Prof. Dr. Michael Jäger FB MNI

Lösungsvorschlag zum Aufgabenblatt 7

Aufgabe 1 (2+4+2+3)

Punkte	von 1

a) Was ist ein Compiler?

Ein Programm, dass einen Quelltext aus einer höheren Programmiersprache in Maschinen- oder Assemblercode übersetzt.

- b) Erläutern Sie an einem Beispiel aus der im Praktikum benutzten Programmiersprache SPL die nachfolgenden Begriffe.
 - Typdefinition
 - Typbezeichner
 - Typausdruck
 - Typ
 - Ein Typ ist ein Sprachkonzept einer typisierten Programmiersprache, das eine Menge von Werten, deren interne Repräsentation im Speicher und die darauf verfügbaren Operationen festlegt.
 - Eine Typdefinition definiert einen neuen Typbezeichner und ordnet ihm einen Typausdruck zu. Beispiel:

```
type paar = array [2] of int;
```

- Der Typbezeichner ist paar
- Der Typausdruck ist array [2] of int
- c) Betrachten Sie den nachfolgenden Ausdruck mit den binären Operatoren o und x:

Wenn \circ rechtsassoziativ und \times linksassoziativ ist und \circ die höhere Präzedenz hat, wie sieht dann ein äquivalenter vollständig geklammerter Ausdruck aus? Ergänzen Sie oben die Klammern, so dass die Zuordnung der Operanden zu den Operatoren klar ersichtlich wird.

$$(((a \circ b) \times c) \times (d \circ (e \circ f))) \times g$$

d) Was ist eine kontextfreie Grammatik? Geben Sie eine exakte Definition an.

siehe Skript

Aufgabe 2 (3+3+3 Punkte)

- a) Vereinfachen Sie den regulären Ausdruck $(a \mid \varepsilon)^+bc \mid (aab)c \mid bc \mid bcbc$ $(a^* \mid bc)bc$
- b) Betrachten Sie den regulären Ausdruck $r=b\mid ba\mid baa\mid (a\mid b)(a\mid \varepsilon)$ und den durch das nachfolgende Zustandsübergangsdiagramm definierten NEA A

Beweisen Sie, dass r und A nicht äquivalent sind.

r und A sind äquivalent, g.d.w. L(r) = L(A)

A akzeptiert das Wort aaa mit der Berechnung $1 \stackrel{a}{\Rightarrow} 2 \stackrel{a}{\Rightarrow} 3 \stackrel{a}{\Rightarrow} 4$, so dass $aaa \in L(A)$

Wie man leicht sieht, passt aaa aber zu keiner der 4 Varianten von r, so dass $aaa \notin L(r)$

c) Geben Sie zu dem regulären Ausdruck $r=(ab\mid cd\mid \varepsilon)(aa\mid ab)^*$ einen äquivalenten endlichen Automaten an. Die volle Punktzahl gibt es nur für einen deterministischen Automaten, Nichtdeterminismus führt zur Abwertung.

Punkte von 16

Aufgabe 3 (3+3+3+2+3+2 Punkte)

Gegeben sei folgende kontextfreie Grammatik G

$$\begin{split} S &\to ABC \\ A &\to aaA \mid Ae \mid \varepsilon \\ B &\to bbBc \mid A \\ C &\to cC \mid d \end{split}$$

- a) Geben Sie drei Wörter aus L(G) mit jeweils maximal 2 Zeichen an: d, cd, ed
- b) Geben Sie eine Rechtsableitung und den Ableitungsbaum zu aaebbccd an.

Rechtsableitung:

 $S\Rightarrow ABC\Rightarrow ABcC\Rightarrow ABcd\Rightarrow AbbBccd\Rightarrow AbbAccd\Rightarrow aaAbbccd\Rightarrow aaAebbccd\Rightarrow aaebbccd$ Ableitungsbaum:

c) Beweisen Sie, dass die Grammatik mehrdeutig ist.

G ist mehrdeutig, g.d.w. es für ein Wort $w \in L(G)$ zwei verschiedene Rechtsableitungen gibt. Für ed gibt es zwei Rechtsableitungen:

$$S \Rightarrow ABC \Rightarrow ABd \Rightarrow AAd \Rightarrow AAed \Rightarrow Aed \Rightarrow ed$$

 $S \Rightarrow ABC \Rightarrow ABd \Rightarrow AAd \Rightarrow Ad \Rightarrow Aed \Rightarrow ed$

- d) Bestimmen Sie FIRST(S): $\{a, e, b, c, d\}$
- e) Bestimmen Sie FOLLOW(A): $\{e, b, a, c, d\}$
- f) Was steht in der LL(1)-Parsertabelle in dem Eintrag zu A und e ? $A \rightarrow \varepsilon, A \rightarrow Ae$

Aufgabe 4 (6+4+4 Punkte)

- Punkte von 14
- a) Bestimmen Sie zur nachfolgenden Grammatik die LR(0)-Elemente und die Übergänge im zugehörigen DEA.
- b) Geben Sie die SLR(1)-Parsertabelle dazu an.
- c) Geben Sie die Berechnung des SLR(1)-Parsers für die Eingabe *aba* an. Falls die Tabelle Shift/Reduce-Konflikte enthält, soll der Parser dabei immer die SHIFT-Aktion wählen.
- $\begin{array}{ll} \text{(1) } S \rightarrow aBS \\ \text{(2) } S \rightarrow a \\ \text{(3) } B \rightarrow bB \\ \text{(4) } B \rightarrow \varepsilon \end{array} \qquad \begin{array}{ll} \text{(0) } S' \rightarrow S\$ \\ \text{(1) } S \rightarrow aBS \\ \text{(2) } S \rightarrow a \\ \text{(3) } B \rightarrow bB \\ \text{(4) } B \rightarrow \varepsilon \end{array}$

Lösung zu a und b (mit JFLAP berechnet)

Lösung zu c:

Nr.	Stack	Resteingabe	Aktion
1	0	aba	s2
2	0a2	ba	s4
3	0a2b4	a	r4
4	0a2b4B6	a	r3
5	0a2B3	a	s2
6	0a2B3a2		r2
7	0a2B3S5		r1
8	0S1		accept

Aufgabe 5 (3 + 7 Punkte)

- a) Bestimmen Sie zur SPL-Prozedur p das Frame-Layout für den Aktivierungsrahmen: Bestandteile in der richtigen Reihenfolge mit Offsets zum Framepointer und Größen in Bytes
- b) Bestimmen Sie den ECO32-Assemblercode zu p. Die Prozedur *printi* erwartet einen Wertparameter vom Typ int. (SP=\$29, FP=\$25, RET=\$31, verfügbare Register: \$8-\$15).

```
proc p (i:int, ref j:int) {
  var k: array[2] of int;
  k[1] := i+j;
  printi(j);
}
```

Frame-Layout

Puck-Assemblercode:

ECO32-Assemblercode:

```
        Adresse
        Größe
        Inhalt

        FP-8
        8
        k

        FP-12
        4
        FP alt

        FP-16
        4
        RETURN alt

        FP-20
        4
        Arg.1 für printi
```

```
SUBC $31 $31 20
ADDC $8 $31 8
STW $29 $8
ADDC $29 $31 20
ADDC $8 $29 -16
STW $30 $8
ADDC $8 $29 -8
SETW $9 1
SETW $10 2
LTU $10 $9 $10
BRF $10 indexError
SETW $10 4
MULU $9 $9 $10
ADD $8 $8 $9
ADDC $9 $29 0
LDW $9 $9
ADDC $10 $29 4
LDW $10 $10
LDW $10 $10
ADD $9 $9 $10
STW $9 $8
ADDC $8 $29 4
LDW $8 $8
LDW $8 $8
ADDC $9 $31 0
STW $8 $9
CALL $30 printi
ADDC $8 $29 -16
LDW $30 $8
ADDC $8 $31 8
LDW $29 $8
ADDC $31 $31 20
JMPR $30
```

```
.export p
p:
         $29,$29,20
   sub
                       ; allocate frame
         $25,$29,8
   stw
                       ; save old frame pointer
   add
         $25,$29,20
                       ; setup new frame pointer
   stw
         $31,$25,-16
                       ; save return register
   add
         $8,$25,-8
         $9,$0,1
   add
   add
         $10,$0,2
   bgeu
         $9,$10,_indexError
   mul
         $9,$9,4
   add
         $8,$8,$9
         $9,$25,0
   add
   ldw
         $9,$9,0
   add
         $10,$25,4
   ldw
         $10,$10,0
  ldw
         $10,$10,0
   add
         $9,$9,$10
         $9,$8,0
   stw
   add
         $8,$25,4
   ldw
         $8,$8,0
   ldw
         $8,$8,0
   stw
         $8,$29,0
                       ; store arg #0
   jal
         printi
   ldw
         $31,$25,-16
                       ; restore return register
   ldw
         $25,$29,8
                       ; restore old frame pointer
   add
         $29,$29,20
                       ; release frame
   jr
         $31
                       ; return
```