Curso: Engenharia Civil

DISCIPLINA: Estruturas de Concreto Armado I

Victor Machado da Silva, MSc victor.silva@ibmec.edu.br

Dimensionamento à flexão

Introdução

O cálculo da armadura necessária para resistir a um momento fletor é um dos pontos mais importantes no detalhamento das peças de concreto armado.

O dimensionamento é feito no estado limite último de ruína, impondo que na seção mais solicitada sejam alcançadas as deformações específicas limites dos materiais, ou seja, o estado limite último pode ocorrer tanto pela ruptura do concreto comprimido quanto pela deformação excessiva da armadura tracionada.

O momento fletor que a seção é capaz de resistir nesta situação é γ vezes maior que aquele que poderá vir realmente a atuar, onde γ é o fator de ponderação do carregamento utilizado conforme a NBR8681.

O estudo das seções de concreto armado tem por objetivo comprovar que, sob solicitações de cálculo, a peça não supera os estados limites, supondo que o concreto e o aço tenham, como resistências reais, as resistências características minoradas.

Introdução

A versão de 2014 da ABNT considera concretos com classe de C50 a C90, os quais têm características bem distintas dos que pertencem às classes de C20 até C50. Isso gerou expressões mais gerais e complexas.

No caso da flexão simples, pouca alteração e vantagem houve ao emprega-las para as classes de C50 a C90.

Como o objetivo do curso é discutir sobre edificações usuais, serão mantidas em separado as expressões para os concretos até C90 para facilidade de uso e entendimento.

Tipos de flexão

O momento fletor causa flexão nos elementos estruturais, e nas seções transversais desses elementos surgem tensões normais (perpendiculares à seção).

Há diversos tipos de flexão, e é preciso identificar cada um deles para que seja possível calcular esses elementos:

- Flexão normal (simples ou composta): quando o plano do carregamento ou da sua resultante é perpendicular à linha neutra, ou seja, quando o plano contém um dos eixos principais de inércia da seção;
- Flexão oblíqua (simples ou composta): quando o plano de carregamento não é normal à linha neutra;
- Flexão simples: quando não há esforço normal atuando na seção (N=0), a flexão simples pode ser normal ou oblíqua;

Tipos de flexão

- Flexão composta: quando há esforço normal (de tração ou de compressão) atuando na seção ($N \neq 0$), com ou sem esforço cortante;
- Flexão pura: caso particular da flexão (simples ou composta) em que não há esforço cortante atuante (V=0); nas regiões da viga em que isso ocorre, o momento fletor é constante;
- Flexão não pura: quando há esforço cortante atuando na seção.

Normalmente, valoriza-se muito o cálculo da quantidade de armadura longitudinal necessária e, por ser um procedimento apenas numérico, sua aplicação está bastante desenvolvida. Entretanto, é preciso chamar a atenção para o fato de que o entendimento dos princípios do mecanismo de colapso é fundamental para um detalhamento da armadura que permita uma boa execução, um bom funcionamento e, consequentemente, uma maior durabilidade da estrutura.

Seja uma viga de concreto armado simplesmente apoiada, sujeita a um carregamento crescente que causa flexão pura na região central.

A viga é submetida a um momento fletor *M* crescente, que varia de zero até um valor que a leve ao colapso.

Experimentalmente, submetendo a peça a um carregamento crescente, é possível medir as deformações (distâncias A_i e B_i antes e depois de cada parcela de carga) que ocorrem em sua zona central, ao longo da sua altura. Admite-se que a seção permaneça plana durante o processo de deformação.

A seção transversal central da viga de concreto armado, retangular nesse caso, submetida ao momento fletor *M* crescente, passa por três níveis de deformação, denominados de **estádios**, que determinam o comportamento da peça até sua ruína.

Estádio I (estado elástico): sob a ação de um momento fletor M_I de pequena intensidade, a tensão de tração no concreto não ultrapassa sua resistência característica à tração (f_{tk}):

- O diagrama de tensão normal ao longo da seção é linear;
- As tensões nas fibras mais comprimidas são proporcionais às deformações, correspondendo ao trecho linear do diagrama tensão-deformação do concreto;
- Não há fissuras visíveis.

Estádio II (estado de fissuração): aumentado o valor do momento fletor para M_{II} , as tensões de tração na maioria dos pontos abaixo da linha neutra (LN) terão valores superiores ao da resistência característica do concreto à tração (f_{tk}):

- Considera-se que apenas o aço passa a resistir aos esforços de tração;
- Admite-se que a tensão de compressão no concreto continue linear;
- As fissuras de tração na flexão no concreto são visíveis.

Estádio III: aumenta-se o momento fletor até um valor próximo ao de ruína (M_u) , e, para os concretos até C50:

- A fibra mais comprimida do concreto começa a plastificar a partir da deformação específica de $\varepsilon_{c2} = 0.2\%$ (2,0%), chegando a atingir sem aumento de tensão, a deformação específica de $\varepsilon_{cu} = 0.35\%$ (3,5%);
- Diagrama de tensões tende a ficar vertical (uniforme), com quase todas as fibras trabalhando com sua tensão máxima, ou seja, praticamente todas as fibras atingiram deformações superiores a $\varepsilon_{c2} = 2,0\%$ e até $\varepsilon_{cu} = 3,5\%$;

Estádio III: aumenta-se o momento fletor até um valor próximo ao de ruína (M_u) , e, para os concretos até C50:

- A peça está bastante fissurada, com as fissuras se aproximando da LN, fazendo om que sua profundidade diminua e, consequentemente, a região comprimida de concreto também; e
- Supõe-se que a distribuição de tensões no concreto ocorra segundo um diagrama parábola-retângulo.

Para os concretos de classes C50 a C90, as assertivas anteriores também se aplicam, porém com algumas mudanças no limites de deformação e formato do diagrama tensão-deformação, como será explicado mais adiante.

Simplificadamente, pode-se dizer que:

- Estádios I e II → Correspondem às situações de serviço (quando atuam as ações reais);
- Estádio III → Corresponde ao estado limite último (ações majoradas, resistências minoradas), que só ocorre em situações extremas.

O cálculo de dimensionamento das estruturas de concreto será feito no ELU (estádio III), pois o objetivo principal é projetar estruturas que resistam, de forma econômica, aos esforços sem chegar ao colapso; as situações de serviço são importante, porém muitas vezes o próprio cálculo no ELU e um bom detalhamento conduzem às verificações destas.

As hipóteses para o cálculo no ELU de elementos lineares sujeitos a solicitações normais estão no item 17.2.2 da ABNT NBR 6118:2014, que engloba também as hipóteses referentes às estruturas em concreto protendido, não relacionadas aqui.

- a) As seções transversais permanecem planas após o início da deformação até o ELU; as deformações são, em cada ponto, proporcionais à sua distância até a LN da seção (hipótese de Bernoulli);
- b) Solidariedade dos materiais: admite-se solidariedade perfeita entre o concreto e a armadura; dessa forma, a deformação específica de uma barra da armadura, em tração ou compressão, é igual à deformação específica do concreto adjacente;
- c) As tensões de tração no concreto, normais à seção transversal, devem ser desprezadas no ELU;

- d) A ruína da seção transversal (peça sob ações majoradas e materiais com resistência minoradas f_{cd} e f_{yd}) para qualquer tipo de flexão no ELU fica caracterizada pelas deformações específicas de cálculo do concreto (ε_c) na fibra menos tracionada e do aço (ε_s), próxima à borda mais tracionada, que atingem (uma delas ou ambas) os valores últimos das deformações específicas desses materiais;
- e) Encurtamentos últimos do concreto no ELU: os valores a serem adotados para os parâmetros ε_{c2} (deformação específica de encurtamento do concreto no início do patamar plástico) e ε_{cu} (deformação específica de encurtamento do concreto na ruptura) são definidos a seguir, para concretos de classe até C50:
 - $\varepsilon_{c2} = 2,0\%$ ocorre nas seções totalmente comprimidas;
 - $\varepsilon_{cu} = 3.5\%$ ocorre nas seções sob flexão.

- f) Alongamento último das armaduras: o alongamento máximo permitido ao longo da armadura tracionada é:
 - $\varepsilon_{cu} = 10,0\%$ para prevenir deformação plástica excessiva.
- g) A tensão nas armaduras é obtida a partir dos diagramas tensão x deformação, com valores de cálculo previamente definidos;
- h) Para concretos até a classe C50, admite-se que a distribuição de tensões no concreto seja feita de acordo com o diagrama parábola-retângulo, com base no diagrama tensão x deformação simplificado do concreto, com tensão máxima igual a $0.85 \times f_{cd}$;

- h) (cont.) o diagrama parábola-retângulo é composto de uma parábola do 2° grau, com vértice na fibra correspondente à deformação de compressão de 2,0% e um trecho reto entre as deformações 2,0% e 3,5%; permite-se a substituição do diagrama parábola-retângulo por um retângulo de altura 0,8x, onde x é a profundidade da LN, com a seguinte tensão:
 - $0.85f_{cd} = \frac{0.85f_{ck}}{\gamma_c} \rightarrow \text{zonas comprimidas de largura constante, ou crescente no sentido das fibras mais comprimidas, a partir da LN;$
 - $0.80f_{cd} = \frac{0.80f_{ck}}{\gamma_c} \rightarrow$ zonas comprimidas de largura decrescente no sentido das fibras mais comprimidas, a partir da LN.

No trecho de altura 0.2x, a partir da LN, no diagrama retangular, as tensões de compressão no concreto são desprezadas; no trecho restante (0.8x), a distribuição de tensões é uniforme.

Definições e nomenclatura

Antes de apresentar toda a teoria que possibilita o dimensionamento das peças de concreto armado, é conveniente repetir as principais definições e nomenclatura das grandezas envolvidas no cálculo, empregadas pela ABNT NBR 6118:2014 e pela maioria das normas internacionais.

- d → Altura útil: distância do centro de gravidade da armadura longitudinal tracionada até a fibra mais comprimida de concreto;
- d' → Distância entre o centro de gravidade da armadura longitudinal comprimida e a face mais próxima do elemento estrutural (fibra mais comprimida de concreto);
- $M_{Sd} \rightarrow$ Momento fletor solicitante de cálculo na seção (na continuação será chamado apenas de M_d);
- $M_{Rd} \rightarrow$ Momento fletor resistente de cálculo (calculado com f_{cd} e f_{yd}): máximo momento fletor a que a seção pode resistir (deve-se ter sempre $M_{Sd} \leq M_{Rd}$);

Definições e nomenclatura

- b_w → Largura da seção transversal de vigas de seção retangular ou da nervura (parte mais estreita da seção transversal), chamada de alma, das vigas se seção T;
- h → Altura total da seção transversal de uma peça;
- z → Braço de alavanca: distância entre o ponto de aplicação da resultante das tensões normais de compressão no concreto e da resultante das tensões normais de tração no aço;
- x → Altura (profundidade) da LN: distância da borda mais comprimida do concreto ao ponto que tem deformação e tensões nulas (distância da LN ao ponto de maior encurtamento da seção transversal de uma peça fletida);
- $y \rightarrow$ Altura da LN convencional: altura do diagrama retangular de tensões de compressão no concreto, na seção transversal de peças fletidas; é uma idealização que simplifica o equacionamento do problema e conduz a resultados próximos daqueles que seriam obtidos com o diagrama parábola-retângulo (y = 0.8x).

Conforme já apontado, a ruína da seção transversal para qualquer tipo de flexão no ELU é caracterizada pelas deformações específicas de cálculo do concreto e do aço, que atingem (uma delas ou ambas) os valores últimos (máximos) das deformações específicas desses materiais.

Os conjuntos de deformações específicas do concreto e do aço ao longo de uma seção transversal retangular com armadura simples (só tracionada) submetida a ações normais definem seis domínios de deformação.

Os domínios representam as diversas possibilidades de ruína da seção; a cada par de deformações específicas de cálculo ε_c e ε_s correspondem um esforço normal, se houver, e um momento fletor atuantes na seção.

Ver mais informações <u>aqui</u>!

Para a determinação da resistência de cálculo de uma dada seção transversal, é preciso saber em qual domínio está situado o diagrama de deformações específicas de cálculo dos materiais (aço e concreto).

As explicações sobre os domínios referem-se apenas aos concretos de classes até C50. Para as demais classes pode ser usado raciocínio similar, porém com os limites das resistências e deformações específicas referentes ao concreto correspondente.

A reta a e os domínios 1 e 2 correspondem ao ELU por deformação plástica excessiva (aço com alongamento máximo); os domínios 3, 4, 4ª e 5 e reta b correspondem ao ELU por ruptura convencional (ruptura do concreto por encurtamento limite).

Domínio 1 - tração não uniforme, sem compressão:

- Início: $\varepsilon_s = 10\%$ e $\varepsilon_c = 10\%$; $x = -\infty \rightarrow \text{reta } a \rightarrow \text{tração uniforme}$;
- Término: $\varepsilon_s = 10\%$ e $\varepsilon_c = 0$; x = 0;
- ELU caracterizado pela deformação $\varepsilon_s = 10\%$;
- A reta de deformação gira em torno do ponto A ($\varepsilon_s = 10\%$);
- A LN é externa à seção transversal;
- A seção resistente é composta do aço, não havendo participação do concreto, que se encontra totalmente tracionado e, portanto, fissurado;
- Tração simples (a resultante das tensões atua no centro de gravidade da armadura todas as fibras têm a mesma deformação de tração - uniforme, reta a) ou tração composta em toda a seção.

Domínio 2 - flexão simples ou composta:

- Início: $\varepsilon_s = 10\%$ e $\varepsilon_c = 0$; x = 0;
- Término: $\varepsilon_s = 10\%$ e $\varepsilon_c = 3.5\%$; x = 0.259d;
- ELU caracterizado pela deformação $\varepsilon_s = 10\%$ (grandes deformações);
- O concreto não alcança a ruptura ($\varepsilon_c < 3.5\%$);
- A reta de deformação continua girando em torno do ponto A ($\varepsilon_s = 10\%$);
- A LN corta a seção transversal (tração e compressão);
- A seção resistente é composta do aço tracionado e do concreto comprimido.

Domínio 3 - flexão simples (seção subarmada) ou composta:

- Início: $\varepsilon_s = 10\%$ e $\varepsilon_c = 3.5\%$; x = 0.259d;
- Término: $\varepsilon_s = \varepsilon_{yd}$ e $\varepsilon_c = 3,5\%$; $x = \frac{0,0035d}{\varepsilon_{yd} + 0,0035}$;
- ELU caracterizado por $\varepsilon_c = 3.5\%$ (deformação de ruptura do concreto);
- A reta de deformação gira em torno do ponto B ($\varepsilon_c = 3.5\%$);
- A LN corta a seção transversal (tração e compressão): na fronteira entre os domínios 3 e 4, sua altura ($x = \frac{0,0035d}{\varepsilon_{vd} + 0,0035}$) é variável com o tipo de aço;
- A seção resistente é composta do aço tracionado e do concreto comprimido;
- A ruptura do concreto ocorre simultaneamente com o escoamento da armadura: situação ideal, por os dois materiais atingem sua capacidade resistente máxima;
- A ruína acontece com aviso (grandes deformações);
- As peças que chegam ao ELU no domínio 3 são chamadas de "subarmadas" (ou normalmente armadas na fronteira entre domínios 3 e 4).

Domínio 4 - flexão simples (seção superarmada) ou composta:

- Devido às novas recomendações da NBR6118 para o limite de x/d, este trecho não mais se aplica à flexão;
- Início: $\varepsilon_s = \varepsilon_{yd}$ e $\varepsilon_c = 3,5\%$; $x = \frac{0,0035d}{\varepsilon_{yd} + 0,0035}$;
- Término: $\varepsilon_s = 0$ e $\varepsilon_c = 3.5\%$; x = d;
- ELU caracterizado por $\varepsilon_c=3.5\%$ (deformação de ruptura do concreto);
- A reta de deformação continua girando em torno do ponto B ($\varepsilon_c = 3.5\%$);
- A LN corta a seção transversal (tração e compressão);
- No ELU, a deformação da armadura é inferior a ε_{vd} (não atinge o escoamento);
- A seção resistente é composta do aço tracionado e do concreto comprimido;
- A ruptura é frágil, sem aviso, pois o concreto se rompe sem que a armadura atinja sua deformação de escoamento;
- As peças que chegam ao ALU no domínio 4 são chamadas de "superarmadas" e são antieconômicas, pois o aço não é utilizado com toda a sua capacidade resistente, devendo, assim, se possível, ser evitadas.

Domínio 4a - flexão composta com armaduras comprimidas:

- Início: $\varepsilon_s = 0$ e $\varepsilon_c = 3.5\%$; x = d;
- Termino: $\varepsilon_s < 0$ (compressão) e $\varepsilon_c = 3.5\%$; x = h;
- ELU caracterizado por $\varepsilon_c = 3.5\%$ (deformação de ruptura do concreto);
- A reta de deformação continua girando no ponto B ($\varepsilon_c = 3.5\%$);
- A LN corta a seção transversal na região de cobrimento da armadura menos comprimida;
- A seção resistente é composta do aço e do concreto comprimidos;
- Armaduras comprimidas e pequena zona de concreto tracionado;
- A ruptura é frágil, sem aviso, pois o concreto se rompe com o encurtamento da armadura (não há fissuração nem deformação que sirvam de advertência).

Domínio 5 - compressão não uniforme (simples ou composta), sem tração:

- Início: $\varepsilon_s < 0$ e $\varepsilon_c = 3.5\%$; x = h;
- Término: $\varepsilon_s = 2\%$ (compressão) e $\varepsilon_c = 2\%$; $x = +\infty \rightarrow \text{reta } b \rightarrow \text{compressão uniforme}$;
- ELU caracterizado por $\varepsilon_c = 3.5\%$ (na flexocompressão) a $\varepsilon_c = 2\%$ (na compressão uniforme);
- A reta de deformação gira em torno do ponto C, distante (3/7)h da borda mais comprimida;
- A LN não corta a seção transversal, que está inteiramente comprimida;
- A seção resistente é composta do aço e do concreto comprimidos;
- A ruptura é frágil, sem aviso, pois o concreto se rompe com encurtamento da armadura (não há fissuração nem deformação que sirvam de advertência).

O cálculo da quantidade de armadura longitudinal (A_s) , para seções transversais retangulares, conhecidos a resistência do concreto (f_{ck}) , a largura da seção (b_w) , a altura útil (d) e o tipo de aço $(f_{yk}$ e $\varepsilon_{yd})$, e submetidas a um momento M_d , é feito, de maneira simples, a partir do equilíbrio das forças atuantes na seção.

Normalmente seria estudada a flexão normal pura e simples, representada pelos domínios 2, 3, 4 e 4a, porém o item 14.6.4.3 da NBR6118:2014 permite o uso de apenas parte do domínio 3, eliminando portanto parte do domínio 3 e os domínios 4 e 4a.

Para proporcionar o adequado comportamento dúctil em vigas e lajes, a posição da LN no ELU deve obedecer aos seguintes limites:

- $\frac{x}{d} \le 0.45$ para concretos com $f_{ck} \le 50MPa$;
- $\frac{x}{d} \le 0.35$ para concretos com $50MPa < f_{ck} \le 90MPa$.

Equacionamento para concretos de classe até C50:

a) Equilíbrio da seção:

• Equilíbrio as forças atuantes normais à seção transversal: como não há força externa, a força atuante no concreto (F_c) deve ser igual à força atuante na armadura (F_s) :

$$\sum F = 0 \to F_S - F_C = 0 \to F_S = F_C$$

• Equilíbrio dos momentos: o momento das forças internas em relação a qualquer ponto (no caso, em relação ao CG da armadura) deve ser igual ao momento externo de cálculo:

$$\sum M = M_d \rightarrow M_d = F_c \times Z$$

Das equações anteriores:

$$M_d = F_S \times Z$$

Equacionamento para concretos de classe até C50:

b) Posição da LN (x):

• Conhecendo a posição da LN, é possível saber o domínio em que a peça está trabalhando e calcular a resultante das tensões de compressão no concreto (F_c) e o braço de alavanca (z):

$$F_c = (0.85 f_{cd}) \times b_w \times (0.8x)$$

 $z = d - 0.4x$

• Colocando F_c e z nas equações anteriores tem-se:

$$M_d = F_c \times z = (0.85 f_{cd}) \times b_w \times (0.8x) \times (d - 0.4x) = b_w \times f_{cd} \times 0.68x (d - 0.4x) \rightarrow$$

$$M_d = (0.68xd - 0.272x^2) \times b_w \times f_{cd} \rightarrow$$

$$x = \frac{0.68d \pm \sqrt{(0.68d)^2 - 4 \times 0.272 \times \left(\frac{M_d}{b_w \times f_{cd}}\right)}}{0.544}$$

Equacionamento para concretos de classe até C50:

c) Cálculo da área necessária de armadura (A_s):

• Com o valor de x determinado anteriormente, é possível encontrar A_s . A força na armadura (F_s) vem do produto da área de aço pela tensão atuante no aço. Portanto tem-se:

$$M_d = F_S \times Z = f_S \times A_S \times Z \rightarrow A_S = \frac{M_d}{Z \times f_S}$$

• Admitindo que a peça esteja trabalhando nos domínios 2 ou 3, para um melhor aproveitamento da armadura, tem-se $\varepsilon_s \ge \varepsilon_{yd}$, resultando para tensão na armadura a de escoamento $(f_s = f_{yd})$; caso contrário, tira-se o valor de ε_s do diagrama de tensão x deformação do aço e calcula-se f_s , mas a peça trabalharia no domínio 4, o que não é possível. A equação anterior fica, portanto:

$$A_S = \frac{M_d}{z \times f_{vd}}$$

Equacionamento para concretos de classe até C50:

d) Verificação do domínio em que a peça atingirá o ELU:

- Obtido o valor de x que define a posição da LN, é possível verificar em que domínio a peça atingirá o ELU. Na flexão simples, que está sendo considerada, os domínios possíveis são o 2, o 3 e o 4. No início do domínio 2 tem-se $\varepsilon_c = 0$, e no final do domínio 4, tem-se $\varepsilon_s = 0$, que são as piores situações que podem ocorrer (um dos dois materiais não contribui na resistência).
- O melhor é que a peça trabalhe no domínio 3; o domínio 2 é aceitável; segundo a NBR6118:2014, parte do domínio 3 e o domínio 4 devem ser evitados. Cabe então a pergunta: conhecido o momento e as demais variáveis necessárias para resolver o problema, como saber em que domínio a seção está trabalhando e se a seção está trabalhando no domínio 3 e se a armadura já atingiu a deformação de escoamento?

Equacionamento para concretos de classe até C50:

- d) Verificação do domínio em que a peça atingirá o ELU:
 - Relação entre deformações: como as seções permanecem planas após a deformação, por semelhança dos triângulo ABC e ADE do diagrama de deformações, é possível obter a relação entre a posição da linha neutra (x) e a altura útil (d):

$$\frac{x}{\varepsilon_c} = \frac{d}{\varepsilon_c + \varepsilon_s} \to \frac{x}{d} = \frac{\varepsilon_c}{\varepsilon_c + \varepsilon_s}$$

• **Posição da LN:** no limite do domínio 2 e em todo o 3, a deformação específica do concreto é $\varepsilon_c = 3,5\%$; colocando esse valor na equação anterior:

$$\frac{x}{d} = \frac{0,0035}{0,0035 + \varepsilon_s}$$

Equacionamento para concretos de classe até C50:

d) Verificação do domínio em que a peça atingirá o ELU:

- Conclui-se que, para uma seção conhecida, a posição da LN, no domínio 3, depende apenas da deformação específica do aço, e o limite entre os domínios 3 e 4 depende do tipo de aço, caracterizado pela deformação específica de escoamento de cálculo do aço (ε_{vd}).
- Apesar da norma não mais permitir o uso de valores de $x/d \ge 0.45$, não cabendo mais o estudo do limite entre os domínios 3 e 4, são apresentados os limites dos domínios para os aços CA25 e CA50:

	Aço CA25	Aço CA50
	$\varepsilon_{yd}=1,04\%$	$\varepsilon_{yd} = 2,07\%$
x_{34}/d	0,7709	0,6283
x_{34}	0,7709d	0,6283d
x_{23}	0,259d	0,259d
Domínio 2	x < 0.259d	x < 0.259d
Domínio 3	0,259d < x < 0,7709d	0,259d < x < 0,6283d

Cálculo do momento resistente

No caso anterior, conhecia-se M_d e calculava-se A_s Seja agora um problema diferente: conhecidas as dimensões da seção transversal (b_w e d), o tipo de aço (f_{yd} e ε_{yd}) e a resistência do concreto (f_{ck}), em qual domínio se consegue o maior momento resistente, ou seja, qual o maior momento que a seção dada consegue resistir?

O problema pode ser resolvido derivando-se a expressão de M_d obtida anteriormente em relação à altura da LN e igualando-a a zero:

$$\frac{d(M_d)}{x} = (0.68d - 0.54x) \times b_w \times f_{cd} = 0 \to x = 1.25d$$

O resultado não é a solução, pois para haver flexão simples é necessária a existência de resultantes normais de compressão (concreto) e tração (aço) que se anulem; isso só é possível nos domínios 2 e 3, em que a linha neutra corta a seção (já que o domínio 4 não é mais permitido pela norma).

Portanto, o momento máximo para concretos até a classe C50 é obtido quando x/d=0.45.

Cálculo do momento resistente

Conhecidas as dimensões da seção transversal (b_w e d), o tipo de aço (f_{yd} e ε_{yd}), a resistência do concreto (f_{ck}), e a área da seção transversal da armadura longitudinal (A_s), qual o valor do momento máximo resistido?

Nesse caso, considerando concretos com resistência característica à compressão menor que 50MPa, ao fixar a quantidade da área de aço, a posição da LN fica automaticamente determinada, e o valor não pode ser maior que x = 0.45d.

A solução do problema deve inicialmente considerar que a seção poderá trabalhar entre o início do domínio 2 até o limite x = 0.45d do domínio 3. Em qualquer destes domínios, o aço tracionado estará escoando. Portanto, o valor de F_s é:

$$F_S = A_S \times f_{yd}$$

Cálculo do momento resistente

Com a expressão da força no concreto, que depende da posição da linha neutra, pode-se obter o valor de x a partir do fato de que, por equilíbrio, as forças resultantes no aço e no concreto devem ter a mesma intensidade:

$$F_x = F_c \to A_s \times f_{yd} = (0.85 f_{cd}) \times b_w \times (0.8x) \to$$
$$x = \frac{A_s \times f_{yd}}{0.68 \times b_w \times f_{cd}}$$

Determinado o valor de x, é preciso verificar se ele é inferior ao limite imposto por norma. Caso isso ocorre e, portanto, $f_s = f_{yd}$, o máximo momento resistido pela seção é obtido pelo produto da força na armadura (ou no concreto) pelo braço de alavanca z:

$$M_d = F_S \times z = F_S \times (d - 0.4x) = A_S \times f_{yd} \times (d - 0.4x)$$

Altura mínima de uma seção

Seja uma viga, com armadura simples, submetida a um momento fletor M_d em uma determinada seção. A menor altura necessária (d_{min}) para a seção resistir a esse momento é aquela em que a posição da linha neutra acarreta o maior momento que a viga é capaz de resistir, ou seja, o momento aplicado será igual ao momento resistente máximo da seção.

Dessa forma, com o limite imposto de x = 0.45d para concretos até a classe C50, foi visto no item anterior que o momento máximo é obtido para esse valor e, portanto, é para essa profundidade de linha neutra que se obtém a menor altura possível para a viga resistir ao momento atuante de cálculo:

$$d_{min} = 2.0 \times \sqrt{\frac{M_d}{b_w \times f_{cd}}}$$

Fórmula adimensionais

Sempre que possível, é conveniente trabalhar com fórmulas adimensionais, que facilitam o emprego de diversos sistemas de unidades e permitem a utilização de quadros e gráficos de modo mais racional. Na forma adimensional, para concretos até a classe C50, as equações ficam:

$$KMD = \frac{M_d}{b_w \times d^2 \times f_{cd}}; KX = \frac{x}{d} = \frac{\varepsilon_c}{\varepsilon_c + \varepsilon_s}$$

$$KMD = 0,68KX - 0,272KX^2$$

$$KZ = \frac{z}{d} \to KZ = 1 - 0,4KX$$

$$A_s = \frac{M_d}{KZ \times d \times f_s}$$

Fórmula adimensionais

KMD	KX	KZ	$\mathcal{E}_{\mathcal{C}}$	\mathcal{E}_S
0,0100	0,0148	0,9941	0,1502	10,000
0,0200	0,0298	0,9881	0,3068	10,000
0,0300	0,0449	0,9820	0,4704	10,000
0,0400	0,0603	0,9759	0,6414	10,000
0,0500	0,0758	0,9697	0,8205	10,000
0,0550	0,0837	0,9665	0,9133	10,000
0,0600	0,0916	0,9634	1,0083	10,000
0,0650	0,0996	0,9602	1,1056	10,000
0,0700	0,1076	0,9570	1,2054	10,000
0,0750	0,1156	0,9537	1,3077	10,000
0,0800	0,1238	0,9505	1,4126	10,000
0,0850	0,1320	0,9472	1,5203	10,000
0,0900	0,1402	0,9439	1,6308	10,000
0,0950	0,1485	0,9406	1,7444	10,000
0,1000	0,1569	0,9372	1,8611	10,000

KMD	KX	KZ	$\mathcal{E}_{\mathcal{C}}$	\mathcal{E}_{S}
0,1050	0,1653	0,9339	1,9810	10,000
0,1100	0,1739	0,9305	2,1044	10,000
0,1150	0,1824	0,9270	2,2314	10,000
0,1200	0,1911	0,9236	2,3621	10,000
0,1250	0,1998	0,9201	2,4967	10,000
0,1300	0,2086	0,9166	2,6355	10,000
0,1350	0,2174	0,9130	2,7786	10,000
0,1400	0,2264	0,9094	2,9263	10,000
0,1450	0,2354	0,9058	3,0787	10,000
0,1500	0,2445	0,9022	3,2363	10,000
0,1550	0,2537	0,8985	3,3991	10,000
0,1600	0,2630	0,8948	3,5000	9,8104
0,1650	0,2723	0,8911	3,5000	9,3531
0,1700	0,2818	0,8873	3,5000	8,9222
0,1750	0,2913	0,8835	3,5000	8,5154

KMD	KX	KZ	$\mathcal{E}_{\mathcal{C}}$	\mathcal{E}_{S}
0,1800	0,3009	0,8796	3,5000	8,1306
0,1850	0,3107	0,8757	3,5000	7,7662
0,1900	0,3205	0,8718	3,5000	7,4204
0,1950	0,3304	0,8678	3,5000	7,0919
0,2000	0,3405	0,8638	3,5000	6,7793
0,2050	0,3507	0,8597	3,5000	6,4814
0,2100	0,3609	0,8556	3,5000	6,1971
0,2150	0,3713	0,8515	3,5000	5,9255
0,2200	0,3819	0,8473	3,5000	5,6658
0,2250	0,3925	0,8430	3,5000	5,4170
0,2300	0,4033	0,8387	3,5000	5,1785
0,2350	0,4142	0,8343	3,5000	4,9496
0,2400	0,4253	0,8299	3,5000	4,7297
0,2450	0,4365	0,8254	3,5000	4,5181
0,2500	0,4479	0,8208	3,5000	4,3144
0,2509	0,4500	0,8200	3,5000	4,2778

Cálculo de seções com armadura dupla

Podem ocorrer situações em que, por imposições de projeto, arquitetônicas etc., seja necessário utilizar para a viga uma altura menor que a altura mínima exigida pelo momento fletor atuante de cálculo M_d .

Nesse caso, determina-se o momento $M_{\rm lim}$ que a seção consegue resistir com a sua altura real e armadura apenas tracionada (A_{s1}) , trabalhando no limite da relação x=0.45d; a diferença entre o momento atuante M_d e o momento $M_{\rm lim}$, que será chamada de M_2 , será resistida por uma armadura de compressão, e para que seja mantido o equilíbrio, por uma adicional de tração. Nessa situação, a viga terá uma armadura inferior tracionada e uma superior comprimida (armadura dupla). Assim:

- $M_{\text{lim}} \rightarrow$ momento obtido impondo que a seção trabalhe no limite da ductilidade x = 0.45d; é resistido pelo concreto comprimido e por uma armadura tracionada A_{s1} ;
- $M_2 \rightarrow$ momento que será resistido por uma armadura comprimida A_s' e, para que haja equilíbrio, por uma armadura tracionada A_{s2} (além de A_{s1}).

Cálculo de seções com armadura dupla

Assim, temos:

$$M_{\text{lim}} = F_c \times z_{\text{lim}} = (0.85 f_{cd} \times b_w \times 0.8 x_{\text{lim}}) \times (d - 0.4 x_{\text{lim}}) = 0.251 \times b_w \times d^2 \times f_{cd}$$

$$A_{s1} = \frac{M_{\text{lim}}}{z \times f_{yd}} = \frac{M_{\text{lim}}}{(1 - 0.4 K X_{\text{lim}}) \times d \times f_{yd}}$$

$$A_{s2} = \frac{M_d - M_{\text{lim}}}{(d - d') \times f_{yd}}$$

$$A_s = A_{s1} + A_{s2} = \frac{M_{lim}}{(1 - 0.4 K X_{\text{lim}}) \times d \times f_{yd}} + \frac{M_d - M_{\text{lim}}}{(d - d') \times f_{yd}}$$

$$A'_s = \frac{M_d - M_{\text{lim}}}{(d - d') \times f'_s}$$

$$\varepsilon'_s = \frac{0.35 \times (x_{\text{lim}} - d')}{x_{\text{lim}}}; f'_s = \varepsilon'_s \times E_s$$

www.ibmec.br

@ibmec

