Prova di Comunicazioni Numeriche

25 Febbraio 2019

Es. 1 - La variabile aleatoria (v.a.) X ha una densita' di probabilita' esponenziale $f_X(x) = \lambda e^{-\lambda x} u(x)$. Tale v.a. viene sommata ad un'altra v.a. Y uniformemente distribuita nell'intervallo [0,1], indipendente da X. Sia Z = X + Y la nuova variabile aleatoria ottenuta. Si chiede di calcolare:

- 1. il valore medio di Z
- 2. la densita' di probabilita' della v.a. Z
- 3. la probabilita' che risulti $Z \geq 1$.

Es. 2 - Si consideri un sistema di comunicazione numerico PAM in banda passante con ricevitore come in Fig. 1. Il segnale trasmesso è $s(t) = \sum_k x[k] p(t-kT) \cdot cos\left(2\pi f_0 t + \frac{\pi}{3}\right)$, dove i simboli $x[k] \in A_s = \{-1,2\}$ sono indipendenti ed equiprobabili. L'impulso sagomatore è $p(t) = 4Bsinc^2(2Bt) - Bsinc^2(Bt)$, $f_0 \gg B$, $T = \frac{1}{B}$. Il canale di propagazione è ideale, quindi $c(t) = \delta(t)$ e il rumore in ingresso al ricevitore e' Gaussiano e bianco in banda. Il filtro in ricezione $h_R(t)$ è un filtro passa basso ideale di banda 2B. La soglia di decisione è $\lambda = 0$. Calcolare quindi:

- 1) L'energia media per simbolo trasmesso, E_s
- 2) Calcolare la potenza di rumore in uscita al filtro in ricezione, P_{n_u}
- 3) Calcolare la probabilità di errore sul bit, $P_E(b)$, in funzione di ϑ
- 4) Determinare il valore di ϑ secondo il quale si ha la minima $P_E(b)$.

Fig. 1