $\lim_{x\to q^-}f(x)$ does not exist.

Now for $a \notin \mathbb{Q}$, we use the fact that: there exists sequence $\{q_n\} \in \mathbb{Q}$ such that $q_n \to a$ as $n \to \infty$. So one can take the sequences $\{q_n\}$ and $\{a \pm \frac{1}{n}\}$ to see that the left and right limits does not exist.

2