## STUDENT PERFORMANCE PREDICTION

Predicting Secondary School Student Performance Using Machine Learning

Lucas Lorenzo Jakin

Mentor: Assoc. Prof. Branko Kavšek, PhD

**University of Primorska | August, 2024** 



- Objectives
- Problem
- Data Understanding
- Data Preparation

- Methodology
- Implementation
- Evaluation Methods
- Results

- Discussion
- Conclusion & Future work

University of Primorska | 2024

## **OBJECTIVES**

- Following the CRISP-DM methodology
  - Essential process;
  - Keeping a structured manner;
- Data analysis and preparation
  - Gain insights from data;
- Predict students' final grades
  - Classification & Regression;
  - Build and evaluate predictive models;



## **PROBLEM**

- Negative achievement of Portuguese students
  - High student failure and dropping rates;
- Core subject of Mathematics
  - Fundamental knowledge for success;
- Predicting student performance using Data Mining
  - Is it possible to predict student performance?
  - What are the factors that affect student achievement?

### DATA UNDERSTANDING

- Sources of data:
  - Kaggle and UCI-ML: consistent structure and information;
  - Mathematics performance;
- 33 attributes and 395 examples:
  - Attributes: demographic, social and school related;
- Target attribute: **G3** 
  - Representing the final grade;
  - Regression task: 20-point grading scale;
  - Discretized G3: five classes of grades (A to F);

## ATTRIBUTES

| Variable type: character |           |               |     |     |       |          |            |  |  |  |
|--------------------------|-----------|---------------|-----|-----|-------|----------|------------|--|--|--|
| skim_variable            | n_missing | complete_rate | min | max | empty | n_unique | whitespace |  |  |  |
| school                   | 0         | 1             | 2   | 2   | 0     | 2        | 0          |  |  |  |
| sex                      | 0         | 1             | 1   | 1   | 0     | 2        | 0          |  |  |  |
| address                  | 0         | 1             | 1   | 1   | 0     | 2        | 0          |  |  |  |
| famsize                  | 0         | 1             | 3   | 3   | 0     | 2        | 0          |  |  |  |
| Pstatus                  | 0         | 1             | 1   | 1   | 0     | 2        | 0          |  |  |  |
| Mjob                     | 0         | 1             | 5   | 8   | 0     | 5        | 0          |  |  |  |
| Fjob                     | 0         | 1             | 5   | 8   | 0     | 5        | 0          |  |  |  |
| reason                   | 0         | 1             | 4   | 10  | 0     | 4        | 0          |  |  |  |
| guardian                 | 0         | 1             | 5   | 6   | 0     | 3        | 0          |  |  |  |
| schoolsup                | 0         | 1             | 2   | 3   | 0     | 2        | 0          |  |  |  |
| famsup                   | 0         | 1             | 2   | 3   | 0     | 2        | 0          |  |  |  |
| paid                     | 0         | 1             | 2   | 3   | 0     | 2        | 0          |  |  |  |
| activities               | 0         | 1             | 2   | 3   | 0     | 2        | 0          |  |  |  |
| nursery                  | 0         | 1             | 2   | 3   | 0     | 2        | 0          |  |  |  |
| higher                   | 0         | 1             | 2   | 3   | 0     | 2        | 0          |  |  |  |
| internet                 | 0         | 1             | 2   | 3   | 0     | 2        | 0          |  |  |  |
| romantic                 | 0         | 1             | 2   | 3   | 0     | 2        | 0          |  |  |  |

| Variable type: numeric |           |               |       |      |    |     |     |     |      |      |  |
|------------------------|-----------|---------------|-------|------|----|-----|-----|-----|------|------|--|
| skim_variable          | n_missing | complete_rate | mean  | sd   | p0 | p25 | p50 | p75 | p100 | hist |  |
| age                    | 0         | 1             | 16.70 | 1.28 | 15 | 16  | 17  | 18  | 22   |      |  |
| Medu                   | 0         | 1             | 2.75  | 1.09 | 0  | 2   | 3   | 4   | 4    |      |  |
| Fedu                   | 0         | 1             | 2.52  | 1.09 | 0  | 2   | 2   | 3   | 4    |      |  |
| traveltime             | 0         | 1             | 1.45  | 0.70 | 1  | 1   | 1   | 2   | 4    |      |  |
| studytime              | 0         | 1             | 2.04  | 0.84 | 1  | 1   | 2   | 2   | 4    |      |  |
| failures               | 0         | 1             | 0.33  | 0.74 | 0  | 0   | 0   | 0   | 3    |      |  |
| famrel                 | 0         | 1             | 3.94  | 0.90 | 1  | 4   | 4   | 5   | 5    |      |  |
| freetime               | 0         | 1             | 3.24  | 1.00 | 1  | 3   | 3   | 4   | 5    |      |  |
| goout                  | 0         | 1             | 3.11  | 1.11 | 1  | 2   | 3   | 4   | 5    |      |  |
| Dalc                   | 0         | 1             | 1.48  | 0.89 | 1  | 1   | 1   | 2   | 5    |      |  |
| Walc                   | 0         | 1             | 2.29  | 1.29 | 1  | 1   | 2   | 3   | 5    |      |  |
| health                 | 0         | 1             | 3.55  | 1.39 | 1  | 3   | 4   | 5   | 5    |      |  |
| absences               | 0         | 1             | 5.71  | 8.00 | 0  | 0   | 4   | 8   | 75   |      |  |
| G1                     | 0         | 1             | 10.91 | 3.32 | 3  | 8   | 11  | 13  | 19   |      |  |
| G2                     | 0         | 1             | 10.71 | 3.76 | 0  | 9   | 11  | 13  | 19   |      |  |
| G3                     | 0         | 1             | 10.42 | 4.58 | 0  | 8   | 11  | 14  | 20   |      |  |

## PREPARING THE DATA

- High correlation between G1, G2, and G3
  - G1 and G2 removed;
- Regression task:
  - Predicting G3;
- Classification task:
  - Predicting Category discretized G3;
- Absence of missing values
  - No need for imputation;





## PREPARING THE DATA (2)

- Label encoding:
  - Handling categorical values;
  - Converting into numerical;
- Dataset split into two parts:
  - 75% of data for training;
  - 25% of data for testing;
- Cross-Validation:
  - Less biased than a simple train/test split;
  - Shuffled 10-Fold Cross-Validation;



### METHODOLOGY

- Application of machine learning algorithms (3 groups):
- Baseline algorithms:

### ZeroR

- Majority class classifier
- Benchmark method

### OneR

- Best attribute classifier
- Rule with smallest total error

## METHODOLOGY (2)

• Classification algorithms:

#### **Random Forest**

- Random Forest Classifier
- Supervised learning
- Multiple Decision Trees

### k-NN

- k-Nearest Neighbor Classifier
- Grouping data points
- Majority vote on neighbors

#### **SVM**

- Support Vector Machine
- Maximum Marginal Hyperplane
- Support Vectors

## METHODOLOGY (3)

• Regression algorithms:

### **Decision Tree**

- Three types of nodes
- Constructing decision rules
- Decision making problems

### k-NN

- k-Nearest Neighbor Regressor
- Dealing with continuous values
- Averaging the k nearest neighbors

#### **Random Forest**

- Random Forest Regressor
- Faster and more robust than others

### IMPLEMENTATION

- **ZeroR** implemented "by hand":
  - Very simple to implement;
- OneR implemented in *R programming language*:
  - Rstudio: Exploratory Data Analysis;
- All models implemented in **Python**
- Scikit-learn library in Python:
  - Open source and commercially usable;
  - Provides unsupervised and supervised learning algorithms;

## EVALUATION METHODS

- Models built on the training set, tested on the testing set
- Classification metrics:
  - Accuracy;
  - Confusion Matrix;
  - Precision, Recall and F1-Score;
- Regression metrics:
  - MAE;
  - MSE & RMSE;
  - R-Squared Score;

## RESULTS

- Classification Scores:
  - KNN is most precise but lacks in recall;
  - Random Forest and SVM are more balanced, but low in accuracy;
  - SVM has lowest performance overall;
- Overall struggle with predictions
- Challenging prediction task



## RESULTS (2)

- Regression scores:
  - Random Forest performs best:
    - Low *RMSE*, *MAE*, *MSE*;
  - KNN: strong fit and predictive accuracy:
    - Similar to Random Forest;
  - Decision Tree: slightly worse overall
- Great performance from all models
- Great results overall



### DISCUSSION

- Regression models perform much better
- Classification models struggling to make right predictions
- Initial problem more suitable than predicting a discretized class

### CONCLUSION

- Data Mining allows a high level extraction of knowledge from data:
  - Great possibilities in the education domain;
  - Enhance school resource management
- Two different **DM goals**
- Six different DM methods
- Student achievement highly affected by previous performances
- Strong foundation for future exploration

### **FUTURE WORK**

- Model testing on diverse datasets
- Tuning model settings and hyperparameters
- Refine techniques to improve model accuracy
- Further study of predictive modeling

University of Primorska | 2024

# THANKYOU

Presented By: Lucas Lorenzo Jakin