Hidden Markov Model and its applications in Signal Processing

Kanru Hua
Univ. of Illinois at Urbana-Champaign
Apr. 27, 2016

What is Hidden Markov Model?

 A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states.

Wikipedia

Typical applications:

- Speech Recognition/Synthesis
- Part-of-speech Tagging
- Handwriting Recognition
- Automatic Audio/Video Transcription
- Signal Denoising

Outline

- Markov Chain
- Hidden Markov Model
 - Definition
 - Algorithms Inference and Training
 - Run HMM in Matlab
- Extensions to HMM
 - Continuous (and Multivariate) Output
 - Multiple Observation Sequences
- Applications
 - Speech Recognition
 - Filtering/Denoising

Markov Chain

Random walk example:

 \rightarrow Sunny \rightarrow Sunny \rightarrow Cloudy \rightarrow Rainy \rightarrow Rainy \rightarrow Sunny \rightarrow Sunny \rightarrow Rainy \rightarrow Cloudy \rightarrow Sunny \rightarrow ...

Markov Chain

Definition

parameter set: $\lambda = \{\pi, \mathbf{A}\}\$

initial probability: $\pi_j = P(s_1 = j | \lambda)$

transition probability: $a_{ij} = P(s_t = j | s_{t-1} = i, \lambda)$

Markov Property

$$P(s_t = j | s_1, s_2, ..., s_{t-2}, s_{t-1} = i, \lambda) = P(s_t = j | s_{t-1} = i, \lambda) = a_{ij}$$

Getting into current state only depends on the previous state but not any state before the previous state. (First-order Markov Chain)

Markov Chain

A lateral view

Total Probability

$$P(s_1=2, s_2=1, s_3=3, s_4=3|\lambda) = P(s_1=2|\lambda)P(s_2=1|s_1=2,\lambda)P(s_3=3|s_2=1,\lambda)P(s_4=3|s_3=3,\lambda)$$
$$= \pi_2 a_{2,1} a_{1,3} a_{3,3}$$

Hidden Markov Model: an Example

On sunny days I usually go to ECEB by bike;

On cloudy days sometimes I walk.

On rainy days I either walk or take MTD, but I rarely bike.

- My behavior can be modelled by a HMM and we can
 - Given weather data and my transportation record, train a HMM.
 - Given a HMM, generate a weather sequence and corresponding transportation record.
 - Given HMM & my transportation record, estimate the most probable weather sequence.
 - Given HMM & my transportation record, estimate the probability of having {sunny, cloudy, rainy} weather on each day.
 - Given HMM & transportation records of a few people at different locations, pick the one that is most likely to be my record (in Champaign).

Hidden Markov Model

Definition

parameter set: $\lambda = \{\pi, \mathbf{A}, \mathbf{B}\}$

initial probability: $\pi_j = P(s_1 = j | \lambda)$

transition probability: $a_{ij} = P(s_t = j | s_{t-1} = i, \lambda)$

output probability (discrete case): $b_{jk} = P(o_t = k | s_t = j, \lambda)$

output probability density (continuous case): $b_j(o_t) = p(o_t|s_t = j, \lambda)$

Hidden Markov Model

- What can we do with HMM?
- Generation
 - Random walk
- Inference
 - Forward/Backward algorithm
 - Viterbi algorithm (most probable sequence)
 - Total probability and probability of a particular state
- Parameter estimation (training)
 - Initialization
 - Viterbi training algorithm
 - Baum-Welch algorithm

Extension – Continuous Output

- Use a continuous density distribution for $b_j(o_t)$
- e.g. normal distribution

$$b_{j}(o_{t}=x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

Or multivariate normal distribution with dimension k

$$b_{i}(o_{t}=x)=(2\pi)^{-\frac{k}{2}}|\Sigma|^{-\frac{1}{2}}e^{-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)}$$

 To reduce number of parameters we often assume diagonal covariance, which significantly simplifies the whole thing.

Extension – Continuous Output

- The inference algorithms are exactly same as the discrete case (except for function $b_i(o_t)$ itself, of course).
- Maximization step needs a little bit change:

$$\mu_{j} = \frac{\sum_{t=1}^{T} \gamma_{t}(j) o_{t}}{\sum_{t=1}^{T} \gamma_{t}(j)} \quad \Sigma_{j} = \frac{\sum_{t=1}^{T} \gamma_{t}(j) o_{t} o_{t}^{T}}{\sum_{t=1}^{T} \gamma_{t}(j)} - \mu_{j} \mu_{j}^{T}$$

Gaussian Mixture Model as output density distribution

$$p(x \in \mathbf{R}^{k} | \boldsymbol{c}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{k}{2}} \sum_{j} c_{j} |\Sigma_{j}|^{-\frac{k}{2}} e^{-\frac{k}{2}(x-\mu_{j})^{T} \sum_{j}^{-1} (x-\mu_{j})}$$

$$g_{jk}(o_{t}) = p(o_{t} | s_{t} = j, m_{t} = k, \lambda) = p(o_{t} | \boldsymbol{\mu}_{jk}, \boldsymbol{\Sigma}_{jk})$$

$$b_{j}(o_{t}) = p(o_{t} | s_{t} = j, \lambda) = \sum_{k} c_{jk} g_{jk}(o_{t})$$

Extension – Multiple Observation Sequences

- Training data set often contains more than one sample.
- In fact there are often hundreds or even thousands of samples.
- Use common sense, just add (average) bunch of things together!

$$\pi_{i} = \frac{1}{L} \sum_{l=0}^{L} \gamma_{1}^{l}(i)$$

$$a_{ij} = \frac{\sum_{l=0}^{L} \sum_{t=2}^{T} \gamma_{t}^{l}(i,j)}{\sum_{l=0}^{L} \sum_{t=2}^{T} \gamma_{t-1}^{l}(i)} \quad b_{ik} = \frac{\sum_{l=0}^{L} \sum_{t:o_{t}=k}^{L} \gamma_{t}^{l}(i)}{\sum_{l=0}^{L} \sum_{t=0}^{T} \gamma_{t}^{l}(i)}$$

 To prove this you can change the "s" under summation in EM algorithm and rederive the whole thing again.

Speech feature

MFCC (Mel-Frequency Cepstral Coefficient)

Output density function:

(Mixture of) multivariate normal distribution with diagonal covariance, whose dimension = dimension of each feature vector

Some earlier approaches use discrete HMM with vector-quantized

feature labels, output matrix is like a bunch of histograms.

Image source: http://labrosa.ee.columbia.edu/matlab/rastamat/mfccs.html

Triphone Models

"LLLMMMMMMMRRN"

Forced Alignment

Speech data often comes with phoneme transcription. Though exact state sequence is not always given, the model topology for each sample is known.

Next

0.3

E.g. "Hello" → "HH AH L OW"

For this sample, $HH(R) \rightarrow AH(L)$ exists; $AH(R) \rightarrow L(L)$ exists; $HH(R) \rightarrow OW(L)$ doesn't exist.

Forced Alignment (cont)

We don't want the algorithm to consider impossible/confusing transitions (e.g. $HH(R) \rightarrow HH(L)$ or $HH(R) \rightarrow OW(L)$)

Then during inference, simply change the transition matrix for each training sample. Each state should only have *self transition* and *transition to the next state*. → Left-to-Right HMM

Forced alignment – given phoneme transcription and speech, calculate the starting/ending time of each phoneme (using Viterbi algorithm).

State Tying

What if a phoneme appears more than once in a sample?

e.g. "Hello, world." \rightarrow "HH AH L OW, W ER L D", where we can find L(R) \rightarrow OW(L) and L(R) \rightarrow D(L)

Just create a copy of L(R, M, L) states, and name them L1(R, M, L)
 HH AH L OW, W ER L1 D

L and L1 share the same output distribution. During maximization step, statistics on L and L1 are collected and grouped together. This trick is called state tying.

Context Dependency

So far we've only seen context-independent (CI) HMM – same L, M, R states are shared across the whole data set.

However pronunciation could vary with respect to context.

Full-context models: represent each occurrence of each phoneme by a unique set of L, M, R states.

- Context-dependent (CD) models: cluster full-context models into groups that share both similar context and similar output distribution, then merge & tie them together.
- We can use a decision tree for such clustering.