

Department of Electronics & Communication Engineering

Doto	USN 1 R V	E C			200
	e: 19-03-24 Test- 3	Maximum Marks: 50		,	
seme		Ouration : $1\frac{1}{2}$ Hrs			
Cour	rse :Principal of Communication and Signal Processing	Course Code :21EC52			СО
Sl. No.	Questions		M	BT	CO
la.	Determine the system function H(z) of the lowest order Chebyshev filter that meets		6	3	1
	the following specifications: i. Use bilinear Transformation		-	2.0	
	ii. 3dB ripple in the passband $0 \le w \le 0.3\pi$		27 g	,	
	iii. At least 20dB attenuation in the stopband $0.6 \pi \le w \le \pi$		100		
1b	What is frequency warping effect in digital IIR filter?	quency warping effect in digital IIR filter?		2	1
2a	Convert the analog filter with system function		5	3	2
	$H(s) = \frac{(s+0.1)}{(s+0.1)^2+9}$, ,		=_	
		.1 Classic to house o			
	into a digital IIR filter using bilinear transformation. The digital	al filter is to have a		- 3	
2b	resonant frequency of $w_r = \pi/4$. i. Realize an FIR filter with impulse response $h(n)$ given by	av.	5	2	2
20	h(n) =0.5 ⁿ [u(n) – u(n-4)] using direct form.	Jy	٠,	-	_
	ii. Draw the Cascade form of structure for an FIR filt	ter given by following			
	equation $H(z) = [1+0.5*z^{-1} + z^{-2}] [1+0.25z^{-1}]$	1	. 1		
3.	An IIR digital low pass filter is required to meet the following specifications:		10	3	1
٥.	Passband ripple < 3.01 dB Passband edge frequency: 500 Hz				.*
	Stopband attenuation ≥ 15 dB Stopband edge fre	equency: 750 Hz			1 2
	The filter is to be designed by performing bilinear transform	rmation on an analog		1 /	2. 1
	system function, use Butterworth prototype. Also plot the	complete magnitude	Sales of the	124 30	11527
	frequency response and obtain the difference equation. Sample rate: 2 KHz				
4	A low pass filter has the desired frequency response	•	10	3	1
	$H_d(w) = \begin{cases} e^{-j3w} & 0 \le w \le \frac{\pi}{2} \\ 0 & \frac{\pi}{2} \le w \le \pi \end{cases}$				植
	$H_d(w) = \left\{ \begin{array}{c} \pi \end{array} \right.$. 7		1
	$\left(0 \qquad \frac{1}{2} \le w \le \tau\right)$	τ	1.0		1
	Determine h(n) based on frequency sampling technique. N=7				
5a	A low pass filter is designed to obtain the following frequency	y response:	7	3	4.1
Ja	$H_d(w) = \begin{cases} e^{-j3w} & w \le \frac{3\pi}{4} \\ 0 & \frac{3\pi}{4} \le w \le \end{cases}$			1	7
	$ W \leq \frac{1}{4}$		1 18		or a
	$ \frac{n_d(w)}{n_d(w)} = \frac{3\pi}{2} < \ln \frac{1}{2} < \frac{1}{2} $	π		S.	
	$\left(0 \frac{1}{4} \leq w \leq 1\right)$			F)	
	Calculate the filter coefficient h _d (n) and determine the frequen	ncy response of the	18.	1	
	City : f homming window IS IISEd.		4	P. L	1
<u></u>	Compare the performance of Butterworth filter and Chebysi	hev filter. Mention the	3	2	1
5b	analization in which they are preferred choice.			1	
	BT-Blooms Taxonomy, CO-Course O	Outcomes, M-Marks			

CO2

10

CO1

40

Particulars

Test

Max

Marks

CO3

CO4

Ll

L2

12

L3

38

L4

Rashtreeya Sikshana Samithi Trust

Marks

Distribution

Go, change the world

L5

L6