Конспект лекций по геометрии, ΠH , 2 семестр Лекции

Собрано 21 марта 2022 г. в 22:07

Содержание

1.	Аналитическая геометрия
	1.1. Системы координат
	1.1.1. Аффинные системы координат
	1.1.2. Криволинейные системы координаты
	1.1.3. Параметризации
	1.2. Понятие вектора
	1.3. Сложение и умножение на число
	1.4. ЛЗ, ЛНЗ, Базис, размерность
	1.5. Скалярное умножение
	1.6. Векторное умножение
	1.7. Смешанное умножение
	1.8. Двойное векторное умножение. Тождество Якоби
	1.9. Уравнение прямой на плоскости
	1.10. Уравнение плоскости в пространстве
	1.11. Уравнение прямой в пространстве

Раздел #1: Аналитическая геометрия

1.1. Системы координат

1.1.1. Аффинные системы координат

Def 1.1.1. Аффинной системой координат на прямой называется взаимно-однозначное соответствие $l \longleftrightarrow \mathbb{R}$.

Она определяется выбором точки O и выбором вектора \overline{e} . $ACK = \{O, \{\overline{e}\}\}$.

Def 1.1.2. *ACK* на плоскости называется биекция $\pi \longleftrightarrow \mathbb{R}^2$.

Oна определяется выбором точки O и векторов $\overline{e}_1,\overline{e}_2\neq\overline{e},\overline{e}_1$ $\not\parallel \overline{e}_2$. $ACK=\{O,\{\overline{e}_1,\overline{e}_2\}\}.$

 ${f Def~1.1.3.}~~Ecnu~|\overline{e}_1|=|\overline{e}_2|=1,\overline{e}_1\perp\overline{e}_2,~mo~ACK~$ называется декартовой системой координат.

Def 1.1.4. ACK в пространстве называется биекция $M \longleftrightarrow \mathbb{R}^3$. Она определяется выбором точки O и векторов $\overline{e}_1, \overline{e}_2, \overline{e}_3 \neq \overline{0}$ — не компланарны. $ACK = \{O, \{\overline{e}_1, \overline{e}_2, \overline{e}_3\}\}$.

Def 1.1.5. Упорядоченная тройка векторов $(\overline{u}, \overline{v}, \overline{w})$ называется **правой**, если из конца векторо \overline{w} поворот то \overline{u} к \overline{v} по наименьшему углу выглядит происходящим против часовой стрелки, и **левой** – в противном случае.

Автор: Илья Дудников

1.1.2. Криволинейные системы координаты

Def 1.1.6. Выберем точку O и построим из неё луч p, который назовем полярной осью. Возьмем теперь произвольную точку M на плоскости и измерим две величины: расстояние от M до O и угол между вектором \overline{OM} и полярной осью. Обозначим расстояние за r, а угол за φ . Тогда, чтобы избежать неоднозначности, будем считать, что $r > 0, \varphi \in [0, 2\pi)$, и если r = 0, то $\varphi = 0$. Такая система координат называется **полярной**.

Def 1.1.7. Полярная система координат, где $r \in \mathbb{R}, \varphi \in \mathbb{R}$, то она называется обобщенной полярной системой координат.

Рис. 1: Координатная сеть полярной системы координат

Def 1.1.8. Цилиндрической системой координат называют трёхмерную систему координат, являющуюся расширением полярной системы координат путём добавления третьей координаты (обычно обозначаемой z), которая задаёт высоту точки над плоскостью.

Def 1.1.9. Сферическая система координат — трёхмерная система координат, в которой каждая точка пространства определяется тремя числами, где r — расстояние до начала координат, а θ и φ — зенитный и азимутальный углы соответственно.

1.1.3. Параметризации

Построим декартову систему координат. Теперь возьмем какую-то новую систему координат x', y', z'. Проведем через x', y' плоскость. Если z' не совпадает с z, то эта плоскость пересекает

плоскость (x,y) по какой-то прямой. Отсчитает от вектора x до этой прямой угол φ . Угол между z и z' обозначим за ψ . Теперь, мы можем эту прямую поворачивать вокруг оси z' на угол δ , пока она не совпадет с x'.

Таким образом, мы совместили исходную систему координат с новой СК. То есть мы построили соответствие между (ψ, φ, δ).

1.2. Понятие вектора

Пусть E – евклидово пространство.

Def 1.2.1. Закрепленный вектор – упорядоченная пара точек в евклидовом пространстве. Обозначение: \overrightarrow{AB} , модуль $|\overrightarrow{AB}|$ – расстояние между точками A и B.

Def 1.2.2. Пусть $\{(A,B), A, B \in E\}$ – множество закрепленных векторов. Введём на нём отношение равенства: $(A,B) = (C,D) \Leftrightarrow$:

- 1. $|\overrightarrow{AB}| = |\overrightarrow{CD}|$
- 2. (A, B) || (C, D) либо совпадают.
- 3. $\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}$.

Замечание 1.2.3. $\forall A, B \rightarrow (A, A) = (B, B)$.

Утверждение 1.2.4. Отношение, введённое в прошлом определении – отношение эквивалентности.

Доказательство. 1. Рефлексивность: (A, B) = (A, B) – верно.

- 2. Симметричность очевидно.
- 3. Транзитивность: $(A, B) = (C, D), (C, D) = (F, G) \Rightarrow (A, B) = (F, G)$ верно.

Значит множество закрепленных векторов разбивается на классы эквивалентности.

Def 1.2.5. Класс эквивалентности называется свободным вектором.

1.3. Сложение и умножение на число

Пусть $\overline{a}, \overline{b} \in V$ – классы.

Def 1.3.1. Сложение векторов: $V \times V \to V$. $[\overrightarrow{OO''}] = \overline{a} + \overline{b}$

Def 1.3.2. Пусть $\overline{a} \in V, \lambda \in \mathbb{R}$. Умножение на число на число: $\mathbb{R} \times V \to V$.

 $(V, +, \cdot)$. Свойства:

- 1. $\forall \overline{a}, \overline{b} \in V \overline{a} + \overline{b} = \overline{b} + \overline{a}$.
- 2. $\forall \overline{a}, \overline{b}, \overline{c} \in V (\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}).$
- 3. $\exists \overline{0} : \forall \overline{a} \ \overline{a} + \overline{0} = \overline{0} + \overline{a} = \overline{a}$.
- 4. $\forall \overline{a} \ \exists -\overline{a} : \overline{a} + (-\overline{a}) = \overline{0}$.
- 5. $\forall \lambda \in \mathbb{R}, \overline{a}, \overline{b} \in V \ \lambda(\overline{a} + \overline{b}) = \lambda \overline{a} + \lambda \overline{b}$.
- 6. $\forall \lambda, \mu \in \mathbb{R}, \overline{a} \in V (\lambda + \mu)\overline{a} = \lambda \overline{a} + \mu \overline{a}$.
- 7. $\forall \overline{a} \in V \ 1 \cdot \overline{a} = \overline{a}$.
- 8. $\forall \lambda, \mu \in \mathbb{R}, \overline{a} \in V \ \lambda(\mu \overline{a}) = (\lambda \mu) \overline{a}$.

Def 1.3.3. Множество $(V,+,\cdot)$, удовлетворяющее свойствам 1-8, называется **векторным пространством**. Элементы – векторы.

1.4. ЛЗ, ЛНЗ, Базис, размерность

Def 1.4.1. $\lambda_1 \overline{a}_1 + ... + \lambda_n \overline{a}_n$ – линейная комбинация. Если $(\lambda_1, ..., \lambda_n) \neq (0, ..., 0)$ – нетривиальная ЛК.

Def 1.4.2. $\{\overline{a}_i\}_{i=1}^n$ – линейно зависимый, если \exists нетривиальная JK $\{\lambda_i\}_{i=1}^n: \sum_{i=1}^n \lambda_i \overline{a}_i = 0$

Def 1.4.3. $\{\overline{a}_i\}_{i=1}^n$ – ЛНЗ, если он не ЛЗ.

Свойства:

- 1. $\{\overline{a} \neq \overline{0}\} \Pi H 3$.
- 2. $\{\overline{0}\} \Pi 3$.
- 3. $\{\overline{a_1},...,\overline{a_n},\overline{0}\}$ Π 3.
- 4. Пусть $\{\overline{a}_i\}$ ЛЗ. Тогда $\{\overline{a}_i, \overline{a}_j\}_{i=1,j=1}^{n,m}$ ЛЗ.

Def 1.4.4. $\{\overline{a}_{\alpha}\}_{{\alpha}\in\Lambda}$ – ЛЗ, если в нем \exists ЛЗ конечный поднабор.

Def 1.4.5. ЛНЗ – набор, который не является ЛЗ.

 $\textbf{Def 1.4.6.} \ \{\overline{a}_{\alpha}\}_{\alpha \in \Lambda} \ - \ non + \text{mid}, \ ecnu \ \forall \overline{v} \in V \ \exists \{\alpha_i\}_{i=1}^n, \{\lambda_i\}_{i=1}^n \ \overline{v} = \lambda_1 \overline{a}_{\alpha_1} + \ldots + \lambda_n \overline{a}_{\alpha_n}.$

Def 1.4.7. $\{\overline{a}_{\alpha}\}_{\alpha\in\Lambda}$ – базис V, если он полный и ЛНЗ.

 ${f Def~1.4.8.}$ Размерность $V~(\dim V~)$ – мощность базиса.

Def 1.4.9. Векторное пространство V называется конечномерным, если \exists конечный полный набор.

1.5. Скалярное умножение

Будем определять скалярное произведение для элементов векторного пространства V.

Def 1.5.1. $(\overline{a}, \overline{b})$ – скалярное произведение: $V \times V \to \mathbb{R}$

Свойства:

- 1. Свойства 1-8, необходимые для существования векторного пространства.
- 2. $\forall \overline{a} \in V \ (\overline{a}, \overline{a}) \geqslant 0$ положительная определённость. Кроме того, $(\overline{a}, \overline{a}) = 0 \Leftrightarrow \overline{a} = \overline{0}$ — невырожденность.
- 3. $\forall \overline{a}, \overline{b}, \overline{c} \in V \ (\overline{a} + \overline{b}, \overline{c}) = (\overline{a}, \overline{c}) + (\overline{b}, \overline{c})$ аддитивность. $\forall \lambda \in \mathbb{R}, \overline{a}, \overline{b} \in V \ (\lambda \overline{a}, \overline{b}) = \lambda(\overline{a}, \overline{b})$ однородность.
- 4. $\forall \overline{a}, \overline{b} \in V (\overline{a}, \overline{b}) = (\overline{b}, \overline{a})$. коммутативность.

Пример 1.5.2. $\mathbb{R}^n = \{(x_1, x_2, ..., x_n) : x_i \in \mathbb{R}\}$ $\overline{v} = (x_1, ..., x_n), \overline{w} = (y_1, ..., y_n)$

Тогда скалярное произведение: $(\overline{v}, \overline{w}) = x_1 y_1 + ... + x_n y_n$.

Проверим свойства:

- 1. $(\overline{v}, \overline{v}) = x_1^2 + \dots + x_n^2 \ge 0$. $(\overline{v}, \overline{v}) = 0 \Leftrightarrow \forall i \ x_i = 0$.
- 2. Пусть $\overline{z} = (z_1, ..., z_n)$, тогда $(\overline{v} + \overline{w}, \overline{z}) = (x_1 + y_1)z_1 + ... + (x_n + y_n)z_n = x_1z_1 + ... + x_ny_z + y_1z_1 + ... + y_nz_n = (\overline{v}, \overline{z}) + (\overline{w}, \overline{z})$. $(\lambda \overline{v}, \overline{w}) = \lambda x_1y_1 + ... + \lambda x_ny_n = \lambda(x_1y_1 + ... + x_ny_n) = \lambda(\overline{v}, \overline{w})$.
- 3. $(\overline{v}, \overline{w}) = x_1 y_1 + ... + x_n y_n = y_1 x_1 + ... + y_n x_n = (\overline{w}, \overline{v}).$

Пример 1.5.3. C[0,1] – непрерывные функции на отрезке [0,1]. Пусть $f,g,q \in C[0,1]$ – функции: $(f,g) = \int_0^1 fg \, dx$.

- 1. $(f, f) = \int_0^1 f^2 dx \ge 0$. $(f, f) = 0 \Leftrightarrow f = 0$.
- 2. $(f+q,g) = \int_0^1 (f+q)g \, dx = \int_0^1 (fg+qg) \, dx = \int_0^1 fg \, dx + \int_0^1 qg \, dx = (f,g) + (q,g).$ $(\lambda f,g) = \int_0^1 \lambda fg \, dx = \lambda \int_0^1 fg \, dx = \lambda (f,g).$
- 3. $(f,g) = \int_0^1 fg \, dx = \int_0^1 gf \, dx = (g,f).$

Таким образом, это скалярное произведение непрерывных на [0,1] функций.

Пусть есть конечномерное векторное пространство V, на нём задано скалярное произведение (,), выберем базис векторного пространства $\{\overline{e}_i\}$, рассмотрим векторы $\overline{v} = (x_i), \overline{w} = (y_i)$, тогда их скалярное произведение $(\overline{v}, \overline{w}) = (x_1\overline{e}_1 + ... + x_n\overline{e}_n, y_1\overline{e}_1 + ... + y_n\overline{e}_n)$, т.е.

$$(\overline{v}, \overline{w}) = \sum_{i,j}^{n} x_i y_j(\overline{e}_i, \overline{e}_j)$$

Либо же запись вида:

$$(\overline{v}, \overline{w}) = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix} \begin{pmatrix} (\overline{e}_1, \overline{e}_1) & (\overline{e}_1, \overline{e}_2) & \cdots & (\overline{e}_1, \overline{e}_n) \\ \vdots & \vdots & \ddots & \vdots \\ (\overline{e}_n, \overline{e}_1) & (\overline{e}_n, \overline{e}_2) & \cdots & (\overline{e}_n, \overline{e}_n) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

где $G = ((\overline{e}_i, \overline{e}_j)), 1 \le i \le j \le n$ — матрица Грама сколярного произведения.

Тогда скалярное произведение можно записать в следующем виде: $(\overline{v}, \overline{w}) = \overline{v}^T G \overline{w}$.

В силу коммутативности скалярного произведения $G^T = G$.

Теорема 1.5.4 (Критерий Сильвестра).

$$\forall k = 1, ..., n \det(G_k) > 0$$

где G_n – миноры главной диагонали.

Утверждение 1.5.5. Если взять R^n, G , то G – матрица Грама $\Leftrightarrow G^T = G$, которая удовлетворяет критерию Сильвестра.

Def 1.5.6. Если базис обладает свойством: $(e_i, e_j) = \begin{cases} 1, i \neq j \\ 1, i = j \end{cases} \Rightarrow G = E, \ morda \ on \ называется ортонормированным базисом (OPE).$

Теорема 1.5.7 (Теорема Грама-Шмидта). В $\forall V^n$ со скалярным произведением (,) \exists ОНБ.

Def 1.5.8. V – векторное пространство, (,) – скалярное произведение на нём, тогда **модуль** $(\partial \mathbf{n} \mathbf{u} \mathbf{n} \mathbf{a}) |\overline{a}| = \sqrt{(\overline{a}, \overline{a})}, |\overline{a}| = 0 \Leftrightarrow \overline{a} = 0.$

Def 1.5.9. Величина угла между векторами – число $\alpha \in [0;\pi] \in R : \cos \alpha = \frac{(\overline{a},\overline{b})}{|\overline{a}||\overline{b}|}, \overline{a} \neq 0, \overline{b} \neq 0.$

Теорема 1.5.10 (Неравенство Коши-Буняковского).

$$(\overline{a}, \overline{b})^2 \leqslant \overline{a}^2 \overline{b}^2$$

Доказательство. По свойству скалярного произведения $(\overline{a} + t\overline{b})^2$ всегда невырожденная величина, т.е. $(\overline{a} + t\overline{b})^2 \geqslant 0 \Rightarrow \overline{a}^2 + 2t(\overline{a}, \overline{b}) + t^2\overline{b}^2 \geqslant 0$, тогда его дискриминант не положительный, т.к. t – любое число, то

$$(\overline{a}, \overline{b})^2 - \overline{a}^2 \overline{b}^2 \le 0 \Rightarrow (\overline{a}, \overline{b})^2 \le \overline{a}^2 \overline{b}^2$$

.

1.6. Векторное умножение

Векторное умножение определяется только для трёхмерного пространства V^3 , кроме того, необходимо, чтобы пространство было ориентированным, выберем в нём правый ОНБ $(\bar{i}, \bar{j}, \bar{k})$.

Def 1.6.1. Пусть $\overline{v}=(x_1,x_2,x_3),\overline{w}=(y_1,y_2,y_3).$ Тогда векторное произедение

$$\overline{v} \times \overline{w} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = \overline{i}(x_2y_3 - x_3y_2) - \overline{j}(x_3y_1 - x_1y_3) + \overline{k}(x_1y_2 - x_2y_1).$$

Свойства:

1. $\overline{v} \times \overline{w} = -\overline{w} \times \overline{v}$ – косокоммутативность.

2.
$$\overline{v} \times \overline{v} = \overline{0}$$
.

$$2. \ \overline{v} \times \overline{v} = \overline{0}.$$

$$3. \ (\overline{v} + \overline{w}) \times \overline{z} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_1 + y_1 & x_2 + y_2 & x_3 + y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_1 & x_2 & x_3 \\ z_1 & z_2 & z_3 \end{vmatrix} + \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = \overline{v} \times \overline{z} + \overline{w} \times \overline{z} - \text{ адди-}$$

$$4. \ (\lambda \overline{v}) \times \overline{w} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \lambda x_1 & \lambda x_2 & \lambda x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = \lambda \overline{v} \times \overline{w}.$$

$$5. \ \overline{v} \times \overline{v} + \overline{v} \times \overline{v} + \overline{v} \times \overline{v}$$

4.
$$(\lambda \overline{v}) \times \overline{w} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \lambda x_1 & \lambda x_2 & \lambda x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = \lambda \overline{v} \times \overline{w}$$

5.
$$\overline{v} \times \overline{w} + \overline{v}$$
. \overline{u}

5.
$$\overline{v} \times \overline{w} \perp \overline{v}, \overline{w}$$

$$(\overline{v}, \overline{v} \times \overline{w}) = \begin{pmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}, \overline{v}) = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = 0.$$

6.
$$\overline{v} \times \overline{w} = 0 \Leftrightarrow \overline{v} \parallel \overline{w}$$

$$\overline{v} \times \overline{w} = 0 \Leftrightarrow \overline{v} \parallel \overline{w}
(\overline{v}, \overline{w}, \overline{v} \times \overline{w}) = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ (x_2y_3 - x_3y_2) & (x_3y_1 - x_1y_3) & (x_1y_2 - x_2y_1) \\ (x_1y_2 - x_2y_1)^2 \geqslant 0 \Rightarrow (\overline{v}, \overline{w}, \overline{v} \times \overline{w}) = 0 \Leftrightarrow \frac{x_2}{y_2} = \frac{x_3}{y_3}, \frac{x_3}{y_3} = \frac{x_1}{y_1}, \frac{x_1}{y_1} = \frac{x_2}{y_2} \Rightarrow \frac{x_1}{y_1} = \frac{x_2}{y_2} = \frac{x_3}{y_3}.$$

7.
$$\overline{v} \not\parallel \overline{w} \Rightarrow (\overline{v}, \overline{w}, \overline{v} \times \overline{w})$$
 – правая.

8.
$$\overline{i} \times \overline{j} = \overline{k}$$
. Получим таблицу умножения: $i \to j, j \to k, k \to i$.

9.
$$(\overline{a} \times \overline{b})^2 = (x_2y_3 - y_2x_3)^2 + (\dots)^2 + (\dots)^2$$

 $\overline{a}^2\overline{b}^2 - (\overline{a}, \overline{b})^2 = (x_1^2 + x_2^2 + x_3^2)(y_1^2 + y_2^2 + y_3^2) - (x_1y_1 + x_2y_2 + x_3y_3)^2$
 $(\overline{a} \times \overline{b})^2 = \overline{a}^2\overline{b}^2 - (\overline{a}, \overline{b})^2 - \text{упражнение.}$
 $\overline{a}^2\overline{b}^2 - (\overline{a}, \overline{b})^2 = S^2 = |\overline{a}|^2|\overline{b}|^2\sin^2\alpha = |\overline{a}|^2\overline{b}|^2(1 - \cos^2\alpha) = |\overline{a}|^2|\overline{b}|^2 - (\overline{a}, \overline{b})^2, \text{ т.к. } \cos^2\alpha = \frac{(a,b)^2}{|a|^2|b|^2}.$
Следствие: $|\overline{a}| = |\overline{b}| = 1, (\overline{a}, \overline{b}) \Rightarrow |\overline{a} \times \overline{b}| = 1.$

Рассмотрим V^3 , зафиксируем ОНБ $(\overline{i}, \overline{j}, \overline{k})$, зададим векторное произведение $\times : V \times V \to V$. Выберем $\bar{a}, \bar{b}, \bar{c}$ – правый ОНБ, таким образом, если взять любой ОНБ, можно получить таблицу умножения: $a \to b, b \to c, c \to a$.

$$\overline{v} = (\lambda_1, \lambda_2, \lambda_3), \ \overline{w} = (\mu_1, \mu_2, \mu_3) \Rightarrow \overline{v} \times \overline{w} = (\lambda_1 \overline{a} + \lambda_2 \overline{b} + \lambda_3 \overline{c}) \times (\mu_1 \overline{a} + \mu_2 \overline{b} + \mu_3 \overline{c}) =$$

$$= \lambda_1 \mu_1 \overline{a} \times \overline{a} + \lambda_1 \mu_2 \overline{a} \times \overline{b} + \lambda_1 \mu_3 \overline{a} \times \overline{c} + \lambda_2 \mu_1 \overline{b} \times \overline{a} + \lambda_2 \mu_2 \overline{b} \times \overline{b} + \lambda_2 \mu_3 \overline{b} \times \overline{c} + \lambda_3 \mu_1 \overline{c} \times \overline{a} + \lambda_3 \mu_2 \overline{c} \times \overline{b} + \lambda_3 \mu_3 \overline{c} \times \overline{c} =$$

$$= \overline{c}(\lambda_1 \mu_2 - \lambda_2 \mu_1) - \overline{b}(\lambda_1 \mu_3 - \lambda_3 \mu_1) + \overline{a}(\lambda_2 \mu_3 - \lambda_3 \mu_2) = \begin{vmatrix} \overline{a} & \overline{b} & \overline{c} \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \mu_1 & \mu_2 & \mu_3 \end{vmatrix}.$$

1.7. Смешанное умножение

Рассмотрим трёхмерное ориентированное векторное пространство V^3 , в котором зафиксирован базис $\{\bar{i},\bar{j},\bar{k}\}$ и на котором задано векторное умножение: ×.

Зададим новую операцию – смешанное произведение $(,,): V \times V \times V \to \mathbb{R}$.

Def 1.7.1. Смешанное произведение трёх векторов $\overline{a}, \overline{b}, \overline{c}$ – скалярное произведение вектора \overline{a} и векторного произведения векторов \overline{b} и \overline{c} . $(\overline{a}, \overline{b}, \overline{c}) = (\overline{a}, \overline{b} \times \overline{c})$.

Пример 1.7.2. Что подразумевает под собой смешанное произведение?

Рассмотрим $\overline{a} = (a_1, a_2, a_3), \overline{b} = (b_1, b_2, b_3), \overline{c} = (c_1, c_2, c_3).$

$$\overline{b} \times \overline{c} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \overline{i} \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - \overline{j} \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + \overline{k} \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

$$(\overline{a}, \overline{b} \times \overline{c}) = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = (\overline{a}, \overline{b}, \overline{c})$$

Таким образом,
$$(\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Свойства смешанного произведения:

- 1. Линейность по каждому аргументу, как композиция линейных отображений.
- 2. $(\overline{a}, \overline{b}, \overline{c}) = -(\overline{a}, \overline{c}, \overline{b})$ по свойству векторного произведения. $(\overline{a}, \overline{b}, \overline{c}) = -(\overline{b}, \overline{a}, \overline{c}); (\overline{a}, \overline{b}, \overline{c}) = (\overline{b}, \overline{c}, \overline{a}).$

Знак меняется в зависимости от чётности перестановки в силу свойств определителя.

3. Геометрический смысл для трёх некомпланарных.

Если \overline{a} сходит туда же, куда и $\overline{b} \times \overline{c}$, то $(\overline{a}, \overline{b}, \overline{c})$ – правая тройка. Если \overline{a} "смотрит"в другую плоскость, то тройка – левая.

$$\overline{b} \times \overline{c} = S$$
, тогда $(\overline{a}, \overline{b} \times \overline{c}) = S |\overline{a}| \cos \alpha = S \cdot h$. Таким образом, $(\overline{a}, \overline{b}, \overline{c}) = S \cdot h = V_{\text{пар}}$.

Вывод: смешанное произведение равно $\pm V$ параллеленипеда (знак зависит от ориентации).

1.8. Двойное векторное умножение. Тождество Якоби

Рассмотрим ориентированное V^3 и $\overline{a} \times (\overline{b} \times \overline{c})$, выражение имеет смысл, поскольку и \overline{a} – вектор, и $(\overline{b} \times \overline{c})$ – вектор.

Утверждение 1.8.1 (Формула "бац минус цаб").

$$\overline{a} \times (\overline{b} \times \overline{c}) = \overline{b}(\overline{a}, \overline{c}) - \overline{c}(\overline{a}, \overline{b}).$$

Доказательство. И справа, и слева знака равенства линейные выражения. Представим, что есть функция с операцией из трёх аргументов $f(\overline{a},b,\overline{c})$, где каждый из векторов может быть расписан по базису, т.е. $f(\overline{a}, \overline{b}, \overline{c}) = f(a_1\overline{i} + a_2\overline{j} + a_3\overline{k}, b_1\overline{i} + b_2\overline{j} + b_3\overline{k}, c_1\overline{i} + c_2\overline{j} + c_3\overline{k}) = a_1b_1c_1f(\overline{i}, \overline{i}, \overline{i}) + a_1\overline{k}$ $a_1b_1c_2f(\overline{i},\overline{i},\overline{j})+...+a_3b_3c_3f(\overline{i},\overline{j},\overline{k})$, в силу линейности мы вынесли числа за скобки и получили все возможные наборы базисных элементов. В качестве первого, второго и третьего аргумента может быть один из трёх векторов: $\bar{i}, \bar{j}, \bar{k}$, т.е. 27 базисных наборов, в данном выражении 27 слагаемых.

Чтобы вычислить значение трилинейной функции на каком-то наборе векторов, достаточно знать координаты этих векторов и значения отображения функции 27 базисных наборов. Тогда для доказательства выражения достаточно проверить, совпадают ли две трилинейные функции на 27 базисных наборах, значит, они совпадают везде.

Для набора " $\bar{i}, \bar{i}, \bar{j}$ ": $\bar{i} \times (\bar{i} \times \bar{j}) = \bar{i}(\bar{i}, \bar{j}) - \bar{j}(\bar{i}, \bar{i})$, используем таблицу умножения: $i \to j, j \to k, k \to i$, тогда $\bar{i} \times (\bar{i} \times j) = \bar{i}(\bar{i}, \bar{j}) - \bar{j}(\bar{i}, \bar{i})$

Аналогично для остальных 25 базисных наборов.

Теорема 1.8.2 (Тождество Якоби).

$$\overline{a}\times (\overline{b}\times \overline{c}) + \overline{b}\times (\overline{c}\times \overline{a}) + \overline{c}\times (\overline{a}\times \overline{b}) = 0$$

Доказательство.
$$\overline{b}(\overline{a},\overline{c}) - \overline{c}(\overline{a},\overline{b}) + \overline{c}(\overline{a},\overline{b}) - \overline{a}(\overline{b},\overline{c}) + \overline{a}(\overline{c},\overline{b}) - \overline{b}(\overline{a},\overline{c}) = 0$$

Пусть V — векторное пространство, на нём есть бинарная операция $[,]:V\times V\to V$, которая обладает свойствами:

- 1. Билинейность
- 2. Косокоммутативность: $[\overline{a}, \overline{b}] = -[\overline{b}, \overline{a}]$
- 3. Удовлетворяет тождеству Якоби: $[\overline{a}, [\overline{b}, \overline{c}]] + [\overline{b}, [\overline{c}, \overline{a}]] + [\overline{c}, [\overline{a}, \overline{b}]] = 0$

Def 1.8.3. Если выполняются все свойства, то операция [,] называется скобка Ли, а векторное пространство (V,[,]) – алгебра $\mathcal{J}u$.

1.9. Уравнение прямой на плоскости

Возьмём точку M и вектор \overline{v} , который отложим от точки M, проведём прямую, кторая содержит эти два объекта. Отметим точку M', которая записывается как $M' = M + t\overline{v}$.

Def 1.9.1. $M' = M + t\overline{v}$ – параметрическое задание.

Выберем начало координат O, вектор \overline{r}_0 , который соответсвует точке M и вектор \overline{r} , который соответсвует произольной точке M'. Тогда вектор \overline{r} в зависимости от t представляется как $\overline{r}(t) = \overline{r}_0 + t\overline{v}$

Def 1.9.2.

$$\overline{r}(t) = \overline{r}_0 + t\overline{v}$$

- параметрическое уравнение прямой.

Обозначим координаты вектора \overline{r} как (x,y), вектора \overline{r}_0 как (x_0,y_0) , вектора \overline{v} как (a,b). Тогда запишем это уравнение с каждой координатой.

Def 1.9.3. $\begin{cases} x = x_0 + ta \\ y = y_0 + tb \end{cases} - napamempuческое уравнение в координатах.$

Рис. 2: Изображение вектора \overline{v} на плоскости

Выразим из обоих уравнений t, из первого уравнения получаем $t=\frac{x-x_0}{a}$, из второго $t=\frac{y-y_0}{b}$, тогда верно $\frac{x-x_0}{a}=\frac{y-y_0}{b}$.

Def 1.9.4.

$$\frac{x - x_0}{a} = \frac{y - y_0}{b}$$

- каноническое уравнение прямой на плоскости.

Пример 1.9.5. 2x = y - 1, можно записать данное выражение как: $\frac{x-0}{1} = \frac{y-1}{2}$

Пусть нам известны координаты начала вектора (x_0, y_0) и координаты конца (x_1, y_1) , тогда можно записать каноническое уравнение прямой в другом виде.

Def 1.9.6.

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}$$

– каноническое уравнение прямой на плоскости.

Приведём первый вариант канонического уравнения прямой к следующему виду:

$$bx - x_0b = ay - ay_0 \Rightarrow bx - ay + (ay_0 - bx_0) = 0.$$

Введём обозначения, пусть A – коэффициент при x, B – коэффициент при y, а C – свободный член.

Def 1.9.7. $A^2 + B^2 \neq 0$

$$Ax + By + C = 0$$

– общее уравнение прямой на плоскости.

(-B,A) – направляющий вектор.

 $\left(-\frac{C}{A},0\right)$ – mouka.

 $(-\ddot{B}, A)$ – перпендикуляр к прямой (вектор нормали).

 $B \neq 0$, тогда $y = -\frac{A}{B} - \frac{C}{B}$, введём обозначения.

Def 1.9.8.

$$y = kx + b$$

– уравнение прямой c угловым коэффициентом, где $k = \operatorname{tg} \alpha$.

Пусть вектор \overline{n} с координатами (A, B) перпендикулярен вектору \overline{v} (рис. 2), т.е. $\overline{MM'} \perp \overline{n}$), тогда $(\overline{n}, \overline{MM'}) = 0$.

Def 1.9.9.

$$(\overline{n}, \overline{r} - \overline{r}_0) = 0$$

- векторное уравнение прямой на плоскости.

Раскроем скобки: $(\overline{n}, \overline{r}) - (\overline{n} - \overline{n}_0) = 0 \Rightarrow (\overline{n}, \overline{r}) = (\overline{n}, \overline{r}_0)$, обозначим $(\overline{n}, \overline{r}_0) = \alpha$, поскольку векторы \overline{n} и \overline{r}_0 зафиксированы.

Def 1.9.10.

$$(\overline{n},\overline{r}) = \alpha$$

- векторное уравнение прямой на плоскости, где \overline{n} - перпендикуляр к исходной прямой.

1.10. Уравнение плоскости в пространстве

Возьмём точку M_0 в \mathbb{R}^3 и зададим плоскость двумя неколлинеарными векторами \overline{a} и \overline{b} , т.е. $\overline{a} \nparallel \overline{b}$. Любая точка M этой плоскости является линейной комбинацией: $M = M_0 + \alpha \overline{a} + \beta \overline{b}$.

Def 1.10.1. $M = M_0 + \alpha \overline{a} + \beta \overline{b}$ – параметрическое задание точек пространства \mathbb{R}^3 .

Аналогично, как в уравнении прямой на плоскости, возьмём начало координат O и запишем через параметры радиус-вектор \overline{r} точки M.

Def 1.10.2.

$$\overline{r}(\alpha,\beta) = \overline{r}_0 + \alpha \overline{a} + \beta \overline{b}$$

- параметрическое уравнение плоскости в пространстве.

Выберем систему координат, тогда у точки M будут координаты (x, y, z). Запишем параметрическое уравнение в координатах.

ческое уравнение в координатах.
$$\begin{cases} x = x_0 + \alpha a_1 + \beta b_1 \\ y = y_0 + \alpha a_2 + \beta b_2 \\ z = z_0 + \alpha a_3 + \beta b_3 \end{cases} - nараметрическое уравнение плоскости в координатах.$$

Рассмотрим правоориентированное векторное пространство \mathbb{R}^3 . Если есть вектора \overline{a} и \overline{b} , то их векторное произведение – перпендикуляр \overline{n} к плоскости, которая содержит эти вектора \overline{a} и \overline{b} . С помощью этого перпендикуляра можно записать уравнение плоскости: $(\overline{n}, \overline{M_0M}) = 0$.

Def 1.10.4.

$$(\overline{n}, \overline{r} - \overline{r_0}) = 0$$

- векторное уравнение плоскости.

Если координаты вектора \overline{n} – (A,B,C), то можно записать скалярное произведение в другом виде.

Def 1.10.5.

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

– общее уравнение плоскости.

 x_0, y_0, z_0 — координаты конкретной точки, от которой можно отойти. Раскроем скобки, обозначим свободный член за D.

Def 1.10.6.

$$Ax + By + Cz + D = 0$$

- общее уравнение плоскости.

Векторов, перпендикулярных плоскости, содержащей векторы \overline{a} и \overline{b} , бесконечное множество, один из них — векторное произведение векторов \overline{a} и \overline{b} . Если "отойти"от параметров, то получим общее уравнение, значит, коэффициенты A,B,C будут пропорциональны векторному произведению.

Сопоставляя общее уравнение плоскости и параметрическое можно прийти к другому виду общего уравнения.

Def 1.10.7.

$$\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} (x - x_0) - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} (y - y_0) + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_3 \end{vmatrix} (z - z_0) = 0$$

- общее уравнение плоскости.

Плоскость можно задать тремя точками, не лежащими на одной прямой. Пусть их координаты (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) . Предположим, что необходимо найти плоскость через общее уравнение плоскости, т.е. Ax + By + Cz + D = 0. Подставим значения трёх точек в это уравнение:

$$\begin{cases} Ax_1 + By_1 + Cz_1 + D = 0 \\ Ax_2 + By_2 + Cz_2 + D = 0 \\ Ax_3 + By_3 + Cz_3 + D = 0 \end{cases}$$

Необоходимо решить эту систему, чтобы найти значения коэффициентов A, B, C, D. Три уравнения, четыре переменные, значит, решений у такой системы много. Добавим ещё одну точку

$$M(x,y,z)$$
, тогда система приниает вид:
$$\begin{cases} Ax + By + Cz + D = 0 \\ Ax_1 + By_1 + Cz_1 + D = 0 \\ Ax_2 + By_2 + Cz_2 + D = 0 \\ Ax_3 + By_3 + Cz_3 + D = 0 \end{cases}$$

При каком условии у такой системы найдётся решение? Если эта новая точка M лежит в одной плоскости с заданными трёмя точками, то решение есть, иначе — нет.

В системе четыре уравнения, четыре неизвестных, все свободные члены равны нулю, получается, эта СЛУ однородная. Что значит, что эта система разрешима? У неё единственное решение, если эта система невырожденная, т.е. (0,0,0,0), это решение не подходит.

Если точка M принадлежит искомой плоскости, то решение существует, причем решение системым должно быть не тождественный нуль, значит, эта система имеет вырожденную матрицу:

Def 1.10.8.

$$\left| \begin{array}{cccc} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{array} \right| = 0$$

– матричное уравнение плоскости в пространстве.

1.11. Уравнение прямой в пространстве

Def 1.11.1. $M' = M + t\overline{v}$ – параметрическое задание.

Def 1.11.2.

$$\overline{r}(t) = \overline{r}_0 + t\overline{v}$$

- параметрическое уравнение прямой.

Введём декартову систему координат.

Def 1.11.3.

$$\begin{cases} x = x_0 + ta \\ y = y_0 + tb \\ z = z_0 + tc \end{cases}$$

— параметрическое уровнение прямой в координатах, где a,b,c — координаты направляющего вектора \overline{v} .

"Избавимся"от параметра:

Def 1.11.4.

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

- каноническое уравнение прямой в пространстве.

Если есть произвольная точка M_1 , лежащей на прямой, координаты которой мы знаем.

Def 1.11.5.

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

- каноническое уравнение прямой через две точки.

Можно переписать данное выражение в виде системы: $\begin{cases} \frac{x-x_0}{x_1-x_0} = \frac{y-y_0}{y_1-y_0} \\ \frac{y-y_0}{y_1-y_0} = \frac{z-z_0}{z_1-z_0} \end{cases}$, что эквивалентно другой

системе: $\begin{cases} Ax + By + Cz + D = 0 \\ A'x + B'y + C'z + D' = 0 \end{cases}$. Каждое из уравнений в этой системе – уравнение плоскости, значит, прямая записана как пересечение двух плоскостей.

Def 1.11.6.

$$\begin{cases} Ax + By + Cz + D = 0 \\ A'x + B'y + C'z + D' = 0 \end{cases}$$

– уравнение прямой как линия пересечения двух плоскостей.

Значения A, B, C – координаты вектора нормали к плоскости. Пусть есть плоскость α с вектором нормали \overline{n}_1 и плоскость β с вектором нормали \overline{n}_2 . Тогда линия пересечения плоскостей – необходимая прямая.

Чтобы эту прямую явно задать каноническим способом, нужно знать направляющий вектор и точку.

Точку можно найти следующим образом: можно любую из координат "положить" нуль, например, x = 0, тогда решаем СЛУ стандартным образом.

Как найти направляющий вектор? Этот вектор – векторное произведение двух нормалей плоскостей α и $\beta: \overline{n}_1 \times \overline{n}_2$.

Пример 1.11.7. Допустим, координаты точки $(0, y_0, z_0)$. Тогда можно записать каноническое уравнение как:

$$\frac{x}{\left|\begin{array}{cc} B & C \\ B' & C' \end{array}\right|} = \frac{y - y_0}{\left|\begin{array}{cc} C & A \\ C' & A' \end{array}\right|} = \frac{z - z_0}{\left|\begin{array}{cc} A & B \\ A' & B' \end{array}\right|}$$

Замечание 1.11.8. Можно судить о пересечении двух плоскостей; если вектора нормали неколлинеарны, то это заведомо прямая, иначе — нужно судить по свободным членам, если все коэффициенты пропорциональны, решение у этой системы — вся плоскость (т.е. плоскости совпадают), если не пропорциональны, то решение — Ø.

Рассмотрим некоторые векторы в ориентированном векторном пространстве V^3 : зафиксированные \overline{a} и \overline{b} и переменный вектор \overline{r} – в выражении $\overline{a} \times \overline{r} = \overline{b}$.

Чтоб решение у этого выражения существовало, необходимо задать, что $\bar{b} \perp \bar{a}$, значит, вектор \bar{r} лежит в плоскости, перпендикулярной к \bar{b} . Разделим эту плоскость на две полуплоскости по отношению к \bar{a} , вектор \bar{r} должен лежать так, чтобы (по правилу буравчика) от вектора \bar{a} давать вектор \bar{b} . Каков геометрический смысл векторного произведения? $|\bar{a} \times \bar{r}| = S_{\text{пар}}$, кроме того, $S = |\bar{b}|$. С другой стороны, $S = |\bar{a}|h$, где h — расстроение от "кончика"вектора \bar{r} до прямой, содержащей \bar{a} , поскольку вектор \bar{b} фиксирован, отчего фиксирована и величина S, то и все концы возможных векторов \bar{r} должны лежать на одинаковом удалении от \bar{a} , равном h. Значит, все решения лежат на прямой, параллельной той, на которой лежит вектор \bar{a} , на расстоянии h по определённую полуплоскость. Таким образом, решение уравнения $\bar{a} \times \bar{r} = \bar{b}, \bar{b} \perp \bar{a}$ всегда есть, и им является прямая в пространстве.

Def 1.11.9.

$$\overline{a} \times \overline{r} = \overline{b}, \ \overline{b} \perp \overline{a}$$

- векторное уравнение прямой в пространстве.

Найдём точку, которая лежит на данной прямой, поскольку мы уже знаем, что это за прямая. Изобразим расстояние (перпендикуляр) от данной прямой, обозначим точкой M_0 , до точки O. Из описанного ранее известно, что $h=\frac{S}{|\overline{a}|}$. Тогда $\overline{OM_0}$ это результат векторного произведения $\overline{a}\times \overline{b}$, тогда направление данного вектора это $\overline{e}=\frac{\overline{a}\times \overline{b}}{|\overline{a}\times \overline{b}|}$, но нам необходим вектор, умноженный на h, тогда этот вектор $\overline{r}_0=\frac{\overline{a}\times \overline{b}}{|\overline{a}\times \overline{b}|}\cdot \frac{|\overline{b}|}{|\overline{a}|}$ — частное решение уравнения, где направляющий вектор \overline{a} .

