EX. 9

Oklahoma City, Oklahoma 73101-0321 405-553-3000 www.oge.com

August 10, 2006

CERTIFIED MAIL 7004 0750 0000 9145 8424

Ms. Rhonda Jefferies Dept. of Environmental Quality Regional Office at Tulsa 3105 E. Skelly Drive, Suite 215 Tulsa, Oklahoma 74105

Subject:

Stack Sampling Reports

Muskogee Generating Station, Unit 6

Dear Ms. Jeffries:

In response to Request for Information 05-AQR-016, OG&E provides the enclosed Stack Sampling Report for Muskogee Generating Unit 6, conducted June 13-14, 2006. If you have any questions concerning the reports please contact me at (405)553-3690.

Sincerely,

David Branecky
Manager, Air Quality

Enclosure

IXOS ID 3554

6:13-cv-00356-JHP Document 34-11 Filed in ED/OK on 05/21/14 Page 3 of 87
SENDER: COMPLETE THIS SECTION ON DELIVERY

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mallpiece, or on the front if space permits. 1. Article Addressed to: 	A. Signature A. Agent Addressee B. Received by (Printed Name) C. Date of Delivery C. Date of Delivery C. Date of Delivery Addressee D. Is delivery address different from item 1? If YES, enter delivery address below:
RHONDA JEFFRIES ENVIROMENTAL PROGRAMS MGR ODEQ REGIONAL OFFICE AT TULSA 3105 EAST SKELLY DRIVE, SUITE 200 TULSA, OK 74105	3. Service Type Certified Mail Registered Return Receipt for Merchandise Insured Mail C.O.D.
	4. Restricted Delivery? (Extra Fee)
(Iranster from	00 9145 8424 102595-02-M-1540
DC Form 3811 August 2001 Domestic R	leturn Receipt

P.O. Box 1175 • Lewisville, TX 75067 • Phone: (972) 492-1400 • Toll-Free: (866) 311-9940 • Fax: (972) 492-1402 407-2B Holford's Prairie Rd.• Lewisville, TX 75056

FOR
COMPLIANCE TESTING
ON THE
OG+E ELECTRIC SERVICES
MUSKOGEE POWER PLANT
UNIT NO. 6 STACK

MUSKOGEE, OKLAHOMA

PROJECT NO. 06-032

JUNE 2006

PREPARED FOR:

OG+E ELECTRIC SERVICES

321 NORTH HARVEY

OKLAHOMA CITY, OKLAHOMA 73101

PREPARED BY:
AIR SAMPLING ASSOCIATES, INC.
P.O. BOX 1175
LEWISVILLE, TEXAS 75067

(Total Number of Pages Including Cover: 85 pages)

TABLE OF CONTENTS

EXECUTIVE SUMMARY1
SUMMARY OF RESULTS2
DISCUSSION OF SAMPLING RESULTS4
DESCRIPTION OF PROCESS5
DESCRIPTION OF SAMPLING LOCATION6
SAMPLING AND ANALYTICAL PROCEDURES8
TEST NARRATIVE11
APPENDICES12
Appendix A: Location of Traverse Points
Appendix B: Nomenclature and Equations for Calculation of Source Emissions B-1
Appendix C: Calibration Data
Appendix D: Field Data
Appendix E: Analytical Data E-1
Appendix F: Chain of CustodiesF-1
Appendix G: Unit Operational DataG-1
Appendix H: Resumes of Test PersonnelH-1
TABLES
Table 1: Summary of Results2
Table 2: Summary of Sampling Results3
Table 3: Reference Method 5 Sampling Train9
Table 4: Location of Traverse Points
Table 5: Calibration Data
FIGURES
Figure 1: Muskogee Unit No. 6 Stack7
Figure 2: EPA Methods 1, 2, 3, 4, 5, and 202 Sampling Train10
Figure 3: Location of Traverse Points Muskogee Unit No. 6 Stack

EXECUTIVE SUMMARY

Air Sampling Associates, Inc. of Lewisville, Texas conducted compliance testing on the OG+E Electric Services, Muskogee Power Plant, located near Muskogee, Oklahoma. The testing was performed to determine the amount of particulate matter being emitted to the atmosphere via the Unit No. 6 Stack, at the request of the Oklahoma Department of Environmental Quality in response to Request for Information (RFI), No. 05-AQR-016, issued March 11, 2005. The testing was conducted on June 13 and 14, 2006.

The sampling team consisted of Mr. Bill Mullins and Mr. Scot Jackson. Mr. Mullins was the test team leader.

The sampling followed the procedures set forth in the Code of Federal Regulations, Title 40, Part 60 (40CFR60), Appendix A, Test Methods 1, 2, 3, 4, 5, and 202.

The average emission rate of particulate matter from the Muskogee Unit No. 6 Stack was equal to 0.009 lbs/mmBtu - Front Half. The average emission rate of particulate matter (lbs/mmBtu - Front Half) from the Muskogee Unit No. 6 Stack was 9.00% of the allowable emission rate (0.10 lbs/mmBtu). The average emission rate of particulate matter from the Muskogee Unit No. 6 Stack was equal to 0.019 lbs/mmBtu - Total.

The emission rate of particulate matter from the Muskogee Unit No. 6 Stack was equal to 46.29 lbs/hr. The allowable emission rate of particulate matter from the Unit No. 6 Stack is 212.0 lbs/hr. The particulate matter emission were 21.83 percent of the allowable emission rate. The average emission rate of particulate matter from the Muskogee Unit No. 6 Stack was equal to 98.40 lbs/hr - Total.

The average unit load during the three tests was 539.3 megawatts.

Billy J. Mullins, Jr. P.E., Q.E.P., D.E.E

06-032 - 1 -

SUMMARY OF RESULTS

The results of the particulate matter tests on the Muskogee Unit No. 6 Stack are presented in Table 1 below and in Table 2 on the following page.

Table 1: Summary of Results

Source	Particulate Matter Emission Rate	Allowable Particulate Matter Emission Rate	Percent of the Allowable
Unit No. 6 Stack			
- Ibs/mmBtu (Front Half)*	0.009	0.10	9.00
- Ibs/hr (Font Half)	46.29	212.0	21.83
- Ibs/hr (Total)	98.40	212.0	46.42

^{*} Calculated using an F_d Factor of 9,780

06-032 - 2 -

Table 2: Summary of Sampling Results

Run No.	1	2	3	Average
Test Date	06/14/06	06/14/06	06/14/06	
Test Time	0809-0928	1046-1158	1358-1511	
Flow Rate - DSCFM	1,291,686	1,262,289	1,269,459	1,274,478
Stack Temperature - °F	288	295	312	298
O ₂ – % Volume dry	7.3	7.4	7.0	7.2
CO ₂ - % Volume dry	12.4	12.0	12.5	12.3
Percent Excess Air	52.2	53.0	48.8	51.3
Moisture Content - %	12.37	12.68	12.52	12.52
Percent Isokinetic	93.7	100.5	100.6	98.3
Particulate Matter - gr/dscf (Front Half) - gr/dscf (Total) - lbs/mmBtu (Front Half)* - lbs/mmBtu (Total)* - lbs/hr (Front Half) - lbs/hr (Total)	0.0046 0.0096 0.010 0.021 50.84 106.60	0.0039 0.0083 0.008 0.018 42.51 90.23	0.0042 0.0090 0.009 0.019 45.52 98.38	0.0042 0.0090 0.009 0.019 46.29 98.40
Unit Load - Megawatts	546.7	527.9	543.2	539.3

Calculated using an F_d Factor of 9,780

06-032 - 3 -

DISCUSSION OF SAMPLING RESULTS

The three tests for particulate matter appeared to be valid representations of the actual emissions during the tests. All leak checks performed on the sampling train and the pitot tubes indicated no leaks before or after each test. The indicative parameters calculated from the field data were in reasonable agreement. The measured moisture contents for the three runs were within 1.25% of the mean value. The measured flow rates (DSCFM) for the tests were within 1.35% of the mean value. The rates of sampling for the three tests were within the specified limits (90 to 110 percent isokinetic). The greatest deviation from 100% isokinetic was 6.3%.

The calculated emissions (gr/dscf Total) of particulate matter for the three tests indicated a range of -7.43% to +7.06% deviation from the mean value.

06-032 - 4 -

DESCRIPTION OF PROCESS

Muskogee Unit No. 6 is a Combustion Engineering boiler designed to burn coal with natural gas as an ignition fuel. The boiler is rated for a steam flow of 3,823,000 lbs/hr at 1,000° F superheat and reheat temperatures. Four corners with six elevations of burners are used to fire the boiler.

The steam turbine generator is a Westinghouse unit rated at 550 megawatts gross at 2,400 psi. Turbine control is accomplished using eight governor valves. Four of these are located at the bottom of the high pressure turbine and the remaining four on the top of the turbine.

06-032 - 5 -

DESCRIPTION OF SAMPLING LOCATION

The sampling ports on the Muskogee Unit No. 6 Stack are approximately 277 feet 6 inches above the ground. The sampling ports are located 215 feet (9.15 stack diameters) downstream from the inlet to the stack and 222 feet 6 inches (9.47 stack diameters) upstream from the outlet to the stack.

06-032 - 6 -

SAMPLING LOCATION

Figure 1: Muskogee Unit No. 6 Stack

06-032

SAMPLING AND ANALYTICAL PROCEDURES

The sampling followed the procedures set forth in 40CFR60, Appendix A, Test Methods 1, 2, 3, 4, 5, and 202.

Three traverse points were sampled from each of the four ports on the Muskogee Unit No. 6 Stack for a total of twelve traverse points. All traverse points were previously checked for cyclonic flow and none was found to be present. For each run, samples of five minute duration were taken at each of the twelve traverse points for a total sampling time of sixty minutes.

The pitot tube lines were checked for leaks before and after each test under a vacuum and a pressure. The lines were also checked for clearance and the manometer was zeroed before each test.

The sampling train was leak checked at the end of the sampling probe at 15" of mercury vacuum before each test, and again at the conclusion of each test at the highest vacuum recorded during sampling. This was done to predetermine the possibility of a diluted sample.

The "front-half" of the sampling train contained the following components:

Stainless steel nozzle
Stainless steel probe extension
Heated glass lined probe @ 248°F ± 25°F
Heated glass fiber filter @ 248°F ± 25°F

06-032 - 8 -

The "back-half" of the sampling train contained the following components:

Table 3: Reference Method 202 Sampling Train

Impinger No.	Impinger Type	Impinger Contents	Amount	Parameter Collected
1	Modified	D.I. H₂O	100 ml	H ₂ O / C.P.M.
2	Greenburg-Smith	D.1. H ₂ O	100 mi	H ₂ O / C.P.M.
3	Modified	Empty	- //// 4 - 120 - 10	H ₂ O / C.P.M.
4	Modified	6% H ₂ O ₂	200 ml	H ₂ O
5	Modified	Silica Gel	250 g	H₂O

At the completion of each run, the "back-half" of the sampling train was purged with nitrogen for 60 minutes at a rate of 20 liters per minute.

06-032 - 9 -

Figure 2: EPA Methods 1, 2, 3, 4, 5, and 202 Sampling Train

06-032 - 10 -

TEST NARRATIVE

Personnel from Air Sampling Associates, Inc. arrived at the OG+E Electric Services, Muskogee Power Plant, located near Muskogee, Oklahoma, at 3:00 p.m., on Tuesday, June 13, 2006. The sampling equipment was moved onto the Unit No. 6 Stack before securing for the night at 5:00 p.m.

On Wednesday, June 14, 2006 personnel returned to the plant at 6:45 a.m. The sampling equipment was prepared for testing and the first test for particulate matter began at 8:09 a.m. Testing continued until the completion of the third test at 3:11 p.m.

The equipment was moved off the stack and loaded into the sampling trailer. The samples were purged, recovered and taken to Air Sampling Associates, Inc.'s office in Lewisville, Texas, for analysis and evaluation.

Operations at OG+E Electric Services, Muskogee Power Plant, Unit No. 6 Stack, located near Muskogee, Oklahoma, were completed at 6:00 p.m., on Wednesday, June 14, 2006.

06-032 - 11 -

APPENDICES

Appendix A: Location of Traverse Points

Appendix B: Nomenclature and Equations for Calculation of Source

Emissions

Appendix C: Calibration Data

Appendix D: Field Data

Appendix E: Analytical Data

Appendix F: Chain of Custodies

Appendix G: Unit Operational Data

Appendix H: Resumes of Test Personnel

06-032 - 12 -

Appendix A:

Location of Traverse Points

06-032 A-1

Appendix A:

Location of Traverse Points Muskogee Unit No. 6 Stack

The sampling ports are located 215 feet (9.15 stack diameters) downstream from the inlet to the stack and 222 feet 6 inches (9.47 stack diameters) upstream from the outlet to the stack. The locations of the traverse points were calculated as follows:

Table 4: Location of Traverse Points

Port & Wall	Thickness = 15 in	nches
Inside Stad	k Diameter = 282 i	nches
Point Number*	Percent of Stack Diameter	Distance from Wall
1	4.4	12 7/16"
2	14.6	41 3/16"
3	29.6	83 1/2"

^{*} Calculated as 1/2 of a six point traverse.

06-032 A-2

Appendix A:

Figure 3: Location of Traverse Points

Muskogee Unit No. 6 Stack

06-032 A-3

Appendix B:

Nomenclature and Equations for Calculation of Source Emissions

Nomenclature For Flow Rate and Moisture Calculations

Symbol	English <u>Units</u>	Metric <u>Units</u>	Description
A_s	in. ²	m^2	Stack Area
Can	gr/dscf*	g/dscm*	Particulate – probe, cyclone, and filter
C_{ao}	gr/dscf*	g/dscm*	Particulate -total
C _{at}	gr/CF @ stack conditions	g/m3	Particulate – probe, cyclone, and filter
C _{au}	gr/CF @ stack conditions	g/m3	Particulate – total
C_{aw}	lbs/hr	kg/hr	Particulate – probe, cyclone, and filter
C _{ax}	lbs/hr	kg/hr	Particulate - total
C_p			Pitot Tube Calibration Factor
D_n	in.	m	Sampling Nozzle Diameter
%EA			Percent Excess Air at Sampling Point
g	32.2 ft/sec ²		Acceleration of gravity
%I			Percent Isokinetic
%M			Percent Moisture in the Stack Gas by Volume
M_d			Mole Fraction of Dry Gas
m_{f}	mg	mg	Particulate – probe, cyclone, and filter
mt	mg	mg	Particulate – total
M_{water}	18 lb/lb-mole		Molecular Weight of Water
MW	lb/lb-mole	g/g-mole	Molecular Weight of Stack Gas
MW_{air}	28.84 lb/lb-mole		Molecular Weight of Air

Symbol	English <u>Units</u>	Metric <u>Units</u>	<u>Description</u>
MW_d	lb/lb-mole	g/g-mole	Molecular Weight of Dry Stack Gas
P_b	"Hg Absolute	mm Hg	Barometric Pressure
P_{m}	"H ₂ O	mm H ₂ O	Orifice Pressure drop
Ps	"Hg Absolute	mm Hg	Stack Pressure
ΔΡ	"H ₂ O	mm H ₂ O	Velocity Head of Stack Gas
P _{std}	29.92" Hg	760 mm Hg	Standard Barometric Pressure
Qa	ACFM	m³/hr	Stack Gas Volume at Actual Stack Conditions
Q_{s}	DSCFM*	dscm/hr*	Stack Gas Volume at 29.92" Hg, 528° R, dry
R	21.83" Hg- .ft ³ /lb-mole °R		Universal Gas Constant
T_{m}	°F	°C	Average Gas Meter Temperature
T_{t}	min	min	Net Time of Test
Ts	°F	°C	Stack Temperature
T_{std}	528 °R	293 °K	Standard Temperature
V_{m}	ft ³	m ³	Volume of Dry Gas Sampled @ Meter Conditions
Vm _{std}	dscf*	dscm*	Volume of Dry Gas Sampled @ Standard Conditions
Vs	fpm	m/sec	Stack Velocity @ Stack Conditions
V_{w}	ml	ml	Total Water Collected in Impingers and Silica Gel
Vw_{gas}	scf*	scm*	Volume of Water Vapor Collected @ Standard Conditions
$ ho_{air}$	0.0748 lbs/ft ³		Density of Air

English Metric
Symbol Units Units Description

ρ_{water} 1 g/ml Density of Water

ρ_{man} 62.32 lbs/ft³ Density of Manometer Oil

(Inches of Water)

Standard Conditions: 29.92" Hg, 68° F (760 mm Hg, 20 °C)

Example Calculations

1. Volume of dry gas sampled at standard conditions. *

$$V_{\text{mstd}} = V_{\text{m}} \left(\frac{T_{\text{std}}}{T_{\text{m}} + 460} \right) \left[\frac{P_{\text{b}} + \frac{P_{\text{m}}}{13.6}}{P_{\text{std}}} \right]$$

$$V_{\text{mstd}} = 17.65 \text{ Vm} \left[\frac{P_b + \frac{P_m}{13.6}}{T_m + 460} \right] = \text{dscf}$$

$$V_{mstd} = dscf \times 0.028317 = dscm$$

2. Volume of water vapor collected at standard conditions. *

$$V_{w_{gas}} = \frac{(V_w - gms SO_2 - gms H_2S) \rho_{water} RT_{std}}{P_{std} M_{water} 453.6}$$

$$V_{wgas} = 0.0472 (V_w - gms SO_2 - gms H_2S) = scf$$

$$V_{w_{gas}} = scf \times 0.028317 = scm$$

Percent moisture in stack gas.

$$\%M = \frac{V_{w_{gas}}}{V_{m_{sid}} + V_{w_{gas}}} \times 100 = \%$$

* 29.92" Hg, 68° F (760 mm Hg, 20 °C)

4. Mole fraction of dry gas.

$$M_d = \frac{100 - \%M}{100}$$

5. Average molecular weight of dry stack gas.

$$MW_d = \left[\%CO_2 \times \frac{44}{100} \right] + \left[\%O_2 \times \frac{32}{100} \right] + \left[\%N_2 \times \frac{28}{100} \right] + \left[\%CO \times \frac{28}{100} \right] = lb/lb - mole$$

$$= g/g - mole$$

6. Molecular weight of stack gas.

$$MW = MW_d \times M_d + 18 (1 - M_d) = \frac{lb}{lb - mole} = g/g - mole$$

7. Percent excess air at sampling point.

$$\%EA = \frac{100 \left[\%O_2 - (0.5 \%CO)\right]}{0.265 \left(\%N_2\right) - \left[\%O_2 - (0.5 \%CO)\right]}$$

8. Stack Pressure.

$$P_s = P_b + \frac{Stack\ Pressure\ "H_2O}{13.6} = "Hg\ Absolute$$

$$P_s =$$
" $Hg Abs. x 25.4 = mm Hg$

9. Stack velocity at stack conditions.

$$V_{s} = C_{p} 60 \left[\frac{2g \times \rho_{man} \times P_{std} \times MW_{air} \times (T_{s} + 460) \times \Delta P}{12 \times \rho_{air} \times P_{s} \times MW \times T_{std}} \right]^{1/2}$$

$$V_s = 5,123.8 \, C_p \left[\frac{(T_s + 460)}{P_s \, x \, MW} \right]^{1/2} \sqrt{\Delta P} \text{ average} = fpm$$

$$V_s = \text{fpm x } 0.00508 = \text{m/sec}$$

10. Dry stack gas volume at standard conditions. *

$$Q_s = \frac{1}{144} V_s X A_s X M_d X \frac{T_{std}}{T_s + 460} X \frac{P_s}{P_{std}}$$

$$Q_s = \frac{0.123 \, V_s \, X \, A_s \, X \, M_d \, X \, P_s}{T_s + 460} = DSCFM$$

$$Q_s = DSCFM \times 1.6990 = dscm/hr$$

11. Actual stack gas volume at stack conditions.

$$Q_a = \frac{V_s \times A_s}{144} = ACFM$$

$$Q_a = ACFM \times 1.6990 = m^3 / hr$$

12. Percent Isokinetic

$$\%I = \frac{V_{\text{mstd}} \times (T_s + 460) \times P_{\text{std}} \times 100 \times 144 \text{ in.}^2/\text{ft}^2}{M_d \times T_{\text{std}} \times P_s \times T_t \times V_s \left(\frac{\Pi \times D_n^2}{4}\right)}$$

$$\%I = \frac{1039 \ x \ V_{\text{mstd}} \ x \ (T_s + 460)}{M_d \ x \ P_s \ x \ T_t \ x \ V_s \ x \ D_n^2}$$

*29.92" Hg, 68° F (760 mm Hg, 20 °C)

13. Particulate - Probe, cyclone, and filter.

$$C_{an} = \frac{m_f}{V_{metd}} x \frac{1gr}{64.8 mg}$$

$$C_{an} = 0.0154 \text{ x} \frac{\text{mf}}{V_{meta}} \text{gr/dscf}^*$$

$$C_{an} = gr/dscf \times 2.290 = g/dscm *$$

14. Particulate total.

$$C_{ao} = 0.0154 \text{ x} \frac{m_t}{V_{metal}} = gr / dscf^*$$

$$C_{ao} = gr/dscf \times 2.290 = g/dscm *$$

15. Particulate – probe, cyclone, and filter at stack conditions.

$$C_{at} = C_{an} \times \frac{P_s}{P_{std}} \times \frac{(T_{std})}{(T_s + 460)} \times M_d$$

$$C_{at} = \frac{17.65 \times C_{an} \times Ps \times Md}{Tx + 460} = gr/CF$$

$$C_{at} = gr/CF \times 2.290 = g/m^3$$

16. Particulate - total, at stack conditions.

$$C_{au} = \frac{17.65 \times C_{ao} \times P_s \times M_d}{T_s + 460} = gr/CF$$

$$C_{au} = gr/CF \times 2.290 = g/m^3$$

* 29.92" Hg, 68° F (760 mm Hg, 20 °C)

Emission Rate Calculations

lbs/mmBtu =
$$\frac{\frac{\text{gr/dscf}}{7,000} \times \text{Fd} \times 20.9}{(20.9 - O_2\%)}$$

F_d = Oxygen based F factor

<u>Fuel</u> Coal F_d factor 9,780 dscf*/mmBtu

SOURCE EMISSION SURVEY

JOB NUMBER: 06-032

JOB NAME: OG + E Electric Services LOCATION: Muskogee, OK

UNIT TESTED: Unit No. 6 Stack

SOURCE EMISSION CALCULATIONS

			RU	JN NUMBER	
SYMBOL	DESCRIPTION	UNITS	1	2	3
•				1	
DATE			06/14/06	06/14/06	06/14/06
BEGIN TIME			0809	1046	1358
END TIME			0928	1158	1511
P(b)	BAROMETRIC PRESSURE	"Hg Abs.	29.49	29.58	29.48
		(mm Hg)	(749.00)	(751.00)	(749.00)
P(m)	ORIFICE PRESSURE DROP	"H2O	3.000	3.371	3.496
		(mm H2O)	(76.200)	(85.600)	(88.800)
	DGM CALIBRATION FACTOR		0.992	0.992	0.992
V(m)	VOLUME DRY GAS SAMPLED	ft.^3	53.618	56.592	57.672
	@ METER CONDITIONS	(m^3)	(1.518)	(1.603)	(1.633)
	LEAK CHECK VOLUME	ft.^3	0.000	0.000	0.000
T(m)	AVERAGE GAS METER	DEG.F	81	87	92
	TEMPERATURE	(DEG.C)	(27)	(31)	(33)
V(m[std])*	VOLUME DRY GAS SAMPLED	DSCF	51.972	54.467	54.836
	@ STANDARD CONDITIONS*	(DSCM)	(1.472)	(1.542)	(1.553)
V(w)	TOTAL WATER COLLECTED,	ml	155.5	167.6	166.3
	IMPINGERS & SILICA GEL				
V(w[gas])	VOLUME WATER VAPOR	SCF	7.340	7.911	7.849
	COLLECTED @ STANDARD	(SCM)	(0.208)	(0.224)	(0.222)
	CONDITIONS*		1 1		
%M	MOISTURE IN STACK GAS	%	12.37	12.68	12.52
	BY VOLUME				
Md	MOL FRACTION OF DRY GAS		0.8763	0.8732	0.8748
Tt	NET TIME OF TEST	MINUTES	60	60	60

^{* 68} Deg.F, 29.92 "Hg (20 Deg.C, 760 mm Hg)

SOURCE EMISSION CALCULATIONS

JOB NUMBER: 06-032

JOB NAME: OG + E Electric Services

LOCATION: Muskogee, OK

UNIT TESTED: Unit No. 6 Stack

				RUN NUMBER	
SYMBOL	DESCRIPTION	UNITS	1	2	3
CO2		%	12.4	12.0	12.5
O2		%	7.3	7.4	7.0
co		%	0.0	0.0	0.0
N2		%	80.3	80.6	80.5
%EA	EXCESS AIR @ SAMPLING POINT	%	52.2	53.0	48.8
MWd	MOLECULAR WEIGHT OF	LB/LB-MOLE	30.28	30.22	30.28
	DRY STACK GAS	(g/g-MOLE)	(30.28)	(30.22)	(30.28)
MW	MOLECULAR WEIGHT OF	LB/LB-MOLE	28.76	28.67	28.74
	STACK GAS	(g/g-MOLE)	(28.76)	(28.67)	(28.74)
Ср	PITOT TUBE CALIBRATION		0.821	0.821	0.821
DELTA P	VELOCITY HEAD OF STACK	"H2O	1.525	1.471	1.525
	GAS	(mm H20)	(38.700)	(37.400)	(38.700)
DELTA P ^(1/2)		"H2O	1.233	1.211	1.233
Ts	STACK TEMPERATURE	DEG. F	288	295	312
		(DEG. C)	(142)	(146)	(156)
Ps	STACK PRESSURE	"Hg Abs.	29.44	29.53	29.43
		(mm Hg)	(748.00)	(750.00)	(748.00)
		"H20	-0.72	-0.64	-0.63
Vs	STACK VELOCITY @ STACK	FPM	4,875	4,811	4,955
	CONDITIONS	(m/SEC.)	(25)	(24)	(25)
As	STACK AREA	(SQ.INCHES)	62,458	62,458	62,458
		(SQ.METERS)	(40)	(40)	(40)
Qs	DRY STACK GAS VOLUME @	DSCFM	1,291,686	1,262,289	1,269,459
	STANDARD CONDITIONS*	(DSCM/HR)	(2,194,575)	(2,144,629)	(2,156,811)
Qa	ACTUAL STACK GAS VOLUME	ACFM	2,114,518	2,086,570	2,149,286
	@ STACK CONDITIONS	(m^3/HR)	(3,592,566)	(3,545,082)	(3,651,637)
Dn	SAMPLING NOZZLE DIAM.	IN.	0.239	0.239	0.239
		(m)	(0.006)	(0.006)	(0.006)
%	PERCENT ISOKINETIC	%	93.7	100.5	100.6

^{* 68} Deg.F, 29.92 *Hg (20 Deg.C, 760 mm Hg)

SOURCE EMISSION CALCULATIONS

JOB NUMBER: 06-032

JOB NAME: OG + E Electric Services

LOCATION: Muskogee, OK UNIT TESTED: Unit No. 6 Stack

			F	RUN NUMBER	
SYMBOL	DESCRIPTION	UNITS	1	2	3
Mf	PARTICULATE - PROBE,	mg	15.5	13.9	14.9
	CYCLONE AND FILTER		<u> </u>		
Mt	PARTICULATE - TOTAL	mg	32.5	29.5	32.2
Can	PARTICULATE - PROBE,	gr/DSCF*	0.0046	0.0039	0.0042
	CYCLONE AND FILTER	(g/DSCM)	(0.0105)	(0.0090)	(0.0096)
Cao	PARTICULATE - TOTAL	gr/DSCF*	0.0096	0.0083	0.0090
		(g/DSCM)	(0.0221)	(0.0191)	(0.0207)
Cat	PARTICPROBE, CYCLONE	gr/CF	0.0028	0.0024	0.0025
	AND FILTER @ STACK COND.	(g/m3)	(0.0064)	(0.0055)	(0.0057)
Cau	PARTICULATE - TOTAL @	gr/CF	0.0059	0.0050	0.0053
	STACK CONDITIONS	(g/m3)	(0.0135)	(0.0115)	(0.0121)
Caw	PARTICULATE - PROBE,	LBS/HR	50.84	42.51	45.52
	CYCLONE AND FILTER	(Kg/HR)	(23.06)	(19.28)	(20.65)
Cax	PARTICULATE - TOTAL	LBS/HR	106.60	90.23	98.38
		(Kg/HR)	(48.36)	(40.93)	(44.63)
_					
			1		
	1				
	[

^{* 68} Deg.F, 29.92 "Hg (20 Deg.C, 760 mm Hg)

Appendix C:

Calibration Data

06-032 C-1

Appendix C

Table 5: Calibration Data

Pre-test Calibrations:

<u>Equipment</u>	Calibration Factor	Calibration Date
Dry Gas Meter 1-1 Digital Temperature Indicator 1-1 Dry Gas Meter 1-1 Orifice	0.992	05/22/06 05/22/06 05/22/06
Pitot Tube 1-4	0.821	05/22/06
Nozzle 1-3	0.239	03/03/06
Barometer 1	NIST Traceable	05/22/06

Post-test Calibrations:

Equipment	Calibration Factor	Calibration Date
Dry Gas Meter 1-1	0.993	06/15/06
Pitot Tube 1-4	0.823	06/15/06
Nozzle 1-3	0.240	06/15/06
Barometer 1	NIST Traceable	06/23/06

06-032 C-2

Calibration Data Dry Gas Meter Calibration

Meter Console No.	ASAI 1-1
Date Calibration Performed:	05/22/06

ΔH Setting	
(" H ₂ O)	C _{DG}
0.50	0.998
1.00	0.994
1.50	0.993
2.00	0.996
3.00	0.986
4.00	0.986
Average	0.992

Variation +: 0.60%
Variation -: -0.60%

Certified by: Scot Jackson 05/22/06

Calibrator (Signature / Date)

QA Officer (Signature / Date)

Bill Hefley 05/22/06

Calibration Data Dry Gas Meter Calibration

Meter Console No.

ASAI 1-1

Date Calibration Performed:

05/22/06

Run 1 at 0.5"
$$\Delta H$$
 Pb = 29.69 " Hg Wet Test Meter C_f = 1.018 Console Pump Vacuum = -5.0 " Hg

Wet Test Meter V_{mstd} = 17.65 x V_m
$$\left[\frac{P_b + \frac{P_m}{13.6}}{(T_m + 460)} \right] x C_f = \frac{5.260}{4} dcsf$$

Dry Gas Meter
$$V_{mind} = 17.65 \times Vm \left[\frac{P_b + \frac{P_m}{13.6}}{\left(T_m + 460 \right)} \right] = \frac{5.270}{4} \text{ dcsf}$$

Calibration Factor
$$(C_{DG}) = \frac{Wet \ Test \ Meter \ V_{meta}}{Dry \ Gas \ Meter \ V_{meta}} = \frac{0.998}{1}$$

Meter Console No.

ASAI 1-1

Date Calibration Performed:

05/22/06

Run 1 at 1.0"
$$\Delta H$$
 Pb = 29.69 " Hg Wet Test Meter C_f = 1.018 Console Pump Vacuum = -5.0 " Hg

Wet Test Meter No. ASAI-0 Dry Gas Meter Temperature Meter Meter Time Reading Temp. Reading 303.478 cf 86 °F 297.750 cf 84 °F -0.1 " H₂O End 11:06 5.598 cf <u>-0.1</u> " H₂O Start 10:56 0,000 cf 83 °F -0.1 "H₂O 5.728 cf 5.598 cf Average

Wet Test Meter
$$V_{msid} = 17.65 \ x \ V_m \left[\frac{P_b + \frac{P_m}{13.6}}{\left(T_m + 460 \right)} \right] x \ C_f = \frac{5.498}{6.498} \ dcsf$$

Dry Gas Meter
$$V_{msid} = 17.65 \times V_m \left[\frac{P_b + \frac{P_m}{13.6}}{\left(T_m + 460 \right)} \right] = \frac{5.534}{6} \text{ dcsf}$$

Calibration Factor
$$(CDG) = \frac{Wet \ Test \ Meter \ V_{mstd}}{Dry \ Gas \ Meter \ V_{mstd}} = \frac{0.994}{1}$$

Meter Console No.

ASAI 1-1

Date Calibration Performed:

Run 1 at 1.5"
$$\Delta H$$
 Pb = 29.69 " Hg Wet Test Meter C_f = 1.018 Console Pump Vacuum = -5.0 " Hg

Wet Test Meter
$$V_{msid} = 17.65 \ x \ V_m \left[\frac{P_b + \frac{P_m}{13.6}}{\left(T_m + 460 \right)} \right] x \ C_f = \frac{10.006}{10.006} \ dcsf$$

Dry Gas Meter
$$V_{mstd} = 17.65 \times V_m \left[\frac{P_b + \frac{P_m}{13.6}}{\left(T_m + 460 \right)} \right] = \frac{10.074}{10.074} \text{ dcsf}$$

Calibration Factor
$$(C_{DG}) = \frac{Wet \ Test \ Meter \ V_{mind}}{Dry \ Gas \ Meter \ V_{mind}} = \frac{0.993}{0.993}$$

Meter Console No.

ASAI 1-1

Date Calibration Performed:

Run 1 at 2.0"
$$\Delta H$$
 Pb = 29.69 " Hg Wet Test Meter C_f = 1.018 Console Pump Vacuum = -5.0 " Hg

Wet Test Meter
$$V_{msid} = 17.65 \ x \ V_m \left[\frac{P_b + \frac{P_m}{13.6}}{\left(T_m + 460 \right)} \right] x \ C_f = \frac{9.963}{2} \ dcsf$$

Dry Gas Meter
$$V_{mstd} = 17.65 \times V_m \left[\frac{P_b + \frac{P_m}{13.6}}{\left(T_m + 460 \right)} \right] = \frac{10.002}{10.002} \text{ dcsf}$$

Calibration Factor
$$(C_{DG}) = \frac{Wet \ Test \ Meter \ V_{mstd}}{Dry \ Gas \ Meter \ V_{mstd}} = \frac{0.996}{V_{DS}}$$

Meter Console No.

ASAI 1-1

Date Calibration Performed:

Run 1 at 3.0"
$$\Delta H$$
 Pb = 29.69 " Hg Wet Test Meter C_f = 1.018 Console Pump Vacuum = -5.0 " Hg

Wet Test Meter
$$V_{mstd} = 17.65 \ x \ V_m \left[\frac{P_b + \frac{P_m}{13.6}}{\left(T_m + 460 \right)} \right] x \ C_f = \frac{11.210}{10.65} \ dcsf$$

Dry Gas Meter
$$V_{msid} = 17.65 \times V_m \begin{bmatrix} P_b + P_m \\ \hline (T_m + 460) \end{bmatrix} = 11.374 \text{ dcsf}$$

Calibration Factor
$$(C_{DG}) = \frac{Wet \ Test \ Meter \ V_{meta}}{Dry \ Gas \ Meter \ V_{meta}} = \frac{0.986}{C_{DG}}$$

Meter Console No.

ASAI 1-1

Date Calibration Performed:

Run 1 at 4.0"
$$\Delta H$$
 Pb = 29.67 " Hg Wet Test Meter C_f = 1.018 Console Pump Vacuum = -5.0 " Hg

Wet Test Meter
$$V_{meta} = 17.65 \ x \ V_m \left[\frac{P_b + \frac{P_m}{13.6}}{\left(T_m + 460 \right)} \right] x \ C_f = \frac{10.716}{400} \ dcsf$$

Dry Gas Meter
$$V_{mstd} = 17.65 \times Vm \left[\frac{P_b + \frac{P_m}{13.6}}{\left(T_m + 460 \right)} \right] = \frac{10.872}{4} \text{ dcsf}$$

Calibration Factor
$$(C_{DG}) = \frac{Wet \ Test \ Meter \ V_{metal}}{Dry \ Gas \ Meter \ V_{metal}} = \frac{0.986}{1}$$

Calibration Data Digital Temperature Indicator Calibration

DTI Unit No.	ASAI 1-1			
Date Calibration Pe	erformed:	05/22/06		
Reference Point Ice Bath Ambient Air Boiling Water Oven Oven Oven Oven	Time 6:50 6:46 7:37 16:58 16:48 16:43 16:35	ASTM Reference Thermometer (°F) 33° F 79° F 207° F 233° F 298° F 348° F 395° F	DTI (°F) 31° F 79° F 208° F 235° F 297° F 348° F 395° F	- - - -
Meter Adjusted?	Yes	_		
ASTM Reference The	ermometer:	SN: 5963 SN: 1853 SN: 992	Range: Range: Range:	+18+89°F +205+310°F +295+400°F
	Certified by:	Scot V	ackson 05/2	22/06
	·		or (Signature	,
			fley 05/2	
		QA Offic	er (Signature	e / Date)

CALIBRATION DATA PITOT TUBE CALIBRATION DATA

Date: _	05/22/06	Time:	13:50	
I.D. #	ASAI 1-4	T _s :	90	°F
C _{pstd} :	0.990	Pb:	29.66	" Hg

	Desired	Calib	ration					F .	T	
for a			dard	d Ctandard			Cal	İ	1	Cal
fps	Calibration	_		√ Standard			Cal.		1. 1	Cal.
Mark	Standard	Start	<u>End</u>	Average	High	√ High	Factor	Low	√ Low	Factor
20	0.09	0.09	0.09	0.300	0.13	0.361	0.824	0.13	0.361	0.824
30	0.20	0.20	0.20	0.447	0.29	0.539	0.822	0.29	0.539	0.822
40	0.35	0.35	0.35	0.592	0.51	0.714	0.820	0.51	0.714	0.820
50	0.54	0.54	0.54	0.735	0.78	0.883	0.824	0.78	0.883	0.824
60	0.78	0.78	0.78	0.883	1.15	1.072	0.815	1.15	1.072	0.815
70	1.07	1.10	1.10	1.049	1.60	1.265	0.821	1.60	1.265	0.821
80	1.39	1.40	1.40	1.183	2.05	1.432	0.818	2.05	1.432	0.818
90	1.76	1.75	1.75	1.323	2.55	1.597	0.820	2.55	1.597	0.820
50	0.54	0.54	0.54	0.735	0.78	0.883	0.824	0.78	0.883	0.824
50	0.54	0.54	0.54	0.735	0.78	0.883	0.824	0.78	0.883	0.824
			•							
P	\verage						0.821			0.821

Summary of Results:

Normal high side calibraiton factor:	0.821
variation +:	0.37%
variation -:	-0.73%
Normal low side calibration factor:	0.821
variation +:	0.37%
variation -	-0.73%

Certification:

I certify that the Type S pitot tube, the standard type pitot tube, and the calibration setup meet or exceed all specifications, criteria and/or applicable design features and hereby assign a pitot tube calibration factor C_p of: 0.821

Certified by:	Patrick Selakovich 5/22/06	Bill Hefley 5/22/06
-	Calibrator (Signature/Date)	QA Officer (Signature/Date)

Calibration Data Nozzle Calibration

	Date Calib		e Set No. erformed:		Al 1- 03/06			
	-1	-2	-3	-4	-5	-6	-7	-8
Measurement 1			0.241					
Measurement 2			0.238					
Measurement 3			0.240					
Measurement 4			0.241					
Measurement 5			0.240				 .	
Measurement 6			0.240					
Measurement 7	·		0.240					
Measurement 8	<u> </u>		0.239					
Measurement 9	<u> </u>		0.234					
Measurement 10			0.238					
Average	20		0.239			71		

Scot Tacilson 03/03/06

Calibrator (Signature / Date)

Bill Hefley 03/03/06

QA Officer (Signature / Date)

Calibration Data Barometer Calibration Data

Date:	05/22/2006	Time:	14:20
i.D. #:	ASAI – 1	Temperature:	90

Mercury Barometer ASAI - 0 Reading: 29.67" Hg

> Aneroid Barometer Reading: 29.71" Hg

> > 0.04" Hg Difference:

Barometer Adjusted? Yes

Certified by:

Patrick Selakovich 05/22/06

Calibrator (Signature/Date)

Bill Hefley 05/22/06

QA Officer (Signature/Date)

Post-Test Calibration Data

06-032 C-15

1.87 1.87

1.83 1.83

1.83

ASAI 1-1 06-15-06 OG+E

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

			0.47				-0.47				
1.005	0.993	0.995	0.998	0.991	0.985	0.989	0.989				
4.9633	4.9633	4.9633	AVG≔	5.3024	5.3024	5.3024	AVG=				= AVG
	4.9964			5.3487	5.3813	5.3623					
2,35	2.35	2.35		3,95	3.95	3.95					
90.9	6.00	9.00		5.00	5.00	5.00					
95.5	95.75	96		96	96.75	97.25		0	o	0	
83	92	92		98	96	96					
15.0	95	82		98	96	96					
96	26	97		97	86	86					
96	96	97		96	97	86					
120	55	92		96	8	8		!			
6.220	5.285	5.280		5.638	5.680	5.665		ó	e,	o,	
772.855	778,140	783.420		806.350	812.030	817 695					
767,635	772.855	778,140		800.712	806.350	812.030					
15	15	15		15.5	15.5	15.5					
0.6583	0,6583	0.6583		0.8447	0.8447	0.8447					
-	~	**		-	8	67		_	~	69	
			ı				ı		_	_	

24

C-16

3

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS:

The following equations are used to calculate the standard volumes of air passed through the DGM, ¼ (std), and the critical orifice, $V_{m{x}}$ (std.), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above.

(1)
$$Vm_{tad} = K_1 * Vm * \frac{Pbar + (\Delta H/13.6)}{Tm}$$

 Net volume of gas sample passed through DGM, corrected to standard conditions $T_m = Absolute DGM$ avg. temperature (R - English, "K - Metric) K₁ = 17.64 'Rvin. Hg (English), 0.3858 "K/mm Hg (Metric)

Volume of gas sample passed through the critical orifice, corrected to standard conditions

 $\Delta H_{\mathfrak{S}} = \left(\frac{0.75.0}{V_{cr}(std)}\right)^2 \Delta H \left(\frac{V_{m}(std)}{V_{m}}\right)$

0.993

AVERAGE DRY GAS METER CALIBRATION FACTOR, Y =

1.85

AVERAGE AH® =

(2)
$$Vcr_{(ind)} = K^{**} \frac{Pbar * \Theta}{\sqrt{Tamb}}$$

 DGM calibration factor $Vcr_{(std)}$ $Y = \overline{Vm_{(such)}}$

ව

CALIBRATION DATA PITOT TUBE CALIBRATION DATA

 Date:
 06/15/06
 Time:
 12:55

 I.D. #
 ASAI 1-4
 T_s:
 90 °F

 C_{pstd}:
 0.990
 Pb:
 29.64 " Hg

	Desired	Calib	ration							
fps	Calibration	Stan	dard	√ Standard			Cal.	}		Cal.
Mark	Standard	Start	End	Average	High	√ High	Factor	Low	√ Low	Factor
20	0.09	0.09	0.09	0.300	0.13	0.361	0.824	0.13	0.361	0.824
30	0.20	0.20	0.20	0.447	0.29	0.539	0.822	0.29	0.539	0.822
40	0.35	0.35	0.35	0.592	0.51	0.714	0.820	0.51	0.714	0.820
50	0.54	0.54	0.54	0.735	0.78	0.883	0.824	0.78	0.883	0.824
60	0.78	0.78	0.78	0.883	1.15	1.072	0.815	1.15	1.072	0.815
70	1.07	1.10	1.10	1.049	1.55	1.245	0.834	1.55	1.245	0.834
80	1.39	1.40	1.40	1.183	2.05	1.432	0.818	2.00	1.414	0.828
90	1.76	1.75	1.75	1.323	2.50	1.581	0.828	2.50	1.581	0.828
									<u> </u>	
50	0.54	0.54	0.54	0.735	0.78	0.883	0.824	0.78	0.883	0.824
50	0.54	0.54	0.54	0.735	0.78	0.883	0.824	0.78	0.883	0.824
P	verage		L				0.823			0.824

Summary of Results:

Normal high side calibraiton factor:

variation +:

variation -:

-0.97%

Normal low side calibration factor:

variation +:

1.34%

-0.97%

0.824

variation +:

1.21%

variation -:

-1.09%

Certification:

I certify that the Type S pitot tube, the standard type pitot tube, and the calibration setup meet or exceed all specifications, criteria and/or applicable design features and hereby assign a pitot tube calibration factor C_p of: 0.823

Certified by:

Scot Tackson 6/15/06

Calibrator (Signature/Date)

Bill Hefley 6/15/06

QA Officer (Signature/Date)

Calibration Data Nozzle Calibration

	Date Calib		e Set No. erformed:		Al 1- 15/06			
	-1	-2	-3	-4	-5	-6	-7	-8
Measurement 1			0.238					
Measurement 2			0.238					
Measurement 3			0.241					
Measurement 4			0.240				03	
Measurement 5			0.240				//	
Measurement 6			0.241					
Measurement 7			0.240					
Measurement 8			0.240					
Measurement 9			0.240					
Measurement 10			0.238					
Average			0.240			17		

Scot Tackson 06/15/06

Calibrator (Signature / Date)

Bill Hefley 06/15/06

QA Officer (Signature / Date)

Calibration Data Barometer Calibration Data

 Date:
 06/23/2006
 Time:
 13:20

 i.D. #:
 ASA! – 1
 Temperature:
 90

Mercury Barometer ASA! - 0 Reading: 29.78" Hg

Aneroid Barometer Reading: 29.78" Hg

Difference: 0.00" Hg

Barometer Adjusted? N0

Certified by:

Patrick Selakovich 06/23/06
Calibrator (Signature/Date)

Bill fiefley 06/23/06
QA Officer (Signature/Date)

Appendix D:

Field Data

06-032 D-1

6:13-cv-0035	6-JHP	Do	ocur	ner	nt 3	4-1	1	File	d ir	ı El	D/C)K c	on (05/2	21/1	L4	Pa	ge	53	of 87
68 1.2 1.2 1.2 1.2 1.2 1.2 2.2 1.1 1.1 1.1	Demark			3043			Filter Brit		7.92-592											To No. /- 3 - R ¹ - 0.992 V ak Rate cfm]]
Ambient Temp. °F. Assumed Moisture % Probe Length 72 C Factor 20. Finited Leak © 5.5 Final Leak © 5.5	Dry Gas Cemp. "F	72	73	74	1	2/2	79	29	1	18	8/	28	1	78	83	83.	1			Probe Tip No
And Assure C Fa	C. E.	73	76	80	l	28	86	87	-1	85	86	88		200	88	89				Barometer No. Leak Checks After Start: V _m X Dry Gas Meter Calibration Factor 54 (Dry Gas Meter Reading ft - (T, n
* #	H. C.	49	41	4	1	46	45	4.6	1	15	47	4.8	1	54	48	15	-			Barometer No. Total Volume of Leak Ch V _m X Dry Gas Meter Cali
far each lest pol	Ser.	290	162	292		296	299	300		301	293	1.62		297	296	296				Barometer No., Total Volume of V _m X Dry Gas Iv. Dry Gas Meter
Field Data		313	294	062	1	662	882	288		682	276	273		314	306	310	-			
Sheck frilis	Stack Temp	782	285	284	1	287	782	582	1	162	290	287		262	162	682				± = 0 00 ±
Read and record at the start of each test point. Purge to: Purge time: 100 5 - 1105 Pilot Leak Check initial 1/ Final 1	Pump Vectulin Trg Guage	3,5	4.0	3,5		4:0	4.0	3.0)	40	4.5	3,5		4.5	4.5	4.0				29,49 29,49 20239 1,2,456
Services of Karlos of Karl	Online AH THO Actival	3,25	3,25	2.85	1	3.20	3.05	2.25)	3.10	3.05	2.65	1	3.25	3.25	2.85				ress. Ph. Tip Dia. D
2 4 331	Origos AH THO Desired	- 21	3,25	2.85	1	3.20	3.05	2.25	Į.	3.10	3.05	2.65	1	3.25	3.25	2.85)			Pitot Ti Baro. F Probe % CO ₂
16-03 1700.6	1. 20 20	1.70	027	1.40	1	1.65	1,50	1.20	1	1.55	1.50	1.30)	02.7	1.20	1.40)			22.2.1 Tain. "H ₂ 0
06-032 06+ F E/ext Unit No. 6 S 14 17 une 20 14 11 us 3	Dry Gass Meter, CF	552.60	12:25	261.84	566.213	566.213	570.79	575.36	519,448	519.468	583.90	558,47	592.852	592.552	597.50	11.209	606.450			53.44 53.44 155.5 60
Job Number Job Name Run Number Unit Date Operator Sample Box No	O DE PER	6080	2814	6130	4280	1831	9836	084	2480	1380		1	909%		8/60	5260	228			Pitot Tube Calibration I Volume Collected V., Water Collected V., Time of Test T,
Job Number Job Name Run Number Unit Date Operator Sample Box	Point	5-0	7		End	23	2)-2	End	8-3	N	- 1:	Eng	-	7		Dro.	T)		Pitot Tube Calibration Volume Collected V Water Collected V Time of Test T,

,	/ 	Document 34-11	Filed in ED/OK on 0!	5/21/14 Pa	ge 54 of 87
Impinger Box No.	Final Weight	835.7	Water Weight Gain	impinger 1	99-1
urihinidas t	Initial Weight	736.6	, 48		29.1
		99. \ 773.8		Impinger 2	•
Impinger 2	Final Weight Initial Weight	744.7		Impinger 3	4.2
	Increase	29.1 738.4	V _w =	Impinger 4	3/1
Impinger 3	Final Weight Initial Weight	734.2	g SO ₂ =	Impinger 5	20.0
	Increase	4.2 837.2		Impinger 6	
Impinger 4	Final Weight Initial Weight	834.	iHerko A062	Impinger 7	160.6
	Increase	3.1	- 1 - 1	Total	155,5 = V.
Impinger 5	Final Weight Initial Weight	960.9 940.9	$P_{n} = \frac{29.49}{53.618} v_{n}$	%CO ₂ = %O ₂ =	7.3
	Increase	20.0	V _w = <u>155.5</u> P _w = <u>3.000</u>	%CO = %N ₂ =	80.3
Impinger 6	Final Weight Initial Weight		Avg AP = 1.525	$A_{s} = D_{n} =$	<u>62,458</u> <u>0.239</u>
	Increase	#S	$C_{i} = \frac{1.233}{0.821}$	T ₁ =	<u>60 V</u>
Impinger 7	Final Weight Initial Weight 😑		$P_{n} = \frac{-0.72}{81}$	%F 3	9.44 Hg
	Increase ·	-,	T. = 288		7 <u>48</u> •R
Moisture Content:	%M =	2.37 M. = 0	.8763 MW. = 30	276 M	W = 28,76°
	[<i>P</i> ,,,]	Γ	٦	
			x 53.618 29.49 +		<u>51.972</u> str ^a <u>0-84</u> scfm
Vw _{gen} = 0,0472	x Vw = 0.0472 x	<i> 55.5</i> =_	7.340 s 2 x 100 = 12.3 340 33 = 4875 ipm	ft ^s	
% Moisture =	$\frac{V_{W_{gas}}}{Vm_{ad} + V_{W_{gas}}} \times 10$	$0 = \frac{7.340}{51.972 + 7.5}$	$\frac{2}{240}$ x 100 = $\frac{12.3}{2}$	37 %	28
V _x = 5123.8 x	0.821	748 × 1-2	33 = 4875 tpm		ACFM: 2, 114, 518
	* <i>27.44</i> . <1.972 .	748	937.	,	ACFM: 2, 114, 518 SCFM: 4291, 686 %EA: 52-2
0.8163	× 29.44 × 487	5 × 60 × (0.2	<u>93.7</u> %		%EA: 52-2

					de e													- 4	ł		
79	Remarks									w.									Tip No. 1-3	l.	eak Ratecfm)]
F E C C C C C C C C C C C C C C C C C C	Dry Gas Temp. "F	58	25	85 S	1	280	85	99	(28	87	87	/	87	00	88	1		Barometer No. / Probe Tip No. / Total Volume of Leak Checks After Start: 8 ft 18 / 099	7 7 7 7	min. X Leak Rate
Ambient Te Assumed h Probe Leng C Factor _ Initial Leak Final Leak	Dy Gas Term. *F Inlet	85	98	87	Į.	90	87	89	l	88	89	90	ı	90	16	92	1		Barometer No. / Total Volume of Leak Checks After Start:	Digital I gut	Dry Gas Meter Reading ft* - (T _t _
·	Higher Temp	25	21	54)	ં	55	47	1	53	47	67	1	725	52	54	}		lo. /		ster Reading
each test pol	O'I. Print	296	295	305	1	308	297	162	1	305	305	310	1	2/2	308	300)		Barometer No Total Volume of	» √ ∧ √ × .	Dry Gas Me
Field Data	equi.	326	319	3/6	1	326	317	3/4		426	31.9	323		828	326	327	1			ı	1
ord at the source tritical	A G	367	239	293		297	295	293		296	762	162	1	296	295	1.62			li		30.6
Read and record at the start of each test point. Purge for. Purge time: 1228-1528 Plate Leak Check initial 1 Final 1	Pump Watsum To Grage	2.5	2.0	5,5	}	6.5	515	5.0		6.0	6.0	0.5		8.0	0.0	6.5)		29.58	1	N 28
Centers	Office AH	3.90	3.70	3.30	1	3.45	3,20	2.85		3,30	3.20	2.75	1	3.80	3.80	3.20	1		Pitot Tube NoBaro. Prese. P _k	% CO ₁ 12, 0	%0° 7.4
1664 437	O TO O	3.90	3.70	3.30	}	3.45	3.20	2.85	1	3.30	3,20	52.2	}	3.80	3.80	3.20			(E. 63)	ŗ %	36
	<u>1</u> 2		1,00	1.45		051	1.40	1.25	1	1.45	4.1	1.20	j	1.65	577	041	1		1282		S.
06 15 2 Unit 100 14 US	Dy Gas CF	607.434	412.36	617.35	101-22%	101-229	126.86	55/187	1.76.003	200.927	640.70	15.31	649.701	647,70	64.63	1,59.64	784777		Pitot Tube Calibration Factor C. 2.82.	0009	-0.64
oer ber ox No	OH-	1046			10/1	1106	1111	1116	1121	1125	1130	1/35	1140	1143	9-11/		D		Calibration	lected V, _	ssure P.
Job Number Job Name Run Number Unit Date Operator Sample Box No.	Ī	4-3	7		Find	63	2	-4	O.	2.0	0		Find	2-3	Ŋ		Find	41.1	Pitot Tube Calibratio	Water Collected V., Time of Test T.	Stack Pressure P

0.13		Document 34-11	T IICU III ED/OR OII O	3/21/14 1 a	gc 30 01 07
Impinger Box No.	1-2		2		
		471.0	Water Weight Gain		
Impinger 1	Final Weight	834,2		impinger 1	103.0
1	Initial Weight	731.2.		, -	•
	inc rease	103.0	1957	impinger 2	34.8
œ.					
impinger 2	Final Weight	768.8		impinger 3	5.7
	Initial Weight	734.0			7 0
	increase	34-8		Impinger 4	3,0
		736.0	V _w =		011
Impinger 3	Final Weight	730.3	g SO ₂ =	Impinger 5	21.1
	Initial Weight	<u> √30.7</u> ≤.7	V _{**} =	الاسو	
	inorease	> 1		Impinger 6	
Impinger 4	Final Weight	837.6		<i></i>	
सर्वनाञ्चल न	Initial Weight	834.6		Impinger 7	
	Increase	3,0	- 11 11 AD63	₹ Total	167.6 = V.
	4,013,000	3,0	Filter No. AUG	J Total	- Tolay
impinger 5	Final Weight	972.0	P. = 29,58	/ %CO, =	12.0
	Initial Weight	950.9	V = 56,592	%O, =	7.4
	Increase	21.1	V = 167-6"	%CO =	0.00
		•	P = 3.371	%N, =	80.6 V
Impinger 6	Final Weight		$AVg \Delta P = 1.471 V$	A, =	62.4581
	Initial Weight		/	D _n ∞	0.239
	Increase		$Avg\sqrt{\Delta P} = 1.211$	$T_1 =$	600
			C, = 0.82/	7	-000
Impinger 7	Final Weight			'H ₂ O	27.5 3 'Hg
	Initial Weight 🗉		$T_{\rm m} = \frac{87}{295}$	%F	547 € *R
	increase		$T_i = 293$	°F	755 R
		/	./	,	
· Moisture Content:	%M = <u>/</u> 2	2.68 M. =	0.8732 MW = 3	0.216 M	w = 28.67
	-				
	ſ	PΓ	г	7	/
	$P_b +$	126	5 x 56.592 29.58 +	3.37/	54.467 st3
$Vm_{std} = 1$	17.65 Vm	 15.5 = 17.6	5 x 56.592 27.30	13.6	0.908 sctm
	['m	1, 400]	L 87 +	⊦ 460]	•
		1171	7.911		
% Moisture =	Vw x 10	0 = -7.911	x 100 = /2.6	8 %	
-	Vm + Vw 54	47 56-592 6	x 100 = 12.6 $x 100 = 12.6$ $x 100 = 12.6$ $x 100 = 12.6$	- 	
V = 5129 R =	0.521	755 . 1	1211 4811		100 2. 186 CZ 2
TA - VIEWD A	79.53	x 78.47		•	ACFM: 2,086,570 SCFM: 1,262,289 SEA: 53.0
					SCEM: 1,262,289
%l = <u>1,039</u>)	54,467 x	755	= /00.5%		Out His
0.8732	x 29.53 × 1811	x 60 X 00	- <u>/00.5</u> %		%EA: 53.0°
<u> </u>	7011				

Į.	<u> </u>		- 1	Ī	· -										1	T	ī	7	i		
84 11. 2 11. 2 5 23. 4 to reference 149 = 2.065 cfm 149 = 2.00 cfm	Remarks									•									Probe Tip No. /- 3	5///0	eak Ratecfm)]
Adistant of the state of the st	Dy Gas Temp. *F	90	90	90	(16	16	16	1	91	92	16:	1	26	26	91.	/		Probe	V _m X Lify Gas Meler Calibration Factor 2.6.13.1.1.1.C	min. X Leak Rate
Ambient Te Assumed A Probe Levy C Factor Initial Leak Final Leak	Dy Gas Terrip. "F ' Inlet	68	90	26	1	93	93	94	l	16	93	76	1	46	46	76	1		Barometer No. / Total Volume of Leak Checks After Start:	Diagon ractor	#-(T,
. 된 \	Effuent Temp	65	47	49		51	47	49	1	56	25	55		57	55	8.8	1		 lo. /	is meter car	Dry Gas Meter Reading _
Final Three Pol	Over den	322	3/0	326		325	321	330	I	331	322	327	J	319	3/4	317	1		Barometer No.	# N UIY G≅	Ory Gas Me
Field Dala start of each	Podo Gran	3/16	3/2	3/3	/	3/4	315	313		322	318	3/8		3/8	3/8	318	1			1	.
ord at the st 1550- T,	A CONTRACT	317	3/3	303	1	319	313	305)	3/8	314	305	1	314	318	307)		문	9	80.5
Read and record at the start of each test point. Purge for	Pump Volvectum Volvectum			10.0	1	9.0	8.0	7.0	1	8.0	8.0	6.5	J	0.0	10.0	7.5			29.48	5 %00	; }
م الراح الم	Oritica AH	10.5.90	3.90	3.20		\$.70	3.45	2.85		3,50	3.45	2.75	1	3.90	3.90	3.45	1		Pitot Tube No.	% CO, 12, 5	02 0%
ric Secures :	Oritics AH "H,O Desired	3.90	3.90	3.20	1	3.70	3.45	2.85	1	2,50	3.45	2.75)	3.90	3.90	3.45	1		E & .	<u>r</u> %	3 € .
032 3 Electric 3 Mo 6 1125 Jacks Meler Box No.	7. 20.	01.70	02.7	1.40		07/	1.50	52.7		1.55	1.50	1.20	1	02:1	1.70	05.			00	臣崔	0,H'
06-0 06+15 E 1/2/1/25 14-2/1/25	Dry Gas Meter, CF	667.941	672.97	678.04	839.289	899.289	687.53	692.38			701.95	706.75	711.100	711,100	716.10	121.21	726.078		97	60	-0.63
ox No.	Clock	1358	1403	1408	1413	1417	1422	1427	1432	1437	1442	1447	1452	754	150	1506	1511		Calibration lected V.,	ected V.	sure P.
Job Number Job Name Rus Number Unit Date Operator Sample Box No.	Point	D-3	2		End	53	2	- 6	End	6-3	2		Eng		7		End	#	Pitot Tube Calibration Factor C., Volume Collected V., 57.6	Water Collected V., Time of Test T.	Stack Pressure P.

	cv-00356-JHP	Document 34-11	Filed in ED/O	K on 05/21/14 P	age 58 of 87
Impinger Box No	1-5				
		-00 5	Water Weigh	nt Gain	. 1
Impinger 1	Final Weight	839.5		impinger 1	_107.1
	Initial Weight	732.4			
	Increase	107-1	€5	impinger 2	26,8
(4)		7029			25.
Impinger 2	Final Weight	7830		impinger 3	3.15
	Initial Weight	756.2			2,9
	Ing rease	26.8	10	Impinger 4	-61
landaman O	Final Weight	756.6	V _w = g \$0, = ⋅		26,0
Impinger 3	Initial Weight	753.1	y 30₂ = V ₂ =	Impinger 5	
	Increase		W =	lmpinger 6	
	II INICOSO	3,5		mbußet o	
Impinger 4	Final Weight	834.5		Impinger 7	
	initial Weight	831.6			
	Increase	2.9	Filter No. A	OCA Total	166.3 = V.
		_			
Impinger 5	Final Weight	999,3	P _b = <u>29</u> .	48 %co.	12,5
	Initial Weight	473.5	$V_{\rm m} = 57$	672/ 40,	= 7,3
	Increase	26.0	V _w =	<u>6.3</u> %co	= 0.0
			P _n =	496 %N	80.5
Impinger 6	Final Weight	· · · · · · · · · · · · · · · · · · ·	$Avg \Delta P = \frac{1}{2}$	25 A,	= <u>62,458</u> /
	Initial Weight		Avg√∆P = 1.2	22 / D,	= 0.239
	Increase		· · · · · · · · · · · · · · · · · · ·		= 600
Impinger 7	Final Weight		• -		79.42/ 114
in de Ser v	initial Weight		$P_{a} = \frac{-D}{9}$	63 "HO	29.43 Hg 552 PR
	Increase		T = 3/	2 °F	772 °R
	,		Vg	,	
	,	/		3	MW = 28.74V
Moisture Content:	%M =/	$\frac{2.5^2}{}$ $M_d = \frac{1}{2}$	0.8/98 MW	= 30,280	$MW = 28.74^{\circ}$
	[_	P_{m}	Γ	7,10	(1.02)
16	TOP V	13.6	- 00/10 29	+3.476	54.836 sits 0.914 scim
vm _{atd} =)	T_{-}	+ 460	5 X37.6/2	13.6	0.714 sctm
	_	4	L i	/ _ 1, 400]	
Maria a a a a a a a a a a a a a a a a a a	It. ages	166.3 =	7 849		
VW _{ges} = 0,04/2 X	VW = 0.0472 X	199,5	7.017	sft*	
% Moisture =	Vw _{ss} x	00 = 7-8	49_ x 100 =/	12,52 %	
-	Vm _{ed} + Vw _{sis}	00 = 7.8° 54.836 +7 712 x 1.	2.849	/	/
V. = 5123.8 x £	2.521	772 x 1	233 4955	form	ACSM: 2,149 285
. <u> </u>	V 28.79	× 29.42			ACFM: 2,149, 288 SCFM: 1, 269,459 %EA: 48.8
	• • • • • • • • • • • • • • • • • • •	- 7.1. 5		✓ _.	SCFM: 1, 269.459
%1 = 1,039 x	54.836 x	772			
0.8748 >	29.43 × 494	772 55 × 60 × 0	. 239)*		%EA: 48.8

ORSAT ANALYSIS DATA FORM

Job #: Job Name: Location: Date: Operator:	06-03 0G+E E Muskeger 6/14/06 Mullin	1setric Ser	Sample Type: Leak Check: Ti	Sample Location: Usit No. 6 Stock Analytical Method: 3 Sample Type: Single Point (Multi Point) Grab (Integrated) Leak Check: Time: /2 / 4 minutes) Rate: 0, 0 Ambient Air Check:								
			CO ₂ - % Vol.	0	.0							
			O ₂ - % Vol.	2	0.9							
			N ₂ - % Vòl.	7	9.1							
	<u> 1</u> <u>0809 - 0</u> 92	\$	된 6		u 9							
ر - % Ao		12.4	12.4	12.4	12,4							
_∠ - % Vol.		7.3	7.3	7.3	7.3							
CO - % Vol.		0.0	0.0	0.0	0.0							
N ₂ - % Vol.	5	80.3	80.3	80.3	80,3							

Run Time: <u>1046-11</u> 58	Analysis #1	Analysis #2	Analysis #3	Average - % Volume
CO ₂ - % Vol.	12,0	12.0	12-0	12.0
O ₂ - % Vol.	7.4	7.4	7.3	7.4
CO - % Vol.	0-0	0.0	0-0	0,0
N ₂ - % Vol.	30.6	30.6	80.7	80.4

Run Time: <u>/358-/5</u> //	Analysis #1	Analysis #2	Analysis #3	Average - % Volume
CO ₂ - % Vol.	12.5	12.6	12.5	12.5
- % Vol.	7.0	6.9	7,0	7.0
CO - % Vol.	0.0	0.0	0.0	0.0
CO - % Vol. N ₂ - % Vol.	80.5	80,5	80.5	8015

6:13-cv-00356-JHP Document 34-11 Filed in ED/OK on 05/21/14 Page 60 of 87

PRELIMINARY VELOCITY THAVERSE DATA

	served to	LINIA CTION
	AND	
Sampli	NG LOCAT	TON DATA

Job Number 06-0/0	
Job Name OGAE	Oh. I than
Sampling Location Unit No. 6	Stack Heightft.
Date 2/27/06 Time 2/27/06	Sampling Port Height Above Groundft.
Port & Inside Diameter (in.)	Port B Port C Port D Average
Port & Wall Thickness (in.)	15" 16" 10" 10"
Inside Stack Diameter (In.)	Z82" Z82" Z82" Z82"
Sampling Ports are 216 ftin.	stack diameters) downstream from disturbance
Sampling Ports are <u>240</u> ftin,	(inlet, constriction, bend, expansion) (10-21 stack diameters) upstream from disturbance
	(Outlet constriction, hend expension)

	T			<u> </u>		sent andvariantity	
Point Number	Percent Diameter	Distance from Ref. Point (decimal in.)	Distance from Hef. Point (fractional in.)	Port A AP/T _e /a.	Port B AP/T _e /c.	Port C AP/T_/c.	Port D ΔP/T _a /α
1	4.4	12.408	12 7/16"	1 1	11	[.101272]	1 1
2	14.6	41.172	413/16"	1 1	11	140 274	',',
8	29.6	83.472	83 1/2"	1 1	1 1	1.501 278	11
4	70.4	198.528	198 1/2"	1 1	1 1	1 1	
5	85.4	240.828	740 13/16"	1 1	1 1	1 1	1.1
6	25.6	269.592	269 9/16"	1 1	1 1		1 1
7				1 1	1 1	1 1	1 1
88				1 1	1 1	1 1	1 1
				1 1		1 1	
10				1 1		1_1_	1 1
11				1 1	1 1		1 1
12					1 1	11	
18				1 1		1 1	
14				1 1	1 1	1 1	1.1
15					1 1	1 1	1 1
16				1 1	1 1	11	1 1
17	· ·					1 1	1 1
18				1 1	1 1	1 1	1 1
19				1 1	1 1	1 1	1 1
20				1 1	1 1	1 1	1 1
21				1 1	1 1	1 1	1 1
				I I	1 1	11	1 1
22				1 1	1 1	1 1	1 1
29				1 1	1 1	1 1	1 1
24				1 1	1 1	1 1	1 1

Pitot Tube No.	Average AP/_ 333
C=_ 0.82+	
	Average AP42 ///52
P _b = <u>Z929</u> *Hg	Average T _x 272 or
P. = 29 0 "H ₂ 0 29.29 "Hg	Attorage 12
-110 -Hg	Average ordegree
A = 62,458 in.2	

Appendix E:

Analytical Data

06-032 E-1

Air Sampling Associates, Inc.

Particulate Analysis Summary

Run Number: Particulate Matter on Filter (mg): Particulate Matter in Front Wash (mg): Total Particulate Natter in "Front-Half" - MF (mg): 17.0 Particulate Matter in "Back-Half" (mg): **32.5** Total Particulate Matter in Sample - MT (mg):

Lilly Mulling, J.

Data Checked By (Front Half only

Version No. 1 5/30/06

Particulate Analysis EPA Method _5_

Stack Filters

Project No. 66-032 Location Project Name OGTE Flactric Services Unit Tested	Juskogen, ok Init No. 6 Stack
Desiccator Time In 0800 6/15/06 0900 6/16/06	
Desiccator Time Out 0355 6/16/66 1545 6/16/06	
Run No. / Filter No. # 06 2	Sample I.D.
Filter & Particulate (g) 0.3764 0.3764	
Initial Filte	Average (g) 0.3764 er Weight (g) 0.3666 ticulate (mg) 9.8
Run No. Filter No. 4063	Sample I.D.
Filter & Particulate (g) 0-3739 0.3737.	
Filter & Particulate Initial Filte	Average (g) 0.3737 er Weight (g) 0.3642. ticulate (mg) 9.5
Run No. 3 Filter No. A 064	Sample I.D.
Filter & Particulate (g) 0.3771 0.3772	

Billy Mullion for Analyst

Filter & Particulate Average (g) 0.3772

Initial Filter Weight (g) 0.3655

Total Particulate (mg) / 1.7

Filter Weight Log EPA Method 5

1/2	Into Desicator	Weight	Weight	Weight	Weight	Weight	i i
1	Date	Date	Date	Date	Date	Date	Weight
Filter No.	Time	Time	Time	Time	Time	Time	Used
	0000	0.3613	0.3612				0.3618
A del	(01106	(=12/06	6/3/04				
1961	0400	0954	0615				
	ľ	1).3666	0.3666				0-3666
A\$62		6/8/06	The second second				ĺ
MUSE		1031	1051				
		0.3441	0.36 2		- I-3 -4-		0.3642
A1063		6/3/06	6100			ĺ	
1402		1032	1050				
_		0.3656	6/9/06	5 (4)			0.3653
A\$64	6 20	2355	0.3655				5,000
1 ash 1	10,400	1033	1053	- 10			
STORES OF THE STORES		and the second second second	0.3680				0.36.30
A\$65	to alcu	23.30	1. 10/06				e. 3(p) 3
MYOS	G H	1034	1054				
lite keela alla		0.3677					0.3675
12/11	1.101	0.21.324	6 19/06				47.50T
Ap66	6148	1035					
e - Ties S			(055		1914 to 1914 to 1914	1	10 100
A\$67	110	0.3652	0.3157				0.34,52
	(2141)	0-315					
10001401		1035	1066				
0/2		0.36.72	0.3634				0.3671
168	6130	والمحاسب	_		·		
-		1036	1057				, a - a
A /	(0/8/	12.3535	0.3586"	2			0.3584
Aq69	4	1375	1 900				-
	1	1036	1058				
4	16t08t06						
4070	10376/10	4					
141	1037		does===	-1			
	, , , , , , , , , , , , , , , , , , ,						
ARH	7 -	Ť2		·			
11501							
							<u> </u>
Ap 22						1	1
1472	L						
					1 4 1	'	<u> </u>
A\$72 A\$73			<u> </u>			 	
PQ73				-		-	
and the state of t	- win .		1				27-21
							
				-		-	-
		-	1			<u> </u>	-
							-

Page / of /

Particulate Analysis EPA Method <u>5</u>

Front Wash

Project No	-072		Location	Muskager	ok
Project Name OG †	E Electric S	elvices	Unit Tested		Stack
Desiccator Time In					
Desiccator Time Out	1020 6/19/0	1630 Clistos			
Dogodioi Timo Out	10 (20 11 11 10 10 10 10 10 10 10 10 10 10 10	130 113/3			
Run No.	1		755	Sample I.D.	
Final Weight (g)	1057735	105.7735 1			
Initial Weight (g)	105.7618			_	
Particulate Weight (g)			L		
			Particulate	Average (mg)	11.7
			Less Aceto	ne Blank (mg)	6.0
			Total P	articulate (mg) _	5.7
Run No.	2	Volume (ml)	395	Sample I.D.	
Final Weight (g)					
Initial Weight (g)	107.3052	167,305/			
Particulate Weight (g)	107.2976				
			Particulate	Average (mg)	7.5
				ne Blank (mg) ¯	3.1
			Total P	articulate (mg)	4.4
Run No.	3	Volume (ml)	420	Sample I.D.	
Final Weight (g)	108.7964	108.7964			
Initial Weight (g)	108.7899	108.7899			
Particulate Weight (g)					
			Particulate	Average (mg)	6.5
				one Biank (mg)	3.3
			Total P	articulate (mg)	3.2
Acetone Blank		Volume (ml)	200	Sample I.D.	
Final Weight (g)	106.5444	106.5449			
Initial Weight (g)	106.5432				
Particulate Weight (g)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
				Average (mg)	1.7
				* mg/l	8.5
* Note: if greater than 7.9	mg/l, use 7.9 mg/l			3	

Version No.1 5/30/06

Date: 6/18/06

Particulate Analysis EPA Method 5

Front Half Tare Weights

Project No	06-032	Location	Muskogaa.	OK
	06-032 + E Electric Service		Writ No. 6	Stack
Desiccator Time	In 1000 6/13/05 0755 6/15	106		
Desiccator Time Or	ut 6750 6/15/06 1415 6/15	106		
			5-	
Run No.			Sample I.D.	
Weight (g)	105.7623 105.761	3		
Run No.	2		Sample I.D.	
Weight (g)	107.2975 107.297	64		
· · · · · · · · · · · · · · · · · · ·				
	3 Volume (r		Sample I.D.	
Weight (g)	108.7900 108.789	194		
	-			
Acetone Blank	Volume (r		Sample I.D.	
Weight (g)	106.5432 106.54	324	·	

DI Water Analysis (Back)

Job Number		06-4011C		Run Date 6/1		6/14/2006	6/14/2006		
	Client Name Unit Name	Air Samplir Unit No. 6	ng Associates Stack	Method	: 202				
	RUN 1	BEAKER	9213	VOLUME	ml	602	AVERAGE		
	Beaker + Particulate (s	a)	115.9267	115.9267			115.9267 115.9020		
	Beaker Tare (g)		115.9018	115.9022			0.0247	Total	
	Particulate Weight (g)		0.0249	0.0245					
					2	4.7 mg -	.3 mg = 6	23.4 mg	
	RUN 2	BEAKER	9215	VOLUME	ml	595	AVERAGE	,	
	and the second and a second	-\	96.3988	96.3990			96,3989		
	Beaker + Particulate (3)	96.3740	96.3741			96.3741		
	Beaker Tare (g)		0.0248	0.0249			0.0248		
	Particulate Weight (g)		0.0240	0.02.0	2.4	6	12	23.5 Mg	
					d٩	10 Mg -	1.3mg =	0.3.3	
	RUN 3	BEAKER	9217	VOLUME	ml	626	AVERAGE		
	Beaker + Particulate (a)	106.8553	106.8554			106.8554		
	Beaker Tare (g)	97	106.8304	106.8307			106.8306		
	Particulate Weight (g)		0.0249	0.0247			0.0248		
	5				3,	1.8mg =	1.4mg =	23.4 mg	
	Blank	BEAKER	9211	VOLUME	ml	588	AVERAGE		
	Beaker + Particulate (a)	104.1859	104.1858			104.1859		
	Beaker Tare (g)	97	104.1844	104.1848			104.1846		
	Particulate Weight (g)		0.0015	0.0010			0.0013		
	: *** norman 9 /9/						2.2 mg/2		
	Analyst LB	FIN	AL REPORT		Started Complete	d	6/21/2006 7/5/2006		

Methylene Chloride Rinse

Job Number Client Name	06-4011C Air Sampling Associates		Run Date 6/14/20			5	
Unit Name	Unit No. 6	•	Method:	202			
RUN 1	BEAKER	9214	VOLUME	mi	229	AVERAGE	
Beaker + Particulate (g Beaker Tare (g) Particulate Weight (g)	g)	117.3913 117.3906 0.0007	117.3912 117.3910 0.0002			117.3913 117.3908 0.0005	Total
					0.5 m	9-12.6mg=	D MY
RUN 2	BEAKER	9216	VOLUME	ml	234	AVERAGE	
Beaker + Particulate (Beaker Tare (g) Particulate Weight (g)	g)	122.0844 122.0839 0.0005	122.0849 122.0844 0.0005			122.0847 122.0842 0.0005	-/
				3). 5 mg	- 0.6 mg =	= Dmg
RUN 3	BEAKER	9218	VOLUME	ml	238	AVERAGE	'
Beaker + Particulate (Beaker Tare (g) Particulate Weight (g)		95.9063 95.9053 0.0010	95.9068 95.9053 0.0015			95.9066 95.9053 0.0013	
			53	1.	3 mc	-0.6 mg=	0.7
Blank	BEAKER	9212	VOLUME	ml	233	AVERAGE	0.1144
Beaker + Particulate (Beaker Tare (g)	g)	113.1035 113.1029	113.1036 113.1031			113.1036 113.1030	
Particulate Weight (g)		0.0006	0.0005			0.0006	
					2	6 mg/2	
Analyst LB	FIN	AL REPORT	•	Started Completed		6/21/2006 7/5/2006	

6:13-cv-00356-JHP Document 34-11 Filed in ED/OK on 05/21/14 Page 70 of 87

Sulfate	Lab Results, ug	Blank, ug	Final Results, mg
Unit 6 Stack			
Run 1	18256	36.6	6.450
Run 2	22403	36.6	7.918
Run 3	19287	36.6	6.815
Blank	135		

Final
lesults,
mg
orrected
NH4CI
-0.080
-0.078
-0.053

Appendix F:

Chain of Custodies

06-032 F-1

CHAIN OF CUSTODY

Client: OG +E Location: Music	-032 Electric Service Kagee, OK No. 6 Stack	. \$	Date: 6/14/06
	Number of	Absorbing	
	Containers	Solution	Analysis Required
Filter Container	_//_		Perticulate
Front Wash	11.1	Acetone	Particulate
Back Wash			
Impinger #1			
!mpinger #2			
Impinger #3			
Impinger #4			
Impinger #5			
mpinger #6			<u> </u>
Impinger #7			
Blank #1		Acetone	Particulaite
Blank #2	**		·
Other			
Special Instructions			
Sample # Page	ared by AMIN	M: Total Hills	Time 1640 Location Trailer
Sample #Recov			
		24 / / / -	Time 1855 Location Trailer
Sample # 3 Recov			Time /7/5 Location Tracker
Sample #Recov	ered by	Date	TimeLocation
Samples Received	by Billy Mu	land for transport	Date 6/4/06 Time /800
Samples Released	by belly & Me	eller &	Date 6/15/06 Time 0800
Samples Received	by willy Mull	ino hat lab	Date 6/15/06 Time 0800
Samples Analyzed I	by billy J. Mu	(Rens)	Date 4/18/04 Time /635

SAMPLING ASSOCIATES, INC

Chain of Custody Record

Client Dietric Services		Project No.	280-90	25		Page /	ĵo	9.6°3	Analysis
Address		Unit No.	- No. 6 Stack	Stack		Western En	Environment	202	2674 2674
City Stoape Of	Zp Code	Project Manage	Mullins	5		~~	1108	Jary)	.c r. ∂.
8		Test Method		02 8	2	Lab Phone No. 2		PA S	- 9 n ·
Comme	, and a	Time	Absorbing Solution	joi	No. of Containers	نان ال ولام م	Comments Co	W.7	
447	3	1645	DEWATE		1	6	4213	Ż	
Own 1- Mac Rinse	70/4/19	0591	Mec			929	40,4	7	
0. 2- DI Bak Half 6/14/06	90/2/19	1705	DI Water	ود	/	848	SIEF	Ż	XEINI
Din 7 - Mari Conce	Lindal		Mecl			234	्रहरू	7	
1 2 DT 6-1/41P	6114106	1730	DIWater	ter Ter		969	1,44	3	
0 2. W. 1 0 C.	111/16	1735	Meci			338	212	`	
	6/1/9/106	1735	DT Water	بو		5.5.5	996	2	X Dim
	7	1735	Mec			933	6/6%	2	,
	1								
Special Instructions:									
Turn Around Time Required:	Normal	□ Rush	Sample Disposal:	sposai:	☐ Return	☐ Return to ASAI F Disposal By Lab F Archive For	sai By Lab 🕱 Ar	chive For 6	Months
1. Recogned By	0	3/17	1/0%	1750		J. Well	12	Date Date C/15/06	11 00 00 00 00 00 00 00 00 00 00 00 00 0
2. Received Por	Alexander	6/15	90	0830	2. Redia	Par C		90 02 9	Time 0800
3. Roogings 1		10	, CO./	7.1me / 3.00	3. Refinquish	1641 / 1E.	Enthelow	1 Date /06	Time 9:05
Connection TO WESTERN VIA FED EX 6/20	Fed fx	6/20/02 de	B)		100	emp: Ambien	+

P.O. Box 1175 · Lewisville, TX 75067 · Office: (972) 492-1400 · Fax: (972) 492-1402 · Toll-Free: (866) 311-9940

Appendix G:

Unit Operational Data

06-032 G-1

6:13-cv-00356-JHP Document 34 இருக்கு இன்ற கொடுக்கு (10 of 10 of

Average Values Report Generated: 6/14/2006 11:49

Company: Oklahoma Gas & Electric Plant: Muskogee Generating Station City/St: Fort Gibson, OK, 74434

Source: Unit 6

Period Start: 6/14/2006 07:09 Period End: 6/14/2006 08:28 Validation Type: 1/1 min Averaging Period: 1 min Type: Block Avg

Period Start:	Average 6_MW MW
06/14/2006 07:09	545.8
06/14/2006 07:10	544.4
06/14/2006 07:11	
	545.1
06/14/2006 07:12	545.9
06/14/2006 07:13	548.0
06/14/2006 07:14	548.1
06/14/2006 07:15	547.3
06/14/2006 07:16	546.8
06/14/2006 07:17	546.5
06/14/2006 07:18	546.1
06/14/2006 07:19	545.4
06/14/2006 07:20	544.9
06/14/2006 07:21	545.4
06/14/2006 07:22	543.9
06/14/2006 07:23	
06/14/2006 07:24	543.6
	542.6
06/14/2006 07:25	541.9
06/14/2006 07:26	541.9
06/14/2006 07:27	542.1
06/14/2006 07:28	542.1
06/14/2006 07:29	542.6
06/14/2006 07:30	542.4
06/14/2006 07:31	543.0
06/14/2006 07:32	543.3
06/14/2006 07:33	544.3
06/14/2006 07:34	544.2
06/14/2006 07:35	544.9
06/14/2006 07:36	545.4
06/14/2006 07:37	547.0
06/14/2006 07:38	549.0
06/14/2006 07:39	548.4
06/14/2006 07:40	
	549.4
	550.7
06/14/2006 07:42	550.9
06/14/2006 07:43	550.9
06/14/2006 07:44	551.3
06/14/2006 07:45	550.2
06/14/2006 07:46	549.6
06/14/2006 07:47	548.5
06/14/2006 07:48	548.9
06/14/2006 07:49	548.0
06/14/2006 07:50	546.5
06/14/2006 07:51	547.0
06/14/2006 07:52	547.8
06/14/2006 07:53	547.9
06/14/2006 07:54	548.6
06/14/2006 07:55	548.6
	549.5
06/14/2006 07:57	549.3
06/14/2006 07:58	549.2
06/14/2006 07:59	548.4
06/14/2006 08:00	548.8
06/14/2006 08:01	549.5
06/14/2006 08:02	550,0
06/14/2006 08:03	549.1
06/14/2006 08:04	546.8
06/14/2006 08:05	545.7
06/14/2006 08:06	545.1
06/14/2006 08:07	544.5
06/14/2006 08:08	
	544.3
	544.9
06/14/2006 08:10	544.9
06/14/2006 08:11	544.8

6:13-cv-00356-JHP Document 34-1 நாகு இரு மிற்கு OK on 05/21/14 Page 77 of இரு 31.0

Average Values Report Generated: 6/14/2006 11:49

Company: Oklahoma Gas & Electric Plant: Muskogee Generating Station City/St: Fort Gibson, OK, 74434

Source: Unit 6

Period Start: 6/14/2006 07:09
Period End: 6/14/2006 08:28
Validation Type: 1/1 min
Averaging Period: 1 min
Type: Block Avg

Period Start: 06/14/2006 08:12 06/14/2006 08:13 06/14/2006 08:14 06/14/2006 08:15 06/14/2006 08:16 06/14/2006 08:17 06/14/2006 08:19 06/14/2006 08:20 06/14/2006 08:21 06/14/2006 08:22 06/14/2006 08:23 06/14/2006 08:24 06/14/2006 08:25 06/14/2006 08:25	Average 6_MW 546.0 546.8 549.4 550.3 550.7 551.3 550.0 549.1 546.6 545.5 544.6 544.4 543.5 544.2
06/14/2006 08:27 06/14/2006 08:28	544.8 546.0
Daily Average* Maximum* Minimum*	546.7 551.3 06/14/2006 8:17 541.9 06/14/2006 7:26

^{*} Does not include Invalid Averaging Periods ("N/A")

6:13-cv-00356-JHP Document 34-421 In File Online File On 05/21/14 Page 78 of 27:00 31.0

Average Values Report Generated: 6/14/2006 11:15

Company: Oklahoma Gas & Electric Plant: Muskogee Generating Station

Source: Unit 6

Period Start: 6/14/2006 09:46 Period End: 6/14/2006 10:58 City/St: Fort Gibson, OK, 74434 Validation Type: 1/1 min Averaging Period: 1 min Type: Block Avg Average 6 MW Period Start: MW 544.0

6:13-cv-00356-JHP Document 34 வி நாக்கு OK on 05/21/14 Page 79 of இரும் வரும் வரும் 10 OK on 05/21/14 Page 79 of

Average Values Report Generated: 6/14/2006 11:15

Company: Oklahoma Gas & Electric Plant: Muskogee Generating Station City/St: Fort Gibson, OK, 74434

Source: Unit 6

Period Start: 6/14/2006 09:46
Period End: 6/14/2006 10:58
Validation Type: 1/1 min
Averaging Period: 1 min
Type: Block Avg

Period Start: 06/14/2006 10:49	Average 6_MW MW
	527.8
06/14/2006 10:50	528.3
06/14/2006 10:51	528.6
06/14/2006 10:52	528.6
06/14/2006 10:53	528.5
06/14/2006 10:54	528.0
06/14/2006 10:55	528.2
06/14/2006 10:56	529.1
06/14/2006 10:57	529.0
06/14/2006 10:58	528.6
Daily Average*	527.9
Maximum*	544.0
	06/14/2006
	9:46
<u>Minimum</u> *	522.B
	06/14/2006
	10:00

Does not include Invalid Averaging Periods ("N/A")

6:13-cv-00356-JHP Document 34-11 Filed in ED/OK on 05/21/14 Page 80 00 31.0

Average Values Report Generated: 6/14/2006 14:17

Company: Oklahoma Gas & Electric Plant: Muskogee Generating Station City/St: Fort Gibson, OK, 74434

Source: Unit 6

Period Start: 6/14/2006 12:58
Period End: 6/14/2006 14:11
Validation Type: 1/1 min
Averaging Period: 1 min
Type: Block Avg

	Average			
	6_MW		ψ.	
Period Start:	MW	 		
06/14/2006 12:58	545.1			
06/14/2006 12:59	545.0			
06/14/2006 13:00	545.3 546.0			
06/14/2006 13:01	546.0			
06/14/2006 13:02	546.1			
06/14/2006 13:03	545.8			
06/14/2006 13:04	545.0			
06/14/2006 13:05	545.1			
06/14/2006 13:06	544.8			
06/14/2006 13:07	544.7			
06/14/2006 13:08	544.7			
06/14/2006 13:09	544.7			
06/14/2006 13:10	544.3			
06/14/2006 13:11	544.2			
06/14/2006 13:12	543.8			
06/14/2006 13:13 06/14/2006 13:14	543.6			
06/14/2006 13:15	544.1			
06/14/2006 13:16	543.4			
06/14/2006 13:17	543.2			
06/14/2006 13:18	542.2			
06/14/2006 13:19	541.8			
06/14/2006 13:20	542.3			
06/14/2006 13:21	543.4			
06/14/2006 13:22	544.5			
06/14/2006 13:23	545.3			
06/14/2006 13:24	545.1			
06/14/2006 13:25	545.2			
06/14/2006 13:26	545.7			
06/14/2006 13:27	547.0			
06/14/2006 13:28	546.7			
06/14/2006 13:29	546.3			
06/14/2006 13:30	545.1			
06/14/2006 13:31	544.9			
06/14/2006 13:32	544.9			
06/14/2006 13:33	545.6			
06/14/2006 13:34	544.6			
06/14/2006 13:35	544.2			
06/14/2006 13:36	543.5			
06/14/2006 13:37	543.2			
06/14/2006 13:38	542.8			
06/14/2006 13:39	541.0			
06/14/2006 13:40	540.5			
06/14/2006 13:41	540.8			
06/14/2006 13:42	541.1			
06/14/2006 13:43	541.3		53	
06/14/2006 13:44	541.1			
06/14/2006 13:45	542.1 542.9			
06/14/2006 13:46	543.3			
06/14/2006 13:47	544.1			
06/14/2006 13:48	544.5			
06/14/2006 13:49	543.0			
06/14/2006 13:50	541.1			
06/14/2006 13:51	541.7			
06/14/2006 13:52	546.9			
06/14/2006 13:53	549.6			
06/14/2006 13:54 06/14/2006 13:55	549.9			
06/14/2006 13:56	547,7			
06/14/2006 13:57	544.1			
06/14/2006 13:58	540.0			
06/14/2006 13:59	536.6			
06/14/2006 13:33	536.2			

06/14/2006 14:00

6:13-cv-00356-JHP Document 34-11 Filed in ED/OK on 05/21/14 Page 81/07 87 31.0

Average Values Report Generated: 6/14/2006 14:17

Company: Oklahoma Gas & Electric Plant: Muskogee Generating Station City/St: Fort Gibson, OK, 74434

Source: Unit 6

Period Start: 6/14/2006 12:58
Period End: 6/14/2006 14:11
Validation Type: 1/1 min
Averaging Period: 1 min
Type: Block Avg

	Average	#1
	6_MW	
Period Start:	W	
06/14/2006 14:01	536.7	
06/14/2006 14:02	537.2	
06/14/2006 14:03	538.3	
06/14/2006 14:04	538.1	
06/14/2006 14:05	538,2	
06/14/2006 14:06	538.1	
06/14/2006 14:07	539.0	
06/14/2006 14:08	539.6	
06/14/2006 14:09	540.4	
06/14/2006 14:10	541.7	
06/14/2006 14:11	543.0	
Daily Average*	543.2	
Maximum*	549.9	
	06/14/2006	
	13:55	
Minimum*	536.2	
• 	06/14/2006	
	14:00	

^{*} Does not include Invalid Averaging Periods ("N/A")

Appendix H:

Resumes of Test Personnel

BILLY J. MULLINS, JR.; President

Education

Post Graduate Study Environmental Engineering at Southern Methodist University; Dallas, Texas 1970.

M.S. 1969, New York University; New York, New York, in Civil Engineering (Air Resources).

B.S. 1968, Texas Tech University; Lubbock, Texas, in Civil Engineering (Water Resources). Studies in Engineering at the U.S. Naval Academy; Annapolis, Maryland, 1963-1964

Professional Training Courses

Attended Short Course on Air Pollution Engineering at the University of Texas at Austin, February 1970.

Attended four-week management course presented by the American Management Association, 1976.

Certification

Registered Professional Engineer Certified Visible Emissions Evaluator Licensed Private Pilot (Multi-Engine-Land, Instrument)

Diplomat in the American Academy of Environmental Engineers

Inductee into the Stack Sampling Hall of Fame

Certified as Qualified Environmental Professional (QEP)

Professional Memberships

Air & Waste Management Association – Past Chairman, Past Vice Chairman, and Past Board of Directors of North Texas Chapter and Southwest Section; Past Chairman, Consultants Committee; Past Chairman, Source Measurement Committee

Source Evaluations Society – Past President, Past Board of Directors

American Management Association

MULLINS (p. 2)

Publications

Authored "Real World Experience with USEPA's New Sampling and Analytical Methods for Conducting Risk Burn," May 1998.

Co-authored "Sulfur Compound Emissions of the Petroleum Production Industry," December 1974.

Co-authored "Field Procedure for Stabilizing Hydrogen Sulfide Samples to be Analyzed Using Modified Methylene Blue Technique," presented at the Conference on Ambient Air Quality Measurements, Austin, Texas, March 1975.

Co-authored "Atmospheric Emissions Survey of the Sour Gas Industry," October 1975.

Co-authored "Technique for Insuring the Validity of Samples for High Concentrations of Sulfur Dioxide Using the EPA Method 5 Sampling Train," presented at the Third National Conference on Energy and the Environment, College Corner, Ohio, September 1975.

Teaching Experience

Conducted training seminars on sampling methods periodically since 1974 to present.

Conducted a one-day seminar on Part 75 Testing over ten times in 1993 and 1994.

Served as a lecturer in the Environmental Protection Agency's (EPA) training course number 450, "Source Sampling for Particulate Pollutants," for two years from January 1974 to October 1975 and March, 1992.

Conducted a two-day training course entitled "technical Assistance in Source Sampling" at Iowa State University, Ames, Iowa, for the Environmental Protection Agency (EPA), October 1974.

Conducted Environmental Protection Agency's (EPA) training course number 450, "Source Sampling for Particulate Pollutants," at Research Triangle Park, North Carolina, September 1975.

MULLINS (p. 3)

Teaching Experience (Cont'd)

Conducted a two-day short course entitled "Performing and Observing Source Sampling," Dallas, Texas, July 1976, May 1977, October 1977, November 1987 and November 1988; Lake Charles, Louisiana, May 1977; Casper Wyoming, May 1977; Point Comfort, Texas, November 1992.

Served as a lecturer in the Environmental Protection Agency's twoday seminar entitled "Asphalt Industry Environmental Solutions," presented in Dallas, Texas, March 21-22, 1979.

Conducted a two-day short course entitled "Performing and Observing Source Sampling," Phoenix, Arizona, August, 1990, for the State of Arizona, Department of Environmental Quality; Lincoln, Nebraska, March 1980, for the State of Nebraska, Air Quality Control Division.

Technical Experience

Directed and performed stack sampling on over 2000 sources of which over 500 were sampled simultaneously using more than one sampling train at several points in the flue gas stream; 1972-present.

Directed and performed over 200 short-term ambient air studies using mobile sampling vans and various ambient air sampling equipment; 1972-present.

Designed, directed and operated over 20 permanent ambient air networks of various size and duration for a variety of parameters; 1972-present.

Designed surface and underground drainage systems for residential subdivisions, public works projects, and shopping centers; 1969-1972.

Designed several residential subdivisions including lot layout, street design, drainage design, and utility design; 1969-1972.

MULLINS (p. 4)

Research Projects

Supervised and conducted a study made by the Hawaiian Sugar Planters' Association to characterize the emissions for several bagasse-fired boilers, April-May 1976.

Supervised and conducted a study made by the Rio Grande Valley Sugar Growers, Inc. to determine the area affected by the burning of sugarcane fields prior to harvesting, November 1974-April 1975.

Supervised and conducted a study by a lightweight aggregate manufacturer to develop a material balance around the process through sampling and analysis of several parameters, November 1973.

Conducted a study in New York City to attempt to develop a correlation in the ambient air between carbon dioxide and sulfur dioxide to provide a tool for predicting air pollution predicting air pollution episodes, January-May 1969.

Related Projects

Served as Chairman of the Engineering Foundation Conference on Stack Sampling and Source Evaluation in Destin, Florida, 2002, and Santa Barbara, California, 1985.

Served as Co-Chairman of the Engineering Foundation Conference on Stack Sampling and Source Evaluation in Destin, Florida, 2001.

Served as Session Chairman at the Engineering Foundation Conference on Stack Sampling and Source Evaluation in Hershey, Pennsylvania, 1984; San Diego, California, 1993; and in Palm Coast, Florida, 1994.

SCOT JACKSON; Associate

Education B.S.B.A. May 1978, Mountain View Jr. College, in General Business.

Professional Training Purchasing Supervisor for METCO Environmental, Inc. in charge of inventory and supplies. January 1995 – April 2005.

Attended 40-hour Occupational and Environmental Training Program on Hazardous Materials (CFR 1910.120), Dallas, Texas, May 2000.

Attended Fed-Ex Hazardous Goods Shipping Training, June 2004.

Certification

Certified Visible Emissions Evaluator

Technical Experience Participated in the sampling of over 100 sources, including several of which were sampled simultaneously using more than one sampling train. Thoroughly trained in all EPA testing procedures, 1995-present.

Experience with calibration techniques for all field testing equipment.

Thoroughly trained in the operation and routine maintenance of the following:

California Analytical Model 300-HFID Total Hydrocarbon Analyzer Servomex Model 1440 Carbon Dioxide Analyzer Servomex Model 1440 Oxygen Analyzer Thermo Electron Model 42C Oxides of Nitrogen Analyzer Thermo Electron Model 48C Oxides of Nitrogen Analyzer Western Research Model 721A Sulfur Dioxide Analyzer