A Project Report on

RESEARCH AND ANALYSIS ON TEMPERATURE VARIATION WITH RESPECT TO TIME OF NITROGEN INSIDE A PRESSURE CHAMBER

By

Jay Bhortake (BM123)

Tejas Chippa (BM138)

Deven Dhore (BM150)

Harsh Bokil (BM211)

Under Guidance Of

Prof. D. M. Pawar

Department of Mechanical Engineering
Marathwada Mitra Mandal's
College of Engineering,
Karvenagar, Pune
[2023-24]

A Project Report on

TEMPERATURE VARIATION OF FLUID INSIDE A CHAMBER DUE TO ENVIRONMENTAL EFFECTS

By: -

Jay Bhortake

Tejas Chippa

Deven Dhore

Harsh Bokil

Signature

JABotoke

novel

How

Under the Guidance of: -

College Guide- Prof. D. M. Pawar

Guide from Organization- Mr. Paras Ram, 5-7

Signature

War- Ru

Telephone

(91) (020) 27044200

(91) (020) 27044205

Fax

(91) (020) 27044202

(91) (020) 27044010

E-mail

ni.vog@eebr.geml

RDE/90008/IMSG

भारत सरकार, रक्षा कंकालय,
Government of India, Ministry of Defence,
रक्षा अनुशंकान तथा विकास स्थापन,
Defence Research & Development Organisation,
अनुशंकान तथा विकास स्थापन (ईजीनिकारी),
Research & Development Establishment
(Engineers),
कला,आलंदी शेड, दिशो शे.ऑ., पूरो - 411015, भारत

) Sept 202

TO,

The, Head of Mechanical Engineering Marathwada Mitra Mandal's, College of Engineering, Karvenagar, Pune – 411 052

Subject: GRANT OF PERMISSION FOR STUDENT PROJECT
Letter No: - MMCOE/MECH/PROJECT/23-24 dt. 17/08/2023
Dear Madam/Sir.

I am pleased to inform you that following Student(s) has been granted permission to do Student
Project work at this establishment for the period from 01 Sept 2023 To 35 Eab 2024.

Name of the Student(Mr/Ms)	Subject	Guide from Establishment & Title of the Project	Guide from College
Mr. Deven Dhore Mr. Jay Bhortake Mr. Harsh Bokil Mr. Tejas Chippa	B.E. (Mechanical Engineering)	Mr. Peras Ram, So 'E', SPG Topic : Temperature Variation of Fluid Inside a Chamber due to Environmental Effects.	Mr. D.M. Pawar, (Assistant Professor)

- It is expected that the student will observe the normal rules contained therein to maintain discipline.
 They will abide to the COVID-19 SOP of the establishment.
- After completion of the project work, it may please be ensured that two copies of the Project report are submitted to
 this establishment. The design/model developed by the student (s) will be given to them for presentation at the time of
 examination. However, after the examination, this establishment will retain the models.
- Kindly note that the Student(s) will not be granted stipend, TA/DA, lodging/boarding facility etc.

Please acknowledge receipt of this letter. With regards.

(Ms Sarita P. Gusain) Jest fical Officer 'C' HRD Coordinator For DIRECTOR

Copy to:

Mr. Paras Ram, Sc 'E', (through GD/GH SPG): Responsibility of Internal Guide of The Estt: (Bulletine No.20210031013 dt 02 Dec 21):-

- To ensure that the student maintains discipline and abide by the COVID-19 SOP of the Establishment.
- To liaison with the Head Security /Gate Office for issue of student Gate pass for allowing entry in the Estt and after completion Of Project/Internship, deposit of temporary gate passes be ensured.
- Design /model developed by the student(s) to be given to them for presentation at the Time of examination. However, after the examination, the establishment will retain the models, which has to be ensured by the internal Guide.
- After Completion of the project work, the internal guide will ensure that a soft copy of the Project/Internship report is to be uploaded on PDOC site and hard copy of the same is submitted to TIC under intimation to IMSG.
- Issue of project/Internship completion certificate: The certificate will be issued by Internal Guide Duly Countersigned by GD IMSG. Student(s) has to produce Project/Internship Report While Seeking countersignature From GD IMSG.
- To ensure that all the formalities such as timely return of temporary gate passes, books And demo Hardware are Followed as per procedure of the estt.
- For Security Pass: Send request ION to Head Security along with encis ie, Copies Of Permission letter, college letter, Undertaking of indemnity, Adhar & Passport.
- 1. Head TIC (PDOC): for info & n.a.pl.

Marathwada Mitra Mandal's College of Engineering,

Karvenagar, Pune

CERTIFICATE

This is to certify that the project report entitled "Research and Analysis on Temperature Variation with Respect to Time of Nitrogen Inside a Pressure Chamber" has successfully been by Harsh Bokil completed under my supervision, in partial fulfillment of Bachelor of Engineering - Mechanical Engineering of Savitribai Phule Pune University.

Date: May 2024

Place: Pune

Project Guide- Prof. D. M. Pawar

External Examiner

Dr. V. R. Deulgaonkar Head Dept. of Mech. Engg. MMCOE, Pune Dr. V. N. Gohokar Principal MMCOE, Pune

ACKNOWLEDGEMENT

We take this opportunity here to thank all those who had helped us in making this project a reality.

First of all, we express our deep gratitude to our project guide Prof. D. M. Pawar for his valuable support, help & guidance from time to time during the project work. We are also grateful to our Head of Department, Dr. V. R. Deulgaonkar and Principal Dr. V. N. Gohokar, for giving us this opportunity to present this project report.

We are highly indebted to Mr. Paras Ram Sc 'F' of R&DE (E) for granting us this project and for his guidance which we were privileged to receive. We convey our heartfelt gratitude to him for taking out time from his busy schedule and leading us through this project.

Last but not the least; we would like to thank our entire teaching staff who assisted us directly or indirectly throughout the duration of this project.

Name of student Exam Seat No. Sign.

Jay U. Bhortake

Tejas S. Chippa

Deven Dhore

Harsh R. Bokil

ABSTRACT

This project is motivated by the need to enhance the efficiency of pressure chambers used in aircraft by strategically managing time, material, and thickness. The fundamental research problem addressed is the loss of effectiveness of nitrogen in pressure chambers at a given temperature, which has implications for aerospace, automotive, and transportation industries. The aim of the study is to determine the time required for nitrogen to reach a critical temperature due to external conditions, in order to schedule system operations and plan maintenance and replacement activities. The methodology involves the design of pressure chambers made of different materials and capacities, contained within a cubic enclosure with controlled surface temperature, and the determination of heat transfer, time required to reach critical temperatures, and the optimization of chamber thickness and materials. The results include the development of effective thermal management strategies, predictive modeling, material optimization, and insights into fluid behavior and heat transfer mechanisms within pressure chambers. The implications of this research are relevant for optimizing the performance and longevity of pressure chambers in engineering systems.

LIST OF FIGURES

Figure No	Title of Figure	Page No
5.2.1	CAD Design Front View	38
5.2.2	Isometric View of Chamber	39
5.2.3	Isometric View of Chamber 16 mm diam. opening	39
6.3.1	Boundary conditions	41
6.4.1	Total Deformation of aluminum	42
6.4.2	Total Deformation of Titanium	42
6.4.3	Total Deformation of Stainless Steel	43
6.5.1	Equivalent Stress of Aluminum	44
6.5.2	Equivalent Stress of Titanium	44
6.5.3	Equivalent Stress of Stainless Steel	45
6.6.1	Factor of Safety of Aluminum	46
6.6.2	Factor of Safety of Titanium	46
6.6.3	Factor of Safety of Stainless Steel	47

LIST OF TABLES

Table No	Title of Table	Page No
3.1	Project Plan (Flowchart)	19
4.4	Design of Chamber dimensions/readings	25
4.5	Result Table for Thickness of volumes using Hoop's Stress	27
4.6	Result Table for Dimensionless numbers for Air	29
4.6B	Result Table for Dimensionless numbers for Nitrogen	30
4.7	Results Table for Heat Transfer Rate (Q)	33
4.8A	Mass and specific heat capacity (Al)	33
4.8B	Results of time (Al)	34
4.8C	Mass and specific heat capacity (SS)	34
4.8D	Results of time (SS)	35
4.8E	Mass and specific heat capacity (Titanium)	36
4.8F	Results of time (Titanium)	37
6.6	Comparative study of structural properties of materials	47
7	Comparison table	47

NOMENCLATURE

Symbol	Meaning
A_S	Surface Area [m²]
d	Diameter of Cylinder
L	Length
Lc	Characteristic Length
$\Delta\Box$	Temperature difference (degree Celsius)
E	Young's Modulus (N/m²)
Ra	Rayleigh Number
Pr	Prandtl Number
Nu	Nusselt Number
Gr	Grashoff Number
h	Convective Heat Transfer Coefficient [w/m²k]
Ср	Specific Heat [KJkg ⁻¹ k ⁻¹]
Q	Heat Transfer Rate [W]

Greek Symbols

 $\rho = \text{Density of Air [kg/m}^3]$

 δ = Dimple Depth [m]

 $\infty =$ thermal expansion coefficient [$\frac{1}{\text{degree Celsius.}}$

 \Box = Hoop's Stress (MPa)

INDEX

Ch. No.		Title	Page no.
		Certificate	i
		Project Letter	ii
		Acknowledgments	iii
		Abstract	iv
		List of Figures	v
		List of Tables	vi
		Nomenclature	vi
		Table of Contents	viii
1		Introduction	1
	1.1	Background Concept	1
	1.2	Sponsored Company	1,2
	1.3	Problem Statement	2
	1.4	Objectives	3
	1.5	Research Areas	3
2		Literature Review	4
	2.1	Introduction to pressure chamber	4
3		Methodology	19
	3.1	Project Plan	19
	3.1.1	Flow Chart of Process	19
	3.2	Problem and Objective	20
	3.3	Study Problem Statement Relevant Data	20
	3.4	Design of Chamber	21
	3.5	Geometry Creation	21
	3.6	Data Analysis and Reporting	21
4		Design Calculations	22
	4.1	Procedure for Calculation	22
	4.2	Material Selection	22
	4.3	Material Selected for analysis as per desired application	23
	4.4	Design of Chamber	24

	4.5	Using Concept of Hoop's Stress to find thickness of	26
		Chamber	
	4.6	Calculation of Convective Heat Transfer for Air and	28
		Nitrogen	
	4.7	Calculation of heat transfer rate	31
	4.8	Calculation of time	32
5		Concept Design	38
	5.1	Introduction	38
	5.2	Overview of SolidWorks Models	38
6		Results	40
	6.1	Introduction	40
	6.2	Overview of Ansys Model	40
	6.3	Boundary Conditions	41
	6.4	Results for Total Deformation of different Material	42
	6.5	Results for Equivalent Stress of different material	44
	6.6	Results for Factor of Safety of Different Material	46
7		Conclusion	48
8		References	49

Chapter 1

INTRODUCTION

1.1 Background Concept

Understanding the thermal behavior of gases within confined environments is crucial for diverse applications, ranging from industrial processes to aerospace technologies. This research delves into the intricate dynamics of nitrogen, a commonly employed inert gas, within a high-pressure chamber. The study seeks to unravel the nuanced interplay of pressure, time, and initial conditions that govern the temperature variation of nitrogen, aiming to provide insights that can enhance process efficiency, safety, and design protocols.

Nitrogen, recognized for its inert nature and wide applicability, serves as an essential component in numerous industrial processes, particularly those requiring controlled atmospheres. The behavior of nitrogen under high pressure conditions is critical for optimizing systems that involve pressurized gases. Moreover, the study of temperature dynamics within a pressure chamber contributes to our fundamental understanding of heat transfer phenomena and aids in the refinement of engineering models.

The outcomes of this research not only contribute to the fundamental understanding of nitrogen behavior under high-pressure conditions but also hold practical implications for industries reliant on precise temperature control within pressure vessels. We aim to offer a holistic perspective on the temperature dynamics of nitrogen, thereby facilitating informed decision-making in diverse technological applications.

1.2 Sponsored Organization

The Defense Research and Development Organization (DRDO) is the premier agency of the Government of India, responsible for the development of technology for use by the Indian Armed Forces.

DRDO has a wide range of capabilities, and its laboratories and establishments work on various projects, including:

- Missiles and weapon systems
- > Aerospace and aeronautical systems

- Armaments and ammunition
- > Electronics and communication systems
- Vehicles and engineering systems
- > Information systems and sensors
- Materials and metallurgy
- Life sciences and tribology
- Social sciences and agriculture

Research & Development Establishment (Engineers) is one of the many laboratories and establishments under the Defence Research and Development Organization (DRDO) of India. R&DE(E) is in Pune, Maharashtra, and is specifically dedicated to the research and development of engineer-related aspects of various Defence systems. The primary objective of the project is to design a chamber of different materials.

1.3 Problem Statement

This project delves into enhancing efficiency by strategically managing time, material, and thickness of the Chamber used in Aircraft. The use of Nitrogen in various applications such as Aerospace & Aircraft, Automotive & Transportation Equipment becomes less effective after it reaches a certain temperature, hence it is vital that we know the time required for nitrogen to reach that temperature due to effect of external conditions. By doing so we can schedule the operation of the system and plan the maintenance and replacement activities if required when needed.

1.4 Objectives

- 1. Optimizing Thermal Management: The objective may be to develop effective thermal management strategies to control and stabilize the fluid temperature, ensuring it remains within desired limits.
- 2. Optimization of Chamber Thickness according to stresses acting on the chamber
- 3. Material Optimization: Choosing materials with good insulation, high strength, low weight, low thermal expansion properties may be the goal. It can help in maintaining a steady temperature in the chamber.

1.5 Research areas

- 1. Material Properties: Fluids can exhibit changes in viscosity, density, and thermal conductivity with temperature changes, affecting their behavior and performance within the chamber.
- 2. Insulation: Effective insulation of the chamber minimizes heat exchange with the environment, reducing temperature fluctuations.
- 3. Materials and types of chambers
- 4. Fluid Dynamics: Investigating fluid behavior within chambers under high pressure aids in studying convection patterns, and heat transfer mechanisms.

Chapter 2

LITERATURE REVIEW

2.1 Introduction to Pressure Chamber

Nitrogen gas plays a vital role in various industrial applications, including refrigeration systems and inert atmospheres within pressure chambers. Understanding the temperature variation of confined nitrogen over time is crucial for maintaining optimal pressure conditions, ensuring efficient heat transfer, and guaranteeing the stability of stored materials. This literature review examines existing research on the temperature variation of nitrogen inside pressure chambers. We will analyze the key factors influencing this variation, explore relevant theoretical frameworks, and discuss established experimental methods for measurement. The insights gained from this review will inform our research on analyzing and potentially mitigating temperature fluctuations in nitrogen-filled pressure chambers.

Paper Title Objectives Sr **Author** Methodology **Key findings** no. The transfer of heat R. 0. This research Create a controlled The research in this paper 1 natural WARRIN aims environment, vary focuses on the calculations related to Rayleigh number, convection between GTON, experimentally Rayleigh numbers bodies and explore and inner body Nusselt number and Grashoff their JR. y enclosures natural sizes. Record number and its relation and R. E. **POWE** convection temperature according to our calculation. heat transfer distributions, with among compare isothermal existing data, and inner bodies analyze heat (spherical, transfer cylindrical, correlations, and cubical) emphasizing within a enclosure shape cubical impact on Nusselt enclosure. numbers. Objectives include comparing results, analyzing temperature distributions, assessing the impact of enclosure shape on Nusselt numbers, and correlating heat transfer data.

Sr	Paper Title	Author	Objectives	Methodology	Key findings
no.					
2	Methodology for investigating flow instabilities in complex geometries: application to natural convection in enclosures	Gadoina,	•	multigrid method, we address boundary layers at rising Rayleigh numbers. Solving a linear problem, we employ a correction scheme for efficiency. Linear operators are directly defined on coarse grids, enhancing	The article focuses on the understanding of natural convection and its relation with Rayleigh number.

Sr no.	Paper Title	Author	Objectives	Methodology	Key findings
3	Experimental Investigation of Tool Geometry on Mechanical Properties of Friction Stir Welding of AA2014 aluminum alloy.	A. Somi Reddy	Assess Friction Stir Welding (FSW) suitability for AA 2014-T6. Examine FSW parameters on mechanical properties. Optimize conditions for defect- free welds. Evaluate mechanical and microstructur al features. Compare different tool profiles for enhanced weld quality.	Apply Friction Stir Welding to AA 2014-T6, varying parameters. Assess defect- free welds under optimal conditions, comparing mechanical and microstructural characteristics.	The study helps us understand the properties of AA2014 alloy and got to know about its application.

Sr no.	Paper Title	Autho r	Objectives	Methodology	Key findings
4	A review of simple formulae for elastic hoop stresses in cylindrical and spherical pressure vessels: what can be used when	Sinclai	Evaluate the applicabilit y of classical hoop stress formulae traditionally used in thinwalled pressure vessels to thicker structures and external pressure conditions. Provide insights for design procedures to enhance their utility in structural analysis.	Review classical hoop stress formulae, analyze historical development, verify widespread acceptance, examine limitations, introduce Lamé formulae, investigate upper limits, and explore design facilitation using ASME code guidelines.	From this paper we understood the application of Hoops law and got the formulae required for our problem statement (Determination of thickness)

Sr no.	Paper Title	Author	Objectives	Methodology	Key findings
5	Numerical Analysis of Grashof Number, Reynolds Number and Inclination Effects on Mixed Convection Heat Transfer in Rectangular Channels	A. Ozsunar , S. Baskaya and M. Sivriogl u	To investigate mixed convection in rectangular channels computatio nally, analyzing Prandtl number, inclination angles, Reynolds numbers, and Grashof numbers' impact on instability onset. Validate results with literature and experiment s.	Employ finite volume CFD to model rectangular channels, varying Prandtl, inclination, Reynolds, and modified Grashof numbers. Analyze local Nusselt numbers, validate with literature and experiments, and investigate instability onset.	In this research paper we understood the parameters which were required to be known for calculations of Nusslet, Grashoff, Prandtl number, etc.

Sr	Page Title	Author	Problem	Objective	Methodology	Key Findings
No.			Statement			
6	Equations for	Kenneth	In stainless	Establish	Review	In this paper we
	the Calculation	C.	steel studies,	accurate	literature,	interpreted Youngs
	of the Thermo-	MILLS,	current	equations for	collect	modulus,
	physical	Yuchu	equations lack	diverse	experimental	thermophysical and
	Properties of	SU,	precision for	stainless-steel	data on 3-	thermodynamic
	Stainless Steel	Zushu LI	diverse alloys	alloys (3-	series, 4-series,	properties of
		and	(3-series, 4-	series, 4-series,	and 6-series	stainless steel such
		Robert F.	series, 6-series)	6-series),	stainless steels,	as thermal
		BROOKS	and	considering Fe,	analyze Fe, Cr,	conductivity
			microstructure-	Cr, and Ni	Ni similarities,	thermal diffusivity,
			dependent	properties.	consider	thermal expansion
			thermophysical	Address	microstructure	coefficient.
			properties.	microstructure	effects,	
			This study	effects and	formulate	
			aims to fill this	estimate	precise	
			gap for	liquidus	equations,	
			accurate	temperatures	validate,	
			modeling and	for	calculate	
			product quality	comprehensive	property	
			enhancement.	thermophysical	values,	
				insights.	estimate	
					liquidus	
					temperatures.	

Sr	Paper Title	Author	Problem	Objective	Methodology	Key findings
No.			Statement			
7	Thermal	M.	This study	Investigate	Employ	From this paper we
	energy storage	Javidan,	addresses	the melting	numerical	got familiar with the
	inside the	M.	the	process of	simulations to	parameters that are
	chamber with a	Asgari,	efficiency	phase	study PCM	required for heat
	brick wall	M.	of phase	change	melting under	transfer by
	using the phase	Gholinia,	change	materials	constant heat	conduction and
	change process	M.	materials	(PCMs)	flux.	radiation, also we
	of paraffinic	Nozari ,	(PCMs) for	under	Investigate	evaluated how to
	materials: A	A. Asgari	building	constant	the impact of	plot temperature vs
	numerical	, D.D.	energy	heat flux,	variable PCM	time graph.
	simulation	Ganji	supply. It	emphasizing	thickness on	
			investigates	the impact	temperature	
			the impact	of varying	reduction,	
			of PCM	PCM	buoyancy	
			layer	thickness on	effects, and	
			thickness	thermal	optimize for	
			on thermal	energy	tropical	
			energy	storage and	building	
			storage and	temperature	efficiency.	
			temperature	reduction		
			reduction.	for building		

Sr	Paper Title	Author	Objectives	Methodology	Key findings
no.					
8	Real-Time Determination of Convective Heat Transfer Coefficient Via Thermoelectric Modules	Nataporn Korprase rtsak, Thananc hai Leephak preeda	This paper introduces a method for real-time determination of convective heat transfer coefficients.	Employing thermoelectric modules in cooling/heating processes, real-time convective heat transfer coefficients are determined using Seebeck effect and energy balance principles. Validation includes wind tunnel experiments and outdoor copper plate exposure.	The research in this paper focuses on the calculations related to calculations of convection and time for convection.

Sr no.	Paper Title	Author	Objectives	Methodology	Key findings
9	Time-varying heat transfer coefficients between tube- shaped casting and metal mold	Tae- Gyu Ki m, Zin- Hyoung Lee	The study aimed to analyze time-varying heat transfer coefficients (h(t)) between a tube-shaped casting and metal molds. Objectives included experiment al investigation of h(t) for various alloys and understanding abnormal heat transfer phenomena during solidification.	Employed one-dimensional heat flow analysis for casting-mold interaction. Utilized the sequential function specification method to solve the nonlinear inverse heat conduction problem. Conducted casting experiments with diverse alloys, employing formulas for heat transfer coefficients.	The article focuses on the understanding of natural convection and its relation with Rayleigh number and analysis of time required for convection with respect to our problem.

Sr no.	Paper Title	Author	Objectives	Methodology	Key findings
10	Design and Analysis of a High-Pressure Apparatus	K. C. Rolle, J. N. Crisp, A. N. Palazott O	Objectives include enhancing Bridgman's piston-displacement device through finite element techniques for precise measurement s, refining analysis, and improving accuracy in pressure-volume-temperature relations.	Enhanced Bridgman's high- pressure apparatus for lubricants equilibrium phase diagrams using finite element techniques. Refined measurements were incorporated into expressions for precise pressure-volume- temperature relations at extreme conditions.	The study helps us to understand the provided structure with respective volumes and analyze for stress and temperature concentrations.

Sr no.	Paper Title	Author	Objectives	Methodology	Key findings
11	Stress analysis using Solidworks simulation.	Yazeed Moham med Ahmed Almash ani, Abdulla h Ahmed Alamri, Muhab Moham med Faraj Al- Ghassa ni, Mithun V Kulkar ni	The study aims to demonstrate the effectiveness of SolidWorks Simulation in predicting component behavior. Objectives include creating 3D models, assigning materials, applying loads, and comparing simulation results with hand calculations for bending-related stress analysis and stress concentration problems.	Utilized SolidWorks Simulation for stress analysis by creating a 3D model, assigning material properties, defining boundary conditions, meshing, and setting up analyses. Compared results with hand calculations, showcasing less than 1% variation.	This paper helped us to better understand the concept of stress analysis and simulation using solidworks.

Sr no.	Paper Title	Author	Objectives	Methodology	Key findings
12	Heat transfer in steam boiler furnaces	Blokh, AG	This volume aims to elucidate modern concepts in heat transfer within furnaces firing coal, gas, and fuel oil. Objectives include providing practical data for operational efficiency, addressing radiative properties, and serving as a valuable reference and design guide for thermal and industrial engineers.	This volume utilizes practical data for heat transfer calculations in furnaces firing coal, gas, and fuel oil. Covers radiative properties, effects on gases, ash particles, soot, and coke, and combustion conditions.	From this research paper we understood that Solving problems of heat transfer calculation are especially important for assuring operational efficiency and reliability.

Sr No.	Page Title	Author	Objective	Methodology	Key Findings
13	Thermoelastic	and Duanwei	Investigate aluminum	Utilized in situ	In this paper we
	texture behavior	of He;	behavior at	time-of-flight neutron	interpreted behaviour of
		igh Yusheng Zhao;	high pressures	diffraction with Toroidal	aluminium at high temperature
	pressure and h	igh Zhao,	temperatures	Anvil Press	and pressure,
	temperature	L. L.	using in situ	(TAP-98) to	thermal
	investigated by	o Daemen;	neutron diffraction with	investigate aluminum	diffusivity, and thermal
	situ neutron	J. Qian;	a Toroidal	behavior under	expansion
	diffraction	17	Anvil Press. Correct	high pressures and	coefficient.
		K. Lokshin;	displacement	temperatures.	
		Loksiiii,	effects,	Corrected	
		T. D.	determine unit-	diffraction	
		Shen;	cell	center	
		Y	dimensions,	displacement and derived	
		J. Zhang;	and compare results with	and derived unit-cell	
		Zhang,	previous	dimensions,	
		A. C.	experimental	applying high-	
		Lawson	and theoretical	temperature	
			data.	Birch-	
				Murnaghan	
				equation of state.	
				Validated	
				results through	
				comparison	
				with previous	
				experimental	
				and theoretical data.	
				uaia.	

Sr No.	Paper Title	Author	Objective	Methodology	Key findings
14	Ideal Gas Behavior	Tenny KM, Cooper JS	Explore the Ideal Gas Law, including constituent laws. Analyze ideal gas limitations and investigate real gas behavior. Extend to mixtures and partial pressures, introducing alternative models.	The methodology involves explaining the principles behind the Ideal Gas Law and its constituent laws (Charles's, Boyle's, Gay-Lussac's). It outlines the role of the universal gas constant, considerations for ideal gases, and conditions for real gases'	From this paper we understood the ideal gas equation and its relation with our problem.
				ideal behavior.	

Chapter 3 METHODOLOGY

3.1 Project Plan

Following flow chart explains the steps for experiment. The process flow mentioned above will be considered to meet the goal of research work.

3.2 Problem and Objective

This project delves into enhancing efficiency by strategically managing time, material, and thickness of the Pressure Chamber used in Aircraft. The use of Nitrogen in various applications such as Aerospace & Aircraft, Automotive & Transportation Equipment becomes less effective after it reaches a certain temperature, hence it is vital that we know the time required for nitrogen to reach that temperature due to effect of external conditions. By doing so we can schedule the operation of the system and plan the maintenance and replacement activities if required when needed.

3.3 Study Problem Statement and Collecting Relevant Data

A well-defined problem statement is the foundation of any successful study. It clearly identifies the specific issue, question, or phenomenon you aim to investigate.

Once you have a clear problem statement, you can start gathering the information needed to answer your research questions. Choosing the appropriate data collection methods is crucial for obtaining reliable and valid findings. Here is data which we are using for calculations:

A Chamber of material 1) Aluminium; 2) Titanium; contains Nitrogen Pressurized to 350 bars. The Chamber is of capacity(volume) 1) 0.4 litres; 2) 0.5 litres; 3) 0.6 litres and the geometry is cylinder with hemisphere at each end, Length/Diameter ratio is ½. The Chamber is contained within a cubic enclosure of volume 1 \square ^3, the surface of enclosure is maintained at 100 °C by external means (unknown). The rest of enclosure contains air at room condition (T=25 °C, P= Patm). Determine a) The Heat Transfer from enclosure to Nitrogen inside chamber; b) Time Required to reach 100 °C for 1) Air Inside the Enclosure; 2) Inner and outer Surface of Chamber; 3) Nitrogen, Also Design Pressure Chamber

3.4 Design of Chamber

The specific design of your chamber will depend heavily on its intended purpose and the unique requirements of project. We are designing chamber used in Aircraft which is filled with Pressurized Nitrogen. Nitrogen gas is useful in preventing oxidative damage in Aircraft

3.5 Geometry Creation

Geometry creation involves defining the boundaries and obstacles within the flow domain. This can be done using Computer-Aided Design (CAD) software or by importing existing geometries. Accurate representation of the physical boundaries and flow passages is crucial for obtaining reliable results. Complex geometries and multi-component systems require special techniques for handling the geometry creation process. The geometry we required for our analysis was created in SolidWorks and Design Modeler.

3.6 Data Analysis and Reporting

Reporting is the process of presenting information derived from data analysis in a structured. Data analysis is the process of inspecting, cleaning, transforming, and modelling data to discover useful information, draw conclusions.

Chapter 4

DESIGN CALCULATIONS OF CHAMBER & HEAT TRANSFER RATE

4.1 Procedure for calculation

- **Step 1**: Calculation of dimensions (length and diameter) of the chamber based on the capacity(volume)
 - Step 2: Calculation of surface Area
 - **Step 3:** Calculation of characteristic length of the virtual sphere (assumed)
 - Step 4: Calculation of thickness with the help of thermal stress (hoop's stress)
- **Step 5:** Calculation of convective heat transfer coefficient(h) by using concepts of Rayleigh, Prandtl &Nusselt numbers for ambient Air and pressurized Nitrogen
 - **Step 6:** Calculation of Heat transfer Rate
 - **Step 7:** Calculation of time required to reach 100 degrees centigrade (equilibrium state)
 - Step 8: Plotting Temperature vs Time graph

4.2 Material Selection

Selecting the right material for a design is crucial in aircraft, impacting factors like:

- **1. Performance:** Does the material meet the required strength, durability, weight, thermal conductivity, etc.
- **2. Manufacturability:** Can the material be easily shaped, formed, and joined using the desired techniques.
- **3. Sustainability:** Does the material have a low environmental impact throughout its lifecycle, considering factors like recyclability and energy consumption during production. Aircraft requires a delicate balance between various factors

Primary materials which can be used in Aircraft

Aluminum alloys: Widely used due to their excellent strength-to-weight ratio, formability, and recyclability. However, their susceptibility to corrosion requires additional treatments.

- > **Titanium alloys:** Offer high strength, low weight, and excellent corrosion resistance, but are more expensive and have complex processing requirements.
- Composites: Increasingly used in primary structures and secondary components due to their superior strength-to-weight ratio, design flexibility, and excellent fatigue resistance. Examples include carbon fiber-reinforced polymers (CFRP) and glass fiberreinforced polymers (GFRP).

4.3 Material Selected for analysis as per desired application

Aluminum 6262-T9

Mechanical properties

Young's modulus	68.9 GPa
Poisson's ratio	0.33
Yield strength (elastic limit)	379 MPa
Tensile strength	400 MPa
Elongation	10-14% strain
Density	2720 kg/m^3
Thermal Conductivity	171 W/m-K
Cost	Rs 510/kg

Titanium α-β Annealed grade 9

Mechanical properties

Ti-3Al-2.5V

Young's modulus	530 MPa
Poisson's ratio	0.3
Yield strength (elastic limit)	345 MPa
Tensile strength	620 MPa
Elongation	20 % strain
Density	4480 kg/m^3
Thermal conductivity	8.30 W/mK

Cost Rs.4000/KG

Stainless steel 15-5 PH

Young's modulus	196 GPa
Poisson's ratio	0.3
Yield strength (elastic limit)	1275 MPa
Tensile strength	1380 MPa
Elongation	10 % strain
Density	7780 kg/m^3
Thermal conductivity	17.8 W/mK

4.4 Design of Chamber

Cost

Given Volume = [Volume of Hemisphere] ×2+ [Volume of Cylinder] = [Volume of Sphere] + [Volume of Cylinder] =
$$\frac{\pi}{4} + \frac{\pi}{4} \boxed{2} \boxed{2}$$

$$0.4 \times 10^{-3} = \frac{\pi}{6} \boxed{3} + \frac{\pi}{4} \boxed{2} ^2 L$$

•
$$0.4 \times 10^{-3} = \frac{\pi}{6} 2^3 + \frac{\pi}{4} 2^2 L$$

As
$$\frac{d}{L} = \frac{1}{2}$$

$$\frac{2 \cdot 3}{6} + \frac{2 \cdot 3}{2} = 0.4 \times 10^{3}$$

$$\frac{2 \cdot 2 \cdot 3}{3} = 0.4 \times 10^{-3}$$

$$\frac{3}{2 \cdot 3} = \frac{0.4 \times 10^{-3} \times 3}{2 \cdot 3}$$

$$\frac{3}{2 \cdot 3} = \frac{0.4 \times 10^{-3} \times 3}{2 \cdot 3}$$

$$2 = 0.05752$$

 $2 = 22 = 2(0.0575) = 0.11512$

Rs 380/kg

Similarly, L & d can be calculated for volumes 0.5 & 0.6 liters.

•
$$?????? = 0.5 \times 10^{-3}?^{3}$$

$$2 = \sqrt[3]{\frac{0.5 \times 10^3 \times 3}{27}} = 0.06202$$

$$2 = 22 = 2(0.0620) = 0.12402$$

 $??????? = 0.6 \times 10^{-3}?^{3}$

 $? = \sqrt{}$

$$\frac{0.6 \times 10^{3} \times 3}{2?}$$

$$2 = 22 = 2(0.0620) = 0.12402$$

Surface Area

As =
$$2(0.0575)(0.1151) + 2(0.0575)^2 = 0.03112^2$$

Assuming the Geometry as Virtual sphere [For simplification of calculation] (Volume)

$$\frac{\text{(Volume)}}{\text{Sphere}} = \frac{\pi de^3}{6}$$

- $L_{c1} = d_{e1} = 0.0914$?
- $L_{c2} = d_{e2} = 0.0984$?
- $L_{c3} = d_{e3} = 0.1046$

Sr. No.	Volume	Surface	Diameter(mm)	Height(mm)	Characteristic
		Area(mm ²)			Length(mm)
1	0.4 × 10 ⁻³	31100	57.5	115.1	91.4
2	0.5 × 10 ⁻³	36200	62	124	98.4
3	0.6 × 10 ⁻³	40900	65.9	131.8	104.6

4.5 Using Concept of Hoop's Stress to find thickness of the chamber

For calculating thickness using the concept of hoop's stress

$$\boxed{2}_{hoop} = \frac{yield\ strength}{factor\ of\ safety} = \frac{Pr}{t}$$

?*h*???? ? = ???????? Pressure

? = ?h???????

1. For Aluminum

i. Volume =
$$0.4 \times 10^{-3}$$
?

$$\frac{379 \times 10^6}{3.5} = \frac{350 \times 10^5 \times 0.02875}{2}$$

$$t_1=9.2925$$
mm ≈ 10 ?

ii. Volume =
$$0.5 \times 10^{-3}$$
 23

$$\frac{379 \times 10^6}{3.5} = \frac{350 \times 10^5 \times 0.031}{2}$$

$$t_2 = 10.0197 \text{mm} \approx 1122$$

iii. Volume =
$$0.6 \times 10^{-3}$$
?

$$\frac{379 \times 10^6}{3.5} = \frac{350 \times 10^5 \times 0.0329}{2}$$

$$t_3 = 11.6339 \text{mm} \approx 12 \boxed{2}$$

2. For Titanium

i. Volume=
$$0.4 \times 10^{-3}$$
?

$$\frac{345 \times 10^6}{3.5} = \frac{350 \times 10^5 \times 0.02875}{??}$$

$$t_1 = 10.2833 \text{mm} \approx 1122$$

ii. Volume =
$$0.5 \times 10^{-3}$$
 $\frac{345 \times 10^{6}}{3.5} = \frac{350 \times 10^{5} \times 0.031}{2}$

iii. Volume =
$$0.6 \times 10^{-3}$$

$$\frac{345 \times 10^{6}}{3.5} = \frac{350 \times 10^{5} \times 0.0329}{2}$$

$$t_{2} = 12.6818 mm \approx 1322$$

3. For Stainless Steel: -

i. Volume=
$$0.4 \times 10^{-3}$$
 ?
$$\frac{1275 \times 10^{6}}{3.5} = \frac{350 \times 10^{5} \times 0.02875}{2}$$

$$t_{1} = 1.76 \text{mm} \approx 2$$
 ?

ii. Volume =
$$0.5 \times 10^{-3} \ 2^{3}$$

$$\frac{1275 \times 10^{6}}{3.5} = \frac{350 \times 10^{5} \times 0.031}{2}$$

iii. Volume =
$$0.6 \times 10^{-3} \ 23$$

$$\frac{1275 \times 10^{6}}{3.5} = \frac{350 \times 10^{5} \times 0.0329}{2}$$

Thickness (in mm)

Material	Volume (in litres)				
	0.4	0.5	0.6		
Aluminum	10	11	12		
Titanium	11	12	13		
Stainless steel	2	3	4		

4.6 Calculation of convective heat transfer(h) for Air and Nitrogen

- > As it is natural convection calculating using Relation(empirical) between Nusselt number, Grashoff number & Prandtl number or using Rayleigh Number
- > Characteristic Length (Lc)- Converting the whole geometry into equivalent sphere to calculate the "Lc" for sphere i.e. diameter

Rayleigh (Ra) =
$$\frac{g\beta(Ts-T)Lc^3}{P\alpha}$$

1] For Air: -

For Lc₁

$$g = 9.81 \frac{m}{s^{2}}$$

$$2 = \frac{1}{2(222)} \frac{1}{373 + 298}$$

$$= \frac{1}{2} \frac{373 + 298}{2}$$

$$P(222) = 1.516 \times 10^{-5} \frac{2^{2}}{2}$$

 $\propto = 18.4 \times 10^{-6} \frac{2^{2}}{2}$

$$Ra = 9.5222 \times 10^{6}$$

$$Pr = \frac{\mu Cp}{Kf} = \frac{P\rho Cp}{Kf}$$

$$Pr = \frac{1.516 \times 10^{-5} \times 1.2 \times 1005}{0.024}$$

$$m Pr = 0.7617$$

$$Nu = 2 + \frac{0.589 Ra^{1/4}}{\left[1 + \left(\frac{0.469}{Pr}\right)^{\frac{9}{16}}\right]^{4/9}}$$

$$\boxed{2 = 2 + \frac{0.589(9.5222 \times 10^{11})^{1/4}}{[1 + (\frac{0.469}{0.7617})^{\frac{9}{16}}]^{4/9}}}$$

$$Nu = 25.4424$$

$$Nu = \frac{\text{hLc}}{\text{K}}$$

$$27.4424 = \frac{h \times 0.0914}{0.024}$$

$$h = 7.2058 \text{ W/m}^2\text{K}$$

Characteristic	Rayleigh	Prandtl	Nusselt	Convective heat
length(mm)	number	number	number	Transfer
				coefficient(w/m²k)
91.4	9.5222×10 ⁶	0.7617	25.4424	7.2058
98.4	11.8819x 10 ⁶	0.7617	28.8902	7.5860
104.6	14.2724 x10 ⁶	0.7617	30.1513	7.917

2] For Nitrogen: -

$$P = 4.6276 \times 10^{-8} \text{ m}^2/\text{s}$$

$$\alpha = 6.2805 \text{ x } 10^{-8} \text{ m}^2/\text{s}$$

$$2 = 395.453 \text{ kg/m}^3$$

$$C_p = 1.04 \ KJ/KgK \ \& \ C_v = 0.74 \ KJ/KgK$$

Using
$$PV = MRT$$

$$\boxed{2} = \frac{P}{RT} = \frac{350 \times 10^5}{0.297 \times 298}$$

$$2 = 395.453 \text{ kg/m}^3$$

$$K = 0.02583 \text{ W/mK}$$

$$\mu = 1.83 \text{ x } 10^{-5} \text{ N-s/m}^2$$

$$P\alpha$$

$$Ra = \frac{9.81 \times 1 (75)(0.0914)^{3}}{4.6276 \times 10^{-8} \times 211.5 \times 6.2805 \times 10^{-8}}$$

$$Ra = 9.1392 \times 10^{11}$$

$$Pr = 0.7368$$

$$\begin{split} Nu &= 2 + \frac{0.589 Ra^{(\frac{1}{4})}}{[1 + (\frac{0.469}{Pr})^{\frac{9}{16}}]^{4/9}} \\ &\boxed{2} = 2 + \frac{0.589(9.132 \times 10^{-11})^{(\frac{1}{4})}}{[1 + (\frac{0.469}{0.7368})^{\frac{9}{16}}]^{4/9}} \\ Nu &= 448.2216 \\ Nu &= \frac{h \ Lc}{K} \end{split}$$

$$448.2216 = \frac{h \times 0.0914}{0.02583}$$

$$h_1 = 126.6692 \ W/m^2 K$$

Characteristic length(mm)	Rayleigh number	Prandtl number	Nusselt number	Convective heat Transfer
				coefficient(w/m²k)
91.4	9.1392 x 10 ¹¹	0.7368	448.2216	126.6692
98.4	1.1403×10^{12}	0.7368	473.6147	133.8454
104.6	1.3698 x 10 ¹²	0.7368	495.7303	140.0953

4.7 Calculation of Heat transfer Rate

$$? = \frac{\Delta T}{\frac{1}{h1A1} + \frac{r2 - r1}{4\pi kr1r2} + \frac{1}{h2A2}}$$

> Aluminum

i. Volume = 0.4×10^{-3} 2³

2 = 15.8763**2**

ii. Volume = 0.5×10^{-3} 2³

2 = 18.47802

iii. Volume = 0.6×10^{-3} 23

2 = 20.87952

> Titanium

i. Volume = 0.4×10^{-3} 23

2 = 15.56112

ii. Volume =
$$0.5 \times 10^{-3}$$
 23

2 = 18.0791W

iii. Volume = 0.6×10^{-3} \square^3

$$\boxed{2} = \frac{75}{1 - 10.013} + \frac{1}{4 \times 8.30 \times 0.03295 \times 0.04795} + \frac{1}{126.67 \times 0.0409}$$

2 = 20.38732

> Stainless Steel

i. Volume = 0.4×10^{-3} 2³

2 = 15.86262

ii. Volume = 0.5×10^{-3} 23

$$= \frac{75}{1 - \frac{1}{7.20 \times 0.0362} + 42 \times 17.8 \times 0.031 \times 0.034} + \frac{1}{126.67 \times 0.0362}$$

2 = 18.4473

iii. Volume = 0.6×10^{-3} 23

2 = 20.82342

Material	Heat transfer rate(Q) (in watt) Volume (in litres)				
	0.4	0.5	0.6		
Aluminum	15.8763	18.4781	20.8795		
Titanium	15.5611	18.0791	20.3873		
Stainless steel	15.8626	18.4473	20.8234		

4.8 Calculation for Time

$$f^{\frac{2?}{2}} = f^{\frac{2?}{2}} = 2?$$

$$? \times ? + ?1 = ??? + ?2$$

1. Aluminum

$$? = ? \times ?$$

- 1) Nitrogen
- \Rightarrow 395.5× 0.4×10⁻³ = 0.1582 Kg
- 2) Chamber

$$R_{outer} = R_{inner} + thickness = 0.02875 + 0.010 = 0.03875m$$

 \Rightarrow Volume = (volume)_{outer} - (volume)_{inner}

$$= \frac{4}{3} ???^{3} + ???^{2}? - (0.4 \times 10^{-3})$$

= 0.00038668m³

 \Rightarrow 2720×0.00038668 = 1.05176Kg

- 3) Air
- \Rightarrow Volume= 1-(0.4×10⁻³) = 0.9996m³

Mass(kg) & specific heats (KJ/KgK)

Volume(m ³)	0.4×10 ⁻³	0.5×10 ⁻³	0.6×10 ⁻³	Specific heat
=>				
Nitrogen	0.1582	0.1977	0.2373	740
Chamber	1.05176	1.3532	1.6783	890
Air	1.0195	1.0194	1.0193	718

For
$$t_1$$
, $22 = 1.0192 \times 718 = 732.001$

 \Rightarrow For volume =0.4×10⁻³m³

Applying boundary condition; at t=0 T=25°C

$$25 = \frac{\text{C1-C2}}{1785.1354} \implies \text{C1-C2} = 44628.385$$

Put C1-C2 in equation to find time to reach temperature = 100°C

$$100 = \frac{15.8763(23)}{1785.1354} + \frac{39188.74}{1785.1354}$$

 $t_3 = 140.5503 min$

Similarly, for t₂, C1-C2= 41701.685 & t₂= 131.3331min

for t_1 , C1-C2=18300.025 & t_1 = 57.6331min

Volume(m ³)	$\mathbf{t}_1(\mathbf{min})$	t ₂ (min)	t ₃ (min)
0.4×10 ⁻³	57.6331	131.3331	140.5503
0.5×10 ⁻³	49.5133	130.9853	140.8820
0.6×10 ⁻³	43.8134	133.2374	141.9958

2. Stainless Steel: -

$$?(?) = x ? +(C_1-C_2) \times \frac{1}{mC}$$

mC

Mass(kg) & specific heats (KJ/KgK)

Volume(m ³)	0.4×10 ⁻³	0.5×10 ⁻³	0.6×10 ⁻³	Specific heat
=>				
Nitrogen	0.1582	0.1977	0.2373	740
Chamber	0.4956	0.8944	1.372	420
Air	1.0195	1.0194	1.0193	718

By using,
$$\mathbb{Z}(\mathbb{Z}) = \frac{\mathbb{Q}}{mC} \times \mathbb{Z} + (C_1 - C_2) \times \frac{1}{mC}$$

For
$$T(t)=25^{\circ}C$$
, $t=0$,

$$25 = \frac{15.8626}{732.001} \times 0 + \frac{C1-C2}{732.001}$$

$$C_1$$
- C_2 = 18300.025

For
$$T(t)=100^{\circ}C$$
,

$$100 = \frac{15.5611}{732.001} \times \boxed{2} + \frac{18300.025}{732.001}$$

$$t_1$$
= 57.6829 222

For
$$T(t)=25^{\circ}C$$
, $t=0$,

$$25 = \frac{15.8626}{940.153} \times 0 + \frac{C1-C2}{940.153}$$

$$C_1$$
- C_2 = 23503.825

For
$$T(t)=100^{\circ}C$$
,

$$100 = \frac{15.8626}{940.153} \times \boxed{?} + \frac{23503.825}{940.153}$$

 $t_2=$

74.0856222

For
$$T(t)=25^{\circ}C$$
, $t=0$,

$$25 = \frac{15.8626}{1057.221} \times 0 + \frac{C1-C2}{1057.221}$$

$$C_1$$
- C_2 = 26425

For
$$T(t)=100^{\circ}C$$
,

$$100 = \frac{15.8626}{} \times \boxed{2} + \frac{26425}{}$$

1057.221 1057.221

$t_3 = 83.3108 \ 2 \ 2 \ 2$

Volume(litres)	t ₁ (min)	t ₂ (min)	t ₃ (min)
0.4	57.6829	74.0856	83.3108
0.5	49.5959	75.0500	84.9633
0.6	43.9323	78.5787	89.1198

3. Titanium: -

mC

Mass(kg) & specific heats (KJ/KgK)

Volume(m³)	0.4×10 ⁻³	0.5×10 ⁻³	0.6×10 ⁻³	Specific heat
=>				
Nitrogen	0.1582	0.1977	0.2373	740
Chamber	1.9462	2.4788	3.0492	1040
Air	1.0195	1.0194	1.0193	718

By using,
$$\mathbb{Z}(\mathbb{Z}) = \frac{Q}{mC} \times \mathbb{Z} + (C_1 - C_2) \times \frac{1}{mC}$$

For
$$T(t)=25^{\circ}C$$
, $t=0$,

$$25 = \frac{15.5611}{732.001} \times 0 + \frac{C1 - C2}{732.001}$$

$$C_1$$
- C_2 =18300.025

For
$$T(t)=100^{\circ}C$$
,

$$100 = \frac{15.5611}{732.001} \times \boxed{?} + \frac{18300.025}{732.001}$$

 $t_1 = 58.8005 222$

For
$$T(t)=25^{\circ}C$$
, $t=0$,

$$25 = \frac{15.5611}{2756.049} \times 0 + \frac{C1-C2}{2756.049}$$

$$C_1$$
- C_2 =68901.225

For
$$T(t)=100^{\circ}C$$
,

$$100 = \frac{15.5611}{2756.049} \times \boxed{2} + \frac{68901.225}{2756.049}$$

$$t_2$$
= 221.3893 222

For T(t)=25°C, t = 0,
$$25 = \frac{15.5611}{2873.117} \times 0 + \frac{C1-C2}{2873.117}$$

$$C_1-C_2 = 71827.925$$
For T(t)=100°C,
$$100 = \frac{15.5611}{2873.117} \times 2 + \frac{71827.925}{2873.117}$$

$$t_3 = 230.7392 222$$

Volume(litres)	t ₁ (min)	t ₂ (min)	t ₃ (min)
0.4	58.8005	221.3893	230.7932
0.5	50.6060	228.8472	238.9623
0.6	44.8721	239.3049	250.0715

Chapter 5

CONCEPT DESIGN

5.1 Introduction

In this section, we present the 3D models and snapshots generated using SolidWorks and Design Modeler software to illustrate the design aspects of the Chamber. These models provide a comprehensive visual representation of design considerations for the volumes.

5.2 Overview of SolidWorks Models

The SolidWorks models included in this section showcase various aspects of the Chamber design.

Fig.5.2.1 CAD Design Front view

Fig. 5.2.2 Isometric View of Chamber

Fig.5.2.3 Isometric View of Chamber 16 mm diameter opening

Chapter 6

RESULTS

6.1 Introduction

ANSYS is a powerful engineering simulation software widely used for various analyses, including static structural, thermal, fluid flow, and electromagnetic simulations.

In this section, we present the analysis and snapshots generated using Ansys Workbench software to illustrate the aspects of the chamber. This section presents the key findings and insights obtained from your analysis.

6.2 Overview of Ansys Models

The Ansys models included in this section showcase various aspects of the chamber, **Static structural analysis** is a type of engineering simulation used to predict the behavior of a structure under static loading conditions. In static structural analysis, total deformation refers to the overall change in the shape and size of a structure due to the application of static loads. Static structural analysis with equivalent stress is performed to evaluate the overall stress distribution and potential failure points within a structure subjected to static loads (loads that does not change over time).

Safety factor is a numerical value calculated to assess the reserve capacity of a structure or component to withstand applied loads without failure. It serves as an indicator of structural integrity and margin of safety under anticipated operating conditions.

Transient thermal analysis is performed for a variety of purposes, primarily to understand how a system or component responds to changes in temperature over time. Transient thermal reveals how long it takes for a system to reach a certain temperature

6.3 Boundary Condition

Boundary conditions for this study have been indicated in Fig.7.3.1. In the simulation setup, the fixed face which is B in our case of the object serves as a reference point for establishing boundary conditions in Ansys. The pressure applied inside the object is 350 bar defined as a boundary condition to simulate the external forces acting on the system. This pressure boundary condition helps model the behavior of the object under various loading conditions, allowing for the analysis of its structural response and performance. Additionally, other boundary conditions such as material properties.

Fig.6.3.1 Boundary Conditions

6.4 Results for Total Deformation of different material

Fig.6.4.1 Total Deformation of aluminum

Fig.6.4.2 Total Deformation of Titanium

Fig.6.4.3 Total Deformation of Stainless Steel

The analysis revealed a maximum total deformation of aluminum is 0.066 millimeters (mm) at the free end of the Chamber (Figure 7.3.1), maximum total deformation of titanium is 0.04 millimeters (mm), maximum total deformation of 15-5 PH is 0.025. This deformation values are well within the acceptable limits for the intended application, according to dimensions of chamber

6.5 Results for Equivalent Stress of different material

Fig.6.5.1 Equivalent Stress of aluminum

Fig.6.5.2 Equivalent Stress of Titanium

Fig.6.5.3 Equivalent Stress of Stainless Steel

Equivalent stress is calculated in various engineering analyses, particularly in static structural and dynamic structural simulations, to represent the combined effect of all normal and shear stresses acting at a point within a material.

The observed maximum equivalent stress for aluminum 162 MPa, for titanium 159 MPa, for Stainless Steel 159 MPa, indicating a significant margin of safety and low risk of failure. The stress concentration at inner walls of chamber.

6.6 Results for Factor of Safety of different material

Fig.6.6.1 Factor of Safety of aluminum

Fig.6.6.2 Factor of Safety of Titanium

Fig. 6.6.3 Factor of Safety of Stainless Steel

Material	Total Deformation	Maximum Equivalent Stress (MPa)	Minimum Factor of Safety
Aluminum 6262-T9	0.066	162	1.23
Titanium α-β Annealed grade 9	0.04	159	3.9
Stainless steel 15-5 PH	0.02	159	8.7

Sr.no.	Parameter	Aluminum	Stainless steel	Titanium	Preferred
1	Thermal conductivity	Highest	Intermediate	Lowest	Titanium
2	Weight	Lightest	Intermediate	Heaviest	Aluminum
3	Factor of safety	Barely safe	Overly safe	Standard	Stainless steel
4	Deformation	Highest	Medium	Lowest	Titanium
5	Machinability	High	Intermediate	Extremely low	Aluminum

Chapter 7

CONCLUSION

- 1. Dimensions of chamber i.e., Diameter, Length and thickness are calculated for different volumes along with characteristic length
- 2. Rayleigh Number (Ra), Prandtl Number (Pr) and Nusselt number (Nu) are calculated
- 3. The Convective heat transfer coefficient(h) is calculated for different materials for volumes of 0.4,0.5,0.6 litres.
- 4. Structural Analysis and Transient Thermal was performed using Ansys for to find if chamber can sustain pressure of pressure of 350 bars
 - The Total Deformation was obtained for materials on Ansys the result where it was observed maximum deformation in Aluminium Alloy and minimum deformation was observed in Stainless Steel 15-5 PH
 - ii. The Factor of Safety for all three materials was calculated and following conclusion was reached: Stainless Steel 15-5 PH > Ti-3Al-2.5V > Aluminium 6262-T9 Considering this criterion stainless steel is best suited material for design.
- 5. The Heat Transfer Rate was calculated(Q) and it was inferred that maximum heat transfer was through chamber made of material aluminum while minimum was observed for titanium, Hence Titanium is optimal while considering heat transfer as criteria
- 6. As aluminum is light in weight it will be preferred as opposed to titanium which is to heaver side
- 7. While considering economic aspects stainless steel will be preferred as it is cheaper and easier to machine (while manufacturing). Titanium being hard metal is difficult to machine while also being highly priced.

REFERENCES

- [1] RO Warrington Jr, RE Powe- The transfer of heat by natural convection between bodies and their enclosures, International Journal of Heat and Mass Transfer Volume 28, Issue 2, Pages 319-330, February 1985.
- [2] E. Gadoina, P. Le Que're' a,* and O. Daubeb- A general methodology for investigating flow instabilities in complex geometries: application to natural convection in enclosures, International Journal for Numerical methods in fluids volume 37 issue 2, Pages !75-208, September 2001
- [3] A. Somi Reddy- Experimental Investigation of Tool Geometry on Mechanical Properties of Friction Stir Welding of AA2014 aluminum alloy, Procedia Materials ScienceVolume 5, Pages 824-831,2014
- [4] G.B. Sinclair, J.E. Helms -A review of simple formulae for elastic hoop stresses in cylindrical and spherical pressure vessels: what can be used when,International Journal of Pressure Vessels and Piping Volume 128, Pages 1-7,April 2015
- [5] A. Ozsunar, S. Baskaya and M. Sivrioglu -Numerical analysis of grashof number, reynolds number and inclination effects on mixed convection heat transfer in rectangular channels .International Communications in Heat and Mass Transfer Volume 28, Issue 7, Pages 985-994,October 2001
- [6] Kenneth C. MILLS, Yuchu SU, Zushu LI and Robert F. Brooks Equations for the Calculation of the Thermo-physical Properties of Stainless Steel.ISIJ international, 2004.
- [7] M. Javidan, M. Asgari, M. Gholinia, M. Nozari, A. Asgari, D.D. Ganji-Thermal energy storage inside the chamber with a brick wall using the phase change process of paraffinic materials: A numerical simulation. Theoretical and Applied Mechanics Letters Volume 12, Issue 3, March 2022, 100329

- [8] Yunus A. Cengel, Afshin J. Ghajar Heat and Mass Transfer (Fundamentals And Applications) fifth edition August 7, 2020
- [9] Tae-Gyu Kim, Zin-Hyoung Lee- Time-varying heat transfer coefficients between tube-shaped casting and metal moldInternational Journal of Heat and Mass TransferVolume 40, Issue 15, October 1997
- [10] K.C Rolle, J.N Crisp, A.N Palazatto, Design and Analysis of a High-Pressure Apparatus, Vol. 2, Issue 1, Jan-Feb 2012, pp. 355-361
- [11] Yazeed Mohammed Ahmed Almashani, Abdullah Ahmed Alamri, Muhab Mohammed Faraj Al-Ghassani, Mithun V Kulkarni- Stress analysis using Solidworks simulation, January 21, 2014
- [12] Blokh, AG- Heat transfer in steam boiler furnaces, Alexandria Engineering JournalVolume 58, Issue 1, March 2019, Pages 89-101
- [13] Duanwei He, Yushang Zhao, LL Daemein, TD Shein, J Zhang-Thermoelastic and texture behavior of aluminum at high pressure and high temperature investigated by in situ neutron diffraction. May 2004.
- [14] Tenny KM, Cooper JS- Ideal Gas Behaviour, In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan.2022 Nov 28.