

VO Formale Systeme Formulary

Universität: PLUS Salzburg Fachbereich: Informatik

Lehrveranstaltung: Formale Systeme VO

LV-Leiter: Assoz. Prof. Priv.-Doz. Dr. Ana Sokolova

Verfasser ©:Günther PritzMatrikelnummer:09620251Abgabedatum:30.01.2023Dokumentenversion:V_07

Part I Calculations

1 Equivalences for connectives

1.1 Commutativity

$$P \wedge Q \xrightarrow{val} Q \wedge P$$
$$P \vee Q \xrightarrow{val} Q \vee P$$
$$P \Leftrightarrow Q \xrightarrow{val} Q \Leftrightarrow P$$

1.3 Idempodence

$$P \wedge P \xrightarrow{val} P$$
$$P \vee P \xrightarrow{val} P$$

1.5 Inversion

$$\neg True \xrightarrow{val} False$$

$$\neg False \xrightarrow{val} True$$

1.7 Negation

$$\neg P \xrightarrow{val} (P \Rightarrow False)$$

1.2 Associativity

$$\begin{split} P \wedge Q & \xrightarrow{val} Q \wedge P \\ P \vee Q & \xrightarrow{val} Q \vee P \\ (P \Leftrightarrow Q) \Leftrightarrow R & \xrightarrow{val} P \Leftrightarrow (Q \Leftrightarrow R) \end{split}$$

1.4 Double Negation

$$\neg\neg P \stackrel{val}{=\!\!\!=\!\!\!=} P$$

1.6 True/False elemination

$$\begin{split} P \wedge True & \stackrel{val}{=\!\!\!=\!\!\!=} P \\ P \wedge False & \stackrel{val}{=\!\!\!=\!\!\!=} False \\ P \vee True & \stackrel{val}{=\!\!\!=\!\!\!=} True \\ P \vee False & \stackrel{val}{=\!\!\!=\!\!\!=} P \end{split}$$

1.8 Contradiction / Excl. middle

$$\begin{split} P \wedge \neg P & \xrightarrow{val} False \\ P \vee \neg P & \xrightarrow{val} True \end{split}$$

1.9 Distributivity

$$P \wedge (Q \vee R) \stackrel{val}{=\!\!\!=\!\!\!=} (P \wedge Q) \vee (P \wedge R)$$
$$P \vee (Q \wedge R) \stackrel{val}{=\!\!\!=\!\!\!=} (P \vee Q) \wedge (P \vee R)$$

1.11 Implication

$$P \Rightarrow Q \xrightarrow{val} \neg P \lor Q$$

1.13 Bi-implication

$$P \Rightarrow Q \xrightarrow{val} \neg P \lor Q$$

1.15 Absorption

$$P \wedge (P \vee Q) \xrightarrow{val} P$$
$$P \vee (P \wedge Q) \xrightarrow{val} P$$

1.10 De Morgan

$$\neg (P \land Q) \xrightarrow{val} \neg P \lor \neg Q$$
$$\neg (P \lor Q) \xrightarrow{val} \neg P \land \neg Q$$

1.12 Contraposition

$$P \Rightarrow Q \xrightarrow{val} \neg Q \Rightarrow \neg P$$

1.14 Self-equivalence

$$P \Rightarrow Q \xrightarrow{val} \neg Q \Rightarrow \neg P$$

Notes

2 Weakening rules

2.1 ∧∨ - weakening

$$P \wedge Q \stackrel{val}{=\!\!\!=\!\!\!=} P$$

$$P \stackrel{val}{=\!\!\!=\!\!\!=} P \vee Q$$

2.2 Extremes

$$False \stackrel{|val|}{=} P$$

$$P \stackrel{|val|}{=} P$$

2.3 Monotonicity

If
$$P \stackrel{val}{=} Q$$
, then $P \wedge R \stackrel{val}{=} Q \wedge R$
If $P \stackrel{val}{=} Q$, then $P \vee R \stackrel{val}{=} Q \vee R$

3 Properties for proposional logic

3.1 Lemma E1

 $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology

3.2 Lemma EW1

 $P \stackrel{val}{=\!\!\!=\!\!\!=} Q$ iff $P \stackrel{val}{=\!\!\!=\!\!\!=} Q$ and $Q \stackrel{val}{=\!\!\!=\!\!\!=} P$

3.3 Lemma W2

$$P \stackrel{val}{=} P$$

3.4 Lemma W3

$$P \stackrel{|val|}{=} Q$$
 and $Q \stackrel{|val|}{=} R$ then $P \stackrel{|val|}{=} R$

3.5 Lemma W4

 $P \stackrel{val}{=} Q$ iff $P \Rightarrow Q$ is a tautology

4 Equivalences for quantifiers

4.1 Bound variable

$$\forall_{x} \left[P:Q\right] \xrightarrow{val} \forall_{y} \left[P\left[y \text{ for } x\right]: Q\left[y \text{ for } x\right]\right]$$

$$\exists_{x} \left[P:Q\right] \xrightarrow{val} \exists_{y} \left[P\left[y \text{ for } x\right]: Q\left[y \text{ for } x\right]\right]$$

4.2 Domain splitting

$$\forall_{x} [P \lor Q : R] \xrightarrow{val} \forall_{x} [P : Q] \land \forall_{x} [P : R]$$
$$\exists_{x} [P \lor Q : R] \xrightarrow{val} \exists_{x} [P : Q] \lor \exists_{x} [P : R]$$

4.3 One element

$$\forall_x [x = n : Q] \xrightarrow{val} Q [n \text{ for } x]$$

$$\exists_x [x = n : Q] \xrightarrow{val} Q [n \text{ for } x]$$

4.5 Domain weakening

$$\forall_x \left[P \land Q : R \right] \xrightarrow{val} \forall_x \left[P : Q \Rightarrow R \right]$$
$$\exists_x \left[P \land Q : R \right] \xrightarrow{val} \exists_x \left[P : Q \land R \right]$$

4.4 Empty domain

$$\forall_x [False:Q] \xrightarrow{val} True$$

$$\exists_x [False:Q] \xrightarrow{val} False$$

4.6 De Morgan

$$\neg \forall_x [P:Q] \xrightarrow{val} \exists_x [P:\neg Q]$$
$$\neg \exists_x [P:Q] \xrightarrow{val} \forall_x [P:\neg Q]$$

4.7 Exchange trick

$$\forall_x [P:Q] \xrightarrow{val} \forall_x [\neg Q: \neg P]$$

$$\exists_x [P:Q] \xrightarrow{val} \exists_x [Q:P]$$

4.8 Term splitting

$$\forall_{x} [P:Q \land R] \xrightarrow{val} \forall_{x} [P:Q] \land \forall_{x} [P:R]$$

$$\exists_{x} [P:Q \lor R] \xrightarrow{val} \exists_{x} [P:Q] \lor \exists_{x} [P:R]$$

4.9 Monotonicity of quantifiers

$$\forall_x [P:Q \Rightarrow R] \Rightarrow (\forall_x [P:Q] \Rightarrow \forall_x [P:R]) \xrightarrow{val} True$$

$$\forall_x [P:Q \Rightarrow R] \Rightarrow (\exists_x [P:Q] \Rightarrow \exists_x [P:R]) \xrightarrow{val} True$$

5 Properties for predicate logic

5.1 Lemma E1

 $P \stackrel{val}{=\!\!\!=\!\!\!=\!\!\!=} Q$ iff $P \Leftrightarrow Q$ is a tautology

5.2 Lemma EW1

$$P \stackrel{val}{=\!\!\!=\!\!\!=} Q$$
 iff $P \stackrel{val}{=\!\!\!=\!\!\!=} Q$ and $Q \stackrel{val}{=\!\!\!=\!\!\!=} P$

5.3 Lemma W2

$$P \stackrel{val}{=} P$$

5.4 Lemma W3

$$P \stackrel{|val|}{=} Q$$
 and $Q \stackrel{|val|}{=} R$ then $P \stackrel{|val|}{=} R$

5.5 Lemma W4

$$P \stackrel{val}{=} Q$$
 iff $P \Rightarrow Q$ is a tautology

5.6 Lemma W5

$$Q \stackrel{val}{=\!\!\!=\!\!\!=} R$$
 then $\forall_x [P:Q] \stackrel{val}{=\!\!\!=\!\!\!=} \forall_x [P:R]$

Part II Derivations

6 Flag derivation rules for connectives 6.2 ∧ - introduction **6.1** \wedge - elimination (k) $P \wedge Q$ (k) P $\{ \land - \mathbf{elim} \text{ on } (k) \}$ (l) Q(l) P $\{ \land - \mathbf{intro} \text{ on } (k) \text{ and } (l) \}$ (m) $P \wedge Q$ $\{ \land - \mathbf{elim} \text{ on } (k) \}$ (m) Q $(k < l) \land (k < m)$ $(k < m) \wedge (l < m)$ **6.3** \Rightarrow - elimination 6.4 \Rightarrow - introduction (k) $P \Rightarrow Q$ { Assume } (k) P(l) P(l-1) Q $\{ \Rightarrow \text{-} \mathbf{elim} \text{ on } (k) \text{ and } (l) \}$ $\{ \Rightarrow \text{-} \mathbf{intro} \text{ on } (k) \text{ and } (l) \}$ (m) Q(l) $P \Rightarrow Q$ $(k < m) \land (l < m)$

6.5 ¬ - elimination

- (k) P
- $(l) \neg P$

 $\{ \neg - \mathbf{elim} \text{ on } (k) \text{ and } (l) \}$

(m) F

 $(k < m) \wedge (l < m)$

6.6 ¬ - introduction

- { Assume }
- (k) P
- ... (l-1) F
 - $\{ \neg \mathbf{intro} \text{ on } (k) \text{ and } (l-1) \}$
 - $(l) \neg P$

6.7 F - elimination

(k) F

. . .

 $\{ F \mathbf{elim} \text{ on } (k) \}$

(l) P

(k < l)

6.8 F - introduction

(k) P

(l) $\neg P$

 $\{ F - \mathbf{intro} \text{ on } (k) \text{ and } (l) \}$

(m) F

 $(k < m) \wedge (l < m)$

6.9 ¬¬ - elimination

(k) $\neg \neg P$

 $\{ \neg \neg - \mathbf{elim} \text{ on } (k) \}$

(l) P

(k < l)

6.10 ¬¬ - introduction

(k) P

 $\{ \neg \neg - \mathbf{intro} \text{ on } (k) \}$

 $(l) \neg \neg P$

(k < l)

6.11 ∨ - elimination

(k) $P \lor Q$

 $\{ \vee \text{- elim on } (k) \}$

(l) $\neg P \Rightarrow Q$

 $\{ \vee - \mathbf{elim} \text{ on } (k) \}$

 $(m) \quad \neg Q \Rightarrow P$

 $(k < m) \wedge (l < m)$

6.12 ∨ - introduction

{ Assume }

(k) $\neg P$

(l-1) Q

 $\{ \vee \text{- intro on } (k) \text{ and } (l-1) \}$

(l) $P \lor Q$

6.13 ⇔ - elimination

(k) $P \Leftrightarrow Q$

$$(k)$$
 $P \Leftrightarrow 0$

$$\{ \Leftrightarrow \text{- elim on } (k) \}$$

$$(l)$$
 $P \Rightarrow Q$

$$\{ \vee - \mathbf{elim} \text{ on } (k) \}$$

$$(m)$$
 $Q \Rightarrow P$

$$(k < m) \wedge (l < m)$$

6.14 ⇔ - introduction

$$(k)$$
 $P \Rightarrow Q$

$$(l)$$
 $Q \Rightarrow P$

$$\{ \Leftrightarrow \text{- intro on } (k) \text{ and } (l) \}$$

$$(m)$$
 $P \Leftrightarrow Q$

$$(k < m) \wedge (l < m)$$

6.15 Proof by contradiction

k
$$\neg P$$

$$(l-1)$$
 F

$$\{ \neg - \mathbf{intro} \text{ on } (k) \text{ and } (l-1) \}$$

$$(l)$$
 $\neg \neg P$

$$\{ \neg \neg - \mathbf{elim} \text{ on } (l) \}$$

$$(l+1)$$
 P

(k < l)

6.16 Proof by case distinction

$$(k)$$
 $P \lor Q$

$$(l) P \Rightarrow R$$

$$(m)$$
 $Q \Rightarrow R$

{ case-dist on
$$(k),(l),(m)$$
 }

$$(n)$$
 R

$$(k < n) \wedge (l < n) \wedge (m < n)$$

7 Flag derivation rules for quantifiers

7.1 \forall - elimination

- $(k) \quad \forall_x \left[P(x) : Q(x) \right]$
- (l) P(a)

 - $\{ \forall \mathbf{elim} \text{ on } (k) \text{ and } (l) \}$
- (m) Q(a)

 $(k < m) \wedge (l < m)$

7.2 ∀ - introduction

- { Assume } (k) $|\mathbf{var} \ x; P(x)|$
- (l-1) Q(x)

{ \forall - intro on (k) and (l) }

(l) $\forall_x [P(x):Q(x)]$

7.3 ∃ - elimination

- $(k) \quad \exists_x \left[P(x) : Q(x) \right]$
- (l) $\forall_x [P(x) : \neg Q(x)]$

- $\{ \exists \mathbf{elim} \text{ on } (k) \text{ and } (l) \}$
- (m) False

 $(k < m) \wedge (l < m)$

(k < l)

7.4 ∃ - introduction

- { Assume } (k) $\forall_x [P(x) : \neg Q(x)]$
- F(l-1)
 - $\{ \exists \mathbf{intro} \text{ on } (k) \text{ and } (l-1) \}$
 - (l) $\exists_x [P(x):Q(x)]$

7.5 ∃* - elimination

- (k) $\exists_x [P(x):Q(x)]$

 $\{ \exists * - \mathbf{elim} \text{ on } (k) \}$

(1) **Pick** a with P(a) and Q(a)

7.6 ∃∗ - introduction

(k) P(a)

. . .

(l) Q(a)

 $\{ \exists * \text{ - intro on } (k) \text{ and } (l) \}$

(m) $\exists_x [P(x):Q(x)]$

 $(k < m) \wedge (l < m)$

Part III Sets

8.6 Set difference

Let X and Y be sets. The set difference of X and Y is the set

$$X \setminus Y = \{x \mid x \in X \land x \notin Y\}$$

8.7 Disjoint sets

Let X and Y be sets. X and Y are disjoint if $X \cap Y = \emptyset$

8.8 Complement

Let X be a set. The complement of X in a universial set $\mathbb U$ is the set

$$X^c = \{ x \mid x \in \mathbb{U} \land x \notin X \}$$

8.9 Direct product

The direct product, or just product, of X and Y is the set

$$X\times Y=\{(x,y)\mid x\in X\wedge y\in Y\}$$

8.10 Powerset

 \mathcal{P}

The power set of X is the set of all subsets of X

$$\mathcal{P}(X) = 2^X = \{ S \mid S \subseteq X \}$$

 $|\mathcal{P}(X)| = 2^{|X|}$

Part IV Relations

9 Relations definitions

9.1 Definition 1: (Binary) Relation

Let A and B be sets. A (binary) relation between A and B is a subset of $A \times B$. Hence, $R \subseteq A \times B$.

9.2 Definition 2: Relation on a set

R is a relation on A if $R \subseteq A \times A$.

10 Relation properties for $R \subseteq A \times A$

10.1 Definition: reflexive

 $reflexive :\Leftrightarrow \forall a [a \in A \mid (a, a) \in R]$

10.2 Definition: irreflexive

 $irreflexive : \Leftrightarrow \forall a [a \in A : (a, a) \notin R]$

10.3 Definition: symmetric

 $symmetric : \Leftrightarrow \forall a, b [a, b \in A : (a, b) \in R \Rightarrow (b, a) \in R]$

10.4 Definition: asymmetric

 $asymmetric : \Leftrightarrow \forall a, b [a, b \in A : (a, b) \in R \Rightarrow (b, a) \notin R]$

10.5 Definition: antisymmetric

 $antisymmetric : \Leftrightarrow \forall a, b [a, b \in A : (a, b) \in R \land (b, a) \in R \Rightarrow a = b]$

10.6 Definition: transitive

 $transitive : \Leftrightarrow \forall a, b, c [a, b, c \in A : (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R]$

10.7 Definition: total

 $total :\Leftrightarrow \forall a, b [a, b \in A : (a, b) \in R \lor (b, a) \in R]$

11 Special relations

11.1 Definition 3: Equivalence

A relation for $R \subseteq A \times A$ is an equivalence iff R is

- reflexive
- symmetric
- transitive

11.2 Definition 4: (Partial) order

A relation for $R \subseteq A \times A$ is a partial order iff R is

- reflexive
- antisymmetric
- transitive

11.3 Definition 5: Strict order

A relation for $R \subseteq A \times A$ is a strict order iff R is

- irreflexive
- transitive

11.4 Definition 6: Preorder

A relation for $R \subseteq A \times A$ is a preorder iff R is

- reflexive
- transitive

11.5 Definition 7: Total order

A relation for $R \subseteq A \times A$ is a total order or (linear order, chain) iff R is a total partial order. So R is

- reflexive
- antisymmetric
- transitive
- total

11.6 Obvious properties

- Every partial order is a preorder.
- Every total order is a partial order.
- Every total order is a preorder
- If $R \subseteq A \times A$ is relation that contains a cycle, i.e., $\exists a,b \in A.\ a \neq b \land aRb \land bRa$

then R is not a partial order, not a strict order, not a total order.

12 Operations on relations

12.1 Definition 8: Relation composition

Given $R \subseteq A \times B$ and $S \subseteq B \times C$, the relation composition $R \circ S \subseteq A \times C$ is given by

$$R \circ S := \{(a, c) \in A \times C \mid \exists b \in B. (a, b) \in R \land (b, c) \in S\}$$

Composition relation is associative

$$R \circ (S \circ T) = (R \circ S) \circ T$$

We write \mathbb{R}^n for the composition of R with itself n times, if $\mathbb{R} \subseteq A \times A$

12.2 Definition 9: Inverse relation

 R^{-1}

Given a relation $R \subseteq A \times B$, the inverse relation of R, is defined as

$$R^{-1} := \{ (b, a) \mid (a, b) \in R \}$$

For $R \subseteq A \times B$ we have $R^{-1} \subseteq B \times A$.

12.3 Lemma 1

Let $R \subseteq A \times A$ then

- R is reflexive iff $\Delta_A \subseteq R$
- R is symetric iff $R \subseteq R^{-1}$
- R is transitive iff $R^2 \subseteq R$

13 Important relations

13.1 Definition: Diagonal on X

 Δ_X

Let X be an arbitrary set, then the Diagonal on X, Δ_X , is defined as

$$\Delta_X = 1_X = Id_X := \{(x,y) \in X \times X \mid x = y\} = \{(x,x) \mid x \in X\}$$

13.2 Definition: Divisibility relation

Let $n \in \mathbb{N}$ and $z \in \mathbb{Z}$ then

$$n \mid z : \Leftrightarrow \exists k \in \mathbb{Z}. \ z = k \cdot n$$

13.3 Definition 10: Equivalence modulo n

 \equiv_r

Let $n \in \mathbb{N}$. The relation \equiv_n on \mathbb{Z} is defined as

$$i \equiv_n j :\Leftrightarrow n \mid (i - j)$$

or

$$i \equiv_n j : \Leftrightarrow \exists k \in \mathbb{Z}. \ i - j = k \cdot n$$

13.4 Lemma 2

The relation \equiv_n is an equivalence for every $n \in \mathbb{N}$.

Part V Equivalences

14 Equivalences

14.1 Definition 1: Equivalence Class

Let $R \subseteq A \times A$ an equivalence relation on A, and let $a \in A$. Then the equivalence class of a under R, notation $[a]_R$ is the set

$$[a]_R := \{b \in A \mid (a, b) \in R\}$$

14.2 Definition 2: Quotient

Let $R \subseteq A \times A$ an equivalence relation on A, then the quotient (D. Faktormenge od. Quotionentenmenge) of A under R is the set of all R-equivalence classes, i.e. $A/R := \{[a]_R \mid a \in A\}$

14.3 Lemma 1:

Let R be an equivalence on A. Then

$$\forall a, b \in A. \ [a]_R = [b]_R \lor \ [a]_R \cap [b]_R = \emptyset$$

14.4 Lemma 2:

Let R be an equivalence on A. Then

$$A = \bigcup_{a \in A} [a]_R$$

15 Partitions

15.1 Definition 3: Partition

Let A be a set. A subset P of the powerset of A $(P \subseteq \mathcal{P}(A))$ is a partition of A if it satisfies the following properties:

P1.)
$$\forall U \in P. \ U \neq \emptyset$$

P2.)
$$\forall U, V \in P. \ U \neq V \Rightarrow U \cap V = \emptyset$$

P3.)
$$\bigcup_{U \in P} = A$$

The elements of a partition are called **classes**.

15.2 Theorem 1: Equivalence and Partitions

Let A be a set.

1.) If R is an equivalence on A, then the set

$$P(R) := A/R = \{[a]_R \mid a \in A\}$$

is a partition.

2.) If P is a partition of A, then the relation

$$R(P) := \{(x, y) \in A \times A \mid \exists U \in P. \ x \in U \land y \in U\}$$

is an equivalence.

The assignments $R \mapsto P(R)$ and $P \mapsto R(P)$ are inverse to each other, i.e.,

$$R(P(R)) = R$$
 and $P(R(P)) = P$

16 Transitive closure

16.1 Definition 4: Transitive closure

Let $R \subseteq A \times A$ be a relation on A. The transitive closure of R, notation R^+ , is the relation (inner-characterisation)

$$R^{+} := \bigcup_{\substack{n \in \mathbb{N} \\ n \neq 0}} R^{n} = R \cup R^{2} \cup R^{3} \cup \dots$$

Alternative definition (outer-characterisation):

$$R^{+} := \bigcap_{\substack{T \subseteq A \times A \\ T^{2} \subseteq T \\ R \subset T}} T$$

16.2 Definition 5: Transitive and reflexive closure

Let $R \subseteq A \times A$ be a relation on A. The transitive closure of R, notation R^* , is the relation

$$R^* := \Delta_A \cup R^+$$

hence $R^0 = \Delta_A$

$$R^* := \bigcup_{n \in \mathbb{N}} R^n = \Delta_A \cup R \cup R^2 \cup R^3 \cup \dots$$

16.3 Definition 6: Equivalence closure

Let $R\subseteq A\times A$ be a relation on A. The equicalence closure of R, notation E(R), is the relation $E(R):=(R\cup R^{-1})^*$

16.4 Proposition 1: Transitive closure

Let R be a relation on A.

The transitive closure R^+ is the smallest transitive relation that contains R.

16.5 Proposition 2: Transitive and reflexive closure

Let R be a relation on A.

The transitive and reflexive closure R^* is the smallest transitive and reflexive relation that contains R.

16.6 Proposition 3: Equivalence closure

Let R be a relation on A.

The equivalence closure E(R) is the smallest equivalence relation that contains R.

Part VI Functions

17 Functions

17.1 Definition 1: Function, Map, Mappings

Let A and B be sets. A function f from A (domain) to B (codomain), notation $f: A \to B$ is an assignment of elements of B to elements of A that satisfies:

$$\forall a \in A. \ \exists! b \in B. \ b = f(a)$$

This can be split into the following two predicate logic formulas:

$$\forall a \in A. \ \exists b \in B. \ b = f(a)$$

$$\forall a_1, a_2 \in A. \ a_1 = a_2 \Rightarrow f(a_1) = f(a_2)$$

17.2 Definition 2: Equality of functions

Two functions $f:A\to B$ to $g:C\to D$ are equal iff

- 1.) A = C, dom f = dom g, domains are equal
- 2.) B = D, cod f = cod g, codomains are equal
- 3.) $\forall a \in A$. f(a) = g(a), images are equal

17.3 Definition 3: Graph

If $f: A \to B$ is a function, then the graph of f, notation graph(f), is a relation defined by: graph $(f) := \{(x, y) \in A \times B \mid y = f(x)\}$

17.4 Definition 4: Image

Let $f: A \to B$ and $A' \subseteq A$. The Image of A' is the set:

$$f(A') := \{ f(a) \mid a \in A' \}$$

Alternative definition:

$$f(A') := \{ b \in B \mid \exists a \in A'. \ b = f(a) \}$$

From this definition we see:

$$f(A') \subseteq B$$

$$a \in A' \Rightarrow f(a) \in f(A')$$

17.5 Definition 5: Inverse image

Let $f: A \to B$ and $B' \subseteq B$. The inverse image of B' is the set:

$$f^{-1}(B') := \{ a \mid f(a) \in B' \}$$

From this definition we see:

$$f^{-1}(B') \subseteq A$$

$$a \in f^{-1}(B') \Leftrightarrow f(a) \in B'$$

The inverse image induces a function

$$f^{-1}: \mathcal{P}(B) \to \mathcal{P}(A)$$

17.6 Lemma 1:

Let $f: A \to B$, $A' \subseteq A$, $B' \subseteq B$. then

$$A' \subseteq f^{-1}(f(A'))$$
 and $f(f^{-1}(B')) \subseteq B'$

18 Special Functions

18.1 Definition 6: Injection

A function $f: A \to B$ is injective, or an injection, iff

$$\forall a, b \in A. \ f(a) = f(b) \Rightarrow a = b$$

18.2 Definition 7: Surjection

A function $f: A \to B$ is surjective, or a Surjection, iff

$$\forall b \in B. \ \exists a \in A. \ b = f(a)$$

18.3 Definition 8: Bijection

A function $f:A\to B$ is bijective, or a Bijection, iff f is both, injective and surjective.

18.4 Lemma 2:

A function $f: A \to B$ is injective iff

$$\forall b \in B. |f^{-1}(\{b\})| \le 1$$

18.5 Lemma 3:

A function $f: A \to B$ is surjective iff

- 1.) $\forall b \in B. |f^{-1}(\{b\})| \ge 1$
- 2.) f(A) = B

18.6 Lemma 4:

A function $f: A \to B$ is bijective iff

$$\forall b \in B. |f^{-1}(\{b\})| = 1$$

18.7 Proposition 1:

Let function $f: A \to B$ be injective and let $A' \subseteq A$. Then

$$f^{-1}(f(A')) = A'$$

Special case of Lemma 1

18.8 Lemma 5:

Let function $f: A \to B$ be injective and let $A' \subseteq A$. Then

$$a \in A' \Leftrightarrow f(a) \in f(A')$$

18.9 Proposition 2:

Let function $f: A \to B$ be surjective and let $B' \subseteq B$. Then

$$f(f^{-1}(B')) = B'$$

Special case of Lemma 1

19 Function Composition and Inverse Fucntion

19.1 Definition 9: Composition

For $f:A\to B$ and $g:B\to C$ the composition $g\circ f$, read as g after f, is the

function $g \circ f : A \to C$

defined by $\forall a \in A. \ g \circ f(a) := g(f(a))$

19.2 Lemma 6:

For $f:A\to B$ and $g:B\to C$ be injective. Then $g\circ f$ is injective.

19.3 Lemma 7:

For $f:A\to B$ and $g:B\to C$ be surjective. Then $g\circ f$ is surjective.

19.4 Corollary 1:

For $f:A\to B$ and $g:B\to C$ be bijective. Then $g\circ f$ is bijective.

19.5 Definition 10: Inverse Function

Let $f:A\to B$ be bijective. Then there exists a function $f^{-1}:B\to A$, read "f inverse", defined by $f^{-1}(b)=a\Leftrightarrow f(a)=b$

19.6 Lemma 8:

Let $f: A \to B$ be bijective. Then

$$f^{-1} \circ f = id_A$$

$$f \circ f^{-1} = id_B$$

where $id_X: X \to X$ is the (bijective) function defined by

$$id_X(x) = x$$

19.7 Theorem 1:

A function $f:A\to B$ is bijective iff there exists a function $g:B\to A$ with

$$g \circ f = id_A$$
 and $f \circ g = id_B$

Part VII Cardinals

20 Cardinals

20.1 Definition 1: Equivalent sets, equal cardinality

|A| = |B|

Let A and B be sets. We say, that A and B have the same cardinality, or are equivalent, and write $A \sim B$ or |A| = |B| iff there exists a bijection $f: A \to B$.

20.2 Definition 2: Cardinality

|A|

Given a set A, we write |A| for the \sim -equivalence class

$$\begin{split} [A]_{\sim} &= \{X \mid X \text{ is a set and } A \sim X\} \\ &= \{X \mid \text{ there exists bijection} f: A \to X\} \end{split}$$

and call it the cardinality of A.

20.3 Proposition 1: Equivalent sets, equal cardinality

The relation \sim is a equivalence relation on sets.

21 Relations on cardinals

21.1 Definition 3:

 \leq

The relation \leq is defined on cardinals by

 $A \leq B :\Leftrightarrow$ there exists an injection $f: A \to B$

21.2 Definition 4:

 \geq

The relation \geq is defined on cardinals by

 $A \geq B : \Leftrightarrow B = \emptyset$ or there exists a surjection $f: A \rightarrow B$

21.3 Definition 5:

<

The relation < is defined on cardinals by

 $A < B : \Leftrightarrow$ there exists an injection $f : A \to B$ but no surjection $f : A \to B$

21.4 Lemma 1:

The relation \leq on cardinals is well-defined, i.e., if A, B, C, D are sets such that |A| = |C| and |B| = |D| and $|A| \leq |B|$, then $|C| \leq |D|$.

21.5 Lemma 2:

Let A, B be sets. Then

$$|A| \ge |B| \Leftrightarrow |B| \le |A|$$

21.6 Lemma 3:

The relation \leq on cardinals is reflexive.

21.7 Lemma 4:

The relation \leq on cardinals is transitive.

21.8 Theorem 5: Cantor-Schröder-Bernstein

If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|

22 Operations on relations

22.1 Definition 6:

+

Let |A| and |B| be two cardinals with $A \cap B = \emptyset$. Then

$$|A| + |B| := |A \cup B|$$

22.2 Definition 7:

0

Let |A| and |B| be two cardinals. Then

$$|A|\circ |B|:=|A\times B|$$

22.3 Definition 8:

 $|A|^{|B|}$

Let |A| and |B| be two cardinals. Then

$$|A|^{|B|} := |A^B|$$

where

$$A^B := \{f \mid f: B \to A\}$$

22.4 Proposition 2:

Let A be a set. Then

$$|\mathcal{P}| = 2^{|A|}$$

with

$$2 = |\{0, 1\}|$$

23 Finite Sets, Finite Cardinals

23.1 Definition 9: Finite set

A set A is finite iff |A| = k for some $k \in \mathbb{N}$

24 Infinite, Countable and Uncountable Sets

24.1 Lemma 5:

$$\aleph_0 + 1 = \aleph_0$$

24.2 Lemma 6:

$$\aleph_0 + \aleph_0 = \aleph_0$$

24.3 Definition 10: Countable set

A set A is countable iff $|A| = \aleph_0$

24.4 Definition 11: Ininite set

A set A is infinite iff $|A| \geq \aleph_0$

24.5 Definition 12: Uncountable set

A set A is uncountable iff $|A| > \aleph_0$

24.6 Proposition 3:

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable sets.

24.7 Proposition 4:

 \mathbb{R} is uncountable.

24.8 Definition 13:

We write c for the cardinality of \mathbb{R} , i.e. $c := |\mathbb{R}|$. Here c stands for *continuum*.

24.9 Theorem 2: small Cantor theorem

Let A be any set. Then $|A| < |\mathcal{P}(A)|$, i.e., $|A| < 2^{|A|}$.

24.10 Corollary 1:

Cardinals are unbounded, i.e., for any cardinal |A| we can construct an infinite ascending chain of cardinals:

$$|A| < \mathcal{P}(A) < \mathcal{P}(\mathcal{P}(A)) < \mathcal{P}(\mathcal{P}(\mathcal{P}(A))) < \dots$$

24.11 Corollary 2:

$$\aleph_0 < c$$

Part VIII Naturals

25 Naturals

First let us define a function $s: \mathbb{N} \to \mathbb{N}$, with s(n) = n+1 (successor function). Now we construct \mathbb{N} as the unique set with structure $(\mathbb{N}, 0, s: \mathbb{N} \to \mathbb{N})$ that satisfies the following Peano axioms:

25.1 Peano axiom 1:

Different natural numbers have different successors, i.e.,

$$\forall m, n \in \mathbb{N}. \ m \neq n \Rightarrow s(m) \neq s(n)$$

Or alternatively

$$\forall m, n \in \mathbb{N}. \ s(m) \neq s(n) \Rightarrow m \neq n$$

Clearly, this shows that s is an injective function.

25.2 Peano axiom 2:

0 is not a successor, i.e.,

$$\forall n \in \mathbb{N}. \ \neg(s(n) = 0)$$

25.3 Peano axiom 3:

All natural numbers except 0 are successors, i.e.,

$$\forall n \in \mathbb{N}. \ \exists m \in \mathbb{N}. \ n = s(m)$$

25.4 **Peano axiom 4:**

For every (unary) predicate P on \mathbb{N} , the following formula is true:

$$P(0) \land \forall i \in \mathbb{N}. \ P(i) \Rightarrow P(i+1) \Rightarrow \forall n \in \mathbb{N}. \ P(n)$$

25.5 Peano axiom 4':

Let $K \subseteq \mathbb{N}$ have the property that

- 1.) $0 \in K$
- 2.) $\forall n \in \mathbb{N}. \ n \in K \Rightarrow (n+1) \in K$

Then $K = \mathbb{N}$.

25.6 Lemma 1:

The axioms 4 and 4' are equivalent.

Contents

I	Cal	culations	1				
1	Equivalences for connectives 1						
	1.1	Commutativity	1				
	1.2	Associativity	1				
	1.3	Idempodence	1				
	1.4	Double Negation	1				
	1.5	Inversion	1				
	1.6	True/False elemination	1				
	1.7	Negation	1				
	1.8	Contradiction / Excl. middle	1				
	1.9	Distributivity	2				
	1.10	De Morgan	2				
	1.11	Implication	2				
	1.12	Contraposition	2				
	1.13	Bi-implication	2				
	1.14	Self-equivalence	2				
	1.15	Absorption	2				
•	***		_				
2		o contract of the contract of	2				
	2.1		2				
	2.2		2				
	2.3	Monotonicity	2				
3	Properties for proposional logic 2						
	3.1	Lemma E1	2				
	3.2	Lemma EW1	2				
	3.3	Lemma W2	3				
	3.4	Lemma W3	3				
	3.5	Lemma W4	3				
4	Equivalences for quantifiers 3						
2 3	4.1		3				
	4.2		3				
	4.3	1	3				
	4.4		3				
	4.5	1 0	3				
	4.6	0	3				
	4.7		3				
	4.7		ა 4				
	4.9		4				
	4.9	Monotonicity of quantifiers	+				

	_					
5	Pro	perties for predicate logic				
	5.1	Lemma E1				
	5.2	Lemma EW1				
	5.3	Lemma W2				
	5.4	Lemma W3				
	5.5	Lemma W4				
	5.6	Lemma W5				
II	De	erivations				
6	Flag	g derivation rules for connectives				
	6.1	\wedge - elimination				
	6.2	\land - introduction				
	6.3	\Rightarrow - elimination				
	6.4	\Rightarrow - introduction				
	6.5	\neg - elimination				
	6.6	\neg - introduction				
	6.7	F - elimination				
	6.8	F - introduction $\ldots \ldots \ldots \ldots \ldots \ldots$				
	6.9	$\neg \neg$ - elimination				
	6.10	$\neg \neg$ - introduction				
	6.11	\vee - elimination				
	6.12	\lor - introduction				
	6.13	\Leftrightarrow - elimination				
	6.14	⇔ - introduction				
	6.15	Proof by contradiction				
		Proof by case distinction				
7	_	g derivation rules for quantifiers				
	7.1	\forall - elimination				
	7.2	∀ - introduction				
	7.3	3 - elimination				
	7.4	∃ - introduction				
	7.5	$\exists *$ - elimination				
	7.6	$\exists *$ - introduction				
II	I S	ets				
8	Sets definitions					
	8.1	Subset				
	8.2	Set equality				
	8.3	Proper subset				
	8.4	Union				

	8.5	Intersection
	8.6	Set difference
	8.7	Disjoint sets
	8.8	Complement
	8.9	Direct product
	8.10	Powerset
IV	R	elations
9		ations definitions
	9.1	Definition 1: (Binary) Relation
	9.2	Definition 2: Relation on a set
10		ation properties for $R \subseteq A \times A$
	10.1	Definition: reflexive
	10.2	Definition: irreflexive
	10.3	Definition: symmetric
	10.4	Definition: asymmetric
	10.5	Definition: antisymmetric
	10.6	Definition: transitive
	10.7	Definition: total
11	Spec	cial relations
	11.1	Definition 3: Equivalence
	11.2	Definition 4: (Partial) order
	11.3	Definition 5: Strict order
	11.4	Definition 6: Preorder
	11.5	Definition 7: Total order
	11.6	Obvious properties
12	Ope	rations on relations
	12.1	Definition 8: Relation composition
	12.2	Definition 9: Inverse relation
	12.3	Lemma 1
13	Imp	ortant relations
	13.1	Definition: Diagonal on X
		Definition: Divisibility relation
		Definition 10: Equivalence modulo n
		Lemma 2
\mathbf{V}	$\mathbf{E}\mathbf{o}$	uivalences

4 Equ	ivalences
14.1	Definition 1: Equivalence Class
14.2	Definition 2: Quotient
14.3	Lemma 1:
14.4	Lemma 2:
.5 Par	titions
15.1	Definition 3: Partition
15.2	Theorem 1: Equivalence and Partitions
6 Trai	nsitive closure
16.1	Definition 4: Transitive closure
16.2	Definition 5: Transitive and reflexive closure
16.3	Definition 6: Equivalence closure
16.4	Proposition 1: Transitive closure
	Proposition 2: Transitive and reflexive closure
16.6	Proposition 3: Equivalence closure
/I F	unctions
'1 F	unctions
	ctions
	Definition 1: Function, Map, Mappings
	Definition 2: Equality of functions
	Definition 3: Graph
	Definition 4: Image
	Definition 5: Inverse image
17.6	Lemma 1:
8 Spe	cial Functions
18.1	Definition 6: Injection
	Definition 7: Surjection
18.3	Definition 8: Bijection
	Lemma 2:
18.5	Lemma 3:
	Lemma 4:
18.7	Proposition 1:
18.8	Lemma 5:
18.9	Proposition 2:
9 Fun	ction Composition and Inverse Fucntion
19.1	Definition 9: Composition
19.2	Lemma 6:
19.3	Lemma 7:
19.4	Corollary 1:

	19.6	5 Definition 10: Inverse Function	 . 21
VI	Ι (Cardinals	22
20	Car	rdinals	22
	20.1	Definition 1: Equivalent sets, equal cardinality	 . 22
	20.2	2 Definition 2: Cardinality	 . 22
	20.3	3 Proposition 1: Equivalent sets, equal cardinality	 . 22
21	Rela	ations on cardinals	22
	21.1	Definition 3:	 . 22
	21.2	2 Definition 4:	 . 22
	21.3	B Definition 5:	 . 25
	21.4	4 Lemma 1:	 . 23
	21.5	5 Lemma 2:	 . 23
	21.6	3 Lemma 3:	 . 23
	21.7	7 Lemma 4:	 . 25
	21.8	Theorem 5: Cantor-Schröder-Bernstein	 . 23
22	Ope	erations on relations	23
	22.1	Definition 6:	 . 23
	22.2	2 Definition 7:	 . 23
	22.3	B Definition 8:	 . 25
	22.4	4 Proposition 2:	 . 24
23	Fini	ite Sets, Finite Cardinals	2 4
	23.1	Definition 9: Finite set	 . 24
24	Infir	inite, Countable and Uncountable Sets	2 4
	24.1	Lemma 5:	 . 24
	24.2	2 Lemma 6:	 . 24
	24.3	B Definition 10: Countable set	 . 24
	24.4	Definition 11: Ininite set	 . 24
	24.5	5 Definition 12: Uncountable set	 . 24
	24.6	Proposition 3:	 . 24
		7 Proposition 4:	
	4 1.1		
		Definition 13:	
	24.8		 . 24
	24.8 24.9	B Definition 13:	 . 24 . 25

VIII	Naturals	26
25 Nat	turals	26
25.1	Peano axiom 1:	26
25.2	Peano axiom 2:	26
25.3	Peano axiom 3:	26
25.4	4 Peano axiom 4:	26
25.5	5 Peano axiom 4':	27
25.6	6 Lemma 1:	27