Concurrent Functional Linear Models

Pang Du

Department of Statistics Virginia Tech

1/29

Predicting precipitation profiles from temperature curves

- Precipitation is much harder to predict than temperature.
- It comes in two main forms:
 - Drizzle: Large low pressure zones drop moisture over many hours or days.
 - Storms: Convective, short violent storms with a lot of precipitation in a hurry, and spatially localized.
- Precipitation tends to be seasonal; more in the spring and fall than in the summer and winter.
- Temperature effect: temperature drop in summer often comes with precipitation, snowfall in winter comes when temperature is a little below freezing.

A model

- We can assume that climate zone is important.
- We will predict log precipitation: logging stabilizes variance and eliminates the positivity constraint.
- We will use the difference $TempRes_{mg}(t)$ between a temperature profile and the mean for the climate zone as a functional covariate.
- We can extend the functional ANOVA model to

$$\log[\operatorname{Prec}_{mg}(t)] = \mu(t) + \alpha_g(t) + \operatorname{TempRes}_{mg}(t)\beta(t) + \epsilon_{mg}(t).$$

 We call this model concurrent because it assumes that the temperature today affects today's precipitation.

3/29

Preliminary steps

- Where precipitation was recorded as 0 mm, we changed it to 0.05 mm, half the minimum positive value.
- We used 11 Fourier series basis functions for precipitation with no roughness penalty.
- We used 21 Fourier series basis functions for temperature with no roughness penalty.

Log precipitation profiles

Log precipitation profile for Vancouver

Preliminary step highlights

- Prince Rupert is the rainiest place that averages nearly 12 mm of rain a day in October.
- The driest station is Resolute in the high arctic, where snowfall has a barely measurable rain equivalent of 0.1 mm per day in the winter.
- Vancouver: sharp drop in rainfall during the summer months, even including two days without precipitation in 34 years.

Fitting criterion and some results

 The fitting criterion was the unpenalized error sum of squares

$$\begin{split} \mathsf{LMSSE}(\mu,\alpha_g,\beta) &= \sum_{g=1}^4 \sum_{m=1}^{N_g} \int [\mathsf{LogPrec}_{mg}(t) \\ &- \mu(t) - \alpha_g(t) - \mathsf{TempRes}_{mg}(t) \beta(t)]^2 dt \end{split}$$

- The resulting root-mean-squared-residual was 0.19 mm.
- When we dropped TempRes(t) from the model, this increased to 0.20 mm.
- The temperature residual function don't seem to improve the fit by much.

Estimated $\beta(t)$ and its point-wise CIs

More about temperature effect

- As we see in the following plot, the only place where temperature appears to make a contribution is the mid-winter, from December to February.
- However, the CIs are point-wise and don't provide sufficient conditions for making such a claim.
- A better way to investigate this is to construct a functional contrast (or probe).

A probe for the winter effect

- The confidence limits are point-wise; we need a measure of the temperature influence accumulated over the winter months.
- We could propose a contrast function or linear probe

$$\xi(t) = \cos[2\pi(t - 64.5)/365],$$

where the shift value of 64.5 is the empirical mark of mid-winter by finding the low point in the mean precipitation profile.

- Why this probe?
- $\xi(t)$ has its positive peak at the mid-winter and negative peak in the summer.

Pang Du (VT) Concurrent Models 11/29

Probe results on the winter effect

 The inner product of the regression coefficient function with this probe

$$\int_0^{365} \cos[2\pi(t-64.5)/365]\beta(t)dt = 2.32$$

in effect accumulates information across the entire year about the difference between the summer and winter influence in temperature residual.

- The estimated standard error of this probe is 0.77, giving a t-ratio of 3.0.
- Conclusion: if the mean temperature residual for a weather station is high in winter (e.g., a marine station like Prince Rupert), then precipitation will also be high for that station relative to other stations within the same climate zone.

Model

 General form of a concurrent functional linear model:

$$y_i(t) = \sum_{j=1}^q z_{ij}(t) eta_j(t) + \epsilon_i(t).$$

or in matrix notation:

$$\mathbf{y}(t) = \mathbf{Z}(t)\boldsymbol{\beta}(t) + \boldsymbol{\epsilon}(t).$$

• The least squares criterion:

$$\mathsf{LMSSE}(\boldsymbol{\beta}) = \int [\mathbf{y}(t) - \mathbf{Z}(t)\boldsymbol{\beta}(t)]'[\mathbf{y}(t) - \mathbf{Z}(t)\boldsymbol{\beta}(t)]dt.$$

Roughness penalties

 We may need a separate roughness penalty for each regression coefficient function:

$$\mathsf{PEN}_j(eta_j) = \lambda_j \int [L_j eta_j(t)]^2 dt.$$

• The penalized least squares criterion:

$$\begin{aligned} \mathsf{PLMSSE}(\boldsymbol{\beta}) &= \int [\mathbf{y}(t) - \mathbf{Z}(t)\boldsymbol{\beta}(t)]'[\mathbf{y}(t) - \mathbf{Z}(t)\boldsymbol{\beta}(t)]dt \\ &+ \sum_{i=1}^q \lambda_j \int [L_j\beta_j(t)]^2 dt. \end{aligned}$$

14 / 29

Basis function expansions for $\beta_j(t)$

• Let regression function $\beta_j(t)$ have the expansion

$$\beta_j(t) = \mathbf{b}_j' \boldsymbol{\theta}_j(t)$$

in terms of K_j basis functions $\theta_{jk}(t)$.

• For scalar predictors: the basis for their $\beta_j(t)$'s is the constant basis

$$\beta_{j1}(t)=1.$$

Further notation

• Defining $K_{\beta} = \sum_{j=1}^{q} K_{j}$, we construct a vector **b** of length K_{β} as

$$\mathbf{b} = (\mathbf{b}'_1, \dots, \mathbf{b}'_q)'.$$

• Now assemble q by K_{β} matrix function Θ as follows:

$$\Theta = \left[\begin{array}{cccc} \boldsymbol{\theta}_1' & 0 & \cdots & 0 \\ 0 & \boldsymbol{\theta}_2' & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\theta}_q' \end{array} \right].$$

• We can now express our model as

$$\mathbf{y}(t) = \mathbf{Z}(t)\Theta(t)\mathbf{b} + \boldsymbol{\epsilon}(t).$$

Rewrite the penalties

• We also need to arrange the order K_j roughness penalty matrices

$$\lambda_j \mathbf{R}_j = \lambda_j \int [L oldsymbol{ heta}_j(t)] [L oldsymbol{ heta}_j(t)]' dt$$

into the symmetric block diagonal matrix **R** of order K_{β} :

$$\mathbf{R} = \begin{bmatrix} \lambda_1 \mathbf{R}_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 \mathbf{R}_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_q \mathbf{R}_q \end{bmatrix}.$$

The normal equation

$$[\int \Theta'(t) \mathbf{Z}'(t) \mathbf{Z}(t) \Theta(t) dt + \mathbf{R}] \mathbf{b} = \int \Theta'(t) \mathbf{Z}'(t) \mathbf{y}(t) dt$$

• Numerical integrations on LHS: The scalar functions $w_{jl}(t) = \sum_{i=1}^{N} z_{ij}(t)z_{il}(t)$ play the role of weighting functions for the functional inner products

$$\int oldsymbol{ heta}_{\it l}(t)oldsymbol{ heta}_{\it l}^{\it l}(t)w_{\it jl}(t), \quad \it j,\it l=1,\ldots,q.$$

• Numerical integrations on RHS: The scalar functions $\sum_{i=1}^{N} z_{ij}(t)y_i(t)$ play the role of weighting functions for the functional inner products of the basis functions θ_i with the unit function 1.

The confidence intervals

- Estimate the variance Σ_e of the smoothing residuals for a single response.
- Assuming independence of the observations, the variance of the whole response data matrix is

$$\text{Var}[\text{vec}(\textbf{Y})] = \Sigma_e \otimes \textbf{I}.$$

• Work out the linear mapping from the data to a functional probe $\rho(\beta_j)$ that is being estimated. Let us call this \mathbf{M}_j . Then

$$\mathsf{Var}[
ho(eta_j)] = \mathbf{M}_j'(\mathbf{\Sigma}_e \otimes \mathbf{I})\mathbf{M}_j.$$

How do I work out mapping M_i ?

The probe $\rho(\beta_j)$ is three linear mappings from the data:

- Two mappings are the same as the functional-response-multivariate-covariate case:
 - The linear mapping from the raw data matrix Y to the coefficient matrix C defining the smoothed response functions y(t).
 - The linear mapping from the regression coefficient function coefficient vector \mathbf{B}'_j to the value of the probe.
- We only need to work out the linear mapping from C to B_i.

The mapping from C to B

- Let ϕ be the length- K_y vector of basis functions for the response functions $\mathbf{y}(t)$ such that $\mathbf{y}(t) = \mathbf{C}\phi(t)$.
- From the normal equation:

$$\hat{\mathbf{b}} = [\int \Theta' \mathbf{Z}' \mathbf{Z} \Theta + \mathbf{R}]^{-1} [\int \Theta' \mathbf{Z}' \mathbf{C} \phi]$$

$$= [\int \Theta' \mathbf{Z}' \mathbf{Z} \Theta + \mathbf{R}]^{-1} [\int \phi' \otimes (\Theta' \mathbf{Z}')] \text{vec}(\mathbf{C}).$$

• Hence the mapping from C to B is

$$[\int \Theta' \mathbf{Z}' \mathbf{Z} \Theta + \mathbf{R}]^{-1} [\int \phi' \otimes (\Theta' \mathbf{Z}')]$$

Nondurable goods index 1952-2000

Trends in nondurable goods index

- Long term trend: linear after logarithmic scaling.
- Shocks like the Vietnam War are on a shorter scale, and can result in long-term changes in trend.
- Seasonal trend is complex and evolving over the years.

Four seasonal trend examples

Seasonal trends in nondurable goods index

- Three cycles evident in most years, separated by the Easter/Passover, summer school, and Christmas holidays, respectively.
- Seasonal trends are stable over a couple of years, but evolve over a longer time span.
- The large autumn cycle shows a phase shift between the 60's and 90's, but there is little change in amplitude.
- The small winter cycle is much smaller in the 90's, but the dip due to the summer holidays is much more profound in the 60's.

A concurrent functional linear model approach

We can model the nonseasonal trend plus an evolving seasonal trend as follows:

$$y(t) = \alpha(t) + \beta_1(t)\sin(2\pi t/365) + \beta_2(t)\cos(2\pi t/365) + \dots + \beta_{2p-1}(t)\sin(2p\pi t/365) + \beta_{2p}(t)\cos(2p\pi t/365) + \epsilon(t).$$

- ullet Intercept function lpha(t) captures nonseasonal trend.
- Seasonal trends are represented by the sinusoidal functions with different periods.
- p = 5 in our analysis which essentially includes seasonal trends of five different frequencies.

Pang Du (VT) Concurrent Models 26 / 29

Fitting details

- Analysis conducted on the whole long time series that contains 577 monthly values in the years 1952 to 2000.
- Intercept function α was modeled by B-splines with knots at each year and regularized with $\lambda = 0.01$.
- Each regression function β_j had 7 B-spline basis functions.
- A total of 121 parameters were estimated from 577 data points.

27/29

The fit over years 1964-1970

Concurrent functional linear models

- The concurrent functional linear model offers a simple way of relating a functional response to functional covariates.
- However, the influence is simultaneous, and does not permit a covariate to affect the outcome at any time other than the present.
- The model can also be fit to a single long time series provided that the number of parameters is kept small and/or regularization is used.