Lecture 5:

60. 已知函数矩阵

$$\mathbf{A}(x) = \begin{bmatrix} \sin x & \cos x & x \\ \frac{\sin x}{x} & e^x & x^2 \\ 1 & 0 & x^3 \end{bmatrix}$$

其中 $x \neq 0$,试求 $\lim_{x \to 0} A(x)$, $\frac{dA(x)}{dx}$, $\frac{d^2A(x)}{dx^2}$, $\left| \frac{dA(x)}{dx} \right|$.

68. 设

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{X}(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

(1) 求 e*;

(2) 求解
$$\begin{cases} \dot{\boldsymbol{X}}(t) = \boldsymbol{A}\boldsymbol{X}(t) \\ \boldsymbol{X}(0) = (1,0,0,-1)^{\mathrm{T}}. \end{cases}$$

70. 设 $f(A) = ||A||_F^2 = \operatorname{tr}(A^T A)$,其中 $A \in \mathbb{R}^{m \times n}$ 是矩阵变量,求 $\frac{\mathrm{d}f}{\mathrm{d}A}$.

77. 设 $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $X \in \mathbb{R}^n$ 是向量变量, $f(X) = \|AX - b\|_2^2$, 试求 $\frac{\mathrm{d}f}{\mathrm{d}X}$.

Lecture 6:

3. 判断下列两个 λ 矩阵是否相抵:

$$\mathbf{A}(\lambda) = \begin{bmatrix} 3\lambda + 1 & \lambda & 4\lambda - 1 \\ 1 - \lambda^2 & \lambda - 1 & \lambda - \lambda^2 \\ \lambda^2 + \lambda + 2 & \lambda & \lambda^2 + 2\lambda \end{bmatrix}, \quad \mathbf{B}(\lambda) = \begin{bmatrix} \lambda + 1 & \lambda - 2 & \lambda^2 - 2\lambda \\ 2\lambda & 2\lambda - 3 & \lambda^2 - 2\lambda \\ -2 & 1 & 1 \end{bmatrix}$$

9. 求下列 λ 矩阵的史密斯(Smith)标准形:

(1)
$$\mathbf{A}(\lambda) = \begin{bmatrix} 0 & \lambda(\lambda-1) & 0 \\ \lambda & 0 & \lambda+1 \\ 0 & 0 & -\lambda+2 \end{bmatrix};$$
 (2) $\mathbf{B}(\lambda) = \begin{bmatrix} 1-\lambda & 2\lambda-1 & \lambda \\ \lambda & \lambda^2 & -\lambda \\ 1+\lambda^2 & \lambda^2+\lambda-1 & -\lambda^2 \end{bmatrix}.$

12 设
$$\mathbf{A}_1 = \begin{bmatrix} 3 & 2 & -5 \\ 2 & 6 & -10 \\ 1 & 2 & -3 \end{bmatrix}$$
, $\mathbf{A}_2 = \begin{bmatrix} 6 & 20 & -34 \\ 6 & 32 & -51 \\ 4 & 20 & -32 \end{bmatrix}$, 分别求 $\lambda \mathbf{I} - \mathbf{A}_1 = \lambda \mathbf{I} - \mathbf{A}_2$ 的史密斯

标准形以及A,与A,的不变因子、行列式因子,

Lecture 7:

19. 求出下列矩阵的若尔当标准形:

(1)
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & -1 \\ 2 & -1 & -2 \\ -1 & 1 & 2 \end{bmatrix};$$
 (2) $\mathbf{A} = \begin{bmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{bmatrix};$

- 44. 设 $A(\lambda)$ 为 5 阶 λ 矩阵,其秩为 4,初等因子为 λ , λ^2 , λ^2 , $\lambda-1$, $\lambda-1$, $\lambda+1$, $(\lambda+1)^3$. 试求 $A(\lambda)$ 的不变因子并写出其标准形.
- 45. 已知 7 阶 λ 矩阵 $A(\lambda)$ 的秩为 5,初等因子是 $1,\lambda,\lambda^3,\lambda-2,(\lambda-2)^4,(\lambda-2)^4$. 求 $A(\lambda)$ 的各阶子式的最高公因子.