Agentic Al Workflows for DevOps

Asankhaya Sharma

When do you think AI will write 90% of all new code?

- A. Less than 5 Years
- B. More than 5 Years
- C. Never

Al may automate software development tomorrow.

But we can automate the parts of development that suck, today.

"Devin, you missed updating JIRA. Again."

Software Development Lifecycle today is built for human-written code.

It is laborious, disruptive and slow.

LLMs have a lot of potential to automate the SDLC...

Automated Unit Test Improvement using Large Language Models at Meta

At Meta
Nadia Alshahwan'
Jubin Chheda
Anastasia Finegenova
Beliz Gokkaya
Mark Harman
Inna Harper
Alexandru Marginean
Shubho Sengupta
Eddy Wang
Meta Platforns Inc.,

ABSTRACT

This paper describes Meta's TestGen-LIM tool, which uses LIMto automatically improve existing human-written tests. TestGen-ELIM verifies that its generated test classes successfully dear a set of fifters that assure measurable improvement over the original test stute, thereby eliminating problems due to LIM hallucination. We describe the deployment of TestGen-LIM at Meta test-s-thoms for the Instagram and Facebook platforms. In an evaluation on Reck and Stories products for Instagram, 750 of TestGen-LIM's test cases built correctly, 575 passed reliably, and 25% increased coverage. During Meta's Instagram and Facebook test-shons, it improved 1.15 of all classes to which it was applied, with 750 of improved 1.15 of all classes to which it was applied, with 750 of the by Meta offware engineers. We believe this is the first export on industrial scale deployment of LIM generated code backed by such assurances of code improvement.

KEYWORDS

Unit Testing. Automated Test Generation, Large Language Models, LLMs, Genetic Improvement.

ACM Reference Forma

Nadia Alahahwan, Jubin Chheda, Anastasia Finegenova, Beliz Oskiaya, Mark Harman, Ina Baper, Alexandun Marginean, Shubbo Senguipta, and Edy Wang. 2024. Antonasted Unit Test Improvement using Large Language Modela at Meta. In Proceedings of the 23nd ACM Symposium on the Foundations of Software Engineering (ES: 24), Anomebre 15–19, 2024. Proto & Galinhas, Brazil. ACM, New York, NY, USA, 12 pages. https://doi.org/XXXXXXXX.

inthor order is alphabetical. The corresponding author is Mark Harman.

Menlo Park, California, USA 1 INTRODUCTION

That is, unlike other LIM-based code and test generation techniques, TestGen-LIM uses Assured Offline LIAMS to embed the language models, as a service, in a larger software engineering ovorbillow that ultimately recommends fully formed software improvements rather than smaller code snappers. These fully-formed code improvements are backed by verifiable guarantees for improvement and non-regression of existing behavior. A filtration process discards any test case that cannob be guaranteed to meet

The filtration process can be used to evaluate the performance of a particular LLM, prompt strategy, or choice of hyper-parameters. For this reason, we include telementy to log the behavior of every execution so that we can evaluate different choices. However, the same infrastructure can also be used as kind of ensemble learning approach to find test class improvement recommendations. TestGen-LLM thus has two use cases:

Evaluation: To evaluate the effects of different LLMs, prompting strategies, and hyper-parameters on the automatically measurable and verifiable improvements they make to existing code.

LLaMA-Reviewer: Advancing Code Review Automation with Large Language Models through Parameter-Efficient Fine-Tuning

Junyi Lu[†], Lei Yu[†], Xiaojia Li[§], Li Yang^{+†}, Chun Zuo[§]

†Institute of Software, Chinese Academy of Sciences, Beijing, China

†University of Chinese Academy of Sciences, Beijing, China

†School of Software, Tsinghua University, Beijing, China

¶Sinosoft Company Limited, Beijing, China

(lujunyi2.1, yule:1] ∮ ∰mails ucas acc.in, ijx] ℓ ∰mails:singhua.edu.cn,

yangli2017 ∮ iscas acc.in, zuochun ♠ insosoft.com.cn

Abstract—The automation of code review activities, a longstanding pursuit in software engineering, has been primarily addressed by numerous domain-specific pre-trained models. Despite their success, these models frequently demand extensive resources for pre-training from scratch. In contrast, Large Language Models (LLMs) provide an intriguing alternative, given their remarkable capabilities when supplemented with domain-specific mowledge. However, their potential for automating oder review

In response to this research gap, we present LLaMA-Reviewer, an innovative framework that leverages the capabilities of LLaMA, a popular LLM, in the realm of code review. Mindful of resource constraints, this framework employs parameter-efficient fine-tuning (PEFT) methods, delivering high performance while using less than 1% of trainable parameters.

An extensive evaluation of LLaMA-Reviewer is conducted on two diverse, publicly available datasets. Notably, even with the smallest LLaMA base model consisting of 6.7B parameters and a limited number of tuning epochs, LLaMA-Reviewer equals the performance of existing code-review-focused models.

The ablation experiments provide insights into the influence of various fine-tuning process components, including input representation, instruction tuning, and different PEFT methods. To foster continuous progress in this field, the code and all PEFT-weight Juliains have been made onen-source.

Index Terms—Code Review Automation, Large Language Models (LLMs), Parameter-Efficient Fine-Tuning (PEFT), Deep Learning, LLaMA, Software Quality Assurance

Recent advancements in natural language processing (NLP) have further enabled the use of pre-trained language models (PLMs) for these tasks [20], [23]. However, such domain-specific models often require substantial resources for pre-training from scratch.

In contrast, unified large language models (LLMs) demonstrate remarkable performance when scaled to a certain parameter size [12], [13]. They can effectively handle specific tasks without the need for domain-specific pre-training, presenting a promising agenue for code review automation.

In this study, we present LLaMA-Reviewer, a novel framework that leverages LLaMA, a mainstream LLM, for automating code review. We incorporate Parameter-Efficient Fine-Tuning (PEFT) methods to address the computational challenge of LLM fine-tuning. Our approach builds upon the pipeline proposed by Li et al. [20], which comprises 1) review necessity prediction, 2) review comment generation, and 3)

We extensively evaluate LLaMA-Reviewer on two public datasets for each sub-task and investigate the impacts of the input representation, instruction tuning, and different PEFT methods. The primary contributions of this work include:

. Introducing the application of LLMs to code review au-

Automated Program Repair in the Era of Large Pre-trained Language Models

Chunqiu Steven Xia University of Illinois Urbana-Champaign chunqiu2@illinois.edu Yuxiang Wei University of Illinois Urbana-Champaign ywei40@illinois.edu Lingming Zhang University of Illinois Urbana-Champaign lingming@illinois.edu

Abstract—Automated Program Repair (APR) aims to help developers automatically paths of Myres bugs. However, current state-of-the-art traditional and learning-based APR techniques face the problem of limited paths variety, failing to fix complicated bugs. This is mainly due to the reliance on bugsking datasets to craft fix emplates traditional or directly predict potential paths (tearning-based). Large Pre-Trained Language potentials paths (sud this ions. Very recently, researchers have directly leveraged LLMs for APR without rebing on any baging datasets. Howards have been designed to include state-of-the-art LLMs or was not evaluated on realistic datasets. Thus, the true power of modern LLMs on the important

APR problem is yet to be revealed. In this work, we perform the first extensive study on directly applying LLMs for APR. We select 9 recent state-of-the-art LLMs, including both generative and infilling models, ranging from 125M to 20B in size. We designed 3 different repair settings to evaluate the different ways we can use LLMs to generate patches: 1) generate the entire patch function, 2) fill in a chunk of code given the prefix and suffix 3) output a single line fix. We apply the LLMs under these repair settings on 5 datasets across 3 different languages and compare different LLMs in the number of bugs fixed, generation speed and compilation rate. We also compare the LLMs against recent state-of-the-art APR tools. Our study demonstrates that directly applying state-ofthe-art LLMs can already substantially outperform all existing APR techniques on all our datasets. Among the studied LLMs, the scaling effect exists for APR where larger models tend to achieve better performance. Also, we show for the first time that suffix code after the buggy line (adopted in infilling-style APR) is important in not only generating more fixes but more natches with higher compilation rate. Resides natch generation. the LLMs consider correct patches to be more natural than other ones, and can even be leveraged for effective patch ranking or patch correctness checking. Lastly, we show that LLM-based APR can be further substantially boosted via: 1) increasing the sample size, and 2) incorporating fix template information.

Repair (APR) tools have been built to automatically generate potential patches given the original buggy program [6].

Among traditional APR techniques [7]-[18], template-based APR has been widely recognized as the state of the art [19]. [20]. These techniques leverage fix templates, often designed by human experts, to fix specific types of bugs in the source code. As a result, these APR tools are constrained by the underlying fix templates in the types of bugs that can be fixed. To combat this, researchers have proposed learning based APR tools [211-[24], which typically model program repair as a Neural Machine Translation (NMT) problem [25], where the goal is to translate a buggy program into a fixed program. The core component of these learning-based APR tools is an encoder and decoder pair, where the model aims to capture the buggy context via the encoder and then autoregressively generate the patch using the decoder. As such, these learning-based APR tools require supervised training datasets containing pairs of buggy and patched code, usually obtained by mining historical bug fixes from open-source repositories. While learning-based APR tools have shown improvements in both the number and variety of bugs that can be fixed [21]. [22], they are still restricted by their training data which may contain unrelated commits and only contain limited bue-fix

types, which may not generalize to unseen bug types [26]. Recent developments in building Large Pre-Trained Language Models (LLMs) offer an alternative solution that can be applied for program repair without relying on historical bug fixes. While LLMs are usually general-purpose tools for NLP tasks (e.g., GPT3 [27]), they have also been used for programming languages by fineturing on code (e.g., Codes [28] and ChatGPT [29]). Unlike the specifically designed learningbased APR models, LLMs are trained in an unsuperstance.

But they need to be integrated seamlessly,

with deep context,

and developer insights.

While preserving privacy,

and offering flexibility.

Introducing Patchwork

An open-source framework that effortlessly integrates into and automates your SDLC tasks, while giving you complete flexibility and control.

Solution

https://github.com/patched-codes/patchwork

Benefits

Integrated with IDE, CLI and CI

Customizable with prompt templates

Extensible with Steps

Works with any LLM

Demo

https://github.com/patched-codes/patchwork

https://patched.codes

Thank You!

