EE16A - Lecture 19 Notes

Name: Felix Su SID: 25794773

Spring 2016 GSI: Ena Hariyoshi

Positioning (Acoustic Locationing)

- Need d+1 known points/distances to determine position in d dimension
- \bullet 2D intersection of 3 circles

Keep track of Time

- Determine distance from time it takes signal to arrive at receiver divided by the speed of the signal
- Need reference time t_o
- Synchronized clocks between receiver and beacon

Time Sampling

- Continuous signal is a function $a(t)\mathbb{R} \mapsto \mathbb{R}$
- Sample the signal every T seconds (sampling period (secs))
- Sample frequency $\frac{1T}{H}z$
- This defines a new **discrete time signal** that is defined only the integers: $a(t), \mathbb{Z} \to \mathbb{R}$
- $a_{\parallel}n$] = $a_{CT}(nT_s)$ discrete to continuous
- Compute delay between receiver and beacon in terms of samples and map make to continuous time using the time period (inverse of frequency)
- y'[n] = y[n-k] implies that y' shifts y to the right by k discrete time samples (k sample delay)

Signal Delay Linear Algebra:

- Stack all values of discrete time signals into a vector
- Account for delay by cyclicly shifting down
- Use a Circulant Matrix to do the cyclic shift
- Example:
 - Let y = signal received, a, b, c = signal from beacons a,b,c
 - Let S^{N_k} Circulant Matrices that represent delay from beacon k to receiver
 - Each signal has an attenuation coeff. (not in scope of class)
 - $y = \alpha S^{N_A} a + \beta S^{N_B} b + \gamma S^{N_C} c$
 - Find $N_A, N_B, N_C \rightarrow \text{delay }_A$, delay $_B$, delay $_C \rightarrow \text{distance }_A$, distance $_B$, distance $_C$
 - Want all $S^{N_k}k$ to be nearly mutually orthogonal
 - Orthogonal vectors have dot product of 0

Orthogonality

- \bullet To measure 'similarity' of vectors, use dot products \rightarrow inner product
- Inner product: $\langle \vec{x}, \vec{y} \rangle = x^T y^*$
- y^* : complex conjugate of y
- Complex conjugate of a + ib = a ib where $i = \sqrt{-1}$
- Complex values not in scope of class, so inner product = dot product for non-complex vectors
- Dot product: $x \cdot y = x^T y$