

COMPUTER SCIENCES DEPARTMENT

University of Wisconsin-Madison

> NR 044-356 cet 432

ON THE ROLES OF "STABILITY" AND "CONVERGENCE" IN SEMIDISCRETE PROJECTION METHODS FOR INITIAL-VALUE PROBLEMS

by

Seymour V. Parter

Computer Sciences Technical Report#303
July 1977

DEC 16 1977

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

AD NO.

A

Computer Sciences Department University of Wisconsin 1210 West Dayton Street Madison, Wisconsin 53706

ON THE BOLES OF *STABILITY* AND *CONVENGENCE*
IN SEMIDISCRETE PROJECTION BETHCOS FOR INITIALVALUE PROBLEMS.

by

DEC 16 1977

July 1977

DEC 16 1977

Supported by the Office of Naval Research under Contract No. N00014-76-C-9341

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited 404114

ă

Seymour V. Parter

1. Introduction

In the early 1950's as scientists became concerned with the numerical solution of partial differential equations there were many papers concerned with the questions of "stability" and "convergence" of solutions of difference approximations to time dependent problems (now called "equations of evolution").*
In 1951 M. A. Hyman, S. Kaplan and G. G. O'Brien [34] discussed this question and described the Von Neumann "stability criterion". In the same year W. Leutert [32] gave an example of an "unstable" scheme which, nevertheless, was in some sense "convergent". These results were followed by many, many convergence proofs. (See [12], [24], [25], [26] for a few). In 1956 there appeared a paper by Jim Douglas Jr. [11] "On the Relation Between Stability and Convergence in the Numerical Solution of Linear Paraholic and Hyperbolic Differential Equations." However, Douglas was distracted by Leutert's example and restricted his efforts to the proof that stability (under appropriate "consistency" conditions) led to convergence. In the same year (1956) the

* No attempt at describing the history of this subject could possibly be complete. I make no claim that the above discussion is a complete description of the early pioneering papers. At the same time, no discussion of this topic can even begin without mentioning the fundamental paper by R. Courant, K. O. Priedrichs and H. Lew, [9].

furdamental paper of P. Lax and R. D. Richtmyer [30] exployed the principle of uniform boundedness to show that if one demanded convergence for a sufficiently broad class of problems, then stability and convergence are indeed equivalent. This result is the famous "Lax Equivalence Theorem." In 1958 H. F. Trotter* [43] returned to the questions raised by Lax and Richtmyer and put the results (and theory) into the framework of the theory of Linear Semi-groups.

During this time an effort was made to understand and clarify the several possible definitions of "stability." In particular, in 1960 Strang [40] discussed "weak stability" in which the solution operator becomes unbounded as \$\pi + 0\$ but at a rate which is \$0(\pi t^{-p})\$. He proved the following beautiful theorem: If the solution \$u(x,t)\$ is sufficiently smooth, then the discrete solution \$u(x,t,\pi t)\$ of such a weakly stable method is convergent to \$u(x,t)\$ and the "rate of convergence" is that predicted by the truncation error. In 1962 H. 0. Kreiss [73] wrote a definitive paper on the relationship between various notions of stability, the Von Neumann Criterion and the concept of "Properly Posed in the Sense of Petrowsky" (see Aronson [1], Wendroff [44] also).

But here we are, some twenty years later, and most research in numerical methods for partial differential equations is not concerned with difference

offils forous paper is particularly interesting. Nost numerical analysts don't realize that it is primarily devoted to the stability-convergence question, and, most probabilists, who-if they have read the paper-must know, seldom (if ever) mention this fact.

methods. The interpretation of Ritz-Galerkin methods, collocation methods, and a concrete rojection Methods." And, as one reads the present day 1. The rarely sees the word "stability." There are many, many "convergence" theorems (with appropriate erocthness assumptions).

Of course, there is a good reason for this state of affairs. Most Ritz-Galerkin methods with a continuous time variable—are automatically stable. In fact, this observation is the beginning and the motivation for the paper by 8. Swartz and 8. Wendroff [42]—one of the early "American" papers on the subject of Galerkin methods for time dependent problems. Moreover, much of the research of today is concerned with a host of immediate questions—e, g, time discretization by multistep methods (see [2], [6], [10], [50] for a few), replacement of integration by quadrature methods (see [17], [13]), collocation (see [8], [15], [46]).

Nevertheless, particularly as we begin to look at more sophisticated projection methods, e. g. collocation, it seems reasonable to look again at this concept of "stability" and its relationship to "convergence."

In section 2 we formulate the problem of equations of evolution and semidiscrete numerical methods based on a sequence of subspaces $\{\chi_n^{}\}$ and related projection operators $\{P_n^{}\}$.

In section 3 we discuss some examples. In section 4 we use a modification of a now standard proof of the "Trotter Approximation Theorem" to discuss the roles of stability and convergence in a general setting.

This discussion explicitly shows how the semigroup theory clarifies much of the existing literature. In this cornection, it is appropriate to mention that Helfrich [21] and Pujita and Mizutani [16] make explicit use of the theory of Holomorphic semigroups in their treatment of parabolic problems.

In section 5 we discuss a particular definition of "weak stability" and show how one may obtain "convergence theorems" with such methods provided one has some additional smoothness and makes a particular choice of "initial values." The results of this section may be regarded as analogs of the theorem of Strang.

These results of section 5 are also closely related to results of Beals [3] for the partial differential equation.

Let X be a Banach Space and let A be a densely defined linear operator from $\mathbb{D}(A) \subset X$ into X. We are concerned with "semidiscrete" numerical methods for the approximate solution of the initial-value problem

2.1)
$$\begin{cases} d u(t) = A u(t) + f(t), t > 0 \\ dt \\ u(0) = u_0 \in X \end{cases}$$

where f(t) is an X valued function of t. By a solution (see [22] page 619], [35, page 105] we mean an X-valued function u(t) which is

- (i) continuous for t>0,
- (ii) continuously differentiable (in t) for t > 0;
- moreover,
- (iii) for t > 0 , u(t) e D(A),

and and

(iv) equations (2.1) are satisfied.

We assume that equations (2.1) describe a "properly posed problem." To be more precise, we assume:

H.1: A is the infinitesimal generator of a C_0 semigroup T(t),

and, the unique solution of (2.1) is given by

2.2)
$$u(t) = T(t) u_0 + \int_0^t T(t-s) f(s) ds.$$

Moreover, the semigroup, T(t), satisfies

2.3) ||T(t)|| < Me^{wt}

where M > 0, $\omega \ge 0$ are fixed constants.

A related problem is the "steady state" or time independent problem

2.4) Au + f 0 = 0,

where f_0 is a fixed element of X .

We assume that this problem has a unique solution u for all f $_0$ c $\rm X$. In fact, we assume:

- H.2: A^{-1} exists as a bounded linear operator defined on all of X . Moreover, the "resolvent condition" is satisfied, i.e., there is a constant M such that, for all real $\lambda > 0$, $(A-\lambda I)^{-1}$ exists as a bounded linear operator defined on all of X and
- 2.5) | (A-AI) "1 < HA "

Namark: Assumption H.1 implies an estimate of the form of (2.5). Conversely, under appropriate assumptions on f(t), assumption H.2 implies H.1. See [35, page 21].

A large class of numerical methods for the approximate solution of the steady state problem (2.4) are described in the following manner.

Let $\{X_n\}_1^n$ be a family of finite dimensional subspaces of X. (For convenience, let dim $X_n = n$). Let $\{P_n\}_1^n$ be an associated family of uniformly bounded projections of X onto X_n with

Let $\{A_n^i\}_1^\infty$ be an associated family of nonsingular maps from X_n onto X_n . The approximant u_n ϵ X_n satisfies the equation

In fact, the Galerkin method (or , the direct projection method) is obtained when

and

A typical theorem associated with the above type of approximation scheme takes the following form.

Theorem T : There exists a Banach space X C X with

and a function F(n) + 0 as n + * such that: if u, the solution of (2.4), is in X then

If we define Q on D(A) by

we can restate Theorem T (T for "typical") as: Let $u\in \mathbb{D}(A)\cap X$; then

Once one has developed this procedure for the steady state problem (1.4) and obtained Theorem T, one is paturally led to consider the following "continuous time, semidiscrete numerical method" for (2.1): Fird a X_n

valued function un(t) which is

- (i) continuous for t > 0
- (ii) continuously differentiable for t > 0

and satisfies the initial value problem

2.11)
$$\frac{d}{d\varepsilon} u_{h}(t) = A_{h} u_{h}(t) + P_{h} f(t), t > 0$$

$$u_{h}(0) = U_{0,h} \varepsilon X_{h}$$

where Uo,n is chosen in some prescribed way so that Nu-Co,n I is small.

In fact, there are two methods for choosing $\mathbf{U}_{0,n}$ which come to mind

at once. These are

2.12a)
$$U_{0,n} = P_n u_0$$
, and, if $u_0 \epsilon D(a)$,

Since A_n is a linear map from x_n to x_n , and since x_n is of finite dimension, each A_n generates a C_0 semigroup $S_n(t): x_n + x_n$

given by

13a) S_n(t) = At .

Definition 2.1: The semi discrete method described by (2.11) is "stable" if there exist constants \vec{M}, \vec{u} (independent of n) such that

Neverth: This definition of "stable" is classical and was introduced by Lax and Richtmyer [30] and Trotter [43]. The "norm" used in (2.14) is the norm of X restricted to X_n .

Applying the general theory of semigroups we find that the semi discrete method is stable if and only if there is a constant ${\tt M}_{\tt I}$ such that, for all real

A > w have

2.15)
$$\|(A_n - \lambda_1)^{-m}\| \le \frac{N_1}{(\lambda - \overline{\omega})^m}, n = 1, 2, \dots$$

Unfortunately, (2.15) is an infinite system of estimates and, in general, not easy to verify. A much stronger result is: the semigroups $_{\rm n}(t)$

satisty

15,(t) 1 < e &t

2.160)

if and only if for every real \ \> \ \omega \ we have

$$\|Q_{h^{-\lambda}I}\|^{-1}\| \le \frac{1}{(\lambda-\bar{\omega})}$$
.

2.16b)

In many cases we find that the semigroup T(t) is not only a semigroup in X, but also is a semigroup in X. For this reason we will sometimes find it convenient to assume:

H.3: There are constants M₂ and a such that: ${}^{\lambda}_{i} \quad {}^{\lambda}_{i} \quad \text{if } x \in X \quad \text{then} \quad T(t) x \in X \quad \text{and}$

2.17)
$$\|T(t) \times \| \sim \frac{1}{X} \leq M_2 e^{\alpha t} \| \times \| \sim X$$

We close this section with the observation that stable semidiscrete methods are "stable" under hounded perturbation. Specifically we have the following

Theorem 2.1: Suppose the semidiscrete method described by (2.11) is stable. Let $\{B_n\}$ be a family of uniformly bounded linear operators

from X to X

and there is a constant B such that

Consider the semidiscrete system

2.19)
$$\frac{dv_n}{dt} = (A_n + B_n) v_n + P_n f, t > 0,$$
$$v_n(0) = v_{n,0} \in X_n ,$$

Then this semidiscrete method is stable.

Since (2.19) is a linear system of ordinary differential equations Proof: It suffices to consider the homogeneous case, i. e., f = 0.

with constant coefficients, there is a solution $v_n(t)$. Moreover,

$$v_n(t) = S_n(t) \ v_{n,0} + \int_0^t S_n(t-s)B_n \ v_n(s)ds$$
.

The theorem now follows from Gronwall's Inequality, see [4] and the basic estimate (2.14).

3. Exemples

Before proceeding to the development of the general theory, we present some examples which are of particular interest.

Example 1: Let 0 be a smooth domain in Pn.

Let

3.1)
$$X = L^2(\Omega)$$
,

3.24)

Let $\mathbf{X}_n \in \mathbb{D}(\mathbf{A})$ be chosen so as to satisfy certain approximation properties (as in [2], [7], [14]). Let P_n denote L^2 projection onto X_n . Let

In this case we are dealing with Galerkin's Method for the classical

Dirichlet problem. A typical result (Theorem T) takes the form:

where
$$k_0>1$$
 is an integer. Let
3.4b) $\| u \|^2 = \frac{k^0}{x} \| A^3 u \|^2$.

Then, for ue X . we have

3.5) 19, well = 12, 1 P.A well < P(n) | well . .

See [7], [21], [46]. Turning to the parabolic problem

we see that it is relatively easy to show that the semidiscrete procedure is stable. In fact, we have: if u_h (t) ϵ X $_n$ satisfies

3.7n)
$$\begin{cases} \frac{\partial u_n}{\partial t} = P_n \Delta u_n, & t > 0 \\ \frac{\partial u_n}{\partial t} = P_n \Delta u_n, & t > 0 \end{cases}$$

then after multiplication by un (t) we obtain

Hence

which implies that

Thus, one easily obtains results of the form: \underline{if} u(x,t) and $u_{\xi}(x,t)$ $\in X$,

then

3.8)

$$\|u(.,t) - u_n(.,t)\| \le C(t) F(n) \max_{0 \le s \le t} \|\|u(.,s)\| + \|u_t(.,s)\|^{\kappa} \|_{X}$$

See [7], [13], [36].

Finally, in this case, the basic hypotheses H.1, H.2 and H.3 all hold. Example 2: choose X and A as in the previous example. However, we now require only that the subspaces $X_{\rm B}$ C X belong to $H_1(B)$. Let (,) denote the inner product in $L^2(B)$ and < , > denote the inner product in $L^2(B)$ and < , > denote the inner product in $L^2(B)$. The numerical method for the steady state problem

1 P D + E

takes the form: find un c X n such that

9b)
$$(\phi_{n_{1}}, v_{n_{1}}) + (f, v_{n_{1}}) + n^{0} < u_{n_{1}}, v_{n_{2}} > 0$$
 for all $v_{n_{1}} \in X_{n_{2}}$

Here σ is a positive constant. In this case we are dealing with the "penalty" method for the Dirichlet problem. The appropriate P_n is again the L^2 projection onto X_n . However, the operator A_n is a perturbation of the Galerkin operator. This problem has been analyzed under appropriate conditions on X_n , see [7].

Our next example is one of particular interest from the point of view of the questions raised in this report. Convergence theorems have been proven by J. Douglas and T. Dupont [15] and by J. H. Oerutti and S. V. Parter [8]. However, these authors have not touched on the questions of stability in the appropriate norm.

Numble 3: Let X = C[0,1] \ (u; u(0) = u(1) = 0 }

3.10a)
$$A = (\frac{d}{dx})^2 + a(x) \frac{d}{dx} + c(x)$$

where

and a(x) is a smooth function. Let $0=x_0< x_1< \ldots < x_m=1$ and let $I_j=[x_{j-1},x_j]$. Let k be a fixed positive integer and let $I_j=[x_{j-1},x_j]$. Let k be a fixed positive integer and let 3.11a) $x_n=\{u(x)\in x\cap \mathbb{C}^1[0,1]:u\mid_{I_j}\in P_{k+2},\ j=1,2\ldots m\}$ where P_{k+2} denotes the polynomials of degree < k+2,i.e.of "order" k+2. Let ξ_1,\ldots,ξ_k be the Gaussian points on [0,1] (see [8] or [1,1] for a more complete discussion) and let

$$\xi_{js}=x_{j-1}+\xi_s(x_j-x_{j-1}),\quad j=1,\dots,m,\ s=1,\dots,k$$
 local Gauss points. The collocation method for the steady

be the local Gauss points. The collocation method for the steady state problem studied by deBoor and Swartz [5] (their work is far more general, but this is the case of interest here) is described by the following procedure. Find $_{\rm n}$ c x $_{\rm n}$ such that

(Au_n)
$$(\xi_{js}) = f(\xi_{js})$$
 $j = 1, ... m, s = 1, ... k$.

For the parabolic problem

3.12)
$$\begin{cases} \frac{3u}{3t} = \lambda u + f(x,t) \\ u(x,0) = u_0(x) \end{cases}$$

The collocation method takes the following form: find $u_n(x,t)\in X_n$ (for each fixed t) such that

1)
$$\frac{\partial u}{\partial t}(\xi_{js},t) = (\lambda u_{j})(\xi_{js}) + f(\xi_{js},t), j = 1, 2, ... m, s = 1, ... k,$$

(3b)
$$u_n(x,0) = U_{n,0}(x) \in X_n$$

Both Dupont and Douglas [15] and Cerutti and Parter [8] showed that one obtains the same kind of error estimates for the parabolic problem as deBoor and Swartz [5] obtained for the elliptic (steady state problem) when one used

Those results showed convergence in the maximum norm. Yet none of these authors established stability in the maximum norm. In terms of the discussion of this report, Dapont and Douglas established stability in the H_1 norm and used the imbedding of H_1 [0,1] in C[0,1] to establish convergence in the presence of sufficient smoothness. On the other hand, Cerutti and Parter established a certain "resolvent estimate": which (i) came from the H_1 stability and (ii) could be interpreted as a form of weak stability and (iii) was good enough to allow the use of the laplace transform in the case of smooth solutions. As far as this author knows, the question of "maximum norm stability" for this collocation scheme is still an open problem.

Our next example shows that the validity of Theorem T (for the steady state case) does not imply the stability or general convergence of the time dependent numerical method. In this example the operator λ_n is a perturbation of the Galerkin operator, Moreover, in this case X = X.

Example 4: Let X = L² [0,T] . Let

A = (d 2 3.14a)

 $D(A) = \{u \in H_2 (0,\pi) ; u(0) = u(\pi) = 0\}$. 3.14b)

x = span { sin jx}n = 1 ,

y_n = span (sin nx). 3.1Sb)

x " x " " " " " " " " 3.16a)

3.16b) $A_n = \left[\left(\frac{d}{dx} \right)^2 \right] \oplus \left[- \left(\frac{d}{dx} \right)^2 \right]$.

Of course P_n is the L^2 projection onto X .

If u c D(A) and Au= f with

3.176)

u=E (-f/32) sin 3x .

Pnf = E f sin jx

and the solution of A u - P f

is given by

18)
$$u_n(x) = \sum_{j=1}^{n-1} (-t_j/2) \sin jx + \frac{t_n}{n^2} \sin nx$$
.

We have the easy error estimate

$$\|u-u_n\|^2 = \frac{4|\xi_n|^2 + \frac{n}{2}}{n^4} \frac{|\xi_j|^2/3}{3^{n+1}} \le 4\|\xi\|^2 \frac{n}{3^n} = 0.$$

On the other hand, let $u_0 = \sin nx$.

Thus, the semidiscrete method for the initial value problem

is not stable in any norm !!

(see (2.8a), (2.8b)). In our next example we have a direct projection method In example 4 we are dealing with a perturbation of Galerkin's method which appears to be unstable.

Example 5: Let
$$0 < v < 1$$
 and let 3.21) $A = \begin{bmatrix} v & 1 \\ 1 & v \end{bmatrix}$.

13

Let $u(x,t) = [u_1(x,t), u_2(x,t)]^T$ and consider the mixed initial

value-boundary value problem

3,22a) ut = Aux, 0 < x < 1

3.22b) $u(x,0) = u_0(x)$

3.22c) $u_1(0,t) = u_1(1,t) = 0$, t > 0

In [20] Max D. Gunzburger considered the following semidiscrete Galerkin approach to this problem.

Let X_m be determined by using cubic B-splines on a uniform mesh with $u_1^m(0) = u_1^m(1) = 0$ and $u_2^m(0)$, $u_2^m(1)$ unspecified. The semi discrete equations are obtained by requiring

(3) $(u_t^m - Au_x^m, v^m) = 0$ for every $v^m \in x_n$.

In his interesting report [20] Gunzburger asserts that computational results indicate instability. He discusses the possible reasons for these difficulties.

4. The Basic Results

In this section we prove the general theorems which are essentially restatements of the Lax-Richtmyer-Trotter results in our present context. The main result is that for stable semi discrete numerical methods of the form described by (2.11) we can "lift" the results of Theorem T.

Our first result is a modification and interpretation of a basic identity which is usually used in the proof of the <u>Trotter Approximation Theorem</u> (see Pazy [35]).

Lemma 4.1: For every x c X we have (t > 0)

4.1)
$$A_n^{-1} [P_n T(t) - S_n(t) P_n] A^{-1} x^{-n} \begin{cases} t \\ S_n(t-s) [A_n P_n - P_n A] T(s) \times ds. \end{cases}$$

Proof: Let t > 0 be fixed and let

Then Gn (s) is a differentiable function of s, 0 < s < t.

Using the basic relations

$$T(t)Az = AT(t)z , \text{ for } z \in D(A)$$

$$\frac{d}{dt}T(t)z = AT(t)z , \text{ for } z \in X, t > 0 ,$$

$$A_n S_n (t) = S_n (t) A_n in X_n$$

$$\frac{d}{dt} S_n (t) z = A_n S_n (t) z , \text{ for } z \in X_n,$$

$$\frac{d}{ds} G_n(s) = S_n(t-s) \left[A_n^{-1} P_n - P_n A^{-1} \right] T(s) x$$
.

Integrating this last relationship from 0 to t yields (4.1).

Lemma 4.2: For every
$$u \in D(A^2)$$
 we have $\frac{t}{t} S_n (t-s) P_n[Q_n T(s) Au-T(s) Au] ds$.

Proof: Let $x = A^2u$ and apply (4.1).

For the moment, we restrict our attention to the case $f(t) \equiv 0$.

holds. Let u(t) be the solution of (2.1). Let un (t) be the solution of that Theorem T holds and the semidiscrete method is stable, i.e. (2.14) (2.11) with u_n , given by (2.12b). Let u(t) and $Au(t) = \frac{d}{dt} u(t)$ Theorem 4.1: Suppose f(t) ≡0. Suppose H.1 and H.2 hold. Suppose belong to D(A) ∩ X . Then

4.3a)
$$\|Q_n(t) - u_n(t)\| \le \overline{M} M_0 F(n)$$
 $\begin{cases} t = \overline{\omega}(t-s) \|Au(s)\|^{\infty} ds \\ 0 \end{cases}$

and $\| u(t) - u_n(t) \| \le F(n) [\| u(t) \|_{\infty} + \widetilde{H} \, M_0] = \frac{\widetilde{u}(t-s)}{\| Au(s) \|_{\infty} ds] \, .$

Proof: Apply lemma 4.2 and Theorem T (under the integral sign) to obtain (4.3a). Then (4.3b) follows from the triangle inequality and Theorem T.

Theorem 4.2 : Suppose f(t) = 0. Suppose H.1, H.2 and H.3 hold and the semidiscrete method is stable. Suppose Theorem T holds.

Let u(t) be the solution of (2.1) and $u_n(t)$ be the solution of (2.11) with $U_{0,n}$ given by (2.12b). Let u_0 and Au_0 belong to $D(A) \cap X$.

4.4a) $\|Q_n u(t) - u_n(t)\| \le \widetilde{M} M_0 M_1 F(n)$ $e^{\widetilde{m}(t-s)} e^{\cos ds} \|Au_0\|^{2}$

≤ (MM0 M1) C(t) F(n) ||Au0|| "

where 4.4b)
$$C(t) = \left[\int_0^t e^{\tilde{\omega}(t-s)} e^{ds} ds \right]$$
.

4.4c)
$$\|u_n(t)-u(t)\| \le F(n) [M_1e^{\alpha t} \|u_0\|_{X}^{\infty} + (\widetilde{M}M_0M_1) C(t) \|Au_0\|_{X}^{\infty}]$$
.

Proof: Apply H.3 to (4.3a) and (4.3b) in Theorem 4.1 .

In Theorem 4.2 we assure u_0 and A $u_0\in \mathbb{D}(A)\cap X$, 0 which is the hypothesis Remark: Note the differences in the hypotheses of Theorems 4.1 and 4.2. of Theorem 4.1 .

Definition 4.1: The semidiscrete method described by (2.11) is "convergent" if: for all u 0 eX and all T > 0 we have

[•] hence by H.3 u(t) and Au (t) belong to $\mathbb{D}(A) \cap X$,

whenever

... 100,n-u0 1 + 0 4s n + ...

Theorem 4.3: Let

4.6) V= {ucD(a)nx ; AucD(a)nx) .

Suppose N.1, N.2, N.3 hold. Suppose Theorem T holds and the semidiscrete method is stable. Suppose V is dense in X . Then, the

samidiscrete method is convergent.

Proof: Let uot x . Let (v (k) , be a sequence satisfying

1) For every k, v^(k) E V

(ii) ||v(k) - u₀|| +0 as k+=.

Then for every k we have

$$\begin{split} \| \mathbf{S}_n(\mathsf{t}) \mathbf{U}_{0,n} - \mathbf{T}(\mathsf{t}) \mathbf{u}_0 \| &\leq \| \mathbf{S}_n(\mathsf{t}) [\mathbf{U}_{0,n} - \mathbf{Q}_n^{(K)}] \| + \\ \| \mathbf{S}_n(\mathsf{t}) \mathbf{Q}_n^{(K)} - \mathbf{T}(\mathsf{t}) \mathbf{v}^{(K)} \| + \| \mathbf{T}(\mathsf{t}) \left[\mathbf{v}^{(K)} - \mathbf{u}_0 \right] \| \, . \end{split}$$

Given c>0 we may choose k_0 so large that

The state of the s

Thus, employing Theorem 4.2 with k_0 fixed we have

lin
$$\|S_n(t) \cup_n v^{(k_0)} - T(t) v^{(k_0)}\| = 0$$

and

1im sup ||S_n(t)U_{0,n} - T(t)u₀ || < 6/10 .

Hence the Theorem is proven.

bmploying the "Principle of Uniform Boundedness" in what is now a familiar argument (see [30],[38]) we obtain the converse result.

Theorem 4.4: Suppose H.1 and H.2 hold. Suppose the semidiscrete method is convergent. Then the method is stable.

Returning to the general case when f(t)# 0 we recall that H.1 includes the assumption that (2.1) has a solution u(t) and this solution is given by (2.2).

Theorem 4.5: Assume that H.1, H.2, H.3 hold. Assume that Theorem T holds and the semidiscrete method is stable. Let u(t) be the solution of (2.1) while u_n(t) is the solution of (2.11). Let u₀ = U_{n,0} = 0.

f(t) c D(A)n X

A f(t) & D(A) OX .

Let C(t) be given by (4.4b). Then

4.8) $\|Q_n u(t) - u_n(t)\| \le \int_0^t \widetilde{M}_N M_1$ $P(n) C(t-s) \| \lambda f(s) \| ^{\lambda} ds$ $+ \int_0^t \widetilde{M} e^{\widetilde{M}(t-s)} \| (Q_n - P_n) f(s) \| ^{\lambda} ds$

Proof: We have $Q_n u(t) - u_n(t) = \int_0^t \left[Q_n T(t-s) - S_n(t-s) P_n\right] f(s) ds.$

 $Q_n u(t) - u_n(t) = \begin{cases} t & Q_n T(t-s) - S_n(t-s) Q_n \end{bmatrix} f(s) ds + \\ 0 & S_n(t-s) [Q_n - P_n] f(s) ds \end{cases}$

Thus the theorem follows from Theorem 4.2 .

Of course, one can now go on to assume that f is approximated by functions $f^{(R)} \in V$. In this way one obtains general convergence proofs similar to Theorem 4.3 for the general case.

5. Weak Stability and the Laplace Transform

52

In the finite difference case—where the approximate solution is defined only at times

K = K A t

- one sametimes defines "weak stability" by the condition (see [19],[29])

where P is a fixed positive number. In analogy to this one might occusions in the semidiscrete case a definition of weak stability by the condition

where we remember that

n = dim X n

Unfortunately, at this time we have not seen how to effectively study condition (5.1). Thus, for our purposes it is useful to work with the resolvent conditions (2.15), (2.16b) as the basis of stability and a corresponding concept of "weak stability".

Definition 5.1: The semidiscrete method described by (2.11) is "weakly stable" if there exists a function M $_1$ (0) > 0, and two constants \bar{w} , q such that: for all λ with Re λ > \bar{w} we have $(A_n^{-\lambda}I)^{-1}$ exists as a linear map

taking
$$X_n$$
 onto X_n and
$$\| (A_n - \lambda I)^{-1} \| \le M_1 \ (Re \ \lambda) \ \| \lambda - \widetilde{\omega} \ \|^q$$

Nemark: Stability implies what stability because of the equivalent forms (2.15), (2.16).

Once one has introduced such a "Resolvent Condition" for stability or weak stability one naturally turns to the Laplace transform (see Hille-Phillips [22]) as a tool of analysis (see Strang and Fix [41], Cerutti and Parter [8] for applied examples). Unfortunately this approach seems to demend deeper results for the steady state problems. On the other hand, we are able to obtain "convergence theorems" for the time dependent problem in this weaker setting.

In particular we consider an extension of Theorem T to the case of systems, We shall scnetimes require the validity of a theorem of the following

Theorem S,N: Consider the steady state system of equations

5.3)
$$A = E_N$$
 $A = A_{m+1} + E_m$, $m = 0, 1, ..., N-1$

and the related discrete system

There is a Banach space YCX with

and

Remark: It is perhaps worth noting that the example 4 of section 3 has the following properties:

- (i) if n > 2 N then Theorem S,N is valid
- (ii) the semidiscrete method is not weakly stable.

Before proceeding with the technical details of the arguments to come, it is perhaps worthwhile to sketch our approach.

Let u(t) and $u_n(t)$ be the solution of (2.1) and (2.11) respectively. Oonsider their Laplace Transforms

$$\hat{u}(s) = \begin{cases} & = -st u(t)dt \\ & = 0 \end{cases}$$

$$\hat{u}_{n}(s) = \begin{cases} & = st u(t)dt \\ & = 0 \end{cases}$$

These functions then satisfy

5.7a)
$$s \hat{u}(s) = A\hat{u} + \hat{f}(s) + \hat{u}_0$$

5.7b)
$$s \hat{u}_n(s) = A_n \hat{u}_n + P_n \hat{f}(s) + \hat{U}_{0,n}$$
.

If we imagine s fixed then (5.7a) is a steady state problem similar to (2.4) which is solvable by virtue of the resolvent condition (2.5). Moreover, (5.7b) is a discretization of this problem based on the same subspaces

30

Applying the well known integral inversion formula [48] we have, with

$$s = \gamma + i\sigma$$

5.9a) $u(t) - u_n(t) = \frac{1}{2\pi i} \begin{cases} \gamma + i = 0 \\ e^{st} [\hat{u}(s) - \hat{u}_n(s)] ds \end{cases}$,

or
$$||u(t) - u_n(t)|| \le \frac{e^{\gamma t}}{2\pi}$$
 $|C(s)||F(n)||u(s)||^{\lambda} |ds|$

Unfortunately one must worry about a few technical details. In particular, there is the question of the convergence of the integrals in (5.9a), (5.9b). At this point it is worth noting that this question is really very different in these two cases. The integral appearing in (5.9a) is the usual integral of complex variable theory -the Cauchy limit as the interval of integration tends to •. Moreover, the term • iot enables one to employ (directly or indirectly) the Riemann-Lebesgue Lama to aid in this convergence. The integral appearing in (5.9b) is a Lebesgue integral and its absolute convergence is required.

As indicated above we require an appropriate convergence theorem for steady state problems depending on the parameter s. We shall assume that someone has proven a theorem of the following form.

let

5.10a)
$$Q_n(\gamma) u = (\gamma I - A_n)^{-1} P_n(\gamma I - A) u$$
.

That is, un = Qn (Y) u is the solution of the discrete problem

Then, there is a function M2(Y) such that

5.10b)
$$\|Q_h(y)u - u\| \le M_2(y) F(n) \|u\|^{\alpha}$$

Remark: One might consider asserting a Theorem T(s) which gives similar results when γ is replaced by a complex number, say $\gamma+i\,\sigma$. However, since most of these problems arise as problems with real coefficients it is more reasonable to restrict oneself in this way.

Finally we require one technical lerma concerning the inversion formula (5.9a).

Laplace transform

\hat{\hat{\chi}} \hat{\chi} = \text{c} \text{c}

*

=

exists for Re s > w . Let k be an integer > 0 and let y > w .

Let t> 0 be fixed and suppose that t< T

$$\begin{cases} v+i = \\ \frac{s}{k} & \left[\frac{1}{s} \right] = -80 \text{ } v(\sigma) d\sigma \end{cases} ds = 0.$$

for the Laplace transform and its inverse - see [48]. Intuitively it asserts Proof: This result is an immediate consequence of the usual formulae that the future cannot affect the present.

Remark: The growth conditions required in this lamma are easily verified in the applications to follow. For example, if v(t) satisfies an equation of the form (2.1) then the appropriate estimates follow from the representation formula (2.2) and estimates on f(s).

Our first result is a special case in which the "mild instability" is

truly very mild.

Theorem 5.1: Suppose H.1 and H.2 hold. Suppose the semi discrete method is

weakly stable with

-1 < g < 0 .

Surpose Theorem T(Y) holds, Theorem T holds, u cD(A) X and U g,n = Q n u g.

v(t) = u(t)-u0 ,

we suppose that v(t), v'(t), v (t) c [(A) X and satisfy the appropriate

growth conditions so that Lemma 5.1 applies. Then, there is a constant

K such that

$$F(n)e^{\left(\overline{u}+1\right)t}K(\max_{0\leq \sigma\leq t}\|\frac{du}{dt}\|_{X}+\max_{0\leq \sigma\leq t}$$

Proof: Let v_n = u_n - U_{n,0}; then

$$u(t) - u_n(t) = v(t) - v_n(t) + (u_0 - 0_n u_0).$$

Thus, since Theorem T holds, we need only study $v(t)-v_n(t)$. We have

$$\frac{dv}{dt} = Av + f(t) + Au_0, \quad v(0) = 0$$

$$\frac{dv_{n}}{dt} = A_{n}V_{n} + P_{n}[f(t) + Au_{0}], \quad v_{n}(0) = 0$$

Applying the Laplace transform to these equations we have

5.13a)

5.13a)
$$\hat{s}_{\hat{v}} = \hat{A} \hat{v} + \hat{g}$$
,
5.13b) $\hat{s}_{\hat{v}_n} = \hat{A}_n \hat{v}_n + \hat{P}_n \hat{g}$,

where

5.13c)
$$\hat{q}(s) = \hat{f}(s) + \frac{Au_0}{s}$$
.

Let s = y + ib where y is a fixed constant greater than u , say y = u+1.

Let W_n (b) be the solution of the discrete problem YW - An W + Pn 9 - 1 bv .

5.14) $\| \mathbf{W}_{\mathbf{n}}(\mathbf{b}) - \hat{\mathbf{v}} \| \le \mathbf{K}_{\mathbf{z}}(\mathbf{y}) \, \mathbb{P}(\mathbf{n}) \, \| \hat{\mathbf{v}}(\mathbf{s}) \, \|_{\mathbf{v}}$ we obtain from Theorem T(y) the estimate y v = Av + [g-ibv] , Since we also have

$$s(M_n - \hat{v}_n) = A_n(M_n - \hat{v}_n) + P_n [ib(M_n - \hat{v})].$$

Applying (2.6) and (5.2) we have

5.15)
$$\| \mathbf{w}_n(\mathbf{b}) - \hat{\mathbf{v}}_n(\mathbf{s}) \| \leq \mathbf{M}_1(\mathbf{v}) \| \mathbf{w}_0(\mathbf{b}) \| \| \mathbf{w}_n(\mathbf{b}) - \hat{\mathbf{v}} \| \| \| \mathbf{s} - \hat{\mathbf{w}} \| \| \mathbf{g} - \hat{\mathbf{g}} \| \| \mathbf{g} - \hat{\mathbf{g} \| \| \mathbf{g} - \hat{\mathbf{g} - \hat{\mathbf{g}} \| \| \mathbf{g} - \hat{\mathbf{g}} \| \| \mathbf{g} - \hat{\mathbf{g}$$

Using (5.14), (5.15) and the triangle inequality we have

5.16)
$$\|\hat{\mathbf{v}}(\mathbf{s}) - \hat{\mathbf{v}}_{\mathbf{n}}(\mathbf{s})\| \le \left[1 + \frac{M_1(\gamma)M_0|\mathbf{b}|}{(1+|\mathbf{b}|^2)^{-Q/2}} \right] \|\hat{\mathbf{v}}(\mathbf{s})\|_{\lambda} \mathbf{F}(\mathbf{n}) M_2(\gamma) .$$

Since v(0) = 0 we obtain

Since
$$v(0) = 0$$
 we obtain $\hat{v}(s) = \frac{1}{s^2} \frac{dv}{dt} (0) + \frac{1}{s^2} \int_0^\infty e^{-st} \left[\frac{d}{dt} \right]^2 v(t) dt$.

Let
$$V = -g/2 > 0$$
 and let
$$X = \frac{M_2(\gamma)}{2\pi} \int_0^{\infty} \left[-\frac{M_2(\gamma) |\sigma|}{(1+\sigma^2)^{\sqrt{1+\sigma^2}}} \right] \frac{d\sigma}{1+\sigma^2}.$$

Then, applying lemma 5.1 and (5.9b) we have

$$3v(t) - v_n(t) \| \le x e^{(\bar{\omega}+1)t} \| \frac{dv}{dt} (0) \|^{\infty} + \max_{0 \le \sigma \le 1} \| \frac{d^2}{dt^2} v(\sigma) \|^{\infty} \| P(n) .$$

Thus, the theorem follows from the observation that time derivatives of u(t) are the same as time derivatives of v(t).

Theorem 4.1. If $f(t) \equiv 0$ the estimate (4.3b) depends only on $\| \ u(t) \|_{\tau_{\nu}}$ Nemark: The error estimate (5.12) should be compared with (4.3b) of and $\|\frac{du}{dt}\|_{\infty}$ while (5.12) also includes a term $\|\frac{d^2u}{dt^2}\|_{\infty}$.

stability (as opposed to stability) but is rather due to the Laplace transform unless T(t) is itself a holomorphic semigroup. This would occur if (2.1) holomorphic samigroup stability." Such an estimate should not be expected were a parabolic problem. In fact, it is this estimate that was exploited approach-see the remarks following (5.9a), (5.9b). However, the resolvent estimate with -1< q < 0 is a very strong estimate - a sort of "weak This last term is (apparently) not introduced because of the weak by Cerutti and Parter [8].

results and the result above. The stability assumption of section 4 allows we are definitely limited to a restricted choice of U_{0,n} . This aspect of the theory will be very clearly emphasized in the more general result which choice of $U_{0,n} = Q_n u_0$, there is a significant difference between those for an immediate result for any U0,n close to u0. In the Theorem above Remark: While the results of section 4 also seem to be based on the

Definition 5.2: Suppose Theorem S,N holds. Suppose

0) $\phi_j = \frac{d^2 u}{d\epsilon^2}$ (0) $\epsilon D(A) \cap \tilde{X} \cap Y$, $j = 0, 1, \dots N$.

-

5.19)
$$A = A + M = f_N$$

$$A = A + 1 - (\frac{d}{dt})^m f(0), m = 0, 1, ... N-1$$

Let $\phi_j(n)$, j=0,1, ... N be the solution of the corresponding

discrete system

5.20)
$$\begin{cases} A_n \phi_N(n) = P_n f_N , \\ A_n \phi_M(n) = \phi_n(n) - P_n \left[\left(\frac{d}{dt} \right)^m f(0) \right] , m=0,1,... N-1. \end{cases}$$

Then we let Q_n be the operator which maps $u \to \phi_0(n)$, i.e.

Theorem 5.2: Suppose H.1 and H.2 hold. Suppose the sendiscrete

method is weakly stable with q > 0. Suppose Theorem T(Y)

holds and Theorem S,N Holds with

22) N > q + 1

Suppose (5.18) holds and

3) $U_{0,n} = Q_n u = \phi_0(n)$.

Suppose

i.24a)
$$\phi_j = \frac{d^3u}{dt^3}$$
 (0) ϵ D(A) $\cap X \cap Y$, $j = 0, 1, ... N$

ind

i.24b)

ind satisfies the necessary growth conditions so that lemma 5.1

hen, there is a constant K so that

i.25)
$$\begin{cases} \|u(t) - u_n(t)\| \le K e^{(\overline{\omega}+1)t} \max_{0 \le 0 \le t} \|(\frac{d}{dt})^{N+1} u(0)\| \sim F(n) \\ 1 + C_2 F(n) \sum_{j=0}^{N} \|\phi_j\|_{X} \frac{t^{\frac{j}{2}}}{2^{j}}, \end{cases}$$

roof: Let

i.26a)
$$v(t) = u(t) - \frac{N}{3=0} + \frac{t^{\frac{1}{3}}}{3!}$$

5.26b)
$$v_n(t) = u_n(t) - \sum_{j=0}^{N} e_j(n) \frac{t^j}{j!}$$

Then a direct calculation shows that

5.27a)
$$\frac{dv}{dt} = Av + t^N \psi(t)$$
, $(\frac{d}{dt})^3 v(0) = 0$, j=0, 1, ... N

5.27b)
$$\frac{dv_n}{dt} = A_n v_n + P_n(t^N \psi(t)), (\frac{d}{dt})^3 v_n(0) = 0, j = 0, 1, ... N$$

where $\phi(t)$ is determined from the Taylor series expansion of f(t) and u(t) and $\lambda\phi_N$.

Since Theorem S,N holds we have

5.28)
$$\begin{cases} \|u(t) - u_n(t)\| \le \|v(t) - v_n(t)\| + \frac{N}{1 = 0} + \frac{1}{j!} \|\phi_j(n) - \phi_j\| \\ \le \|v(t) - v_n(t)\| + C_2 P(n) \sum_{j=0}^{N} \|\phi_j\| + \frac{t^j}{2} \end{cases}$$

Therefore we need only study | v-v_n | . Taking the Laplace

transform of (5.27a), (5.27b) we have

where $G(t) = t^N \psi(t)$. Let $s = \gamma + ib$ with $\gamma = \overline{u} + 1$. Let $W_n(b)$ be the solution of

Then, as in the proof of Theorem 5.1, we obtain $\|W_n\left(b\right)-\hat{v}\left(s\right)\|\leq M_2(\gamma)\;F(n)\;\|\hat{v}\left(s\right)\|\sim X$

Moreove

$$s(w_n - \hat{v}_n) = A_n(W_n - \hat{v}_n) + P_n[ib(W_n - \hat{v})]$$

and therefore

$$\|\, \mathbf{W}_{n}(\mathbf{b}) \, - \, \hat{\mathbf{v}}_{n}(\mathbf{s}) \| \, \leq \, \mathbf{M}_{1}(\gamma) \, \mathbf{M}_{0} \, \| \mathbf{b} \| \, \| \mathbf{W}_{n}(\mathbf{b}) - \, \hat{\mathbf{v}}(\mathbf{s}) \, \| \, \| \mathbf{s} - \, \overline{\omega} \|^{q},$$

This gives the eatimate

$$\parallel \hat{\mathbf{v}} \left(\mathbf{s} \right) = \hat{\mathbf{v}}_{\mathbf{n}} \left(\mathbf{s} \right) \parallel \leq \left[1 + \mathsf{M}_{\mathbf{1}} (\gamma) \mathsf{M}_{\mathbf{0}} \big| \mathbf{b} \big| \left(1 + \big| \mathbf{b} \big| \right)^{\mathbf{q}} \right] \parallel \hat{\mathbf{v}} \left(\mathbf{s} \right) \parallel_{\mathcal{V}}.$$

The conditions on v(t) imply that

$$\hat{V}(s) = \frac{1}{s^{N+1}} \begin{cases} = e^{-st} \left[\left(\frac{d}{dt} \right)^{N+1} v(t) \right] dt \end{cases}.$$

Let

5.30)
$$K = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[[1 + M_1(\gamma) M_0 |b| (1 + |b|)^q] - \frac{db}{(1 + |b|^2)^{(3+1)/2}} \right]$$

en we have

5.31)
$$\| v(t) - v_n(t) \| \le Ke^{(\overline{\omega}+1)t} \max_{0 \le \sigma \le t} \| (\frac{d}{dt})^{N+1} v(\sigma) \| v_n(\sigma) \|$$

which proves the Theorem.

Remark: Perhaps it seems very artificial to suggest such special initial values. However, such choices have already appeared in the literature. For example, in Cerutti and Parter [8] just this choice was made in order to assure the "superconvergence" at the knots. Working on the same problem Dupont and Douglas [15]

employed an even more complicated algorith to obtain an appropriate initial value. See [14],[32] also.

In the general case where the semidiscrete method is only weakly stable one would not expect an analog of Theorem 2.1.

Indeed, in [29] Kreiss gave an example that shows that in his theory such a result is impossible. However, when (5.11) holds, i.e. when we have "weak holomorphic semigroup stability," we may have such a result.

Theorem 5.3: Suppose the semigroups $S_n(t)$ satisfy (5.2) with -1 < q < 0. Let B_n be a family of linear operators satisfying (2.18a), (2.18b). Suppose also that $M_1(\sigma)$ "grows slowly," In particular, suppose there are real constants, $\gamma > \bar{\omega}$, ρ , with $0 < \rho < 1$ such that: if

5.32a) Re \ > 7

then

5.32b) M1 (Re A) | A - 7 | 9 B < p .

Then we have the modified resolvent estimate: For all A with

Re A > 7 we have

5.33) $\|(A_n + B_n - \lambda I)^{-1}\| \le \left[\frac{M_1(Re \lambda)}{1 - \rho}\right] |\lambda - \overline{\gamma}|^{q}$.

Proof: Consider the system

(An+Bn - AI) u = f.

Then, if Re \ > 7 ,

 $u = (A_n - \lambda I)^{-1} [f - B_n u]$.

Using (5.2) and (5.32b) we have

If $u\| < M_1$ (Re λ) $|\lambda - \overline{\omega}|^q$ if $\| + \rho \| u \|$.

Since a < Y and q < 0, we have

and (5.33) follows at once.

REFERENCES

- 1. D. G. Aronson, On the Obrrechess of Partial Differential Operators and the von Neumann Condition, Proc. Amer. Nath. Soc. 14, 948-955 (1963).
- G. A. Baker, J. H. Bramble, V. Tronés, Single Step Calertin Approximations for Parabolic Problems: To appear.
- R. Beals: Laplace Transform Methods for Evolution Equations in Boundary Value Problems for Linear Evolution Equations, Ed. Garnir, 1-26, D. Reidel Publishing Co., Dordrecht-Pollard (1977).
- R. Bellman, Stability Theory of Differential Equations, McGraw-Hill, New York (1953).
- 5. C. de Boor and B. K. Swartz, Collocation at Gaussian Points, SIAM J. NAME. Anal. 10, 582-606 (1973).
- J. H. Bramble and V. Thomée, Discrete time Galerkin Methods for a Parabolic Boundary Value Problem, Nov. Mat. Pura Appl. 101, 115-152 (1974).
 - J. H. Bramble, A. H. Schatz, V. Thomfe and L. B. Pahlbin, Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic Equations, SIAN. Jour. Namer. Anal. 14, 218-241 (1977).
- 8. J. H. Cerutti And S. V. Parter, Collocation Methods for Parabolic Partial Differential Equations in One Space Dimension, Maner. Math. 26, 227-254 (1976).
- R. Courant, K. Friedrichs, and H. Lewy, "ther die Partiellen Differenzengleichungen der Mathematischen Physik, Math. Ann. 100, 32-74 (1928).
- Michel Crouzeix, Sur l'approximation des equations differentielles operationnelles lineaires par des methodes de RUNCE-KUTTA, Theses - A L' Universite Paris VI (1975).
- J. Douglas Jr., On the Relation Between Stability and Convergence in the Numerical Solution of Linear Parabolic and Hyperbolic Differential Equations, J. Soc. Int. Appl. Math. 4, 20-37 (1956).
- 12. J. Douglas Jr., On the Numerical Integration of un + uy = ut by Implicit Methods, J. 80c. Ind. Appl. Math., J. 42-65 (1955).
- 13. J. Douglas Jr. and T. Dupont, Galerkin Wethods for Parabolic Equations, SIMM J. Num. Anal. 7, 575-626 (1970).
- 14. J. Douglas Jr. and T. Depont, A Quasi Projection Analysis of Galerkin Methods for Parabolic and Hyperbolic Dyustions: To appear.

- J. Douglas and T. Dupont, Collocation Methods for Parabolic Equations in a Single Space Variable Based on Cl - Piecewise Polynomial Spaces, Lecture Notes in Mathematics 385, New York: Springer 1974.
- H. Pujita and A. Mizutani, On the Finite Element Method for Parabolic Equations, 1; Approximation of Holomorphic Semigroups, <u>J. Math. Soc.</u> <u>Japan</u>, <u>28</u>, 749-771 (1976).
- 17. G. Fix Effect of Quadrature Errors in Finite Element Approximations of Staady State, Eigenvalues, and Parabolic Problems. Proc. of the O.N.R. Regional Symposium 1972 on the Mathematical Foundations of the Finite Element Method with Applications to Parital Differential Equations. Academic Press, New York, 1972.
- G. Fix and N. Nassif, On Finite Element Approximations to Time Dependent Problems, Maret. Math. 19, 127-135 (1972).
- 19. G. E. Forsythe and W. R. Wasow, Finite-Difference Methods for Partial Differential Equations, John Wiley & Sons, New York, 1960.
- Max. D. Gunzburger, On the Stability of Galerkin Methods for Initial— Boundary Value Problems for Hyperbolic Systems, Report No. 76-3, Institute for Computer Applications in Science and Engineering (1976).
- H. P. Helfrich, Fehlerabschatzungen fur das Galerkinverfahren zur Losung von Evolutionsgleichungen, Manuscripta Math. 13, 219-235 (1974).
- 22. E. Hille and R. S. Phillips, Functional Analysis and Sanigroups, Amer. Math. Soc. Coll. Publ. Vol. 31, Providence, R. I. (1957).
- F. John, On Integration of Parabolic Equations by Difference Methods, Comm. Pure Appl. Math. 5, 155-211 (1952).
- M. L. Juncosa and D. M. Young, On the Order of Convergence of Solutions of a Difference Equation to a Solution of the Diffusion Equation, <u>J. 800.</u>
 Ind. Appl. Math. 1, 111-135 (1953).
- M. L. Juncosa and David Young, On the Convergence of a Solution of a Difference Equation to a Solution of the Equation of Diffusion, Proc. Amer. Math. Soc. 5, 168-174 (1954).
- M. L. Jurcosa and David Young, On the Crark-Nicolson Procedure for Solving Parabolic Partial Differential Equations, Proc. Cerbridge Philos. Soc. 53, 448-461 (1955).
- H. O. Kreiss, Uber die Losung des Cauchyproblems fur lineare partielle Differentialgleichungen mit Hilfe von Differenzengleichungen, Acta, Math. 101, 179-199 (1959).

\$

 M. O. Kreiss, Uber die Stabilitatsdefinition fur Differenzengleichungen die partielle Differentialgleichungen approximieren, Nordisk, Tidskr. Informationsbehandling (BIT) 2, 153-181 (1962).

30. P. D. Lax and R. D. Richtmyer, Survey of the Stability of Linear Finite Difference Brustions, Corm. Pure Appl. Math. 9, 267-293 (1956).

 W. Leutert, On the Convergence of Unstable Approximate Solutions of the Heat Equation to the Exact Solution, J. Math. Physics, 39, 245-251 (1952).

 W. Leutert, On the Convergence of Approximate Solutions of the Heat Equation to the Exact Solution, Proc. Amer. Math. Soc. 2, 433-439 (1951).

33. N. K. Madsen and R. F. Sincovec, The Numerical Method of Lines for the Solution of Nonlinear Partial Differential Equations, Computational Methods in Nonlinear Nachanics, edited by J. T. Oden et al., Texas Institute for Computational Mechanics, Austin, Texas (1974).

34. G. G. O'Brien, M. A. Hyman, and S. Kaplan, A Study of the Numerical Solution of Partial Differential Equations, J. Math. and Physics 29, 223-251 (1951).

 A. Pazy, Sengroups of Linear Operators and Applications to Partial Differential Equations, Lecture Note #10, University of Maryland, College Park, Maryland (1974). 36. H. S. Price and R. S. Varga, Error Bounds for Semidiscrete Galerkin Approximations of Parabolic Problems with Application to Petroleum Preservoir Mechanics, Namerical Solution of Field Problems in Continuum Physics, 74-94, SIAM-WAS Proc. Vol. II, American Math. Soc. Providence, R.I., (1970).

37. P. A. Raviart, The Use of Numerical Integration in Finite Element Methods for Solving Parabolic Equations, Onference on Numerical Arelysis, Royal Irish Academy, Dublin, August, 1972. Academic Press, New York, 1973.

38. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems, second ed., Interscience, New York (1967).

 V. S. Ryabenkii and A. F. Filippow, Uber die Stabilitat von Differenzengleichungen. <u>Deutscher Verlag der Wissenschaften</u>, Berlin, 1960.

 W. G. Strang, Difference Methods for Mixed Boundary-value Problems, Duke Math. Journal 27, 221-232 (1960). 41. G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, New Jersey (1973).

- 42. B. Swartz and B. Wendroff, Generalized Finite-Difference Schemes, Math. Comp. 23, 37-50 (1969).
- 43. H. P. Trotter, Approximation of Semi-Groupe of Operators, Pacific J. Math. 8, 887-919 (1958).
- 44. B. Wendroff, Well-Posed Problems and Stable Difference Operators, SIRM J. Maner. ANAL. 5, 71-82 (1968).
- M. F. Wheeler, A Priori I., Error Estimates for Calerkin Approximations to Parabolic Partial Differential Equations, SIPM J. Namer. Appl. 10, 723-759 (1973).
- M. F. Wweeler, A C Collocation-Finite Element Nethod for Two-Point Boundary Problems and One Space Dimensional Parabolic Problems, SIMI Jour. on Numer. Anal., 14, 71-90 (1977).
- 47. V. Thomee, Some Convergence Results for Calenkin Methods for Parabolic Boundary Value Problems, Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor, ed., Academic Press, New York, 55-58 (1974).
- 48. D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, New Jersey 1946.
- 49. K. Yosida, Functional Avalysis, Springer-Verlag, Berlin (1965)
- M. 21ámal, Finite Element Multistep Methods for Parabolic Equations ISMN. 28 Birkhauser Verlag, Basel and Stuttgart, 177-187 (1975).
- M. 21dmal, Finite Element Multistep Discretizations of Parabolic Boundary Value Problems, Math. Octp. 29, 350-359 (1975).