training data

id	veg?	type?	busy?	price?	class
J	yes	italian	yes	low	pos
2	no	french	no	med	neg
3	yes	greek	yes	high	neg
4	no	french	yes	low	neg
5	no	french	yes	high	neg
6	yes	italian	yes	med	neg
7	no	french	no	high	pos
8	yes	greek	yes	low	pos

new data

id	veg?	type?	busy?	price?	class
A	yes	italian	no	low	?
В	no	greek	yes	high	?
O	no	greek	no	low	?
Δ	yes	greek	no	med	?
ш	no	italian	yes	med	?
11,	yes	greek	no	high	?

Bayes' rule for classification
$$P(C|A_1,\ldots,A_n) = \frac{P(C)P(A_1|C)\cdots P(A_n|C)}{P(A_1)\cdots P(A_n)}$$

here:
$$P(C|V,T,B,P) = \frac{P(C)P(V|C) \cdot P(T|C) \cdot P(B|C) \cdot P(P|C)}{P(V) \cdot P(T) \cdot P(B) \cdot P(P)}$$

constant for record, ignore

we abbreviate attributes and values by initials

training data $P(C|V,T,B,P) = \frac{P(C)P(V|C) \cdot P(T|C) \cdot P(B|C) \cdot P(P|C)}{P(V) \cdot P(T) \cdot P(B) \cdot P(P)}$

id	veg?	type?	busy?	price?	class
J	yes	italian	yes	low	pos
2	no	french	no	med	neg
3	yes	greek	yes	high	neg
4	no	french	yes	low	neg
5	no	french	yes	high	neg
6	yes	italian	yes	med	neg
7	no	french	no	high	pos
8	yes	greek	yes	low	pos

constant for record, ignore

estimate parts of right-hand side by counting:

8 records in total, 3 pos, 5 neg

$$P(C = pos) = \frac{3}{8}$$
$$P(C = neg) = \frac{5}{8}$$

training data $P(C|V,T,B,P) = \frac{P(C)P(V|C) \cdot P(T|C) \cdot P(B|C) \cdot P(P|C)}{P(V) \cdot P(T) \cdot P(B) \cdot P(P)}$

id	veg?	type?	busy?	price?	class
	yes	italian	yes	low	pos
2					
3					
4					
5					
6					
7	no	french	no	high	pos
8	yes	greek	yes	low	pos

constant for record, ignore

estimate parts of right-hand side by counting: use pos. examples for probabilities conditioned on "pos"

$$P(V = n | C = pos) = \frac{1}{3}$$

$$P(B = y | C = pos) = \frac{2}{3}$$

$$P(B = n | C = pos) = \frac{1}{3}$$

$$P(V = y | C = pos) = \frac{2}{3} \qquad P(T = i | C = pos) = \frac{1}{3} \qquad P(P = i | C = pos) = \frac{2}{3}$$

$$P(V = n | C = pos) = \frac{1}{3} \qquad P(T = f | C = pos) = \frac{1}{3} \qquad P(P = m | C = pos) = \frac{0}{3}$$

$$P(T = g | C = pos) = \frac{1}{3} \qquad P(P = h | C = pos) = \frac{1}{3}$$

training data $P(C|V,T,B,P) = \frac{P(C)P(V|C) \cdot P(T|C) \cdot P(B|C) \cdot P(P|C)}{P(V) \cdot P(T) \cdot P(B) \cdot P(P)}$

id	veg?	type?	busy?	price?	class
J					
2	no	french	no	med	neg
3	yes	greek	yes	high	neg
4	no	french	yes	low	neg
5	no	french	yes	high	neg
6	yes	italian	yes	med	neg
7					
8					

constant for record, ignore

estimate parts of right-hand side by counting:

use neg. examples for probabilities conditioned on "neg"

$$P(V = y | C = neg) = \frac{2}{5}$$
$$P(V = n | C = neg) = \frac{3}{5}$$

$$P(T = i | C = neg) = \frac{1}{5}$$

$$P(T = f | C = neg) = \frac{3}{5}$$

$$P(T = g | C = neg) = \frac{1}{5}$$

$$P(T = i | C = neg) = \frac{1}{5}$$
 $P(P = i | C = neg) = \frac{1}{5}$ $P(T = f | C = neg) = \frac{3}{5}$ $P(P = m | C = neg) = \frac{2}{5}$ $P(T = g | C = neg) = \frac{1}{5}$ $P(P = h | C = neg) = \frac{2}{5}$

$$P(B = y | C = neg) = \frac{4}{5}$$
$$P(B = n | C = neg) = \frac{1}{5}$$

id	veg?	type?	busy?	price?	class
A	yes	italian	no	low	?
В	no	greek	yes	high	?
C	no	greek	no	low	?
D	yes	greek	no	med	?
Е	no	italian	yes	med	?
F	yes	greek	no	high	?

to classify A, compare

pos

$$P(pos)*P(V=y|pos)*P(T=i|pos)*P(B=n|pos)*P(P=I|pos)$$

= 3/8 * 2/3 * 1/3 * 1/3 * 2/3 = 0.0185185

neg

$$P(neg)*P(V=y|neg)*P(T=i|neg)*P(B=n|neg)*P(P=I|neg)$$

= 5/8 * 2/5 * 1/5 * 1/5 * 1/5 = 0.002

0.0185185 > 0.002 thus A is classified pos

id	veg?	type?	busy?	price?	class
A	yes	italian	no	low	?
В	no	greek	yes	high	?
C	no	greek	no	low	?
D	yes	greek	no	med	?
Е	no	italian	yes	med	?
F	yes	greek	no	high	?

to classify B, compare

pos

$$P(pos)*P(V=n|pos)*P(T=g|pos)*P(B=y|pos)*P(P=h|pos)$$

= 3/8 * 1/3 * 1/3 * 2/3 * 1/3 = 0.009259

neg

$$P(neg)*P(V=n|neg)*P(T=g|neg)*P(B=y|neg)*P(P=h|neg)$$

= 5/8 * 3/5 * 1/5 * 4/5 * 2/5 = 0.024

0.024 > 0.009259 thus B is classified neg

id	veg?	type?	busy?	price?	class
A	yes	italian	no	low	?
В	no	greek	yes	high	?
O	no	greek	no	low	?
О	yes	greek	no	med	?
ш	no	italian	yes	med	?
E	yes	greek	no	high	?

filling in remaining cases in the same way gives:

id	pos	neg	classified as
С	0.009259	0.003	pos
D	0	0.004	neg
E	0	0.024	neg
F	0.009259	0.004	pos

note the 0 for pos for D and E: this is because we haven't seen a training example with P=m labeled pos