PACI841 – TD Métrologie – SNI4

Luc Marechal

Ex1. Evaluer les incertitudes types

- 1) Pour vérifier le positionnement des plans on a effectué 50 mesures de la distance d dans des conditions de répétabilité. La valeur moyenne de ces 50 mesures est 44,0 mm et l'écart type est 0,1 mm
- 2) La sensibilité d'un capteur est de 1 V/mm, donnée par le constructeur avec une incertitude élargie de 3 %
- 3) Le diamètre interne d'un tube a été mesuré avec un pied à coulisse gradué au pas de 0,02 mm : D = 13,90 mm

On remplira pour chaque cas le tableau suivant :

Mesurande ou paramètre étudié	unité	Source d'incertitude	Méthode d'évaluation	Loi choisie	S ou a	Incertitude type v(x)

Ex2. Multimètre 1 mesures

Doc technique:

TENSION AC 200 mV, 2, 20, 200 V $\pm 0.5\% + 10d$ 10-100 μ V-1-10 mV

750 V (< 1KHz) ± 0,7% + 10d 100 mV 750 V (> 1KHz < 5KHz) ± 2,0% + 10d 100 mV Protection: 500 V AC rms sur calibres 200 mV - 200 V 750 V AC rms sur calibre 750 V

Impédance d'entrée: 10 M Ω , moins de 50 pF

Type de conversion: TRMS

Exprimer le résultat de la mesure obtenue avec ce multimètre.

Mesurande ou paramètre étudié	Valeur	unité	Source d'incertitude	Méthode d'évaluation	Loi choisie	S ou a	Incertitude type v(x)

Ex3. Multimètre plusieurs mesures

On a réalisé 30 mesures avec le multimètre de l'exercice 2.

Mesure #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Tension (V)	6,89	6,9	6,89	6,88	6,89	6,9	6,89	6,9	6,87	6,88	6,89	6,89	6,9	6,89	6,9

Mesure #	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Tension (V)	6,89	6,89	6,89	6,88	6,89	6,9	6,88	6,89	6,9	6,89	6,88	6,89	6,9	6,88	6,89

La valeur moyenne des mesures est = 6,89 V

Exprimer le résultat obtenu avec ce multimètre.

Mesurande ou paramètre étudié	Valour	unité	Source d'incertitude	Méthode d'évaluation	Loi choisie	S ou a	Incertitude type v(x)

Ex4. Incertitudes composées

Principe de la mesure

Un système de mesure d'épaisseur comporte deux capteurs éloignés d'une distance d. Chaque capteur i (i = 1 et i = 2) délivre une tension vi, proportionnelle à l'écart entre la distance à mesurer et la distance de référence (22,0 mm), soit vi = s (di - 22,0) avec d, en mm, et s sensibilité du capteur exprimée en V/mn.

Données numériques

Pour vérifier le positionnement des plans, on a effectué 50 mesures de la distance d dans des conditions de répétabilité. La valeur moyenne de ces 50 mesures est 44,0 mm et l'écart type sur les mesures est 0,1 mm.

La sensibilité des capteurs est de 1 V/mm, donnée par le constructeur avec une incertitude de 3 %. (on supposera k = 2). Le voltmètre utilisé pour lire les mesures porte l'indication suivante pour le calibre utilisé : « précision 1 mV ». On a mesuré v1 = -300 mV et v2 = -100 mV.

Calcul des grandeurs mesurées

- 1) Exprimer l'épaisseur e en fonction de d, d1 et d2 Exprimer di, en fonction de s et vi,
- 2) Calculer d1, d2 et e.

Sources et calculs d'incertitudes

3) Faire la liste des sources d'incertitudes, et calculer les incertitudes types pour chaque grandeur concernée. On veillera à bien préciser les unités.

Mesurande ou paramètre étudié	unité	Source d'incertitude	Méthode d'évaluation	Loi choisie	S ou a	Incertitude type v(x)

Propagation des incertitudes

- 4) Exprimer l'incertitude sur di en fonction de celles sur s et vi. Calculer u(d1) et u(d2).
- 5) Exprimer l'incertitude sur e en fonction des incertitudes sur d, d1 et d2.
- 6) Calculer u(e)

Expression du résultat

7) Exprimer le résultat de la mesure à l'aide de l'incertitude élargie.