

Module: Optimization methods in CV Inference algorithms I: BP and LBP

Lecturer: O. Ramos Terrades

Goals of this Lecture & Tools

Goal

- ► Belief propagation (BP): sum-prod
- ► Loopy belief propagation (LBP): sum-prod

Tools

- ▶ UGM library at http://www.cs.ubc.ca/~schmidtm/Software/UGM.html
- ► OpenGM at http://hci.iwr.uni-heidelberg.de/opengm2/
 - Matlab and Python
 - Public benchmark at http://hci.iwr.uni-heidelberg.de/opengm2/?10=benchmark

Outline

Representation

Representation: factor graphs

- ▶ Interactions defined on maximal cliques
- ► Factors defined on cliques
- Join pdfs factorizes on cliques:

 $x = (x_1, \dots, x_N), x_i$ discrete r.v. with domain $\{0, ..., L-1\}$:

$$p(x) = \frac{1}{Z} \prod_{\alpha} \phi_{\alpha}(x_{\alpha}) \qquad (1) \qquad Z = \sum_{l_{1}=0}^{L-1} \cdots \sum_{l_{N}=0}^{L-1} p(x_{1} = l_{1}, \dots, x_{1} = l_{N})$$

$$\text{ere } Z = \int p(x) dx \text{ is the}$$
(2)

where $Z = \int p(x)dx$ is the partition function

Change of notation

- ightharpoonup rvs: x_1, \ldots, x_N . subset of rvs: $x_{i_1}, \ldots, x_{i_s}, 1 \le i_1 < \cdots < i_s \le N$
- define index set: $\alpha = \{i_1, \ldots, i_s\}$
- complementary index set: $\bar{\alpha} = \{1, \dots, N\} \setminus \alpha$

$$\sum_{\bar{z}} p(x) \Rightarrow p(x_{\alpha}) = \int p(x) d\bar{x}_{\alpha}$$
 (3)

Representation: feature functions

$$p(a,b,c,d,e) = \frac{1}{Z}\phi_{\alpha_1}(a,e,d)\phi_{\alpha_2}(a,b)\phi_{\alpha_3}(c)$$

- ► Factor functions are the model parameters
- ► We can define it by means of *feature* functions: $f_{i,l}(x_{\alpha_i})$
- Feature functions are sufficient statistics

feature functions

$$\log \phi_{\alpha}(x_{\alpha}) = \sum_{l} \theta_{\alpha,l} f_{l}(x_{\alpha}) \qquad (4)$$

 $\theta_{\alpha,l}$ model parameter

Example (feature functions)

- ▶ Data value: $x \in \mathbb{R}$.
- Indicator function: $\mathbb{1}_{\{x=a\}}(x)$, $a, x \in \mathbb{N}$
- ► L^p -norm: $||x||_p^p$, $x \in \mathbb{R}^m$
- ► L^p -distance: $||x y||_p^p$, $x, y \in \mathbb{R}^m$

Representation: log-linear models

Log-linear model

$$p(x) = \frac{1}{Z} \exp \left\{ \sum_{\alpha,l} \theta_{\alpha,l} f_{\alpha,l}(x_{\alpha}) \right\}$$
 (5)

Energy

$$E(x) = -\sum_{\alpha,l} \theta_{\alpha,l} f_{\alpha,l}(x_{\alpha}) \qquad (6)$$

$$p(x) = \frac{1}{Z} \exp\{-E(x)\} \qquad (7)$$

$$p(x) = \frac{1}{Z} \exp\{-E(x)\}$$
 (7)

- How can we estimate model parameters? Answer: learning algorithms.
- ► Solve MAP inference problem ⇔ minimize energy E
 - ⇒ We can apply methods from the first part of this module

Representation: Bayes networks and factor graphs

$$p(a,b,c,d) \neq p(c|a,b)p(a)p(b|a,d)p(d)$$

"Moralization" = marrying parents

- ightharpoonup p(c|a,b) a factor have to contain rvs a, b and c.
- ightharpoonup p(b|a,d) a factor have to contain rvs a, b and d.

$$p(a,b,c,d) = \frac{1}{Z}\phi(c,a,b)\phi(b,a,d)$$

$$p(a, b, c, d) = \frac{1}{Z}\phi(c, a, b)\phi(b, a, d)$$
 $p(a, b, c, d) = \frac{1}{Z}\phi_1(c, a, b)\phi_2(b, a, d)$

Representation: exercise

Moralize the following Bayes network and draw the associated factor graph:

Outline

Representation

Inference algorithms

Belief Propagation Loopy belief propagation (LBP)

Goal:

Given a factor graph representing some directed, or undirected, model compute marginals $p(x_n)$.

Assumptions:

- ► acyclic factor graph (tree)
- all factor functions are known (parameters)
- ► discrete variables

Benefits:

- \blacktriangleright exact inference of $p(x_n)$: $O(NK^2)$
- ▶ all marginals $p(x_n)$, n = 1, ..., N in 2 computations

Main idea:

$$p(x_n) = \int p(x)d\bar{x}_n = \int \prod_s \phi_s(x_s)dx_{s\setminus\{n\}}$$
 (8)

 ϕ_s factor function. s index set of variables connected to factor s

- ▶ interchange \int and \prod for those x_s without x_n
- express the algorithm as passing messages between graph nodes

1. Consider x_n as the root of a graph

2. Initialize variable messages from (tree) leaves :

3. Send messages from factors to variables:

$$m_{i_k \leftarrow s}(x_{i_k}) = \int \phi_s(x_s) \prod_{j \in s \setminus \{i_k\}} m_{j \to s}(x_j) dx_{s \setminus \{i_k\}}$$

4. Send messages from variables to factors :

- 5. repeat steps 3 and 4 until all variables have received and sent messages.
- 6. Belief estimation:

$$b(x_n) = \frac{1}{Z_n} \prod_{s \ni n} m_{n \leftarrow s}(x_n)$$

where Z_n is the partition function associated to belief $b_n(x_n)$.

A silly numerical example*

^{*} Machine learning course 4F13 by Z. Grahramani and C.E. Rasmussenn, Dep. of Engineering, University of Cambridge, http://mlg.eng.cam.ac.uk/teaching/4f13/0708/

Conditional probabilities:

- 1. Convert the Bayes net to a factor graph.
- 2. Initialize variable messages from leaves :

$$m_{1\leftarrow a}=\int \phi_a(x_1,x_3)m_{3\rightarrow a}(x_3)dx_3=$$

$$m_{1\leftarrow a} = \int \phi_a(x_1, x_3) m_{3\rightarrow a}(x_3) dx_3 = \begin{pmatrix} 0.84 & 0.16 \\ 0.0 & 1.0 \end{pmatrix} \begin{pmatrix} 0.0 \\ 1.0 \end{pmatrix} = \begin{pmatrix} 0.16 \\ 1.0 \end{pmatrix}$$

$$\phi_b(x_4, x_6) = p(x_4|x_6) = \begin{pmatrix} 0.05 & 0.9 \\ 0.95 & 0.1 \end{pmatrix}$$

$$x_4$$

$$x_6 \downarrow \phi_b$$

$$x_6 \downarrow \phi_b$$

$$m_{4\leftarrow b} = \int \phi_b(x_4, x_6) m_{6\rightarrow b}(x_6) dx_6 =$$

$$\phi_{b}(x_{4}, x_{6}) = p(x_{4}|x_{6}) = \begin{pmatrix} 0.05 & 0.9 \\ 0.95 & 0.1 \end{pmatrix}$$

$$x_{4}$$

$$x_{6}$$

$$\phi_{b}$$

$$x_{4}$$

$$\phi_{b}$$

$$x_{6}$$

$$\phi_{b}$$

$$m_{4\leftarrow b} = \int \phi_b(x_4, x_6) m_{6\rightarrow b}(x_6) dx_6 = \begin{pmatrix} 0.05 & 0.95 \\ 0.9 & 0.1 \end{pmatrix} \begin{pmatrix} 0.0 \\ 1.0 \end{pmatrix} = \begin{pmatrix} 0.95 \\ 0.1 \end{pmatrix}$$

$$m_{2\leftarrow c} = \int \phi_c(x_2, x_5) m_{5\rightarrow c}(x_5) dx_5 =$$

$$\phi_c(x_2, x_5) = p(x_5|x_2) = \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix}$$

$$x_1 \qquad \phi_d \qquad x_2 \qquad \phi_c$$

$$x_3 \qquad \phi_a \qquad x_4 \qquad x_5$$

$$x_5 \qquad \phi_b \qquad x_6$$

$$m_{2\leftarrow c} = \int \phi_c(x_2, x_5) m_{5\rightarrow c}(x_5) dx_5 = \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 1.0 \\ 1.0 \end{pmatrix} = \begin{pmatrix} 1.0 \\ 1.0 \end{pmatrix}$$

4. propagate message from variables to factors:

$$m_{1 \to d} = m_{1 \leftarrow a} = \begin{pmatrix} 0.16 \\ 1.0 \end{pmatrix}$$

$$m_{4 \to d} = m_{4 \leftarrow b} = \begin{pmatrix} 0.95 \\ 0.1 \end{pmatrix}$$

$$m_{2 \to d} = m_{2 \leftarrow c} = \begin{pmatrix} 1.0 \\ 1.0 \end{pmatrix}$$

5. Repeat steps 2 and 3: propagate messages from factors to variables:

$$\phi_d(x_1, x_2, x_4) = p(x_4|x_1, x_2)p(x_1)p(x_2)$$

$$m_{1 \leftarrow d} = \int \phi_d(x_1, x_2, x_4)m_{2 \rightarrow d}(x_2)m_{4 \rightarrow d}(x_4)dx_2dx_4 = \begin{pmatrix} 0.25 \\ 0.02 \end{pmatrix}$$

$$m_{1 \leftarrow d}(0) = \begin{pmatrix} 0.95 & 0.1 \end{pmatrix} \begin{pmatrix} 13.96 & 3.41 \\ 79.15 & 0.46 \end{pmatrix} \begin{pmatrix} 1.0 \\ 1.0 \end{pmatrix} \cdot 10^{-2} = 0.25$$

6. Estimate belief of x_1 :

$$b_{1}(x_{1}) = \frac{1}{Z} m_{1 \leftarrow a}(x_{1}) \circ m_{1 \leftarrow d}(x_{1}) =$$

$$= \frac{1}{Z} \begin{pmatrix} 0.16 \\ 1.0 \end{pmatrix} \circ \begin{pmatrix} 0.25 \\ 0.02 \end{pmatrix} =$$

$$= \begin{pmatrix} 0.62 \\ 0.38 \end{pmatrix}$$

To compute marginals for all rvs: x_n , 1, ..., N:

- 1. pick any node as a root
- 2. propagate messages from leaves to root
- 3. the root has received a message from all children \rightarrow it can sent back a message to them
- 4. Children have also receive a message from all neighboring rvs \to they can sent a message away from the root
- 5. repeat 4. until all leaves have receive a message

A message has passed in both directions across every link $\rightarrow O(2NK^2)$

Belief Propagation: Summary

Advantages of BP:

- simplicity of message passing
- exact inference on tree-structured graphs
- ightharpoonup time and memory $O(NK^2)$ linear in the number of nodes

Shortcomings:

- ▶ graphs with *loops*: approximate solution. Convergence?
- $ightharpoonup O(NK^2)$ quadratic in the number of labels
- O(NK^c), c =size of largest clique : precludes efficiency on high order models

Inference algorithms: graphs with loops

- Can we estimate exact marginals on loopy graphs?
 - clustering variables: Junction tree, convex energies

$$p(x) = \frac{1}{Z} \prod_{i} \phi_{i,j}(x_i, x_j)$$
 (9)

Inference algorithms: junction tree

Applying usual definitions of conditional probabilities:

$$p(x) = \frac{p(x_{0,0}, x_{0,1}, x_{1,0})p(x_{0,1}, x_{1,0}, x_{2,0}, \dots)}{p(x_{0,1}, x_{1,0})} \dots$$
(10)

JAB ullet UOC ullet UPC ullet ullet Master in Computer Vision Barcelona

Inference algorithms: exercise

► Given the PGM of the image. Show that *p* factorise as:

$$p(x_0, x_2, x_3, x_4) = \frac{p(x_0, x_1, x_2)p(x_2, x_3, x_4)}{p(x_1)p(x_2)}$$

Inference algorithms: cluster graph

Clique tree

Running intersection property

#UPC

 \mathcal{T} a cluster tree; $(\mathcal{V}_{\mathcal{T}}, \mathcal{E}_{\mathcal{T}})$ nodes and edges, respectively. \mathcal{T} has the running intersection property if, whenever there is a variable x such that $x \in C_i$ and $x \in C_i$, then x is also in every cluster in the (unique) path in \mathcal{T} between C_i and C_i

Clique tree

A cluster tree that satisfies the running intersection property is called a clique tree. Sometimes also called a junction tree

Inference algorithms: Junction tree

- ► Junction tree algorithm: minimize energy
- messages from outer factor to inner factors & vice versa
- ► Exact inference if graph contains **loops**
- ► Convergence is **guarantee**
- Complexity exponential with the biggest cluster size ⇒ It can not be applied in many real situations

Loopy belief propagation (LBP): algorithm

```
Initialize messages: m_{n\to\alpha}=1
Repeat:
      for all node variables x_n
             for all factors \phi_{\alpha} containing x_n:
                    send a message from factor \phi_{\alpha} to x_n: m_{n\leftarrow\alpha}
             endfor
      endfor
      for all factors \phi_{\alpha}:
             for all variables x_n in \phi_{\alpha}:
                    send a message from variables x_n to \phi_\alpha: m_{n\to\alpha}
             endfor
             Update b_{\alpha}(x_{\alpha}).
      endfor
While not converged
```

Loopy belief propagation (LBP): algorithm

belief at factor level α :

$$b_{\alpha}(x_{\alpha}) = \phi_{\alpha}(x_{\alpha}) \prod_{j \in \alpha} m_{j \to \alpha}(x_{j})$$
(11)

▶ send a message from factor ϕ_{α} to x_n : $m_{n\leftarrow\alpha}$

$$m_{n \leftarrow \alpha}(x_n) = \int \phi_{\alpha}(x_{\alpha}) \prod_{j \in \alpha \setminus \{n\}} m_{j \to \alpha}(x_j) dx_{\alpha \setminus \{n\}} \qquad (12)$$

$$= \frac{1}{m_{n \to \alpha}(x_n)} \int \phi_{\alpha}(x_{\alpha}) \prod_{j \in \alpha} m_{j \to \alpha}(x_j) dx_{\alpha \setminus \{n\}}$$

$$= \frac{\int b_{\alpha}(x_{\alpha}) dx_{\alpha \setminus n}}{m_{n \to \alpha}(x_n)}$$

$$= \frac{\int b_{\alpha}(x_{\alpha}) dx_{\alpha \setminus n}}{m_{n \to \alpha}(x_n)}$$

$$= \frac{\int b_{\alpha}(x_{\alpha}) dx_{\alpha \setminus n}}{m_{n \to \alpha}(x_n)}$$

$$= \frac{\int b_{\alpha}(x_n) dx_{\alpha \setminus n}}{m_{n \to \alpha}(x_n)}$$

Loopy belief propagation (LBP): algorithm

▶ send a message from variables x_n to ϕ_α :

$$m_{n\to\alpha}(x_n) = \prod_{k\in\alpha\setminus\{n\}} m_{k\leftarrow\alpha}(x_k)$$
 (15)

belief of rv x_n :

Inference algorithms: LBP vs Exact BP (tree)

Factor function

$$\phi_{\alpha}(x_{\alpha}) = \exp\{-\sum_{l} \theta_{\alpha,l} f_{\alpha,l}(x_{\alpha})\}$$
(16)

LBP: Message from factor to variable

$$m_{n \leftarrow \alpha}(x_n) = \frac{\int b_{\alpha}(x_{\alpha}) dx_{\alpha \setminus n}}{m_{n \to \alpha}(x_n)} \qquad (17)$$

Exact BP (chain & tree) & LBP

$$m_{n \leftarrow \alpha}(x_n) = \int \phi_{\alpha}(x_{\alpha}) \prod_{j \in \alpha \setminus \{n\}} m_{j \to \alpha}(x_j) dx_{\alpha \setminus \{n\}}$$
 (18)

Loopy belief propagation (LBP): summary

- ► LBP algorithm ~ minimize free energy
- Messages from variables to factors & vice versa the same than in BP algorithm
- ► Approximate if graph contains **loops**
- ► Convergence is **not guarantee**
- ▶ variants of LBP ⇒ messages are sent differently

Exercise: Maximum entropy optimization [Jay57]

From where Log-linear model comes?

► Maximizing entropy

$$\underset{p}{\operatorname{argmax}} H(p) = \underset{p}{\operatorname{argmax}} - \int p(x) \log p(x) dx \tag{19}$$

subject to:

$$\mu_{l,lpha}=\int f_l(x_lpha)p(x_lpha)dx$$
 (matching moment)
$$1=\int p(x)dx$$
 (normalization)

 $\mu_{I,\alpha}$ empirical moments: $\frac{1}{N}\sum_n f_{I,\alpha}(x_{\alpha}^{(n)})$

Bibliography I

[Jay57] E. T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):620–630, 1957.