Complexité et Algorithmes Partie II : Complexité des Problèmes

G. Fertin guillaume.fertin@univ-nantes.fr

Université de Nantes, LS2N Bât 34 – Bureau 301

M1 Informatique - 2019-2020

Sommaire

Introduction

Problèmes de Décision/d'Optimisation

Classes de Complexité

Quelques problèmes NP-complets

Discussion et Conclusion

Différence entre Algorithme et Problème

Complexité d'un algorithme

- Jusque là: complexité des algorithmes
- Càd: étant donné un algorithme A, quel est son coût (en temps) ?

Algorithme vs Problème

- Problème = question générale
- Algorithme = une façon de résoudre un problème
- ⇒ Que signifie la complexité d'un problème ?

Complexité d'un Problème

Définition

Complexité d'un problème = complexité du meilleur¹ algorithme qui le résout

¹meilleur = le plus rapide en temps d'exécution

Divers types de Problèmes

Les classes de problèmes les plus fréquentes

- Problèmes de calcul: sortie = une ou plusieurs valeur(s)
 ex: calcul des racines d'un polynôme du second degré
- Problèmes d'énumération: sortie = un ensemble de réponses

ex: PATTERN MATCHING

- Problèmes d'optimisation: max/min-imiser une valeur ex: ROBOT SOUDEUR
- Problèmes de décision: sortie = oui/non ex: primalité d'un nombre

Sommaire

Introduction

Problèmes de Décision/d'Optimisation

Classes de Complexité

Quelques problèmes NP-complets

Discussion et Conclusion

Problèmes de Décision et d'Optimisation

Remarque

A partir de maintenant: exclusivement problèmes de décision et d'optimisation

Problèmes de Décision et d'Optimisation

Pourquoi?

- Problèmes de décision (PbD) "simples" ... à poser
- Problèmes d'optimisation (PbO) très liés aux PbD (on le verra plus tard)
- Les PbD peuvent sembler limités mais
 - 1. il y en a déjà beaucoup à étudier, et
 - 2. ce qu'on va dire sur eux est généralisable aux autres classes de problèmes

Réponse = $oui/non \Rightarrow L'énoncé$ est une question

Quelques exemples

- Étant donné un entier *n*, *n* est-il premier ?
- Étant donnés un graphe G et un entier k, G admet-il un cycle de longueur ≥ k?
- Étant donné un graphe *G* planaire, *G* peut-il être (sommet-)colorié avec 4 couleurs, sans que deux sommets voisins aient la même couleur¹ ?

¹on parle alors de coloration propre

Réponse = $oui/non \Rightarrow L$ 'énoncé est une question

Quelques exemples

- Étant donnés deux programmes (informatiques) P et P', P et P' sont-ils équivalents¹?
- Étant donné un programme P, P termine-t-il ?

 $^{^{1}}$ càd, pour la même instance d'entrée, P et P^{\prime} font systématiquement la même chose

Description standard

- Formellement, on décrit un PbD sous la forme suivante :
 - NOM: identifie le problème (en majuscules)
 - Instance: description des données d'entrée du problème
 - Question: la question posée

Description standard PbD – Exemples

PRIMES:

Instance : un entier n

Question : *n* est-il premier ?

k-CYCLE:

Instance: un graphe G, un entier k

Question : G admet-il un cycle de longueur > k ?

Questions

Les problèmes suivants sont-ils des PbD ?

- Déterminer si un entier n est pair ou impair \rightarrow décision
- Déterminer le PGCD de deux entiers m et $n \to \text{optimisation}$
- Déterminer le nombre minimum de couleurs nécessaire pour colorier de façon propre les sommets d'un graphe G donné \to optimisation

Optimisation n'est pas décision, mais...

- Tout PbO peut se ramener à un PbD
- Signification:

Algo Polynomial pour PbO ⇔ Algo Polynomial pour PbD

Illustration sur un exemple

 $PbO \leftrightarrow PbD$

- Coloration d'un graphe G: affecter une couleur à chaque sommet de G
- Coloration propre de *G*: 2 sommets voisins portent toujours des couleurs différentes
- **Problème**: étant donné un graphe *G*, déterminer le nombre minimum de couleurs nécessaire pour colorier proprement *G*
- Problème d'optimisation, qu'on appellera O-COL

Liens PbO/PbD

Passage PbO/PbD

O-COL:

Instance : un graphe G

Sortie : le nombre minimum c de couleurs nécessaires pour col-

orier proprement *G*

D-COL:

Instance : un graphe G, un entier k

Question : G peut-il être proprement colorié en $\leq k$ couleurs ?

 $Polynomial(PbO) \Rightarrow Polynomial(PbD)$

- Résolution de **O-COL** \rightarrow donne un nombre c_{opt} de couleurs
- Concernant D-COL:
 - Si $c_{opt} \le k \Rightarrow$ réponse OUI
 - Si $c_{opt} > k \Rightarrow \text{réponse NON}$

 $Polynomial(PbD) \Rightarrow Polynomial(PbO)$

- n = nombre de sommets de G
- Remarque: pour tout graphe G, $1 \le c_{opt} \le n^1$
- Idée: répondre à O-COL en faisant des appels à D-COL

¹1 pour un graphe sans arête ; *n* pour la clique

Algorithme O-COL(G: graphe)

- int i:=0
- bool ok:=faux
- Tant que ok=faux et i≤ n-1 faire
- i:=i+1
- ok:=D-COL(G,i)
- Fin Tant que
- Return i;

 $Polynomial(PbD) \Rightarrow Polynomial(PbO)$

- Complexité de \mathbf{O} - $\mathbf{COL} = O(n \times Complexité de <math>\mathbf{D}$ - $\mathbf{COL})$
- taille des données = n (G possède n sommets et au plus $\frac{n(n-1)}{2}$ arêtes)

Conclusion: **D-COL** polynomial ⇒ **O-COL** polynomial

Remarque: on peut faire mieux (dichotomie) $\Rightarrow \sim \log_2 n$ appels à **D-COL** au pire

En règle générale

Algo polynomial pour PbO ⇒ Algo polynomial pour PbD

Comparaison entre

- $k = \text{paramètre de PbD } \mathbf{et}$
- *OPT* = valeur optimale de PbO

Algo polynomial pour PbD \Rightarrow Algo polynomial pour PbO

Recherche dichotomique pour déterminer OPT

Remarques

- On parle de PbD associé à un PbO
- A partir de maintenant, PbD uniquement (sauf mention contraire)

Sommaire

Introduction

Problèmes de Décision/d'Optimisation

Classes de Complexité

Quelques problèmes NP-complets

Discussion et Conclusion

Motivations

Savoir où on va!

Il y a des problèmes pour lesquels on ne trouve pas d'algorithmes polynomiaux

- diagnostiquer qu'on se trouve confronté à de tels problèmes
- ne pas chercher un algorithme efficace \rightarrow réduire ses exigences

P = polynomial

En première approche, deux classes de complexité pour les problèmes:

- La classe P: tous les problèmes pour lesquels il existe un algorithme de coût polynomial
- La classe des autres

Définition P

Un PbD appartient à P s'il existe un algorithme A et une constante c, tel que **pour toute instance I** du PbD :

- A résout le PbD en temps polynomial : $O(n^c)$
- où n est la taille des données

Problèmes $\in P$

Exemples de PbO et PbD \in P

- PbO:
 - Problème du Plus Court Chemin (Algorithme de Dijkstra)
 - Problème du PGCD (Algorithme d'Euclide)
- PbD:
 - PRIMES (résultat datant de 2002)
 - 2-SAT (résultat datant de 1967 ; on y reviendra)

En résumé sur P

- Tout PbD ∈ P est dit facile (ou tractable, ou traitable)
- Tout PbD ∉ P est dit difficile (ou intractable, ou intraitable)

Exemples de PbD ∉ P

- Terminaison des programmes
- Équivalence des programmes

Facile ou difficile?

Problème $\in P$ ou $\notin P$? Pas toujours simple...

- Si ∈ P:
 - fournir un algorithme
 - montrer qu'il est correct
 - montrer qu'il est polynomial en la taille des données
- Si ∉ P:
 - montrer qu'aucun algorithme polynomial n'existe
 - en général très compliqué
 - sort du cadre de ce cours

P or not P?

Quand on ne sait pas...

- Pour beaucoup de PbD, on ne sait rien:
 - aucun algo polynomial connu ⇒ tous sont exponentiels...
 - ...mais aucune preuve que le PbD ∉ P!
- Idée: inventer une classe intermédiaire: NP
- ATTENTION: NP ↔ Nondeterministic Polynomial

NP ne veut pas dire NON POLYNOMIAL!

Récréation (1/2)

Alan Turing

- Mathématicien et logisticien anglais (1912-1954)
- Un des pères de l'informatique

- Également célèbre pour:
 - avoir "cassé" le code de la machine Enigma pendant la 2e guerre mondiale
 - s'être suicidé en mangeant une pomme empoisonnée
- → la complexité des problèmes est directement reliée aux travaux de Turing

Récréation (2/2)

100e anniversaire en 2012

Définition NP

$PbD \in NP si$:

- pour chaque instance positive I (càd: réponse OUI)
- il existe un certificat C(I) (de sa positivité) vérifiant:
 - 1. taille de *C(I)*: **polynomiale** en la taille des données de PbD
 - 2. vérification à partir de C(I): en temps **polynomial**

Moins formellement

- NP = classe des PbD pour lesquels il est "facile" de vérifier qu'une réponse fournie est correcte
- Le but est de vérifier qu'une solution fournie est correcte, pas de trouver la solution
- Exigences diminuées

En résumé

- $PbD \in P \leftrightarrow solution$ facile à trouver
- PbD \in NP \leftrightarrow solution facile à vérifier

NP: Exemple

Problème **D-COL**

- Instance: un graphe G, un entier k
- Question: G peut-il être proprement colorié en $\leq k$ couleurs ?

Montrons que D-COL \in NP :

- Certificat (pour toute instance I) ? liste sommet ↔ couleur pour chacun des n sommets de G
- Taille du certificat ? O(n), donc polynomial
- Vérification :
 - 1. nombre de couleurs $\leq k : O(n)$
 - 2. chaque sommet a exactement une couleur : O(n)
 - 3. deux sommets voisins n'ont pas la même couleur : $O(n^2)$
- Taille et vérification polynomiales ⇒ D-COL∈ NP

NP, et alors?

Remarque: Si PbD∈ P, alors PbD∈ NP:

- trouver est plus dur que vérifier
- si trouver est facile, alors vérifier l'est aussi
- \Rightarrow P \subseteq NP

Quid des autres PbD (ceux dont on ne sait rien)?

- But: comparer les problèmes ∈ NP entre eux
- Identifier les plus difficiles de NP
- ⇒ notion de réduction d'un problème vers un autre

Réduction d'un problème vers un autre

Définition Réduction

- Soit Pb et Pb' deux PbD
- Réduction de Pb' vers Pb si:
 - Partant de **toute** instance *I'* de *Pb'*...
 - ...on peut construire **une** instance I de Pb
 - Contraintes:
 - 1. $I' \rightarrow I$ en temps polynomial
 - 2. I et I' ont toujours la même réponse (OUI ou NON)
- On écrira $Pb' \ge_P Pb$

Réduction

Idée principale

But: comparer les PbD de NP entre eux

Supposons que $Pb' >_{P} Pb$. Alors:

- Si $Pb \in P$. alors $Pb' \in P$
- \Rightarrow **Pb** est au moins aussi difficile que **Pb'**

Les problèmes NP-complets

 $NP + réduction \Rightarrow les problèmes les plus difficiles de <math>NP$

Nouvelle classe: NP-complet

Définition NP-complet

Un PbD est NP-complet si:

- 1. PbD \in NP et
- 2. chaque problème NP peut se réduire vers lui

Abus de langage: on dit "est NP-complet" au lieu de \in NP-complet

Les problèmes NP-complets

Autrement dit

- Un PbD NP-complet est un problème NP au moins aussi difficile que tout autre problème NP
- Les PbD NP-complets sont les problèmes les plus difficiles de NP
- Remarque : les PbD NP-complets sont nombreux !

Les problèmes NP-complets

Theorem

Soient P_1 et P_2 deux PbD tels que:

- P₁ est NP-complet
- $P_2 \in \mathsf{NP}$
- $P_1 \ge_{\mathsf{P}} P_2$

Alors P₂ est NP-complet

Preuve

- Pour tout PbD $Pb \in NP$, on a $Pb \ge_P P_1$ (car P_1 est NP-complet)
- Or, $P_1 \geq_P P_2 \Rightarrow Pb \geq_P P_2$
- De plus, $P_2 \in NP \Rightarrow P_2$ est NP-complet

Marche à suivre

Pour montrer qu'un PbD *Pb* est NP-complet, il faut montrer:

- 1. $Pb \in NP$
- 2. il existe un PbD NP-complet P_1 tel que $P_1 \ge_P Pb$

Remarques:

- Dû à Définition + Théorème
- Plus simple que la Définition seule

Sommaire

Introduction

Problèmes de Décision/d'Optimisation

Classes de Complexité

Quelques problèmes NP-complets

Discussion et Conclusion

L'œuf et la poule

Montrer qu'un PbD est NP-complet implique de réduire un problème NP-complet vers lui...

Remarque

Il n'est a priori pas évident qu'il existe au moins un problème NP-complet

Satisfiabilité des formules booléennes

Satisfiabilité des formules booléennes

- Variables booléennes $X = \{x_1, x_2, \dots, x_n\}$
- Clause: disjonction de littéraux, par ex.

$$(x_4 \vee \overline{x_5} \vee x_1 \vee \overline{x_6})$$

 Forme normale conjonctive (FNC): conjonction de clauses, par ex.

$$\dots \wedge (x_2 \vee x_3) \wedge (x_4 \vee \overline{x_5} \vee x_1 \vee \overline{x_6}) \wedge (x_2 \vee \overline{x_5} \vee \overline{x_1}) \wedge \dots$$

- Une affectation est une fonction ν : X → {vrai, faux}
- Une formule est satisfiable s'il existe une affection qui satisfait la formule (càd qui la rend vraie)

Satisfiabilité des formules booléennes

Satisfiabilité des formules booléennes

• Toutes les formules booléennes ne sont pas satisfiables, par ex.

$$\phi = (x_1 \lor x_2) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2) \land (\overline{x_1} \lor \overline{x_2})$$

- Soit ϕ une formule booléenne sous FNC. Alors ϕ est satisfiable si et seulement si chaque clause est satisfaite
- Toute formule booléenne peut être mise sous FNC
- Il existe 2ⁿ affectations différentes

Le problème SAT est NP-complet

SAT

Instance: Une formule booléenne ϕ sous FNC

Question: La formule ϕ est-elle satisfiable ?

Theorem (Cook 1971)

Le problème SAT est NP-complet

Le problème k-SAT est NP-complet

k-SAT

Instance: Une formule booléenne ϕ sous FNC, où chaque clause

contient au plus k littéraux

Question: La formule ϕ est-elle satisfiable ?

Theorem

Pour tout $k \ge 3$, le problème k-SAT est NP-complet

Quelques remarques sur le problème SAT

Cas particuliers polynomiaux

- Le problème $2\text{-}\mathrm{SAT} \in \mathsf{P}$
- Une formule booléenne de Horn est une conjonction de clauses telle que chaque clause contient au plus une variable positive, par ex.

$$(\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee \overline{x_4}) \wedge (x_2)$$

Quelques remarques sur le problème SAT

Cas particuliers polynomiaux

HORN-SAT:

Instance : Une formule booléenne de Horn ϕ sous FNC

Question : La formule ϕ est-elle satisfiable ?

Le problème $HORN\text{-}SAT \in P$

Quelques variantes difficiles du problème SAT

1-SUR-3-SAT

 $\textit{Instance} \colon$ Une formule booléenne ϕ sous FNC, où chaque clause

contient au plus 3 littéraux

Question: Existe-t-il une affectation qui satisfait exactement un

littéral par clause ?

Theorem

Le problème 1-SUR-3-SAT est NP-complet

Remarque: Réduction depuis SAT

 $SAT >_P 1-SUR-3-SAT$

Quelques variantes difficiles du problème SAT

NOT-ALL-EQUAL-3-SAT

Instance: Une formule booléenne ϕ sous FNC, où chaque clause contient au plus 3 littéraux

Question: Existe-t-il une affectation qui satisfait au moins 1 littéral par clause et au plus 2 ?

Theorem

Le problème NOT-ALL-EQUAL-3-SAT est NP-complet

Exemple de réduction

Ensemble stable 1 dans un graphe G = ensemble de sommets de G ne partageant aucune arête

Ensemble Stable

Instance: Un graphe G, un entier k

Question: Existe-t-il un ensemble stable de taille > k dans G?

- PbO associé: problème de maximisation
- Modélise des (in)compatibilités

¹en anglais: Independent Set

Notre première preuve de NP-complétude

Theorem

Le problème Ensemble Stable est NP-complet

Proof.

- 1. Ensemble Stable ∈ NP puis
- 2. $3-SAT \ge_P ENSEMBLE STABLE$

ENSEMBLE STABLE NP

Proof.

- certificat polynomial: liste des sommets de l'ensemble stable proposé (qu'on appellera S)
- vérification en temps polynomial:
 - 1. S a au moins k sommets $\rightarrow O(k)$
 - 2. pas d'arêtes entre les sommets de $S \rightarrow O(k^2)$

 \Rightarrow Ensemble Stable \in NP

Notre première preuve de NP-complétude

3-SAT > P ENSEMBLE STABLE

Proof.

- Réduction polynomiale depuis le problème 3-SAT
- $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_m$ une formule booléenne sous FNC
- Il faut construire un graphe G et un entier positif k tels que
 - ϕ est satisfiable \Leftrightarrow il existe un ensemble stable de taille $\geq k$ dans G

$$\phi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3)$$

$$k = \text{nombre de clauses} = 3$$

(\Rightarrow) Si ϕ est satisfiable, alors il existe un ensemble stable de taille $k \geq 3$ dans G (en fait, k = 3)

$$\phi = (\mathbf{x_1} \vee \overline{\mathbf{x_2}} \vee \overline{\mathbf{x_3}}) \wedge (\mathbf{x_1} \vee \overline{\mathbf{x_2}} \vee \mathbf{x_3}) \wedge (\overline{\mathbf{x_1}} \vee \mathbf{x_2} \vee \mathbf{x_3})$$

(\Leftarrow) S'il existe un ensemble stable de taille $k \ge 3$ (k = le nombre de clauses de ϕ), alors ϕ est satisfiable

Remarques:

- Ensemble stable \rightarrow au maximum un sommet par triangle
 - \Rightarrow Ens. stable $\leq k$
 - \Rightarrow Ens. stable = k
 - \Rightarrow exactement 1 sommet par triangle
- dans l'Ens. stable, impossible d'avoir x_i et $\overline{x_i}$ (par construction)

(\Leftarrow) S'il existe un ensemble stable de taille $k \ge 3$ (k = le nombre de clauses de ϕ), alors ϕ est satisfiable

$$\phi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3)$$

Attention à NP-complet!

Ce que veut dire NP-complet

Un PbD est NP-complet veut dire:

- qu'il existe au moins une instance difficile
- ...mais pas forcément toutes !!!
- Des cas particuliers peuvent être polynomiaux:
 - Petits cas (ex: 2-SAT)
 - Classes d'instances (ex: HORN-SAT)
 - etc.

Attention aux valeurs de k (Petits cas)

Theorem

Si k=O(1), alors le problème Ensemble Stable peut se résoudre en temps polynomial

Exemples: k = 2, k = 3

Proof.

On considère tous les ensembles de k sommets dans G

On teste la stabilité de chaque ensemble

Algo en:

$$O(\underbrace{\binom{n}{k}}_{nb,d'} \cdot \underbrace{k^2}_{test}) = O(n^k \cdot k^2)$$
 Polynomial!

Attention à la structure de G (Classes d'instances)

Theorem

 $Si~G~est~un~chemin,~alors~le~problème~{\it Ensemble}~Stable~peut~se~résoudre~en~temps~polynomial$

Proof.

- Ensemble stable: un sommet sur deux dans le chemin
- → nécessairement optimal

Sommaire

Discussion et Conclusion

•0000000

Pour revenir à la classe NP-complet

A quoi ça peut bien servir ?

- Si un seul PbD NP-complet est polynomial ⇒ tous les problèmes NP aussi !
- 2. Inversement, si un seul PbD NP est intraitable ⇒ tous les problèmes NP-complets aussi !

Quelques propriétés des NP-complets

Problèmes NP-complets: où en est-on?

- Problèmes tous très difficiles à résoudre
- Aucun algorithme polynomial n'a été trouvé pour ces problèmes
- L'impossibilité de trouver des algorithmes polynomiaux n'a pas été prouvée non plus!
- L'existence ou non d'algorithmes polynomiaux pour les problèmes NP-complets est l'un des plus grands problèmes encore ouverts en informatique

Relations entre P et NP ...

- Les problèmes NP-complets sont les problèmes les plus difficiles de la classe NP
- \bullet P \subseteq NP
- mais qu'est-ce qui est correct ?

La grande question

P = NP?

- Recherches innombrables sur le sujet depuis des dizaines d'années
- Fait partie des 7 problèmes du millénaire du Clay Mathematics Institute¹ (1 million de dollars par problème résolu)
- Les implications sont multiples et réelles! Exemple: codage RSA (transactions cryptées sur Internet)
- On ne sait toujours pas:
 - si les PbD ∈ NP sont tous polynomiaux...
 - ou s'ils sont tous intraitables

¹http://www.claymath.org/millennium-problems

La grande question

P = NP?

L'opinion généralement partagée est que :

- P ⊂ NP, càd les problèmes NP-complets ne sont pas polynomiaux
- le PbD "P = NP ?" est lui-même NP-complet... (?!?)

Que faire face à un problème inconnu ?

Notre problème Pb

- soit on pense que le problème Pb est facile
 - ⇒ on cherche un algorithme *correct* et polynomial (le meilleur possible!) qui le résout
- soit on pense que le problème Pb est difficile
 - ⇒ on cherche à montrer qu'il est NP-complet, càd
 - toute solution proposée peut être polynomialement vérifiable (appartenance à NP)
 - prendre un problème NP-complet et le réduire polynomialement à Pb

Que faire face à un problème Polynomial ?

Si Pb est polynomial

- Trouver le "meilleur" algorithme
- S'assurer qu'il est correct!
- Meilleur = le plus rapide
- Meilleur = le moins gourmand en mémoire
- La priorité est souvent mise sur le temps

Que faire face à un problème NP-complet?

Si Pb est NP-complet

- Premier constat: ne pas s'acharner à trouver un algorithme exact et rapide
- Baisser ses exigences:
 - soit sur la rapidité d'exécution
 - soit sur l'exactitude de la réponse
 - soit sur l'ensemble des instances autorisées
 - ⇒ c'est ce que nous verrons dans la suite