Department of Electrical Engineering Indian Institute of Technology, Kanpur

EE 210 Total Marks: 15 **OUIZ 1A**

10.2.21

Total Time: 30 Mins.

An npn BJT has f_{max} of 5 GHz, and its f_{α} is 1% more than f_{T} .

- a) It needs to be biased such that the following performance requirements are satisfied:
 - r_0 should be 100 k Ω

=> (P would increase

 β should be 10 at f = 100 MHz

Determine the required bias point (I_C, V_{CE}). Assume that the BC junction is linearly graded with $V_{0(BC)} = 0.7$ V. Other data: $V_A = 100$ V, $C_{je0} = 2$ pF, and $C_{\mu 0} = 1.5$ pF.

b) Now, keeping I_C constant at the value calculated in part a), if V_{CE} is increased, state with clear justification whether the value of β (at 100 MHz) would increase or decrease.

a) finax =
$$\frac{1}{2\pi C_F}$$
 \Rightarrow $\frac{1}{2\pi f_{max}} = \frac{1}{2\pi \times 5 \text{ GHz}} = \frac{31.83 \text{ ps}}{31.83 \text{ ps}}$
 $\frac{1}{6\pi} = \frac{6 + 1}{6^{\circ}} = 1.01 \Rightarrow \left[\frac{6}{6} = 100\right]$
 $\frac{1}{6\pi} = \frac{1}{6^{\circ}} = 100 \text{ ksz} \Rightarrow T_C = \frac{VA}{100 \text{ ksz}} = \left[\frac{1}{1}\text{ mA}\right] \leftarrow \frac{1}{100 \text{ ksz}} = \frac{1}{1}\text{ mA}$
 $\frac{1}{6} = \frac{1}{6^{\circ}} = \frac{100 \text{ ksz}}{100 \text{ ksz}} \Rightarrow \frac{1}{100 \text{ ksz}} = \frac{1}{$

Department of Electrical Engineering Indian Institute of Technology, Kanpur

EE 210 Total Marks: 15 QUIZ 1B

10.2.21

Total Time: 30 Mins.

An npn BJT has f_{max} of 10 GHz, and the ratio of its f_{α} and f_{T} is 1.005. ($V_{T} = 26 \text{ mV}$)

- a) It needs to be biased such that the following performance requirements are satisfied:
 - * r_0 should be $50 \text{ k}\Omega$
 - * β should be 5 at f = 600 MHz

Determine the required bias point (I_C , V_{CE}). Assume that the BC junction is *linearly graded* with $V_{0(BC)} = 0.7$ V. Other data: $V_A = 100$ V, $C_{ie0} = 1$ pF, and $C_{\mu 0} = 1.7$ pF.

b) Now, if V_{CE} is *decreased*, *state with clear justification* whether the value of β (at 600 MHz) would increase or decrease. Neglect any change in I_C and assume τ_F remains constant.

a)
$$F = 15.9ps$$
 $\beta_{0} = 200$ $F_{c} = 2mA$ $f_{b} = 15 MHZ$ $f_{T} = 3 GHZ$ $G_{c} = 2pF$ $G_{m} = 1.22pF$ $G_{m} = 3.22pF$ $G_{m} = 0.86pF$ $G_{c} = -4.7V$ $G_{c} = 5.4V$ $G_{c} = 5.4V$