Introduction to Software Testing

Chapter 3.1, 3.2 Logic Coverage

Paul Ammann & Jeff Offutt

Updated by Sunae Shin

Ch. 3: Logic Coverage

Four Structures for Modeling Software

Covering Logic Expressions

- Logic expressions show up in many situations
- Covering logic expressions is required by the US Federal Aviation Administration for safety critical software
- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and statecharts
 - Requirements
- Tests are intended to choose some subset of the total number of truth assignments to the expressions

Logic Predicates and Clauses

- A *predicate* is an expression that evaluates to a boolean value
 - Predicates can contain
 - boolean variables
 - non-boolean variables that contain >, <, ==, >=, <=, !=
 - boolean function calls
 - Internal structure is created by logical operators
 - 1. \neg the *negation* operator
 - 2. \wedge the *and* operator
 - 3. \vee the *or* operator
 - 4. \rightarrow the *implication* operator
 - 5. \oplus the *exclusive or* operator
 - 6. \leftrightarrow the *equivalence* operator
- A *clause* is a predicate with **no logical operators**

Examples

$$(a < b) \lor f(z) \land D \land (m >= n*o)$$

- Four clauses:
 - -(a < b) relational expression
 - f (z) boolean-valued function call
 - − D − boolean variable
 - (m >= n*o) relational expression
- Sources of predicates
 - Decisions in programs
 - Guards in finite state machines
 - Decisions in UML activity graphs
 - Requirements, both formal and informal

Translation

Translating from source code

```
if ((a > b) || C) && (x < y)
   o.m();
else
  o.n();</pre>
```

$$((a > b) \lor C) \land (x < y)$$

Translating from precondition in a specification

"pre: stack Not full AND object reference parameter not null"

 \neg stackFull() \land newObj \neq null

Logic Expression Coverage Criteria

- We use predicates in testing as follows:
 - Developing a model of the software as one or more predicates
 - Requiring tests to satisfy some combination of clauses

Abbreviations:

- -P is the set of predicates
- -p is a single predicate in P
- C is the set of clauses in P
- $-C_p$ is the set of clauses in predicate p
- -c is a single clause in C

Predicate and Clause Coverage

• The first (and simplest) two criteria require that each predicate and each clause be evaluated to both true and false

Predicate Coverage (PC): For each p in P, TR contains two requirements: p evaluates to true, and p evaluates to false.

Example in next page...

Predicate Coverage Example

$$((a < b) \lor D) \land (m >= n*o)$$

predicate coverage

Predicate = true

```
a = 5, b = 10, D = true, m = 1, n = 1, o = 1
= (5 < 10) \times true \wedge (1 >= 1*1)
= true \times true \wedge TRUE
= true
```

Predicate = false

```
a = 10, b = 5, D = false, m = 1, n = 1, o = 1
= (10 < 5) \lor false \land (1 >= 1*1)
= false \lor false \land TRUE
= false
```

More Example – Predicate Coverage

$$((a > b) \lor C) \land p(x)$$

Two tests that satisfy predicate coverage

$$(a = 5, b = 4, C = true, p(x) = true)$$
 and

$$(a = 5, b = 6, C = false, p(x) = false)$$

Problem!!

$$(a = 5, b = 4, C = true, p(x) = true)$$
 and

$$(a = 5, b = 4, C = true, p(x) = false)$$

- → The individual clauses are not always exercised.
 - first two clauses never have the value false!

Predicate and Clause Coverage

• PC does not evaluate all the clauses, so ...

Clause Coverage (CC): For each c in C, TR contains two requirements: c evaluates to true, and c evaluates to false.

Example in next page...

Clause Coverage Example

$$((a < b) \lor D) \land (m >= n*o)$$

Clause coverage

Problems with PC and CC

- PC does not fully exercise all the clauses, especially in the presence of short circuit evaluation
- CC does not always ensure PC
 - That is, we can satisfy CC without causing the predicate to be both true and false
 - This is definitely <u>not</u> what we want!
- The simplest solution is to test all combinations ...

Combinatorial Coverage

- CoC requires every possible combination
 - Sometimes called Multiple Condition Coverage

<u>Combinatorial Coverage (CoC)</u>: For each \underline{p} in \underline{P} , TR has test requirements for the clauses in $\underline{C}_{\underline{p}}$ to evaluate to each possible combination of truth values.

	a < b	D	m >= n*o	$((a < b) \lor D) \land (m >= n*o)$
1	T	T	T	Т
2	T	T	\mathbf{F}	F
3	T	F	T	T
4	T	F	\mathbf{F}	\mathbf{F}
5	\mathbf{F}	T	T	T
6	\mathbf{F}	T	\mathbf{F}	\mathbf{F}
7	\mathbf{F}	F	T	\mathbf{F}
8	F	F	F	F

Combinatorial Coverage

- This is simple, neat, clean, and comprehensive ...
- But quite expensive!
 - 2^N tests, where N is the number of clauses
 - Impractical for predicates with more than 3 or 4 clauses
- The general idea is simple:

Test each clause independently from the other clauses

- What exactly does "independently" mean?
 - The book presents this idea as "making clauses active" ...

Active Clauses

- Clause coverage has a <u>weakness</u>: The values do not always make a difference
- To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Determination:

A clause C_i in predicate p, called the <u>major clause</u>, <u>determines</u> p if and only if the values of the remaining <u>minor clauses</u> C_j are such that changing C_i changes the value of p

- Simply, if you flip the clause, and the predicate changes value, then the clause *determines* the predicate
- This is considered to make the clause active

Determining Predicates

$$P = A \vee B$$

if B = true, p is always true.

so if B = false, A determines p.

if A = false, B determines p.

$$P = A \wedge B$$

if B = false, p is always false.

so if B = true, A determines p.

if A = true, B determines p.

- If we do not vary b under circumstances where b determines p, then we have no evidence that b is used correctly
- Goal: Find tests for each clause when the clause determines the value of the predicate

Active Clause Coverage

Active Clause Coverage (ACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each $c_i : c_i$ evaluates to true and c_i evaluates to false.

• <u>Ambiguity</u>: Do the minor clauses have to have the same values when the major clause is true and false?

Resolving the Ambiguity

```
p = a \lor (b \land c)
Major clause : a
a = \text{true, } b = \text{false, } c = \text{true}
a = \text{false, } b = \text{false, } c = \text{false}
```

Is this allowed?

- This question caused confusion among testers for years
- Considering this carefully leads to three separate criteria :
 - Minor clauses do not need to be the same
 - Minor clauses do need to be the same
 - Minor clauses force the predicate to become both true and false

General Active Clause Coverage

General Active Clause Coverage (GACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that ci determines p. TR has two requirements for each $c_i : c_i$ evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_j do not need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = false)$ for all c_j OR $c_j(c_i = true) != c_j(c_i = false)$ for all c_j .

Restricted Active Clause Coverage

Restricted Active Clause Coverage (RACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each $c_i : c_i$ evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_i(c_i = false)$ for all c_i .

Correlated Active Clause Coverage

Correlated Active Clause Coverage (CACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_j must cause p to be true for one value of the major clause c_i and false for the other, that is, it is required that $p(c_i = true) != p(c_i = false)$.

- A more recent interpretation
- Implicitly allows minor clauses to have different values
 - Minor clauses force the predicate to become both true and false

CACC and **RACC**

	a	b	c	a ∧ (b ∨ c)
1	T	T	T	T
2	T	T	F	T
3	T	F	T	T
4	T	F	F	${f F}$
5	F	T	T	F
6	F	T	F	${f F}$
7	F	F	T	${f F}$
8	F	F	F	${f F}$

 P_a : b=true or c = true

CACC can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 - a total of nine pairs

RACC can only be satisfied by row pairs (1, 5), (2, 6), or (3, 7)

Only three pairs

Making Clauses Determine a Predicate

- Finding values for minor clauses c_j is easy for simple predicates
- But how to find values for more complicated predicates?
- Definitional approach:
 - $-p_{c=true}$ is predicate p with every occurrence of c replaced by true
 - $-p_{c=false}$ is predicate p with every occurrence of c replaced by false
- To find values for the minor clauses, connect $p_{c=true}$ and $p_{c=false}$ with exclusive OR

$$p_c = p_{c=true} \oplus p_{c=false}$$

• After solving, p_c describes exactly the values needed for c to determine p

Examples

$$p = a \lor b$$

$$p_a = p_{a=true} \oplus p_{a=false}$$

$$= (true \lor b) XOR (false \lor b)$$

$$= true XOR b$$

$$= \neg b$$

- b must be true to make a determine p

- b must be false (a determine the

predicate)

```
\begin{aligned} p &= a \lor (b \land c) \\ p_a &= p_{a=true} \oplus p_{a=false} \\ &= (true \lor (b \land c)) \oplus (false \lor (b \land c)) \\ &= true \oplus (b \land c) \\ &= \neg (b \land c) \\ &= \neg b \lor \neg c \end{aligned}
```

- "NOT $b \vee NOT$ c" means either b or c can be false
- RACC requires the same choice for both values of a, CACC does not

Logic Coverage Summary

- Predicates are often very simple—in practice, most have less than 3 clauses
 - With only clause, PC is enough
 - With 2 or 3 clauses, CoC is practical
- Control software often has many complicated predicates, with lots of clauses

Logical Conjunction			
р	q	p∧q	
Т	Т	Т	
Т	F	F	
F	Т	F	
F	F	F	

Logical Disjunction			
p	q	p∨q	
Т	Т	Т	
Т	F	Т	
F	Т	Т	
F	F	F	

Logical Implication			
p	q	$p \rightarrow q$	
Т	Т	Т	
Т	F	F	
F	Т	Т	
F	F	Т	

Exclusive Disjunction			
p	q	$p \oplus q$	
Т	Т	F	
Т	F	Т	
F	Т	Т	
F	F	F	